Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Студент Баатарцогт Анужин	Работа выполнена			
Преподаватель Мейлахс Александр Павлович	Отчет принят			
Рабочий про	гокол и отчет по			
лабораторно	й работе №1.04V			

1. Цель работы.

Проверка основного закона динамики вращения. Проверка зависимости момента инерции от положения масс относительно оси вращения

2. Задачи, решаемые при выполнении работы.

Измерение времени падения каретки с шайбами.

3. Объект исследования.

Маятник Обербека.

4. Метод экспериментального исследования.

Измерение времени падения каретки при изменении массы каретки и изменении положения утяжелителей.

5. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер			0,01

6. Рабочие формулы и исходные данные.

Constant:

 $d = (46.0 \pm 0.5)$ мм; масса $m_{\rm yr}$ каждого из грузов-утяжелителей на крестовине; сумма I_0 моментов инерции стержней крестовины, момента инерции ступицы и собственных центральных моментов инерции утяжелителей; момент $M_{\rm TP}$ силы трения в оси крестовины.

Range for R and m_w:

расстояние R от оси вращения крестовины до центров грузов-утяжелителей вычислять не нужно — оно задается непосредственно, обычно, не меньше пяти значений в диапазоне $0.07 m \dots 0.23 m$;

значения массы $m_{\rm r}$ подвешенного груза устанавливаются экспериментатором, обычно, не меньше четырех значений в диапазоне $0.1 \kappa z ... 0.9 \kappa z$;

Formula:

$$\begin{split} a &= \frac{2h}{t^2}, \quad \epsilon = \frac{2a}{d}, \qquad M = \frac{md}{2} \big(g - a\big). \\ ma &= mg - T \;. \quad R = l_1 + (n-1)l_0 + \frac{1}{2}b \;. \end{split}$$

$$\overline{x} = \frac{x_1 + \ldots + x_i + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i \,. \qquad S_{\overline{x}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)}} \,. \qquad \Delta_{\overline{x}} = t_{\alpha,n} \,\, S_{\overline{x}} \,,$$

$$S_b^2 = \frac{1}{D} \frac{\sum d_i^2}{n-2}; \qquad S_a^2 = \left(\frac{1}{n} + \frac{\overline{x}^2}{D}\right) \frac{\sum d_i^2}{n-2} \cdot \Delta_a = 2S_a \ \Delta_b = 2S_b$$

7. Схема установки (перечень схем, которые составляют Приложение 1). Механика - Лабораторная работа №2

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине

Magaz Fryga yr	ti o	Положение утяжелителей					
Масса груза, кг	ti, C	0.07	0.10	0.13	0.16	0.19	0.22

	t1	10.80	13.16	15.79	18.59	21.50	24.46
	t2	10.81	13.15	15.79	18.60	21.48	24.45
	t3	10.81	13.17	15.79	18.60	21.49	24.45
0.10	t4	10.80	13.17	15.79	18.60	21.49	24.43
	t5	10.80	13.17	15.80	18.59	21.50	24.44
	tcp	10.81	13.16	15.80	18.60	21.30	24.44
	t1	5.07	6.15	7.38	8.68	10.05	11.42
	t2	5.06	6.16	7.38	8.69	10.05	11.42
	t3	5.06	6.16	7.39		10.03	
0.30					8.69		11.42
	t4 t5	5.05	6.16	7.39	8.69	10.04 10.04	11.42 11.42
		5.05	6.16	7.39	8.70	10.04	
	tcp	5.06	6.16	7.39	8.69		11.42
	t1	3.80	4.62	5.53	6.52	7.52	8.56
	t2	3.81	4.63	5.53	6.53	7.53	8.56
0.50	t3	3.81	4.62	5.54	6.52	7.52	8.56
	t4	3.80	4.62	5.54	6.51	7.52	8.55
	t5	3.80	4.63	5.54	6.51	7.53	8.56
	tcp	3.80	4.62	5.54	6.52	7.52	8.56
	t1	3.19	3.87	4.63	5.44	6.28	7.14
	t2	3.18	3.86	4.63	5.43	6.28	7.15
0.70	t3	3.18	3.86	4.64	5.44	6.27	7.15
0.70	t4	3.18	3.87	4.62	5.43	6.28	7.14
	t5	3.18	3.86	4.63	5.43	6.28	7.15
	tcp	3.18	3.86	4.63	5.43	6.28	7.15
	t1	2.79	3.39	4.06	4.77	5.51	6.25
	t2	2.79	3.39	4.06	4.78	5.50	6.25
0.00	t3	2.80	3.40	4.06	4.78	5.50	6.25
0.90	t4	2.80	3.39	4.05	4.77	5.50	6.25
	t5	2.80	3.39	4.06	4.76	5.50	6.26
	tcp	2.80	3.39	4.06	4.77	5.50	6.25

^{9.} Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Вычисленные a, eps, M.

