Regulární výraz:

- ø je RV značící prázdnou množinu (prázdný jazyk)
- ε je RV značící jazyk { ε }
- a, kde a ∈ Σ, je RV značící jazyk { a }
- Nechť r a s jsou regulární výrazy značící po řadě jazyky L, a L, potom:
 - (r.s) je RV značící jazyk L = L_rL_s
 - (r + s) je RV značící jazyk L = L_r ∪ L_s
 - (r *) je RV značící jazyk L = L,*

Konečný automat:

Konečný automat (KA) je pětice: $M = (Q, \Sigma, R, s, F)$, kde:

- Q je konečná množina stavů
- Σ je vstupní abeceda
- R je konečná množina pravidel tvaru: pa \rightarrow q, kde p, q \in Q, a \in $\Sigma \cup \{\epsilon\}$
- s ∈ Q je počáteční stav
- F ⊆ Q je množina koncových stavů

Zásobníkový automat:

Zásobníkový automat (ZA) je sedmice: $M = (Q, \Sigma, \Gamma, R, s, S, F)$, kde

- Q je kone čná množina stavů
- Σ je vstupní abeceda
- Γ je zásobníková abeceda
- R je konečná množina pravidel tvaru Apa \to wq, kde A \in Γ ,p,q \in Q,a \in Σ \cup { ϵ }, w \in Γ *
- s ∈ Q je počáteční stav
- S ∈ Γ je počáteční symbol na zásobníku
- F ⊆ Q je množina koncových stavů

Turingův stroj: (Údajně se nezkouší)

Turingův stroj (TS) je šestice M = (Q, Σ , Γ , R, s, F), kde

- Q je konečná množina stavů
- Σ je vstupní abeceda
- Γ je pásková abeceda; $\Delta \in \Gamma$; $\Sigma \subseteq \Gamma$
- R je konečná množina pravidel tvaru: pa \rightarrow qbt , kde p , q \in Q , a , b \in Γ , t \in { S, R,
- s ∈ Q je počáteční stav F ⊆ Q je množina koncových stavů

Ekvivalentní modely:

L}

Dva modely pro popis formálních jazyků (např. konečné automaty) jsou ekvivalentní, pokud specifikují tentýž jazyk.

DKA:

Nechť M = (Q, Σ, R, s, F) je KA bez ε-přechodů. M je deterministický konečný automat (DKA), pokud pro každé pa \rightarrow q \in R platí, že množina R – {pa \rightarrow q} neobsahuje žádné pravidlo s levou stranou pa.

Dostupný stav:

Nech ť M = (Q, Σ , R, s, F) je KA. Stav q \in Q je dostupný, pokud existuje w \in Σ * , pro který platí sw |- * q. Jinak q je nedostupný.

Ukončující stav:

Nechť M = (Q, Σ , R, s, F) je DKA. Stav q \in Q je ukončující, pokud existuje řetězec w \in Σ^* , pro který platí: qw |-* f, f \in F. Jinak q je neukončující.

Úplný DKA:

Nechť M = (Q, Σ , R, s, F) je DKA. M je úplný, pokud pro libovolné p \in Q, a \in Σ existuje právě jedno pravidlo pa \rightarrow q \in R pro nějaké q \in Q. Jinak M je neúplný.

Dobře specifikovaný KA:

Nechť $M = (Q, \Sigma, R, s, F)$ je úplný DKA. Pak M je dobře specifikovaný KA (DSKA), pokud:

- 1) Q nemá nedostupné stavy
- 2) Q má maximálně jeden neukončující stav

Bezkontextová gramatika:

BKG je čtveřice G = (N, T, P, S), kde

- N je abeceda neterminálů
- T je abeceda terminálů, při čemž N ∩ T = Ø
- P je konečná množina pravidel tvaru $A \rightarrow x$, kde $A \in N, x \in (N \cup T)^*$
- S ∈ N je počáteční neterminál

Jazyk generovaný BKG:

Nechť G = (N, T, P, S) je BKG. Jazyk generovaný BKG G, L(G), je definován: $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Bezkontextový jazyk:

Nechť L je jazyk. L je bezkontextový jazyk (BKJ), pokud existuje bezkontextová gramatika, která generuje tento jazyk L

Gramatická nejednoznačnost:

Nech t' G = (N, T, P, S) je BKG. Pokud existuje řetězec $x \in L(G)$ s více jak jedním derivačním stromem, potom G je nejednoznačná. Jinak G je jednoznačná.

