Funções

Funções

A função é uma "regra" ou "mecanismo" que transforma uma quantidade em outra. Por exemplo, a função $f(x) = x^2 + 4$ toma o inteiro $x = x^2 + 4$.

Definição

Uma relação f é chamada função desde que $(a,b) \in f$ e $(a,c) \in f$ impliquem b=c

Exemplos

$$f = \{(1,2), (2,3), (3,1), (4,7)\}$$
$$g = \{(1,2), (1,3), (4,7)\}$$

A relação f é uma função, enquanto a relação g não o é porque $(1, 2), (1, 3) \in g$ e $2 \neq 3$

Notação de função

Seja f uma função e seja a um objeto. A notação f(a) é definida desde que exista um objeto b de modo que $(a,b) \in f$. Nesse caso f(a) = b.

Para a função
$$f = \{(1, 2), (2, 3), (3, 1), (4, 7)\}$$
, temos

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 1$, $f(4) = 7$

Para g, ela não é considerada função, pois qual o valor de g(1)=?, há duas possibilidades,

Exemplo

Expresse a função $f(x) = x^2$

Para representar isso na forma de pares ordenados, precisamos utilizar reticências:

$$f = \{..., (-3, 9), (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ...\}$$

Ainda poderíamos utilizar a notação de definição de conjunto:

$$f = \{(x, y) : x, y \in \mathbb{Z}, y = x^2\}$$

Outra forma é escrevermos uma função como uma tabela:

x	f(x)

-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9
1111	

Domínio e imagem

Seja f uma função. O conjunto de todos os primeiros elementos possíveis dos pares ordenados de fé chamado domínio de f e se denota por dom f. O conjunto de todos os segundos elementos possíveis dos pares ordenados de f chama imagem de f e se denota im f.

Em outra notação:

$$dom f = \{a: \exists b, (a, b) \in f\} e \ im f = \{b: \exists a, (a, b) \in f\}$$

Notação especial para funções

Seja f uma função e sejam os conjuntos A e B, dizemos que "f \acute{e} uma função de A para B" se dom f=A e imf \subseteq B. Nesse caso, escrevemos f: A $\xrightarrow{}$ B. Dizemos também que "f \acute{e} uma aplicação de A em B".

Gráficos de funções

Os gráficos constituem uma forma excelente de visualizarmos funções cujas entradas e saída são número reais.

Por exemplo, veja o gráfico da função f(x) = sen x cos 3x:

Outra representação de funções

Sejam os grupos A = $\{1, 2, 3, 4, 5, 6\}$ e B = $\{1, 2, 3, 4, 5\}$ e considerando a função f: $\{(1, 2), (2, 1), (3, 2), (4, 4), (5, 5), (6, 2)\}$. A representação dessa função poderá ser feita da seguinte forma:

Contagem de funções

Sejam A e B conjuntos finitos. Quantas funções há de A para B? Sem perda de generalidade podemos escolher A como o conjunto $\{1, 2, ..., a\}$ e B como o conjunto $\{1, 2, ..., b\}$. Toda função $f: A \rightarrow B$ pode escreve-se como:

Por exemplo, sejam A = $\{1, 2, 3\}$ e B = $\{4, 5\}$. Todas as funções $f: A \rightarrow B$ possíveis são:

$$\{(1, 4), (2, 4), (3, 4)\}\$$
 $\{(1, 5), (2, 4), (3, 4)\}\$ $\{(1, 4), (2, 4), (3, 5)\}\$ $\{(1, 5), (2, 4), (3, 5)\}\$ $\{(1, 4), (2, 5), (3, 4)\}\$ $\{(1, 5), (2, 5), (3, 4)\}\$ $\{(1, 5), (2, 5), (3, 5)\}\$

Sejam A e B conjuntos finitos com |A| = a e |B| = b. O número de funções de A para B é b^a .

Funções inversas

Uma função é um tipo especial de relação, representada por f^1 . A regra de função se aplica também para a função inversa.

Função injetora

Uma função f é chamada um para um se, sempre que $(x,b),(y,b) \in f$, devemos ter x = y. Em outras palavras, se $x \neq y$, então $f(x) \neq f(y)$

A expressão *um para um* costuma também ser escrita como 1:1. Outra designação para uma função um para um é **injeção** ou **função injetora**.

Proposição

Seja f uma função, a relação inversa $f^{\it 1}$ é uma função se e somente se fé uma função injetora

Seja f uma função e f^1 seja uma função também. Então dom f = im f^1 e imf = dom f^1

Função sobrejetiva ou sobrejetora

Seja $f: A \rightarrow B$. Dizemos que f é sobre B desde que, para todo $b \in B$, exista um $a \in A$ de modo que f(a) = b. Em outras palavras, imf = B.

Função bijetora ou bijeção

Seja $f: A \rightarrow B. f$ é uma bijeção se é ao mesmo tempo um para um e sobre

Princípio da casa de pombos:

Sejam A e B conjuntos finitos e seja $f: A \rightarrow B$. Se |A| > |B|, então f não é injetora.

Se |A| < |B|, então f não é sobrejetora

Se f é bijetora, então |A| = |B|.

