Pedigree BLUP - Sire Model and Animal Model

Peter von Rohr

2023-05-08

Independence Assumption

So far

- random residuals: $var(e) = I * \sigma_e^2$ and
- random sire effects: $var(s) = I * \sigma_s^2$

In real livestock datasets, this is not realistic, because sires are related

Example Dataset

Animal	Sire	Sex	WWG
4	1	М	4.5
5	3	F	2.9
6	1	F	3.9
7	4	Μ	3.5
8	3	М	5.0

Relationship

For son *i* and sire *k* of *i*

$$cov(s_i, s_k) = 1/2 * \sigma_s^2$$

Sire Relationship Matrix

$$A = \begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 0 \\ 0.5 & 0 & 1 \end{bmatrix}$$

Sire Model

pedigreemm

```
lmem_sire <- pedigreemm(</pre>
  formula = WWG ~ Sex + (1 | Sire),
  data = tbl sire model,
 pedigree = list(Sire = ped sire)
## boundary (singular) fit: see help('isSingular')
summary(lmem_sire)
## Linear mixed model fit by REML ['lmerpedigreemm']
## Formula: WWG ~ Sex + (1 | Sire)
##
      Data: tbl sire model
##
## REML criterion at convergence: 8.5
##
## Scaled residuals:
```

Mixed model equations

pedigreemm: Cannot specify assumed variance components

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda A_s^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{s} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$

Animal Model

- Extension of sire model
- ► Include dams in pedigree
- ▶ Predict breeding values for all animals in the pedigree

Dataset

Animal	Sire	Dam	Sex	WWG
4	1	NA	М	4.5
5	3	2	F	2.9
6	1	2	F	3.9
7	4	5	М	3.5
8	3	6	М	5.0

where NA stands for unknown

The Model

$$y = Xb + Zu + e$$

Random effects **u** and **e**

$$E(\mathbf{e}) = \mathbf{0}$$

 $var(\mathbf{e}) = \mathbf{I} * \sigma_e^2$
 $E(\mathbf{u}) = \mathbf{0}$
 $var(\mathbf{u}) = \mathbf{A} * \sigma_u^2$

with numerator relationship matrix A

Numerator Relationship Matrix A

Diagonal elements

$$(A)_{ii} = 1 + F_i$$

where F_i is the inbreeding coefficient

$$F_i = \frac{1}{2} * (\mathbf{A})_{sd}$$

► Off-diagonal elements

$$cov(u_i, u_j) = (\mathbf{A})_{ij} * \sigma_u^2$$

Example

$$A = \begin{bmatrix} 1 & 0 & 0 & 0.5 & 0 & 0.5 & 0.25 & 0.25 \\ 0 & 1 & 0 & 0 & 0.5 & 0.5 & 0.25 & 0.25 \\ 0 & 0 & 1 & 0 & 0.5 & 0 & 0.25 & 0.5 \\ 0.5 & 0 & 0 & 1 & 0 & 0.25 & 0.5 & 0.125 \\ 0 & 0.5 & 0.5 & 0 & 1 & 0.25 & 0.5 & 0.375 \\ 0.5 & 0.5 & 0 & 0.25 & 0.25 & 1 & 0.25 & 0.5 \\ 0.25 & 0.25 & 0.25 & 0.5 & 0.5 & 0.25 & 1 & 0.25 \\ 0.25 & 0.25 & 0.5 & 0.125 & 0.375 & 0.5 & 0.25 & 1 \end{bmatrix}$$

Solution

- pedigreemm cannot handle such small datasets with only one observation per animal
- Mixed model equations

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda * A^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$

with
$$\lambda = \sigma_e^2/\sigma_u^2$$

Genomic BIUP

- 1. Marker effect models (MEM): Linear mixed effects models with marker effects as random effects
- 2. Breeding-value based models (BVM): Genomic breeding values as random effects

Marker Effect Models

► Model

$$y = 1_n \mu + Wq + e$$

Solution

$$\begin{bmatrix} \mathbf{1}_{n}^{\mathsf{T}} \mathbf{1}_{n} & \mathbf{1}_{n}^{\mathsf{T}} W \\ W^{\mathsf{T}} \mathbf{1}_{n} & W^{\mathsf{T}} W + \lambda_{q} * I \end{bmatrix} \begin{bmatrix} \hat{\mu} \\ \hat{q} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n}^{\mathsf{T}} y \\ W^{\mathsf{T}} y \end{bmatrix}$$

with
$$\lambda_q = \sigma_e^2/\sigma_q^2$$
.

Breeding Value Models

Model

$$y = Xb + Zg + e$$

Solution

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda_g * G^{-1} \end{bmatrix} \begin{bmatrix} \hat{b} \\ \hat{g} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$

with $\lambda_g = \sigma_e^2/\sigma_g^2$.

Genomic Relationship Matrix

$$g = U \cdot q$$

with U = W - P and P has columns $2p_j - 1$ with p_j being the frequency of the positive allele at locus j.

$$var(g) = G * \sigma_g^2$$

$$var(g) = UU^T * \sigma_q^2$$

$$\sigma_g^2 = 2 \sum_{i=1}^m p_j (1 - p_j) \sigma_q^2$$

Genomic Relationship Matrix II

$$var(g) = G * \sigma_g^2 = UU^T \sigma_q^2$$
$$G = \frac{UU^T}{2\sum_{i=1}^{m} p_i (1 - p_i)}$$