CSCI-2500 Computer Organization Carry-Lookahead (CLA) Adder

Herbert Holzbauer
Justin M. LaPre
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York U.S.A. 12180

October 18, 2017

1 Equation Dependencies for 64 Bit CLA

Recall that we can express the sum of two numbers as:

$$\operatorname{sum}_{i} = a_{i} \bigoplus b_{i} \bigoplus c_{i-1} \tag{1}$$

Also, we know that:

$$c_i = g_i + p_i c_{i-1} \tag{2}$$

where g_i is the *generate function* which says did we generate a carry in the i^{th} stage and the p_i is the *propagate function* which says did we propagate a carry in the i^{th} stage assuming the carry-in, c_{i-1} , was positive. This yields the following:

$$g_i = a_i \times b_i \tag{3}$$

$$p_i = a_i + b_i \tag{4}$$

$$c_i = q_i + p_i c_{i-1} \tag{5}$$

Now, using the above recurrence we can find what c_i is for any 4 bit block or *group*.

$$c_i = g_i + p_i c_{i-1} \tag{6}$$

$$c_{i+1} = g_{i+1} + p_{i+1}c_i (7)$$

$$c_{i+2} = g_{i+2} + p_{i+2}c_{i+1} (8)$$

$$c_{i+3} = g_{i+3} + p_{i+3}c_{i+2} (9)$$

Notice how each of the c_i equations can all be written in terms of the the g, p and c_{i-1} . But, c_{i-1} is really the carry-in for this *group* of 4 bits. So, this means that the carry-in to those groups depends on the qc equations, which are:

$$gc_i = gg_i + gp_igc_{i-1} (10)$$

$$gc_{j+1} = gg_{j+1} + gp_{j+1}gc_j (11)$$

$$gc_{j+2} = gg_{j+2} + gp_{j+2}gc_{j+1} (12)$$

$$gc_{j+3} = gg_{j+3} + gp_{j+3}gc_{j+2} (13)$$

(14)

where...

$$gg_{i} = g_{i+3} + p_{i+3}g_{i+2} + p_{i+3}p_{i+2}g_{i+1} + p_{i+3}p_{i+2}p_{i+1}g_{i}$$

$$\tag{15}$$

$$gp_j = p_{i+3}p_{i+2}p_{i+1}p_i (16)$$

Again, notice how each of the gc_j equations can all be written in terms of the the gg, gp and gc_{j-1} . But, gc_{j-1} is really the carry-in for this *section* of 4 groups. So, this means that the carry-in to those sections depends on the sc equations, which are:

$$sc_k = sg_k + sp_k sc_{k-1} (17)$$

$$sc_{k+1} = sg_{k+1} + sp_{k+1}sc_k$$
 (18)

$$sc_{k+2} = sg_{k+2} + sp_{k+2}sc_{k+1} (19)$$

$$sc_{k+3} = sg_{k+3} + sp_{k+3}sc_{k+2}$$
 (20)

(21)

where...

$$sg_k = gg_{j+3} + gp_{j+3}gg_{j+2} + gp_{j+3}gp_{j+2}gg_{j+1} + gp_{j+3}gp_{j+2}gp_{j+1}gg_j$$
 (22)

$$sp_k = gp_{j+3}gp_{j+2}gp_{j+1}gp_j$$
 (23)

2 Steps for Calculation for 64 Bit CLA

- 1. Calculate g_i and p_i for all i. (1 gate delay)
- 2. Calculate gg_j and gp_j for all j using g_i and p_i . (2 gate delays)
- 3. Calculate sg_k and sp_k for all k using gg_j and gp_j . (2 gate delays) Note, it is at this point, we can shift to computing the top-level sectional carries. This is because the number of sections is less than or equal the block size which is 4 bits.
- 4. Calculate sc_k using sg_k and sp_k for all k and 0 for sc_{i-1} . (2 gate delays)
- 5. Calculate gc_j using gg_j , gp_j and correct sc_k , k = (j div 4) as sectional carry-in for all j. (2 gate delays)
- 6. Calculate c_i using g_i , p_i and correct gc_j , j=(i div 4) as group carry-in for all i. (2 gate delays)
- 7. Calculate sum_i using $a_i \bigoplus b_i \bigoplus c_{i-1}$ for all i. (2 gate delays)
- 8. Total gate delays for 64 bit CLA is 13.