Apostol p.362 no.1

$$\int_{0}^{1} \int_{0}^{1} xy(x+y)dydx = \int_{0}^{1} \int_{0}^{1} (x^{2}y + xy^{2})dydx$$

$$= \int_{0}^{1} \left[\frac{1}{2}x^{2}y^{2} + \frac{1}{3}xy^{3} \right] \Big|_{y=0}^{y=1} dx$$

$$= \int_{0}^{1} (\frac{1}{2}x^{2} + \frac{1}{3}x)dx$$

$$= \left[\frac{1}{6}x^{3} + \frac{1}{6}x^{2} \right] \Big|_{x=0}^{x=1}$$

$$= \frac{1}{3}$$

Apostol p.362 no.9

Claim. If $Q = [a_1, b_1] \times [a_2, b_2]$ is a rectangle and all of $\iint_Q fg, \int f, \int g$ exist, then

$$\iint\limits_{O} f(x)g(y)dxdy = \left(\int f(x)dx\right)\left(\int g(y)dy\right)$$

Proof. Put

$$\int_{a_1}^{b_1} f(x)dx = F, \int_{a_2}^{b_2} g(y)dy = G$$

First, note that

$$\int_{a_1}^{b_1} f(x)g(y)dx = g(y) \int_{a_1}^{b_1} f(x)dx = F \cdot g(y)$$

$$\iint\limits_{Q} f(x)g(y)dxdy = \int_{a_2}^{b_2} \int_{a_1}^{b_1} f(x)g(y)dxdy$$
$$= \int_{a_2}^{b_2} Fg(y)dy$$
$$= F \int_{a_2}^{b_2} g(y)dy$$
$$= FG$$

Apostol p.363 no.14

Claim. Let $f: Q \to \mathbb{R}$ where $Q = [0,1] \times [0,1]$ be given by

$$f(x,y) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$

Then, $\iint_Q f = 0$.

Proof. To show that the integral exists, for any $\epsilon > 0$, let $\epsilon' = \frac{p}{q}$ where $p, q \in \mathbb{Z}_{>0}$ be $0 < \epsilon' < \epsilon$. Now, consider a partition of Q into q^2 subrectangles, where $R_{i,j} = \left[\frac{i-1}{q}, \frac{i}{q}\right] \times \left[\frac{j-1}{q}, \frac{j}{q}\right]$ where $1 \le i, j \le q$. Then, let

$$s(x,y) = 0$$
 and $t(x,y) = \begin{cases} 1 & (x,y) \in R_{i,j}, i = j \\ 0 & \text{otherwise} \end{cases}$

Note that if x = y, then $(x, y) \in \mathbb{R}_{c,c}$ where $c = \lfloor xq \rfloor = \lfloor yq \rfloor$. Then, we have that $s \leq f \leq t$, and that

$$\iint\limits_{Q}(t-s)=\iint\limits_{Q}t=\frac{1}{q^{2}}=\frac{1}{q}<\frac{p}{q}=\epsilon'=\epsilon$$

Thus, the integral exists; further, we have that $\iint_Q s = 0$, $\iint_Q t < \epsilon$ for any $\epsilon > 0$ which yields that

$$\iint\limits_{Q} s \le \iint\limits_{Q} f \le \iint\limits_{Q} t \implies 0 \le \iint\limits_{Q} f \le \epsilon \implies \iint\limits_{Q} f = 0$$

Apostol p.372 no.1

For drawings, see attached picture at end.

