

۲,

FiG. 1

FiG. 2

14

13

FiG. 5

FiG. 6

98 - C - 022 7/53

	RELATIVE ADDRESS	BYTE 3	BYTE 2	BYTE 1	BYTE O	1
(PAB + 0	PO	RT O Tx TOP-OF-RIN	G DESCRIPTOR POI		\uparrow
Í	PAB + 4			G DESCRIPTOR POI		1]
j	<u> PAB + 8</u>			G DESCRIPTOR POI		1
ĺ	PAB + 12			G DESCRIPTOR POI		200D
ļ	PAB + 16			G DESCRIPTOR POL] 2000
	PAB + 20			G DESCRIPTOR POI] [
İ	PAB + 24			G DESCRIPTOR POI]]
200A	PAB + 28	Poscer	<u>I 3 Rx Top-of-rin</u>	G DESCRIPTOR POIL		\cup
2007	PAB + 32	RELOAI	LE TIMER D VALUE	STAT TIMER RELOAD VALUE	TIMER Enables	
	PAB + 36	PORT 3 Tx POLL TIMER RELOAD VALUE	PORT 2 Tx POLL TIMER RELOAD VALUE	PORT 1 Tx POLL TIMER RELOAD VALUE	PORT O Tx POLL TIMER RELOAD VALUE	200E
	PAB + 40	PORT 3 Tx Burst size	PORT 2 Tx Burst size	PORT 1 Tx BURST SIZE	PORT O TX BURST SIZE	
	PAB + 44	PORT 3 Rx Burst Size	PORT 2 Rx Burst size	PORT 1 Rx Burst Size	PORT O Rx BURST SIZE	200F
	PAB + 48	RESERVED	RESERVED	UCLK PERIOD (NANOSECONDS)	STATISTICS	
	PAB + 52	PORT	1 N1	PORT		200G
\	PAB + 56	PORT	3 N1	PORT		
(PAB + 60	PORT #0 BI	JFFER SIZE	Tx RING SIZE	Rx RING SIZE	200H
200B	PAB + 64	PORT#1 BU	JFFER SIZE	Tx RING SIZE	Rx RING SIZE	
	PAB + 68	PORT #2 BU	JFFER SIZE	Tx RING SIZE	Rx RING SIZE	200i
	PAB + 72	PORT <i>#</i> 3 Bl	JFFER SIZE	Tx RING SIZE	Rx RING SIZE	
	PAB + 76		RESER		TOT THE STEE	-
	PAB + 80		RESER			
ļ	PAB + 84		RESER	VED		
	PAB + 88		RESER	VED		
	PAB + 92		RESER	VED		
2000	PAB + 96		RESER	VED		
	PAB + 100		RESER	VED		
	PAB + 104		RESER			
	PAB + 108		RESER			
i	PAB + 112		RESER			
	PAB + 116		RESER			
{	PAB + 120		RESER		•	
	PAB + 124		<u> RESER</u>	AFD		

FiG. 7

98 - C - 022 8/53

PORT O RELATIVE ADDRESS	BYTE 3	BYTE 2	BYTE 1	BYTE 0	PORT						
PAB + 128		BAD FRAMES RECEIVED									
PAB + 132		ABORTED	FRAMES		R						
PAB + 136		FRAMES EXCEEDI	NG N1 RECEIVED		PORT #0						
PAB + 140		RESE	RVED		2						
PAB + 144		RESE	RVED								
PAB + 148		BAD FRAME	S RECEIVED								
PAB + 152			FRAMES		#						
PAB + 156		FRAMES EXCEEDI	NG N1 RECEIVED		PORT#1						
PAB + 160		RESE	RVED		_						
PAB + 164		RESE	RVED								
PAB + 168		BAD FRAME	S RECEIVED								
PAB + 172		ABORTED			PORT #2						
PAB + 176		FRAMES EXCEEDI	NG N1 RECEIVED		20R						
PAB + 180	: 	RESE			_						
PAB + 184		RESE									
PAB + 188		BAD FRAME									
PAB + 192		ABORTED			£#.						
PAB + 196		FRAMES EXCEEDI	NG N1 RECEIVED		PORT #3						
PAB + 200		RESE	RVED		<u> </u>						
PAB + 204		RESE	RVED								

