Indecidibilidade do problema da vacuidade da interseção de LLCs

Thiago Lages de Alencar

Gramática

$$G = (V, T, P, S)$$

V são as <u>variáveis</u> ou <u>não terminais</u>

T são terminais

P são as regras de produção

S é o <u>símbolo inicial</u> ou <u>variável inicial</u>

Gramática Livre do Contexto

$$G = (V, T, P, S)$$

V = <u>variáveis</u> ou <u>não terminais</u>

T = terminais

 $P = (V \cup T)^* = qualquer combinação entre terminais e não terminais$

S = <u>símbolo inicial</u> ou <u>variável inicial</u>

Linguagem Livre do Contexto

$$L(G) = \{ \mathbf{w} \in \mathsf{T}^* \mid \mathsf{S} \Rightarrow^+ \mathbf{w} \}$$

V = <u>variáveis</u> ou <u>não terminais</u>

T = terminais

 $P = (V \cup T)^* = qualquer combinação entre terminais e não terminais$

S = <u>símbolo inicial</u> ou <u>variável inicial</u>

Linguagem Livre do Contexto

$$L(G) = \{ \mathbf{w} \in \mathsf{T}^* \mid \mathsf{S} \Rightarrow^+ \mathbf{w} \}$$

V = <u>variáveis</u> ou <u>não terminais</u>

T = terminais

P = (V ∪ T)* = qualquer combinação entre terminais e não terminais

S = <u>símbolo inicial</u> ou <u>variável inicial</u>

w é uma string

Composição

$$w \in L(G)$$

G é uma gramática livre de contexto

w é uma string

Dada uma string **w** e uma gramática livre de contexto G, w pertence a linguagem gerada por aquela gramática?

Composição

$$\mathbf{w} \in \mathsf{L}(\mathsf{G})$$

G é uma gramática livre de contexto

w é uma string

Dada uma string **w** e uma gramática livre de contexto G, **w** pertence a linguagem gerada por aquela gramática?

Decidível

Composição - Algoritmo

Entradas:

- G é uma gramática livre de contexto
- w é uma string

Etapa 1: Forma Normal de Chomsky

Etapa 2: Gerar todas derivações com tamanho 2N - 1

Etapa 3: Procurar **w** entre todas as derivações

Composição - Algoritmo - Forma Normal de Chomsky

Etapa 1:

- Transformar para forma normal de Chomsky

 $S \to \epsilon$

 $\mathsf{A}\to\mathsf{BC}$

 $A \rightarrow a$

Composição - Algoritmo - Forma Normal de Chomsky

Exemplo:

 $S \rightarrow \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $C \rightarrow AB$

 $S \Rightarrow A \Rightarrow CB \Rightarrow ABB \Rightarrow ABBBB$

4 passos

 $ABBBB \Rightarrow aBBBB \Rightarrow abBBB \Rightarrow abbBB \Rightarrow abbbB \Rightarrow abbbb$

5 passos

Uma string de 5 letras custou 9 passos

Composição - Algoritmo - Forma Normal de Chomsky

Dada um string w com tamanho N, você precisará de 2*N - 1 passos para encontrar ela.

$$S \Rightarrow A \Rightarrow CB \Rightarrow ABB \Rightarrow ABBBB$$

4 passos

 $ABBBB \Rightarrow aBBBB \Rightarrow abBBB \Rightarrow abbBB \Rightarrow abbbB \Rightarrow abbbb$

5 passos

Total: 9 passos

Composição - Algoritmo

Etapa 2:

Gerar todas derivações com tamanho 2*N - 1.

Etapa 3:

Se alguma delas for \mathbf{w} então $\mathbf{w} \in L(G)$, caso contrário não.

Sem saber o máximo de passos para encontrar **w** o algoritmo teria que gerar todas derivações possíveis e isso poderia entrar em loop.

Finitude

L(G) é finito

G é uma gramática livre de contexto

Dada uma gramática livre de contexto G, a linguagem gerada por aquela gramática é finita?

