Бэкдор на основе криптосистемы Эль-Гамаля

Генерация ключей в криптосистеме Эль-Гамаля:

- 1) Генерируется случайное простое число р.
- 2) Выбирается целое число g первообразный корень р.
- 3) Выбирается случайное целое число такое, что (1 < x < p-1)
- 4) Вычисляется $y = g^x \mod p$
- 5) Открытый ключ (у,g,р), а закрытый х

Идея бэкдора:

- 1) Злоумышленники имеют простое число Р и генератор чисел G. Данные параметры формируют открытый ключ злоумышленников Y.
- Программа злоумышленников, установленная на компьютерах пользователей, формирует параметры р и g, а также закрытый ключ x и открытый ключ y.
 Параметры и ключи формируются на основе параметров злоумышленников, а также открытом ключе.
- 3) Суть в том, что открытые параметры р и g не рандомизированы, а сформированы из закрытого ключа пользователя. Также добавлен дополнительны элемент сокрытия формирования открытых параметров из закрытого ключа путем добавления функций рандомизации.

Алгоритм формирования открытого ключа пользователя:

Пусть P — k-битное простое число злоумышленников. X \in {1,2, ..., P-1} — закрытый ключ злоумышленников, G — генератор Z_p^* и Y \equiv $G^X(modP)$ — открытый ключ. Все параметры и ключи имеют размерность k-битам.

- 1) Закрытый ключ пользователя х случайно выбирается из набора {1, 2, ..., P-1}
- 2) Случайно выбирается целое число k.
- 3) Закрытый ключ х шифруется, используя схему Эль-Гамаля с параметрами злоумышленников (простого числа Р и открытого ключа Y):

$$c_2 \equiv x * Y^k(modP)$$

4) Используя функцию рандомизации R_1 с ключом K + i (i := 0), формируется параметр c_2^\prime

$$c_2' = R_1(c_2)$$

такую, что R_1 : $\{0,1\}^k \to \{0,1\}^k$

- 5) Далее может быть 2 варианта:
 - 1. c_2' не является простым или $c_2' \le x$, тогда i = i + 1 и c_2 генерируется заново (п. 3)
 - 2. c_2' является простым и $c_2' > x$, тогда формируется параметр

$$c_1 \equiv G^k \pmod{P}$$

6) Используя функцию рандомизации R_2 с ключом K + j (j := 0), формируется параметр c_1^\prime

$$c_1' = R_2(c_1)$$

такую, что $R_2: \{0,1\}^k \to \{0,1\}^k$

7) Далее может быть 2 варианта:

- 1. Если $c_1' \geq c_2'$ или c_1' не является генератором $Z_{c_2'}^*$, тогда j=j+1 и параметр c_1 генерируется заново (п. 5)
- 2. Если $c_1' < c_2'$ и является генератором $Z_{c_2'}^{st}$, тогда

$$p = c'_{2}$$

$$g = c'_{1}$$

$$y = g^{x} \mod p$$

Тем самым сформировался открытый ключ пользователя у, а также параметры р и д.

Стоит отметить, что размерность параметров и открытого ключа пользователя та же, что и размерность параметров и открытого ключа злоумышленников.

Также использование функций генераций R_1 и R_2 необходимо, чтобы параметр р выглядел рандомизированным для пользователя.

Алгоритм восстановления закрытого ключа:

Злоумышленник знает про параметры p и g пользователя, т.к. они отрытые. Восстановим по этим параметрам закрытый ключ x. Также отметим, что $p=c_2'$ и $g=c_1'$.

1) Используется обратная функция генерации R_2 с ключом K + j, чтобы получить параметр $\mathbf{c_1}$

$$c_1 = R_2^{-1}(g)$$

Так как возможно несколько возможных значений ј, то также существует несколько значений c_1 . Злоумышленник сразу может отбросить значения, которые больше или равны P, так как $c_1 < P$

2) Используется обратная функция генерации R_1 с ключом K + i, чтобы получить параметр \mathbf{c}_2

$$c_2 = R_1^{-1}(p)$$

Так как возможно несколько возможных значений і, то также существует несколько значений c_2 . Злоумышленник сразу может отбросить значения, которые больше или равны Р.

3) Злоумышленнику необходимо использовать свой закрытый ключ X для получения закрытого ключа пользователя x.

$$\frac{c_2}{c_1^X} = \frac{x * Y^k}{(G^k)^X} = \frac{x * (G^X)^k}{G^{k*X}} = \frac{x * G^{X*k}}{G^{k*X}} = x$$

Пример работы бэкдора:

Алиса и Боб – пользователи, Ева – злоумышленник

- 1) Генерация ключей Евой:
 - Пусть P = 23993, а G = 15765. При этом G первообразный корень P.
 - Пусть X = 9237 приватный ключ, а публичный:

$$Y \equiv G^X \equiv 15765^{9237} \equiv 6211 \pmod{23993}$$

- 2) Генерация ключей Алисой:
 - Генерируется случайный закрытый ключ: x = 19243

- Генерируется случайное число k = 7661
- Используя закрытый ключ, а также параметры Y и P Евы:

$$c_2 \equiv x * Y^k \equiv 19243 * 6211^{7661} \equiv 21843 \pmod{23993}$$

Рандомизируется параметры:

$$c_2' = R_1(c_2) = R_1(21843) = 27337$$

Отметим, что c_2' - простое и $c_2' > x$

Вычислям следующий параметр:

$$c_1 \equiv G^k \equiv 15765^{7661} \equiv 7495 \pmod{23993}$$

– Рандомизируется параметры:

$$c_1' = R_2(c_1) = R_2(7495) = 10023$$

— Так как $c_1' < c_2'$ и c_1' - первообразный корень c_2' , программа выдает пользователю следующие параметры:

$$p = c'_2 = 27337$$

$$g = c'_1 = 10023$$

$$y = g^x = 10023^{19423} = 13027 \pmod{27337}$$

 Боб шифрует сообщение с помощью открытого ключа Алисы. Пусть сообщение m = 0809, k = 1487

$$r \equiv g^k \equiv 10023^{1487} \equiv 16434 \pmod{27337}$$

 $s \equiv m * y^k \equiv 809 * 13027^{1487} \equiv 17176 \pmod{27337}$

Боб отправляет сообщение (r, s) = (16434, 17176) Алисе

4) Расшифровка сообщения Алисой.

$$m = \frac{s}{r^x} = \frac{17176}{16434^{19423}} = 809 \; (mod \; 27337)$$

- 5) Получение закрытого ключа Алисы Евой:
 - $-\;\;$ Вычисление c_1 используя параметр g и обратную функцию рандомизции R_2 :

$$c_1 = R_2^{-1}(g) = R_2^{-1}(10023) = 7495$$

— Вычисление c_2 используя параметр р и обратную функцию рандомизции R_1 :

$$c_2 = R_1^{-1}(p) = R_1^{-1}(27337) = 21843$$

Получение закрытого ключа Алисы используя собственный закрытый ключ X:

$$x \equiv \frac{c_2}{c_1^X} \equiv \frac{21843}{7495^{9237}} \equiv 19423 \pmod{23993}$$

Теперь Ева с помощью полученного закрытого ключа Алисы может расшифровывать переписку Алисы и Боба.