

(19) 世界知的所有権機関 国際事務局

] (BELEF BEHARDE I) BERKUR (BELEF BEHAR BEHAR BEHAR KER EIN BEHAR BEHAR BEHAR BEHAR HEN BIBER HER HERR HER HER

(43) 国際公開日 2004年11月4日(04.11.2004)

PCT

(10) 国際公開番号 WO 2004/095559 A1

(51) 国際特許分類7:

H01L 21/3065

(21) 国際出願番号:

PCT/JP2004/005643

(22) 国際出願日:

2004年4月20日(20.04.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-117664 2003年4月22日(22.04.2003)

- (71) 出願人(米国を除く全ての指定国について): 東京エレ クトロン株式会社 (TOKYO ELECTRON LIMITED) [JP/JP]; 〒1078481 東京都港区赤坂五丁目3番6号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 長谷部 一秀

(HASEBE, Kazuhide) [JP/JP]; 〒1078481 東京都港区 赤坂五丁目3番6号 東京エレクトロン株式会社内 Tokyo (JP). 岡田 充弘 (OKADA, Mitsuhiro) [JP/JP]; 〒 1078481 東京都港区赤坂五丁目3番6号 東京エレ クトロン株式会社内 Tokyo (JP). 千葉 貴司 (CHIBA, Takashi) [JP/JP]; 〒1078481 東京都港区赤坂五丁目 3番6号 東京エレクトロン株式会社内 Tokyo (JP). 小川 淳 (OGAWA, Jun) [JP/JP]; 〒1078481 東京都港区 赤坂五丁目3番6号 東京エレクトロン株式会社内 Tokyo (JP).

- (74) 代理人: 吉武賢次,外(YOSHITAKE, Kenji et al.); 〒 1000005 東京都千代田区丸の内三丁目2番3号富士 ビル323号協和特許法律事務所 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR,

[続葉有]

- (54) Title: METHOD FOR REMOVING SILICON OXIDE FILM AND PROCESSING APPARATUS
- (54) 発明の名称: シリコン酸化膜の除去方法及び処理装置

(57) Abstract: A method for removing a silicon oxide film is disclosed which enables to efficiently remove a silicon oxide film such as a natural oxide film or a chemical oxide film at a temperature considerably higher than room temperature. In the method for removing a silicon oxide film formed on the surface of an object (W) to be processed within an evacuatable process chamber (18), the silicon oxide film is removed by using a mixed gas of HF gas and NH3 gas. By using the mixed gas of HF gas and NH3 gas, the silicon oxide film formed on the surface of the object can be efficiently removed.

A...VACUUM EVACUATION

BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG,

KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

自然酸化膜やケミカル酸化膜等のシリコン酸化膜を、室温よりもかなり高い温度下で効率的に除去することが可能なシリコン酸化膜の除去方法を提供する。

真空引き可能になされた処理容器18内にて、被処理体Wの表面に形成されているシリコン酸化膜を除去するための除去方法において、HFガスとNH3ガスとの混合ガスを用いて前記シリコン酸化膜を除去する。このようにHFガスとNH3ガスとの混合ガスを用いることにより被処理体の表面に形成されているシリコン酸化膜を効率的に除去することが可能となる。

1

明 細 書

シリコン酸化膜の除去方法及び処理装置

発明の背景

技術分野

本発明は、半導体ウエハ等の被処理体の表面に形成されたシリコン酸化膜の除去方法及び処理装置に関する。

背景技術

一般に、半導体集積回路を製造するためにはシリコン基板等よりなる半導体ウエハに対して、成膜処理、エッチング処理、酸化処理、拡散処理、改質処理等の各種の処理が行なわれる。この場合、ある処理が終了して次の処理へ移行するために、半導体ウエハが処理容器から次の処理容器へ搬送される際、この半導体ウエハが清浄な雰囲気に晒されることになるが、この時、上記雰囲気中の酸素や水分がウエハ表面に露出している活性なシリコン原子と反応してSiO2よりなる自然酸化膜を形成してしまう。この自然酸化膜は、電気的特性を低下させる原因になるので、次の処理を半導体ウエハに施す前にこの自然酸化膜を、例えばHF溶液を用いたウェット洗浄で除去することが行われている。尚、特許文献1には膜質の異なるシリコン酸化膜を室温においてHFガスを用いて選択的に除去する方法が開示されている。

そして、この洗浄で自然酸化膜の除去されたウェハ表面は活性に富むので、このウェハを大気に晒すと再度上記した自然酸化膜(SiO2)が付着してしまう。そのため、自然酸化膜の再付着を防止するために、上記自然酸化膜の除去されたウェハ表面にウェット状態でケミカル処理を積極的に施してケミカル酸化膜(SiO2)を付着させ、このケミカル酸化膜を付着させたウェハを次の処理のための処理容器へ搬送し、このケミカル酸化膜の付着した状態で次の処理を行っていた。すなわち、このケミカル酸化膜は、上記自然酸化膜と比較して電気的特性に優れ、しかもウェハ面内に均一性よく形成されるので、次の処理が例えばゲート

酸化膜の形成のような場合には、上記ケミカル酸化膜上に、そのまま熱酸化膜(SiO₂)等を形成するようにしていた。

ここで、図10を参照して上記した半導体ウエハの表面の一連の処理工程について説明する。ここでは半導体ウエハの表面に例えばゲート酸化膜となる熱酸化膜(SiO₂)を形成する場合を例にとって説明する。

まず、図10(A)に示すように、例えばシリコン基板よりなる半導体ウエハWの表面には、これが大気等に晒されていることから、大気中の酸素や水蒸気(水分)とシリコン原子が反応して電気的特性の劣る自然酸化膜(SiO2)が不均一な厚さで付着している。従って、図10(B)に示すように、まず、この半導体ウエハWに対してHF溶液を用いたウェット洗浄処理を施して、表面の自然酸化膜2を除去する。ここで自然酸化膜2の除去されたウエハWの表面は非常に活性に富むので、酸素や水蒸気と反応して再度、自然酸化膜が付着し易い状態となっている。

