Un ejemplo: Representación Matricial de Operadores

L. A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

29 de enero de 2021

Los Operadores de Pauli

Expresión matricial para los operadores lineales de Pauli:

$$\mathbb{R}^2 \longmapsto \mathbb{R}^2$$
 , definidos como

$$\begin{array}{lll} \sigma_z \left| + \right\rangle &=& \left| + \right\rangle \,, & \sigma_z \left| - \right\rangle &=& - \left| - \right\rangle \\ \sigma_x \left| + \right\rangle_x &=& \left| + \right\rangle_x \,, & \sigma_x \left| - \right\rangle_x &=& - \left| - \right\rangle_x \,, \\ \sigma_y \left| + \right\rangle_y &=& \left| + \right\rangle_y \,, & \sigma_y \left| - \right\rangle_y &=& - \left| - \right\rangle_y \ \text{con la base canónica} \\ \text{representada por: } \left| + \right\rangle &\leftrightarrows \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \,, & \left| - \right\rangle &\leftrightarrows \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \end{array}$$

Además, tenemos otros dos conjuntos de vectores base

$$\begin{split} |+\rangle_{x} &= \frac{1}{\sqrt{2}} \left[|+\rangle + |-\rangle \right] \;, \quad |-\rangle_{x} = \frac{1}{\sqrt{2}} \left[|+\rangle - |-\rangle \right] \;, \\ |+\rangle_{y} &= \frac{1}{\sqrt{2}} \left[|+\rangle + i \, |-\rangle \right] \;, \quad |-\rangle_{y} = \frac{1}{\sqrt{2}} \left[|+\rangle - i \, |-\rangle \right] \;, \\ \text{y sus formas asociadas} \; \langle +| \leftrightarrows (1,0) \quad \langle +| \leftrightarrows (0,1) \right] \;, \\ \text{x} \; \langle +| &= \frac{1}{\sqrt{2}} \left[\langle +| + \langle -| \right] \;, \quad \text{x} \; \langle -| &= \frac{1}{\sqrt{2}} \left[\langle +| - \langle -| \right] \;, \\ \text{y} \; \langle +| &= \frac{1}{\sqrt{2}} \left[\langle +| - i \, \langle -| \right] \;, \quad \text{y} \; \langle -| &= \frac{1}{\sqrt{2}} \left[\langle +| + i \, \langle -| \right] \;, \end{split}$$

Bases y representaciones de operadores

Es claro que las bases son ortonormales

$$\begin{array}{l} \langle +\mid +\rangle =1\,, \quad \langle +\mid -\rangle =\langle -\mid +\rangle =0\,, \quad \langle -\mid -\rangle =1\,; \\ {}_x\,\langle +\mid +\rangle_x=1\,, \; {}_x\,\langle +\mid -\rangle_x=_x\,\langle -\mid +\rangle_x=0\,, \; {}_x\,\langle -\mid -\rangle_x=1\,, \\ {}_y\,\langle +\mid +\rangle_y=1\,, \; {}_y\,\langle +\mid -\rangle_y=_y\,\langle -\mid +\rangle_y=0\,, \; {}_y\,\langle -\mid -\rangle_y=1\,, \end{array}$$

Bases y representaciones de operadores

Es claro que las bases son ortonormales

$$\begin{array}{l} \langle +\mid +\rangle =1\,, \quad \langle +\mid -\rangle =\langle -\mid +\rangle =0\,, \quad \langle -\mid -\rangle =1\,; \\ {}_{x}\,\langle +\mid +\rangle {}_{x}=1\,, \; {}_{x}\,\langle +\mid -\rangle {}_{x}={}_{x}\,\langle -\mid +\rangle {}_{x}=0\,, \; {}_{x}\,\langle -\mid -\rangle {}_{x}=1\,, \\ {}_{y}\,\langle +\mid +\rangle {}_{y}=1\,, \; {}_{y}\,\langle +\mid -\rangle {}_{y}={}_{y}\,\langle -\mid +\rangle {}_{y}=0\,, \; {}_{y}\,\langle -\mid -\rangle {}_{y}=1, \end{array}$$

