

Bibliografía Sipser – Introduction to the Theory of Computation – Chapter 3. Ampliado en : Alfonseca – Teoría de Lenguajes, Gramáticas y Autómatas, 2007 - Capítulo2. y Hopcroft, Motwani, Ullman – Introducción a la Teoría de Autómatas, Lenguajes, y Computación – Capítulo 8.

Máquinas de Turing II

Coste Computacional con MT

En el pasado un uso que se dio a las MT fue el Análisis del Coste Computacional de los Algoritmos

Teoría Avanzada de la Computación

uc3m

53

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Uso para el Análisis del Coste Computacional de Algoritmos

Ventajas:

Propone un modelo único, al contrario que con el uso de un Lenguaje X, una Cpu Y, para cualquier X e Y

No hay dudas sobre el coste del Paso Base

Desventaja:

Es muy pesado para algoritmos complejos

→ Limitaremos el tamaño de las MT

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Uso para Análisis del Coste Computacional de los Algoritmos

Propósito:

- · Relacionar conceptos vistos en la asignatura
- En Base a un Modelo muy sencillo
- Abstraer de construcciones de muy alto nivel (iteradores en Python)

0 55

Teoría Avanzada de la Computación

uc3m

55

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Podemos aplicar los mismos conceptos vistos en Análisis de Coste Computacional:

- Empírico
- Analítico

Combinaremos ambos

Usaremos Jflap v7, en Jflap v6 funciona la traza, pero ambos tienen fallos.

- Evitaremos usar Bloques según las circunstancias

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Marco Necesario para el Análisis:

- · MT de cinta infinita hacia ambos lados
- Alfabeto determinado, en principio con pocos símbolos, pero pueden ser más
- Una Instancia de un Problema se describirá con una cinta de Entrada
- El número de símbolos de la Entrada define el Tamaño de la Instancia
- Coste de Paso Base: Una Transición con Lectura/Escritura y Desplazamiento

Teoría Avanzada de la Computación

uc3m

57

05 Modelos de Computación

Máquinas de Turing II

MT para comparar dos números

- Números en base 1
- Separados por \$

Cinta #a\$b#

#1\$1# → #1#

#11\$11# → #1#

#111\$111# → #1#

#\$1# → #0#

#11\$1# → #0#

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

MT para comparar dos números

Cinta de entrada:

###a\$b###

Tamaño del problema n:

Tamaño de a + tamaño de b + tamaño de \$

Tam(#1\$1#) = 3

Tam(#11\$11#) = 5

Tam(#\$#) = 1

Teoría Avanzada de la Computación

uc3m

61

61

05 Modelos de Computación

Máquinas de Turing II

MT para comparar dos números

Coste computacional empírico:

Tamaño n	1	3	5	7	9	11
Pasos	2	9	20	35	54	77

Teoría Avanzada de la Computación

uc3m

62

Máquinas de Turing II

MT para comparar dos números

Coste computacional empírico:

Aplicamos diferencias finitas:

Tamaño n	1	3	5	7	9	11	
Pasos	2	9	20	35	54	77	
A: T(n)-T(n-2)		7	11	15	19	23	
B: A(n)-A(n-2)		4	4	4	4		
C: B(n)-B(n-2)			0	0	0		
Teoría Avanzada de la Computación U							

63

05 Modelos de Computación

Máquinas de Turing II

MT para comparar dos números

Coste computacional empírico:

Aplicamos diferencias finitas:

Se anulan en las de tercer orden

Son constantes en las de segundo orden

→ Se puede aproximar con un polinomio de segundo orden

Tamaño n	1	3	5	7	9	11
Pasos	2	9	20	35	54	77
A: T(n)-T(n-2)		7	11	15	19	23
B: A(n)-A(n-2)		4	4	4	4	
C: B(n)-B(n-2)			0	0	0	
Teoría Avanzada de la Computación						

64

Máquinas de Turing II 05 Modelos de Computación MT para comparar dos números Coste computacional por diferencias finita: $T(n) = an^2 + bn + c$ Tamaño n 11 Pasos 54 **77** 20 A: T(n)-T(n-2) 11 15 19 23 B: A(n)-A(n-2) C: B(n)-B(n-2) 0 uc3m Teoría Avanzada de la Computación 65

65

Máquinas de Turing II

MT para comparar dos números

Otra forma de plantearlo (recursivamente)

T(n) en términos de T(n-2)

