(19)日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平6-303541

(43)公開日 平成6年(1994)10月28日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
H04N	5/44	J			

審査請求 未請求 請求項の数3 FD (全13頁)

(21)出願番号	特願平5-112433	(71)出願人 000002185	
		ソニー株式会社	
(22)出願日	平成5年(1993)4月16日	東京都品川区北品川6丁目7番	35号
		(72)発明者 神谷 哲二	
		愛知県一宮市大字高田宇池尻6	番地 ソニ
		宫株式会社内	
		(72)発明者 安田 良宏	
		愛知県一宮市大宇高田宇池尻 6 一一宮株式会社内	番地 ソニ
		(72) 発明者 目黒 利亮	
		爱知県一宮市大字高田字池尻 6 一一宮株式会社内	番地 ソニ
		(74)代理人 弁理士 脇 篤夫 (外1名)	

(54) 【発明の名称】 テレビジョン受像機

(57) 【要約】

【構成】 チューナー部1、2が同じチャンネルを選局 した場合には、制御部13により、チューナー部1の映 像信号がCRT6、音声信号L、RがVTR4及びスピ 一カL、R (9、12) に対して供給されるるようスイ ッチ部SWi 、SW2 が切換えられ、さらに、チューナ 一部2については選局動作を停止されるよう構成する。 【効果】 ハードの設計によらず制御部の動作により、 ローカル周波数の影響によるビートを解消することがで きると共に、設計者の負担が軽減されハード的な設計上 の大幅な変更が避けられるため製造コストの削減も実現 される。

【特許請求の顧用】

【請求項1】 選局した放送電波から映像信号及び音声 信号を選択して出力する2つ以上のチューナー部と、

少なくとも前記2つ以上のチューナー部からの映像信号 及び音声信号が入力され、入力された信号を切換えて後 段に接続された各機能回路部に対して選択的に供給する ことのできるスイッチ手段と、

前記2つ以上のチューナー部の少なくとも2つのチュー ナー部が同一のチャンネルを選局したことを輸知する手 段と、同一のチャンネルを選局した前記複数のチューナ 10 一部のうち、特定のチューナー部以外の選局を停止させ る手段を備えている制御部を設け、前記制御部によって 前記特定のチューナー部より出力される映像信号及び音 声信号が前記各機能回路部に対して供給されるよう前記 スイッチ手段を切換えることを特徴とするテレビジョン 受儉機。

【請求項2】 前記2つ以上の複数のチューナー部、前 記スイッチ手段、及び前記制御部は、VTRとの一体型 の機器に対して適用されることを特徴とする請求項1に 記載のテレビジョン受像機。

【請求項3】 前記2つ以上のチューナー部、前記スイ ッチ手段、及び前記制御部は、マルチ両面表示機能を有 する機器に対して適用されることを特徴とする請求項1 又は請求項2に記載のテレビジョン受像機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】木発明はテレビジョン受像機に関 わり、特にチューナー部が複数設けられているVTRと の一体型やマルチ両面表示機能を有するテレビジョン受 像機に関するものである。

[0 0 0 2]

【従来の技術】現在、VHS (登録商標) や8ミリのビ デオテープの再生や記録を行うことのできるVTRを内 蔵して構成されるテレビジョン受像機が知られている。 図6は、このようなVTR一体型のテレビジョン受像機 の一例を示す斜視図であり、テレビジョン受像機40の 表示画面の下部には、例えばビデオテーブカセットの出 し入れ口42が設けられ、チャンネル切換や音量調整を 行う操作ボタン41の他にビデオテープの再生/停止等 の操作を行うことのできる操作部43及びビデオテープ 40 カセットを取り出す際に用いるイジェクトボタン43 g が設けられている。このようなテレビジョン受像機では 外部のVTR等を接続することなく、テレビジョン受像 機40で受信、選局された映像ソース等を録画(この場 合には音声の記録も含む) したり、ビデオソフトの再生 を行ったりすることができる。

【0003】特に近年、上記VTR一体型のテレビジョ ン受像機においては、通常時に使用するチューナーとV TR記録用のチューナーの2つのチューナーを内蔵する

能とされるものが知られている。図7はこのような2つ のチューナー部を有して構成されるVTR一体型のテレ ビジョン受像機を概念的に示すプロック図である。31 は通常時に使用されるチューナー部、32はVTR記録 用のチューナー部を示しており、共に放送電波を受信、 選局した後、受信電波から映像信号と音声信号を抽出し て出力するものである。33はテレビジョン受像機に内 蔵されるVTRを示し、チューナー部32の映像信号と 音声信号が入力されている。従って、チューナー部32 で受信された映像ソースを録画することができると共 に、ビデオソフト等を再生した場合には、出力端子を介 して再生した映像信号と音声信号を出力することができ

【0004】スイッチ部SW。におけるTai~Taoは端 子を示しており、Toll~Tolk機信号系の端子であ り、端子Ts:にはチューナー部31の映像信号が、端子 Ts:にはVTR33の映像信号が入力され、端子Ts:は ビデオプロセッサ34の人力側に接続されると共に、端 子Tssが端子Ts1, Ts2に対して択一的に切換えられ 20 る。一方、Ts4~Ts6は音声信号系の端子で、端子Ts4 にはチューナー部31の音声信号が、端子TseにはVT R33の音声信号が入力され、端子Tssはオーディオプ ロセッサ36の入力側に接続されると共に、端子Taaが 端子丁=4、 丁== に対して択一的に切換えられる。また、 映像信号系の端子下。。と音声信号系の端子下。。は連動し て切換わるものとされる。

【0005】34は入力された映像信号について各種信 号処理を行い、最終的に増幅されたRGB信号を出力す **るビデオプロセッサであり、ビデオプロセッサ34**より 30 出力されたRGB信号によりCRT35にて映像表示が なされることとなる。36はオーディオプロセッサであ り入力された音声信号について各種処理を行った後アン プ37に出力する。このアンプ37で音声信号が増幅さ れてスピーカ38に供給されることで音声として出力さ れることとなる。

【0006】例えば、テレビを通常見るような場合に は、スイッチ部SW。においては端子Tsaが端子Tsaと 接続され、端子T:6は端子T:4と接続されている。従っ てこの場合、チューナー部31から出力される映像信号 と音声信号がそれぞれCRT35とスピーカ38に至る 信号経路が形成されることとなる。このとき、ユーザー がVTR記録用のチューナー部32の受信チャンネルを 任意に選択してVTR33を録画のモードにセットすれ ば、このときチューナー部32で選局された映像ソース を録画することができ、例えば、いわゆる裏番組録画も 可能とされる。

【0007】 また、VTR33でビデオソフト等を再生 するような場合には、スイッチ部SWaにおいて端子T 3gが端子Tagに切換えられ、端子Tagが端子Tagに切換 ことにより、現在ユーザーが見ている裏番組の録画が可 50 えられる。これにより、VTR33から出力される映像 3

信号と音声信号がCRT35とスピーカ38に供給され ることとなり、ユーザーは再生されているビデオソフト 等を見ることができる。なお図示しないが、VTR33 は外部から供給される映像信号と音声信号を記録する入 力端子を付けることもできる。

【0008】また、同様に複数のチューナー部が1台の テレビジョン受像機に内蔵された機器としては、マルチ 画面表示機能を有するテレビジョン受像機においてチュ ーナー部を複数設けたものが知られている。例えば、1 つの子画面表示が可能なテレビジョン受像機に対し、主 画面用のチューナー部と子画面用のチューナー部の2つ のチューナー部を設けて構成することで、例えばVTR 等のチューナーを備えた外部機器を接続しなくてもテレ ビジョン受像機単体でマルチ画面表示させることができ る。

[0009]

【発明が解決しようとする課題】ところで、図7に示す ようなVTR一体型のテレビジョン受像機においては、 あるチャンネルを見ながら、これと同じチャンネルを録 画するような状況は当然考えられるものである。このと 20 路部に対して分配するようスイッチ部を制御すること きには、チューナー部31とチューナー部32は同一の チャンネルを選局している状態となり、従って両者のロ ーカル周波数も同じこととなる。ところが、同様の仕様 のチューナー部が同一のチャンネルを選局している場合 においても、実際のローカル間波数は部品等の特件の課 差によりわずかにずれてしまっているのが一般的であ る。このため、複数のチューナー部を有して構成される VTR一体型のテレビジョン受像機においては、図8に 示すように互いのチューナー部のローカル風波動、また あい、結果として信号にノイズが重畳され、映像にピー ト妨害等が表れてしまうという問題点を有している。特 に比較的小型に構成されるVTR-体型のテレビジョン 受像機では、チューナー部どうしが隣接して配置される ことからこの問題は顕著となる。また、マルチ画面表示 機能を有するテレビジョン受像機においても、チューナ 一部が複数設けられている場合には同様の問題が生じる こととなる。

【0010】そこで、上記した原因によるビート等のノ イズをハード的な面から解消することが行われている が、これは多くの検討時間とノウハウが必要とされるた め設計者の負担が大きく、さらに設計の大幅な変更を伴 うことから製造コストも高くなるという問題を有してい る.

