Combinatorial Nullstellensatz and the Erdős box problem

Alexey Gordeev

Department of Mathematics and Mathematical Statistics, Umeå University, Sweden

August 19, 2024

- \mathbb{F} any field, $f \in \mathbb{F}[x_1, \dots, x_r]$
- $x_1^{d_1} \dots x_r^{d_r}$ is a monomial of f if its coefficient in f is non-zero

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1} \dots x_r^{d_r}$ is a monomial of f and $\deg f = d_1 + \dots + d_r$, then for any $A_1, \dots, A_r \subset \mathbb{F}$ with $|A_i| \geq d_i + 1$, $f(a_1, \dots, a_r) \neq 0$ for some $a_i \in A_i$. In other words, f does not vanish on $A_1 \times \dots \times A_r$.

- \mathbb{F} any field, $f \in \mathbb{F}[x_1, \dots, x_r]$
- $x_1^{d_1} \dots x_r^{d_r}$ is a monomial of f if its coefficient in f is non-zero

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset\mathbb{F}$ with $|A_i|\geq d_i+1,\ f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i.$ In other words, f does not vanish on $A_1\times\dots\times A_r.$

⋄ Example: $\deg f(x,y) = 4$ $f(x,y) = \cdots + cx^2y^2$ $A_1 = A_2 = \{-2,0,2\}$

- \mathbb{F} any field, $f \in \mathbb{F}[x_1, \dots, x_r]$
- $x_1^{d_1} \dots x_r^{d_r}$ is a monomial of f if its coefficient in f is non-zero

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1,\ f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i.$ In other words, f does not vanish on $A_1\times\dots\times A_r.$

♦ Example: $\deg f(x,y) = 4$ $f(x,y) = \cdots + cx^2y^2$ $A_1 = A_2 = \{-2,0,2\}$ ♦ (x-2)(x+2)(y-2)(y+2)

- \mathbb{F} any field, $f \in \mathbb{F}[x_1, \dots, x_r]$
- $x_1^{d_1} \dots x_r^{d_r}$ is a monomial of f if its coefficient in f is non-zero

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1,\ f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i.$ In other words, f does not vanish on $A_1\times\dots\times A_r.$

♦ Example: $\deg f(x,y) = 4$ $f(x,y) = \cdots + cx^2y^2$ $A_1 = A_2 = \{-2,0,2\}$ ♦ $((x-1)^2 + (y-1)^2 - 2) \cdot ((x+1)^2 + (y+1)^2 - 2)$

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A+B| \geq \min(p, |A|+|B|-1)$.

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A+B| \geq \min(p, |A|+|B|-1)$.

1. If |A|+|B|>p, then $A\cap (x-B)\neq\emptyset$ for every $x\in\mathbb{Z}_p$, so $A+B=\mathbb{Z}_p$.

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A + B| \ge \min(p, |A| + |B| - 1)$.

- 1. If |A| + |B| > p, then $A \cap (x B) \neq \emptyset$ for every $x \in \mathbb{Z}_p$, so $A + B = \mathbb{Z}_p$.
- 2. Otherwise, suppose $|A+B| \le |A| + |B| 2 < p$ and define

$$f(x,y) := \prod_{c \in A+B} (x+y-c).$$

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A + B| \ge \min(p, |A| + |B| - 1)$.

- 1. If |A| + |B| > p, then $A \cap (x B) \neq \emptyset$ for every $x \in \mathbb{Z}_p$, so $A + B = \mathbb{Z}_p$.
- 2. Otherwise, suppose $|A + B| \le |A| + |B| 2 < p$ and define

$$f(x,y) := \prod_{c \in A+B} (x+y-c).$$

3. f(a,b) = 0 for any $a \in A$, $b \in B$, i.e. f vanishes on $A \times B$.

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A + B| \ge \min(p, |A| + |B| - 1)$.

- 1. If |A| + |B| > p, then $A \cap (x B) \neq \emptyset$ for every $x \in \mathbb{Z}_p$, so $A + B = \mathbb{Z}_p$.
- 2. Otherwise, suppose $|A + B| \le |A| + |B| 2 < p$ and define

$$f(x,y) := \prod_{c \in A+B} (x+y-c).$$

- 3. f(a,b) = 0 for any $a \in A$, $b \in B$, i.e. f vanishes on $A \times B$.
- 4. The coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ in f is $\binom{|A+B|}{|A|-1} \neq 0 \pmod{p}$,

Cauchy-Davenport theorem

If p is a prime, $\emptyset \neq A, B \subset \mathbb{Z}_p$, then $|A + B| \ge \min(p, |A| + |B| - 1)$.

