Ткачев С.Б.

каф. Математического моделирования МГТУ им. Н.Э. Баумана

ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 — 4 семестр, 2015 г.

Лекция 9. ГРУППЫ, КОЛЬЦА, ПОЛЯ

Существует две формы записи бинарной операции группы. В аддитивной записи операцию обозначают знаком +, нейтральный элемент — знаком $\mathbf{0}$, элемент, обратный к a относительно операции +, записывают в виде -a и называют противоположным к a.

Бинарную операцию группы в этом случае называют сложением

В мультипликативной записи операцию обозначают знаком \cdot , нейтральный элемент — знаком $\mathbf 1$, элемент, обратный к a, записывают в виде a^{-1} .

В этом случае бинарную операцию группы называют умножением (также умножением группы или групповым умножением), элемент $a\cdot b$ —произведением элементов a и b, и записывают в виде ab.

Пример 9.1. Алгебра $(\mathbb{Z}, +)$ — коммутативная группа.

На множестве целых чисел операция сложения ассоциативна и коммутативна.

Число 0 есть нейтральный элемент.

Для каждого целого числа n существует обратный по сложению элемент, число -n, противоположное n.

Рассматриваемую группу называют аддитивной группой целых чисел.

Пример 9.2. Множество всех *биекций* некоторого множества A на себя с операцией композиции отображений есть группа.

Композиция двух биекций есть биекция.

Операция композиции ассоциативна.

Нейтральный элемент — тождественное отображение id_A — есть биекция.

Для всякой биекции $f\colon A\to A$ отображение f^{-1} , обратное биекции f, определено, является биекцией и выполнены равенства $f\circ f^{-1}=f^{-1}\circ f=\mathrm{id}_A$.

Эту группу называют **симметрической группой множества** A .

Если множество A конечно, — группой подстановок множества A .

Пример 9.3.

Алгебры $(\mathbb{Q}\setminus\{0\},\,\cdot)$ и $(\mathbb{R}\setminus\{0\},\,\cdot)$ есть коммутативные группы.

Их называют

мультипликативной группой рациональных чисел и мультипликативной группой действительных чисел соответственно.

В каждой из них число 1 есть нейтральный элемент (единица) группы.

Обратный к числу x по операции умножения элемент x^{-1} есть число $x^{-1} = 1/x$.

Пример 9.4.

Рассмотрим алгебру $\mathbb{Z}_k^+ = (\{0, 1, \dots, k-1\}, \oplus_k)$. Операция \oplus_k (сложения по модулю \mathbf{k}) определяется следующим образом:

для любых двух m и n число $m \oplus_k n$, называемое **суммой** чисел m и n **по модулю** k , равно остатку от деления арифметической суммы m+n на k .

Эта алгебра является коммутативной группой. Ее называют аддитивной группой вычетов по модулю k.

Нейтральным элементом служит число 0.

Обратным к числу $\,n\,$ будет $\,k-n\,$, т.к. $\,n\oplus_k(k-n)=0\,$.

Пример 9.5. Множество всех невырожденных (т.е. имеющих ненулевой определитель) числовых квадратных матриц порядка n с операцией умножения матриц является группой.

Произведение двух невырожденных матриц снова есть невырожденная матрица.

Единичная матрица порядка n невырожденная.

Матрица, обратная к невырожденной, также является невырожденной.

При использовании аддитивной записи операции для коммутативной группы $\mathcal{G}=(G,+,\mathbf{0})$ уравнения a+x=b , x+a=b сводятся к одному:

$$a + x = b$$
,

Решение уравнения есть x = b + (-a).

Правую часть этого равенства в коммутативной группе называют **разностью** элементов b и a и обзначают b-a .

Операцию, сопоставляющую упорядоченной паре (a,b) разность b-a, называют операцией вычитания.

С учетом введенных обозначений решение уравнения в коммутативной группе можно записать так: x=b-a .

9.1. Группа подстановок

Рассмотрим взаимнооднозначное отображение n -элементного множества $\{1, 2, \ldots, n\}$ в себя (биекцию). Такую биекцию называют *подстановкой* этого множества.

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix}.$$

Образ 1 (при отображении σ) есть α_1 , образ 2 есть α_2 , . . . , образ n есть α_n .

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

Циклом длины k называют подстановку, которая отображает β_1 в β_2 , β_2 в β_3 , ..., β_{k-1} в β_k , а β_k в β_1 , где $\beta_i \in \{1,\ldots,n\}$, $i=1,\ldots,k$ и все β_i попарно различны, а все элементы, отличные от β_1 , ..., β_k , отображаются сами в себя.

Цикл записывают ее в виде $(\beta_1 \ \beta_2 \ \dots \ \beta_k)$.

Например, подстановку из группы S_4

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{pmatrix}$$

можно записать в виде $(1\ 3\ 4)$.

Цикл длины 2 называют транспозицией.

Обратная подстановка

Подстановка, обратная подстановке

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix},$$

есть подстановка, которая отображает α_1 в 1, α_2 в 2, . . . α_n в n . Отметим, что при записи обратной подстановки элементы первой строки тем не менее записываются в обычном порядке: $1, \ldots, n$.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Решение уравнений в группе подстановок

В группе S_3 решим следующее уравнение:

$$\left(\begin{array}{cc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right) \circ X = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right).$$

Умножив обе части уравнения слева на

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right),$$

получим

$$X = \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right) \circ \left(\begin{array}{cc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right).$$

Окончательно получим

$$X = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$
Prev Next Lax Go Back Fig.