Finitude

L(G) é finito

G é uma gramática livre de contexto

Dada uma gramática livre de contexto G, a linguagem gerada por aquela gramática é finita?

Decidível

Entradas:

G é uma gramática livre de contexto

Etapa 1: Forma Normal de Chomsky

Etapa 2: Contar o número de não terminais (N)

Etapa 3: Verificar se existe alguma árvore derivação com o tamanho maior ou igual a **N** + 1

Exemplo:

 $S \to \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $\mathsf{B}\to\mathsf{b}$

 $\mathsf{C}\to\mathsf{AB}$

Etapa 2:

 $S \to \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $C \rightarrow AB$

Número de não terminais: 4

Etapa 3:

 $S \to \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $\mathsf{C} \to \mathsf{AB}$

Número de não terminais: 4

S

Α

C B

A B b

C B b b

. . .

Tamanho >= 4 + 1

Exemplo 2:

 $S \to \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $\mathsf{C} \to \mathsf{DB}$

 $D \rightarrow d$

Etapa 2:

 $S \to \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $\mathsf{C}\to\mathsf{DB}$

 $\mathsf{D}\to\mathsf{d}$

Número de não terminais: 5

Etapa 3:

 $S \rightarrow \epsilon \mid A$

 $A \rightarrow CB \mid a$

 $B \rightarrow b$

 $C \rightarrow DB$

 $\mathsf{D}\to\mathsf{d}$

Número de não terminais: 5

S

A

B

D B b

d b b

Tamanho >= **5** + 1

Vacuidade

$$L(G) = \emptyset$$

G é uma gramática livre de contexto

Dada uma gramática livre de contexto G, a linguagem gerada por aquela gramática é vazia?

Vacuidade

$$L(G) = \emptyset$$

G é uma gramática livre de contexto

Dada uma gramática livre de contexto G, a linguagem gerada por aquela gramática é vazia?

Decidível

Vacuidade

Exemplo 1:

 $S \Rightarrow \epsilon$

 $S \to \epsilon$

Exemplo 2:

 $S \to \epsilon \mid A$

 $S \Rightarrow \varepsilon$

 $S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow aaaA \Rightarrow ...$

 $A \rightarrow A \mid aA$

É necessário um algoritmo que dê a resposta certa e sempre pare.

Dada uma gramática livre de contexto G, a linguagem gerada por aquela gramática é vazia?

Em outras palavras: Gramática G não gera nenhuma palavra?

Entrada:

G é uma gramática livre de contexto

Etapa 1: Marcar todos os terminais no lado direito

Etapa 2: Marcar todos os não terminais que tem o lado direito todo marcado (repetir etapa 2 enquanto conseguir marcar algum não terminal)

Etapa 3: Verificar se S foi marcado

Exemplo 1:

 $S \to \epsilon$

 $\mathsf{S} \to \mathsf{ABCD}$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $\mathsf{C}\to\mathsf{C}\mathsf{D}$

 $C \to zzz$

 $\mathsf{D} \to \mathsf{dC}$

Etapa 1 - Marcar todos os terminais no lado direito:

 $S \to \epsilon$

 $\mathsf{S} \to \mathsf{A}\mathsf{B}\mathsf{C}\mathsf{D}$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $C \rightarrow CD$

 $C \to zzz$

 $D \rightarrow dC$

Etapa 1 - Marcar todos os terminais no lado direito:

 $S \to \epsilon$

 $\mathsf{S} \to \mathsf{A}\mathsf{B}\mathsf{C}\mathsf{D}$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $\mathsf{C}\to\mathsf{C}\mathsf{D}$

 $C \rightarrow zzz$

 $\mathsf{D}\to \mathsf{d}\mathsf{C}$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \to \epsilon$

 $S \rightarrow ABCD$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $\mathsf{C}\to\mathsf{C}\mathsf{D}$

