醛和酮 亲核加成反应

一、醛、酮的定义和结构特点

	醛和酮都是分子中含有羰基(碳氧双键)的化合物,因此又统称为羰基化合物。羰基与一个烃基相连的化合物称为醛(甲醛与两个氢相连),与两个烃基相连的称为酮
定义	O O O O O O O O O O O O O O O O O O O
羰基结构	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

二、醛、酮的分类和命名

分	类	命名实例		
根据	脂肪醛、酮	CH ₃ CH ₂ CHCHO CH ₃ 2-甲基丁醛 2-methylbutanal	CH ₃ CHCH ₂ COCH ₂ CH ₃ CH ₃ 5-甲基-3-己酮 5-methyl-3-hexanone	
烃基 结构 类型	芳香醛、酮	CH ₃ O————————————————————————————————————	1-苯基-1-丙酮 1-phenyl-1-propanone	

分	类		命	名实例
根据烃基	饱和醛、酮		CH ₃ CHCHO CH ₃ 2-甲基丙醛	O CH ₃ CH ₃ CH ₂ —C—CHCH ₃ 2—甲基—3—戊酮
饱和			2-methylpropanal	2-methyl-3-pentone
程度	不饱和醛、酮		CH ₃ CH=CHCHO α-丁烯醛 α-butenal	CH ₃ CH=CHCOCH ₂ CH ₃ 4-已烯-3-酮 4-hexen-3-one
根据羰基的数目	一元醛、酮		он Снсно	CH ₃ ————————————————————————————————————
			2-羟基苯乙醛 2-hydroxyphenylethanal	4-甲基环己酮 4-methylcyclohexanone
	多元		H-C-C-H	CH ₃ COCH ₂ COCH ₃
	醛、酮		乙二醛 ethanedial	2,4-戊二酮 2,4-pentanedione

三、醛和酮的物理性质

Baur	性质或特征
Lri.	
性	甲醛在室温下为气体,市售的福尔马林 (formalin) 是其 40%水溶液。其余的醛
状	酮为液体或固体。醛、酮的沸点比相应的醇低得多, 高于分子量相当的烃或醚
溶	低级醛、酮在水中有一定的溶解度,如甲醛、乙醛和丙酮能与水混溶,当醛、酮分
解	子中烃基部分增大时,水中溶解度很快下降,含有6个以上碳原子的醛、酮几乎不
性	溶解于水。醛、酮在苯、醚、四氯化碳等有机溶剂中均可溶解
	IR:
	羰基: 1680~1750cm-1强吸收峰,是羰基化合物的最特征标志。羰基与烯键共轭时
	伸缩振动吸收峰向低波数移动
	RCHO: 1725cm ⁻¹ 附近 (1720 ~ 1740cm ⁻¹)
	-C=C-CHO
波	ArCHO: 1700 cm ⁻¹ 附近 (1695 ~ 1717cm ⁻¹)
谱	
性	RCOR: 1715cm ⁻¹ 附近(1705~1725cm ⁻¹) -C=C-COR
质	: 1675 cm ⁻¹ 附近(1665 ~ 1685cm ⁻¹)
	RCOAr: 1690cm ⁻¹ 附近(1680~1700cm ⁻¹)
	醛基(-CHO)中C-H: 2720em-1和 2850em-1附近,可用来区分醛、酮
	羰基与芳环共轭时,芳环在 1600cm ⁻¹ 和 1580cm ⁻¹ 出现两个峰
	$^{1}H-NMR$: 醛基上质子的化学位移值约为 9 \sim 10 ; 与羰基相连的甲基或其他 α - 氢
	的化学位移值约为 2.0 ~ 2.5

四、醛和酮的化学性质

醛、酮化合物的主要反应及其反应部位:

化	学性	质	代表反应	备 注
	机制	I	$(H)R'$ R $C=0+:Nu^*A^* \Longrightarrow (H)R'$ R^* R^* $C=0$ R^*	影响活性因素:①电性效应;②空间数域应。即数据电位。②空间数据电位阻应,其愈加,其愈强,反之则弱
亲核加成反应	与氢氰	机制	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	可逆反应,加微量碱使平衡迅速建立,加速反应
	酸的加成	实例	$\begin{array}{c} \text{CH}_{3}\text{COCH}_{3} \xrightarrow{\text{(1) NaCN, H}_{2}\text{O}} & \text{OH} \\ \downarrow \\ \text{(2) H}_{2}\text{SO}_{4} & \text{CH}_{3} & \text{C} \\ \downarrow \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \end{array}$	适用于醛脂肪族甲基酮和8个碳原子以下的环酮