Para n=1 → 2 pasos

Para n=3 → 4 pasos a derecha + 3 a izquierda + T(1)

Para n=5 → 6 pasos a derecha + 5 a izquierda + T(3)

Teoría Avanzada de la Computación

uc3m

67

67

05 Modelos de Computación

Máquinas de Turing II

MT para comparar dos números

Otra forma de plantearlo (recursivamente)

T(n) en términos de T(n-2)

Para n=1 → 2 pasos

Para n=3 → 4 pasos a derecha + 3 a izquierda + T(1)

Para n=5 → 6 pasos a derecha + 5 a izquierda + T(3)

Para n → n+1 pasos a derecha + n a izquierda + T(n-2) =

= Σi para $i=2...n+1 \rightarrow T(n) = (n+1)(n+2)/2 - 1 = 1/2n^2 + 3n/2$

Teoría Avanzada de la Computación

uc3m

68

Máquinas de Turing II

MT para comparar dos números

Otra forma de plantearlo (recursivamente)

$$T(n) = 1/2n^2 + 3n/2 = \Sigma i \quad para i=2...n+1$$

Es un comportamiento habitual en MTs

que van marcando de extremo a extremo

Teoría Avanzada de la Computación

uc3m

69

69

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

$$\Sigma = \{a, b\}$$

Dada $x \in \Sigma^*$, |x| = 2k, k = 0, 1, 2, 3, ...

 $\exists w \in \Sigma^* | x = w \cdot w^{-1}$

válidas: λ, aa, bb, aaaa, bbbb, abba, baab, aaaaaa, aabbaa, ...

inválidas: ab, ba, aaa, aba, bbb, abb, ..., aabb, abab, baba, ...

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Detalles:

- Palabra de tamaño n=2k
- La MT hace k recorridos si n es el número de símbolos inicial
- Recorridos sucesivos se acortan en 2 símbolos
- En caso de fallar la correspondencia
 - → hay que borrar la cinta (q6) con un recorrido lineal
- El peor caso parece cuando es palíndromo para tamaños par (demostrar por contradicción)

Teoría Avanzada de la Computación

uc3m

73

73

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Análisis: I. Fase Empírica:

Input	#tam	pasos
λ	0	1
aa	2	6
abba	4	15
aabaaba	6	28
aaabbaaa	8	45
bbaabbaabb	10	66
bbbbbaabbbbb	12	91

Teoría Avanzada de la Computación

uc3m

75

05 Modelos de Computación Máquinas de Turing II Coste Computacional con MT Ejemplo: Máquina para determinar si una palabra es palíndromo Coste Empírico + Analítico $T(N) = aN^2 + bN + c$ Método de Diferencias Finitas: N 10 12 Pasos 1 6 15 28 45 66 91 Dif 1 9 13 17 21 25 Dif 2 4 4 Dif 3 0 0

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Coste Empírico + Analítico

Método de Diferencias Finitas:

	N	0	2	4	6	8	10	12
١	Pasos	1	6	15	28	45	66	91
	Dif 1		5	9	13	17	21	25
	Dif 2		4	4	4	4	4	
	Dif 3			0	0	0	0	

$$T(N) = aN^2 + bN + c$$

 $a \cdot \theta^2 + b \cdot \theta + c = 1$
 $a \cdot 2^2 + b \cdot 2 + c = 6$
 $a \cdot 4^2 + b \cdot 4 + c = 15$

uc3m

Teoría Avanzada de la Computación

77

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Coste Empírico + Analítico

Método de Diferencias Finitas:

						-	
N	0	2	4	6	8	10	12
Pasos	1	6	15	28	45	66	91
Dif 1		5	9	13	17	21	25
Dif 2		4	4	4	4	4	
Dif 3			0	0	0	0	

 $T(N) = aN^2 + bN + c$ $a\cdot 0^2 + b\cdot 0 + c = 1$ \Rightarrow c = 1 $a \cdot 2^2 + b \cdot 2 + c = 6$ $a \cdot 4^2 + b \cdot 4 + c = 15$ 4a + 2b = 5 (x2)16a + 4b = 14 \Rightarrow a = 1/2 4a + 2b = 5 2 + 2b = 5

 \Rightarrow b = 3/2

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Coste Empírico + Analítico

Método de Diferencias Finitas:

N	0	2	4	6	8	10	12
Pasos	1	6	15	28	45	66	91
Dif 1		5	9	13	17	21	25
Dif 2		4	4	4	4	4	
Dif 3			0	0	0	0	

$$a \cdot \theta^{2} + b \cdot \theta + c = 1$$
 $\Rightarrow c = 1$
 $a \cdot 2^{2} + b \cdot 2 + c = 6$
 $a \cdot 4^{2} + b \cdot 4 + c = 15$
 $4a + 2b = 5 (x2)$
 $16a + 4b = 14$
 $8a = 4 \Rightarrow a = 1/2$
 $4a + 2b = 5$
 $2 + 2b = 5 \Rightarrow b = 3/2$

 $T(N) = N^2/2 + 3N/2 + 1$

Teoría Avanzada de la Computación

uc3m

79

79

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Análisis Recurrente (por Despliegue). Sabemos:

- Aplicar una iteración de MT para tamaño N reduce el problema al caso N-2
- Un recorrido para N símbolos supone 2N+1 pasos
- T(0) = 1 → Transición al estado final
- T(2) = 2.2+1 + T(0) = 2.2+1 + 1 = 2.2 + 2
- T(4) = 2.4+1 + T(2) = 2.4+1 + 2.2 + 2 = 2.4+2.2 + 3 = 2.6 + 3
- T(6) = 2.6+1 + T(4) = 2.6+1 + 2.6 + 3 = 2.12 + 4
- T(8) = 2.8+1 + T(6) = 2.8+1 + 2.12 + 4 = 2.20+5

 $T(N) = N(N+2)/2 + N/2 + 1 = N^2/2 + 3N/2 + 1$

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

Análisis de Recurrencia:

La MT opera:

iterando de extremo a extremo

Es un caso interesante porque en cada iteración se reduce la instancia del problema a la instancia anterior

uc3m

81

Teoría Avanzada de la Computación

81

05 Modelos de Computación

Máquinas de Turing II

Coste Computacional con MT

Ejemplo: Máquina para determinar si una palabra es palíndromo

TAREAS:

Optimizar esta MT para que aproveche el retroceso para cotejar más símbolos

Teoría Avanzada de la Computación

uc3m

32

Máquinas de Turing II

Diferencias finitas

Dada una función T(n) cuya expresión analítica desconocemos

Disponemos de muestreos en T(n+a), T(n+b), etc.

Podemos trabajas con las diferencias finitas

T(n+a) - T(n+b)

Recordamos

(T(n+h) - T(n)) / h cuando $h \rightarrow \infty$ equivale a la derivada dT(n) / dn

Teoría Avanzada de la Computación

uc3m

88

88

05 Modelos de Computación

Máquinas de Turing II

Diferencias finitas

Dada una función T(n) cuya expresión analítica desconocemos

Disponemos de muestreos en T(n+a), T(n+b), etc.

Podemos trabajar con las diferencias finitas

Si T(n) es un polinomio de orden k

Si consideramos que n toma valores enteros

T(n+1) - T(n) sirve de aproximación a la primera derivada de T(n)

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Diferencias finitas

Dada una función T(n) cuya expresión analítica desconocemos

Disponemos de muestreos en T(n+a), T(n+b), etc.

Podemos trabajar con las diferencias finitas

Esto da pie al Método de Diferencias Finitas

Se puede aplicar en Análisis Numérico a Ecuaciones Diferenciales

Nosotros lo usaremos a un nivel muy elemental.

Teoría Avanzada de la Computación

uc3m

90

90

05 Modelos de Computación

Máquinas de Turing II

Diferencias finitas

Dada una función T(n) cuya expresión analítica desconocemos

Disponemos de muestreos en T(n+a), T(n+b), etc.

Calculando diferencias finitas de primer, segundo, tercer orden

Podemos determinar el tipo de función (polinómica de orden k, exponencial)

Si T(n) polinomio de orden k, las diferencias finitas de orden k = cte

Si T(n) exponencial, las diferencias finitas no se anulan

Pero aparecen comportamientos particulares.

Teoría Avanzada de la Computación

uc3m

Máquinas de Turing II

Diferencias finitas

Dada una función T(n) cuya expresión analítica desconocemos

Disponemos de muestreos en T(n+a), T(n+b), etc.

Calculando diferencias finitas de primer, segundo, tercer orden

Si T(n) = E(n) + P(n), E(n) exponencial, P(n) polinomio de orden k aplicando k diferencias finitas \rightarrow anulamos polinomio

Podemos obtener E(n) mediante integración.

Teoría Avanzada de la Computación

uc3m

92