Supplement to Multiple Imputation for Nonresponse in Surveys Using Design Weights and Auxiliary Margins

Kewei Xu* Jerome P. Reiter[†]

1 Introduction

This supplement includes tabular results from the simulations presented in the main text. It also provides more details on the MDAM—sys algorithm for two binary variables used in the simulation studies.

2 Tabular Results from Section 4 in Main Text

Results from the simulations in the main text in tabular form are presented in Figure 2.1 and Figure 2.2.

3 More Details About MDAM-sys Algorithm

To illustrate the MDAM-sys algorithm, we present the computations in Section 3.2.2 of the main text for binary X_2 and X_1 . We use these in the simulations of Section 4 in the main text. First, we compute $\Pr(X_2 = 1 | X_1 = 1, U = 0)$ and $\Pr(X_2 = 1 | X_1 = 0, U = 0)$ using

^{*}Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708-0251

[†]Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708-0251

	Estimate				(CI Coverage			Variance		Average Estimated Variance		
Scenario	Truth	MDAM adj	MDAM sys	MDAM yr	MDAM adj	MDAM sys	MDAM yr	MDAM adj	MDAM sys	MDAM yr	MDAM adj	MDAM sys	MDAM yr
$X_1 = 0 \mid X_2 = 0$	0.578	0.576	0.577	0.576	99.8	100	99.8	1.5	1.4	1.1	3.7	3.7	3.1
$X_1=0\mid X_2=1$	0.559	0.562	0.561	0.562	99.6	99.8	100	2.7	2.7	1.3	5	4.9	4.2
$X_2=0\mid X_1=0$	0.518	0.515	0.516	0.515	99.8	100	100	1.3	1.4	0.9	3.5	3.5	2.9
$X_2 = 0 \mid X_1 = 1$	0.498	0.501	0.5	0.502	99	99.6	99.8	3.6	3.4	1.7	6.2	6	4.8
$X_4 = 0 \mid X_3 = 0$	0.825	0.836	0.836	0.836	99.2	99.2	99	7.2	7.2	7	13	13	11.9
$X_4 = 0 \mid X_3 = 1$	0.766	0.771	0.772	0.771	98	98.2	97.8	0.7	0.6	0.6	1.4	1.4	1.2
$X_3 = 0 \mid X_4 = 0$	0.075	0.077	0.077	0.078	98.8	98.8	97.6	0.4	0.3	0.3	0.5	0.6	0.5
$X_3 = 0 \mid X_4 = 1$	0.053	0.053	0.053	0.053	98.8	99	98.8	0.9	0.9	0.9	1.6	1.6	1.4
$X_1 = 0, X_2 = 0$	0.294	0.293	0.294	0.293	99.2	99.4	100	0.9	0.9	0.3	1.6	1.6	1.3
$X_1 = 1, X_2 = 0$	0.275	0.276	0.275	0.276	100	100	100	0.4	0.4	0.3	1.8	1.8	1.5
$X_1 = 0, X_2 = 1$	0.215	0.216	0.215	0.216	100	100	100	0.4	0.4	0.3	1.6	1.6	1.3
$X_1 = 1, X_2 = 1$	0.216	0.215	0.216	0.215	99	99.2	100	1.3	1.3	0.4	1.8	1.8	1.5
$X_3=0 \mid X_1=0, X_2=0$	0.064	0.066	0.066	0.066	98.6	99	98.6	8.0	8.0	8.0	1.3	1.3	1.2
$X_3 = 0 \mid X_1 = 0, X_2 = 1$	0.108	0.111	0.111	0.111	99.4	99.6	99	1.4	1.4	1.4	2.4	2.3	2.1
$X_3 = 0 \mid X_1 = 1, X_2 = 0$	0.049	0.044	0.044	0.044	97.8	98.2	97	0.7	0.7	0.7	1.2	1.2	1
$X_3 = 0 \mid X_1 = 1, X_2 = 1$	0.052	0.058	0.058	0.058	98.6	98.6	96.6	1	0.9	0.9	1.8	1.8	1.5
$X_4 = 0 \mid X_1 = 0, X_2 = 0$	0.638	0.646	0.646	0.646	99.6	99.6	99.4	3	3	2.9	6.5	6.5	6.2
$X_4 = 0 \mid X_1 = 0, X_2 = 1$	0.601	0.619	0.619	0.619	97.2	98	97.2	3.8	3.7	3.7	7.6	7.6	7
$X_4=0 \mid X_1=1, X_2=0$	0.963	0.964	0.964	0.964	99.6	99.6	99.2	0.5	0.5	0.5	1.2	1.1	1
$X_4 = 0 \mid X_1 = 1, X_2 = 1$	0.973	0.965	0.965	0.965	97.6	98.2	96.2	0.5	0.5	0.5	1.3	1.3	1.1
T_{X_1}	1671915	1671777	1671585	1671055	100	100	100	1.9	1.7	1.1	33.4	33.5	24.7
T_{X_2}	1468008	1467904	1468056	1467455	100	100	100	1.4	1.4	1.2	28.7	28.7	23.1
T_{X_3}	3166289	3160272	3160289	3160605	85.2	83.8	100	34.1	34.1	3	18.5	18.5	14.5
T_{X_4}	783369	762556	762215	762672	95.6	95.8	98.4	10.9	10.7	6	15	15.1	13.5
T_{X_5}	37338600	36288521	36307042	36290757	95.2	94.8	92.8	2.9	3	2.7	3.9	3.9	3.2
T_{X_6}	57865307	58852221	58876057	58874748	96.6	96.6	96.6	1.7	1.6	1.1	2.5	2.5	2.1

