# Predicting Wine Quality With XGBoost and SVM

Maxwell Snodgrass



# **Data Cleaning and Preparation**

- 1. Convert text file to CSV
- 2. Check for missing values
- 3. Check predictor variable data types
  - All are continuous
- 4. Feature engineering
  - Want binary classification: "good" vs. "bad"
    - Convert quality ratings of 7-8 to 1 and 3-6 to 0
  - Standardize all variables
- 5. Remove unnecessary columns
  - Observation Id
  - Raw quality variable

#### Wine Distribution

- More "low" quality wines than "good" quality
- Imbalanced classification



# Wine Features Correlation

- Notable Positive Correlations
  - Fixed Acidity Density
  - Citric Acid Fixed Acidity
- Notable Negative Correlations
  - Alcohol Density
  - Variables regarding pH and acidity
- Correlations with Quality
  - All are weakly correlated
  - Mostly negative



- 0.6

- 0.4

- 0.2

- 0.0

- -0.2

-0.4

#### **XGBoost Results**

- Accuracy: 93%
- Precision of "Good" Quality: 70%
  - Of the wines that were predicted "good," 70% were actually "good"
- Recall of "Good" Quality: 68%
  - Of the wines that were actually of "good" quality, the model predicted 68% of them as "good"
- Feature Importance Method: F-Score
  - How many times the feature is used for a split.
  - Top 2 Features: Density and Volatile Acidity





#### **SVM Results**

- Accuracy: 95%
- Precision of "Good" Quality: 90%
  - Of the wines that were predicted "good," 90% were actually "good"
- Recall of "Good" Quality: 64%
  - Of the wines that were actually of "good" quality, the model predicted 64% of them as "good"
- Feature Importance Method: Permutation
  - How much the model is affected upon a shuffle.
  - Top 2 Features: Alcohol and Free Sulfur Dioxide





# **Model Comparisons**

| Metric                      | XGBoost                      | SVM                             |
|-----------------------------|------------------------------|---------------------------------|
| Model Accuracy              | 93%                          | 95%                             |
| Precision of "Good" Quality | 70%                          | 90%                             |
| Recall of "Good" Quality    | 68%                          | 64%                             |
| Feature Importance Method   | F-Score                      | Permutation                     |
| Top 2 Important Features    | Density and Volatile Acidity | Alcohol and Free Sulfur Dioxide |

- The SVM performs better overall
- XGBoost tends to be more balanced in its predictions
- SVM tends to be stricter in predicting "good" quality
  - Hence a higher precision
  - At a very slight cost to recall (correctly predicting actual "good" quality wines)
- Feature Importances are quite different

# **Aggregated Feature Importance**

- Normalize the feature importances of both models
  - This makes the feature importances of both directly comparable and keeps relativity to their own model
- Each feature has a normalized F-score and permutation importance
- Add each normalized score and create a ranking

# **Aggregated Feature Importance**



- From the aggregated feature importance, the top three features of a "good" quality wine are alcohol, volatile acidity, and citric acid
- A correct combination of these three features plays the most important role in creating "good" wine