

¿ Qué se estudia relacionado con la POTENCIA?

Según el tipo de circuito

Continua

Monofásica

Trifásica

Poliarmónica

Factor de potencia

Tema especial

Cualquier estudio sobre la potencia en un circuito eléctrico debe partir de la expresión general de la potencia

$$p(t) = u(t) \cdot i(t)$$

En el caso de circuitos monofásicos y trifásicos, se supone el sistema alimentado con una fuente de tensión alterna senoidal:

$$u(t) = U \cdot sen \omega t$$

$$i(t) = I \cdot sen(\omega t + \varphi)$$

Sea el siguiente circuito

Utilizando la expresión generalizada de p(t), y luego de aplicar relaciones trigonométricas adecuadas^(*), resulta

$$p(t) = u_f(t) \cdot i(t) = \frac{U_f \cdot I}{2} \left[\cos \varphi - \cos \left(2\omega t + \varphi \right) \right]$$

que es la denominada potencia instantánea monofásica

(*) :
$$\operatorname{sen}\alpha \cdot \operatorname{sen}\beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

$$p(t) = u_f(t) \cdot i(t) = \frac{U_f \cdot I}{2} \left[\cos \varphi - \cos \left(2\omega t + \varphi \right) \right]$$

se puede reescribir

$$p(t) = \frac{U_f}{\sqrt{2}} \frac{I}{\sqrt{2}} \cos \varphi - \frac{U_f}{\sqrt{2}} \frac{I}{\sqrt{2}} \cos (2\omega t + \varphi)$$

$$p(t) = U_{ef} I_{ef} \cos \varphi - U_{ef} I_{ef} \cos \left(2\omega t + \varphi\right)$$

donde $P = U_{ef} I_{ef} \cos \varphi$ potencia activa P, igual al valor medio de p(t)

$$U_{e\!f} I_{e\!f} \cos(2\omega t + arphi)$$
 función senoidal de pulsación 2ω

Graficando lo anterior

$$p(t) = U_{ef} I_{ef} \cos \varphi - U_{ef} I_{ef} \cos \left(2\omega t + \varphi\right)$$

$$p(t) = U_{ef} I_{ef} \cos \varphi - U_{ef} I_{ef} \cos (2\omega t + \varphi)$$

Otra forma de escribir p(t), pero ahora desarrollando el término coseno de la expresión anterior con la identidad trigonométrica $\cos(2\omega t + \varphi) = \cos(2\omega t \cdot \cos(2\omega t + \varphi))$ es:

$$p(t) = p_p(t) + p_q(t)$$

 $p_p(t)$: potencia instantánea u oscilante **activa** $p_a(t)$: potencia instantánea u oscilante **reactiva**

Vamos a analizar estas ondas para ver de dónde salen las denominaciones anteriores.

$${m P} = U_{ef} I_{ef} \cos \varphi$$
 y ${m Q} = U_{ef} I_{ef} \sin \varphi$ son las amplitudes de $p_p(t)$ y $p_q(t)$

A partir de
$$p(t) = U_{ef} I_{ef} \cos \varphi (1 - \cos 2\omega t) + U_{ef} I_{ef} \sin \varphi \sin 2\omega t$$

y dado que $p_p(t)$ y $p_q(t)$ se encuentran en **cuadratura**

se puede asociar a sus amplitudes P y Q con los catetos de un triángulo rectángulo, cuya hipotenusa corresponde al producto U_{ef} I_{ef} , que se denomina carga aparente S

También
$$\Longrightarrow$$
 $S^2 = P^2 + Q^2$

Y por convención

si la carga es **inductiva**
$$\Longrightarrow$$
 Q hacia arriba

si la carga es **capacitiva**
$$\longrightarrow$$
 Q hacia abajo

Triángulo de potencia o de carga

Otra forma de obtener el triángulo de carga

En el triángulo de admitancias, multiplicando por $U_{ef}^{\ 2}$ (U es la variable común en un circuito paralelo)

