3

3 Automatik Extern

3.1 Allgemein

Bei verketteten Produktionsstraßen ist es nötig, Roboterprozesse von zentraler Stelle aus starten zu können.

Über die Schnittstelle "Automatik Extern" kann ein Leitrechner mit der Robotersteuerung kommunizieren und verschiedene Roboterprozesse auslösen. Ebenso kann die Robotersteuerung Informationen über Betriebszustände und Störmeldungen an den Leitrechner übermitteln.

Bei der KR C1 wird dies alles durch den automatischen Anlagenanlauf, das technologiespezifische Organisationsprogramm CELL. SRC und durch die Funktionen des Moduls P00 realisiert.

3.2 Ein- und Ausgangssignale konfigurieren

Konfig.

Den Signalen der Schnittstelle "Automatik Extern" müssen physikalische Ein- und Ausgänge der Robotersteuerung zugeordnet werden. Wählen Sie dazu aus dem Menü "Konfigurier" die Option "Ein/Ausgänge" aus.

Es öffnet sich ein Zustandsfenster.

In den Eingabefeldern werden die Nummern der Eingänge der Robotersteuerung eingetragen, die mit den nachstehenden Signalen der Schnittstelle verknüpft werden sollen.

Im Beispiel wurde der Eingang 140 mit dem Signal "DRIVES_ON" verbunden.

Ändern

Zum Speichern Ihrer Eingaben drücken Sie den Softkey "Ändern".

Ausgänge

Um zum Zustandsfenster zur Konfiguration der Ausgänge zu kommen, betätigen Sie bitte den Softkey "Ausgänge".

In den Eingabefeldern werden die Nummern der Ausgänge der Robotersteuerung eingetragen, die mit den nachstehenden Signalen der Schnittstelle verknüpft werden sollen.

Im Beispiel wurde der Ausgang 147 mit dem Signal "ON_PATH" verbunden.

Ändern

Zum Speichern Ihrer Eingaben müssen Sie auch hier den Softkey "Ändern" drücken.

Eingänge

Um wieder zum Zustandsfenster zur Konfiguration der Eingänge zu kommen, betätigen Sie bitte den Softkey "Eingänge".

Eine Beschreibung der Signale und deren Wertebereiche finden Sie in Abschnitt 3.6 Siehe auch Abschnitt 3.9 (Beispielkonfiguration).

3.3 Automatischer Anlagenanlauf

Ist die E/A-Schnittstelle durch Setzen der Systemvariablen \$I_0_ACTCONF auf den Wert TRUE aktiv geschaltet und sind alle weiteren Startbedingungen erfüllt, so kann durch ein Signal auf der Leitung \$EXT_START das Programm CELL. SRC gestartet werden.

3

Natürlich kann das Programm CELL. SRC zu jeder Zeit auch von der Bedienoberfläche aus gestartet werden.

Für den automatischen Anlagenanlauf muß der Systemvariablen $PR0_I_0$ in der Datei c: $\programme\krc\mad\steu\$ CUSTOM DAT folgender Wert zugewiesen werden:

CHAR \$PRO_I_O[]="/R1/SPS()"

Nach dem Hochfahren der Steuerung wird immer versucht das Programm auszuführen, daß in $PRO_I = 0$ bezeichnet wurde.

Das Programm SPS. SUB wählt CELL. SRC an und ist damit beendet. Es liegt zwar auf der Roboterseite, wird aber vom Submit-Interpreter (Steuerungsebene) bearbeitet.

3.4 Technologiespezifisches Organisationsprogramm CELL. SRC

Anweisung zum Einbinden der benutzerdefinierten, externen Unterprogramme
; EXT EXAMPLE1 ()
; EXT EXAMPLE2 ()
; EXT EXAMPLE3 ()
Initialisierungssequenz
INIT
BAS INI
CHECK HOME
PTP HOME Vel = 100 % DEFAULT
AUTOEXT INI
Schleifenbeginn
L00P
Aufruf des Moduls P00, um die Programmnummer vom externen Leitrechner abzurufen
POO (#EXT_PGNO, #PGNO_GET, DMY[], 0)
Kontrollstruktur in Abhängigkeit von der empfangenen Programmnummer
SWITCH PGNO
Wenn Programmnummer PGNO = 1
CASE 1
dem Leitrechner den Empfang der Programmnummer mitteilen
POO (#EXT_PGNO, #PGNO_ACKN, DMY[], 0)
und benutzerdefiniertes Programm EXAMPLE1 aufrufen
; EXAMPLE1 ()
Wenn Programmnummer PGNO = 2
CASE 2
dem Leitrechner den Empfang der Programmnummer mitteilen
POO (#EXT_PGNO, #PGNO_ACKN, DMY[], 0)

... und benutzerdefiniertes Programm EXAMPLE2 aufrufen ; EXAMPLE2 ()

Wenn Programmnummer PGNO = 3 ...

