概率统计与随机过程复习题 3

- 1. 设连续型随机变量 (X, Y) 的概率密度为 $f(x,y) = \begin{cases} cxy, 0 < x < 1, 0 < y < 1 \\ 0, 其他 \end{cases}$ 常数 C; $(2) P\{X + Y \le 4\}$; (3) X 的边缘概率密度 $f_X(x)$.
- 2. 已知随机变量 X, Y 为离散随机变量, X 服从分布 $\begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$, Y 服从分布 $\begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ 而且 $P\{XY=0\}=1$. (1) 求 X 和 Y 的联合分布; (2) 问 X 和 Y是否独立? 为什么?

3. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} k(6-x-y), 0 < x < 2, 2 < y < 4 \\ 0, 其他 \end{cases}$ 定常数 k; (2) 求 $P\{X < 1, Y < 3\}$; (3)求边缘概率密度 $f_X(x), f_Y(y)$; (4)问 X 和 Y 是否相互独立?

4. 设(X,Y)的联合概率密度为 $f(x,y) = \begin{cases} (2-x)y, 0 \le x \le 2, 0 \le y \le 1 \\ 0, \quad &$ 其他 \end{cases} 分别关于 X 和 Y 的边缘概率密度 $f_X(x), f_Y(y); \ (2)$ 判断 X 和 Y 是否独立,并说明理由.

5. 设随机变量 (X, Y) 的联合分布密度函数为: $f(x,y) = \begin{cases} c(x+y), 0 \le y \le x \le 1 \\ 0, & \text{其他} \end{cases}$,(1) 求 常数 c ; (2) 求 X, Y 的边缘分布函数概率密度 $f_X(x), f_Y(y)$; (3) 讨论 X, Y 的独立性 ; (4) 计算 $P\{X+Y\le 1\}$.

6. 已知随机变量 (X, Y) 的分布律为

Y	1	2	3	
1	1/3	α	β	
2	1/6	1/9	1/18	

问: (1) 当 α , β 为何值时, $X \rightarrow Y$ 相互独立. (2) 求 $P\{X = 2|Y > 1\}$.

7. 设二维随机向量 (X, Y) 的联合分布律为

试求: (1) X和 Y的边沿分布; (2) X和 Y是否相互独立? 为什么? (3) 求 $P\{X+Y=0\}$.