▶ Los vectores $\{|+\rangle, |-\rangle\}$ en esas bases son:

$$\begin{aligned} |+\rangle &= \frac{1}{\sqrt{2}} \left[|+\rangle_x + |-\rangle_x \right] \,, \quad |-\rangle &= \frac{1}{\sqrt{2}} \left[|+\rangle_x - |-\rangle_x \right] \,, \\ |+\rangle &= \frac{1}{\sqrt{2}} \left[|+\rangle_y + |-\rangle_y \right] \,, \quad |-\rangle &= \frac{-i}{\sqrt{2}} \left[|+\rangle_y - |-\rangle_y \right] \,. \end{aligned}$$

Bases y representaciones de operadores

Los vectores
$$\{|+\rangle\,, |-\rangle\}$$
 en esas bases son: $|+\rangle = \frac{1}{\sqrt{2}}\left[|+\rangle_x + |-\rangle_x\right]\,, \quad |-\rangle = \frac{1}{\sqrt{2}}\left[|+\rangle_x - |-\rangle_x\right]\,, \\ |+\rangle = \frac{1}{\sqrt{2}}\left[|+\rangle_y + |-\rangle_y\right]\,, \quad |-\rangle = \frac{-i}{\sqrt{2}}\left[|+\rangle_y - |-\rangle_y\right]\,.$

La representación matricial para $\left(\sigma_z^{(+)(-)}\right)_j' = \text{ser\'a}$: $\left(\sigma_z^{(+)(-)}\right)_i^i = \left(\begin{array}{cc} \langle + \mid \sigma_z \mid + \rangle & \langle + \mid \sigma_z \mid - \rangle \\ \langle - \mid \sigma_z \mid + \rangle & \langle - \mid \sigma_z \mid - \rangle \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$

$$(\sigma_x)^i_j$$
 en las bases $\{|+\rangle\,, |-\rangle\}$ y $\{|+\rangle_x\,, |-\rangle_x\}$

$$(\sigma_x)_j^i$$
 en las bases $\{|+\rangle\,, |-\rangle\}$ y $\{|+\rangle_x\,, |-\rangle_x\}$

$$\left(\sigma_{x}^{(+)(-)}\right)_{j}^{i} = \left(\begin{array}{cc} \langle +|\sigma_{x}|+\rangle & \langle +|\sigma_{x}|-\rangle \\ \langle -|\sigma_{x}|+\rangle & \langle -|\sigma_{x}|-\rangle \end{array}\right), \text{ es decir}$$

$$\left(\sigma_{x}^{(+)(-)}\right)_{j}^{i} = \frac{1}{2} \left(\begin{array}{cc} \left[x \langle +|+x|\langle -|]\sigma_{x}\left[|+\rangle_{x}+|-\rangle_{x}\right] & \left[x \langle +|+x|\langle -|]\sigma_{x}\left[|+\rangle_{x}-|-\rangle_{x}\right] \\ \left[x \langle +|-x|\langle -|]\sigma_{x}\left[|+\rangle_{x}+|-\rangle_{x}\right] & \left[x \langle +|-x|\langle -|]\sigma_{x}\left[|+\rangle_{x}-|-\rangle_{x}\right] \end{array}\right),$$

$$(\sigma_x)^i_j$$
 en las bases $\{|+\rangle, |-\rangle\}$ y $\{|+\rangle_x, |-\rangle_x\}$

