Эмпирические байесовские нейронные сети

Басов Дмитрий Константинович

Аннотация

Данная статья посвящена применению техники эмпирического Байеса к байесовским нейронным сетям. Концептуально идея следующая:

- 1. Мы используем диагональное нормальное распределение для аппроксимации апостериорного распределения весов модели -q(W).
- 2. Априорное распределение весов модели так же задаётся диагональным распределением с нулевым матожиданием p(W).
- 3. Используя вариационный вывод, мы приходим к ситуации, когда ELBO зависит от KL(q(W)||p(W)). Так как оба распределения являются нормальными, то KL дивергенция считается аналитически.
- 4. Мотивация следующего этапа была взята из RVM взять дисперсию априорного распределения весов модели p(W) из данных. Там несложно берётся производная и всё получается красиво, кроме возможного деления 0/0. Но сделав замену переменных, от этой беды можно уйти.

Пункты 1-3 в принципе были описаны в статье Weight Uncertainty in Neural Networks. А вот четвёртый пункт я ни в книгах, ни в статьях не находил.

1 Обозначения и сокращения

 $N(\mu, \sigma^2)$ — нормальное распределение

 $\mathbf{x}\odot\mathbf{y}$ — поэлементное произведение (произведение Адамара) векторов

 \mathcal{L} — Evidence Lower Bound (ELBO)

$$KL(q||p) = \int q(\mathbf{Z}) \cdot \ln rac{q(\mathbf{Z})}{p(\mathbf{Z})} d\mathbf{Z}$$
 — дивергенция Кульбака—Лейблера

 \mathbf{x} — вектор признаков

y — вектор целевой переменной

D — датасет — пары значений $\{\mathbf{x_i}, \mathbf{y_i}\}$, где $i = 1, \dots, L$

 \mathbf{W} — веса модели — случайная величина размерности М

$$p(D|\mathbf{W}) = \prod_{i=1}^{L} p(\mathbf{y_i}|\mathbf{x_i}, \mathbf{W})$$
 — правдоподобие (likelihood)

 $p(\mathbf{W})$ — априорное распределение весов модели (prior)

 $p(\mathbf{W}|D)$ — апостериорное распределение весов модели (posterior)

p(D) — маргинальная вероятность датасета (evidence)

 $p(\mathbf{W},D)=p(D|\mathbf{W})\cdot p(\mathbf{W})=p(\mathbf{W}|D)\cdot p(D)$ — совместная вероятность весов модели и данных

 $q(\mathbf{W}|\boldsymbol{\theta})$ — аппроксимация апостериорного распределения весов модели

 $oldsymbol{ heta}$ — обучаемые параметры байесовской модели

2 Введение

B классическом машинном обучении делается следующее предположение: веса модели W являются пусть и неизвестной, но фиксированной величиной. B этом случае можно получить точечную оценку весов модели согласно гипотезе максимального правдоподобия.

$$\mathbf{W_{ML}} = \operatorname*{argmax}_{\mathbf{W}} p(D|\mathbf{W})$$

Тогда распределение $p(\mathbf{y}|\mathbf{x}, D)$ аппроксимируется следующим образом:

$$p(\mathbf{y}|\mathbf{x}, D) \approx p(\mathbf{y}|\mathbf{W}_{\mathbf{ML}}, \mathbf{x})$$

Однако это справедливо при условии, что количество объектов в датасете D сильно больше количества весов модели $(L\gg M)$. Если это не так, веса модели W могут слишком сильно подстроиться под обучающую выборку D, что черевато переобучением.

Для борьбы с переобучением используется ряд приёмов (штрафы на норму весов, early stopping, dropout), однако для их настройки требуются вычислительные ресурсы и отложенные (не участвующие в обучении) выборки данных.

