Комплект модуля ориентации и навигации Руководство по эксплуатации ВМФК.468166.001 РЭ

Настоящее руководство по эксплуатации (РЭ) содержит сведения о назначении, составе, принципе действия, конструкции изделия "Комплект модуля ориентации и навигации" (далее Изделие), а также его технические характеристики и другие сведения, необходимые для правильной и безопасной эксплуатации Изделия.

Изделие является сложными программируемыми устройством изготавливается предприятием-изготовителем АО "Шельф". Поставка Изделия производится основе договорных взаимоотношений. Владельцем на правообладателем Изделие технической документации на является предприятие-изготовитель АО "Шельф".

К работе с Изделием допускаются лица, имеющие специальную подготовку, с образованием не ниже среднего технического, знающие работу и особенности оборудования.

Содержание

1	Опи	ісание	и работа изделия	4
	1.1	Назна	ачение изделия	4
		1.1.1	Наименование	4
		1.1.2	Назначение	4
		1.1.3	Область применения	4
	1.2	Соста	в изделия	4
	1.3	Техни	ческие характеристики	5
	1.4	Устро	йство и работа	6
		1.4.1	Принцип действия	6
		1.4.2	Режимы работы	9
	1.5	Марки	ировка и пломбирование	11
		1.5.1	Сведения о маркировке изделия	11
	1.6	Упако	вка	12
		1.6.1	Конструкция и порядок использования тары	12
2	Исп	ользоі	вание по назначению	13
	2.1	Экспл	ıуатационные ограничения	13
	2.2	Подго	товка изделия к использованию	13
		2.2.1	Объем и последовательность внешнего осмотра изделия	13
		2.2.2	Указания об ориентировании изделия	13
		2.2.3	Указания по включению и опробованию работы изделия	14
	2.3	Испол	тьзование изделия	16
		2.3.1	Порядок действия обслуживающего персонала	16
		2.3.2	Порядок контроля работоспособности изделия	16
		2.3.3	Порядок и правила управления режимами работы изделия	17
		2.3.4	Порядок выключения изделия	17
3	Tex	ническ	ое обслуживание	17
	3.1	Общи	е указания	17
	3.2	Поряд	док технического обслуживания изделия	17
4	Теку	ущий р	DEMOHT	17
	4.1	Текуш	ций ремонт изделия	17
5	Хра	нение		17
	5.1	Услов	вия хранения изделия	17
6	Тра	нспорт	гирование	18
	6.1	Требо	вания к транспортированию изделия	18
	6.2	Поряд	док подготовки изделия для транспортирования	18

7	Утиј	пизация															-		-	18
	7.1	Меры бе	езопа	СНО	сти	١.														18
	7.2	Методы	утилі	13aL	ции	١.						•								18
Пе	рече	нь прин	ятых	СОН	кра	ще	ни	й.						•	 •					19
Пр	илох	кение А													 •					20
Пр	илох	кение Б													 •					22
Пр	илох	кение В																		24

1 Описание и работа изделия

1.1 Назначение изделия

1.1.1 Наименование

Полное наименование изделия – "Комплект модуля ориентации и навигации". Сокращённое наименование – КМОН. Децимальный номер – ВМФК.468166.001.

1.1.2 Назначение

Изделие предназначено для определения параметров ориентации и навигации подвижных объектов.

1.1.3 Область применения

Изделие предназначено для использования в качестве основной или резервной навигационной системы подвижных объектов. Малая потребляемая мощность (до 2 Вт) и широкий диапазон входных напряжений (от 10 до 30 В) позволяет использовать Изделие на объектах с высокой степенью автономности.

