Contents

0.1	参考 LLM 建模方式 . .	
0.2	基于开源 LLM	. 1
0.3	其他套路	. 3

0.1 参考 LLM 建模方式

论文	公司	关键词	做法
TIGER	google	semantic_id 粒度的 生成式	- 基于 RQ-VAE 聚类 - 输入 semantic_id list, 预测下一个 semantic_id
HSTU	meta	item_id 粒度的生成式	- 性别年龄等 profile 特征、action type 也可以作为特殊的 item_id - 输入 item_id list, 预测下一个 item_id - 一种范式可以同时支持召回和排序
COBRA	百度	semantic_id 粒度的 生成式	- 和 TIGER 类似,只是给 RQ-VAE 再加一个由 bert 的 CLS 得到的 emb - 在线 infer 更复杂
HeteroRec	阿里	多模态 +id 生成	- img/txt/id 一起輸入 - listwise multi-step prediction

0.2 基于开源 LLM

• FFT: full finetuning • PT: prompt tuning

• LAT: layerwise adapter tuning

OT: option tuningT-FEW: few-shot peft

看着落地的

论文	公司	关键词	做法	ab 收益	tune 方式
KAR	华为	item llm+user llm	- 让 LLM 总结 item 得到 item emb; - 让 LLM 总结 user 历史得到 user emb - 两个 emb 过一个 mmoe 做融合得到新的 两个 emb, 给推荐模型用	音乐推荐 涨 了播放量	frozen
ВАНЕ	蚂蚁	预先计算原子用 户行为	- LLMs 的预训练浅层提取来原子用户行为的 emb,并存进离线 db - 从 db 里查出来,和 item 一起过 LLMs 的更深层可训练层	广告 ctr+cpm	FFT 上层 LLM
LEARN	快手	ItemLLM+user decoder	- item LLM 固定, 输入 item 特征得到 item emb; - 输入 item emb 过 user 的 12 层 trans 算 dense all-action loss, - 线上推荐模型里加 user emb 和 item emb	广告 cvr+ 收 入	frozen
BEQUE	阿里	SFT+ 离线模拟 +PRO	query 重写任务, SFT 得到一个 LLM, 将其预测的若干个候选 rewrites 通过 offline system 的 feedback 得到排序, 再通过 PRO 算法再 tune LLM	电商搜索, gmv+ 单量	FFT

看着没落地的

论文	公司	关键词	做法	tune 方式
SLIM	蚂蚁	蒸馏推荐理由	- 输入用户行为历史,大 LLM(gpt) 产出的推荐理由;- 小 llm(llama2) 去蒸馏这个理由拿小 llm 去给出全量 user 的推荐理由,- 通过 BERT 得到 emb,给推荐模型用	FFT
DLLM2Rec	OPPO	蒸馏推荐理由	在 SLMI 的基础上设计了 ranking 蒸馏和 embed 蒸馏	FFT
LLM-CF	快手	基于 CoT 数据 集做 RAG	- 拿推荐数据对 llama2 做 sft, 再用 CoT 的 prompt 让 llama2 对 user+item+label 产出一个推理过程, 并通过 bge 得到 emb, 构建一个 CoT 数据集。- 在线拿当前用户+item 的特征从这个数据集里 ann 出 k 个 cot example 的 emb, 和其他特征一起输入一个 decoder, 输出给推荐 模型的 sharebottom, 额外加了一个 CoT emb 的重建 loss	FFT
ILM	google	2 阶段训练 +q-former	- phase1:表示学习,交替训练两类表示学习 (item-text表示学习, item-item 表示学习) - phase2: item-language model 训练	frozen
EmbSum	meta	LLM 摘要 +t5 encoder	- 行为历史丢给 LLM 产出摘要,对应的 hidden states 给 decoder 自回归; - 历史 item 过 t5 encoder 并 concat 过 poly; - item 过 t5 encoder 过 poly;	frozen
Agent4Ranking	百度	agent rewrite+ bert ranking	query 重写任务,多个人群当成多个 agent,每个通过多轮对话产出一个 rewrite,再合在一起经过 bert+mmoe 计算 robust 损失 +accuracy 损失。	frozen