Альтернативным подходом к машинному обучению является нахождение апостериорного распределения весов модели $p(\mathbf{W}|D)$ по теореме Байеса.

$$p(\mathbf{W}|D) = \frac{p(D|\mathbf{W}) \cdot p(\mathbf{W})}{\int p(D|\mathbf{W}) \cdot p(\mathbf{W}) d\mathbf{W}}$$

Байесовские модели машинного обучения устойчивы к переобучению, так как о размере обучающей выборки не делается никаких предположений. Однако использование байесовского машинного обучения сопряжено с двумя большими проблемами: выбором подходящего априорного распределения $p(\mathbf{W}|D)$.

Неудачный выбор $p(\mathbf{W})$ может сильно ухудшить качество модели, а расчёт апостериорного распределения $p(\mathbf{W}|D)$ требует вычисления интеграла по всему пространству весов модели, что для нейронных сетей практически невозможно.

В данной статье предлагается следующий подход к решению этих проблем.

- 1. Для аппроксимации распределения $p(\mathbf{W}|D)$ применяется техника вариационного вывода. В этом случае вводится распределение $q(\mathbf{W}|\boldsymbol{\theta})$, и задача сводится к максимизации нижней вариационной границы (ELBO) $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$.
- 2. Распределение $q(\mathbf{W}|\boldsymbol{\theta})$ задаётся в виде нормального распределения с диагональной матрицей ковариации. То есть каждый вес модели определяется двумя числами, которые определяют его математическое ожидание и дисперсию. Таким образом, количество обучаемых параметров относительно классической нейронной сети возрастает в 2 раза.
- 3. Так как распределение $q(\mathbf{W}|\boldsymbol{\theta})$ является нормальным, применяя трюк с репараметризацией, становится возможным использовать градиентные методы для максимизации $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$.
- 4. Априорное распределение весов модели $p(\mathbf{W})$ задаётся в виде нормального распределения с нулевым матожиданием (из соображений симметрии) и диагональной матрицей ковариации. То есть мы вносим следующее априорное знание: веса модели находятся около нуля.
- 5. Для определения дисперсии априорного распределения весов модели $p(\mathbf{W})$ применяется техника эмпирического Байеса. То есть значение дисперсии $p(\mathbf{W})$ берётся из датасета D. Так как распределения $q(\mathbf{W}|\boldsymbol{\theta})$ и $p(\mathbf{W})$ являются нормальными, оптимальное значение дисперсии распределения $p(\mathbf{W})$ определяется аналитически. Такой подход обладает большой универсальностью, однако из—за этого теряется теоретическая устойчивость к переобучению.
- 6. Вводятся новые параметры γ и ρ , через которые выражаются матожидание и дисперсия распределения $q(\mathbf{W}|\boldsymbol{\theta})$. Это нужно, чтобы избежать неопределенности деления $\frac{0}{0}$, которая может возникнуть из–за определения дисперсии распределения $p(\mathbf{W})$ из данных.

Эксперименты показали, что предлагаемый подход сохраняет гибкость классических нейронных сетей и делает их устойчивыми к переобучению.

3 Постановка задачи

Задача машинного обучения с учителем в вероятностной постановке формулируется следующим образом: получить распределение вероятностей $p(\mathbf{y}|\mathbf{x},D)$ целевой переменной \mathbf{y} для неразмеченных \mathbf{x} , используя информацию из датасета \mathbf{D} . В случае параметрические моделей, которыми являются нейронные сети, информация из датасета \mathbf{D} кодируется посредством весов модели \mathbf{W} . Сделаем следующие преобразования:

$$p(\mathbf{y}|\mathbf{x}, D) = \int p(\mathbf{y}, \mathbf{W}|\mathbf{x}, D) d\mathbf{W} = \int p(\mathbf{y}|\mathbf{W}, \mathbf{x}, D) \cdot p(\mathbf{W}|\mathbf{x}, D) d\mathbf{W} = \int p(\mathbf{y}|\mathbf{W}, \mathbf{x}) \cdot p(\mathbf{W}|D) d\mathbf{W}$$

