Introdução

Compiladores

Prof. Daniel Saad Nogueira Nunes

IFB – Instituto Federal de Brasília, Campus Taguatinga

Sumário

Introdução

Introdução

- Expressões regulares são mecanismos que permitem descrever linguagens, isto é, conjuntos de palavras, de maneira compacta.
- O uso de expressões regulares pode ser utilizada para efetuar casamento de padrões, isto é, detectar padrões em texto.
- Uma aplicação imediata de expressões regulares é na construção de analisadores léxicos, visto que esse formalismo pode reconhecer e classificar os tokens.

Introdução

• Nesta aula estudaremos este formalismo e criaremos expressões regulares para reconhecer diversos padrões.

Sumário

Definições: alfabeto

Alfabeto

O alfabeto, denotado por Σ , corresponde à um conjunto **finito** de símbolos.

Definições: alfabeto

- Vários programas em diversas linguagens são formadas inteiramente por símbolos ASCII: e.g. linguagem C.
- Outras linguagens, como Java e Python, consideram um alfabeto maior, como o Unicode.

Definições: palavras

Palavras

Palavras, ou strings, sobre um alfabeto Σ , são sequências **finitas** compostas unicamente de símbolos de Σ .

Definições: palavras

Exemplo

- As strings *cachorro*, *gato* e *papagaio* são palavras sobre o alfabeto $\Sigma = \{a, \dots, z\}$, isto é, o alfabeto das letras minúsculas.
- As strings 00100101, 0110101 e 10 são palavras sobre o alfabeto $\Sigma = \{0,1\}.$

Definição: palavra vazia

Palavra vazia

A palavra vazia, denotada por ε corresponde à uma sequência de símbolos de tamanho 0.

Definções: linguagens

Linguagens

Linguagens são conjuntos de palavras. Linguagens podem ter tamanho finito ou infinito.

Definições: linguagnes

Exemplo

- $A = \{cachorro, gato, papagaio\}$ é uma linguagem formada por três palavras. $cachorro \in A$.
- $B=\{\varepsilon,0,1,00,01,10,11,000,\ldots\}$ é uma linguagem infinita contendo todos as palavras sobre o alfabeto $\Sigma=\{0,1\}.$
- ∅ é a linguagem vazia.

Contatenação

Se $x=x_1\dots x_n$ e $y=y_1\dots y_m$ são palavras, a concatenação de x e y, denotada por xy, corresponde à palavra $xy=x_1\dots x_ny_1\dots y_m$. Em especial $\underbrace{xx\dots x}_k$ é denotado por x^k

- Qualquer palavra concatenada com ε é a própria palavra: $x\varepsilon = \varepsilon x = x$.
- $x^0 = \varepsilon$.

Contatenação

A definição de concatenação pode ser estendida para linguagens. Se A e B são linguagens, $AB = \{xy|x \in A \text{ e } y \in B\}$. Em especial, $\underbrace{AA \dots A}_k$ é denotado por A^k

• Temos que $A^0 = \emptyset$.

Exemplo

- Se x = abra e y = cadabra, xy = abracadabra e $x^3 = abraabraabra$.
- Se $A = \{arroz, feijao\}$ e $B = \{pure, batata\}$ então $AB = \{arrozpure, feijaopure, arrozbatata, feijaobatata\}$ e $A^2 = \{arrozarroz, arrozfeijao, feijaoarroz, feijaofeijao\}.$

Definições: fecho Kleene

Fecho Kleene

O fecho Kleene para uma linguagem A, denotado por A^* , corresponde ao conjunto de palavras que pode ser formada pela concatenação de zero ou mais palavras de A. Formalmente temos:

$$A^* = \bigcup_{i>0} A^i$$

Exemplo

- Se $A=\{0,1\}$, então A^* é o conjunto de todas as palavras binárias, isto é: $A^*=\{\varepsilon,0,1,00,01,10,11,\ldots\}$.
- Se $A=\{a,b,\ldots,z\}$, então A^* corresponde ao conjunto de todas as palavras que podem ser formadas por letras minúsculas (inclui ε),

Definições: fecho Kleene positivo

Fecho Kleene

O fecho Kleene para uma linguagem A, denotado por A^+ , corresponde ao conjunto de palavras que pode ser formada pela concatenação de **uma** ou mais palavras de A. Formalmente temos:

$$A^+ = \bigcup_{i>1} A^i$$

Definições: fecho Kleene positivo

Exemplo

• Pelas definições anteriores, temos $A^+ = A^*A$.

