Capturing Bisimulation-Invariant Complexity Classes by Polyadic Higher-Order Fixpoint Logic

Upper Bounds

David Kronenberger

September 12, 2018

k-EXPTIME/∼

Upper Bounds

k-EXPTIME/∼

1 k-EXPTIME/ \sim

- 2 PHFL
- Opper Bounds
- \blacksquare HO + LFP

k-EXPTIME/∼

•00

k-EXPTIME/~

Let be $\mathcal{T}_1 = (Q_1, \Sigma, P, \Delta_1, v_1)$ and $\mathcal{T}_2 = (Q_2, \Sigma, P, \Delta_2, v_2)$ two LTS. A **bisimulation** is a binary relation $R \subseteq Q_1 \times Q_2$ that fulfills for all $(q_1, q_2) \in R$

$$v_1(q_1) = v_2(q_2),$$

for all $a \in \Sigma$ and all $q'_1 \in Q_1$, if $q_1 \stackrel{a}{\to} q'_1$, then there is a state $q_2' \in Q_2, q_2 \stackrel{a}{\rightarrow} q_2'$ and $(q_1', q_2') \in R$ and for all $a \in \Sigma$ and all $q_2 \in Q_2$, if $q_2 \stackrel{a}{\to} q_2$, then there is a state

Upper Bounds

 $q_1' \in Q_1, \ q_1 \stackrel{a}{\to} q_1' \ \text{and} \ (q_1', q_2') \in R.$

We call two states $q_1 \in Q_1$, $q_2 \in Q_2$ bisimilar, noted as $(\mathcal{T}_1, q_1) \sim (\mathcal{T}_2, q_2)$, if there is a bisimulation R such that $(q_1, q_2) \in R$.

k-EXPTIME/∼

000

k-EXPTIME/∼

PHFL types are given by the grammar

$$\sigma, \tau := \bullet \mid \sigma^{\mathsf{v}} \to \tau,$$

Upper Bounds

where v is called variance. The variances of PHFL are defined by the grammar

$$v := + | - | 0.$$

Definition 2.2

$$\llbracket \tau \rrbracket_{\mathcal{T}} = \begin{cases} (\mathcal{P}(Q^d), \subseteq), & \text{if } \tau = \bullet \\ ((\llbracket \sigma_1 \rrbracket_{\mathcal{T}})^{\nu} \to \llbracket \sigma_2 \rrbracket_{\mathcal{T}}, \leq_{(\llbracket \sigma_1 \rrbracket_{\mathcal{T}})^{\nu} \to \llbracket \sigma_2 \rrbracket_{\mathcal{T}}}), & \text{if } \tau = \sigma_1^{\nu} \to \sigma_2. \end{cases}$$

k-EXPTIME/∼

$$\Phi, \Psi ::= \top \mid p_i \mid \Phi \lor \Psi \mid \neg \Phi \mid \langle a \rangle_i \Phi \mid \{ \mathbf{i} \leftarrow \mathbf{j} \} \Phi \mid X \mid \lambda(X^{\nu} \colon \tau). \Phi \mid \Phi \Psi \mid \mu(X \colon \tau). \Phi$$

Example 2.4

k-EXPTIME/ \sim

The following 2-adic PHFL⁰ formula Φ describes bisimilarity i.e. it denotes those pairs (q_1, q_2) such that $q_1 \sim q_2$ and vice versa.

$$\Phi = \nu(X : \bullet). \bigwedge_{a \in \Sigma} [a]_1 \langle a \rangle_2 X \wedge [a]_2 \langle a \rangle_1 X \wedge \bigwedge_{p \in P} p_1 \Leftrightarrow p_2$$

Upper Bounds •00

k-EXPTIME/∼

Example 3.2

k-EXPTIME/∼

k-EXPTIME/~

$$F(\top) = \top$$

$$F(X) = X$$

$$F(p_i) = p_i$$

$$F(\langle a \rangle_i \psi) = \langle a_i \rangle F(\psi)$$

$$F(\psi \vee \psi') = F(\psi) \vee F(\psi')$$

$$F(\neg \psi) = \neg F(\psi)$$

$$F(\{\mathbf{i} \leftarrow \mathbf{j}\}\psi) = \langle s_{(e(1),...,e(d))} \rangle F(\psi)$$

$$F(\mu(X : \tau). \psi) = \mu(X : T(\tau)). F(\psi)$$

$$F(\lambda(X^{\mathbf{v}} : \tau). \psi) = \lambda(X^{\mathbf{v}} : T(\tau)). F(\psi)$$

$$F(\psi \psi') = F(\psi) F(\psi')$$

Upper Bounds

000

k-EXPTIME/∼

HO types are defined inductive as follows:

$$\tau = \odot$$
 is a HO type,
 $\tau = (\tau_1, \dots, \tau_n)$ is a HO type, if τ_1, \dots, τ_n are HO types.

