

CORSO DI MISURE ELETTRONICHE

a.a. 2020/2021

Docente: PROF. ING. PASQUALE DAPONTE

ELABORATO RELATIVO ALL'ESERCITAZIONE N. 1

"INCERTEZZA DI TIPO A e B"

EFFETTUATA DAGLI STUDENTI DEL GRUPPO N.13 COMPOSTO DA:

BOCCHINO Daniele matr. 863000271
CROVELLA Alessio matr. 862002168
RANAURO Giuliano matr. 863002135
RICCIUTO Luigi matr. 863002184

Incertezza Di Tipo A e B

Si consideri il circuito in Figura, esso è formato da due resistenze di identico valore pari a 5,23 $k\Omega$ e da un generatore di tensione continua pari a 1 V.

Tale circuito implementa un partitore di tensione. Se risolviamo il circuito, analiticamente, otteniamo che la tensione V_{out} , in uscita dal partitore di tensione, ha un'ampiezza pari a 0,5V.

Nell'esperienza il sistema di misura si compone del generatore di tensione continua *Agilent E3634A* e del multimetro *Keithley 2000* .

Descrizione dei collegamenti effettuati.

L'esperienza prevede il collegamento di due resistori in serie di egual valore pari a 5,23 k Ω ad un generatore di tensione in continua da un 1V. Vengono, pertanto, collegati ad una breadboard questi due resistori in serie e a seguire il generatore di tensione ovvero l'alimentatore stabilizzato e il multimetro sopra citati, come da immagine esemplificativa.

Immagine 1: Schema di collegamento dei componenti elettronici

(l'immagine è una simulazione ed i valori non associati all'esercitazione)

Una volta effettuati i collegamenti, viene attivato il multimetro in modalità voltmetro e si osservano delle variazioni dei valori su di esso e sull'alimentatore.

Si avvia la misurazione che viene eseguita in remoto mediante interfaccia web e si scarica il file .csv generato di seguito riportato.

Valutazione incertezza di tipo A

n.	Tensione [V]	n	Tensione [V]
		n.	
1	0,507333	16	0,507359
2	0,507328	17	0,507359
3	0,507330	18	0,507354
4	0,507337	19	0,507355
5	0,507344	20	0,507356
6	0,507348	21	0,507356
7	0,507359	22	0,507356
8	0,507358	23	0,507359
9	0,507359	24	0,507357
10	0,507363	25	0,507357
11	0,507362	26	0,507355
12	0,507366	27	0,507353
13	0,507365	28	0,507350
14	0,507358	29	0,507351
15	0,507358	30	0,507351

Tabella 1: Valori Misurati

A seguito delle 30 misure effettuate, come prima analisi si procede andando a valutare l'incertezza di **tipo A**

MEDIA CAMPIONARIA:

$$\overline{V} = \frac{\sum_{i=1}^{N} V_{i}}{N} = 507,353 \, mV = \underbrace{\frac{4}{N} \sum_{i=4}^{30} V_{i}}_{N}$$

$$\text{SCARTO SPERIMENTALE:} \qquad S(\overline{V}) = \underbrace{\frac{8(V)}{N}}_{N} \qquad \text{Con } S(V) = \sqrt{S^{2} = S} = \sqrt{\frac{1}{N-1} \sum_{i=4}^{30} (V_{i} - \overline{V})^{2}}_{N}$$

$$s(V) = \sqrt{\frac{1}{N-1} \cdot \sum_{i=1}^{N} (V_{i} - \overline{V})^{2}} = 0,010 \, mV;$$

SCARTO SPERIMENTALE DELLA MEDIA:

$$s(\overline{V}) = \frac{s(V)}{\sqrt{N}} \neq 0,002 \, mV;$$

$$2 \, \mu V$$

INCERTEZZA ESTESA CON FATTORE DI COPERTURA K=2:

$$U(\overline{V}) = 2 \cdot s(\overline{V}) = 0,000,004, V; = 4 \mu V$$

$$2 \text{ SiGMA}$$

INCERTEZZA RELATIVA:

$$u(\overline{V}) = \frac{\overline{V(V)}}{\overline{V}} \cdot 100 = 0,000788\%;$$

MEDIA

MISURA OTTENUTA:

INCERTEZZA

$$V_{out} = (0,507353) \pm (0,000004) V;$$

Incertezza di tipo B

DC Voltage Uncertainty: = ±[(ppm of reading) x (measured value) + (ppm of range) x (range used)] / 1,000,000_

% Accuracy: = (ppm accuracy) / 10,000.

