Equivalence of DFA and NFA

- Equivalence of DFA and NFA
- Method for reduction of NFA to DFA-, Subset-Construction
- Theorems for equivalence of Language accepted by DFA and NFA

#Hemanta GC

Equivalence of DFA's, NFA's

- A DFA can be turned into an NFA that accepts the same language.
- If for a DFA, $\delta_D(q, a) = p$, let the NFA have $\delta_N(q, a) = \{p\}$.

Then the NFA is always in a set containing exactly one state as the state the DFA is in after reading the same input.

Equivalence

- Surprisingly, for any NFA there is a DFA that accepts the same language.
- The DFA has about as many states as NFA but it often has more transitions.
- ◆In the worst case, the smallest DFA that is equivalent to some NFA with n states, can have 2ⁿ states.
- NFA is easier to construct because it has minimum states than DFA and minimum transitions.
- After construction of NFA, it can be converted to DFA.

Subset Construction

- Given an NFA with states Q, inputs Σ , transition function δ_N , state state q_0 , and final states F, construct equivalent DFA with:
 - States in 2^Q (Set of subsets of Q).
 - Inputs Σ.
 - Start state {q₀}.
 - Final states = all those in 2^Q with at least member of F.
 - Let S in 2^Q is one of the state of DFA so the transition function is $\delta_D(S,a) = \bigcup_{p \text{ in } S} \delta_N(p,a)$

Critical Point

- The DFA states have names that are sets of NFA states.
- But as a DFA state, an expression like {p,q} must be read as a single symbol, not as a set.
- Analogy: a class of objects whose values are sets of objects of another class.

Subset Construction

- The transition function δ_D is defined by: $\delta_D(\{q_1,...,q_k\}, a)$ is the union over all i=1,...,k of $\delta_N(q_i, a)$.
- If S ={ $q_1,...,q_k$ } then δ_D can be defined by δ_D (S,a)= $\bigcup_{p \ in \ S} \delta_N(p,a)$
- Example: We'll construct the DFA equivalent of our "chessboard" NFA.

Subset Construction- An Example:

Convert the following NFA $N = (Q, \Sigma, \delta, q_0, F)$ to DFA.

NFA

	0	1
→p	{p,q}	{p}
q	{r}	{r}
r	{s}	{}
*s	{s}	{s}

NFA

0 1 →p {p,q} {p} q {r} {r} r {s} {} *s {s}

NFA

0 1 →p {p,q} {p} q {r} {r} r {s} {} *s {s}

NFA

0 1 →p {p,q} {p} q {r} {r} r {s} {} *s {s}

NFA

0 1 →p {p,q} {p} q {r} {r} r {s} {s} *s {s}

NFA

0 1 →p {p,q} {p} q {r} {r} r {s} {s} *s {s}

NFA

	0	1
$\rightarrow p$	{p,q}	{p}
q	{r}	{r}
r	{s}	{}
* S	{s}	{s}

NFA

	0	1
→p	{p,q}	{p}
q	{r}	{r}
r	{s}	{}
*s	{s}	{s}

The transition graph of DFA - Equivalent to given NFA above

Theorem 2.11: From Text Book Page No 63

If $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then L(D) = L(N)

Proof: We show the fact D accepts same language as N by induction on /w/ i. e. we have to show

$$\widehat{\delta_N}\left(\mathsf{q}_0,\,\mathsf{w}\right)=\widehat{\delta_D}\left(\{\mathsf{q}_0\},\,\mathsf{w}\right)$$
Basis: $\mathsf{w}=\epsilon$ so $\widehat{\delta_N}\left(\mathsf{q}_0,\,\epsilon\right)=\widehat{\delta_D}(\{\mathsf{q}_0\},\,\epsilon)=\{\mathsf{q}_0\}$, in subset construction

Proof: continued

- ◆Induction: Let *x* is a string of length n and the relation above is true for *x*. Let a string w such that *w=xa* where *x* is substring of w without last symbol 'a'. So length of /w/=n+1
- Let $\widehat{\delta_N}(\mathbf{q_0}, \mathbf{x}) = \widehat{\delta_D}(\{\mathbf{q_0}\}, \mathbf{x}) = \mathbf{S}$, where S is a subset of states in Q_N
- Let T = the union over all states p in S of $\delta_N(p, a)$.
- •i.e. $\bigcup_{p \text{ in } S} \delta_{N}(p, a) = T$
- Then $\widehat{\delta_N}(q_0, xa) = T = \widehat{\delta_D}(\{q_0\}, w)$
 - For NFA: the extension of δ_N .
 - For DFA: definition of δ_D plus extension of δ_D .
 - That is, $\delta_D(S, a) = \delta_D(\widehat{\delta_D}\{q_0\}, x), a) = T$; then extend δ_D to w = xa.
- This completes the proof

NFA's With ϵ -Transitions

- ◆We can allow state-to-state transitions on ∈ input.
- These transitions are done spontaneously, without looking at the input string.
- A convenience at times, but still only regular languages are accepted.

