Thermodynamics

Ferrulli Massimiliano

22 febbraio 2024

Indice

1	Week1	2
	1.1 Thermal Expansions	3
	1.2 Thermal stress	4
2	Allegati	5
	2.1 Dimostrazione 1	5

1 Week1

Z: Number of protons (protons and neutrons have roughly the same mass)

A: Atomic mass

<u>Temperature:</u> Measures how hot / cold a sistem is, it's a state variable, it's relative and absolute temperature scales.

Relative T scales:

Celsius:

- \cdot 0 \rightarrow freezing point of water
- \cdot 100 \rightarrow boiling point of water

Farhenneit:

- \cdot 0 \rightarrow freezing point of brine
- \cdot 32 \rightarrow freezing point of water
- · 98 → Human body T

Conversion Celsius Farhenneit: celsius $\cdot \frac{9}{5} + 32 =$ Farhenneit Absolute T scales:

Kelvin:

- \cdot 0K is the lowest the T goes (always positive) = 273.15C
- · Absolute zero: extrpolation of T of an ideal fas for zero volume

Therma equilibrium (TE):

Put two objects with different T in thermal contact \rightarrow they will reach the same T said to be in thermal equilibrium.

 \cdot 0th law of TD:

if two systems are in TE with a third system, then they are in TE with each other.

(a) 0th law of TD

1.1 Thermal Expansions

Linear expansion:

$$\Delta l = \alpha l_0 \Delta T$$

where $\alpha\left[\frac{1}{K}\right]$ is the linear thermal expansion coefficient dependent on the material. Volume expansion:

$$\Delta V = \beta V_0 \Delta T$$

where $\beta\left[\frac{1}{K}\right]$ is the volume thermal expansion coefficient dependent on the material. For small ΔT we can use the following formula:

$$V(t) = l(t)^{3} = (l_{o} + l(t))^{3} = (l_{0} + \alpha l_{0} \Delta T)^{3} = l_{0}^{3} (1 + \alpha \Delta T)^{3}$$

This formula is only usable for small ΔT

$$\begin{split} V(t) &= l_0^3 \left(1 + 3\alpha \Delta T + 3\alpha^2 \Delta T^2 + \alpha^3 \Delta T^3 \right), \left(3\alpha^2 \Delta T^2 + \alpha^3 \Delta T^3 \text{ are very small} \right) \\ &\approx l_0^3 (1 + 3\alpha \Delta T) \\ &= V_0 + 3\alpha \Delta T V_0 \end{split} \tag{1}$$

$$\Delta V = 3\alpha \Delta T V_0 = \beta \Delta T V_0$$
$$3\alpha \approx \beta$$

Precise formula for lenght expansion: For an infinitesimaly small extension *dl*:

$$dl = \alpha l dT$$

$$\int \frac{dl}{l} = \int \alpha dT$$

$$\log(l) = \alpha T + C$$

$$l = \exp(\alpha T) \cdot C$$
(2)

with initial conditions:

$$l = e^{\alpha \Delta T} \cdot l_0$$

1.2 Thermal stress

Expansion of bodies: push on each other. How much is a "pushed - on " object compressed? Juong's modulus E:

$$\Delta l = \frac{1}{E} P l_o$$

Example:

2 Allegati

2.1 Dimostrazione 1