- 1. If |A| + |B| > p, then $A \cap (x B) \neq \emptyset$ for every $x \in \mathbb{Z}_p$, so $A + B = \mathbb{Z}_p$.
- 2. Otherwise, suppose $|A + B| \le |A| + |B| 2 < p$ and define

$$f(x,y) := \prod_{c \in A+B} (x+y-c).$$

- 3. f(a,b) = 0 for any $a \in A$, $b \in B$, i.e. f vanishes on $A \times B$.
- 4. The coefficient of $x^{|A|-1}y^{|A+B|-|A|+1}$ in f is $\binom{|A+B|}{|A|-1} \neq 0 \pmod p$, $|A+B|-|A|+1 \leq |B|-1$, thus, by CN, f does not vanish on $A \times B$.

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset\mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset\mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

• $x_1^{d_1} \dots x_r^{d_r}$ is a \max imal monomial of f if it does not divide any other monomial of f

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset\mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

• $x_1^{d_1} \dots x_r^{d_r}$ is a \max imal monomial of f if it does not divide any other monomial of f

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

 \diamond Example: $f(x,y) = x^{100} + xy + y^{100}$

Combinatorial Nullstellensatz (Alon, 1999)

If $x_1^{d_1}\dots x_r^{d_r}$ is a monomial of f and $\deg f=d_1+\dots+d_r$, then for any $A_1,\dots,A_r\subset\mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

• $x_1^{d_1} \dots x_r^{d_r}$ is a \max imal monomial of f if it does not divide any other monomial of f

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

- \diamond Example: $f(x,y) = x^{100} + xy + y^{100}$
- ♦ Schauz, 2008: even more general theorem
- in practically all known applications the degree condition is sufficient

Turán numbers

• G — graph; Turán number (or extremal number) $\mathrm{ex}(n,G)$ — maximum number of edges in a graph on n vertices containing no copies of G

Theorem (Turán, 1941)

$$ex(n, K_{m+1}) = (1 - \frac{1}{m} + o(1)) \binom{n}{2}.$$

Turán numbers

• G — graph; Turán number (or extremal number) $\mathrm{ex}(n,G)$ — maximum number of edges in a graph on n vertices containing no copies of G

Theorem (Turán, 1941)

$$ex(n, K_{m+1}) = (1 - \frac{1}{m} + o(1)) \binom{n}{2}.$$

Turán numbers

• G — graph; Turán number (or extremal number) $\mathrm{ex}(n,G)$ — maximum number of edges in a graph on n vertices containing no copies of G

Theorem (Turán, 1941)

$$ex(n, K_{m+1}) = (1 - \frac{1}{m} + o(1)) \binom{n}{2}.$$

Theorem (Erdős-Stone, 1946)

$$ex(n,G) = \left(1 - \frac{1}{\chi(G) - 1} + o(1)\right) \binom{n}{2}.$$

 \diamond determines ex(n,G) asymptotically when G is not bipartite ($\chi(G) > 2$)

Hypergraph Turán numbers and r-partite r-graphs

- hypergraph H=(V,E): V set of vertices, $E\subset 2^V$ set of edges
- r-graph (or r-uniform hypergraph): every edge contains r vertices
- H-r-graph; Turán number $\mathrm{ex}(n,H)$ maximum number of edges in an r-graph on n vertices containing no copies of H

Hypergraph Turán numbers and r-partite r-graphs

- hypergraph H=(V,E): V set of vertices, $E\subset 2^V$ set of edges
- r-graph (or r-uniform hypergraph): every edge contains r vertices
- H-r-graph; Turán number $\mathrm{ex}(n,H)$ maximum number of edges in an r-graph on n vertices containing no copies of H
- r-partite r-graph $H = (V_1 \sqcup \cdots \sqcup V_r, E)$: each edge intersects each V_i
- complete r-partite r-graph $K^{(r)}_{s_1,\ldots,s_r}\colon |V_i|=s_i$, all $s_1\ldots s_r$ possible edges