[0011]

【課題を解決するための手段】そこで本発明は上記した 問題点を解決するため、選局した放送電波から映像信号 及び音声信号を選択して出力する2つ以上のチューナー 部と、少なくともこれら2つ以上のチューナー部からの 映像信号及び音声信号が入力され、入力された信号を切 50 号、音声信号1...Rの各出力端子から出力することがで

換えて後段に接続された各機能回路部に対して選択的に 供給することのできるスイッチ部を設け、さらに2つ以 上のチューナー部の少なくとも2つのチューナー部が同 一のチャンネルを選局したことを検知する手段と同一の チャンネルを選局した前記複数のチューナー部のうち特 定のチューナー部以外の選局を停止させる手段を備えて いる制御部を設けてテレビジョン受像機を構成し、この 制御部によって前記特定のチューナー部より出力される 映像信号及び音声信号が前記各機能同路部に対して供給 されるよう前記スイッチ手段を切換えることができるよ うにすることとした。また、上記した構成をVTRとの 一体型のテレビジョン受像機に対して適用することと し、さらには、マルチ画面表示機能を有する機器に対し て適用することとした。

[0012]

【作用】複数のチューナー部が同一のチャンネルを選局 した場合には、1つのチューナー部を除いて他のチュー ナー部は選局を停止させ、選局を行っている1つのチュ ーナー部から出力される映像信号と音声信号を所要の回 で、チューナー部が互いのローカル周波数の影響を受け ないこととなり、ピート等のノイズから経消される。

[0013]

【実施例】以下、本発明をVTR一体型のテレビジョン 受像機に適用した場合を実施例として説明する。なお、 本実施例のテレビジョン受像機の外観は、例えば図6に 示すものと同一であればよい。図1は木実施例のVTR 一体型のテレビジョン受像機の主要部を示すプロック図 であり、この図に示す1は通常時に用いられるチューナ は高調波同志が空間や基板のパターン等を介して影響し 30 一部、2は主としてVTRの記録用に用いられるチュー ナー部で、共に放送電波を受信、選局した後、受信電波 から映像信号と音声信号L (左)、音声信号R (右)を 抽出して出力する、すなわちステレオ放送対応とされ る。この場合、受信した電波が音声多重放送(2ヶ国語 放送等の主/副音声による放送でこの場合はステレオ放 送を除く) である場合には、主/副音声の選択はチュー ナー部にて行われる。従って主音声を出力する場合には 音声信号し、Rから主音声がそれぞれ出力され、副音声 を出力する場合には音声信号L、Rから副音声がそれぞ れ出力され、主/副音声を両方出力する場合には例えば 主音声を音声信号Lとして、副音声を音声信号Rとして 出力することとなる。

> 【0014】3は外部入力端子プロックを示し、外部機 器から入力された映像ソースの映像信号と音声信号L、 音声信号Rを出力する。4はテレビジョン受像機に内蔵 されるVTR(磁気記録再生装置部)であり、後述する ようにチューナー部2から出力された映像信号、音声信 号L、音声信号Rを映像ソースとして記録することがで きると共に、ビデオテープを再生して再生信号を映像信

きる。

【0015】SW: 及びSW2 はそれぞれ制御部13の 制御信号により端子が切換えられるスイッチ部を示して いる。スイッチ部SWi は $T_1 \sim T_0$ (映像信号系)、 T:1~T:6(音声信号L系)、T:1~T:6(音声信号R 系) の端子を有しており、端子T: 、T: は端子T:~ T。に対してそれぞれ択一的に切換えられ、端子Tra. T13は端子T11~T14に対して、端子T25, T25は端子 T: ~T以に対して、それぞれ択一的に切換えられる。

チューナー部1の映像信号が、端子T2にはチューナー 部2の映像信号が、端子丁。には外部入力端子プロック の映像信号が、端子T。にはVTR4の映像信号出力が 接続される。また、端子T。はビデオプロセッサ5の入 力側に、端子T。はVTR4の映像信号入力端子に接続 される。音声信号L系において端子Titにはチューナー 部1の音声信号Lが、端子T12にはチューナー部2の音 声信号しが、端子T:aには外部人力端子ブロックの音声 信号Lが、端子T14にはスイッチ部SW2 の端子Tssが それぞれ接続される。また、端子T15はオーディオプロ 20 セッサ7の入力側に、端子T16はVTR4の音声信号L の入力端子に接続される。音声信号R系において端子T 11 にはチューナー部1の音声信号Lが、端子T32にはチ ューナー部2の音声信号Lが、端子Tssには外部入力端 子ブロックの音声信号 Lが、端子Ty, にはスイッチ部S Waの端子Tuxがそれぞれ接続される。また、端子Tas はオーディオプロセッサ10の入力側に、端子T26はV TR4の音声信号R入力端子に接続される。

【0017】また、スイッチ部SW2 はT31~T34の増 子を有しており、端子T33、T34のそれぞれが端子 30 Tol, Tolに対して択一的に切換えられる。そして、端 子Tai, TaiにはそれぞれVTR4の音声信号L、音声 信号Rの出力端子が接続される。従って、このスイッチ 部SW: における端子の切換えに従い、スイッチ部SW の端子T14とT24にはVTR4の音声信号L、音声信 号尺の出力のいずれかが入力されることとなる。

【0018】5は制御部13からの制御信号に基づいて 入力された映像信号について各種処理を行い、最終的に 増幅されたRGB信号を出力するビデオプロセッサであ によりCRT6にて画像表示が行われることとなる。ま た、7、10は制御部13からの制御信号に基づいて入 力された音声信号について各種処理を行うオーディオブ ロセッサであり、オーディオプロセッサ7にて処理され た信号はアンプ8に出力されて増幅された後、スピーカ L (左側) 9に供給されて音声として出力される。オー ディオプロセッサ10にて処理された信号もまた、アン ブ11に出力されて増幅された後、スピーカR (右側) 12に供給されて音声として出力されることとなる。

【0019】13はマイクロコンピュータ等からなる側 50 制御される。そして、チューナー部2の映像信号、音声

御部であり、図に示すようにチューナー部1、チューナ 一部2、VTR4、ビデオプロセッサ5、オーディオプ ロセッサ7、オーディオプロセッサ10、及びスイッチ 部SW: 、スイッチ部SW2等に対して制御信号を出力 して各種動作の制御を行う。また、図6に示すテレビジ ョン受機機に設けられた操作部からの指示人力に基づい て各同路部の御御を行うよう構成される。

【0020】そしてこの図1は、チューナー部1とチュ ーナー部2がそれぞれ異なるチャンネルを受信している 【0016】そして、映像信号系において端子T」には 10 場合、例えばユーザーがあるチャンネルを見ながら他の チャンネルの映像ソースを録画している場合の信号経路 を示しており、この信号経路は図の太線にて示される。 【0021】この場合には、スイッチ部SW: の映像信 号系においては端子T1と端子T2が接続され、端子T2 と端子T。が接続されるよう切換え制御が行われる。 音声信号し系においては端子T:1とT:5、端子T:2とT 16 が接続され、音声信号R系においては端子T2:と T25、端子T22とT26が接続されるよう切換えられる。 なお、この場合VTR4の映像信号、音声信号L、Rの 各信号出力端子は無関係であるため、スイッチ部SWa においては特に切換え制御は行われない。

> 【0022】従って図に示すように、チューナー部1の 映像信号はスイッチ部SW: の端子T: →T: を介して ビデオプロセッサ5に供給され、CRTにて映像表示さ れることとなる。また、チューナー部1の音声信号1.は スイッチ部SW: の端子T:1→T:1を介してオーディオ プロセッサ7に供給され、アンプ8で増幅されてスピー カL9にて音声出力される。音声信号Rも同様にしてス イッチ部SW: の端子T21→T25を介してオーディオプ ロセッサ10に供給され、アンプ11で増幅されてスピ 一カR12にて音声出力されることとなる。

【0023】一方、チューナー部2の映像信号はスイッ チ部SW₁ の端子T₂ →T₆ を介してVTR4の映像信 号入力端子に供給され、音声信号Lは端子T12→T18を 介してVTR4の音声信号L入力端子に、音声信号Rは 端子T22→T28を介してVTR4の音声信号R入力端子 に供給されることとなる。

【0024】このような信号経路が形成されることで、 例えばユーザーはあるチャンネルを選局して見ていると り、このビデオプロセッサ5から供給されるRGB信号 40 同時に、これとは別のチャンネルを録画することができ **5.**

> 【0025】次に、図2を参照してチューナー部1及び チューナー部2が共に同じチャンネルを選局している場 合、すなわち画面表示されている映像ソースのチャンネ ルと、同時に録画を行っている映像ソースのチャンネル が同じ場合について説明する。

> 【0026】図1の状態からチューナー部1が切換えら れ、チューナー部2との受信チャンネルと同一チャンネ ルとなると、チューナー部1は選局動作を停止するよう

7

信号L、Rの各信号がCRT6、スピーカL、R、そし てVTR4の映像信号、音声信号L、Rの各入力端子に 供給されるよう信号経路が形成されることとなる。

【0027】従って、スイッチ部SW: の映像信号系に おいては端子Ts , To は共に端子T2 に対して接続さ れ、音声信号L系においては端子T:4に端子T:5が、端 子T12に端子T16が接続、音声信号R系においては端子 T24に端子T25が、端子T22に端子T26が接続されるよ う制御部13により切換を制御が行われる。なお、スイ ッチ部SW。における切換え動作については後述する。 【0028】上記切換え制御により、スイッチ部SW1 を経由する信号経路は図の太線に示される状態となる。 つまり、チューナー部2の映像信号は端子T。 $\rightarrow T$ 。を 介してビデオプロセッサ5に供給された後、CRT6に て画像表示されると共に、端子T2→Teを介してVT R4の映像信号入力端子に入力されることとなる。ま た、チューナー部2の音声信号Lは端子T:2→T:6を介 してVTR4の音声信号」の人力端子に入力され、チュ ーナー部2の音声信号Rは端子T22→T26を介してVT R4の音声信号Rの入力端子に入力されることとなる。 【0029】この段階においては、チューナー部2の映 像信号はスイッチ部SW: にてCRT6側とVTR4側 に分配して供給され、音声信号L、RはVTR4の入力 端子に対して入力されることとなる。従って、VTR4 にはチューナー部2の映像信号、音声信号1.、Rの全て