$$\left(\sigma_x^{(+)(-)}\right)_j^i = \frac{1}{2} \left(\begin{array}{cc} \left[\left[\left(\left(+ \right) + \left(- \right) \right] \left[\left[+ \right)_x - \left[- \right)_x \right] & \left[\left(\left(\left(+ \right) + \left(- \right) \right] \left[\left[+ \right)_x + \left[- \right)_x \right] \right] \\ \left[\left[\left(\left(\left(+ \right) + \left(- \right) \right] \left[\left[\left(+ \right)_x - \left[- \right)_x \right] & \left[\left(\left(\left(+ \right) + \left(\left(- \right) \right] \left[\left[+ \right)_x + \left[- \right)_x \right] \right) \\ \end{array} \right) \right] \right)$$

$$(\sigma_x)^i_j$$
 en las bases $\{|+\rangle, |-\rangle\}$ y $\{|+\rangle_x, |-\rangle_x\}$

$$\left(\sigma_{\mathsf{x}}^{(+)(-)}\right)_{\mathsf{i}}^{\mathsf{i}} = \frac{1}{2} \left(\begin{array}{cc} \left[\mathsf{x} \left\langle +\right| + \mathsf{x} \left\langle -\right|\right] \left[|+\rangle_{\mathsf{x}} - |-\rangle_{\mathsf{x}}\right] & \left[\mathsf{x} \left\langle +\right| + \mathsf{x} \left\langle -\right|\right] \left[|+\rangle_{\mathsf{x}} + |-\rangle_{\mathsf{x}}\right] \\ \left[\mathsf{x} \left\langle +\right| - \mathsf{x} \left\langle -\right|\right] \left[|+\rangle_{\mathsf{x}} - |-\rangle_{\mathsf{x}}\right] & \left[\mathsf{x} \left\langle +\right| - \mathsf{x} \left\langle -\right|\right] \left[|+\rangle_{\mathsf{x}} + |-\rangle_{\mathsf{x}}\right] \end{array} \right)$$

► Finalmente,
$$\left(\sigma_X^{(+)(-)}\right)_i^i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$(\sigma_x)^i_j$$
 en las bases $\{|+\rangle, |-\rangle\}$ y $\{|+\rangle_x, |-\rangle_x\}$

- Finalmente, $\left(\sigma_{x}^{(+)(-)}\right)_{j}^{i} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
- La representación matricial de $(\sigma_X)_j^i$ en la base $\{|+\rangle_X, |-\rangle_X\}$ será: $\left(\sigma_X^{(+x)(-x)}\right)_j^i = \left(\begin{smallmatrix} x & \langle +|\sigma_X|+\rangle_X & x & \langle +|\sigma_X|-\rangle_X \\ x & \langle -|\sigma_X|+\rangle_X & x & \langle -|\sigma_X|-\rangle_X \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right)$

$$(\sigma_x)^i_j$$
 en las bases $\{|+\rangle\,, |-\rangle\}$ y $\{|+\rangle_x\,, |-\rangle_x\}$

$$\left(\sigma_{\mathsf{x}}^{(+)(-)}\right)_{\mathsf{j}}^{\mathsf{i}} = \frac{1}{2} \left(\begin{smallmatrix} \left[\mathsf{x} \left\langle + \right| + \mathsf{x} \left\langle - \right| \right] \sigma_{\mathsf{x}} \left[\left| + \right\rangle_{\mathsf{x}} + \left| - \right\rangle_{\mathsf{x}} \right] & \left[\mathsf{x} \left\langle + \right| + \mathsf{x} \left\langle - \right| \right] \sigma_{\mathsf{x}} \left[\left| + \right\rangle_{\mathsf{x}} - \left| - \right\rangle_{\mathsf{x}} \right] \\ \left[\left[\mathsf{x} \left\langle + \right| - \mathsf{x} \left\langle - \right| \right] \sigma_{\mathsf{x}} \left[\left| + \right\rangle_{\mathsf{x}} + \left| - \right\rangle_{\mathsf{x}} \right] & \left[\mathsf{x} \left\langle + \right| - \mathsf{x} \left\langle - \right| \right] \sigma_{\mathsf{x}} \left[\left| + \right\rangle_{\mathsf{x}} - \left| - \right\rangle_{\mathsf{x}} \right] \\ \end{array} \right),$$