Hypergraph Turán numbers and r-partite r-graphs

- hypergraph H=(V,E): V set of vertices, $E\subset 2^V$ set of edges
- r-graph (or r-uniform hypergraph): every edge contains r vertices
- H-r-graph; Turán number $\mathrm{ex}(n,H)$ maximum number of edges in an r-graph on n vertices containing no copies of H
- r-partite r-graph $H = (V_1 \sqcup \cdots \sqcup V_r, E)$: each edge intersects each V_i
- complete r-partite r-graph $K^{(r)}_{s_1,\ldots,s_r}\colon |V_i|=s_i$, all $s_1\ldots s_r$ possible edges

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$ex(n, K_{s_1, \dots, s_r}^{(r)}) = O\left(n^{r - \frac{1}{s_1 \dots s_{r-1}}}\right) \text{ for } s_1 \le \dots \le s_r.$$

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$\operatorname{ex}(n,K_{s_1,\ldots,s_r}^{(r)}) = O\left(n^{r-\frac{1}{s_1\ldots s_{r-1}}}\right) \text{ for } s_1 \leq \cdots \leq s_r.$$

Conjecture: is asymptotically tight

Mubayi, 2002

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$\operatorname{ex}(n,K_{s_1,\dots,s_r}^{(r)}) = O\left(n^{r-\frac{1}{s_1\dots s_{r-1}}}\right) \text{ for } s_1 \leq \dots \leq s_r.$$

Conjecture: is asymptotically tight

Mubayi, 2002

• True for: $K_{2,2}$ and $K_{3,3}$

E.Klein, 1934 and Brown, 1966

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$ex(n, K_{s_1, \dots, s_r}^{(r)}) = O\left(n^{r - \frac{1}{s_1 \dots s_{r-1}}}\right) \text{ for } s_1 \le \dots \le s_r.$$

Conjecture: is asymptotically tight

Mubayi, 2002

• True for: $K_{2,2}$ and $K_{3,3}$

- E.Klein, 1934 and Brown, 1966
- $s_i \geq 2$ and $s_r \geq C(s_1, \ldots, s_{r-1})$

- Ma-Yuan-Zhang, 2018
- $s_i \geq 2$ and $s_r > ((r-1)(s_1 \dots s_{r-1}-1))!$ Pohoata–Zakharov, 2021+
 - (for graphs: Kollár-Rónyai-Szabó, 1996, Alon-Rónyai-Szabó, 1999)

(for graphs: Blagojević-Bukh-Karasev, 2013, Bukh, 2015)

$$\bullet \ \operatorname{ex}(n,K_{2,\dots,2}^{(r)}) = O\left(n^{r-\frac{1}{2^{r-1}}}\right)$$
 for $r \geq 2$

Erdős, 1964

•
$$ex(n, K_{2,\dots,2}^{(r)}) = O\left(n^{r-\frac{1}{2^{r-1}}}\right)$$
 for $r \ge 2$

Erdős, 1964

• $ex(n, K_{2,2}) = \Theta(n^{3/2})$

E.Klein, 1934

 \diamond no matching lower bound for r>2 is known

•
$$ex(n, K_{2,\dots,2}^{(r)}) = O\left(n^{r-\frac{1}{2^{r-1}}}\right)$$
 for $r \ge 2$

Erdős, 1964

•
$$ex(n, K_{2,2}) = \Theta(n^{3/2})$$

E.Klein, 1934

 \diamond no matching lower bound for r>2 is known

•
$$\operatorname{ex}(n, K_{2,2,2}^{(3)}) = \Omega(n^{8/3})$$

Katz-Krop-Maggioni, 2002

•
$$ex(n, K_{2,...,2}^{(r)}) = O\left(n^{r - \frac{1}{2^{r-1}}}\right)$$
 for $r \ge 2$

Erdős, 1964

•
$$ex(n, K_{2,2}) = \Theta(n^{3/2})$$

E.Klein, 1934

 \diamond no matching lower bound for r>2 is known

•
$$\operatorname{ex}(n, K_{2,2,2}^{(3)}) = \Omega(n^{8/3})$$

Katz-Krop-Maggioni, 2002

•
$$\operatorname{ex}(n,K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\lceil\frac{2^r-1}{r}\rceil^{-1}}\right)$$
 Conlon–Pohoata–Zakharov, 2021 (improving on Gunderson–Rödl–Sidorenko, 1999)

