Knowledge Representation and Reasoning

Agent

- Perceive / Acquire
- Knowledge representation
- Reasoning
- Acting

Propositional Logic Concepts

- Logic is a study of principles used to
 - distinguish correct from incorrect reasoning.
- Formally it deals with
 - the notion of truth in an abstract sense and is concerned with the principles of valid inferencing.
- A proposition in logic is a declarative statements which are either true or false (but not both) in a given context. For example,
 - "Jack is a male",
 - "Jack loves Mary" etc.

Cont...

- Given some propositions to be true in a given context,
 - logic helps in inferencing new proposition, which is also true in the same context.
- Suppose we are given a set of propositions such as
 - "It is hot today" and
 - "If it is hot it will rain", then
 - we can infer that
 - "It will rain today".

Well-formed formula

- Propositional Calculus (PC) is a language of propositions basically refers
 - to set of rules used to combine the propositions to form compound propositions using logical operators often called connectives such as Λ,
 V, ~, →, ↔
- Well-formed formula is defined as:
 - An atom is a well-formed formula.
 - If α is a well-formed formula, then $-\alpha$ is a well-formed formula.
 - If α and β are well formed formulae, then $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta)$, $(\alpha \leftrightarrow \beta)$ are also well-formed formulae.
 - A propositional expression is a well-formed formula if and only if it can be obtained by using above conditions.

Truth Table

- Truth table gives us operational definitions of important logical operators.
 - By using truth table, the truth values of well-formed formulae are calculated.
- Truth table elaborates all possible truth values of a formula.
- The meanings of the logical operators are given by the following truth table.

Р	Q	~P	PΛQP	VQ P	Q	$P \leftrightarrow Q$	
T	T	F	Т	Т	Т	T	
T	F	F	F	Т	F	F	
F	T	Т	F	Т	Т	F	
F	F	Т	F	F	Т	Т	

Equivalence Laws

Commutation

- 1. $P \wedge Q$
- 2. P V Q

≅ ~

 \cong

QΛP QVP

Association

- 1. $P \Lambda (Q \Lambda R)$
- 2. P V (Q V R)

 $(P \land Q) \land R$ $(P \lor Q) \lor R$

Double Negation

 \cong

 \cong

 \cong

Р

Distributive Laws

- 1. $P \Lambda (Q V R)$
- 2. $PV(Q\Lambda R)$

 $(P \land Q) \lor (P \land R)$ $(P \lor Q) \land (P \lor R)$

De Morgan's Laws

- 1. $\sim (P \land Q)$
- 2. ~ (P V Q)

~ P V ~ Q ~ P \Lambda ~ Q

Law of Excluded Middle

P V ~ P

≅

T (true)

Law of Contradiction

P Λ ~ P

 \cong

F (false)

$P \rightarrow Q = P V Q$

Propositional Logic - PL

- PL deals with
 - the validity, satisfiability and unsatisfiability of a formula
 - derivation of a new formula using equivalence laws.
- Each row of a truth table for a given formula is called its interpretation under which a formula can be true or false.
- A formula α is called **tautology** if and only
 - if α is true for all interpretations.
- A formula α is also called **valid** if and only if
 - it is a tautology.

Cont...

- Let α be a formula and if there exist at least one interpretation for which α is true,
 - then α is said to be **consistent** (satisfiable) i.e., if \exists a model for α , then α is said to be consistent .
- A formula α is said to be inconsistent (unsatisfiable), if and only if
 - α is always false under all interpretations.
- We can translate
 - simple declarative and
 - conditional (if .. then) natural language sentences into its corresponding propositional formulae.

Example

- Show that "It is humid today and if it is humid then it will rain so it will rain today" is a valid argument.
- Solution: Let us symbolize English sentences by propositional atoms as follows:

A : It is humid

B: It will rain

Formula corresponding to a text:

$$\alpha: ((A \rightarrow B) \land A) \rightarrow B$$

• Using truth table approach, one can see that α is true under all four interpretations and hence is valid argument.

Cont..

Truth Table for $((A \rightarrow B) \land A) \rightarrow B$							
A	В	$A \to B = X$	$X \wedge A = Y$	$Y \rightarrow B$			
T	Т	T	T	T			
Т	F	F	F	T			
F	Т	T	F	T			
F	F	T	F	T			

Cont...

