Low-Rank Representation with Positive SemiDefinite Constraint (LRR-PSD)

-- A Robust Approach for Subspace Segmentation

Xiaotong Yuan

Joint work with Ju Sun, Yuzhao Ni, Guangcan Liu, Shuicheng Yan, and Loong-Fah Cheong
National University of Singapore

Less Structured Clustering ...

Some popular clustering algorithms

- Kmeans
- Mean-Shift (mode-seeking)
- Mixture models (e.g., GMM)
- Hierarchical methods
- •
- Spectral clustering

Subspace Clustering

Data generation: Sampling

Segmentation/Clustering

Spectral Clustering

$$\mathbf{D} = Diag(\mathbf{W1})$$

$$L = I - D^{-1/2}WD^{-1/2}$$

Affinity matrix W

Laplacian matrix L

Eigen-analysis

Ideal W shall be

- 1.Block-diagonal
- 2. Positive semi-definite, i.e.

 $\mathbf{W}\succeq\mathbf{0}$

Learning the Affinity Matrix

Self-Representation!

?	•••	?
?	•••	?
?	•	?
	•	
•		
•	•••	•
?		2

Low Rank Representation

Low-Rank Objective

min. rank Z

subj.
$$\mathbf{X} = \mathbf{XZ}$$

Convex Relaxation

subj.
$$\mathbf{X} = \mathbf{XZ}$$

G. Liu et al., ICML 2010

Blessings of the Learned Affinity

LRR
$$\max_{\min} \|\mathbf{Z}\|_*, \qquad \iff \min \|\mathbf{Z}\|_*,$$
 subj. $\mathbf{X} = \mathbf{XZ}$ subj. $\mathbf{X} = \mathbf{XZ}, \mathbf{Z} \succeq \mathbf{0}.$

Blessing (1) The minimizers to both are unique and identical!

Blessing (2) Z will be block-diagonal for sorted data!

Blessing (3) The optimal Z will always be positive semi-definite!

In the presence of noise/outliers, a robust formulation

min.
$$\|\mathbf{Z}\|_* + \|\mathbf{E}\|_{2,1}$$
, subj. $\mathbf{X} = \mathbf{X}\mathbf{Z} + \mathbf{E}, \mathbf{Z} \succeq \mathbf{0}$.

Augmented Lagrange Multiplier (ALM) Method

ALM – An Interpolation of Lagrange Form and Penalty Form

min.
$$f(X)$$
, \Rightarrow $L(X,Y,\mu)$ Lagrange Form
$$= f(X) + \langle Y, h(x) \rangle + \frac{\mu}{2} \|h(X)\|_F^2$$
 Penalty Form

For increasing μ

- 1) Minimize L wrt. X
- 2) Update the multiplier Y (dual ascent)

In passing μ to infinity, the ALM form solves the original program.

Augmented Lagrange Multiplier (ALM) Method

$$\begin{aligned} & \min. \ \left\| \mathbf{Z} \right\|_* + \left\| \mathbf{E} \right\|_{2,1}, \, \mathrm{subj.} \quad \mathbf{X} = \mathbf{X}\mathbf{Z} + \mathbf{E}, \mathbf{Z} \succeq \mathbf{0}. \\ & \min. \ \left\| \mathbf{J} \right\|_* + \left\| \mathbf{E} \right\|_{2,1}, \, \mathrm{subj.} \quad \mathbf{X} = \mathbf{X}\mathbf{Z} + \mathbf{E}, \mathbf{J} = \mathbf{Z}, \mathbf{Z} \succeq \mathbf{0}. \\ & \downarrow \quad \mathbf{X} = \mathbf{X}\mathbf{Z} + \mathbf{E}, \mathbf{J} = \mathbf{Z}, \mathbf{Z} \succeq \mathbf{0}. \\ & \downarrow \quad \mathbf{Z}, \mathbf{E}, \mathbf{J}, \mathbf{Y}_1, \mathbf{Y}_2, \mu) \\ & = \left\| \mathbf{J} \right\|_* + \lambda \left\| \mathbf{E} \right\|_{2,1} + \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{X}\mathbf{Z} - \mathbf{E} \rangle + \langle \mathbf{Y}_2, \mathbf{Z} - \mathbf{J} \rangle \\ & + \frac{\mu}{2} \left\| \mathbf{X} - \mathbf{X}\mathbf{Z} - \mathbf{E} \right\|_F^2 + \frac{\mu}{2} \left\| \mathbf{Z} - \mathbf{J} \right\|_F^2 \end{aligned}$$

Optimizing wrt. Z, E, J has simple closed-form solutions.

Application I – Motion Segmentation

Grouping of motion trajectories according to motion patterns.

Application II – Face Clustering

Extensions to segment data lying on low-rank manifolds

Face Manifolds

Example faces from Extende Yale B Face Dataset (EYB)

Table: Segmentation accuracy (%) on EYB. We record the average performance from multiple runs instead of the best.

	Gauss SC	Linear SC	SSC	LRR	LRR-PSD
Acc.	24.84	30.16	37.66	59.53	60

Summary

- 1. Clustering structured data invite more elegant solutions.
- 2. Performance guaranteed by learning affinity matrices for subspace clustering
- 3. An efficient optimization strategy based on ALM
- 4. Applications in motion segmentation and face image clustering: possible to extend to low-dimensional manifolds that behave similarly locally as subspaces

Some Results and Recent Developments

min.
$$\|\mathbf{Z}\|_{*}$$
, $\Rightarrow \mathbf{Z}^{*} = \mathbf{V}\mathbf{V}^{\top}$, for $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ subj. $\mathbf{X} = \mathbf{X}\mathbf{Z}$

min. $\|\mathbf{Z}\|_{*}$, $\Rightarrow \mathbf{Z}^{*} = \mathbf{V}_{A}(\mathbf{V}_{A}^{\top}\mathbf{V}_{A})^{-1}\mathbf{V}_{X}^{\top}$, subj. $\mathbf{X} = \mathbf{A}\mathbf{Z}$ for $[\mathbf{X}, \mathbf{A}] = \mathbf{U}\mathbf{D}[\mathbf{V}_{X}^{\top}, \mathbf{V}_{A}^{\top}]$

These solutions are unique!

References

- Y. Ni, J. Sun, X. Yuan, S. Yan, L.F. Cheong. Robust Low-Rank Subspace Segmentation with Semi-Definite Guarantees. OEDM, 2010. http://arxiv.org/abs/1009.3802
- G. Liu, Z. Lin, S. Yan, J. Sun, Y, Yu, and Y. Ma. Robust Recovery of Subspace Structures by Low-Rank Representation. Submitted to TPAMI, Oct 2010. http://arxiv.org/abs/1010.2955
- G. Liu, J. Sun, S. Yan. Closed-Form Solutions to a Category of Nuclear Norm Minimization Problems. NIPS Workshop on Low-Rank Methods for Large-Scale Machine Learning, 2010. http://arxiv.org/abs/1011.4829
- E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR, 2009. http://vision.jhu.edu/assets/SSC-CVPR09-Ehsan.pdf
- R. Vidal. A Tutorial on Subspace Clustering. IEEE Signal Processing Magazine, 2010. http://www.cis.jhu.edu/~rvidal/publications/SPM-Tutorial-Final.pdf

Thank you for your attention!

Questions?