[0x28] PCR - PRIMITIVE COMMAND REGISTER

DMA	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT NAME	PP		P	PRI	M[6 :0]				PP/	٩R٨	۸[7	<u>':0]</u>			HPA		Н	IPR	IM[6:0)]		Γ	L	HP	ARI	W[7	':0]]	
RESET VALUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O
HOST ACCESS	READ CLEAR						RE	AD	-0N	!IY							WRITE SET		•	.	·	<u> </u>	RE	AD,	/WI	RIT	E	<u> </u>				
CPC ACCESS	WRITE SET						REA	AD/	WR	RITE							READ CLEAR		·	-	-		RI	AD	-01	ИЦ						

BIT#	FIELD	NAME	DESCRIPTION
31	PPA	PROVIDER PRIMITIVE AVAILABLE	(1=AVAILABLE; 0=NO PRIMITIVE) SET BY THE DEVICE WHEN THE PCR REGISTER IS WRITTEN BY THE FIRMWARE. THE SETTING OF THIS BIT WILL ALSO CAUSE THE PINT BIT OF THE MIR TO BE SET AUTOMATICALLY. THIS BIT IS CLEARED BY THE DMA WHEN THE HOST READS THIS REGISTER.
30:24	PPRIM	PROVIDER PRIMITIVE COMMAND	(7-BIT BINARY VALUE) THIS FIELD IS AN OUTGOING (FIRMWARE TO HOST) PRIMITIVE COMMAND. THE MEANING IS STRICTLY DETERMINED BY THE FIRMWARE.
2 3:16	PPARM	PROVIDER PRIMITIVE Parameter	(8-BIT BINARY VALUE) THIS IS A FIRMWARE DEFINED PARAMETER FIELD CORRESPONDING TO THE PROVIDER PRIMITIVE COMMAND.
15	НРА	HOST PRIMITIVE AVAILABLE	(1=AVAILABLE; 0=NO PRIMITIVE) SET BY THE DEVICE WHEN THE PCR REGISTER IS WRITTEN BY THE HOST. THE SETTING OF THIS BIT CAN RESULT IN A CPC INTERRUPT IF ENABLED. THIS BIT IS CLEARED BY THE DMA WHEN THE FIRMWARE READS THIS REGISTER.
14:8	HPRIM	HOST PRIMITIVE COMMAND	(7-BIT BINARY VALUE) THIS FIELD IS AN INCOMING (HOST TO FIRMWARE) PRIMITIVE COMMAND. THE MEANING IS STRICTLY DETERMINED BY THE FIRMWARE.
7:0	HPARM	HOST PRIMITIVE PARAMETER	(8-BIT BINARY VALUE) THIS IS A FIRMWARE DEFINED PARAMETER FIELD CORRESPONDING TO THE HOST PRIMITIVE COMMAND.

98 - C - 022 10/53

[0x2A] MIR - MASTER INTERRUPT REGISTER

DMA	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT NAME	PINIT	SPURINT	SDRIFT3	ECN3	FAN3	SHL3	TINT3	RINT3	MERR	PPLOST	SDRIFT2	ECN2	FANZ	SHL2	IINT2	RINT2	SERR	HPLOST	SDRIFTI	ECN1	ANI	SHLI			VERR	PARE	DRIFTO	CNO	ANO	HLO	NT0	
RESET VALUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	n	히
HOST ACCESS						_						*	*RE	AD	-CI	LEA	R (NO	W	RITE	E)		1			لتا		ئــــــ			-1	Ť
CPC ACCESS	READ-ZEROS		RE. W	AD /RIT	-ZI [E-(ERO Oni	S/ S		DEAN JEDNE	ענאנט- גנאט	R	EAI WR) -Z ITE-	ER ON	OS, IES	/	DEIN JEDUC	NEAU- LENUS	R	EAI WR	D -Z	ZER -OI	OS IES	/	READ. ZEROS	R \	EAD VRI) -Z TE-	ER	OS/ ES	/	1

