CSC7072: Databases, fall 2015

Dr. Kim Bauters

introduction and course outlines

introduction

where are databases?

introduction

why databases?

introduction

consider this problem:

A university needs to keep track of all its students and employees. Students may be enrolled in a degree program or in multiple courses. Employees may be researchers, and some employees may teach multiple courses. These are thought in various rooms spread over the campus. Employees who are researchers can be assigned grants. Employees are paid based on their post and their years of experience.

How to keep track of all this information in a manageable way?

introduction

DataBase Management System (DBMS)

- contains interrelated data
 for example: customers, products we sell, orders by customers
- offers a set of programs to access the data
- offers an environment that is both convenient and efficient

DBMS are used everywhere:

universities banking
airlines government
stores
manufacturing

introduction

but how do we create a DBMS?

early days: store as a files on a computer

had its share of problems

introduction

but how do we create a DBMS?

early days: store as a files on a computer

had its share of problems: redundancy

introduction

but how do we create a DBMS?

early days: built on top of file system of computer

had its share of problems: redundancy, inconsistency

introduction

but how do we create a DBMS?

early days: built on top of file system of computer Document **Document** is the data in this file? **Document** Contract **Document** Document Aenean quis just Curae; Ut tino Randy West Document **Document** commodo sit amet, varius immodo sit amet, varius a, pede. Curs

had its share of problems: redundancy, inconsistency, data access

introduction

but how do we create a DBMS?

early days: built on top of file system of computer

and a lot of other problems you might not think about:

- everyone stored files in their own way
 so a new application needed for every company
- hard to impose constraints
 from now on, for clarity, all family names must be in UPPERCASE
- no protection against failures, lack of concurrent access power is turned off while you were modifying two files
- security is a problem how to prevent access? give access to only some of the data?

introduction

what is a database?

technical: hardware and software to manage the storage and retrieval of (large sets of) interrelated data

business: place to safely/securely store and access valuable information

intuitive: a glorified collection of linked tables

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

module outlines

- brief look at data models in modern DBMS (part 02)
- data retrieval / manipulation using SQL (part 03, part 04)
- database design: Entity-Relation (ER) model (part 05, part 07)
- data definition using SQL (part 06)
- database theory: normalisation (part 08)
- database applications: data mining (part 09)
- database applications: transactions (part 10)

module outlines

lecturer:

Dr Kim Bauters

teaching assistant:

Maire Bowler

textbook:

Database System Concepts. 6th Edition by Silberschatz, Korth and Sudarshan

slides:

QUB online, and <u>www.db-book.com</u> for textbook slides

module outlines

course structure:

30 lectures/tutorials, 6 project presentations

7 practical sessions

lecture locations:

- Lecture: Mondays: 11am noon, ECS02/0G/007
- Lecture: Tuesdays: 10 11am, ECS02/0G/007
- Lab Practical: Tuesdays: 1 3pm, ECS01/02/005, ECS01/02/014
- Lecture/Tutorial: Fridays: 11am noon, ECS02/0G/007

corridor of the first of the corridor of the c

lab outline

week no.	Tuesday	topic	assessed?
2	6 th Oct	MySQL and MySQL Workbench	no
3	13 th Oct	SQL	no
4	20 th Oct	More SQL	no
5	27 th Oct	Assignment on SQL	yes, due 6 th Nov
6			
7	10 th Nov	Eclipse and JDBC	no
8	17 th Nov	JDBC	no
9	24 th Nov	Assignment on JDBC	yes, due 7 th Dec
10	1 st Dec	Project	
11	8 th Dec	Project	

module outlines

course assessment:

- 20% from 2 practical assignments + 1 class test
- 20% from group project and presentation
- 60% from final examination

do well on assignments/tests: keep up with course during the year makes project and final examination that much easier!

module outlines

course assessment:

- 20% from 2 practical assignments + 1 class test
- 20% from group project and presentation
- 60% from final examination

we create teams/"companies" <a>each group will consist of 4–5 people

do well on assignments/tests: keep up with course during the year makes project and final examination that much easier!

quick glance: data models

data models in DBMS:

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

quick glance: data models

data models in DBMS:

→ table name

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

quick glance: data models

data models in DBMS:

→ table	name		attribut
instructor			
ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

quick glance: data models

data models in DBMS:

quick glance: data models

data models in DBMS:

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
	•••	• • •	• • •

quick glance: data models

data models in DBMS:

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
	• • •	• • •	• • •

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML), a.k.a. query language

- procedural DML: like Java programming language tell what to get, and how to get it (i.e. control flow)
- declarative DML: like magic
 tell what to get, I will sort out how to get it

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
		•••	•••

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML), a.k.a. query language

- procedural DML: like Java programming language tell what to get, and how to get it (i.e. control flow)
- declarative DML: like magic
 tell what to get, I will sort out how to get it

SQL

Structure Query Language

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML): SQL examples

SELECT dept_name FROM instructor

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
		•••	•••

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML): SQL examples

SELECT name FROM instructor WHERE dept_name = 'Comp. Sci.'

name	
Kim	
Srinivasan	

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
		•••	•••

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML): SQL examples

SELECT name, course_id FROM instructor, teaches WHERE ID = instructor_ID

name	course_id
Kim	CSC7072
•••	•••

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
			•••

quick glance: Data Manipulation Language

data retrieval/modification in DBMS:

Data Manipulation Language (DML): SQL examples

SELECT name, course_id as 'code'
FROM instructor as IN, teaches as T
WHERE IN.ID = T.instructor_ID

name	code
Kim	CSC7072

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	70000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

instructor_ID	course_id	semester	year
1657	CSC7072	1	2015
			•••

quick glance: database design using ER models and normalisation

database design (ER model) + database theory (normalisation): given a problem specification, which tables do we need?

quick glance: database design using ER models and normalisation

database design (ER model) + database theory (normalisation): given a problem specification, which tables do we need?

- what is a normal form? i.e. what is an ideal table structure?
- is a database in normal form?
- how we can we transform a bad database into a good one?
 - inability to represent data
 - repetition of information

quick glance: Data Definition Language

data definition in DBMS:

Data Definition Language (DDL): also SQL!

CREATE TABLE instructor (
ID varchar(4),
name varchar (20) not null,
dept_name varchar (20),
salary numeric (8,2),
primary key (ID)
)

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
1657	Kim	Comp. Sci.	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000

+ impose constraints, ensure integrity, provide authorisation ...

quick glance: accessing databases and applications

accessing databases from programming languages

database applications

- transactions
 - how do we ensure atomic execution of changes? for example: person A transfers money to person B we do not want person A and B to be without money if the power goes down in the middle of transaction!
- data mining:
 - which products do we need to promote/advertise to which customers to maximise sales? i.e. find patters