 $C \rightarrow zzz$

 $\mathsf{D}\to \mathsf{d}\mathsf{C}$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \to \epsilon$

 $S \rightarrow ABCD$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $C \rightarrow CD$

 $C \rightarrow zzz$

 $D \rightarrow dC$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \to \epsilon$

 $S \rightarrow ABCD$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $C \rightarrow CD$

 $C \rightarrow zzz$

 $D \rightarrow dC$

(repetir etapa 2 enquanto conseguir marcar algum não terminal)

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \to \epsilon$

 $S \rightarrow ABCD$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $C \rightarrow CD$

 $C \rightarrow zzz$

 $D \rightarrow dC$

(repetir etapa 2 enquanto conseguir marcar algum não terminal)

Etapa 3 - Verificar se S foi marcado:

 $S \to \epsilon$

 $S \rightarrow ABCD$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $C \rightarrow CD$

 $C \rightarrow zzz$

 $D \rightarrow dC$

Como S não foi marcado, não é possível gerar uma palavra nessa gramática. Em outras palavras, essa linguagem é vazia.

Exemplo 2:

 $S \rightarrow \mathsf{DABC}$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $\mathsf{C}\to\mathsf{C}\mathsf{D}$

 $C \rightarrow xy$

 $\mathsf{D} \to \mathsf{Cd}$

Etapa 1 - Marcar todos os terminais no lado direito:

 $S \rightarrow DABC$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $C \rightarrow CD$

 $C \rightarrow xy$

 $\mathsf{D}\to\mathsf{C}\mathsf{d}$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \rightarrow DABC$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $C \rightarrow CD$

 $C \rightarrow xy$

 $D \rightarrow Cd$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \rightarrow DABC$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $C \rightarrow CD$

 $C \rightarrow xy$

 $D \rightarrow Cd$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

$$S \rightarrow DABC$$

$$A \rightarrow BB$$

$$B \rightarrow AC$$

$$B \rightarrow bbC$$

$$C \rightarrow CD$$

$$C \rightarrow xy$$

$$D \rightarrow Cd$$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $S \rightarrow DABC$

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $C \rightarrow CD$

 $C \rightarrow xy$

 $D \rightarrow Cd$

Etapa 2 - Marcar todos os não terminais que tem o lado direito todo marcado:

 $A \rightarrow BB$

 $B \rightarrow AC$

 $B \rightarrow bbC$

 $C \rightarrow CD$

 $C \rightarrow xy$

 $D \rightarrow Cd$

Etapa 3 - Verificar se S foi marcado:

```
S → DABC
```

$$A \rightarrow BB$$

$$B \rightarrow AC$$

$$B \rightarrow bbC$$

$$C \rightarrow CD$$

$$C \rightarrow xy$$

$$D \rightarrow Cd$$

Como S foi marcado, essa gramática consegue gerar uma palavra.

Exemplo: DABC \Rightarrow DABxy \Rightarrow DAbbCxy \Rightarrow DAbbxyxy \Rightarrow DBBbbxyxy \Rightarrow

DBbbCbbxyxy ⇒ DBbbxybbxyxy ⇒ DbbCbbxybbxyxy ⇒ Dbbxybbxybbxyxy ⇒

Cdbbxybbxybbxyxy ⇒ xydbbxybbxybbxyxy

- A é um alfabeto com pelo menos 2 símbolos
- Existe duas listas: lista α e lista β
- Ambas as listas são listas de strings
- Ambas as listas tem tamanho N

