

Université Internationale de Casablanca

LAUREATE INTERNATIONAL UNIVERSITIES

Cours exposé

TRANSMISSION

email: nasser_baghdad @ yahoo.fr

TRANSMISSION

Sommaire

Chapitre I: Modulation AM

Chapitre II: Démodulation AM

Chapitre III: Modulation FM

Chapitre IV: Démodulation FM

TRANSMISSION

Modulation Analogique Continue

Chapitre. III

La modulation FM

Principe de la modulation FM

Pour produire un signal modulé en fréquence, il faut ;

$$e_0(t) = E\cos(\omega_0 t + \varphi)$$

- □ une porteuse sinusoïdale $e_0(t)$:
- une information basse fréquence s(t) qui peut être un signal audiofréquence, vidéo, analogique ou numérique
- ▶ La fréquence instantanée de la porteuse modulée varie avec s(t) :

$$f(t) = f_0 + k s(t)$$

- ► Les principales caractéristiques du signal FM sont :
 - l'amplitude de la porteuse reste constante
 - \Box si s(t) = 0, la porteuse émise est sinusoïdale de fréquence f_0
 - si s(t) < 0, la fréquence f₁ de la porteuse est inférieure à f₀</p>
 - □ si s(t) > 0, la fréquence f_2 de la porteuse est supérieure à f_0
 - □ la variation de fréquence par rapport à f₀ s'appelle la déviation

Remarque:

- ► Quand on parle de la fréquence d'émission d'un émetteur FM, on parle toujours de la fréquence f₀ de la porteuse non modulée :
- □ l'émetteur d'une maison d'émission radio sur 95,7 MHz
- \square pendant un silence, il émet une sinusoïde à f₀ = 95,7 MHz
- modulé par la parole ou la musique, il émet une sinusoïde dont la fréquence est légèrement supérieure ou inférieure à f₀

Les modulations angulaires

▶ La fréquence instantanée de la porteuse modulée FM s'écrit :

$$f(t) = f_0 + k s(t)$$

on passe aisément de la fréquence à la pulsation instantanée :

$$\omega(t) = 2\pi f(t) = \omega_0 + 2\pi k s(t)$$

puis à la phase en intégrant la pulsation :

$$\theta(t) = \int \omega(t) dt = 2\pi \int f(t) dt = \omega_0 t + 2\pi k \int s(t) dt$$

parce que l'information s(t) est inscrite dans la phase $\theta(t)$ (ou angle), on dit que la FM est une modulation angulaire

$$e(t) = E\cos\theta(t) = E\cos(\omega_0 t + 2\pi k \int s(t) dt + \omega) :$$

Remarques:

□ la modulation de phase PM utilisée pour les <u>transmissions numériques</u>, est aussi une <u>modulation angulaire</u>

$$e(t) = E\cos(\omega_0 t + k s(t) + \varphi)$$
 : PM

si <u>on intègre</u> le signal BF avant de moduler l'émétteur PM, la <u>modulation de phase</u> devient une modulation de fréquence FM

Production d'un signal FM

- ► Pour émettre en modulation de fréquence il faut produire un signal sinusoïdal d'amplitude constante E et de fréquence f(t) variable.
- □ ce signal est toujours produit par un oscillateur commandé en tension (Voltage Commanded Oscillator : VCO)
- une polarisation continue V₀ fixe le point de fonctionnement à f(t) = f₀
- en superposant le signal basse fréquence s(t), on fait varier la fréquence :

$$f(t) = f_0 + k s(t)$$

Excursion en fréquence

- Si on admet que le signal modulant ne dépasse pas S_{max} en valeur absolue, alors :
- la fréquence de la porteuse varie entre $f_{\text{max}} = f_0 + k S_{\text{max}}$ et $f_{\text{min}} = f_0 k S_{\text{max}}$

$$f_{\text{max}} = f_0 + k S_{\text{max}}$$

$$\mathbf{et} \ f_{\min} = f_0 - k \, S_{\max}$$

la quantité k S_{max} est appelée excursion en fréquence et est notée Δf

$$\Delta f = k S_{\text{max}}$$

Excursion en fréquence

Exemple:

- □ l'émetteur d'une maison d'émission radio est à f_0 = 95,7 MHz, et l'excursion standard en radiodiffusion est Δf = + ou 75 kHz
- □ la fréquence du signal émis varie donc entre $f_{max} = 95,775$ MHz et $f_{min} = 95,625$ MHz
- \square la valeur S_{max} n'est pas une limite absolue et est dépassée lors des pointes de modulation (musique fff, percussions ...)