4歩主	
400 E	
	۳

				->	表
化学	性	质	代表反应	备	注
1	与氢氰酸的加成	实例	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	α- 羟 是较为 的中 常用 碳链	为活泼 间 体,
	与饱和	机制	$C = 0 + HO$ S $O^-Na^+ = C$ ONa	OH SO ₃ Na 晶体)	↓
亲核加成反应	和亚硫酸氢钠的加成	实例	$C \xrightarrow{OH} C \xrightarrow{H_2O} C = O + NaCl + SO_2 + H_2O$ $C \xrightarrow{Na_2CO_3} C = O + Na_2SO_3 + CO_2 + H_2O$ $C \xrightarrow{H_3C} C = O + NaHSO_3 \Longrightarrow H_3C \xrightarrow{H_3C} C \xrightarrow{OH} C$ $C \xrightarrow{NaCN} C \xrightarrow{H_3C} C \xrightarrow{OH} C$ $C \xrightarrow{NaCN} C \xrightarrow{H_3C} C \xrightarrow{OH} C$	适脂基碳下可些酮制基 所動原的用筒的备腈	族和子环于单岛
	与金利	化物的			于种平

续表

化	学性	质	代表反应	备	注
	与水加成		$C=0 + H_2O \Longrightarrow COH$ 個二醇 $H \longrightarrow C=0 + H_2O \Longrightarrow H \longrightarrow COH$ $OH \longrightarrow C100\%$ $C1_3CCHO + H_2O \Longrightarrow C1_3CCH(OH)_2 \longrightarrow C100\%$ $O \longrightarrow H$	偕不醛子可定水性稳定	E。甲电 时 成 物 成 物 食 的 在 物 在 物 在
亲核加成反应	与醇的加成	机制	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	先加度取代	成,后
		实例	CH ₃ CHO + 2C ₂ H ₅ OH $\stackrel{\text{H}_2SO_4}{\longleftarrow}$ CH ₃ CH(OC ₂ H ₅) ₂ + 2H ₂ O $-\text{CHO} + \text{HOCH}_2\text{CH}_2\text{OH} \xrightarrow{p-\text{CH}_3\text{C}_6\text{H}_4\text{SO}_3\text{H}} + 2\text{H}_2\text{O}$	70,000	在无水下进行

14	-4			۰	
4		μ.			т.
-	ΧĮ	-	Э		γ.

化	学性	质	代表反应	等表 注
	与醇的加	实例	CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{2} CH_{3} CH_{4} CH_{2}	宿醛(酮 对碱及氧化 剂稳定,但 在酸性溶液 中易水解成 原来的醛 (酮),常用 来保护羰基
	成		$CH_{2} - CHCH(OC_{2}H_{5})_{2} \xrightarrow{H_{3}O^{*}, H_{2}O} CH_{2} - CHCHO$ $OH OH OH OH$ $R C = O + HSCH_{2}CH_{2}SH \xrightarrow{H^{*}} R \xrightarrow{R} CH_{2}$ $OH OH$	硫醇的亲核 能力比相应 的醇更强
亲核加战反应	与胺的加	机制	$C=O+H_2NR$ \longrightarrow $C=NR$ \longrightarrow $C=C-NR$ \longrightarrow $C=C-NR$ \longrightarrow $C=C-NR$ \longrightarrow $C=C-NR$ \longrightarrow	经历加成 - 消除过程
	成	实例	$CH_3CH = O + NH_3 \longrightarrow CH_3CH = NH$ $CH_3CH = O + RNH_2 \longrightarrow CH_3CH = NR$ $ArCHO + H_2NCH_3 \longrightarrow ArCH = NCH_3$ ∴ $ArCH = NR \xrightarrow{H_2, Ni} ArCH_2NHR$ $O + HNR_2 \longrightarrow \bigcirc NR_2 + H_2O$	

