Schramm - Loewner Evolution (1) Ref and Properties: Opef:) r.v.s cktltro CL is a SLECK if its Locuper transform (5t) to = c x Bt)to, where Bt is 5BM. Amk: 1) The Loewer- knyarer Than guarantees the existence of SLE(x). i) The motivation of introduction of SLE is for rescribing scaling limits of some lattice-based planer radem system. ii) r.v.'s cktd in L is scale-invariant if $(kt)_{tio} = (\lambda k)_{tio} \sim (kt)_{tio} . for the last$ RMX? It's natural: heape $k = 1 + \log e(k^2)$.

With $g_{\pm}^2 = \lambda s_{\lambda^{-1} + 1} \Rightarrow e(k^2) = 1$. ii) r.v.'s CK+) in I has Romain Markov property if $(k_t^{ij}) = (k_{s,s+t} - s_s) \sim (k_t)$ and indept of Is = o csr: ress.

Knot: ke has Louwer flow 1+ (=)= 7 ks. see - 5 = 7 ks. see (2+55) - 55 ma peape k;" = heape ks. s+t) = 2t satisfies local growth grop, with St = Ss+t - Ss . ⇒ (ki) < 1. iv) r.v. (kt) is symmetric under reflection wirt y-axis if (makes) to, ~ ckesero, whose Rock Note people mekt,) = lin Eig (Im Bicim/mekt) = heape kt). In symmetric. => mokes as The For Cto. rovis in I. Then cto is SLE () (kb) is some-invariant and has the Lonnin Markov proporty. 8f: = (5t") ~ (50), interpt of 95 md (5°2) ~ (5t) (*) For general Stopping time S E) (St) is conti. Lévy process. => 7hm. holds and Invariant water Brown-scaling as well! Since St = At + bBt. St ~ 15it. ⇒ \$6 = 68t. for some b>0. prop. If (kt) is SLE. Then (miker) ~ (kt) to

O Pef: Com; part cyest, in In generates an increasing family of apt IM-halls (kt) if Mt = IM/kt is the unbold component of IM / Y E), +]. 1hm. CRohar-Schramm) (Kt)to. is SLE(K). K 30. With It. St. Consider It: In - H+ extend buti to It Then Yt = 9% (St) is conti and generates CKt) tio n.s. took. We call yo by SLECKS path. 3 7wo - point Pomnin: Ref: i) D = CD, Zo, Zo) is a two-point domnin if D is proper simply connected. Zo # Zo E SP. Derite D is set of Inch Romains Rmk: For D. D. two-point Romains. 3 p: D' 5 D. confirmal. and. $(\varphi(Z_1) = Z_0, \varphi(Z_\infty) = Z_\infty.$ Ve cell o: D => CIM. O. co). A Scale for D. RMK: 1002) is also a scale. \$10.

iii) Fix D= cD. Z1, Za) ED. and somle 6. k = D is D- hall if D/k is simply connected not of Zo in D Denote K(D) is set of D-hn11. RMK: Kindocks. is bijertion of kcos nk = k (M. o. 0). We can define the Carathéodory metric on kco. indept of choice of o. iv) I(D.6) = [(kt)tim | (kt) is increasing family of D-halls have local growth prop. and peape ockto) = 2+3. RMK: Similar as I : give it metric of u.c.c. U) r.v. (kt) in LoD.0) is SLECK) in D of scale of if (5t) of (6CF+1) is x Bt Prop. (Confirmal Invariance of 5LE) 9: D = D' confirmal between D. D' E D. For o. o' scale of D. D'. Set 1 = 004. r' comp 1k' -> 1R') If (ke) is 5LE(k) in D of o. Then pckitis SlEcks in D

