TUTORIAL 3 SOLUTION

Q1)

Read from the bottom (MSB) to top (LSB) as $(10001)_2$.

(b)
$$(33)_{10} \rightarrow (?)_{2}$$

2	33			
2	16	- 1		
2	8	- 0	>	(100001)
2	4	- 0		2
2	2	- 0		
	1	- 0		

$$(c) \quad (67)_{6} \longrightarrow (3)_{2}$$

2	67		
2	33 - 1		
2	16 - 1	4	(1000011)2
2	8 - 0	9	(10000)2
2	4 - 0		
2	2 - 0		
7	1 - 0		
,			

(d)
$$(130)_{10} \longrightarrow (?)_2$$

2	130		
2	65 -	0 1	
2	32 -	1	
2	16 -	- 0	⇒ (10000010) ₂
2	8 -	- 0	3 (
2	4	- 0	
2	2 -	0	
	1 -	- 0	

(e)
$$(2560)_{10} \rightarrow (?)_2$$

0 1	2560		
2	1280	-0	
2	640	-0	
2	320	-0	
The said	160	- 0	1
2	80	- 0	⇒ (1010000000000) ₂
2	40	- 0	
2	20	- 0	
	10	-0.	
2	5	- 0	9
2/2/2	2	- 1	
_	l	- 0)
	_		

Q2)

first, convert the declinal number into Benary.

$$\Rightarrow (100001110)_2$$

Minimum no. of bits needed to represent (270)10 is 9 bits.

2	520	
	260	- 0 /
2	130	- 0
2	65	- 0
2 2 2 2	32	- 1
2	16	- 0
2	8	- 0
2	4	- 0
2	2	- 0
7	1	- 0

⇒ (1000001000)₂

Minimum

no. of bits ⇒ 10 bits

Required

(c) (780)10

2	780	
2	390	-0
2	195	- 0
2	97	-1
2	48	- 1
2	24	- 0
2	12	- 0
2	6	- 0
2	3	- 0
	1	- 1

 $\Rightarrow (1100001100)_{2}$ Min. no. of $\Rightarrow 10 \frac{68t}{5}$ bits required.

(d) (1029)10

	2		10	29			_		
Ī	2		5	14	-	- 1	_	1	
	2		2	57		- ()	_	1
•	2	1	١	28		-	١		
	2	1		64		_	0		1
				32	21	-	(2	
	2			16		-		0	
	222	,		8		_		0	
	-	2		4		-		0	
	-	2		2		_		0	
				1		-	- 1	0	

 \Rightarrow (10000000101)₂

Mrn. no. of \Rightarrow 11 b?ts

bits required

$$\frac{Q-3}{3} \cdot (P) \quad (\gamma_1 + \gamma_3) \cdot (\overline{\gamma_1} + \overline{\gamma_3}) = \gamma_1 \cdot \overline{\gamma_3} + \overline{\gamma_1} \cdot \gamma_3$$

$$\underline{LHS} : = (\gamma_1 + \gamma_3) \cdot (\overline{\gamma_1} + \overline{\gamma_3})$$

$$= \gamma_1 \cdot \overline{\gamma_1} + \gamma_1 \cdot \overline{\gamma_3} + \gamma_3 \cdot \overline{\gamma_1} + \gamma_3 \cdot \overline{\gamma_3}$$

$$= \gamma_1 \cdot \overline{\gamma_1} + \gamma_1 \cdot \overline{\gamma_3} + \gamma_3 \cdot \overline{\gamma_1} + \gamma_3 \cdot \overline{\gamma_3}$$

$$= \gamma_1 \cdot \overline{\gamma_3} + \gamma_3 \cdot \overline{\gamma_1}$$

$$= \gamma_1 \cdot \overline{\gamma_3} + \gamma_3 \cdot \overline{\gamma_1}$$

$$\Rightarrow RH.S.$$

(ii)
$$n_1 \cdot \overline{n_3} + \alpha_1 \cdot n_3 + \overline{\alpha_2} \cdot \overline{n_3} + \overline{\alpha_2} \cdot n_3 = \alpha_1 + \overline{\alpha_2}$$

L.H.S: $= \alpha_1 \cdot \overline{n_3} + \alpha_1 \cdot n_3 + \overline{n_2} \cdot \overline{n_3} + \overline{n_2} \cdot n_3$
 $= \alpha_1 \cdot (\overline{\alpha_3} + \alpha_3) + \overline{\alpha_2} \cdot (\overline{\alpha_3} + \overline{\alpha_3})$
 $\begin{cases} we & kmow, A + \overline{A} = 1 \end{cases}$
 $= \alpha_1 \cdot 1 + \overline{n_2} \cdot 1$
 $= \alpha_1 + \overline{n_2}$
 $\Rightarrow R \cdot H \cdot S$

(ii)

