Industrial-scale selective maintenance optimization using bathtub-shaped failure rates

Teemu Ikonen, Hossein Mostafaei, Yixin Ye, David Bernal, Ignacio Grossmann and Iiro Harjunkoski

2019 AIChE Annual Meeting Orlando, FL, United States November 14, 2019

Content

- Introduction
 - Problem description
 - Motivation
- Bathtub-shaped failure models
- Selective maintenance optimization
 - Replacement models
 - Replacement-repair models
- Conclusions

Optimization problem

- A plant has a large number of replaceable / repairable components
 - Industrial reference: a biorefinery has 600 frequency converters
- Which to be maintained during a periodic maintenance shutdown?
 - Industrial reference: these are organized once in 18-24 months
- Two conflicting objectives
 - maximize the reliability of the plant for the next operation window
 - minimize the maintenance costs
- → Selective maintenance optimization

The problem appears in...

Motivation 1

- The selective maintenance optimization literature lacks of databased studies (Cao et al., 2018)
 - Typically, the starting point has been (arbitrarily chosen) Weibull parameters
 - Bathtub-shaped failure rates are not considered

Motivation 2

- Largest problems solved to optimality in the literature
 - 200 components with one maintenance action (Galante & Passannanti, 2009)
 - Around 25 components with two or more maintenance actions (Lust et al., 2009, Diallo et al., 2018)
- The size of the industrial reference
 - The biorefinery plant has around 600 components
 - → A gap between studied problems sizes in the literature and industrial problems

Our contributions

- Data-driven approach using two bathtub-shaped failure models (Jiang, 2013, Sarhan & Apaloo, 2013)
- Reducing the computational cost
 - Convexification of optimization model
 - Data-based preassignment of variables corresponding to components, the replacement of which is not sensible

Bathtub-shaped failure models

Fitting failure models to data

Experimental data of failure times (Meeker and Escobar, 1998)

- The failure model by Jiang (2013)
 - Failure rate

$$h(t) = \frac{\beta}{t+\eta} + \frac{1}{\gamma - t}$$

Cumulative failure distribution

$$F(t) = 1 + \frac{1 - t/\gamma}{(1 + t/\eta)^{\beta}}$$

Parameters

$$\beta, \gamma, \eta$$

Maximization of the log likelihood, log £, of the failure model

$$\max_{\beta,\gamma,\eta} \log \mathcal{L} = \sum_{i=1}^{n} [d_i \log h(t_i) + \log R(t_i)],$$

where

n is the number of data points

 t_i is the age of the i^{th} component

 d_i indicates whether the i^{th} component failed

Fitting failure models to data

Experimental data of failure times (Meeker and Escobar, 1998)

Change in reliability if replaced, ΔR^y

Experimental data of failure times (Meeker and Escobar, 1998)

The change in reliability is negative, due to the infant mortality period → replacement is not sensible

Selective maintenance optimization

Non-convex replacement model

Sets

K Set of stages

 J_k Set of parallel components in stage k

Parameters

 $R_{k,j}^0$ Reliability of component (k,j) if not replaced

 $R_{k,i}^{y}$ Reliability of component (k,j) if replaced

 $\Delta R_{k,j}^{y} \qquad R_{k,j}^{y} - R_{k,j}^{0}$ (improvement in reliability)

Variables

 R'_k Reliability of stage k

 $y_{k,j}$ Binary variable defining if component (k,j) is replaced

p Number of maintenance personnel involved in the

maintenance operations

 $\max_{\mathbf{y},p} R_{\text{sys}}, -c_{\text{tot}}$ subject to

System reliability constraint

Stage reliability constraint

Total cost constraint

Total duration constraint

Personnel constraint

Non-convex replacement model

Sets

K Set of stages

 J_k Set of parallel components in stage k

Parameters

 $R_{k,j}^0$ Reliability of component (k,j) if not replaced

 $R_{k,i}^{y}$ Reliability of component (k,j) if replaced

 $\Delta R_{k,j}^{y} \qquad R_{k,j}^{y} - R_{k,j}^{0}$ (improvement in reliability)

Variables

 R'_k Reliability of stage k

 $y_{k,j}$ Binary variable defining if component (k,j) is replaced

p Number of maintenance personnel involved in the

maintenance operations

 $\max_{\mathbf{y},p} \quad R_{\text{sys}}, -c_{\text{tot}}$ subject to

 $R_{\rm sys} = \prod_{k \in K} R'_k$

Stage reliability constraint

Total cost constraint

Total duration constraint

Personnel constraint

Non-convex replacement model

Sets

K Set of stages

 J_k Set of parallel components in stage k

Parameters

 $R_{k,j}^0$ Reliability of component (k,j) if not replaced

 $R_{k,i}^{y}$ Reliability of component (k,j) if replaced

 $\Delta R_{k,j}^{y} \qquad R_{k,j}^{y} - R_{k,j}^{0} \text{ (improvement in reliability)}$