【0030】ところで、前述のように通常は主/副音声 のモードの切換えはチューナー部において行われるが、 VTR4に記録する際には主/副音声がそれぞれ音声信 30 号し、音声信号Rとして記録される必要から、チューナ 一部2においては主/副音声のモードの切換えは行わず に、主/副音声をそれぞれ音声信号L、音声信号Rに対 応させて出力している。

が入力されていることから、録画が可能な状態とされ

[0031] このため、チューナー部2の音声信号L、 Rについては、スイッチ部SW: にてオーディオプロセ ッサ7、10側に分配することは行わず、いったんVT R4の入力端子に供給した後、次に説明するようにVT R4の出力端子を介してスイッチ部SWaに出力し、こ のスイッチ部SW2 において主/副音声のモードの切換 40 を行った後オーディオプロセッサ側に供給するようにさ

【0032】前述のように、VTR4にはチューナー部 2の映像信号と音声信号 L. Rが入力され録画が可能な 状態とされているが、音声信号L、RについてはVTR 4の出力端子を介してスイッチ部SW2 の端子T21、T 32にそれぞれ供給される。

【0033】そしてスイッチ部SW2においては、チュ ーナー部2の受信電波が通常のモノラルあるいはステレ 才放送である場合には、端子Tssは端子Tssに接続さ 50 換えて聞くことが可能とされる。なお、スイッチ部SW

れ、端子丁:(は端子丁:)に接続されるよう切換を制御が 行われる。あるいはチューナー部2の受信電波が音声多 重であってユーザーが主音声のモードを選択していた場 合には、端子T32、T34は共に端子T31に接続され、副 音声のモードを選択していた場合には端子Tss、Tssは 共に端子丁:2に接続されるよう切換えられる。また、主 /副音声を同時に出力するモードを選択している場合に は上記した通常のモノラルあるいはステレオ放送と同じ 状能に切換えられる。

【0034】従って、VTR4から出力される音声信号 L、Rの信号経路は各音声モードに応じて次のように形 成される。即ち、チューナー部2の受信電波がモノラ ル、ステレオ放送、あるいは主/副音声を同時に出力す るモードとされる場合には、音声信号Lはスイッチ部S W₂ の端子T₃₁→T₃₂から、スイッチ部SW₁ の端子T 14→T15を介してオーディオプロセッサ?に供給され、 更にアンプ8にて増幅されてスピーカL9から音声とし て出力されることとなる。また、音声信号 R はスイッチ 部SW2 の端子T32→T34から、スイッチ部SW: の端 20 子T2+→T25を介してオーディオプロセッサ10に供給 され、更にアンプ11にて増幅されてスピーカR12か ら音声として出力される。これにより、ユーザーはモノ ラル、ステレオ放送、あるいは主/副音声を左右のスピ 一力 (9、12) からそれぞれ別々に聞くことができ <u>ه</u>.

【0035】また、ユーザーが主音声を選択している場 合には、VTR4の音声信号しは、スイッチ部SW2の 端子Ts:→Ts:からスイッチ部SW:のTi+→T:sを介 してオーディオプロセッサ?に供給される信号経路と、 スイッチ部SW2 の端子Ts1→Ts4からスイッチ部SW : の端子T:4→T:5を介してオーディオプロセッサ10 に供給される信号経路とにより分配される。これにより 最終的にスピーカL9とスピーカR12に対して音声信 号しが分配して供給されることとなり、ユーザーは主音 声のみを聞くことができる。

【0036】また、ユーザーが副音声を選択している場 合には、VTR4の音声信号Rは、スイッチ部SW2の 端子Ta2→Ta2からスイッチ部SW1の端子Ti4→Ti5 を介してオーディオプロセッサ7に供給される信号経路 と、スイッチ部SW2 の端子T22→T24からスイッチ部 SW: の囃子To: を介してオーディオプロセッサ 10に供給される信号経路が形成され、最終的にスピー カル9とスピーカR12に対して音声信号Rが分配して 供給されることとなる。従ってユーザーは副音声のみを 聞くことができる。

【0037】つまり、スイッチ部SW2にて音声信号 L、Rのそれぞれについて切換えが行われることで、V TR4には主/副の音声がL、Rチャンネルのそれぞれ に記録されると共に、ユーザーは任意に主/副音声を切 は上記してきた場合のみでなく、VTR4で再生を行う際にビデオテーブのL、Rチャンネルに配録されている上/副音声の切換えを行う場合にも用いられるものである。

【0038】にのように、ユーザーが現在見ているチャンネルと、VTR4に瞬间しているチャンネルとが同じてある場合には、チューナー部1の支信動作を停止させ、チューナー部2が受信した電波の映像信号と音声信号がVTR4とCRT6及び左右の各スピーカル供輸されるようにすることで、チューナー部1からはローカル 10 周波数が輻射されないため、ローカル周波数が輻射されないため、ローカル周波数が輻射されないため、ローカル周波数の極衡によるチューナー部2の信号に対するノイズの単分解削されることとなる。従って、ユーザーほピート等のない画像を見ることができ、またVTR4に配録される映像信号等もピート等が解削されることとなる。

[0039]次に、上述してきたスイッチ部SW:、ス イッチ部SW2の切換え及びチューナー部1の選局停止 等の処理動作について、図4及び図5のフローチャート を参照して説明する。図4は、チューナー部1及びチュ ーナー部2が同じチャンネルを受信した場合の処理動作 20 抑えることができる。 を示すフローチャートである。制御部13は先ず、チュ ーナー部1とチューナー部2が同じチャンネルを受信し た状態とされた場合には (F101) ステップF102に進み、 スイッチ部SWiに制御信号を出力して端子Ts.Ts をそれぞれ端子下。に、端子下っを端子下った、端子下 14 を刷了T12 に、端了T25を端了T24 に、端了T26を端 子T22に切換えて、スイッチ部SW: の端子間の接続を 図1に示す状態とした後ステップF103に進む。ステップ F103では、チューナー部2にて現在受信されている放送 が、主/副音声による音声多重放送であるかを判別して 30 おり、音声多重でない、つまりモノラルあるいは通常の ステレオ放送であると判別された場合にはステップF104 に進み、主/副音声による音声多重放送であると判別さ れた場合にはステップF105に進むこととなる。

【0040] ステップF205では、現在受信されている主 一副音声による放送に対して、ユマーが主音声と開き 声のいずれの音声モードを選択している多を削りしてお り、主音声を聞くモードを選択している場合にはステップF106に進ふ、副音声を聞くモードである場合にはステップF104に進むこととなる。ステッ フF107ではスイッチ部SW。に制御信号を出助し、端子 下3を端子下3、た、端子下3を端子下3。たそれぞれ切り表 える。これによりチューナー都2の音声は号し、Rの出 力は最終的にスピーカ1.9、スピーカR12に対して インドルイントルイントルイントル、ステレオ放送を聞く、あるいは主音声(スピーカ1.9)と 副音声(スピーカ1.R12)を同時に聞くことができる。 そしてステップF108に進む。

【0.0.4.1】ステップF106ではスイッチ部SW。の議子 50 一部2の信号を供給させるように構成すれば、ユーザー

10 Tii, Tiiが共に備予Tiiに切換えられて、この後ステップF108に進むこととなる。これにより、最終的にチューナー部2の音声信号LがスピーカL9、スピーカR1 2の両者から出力されることとなり、ユーザーは主音声のみを限てとかできる。

【0042】 ステップドロではスイッテ部SW。 の端子 Ta: Ta:が共に端子Ta:に切換えられた後ステップ1 08に進むこととため、これによりチューナー部2の音声 信号Rは最終的にスピーカL9、スピーカR12に供給 されるため、副音声のみが音声として出力されることと なる。そして、ステップド108においてテューナー部1の 選周動作を停止させた後メインのルーチンに戻ることと

【0043】なお、上記のスイッチ部SW: の切換え制 側は、チューナー部でで受信されている電波の映像信号 の報点同期信号に同期させて帰線区間内に行われるよう に構成されており、これにより、CRT6に表示される 映像がチューナー部1の映像信号からチューナー部2の 映像がチューナー部3の映像信号からチューナー部2の がカスをとかできる。

【0044】また、チューナー部1とチューナー部2が 異なるチャンネルを受信する状態とされる場合には図5 のフローチャートに示す処理が行われる。例えば図2に 示すようなユーザーが現在見ているチャンネルとVTR 4にて暴雨を行っているチャンネルとが同じ状態から、 ユーザーが他のチャンネルを見るためにチャンネルキー を操作したような場合、制御部13はこの指示入力を受 けて、図5に示すルーチンに進むこととなる。すなわ ち、ステップF201においてチャンネル変更の指示入力に 基づいて、チューナー部1がチューナー部2とは異なる チャンネルを受信することとなる状態であるとされる と、制御部13はステップF202に進み現在チューナー部 1 は漢局動作が停止されている状態であるかを判別す る。そしてチューナー部1の選局動作が停止されていな い場合にはステップF204に進むが、チューナー部1の選 局動作が停止されている場合にはステップF203に進ん で、例えば指示人力に応じたチャンネルに対する選局動 作を開始させた後、ステップF204に進むこととなる。

