Solución General del Potencial - Separacion de Variables

May 10, 2025

1 Coordenadas Cartesianas

1.1 Base en x, y

Espacio acotado

$$\Phi(x,y,z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{b}\right) \left[A_{nm} e^{+\kappa_{nm}z} + B_{nm} e^{-\kappa_{nm}z}\right], \quad \kappa_{nm} = \sqrt{\left(\frac{n\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2}.$$
(1)

Espacio no acotado

$$\Phi(x, y, z) = \iint_{-\infty}^{\infty} e^{i(k_x x + k_y y)} \left[A(k_x, k_y) e^{+\kappa z} + B(k_x, k_y) e^{-\kappa z} \right] \frac{dk_x dk_y}{(2\pi)^2}, \quad \kappa = \sqrt{k_x^2 + k_y^2}.$$
(2)

1.2 Base en x, z

Espacio acotado

$$\Phi(x,y,z) = \sum_{n=1}^{\infty} \sum_{p=1}^{\infty} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{p\pi z}{c}\right) \left[C_{np} e^{+\kappa'_{np}y} + D_{np} e^{-\kappa'_{np}y}\right], \quad \kappa'_{np} = \sqrt{\left(\frac{n\pi}{a}\right)^2 + \left(\frac{p\pi}{c}\right)^2}.$$
(3)

Espacio no acotado

$$\Phi(x,y,z) = \iint_{-\infty}^{\infty} e^{i(k_x x + k_z z)} \left[C(k_x, k_z) e^{+\kappa' y} + D(k_x, k_z) e^{-\kappa' y} \right] \frac{dk_x dk_z}{(2\pi)^2}, \quad \kappa' = \sqrt{k_x^2 + k_z^2}.$$
(4)

1.3 Base en y, z

Espacio acotado

$$\Phi(x,y,z) = \sum_{m=1}^{\infty} \sum_{p=1}^{\infty} \sin\left(\frac{m\pi y}{b}\right) \sin\left(\frac{p\pi z}{c}\right) \left[E_{mp} e^{+\kappa''_{mp}x} + F_{mp} e^{-\kappa''_{mp}x}\right], \quad \kappa''_{mp} = \sqrt{\left(\frac{m\pi}{b}\right)^2 + \left(\frac{p\pi}{c}\right)^2}.$$
(5)

Espacio no acotado

$$\Phi(x,y,z) = \iint_{-\infty}^{\infty} e^{i(k_y y + k_z z)} \left[E(k_y, k_z) e^{+\kappa'' x} + F(k_y, k_z) e^{-\kappa'' x} \right] \frac{dk_y dk_z}{(2\pi)^2}, \quad \kappa'' = \sqrt{k_y^2 + k_z^2}.$$
(6)

2 Coordenadas Cilíndricas

En coordenadas cilíndricas (ρ, φ, z) la separación da siempre un modo angular $e^{im\varphi}$ $(m \in \mathbb{Z})$ y una parte radial y otra en z. En φ siempre tenemos base

2.1 Base en φ, ρ

En esta base se toma $Q_{\nu}(\varphi) = e^{i\nu\varphi}, \ \nu \in \mathbb{Z}.$

Espacio acotado: $\rho \in [0, a], \varphi \in [0, 2\pi]$ Se imponen $R(\rho = a) = 0$, de modo que los ceros discretos vienen de $\alpha_{\nu n} = n$ -ésimo cero de J_{ν} . Definimos $\kappa_{\nu n} = \alpha_{\nu n}/a$.

$$\Phi(\rho, \varphi, z) = \sum_{\nu = -\infty}^{\infty} \sum_{n=1}^{\infty} \left[E_{\nu n} e^{+\kappa_{\nu n} z} + F_{\nu n} e^{-\kappa_{\nu n} z} \right] J_{\nu} \left(\alpha_{\nu n} \frac{\rho}{a} \right) e^{i\nu \varphi}.$$

Espacio no acotado: $\rho \in [0, \infty), \ \varphi \in [0, 2\pi]$ El espectro radial es ahora continuo $k \geq 0$; definimos $\kappa = k$.

$$\Phi(\rho, \varphi, z) = \sum_{\nu = -\infty}^{\infty} \int_0^{\infty} \left[E_{\nu}(k) e^{+kz} + F_{\nu}(k) e^{-kz} \right] J_{\nu}(k \, \rho) e^{i\nu\varphi} \, \frac{k \, dk}{2\pi}.$$

2.2 Base en φ, z

Aquí se separa φ y z, quedando ρ como variable restante.