- Finalmente, $\left(\sigma_{x}^{(+)(-)}\right)'_{i} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$
- La representación matricial de $(\sigma_x)_i'$ en la base $\{|+\rangle_x, |-\rangle_x\}$ $\operatorname{ser\'a:} \left(\sigma_X^{(+x)(-x)}\right)_i^i = \left(\begin{smallmatrix} x & \langle +|\sigma_X|+\rangle_X & x & \langle +|\sigma_X|-\rangle_X \\ x & \langle -|\sigma_X|+\rangle_Y & x & \langle -|\sigma_X|-\rangle_Y \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\right)$
- Note que la traza es independiente de la representación $\operatorname{Tr}\left(\sigma_x^{(+)(-)}\right)_i^i \equiv \operatorname{Tr}\left(\sigma_x^{(+x)(-x)}\right)_i^i = 0$; igual el determinante, además es autoadjunta o hermítica.

Transformaciones de representaciones de operadores

▶ Tenemos un único espacio vectorial, **V**, con dos bases discretas ortonormales $\{|+\rangle, |-\rangle\}$ y $\{|+\rangle_x, |-\rangle_x\}$ con dos representaciones matriciales para un mismo operador $\left(\sigma_z^{(+)(-)}\right)_i^i$ y $\left(\sigma_x^{(+x)(-x)}\right)_i^i$, respectivamente.

Transformaciones de representaciones de operadores

- ► Tenemos un único espacio vectorial, **V**, con dos bases discretas ortonormales $\{|+\rangle\,, |-\rangle\}$ y $\{|+\rangle_x\,, |-\rangle_x\}$ con dos representaciones matriciales para un mismo operador $\left(\sigma_z^{(+)(-)}\right)_j^i$ y $\left(\sigma_x^{(+x)(-x)}\right)_j^i$, respectivamente.
- En general las representaciones de un operador $\tilde{A}^i_j = \left< \tilde{\mathbf{e}}^i \middle| \mathbb{A} \middle| \tilde{\mathbf{e}}_j \right> \ \mathbf{y} \ A^i_j = \left< \mathbf{e}^k \middle| \mathbb{A} \middle| \mathbf{e}_m \right>, \ \text{están relacionadas por:} \\ \left< \tilde{\mathbf{e}}^i \middle| \mathbb{A} \middle| \tilde{\mathbf{e}}_j \right> = \underbrace{\left< \tilde{\mathbf{e}}^i \middle| \mathbf{e}_k \right>}_{S^i_k} \left< \mathbf{e}^k \middle| \mathbb{A} \middle| \mathbf{e}_m \right> \underbrace{\left< \mathbf{e}^m \middle| \tilde{\mathbf{e}}_j \right>}_{\tilde{S}^m_j} \ \Leftrightarrow \ \tilde{A}^i_j = S^i_k \ A^k_m \ \tilde{S}^m_j \ .$