续表

化当	学性质	代表反应	备注
亲核加成反应	与行的的物成	$C=O+H_2N-OH\xrightarrow{-H_2O}C=N-OH$ 整胺	2,4- 二 硝 基苯肼,可 与大多数 醛、酮反应 生成黄色 沉淀
α-氢原子的反应	互变异构	O O O O O O O O O O O O O O O O O O O	酮式和烯醇 式可在酸或 碱催化下相 互转化, 过 到平衡

Ale and		币	A = C &	変表 な シ
化学	狂)	贞	代表反应	备 注
	卤应仿	1卤	$CH_{3}COCH_{3} + Br_{2} \xrightarrow{CH_{3}CO_{2}H} CH_{3}COCH_{2}Br + HBr$ $CHO + Br_{2} \xrightarrow{CHCl_{3}} CHO$ $Br + HBr$ $CHO + Br_{2} \xrightarrow{CHCl_{3}} CHO$ $Br + HBr$ CI CI CI CI CI CI CI CI	碘仿反应来 鉴别乙醛和 甲基酮 乙醇和 α- 碳原子上连 有甲基的仲 醇也可发生 碘仿反应
	羟醛缩合反应	机制	COCH ₃ + NaClO → COONa H ₃ O' COOH	O H2O 快

续表

化学性质		质	化 惠 辰 应	及	- 14-1-1
H.	F II	灰	代表反应	备	往
V		机制	$CH_{3} - C = OH \qquad CH_{2} - C = OH \qquad CH_{3} - C - CH_{2} - CH_{3} \qquad CH_{3} - C = CH - CH_{3} \qquad CH_{3} - C = $	CH ₃ -C=0	Н
α-氢原子的反应	羟醛缩合反应	整宿 合 反 並	$2CH_{3}CHO \xrightarrow{5\%\sim10\%N_{8}OH} CH_{3}CHCH_{2}CH$ $CH_{3}CHCH_{2}CH \xrightarrow{-H_{2}O} CH_{3}CH = CHCHO$ $CH_{3}CHCH_{2}CH \xrightarrow{Ba(OH)_{2}} CH_{3}CH_{2}CCH_{2}CCH_{3}$	制备 基醛、α,β- 和醛酮 长碳铵	酮和不 饱
		实例	$2CH_3COCH_3 \xrightarrow{H^*} (CH_3)_2C = CHCOCH_3$ CH_2OH $HCHO + (CH_3)_2CHCH_2CHO \xrightarrow{K_2CO_3} (CH_3)_2CHCHCHO$ 52%	酸催化 交叉 缩合	
			PhCHO + CH ₃ CH ₂ CH ₂ CHO OH, H ₂ O Ph H C=C CH ₂ CH ₃	Claise Schmi 反应	

2.4		
Landier.		
431.	-240	
-	43	į

化学性质 代表反应			谷 注	
,			PhCHO + CH ₃ COCH ₃ $\xrightarrow{\text{OH}^-, \text{H}_2\text{O}}$ $\xrightarrow{\text{Ph}}$ C=C $\xrightarrow{\text{COCH}_3}$	Claisen-
			PhCHO + $CH_3COPh \xrightarrow{OH^-, H_2O} \xrightarrow{Ph} C = C \xrightarrow{H} COPh$	Schmidt 反应
	羟醛缩合	实例	$\begin{array}{c c} O & O \\ \parallel & \parallel \\ HCCH_2CH_2CH_2CH CH_2CH \\ \hline \triangle \end{array} \longrightarrow \begin{array}{c} CHO \end{array}$	
	反应		$ \begin{array}{c c} O & O \\ \parallel & \parallel \\ CH_3CCH_2CH_2CH_2CCH_3 & \xrightarrow{KOH, H_2O} \end{array} $	分子内羟酯 缩合,生成 环状化合物
一氢原子的豆			0 Na ₂ CO ₃ , H ₂ O	
N. T.		机	$\begin{array}{c} O & OH \\ \parallel & \parallel \\ R'CCH_2R & \longrightarrow R'C = CHR \end{array}$ $\begin{array}{c} OH \\ \parallel & \parallel \\ H-C-H + HNR_2 & \longrightarrow CH_2-NR_2 & \xrightarrow{H^*} CH_2 = N^*R_2 \end{array}$	酸性条件下进行,反应产物通常是
	曼尼希反应	制	$\begin{array}{c} \text{OH} \\ \text{R'C} = \text{CHR} + \text{CH}_2 = \text{N'R}_2 & \xrightarrow{-\text{H'}} & \text{R'CCH} - \text{CH}_2 \text{NR}_2 \\ & \text{R} \end{array}$	曼尼希碱盐酸盐
		实例	$ \begin{array}{c} O \\ \\ \end{array} \begin{array}{$	