NFA with epsilon transition(∈-NFA)

◆ Definition: A NFA with epsilon transition(ϵ -NFA) is a 5-tuple (\mathbf{Q} , $\mathbf{\Sigma}$, δ , $\mathbf{q_0}$, \mathbf{F}) where Q and $\mathbf{\Sigma}$ are finite set of states and alphabets respectively , $\mathbf{q_0}$ ϵ Q is start state , \mathbf{F} is set of final states and is defined as :

$Q \times \Sigma \cup \{\epsilon\} \rightarrow 2^Q$

The only difference between NFA and ϵ -NFA is that the transition function must include transition information on input ϵ . The ϵ , symbol for empty string , can not be a member of Σ .

Example: ε-NFA

$$\begin{array}{c|cccc} & 0 & 1 & \varepsilon \\ \rightarrow & A & \{E\} & \{B\} & \varnothing \\ & B & \varnothing & \{C\} & \{D\} \\ & C & \varnothing & \{D\} & \varnothing \\ & * & D & \varnothing & \varnothing \\ & * & D & \varnothing & \varnothing \\ & E & \{F\} & \varnothing & \{B, C\} \\ & F & \{D\} & \varnothing & \varnothing \end{array}$$

∈-Closure of a state:

- The ϵ -closure of a state q is the set of all states that contains state q and can be reached by ϵ -transition along any path from q to those states obtained by one or more ϵ -transitions.
- \bullet Formally, ϵ -closure of q is defined as:

∈-closure(q):

- state q is in ϵ -CLOSURE(q)
- if state p is reached with -transition from state q, p is in ∈-CLOSURE(q)
- if state p is in ϵ -CLOSURE(q) and there is a transition from state p to r labeled , then r is in ϵ -CLOSURE(q)

Closure of States: Example

- $\bullet \in -CL(q) = set$ of states you can reach from state q following only arcs labeled ϵ .
- ♦ Example: ϵ -CL(A) = {A};

$$\epsilon$$
-CL(B) = {B, D}

$$\epsilon$$
-CL(C) = {C}.

$$\in$$
-CL(D) = {D}.

$$\epsilon$$
-CL(E) = {B, C, D, E}.

$$\epsilon$$
-CL(F) = {F}.

Closure of a set of states = union of the closure of each state. E.g.

$$\in$$
-CL({E,F}) = {B, C, D, E,F}.

Extended Delta($\hat{\delta}$)

- lacktriangle Basis: $\widehat{\delta}$ (q, ϵ) = ϵ -CL(q).
- Induction: Note a $\in \Sigma$ and a not equal to empty, $\widehat{\delta}$ (q, xa) is computed as follows:
 - 1. Start with $\hat{\delta}(q, x) = P = \{p_1, p_2, ..., p_k\}$
 - 2. Take union of ϵ -CL (P) say it is R ={ $r_1, r_2, ... r_n$ }
 - 3. Take the union of ϵ -CL($\delta(r_i, a)$) for all r in R , let $S = \epsilon$ -CL($\delta(r_i, a)$) ={ $s_1, s_2, ..., s_m$ }
 - 4. So, $\widehat{\delta}$ (q, w)= $\widehat{\delta}$ (q, xa) =S.
- Intuition: $\hat{\delta}$ (q, w) is the set of states you can reach from q following a path labeled w where there may be any no of ϵ within w.

Example: Extended Delta $(\hat{\delta})$

- \bullet $\widehat{\delta}$ A, ϵ) = ϵ -CL(A) = {A}.
- $\widehat{\delta}(A, 0) = \epsilon CL(\delta(A, 0))$ $= \epsilon CL(\{E\}) = \{B, C, D, E\}.$
- $\widehat{\delta} (A, 01) = \epsilon CL(\delta(\{B, C, D, E\}, 1))$ $= \epsilon CL(\{C, D\}) = \{C, D\}.$
- Language of an ε-NFA is the set of strings w such that $\hat{\delta}$ (q₀, w) contains a final state.

