The group G is isomorphic to the group labelled by [72, 31] in the Small Groups library. Ordinary character table of $G \cong (C3 \times C3)$: Q8:

	1a	$\overline{4a}$	$\overline{2a}$	$\overline{3a}$	12a	6a	12b	4b	4c	3b	12c	6b	12d	3c	12e	6c	12f	3d	12g	6d	12h
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_3	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_4	1	1	1	1	1	1	1	-1	-1	1	1	1	1	1	1	1	1	1	1	1	1
χ_5	2	-2	2	2	-2	2	-2	0	0	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1
χ_6	2	2	2	2	2	2	2	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_7	2	0	-2	2	0	-2	0	0	0	2	0	-2	0	2	0	-2	0	2	0	-2	0
χ_8	2	-2	2	-1	1	-1	1	0	0	2	-2	2	-2	-1	1	-1	1	-1	1	-1	1
χ_9	2	2	2	-1	-1	-1	-1	0	0	2	2	2	2	-1	-1	-1	-1	-1	-1	-1	-1
χ_{10}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	-1	1	-1	1	2	-2	2	-2
χ_{11}	2	-2	2	-1	1	-1	1	0	0	-1	1	-1	1	2	-2	2	-2	-1	1	-1	1
χ_{12}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2	2
χ_{13}	2	2	2	-1	-1	-1	-1	0	0	-1	-1	-1	-1	2	2	2	2	-1	-1	-1	-1
χ_{14}					$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$	0	0	2	0	-2	0		$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$		$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$
χ_{15}	2	0	-2	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	-	0		0	-2	0		$E(12)^7 - E(12)^{11}$	1			$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$
χ_{16}	2	0	-2	2	0	-2	0	0			$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$		$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$		$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$
χ_{17}	2	0	-2	_	0	-2	0	0	0		$E(12)^7 - E(12)^{11}$		$-E(12)^7 + E(12)^{11}$			1	$-E(12)^7 + E(12)^{11}$	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$
χ_{18}	2	0	-2		$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$	0	0		$-E(12)^7 + E(12)^{11}$				$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	2	0	-2	0
χ_{19}	2				$E(12)^7 - E(12)^{11}$		$-E(12)^7 + E(12)^{11}$	0	0	-1	$E(12)^7 - E(12)^{11}$				$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	2	0	-2	0
χ_{20}	2				$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$	-	-		$E(12)^7 - E(12)^{11}$		$-E(12)^7 + E(12)^{11}$	2	0	-2	0		$-E(12)^7 + E(12)^{11}$		$E(12)^7 - E(12)^{11}$
χ_{21}	2	0	-2	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$	0	0	-1	$-E(12)^7 + E(12)^{11}$	1	$E(12)^7 - E(12)^{11}$	2	0	-2	0	-1	$E(12)^7 - E(12)^{11}$	1	$-E(12)^7 + E(12)^{11}$

Trivial source character table of $G \cong (C3 \times C3)$: Q8 at p = 2:

In the bounce character table of $G = (GG \times GG)$. We at $p = 2$.												
Normalisers N_i	N_1	N_2	N_3	N_4 N_5 N_6								
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4 P_5 P_6								
Representatives $n_j \in N_i$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1a $3b$ $3a$ $3c$ $3d$	1a $3b$ $3a$ $3c$	3d 1a 1a 1a								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 2 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	8 8 8 8 8	0 0 0 0 0	0 0 0 0	0 0 0 0								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{vmatrix} 8 & -4 & 8 & -4 & -4 \end{vmatrix}$	0 0 0 0 0	0 0 0 0	0 0 0 0								
	8 8 -4 -4 -4	0 0 0 0 0	0 0 0 0	$0 \mid 0 \mid 0 \mid 0 \mid$								
	8 -4 -4 -4 8	0 0 0 0 0	0 0 0 0	$0 \mid 0 \mid 0 \mid 0 \mid$								
	8 -4 -4 8 -4	0 0 0 0 0	0 0 0 0	$0 \mid 0 \mid 0 \mid 0 \mid$								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	4 4 4 4 4	4 4 4 4 4	0 0 0 0	0 0 0 0								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{vmatrix} 4 & 4 & -2 & -2 & -2 \end{vmatrix}$	$\begin{vmatrix} 4 & -2 & 4 & -2 & -2 \end{vmatrix}$	0 0 0 0	$0 \ \ 0 \ \ 0 \ \ 0$								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 4 & -2 & -2 & -2 & 4 \end{vmatrix}$	0 0 0 0	0 0 0 0								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{vmatrix} 4 & -2 & 4 & -2 & -2 \end{vmatrix}$	$\begin{vmatrix} 4 & 4 & -2 & -2 & -2 \end{vmatrix}$	0 0 0 0	0 0 0 0								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{vmatrix} 4 & -2 & -2 & 4 & -2 \end{vmatrix}$	$\begin{vmatrix} 4 & -2 & -2 & 4 & -2 \end{vmatrix}$	0 0 0 0	0 0 0 0								
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	2 2 2 2 2	2 2 2 2 2	2 2 2 2	2 0 0 0								
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 2 & -1 & 2 & -1 & -1 \end{vmatrix}$	$\begin{vmatrix} 2 & -1 & 2 & -1 \end{vmatrix}$	-1 0 0 0								
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} $	$\begin{vmatrix} 2 & -1 & 2 & -1 & -1 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$-1 \mid 0 \mid 0 \mid 0 \mid$								
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	$\begin{vmatrix} 2 & -1 & -1 & 2 & -1 \end{vmatrix}$	$\begin{vmatrix} 2 & -1 & -1 & 2 & -1 \end{vmatrix}$	$\begin{vmatrix} 2 & -1 & -1 & 2 \end{vmatrix}$	-1 0 0 0								
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 2 & -1 & -1 & -1 \end{vmatrix}$	$2 \mid 0 \mid 0 \mid 0 \mid$								
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	2 2 2 2 2	2 2 2 2 2	0 0 0 0	0 2 0 0								
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	2 2 2 2 2	2 2 2 2 2	0 0 0 0	0 0 2 0								
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot $	1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1								

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(7,10)(8,12)(9,13)(11,14)]) \cong C2$

 $P_3 = Group([(7,10)(8,12)(9,13)(11,14)]) = C2$ $P_3 = Group([(7,10)(8,12)(9,13)(11,14),(7,9,10,13)(8,11,12,14)]) \cong C4$

 $P_4 = Group([(7,10)(8,12)(9,13)(11,14),(2,3)(5,6)(7,8,10,12)(9,14,13,11)]) \cong C4$

 $P_5 = Group([(7,10)(8,12)(9,13)(11,14),(2,3)(5,6)(7,14,10,11)(8,9,12,13)]) \cong C4$

 $P_6 = Group([(7,10)(8,12)(9,13)(11,14),(7,9,10,13)(8,11,12,14),(2,3)(5,6)(7,8,10,12)(9,14,13,11)]) \cong \mathbb{Q}8$

 $N_1 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (\text{C3} \times \text{C3}) : \text{Q8}$

 $N_2 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (C3 \times C3) : Q8$

 $N_3 = Group([(2,3)(5,6)(7,8,10,12)(9,14,13,11),(7,9,10,13)(8,11,12,14),(7,10)(8,12)(9,13)(11,14),(1,2,3),(4,5,6)]) \cong (C3 \times C3) : Q8$

 $N_4 = Group([(2,3)(5,6)(7,12,10,8)(9,11,13,14),(7,10)(8,12)(9,13)(11,14),(7,9,10,13)(8,11,12,14)]) \cong Q8$ $N_5 = Group([(2,3)(5,6)(7,12,10,8)(9,11,13,14),(7,10)(8,12)(9,13)(11,14),(7,9,10,13)(8,11,12,14)]) \cong Q8$

 $N_6 = Group([(2,3)(5,6)(7,12,10,8)(9,11,13,14),(7,10)(8,12)(9,13)(11,14),(7,9,10,13)(8,11,12,14)]) \cong \mathbb{Q}8$