$$\iint_{S} x \cos(x+y) dx dy = \int_{0}^{\pi} \int_{0}^{x} x \cos(x+y) dy dx$$

$$= \int_{0}^{\pi} \left[-x \sin(x+y) \right] \Big|_{y=0}^{y=x} dx$$

$$= \int_{0}^{\pi} x (\sin(x) - \sin(2x)) dx$$

$$= \left[-x \cos(x) + \frac{1}{2} x \cos(x) + \sin(x) - \frac{1}{4} \sin(2x) \right] \Big|_{x=0}^{x=\pi}$$

$$= \frac{3\pi}{2}$$

Apostol p.372 no.7

$$\int_{1}^{3} \int_{-x}^{x} (x^{2} - y^{2}) dy dx = \int_{1}^{3} \left[x^{2}y - \frac{1}{3}y^{3} \right] \Big|_{y=-x}^{y=x} dx$$

$$= \int_{1}^{3} \frac{4}{3}x^{3} dx$$

$$= \left[\frac{1}{4}x^{4} \right] \Big|_{x=1}^{x=3}$$

$$= \frac{80}{3}$$

Apostol p.372 no.14

$$\int_{0}^{1} \int_{0}^{\log x} f(x, y) dy dx = \int_{0}^{1} \int_{e^{y}}^{e} f(x, y) dx dy$$

Problem 1

Fix $\epsilon > 0$, and suppose that $\exists \delta > 0 \mid |x-y| < \delta \implies |g(x,t)-g(y,t)| < \epsilon$ for all $t \in (0,1)$. Consider $t = 1 - \frac{\delta}{4\epsilon}$ and $y = x + \frac{\delta}{2}$. Then,

$$|g(x,t) - g(y,t)| = \left| \frac{x}{1-t} - \frac{y}{1-t} \right| = \frac{4\frac{\delta}{2}}{\delta}\epsilon = 2\epsilon > \epsilon$$

This gives \implies , so the lemma on uniform continuity needs not hold on open Q.

Problem 2

 \mathbf{a}

Claim.

$$f(x,y) = \chi_{\mathbb{Q}}(xy)$$

where $\chi_{\mathbb{Q}}$ is the indicator function on \mathbb{Q} , is not (Riemann) integrable on $S = [0, 1] \times [0, 1]$.

Proof. Consider any step function $s \leq f$. Suppose that s > 0 on some subrectangle $R = [x, x + \epsilon_1] \times [y, y + \epsilon_2] \subset S$. Then, from the density of the irrationals in \mathbb{R} , we have that $\exists x', y' \notin \mathbb{Q} \mid x < x' < x + \epsilon_1$ and $y < y' < y + \epsilon_2$. Then, f(x', y') = 0 and so s(x', y') > f(x', y').

Similarly, for any step function $t \geq f$, suppose t < 1 on some subrectangle $R = [x, x + \epsilon_1] \times [y, y + \epsilon_2] \subset S$. Then, from the density of \mathbb{Q} in \mathbb{R} , we have that $\exists x', y' \in \mathbb{Q} \mid x < x' < x + \epsilon_1$ and $y < y' < y + \epsilon_2$. Then, f(x', y') = 1 and so t(x', y') < f(x', y').

Thus, from the comparison theorem $\int_S s \leq \int_S 0 = 0$, and $\int_S t \geq \int_S 1 = 1$, such that $\underline{I}(f) = 0 \neq \overline{I}(f) = 1$. Thus, f is not integrable.

b

Claim.

$$g(x,y) = \begin{cases} 0 & y < \frac{1}{2}, y > \frac{1}{2} \\ \chi_{\mathbb{Q}}(x) & y = \frac{1}{2} \end{cases}$$

where $\chi_{\mathbb{Q}}$ is the indicator function on \mathbb{Q} , has that $\int_0^1 g(x,y)dy$ exists for any fixed x, but $\int_0^1 g(x,y)dx$ does not for $y=\frac{1}{2}$.

Proof.

$$\int_0^1 g(x, \frac{1}{2}) dx = \int_0^1 \chi_{\mathbb{Q}}(x)$$

which is not integrable as shown in the first semester.

