

Dostępna pamięć: 256MB

Graf Henryk

Hrabstwo grafa Henryka jest bardzo górzyste, ciężko w nim o szerokie drogi, więc graf Henryk zadecydował, że dla bezpieczeństwa wszystkie wybudowane drogi będą jednokierunkowe. Wszystkie drogi są już wybudowane, pozostało tylko ustawić na nich oznaczenia - zadecydować o skierowaniu danej drogi. Grafowi Henrykowi zależy na dobrej komunikacji w jego hrabstwie i chciałby, żeby każde miasto było możliwie jak najlepiej skomunikowane z innymi. Poziomem skomunikowania miasta nazwiemy liczbę miast do których można z niego dojechać. Jako że graf Henryk jest również sprawiedliwy, to chce aby poziom najsłabiej skomunikowanego miasta był jak największy.

Wejście

W pierwszej linii wejścia znajdują się dokładnie dwie liczby całkowite $n, m \ (1 \le n, m \le 400\,000)$ oznaczające odpowiednio liczbę miast i dróg w hrabstwie grafa Henryka. Kolejne m linii wejścia opisuje układ wybudowanych dróg w hrabstwie: i-ta z linii opisuje pojedyńczą drogę $x_i, y_i \ (1 \le x_i, y_i \le n, x_i \ne y_i)$. Możesz założyć, że dla danego nieskierowanego układu dróg zawsze istnieje ścieżka między dowolnymi dwoma miastami oraz nie istnieją dwie drogi łączące te same miasta.

Wyjście

W pierwszym wierszu wyjścia wypisz dokładnie jedną liczbę całkowitą, która oznacza maksymalną liczbę miast do których można dojechać z miasta o najmniejszym poziomie skomunikowania. W kolejnych m liniach wyjścia należy podać skierowanie dróg - wypisanie miast w kolejności x y oznacza, że droga prowadzi z miasta x do y. Drogi wypisane na wyjściu powinny pojawić się w tej samej kolejności, co na wejściu.

Przykład

Wejście Wyjście	
7 8	3
1 3	3 1
3 4	4 3
4 1	1 4
4 2	2 4
2 5	5 2
5 6	6 5
7 6	7 6
5 7	5 7

Wejście	Wyjście	
5 6	5	
1 2	2 1	
1 3	1 3	
3 4	4 3	
3 5	3 5	
5 4	5 4	
2 5	5 2	
5 4	5 4	

WWI 2022 – grupa 3 Dzień 6

Ocenianie

Podzadanie	Ograniczenia	Limity czasowe	Punkty
1	$n, m \leqslant 20$	4 s	10
2	n = m	4 s	15
3	$n, m \leqslant 1000$	4 s	25
4	brak dodatkowych ograniczeń	4 s	50

Jeśli Twój program wypisze jedynie poprawną maksymalną liczbę miast do których można dojechać z miasta o najmniejszym poziomie skomunikowania, ale układ dróg nie będzie pasował do odpowiedzi, to uzyskasz 50% punktów za dany test.