Upper Bounds

Definition 4.2

Let A be a σ -structure over universe U then the universes of the HO types are defined inductively as follows:

$$egin{aligned} D_{\odot}(\mathcal{U}) &= \mathcal{U}, \ D_{(au_1, \dots, au_n)}(\mathcal{U}) &= \mathcal{P}(D_{ au_1}(\mathcal{U}) imes \dots imes D_{ au_n}(\mathcal{U})) \end{aligned}$$

k-EXPTIME/~

The set of **HO** formulas over σ is defined inductively as follows: $R(x_1,\ldots,x_n)$ is a HO formula over σ if $R \in \sigma$ is a relation with arity n and x_1, \ldots, x_n are variables of type \odot , $X(x_1,\ldots,x_n)$ is a HO formula over σ if X is a variable of type (τ_1,\ldots,τ_n) and x_i is a variable of type τ_i , with $i\in\{1,\ldots,n\}$, if φ and ψ are two HO formulas over σ , then $\neg \varphi$, $\varphi \wedge \psi$ and $\varphi \vee \psi$ are also HO formulas over σ , if φ is a HO formula over σ and X a variable of arbitrary type τ , then $\exists X : \tau . \varphi$ and $\forall X : \tau . \varphi$ are also HO formulas over σ .

k-EXPTIME/ \sim

Let σ an arbitrary signature, X a relation variable of HO type $\tau = (\tau_1, \dots, \tau_k), \ \tau_1, \dots, \tau_k$ arbitrary HO types, x_1, \dots, x_k variables of HO type τ_1, \ldots, τ_k respectively and $\varphi(X, x_1, \ldots, x_k)$ a formula over σ with free variables X, x_1, \ldots, x_k . For each σ -structure \mathcal{A} with universe $\mathcal{U}, \varphi(X, x_1, \dots, x_k)$ induces the operator

Upper Bounds

$$F_{\varphi}^{\mathcal{A}} \colon \mathscr{P}(D_{\tau}(\mathcal{U})) \longrightarrow \mathscr{P}(D_{\tau}(\mathcal{U}))$$

$$A \longmapsto F_{\varphi}^{\mathcal{A}}(A) \coloneqq \{(a_1, \dots, a_k) \mid A \models \varphi(A, a_1, \dots, a_k)\}$$

where $a_1 \in D_{\tau_1}(\mathcal{U}), \ldots, a_k \in D_{\tau_k}(\mathcal{U}).$

k-EXPTIME/ \sim

Let \mathcal{A} be a σ -structure and α a variable assignment over universe \mathcal{U} . The semantics of a HO(LFP) formula extends that of HO formulas with the following definition:

$$\mathcal{A}, \alpha \models [\mathsf{LFP}_{X,x_1,\dots,x_k}\varphi(X,x_1,\dots,x_k)](v_1,\dots,v_k) \text{ iff } (\alpha(v_1),\dots,\alpha(v_k)) \in \mathsf{LFP}(\mathcal{F}^{\mathcal{A}}_{\omega}).$$

k-EXPTIME/∼

Let $F: \mathcal{P}(A) \to \mathcal{P}(A)$ be an operator on a finite set A, then the **partial fixpoint** of F, abbreviated as PFP(F), is defined as follows:

$$PFP(F) := egin{cases} F^{i+1}(\emptyset) = F^i(\emptyset), & \text{if such } i \in \{0,\dots,|A|\} \text{ exists} \\ \emptyset, & \text{otherwise,} \end{cases}$$

where
$$F^0(\emptyset) = \emptyset$$
, $F^1(\emptyset) = F(\emptyset)$, $F^2(\emptyset) = F(F(\emptyset))$, and so on.

End

k-EXPTIME/∼

Thank you for your attention!