

Note Junction Best Note Provider

Note By: Roshan BiSt

Sampling distribution and estimation

BEStimation -> The statistical method of estimating unknown population parameter from the population is called estimation. The main objective of the estimation is to obtain a guess or estimate of the unknown true value from the sample data or past experience.

Estimates and Estimator -> A sample statistics which is used to estimate a population parameter is called estimator.

For example: The sample mean (X) is an estimator of population mean (41), Sample proportion (p) is the estimator of population proportion (P) and the Sample standard deviation (S) is the estimator of population standard deviation (o).

A specific numerical value of estimator is called estimate or in other words an estimate is a specific observed value of a statistic.

@ Types of estimation:

single sample statistics is used to estimate the population parameter is known as point estimation.

parameter as called point estimator and the numerical value of taken by this point estimator is called point estimate.

3. Sample Statistics & Population Parameter.

Population parameter.
of It represents the whole elements on population
1st Population mean = qc.
117 Population 8120 = N.
TV) Population standard deviation(0)=[==(xx)]
y) Population correlation coefficient= 3
vos Population parameterses denoted

Let a and c2 be the lower and upper of limits of confidence interval and 0 be the population parameter. Then probability of population parameter O lies between 4 and 62 is known as confidence level or level of confidence and of is the level of significance which is the probability of a does not lies between G_1 and G_2 . So, Probability $P(G_1 \leq O \leq G_2)$

and \propto 18 the probability $\propto = P(0 \text{ does not lies between } G \text{ and } G)$.

3 Standard Error of Sample Mean(x):-

Page Miccorn	
Statistic	Stangara error.
Mean when or known and population size (N) 48 infinite.	In deviation
Mean when or 18 known and population size (N) -18 finite.	S.E $(\overline{X}) = \overline{O} \overline{N-n}$
Mean, when or is unknown and population Size is intimete	S.E (X) = 5 Valenctes
Mean when of 18 unknown and population 512e 18 finste.	S.E(X) = $\frac{S}{\sqrt{n}} \frac{N-n}{N-1}$
Difference of means when o's are unknown.	S.F $(\overline{X}_1 - \overline{X}_2) = \sqrt{(S^2 \{ \frac{1}{n_1} + \frac{1}{n_2} \})}$
Difference of means when one are known	SF $\left(\overline{X_1} - \overline{X_2}\right) - \left(\overline{X_1}^2 + \overline{X_2}^2\right)$

3. Confidence interval estimation of population mean (41): X-ZaisiE LALLX+ZaisiE # Numerical Problems: replace Zaby to, n-1 an cose of n L30. During a water storage a water company randomly sampled resen residensial water metres in order to monitor daily Water consumption. On a particular day a sample of 30 meteres showed a sample mean of 240 gallons and Sample standard deviation of 45 gallons. Find a 90% confidence interval for the mean water consumption for the Soly Given, Sample size (n) = 30 Sample mean (x)=240 gallons. Sample standard deviation (S) = 45 gallons. level of confidence (1-0x) =90% book and cut key for Z HI then, $\propto = 1 - 0.90$ or, Zx = Z0.10 or, $240 - 1.64 \times 45 \le 40 \le 240 + 1.64 \times 45$ or, 226.53 < 46 253.47

Hence the lower limit and upper limit for the mean water consumption for the population are 226.53 and 253.47 respectively at 98% confidence interval.

9.2. A Random sample of 100 articles selected from a batch of 2000 articles shows that the average diameter Of article es 0.354 with a standard deviation 0.048. Find 95% and 98% confidence enterval for the average of this batch of 2000 students. Given, Sample spre (n) = 100 Population 592e (N) = 2000 Sample mean (X) = 0.354 Look at page no 309. Sample Standard deviation (0) = 0.048 table. calculate 3 (1) level of confedence (1-x) = 95% and see the value maide the table ⇒ × = 0.05 and find value of Z > Zo.05 = 1.96 OR. Short Cut key table 9B. Also, level of confedence at 28% (1-2)=98% ⇒ ×=0.02 $\Rightarrow 20.02 = 2.33$ At 95% level of confidence the confidence interval estimation of population (pc) 18, X-Zx. S.E < gle X+Xx 'S.E $\sqrt[N]{X} - Z_{0.05} \cdot \frac{C}{\sqrt{n}} \sqrt[N-n]{N-1} \leq g_{\ell} \leq X + Z_{0.05} \cdot \frac{C}{\sqrt{n}} \sqrt[N-n]{N-1}$ $0.354-1.96 \times 0.048$ $2000-100 \leq pc \leq 0.354+1.96$ $100 \sqrt{2000-1} \times \frac{0.048}{\sqrt{100}} = 2000-100$ or, 0.34484 que 0.3632 Suppose that when a signal having value ge is transmitted from location A. The value received at location B 18 normally distributed with mean se and vavance 4 1: 8 sent other the value received is fe+N where N 18 representing note is normal with mean o and variance 4 to reduce error. Suppose the same, value is sent 9 times, if the Successive value received are 5, 8.5, 12, 15, 7, 9, 7.5, 6.5, and 10.5. Construct 95% confedence interval for pl. Soli Given, X: 5, 8.5, 12, 15, 7,9, 7.5, 6.5 and 10.5 Sample size (n) = 9. Population variance $(o^2) = 4$ Sample mean (X) = 5+8.5+12+15+7+9+7.5+6.5+10.5 level of confidence (1-x)=95% Then $\propto = 0.05$ Now, at 95% level of confidence, the confidence interval estimate of population ge is $\overline{X}-\overline{Z}_{N} = 4 \leq \overline{X}+\overline{Z}_{N} = 5$ or, 7.69 = qe = 10.36