1.2 Состав изделия

В состав комплекта входят:

Таблица 1 – Состав комплекта

Nº	Наименование	Обозначение	Кол.
1	Плата вычислителя (см. рисунок 1)	ВМФК.466226.002	1
2	Комплект монтажных частей	ВМФК.469439.001	1
2.1	Розетка однорядная CP3504S001S 4 контакта		1
2.2	Розетка двурядная CP3508S0010 8 контактов		1
2.3	Контакт для кабельной розетки CP35TN21PES		12
3	Комплект упаковки	ВМФК.468916.002	1
3.1	Ящик	ВМФК.321233.001	1
4	ГНСС Антенна АСНП-2 (см. рисунок 1)		1

Рис. 1 – Изделие в сборе

4 omb. Ø 3

Примечание: 1 - Плата вычислителя, 2 - ГНСС Антенна АСНП-2.

4 am₿. Ø 2.6

1.3 Технические характеристики

Изделие формирует и выдаёт бортовым потребителям позиционные параметры (широта, долгота, высота), скоростные параметры (северная, восточная и вертикальная проекции путевой скорости), угловые параметры (углы крена, тангажа, истинного и магнитного курса), проекции вектора кажущегося ускорения и вектора абсолютного ускорения на оси географического трёхгранника, а также время по шкале UTC. Точность выдаваемых параметров указаны в таблице 2.

Таблица 2 – Погрешности измеряемых параметров

Параметр	Ед. изм.	Погрешность	Примечания
		(1 CKO)	
угол истинного курса	град	1.2	см. прим. 1
угол магнитного курса	град	1.0	
угол крена	град	0.1	
углд тангажа	град	0.1	
проекции кажущегося ускорения	м/c ²	0.1	
проекции абсолютной угловой	град/с	0.1	
скорости вращения			
широта, долгота	М	3	см. прим. 2
высота	М	5	см. прим. 2
компоненты скорости	м/с	0.1	см. прим. 2
время UTC	МКС	100	см. прим. 2

Примечания:

- 1. угол истинного курса расчитывается, как сумма значений магнитного курса и магнитного склонения в точке измерения;
- 2. при наличии устойчивого приёма сигнала ГНСС.

Электропитание Изделия должно осуществляться постоянным током напряжением от 10 до 30 В. Потребляемая мощность составляет не более 2 Вт.

1.4 Устройство и работа

1.4.1 Принцип действия

Интерфейсы представлены в таблице 3.

Таблица 3 – Перечень интерфейсов Изделия

Интерфейс	Разъем	Описание
		8N1, 115200 бит/сек, 3-х проводной
RS-232 №1	XP1	Интерфейс взаимодействия с Изделием.
		Доступен при отключенном RS-422 №1
		8N1, 115200 бит/сек, 3-х проводнойй
RS-232 №2	XP1	Интерфейс взаимодействия с ГНСС приемником.
		Доступен при отключенном RS-422 №1.
		8N1, 115200 бит/сек, 5-ти проводной
RS-422 №1	XP1	Возможна замена RS-232 №1 и RS-232 №2
		на RS-422 №1, при этом теряется возможность прямого
		взаимодействия с ГНСС приемником.
		8N1, 115200 бит/сек, 3-х проводной
CAN №1	XP2	Интерфейс взаимодействия с Изделием.
		Доступен при отключенном RS-422 №1.

Примечания: 8N1 - размер данных 8 бит, без контроля четности, 1 стоп-бит.

Расположение разъемов приводится на рисунке 2. Расположение контактов разъема приводится на рисунке 3. Обозначения контактов приведены в таблице 4 и таблице 5.

Рис. 2 – Расположение разъемов

Рис. 3 – Расположение контактов

Таблица 4 – Обозначение контактов разъема ХР1

Цепь	Контакт
GND	1
VIN	2
RS-232 №2 GND / RS-422 №1 GND	3
RS-232 №1 GND / RS-422 №1 GND	4
RS-232 №2 RX / RS-422 №1 RX-	5
RS-232 №1 RX / RS-422 №1 RX+	6
RS-232 №2 TX / RS-422 №1 TX-	7
RS-232 №1 TX / RS-422 №1 TX+	8

Таблица 5 – Обозначение контактов разъема ХР2

Цепь	Контакт
CAN_HIGT	1
CAN_LOW	2
GND	3
VIN	4

В состав Изделия входят следующие измерители:

- ГНСС приёмник;
- трехосевой датчик угловой скорости;
- трехосевой акселерометр;
- трехосевой магнитометр.

