

OFFLINE RETRIEVAL EVALUATION WITHOUT EVALUATION METRICS Recherche d'information

22 mai 2023

Ben Kabongo & Sofia Borchani

M1 DAC - Sorbonne Université

RECALL-PAIRED

PREFERENCE

Introduction et motivations

Problématique

- Comparaison entre systèmes : métriques d'évaluation
- Métriques traditionnelles (AP, NDCG, MRR, etc.) = scalaire
- Problème de l'efficacité des étiquettes : perte des informations sur la manière dont deux classements diffèrent
- Problème de faible robustesse aux comportements utilisateurs : hypothèses fortes sur la distribution des comportements

Nouvelle métrique : RPP Recall-Paired Preference

- Résolution des problèmes des métriques traditionnelles
- Modélisation des préférences sous-population d'utilisateurs
- Agrégation : pondération égale à tous les niveaux de rappel

Métriques. Pseudo-populations

Métriques

- Rang : f_i : rang du ième document pertinent du sytème π . $f_i < f'_i \to \pi > \pi'$
- Préférences : $I(\pi, \pi') = \mathbb{E}_k[sgn(P@k(\pi) P@k(\pi'))]$
- Expérimentation en ligne. k : seuil de différence des clics.

Pseudo-Populations d'utilisateurs

- Différents types d'utilisateur en fonction du niveau de rappel
- ullet U_i : pseudo-population intéressé par exactement i éléments pertinents $p(i) = P(u \in U_i)$
- $\blacksquare \mathbb{E}_i[\mu_i(\pi)] = \sum_{i=1}^m p(i)\mu_i(\pi)$
- On peut étendre aux seuils de pertinence et aux pertinences par thématiques

Recall-Paired Preference

Formule et variantes

- $RPP(\pi, \pi') = \mathbb{E}_i[\operatorname{sgn}(f_i' f_i)] = \sum_{i=1}^m p(i) \times \operatorname{sgn}(f_i' f_i)$
- RPP gardué: $RPP(\pi, \pi') = \sum_{\lambda \in \Lambda} \sum_{i=1}^{m} p(i, \lambda) \times sgn(f'_{i, \lambda} - f_{i, \lambda})$
 - RPP catégorielle : ST-RPP $(\pi, \pi') = \sum_{t \in T} \sum_{i=1}^{m} p(i, t) \times \text{sgn}(f'_{i,t} f_{i,t})$

- $RPP(\pi, \pi') \in [-1, +1]$
- \blacksquare $RPP(\pi, \pi') = -RPP(\pi', \pi)$
- $RPP(\pi, \pi') > 0 \to \pi > \pi'$

Protocole d'expérimentation

Protocole d'expérimentation

Expérimentations

- Comment RPP est-elle corrélé aux autres métriques?
- RPP est-elle robuste aux données incompltètes?
- RPP est-elle efficace pour différencier les classements des systèmes entre elles?

Metriques désagrégées

Métrique	$\Delta \mu_i$	
AP	$i\left(\frac{1}{f_i}-\frac{1}{f_i'}\right)$	
NDCG	$\left \frac{1}{\log_2(f_i+1)} - \frac{1}{\log_2(f_i'+1)} \right $	
RR	$\left(\frac{1}{f_i}-\frac{1}{f'_i}\right), (i=1)$	
RPP	$\operatorname{sgn}(f'_i - f_i)$	

Corrélation de RPP avec les métriques existantes

Métriques vs. RPP pour la même paire d'exécutions.

Corrélation de Pearson : mesure de relation linéaire entre variables.

Accord de signe : concordance d'évaluation entre évaluateurs.

Robustesse aux données incomplètes

Comparaison des classements avec labels manquants et labels complets.

Corrélation de Kendall τ : évalue la similarité ou l'accord entre deux classements.

Pouvoir discriminatif

Méthode de Sakai : évaluation du pouvoir discriminant.

p-value < 0,05 dans le test de Student : faible probabilité de différences aléatoires entre les échantillons observés.

→ Suggère une réelle différence statistiquement significative entre des groupes comparés.

Métrique	Expérimental	Référence
RPP	94.28	96.19
DCGPP	93.80	95.71
INVPP	92.38	96.19
NDCG	90.47	94.29
AP	83.80	91.43
RR	84.76	85.71

Code

Recall-Paired Preference


```
def RPP(ranking1, ranking2, p=None):
    if p is None:
        m = min(len(ranking1), len(ranking2))
        p = np.ones(m)/m
    return (p * np.sign(ranking2[:len(p)] - ranking1[:len(p)])).sum()
```