Definições: alternação

Alternação

Se $x_1, \ldots x_n$ são palavras, então $x_1 | x_2 | \ldots | x_n$ é o conjunto $X = \{x_1, \dots, x_n\}.$

Definições: alternação

Alternação

Essa noção pode ser estendida para linguagens. Se A e B são linguagens, então $x \in A|B$ se e somente se $x \in A$ ou $x \in B$. Esta noção é equivalente à união de conjuntos.

Definições: fecho Kleene positivo

Exemplo

• Se $A=\{a,b,\ldots,z\}$ e $B=\{A,B,\ldots Z\}$ temos que A|B é o conjunto de todas as letras, minúsculas e maiúsculas.

Sumário

Service de la Expressões regulares

Expressões regulares

 Agora que temos os conceitos básicos definidos, podemos formalizar o que é uma expressão regular.

Expressões regulares

Definição

Tome um alfabeto Σ . R é uma expressão regular se:

- 2 $\{\varepsilon\}.$
- **③** ∅.
- $lacktriangledown (R_1|R_2)$ em que R_1 e R_2 são expressões regulares.
- lacktriangledown R_1R_2 , em que R_1 e R_2 são expressões regulares.
- **1** R_1^* , em que R_1 é uma expressão regular.

Por simplicidade, denotaremos os casos 1 e 2 com a e ε , respectivamente.

Exemplos:

Seia $\Sigma = \{0, 1\}$:

- 0*10*: conjunto de todas as palavras que possuem um único 1.
- $\Sigma^*1\Sigma^*$: conjunto de todas as palavras binárias que possuem pelo menos um 1.
- $\Sigma^*001\Sigma^*$: conjunto das palavras que possuem 001 como substring.
- $(\Sigma\Sigma)^*$ conjunto das palavras que possuem comprimento par.
- $(\Sigma\Sigma\Sigma)^*$ conjunto das palavras que possuem comprimento múltiplo de 3.
- \bullet 01|10 = {01, 10}.

Exemplos:

Seja
$$\Sigma = \{0, 1\}$$
:

- $0\Sigma^*0|1\Sigma^*1|0|1$: conjunto de todas as palavras que iniciam e terminam com o mesmo símbolo.
- $(0|\varepsilon)(1|\varepsilon) : \{\varepsilon, 0, 1, 01\}$

Sumário

Aplicações

- Podemos projetar expressões regulares para definir classes de tokens, também chamada de lexemas, de maneira muito compacta.
- Extremamente úteis para projetar analisadores léxicos.

Aplicações

Exemplos

- Número decimais: $D^+.D^+$, em que $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Números inteiros: $(+|-|\varepsilon)D^+$.
- Tipos: int|float|double|char|.
- Modificadores: $long|short|long\ long$.

Sumário

Exercícios

Utilizando uma linguagem de programação, crie expressões regulares para:

- Identificar um e-mail terminado com .com ou .com.br
- Hora no formato HH:MM:SS.
- Identificadores da linguagem C: começam com uma letra minúscula ou subscrito, e podem ser seguidos por letras, dígitos e subscritos.
- Números inteiros na linguagem C.
- Números decimais na linguagem C.
- Operadores binários da linguagem C.

Exercícios

Utilizando uma linguagem de programação, crie expressões regulares para:

- Comentários multilinha da linguagem C.
- Comentários de única linha da linguagem C.
- Senha forte: pelo menos 12 caracteres com presença de: letras maiúsculas, minúsculas, digitos e símbolos especiais.
- Endereços IPV4.
- Endereços MAC.