Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
 horcik@cs.cas.cz
 www.cs.cas.cz/~horcik

Existenční a univerzální uzávěr

Definice

Nechť $\varphi(x_1,\ldots,x_n)$ je formule a x_1,\ldots,x_n jsou její volné proměnné (tj. proměnné, které mají volný výskyt ve φ). Pak sentence tvaru $\exists x_1 \cdots \exists x_n \varphi(x_1,\ldots,x_n)$ se nazývá existenční uzávěr formule φ a $\forall x_1 \cdots \forall x_n \varphi(x_1,\ldots,x_n)$ univerzální uzávěr formule φ .

Definice

Nechť $\varphi(x_1,\ldots,x_n)$ je formule a **A** struktura. Pak $\mathbf{A}\models\varphi(x_1,\ldots,x_n)$ právě tehdy, když $\mathbf{A}\models\forall x_1\cdots\forall x_n\varphi(x_1,\ldots,x_n)$. Slovně řečeno, formule $\varphi(x_1,\ldots,x_n)$ je pravdivá (platí) ve struktuře **A** právě tehdy, když tam platí její univerzální uzávěr.

Tautologie, kontradikce, splnitelná formule

Definice

Mějme formuli φ . Struktura **A**, ve které je φ pravdivá, se nazývá model formule φ .

Definice

Formule φ se nazývá

- tautologie, jestliže je pravdivá v každé struktuře (každá struktura je model),
- splnitelná, jestliže je pravdivá alespoň v jedné struktuře (existuje model),
- nesplnitelná (kontradikce), jestliže je nepravdivá v každé struktuře (neexistuje model).

Příklady

- $(\forall x \ P(x)) \land \neg(\forall x \ P(x))$ je kontradikce (dosazení do výrokové kontradikce $p \land \neg p$),
- ∀x∃y Q(x, y) je splnitelná, protože platí v N = ⟨N, Q^N⟩, kde Q^N je <, ale není tautologie, protože je nepravdivá ve struktuře N' = ⟨N, Q^{N'}⟩, kde Q^{N'} je >.
- $(\forall x \ P(x)) \Rightarrow P(c)$ je tautologie (z $\mathbf{A} \models \forall x \ P(x)$ plyne, že $a \in P^{\mathbf{A}}$ pro každé $a \in A$, tudíž speciálně $c^{\mathbf{A}} \in P^{\mathbf{A}}$),
- $P(c) \Rightarrow (\exists x \ P(x))$ je tautologie.

Splnitelná množina a její model

Definice

Množina sentencí M se nazývá

- splnitelná, pokud existuje struktura A, v níž jsou všechny sentence z M pravdivé. Takové interpretaci se říká model M.
- nesplnitelná, jestliže v každé struktuře existuje sentence z M, která je v ní nepravdivá.

Speciálně prázdná množina Ø je splnitelná.

Příklady

Nechť P, Q jsou unární predikátové symboly a c konstatní symbol.

- $M = \{ \forall x (P(x) \Rightarrow Q(x)), P(c), \exists x (\neg Q(x)) \},$
- $N = \{ \forall x (P(x) \Rightarrow Q(x)), P(c), \neg (\exists x \ Q(x)) \}.$
- M je splnitelná ve struktuře $\mathbf{A} = \langle \{a,b\}, P^{\mathbf{A}}, Q^{\mathbf{A}} \rangle$, kde $c^{\mathbf{A}} = a$, $P^{\mathbf{A}} = \{a\}$ a $Q^{\mathbf{A}} = \{a\}$.
- N není spnitelná, protože z prvních dvou formulí plyne, že a má vlastnost Q.

Sémantický důsledek

Definice

Řekneme, že formule φ je sémantickým důsledkem (konsekventem) množiny sentencí S, pokud každý model množiny S je také modelem univerzálního uzávěru formule φ . Značíme $S \models \varphi$.

Místo $\{\psi\} \models \varphi$ píšeme $\psi \models \varphi$ a místo $\emptyset \models \varphi$ píšeme $\models \varphi$.

Poznámka

V predikátové logice má symbol \models více významů. Výše definovaný význam je analogický s význanem \models ve výrokové logice. Druhý význam je význam pravdivosti formule ve struktuře.

Vlastnosti sémantického důsledku

Tvrzení

Nechť M a S jsou množiny sentencí a φ formule.

- Je-li $\varphi \in S$, pak $S \models \varphi$.
- Je-li $M \subseteq S$ a $M \models \varphi$, pak $S \models \varphi$.
- Je-li φ tautologie, pak $N \models \varphi$ pro každou množinu sentencí N.
- Je-li $\models \varphi$, pak φ je tautologie.
- Je-li S nesplnitelná, pak $S \models \psi$ pro každou sentenci ψ .

Věta

Pro každou množinu sentencí S a každou sentenci φ platí:

 $S \models \varphi$ právě tehdy, když $S \cup \{\neg \varphi\}$ je nesplnitelná.

Příklad

Mějme jazyk s konstatním symbolem 0, unárním funkčním symbolem f a binárním predikátovým symbolem =. Nechť

$$\Delta = \{ \forall x (f(x) \neq 0), \forall x \forall y (f(x) = f(y) \Rightarrow x = y) \}.$$

Pak pro libovolné $n \ge 1$ platí

$$\Delta \models \forall x_1 \cdots \forall x_n \exists y (y \neq x_1 \land \cdots \land y \neq x_n).$$

Ekvivalentní formule

Definice

Řekneme, že dvě formule φ, ψ jsou ekvivalentní (značení $\varphi \equiv \psi$), pokud $\varphi \Leftrightarrow \psi$ je tautologie.