Indice de modulation

- Plaçons nous dans le cas particulier où le signal modulant s(t) est sinusoïdal de fréquence F: $S(t) = S_{\text{max}} \cos(\Omega t)$
- □ la fréquence instantanée (d'après le principe de la FM) s'écrit :

$$f(t) = f_0 + k s(t) = f_0 + k S_{\text{max}} \cos(\Omega t) = f_0 + \Delta f \cos(\Omega t) \Delta f = k S_{\text{max}}$$

□ la pulsation instantanée s'en déduit et s'écrit :

$$\omega(t) = 2 \pi f(t) = 2 \pi f_0 + 2 \pi k S_{\text{max}} \cos(\Omega t) = \omega_0 + 2 \pi \Delta f \cos(\Omega t)$$

la phase instantanée se calcule facilement :

$$\theta(t) = \int \omega(t)dt = \int (\omega_0 + 2\pi\Delta f \cos\Omega t) = \omega_0 t + 2\pi\Delta f \frac{\sin(\Omega t)}{\Omega}$$

et la porteuse modulée a pour expression :

$$e(t) = E\cos(\theta(t)) = E\cos(\omega_0 t + \frac{\Delta f}{F}\sin 2\pi Ft) = E\cos(\omega_0 t + m.\sin \Omega t)$$

- ▶ On définit l'indice de modulation par : $m = \frac{\Delta f}{F}$
- ► Pour une fréquence modulante F donnée, l'indice de modulation augmente donc avec l'excursion en fréquence.

Indice de modulation

Exemples:

- □ les émissions FM dans la <u>bande CB</u> sont dites à <u>faible excursion</u> : avec $\Delta f = \pm 1$ kHz et F = 1 kHz, alors m = 1
- les émissions de <u>radiodiffusion dans la bande FM</u> sont à <u>excursion moyenne</u>: avec $\Delta f = \pm 75$ kHz et F = 10 kHz, alors m = 7
- les <u>satellites TV</u> travaillent à <u>forte excursion</u> dans la bande des 10 GHz : $\Delta f = \pm 9$ MHz et F = 1 MHz alors m = 9

Spectre d'un signal FM

- ► Le spectre d'un signal FM est complexe et ne se calcule que dans le cas particulier où le signal basse fréquence est <u>sinusoïdal</u>.
- La porteuse modulée s'écrit dans ce cas : $e(t) = E \cos(\omega_0 t + m \sin \Omega t)$
- ► Elle peut, dans ce cas particulier, se décomposer grâce aux fonctions de Bessel :

$$e(t) = E.J_0(m).\cos(\omega_0 t + \varphi_0) + E.J_1(m).\cos((\omega_0 \pm \Omega)t + \varphi_1) + E.J_2(m).\cos((\omega_0 \pm 2\Omega)t + \varphi_2) + ...$$

où $J_0(m)$, $J_1(m)$, $J_2(m)$... sont les fonctions de Bessel dont la valeur dépend de m.

Les fonctions de Bessel

► Les fonctions de Bessel sont données sous forme de <u>courbes paramétrées en m</u> ou par un <u>tableau</u> donnant les valeurs des fonctions pour quelques valeurs particulières de m.

m	Jo	J ₁	J_2	Jз	J ₄	J ₅	J ₆	J ₇	J ₈	J ₉	J ₁₀
0,00	1,00										
0,25	0,98	0,12									
0,5	0,94	0,24	0,03								
1,0	0,77	0,44	0,11	0,02							
1,5	0,51	0,56	0,23	0,06	0,01						
2,0	0,22	0,58	0,35	0,13	0,03						
2,5	-0,05	0,50	0,45	0,22	0,07	0,02					
3,0	-0,26	0,34	0,49	0,31	0,13	0,04	0,01				
4,0	-0,40	-0,07	0,36	0,43	0,28	0,13	0,05	0,02			
5,0	-0,18	-0,33	0,05	0,36	0,39	0,26	0,13	0,05	0,02		
6,0	0,15	-0,28	-0,24	0,11	0,36	0,36	0,25	0,13	0,06	0,02	
7,0	0.30	0,00	-0,30	-0,17	0,16	0,35	0,34	0,23	0,13	0,06	0,02
8,0	0,17	0,23	-0,11	-0,29	-0,10	0,19	0,34	0,32	0,22	0,13	0,06

