The same as compared to the same as the sa

Redes de Computadoras Práctica 6: La capa de red

Temas

ASPECTOS DE DISEÑO DE LA CAPA DE RED, ALGORITMOS DE ENRUTAMIENTO, INTERCONECTIVIDAD, LA CAPA DE RED DE INTERNET

Protocolos y normas

RFC 791: IPV4, RFC 792: ICMP, RFC 2131: DHCP, RFC 826: ARP, RFC 1918: ADDRESS ALLOCATION FOR PRIVATE INTERNETS, RFC 3022 Y 4787: NAT

Herramientas y comandos

PING, TRACEROUTE, TRACERT, IFCONFIG, IPCONFIG, ROUTE, SHOW IP ROUTE, ARP, SHOW IP ARP, SHOW INTERFACES

Figuras

Figura 5-1. El entorno de los protocolos de la capa de red.

Figura 5-2. Enrutamiento dentro de una subred de datagramas.

Tabla	de A	77	Tabla	de C		Tabla de E					
H1 1	C 1	Α	1	E	1	C	1	F	1		
H3 1	C 2	Α	2	Е	2	С	2	F	2		
Dentro	Fuera										

Figura 5-3. Enrutamiento dentro de una subred de circuitos virtuales.

Figura 5-29. (a) Fluctuación alta. (b) Fluctuación baja.

 $\textbf{Figura 5-25.} \ \ \text{Cuando se genera demasiado tráfico, ocurre congestión y se degrada marcadamente el desempeño.}$

Aplicación	Confiabilidad	Retardo	Fluctuación	Ancho de banda
Correo electrónico	Alta	Bajo	Baja	Bajo
Transferencia de archivos	Alta	Bajo	Baja	Medio
Acceso a Web	Alta	Medio	Baja	Medio
Inicio de sesión remoto	Alta	Medio	Media	Bajo
Audio bajo demanda	Baja	Bajo	Alta	Medio
Vídeo bajo demanda	Baja	Bajo	Alta	Alto
Telefonía	Baja	Alto	Alta	Bajo
Videoconferencia	Baja	Alto	Alta	Alto

Figura 5-30. Qué tan rigurosos son los requerimientos de calidad del servicio.

Aspecto	Algunas posibilidades
Servicio ofrecido	Sin conexiones, orientado a conexiones
Protocolos	IP, IPX, SNA, ATM, MPLS, AppleTalk, etc.
Direccionamiento	Plano (802) o jerárquico (IP)
Multidifusión	Presente o ausente (también difusión)
Tamaño de paquete	Cada red tiene su propio máximo
Calidad del servicio	Puede estar presente o ausente; muchos tipos diferentes
Manejo de errores	Entrega confiable, ordenada y desordenada
Control de flujo	Ventana corrediza, control de tasa, otros o ninguno
Control de congestión	Cubeta con goteo, paquetes reguladores, etc.
Seguridad	Reglas de confidencialidad, encriptación, etc.
Parámetros	Diferentes terminaciones de temporizador, especificaciones de flujo, etc.
Contabilidad	Por tiempo de conexión, por paquete, por byte, o sin ella

Figura 5-43. Algunas de las muchas maneras en que pueden diferir las redes.

Figura 5-46. Una interred no orientada a la conexión.

Figura 5-53. El encabezado de IPv4 (Protocolo Internet).

0	C) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0) () () (0 0) С	0 0) (0 0	0	0	Este host
0	C)								-	0 (0									ı	los	st									Un host de esta red
1	1	1 :	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 -	1	1 :	1	1	Difusión en la red local
					ı	Re	d							1 '	1 1	1					,							-	1	1	1	Difusión en una red distante
127						(Cualquier cosa)															Loopback (dirección local para pruebas)											

Figura 5-56. Direcciones IP especiales.

Figura 5-58. Una red de clase B dividida en 64 subredes.

Figura 5-44. (a) Dos Ethernets conectadas mediante un conmutador. (b) Dos Ethernets conectadas mediante enrutadores.

Figura 5-52. Internet es un conjunto interconectado de muchas redes.

Figura 5-55. Formatos de dirección IP.

Figura 5-57. Una red de un campus que consiste de LANs para varios departamentos.

Los tres rangos reservados son:

10.0.0.0 -10.255.255.255/8 172.16.0.0 -172.31.255.255/12 192.168.0.0 -192.168.255.255/16 (16,777,216 hosts) (1,048,576 hosts) (65,536 hosts)

Figura 5-60. Colocación y funcionamiento de una caja NAT.