• $ex(n, K_{2,...,2}^{(r)}) = O\left(n^{r - \frac{1}{2^{r-1}}}\right)$ for $r \ge 2$

Erdős, 1964

- $\operatorname{ex}(n,K_{2,\dots,2}^{(r)})=\Omega\left(n^{r-\lceil\frac{2^r-1}{r}\rceil^{-1}}\right)$ Conlon–Pohoata–Zakharov, 2021
 - algebraic structure + random multilinear maps

• $\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = O\left(n^{r - \frac{1}{2^{r-1}}}\right)$ for $r \ge 2$

Erdős, 1964

- $\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\lceil\frac{2^r-1}{r}\rceil^{-1}}\right)$ Conlon-Pohoata-Zakharov, 2021
 - algebraic structure + random multilinear maps
- $\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right)$ G., 2024
 - an application of a new method using Combinatorial Nullstellensatz
 - explicit construction, simple proof

•
$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = O\left(n^{r - \frac{1}{2^{r-1}}}\right)$$
 for $r \ge 2$

Erdős, 1964

•
$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\lceil\frac{2^r-1}{r}\rceil^{-1}}\right)$$
 Conlon–Pohoata–Zakharov, 2021

algebraic structure + random multilinear maps

•
$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right)$$

G., 2024

- an application of a new method using Combinatorial Nullstellensatz
- explicit construction, simple proof

r	2	3	4	5	6
$r - \frac{1}{2^{r-1}}$	1.5	2.75	3.875	4.9375	5.96875
$r - \lceil \frac{2^r - 1}{r} \rceil^{-1}$	1.5	2.(6)	3.75	4.(857142)	5.(90)
$r - \frac{1}{r}$	1.5	2.(6)	3.75	4.8	5.8(3)

•
$$ex(n, K_{2,...,2}^{(r)}) = O\left(n^{r - \frac{1}{2^{r-1}}}\right)$$
 for $r \ge 2$

Erdős, 1964

•
$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\lceil\frac{2^r-1}{r}\rceil^{-1}}\right)$$
 Conlon–Pohoata–Zakharov, 2021

algebraic structure + random multilinear maps

•
$$ex(n, K_{2,...,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right)$$

G., 2024

- $\diamond\,$ an application of a new method using Combinatorial Nullstellensatz
- explicit construction, simple proof

r	2	3	4	5	6
$r - \frac{1}{2^{r-1}}$	1.5	2.75	3.875	4.9375	5.96875
$r - \lceil \frac{2^r - 1}{r} \rceil^{-1}$	1.5	2.(6)	3.75	4.(857142)	5.(90)
$r-\frac{1}{r}$	1.5	2.(6)	3.75	4.8	5.8(3)

•
$$\operatorname{ex}(n, K_{2,2,2}^{(3)}) = \Omega(n^{8/3})$$

 $\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right)$

Katz-Krop-Maggioni, 2002

Yang, 2021, PhD thesis

proof is much more complicated

The framework

♦ The Generalized Combinatorial Lasoń—Alon—Zippel—Schwartz Nullstellensatz Lemma, arxiv:2305.10900 Rote, 2023

The framework

- ⋄ The Generalized Combinatorial Lasoń–Alon–Zippel–Schwartz Nullstellensatz Lemma, arxiv:2305.10900 Rote, 2023
- \mathbb{F} field, $f \in \mathbb{F}[x_1, \dots, x_r]$, $B_1, \dots, B_r \subset \mathbb{F}$, $B = B_1 \times \dots \times B_r$
- $Z(f,B) := \{(a_1,\ldots,a_r) \in B \mid f(a_1,\ldots,a_r) = 0\}$

The framework

- ♦ The Generalized Combinatorial Lasoń–Alon–Zippel–Schwartz Nullstellensatz Lemma, arxiv:2305.10900 Rote, 2023
- \mathbb{F} field, $f \in \mathbb{F}[x_1, \dots, x_r]$, $B_1, \dots, B_r \subset \mathbb{F}$, $B = B_1 \times \dots \times B_r$
- $Z(f,B) := \{(a_1,\ldots,a_r) \in B \mid f(a_1,\ldots,a_r) = 0\}$
- ullet H(f,B):=(V,E) is an r-partite r-graph, where

