- Initial Instance (I): {A1 = 50,000 (Income), A2 = 650 (Credit Score), A3 = 4 (Years of Employment), A4 = 20,000 (Loan Amount), A5 = 0.25 (Debt-to-Income Ratio)}
- Scoring Function (fc):
 - \circ p = [0,1]
 - If $p \ge 0.5 \rightarrow C(I) = 1$, else C(I) = 0;
- Decision-making System (C):
 - \circ C(I) = 0 \rightarrow Loan Rejected
 - \circ C(I) = 1 \rightarrow Loan Approved
- Initially,

$$p = 0.3$$

 $C(I)=0 \rightarrow Loan Rejected$

combinations = $[\{\}, 0.3]$ (Empty set with score 0.3)

Iteration 1 (i = 0)

- 1. pop set with the smallest score from combinations:
 - \circ combination = {} with score p = 0.3.
- 2. Counterfactual (no features changed):
 - \circ counterfactual = I'($\{\}$).
- 3. Decision remains the same:
 - \circ C(counterfactual) = C(I) = 0 (Loan Rejected).
- 4. Explore features:
 - Iterate over features, because explanation list is empty:
 - For each feature Aj (e.g., A1 = 50,000, A2 = 650, etc.), check if it is not in the counterfactual set.
 - If not, add it to a new set E, compute the score fc(I'(E)), by replacing the features' value to their counterfactual values and insert E into combinations.
- 5. For example:
 - \circ E = {A1} with score p = 0.55 (Insert {A1}, score 0.55 into combinations).
 - \circ E = {A2} with score p = 0.50 (Insert {A2}, score 0.50 into combinations).
 - \circ E = {A3} with score p = 0.65 (Insert {A2}, score 0.65 into combinations).
 - \circ E = {A4} with score p = 0.45 (Insert {A2}, score 0.45 into combinations).
 - \circ E = {A5} with score p = 0.51 (Insert {A2}, score 0.51 into combinations).
- 6. End of iteration 1:

o combinations = $[\{A1\}, 0.55], [\{A2\}, 0.50], [\{A3\}, 0.65], [\{A4\}, 0.45], [\{A5\}, 0.51].$

Iteration 2 (i = 1)

- 1. pop set with the smallest score from combinations:
 - \circ combination = {A4} with score p = 0.45.
- 2. Counterfactual:
 - o counterfactual = $I'(\{A4\})$ (Set A4 to its counterfactual value, keeping the rest of the features as it is).
- 3. Decision remains the same:
 - C(counterfactual) = 0 (Loan Rejected).
- 4. Explore features:
 - Add features to the combination and compute scores, because explanation_list is empty:
 - E = $\{A4, A1\}$ with score p = 0.58 (Insert $\{A4, A1\}$, score 0.58 into combinations).
 - E = $\{A4, A2\}$ with score p = 0.50 (Insert $\{A4, A2\}$, score 0.50 into combinations).
 - E = $\{A4, A3\}$ with score p = 0.65 (Insert $\{A4, A3\}$, score 0.65 into combinations).
 - E = $\{A4, A5\}$ with score p = 0.49 (Insert $\{A4, A5\}$, score 0.49 into combinations).
 - Continue for all combinations.
- **5**. End of iteration 2:
 - o combinations = [{A1}, 0.55], [{A2}, 0.50], [{A3}, 0.65], [{A5}, 0.51], [{A4, A1}, 0.58], [{A4, A2}, 0.50], [{A4, A3}, 0.65], [{A4, A5}, 0.49].

Iteration 3 (i = 2)

- 1. pop set with the smallest score from combinations:
 - \circ combination = {A4, A5} with score p = 0.49.
- 2. Counterfactual:
 - o counterfactual = $I'(\{A4, A5\})$ (Set A4 and A5 to its counterfactual value, keeping the rest of the features as it is).
- 3. Decision remains the same:
 - C(counterfactual) = 0 (Loan Rejected).
- 4. Explore features:
 - Add features to the combination and compute scores, because explanation_list is empty:

- $E = \{A4, A5, A1\}$ with score p = 0.74 (Insert $\{A4, A5, A1\}$, score 0.74 into combinations).
- $E = \{A4, A5, A2\}$ with score p = 0.64 (Insert $\{A4, A5, A2\}$, score 0.64 into combinations).
- $E = \{A4, A5, A3\}$ with score p = 0.54 (Insert $\{A4, A5, A3\}$, score 0.54 into combinations).