- Truth table method for problem solving is
 - simple and straightforward and
 - very good at presenting a survey of all the truth possibilities in a given situation.
- It is an easy method to evaluate
 - a consistency, inconsistency or validity of a formula, but the size of truth table grows exponentially.
 - Truth table method is good for small values of n.
- For example, if a formula contains n atoms, then the truth table will contain 2ⁿ entries.
 - A formula $\alpha: (P \land Q \land R) \rightarrow (Q \lor S)$ is **valid** can be proved using truth table.
 - A table of 16 rows is constructed and the truth values of α are computed.
 - Since the truth value of α is true under all 16 interpretations, it is valid.

Cont...

- We notice that if P Λ Q Λ R is false, then α is true because of the definition of \rightarrow .
- Since P Λ Q Λ R is false for 14 entries out of 16, we are left only with two entries to be tested for which α is true.
 - So in order to prove the validity of a formula, all the entries in the truth table may not be relevant.
- Other methods which are concerned with proofs and deductions of logical formula are as follows:
 - Natural Deductive System
 - Axiomatic System
 - Semantic Tableaux Method
 - Resolution Refutation Method

Natural deduction method - ND

- ND is based on the set of few deductive inference rules.
- The name natural deductive system is given because it mimics the pattern of natural reasoning.
- It has about 10 deductive inference rules.

Conventions:

- E for Elimination.
- P, P_k , $(1 \le k \le n)$ are atoms.
- α_k , (1 $\leq k \leq n$) and β are formulae.

ND Rules

Rule 1: $I-\Lambda$ (Introducing Λ)

 $I-\Lambda$: If $P_1, P_2, ..., P_n$ then $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$

Interpretation: If we have hypothesized or proved P_1, P_2, \dots and P_n , then their conjunction $P_1 \wedge P_2 \wedge \dots \wedge P_n$ is also proved or derived.

Rule 2: E- Λ (Eliminating Λ)

E- Λ : If $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$ then P_i ($1 \le i \le n$)

Interpretation: If we have proved $P_1 \Lambda P_2 \Lambda ... \Lambda P_n$, then any P_i is also proved or derived. This rule shows that Λ can be eliminated to yield one of its conjuncts.

Rule 3: I-V (Introducing V)

I-V: If P_i ($1 \le i \le n$) then $P_1 V P_2 V ... V P_n$

Interpretation: If any Pi $(1 \le i \le n)$ is proved, then $P_1V ...V P_n$ is also proved.

Rule 4: E-V (Eliminating V)

 $E-V : If P_1 V ... V P_n, P_1 \rightarrow P, ..., P_n \rightarrow P then P$

Interpretation: If $P_1 \vee ... \vee P_n$, $P_1 \rightarrow P$, ..., and $P_n \rightarrow P$ are proved, then P is proved.

Rules – cont..

```
Rule 5: I- \rightarrow (Introducing \rightarrow)

I- \rightarrow: If from \alpha_1, ..., \alpha_n infer \beta is proved then \alpha_1 \land ... \land \alpha_n \rightarrow \beta is proved

Interpretation: If given \alpha_1, \alpha_2, ... and \alpha_n and from these we deduce \beta then \alpha_1 \land \alpha_2 \land ... \land \alpha_n \rightarrow \beta is also proved.

Rule 6: E- \rightarrow (Eliminating \rightarrow) - Modus Ponen

E- \rightarrow: If P_1 \rightarrow P, P_1 then P

Rule 7: I- \leftrightarrow (Introducing \leftrightarrow)

I- \leftrightarrow: If P_1 \rightarrow P_2, P_2 \rightarrow P_1 then P_1 \leftrightarrow P_2

Rule 8: E- \leftrightarrow (Elimination \leftrightarrow)

E- \leftrightarrow: If P_1 \leftrightarrow P_2 then P_1 \rightarrow P_2, P_2 \rightarrow P_1
```

Examples

Example1: Prove that $P\Lambda(QVR)$ follows from $P\Lambda Q$

Solution: This problem is restated in natural deductive system as "from P Λ Q infer P Λ (Q V R)".

{Theorem}	from $P \Lambda Q$ infer $P \Lambda (Q V R)$	
{ premise}	PΛQ	(1)
$\{E-\Lambda\ ,\ (1)\}$	Р	(2)
$\{E-\Lambda\ ,\ (1)\}$	Q	(3)
{ I-V , (3) }	QVR	(4)
$\{ I-\Lambda, (2, 4) \}$	PΛ(Q V R)	Conclusion

Axiomatic System for PL

- It is based on the set of only three axioms and one rule of deduction.
 - It is minimal in structure but as powerful as the truth table and natural deduction approaches.
 - These methods basically require forward chaining strategy where we start with the given hypotheses and prove the goal.

```
Axiom1 (A1): \alpha \rightarrow (\beta \rightarrow \alpha)
```

Axiom2 (A2):
$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$$

Axiom3 (A3):
$$(\sim \alpha \rightarrow \sim \beta) \rightarrow (\beta \rightarrow \alpha)$$

Modus Ponen (MP) defined as follows:

Hypotheses: $\alpha \rightarrow \beta$ and α **Consequent:** β

Examples

Examples: Establish the following:

1. $\{Q\} \mid -(P \rightarrow Q)$ i.e., $P \rightarrow Q$ is a deductive consequence of $\{Q\}$.