Figura 5-61. Los principales tipos de mensaje ICMP.

Otras

redes

Figura 5-63. Funcionamiento de DHCP.

Servidor

DHCP

Paquete de unidifusión de

la retransmisión DHCP al servidor DHCP

Enrutador

Retransmisión

de DHCP

DHCP DISCOVER (difusión)

Figura 5-62. Tres redes /24 interconectadas: dos Ethernets y un anillo FDDI.

EXPLICAR Y JUSTIFICAR TODAS LAS RESPUESTAS

PROBLEMAS

Problema 1.

Si no hay disponible un servidor DHCP, indicar qué parámetros de configuración tiene que introducir el administrador de un ordenador para que éste pueda trabajar en una red con la pila de protocolos TCP/IP.

Host inicializado

recientemente que

busca su dirección IP

Enumerar las órdenes necesarias para comprobar que la configuración de red del ordenador es la correcta, suponiendo que está empleando el sistema operativo Unix. Indicar para qué sirve cada una de esas órdenes.

Problema 2.

Exprese las siguientes direcciones IP en binario e identifique la clase por defecto a la que pertenece cada una (resalte en cada caso que parte del número binario identifica a la clase):

Dirección IP	Binario	Clase
145.32.59.24		
200.42.129.16		
14.82.19.54		
163.10.200.5		
224.1.1.25		
10.1.1.25		

Problema 3.

Determine la clase, número de subred y dirección de broadcast para cada par de dirección IP y máscara de red presentadas a continuación:

Dirección IP	Máscara de subred	Clase	Número de subred	Dirección de broadcast
170.210.17.67	255.255.255.192	В	170.210.17.64	170.210.17.127
201.222.10.60	255.255.255.248			
15.16.193.6	255.255.248.0			
128.16.32.13	255.255.255.252			
153.50.6.27	255.255.255.128			

Problema 4.

Asuma que le han asignado el bloque de direcciones 131.40.0.0/16 y necesita establecer 8 subredes.

- 1. 1. Se necesitan _____ dígitos binarios para definir ocho subredes.
- 2. Especifique el prefijo de red extendido para crear las 8 subredes.
- 3. Exprese las subredes en notación binaria y decimal con puntos:
- Liste el rango de direcciones de hosts que pueden asignarse a la subred #3 (131.40.96.0/19).
- 5. ¿Cuál es la dirección de broadcast para la subred #3? (131.40.96.0/19).

Problema 5.

Asuma que le han asignado el bloque de red 200.15.17.0/24.

- 1. Defina un prefijo de red extendido que permita la creación de 20 hosts en cada subred.
- 2. ¿Cuál es el número máximo de hosts que pueden asignarse a cada subred?
- 3. ¿Cuál es el número máximo de subredes que pueden definirse?
- 4. Especifique las subredes de 200.15.17.0/24.
- 5. Liste el rango de direcciones de host que pueden asignarse a la subred #6 (200.15.17.192/27).
- 6. ¿Cuál es la dirección de broadcast para la subred 200.35.1.192/27?

Problema 6.

Dada la siguiente red: Complete la tabla con la configuración del router e implemente en el emulador de redes.

	Router 1	
IF	Dirección IP	Máscara

Tabla de Ruteo									
Destino	Máscara	Next Hop							

Problema 7.

Dada la siguiente red: Complete la tabla con la configuración de los routers e implemente en el emulador de redes.

Problema 8.

Dada la siguiente red: Complete la tabla con la configuración de los routers e implemente en el emulador de redes, copie la configuración realizada en los routers, use una mini-red /30 para interconectar los routers 2 y 3.

Problema 9.

Diseñe un plan de subredes para la red 165.123.0.0/16 teniendo en cuenta que se necesitan 70 subredes y un máximo de 256 hosts por subred. Especifique la longitud del prefijo e indique los números correspondientes a cada subred.

Problema 10.

Diseñe un plan de subredes para la red 190.3.54.0/24 teniendo en cuenta que se necesitan 4 subredes, una de las redes como máximo ubicará a 120 host, otra de las redes tendrá a lo sumo 60 host y luego se necesitarán dos redes más para ubicar 20 servidores en cada una de ellas. Especifique la longitud del prefijo e indique los números correspondientes a cada subred:

Subred #0 (120 Host):	
Subred #1 (60 Host):	
Subred #2 (20 Host):	
Subred #3 (20 Host): _	

Problema 11.