BIT#	FIELD	NAME	DESCRIPTION
31	PINT	PRIMITIVE INTERRUPT	(1=EVENT; 0=NO EVENT) SET BY THE DEVICE WHEN THE FIRMWARE WRITES A NEW PROVIDER PRIMITIVE INTO THE PRIMITIVE COMMAND REGISTER (UPPER HALF).
23	MERR	MEMORY ERROR	(1=EVENT; 0=NO EVENT) SET BY THE DEVICE WHEN AN RTIME READY TIMEOUT HAS OCCURRED AS DEFINED AND ESTABLISHED IN THE SYSTEM MODE REGISTER (SMR).
15	SERR	SYSTEM ERROR	(1=EVENT; 0=NO EVENT) SET BY THE DEVICE WHEN AN STIME SYSTEM TIMEOUT HAS OCCURRED AS DEFINED AND ESTABLISHED IN THE SYSTEM MODE REGISTER (SMR).
7	WERR	CONFIGURATION WRITE ERROR	(1=EVENT, O=NO EVENT) SET BY THE DEVICE WHEN THE HOST HAS ATTEMPTED TO WRITE TO A REGISTER LOCATION WHICH IS INACCESSIBLE BY THE HOST. THIS BIT WILL NEVER BE SET WHEN HOST ACCESS IS UNLOCKED VIA THE KEY FIELD OF THE LOCK REGISTER.
30	SPURINT	SPURIOUS CPC INTERRUPT	(1=EVENT; 0=NO EVENT) SET BY THE CPC FIRMWARE INDICATING THE RECEPTION OF AN INVALID INTERNAL CPC INTERRUPT. THIS IS A DEVICE HARDWARE FAULT AND SHOULD NEVER OCCUR.
22	PPLOST	PROVIDER PRIMITIVE LOST	(1=EVENT, O=NO EVENT) SET BY THE DEVICE WHEN THE FIRMWARE WRITES A NEW PROVIDER PRIMITIVE OVER ONE THAT HAS NOT YET BEEN READ BY THE HOSE. THIS CONDITION IS DETECTED BY TESTING THE PPA BIT OF THE PRIMITIVE COMMAND REGISTER (PCR).
14	HPLOST	HOST PRIMITIVE LOST	(1=EVENT; O=NO EVENT) SET BY THE DEVICE WHEN THE HOST WRITES A NEW HOST PRIMITIVE OVER ONE THAT HAS NOT YET BEEN READ BY THE FIRMWARE. THIS CONDITION IS DETECTED BY TESTING THE HPA BIT OF THE PRIMITIVE COMMAND REGISTER (PCR).
6	SPARE		
29,21 13,5	SDRIFT	PORT n STATISTIC Drift	(I=EVENT; O=NO EVENT) SET BY THE CPC FIRMWARE WHEN CONDITIONS IN THE CORRESPONDING PORT HAVE BEEN REACHED WHERE STATISTICAL INFORMATION MIGHT BE LOSE. THIS WILL ONLY HAPPEN WHEN RECEIVE CONGESTION IS OCCURRING SUCH THAT FRAMES ARE BEING LOST DUE TO LACK OF AVAILABLE SPACE IN THE PORT'S RECEIVE FIFO.
28,20 12,4	ECN	PORT n EARLY CONGESTION	(1=EVENT, 0=HO EVENT) SET BY THE CPC FIRMWARE FOR ADVANCED HOST HOTIFICATION OF CONGESTION IN THE CORRESPONDING PORT'S RECEIVED. CONGESTION OCCURS WHEN A UNIT IS FORCED TO DROP A RECEIVED FRAME DUE TO LACK OF AVAILABLE SPACE IN THE RX FIFO.
27,19,11,3	FAN	FRAME ADDRESS NOTIFICATION	(1=EVENT; O=NO EVENT) SET BY THE DEVICE TO NOTIFY THE HOST THAT THE ADDRESS FIELDS ARE PRESENT IN THE FRAME BUFFER.
26,18 10,2	SHL	PORT n STATISTIC HALF-LIFE	(1=EVENT, O=HO EVENT) SET BY THE CPC FIRMWARE WHEN ONE OR MORE OF THE CORRESPONDING PORT'S STATISTICS HAS PASSED THE HALF- Full Mark — Defined as the most-significant bit of a statistic changing polarity (0-to-1 or 1-to-0) due to the last update
25,17 9,1	TINT	PORT n TRANSMIT INTERRUPT	(1=EYENT, O=NO EVENT) SET BY THE DEVICE WHENEVER THE TRANSMISSION OF ONE OR MORE FRAMES HAS BEEN COMPLETED. FOR A SUCCESSFULLY TRANSMITTED FRAME THIS INTERRUPT SIGNALS THAT THE FRAME HAS CLEARED THE CHIP
24,16 8,0	RINT	PORT n RECEIVE INTERRUPT	(1=EVENT, 0=NO EVENT) SET BY THE DEVICE WHENEVER A RECEIVE FRAME HAS BEEN COMPLETED TRANSFERRED FROM THE CORRESPONDING PORT TO THE HOST SYSTEM. THIS MEANS A FRAME HAS BEEN TRANSFERRED TO SYSTEM MEMORY. IF THE RECEPTION OF BAD FRAMES (RBUFF-0 IN THE SMR REGISTER) HAS BEEN DISABLED THEN NO RINT WILL BE GENERATED IN THE EVENT OF BAD FRAMES.