5. End of iteration 3:

combinations = [{A1}, 0.55], [{A2}, 0.50], [{A3}, 0.65], [{A5}, 0.51], [{A4, A1}, 0.58], [{A4, A2}, 0.50], [{A4, A3}, 0.65], [{A4, A5, A1}, 0.74], [{A4, A5, A2}, 0.64], [{A4, A5, A3}, 0.54].

Iteration 4 (i = 3)

- 1. pop set with the smallest score(two such sets are available, hence one is chosen randomly) from combinations:
 - \circ combination = {A4, A2} with score p = 0.50.
- 2. Counterfactual:
 - o counterfactual = I'({A4, A2}) (Set A4 and A2 to its counterfactual value, keeping the rest of the features as it is).
- 3. Decision changes:
 - C(counterfactual) = 1 (Loan Approved).
- 4. Combination is causal:
 - The combination {A4, A2} is causal
 - o explanation=combination={A4, A2}
- 5. Irreducibility:
 - Now, check for each set 'E' in power set of combination → {{},{A4},{A2},{A4},
 A2}}:
 - $C(I'\{\})=0.3$ -> No change in feature, results in loan rejection
 - $C(I'\{A4\})=0.45$ -> changing A4 to its counterfactual value results in loan rejection
 - C(I'{A2})=0.50 -> changing A2 to its counterfactual value results in loan approval & E is smaller than explanation

explanation =
$$E = \{A2\}$$

- C(I'{A4, A2})=0.50 -> changing A4 & A2 to its counterfactual value also results in loan approval, but here E is larger than explanation, so no change in explanation variable.
- **6.** Final Explanation list:
 - The explanation is {A2} added to explanation list.
 - \circ explanation list = {A2}

7. End of iteration 4:

o combinations = [{A1}, 0.55], [{A2}, 0.50], [{A3}, 0.65], [{A5}, 0.51], [{A4, A1}, 0.58], [{A4, A3}, 0.65], [{A4, A5, A1}, 0.74], [{A4, A5, A2}, 0.64], [{A4, A5, A3}, 0.54].

Note: Here, in algorithm there should be a logic to remove explanation_list items and also its supersets from combinations to reduce computational cost for re-calculating the counterfactual values and scores further.

Iteration 5 (i = 4)

- 1. pop set with the smallest score from combinations:
 - o combination = $\{A2\}$ with score p = 0.50.
- 2. Counterfactual:
 - o counterfactual = $I'(\{A2\})$ (Set A2 to its counterfactual value, keeping the rest of the features as it is).
- 3. Decision changes:
 - C(counterfactual) = 1 (Loan Approved).
- 4. Combination is causal:
 - The combination {A2} is causal
 - explanation=combination={A2}
- 5. Irreducibility:
 - Now, check for each set 'E' in power set of combination $\rightarrow \{\{\}, \{A2\}\}\}$:
 - $C(I'\{\})=0.3$ -> NO counterfactual value results in loan rejection
 - C(I'{A2})=0.50 -> changing A2 to its counterfactual value results in loan approval & E is equal to explanation
- **6.** Final Explanation list:
 - The explanation is {A2} added to explanation_list.--> already there, so no changes
 - \circ explanation list = {A2}
- 7. End of iteration 5:
 - o combinations = [{A1}, 0.55], [{A3}, 0.65], [{A5}, 0.51], [{A4, A1}, 0.58], [{A4, A3}, 0.65], [{A4, A5, A1}, 0.74], [{A4, A5, A2}, 0.64], [{A4, A5, A3}, 0.54]

Iteration 6 (i = 5)

- 1. pop set with the smallest score from combinations:
 - \circ combination = {A5} with score p = 0.51.
- 2. Counterfactual:
 - o counterfactual = $I'(\{A5\})$ (Set A5 to its counterfactual value, keeping the rest of the features as it is).