$$V := B_1 \sqcup \cdots \sqcup B_r, \quad E := Z(f, B)$$

- ⋄ The Generalized Combinatorial Lasoń–Alon–Zippel–Schwartz Nullstellensatz Lemma, arxiv:2305.10900 Rote, 2023
- \mathbb{F} field, $f \in \mathbb{F}[x_1, \dots, x_r]$, $B_1, \dots, B_r \subset \mathbb{F}$, $B = B_1 \times \dots \times B_r$
- $Z(f,B) := \{(a_1,\ldots,a_r) \in B \mid f(a_1,\ldots,a_r) = 0\}$
- H(f,B) := (V,E) is an r-partite r-graph, where

$$V := B_1 \sqcup \cdots \sqcup B_r, \quad E := Z(f, B)$$

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Generalized Combinatorial Nullstellensatz (Lasoń, 2010)

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, then for any $A_1,\dots,A_r\subset \mathbb{F}$ with $|A_i|\geq d_i+1$, $f(a_1,\dots,a_r)\neq 0$ for some $a_i\in A_i$. In other words, f does not vanish on $A_1\times\dots\times A_r$.

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Key Lemma (general)

If for every $\pi \in \mathcal{S}_r$ there exists a maximal monomial of f which divides $x_{\pi_1}^{d_1} \dots x_{\pi_r}^{d_r}$, then for any $B_1, \dots, B_r \subset \mathbb{F}$, $H(f, B_1 \times \dots \times B_r)$ is free of copies of $K_{d_1+1,\dots,d_r+1}^{(r)}$.

Schwartz-Zippel type corollary

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$ex(n, K_{s_1, \dots, s_r}^{(r)}) = O\left(n^{r - \frac{1}{s_1 \dots s_{r-1}}}\right) \text{ for } s_1 \le \dots \le s_r.$$

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Schwartz-Zippel type corollary

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$\operatorname{ex}(n, K_{s_1, \dots, s_r}^{(r)}) = O\left(n^{r - \frac{1}{s_1 \dots s_{r-1}}}\right) \text{ for } s_1 \le \dots \le s_r.$$

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Corollary

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $|B_i|=n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

Schwartz-Zippel type corollary

Theorem (Erdős, 1964; for graphs: Kővári-Sós-Turán, 1954)

$$ex(n, K_{s_1, \dots, s_r}^{(r)}) = O\left(n^{r - \frac{1}{s_1 \dots s_{r-1}}}\right) \text{ for } s_1 \le \dots \le s_r.$$

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Corollary

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $|B_i|=n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

 \diamond Example: $|Z(x^n+xy+y^n,B_1\times B_2)|=O(n^{3/2})$ for any B_i , $|B_i|=n$

Construction

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Construction

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Lemma (G., 2024)

Let \mathbb{F}_{p^r} be the finite field of size p^r , $\mathbb{F}_{p^r}^* = \mathbb{F}_{p^r} \setminus \{0\}$, and

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j},$$

where $x_{r+1} = x_1$ and so on. Then $|Z(f, (\mathbb{F}_{p^r}^*)^r| = p^{r-1}(p^r - 1)^{r-1}$.

Construction

Key Lemma

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset\mathbb{F}$, $H(f,B_1\times\dots\times B_r)$ is free of copies of $K_{d+1,\dots,d+1}^{(r)}$.

Lemma (G., 2024)

Let \mathbb{F}_{p^r} be the finite field of size p^r , $\mathbb{F}_{p^r}^* = \mathbb{F}_{p^r} \setminus \{0\}$, and

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j},$$

where $x_{r+1} = x_1$ and so on. Then $|Z(f, (\mathbb{F}_{p^r}^*)^r)| = p^{r-1}(p^r - 1)^{r-1}$.

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r - \frac{1}{r}}\right).$$

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right).$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

Theorem (G., 2024)

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r-\frac{1}{r}}\right).$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. $x_1 \dots x_r$ is maximal in f, thus $H(f, (\mathbb{F}_{p^r}^*)^r)$ is free of copies of $K_{2,\dots,2}^{(r)}$.

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r - \frac{1}{r}}\right).$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

- 1. $x_1 ldots x_r$ is maximal in f, thus $H(f, (\mathbb{F}_{p^r}^*)^r)$ is free of copies of $K_{2,\dots,2}^{(r)}$.
- Classical Combinatorial Nullstellensatz would be useless here!