α_1	α_2	α_3
а	ab	bba

β ₁	β_2	β_3
baa	aa	bb

α_1	α_2	α_3
а	ab	bba

β ₁	β_2	β_3
baa	aa	bb

$$\alpha_3 \alpha_2 \alpha_3 \alpha_1 = \beta_3 \beta_2 \beta_3 \beta_1$$

α_1	α_2	α_3
а	ab	bba

β ₁	β_2	β_3
baa	aa	bb

$$\alpha_3 \alpha_2 \alpha_3 \alpha_1 = \beta_3 \beta_2 \beta_3 \beta_1$$

bba ab bba a = bb aa bb baa

bbaabbbaa = bbaabbbaa

α_1	α_2	α_3
а	ab	bba

β ₁	β_2	β_3
baa	aa	bb

$$\alpha_3 \alpha_2 \alpha_3 \alpha_1 = \beta_3 \beta_2 \beta_3 \beta_1$$

bba ab bba a = bb aa bb baa

bbaabbbaa = bbaabbbaa

O problema de decisão é: Existe tal solução ou não

α_1	α_2	α_3
а	ab	bba

β ₁	β_2	β_3
baa	aa	bb

$$\alpha_3 \alpha_2 \alpha_3 \alpha_1 = \beta_3 \beta_2 \beta_3 \beta_1$$

bba ab bba a = bb aa bb baa

bbaabbbaa = bbaabbbaa

O problema de decisão é: Existe tal solução ou não

Indecidível

Post Correspondence Problem para LLC

Podemos construir uma gramática livre de contexto para o Post Correspondence Problem:

$$\begin{split} S \to A \mid B \\ A \to \alpha_1 A x_1 \mid \alpha_2 A x_2 \mid \alpha_3 A x_3 \mid \dots \mid \alpha_N A x_N \mid \\ \alpha_1 x_1 \mid \alpha_2 x_2 \mid \alpha_3 x_3 \mid \dots \mid \alpha_N x_N \mid \\ B \to \beta_1 B x_1 \mid \beta_2 B x_2 \mid \beta_3 B x_3 \mid \dots \mid \beta_N B x_N \mid \\ \beta_1 x_1 \mid \beta_2 x_2 \mid \beta_3 x_3 \mid \dots \mid \beta_N x_N \mid \end{split}$$

Post Correspondence Problem para LLC

$$S \to A \mid B$$

$$A \to \alpha_{1}Ax_{1} \mid \alpha_{2}Ax_{2} \mid \alpha_{3}Ax_{3} \mid \dots \mid \alpha_{N}Ax_{N} \mid$$

$$\alpha_{1}x_{1} \mid \alpha_{2}x_{2} \mid \alpha_{3}x_{3} \mid \dots \mid \alpha_{N}x_{N} \mid$$

$$B \to \beta_{1}Bx_{1} \mid \beta_{2}Bx_{2} \mid \beta_{3}Bx_{3} \mid \dots \mid \beta_{N}Bx_{N} \mid$$

$$\beta_{1}x_{1} \mid \beta_{2}x_{2} \mid \beta_{3}x_{3} \mid \dots \mid \beta_{N}x_{N} \mid$$

x representa a escolha do par correspondente α_i ou β_i .

Post Correspondence Problem para LLC

$$S \rightarrow A \mid B$$

$$A \rightarrow \alpha_1 A x_1 \mid \alpha_2 A x_2 \mid \alpha_3 A x_3 \mid \dots \mid \alpha_N A x_N \mid$$
$$\alpha_1 x_1 \mid \alpha_2 x_2 \mid \alpha_3 x_3 \mid \dots \mid \alpha_N x_N \mid$$

$$B \rightarrow \beta_1 B x_1 | \beta_2 B x_2 | \beta_3 B x_3 | \dots | \beta_N B x_N |$$
$$\beta_1 x_1 | \beta_2 x_2 | \beta_3 x_3 | \dots | \beta_N x_N |$$

L_△ é a linguagem gerada pela lista A

L_B é a linguagem gerada pela lista B

Ambiguidade

Sabe se uma gramática livre de contexto é ambígua ou não é indecidível.