【0046】なお、同一のチャンネルを受信した場合には、チューナー部2の選局動作を停止させ、チューナー部2の選局動作を停止させ、チューナー部1の各信号を所要の回路部に対して供給することも考えられるが、本実施例のようにVTR起験用のテューナーの第0の保日を供給されています。

が録画中にチャンネルを切換えていったような場合も、 スイッチ部SW:においてVTR4の各入力端子に信号 供給するための端子接続は常に切換わらずに固定されて いるために、記録される映像信号や音声信号が途中で乱 れることはない。また、本実施例のテレビジョン受像機 においてはスイッチ部SW: の端子の切換えにより、外 部入力端子プロック3から供給される映像ソースもVT R4に記録およびCRT4、スピーカL9、スピーカR 12に対して出力することが可能であるが説明を省略す る。また、図5に示した処理動作もまた、チューナー部 1 で受信されている電波の映像信号の垂直同期信号に同 期させて帰線区間内に行われるように構成することで、 表示画像が切換わる際の画像の乱れを回避することがで きる。

【0047】次に、他の実施例として1つの子画面表示 機能を有するテレビジョン受像機に対して本発明を適用 した場合について図3を参照して説明する。この図3 は、1つの子画面表示機能を有するテレビジョン受像機 の主要部を示すプロック図であり、21、22はチュー ナー部を示し、それぞれ受信した電波から映像信号と音 20 る音声がスピーカ28から出力されることとなる。 声信号を抽出して出力している。SW。は制御部29に より端子が切換えられるスイッチ部であり、このスイッ チ部SW: の映像信号系には端子T:1~T:1が設けら れ、端子T4: T44は共に端子T41、T42のいずれかに 対して切換えられるものとされる。また、音声信号系に は端子Tu:~Tu:が設けられ、端子Tu:が端子Tu:。T 46のいずれかに対して切換えられるものとされる。

【0048】そして映像信号系においては、端子T4:に チューナー部21の映像信号出力端子が、端子T42には チューナー部22の映像信号出力端子が接続されると共 30 に、端子T (:) はビデオプロセッサ23の入力側と、端子 Teaはフィールドメモリ24の入力側とそれぞれ接続さ れる。音声信号系においては端子T4sはチューナー部2 1の音声信号出力端子が、端子T48にはチューナー部2 2の音声信号出力端子が接続されると共に、端子T47は オーディオプロセッサ26の入力側と接続される。

【0049】23はビデオプロセッサで、スイッチ部S W₃ の端子T₄₃から供給される映像信号について各種処 **理を行い、増幅されたRGB信号としてCRT25に出** カする。24は子画面表示に用いられるフィールドメモ リで、端子Tuxから供給される映像信号がデジタル信号 に変換されて所定タイミングで書き込み及び読み出しが 行われている。そしてこのフィールドメモリ24から読 み出されたデータはビデオプロセッサ24に出力され。 このビデオプロセッサ24で端子T43からの映像信号と 合成されてCRT25に出力されることで、画面上の所 定位置に子画面として表示されることとなる。26はオ ーディオプロセッサであり、端子Tazから供給される音 声信号について各種処理を行いアンプ27に供給する。

12 一カ28に供給することで音声として出力されることと なる。29は制御部であり図に示すように各回路部に対 して制御信号を出力して各種動作のコントロールを行う ものである。

【0050】 ここで、チューナー部21、22がそれぞ れ異なるチャンネルを受信し、チューナー部21の映像 ソースが主画面に、チューナー部22の映像ソースが子 画面に表示される場合には、スイッチ部SW。の映像信 号系においては端子T(3が端子T(1に、端子T(4が端子 10 丁はにそれぞれ接続され、音声信号系においては端子丁 47 が端子T43 に対して接続されることとなる。これによ り、チューナー部21の映像信号はビデオプロセッサ2 3に、チューナー部22の映像信号はフィールドメモリ 24に供給されることとなり、この結果CRT25には チューナー部21の映像信号が主画面として、チューナ 一部22の映像信号が子画面として表示されることとな る。この際、スイッチ部SW₂の音声信号系において は、チューナー部21の音声信号がオーディオプロセッ サ26に対して入力されることとなり、主画面に対応す

【0051】また、上記した状態から、スイッチ部SW の映像信号系の端子Tハを端子Tハに、端子Tムを端 子Te1に対して切換えると共に、音声信号系の端子Te7 を端子丁4%に切換えることにより、チューナー部21の 映像信号を子画面に、チューナー部22の映像信号を主 画面に入れ替えて表示させると共に、主画面に表示され ているチューナー部22の音声をスピーカ28から出力 させることができる。

【0052】そして、本実施例においてはチューナー部 21とチューナー部22が同じチャンネルを受信した場 合には、スイッチ部SWs の映像信号系においては端子 Tes、Tesは共に端子Tesに対して切換えられ、音声信 号系の端子Terは端子Tesに切換えられる。さらに、チ ューナー部22は選局動作を停止するよう制御される。 【0053】従って、チューナー部21の映像信号はビ デオプロセッサ23とフィールドメモリ24に対して分 配して供給されることとなり、CRT25にはチューナ 一部21で受信されている同じチャンネルの画像が主画 面と子画面に対して表示されることとなる。また、チュ 40 ーナー部 2 1 の音声信号がスイッチ部 SWa 、オーディ オプロセッサ26、アンプ27を介してスピーカ28に て音声として出力されることとなる。また、チューナー 部22からローカル周波数が輻射されずチューナー部2 1 に影響を与えないため、ローカル周波数の影響による ピート等のノイズは画面上に現れない。 【0054】なお、上記実施例においてはチューナー部

22の選局動作を停止させてチューナー部21の映像、 音声信号を各回路部に対して供給するようにしている が、この場合には逆にチューナー部21の選局動作を停 そしてアンプ27で入力された音声信号を増幅してスピ 50 止させてチューナー部22の映像、音声信号が各回路部 に供給されるように構成しても良い。また、本実施例の 場合においても、スイッチ部SWaの切換え制御は垂直 同期信号の帰線区間内に行われるようにされることが好 ましい。また、本実施例においては音声信号はモノラル とされているが、ステレオ対応とすることが可能である ことはいうまでもない。また、いわゆるピクチャー・ア ウト・ピクチャー機能を有するテレビジョン受像機に対 しても応用が可能とされる。

【0055】このように上述してきた各宝施例において は、内蔵された2つのチューナー部が同じチャンネルを 10 選局した場合には、一方のチューナー部の選局を停止さ せ、選局を行っているチューナー部の映像信号と音声信 号が所要の回路に供給されるようにすることで、相互の ローカル周波数の影響によるノイズを解消している。こ のような上記各実施例における方法は、主として制御部 の処理動作により対応できるため、ハードの設計面から 対応するよりもはるかに容易にピート等の解消を実現す ることができるものである。

【0056】なお、上記各実施例においては2つのチュ ーナー部を有する場合について説明してきたが、さらに 20 すフローチャートである。 3つ以上のチューナー部が内蔵された機器においても応 用が可能であり、この場合には少なくとも2つのチュー ナー部が同一局を受信した場合には、同一局を受信した これらのチューナー部の内から1つの特定のチューナー 部を除いて受信動作を停止させる。そして、受信動作を 継続している1つのチューナー部の映像/音声の各信号 が所要の回路部に供給されるよう構成することとなる。

[0057]

【発明の効果】以上説明したように本発明のテレビジョ ン受像機は、複数のチューナー部が同じチャンネルを選 30 4 VTR 局した場合には、同じチャンネルを選局したチューナー 部のうちから1つのチューナー部の映像信号と音声信号 を所要の回路部に対して供給するようスイッチ部を切換 え、さらに、同じチャンネルを選局した他のチューナー

部については選局動作を停止させるよう制御するという 方法により、近似するローカル周波数の影響がなくなり ピート等のノイズを解消することができるという効果を 有している。また、ハードにおける設計に頼ることなく 制御部によるソフト的な手段によって効果が実現される ことから、設計者の負担が軽減されると共にハード的な 設計上の大幅な変更を避けることができるために、コス トの削減に対しても効果を有することとなる。

14

【図面の簡単な説明】

- 【図1】本発明の一実施例であるVTR-体型のテレビ ジョン受像機の主要部を示すブロック図である。
 - 【図2】本発明の一実施例であるVTR-体型のテレビ ジョン受像機で、同一チャンネルを受信した時の信号経 路を示すプロック図である。
 - 【図3】本発明の他の実施例である子画面機能を有する テレビジョン受像機の主要部を示すブロック図である。
 - 【図4】本発明の実施例における制御部の処理動作を示 すフローチャートである。
- 【図5】本発明の実施例における制御部の処理動作を示
- 【図6】本実施例のVTR-体型のテレビジョン受像機 の外観を示す斜視図である。
 - 【図7】従来例におけるVTR一体型のテレビジョン受 像機の主要部を示すプロック図である。
 - 【図8】従来例のVTR-体型のテレビジョン受像機に おいて、ローカル間波数による影響を示す説明図であ

【符号の説明】

- 1, 2, 21, 22 チューナー部
- - 13、29 制御部
 - SW1, SW2, SW3, SW4 スイッチ部
 - T1 ~T6 , T11~T16, T21~T26, T31~T34, T 41~T44 端子

[图6]

VTR

音声信号

(12) Publication of Unexamined Patent Applications (A)

(11) Kokai number: H6-303541 (43) Kokai publication date: October 28, 1994

(51) Int. Cl.⁵ Identification code Internal reference number F1 Technological indication H 04 N 5/44 J

Examination request: NOT Requested Number of claims: 3, FD (total 13¹ pages)

(21) Application number: H5-112433 (71) Application number: H5-112433

(22) Date of filing: April 16, 1993

(71) Applicant: 000002185 Sony Corporation

6-7-35, Kitashinagawa, Shinagawa-ku, Tokyo

(72) Inventor: Tetsuji Kamiya Sony Ichinomiya Corporation

6. Takata Aza-Ikejiri, Ichinomiya-shi Oji, Aichi-ken

(72) Inventor: Yoshihiro Yasuda Sony Ichinomiya Corporation

6, Takata Aza-Ikejiri, Ichinomiya-shi Oji, Aichi-ken

(72) Inventor: Toshiaki Meguro

Sony Ichinomiya Corporation

Takata Aza-Ikejiri, Ichinomiya-shi Oji, Aichi-ken
 Agent: Patent Attorney, Atsuo Waki, and I other person

(54) Title of Invention: Television receiver

(57) Abstract

Constitution: [The television receiver] is configured such that, in the case where tuner units 1 and 2 select the same channel, a control unit 13 operates to switch switches SW_1 and SW_2 to supply a video signal from the tuner unit 1 to a CRT 6 and to supply L and R audio signals to a VTR 4 and to L and R speakers (9, 12), and to halt the channel select operation of the tuner unit 2.