纯学术界

论文	关键词	做法	tune 方式
CUP	LLM 总结 +bert 双塔	把用户的一堆历史评论扔给 chatgpt, 让它总结出 128 个 token, 然后丢给双塔 bert, 另一个塔是 item 的描述, freeze bert 底层, 只 tune 上层	last layer FT
LLaMA-E	gpt 扩展 instruct	instruction formulating 为写 300 个种子指令,让 gpt 作为 teacher,对 300 个种子指令进行扩展,并由领域专家评估后,去重 并保证质量,得到 120k 个指令作为训练集,再用 lora 去 instruct tuning	lora
EcomGPT	一系列电商任务 FFT BLOOMZ	设置一系列的 task(100 多个 task) 来 finetune BLOOMZ,包括命名实体识别、描述生成、对话 intent 提取等	FFT
Llama4rec	prompt 增强 + 数 据增强,finetune	- prompt 增强:在 prompt 里引入推荐模型的信息; - 数据增强:通过 LLM 给推荐模型增加样本 - adaptive aggregation: llm 和推荐模型各自打分并用融合公式融合	FFT
SAGCN	分 aspect 打标、 构图 +gcn	- LLM 为用户评论打标,确定 aspect; - 分 aspect 构建 u-i 图, 并 gcn	frozen
GReaT	表格型数据 +LLM	随机交换属性生成数据,finetune LLM 预测属性	FFT
ONCE	闭源 LLM 总结、 开源 LLM 做 encoder, u-i 学 ctr	闭源 LLM 输出文本(user profiler、content summarizer、personalized content generator),给开源 LLM 得到 user 表示,item 过开源 LLM 得到 item 表示,二者内积学 ctr	lora 训开源, frozen 闭源
Agent4Rec	多智能体系统模拟 交互,产出推荐样 本	先训一个推荐模型,然后构建一个多智能体系统,模拟和这个推荐模型 交互,产出新的样本给推荐模型做数据增强	仅训推荐模型, LLM frozen
RecPrompt	· 两个 LLM 迭代出 最佳 prompt	给一个初始 prompt,让 LLM1 得到推荐结果,拿一个 monitor 衡量这个结果和 ground truth 的 mrr/ndcg,再用另一个 LLM 产出更好的 prompt 给第一个 LLM 用,如此迭代,得到一个 best prompt	frozen

论文	关键词	做法	tune 方式
PO4ISR	反思原因并 refine/augment 地迭代出最优的 prompt	给初始 prompt,收集 error case 让模型反思原因并 refine 出新的 prompt,再 augment 出另一个 prompt,并 UCB 选出最好的 prompt,如此迭代	frozen
TransRec	受限生成	- 将一个 item 表示成 3 部分: id+title+attr,设计三种对应的instruct-tuning 任务; - 引入一个特殊的数据结构(FM-index),并进行 constrained beam search,让模型能生成候选集中的id/title/attr,再遍历全库候选,看不同 facet 的相似度(会考虑高热打压),加权融合出一个排序	lora
E4SRec	推荐 id emb 输入 LLM	推荐的 id emb、prompt 的 emb 一起输入 LLM,最后一个词映射回推荐 id emb 的 dim,去 softmax	lora

0.3 其他套路

工业界

论文	公司	关键词	做法
ExFM	Meta	两阶段蒸馏	- 先训好 teacher,并利用等待时间窗口为 student 数据集进行预估 - 加了一些蒸馏 loss

学术界

论文	关键词	做法
SLMRec	一阶段蒸馏	teacher 和 student 都拆成多个 block, 每个 block 间蒸馏