そこで、自然酸化膜が再度付着することを防止するために、図10(C)に示すように、自然酸化膜2の除去されたウエハWの表面に、例えば H_2O_2 と NH_4O Hとの混合溶液を用いてケミカル処理を施してその表面を僅かに酸化させることによって保護膜としてケミカル酸化膜 (SiO_2) 4を形成する。このケミカル酸化膜4は、前述のように自然酸化膜2よりも電気的特性が良く、しかも膜厚も僅かであり、その面内均一性も優れている。このケミカル酸化膜4の厚さLは例えば $0.7\sim0.9$ n m程度である。

次に図10(D)に示すように、例えばこのウエハWを熱酸化装置へ搬送して、このウエハWに熱酸化処理を施すことにより(例えば特許文献2、特許文献3)、熱酸化膜(SiO $_2$)6を形成し、これを後工程にてパターンエッチング処理等することによりゲート酸化膜として用いることになる。この場合上記熱酸化膜6は上記ケミカル酸化膜4とウエハWのシリコン表面との界面に形成される。

特許文献1 特開平6-181188号公報

特許文献 2 特開平 3 一 1 4 0 4 5 3 号公報

特許文献3 特開2002-176052号公報

ところで、半導体集積回路の更なる集積化及び微細化の要請により、一層当た

りの膜厚も更に薄膜化する傾向にある。このような状況下において、一層当たりの膜厚の目標値も、例えばゲート酸化膜を例にとれば、例えば1.0~1.2 nmの膜厚のゲート酸化膜を制御性良く形成することが望まれている。

しかしながら、前述したように上記ケミカル酸化膜4の厚さLは僅かに $0.7\sim0.9$ nm程度であるが、上述のようにゲート酸化膜(ケミカル酸化膜4+熱酸化膜6)の目標値が $1.0\sim1.2$ nm程度まで小さくなると、ゲート酸化膜の全体の厚さに対するケミカル酸化膜4の厚さが占める割合が大きくなり、ゲート酸化膜の膜厚を十分に制御することが困難になる、という問題があった。このような問題点は、ゲート酸化膜を形成する場合に限らず、他の膜種の薄膜を形成する場合にもその膜厚の制御性に関して同様な問題があった。

この場合、特許文献1のようにHFガスを用いて上記ケミカル酸化膜を除去することも考えられるが、このHFガスを単独で使用する場合には室温で処理を行わなければならず、特に熱容量が大きな縦型炉で処理容器全体の温度を昇降温させるには多くの時間がかかり、スループットを大幅に低下させる原因となってしまう。

発明の開示

本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、自然酸化膜やケミカル酸化膜等のシリコン酸化膜を、室温よりもかなり高い温度下で効率的に除去することが可能なシリコン酸化膜の除去方法及び処理装置を提供することにある。

本願に係る発明は、真空引き可能になされた処理容器内にて、被処理体の表面に形成されているシリコン酸化膜を除去するための除去方法において、HFガスとNH3ガスとの混合ガスを用いて前記シリコン酸化膜を除去するようにしたことを特徴とするシリコン酸化膜の除去方法である。

このようにHFガスとNH3ガスとの混合ガスを用いることにより被処理体の表面に形成されているシリコン酸化膜を効率的に除去することが可能となる。

この場合、例えば、前記被処理体の処理温度は100℃~600℃の範囲内である。

また例えば、前記被処理体の処理圧力は26 Pa (0.2 Torr) ~532 00 Pa (400 Torr) の範囲内である。

また例えば、前記シリコン酸化膜は、ケミカル処理により形成されたケミカル酸化膜であり、シリコン材料に対する前記ケミカル酸化膜の選択性を得るために処理温度は100 \mathbb{C} \mathbb{C}

これによればシリコン材料に対してケミカル酸化膜よりなるシリコン酸化膜を 選択性良くエッチングして除去することができる。

この場合、例えば、処理圧力は26Pa (0.2Torr)~53200Pa (400Torr)の範囲内に設定される。

また例えば、前記HFガスと NH_3 ガスとの流量比は、 $10:1\sim1:50$ の範囲内に設定される。

また例えば、前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、シリコン窒化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は200 \mathbb{C} ~600 \mathbb{C} の範囲内に設定される。

これによればシリコン窒化膜に対してケミカル酸化膜よりなるシリコン酸化膜 を選択性良くエッチングして除去することができる。

また例えば、前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、TEOSにより形成されたシリコン酸化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は300℃~400℃の範囲内である。

これによれば、TEOS(テトラエチルオルソシリケート)により形成されたシリコン酸化膜に対してケミカル酸化膜よりなるシリコン酸化膜を選択性良くエッチングして除去することができる。

また例えば、前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、熱酸化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は100 \mathbb{C} \sim 600 \mathbb{C} の範囲内に設定される。

これによれば熱酸化膜(SiO₂)に対してケミカル酸化膜よりなるシリコン酸化膜を選択性良くエッチングして除去することができる。

また例えば、前記HFガスとNH3ガスとの流量比は1:10~1:50の範囲内に設定される。

また例えば、前記処理圧力は1011Pa (7.6 Torr)以下に設定される。

また例えば、前記シリコン酸化膜は、自然酸化膜である。

また、本願に係る発明は、上記方法発明を実施する装置発明であり、すなわち真空引き可能になされた処理容器と、被処理体を保持するための支持手段と、前記被処理体を加熱する加熱手段と、前記処理容器内の雰囲気を真空引きする真空排気系と、前記処理容器内にHFガスを供給するHFガス供給系と、前記処理容器内にNH3ガスを供給するNH3ガス供給系と、を備えたことを特徴とする処理装置である。

