Scilab Textbook Companion for Aircraft Structures For Engineering Students by T. H. G. Megson¹

Created by
Mahesh Kumar
B. Tech.
Others
IIT Bombay
College Teacher
Madhu Belur
Cross-Checked by

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Aircraft Structures For Engineering Students

Author: T. H. G. Megson

Publisher: Butterworth - Heinemann (Elsevier)

Edition: 4

Year: 2007

ISBN: 0-750-667397

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	et of Scilab Codes	4
1	Basic Elasticity	6
3	Torsion of Solid Section	14
4	Virtual work and Energy methods	2 1
5	Energy Methods	27
6	Matrix Methods	35
7	Bending of Thin plates	41
8	Columns	47
9	Thin plates	52
10	Oscillation of mass spring systems	54
12	Structural components of aircraft	59
14	Airframe Loads	61
15	Fatigue	64
16	Bending of open and closed thin walled beams	65
17	Shear of heams	90

18 Torsion of beams	94
19 Combined open and closed section beams	100
20 Structural idealization	104
21 Wing spars and box beams	108
22 Fuselages	113
23 Wings	116
24 Fuselage frames and wing ribs	123
25 Laminated composites	127
26 closed section beams	137
27 Open section beams	143

List of Scilab Codes

Exa 1.1	Example 1													6
Exa 1.2	Example 2													7
Exa 1.3	Example 3													8
Exa 1.4	Example 4													10
Exa 1.5	Example 5													10
Exa 1.7	Example 7													11
Exa 3.1	Example 1													14
Exa 3.2	Example 2													15
Exa 4.1	Example 1													21
Exa 4.2	Example 2													22
Exa 4.3	Example 3													23
Exa 4.4	Example 4													23
Exa 4.5	Example 5													25
Exa 4.6	Example 6													25
Exa 5.1	Example 1													27
Exa 5.2	Example 2													28
Exa 5.3	Example 3													29
Exa 5.4	Example 4													29
Exa 5.5	Example 5													30
Exa 5.6	Example 6													31
Exa 5.7	Example 7													31
Exa 5.8	Example 8													32
Exa 5.9	Example 9													32
Exa 5.10	Example 10													33
Exa 5.11	Example 11													34
Exa 5.12	Example 12													34
Exa 6.1	Example 1													35
Eva 6.2	Example 2													39

Exa 6.4	Example 4													39
Exa 7.1	Example 1													41
Exa 7.3	Example 3													43
Exa 7.4	Example 4													45
Exa 8.2	Example 2													47
Exa 8.3	Example 3													49
Exa 8.4	Example 4													50
Exa 9.1	Example 1													52
Exa 10.1	Example 1													54
Exa 10.2	Example 2													55
Exa 10.4	Example 4													55
Exa 10.5	Example 5													56
Exa 10.6	Example 6													58
Exa 12.1	Example 1													59
Exa 12.2	Example 2													59
Exa 14.1	Example 1													61
Exa 14.2	Example 2													62
Exa 14.3	Example 3													62
Exa 15.1	Example 1													64
Exa 16.1	Example 1													65
Exa 16.2	Example 2													67
Exa 16.3	Example 3													68
Exa 16.4	Example 4													70
Exa 16.5	Example 5													71
Exa 16.6	Example 6													73
Exa 16.7	Example 7													75
Exa 16.8	Example 8													76
Exa 16.9	Example 9													77
Exa 16.10	Example 10													79
Exa 16.11	Example 11													83
Exa 16.12	Example 12											 		83
Exa 16.13	Example 13													85
Exa 16.14	Example 14													87
Exa 16.15	Example 15													88
Exa 16.16	Example 16													88
Exa 17.1														90
Exa 17.2	-													92
Exa 17.3	Example 3		•							•	•			93

Exa 18.1	Example 1	94
Exa 18.2	Example 2	95
Exa 18.3	Example 3	98
Exa 19.1	Example 1	100
Exa 19.2	Example 2	102
Exa 20.1	Example 1	104
Exa 20.2	Example 2	105
Exa 20.3	Example 3	105
Exa 20.4	Example 4	106
Exa 21.1	Example 1	108
Exa 21.2	Example 2	110
Exa 21.3	Example 3	111
Exa 22.1	Example 1	113
Exa 22.2	Example 2	114
Exa 23.1	Example 1	116
Exa 23.2	Example 2	117
Exa 23.3	Example 3	117
Exa 23.4	Example 4	119
Exa 23.6	Example 6	120
Exa 24.1	Example 1	123
Exa 24.2	Example 2	125
Exa 25.1	Example 1	127
Exa 25.2	Example 2	128
Exa 25.3	Example 3	128
Exa 25.4	Example 4	129
Exa 25.5	Example 5	130
Exa 25.6	Example 6	130
Exa 25.7	Example 7	133
Exa 25.8	Example 8	134
Exa 26.1	Example 1	137
Exa 26.2	Example 2	139
Exa 26.3	Example 3	139
Exa 26.4	Example 4	140
Exa 27.2	Example 2	143
AP 1	Example 27.2 data	146
AP 2	Example 26.4 data	146
AP 3	Example 26.3 data	146
AP 4	Example 26.2 data	147

AP 5	Example 26.1 data
AP 6	Example 25.8 data
AP 7	Example 25.7 data
AP 8	Example 25.6 data
AP 9	Example 25.5 data
AP 10	Example 25.4 data
AP 11	Example 25.3 data
AP 12	Example 25.2 data
AP 13	Example 25.1 data
AP 14	Example 24.2 data
AP 15	Example 24.1 data
AP 16	Example 23.6 data
AP 17	Example 23.4 data
AP 18	Example 23.3 data
AP 19	Example 23.2 data
AP 20	Example 23.1 data
AP 21	Example 22.2 data
AP 22	Example 22.1 data
AP 23	Example 21.3 data
AP 24	Example 21.2 data
AP 25	Example 21.1 data
AP 26	Example 20.4 data
AP 27	Example 20.3 data
AP 28	Example 20.2 data
AP 29	Example 20.1
AP 30	Example 19.2 data
AP 31	Example 19.1 data
AP 32	Example 18.3 data
AP 33	Example 18.2 data
AP 34	Example 18.1 data
AP 35	Example 17.3 data
AP 36	Example 17.2 data
AP 37	Example 17.1 data
AP 38	Example 16.9 data
AP 39	Example 16.8 data
AP 40	Example 16.7 data
AP 41	Example 16.6 data
AP 42	Example 16.5 data

AP 43	Example 16.4 data	 157
AP 44	Example 16.3 data	 157
AP 45	Example 16.2 data	 157
AP 46	Example 16.16 data	 158
AP 47	Example 16.15 data	 158
AP 48	Example 16.14 data	 158
AP 49	Example 16.13 data	 158
AP 50	Example 16.12 data	 159
AP 51	Example 16.11 data	 159
AP 52	Example 16.10 data	 159
AP 53	Example 16.1 data	 159
AP 54	Example 15.1 data	 159
AP 55	Example 14.3 dqta	 160
AP 56	Example 14.2 data	 160
AP 57	Example 14.1 data	 160
AP 58	Example 12.2 data	 161
AP 59	Example 12.1 data	161
AP 60	Example 10.6 data	 161
AP 61	Example 10.5 data	161
AP 62	Example 10.4 data	 161
AP 63	Example 10.2 data	162
AP 64	Example 10.1 data	 162
AP 65	Example 9.1 data	 162
AP 66	Example 8.4 data	 162
AP 67	Example 8.3 data	 163
AP 68	Example 8.2 data	 163
AP 69	Example 7.4 data	 163
AP 70	Example 7.3 data	 163
AP 71	Example 7.1 data	 164
AP 72	Example 6.4 data	 164
AP 73	Example 6.2 data	 164
AP 74	Example 6.1 data	 164
AP 75	Example 5.9 data	 165
AP 76	Example 5.8 data	 165
AP 77	Example 5.7 data	 165
AP 78	Example 5.6 data	 165
AP 79	Example 5.5 data	 165
AP 80	Example 5 4 data	166

AP 81	Example 5.3 data											16
AP 82	Example 5.2 data											16
AP 83	Example 5.12 data											16
AP 84	Example 5.11 data											16
AP 85	Example 5.10 data											16
AP 86	Example 5.1 data											16
AP 87	Example 4.6 data											16
AP 88	Example 4.5 data											16
AP 89	Example 4.4 data											16
AP 90	Example 4.3 data											16
AP 91	Example 4.2 data											16
AP 92	Example 4.1 data											16
AP 93	Example 3.2 data											16
AP 94	Example 3.1 data											16
AP 95	Example 1.7 data											16
AP 96	Example 1.5 data											16
AP 97	Example 1.4 data											16
AP 98	Example 1.3 data											16
AP 99	Example 1.2 data											16
AP 100	Example 1.1 data											17

List of Figures

1.1	Example 3																		9
1.2	Example 5								•										12
3.1	Example 1																		
3.2	Example 1																		17
3.3	Example 2																		19
3.4	Example 2		•	•	•	•	•		•			•		•		•	•	•	20
4.1	Example 2																		22
4.2	Example 4		•	•	•	•	•		•			•		•		•	•	•	24
6.1	Example 1																		36
6.2	Example 2					•			•										38
7.1	Example 1																		42
7.2	Example 3																		44
7.3	Example 4											•							45
8.1	Example 2																		48
10.1	Example 5																		56
16.1	Example 1																		66
16.2	Example 2																		67
16.3	Example 3																		69
16.4	Example 5																		72
16.5	Example 6																		74
	Example 7																		
	Example 8																		
	Example 9																		

16.9	Example	10)																				80
16.10	Example	11	_																				82
16.11	1 Example	12	2																				84
16.12	2Example	14	Į																				86
17.1	Example	1																					91
18.1	Example	2																					95
18.2	Example	3														•							97
19.1	Example	1																					101
21.1	Example	1																					109
23.1	Example	6																					121
24.1	Example	1																					124
25.1	Example	6																					131
25.2	Example	7																					133
25.3	Example	8		•			•	•	٠	•			•	•	•	•	•	•	•	٠	•	•	135
26.1	Example	2																					138
26.2	Example	4					•									•							141
27.1	Example	2																					144

Basic Elasticity

```
check Appendix AP 100 for dependency:
```

```
1_01data.sci
```

Scilab code Exa 1.1 Example 1

```
1 pathname=get_absolute_file_path('1_01.sce')
2 filename=pathname+filesep()+'1_01data.sci'
3 exec(filename)
4 \text{ Sx1= p*d/(4*t)};
5 \text{ Sy= p*d/(2*t); // y}
6 printf("\nLongitudnal stress produced by internal
       pressure: \%f N/mm^2", Sx1);
7 printf("\nCircumferential stress produced by
       internal pressure ( y): %f N/mm^2",Sy);
8 Sx2= Load/(%pi*d*t);
9 printf("\ndirect stress due to the axial load: \%f N/
      mm^2", Sx2);
10 Sx = Sx1+Sx2; // x
11 printf("\n x is: \%f N/mm<sup>2</sup>", Sx);
12 printf("\n y is: \%f N/mm<sup>2</sup>", Sy);
13 \operatorname{Sn}=(\operatorname{Sx})*(\cos(\operatorname{theta}))^2 + \operatorname{Sy}*(\sin(\operatorname{theta}))^2;// n
14 T= (Sx-Sy)*sin(2*(theta)) /2; //
```

```
15 printf("\n n is: \%f N/mm<sup>2</sup>", Sn);
16 printf("\n
                 is: \%f N/mm^2",T);
17 Tmax = (Sx - Sy)/2; //
18 printf("\n max: %f N/mm<sup>2</sup>", Tmax);
      check Appendix AP 99 for dependency:
      1_02data.sci
   Scilab code Exa 1.2 Example 2
1 pathname=get_absolute_file_path('1_02.sce')
2 filename=pathname+filesep()+^{\prime}1_{-}02data.sci
3 exec(filename)
4 printf("\nbending moment due to direct loading in a
       vertical plane: %f N/mm^2", Load*t);
5 Sx1= Load/(\%pi*(d^2)/4);// x (axial load)
6 printf("\n x (axial load) is: \%f N/mm<sup>2</sup>, Sx1);
7 I= \%pi*(d^4)/64;// moment of Inertia
8 Sx2= t*Load*(d/2)*(1/I); / x (bending moment)
9 printf("\n x (bending moment) is: \%f N/mm<sup>2</sup>", Sx2)
10 Sx = Sx1 + Sx2; // x
11 J= \text{%pi*(d^4)/32;}//\text{torsion constant}
12 Txy=T*(d/2)*(1/J); // xy
13 printf("\nSince the element is positioned at the
       bottom of the beam \ n \times y : \%fN/mm^2", -Txy);
14 printf("\ n x : \%f N/mm<sup>2</sup>", -Sx);
15 \operatorname{Sn}=(-\operatorname{Sx})*(\cos(\operatorname{theta}))^2+(-\operatorname{Txy})*\sin(2*\operatorname{theta});// n
16 T= (-Sx-0)*sin(2*theta)/2 - (-Txy)*cos(2*theta); //
17 printf("\n n: \%f N/mm<sup>2</sup>", Sn);
                 : \%f N/mm^2)", T);
18 printf("\n
      check Appendix AP 98 for dependency:
```

1_03data.sci

Scilab code Exa 1.3 Example 3

```
1 pathname=get_absolute_file_path('1_03.sce')
2 filename=pathname+filesep()+'1_03data.sci'
3 exec(filename)
4 Txy = ((1Load - Sx) * (1Load - Sy))^0.5;
6 printf(",%f N/mm^2",-Txy);
7 S = poly(0, 'S');
8 y=(S^2)-(S*(Sx+Sy))+(Sx*Sy)-(Txy^2);
9 \text{ m=roots(y)};
10 printf("\ n 1 : \%f N/mm^2", m(2,:));
11 printf("\ n 2:\%f N/mm<sup>2</sup>", m(1,:));
12 Tmax = abs((m(2,:)-m(1,:))/2);
13 printf("\n max: %f N/mm<sup>2</sup>", Tmax);
14 // plotting mohr circle
15 x = abs((m(2,:)+m(1,:))/2); //Centre of circle
16 \text{ plot2d}(0,0,-1,"031","",[x-Tmax-50,-Tmax-50,x+Tmax]
      +100, Tmax+50]);
17 xgrid(3);
18 xarc(x-Tmax, Tmax, 2*Tmax, 2*Tmax, 0, 360*64);
19 x1 = [m(1,:), m(2,:)], y1 = [0,0];
20 x2 = [Sx, Sy], y2 = [Txy, -Txy];
21 x3 = [Sx, Sx], y3 = [Txy, 0];
22 x4 = [Sy, Sy], y4 = [-Txy, 0];
23 x5 = [x, x], y5 = [Tmax, -Tmax];
24 plot(x1,y1,x2,y2,'--',x3,y3,'--',x4,y4,'--',x5,y5,'
     -- ');
25 datatipToggle();
26 printf("\n\nclick on the point to view its
      coordinate on the plot");
27 xtitle ('Mohr s circle of stress', '(N/mm<sup>2</sup>)',
            (N/mm^2), boxed = 1);
```

check Appendix AP 97 for dependency:

```
1_04data.sci
```


Figure 1.1: Example 3

Scilab code Exa 1.4 Example 4

```
pathname=get_absolute_file_path('1_04.sce')
filename=pathname+filesep()+'1_04data.sci'

exec(filename)

Ex= (1/E)*(Sx-v*Sy); // x

Ey= (1/E)*(Sy-v*Sx); // y

Ez= (1/E)*(0-v*(Sx+Sy)); // z

printf("\n x: %f",Ex);

printf("\n y: %f",Ey);

printf("\n z: %f",Ez);

Tmax=(Sx-Sy)/2; // max

Gmax=2*(1+v)*Tmax/E; // max

fmax=2*(1+v)*Tmax/E; // max

printf("\n max: %f",Gmax);

printf("\n max: %f N/mm^2",Tmax);
```

check Appendix AP 96 for dependency:

```
1_05data.sci
```

Scilab code Exa 1.5 Example 5

```
1 pathname=get_absolute_file_path('1_05.sce')
2 filename=pathname+filesep()+'1_05data.sci'
3 exec(filename)
4 Ex= (1/E)*(Sx-v*Sy); // x
5 Ey= (1/E)*(Sy-v*Sx); // y
6 G=E/(2*(1+v)); //shear modulus
7 Gxy=Txy/G; // xy
8 printf("\n x: %f",Ex);
9 printf("\n y: %f",Ey);
10 printf("\n G: %f",G);
```

```
11 printf("\n xy: \%f", Gxy);
12 PE1=(Ex+Ey)/2 + 0.5*((Ex-Ey)^2 + Gxy^2)^0.5; // I
13 PE2=(Ex+Ey)/2 - 0.5*((Ex-Ey)^2 + Gxy^2)^0.5; // II
14 theta=0.5*atan(Gxy/(Ex-Ey)) *(180/%pi);// in
      degree
15 printf("\n
               I : \%f, PE1);
16 printf("\ n II: %f",PE2);
17 printf("\n
                 : %f degree",theta);
              : \%f degree",theta+90);
18 printf("\n
19 //plotting mohr circle
20 x = abs((PE1+PE2)/2); //Centre
21 r=(abs(PE1)+abs(PE2))/2;//radius
22 plot2d(0,0,-1,"031"," ",[x- 1.5*r,-1.5*r,x+ 1.5*r
      ,1.5*r]);
23 xgrid(3);
24 xarc(x-r,r,2*r,2*r,0,360*64);
25 \times 1 = [PE1, PE2], y1 = [0, 0];
26 x2=[Ex,Ey], y2=0.5*[Gxy,-Gxy];
27 theta1=atan(Gxy/(2*Ex)) *(180/\%pi);
28 plot(x1,y1);
29 plot(x2,y2);
30 \text{ xarc}(x-r/4,r/4,r/2,r/2,0,theta1*64);
31 \text{ xarc}(x-r/2,r/2,r,r,180*64,(180+theta1)*64);
32 datatipToggle();
33 printf("\n nclick on the point to view its
      coordinate on the plot");
34 xtitle('Mohr s circle of strain', '', ' (
     gamma)', boxed = 1);
```

check Appendix AP 95 for dependency:

1_07data.sci

Scilab code Exa 1.7 Example 7

Figure 1.2: Example 5

```
1 pathname=get_absolute_file_path('1_07.sce')
2 filename=pathname+filesep()+^{\prime}1_{-}07data.sci^{\prime}
3 exec(filename)
4 E1=0.5*(Ea+Ec) + (((Ea-Eb)^2 + (Ec-Eb)^2)/2)^0.5;
5 E2=0.5*(Ea+Ec) - (((Ea-Eb)^2 + (Ec-Eb)^2)/2)^0.5;
6 disp(E1," I =",E2," I I =");
7 S1=E*(E1+ v*E2)/(1-v^2);// I
8 S2=E*(E2+v*E1)/(1-v^2);//II
9 Sx = S1 + S2; // x
10 printf("\ n I: \%f N/mm<sup>2</sup>",S1);
11 printf("\ n II: %f N/mm^2", S2);
12 printf("\ n \ x : \%f \ N/mm^2", Sx);
13 P=Sx*(\%pi*d^2)/4;//axial tensile load
14 Txy = (((S1-S2)^2 - (S1+S2)^2)/4)^0.5; // xy
15 printf("\ n xy: %f N/mm^2", Txy);
16 J=(\%pi*d^4)/32;//torsion\ constant
17 T=2*Txy*J/d; //Torque
18 disp(p/10^3, "P in KN", P, "P(N)=");
19 disp(T/10^6, "T in KN.m", T, "T (N.mm)=");
```