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r - \frac{1}{r}}\right).$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

- 1. $x_1 ldots x_r$ is maximal in f, thus $H(f, (\mathbb{F}_{p^r}^*)^r)$ is free of copies of $K_{2,\dots,2}^{(r)}$.
- Classical Combinatorial Nullstellensatz would be useless here!
- 2. $H(f,(\mathbb{F}_{p^r}^*)^r)$ has $n=r(p^r-1)$ vertices.

$$\operatorname{ex}(n, K_{2,\dots,2}^{(r)}) = \Omega\left(n^{r - \frac{1}{r}}\right).$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

- 1. $x_1 \dots x_r$ is maximal in f, thus $H(f, (\mathbb{F}_{p^r}^*)^r)$ is free of copies of $K_{2,\dots,2}^{(r)}$.
- Classical Combinatorial Nullstellensatz would be useless here!
- 2. $H(f,(\mathbb{F}_{p^r}^*)^r)$ has $n=r(p^r-1)$ vertices.
- 3. $H(f, (\mathbb{F}_{p^r}^*)^r)$ has $|Z(f, (\mathbb{F}_{p^r}^*)^r| = p^{r-1}(p^r 1)^{r-1} = \Omega\left(n^{r-\frac{1}{r}}\right)$ edges.

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\ldots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\dots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$, so

$$f(a_1, \dots, a_r) = a_1 \dots a_r \left(1 + \sum_{i=1}^r \prod_{j=0}^{r-1} a_{i+j}^{-p^j} \right)$$

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\dots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$, so

$$f(a_1, \dots, a_r) = a_1 \dots a_r \left(1 + \sum_{i=1}^r \prod_{j=0}^{r-1} a_{i+j}^{-p^j} \right)$$
$$= a_1 \dots a_r \left(1 + \text{Tr} \left(a_1^{-1} a_2^{-p} \dots a_r^{-p^{r-1}} \right) \right),$$

where $\operatorname{Tr}(a) = a + a^p + \dots + a^{p^{r-1}}$ — trace of the field extension $\mathbb{F}_{p^r}/\mathbb{F}_p$.

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\dots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$, so

$$f(a_1, \dots, a_r) = a_1 \dots a_r \left(1 + \sum_{i=1}^r \prod_{j=0}^{r-1} a_{i+j}^{-p^j} \right)$$
$$= a_1 \dots a_r \left(1 + \text{Tr} \left(a_1^{-1} a_2^{-p} \dots a_r^{-p^{r-1}} \right) \right),$$

where $\operatorname{Tr}(a) = a + a^p + \dots + a^{p^{r-1}}$ — trace of the field extension $\mathbb{F}_{p^r}/\mathbb{F}_p$.

2. $\operatorname{Tr}(a) = -1$ for exactly p^{r-1} elements $a \in \mathbb{F}_{p^r}^*$.

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\dots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$, so

$$f(a_1, \dots, a_r) = a_1 \dots a_r \left(1 + \sum_{i=1}^r \prod_{j=0}^{r-1} a_{i+j}^{-p^j} \right)$$
$$= a_1 \dots a_r \left(1 + \text{Tr} \left(a_1^{-1} a_2^{-p} \dots a_r^{-p^{r-1}} \right) \right),$$

where $\operatorname{Tr}(a) = a + a^p + \dots + a^{p^{r-1}}$ — trace of the field extension $\mathbb{F}_{p^r}/\mathbb{F}_p$.

- 2. $\operatorname{Tr}(a) = -1$ for exactly p^{r-1} elements $a \in \mathbb{F}_{p^r}^*$.
- 3. Fix a_2, \ldots, a_r ; there are exactly p^{r-1} values of a_1 : $f(a_1, \ldots, a_r) = 0$.

$$f(x_1, \dots, x_r) = x_1 \dots x_r + \sum_{i=1}^r \prod_{j=1}^{r-1} x_{i+j}^{p^r - p^j}$$

1. For any $a_1,\dots,a_r\in\mathbb{F}_{p^r}^*$ we have $a_i^{p^r}=a_i$, so

$$f(a_1, \dots, a_r) = a_1 \dots a_r \left(1 + \sum_{i=1}^r \prod_{j=0}^{r-1} a_{i+j}^{-p^j} \right)$$
$$= a_1 \dots a_r \left(1 + \text{Tr} \left(a_1^{-1} a_2^{-p} \dots a_r^{-p^{r-1}} \right) \right),$$

where $\operatorname{Tr}(a) = a + a^p + \dots + a^{p^{r-1}}$ — trace of the field extension $\mathbb{F}_{p^r}/\mathbb{F}_p$.

