

Mantid user meeting Mantid at ESS

Data Management and Software Centre

Provide world leading scientific software and scientific computing support for neutron scattering at ESS

Scientific Software development.

Experiment control
Data acquisition system
Data reduction, analysis & modelling

Data centre operations.

Dual location - Lund & Copenhagen
Data management and curation

User programme support

Data scientists
User office software
Remote access to data and software tools

Experiment control

Stream
events
&
meta data

Live reduction

Visualise data Analyse data

Mantid scope at ESS - Priorities

1. Data reduction and correction

2. Data workbench

3. Some analysis functionality (QENS)

Scientific computing challenges at ESS

- ☑ High event rate >10⁷

Mantid Performance requirements

- ▶ Requirements -
 - ▶ live data reduction for an event rate of > 10[^]7
 - Filter good events from bad events
 - Capability for handling of complex geometries

Towards live data reduction.

- Mantid has
 - Geometry
 - Data types
 - algorithms

- Create a common MPI implementation
- Introduce type safety

Instrument 2.0

Instrument stores geometry and meta data.

r,t,p spectrum ID map, isMasked...

Complex detector geometries

 Current Instrument implementation is rate limiting

Parameter map is large /complex

Organically developed

Results

- Highlights the cost of refactoring
- Significant improvements across Mantid
- ILL can load interlaced scans from D2B into Matrix
- Direct geometry workflow x2 faster

The ESS Instrument Suite 1-15 (22)

Stakeholder engagement & science requirements

Charge:

Outline & agree the core requirements* for instrument control

Outline & agree the core requirements for data reduction

Outline & agree the core requirements for data analysis

Provide a realistic time line into full operations of diffraction instruments for DMSC.

*core requirements are provided within the DMSC budget for construction,
more with operations funding beginning in 2019.

- DSMC / STAP and Instrument teams
- Reflectometry 21st March
- Diffraction April 7th
- Imaging 26th-27th April
- Spectroscopy 15-16th May
- SANS 1st 2nd June

Discussing software requirements for the @essneutron reflectometers

Key discussion points

- Key message promote science delivery
- Framework for reflectometry analysis development
- Community gap for PND
- Bragg edge diffraction software for imaging
- Data management and acquisition for imaging
- Focus user experience on science domain not instrument / technique
- Rietveld for Inelastic scattering
- Data acquisition modes
- Co-analysis & Batch analysis for SANS

Summary of instrument software meetings

	1st HC date	DAQ & DM	Control	Reduction	Analysis
Imaging	Q1 2021	Pending discussions		Basic requirements	CT & BE fitting
Spectroscopy Hard condensed matter	Q1 2021	MultiGrid & 3He (BiFrost)	discussed with DMSC / ICS	Basic requirements	Horace & other matlab tools
Spectroscopy soft matter	Q1 2021	MultiGrid & 3He (Miracles)	discussed with DMSC / ICS	Basic requirements	QENS
Mol. Spec.	2024	3Не	discussed with DMSC/	Basic requirements	A-Climax +
Diffraction powder	Q2 2021	CDT Jalousies	discussed with DMSC / ICS	requirements discussed	Cannot cover all Fw in 2D
Diffraction xtal	Q1 2022 Magic Q3 2022 NMX	CDT Jalousies & GdGEM	discussed with DMSC / ICS	-	- PND - MX
Sans	Q1 2021 Skadi	LOKI detectors undefined	discussed with DMSC / ICS	requirements discussed	SASview
Reflectometry hard condensed matter	Q1 2021	MultiBlade	discussed with DMSC / ICS	requirements documented	Many tools requires common input & workflow
Reflectometry soft matter	2025	MultiBlade	discussed with DMSC / ICS	requirements documented	Many tools requires common input & workflow

Headlines

- Cost of refactoring is exceptionally high
 - TD in the FW is unacceptable

 ESS construction requirements are outside of scope of other partners

Mantid User meeting Mantid strategy

Mantid: why did it start in 2007

- Mitigate SPOF
 - Centrally resource scientific computing
 - Curation of software and data

Increase scientific productivity

Project partners

Scope

Two broad modes of usage

Mantid project - SSI review

 Two questionnaire based reviews

Technical

Collaborative

EUROPEAN SPALLATION SOURCE

Results of the collaborative review

Figure 7. Satisfaction of respondents with timeliness, quality of data reduction and ease of plotting data

Importance of a GUI

 GUI is critically important

Figure 11. How important are the following applications in your work?

General functionality

- Reliability
- Usability

Figure 12. How would you rate the following aspects of Mantid for your purposes?

Governance

25% of respondents have attended a SSC

Figure 29. To what extent do you agree with the following statements? (Familiarity with governance, ability to make effective decisions, activities well aligned with scientific objectives)

Headlines

- Stability
- Documentation / Training
- Performance

- improved features
 - plotting
 - UI cleaner