Torsion of Solid Section

check Appendix AP 94 for dependency:

```
3_1data.sci
```

Scilab code Exa 3.1 Example 1

```
1 pathname=get_absolute_file_path('3_1.sce')
2 filename=pathname+filesep()+'3_1data.sci'
3 exec(filename)
4 clear
5 J = (\%pi*R^4)/2;
6 x = poly(0, "x");
7 y = poly(0, "y");
8 t = T*R/J; //
9 twistrate= T/(G*J);//rate of twist
10 \operatorname{deff}("[Tzy]=f(x)", "Tzy=T*x/J");// zy
11 deff("[Tzx]=f1(y)", "Tzx=-T*y/J"); // zx
12 funcprot(0);
13 function sh=shear(x,y),
       sh=(T/J)*(x^2 + y^2)^0.5;
14
15 endfunction
16 \ t=linspace(-5,5,50);
17 clf();
```

```
18 sh=feval(t,t,shear);
19 plot3d1(t,t,sh);
20 xtitle('STRESS DISTRIBUTION', 'X', 'Y', '');
21 x = [-R:0.01:R];
22 y = [-R:0.01:R];
23 xset('window',1)
24 subplot (2,1,1);
25 fplot2d(x,f);
26 xgrid(3);
27 xtitle( 'shear stress', '-x-', ' zy');
28 subplot(2,1,2);
29 fplot2d(y,f1,[2]);
30 xgrid(3);
31 xtitle( 'shear stress', '-y-', ' zx');
32 datatipToggle();
33 printf("\nrate of twist: \%f", twistrate);
34 printf("\ n = \%f n/mm<sup>2</sup>",t);
35 printf("\n nclick on the point to view its
      coordinate on the plot");
```

check Appendix AP 93 for dependency:

3_2data.sci

Scilab code Exa 3.2 Example 2

```
pathname=get_absolute_file_path('3_2.sce')
filename=pathname+filesep()+'3_2data.sci'
exec(filename)
clear
J= (%pi*a^3 *b^3)/(a^2 +b^2);
twistrate= T/(G*J);//rate of twist
```


Figure 3.1: Example 1

Figure 3.2: Example 1

```
7 x = poly(0, "x");
8 y = poly(0, "y");
9 deff("[Tzy]=f(x)", "Tzy=2*T*x/(\%pi*b*a^3)");// zy
10 deff("[Tzx]=f1(y)", "Tzx=-2*T*y/(%pi*a*b^3)"); // zx
11 function w=wrap(x,y),
       w = ((T*(b^2 -a^2))/(\%pi*a^3 *b^3 *G))*x*y*1000; //
12
          warping
13 endfunction
14 t=linspace(-a,a,10*a);
15 clf();
16 \text{ w=feval}(t,t,wrap);
17 plot3d1(t,t,w);
18 xtitle('wraping of cross section', 'x', 'y', 'w * 10^3'
      );
19 x = [-a:0.01:a];
20 y = [-b:0.01:b];
21 xset ('window', 1)
22 subplot (2,1,1);
23 fplot2d(x,f);
24 xgrid(3);
25 xtitle ('shear stress', '-x-', 'zy');
26 subplot (2,1,2);
27 fplot2d(y,f1,[2]);
28 xgrid(3);
29 xtitle( 'shear stress', '-y-', ' zx');
30 datatipToggle();
31 printf("\nrate of twist: %f", twistrate);
32 printf("\n\nclick on the point to view its
      coordinate on the plot");
```


Figure 3.3: Example 2

Figure 3.4: Example 2

Virtual work and Energy methods

```
check Appendix AP 92 for dependency:
```

```
4_1data.sci
```

Scilab code Exa 4.1 Example 1

```
pathname=get_absolute_file_path('4_1.sce')
filename=pathname+filesep()+'4_1data.sci'

exec(filename)
Ra= W*(L-a)/L;
Rb= W*a/L;
printf("\nRA: %f N",Ra);
printf("\nRB: %f N",Rb);
```

check Appendix AP 91 for dependency:

4_2data.sci

Figure 4.1: Example 2

Scilab code Exa 4.2 Example 2

```
pathname=get_absolute_file_path('4_2.sce')
filename=pathname+filesep()+'4_2data.sci'
exec(filename)
M=(W*a*(L-a))/(L);
deff("[y]=f(x)","y=(W*x*(L-x))/(L)")//manding moment
x=[0:0.05:L];
fplot2d(x,f);
xgrid(3);
datatipToggle();
xtitle('Banding Moment versus a', '-a-', '-M-');
printf("\nMB: %f N.m",M);
printf("\n\nclick on the point to view its
coordinate on the plot");
```

check Appendix AP 90 for dependency:

4_3data.sci

Scilab code Exa 4.3 Example 3

```
pathname=get_absolute_file_path('4_3.sce')
filename=pathname+filesep()+'4_3data.sci'
exec(filename)
Fba=Loadc*(CD/BD);//FBA
printf("\nFBA: %f KN",Fba);
```

check Appendix AP 89 for dependency:

4_4data.sci

Scilab code Exa 4.4 Example 4

```
1 pathname=get_absolute_file_path('4_4.sce')
2 filename=pathname+filesep()+'4_4data.sci'
3 exec(filename)
4 clear
5 Vb = (w*L^4)/(8*E*I); // B
6 deff("[y]=f(x)","y= -((w*x^2)/(24*E*I))*(6*L^2 -4*L*I)
     x + x^2)"); // deflection
7 x = [0:0.05:L];
8 fplot2d(x,f);
9 xgrid(3);
10 datatipToggle();
11 xtitle ('vertical deflection versus x', '-x-', '
      vertical deflection');
12 printf("\n B: \%f m//", Vb);
13 printf("\n\nclick on the point to view its
      coordinate on the plot");
```


Figure 4.2: Example 4

```
check Appendix AP 88 for dependency: 4_5data.sci
```

Scilab code Exa 4.5 Example 5

```
pathname=get_absolute_file_path('4_5.sce')
filename=pathname+filesep()+'4_5data.sci'
exec(filename)
clear
theta=(W*L^2)/(16*E*I);// A
printf("\n A: %f",theta);
```

check Appendix AP 87 for dependency:

4_6data.sci

Scilab code Exa 4.6 Example 6

```
1 pathname=get_absolute_file_path('4_6.sce')
2 filename=pathname+filesep()+^{\prime}4_{-}6data.sci
3 exec(filename)
4 L=[(h^2 +AB^2)^0.5;BC;(h^2 +CD^2)^0.5;CD;BC;AB;h;(h
      ^2 +BC^2) ^0.5;h];//column 2
5 A=atan(h/AB), B=atan(h/BC), D=atan(h/CD);
6 1FC=Load2;
7 P=[
      0 0 sin(D) 0 0 0 0 sin(B);
9
      cos(A) 0 0 0 0 1 0 0;
      cos(A) -1 0 0 0 0 0;
10
      sin(A) 0 0 0 0 0 1 0;
11
12
      0 0 0 -1 1 0 0 0;
      0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ \cos(B);
13
```

```
14
       0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -\sin(B);
       0 \ 1 \ -\cos(D) \ 0 \ 0 \ 0 \ \cos(B);];
15
16 X=[-Load2;0;0;-Load1;0;0;Load1;0];
17 D1 = [0;0;0;1;1;1;0;0;0];/F1,D
18 FC = 0;
19 P1 = [\cos(A) \ 0 \ 0 \ 0 \ 1 \ 0 \ 0;
20
        0 0 cos(D) 1 0 0 0 0;
        cos(A) -1 0 0 0 0 0;
21
22
        sin(A) 0 0 0 0 0 1 0;
23
        0 0 0 -1 1 0 0 0;
        0 \ 0 \ 0 \ 1 \ -1 \ 0 \ \cos(B);
24
25
        0 0 0 0 0 0 1 sin(B);
26
        0 0 1 0 0 0 0 1]
27 \quad X1 = [0;0;0;0;0;0;1;0]
28 FA = [inv(P) *X; 1FC]; //FA
29 B1=[inv(P1)*X1;FC]; //F1,B
30 \text{ for } i=1:9
31
        K1(i) = FA(i) *B1(i) *L(i); //FA.F1, B.L
32
        K2(i) = FA(i) *D1(i) *L(i); //FA.F1, D.L
33 end
34 delB = (sum(K1)*10^3)/(E*CS);
35 delD = (sum(K2)*10^3)/(E*CS);
36 printf("\ n \ B \ , v : \% f \ mm", delB);
37 printf(" \setminus n D, h: \%f mm", delD);
```

Energy Methods

check Appendix AP 86 for dependency:

```
5_1data.sci
```

Scilab code Exa 5.1 Example 1

```
1 pathname=get_absolute_file_path('5_1.sce')
2 filename=pathname+filesep()+'5_1data.sci'
3 exec(filename)
4 L=[(h^2 + AB^2)^0.5; BC; (h^2 + CD^2)^0.5; CD; BC; AB; h; (h)
      ^2 +BC^2) ^0.5;h];
5 A=atan(h/AB), B=atan(h/BC), D=atan(h/CD);
6 1FC=Load2;
7 P=[
      0 \ 0 \ \sin(D) \ 0 \ 0 \ 0 \ \sin(B);
9
      cos(A) 0 0 0 0 1 0 0;
10
      cos(A) -1 0 0 0 0 0;
11
      sin(A) 0 0 0 0 0 1 0;
12
      0 0 0 -1 1 0 0 0;
      0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ \cos(B);
13
14
      0 \ 0 \ 0 \ 0 \ 0 \ 1 \ -\sin(B);
      0 \ 1 \ -\cos(D) \ 0 \ 0 \ 0 \ \cos(B);];
15
16 X=[-Load2;0;0;-Load1;0;0;Load1;0];
```

```
17 D1 = [0;0;0;1;1;1;0;0;0];
18 FC = 0;
19 P1 = [\cos(A) \ 0 \ 0 \ 0 \ 1 \ 0 \ 0;
20
        0 0 cos(D) 1 0 0 0 0;
21
        cos(A) -1 0 0 0 0 0;
22
        sin(A) 0 0 0 0 0 1 0;
23
        0 0 0 -1 1 0 0 0;
24
        0 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ \cos(B);
25
        0 0 0 0 0 0 1 sin(B);
        0 0 1 0 0 0 0 1]
26
27 \quad X1 = [0;0;0;0;0;0;1;0]
28 FA = [inv(P) *X; 1FC];
29 B1 = [inv(P1) * X1; FC];
30 \text{ for } i=1:9
31
        K1(i) = FA(i) * B1(i) * L(i);
32
        K2(i) = FA(i) * D1(i) * L(i);
33 end
34 delB = (sum(K1)*10^3)/(E*CS);
35 delD = (sum(K2)*10^3)/(E*CS);
36 printf("\setminusn B, v: %f mm", delB);
37 printf("\n D, h: %f mm", delD);
```

check Appendix AP 82 for dependency:

5_2data.sci

Scilab code Exa 5.2 Example 2

```
1 pathname=get_absolute_file_path('5_2.sce')
2 filename=pathname+filesep()+'5_2data.sci'
3 exec(filename)
4 delB=(119*w*L^4)/(24576*EI);
5 delC=(5*w*L^4)/(384*EI);
6 printf("\ndelB: %f m",delB);
7 printf("\ndelC: %f m",delC);
```

```
check Appendix AP 81 for dependency:
```

```
5_3data.sci
```

Scilab code Exa 5.3 Example 3

```
1 pathname=get_absolute_file_path('5_3.sce')
2 filename=pathname+filesep()+'5_3data.sci'
3 exec(filename)
4 clear
5 L1=[L*tan(theta);L;L*tan(theta);L;L];
6 \quad A = [AC; A; AC; A; A];
7 F1=[Load*cos(theta); Load*sin(theta); 0; 0; 0; 0];
8 F2=[-sin(theta); cos(theta); -sin(theta); 1; cos(theta)
      ];
9 \text{ for } i=1:5
10
       X(i)=L1(i)/A(i);
11
       X1(i) = F1(i) * F2(i) * X(i);
12
       X2(i)=F2(i)*F2(i)*X(i);
13 end
14 R=-sum(X1)/sum(X2);
15 F = F1 + R * F2;
16 disp("Force (AC, CB, BD, CD, AD):");
17 printf("\n %f N",F);
```

check Appendix AP 80 for dependency:

```
5_4data.sci
```

Scilab code Exa 5.4 Example 4

```
1 pathname=get_absolute_file_path('5_4.sce')
2 filename=pathname+filesep()+'5_4data.sci'
3 exec(filename)
```

```
4 clear
5 \text{ AC}=(AB^2 + BC^2)^0.5;
6 delBC=BC*delT*alpha;
7 F1 = [AB/BC; 1; AB/BC; 1; -AC/BC; -AC/BC];
8 L=[AB; BC; AB; BC; AC; AC];
9 \text{ for } i=1:6
10
       X(i)=L(i)*F1(i)*F1(i);
11 end
12 R=(-delBC*A*E)/sum(X);
13 F=R*F1;
14 disp("Force (AB, BC, CD, DA, AC, DB):");
15 printf("\n %f N",F);
      check Appendix AP 79 for dependency:
      5_5data.sci
   Scilab code Exa 5.5 Example 5
1 pathname=get_absolute_file_path('5.5.sce')
2 filename=pathname+filesep()+'5_5data.sci'
3 exec(filename)
4 clear
5 L1=0.5*L*ones(7,1);
6 \quad A1 = [Ab; Ab; A; A; A; A; A];
7 R = (11*3^{\circ}0.5 *P*A*Ab*L^{\circ}2)/(48*(L*L*A*Ab + 4*I*(A+ 10*))
      Ab)));
8 delF = [-cos(theta); -cos(theta); 1; 1; -1; -1; 1];
9 F=R*delF;
10 disp(R, "R:");
11 disp("Force (AB, BC, CD, DE, BD, EB, AE):");
12 printf("\n %f N",F)
      check Appendix AP 78 for dependency:
```

5_6data.sci

Scilab code Exa 5.6 Example 6

```
1 pathname=get_absolute_file_path('5_6.sce')
2 filename=pathname+filesep()+'5_6data.sci'
3 exec(filename)
4 SA=0.187*M0/r;
5 SB=0.44*M0/r;
6 SC=0.373*M0/r;
7 printf("\nSA: %f N ",SA)
8 printf("\nSB: %f N",SB)
9 printf("\nSC:%f N",SC)
10 printf("\nM1: %f N.mm",SA*r)
11 printf("\nM2: %f N.mm",SB*r)
12 printf("\nM3: %f N.mm",SC*r)
```

check Appendix AP 77 for dependency:

5_7data.sci

Scilab code Exa 5.7 Example 7

```
pathname=get_absolute_file_path('5_7.sce')
filename=pathname+filesep()+'5_7data.sci'
exec(filename)

clear
delY=(W*L^4)*((11/(24*EI))+ 1/(2*GJ));
delZ=(W*L^4)*((1/(6*EI))+ 1/(2*GJ));
printf("\ndel Y %f mm",delY);
printf("\ndel Z %f mm",delZ);
```

check Appendix AP 76 for dependency:

5_8data.sci

Scilab code Exa 5.8 Example 8

check Appendix AP 75 for dependency:

5_9data.sci

Scilab code Exa 5.9 Example 9

```
1 pathname=get_absolute_file_path('5_9.sce')
2 filename=pathname+filesep()+'5_9data.sci'
3 exec(filename)
4 M=2^0.5;
5 L1=[L;M*L;L;L;M*L;M*L;L];
6 F0=[P;0;0;0;0;-M*P;0];
7 F1=[-0.71;0;0;-0.71;1;1;-0.71];
8 F1R2=[-2;-M;1;1;0;M;0];
```

```
9 \text{ for } i=1:7
10
       X(i) = FO(i) * F1(i) * L1(i);
11
       X1(i) = F0(i) * F1R2(i) * L1(i);
12
       X2(i) = F1(i) * F1(i) * L1(i);
13
       X3(i) = F1R2(i) * F1R2(i) * L1(i);
14
       X4(i) = F1(i) * F1R2(i) * L1(i);
15 end
16 X5 = [sum(X2) sum(X4);
        sum(X4) sum(X3)];
17
18 X6 = -[sum(X); sum(X1)]
19 X7 = inv(X5) * X6;
20 printf("\nX1: \%f \ KN", X7(1,:));
21 printf("\nR2: \%f KN", X7(2,:))
22 Fa=[X7(1,:)*M-X7(2,:)*(1+(1/M));-X7(2,:)*M;X7(2,:);
      X7(2,:)-X7(1,:)/M; X7(1,:);-X7(2,:)*(1+(1/M));-X7
      (1,:)/M]
23 disp("Forces in the Mambrane are:");
24 printf("\n %f KN", Fa);
```

check Appendix AP 85 for dependency:

5_10data.sci

Scilab code Exa 5.10 Example 10

```
1 pathname=get_absolute_file_path('5_10.sce')
2 filename=pathname+filesep()+'5_10data.sci'
3 exec(filename)
4 c=((a*a +b*b)^0.5);
5 L=[a;b;a;b;(a*a +b*b)^0.5;(a*a +b*b)^0.5];
6 F1=[a/b;1;a/b;1;-c/b;-c/b]
7 for i=1:6
8    X(i)=F1(i)*F1(i)*L(i);
9 end
10 a11=sum(X)/(A*E);
11 X1=-alpha*b*T/a11;
```

```
12 Fa = [X1*a/b; X1; X1*a/b; X1; -X1*c/b; -X1*c/b]
13 printf("\nX1: %f N", X1);
14 disp ("Forces in the Mambrane are (AB, BC, CD, DA, AC, DB)
      :");
15 printf("\n %f KN",Fa);
      check Appendix AP 84 for dependency:
      5_11data.sci
   Scilab code Exa 5.11 Example 11
1 pathname=get_absolute_file_path('5_11.sce')
2 filename=pathname+filesep()+'5_11data.sci'
3 exec(filename)
4 VB = (W*L^3)/(48*EI);
5 printf("\nVB: %f m", VB);
      check Appendix AP 83 for dependency:
      5_12data.sci
   Scilab code Exa 5.12 Example 12
1 pathname=get_absolute_file_path('5_12.sce')
2 filename=pathname+filesep()+'5_12data.sci'
3 exec(filename)
4 \text{ v1} = (L1/L0) * V(3);
5 v2 = (L2/L0) * V(4);
6 v3 = v1 + v2;
7 theta=\frac{1}{2}atan(v3/(D(9)-D(6)));
8 printf("\n B: %f rad",theta);
```

Matrix Methods

```
check Appendix AP 74 for dependency:
```

```
6_1data.sci
```

Scilab code Exa 6.1 Example 1

```
1 pathname=get_absolute_file_path('6_1.sce')
2 filename=pathname+filesep()+'6_1data.sci'
3 exec(filename)
4 // theta = , lambda =
                        , mu =
5 theta12=0, lambda12=\cos(theta12), mu12=\sin(theta12);
6 theta13=\%pi/2,lambda13=\cos(theta13),mu13=\sin(theta13
      );
7 theta23=%pi/2 + atan(L13/L12); lambda23=cos(theta23),
      mu23=sin(theta23);
8 L23=(L12<sup>2</sup> +L13<sup>2</sup>)<sup>0.5</sup>;
9 LL12=lambda12^2, LM12=lambda12*mu12, MM12=mu12^2;
10 LL13=lambda13^2, LM13=lambda13*mu13, MM13=mu13^2;
11 LL23=lambda23^2, LM23=lambda23*mu23, MM23=mu23^2;
12 K220 = [LL12 LM12; LM12 MM12];
13 K222=(L12/L23)*[LL23 LM23;LM23 MM23];
```