この場合、例えば、前記処理容器内に水蒸気、或いは水蒸気を形成するためのガスを供給する酸化用ガス供給系が設けられる。

また例えば、前記処理容器内にシリコン膜形成用のガスを供給するシリコン膜 形成用ガス供給系が設けられる。

図面の簡単な説明

図1は、本発明に係るシリコン酸化膜の除去方法を実施するための処理装置の 一例を示す構成図である。

図2は、半導体ウエハの処理工程の一部を示す工程図である。

図3は、エッチング処理前後のケミカル酸化膜の膜厚の変化を示すグラフである。

図4は、ケミカル酸化膜の削れ量のNH₃ガス依存性を示すグラフである。

図5は、ケミカル酸化膜と、これ以外のシリコン酸化膜やシリコン含有材料と の選択性の有無のデータを示す図である。

図6は、ケミカル酸化膜とこれ以外のシリコン酸化膜やシリコン含有材料との 選択性データを示す図である。

図7は、図6のデータを示す棒グラフであり、"TOP"と"BTM"のデータについてそれぞれ示している。

図8は、水蒸気や水蒸気を形成するためのガスを供給する酸化用ガス供給系を併設した処理装置を示す構成図である。

図9は、シリコン膜形成用のガスを供給するシリコン膜形成用ガス供給系を併 設した処理装置を示す構成図である。

図10は、半導体ウエハの表面の一連の処理工程を示す図である。

発明を実施するための最良の形態

以下に、本発明に係るシリコン酸化膜の除去方法及び処理装置の一実施例を添付図面に基づいて詳述する。

図1は本発明に係るシリコン酸化膜の除去方法を実施するための処理装置の一例を示す構成図である。この処理装置12は、内筒14と外筒16とよりなる石英製の2重管構造の縦型の所定の長さの処理容器18を有している。上記内筒14内の処理空間Sには、被処理体を保持するための支持手段としての石英製のウエハボート20が収容されており、このウエハボート20には被処理体としての半導体ウエハWが所定のピッチで多段に保持される。尚、このピッチは、一定の場合もあるし、ウエハ位置によって異なっている場合もある。

この処理容器18の下方を開閉するためにキャップ22が設けられ、これには 磁性流体シール24を介して貫通する回転軸26が設けられる。そして、この回 転軸26の上端に回転テーブル28が設けられ、このテーブル28上に保温筒30を設け、この保温筒30上に上記ウエハボート20を載置している。そして、上記回転軸26は昇降可能なボートエレベータ32のアーム34に取り付けられており、上記キャップ22やウエハボート20等と一体的に昇降可能にしており、ウエハボート20は処理容器18内へその下方から挿脱可能になされている。尚、ウエハボート20を回転せずに、これを固定状態としてもよい。

上記処理容器18の下端開口部は、例えばステンレス製のマニホールド36が接合されており、このマニホールド36には、流量制御されたHFガスとNH3ガスとを処理容器18内へ導入するためのHFガス供給系38とNH3ガス供給系40がそれぞれ個別に設けられている。

具体的には、まず、上記HFガス供給系38は、上記マニホールド36を貫通 して設けられるHFガスノズル42を有しており、このノズル42には途中に例 えばマスフローコントローラのような流量制御器44を介設したガス供給路46 が接続される。そして、このガス供給路46には、HFガス源48が接続されている。

また、上記 NH_3 ガス供給系 40は、同様に上記マニホールド 36を貫通して設けられる NH_3 ガスノズル 50を有しており、このノズル 50には途中に例えばマスフローコントローラのような流量制御器 52を介設したガス供給路 54が接続される。そして、このガス供給路 54には、 NH_3 ガス源 56が接続されている。

従って、上記各ノズル42、50より供給された各ガスは、内筒14内の処理空間Sであるウエハの収容領域を上昇して天井部で下方へ折り返し、そして内筒14と外筒16との間隙内を流下して排出されることになる。また、外筒16の底部側壁には、排気口58が設けられており、この排気口58には、排気路60に真空ポンプ62を介設してなる真空排気系64が接続されており、処理容器18内を真空引きするようになっている。

また、処理容器18の外周には、断熱層66が設けられており、この内側には、加熱手段として加熱ヒータ68が設けられて内側に位置するウエハWを所定の温度に加熱するようになっている。ここで、処理容器18の全体の大きさは、例えば成膜すべきウエハWのサイズを8インチ、ウエハボート20に保持されるウエハ枚数を150枚程度(製品ウエハを130枚程度、ダミーウエハ等を20枚程度)とすると、内筒14の直径は略260~270mm程度、外筒16の直径は略275~285mm程度、処理容器18の高さは略1280mm程度である。

また、ウエハWのサイズが12インチの場合には、ウエハボート20に保持されるウエハ枚数が25~50枚程度の場合もあり、この時、内筒14の直径は略380~420mm程度、外筒16の直径は略440~500mm程度、処理容器18の高さは略800mm程度である。尚、これらの数値は単に一例を示したに過ぎない。

また上記キャップ22とマニホールド36との間には、ここをシールするOリング等のシール部材70が設けられ、上記マニホールド36の上端部と外筒16の下端部との間には、ここをシールするOリング等のシール部材72が設けられる。尚、図示されていないが、ガス供給系としては不活性ガスとして、例えば

N2ガスを供給するガス供給系も設けられているのは勿論である。

次に、以上のように構成された処理装置を用いて行なわれる本発明方法について説明する。

ここでは除去するシリコン酸化膜としてケミカル酸化膜(SiO2)を除去する場合を例にとって説明する。

図2は半導体ウエハの処理工程の一部を示す工程図である。図2(A)に示す 半導体ウエハWの表面には、シリコン酸化膜としてケミカル酸化膜4が形成され ており、このケミカル酸化膜4の付いたウエハWは、先に図8(A)及び図8 (B)を参照して説明したように、ウエハ表面の自然酸化膜2を除去した後、このウエハWの表面にH2O2とNH4OHとの混合溶液を用いたケミカル処理を施 すことにより形成される。

ここでは、上記ケミカル酸化膜4の付いたウエハWを上記処理装置12内へ収容し、ここでHFガスとNH3ガスとの混合ガスを用いて、図2(B)に示すように上記ケミカル酸化膜4をエッチングにより除去する。

その後は、他の処理装置で図2 (C) に示すように、例えばゲート酸化膜を形成するために熱酸化膜6を形成することになる。尚、後述する実施例では、上記ケミカル酸化膜4の除去処理と上記熱酸化膜6の形成処理とを同一処理装置内で行うことができる。

