Análisis complejo

Último taller

Fecha de entrega: 21 de noviembre de 2024

1. Calcule
$$\sum_{n=1}^{\infty} n^{-4}$$
.

- 2. Demuestre que para toda función meromorfa $h:\mathbb{C}\to\mathbb{C}$ existen funciones enteras $f,g:\mathbb{C}\to\mathbb{C}$ tal que no tienen ceros en común y que h=f/g.
- 3. Sea $f: \mathbb{C} \to \mathbb{C}$ una función holomorfa no constante. Para todo $z \in \mathbb{C}$ denotamos con $m(z) \in \mathbb{N}_0$ la multiplicidad de z como cero de f.

Demuestre que para todo $k \in \mathbb{N}$ lo siguiente es equivalente:

- (a) Existe una función holomorfa $g: \mathbb{C} \to \mathbb{C}$ tal que $g^k = f$.
- (b) Todo $m(z) \in \mathbb{N}$ es divisible por k.
- 4. Sea $0 \neq p \in \mathbb{C}$. Demuestre: Para cada $\varepsilon > 0$ y $c \in \mathbb{C}$ existe una función entera g tal que g(p) = c y $|g(z)| < \varepsilon$ para todo $|z| \leq |p|/2$.
- 5. Ejercicio adicional para código 4. Sea $(a_n)_{n\in\mathbb{N}}\subset\mathbb{C}$ una sucesión de puntos distintos tal que $\lim_{n\to\infty}|a_n|=\infty$ y sea $(w_n)_{n\in\mathbb{N}}\subseteq\mathbb{C}$ una sucesión. Encuentre una función entera f tal que $f(a_n)=w_n$ para todo $n\in\mathbb{N}$.

Hint.
$$f = \sum f_n$$
, $f_n(a_1) = \cdots = f_n(a_{n-1}) = 0$.