R을 이용한 통계 기초와 데이터 분석

남현진

한성대학교

2020

회귀분석

Definition

회귀분석이란 종속변수와 독립변수들간의 관련성을 설명할 수 있는 수학적 모델이다.

Important theorem

- 종속변수: 독립 변수에 의해 영향을 받는 변수
- 독립변수: 종속 변수에 영향을 주는 변수

Examples

- 종속변수: 아들의 키
- 독립변수: 아들의 몸무게, 나이, 아버지의 키, 아버지의 몸무게

회귀분석

Important theorem

회귀모형은 다음과 같은 측면에서 사용된다.

- 관측된 두 변수의 값을 이용하여 둘 간의 관계성을 확인한다.
- 확인된 관계성을 이용하여 독립변수를 가지고 종속변수 값을 예측한다.

Examples

어떤 회사가 여러가지 매체에 광고를 보냈다고 한다. 이 때 매채별 광고 지출과 총 판매량간의 관계를 알아보고자 회귀분석을 사용할 수 있다. 회귀 분석을 사용하면 다음과 같은 것들을 확인할 수 있다.

- 광고 지출이 판매량과의 관계성
- 어떠한 매체(소셜미디어, 지하철, TV)가 가장 효과적이었는지. 각 매체에 대한 가중치
- 미래에 광고를 다시 보낸다고 할 때, 각 매체별 광고 지출에 따른 판매량의 예측치

선형 회귀

선형 회귀

Definition

선형 화귀는 i번째 관측값을 뜻하는 변수들이 $(X_{i1}, X_{i2}, X_{i3}, ..., X_{ip}, Y_i)$ 형태로 주어졌을 때 종속변수 Y_i 의 p개의 독립변수 $X_{i1}, X_{i2}, X_{i3}, ..., X_{ip}$ 를 다음과 같은 선형 식으로 표현한다.

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_p X_{ip} + \epsilon_i$$

Important theorem

- $\beta_0, \beta_1, \beta_2, ..., \beta_p$: 회귀 모델의 계수
- €1: 오차(error)

선형 회귀

Important theorem

선형 회귀 모형에는 4가지 기본 가정이 있다.

- 선형성: 예측하고자 하는 종속변수 y와 독립변수 x간에 선형성을 만족해야 한다.
- 독립성: 독립변수 X;간의 상관관계가 없어야한다.
- 등분산성: 잔차의 분산은 모든 종속변수에 상관 없이 등분산이다.
- 정규성: 잔차가 정규분포를 만족해야 한다.

단순 선형 회귀

Definition

단순 선형 회귀는 종속변수를 하나의 독립변수와의 선형관계로 설명하는 회귀모형이다. 두개 이상의 독립 변수로 설명하는 경우에는 다중회귀라도고 부른다. 단순 선형 회귀 모델은 다음과 같다.

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

단순 선형 회귀

최소 제곱법(Least Square Error)

Definition

선형 회귀의 회귀계수는 최소 제곱법(최소 자승법)으로 추정한다. 최소 제곱법이란 제곱의 합 $\Sigma \epsilon^2$ 이 최소가 되도록 값을 정하는 방법으로 선형회귀에서는 오차의 제곱 합이 최소가 되도록 회귀계수를 정한다. 예를 들어 단순 선형 회귀의 경우 다음을 최소로 만든다.

$$\Sigma(Y_i-(\hat{Y}_i))^2$$

Important theorem

최소 제곱법에 따르면 단순 선형 회귀의 계수 β_1,β_0 는 다음과 같이 정의할 수 있다.

- $\hat{\beta}_1 = \frac{\sum X_i (Y_i \bar{Y})}{\sum X_i (X_i \bar{X})}$
- $\bullet \ \hat{\beta_0} = \bar{Y} \beta_1 \bar{X}$

최소 제곱법(Least Square Error)

$$\hat{Y} = \beta_0 + \beta_1 X$$

$$\epsilon_i = Y_i - \hat{Y}_i$$

$$\Sigma \epsilon_i^2 = \Sigma (Y_i - \hat{Y})^2$$

$$= \Sigma (Y_i - (\beta_0 + \beta_1 X))^2$$

$$\frac{\partial \Sigma \epsilon^2}{\partial \beta_0} = 2N\beta_0 + 2\beta_1 \Sigma X_i - 2\Sigma Y_i$$

$$\beta_0 = \frac{\Sigma Y_i - \beta_1 \Sigma X_i}{N}$$

$$= \bar{Y} - \beta_1 \bar{X}$$

$$\frac{\partial \Sigma e^2}{\partial \beta_1} = 2\beta_1 \Sigma X_i^2 + 2\beta_0 \Sigma X_i - 2\Sigma Y_i X_i$$

$$= 2\beta_1 \Sigma X_i^2 + 2(\bar{Y} - \beta_1 \bar{X}) \Sigma X_i - 2\Sigma Y_i X_i$$

$$\beta_1 = \frac{\Sigma X_i (Y_i - \bar{Y})}{\Sigma X_i (X_i - \bar{X})}$$

다중 선형 회귀

Definition

다중 회귀는 하나 이상의 독립 변수가 사용된 선형 회귀이다. 즉 종속변수가 p개의 독립 변수로 설명되는 다중 선형 회귀 모델은 다음과 같다.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_p X_{pi} + \epsilon_i$$

$$Y = X\beta + \epsilon$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad X = \begin{pmatrix} \mathbf{x}_1^\mathsf{T} \\ \mathbf{x}_2^\mathsf{T} \\ \vdots \\ \mathbf{x}_n^\mathsf{T} \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix}, \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Important theorem

최소 제곱법에 따르면 β 는 다음과 같이 정의할 수 있다.

$$\hat{\beta} = (X^t X)^{-1} X^t Y$$

선형 회귀의 모형 검정

- 회귀 계수의 T 검정
- 회귀 모델의 F 검정
- 결정계수 R²

회귀 계수의 T 검정

Definition

T 검정의 경우 각 독립변수가 개별적으로 얼마나 유의한지를 판단하는 것이다. 이 때사용되는 귀무가설은 '계수가 0 이다'이고 대립가설은 '계수가 0이 아니다'이다. 만약 해당회귀계수의 값이 유의하지 않는다고 나온다면 그 회귀계수는 사실상 0으로 간주해도 된다.

Assumptions

- 귀무가설 H0: $\beta_i = 0$
- 대립가설 H1: $\beta_i \neq 0$

회귀 모델의 F 검정

Definition

F 검정은 T 검정과 다항 회귀식 전체에 대한 유의성을 검정한다. F 통계량은 MSR/MSE의 비율로 모델이 통계적으로 얼마나 의미가 있는지를 설명한다. 즉 모든 회귀계수가 0 이라는 귀무가설의 기각 여부를 검정하는 것인데 귀무가설이 기각되지 않고 채택된다면 해당 회귀모델은 의미가 없게 된다.

Assumptions

- 귀무가설 H0: $\beta_0 = \beta_1 = ... = \beta_p = 0$
- 대립가설 H1: $\beta_0, \beta_1, ..., \beta_p$ 중 적어도 하나는 0이 아니다

결정계수 R²

Definition

회귀모델의 검증력은 R^2 로 볼 수 있다. R^2 는 전체 변동 중 설명된 변동의 비율로 범위는 $0 \le R^2 \le 1$ 을 만족하며, 1에 가까울수록 회귀 모델이 데이터를 더 잘 설명한다고 말한다.

Important theorem

- $SST = \Sigma (Y_i \bar{Y})^2$
- $SSR = \Sigma (\hat{Y}_i \bar{Y})^2$
- $R^2 = \frac{SST}{SSR}$

결정계수 R²

SST는 관측된 Y_i 값들이 평균 \hat{Y} 로부터 얼마나 떨어져 있는지를 뜻하며, SSR은 추정치 \hat{Y}_i 가 평균 \bar{Y} 로부터 얼마나 떨여져 있는지를 뜻한다. 따라서 이 둘의 비율인 R^2 은 Y_i 의 총 변동에 대비해 회귀 모델이 얼마나 그 변동을 설명하는지를 알려준다.

변수 선택

Definition

다중 회귀 모형에서 설명 변수를 선택하는 방법은 F 통계량이나 AIC을 사용하여 통계량을 높일 수 있는 변수를 하나씩 택하거나 제거하는 방식이다.

