DATA MINING CLUSTERING

The DBSCAN algorithm Evaluation

DBSCAN

DBSCAN: Density-Based Clustering

- DBSCAN is a Density-Based Clustering algorithm
- Reminder: In density-based clustering we partition points into dense regions separated by not-so-dense regions.
- Important Questions:
 - How do we measure density?
 - What is a dense region?
- DBSCAN:
 - Density at point p: number of points within a circle of radius Eps
 - Dense Region: A circle of radius Eps that contains at least MinPts points

DBSCAN

- Characterization of points
 - A point is a core point if it has more than or equal to a specified number of points (MinPts) within Eps
 - These points belong in a dense region and are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

$$Eps = 10$$
, $MinPts = 4$

Density-Connected points

Density edge

 We place an edge between two core points q and p if they are within distance Eps.

Density-connected

 A point p is density-connected to a point q if there is a path of edges from p to q

DBSCAN Algorithm

- Label points as core, border and noise
- Eliminate noise points
- For every core point p that has not been assigned to a cluster
 - Create a new cluster with the point p and all the points that are density-connected to p.
- Assign border points to the cluster of the closest core point.

DBSCAN: Determining Eps and MinPts

- Idea: for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor
- Find the distance d where there is a "knee" in the curve
 - Eps = d, MinPts = k

When DBSCAN Works Well

Clusters

Resistant to Noise

Can handle clusters of different shapes and sizes

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

CLUSTERING EVALUATION

Clustering Evaluation

- We need to evaluate the "goodness" of the resulting clusters?
- But "clustering lies in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clusterings, or clustering algorithms
 - To compare against a "ground truth"

Different Aspects of Cluster Validation

- 1. Internal Evaluation: Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.
 - Use only the data
- 2. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 3. External Evaluation: Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- 4. Determining the 'correct' number of clusters.
- 5. Comparing the results of two different sets of cluster analyses to determine which is better.

Measures of Cluster Validity

- Numerical measures to judge various aspects of cluster validity
 - Internal Index: Used to measure the goodness of a clustering structure without reference to external information.
 - E.g., Sum of Squared Error (SSE)
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - E.g., precision, recall

CLUSTER VALIDITY WITH INTERNAL CRITERIA

Internal Measures

- Internal Index: Used to measure the goodness of a clustering structure without reference to external information
 - Example: Sum of Squared Error (SSE)
- SSE is good for comparing two clusterings; or two clusters (average SSE, since they may have different sizes).

Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (|x - c_i|)^2$$
 We want this to be small $|x - c_i|$ 为高点问题离

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{x \in C_i} \sum_{y \in C_j} (|x - y|)^2$$
 We want this to be large

Cohesion and Separation

- A proximity graph-based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Measuring Cluster Validity Via Correlation

Two matrices

$$CorrCoeff(X,Y) = \frac{\sum_{i}(x_i - \mu_X)(y_i - \mu_Y)}{\sqrt{\sum_{i}(x_i - \mu_X)^2}\sqrt{\sum_{i}(y_i - \mu_Y)^2}}$$

- Similarity or Distance Matrix Pair-wise 构似度或者距离
 - One row and one column for each data point
 - An entry is the similarity or distance of the associated pair of points
- "Incidence" Matrix
- 聚类结果

《导论》P337

- One row and one column for each data point
- An entry is 1 if the associated pair of points belong to the same cluster
- An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation (positive for similarity, negative for distance) indicates that points that belong to the same cluster are close to each other.

Incidence Matrix

	p1	p2	р3
p1		0	0
p2	0		1
р3	0	1	

Similarity Matrix

	p1	p2	р3
p1		0.2	0.3
p2	0.2		0.8
р3	0.3	0.8	

Correlation between [0,0,1] and [0.2,0.3,0.8]

Using Similarity Matrix for Cluster Validation

 Order the similarity matrix with respect to cluster labels and inspect visually.

 $sim(i,j) = 1 - \frac{d_{ij} - d_{min}}{d_{max} - d_{min}}$

距离转换为相似度[0,1]的方式

Using Similarity Matrix for Cluster Validation

Clusters in random data are not so crisp

Corr = -0.5810

K-means

Using Similarity Matrix for Cluster Validation

DBSCAN

- Clusters in more complicated figures are not well separated
- This technique can only be used for small datasets since it requires a quadratic computation

STATISTICAL FRAMEWORK FOR CLUSTER(ING) VALIDITY

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "non-random" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid

Statistical Framework for SSE

- Example
 - Compare SSE of 0.005 against three clusters in random data
 - Histogram of SSE for three clusters in 500 random data sets of 100 random points distributed in the range 0.2 – 0.8 for x and y

Value 0.005 is very unlikely

《号论》P344

Empirical p-value

- If we have a measurement v (e.g., the SSE value)
- ..and we have N measurements on random datasets
- ...the empirical p-value is the fraction of measurements in the random data that have value less or equal than value v (or greater or equal if we want to maximize)
 - i.e., the value in the random dataset is at least as good as that in the real data
- We usually require that p-value ≤ 0.05

ESTIMATING THE "RIGHT" NUMBER OF CLUSTERS

Estimating the "right" number of clusters

Typical approach: find a "knee" in an internal measure curve.