Pumping Lemma:

Nechť L je RJ. Pak existuje k \geq 1 takové, že: pokud z \in L a $|z| \geq$ k, pak existuje u,v,w:z = uvw,

- 1) v ≠ ε
- 2) |uv| ≤ k
- 3) pro každé m \geq 0, uv^mw \in L

Chomského normální forma (CNF):

Nech ť G = (N, T, P, S) je BKG. G je v Chomského normální formě, pokud každé pravidlo z P má jeden ze tvarů:

- A \rightarrow BC, kde A, B, C \in N;
- A \rightarrow a, kde A \in N, a \in T;

Greibachové normální forma (GNF):

Nechť G = (N, T, P, S) je BKG. G je v Greibachové normální formě, pokud každé pravidlo z P má následující tvar:

• A \rightarrow a x, kde A \in N, a \in T, x \in N *

Uzávěrové vlastnosti (RJ):

Třída regulárních jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné regulární jazyky je opět regulární jazyk.

Uzávěrové vlastnosti (BKJ):

Třída bezkontextových jazyků je uzavřená vůči operaci o, pokud výsledek operace o na libovolné bezkontextové jazyky je opět bezkontextový jazyk.

Vnitřní nejednoznačnost:

BKJ L je vnitřně nejednoznačný, pokud L není generován žádnou jednoznačnou BKG.

Minimální KA:

Nechť M je DSKA. Potom, M je minimální KA, pokud M obsahuje pouze rozlišitelné stavy.

Přijímaný jazyk ZA:

Nechť M = $(Q, \Sigma, \Gamma, R, s, S, F)$ je ZA.

- 1) Jazyk přijímaný ZA M přechodem do koncového stavu, značen jako L(M)f , je definován: L(M)f = $\{w: w \in \Sigma^*, Ssw \mid -^* zf, z \in \Gamma^*, f \in F\}$
- 2) Jazyk přijímaný ZA M vyprázdněním zásobníku, značen jako L(M) ϵ , je definován: L(M) ϵ = {w: $w \in \Sigma^*$, Ssw |-* zf, z = ϵ , f \in Q}
- 3) Jazyk přijímaný ZA M přechodem do koncového stavu a vyprázdněním zásobníku, značen jako L(M)f ϵ , je definován: L(M)f ϵ = {w: w ϵ ϵ Ssw |-* zf, z = ϵ , f ϵ F}

Deterministický TS: (Údajně se nezkouší)

Nechť M = (Q, Σ , Γ , R, s, F) je TS. M je deterministický TS, pokud pro každé pravidlo tvaru pa \rightarrow qbt \in R platí, že množina R - {pa \rightarrow qbt} neobsahuje žádné pravidlo s levou stranou pa.

Obecná gramatika:

je čtveřice G = (N, T, P, S), kde

- N je abeceda neterminálů
- T je abeceda terminálů, při čemž N ∩ T = ∅
- P je konečná množina pravidel tvaru x \rightarrow y, kde x \in (N \cup T)*N(N \cup T)*, y \in (N \cup T)*
- S ∈ N je počáteční neterminál

Kontextová gramatika:

Nech ť G = (N, T, P, S) je obecná gramatika. G je kontextová gramatika (KG), pokud každé pravidlo $x \rightarrow y \in P$ splňuje podmínku: $|x| \le |y|$.

Kontextové jazyky:

Nechť L je jazyk. L je kontextový jazyk, pokud existuje lineárně ohraničený automat M takový, pro který platí: L = L (M).

