MTH 2105. UNDC Week 2 Friday Lecture Notes. Companison Fest and Limit Companison Tests.

Proposition 1. Companison Test (CT). Let Σ an and Σ th be series with positive terms.

O If I bn is divergent and an ≥ bn firall n, then I an is divergent.

@ If I bn is convergent and on & bn fir all n, then I an is convergent.

Proof Sketch. We can get this result by companing the sequence of partial sums Sn.

let (Sn) and (Pn) be the sequence of partial sums of I an and I be respectively.

Assume that an and lan are positive fir coll n. Then, (Sn) and (Pn) are both increasing sequences.

① If $\sum_{n=0}^{\infty} P_n > \infty$.

Assuming an > bn, then lim Sn = \in since Sn = Pn for all n.

2 Assume that I bn is convergent and let B = I bn = lim Pn.

There's a thorem called the Monotone Convergence Theorem (MCT) that says if a sequence is increasing and bounded above, than the sequence converges.

Since (P_n) is increasing, $P_n \leq B$ firall n. Assuming $a_n \leq b_n$, $S_n \leq P_n \leq B$ for all n.

Thurfire, (Sn) is bounded. From earlier, Sn is increasing. By MCT, lim Sn exists.

.. Ian is convergent.

Note: We typically we p-series or geometric series for Companison Tests.

Example 1.1. Determine the convergence of $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$.

By the Campanism Test with (1), $\frac{5}{20^2+40+3}$ converges.

Example 1.2. Determine the convergence of $\sum_{n=3}^{\infty} \frac{1}{n-2}$

Since 1=3: 1-2>0. Then, 1>1-2>0 and 0<1<1-2;

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=2}^{\infty} \frac{1}{n-2}$ is divergent by the Companison Test.

Example 1.3. Determine the convergence of $\sum_{n=1}^{\infty} \frac{h(n)}{n}$;

For $n \ge 3$: $n > e \ge 2.718$; Since $\ln(x)$ is increasing, $\ln(n) > \ln(e) = 1$; Since $n \ge positive$, $\frac{\ln(n)}{n} > \frac{1}{n} > 0$; We know that $\sum_{n=3}^{\infty} \frac{1}{n}$ diverges. Eg. CT, $\sum_{n=3}^{\infty} \frac{\ln(n)}{n}$ diverges.

Therefore, $\sum_{n=3}^{\infty} \frac{\ln(n)}{n}$ diverges.

Non-Example 1.4. Determine the conv. of $\sum_{n=1}^{\infty} \frac{1}{3n^2-20n}$;

We want to compare this to $\sum_{n=1}^{\infty} \frac{1}{3n^2}$ but for $n \ge 1$: $3n^2 > 3n^2 - 20n$; for $n \ge 7$: both $3n^2$ and $3n^2 - 20n$ are positive So, $\frac{1}{3n^2} < \frac{1}{3n^2 - 20n}$; We can't use the Companison Test here.

Proposition 2. The Limit Companison Test (LCT). Let I an and I be series with positive terms.

If $\lim_{n\to\infty} \frac{a_n}{b_n}$ is positive and finite, then I an and I be both converge or they both diverge.

Proof Sketch. Since an and by are positive fix all n, and is defined and positive fixall n.

Assume $\lim_{n\to\infty} \frac{a_n}{b_n}$ exists and is positive. Let $c=\lim_{n\to\infty} \frac{a_n}{b_n}$.

Since C=0, there exists m, M & IR positive such that m < c < M. eq. m = 1/2 and N = 20;

By definition of limit, for some till sequence $\left(\frac{a_n}{b_n}\right)_{n=N}^{\infty}$ of $\left(\frac{a_n}{b_n}\right)$: $m < \frac{a_n}{b_n} < M$ for all $n \ge N$.

Then, ruby < an < Mby. Consider the series Imby and IMby.

of It is divergent, Imbo is divergent.

With mbo < an firall n≥N, I an diverges by the Congarison Test.

