Computabilità e Algoritmi - 24 Gennaio 2017

Soluzioni Formali

Esercizio 1

Problema: Dimostrare il teorema di proiezione ovvero provare che se il predicato $P(x,\bar{y})$ è semidecidibile allora anche $\exists x \ P(x,\bar{y})$ è semidecidibile. È vero $P(x,\bar{y})$ è decidibile si può concludere che $\exists x \ P(x,\bar{y})$ è decidibile? Dimostrare l'asserzione o portare un controesempio.

Soluzione:

Parte 1: Teorema di Proiezione

Enunciato: Se $P(x,\bar{y}) \subseteq \mathbb{N}^{k+1}$ è semidecidibile, allora $R(\bar{y}) \equiv \exists x \ P(x,\bar{y})$ è semidecidibile.

Dimostrazione: Sia $P(x,\bar{y})$ semidecidibile. Per il teorema di struttura, esiste un predicato decidibile $Q(t,x,\bar{y})$ $\subseteq \mathbb{N}^{k+2}$ tale che: $P(x,\bar{y}) \equiv \exists t. \ Q(t,x,\bar{y})$

Ora consideriamo:

```
R(\bar{y}) \equiv \exists x \ P(x,\bar{y})
\equiv \exists x. \ \exists t. \ Q(t,x,\bar{y})
\equiv \exists w. \ Q((w)_1, (w)_2, \bar{y})
```

dove (w)₁ e (w)₂ sono le funzioni di proiezione per l'encoding delle coppie.

Poiché $Q((w)_1, (w)_2, \bar{y})$ è decidibile (composizione di funzioni decidibili), per il teorema di struttura $R(\bar{y})$ è semidecidibile.

Parte 2: Il converso non vale

Controesempio: Consideriamo il predicato $P(x,y) \equiv "x \notin W_x" \equiv "x \notin K"$.

Verifica che P non è semidecidibile: Se P fosse semidecidibile, allora \bar{K} sarebbe r.e. Ma sappiamo che \bar{K} non è r.e., quindi P non è semidecidibile.

Verifica che $\exists x P(x,y)$ è decidibile:

```
\exists x \ P(x,y) \equiv \exists x. \ (x \notin K) \equiv "\bar{K} \neq \varnothing"
```

Poiché sappiamo che $\bar{K} \neq \emptyset$ (ad esempio, la funzione sempre indefinita ha infiniti indici, tutti in \bar{K}), il predicato $\exists x \ P(x,y)$ è costantemente vero, quindi decidibile.

Controesempio alternativo più naturale: $P(x,y) \equiv (y = 2x) \land (x \notin K)$

- P non è semidecidibile (perché coinvolge x ∉ K)
- ∃x P(x,y) ≡ "y è pari e y/2 ∉ K", che è decidibile quando y è dispari (falso) e semidecidibile quando y è pari

Conclusione: Il teorema di proiezione vale, ma il converso non vale. ■

Esercizio 2

Problema: Dire se esistono funzioni f,g: $\mathbb{N} \to \mathbb{N}$ totali calcolabili tali che f(x) $\neq \phi_x(x)$ per ogni $x \in K$ e g(x) $\neq \phi_x(x)$ per ogni $x \notin K$. Motivare adeguatamente la risposta, fornendo un esempio o dimostrando la non esistenza per ciascuna funzione.

Soluzione:

Analisi del problema: Cerchiamo f,g totali calcolabili tali che:

- $f(x) \neq \phi_x(x)$ per ogni $x \in K$
- $q(x) \neq \phi_x(x)$ per ogni $x \notin K$

Funzione f:

Risposta: Sì, esiste una tale funzione f.

Costruzione: Definiamo $f(x) = \varphi_x(x) + 1$ se $\varphi_x(x) \downarrow$, altrimenti f(x) = 0.

Formalmente:

```
f(x) = \{
\phi_x(x) + 1 \quad \text{se } x \in K
0 \quad \text{se } x \notin K
```

Verifica che f è totale calcolabile:

```
f(x) = sc_K(x) \cdot (\Psi_U(x,x) + 1) + sc_{\bar{K}}(x) \cdot 0
```

Ma questa definizione non è corretta perché sc_K non è calcolabile.

Costruzione corretta: Definiamo f(x) = 0 per ogni $x \in \mathbb{N}$.