For $\int_0^1 g(x,y)dy$, we can directly compute the integral to be 0; for any $\epsilon > 0$, consider that we can get the step functions

$$s(y) = \begin{cases} -\frac{\epsilon}{3} & y < \frac{1}{2}, y > \frac{1}{2} \\ 0 & y = \frac{1}{2} \end{cases} \text{ and } t(y) = \begin{cases} \frac{\epsilon}{3} & y < \frac{1}{2}, y > \frac{1}{2} \\ 1 & y = \frac{1}{2} \end{cases}$$

such that $s \leq f \leq t$. Then, we have that

$$\int (t-s) = \frac{2\epsilon}{3} < \epsilon$$

which implies that f is integrable.

 \mathbf{c}

Claim.

$$h(x,y) = \chi_{\mathbb{Q}}(x)$$

where $\chi_{\mathbb{Q}}$ is the indicator function on \mathbb{Q} , has that $\int_0^1 h(x,y)dy$ exists for any fixed x, but $\int_0^1 \int_0^1 h(x,y)dxdy$ does not exist.

Proof. Note that

$$\int_0^1 h(x,y)dy = \begin{cases} \int_0^1 1dy & x \in \mathbb{Q} \\ \int_0^1 0dy & x \notin \mathbb{Q} \end{cases} = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases} = \chi_{\mathbb{Q}}(x)$$

So the integral $\int_0^1 h(x,y)dy$ exists. $\int_0^1 \int_0^1 h(x,y)dxdy$ does not exist by reasoning similar to part a of this question.

Consider any step function $s \leq h$. Suppose that s > 0 on some subrectangle $R = [x, x + \epsilon_1] \times [y, y + \epsilon_2] \subset S$. Then, from the density of the irrationals in \mathbb{R} , we have that $\exists x' \notin \mathbb{Q} \mid x < x' < x + \epsilon_2$. Then, $h(x', y + \frac{\epsilon_2}{2}) = 0$ and so $s(x', y + \frac{\epsilon_2}{2}) > h(x', y + \frac{\epsilon_2}{2})$.

Similarly, for any step function $t \geq h$, suppose t < 1 on some subrectangle $R = [x, x + \epsilon_1] \times [y, y + \epsilon_2] \subset S$. Then, from the density of \mathbb{Q} in \mathbb{R} , we have that $\exists x' \in \mathbb{Q} \mid x < x' < x + \epsilon_1$ Then, $h(x', y + \frac{\epsilon_2}{2}) = 1$ and so $t(x', y + \frac{\epsilon_2}{2}) < h(x', y + \frac{\epsilon_2}{2})$.

Thus, from the comparison theorem $\int_S s \leq \int_S 0 = 0$, and $\int_S t \geq \int_S 1 = 1$, such that $\underline{I}(f) = 0 \neq \overline{I}(f) = 1$. Thus, f is not integrable.

Problem 4

 \mathbf{a}

Claim. For S, T disjoint bounded subsets of \mathbb{R}^n and $f : \mathbb{R}^n \to \mathbb{R}$, if $\int_S f$ and $\int_T f$ exist, then $\int_{S \cup T} f = \int_S f + \int_T f$.

Proof. Let $S \subset Q_S, T \subset Q_T$ where Q_S, Q_T are closed rectangles. Then, if $Q_S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ and $Q_T = [c_1, d_1] \times \cdots \times [c_n, d_n]$, consider

$$Q = [\min\{a_1, c_1\}, \max\{b_1, d_1\}] \times \cdots [\min\{a_b, c_b\}, \max\{b_b, d_b\}]$$

Then, Q is a closed rectangle such that $Q_s, Q_T \subset Q$.

Now consider the extension by zero functions $f_S, f_T, f_U : Q \to \mathbb{R}$.

$$f_S(x) = \begin{cases} f(x) & x \in S \\ 0 & \text{otherwise} \end{cases}$$

$$f_T(x) = \begin{cases} f(x) & x \in T \\ 0 & \text{otherwise} \end{cases}$$

$$f_U(x) = \begin{cases} f(x) & x \in S \cup T \\ 0 & \text{otherwise} \end{cases}$$

Then by definition, $\int_S f = \int_Q f_S$, $\int_T f = \int_Q f_T$, $\int_{S \cup T} f = \int_Q f_U$.

