Sequences and Recurrence Relations 1

Definitions:

An (infinite) ordered list is called a second. Individual items in such a list are called teyms of the sequence.

An equation relating a general term to terms that precede it is called a Mcurrence relation the assignment of values for a set of terms in the sequence, usually the beginning terms, is called the set of initial conditions

Note:

When describing sequences we often use notation of the form s_n . The n subscript specifies which term we are talking about whereas s_n refers to the value of the nth term.

Suppose sequence s is $\{2, 4, 6, 8, 10, ...\}$. Determine s_1, s_2 , and s_6 . $\begin{cases}
5, & s_2 \\
& s_3
\end{cases} = 12$ $\begin{cases}
f(n) = 12 \\
f(n) = 12
\end{cases}$

Example: The sequence of Fibonacci numbers (Fibonacci sequence) is defined by the recurrence relation $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$ and $F_1 = F_2 = 1$. What are the first 7 terms of the Fibonacci

 $F_1 = 1$ F₂ = 1 $F_3 = F_2 + F_3 = 2$ $F_5 = F_4 + F_3 = 5$ $F_4 = F_3 + F_2 = 3$ $F_6 = F_5 + F_4 = 8$

Example: Suppose the recurrence relation $s_n = s_{n-1} + s_{n-2}$ is maintained but with initial conditions $s_1 = 1$ and $s_2 = 2$. What are the first $s_1 = 1$ and $s_2 = 2$. conditions $\vec{s}_1 = 1$ and $s_2 = 2$. What are the first 7 terms of this sequence?

DONE

n > 0 or $n \ge 2$

Example: Suppose the recurrence relation $s_n = s_{n-1} + s_{n-2}$ is maintained but with initial conditions $s_1 = 1$ and $s_2 = 3$. What are the first 7 terms of this sequence?

i) ONE

Example: Suppose the recurrence relation is $t_n = 2t_{n-1}$ with initial condition $t_1 = 3$. What are the first 6 terms of this sequence?

ts = 2 t3-1 = 2 t2 = 12 ts = 2 l5-1 = 2t4 = 42 =6 &4=2t4=2t3=24 tc=2t5= 2.48

- **Example:** Suppose the recurrence relation is $t_n = 4t_{n-2} 3t_{n-1}$ with initial conditions $t_0 = 3$ and $t_1 = 2$. What are the first 7 terms of this sequence?
- 728
- $\frac{1}{2} = 4 \frac{1}{2} 3 \frac{1}{2} 3 = 4 \frac{1}{2} 3 \frac{1}{2} \\
 + 3 = 4 \frac{1}{2} 2 3 \frac{1}{2} 3 = 4 \frac{1}{2} 3 \frac{1}{2} \\
 + 3 = 4 \frac{1}{2} 2 3 \frac{1}{2} 3 = 4 \frac{1}{2} 3 \frac{1}{2} 3 = 4 \frac{1}{2} = 4 \frac{1}{2} = 4 \frac{1}{2} = 3 = 4 \frac{1}{2} = 4 \frac{1}{2} = 3 = 4 \frac{1}{2}$
- Example: Annual student parking permits at NIU are \$92 this academic year Fall 2023- Spring Suppose parking permits increase \$2 per year. Write a recurrence relation and initial conditions for p_n , the parking permit cost n years after the Fall 23- Spring 2 academic year.

Example: Factorials, which are defined as $n! = n(n-1)(n-2)\cdots(2)(1)$ for n a positive integer and 0! = 1 can be defined recursively. Write a recurrence relation and initial condition to characterize factorials on the nonnegative integers.

Example: Write a recurrence relation requiring at least three initial conditions to be given. Determine the first 7 terms for your sequence.