Gramatiky pro regulární jazyky:

Jsou pravé lineární gramatiky

Konfigurace:

Nechť M = (Q, Σ , R, s, F) je KA. Konfigurace KA M je řetězec $\chi \in Q\Sigma^*$

Konfigurace ZA:

Nech t' M = (Q, Σ , Γ , R, s, S, F) je ZA. Konfigurace ZA M je řet ězec $\chi \in \Gamma * Q \Sigma *$

Derivační krok u BKG:

Nechť G = (N, T, P, S) je BKG. Nechť u, $v \in (N \cup T)^*$ a p = A \rightarrow x \in P. Potom, uAv přímo derivuje uxv za použití p v G, zapsáno uAv \Rightarrow uxv [p] nebo zjednodušeně uAv \Rightarrow uxv.

Přijímaný jazyk:

Nechť $M = (Q, \Sigma, R, s, F)$ je KA. Jazyk přijímaný konečným automatem M, L(M), je definován: L(M) = $\{w: w \in \Sigma^*, sw \mid -^* f, f \in F\}$

Nejlevější derivace:

Nechť G = (N, T, P, S) je BKG, nechť u \in T*, v \in (N \cup T)*, p = A \rightarrow x \in P je pravidlo. Pak uAv přímo derivuje uxv za pomocí nejlevější derivace užitím pravidla p v G, zapsáno jako: uAv \Rightarrow Im uxv [p]

Nejpravější derivace:

Nechť G = (N, T, P, S) je BKG, nechť u \in (N \cup T)*, v \in T*, p = A \rightarrow x \in P je pravidlo. Pak uAv přímo derivuje uxv za pomocí nejpravější derivace užitím pravidla p v G, zapsáno jako: uAv \Rightarrow rm uxv [p]

Deterministický ZA:

Nech ť M = (Q, Σ , Γ , R, s, S, F) je ZA. M je deterministický ZA, pokud pro každé pravidlo tvaru Apa \rightarrow wq \in R platí, že množina R – {Apa \rightarrow wq} neobsahuje žádné pravidlo s levou stranou Apa nebo Ap.

Rozšířený ZA:

Rozšířený zásobníkový automat (RZA) je sedmice M = (Q, Σ , Γ , R, s, S, F), kde Q, Σ , Γ , s, S, F jsou definovány stejně jako u ZA a R je konečná množina pravidel tvaru: vpa \rightarrow wq, kde v, w \in Γ^* , p, q \in Q, a \in Σ \cup { ϵ }

LL-Gramatika bez ε-pravidel:

Nechť G = (N, T, P, S) je BKG bez ϵ -pravidel. G je LL gramatika, pokud pro každé a ϵ T a A ϵ N existuje maximálně jedno pravidlo A ϵ X1 X2... Xn ϵ P takové, že: a ϵ First (X1 X2... Xn)

LL-Gramatika s ε-pravidly:

Nech ť G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé a \in T a každé A \in N existuje maximálně jedno A-pravidlo tvaru A \rightarrow X1 X2... Xn \in P a platí: a \in Predict (A \rightarrow X1 X2... Xn)

Boolova algebra jazyků:

Nechť je třída jazyků uzavřena vůči sjednocení, průniku a doplňku. Potom tato třída tvoří Boolovu algebru jazyků.

Rozlišné stavy:

Nechť M = (Q, Σ , R, s, F) je DSKA a nechť p, q \in Q, p \neq q. Stavy p a q jsou rozlišitelné pokud existuje řetězec w \in Σ * takový, že: pw |-* p' and qw |-* q', kde p', q' \in Q a ((p' \in F a q' \in F) nebo (p' \notin F a q' \in F)). Jinak stavy p a q jsou nerozlišitelné.

Dostupné symboly:

Nechť G = (N, T, P, S) je BKG. Symbol $X \in N \cup T$ je dostupný, pokud existuje u, $v \in (N \cup T)^*$, takové, že: $S \Rightarrow^* uXv$. Jinak je X nedostupný.