Управляющее ПО Изделия реализует алгоритм гировертикали для определения углов крена и тангажа объекта. Совместная обработка информации о крене, тангаже, измерений магнитометра и ГНСС приемника позволяет с использованием карты магнитных склонений, записанной в ПЗУ, вычислять истинный курс. Обобщённая алгоритмическая структура ПО приведена на рисунке 4.

Рис. 4 – Обобщённая алгоритмическая структура ПО

Примечание: А – акселерометр, Г – гироскоп, М – магнитометр, НЧ – низкочастотный.

1.4.2 Режимы работы

Структурная схема режимов и подрежимов работы Изделия представлена на рисунке 5.

Рис. 5 – Схема режимов и подрежимов работы Изделия

Основным режимом работы Изделия является режим «Навигация». Режим «Курсовертикаль» реализуется в случае невозможности использования Изделием сигналов ГНСС. Время готовности к работе с момента подачи питания – не более 10 секунд.

Режим «Навигация» В режиме «Навигация» Изделие в полном объёме формирует и выдаёт сообщения содержащие параметры ориентации и навигации. Для реализации режима необходим устойчивый приём сигналов ГНСС. Рассчитанное значение магнитного склонения для текущих координат места сохраняется в ПЗУ и используется в режиме «Курсовертикаль».

Режим «Курсовертикаль» В случае отсувствия ГНСС сигнала более 1 секунды, Изделие переходит в режим «Курсовертикаль». Для определения истинного курса используется последнее рассчитанное значение магнитного склонения.

Режим «Калибровка акселерометра» В режиме «Калибровка акселерометра» производится оценка сдвигов нуля и масштабного коэффициента трехосевого

ускорения. После завершения калибровки, параметры калибровки датчика записываются в ПЗУ. В последующих скорректированных измерениях датчиков полученные калибровочные коэффициенты. Переход режим «Калибровка акселерометра» осуществлется (см. протокол ПО команде взаимодействия).

Режим «Калибровка гироскопа» В режиме «Калибровка гироскопа» производится оценка дрейфов трехосевого датчика угловой скорости. После завершения калибровки, параметры калибровки записываются в ПЗУ. В последующих скорректированных измерениях датчиков учитываются полученные калибровочные коэффициенты. Переход в режим «Калибровка гироскопа» осуществлется по команде (см. протокол взаимодействия).

Режим «Калибровка магнитометра» В режиме «Калибровка магнитометра» производится оценка сдвигов нуля и масштабного коэффициента трехосевого датчика магнитного поля. После завершения калибровки, параметры калибровки записываются в ПЗУ. В последующих скорректированных измерениях датчиков учитываются полученные калибровочные коэффициенты. Переход режим «Калибровка магнитометра» осуществлется команде протокол ПО (CM. взаимодействия).

1.5 Маркировка и пломбирование

1.5.1 Сведения о маркировке изделия

На печатной плате (рисунок 6) в составе Платы вычислителя белым цветом нанесен децимальный номер и версия печатной платы в формате: «децимальный номер» - «версия», а также направление измерительных осей Изделия. Ось Y направлена по нормали, вверх от плоскости маркировки.

Рис. 6 – Вид Печатной платы в составе Платы вычислителя

1.6 Упаковка

1.6.1 Конструкция и порядок использования тары

Тара представляет собой деревянный ящик с уложенными в него составными частями изделия. Конструкция и габаритные размеры тары показаны на рисунке 7.