De la misma forma, en el triángulo de impedancias, multiplicando por $I_{ef}^{\ 2}$ (I es la variable común de un circuito serie)

$$I_{ef}^{2}R = I_{ef}\frac{U_{ef}}{Z}R = I_{ef}U_{ef}\cos\varphi = P$$

$$I_{ef}^{2}X = I_{ef}\frac{U_{ef}}{Z}X = I_{ef}U_{ef}\operatorname{sen}\varphi = Q$$

$$I_{ef}^{2}Z = I_{ef} \frac{U_{ef}}{Z}Z = U_{ef}I_{ef} = S$$

UNIDADES

P: Potencia o carga activa

$$P = [W]$$

Q: Carga **reactiva**

$$Q = [var]$$

S: Carga aparente

$$S = [VA]$$

POTENCIA COMPLEJA

Dada la definición general de la potencia, a partir del producto $u(t)\cdot i(t)$, sería esperable que la misma pudiera aplicarse utilizando las expresiones fasoriales (o complejas) de la tensión y la corriente, según se muestra:

Sean
$$\underline{\boldsymbol{U}} = \boldsymbol{U} \cdot e^{\boldsymbol{j}\alpha}$$

$$\underline{I} = I \cdot e^{-j\beta}$$

con el correspondiente diagrama fasorial

Cabría esperar que el producto de <u>U</u> por <u>I</u> diera como resultado una magnitud relacionada con la potencia

$$\underline{\boldsymbol{U}} \cdot \underline{\boldsymbol{I}} = \boldsymbol{U} \cdot e^{\boldsymbol{j}\alpha} \cdot \boldsymbol{I} \cdot e^{-\boldsymbol{j}\beta} = \boldsymbol{U} \cdot \boldsymbol{I} \cdot e^{\boldsymbol{j}(\alpha - \beta)}$$

Pero
$$\alpha$$
- $\beta \neq \varphi$

Este resultado es un número complejo que tiene unidades de potencia, pero el ángulo no corresponde al desfasaje de \underline{U} e \underline{I} (Recordar que $P=U_{ef}I_{ef}\cos\varphi$).

De la misma forma, debe observarse que generalmente los módulos de \underline{U} e \underline{I} corresponden a las amplitudes de las mismas y no a los valores eficaces.

Si en lugar de \underline{I} se utiliza su conjugado, que para el caso propuesto vale $\underline{I}^*=\underline{I}\cdot e^{j\beta}$, y el producto se divide por 2, resulta

$$\frac{\underline{U}\cdot\underline{I}^*}{2} = \frac{U}{\sqrt{2}}\cdot e^{j\alpha}\cdot\frac{I}{\sqrt{2}}\cdot e^{j\beta} = U_{ef}I_{ef}e^{j(\alpha+\beta)}$$

donde ahora sí α - $\beta = \varphi$ y los módulos se convierten en valores eficaces

Entonces se puede escribir

$$\underline{S} = \frac{\underline{U} \cdot \underline{I}^*}{2} = U_{ef} I_{ef} e^{j(\alpha + \beta)} = Se^{j\varphi}$$

que es la denominada **potencia compleja** $(con S=U_{ef}I_{ef})$

Además
$$\underline{S} = S \cdot e^{j\varphi} = S \cdot \cos\varphi + j S \cdot \sin\varphi = P + j Q$$

Y como antes

P: Potencia o carga activa

Q : Carga **reactiva**

S: Carga aparente

Factor de potencia

Se define como
$$FP = \frac{P}{S}$$

En el caso particular estudiado, donde las señales son senoidales resulta

$$FP = \frac{U_{ef} I_{ef} \cos \varphi}{U_{ef} I_{ef}} = \cos \varphi$$

Se puede observar que $0 \le FP \le 1$

$$\theta \leq FP \leq 1$$

FP se relaciona con el aprovechamiento de las instalaciones (zen qué sentido? \rightarrow jojo!)