Variables

 R'_k Reliability of stage k

 $y_{k,j}$ Binary variable defining if component (k,j) is replaced

p Number of maintenance personnel involved in the

maintenance operations

 $\max_{\mathbf{y},p} \quad R_{\text{sys}}, -c_{\text{tot}}$ subject to

 $j \in J_k$

 $R_{\rm sys} = \prod_{k \in K} R'_k$

 $R'_{k} = 1 - \prod_{j \in J_{k}} (1 - R_{k,j}^{0} (1 - y_{k,j}) - R_{k,j}^{y} y_{k,j})$ $= 1 - \prod_{j \in J_{k}} (1 - R_{k,j}^{0} - \Delta R_{k,j}^{y} y_{k,j}), \quad k \in K$

Total cost constraint

Total duration constraint

Personnel constraint

Illustrative example

Illustrative example

Main modifications to replacement-<u>repair</u> model:

$$R'_{k} = 1 - \prod_{j \in J_{k}} (1 - R_{k,j}^{0} - \Delta R_{k,j}^{y} y_{k,j} - \underline{\Delta R_{k,j}^{x} x_{k,j}}), \quad k \in K$$

Two additional constraints:

$$\begin{cases} y_{k,j} + x_{k,j} \le 1, & k \in K, j \in J_k \\ F_{k,j} + x_{k,j} \le 1, & k \in K, j \in J_k \end{cases}$$

 $R_{k,j}^{x}$ Reliability of component (k, j) if repaired

 $\Delta R_{k,j}^{\mathbf{x}} = R_{k,j}^{\mathbf{x}} - R_{k,j}^{\mathbf{0}}$ (improvement in reliability)

 $x_{k,j}$ Binary variable defining if component (k,j)

is repaired

 $F_{k,j}$ Binary parameter defining if component

(k, j) is failed

Variable preassigment

The change in reliability is negative

→ replacement is not sensible

$$y_{k,j} = 0, \quad \forall k, j \in \{(k,j) | \Delta R_{k,j}^{\mathbf{y}} \le 0\}$$

 $y_{k,j}$ $\Delta R_{k,j}^{\mathbf{x}}$

Binary variable defining whether unit j at stage k is replaced Improvement in the reliability of the unit j at stage k if the component is replaced

Convexified replacement model

Sets

Set of stages

Set of parallel components in stage *k*

Parameters

Reliability of component (k, j) if not

replaced

Reliability of component (k, j) if replaced

 $\Delta R_{k,i}^{y}$

 $R_{k,i}^{y} - R_{k,i}^{0}$ (improvement in reliability)

Variables

 R'_{k}

Reliability of stage *k*

 $y_{k,j}$

Binary variable defining if component (k, j)

is replaced

Number of maintenance personnel involved

in the maintenance operations

Original formulation:

$$R_{\rm sys} = \prod_{k \in K} R'_k$$

Multilinear term – non- $R_{\rm sys} = \prod R'_k$ convex optimization model

$$R'_{k} = 1 - \prod_{j \in J_{k}} (1 - R^{0}_{k,j} - \Delta R^{y}_{k,j} y_{k,j}), \quad k \in K$$

Convexified replacement model

Sets

Set of stages

Set of parallel components in stage k

The m^{th} subset of I_k

Parameters

Reliability of component (k, j) if not

replaced

Reliability of component (k, j) if replaced

 $\Delta R_{k,i}^{y}$

 $R_{k,i}^{y} - R_{k,i}^{0}$ (improvement in reliability)

Variables

 R'_{k}

Reliability of stage *k*

 $y_{k,i}$

Binary variable defining if component (k, j)

is

replaced

Number of maintenance personnel involved

in the maintenance operations

 $\ln R_{\rm sys}$

 $Z_{k,m}$

An additional binary variable

Original formulation:

 $R_{\rm sys} = \prod R'_k$ convex optimization model Multilinear term – non-

$$R'_{k} = 1 - \prod_{j \in J_{k}} (1 - R^{0}_{k,j} - \Delta R^{y}_{k,j} y_{k,j}), \quad k \in K$$