Effect: Operation of the control unit makes it possible to eliminate beating due to the influence of a local frequency without depending on a hardware-based design, to reduce the burden on the designer and to reduce manufacturing cost by avoiding significant changes in the hardware design.

[See FIG. 2]

¹ Original document consisted of 13 pages. Due to formatting differences, this translated version has a different page count.

Claims

Claim 1

A television receiver comprising:

two or more tuner units for selecting and outputting video and audio signals from radio waves of a selected channel;

(2)

a switching means, into which at least the video and audio signals from the two or more tuner units are input, for switching and then selectively supplying the input signals to various function circuits connected to a back stage; and

a control unit provided with means for detecting that at least two of the two or more tuner units have selected the same channel, and means for halting the channel select [operation] of the plurality of tuner units, with the exception of a designated tuner unit, that have selected the same channel; wherein the switching means is switched according to the control unit such that the video and audio signals output from the designated tuner unit are supplied to the various function circuits.

Claim 2

A television receiver as cited in Claim 1, wherein the plurality of two or more tuner units, the switching means and the control unit are applied to a device integrated with a VTR².

Claim 3

A television receiver as cited in Claim 1 or Claim 2, wherein the two or more tuner units, the switching means and the control unit are applied to a device having a multi-screen display function.

Detailed Explanation of the Invention

(0001)

Industrial Field of Application

The present invention relates to a television receiver, and, in particular, relates to a television receiver that is integrated with a VTR that is provided with a plurality of tuner units, or has a multi-screen display function.

(0002)

Prior Art

At present, television receivers configured with a built-in VTR capable of playing back and recording VHS (registered trademark) and 8mm video tape are known. FIG. 6 is a perspective view showing an example of this type of television receiver that is integrated with a VTR, and provided below a display screen of a television receiver 40 is, for example, a videotape cassette insertion/extraction slot 42, operating buttons 41 for switching channels and adjusting volume, an operating unit 43 capable of performing such operations as playback and stopping of a videotape, and an eject button 43a used when removing a videotape cassette. With this type of television receiver, rather than connecting to an external VTR or the like, the television receiver 40 enables video of a selected video source channel or the like to be recorded (in this case, including audio recording) and played back with video software.

71	иı	m	7	1
11	$^{\prime\prime}$	v	J	ı

² VTR = video tape recorder

Especially in recent years, the above-described television receiver with integrated VTR is known in a configuration having two built-in tuners, a regularly used tuner and a tuner for VTR recording use, enabling the recording of another program at the same time as the program presently being watched by the user. FIG. 7 is a block diagram showing a conceptual configuration of this type of television receiver with integrated VTR having two tuner units. Reference numeral 32 denotes a regularly-used tuner unit and reference numeral 32 denotes a tuner unit for VTR recording use; both tuners receive broadcast radio waves and, after a channel has been selected, extract and output video and audio signals from the received waves. Reference numeral 33 denotes a VTR built-into a television receiver, and video signals and audio signals from the tuner unit 32 are input [into the VTR 33]. Thus, the video source received at the tuner unit 32 can be recorded, and when played back with video software or the like, the played-back video and audio signals can be output via output terminals.

(0004)

In a switch SW₄, reference numerals T_{51} to T_{56} denote terminals, and T_{51} to T_{53} are terminals for the video signal system. The video signal from the tuner unit 31 is input to the terminal T_{51} and the video signal from the VTR 33 is input to the terminal T_{52} , the terminal T_{53} is connected to the input side of a video processor 34, and the terminal T_{53} is switched to terminals T_{51} and T_{52} , alternatingly. Meanwhile, T_{54} to T_{56} are terminals for the audio signal system, and the audio signal from the tuner unit 31 is input to the terminal T_{56} is connected to the input side of an audio processor 36, and the terminal T_{56} , and the terminal T_{56} is connected to the input side of an audio processor 36, and the terminal T_{56} is switched to terminals T_{54} and T_{55} alternatingly. Moreover, the switching of the video signal system terminal T_{53} and the audio signal system terminal T_{56} is coupled.

(0005)

Reference numeral 34 denotes a video processor that performs various types of signal processing on input video signals, and then finally outputs amplified RGB signals. A video display on a CRT 35 is formed from the RGB signals output from the video processor 34. Reference numeral 36 denotes an audio processor that performs various types of processing on input audio signals, and then outputs them to an amp 37. The audio signals are amplified by the amp 37 and then supplied to a speaker 38 where they are output as sound.

(0006)

For example, in the case of watching television as usual, in the switch SW₄, the terminal T_{53} is connected to the terminal T_{51} , and the terminal T_{56} is connected to the terminal T_{54} . Thus, in this case, signal paths are formed leading the video signals and audio signals output from the turner unit 31 to the CRT 35 and the speaker 38, respectively. At this time, if the user selects an arbitrary reception channel for the tuner unit 32 for VTR recording and sets the VTR 33 to recording mode, the video source selected at the tuner unit 32 can be recorded at this time, thus enabling the recording of another program at the same time as the program presently being watched by the user, for example.

(0007)

Moreover, in the case of playing back [recorded video] with video software or the like at VTR 33, in the switch SW4, the terminal T_{53} is switched to the terminal T_{52} , and the terminal T_{56}

³ FIG. 7 shows the video signal from the VTR 33 being input to terminal T55

FIG. 7 shows the audio signal from the VTR 33 being input to terminal T₅₂

is switched to the terminal T_{35} . Accordingly, the video signals and audio signals output from the VTR 33 are supplied to the CRT 35 and the speaker 38, and the user is able to view the video software or the like that plays back [the recorded video]. Although not shown in the drawing, the VTR 33 can also be provided with input terminals for recording externally supplied video signals and audio signals.

(8000)

Moreover, similarly, as for a device in which a plurality of tuner units are built into a single television receiver, in a television receiver having a multi-screen display function, [a television receiver] with a plurality o tuner units is known. For example, by providing a television receiver capable of displaying a single sub-screen with two tuner units, a tuner unit for use with a main screen and a tuner unit for use with the sub-screen, the television receiver will be capable of displaying multiple screens by itself without the need to connect an external device equipped with a VTR or other tuner.

(0009)

Problems to be Solved by the Invention

However, in a television receiver integrated with a VTR such as shown in FIG. 7, it is a reatural to imagine a condition wherein, while watching a certain channel, that same channel is recorded. At such a time, the tuner unit 31 and the tuner unit 32 select the same channel, and therefore the local frequencies of both are the same. However, even in the case where tuner units having the same specifications select the same channel, the actual local frequencies are typically shifted slightly as a result of the tolerances of the components and the like. For this reason, in a television receiver integrated with a VTR and having a plurality of tuner units, as shown in FIG. 8, the local frequencies or high frequencies of the tuner units mutually affect each other across a gap or through a substrate pattern, or the like, and as a result, there are problems of noise superimposition, and beat interference and the like being displayed in the image. This problem is particularly noticeable with a relatively small-size television receiver integrated with a VTR, since the tuner units are arranged adjacently. Moreover, the same problem occurs even in a television receiver having a multi-screen display function when a plurality of tuner units is provided.

(0010)

The beating and other noise caused by the above-described factors is being eliminated by hardware solutions, but doing so requires many hours of study and know-how, and has the problems of placing a greater burden on the designers and of increasing the manufacturing cost due to the accompanying significant changes in the design.

(0011)

Means for Solving the Problems

Thus, in order to solve the above-described problems, the present invention is a television receiver comprising two or more tuner units for selecting and outputting video and audio signals from radio waves of a selected channel, a switching means, into which at least the video and audio signals from the two or more tuner units are input, for switching and then selectively supplying the input signals to various function circuits connected to a back stage; and a control unit provided with means for detecting that at least two of the two or more tuner units have selected the same channel, and means for halting the channel select [operation] of the plurality of tuner units, with the exception of a designated tuner unit, that have selected the same channel; wherein the switching means can be switched according to the control unit such that the video

and audio signals output from the designated tuner unit are supplied to the various function circuits. Moreover, the above-described configuration is applied to a television receiver integrated with a VTR, and also applied to a device having a multi-screen display function.

(0012) Use

In the case where a plurality of tuner units select the same channel, by causing all tuners except for one to halt their channel select operation, and by controlling a switch so that the video signals and audio signals output from the one tuner unit are distributed to the required circuits, the tuner units are not affected by each other's local frequencies and beating and other noise is eliminated.