次に、上記処理装置12を用いて行うケミカル酸化膜4の除去処理について具体的に説明する。

まず、図2(A)に示すように表面にケミカル酸化膜4の付いた未処理の多数 枚の半導体ウエハWをウエハボート20に所定のピッチで多段に保持させ、この 状態でボートエレベータ32を上昇駆動することにより、ウエハボート20を処理容器18内へその下方より挿入し、処理容器18内を密閉する。この処理容器 18内は予め、所定の温度に維持されており、また、例えば半導体ウエハWの表面には、上述のようにケミカル酸化膜4が形成されている。上述のようにウエハ Wが挿入されたならば真空排気系64により処理容器18内を真空引きする。

そして、これと同時にHFガス供給系38のHFガスノズル42から流量制御 されたHFガスを処理容器18内へ導入すると共に、NH3ガス供給系40の NH3ガスノズル50から流量制御されたNH3ガスを処理容器18内へ導入する。

このように、処理容器18内へ別々に導入されたHFガスとNH₃ガスはこの 処理容器18内を上昇しつつ混合してこの混合ガスがウエハWに形成されている ケミカル酸化膜4をエッチングして除去することができる。

この時のエッチングの処理条件に関しては、処理温度は、室温よりも高くて、例えば100 \mathbb{C} \sim 600 \mathbb{C} の範囲内であり、また処理圧力は、処理容器 18 内の真空引ききり状態、例えば26 \mathbb{P} \mathbb{A} \mathbb{C} \mathbb{C}

このように、HF (フッ化水素) ガス単独では処理容器18の温度を室温付近まで低下させないとシリコン酸化膜を除去できなかったが、NH。(アンモニア) ガスを混合させることにより、処理容器18の温度を室温付近まで低下させることなくシリコン酸化膜、ここではケミカル酸化膜を除去することができ、従って、処理容器18の温度を昇降温させる時間を少なくできるので、スループットを向上させることができる。

このようにして、ケミカル酸化膜4の除去されたウエハWは、この処理装置12に熱酸化膜形成用の部材が設けられている場合にはこの処理装置で、上記部材が設けられていない場合には他の処理装置へ搬送されて、図2(C)に示すように例えばゲート酸化膜用の熱酸化膜6が酸化処理により形成されることになる。この場合、前述したように半導体集積回路の高微細化及び高集積化のためにゲート酸化膜の薄膜化が要請されてその目標膜厚値が1.0~1.2 nm程度まで小さくなっても、この熱酸化膜6を膜厚の制御性良く形成することができる。

図3から明らかなように、"TOP"も"BTM"においても、処理前と処理後では膜厚が大きく変化しており、10分間の処理でケミカル酸化膜を厚さ $0.39\sim0.41$ n m程度の範囲で削り取ることができることを確認できた。

次にNH $_3$ ガスを添加して混合することの有効性について評価を行ったので、その評価結果について説明する。図 $_4$ はケミカル酸化膜の削れ量のNH $_3$ ガス依存性を示すグラフである。図 $_4$ 中、左側の部分はHFガスのみを用いた場合を示し、右側の部分はHFガスとNH $_3$ ガスとの混合ガスを用いた場合を示す。ここでの処理条件は上記図3にて説明した場合と同じであり、処理温度が $_3$ 00 $_2$ 0、処理圧力が $_3$ 200Pa($_4$ 00Torr)、HFガスの流量が $_1$ 82sccm、NH $_3$ ガスの流量が $_1$ 82sccm、NH $_3$ ガスの流量が $_1$ 82sccm、ND $_2$ ガスの流量が $_3$ 000sccmであり、 $_4$ 0分間のエッチング処理を行った。

図4から明らかなように、 NH_3 ガスを添加しないでHFガスのみで処理を行った場合には、ケミカル酸化膜はほとんど削れないのに対して、HFガスと NH_3 ガスとの混合ガスを用いた場合には厚さが $0.59\sim0.61$ n m 程度削り取ることができることが判明した。これにより、 NH_3 ガスを添加しないとケミカル酸化膜を削れないことが判明した。

次に、ケミカル酸化膜以外の他のシリコン酸化膜やシリコン含有材料との選択性の評価を行ったので、その評価結果について説明する。図5はケミカル酸化膜と、これ以外のシリコン酸化膜やシリコン含有材料との選択性の有無を示すデータである。尚、圧力に関しては1Torr=133Paであり、選択性のある部分には"〇"印を付してある。また図5中の"一"は5i材料をオーバーエッチングしており、測定が不可能であることを意味している。

ここでは処理温度を $100\sim600$ ℃まで変化させており、処理圧力を26 Pa $(0.2 \mathrm{Tprr})\sim53200$ Pa $(400\mathrm{Torr})$ まで変化させて、10分間のエッチング処理を行っている。尚、図5中の圧力" VAC"は処理容器 18内を真空引きで引ききり状態にした時の圧力を示し、真空ポンプの能力等にもよるが、その時の処理容器 18内の圧力は26 Pa $(0.2 \mathrm{Torr})\sim40$ Pa $(0.3 \mathrm{Torr})$ 程度である。またHF ガスとNH $_3$ ガスとの流量比は $1:10\sim10:1$ の範囲内で変化させている。この図中の各数値は10分間

のエッチング処理によって削り取られた厚さをそれぞれ示しており、その単位は nmである。

ここで評価で用いた材料は、ケミカル酸化膜、シリコン材料(ポリシリコン膜)、シリコン窒化膜(SiN)、ケミカル酸化膜以外のシリコン酸化膜としてはTEOSを用いて形成されたシリコン酸化膜と熱酸化処理によって形成された熱酸化膜が用いられた。

