Robust Regression: Campbell's Method & Monte Carlo Simulation

A PROJECT PRESENTATION BY:

SIDHARTH KUMAR 16BM6P45

RAHUL KUSHWAHA 16BM6JP30

GAURAV KUNAL JAISWAL 13AE30022

Introduction

Problem: Weights of weighted regression

Objective: To find the outliers and determine the weights for the regression.

Approach: Campbell's Robust Covariance Matrix and Monte Carlo Simulations

Methodology

Campbell's Robust Covariance Matrix

- Weighted mean vector and covariance matrix.
- Mahanalobis distance as a measure of deviation from the center.
- Update the weight in each iteration.
- Use Moore –Penrose inverse incase matrix is not invertible.

Detect outliers

Using the weights

Use weights to do weighted least square regression.

Verification using Monte Carlo Simulations

Campbell's Method

```
Initialize weights to 1
Define b1 = 2, b2 = 1.25, m = number of features, n = number of data points
Define d_0 = \operatorname{sqrt}(m) + b_1 / \operatorname{sqrt}(2)
Repeat (till 1000 steps or cosine similarity between (\omega_{new}, \omega_{old}) = 1)
 \overline{x} = \sum_{i=1}^n \omega_i x_i / \sum_{i=1}^n \omega_i
 S = \sum_{i=1}^{n} \omega_i^2 (x_i - \overline{x})' (x_i - \overline{x}) / [\sum_{i=1}^{n} \omega_i^2 - 1]
 d_i = \{(x_i - \overline{x})S^{-1}(x_i - \overline{x})'\}^{-1/2}
\omega_i = \frac{\omega(d_i)}{d_i}; i = 1, n: \omega(d_i) = d_i if d_i < d_0 else \omega(d_i) = d_0 \exp[-\frac{0.5(d_i - d_0)^2}{b_0^2}]
```

Application

Data set generation

- $y = 8.7 + 15.5 \times X_1 + 0.1 \times X_2 + 4.6 \times X_3 + 0.3 \times X_4 + 11.5 \times X_5 + \varepsilon$
- Outliers data points injected = 9, 23, 35

Perform ordinary least square regression

Perform Campbell's Robust Regression method

- Find outliers
- Regression coefficients

Results

OLS Coefficients:

```
Coefficients:
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.1820
                     44.8822
                              4.393 6.94e-05 ***
                                                              x1m
x1m
            5.0026
                     1.3421
                              3.727 0.000549 ***
                                                              x2m
            0.8435 2.1933 0.385 0.702401
x2m
x3m
           1.4887 1.2849 1.159 0.252844
           -3.4928 1.3232 -2.640 0.011436 *
x4m
                                                              x5m
x5m
           11.6659 2.5865 4.510 4.77e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.34 on 44 degrees of freedom
Multiple R-squared: 0.5661, Adjusted R-squared: 0.5168
```

Outliers points detected: 9, 23, 35

F-statistic: 11.48 on 5 and 44 DF, p-value: 3.973e-07

Corresponding Weights after 1000 iterations: 7.623219e-04, 2.591972e-12, 2.011003e-16

Robust Regressions Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.92021 2.78368 3.204 0.00252 **

x1m 15.48101 0.09324 166.027 < 2e-16 ***

x2m 0.10102 0.09248 1.092 0.28062

x3m 4.59987 0.10845 42.416 < 2e-16 ***

x4m 0.29719 0.09444 3.147 0.00296 **

x5m 11.50014 0.10909 105.421 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7275 on 44 degrees of freedom
```

Residual standard error: 0.7275 on 44 degrees of freedom Multiple R-squared: 0.9992, Adjusted R-squared: 0.9991 F-statistic: 1.143e+04 on 5 and 44 DF, p-value: < 2.2e-16

Monte Carlo Simulations

Artificially generated 40 points using $Y = 80-16*X_1 + 12*X_2 - 2*X_3 + \varepsilon$

Range of (X₁, X₂, X₃) belongs to (-10, 50)

Experiment 1:

- Added one quantum of random size between (-10,-5) and (5, 10) to equi-probably randomly chosen point of every variable.
- Repeat 200 times and find mean and standard deviations of estimates of coefficients.
- Repeat with 2, 3, 5 perturbation quanta.

Experiment 2:

Repeat Experiment 1 with only change in quantum of random size between (-25, -20) and (20, 25)

Experiment 3:

Repeat Experiment 1 with only change in quantum of random size between (-100, -50) and (50, 100)

Observations

NO	Perturbation	B _o	B ₁	B ₂	B ₃	S(B ₀)	S(B ₁₎	S(B ₂₎	S(B ₃₎	RMSE0	RMSE1	RMSE2	RMSE3
	Experiment 1		1	2	-3	` 0)	` 1)	` 2)	` 3)				
	1 (-10,-5) and (5,10)	79.5030211	-15.99235	11.99437	-1.988995	0.66909	0.01393	0.01309	0.01418	0.68861	0.01413	0.01347	0.01418
	2 (-10,-5) and (5,10)	79.8475179	-15.9852	11.983762	-1.99504	0.628443	0.019682	0.018661	0.019324	0.625149	0.019367	0.017902	0.019904
	5 (-10,-5) and (5,10)	79.6339857	-16.00155	12.001344	-1.993572	1.2055	0.03225	0.03771	0.03096	1.20492	0.30297	0.03722	0.03143
1	0 (-10,-5) and (5,10)	79.6384088	-16.01002	12.028212	-1.997948	1.287027	0.037646	0.041067	0.041088	1.333755	0.038867	0.049739	0.041036
	Experiment 2												
	1 (-25,-20) and (20,25)	80.5519401	-16.01249	11.997156	-1.996616	1.294308	0.038599	0.040683	0.03864	1.4041	0.040477	0.04068	0.038692
	2 (-25,-20) and (20,25)	80.122677	-16.00809	11.99709	-2.002984	1.743259	0.049281	0.044269	0.055807	1.743217	0.049819	0.044254	0.055747
	5 (-25,-20) and (20,25)	80.3706982	-16.02217	11.99226	-1.990942	4.62569	0.109905	0.091367	0.111869	4.628979	0.111849	0.091466	0.111956
1	0 (-25,-20) and (20,25)	79.0139706	-15.98989	12.037518	-1.998332	4.656686	0.12377	0.138297	0.108376	4.748532	0.123873	0.142962	0.108118
	Experiment 3												
	1 (-100, -50) and (50, 100)	82.4074588	-16.00272	12.016773	-1.999521	15.1667	0.374025	0.402444	0.357036	15.31909	0.373099	0.401787	0.356142
	2 (-100, -50) and (50, 100)	85.2187083	-16.02119	12.058956	-1.996796	17.18047	0.588564	0.613068	0.570512	17.91445	0.587473	0.614368	0.569093
	5 (-100, -50) and (50, 100)	92.3952885	-15.9214	11.97248	-2.00558	33.93847	0.958865	1.018982	1.0412	36.0514	0.959689	1.016804	1.038609
1	0 (-100, -50) and (50, 100)	102.592314	-16.07592	12.059889	-2.068453	42.39692	1.18309	1.189815	1.061588	47.9471	1.182568	1.188347	1.061141

Inferences

- For small perturbations Campbell's robust estimator perform well.
- Even on increasing the size of perturbation robust estimator does fairly well but becomes biased.
- Also upon increasing number of perturbation to 10, we corrupt 35% of the data set. Considering size of (X_1, X_2, X_3) is between (-10, 50), a perturbation of (-100, -50) and (50, 100) is large.

Conclusion

- Effect of outliers while doing OLS
- Introduced the Campbell's robust method (Iterative method)
- Properties of Campbell's Estimator using Monte Carlo Simulation.