

FRAUDOLENT TRANSACTION CLASSIFICATION

RICCARDO LA MARCA, MATR. 1795030

BIG DATA COMPUTING COURSE A.A. 2021/2022

Introduction

A brief presentation of the addressed problem

Dataset

A brief description of the dataset used in the project

Explore and Feature Engineering

How the dataset was modified

Machine Learning Models

The ML models and Pipelines applied for the task

Results

A description of the results obtained from the previous step

OVERVIEW

ADDRESSED PROBLEM

Financial fraud is a problem that has a huge impact on the financial industry

Credit card fraud detection is a challenge mainly due to 2 problems that it poses

- Both profiles of fraudolent and normal behaviours change
- Usually used datasets are highly skewed

The goal of the task is to create a Machine Learning model that, given a set of samples of fraudolent and not fraudolent transactions, is capable of classifying whether a new transaction is fraudolent or not.

EXPLORE AND FEATURE ENGINEERING OUTLINE

Merging

Transaction.csv
 and identity.csv
 have been merged
 together

Label Distributrion

 The dataset is highly unbalanced

Missing Values

 The dataset has a huge number of missing values

Feature Engineering

- Drop some features
- «Standardizing»
- Apply «Imputing»
- Use Pearson Correlation

.I - LABEL DISTRIBUTION

- With respect to the target label «isFraud» the dataset results highly unbalanced
- ~96.5 % are not-fraudolent transactions
- ~3.5 % are fraudolent transactions
- We have to handle this problem when splitting the dataset for training and testing the various ML models

.2 – MISSING VALUES

- The dataset has a high number of features with a huge percentage of missing values
- The average range of percentages is ~70-90%
- I handled this during the <u>Feature Engineering</u> step

ropping

Features

.3 – FEATURE ENGINEERING

Drop features with percentage value of missing values grater or equal to 90%

Standardization

- Standardize certain features
- Given different values for the same feature but with equal meaning, replace with a single more general value
- Take yahoo.co.jp, yahoo.co.uk and yahoo.net, I replace it with yahoo

Imputing

- Use the imputer to replace null values in the dataset according to a specific strategy
- Discrete values use strategy mean
- Nulls in categorical values have been replaced with «N»

Pearson Correlation

- Drop more features using the Pearson Correlation
 If the PC > .95,
- If the PC > .95, then drop that feature

MACHINE LEARNING PIPELINE

- The dataset is highly unbalanced, thus we cannot apply a simple random splitting
- This might lead to a poor splitting strategy
 - For instance the test set ends up containing only examples that are labeled with the most representative class
 - In this case such a class is the one for non-fraudolent transactions
- For this reason I used the so-called Stratified Random Sampling
 - It guarantees that both the training and the test split follow the same class distribution of the original dataset
 - For the experiments I selected 60% of 0's and 70% of 1's
- After splitting we last with: 357041 x 232 (train set) and 233499 x 232 (test set)

.I – DATASET SPLITTING

- After the stratified sampling, the train dataset was still highly unbalanced
- We have 342530 of 0s and 14511 of 1s.
- I decided to apply oversampling on the train set
 - After this I had 342530 of equal entries for fraudolent transactions
 - I decided to keep only the 60% of them
 - That because, keeping all of them, I obtained a high number of False Positive
 - A high number of non fraduolent have been classified as fraduolent
- Finally, the train set contains 63.3% of non fraud and 36.7% of fraudolent

.2 – TRAIN OVERSAMPLER

.3 - EXPERIMENTS

5

5 .I - EXPERIMENTAL RESULTS

Accuracy	Numerical (oversample)		All Features (oversample)	Categorical (oversample)
	with standardization	w/out standardize		
Logistic Regression	0.9772 (0.9099)	0.97725 (0.9099)	0.9777 (?)	0.9733 (0.8604)
Decision Tree	0.9773 (0.8586)	0.9773 (0.8586)	0.9790 (?)	0.9734 (0.7862)
Random Forest	0.9787 (0.9390)	0.9789 (0.9397)	(?)	0.9734 (0.8829)

AUC ROC	Numerical (oversample)		All Features (oversample)	Categorical (oversample)
	with standardization	w/out standardize		
Logistic Regression	0.832 (0.840)	0.834 (0.840)	0.857 (?)	0.800 (0.801)
Decision Tree	0.428 (0.535)	0.428 (0.535)	0.858 (?)	0.707 (0.679)
Random Forest	0.844 (0.864)	0.845 (0.866)	(?)	0.784 (0.810)

5 .2 - EXPERIMENTAL RESULTS

FI-Score	Numerical (oversample)		All Features (oversample)	Categorical (oversample)
11-30010	with standardization	w/out standardize		
Logistic Regression	0.7137 (0.6446)	0.7139 (0.6446)	0.7227 (?)	0.5897 (0.6109)
Decision Tree	0.7138 (0.6101)	0.7138 (0.6101)	0.7472 (?)	0.5961 (0.5999)
Random Forest	0.7406 (0.6787)	0.7438 (0.6787)	(?)	0.4932 (0.6165)

P/R	Numerical (oversample)		All Features (oversample)	Categorical (oversample)
1 /13	with standardization	w/out standardize		
Logistic Regression	0.853/0.613 (0.572/0.737)	0.852/0.614 (0.572/0.737)	0.858/0.624 (?)	0.706/0.505 (0.542/0.699)
Decision Tree	0.878/0.601 (0.541/0.698)	0.878/0.601 (0.541/0.698)	0.869/0.654 (?)	0.732/0.502 (0.529/0.692)
Random Forest	0.935/0.613 (0.611/0.762)	0.937/0.616 (0.612/0.761)	(?)	0.486/0.5 (0.550/0.701)