

Le successioni e i limiti

Si dice successione una funzione a valori reali definita su $\mathbb N$ (ossia che ha come argomento i numeri naturali). Si può scrivere in diversi modi $f(n)=a_n,\;\{a_n\}\;n\in\mathbb{N},\;\{a_1,a_2,a_3\}$; il grafico du una duccessione è fatto da punti disgiunti.

 $ightharpoonup \left\{ a_{n}
ight\}$ è detto termine generale della successione

LIMITE DI UNA SUCCESSIONE

Sia $\{a_n\}_{n\in\mathbb{N}}$ una successione di numeri reali.

Si dice che $\{a_n\}$ converge ad $a\in\mathbb{R}$ e si indica con $(\lim_{n o +\infty} a_n = a)$

Si dice che
$$\{a_n\}$$
 diverge positivamente a $+\infty$ $(\lim_{n o +\infty} a_n = +\infty)$

Si dice che
$$\{a_n\}$$
 diverge negativamente a $-\infty$ $(\lim_{n o +\infty} a_n = -\infty)$

- Una successione che ha limite numerico si dice convergente.
- Una successione che ha limite infinito si dice divergente (la divergenza può essere positiva o negativa).

ALGEBRA DEI LIMITI

$$oxed{i}$$
 Siano $\{a_n\} o a\wedge\{b_n\} o b$

•
$$\{a_n\} + \{b_n\} \to a + b$$

•
$$\{a_n\}-\{b_n\} o a-b$$

•
$$\{a_n\}\{b_n\} o ab$$

$$\bullet \quad \frac{\{a_n\}}{\{b_n\}} \to \frac{a}{b}$$

•
$$\{|a_n|\}
ightarrow |a|$$

TEOREMA DELL'UNICITA' DEL LIMITE + dimostrazione

Sia
$$\{a_n\}$$
 una successione: $\lim_{n o +\infty}\{a_n\}=a orall n\geq n_1 \land \lim_{n o +\infty}\{a_n\}=a' orall n\geq n_2$ e $a< a'$ e $\epsilon<rac{a'-a}{2}$

Dopo un certo numero N_0 i limiti inziano ad avere valore decidiamo quindi un numero $\bar{N}=max(n_1,n_2)$ in modo che valgano entrambi i limiti e impostiamo le disequazioni date dalla definizione di limite.

$$\begin{cases} L - \epsilon < a_n < L + \epsilon \\ L' - \epsilon < a_n < L' + \epsilon \end{cases}$$

$$a' - \epsilon < a_n < a + \epsilon$$

$$a' - \epsilon < a + \epsilon$$

$$-\epsilon - \epsilon < a' - a$$

$$-2\epsilon < a'-a$$

$$\epsilon > rac{a'-a}{2}$$

discorde con la prima supposizione

 $igcup Se \left\{ a_n
ight\}$ ammette limite questo è unico.

TEOREMA DI PERMANENZA DEL SEGNO

- Sia $\{a_n\}$: $a_n \to a > 0 \lor a_n \to +\infty$
- Sia $\{a_n\}$: $a_n \to a < 0 \lor a_n \to -\infty$

TEOREMA DEL CONFRONTO

Siano $\{a_n\},\{b_n\},\{c_n\}$ tale che $a_n\leq b_n\leq c_n$

DIM.

$$L - \epsilon < a_n < L + \epsilon \ \forall n > n_0$$

$$L - \epsilon < b_n < L + \epsilon \ \forall n > n_1$$

$$L - \epsilon < c_n < L + \epsilon \ \forall n > n_2$$

 $ar{N} = max(n_0, n_1, n_2)$ il valore per cui tutti i limiti sono validi

cobiniamo $\{a_n\} < \{b_n\} < \{c_n\}$ con le precedendi disequazioni e troviamo che:

$$L - \epsilon < a_n \le b_n \le c_n < L + \epsilon$$

 b_n è compresa tra $L - \epsilon$ e $L + \epsilon$ quindi L è il suo limite

esempio di limite

$$\lim_{n o +\infty} \{a_n\} = n^x$$

- Se x > 0 allora il limite tende a $+\infty$
- Se x < 0 allora il limite tende a 0
- Se x = 0 allora il limite è 1

OSSERVAZIONE

Se $\{a_n\}$ è convergnete allora è limitata da $a+\epsilon$ superiormente e $a-\epsilon$ inferiormente