2 Properties of Vector Spaces, Intro to Subspaces

Theorem 1

In any vector space, the zero vector is unique. That is if $0, z \in V$ have property where v + 0 = v and v + z = v, then z = 0.

Theorem 2

In any vector space, the additive inverse of a vector is unique. That is, $\forall v \in V$, if there exists vectors $y, x \in V$ such that v + y = 0 and v + x = 0, then y = x.

Definition 1: Subtraction of vectors

Let V be a vector space, suppose $v, w \in V$. The difference of these two vectors, denoted v - w, is simply that sum v + (-w), that is the sum of v and the additive inverse of w.

Lemma 1

Let V be a vector space. The following properties hold for V:

- 1. $\forall \mathbf{v} \in V, 0 \in \mathbb{F}, 0 \cdot \mathbf{v} = \mathbf{0}.$
- 2. $\forall c \in \mathbb{F}, c \cdot \mathbf{0} = \mathbf{0}.$
- 3. Given $c \in \mathbb{F}$, $\mathbf{v} \in V$, if $c \cdot \mathbf{v} = \mathbf{0}$, then c = 0 or $\mathbf{v} = \mathbf{0}$.

Lemma 2

Let V be a vector space. The following properties hold for V:

- 1. $\forall v \in V, (-1) \cdot v = -v$. (The additive inverse of v)
- 2. $\forall c \in \mathbb{F}, v \in V, c \cdot (-v) = (-c) \cdot v = -(c \cdot v).$
- 3. $\forall c \in \mathbb{F}, v, w \in V, c(v w) = cv cw.$

2.1 Subspaces

Definition 2: Subspace

Let V be a vector space over \mathbb{F} . A non-empty subset S of V is called a *subspace* of V if S itself forms a vector space with the addition and scalar multiplication operations equipped with V.

Lemma 3: The Subspace Test

Let V be a vector space over \mathbb{F} . A subset S of V is a subspace of V if and only if the following conditions hold:

- 1. The zero vector belongs to S
- 2. The set is closed under addition, that is for $v, w \in S$, $v + w \in S$.
- 3. The set is closed under scalar multiplication, that is for $c \in \mathbb{F}$, $v \in S$, $cv \in S$.

Because S itself is a subset of V (a vector space), there ends up being some redundancy in verifying certain properties of a vector space, hence we can reduce the subspace test to just these three conditions which need to checked independent of S being a subset of V.

Definition 3: Matrix Transpose

Let $A \in M_{m \times n}(\mathbb{F})$,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

The Transpose of A is $A^T \in M_{n \times m}(\mathbb{F})$,

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Definition 4: Symmetric Matrices

A matrix (square) $A \in M_{n \times n}(\mathbb{F})$ is called *symmetric* if $A^T = A$.

Properties 1: Matrix Transposes

Let $A, B \in M_{m \times n}(\mathbb{F}), c \in \mathbb{F}$. The following properties hold:

1.
$$(A+B)^T = A^T + B^T$$

$$2. (cA)^T = cA^T$$

Definition 5: Evaluation of a Polynomial

Let $p(x) = a_0 + a_1 x + \cdots + a_n x^n \in P(\mathbb{F})$, for $a_0, \ldots, a_n \in \mathbb{F}$. We define the evaluation of p at c to be

$$p(c) = a_0 + a_1c + \dots + a_nc \in \mathbb{F}$$

•