9.2. Кольца, тела, поля

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 9.1. Кольцом называют алгебру

$$\mathcal{R} = (R, +, \cdot, \mathbf{0}, \mathbf{1}),$$

сигнатура которой состоит из двух бинарных и двух нульарных операций, причем для любых $a, b, c \in R$ выполняются равенства:

- 1) a + (b + c) = (a + b) + c;
- 2) a + b = b + a;
- 3) $a + \mathbf{0} = a$;
- 4) для каждого $a \in R$ существует элемент a', такой, что $a + a' = \mathbf{0}$:
- 5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- 6) $a \cdot 1 = 1 \cdot a = a$;
- 7) $a \cdot (b+c) = a \cdot b + a \cdot c$, $(b+c) \cdot a = b \cdot a + c \cdot a$.

Операцию + называют сложением кольца.

Операцию · — умножением кольца.

Элемент 0 — нулем кольца.

элемент 1 — единицей кольца.

Равенства 1–7, указанные в определении, называют **аксиомами кольца**.

Аксиомы кольца 1-4 означают, что алгебра $(R,+,\mathbf{0})$, сигнатура которой состоит только из операций сложения кольца + и нуля кольца $\mathbf{0}$, является абелевой группой. Эту группу называют аддитивной группой кольца $\mathcal R$

Аксиомы кольца 5 и 6 показывают, что алгебра $(R,\cdot,\mathbf{1})$, сигнатура которой включает только умножение кольца \cdot и единицу кольца $\mathbf{1}$, есть моноид.

Этот моноид называют **мультипликативным моноидом** кольца \mathcal{R}

Аксиома 7 устанавливает связь между сложением кольца и умножением кольца. Операция умножения дистрибутивна относительно операции сложения.

Кольцо — это алгебра с двумя бинарными и двумя нульарными операциями $\mathcal{R}=(R,+,\cdot,\mathbf{0},\mathbf{1})$, такая, что:

- 1) алгебра $(R, +, \mathbf{0})$ коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид;
- 3) операция · (умножения кольца) дистрибутивна относительно операции + (сложения кольца).

Определение 9.2. Кольцо называют **коммутативным**, если его операция умножения коммутативна.

Пример 9.6.

а. Алгебра $(\mathbb{Z},+,\cdot,0,1)$ есть коммутативное кольцо. Отметим, что алгебра $(\mathbb{N},+,\cdot)$ кольцом не будет, поскольку $(\mathbb{N},+)$ — коммутативная полугруппа, но не группа.

б. Рассмотрим алгебру

$$\mathbb{Z}_k = (\{0, 1, \ldots, k-1\}, \oplus_k, \odot_k, 0, 1)$$

 $(k \ge 1)$ с операцией \oplus_k сложения по модулю k и \odot_k (умножения по модулю k).

Операция умножения по модулю k аналогична операции сложения по модулю k: $m \odot_k n$ равно остатку от деления на k числа $m \cdot n$.

Эта алгебра есть коммутативное кольцо, которое называют кольцом вычетов по модулю k .

Пример 9.7. а. Алгебра $(2^A, \triangle, \cap, \varnothing, A)$ — коммутативное кольцо. Это следует из свойств *пересечения* и симметрической разности множеств.

б. Множество всех квадратных матриц фиксированного порядка с операциями сложения и умножения матриц — некоммутативное кольцо.

Единицей этого кольца является единичная матрица, а нулем — нулевая.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Теорема 1. В любом кольце выполняются следующие тождества:

1
$$\mathbf{0} \cdot a = a \cdot \mathbf{0} = \mathbf{0}$$
;

$$2 (-a) \cdot b = -(a \cdot b) = a \cdot (-b);$$

3
$$(a-b)\cdot c = a\cdot c - b\cdot c$$
, $c\cdot (a-b) = c\cdot a - c\cdot b$.

 \blacksquare Докажем тождество $\mathbf{0} \cdot a = \mathbf{0}$ (1).

$$\forall a (a + \mathbf{0} \cdot a = \mathbf{1} \cdot a + \mathbf{0} \cdot a = (\mathbf{1} + \mathbf{0}) \cdot a = \mathbf{1} \cdot a = a).$$

В аддитивной группе кольца получили уравнение

$$a + \mathbf{0} \cdot a = a$$

относительно неизвестного элемента $\mathbf{0} \cdot a$.

В аддитивной группе любое уравнение вида a + x = b имеет единственное решение x = b - a.

$$\mathbf{0} \cdot a = a - a = \mathbf{0}$$
.

Тождество $a \cdot \mathbf{0} = \mathbf{0}$ доказывается аналогично.

Докажем тождество $-(a \cdot b) = a \cdot (-b)$ (2). Имеем

$$\begin{array}{l} a\cdot (-b)+a\cdot b=a\cdot ((-b)+b)=a\cdot \mathbf{0}=\mathbf{0}\Rightarrow\\ \Rightarrow\ a\cdot (-b)=-(a\cdot b) \end{array}$$

 $(-a) \cdot b = -(a \cdot b)$ можно доказать точно так же.

Докажем тождества (3).

Рассмотрим $(a-b) \cdot c = a \cdot c - b \cdot c$.