Пояснения:

- $p(\mathbf{y}|\mathbf{x},D) = \int p(\mathbf{y},\mathbf{W}|\mathbf{x},D)d\mathbf{W}$, так как для любых случайных величин \mathbf{a} и \mathbf{b} справедливо $p(\mathbf{a}) = \int p(\mathbf{a},\mathbf{b})d\mathbf{b}$
- $p(\mathbf{y}, \mathbf{W}|\mathbf{x}, D) = p(\mathbf{y}|\mathbf{W}, \mathbf{x}, D) \cdot p(\mathbf{W}|\mathbf{x}, D)$, так как для любых случайных величин **a** и **b** справедливо $p(\mathbf{a}, \mathbf{b}) = p(\mathbf{a}|\mathbf{b}) \cdot p(\mathbf{b})$
- $p(\mathbf{y}|\mathbf{W}, \mathbf{x}, D) = p(\mathbf{y}|\mathbf{W}, \mathbf{x})$, так как вся информация из датасета D отражена в весах \mathbf{W}
- $p(\mathbf{W}|\mathbf{x}, D) = p(\mathbf{W}|D)$, так как веса модели **W** не зависят от неразмеченных **x**, которых не было в датасете D.

Получим выражение для $p(\mathbf{W}|D)$, используя формулу Байеса:

$$p(\mathbf{W}|D) = \frac{p(\mathbf{W}, D)}{p(D)} = \frac{p(\mathbf{W}, D)}{\int p(\mathbf{W}, D) d\mathbf{W}} = \frac{p(D|\mathbf{W}) \cdot p(\mathbf{W})}{\int p(D|\mathbf{W}) \cdot p(\mathbf{W}) d\mathbf{W}}$$

Для аппроксимации распределения ответов модели можно воспользоваться методом Монте-Карло. Идея следующая: сэмплируем конечное количество весов $\hat{\mathbf{W}}_1, \dots, \hat{\mathbf{W}}_T$ из распределения $p(\mathbf{W}|D)$ и аппроксимируем распределение $p(\mathbf{y}|\mathbf{x},D)$ следующим образом:

$$p(\mathbf{y}|\mathbf{x},D) pprox rac{1}{T} \sum_{t=1}^T p(\mathbf{y}|\hat{\mathbf{W}_t},\mathbf{x})$$
, где $\hat{\mathbf{W}_t}$ — сэмпл весов модели из $p(\mathbf{W}|D)$

Получить аналитическое решение интеграла $\int p(D|\mathbf{W}) \cdot p(\mathbf{W}) d\mathbf{W}$ можно только в очень ограниченном числе случаев. Существует возможность сэмплировать из $p(\mathbf{W}|D)$, используя методы Монте–Карло для марковских цепей (МСМС). Однако для больших датасетов и большого числа весов это практически невозможно. Альтернативным подходом к решению такой задачи является вариационный вывод — аппроксимация распределения $p(\mathbf{W}|D)$ распределением $q(\mathbf{W}|\boldsymbol{\theta})$, из которого сэмплировать намного проще.

4 Вариационный вывод

Идея вариационного вывода — сведение задачи байесовского вывода к задаче максимизации нижней вариационной границы (ELBO) \mathcal{L} , которая для распределения $q(\mathbf{W}|\boldsymbol{\theta})$ записывается следующим образом:

$$\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta})) = \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{p(\mathbf{D}, \mathbf{W})}{q(\mathbf{W}|\boldsymbol{\theta})} d\mathbf{W}$$