Espacio acotado: $\varphi \in [0, 2\pi], z \in [0, c]$ Modos angulares $e^{i\nu\varphi}$ y longitudinales $\sin(n\pi z/c)$. Para finitud en $\rho = 0$ y ceros en $\rho = a$, usamos ceros de I_{ν} o K_{ν} según la BC. Definimos $\beta_{\nu n} = n$ -ésimo cero de la función radial en $\rho = a$.

$$\Phi(\rho, \varphi, z) = \sum_{\nu = -\infty}^{\infty} \sum_{n=1}^{\infty} D_{\nu n} I_{\nu} (\beta_{\nu n} \rho) e^{i\nu \varphi} \sin(\frac{n\pi z}{c}).$$

Espacio no acotado: $\varphi \in [0, 2\pi], z \in (-\infty, \infty)$ Para decaimiento radial usamos los K_{ν} .

$$\Phi(\rho, \varphi, z) = \sum_{\nu = -\infty}^{\infty} \int_{-\infty}^{\infty} G_{\nu}(k_z) K_{\nu}(\kappa \rho) e^{i\nu\varphi} e^{ik_z z} \frac{dk_z}{2\pi}, \quad \kappa = \sqrt{k_z^2}.$$

3 Coordenadas Esféricas

En coordenadas esféricas (r, θ, φ) se separa en $\Phi \sim Q_m(\varphi) \Theta_{\ell m}(\theta) R(r)$, con $Q_m(\varphi) = e^{im\varphi}$, $m \in \mathbb{Z}$, y $\Theta_{\ell m}(\theta) = P_{\ell}^m(\cos \theta)$, $\ell \geq |m|$.

3.1 Base en φ, θ

Espacio acotado: $\varphi \in [0, 2\pi], \theta \in [0, \pi]$ Modos angulares discretos:

$$Q_m(\varphi) = e^{im\varphi}, \quad \Theta_{\ell m}(\theta) = P_{\ell}^m(\cos\theta), \quad m = -\ell, \dots, \ell, \ \ell = 0, 1, 2, \dots$$

La parte radial satisface

$$r^{2}R'' + 2rR' - \ell(\ell+1)R - \lambda r^{2}R = 0.$$

$$\Phi(r,\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \left[A_{\ell m} r^{\ell} + B_{\ell m} r^{-(\ell+1)} \right] P_{\ell}^{m}(\cos\theta) e^{im\varphi}.$$

Espacio no acotado: $\varphi \in [0, 2\pi], \ \theta \in [0, \pi]$ Para el caso Helmholtz $\lambda = -k^2$:

$$\Phi(r,\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_0^{\infty} \left[A_{\ell m}(k) j_{\ell}(kr) + B_{\ell m}(k) n_{\ell}(kr) \right] P_{\ell}^m(\cos\theta) e^{im\varphi} \frac{2k^2 dk}{\pi}.$$

Para Helmholtz modificado $\lambda = +\kappa^2$, reemplaza j_{ℓ}, n_{ℓ} por i_{ℓ}, k_{ℓ} .

3.2 Base en φ, r

Espacio acotado: $\varphi \in [0, 2\pi], r \in [0, R]$ Modos azimutales y discretos en r:

$$Q_m(\varphi) = e^{im\varphi}, \quad R_{mn}(r) = j_m(\alpha_{mn} \frac{r}{R}),$$

donde α_{mn} es el *n*-ésimo cero de j_m . La parte $\Theta(\theta)$ satisface $(1/\sin\theta)(\sin\theta\Theta')' + [\ell(\ell+1)]\Theta = 0$, así:

$$\Phi(r,\theta,\varphi) = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} C_{mn} j_m \left(\alpha_{mn} \frac{r}{R}\right) e^{im\varphi} P_m(\cos\theta).$$

Espacio no acotado: $\varphi \in [0, 2\pi], r \in [0, \infty)$ Aquí r continuo y $\Theta = P_m$:

$$\Phi(r,\theta,\varphi) = \sum_{m=-\infty}^{\infty} \int_0^{\infty} D_m(k) h_m^{(1)}(kr) e^{im\varphi} P_m(\cos\theta) \frac{2k^2 dk}{\pi},$$

con $h_m^{(1)}$ ondas salientes (o usa $h_m^{(2)}$ para entrantes).