С учетом доказанного выше имеем

$$a \cdot (b-c) = a \cdot (b+(-c)) = a \cdot b + a \cdot (-c) = a \cdot b - a \cdot c,$$

т.е. тождество справедливо.

Тождество $c \cdot (a - b) = c \cdot a - c \cdot b$ доказывается аналогично. \blacktriangleright

Следствие 9.1. В любом кольце справедливо тождество

$$(-1) \cdot x = x \cdot (-1) = -x.$$

◄ Указанное следствие вытекает из второго тождества теоремы 1 при a=1 и b=x. ▶

Первые два тождества в теореме выражают свойство, называемое аннулирующим свойством нуля в кольце.

Тождества (3) теоремы 1 выражает свойство дистрибутивности операции умножения кольца относительно операции вычитания.

В любом кольце производя вычисления, можно раскрывать скобки и менять знаки так же, как и при сложении, вычитании и умножении действительных чисел.

Определение 9.3. Ненулевые элементы a и b кольца \mathcal{R} называют делителями нуля, если $a \cdot b = \mathbf{0}$ или $b \cdot a = \mathbf{0}$.

Пример 9.8. Кольцо вычетов по модулю k, если k — составное число.

В этом случае произведение по модулю k любых m и n , дающих при обычном перемножении число, кратное k , будет равно нулю.

В кольце вычетов по модулю 6 элементы 2 и 3 являются делителями нуля, поскольку $2\odot_6 3=0$.

Пример 9.9. Кольцо квадратных матриц фиксированного порядка (не меньшего двух).

Например, для матриц второго порядка имеем

$$\begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

При отличных от нуля a и b приведенные матрицы являются делителями нуля.

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

Определение 9.4. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

Определение 9.5. Коммутативное тело называют **полем**, а группу ненулевых элементов тела (поля) по умножению —**мультипликативной группой** этого **тела(поля)**.

Поле есть частный случай кольца, в котором операции обладают дополнительными свойствами.

Аксиомы поля

Поле есть алгебра $\mathcal{F} = (F, +, \cdot, \mathbf{0}, \mathbf{1})$, сигнатура которой состоит из двух бинарных и двух нульарных операций, причем справедливы тождества:

- 1) a + (b + c) = (a + b) + c;
- 2) a + b = b + a;
- 3) a + 0 = a;
- 4) для каждого $a \in F$ существует элемент -a , такой, что $a + (-a) = \mathbf{0}$;
- 5) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$;
- 6) $a \cdot b = b \cdot a$;
- 7) $a \cdot 1 = 1 \cdot a = a$;
- 8) для каждого $a \in F$, отличного от $\mathbf{0}$, существует элемент a^{-1} , такой, что $a \cdot a^{-1} = \mathbf{1}$;
- 9) $a \cdot (b+c) = a \cdot b + a \cdot c$.

Пример 9.10.

- а. Алгебра $(\mathbb{Q}, +, +, \cdot, 0, 1)$ есть поле, называемое полем рациональных чисел.
- **б.** Алгебры $(\mathbb{R}, +, \cdot, 0, 1)$ и $(\mathbb{C}, +, \cdot, 0, 1)$ есть поля, называемые полями действительных и комплексных чисел соответственно.

9.3. Области целостности

Областью целостности называют коммутативное кольцо без делителей нуля.

Так, кольцо целых чисел есть область целостности.

Утверждение 9.1. Если А — конечное множество и $f:A\to A$ — инъекция, то она является сюръекцией и следовательно биекцией

Теорема 2. Конечная область целостности является полем.

◄ Поле — это кольцо, умножение которого коммутативно, каждый ненулевой элемент a имеет обратный элемент относительно умножения.

Область целостности является **коммутативным** кольцом без делителей нуля.

Докажем, что для конечной области целостности любой ненулевой элемент обратим, т.е.

$$\forall (a \neq \mathbf{0}) \exists x ($$
единственный $) \mid a \cdot x = \mathbf{1}.$

Фиксируем произвольный элемент $a \neq \mathbf{0}$.

Определим отображение f_a множества всех ненулевых элементов в себя по формуле $f_a(x) = a \cdot x$

($a\cdot x \neq \mathbf{0}$ в области целостности при $a\neq \mathbf{0}$ и $x\neq \mathbf{0}$).

Докажем, что отображение f_a — инъекция (каждый элемент из области значений имеет единственный прообраз).

$$a\cdot x=a\cdot y \Rightarrow a\cdot (x-y)=\mathbf{0}\Rightarrow$$
 $\Rightarrow x-y=\mathbf{0}$ (т.к. делители нуля отсутствуют) $\Rightarrow x=y$

Множество носитель по условию теоремы конечено, следовательно, f_a — биекция (утверждение 9.1).

Поэтому $\forall (y) \; \exists (\; \text{единственный} \; x) | \; y = a \cdot x \; .$

В частности, при y=1 равенство $a \cdot x = 1$ выполнено для некоторого однозначно определенного x , т.е. $x=a^{-1}$.

Следствия теоремы 2.

Следствие 9.2. Кольцо \mathbb{Z}_p вычетов по модулю p является полем тогда и только тогда, когда p — простое число.

 \blacktriangleleft Пусть \mathbb{Z}_p является полем. Покажем, что p — простое число.

Предположим — p составное.