Figure 6.1: Example 1

```
14 K210=[-LL12 -LM12;-LM12 -MM12];
15 \text{ K232} = (\text{L12}/\text{L23}) * [-\text{LL23} - \text{LM23}; -\text{LM23} - \text{MM23}];
16 \text{ K} = \text{K}220 + \text{K}222;
17 F = [FX2; FY2];
18 V = (L12/AE) * inv(K) *F;
19 u2=V(1,:), v2=V(2,:);
20 u1=0; v1=0; u3=0; v3=0;
21 F1 = [K210'; K232'] * inv(K) * F;
22 S12=(AE/L12)*[lambda12 mu12]*[u2-u1; v2-v1];
23 S13=(AE/L13)*[lambda13 mu13]*[u3-u1;v3-v1];
24 \text{ S23} = (AE/L23) * [lambda23 mu23] * [u3-u2; v3-v2];
25 	ext{ x1=[-L12,-L12],y1=[0,L13];}
26 	ext{ x2=[-L12,u2],y2=[0,v2];}
27 x3 = [-L12, u2], y3 = [L13, v2];
28 plot(x1,y1,x2,y2,x3,y3);
29 xgrid(3);
30 datatipToggle();
31 xtitle ('framework after deformation', '-x-', '-y
      - ', boxed = 1);
32 printf("\n \nu2: \%f m", u2);
33 printf("\nv2: %f m", v2);
34 printf("\nFx, 1: \%f \ N", F1(1,:));
35 printf("\nFy,1: %f N",F1(2,:));
36 printf("\nFx,3: \%f N",F1(3,:));
37 printf("\nFy,3: \%f N",F1(4,:));
38 printf("\nS12: %f N",S12);
39 printf("\nS13: %f N", S13);
40 printf("\nS23: %f N",S23);
41 printf("\n\nclick on the point to view its
      coordinate on the plot");
```

check Appendix AP 73 for dependency:

6_2data.sci

Figure 6.2: Example 2

Scilab code Exa 6.2 Example 2

```
1 pathname=get_absolute_file_path('6_2.sce')
2 filename=pathname+filesep()+'6_2data.sci'
3 exec(filename)
4 F = [-W; M; O; O];
5 P=EI*[(27/(2*L^3)) (9/(2*L^2)) (6/L^2) -(3/(2*L^2));
      (9/(2*L^2)) (6/L) (2/L) (1/L);
      (6/L^2) (2/L) (4/L) 0;
      -(3/(2*L^2))(1/L)0(2/L)];
9 V = inv(P) *F;
10 Sy12= EI*(-(6*V(3)/(L^2))-(12*V(1)/(L^3))-(6*V(2)/(
     L*L)));//Sy,12
11 deff("[M12]=f(x)", "M12=EI*(((-6*x/L*L)+(4/L))*V(3) +
       ((-12*x/L^3)+(6/L^2))*V(1) + ((-6*x/L*L)+(2/L))*V
      (2))");
12 x = [0:0.05:L];
13 fplot2d(x,f);
14 xgrid(3);
15 xtitle( 'M12 versus x', '-x-', 'M12');
16 datatipToggle();
17 printf("\ n \ 2 : \%f \ m", V(1)); // v2
18 printf("\n 2: %f ",V(2));//
19 printf("\n 2: %f ",V(3));//
20 printf("\n 2: %f ", V(4));//
21 printf ("\nSy, 12: %f", Sy12); //Sy, 12
```

check Appendix AP 72 for dependency:

6_4data.sci

Scilab code Exa 6.4 Example 4

```
1 pathname=get_absolute_file_path('6_4.sce')
2 filename=pathname+filesep()+^{\prime}6_{-}4data.sci
3 exec(filename)
```

```
4 P=[1 P1(1) P1(2) P1(1)*P1(2);
      1 P2(1) P2(2) P2(1)*P2(2);
      1 P3(1) P3(2) P3(1)*P3(2);
      1 P4(1) P4(2) P4(1)*P4(2)];
8 \text{ alpha1=inv}(P)*u;
9 alpha2=inv(P)*v;
10 alpha=[alpha1;alpha2];
11 deff("[Ex]=f(y)", "Ex=alpha(2)+ y*alpha(4)"); // x
12 deff("[Ey]=f1(x)","Ey=alpha(7)+x*alpha(8)");//y
13 function [G] = Gxy(x,y) // xy
       G=x*alpha(4) +y*alpha(8) +alpha(3)+alpha(6);
14
15 endfunction
16 //at the centre
17 Pc(1) = (P1(1) + P3(1))/2;
18 Pc(2) = (P1(2) + P3(2))/2;
19 Sy=(E/(1-V^2))*(f1(Pc(2)) +V*f(Pc(1)));
20 Sx=(E/(1-V^2))*(f(Pc(1)) +V*f1(Pc(2)));
21 \text{ gxy} = \text{Gxy}(0,0);
22 txy = (E/(1-V^2))*0.5*(1-V)*gxy; // xy
23 printf("\n x : \%f N/mm<sup>2</sup>, Sx);
24 printf("\n y: \%f N/mm<sup>2</sup>",Sy);
```

Bending of Thin plates

check Appendix AP 71 for dependency:

7_1data.sci

Scilab code Exa 7.1 Example 1

```
1 pathname=get_absolute_file_path('7_1.sce')
2 filename=pathname+filesep()+'7_1data.sci'
3 exec(filename)
4 D=(E*t^3)/(12*(1-v^2));
5 X=(16*q0/(D*%pi^6))/(((1/a^2)+(1/b^2))^2);
6 X1=(16*q0/%pi^4)*((1/a^2)+(v/b^2))/(((1/a^2)+(1/b^2))^2);
7 X2=(16*q0/%pi^4)*((v/a^2)+(1/b^2))/(((1/a^2)+(1/b^2))^2);
8 function[w]=f(x,y),//taking first term only
9    w=X*(sin(%pi*x/a))*sin(%pi*y/b);
10 endfunction
11 x=linspace(0,a,10*a);
12 y=linspace(0,b,10*b);
13 w=feval(x,y,f);
```


Figure 7.1: Example 1

```
14 plot3d1(x,y,w);
15 Vmax = (0.0443*q0*a^4)/(E*t^3); //from summation of
      first 4 terms
16 printf("\nWmax: %f mm", Wmax);
17 function [Mx, My] = f1(x,y)/taking first term only
18
       Mx=X1*(sin(\%pi*x/a))*sin(\%pi*y/b);
19
       My = X2*(sin(\%pi*x/a))*sin(\%pi*y/b);
20 endfunction
21 function[Sx,Sy]=f2(x,y,z)//taking first term only
       Sx=12*X1*(sin(\%pi*x/a))*sin(\%pi*y/b)*z/t^3;
       Sy=12*X2*(sin(\%pi*x/a))*sin(\%pi*y/b)*z/t^3;
23
24 endfunction
25 Mxmax=0.0479*q0*a^2;//from summation of first 5
      terms
26 printf("\nMx, max= My, max= %f N.mm", Mxmzx);
27 Sxmax = (0.287*q0*a^2)/t^2;
28 printf("\setminusn x , max= y , max= %f N.mm", Sxmax);
```

check Appendix AP 70 for dependency:

7_3data.sci

Scilab code Exa 7.3 Example 3

```
1 pathname=get_absolute_file_path('7_3.sce')
2 filename=pathname+filesep()+'7_3data.sci'
3 exec(filename)
4 D=(E*t^3)/(12*(1-v^2));
5 X=(16*q0/(D*%pi^6))/((((1/a^2)+(1/b^2))^2)+(Nx/(D*a*a*%pi^2)));
6 function[w]=f(x,y),//taking first term only
7     w=X*(sin(%pi*x/a))*sin(%pi*y/b);
8 endfunction
9 x=linspace(0,a,10*a);
```


Figure 7.2: Example 3

Figure 7.3: Example 4

```
10 y=linspace(0,b,10*b);
11 w=feval(x,y,f);
12 plot3d1(x,y,w);
13 datatipToggle();
14 printf("\nclick on the point to view its coordinate on the plot")
```

check Appendix AP 69 for dependency:

7_4data.sci

Scilab code Exa 7.4 Example 4

```
1 pathname=get_absolute_file_path('7_4.sce')
```

```
2 filename=pathname+filesep()+^{7}-4data.sci
3 exec(filename)
4 clear
5 D=(E*t^3)/(12*(1-v^3));
6 A11= (16*q0*(a^4)*(b^4))/((%pi^6)*D*((a*a +b*b)^2));
7 function[w]=f(x,y)
       w=A11*(sin(%pi*x/a))*(sin(%pi*y/b));
9 endfunction
10 funcprot()
11 x=linspace(0,a,10*a);
12 y=linspace(0,b,10*b);
13 clf();
14 w = feval(x, y, f);
15 plot3d1(x,y,w);
16 datatipToggle()
17 printf("\nA11= Wmax: %f mm",f(a/2,b/2));
```

Columns

check Appendix AP 68 for dependency:

```
8_2data.sci
```

Scilab code Exa 8.2 Example 2

```
1 pathname=get_absolute_file_path('8_2.sce')
2 filename=pathname+filesep()+'8_2data.sci'
3 exec(filename)
4 mu=(P/(E*I))^0.5;//
5 deff("[v]=f(z)","v=e*((cos(mu*(z-L/2))/cos(mu*L/2))
-1)");//v
6 deff("[m]=f1(z)","m=P*(e+e*((cos(mu*(z-L/2))/cos(mu*L/2)))/cos(mu*L/2)))");//M
7 funcprot(0);
8 z=[0:0.05:L];
9 subplot(2,1,1);
10 fplot2d(z,f);
11 xgrid(3);
12 xtitle('deflection', '-z-', '-v-');
13 subplot(2,1,2);
```


Figure 8.1: Example 2

```
14 fplot2d(z,f1);
15 xgrid(3);
16 xtitle( 'bending moment', '-z- ', '-M-');
17 datatipToggle();
18 printf("\nmaximum deflection: %f",f(L/2));
19 printf("\nM(max)= %f N.m",f1(L/2));
```

check Appendix AP 67 for dependency:

8_3data.sci

Scilab code Exa 8.3 Example 3

```
1 pathname=get_absolute_file_path('8_3.sce')
2 filename=pathname+filesep()+'8_3data.sci'
3 exec(filename)
4 A=t*(2*a +b);
5 Ixx=2*a*t*(b/2)^2 + (t*b^3)/12;
6 Iyy=(2*t*a^3)/12;
7 I0 = Ixx + Iyy;
8 J=(2*a*t^3)/3 + (b*t^3)/3;
9 tau=(t*a^3 *b^2)/24;
10 Px = (\%pi^2 *E*Ixx/L^2); //PCR(xx)
11 Py=(\%pi^2 *E*Iyy/L^2); //PCR(yy)
12 Pth=(A/I0)*(G*J + (\%pi^2 *E*tau)/L^2); //PCR( )
13 P=poly(0, 'P');
14 y = (I0/A)*(P^2 - (Px + Pth)*P + Px*Pth);
15 \text{ m=roots(y)};
16 Ptb1=m(1,:)
17 Ptb2=m(2,:)
18 Load=[Px;Py;Pth];
19 printf("\nbuckling Load: %f N",min(Load));
20 printf("\nflexural-torsional buckling Load: \%f N",
     roots(y));
```

check Appendix AP 66 for dependency:

8_4data.sci

Scilab code Exa 8.4 Example 4

```
1 pathname=get_absolute_file_path('8_4.sce')
2 filename=pathname+filesep()+^{\prime}8_{-}4data.sci
3 exec(filename)
4 clear
5 Xc=(a2^2)/(b+2*a2);//x bar
6 Xs = -(Xc + ((3*a2^2)/(b*(1+ 6*a2/b))));
7 A = 2*a2*t + b*t;
8 Ixx=2*a2*t*(b/2)^2 + (t*b^3)/12;
9 Iyy=b*t*Xc^2 +(2*t/3)*((a2-Xc)^3 +Xc^3);
10 I0 = Ixx + Iyy + A * Xs^2;
11 J=(2*a2*t^3)/3 + (b*t^3)/3;
12 tau= 0.1244*t*a2^3 *b^2;
13 Px = ((\%pi^2) *E*Ixx/(L^2)); //PCR(xx)
14 Py=((\%pi^2)*E*Iyy/(L^2));//PCR(yy)
15 Pth=(A/I0)*(G*J + ((\%pi^2)*E*tau)/(L^2)); //PCR(
16 \ a=(1-(A*Xs^2)/I0), b=-(Px +Pth), c=Px*Pth;
17 P1=(-b + (b*b - 4*a*c)^0.5)/(2*a);
18 P2=(-b - (b*b - 4*a*c)^0.5)/(2*a);
19 Load = [Px; Py; Pth; P1; P2];
20 minimum=Load(1);
21 for i=2:5
       if (Load(i) < Load(i-1)) then</pre>
22
23
            minimum=Load(i);
24
            a1=i;
25
       end
26 \, \mathsf{end}
27 if (a1>3) then
       printf("\nflexural-torsional buckling will
28
          happen.\nand buckling load is: %f N", minimum)
29 else
```

Thin plates

```
check Appendix AP 65 for dependency:
```

```
9_1data.sci
```

Scilab code Exa 9.1 Example 1

```
1 pathname=get_absolute_file_path('9_1 \cdot sce')
2 filename=pathname+filesep()+'9_1data.sci'
3 exec(filename)
4 alpha= atan(((1+ t*d/(2*Af))/(1+ t*b/As))^0.25);//
5 Ft = (W*z/d) + (W/(2*tan(alpha))); //FT
6 printf("\nFT: %f N",Ft);
7 Mmax = (W*tan(alpha)*b^2)/(12*d);
8 Smax= (Mmax/ESM)+(Ft/Af);//
9 printf("\nMaximum Stress in Flange: %f N/mm^2", Smax)
10 P=(W*b*tan(alpha))/d;
11 if (b<1.5*d) then //le
       Le=d/((4-(2*b/d))^0.5);
12
13 else
14
       Le=d;
15 end
16 Pcr= ((%pi^2)*E*I)/(Le^2);
```

```
17 printf("\nPcr: %f KN",Pcr);
18 printf("\nP: %f KN",P);
19 if(P<Pcr) then
20    printf("\nstiffener will not buckle")
21 else
22    printf("\nstiffener will buckle")
23 end</pre>
```

Oscillation of mass spring systems

check Appendix AP 64 for dependency:

```
10_1data.sci
```

Scilab code Exa 10.1 Example 1

```
1 pathname=get_absolute_file_path('10_1.sce')
2 filename=pathname+filesep()+'10_1data.sci'
3 exec(filename)
4 lambda=(m*1^3)/(3*48*EI);//
5 x=poly(0,'x');
6 y=21*x^2 -22*x +1;
7 m=roots(y);
8 omega1=(m(1,:)/lambda)^0.5;// 1
9 omega2=(m(1,:)/lambda)^0.5;// 2
10 f1=omega1/(2*%pi);
11 f2=omega2/(2*%pi);
12 printf("\nf1:%f",f1);
13 printf("\nf2:%f",f2);
```

check Appendix AP 63 for dependency:

```
10_2data.sci
```

Scilab code Exa 10.2 Example 2

```
1 pathname=get_absolute_file_path('10_2.sce')
2 filename=pathname+filesep()+'10_2data.sci'
3 exec(filename)
4 lambda=(m*l^3)/(6*EI);//
5 a=188,b=-44,c=1
6 m1=(-b+(b*b -4*a*c)^0.5)/(2*a);
7 m2=(-b-(b*b -4*a*c)^0.5)/(2*a);
8 omega1=(m1/lambda)^0.5;// 1
9 omega2=(m2/lambda)^0.5;// 2
10 f1=[omega1;omega2];
11 f=min(f1)/(2*%pi);
12 printf("\nlowest natural frequency is: %f",f);
```

check Appendix AP 62 for dependency:

10_4data.sci

Scilab code Exa 10.4 Example 4

```
1 pathname=get_absolute_file_path('10_4.sce')
2 filename=pathname+filesep()+'10_4data.sci'
3 exec(filename)
4 for i=1:3
5    f(i)=(0.5*%pi*i/L)*(EI/(rho*A))^0.5;
6 end
7 printf("\nf1: %f",f(1));
8 printf("\nf2: %f",f(2));
9 printf("\nf3: %f",f(3));
```

check Appendix AP 61 for dependency:

Figure 10.1: Example 5

10_5data.sci

Scilab code Exa 10.5 Example 5

```
1 pathname=get_absolute_file_path('10.5.sce')
2 filename=pathname+filesep()+'10.5data.sci'
```

3 exec(filename)

```
4 for i=1:3
                       lambda(i)=(i-0.5)*\%pi/L;
                       omega(i)=(lambda(i)^2)*(EI/(rho*A))^0.5;
                       fre(i) = omega(i) / (2 * %pi);
  7
                      K(i) = (\cos(L*lambda(i)) + \cosh(L*lambda(i))) / (\sin(L*lambda(i))) / (\sin(L*l
                                *lambda(i))+sinh(L*lambda(i)));
  9 end
10 function[V1] = f(z)
                       V1=K(1)*(\cosh(z*lambda(1)) - \cos(z*lambda(1)) - K
11
                                (1)*(sinh(z*lambda(1)) -sin(z*lambda(1))));
12 endfunction
13 function[V2]=f1(z)
                       V2=K(2)*(\cosh(z*lambda(2)) - \cos(z*lambda(2)) - K
14
                                (2)*(sinh(z*lambda(2)) -sin(z*lambda(2))));
15 endfunction
16 function [V3] = f2(z)
                       V3=K(3)*(\cosh(z*lambda(3)) - \cos(z*lambda(3)) - K
17
                                (3)*(sinh(z*lambda(3)) -sin(z*lambda(3))));
18 endfunction
19 z=linspace(0,L,10*L);
20 subplot(3,1,1),xgrid(3),xtitle('1st Normal Mode Of
                   Vibration', 'z', 'V')
21 V1 = feval(z, f);
22 plot2d(z,V1);
23 subplot(3,1,2),xgrid(3),xtitle('2nd Normal Mode Of
                   Vibration', 'z', 'V')
24 \ V2 = feval(z, f1);
25 plot2d(z, V2);
26 subplot(3,1,3),xgrid(3),xtitle('3rd Normal Mode Of
                   Vibration', 'z', 'V')
27 \quad V3 = feval(z, f2);
28 plot2d(z, V3);
29 printf("\nf1: \%f", fre(1));
30 printf("\nf2: \%f",fre(2));
31 printf("\nf3: \%f ",fre(3));
                 check Appendix AP 60 for dependency:
                 10_6data.sci
```

Scilab code Exa 10.6 Example 6

```
1 pathname=get_absolute_file_path('10\_6.sce')
2 filename=pathname+filesep()+'10\_6data.sci'
3 exec(filename)
4 omega=1.1584*(EI/(m*1^3));
5 printf("\ n 1: %f",omega)
```

Structural components of aircraft

```
check Appendix AP 59 for dependency:
```

```
12_1data.sci
```

Scilab code Exa 12.1 Example 1

```
1 pathname=get_absolute_file_path('12_1.sce')
2 filename=pathname+filesep()+'12_1data.sci'
3 exec(filename)
4 clear
5 Ar=(%pi*d^2)/4;
6 b=((2*Ar*Ls)/(t*Lt))+d;
7 printf("\nb: %f",b);
```

check Appendix AP 58 for dependency:

12_2data.sci

Scilab code Exa 12.2 Example 2

```
1 pathname=get_absolute_file_path('12_2.sce')
2 filename=pathname+filesep()+'12_2data.sci'
3 exec(filename)
4 clear
5 Pe=Load*CL;
6 V=Load/6;
7 r = (DC^2 + AD^2)^0.5;
8 sumr=4*r^2 +2*DC^2; //sum(r^2)
9 S=(Pe/sumr)*r//shear on rivets A and B
10 printf("\nshear force on A & B (S): \%f N",S);
11 thetaA=3*%pi/4;
12 thetaB= \%pi/4;
13 RA=(S^2 + V^2 + 2*S*V*cos(thetaA))^0.5; //resultent
      force on A
14 RB=(S^2 + V^2 + 2*S*V*cos(thetaB))^0.5; //resultent
      force on B
15 printf("\nresultent force on A: %f N", RA);
16 printf("\nresultent force on B: %f N", RB);
```