(0013)

Embodiments

The case in which the present invention is applied to a television receiver integrated with a VTR is described below as an embodiment. The external appearance of the television receiver of this embodiment may be the same as that shown in FIG. 6, for example, FIG. 1 is a block diagram showing the main portion of a television receiver integrated with a VTR of the present embodiment. In this drawing, reference numeral 1 denotes a regularly-used tuner unit and reference numeral 2 denotes a tuner unit used mainly for VTR recording, both of which, after receiving broadcast radio waves and selecting a channel, extract the video signal, L (left) audio signal and R (right) audio signal from the received radio wave, and then output them. In other words, [the tuners] support stereo broadcasts. In this case, if the received radio waves are audio multiplex broadcasts (broadcasts having main and sub audio such as bilingual broadcasts, but not including stereo broadcasts), the selection of main and sub audio is performed by the tuner units. Accordingly, in the case where the main audio is to be output, the main audio is output from each of the L and R audio signals; in the case where the sub audio is to output, the sub audio is output from each of the L and R audio signals; and in the case where both the main and sub audio are to output, the main audio is output as the L audio signal and the sub audio is output as the R audio signal, for example.

(0014)

Reference numeral 3 denotes an external input terminal block that outputs a video signal, L audio signal and R audio signal for a video source input from an external device. Reference numeral 4 denotes a VTR (magnetic record and playback unit) that is built in to the television receiver, and as will be described below, is capable of recording the video signal, L audio signal and R audio signal output from the tuner unit 2 as the video source, and is capable of playing back a video tape, and outputting the playback signal as a video signal, and L and R audio signals from the output terminals.

(0015)

 SW_1 and SW_2 denote switches whose terminals are switched according to control signals from a control unit 13. The switch SW_1 has terminals T_1 to T_6 (video signal system), T_{11} to T_{16} (L audio signal system), and T_{21} to T_{26} (R audio signal system). Terminals T_3 and T_6 are switched alternatingly to terminals T_1 to T_{14} , and terminals T_1 to T_{16} are switched alternatingly to terminals T_{11} to T_{14} , and terminals T_{22} and T_{26} are switched alternatingly to terminals T_1 (sie 5) to T_{24} .

⁵ Should be terminal "T21"

(0016)

In the video signal system, the terminal T₁ is connected to the video signal of the tuner unit 1, the terminal T₂ is connected to the video signal of the tuner unit 2, the terminal T₃ is connected to the video signal of the external input terminal block, and the terminal T₄ is connected to the video signal of a VTR 4. Also, the terminal T₅ is connected to the input side of a video processor 5, and the terminal T₆ is connected to the video signal input terminal of the VTR 4. In the L audio signal system, the terminal T₁₁ is connected to the L audio signal of the tuner unit 1, the terminal T₁₂ is connected to the L audio signal of the tuner unit 2, the terminal T₁₃ is connected to the L audio signal of the external input terminal block, and the terminal T₁₄ is connected to a terminal T₃₃ of the switch SW₂. Also, the terminal T₁₅ is connected to the input side of an audio processor 7, and the terminal T₁₆ is connected to the L audio signal input terminal of the VTR 4. In the R audio signal system, the terminal T₂₁ is connected to the L [sic⁶] audio signal of the tuner unit 1, the terminal T₂₂ is connected to the L [sic⁷] audio signal of the tuner unit 2, the terminal T₂₃ is connected to the L [sic⁸] audio signal of the external input terminal block, and the terminal T24 is connected to a terminal T34 of the switch SW2. Also, the terminal T₂₅ is connected to the input side of an audio processor 10, and the terminal T₂₆ is connected to the R audio signal input terminal of the VTR 4.

(0017)

Moreover, the switch SW_2 has terminals T_{31} to T_{34} , and terminals T_{33} and T_{34} are switched alternatingly to terminals T_{11} and T_{32} . Terminals T_{31} and T_{32} are connected to the L audio signal and R audio signal output terminals of the VTR 4, respectively. Accordingly, switching the terminals of the switch SW_2 causes either the L audio signal or R audio signal output of the VTR 4 to be input to terminals T_{14} and T_{24} of the switch SW_1 .

(0018)

Reference numeral 5 denotes a video processor that, based on a control signal from the control unit 13, performs various types of processing on an input video signal, and finally outputs amplified RGB signals. The RGB signals supplied from this video processor 5 are used to display images on a CRT 6. Also, reference numerals 7 and 10 denote audio processors that, based on a control signal from the control unit 13, perform various types of processing on an input audio signal. Signals processed by the audio processor 7 are output to an amp 8 where they are amplified and then supplied to a L (left side) speaker 9 and output as sound. Signals processed by the audio processor 10 are output to an amp 11 where they are amplified and then supplied to a R (right side) speaker 12 and output as sound.

(0019)

Reference numeral 13 denotes a control unit comprised of a microcomputer and the like, and as shown in the drawing, outputs control signals to the tuner unit 1, tuner unit 2, VTR 4, video processor 5, audio processor 7, audio processor 10, switch SW₁, switch SW₂ and so on to control various operations. Moreover, [the control unit 13] is configured so as to control various circuits based on instructions input from an operating unit provided on the television receiver shown in FIG. 6.

(0020)

⁶ Should be "R" audio signal

⁷ Should be "R" audio signal

⁸ Should be "R" audio signal

FIG. 1 shows signal paths for the case in which the tuner unit 1 and the tuner unit 2 are each receiving a different channel, i.e., when the user is watching one channel and simultaneously is recording the video source of another channel. These signal paths are shown with bold lines in the drawing.

(0021)

In this case, in the video signal system of the switch SW_1 , switching control is implemented such that the terminal T_1 connects to the terminal T_2 , and the terminal T_2 connects to the terminal T_6 . In the L audio signal system, switching is implemented such that the terminal T_{11} connects to the terminal T_{12} and the terminal T_{12} connects to the terminal T_{13} . In the R audio signal system, switching is implemented such that the terminal T_{21} connects to the terminal T_{22} connects to the terminal T_{25} and the terminal T_{22} connects to the terminal T_{25} connects to the terminal T_{26} . Furthermore, in this case, the signal output terminals for the video signal and L and R audio signals of the VTR 4 are unrelated and therefore no particular switching control is implemented at the switch SW_2 .

(0022)

Therefore, as shown in the drawing, the video signal of the tuner unit 1 is supplied through terminals $T_1 \rightarrow T_5$ of the switch SW₁ to the video processor 5, and displayed on the CRT. Also, the L audio signal of the tuner unit 1 is supplied through terminals $T_{11} \rightarrow T_{15}$ of the switch SW₁ to the audio processor 7, amplified by the amp 8, and then output as sound from the L speaker 9. Similarly, the R audio signal is supplied through terminals $T_{21} \rightarrow T_{25}$ of the switch SW₁ to the audio processor 10, amplified by the amp 11, and then output as sound from the R speaker 12.

(0023)

Meanwhile, the video signal from the tuner unit 2 is supplied through terminals $T_2 \rightarrow T_6$ of the switch SW₁ to the video input terminal of the VTR 4, the L audio signal is supplied through terminals $T_{12} \rightarrow T_{16}$ to the L audio signal input of the VTR 4, and the R audio signal is supplied through terminals $T_{22} \rightarrow T_{26}$ to the R audio signal input of the VTR 4.

(0024)

By forming these types of signal paths, a user is able to select and view one channel while recording another channel.

(0025)

Next, referring to FIG. 2, the case will be explained in which both the tuner unit 1 and the tuner unit 2 have selected the same channel, i.e., when the video source channel being displayed on a screen is the same as the video source channel being recorded at that same time.

(0026)

If the tuner unit 1 is switched from the state shown in FIG. 1 to the same channel as that being received by the tuner unit 2, the tuner unit 1 will be controlled so as to halt its channel select operation. Then, signal paths are formed so as to supply the video signal and L and R audio signals of the tuner unit 2 to the CRT 6, L and R speakers, and to the video signal and L and R audio signal input terminals of the VTR 4, respectively.

(0027)

Thus, the control unit 13 implements switching control such that, in the switch SW_1 , the terminals T_5 and T_6 are both connected to the terminal T_2 in the video signal system, the terminal

 T_{14} is connected to the terminal T_{15} and the terminal T_{12} is connected to the terminal T_{16} in the L audio signal system, and the terminal T_{24} is connected to the terminal T_{25} and the terminal T_{22} is connected to the terminal T_{26} in the R audio signal system. The switching operation in the switch SW- will be described later.

(0028)

With the above-described switching control, the signal path via the switch SW_1 assumes the state shown with bold lines in the drawing. In other words, the video signal of the tuner unit 2 is supplied through terminals $T_2 \rightarrow T_3$ to the video processor 5 and then displayed on the CRT 6, and is also supplied through terminals $T_2 \rightarrow T_3$ and input to the video signal input terminal of the VTR 4. Also, the L audio signal terminal of the tuner unit 2 is [supplied] through terminals $T_{12} \rightarrow T_{16}$ and input to the L audio signal input terminal of the VTR 4, and the R audio signal terminal of the tuner unit 2 is [supplied] through terminals $T_{12} \rightarrow T_{26}$ and input to the R audio signal input terminal of the VTR 4.

(0029)

In this stage, the video signal from the tuner unit 2 is distributed and supplied to the CRT 6 side and to the VTR 4 side by the switching SW,, and the L and R audio signals are input to the input terminals of the VTR 4. Thus, recording is possible in this state since the video signal, and L and R audio signals of the tuner unit 2 are all input to the VTR 4.