Convexified formulation:

This is the new objective

$$\tilde{R}_{\text{sys}} \leq \sum_{k \in K} \ln R'_k$$

$$R_k' = 1 - \sum_{S_{k,m} \in \mathbb{S}_k} \left(\mathbf{z}_{k,m} \prod_{j \in S_{k,m}} -\Delta R_{k,j}^{\mathbf{y}} \prod_{j \in J_k \setminus S_{k,m}} (1 - R_{k,j}^0) \right),$$

 $k \in K$

constraints linking $y_{k,i}$ and $z_{k,m}$

Convexification & Solvers

- We also convexify the replacement-repair model
- We solve the original and convexified models by the following solvers:

Model	Abbreviation	Solver	Solver type
Non-Convex Replacement model	NCR	BARON 18.5.8	global
Convex Replacement model	CR	DICOPT 2 with CLPEX 12.8.0.0	non-global
Non-Convex Replacement-Repair model	NCRR	BARON 18.5.8	global
Convex Replacement model-Repair model	CRR	DICOPT 2 with CLPEX 12.8.0.0	non-global

Large-scale optimization problems

Basic arrangement containing 100 components

- 1 to 10 basic arrangements in series
 - → Optimization problems with 100 to 1000 components
- Components are randomly drawn from the catalog
- Component ages randomly drawn from the range of {30, 60...330}
- 20% of the components are failed prior to the maintenance

Component catalog

Component type	I	II	III	IV	V	VI	VII	VIII	IX	X
cost of replacement c^{y} [kEUR]	1	3	5	7	8	2	5.5	7.5	10	12
cost of repair c^{x} [kEUR]	0.5	0.3	1.4	1	2	1.5	2	1	6	4
duration of replacement t^{y} [h]	30	10	5	7	8	5	7	11	8	12
duration of repair t^{x} [h]	20	5	2	5	3	9	2	5	15	6

Large-scale example

- 300 components
- ε-constraint method
 - The objective is to Maximize R_{sys}
 - c_{tot} is constrained
 - The constraint is iteratively relaxed
 - 100 increments

Results: replacement models

A number of runs are timed out – excluded from the comparison

- NCR / BARON
- ♦ NCR / BARON / preassignment
- CR / DICOPT
- CR / DICOPT / preassignment

The optimized results are, on average, within 0.051%

NCR = Non-Convex Replacement model

CR = Convex Replacement model

Resource limit: 3600 s

Results: replacement-repair models

NCRR = Non-Convex Replacement-Repair model

CRR = Convex Replacement-Repair model

Resource limit: 3600 s

Conclusions

- Linkage between component lifetime data and selective maintenance optimization
- If the failure rate is bathtub-shaped, the computation efficiency can be improved by variable preassignments
 - In our experiments, the improvement was around an order of magnitude
- Convexifying the <u>replacement model</u> improves the efficiency
 - The efficiencies of solving the non-convex and convex <u>replacement-repair</u> models seem similar
- We expand the problem sizes studied in the literature
 - One maintenance action: 200 → 1000 components
 - Two maintenance actions: 25 → 700 components
 - Assumption: failure rates are bathtub-shaped

References

- R. Jiang (2013). A new bathtub curve model with a finite support. *Reliability Engineering & System Safety*, 119, pp. 44-51.
- M. V. Aarset (1987). How to identify a bathtub hazard rate. *IEEE Transactions on Reliability*, 36, pp. 106-108.
- W. Q. Meeker, L. A. Escobar (1998). Statistical methods for reliability data. John Wiley & Sons.
- A. M. Sarhan, J. Apaloo (2013). Exponentiated modied weibull extension distribution. *Reliability Engineering & System Safety*, 112, pp. 137-144.
- G. Galante, G. Passannanti (2009). An exact algorithm for preventive maintenance planning of series-parallel systems. *Reliability Engineering & System Safety*, 94, pp. 1517-1525.
- T. Lust, O. Roux, F. Riane (2009). Exact and heuristic methods for the selective maintenance problem. *European Journal of Operational Research*, 197, pp. 1166-1177.
- C. Diallo, U. Venkatadri, A. Khatab, Z. Liu (2018). Optimal selective maintenance decisions for large serial k-out-of-n: G systems under imperfect maintenance. *Reliability Engineering & System Safety*, 175, pp. 234-245.

Acknowledgement

Financial supports from

- Academy of Finland, through project SINGPRO, and
- the Center for Advanced Process Decision-making (Carnegie Mellon University)

are gratefully acknowledged.