Transformaciones de representaciones de operadores

- ► Tenemos un único espacio vectorial, **V**, con dos bases discretas ortonormales $\{|+\rangle\,, |-\rangle\}$ y $\{|+\rangle_x\,, |-\rangle_x\}$ con dos representaciones matriciales para un mismo operador $\left(\sigma_z^{(+)(-)}\right)_j^i$ y $\left(\sigma_x^{(+x)(-x)}\right)_j^i$, respectivamente.
- ▶ En general las representaciones de un operador $\tilde{A}^i_j = \langle \tilde{\mathbf{e}}^i | \mathbb{A} | \tilde{\mathbf{e}}_j \rangle$ y $A^i_j = \langle \mathbf{e}^k | \mathbb{A} | \mathbf{e}_m \rangle$, están relacionadas por: $\langle \tilde{\mathbf{e}}^i | \mathbb{A} | \tilde{\mathbf{e}}_j \rangle = \underbrace{\langle \tilde{\mathbf{e}}^i | \mathbf{e}_k \rangle}_{S^i_k} \langle \mathbf{e}^k | \mathbb{A} | \mathbf{e}_m \rangle \underbrace{\langle \mathbf{e}^m | \tilde{\mathbf{e}}_j \rangle}_{\tilde{S}^m_j} \Leftrightarrow \tilde{A}^i_j = S^i_k A^k_m \tilde{S}^m_j$.
- Entonces, en nuestro caso, la matriz de transformación $\tilde{S}_{j}^{m} = \langle \mathbf{e}^{m} \mid \tilde{\mathbf{e}}_{j} \rangle = \left(\begin{array}{cc} \langle + \mid + \rangle_{x} & \langle + \mid \rangle_{x} \\ \langle \mid + \rangle_{x} & \langle \mid \rangle_{x} \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \text{, y}$ $S_{j}^{m} = \langle \tilde{\mathbf{e}}^{m} \mid \mathbf{e}_{j} \rangle = \left(\begin{array}{cc} x & \langle + \mid + \rangle & x & \langle + \mid \rangle \\ x & \langle \mid + \rangle & x & \langle \mid \rangle \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right) \text{,}$
- Con lo cual los operadores transformarán $\left(\sigma_z^{(+)(-)}\right)_m^I = S_i^I \left(\sigma_z^{(+x)(-x)}\right)_i^I \tilde{S}_m^J , \qquad \text{con } \tilde{S}_m^J = \left(S_m^J\right)^{-1}$

Transforman operadores y vectores

▶ Claramente los vectores base transforman como $|\tilde{\mathbf{e}}_j\rangle = \tilde{S}_j^m |\mathbf{e}_m\rangle = \tilde{S}_j^m (S_m^n |\tilde{\mathbf{e}}_n\rangle)$ como la base es ortonormal $\Rightarrow \langle \tilde{\mathbf{e}}^n | \tilde{\mathbf{e}}_j \rangle = \delta_j^n = \tilde{S}_j^m S_m^n \equiv S_m^n \tilde{S}_j^m$

Transforman operadores y vectores

- ▶ Claramente los vectores base transforman como $|\tilde{\mathbf{e}}_j\rangle = \tilde{S}_j^m |\mathbf{e}_m\rangle = \tilde{S}_j^m (S_m^n |\tilde{\mathbf{e}}_n\rangle)$ como la base es ortonormal $\Rightarrow \langle \tilde{\mathbf{e}}^n | \tilde{\mathbf{e}}_j \rangle = \delta_j^n = \tilde{S}_j^m S_m^n \equiv S_m^n \tilde{S}_j^m$
- ▶ Un vector cualquiera $|a\rangle = a^j |e_j\rangle \equiv \tilde{a}^j |\tilde{e}_j\rangle$, entonces $|a\rangle = a^i (S_i^n |\tilde{e}_n\rangle) \equiv \tilde{a}^j |\tilde{e}_j\rangle$ con lo cual $a^i S_i^j = \tilde{a}^j$

Representación matricial para $\sigma_y \left| + \right\rangle_y$

 $\begin{array}{l} \hbox{Considere ahora el operador} \\ \sigma_y \left| + \right\rangle_y &= \left| + \right\rangle_y \;, \qquad \sigma_y \left| - \right\rangle_y &= - \left| - \right\rangle_y \; \text{y la base} \\ \left| + \right\rangle_y &= \frac{1}{\sqrt{2}} \left[\left| + \right\rangle + i \left| - \right\rangle \right] \;, \quad \left| - \right\rangle_y &= \frac{1}{\sqrt{2}} \left[\left| + \right\rangle - i \left| - \right\rangle \right] \;, \end{array}$