Hence the lower limits and upper limits of population mean gr are 52.54 and 7.69 and 10.36 respectively. 94. A random sample of size 25 showed a mean of 65 Inches with a standard deviation of 25 inches, Determine 98% confidence interval for the mean of the population. Sample size (n)=25. Sample mean $(\bar{x}) = 65$ Sample standard deviation (S) = 25 level of confidence (1-0x)=98% Look in table book
Page no. 312 we use this take Were Solving case but
His man 1.30 case but →£, m-1 = £, 02, 25-1 = to.02,246 this question 18 of typen 1.30 59 We use this method = 2.492

Now at, 95% level of confidence interval estimate of population mean μ is $X-t_{x,n-1} \leq 4 \leq X+t_{x,n-1} \leq \frac{1}{5}$ or $65-2.492 \times 25 \leq 4 \leq 65+2.492 \times 25 \leq 5$ or, $52.54 \leq \mu \leq 77.46$

Hence the lower limits and upper limits of population mean ge are 52.54 and 77.46 respectively.

Standard error of sample proportion (p) = $\frac{PQ}{n}$ (when population size is infinite where, P= Copulation proportion Q = 1-P Where, p= sample size. Where, p= sample proportion (p) = $\frac{PQ}{n}$ (If p and q are the proportion of $\frac{X}{n}$) is infinite. Where, $\frac{X}{n}$ (If p and q are the proportion of $\frac{X}{n}$) is infinite. Since, $\frac{X}{n}$ (N) is infinite. The standard error of sample proportion (p) = $\frac{PQ}{n}$ (N) is infinite. The standard error of sample proportion (p) = $\frac{PQ}{n}$ (N) is infinite.
P= lopulation proportion. $Q = 1 - \Gamma$ P= Standard error of sample proportion $Q = 1 - \Gamma$ where, $P = Sample$ proportion $P = PQ$ the population streether $PQ = PQ$ P(N) is infinite) P(N) is infinite)
Standard error of sample proportion $Q = 1 - P$ where, $p = \text{sample proportion}$ $q = 1 - P$ where, $p = \text{sample proportion}$ $q = p$ $q = p$ $q = p$ first Standard error of sample proportion $p = p$ $q = p$
Standard error of sample proportion $(p) = pq$ (If p and q are known where, $p = sample$ proportion $sim_{q} = \frac{x}{m}$ (N) is infinite) Standard error of sample proportion $p = pq$ (N) is infinite) Standard error of sample proportion $p = pq$ (N) is infinite)
flip Standard evor of sample proportion (p) = $\frac{PQ}{N-N}$ $\frac{N-n}{N-1}$
flip Standard evor of sample proportion (p) = $\frac{PQ}{N-N}$ $\frac{N-n}{N-1}$
Standard evror of sample proportion (p) = \frac{PQ}{n} \sqrt{N-n}
Standard evror of sample proportion (p) = \frac{PQ}{n} \sqrt{N-n}
ev) Standard error of sample proportion (p) = P2 N-n (If pand q) \\ i. Interval Estimation of population amount (0)
Starioura error of sample proportion (p)= P2 N-n (If and a)
Trolowal ale to Marie known)
$=$ $\frac{1}{1}$
P-Zx·S·E = P=p+Zx·S·E
95. It is observed that 28 successes in 70 independent
Bernoulle trial. Compute 90% confidence interval for population
proposition,
Soln' Given, no. of endependent bial (n)=70.
no. of sucess $(X) = 28$
So, propostion of succession x - 28
So, proportion of sucess $(p) = \frac{\chi}{\eta} = \frac{28}{70} = 0.4$
2 = 1 - 28
~ 70
level of confidence $(1-\alpha)=90$ = 0.90
$\Rightarrow \propto = 0.10$
$\Rightarrow Z_1 = Z_{0.10}$
=1.65