Покажем мотивацию максимизации ELBO. Запишем выражение для $KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}|D))$ и преобразуем его, используя тождество $p(\mathbf{W},D) = p(\mathbf{W}|D) \cdot p(D)$:

$$KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}|D)) = \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{q(\mathbf{W}|\boldsymbol{\theta})}{p(\mathbf{W}|D)} d\mathbf{W} = \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{p(D) \cdot q(\mathbf{W}|\boldsymbol{\theta})}{p(D,\mathbf{W})} d\mathbf{W} = \ln p(D) \cdot \int q(\mathbf{W}|\boldsymbol{\theta}) d\mathbf{W} - \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{p(D,\mathbf{W})}{q(\mathbf{W}|\boldsymbol{\theta})} d\mathbf{W} = \ln p(D) - \mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$$

 $\ln p(D)$ не зависит от $\boldsymbol{\theta}$. Следовательно, максимизируя $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$, мы минимизируем $KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}|D))$. Тем самым, при максимизации $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$ распределение весов модели $q(\mathbf{W}|\boldsymbol{\theta})$ будет приближаться к апостериорному распределению весов модели $p(\mathbf{W}|D)$.

Преобразуем выражение для $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$, используя тождество $p(\mathbf{W}, D) = p(D|\mathbf{W}) \cdot p(\mathbf{W})$:

$$\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta})) = \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{p(\mathbf{D}, \mathbf{W})}{q(\mathbf{W}|\boldsymbol{\theta})} d\mathbf{W} = \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{p(D|\mathbf{W}) \cdot p(\mathbf{W})}{q(\mathbf{W}|\boldsymbol{\theta})} d\mathbf{W} =$$

$$\int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - \int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln \frac{q(\mathbf{W}|\boldsymbol{\theta})}{p(\mathbf{W})} d\mathbf{W} =$$

$$\int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}))$$

Таким образом, задача байесовского вывода свелась к задаче максимизации $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$ по параметрам $\boldsymbol{\theta}$.

При аппроксимации апостериорного распределения параметров модели $p(\mathbf{W}|D)$ распределением $q(\mathbf{W}|\boldsymbol{\theta})$ аппроксимация предсказательного распределения $p(\mathbf{y}|\mathbf{x},D)$ будет выглядить следующим образом:

$$p(\mathbf{y}|\mathbf{x},D) pprox rac{1}{T} \sum_{t=1}^T p(\mathbf{y}|\hat{\mathbf{W}}_{\mathbf{t}},\mathbf{x})$$
, где $\hat{\mathbf{W}}_{\mathbf{t}}$ — сэмпл весов модели из $q(\mathbf{W}|\pmb{ heta})$

5 Задание функциональных форм распределений

Для дальнейшнего вывода положим, что распределения $p(\mathbf{W})$ и $q(\mathbf{W}|\boldsymbol{\theta})$ являются нормальными с диагональными матрицами ковариации:

$$p(\mathbf{W}) = N(\mathbf{W}|\mathbf{0}, diag(\boldsymbol{\sigma_{p(\mathbf{W})}})^2),$$
 где $\boldsymbol{\sigma_{p(\mathbf{W})}}$ — вектор длины М

 $q(\mathbf{W}|\boldsymbol{\theta}) = N(\mathbf{W}|\boldsymbol{\mu}, diag(\boldsymbol{\sigma_{q(\mathbf{W})}})^2)$, где $\boldsymbol{\mu}$ и $\boldsymbol{\sigma_{q(\mathbf{W})}}$ — вектора длины M, которые вместе образуют вектор обучаемых параметров $\boldsymbol{\theta}$.

Априорное распределение весов модели $p(\mathbf{W})$ имеет нулевое математическое ожидание (из соображений симметрии), и среднеквадратическое отклонение $\sigma_{p(\mathbf{W})}$. В классическом байесовском выводе параметр $\sigma_{p(\mathbf{W})}$ должен задаваться до начала обучения, то есть являться гиперпараметром. Однако мы можем воспользоваться техникой эмпирического Байеса, то есть определить параметр априорного распределения $\sigma_{p(\mathbf{W})}$ из данных.

