AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-10 (canceled)

Claim 11 (currently amended): A 1,3-dimethylbutylcarboxanilide of formula (I)

in which

CS8779

 R^1 represents hydrogen, C₁-C₈-alkvl, C₁-C₆-alkvlsulphinyl, C₁-C₆-alkvlsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; represents (C1-C6-haloalkyl)carbonyl, (C1-C6-haloalkoxy)carbonyl, (halo-C1-C4-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R³, -CONR⁴R⁵, or -CH₂NR⁶R⁷.

 R^2 represents hydrogen, fluorine, methyl, or trifluoromethyl,

 R^3 represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms.

R⁴ and R⁵ independently of one another each represent hydrogen, C₁-C₈-alkyl. C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo--2C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R4 and R5 together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen. sulphur, and NR8.

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR8.

 R^8 represents hydrogen or C1-C6-alkyl, and represents a radical of formula (A1)

in which

Α

 R^9 represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₃-C₆cycloalkyl; represents C1-C4-haloalkyl, C1-C4-haloalkoxy, or C1-C4haloalkylthio having in each case 1 to 5 halogen atoms; or represents aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

 R^{10} represents hydrogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, or C₁-C₄-haloalkyl having 1 to 5 halogen atoms, and

 R^{11} represents hydrogen, C₁-C₄-alkyl, hydroxyl-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, or C₁-C₄-alkoxy-C₁-C₄-

- 3 -CS8779

alkyl; or represents C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkylthio- C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkoxy- C_1 - C_4 -alkyl having in each case 1 to 5 halogen atoms: or represents phenyl.

with the provisos proviso that

- (a) R⁹-does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl if R¹⁰-represents hydrogen, R¹¹-represents methyl, and R¹-and R² simultaneously represent hydrogen, and
- (b) R⁹ does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine or bromine if R¹⁰ represents hydrogen, trifluoromethyl, or methyl, R¹¹ represents methyl, trifluoromethyl, methoxymethyl or trifluoromethoxymethyl, and R¹ represents (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, or (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₁-C₆-haloalkoxy)carbonyl, (C₁-C₆-haloalkoxy-C₁-C₄-alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms.

Claim 12 (currently amended): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which

- R¹ represents hydrogen, C₁-C₀-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; represents halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, (C₁-C₃-alkyl)carbonyl, or (C₃-C₆-halocycloalkyl)carbonyl, having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R³, -CONR⁴R⁵, or -CH₃NR⁶R⁷.
- R² represents hydrogen, fluorine, methyl, or trifluoromethyl,

R³ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,

 R^4 and R^5 independently of one another represent hydrogen, $C_1\text{-}C_0\text{-}alkyl,\ C_1\text{-}C_3\text{-}alkoxy-}C_1\text{-}C_3\text{-}alkyl,\ or\ C_3\text{-}C_0\text{-}cycloalkyl;\ or\ represent\ C_1\text{-}C_4\text{-}haloalkyl,\ halo-} C_1\text{-}C_3\text{-}alkoxy-}C_1\text{-}C_3\text{-}alkyl,\ or\ C_3\text{-}C_0\text{-}halocycloalkyl\ having\ in\ each\ case\ 1\ to\ 9\ fluorine,\ chlorine,\ and/or\ bromine\ atoms;\ or\ R^4\ and\ R^5\ together\ with\ the\ nitrogen\ atom\ to\ which\ they\ are\ attached\ form\ a\ saturated\ heterocycle\ having\ 5\ or\ 6\ ring\ atoms\ that\ is\ optionally\ mono-\ to\ tetrasubstituted\ by\ identical\ or\ different\ substituents\ selected\ from\ the\ group\ consisting\ of\ halogen\ and\ C_1\text{-}C_4\text{-}alkyl,\ where\ the\ heterocycle\ optionally\ contains\ 1\ or\ 2\ further\ non-adjacent\ heteroatoms\ selected\ from\ the\ group\ consisting\ of\ oxygen,\ sulphur,\ and\ NR^8,$

R⁶ and R⁷ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶ and R⁷ together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR⁸,

R⁸ represents hydrogen or C₁-C₄-alkyl, and A represents a radical of formula (A1)

in which

R⁹ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, or cyclopropyl; represents C₁-C₂-haloalkyl or C₁-C₂-

- haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms; or represents trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl, or aminocarbonylethyl,
- R¹⁰ represents hydrogen, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, or C₁-C₂-haloalkyl having 1 to 5 halogen atoms, and
- R¹¹ represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl,

with the provisos proviso that

- (a) R⁶-does not represent trifluoromethyl, difluoromethyl, methyl, or ethyl-if R¹⁰-represents hydrogen, R¹¹-represents methyl-and R¹-and R² simultaneously represent hydrogen, and
- (b) R⁹ does not represent methyl, difluorochloromethyl, trifluoromethyl, difluoromethyl, chlorine, or bromine if R¹⁰ represents hydrogen, trifluoromethyl, or methyl, R¹¹ represents methyl, trifluoromethyl, methoxymethyl, or trifluoromethoxymethyl, and R¹ represents (C₁-C₆-alkyl)carbonyl, (C₁-C₆-alkoxy)carbonyl, or (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, or (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms.

Claim 13 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents formyl.

Claim 14 (withdrawn): A 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 in which R¹ represents -C(=O)C(=O)R³, where R³ is as defined in Claim 11.

Claims 15-16 (canceled)

Claim 17 (previously presented): A composition for controlling unwanted microorganisms comprising one or more 1,3-dimethylbutylcarboxanilides of formula (I) according to Claim 11 and one or more extenders and/or surfactants.

CS8779 - 6 -

Claim 18 (withdrawn): A method for controlling unwanted microorganisms comprising applying an effective amount of a 1,3-dimethylbutylcarboxanilide of formula (I) according to Claim 11 to the microorganisms and/or their habitat.

Claim 19 (canceled)

CS8779 - 7 -