CASE 3

... dem Leitrechner den Empfang der Programmnummer mitteilen ...

POO (#EXT_PGNO, #PGNO_ACKN, DMY[], 0)

3

... und benutzerdefiniertes Programm EXAMPLE3 aufrufen

; EXAMPLE3 ()

Wurde für die vom Leitrechner übermittelte Programmnummer kein CASE-Zweig gefunden,

DEFAULT

erfolgt hier eine Fehlerbehandlung ...

POO (#EXT_PGNO, #PGNO_FAULT, DMY[], 0)

Ende der Kontrollstruktur ...

ENDSWITCH

Schleifenende ...

ENDLOOP

Programmende ...

END

3.5 Das Modul P00 (AUTOMATIK-EXTERN)

Im Modul P00 befinden sich die Funktionen für die Übermittlung von Programmnummern über einen Leitrechner. In diesem globalen Unterprogramm sind die Funktionen I NI T_EXT, EXT_PGN0, CHK_HOME und EXT_ERR zusammengefaßt.

3.5.1 Die Funktion EXT PGNO

Diese Funktion übernimmt die komplette Signal-Handhabung für die Übermittlung von Programmnummern über einen Leitrechner.

Sie kann mit einem der drei folgenden Parameter aufgerufen werden:

#PGNO_GET Anforderung einer Programmnummer

#PGNO_ACKN Mitteilen des Erhalt einer Programmnummer

#PGNO_FAULT Fehlerbehandlung

3.5.1.1 Anforderung einer Programmnummer beim Leitrechner

EXT_PGNO (#PGNO_GET)

Erkennt der Leitrechner eine Programmnummern-Anforderung auf der Leitung PGNO_REQ, so legt er die Programmnummer als Binärwert an die dafür vorgesehenen Eingänge der Robotersteuerung.

Zur Erhöhung der Übertragungssicherheit kann dem Leitrechner zusätzlich zur Programmnummer noch ein Paritätsbit, PGN0_PARI TY, übergeben werden. Stehen die Signalpegel stabil an, so fordert der Leitrechner durch das Setzen der Leitung PGN0_VALI D oder EXT_START die Robotersteuerung auf, die Programmnummer einzulesen. Die Funktion EXT_PGN0 berechnet nun aus der empfangenen Programmnummer die Parität und vergleicht sie mit dem angelegten Paritätsbit. Bei positivem Ergebnis gibt die Funktion die empfangene Programmnummer als ganzzahligen Wert zurück. Stimmen empfangene und berechnete Parität jedoch nicht überein, so wird die Programmnummer auf den Wert "0" gesetzt. Im Meldungsfenster des KCP wird eine Fehlermeldung ausgegeben.

Da beim Auftreten eines Paritätsfehlers die Programmnummer immer auf den Wert Null gesetzt wird, darf dieser Wert natürlich nicht als gültige Programmnummer in CELL. SRC verwendet werden!

3.5.1.2 Mitteilen des Erhalts einer Programmnummer

EXT_PGNO (#PGNO_ACKN)

Wurde die Programmnummer korrekt übertragen, so wird in der Kontrollstruktur in CELL. SRC versucht, dieser Programmnummer ein Anwenderprogramm zuzuordnen. Gelingt dies, so nimmt die Funktion die Programmnummer-Anforderung selbständig zurück. Sie signalisiert dies dem Leitrechner durch Setzen der Leitung APPL_RUN.

Im anderen Fall wird die nachfolgend beschriebene Funktion zur Fehlerbehandlung aufgerufen.

3.5.1.3 Fehlerbehandlung

EXT_PGNO (#PGNO_FAULT)

Wurde die Programmnummer nicht korrekt übertragen, d.h.

- (1) die Paritätsprüfung war nicht erfolgreich, oder
- (2) die BCD-Kodierung war falsch, besser gesagt: die Dekodierung führte zu keinem gültigen Ergebnis, oder

3

(3) es war dieser Programmnummer kein Anwenderprogramm zugeordnet,

so zeigt die Funktion EXT_PGN0 über das Meldungsfenster des KCP einen Übertragungsfehler an. Die Leitung PGN0_REQ bleibt gesetzt. Dadurch wird dem Leitrechner mitgeteilt, daß die Übertragung fehlerhaft war.