Figure 2.1: Results from the simulation in the main text for IH and MDAM-adj. Columns headed by "Premiss" include results for the survey-weighted analysis of the Poisson samples before introduction of any missing data. The column headed by "Truth" includes the quantities computed from all N individuals in the constructed population. Variances for the probabilities are multiplied by 10^4 . Variances for each of $(T_{X_1}, T_{X_2}, T_{X_3}, T_{X_4})$ are multiplied by 10^{-8} . Variances for T_{X_5} and T_{X_6} are multiplied by 10^{-12} .

a survey-weighted, ratio estimator like the one in (3.4) of the main text. To ease notation, define

$$\hat{\beta}_{1,obs} = \log \left[\frac{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 1, x_{i1}^* = 1, U = 0)}{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 0, x_{i1}^* = 1, U = 0)} \right] - \log \left[\frac{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 1, x_{i1}^* = 0, U = 0)}{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 0, x_{i1}^* = 0, U = 0)} \right]$$
(3.1)

$$\hat{\beta}_{0,obs} = \log \left[\frac{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 1, x_{i1}^* = 0, U = 0)}{\sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 0, x_{i1}^* = 0, U = 0)} \right].$$
(3.2)

Define the unobserved quantities $\hat{\beta}_{1,mis}$ and $\hat{\beta}_{0,mis}$ for the unit nonrespondents analogously, replacing $U_i = 0$ with $U_i = 1$ in (3.1) and (3.2). We set the log odds ratios equal for the unit respondents and nonrespondents, that is, we set $\hat{\beta}_{1,mis} = \hat{\beta}_{1,obs}$. We also set

$$\frac{\sum_{i \in \mathcal{S}} w_i I(x_{i1}^* = 1, U_i = 1)}{1 + \exp(-(\hat{\beta}_{0,mis} + \hat{\beta}_{1,mis}))} + \frac{\sum_{i \in \mathcal{S}} w_i I(x_{i1}^* = 0, U_i = 1)}{1 + \exp(-\hat{\beta}_{0,mis})} = \hat{T}_2 - \sum_{i \in \mathcal{S}} w_i I(x_{i2}^* = 1, U_i = 0).$$

To determine $\hat{\beta}_{0,mis}$, we numerically solve the system of nonlinear equations using the modified Powell method as implemented in the R package "nleqslv" (Hasselman, 2018). The imputation probabilities are then

$$\tilde{p}_{211} = \frac{1}{1 + \exp[-(\hat{\beta}_{0,mis} + \hat{\beta}_{1,mis})]}$$

$$\tilde{p}_{210} = \frac{1}{1 + \exp(-\hat{\beta}_{0,mis})}.$$

References

Hasselman, B. (2018). nleqslv: solve systems of nonlinear equations. R package version 3.2.