Composição de funções

Exercícios sobre funções

Composição

Assim como há operações (por exemplo, $+ e^*$) para combinar inteiros e operações para combinar conjuntos (por exemplo, $\cup e \cap$), há uma operação natural para combinar funções.

Definição

Sejam os conjuntos A, B e C e sejam $f: A \to B \ e \ g: B \to C$. Então a função $g \circ f$ é uma função de A para C definida por:

$$(g \circ f)(a) = g[f(a)]$$

em que $a \in A$. A função $g \circ f$ é chamada composição de g e f.

Exemplo

Sejam A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9} e C = {10, 11, 12, 13, 14}, sejam $f: A \to B$ e $g: B \to C$ definidas por

$$f = \{(1,6), (2,6), (3,9), (4,7), (5,7)\}$$
$$g = \{(6,10), (7,11), (8,12), (9,13)\}$$

graficamente:

Então $g\circ f$ é a função:

$$g \circ f = \{(1,10), (2,10), (3,13), (4,11), (5,11)\}$$

assim, se desejo representação a composição do objeto:

$$(g \circ f)(2) = g[f(2)] = g[6] = 10$$

Alguns comentários

 A notação (g o f) significa que, primeiro aplicamos f e, em seguida, g. Mas o ideia e associar a proximidade:

$$(g \circ f)(a) \to (g[f(a)])$$

- O domínio de $(g \circ f)$ é o mesmo que o de f: $dom (g \circ f) = dom f$
- Para que (g ∘ f) tenha sentido, toda saída de f deve ser uma entrada aceitável para g. Propriamente dito, devemos ter im f ⊆ dom g. As exigências f: A → B e g: B → C asseguram que as funções se adaptam quando formamos g ∘ f
- É possível que $g \circ f$ e $f \circ g$ tenham ambas sentido (sejam definidas). Em tal situação, pode ocorrer que $f \circ g \neq g \circ f$ (sejam funções diferentes)

Exemplo

$$g \circ f \neq f \circ g$$
.

Seja A = $\{1, 2, 3, 4, 5, 6\}$ e sejam $f: A \rightarrow A$ e $g: A \rightarrow A$ definidas por:

$$f = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}$$
$$g = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

Então $g \circ fe \ f \circ g$ são:

$$g \circ f = \{(1,5), (2,5), (3,5), (4,5), (5,5)\} e$$

 $f \circ g = \{(1,1), (2,1), (3,1), (4,1), (5,1)\}$

Assim $g \circ f \neq f \circ g$.

A função identidade

Seja A um conjunto. A função identidade em A é uma função id_A, cujo domínio é A e para todo $a \in A$, id_A(a) = a. Em outras palavras:

$$id_A = \{(a,a) \colon a \in A\}$$

Exercícios propostos

1. Determine se f é uma função de \mathbb{Z} para \mathbb{R} :

a.
$$f(n) = -n$$

b.
$$f(n) = \sqrt{n^2 + 1}$$

c.
$$f(n) = 1/(n^2 - 4)$$

2. Determine se cada uma das funções abaixo de $\mathbb N$ para $\mathbb Z$ é injetora:

a.
$$f(n) = n - 1$$

b.
$$f(n) = n^2 - 1$$

c.
$$f(n) = n^3$$

- 3. Quais funções do exercício anterior são sobrejetoras?
- 4. Determine se cada uma das funções abaixo é bijetora de $\mathbb R$ para $\mathbb R$:

a.
$$f(x) = x - 1$$

b.
$$f(x) = x^2 - 1$$

c.
$$f(x) = x^3$$

d.
$$f(x) = \frac{x^2 - 1}{x^2 + 2}$$

5. Há dois símbolos utilizados para representações que retornar um número inteiro aproximado (página 279 do livro). A primeira é o símbolo [] que retorna o maior inteiro menor que o valor (também conhecido como solo), por exemplo: [3,99] = 3, [-1/2] = -1, [1/2] = 0.

Enquanto [] retorna o menor inteiro maior que o valor (também conhecido como teto), por exemplo[3,9] = 4, [3,01] = 4, [1/2] = 1, [-1/2] = 0.

Com base nisso, encontre os valores a seguir:

- a. |1,1|
- b. [-0,1]
- c. [4]
- d. [4]
- e. [1,000001]
- f. $\left[\frac{1}{2} \times [1,9]\right]$
- g. $\left[\frac{1}{2} + \left|\frac{3}{2}\right|\right]$

- 6. Considere $f(x) = \left| \frac{x^2}{3} \right|$, encontre f(A) dos seguintes conjuntos:
 - a. $A = \{-2, -1, 0, 1, 2\}$
 - b. $A = \{0, 1, 2, 3, 4\}$
 - c. $A = \{1, 5, 7, 11\}$
 - d. $A = \{2, 4, 6, 8\}$
- 7 . Definido f e g como funções de $\mathbb Z$ para $\mathbb Z$ e com as seguintes regras f(n) = 7n e $g(n) = \left\lceil \frac{n}{3} \right\rceil$. Quais os valores de
 - a. $g \circ f$ para o conjunto $x = \{0, 1, 2, 3, 4, 5\}$
 - b. $g \circ f$ para o conjunto $x = \{-14, -7, 0, 7, 14\}$
 - c. $g \circ f$ para o conjunto $x = \{-4, -2, 2, 4\}$