Sensitivity Calculations

Mohamed Kamal Abd Elrahman 6 October, Giza, Egypt

October 25, 2019

Sensitivities are used as measures of robustness for engineering systems. In many applications, one is interested about the system performance under small variations of a set of design parameters. In inverse device design, sensitivities guides the search within the space spanned by a set of design parameters.

Problem Formulation

Assuming **G** is a vector of design merits $(G_1[\mathbf{x}], G_2[\mathbf{x}], \dots, G_n[\mathbf{x}])$, where each component is a scaler function of m design parameters \mathbf{x} (x_1, x_2, \dots, x_m) . The goal is to find the sensitivity of the design merit G_i with respect to the design parameter x_j :

$$S_{ij} = \frac{dG_i}{dx_j} \tag{1}$$

The entries S_{ij} form the elements of the $n \times m$ Jacobian matrix S which maps m input parameters to n output merits. The Jacobian could be seen as a generalization of the slope constant s in g(x) = sx, but now is used for multivariate vector functions. The entries of row $S_i = \frac{dG_i}{dx}$ are the sensitivities of the merit function G_i with respect to all the design parameters. The entries of column $S_j = \frac{dG}{dx_j}$ are the sensitivities of all the merit functions with respect to the single design parameter x_j

Numerical Differentiation

Finite Difference Method

In the finite difference approximation the sensitivity column $\frac{d\mathbf{G}}{dx_j}$ is calculated by perturbing the design parameter x_j by a step Δx_j and then evaluating the new merits \mathbf{G} . The derivative could be approximated by a forward difference:

$$\frac{d\mathbf{G}}{dx_j} \approx \frac{\mathbf{G}(\mathbf{x} + \mathbf{\Delta}_j) - \mathbf{G}(\mathbf{x})}{\mathbf{\Delta}_j} \tag{2}$$

where $\Delta_j = \Delta_j \hat{\mathbf{e}}_j$. If we have m design parameters, we need to finite difference m times to fill all the columns of the Jacobian S. There are several disadvantage to the finite difference approach:

- The objective function may be very costly to be perturbed and evaluated m times, especially if m is large.
- The finite difference suffers from truncation errors as the step size Δ_i should be very small. Practically, a very small step will lead to subtractive cancellation errors. So choosing a balanced step size is a problem by itself and we need to solve the this problem m times for each design parameter.

Complex Step Method

Automatic Differentiation

Automatic Forward-Mode Differentiation

Automatic Reverse-Mode Differentiation