まずケミカル酸化膜について検討すると、処理温度100~600℃の範囲の全ての領域において、削り取り量の大小はあるが、ケミカル酸化膜を削り取ることができることを確認できた。また同様に処理圧力も"VAC"(0.2 Torr)~400 Torrの範囲の全ての領域においてケミカル酸化膜を削り取ることができることを確認できた。特に処理温度が100℃であっても、処理圧力が"VAC"であってNH₃ガスリッチの時にはケミカル酸化膜を削り取ることができる。ただし処理温度が100℃の時で処理圧力が7.6 Torr或いは400 Torrの場合及び処理温度が300℃で処理圧力が"VAC"の場合には、NH₃ガスがリッチ状態になっていないためにケミカル酸化膜を削り取ることができなかった。尚、処理温度を100℃よりも低い50℃に設定してHFガスとNH₃ガスとの混合ガスによりエッチング処理を行ってみたが、ケミカル酸化膜は全く削れなかった。従って、処理温度は100℃以上であることが必要である。次に、ケミカル酸化膜とポリシリコン(シリコン材料)との選択性について検討する。

図5から明らかなように、ポリシリコンは処理温度が100 $\mathbb C$ の時は処理圧力が400 $\mathbb C$ $\mathbb C$

次にケミカル酸化膜とシリコン窒化膜との選択性について検討する。

図5から明らかなように、シリコン窒化膜は、処理温度が $100\sim600$ ∞ の全範囲内で削り取られてしまっているが、処理温度が300 ∞ で処理圧力が 7.6 Torrの場合、処理温度が400 ∞ で処理圧力が" VAC"及び7.6 Torrの場合、処理温度が500 ∞ で処理圧力が" VAC"の場合には、それぞれ削り取り量が、ケミカル酸化膜の削り取り量よりも少なくなっている。従って、処理温度が $500\sim600$ ∞ の範囲で且つ処理圧力が 7.6 Torr以下の時においては、シリコン窒化膜に対してケミカル酸化膜を選択的に削り取ることができることが判明する。

次にケミカル酸化膜とTEOSにより形成されたシリコン酸化膜との選択性について説明する。

図5から明らかなように、TEOSにより形成されたシリコン酸化膜は、処理温度が100~600℃の全範囲内で削り取られてしまっているが、処理温度が300℃で処理圧力が7.6Torrの場合、処理温度が400℃で処理圧力が"VAC"及び7.6Torrの場合には、それぞれ削り取り量が、ケミカル酸化膜の削り取り量よりも少なくなっている。従って、処理温度が300~400℃の範囲内で且つ処理圧力が7.6Torr以下の時においては、TEOSにより形成したシリコン酸化膜に対してケミカル酸化膜を選択的に削り取ることができることが判明する。

次にケミカル酸化膜と熱酸化処理によって形成された熱酸化膜(SiO₂)との選択性について説明する。

図5から明らかなように、熱酸化処理により形成されたシリコン酸化膜は、処理温度が100~600℃の全範囲内で削り取られてしまっているが、処理温度が100℃で処理圧力" VAC"の場合、処理温度が300℃で処理圧力が7.6Torr、150Torr、400Torr(NH₃リッチ状態の時)の場合、処理温度が400℃で処理圧力が"VAC"~400Torrの場合、処理温度が600℃で処理圧力が"VAC"~400Torrの場合、処理温度が600℃で処理圧力が"VAC"及び7.6Torrの場合には、それぞれ削り取り量が、ケミカル酸化膜の削り取り量よりも少なくなっている。従って処理温度が100~600℃の全範囲内で熱酸化処理により形成したシリコン酸化膜に対してケミカル酸化膜を選択的に削り取ることができることが判明する。

また図5から明らかなように、HFガスとNH3ガスとの混合ガスによれば、ケミカル酸化膜のみならず、TEOSより形成されたシリコン酸化膜、熱処理により形成されたシリコン酸化膜も削り取ることができるので、他のシリコン酸化膜、例えばシリコン基板上に形成される自然酸化膜や熱CVD処理やプラズマCVD処理によって堆積して形成されるシリコン酸化膜等も削り取ることができる。

次に、HFガスに対してNH3ガスが更にリッチな流量比における選択エッチング性について検討したので、その評価結果について説明する。

図6はケミカル酸化膜と、これ以外のシリコン酸化膜やシリコン含有材料との選択性データを示す図、図7は図6のデータを示す棒グラフであり、"TOP"と"BTM"のデータについてそれぞれ示している。

ここでは先に説明した図5に示す場合よりも、 NH_3 ガスが更にリッチな領域について検討を行っており、具体的にはHFガス: NH_3 ガスの流量比が1:10~1:50の範囲の領域について行っている。ここで、処理温度、処理圧力、処理時間は、図5に示すプロセス条件の中で平均的な値にそれぞれ設定しており、具体的には、処理温度は200℃、処理圧力は150Torr、処理時間は10分にそれぞれ設定している。またプロセスガスについては、 NH_3 ガスを1820sccmに固定し、HFガスの流量を変化させることによって両ガスの流量比を変化させている。尚、ウエハの処理枚数は150枚である。

図6及び図7から明らかなように、 $HF:NH_3$ の流量比を $1:10\sim1:5$ 0まで1:10、1:20、1:50のように変化させても、ポリシリコン膜のエッチング量(削れ量)は略ゼロであって、ほとんど削れていないのに対して、ケミカル酸化膜のエッチング量は $0.41\sim0.57$ nmの範囲で安定的に削られており、この点より、上記流量比の全範囲において、ポリシリコン膜に対してケミカル酸化膜を選択的にエッチングすることが確認できた。

またケミカル酸化膜とSiN膜、TEOS膜及び熱酸化膜との間の選択エッチング度が大きくなる程、そのエッチング量は次第に小さくなってきている。

またSiN膜、熱酸化膜については、HF:NH3比が1:10の時は、Si N膜と熱酸化膜のエッチング量は、共にケミカル酸化膜のエッチング量と略同じ か、或いはこれより多くエッチングされている。しかしながら、 $HF:NH_3$ 比が1:20の時は、SiN膜と熱酸化膜のエッチング量は、共にケミカル酸化膜のエッチング量よりもかなり少なくなってきており、特に、 $HF:NH_3$ 比が1:50の時は、SiN膜と熱酸化膜のエッチング量は、共に略ゼロになっている。この結果、SiN膜、TEOS度、熱酸化膜のエッチングを抑制しつつケミカル酸化膜をできるだけ削るためには、できるだけ NH_3 ガスをリッチ状態にするのがよく、好ましくは、 $HF:NH_3$ 比を $1:20\sim1:50$ の範囲内に設定するのがよいことが確認できた。