FiG. 9

802.3 DATALINK LAYER HEADER (18 BYTES)

FiG. 10

INTERNET IP HEADER (20 BYTES)

VER/HEADER	TYPE OF SERVICE	16-BIT TOTAL LENGTH (IN BYTES)
16-BIT IDE	NTIFICATION	3-BIT FLAGS/13-BIT FRAGMENT OFFSET
Πι	8-BIT PROTOCOL	16-BIT HEADER CHECKSUM
	32-BIT SOURCE I	P ADDRESS
	32-BIT DESTINATION	IP ADDRESS
	(OPTIONS - I	F ANY)

FiG. 11

TCP HEADER (20 BYTES)

16-BIT SOURCE PORT	16-BIT DESTINATION PORT
32-BIT SEQUEN	NCE NUMBER
32-BIT ACKNOWLED	OGMENT NUMBER
URG/ACK/PSH/RST/SYN/FIN	16-BIT WINDOW SIZE
16-BIT TCP CHECKSUM	16-BIT URGENT POINTER

FiG. 12

98 - C - 022 15/53

FiG. 13

98 - C - 022 16/53

98 - C - 022 17/53

FiG. 15

98 - C - 022 18/53

FiG. 16

98 - C - 022 19/53

FiG. 17

98 - C - 022 20/53

FiG. 18

98 - C - 022 21/53

FiG. 19

98 - C - 022 22/53

FiG. 20

98 - C - 022 24/53

FiG. 22

FiG. 23

FiG. 24A

FiG. 24B

WATERMARK EFFECTS ON IRQ GENERATION WITH REGARD TO PACKET SIZE:

FiG. 25

FiG. 26

98 - C - 022 30/53

FIFO CASES OVERFLOW ON SECOND PACKET INTO RECEIVE FIFO

FiG. 27F

OCCUR UNTIL CPC READS STATUS. THIS PREVENTS

OVERWRITING OF STATUS REGISTER BY OVERFLOW STATUS.

98 - C - 022 31/53

FiG. 28

98 - C - 022 32/53

98 - C - 022 33/53

FiG. 30

98 - C - 022 34/53

FiG. 31

98 - C - 022 35/53

FiG. 32

98 - C - 022 36/53

FiG. 33

98 - C - 022 37/53

98 - C - 022 38/53

FiG. 35

98 - C - 022 39/53

98 - C - 022 40/53

98 - C - 022 41/53

98 - C - 022 42/53

FiG. 39

98 - C - 022 43/53

98 - C - 022 44/53

FiG. 41

98 - C - 022 45/53

FiG. 43

98 - C - 022 47/53

ESTIMATED TRAFFIC COMPOSITION OF THE HOST BUS

DATA:

X/32

DESCRIPTORS:

2*X/128 + 2

TOTAL:

X/32 + 2*X/128 + 2

FiG. 44

98 - C - 022 48/53

PRIMITIVE SIGNALLING

RMD 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT NAME	NW0	EOR	EOP					BSIZ	E[]:	2:2]					RERR	ROFLO							MS	SIZE	[12	:0]			<u> </u>			-