Пусть
$$\boldsymbol{\alpha} = diag(\boldsymbol{\sigma_{p(\mathbf{W})}})^{-2}$$
. Тогда $p(\mathbf{W}) = N(\mathbf{W}|\mathbf{0}, \boldsymbol{\alpha}^{-1})$.

Так как распределения $p(\mathbf{W})$ и $q(\mathbf{W}|\boldsymbol{\theta})$ являются нормальными, то $KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}))$ можно посчитать аналитически:

$$KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W})) = \frac{1}{2} \sum_{k=1}^{M} \left(\frac{\sigma_{q(W)_k}^2}{\sigma_{p(W)_k}^2} + \frac{\mu_k^2}{\sigma_{p(W)_k}^2} - \ln \frac{\sigma_{q(W)_k}^2}{\sigma_{p(W)_k}^2} - 1 \right) = \frac{1}{2} \sum_{k=1}^{M} \left(\alpha_k (\sigma_{q(W)_k}^2 + \mu_k^2) - \ln \left(\alpha_k \cdot \sigma_{q(W)_k}^2 \right) - 1 \right)$$

Так как в выражении $\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))$ интеграл $\int q(\mathbf{W}|\boldsymbol{\theta}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W}$ не зависит от параметров распределения $p(\mathbf{W})$, то:

$$\frac{\partial \mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))}{\partial \alpha_k} = -\frac{\partial (KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W})))}{\partial \alpha_k} = -\frac{1}{2}(\sigma_{q(W)_k}^2 + \mu_k^2 - \frac{1}{\alpha_k}) = -\frac{1}{2}(\sigma_{q(W)_k}^2 + \mu_k^2 - \sigma_{p(W)_k}^2)$$

Приравняв производную к нулю, получим:

$$-\frac{1}{2}(\sigma_{q(W)_k}^2 + \mu_k^2 - \sigma_{p(W)_k}^2) = 0$$
$$\sigma_{p(W)_k}^2 = \sigma_{q(W)_k}^2 + \mu_k^2$$

Подставив полученное выражение в $KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W}))$, получим:

$$\begin{split} KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W})) &= \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \frac{\mu_k^2}{\sigma_{q(W)_k}^2}) \\ \mathcal{L}(q(\mathbf{W}|\boldsymbol{\mu}, \boldsymbol{\sigma_{q(\mathbf{W})}})) &= \int q(\mathbf{W}|\boldsymbol{\mu}, \boldsymbol{\sigma_{q(\mathbf{W})}}) \cdot \ln p(D|\mathbf{W}) d\mathbf{W} - \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \frac{\mu_k^2}{\sigma_{q(W)_k}^2}) \end{split}$$

6 Замена переменных

При решении задачи оптимизации при попадании в такие области, где для какого-либо веса $\sigma_{q(W)_k}=0$ и $\mu_k=0$, возникает неопределенность деления $\frac{0}{0}$. Чтобы избежать этой неопределенности, и чтобы $\sigma_{q(\mathbf{W})}$ была всегда положительна, сделаем следующую замену переменных:

$$\sigma_{q(W)_k} = \ln(1+e^{
ho_k}) = Softplus(
ho_k)$$
 $\mu_k = \gamma_k \cdot Softplus(
ho_k)$ Тогда:

$$KL(q(\mathbf{W}|\boldsymbol{\theta})||p(\mathbf{W})) = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \frac{\mu_k^2}{\sigma_{q(W)_k}^2}) = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \gamma_k^2)$$

Таким образом, задача сводится к минимизации следующей функции потерь:

$$Loss(\boldsymbol{\rho}, \boldsymbol{\gamma}) = -\frac{\mathcal{L}(q(\mathbf{W}|\boldsymbol{\theta}))}{L} = \int N(\mathbf{W}|\boldsymbol{\mu}, diag(\boldsymbol{\sigma_{q(\mathbf{W})}})^2) \cdot NLL \ d\mathbf{W} + \frac{KL}{L}$$