 $\{MP, (1,2)\} \qquad P \rightarrow Q$

2. $\{P \rightarrow Q, Q \rightarrow R\} \mid -(P \rightarrow R) \text{ i.e., } P \rightarrow R \text{ is a deductive consequence of } \{P \rightarrow Q, Q \rightarrow R\}.$

$$\{Hypothesis\} \qquad P \to Q \tag{1}$$

$$\{Hypothesis\}$$
 $Q \rightarrow R$ (2)

$$(Q \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R))$$
 (3)

$$\{MP, (2, 3)\}\ P \to (Q \to R)$$
 (4)

$$((P \rightarrow Q) \rightarrow (P \rightarrow R)) \qquad (5)$$

$$\{MP, (4, 5)\}\ (P \to Q) \to (P \to R)$$
 (6)

$$\{MP, (1, 6)\}$$
 $P \rightarrow R$ proved

Deduction Theorems in AS

Deduction Theorem:

If Σ is a set of hypotheses and α and β are well-formed formulae , then $\{\Sigma \cup \alpha \} \mid -\beta \text{ implies } \Sigma \mid -(\alpha \to \beta).$

Converse of deduction theorem:

Given $\Sigma \mid -(\alpha \rightarrow \beta)$, we can prove $\{\Sigma \cup \alpha\} \mid -\beta$.

Useful Tips

1. Given α , we can easily prove $\beta \to \alpha$ for any well-formed formulae α and β .

2. Useful tip

If $\alpha \to \beta$ is to be proved, then include α in the set of hypotheses Σ and derive β from the set $\{\Sigma \cup \alpha\}$. Then using deduction theorem, we conclude $\alpha \to \beta$.

Semantic Tableaux System in PL

- Earlier approaches require
 - construction of proof of a formula from given set of formulae and are called direct methods.
- In semantic tableaux,
 - the set of rules are applied systematically on a formula or set of formulae to establish its consistency or inconsistency.
- Semantic tableau
 - binary tree constructed by using semantic rules with a formula as a root
- Assume α and β be any two formulae.

Semantic Tableaux Rules

Rule 1: A tableau for a formula $(\alpha \land \beta)$ is constructed by adding both α and β to the same path (branch). This can be represented as follows:

 $\begin{vmatrix} \alpha \\ \beta \end{vmatrix}$

Rule 2: A tableau for a formula $\sim (\alpha \land \beta)$ is constructed by adding two alternative paths one containing $\sim \alpha$ and other containing $\sim \beta$.

 $\sim \alpha \qquad \sim \beta \qquad \sim \beta$

Rule 3: A tableau for a formula $(\alpha \lor \beta)$ is constructed by adding two new paths one containing α and other containing β .

Rule 4: A tableau for a formula \sim (α \vee β) is constructed by adding both \sim α and \sim β to the same path. This can be expressed as follows:

~ α ~ β

Rules - Cont..

Rule 9:
$$\sim (\alpha \leftrightarrow \beta) \cong (\alpha \land \sim \beta) \lor (\sim \alpha \land \beta)$$

$$\alpha \ \Lambda \sim \beta \qquad \sim \alpha \ \Lambda \ \beta$$

Consistency and Inconsistency

- If an atom P and ~ P appear on a same path of a semantic tableau,
 - then inconsistency is indicated and such path is said to be contradictory or closed (finished) path.
 - Even if one path remains **non contradictory** or **unclosed** (open), then the formula α at the root of a tableau is **consistent**.
- Contradictory tableau (or finished tableau):
 - It defined to be a tableau in which all the paths are contradictory or closed (finished).
- ullet If a tableau for a formula α at the root is a contradictory tableau,
 - then a formula α is said to be inconsistent.

Example

Show that α: (Q Λ ~ R) Λ (R → P) is consistent and find its model.

• $\{Q = T, R = F\}$ and $\{P = T, Q = T, R = F\}$ are models of α .