化	学性质	代表反应	备 注	
氧化反应	醛的氧化	$\begin{array}{c} PhCH_2CHO \xrightarrow{CrO_3, CH_3CO_2H} \\ \hline & g # \% KMnO_4 \\ \hline \\ CHO \\ \hline & Ag_2O / THF \\ \hline & H_2O , 25 ^{\circ}C \\ \hline \\ CHO \\ \hline \\ OCH_3 \\ \hline \\ OH \\ \hline \\ CH_3CH = CHCHO \\ \hline \\ GFehling ixin \\ \hline \\ RCHO + Ag^{\dagger}(NH_3)_2OH \\ \hline \\ RCHO + Ag^{\dagger}(NH_3)_2OH \\ \hline \\ RCHO + Cu^{2+} + OH^{-} \longrightarrow RCOO^{-} + Cu_2O + RCHO + Cu_2O + RCHO + Cu_2O + Cu_2O + Cu_2O + $	醛很不Ga,CrO。Ag2O等化的氧化型。Ag2O等化酸剂量和的氧化型。 Tollens 鉴别 Tollens 鉴别 Eehling 鉴和 Fehling 鉴和 Kan	
	酮的氧化	□ HNO ₃ , V ₂ O ₅ CH ₂ CH ₂ COOH CH ₂ CH ₂ COOH CH ₂ CH ₂ COOH MATERIAL CH ₂ CH ₂ CH ₂ CH ₂ COOH MATERIAL CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ COOH MATERIAL CH ₂	结构对称的 环酮氧化可 得单一产物	
还原反应	羰基 还原成 亚甲基	Clemmensen 还原: PhCOCH ₂ CH ₂ CH ₃ Zn-Hg, HCl	适酸醛、 用稳酮 用稳酮 开定酮	

Zett.	-4	-
201 -	-2	ю.
- 14th	40	e

			
化	学性质	代表反应	备注
		催化氢化还原: R $C=O + H_2 \xrightarrow{Ni \text{ ig Pd ig Pt}} R$ R $CH-OH$ $CH_3CH=CHCHO + H_2 \xrightarrow{Ni} CH_3CH_2CH_2OH$	选择性不强,分子中存在的不饱和键也会被还原
还		Meerwein-Ponndorf 还原: $PhCH = CHCHO + (CH_3)_2CHOH \xrightarrow{Al[OCH(CH_3)_2]_5}$ $PhCH = CHCH_2OH + (CH_3)_2C = O$ $O_2N \xrightarrow{O} \xrightarrow{CCHCH_2OH} \xrightarrow{Al[OCH(CH_3)_2]_5} \xrightarrow{(CH_3)_2CHOH}$ $NHCOCHCl_2$ $O_2N \xrightarrow{O} \xrightarrow{OH} \xrightarrow{NHCOCHCl_2OH} \xrightarrow{NHCOCHCCHCL_2OH} \xrightarrow{NHCOCHCCHCL_2OH} \xrightarrow{NHCOCHCCHCL_2OH} \xrightarrow{NHCOCHCCHCCHCCHC} NHCOCHCCHCCHCCHCCHCCHCCHCCHCCHCCHCCHCCHCC$	具有高度的 选择性,只 还原醛、酶 的羰基
	羰基 还原成 醇羟基	金属氢化物还原: $CH_3CH = CHCHO + H_2 \xrightarrow{NaBH_4} CH_3CH = CHCH_2OH$ $CH_3(CH_2)_5CHO + H_2 \xrightarrow{(1) \text{ LiAlH}_4, \text{ Z}融} CH_3(CH_2)_5CH_2OH$	有较高的选择性,不还原分子中的碳碳不饱和键
		金属还原: $CH_3(CH_2)_3COCH_3 \xrightarrow{N_{4}, C_2H_3OH} CH_3(CH_2)_3CHCH_3$ $CH_3(CH_2)_4CHO \xrightarrow{Fe, CH_3CO_2H} CH_3(CH_2)_4CH_2OH$	
		酮的双分子还原: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	可用于制备邻二醇