Note that

$$f_S(x) + f_T(x) = \begin{cases} f_S(x) + f_T(x) & x \in S \\ f_S(x) + f_T(x) & x \in T \\ f_S(x) + f_T(x) & \text{otherwise} \end{cases} = \begin{cases} f(x) + 0 & x \in S \\ 0 + f(x) & x \in T \\ 0 + 0 & \text{otherwise} \end{cases}$$

as S, T are disjoint. Then, additivity of the integral yields $\int_Q (f_S + f_T) = \int_Q (f_U)$, which gives us the desired result.

b

Claim. For S, T bounded subsets of \mathbb{R}^n which intersect in a hyperplane $x_i = c$ and $f : \mathbb{R}^n \to \mathbb{R}$, if $\int_S f$ and $\int_T f$ exist, then $\int_{S \cup T} f = \int_S f + \int_T f$.

Proof. Take the same definition for Q as above. We will prove that $\int_Q g = 0$ where

$$g(x) = \begin{cases} f(x) & x \in S \cap T \\ 0 & \text{otherwise} \end{cases}$$

where $S \cap T$ is a subset of the hyperplane $x_i = c$.

Consider $s \leq g \leq t$ where s, t are step functions $Q \to \mathbb{R}$.

Then, $s \leq 0$. Consider any subrectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$. In particular, if $c \notin [a_i, b_i]$, then we have that f = 0 on R; if $c \in [a_i, b_i]$, then $x = (\frac{a_1 + b_1}{2}, \frac{a_2 + b_2}{2}, \dots, c + \epsilon, \dots, \frac{a_{n-1} + b_{n-1}}{2}, \frac{a_n + b_n}{2}) \in R$, where $c + \epsilon \in [a_i, b_i]$, $\epsilon \neq 0$ and we have that $f(x) = 0, s(x) \leq 0$ and thus $s \leq 0$ on any subrectangle R.

Further, $t \leq 0$. Consider any subrectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$. In particular, if $c \notin [a_i, b_i]$, then we have that f = 0 on R; if $c \in [a_i, b_i]$, then $x = (\frac{a_1 + b_1}{2}, \frac{a_2 + b_2}{2}, \dots, c + \epsilon, \dots, \frac{a_{n-1} + b_{n-1}}{2}, \frac{a_n + b_n}{2}) \in R$ where $c + \epsilon \in [a_i, b_i], \epsilon \neq 0$, and we have that $f(x) = 0, t(x) \geq 0$ and thus $t \geq 0$ on any subrectangle R.

We give now s, t such that $\int_Q s = \int_Q t = 0$. If f is bounded by K on Q,

$$Q = [a_1, b_1] \times \cdots \times [a_n, b_n]$$

define

$$Q_s = [a_1, b_i] \times \cdots \times [a_i, c] \times \dots [a_n, b_n]$$
$$Q_t = [a_1, b_i] \times \cdots \times [c, b_i] \times \dots [a_n, b_n]$$

and

$$s = \begin{cases} 0 & x \in Q_s \\ 0 & x \in Q_t \\ -K & x_i = c \end{cases}$$
$$t = \begin{cases} 0 & x \in Q_s \\ 0 & x \in Q_t \\ K & x_i = c \end{cases}$$

Then, we have that $\underline{I}(g) = \overline{I}(g) = 0$.

Take the same definitions for Q, f_S, f_T, f_U as part a. Then, we have that $f_S + f_T - g = f_U$, which then gives that

$$\int_{Q} (f_S + f_T - g) = \int_{Q} f_S + \int_{Q} f_T - 0 = \int_{Q} f_U \implies \int_{S} f + \int_{T} f = \int_{S \cup T} f$$

