

Parcours « Data Scientist »

Projet 3 : Application au service de la santé publique

Goûters enfants en France

Etudiant: Fatma Aidi Mentor: Kezhan Shi Evaluateur: Late Lawson Date: 12/02/2021

Plan de la présentation

Partie 1: Choix de l'application

Partie 2: Préparation du jeu de

données

Partie 3: Analyse du jeu de

données clean

Partie 4: Modélisation

Partie 5: Conclusion

- Evaluation du produit scanné par le consommateur suivant :
 - Nutri_score,
 - Nova_classification et
 - Snacks_grade une nouvelle classification goûters (snacks)
- Etude de la qualité du goûter enfant en France
- Aider l'utilisateur pour un meilleur choix (recommandation)

1 Application

Préparation du jeu de données

Description de la Dataset

- Variable target : Nutri-score (à 5 modalités) et Nova groupe (à 4 modalités)
- **Taille**: 1555491, 183
- Types de variables : qualitatives : 58, quantitatives : 125
- Doublons: 4
- Analyse des valeurs manquantes :
 - beaucoup de NaN (moitié des variables > 98% de NaN)
 - o 5 groupes de données: information général, Mots clés, ingredients, Apports nutritionnels, donnée divers

Type des variables

Les variables quantitatives

- Discrète :quantity, nutriscore_score
- Continues:code, energy_100g, fat_100g, carbohydrates_100g, fiber_100g, proteins_100g, potassium_100g, glycemic-index_100g...

Les variables qualitatives

- Nominales: labels_en, categories, categories_tags, categories_en, 'pnns_groups_1, 'pnns_groups_2...
- Ordinales: nova_group, nutrition_grade_fr

Taux de remplissage

Nettoyage

def cleaining data (data)

- Supprimer :
 - les observations et variables vides
 - les doublons
 - les observations sans nom et code
 - les codes nulles
- Définir les variables ordinale
- Convertir df_time to datetime.
- Supprimer:
 - valeurs nutritives_100g négatives
 - valeurs nutritives_100g >100g
 - energiekcal_100g >900

Choix catégorie snacks

- Standardiser des Str
- Garder que les catégories snacks(pnn2)
- Garder les variables taux 40 % de valeurs
- Traitement des valeurs aberrantes :
 - sum (Fat,proteine,carbo) > 100
 - saugar > carbohydrate
 - sat fat > fat
 - salt > 5g
 - fiber > 25g
 - Outliers = Q3 + 15 * (Q3-Q1)
- Imputation energy: suivant l'équation de l'énergie
- Imputation par **IterativeImputer** pour les variables numériques
- Supprimer les variables non intéressantes pour le projet ou en double comme _tag ou datetime

Sauvegarde

- Taille de la base de données :(178351, 47)
- Sauvegarde de la DataFrame nettoyée

Taux de remplissage apres imputation

 Analyse descriptive des données

Exploration et segmentation des données

Analyse du jeu de données clean

Analyses univariées : Variables quantitatives distribution

- des pics au alentour de 0 pour la plupart des variables
- Types d'asymétrie des distributions :
- asymétrie vers la droite (positivement biaisées):fat_100g,saturated_fat_100g ,cholesterol_100g,fiber_100g,salt_100 g,sodium_100g
- distribution bimodale et
 positivement biaisée: energy_100g ,
 carbohydrates_100g, sugars_100g et
 proteins_100g

Analyses univariées : Variables quantitatives distribution

- Types d'asymétrie des distributions :
 - distribution bimodale et positivement biaisée: calcium et fer
 - distribution **trimodale** pour nutriscore_score et cacao

-Absence des distributions normales

```
1 #pour les variable 100g nutritive
     2 data test norm=df[var nutr]
     3 pg.normality(data test norm, method='normaltest').round(3)
\Box
                                   W pval normal
      energy kcal 100g
                         4053070.140
                                              False
        energy_100g
                         3731019.523
                                        0.0
                                              False
          fat 100g
                           21789.950
                                        0.0
                                              False
                           35392.929
                                              False
     saturated_fat_100g
      cholesterol_100g
                           38132.320
                                        0.0
                                              False
    carbohydrates 100g
                          100065.660
                                              False
                           12977.523
        sugars_100g
                                        0.0
                                              False
         fiber 100g
                           37151.149
                                        0.0
                                              False
       proteins 100g
                           57696.211
                                        0.0
                                              False
         salt 100g
                           90177.194
                                        0.0
                                              False
        sodium 100g
                           90179.899
                                        0.0
                                              False
```

