NAIVE BAYES CLASSIFIER

PART 3 OF 3 – CONDITIONAL INDEPENDENCE

GOALS

- Bike/Drive Example
- Conditional independence

Temperature:

Very Cold (-30,-10) Cold (-10, 0) Average (0, 10) Warm (10,20) Very Warm (20, 35)

Rain:

Little (0,5) Normal (5,20) Lot (20,50)

Sample	Temperature	Rain/snow	Bike / Drive
s1	Very Cold	Normal	Drive
s2	Very Cold	Normal	Drive
s3	Very Cold	Normal	Drive
s4	Cold	Normal	Drive
s5	Cold	Lot	Drive
s6	Average	Lot	Drive
s7	Cold	Little	Bike
s8	Average	Little	Bike
s9	Warm	Little	Bike
s10	Average	Little	Bike
s11	Warm	Normal	Bike
s12	Warm	Normal	Bike
s13	Warm	Lot	Bike
s14	Warm	Little	Bike
s15	Warm	Normal	Bike

BIKE/DRIVE EXAMPLE

$$p(Bike|(E) = (p(E|Bike)* p(Bike)) / p(E)$$

$$Max$$

$$p(Drive|(E) = (p(E|Drive)* p(Drive)) / p(E)$$

Sample	Temperature	Rain/snow	Bike / Drive
s1	Very Cold	Normal	Drive
s2	Very Cold	Normal	Drive
s3	Very Cold	Normal	Drive
s4	Cold	Normal	Drive
s5	Cold	Lot	Drive
s6	Average	Lot	Drive
s7	Cold	Little	Bike
s8	Average	Little	Bike
s9	Warm	Little	Bike
s10	Average	Little	Bike
s11	Warm	Normal	Bike
s12	Warm	Normal	Bike
s13	Warm	Lot	Bike
s14	Warm	Little	Bike
s15	Warm	Normal	Bike

BIKE/DRIVE EXAMPLE

Since the denominator p(E) is the same for all classes:

$$p(h_i|E) = \frac{p(E|h_i) \times p(h_i)}{\sum_{k=1}^{n} p(E|h_k) \times p(h_k)}$$

We only calculate the numerator: $\mathbf{p}(\mathbf{h}_i \mid \mathbf{E}) \propto \mathbf{p}(\mathbf{E} \mid \mathbf{h}_i) \times \mathbf{p}(\mathbf{h}_i)$ (we replace = by \propto)

We test for argmax(h_i) of p(E | h_i) x p(h_i)

Read argmax as "the index i corresponding to the maximum value of h_i".

NAIVE BAYES CLASSIFIER

 $p(Bike|(E) \propto p(E|Bike)^* p(Bike)$

 $p(Drive|(E) \propto p(E|Drive)^* p(Drive)$

Suppose that the event E is (T=Average)

D/DII 1/4	
P(Bike (Average)	

∝ 2/9 * 9/15

∝ 0.13

P(Drive|(Average)) $\propto P(Average|Drive) P(Drive)$

α 1/6 * 6/15

 α 0.06

Sample	Temperature	Rain/snow	Bike / Drive
s1	Very Cold	Normal	Drive
s2	Very Cold	Normal	Drive
s3	Very Cold	Normal	Drive
s4	Cold	Normal	Drive
s5	Cold	Lot	Drive
s6	Average	Lot	Drive
s7	Cold	Little	Bike
s8	Average	Little	Bike
s9	Warm	Little	Bike
s10	Average	Little	Bike
s11	Warm	Normal	Bike
s12	Warm	Normal	Bike
s13	Warm	Lot	Bike
s14	Warm	Little	Bike
s15	Warm	Normal	Bike

EXAMPLE OF CLASSIFICATION

Suppose that event E is (T=Average AND R=Lot)

Sample	Temperature	Rain/snow	Bike / Drive
s1	Very Cold	Normal	Drive
s2	Very Cold	Normal	Drive
s3	Very Cold	Normal	Drive
s4	Cold	Normal	Drive
s5	Cold	Lot	Drive
s6	Average	Lot	Drive
s7	Cold	Little	Bike
s8	Average	Little	Bike
s9	Warm	Little	Bike
s10	Average	Little	Bike
s11	Warm	Normal	Bike
s12	Warm	Normal	Bike
s13	Warm	Lot	Bike
s14	Warm	Little	Bike
s15	Warm	Normal	Bike

CONDITIONAL INDEPENDENCE ASSUMPTION

Independents Events

Two events A and B are independent if and only if the probability of their joint occurrence is equal to the product of their individual (separate) occurrence.

General form: $p(A \cap B) = P(A \mid B) * P(B)$

Independence of A and B: $p(A \cap B) = P(A) * P(B)$

When $P(B) \neq 0$, it is the same as saying $P(A) = P(A \mid B)$

Conditionally Independents Events

Two events A and B are conditionally independent of each other given a third event C if and only if:

 $p((A \cap B) | C) = p(A | C) * p(B | C)$

CAROLINE BARRIÈRE, CSI4106, FALL 2020

CONDITIONAL INDEPENDENCE ASSUMPTION

 $p(Bike|(E) \propto p(E|Bike)^* p(Bike)$

 $p(Drive|(E) \propto p(E|Drive)^* p(Drive)$

E = (T=Average AND R=Lot)

P(Bike|(Average & Lot) \propto P(Average & Lot|Bike) P(Bike) \propto P(Average|Bike) * P(Lot|Bike) * P(Bike) \propto 2/9 * 1/9 * 9/15 \sim 0.015

Temperature

Very Cold

Very Cold

Very Cold

Cold

Cold

Cold

Warm

Warm

Warm

Warm

Warm

s4

s5

s7

s9

s11

s12

s13

s15

Rain/snow

Normal

Normal

Normal

Normal

Lot

Lot

Little

Little

Little Little

Normal

Normal

Normal

Lot Little Bike / Drive

Drive

Drive

Drive

Drive

Drive

Drive

Bike

Bike

Bike

Bike

Bike

P(Drive|(Average & Lot) \propto P(Average & Lot|Drive) P(Drive) \propto P(Average|Drive) * P(Lot|Drive) * P(Drive) \propto 1/6 * 2/6 * 6/15 \propto 0.022

CAROLINE BARRIÈRE, CSI4106, FALL 2020

CONDITIONAL INDEPENDENCE ASSUMPTION

	Naive Bayes
Underlying theory	Probability theory
Discrete or Continuous features ?	Discrete
Multi-value classes?	Yes
Learning process	Calculate the prior (hypothesis) and posterior (features hypothesis)
Reasoning process	Apply Bayes Theorem, calculate posterior on hypotheses
Sensitive to sampling technique	YES. As a probabilistic classifier, the priors play a large role in classification.

IN SUMMARY

- Naive Bayes Classifier
 - Review of probabilities (part 1)
 - Bayes theorem and Naive Bayes Classifier (part 2)
 - Conditional independence (part 3)