Тогда найдутся такие k и l , $0 < k \le p-1; 0 < l \le p-1$, что $p = k \cdot l \Rightarrow$

 $k \cdot l = 0 \pmod{p} \Rightarrow k$ и l — делители нуля в кольце \mathbb{Z}_p . Следовательно, \mathbb{Z}_p — не поле.

Число p не может быть составным.

Пусть p — простое число.

Предположим, что $m \cdot n = 0 \pmod{p}$, т.е. элементы m и n кольца \mathbb{Z}_p будут делителями нуля (кольцо не область целостности).

$$p$$
 — простое число и $(m \cdot n = 0 \pmod{p}) \Rightarrow$ $((m = 0 \pmod{p}) \lor (n = 0 \pmod{p}))$ Т.к. $((0 \le m \le p - 1) \land (0 \le n \le p - 1)) \Rightarrow (m = 0) \lor (n = 0)$. Следовательно, при простом p делителей нуля нет.

Кольцо \mathbb{Z}_p является конечной областью целостности и по теореме 2 — полем. \blacktriangleright

Материал для самостоятельного изучения

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

9.4. Циклическая полугруппа

В свободном моноиде, порожденном некоторым конечным множеством, оба закона сокращения справедливы, но никаких обратных элементов не существует.

В полугруппе можно умножать любой элемент a сам на себя, причем в силу ассоциативности операции полугруппы элемент $\underline{a \cdot a \cdot \ldots \cdot a}$ определен однозначно.

n раз

Этот элемент называют n -й **степенью элемента** a и обозначают a^n .

При этом $a^1 = a$, $a^n = a \cdot a^{n-1}$, n = 2, 3,...

В моноиде вводят также нулевую степень элемента, полагая $a^0 = {\bf 1}$.

Сформулируем утверждения о свойствах степеней (без доказательства).

Утверждение 9.2. Для любой полугруппы $a^m \cdot a^n = a^{m+n}$, $(a^m)^n = a^{mn}$ (m, $n \in \mathbb{N}$).

Утверждение 9.3. Для любой группы $a^{-n}=(a^n)^{-1}$ $(n\in\mathbb{N})$, $a^m\cdot a^n=a^{m+n}$, $(a^m)^n=a^{mn}$ $(m,n\in\mathbb{Z})$.

Определение 9.6. Полугруппу (в частности, группу) (A, \cdot) называют циклической, если существует такой элемент a, что любой элемент x полугруппы является некоторой (целой) степенью элемента a.

Элемент a называют **образующим элементом полугруп- пы** (группы).

Пример 9.11. а. Полугруппа $(\mathbb{N},+)$ циклическая, с образующим элементом 1. При аддитивной записи бинарной операции возведение элемента a в положительную степень n есть сумма n этих элементов, и это записывают $n \cdot a$ (или na, без знака умножения).

PFirst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

б. Группа $(\mathbb{Z},+,0)$ также циклическая. Для нее образующими элементами могут быть 1 и -1. Рассмотрим элемент 1. Тогда $0\cdot 1=0$, $n\cdot 1=$

Рассмотрим элемент 1. Тогда
$$0 \cdot 1 = 0$$
, $n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pas}} = n \ (n > 0)$ и $(-1) \cdot 1 = -1$, $(-n) \cdot 1 =$

$$n \cdot (-1) = \underbrace{(-1) + \ldots + (-1)}_{n \text{ pas}} = -n \ (n > 0).$$

Если в качестве образующего взять элемент -1, то $0\cdot (-1)=0$, отрицательные целые числа получаются как положительные "степени" -1, а положительные — как отрицательные "степени" -1. Например, $(-2)\cdot (-1)=2$, $4\cdot (-1)=-4$.

в. Группа $(\mathbb{Z}_3,\,\oplus_3,\,0)$ вычетов по модулю 3 циклическая, причем любой ее ненулевой элемент является образующим. Действительно, для 1 имеем $1\oplus_3 1=2$, $1\oplus_3 1\oplus_3 1=0$, а для 2 получим $2^2=2\oplus_3 2=1$, $2\oplus_3 2\oplus_3 2=0$. #

PFirst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Рассмотрим подробнее строение конечных циклических групп, используя мультипликативную запись бинарной операции.

Вспомним, *конечная алгебра* (**конечная группа**, в частности) — это алгебра, носитель которой — конечное множество.

Порядком конечной группы называют количество элементов в этой группе.

Например, аддитивная группа вычетов по модулю $\,k\,$ имеет порядок $\,k\,$.

Симметрическая группа степени n , т.е. группа подстановок S_n , имеет порядок n! .

Мультипликативная группа вычетов по модулю $\,p\,$, где $\,p\,$ простое число, имеет порядок $\,p-1\,$.

Порядок элемента a циклической группы — это наименьшее положительное n , такое, что $a^n = \mathbf{1}$.

Теорема 3. Порядок образующего элемента конечной циклической группы равен порядку самой группы.

Тогда все степени $a^0={\bf 1}\,,\; a^1=a\,,\,\dots,\; a^{n-1}$ попарно различны.

Действительно, если $a^k=a^l$, 0 < l < k < n , то $a^{k-l}=a^{k+(-l)}=a^ka^{-l}=a^la^{-l}=a^{l-l}=\mathbf{1}$.

Получено противоречие с выбором n как порядка элемента a , поскольку k-l < n (найдена степень, меньшая n , при возведении в которую элемента a получится единица).