Eine fehlerhafte Übermittlung kann vom Leitrechner durch einen Timeout festgestellt werden. Dieser Timeout wird mit dem Setzen der Leitung PGN0_VALI D gestartet. Sollte nach einer festgelegten Zeitdauer (etwa 200 ms) die Programmnummer-Anforderung auf der Leitung PGN0_REQ nicht zurückgenommen werden, so muß bei der Übertragung ein Fehler aufgetreten sein. Der Leitrechner kann jetzt auf den Fehler reagieren.

3.5.2 Die Funktion EXT_ERR

Mit dieser Funktion kann über acht festgelegte Ausgänge der Robotersteuerung eine vereinbarte Fehlernummer im Bereich 1 ... 255 zum Leitrechner übertragen werden. Zusätzlich werden die letzten 64 aufgetretenen Fehler im Ringspeicher ERR_FI LE zu einer genaueren Analyse aufbewahrt.

Um die Funktion EXT_ERR nutzen zu können, müssen Sie die Datei p00. dat wie nachfolgend beschrieben editieren:

&ACCESS

&COMMENT EXTERNAL package

DEFDAT POO

BOOL PLC_ENABLE = **TRUE** Setzen Sie diesen Wert auf TRUE

INT I

INT $F_N0=1$

 $INT MAXERR_C = 1$ Tragen Sie hier die Anzahl der

Steuerungsfehler ein, für deren

Übertragung Sie Parameter

festgelegt haben

Tragen Sie hier die Anzahl der Applikationsfehler ein, für deren

Übertragung Sie Parameter

festgelegt haben

DECL STOPMESS MLD

INT MAXERR A = 1

SIGNAL ERR \$0UT [25] TO \$0UT [32] Legen Sie hier fest, über welche

Ausgänge der Robotersteuerung der Leitrechner die Fehlernummer

auslesen soll

Im Beispiel sind dies die Ausgänge 25 bis 32

BOOL FOUND

STRUC PRESET INT OUT, CHAR PKG[3], INT ERR

DECL PRESET P[255]

Im folgenden Bereich müssen Sie die **Parameter** der Fehler eintragen:

OUT -

Fehlernummer, die zum Leitrechner

übertragen werden soll

PKG[1-

Technologiepaket

ERR -

Fehlernummer im ausgewählten

Im Bereich von P[1] ... P[127]

Technologiepaket

 $P[1] = \{OUT2, PKG[]"POO", ERR10\}$

P[127] = { OUT27, PKG[] "S00", ERR11} eintragen

können Sie nur Applikationsfehler

P[128]={OUT12, PKG[]"CTL", ERR1}

Im Bereich von P[128] ... P[255]

können Sie nur Steuerungsfehler

P[255]={0UT25, PKG[]"CTL", ERR10} eintragen

ProgHBKonfigurationR2.3.24 12.99.00 de

```
STRUC ERR_MESS CHAR P[3], INT E
DECL ERR_MESS ERR_FILE[64]
ERR_FILE[1]={P[] "XXX", E 0}
```

. . .

ERR_FI LE[64]={P[] "XXX", E 0} ENDDAT

3.6 Signalbeschreibungen

Die Signale sind schreibgeschützt, können aber jederzeit gelesen oder in Programmen verwendet werden.

3.6.1 Eingänge

3.6.1.1 PGNO_TYPE

Dies ist kein Eingang oder Signal, sondern eine Variable. Mit ihrem Wert wird festgelegt, in welchem Format die vom Leitrechner übermittelte Programmnummer eingelesen wird.

PGNO_TYPE	Einlesen als	Bedeutung	Beispiele
1	Binärzahl	Die Programmnummer wird von der übergeordneten Steuerung als binär codierter Integerwert übergeben	0 0 1 0 0 1 1 1 => PGNO = 39
2	BCD-Wert	Die Programmnummer wird von der übergeordneten Steuerung als Binär Codierter Dezimalwert übergeben	0 0 1 0 0 1 1 1 2 7 => PGNO = 27
3	"1 aus n" *1	Die Programmnummer wird von der übergeordneten Steuerung oder der Peripherie als "1 aus n" codierter Wert übergeben	0 0 0 0 0 0 0 1 => PGNO = 1 0 0 0 0 1 0 0 0 => PGNO = 4

^{*1} Bei diesem Übergabeformat werden die Werte von PGNO_REQ, PGNO_PARITY sowie PGNO_VALID nicht ausgewertet und sind somit ohne Bedeutung.