Spectre d'un signal FM

- ► Une porteuse f₀ modulée par un signal basse-fréquence sinusoïdal de fréquence F a un spectre caractérisé par :
- □ une raie à la fréquence de la porteuse f₀ d'amplitude J₀ E
- deux raies à f_0 + F et f_0 F d'amplitude J_1 E , deux raies à f_0 + 2F et f_0 2F d'amplitude J_2 E ...
- □ le spectre est donc centré sur f₀ et symétrique et la bande occupée B se mesure sur le spectre
- si m > 4, B peut être calculée par la <u>formule de Carson</u> qui donne une estimation de B à <u>98% de la puissance totale</u>

Puissance transportée par un signal FM

► Le signal FM est appliqué à l'antenne qui se comporte vis-à-vis de l'amplificateur de sortie comme une charge résistive R :

□ le signal appliqué à l'antenne est constitué d'une tension sinusoïdale de fréquence variable :

$$e(t) = E\cos(\omega_0 t + 2\pi k \int s(t) dt)$$

la puissance dissipée dans une résistance ne dépend pas de la fréquence et vaut :

$$P = \frac{\left(\frac{E}{\sqrt{2}}\right)^2}{R} = \frac{E^2}{2R}$$

Puissance transportée par un signal FM

Exemple:

E = 50V, $f_0 = 100$ MHz, $\Delta f = \pm 75$ kHz, antenne $R = 50\Omega$

La puissance totale émise vaut : P = E/2R = 25 W

- □ les émetteurs FM émettent en permanence une puissance constante, même en l'absence de signal modulant
- □ ils ne sont donc pas particulièrement économiques au niveau de leur consommation, sauf si on prévoit <u>une interruption</u> de l'émission durant <u>les silences</u> (cas du GSM)

Principe du VCO

Modulateur FM à quartz

- ► Pour stabiliser la fréquence centrale f₀ du modulateur FM, on peut utiliser un oscillateur à <u>quartz</u> commandé en tension :
- □ l'oscillateur s'appelle alors VCXO (*Voltage Commanded Xtal Oscillator*)
- la variation de fréquence se fait en utilisant une diode varicap
- □ la varicap a une capacité de jonction C qui dépend de la tension inverse appliquée
 u(t)
- □ la fréquence d'oscillation est déterminée par les caractéristiques du quartz et la

Production d'un signal FM avec une porteuse fo

Production d'un signal FM avec plusieurs porteuses

Exercice n°1

On considère le signal modulé en fréquence dont l'expression est :

$$e(t) = 10 \cos[6283200 t - 5\cos(3141 t)]$$

Déterminer :

- 1) l'expression de sa fréquence instantanée f(t)
- 2) la fréquence f₀ de la porteuse
- 3) la fréquence F du signal modulant
- 4) l'excursion en fréquence Δf
- 5) l'indice de modulation m
- 6) l'allure du spectre du signal modulé
- 7) son encombrement spectral B
- 9) sa puissance sur une antenne $R = 50 \Omega$

Exercice n°2

► Pour fabriquer un signal modulé en fréquence, on utilise un VCO ayant la caractéristique suivante :

On applique à l'entrée de ce VCO le signal $x(t) = 5 + 0.5\cos(2\pi F t)$ avec F = 10 kHz.

