上海大学 2009 ~ 2010 学年春季学期试卷

课程名: <u>线性代数(A)</u> 课程号: <u>01014009</u> 学分: <u>3</u> 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》,如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试	ı	ᄣᄆ
/\V 1.T\	Λ	ユモ

题号	1	1 1	11]	四	五	六	七
得分							

- 一. 填空题 (本大题共 10 空, 每空 2 分, 共 20 分)
- 1. 排列 246···(2*n*)135···(2*n*-1) 的逆序数为。
- 3. 若 4 阶行列式的第1行元素依次为1.2.3.4 , 第 2 行元素的代数余子式依次为 x.2.x.1 , 那么
- 4. 设 A 和 B 都是 n 阶方阵,且 $|A| \neq 0$ 。若 AB A = E ,则 $A^{-1} =$ ______。
- 5. 设 A 为 n 阶方阵,若 R(A) < n-1,则 $R(A^*) =$ _______。
- 6. 若 A 是秩为1的3阶方阵, $B = | 0 \ 1 \ 1 \ |$,且AB = O,则Ax = 0的通解为 1 1 0

- 7. 当 $a = ____$ 时,向量(-3,4,a,1)与向量(-1,3,2,5)正交。
- 8. 可逆方阵 A 有特征值 λ ,则 $A^{-1} + 2E$ 有特征值 。
- 9. 如果 A 为 n 阶正交矩阵,而且 |A| = 1 ,则 $|A^T + A^*| = ______$ 。
- 10. 设 $A = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$, 如果 A 正定,则 t 的取值范围是 $\begin{bmatrix} 1 & 0 & t \end{bmatrix}$
- 二. 单项选择题(本大题共5小题,每小题3分,共15分。在每小题的四个选项中仅有一个正确, 请将正确的选项编号填在括号内)
- - A. $(A+B)^T = A^T + B^T$; B. $(A+B)^{-1} = A^{-1} + B^{-1}$;

 - C. |AB| = |BA|; D. $(A^T)^{-1} = (A^{-1})^T$

草 稿 纸

注: 教师应使用计算机处理试题的文字、公式、图表等; 学生应使用水笔或圆珠笔答题。

2. 设	A 为 n 阶矩阵,	$\mathbb{E}\left A\right =0$,	则A中	•••••
------	--------------	--------------------------------	-----	-------

- A. 任意一列向量是其余列向量的线性组合;
- B. 必有一列元素全为零;
- C. 必有一列向量是其余列向量的线性组合; D. 必有两列元素对应成比例。

3. 设 0 是矩阵
$$A = \begin{pmatrix} 3 & 0 & 3 \\ 0 & 1 & 0 \\ 3 & 0 & a \end{pmatrix}$$
 的特征值,则 $a =$ ()

- A. 3; B. 1; C. 0; D. -1.

4.
$$若n$$
阶矩阵 A 与 B 相似,则

- - A. $A \subseteq B$ 都相似于同一个对角阵; B. $A \subseteq B$ 有相同的特征多项式和特征向量;

 - C. A = B 有相同的特征值和特征向量; D. A = B 有相同的特征多项式和特征值。

5. 设
$$A \stackrel{?}{\ell}_{m \times n}$$
 矩阵, $A\stackrel{?}{x} = \stackrel{?}{b}$ 是非齐次线性方程组,以下判断正确的是()

A.
$$A\vec{x} = \vec{0}$$
 只有零解,则 $A\vec{x} = \vec{b}$ 有唯一解; B. $A\vec{x} = \vec{0}$ 有非零解,则 $A\vec{x} = \vec{b}$ 有唯一解;

C.
$$A\vec{x} = \vec{b}$$
 有唯一解,则 $A\vec{x} = \vec{0}$ 只有零解; D. $A\vec{x} = \vec{b}$ 无解,则 $A\vec{x} = \vec{0}$ 只有零解。

三. 行列式计算(本大题共2题,每小题8分,共16分)

1.
$$D = \begin{vmatrix} 2 & -5 & 1 & 2 \\ -3 & 7 & -1 & 4 \\ 5 & -9 & 2 & 7 \\ 4 & -6 & 1 & 2 \end{vmatrix}$$

解:

2.
$$D_{n+1} = \begin{pmatrix} x & a_1 & a_2 & a_3 & \dots & a_n \\ a_1 & x & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2 & x & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & a_3 & a_4 & \cdots & x \end{pmatrix}$$

解:

草

解:

五. (14分) 讨论当a,b分别取何值时,线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = b \end{cases}$ $x_2 + (3-a)x_3 + 3x_4 = 2$ $3x_1 + 2x_2 + x_3 + ax_4 = -1$

无解、有唯一解和有无穷多解,并在有无穷多解的情形下求该方程组的通解。

解:

草 稿 纸

六. (15 分) 已知二次型 $f(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

- (1)(4分)求与二次型对应的实对称矩阵A;
- (2)(11分)用正交变换将二次型化为标准形。

解:

草 稿 纸

七. 证明题 (8分) 设 \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 是列向量组,若 \vec{a}_1 , \vec{a}_2 线性无关, \vec{a}_3 , \vec{a}_4 也线性无关,且内积[\vec{a}_i , \vec{a}_j] = 0 (i = 1, 2; j = 3, 4),试证明 \vec{a}_1 , \vec{a}_2 , \vec{a}_3 , \vec{a}_4 一定线性无关。证明: