

Weierstraß Institut für Angewandte Analysis und Stochastik

19. Vorlesung: Hypothesentests

Nikolas Tapia

24. Juni 2024, Stochastik für Informatik(er)

Grundprinzipen

Vor der Messung der Daten wird eine Hypothese (**Nullhypothese** H_0) aufgestellt, die dann überprüft wird.

Beispielweise:

- 1. Die Daten folgen eine Normalverteilung.
- 2. Der Mittelwert der Daten ist 0.
- 3. Die Daten sind unabhängig.

Noch konkreter:

- 1. Vergleich der Wirkung von zwei Medikamenten.
- 2. Überprüfung der Qualität von Produkten, usw.

Fehler 1. und 2. Art

Definition 19.1

Zwei Typen von "Fehler" sind möglich:

- 1. **Fehler 1. Art**: H_0 wird abgelehnt, obwohl sie wahr ist.
- 2. Fehler 2. Art: H_0 wird angenommen, obwohl sie falsch ist.

Definition 19.2

Das **Signifikanzniveau** $\alpha \in (0,1)$ ist der maximal zulässige Fehler 1. Art, d.h.

$$\mathbb{P}(H_0 \text{ wird abgelehnt } | H_0 \text{ gilt}) \leq \alpha.$$

Vorgehen

- 1. Nullhypothese aufstellen.
 - Behauptung, die mittels Daten geprüft werden kann.
- 2. Teststatistik *T* aufstellen.
 - Die Verteilung von T unter H_0 ist bekannt, z.B. $T \sim \mathcal{N}(0,1)$ oder $T \sim t_n$.
- 3. Signifikanzniveau $\alpha \in (0,1)$ wählen.
 - Maximal zulässige Fehler 1. Art.
 - Üblicherweise $\alpha = 0.05$ oder $\alpha = 0.01$.
- 4. Experiment durchführen und Daten erhalten.
 - Messwerte x_1, \ldots, x_n ergeben einen Testwert t für die Teststatistik.
- 5. H_0 wird entweder abgelehnt oder nicht.
 - Neyman-Pearson-Entscheidungsregel: H_0 wird abgelehnt, wenn t im Ablehnungsbereich liegt. Sonst ist H_0 nicht abgelehnt.

Hypothesentest

Definition 19.3

Ein **Ablehnungsbereich** (oder **kritischer Bereich**) zum Fehlerniveau α für H_0 ist eine Teilmenge $A \subseteq \mathbb{R}$, sodass

 $\underbrace{\text{Fehler 1. Art.}}_{\mathbb{P}(T \in A \mid H_0) \leq \alpha.}$

Testarten

- 1. **原假设** (H_0) : 这是初始假设,通常表示没有效应或没有差异的情况。它是研究者在检验开始时假定为真的假设。在进行统计检验时,我们试图通过数据来验证这个假设是否成立。例如,在一个单侧检验中,原假设可能是一个参数小于或等于某个特定值 (如 $H_0:\theta = \theta_0$),在双侧检验中,原假设可能是参数等于某个特定值 (如 $H_0:\theta = \theta_0$)。
- 2. 备择假设(I/I): 这是与原假设相对立的假设,通常表示存在效应或存在差异的情况。如果数据提供了足够的证据使我们怀疑原假设不成立,我们就会拒绝原假设,转而接受备择假设。例如,在一个单侧检验中,备择假设可能是一个参数大于某个特定值(如 II, i e f ≠ 6)。 在双侧体验中,备择假设可能是参数不等干某个特定值(如 II, i e f ≠ 6)。

Definition 19.4

Sei $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ ein statisches Modell für eine Grundgesamtheit.

• Ein einseitiges Test ist ein Test, bei dem die Nullhypothese H₀ in der Form

$$H_0: \theta \leq \theta_0, \quad H_1: \theta > \theta_0$$

oder

$$H_0: \theta \ge \theta_0, \quad H_1: \theta < \theta_0$$

aufgestellt wird.

• Ein beidseitiges Test ist ein Test, bei dem die Nullhypothese H₀ in der Form

$$H_0: \theta = \theta_0, \quad H_1: \theta \neq \theta_0 \qquad \left(\begin{array}{c} H_0: \theta \neq \Theta_0 \\ H_1: \theta = \theta_0 \end{array} \right)$$

$$\left(\begin{array}{c} H_0: \theta \neq \Theta_0 \\ H_1: \theta = \Theta_0 \end{array} \right)$$

aufgestellt wird.

Laibniz Laibriz Gerrainschaft

Ablehnungsbereich

Aussage 19.1

Sei T eine Teststatistik, t den entsprechenden Testwert, und H_0 eine Nullhypothese.

• Bei einem einseitigen Test ist der Ablehnungsbereich der Form $A_{\alpha} = \{t \mid t \leq k\}$, bzw. $A_{\alpha} = \{t \mid t \geq k\}$, wobei k so gewählt wird, dass $\mathbb{P}(T \geq k \mid H_0) \leq \alpha$ bzw.

 \mp $(\kappa) = \mathbb{P}(T \le k \mid H_0) \le \alpha$. $\to \oplus$ Bei einem beidseitigen Test ist der Ablehnungsbereich der Form

$$k = Quantif$$
 3 cm N: veau α . $A_{\alpha} = \{t \mid t \geq k_1\} \cup \{t \mid t \leq k_2\}, \quad (\kappa_1 > k_2)$

wobei k_1 und k_2 so gewählt werden, dass $\mathbb{P}(T \ge k_1 \mid H_0) \le \alpha/2$ und $\mathbb{P}(T \le k_2 \mid H_0) \le \alpha/2$.

p-Wert

Definition 19.5

Sei T eine Teststatistik, t den entsprechenden Testwert, und H_0 eine Nullhypothese. 1. Der rechtsseitige p-Wert ist

$$ho_r = \mathbb{P}(au \geq t \mid extstyle H_0).$$

2. Der linksseitige p-Wert ist

$$p_l = \mathbb{P}(T \leq t \mid H_0).$$

 $p_b = 2 \min(p_r, p_l).$

3. Der beidseitige p-Wert ist

Aussage 19.2

Sei T eine Teststatistik, t den entsprechenden Testwert, und H_0 eine Nullhypothese.

- Bei einem einseitigen Test ist H_0 abgelehnt, wenn $p_r \le \alpha$ bzw. $p_l \le \alpha$.
- Bei einem beidseitigen Test ist H_0 abgelehnt, wenn $p_b \le \alpha$.

Eine Münze wird *n*-mal geworfen.

Dabei erhalten wir Daten $x_1, \ldots, x_n \in \{0, 1\}^n$.

Die Nullhypothese ist, dass die Münze fair ist. Die

Alternativhypothese ist, dass die Münze nicht fair ist.

Unter H_0 ist die Teststatistik

$$T = \sum_{i=1}^{n} X_i \sim \mathsf{Binomial}\left(n, \frac{1}{2}\right).$$

 H_0 wird abgelehnt, wenn der Testwert t im Ablehnungsbereich $\{t < k_1\} \cup \{t > k_2\}$ liegt. Äquivalent wenn der p-Wert p_b kleiner als α ist.

H_0:
$$p = 1/2$$

H 1: $p \neq 1/2$