Airframe Loads

```
check Appendix AP 57 for dependency:
```

```
14_1data.sci
```

Scilab code Exa 14.1 Example 1

```
1 pathname=get_absolute_file_path('14_1.sce')
2 filename=pathname+filesep()+'14_1data.sci'
3 exec(filename)
4 T=((W/g)*a)/cos(10*%pi/180);
5 printf("\nT: %f N",T);
6 R=W+T*sin(10*%pi/180);
7 Ls=(R/2)/cos(20*%pi/180);//Load in each strut
8 printf("\nLoad in each strut: %f N",Ls);
9 Li=(Wa/g)*a;//inertial load at CG of fuselage aft of AA
10 N=T-Li*cos(10*%pi/180)+Wa*sin(10*%pi/180);
11 S=Li*sin(10*%pi/180)+Wa*cos(10*%pi/180);
12 s=v0^2/(2*a);
13 printf("\nN: %f N",N);
14 printf("\nS: %f N",S);
15 printf("\ns: %f m",s);
```

```
check Appendix AP 56 for dependency: 14_2data.sci
```

Scilab code Exa 14.2 Example 2

```
pathname=get_absolute_file_path('14_2.sce')
filename=pathname+filesep()+'14_2data.sci'

exec(filename)

clear

ax=Rh/(W/g);//horizontal deceleration

ay=(Rv-W)/(W/g);//vertical deceleration

lalpha=Rv*Sh +Rh*Sv;

alpha=(Ialpha*10^6)/Icg;

t=v0/ay;

omega=alpha*t;

printf("\nhorizontal reaction force: %f kN",W*ax/g);

printf("\nvertical reaction force: %f kN",W*ay/g);

printf("\n : %f rad/s^2",alpha);

printf("\nt: %f s",t);

printf("\n : %f rad/s",omega);
```

check Appendix AP 55 for dependency:

```
14_3data.sci
```

Scilab code Exa 14.3 Example 3

```
pathname=get_absolute_file_path('14_3.sce')
filename=pathname+filesep()+'14_3data.sci'
exec(filename)
clear
L=n*W;
Cl1=(L/(0.5*S*rho*v^2));
```

Fatigue

```
check Appendix AP 54 for dependency:
```

```
15_1data.sci
```

Scilab code Exa 15.1 Example 1

```
1 pathname=get_absolute_file_path('15_1.sce')
2 filename=pathname+filesep()+'15_1data.sci'
3 exec(filename)
4 clear
5 af=(K^2)/(S^2 *alpha^2 *%pi);
6 Nf=(2/(C*(n-2)*((S*%pi^0.5)^n)))*((1/ai^((n-2)/2)) -(1/af^((n-2)/2)));
7 printf("\naf: %f mm",af)
8 if(round(Nf)>Nf) then
9    printf("\nNf: %f cycles",round(Nf));
10 else
11    printf("\nNf: %f cycles",round(Nf)+1)
12 end
```

Chapter 16

Bending of open and closed thin walled beams

```
check Appendix AP 53 for dependency: 16_1data.sci
```

Scilab code Exa 16.1 Example 1

```
1 pathname=get_absolute_file_path('16_1.sce')
2 filename=pathname+filesep()+'16_1data.sci'
3 exec(filename)
4 Ixx=(a*b^3)/12 - ((a-tx)*(b-2*ty)^3)/12;
5 deff("[Sz]=f(y)","Sz=M*y/Ixx");
6 y=[-b/2:0.05:b/2];
7 fplot2d(y,f);
8 xgrid(3);
9 datatipToggle();
10 xtitle('Direct stress', '-y-', '- z-');
11 printf("\n z at the top of the beam: %f N/mm^2",f(b_/2));
12 printf("\n z at the bottom of the beam: %f N/mm^2", f(b_/2));
```


Figure 16.1: Example 1

Figure 16.2: Example 2

check Appendix AP 45 for dependency:

16_2data.sci

Scilab code Exa 16.2 Example 2

```
1 pathname=get_absolute_file_path('16.2.sce')
2 filename=pathname+filesep()+'16.2data.sci'
3 exec(filename)
4 clear
```

check Appendix AP 44 for dependency:

16_3data.sci

Scilab code Exa 16.3 Example 3

```
1 pathname=get_absolute_file_path('16_3.sce')
2 filename=pathname+filesep()+'16_3data.sci'
3 exec(filename)
4 clear
5 Iyy=2*(ty*a^3)/12 +((b-2*ty)*tx^3)/12;
6 Ixx=(a*b^3)/12 - ((a-tx)*(b-2*ty)^3)/12;
7 Mx=M*cos(theta), My=M*sin(theta);
8 alpha=(atan((My/Iyy)/(Mx/Ixx)))*180/%pi;
9 deff("[Sz1]=f(x)", "Sz1=((Mx/Ixx)*(b/2))-((My/Iyy)*x)
     ");
10 deff("[Sz2]=f1(x)", "Sz2=((Mx/Ixx)*(-b/2))-((My/Iyy)*
     x)");
11 deff("[Sz3]=f2(y)", "Sz3=((Mx/Ixx)*y)");
12 deff("[Sz4]=f3(x)", "Sz4=0*x");
13 deff("[Sz5]=f4(y)", "Sz5=0*y");
14 funcprot();
```


Figure 16.3: Example 3

```
15 y = [-b/2:0.05:b/2];
16 x=[-a/2:0.05:a/2];
17 funcprot(0);
18 subplot (3,1,1);
19 fplot2d(x,f);
20 fplot2d(x,f3);
21 xgrid(3);
22 xtitle ('Direct stress in upper flange', '-x-', '-
       z - ');
23 subplot(3,1,3);
24 fplot2d(x,f1);
25 fplot2d(x,f3);
26 xgrid(3);
27 xtitle ('Direct stress in lower flange', '-x-', '-
       z - ');
28 subplot(3,1,2);
29 fplot2d(y,f2);
30 fplot2d(y,f4);
31 xgrid(3);
32 xtitle('Direct stress in web', '-y-', '- z-');
33 datatipToggle();
34 printf("\nclick on the point on the plot to view its
       coordinates");
```

check Appendix AP 43 for dependency:

16_4data.sci

Scilab code Exa 16.4 Example 4

```
1 pathname=get_absolute_file_path('16_4.sce')
2 ilename=pathname+filesep()+'16_4data.sci'
3 exec(filename)
4 Yc=(b^2 -t^2 +a*t)/(2*(a+b-t));
5 Xc=((((a/2)-a1+ 0.5*t)*a) +((b-t)*t/2))/(a+b-t);
```

```
6 Ixx=(1/3)*((t*((Yc-t)^3 - (Yc-b)^3))+(a*((Yc)^3 - (Yc-b)^3))
      t)^3)));
7 P=a1-0.5*t+Xc;
8 Iyy=(1/3)*((t*(P^3 -(P-a)^3))+((b-t)*(Xc^3-(Xc-t))
      ^3)));
9 Ixy=a*t^2 *(Yc-t*0.5) + (b-t)*t*(Yc+0.5*t)*12;
10 M1 = (1 + round(100 * Mx * Iyy / (Ixx * Iyy - Ixy^2))) / 100, M2 = (1 + Iy)
      round(100*Mx*Ixy/(Ixx*Iyy -Ixy^2)))/100;
11 function [z] = Sz(x,y)
       z=M1*y -M2*x;
13 endfunction
14 Load=[Sz(-P,Yc);Sz(a-P,Yc);Sz(-P,Yc-t);Sz(a-P,Yc-t);
      Sz(-Xc,Yc-b);Sz(-Xc+t,Yc-b)];
15 Point1=[-P;a-P;-P;a-P;-Xc;-Xc+t];
16 Point2=[Yc; Yc; Yc-t; Yc-t; Yc-b; Yc-b];
17 maximum=Load(1);
18 \text{ for } i=2:6
       if(abs(Load(i))>abs(Load(i-1))) then
            maximum=abs(Load(i));
20
21
            mm = i;
22
       end
23 end
24 printf("\n z , max: \%f N/mm<sup>2</sup>", Load(mm));
25 disp("at point");
26 printf("\nX: %f ",Point1(mm));
27 printf("\nY: %f ",Point2(mm));
      check Appendix AP 42 for dependency:
      16_5data.sci
```

Scilab code Exa 16.5 Example 5

```
1 pathname=get_absolute_file_path('16_5.sce')
```


Figure 16.4: Example 5

```
filename=pathname+filesep()+'16_5data.sci'

exec(filename)

deff("[v]=f(z)","v=(-W/(6*EI))*(3*L*z^2 -z^3)");

funcprot();

z=[0:0.05:L];

fplot2d(z,f);

xgrid(3);

datatipToggle();

xtitle('deflection curve', '-z-', '-v-');

printf("\ntip deflection: %f m",f(L));

printf("\n\nclick on the point to view its coordinate on the plot");
```

check Appendix AP 41 for dependency:

16_6data.sci

Scilab code Exa 16.6 Example 6

```
1 pathname=get_absolute_file_path('16_6.sce')
2 filename=pathname+filesep()+'16_6data.sci'
3 exec(filename)
4 deff("[v]=f(z)","v=(-W/(24*EI))*(6*(L^2)*z^2 -4*L*z^3 +z^4)");
5 funcprot();
6 z=[0:0.05:L];
7 fplot2d(z,f);
8 xgrid(3);
9 datatipToggle();
10 xtitle('deflection curve', '-z-', '-v-');
11 printf("\ntip deflection: %f m",f(L));
12 printf("\n\nclick on the point to view its coordinate on the plot");
```


Figure 16.5: Example 6

Figure 16.6: Example 7

check Appendix AP 40 for dependency:

16_7data.sci

Scilab code Exa 16.7 Example 7

Figure 16.7: Example 8

check Appendix AP 39 for dependency:

16_8data.sci

Scilab code Exa 16.8 Example 8

```
pathname=get_absolute_file_path('16_8.sce')
filename=pathname+filesep()+'16_8data.sci'
exec(filename)
deff("[v]=f(z)","v=(W/(48*EI))*(4*z^3 -3*z*L^2)");
funcprot();
z=[0:0.05:L];
fplot2d(z,f);
xgrid(3);
datatipToggle();
title('deflection curve', '-z-', '-v-');
printf("\nmaximum deflection: %f m",f(L/2));
printf("\n\nclick on the point to view its coordinate on the plot");
```

check Appendix AP 38 for dependency:

16_9data.sci

Scilab code Exa 16.9 Example 9

```
1 pathname=get_absolute_file_path('16_9.sce')
2 filename=pathname+filesep()+'16_9data.sci'
3 exec(filename)
4 clear
5 function[si]=sing(a,b)
       if(a<b) then
6
           si=0;
8
       else
9
           si=(a-b);
10
       end
11 endfunction
12 deff("[v]=f(z)", "v=(1/EI)*((W*z^3)/8) -(W/6)*(sing)
      (z,a))^3 - ((W/6) * (sing(z,2*a))^3) + ((W/3) * (sing(z,2*a))^3)
      (3*a))^3 - ((5*W*z*a^2)/8))");
```


Figure 16.8: Example 9

```
13 for i=1:400*a
14
       x0=f((i-1)/100), x1=f(i/100), x2=f((i+1)/100);
       y1=(x0-x1), y2=(x1-x2);
15
       if(y1*y2<0) then
16
17
           if (y1<0) then
18
                P=i/100;
19
               P1=f(i/100);
20
           else
21
                Q=i/100;
                Q1=f(i/100);
22
23
           end
24
       end
25 end
26 z = [0:0.05:4*a];
27 fplot2d(z,f);
28 xgrid(3);
29 xtitle( 'deflection curve', '-z-', '-v-');
30 datatipToggle();
31 printf("\nmaximum positive deflection: %f m",P1);
32 printf("\nat z= \%f m",P);
33 printf("\nmaximum negative deflection: \%f m",Q1);
34 printf("\nat z= \%f m",Q);
35 printf("\n\nclick on the point to view its
      coordinate on the plot");
```

check Appendix AP 52 for dependency:

16_10data.sci

Scilab code Exa 16.10 Example 10

```
pathname=get_absolute_file_path('16_10.sce')
filename=pathname+filesep()+'16_10data.sci'
exec(filename)
```


Figure 16.9: Example 10

```
4 clear
5 function[si]=sing(a,b)
       if(a<b) then
7
           si=0;
8
       else
9
           si=(a-b);
10
       end
11 endfunction
12 deff("[v]=f(z)", "v=(1/EI)*(((L*W*z^3)/64) -((W/24)*(
      sing(z,0.5*L))^4)+((W/24)*(sing(z,0.75*L))^4)
      -((27*W*z*L^3)/2048))");
13 funcprot();
14 for i=1:100*L
       x0=f((i-1)/100), x1=f(i/100), x2=f((i+1)/100);
15
       y1 = (x0 - x1), y2 = (x1 - x2);
16
       if(y1*y2<0) then
17
          P=i/100;
18
          P1=f(i/100);
19
20
          printf("\nmaximum deflection: %f m",P1);
          printf("\nat z= \%f m",P);
21
22
       end
23 end
24
25 z = [0:0.05:L];
26 fplot2d(z,f);
27 xgrid(3);
28 datatipToggle();
29 xtitle(', deflection curve', ', -z-', '-v-');
30 printf("\n nclick on the point to view its
      coordinate on the plot");
```

check Appendix AP 51 for dependency:

16_11data.sci

Figure 16.10: Example 11

Scilab code Exa 16.11 Example 11

```
1 pathname=get_absolute_file_path('16_11.sce')
2 filename=pathname+filesep()+'16_11data.sci'
3 exec(filename)
4 function[si]=sing(a,a1)
       if (a < a1) then
6
           si=0;
7
       else
           si=(a-a1);
9
       end
10 endfunction
11 deff("[v]=f(z)", "v=(M0/(EI*6*L))*(-z^3 +(3*L*(sing(z)))
      (a,b))^2) - (2*L^2 -6*L*b +3*b^2)*z)");
12 z = [0:0.05:L];
13 fplot2d(z,f);
14 xgrid(3);
15 datatipToggle();
16 xtitle( 'deflection curve', '-z-', '-v-');
17 printf("\n nclick on the point to view its
      coordinate on the plot");
```

check Appendix AP 50 for dependency:

16_12data.sci

Scilab code Exa 16.12 Example 12

```
pathname=get_absolute_file_path('16_12.sce')
filename=pathname+filesep()+'16_12data.sci'

exec(filename)
P=(W*Ixy/(E*(Ixx*Iyy -Ixy^2)));
P1=-(W*Iyy/(E*(Ixx*Iyy -Ixy^2)));
deff("[u]=f(z)","u=P*(0.5*L*z^2 -(1/6)*z^3)");
```


Figure 16.11: Example 12

```
7 deff("[v]=f1(z)","v=P1*(0.5*L*z^2 -(1/6)*z^3)");
8 funcprot();
9 z = [0:0.05:L];
10 subplot (2,1,1);
11 fplot2d(z,f);
12 xgrid(3);
13 xtitle ('deflection curve(u)', '-z-', '-u-');
14 subplot(2,1,2);
15 fplot2d(z,f1);
16 xgrid(3);
17 xtitle ('deflection curve(v)', '-z-', '-v-');
18 datatipToggle();
19 printf("\nmaximum value of u: %f",f(L));
20 printf("\nmaximum value of v: \%f",f1(L));
21 printf("\n\nclick on the point to view its
     coordinate on the plot");
```

check Appendix AP 49 for dependency:

16_13data.sci

Scilab code Exa 16.13 Example 13

```
pathname=get_absolute_file_path('16_13.sce')
filename=pathname+filesep()+'16_13data.sci'

exec(filename)
dw=d- 2*tf;
Ixx=2*(((b*tf^3)/12)+ b*tf*((dw+tf)/2)^2) + (tw*dw^3)/12;
Iyy=(2*tf*b^3)/12 + (dw*dw^3)/12;
printf("\n Ixx= %f mm^4",Ixx);
printf("\n Iyy= %f mm^4",Iyy)
```

check Appendix AP 48 for dependency:

16_14data.sci

Figure 16.12: Example 14

Scilab code Exa 16.14 Example 14

```
1 pathname=get_absolute_file_path('16_14.sce')
2 filename=pathname+filesep()+'16_14data.sci'
3 exec(filename)
4 Ixx=(t*h^3)/3;
5 Iyy = (t*h^3)/12;
6 Ixy=(t*h^3)/8;
7 P=Mx/(Ixx*Iyy -Ixy*Ixy);
8 deff("[Sz1]=f(x)", "Sz1=P*(Iyy*h*0.5 -Ixy*x)");//
      distribution of direct stress in top flange
9 deff("[Sz2]=f1(y)", "Sz2=P*(Iyy*y)"); // distribution
     of direct stress in web
10 deff("[Sz3]=f2(x1)", "Sz3=P*(-Iyy*h*0.5 -Ixy*x1)"); //
      distribution of direct stress in top flange
11 deff("[Sz4]=f3(x)", "Sz4=0*x");
12 deff("[Sz5]=f4(y)", "Sz5=0*y");
13 y = [-h/2:0.05:h/2];
14 x = [0:0.05:h/2];
15 x1 = [-h/2:0.05:0];
16 funcprot(0);
17 subplot (3,1,1);
18 fplot2d(x,f);
19 fplot2d(x,f3);
20 xgrid(3);
21 xtitle ('Direct stress in upper flange', '-x-', '-
       z - ');
22 subplot (3,1,2);
23 fplot2d(y,f1);
24 fplot2d(y,f4);
25 xgrid(3);
26 xtitle('Direct stress in web', '-y-', '- z-');
```

```
27 subplot(3,1,3);
28 fplot2d(x1,f2);
29 fplot2d(x1,f3);
30 xgrid(3);
31 xtitle('Direct stress in bottom flange', '-y-', '
      -z-');
32 datatipToggle();
     check Appendix AP 47 for dependency:
     16_15data.sci
   Scilab code Exa 16.15 Example 15
1 pathname=get_absolute_file_path('16_15.sce')
2 filename=pathname+filesep()+'16_15data.sci'
3 exec(filename)
4 Nt=4*E*alpha*a*t*T0;
5 Mxt=2*E*alpha*t*T0*a^2;
6 Myt=-E*alpha*t*T0*a^2;
7 printf("\nNt: \%f",Nt);
8 printf("\nMxt: %f ",Mxt);
9 printf("\nMyt: %f ",Myt);
     check Appendix AP 46 for dependency:
     16_16data.sci
   Scilab code Exa 16.16 Example 16
1 pathname=get_absolute_file_path('16_16.sce')
2 filename=pathname+filesep()+'16_16data.sci'
3 exec(filename)
4 Nt=4*E*alpha*a*t*T0;
```

```
5 Mxt=(8/3)*E*alpha*t*T0*a^2;
6 Myt=-E*alpha*t*T0*a^2;
7 printf("\nNt: %f ",Nt);
8 printf("\nMxt: %f ",Mxt);
9 printf("\nMyt: %f ",Myt);
```

Chapter 17

Shear of beams

```
check Appendix AP 37 for dependency:
```

```
17_1data.sci
```

Scilab code Exa 17.1 Example 1

```
1 pathname=get_absolute_file_path('17_1.sce')
2 filename=pathname+filesep()+'17_1data.sci'
3 exec(filename)
4 Ixx=(t*h^3)/3, Iyy=(t*h^3)/12, Ixy=(t*h^3)/8;
5 A=0.5*(Sy/(Ixx*Iyy -Ixy^2));
6 function[q1]=q12(s1),
       q1=A*(((h*t*(Iyy-Ixy))*s1)+(Ixy*t*s1^2));
7
8 endfunction
9 s1=linspace(0,h/2,5*h);
10 q1=feval(s1,q12);
11 subplot (3,1,1)
12 plot2d(s1,q1);
13 xgrid(3);
14 xtitle( 'Direct stress in lower flange', '-s1-', '
     -z-');
```