1ppm of Range: = 20 counts for ranges up to 200V and 10 counts on 1000V range at 7½-digits.

NORMAL ACCURACY10 - 1PLC, DFILT OFF

				Relative Accuracy ±(ppm of reading + ppm of range)			Temperature Coefficient ±(ppm of reading + ppm of range)/°C	
Range	Full Scale	Resolution	Input Resistance	24 Hours ⁶	90 Days'	1 Year'	2 Years'	Outside T _{CAL} ±5°C
200mV ⁸	±210.0mV	10nV	>100GΩ	3.5 + 6	15 + 11	19 + 12	23 + 13	2 + 1.8
~2V)°	±2.10V	100nV	>100GΩ	1.2 + 0.6	6 + 1.1	10 + 1.2	(14)(1.3)	0.2 + 0.18
20V	±21.0V	1µV	>100GΩ	3.2 + 0.35	8 + 0.4	12 + 0.4	16 + 0.4	0.3 + 0.02
200V	±210.0V	10μV	10MΩ ±1%	5 + 1.2	14 + 2.8	22 + 2.8	30 + 2.8	1.5 + 0.3
1000V ⁹	±1100.0V	100μV	10MΩ ±1%	5 + 0.4	14 + 0.7	22 + 0.7	30 + 0.7	1.5 + 0.06
						PPM Repol		PPM Range

Consultando i valori della tabella dello strumento, e basandosi sul tempo trascorso dall'ultimo certificato di taratura, viene scelto il valore $0,507363\,V$:

Per fattore di copertura **k=2** si ottiene **un'INCERTEZZA ESTESA** pari a: 0,000020 V; \sim 95%

La misura che si ottiene è: $V_{out} = (0,507363 \pm 0,000020) \text{ V};$

CASO B TRAMITE MISURA INDIRETTA

$$V_{out} = \frac{V_{in} \cdot R_2}{R_1 + R_2} = 0$$
, 502 V ; Dove $V_{in} = 1$, 003 V ;

$$R_{_1}=R_{_2}=R;$$

Parameter		Agilent E3633A	Agilent E3634A		
Output Ratings	Low Range	0 to +8 V/0 to 20 A	0 to +25 V/0 to 7 A		
(@ 0 °C - 40 °C)	High Range	0 to +20 V/0 to 10 A	0 to +50V/0 to 4 A		
Programming Accuracy ^[1]	Voltage	0.05% + 10 mV			
12 months (@ 25 °C \pm 5 °C), \pm (% of output + offset)	Current	0.2% + 10 mA			
Readback Accuracy[1] [2]	Voltage	0.05%	- 5 mV		
12 months (over GPIB and RS-232 or front panel with respect to actual output @ 25 °C ± 5 °C), ±(% of output + offset)	Current	0.15% + 5 mA			
Ripple and Noise (with outputs ungrounded, or	Normal mode voltage	<0.35 mV ms and 3 mV p-p	<0.5 mV rms and 3 mV p-p		
with either output terminal grounded, 20 Hz to 20 MHz)	Normal mode current	<2 mA rms			
	Common mode current	<1.5 uA rms			

$$U_{V_{in}} = (0,05\% \text{ of } 1,003 \text{ V} + 5 \text{ mV}) = 0,006 \text{ V};$$