Scanned with CamScanner

Now, at 90% level of confedence the confedence interval estimate of population proportion (p) 18, $p-Z_{\infty}$. S.E $\leq P \leq p+Z_{\infty}$. S.E or, $0.4-1.65 \times \frac{P2}{n} = 0.4+1.65 \times \frac{P2}{n}$ or, 0.4-1.65 x 0.4 x 0.6 \(0.4 + 1.65 x \) \(\frac{10.4 \times 0.6}{\pm 40} \) α , 0.304 $\angle P \angle .0.496$ Hence, the lower and upper limit of population proportion are 0.304 and 0.496 respectively. 36. A random sample of 80 people form a community of 300 showed that 30 were smoker. Find 90% of confidence limit for the proportion of smoker. Solvier, Population size (N) = 300 Sample Spze (n)=80 no of smoker (x)=30. Sample propostion of smoker(p)= $\frac{X}{n} = \frac{30}{80} = 0.375$ 9 = 1 - 0.375 0.625level of confidence (1-x)=99/=0,99 $\Rightarrow \angle = 0.01$ $\Rightarrow Z_{2} = Z_{0.01} = 2.58$ Now, at 99% level of confidence, the confidence interval estimate of poppin proportion p 18 $p-Z_{0.01} \times \sqrt{\frac{P_2}{n-1}} \cdot \sqrt{\frac{N-n}{N}} \leq P \leq p+Z_{0.01} \cdot \sqrt{\frac{P_2}{N-1}} \cdot \sqrt{\frac{N-n}{N}}$ or, $0.375-2.58 \times \sqrt{\frac{0.375 \times 0.625}{80-1}} \sqrt{\frac{300-80}{300}} \leq P \leq 0.375 + 2.58 \times 0.375 \times 0.625} \sqrt{\frac{0.375 \times 0.625}{80-1}}$ or, 0.2546 Hence the lower limit and upper limit of population proportion of smoker are 0.2546 and 0.4953 respectively. at It probability value not multiply.

Scanned with CamScanner

Determination of Sample Size (n):

By using mean: Let a population of size N and drawing a sample from population with size n and population standard deviation is or, then by using central limit theorem (CLT).

at a level of
$$Z = X - \mu$$

or, $Z_{\infty} = \frac{E}{S_{\infty}}$

(b). By using proportion: - Let a sample size (n) 18 drawn from the population with population proportion (P) and the sample proportion is (p) then, we have

$$Z = \frac{\rho - \rho}{\sqrt{\frac{\rho Q}{m}}}$$

$$\sigma_1 Z_{\infty} = \frac{E}{\sqrt{\frac{\rho Q}{m}}} = \frac{E \sqrt{n}}{\sqrt{\frac{\rho Q}{m}}} \left(: F = \rho - \rho \right)$$

$$\sigma_1 \sqrt{m} = \frac{Z_{\infty}}{\sqrt{p}} \sqrt{\frac{\rho Q}{m}}$$

$$\sigma_2 \sqrt{m} = \frac{Z_{\infty}}{\sqrt{p}} \sqrt{\frac{\rho Q}{m}}$$

$$\sigma_{i} = \left(\frac{Z_{i}}{E}\right)^{2} \cdot \frac{PQ}{E}$$

Note: If Pand Q are unknown not given then take P=Q=0.5

27. Assuming population standard deviation 3, how large should a sample be to estimate population mean with margin of error not exceeding 0.5? Population standard deviation (0) = 3. Error (E) = 0.5level of significance $(\propto) = 0.05$ Now, sample size (n) = (Zx.0) $=\left(\frac{Z_{0.05}\times^3}{0.5}\right)^2$ $=\left(\frac{1.96\times3}{0.5}\right)^{2}$ = 138.29 9.8. The principle of a college wants to estimate the propostion of students who were interested to develop startup. What size of a sample should he select so as to have the difference of por proportion of interested students with true mean not to exceed by 10% with almost certainly? It is believed from previous records that the propostion of interested student's was 0.30? Question HT. almost certaining Soli Given, Error (E) = 10% Copulation proportion (P)= 0.30 then, Q = 1-0.30 = 0.70Since this is the case of almost certainity, so we take Z=3. Now, $n=\left(\frac{Z_{\infty}}{E}\right)^2$. PQ $=\left(\frac{3}{0.10}\right)^2 \times 0.30 \times 0.70$

Q.N.9. A random sample of size 64 has been drawn from a population with standard deviation 20. The mean of sample 48 80. Calculate 95% confidence limit for the population, mean. How does the width of confidence interval change of sample 592e 18 256 instead? Sample size (n) = 64 Population standard deviation (0)=20 Sample mean (x)=80 level of confidence (1-0c)=95% → Zu=Zo.05=1.96 Now, at 95% level of confidence, the confidence interval estimate of population mean μ 98, $\chi-20.05\frac{G}{12}=44=\chi+20.05\frac{G}{12}$ or $80-1.96\times\frac{20}{100}=91.96\times\frac{20}{100}$ or, 75.16 gl = 84.9 Here the wedth of confidence enterval is 84.9-75.1 of n=256 then $80-1.96 \times \frac{20}{\sqrt{256}} \leq pl \leq 80+1.96 \times \frac{20}{\sqrt{256}}$ 02, 77.55 = qu = 1.82.45 Here, width of confidence interval 1282.45-77.55 = 4.90 Hence, if we increase the size of sample then width of confidence interval decreases.