Figure 17.1: Example 1

```
15 function [q2] = q23(s2),
       q2=(A*((Iyy*t*h*s2)-(Iyy*t*s2^2)))+q12(h/2);
16
17 endfunction
18 s2=linspace(0,h,10*h);
19 q2 = feval(s2, q23);
20 subplot (3,1,2)
21 plot2d(s2,q2);
22 xgrid(3);
23 xtitle ('Direct stress in the web', '-s2-', '-z-
24 function [q3] = q34(s3),
       q3 = (A*((Ixy*t*s3*s3)-(Iyy*t*h*s3)))+q23(h);
25
26 endfunction
27 \text{ s3=linspace}(0,h/2,5*h);
28 q3 = feval(s3,q34);
29 subplot (3,1,3)
30 plot2d(s3,q3);
31 xgrid(3);
32 xtitle ('Direct stress in upper flange', '-s3-', '
     -z - ;
33 datatipToggle();
34 printf("\nclick on the point to view its coordinate
      on the plot")
     check Appendix AP 36 for dependency:
     17_2data.sci
   Scilab code Exa 17.2 Example 2
1 pathname=get_absolute_file_path('17_2.sce')
2 filename=pathname+filesep()+^{\prime}17_{-}2data.sci
3 exec(filename)
4 Es=(3*b*b)/(h*(1+6*b/h));
5 printf("\n s: %f mm",Es);
```

```
check Appendix AP 35 for dependency:
```

```
17_3data.sci
```

Scilab code Exa 17.3 Example 3

```
pathname=get_absolute_file_path('17_3.sce')
filename=pathname+filesep()+'17_3data.sci'
exec(filename)
Es=-3.35*a;
printf("\n s: %f mm",Es);
```

Chapter 18

Torsion of beams

```
check Appendix AP 34 for dependency: 18_1data.sci
```

Scilab code Exa 18.1 Example 1

```
1 pathname=get_absolute_file_path('18_1.sce')
2 filename=pathname+filesep()+'18_1data.sci'
3 exec(filename)
4 clear
5 A = \%pi * d * d / 4;
6 tmin1=Tmax/(2*A*Smax);
7 tmin2= (Tmax*\%pi*d*0.5*L)/(4*A*A*G*angle);
8 if(tmin1<tmin2) then
       printf("\nminimum allowable thickness is: %f mm"
9
          ,tmin2);
10 else
       printf("\nminimum allowable thickness is: %f mm"
11
          ,tmin1);
12 end
```

check Appendix AP 33 for dependency:

18_2data.sci

Figure 18.1: Example 2

Scilab code Exa 18.2 Example 2

```
1 pathname=get_absolute_file_path('18_2.sce')
2 filename=pathname+filesep()+'18_2data.sci'
3 exec(filename)
4 clear
5 del=2*((b/tb)+(a/ta));//
6 A=a*b;
7 deff("[W41]=f(s1)","W41=(T/(2*A*G))*((s1/tb)+(del*a*s1/(4*A)))");
8 deff("[W12]=f1(s2)","W12=(T/(2*A*G))*((s2/ta)+(del*b*s2/(4*A)))");
```

```
9 deff("[W23]=f2(s1)","W23=-((T/(2*A*G))*((s1/tb)+(del
     *a*s1/(4*A)))");
10 deff("[W34]=f3(s2)","W34=-((T/(2*A*G))*((s2/ta)+(del
     *b*s2/(4*A))))");
11 deff("[Sz]=f4(s1)","Sz=0*s1");
12 deff("[Sz1]=f5(s2)", "Sz1=0*s2");
13 funcprot(0);
14 s1 = [-b/2:0.05:b/2];
15 s2=[-a/2:0.05:a/2];
16 subplot (2,2,1)
17 fplot2d(s1,f)
18 fplot2d(s1,f4)
19 xgrid(3);
20 xtitle ('Wraping in 4-1', '-y-', '-w-');
21 subplot (2,2,2)
22 fplot2d(s2,f1)
23 fplot2d(s2,f5)
24 xgrid(3);
25 xtitle ('Wraping in 1-2', '-x-', '-w-');
26 subplot (2,2,3)
27 fplot2d(s1,f2)
28 fplot2d(s1,f4)
29 xgrid(3);
30 xtitle ('Wraping in 2-3', '-y-', '-w-');
31 subplot (2,2,4)
32 fplot2d(s2,f3)
33 fplot2d(s2,f5)
34 xgrid(3);
35 xtitle ('Wraping in 3-4', '-x-', '-w-');
36 datatipToggle();
37 printf("\nclick on the point on the plot to view its
      coordinates")
```

check Appendix AP 32 for dependency:

18_3data.sci

Figure 18.2: Example 3

Scilab code Exa 18.3 Example 3

```
1 pathname=get_absolute_file_path('18_3.sce')
2 filename=pathname+filesep()+^{\prime}18_{-3}data.sci^{\prime}
3 exec(filename)
4 clear
5 J=(2*a*ty^3 + b*tx^3)/3;
6 if(tx>ty) then
7
       tmax=tx*T/J;
8 else
9
       tmax=ty*T/J;
10 \text{ end}
11 printf("\nmaximum shear stress: \%f N/mm<sup>2</sup>, tmax);
12 Ixx=a*ty*b*b/2 + (tx*b^3)/12;
13 Es=(ty*(a*b)^2)/(4*Ixx);
14 deff("[W32]=f(s1)","W32=-2*(T/(J*G))*(0.5*Es*s1)");
15 deff("[W21]=f1(s2)","W21=-2*(T/(J*G))*(0.5*Es*a)
      -0.5*a*s2)");
16 deff("[W43]=f2(s2)","W43=2*(T/(J*G))*(0.5*Es*a -0.5*
      a*s2)");
17 deff("[Sz]=f3(s1)", "Sz=0*s1");
18 deff("[Sz1]=f4(s2)", "Sz1=0*s2");
19 s1=[-b/2:0.05:b/2];
20 	 s2 = [0:0.05:a];
21 subplot (3,1,1)
22 fplot2d(s2,f1)
23 fplot2d(s2,f4)
24 xgrid(3);
25 xtitle ('Wraping in 2-1', '-x-', '-w-');
26 subplot (3,1,2)
27 fplot2d(s1,f)
28 fplot2d(s1,f3)
29 xgrid(3);
30 xtitle ('Wraping in 3-2', '-y-', '-w-');
```

```
31     subplot(3,1,3)
32     fplot2d(s2,f2)
33     fplot2d(s2,f4)
34     xgrid(3);
35     xtitle( 'Wraping in 4-3', '-x-', '-w-');
36     datatipToggle();
37     printf("\nclick on the point on the plot to view its coordinates")
```

Chapter 19

Combined open and closed section beams

check Appendix AP 31 for dependency:

```
19_1data.sci
```

Scilab code Exa 19.1 Example 1

```
1 pathname=get_absolute_file_path('19_1.sce')
2 filename=pathname+filesep()+'19_1data.sci'
3 exec(filename)
4 clear
5 Yc=(2*L45^2 +L12^2)/(4*L12 +4*L45);
6 Ixx=((2*L12 +L45)*t*Yc^2) +(L45*t*(L45-Yc)^2)+ (2*t /3)*((2*Yc^3) -((Yc-L45)^3) -((Yc-L12)^3));
7 P=-Sy/Ixx;
8 function[q1]=q12(s1),
9    q1=P*t*(Yc-L12)*s1 +P*t*0.5*s1^2;
10 endfunction
11 s1=linspace(0,L12,10*L12);
12 q1=feval(s1,q12);
```


Figure 19.1: Example 1

```
13 subplot (2,3,1)
14 plot2d(s1,q1)
15 xgrid(3);
16 xtitle ('Shear flow in 1-2 and 8-7', '-s1-', '-q-'
      );
17 function [q2] = q23(s2),
       q2 = P*t*Yc*s2+q12(L12);
18
19 endfunction
20 s2=linspace(0,L12,10*L12);
21 q2=feval(s2,q23);
22 subplot (2,3,2)
23 plot2d(s2,q2)
24 xgrid(3);
25 xtitle ('Shear flow in 2-3 and 7-6', '-s2-', '-q-'
      );
26 \quad function[q3] = q03(s3),
       q3=P*t*Yc*s3;
27
28 endfunction
29 s3=linspace(0,L45/2,5*L45);
30 q3=feval(s3,q03);
31 subplot(2,3,3)
32 plot2d(s3,q3)
33 xgrid(3);
```

```
34 xtitle ('Shear flow in 0-3 and 0-6', '-s3-', '-q-'
      );
35 \text{ function}[q4] = q34(s4),
       q4=(P*t*Yc*s4 -0.5*P*t*s4^2)+q03(L45/2)+q23(L12)
36
37 endfunction
38 \text{ s4=linspace}(0, L45, 10*L45);
39 q4 = feval(s4,q34);
40 subplot (2,3,4)
41 plot2d(s4,q4)
42 xgrid(3);
43 xtitle ('Shear flow in 3-4 and 6-5', '-s4-', '-q-'
      );
44 function[q5] = q94(s5),
       q5=P*t*(Yc-L45)*s5;
45
46 endfunction
47 s5=linspace(0,L45/2,5*L45);
48 q5 = feval(s5, q94);
49 subplot (2,3,5)
50 plot2d(s5,q5)
51 xgrid(3);
52 xtitle ('Shear flow in 9-4 and 9-5', '-s5-', '-q-'
      );
53 datatipToggle();
54 printf("\nclick on the point on the plot to view its
       coordinates");
     check Appendix AP 30 for dependency:
     19_2data.sci
```

Scilab code Exa 19.2 Example 2

```
1 pathname=get_absolute_file_path('19_2.sce')
2 filename=pathname+filesep()+'19_2data.sci'
3 exec(filename)
```

```
4 GJcl=((4*A*A*G*t12)/(L12+L34));
5 GJo=((L34+L13)*G*t^3)/3
6 GJ=GJcl+GJo;
7 Dtheta=T/GJ;
8 qcl=GJcl*Dtheta/(2*A);
9 tmaxcl=qcl/t12;
10 tmaxo=G*t13*Dtheta;
11 printf("\n max, cl: %f N/mm^2", tmaxcl);
12 printf("\n max, op: %f N/mm^2", tmaxo);
```

Structural idealization

```
check Appendix AP 29 for dependency: 20_1data.sci
```

Scilab code Exa 20.1 Example 1

check Appendix AP 28 for dependency:

20_2data.sci

Scilab code Exa 20.2 Example 2

```
1 pathname=get_absolute_file_path('20_2.sce')
2 filename=pathname+filesep()+^{\prime}20_{-}2data.sci
3 exec(filename)
4 clear
5 Yc = (2*(B'*D) -B(1,:)*D(1,:))/((2*sum(B))-(B(1,:)+B)
      (9,:)));
6 \text{ Y=D-Yc*ones}(9,1);
7 for i=1:9
        Ixx(i)=B(i)*(Y(i))^2;
9 end
10 P=2*sum(Ixx)-Ixx(1)-Ixx(9);
11 for i=1:9
12
        Sz(i) = (Mx/P) *Y(i); // z
13 end
14 printf("\ n z : \%f N/mm<sup>2</sup>", Sz);
      check Appendix AP 27 for dependency:
```

20_3data.sci

Scilab code Exa 20.3 Example 3

```
pathname=get_absolute_file_path('20_3.sce')
filename=pathname+filesep()+'20_3data.sci'
exec(filename)
clear
Ixx=4*A*L^2;
B=[A;A;A;A];
Y=[L;L;-L;-L];
q(1)=(-Sy/Ixx)*B(1)*Y(1);
```

```
9 for i=2:4
10    q(i)=((-Sy/Ixx)*B(i)*Y(i)) +q(i-1);
11 end
12 printf("\nq12: %f N/mm",q(1));
13 printf("\nq23: %f N/mm",q(2));
14 printf("\nq34: %f N/mm",q(3));
```

check Appendix AP 26 for dependency:

20_4data.sci

Scilab code Exa 20.4 Example 4

```
1 pathname=get_absolute_file_path('20_4.sce')
2 filename=pathname+filesep()+^{\prime}20_{-}4data.sci
3 exec(filename)
4 clear
5 \text{ for } i=1:8
       I(i)=B(i)*y(i)*y(i);
6
7 end
8 \text{ Ixx=sum}(I);
9 P = (-Sy/Ixx);
10 qb1(1)=0, qb2(1)=0;
11 for i=2:3
12
        qb1(i)=P*B(i+1)*y(i+1) + qb1(i-1);
       qb2(i)=(P*B(i+5)*y(i+5) + qb2(i-1));
13
14 end
15 \text{ qb1}(4) = \text{qb1}(2);
16 \text{ qb2}(4) = \text{qb2}(2);
17 qb=[qb1;-qb2];
18 A= (y(1)+y(2))*x(3) + (y(2)+y(3))*x(2) + (y(3)+y(4))*x
      (1);
19 qs0=(qb(7)*(x(2)+x(3))*(2*y(1)) +2*qb(6)*(x(3)*y(2))
      +x(3)*(y(2)-y(1))) + 2*qb(1)*x(2)*y(3) -2*qb(2)*x
      (1)*y(3) -qb(3)*2*y(4)*x(1))/(2*A);
q = [qb1+qs0*ones(4,1);qb2+qs0*ones(4,1);];
```

Wing spars and box beams

check Appendix AP 25 for dependency:

```
21_1data.sci
```

Scilab code Exa 21.1 Example 1

```
1 pathname=get_absolute_file_path('21_1.sce')
2 filename=pathname+filesep()+'21_1data.sci'
3 exec(filename)
4 Mx=-Sy*L1;//moment at section AA
5 Wa=(We*(L-L1)+ W*L1)/L;//width of section AA
6 Ixx=2*A*(Wa/2)^2 + (1/12)*t*Wa^3;
7 Sz1=Mx*(Wa/2)/Ixx;
8 Pz1=Sz1*A;
9 Syz=Sy +Pz1*((W-We)/L);
10 deff("[q12]=f(s)","q12=(-Syz/Ixx)*((-s^2 +Wa*s) +(A*Wa/2))");
11 s=[0:0.01:Wa];
12 fplot2d(s,f);
13 xgrid(3)
14 xtitle('shear flow','-s-','-q12-');
```


Figure 21.1: Example 1

15 datatipToggle();

check Appendix AP 24 for dependency:

21_2data.sci

Scilab code Exa 21.2 Example 2

```
1 pathname=get_absolute_file_path('21_2.sce')
2 filename=pathname+filesep()+'21_2data.sci'
3 exec(filename)
4 clear
5 Mx=-Sy*(L-Lc);//moment at section
6 L3=(L1*(L-Lc)+ L2*Lc)/L; // leangth of CS
7 B3=(B1*(L-Lc)+B2*Lc)/L;//breadth of CS
8 \text{ Ixx}=4*Aco*(B3/2)^2 + 2*Ace*(B3/2)^2;
9 B=[Aco; Ace; Aco; Aco; Ace; Aco];
10 Y = [B3/2; B3/2; B3/2; -B3/2; -B3/2; -B3/2];
11 Dxr = [(L1-L2)/(2*L); 0; -(L1-L2)/(2*L); -(L1-L2)/(2*L)
      ;0;(L1-L2)/(2*L)];
12 Dyr=[-(B1-B2)/(2*L);-(B1-B2)/(2*L);-(B1-B2)/(2*L);(
      B1-B2)/(2*L); (B1-B2)/(2*L); (B1-B2)/(2*L)];
13 for i=1:6
14
       Pz(i) = (Mx/Ixx) * Y(i) * B(i);
15
       Px(i)=Pz(i)*Dxr(i);
       Py(i)=Pz(i)*Dyr(i);
16
       P(i) = (((Px(i))^2 + (Py(i))^2 + (Pz(i))^2)^0.5)*((
17
           abs(Pz(i)))/Pz(i));
18 end
19 Syw = Sy - sum(Py);
20 \text{ qb}(1) = 0
21 \text{ for } i=2:4
        qb(i)=qb(i-1)+(-Syw/Ixx)*B(i-1)*Y(i-1);
22
23 end
24 \text{ qb}(5) = \text{qb}(3);
25 \text{ qb}(6) = \text{qb}(2);
```

```
26 qs0=((-Sy*L3/2)+(qb(2)*L3*B3*0.5 +qb(3)*L3*B3*0.5 +
qb(4)*B3*L3*0.5))/(2*L3*B3);
27 q=-qb+qs0*ones(6,1);
28 disp(q,"shear flow (61,12,23,34,45,56)")
```

check Appendix AP 23 for dependency:

21_3data.sci

Scilab code Exa 21.3 Example 3

```
1 pathname=get_absolute_file_path('21_3.sce')
2 filename=pathname+filesep()+'21_3data.sci'
3 exec(filename)
4 clear
5 Lc1=Lc+ 0.1*10<sup>3</sup>, Lc2=Lc- 0.1*10<sup>3</sup>;
6 Mx1=-Sy*(L-Lc1);//moment at section1
7 L31=(L1*(L-Lc1)+ L2*Lc1)/L; // leangth of CS1
8 B31=(B1*(L-Lc1)+ B2*Lc1)/L;//breadth of CS1
9 Mx2=-Sy*(L-Lc2);//moment at section2
10 L32=(L1*(L-Lc2)+ L2*Lc2)/L;//leangth of CS2
11 B32=(B1*(L-Lc2)+ B2*Lc2)/L;//breadth of CS2
12 L3 = (L31 + L32)/2;
13 B3 = (B31 + B32)/2;
14 \text{ Ixx1}=4*Aco*(B31/2)^2 + 2*Ace*(B31/2)^2;
15 Ixx2=4*Aco*(B32/2)^2 + 2*Ace*(B32/2)^2;
16 B=[Aco; Ace; Aco; Aco; Ace; Aco];
17 Y1 = [B31/2; B31/2; B31/2; -B31/2; -B31/2; -B31/2];
18 Y2 = [B32/2; B32/2; B32/2; -B32/2; -B32/2; -B32/2];
19 Dxr = [(L1-L2)/(2*L); 0; -(L1-L2)/(2*L); -(L1-L2)/(2*L)
      ;0;(L1-L2)/(2*L)];
20 Dyr=[-(B1-B2)/(2*L);-(B1-B2)/(2*L);-(B1-B2)/(2*L);(
      B1-B2)/(2*L); (B1-B2)/(2*L); (B1-B2)/(2*L)];
21 for i=1:6
22
       Pz1(i) = (Mx1/Ixx1) * Y1(i) * B(i);
       Px1(i)=Pz1(i)*Dxr(i);
23
```

```
24
                             Py1(i) = Pz1(i) * Dyr(i);
                            P1(i) = (((Px1(i))^2 + (Py1(i))^2 + (Pz1(i))^2)^0.5)
25
                                         *((abs(Pz1(i)))/Pz1(i));
                             Pz2(i) = (Mx2/Ixx2) * Y2(i) * B(i);
26
27
                             Px2(i)=Pz2(i)*Dxr(i);
28
                             Py2(i)=Pz2(i)*Dyr(i);
                             P2(i) = (((Px2(i))^2 + (Py2(i))^2 + (Pz2(i))^2)^0.5)
29
                                         *((abs(Pz2(i)))/Pz2(i));
30 \, \text{end}
31 \text{ delP}=(P1-P2)/200;
32 q12 = (Sy*L3*0.5 + delP(2)*2*L3*B3*0.25 + (delP(2)+delP(3)*DelP(3)*1.5 + (delP(3)+delP(3)*DelP(3)*1.5 + (delP(3)+delP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*DelP(3)*
                        (3))*L3*B3*0.5 + delP(6)*L3*B3*0.5)/(2*L3*B3*0.25
                        +2*L3*B3*0.25 +L3*B3*0.5 +L3*B3*0.5);
33 q23=q12-delP(2);
34 q34=q12-(delP(2)+delP(3));
q45=q12-(delP(2)+delP(3)+delP(4));
36 q56 = q12;
37 \quad q61=q12-delP(6);
q = [q12; q23; q34; q45; q56; q61];
39 disp("Shear flow(q12;q23;q34;q45;q56;q61):");
40 printf("\n %f N/mm",q);
```

