第五次作业

1、有五个进程P1、P2、P3、P4、P5,它们同时依次进入就绪队列,它们的优先数和需要的处理器时间如下表

a.答:

先来先服务: 1、2、3、4、5; 短作业优先: 2、4、3、5、1;

非抢占式的优先数: 2、5、1、3、4;

轮转法: 1、2、3、4、5、1、5、1、5、1、1。

b.答:

调度算法	周转时间	等待时间	平均周转时间
先来先服务	10、11、13、14、19	0、10、11、13、14	13.4
短作业优先	19、1、4、2、9	9、0、2、1、4	7
非抢占式的优先数	16、1、18、19、6	6、0、16、18、1	12
轮转法	19、3、5、6、15	9、2、3、5、10	9.6

2、死锁产生的四个必要条件是什么?

答:分别是互斥条件、请求且占有条件、不可剥夺条件、环路等待条件。

3、某系统中有n个进程和m台打印机,系统约定:打印机只能一台一台地申请、一台一台地 释放,每个进程需要同时使用的打印机台数不超过m。如果n个进程同时需要使用打印机的总数小于m+n,试讨论,该系统可能发生死锁吗?并简述理由。

答:在题目所给的条件下,可能产生死锁,例如当n=10000,m=2,前两个进程各需要两台打印机,之后的进程不需要使用打印机时,可能产生死锁。但如果限定每个进程至少使用一台打印机,则不可能产生死锁,原因如下:当每个进程都占有比能够让其完成任务的资源数 Xi 少 1 个资源时,系统内剩余空闲资源最少,最可能产生死锁,此时如果能产生死锁,则要求:

$$\sum_{i=1}^{n} (x_i - 1) \ge m$$

而依题:

$$\sum_{i=1}^n \left(x_i \right) < m+n$$

故有:

$$\sum_{i=1}^n \left(x_i-1\right) < (m+n)-n = m$$

不能满足产生死锁条件, 故不会产生死锁。

4.线程的基本概念是什么?引入线程的好处是什么?

答:线程是进程中的一个执行单元,负责当前进程中程序的执行,是调度的基本单位;引入线程可以减少并发程序执行时所付出的时空开销,使得并发粒度更细、并发性更好。

5、一个系统有4个进程和5个可分配资源,当前分配和最大需求如下:

答:

假设x为0,系统处于不安全状态。

假设x为1,则通过银行家算法,能够说明系统此时处于安全状态:

进程	Work	Need	Allocation	W+A	Finish
D	00112	00111	11110	11222	True
А	11222	01002	10211	21433	True
С	21433	10300	11010	32443	True
В	32443	02100	20110		True

故x最小为1。