POTD 1842

Jonathan Kasongo

July 1, 2025

POTD 1842

Consider complex polynomials $P(x) = x^n + a_1 x^{n-1} + \dots + a_n$ with zeroes x_1, \dots, x_n , and $Q(x) = x^n + b_1 x^{n-1} + \dots + b_n$ with zeroes x_1^2, \dots, x_n^2 . Prove that if $a_1 + a_3 + a_5 + \dots$ and $a_2 + a_4 + a_6 + \dots$ are real numbers, then $b_1 + b_2 + \dots + b_n$ is also real.

Solution

We write down P(x) and Q(x).

$$P(x) = \prod_{r=1}^{n} (x - x_r) \qquad Q(x) = \prod_{r=1}^{n} (x - x_r^2)$$

Now if we consider $Q(x^2)$ we can use difference of 2 squares to relate Q(x) and P(x) namely,

$$Q(x^2) = \prod_{r=1}^{n} (x^2 - x_r^2) = \prod_{r=1}^{n} (x - x_r)(x + x_r) = P(x)P(-x)$$

Now we can deduce a relationship between the sequence $(b_i)_{i=1}^n$ and $(a_i)_{i=1}^n$. Precisely we find, using $P(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ and $Q(x) = x^n + b_1 x^{n-1} + \cdots + b_n$

$$Q(1) - 1 = \sum_{r=1}^{n} b_r = \left[1 + \sum_{r=1}^{n} a_r \right] \left[(-1)^n + \sum_{r=1}^{n} (-1)^{n-r} a_r \right] - 1$$

That is,

$$\sum_{r=1}^{n} b_r = (-1)^n + \sum_{r=1}^{n} (-1)^{n-r} a_r + (-1)^n \sum_{r=1}^{n} a_r + \left[\sum_{r=1}^{n} a_r \right] \left[\sum_{j=1}^{n} (-1)^{n-j} a_j \right] - 1$$

We finish the problem by analysing the 2 cases:

1. When n is even,

$$\sum_{r=1}^{n} b_r = \sum_{r=1}^{n} (-1)^r a_r + \sum_{r=1}^{n} a_r + \left[\sum_{r=1}^{n} a_r \right] \left[\sum_{j=1}^{n} (-1)^j a_j \right]$$
$$= 2(a_2 + a_4 + \dots + a_n) + (a_1 + a_2 + \dots + a_n)(-a_1 + a_2 - \dots + a_n)$$

Now since the sum of the even and the sum of the odd indexed terms are both real, and the set of real numbers is closed under addition we conclude that $\sum_{r=1}^{n} b_r$ must be real.

2. When n is odd,

$$\sum_{r=1}^{n} b_r = -2 - \sum_{r=1}^{n} (-1)^r a_r - \sum_{r=1}^{n} a_r - \left[\sum_{r=1}^{n} a_r \right] \left[\sum_{j=1}^{n} (-1)^j a_j \right]$$
$$= -2 - 2(a_2 + a_4 + \dots + a_{n-1}) - (a_1 + a_2 + \dots + a_n)(-a_1 + a_2 - \dots - a_n)$$

which shows that $\sum_{r=1}^{n} b_r$ must be real, for the same reason.