Figure 1 - RPP - code

Comparaion entre métriques


```
def compare(predictions1, predictions2, queries):
    rpp all, dcgpp all, invpp all, ndcg all, dcg all, ap all, rr all, asl all, oi all = [], [], [
    for query_id in queries:
        rankings1 = np.array(predictions1[query_id] [predictions1[query_id] ["bin"] == 1] ['rank'])
rankings2 = np.array(predictions2[query_id] [predictions2[query_id] ["bin"] == 1] ['rank'])
         if len(rankings1) == 0:
             rankings1 = np.append(rankings1, len(predictions1[guery id]))
         if len(rankings2) == 0:
             rankings2 = np.append(rankings2. len(predictions2[query id]))
         relevant1 = np.arrav(predictions1[query id]['rel'])
         relevant2 = np.array(predictions2[query_id]['rel'])
        rpp all.append( RPP(rankings1, rankings2) )
         dcgpp all.append( DCGPP(rankings1, rankings2) )
         invpp all.append( INVPP(rankings1, rankings2) )
        ndcg_all.append( delta_NDCG(relevant1, relevant2) )
         dcg all.append( delta DCG(relevant1, relevant2) )
         ap all.append( delta AP(rankings1, rankings2) )
         rr_all.append( delta_RR(rankings1, rankings2) )
         asl all.append(delta ASL(rankings1, rankings2) )
         oi all.append(OI(rankings1, rankings2))
    return rpp all, dcgpp all, invpp all, ndcg all, dcg all, ap all, rr all, asl all, oi all
```

Figure 2 - Comparaison - code

Robustesse des métriques


```
def robustess(predictions1,
            predictions2.
            queries.
            docs,
            rpp_all,
            dcgpp_all,
            invpp all.
            ndcg_all.
            ap all,
            rr_all,
            doc col name='doc id'):
    rpp_tau, dcgpp_tau, invpp_tau, ndcg_tau, ap_tau, rr_tau = [], [], [], [], [], []
    for missing rate in range(90. 0. -10):
        rpp, dcgpp, invpp, ndcg, ap, rr = [], [], [], [], []
        for query id in queries:
            preds1_df = predictions1[query_id]
            preds2 df = predictions2[query id]
            n docs = missing rate * len(docs) // 100
            missing docs = np.random.choice(docs, n docs)
            missing preds1 df = preds1 df.drop(preds1 df[preds1 df[doc col name].isin(missing docs)].index)
            missing preds1 df["rank"] = missing preds1 df["score"].rank(ascending=False).apply(int)
            rankings1 = np.array(missing preds1 df[missing preds1 df["bin"] == 1]['rank'])
            relevant1 = np.array(missing_preds1_df['rel'])
            missing preds2 df = preds2 df.drop(preds2 df[preds2 df[doc col name].isin(missing docs)].index)
            missing preds2 df["rank"] = missing_preds2_df["score"].rank(ascending=False).apply(int)
            rankings2 = np.array(missing preds2 df[missing preds2 df["bin"] == 1]['rank'])
            relevant2 = np.arrav(missing preds2 df['rel'])
            if len(rankings1) == 0: rankings1 = np.append(rankings1, len(missing_preds1_df))
            if len(rankings2) == 0: rankings2 = np.append(rankings2, len(missing preds2 df))|
            rpp.append( RPP(rankings1, rankings2) )
            dcgpp.append( DCGPP(rankings1, rankings2) )
            invpp.append( INVPP(rankings1, rankings2) )
            ndcq.append( delta NDCG(relevant1, relevant2) )
            ap.append( delta AP(rankings1, rankings2) )
            rr.append( delta RR(rankings1, rankings2) )
        rpp tau.append( kendalltau(rpp, rpp all)[0] )
        dcgpp tau.append( kendalltau(dcgpp, dcgpp all)[0] )
        invpp tau.append( kendalltau(invpp, invpp all)[0] )
        ndcq tau.append( kendalltau(ndcq, ndcq_all)[0] )
        ap tau.append( kendalltau(ap, ap all)[0] )
        rr tau append( kendalltau(rr, rr all)[0] )
```

Pouvoir discriminant


```
def power(all_runs, queries, test_fn=t_test_with_bonferroni_correction):
   N = len(all runs)
   rpp_pvalue, dcgpp_pvalue, invpp_pvalue, ndcg_pvalue, ap_pvalue, rr_pvalue = [], [], [], [], []
   for (i, j) in list(itertools.combinations(range(N), 2)):
       rpp all. dcgpp all. invpp all. ndcg all. .ap all. rr all. . = compare(
           all runs[i], all runs[j], queries
       rpp_pvalue.append( test_fn(rpp_all) )
       dcgpp pvalue.append( test fn(dcgpp all) )
       invpp pvalue.append( test fn(invpp all) )
       ndcg pvalue.append( test fn(ndcg all) )
       ap pvalue.append( test fn(ap all) )
       rr pvalue.append( test fn(rr all) )
   pvalue = .05
   rpp ratio = np.where(np.array(rpp pvalue) < pvalue, 1, 0).mean() * 100
   dcgpp_ratio = np.where(np.array(dcgpp_pvalue) < pvalue, 1, 0).mean() * 100
   invpp ratio = np.where(np.array(invpp pvalue) < pvalue, 1, 0).mean() * 100</pre>
   ndcg ratio = np.where(np.array(ndcg pvalue) < pvalue, 1, 0).mean() * 100
   ap_ratio = np.where(np.array(ap_pvalue) < pvalue, 1, 0).mean() * 100
   rr ratio = np.where(np.array(rr pvalue) < pvalue, 1, 0).mean() * 100
   return rpp_ratio, dcgpp_ratio, invpp_ratio, ndcg_ratio, ap_ratio, rr_ratio
```

Figure 4 - Pouvoir discriminant - code