续表

化	学性质	代表反应	备 注
还原反应	羰基还 原成醇 羟基	Cannizzaro 反应: $2HCHO \xrightarrow{\begin{subarray}{c} \hline{\&NaOH} \\ \hline{\&NaOH} \\ \hline{\end{subarray}} HCOONa + CH_3OH$ $2PhCHO \xrightarrow{\begin{subarray}{c} \hline{\&NaOH} \\ \hline{\&NaOH} \\ \hline{\end{subarray}} PhCOONa + PhCH_2OH$ CH_2OH CH_2OH CH_2OH CH_2OH $HOCH_2 \xrightarrow{\end{subarray}} CH_2OH$ $HOCH_2 \xrightarrow{\end{subarray}} CH_2OH$	反应限于不 含 α- 氢 原 子的醛 季戊四醇的 制备
其他反应	安息香宛应	OH O OH O OH OH OH OH O	生成α-羟基酮
	Wittig 反应	Ph_3P $\xrightarrow{RCH_2Br}$ Ph_3P^* $\xrightarrow{CH_2RBr}$ $\xrightarrow{phLi, THF}$ $\xrightarrow{gC_2H_5ON_8, DMF}$ Ph_3P^* \xrightarrow{C} \xrightarrow{HR} \xrightarrow{E} Ph_3P \xrightarrow{C} Ph_3P \xrightarrow{E} Ph_3P $$	Wittig 试剂的生成引入烯键,合成烯烃
	醛的聚合反应	3RCHO → R	甲醛易聚合 形成白色的 三聚甲醛或 多聚甲醛

五、醛和酮的制备

1	制备方法	代表反应	备 注
		HO CrO_3 , ₩H ₃ SO ₄ CrO_3 , ₩H ₃ SO ₄ CH_2 =CHCH ₂ OH $CrO_3 \cdot 2C_3H_3N$ CH_2 =CHCHO R'	选择性氧化剂CrO ₃ -吡啶可将伯醇氧化为醛
	醇的氧化	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	邻二醇氧 化反应 频哪醇重 排反应
官能团转化法	从烯烃和炔 烃制备	CH_3	
	芳烃侧链的 控制氧化	$\begin{array}{c c} & & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\ & & \\ \hline \\ & & \\ \\$	选择适当 氧化剂反应 条件 氧化剂用量、加力
	Rosenmund 还原	O R—C—Cl + H ₂	

1	制备方法	备方法 代表反应	
句	Friedel- Crafts 反应	ArH + RCOCl ———— ArCOR + HCl	制备芳酮
9分子中直接	Gattermann- Koch 反应	$ArH + CO + HCl \xrightarrow{CuCl, AlCl_3} ArCHO$ $CH_3 + CO + HCl \xrightarrow{CuCl, AlCl_3} CH_3 \longrightarrow CHO$ $50\% \sim 56\%$	制备芳醛
引入羰基	Reimer- Tiemann 反应	OH	制备酚醛

(-) α,β- 不饱和醛、酮的定义和结构

(二)α,β-不饱和醛、酮的化学性质

化学性质	代表反应	备 注
亲核加成反应	$PhCH = CHCOPh \xrightarrow{KCN} PhCHCH_{2}COPh$ CN $PhCH = CHCHO \xrightarrow{NaHSO_{3}} PhCHCH_{2}CHO$ $SO_{3}Na$ $CH_{2}COCH_{3} \xrightarrow{CH_{3}ONa} OCH_{3}$	与氢氰酸、亚硫酸氢钠或醇加成,一般以1,4-加成产物为主