El FP no es un rendimiento

(puesto que P y S son <u>conceptualmente</u> diferentes)

IMPORTANTE para entender este concepto

Sea un circuito cuyo funcionamiento puede representarse mediante el siguiente diagrama fasorial

Observando los módulos de las \underline{I} e \underline{I}_R , ¿qué implicancias respecto de la **potencia** y respecto de las **características de la instalación** (sección de los conductores) trae aparejada la comparación de dichas corrientes? (Recordar que $P=U_{ef}I_{ef}\cos\varphi$)

¿Se podría entonces mantener la componente relacionada con la potencia (activa), pero disminuyendo el módulo de \underline{I} ?

La situación descripta podría corresponder al siguiente circuito:

Conectando un capacitor en paralelo:

Es lo que se denomina COMPENSACIÓN DEL FACTOR DE POTENCIA

Factor de potencia. Conclusiones:

La **potencia activa** es el único concepto real relacionado con el trabajo eléctrico. (conversión de la energía eléctrica en otro tipo de energía: mecánica, calor, etc)

La diferencia entre S y P no debe interpretarse como pérdida de energía ni como la existencia de un rendimiento particular del circuito.

El **FP** se relaciona con el aprovechamiento de las instalaciones desde el punto de vista del **módulo de la corriente aparente** con relación a la **sección de los conductores** (un buen y típico ejemplo es el de la filmina anterior).

Por lo tanto:

El objeto de compensar el factor de potencia es **disminuir la corriente** de la fuente o de los conductores de determinada parte del circuito.

POTENCIA TRIFÁSICA

En la carga:

 $u_{ZR} = \hat{U}_{ZR} sen\omega t$ $u_{ZS} = \hat{U}_{ZS} sen(\omega t - \varphi_S)$

$$u_{ZT} = \hat{U}_{ZT} sen(\omega t - \varphi_T)$$

$$i_R = \hat{I}_R \operatorname{sen}(\omega t \pm \alpha_R)$$

$$i_{S} = \hat{I}_{S} sen(\omega t - \varphi_{S} \pm \alpha_{S})$$

$$i_{R} = \hat{I}_{T} sen(\omega t - \varphi_{T} \pm \alpha_{T})$$

$$i_R = \hat{I}_T sen(\omega t - \varphi_T \pm \alpha_T)$$

De acuerdo a la definición de potencia:

$$p(t) = i_R \cdot u_{ZR} + i_S \cdot u_{ZS} + i_T \cdot u_{ZT}$$

Si el generador es **simétrico** y **equilibrado** y la carga es **balanceada** o **equilibrada**, de la expresión anterior resulta :

$$p(t) = \frac{3}{2} U_{Fm\acute{a}x} I_{Fm\acute{a}x} \cos \varphi = P$$

$$Luego \qquad P = 3 \cdot \frac{U_{Fm\acute{a}x}}{\sqrt{2}} \frac{I_{Fm\acute{a}x}}{\sqrt{2}} \cos \varphi = 3 \cdot U_{Fef} I_{Fef} \cos \varphi = 3 \cdot \frac{U_{lef}}{\sqrt{3}} I_{lef} \cos \varphi$$

$$P = \sqrt{3} \cdot U_{lef} I_{lef} \cos \varphi$$

Además, la última permite generalizar la expresión de la **potencia trifásica** para un sistema **trifásico trifilar simétrico y equilibrado** en el cual se pueda tener acceso a las tensiones y corrientes de línea

 U_{RS} U_{ST} U_{TR} Tensiones de línea U_1

Para destacar:

$$p(t) = P = \sqrt{3} \cdot U_{lef} I_{lef} \cos \varphi$$

La potencia instantánea p(t) resulta igual a la potencia activa P, pues es constante e independiente del tiempo

p(t)=P=cte (no pulsante, a diferencia de la potencia instantánea monofásica)

Menor desgaste en piezas móviles, debido a que p(t)=P=cte

Menor cantidad de material para conductores, instalación y estructuras ($P_{trif} = \frac{3}{4} P_{mono}$)

