

Temporary Resource Allocation for Event-driven Traffic in IEEE 802.15.4 DSME

Presented by, Inhyeok Kang

Dept. of Convergence Software Hallym University, South Korea

Co-Authors: Sol-Bee Lee, Jung-Hyok Kwon, and Eui-Jik Kim

Contents

- I. Introduction
- II. IEEE 802.15.4 DSME overview
- III. Temporary resource allocation (TRA)
- IV. Performance evaluation
- V. Conclusion

Introduction

- IEEE 802.15.4 Deterministic and synchronous multichannel extension (DSME)
 - Medium access control (MAC) protocol defined in IEEE 802.15.4-2015
- Key features of DSME
 - Assigns each data transmission to a guaranteed time slot (i.e., GTS) within repeating multi-superframes
 - Continuously allocates the same time slot index without negotiation
 - ✓ Efficient for managing periodic traffic
- Issues with DSME
 - No definition for channel and slot index selection
 - √ Many schemes have been proposed for the allocation of GTS

Introduction

Related works

Title	Common Limitation				
N. Choudhury, R. Matam, M. Mukherjee and J. Lloret, "A Beacon and GTS Scheduling Scheme for IEEE 802.15.4 DSME Networks," <i>IEEE Internet of Things Journal</i> , vol. 9, no. 7, pp. 5162-5172, Apr. 2022	Limited support for mixed				
N. Choudhury and M. M. Nasralla, "A Proposed Resource-Aware Time-Constrained Scheduling Mechanism for DSME based IoV Networks," 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 2021	periodic/event-driven traffic Used Unused Unused				
H. Kurunathan, R. Severino, A. Koubaa and E. Tovar, "DynaMO—Dynamic Multisuperframe Tuning for Adaptive IEEE 802.15.4e DSME Networks," <i>IEEE Access</i> , vol. 7, pp. 122522-122535, 2019					
SW. Lee, JH. Kwon, X. Zhang and EJ. Kim, "Traffic-Adaptive CFP Extension for IEEE 802.15.4 DSME MAC in Industrial Wireless Sensor Networks," <i>IEEE Access</i> , vol. 9, pp. 94454-94469, 2021	Event-driven traffic generation				

Proposed scheme: Temporary Resource allocation (TRA)

- Key features
 - ✓ Determines the GTS allocation process based on traffic type
 - Periodic traffic → Legacy GTS allocation/deallocation
 - Event-driven traffic → Temporary resource allocation

Address static and inefficient GTS management in legacy DSME and existing studies.

IEEE 802.15.4 DSME overview

IEEE 802.15.4 DSME network

- Consists of Personal area network (PAN) coordinator, Coordinators, End nodes
- Nodes operate based on the multi-superframe structure

Multi-superframe

- Repeated in a cyclic manner
- Consists of multiple superframes

Superframe

- EB frame: Period during which the coordinator transmits the enhanced beacon (EB)
- Contention access period (CAP): Period for exchanging control packets using CSMA/CA
- Contention free period (CFP): Period for data transmission without contention using GTS

IEEE 802.15.4 DSME overview

DSME GTS allocation & deallocation

a) REQUEST, unicast

Payload: type (Allocation), direction, preferred superframe ID, preferred slot ID, number of DSME-GTSs, priority, DSME-GTS SAB sub block: {00001100101100...}

→ time slot

1) DSME GTS Request

b) RESPONSE, broadcast

Payload: type (Allocation), direction, destination Address (Node A), channel offset, newly allocated DSME-GTS SAB sub block: {001100000000000...}

→ time slot

2) DSME GTS Response

c) NOTIFY, broadcast

Payload: type (Allocation), direction, destination address (Node B), channel offset, newly allocated DSME-GTS SAB sub block {00110000000000...}

→ time slot

3) DSME GTS Notify

IEEE 802.15.4 DSME overview

- GTS management structure
 - Slot allocation bitmap (SAB)
 - Tracks which time slots are used (1) or free (0) for each superframe and its 1-hop neighbors
 - Allocation counter table (ACT)
 - Data for each allocated GTS → includes superframe ID, slot ID, channel, direction (Tx/Rx), address, idle counter

			•					
	CAR	CAD			CAD			
CAP	CAP		•••	CAP				
							Т	\Box

1100100	0101000	 1100000

Superframe ID	Slot ID	Channel ID (Channel offset)	Direction	Source /Destination	•••	Counter
0	8	1	RX	0x0000		2
0	9	1	TX	0xfffd		0
0	12	1	TX	3F9A7C		1
:	÷	:	:	÷	:	i

SAB

ACT

Traffic type check

Determine whether traffic is periodic or event-driven

Periodic traffic

- Legacy GTS allocation
- Deallocated if unused for 7 consecutive multi-superframes

Event-driven traffic

- Temporary GTS allocation
- Automatically released in the next multi-superframe

Enhance resource utilization by reducing the number of unused GTSs.

Step 1. DSME GTS Request

- End node sends a DSME GTS Request command to its parent node (Coordinator).

Step 2. DSME GTS Response

 The parent node (Coordinator) broadcasts the DSME GTS Response command to all neighboring nodes, including End node 1.

Step 3. DSME GTS Notify

 End node broadcasts a DSME GTS Notify command to its neighboring nodes, including the parent node (coordinator).

Step 4. DSME GTS Deallocation

End Node 2

- Each node updates its own SAB independently.

Performance evaluation

Simulation settings and configuration

- Network configuration

- 1 PAN coordinator, 10-80 transmitter/receiver node pairs
 - ✓ Each node forms a transmission pair with a peer to exchange data
- Nodes are randomly distributed within a 15 m × 15 m area
- Communication range: 10 m

- Traffic pattern of transmitter nodes

- 60% of nodes generate periodic traffic
- 40% generate event-driven traffic
 - ✓ Aperiodic traffic generation is controlled by probability: 20%, 40%, 60%, 80%

Traffic settings

- Each transmitter node generates 1 packet per multi-superframe
- Each node has a queue that can hold up to 10 packets

Multi-superframe structure in simulation

Example of network deployment with 20 nodes

Performance evaluation

Average queueing delay

- Average time each packet waits in the queue
- Frequent GTS deallocations allow more nodes to obtain GTS allocation opportunities

TRA (Temporary resource allocation)

Legacy DSME

Conclusion

Proposed a Temporary resource allocation (TRA) scheme for IEEE 802.15.4 DSME

- To solve the problem of inflexible and inefficient GTS usage under event-driven traffic conditions

Limitations of existing studies

- Resource waste
- Limited adaptability to dynamic or unpredictable traffic patterns
- Degraded performance in hybrid (periodic + event-driven) traffic environments

Key features

- Determines the GTS allocation process based on traffic type
 - ✓ Periodic traffic → Legacy GTS allocation/deallocation
 - ✓ Event-driven traffic → Temporary resource allocation

Requirements	TRA Solution
Efficient GTS utilization	Automatically released if unused after 1 interval
Support for event-driven traffic	Temporary SAB-based allocation
Standards compatibility	Fully compliant with IEEE 802.15.4 DSME structure

Thank You