尚、図1に示す装置例にあっては、本発明の理解を容易にするために、ガス供給源としてHFガス供給系 38 と NH_3 ガス供給系 40 を設けた場合を例にとって説明したが、これに限定されず、他の処理に必要とするガス供給源を設けて連続処理を行うようにしてもよい。この一例として図 8 は水蒸気や水蒸気を形成するためのガスを供給する酸化用ガス供給系を併設した処理装置の構成図を示している。尚、図 1 に示す構成部分と同一構成部分については同一符号を付してその説明を省略する。

図8に示すように、ここではガス供給源として上記HFガス供給系38及び NH_3 ガス供給系40に加えて、酸化用ガス供給系80が設けられている。具体的には、この酸化用ガス供給系80としては、 H_2 ガス源80Aと O_2 ガス源80Bとをそれぞれ設け、それぞれのガスを流量制御器82A、82Bがそれぞれ介設されたガス流路84A、84Bを介して各ガスノズル86A、86Bより必要に応じて処理容器18内へ導入し得るようになっている。

このようにH2ガスとO2ガスとを処理容器18内へ供給することにより、例えばこれらのガスを処理容器18内で燃焼させて水蒸気を発生させ、これにより例えばシリコン基板の表面に熱酸化処理を施して熱酸化膜を形成できるようになっている。

従って、図8に示すこの処理装置によれば、最初にHFガスとNH。ガスとを供給してウエハ表面に付着しているケミカル酸化膜の除去処理を行ってHFガスとNH。ガスの供給を停止して、次に、連続してH2ガスとO2ガスとを供給して水蒸気を発生させることによって熱酸化処理を行って、例えばゲート酸化膜とな

る熱酸化膜を連続して形成することができる。

尚、上記酸化用ガス供給系80としてH2ガスとO2ガスとを燃焼させる外部燃焼装置を設けたり、触媒を利用した水蒸気発生装置を用いて、発生した水蒸気を処理容器18内へ導入させるようにしてもよい。

また他の一例として図7はシリコン膜形成用のガスを供給するシリコン膜形成 用ガス供給系を併設した処理装置の構成図を示している。尚、図1に示す構成部 分と同一構成部分については同一符号を付してその説明を省略する。

図9に示すように、ここではガス供給源として上記HFガス供給系38及び NH_3 ガス供給系40に加えて、シリコン膜形成用ガス供給系90が設けられている。具体的には、このシリコン膜形成用ガス供給系90としては、モノシラン(SiH_4)ガス源90Aを設け、このガスを流量制御器92Aが介設されたガス流路94Aを介してガスノズル96Aより必要に応じて処理容器18内へ導入し得るようになっている。

また同時にドーパント(不純物)を導入するためにドーパントガス源として例えばモノゲルマル(GeH4)ガス源90Bが設けられており、このガスを流量制御器92Bが介設されたガス流路94Bを介してガスノズル96Bより必要に応じて処理容器18内へ導入し得るようになっている。

このようにモノシランとモノゲルマルを処理容器18内へ供給することにより、 ドーパントとしてゲルマニウムが導入されたシリコン膜(ボリシリコン膜)を形 成することができるようになっている。

従って、図9に示すこの処理装置によれば、最初にHFガスとNH®ガスとを供給してウエハ表面に付着しているケミカル酸化膜の除去処理を行ってHFガスとNH®ガスの供給を停止して、次に、連続してモノシランガスとモノゲルマルガスとを供給して不純物としてゲルマニウムが導入されたシリコン膜を連続して形成することができる。またこの場合、温度を適宜選択することにより、ゲルマニウムがドープされたエピタキシャル膜も形成することができる。さらに図8と図9の装置構成を組み合せてケミカル酸化膜除去処理後ゲート酸化膜形成およびシリコンゲート電極形成を連続処理できる装置構成とすることもできる。

ここではケミカル酸化膜を除去した後に熱酸化膜やゲルマニウムが導入された

シリコン膜を連続して形成する場合を例にとって説明したが、ケミカル酸化膜を除去した後に、金属膜や窒化膜や他の絶縁膜を形成するようにしてもよい。またこの場合、前述したように、ケミカル酸化膜ではなく、前述したように例えば自然酸化膜を本発明方法により除去した後に、上記したような連続処理を行ってもよい。

尚、上記実施例では2重管構造の処理装置を例にとって説明したが、これは単に一例を示したに過ぎず、例えば単管構造の処理装置にも本発明を適用でき、この場合には処理容器の下方から或いは上方から各ガスを導入して、上方より、或いは下方より処理容器内を真空引きするように構成する。

また、本発明方法は上述したような一度に多数枚の半導体ウエハについて酸化処理できるバッチ式の処理装置に限定されず、処理容器内の載置台(支持手段)に半導体ウエハを載置して加熱手段としてランプ加熱或いはヒータ加熱により一枚ずつ酸化処理する枚葉式の処理装置にも適用することができる。

また、被処理体としては、半導体ウエハに限定されず、LCD基板、ガラス基 板等にも適用することができる。

以上説明したように、本発明のシリコン酸化膜の除去方法及び処理装置によれば、次のように優れた作用効果を発揮することができる。

本願に係る発明によれば、HFガスとNH®ガスとの混合ガスを用いることにより被処理体の表面に形成されているシリコン酸化膜を効率的に除去することができる。

また、シリコン材料に対してケミカル酸化膜よりなるシリコン酸化膜を選択性 良くエッチングして除去することができる。

また、シリコン窒化膜に対してケミカル酸化膜よりなるシリコン酸化膜を選択 性良くエッチングして除去することができる。

また、TEOS(テトラエチルオルソシリケート)により形成されたシリコン酸化膜に対してケミカル酸化膜よりなるシリコン酸化膜を選択性良くエッチングして除去することができる。