Por extensión, se puede definir

$$Q = \sqrt{3} \cdot U_{Lef} I_{Lef} \operatorname{sen} \varphi$$

$$S = \sqrt{3} \cdot U_{Lef} I_{Lef}$$

(si se mantienen las condiciones de generador perfecto y carga equilibrada)

El factor de potencia de una carga trifásica en estas condiciones sigue valiendo FP=P/S

Todo lo expuesto sigue siendo válido si la carga está **conectada en triángulo**, mientras sea **equilibrada**

Se puede verificar que las fórmulas de P, Q y S son las mismas, pues están expresadas en función de la tensión y corriente de línea, y del argumento de la carga

Si ahora el generador es perfecto, pero la carga desequilibrada, resulta

Carga en estrella

$$P = U_R I_R \cos \alpha_R + U_S I_S \cos \alpha_S + U_T I_T \cos \alpha_T$$

$$Q = U_R I_R \operatorname{sen} \alpha_R + U_S I_S \operatorname{sen} \alpha_S + U_T I_T \operatorname{sen} \alpha_T$$

Carga en triángulo

$$P = U_{RS} I_{RS} \cos \alpha_{RS} + U_{ST} I_{ST} \cos \alpha_{ST} + U_{TR} I_{TR} \cos \alpha_{TR}$$

$$Q = U_{RS} I_{RS} \operatorname{sen} \alpha_{RS} + U_{ST} I_{ST} \operatorname{sen} \alpha_{ST} + U_{TR} I_{TR} \operatorname{sen} \alpha_{TR}$$

Para ambos casos se puede escribir lo siguiente

$$S^2 = P^2 + Q^2$$

Y en este caso no tiene sentido hablar de factor de potencia de la carga trifásica

(en la práctica este caso no es habitual)

POTENCIA EN CIRCUITOS CON TENSIONES Y CORRIENTES POLIARMÓNICAS

Recordando la expresión del valor eficaz de una señal poliarmónica

$$U_{ef}^{2} = U_{0}^{2} + U_{1ef}^{2} + U_{2ef}^{2} + U_{3ef}^{2} + \cdots$$

$$I_{ef}^{2} = I_{0}^{2} + I_{1ef}^{2} + I_{2ef}^{2} + I_{3ef}^{2} + \cdots$$

Recordando además que $S=U_{ef}I_{ef}$

Surge una primera teoría propuesta por **Budeanu** en 1927

"Potencias poliarmónicas"

y una segunda teoría propuesta por **Fryze** en 1931

"Separación de la corriente activa y reactiva"

L. S. Czarnecki, Budeanu and Fryze: Two frameworks for interpreting power properties of circuits with nonsinusoidal voltages and currents. Electrical Engineering 80 (1997) 359-367 © Springer-Verlag 1997

De acuerdo a lo propuesto por **Budeanu**

$$P = P_0 + P_1 + P_2 + P_3 + \cdots + P_n + \cdots$$

$$Q = Q_1 + Q_2 + Q_3 + \cdots + Q_n + \cdots$$

$$P_n = U_{n_{ef}} I_{n_{ef}} \cos \alpha_n \text{ para } n \ge 1 \qquad y \qquad P_0 = U_0 \cdot I_0$$

$$Q_n = U_{n_{ef}} I_{n_{ef}} sen\alpha_n$$

Luego, al intentar construir el triángulo de cargas o de potencia, resulta

$$S^2 > P^2 + Q^2$$

Para salvar la situación, **Budeanu** propuso

$$S^2 = P^2 + Q^2 + D^2$$

En la cual **D** se denomina **carga** o **potencia de deformación**, y a los fines prácticos sólo se puede determinar por cálculo a partir de la expresión anterior.

En general (aunque se puede demostrar que existen excepciones), **D** aparece cuando las ondas de tensión y corriente tienen diferente forma, y aumenta cuanto mayor es dicha diferencia.

Finalmente

$$D=[VAD]=[vad]$$