Analysis of Algorithms

String Matching

Basic String/Document Processing Algorithms

- String-driven information retrieval is at the core of many important computer applications, including:
 - Web searching and "surfing": the Internet document formats HTML and XML are primarily text formats with added links to multimedia context
 - Searching for a certain DNA sequence in a genomic database, or searching for particular patterns in DNA sequences
- Document processing is one of the dominant functions of computers
 - editing, searching, transporting over the Internet, displaying, etc.

Text Documents

- From the perspective of algorithm design, documents can be viewed as simple **character strings**, that is, they can be abstracted as a sequence of characters.
- At the heart of algorithms for searching and processing text are methods for dealing with character strings
- *A* = "CGTAAACTGCTTTAATCAAACGC" DNA sequence
- B = ``http://www.pucit.edu.pk''

The String Matching Problem

- Finding all occurrences of a pattern in a text
- We assume that
 - the text is an array T[1..n] of length n and the pattern is an array P[1..m] of length m.
 - the elements of T and P are characters drawn from a finite alphabet Σ
- Ex.: $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,...,z\}$
- The character arrays *P* and *T* are loosely called "strings of characters"

The String Matching Problem

Given: Two strings T[1..n] and P[1..m] over alphabet Σ .

Want to find all occurrences of P[1..m] "the pattern" in T[1..n] "the text".

Example: $\Sigma = \{a, b, c\}$

Terminology:

- P occurs with shift s.
- P occurs beginning at position s+1.
- s is a valid shift.

Goal: Find all valid shifts with which a given pattern P occurs in a text T.

Notation and Terminology

- An Alphabet Σ is a finite set of symbols
- Σ^* denotes the set of all finite-length strings over Σ .
 - The empty string is denoted ε
- The length of a string x is denoted |x|
- The concatenation of two strings x and y is denoted xy, and has length |x| + |y|
- We say that string x is a **prefix** of string y, denoted $x \hat{I} y$, if y = xw for some string $w \hat{I} \Sigma^*$.

Notation and Terminology

- Ex: vzk \hat{I} vzkavk, vzk \hat{I} vzk
- We say that string x is a **sufix** of string y, denoted $x \not E y$, if y = wx for some string $w \hat{I}$ $\sum_{i=1}^{\infty} f(x_i) = f(x_i) = f(x_i)$
- avk \acute{E} vzkavk, avk \acute{E} avk

Lemma 32.1

<u>Lemma 32.1:</u> Suppose $x \underline{suf} z$ and $y \underline{suf} z$. If $|x| \le |y|$ then $x \underline{suf} y$. If $|x| \ge |y|$ then $y \underline{suf} x$. If |x| = |y| then x = y

Naïve Brute-Force Algorithm

```
\begin{split} Na\"{i}ve(T,P) \\ n &:= length[T]; \\ m &:= length[P]; \\ \textbf{for } s &:= 0 \textbf{ to } n-m \textbf{ do} \\ & \textbf{ if } P[1..m] = T[s+1..s+m] \textbf{ then} \\ & \textbf{ print "pattern occurs with shift s"} \end{split}
```

2/27/2003

Example

2/2

Example

Example

Example

Example

Example

5

Example

2/27/2003

010710000

Example

2/2

Example

match!

2/2

Example

2/27/2003

Example

Example

Running time is $\Theta((n-m+1)m)$.

21

String Matching with Finite Automata

- Many string matching algorithms build a finite automaton that scans *T* for all occurrences of *P*
- String matching automata are very efficient, since they examine each character only once
- Running time (excluding the time to build the automaton) is $\Theta(n)$
- The time to build the automaton can however be large, if Σ is large...

2/27

Finite Automata

- A finite automaton M is a 5-tuple $(Q, q0, A, \Sigma, \delta)$ where
- Q is a finite set of states
- $q_0 \in Q$ is the *start state*
- $A \subseteq Q$ is a distinguished set of accepting states
- Σ is a finite *input alphabet*
- δ is a function from $Q \times \Sigma$ into Q, called the *transition function* of M.

010710000

Example

state a b
0 1 0 0
1 0 0

= 0, and quivalent ed edges b) = 0. string xhere k is the start states is

2/27/2003

Final State Function

- The FA begins with state q_0 and reads the characters of the input string one at a time.
- If the FA is in state q and reads input character c it makes a transition from state q to sate $\delta(q, c)$.
- When the current state $q \in A$, the machine M is said to have **accepted** the string read so far. (An input that is not accepted is said to be **rejected**.)
- function ϕ , called the **final state function** from Σ^* to Q such that $\phi(w)$ is the state M ends up after scanning the string w., FA ends up in after scanning the string w.
- Thus M accepts a string if and only if $\phi(w) \in A$.

2/27/2003

Final State Function

- Final state function φ(w) recursive definition
- $\phi(\varepsilon) = q_0$
- $\phi(wc) = \delta(\phi(w), c)$ for $w \in \Sigma^*, c \in \Sigma$

2/27/200

Suffix Function

- A string-matching automaton is constructed for pattern *P*, and then used to search the text string *T*.
- First, an auxiliary suffix function σ is defined for P[1..m].
 - The suffix function is a mapping from Σ^* to $\{0, 1, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x.
 - $\sigma(x) = \max \{k : P_k \supset x\} \ (x \Longrightarrow T_i)$

2/27/2003

Example

- $P=ab \Rightarrow \sigma(\varepsilon)=0$
- $P = ab \Rightarrow \sigma(ccaca) = 1$
- $P = ab \Rightarrow \sigma(ccab) = 2$
- Empty string $P_0 = \varepsilon$ is a suffix of every string.

String Matching Automata

- The string-matching automaton constructed for pattern *P*[1..*m*] is defined as follows:
 - The state set Q is $\{0, 1, ..., m\}$. The start state q0 is state 0 and state m is the only accepting state.
- The transition function δ , for any state q and character c, is defined by

$$\delta(q, c) = \sigma(P_a c)$$

■ That is, in order to compute the length of the longest suffix of *Ti c* that is a prefix of *P*, we can compute the longest suffix of *P_a c* that is a prefix of *P*.

Finite Automata Algorithm

Finite-Automaton-Matcher

Finite-Automaton (T,δ,m) $n \leftarrow length[T]$ $q \leftarrow 0$ for $i \leftarrow 1$ to ndo $q \leftarrow \delta(q, T[i])$ if q = m

then print "Pattern occurs with shift" s

• Running time is O(n)

2/27/