- 1. As an ornithologist, you wish to determine the average body mass of *Seiurus noveboracensis*. You randomly capture 31 adults of *Seiurus noveboracensis*, resulting in a sample mean of 20.47 grams and a sample standard deviation of 3.53 grams. You decide to report a 95% confidence interval.
 - (a) Determine the lower bound of the confidence interval.
 - (b) Determine the upper bound of the confidence interval.
- 2. A teacher has 6 students who have each taken two quizzes. Perform a two-tail test with significance level 0.04 to determine whether students' performance changed on average.

	student1	student2	student3	student4	student5	student6
quiz 1:	62.9	83.4	55.8	57.7	85.9	62.3
quiz 2:	48.8	78.3	49.1	52.3	88.8	53.9

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either $z_{\rm obs}$ or $t_{\rm obs}$. Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?
- 3. You are interested in whether a treatment causes an effect on a continuously measurable attribute. You use a treatment group with 5 cases and a control group with 5 cases. You decide to run a hypothesis test with a significance level of 0.04. Your data is below. Please use 5 for the degrees of freedom (calculated with the Welch-Satterthwaite equation).

treatment	control
14.8	13.4
12.3	12.2
15.1	10.8
13.4	13
17.7	10.6

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.

- (e) Evaluate the absolute value of the test statistic. (The test statistic is either z_{obs} or t_{obs} . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?
- 4. From a very large population, a random sample of 1300 individuals was taken. In that sample, 81% were blue. Determine a 95% confidence interval of the population proportion.
 - (a) Find the lower bound of the confidence interval.
 - (b) Find the upper bound of the condifence interval.
- 5. Your boss wants to know what proportion of a very large population is glowing. She also wants to guarantee that the margin of error of a 99% confidence interval will be less than 0.01 (which is 1 percentage points). How large of a sample is needed? Please round up, using only 2 significant digits.
- 6. An experiment is run with a treatment group of size 290 and a control group of size 248. The results are summarized in the table below.

	treatment	control
omnivorous	217	171
not omnivorous	73	77

Using a significance level of 0.2, determine whether the treatment causes an effect on the proportion of cases that are omnivorous.

- (a) State the null hypothesis.
- (b) State the alternative hypothesis.
- (c) Evaluate the critical value. (The critical value is either z^* or t^* . Determine its value.)
- (d) Determine the standard error of the relevant sampling distribution.
- (e) Evaluate the absolute value of the test statistic. (The test statistic is either z_{obs} or t_{obs} . Determine its absolute value.)
- (f) If possible, evaluate the p-value. Otherwise, describe an interval containing the p-value.
- (g) Do we reject or retain the null?

- 1. (a) LB = 19.2
 - (b) UB = 21.8
- 2. (a) H_0 : $\mu_{\text{diff}} = 0$
 - (b) H_A : $\mu_{diff} \neq 0$
 - (c) $t^* = 2.76$
 - (d) SE = 1.78
 - (e) $|t_{obs}| = 2.724$
 - (f) 0.04 < p-value < 0.05
 - (g) retain
- 3. (a) H_0 : $\mu_2 \mu_1 = 0$
 - (b) H_0 : $\mu_2 \mu_1 \neq 0$
 - (c) $t^* = 2.76$
 - (d) SE = 1.07

- (e) $|t_{obs}| = 2.52$
- (f) 0.05 < p-value < 0.1
- (g) retain
- 4. (a) LB of p CI = 0.789 or 78.9%
 - (b) UB of p CI = 0.831 or 83.1%
- 5. $n \approx 17000$
- 6. (a) $H_0: p_2 p_1 = 0$
 - (b) H_A : $p_2 p_1 \neq 0$
 - (c) $z^* = 1.28$
 - (d) SE = 0.039
 - (e) $|z_{obs}| = 1.49$
 - (f) p-value = 0.1362
 - (g) reject