3.6.1.2 PGNO_LENGTH

Auch dies ist kein Eingang oder Signal, sondern wieder eine Variable. Mit ihrem Wert wird die Bitbreite der vom Leitrechner übermittelten Programmnummer festgelegt.

 $PGNO_LENGTH = 1...16$

Beispiel:

PGNO_LENGTH = 6 => die externe Programmnummer ist sechs Bit breit

Während PGN0_TYPE den Wert 2 besitzt (Programmnummer als BCD-Wert einlesen), sind nur die Bitbreiten 4, 8, 12 und 16 zugelassen.

3.6.1.3 PGNO_FBIT

Eingang, der das erste Bit der Programmnummer darstellt.

 $PGNO_FBIT = 1...1024 (PGNO_LENGTH)$

Beispiel:

PGNO_FBIT = 5 => die externe Programmnummer beginnt mit \$IN[5]

3.6.1.4 PGNO_PARITY

Eingang, auf den das Paritätsbit vom Leitrechner übertragen wird.

Eingang	Funktion	
negativer Wert	ungerade Parität	
0	keine Auswertung	
positiver Wert	gerade Parität	

3

Während PGNO_TYPE den Wert 3 besitzt (Programmnummer als "1 von n"-Wert einlesen), wird PGNO_PARI TY NICHT ausgewertet.

3.6.1.5 PGNO_VALID

Eingang, auf den das Kommando zum Einlesen der Programmnummer vom Leitrechner übertragen wird.

Eingang	Funktion	
negativer Wert	Nummer wird mit der abfallenden Flanke des Signals übernommen	
0	Nummer wird mit der ansteigenden Flanke des Signals an der Leitu EXT_START übernommen	
positiver Wert	Nummer wird mit der ansteigenden Flanke des Signals übernommen	

Während PGN0_TYPE den Wert 3 besitzt (Programmnummer als "1 von n" - Wert einlesen), wird PGN0_VALI D NICHT ausgewertet.

3.6.1.6 EXT_START

Mit dem Setzen dieses Eingangs kann bei aktiver E/A-Schnittstelle ein Programm gestartet, bzw. wieder fortgesetzt werden.

Es wird nur die ansteigende Flanke des Signals ausgewertet.

Im Automatik-Extern-Betrieb gibt es keine SAK-Fahrt und damit auch keinen Programmhalt an der ersten programmierten Position. Dies gilt sowohl nach generatorischem Stop mit Verlassen der Bahn (z.B. Bedienerschutz) als auch beim Verlassen der Bahn von Hand.

Die erste anzufahrende Position ist in diesen Fällen die in \$POS_RET gespeicherte Position vor der Unterbrechung. Demzufolge muß beim Setzen von EXT_START vom Bediener sichergestellt werden, daß der Roboter auf dieser Position steht, bzw. diese gefahrlos erreichen kann.

Der erste Bewegungssatz muß ein PTP-Satz mit absoluter Zielpunktangabe sein. Dieser wird immer genau und mit voller Geschwindigkeit angefahren, wobei eine programmierte Überschleifanweisung ignoriert wird!

3.6.1.7 MOVE_ENABLE

Dieser Eingang wird zur Kontrolle der Roboterantriebe durch den Leitrechner verwendet.

Signal	Funktion
TRUE	Handverfahren und Programmausführung möglich
FALSE	Stillsetzen aller Antriebe und Verriegelung aller aktiven Kommandos

Sind die Antriebe vom Leitrechner stillgesetzt worden, so erscheint im Meldungsfenster des KCP die Meldung "FAHRFREIGABE GESAMT". Das Bewegen des Roboters ist erst nach dem Löschen dieser Meldung und einem erneuten externen Startsignal wieder möglich.

3.6.1.8 CONF_MESS

Durch Setzen dieses Eingangs kann der Leitrechner aufgetretene Fehlermeldungen selbst löschen (quittieren).

Es wird nur die ansteigende Flanke des Signals ausgewertet.

Ein Quittieren der Fehlermeldungen ist selbstverständlich nur dann möglich, wenn die Störungsursache beseitigt wurde.

3.6.1.9 DRIVES_ON

Durch einem High-Impuls von mind. 20 ms Dauer an diesem Eingang kann der Leitrechner die Roboterantriebe einschalten.

Ab dem Software-Stand 1.1.7 und bei Verwendung der Powermodule PM6-600, Fertigungsstände A, B oder C und PM0-600 Pro wird das Wiedereinschalten der Antriebe zum Schutz des Antriebsrelais K2 13-18.5 Sekunden lang nach dem letzten Einschalten der Antriebe verhindert.

