WHAT IS CLAIMED IS

1	 A method, using a physical layout system, for physically laying ou
2	a microfluidic circuit comprising a plurality of microfluidic components, said method
3	comprising:
4	placing a first component of said plurality of microfluidic components,
5	wherein said plurality of microfluidic components comprise multilayered components;
6	placing a second component of said plurality of microfluidic components;
7	and
8	connecting said first component to said second component.
9	2. The method of claim 1 wherein a multilayered component includes
10	a control channel on a control layer and a fluid channel on a fluid layer.
11	3. The method of claim 1 wherein a multilayered component includes
12	an active component.
13	4. The method of claim 1 wherein a multilayered component includes
14	4. The method of claim 1 wherein a multilayered component includes depth information.
1-7	depth information.
15	5. The method of claim 1 wherein said plurality of microfluidic
16	components comprises structures having elastomeric material.
17	6. The method of claim 1 wherein said connecting includes a design
18	rule check.
19	7. The method of claim 1 wherein said connecting uses a passive
20	component comprising a channel on a single layer.
21	8. A method, using a computer system, for physically laying out a
22	microfluidic circuit comprising a plurality of microfluidic components, said method
23	comprising:
24	selecting a template;
25	placing a first component of said plurality of microfluidic components on
26	said template, wherein said plurality of microfluidic components each have an associated
27	property;

The method of claim 8 wherein said plurality of microfluidic

components comprise a structure made from a material selected from the group consisting

40

of a flexible material, a rigid material, or a mixture of rigid and flexible materials.

19.

26

27

28

- 1 20. The method of claim 8 wherein said rigid material is a silicon 2 based material.
- The method of claim 8 wherein said flexible material is an elastomer based material.
- The method of claim 8 wherein said first component comprises a first control channel and a first fluid channel, said second component comprises a second control channel and a second fluid channel, and said connecting comprises connecting said first fluid channel to said second fluid channel.
- 9 23. The method of claim 22 wherein when said first component is on a 0 first fluid layer and said second component is on a second fluid layer, said first fluid 1 channel being connected to said second fluid channel by a via.
 - 24. The method of claim 22 wherein said first control channel is on a control layer and said first fluid channel is on a fluid layer.
 - 25. The method of claim 24 wherein said control layer is separate from said fluid layer.
 - 26. The method of claim 22 wherein said first fluid channel is connected to said second fluid channel by a third fluid channel and wherein when said first control channel is connected to a third control channel that crosses said third fluid channel, said third control channel uses an interconnect bridge to cross said third fluid channel.
- 27. The method of claim 26 wherein said third fluid channel is reduced in width at and near where said third control channel crosses said third fluid channel.
- 28. The method of claim 8 wherein said first component comprises a first control channel and a first fluid channel, said second component comprises a second control channel and a second fluid channel, and said connecting comprises connecting said first control channel to said second control channel.
- 27 29. The method of claim 8 wherein said connecting comprises auto-28 routing.

The method of claim 8 wherein said connecting comprises routing.

The method of claim 8 wherein said connecting comprises a design

1

2

3

29

30

rule check.

30.

31.

computer aided design tool, said microfluidic system comprising a plurality of

microfluidic components, said method comprising:

1	selecting a template, comprising a plurality of layers;	
2	placing a first symbol representing a first component of said plurality of	
3	microfluidic components, said first symbol comprising a first fluid channel symbol and	a
4	first control channel symbol, said first control channel symbol on a different layer of said	id
5	plurality of layers than said first fluid channel symbol;	
6	placing a second symbol representing a second component of said plural	ity
7	of microfluidic components, said second symbol comprising a second fluid channel	
8	symbol; and	
9	connecting said first fluid channel symbol to said second fluid channel	
10	symbol.	
11	38. The method of claim 37 wherein said template comprises an I/O	
12	port and said first symbol comprises a first control channel symbol, said method further	
13	comprising connecting said first control channel symbol to said I/O port.	
1	39. The method of claim 37 wherein said plurality of microfluidic	
2	components are selected from the group consisting of logic gates, channels, pumps,	
3	valves, oscillators, chambers, and layer interconnects.	
1	40. The method of claim 37 wherein symbols are connected according	ıg
2	to preset design rules.	
1	41. The method of claim 37 wherein said plurality of microfluidic	
2	components are assigned physical scaling.	
1	42. The method of claim 37 wherein said plurality of microfluidic	
2	components are assigned physical properties.	
1	43. The method of claim 37 wherein said first component is an active	e
2	fluidic component.	
1	44. The method of claim 37 wherein symbols of components of said	
2	plurality of microfluidic components are placed automatically based on preset design ru	ıle
3	constraints.	
1	45. The method of claim 37 wherein symbols of components of said	

plurality of microfluidic components are placed interactively.

