

Информатика

Учебный год 2020/2021.

- Кандидат технических наук.
- Стаж преподавания 9 лет.
- Стаж в ІТ-индустрии 15 лет.
- Доцент факультета ПИиКТ.
- Ведущий инженер внедрения в Pegasystems Inc.
- Область научных интересов: RPA, речевые технологии, новые технологии в IT-сфере.

- ФИО.
- Группа.
- Электронный адрес (почта).
- Цель поступления на вашу образовательную программу (специальность).
- Ваши ожидания от курса «Информатика».
- Какие языки программирования вы изучали в школе?
- Какие языки программирования вы изучали самостоятельно?
- Изучали ли вы ранее систему компьютерной вёрстки ТеХ и системы счисления Бергмана, Цекендорфа и др.?

Административная информация

Лекции (раз в две недели):

- Посещать обязательно (почти).
- При себе иметь ручку.

Лабораторные занятия (раз в две недели):

- Выполняются дома, защищаются в университете.*
- Выполняются строго последовательно.
- При несвоевременной сдаче штраф.

Контроль усвоения знаний:

- Аннотации (желательно по тематике последней лекции).
- 2 рубежных тестирования в ЦДО.
- Экзамен.
- Поощрение неординарных решений.
- Бонусы за обнаруженные ошибки.

Диапазон баллов	Оценка
[0; 60)	2F
[60;67]	3E
(67;74]	3D
(74;83]	4C
(83;90]	4B
(90;100]	5A

Важно: личностные качества составляют 10% от оценки!

- Представление чисел в ЭВМ
- Основы языка Python для обработки данных
- Основы форматов и языков разметки документов
- Работа с офисными пакетами
- Работа с системами вёрстки текста
- Программное обеспечение профессионального программиста

Требования к слушателям: освоенный школьный курс информатики.

Онлайн-курс «Информатика для втузов»

https://openedu.ru/course/ITMOUniversity/COMTEC/

Черновик методического пособия «Информатика»

https://vk.com/doc-31201840_566998093

Методическое пособие с лабраторными работами

https://books.ifmo.ru/file/pdf/2464.pdf

<u>Лабораторная работа №1</u> (Перевод чисел между различными системами счисления) может быть засчитана из онлайн-курса с понижающим коэффициентом 0,6.

<u>Лабораторная работа №2</u> (Выполнение арифметических операций над двоичными числами) может быть засчитана из онлайн-курса с понижающим коэффициентом 0,9.

<u>Лабораторная работа №5</u> (Работа с текстовыми процессорами) и <u>лабораторная работа №6</u> (Работа с электронными таблицами) могут быть засчитаны из онлайн-курса с понижающим коэффициентом 0,7.

<u>Лабораторная работа №7</u> (Вёрстка документов в системе ТеХ. Подготовка шаблонов для формирования отчётов, курсовых и дипломных работ) может быть засчитана из онлайн-курса с понижающим коэффициентом 0,6.

Список ІТ-ориентированных новостных ресурсов

3dnews.ru, 4pda.ru, android.com, betanews.com, blogs.intel.com, cam.ac.uk, cnews.ru, computerworld.com, dailytechinfo.org, datbaze.ru, discovery.com, extremetech.com, gizmodo.com, habrahabr.ru, hi-news.ru, hitech.vesti.ru, iksmedia.ru, it-news-world.ru, it-top.ru, it-world.ru, it.tut.by, itc.ua, itnews.com.ua, itupdate.ru, itworld.com, mobiledevice.ru, news-it.net, news.softpedia.com, novostiit.net, osp.ru, overclockers.ru, research.ibm.com, sciencedaily.com, sciencemag.org, singularityhub.com, thehackernews.com, theverge.com, thg.ru, usenix.org, wired.co.uk ...

Triogramon to the property of the property of

Определение термина «информатика»

Информатика – дисциплина, изучающая свойства и структуру информации, закономерности ее создания, преобразования, накопления, передачи и использования.