Eine anstehende positive Flanke von DRI VES_ON wird am Ende des Zeitfensters (nach 18.5 Sekunden) erkannt und die Antriebe werden verzögert eingeschaltet.

3.6.1.10 DRIVES_OFF

Durch einem Low-Impuls von mind. 20 ms Dauer an diesem Eingang kann der Leitrechner die Roboterantriebe abschalten.

3.6.2 Ausgänge

3.6.2.1 STOPMESS

Dieser Ausgang wird von der Robotersteuerung gesetzt, um dem Leitrechner das Auftreten einer Meldung anzuzeigen, die das Anhalten des Roboters erforderlich machte.

(z.B. NOT-AUS, Fahrfreigabe, Bedienerschutz, Sollgeschwindigkeit usw.)

3.6.2.2 PGNO_REQ

Mit einem Signalwechsel an diesem Ausgang wird der Leitrechner aufgefordert, eine Programmnummer zu übermitteln.

Es werden beide Flanken des Signals ausgewertet.

Während PGN0_TYPE den Wert 3 besitzt (Programmnummer als "1 von n" - Wert einlesen), wird PGN0_REQ NICHT ausgewertet.

3.6.2.3 APPL RUN

Mit dem Setzen dieses Ausgangs teilt die Robotersteuerung dem Leitrechner mit, daß gerade ein Programm abgearbeitet wird.

3.6.2.4 PERI_RDY

Mit Setzen dieses Ausgangs teilt die Robotersteuerung dem Leitrechner mit, daß die Roboterantriebe eingeschaltet sind.

3.6.2.5 ALARM_STOP

Dieser Ausgang wird beim Auftreten eines Not-Aus-Ereignisses zurückgesetzt.

3.6.2.6 USER_SAF

Dieser Ausgang wird beim Öffnen des Schutzgitter-Abfrageschalters (in der Betriebsart AUTO), bzw. beim Loslassen eines Zustimmungsschalters (in der Betriebsart TEST) zurückgesetzt.

3.6.2.7 T1, T2, AUT, EXTERN

Diese Ausgänge werden gesetzt, wenn die entsprechende Betriebsart angewählt wurde.

3.6.2.8 ON_PATH

Dieser Ausgang ist gesetzt, solange sich der Roboter auf seiner programmierten Bahn befindet

Nach der SAK-Fahrt wird der Ausgang ON_PATH gesetzt. Dieser Ausgang bleibt solange gesetzt, bis der Roboter die Bahn verläßt, das Programm zurückgesetzt wird oder eine Satzanwahl durchgeführt wird. Das Signal ON_PATH hat aber kein Toleranzfenster; sobald der Roboter die Bahn verläßt, wird dieses Signal zurückgesetzt.

3.6.2.9 NEAR_POSRET

Über ein zweites Signal, **NEAR_POSRET**, kann der Leitrechner feststellen, ob der Roboter innerhalb einer Kugel um die in \$POS_RET gespeicherte Position steht. Der Radius der Kugel kann vom Anwender in der Datei \$CUSTOM. DAT über die Systemvariable \$NEARPATHTOL eingestellt werden.

Mit dieser Information kann der Leitrechner entscheiden, ob das Programm wieder gestartet werden darf oder nicht.

Die Rückkehrposition \$POS_RET ist die Position, an welcher der Roboter die Bahn verlassen hat.

Mögliche Zustände von NEAR_POSRET:

TRUE:

ON_PATH ist gesetzt, oder wenn ON_PATH nicht gesetzt ist: \$POS_RET ist gültig und die Position ist innerhalb der Kugel um \$POS_RET.

FALSE:

ON_PATH ist zurückgesetzt und \$POS_RET ist ungültig oder die Position ist außerhalb der Kugel um \$POS_RET.

Einstellung:

Datei: \$MACHI NE. DAT

SIGNAL \$NEAR_POSRET \$OUT[XXX]

3.6.2.10 PRO_ACT

Dieser Ausgang ist immer dann gesetzt, wenn ein Prozeß bzw. die Programmbearbeitung auf Roboterebene aktiv ist.