Докажем, что любая степень элемента a принадлежит множеству $\{1, a, \ldots, a^{n-1}\}$.

$$\forall (m \in \mathbb{Z}) \; \exists (n,k \in \mathbb{Z}) | \; (m=kn+q),$$
где $(q \in \mathbb{Z} \; \land 0 \leq q < r)$

Тогда

$$a^{m} = a^{kn+q} = a^{kn} \cdot a^{q} = (a^{n})^{k} \cdot a^{q} = \mathbf{1} \cdot a^{q} = a^{q} \in \{\mathbf{1}, a, \dots, a^{r}\}$$

Поскольку каждый элемент группы \mathcal{G} есть некоторая степень элемента a , то $G=\{\mathbf{1},\,a,\,\ldots,\,a^{n-1}\}$ и порядок группы равен n . \blacktriangleright

Из доказанной теоремы следует, что в бесконечной циклической группе не существует такого n>0, что для образующего элемента a группы выполняется равенство $a^n={\bf 1}$.

🕨 First 🔍 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

9.5. Подгруппы.

Пусть $\mathcal{G}=(G,*)$ — произвольный группоид и $H\subseteq G$ — некоторое подмножество множества G .

Рассмотрим свойства бинарной операции * группоида $\mathcal G$ на подмножестве H .

Определение 9.7. Множество $H \subseteq G$ замкнуто относительно операции * , если $x*y \in H$ для любых x , $y \in H$.

В этом случае подмножество H с операцией * будет группоидом $\mathcal{H}=(H,*)$. Его называют **подгруппоидом** группоида \mathcal{G} .

Если подмножество H замкнуто относительно бинарной операции \ast и эта бинарная операция ассоциативна на множестве G, то операция останется ассоциативной и при ее ограничении на подмножество H.

Если группоид $\mathcal G$ является полугруппой, то и всякий его подгруппоид будет полугруппой, называемой подполугруппой полугруппы $\mathcal G$.

Однако в случае, когда группоид является *моноидом* (*груп-пой*), уже нельзя утверждать, что любой подгруппоид является также моноидом (группой).

Пример 9.12. Рассмотрим группоид —аддитивную группу целых чисел $(\mathbb{Z}, +)$.

Выделим в множестве целых чисел подмножество $\mathbb N$ натуральных чисел. Это подмножество замкнуто относительно операциии сложения +, группоид $(\mathbb N,+)$ будет подгруппоидом группоида $(\mathbb Z,+)$.

Так как операция сложения чисел ассоциативна, $(\mathbb{N}, +)$ будет подполугруппой. Однако в множестве \mathbb{N} отсутствует **нейтральный элемент** 0 относительно операции сложения. Следовательно, $(\mathbb{N}, +)$ не является группой (не является даже моноидом).

Пусть $\mathcal{M} = (M, \cdot, \mathbf{1})$ — моноид.

Если P есть подмножество M, замкнутое относительно бинарной операции \cdot моноида $\mathcal M$ и содержащее нейтральный элемент (единицу) $\mathbf 1$ этого моноида, то $\mathcal P=(P,\,\cdot,\,\mathbf 1)$ также есть моноид.

Его называют **подмоноидом** моноида $\mathcal M$.

Замкнутость подмножества $B\subseteq A$ относительно нульарной операции a на A равносильна соотношению $a\in B$.

Определение 9.8. Моноид $\mathcal{P}=(P,\cdot,\mathbf{1})$ есть подмоноид моноида $\mathcal{M}=(M,\cdot,\mathbf{1})$ тогда и только тогда, когда множество P замкнуто относительно бинарной операции · моноида \mathcal{M} , а также относительно его нульарной операции $\mathbf{1}$.

Определение 9.9. Пусть $\mathcal{G} = (G, \cdot, ^{-1}, \mathbf{1})$ — группа, а H есть подмножество G, замкнутое относительно операции \cdot группы \mathcal{G} , содержащее нейтральный элемент (единицу) $\mathbf{1}$ этой группы и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x, т.е. замкнутое относительно унарной операции $^{-1}$ взятия обратного, которая здесь включена в сигнатуру группы.

Тогда $\mathcal{H}=(H,\cdot,\,^{-1},\,\mathbf{1})$ также есть группа, которую называют **подгруппой** группы \mathcal{G} .

Pirst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Пусть ω — унарная операция на множестве G моноида \mathcal{G} , \mathcal{H} — некоторый его подмоноид.

Подмоноид $\mathcal H$ моноида $\mathcal G$ называется замкнутым относительно унарной операции ω , если для каждого $x\in H$ имеет место $\omega(x)\in H$.

Группа $\mathcal{H}=(H,\cdot,\,^{-1},\,\mathbf{1})$ есть подгруппа группы $\mathcal{G}=(G,\cdot,\,^{-1},\,\mathbf{1})$ в том и только в том случае, когда множество H замкнуто относительно всех операций $\cdot\,,\,^{-1}\,,\,\mathbf{1}$ сигнатуры группы \mathcal{G} .

Единица моноида (группы) служит одновременно единицей любого его подмоноида (любой подгруппы).

Пример 9.13.

- **а.** Подмножество всех натуральных четных чисел есть подполугруппа полугруппы $(\mathbb{N}, +)$ (подмножество всех натуральных четных чисел замкнуто относительно сложения, операция сложения ассоциативна).
- **б.** Аддитивная полугруппа натуральных чисел с нулем $(\mathbb{N} \cup \{0\}, +)$ моноид с нейтральным элементом 0.