Рис. 7 – Конструкция и габаритные размеры тары

2 Использование по назначению

2.1 Эксплуатационные ограничения

Изделие обеспечивает выполнение требований по назначению при соблюдении следующих показателей:

Таблица 6 – Эксплуатационные ограничения

Параметр	Значение
температура окружающей среды	от -40 до +55 °C
относительная влажность воздуха	до 90% (при температуре 25 °C)
напряженность магнитного поля	до 2 гаусс
линейное ускорение объекта	от -2 до +2 g
линейная скорость объекта	от 0 до 30 м/сек
угловая скорость вращения объекта	от 0 до 100 град/с

2.2 Подготовка изделия к использованию

2.2.1 Объем и последовательность внешнего осмотра изделия

После извлечения Изделия из транспортной тары необходимо выполнить внешний осмотр Изделия на предмет отсутствия механических повреждений. Использовать аппаратуру, имеющую механические повреждения, запрещается.

2.2.2 Указания об ориентировании изделия

Разместить Изделие в предназначенном для него месте. К месту установки Изделия на объекте предъявляются следующие требования:

- в радиусе не менее 40 см от места размещения Изделия не должно находиться силовых кабелей постоянного и переменного тока, силовых установок, электроприводов и постоянных магнитов;
- в радиусе не менее 40 см от места размещения Изделия не должно находиться подвижных изделий из намагничивающихся материалов (железо, углеродистая сталь, нержавеющая сталь, никель, кобальт и др.).

Для определения направления осей Изделия см. рисунок 8.

Рис. 8 – Ориентация измерительных осей Платы вычислителя

2.2.3 Указания по включению и опробованию работы изделия

После подачи питания на Изделие, необходимо произвести:

- оценку исправности цепей питания (таблица 7);
- оценку исправности линий передачи данных (таблица 8);
- оценку исправности основных компонентов в составе Изделия (таблица 9);
- калибровку датчиков угловой скорости (таблица 10).

Если нет возможности установить объект на неподвижную поверхность, оценку дрейфов проводить не следует. По умолчанию используются оценки дрейфов, сохраненные в ПЗУ.

Таблица 7 – Оценка исправности цепей питания

Действие	Ожидаемый результат
Подать питание на Изделие.	Светодиод на плате моргает.

Таблица 8 – Оценка исправности линий передачи данных

Действие	Ожидаемый результат
Подать питание на Изделие.	Светодиод на плате моргает.
Через 5 секунд после включения	Получен ответ от устройства с
Передать сообщение DIR (см. описание	корректной контрольной суммой.
протокола взаимодействия).	

Таблица 9 – Оценка исправности основных компонентов Изделия

Действие	Ожидаемый результат
Подать питание на Изделие.	Светодиод на плате моргает.
Через 5 секунд после включения	Получен ответ от устройства с
Передать сообщение DIR (см. описание	корректной контрольной суммой. В
протокола взаимодействия).	Значение поля hardware_state равно
	0xFF.

Таблица 10 – Калибровка трехосевого гироскопа

Действие	Ожидаемый результат
Установить Изделие на ровную	Светодиод на плате моргает.
неподвижную поверхность и	
зафиксировать его положение. Подать	
питание на Изделие.	
Перевести Изделие в режим	Значение поля firmware_state в ответе
«Калибровка гироскопа», передав	на сообщение DIR равно 0x03.
сообщение GCE.	
Ожидать автоматического перехода в	Значение поля firmware_state в ответе
режим «Навигация» или	на сообщение DIR равно 0x00.
«Курсовертикаль» через 1 минуту.	

В случае изменения места установки Изделия на объекте или в случае его первичной установки необходимо провести калибровку магнитометра (см. таблицу 11) для исключения влияния места установки Изделия на показания магнитометра.