Fuselages

check Appendix AP 22 for dependency:

```
22_1data.sci
```

Scilab code Exa
 22.1 Example 1

```
1 pathname=get_absolute_file_path('22_1.sce')
2 filename=pathname+filesep()+^{\prime}22_{-}1data.sci
3 exec(filename)
4 b=(2*\%pi*r)/16;
5 for i=1:16
       angle(i)=(2*\%pi/16)*(i-1);
       y(i)=r*cos(angle(i));
8 end
9 B1=A+ 2*((t*b)/6)*(2 +y(2)/y(1));
10 \text{ for } i=1:16
11
       B(i)=B1;
12
       I(i)=B(i)*y(i)*y(i);
13 end
14 Ixx = sum(I);
15 for i=1:16
16
       Sz(i) = (Mx * y(i)) / Ixx;
       printf("\n z%f =",i);
17
```

check Appendix AP 21 for dependency:

22_2data.sci

Scilab code Exa 22.2 Example 2

```
1 pathname=get_absolute_file_path('22_2.sce')
2 filename=pathname+filesep()+^{\prime}22_{-}2data.sci
3 exec(filename)
4 b=(2*\%pi*r)/16;
5 \text{ for } i=1:16
        angle(i)=(2*\%pi/16)*(i-1);
6
7
       y(i)=r*cos(angle(i));
8 end
9 B1=A+ 2*((t*b)/6)*(2 +y(2)/y(1));
10 for i=1:16
11
       B(i)=B1;
12
        I(i)=B(i)*y(i)*y(i);
13 end
14 Ixx = sum(I);
15 \text{ qs}(1)=0;
16 qs(8) = qs(1);
17 \text{ for } i=2:5
        qs(i)=((-Sy*B(i)*y(i))/Ixx)+qs(i-1);
18
19
        qs(9-i)=qs(i);
20 end
21 qs1(1) = ((-Sy*B(1)*y(1))/Ixx);
22 qs1(8) = qs1(1);
23 \text{ for } i=2:5
        qs1(i)=((-Sy*B(18-i)*y(18-i))/Ixx)+qs1(i-1);
24
        qs1(9-i)=qs1(i);
25
26 \text{ end}
27 \text{ Ac=\%pi*r*r/16};
```

```
28 qs0=-(((Sy*d)-2*Ac*(sum(qs1)-sum(qs)))/(2*Ac*16));

29 Q=[qs;-qs1];

30 for i=1:16

31 q(i)=Q(i)+qs0;

printf("\nq: %f N/mm",q(i))

33 end
```

Wings

```
check Appendix AP 20 for dependency: 23_1data.sci
```

Scilab code Exa 23.1 Example 1

check Appendix AP 19 for dependency:

23_2data.sci

Scilab code Exa 23.2 Example 2

```
1 pathname=get_absolute_file_path('23_2.sce')
2 filename=pathname+filesep()+'23_2data.sci'
3 exec(filename)
4 clear
5 for i=1:8
       ts(i)=(G(i)*t(i))/Gref;
       del(i)=L(i)/ts(i);
7
8 end
9 P = [(((del(1) + del(2))/A(1)) + (del(2)/A(2))) - ((del(2)/A(2)))]
      A(1))+((del(2)+del(3)+del(4)+del(5))/A(2))) (del
      (5)/A(2));
                                ((del(5)/A(3))-(del(2)/A
10
      ((del(1)+del(2))/A(1))
                 (-(del(5)+del(6)+del(7)+del(8))/A(3));
      2*A(1)
11
               2*A(2)
                        2*A(3);
12 X = [0; 0; T]
13 q = inv(P) *X;
14 disp("shear flows are");
15 printf("\nqI: %f N/mm",q(1,:));
16 printf("\nqII: \%f \ N/mm", q(2,:));
17 printf("\nqIII: \%f N/mm\n",q(3,:));
18 disp("shear stress distribution is (in order 120,12i
      ,13,24,34,35,46,56)");
19 X1 = [q(1,:)/t(1); (q(1,:)-q(2,:))/t(2); q(2,:)/t(3); q
      (2,:)/t(4);(q(2,:)-q(3,:))/t(5);
20
       q(3,:)/t(6);q(3,:)/t(7);q(3,:)/t(8)
21 printf("\n %f N/mm<sup>2</sup>", X1)
     check Appendix AP 18 for dependency:
     23_3data.sci
```

Scilab code Exa 23.3 Example 3

```
1 pathname=get_absolute_file_path('23_3.sce')
```

```
2 filename=pathname+filesep()+'23_3data.sci'
3 exec(filename)
4 clear
5 \text{ for } i=1:10
       ts(i)=t(i)*G(i)/Gref;
       del(i)=L(i)/ts(i);
8 end
9 \text{ for } i=1:6
       I(i)=B(i)*y(i)*y(i);
10
11 end
12 Ixx = sum(I);
13 for i=1:6
14
       q1(i) = (-Sy/Ixx)*B(i)*y(i);
15 end
q = [q1(2); q1(1); 0; q1(5); q1(3); q1(4)]
17 P = [(((del(4) + del(5) + del(6))/A(1)) + (del(6)/A(2)))]
      -(((del(3)+del(6)+del(10)+del(8))/A(2))+(del(6)/A
      (1))) del(8)/A(2);
      ((del(4)+del(5)+del(6))/A(1)) - (((-del(8))/A(3))
18
         +(del(6)/A(1))) (-((del(2)+del(8)+del(7)+del(6)))
         (1)+del(9))/A(3));
      2*A(1) 2*A(2) 2*A(3)
19
20 X = [-((q(6)*del(5) +q(6)*del(6))/A(1))+((q(4)*del(8))
      +q(5)*del(6))/A(2));
      -((q(6)*del(5) +q(6)*del(6))/A(1))+((-q(2)*del(9))
21
          +q(1)*del(8)+q(1)*del(7))/A(3));
22
      -q(5)*L(10)*L(5)-q(5)*L(10)*L(6)+q(2)*L(1)*L(9)];
23 X1 = inv(P) * X;
24 \quad X2 = [X1(1,:);X1(2,:);X1(2,:);X1(3,:);X1(3,:);-q(2)+X1
      (3,:);q(4)-X1(3,:);q(4)-X1(1,:);q(6)+X1(1,:);-q
      (5) - X1(1,:)];
  dth = (1/(2*Gref))*((((del(4)+del(5)+del(6))/A(1))*X1
25
      (1,:))-(del(6)/A(1))*X1(2,:)+((q(6)*del(5) +q(6)*
      del(6))/A(1));
26 printf("\nd /dz: \%f rad/mm\n", dth);
27 disp("shear flow distribution is (in order q34, q23,
      q87, q12, q56, q61, q57, q72, q48, q83)");
28 printf("\n %f N/mm", X2)
```

check Appendix AP 17 for dependency:

23_4data.sci

Scilab code Exa 23.4 Example 4

```
1 pathname=get_absolute_file_path('23_4.sce')
2 filename=pathname+filesep()+'23_4data.sci'
3 exec(filename)
4 clear
5 y1=0.5*[W1;W1;W1;-W1;-W1;-W1];
6 y2=0.5*[W2;W2;W2;-W2;-W2;-W2];
7 x1 = [0; L12; L12+L11; L12+L11; L12; 0];
8 x2=[0;L22;L22+L21;L22+L21;L22;0];
9 Li=[L12;L11;W1;L11;L12;W1;W1];
10 for i=1:6;
11
       I1(i)=B(i)*y1(i)*y1(i);
12
       del(i)=Li(i)/t(3);
13 end
14 del(7) = Li(7)/t(3);
15 Ixx = sum(I1);
16 dely = (y1 - y2);
17 delx = (x1-x2);
18 epr=[L12;0;L11;L11;0;L12];
19 nr=abs(y1);
20 \text{ for } i=1:6
       Pz(i) = (Mx/Ixx)*B(i)*y1(i);
21
       Py(i)=Pz(i)*dely(i)/L;
22
23
       Px(i)=Pz(i)*delx(i)/L;
       Pr(i) = ((Px(i)^2 + Py(i)^2 + Pz(i)^2)^0.5)*(y1(i)/
24
          abs(y1(i)));
       Pxn(i) = -abs(Px(i)*nr(i));
25
       Pyep(i)=Py(i)*epr(i);
26
27 end
28 Pyep(6)=-Pyep(i);
```

```
29 Sxw = -sum(Px);
30 Syw = Sy - sum(Py);
31 qb = [0;0;(-Syw/Ixx)*(B(3)*y1(3));0;0;(-Syw/Ixx)*(B(6))
      *y1(6)); (-Syw/Ixx)*B(5)*y1(5)];
32 \text{ qb1=0};
33 \text{ for } i=1:7
       qb1=qb(i)*del(i)+qb1;
34
35 end
36 A1=L11*W1;
37 \quad A2 = L12 * W1;
38 P = [((del(2)+del(3)+del(4)+del(7))/A1)+(del(7))/A2]
      -((del(7)/A1)+((del(1)+del(5)+del(6)+del(7))/A2))
39
      2*A1
             2*A2];
40 X = [(qb1/(3*A1))+(qb1/(3*A2)); -(qb(3)*W1*L12 +qb(6)*
      W1*L11)-sum(Pxn)+sum(Pyep);
41 qs=inv(P)*X;
42 \text{ M1} = -[qs(2);qs(1);qs(1);qs(1);qs(2);qs(2);qs(1)-qs(2)]
      ];
43 q = qb + M1;
44 disp("shear flow(q12;q23;q34;q45;q56;q61;q52):");
45 printf("\n %f N/mm",q)
      check Appendix AP 16 for dependency:
      23_6data.sci
```

Scilab code Exa 23.6 Example 6

```
pathname=get_absolute_file_path('23_6.sce')
filename=pathname+filesep()+'23_6data.sci'
exec(filename)
clear
A=L1*B1;
```


Figure 23.1: Example 6

```
6 q1=T/(2*A);
7 \text{ S=T/B1};
8 q1=S/L1;
9 P=S*(L/2)/L1;
10 X = [L -L; A A];
11 X1 = [P;T];
12 q=[q1; inv(X)*X1];
13 X2=[0;L*q(2)-L*q(3);-L*q(2)+L*q(3);0];
14 Y = [0; 1500; 3000; 4500];
15 plot(Y, X2);
16 xgrid(3);
17 xtitle('Distribution of load in the top flange of
      the front spar', ', 'Load')
18 datatipToggle();
19 printf("\nq1: %f N/mm",q(1))
20 printf("\nq2: %f N/mm",q(2))
21 printf("\nq3: \%f \ N/mm",q(3))
```

Fuselage frames and wing ribs

```
check Appendix AP 15 for dependency:
```

```
24_1data.sci
```

Scilab code Exa 24.1 Example 1

```
1 pathname=get_absolute_file_path('24_1.sce')
2 filename=pathname+filesep()+'24_1data.sci'
3 exec(filename)
4 clear
5 P=[GH -GH; DK KH], X=[L1*sin(theta); L1*cos(theta)];
6 q=inv(P)*X;
7 q(3)=L1*cos(theta)/(DK+KH);
8 q(4)=(L1*cos(theta)+L2)/(DK+KH);
9 PA=GH*q(1) +FG*q(3) +EF*q(4);
10 PE=-GH*q(2) -FG*q(3) -EF*q(4);
11 X1=[GH*q(1)+FG*q(3)+EF*q(4);GH*q(1)+FG*q(3);GH*q(1);0];
12 X2=[-GH*q(2)-FG*q(3)-EF*q(4);-GH*q(2)-FG*q(3);-GH*q(2);0];
13 Y=[0;EF;EF+FG;EF+FG+GH];
```


Figure 24.1: Example 1

```
14 subplot (2,1,1)
15 plot2d(Y,X1)
16 xgrid(3)
17 xtitle('Load distribution in ABCD', 'y', 'Load')
18 subplot (2,1,2)
19 plot2d(Y, X2)
20 xgrid(3)
21 xtitle('Load distribution in EFGH', 'y', 'Load')
22 datatipToggle();
23 printf("\nq1: \%f N/mm",q(1));
24 printf("\nq2: %f N/mm",q(2));
25 printf("\nq3: \%f N/mm",q(3));
26 printf("\nq4: \%f N/mm", q(4));
27 printf("\nPA: \%f \ N",PA);
28 printf("\nPE: \%f \ N", PE);
29 printf("\nclick on the point to view its coordinate
      on the plot");
```

check Appendix AP 14 for dependency:

24_2data.sci

Scilab code Exa 24.2 Example 2

```
1 pathname=get_absolute_file_path('24_2.sce')
2 filename=pathname+filesep()+'24_2data.sci'
3 exec(filename)
4 clear
5 P=[2*L11 -2*L11 0;0 -L11 L11;2*A2 2*(A1+A2) 0],X=[L1;L2;440000];
6 q=inv(P)*X;
7 //actual X is X=[L1;L2;-L2*L11],it leads to wrong answers than book;
8 Sy1=-(q(2))*L11;
9 Px4= 2*A1*-(q(2))/L11;
10 Py2= Px4*tan(theta);
```

```
11 q1= (Sy1- 2*Py2)/L11;
12 P2 = (Px4*Px4 + Py2*Py2)^0.5;
13 P5= 2*((A1+A22)*(-q(2)) - A21*q(1))/L12;
14 q2 = ((-q(2))*L11 + (-q(2))*0.5*(L12-L11) -q(1)*0.5*(
      L12-L11))/L12;
15 q31 = (q2*L12 + L2)/L12;
16 \text{ M3} = 2*((A1+A2)*(-q(2)) -A2*q(1)) + L2*L11;
17 Px1=M3/L11;
18 Py1=Px1*tan(theta);
19 P1 = (Px1 * Px1 + Py1 * Py1)^0.5;
20 q32 = ((L2 + L11 * (-q(2))) - (2*Py1))/L11;
21 printf("\nq12: %f N/mm",q(1));
22 printf("\nq23: \%f N/mm",q(2));
23 printf("\nq31: \%f \ N/mm",q(3));
24 printf("\nP2= P4= \%f \ N", P2);
25 printf("\nP5= P6= \%f \ N", P5);
26 printf("\nP1= P3= \%f \ N", P1);
27 printf("\nq1: \%f \ N/mm",q1);
28 printf("\nq2: %f N/mm",q2);
29 printf("\nq3: %f N/mm",q31);
30 printf("\nshear flow q3 in the web: %f N/mm",q32)
```

Laminated composites

```
check Appendix AP 13 for dependency:
```

```
25_1data.sci
```

Scilab code Exa 25.1 Example 1

```
1 pathname=get_absolute_file_path('25_1.sce')
2 filename=pathname+filesep()+^{\prime}25_{-}1data.sci
3 exec(filename)
4 clear
5 A = (L1*(Bc+Be1+Be2));
6 E1= ((Ec*L1*Bc)+(Ee*L1*(Be1+Be2)))/A;
7 S1=Load/A;
8 \text{ e1=S1/E1};
9 dell=e1*L;
10 v1= ((vc*L1*Bc)+(ve*L1*(Be1+Be2)))/A;
11 et=-e1*v1;
12 \text{ delt=-et*(Bc+Be1+Be2)};
13 Se=e1*Ee;
14 Sc=e1*Ec;
15 printf("\nlengthening of the bar: %f mm", dell);
16 printf("\nreduction in thickness: %f mm", delt);
17 printf("\n m (epoxy): \%f N/mm<sup>2</sup>", Se);
```

```
18 printf("\n f (carbon): \%f N/mm<sup>2</sup>", Sc);
      check Appendix AP 12 for dependency:
      25_2data.sci
   Scilab code Exa 25.2 Example 2
1 pathname=get_absolute_file_path('25_2.sce')
2 filename=pathname+filesep()+'25_2data.sci'
3 exec(filename)
4 clear
5 vtl=vlt*(Et/El);
6 e1=(S1/E1)-(vt1*S2/Et);
7 e2=(S2/Et)-(vlt*S1/El);
8 gammalt=S3/Glt;// lt
9 printf("\n tl:\%f ",vtl);
10 \operatorname{printf}(" \setminus n \mid l : \%f ", e1);
11 printf("\n t:%f ",e2);
12 printf("\ n \ lt : \%f ", gammalt);
      check Appendix AP 11 for dependency:
      25_3data.sci
   Scilab code Exa 25.3 Example 3
1 pathname=get_absolute_file_path('25 - 3 \cdot sce')
2 filename=pathname+filesep()+^{\prime}25_{-}3data.sci
3 exec(filename)
4 clear
5 \text{ s11=1/E1};
6 \text{ s22=1/Et};
7 \text{ s12=-vlt/El};
```

```
8 \text{ s33=1/Glt};
9 m=cos(theta),n=sin(theta);
10 P = [(s11*m^4) + (s22*n^4) + (2*s12*m*m*n*n) + (s33*m*m*n*n)]
       (m*m*n*n)*(s11+s22-s33)+(m^4+n^4)*s12 0;
11
      (m*m*n*n)*(s11+s22-s33)+(m^4+n^4)*s12 (s11*n^4)
         +(s22*m^4)+(2*s12*m*m*n*n)+(s33*m*m*n*n) 0;
      ((-n*m^3 + m*n^3)*(2*s12 + s33)) - (2*s22*m*n^3) + (2*n)
12
         *s11*m^3) ((n*m^3 - m*n^3)*(2*s12 + s33))+(2*s11
         *m*n^3) -(2*n*s22*m^3) 0];
13 X = [S1; S2; 0];
14 E=P*X;
15 printf("\n x: \%f ",E(1));
16 printf("\n y: %f ",E(2));
17 printf("\n xy:\%f ",E(3));
     check Appendix AP 10 for dependency:
     25_4data.sci
```

Scilab code Exa 25.4 Example 4

```
1 pathname=get_absolute_file_path('25_4.sce')
2 filename=pathname+filesep()+'25_4data.sci'
3 exec(filename)
4 clear
5 X1=a*tb*Ez1;
6 X2=b*ta*Ez2;
7 ez=Load/(2*X1+X2);
8 P1=ez*X1;
9 P2=ez*X2;
10 printf("\nP(flanges) %f N",P1);
11 printf("\nP(web) %f N",P2);
```

check Appendix AP 9 for dependency:

25_5data.sci

Scilab code Exa 25.5 Example 5

```
1 pathname=get_absolute_file_path('25.5.sce')
2 filename=pathname+filesep()+^{\prime}25_{-}5data.sci
3 exec(filename)
4 clear
5 Ixx=(2*Ez1*a*tb*(b/2)^2) + (Ez2*ta*b^3)/12;
6 Iyy = (Ez1*tb*(2*a)^3)/12;
7 Ixy= Ez1*a*tb*a*(b/2) + Ez1*a*tb*(-a)*(-b/2);
8 P1=(-Mx*Ixy)/(Ixx*Iyy-Ixy*Ixy);
9 P2=(Mx*Iyy)/(Ixx*Iyy-Ixy*Ixy);
10 function[S1]=Sz1(x,y),//stress in flanges
       S1 = Ez1 * (P1 * x + P2 * y),
11
12 endfunction
13 function[S2]=Sz2(x,y),//stress in web
14
       S2=Ez2*(P1*x+P2*y),
15 endfunction
16 X = [Sz1(a, 0.5*b); Sz1(0, 0.5*b); Sz1(0, -0.5*b); Sz1(-a)
      ,-0.5*b);Sz2(0,0.5*b);Sz2(0,-0.5*b)];
17 printf("\nmaximum direct stress in the beam cross-
      section is: \%f N/mm^2", max(X);
     check Appendix AP 8 for dependency:
```