BIT#	FIELD	NAME	DESCRIPTION
31	OWN	DESCRIPTOR OWNERSHIP	(1=DEVICE; 0=HOST) ESTABLISHES OWNERSHIP OF THE RECEIVE MESSAGE DESCRIPTOR AND ITS ASSOCIATED DATA BUFFER. THE OWN BIT IS USED AS A HANDSHAKE BETWEEN AND THE HOST. NO PART OF THE RECEIVE MESSAGE DESCRIPTOR OR THE CONTENTS IF ITS ASSOCIATED BUFFER SHOULD BE ALTERED ONCE OWNERSHIP HAS BEEN RELINQUISHED.
30	EOR	END OF RING	(1=END OF RING; 0=NOT END-OF-RING) DENOTES THE LAST RECEIVE MESSAGE DESCRIPTOR IN THE DESCRIPTOR RING. CAUSES DEVICE TO RETURN TO THE TOP OF THE RING AFTER USING THIS DESCRIPTOR. IN OTHER WORDS, THE NEXT DESCRIPTOR USED BY DEVICE WILL BE THE FIRST ENTRY IN THE RING.
29	ENP	END OF FRAME	(1=END OF FRAME; O-CHAIN) INDICATES THE ASSOCIATED RECEIVE DATA BUFFER CONTAINS THE END OF A RECEIVED FRAME. ENP OF ZERO IMPLIES BUFFER "CHAINING" WHERE THE RECEIVED FRAME SPANS TWO OR MORE, ADJACENT DESCRIPTORS.
28:18	BSIZE	BUFFER SIZE	(10-BIT UNSIGNED INTEGER) INDICATES THE NUMBER OF BYTES AVAILABLE IN THE ASSOCIATED RECEIVE DATA BUFFER (UP TO 8K BYTES). NOTE THAT BUFFERS ARE ALLOCATED IN 4-BYTE (1-WORD) INCREMENTS SINCE THE BSIZE FIELD IS DEFINED AS BITS 12 TO 2. THE BSIZE FIELD IS POSITIONED IN THE UPPER HALF-WORD TO FACILITATE THIS DEFINITION. A BSIZE OF ZERO DEFAULTS TO A BUFFER SIZE OF ONE WORD. THE ACTUAL NUMBER OF BYTES AVAILABLE IN A BUFFER ARE DETERMINED BY THE BSIZE FIELD AND THE STARTING ADDRESS OF THE BUFFER (RBADR). RECEIVE DATA BUFFERS ARE PERMITTED TO START ON ANY BYTE ADDRESS BUT ARE ALWAYS ASSUMED BY DEVICE TO END ON A WORD-ALIGNED BOUNDARY. IN OTHER WORDS, THE LAST ADDRESS OF EVERY RECEIVE BUFFER IS A COMPLETE, 4-BYTE WORD.
17	RERR	Rx ERROR Summary	(1=ERROR; O=NORMAL) LOGICAL OR SUMMARY OF THE ERROR STATUS BITS REPORTED IN THE RECEIVE STATUS WORD WRITTEN BY DEVICE INTO THE FIRST FULL WORD FOLLOWING THE END OF THE FRAME IN THE BUFFER. RERR SUMMARIZES: CNTOVL, FCS, RABRT, ROFLO. ALLOWS A SINGLE-BIT TEST FOR RECEIVE FRAME-RELATED ERRORS.
16	ROFLO	Rx FIFO OVERFLOW ERROR	(1=ERROR; 0=NORMAL) INDICATES A DROPPED PACKET DUE TO INSUFFICIENT SPACE AVAILABLE IN THE RECEIVE FIFO. WHEN OVERFLOW OCCURS THE HDLC UNIT CONTINUES TO MONITOR THE INCOMING PACKET FOR STATISTICAL PURPOSES, AND DROPS THE ENTIRE PACKET (OR AT LEAST THE PORTION NOT YET READ FROM THE FIFO). THE RESULTING STATUS WORD IS WRITTEN INTO THE FIFO ALONG WITH THE END-OF-PACKET TAG. OVERFLOW IS CAUSED BY INADEQUATE SERVICING (READING) OF THE FIFO. IF THIS BIT IS SET MSIZE MAY NOT INDICATE THE ACTUAL AMOUNT OF DATA IN THE BUFFER.
15:0	MSIZE	MESSAGE SIZE	(15-BIT UNSIGNED INTEGER) INDICATES THE NUMBER OF OCTETS OCCUPIED BY PART OR ALL OF A RECEIVED FRAME IN THE ASSOCIATED BUFFER. MSIZE DOES NOT INCLUDE THE FOUR OCTETS OF THE RECEIVE STATUS WORD WRITTEN BY DEVICE INTO THE FIRST FULL WORD FOLLOWING THE END OF THE FRAME IN THE BUFFER. THE MSIZE FIELD IS EXPECTED TO BE ALL ZEROS WHEN THE HOST GIVES OWNERSHIP OF THE DESCRIPTOR TO DEVICE. SINCE NO ATTEMPT IS MADE BY DEVICE TO CHECK THIS, ANY NON-ZERO VALUE GIVEN WILL RESULT IN AN ERRONEOUS MSIZE RETURNED.