- 전진 소거법(Forward selection): 절편만 있는 모델에서 통계치를 가장 많이 개션시키는 변수를 차례대로 추가하는 방법이다.
- 변수 소거법(Backward elimination): 모든 변수가 포함된 모형에서 통계치에 가장 도움이 안되는 변수를 하나씩 제거하는 방법이다.
- 단계적 방법(Stepwise selection): 변수의 추가와 삭제를 반복하며 통계치가 최대가 되는 지점을 찾는다.

Important theorem

AIC 란 회귀 모델을 평가하는 척도 중 하나이다. AIC는 절대적인 모델의 성능에 대해서는 알려주지 못하지만 여러가지 모형이 있었을 때 어떤 모형이 더 성능이 좋은지 상대적인 비교에서는 이용할 수 있다. 따라서 전반적인 모형을 선택한 다음에 그 모형을 발전시키기 위해 변수를 선택하는 과정에서 사용하기에 적합하다.

자동차 주행 속도와 제동 거리에 대한 선형 회귀 모델을 보고 이를 해석해 보자.

	Dependent variable:
	dist (Std.Error)
Constant	-17.579^{**} (6.758)
speed	3.932*** (0.416)
Observations	50
R^2	0.651
Adjusted R ²	0.644
Residual Std. Error	15.380 (df = 48)
F Statistic	89.567*** (df = 1; 48)
Note:	*p<0.1; **p<0.05; ***p<0.01

$$Dist = -17.579 + 3.932 Speed$$

- *, **, ***로 표시된 문자열은 p-value의 범위를 뜻한다. 만약 유의한 계수가 있다면 그 정도에 따라 별로 표시되며 아무런 표시가 없거나 점이면 통계적으로 유의하지 않다는 의미이다.
- 상수항은 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 상수항의 계수가 0이 아니라고 말할 수 있다.
- Speed는 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 speed의 계수가 0이 아니라고 말할 수 있다.
- F 통계량은 89.567 로 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 β_0,β_1 중 적어도 하나는 0 이 아니라고 결론을 내릴 수 있다.
- R^2 는 0.651이다. 즉 모델은 자료의 65 퍼센트의 변동성을 설명할 수 있다고 말할 수 있다.

$$Sales = 8.12 + 0.05 Speed$$

- 상수항은 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 상수항의 계수가 0이 아니라고 말할 수 있다.
- TV는 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 TV의 계수가 0이 아니라고 말할 수 있다.
- F 통계량은 210.8로 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 β_0,β_1 중 적어도 하나는 0 이 아니라고 결론을 내릴 수 있다.
- R² 는 0.6373이다. 즉 모델은 자료의 63 퍼센트의 변동성을 설명할 수 있다고 말할 수 있다.

$$Sales = 3.39 + 0.05 TV + 0.19 Radio - 0.01 Newspaper$$

- 상수항은 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 상수항의 계수가 0이 아니라고 말할 수 있다.
- TV, Radio는 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 TV의 계수가 0이 아니라고 말할 수 있다.
- Newspaper는 p-value가 0.05보다 크다. 따라서 귀무가설을 기각하지 못하고 Newspaper의 계수가 0이라고 말할 수 있다.
- F 통계량은 445.9로 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 $\beta_0, \beta_1, \beta_2, \beta_3$ 중 적어도 하나는 0 이 아니라고 결론을 내릴 수 있다.
- R² 는 0.9189이다. 즉 모델은 자료의 91.89 퍼센트의 변동성을 설명할 수 있다고 말할 수 있다.

$$Sales = 3.18 + 0.05 TV + 0.19 Radio$$

- 상수항은 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 상수항의 계수가 0이 아니라고 말할 수 있다.
- TV, Radio는 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 TV의 계수가 0이 아니라고 말할 수 있다.
- F 통계량은 658.2로 p-value가 0.05보다 작다. 따라서 귀무가설을 기각하고 $\beta_0, \beta_1, \beta_2$ 중 적어도 하나는 0 이 아니라고 결론을 내릴 수 있다.
- R² 는 0.9179이다. 즉 모델은 자료의 91.79 퍼센트의 변동성을 설명할 수 있다고 말할 수 있다.