Sei X die ZV, welche die Anzahl der Würfe in Aufgabe A4.4 (a) zählt.

Ergebnissen der ersten Münzwürfe bedingen. (Z.B. $\mathbb{E}[z^X|0] = \mathbb{E}[z^{X+1}] = z\mathbb{E}[z^X]$.) Leiten Sie zunächst mit demselben Ansatz wie A4.4 ein lineares Gleichungssystem für $G_X(z) = \mathbb{E}[z^X]$ her, indem Sie nach den

Bestimmen Sie dann $G_X(z)$ durch Lösen des Gleichungssystems.

TYSX J H CSX CS 2 82 ACX 1-168 45 47 [5x 1110] 1/2 + E[5x 11m] 1/2 ره داح ا حرام 2-5 3 EGx 11/31/2 (A) N 1 5 **∞** (4-25-52)(25) 6

Aufgabe 7.2 Abz

Abzugebei

— Es seien $X \sim \text{Geo}(1/4)$ und $Y \sim \text{Geo}(1/2)$ unabhängige ZVen.

In dieser Aufgabe werden verschiedene Wege diskutiert, um die Dichte von X+Y zu berechnen.

(a) Es seien ${\mathcal A}$ und ${\mathcal B}$ σ -Algebren über Ω .

Zeigen Sie, dass dann auch $\mathcal{C} := \mathcal{A} \cap \mathcal{B} = \{A \mid A \in \mathcal{A} \land A \in \mathcal{B}\}$ eine σ -Algebra über Ω ist.

Definition 53

wenn folgende Eigenschaften erfüllt sind: —Sei Ω eine Menge. Eine Menge $\mathcal{A}\subseteq\mathcal{P}(\Omega)$ heißt σ -Algebra über Ω ,

(E1) $\Omega \in \mathcal{A}$.

(E2) Wenn $A\in \mathcal{A}$, dann folgt $ar{A}\in \mathcal{A}$.

(E3) Für $n \in \mathbb{N}$ sei $A_n \in \mathcal{A}$. Dann gilt auch $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Die Elemente von A heißen Ereignisse.

Seign An, Az, ... E. C, dann

dahur

damn

(E1) DEC, da DES

Albo Actumol ACB, Jann

Al, A2, --, Ex Record ACB,

Al, A2, --, Ex Record ACB,

(b) Es sei $\Omega = \{a, b, c, d\}$ und $A_1 = \{a, b\}, A_2 = \{a, c, d\}$ und $A_3 = \{b, d\}.$

Geben Sie die kleinste σ -Algebra $\mathcal A$ über Ω an, welche A_1,A_2,A_3 enthält.

Das heißt: Für jede andere σ -Algebra \mathcal{A}' über Ω , welche ebenfalls A_1, A_2, A_3 enthählt, soll $\mathcal{A} \subseteq \mathcal{A}'$ gelten. —

				ldee:	
		* = 3 An, Az, Az, S2, 3c, d3 An, Az, Az, S2, 3c, d3],,	-
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	~	5	2 1:1	- (
(6,C)A	\$ ~ C	73-	7	5	
22 / CA 3 = 52	7	w w	वाजीवर	٤	
	20,6,c,d) / 20,6,d3	3-40	0- Alzebra existieran müsse	Finger nur die Mensen hinau	
	6,03	م الم	t-exc	nsen	
	-	2	3	hing	-
CA	# C	21-22	186	~	- !
اح		-)	ξ.	
C -	3 b, c, d3	3/4/2/		S	
		9120		Grand	(
1,01	~~~ ~~ ~~	ξα, 6; c, d;		න (t	
C FI		\$1615,d3)		van (€1) - (E3	
An U A3	\$ &			(£3)	
70,1	<u> </u>				Ŧ

- (c) Für jede Menge Ω und nicht-leere Menge $\mathcal{F} \subseteq 2^{\Omega}$ von Ereignissen über Ω definieren wir die σ -Algebra $\sigma(\mathcal{F})$ induktiv:
- Für alle $A \in \mathcal{F}$: $A \in \sigma(\mathcal{F})$.
- Falls $A \in \sigma(\mathcal{F})$: $\Omega \setminus A \in \mathcal{F}$.
- Falls $A_1, A_2, \ldots \in \sigma(\mathcal{F})$: $\bigcup_{i \in \mathbb{N}} A_i \in \sigma(\mathcal{F})$.

Zeigen Sie, dass $\sigma(\mathcal{F})$ die kleinste σ -Algebra über Ω ist, welche \mathcal{F} beinhaltet.

						7
				5.	<u>بر</u>	5
				(Jobei	8	ضخ
					(2)	۲
				8		F
						5
					0	C
2						C
0			•			~)
	Co				77	ري
(3)	9			00		ک
47	ζ		- F			7
	~	.1			0_	ξ.
••		77	0,1		6	5.
(4) ::	9	حع	8 8		dass o(P) der	3
	2	7	2 2			
(4):= (3) S; = (2) Cim	F	Fallo An, Az, esi, d	· Sitlenthalt genow folgende Mengen:		Limes der Neusen	Indulative befinition von of (F) bedenter
7 ()	. e	7	: 2	77	2.	8
700	ح		PS	1 1	\$	3
	4		4		5	1
- Ĉ		5	Ψ			9
		7	رچي در		0	$\dot{\cap}$
(1)		:	<i>6</i> , ≥		6	
	5		9		_	4)
10	6	W	<u> </u>			
	کی ا	CO	2 , _			_
95	þ	,	8 6		6	2
		7	\$ \\$		Z	8
Ç	3	حلا	7 7		3	6
	8.	2 amy			د	9
	ं व	5	7			a
	3		W ~		$\mathcal{C}_{\mathcal{O}}$	4
	\$ 4		\sim \sim		a	
		R	2 7		9 0	$ \swarrow$
		⁷ ∕0				reade
	6		2			5
	3	>	7 7			2
	weiteren Mengen	A.	3		10 27 C	
			2		[V ·	
	•	\mathbf{A}			117	
		S				
		(V)	1		P	
		1	\mathbf{v}		10	
		+				
			ES:+			
			<u> </u>			
					181	

- (d) Zeigen Sie, dass die folgenden Mengen in $\mathcal B$ enthalten sind:
- Die Menge der irrationalen Zahlen.

(e) Zeigen Sie, dass \mathcal{B} auch die kleinste σ -Algebra ist, welche alle halb-offenen Intervalle $(a, b] \subseteq \mathbb{R}$ enthält.

Nach Vorlosumy : 3=35 (TR) := 5-(} [2,6] | a,60 = 123

Zu suizen: G) 9 (2 (a/6) a, 6 = 123 3

Zeize, dass [a, b] = 3. : B = [air] ersp! Kint [0] [0,6] = [a,6] \ [2,0] = [a, 6] > IR\[-,0] & B/ 7 IJ 2. (a-12-15)