25_6data.sci

Scilab code Exa 25.6 Example 6

```
1 pathname=get_absolute_file_path('25\_6.sce')
2 filename=pathname+filesep()+'25\_6data.sci'
```


Figure 25.1: Example 6

```
3 exec(filename)
4 clear
5 \text{ Ixx} = ((2*\text{E}12*\text{t}12*((\text{L}23/(2*\text{L}12))^2)*\text{L}12^3) + (\text{E}23*\text{t}23*)
      L23<sup>3</sup>))/12;
6 alpha=asin(L23*0.5/L12);
7 function[qb12]=qb12x(s1)
        qb12= 0.5*(t12*sin(alpha)*E12*Sy/Ixx)*s1^2;
9 endfunction
10 function [qb23] = qb23x(s2)
        qb23 = ((-E23*t23*Sy/Ixx)*(-0.5*L23*s2 +0.5*s2^2))
           +qb12x(L12);
12 endfunction
13 funcprot();
14 qs0=((Sy*L12)+(L23*L12*qb12x(L12)/3))/(L12*L23);
15 function[q12]=q12x(s1)
        q12 = qb12x(s1) - qs0;
16
17 endfunction
18 function [q23] = q23x(s2)
        q23 = qb23x(s2) - qs0;
19
20 endfunction
21 s1=linspace(0,L12,10*L12);
22 s2=linspace(0,L23,10*L23);
23 q12 = feval(s1, q12x);
24 q23 = feval(s2, q23x);
25 subplot (2,1,1)
26 plot2d(s1,q12);
27 xgrid(3)
28 xtitle('', 's1', 'q12')
29 subplot(2,1,2)
30 plot2d(s2,q23);
31 xgrid(3)
32 xtitle('', 's2', 'q23')
33 datatipToggle();
34 printf("\nclick on the point to view its coordinate
      on plot")
      check Appendix AP 7 for dependency:
      25_7data.sci
```


Figure 25.2: Example 7

Scilab code Exa 25.7 Example 7

```
1  pathname=get_absolute_file_path('25_7.sce')
2  filename=pathname+filesep()+'25_7data.sci'
3  exec(filename)
4  clear
5  A=1*b;
6  q=T/(2*A);
7  P=(2*b/(t1*Gc))+(2*1/(t2*Gw));
8  w=q*((0.5*1/(Gw*t2))- 0.25*P);
```

```
9 X1=0.5*[1,-1], Y1=[w,-w];
10 X2=0.5*[1,-1], Y2=[-w,w];
11 X3=0.5*[b,-b], Y3=[w,-w];
12 X4=0.5*[b,-b], Y4=[-w,w];
13 subplot (2,2,1)
14 plot(X1,Y1),xgrid(3),xtitle('warpinr in 2-3(mm)','y'
      , 'w')
15 subplot (2,2,2)
16 plot(X2, Y2), xgrid(3), xtitle('warpinr in 1-4(mm)', 'y'
      , 'w')
17 subplot (2,2,3)
18 plot(X3, Y3), xgrid(3), xtitle('warpinr in 2-1 \text{(mm)}', 'x'
      , 'w')
19 subplot (2,2,4)
20 plot(X4,Y4),xgrid(3),xtitle('warpinr in 3-4(mm)','x'
21 datatipToggle();
22 printf("\nW1: \%f \nm",w);
23 printf("\nclick on the point to view its coordinate
      on plot")
```

check Appendix AP 6 for dependency:

25_8data.sci

Scilab code Exa 25.8 Example 8

```
pathname=get_absolute_file_path('25_8.sce')
filename=pathname+filesep()+'25_8data.sci'
exec(filename)
clear
GJ=2*G1*a*(t1^3)/3 +G2*b*(t2^3)/3;
dtheta=T/GJ;
tmax12=2*G1*(t1/2)*dtheta;
```


Figure 25.3: Example 8

```
8 \text{ tmax23=2*G2*(t2/2)*dtheta;}
9 maximum=tmax23;
10 if (tmax12>tmax23) then
11
       maximum=tmax12;
12 end
13 printf("\nmaximum shear stress: %f N/mm^2", maximum);
14 \text{ w1} = -2*(0.5*a*b/2)*dtheta;
15 printf("\nw1: %f mm", w1);
16 X = [0; a], Y = [0, w1], X1 = -X, Y1 = -Y;
17 subplot(2,1,1),plot(X,Y),xgrid(3),xtitle('warping in
       upper flange', 'x', 'w');
18 subplot(2,1,2),plot(X1,Y1),xgrid(3),xtitle('warping
      in lower flange', 'x', 'w');
19 datatipToggle();
20 printf("\nclick on the point to view its coordinate
      on plot");
```

Chapter 26

closed section beams

```
check Appendix AP 5 for dependency:
```

```
26_1data.sci
```

Scilab code Exa 26.1 Example 1

```
1 pathname=get_absolute_file_path('26_1.sce')
2 filename=pathname+filesep()+^{\prime}26_{-}1data.sci
3 exec(filename)
4 clear
5 L41=L23*cos(asin((L12-L34)/L23));
6 t41=t23;
7 C=[0; cos(asin((L12-L34)/L23));0;1];
8 S=[1; sin(asin((L12-L34)/L23));1;0];
9 P = [1 0 0 0 0 -t12*G 0;
10
      0 1 0 0 t23*G*cos(asin((L12-L34)/L23)) t23*G*sin(
         asin((L12-L34)/L23)) -t23*G*L12*cos(asin((L12-
         L34)/L23));
      0 0 1 0 0 t34*G - t34*G*L23*cos(asin((L12-L34)/L23)
11
         ));
12
      0 0 0 1 -t41*G 0 0;
13
      0 1 0 -1 0 0 0;
      L12 - L23 * sin(asin((L12-L34)/L23)) - L34 0 0 0 0;
14
```


Figure 26.1: Example 2

check Appendix AP 4 for dependency:

26_2data.sci

Scilab code Exa 26.2 Example 2

```
1 pathname=get_absolute_file_path('26_2.sce')
2 filename=pathname+filesep()+^{\prime}26_{-}2data.sci
3 exec(filename)
4 clear
5 du=0;
6 P = [1 \ 0 \ 0 \ G*t*R;
      0 1 -G*t 2*R*G*t;
      0 0 1.79 -R
8
      0 \ 0 \ -0.13 \ R];
10 X = [0;0; Load/(2*R*G*t); Load/((-0.5*%pi -6)*G*R*t)];
11 q=inv(P)*X;
12 printf("\nq12 = q34 = %f N/mm",q(1));
13 printf("\nq41= \%f N/mm",q(2));
14 function [q23] = f(phi)
       q23 = -R*G*t*q(4) -G*t*sin(phi)*q(3);
15
16 endfunction
17 phi=linspace(0,%pi,%pi*10);
18 q23=feval(phi,f);
19 plot2d(phi,q23);
20 xgrid(3), xtitle('q23 versus ',' ','q23');
21 datatipToggle();
     check Appendix AP 3 for dependency:
```

26_3data.sci

Scilab code Exa 26.3 Example 3

```
1 pathname=get_absolute_file_path('26-3.sce')
2 filename=pathname+filesep()+^{\prime}26_{-}3data.sci
```

```
3 exec(filename)
4 clear
5 Tr = T * L1/2;
6 mu = (8*G*t/(A*E*(b+a)))^0.5;
7 L=L1/2;
8 k1=((T*(b-a)*10^3)/(8*a*b*G*t));
9 k2=1/(mu*cosh(mu*L));
10 k3=((4*(b-a))/(a*b*(b+a)));
11 k4=(2*T*(10^3)/(a*b*G*t*(b+a)));
12 function[th]=f(z)
       w = (k1*((k2*sinh(mu*z))-z));
13
14
       F = ((k1*k3 +k4)*L*L*0.5 - (k1*k2*k3/mu)*cosh(mu*L)
       th = (k1*k2*k3/mu)*cosh(mu*z) - (k1*k3 + k4)*z*z*0.5
15
           + F;
16 endfunction
17 funcprot();
18 printf("\nangle of twist at mid-span : %f rad",f
      (0));
     check Appendix AP 2 for dependency:
     26_4data.sci
```

Scilab code Exa 26.4 Example 4

```
1 pathname=get_absolute_file_path('26_4.sce')
2 filename=pathname+filesep()+'26_4data.sci'
3 exec(filename)
4 B=((a*t2)/6)+((b*t1)/18)*3;
5 A=((b*t1)/18)*6;
6 L1=Load/4;
7 x=L1/a;
8 d=b/3;
```


Figure 26.2: Example 4

Chapter 27

Open section beams

```
check Appendix AP 1 for dependency: 27_2data.sci
```

Scilab code Exa 27.2 Example 2

```
1 pathname=get_absolute_file_path('27_2.sce')
2 filename=pathname+filesep()+'27_2data.sci'
3 exec(filename)
4 clear
5 TR=((t*a^3 *b^2)*(2*b +a))/(12*(b+ 2*a));
6 J=(1/3)*(2*a +b)*t^3;
7 mu = ((G*J)/(E*TR))^0.5;
8 Ar1=(-3/4)*(a*b/4);
9 Ar2=(1/4)*(a*b/4);
10 MT = P * 2 * Ar2;
11 X = -MT/(E*TR);
12 D=X/(mu*cosh(mu*L));
13 F=-D*\cosh(0)/mu;
14 function[theta]=th(z)//
       theta=((D/mu)*cosh(mu*z))+F;
15
```


Figure 27.1: Example 2

```
16 endfunction
17 z=linspace(0,L,10*L);
18 theta=feval(z,th);
19 plot2d(z,theta);
20 xgrid(3)
21 xtitle('angle of twist versus Z','Z','')
22 datatipToggle();
23 printf("\n (top): %f rad",th(L));
24 MT0=-E*TR*X/3;
25 A=(2*a +b)*t;
26 Sz1=(P/A)+(MTO/TR)*2*Ar1;// z1
27 Sz2=(P/A)+(MTO/TR)*2*Ar2;// z2
28 printf("\n z1= z4= %f N/mm^2",Sz1)
29 printf("\n z3= z2= %f N/mm^2",Sz2)
```

Appendix

Scilab code AP 1 Example 27.2 data

```
1  a=100; // cross section dimention, given, in mm
2  b=200; // cross section dimention, given, in mm
3  t=5; // thickness, given, in mm
4  L=3000; // length, given, in mm
5  E=200000; // given, in N/mm^2
6  G=0.36*200000; // given, in N/mm^2
7  P=-100*10^3; // load, given, in N
```

Scilab code AP 2 Example 26.4 data

```
1 t1=2;
2 t2=3;
3 a=100;
4 b=600;
5 L=2000; //length
6 Load=20*10^3; //given in N
7 GE=0.36; // G/E
```

Scilab code AP 3 Example 26.3 data

```
1 L1=5000; // given , in mm
2 A=800; // booms area , given , in mm^2
3 G=20000; // given , in N/mm^2
4 E=G/0.36; // given
5 T=20; // torque loading , given , in N.m/mm
6 t=1; // wall thickness , given , in mm
```

```
7 a=500;
8 b = 200;
  Scilab code AP 4 Example 26.2 data
1 R=200; //given, in mm
2 Load=20000; //given, in N
3 \text{ G=70000; } // \text{in N/mm}^2
4 t=2; // thickness in mm
  Scilab code AP 5 Example 26.1 data
1 L12=375; //given, in mm
2 L23=500; //given, in mm
3 L34=125; //given, in mm
4 t12=1.6; //given, in mm
5 t23=1; //given, in mm
6 t34=1.2; //given, in mm
7 \text{ x=100; } //\text{given, in mm}
8 Load=22000; //given, in mm
9 G=70000; //in N/mm^2
  Scilab code AP 6 Example 25.8 data
1 T=10*10^3; //given, in N.mm
2 G1=20000; //laminate shear modulus of flanges, given,
     in N/mm^2
3 G2=15000; //laminate shear modulus of web, given, in N/
     mm^2
4 a = 25;
5 b=50;
6 t1=1.5;
7 t2=2.5;
  Scilab code AP 7 Example 25.7 data
1 T=10*10^6; //Torque, given, in N.mm
```

```
2 1=100; //given, in mm
3 b=200; //given, in mm
4 t1=2; // given, in mm
5 t2=1; //given, in mm
6 Gw = 35000; //given, in N/mm^2
7 Gc=20000; //given, in N/mm^2
  Scilab code AP 8 Example 25.6 data
1 E23=20000; //laminate Young s modulus of 23, given,
     in N/mm^2
2 E12=45000; //laminate Young s modulus of 12, given,
     in N/mm^2
3 L12=250; // langth of 12, given, in mm
4 L23=300; // langth of 23, given, in mm
5 t12=2; //thickness of 12, given, in mm
6 t23=1.5; //thickness of 23, given, in mm
7 Sy = 2*10^3; //load
  Scilab code AP 9 Example 25.5 data
1 a=50; //cross section dimension, given, in mm
2 b=100; //cross section dimension, given, in mm
3 ta=1; //thickness, given, in mm
4 tb=2; //thickness, given, in mm
5 Ez1=50000; // Young s modulus for the flange, given,
     in N/mm^2
6 Ez2=15000; // Young s modulus for the web, given, in N
     /\text{mm}^2
 Mx = 1 * 10^6;
  Scilab code AP 10 Example 25.4 data
1 a=100;
2 b=150;
3 \text{ ta=1};
```

4 tb=2;

```
5 \text{ Ez1} = 60000;
6 Ez2=20000;
7 Load=40*10^3;
  Scilab code AP 11 Example 25.3 data
1 S1=60; //stress parallel to the x reference axis,
     given, in N/mm<sup>2</sup>
2 S2=40;//stress perpendicular to the x reference axis
      , given , in N/mm<sup>2</sup>
3 theta=45*(\%pi/180); //given
4 El=150000; //given, in N/mm^2
5 Et=90000; //given, in N/mm^2
6 Glt=5000; //given, in N/mm^2
7 vlt=0.3; //given
  Scilab code AP 12 Example 25.2 data
1 S1=50; //longitudnal direct stress, given, in N/mm<sup>2</sup>
2 S2=25; //transverse direct stress, given, in N/mm<sup>2</sup>
3 S3=40; //shear stress, given, in N/mm<sup>2</sup>
4 El=120000; //given, in N/mm^2
5 Et=80000; //given, in N/mm^2
6 Glt=5000; // given, in N/mm<sup>2</sup>
7 vlt=0.3; //given
  Scilab code AP 13 Example 25.1 data
1 Ee=5000; //modulus of epoxy, given, in N/mm<sup>2</sup>
2 Ec=200000; //modulus of carbon, given, in N/mm<sup>2</sup>
3 ve=0.2; //poission's ratio of epoxy
4 vc=0.3; // poission 's ratio of carbon
5 L=500; //langth of bar, given, in mm
6 L1=80; //langth of cross section, given, in mm
7 Be1=20; // width of first section of epoxy, given, in mm
```

8 Be2=20; // width of other section of epoxy, given, in mm

9 Bc=10; //width of section of carbon, given, in mm 10 Load=100*10^3; //axial tensile load, given, in N

```
Scilab code AP 14 Example 24.2 data
```

```
1 L11=300;
2 L12=320;
3 L1=12000;
4 L2=15000;
5 A1=50000;
6 A2=95000;
7 A21=49000;
8 A22=A2-A21;
9 theta=15*(%pi/180);
```

Scilab code AP 15 Example 24.1 data

```
1 GH=250; //given in mm
2 DK=200; //given in mm
3 KH=100; //given in mm
4 FG=250; //given in mm
5 EF=250; //given in mm
6 L1=4000; //given in N
7 L2=5000; //given in N
8 theta=60*(%pi/180); //given
```

Scilab code AP 16 Example 23.6 data

```
1 T=10*10^6; //given, in N.mm
2 L1=200; //Cross section dimention, given, in mm
3 B1=800; //Cross section dimention, given, in mm
4 L=1500; //in mm
```

Scilab code AP 17 Example 23.4 data

```
1 B=[600;900;600;600;900;600];//matrix having the
    values of B
2 t=[0.8;0.8;1;0.8;0.8;1;1];//thickness,in order
    -12,23,34,45,56,61,25;
```

```
3 L11=200; //leangth 1 of built in end, given in mm
4 L12=400; //leangth 2 of built in end, given in mm
5 W1=180; //breadth of built in end, given in mm
6 L21=150; //leangth 1 of open end, given in mm
7 L22=300; //leangth 2 of open end, given in mm
8 W2=80; //breadth of open end, given in mm
9 L=1.2*10<sup>3</sup>; //leangth of Beam, given in mm
10 Mx = 1.65 * 10^6; //given, in N.mm
11 Sy=10*10^3; //given, in N
12 G=27600; //in N/mm<sup>2</sup>
   Scilab code AP 18 Example 23.3 data
1 //in order 12,56,26,34,48,83,57,72,61,78
2 L=[1023;1023;1274;2200;250;150;280;180;330;1270];//
      length
3 t
      = [1.22; 1.22; 1.63; 2.03; 2.64; 2.64; 2.64; 2.64; 1.63; 1.22];
      //thickness
4 A = [265000; 213000; 413000]; // cell area
5 Gref = 27600;
6 G = [27600 * ones (9,1); 3*27600];
7 B=[2580;3880;3230;3230;3880;2580]; //boom areas
8 y = [165; 230; 200; -200; -230; -165];
9 Sy=86.8*10^3; // shear load
   Scilab code AP 19 Example 23.2 data
1 //matrices are in the order [120;12i
      ; 13; 24; 34; 35; 46; 56]
2 L=[1650;508;775;775;380;508;508;254]; // length, given
      in mm
3 t = [1.22; 2.03; 1.22; 1.22; 1.63; 0.92; 0.92; 0.92]; //
      thickness, given in mm
4 G = [24200; 27600; 24200; 24200; 27600; 20700; 20700; 20700];
      //given in N.mm<sup>2</sup>
5 Gref=27600; //given in N^m^2
6 A = [258000; 355000; 161000]; //cell area, given in mm^2
```

```
7 T=11.3*10^6; //torque, given in N.mm
```

Scilab code AP 20 Example 23.1 data

Scilab code AP 21 Example 22.2 data

```
1 A=100;//cross sectional area of a stringer
2 r=381;//radius of the fuselage, given in mm
3 t=0.8;//thickness, given in mm
4 Sy=100*10^3;//given in N
5 d=150;//distence of action of load from center, given in mm
```

Scilab code AP 22 Example 22.1 data

```
1 A=100;//cross sectional area of a stringer
2 r=381;//radius of the fuselage, given in mm
3 t=0.8;//thickness, given in mm
4 Mx=200*10^6;
```

Scilab code AP 23 Example 21.3 data

```
1 Sy=100*10^3; // given in N
2 Aco=900; // area of corner booms, given in mm^2
3 Ace=1200; // area of central booms, given in mm^2
4 tl=2; // thickness, given in mm
5 tb=3; // thickness, given in mm
6 L1=1.6*10^3; // leangth of built in end, given in mm
7 L2=0.8*10^3; // leangth of open end, given in mm
8 B1=0.8*10^3; // breadth of built in end, given in mm
9 B2=0.4*10^3; // breadth of open end, given in mm
```

```
10 Lc=2*10^3; // distence of the section from the built
    in end, given in mm
11 L=4*10^3; // leangth of Beam, given in mm
```

Scilab code AP 24 Example 21.2 data

```
1 Sy=100*10^3; // given in N
2 Aco=900; // area of corner booms, given in mm^2
3 Ace=1200; // area of central booms, given in mm^2
4 t1=2; // thickness, given in mm
5 tb=3; // thickness, given in mm
6 L1=1.6*10^3; // leangth of built in end, given in mm
7 L2=0.8*10^3; // leangth of open end, given in mm
8 B1=0.8*10^3; // breadth of built in end, given in mm
9 B2=0.4*10^3; // breadth of open end, given in mm
10 Lc=2*10^3; // distence of the section from the built in end, given in mm
11 L=4*10^3; // leangth of Beam, given in mm
```