また、熱酸化膜(SiO₂)に対してケミカル酸化膜よりなるシリコン酸化膜を選択性良くエッチングして除去することができる。

請求の範囲

1. 真空引き可能になされた処理容器内にて、被処理体の表面に形成されているシリコン酸化膜を除去するための除去方法において、

HFガスとNH₃ガスとの混合ガスを用いて前記シリコン酸化膜を除去するようにした

ことを特徴とするシリコン酸化膜の除去方法。

- 2. 前記被処理体の処理温度は100℃~600℃の範囲内である ことを特徴とする請求項1記載のシリコン酸化膜の除去方法。
- 3. 前記被処理体の処理圧力は26Pa(0.2Torr)~53200Pa(400Torr)の範囲内であることを特徴とする請求項1または2記載のシリコン酸化膜の除去方法。
- 4. 前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、シリコン材料に対する前記ケミカル酸化膜の選択性を得るために処理温度は100 \mathbb{C} \sim 400 \mathbb{C} の範囲内に設定される
- ことを特徴とする請求項1記載のシリコン酸化膜の除去方法。
- 5. 処理圧力は26 Pa (0.2 Torr) ~ 53200 Pa (400 Torr) の範囲内に設定される
- ことを特徴とする請求項4記載のシリコン酸化膜の除去方法。
- 6. 前記HFガスとNH3ガスとの流量比は、10:1~1:50の範囲内 に設定される
- ことを特徴とする請求項4または5記載のシリコン酸化膜の除去方法。
 - 7. 前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜で

あり、シリコン窒化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は200℃~600℃の範囲内である

ことを特徴とする請求項1記載のシリコン酸化膜の除去方法。

- 8. 前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、TEOSにより形成されたシリコン酸化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は300℃~400℃の範囲内であることを特徴とする請求項1記載のシリコン酸化膜の除去方法。
- 9. 前記シリコン酸化膜はケミカル処理により形成されたケミカル酸化膜であり、熱酸化膜に対する前記ケミカル酸化膜の選択性を得るために処理温度は100 \mathbb{C} \mathbb{C}
- 10. 前記HFガスとNH3ガスとの流量比は1:10~1:50の範囲内 に設定される
- ことを特徴とする請求項7乃至9のいずれかに記載のシリコン酸化膜の除去方法。
- 11. 前記処理圧力は1011Pa (7.6Torr)以下に設定される ことを特徴とする請求項7乃至9のいずれかに記載のシリコン酸化膜の除去方法。
- 12. 前記シリコン酸化膜は、自然酸化膜である ことを特徴とする請求項1乃至3、5、6、10の内のいずれかに記載のシリコ ン酸化膜の除去方法。
 - 13. 真空引き可能になされた処理容器と、

被処理体を保持するための支持手段と、

前記被処理体を加熱する加熱手段と、

前記処理容器内の雰囲気を真空引きする真空排気系と、

前記処理容器内にHFガスを供給するHFガス供給系と、 前記処理容器内にNH3ガスを供給するNH3ガス供給系と、

を備えた

- ことを特徴とする処理装置。
- 14. 前記処理容器内に水蒸気、或いは水蒸気を形成するためのガスを供給する酸化用ガス供給系が設けられる
- ことを特徴とする請求項13記載の処理装置。
- 15. 前記処理容器内にシリコン膜形成用のガスを供給するシリコン膜形成用ガス供給系が設けられる
- ことを特徴とする請求項13記載の処理装置。

FIG. 1

差替入用紙(規則26)

FIG. 2

FIG. 3 差替え用紙 (規則26)

〈ケミカル酸化膜の削れ量〉

処理温度:300℃ 処理圧力:53200Pa

HF:182sccm NH3:1820sccm 処理時間:10分

FIG. 4

<ケミカル酸化膜に対する選択性の有無>

	<u>1</u>	$\overline{}$	_	Τ-	П	T	T=	Τ=	_	_	11 =		_			
၂၀	3	\vdash	4_	╀	#_	10		<u>10</u>	1	\perp						
熱酸化膜(SiO2)	mu	0.10	12.52	40.78	0.08	0.01	0.03	0.27	171	2.28	0	0	0.07	0	0 00	8 62
2	;	L				0			Τ			10	1	#	T	†
TEOS(SiO2)	EL C	0.79	15.37	35.07	0.53	0	0.37	1.19	11.02	93.90	0	0.07	0.55	0.57	0.40	0
						O					lo	O		lo		
SiN	mu	0.23	6.20	16.61	0.14	0.05	0.26	0.61	1.99	3.22	0.01	0.03	5.42	0.08	0.10	12.43
麒		0				0	0	0	O	O	0	0	O			<u> </u>
ポンシンコン酸	E	0	0	1.29	0	0	0	0	0	0	0.04	0	0	1.35	0.40	
ケミカル酸化膜	шu	0.16	0	0	0	0.12	0.22	0.42	0.58	0.61	0.16	0.10	0.35	0.18	0.10	
NH3	sccm	1820	182	1000	182	1000	1820	1820	1000	182	1000	1820	182	1000	1820	182
生	sccm	182	1820	1000	1820	1000	182	182	1000	1820	1000	182	1820	1000	182	1820
压力	Torr	VAC	7.6	400	VAC	7.6	150		400		VAC	7.6	400	VAC	9.7	400
温度	ပွ		100				300					400			009	