AHFA: informatics = information technology + computer science + information theory

Важные даты

- 1956 появление термина «информатика» (нем. Informatik, Штейнбух)
- 1968 первое упоминание в СССР (информология, Харкевич)
- 197Х информатика стала отдельной наукой
- 4 декабря день российской информатики

Международный стандарт ISO/IEC 2382:2015 «Information technology – Vocabulary» (вольный пересказ):

Информация – знания относительно фактов, событий, вещей, идей и понятий.

Данные – форма представления информации в виде, пригодном для передачи или обработки.

- Что есть предмет информатики: информация или данные?
- Как измерить информацию? Как измерить данные? Пример: «Байкал самое глубокое озеро Земли».

Терминология: информация и данные (2)

Измерение количества информации

Количество информации ≡ информационная энтропия – это численная мера непредсказуемости информации. Количество информации в некотором объекте определяется непредсказуемостью состояния, в котором находится этот объект.

Пусть і (s) — функция для измерения количеств информации в объекте s, состоящем из n независимых частей s_k , где k изменяется от 1 до n. Тогда свойства меры количества информации i(s) таковы:

- Неотрицательность: i(s) ≥ 0.
- Принцип предопределённости: если об объекте уже все известно, то i(s) = 0.
- Аддитивность: $i(s) = \sum i(s_k)$ по всем k.
- Монотонность: i(s) монотонна при монотонном изменении вероятностей.

• **Классическое определение** (существует только *n* равновозможных исходов эксперимента, из них *m* исходов приведут к событию A)

$$p(A)=m/n$$

• **Статистическое определение** (в результате проведённых *п* экспериментов события А возникло *m* раз)

$$p(A) = \lim_{n \to \infty} \frac{m}{n}$$

• Свойства вероятности

$$0 \le p(A) \le 1$$
,

сумма вероятностей всех возможных несовместных событий равна 1

Мера количества информации по Хартли

Система S может находиться в одном из N равновероятных состояний. Вероятность каждого из состояний p = 1/N. Передадим сообщение о выпавшем состоянии S, используя двоичное сообщение длины d:

$$2^d \ge N \rightarrow d \ge \log_2 N$$

Значит, для однозначного описания системы требуется $\log_2 N$ бит. По определению Хартли, количество информации в системе S равно $i_{\perp}(s) = \log_x N = -\log_x p$.

Ральф Хартли (1880--1970)

Единицы измерения количества информации:

 $i_{_{\rm H}} = ({\rm lb}\ N\ {\rm бит} = {\rm lb}\ N\ {\rm Шh} = {\rm lb}\ N\ {\rm Sh}) = {\rm log_3}N\ {\rm трит} = ({\rm lg}\ N\ {\rm харт} = {\rm lg}\ N\ {\rm Hart} = {\rm lg}\ N\ {\rm дит}) = {\rm ln}\ N\ {\rm нат}$

Какова этимология названий единиц измерения? Сколько дит содержится в 33 битах? **Ответ 1:** (bit \rightarrow **bi**nary digi**t**), (dit \rightarrow **d**ecimal dig**it**), (Шн \rightarrow Шеннон), (харт \rightarrow Хартли) и т. д. **Ответ 2:** т. к. 33 бит = $\log_2 N$, то $\log_{10} N = x$ дит, отсюда найдём x через N: $x = \log_{10} 2^{33} \approx 9,9$ дит.

Пример применения меры Хартли на практике

Пример 1. Ведущий загадывает число от 1 до 64. Какое количество вопросов типа «да-нет» понадобится, чтобы гарантировано угадать число?

- <u>Первый</u> вопрос: «Загаданное число меньше 32?». Ответ: «Да».
- Второй вопрос: «Загаданное число меньше 16?». Ответ: «Нет».

• ...

- <u>Шестой</u> вопрос (в худшем случае) точно приведёт к верному ответу.
- Значит, в соответствии с мерой Хартли в загадке ведущего содержится ровно $\log_2 64 = 6$ бит непредсказуемости (т. е. информации).

Пример 2. Ведущий держит за спиной ферзя и собирается поставить его на произвольную клетку доски. Насколько непредсказуемо его решение?

- Всего на доске 8x8 клеток, а цвет ферзя может быть белым или чёрным, т. е. всего возможно 8x8x2 = 128 равновероятных состояний.
- Значит, количество информации по Хартли равно $\log_2 128 = 7$ бит.