- 1) Calculer la fréquence centrale f_0 du signal en sortie et son excursion en fréquence Δf .
- 2) En déduire l'indice de modulation m. Les fréquences f_{max} et f_{min} . Expression de y(t).
- 3) Sachant que le VCO fournit en sortie une tension d'amplitude 5V, tracer le spectre du signal y(t) produit par le VCO et en déduire la largeur de bande B occupée par ce signal.
- 4) Ce signal est envoyé sur l'antenne de résistance $R = 50\Omega$ après avoir traversé un ampli de gain G = 40 dB. Calculer la puissance totale émise P.
- 5) Expression d'une PM. Comparaison des deux modulations PM et FM

Tableau des fonctions de Bessel

m	Jo	J ₁	J_2	J ₃	J_4	J ₅	J ₆	J ₇	J ₈	J ₉	J ₁₀
0,00	1,00										
0,25	0,98	0,12									
0,5	0,94	0,24	0,03								
1,0	0,77	0,44	0,11	0,02							
1,5	0,51	0,56	0,23	0,06	0,01						
2,0	0,22	0,58	0,35	0,13	0,03						
2,5	-0,05	0,50	0,45	0,22	0,07	0,02					
3,0	-0,26	0,34	0,49	0,31	0,13	0,04	0,01				
4,0	-0,40	-0,07	0,36	0,43	0,28	0,13	0,05	0,02			
5,0	-0,18	-0,33	0,05	0,36	0,39	0,26	0,13	0,05	0,02		
6,0	0,15	-0,28	-0,24	0,11	0,36	0,36	0,25	0,13	0,06	0,02	
7,0	0.30	0,00	-0,30	-0,17	0,16	0,35	0,34	0,23	0,13	0,06	0,02
8,0	0,17	0,23	-0,11	-0,29	-0,10	0,19	0,34	0,32	0,22	0,13	0,06

m	Jo	J ₁	J_2	J ₃	J ₄	J ₅	J ₆	J_7	J ₈	Jg	J ₁₀			
0,00	1,00													
0,25	0,98	0,12					7 0.11	1 0	4.	1 D				
0,5	0,94	0,24	0,03				Tableau des fonctions de Bessel							
1,0	0,77	0,44	0,11	0,02										
1,5	0,51	0,56	0,23	0,06	0,01									
2,0	0,22	0,58	0,35	0,13	0,03									
2,5	-0,05	0,50	0,45	0,22	0,07	0,02								
3,0	-0,26	0,34	0,49	0,31	0,13	0,04	0,01							
4,0	-0,40	-0,07	0,36	0,43	0,28	0,13	0,05	0,02						
5,0	-0,18	-0,33	0,05	0,36	0,39	0,26	0,13	0,05	0,02					
6,0	0,15	-0,28	-0,24	0,11	0,36	0,36	0,25	0,13	0,06	0,02				
7,0	0.30	0,00	-0,30	-0,17	0,16	0,35	0,34	0,23	0,13	0,06	0,02			
8,0	0,17	0,23	-0,11	-0,29	-0,10	0,19	0,34	0,32	0,22	0,13	0,06			

Exercice n°3

Un récepteur FM est destiné à recevoir les émissions de la bande FM ayant les caractéristiques suivantes :

- fréquence f₁ de la porteuse comprise entre 88 et 108 MHz
- signal BF limité à $F_{max} = 15 \text{ kHz}$
- largeur de bande maximale occupée par le spectre du signal modulé $B_0 = 300 \text{ kHz}$

On décide de placer l'oscillateur local en-dessous de la fréquence à recevoir et le filtre fi est un filtre céramique standard centré sur fi = 10,7 MHz.

- 1) On souhaite recevoir Radio Mars émettant sur Essaouira à $f_1 = 95,7$ MHz. Calculer la valeur de l'oscillateur local f_0 et la fréquence image de Radio Mars f_2 .
- 2) Que faut-il prévoir pour éviter la réception d'une éventuelle émission à la fréquence image ? Quelles doivent être les caractéristiques du filtre d'entrée ? du filtre de fréquence intermédiaire ?
- 3) Pour recevoir la totalité de la bande FM, quelle doit être la plage de fréquences couverte par l'oscillateur local ?
- 4) Quelle est la bande image de la bande FM ?
- 5) Quel est le rôle du limiteur ? A quelle fréquence travaille le démodulateur si on reçoit Radio Mars ? et si on reçoit Hit Radio à 91,6 MHz ? Quelle doit être la bande passante de l'amplificateur basse-fréquence ?