TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRANSISTOR

TLP521-1, TLP521-2, TLP521-4

PROGRAMMABLE CONTROLLERS

AC/DC-INPUT MODULE SOLID STATE RELAY

The TOSHIBA TLP521-1, -2 and -4 consist of a photo-transistor optically coupled to a gallium arsenide infrared emitting diode. The TLP521-2 offers two isolated channels in an eight lead plastic DIP package, while the TLP521-4 provides four isolated channels in a sixteen plastic DIP package.

Collector-Emitter Voltage : 55 V (min) Current Transfer Ratio : 50% (min) Rank GB : 100% (min) Isolation Voltage : 2500 Vrms (min)

UL Recognized

made in Japan : UL1577, File No. E67349 made in Thailand : UL1577, File No. E152349

PIN CONFIGURATIONS (TOP VIEW)

1, 3, 5, 7 : ANODE : CATHODE 2, 4, 6, 8 9, 11, 13, 15 : EMITTER 10, 12, 14, 16 : COLLECTOR

Unit in mm TLP521-1 7.62 ± 0.25

11-5B2

Weight: 0.26 g

TOSHIBA

Weight: 0.54 g

Weight: 1.1 g

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

MAXIMUM RATINGS (Ta = 25°C)

			RAT	ING	
	CHARACTERISTIC	SYMBOL	TLP521-1	TLP521-2 TLP521-4	UNIT
	Forward Current	${ m I_F}$	70	50	mA
	Forward Current Derating	$\Delta I_{\mathbf{F}}/^{\circ}\mathbf{C}$	-0.93 (Ta ≥ 50 °C)	-0.5 (Ta ≥ 25 °C)	mA/°C
LED	Pulse Forward Current	$_{ m IFP}$	$1(100\mu$ pul	se, 100 pps)	A
1	Reverse Voltage	$v_{\mathbf{R}}$		5	V
	Junction Temperature	${ m T_{j}}$	12	$ \begin{array}{ c c c } \hline \text{TLP521-4} \\ \hline & 50 \\ \hline & -0.5 \text{ (Ta} \geq 25^{\circ}\text{C)} \\ \hline \text{oulse, } 100 \text{ pps)} \\ \hline 5 \\ \hline 125 \\ \hline 55 \\ \hline 7 \\ \hline 50 \\ \hline & 100 \\ \hline & -1.0 \\ \hline \\ 125 \\ \hline 55 \sim 125 \\ \hline 55 \sim 100 \\ \hline \end{array} $	°C
	Collector-Emitter Voltage	v_{CEO}	5	55	V
ا ا	Emitter-Collector Voltage	v_{ECO}		V	
OR	Collector Current	$I_{\mathbf{C}}$	50		mA
rect	Collector Power Dissipation (1 Circuit)	PC	150	100	mW
DETE	Collector Power Dissipation Derating (1 Circuit, Ta ≥ 25°C)	∆P _C /°C	-1.5	-1.0	mW/°C
	Junction Temperature	$T_{ m j}$	125		°C
Sto	rage Temperature Range	$\mathrm{T_{stg}}$	-55~125		°C
Ope	erating Temperature Range	${ m T_{opr}}$	-55~100		°C
Lea	d Soldering Temperature	T_{sol}	260 (10 s)		°C
Tot	al Package Power Dissipation	$P_{\mathbf{T}}$	250	150	mW
Total Package Power Dissipation Derating (Ta ≥ 25°C)		$\Delta P_{\mathrm{T}}/^{\circ}\mathrm{C}$	-2.5	-1.5	mW/°C
Isol	ation Voltage	$BV_{\mathbf{S}}$	2500 (AC, 1 min., R.	$H. \leq 60\%$) (Note 1)	Vrms

(Note 1): Device considered a two terminal device: LED side pins shorted together and DETECTOR side pins shorted together.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	Min	Тур.	Max	UNIT
Supply Voltage	v_{CC}	_	5	24	V
Forward Current	${ m I_F}$	_	16	25	mA
Collector Current	$I_{\mathbf{C}}$	_	1	10	mA
Operating Temperature	$T_{ m opr}$	-25	_	85	°C