Sein Signalzustand wird von der Systemvariablen \$PR0_STATE abgeleitet:

\$PRO_STATE=#P_ACTIVE ! \$PRO_ACT=TRUE alle anderen Prozeßzustände ! \$PRO_ACT=FALSE

Der Prozeß ist aktiv, solange ein Programm oder ein Interrupt bearbeitet wird. Die Programmbearbeitung am Ende des Programms wird erst dann inaktiv, wenn alle Impulsausgänge und Trigger abgearbeitet sind. Im Falle eines Fehlerstops ist zwischen den drei folgend beschriebenen Möglichkeiten zu unterscheiden:

- G Wurden Interrupts aktiviert, aber zum Zeitpunkt des Fehlerstops nicht bearbeitet, so gilt der Prozeß als inaktiv (PRO_ACT=FALSE)
- G Wurden Interrupts aktiviert und zum Zeitpunkt des Fehlerstops bearbeitet, so gilt der Prozeß solange als aktiv (PRO_ACT=TRUE), bis das Interruptprogramm abgearbeitet ist oder auf einen HALT läuft (PRO_ACT=FALSE)

Wurden Interrupts aktiviert und das Anwenderprogramm läuft auf einen HALT, so gilt der Prozeß als inaktiv (\$PRO_ACT=FALSE). Ist nach diesem Zeitpunkt eine Interruptbedingung erfüllt, so gilt der Prozeß solange als aktiv (PRO_ACT=TRUE), bis das Interruptprogramm abgearbeitet ist oder auf einen HALT läuft (PRO_ACT=FALSE)

3.6.2.11 IN_HOME

Dieser Ausgang teilt dem Leitrechner mit, ob sich der Roboter in seiner HOME-Position befindet.

3.6.2.12 ERR_TO_PLC

Durch das Setzen dieses Ausgangs teilt die Robotersteuerung dem Leitrechner mit, daß ein Steuerungs- oder Technologiefehler aufgetreten ist.

Diese Funktion ist nur aktiv, wenn PLC_ENABLE den Wert FALSE besitzt.

3.6.3 Sonstiges Variablen

3.6.3.1 PGNO

In dieser Variablen legt das Programm EXT_PGNO. SRC die vom Leitrechner empfangene Programmnummer (unabhängig vom parametrierten Datentyp) als ganzzahligen Wert ab.

Das technologiespezifische Organisationsprogramm CELL. SRC ordnet mittels dieser Variablen der Programmnummer das entsprechende Anwenderprogramm zu.

3.6.3.2 PGNO_ERROR

Diese Variable dient der internen Fehlerverwaltung des Programms EXT_PGNO. SRC und darf nicht verwendet oder beschrieben werden!

3.7 ignaldiagramme

Auto. **Anlagenanlauf** bun Normalbetr. <u>⊒</u>;

Konfiguration

3.7.4

Wiederanlauf nach bahntreuem NOT-AUS

Signalname Signalrichtung Verhalten bei bahntreuem NOT-AUS und Wiederanlauf APPL_RUN KRC ➤ SPS /R1/EXAMPLE.SRC läuft /R1/CELL.SRC läuft PGNO_REQ KRC ➤ SPS PGNO/PGNO_PARITY SPS ➤ KRC PGNO_VALID SPS ➤ KRC \$EXT_START SPS ➤ KRC \$PRO_ACT KRC ➤ SPS Bremsrampe \$STOPMESS KRC ➤ SPS \$CONF_MESS SPS ➤ KRC \$I_O_ACTCONF (EXT) KRC ➤ SPS Verzögerung eingestellt auf A1 \$PERI_RDY KRC ➤ SPS \$DRIVES_ON SPS ➤ KRC \$DRIVES_OFF SPS ➤ KRC \$ALARM_STOP KRC ➤ SPS \$MOVE_ENABLE SPS ➤ KRC \$USER_SAF KRC ➤ SPS \$ON_PATH KRC ➤ SPS \$IN_HOME KRC ➤ SPS

76 von 82

ယ

3.7.5 Wiederanlauf nach Fahrfreigabe

3.7.6 Wiederanlauf nach Anwender-HALT

Konfiguration

Signalname	Signalrichtung	Verhalten bei Anwender-HALT und Wiederanlauf
APPL_RUN	KRC ➤ SPS	
/R1/EXAMPLE.SRC läuft		
/R1/CELL.SRC läuft		
PGNO_REQ	KRC ➤ SPS	
PGNO/PGNO_PARITY	SPS ➤ KRC	
PGNO_VALID	SPS ➤ KRC	
\$EXT_START	SPS ➤ KRC	
\$PRO_ACT	KRC ➤ SPS	programmierter Anwender-HALT
\$STOPMESS	KRC ➤ SPS	
\$CONF_MESS	SPS ➤ KRC	
\$I_O_ACTCONF (EXT)	KRC ➤ SPS	
\$PERI_RDY	KRC ➤ SPS	
\$DRIVES_ON	SPS ➤ KRC	
\$DRIVES_OFF	SPS ➤ KRC	
\$ALARM_STOP	KRC ➤ SPS	
\$MOVE_ENABLE	SPS ➤ KRC	
\$USER_SAF	KRC ➤ SPS	
\$ON_PATH	KRC ➤ SPS	
\$IN_HOME	KRC ➤ SPS	

3.8 Wiederanlauf nach passivem Stop

Erfolgt ein passiver Stop vom KCP aus ohne Betriebsartenwechsel, so muß die Fehlermeldung "Q1370:PASSIVER STOP" am KCP quittiert werden. Danach kann das Programm mit einem externen Start fortgesetzt werden.

3

Bei passivem Stop vom KCP und Betriebsartenwechsel <u>muß</u> von Hand rückpositioniert werden.

3.9 Beispielkonfiguration

3.9.1 Vereinbarungen

- Die Programmnummer soll als Binärzahl übermittelt werden.
- Die Programmnummer ist 7 Bit breit und wird ab dem Eingang 1 empfangen.
- Das Paritätsbit wird am Eingang 8 empfangen, wobei auf ungerade Parität geprüft wird.
- Die Anforderung einer neuen Programmnummer wird durch die ansteigende Flanke des Signals am Ausgang 1 signalisiert.
- Der Leitrechner meldet eine anliegende Programmnummer mit einer ansteigenden Flanke am Eingang 9.
- Über den Ausgang 2 wird dem Leitrechner mitgeteilt, daß ein Programm läuft.
- Die aktive E/A-Schnittstelle wird dem Leitrechner über den Ausgang 3 signalisiert.
- Ein externer Start vom Leitrechner erfolgt über den Eingang 10.
- Die Meldung eines Sammelfehlers an den Leitrechner erfolgt über den Ausgang 4.
- Vom Leitrechner werden Fehler über den Eingang 11 quittiert.

DCMO O

Erforderliche Eingaben in der Datei ...\R1\\$CONFIG.DAT (Beispielkonfiguration)

Verhelegung der Dregrammnummer

PGNU=U	vorbeiegung der Programmnummer
PGNO_TYPE=1	Datenformat der Programmnummer: Binärzahl
PGNO_FBI T=1	Erstes Bit der Programmnummer: Eingang 1
PGNO_LENGTH=7	Breite der Programmnummer: 7 Bit
PGNO_PARI TY=-8	Ungerade Parität, Paritätsbit auf Eingang 8
PGNO_REQ=1	Anforderung einer neuen Pro-
	grammnummer über Ausgang 1
PGNO_VALI D=9	Meldung, das die Programmnummer
	übertragen wurde kommt auf Eingang 9
APPL_RUN=2	Meldung, daß ein Programm abgear-
	beitet wird über Setzen des Ausgangs 2
PGNO_ERROR=0	Vorbelegung des Fehlermerkers

Eingaben in der Datei \$MACHINE.DAT (Beispielkonfiguration)

\$EXT_START\$IN[10]; externer Start

\$I_0_ACTCONF \$OUT[3] ; E/A-Schnittstelle aktiv

\$STOPMESS \$OUT[4] ; Stop-Fehler \$CONF_MESS \$IN[11] ; Sammelquittung

Schnittstellenbelegung (Beispielkonfiguration)

Steuerung	Signalname	Leitrechner
\$IN[1]	PGNO Bit 1	A 20.0
\$IN[2]	PGNO Bit 2	A 20.1
\$IN[3]	PGNO Bit 3	A 20.2
\$IN[4]	PGNO Bit 4	A 20.3
\$IN[5]	PGNO Bit 5	A 20.4
\$IN[6]	PGNO Bit 6	A 20.5
\$IN[7]	PGNO Bit 7	A 20.6
\$IN[8]	PGNO_PARI TY	A 20.7
\$IN[9]	PGNO_VALI D	A 21.0
\$IN[10]	\$EXT_START	A 21.1
\$IN[11]	\$CONF_MESS	A 21.2
\$IN[12]	\$DRI VES_OFF	A 21.3
\$IN[13]	\$DRI VES_ON	A 21.4
\$IN[14]	\$MOVE_ENABLE	A 21.5
\$0UT[1]	PGNO_REQ	E 20.0
\$0UT[2]	APPL_RUN	E 20.1
\$0UT[3]	\$I_O_ACTCONF	E 20.2
\$0UT[4]	\$STOPMESS	E 20.3
\$0UT[5]	\$PERI_RDY	E 20.4
\$0UT[6]	\$PRO_ACT	E 20.5

3.10 Meldungen

In diesem Abschnitt werden die im Zusammenhang mit der Schnittstelle "Automatik extern" auftretenden Fehlermeldungen beschrieben.