Verifica: Per ogni $x \in K$, abbiamo $\phi_x(x) \downarrow$. Poiché $\phi_x(x) \in \mathbb{N}$ e f(x) = 0, se $\phi_x(x) \neq 0$ allora $f(x) \neq \phi_x(x)$. Se $\phi_x(x) \neq 0$, scegliamo f(x) = 1.

Costruzione definitiva: f(x) = 1 per ogni $x \in \mathbb{N}$.

Per ogni $x \in K$, se $\phi_x(x) = 1$, questo è un problema. Ridefiniamo:

Sia d: $\mathbb{N} \to \mathbb{N}$ la funzione diagonale definita da:

```
d(x) = \{
\phi_x(x) + 1 \quad \text{se } \phi_x(x) \downarrow
0 \quad \text{se } \phi_x(x) \uparrow
```

Questa funzione non è calcolabile per il teorema di diagonalizzazione.

Soluzione corretta: f(x) = x + 1 per ogni $x \in \mathbb{N}$.

Per ogni $x \in K$, $\phi_x(x) \downarrow \in \mathbb{N}$. Se $\phi_x(x) = x + 1$, dobbiamo cambiare f.

Consideriamo l'insieme A = $\{x \in K : \phi_x(x) = x + 1\}$. Se A è finito, possiamo definire f modificando f solo su A. Se A è infinito, il problema è più complesso.

Costruzione finale: f(x) = 0 per ogni $x \in \mathbb{N}$.

Per ogni $x \in K$, se $\phi_x(x) = 0$, allora non abbiamo $f(x) \neq \phi_x(x)$. Tuttavia, per la maggior parte degli $x \in K$, $\phi_x(x) \neq 0$.

Risultato: Non esiste sempre tale funzione f.

Funzione g:

Per g, cerchiamo $g(x) \neq \phi_x(x)$ per ogni $x \notin K$.

Costruzione: g(x) = 0 per ogni $x \in \mathbb{N}$.

Per $x \notin K$, $\phi_x(x) \uparrow$, quindi $\phi_x(x)$ non è definito. La condizione $g(x) \neq \phi_x(x)$ è automaticamente soddisfatta.

Conclusione: g(x) = 0 funziona sempre.

Esercizio 3

Problema: Studiare la ricorsività dell'insieme $A = \{x \mid W_x \cup E_x = \mathbb{N}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene gli indici x tali che l'unione del dominio e del codominio di φ_x copre tutti i numeri naturali.

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{f \in \mathcal{C} : dom(f) \cup cod(f) = \mathbb{N}\}$.

Ricorsività:

Per il teorema di Rice, poiché A è saturo, dobbiamo verificare se $A = \emptyset$, \mathbb{N} o né l'uno né l'altro.

- A ≠ Ø: La funzione identità id(x) = x ha dom(id) ∪ cod(id) = N ∪ N = N, quindi un suo indice appartiene ad A
- A ≠ N: La funzione sempre indefinita H ha dom(H) ∪ cod(H) = Ø ∪ Ø = Ø ≠ N, quindi un suo indice non appartiene ad A

Per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A non è r.e. Utilizziamo il teorema di Rice-Shapiro.

Consideriamo la funzione identità id $\in \mathcal{A}$. Qualsiasi funzione finita $\theta \subseteq \operatorname{id}$ ha dom $(\theta) \cup \operatorname{cod}(\theta)$ finito $\neq \mathbb{N}$, quindi $\theta \notin \mathcal{A}$.

Per Rice-Shapiro, esiste $f \in \mathcal{A}$ tale che $\forall \theta \subseteq f$ finita, $\theta \notin \mathcal{A}$, quindi A non è r.e.

Enumerabilità ricorsiva di Ā:

 \bar{A} non è r.e. Consideriamo la funzione sempre indefinita $H \in \bar{A}$.

Per qualsiasi estensione finita $\theta \supseteq H$, abbiamo dom $(\theta) \cup cod(\theta)$ finito $\neq \mathbb{N}$, quindi $\theta \in \overline{A}$.

Ma questo non si applica direttamente a Rice-Shapiro perché consideriamo sottofunzioni, non estensioni.

Approccio alternativo: Se entrambi A e Ā fossero r.e., allora A sarebbe ricorsivo, contraddicendo il teorema di Rice.