<1Torr=133Pa>

FIG. 5

	温度	压力 時間	中間	Ή	NH ₃	ポリシー	NH3 ポリシリコン膜	S	SiN	Į ĮĮ	TEOS	勃酸 化膜	型之	ケニカ	インセル酸/7階
/	ູ່ວ	Torr	min	(moos)	(שטטט)	100	DTAA	100				4	K		KICK KICK
		4		(11000)	(30011)	2	2	ر ا	N N	90	BTM	10P	BTM	T0P	BTM
HF:NH ₃ =1:10 200	200	150	10	182	1820	0	0	0.58	0.63	9.04	24.07	06.0	2 03	0.57	0.56
UC.A.L.	000												200	0.0	0.50
UN 02:1=8UN 700	200	150	10	9	1820	0	0	0.12	0.15	3.22	8.50	0.14	0.25	0.56	0.57
עביאות איבט	0									1				2:22	7.0
1002 0C.1=EUNI.7IT	200	150	10	36	1820	0.03	0.09	0.03	0.04	2.02	2.19	0.07	0 0	0.41	0.47
													3	-	- -

FIG. 6

F1G. 8

差替え用紙 (規則26)

FIG. 9

差替え用紙(規則26)

FIG. 10

差替え用紙(規則26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/005643

			2004/005643
A. CLASSIFIC	CATION OF SUBJECT MATTER H01L21/3065		
According to Int	ernational Patent Classification (IPC) or to both nation	al classification and IPC	
B. FIELDS SE			
Minimum docum Int.Cl	nentation searched (classification system followed by c H01L21/3065, H01L21/304	lassification symbols)	
Documentation s	searched other than minimum documentation to the extended	ent that such documents are included in the	Salda assarbad
l litsuyo	Shinan Kono $1922-1996$ To	oroku Jitsuyo Shinan Koho itsuyo Shinan Toroku Koho	1994–2004 1996–2004
Electronic data b	ase consulted during the international search (name of	data base and, where practicable, search te	erms used)
•		•	,
	ITS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	_	Relevant to claim No.
X	JP 08-195381 A (Fujitsu Ltd. 30 July, 1996 (30.07.96),		1,3,12
	Par. Nos. [0002] to [0041]; (Family: none)	Figs. 1 to 4	•
X.	JP 06-224153 A (Internationa	l Business Machines	1-3,12-14
<u>Y</u> <u>A</u>	Corp.), 12 August, 1994 (12.08.94),		$\frac{4-6,15}{2}$
¥	Par. Nos. [0002] to [0084]; I & US 5282925 A & EP	597792 A1	<u>/-11</u>
		9703888 В	
Y	JP 05-326464 A (Dainippon Sc 10 December, 1993 (10.12.93), Par. Nos. [0005] to [0020]	reen Mfg. Co., Ltd.),	4-6
	(Family: none)		
	cuments are listed in the continuation of Box C.	See patent family annex.	
"A" document de to be of parti	ories of cited documents: efining the general state of the art which is not considered cular relevance	"I" later document published after the inte date and not in conflict with the applica the principle or theory underlying the ir	ation but cited to understand
"E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "X" document of particular relevance; the claimed involve the document is taken alone document of particular relevance; the claimed involve an inventive step when			
Date of the actual	completion of the international search	Date of mailing of the international search	ch report
	7, 2004 (20.07.04)	03 August, 2004 (03	.08.04)
	g address of the ISA/ se Patent Office	Authorized officer	
Facsimile No.	0 (second sheet) (January 2004)	Telephone No.	
	v (Seemin Sincel) (January 2004)		

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/005643

Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No
Y	JP 06-097140 A (Toshiba Corp.), 08 April, 1994 (08.04.94), Par. Nos. [0005] to [0017]; Fig. 1 & US 5380399 A & KR 9708326 B		15
			•
		·	
		·	
		·	
·			

A. 発明の) Int.Cl.7 HO	属する分野の分類(国際特許分類(IPC)) 1L 21/3065		
B. 調査を	行った分野		
調査を行った 	最小限資料(国際特許分類(IPC))		
Int. C1. 7 HO	IL 21/3065, HOIL 21/304		
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
	日本国実用新案公報	1922-1996年	
		1971-2004年 1994-2004年	
	日本国実用新案登録公報	1996-2004年	
国際調査で使用	用した電子データベース (データベースの名称	、調査に使用した用語)	
C. 関連する	ると認められる文献		
引用文献の			関連する
カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する簡所の表示	請求の範囲の番号
Х	JP 08-195381 A(富士通株式会社) 1996.07.30,第2段落-第41段落,第	1-4図(ファミリーなし)	1, 3, 12
Х	 JP 06-224153 A(インターナショナル	ノ・ビジネス・マシーンズ・コ	1-3, 12-14
	ーポレイション), 1994. 08. 12, 第2段	落-第84段落,第6,10図	2 0, 12 11
<u>Y</u>	& US 5282925 A & EP 597792 A 1 & CA 2104071 A & KR 9703888 B		
1	& CA 2104071 A & KR 9703888 B		<u>4-6, 15</u>
₫			<u>7-11</u>
▼ C欄の締ぎ	にも文献が列挙されている。		
		□ パテントファミリーに関する別	紙を参照。
)カテゴリー 『のある文献ではなく、一般的技術水準を示す。	の日の後に公表された文献	
もの		「T」国際出願日又は優先日後に公表さ 出願と矛盾するものではなく、発	いた文献であって
「E」国際出席	の理解のために引用するもの		
		「X」特に関連のある文献であって、当 の新規性又は進歩性がないと考え	的数文献のみで発明
日若しく	は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当	6該文献と他の1以
	!!由を付す) :る開示、使用、展示等に言及する文献	上の文献との、当業者にとって自	明である組合せに
「P」国際出願	日前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと考えられる「&」同一パテントファミリー文献	りもの
国際調査を完了	した日	国際調査報告の発送日	
	20.07.2004	03. 8. 20	004
)名称及びあて先]特許庁(ISA/JP)	特許庁審査官(権限のある職員)	4R 3339
頸	『便番号100-8915	今井 拓也	<u> </u>
東京都 —————	3千代田区役が関三丁目 4 番 3 号	追話番号 03−3581−1101	内線 3469

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 調求の範囲の番号
Y	JP 05-326464 A (大日本スクリーン製造株式会社) 1993. 12. 10, 第5段落-第20段落 (ファミリーなし)	4-6
Y	JP 06-097140 A (株式会社東芝) 1994.04.08, 第5-17段落, 第1図 & US 5380399 A & KR 9708326 B	15