Boolean Algebra and Circuits

Overview

- Truth Tables
- Boolean Functions
- Logic Gates
- Combinatorial Circuits
- Appendix C (4th edition) or Appendix B (5th and 6th edition)

Truth Table

- Consider binary variables, A, B
 - Possible values are 0 (FALSE) and 1 (TRUE)
- Different possible inputs with n operands = 2ⁿ
 - -2 binary operands: $2^2 = 4$ different possible inputs
 - -4 binary operands: $2^4 = 16$ different possible inputs

A
0
1

- Consider binary variables, A, B
 - Possible values are 0 (FALSE) and 1 (TRUE)
- Different possible inputs with n operands = 2ⁿ
 - -2 binary operands: $2^2 = 4$ different possible inputs
 - -4 binary operands: $2^4 = 16$ different possible inputs

A
0
1

Α	В
0	0
0	1
1	0
1	1

A	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

- AND operator
- A · B is true if A and B are both true
- Logical product

Α	В	A · B
0	0	
0	1	
1	0	
1	1	

- AND operator
- A · B is true if A and B are both true
- Logical product

Α	В	A · B
0	0	0
0	1	0
1	0	0
1	1	1

- OR operator
- A + B is true if
 - A is true
 - B is true
 - A and B are both true
- Logical sum

LOGIC GATE

Α	В	A + B
0	0	
0	1	
1	0	
1	1	

- OR operator
- A + B is true if
 - A is true
 - B is true
 - A and B are both true
- Logical sum

LOGIC GATE

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

- NOT operator
- **Ā** is true if A is false
- **Ā** is false if A is true

A	Ā
0	1
1	0

- A Boolean Function is an algebraic expression consisting of binary variables and the logic operation symbols
- Any Boolean function can be written in terms of AND, OR, and NOT
- Truth table defines all possible outcomes

Α	В	A · B	A + B
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Note on Notation

OR(A,B) AND(A,B)		NOT(A)
A + B	A·B	Ā
A B	A & B	~A
A B	A && B	!A
AvB	A^B	¬Α
	AB	Α'

When do we use which?

Boolean Algebra

identity A + 0 = A $A \cdot 1 = A$

one and zero A+1=1 $A\cdot 0=0$

inverse $A + \overline{A} = 1$ $A \cdot \overline{A} = 0$

commutative A + B = B + A, $A \cdot B = B \cdot A$

associative (A+B)+C=A+(B+C) $(A\cdot B)\cdot C=A\cdot (B\cdot C)$

distributive law: $A \cdot (B+C) = A \cdot B + A \cdot C$ $(A \cdot B) + C = (A+C) \cdot (B+C)$

De Morgan $\overline{A \cdot B} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \cdot \overline{B}$

- Rules capture logical reasoning
- Allow for manipulation of expressions

Boolean Algebra

Are two boolean functions equivalent?

Prove it, or find values to show that they are not!

$$A \cdot B \cdot C' + A \cdot C \cdot B' + B \cdot C \cdot A'$$

$$B \cdot (A \cdot C' + C \cdot A')$$

Boolean Expression

- Consider a logic function with three inputs, A, B, and C, and three outputs, D, E, and F.
 - D is true if at least one input is true
 - E is true if exactly two inputs are true
 - F is true only if all three inputs are true
- Find the Boolean expression for D, E, and F.

Find the truth table! *D* is true if at least one input is true

Α	В	С	D
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Find the truth table! *E* is true if exactly two inputs are true

Α	В	С	D	Е
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Find the truth table! F is true only if all three inputs are true

A	В	С	D	Е	F
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	1	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	0	

Inputs			Outputs		
A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

What are the Boolean expressions for outputs D, E, and F?

Inputs			Outputs		
A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

D is true if at least one input is true

D=

Inputs			Outputs		
A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

F is true only if all three inputs are true

F =

Inputs			Outputs		
A	В	C	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

E is true if exactly two inputs are true

E =

Sum of Products, Product of Sums

- Canonical form for any logic function
 - Only two levels of gates, one AND, the other OR
 - Possible inversion on the final output.

$$E = (A \cdot B \cdot C') + (A \cdot C \cdot B') + (B \cdot C \cdot A')$$
 Sum-of-Product

$$E' = (A'+B'+C) \cdot (A'+C'+B) \cdot (B'+C'+A)$$
 Product-of-sum

 Why? Permits an easy/direct/naïve implementation of any Boolean function in hardware

- How to derive a Boolean expression
- Step 1: Write down the truth table
- Step 2: Find the sum-of-product or product-of-sum
- Step 3: Simplify it (optional)

Circuits

Logic Gates

- Logic Gates: Abstraction for building Boolean expressions in hardware
- Gates are made from transistors

Electric Board

Common Logic Gates

AND, OR, XOR, and inverted versions

Common Binary Operations

Three other very common operations:

– NAND: Not And

- NOR: Not OR

– XOR: Exclusive OR

A	В	NAND	NOR	XOR
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

 Using AND, OR, NOT, how would you write expressions for each of these functions?

Combinational Circuits

• Combinatorial circuit: a circuit that implements a Boolean function

Draw the circuit for
$$Y = (AB)' + AC$$

Multiple Inputs

- Can put > 2 inputs on an AND or and OR gate
- Allowed because of the associative law
- Commutative law of Boolean algebra: the ordering of the wires into a AND and OR gates doesn't matter
- Example: 3 input AND gate (these functions are symmetric)

Situations where we do not care about the value of an output

- Because another output is true

e.g., If A is true, then A + B is true. We don't need to check B

e.g., if A is false, then A . B is false. We don't need to check B

- Or we don't care about the output for specific input compinations

- Can be easier to specify the truth table
- Write the truth table, marking X for "Don't Care"
 - Inputs S, A, B
 - Output C
 - If S is true, output is A
 - If S is false, output is B

S	Α	В	С	
0	X	p	0	
0	X	1	1	
0	X	þ	0	
0	Х	1	1	
1	0	X	0	
1	0	X	0	
1	1	Х	1	
1	1	X	1	

S	A	В	С	
0	X	0	0	
0	Х	1	1	
1	0	X	0	
1	1	X	1	

- We can also build simpler circuits by letting outputs take on any convenient value
 - Write the truth table for the middle segment of BCD to a 7-segment display decoder

А3	A2	A1	A0	m
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	X
1	1	0	0	Х
1	1	0	1	X
1	1	1	0	Х
1	1	1	1	Х

- We can also build simpler circuits by letting outputs take on any convenient value
 - Write the truth table for the middle segment of BCD to a 7 segment display decoder

А3	A2	A1	A0	m
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	X	X
1	1	X	X	X

Circuit Minimization

- The problem of obtaining the smallest logic circuit (Boolean formula) that represents a given Boolean function or truth table.
- The problem is believed to be *hard*, but there are effective heuristics (Karnaugh maps, the Quine–McCluskey algorithm).
- Beyond the scope of this course...
 - See Randy H. Katz, "Contemporary Logic Design"

Review and more information

- Truth Tables
- Boolean Functions
- Logic Gates
- Combinatorial Circuits
- The best thing about a Boolean function is that even if you are wrong, you are only off by a bit
- This class covers topics in textbook
 - Appendix C of 4th edition
 - Appendix B of 5th edition