Экспериментатор одновременно подбрасывает монету (М) и кидает игральную кость (К). Какое количество информации содержится в эксперименте (Э)?

Аддитивность:

$$i(3) = i(M) + i(K) = i(12 \text{ исходов}) = i(2 \text{ исхода}) + i(6 \text{ исходов}): \log_x 12 = \log_x 2 + \log_x 6$$

Неотрицательность:

Функция $log_x N$ неотрицательно при любом x > 1 и $N \ge 1$.

Монотонность:

С увеличением p(M) или p(K) функция i(Э) монотонно возрастает.

Принцип предопределённости:

При наличии всегда только одного исхода (монета и кость с магнитом) количество информации равно нулю: $\log_{x} 1 + \log_{x} 1 = 0$.

Мера количества информации по Шеннону

Мера Хартли подходит лишь для систем с равновероятными состояниями. Если состояния системы S не равновероятны, используют меру Шеннона:

$$i(S) = -\sum_{i=1}^{N} p_i \cdot \log_2 p_i,$$

где N – число состояний системы, p_i – вероятность того, что система S находится в состоянии i (сумма всех p_i равна 1).

Клод Шеннон (1916-2001)

Формула Хартли является частным случаем формулы Шеннона!

Пример 1. Количество информации в акте подбрасывания обычной монеты по формуле Хартли равно $\log_2 2 = 1$ бит. По формуле Шеннона получим то же: $i_{s1} = -0.5*\log_2 0.5 - 0.5*\log_2 0.5 = 1$ бит. **Пример 2**. При подбрасывании монеты со смещённым центром тяжести количество непредсказуемости становится меньше: $i_{s2} = -0.75*\log_2 0.75 - 0.25*\log_2 0.25 \approx 0.8$ бит.

Пример использования меры Шеннона

Шулер наугад вытаскивает одну карту из стопки, содержащей 9 известных ему карт: 3 джокера, 3 туза, 1 король, 1 дама и 1 валет. Какое количество информации для шулера содержится в этом событии s?

Вероятность вытащить
$$\left\{ \begin{array}{l} \text{Джокера} \\ \text{туза} \\ \text{короля} \\ \text{даму} \\ \text{валета} \end{array} \right\}$$
 равна $\left\{ \begin{array}{l} 3/9 = 1/3 \\ 3/9 = 1/3 \\ 1/9 \\ 1/9 \end{array} \right.$

Количество информации, выраженное в тритах, равно:

$$i(s) = -\left(\frac{1}{3} \cdot \log_3 \frac{1}{3} + \frac{1}{3} \cdot \log_3 \frac{1}{3} + \frac{1}{9} \cdot \log_3 \frac{1}{9} + \frac{1}{9} \cdot \log_3 \frac{1}{9} + \frac{1}{9} \cdot \log_3 \frac{1}{9}\right) =$$

$$= \frac{1}{3} + \frac{1}{3} + \frac{2}{9} + \frac{2}{9} + \frac{2}{9} = 1\frac{1}{3} \approx \log_3 5 \text{ vs } \log_3 14$$

Нестрогий вывод формулы Шеннона

Задача. Монета имеет смещённый центр тяжести. Вероятность выпадения «орла» – 0,25, вероятность выпадения «решки» – 0,75. Какое количество информации содержится в одном подбрасывании?

Решение

- Пусть монета была подброшена N раз ($N \rightarrow \infty$), из которых «решка» выпала M раз, «орёл» K раз (очевидно, что N = M + K).
- Количество информации в N подбрасываниях: $i_N = M*i(\text{«решка»}) + K*i(\text{«орёл»}).$
- Тогда среднее количество информации в одном подбрасывании: $i_1 = i_N/N = (M/N)*i(«решка»)+(K/N)*i(«орёл») = p(«решка»)*i(«решка»)+p(«орёл»)*i(«орёл»).$
- Подставив формулу Шеннона для i, окончательно получим: $i_1 = -p(\text{«решка»})*\log_{\text{v}}p(\text{«решка»}) p(\text{«орёл»})*\log_{\text{v}}p(\text{«орёл»}) \approx 0,8 \text{ бит.}$

Приставки для единиц измерения количества информации/данных: проблема

Linux Ubuntu 14

Microsoft Windows 7

33 097 216 байт — это **33,1** МБ или **31,5** МБ?

Приставки для единиц измерения количества информации/данных: решение

- 1. IEEE 1541-2002 Институт инженеров по электротехнике и радиоэлектронике.
- 2. ISO/IEC 80000-13:2008 Международная организация по стандартизации.
- 3. ГОСТ ІЕС 60027-2-2015 Международная электротехническая комиссия.

Приставки единиц СИ	Новые двоичные префиксы	Δ ,%
килобайт (kB) = 10 ³ байт	кибибайт (КіВ, КиБ) = 2¹º байт	2
мегабайт (MB) = 10 ⁶ байт	мебибайт (МіВ, МиБ) = 2 ²⁰ байт	5
гигабайт (GB) = 10 ⁹ байт	гибибайт (GiB, ГиБ) = 2³0 байт	7
терабайт (ТВ) = 10 ¹² байт	тебибайт (ТіВ, ТиБ) = 2 ⁴⁰ байт	10

Краткое обозначение битов и байтов: b = bit = бит, B = Б = байт 1024 B = 1024 Б = 8192 b = 8192 бит = 8 Кибит = 1 КиБ = 1 КіВ

Приставки для единиц измерения количества информации/данных: детали

Полное произношение названий приставок

З КиБ = «три кибибайта» = «три килобинарных (kilobinary) байта».

7 Гибит = «семь гибибитов» = «семь гигабинарных (gigabinary) битов».

Сложившаяся практика использования приставок

Объем памяти (HDD, RAM, Cache): 512 KiB = 524 288 bytes. Скорость передачи данных: 512 kbps = 512 000 bps = 512 000 бит/с.

Типовая задача

Сколько мегабит содержится в двух гигабинарных байтах?

$$2\Gamma$$
иБ = $2 \cdot 2^{30}$ Б = $16 \cdot 2^{30}$ бит = $\frac{16 \cdot 2^{30}}{1000000}$ Мбит ≈ 17180 Мбит (округл.)

Системы счисления: историческая справка

Основание	Кто и как использовал					
нет	Австралийские племена	3=два-один, 4=два-два, 5=два-два-один, 6=два-два-два, 7=много				
5	Африканские племена					
12	Тибетцы, нигерийцы					
20	Индейцы Майя, кельты					
60	Вавилоняне, шумеры					
10	5 век (Индия) 16 век (Европа) 17 век (Россия)					

$$X = 2017,042 = 2*1000 + 0*100 + 1*10 + 7*1 + 4/100 + 2/1000$$

$$X_{(q)} = X_{n-1}X_{n-2}X_1X_0, X_{-1}X_{-2}X_{-m}$$

X_(a) - запись числа в системе счисления с основанием q;

 x_i — натуральные числа меньше q, т.е. цифры;

n — число разрядов целой части;

т - число разрядов дробной части.

$$X_{(q)} = x_{n-1}q^{n-1} + x_{n-2}q^{n-2} + ... + x_1q^1 + x_0q^0 + x_{-1}q^{-1} + x_{-2}q^{-2} + ... + x_{-m}q^{-m}$$

$$X_{(q)} = \sum_{i=-m}^{n-1} x_i \cdot q^i$$

ПРИМЕРЫ: $123_{(4)} = 1*4^2 + 2*4 + 3$ (если основание СС не указано => 10-ричная СС) $456,78_{(10)} = 4*10^2 + 5*10^1 + 6*10^0 + 7*10^{-1} + 8*10^{-2}$

Перевод из одной СС в другую. Пример 1

$$231_{(10)} = ABC_{(10)} = ...HGFE_{(8)} = ...+ H*8³ + G*8² + F*8 + E, при натуральных H, G, F, E < 8.$$
 Как найти E, F, G, H?

Решение: (...+
$$H*8^3 + G*8^2 + F*8 + E$$
)/8 = ...+ $H*8^2 + G*8^1 + F$ (плюс остаток E) => (... $HGFE_{(8)}$)/8 = ... $HGF_{(8)}$ (с остатком E)

Номер шага (<i>i</i>)	0	1	2	3	4	•••
Частное от деления на 8	231	28	3	0	0	О
Остаток от деления на 8	0	7	4	3	0	0

OTBET: E=7, F=4, G=3, H=0.
$$231_{(10)} = 347_{(8)}$$

Задача: $231_{(10)} = ?_{(2)}$

Ход решения →

OTBET: $231_{(10)} = 11100111_{(2)}$

Задача:
$$0.15_{(10)} = ?_{(3)} = 0.$$
ABCD... $_{(3)} = A/3^1 + B/3^2 + C/3^3 + D/3^4 + ...$

Решение:
$$(A/3^1 + B/3^2 + C/3^3 + D/3^4 + ...)*3 = A*3^0 + (B/3^1 + C/3^2 + D/3^3 + ...)$$

$$=> 3*0,ABCD..._{(3)} = A,BCD..._{(3)}$$

Номер шага (<i>i</i>)	0	1	2	3	4	5	•••
Целая часть после умножения дробной части на 3	0	0	1	1	0	0	***
Дробная часть после умножения на 3	0,15	0,45	0,35	0,05	0,15	0,45	

OTBET:
$$0.15_{(10)} = 0.011001100..._{(3)} = 0.01100_{(3)}$$

Задача: $0,8125_{(10)} = ?_{(2)}$

Ход решения \rightarrow

	0		0		, 8125
			2		
	1		, 625		
			2		
	1		, 25		
			2		
	0		, 5 2		
			2		
	1		0		

OTBET: $0.8125_{(10)} = 1 * 2^{-1} + 1 * 2^{-2} + 1 * 2^{-4} = 0.1101_{(2)}$

$$231_{(10)} = 11100111_{(2)}$$

$$0,8125_{(10)} = 0,1101_{(2)}$$

$$231,8125_{(10)} = 11100111,1101_{(2)}$$

Перевод из СС с основанием 2 в СС с основанием 4

Сложный путь: 1) CC-2 -> CC-10: $10100_{(2)} = 20_{(10)}$

2) CC-10 -> CC-4: $20_{(10)} = 110_{(4)} => 10100_{(2)} = 110_{(4)}$

Примечание: «СС-*N*» означает «система счисления с основанием *N*»

Простой путь:

$$x_{i+1}2^{i+1} + x_{i}2^{i} + \dots + x_{3}2^{3} + x_{2}2^{2} + x_{1}2^{1} + x_{0}2^{0}$$

$$x_{2k+1}2^{2k+1} + x_{2k}2^{2k} + \dots + x_{3}2^{2*1+1} + x_{2}2^{2*1} + x_{1}2^{1} + x_{0}2^{0}$$

$$2^{2k}(x_{2k+1}2^{1} + x_{2k}) + \dots + 2^{2}(x_{3}2^{1} + x_{2}) + 2^{0}(x_{1}2^{1} + x_{0})$$

$$4^{k}(x_{2k+1}2^{1} + x_{2k}) + \dots + 4^{1}(x_{3}2^{1} + x_{2}) + 4^{0}(x_{1}2^{1} + x_{0})$$

Преобразование из СС-2 в СС-2^k и обратно

Двоичная <-> Четверичная	Двоичная <-> Восьмеричная	Двоичная <-> Шестнадцатеричная
00 <-> 0	000 <-> 0	0000 <-> 0
01 <-> 1	001 <-> 1	0001 <-> 1
10 <-> 2	010 <-> 2	0010 <-> 2
11 <-> 3	011 <-> 3	0011 <-> 3
	100 <-> 4	•••
	101 <-> 5	1101 <-> D
	110 <-> 6	1110 <-> E
	111 <-> 7	1111 <-> F

Пример: 1111110001,1110001 $_{(2)}$ = 0011 1111 0001,1110 0010 $_{(2)}$ = 3F1,E2 $_{(16)}$

Преобразование из СС-N в СС-N^k и обратно

Из CC-N в CC-N^k

- дополнить число, записанное в СС с основанием N, незначащими нулями так, чтобы количество цифр было кратно k;
- разбить полученное число на группы по k цифр, начиная от нуля;
- заменить каждую такую группу эквивалентным числом, записанным в СС с основанием N^k .

Задача: $1020101_{(3)} = ?_{(27)}$

Решение: $1020101_{(3)} = 001 020 101_{(3)} = 16A?_{(27)}$

Из CC-N^k в CC-N

• заменить каждую цифру числа, записанного в СС с основанием N^k , эквивалентным набором из k цифр СС с основанием N.

Задача: $2345_{(125)} = ?_{(5)}$

Решение: $2345_{(125)} = 002 003 004 010_{(5)} = 2003004010_{(5)}$

Задача. Робинзон Крузо нашёл на острове 60 камней. Сколько прошедших дней можно ими закодировать в разных СС?

Пример СС-10:

463502-й день из 999999 возможных, где 999999 = 10^6 - 1

Оптимальная система счисления (2)

Пример СС-60:

0 камней = 0 дней 1 камень = 1 день

2 камня = 2 дня

. . .

60 камней = 60 дней

• 1 день

•• 2 дня

60 дней

Оптимальная система счисления (3)

Пример СС-30:

= 899 дней

0 камней ≠ 0 дней
1 камень = 0 дней
2 камня = 1 день или 30 дней
...
60 камней = 29*30 + 29 =

•	0	•	0	0 дней
•	0	••	1	1 день
	0	22222 22222 22222 22222	29	29 дней
••	30	•	0	30 дней
•••	60	••	1	61 день

Пример СС-20:

0 камней ≠ 0 дней1 камень = 0 дней2 камня = 1 деньили 20 днейили 400 дней

...

60 камней = = 19*400 + + 19*20 + 19 =

= 7999 дней

• 0	• 0	• 0	0 дней
• 0	• 0	•• 1	1 день
• 0	• 0	22223 19	19 дней
• 0	•• 20	• 0	20 дней
•• 400	•• 20	•• 1	421 день

Возможные варианты в других СС:

 2^{30} , 3^{20} , 4^{15} , 5^{12} , 6^{10} , 7^{8} , 8^{7} , 9^{6} , 10^{6} , 11^{5} , 12^{5} , ..., 20^{3} , ..., 30^{2} , ..., 60^{1}

Если взять N камней, а за основание СС принять число X, то получится N/X разрядов, которыми можно закодировать $y=X^{N/X}$ дней (для простоты полагаем, что количество разрядов может быть нецелым).

Вывод: оптимальная система счисления имеет основание e=2,7183...

Каким может быть основание позиционной СС?

$$X_{(q)} = \sum_{k=-m}^{n-1} d_k \cdot q^k$$

m — количество цифр справа от запятой,

n — количество цифр слева от запятой,

 d_{ν} — цифра числа, стоящая на k-й позиции,

q — основание системы счисления.

Пример: **789,13**₁₀ = **7***10² + **8***10¹ + **9***10⁰ + **1***10⁻¹ + **3***10⁻²

Что если *q* отрицательно? иррационально? переменно?

Система счисления Бергмана

Любое действительное число можно представить в виде

$$x = \sum_{k=-m}^{n-1} d_k \cdot z^k$$
, где $d_k \in \{0,1\}$, $z = \frac{1+\sqrt{5}}{2}$

Джорж Бергман (р. 1943)

m — количество цифр справа от запятой, n — количество цифр слева от запятой, d_{k} — цифра числа, стоящая на k-й позиции, z — число золотой пропорции. Запись числа x в системе Бергмана имеет вид : $x_{(E)} = d_{n-1} \dots d_2 d_1 d_0$, $d_{-1} d_{-2} d_{-3} \dots d_{-m}$ (E)

$$2_{(10)} = 10,01_{(5)} = z^{1}+z^{-2}$$

$$3_{(10)} = 11,01_{(5)} = z^{1}+z^{0}+z^{-2}$$

$$3_{(10)} = 100,01_{(5)} = z^{2}+z^{-2}$$

Чтобы исключить неоднозначность, используют запись с наибольшим количеством разрядов, т. е. $3_{_{(10)}} = 100,01_{_{(5)}}$

Применение: запись иррациональных чисел конечным числом цифр: $10_{(5)} = 1,618033998...$, контроль арифметических операций, коррекция ошибок, самосинхронизация кодовых последовательностей при передаче по каналу связи.

Примеры использования системы счисления Бергмана

```
z^5 = 1.618033988749895^5 = 11.090169943749476
z^4 ·= ·1.618033988749895^4 ·= · ·6.854101966249686¶
z^3 = 1.618033988749895^3 = 1.618033988749895
z^2 ·= ·1.618033988749895^2 ·= · ·2.618033988749895¶
z^1 ·= ·1.618033988749895^1 ·= ··1.618033988749895¶
z^0 = 1.618033988749895^0 = 1.09
z^{(-1)} = \cdot 1.618033988749895^{(-1)} = \cdot \cdot 0.6180339887498948
z^{(-2)} = \cdot 1.618033988749895^{(-2)} = \cdot \cdot 0.38196601125010515
z^{(-3)} = 1.618033988749895^{(-3)} = 0.23606797749978967
z^{(-4)} = \cdot 1.618033988749895^{(-4)} = \cdot \cdot 0.14589803375031543
z^{(-5)} = \cdot 1.618033988749895^{(-5)} = \cdot \cdot 0.09016994374947422
z^{(-6)} = \cdot 1.618033988749895^{(-6)} = \cdot \cdot 0.0557280900008412
```


Примеры использования системы счисления Бергмана (2)

$$16 = 11.090169943749476 + 4.23606797749979 +$$
+ $0.6180339887498948+ + 0.0557280900008412 =$
= $z^5 + z^3 + z^{(-1)} + z^{(-6)} = 101000.100001_{(B)}$

$$7 = 6.854101966249686 + 0.14589803375031543 =$$

= $z^4+z^(-4) = 10000.0001_{(B)}$

Система счисления Цекендорфа (фибоначчиева СС)

Любое целое число можно представить в виде

$$x = \sum_{k=1}^{n} d_k F_k$$
, где $d_k \in \{0,1\}$, а F_k – числа Фибоначчи (ЧФ)

Эдуард Цекендорф (1901-1983)

n — количество цифр в записи числа, $d_{_k}$ — цифра числа, стоящая на k-й позиции, каждое ЧФ есть сумма двух предыдущих ЧФ: $F_{_i}$ = {1, 1, 2, 3, 5, 8, 13, ...} , где i = 0, 1,... . Запись числа x в системе Цекендорфа будет иметь вид $x_{({
m I})}$ = $d_n d_{n-1} \ldots d_{1({
m I})}$

Проблема неуникальности: 16 = 8 + 5 + 2 + 1 = 13 + 3, т.е. $16 = 11011_{(LL)} = 100100_{(LL)}$. Чтобы исключить неоднозначность, введён запрет на использование двух единиц подряд: т. е. $16_{(10)} = 100100_{(LL)}$, а запись $11011_{(LL)}$ считается ошибочной!

Применение: минимизация числа зёрен маиса в счётах у инков, кодирование данных с маркером завершения «11».

Любое целое число можно представить в виде

$$x = \sum_{k=1}^{n} d_k k!$$
, где $0 \le d_k \le k$, $k! = 1 \cdot 2 \cdot 3 \cdot ... \cdot k$.

n — количество цифр в записи числа, d_{k} — цифра числа, стоящая на k-й позиции,

Запись числа х в факториальной системе счисления будет иметь вид:

$$x_{(\Phi)} = d_n d_{n-1} \dots d_{1(\Phi)}.$$

Примеры:
$$310_{(\Phi)} = 3*3! + 1*2! + 0*1! = 20_{(10)}$$

$$106_{(10)} = d_5*5! + d_4*4! + d_3*3! + d_2*2! + d_1*1! = ...$$
подбор d_1 , d_2 , d_3 , d_4 , d_5 ... = $0*5! + 4*4! + 1*3! + 2*2! + 0*1! = 4120_{(\Phi)}$

10 Control of the con

Перевод чисел из СС-10 в факториальную СС

Дано:
$$x = d_4 d_3 d_2 d_{1(\Phi)} = (2 \cdot 3 \cdot 4) d_4 + (2 \cdot 3) d_3 + (2) d_2 + (1) d_1$$
.

- 1) $(x \operatorname{div} 2) = (3.4)d_4 + (3)d_3 + d_2$ (и остаток, равный d_1).
- 2) $(x \operatorname{div} 2) \operatorname{div} 3 = (4) d_4 + d_3$ (и остаток, равный d_2).
- 3) $((x \operatorname{div} 2) \operatorname{div} 3) \operatorname{div} 4 = d_4 (и остаток, равный <math>d_3).$
- 4) $(((x \operatorname{div} 2)\operatorname{div} 3)\operatorname{div} 4)\operatorname{div} 5 = 0$ (и остаток, равный d_4).

Примечание: «A div B» означает целочисленное деление A на B.

«A mod B» означает остаток от деления A на B.

Пример: $106_{(10)} = ?_{(\Phi)}$

- 1) $106 \text{ div } 2 = 53, d_1 = 106 \text{ mod } 2 = 0$
- 2) 53 div 3 = 17, $d_2 = 53 \mod 3 = 2$
- 3) 17 div 4 = 4, $d_3 = 17 \text{ mod } 4 = 1$
- 4) 4 div 5 = 0, $d_4 = 4 \text{ mod } 5 = 4$

$$x_{(\Phi)} = d_4 d_3 d_2 d_{1(\Phi)} = 4120_{(\Phi)}$$

Факториальная СС: применение

Проблема: как упорядочить перестановки букв АБВ: 1-АБВ, 2-АВБ, 3-ВБА, 4-ВАБ, 5-БАВ, 6-БВА.

Пример. Пусть имеется n=5 чисел (1,2,3,4,5) и нужно найти все их перестановки. Известно, что всего существует n! = 5! = 120 таких перестановок. Как найти перестановку, если задан её номер k?

Решение. Найдём 21-ю перестановку (k=21). Переведём k в факториальную систему: $21=3*3!+1*2!+1*1!=311_{(\Phi)}$. Дополним его до (n-1) разрядов: $311_{(\Phi)} \to 0311_{(\Phi)}$.

Расставим символы по местам:

- 1) **справа** от «5» есть **О** меньших цифр (_ _ _ _ 5)
- 2) **справа** от «4» есть: <u>3</u> меньшие цифры (4 _ _ _ 5)
- 3) **справа** от «3» есть: <u>1</u>:меньшая цифра (4 _ 3 _ 5)
- 4) **справа** от «2» есть <u>1</u> меньшая цифра (4 2 3 _ 5)

OTBET: 42315

Значение k	0	1	2	3	 21	 119
k-я перестановка	12345	21345	13245	23145	 42315	 54321

Transferritting round of the ro

СС с отрицательным основанием или цифрами

- 1. Нега-позиционные (с отрицательным основанием). Примеры в нега-десятичной СС:
 - $123_{(-10)} = 1 \cdot (-10)^2 + 2 \cdot (-10)^1 + 3 \cdot (-10)^0 = 100 20 + 3 = 83_{(10)}$
 - $58_{(-10)} = 5 \cdot (-10)^1 + 8 \cdot (-10)^0 = -50 + 8 = -42_{(10)}$

Числа с чётным количеством цифр — отрицательные.

- **2.** Симметричные (с отрицательными цифрами). Например, в симметричной пятеричной СС вместо привычных цифр {0, 1, 2, 3, 4} используются {-2, -1, 0, 1, 2}:
 - $20\overline{2}10_{(5C)} = (2)\cdot5^4 + (0)\cdot5^3 + (-2)\cdot5^2 + (1)\cdot5^1 + (0)\cdot5^0 = 1250 50 + 5 = 1205_{(10)}$
 - $\overline{2}02\overline{10}_{(5C)} = (-2)\cdot 5^4 + (0)\cdot 5^3 + (2)\cdot 5^2 + (-1)\cdot 5^1 + (0)\cdot 5^0 = -1250 + 50 5 = -1205_{(10)}$

Симметричные СС определены только для нечётных оснований!

Применение. В негапозиционных и симметричных СС не требуется специального знака для обозначения отрицательных чисел. Это позволяет использовать их для представления отрицательных чисел в компьютерах.