// W/ / -			续表
化学	性质	代表反应	备 注
亲核加	1,4- 加 成 或 1,2- 加 成	$PhCH = CH - CH - CH \xrightarrow{(1) \text{ PhMgBr}} PhCH = CH - CH - Ph \\ 100\%$ $PhCH = CH - CH - CH_3 \xrightarrow{(1) \text{ PhMgBr}} Ph_2CH - CH_2C - CH_3 \\ 88\%$	与格氏试剂 加成,产物 取决于羰基 旁的烃基体 积大小
加成反应	1,2-加成	$CH_{2}=CH-\overset{O}{C}-CH_{3}\xrightarrow{(1)}\overset{C}{H_{3}O^{*}}CH_{2}=CH-\overset{O}{C}-C=CH$ $CH_{3}CH=CH-\overset{O}{C}-CH_{3}\xrightarrow{(1)}\overset{C}{C}H_{3}Li$ $CH_{3}CH=CH-\overset{O}{C}-CH_{3}\xrightarrow{(2)}\overset{(1)}{H_{3}O^{*}}CH_{3}CH=CH-\overset{O}{C}-CH_{3}$ $CH_{3}CH=CH-\overset{O}{C}-CH_{3}\xrightarrow{(2)}\overset{C}{H_{3}O^{*}}CH_{3}CH=CH-\overset{O}{C}-CH_{3}$	与有机锂、 有机钠作用, 产物以1,2- 加成为主
亲电反应	加成	$CH_2 = CHCHO + HCl(g) \longrightarrow ClCH_2CH_2CHO$ $CH_3CH = CH - C - CH_3 + Br_2 \longrightarrow CH_3CH - CH - C - CH_3$ $Br Br$	
插烯规则		$CH_{3}CH = CHCHO + CH_{3}CH = CHCHO$ OH OH $CH_{3}CH = CHCHCH_{2}CH = CHCHO$ $CH_{3}CH = CHCHCH= CHCHO$ $CH_{3}CH = CHCHCH= CHCHO$	甲基和醛基 之间插人一 个或若干个 乙烯基后性 质保持
Michael 加成		$CH_{2} = CHCOCH_{3} + CH_{2}(CO_{2}C_{2}H_{5})_{2} \xrightarrow{C_{2}H_{5}ONa} CH_{2}CH_{2}COCH_{3}$ $CH(CO_{2}C_{2}H_{5})_{2}$ $CH(CO_{2}C_{2}H_{5})_{2}$ $CH(CO_{2}C_{2}H_{5})_{2}$ O	α-氢原子必 须具有相当 的酸性 Robinson- annulation 环合

化学性质	代表反应	备 注
	$ \begin{array}{c c} & \leftarrow & CHO \\ \hline & \downarrow & \downarrow & CHO \\ \hline & \downarrow & \downarrow & \downarrow & CHO \\ \hline & \downarrow & \downarrow & \downarrow & CO_2C_2H_5 \\ \hline & \downarrow & \downarrow & \downarrow & CO_2C_2H_5 \\ \hline & \downarrow & \downarrow & CO_2C_2H_5 \\ \hline & \downarrow & \downarrow & CO_2C_2H_5 \\ \hline & CO_2C_2H_5 \\$	立体专一的顺式加成
与双烯的加成		产物主要为内型的
	OH LiAlH ₄ 98%	选择性还原
还原反应	$CH_3CH = CHCHO + H_2 \xrightarrow{\text{Pd/C}} \frac{O}{25\%}$ 100% $CH_3CH = CHCHO + H_2 \xrightarrow{\text{Ni}} \frac{Ni}{mk}, \text{加压} CH_3CH_2CH_2CH_2OH}$	控制氢气用 量和反应条 件,可选择 性地还原碳 碳双键
乙烯酮		乙烯酮是一 种有毒气体, 很容易聚合 成双乙烯酮

化学性质		代表反应	备注
乙烯酮	性质	$CH_{2} = C = O + H_{2}O \longrightarrow \begin{bmatrix} CH_{2} = C - OH \end{bmatrix} \longrightarrow CH_{3}COC$ $CH_{2} = C = O + ROH \longrightarrow \begin{bmatrix} CH_{2} = C - OH \end{bmatrix} \longrightarrow CH_{3}COC$ NH_{2}	乙烯酮是一种良好的乙酰化试剂
		$CH_2 = C = O + NH_3 \longrightarrow \begin{bmatrix} CH_2 = C - OH \end{bmatrix} \longrightarrow CH_3CONH_2$	

(李发胜)