		Ускорение а (м/с2)					
	Масса груза, к	0.07	0.1	0.13	0.16	0.19	0.22
	0.1	0.01713	0.01154	0.00802	0.00578	0.00433	0.00335
	0.3	0.07818	0.05274	0.03666	0.02648	0.01983	0.01534
	0.5	0.13821	0.09354	0.06526	0.04708	0.03533	0.02731
	0.7	0.19753	0.13395	0.09330	0.06773	0.05074	0.03917
	0.9	0.25583	0.17383	0.12145	0.08783	0.06607	0.05117
-							

		Угловое ускорение Е крестовины (рад/с2)				
Масса груза, кг	0.07	0.1	0.13	0.16	0.19	0.22
0.1	0.74468	0.50195	0.34850	0.25146	0.18822	0.14548
0.3	3.39895	2.29310	1.59398	1.15150	0.86196	0.66676
0.5	6.00926	4.06693	2.83733	2.04679	1.53605	1.18729
0.7	8.58819	5.82409	4.05639	2.94485	2.20627	1.70285
0.9	11.12315	7.55771	5.28054	3.81857	2.87251	2.22466

			Момент силы натя	жение нити М (Н	I м)	
Масса груза, кг	0.07	0.1	0.13	0.16	0.19	0.22
0.1	0.02250	0.02251	0.02252	0.02253	0.02253	0.02253
0.3	0.06708	0.06726	0.06737	0.06744	0.06748	0.06751
0.5	0.11111	0.11162	0.11195	0.11216	0.11229	0.11239
0.7	0.15460	0.15562	0.15628	0.15669	0.15696	0.15715
0.9	0.19756	0.19926	0.20035	0.20104	0.20149	0.20180

погрешности и соответствующие доверительные интервалы Для первых значений a, eps и М

Погрешность t	
t avg	10.8
S	0.00548
Sα	0.00245
α	0.95
n	5
tαn	2.8
Δt сл	0.01
Δt	0.08
Δt avg	0.04
t	10.8+-0.04
t rel	0.33%

Погрешность $\Delta \mathcal{E} = \operatorname{sqrt}((d \mathcal{E} / d a * \Delta a) ^2)$				
3	0.74468			
a	0.01713			
Δd	0.0005			
Δa	0.00008			
Δε	0.06			
ε	ε +- 0.06			
ε rel	8%			

Погр	Погрешность момента силы М			
a	0.01713			
d	0.046			
m	0.1			
g	9.82			
Δa	0.00008			
Δd	0.0005			
Δm	0.15			
Δg	1.5			
M	0.022501			
ΔΜ	0.001155748			
M	0,044 +- 0,0012			

	Частные производные		
dm	0.033819902		
dd	0.000245072		
dg	0.00345		
da	-0.00000184		

График Зависимость М(ерs)

График M(eps)				
eps	M			
0.74468	0.0225006			
3.39895	0.0670806			
6.00926	0.1111106			
8.58819	0.1545998			

Погрешность	
$\Delta a = \operatorname{sqrt} \left(\left(\operatorname{da} / \operatorname{dt} * \Delta t \right) ^2 \right)$	
a	0.01713
∆t avg	0.03591
Δh	0.0001
t avg	10.80
Δa	0.00008
a rel	0.47%
a	a+-0.00008

11.1232	0.1975643
0.50195	0.0225134
2.2931	0.0672561
4.06693	0.1116243
5.82409	0.1556233
7.55771	0.1992618
0.3485	0.0225216
1.59398	0.067367
2.83733	0.1119495
4.05639	0.1562779
5.28054	0.2003459
0.25146	0.0225267
1.1515	0.0674373
2.04679	0.1121586
2.94485	0.1566895
3.81857	0.201042
0.18822	0.02253
0.86196	0.0674832
1.53605	0.1122937
2.20627	0.156963
2.87251	0.2014924
0.14548	0.0225323
0.66676	0.0675142
1.18729	0.112386
1.70285	0.1571494
2.22466	0.2018008