Pf: 6'ckt) = 6'0000'(8 ckx+1) = 1600 k)-++1) ~ 60 kt) R-K: Iv+ 6'= ≥. 0 = p. D = D = M. → We have: conformal invariance of SLE in IM. prop. (kt) is SLECK) in D of o. T is bull Stopping time Set Ft = KT++/KT. Dt = D/Kt Jt = Jocks, or Ref: 57: DT -> M by: 67 = 17 - 57 (ZT = 97 (57) . The : (D7. 21. 200) & D. OT is scale of it. Besilus. (Kt) +>0 1 87 = 0 (55. 557) is 5LECK) in 07 of 07 (2) Bessel Flow and Mitting Prob. O Bessel Equation: Consider X = aB' -- Bh, A-lim 5BM. Set Zt = 11 Xt 112 = 2 (B')2. By Ito's Firmala: $Z_t = Z_0 + 2 \stackrel{f}{\Sigma} \int_0^t B_s' \lambda B_s' + \lambda t$ Set Yt = \$\frac{1}{5}, \frac{t}{B_s} \land B_s \frac{1}{2} \frac{1}{5} = \frac{1}{5} \gamma 774 = t => Yt = Bt By Livy's Charac 50: Zt = Z. + = / Zs LBs + L.t

Then we have square Bessel SPE of lim 1: 13t = 22t ABt + A. Lt. Def. For le ik'. we say Zt is square Bessel process of Limension L. Penote Zt ~ BESR! Int Ut = Zt. By Ito Formal. We have: ut = u0 + 2 10 t 25/us + Bt. $\lambda U_t = \frac{\lambda - 1}{2} \lambda t / ut + \lambda Bt.$ Ref: We say Ut is Bessel process of kimersion A. & K. Dente Ut ~ BESL. prop. For Leir. Ut ~ BEst. i) $l < 2 \Rightarrow Wt \text{ hits } 0 \text{ a.s.}$ ii) $l \neq 2 \Rightarrow Wt \text{ lossn't hit } 0 \text{ a.s.}$ $\frac{Pf}{-} = \begin{cases} log ut & if 1=2 \\ u_t & if 1=2 \end{cases}$ By Itô > ht is a.hm. Set Zn = inf Et 30 | U+ = n3. => m. = Ecmthzanzb) = == set n → 0. b → -.

@ Bessel Flow: arsiper Louvair flow (7+0x1) +crexx X & 18/503. associated to SLECK, S, = x = B: => 1= (x) = x + / = 2/(15(x) - 5,) ks. Set $A = \frac{2}{k}$. $Bt = -\frac{5t}{Jk}$, $Z(X) = f(XJ_K)$. $\chi_{t} = (1 + c \times T_{K}) - 3 + 0 / T_{K}$ $\chi_{t} (x) \rightarrow 0 if 2 cn < \infty$ => X = (x) = x + Bt + So a/xsix As Bessel Flow SO X+CX) ~ BES 1+ F RMK: By prop in O. > XEEX) Won't hit o iff $k \in 4 \Rightarrow \tau(x) < \infty \text{ iff } k > 4.$ prop, i) monotonicity: For X.y & Co. 00). X = 7. => Zex > Zey). AND Xtex > Xeig). for ii) Scaling: For X > 0. Set Bt = 1 By + Z(X) = 1 Z(1 X) X+ (X) = 1 X, + (1 X) => Xecx) ~ Xecxs is who Bessel flow of parameter a driver by Bt. Pf: 1) Z(x) = inflt30 | Xt (x) = 03 = inf [+ 30 | 9 6 (x Jk) - 5 = 03

```
Nite It (x) I on ik witt x
        3.00 Z(X) = Z(g). X+(x) < X+(7).
    ii) By uniqueness of silutions.
For x. 7 > 0. x < 7. Then:
i) For NECO, #7 > IP (ZUX) (ZU) (00) =1.
ii) For ne(4, 1) => |P(20x) < 00) =1 and
  IPCZex> < zegs) = pecg-xs/gs. where
   $(0) of for kn/(1-u)2n n2-42 $10=1.
iii) For R & [ 1/2,00) = 1 [pc Zcx) =00) = 1. rel
  for ne (2.10) we have Xt(x) = 100 ns.
Pf: 1) Set prt = Xt 2. 25.
    By Itô > mt is c.l.m.
      Note mt 30 > mt is supermort.
       · mt converges . n.s. = [m] co = c / X+ < 00
      => Xt >00. 15 t ->00. 1.5.
     Set X (0) = So kn/ n29 61- n32
       => x (0) < 00 for NE(#, =).
           x (0) = 00 for NE(0, 4)
      Fix 7 > X Let Xt 19 = Yt. Z= 2(x)
      Def R+ = 1/6 - Xt. Ot = Rt/ Yt. Nt = X 68t)
```

By Itô = (Nt)ter is colom. Note Ne 30 > Ne + Nr. > be + Dr. follows from X & consi. 3) Claim: $Z = Z(\eta) \Rightarrow \theta_{1} = 0$. $\rho_{2} = 0$. $\rho_{3} = 0$. $\rho_{4} = 0$. $\rho_{5} = 0$. $\rho_{6} = 0$. $\rho_{7} = 0$. Ther: So 15/4; = 5027 15/45 < 00. (4+ > X+ =) 0+00) But Acy = RUS = I Ancy .

