Probability Formulas

Basic Probability Formula

1. $P(A) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$

Complementary Probability

2.
$$P(A') = 1 - P(A)$$

Where P(A') is the probability of the complement of event A.

Addition Rule for Probability

3.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Where P(A∪B) is the probability of either event A or event B occurring.
- $P(A \cap B)$ is the probability of both events A and B occurring.

Conditional Probability

4.
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Where P(A|B) is the probability of event A occurring given that event B has occurred.

Multiplication Rule for Probability

5.
$$P(A \cap B) = P(A) \times P(B|A)$$

· For dependent events A and B.

6.
$$P(A \cap B) = P(A) \times P(B)$$

Total Probability Theorem

7.
$$P(B) = P(B|A)P(A) + P(B|A')P(A')$$

Where A and A' are mutually exclusive and exhaustive events.

Bayes' Theorem

8.
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Permutations and Combinations

9.
$$nPr = \frac{n!}{(n-r)!}$$

Where n is the total number of items, and r is the number of items to choose.

10.
$$nCr = \frac{n!}{r!(n-r)!}$$

 Where n is the total number of items, and r is the number of items to choose without regard to order.

Probability of Mutually Exclusive Events

11.
$$P(A \cup B) = P(A) + P(B)$$

If A and B are mutually exclusive events.

Probability of Non-Mutually Exclusive Events

12.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$