Подмножество всех положительных (>0) четных чисел с операцией сложения не будет подмоноидом моноида ($\mathbb{N}\cup\{0\},\,+,\,0$) , так как ее носитель не содержит нуля — единицы моноида.

Подмножество всех натуральных чисел вместе с нулем, делящихся на заданное число k>1, замкнуто относительно операции сложения; на нем может быть определен подмоноид моноида $(\mathbb{N} \cup \{0\}, +, 0)$.

- **в.** Группа рациональных чисел \mathbb{Q} с операцией умножения, является подгруппой группы действительных чисел с операцией умножения $(\mathbb{R} \setminus \{0\}, \cdot, 1)$.
- г. Алгебра $(\mathbb{Z}\setminus\{0\},\cdot,1)$ не является подгруппой группы $(\mathbb{R}\setminus\{0\},\cdot,1)$, т.к. не содержит вместе с каждым целым числом m обратного к нему числа $\frac{1}{m}$. Данное множество будет моноидом т.к. оно замкнуто

Данное множество будет моноидом т.к. оно замкнуто относительно операции умножения и содержит единицу.

9.6. Циклические подгруппы

Пусть $\mathcal{G} = (G, \cdot, {}^{-1}, \mathbf{1})$ — группа.

Произведение любых **степеней элемента** a есть снова некоторая степень элемента a, нулевая степень дает единицу группы, а обратным к элементу a^k является элемент a^{-k} . Таким образом, множество всех степеней фиксированного элемента a группы $\mathcal G$ является подгруппой группы $\mathcal G$.

Определение 9.10. Подгруппу группы \mathcal{G} , заданную на множестве всех степеней фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

Пример 9.14. В группе \mathbb{Z}_{13}^* (мультипликативной группе вычетов по модулю 13) построим циклическую подгруппу, порожденную элементом 5.

Имеем: $5^0 = 1$, $5^1 = 5$, $5^2 = 5 \odot_{13} 5 = 12$, $5^3 = 5 \odot_{13} 12 = 8$, $5^4 = 5 \odot_{13} 8 = 1$.

Порядок этой циклической подгруппы равен 4.

Она состоит из элементов: 1, 5, 8 и 12.

9.7. Теорема Лагранжа

Пусть $\mathcal{G}=(G,\cdot,\mathbf{1})$ — группа, а $\mathcal{H}=(H,\cdot,\mathbf{1})$ — ее подгруппа.

Левым смежным классом подгруппы \mathcal{H} по элементу $a \in G$ называют множество

$$aH = \{y : y = a \cdot h, h \in H\}.$$

Соответственно правый смежный класс подгруппы \mathcal{H} по элементу $a \in G$ — это множество

$$Ha = \{y: y = h \cdot a, h \in H\}.$$

Очевидно, что в коммутативной группе aH = Ha.

Утверждение 9.4.

$$a \in H \Rightarrow aH = H$$

◄ Рассмотрим левые смежные классы.

Покажем методом двух включений, что если $a \in H$, то aH = H .

С одной стороны

$$(x \in aH) \land (a \in H) \Rightarrow \exists h \in H \quad x = ah.$$

Поскольку множество H замкнуто относительно умножения группы $\mathcal{G} \Rightarrow x \in H$.

Обратно,

$$x \in H \Rightarrow x = \mathbf{1} \cdot x = (aa^{-1})x = a(a^{-1}x) = ah$$

где $h = a^{-1}x \in H \Rightarrow x \in aH$.

Окончательно получим aH=H . \blacktriangleright

🛡 First 🗶 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Покажем, что с использованием смежных классов можно построить отношение эквивалентности.

Введем бинарное отношение \sim_H на множестве G следующим образом: элементы a и b связаны отношением \sim_H ($a\sim_H b$), если и только если левые смежные классы подгруппы $\mathcal H$ по элементам a и b совпадают (aH=bH).

Теорема 4. Бинарное отношение \sim_H есть эквивалентность на G , причем класс эквивалентности произвольного элемента $a \in G$ совпадает с левым смежным классом aH .

 \blacktriangleleft Докажем, что \sim_H является эквивалентностью на G .

$$\forall a \in G \ (aH = aH) \Rightarrow a \sim_H a \Rightarrow \mathbf{рефлексивно};$$
 $a \sim_H b \Rightarrow (aH = bH) \Rightarrow (bH = aH) \Rightarrow (b \sim_H a) \Rightarrow$
$$\Rightarrow \mathbf{симметричность};$$
 $a \sim_H b \wedge b \sim_H c \Rightarrow (aH = bH) \wedge (bH = cH) \Rightarrow a \sim_H c \Rightarrow$
$$\Rightarrow \mathbf{транзитивность}$$

 \sim_H есть эквивалентность

Методом двух включений докажем , что класс эквивалентности произвольного элемента a равен aH $[a]_{\sim_H}=aH$. Пусть

$$x \in [a]_{\sim_H} \Rightarrow x \sim_H a \Rightarrow xH = aH$$

Из равенства множеств $xH=\{xh_1|h_1\in H\}$ и $aH=\{ah|h\in H\}$ следует, что любой элемент вида $ah\in aH$, $h\in H$, может быть представлен в виде $xh_1\in xH$, где $h_1\in H$, т.е. $ah=xh_1$.