Where Ancy = \int Te2" \(\) => Acys = & . n.s. contradict! f) For NE c0. 4]. If z=zy. Then Nt →20 Since \$2 = 0. => Contradict! For not (t, 1). No is bold mont => x (\frac{7-x}{7}) = No = \(\text{E} \cdot N_2 \) = \(\chi_0 \) | P = 2 = 27 . For a & co. 2) . X.7 & co. 0). Then we have: 19 (z (x) < z (-7)) = 4 (7/(x+1),). where 4 (1) = 1. 419) ~ So ku/ n 2 1- u) 22. Pf: Set Xt = Xt(x). Yt = - Xt C-7, Rt = Xt + Yt. 8t: Yt/Rt Ref: Rt = 40 8 taze-grazus). Conti. bra. By Tti = Ot is a.l.m. 50 LLA mont. => P(ZX < Z-9) = IE (QZ (-9) AZ (X)) = Q = Y (x+9)

3) Mitting Prob. Prop. For yo is SLECK) puth. Then: i) KE (0,4) => Y (0,00) 1 1 = 803. 45 ii) K 6 (4.8) > 4 x.7 & (0,00). 4 hits both (x, 0). (-4, -97. x.s. and. IPCY hits Ex. x+y) = Pcylox+y) 1pc y hits (x. 0) before (-0.-73) = 40 x+7) iii) K € [8.00). =) 1/6 = 4 51.00). 2.5. RME: Extend i): y will not intersect dill. When to Simm if ke (0.4) for txtik'. then 20x) = as . i.e. x = 9 + (3+) = /t for 4 x 6 1 . t > 0. With go'c So) = 0 = yo. the start point 8f: Lemma. I Y [1. t] hits [x, as) = [rex) = 6] Pf: If Y [o, +] n [x.a) = a. By upt = I U. Nbl of [x.00) St. Y Lo. t] nu = & => X & Ko So rexist If Is < t. Ys & [x. 00). then

Ys 6 kt = rox) & roys) & t

i) & y [1,t] hits (----x]] = \$ rc-x) = t]. ii) { y hits Ex. x+1) } = { rex } < rex+9.3. RMK: For X > 0 & 1 Pf: i) LMS = U20 5 Y I. 1. t) hits IX. X+1,3 [Y (o,t) hit (-a. x)] = $\begin{cases} Y(x) > t \end{cases} \cdot \begin{cases} X(x) > t \end{cases} \cdot \begin{cases} Y(x) < t \end{cases} \cdot Y(x) < t \end{cases} \cdot \begin{cases} Y(x) < t \end{cases} \cdot \begin{cases} Y(x) < t \end{cases} \cdot Y(x) < t \end{cases} \cdot$ CUN Y (0, t) = ((=) $x \in \overline{k}_t \iff Y(x) \notin t$ $= U_{t,t} \{(x) \in t < Y(x) + y(t)\} = \{(x) \in f(x) \}$ or iii) sy hits Ex. + cos befire 1-co. -773 = 5 (cx) < (c-1)3. Pf: Lus = U [[y co,t] hits [x.00)]/
[[y co,t] hits [x.00)]/ = U & rcx) & t < (c-7) }. = L rexx < re-yo3. => Compine with grog. in @ (3) Phase of StE: Than, For y is SLECK) path koo. Then: 14t1 => 00. R.S. fmk. It's intuitive since (kt/ttpo is Strictly increasing.