Tvrzení

Nechť φ, ψ jsou sentence. Pak $\varphi \equiv \psi$ právě tehdy, když $\varphi \models \psi$ (tj. $\varphi \models \psi$ a $\psi \models \varphi$).

Věta

Nechť φ je formule, která obsahuje formuli α jako podformuli. Pokud $\alpha \equiv \beta$, pak $\varphi \equiv \psi$, kde ψ vzniklo z φ nahrazením formule α formulí β .

Příklady

Nechť Q je binární predikátový symbol. Pak

- $\forall x \forall y \ Q(x,y) \equiv \forall y \forall x \ Q(x,y)$,
- $\exists x \exists y \ Q(x,y) \equiv \exists y \exists x \ Q(x,y)$,
- ale neplatí $\forall x \exists y \ Q(x, y) \equiv \exists y \forall x \ Q(x, y)$.

Distribuce kvantifikátorů

Tvrzení

Nechť φ a ψ jsou formule a nechť x se nevyskytuje volně v ψ . Pak

- $(\neg \forall x \varphi) \equiv (\exists x \neg \varphi), (\neg \exists x \varphi) \equiv (\forall x \neg \varphi),$
- $(\psi \lor \forall x \varphi) \equiv \forall x (\psi \lor \varphi), (\psi \lor \exists x \varphi) \equiv \exists x (\psi \lor \varphi),$
- $(\psi \land \forall x \varphi) \equiv \forall x (\psi \land \varphi), (\psi \land \exists x \varphi) \equiv \exists x (\psi \land \varphi),$
- $(\psi \Rightarrow \forall x \varphi) \equiv \forall x (\psi \Rightarrow \varphi), (\psi \Rightarrow \exists x \varphi) \equiv (\exists x (\psi \Rightarrow \varphi)),$
- $(\forall x \varphi \Rightarrow \psi) \equiv \exists x (\varphi \Rightarrow \psi), (\exists x \varphi \Rightarrow \psi) \equiv \forall x (\varphi \Rightarrow \psi).$

Substituce

- Označme $\varphi(x/t)$ formuli, která vznikne z formule φ nahrazením každého volného výskytu proměnné x termem t.
- Pokud platí $\forall x \varphi(x)$ nějaké interpretaci, tak by mělo platit $\varphi(x/t)$ pro libovolný term; podobně z platnosti $\varphi(x/t)$ by mělo plynout $\exists x \varphi(x)$.
- Takhle jednoduché to ale není! Např. pro $\varphi = \exists y(x < y)$ formule $\forall x \varphi(x)$ platí v **R**, ale $\varphi(x/y) = \exists y(y < y)$ je nepravdivá v **R**.

Definice

Řekneme, že term t je substituovatelný za proměnnou x ve formuli φ , jestliže žádný výskyt proměnné v termu t se substitucí nestane vázaným.

Přejmenování vázané proměnné

Tvrzení

Je-li term t substituovatelný za proměnnou x ve formuli φ , pak $\forall x \varphi \Rightarrow \varphi(x/t)$ a $\varphi(x/t) \Rightarrow \exists x \varphi$ jsou tautologie.

Tvrzení

Nechť y je proměnná substituovatelná za x ve formuli φ , která se ve φ nevyskytuje volně. Pak

$$\forall x \varphi \equiv \forall y \varphi(x/y), \qquad \exists x \varphi \equiv \exists y \varphi(x/y).$$

Prenexní normální tvar

Definice

Řekneme, že formule φ je v prenexním normálním tvaru, jestliže má tvar $Q_1 x_1 \dots Q_n x_n \alpha$, kde Q_i je některý z kvantifikátorů, x_1, \dots, x_n jsou navzájem různé proměnné a α je otevřená formule.

věta

Každá predikátová formule φ je ekvivalentní s nějakou formulí v prenexním normálním tvaru $Q_1 x_1 \dots Q_n x_n \alpha$, tj.

$$\varphi \equiv Q_1 x_1 \dots Q_n x_n \alpha$$
.

Postup vytváření prenexního normálního tvaru

- Přejmenujeme proměnné formule φ tak, aby každý kvantifikátor vázal jinou proměnnou.
- Použijeme tautologie popisující distribuce kvantifikátorů přes jednotlivé logické spojky.

Uvažujme formuli, kde R, \prec jsou binární predikátové symboly a K ternární:

$$\exists x \, R(x,y) \Rightarrow \forall x (\exists z \, K(z,x,y) \land \neg \forall z(z \prec x)),$$

$$\exists x \, R(x,y) \Rightarrow \forall u (\exists z \, K(z,u,y) \land \neg \forall v(v \prec u)),$$

$$\exists x \, R(x,y) \Rightarrow \forall u (\exists z \, K(z,u,y) \land \exists v \neg (v \prec u)),$$

$$\exists x \, R(x,y) \Rightarrow \forall u \exists z \exists v (K(z,u,y) \land \neg (v \prec u)),$$

$$\forall x (R(x,y) \Rightarrow \forall u \exists z \exists v (K(z,u,y) \land \neg (v \prec u))),$$

$$\forall x \forall u \exists z \exists v (R(x,y) \Rightarrow (K(z,u,y) \land \neg (v \prec u))).$$