Таблица 11 – Калибровка трехосевого магнитометра

Действие	Ожидаемый результат
Установить Изделие на ровную	Светодиод на плате моргает.
неподвижную поверхность и	
зафиксировать его положение. Подать	
питание на Изделие.	
Сбросить калибровочные параметры	Значение поля firmware_state в ответе
сообщением MCR. Перевести Изделие в	на сообщение DIR равно 0x04.
режим «Калибровка магнитометра»,	
передав сообщение МСЕ.	
Выполнять развороты объекта	
поочередно по трем осям на 360	
градусов в течение 1 минуты. Угловая	
скорость при этом не должна превышать	
18 град/сек. или 90 град за 5 секунд.	
Ожидать автоматического перехода в	Значение поля firmware_state в ответе
режим «Навигация» или	на сообщение DIR равно 0x00.
«Курсовертикаль» через 5 минут.	

2.3 Использование изделия

2.3.1 Порядок действия обслуживающего персонала

Изделие может работать в режимах «Навигация» или «Курсовертикаль». Информация о текущем режиме работы и состоянии Изделия передаётся потребителю по запросу типа DIR (см. потокол взаимодействия). Переход в режим «Курсовертикаль» осуществляется при невозможности приёма Изделием сигналов ГНСС. При наличии сигналов ГНСС переход в режим «Навигация» осуществляется автоматически. Время получения первого навигационного решения приемником ГНСС сигналов при «холодном» старте, в среднем, может достигать 30 сек. и более в зависимости от условий приема сигнала.

2.3.2 Порядок контроля работоспособности изделия

Неисправности и отказы основных элементов Изделия выявляются с помощью встроенных средств контроля. Флаги исправности основных элементов изделия доступны для чтения по протоколу (см. протокол взаимодействия).

2.3.3 Порядок и правила управления режимами работы изделия

Управление режимами работы Изделия производится путем подачи специальных команд. После включения Изделие автоматически переходит в режим «Курсовертикаль».

2.3.4 Порядок выключения изделия

Выключение Изделия производится путем снятия питания. Между последовательными включениями рекомендуется выждать не менее 1 секунды.

3 Техническое обслуживание

3.1 Общие указания

Техническое обслуживание необходимо для компенсации погрешностей датчиков в составе изделия.

3.2 Порядок технического обслуживания изделия

В случае изменения места установки Изделия на объекте или в случае его первичной установки необходимо провести калибровку магнитометра (см. таблицу 11) для исключения влияния места установки Изделия на показания магнитометра. Калибровку магнитометра следует проводить не реже 1 раза в год.

4 Текущий ремонт

4.1 Текущий ремонт изделия

Вышедшее из строя Изделие должно быть передано предприятию-изготовителю для определения причин отказов и ремонта в соответствии с условиями договора поставки.

5 Хранение

5.1 Условия хранения изделия

Аппаратура Изделия должна храниться в заводской упаковке в сухом отапливаемом помещении при отсутствии в воздухе паров кислот, щелочей и других агрессивных примесей при температуре от плюс 5°C до плюс 35°C и относительной влажности воздуха не более 80% (при температуре 25° C).

6 Транспортирование

6.1 Требования к транспортированию изделия

Упакованное Изделие транспортировать в закрытых транспортных средствах водным, воздушным, железнодорожным и автомобильным транспортом на любое расстояние в соответствии с правилами, действующими на данном виде транспорта, и в условиях согласно требованиям ГОСТ 23216-78. В случае транспортировки Изделия на открытой платформе, ящики с упакованными составными частями Изделия необходимо защитить от воздействия атмосферных осадков и прямых солнечных лучей.

6.2 Порядок подготовки изделия для транспортирования

Ящики с упакованными составными частями Изделия необходимо закрепить так, чтобы в пути не допустить их смещения и ударов друг о друга.

7 Утилизация

7.1 Меры безопасности

Изделие после окончания срока эксплуатации не представляет опасности для жизни, здоровья людей и окружающей среды.