(0030)

As described above, however, the switching of main and sub audio modes is usually performed at the tuner unit, but when the VTR 4 is recording, the main/sub audio must be recorded as an L audio signal and a R audio signal, and therefore the main/sub audio is output corresponding to an L audio signal and a R audio signal, without switching the main/sub audio mode at the tuner unit 2.

(0031)

As a result, the L and R audio signals of the tuner unit 2, instead of being distributed by the switch SW_1 to the audio processors 7 and 10 side, are supplied to the input terminals of the VTR 4, and as described below, are then output through the output terminals of the VTR 4 to the switch SW_2 where main/sub audio mode switching is performed, and then supplied to the audio processor side.

(0032)

As described above, the video signal and L and R audio signals of the tuner unit 2 are input to the VTR 4 to enable recording, and the L and R audio signals are supplied through the VTR 4 output terminals to the terminals T₁₁ and T₂₂, respectively, of the switch SW₂.

(0033)

Switching control in the switch SW_2 is implemented such that, in the case where the radio waves received by the tuner unit 2 are regular monaural or stereo broadcasts, the terminal T_{31} connects to the terminal T_{31} , and the terminal T_{34} connects to the terminal T_{32} . Or, in the case where the received waves are multiplexed audio and the user has selected the main audio mode, switching is implemented such that terminals T_{33} and T_{34} are both connected to the terminal T_{31} , or in the case where the sub audio mode has been selected, switching is implemented such that terminals T_{13} and T_{14} are both connected to the terminal T_{12} . Also, in the case where a mode for

outputting main/sub audio simultaneously has been selected, [the switch SW_2] is switched to the same state as for the above-described regular monaural or stereo broadcast.

(0034)

Thus, the signal paths for the L and R audio signals output from the VTR 4 are formed as follows according to each audio mode. In other words, in the case where the radio waves received by the tuner unit 2 are monaural or stereo broadcasts, or the mode which simultaneously outputs the main/sub audio, the L audio is supplied from terminals $T_{34} \rightarrow T_{35}$ of the switch SW₃, through terminals $T_{14} \rightarrow T_{15}$ of the switch SW₁, to the audio processor 7 and then amplified by the amp 8 and output as sound from the L speaker 9. Moreover, the R audio signal is supplied from terminals $T_{32} \rightarrow T_{34}$ of the switch SW₂, through terminals $T_{24} \rightarrow T_{25}$ of the switch SW₁, to the audio processor 10 and then amplified by the amp 11 and output as sound from the R speaker 12. As a result, the user is able to listen to monaural and stereo broadcasts, or main/sub audio separately from left and right speakers (9, 12).

(0035)

Moreover, in the case where the user selects the main audio [mode], the L audio signal of the VTR 4 is distributed along a signal path from terminals $T_{31} \rightarrow T_{33}$ of the switch SW_2 , through terminals $T_{14} \rightarrow T_{15}$ of the switch SW_1 , and supplied to the audio processor 7, and along a signal path from terminals $T_{31} \rightarrow T_{34}$ of the switch SW_2 , through terminals $T_{24} \rightarrow T_{25}$ of the switch SW_1 , and supplied to the audio processor 10. As a result, ultimately, the L audio signal is distributed and supplied to the L speaker 9 and the R speaker 12, and the user is able to listen to the main audio only.

(0036)

Moreover, in the case where the user selects the sub audio [mode], a signal path from terminals $T_{32} \rightarrow T_{33}$ of the switch SW_2 , through terminals $T_{14} \rightarrow T_{15}$ of the switch SW_1 , and supplied to the audio processor 7, and a signal path from terminals $T_{32} \rightarrow T_{45}$ of the switch SW_2 , through terminals $T_{24} \rightarrow T_{25}$ of the switch SW_1 , and supplied to the audio processor 10 are formed for the R audio signal of the VTR 4, and ultimately, the R audio signal is distributed and supplied to the L speaker 9 and the R speaker 12. Accordingly, the user is able to listen to the sub audio only.

(0037)

In other words, by switching each of the L and R audio signals at the switch SW_2 , the main/sub audio is recorded in the respective L and R channels of the VTR 4, and the user is able to arbitrarily switch and listen to main/sub audio. Furthermore, the switch SW_2 is not only used as described above, but is also used to switch the main/sub audio recorded in the L and R channels of a videotape being played back by the VTR 4.

(0038)

Thus, in the case where the channel being watched by the user is the same as the channel being recorded by the VTR 4, by halting the reception operation of the tuner unit 1 and by supplying the video signal and audio signal radio waves received by the tuner unit 2 to the VTR 4 and, the CRT 6 and to the left and right speakers, the local frequency is not radiated from the tuner unit 1, and the superimposition of noise on the signals of the tuner unit 2 due to the buffering of the local frequency is eliminated. Therefore, the user is able to watch a video that is free from any beating or the like, and beating and the like is also eliminated from video signals recorded by the VTR 4.

(0039)

Next, the switching operation of the above-described switches SW_1 and SW_2 and the processing, such as the halting of the channel select operation of the tuner unit 1, are explained with reference to flowchart FIGS. 4 and 5. FIG. 4 is a flowchart that shows the processing when the tuner unit 1 and the tuner unit 2 both receive the same channel. In the state where the tuner unit 1 and the tuner unit 2 both received the same channel. In the state where the tuner unit 1 and the tuner unit 2 both received the same channel. In the state where the tuner unit 1 and the tuner unit 2 both received the same channel. In the state where the tuner unit 1 and the tuner unit 2 bit to the switch SW₁ to switch both terminals T_3 and T_4 to the terminal T_2 , switch the terminal T_{25} to the terminal T_{24} , and switch the terminal T_{26} to the terminal T_{22} , and then after setting the inter-terminal connections of the switch SW₁ to the state shown in FIG. 1 [sic⁹], advances to a step F103. At the step F103, [the control unit 13] determines whether the broadcast presently being received by the tuner unit 2 is an audio multiplex broadcast with main/sub audio, and in the case where the broadcast is determined not to be an audio multiplex broadcast, i.e., a monaural or regular stereo broadcast, [the control unit 13] advances to a step F104, but if it is determined to be an audio multiplex broadcast, [the control unit 13] advances to a step F105.

(0040)

At the step F105, [the control unit 13] determines which audio mode, main audio or sub audio, the user has selected for the main/sub audio broadcast presently being received, and in the case where a mode for listening to the main audio has been selected, advances to a step F106; in the case where a mode for listening to the sub audio has been selected, advances to a step F107; and in the case where a mode for listening to both the main and sub audio modes simultaneously has been selected, advances to the step F104. At the step F104, [the control unit 13] outputs a control signal to the switch SW₂ to switch the terminal T₃₃ to the terminal T₃₁ and to switch the terminal T₃₄ to the terminal T₃₂. As a result, the L and R output signals of the tuner unit 2 are ultimately supplied to the L speaker 9 and the R speaker 12, respectively, and the user is able to listen to monaural and stereo broadcasts, or to listen to main audio (L speaker 9) and sub audio (R speaker 12) simultaneously. Then, [the control unit 13] advances to a step F108.

(0041)

At the step F106, terminals T_{33} and T_{34} are both switched to the terminal T_{31} of the switch SW₂, and then [the control unit 13] advances to the step F108. As a result, ultimately, the L audio signal of the tuner unit 2 is output from both the L speaker 9 and the R speaker 12, and the user is able to listen to the main audio only.

(0042)

At the step F107, terminals T_{33} and T_{34} are both switched to the terminal T_{32} of the switch SW₂, and then [the control unit 13] advances to the step F108. As a result, the R audio signal of the tuner unit 2 is ultimately supplied to the L speaker 9 and the R speaker 12, and therefore only the sub audio is output as sound. Then, in the step F108, the channel select operation of the tuner unit 1 is halted, and then [the control unit 13] returns to the main routine.

(0043)

Furthermore, the above-described switching control of the switch SW_1 is configured so as to be synchronized with the vertical sync signal of the video signal radio waves being received

⁹ Should be "FIG. 2"

by the tuner unit 2 and performed during the retrace interval, and as a result, screen flicker and the like are suppressed when switching the image displayed on the CRT 6 from that derived from the video signal of the tuner unit 1.

(0044)

Moreover, FIG. 5 is a flowchart showing the processing performed in the state when the tuner unit 1 and the tuner unit 2 receive different channels. For example, when the user operates a channel key to watch a different channel, and [the units] change from a state as shown in FIG. 2 in which the channel presently being watched and the channel being recorded by VTR4 are the same, the control unit 13 receives this input instruction and advances to the routine shown in FIG. 5. In other words, in a step F201, if, based on a channel change input instruction, a state has been established in which the tuner unit 1 receives a different channel from the tuner unit 2, the control unit 13 advances to a step F202 and determines whether the channel select operation has currently been halted for the tuner unit 1. Then, if the channel select operation of the tuner unit 1 has not been halted, [the control unit 13] advances to a step F204, but if the channel select operation of the tuner unit 1 has been halted, [the control unit 13] advances to a step F203, and after the channel select operation for the channel has been started according to an input instruction, for example, [the control unit 13] advances to the step F204.

(0045)

In the step F204, the terminal T_5 is switched to the terminal T_1 , the terminal T_6 is switched to the terminal T_2 , the terminal T_{15} is switched to the terminal T_{15} , the terminal T_{16} is switched to the terminal T_{21} , the terminal T_{25} is switched to the terminal T_{21} , and the terminal T_{25} are result, the signal paths for each video signal and L and R audio signals of the tuner unit 1 and the tuner unit 2 are restored to the state described by FIG. 2.

(0046)

Furthermore, in the case where the same channel is received, it is conceivable to halt the channel select operation of the tuner unit 2 and supply each signal of the tuner unit 1 to the required circuits. However, as in the present embodiment, by configuring [the system] to supply signals from the tuner unit 2 for VTR recording use, even in eases where the user has changed the channel during recording, since the terminal connections for supplying signals to the input terminals of the VTR 4 are always fixed in the switch SW₁ and are not switched, the video and audio signals to be recorded are not disrupted in the midst of the recording. Moreover, in the television receiver of the present embodiment, by switching the terminals of the switch SW₁, the video source supplied from the external input terminal block 3 can be recorded by the VTR 4 and output to the CRT 4 [sic 10], the L speaker 9 and the R speaker 12, but an explanation thereof is omitted. Moreover, the processing operation shown in FIG. 5 is also configured so as to be synchronized with the vertical sync signal of the video signal radio waves being received by the tuner unit 1 and performed during the retrace interval, so as to avoid disrupting the screen when switching the display screen.

(0047)

As another embodiment, the case in which the present invention is applied to a television receiver having a single sub-screen display function will be described below with reference to FIG. 3. FIG. 3 is a block diagram showing the main portion of a television receiver having a single sub-screen display function. Reference numerals 21 and 22 denote tuner units, each of

¹⁰ Incorrect reference numeral. Should probably be "CRT 6"

which extract video and audio signals from their received radio waves, and then output [those signals]. A switch SW₃ switches terminals in accordance with a control unit 29. In the switch SW₃, the video signal system is provided with terminals T_{41} to T_{44} , and terminals T_{43} and T_{44} are switched to either of terminals T_{41} and T_{42} . Moreover, the audio signal system is provided with terminals T_{45} to T_{47} , and the terminal T_{47} is switched to either of terminal T_{45} or T_{46} .

(0048)

In the video signal system, a video signal output terminal of a tuner unit 21 is connected to the terminal T_{41} and a video signal output terminal of a tuner unit 22 is connected to the terminal T_{42} , and the terminal T_{43} is connected to the input side of a video processer 23 and the terminal T_{44} is connected to the input side of a field memory 24. In the audio system, the terminal T_{45} is connected to an audio signal output terminal of the tuner unit 21, the terminal T_{46} is connected to an audio signal output terminal of the tuner unit 22, and the terminal T_{47} is connected to the input side of an audio processor 26.

(0049)

Reference numeral 23 denotes a video processor that performs various types of processing on the video signal supplied from the terminal T_{43} of the switch SW3 and outputs the processed signal as an amplified RGB signal to a CRT 25. Reference numeral 24 denotes a field memory used for the sub-screen display; the video signal supplied from the terminal T_{44} is converted into a digital signal and written to and read out [from the field memory 24] at predetermined timings. Then, data that has been read out from the field memory 24 is output to the video processor 24 [sic 11], and at the video processor 24 [sic 12] [that read-out data] is combined with a video signal from the terminal T_{43} and then output to the CRT 25 to be displayed as a sub-screen at a predetermined position on the screen. Reference numeral 26 denotes an audio processor that performs various types of processing on audio signals supplied from the terminal T_{47} , and then outputs them to an amp 27. Input audio signals are amplified by the amp 27, and supplied to a speaker 28 where they are output as sound. Reference numeral 29 denotes a control unit, which, as shown in the drawing, outputs control signals to each circuit and controls various operations.

(0050)

Here, in the case where the tuner units 21 and 22 receive different channels, and the video source of the tuner unit 21 is displayed on the main screen and the video source of the tuner unit 22 is displayed on the sub-screen, in the video signal system of the switch SW3, the terminal T_{43} is connected to the terminal T_{41} and the terminal T_{44} is connected to the terminal T_{42} , and in the audio signal system [of the switch SW3], the terminal T_{47} is connected to the terminal T_{45} . Accordingly, the video signal of the tuner unit 21 is supplied to the video processor 23 and the video signal of the tuner unit 22 is supplied to the field memory 24; as a result, the video signal of the tuner unit 21 is displayed in the main screen and the video signal of the tuner unit 22 is displayed in the sub-screen of the CRT 25. At this time, in the audio signal system of the switch SW3, the audio signal of the tuner unit 21 is input to the audio processor 26, and audio corresponding to the main screen is output from the speaker 28.

(0051)

¹¹ Incorrect reference numeral, Should probably be "video processor 23"

¹² Incorrect reference numeral. Should probably be "video processor 23"

Moreover, from the above-described state, by switching the terminal T_{43} to the terminal T_{44} and the terminal T_{44} to the terminal T_{41} in the video signal system, and by switching the terminal T_{47} to the terminal T_{46} in the audio signal system of the switch SW₃, the video signal of the tuner unit 21 is changed over to be displayed in the sub-screen and the video signal from the tuner unit 22 changed over to be displayed in the main screen, and audio of the tuner unit 22 being displayed in the main screen is output from the speaker 28.

(0052)

In the present embodiment, when the tuner unit 21 and the tuner unit 22 both receive the same channel, in the switch SW₃, the terminals T_{43} and T_{44} are both switched to the terminal T_{41} of the video signal system, and the terminal T_{47} is switched to the terminal T_{45} of the audio signal system. Additionally, the tuner unit 22 is controlled so as to halt its channel select operation.

(0053)

As a result, the video signal of the tuner unit 21 is distributed and supplied to the video processor 23 and the field memory 24, and images from the same channel being received by the tuner unit 21 are displayed on the main screen and sub-screen. Moreover, the audio signal of the tuner unit 21 is output through the switch SW3, the audio processor 26 and the amp 27, and emitted as sound from the speaker 28. Moreover, since the local frequency is not radiated from the tuner unit 22 and does not affect the tuner unit 21, beating or other noise caused by the effect of the local frequency does not appear in the screen.

(0054)

Furthermore, in the above-described embodiment, the channel select operation of the tuner unit 22 is halted and the video and audio signals of the tuner unit 21 are supplied to various circuits. However, this case may also be configured in reverse such that the channel select operation of the tuner unit 21 is halted and the video and audio signals of the tuner unit 22 are supplied to the various circuits. Moreover, in the case of the present embodiment, the switching control of the switch SW₃ is preferably performed during the retrace interval for the vertical syne signal. Moreover, in the present embodiment, the audio signal is monaural, but of course [the embodiment] is also capable of supporting stereo [audio signals]. Moreover, applications are also possible to television receivers having a so-called picture-out-picture function.

(0055)

Thus, in each of the embodiments described above, when two built-in tuner units have selected the same channel, the channel select operation of one tuner unit is halted, and video and audio signals from the tuner unit selecting the channel are supplied to the required circuits, thereby eliminating noise due to the effect of [interference between] the local frequencies. This type of method used in the above-described embodiments can be implemented mainly by the processing operation of a control unit, and therefore the elimination of beating and the like can be realized much more simply than by a hardware design-based implementation.

(0056)

Furthermore, each of the above-described embodiments has been described for the case where there are two tuner units, but [the present invention] is also applicable to devices having three or more built-in tuner units, and in such a case, if at least two tuner units receive the same channel, the configuration is made so that the receiving operation is halted for all but one specific tuner unit receiving the same channel, and the various video and audio signals from the one tuner continuing its reception operation are supplied to the required circuits.

(0057)

Effect of the Invention

As described above, in the case where a plurality of tuner units select the same channel, as a result of a method in which switches are switched so that the video and audio signals from one of the tuner units having selected the same channel is supplied to the required circuits, and additionally, control is implemented such that the channel select operation is halted for the other tuner units that selected the same channel, the television receiver of the present invention has the effect of removing the influence of proximal local frequencies and eliminating beating and other noise. Moreover, since an effect can be realized with a software-based means via a control unit, without dependence upon a hardware-based design, [the invention] has the effect of reducing the burden on the designers and of curtailing costs by avoiding significant changes in the hardware design.

Brief Explanation of the Drawings

FIG. 1 is a block diagram showing a main portion of a VTR-integrated type television receiver in one embodiment of the present invention.

FIG. 2 is a block diagram showing the signal path when the same channel is received with the VTR-integrated type television receiver in one embodiment of the present invention.

FIG. 3 is a block diagram shown a main portion of a television receiver having a sub-screen function in another embodiment of the present invention.

FIG. 4 is a flowchart showing the processing operation of a control unit in an embodiment of the present invention.

FIG. 5 is a flowchart showing the processing operation of a control unit in an embodiment of the present invention.

FIG. 6 is a perspective diagram showing the external appearance of a VTR-integrated type television receiver of this embodiment.

FIG. 7 is a block diagram showing a main portion of a conventional example of a VTR-integrated type television receiver.

FIG. 8 is an explanatory diagram showing the effect due to local frequency in a conventional example of a VTR-integrated type television receiver.

Explanation of Reference Numerals

```
1, 2, 21, 22: Tuner unit
4: VTR
13, 29: Control unit
SW<sub>1</sub>, SW<sub>2</sub>, SW<sub>3</sub>, SW<sub>4</sub>: Switch
T<sub>1</sub> to T<sub>6</sub>, T<sub>11</sub> to T<sub>16</sub>, T<sub>21</sub> to T<sub>26</sub>, T<sub>31</sub> to T<sub>34</sub>, T<sub>41</sub> to T<sub>46</sub>: Terminals
```

FIG. 6

FIG. 1

(17)

FIG. 2

FIG. 3

Television with sub-screen function

FIG. 4

FIG. 7

FIG. 8

When the same channel is selected