(ii)
$$f(s_1, s_2, s_3) = \overline{s_1} \cdot \overline{s_2} \cdot s_3 + \overline{s_1} \cdot s_2 \cdot s_3 + \overline{s_1} \cdot \overline{s_2} \cdot \overline{s_2} \cdot s_3 + \overline{s_1} \cdot \overline{s_2} \cdot \overline{s_2} \cdot \overline{s_2} \cdot \overline{s_2} \cdot s_3 + \overline{s_1} \cdot \overline{s_2} \cdot \overline{s_2}$$

```
Am5:

(i) (x+y)(x+y) = x+y; To Prove)

Lus: (x+y)(x+y) = x\cdot x + x\cdot y + y\cdot x + y + x\cdot y

= x(1+y)+y \Rightarrow x+y \text{ (theorefore)}

Lus: (x+y)(x+y) = x\cdot x + x\cdot y + y\cdot x + y \text{ (theorefore)}

Lus: (x+y)(x+y) = x\cdot x + x\cdot y + y\cdot x + y \text{ (theorefore)}

Lus: (x+y)(x+y) = x\cdot x + x\cdot y + y\cdot y
```

Q6)

```
\frac{G6}{(a) X_1 X_3 + X_1 X_2 X_3 + X_1 X_2 + X_1 X_2 + X_1 X_2 + X_2 X_3 + X_1 X_2 X_3}

\frac{LHS}{(a) X_1 X_3 + X_1 X_2 X_3 + X_1 X_2 + X_1 X_2 + X_1 X_2 + X_2 X_3 + X_1 X_1 X_1 X_2 X_3 + X_1 X
```

```
(b) x_1 \overline{x_3} + x_2 x_3 + \overline{x_2} \overline{x_3} = (x_1 + \overline{x_2} + x_3)(x_1 + x_2 + \overline{x_3})

LHS:

x_1 \overline{x_3} + x_2 x_3 + \overline{x_2} \overline{x_3}

x_1 (x_2 + \overline{x_2}) \overline{x_3} + (x_1 + \overline{x_1}) x_2 x_3 + (x_1 + \overline{x_1}) \overline{x_2} \overline{x_3}

x_1 x_2 \overline{x_3} + x_1 \overline{x_2} \overline{x_3} + x_1 x_2 \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3}

LHS = \sum M (110, 100, 111, 011, 100, 000)

LHS = \sum M (6, 4, 7, 3, 4, 0) \Rightarrow T M (1, 2, 5) \xrightarrow{Aux}

RHS = T M (010, 001, 101)

RHS = T M (010, 001, 101)

RHS = T M (010, 001, 101)
```

(c)

(c)
$$(x_1 + x_3)(\overline{x_1} + \overline{x_2} + \overline{x_3})(\overline{x_1} + x_2)$$

LHS = $\pi M(010,000,111,100,101)$
 000 $(x_1 + x_2 + \overline{x_3})$
LHS = $\pi M(2,0,7,4,5)$
 100 $(\overline{x_1} + x_2)$
 101 $(x_1 + x_2)$
RHS = $\pi M(000,001,100,101,111)$
 000 $(x_2 + x_3)$
 101 $(x_1 + \overline{x_3})$
 101 $(x_1 + \overline{x_3})$

Q7)
sol 7
S1 = weight
Sa = Small diameter
Sz = large diameter.
S, S ₂ S ₃ f O O O O Mo Hoo large i.e S ₅ =1 O O I I M, or when gumball is O I O O M ₂ Small and light O I I M ₃ i.e S ₁ =1 and S ₂ =1 I O O M ₄ I I O I M ₆ therefore from the mith table I I I I M ₇ S ₁ S ₂ S ₃ S ₅ S ₄ S ₅ S ₅ S ₅ S ₁ S ₁ S ₅ S ₄ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₅ S ₄ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₅ S ₄ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₅ S ₄ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₅ S ₅ S ₅ S ₅ S ₅ S ₁ S ₁ S ₁ S ₅ S ₁ S ₁ S ₁ S ₅
$f = S_3 + S_1 S_2$
s, D-f.

(1)	+(w,x,y,z) = (w+y+	Z). (X+ 4 + Z) · (W+x+ Y)
	WX 42 4+2 4+2 4+2	<u> 7</u> ং2
	Wex 00	The expression can't be
	W+X	the exposition can't be simplified further
	W+X	1
	wex O	It contains 3 ferms
	()	

Q12)

12)	X1 X2 X3	f	EXCX EXTX EXTX EXTX
	0 0 0	0	×1 0 0 11 0
	001	0	X, O TO
	0 1 0	0	
	1 10	1	
	(0 0	○ ⇒	F(x, x2x3) = x1.x3 + x1.x2
	1 0 1	(+ x2.x3
	1 1 0	. 1	
	1 1 1	()	
	×3		F
	×2_ ×3_		