		Esti	CI	Coverage	١	/ariance		Average Estimated Variance					
Scenario	Truth	Premiss	MDAM adj	IH	Premiss	MDAM adj	IH	Premiss	MDAM adj	IH	Premiss	MDAM adj	IH
$X_1 = 0 \mid X_2 = 0$	0.578	0.578	0.576	0.605	95.6	99.8	68.6	1.4	1.5	1.6	1.3	3.7	2.8
$X_1 = 0 \mid X_2 = 1$	0.559	0.559	0.562	0.604	95.6	99.6	26.6	1.4	2.7	2	1.4	5	3.2
$X_2 = 0 \mid X_1 = 0$	0.518	0.517	0.515	0.539	94.6	99.8	83.4	1.5	1.3	1.7	1.3	3.5	2.9
$X_2 = 0 \mid X_1 = 1$	0.498	0.498	0.501	0.538	95	99	50.8	1.6	3.6	2.4	1.5	6.2	3.9
$X_4 = 0 \mid X_3 = 0$	0.825	0.826	0.836	0.83	95.8	99.2	99.8	6.7	7.2	7.5	6.9	13	13.7
$X_4 = 0 \mid X_3 = 1$	0.766	0.765	0.771	0.76	94.8	98	97.2	0.6	0.7	0.7	0.6	1.4	1.3
$X_3 = 0 \mid X_4 = 0$	0.075	0.075	0.077	0.078	96.6	98.8	97.2	0.3	0.4	0.4	0.3	0.5	0.6
$X_3 = 0 \mid X_4 = 1$	0.053	0.053	0.053	0.053	96.4	98.8	99	8.0	0.9	0.9	0.7	1.6	1.5
$X_1 = 0, X_2 = 0$	0.294	0.294	0.293	0.326	95.4	99.2	21.4	0.7	0.9	8.0	0.6	1.6	1.4
$X_1 = 1, X_2 = 0$	0.275	0.275	0.276	0.279	94.8	100	97.2	0.6	0.4	8.0	0.6	1.8	1.3
$X_1 = 0, X_2 = 1$	0.215	0.215	0.216	0.213	95.4	100	98.4	0.5	0.4	0.6	0.5	1.6	1
$X_1 = 1, X_2 = 1$	0.216	0.216	0.215	0.183	94.8	99	1.6	0.5	1.3	0.6	0.5	1.8	0.9
$X_3 = 0 \mid X_1 = 0, X_2 = 0$	0.064	0.064	0.066	0.066	94.2	98.6	98.8	0.7	8.0	8.0	0.7	1.3	1.2
$X_3 = 0 \mid X_1 = 0, X_2 = 1$	0.108	0.107	0.111	0.111	95.4	99.4	99.4	1.1	1.4	1.4	1.1	2.4	2.3
$X_3 = 0 \mid X_1 = 1, X_2 = 0$	0.049	0.049	0.044	0.044	96.6	97.8	98.6	0.7	0.7	0.7	0.7	1.2	1.2
$X_3 = 0 \mid X_1 = 1, X_2 = 1$	0.052	0.052	0.058	0.058	95.8	98.6	97.8	8.0	1	1	8.0	1.8	1.9
$X_4 = 0 \mid X_1 = 0, X_2 = 0$	0.638	0.637	0.646	0.648	96.8	99.6	99.8	2.1	3	2.9	2.4	6.5	6.4
$X_4 = 0 \mid X_1 = 0, X_2 = 1$	0.601	0.599	0.619	0.619	93.2	97.2	97.4	3.1	3.8	3.6	2.7	7.6	7.5
$X_4 = 0 \mid X_1 = 1, X_2 = 0$	0.963	0.964	0.964	0.964	96.6	99.6	99.6	0.5	0.5	0.5	0.5	1.2	1.1
$X_4 = 0 \mid X_1 = 1, X_2 = 1$	0.973	0.973	0.965	0.965	96	97.6	98	0.4	0.5	0.5	0.4	1.3	1.4
T_{X_1}	1671915	1672653	1671777	1570759	89.8	100	41.2	19	1.9	20.1	12.6	33.4	21.2
T_{X_2}	1468008	1467818	1467904	1346825	93	100	14.4	13.2	1.4	14.3	10.1	28.7	16.4
T_{X_3}	3166289	3166630	3160272	3158568	83.4	85.2	84.2	33.6	34.1	34.2	16.3	18.5	18.5
T_{X_4}	783369	784835	762556	799664	95.2	95.6	97.4	8.8	10.9	9.7	7.7	15	14.1
T_{X_5}	37338600	37205563	36288521	35344643	95.6	95.2	83.4	2.8	2.9	3.1	2.6	3.9	3.5
T_{X_6}	57865307	57876603	58852221	57404909	91.4	96.6	93.6	1.9	1.7	2.2	1.4	2.5	2.2

Figure 2.2: Results from the simulation in the main text for MDAM–adj, MDAM–sys, and MDAM–yr. The column headed by "Truth" includes the quantities computed from all N individuals in the constructed population. Variances for the probabilities are multiplied by 10^4 . Variances for each of $(T_{X_1}, T_{X_2}, T_{X_3}, T_{X_4})$ are multiplied by 10^{-8} . Variances for T_{X_5} and T_{X_6} are multiplied by 10^{-12} .