Videregående kvantitative metoder i studiet af politisk adfærd

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

21. november 2016

- 1 Formalia
- 2 Opsamling fra sidst
- 3 Difference-in-differences designs
- 4 Implementering i R
  - Omkodning
  - Lang vs. bred form
  - Piping
- 5 Kig fremad

| Uge | Dato  | Tema                                          | Litteratur                   | Case                 |
|-----|-------|-----------------------------------------------|------------------------------|----------------------|
| 1   | 5/9   | Introduktion til R                            | lmai kap 1                   |                      |
| 2   | 12/9  | Regression I: OLS                             | GH kap 3, MM kap 2           | Gilens & Page (2014  |
| 3   | 26/9  | Regression II: Paneldata                      | GH kap 11                    | Larsen et al. (2016) |
| 4   | 29/9  | Regression III: Multileveldata, interaktioner | GH kap 12                    | Berkman & Plutzer    |
| 5   | 3/10  | Introduktion til kausal inferens              | Hariri (2012), Samii (2016)  |                      |
| 6   | 10/10 | Matching                                      | Justesen & Klemmensen (2014) | Ladd & Lenz (2009)   |
|     | 17/10 | *Efterårsferie*                               | ` ,                          | , ,                  |

•0

| Uge | Dato  | Tema                               | Litteratur                           | Case                  |
|-----|-------|------------------------------------|--------------------------------------|-----------------------|
|     | 17/10 | *Efterårsferie*                    |                                      |                       |
| 7   | 24/10 | Eksperimenter I                    | MM kap 1, GG kap $1+2$               | Gerber et al. (2008)  |
| 8   | 31/10 | Eksperimenter II                   | GG kap 3+4+5                         | Gerber & Green (2000) |
| 9   | 14/11 | Instrumentvariable                 | MM kap 3                             | Arunachalam & Watso   |
| 10  | 14/11 | Regressionsdiskontinuitetsdesigns  | MM kap 4                             | Eggers & Hainmueller  |
| 11  | 21/11 | Difference-in-difference designs   | MM kap 5                             | Enos (2016)           |
| 12  | 28/11 | 'Big data' og maskinlæring         | Grimmer (2015), Varian (2014)        |                       |
| 13  | 5/12  | Scraping af data fra online-kilder | MRMN kap 9                           |                       |
| 14  | 12/12 | Tekst som data                     | Grimmer & Stewart (2013), Imai kap 5 |                       |

Formalia O•

- RDD: cutoff og running variable
- modellering af RDD med OLS
- · fastsættelse af bandwidth
- sorting
- case: Eggers & Hainmueller

Spørgsmål?

Frederik Hjorth

## Motiverende eksempel: pengepolitik og bankkrak

FIGURE 5.2 Trends in bank failures in the Sixth and Eighth Federal Reserve Districts



### Motiverende eksempel: pengepolitik og bankkrak

FIGURE 5.1
Bank failures in the Sixth and Eighth Federal Reserve Districts



ightarrow afgørende kilde til counterfactual: parallel trends assumption

# Illustration af parallel trends assumption:



# Motiverende eksempel II: Card & Krueger (1992)



Lad  $p \in \{0,1\}$  angive om observationen er efter treatment, og  $t \in \{0,1\}$  angive om observationen tilhører treated eller non-treated

$$\delta_{DD} = \overline{Y_{p=1,t=1}} - \overline{Y_{p=0,t=1}} - \overline{Y_{p=1,t=0}} - \overline{Y_{p=0,t=0}}$$
 (1)

DiD i regressionsform med treatede og non-treatede data 'stakket':

$$Y_{dt} = \alpha + \beta TREAT_d + \gamma POST_t + \delta_{rDD}(TREAT_d \times POST_t) + \epsilon_{dt}$$
 (2)

$$Y_{st} = \alpha + \delta_{rDD}TREAT + \sum_{i}^{N} \beta_{i}UNIT + \sum_{j}^{T} \gamma_{j}TIME + \epsilon_{ij}$$
 (3)

ightarrow modellen kan inkludere tidsvarierende potentielle kilder til OVB

Spørgsmål?

Omkodning

Nyttig funktion til omkodning (fx. bestemte værdier til NA): ifelse()

ifelse(<logisk betingelse>, <hvis TRUE>, <hvis FALSE>)

Lang vs. bred form

Data på bred form kan konverteres til lang form vha. gather() i dplyr-pakken

#### hvor

- key: navn på variabel der angiver variabelnavne fra bredt format
- value: navn på variabel der angiver værdier fra bredt format
- ...: intervallet af variable der skal 'stakkes', fx. obs1992:obs1998

Lang vs. bred form

Eks.: bredt data med enhederne a, b og c og outcome y observeret i t2 og t2

| unit | yt1 | yt2 |
|------|-----|-----|
| а    | 1   | 2   |
| b    | 3   | 6   |
| С    | 6   | 7   |
|      |     |     |

 $\rightarrow$  hvordan skal data se ud på lang form?

'Piping' fører et objekt gennem sekventielle funktioner forbundet med operatoren %>%

→ implementeret i dplyr-pakken, kan bruges generelt vha. magrittr-pakken

Eks.: antag håbløst formateret variabel var

- → hvordan udfører vi mest effektivt flg.?
  - konverter til numerisk
  - konverter 99 til NA
  - 3 tag logaritmen

## Næste gang:

- 'big data' og maskinlæring
- pensum: Grimmer + Varian
- ingen case-tekst

Tak for i dag!