- 3. Decision changes:
 - C(counterfactual) = 1 (Loan Approved).
- 4. Combination is causal:
 - The combination {A5} is causal
 - o explanation=combination={A5}
- 5. Irreducibility:
 - Now, check for each set 'E' in power set of combination $\rightarrow \{\{\}, \{A5\}\}\}$:
 - $C(I'\{\})=0.3$ -> NO counterfactual value results in loan rejection
 - C(I'{A5})=0.51 -> changing A5 to its counterfactual value results in loan approval & E is equal to explanation
- 6. Final Explanation list:
 - The explanation is {A5} added to explanation_list.
 - \circ explanation list = [{A2},{A5}]
- 7. End of iteration 6:

combinations = [{A1}, 0.55], [{A3}, 0.65], [{A4, A1}, 0.58], [{A4, A3}, 0.65], [{A4, A5, A1}, 0.74], [{A4, A5, A2}, 0.64], [{A4, A5, A3}, 0.54].

Iteration 7 (i = 6)

- 1. pop set with the smallest score from combinations:
 - \circ combination = {A4, A5, A3} with score p = 0.54.
- 2. Counterfactual:
 - o counterfactual = I'({A4, A5, A3}) (Set A4, A5, A3 to its counterfactual value, keeping the rest of the features as it is).
- 3. Decision changes:
 - C(counterfactual) = 1 (Loan Approved).
- 4. Combination is causal:
 - The combination {A4, A5, A3} is causal
 - o explanation=combination={A4, A5, A3}
- 5. Irreducibility:
 - \circ Now, check for each set 'E' in power set of combination \rightarrow {{},{A4},{A5},{A3},{A4,A5},{A5,A3},{A4,A3},{A4,A5,A3}}:
 - $C(I'\{\})=0.3$ -> NO counterfactual value results in loan rejection
 - C(I'{A4})=0.45 -> changing A5 to its counterfactual value results in loan rejection
 - C(I'{A5})=0.51 -> changing A5 to its counterfactual value results in loan approval & E is smaller than explanation

explanation =
$$E = \{A5\}$$

Note: This A5 is already explored in the previous iteration, but because it was not removed from all available combinations, it had to be explored again by the algorithm.

■ C(I'{A3})=0.65 -> changing A5 to its counterfactual value results in loan approval & E is equal to size of explanation

Note: If we would have explored this E={A3} prior to E={A5}, we would have assigned this {A3} to the explanation variable and hence finally leading to the addition of A3 into explanation_list. Hence the ordering of power set elements plays a deciding factor. But if all the superset of explanation_list items would have been deleted from combinations, then this case would have been addressed efficiently.

- C(I'{A4, A5})=0.49 -> changing A5 to its counterfactual value results in loan rejection
- C(I'{A5, A3})=0.48 -> changing A5 to its counterfactual value results in loan rejection
- C(I'{A4, A3})=0.65 -> changing A5 to its counterfactual value results in loan approval & E is larger than explanation
- C(I'{A4,A5,A3})=0.54 -> changing A5 to its counterfactual value results in loan approval & E is larger than explanation
- 6. Final Explanation list:
 - \circ The explanation is {A5} added to explanation_list \rightarrow already exists.
 - \circ explanation list = [{A2},{A5}]
- 7. End of iteration 7:

combinations = $[\{A1\}, 0.55]$, $[\{A3\}, 0.65]$, $[\{A4, A1\}, 0.58]$, $[\{A4, A3\}, 0.65]$, $[\{A4, A5, A1\}, 0.74]$, $[\{A4, A5, A2\}, 0.64]$.

Final explanation_list till iteration 7:

explanation_list = $[\{A2\}, \{A5\}]$