For y is SLECK) path. i) (Simple Phase) FIT & E [1.47. => cye) is simple path. a.s i) CSWallowing Phase Fir K 6 (4.8). = UK+ = 111. n.s. And 4 given 2 6 14/203. (40) Lousn't hit 2. n.s. Besiles. Yt isn't Simple path nor. Space-filling enre as. iii) Fir k & [8,0) = y [1.0) = 111. 1.5 Pf: Only prove: Y is Simple if K=4. y is self-intersecting if k > 4. Note y intersects & IM 60 K > 4. Fix too. 5 -> 9te yester) - St is a SLECK). by confirmal invariance With Lomain Markov Proporty: the past of SLE becomes boundary of the domain where SLE evolves in farture => Y Ex. t] A Y Ex. 00) iff S HD hit the boundary iff k > 4. Cor see: gt (yests)) - gt = x => Yestt)-x = 9 = 6 SED - X = Y(+) - X => Y(5++) = Y(+)

=> + tn t 0 + Y [1, tn] 1 Y (tn, 00) = & . a.s. when K = 4. (4) Confirmal Transformations: Org: An initial remain is NUI St. N = IM. is simply connerved and I = ik' is a open interval St. I c Nº For q: NUI = NUI confirmal between iritial Romains. Them = Pt. NI = NI is reflection-invaliant extension. For apt In-hall k with \(\bar{k} = NUI \) I = (x, x) Def: R = QCKS. M = IM/R. NK = JKON/K). Ik = (1k (x) . 1k (x t)) RMK. H # PCM). JE # 7k(I) Prop. E is cpt IM-hall with $\overline{K} \subseteq \overline{N} \cup \overline{I}$ NK U IK is also an initial Romain prop. Define (Nx, Fz) as above and gk: KK -> NE by bx = 12 . 4 . 12 =) de con be extended to isomorphism: NKUJK ~ NTU IF of initial Loppin.

KOKLIVO

prop. (Approxi. of honge quki)) There exists const. G & co. so 1 - 5t. Fir 9: NUZ SNUZ. 0 = I. 4(0) = 0 And \$ (0) = 1. Let \$ = N apt 1M-hall If 30 < r < 2 < R < 00. St. & U ACK) = r 10. AND CEIDIAM = NUN = RID. Then: 1- Crk/E' = heap opeks / heapoks = 1+ CIR/E" Rock: For Small hall k near st I. Then g'ess heapeks is good apprixi. of henpe fek) Cor. For general case: 4: NUI SNUI. SOI. KON cpt IM-hall. For C = C max 6 q is. \$(5) 3. If k = 5+(10. 41k) = \$65) + 1 D, S+ CEIDIN IM = NUI = 5+ RID und \$tgs + (EID) OIM = NUI = \$CG)+ LID Then: tenper feks / diess hangeks & [1- CrR/s2. 1+ CrR/s2] B Next. we consider cft) to increasing family of egt IM-halls with local growth prop. With CJtst=0

For NUI. NUI initial Lomains. S. EI. ent 9: NUI > NUI. Fe = 4 cke). Sut T = infst 201 K+ \$ NUI 3 Gasilor t=T: Penote: gt = 1kt It = 12t. At = It of oft St = Pisto. Nt = Nkt. It = Ikt. $\widetilde{N_t} = \widetilde{N_{Ft}} \cdot \widetilde{\mathcal{I}_t} = \widetilde{\mathcal{I}_{T_t}}$ prop, (Kt) ter is increasing family of upt IM-halls having local growth prop. and having the Loewner transf. (30) prop. + t = [0.7). => heape k+) = f. \$ sess * Achenpeks) Prop. 5 = [(t, 2) | t & [0,7]. Z + N& U]+3 = [0,0) x M => (t.Z) +> 9+12) on 5 is t- Lifferensimble for NII Z. And Sortisfies: $\begin{cases}
\frac{\partial \phi_{t}(z)}{\partial t} = \frac{2 \phi_{t}(z+1)}{\phi_{t}(z) - \phi_{t}(z+1)} & \frac{2 \phi_{t}(z)}{Z - j_{t}} & \frac{2 \varepsilon N_{t} v_{t} v_{t}}{z} \Big|_{S_{t}}
\end{cases}$ Busides, oftet is holomorphic on No VIt St. $(\frac{\partial \phi_{k}(z)}{\partial \phi})' = \frac{1}{2} \frac{\phi_{k}''(z_{k})}{\phi_{k}''(z_{k})} - \frac{4}{3} \phi_{k}'''(z_{k}).$