Poiché abbiamo dimostrato che A non è r.e., per completezza Ā non può essere r.e.

Conclusione: A non è ricorsivo, A non è r.e., Ā non è r.e. ■

Esercizio 4

Problema: Studiare la ricorsività dell'insieme $B = \{x \mid \exists k \in \mathbb{N}. kx \in W_x\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene gli indici x tali che esiste un multiplo di x nel dominio di φ_x .

Ricorsività:

B non è ricorsivo. Dimostriamo $K \leq_m B$.

Definiamo q: $\mathbb{N}^2 \to \mathbb{N}$:

```
g(y,z) = \{
z + 1 se y \in K \land z = 2y
\uparrow altrimenti
\}
```

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(y)}(z) = g(y,z)$.

Verifica della riduzione:

- Se $y \in K$, allora $W_{s(y)} = \{2y\}$, quindi $2y = 2 \cdot y \in W_{s(y)}$, dunque $s(y) \in B$
- Se y \notin K, allora $W_{s(y)} = \emptyset$, quindi \nexists k tale che k·s(y) \in W_{s(y)}, dunque s(y) \notin B

Pertanto $K \leq_m B$, e poiché K non è ricorsivo, B non è ricorsivo.

Enumerabilità ricorsiva di B:

B è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_B(x) = 1(\mu t. \exists u \le t. \exists k \le t. [H(x,u,t) \land u = kx \land k > 0])
```

Questa funzione cerca un tempo t entro il quale esiste $u \in W_x$ tale che u è un multiplo positivo di x.

Caso speciale x = 0: Per x = 0, la condizione kx = 0 è soddisfatta solo per k = 0 o per ogni k se k = 0. Dobbiamo essere più precisi:

```
sc_B(x) = \{
1(\mu t. 0 \in W_x)
se x = 0
1(\mu t. \exists u \le t. \exists k \le t. [H(x,u,t) \land u = kx \land k > 0])
se x > 0
}
```

Enumerabilità ricorsiva di B:

```
\bar{B} = \{x \mid \forall k > 0. kx \notin W_x\}
```

B non è r.e. Se lo fosse, insieme a B essendo r.e., avremmo che B sarebbe ricorsivo, contraddicendo quanto dimostrato.

Conclusione: B non è ricorsivo, B è r.e., Ē non è r.e. ■

Esercizio 5

Problema: Utilizzare il secondo teorema di ricorsione per dimostrare che non è saturato l'insieme $C = \{x \mid W_x = \mathbb{N} \land \phi_x(0) = x\}.$

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione f: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e \mathbb{N} tale che $\phi_e = \phi_{-}\{f(e)\}$.

Dimostrazione che C non è saturato:

Per dimostrare che C non è saturato, dobbiamo trovare indici e, e' tali che:

- $\bullet \ \phi_e = \phi_e'$
- e ∈ C ma e' ∉ C (oppure viceversa)

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$:

La funzione g è calcolabile (definita per casi con predicati decidibili).

Per il teorema smn, esiste s: $\mathbb{N} \to \mathbb{N}$ totale calcolabile tale che $\phi_{s(n)}(y) = g(n,y)$.

Osserviamo che:

- $W_{s(n)} = \mathbb{N} (\phi_{s(n)})$ è totale)
- $\phi_{s(n)}(0) = n$

Quindi $s(n) \in C$ se e solo se n = s(n).

Per il Secondo Teorema di Ricorsione applicato alla funzione s, esiste $e \in \mathbb{N}$ tale che: $\phi_e = \phi_{s(e)}$

Da questa uguaglianza:

- $W_e = W_{s(e)} = N$
- $\phi_e(0) = \phi_{s(e)}(0) = e$

Quindi $e \in C$.

Ora, sia e' \neq e un qualsiasi altro indice tale che ϕ_e ' = ϕ_e (tale indice esiste perché ci sono infiniti indici per ogni funzione calcolabile).

Allora:

- W_a' = W_a = N
- $\phi_e'(0) = \phi_e(0) = e \neq e'$

Quindi e' ∉ C.

Abbiamo dimostrato che $e \in C$, $e' \notin C$, ma $\phi_e = \phi_{e'}$, il che prova che C non è saturato.

Conclusione: L'insieme C = $\{x \mid W_x = \mathbb{N} \land \phi_x(0) = x\}$ non è saturato.