

CSC 384 Introduction to Artificial Intelligence

Heuristic Search

Alice Gao and Randy Hickey
Winter 2023

Learning Goals

By the end of this lecture, you should be able to

- Describe motivations for applying heuristic search algorithms.
- Trace the execution of and implement Greedy best-first search and A* search algorithm.
- Describe properties of Greedy best-first and A* search algorithms.
- Design an admissible heuristic function for a search problem.
- Describe strategies for choosing among multiple heuristic functions.

Outline

- Why Heuristic Search
- Greedy Best-First Search
- A* Search
- Constructing Heuristics

WHY HEURISTIC SEARCH

Why Heuristic Search?

How would _____ choose which state to expand?

- Humans
- An uninformed search algorithm

5	3	
8	7	6
2	4	1

1	2	3
4	5	
7	8	6

Uninformed v.s. Heuristic Search

Uninformed Search

- Has no problem-specific knowledge.
- Treats all the states in the same way.
- Does not know which state is closer to a goal.

Heuristic Search

- Has problem-specific knowledge, i.e., a heuristic.
- Considers some states to be more promising than others.
- Estimates which state is closer to a goal using the heuristic.

The Heuristic Function

Definition of a heuristic function:

A search heuristic h(n) is an **estimate** of the cost of the **cheapest** path from node n to a goal node.

A good h(n) has the properties below:

- Problem-specific.
- Non-negative.
- h(n) = 0 if n is a goal node.
- Can compute h(n) easily without search.

Two Useful Functions

- Consider a state n.
- The cost function g(n):
 - the cost of the path from the initial state to state n.
- The heuristic function h(n):
 - the estimate of the cheapest path from state n to a goal state.
- UCS: remove the state w/ the lowest g(n)
- GBFS: remove the state w/ the lowest h(n)
- A*: remove the state w/ the lowest f(n) = g(n) + h(n)

GREEDY BEST-FIRST SEARCH

Greedy Best-First Search

- Frontier is a priority queue ordered by h(n).
- Expands the node with the smallest h(n).

GBFS Properties - Completeness

Is GBFS guaranteed to find a solution if a solution exists?

- No.
- Could you construct a counterexample?

GBFS Properties - Optimality

Is GBFS guaranteed to find an optimal solution?

- No.
- Could you construct a counterexample?

GBFS Properties – Space and Time Complexities

- Both are exponential.
- If h(n) = 0 for every state n, then GBFS becomes an uninformed search algorithm.

A* SEARCH

A* Search

• Frontier is a priority queue ordered by f(n) = g(n) + h(n).

• Expands the node with the smallest f(n).

Integer Example

- States: the non-negative integers {0, 1, 2, ...}.
- Initial state: 0.
- Goal state: 5.
- Successor function: S(n) = {n+1, n+2}.
- Cost function: C(n, n+1) = 1, C(n, n+2) = 3.
- Heuristic function:
 - If $n \le 5$, h(n) = 5 n.
 - Otherwise, h(n) = 0.

A* Search on Integer Example

```
frontier:
(f value)
```

A* Search on Integer Example

012345, 012346

tie-breaking rule: expand UCS on Integer Example oldest node on the frontier.

frontier: 0(5), 0(4), 02(3), 012(2), 012(4), 0123(3), 0124(5)
023(4), 024(6), 01234(4), 01235(6), 0134(5), 0135(7),
0234(5), 0235(7), 012345(5), 012346(7), 01345(6),
01346(8), 02345(6), 02346(8)

A* Search Properties

- Complete?
 - Yes, under some mild conditions.
- Optimal?
 - Yes, if h(n) satisfies a mild condition.
- Space Complexity
 - Exponential
- Time Complexity
 - Exponential

Admissible Heuristic Definition

A heuristic function h(n) is admissible if and only if it never overestimates the cost of the cheapest path from state n to a goal state.

Let $h^*(n)$ denote the cost of the cheapest path from state n to a goal state. Then, an admissible h(n) satisfies:

For every state n, $0 \le h(n) \le h^*(n)$.

Admissible Heuristic Intuition

What should an admissible h(n) be if

- n is a goal state, or
- there is no path from state n to a goal state?

- A lower bound on the actual cost.
- Optimistic: it thinks the goal is closer than it really is.
- Ensures that A* doesn't miss any promising paths.
 - If both g(n) and h(n) are low, f(n) will be low and A* will explore state n before considering more expensive paths.

A* is Optimal and Optimally Efficient.

Theorem (Optimality):

A* is optimal if and only if h(n) is admissible.

Theorem (Optimal Efficiency):

Among all optimal search algorithms that start from the same initial state and use the same heuristic function, A* expands the fewest states.

What about A* with Multi-Path Pruning?

Is A* with multi-path pruning optimal?

Let's try the example below.

A* with Multi-Path Pruning Example

frontier:

explored:

Solution found: Optimal solution:

Consistent (Monotone) Heuristic

A heuristic function h(n) is consistent if and only if

- 1. h(n) is admissible, and
- 2. For every two neighboring states n_1 and n_2 , $h(n_1) \leq g(n_1, n_2) + h(n_2)$.

Notes:

- If there are more than one edge from n_1 to n_2 , the inequality must hold for all the edges.
- A consistent heuristic is admissible.

A* with Multi-Path Pruning

Theorem:

If h(n) is consistent, A* w/ multi-path pruning is optimal.

How do we ensure that h(n) is consistent?

- Most admissible heuristic functions are consistent.
- Verify the definition of consistency.

CONSTRUCTING HEURISTICS

Two Admissible H(n) for 8-Puzzle

- Manhattan distance heuristic:
 - The sum of the Manhattan distances of the tiles to their goal positions
- Misplaced tile heuristic:
 - The number of tiles that are NOT in their goal positions

Constructing an Admissible Heuristic

- Define a relaxed problem by simplifying or removing constraints on the original problem.
- 2. Solve the relaxed problem without search.
- 3. The cost of the optimal solution to the relaxed problem is an admissible heuristic for the original problem.

Constructing Admissible Heuristics for 8-Puzzle

8-puzzle rule: A tile can move from square A to B if

- A and B are adjacent, and
- *B* is empty.

Which heuristic functions can we derive from relaxed versions of this problem?

Removing One Constraint

Which heuristics can we derive from the following relaxed 8-puzzle?

A tile can move from square A to square B if A and B are adjacent and B is empty.

- A. The Manhattan distance heuristic
- B. The Misplaced tile heuristic
- C. Another heuristic not described above

Removing Both Constraints

Which heuristics can we derive from the following relaxed 8-puzzle?

A tile can move from square A to square B if A and B are adjacent and B is empty.

- A. The Manhattan distance heuristic
- B. The Misplaced tile heuristic
- C. Another heuristic not described above

Dominating Heuristics

Definition (Dominating Heuristic):

 $h_1(n)$ dominates $h_2(n)$ if and only if

- $h_1(n) \ge h_2(n)$, for every state n.
- $h_1(n) > h_2(n)$, for at least one state n.

Theorem:

If $h_1(n)$ dominates $h_2(n)$, A* with $h_1(n)$ never expands more states than A* with $h_2(n)$ for any problem.

Which 8-Puzzle Heuristic is Better?

Which of the two 8-puzzle heuristics is better?

- A. The Manhattan distance heuristic dominates the Misplaced tile heuristic.
- B. The Misplaced tile heuristic dominates the Manhattan distance heuristic.
- C. Neither heuristic dominates the other one.