- 2. $\operatorname{Tr}(a) = -1$ for exactly p^{r-1} elements $a \in \mathbb{F}_{p^r}^*$.
- 3. Fix a_2, \ldots, a_r ; there are exactly p^{r-1} values of a_1 : $f(a_1, \ldots, a_r) = 0$.
- 4. $|Z(f, (\mathbb{F}_{p^r}^*)^r| = p^{r-1}(p^r 1)^{r-1}$.

• Find more constructions using this framework

- Find more constructions using this framework
 - ♦ Find a way to add randomization to this algebraic method

- Find more constructions using this framework
 - Find a way to add randomization to this algebraic method
 - $\diamond \ {
 m ex}(n,K_{2,2,2}^{(3)})=\Omega(n^{8/3})$, Katz–Krop–Maggioni, 2002 seems structurally similar to our construction
 - Can other known constructions be "translated" into this language?

- Find more constructions using this framework
 - Find a way to add randomization to this algebraic method
 - $\diamond \ \mathrm{ex}(n,K_{2,2,2}^{(3)}) = \Omega(n^{8/3})$, Katz–Krop–Maggioni, 2002 seems structurally similar to our construction
 - Can other known constructions be "translated" into this language?

Corollary

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $|B_i|=n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

- Find more constructions using this framework
 - Find a way to add randomization to this algebraic method
 - $\diamond \ {
 m ex}(n,K_{2,2,2}^{(3)})=\Omega(n^{8/3})$, Katz–Krop–Maggioni, 2002 seems structurally similar to our construction
 - Can other known constructions be "translated" into this language?

Corollary

If $x_1^{d_1} \dots x_r^{d_r}$ is a maximal monomial of f, $d = \max(d_1, \dots, d_r)$, then for any $B_1, \dots, B_r \subset \mathbb{F}$, $|B_i| = n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

- When is the bound from the corollary not optimal?
 - \diamond It is tight for f(x,y)=xy+P(x)+Q(y), $\mathbb{F}=\mathbb{F}_{p^2}$

- Find more constructions using this framework
 - Find a way to add randomization to this algebraic method
 - $\diamond \ {\rm ex}(n,K_{2,2,2}^{(3)})=\Omega(n^{8/3})$, Katz–Krop–Maggioni, 2002 seems structurally similar to our construction
 - Can other known constructions be "translated" into this language?

Corollary

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $|B_i|=n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

- When is the bound from the corollary not optimal?
 - \diamond It is tight for f(x,y) = xy + P(x) + Q(y), $\mathbb{F} = \mathbb{F}_{p^2}$
 - \diamond Can the upper bound be improved for a particular \mathbb{F} ?
 - \diamond Rote, 2023: How large can the set $Z(f, B_1 \times B_2)$ be for $f(x,y) = xy + P(x) + Q(y), B_i \subset \mathbb{Z}, |B_i| = n$?

- Find more constructions using this framework
 - Find a way to add randomization to this algebraic method
 - $\diamond \ {
 m ex}(n,K_{2,2,2}^{(3)})=\Omega(n^{8/3})$, Katz–Krop–Maggioni, 2002 seems structurally similar to our construction
 - Can other known constructions be "translated" into this language?

Corollary

If $x_1^{d_1}\dots x_r^{d_r}$ is a maximal monomial of f, $d=\max(d_1,\dots,d_r)$, then for any $B_1,\dots,B_r\subset \mathbb{F}$, $|B_i|=n$,

$$|Z(f, B_1 \times \cdots \times B_r)| = O\left(n^{r - \frac{1}{(d+1)^{r-1}}}\right).$$

- When is the bound from the corollary not optimal?
 - \diamond It is tight for f(x,y) = xy + P(x) + Q(y), $\mathbb{F} = \mathbb{F}_{n^2}$
 - \diamond Can the upper bound be improved for a particular \mathbb{F} ?
 - \diamond Rote, 2023: How large can the set $Z(f,B_1\times B_2)$ be for $f(x,y)=xy+P(x)+Q(y),\ B_i\subset \mathbb{Z},\ |B_i|=n?$
- Find more applications of Lason's Combinatorial Nullstellensatz