L'incertezza riguardante i valori di resistenza può essere calcolata considerando le tolleranze associate ai valori di resistenza, pari all'1% del valore nominale, e associando una distribuzione uniforme per i valori assunti dalla resistenza

nell'intervallo da 5. $23k\Omega$ a \pm 1%;

Incertezza di R: $\bigcup_{R} =$

$$U_{R} = U_{R_{1}} = U_{R_{2}} = 30\Omega;$$

 $\mathbf{INCERTEZZA:} U_{V_{out}}$

$$\left(\frac{R_2}{R_1 + R_2} \right)^2 \cdot \left(U_{V_{in}} \right)^2 + \left(-\frac{V_{in} \cdot R_2}{\left(R_1 + R_2 \right)^2} \right)^2 \cdot \left(U_{R_1} \right)^2 + \left(\frac{V_{in} \cdot R_1}{\left(R_1 + R_2 \right)^2} \right)^2 \cdot \left(U_{R_2} \right)^2 = U_{V_{out}}^2 = \frac{\left(U_{V_{in}} \right)^2}{4} + \frac{\left(U_{R} \right)^2}{8 \cdot R^2} \cdot \left(V_{in} \right)^2;$$

$$\Rightarrow U_{V_{out}} = 0,003 V;$$

INCERTEZZA B CASO A

1) Si consulto il monvolo dello strumento e si prelevono le incertezze per il ronge di input

Temperature Coefficient ±(ppm of reading + ppm of range) ±(ppm of reading + ppm of range)/°C Full Scale Resolution Input Resistance 24 Hours Outside Ton ±5°C 2 Years ±210.0mV 10nV >100GQ 19 + 12 23 + 13 2 + 1.8 +2 10V >100GΩ 14 + (1.3 0.2 + 0.18±21.0V >100GΩ 3.2 + 0.35 8 + 0.4 12 + 0.4 716+ 0.4 h 0.3 + 0.02+210.0V 10µV 10MΩ ±1% 5 +12 14 + 28 22 + 2.8 30 + 2.8 1.5 + 0.3±1100.0V 100uV 10MΩ ±1% 5 + 0.4 14 + 0.7 22 + 0.7 30 + 0.7 1.5 + 0.06

PPH Rand PPM Range

2) Si riceva la formula

DC Voltage Uncertainty: = ±[(ppm of reading) x (measured value) + (ppm of range) x (range used)] / 1,000,000

% Accuracy: = (ppm accuracy) / 10,000.

ES: Vin = 1V

1ppm of Range: = 20 counts for ranges up to 200V and 10 counts on 1000V range at 7½-digits.

Misura & Caso

3) Calcolo incertezza ed Arrotondamento a <u>6 CS</u>

INCERTEZZA:

PPM Range Range Usato

$$U(V_{out}) = \underbrace{14} \cdot \underbrace{0.507363V}_{0.507363V} + \underbrace{1.3}_{0.507363V} \cdot \underbrace{2V}_{0.507363V} / 1000000 = 9,703082 \cdot 10^{-6} = 0,00000097038 V = 0,000010 V;$$

INCERTE 22A LETTURA :
$$W_R = \frac{14}{100} \cdot 5V = 0.0055V$$
 (ES)

• INCERTEZZA LETURA :
$$W_S = \frac{1.3}{100} \cdot (10V) = 0.0050 \text{ V}$$
 (ES)

MISURA: 5V + (0.0055 + 0.0050) V

Per fattore di copertura k=2 si ottiene un'INCERTEZZA ESTESA pari a: 0,006 V;

La misura che si ottiene è: $V_{out} = (0,502 \pm 0,006) V$;

Tipo A: $(0,507353 \pm 0,000004) \ V$; $(0,507349 < V_{out} < 0,507357) \ V$; **Tipo B:** $(0,507363 \pm 0,000020) \ V$; $(0,507343 < V_{out} < 0,507383) \ V$;

Misura indiretta: $(0,502 \pm 0,006) V$; $(0,496 < V_{out} < 0,508) V$;

Tutte le coppie di misure sono tra loro compatibili.

