Tutorial 9 - Operational Amplifier Abstraction

Q1. We have the following Op-amp circuit. Determine the circuit gain A_V=V₀/V_i.

- **Q2.** The circuit shown below is intended to supply a voltage to floating loads (those for which both terminals are ungrounded) while making greatest possible use of the available power supply.
- a) Assuming ideal op amps, sketch the voltage waveforms at nodes B and C for a 1-V peak-to-peak sine wave applied at A. Also sketch v_0 .
- b) What is the voltage gain v_0/v_i ?
- c) Assuming the op amps operate from ±15-V power supplies and their output saturates at ±14V, what is the largest sine wave output wave output that can be accommodated? Specify its peak-to-peak value.

Q3. Determine the expression of the output v_0 as a function of inputs v_{l1} and v_{l2}

Q4. Consider the difference amplifier shown below. Calculate the differential gain $A_d=v_o/v_{id}$. Assume that R_5 and R_6 are much smaller than R so that the current through R is much lower than the current in the voltage divider, with the result that $\beta=R_6/(R_5+R_6)$.

