Curso de integrais duplas e triplas

César Antônio de Magalhães ceanma@gmail.com

24 de agosto de 2016

Sumário

Ι	Integrais duplas	4
1	Invertendo os limites de integração - Aula 1	4
2	Determinação da região de integração - Aula 2	5
3	Cálculo de volume - Aula 3	9

Lista de Figuras

1	Integrais duplas - Aula 1 - Exercício I e II	4
2	Integrais duplas - Aula 2 - Exercício I	5
3	Integrais duplas - Aula 2 - Exercício II	6
4	Integrais duplas - Aula 2 - Exercício III	7
5	Integrais duplas - Aula 2 - Exercício IV	8
6	Integrais duplas - Aula 2 - Exercício V	9
7	Integrais duplas - Aula 3 - Exercício I	10
8	Integrais duplas - Aula 3 - Exercício II	11

Parte I

Integrais duplas

- 1 Invertendo os limites de integração Aula 1
 - 1. Exercício

Figura 1: Integrais duplas - Aula 1 - Exercício I e II

$$f(x) = x^{2}; \ g(x) = x^{3}$$

$$x = 0 \Rightarrow f(0) = g(0) \Rightarrow 0^{2} = 0^{3}$$

$$x = 1 \Rightarrow f(1) = g(1) \Rightarrow 1^{2} = 1^{3}$$

$$\int_{0}^{1} dx \int_{g(x)}^{f(x)} dy = \int_{0}^{1} dx \int_{x^{3}}^{x^{2}} dy = \int_{0}^{1} dx \left[y \right]_{x^{3}}^{x^{2}} = \int_{0}^{1} dx \left[x^{2} - x^{3} \right] = \int_{0}^{1} x^{2} dx - \int_{0}^{1} x^{3} dx = \left[\frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{1} = \left[\frac{4x^{3} - 3x^{2}}{12} \right]_{0}^{1} = \frac{1}{12} \left[4x^{3} - 3x^{2} \right]_{0}^{1} = \frac{1}{12} \left[x^{2} (4x - 3) \right]_{0}^{1} = \frac{1}{12} \left[1^{2} (4 \cdot 1 - 3) - \frac{0^{2} (4 \cdot 0 - 3)}{12} \right] = \frac{1}{12} = 0,08\overline{3}$$

$$\begin{split} &f(x)=x^2\Rightarrow f(y)=\sqrt{y};\;g(x)=x^3\Rightarrow g(y)=\sqrt[3]{y}\\ &y=0\Rightarrow f(0)=g(0)\Rightarrow\sqrt{0}=\sqrt[3]{0}\\ &y=1\Rightarrow f(1)=g(1)\Rightarrow\sqrt{1}=\sqrt[3]{1}\\ &\int_0^1dy\int_{f(y)}^{g(y)}dx=\int_0^1dy\int_{\sqrt{y}}^{\sqrt[3]{y}}dx=\int_0^1dy\left[x\right]_{\sqrt{y}}^{\sqrt[3]{y}}=\int_0^1dy\left[\sqrt[3]{y}-\sqrt{y}\right]=\\ &\int_0^1\sqrt[3]{y}\,dy-\int_0^1\sqrt{y}\,dy=\int_0^1y^{\frac{1}{3}}\,dy-\int_0^1y^{\frac{1}{2}}\,dy=\left[\frac{y^{\frac{4}{3}}}{\left(\frac{4}{3}\right)}-\frac{y^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}\right]_0^1=\\ &\left[\frac{3\sqrt[3]{y^4}}{4}-\frac{2\sqrt{y^3}}{3}\right]_0^1=\left[\frac{9\sqrt[3]{y^4}-8\sqrt{y^3}}{12}\right]_0^1=\frac{1}{12}\left[9\sqrt[3]{y^4}-8\sqrt{y^3}\right]_0^1=\\ &\frac{1}{12}\left[\left(9\sqrt[3]{1^4}-8\sqrt{1^3}\right)-\left(9\sqrt[3]{0^4}-8\sqrt{0^3}\right)\right]=\frac{1}{12}(9-8)=\frac{1}{12}=0,08\overline{3} \end{split}$$

