컴퓨터그래픽스

2018학년 1학기 김준호

국민대학교 소프트웨어학부

- Principles
- Extrinsic Parameters
- Intrinsic Parameters

Synthetic Camera

Elements of Image Formation

- Viewer (or camera)
 - Synthetic camera
- Objects
 - Synthetic objects
- Light source(s)
 - Synthetic lights
- Attributes
 - Material, surface normal for reflection model (i.e., light-material interaction)

Synthetic Camera Model

Camera Specification – Projection types

- Projection types
 - Perspective projection
 - Orthographic projection

Perspective projection

Orthographic projection

Camera Specification – Projection types

- Projection types
 - Perspective projection
 - Parallel lines → Vanishing point
 - Orthographic projection

Eyes (or typical camera)

Camera Specification – Projection types

- Projection types
 - Perspective projection
 - Orthographic projection
 - Parallel lines → Parallel lines

Tilt-shift camera

Camera Specification – Clipping Planes

Clipping

- Physically, a camera (or your eyes) cannot "see" the whole world
 - Objects that are not within the view volume are said to be clipped out of the scene
 - 4 clipping planes: left / right / top/ bottom

Camera Specification – Clipping Planes

- Clipping
 - In OpenGL, there are two additional clipping planes
 - 6 clipping planes: left / right / top/ bottom + front / back
 - Computer cannot process infinitely many objects

- Extrinsic parameters: 6 degrees of freedom (DOF)
 - Position: 3DOF
 - Center of projection (COP): position of center of lens (x, y, z)
 - Orientation: 3 DOF
 - pitch(끄덕) yaw(도리) roll(갸웃)
 - In OpenGL, extrinsic parameters are handled by camera transformations
 - OpenGL 1.x: simply use gluLookAt() in OpenGL Utility (GLU) library
 - OpenGL 2.x or higher: implement proper transformations by yourself

- gluLookAt() OpenGL 1.x
 - OpenGL utility (GLU) function for setting extrinsic parameters of OpenGL camera

Example 1 (OpenGL 1.x)

Example 2 (OpenGL 1.x)

- Intrinsic parameters
 - Focal length
 - Physical distance: lens camera sensor
 - Zoom-in / zoom-out

http://www.dpreview.com/glossary/optical/focal-length

http://panasonic.jp/support/global/cs/dsc/knowhow/knowhow12.html

- Intrinsic parameters
 - Focal length
 - In OpenGL, there is no physical meaning
 - Field of view (FOV)
 - In OpenGL, zoom-in/-out is handled by changing the field of view
 - Perspective projection: glFrustum() (or gluPerspective() in GLU library): OpenGL 1.x
 - Orthographic projection: glOrtho(): OpenGL 1.x

Orthographic projection

- gluPerspective() OpenGL 1.x
 - GLU function for setting intrinsic parameters of OpenGL perspective camera

- glOrtho() OpenGL 1.x
 - OpenGL function for setting intrinsic parameters of OpenGL orthographic camera

 Example of Perspective projection: OpenGL 1.x

Example of Orthograpic projection:
 OpenGL 1.x

Camera Specification – Viewport

- Viewport
 - Similar to the size of photo printing
 - A film → Photos of different sizes
 - A rectangular area of the display window

Camera Specification – Viewport

Viewport

- Similar to the size of photo printing
 - A film → Photos of different sizes
- A rectangular area of the display window: x, y, w, h
 - (x, y): the lower-left corner of the viewport
 - w, h: the width and height of the viewport

A mapping to the viewport

Camera Specification – Aspect ratio

- Aspect ratio
 - width / height
 - For aspect ratio, absolute sizes of width & height are meaningless
 - Aspect ratio of display window (i.e., device screen) is important

Camera Specification – Aspect ratio

- Aspect ratio
 - width / height
 - For aspect ratio, absolute sizes of width & height are meaningless
 - Aspect ratio of display window (e.g., device screen) is important

A mapping to the viewport

Aspect-ratio mismatch.
(a) viewing rectangle, (b) display window

Summary on Camera Specification – OpenGL 1.x

Camera specification

- Viewport
 - Printing the frame buffer onto the screen
- Extrinsic parameters
 - 3D position & orientation (6DOF)

- Intrinsic parameters
 - Projection type: perspective or orthographic
 - Zoom-in / zoom-out: Field of view (FOV)
 - Aspect ratio

OpenGL 1.x codes

• glViewport()

- <u>glMatrixMode</u>(GL_MODELVIEW)
 - Changing extrinsic parameters
 - Android: GLU.gluLookAt()
 - iPhone: handling extrinsinc parameter of your camera by yourself
 - gluLookAt() is officially not supported
- glMatrixMode (GL PROJECTION)
 - Changing intrinsic parameters for zoom-in/-out & aspect ratio
 - glFrustum()
 - Android: GLU.gluPespective():
 - glOrtho()

Summary on Camera Specification – Modern OpenGL

Camera specification

- Viewport
 - Printing the frame buffer onto the screen
- Extrinsic parameters
 - 3D position & orientation (6DOF)

- Intrinsic parameters
 - Projection type: perspective or orthographic
 - Zoom-in / zoom-out: Field of view (FOV)
 - Aspect ratio

Modern OpenGL codes

glViewport()

- View Matrix (4x4 matrix)
 - Generate 4x4 matrix by yourself, similar to gluLookAt(), which explains the extrinsic parameters of your camera
- Projection Matrix (4x4 matrix)
 - Generate 4x4 matrix by yourself, similar to gluPerspective() or glOrtho(), which explains the intrinsic parameters of your camera

Demo with <u>Cinematic Techniques</u>

- Changing extrinsic parameters
 - Camera movements
 - 3D position: <u>Truck</u> / <u>Pedestal</u> / <u>Dolly</u>
 - Orientation: <u>Tilt</u> / <u>Pan</u> / <u>Roll</u>
- Changing intrinsic parameters
 - Camera settings
 - Projection type
 - Zoom-in/-out
 - Aspect ratio
- Viewport

Demo

- OpenGL demo for camera movements
 - http://www.songho.ca/opengl/gl_transform.html