3

Meldungs- nummer	Meldungstext	Ursache
P00: 1	PGN0_TYPE falscher Wert zulässige Werte (1,2,3)	Der Datentyp der Programmnummer wurde falsch angegeben.
P00: 2	PGNO_LENGTH falscher Wert Wert zu groß (max. 16 Bit)	Die Bitbreite der Programmnummer wurde zu groß gewählt.
P00: 3	PGNO_LENGTH falscher Wert zulässige Werte (4,8,12,16)	Wurde zum Lesen der Programmnummer das BCD-Format gewählt, so muß auch eine entsprechende Bitbreite eingestellt werden
P00: 4	PGN0_FBI T falscher Wert liegt nicht im \$IN-Bereich	Für das erste Bit der Programmnummer wurde der Wert "0" oder ein nicht vorhandener Eingang angegeben
P00: 5	PGN0 falscher Wert liegt nicht im \$IN-Bereich	Für das erste Bit der Programmnummer wurde ein so hoher Wert angegeben, daß zusammen mit der angegebenen Kanalbreite der E/A-Bereich der Steuerung überschritten wurde
P00: 6	PGNO_PARI TY falscher Wert liegt nicht im \$IN-Bereich	Für den Eingang, der dem Paritätsbit zugeordnet werden soll, wurde der Wert "0" oder ein nicht vorhandener Eingang angegeben
P00: 7	PGNO_REQ falscher Wert liegt nicht im \$OUT-Bereich	Für die Ausgang, über den die Programmnummer angefordert werden soll, wurde der Wert "0" oder ein nicht vorhandener Ausgang angegeben
P00: 8	PGN0_VALI D falscher Wert liegt nicht im \$IN-Bereich	Für den Eingang, an den die Aufforderung zum Einlesen der Programmnummer gesendet wird, wurde der Wert "0" oder ein nicht vorhandener Eingang angegeben
P00: 9	APPL_RUN falscher Wert liegt nicht im \$OUT-Bereich	Für den Ausgang, an dem das Signal "Programm läuft" anliegen soll, wurde der Wert "0" oder ein nicht vorhandener Ausgang angegeben
P00: 10	Übertragungsfehler falsche Parität	Bei der Überprüfung der Parität trat eine Unstimmigkeit auf. Es muß ein Übertragungsfehler aufgetreten sein
P00: 11	Übertragungsfehler falsche Programmnummer	Vom Leitrechner wurde eine Pro- grammnummer übermittelt, für die in der Kontrollstruktur von CELL. SRC (noch) kein Zweig zur Abarbeitung an- gelegt wurde
P00: 12	Übertragungsfehler falsche BCD-Kodierung	Der Versuch, die Programmnummer im BCD-Format einzulesen, führte zu einem ungültigen Ergebnis

P00: 13	KCP passiv schalten Schlüsselschalter EXT	Die E/A-Schnittstelle ist nicht aktiviert worden, d.h. die Systemvariable \$I_0_ACTCONF hat im Moment den Wert FALSE. Dies kann die folgenden Ursachen haben: Das KCP wurde nicht passiv geschaltet Der Schlüsselschalter steht nicht in der Stellung "Ext." Das Signal \$I_0_ACT besitzt im Moment den Wert FALSE Ein anderer externer Kommunikationspartner hat den Zugriff auf die Steuerung \$DEVI CE=#ACTI VE für sich aktiv geschrieben z.B. SINEC H1
P00: 14	FEHLER Roboter nicht in HOME-Position!!	Der Roboter hat die HOME-Position nicht erreicht
P00: 15	FEHLER DATA_OK	Kommando erfolgreich, es stehen Daten zum Lesen bereit
P00: 16	FEHLER CMD_ABORT	Ausführung CWRITE wurde abgebrochen
P00: 17	FEHLER CMD_REJ	Schreiben auf diesem Kanal nicht möglich oder Kommando abgelehnt
P00: 18	FEHLER CMD_PART	Kommando wurde nur teilweise ausgeführt
P00: 19	FEHLER CMD_SYN	Syntaxfehler im Kommando
P00: 20	FEHLER FMT_ERR	Fehlerhafte Formatangabe der Variablen