Scilab code AP 25 Example 21.1 data

```
1 Sy=-20*10^3; // given in N
2 A=400; // given in mm^2
3 t=2; // thickness, given in mm
4 L=2*10^3; // leangth , given in mm
5 L1=1*10^3; // distence of section AA from the end
6 We=200; // width at the end, given in mm
7 W=400; // width at the joint, given in mm
```

Scilab code AP 26 Example 20.4 data

Scilab code AP 27 Example 20.3 data

```
1 Sy=4.8*10^3; // shear load, given, in N
2 A=300; // Boom area, given, in mm^2
3 L=200; // leangth, given, in mm
```

Scilab code AP 28 Example 20.2 data

```
1 Mx=100*10^6;
2 B=[640;600;600;600;620;640;640;850;640];//matrix
    having the values of B
3 D=[1200;1140;960;768;565;336;144;38;0];//matrix
    having the distence of all booms from boom 9
```

Scilab code AP 29 Example 20.1

```
1 L16=400; // given in mm
2 L34=200; // given in mm
3 L12=600; // given in mm
4 L23=600; // given in mm
5 t12=2; // given in mm
6 t23=1.5; // given in mm
7 t34=2; // given in mm
8 t25=2.5; // given in mm
9 t16=3; // given in mm
10 A=300; // given in mm²
```

Scilab code AP 30 Example 19.2 data

```
1 L12=900; //leangth of section 1-2(\text{outer}), given in mm

2 L34=300; //leangth of section 3-4, given in mm

3 L13=600; //leangth of section 1-3, given in mm

4 t13=2; //thickness of section 1-3, given in mm

5 t12=1.5; //thickness of section 1-2, given in mm

6 T=10*10^6; //given in N.mm

7 A=20000; //given in N.mm^2

8 G=25000; //given in N.mm^2
```

Scilab code AP 31 Example 19.1 data

```
1 L12=100; // leangth of 1-2, given in mm
2 L45=200; // leangth of 4-5(3-4-5-6 is a square), given in mm
3 t=2; // thickness, given in mm
4 Sy=100*10^3; // in N
5 G=25000; // given in N/mm^2
```

Scilab code AP 32 Example 18.3 data

```
1  a=25; //leangth along x-axis, given in mm
2  b=50; //leangth along y-axis, given in mm
3  tx=2.5; //in mm
4  ty=1.5; //in mm
5  T=10*10^3; //in N.mm
6  G=25000; //given in N/mm^2
```

Scilab code AP 33 Example 18.2 data

```
1 a=200; //in mm
2 b=150; //in mm
3 ta=2.5; //in mm
4 tb=2; //in mm
5 T=1000; //in N.mm
6 G=25000; // given in N/mm^2
```

Scilab code AP 34 Example 18.1 data

```
1  d=200; //given , in mm
2  L=2000; //given ,2m in mm
3  T=30*10^6; //given , in N.mm
4  Tmax=15*10^6; //given
5  Smax=200; //maximum allowable shear stress ,given ,in N /mm^2
```

```
6 angle=2*%pi/180;//maximum angle of twist, given, in
      degrees
7 G=25000; //given, in N/mm^2
  Scilab code AP 35 Example 17.3 data
1 a=10; //in mm
  Scilab code AP 36 Example 17.2 data
1 h=50; // in mm
2 t=1.5; //in mm
3 b=25; //in mm
  Scilab code AP 37 Example 17.1 data
1 h=100; //in mm
2 t=2; //in mm
3 Sy=200; // \text{in N/mm}^2
  Scilab code AP 38 Example 16.9 data
1 W=10; //load in N/m
2 a=5; //L/4, in m
3 EI=70000; // flexural rigidity, in N.m<sup>2</sup>
  Scilab code AP 39 Example 16.8 data
1 W=5; //load in N/m
2 L=20; //leanth in m
3 EI=70000;//flexural rigidity,in N.m^2
  Scilab code AP 40 Example 16.7 data
1 W=5; //load in N/m
2 L=20; //leanth in m
3 EI=70000; // flexural rigidity, in N.m<sup>2</sup>
```

Scilab code AP 41 Example 16.6 data

```
1 W=5; //load in N/m
2 L=20; //leanth in m
3 EI=70000; //flexural rigidity ,in N.m^2
```

Scilab code AP 42 Example 16.5 data

```
1 W=10; //load in N
2 L=20; //leanth in m
3 EI=70000; // flexural rigidity , in N.m^2
```

Scilab code AP 43 Example 16.4 data

```
1 a=120; //leangth of cross section along x-axis, given
                in mm
2 a1=40; //leangth AE
3 b=88; //leangth of cross section along y-axis, given
                in mm
4 t=8; //thickness, given in mm
5 Mx=1500*10^3; //given in N.mm
```

Scilab code AP 44 Example 16.3 data

Scilab code AP 45 Example 16.2 data

```
1 a=200; //leangth of cross section along x-axis, given
     in mm
2 b=300;//leangth of cross section along y-axis, given
     in mm
3 tx=25;//thickness along x-axis, given in mm
4 ty=20; //thickness along y-axis, given in mm
5 M=100*10^6; //bending moment, given in N.mm
  Scilab code AP 46 Example 16.16 data
1 a=100; //in mm
2 t=2; //in mm
3 E=70000; //N/mm^2
4 T0=10; //in K
5 alpha=0.01; /mm/k
  Scilab code AP 47 Example 16.15 data
1 a=100; //in mm
2 t=2; //in mm
3 E=70000; //N/mm^2
4 T0=10; //in K
5 alpha=0.01; / \frac{\text{mm}}{\text{k}}
  Scilab code AP 48 Example 16.14 data
1 h=100; //in mm
2 t=2; //in mm
3 Mx = 1000; //N.mm
  Scilab code AP 49 Example 16.13 data
1 b=100; //in mm
2 \text{ tf=2;}//\text{in mm}
3 \text{ tw} = 2.5; // \text{in mm}
4 d=150; //in mm
```

Scilab code AP 50 Example 16.12 data

```
1 Ixx=1.937D+08;
2 \text{ Iyy} = 27005208;
3 \text{ Ixy} = 562584521;
4 E = 20000;
5 L=20;
6 W = 100000
  Scilab code AP 51 Example 16.11 data
1 M0=10; //load in N/m
2 L=20; //L in m
3 b=15; //b in m
4 EI=70000; // flexural rigidity, in N.m<sup>2</sup>
  Scilab code AP 52 Example 16.10 data
1 W=10; //load in N/m
2 L=20; //L in m
3 EI=70000; // flexural rigidity, in N.m<sup>2</sup>
  Scilab code AP 53 Example 16.1 data
1 a=200; //leangth of cross section along x-axis, given
```

2 b=300;//leangth of cross section along y-axis, given

Scilab code AP 54 Example 15.1 data

in mm

```
1 K=1708; // fracture toughness, given in N/mm^2 2 S=175; // given in N/mm^2 3 alpha=1; /// given
```

3 tx=25;//thickness along x-axis, given in mm 4 ty=20;//thickness along y-axis, given in mm 5 M=-100*10^6;//bending moment, given in N.mm

```
4 C=40/10^15; //rete of crack growth, given in mm/cycle
5 n=4; //given
6 ai=0.2; //initial leangth of crack, given in mm
   Scilab code AP 55 Example 14.3 dqta
1 W=8000; //given in N
2 S=14.5; //wing area, given in m^2
3 c=1.35; //mean chord, given in m
4 n=4.5;
5 v=60; //speed, given in m/s
6 rho=1.223; // air density, given in kg/m<sup>3</sup>
7 alpha1=13.75; //from fig. 14.8(a), in degree
8 Cmcg1=0.075; //Cm, cg
                        from fig. 14.8(a)
9 alpha2=13.3; //given in degree
10 Cmcg2=0.073; //given
   Scilab code AP 56 Example 14.2 data
1 W=250; // given in kN
2 Rh=400; // horizontal reaction, given in kN
3 Rv=1200; // vertical reaction, given in kN
4 Icg=5.65*10^8; //given in N.s^2
5 Sh=1; // horizontal distence of CG from main wheels,
      given in m
6 Sv=2.5; // vertical distence of CG from main wheels,
      given in m
7 v0=3.7; //initial vertical velocity, given in m/s
8 g=9.81; //in m/s^2;
   Scilab code AP 57 Example 14.1 data
1 W=45; //given in kN
2 Wa=4.5; //wight of aircraft aft, given in kN
```

3 v0=25; //given in m/s 4 g=9.81; //in m/s^2;

5 a=3*g;//given

Scilab code AP 58 Example 12.2 data

```
1 AD=25; // distence between point A and D, given in mm
2 DC=20; // distence between point D and centroid, given in mm
3 DG=25; // distence between point G and D, given in mm
4 CF=25; // distence between point F and centroid, given in mm
5 Load=5000; // load, given (5kN in N)
6 CL=75; // distence between the centroid and load
```

Scilab code AP 59 Example 12.1 data

```
1 t=2.5; //skin thickness, given in mm
2 St=1.2; //straps thickness, given in mm
3 d=4; //rivets diameter, given in mm
4 Lt=125; //limit tensile stress
5 Ls=120; //limit shear stress
```

Scilab code AP 60 Example 10.6 data

```
1 m=1; //in Kg
2 EI=70000*2000; //given in N.mm^2
3 l=2000; //in mm
```

Scilab code AP 61 Example 10.5 data

```
1 EI=70000*2000; //given in N.mm<sup>2</sup>
2 L=2000; //in mm
3 rho=1; //in Kg/mm<sup>3</sup>
4 A=1; //in mm<sup>2</sup>
```

Scilab code AP 62 Example 10.4 data

```
1 m=1;//in Kg
2 EI=70000*2000;//given in N.mm^2
3 L=2000;//in mm
```

```
4 rho=1; //in Kg/mm<sup>3</sup>
5 \text{ A=1; } // \text{in } \text{mm}^2
   Scilab code AP 63 Example 10.2 data
1 m=1; //in Kg
2 EI=70000*2000; //given in N.mm<sup>2</sup>
3 1=2000; //in mm
   Scilab code AP 64 Example 10.1 data
1 \text{ m=1}; //\text{in Kg}
2 EI=70000*2000; //given in N.mm^2
3 1 = 2000; //in mm
   Scilab code AP 65 Example 9.1 data
1 Af = 350; //cross sectional area of flanges, given in mm
2 As=300; // Cross sectional area of stiffners, given in
      mm^2
3 ESM=750; // elastic section modulus, given in mm<sup>3</sup>
4 t=2; //thickness of web, given in mm
5 MA=2000; //2nd moment of area of a stiffner, given in
      mm^4
6 E=70000; //given in N/mm^2
7 I=2000; //moment of inertia
8 d=400;//given in mm
9 b=300; // given in mm
10 W=5000; //given (5 KN in N)
11 z=1200; //given in mm
   Scilab code AP 66 Example 8.4 data
1 L=1000; //given (1m in mm)
2 a2=100; // width of cross section (along x axis), given
      in mm
```

```
3 b=100; //leanght of cross section (along y axis), given
      in mm
4 t=2; // thickness
5 E=70000; //given in N/mm^2
6 G=30000; //given in N/mm<sup>2</sup>
  Scilab code AP 67 Example 8.3 data
1 L=2000; //given (2m in mm)
2 a=37.5; // width of cross section (along x axis), given
     in mm
3 b=75; //leanght of cross section (along y axis), given
     in mm
4 t=2.5; // thickness
5 E=75000; //given in N/mm^2
6 G=21000; //given in N/mm^2
  Scilab code AP 68 Example 8.2 data
1 L=20; //in mm
2 P=100; // in N
3 e=0.1; //in m
4 E=200000; //in N/^2
5 I=0.5// moment of Inertia of cross section, in m<sup>4</sup>
  Scilab code AP 69 Example 7.4 data
1 a=100; //in mm
2 b=80; //in mm
3 t=2; //in mm
4 E=70000; //in N/mm^2
5 v = 0.3;
6 q0=10; // \text{in N/mm}^2
```

Scilab code AP 70 Example 7.3 data

1 t=2; //in mm

```
2 E=70000; //in N/mm^2
3 v = 0.3;
4 a=100; //in mm
5 b=100; //in mm
6 q0=10; // \text{in N/mm}^2
7 Nx=10; //in n/mm
  Scilab code AP 71 Example 7.1 data
1 t=2; //in mm
2 E=70000; //in N/mm^2
3 v = 0.3;
4 = 100; //in mm
5 b=100; //in mm
6 q0=10; // \text{in N/mm}^2
  Scilab code AP 72 Example 6.4 data
1 P1 = [-2; -1];
2 P2 = [2; -1];
3 P3 = [2;1];
4 P4 = [-2;1];
5 u = [0.001; 0.003; -0.003; 0]; //given in m
6 v = [-0.004; -0.002; 0.001; 0.001]; //given in m
7 E=200000; //given in N/mm^2
8 V=0.3; // poission 's ratio, given
  Scilab code AP 73 Example 6.2 data
1 L=10; //in m
2 W=1000; //FORCE ON POINT 2
3 M=100; //MOMENT ON POINT 2
4 EI=20000;
  Scilab code AP 74 Example 6.1 data
```

1 L12=10; // in m

```
2 L13=10; //in m
3 AE=200000; //in N
4 FX2=0; //FORCE ON POINT 2 IN X DIRECTION
5 FY2=-10; //-W, FORCE ON POINT 2 IN Y DIRECTION
  Scilab code AP 75 Example 5.9 data
1 L=1; //000; //langth, given, in mm
2 P=10; //*10^3; //load, given, in N
  Scilab code AP 76 Example 5.8 data
1 L=1000; // langth in mm
2 P=1; //Load in N
  Scilab code AP 77 Example 5.7 data
1 L=2000; //langth.in mm
2 EI=2*10^10;
3 \text{ GJ} = 5 * 10^{10};
4 W = 0.1; //in N/mm
  Scilab code AP 78 Example 5.6 data
1 r = 1000; //in mm
2 \text{ MO=1000; } // \text{in N.mm}
  Scilab code AP 79 Example 5.5 data
1 L=2000; //langth.in mm
2 Ab = 200; //in mm^2
3 A=180; // area of bar, in mm<sup>2</sup>
4 P=1000; //in N
5 theta=60*(\%pi/180);
6 E=200000; //in N/mm^2
7 I = 100000; //in mm^4
```

Scilab code AP 80 Example 5.4 data

```
1 clear all
2 AB=4000; //langth AB, given, in mm
3 BC=3000; //langth BC, given, in mm
4 A=200; //area of bar, given, in mm<sup>2</sup>
5 delT=30; //change in temprature, given, in celcius;
6 alpha=7/10<sup>6</sup>;//coefficient of linear expansion, given
      , in 1/celcius
 E=200000; //given in N/mm<sup>2</sup>
  Scilab code AP 81 Example 5.3 data
1 AC=30; //C.S. area of AC, given, in mm<sup>2</sup>
2 A=20; //C.S. areaa of other elements, given, in mm<sup>2</sup>
3 L=800; //langth, given in mm
4 E=200000; //given in N/mm^2
5 theta=60*(\%pi/180);
6 Load=100; //given, in N
  Scilab code AP 82 Example 5.2 data
1 clear all
2 \text{ w=5}; //\text{in N/m}
3 L=20; //in m
4 EI=70000; //in N.m^2
  Scilab code AP 83 Example 5.12 data
1 D = [0; 100; 200; 300; 400; 500; 600; 700; 800];
V = [0; -0.3; -1.4; -2.5; -1.9; 0; 2.3; 4.8; 10.6];
3 L0 = 40;
4 L1 = 30;
5 L2=10;
```

Scilab code AP 84 Example 5.11 data

```
1 EI=70000; //in N.mm^2
2 W=10; //in N
3 L=20; //in m
  Scilab code AP 85 Example 5.10 data
1 a=4000; //langth, given, in mm
2 b=3000; //breadth, given, in mm
3 T=30; //change in temprature, given, in degrees
4 A = 200; //given, in mm^2
5 alpha=7/10^6; //given, in 1/C;
6 E=200000; //given, in N/mm^2
  Scilab code AP 86 Example 5.1 data
1 CS=1800; //cross-section area, given in mm<sup>2</sup>
2 E=200000; //given in N/mm^2
3 h=4; //height, given in m
4 AB=4; // given in m
5 BC=4; // given in m
6 CD=4; // given in m
7 Load1=40*10^3; //load at point E, given in N
8 Load2=100*10^3; //load at point C, given in N
  Scilab code AP 87 Example 4.6 data
1 CS=1800; //cross-section area, given in mm<sup>2</sup>
2 E=200000; //given in N/mm^2
3 h=4; //height, given in m
4 AB=4; // given in m
5 BC=4; // given in m
6 CD=4; // given in m
7 Load1=40*10^3; //load at point E, given in N
8 Load2=100*10^3; //load at point C, given in N
```

Scilab code AP 88 Example 4.5 data

```
1 W = 100; //in N
2 L=20; //in m
3 E=200000; //in N/mm^2
4 I=0.5// moment of Inertia of cross section, in m^4
  Scilab code AP 89 Example 4.4 data
1 w=10; //intensity of distributed load, in N/m
2 L=10; //leangth in m
3 E=200000; //in N/mm^2
4 I=0.5; // moment of Inertia of cross section, in m<sup>4</sup>
  Scilab code AP 90 Example 4.3 data
1 CD=4; // given in m
2 BD=3; //given in m
3 Loadc=30; //given in KN
  Scilab code AP 91 Example 4.2 data
1 W=90; //in Newton
2 a=10; //in m
3 L=15; //(a+b), in m
  Scilab code AP 92 Example 4.1 data
1 W = 100; //in N
2 L=20; //in m
3 = 14; //in m
  Scilab code AP 93 Example 3.2 data
1 a=4; //major axis, in mm
2 b=3; //minor axis of bar, in mm
3 T=100000; //applied torque, in N.mm
4 G=76923; //shear modulus, in N/mm^2
```

Scilab code AP 94 Example 3.1 data

```
1 R=16; // radius of bar, in mm
2 T=100000; //applied torque, in N.mm
3 G=76923; //shear modulus, in N/mm^2
  Scilab code AP 95 Example 1.7 data
1 d=50; //given (in mm)
2 Ea = 1000/10^6;
3 Eb = -200/10^6;
4 Ec=-300/10^6;
5 v = 0.3;
6 E=70000; //given (in N/mm^2)
  Scilab code AP 96 Example 1.5 data
1 Sx=60; // x , given (in N/mm<sup>2</sup>)
2 Sy=-40; //- y , given (in N/mm<sup>2</sup>)
3 Txy=50; // xy , given (in N/mm^2)
4 E=200000; //given(in N/mm^2)
5 v = 0.3;
  Scilab code AP 97 Example 1.4 data
1 Sx=83; // x , given (in N/mm<sup>2</sup>)
2 Sy=65;// y , given (in N/mm^2)
3 E=200000; // given (in N/mm^2)
4 v = 0.3;
  Scilab code AP 98 Example 1.3 data
1 Sx=160; // x , tension stress , given in N/mm^2
```

Scilab code AP 99 Example 1.2 data

3 lLoad=200; //limit load, given in N/mm²

2 Sy=-120; // y , compression stress , given in N/mm²

```
1  t=1.5; // given (in mm)
2  d=60; // given (in mm)
3  T=1200*10^3; // in N.mm, given (in N.m)
4  Load=50*10^3; // Compressive load (N)
5  angle= %pi/3; // angle of plane with axis(radian)
6  theta=%pi/2 - angle;

Scilab code AP 100 Example 1.1 data

1  d=2000; // given (2m in mm)
2  t=20; // given (in mm)
3  p=1.5; // pressure inside the vessel (N/mm^2)
4  Load=2500*10^3; // axial tensile load (N)
```

5 angle= %pi/3; //angle of plane with axis(radian)

6 theta=%pi/2 -angle;