For more, see 《 等 论 》 P339

• Desirable property: the clustering algorithm does not require the number of clusters to be specified (e.g., DBSCAN)

Estimating the "right" number of clusters

SSE curve for a more complicated data set

SSE of clusters found using K-means

EVALUATION WITH EXTERNAL "GROUND TRUTH"

External Measures for Clustering Validity

- Assume that the data is labeled with some class labels
 - E.g., documents are classified into topics, people classified according to their income.
 - This is called the "ground truth"
- In this case we want the clusters to be homogeneous with respect to classes
 - Each cluster should contain elements of mostly one class
 - Each class should ideally be assigned to a single cluster

Confusion matrix

- Rows: clusters
- Columns: classes
- Entries: counts/probability of cluster-class pair
- n = number of points
- m_i = points in cluster i
- c_i = points in class j
- n_{ij} = points in cluster i coming from class j
- $p_{ij} = n_{ij}/m_i$ = probability of element from cluster i to be assigned in class j

Confusion matrix of clusters/classes (counts)

	Class 1	Class 2	Class 3	
Cluster 1	n_{11}	n ₁₂	n_{13}	m_1
Cluster 2	n_{21}	n_{22}	n_{23}	m_2
Cluster 3	n_{31}	n_{32}	n_{33}	m_3
	c_1	c_2	c_3	n

Joint distribution of clusters/classes

	Class 1	Class 2	Class 3	
Cluster 1	p_{11}	p_{12}	p_{13}	m_1
Cluster 2	p_{21}	p_{22}	p_{23}	m_2
Cluster 3	p_{31}	p_{32}	p_{33}	m_3
	c_1	c_2	c_3	n

Measures

Precision:

• Of cluster i with respect to class j: $Prec(i,j) = \frac{n_{ij}}{m_i} = p_{ij}$

Recall:

- Of cluster i with respect to class j: $Rec(i,j) = \frac{n_{ij}}{c_j}$
- F-measure:
 - Harmonic Mean of Precision and Recall:

$$F(i,j) = \frac{2 * Prec(i,j) * Rec(i,j)}{Prec(i,j) + Rec(i,j)}$$

	Class 1	Class 2	Class 3	
Cluster 1	n_{11}	n ₁₂	n_{13}	m_1
Cluster 2	n_{21}	n_{22}	n_{23}	m_2
Cluster 3	n_{31}	n ₃₂	n_{33}	m_3
	c_1	c_2	c_3	n

	Class 1	Class 2	Class 3	
Cluster 1	p_{11}	p_{12}	p_{13}	m_1
Cluster 2	p_{21}	p_{22}	p_{23}	m_2
Cluster 3	p_{31}	p_{32}	p_{33}	m_3
	c_1	c_2	c_3	n

Measures

Precision/Recall for clusters and clusterings

- Assign to cluster i the class k_i such that $k_i = \arg \max_i n_{ij}$
- Precision:
 - Of cluster i: $Prec(i) = \frac{n_{ik_i}}{m_i}$
 - Of the clustering: $Prec(C) = \sum_{i} \frac{m_{i}}{n} Prec(i)$ 是cluster中元素 是总体的比例
- Recall:
 - Of cluster i: $Rec(i) = \frac{n_{ik_i}}{c_{k_i}}$
 - Of the clustering: $Rec(C) = \sum_{i} \frac{m_i}{n} Rec(i)$
- F-measure:
 - Harmonic Mean of Precision and Recall

	Class 1	Class 2	Class 3	
Cluster 1	n_{11}	n ₁₂	n_{13}	m_1
Cluster 2	n_{21}	n_{22}	n_{23}	m_2
Cluster 3	n_{31}	n_{32}	n_{33}	m_3
	c_1	c_2	c_3	n

Good and bad clustering

	Class 1	Class 2	Class 3	
Cluster 1	2	3	85	90
Cluster 2	90	12	8	110
Cluster 3	8	85	7	100
	100	100	100	300

Precision: (0.94, 0.81, 0.85)

overall 0.86

Recall: (0.85, 0.9, 0.85)

- overall 0.87

	Class 1	Class 2	Class 3	
Cluster 1	20	35	35	90
Cluster 2	30	42	38	110
Cluster 3	38	35	27	100
	100	100	100	300

Precision: (0.38, 0.38, 0.38)

overall 0.38

Recall: (0.35, 0.42, 0.38)

– overall 0.39

Another clustering

	Class 1	Class 2	Class 3	
Cluster 1	0	0	35	35
Cluster 2	50	77	38	165
Cluster 3	38	35	27	100
	100	100	100	300

Cluster 1:

Precision: 1

Recall: 0.35