Test de normalité

```
W pval normal
vitamin a 100g 24564.448
                           0.0
                                  False
vitamin c 100g 42394.852
                           0.0
                                  False
1 #pour les variable 100g mineraux
2 data test norm=df[var min]
3 pg.normality(data test norm, method='normaltest').round(3)
                      W pval normal
calcium 100g
              30292.705
                                False
 iron 100g
              20989.090
                                False
 cocoa 100g
               1734.326
                          0.0
                                False
1 #pour les variable 100g mineraux
2 data test norm=df[var grade]
3 pg.normality(data test norm, method='normaltest').round(5)
                             pval normal
  additives n
                 54572.70462
                                     False
nutriscore score 93716.81922
                               0.0
                                     False
```

Boite à moustache des valeurs_100g

Variables qualitatives nominales

Graphique en secteurs

Analyse bivariée

Variables Qualitative(Nutri_grade)

Nutriscore Vs variables de nutrition

- L'energy,fat,cholesterol, carbohydrates, salt, sodium semblent augmenté lorsque le classement du produit passe de A à E.
- uniforme proteins et fiber c'est uniforme(sans impact)

Nutriscore Vs variables de nutrition

- les vitamine semblent augmenté lorsque le classement du produit passe de E à A.
- uniforme avec le iron, calcium, cacao(sans impact visible)

nutri_grade vs pnn

le chi2 est: 108279.18626025991 le Degrés de liberté est: 16

- les mauvais(d,e): sugary snacks
- classe (c) est uniforme
- L'hypothèse nulle (H0) de ce test est la suivante : les deux variables X et Y sont indépendantes.
- p < 0.05 : rejet de H0

- Les meilleurs(a): fruits
- les mauvais(d,e): biscuits and cakes et sweets
- classe (c) est presque uniforme
- p < 0.05 : rejet de H0

nutri_grade vs nova

le chi2 est: 18367.768827369844 le Degrés de liberté est: 16

le P-Value est: 0.0

pnn vs nova

le chi2 est: 61303.29346070653 le Degrés de liberté est: 36

le P-Value est: 0.0

p < 0.05 rejet de H0

- Les moins transformés(1): fruits
- les plus transformés(4): biscuits and cakes et sweets
- Nova 3 est presque uniforme
- p < 0.05 rejet de H0