Determinação da região de integração - Aula 2

$$R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2, \ 0 \le y \le 6\}$$

Figura 2: Integrais duplas - Aula 2 - Exercício I

$$\int_0^2 dx \int_0^6 dy = \int_0^2 dx \, [y]_0^6 = \int_0^2 dx \, [6 - 0] = 6 \int_0^2 dx = 6[x]_0^2 = 6[2 - 0] = 6 \cdot 2 = 12$$

2. Exercício

$$R = \{(x, y) \in \mathbb{R} \mid 0 \le x \le 1, x \le y \le 2x\}$$

Figura 3: Integrais duplas - Aula 2 - Exercício II

$$\int_0^1 dx \int_x^{2x} dy = \int_0^1 dx \, [y]_x^{2x} = \int_0^1 dx \, [2x - x] = 2 \int_0^1 x \, dx - \int_0^1 x \, dx = \left[2\frac{x^2}{2} - \frac{x^2}{2} \right]_0^1 = \left[\frac{2x^2 - x^2}{2} \right]_0^1 = \frac{1}{2} \left[x^2 \right]_0^1 = \frac{1}{2} \left[1^2 - \theta^2 \right] = \frac{1}{2} = 0, 5$$

$$R = \left\{ (x,y) \in \mathbb{R}^2 \mid 0 \le y \le 1, \ 0 \le x \le \sqrt{1 - y^2} \right\}$$

$$y = 0, \ y = 1$$

$$x = 0, \ x = \sqrt{1 - y^2} \Rightarrow x^2 = 1 - y^2 \Rightarrow x^2 - 1 = -y^2 \Rightarrow y^2 = -x^2 + 1 \Rightarrow y = \sqrt{1 - x^2}$$

Figura 4: Integrais duplas - Aula 2 - Exercício III

$$\int_{0}^{1} dy \int_{0}^{f(y)} dx = \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} dx = \int_{0}^{1} dy \left[x\right]_{0}^{\sqrt{1-y^{2}}} = \int_{0}^{1} dy \left[\sqrt{1-y^{2}} - 0\right] = \int_{0}^{1} \sqrt{1-y^{2}} dy = \int_{0}^{1} \sqrt{1-\sec^{2}(t)} \cos(t) dt = \int_{0}^{1} \sqrt{\cos^{2}(t)} \cos(t) dt = \int_{0}^{1} \cos(t) \cos(t) dt = \int_{0}^{1} \cos^{2}(t) dt = \int_{0}^{1} \frac{1+\cos(2t)}{2} dt = \frac{1}{2} \int_{0}^{1} \left[1+\cos(2t)\right] dt = \frac{1}{2} \int_{0}^{1} dt + \frac{1}{2} \int_{0}^{1} \cos(t) dt = \frac{1}{2} \int_{0}^{1} dt + \frac{1}{2} \int_{0}^{1} \cos(t) dt = \frac{1}{2} \int_{0}^{1} dt + \frac{1}{2} \int_{0}^{1} \cos(t) dt = \frac{1}{2} \int_{0}^{1} dt + \frac{1}{2} \int_{0}^{1} \cos(t) dt = \frac{1}{2} \int_{0}^{1} dt + \frac{1}{2} \int_{0}^{1} \cos(t) dt = \frac{1}{2} \left[\left(\arcsin(t) + \frac{1}{2} + \frac{1}{$$

$$\cos(t) = \frac{ca}{h} = \frac{\sqrt{1 - y^2}}{1} = \sqrt{1 - y^2}$$
$$y = \operatorname{sen}(t) \Rightarrow t = \operatorname{arcsen}(y)$$