Отсюда $x=ahh_1^{-1}=ah_2$, где $h_2=hh_1^{-1}$. $h_2\in H$ в силу замкнутости подгруппы $\mathcal H$ относительно групповой операции, и $ah_2\in aH$.

Следовательно, $[a]_{\sim_H} \subseteq aH$.

Докажем, что $aH\subseteq [a]_{\sim_H}$ (второе включение). Пусть

$$x\in aH$$
, тогда $\exists h\in H\mid x=ah\Rightarrow xH=ahH.$ $ahH=\{(ah)h_3|h_3\in H\}=\{a(hh_3)|h_3\in H\}=$ $=\{ah_4|h_4\in H\}=aH$ $\Rightarrow xH=aH\Rightarrow (x\sim_H a)\Rightarrow x\in [a]_{\sim_H}\Rightarrow aH\subseteq [a]_{\sim_H}$

Определение 9.11. Множества A и B называются равномощными (|A|=|B|), если существует взаимнооднозначное отображение (биекция) f множества A на множество B.

Теорема 5. Всякий левый смежный класс подгруппы H равномощен H .

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

◄ Для произвольного фиксированного $a \in G$ зададим отображение φ_a : $H \to aH$ следующим образом:

$$\varphi_a(h) = ah.$$

- 1. Отображение φ_a есть сюръекция, так как если $y\in aH$, то y=ah для некоторого $h\in H$, откуда $y=\varphi_a(h)$. 2. φ_a инъекция, поскольку из равенства $ah_1=ah_2$ в
- 2. φ_a инъекция, поскольку из равенства $ah_1 = ah_2$ силу законов сокращения в группе \mathcal{G} следует $h_1 = h_2$.
- Следовательно, φ_a биекция и |aH|=|H| . \blacktriangleright

Определение 9.12. Порядком конечной группы называется количество элементов этой группы.

Теорема 6 (теорема Лагранжа). Порядок конечной группы делится на порядок любой ее подгруппы.

■ Во введенном выше отношении эквивалентности \sim_H классом эквивалентности элемента a является множество aH (левый смежный класс подгруппы H по элементу a). Согласно теореме 4, все левые смежные классы образуют разбиение множества G на подмножества, равномощные в силу теоремы 5 подгруппе H .

Так как группа \mathcal{G} конечна, то число элементов разбиения конечно. Обозначив это число через k, заключаем, что |G|=k|H|. Следовательно, порядок группы |G| делится на порядок группы |H|.

Следствия теоремы Лагранжа.

Следствие 9.3. Любая группа простого порядка является циклической.

■ Возьмем в группе, порядок которой есть простое число, какую-то ее циклическую подгруппу, образующий элемент которой отличен от единицы (нейтрального элемента) группы.

Тогда эта подгруппа содержит не менее двух элементов и ее порядок, согласно теореме Лагранжа, должен быть делителем порядка группы.

Поскольку порядок всей группы — простое число, а порядок подгруппы не меньше 2, то он совпадет с порядком всей группы. ▶

Рассмотрим моноид (группу) (M,\cdot) .

Подмоноид (P,\cdot) (подгруппу) называют **тривиальным подмоноидом** (**тривиальной подгруппой**), если **носитель** содержит только единицу исходного моноида ($P=\{\mathbf{1}\}$) или совпадает с носителем исходного моноида (группы) (P=M).

Группу называют неразложимой, если она не имеет нетривиальных подгрупп.

Следствие 9.4. Конечная группа неразложима тогда и только тогда, когда она является циклической группой, порядок которой есть простое число.

■ Пусть группа циклическая и ее порядок — простое число. Согласно теореме Лагранжа, каждая ее подгруппа имеет порядок, равный либо единице, либо порядку всей группы, следовательно, группа неразложима.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Обратно. Пусть конечная группа $\mathcal{G} = (G, \cdot, \mathbf{1})$ неразложима.

Покажем, что |G| — простое число.

Выберем элемент $a \neq 1$.

Тогда циклическая подгруппа с образующим элементом a совпадает с $\mathcal G$.

Допустим, что |G| — составное число, т.е.

$$\exists (k, l \in \mathbb{N}, k \neq 1, l \neq 1, k \neq |G|, l \neq |G|) \mid |G| = kl$$

Тогда циклическая подгруппа с образующим элементом $b=a^k$ не совпадает с $\mathcal G$, так как $b^l=a^{kl}=a^{|G|}=\mathbf 1$ и в этой подгруппе не более l элементов, что противоречит неразложимости группы $\mathcal G$.

Следовательно, порядок группы \mathcal{G} есть простое число. \blacktriangleright

Следствие 9.5. В конечной группе \mathcal{G} для любого элемента $b \in G$ имеет место равенство $b^{|G|} = 1$.

◄ Если группа \mathcal{G} циклическая и элемент b — ее образующий элемент, утверждение очевидно.

Если же элемент b является образующим элементом некоторой циклической подгруппы группы $\mathcal G$ порядка $k<|\mathcal G|$, то в силу теоремы Лагранжа $|\mathcal G|=kl$ для некоторого натурального l .

Отсюда получаем $b^{|G|} = b^{kl} = (b^k)^l = \mathbf{1}^l = \mathbf{1}$.

Подмоноид, **носитель** которого содержит только единицу исходного моноида ($P=\{\mathbf{1}\}$), а также подмоноид, носитель которого совпадает с носителем исходного моноида (P=M), называют **тривиальным подмоноидом** (в частности, **тривиальной подгруппой**).