© If Zbn is convergent, ZMbn is convergent. With an < Mbn fir all $n \ge N$, Zan converges by the Companion Test.

Example 2.1. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{3n^2-20n}$;

Let $a_n = (3n^2 - 20n)^{-1}$ and let $a_n = n^{-2}$. We know that $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent as a p-series with p > 1.

Then,
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \lim_{n\to\infty} \left(\frac{(3n^2 - 20n)^{-1}}{n^{-2}}\right) = \lim_{n\to\infty} \left(\frac{n^2}{3n^2 - 20n}\right) = \frac{1}{3}$$
;
Since $0 < \frac{1}{3} < \infty$, $\sum_{n=1}^{\infty} \frac{1}{3n^2 - 20n}$ converges by the LCT.

Example 2.2. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$;

Let $a_n = (2^n - 1)^{-1}$ and $b_n = (\frac{1}{2})^n = (2^n)^{-1}$

Observe that $\sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} (\frac{1}{2})^n$ converges as a geometric series with $|\Gamma| < 1$.

Then, $\lim_{n\to\infty}\left(\frac{a_n}{b_n}\right)=\lim_{n\to\infty}\left(\frac{(2^n-1)^{-1}}{(2n)^{-1}}\right)=\lim_{n\to\infty}\left(\frac{2^n}{a_n+1}\right)=\lim_{n\to\infty}\left(1^n\right)=1$.

Since $0 < 1 < \infty$, $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$ converges by the LCT.

Non-example 2.3. Determine the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^4 + 2n - 4n}$;

The following tests are invalid:

① Let $b_n = \frac{1}{-n4}$; Invalid since b_n is not positive for all n.

② Let $b_n = \frac{1}{n^2}$; Involved since $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \lim_{n \to \infty} \left(\frac{n^2}{n^4 + 2n - 10} \right) = 0$ \leftarrow This has to be positive.

The let $b_n = \frac{1}{n\epsilon}$; Invalid since $\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = \lim_{n \to \infty} \left(\frac{n^{\epsilon}}{n^4 + 2n - 10} \right) = \infty$ = The limit does not exist.

Non-example 2.4. The Comparison Test and the Limit Comparison Test connot be applied to the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n!}$ since 920+1 is negative for all n.

Example 2.5. Determine the convergence of \(\sum_{n^2-50+1}^{-60+1} \).

Let $a_n = \frac{\sqrt{n}+1}{n^2-50+1}$; Observe that for $n \ge 3$, a_n is positive.

Also, as $n \to \infty$, $\frac{\sqrt{n}+1}{n^2-C_{n+1}} \approx \frac{\sqrt{n}}{n^2} = \frac{1}{n^{\frac{3}{2}}}$, i.e. the term x^p with $p \ge 1$ and p maximal dominates as $n \to \infty$.

Let $b_n = \frac{m}{n^2} = n^{\frac{2}{3}}$; Then, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges as a precise with p>1.

Thus, $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \lim_{n\to\infty} \left(\frac{\overline{n}+1}{n^2-c_{n+1}} \cdot \frac{n^2}{\overline{n}}\right) = \lim_{n\to\infty} \left(\frac{\overline{n}}{n^2} \cdot \frac{n^2}{\sqrt{n}}\right) = 1 > 0$

By the Limit Companism Test, $\frac{1}{2}$ $\frac{17+1}{2}$ converges.

Proposition 7. Let p(x) be any polynomial in x, let a>0.

Then, there exists $N\in\mathbb{Z}$ such that fix all $n\geq N$: n!>p(n). Similarly, for n!>ap(n).

Turkermore, $\lim_{n\to\infty} \left(\frac{p(n)}{n!}\right) = 0$ and $\lim_{n\to\infty} \left(\frac{ap(n)}{n!}\right) = 0$.

This tells us that the Companison Test and the Limit Companism Test can't be used for It in against precises or geometric series.