Jazyk přijímaný TS: (Údajně se nezkouší)

Nech ť M = (Q, Σ , Γ , R, s, F) je TS. Jazyk přijímaný TS M, L (M), je definován: L (M) = { w: $w \in \Sigma^*$, $s \in V$, s

Ukončující symboly:

Nechť G = (N, T, P, S) je BKG. Symbol $X \in N \cup T$ je ukončující, pokud existuje řetězec $w \in T^*$, pro který platí: $X \Rightarrow^* w$. Jinak je X neukončující.

Jazyk L přijme sám sebe:

LPřijmeSámSebe = $\{\delta(M): M \text{ je DTS}, \delta(M) \in L(M)\}$

Jazyk L nepřijme sám sebe:

LNepřijmeSámSebe = {0, 1}* – LPřijmeSámSebe

Rozhodnutelný jazyk:

Nechť L je jazyk. Pokud existuje DTS M, který vždy zastaví a pro který platí L = L (M), potom L je rozhodnutelný jazyk.

Rekurzivně spočetný jazyk:

Nechť L je jazyk. L je rekurzivně spočetný jazyk, pokud existuje Turingův stroj M takový, pro který platí: L = L(M).

Abeceda:

Konečná, neprázdná množina elementů, které nazýváme symboly.

Řetězec:

Nechť Σ je abeceda.

- 1) ε je řetězec nad abecedou Σ
- 2) pokud x je řetězec nad Σ a a $\in \Sigma$, potom xa je řetězec nad abecedou Σ

Konkatenace řetězců:

Nechť x a y jsou dva řetězce nad abecedou Σ. Konkatenace x a y je řetězec xy.

Reverzace řetězce:

Nechť x je řetězec nad abecedou Σ.

Reverzace řetězce x, reversal(x), je definována:

1) pokud $x = \varepsilon$ pak reversal $(\varepsilon) = \varepsilon$ 2) pokud x = a1...an pak reversal(a1...an) = an...a1 pro $n \ge 1$ a ai $\in \Sigma$ pro všechna i = 1,...,n

Prefix řetězce:

Nechť x a y jsou dva řetězce nad abecedou Σ ; x je prefixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí xz = y.

Sufix řetězce:

Nechť x a y jsou dva řetězce nad abecedou Σ ; x je sufixem y, pokud existuje řetězec z nad abecedou Σ , přičemž platí zx = y.

Podřetězec:

Nechť x a y jsou dva řetězce nad abecedou Σ . x je podřetězec y, pokud existují řetězce z, z' nad abecedou Σ přičemž platí zxz' = y.

Jazyk:

Nechť Σ^* značí množinu všech řetězců nad Σ . Každá podmnožina $L \subseteq \Sigma^*$ je jazyk nad Σ Konečný a nekonečný jazyk:

Jazyk L je konečný, pokud L obsahuje konečný počet řetězců, jinak je nekonečný.

Sjednocení jazyků:

Nechť L1 a L2 jsou dva jazyky nad Σ . Sjednocení jazyků L a L , L \cup L , je definováno: L1 \cup L2 = {x: x \in L1 nebo x \in L2}

Průnik jazyků:

Nechť L1 a L2 jsou dva jazyky nad Σ . Průnik jazyků L a L , L \cap L , je definován: L1 \cap L2 = {x: $x \in L1$ a $x \in L2$ }

Rozdíl jazyků:

Nechť L1 a L2 jsou dva jazyky nad Σ . Rozdíl jazyků L1 a L2, L1 – L2, je definován: L1 – L2 = $\{x: x \in L1 \text{ a } x \notin L2\}$

Doplněk jazyka:

Nechť L je jazyk nad abecedou Σ . Doplněk jazyka L, L, je definován: L = Σ^* – L

Konkatenace jazyků:

Nechť L1 a L2 jsou dva jazyky nad Σ . Konkatenace jazyků L a L , L L , je definována jako: L1L2 = {xy: $x \in L1$ a $y \in L2$ }

Reverzace jazyka:

Nechť L je jazyk nad abecedou Σ . Reverzace jazyka L, reverse(L), je definována: reverse(L) = {reverse(x): $x \in L$ }

Mocnina jazyka:

Nechť L je jazyk nad abecedou Σ.

Pro i ≥ 0, i-tá mocnina jazyka L, Li, je definována:

- 1) $L0 = \{\epsilon\}$
- 2) pro i ≥ 1: Li = LLⁱ⁻¹

Iterace jazyka:

Nechť L je jazyk nad abecedou Σ.

Iterace jazyka L, L*, a pozitivní iterace jazyka L, L+, jsou definovány:

$$L^* = \bigcup_{i=0}^{\infty} L^i, \qquad L^+ = \bigcup_{i=1}^{\infty} L^i$$

Přechod:

Nechť pax a qx jsou dvě konfigurace KA M, kde p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $x \in \Sigma^*$. Nechť $r = pa \rightarrow q \in R$ je pravidlo. Potom M může provést přechod z pax do qx za použití r, zapsáno pax -qx [r] nebo zjednodušeně pax -qx

Sekvence přechodů:

Nechť χ je konfigurace. M provede nula přechodů z χ do χ; zapisujeme:

 $\chi \mid -0 \chi [\epsilon]$ nebo zjednodušeně $\chi \mid -0 \chi$

Nechť $\chi 0, \chi 1, ..., \chi n$ je sekvence přechodů konfigurací pro $n \ge 1$ a χi -1 $|-\chi i$ [ri], ri $\in R$ pro všechna i = 1, ..., n, což znamená: $\chi 0$ $|-\chi 1$ [r1] $|-\chi 2$ [r2] ... $|-\chi n$ [rn] Pak M provede n-přechodů z $\chi 0$ do χn ; zapisujeme: $\chi 0$ $|-n\chi n$ [r1... rn] nebo zjednodušeně $\chi 0$ $|-n\chi n$

Pokud χ0 |–n χn [ρ] pro nějaké n ≥ 1, pak

$$\chi 0 \mid -+ \chi n [\rho]$$
.

Pokud $\chi 0 \mid -n \chi n [\rho]$ pro nějaké $n \ge 0$,

pak
$$\chi 0 \mid -* \chi n [\rho]$$
.

ε-uzávěr:

Pro každý stav p ∈ Q je definován ε-uzávěr(p): ε-uzávěr(p) = $\{q: q \in Q, p \mid -* q\}$

Sekvence derivačních kroků:

Nechť $u \in (N \cup T)^*$. G provede nula derivačních kroků z u do u; zapisujeme: $u \Rightarrow 0$ u [ϵ] nebo zjednodušeně u $\Rightarrow 0$ u

Nechť u0,...,un \in (N \cup T)*, n \ge 1 a ui-1 \Rightarrow ui [pi], pi \in P pro všechna i = 1,..., n, což znamená: u0 \Rightarrow u1 [p1] \Rightarrow u2 [p2] ... \Rightarrow u_n [pn] Pak, G provede n derivačních kroků z u₀ do u_n; zapisujeme: u0 \Rightarrow u_n [p1... pn] nebo zjednodušeně u_n \Rightarrow u_n [p1... pn] nebo zjednodušeně u_n

Přechod u ZA:

Nechť xApay a xwqy jsou dvě konfigurace ZA M, kde x, $w \in \Gamma^*$, $A \in \Gamma$, $p, q \in Q$, $a \in \Sigma \cup \{\epsilon\}$ a $y \in \Sigma^*$. Nechť $r = Apa \rightarrow wq \in R$ je pravidlo. Potom M může provést přechod z xApay do xwqy za použití r, zapsáno xApay |- xwqy [r] nebo zjednodušeně xApay |- xwqy.

Přechod u RZA:

Nechť xvpay a xwqy jsou dvě konfigurace RZA M, kde x, v, w $\in \Gamma^*$, p, q $\in \mathbb{Q}$, a $\in \Sigma \cup \{\epsilon\}$ a y $\in \Sigma^*$. Nechť r = vpa \to wq $\in \mathbb{R}$ je pravidlo. Potom M může provést přechod z xvpay do xwqy za použití r, zapsáno: xvpay |– xwqy [r] nebo xvpay |– xwqy

Množina first:

Nechť G = (N, T, P, S) je BKG. Pro každé $x \in (N \cup T)^*$ je definováno First(x) jako: First(x) = {a: $a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*$ }.

