No.	Questions	Answers		
		a	b	c
1	Let f be a function defined over \mathbb{R} by $f(x) = e^{-x+1}$, then the image of [0; 1[is:]1; e]	[-e; 1[[1; e[
2	If A and B are two independent events with $P(B) = 0.2$ and $P(A) = 0.3$ then $P(A \cap \overline{B}) = 0.3$	0.24	0.34	0.4
3	Let f be a function defined over \mathbb{R} of curve (C), by $f(x) = \frac{e^x - 5}{e^x + 1}$ its center of symmetry is	I(0; -2)	I(0; -1)	I(0; 2)

II -(5 points)

In the figure at right, we have:

(G) is the representative curve of the function g
defined on]0; +∞[, by g(x) = ax + b + x lnx,
where a and b are two real numbers.

- 1) Find g(1) and g'(1)
- 2) Show that $g'(x) = a + 1 + \ln x$, then deduce that a = -1 and b = -e.

- 3) Determine $\lim_{x\to +\infty} g(x)$ and set up the table of variations of g. (knowing $\lim_{x\to 0^+} g(x) = -e$)
- 4)-a). Show that the equation g(x) = 0 admits a unique root α such that $4.7 < \alpha < 4.8$
 - b) Verify that $\ln \alpha = \frac{\alpha + e}{\alpha}$.
 - c) Study, in terms of α , the sign of g(x).
 - d) B is point of the curve (G). Determine the coordinates of the point B where the tangent to (G) at the point B is parallel to the line (D) of equation (D): y = x

III- (5 points)

Consider two urns U and V. U contains five balls: 3 red and 2 white.

V contains ten balls: 4 red and 6 white.

1) We draw simultaneously and randomly, three balls from the urn V. Consider the following events:

A: « at least one of the three drawn balls is red ».

- B: « among the three drawn balls, only two have the same color ».
 - a- Calculate p(A).
 - b- Show that p(B) = 0.8
- 2) We choose randomly one of the two urns U and V, then we draw simultaneously and randomly two balls from the chosen urn. Consider the events:

E: « the chosen urn is U ».

F: « the two drawn balls have the same color ».

- a- Show that P(F/E) = 0.4 then deduce $P(F \cap E)$.
- b-Calculate $P(F \cap \overline{E})$ then Deduce that $p(F) = \frac{13}{30}$.
- c- The two drawn balls have different color. What is the probability that the two selected balls are from urn U?
- 3) Each red ball is numbered 2 and each white ball is numbered -1. We draw randomly one ball from the urn U and two balls simultaneously from the urn V.

Consider the event H: « the sum of numbers shown on the three drawn balls is equal to zero ».

Show that
$$p(H) = \frac{31}{75}$$

IV- (7 points)

Part A: Consider the function g defined over \mathbb{R} by $g(x) = x - 2 + 2e^x$ and let (C_g) be its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

- 1. Calculate $\lim_{x \to -\infty} g(x)$ and $\lim_{x \to +\infty} g(x)$.
- 2. Study the variations of g over R and then set up its table of variations.
- 3. Calculate g(0) then deduce the sign of g(x) over \mathbb{R} .

Part B: Let f be a function defined over \mathbb{R} by $f(x) = e^{2x} + (x-3)e^x$ and let (C_f) be its representative curve in an orthonormal system $(0; \vec{i}; \vec{j})$.

- **1.**Calculate $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$. Deduce an asymptote to (C).
- 2. Show that $f'(x) = e^x \times g(x)$ and then set up the table of variations of f.
- 3.a. Show that over $]0; +\infty[$ the equation f(x) = 0 admits a unique solution α .
 - b. Show that $0.79 < \alpha < 0.8$.
- 4.Draw (C_f) in an orthonormal system.
- 5. Determine the domain of definition of the function h defined by: $h(x) = \ln [(f(x))]$
- 6.Set up the table of variations of h on its domain (without calculating limits)