98 - C - 022 51/53

က 4 00 6 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 RBADR [31:0] RMD 1 BIT NAME

RECEIVE MESSAGE DESCRIPTOR 1

BIT#	FIELD	NAME	DESCRIPTION		
31:0	RBADR	RECEIVE BUFFER Starting address	(32-BIT UNSIGNI CIATED RECEIVE ING FRAMES. NO SPAN MULTIPLE I RBADR IS ERS ARE NOT RE DEVICE IS THAT R WORD-ALIGNED BY THE LEAST TW	(32-BIT UNSIGNED INTEGER) ACTS AS A POIN CIATED RECEIVE DATA BUFFER. RECEIVE DATA ING FRAME: NO MORE THAN ONE FRAME IS SPAN MULTIPLE BUFFERS WHEN ITS SIZE EXCIBED ARE NOT REQUIRED TO BEGIN ON WORD DEVICE IS THAT RECEIVE BUFFERS MAY START WORD-ALIGNED BOUNDARIES. THE FOLLOWING THE LEAST TWO SIGNIFICANT RBADR BITS.	(32-BIT UNSIGNED INTEGER) ACTS AS A POINTER TO THE FIRST ADDRESS LOCATION OF THE ASSOCIATED RECEIVE DATA BUFFER. RECEIVE DATA BUFFERS ARE USED BY DEVICE TO STORE INCOM- ING FRAMES. NO MORE THAN ONE FRAME IS STORED IN A GIVEN BUFFER. A SINGLE FRAME MAY SPAN MULTIPLE BUFFERS WHEN ITS SIZE EXCEEDS THE BUFFER SIZE. RBADR IS A BYTE ADDRESS IN A 32-BIT DATA WORD SYSTEM IMPLYING THAT RECEIVE BUFF- ERS ARE NOT REQUIRED TO BEGIN ON WORD-ALIGNED BOUNDARIES. THE RULE IMPOSED BY DEVICE IS THAT RECEIVE BUFFERS MAY START WITH ANY BYTE ALIGNMENT, BUT ALWAYS END ON WORD-ALIGNED BOUNDARIES. THE FOLLOWING TABLE OUTLINES THE BYTE ALIGNMENT INDICATED
			RBADR [1:0]	VALID BYTES	ALIGNMENT
			00	4	ALIGNED (FULL WORD)
			5	က	NON-ALIGNED
			0	2	NON-ALIGNED
			11		NON-ALIGNED

FiG. 48

98 - C - 022 52/53

TRANSMIT MESSAGE DESCRIPTOR O

TMD 0	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BIT NAME	0WN	EOR	ENP	NOCRC	TOFLO				R	RESEI	RVEC)				UFLO							MS	SIZE	[12:	0]					-	