Analyse multivariée

Matrice de corrélation

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

-0.50

		Correlation Heatmap																
ingredient_n	- 1	0.63	0.18	0.23	0.18	0.12	0.077	0.16	-0.013	0.074	0.2	0.26	0.26	0.0099	-0.22	0.041	0.34	-0.26
additives_n	0.63	1	0.16	0.13	-0.035	-0.011	-0.012	0.26	0.13	-0.12	-0.021	0.13	0.13	-0.051	-0.18	-0.046	0.054	-0.28
nutriscore_score	0.18	0.16	1	0.81	0.71	0.71	0.27	0.56	0.56	-0.012	0.16	0.17	0.17	-0.051	-0.28	-0.19	0.23	-0.59
energy_kcal_100g	0.23	0.13	0.81	1	0.76	0.66	0.14	0.69	0.46	0.35	0.46	0.31	0.31	-0.17	-0.32	-0.18		0.23
fat_100g	0.18	-0.035	0.71	0.76	1	0.89		0.13	0.062			0.16	0.16	0.033	-0.22	-0.029		0.6
saturated_fat_100g	0.12	-0.011	0.71	0.66	0.89	1		0.094	0.14	0.25	0.29	0.013	0.013	0.07	-0.16	-0.015	0.26	0.59
cholesterol_100g	0.077	-0.012	0.27	0.14			1	-0.11	-0.031	-0.085	0.052	-0.0011	-0.0011	0.36	-0.091	0.082	-0.019	
carbohydrates_100g	0.16	0.26	0.56	0.69	0.13	0.094	-0.11	1	0.71	0.14	0.081	0.25	0.25	-0.28	-0.27	-0.28	0.27	-0.81
sugars_100g	-0.013	0.13	0.56	0.46	0.062	0.14	-0.031	0.71	1	-0.088	-0.26	-0.26	-0.26	-0.17	-0.11	-0.25	-0.11	-0.78
fiber_100g	0.074	-0.12	-0.012			0.25	-0.085	0.14	-0.088	1		0.21	0.21	-0.13	-0.059	0.061		0.69
proteins_100g	0.2	-0.021	0.16			0.29	0.052	0.081	-0.26		1			-0.1	-0.26	0.29		
salt_100g	0.26	0.13	0.17		0.16	0.013	-0.0011	0.25	-0.26	0.21		1	1	-0.094	-0.21	0.08	0.46	-0.34
sodium_100g	0.26	0.13	0.17	0.31	0.16	0.013	-0.0011	0.25	-0.26	0.21		1	1	-0.094	-0.21	0.08	0.46	-0.34
vitamin_a_100g	0.0099	-0.051	-0.051	-0.17	0.033	0.07	0.36	-0.28	-0.17	-0.13	-0.1	-0.094	-0.094	1	0.08	0.11	-0.05	
vitamin_c_100g	-0.22	-0.18	-0.28	-0.32	-0.22	-0.16	-0.091	-0.27	-0.11	-0.059	-0.26	-0.21	-0.21	0.08	1	-0.12	-0.14	
calcium_100g	0.041	-0.046	-0.19	-0.18	-0.029	-0.015	0.082	-0.28	-0.25	0.061	0.29	0.08	0.08	0.11	-0.12	1	0.097	
iron_100g	0.34	0.054	0.23	0.45	0.4	0.26	-0.019	0.27	-0.11	0.47	0.43			-0.05	-0.14	0.097	1	
cocoa_100g	-0.26	-0.28	-0.59	0.23	0.6	0.59	11	-0.81	-0.78	0.69	0.39	-0.34	-0.34		120	12		1
	ingredient_n_	additives_n_	nutriscore_score -	energy_kcal_100ç -	fat_100g -	aturated_fat_100	cholesterol_100	rbohydrates_100	sugars_100c -	fiber_100g -	proteins_100g -	salt_100g	sodium_100g -	vitamin_a_100g -	vitamin_c_100g -	calcium_100g -	iron_100g -	cocoa_100g -

corrélation Prévisibles

- nutriscore avec glucide,lipide et energie
- énergie avec glucide, lipide,protéine et
- sel et sodium
- sucre et glucide

Non Prévisibles

- cacao et les vitamines ont des corrélation négatives
- pas de corrélation entre nombres d'ingrédients et nutriscore

Nutriscore-énergie-pnn1

pnns_groups_1

beverages

28

Partie 4: Modélisation

Approche méthodologique

ACP: Analyse en Composantes Principales

additives non naturels

PC4: fluide ou solide

-0.25

-0.50

-0.75

-1.00 -0.75 -0.50 -0.25 0.00

PC5 (7.0%)

0.25 0.50 0.75

Matrice de corrélation des plans factorielles

Classification non supervisée: K_means

snack_grade=0

snack_grade=1

snack_grade=2

snack_grade=3

snack_grade=4

snack_grade pour la France

Snack_grade:

\$1: plus de **fibre** et **protéine** et le nombre d'ingrédient faible (produit naturelle simple comme fruit)

s2: le moins énergétique et moins sucré(produit latier)

s3: plus d'additif et transformé (sel et sucre)

s4: Moins de **sucre** ajouté avec **gras** et **fibre** élevés(fruits sec)

s5: plus énergétique, gras et protéiné

Conclusion

- Jeux de données avec plusieurs valeurs manquantes et aberrantes (facteur humain)
- Faire interagir d'autres variables pour la nouvelle classification (label, empreinte carbone.)
- manque d'avis d'un professionnelle nutritionniste
- le snack_grade est-il le mélange de nova et nutriscore?
- est-ce que un autre modèle de prévision serait plus fiable que K_means?