Množina empty:

Necht' G = (N, T, P, S) je BKG. Empty(x) = $\{\epsilon\}$ if x \Rightarrow * ϵ ; jinak Empty(x) = \emptyset , kde x \in (N \cup T)*.

Množina follow:

Nechť G = (N, T, P, S) je BKG. Pro všechna A \in N definujeme množinu Follow(A): Follow(A) = {a: $a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*} \cup {\$: S \Rightarrow^* xA, x \in (N \cup T)^*}$

Množina predict:

Nechť G = (N, T, P, S) je BKG. Pro každé A \rightarrow x \in P definujeme množinu Predict(A \rightarrow x) jako:

- pokud Empty(x) = $\{\epsilon\}$ potom: Predict(A \rightarrow x) = First(x) \cup Follow(A)
- jinak pokud Empty(x) = \emptyset potom: Predict(A \rightarrow x) = First(x)

Konfigurace TS: (Údajně se nezkouší)

Nech t' M = (Q, Σ , Γ , R, s, F) je TS. Konfigurace TS M je řet ězec χ = xpy, kde x $\in \Gamma$ *, p \in Q, y $\in \Gamma$ * (Γ – { Δ }) \cup { Δ }.

Stacionární přechod (TS): (Údajně se nezkouší)

Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést stacionární přechod z χ do χ' použitím r, zapsáno χ |–S χ' [r] nebo zjednodušeně χ |–S χ' pokud: χ = xpay, χ' = xqby a r: pa \rightarrow qbS \in R

Pravý přechod (TS): (Údajně se nezkouší)

Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést pravý přechod z χ do χ' použitím r, zapsáno χ |–R χ' [r] nebo zjednodušeně χ |–R χ' , pokud: χ = xpay, r: pa \rightarrow qbR \in R a současně:

- (1) $\chi' = xbqy$, $y \neq \varepsilon$ nebo
- (2) $\chi' = xbq\Delta$, $y = \varepsilon$

Levý přechod (TS): (Údajně se nezkouší)

Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést levý přechod z χ do χ' použitím r, zapsáno χ |-L χ' [r] nebo zjednodušeně χ |-L χ' pokud:

- (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, r:pa $\rightarrow qbL \in R$ nebo
- (2) $\chi = xcpa$, $\chi' = xqc$, r: $pa \rightarrow q\Delta L \in R$

Přechod (TS): (Údajně se nezkouší)

Nechť χ , χ' jsou dvě konfigurace TS M. Potom M může provést přechod z χ do χ' použitím r, zapsáno χ |– χ' [r] nebo zjednodušeně χ |– χ' pokud: χ |– χ' [r] pro nějaké χ \in {S, R, L}.

TS jako výpočetní model: (Údajně se nezkouší)

Nechť M = (Q, Σ , Γ , R, s, F) je TS. TS M vyčísluje n-ární funkci ϕ následujícím způsobem: $s\Delta x 1\Delta x 2...\Delta x n \mid -^* f\Delta y$, kde f \in F právě tehdy, když $\phi(x1, x2, ..., xn) = y$.

Derivační krok (TS): (Údajně se nezkouší)

Nechť G = (N, T, P, S) je NG. Nechť $u, v \in (N \cup T)^*$ a p: $x \to y \in P$. Potom, uxv přímo derivuje uyv za použití p v G, zapsáno uxv \Rightarrow uyv [p] nebo zjednodušeně uxv \Rightarrow uyv.

Lineárně ohraničené automaty:

(LOA) je TS, který nemůže žádným pravidlem prodloužit pásku.

Pravé lineární gramatiky:

Nechť G = (N, T, P, S) je BKG. G je pravá lineární gramatika (PLG), pokud každé pravidlo A \rightarrow x \in P splňuje: x \in T* \cup T*N.