1	46. The method of claim 37 wherein symbols of components of said
2	plurality of microfluidic components are placed manually subject to predetermined design
3	rule checks.
1	47. The method of claim 46 wherein said predetermined design rule
2	checks include one or more of the checks on I/O placement, channel size mismatch,
3	dangling channels, overlapping components and channels, and channel spacing.
1	48. The method of claim 37 wherein the components are placed based
2	on mechanical properties.
	• •
1	49. The method of claim 37 wherein said first symbol is connected to
2	said second symbol automatically using an auto-routing routine.
1	50. The method of claim 37 wherein said first symbol is routed to said
2	second symbol interactively.
2	second symbol interactivery.
1	51. The method of claim 37 wherein said first symbol is connected to
2	said second symbol manually using a computer display.
1	52. A method for validating a physical layout of a microfluidic circuit
2	design comprising a plurality of microfluidic components, said method comprising:
3	providing said plurality of microfluidic components on a template to form
4	said physical layout of said microfluidic circuit design;
5	extracting a netlist information from said physical layout; and
6	physically simulating said physical layout by using a dynamic simulation
7	model for each component of said plurality of microfluidic components on said template
8	and said netlist information.
1	53. The method of claim 52 wherein physically simulating said
2	physical layout uses a commercially available computer software with the capability to
3	perform laminar computational fluidic dynamic and coupled physics simulations.
	1
1	54. The method of claim 52 wherein physically simulating said

physical layout comprises at least one of analyzing dynamic volumetric flow rates in the

4	interconnecting and	routing channels in the physical layout.
1	55.	The method of claim 52 wherein physically simulating said
2	physical layout com	prises simulating actuation of dynamic fluid flow in the components
3	using control signals	s generated by a Boolean based language.
1	56.	The method of claim 52 further comprising modifying the physical
2	layout based on resu	ilts of the physical simulation.
1	57.	The method of claim 52 further comprising modifying the design
2	based on results of the	he physical simulation.
1	58.	The method of claim 52 further comprising writing the physical
2		e to be used for manufacturing.
1	59.	The method of claim 58 wherein said layout file is in a format
2		oup consisting of Gerber, Postscript, EPS, DXF, GDS II, and HPGL
3	(Hewlett-Packard G	
1	60.	A method for device implementation of a microfluidic circuit
2	comprising a plurali	ty of microfluidic components, said method comprising:
3	provi	iding said plurality of microfluidic components on a template to form
4	a physical layout of	said microfluidic circuit design;
5	writi	ng said physical layout to a layout file to be used for manufacturing;
6	selec	ting a pattern for a die to be repetitively laid out on a wafer, said die
7	comprising said phy	sical layout; and
8	autor	natically laying out said pattern on said wafer by using said layout
9	file.	
1	61.	The method of claim 60 wherein said layout file is in a format
2	selected from the gr	oup consisting of Gerber, Postscript, EPS, DXF, GDS II, and HPGL
3	(Hewlett-Packard G	raphics Language).
1	62.	A microfluidic circuit design method comprising:
2	deve	loping synthesizable computer code for a design;

components, analyzing component volumes, and analyzing volumetric capacitances of

