Frühjahr 16 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Berechnen Sie für welche Anfangswerte $x_0 \in \mathbb{R}^3$ die Lösung der linearen Differentialgleichung

$$\frac{\mathrm{d}x}{\mathrm{d}t} = Ax \quad \text{mit der Systemmatrix } A := \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

für $t \to \infty$ gegen die Ruhelage $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ konvergiert.

Hinweis: Sie müssen nicht die allgemeine Lösung der Differentialgleichung bestimmen, um die Aufgabe zu lösen.

Lösungsvorschlag:

Natürlich handelt es sich auch wirklich, um eine Ruhelage, weil $\tau=(1,-2,1)^{\rm T}$ im Kern von A liegt. Das charakteristische Polynom von A ist $-\lambda^3+15\lambda^2+18\lambda=-\lambda(\lambda^2-15\lambda-18)$, die Eigenwerte sind also, $0,\,\mu_+=\frac{15+\sqrt{297}}{2}>0$ und

 $\mu_- = \frac{15 - \sqrt{297}}{2} < 0$. Die (3×3) -Matrix A besitzt drei verschiedene Eigenwerte und ist daher diagonalisierbar, wir finden also eine Basis aus Eigenvektoren (τ, v_+, v_-) , wobei $Av_{\pm} = \mu_{\pm}v_{\pm}$ ist.

Die Lösung der Gleichung zur Anfangsbedingung $x(0) = x_0$ ist $t \mapsto \exp(tA)x_0$. Sei nun $x_0 \in \mathbb{R}^3$ beliebig, dann gibt es reelle Koeffizienten a, b, c mit $x_0 = a\tau + bv_+ + cv_-$, ist x(t) die Lösung der Gleichung mit Anfangswert $x(0) = x_0$, so folgt $x(t) = a\tau + be^{t\mu_+}v_+ + ce^{t\mu_-}v_-$ (Ist $w \in \mathbb{R}^n$ ein Eigenvektor einer quadratischen $(n \times n)$ -

Matrix B zum Eigenwert ϕ , so folgt $\exp(B)w = \sum_{n=0}^{\infty} \frac{B^k}{k!}w = \sum_{n=0}^{\infty} \frac{\phi^k}{k!}w = e^{\phi}w$, was

für $t \to \infty$ divergiert (beachte $v_+ \neq 0$ und betrachte eine Norm diesen Terms), falls $b \neq 0$ ist. In diesem Fall konvergiert die Lösung also nicht gegen τ .

Ist b=0, so konvergiert $x(t)\to a\tau$ für $t\to\infty$, damit das Ergebnis τ lautet, muss also a=1 sein. Der Wert von c ist unerheblich.

Die gesuchten Startwerte sind also genau die Vektoren $\tau + cv_-, c \in \mathbb{R}$, was eine affine Gerade darstellt. Der Vollständigkeit halber sollte man womöglich noch v_- bestimmen, eine mögliche Wahl ist der Vektor $v_- = (\frac{-\sqrt{297}-11}{22}, \frac{-\sqrt{297}+11}{44}, 1)^{\mathrm{T}}$, jede andere Wahl ist von der Form λv_- mit $\lambda \in \mathbb{R}, \lambda \neq 0$ und führt zum gleichen Resultat.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$