7.2 Методы утилизации

При утилизации Изделия могут быть использованы типовые методы, применяемые для этих целей к изделиям электронной техники. При утилизации следует:

- отключить демонтируемое Изделие от любых источников питания;
- разобрать Изделие и его составные части на детали и узлы, которые соединены между собой с помощью стандартных винтов, болтов и гаек;
- выпаять с плат все радиоэлементы;
- металлические узлы и детали после сортировки сдать в металлолом;
- пластмассовые узлы и детали сдать на переработку в специализированные предприятия.

Перечень принятых сокращений

ПЗУ	Постоянное запоминающее устройство
ГНСС	Глобальная навигационная спутниковая система
ДУС	Датчик угловой скорости
ПО	Программное обеспечение
TO	Техническое обслуживание

Приложение А

Чертеж сборочный КМОН ВМФК.468166.001 СБ.

BW4K'768166.001 (G BMФK.468166.001 Перв. примен * 9.81 181 макс. Справ. № 37* 38.4 * 31 31 * 9.07 38.4 4 om₿. Ø 2.6 4 om₿. Ø 3 дата Подп. * Размеры для справок. 1 2 При корпусировании, поз. 2 должна быть расположена под радиопрозрачным материалом. 3 Направление поз. 2 должно быть соблюдено в соответствии с чертежом. дчбл. 4 Расстояние от поз. 1 до источников магнитного поля должно быть максимизировано. 5 Расстояние от поз. 1 до источников магнитотвердых и магнитомягних материалов 8 NHB. должно быть не менее 20см. 6 Установить штекер поз. 2 в разъем XW1 поз.1. 8 пнв. Взам. и дата ВМФК.468166.001 СБ Подп. Масса Масштаб Комплект модуля ориентации Изм. Лист № докум. Подп. Дата и навигации 0.04 Разраб. Садеков 1:1 Чехов Προβ. Сборочный чертеж подл. Сухов Лист Листов Т. контр. 2 АО «Шельф» Босая MHB. I Н. контр.

Утв.

Приложение Б

Схема электрическая соединений КМОН ВМФК.468166.001 Э4.

Приложение В

Протокол информационного взаимодействия.

Содержание

1	Обц	цие положения	2
	1.1	Разбиение на кадры	2
	1.2	Последовательность передачи байт	2
	1.3	Контрольная сумма	2
2	Стр	уктура запроса	2
	2.1	0х00 Запрос информации об устройстве	2
	2.2	0х01 Запрос доступных данных	3
	2.3	0х02 Запрос данных местоположения	3
	2.4	0х03 Запрос данных ориентации	3
	2.5	0x20 Запрос начала калибровки гироскопа	4
	2.6	0х21 Запрос сброса калибровки гироскопа	4
	2.7	0х30 Запрос начала калибровки магнитометра	4
	2.8	0х31 Запрос сброса калибровки магнитометра	Ę
	2.9	0х32 Запрос включения горизонтальной коррекции	Ę
	2.10	0х33 Запрос отключения горизонтальной коррекции	Ę
3	Стр	уктура ответа	6
	3.1	0х00 Информация об устройстве	7
	3.2	0x01 Доступные данные	8
	3.3	0x02 Данные местоположения	ć
	3.4	0х03 Данные ориентации	(

1 Общие положения

1.1 Разбиение на кадры

Поток данных разделяется на кадры по RFC 1055 (SLIP). Каждый кадр начинается и заканчивается символом FEND (0xC0). Если FEND содержится в данных пакета, он посылается внутри кадра как FESC TFEND (0xDB 0xDC). Если FESC содержится в данных пакета, он посылается внутри кадра как FESC TFESC (0xDB 0xDD). Символ FESC с любым символом, за исключением TFEND или TFESC, является ошибкой. Символы TFEND и TFESC являются обычными символами, если им не предшествует FESC. Структуры сообщений далее описаны до кодирования в SLIP, то есть без разделителей фреймов FEND (0x0C) и т.д.

1.2 Последовательность передачи байт

Данные в протоколе передаются младшим байтом вперед.

1.3 Контрольная сумма

В протоколе используется контрольная сумма CRC16, маска 0х1021, начальное значение регистра 0хFFFF.