000707EBC2

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

mv10v1	CLASSI-	(I _C	_	MARKING OF		
TYPE	FICATION (*1)	$I_{\rm F} = 5 {\rm mA}, \ {\rm V_{\rm CE}} = 5 {\rm V}, \ {\rm Ta} = 25 {\rm ^{\circ}C}$		CLASSIFICATION		
		Min	Max			
	A	50	600	BLANK, Y, Y $^{\blacksquare}$, G, G $^{\blacksquare}$, B, B $^{\blacksquare}$, GB		
	Rank Y	50	150	Y, Y ■		
TLP521	Rank GR	100	300	G, G■		
	Rank BL	200	600	В, В■		
	Rank GB	100	600	G, G [■] , B, B [■] , GB		
TLP521-2	A	50	600	BLANK, GR, BL, GB		
TLP521-4	Rank GB	100	600	GR, BL, GB		

^{*1 :} Ex. Rank GB : TLP521-1 (GB)

(Note) : Application type name for certification test, please use standard product type name, i.e. TLP521-1 (GB) : TLP521-1, TLP521-2 (GB) : TLP521-2

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	TEST CONDITION	Min	Тур.	Max	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_{\mathrm{F}} = 10 \mathrm{mA}$	1.0	1.15	1.3	V
LED	Reverse Current	$I_{\mathbf{R}}$	$V_R = 5 V$		_	10	μ A
	Capacitance	C_{T}	V = 0, $f = 1 MHz$	1	30		pF
	Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{ m C}=0.5{ m mA}$	55		-	v
DETECTOR	Emitter-Collector Breakdown Voltage	V (BR) ECO	$I_{ extbf{E}} = 0.1 ext{mA}$	7	_		v
TE	Collector Dark Current	Igno	$V_{CE} = 24 V$	ı	10	100	nA
DE	Collector Dark Current	ICEO	$V_{CE} = 24 \text{ V}, \text{ Ta} = 85^{\circ}\text{C}$	_	2	50	μ A
	Capacitance (Collector to Emitter)	CCE	V = 0, $f = 1$ MHz	1	10		pF

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	Min	Тур.	Max	UNIT
Current Transfer Ratio	I_C/I_F	$I_{ m F}=5~{ m mA},~{ m V}_{ m CE}=5~{ m V}$ Rank GB	50 100	_	600 600	- %
Saturated CTR	IC/IF(sat)	$I_{ m F}=1~{ m mA},~{ m V}_{ m CE}=0.4~{ m V}$ Rank GB	30	60	_	. %
Collector-Emitter		$I_C = 2.4 \text{ mA}, I_F = 8 \text{ mA}$	_	_	0.4	
Saturation Voltage	V _{CE} (sat)	$I_C = 0.2 \mathrm{mA}, I_F = 1 \mathrm{mA}$ — 0.2	0.2	_	V	
Catalanon Voltage		Rank GB	_	_	0.4	

ISOLATION CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	Min	Тур.	Max	UNIT
Capacitance (Input to Output)	c_{S}	$V_{ ext{S}} = 0, \text{ f} = 1 \text{ MHz}$	-	0.8	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500 \text{ V}, \text{ R.H.} \le 60\%$	_	1011	_	Ω
		AC, 1 minute	2500	0 —	_	17-mm a
Isolation Voltage	$BV_{\mathbf{S}}$	AC, 1 second, in oil — 5000	_	Vrms		
		DC, 1 minute, in oil		5000	_	Vdc

SWITCHING CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	Min	Тур.	Max	UNIT
Rise Time	t _r		_	2	_	
Fall Time	tf	$V_{CC} = 10 \text{ V}$	_	3	_]
Turn-on Time	ton	$ \begin{array}{l} I_{\rm C} = 2{\rm mA} \\ R_{\rm L} = 100\Omega \end{array} $	_	3	_	μ s
Turn-off Time	t _{off}		_	3	_]
Turn-on Time	ton	$\begin{aligned} \mathrm{R_L} &= 1.9\mathrm{k}\Omega \mathrm{(Fig.1)} \\ \mathrm{V_{CC}} &= 5\mathrm{V},\mathrm{I_F} = 16\mathrm{mA} \end{aligned}$	_	2	_	
Storage Time	t _S		_	15	_	μ s
Turn-off Time	tOFF		_	25	_]

Fig.1: SWITCHING TIME TEST CIRCUIT

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com