Suponha que 1, 2, 3 é uma solução do PCP na forma LLC

$$S \Rightarrow A \Rightarrow \alpha_1 A x_1 \Rightarrow \alpha_1 \alpha_2 A x_2 x_1 \Rightarrow \alpha_1 \alpha_2 \alpha_3 x_3 x_2 x_1$$

$$S \Rightarrow B \Rightarrow \beta_1 B x_1 \Rightarrow \beta_1 \beta_2 B x_2 x_1 \Rightarrow \beta_1 \beta_2 \beta_3 x_3 x_2 x_1$$

Já que 1, 2, 3 é uma solução, nós podemos dizer que $\alpha_1 \alpha_2 \alpha_3 = \beta_1 \beta_2 \beta_3$ Como só é possível ter uma derivação em A e uma em B, a única maneira de acabarem sendo iguais é ambas estarem fazendo derivação da mesma string.

Complemento

Dada a L_A como linguagem da lista A, L_A^C é uma linguagem livre de contexto.

Diferente de L_A , não é fácil criar uma gramática para $L_A^{\ \ C}$, mas podemos fazer o design de um autômato com pilha para $L_A^{\ \ C}$.

Complemento

Dada a L_A como linguagem da lista A, L_A^C é uma linguagem livre de contexto.

Diferente de L_A , não é fácil criar uma gramática para $L_A^{\ \ C}$, mas podemos fazer o design de um autômato com pilha para $L_A^{\ \ C}$.

. . .

Indecidibilidade

Nós podemos usar L_A, L_B e seus complementos de diversas maneiras para demonstrar indecidibilidade

Muitos problema indecidíveis envolvem reduzir o problema ao de PCP

$$L(G_1) \cap L(G_2) = \emptyset$$
?

$$L(G_1) = L(G_2) ?$$

$$L(G_1) \subseteq L(G_2)$$
?

$$L(G_1) = \sum^* ?$$

$$L(G_1) \cap L(G_2) = \emptyset$$
?

Considerando

$$L(G_1) = L_A$$

$$L(G_2) = L_B$$

Então $L(G_1) \cap L(G_2)$ é o conjunto de soluções do problema PCP A interseção é vazia apenas se não existe solução para o problema PCP

Mostrar que o complemento de um problema é indecidível equivale a mostrar que o problema é indecidível.

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

$$L_{A} \cap L_{B} = (L_{A}^{C} \cup L_{B}^{C})^{C}$$
$$L_{A} = \emptyset ?$$

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

 $L_A = \emptyset$?
 $L_A \cup L_B \in LLC$

$$L_{A} \cap L_{B} = (L_{A}^{C} \cup L_{B}^{C})^{C}$$

$$L_{A} = \emptyset ?$$

$$L_A \cup L_B \in LLC$$

Como existe prova que L_A^C e L_B^C são LLC

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

$$L_{\Delta} = \emptyset$$
 ?

$$L_A \cup L_B \in LLC$$

Como existe prova que L_A^C e L_B^C são LLC

$$L_A^C \cup L_B^C \acute{e} LLC$$

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

$$L_{\Delta} = \emptyset$$
 ?

$$L_A \cup L_B \in LLC$$

Como existe prova que $L_A^{\ \ C}$ e $L_B^{\ \ C}$ são LLC

$$L_A^C \cup L_B^C \notin LLC$$

$$L_A^C \cup L_B^C = \emptyset$$
?

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

$$L_{\Delta} = \emptyset$$
 ?

$$L_A \cup L_B \in LLC$$

Como existe prova que $L_A^{\ \ C}$ e $L_R^{\ \ C}$ são LLC

$$L_A^C \cup L_B^C = \emptyset$$
? Decidível

$$L_A \cap L_B = (L_A^C \cup L_B^C)^C$$

$$L_{\Delta} = \emptyset$$
 ?

Como existe prova que L_A^C e L_R^C são LLC

$$L_A^C \cup L_B^C \notin LLC$$

$$L_A^C \cup L_B^C = \emptyset$$
? Decidível

$$(L_A^C \cup L_B^C)^C$$
 Indecidível

FIM