2 Структура запроса

KMOH передает данные только по запросу. Первые 2 поля (checksum, op_code) являются общими для всех типов запросов и описаны в таблице 1.

Таблица 1 – Структура запроса к КМОН

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

checksum CRC16 сообщения начиная с байта 0x02 включительно.

op code Код команды.

2.1 0х00 Запрос информации об устройстве

Device Information Request (DIR)

Запрашивается кадр содержащий информацию об устройстве - п. 3.1.

Таблица 2 – Структура запроса информации об устройстве

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x00.

2.2 0х01 Запрос доступных данных

Data State Request (DSR)

Запрашивается кадр содержащий флаги информирующие о наличии новых данных - п. 3.2.

Таблица 3 – Структура запроса доступных данных

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x01.

2.3 0х02 Запрос данных местоположения

Position Data Request (PDR)

Запрашивается кадр содержащий данные полученные по сигналам ГНСС - п. 3.3.

Таблица 4 – Структура запроса данных местоположения

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x02.

2.4 0х03 Запрос данных ориентации

Orientation Data Request (ODR)

Запрашивается кадр содержащий параметры ориентации объекта в горизонтной системе координат - п. 3.4.

Таблица 5 – Структура запроса данных ориентации

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x03.

2.5 0x20 Запрос начала калибровки гироскопа

Gyroscope Calibration Enable (GCE)

Запрос начала калибровки гироскопа.

Таблица 6 – Структура запроса начала калибровки гироскопа

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x20.

2.6 0x21 Запрос сброса калибровки гироскопа

Gyroscope Calibration Reset (GCR)

Запрос сброса калибровки гироскопа.

Таблица 7 – Структура запроса сброса калибровки гироскопа

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0x21.

2.7 0х30 Запрос начала калибровки магнитометра

Magnetometer Calibration Enable (MCE)

Запрос начала калибровки магнитометраа.

Таблица 8 – Структура запроса начала калибровки магнитометра

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0х30.

2.8 0x31 Запрос сброса калибровки магнитометра

Magnetometer Calibration Reset (MCR)

Запрос сброса калибровки магнитометра.

Таблица 9 – Структура запроса сброса калибровки магнитометра

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0х31.

2.9 0х32 Запрос включения горизонтальной коррекции

Horizontal Correction Enable (HCE)

Запрос включения горизонтальной коррекции по показаниям магнитометра.

Таблица 10 – Структура запроса включения горизонтальной коррекции

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0х32.

2.10 0х33 Запрос отключения горизонтальной коррекции

Horizontal Correction Disable (HCD)

Запрос отключения горизонтальной коррекции по показаниям магнитометра.

Таблица 11 – Структура запроса отключения горизонтальной коррекции

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	op_code	-

op_code Код команды - 0х33.

3 Структура ответа

Формат ответа КМОН на запрос зависит от типа запроса. Первые 3 поля (checksum, resp_type, frame_count) являются общими для всех типов ответов и описаны в таблице 12.

Таблица 12 – Общие поля структуры ответа КМОН

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	resp_type	-
0x03	uint8	frame_count	-

checksum CRC16 сообщения начиная с байта 0x02 включительно.

resp_type Содержит код типа ответа. Возможные значения поля resp_type:

0x00 - информация об устройстве;

0х01 - доступные данные;

0х02 - данные местоположения;

0х03 - данные ориентации.

При переполнении сбрасывается в 0х00.

3.1 0х00 Информация об устройстве

Таблица 13 – Структура информации об устройстве

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	resp_type	-
0x03	uint8	frame_count	-
0x04	uint8[3]	firmware_version	-
0x07	uint8[3]	hardware_version	-
0x0A	uint16	serial_number	-
0x0C	uint64	local_time_stamp	10Е-6 сек
0x14	uint8	hardware_state	-
0x15	uint8	firmware_state	-

firmware_version Версия программного обеспечения. hardware_version Версия аппаратного обеспечения.

serial_number Серийный номер.

local_time_stamp Локальная метка времени.

hardware_state Состояние основных подсистем.