4. Exercício

$$y = x^2 + 1, y = -x^2 - 1; x = 1, x = -1$$

 $R = \{(x, y) \in \mathbb{R} \mid -1 \le x \le 1, -x^2 - 1 \le y \le x^2 + 1\}$

Figura 5: Integrais duplas - Aula 2 - Exercício IV

$$\int_{-1}^{1} dx \int_{f(x)}^{g(x)} dy = \int_{-1}^{1} dx \int_{-x^{2}-1}^{x^{2}+1} dy = \int_{-1}^{1} dx \left[y \right]_{-x^{2}-1}^{x^{2}+1} = \int_{-1}^{1} dx \left[x^{2} + 1 - \left(-x^{2} - 1 \right) \right] = \int_{-1}^{1} dx \left[x^{2} + 1 + x^{2} + 1 \right] = \int_{-1}^{1} dx \left[2x^{2} + 2 \right] = 2 \int_{-1}^{1} x^{2} dx + 2 \int_{-1}^{1} dx = \left[2 \left(\frac{x^{3} + 3x}{3} \right) \right]_{-1}^{1} = \frac{2}{3} \left[x \left(x^{2} + 3 \right) \right]_{-1}^{1} = \frac{2}{3} \left[1 \cdot \left(1^{2} + 3 \right) - \left(-1 \right) \left(\left(-1 \right)^{2} + 3 \right) \right] = \frac{2}{3} (4 + 4) = \frac{2}{3} 8 = \frac{16}{3} = 5, \overline{3}$$

$$R = \{(x, y) \in \mathbb{R} \mid 0 \le y \le 2, \, -y \le x \le y\}$$

Figura 6: Integrais duplas - Aula 2 - Exercício V

$$\int_{0}^{2} dy \int_{f(y)}^{g(y)} dx = \int_{0}^{2} dy \int_{-y}^{y} dx = \int_{0}^{2} dy [x]_{-y}^{y} = \int_{0}^{2} dy [y - (-y)] = \int_{0}^{2} dy [2y] = 2 \int_{0}^{2} y dy = \left[2\frac{y^{2}}{2}\right]_{0}^{2} = 2^{2} - 0^{2} = 4$$

3 Cálculo de volume - Aula 3

Figura 7: Integrais duplas - Aula 3 - Exercício I

$$z = 4; dz = dxdy$$

$$v = \int_0^3 \int_0^2 z \, dz = \int_0^3 \int_0^2 4 \, dy dx = 4 \int_0^3 dx \int_0^2 dy = 4 \int_0^3 dx \, [y]_0^2 = 4 \int_0^3 dx \, [2 - 0] = 8 \int_0^3 dx = 8[x]_0^3 = 8[3 - 0] = 8 \cdot 3 = 24$$

$$R = [0,3] \times [0,4]$$
$$\int \int_{R} (8-2y)da$$

Figura 8: Integrais duplas - Aula 3 - Exercício II

$$z = 8 - 2y; \ da = dz = dxdy$$

$$v = \int_0^3 \int_0^4 z \, dz = \int_0^3 \int_0^4 (8 - 2y) dxdy = \int_0^3 dx \int_0^4 (8 - 2y) dy = \int_0^3 dx \left(8 \int_0^4 dy - 2 \int_0^4 y \, dy \right) = \int_0^3 dx \, 2 \left(4 \int_0^4 dy - \int_0^4 y \, dy \right) = 2 \int_0^3 dx \left[4y - \frac{y^2}{2} \right]_0^4 = 2 \int_0^3 dx \left[\frac{8y - y^2}{2} \right]_0^4 = 2 \int_0^3 dx \left[\frac{8y - y^2}{2} \right]_0^4 = 2 \int_0^3 dx \left[\frac{1}{2} [y(8 - y)]_0^4 = \int_0^3 dx [4(8 - 4) - 0(8 - 0)] = 16 \int_0^3 dx = 16[x]_0^3 = 16[3 - 0] = 48$$