Equivalence of NFA, ∈-NFA

- Every NFA is an ϵ -NFA similar to "Every DFA is an NFA with exactly one transition from each state with each input.
 - ◆ i.e. It just has no transitions on ∈.
- ◆Converse requires us to take an ∈-NFA and construct an NFA that accepts the same language.
- We do so by combining ϵ —transitions with the next transition on a real input i.e. removing ϵ —transitions from it.

Removing ϵ -transition from ϵ -NFA

- We can construct NFA and DFA from ϵ -NFA by removing the ϵ -transition from it.
- In NFA equivalent to given ϵ -NFA, there are as many as the states in ϵ -NFA, only ϵ -transitions are removed by using the closure of states.
- •In DFA equivalent to given ϵ -NFA, it has states represented by any subset of the states of given ϵ -NFA

From ϵ -NFA to NFA

- Let E = $(Q_E, \Sigma, \delta_E, q_0, F_E)$ is an ε-NFA.
- To convert E into equivalent NFA, $N=(Q_N, \Sigma, \delta_N, q_0, F_N)$ do the followings.
- Set q₀ as initial state of NFA all states are unmarked
- 2. for each input symbol a in Σ do $\delta_N(q,a) = \epsilon CL(\delta_E(\epsilon CL(q),a))$
- 1. Set $F_N = F_E$

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

- Set A as initial state of NFA without ϵ -Transition, N=(Q_N, Σ, δ_N, q₀, F_N).
- So, $q_0 = A$, if ϵ -NFA accepting empty string then make A also final state.

```
δ<sub>N</sub>(A,0)=ε-CL(δ<sub>E</sub>(ε-CL(A),0))
= ε-CL(δ<sub>E</sub>(({A,B,D}),0))
= ε-CL({A} U {C} U {E})
= {A,B,D} U {C} U {E})
= { A,B,C,D,E}
```

```
\delta_{N}(A,1) = \epsilon - CL(\delta_{E}(\epsilon - CL(A),1))

= \epsilon - CL(\delta_{E}((\{A,B,D\}),1))

= \epsilon - CL(\{E\} \cup \{D\})

= \{E\} \cup \{D\}

= \{D,E\}
```

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

$$\begin{split} \blacklozenge \delta_{N}(B,0) = \epsilon - CL(\delta_{E}(\epsilon - CL(B),0)) \\ = \epsilon - CL(\delta_{E}(\{B\},0)) \\ = \epsilon - CL(\{C\}) \\ = \{C\} \end{split}$$

Q	E	0	1
→A	{B,D}	{A}	Ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

$$\begin{split} \blacklozenge \delta_{N}(C,0) = \epsilon - CL(\delta_{E}(\epsilon - CL(C),0)) \\ = \epsilon - CL(\delta_{E}(\{C\},0)) \\ = \epsilon - CL(\phi) \\ = \phi \end{split}$$

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

$$\begin{split} \blacklozenge \delta_{N}(D,0) = \epsilon - CL(\delta_{E}(\epsilon - CL(D),0)) \\ = \epsilon - CL(\delta_{E}(\{D\},0)) \\ = \epsilon - CL(\{E\}) \\ = \{E\} \end{split}$$

$$\begin{split} \blacklozenge \delta_{N}(D,1) = \epsilon - CL(\delta_{E}(\epsilon - CL(D),1)) \\ = \epsilon - CL(\delta_{E}(\{D\},1)) \\ = \epsilon - CL(\{D\}) \\ = \{D\} \end{split}$$

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

$$\delta_{N}(E,0) = \epsilon - CL(\delta_{E}(\epsilon - CL(E),0))$$

$$= \epsilon - CL(\delta_{E}(\{E\},0))$$

$$= \epsilon - CL(\phi)$$

$$= \phi$$

$$\begin{split} \blacklozenge \delta_{N}(E,1) = \epsilon - CL(\delta_{E}(\epsilon - CL(E),1)) \\ = \epsilon - CL(\delta_{E}(\{E\},1)) \\ = \epsilon - CL(\phi) \\ = \phi \end{split}$$

Consider following \in -NFA

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

Hence We got following transitions for NFA.