BIT#	FIELD	NAME	DESCRIPTION
31	OWN	DESCRIPTOR OWNERSHIP	(1=DEVICE; 0=HOST) SET BY THE HOST, CLEARED BY DEVICE. ESTABLISHES OWNERSHIP OF THE TRANSMIT MESSAGE DESCRIPTOR AND ITS ASSOCIATED DATA BUFFER. THE OWN BIT IS USED AS A HANDSHAKE BETWEEN DEVICE AND THE HOST. NO PART OF THE TRANSMIT MESSAGE DESCRIPTOR OR THE CONTENTS OF ITS ASSOCIATED BUFFER SHOULD BE ALTERED ONCE OWNERSHIP HAS BEEN RELINQUISHED.
30	EOR	END OF RING	(1=END-OF-RING; 0=NOT END-OF-RING) CONFIGURED BY THE HOST TO MARK THE DESCRIPTOR AS THE LAST ENTRY IN THE RING. DENOTES THE LAST TRANSMIT MESSAGE DESCRIPTOR IN THE DESCRIPTOR RING. CAUSES DEVICE TO RETURN TO THE TOP OF THE RING AFTER USING THIS DESCRIPTOR. IN OTHER WORDS, THE NEXT DESCRIPTOR USED BY DEVICE WILL BE THE FIRST ENTRY IN THE RING.
29	ENP	END OF FRAME	(1=END-OF-FRAME; 0=NOT END-OF-FRAME) SET BY THE HOST TO INDICATE THAT THE ASSOCIATED TRANSMIT DATA BUFFER CONTAINS THE END OF A TRANSMIT FRAME. ENP OF ZERO IMPLIES BUFFER "CHAINING" WHERE THE FRAME TO BE TRANSMITTED SPANS TWO OR MORE, ADJACENT DESCRIPTORS.
28A	NOCRC	NO CRC Appended	(1=NOT APPENDED; 0=APPENDED) CONFIGURED BY THE HOST TO CONTROL TX CRC GENERATION ON A PER-FRAME BASIS. PREVENTS FRAME CHECK SEQUENCE (CRC) FROM BEING GENERATED AND APPENDED AUTOMATICALLY BY THE UNIT. NOCRC IS ONLY USED BY DEVICE WHEN THE END OF FRAME (ENP) BIT IS SET.
27	TOFLO	Tx FIFO OVERFLOW ERROR	(1=ERROR; 0=NORMAL) SET BY HDLC WHEN FIFO Tx IS IN OVERFLOW. PROBABLY DUE TO WATER-MARK < BURST SIZE. THIS MEANS AN ATTEMPT HAS BEEN MADE TO WRITE MORE THAN THE AVAILABLE SPACE IN THE FIFO Tx. THE ONLY WAY TO EXIT FROM THIS CONDITION IS TO SET TXFLUSH OR RESET.
26:17	RESERVED		MUST BE ZERO.
16	UFLO	Tx -FIFO UNDERFLOW ERROR	(1=ERROR; 0=NORMAL) SET BY DEVICE WHEN THE TRANSMIT FIFO IS EMPTIED DURING A TRANSMISSION BEFORE ENCOUNTERING THE END-OF-FRAME. UNDERFLOW IS CAUSED BY INADE-QUATE SERVICING (WRITING) OF THE FIFO.
15:0	MSIZE	MESSAGE SIZE	(13-BIT UNSIGNED INTEGER) SET BY THE HOST TO INDICATE THE NUMBER OF OCTETS OF A TRANSMIT FRAME CONTAINED IN THE ASSOCIATED TRANSMIT DATA BUFFER.

98 - C - 022 53/53

TRANSMIT MES	TRANSMIT MESSAGE DESCRIPTOR 1
TAD 1	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
BIT NAME	TBADR [31:0]

BIT #	FIELD	NAME	DESCRIPTION		
31:0	TBADR	TRANSMIT BUFFER	(32-BIT UNSIGN CIATED TRANSM FOR OUTGOING SINGLE FRAME A TBADR IS, BUFFERS ARE NG TABLE OUTLINES	ED INTEGER) ACTS IT DATA BUFFER. T FRAMES. NO MOR ANY SPAN MULTIPI A BYTE ADDRESS I THE BYTE ALIGNN	(32-BIT UNSIGNED INTEGER) ACTS AS A POINTER TO THE FIRST ADDRESS LOCATION OF THE ASSOCIATED TRANSMIT DATA BUFFER. TRANSMIT DATA BUFFERS ARE USED BY DEVICE AS THE SOURCE FOR OUTGOING FRAMES. NO MORE THAN ONE FRAME SHOULD BE STORED IN A GIVEN BUFFER. A SINGLE FRAME MAY SPAN MULTIPLE BUFFERS WHEN ITS SIZE EXCEEDS THE BUFFER SIZE. THE ADDRESS IN A 32-BIT DATA WORD SYSTEM IMPLYING THAT TRANSMIT BUFFERS ARE NOT REQUIRED TO BEGIN ON A WORD-ALIGNED BOUNDARIES. THE FOLLOWING TABLE OUTLINES THE BYTE ALIGNMENT INDICATED BY THE LEAST TWO SIGNIFICANT TBADR BITS.
		STARTING ADDRESS	TBADR [1:0]	VALID BYTES	ALIGNMENT
			00	4	ALIGNED (FULL WORD)
_			-	က	NON-ALIGNED
			2	2	NON-ALIGNED
			=	1	NON-ALIGNED