бит 1: 1 - акселерометр и гироскоп исправны;

бит 2: 1 - магнитометр исправен;

бит 3: 1 - ГНСС приемник исправен;

бит 4: 1 - энергонезавизимая память исправна;

бит 4-7: резерв.

firmware_state Текущий режим работы КМОН.

3.2 0х01 Доступные данные

Таблица 14 – Структура доступных данных

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	resp_type	-
0x03	uint8	frame_count	-
0x04	uint8	data_state	-
0x05	uint64	local_time_stamp	10Е-6 сек
0x0D	uint8	hardware_state	-
0x0E	uint8	firmware_state	-

data_state Состояние доступных данных указывает на наличие новых

измерений. При запросе данных положения или ориентации

соответствующие флаги сбрасываются.

бит 0: 1 - доступны новые данные положения;

бит 1: 1 - доступны новые данные ориентации;

бит 2-7: резерв.

local_time_stamp Локальная метка времени.

hardware_state Состояние основных подсистем. firmware_state Текущий режим работы КМОН.

3.3 0х02 Данные местоположения

Таблица 15 – Структура данных местоположения

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	resp_type	-
0x03	uint8	frame_count	-
0x04	uint8	quality	-
0x05	uint8	gln_sat_num	-
0x06	uint8	gps_sat_num	-
0x07	uint64	time_stamp	10Е-6 сек
0x0F	int64	pos_lat	10Е-12 рад
0x17	int64	pos_lon	10Е-12 рад
0x1F	int64	pos_alt	10Е-12 м
0x27	int32	course	10Е-6 рад
0x2B	int32	vel_lat	10Е-6 м/с
0x2F	int32	vel_lon	10Е-6 м/с
0x33	int32	vel_alt	10Е-6 м/с

quality Статус навигационного решения.

бит 0: 1 - на предыдущем интервале получено решение;

бит 1: 1 - получено 2D решение;

бит 2: резерв;

бит 3: 1 – в решении использовались дифференциальные поправки;

бит 4: 1 - подтверждение данных RAIM контролем;

бит 5: 1 – режим работы с дифференциальными поправками;

бит 6-7: резерв.

gln_sat_num Число спутников ГЛОНАСС участвующих в решении.

gps_sat_num Число спутников GPS участвующих в решении.

time_stamp Метка времени по сигналам ГНСС - кол-во секунд с 00 часов 00

минут 1 января 1970 года.

pos_lat Долгота по сигналам ГНСС. Восточная долгота выражается

положительными числами, западная долгота - отрицательными.

pos lon Широта по сигналам ГНСС. Северная широта выражается

положительными числами, южная широта - отрицательными.

pos_alt Высота над уровнем моря по сигналам ГНСС.

course Путевой угол по сигналам ГНСС.

vel_latСкорость по широте.vel_lonСкорость по долготе.vel_altСкорость по высоте.

3.4 0х03 Данные ориентации

Таблица 16 – Структура данных ориентации

Смещение	Тип	Название	Размерность
0x00	uint16	checksum	-
0x02	uint8	resp_type	-
0x03	uint8	frame_count	-
0x04	int32	heading_true	10Е-6 рад
0x08	int32	heading_mgn	10Е-6 рад
0x0C	int32	pitch	10Е-6 рад
0x10	int32	roll	10Е-6 рад
0x14	uint8	hor_corr_en	-

heading_true Истинный курс, полученный на основе магнитного, с учетом

склонения расчитанного по последнему решению ГНСС приемника.

heading_mgn Магнитный курс.

pitchТангаж.rollКрен.

hor_corr_en Горизонтальная коррекция по показаниям магнитометра.

бит 0: 1 - корреция включена;

бит 1-7: резерв.