Se quiere establecer un esquema de direccionamiento IP para la red de un viñedo que tiene oficinas en Buenos Aires y Mendoza. En BA existe un router, que conecta a 3 LANs de 20 hosts cada una, y conecta en un enlace WAN a Mendoza. En la oficina de Mendoza existe también otro router que conecta 3 LANS de 25 hosts cada una, el enlace WAN con BA y un enlace WAN al viñedo en Luján de Cuyo, donde hay un router que conecta una LAN de 10 hosts. Se dispone de la siguiente dirección IP a subnetear: 192.168.1.0/24. Diagramar la red indicando en cada segmento LAN y WAN cuál es la dirección de red IP y la dirección broadcast correspondiente.

Problema 12.

El protocolo IP ofrece a su capa superior:

- Un servicio orientado a conexión.
- Un servicio sin conexión sin reconocimiento.
- Un servicio sin conexión con reconocimiento.
- Ninguna de las anteriores.
- · Cualquiera de las anteriores

Problema 13.

Dado el siguiente esquema de red, indicar una posible numeración IP para todos los segmentos de red presentes utilizando la red 172.16.5.0/24.

Problema 14.

Se necesita diseñar una red IP usando la dirección 192.168.0.0/24. Existen tres segmentos de LAN con 14 usuarios y dos más con 20, todos estos unidos por un mismo router. Además hay dos segmentos de WAN punto a punto, donde los segmentos de LAN remotos tienen 13 y 30 usuarios respectivamente, partiendo del mismo router. Indicar el esquema de direccionamiento a implementar, graficando la red completa con los números de subred y máscara asociados a cada segmento LAN/WAN.

Problema 15.

Supongamos que a una red de la facultad le fue asignada la dirección 157.92.26.0/24. Existen 10 laboratorios, cada uno con su propia LAN, con no más de 25 hosts cada uno. La secretaría, la dirección y las oficinas se llevan otras 40 direcciones de host más, asignados en la misma LAN. Suponiendo que todas las redes están unidas por un único router, indicar un esquema de direccionamiento con la máscara de red correspondiente asumiendo que sólo 5 laboratorios tendrán acceso a Internet además de la secretaría, la dirección y las oficinas.

Trodes de Computacións Doyr, orig

Problema 16.

Un router presenta la siguiente tabla de ruteo:

Address/mask	Next hop
135.46.56.0/22	Interface 0
135.46.60.0/22	Interface 1
192.53.40.0/23	Router 1
Default	Router 2

¿Qué hace el router cuando recibe un paquete con destino a las siguientes direcciones?

- a) 135.46.52.2
- b) 135.46.52.3
- c) 135.46.52.4
- d) 192.53.25.1
- e) 192.53.40.7
- f) 192.53.56.7

Problema 17.

Un router presenta la siguiente tabla de ruteo:

Address/mask Next hop 135.46.56.0/25 Interface 0 135.46.60.0/22 Interface 1 192.53.40.0/23 Interface 1

¿Qué hace el router cuando llega un paquete con destino a las siguientes direcciones?

- a) 135.46.63.10
- b) 192.53.256.1
- c) 200.11.120.5
- d) 135.46.56.130
- e) 192.53.40.7

Problema 18.

Explicar que hace la implementación de IP de un host que recibe un mensaje ICMP "TTL excedido en tránsito".

Problema 19.

En un IP traceroute que hace el host A hasta un host B distante en Internet se presenta la siguiente salida:

```
8
175 ms
177 ms
169 ms
144.232.14.29

9
170 ms
170 ms
169 ms
144.232.14.122

10
172 ms
174 ms
174 ms
144.232.20.155

11
172 ms
172 ms
172 ms
144.223.246.74

12
173 ms
172 ms
172 ms
209.85.130.14

13
174 ms
185 ms
188 ms
72.14.236.200

14
173 ms
172 ms
188 ms
72.14.236.200

16
173 ms
172 ms
172 ms
209.85.130.14

17
174 ms
185 ms
188 ms
72.14.236.200
```

¿Qué problema observa?

Bibliografía

- ✓ Redes de Computadoras. Quinta edición. Andrew S. Tanenbaum y David J. Wetherall. Pearson Educación, México, 2012. 5 LA CAPA DE RED.
- Redes de Computadoras. Cuarta edición. Andrew S. Tanenbaum. Pearson Educación, México, 2003. 5 LA CAPA DE RED.