где:

$$\sigma_{q(\mathbf{W})} = Softplus(\boldsymbol{\rho})$$

$$\boldsymbol{\mu} = \boldsymbol{\gamma} \cdot Softplus(\boldsymbol{\rho})$$

$$NLL = -\frac{1}{L} \sum_{i=1}^{L} \ln p(\mathbf{y_i} | \mathbf{x_i}, \mathbf{W})$$

$$KL = \frac{1}{2} \sum_{k=1}^{M} \ln(1 + \gamma_k^2)$$

Алгоритм обучения

Задаем шаг градиентного спуска lpha и инициализируем параметры распределения $q(\mathbf{W}|m{ heta})$ $-\,
ho$ и γ . Затем повторяем, пока не достигнем критерия остановки:

- 1.
 $\pmb{\sigma} \leftarrow Softplus(\pmb{\rho})$ расчёт среднеквадратических отклонений весов
- 2. $\mu \leftarrow \gamma \odot \sigma$ расчёт математических ожиданий весов
- 3. $\hat{\mathbf{W}} \leftarrow N(0,1)$ сэмплирование случайных весов
- 4. $\hat{\mathbf{W}} \leftarrow \hat{\mathbf{W}} \odot \boldsymbol{\sigma} + \boldsymbol{\mu}$ репараметризация
- 5. $nll \leftarrow -\frac{1}{L} \sum_{i=1}^{L} \ln p(\mathbf{y_i}|\mathbf{x_i}, \hat{\mathbf{W}})$ расчёт среднего отрицательного логарифма правдопозможна аппроксимация по батчам)
- 6. $kl \leftarrow \frac{1}{2} \sum_{k=1}^{M} \ln(1+\gamma_k^2)$ расчёт KL-дивергенции
- 7. $l \leftarrow nll + \frac{kl}{l}$ расчёт функции потерь

Рис. 1: Зависимость ROC–AUC от размерности скрытого состояния на тренировочных и тестовых данных

8.
$$oldsymbol{
ho}\leftarrowoldsymbol{
ho}-lpharac{\partial l}{\partialoldsymbol{
ho}}$$
 — обновление $oldsymbol{
ho}$

9.
$$\pmb{\gamma} \leftarrow \pmb{\gamma} - \alpha \frac{\partial l}{\partial \pmb{\gamma}}$$
 — обновление $\pmb{\gamma}$

8 Эксперименты

Для проверки своей гипотезы я выбрал Alzheimer's Disease Dataset. Данные были разбиты на тренировочную и тестовую часть в пропорции 80 на 20. В качестве архитектуры была выбрана полносвязная нейронная сеть с одним скрытым слоем и функцией активации ReLU. То есть:

$$z = ReLU(matmul(x, W_1))$$

$$y = Sigmoid(matmul(z, W_2))$$

Размерность скрытого состояния z варьировалась от 1 до 60. Для каждой размерности обучались 2 модели - классическая (без регуляризации) и байесовская. Для каждой модели производилась оценка ROC–AUC на тренировочной и тестовой выборках. На рисунке 1 представлены результаты экспериментов

9 Выводы

По результатам работы можно сделать следующие выводы:

- с ростом сложности модели байесовская нейронная сеть не переобучилась;
- значение ROC-AUC на тестовой выборке имеет очень высокую корреляцию со значением ROC-AUC на тренировочной выборке (0.97 по Пирсону). Следовательно, для подбора

гиперпараметров можно ориентироваться на метрики, полученные по тренировочной выборке. Это даёт нам возможность отказаться от деления на тренировочную и валидационную выборки для подбора гиперпараметров.

Так же стоит отметить, что данный подход переносится на другие архитектуры нейронных сетей (рекуррентные, свёрточные, трансформеры).

Имплементация данного подхода была выполнена с использованием PyTorch. Весь исходный код для проведения экспериментов размещён по адресу https://github.com/dimabasow/bayesian-neural-networks.