3	generating a microfluidic circuit schematic, comprising a plurality of
4	symbols for microfluidic components, using said synthesizable computer code;
5	functionally simulating said microfluidic circuit schematic;
6	placing and routing on a template said microfluidic components to form a
7	physical layout;
8	physically simulating said physical layout using dynamic simulation
9	models of said microfluidic components; and
10	writing to a layout file said physical layout.
1	The microfluidic circuit design method of claim 62 further
2	comprising laying out a die comprising said design on a wafer by using a mask of said
3	layout file,.
1	64. The method of claim 62 wherein the microfluidic components are
2	selected from the group consisting of channels, pumps, valves, chambers, oscillators, and
3	layer interconnects.
1	65. The method of claim 62 wherein the microfluidic components are
2	selected from normalized, custom, pre-defined, and user-defined components.
1	66. The method of claim 62 wherein the microfluidic components are
2	routed according to preset design rules.
1	67. The method of claim 62 wherein the microfluidic components are
2	assigned physical properties.
1	68. The method of claim 62 wherein the microfluidic components are
2	active fluidic components.
1	69. The method of claim 62 wherein the microfluidic components have
2	associated VHDL-AMS or Verilog-AMS models.
1	70. A microfluidic circuit design system comprising:
2	a synthesis module for synthesizing software of a design into a schematic
3	having a plurality of connected symbols of microfluidic components;
4	a design capture module for displaying said schematic;

5	a functional analysis module for functionally simulating selected
6	microfluidic components of the schematic;
7	a physical implementation module for placing and routing said
8	microfluidic components into a physical layout according to said design; and
9	a physical analysis module for physically simulating the components in the
10	physical layout.
_	
1	71. The system of claim 70 wherein the modules comprise instructions
2	stored in a computer-readable medium.
1	72. A system for physically laying out a microfluidic circuit having a
2	plurality of microfluidic components, comprising:
3	a library module comprising information associated with said plurality of
4	microfluidic components;
5	a design rule checking module having a plurality of layout rules; and
6	a physical layout module for placing and routing said plurality of
7	microfluidic components on a template using said information and said plurality of layout
8	rules.
1	73. The system of claim 72 wherein said physical layout module
2	includes an auto-routing module for connecting said plurality of microfluidic components
3	automatically.
1	74. The system of claim 72 wherein said design rule checking module
2	is configured to perform at least one of the checks on I/O placement, channel size
3	mismatch, dangling channels, overlapping components and channels, and channel
4	spacing.
1	75. The method of claim 72 wherein said plurality of microfluidic
2	components include channels, pumps, valves, chambers, and layer interconnects.
1	76. A computer program product stored in a computer readable
2	medium for physically laying-out a microfluidic circuit comprising a plurality of
3	microfluidic components, said computer program product comprising:
4	code for selecting a template;

5	code for placing a first component of said plurality of microfluidic	
6	components on said template, wherein said plurality of microfluidic components	
7	comprise multilayered components;	
8	code for placing a second component of said plurality of microfluidic	
9	components on said template; and	
10	code for connecting said first component to said second component.	
1	77. The computer program product of claim 76 wherein a microfluidic	
2	component of said microfluidic components comprises a data structure having channel	
3	depth information.	
1	78. A system for analyzing a microfluidic circuit having a plurality of	
2	microfluidic components, comprising:	
3	a physical layout comprising said plurality of microfluidic components,	
4	after placement and routing on a template;	
5	a model library comprising dynamic simulation models for said plurality	
6	of microfluidic components; and	
7	a dynamic microfluidic simulator for simulating said physical layout using	
8	said dynamic simulation models.	
1	79. A computer program product stored in a computer readable	
2	medium for validating a physical layout of a microfluidic circuit design comprising a	
3	plurality of microfluidic components, said computer program product comprising:	
4	code for providing said plurality of microfluidic components on a template	
5	to form said physical layout of said microfluidic circuit design;	
6	code for extracting a netlist information from said physical layout; and	
7	using a dynamic simulation model for each component of said plurality of	
8	microfluidic components on said template and said netlist information, code for	
9	physically simulating said physical layout.	
1	80. A computer program product stored in a computer readable	
2	medium for device implementation of a microfluidic circuit comprising a plurality of	
3	microfluidic components, said computer program product comprising:	
4	code for providing said plurality of microfluidic components on a template	
5	to form a physical layout of said microfluidic circuit design:	

6	code for writing said physical layout to a layout file to be used for
7	manufacturing;
8	code for selecting a pattern for a die to be repetitively laid out on a wafer,
9	said die comprising said physical layout; and
10	code for automatically laying out said pattern on said wafer by using said
11	layout file.