- \bullet $\delta_N(A,0)=\{A,B,C,D,E\}$
- \bullet $\delta_N(A,1) = \{D,E\}$
- \bullet $\delta_N(B,0)=\{C\}$
- \bullet $\delta_N(B,1)=\{E\}$
- \bullet $\delta_N(C,0) = \phi$
- \bullet $\delta_N(C,1)=\{B\}$
- $\bullet \delta_N(D,0) = \{E\}$
- \bullet $\delta_N(D,1) = \{D\}$
- \bullet $\delta_N(E,0) = \phi$
- \bullet $\delta_N(E,1) = \phi$

Consider following \in -NFA

Hence We got following transitions for NFA.

$$\bullet \delta_{N}(A,0) = \{A,B,C,D,E\}$$

$$\bullet$$
 $\delta_N(A,1) = \{D,E\}$

$$\bullet$$
 $\delta_N(B,0)=\{C\}$

$$\bullet$$
 $\delta_N(B,1)=\{E\}$

$$\bullet$$
 $\delta_N(C,0) = \phi$

$$\bullet$$
 $\delta_N(C,1)=\{B\}$

$$\bullet$$
 $\delta_N(E,0) = \phi$

$$\bullet$$
 $\delta_N(E,1) = \phi$

Q	0	1
→A	{A,B,C,D,E}	{D,E}
В	{C}	{E }
С	ф	{B}
D	{E}	{ D }
*E	ф	ф

Table NFA equivalent to given ϵ -NFA

From ϵ -NFA to DFA

Method 1:

- Convert ∈-NFA to NFA as described above.
- 2. Convert the NFA obtained in 1 to DFA using Subset Construction as described in Subset Construction method

Method 2:

1. Convert ϵ -NFA direct to DFA as described in next slide.

From \in -NFA to DFA

- ♦ Let E =(Q_E, Σ, δ_E, q₀, F_E) is an ε-NFA.
- To convert E directly into equivalent DFA, $D=(Q_D, \Sigma, \delta_D, q_s, F_N)$ do the followings.
- 1. Set $q_s = \epsilon CL(q_0)$ as initial state of DFA
- 2. for each input symbol a in Σ , each state in DFA S={p₁,p₂, ..., p_k} do

$$\delta_D(S,a) = \epsilon - CL(\delta_E(S,a))$$

i.e. $\delta_D(S,a) = \epsilon - CL(\bigcup_{i=1}^k \delta_E(p_i,a))$

3. Set F_D = those states of Q_D that contains at least one accepting state of E i.e. F_D = {S | S is in Q_D and S \cap F_E $\neq \varphi$ }

 \bullet Consider the following ϵ -NFA, we have to convert it into DFA

Start state in D = ϵ -CL(A)={A,B,D}

	0	1
→{A,B,D}		
		38

Q	€	0	1
→A	{B,D}	{A}	Ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
→{A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}		
*{D,E}		

Q	€	0	1
→A	{B,D}	{A}	Ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
→{A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}		
*{B,D,E}		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
→{A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}		
*{E}		
{D}		

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}		
{D}		
*{C,E}		

Q	€	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}		
*{C,E}		
ф		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}	{E}	{D}
*{C,E}		
ф		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}	{E}	{D}
*{C,E}	ф	{B}
ф		
{B}		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}	{E}	{D}
*{C,E}	ф	{B}
Ф	ф	ф
{B}		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
\rightarrow {A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}	{E}	{D}
*{C,E}	ф	{B}
ф	ф	ф
{B}	{C}	{E}
{C}		

Q	E	0	1
→A	{B,D}	{A}	ф
В	ф	{C}	{E}
С	ф	ф	{B}
D	ф	{E}	{D}
* E	ф	ф	ф

States/Inp	0	1
→{A,B,D}	{A,B,C,D,E}	{D,E}
*{A,B,C,D,E}	{A,B,C,D,E}	{B,D,E}
*{D,E}	{E}	{D}
*{B,D,E}	{C,E}	{D,E}
*{E}	ф	ф
{D}	{E}	{D}
*{C,E}	ф	{B}
ф	ф	ф
{B}	{C}	{E}
{C}	ф	{ B }

Transition Diagram of DFA constructed from ∈-NFA

Summary

- ◆DFA's, NFA's, and ϵ -NFA's all accept exactly the same set of languages: the regular languages.
- The NFA types are easier to design and may have exponentially fewer states than a DFA.
- ◆e-NFA are most flexible model of FA to design and construct for any regular language.
- The computation power of all three models are same NFA and ϵ -NFA only adds the flexibility to construct FA for a language.