Триботехника

Лекция 1. Концепции трения, износа и смазки

лектор: д-р. техн. наук, проф. кафедры мехатроники, механики и робототехники Корнаев Алексей Валерьевич

Структура курса и план лекции

Структура курса:

- лекции (16 ч.);
- практические занятия (16 ч.); ~
- лабораторные занятия (20 ч.); ~
- самостоятельная работа студентов (72 ч.).

Вид итогового контроля: экзамен.

~~

Рекомендуемая литература (доступна в электронной библиотечной системе изд-ва «Лань»):

- 1. Пенкин Н.С. Основы трибологии и триботехники /Н.С. Пенкин, А.Н. Пенкин, В.М. Сербин// М.: Машиностроение. 2012. 202 с.
- 2. Мышкин Н.К. Трение, смазка, износ. Физические основы и технические приложения трибологии /Н.К. Мышкин, М.И Петроковец// М.: Физматлит. 2007. 368 с.

3. Nas. wp (G1)

План лекции:

- 1. Основные определения
- 2. Концепции трения
- 3. Концепции изнашивания
- 4. Концепции смазки

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и триботехника - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении, эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание — процесс удаления материала с контактной поверхности тела в результате трения.

Смазка – процесс, в результате которого уменьшается трение и износ за счет применения смазочного материала.

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и триботехника - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении, эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание — процесс удаления материала с контактной поверхности тела в результате трения.

Смазка – процесс, в результате которого уменьшается трение и износ за счет применения смазочного материала.

1. Основные определения

Трибология (от греч. «трибо» – тереть, натирать, и «логос» – слово, мысль) и триботехника - область науки (трибология) и техники (триботехника), заключающаяся в изучении явлений при трении и изнашивании, установлении закономерностей происходящих при этом процессов, а также в использовании полученных результатов и закономерностей при проектировании, изготовлении, эксплуатации, ремонте машин и приборов для повышения их надежности.

Внешнее и внутреннее трение – явление сопротивления относительному перемещению тел (внешнее трение) или частиц внутри тела (внутреннее трение) в результате силового взаимодействия и сдвига по контактной поверхности, сопровождающееся рассеянием энергии.

Изнашивание – процесс удаления материала с контактной поверхности тела в результате трения.

Смазка – процесс, в результате которого уменьшается трение и износ за счет применения смазочного материала.

2. Концепции трения

Трение

скольжения

2.1 Классификация трения

По типу относительного движения:

покоя

По степени смазки:

граничное (сухое), смешанное (п/жидкостное), жидкостное

качения

деформационное и адгезионное По уровню и природе взаимодействия:

https://www.youtube.com/watch?v=cT5NjlrLSXM&t=1s

https://www.youtube.com/watch?v=GHWPAQ4zG-I&t=1s

2. Концепции трения

2.1 Классификация трения

Трение По типу относительного движения: покоя скольжения качения По степени смазки: граничное (сухое), смешанное (п/жидкостное), жидкостное По уровню и природе взаимодействия: деформационное и адгезионное n LITHUSEK

2. Концепции трения

2.1 Классификация трения

По типу относительного движения:

покоя скольжения качения
граничное (сухое), смешанное (п/жидкостное), жидкостное

По степени смазки:

По уровню и природе взаимодействия: деформационное и адгезионное

2.2 Классические законы трения Коэффициент трения

Fin Pepen

3. Концепции изнашивания

4. Концепции смазки

2.1 Классификация трения

По типу относительного движения:

По степени смазки:

граничное (сухое), смешанное (п/жидкостное), жидкостное

Трение

скольжения

качения

По уровню и природе взаимодействия: деформационное и адгезионное

покоя

Практикум

Задача1. Используя специализированное программное обеспечение необходимо выполнить расчет основных характеристик горизонтального движения тела массой m под действием внешней силы ${\it F}$ и силы трения ${\it Fmp}$.

0	$F = \int F, ecnu F < F^{np}$	$\int F, ecnu F < F^{RP},$	
Закон трения:	$fmp = \int fmg, ecлu F \ge F$,кр _.	

№ вар.	<i>т</i> , кг	<i>F</i> ^{κρ} , Η	<i>F=F(t)</i> , H	Найти
1	0.1	5	$F = egin{cases} mgt, ecлu \ t < t_0, \ const, ecлu \ t \geq t_0. \end{cases}$	$x(t)$, $V(t)$, $a(t)$, A_{mp}
2	0.2	7		$x(t)$, $V(t)$, $a(t)$, N_{mp}
3	0.1	6		x(t), V(t), a(t), Авнеш
4	0.3	10		x(t), V(t), a(t), N _{внеш}
5	0.5	3	F = mgt/2	x(t), V(t), a(t), N _{внеш}
6	0.2	8		$x(t)$, $V(t)$, $a(t)$, A_{mp}
7	0.4	5		$x(t)$, $V(t)$, $a(t)$, N_{mp}
8	0.6	3	$F = mg \sin(10t)$	x(t), V(t), a(t), Авнеш
9	0.7	3		x(t), V(t), a(t), Nвнеш
10	8.0	3		$x(t)$, $V(t)$, $a(t)$, A_{mp}
11	1	5		$x(t)$, $V(t)$, $a(t)$, N_{mp}