Подмоноид, не являющийся тривиальным, называют нетривиальным подмоноидом (в частности, нетривиальной подгруппой).

Подгруппоид (подполугруппу, подмоноид, подгруппу) (G, *) называют собственным подгруппоидом (подполугруппой, подмоноидом, подгруппой) группоида (полугруппы, моноида, группы) (K, *), если его носитель G есть собственное подмножество множества K.

С помощью теоремы Лагранжа (точнее, следствия 9.5) можно доказать, что если целое число n не делится на простое число p, то $n^{p-1}\!-\!1$ делится на p. В теории чисел это утверждение известно как малая теорема Ферма.

Действительно, пусть n=rp+k, где r — целое, а 0 < k < p (остаток от деления n на p). Тогда ясно, что $n^{p-1} = k^{p-1} \pmod{p}$ (достаточно разложить $(rp+k)^{p-1}$ по формуле бинома Ньютона). Рассмотрим группу \mathbb{Z}_p^* (мультипликативную группу вычетов по модулю p) и в этой группе элемент k. Порядок группы $\mathbb{Z}_p^* = p-1$. Если k=1, то

$$n^{p-1} - 1 = (1^{p-1} - 1) \pmod{p} = 0 \pmod{p}$$

и утверждение очевидно. Согласно следствию 9.5, в группе \mathbb{Z}_p^* справедливо равенство $k^{p-1}=1$, т.е. $k^{p-1}=1\pmod{p}$, и, следовательно, $k^{p-1}-1=0\pmod{p}$, т.е. число k^{p-1} равно 1 по модулю p. Поэтому $n^{p-1}=k^{p-1}=1\pmod{p}$.

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit

Малая теорема Ферма дает возможность доказывать утверждения о делимости очень больших чисел. Например, из нее следует, что при p=97 число 97 является делителем $n^{96}-1$ для любого n, не делящегося на 97. Подобного рода заключения важны при разработке алгоритмов защиты информации.

Кроме того, используя малую теорему Ферма, можно вычислять в *полях вычетов* по *модулю* p (p — простое число) элементы, обратные к заданным относительно умножения. Действительно, если $a \in \mathbb{Z}_p$, то, так как $a^{p-1} = 1$, умножая последнее равенство на a^{-1} , получим $a^{p-2} = a^{-1}$. Таким образом, для того чтобы вычислить элемент, обратный к а по умножению, достаточно возвести его в степень p-2 или, что равносильно, в степень, равную остатку от деления числа p-2 на порядок циклической подгруппы группы \mathbb{Z}_p^* , порожденной элементом a .

Пример 9.15. Рассмотрим, как вычислить элемент, обратный к a по умножению в поле \mathbb{Z}_{17} . Согласно полученному выше результату, для вычисления обратного к a элемента нужно найти $a^{17-2}=a^{15}$. Однако объем вычислений можно сократить, если порядок циклической подгруппы, порожденной элементом a, меньше порядка группы. Порядок группы \mathbb{Z}_{17}^* равен 16, следовательно, порядок циклической подгруппы, порожденной элементом a, может составлять, согласно теореме Лагранжа, 2, 4, 8, 16 (т.е. быть каким-то из делителей числа 16). Поэтому при поиске обратного элемента достаточно проверить следующие степени a (кроме 15-й): 1 (остаток от деления 15 на 2), 3

(остаток от деления 15 на 4) и 7 (остаток от деления 15 на

8).

Найдем элемент, обратный к 2. Очевидно, что $2^{-1} \neq 2$, так как $2 \odot_{17} 2 = 4 \neq 1$. Далее получим $2^3 = 4 \odot_{17} 2 = 8$. Поскольку $2 \odot_{17} 8 = 16 \neq 1$, то $2^3 = 8$ также не является обратным к 2. Вычислим $2^7 = 2^3 \odot_{17} 2^3 \odot_{17} 2 = 8 \odot_{17} 8 \odot_{17} 2 = 9$. Поскольку $9 \odot_{17} 2 = 1$, в итоге получаем $2^{-1} = 9$.

🛡 First 🗶 Prev 🔍 Next 🔍 Last 🔍 Go Back 🔍 Full Screen 🔍 Close 🔍 Quit

Найдем элемент, обратный к 14. Так как $14 \odot_{17} 14 = 9$, то $14^{-1} \neq 14$. Вычисляем $14^3 = 14 \odot_{17} 9 = 7$, но $14 \odot_{17} 7 = 13$, т.е. $14^3 \neq 14^{-1}$. Далее,

$$14^7 = 14^3 \odot_{17} 14^4 = 7 \odot_{17} 13 = 6,$$

 $14 \odot_{17} 6 = 16 = -1.$

Мы видим, что и $14^7 \neq 14^{-1}$. Следовательно, остается вычислить $14^{-1}=14^{15}$. Однако в этом случае вычисления можно сократить, заметив, что $14\odot_{17}14^7=14\odot_{17}6=-1$. Из последнего равенства получим

$$1 = 14 \odot_{17} (-6) = 14 \odot_{17} 11,$$

откуда $14^{-1} = 11$.

Отметим, что $14^{16} = 1$, т.е. порядок циклической подгруппы, порожденной элементом 14, совпадает с порядком всей группы \mathbb{Z}_{17}^* , и, следовательно, эта группа является циклической, порожденной элементом 14 (хотя и не только им).

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit