AMATH516 - hw1

XIANGYU GAO 1826374

April 2019

1 Chapter 1

Exercise 1.1

From definition:

$$\mathcal{A}(X) := (\langle A_1, X \rangle, \langle A_2, X \rangle, \dots, \langle A_l, X \rangle), Y := (y_1, y_2, \dots, y_l)$$

$$\langle A(X), Y \rangle = \sum_{i=1}^{l} \langle A_i, X \rangle y_i = \sum_{i=1}^{l} \langle y_i A_i, X \rangle = \left\langle \sum_{i=1}^{l} y_i A_i, X \right\rangle$$

For any linear mapping $\mathcal{A}: \mathbf{E} \to \mathbf{Y}$, there exists a unique linear mapping $\mathcal{A}^*: \mathbf{Y} \to \mathbf{E}$, called the adjoint, satisfying

$$\langle \mathcal{A}x, y \rangle = \langle x, \mathcal{A}^*y \rangle$$
 for all points $x \in \mathbf{E}, y \in \mathbf{Y}$

Therefore,
$$A^*Y = \sum_{i=1}^{l} y_i A_i = y_1 A_1 + y_2 A_2 + \ldots + y_l A_l$$

Exercise 1.2

An inner-product on **E** is an assignment $\langle \cdot, \cdot \rangle : \mathbf{E} \times \mathbf{E} \to \mathbf{R}$ satisfying three properties for all $x, y, z \in \mathbf{E}$ and scalars $a, b \in \mathbf{R}$:

- (1) Symmetry: $\langle v, w \rangle_{\mathcal{A}} := \langle \mathcal{A}v, w \rangle = \langle v, \mathcal{A}^*w \rangle = \langle \mathcal{A}w, v \rangle = \langle \mathcal{A}w, v \rangle$, because A is symmetric $A = A^*$
- (2) Bilinearity: $\langle av+bw,z\rangle_{\mathcal{A}}:=\langle \mathcal{A}(av+bw),z\rangle=a\langle \mathcal{A}v,z\rangle+b\langle \mathcal{A}w,z\rangle=a\langle v,z\rangle_{\mathcal{A}}+b\langle w,z\rangle_{\mathcal{A}}$
- (3) Positive definiteness: $\langle v, v \rangle_{\mathcal{A}} = \langle \mathcal{A}v, v \rangle > 0$ for all $0 \neq v \in \mathbf{E}$, because A is positive definite operator

The inner product in the Euclidean space **E** always induces a norm $||x|| := \sqrt{\langle x, x \rangle}$. Thus, $||v||_{\mathcal{A}} = \sqrt{\langle v, v \rangle_{\mathcal{A}}} = \sqrt{\langle \mathcal{A}v, v \rangle}$

The dual norm

$$\begin{split} \|v\|_{\mathcal{A}}^* &= \max\left\{\langle v, x \rangle : \|x\|_{\mathcal{A}} \leq 1\right\} \\ &= \max\left\{\langle v, x \rangle : \sqrt{\langle \mathcal{A}x, x \rangle} \leq 1\right\} \\ &= \max\left\{\left\langle v, \mathcal{A}^{-\frac{1}{2}}x \right\rangle : \sqrt{\left\langle \mathcal{A}^{\frac{1}{2}}x, \mathcal{A}^{-\frac{1}{2}}x \right\rangle} \leq 1\right\} \\ &= \max\left\{\left\langle \mathcal{A}^{-\frac{1}{2}}v, x \right\rangle : \sqrt{\left\langle \mathcal{A}^{\frac{1}{2}}x, \mathcal{A}^{-\frac{1}{2}}x \right\rangle} \leq 1\right\} \\ &= \max\left\{\left\langle \mathcal{A}^{-\frac{1}{2}}v, x \right\rangle : \sqrt{\langle x, x \rangle} \leq 1\right\} \\ &= \|\mathcal{A}^{-\frac{1}{2}}v\| \|x\| \ since the Cauchy-Schwarz inequality \\ &= \|\mathcal{A}^{-\frac{1}{2}}v\| \\ &= \left\langle \mathcal{A}^{-\frac{1}{2}}v, \mathcal{A}^{-\frac{1}{2}}v \right\rangle \\ &= \sqrt{\langle \mathcal{A}^{-1}v, v \rangle} \\ &= \|v\|_{\mathcal{A}^{-1}} \end{split}$$

Exercise 1.3

The induced matrix norm implies, $\|A\|_{a,b} := \max_{x:\|x\|_a \le 1} \|Ax\|_b$.

Thus,
$$\|A\|_1 := \max_{x:\|x\|_1 \le 1} \|Ax\|_1 = \|Ax\|_1, with \|x\|_1 == 1.$$

For $x \in \mathbb{R}^n$ and $||x||_1 = 1$,

$$||Ax||_1 = \left\| \sum_{j=1}^n x_j a_j \right\|_1 \le \sum_{j=1}^n |x_j| \, ||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 \, ||x||_1 = \max_{1 \le j \le n} ||a_j||_1$$

Similarly,
$$\|A\|_{\infty} := \max_{x:\|x\|_{\infty} \le 1} \|Ax\|_{\infty} = \|Ax\|_{\infty}$$
, with $\|x\|_{\infty} = 1$

For $x \in \mathbb{R}^n$ and $||x||_{\infty} = 1$,

$$\|Ax\|_{\infty} = \max_{1 \leq i \leq m} |a_i x| \leq \max_{1 \leq i \leq m} \left\|a_i^T\right\|_1 \|x\|_{\infty}$$

Exercise 1 6

(1)
$$f(x) = \frac{1}{2} \langle \frac{1}{2} (\mathcal{A} + \mathcal{A}^*) x, x \rangle + \langle v, x \rangle + c = \frac{1}{4} \langle \mathcal{A} x + \mathcal{A}^* x, x \rangle + \langle v, x \rangle + c = \frac{1}{4} \langle \mathcal{A} x, x \rangle + \frac{1}{4} \langle \mathcal{A}^* x, x \rangle + \langle v, x \rangle + c$$

Because of the definition of adjoint: $\langle \mathcal{A}x, x \rangle = \langle x, \mathcal{A}^*x \rangle$

Thus
$$f(x) = \frac{1}{4} \langle Ax, x \rangle + \frac{1}{4} \langle A^*x, x \rangle + \langle v, x \rangle + c = \frac{1}{2} \langle Ax, x \rangle + \langle v, x \rangle + c$$

$$(2)f(x) = \tfrac{1}{2}\langle \mathcal{A}x, x\rangle + \langle v, x\rangle + c = \tfrac{1}{2}(\mathcal{A}x)^Tx + v^Tx + c = \tfrac{1}{2}x^T\mathcal{A}^Tx + v^Tx + c$$

$$\nabla f(x) = \frac{\partial f(x)}{\partial x} = \frac{1}{2}(\mathcal{A} + \mathcal{A}^T)x + v = \mathcal{A}x + v$$
, because \mathcal{A} is self adjoint $\mathcal{A} = \mathcal{A}^*$

$$\nabla^2 f(x) = \frac{\partial \nabla f(x)}{\partial x} = \mathcal{A}$$

(3) From part 1, when \mathcal{A} is replaced by the self-adjoint operator $(\mathcal{A} + \mathcal{A}^*)/2$, the function values f(x) remain unchanged.

Thus let
$$f(x) = \frac{1}{2} \langle \frac{1}{2} (A + A^*) x, x \rangle + \langle v, x \rangle + c$$
.

From part 2,
$$\nabla f(x) = \frac{1}{2}(\mathcal{A} + \mathcal{A}^*)x + v$$
, $\nabla^2 f(x) = \frac{1}{2}(\mathcal{A} + \mathcal{A}^*)$

Exercise 1.7

$$f(x) = \frac{1}{2} ||F(x)||^2$$
, where $F: \mathbf{E} \to \mathbf{Y}$ is a C^1 -smooth mapping.

$$f(x) = \frac{1}{2}\langle F(x), F(x)\rangle$$
, from the derivative chain rule,

$$\nabla f(x) = \frac{\partial f(x)}{\partial x} = \frac{\partial f}{\partial F} \frac{\partial F}{\partial x} = \nabla F(x)^* F(x)$$

Exercise 1.8

Consider a function $f: U \to \mathbf{R}$ and a linear mapping $\mathcal{A}: \mathbf{Y} \to \mathbf{E}$ and define the composition $h(x) = f(\mathcal{A}x)$

(1) Denote by J_g the Jacobian matrix of any function g .Applying the chain rule leads to $J_q(x)=J_f(\phi(x))J_\phi(x)$

Since $J_{\phi}(x) = A$, and $\nabla g = (J_g)^T$ for any scalar function g, this boils down to $(\nabla h(x))^T = (\nabla f(Ax + b))^T A$

Finally, we find:
$$\nabla h(x) = A^T \nabla f(Ax + b)$$

(2) Similarly, if f is twice differentiable at Ax, then

$$(\nabla^2 h(x))^T = A^T (\nabla^2 f(Ax + b))^T A$$

$$\nabla^2 h(x) = A^T \nabla^2 f(Ax + b) A$$

Exercise 1.9

H is differentiable at x, so we have $H(x+l)=H(x)+\langle \nabla H(x),l\rangle+o(\|l\|).G$ is differentiable at H(X), we have $G(H(x)+h)=G(H(x))+\langle \nabla G(H(x)),h\rangle+o(\|h\|).$ Therefore

$$\begin{split} \nabla F(x) &= \lim_{l \to 0} \frac{F(x+l) - F(x)}{l} \\ &= \lim_{l \to 0} \frac{G(H(x+l)) - G(H(x))}{l} \\ &= \lim_{l \to 0} \frac{G(H(x) + \langle \nabla H(x), l \rangle + o(||l|)) - G(H(x))}{l} \end{split}$$

Let
$$h = \langle \nabla H(x), l \rangle + o(||l||)$$
, we have

$$\begin{split} \nabla F(x) &= \lim_{l \to 0} \frac{G(H(x) + \langle \nabla H(x), l \rangle + o(\|l\|)) - G(H(x))}{l} \\ &= \lim_{l \to 0} \frac{\langle \nabla G(H(x)), h \rangle + o(\|h\|)}{l} \\ &= \nabla G(H(x)) \nabla H(x), \text{ since } h = \langle \nabla H(x), l \rangle + o(\|l\|) \end{split}$$

Exercise 1.10

Consider the two functions $f: \mathbf{R}_{++}^n + \to \mathbf{R}$ and $F: \mathbf{S}_{++}^n \to \mathbf{R}$ given by $f(x) = -\sum_{i=1}^n \log x_i$ and $F(X) = -\ln \det(X)$

(1) For $x \in \mathbf{R}_{++}^n$

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial - \sum_{i=1}^n \log x_i}{\partial - \sum_{i=1}^n \log x_i} \\ \frac{\partial - \sum_{i=1}^n \log x_i}{\partial x_2} \\ \vdots \\ \frac{\partial - \sum_{i=1}^n \log x_i}{\partial x_n} \end{pmatrix} = \begin{pmatrix} -\frac{1}{x_1} \\ -\frac{1}{x_2} \\ \vdots \\ -\frac{1}{x_i} \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} \frac{1}{x_1^2} \\ \frac{1}{x_2^2} \\ \vdots \\ \frac{1}{x_i^2} \end{pmatrix}$$

$$\begin{split} &(2) \\ &F(X+tV) - F(X) + t \left\langle X^{-1}, V \right\rangle \\ &= -\ln \det(X+tV) + \ln \det(X) + t \left\langle X^{-1}, V \right\rangle \\ &= -\ln \det(X+tV) + \ln \det(X) + t \left\langle X^{-1}, V \right\rangle \\ &= -\ln \det\left(I + tX^{-1/2}VX^{-1/2}\right) + t \left(X^{-1/2}VX^{-1/2}\right) \\ &= -\ln\left(1 + \operatorname{tr}\left(tX^{-1/2}VX^{-1/2}\right) + o\left(\left\|tX^{-1/2}VX^{-1/2}\right\|\right)\right) + t \left(X^{-1/2}VX^{-1/2}\right) \\ &= -\left(t\operatorname{tr}\left(X^{-1/2}VX^{-1/2}\right) + o\left(\left\|t^{2}\right\|\right)\right) + t \left(X^{-1/2}VX^{-1/2}\right) \\ &= o(t) \end{split}$$

Hence, $\nabla F(X) = -X^{-1}$

To compute the Hessian, observe $(X+V)^{-1} = X^{-1/2} \left(I + X^{-1/2}VX^{-1/2}\right)^{-1} X^{-1/2}$ and $(I+A)^{-1} = I - A + A^2 - A^3 + \ldots = I - A + O\left(\|A\|_{0p}^2\right)$ whenever $\|A\|_{0p} < 1$.

We have
$$\nabla F(X+tV) - \nabla F(X) = -(X+tV)^{-1} + (X)^{-1}$$
$$= -X^{-1/2} \left(I + X^{-1/2} t V X^{-1/2} \right)^{-1} X^{-1/2} + (X)^{-1}$$
$$= -X^{-1/2} \left(I - X^{-1/2} t V X^{-1/2} + O(t) \right) X^{-1/2} + (X)^{-1}$$
$$= X^{-1} t V X^{-1} + O(t)$$

So,
$$\nabla^2 F(X)[V] = X^{-1}VX^{-1}$$

$$\begin{split} &(3) \left< \nabla^2 F(X)[V], V \right> = tr((\nabla^2 F(X)[V])^T V) = tr(X^{-1}VX^{-1}V^T) \\ &= tr((X^{-\frac{1}{2}})^T X^{-\frac{1}{2}} V(X^{-\frac{1}{2}})^T X^{-\frac{1}{2}} V^T) \\ &= tr((X^{-\frac{1}{2}} V X^{-\frac{1}{2}})^T X^{-\frac{1}{2}} V X^{-\frac{1}{2}}) \\ &= \left\| X^{-\frac{1}{2}} V X^{-\frac{1}{2}} \right\|_F^2, \text{ for any } X > 0 \text{ and } V \in \mathcal{S}^n \\ &\left< \nabla^2 F(X)[V], V \right> = \left\| X^{-\frac{1}{2}} V X^{-\frac{1}{2}} \right\|_F^2 > 0, \text{ for any } X > 0, V \neq 0. \text{ So, } \nabla^2 F(X): \\ \mathbf{S}^n \to \mathbf{S}^n \text{ is positive definite.} \end{split}$$

Exercise 1.11

Consider a function $f: U \to \mathbf{R}$ and two points $x, y \in U$ Define the univariate function $\varphi: [0,1] \to \mathbf{R}$ given by $\varphi(t) = f(x+t(y-x))$ and let $x_t := x+t(y-x)$ for any t.

(1) if f is C^1 -smooth, then according to the chain rule,

$$\varphi'(t) = (\nabla f(x_t))^T (y - x) = \langle \nabla f(x_t) \rangle, y - x \rangle$$
, holds for any $t \in (0, 1)$

(2) if f is C^2 -smooth, then according to the chain rule,

$$\varphi''(t) = \frac{\partial \varphi'(t)}{\partial t} = ((\nabla^2 f(x_t))^T (y - x))^T (y - x) = (y - x)^T \nabla^2 f(x_t) (y - x)$$
$$= \langle \nabla^2 f(x_t) (y - x), y - x \rangle, \text{ holds for any } t \in (0, 1)$$

Exercise 1.15

Consider a C^1 -smooth mapping $F: U \to \mathbf{R}^m$ and two points $x, y \in U$.

Define the univariate function $\varphi(t) = F(x+t(y-x))$. The fundamental theorem of calculus yields the relation

$$\varphi(1) - \varphi(0) = \int_0^1 \varphi'(t)dt$$
, where $\varphi(1) = F(y), \varphi(0) = F(x)$.

According to the result of Exercise 1.11, $\varphi'(t) = \langle \nabla F(x_t) \rangle, y - x \rangle$

Thus,
$$F(y) - F(x) = \int_0^1 \nabla F(x + t(y - x))(y - x)dt$$

$$F(y) = F(x) + \int_0^1 (\nabla F(x + t(y - x)) - \nabla F(x) + \nabla F(x))(y - x)dt$$

$$= F(x) + \nabla F(x)(y-x) + \int_0^1 (\nabla F(x+t(y-x)) - \nabla F(x))(y-x)dt$$

Exercise 1.16

A C^1 -smooth mapping $F: U \to Y$ is L-Lipschitz continuous satisfies:

$$|F(y) - F(x)| \le L||y - x||$$
, for all y and x.

Take
$$y = x + \nabla F(x)$$
, $L||\nabla F(x)|| = L||y - x|| \ge |F(y) - F(x)|$

For a convex function F and two points x, y in its domain, we have $F(y) \ge l(x,y) = F(x) + \langle y - x, \nabla F(x) \rangle$, then $|F(y) - F(x)| \ge |\langle \nabla F(x), \nabla F(x) \rangle|$

So,
$$L\|\nabla F(x)\| \ge |\langle \nabla F(x), \nabla F(x)\rangle| = \|\nabla F(x)\|^2$$
, which gives $\|\nabla F(x)\| \le L$.

If f is defined on a convex set and x is an interior point, the same argument but with $y = x + \eta \nabla f(x)$ for some small $\eta > 0$ gives us the same bound.

2 Chapter 2

Exercise 2.4*

We first assume f(x) is convex and show its epigraph must be convex: Let (x_1, y_1) and (x_2, y_2) be in the epigraph of f(x).

Let $(\tilde{x}, \tilde{y}) := \lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2)$, with $\lambda \in [0, 1]$. Then we have,

$$\tilde{y} = \lambda y_1 + (1 - \lambda)y_2$$

 $\geq \lambda f(x_1) + (1 - \lambda)f(x_2)$ since points are in epigraph
 $\geq f(\lambda x_1 + (1 - \lambda)x_2)$ since $f(x)$ is convex
 $= f(\tilde{x})$

Hence, the point(\tilde{x}, \tilde{y}) is also in epigraph, and epigraph is convex.

Now we assume the epigraph is convex and show the function must be convex:

Let $x_1, x_2 \in C$, let $\lambda \in [0, 1]$. Then the points $(x_1 f(x_2))$ and $(x_2 f(x_2))$ are in the epigraph of f(x). Since the epigraph is convex, the point $\lambda(x_1, f(x_1)) + (1 - \lambda)(x_2, f(x_2))$ is also in epigraph.

So
$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$
, f is convex.

Exercise 2.5*

If f is convex, according to last exercise, the epi $f:=\{(x,r)\in U\times \mathbf{R}:f(x)\leq r\}$ is convex. Pick arbitrary $(x_1,r_1),\ldots,(x_k,r_k)\in \mathrm{epi}\ f$, and any $\lambda_1,\ldots,\lambda_k\in[0,1]$ with $\sum_i\lambda_i=1$. By convexity of the epigraph, it follows that,

$$\sum_{i} \lambda_{i} (x_{i}, r_{i}) = (\sum_{i} \lambda_{i} x_{i}, \sum_{i} \lambda_{i} r_{i}) \text{ also belongs to the epigraph. Therefore,}$$

$$\sum_{i} \lambda_{i} f(x_{i}) \geq f(\sum_{i} \lambda_{i} x_{i}).$$

Let $\Gamma = \operatorname{epi}(f)$. Let $(x_1, r_1), \ldots, (x_n, r_n) \in \Gamma$. For any $\lambda_1, \ldots, \lambda_n \in [0, 1]$ with $\sum_i \lambda_i = 1$, the point $(x, r) = \sum_i \lambda_i (x_i, r_i) = (\sum_i \lambda_i x_i, \sum_i \lambda_i r_i)$ has:

$$r = \sum_{i} \lambda_{i} r_{i} \ge \sum_{i} \lambda_{i} f(x_{i}) \ge f(\sum_{i} \lambda_{i} x_{i}) = f(x)$$

Hence $(x,r) \in \Gamma$, and Γ is convex. According to the results of last exercise, f is convex.

Exercise 2.6*

Consider an arbitrary set T and a family of convex functions $f_t: U \to$ $(-\infty, +\infty]$ for $t \in T$.

Because a function $f: U \to (-\infty, +\infty]$ is convex if and only if the epigraph epi $f := \{(x, r) \in U \times \mathbf{R} : f(x) \le r\}$ is a convex subset of $\mathbf{E} \times \mathbf{R}$. epi $f = \bigcap_{t \in T} epi f_t$ is convex because all epi f_t is convex.

Hence the function $f(x) := \sup_{t \in T} f_t(x)$ is convex since epi f is convex.

Exercise 2.8*

Define the two sets
$$\mathbf{R}_{++}^n := \{x \in \mathbf{R}^n : x_i > 0 \text{ for all } i = 1, \dots, n\}$$

$$\mathbf{S}_{++}^n := \{ X \in \mathbf{S}^n : X > 0 \}$$

Consider the two functions $f: \mathbf{R}_{++}^n \to \mathbf{R}$ and $F: \mathbf{S}_{++}^n \to \mathbf{R}$ given by $f(x) = -\sum_{i=1}^n \log x_i$ and $F(X) = -\ln \det(X)$

For
$$x \in \mathbf{R}_{++}^n$$
, $\nabla f(x) = -\sum_{i=1}^n \frac{1}{x_i}$, $\nabla^2 f(x) = \sum_{i=1}^n \frac{1}{x_i^2}$

For $x \in \mathbf{R}^n_{++}$, $\nabla f(x) = -\sum_{i=1}^n \frac{1}{x_i}$, $\nabla^2 f(x) = \sum_{i=1}^n \frac{1}{x_i^2}$ For any y > x, $\nabla f(y) > \nabla f(x)$, satisfying the monotonicity of gradient, hence f is convex.

From exercise 1.10, the operator $\nabla^2 F(X): \mathbf{S}^n \to \mathbf{S}^n$ is positive definite, since $\langle \nabla^2 F(X)[V], V \rangle = \left\| X^{-\frac{1}{2}} V X^{-\frac{1}{2}} \right\|_F^2$ for any X > 0 and $V \in \mathcal{S}^n$.

Hence, according to the Theo2.12 (d), F is convex.

Exercise 2.9

(1)
$$0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{\beta}{2} ||x - y||^2$$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$
 for all $x, y \in U$ is equivalent to f is convex

Given any β -smooth function $f:U\to \mathbf{R}$, for any points $x,y\in U$ the inequality $|f(y) - l(x;y)| \le \frac{\beta}{2} ||y - x||^2$ holds

Hence
$$f(y) - f(x) - \langle \nabla \overline{f(x)}, y - x \rangle \le \frac{\beta}{2} ||y - x||^2$$

(2)
$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\beta} \|\nabla f(x) - \nabla f(y)\|^2 \le f(y)$$

Suppose now 1 holds and define the function $\phi(y) = f(y) - \langle \nabla f(x), y \rangle$.

```
Since 0 \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \phi(y) - \phi(x), \, \phi(y) is mono increasing function.
```

Since
$$f$$
 is β -smooth, $\nabla f(y) - \nabla f(x) \le \beta(y - x)$, $x \le y - \frac{1}{\beta}(\nabla f(y) - \nabla f(x)) = y - \frac{1}{\beta}\nabla\phi(y)$

So
$$\phi(x) = \min \phi \le \phi \left(y - \frac{1}{\beta} \nabla \phi(y) \right) = f(y - \frac{1}{\beta} \nabla \phi(y)) - \langle \nabla f(x), y - \frac{1}{\beta} \nabla \phi(y) \rangle$$

$$= f(y - \frac{1}{\beta} \nabla \phi(y)) - f(y) + f(y) - \langle \nabla f(x), y \rangle + \langle \nabla f(x), \frac{1}{\beta} \nabla \phi(y) \rangle$$

$$= \phi(y) + f(y - \frac{1}{\beta} \nabla \phi(y)) - f(y) + \langle \nabla f(x), \frac{1}{\beta} \nabla \phi(y) \rangle$$

$$= \phi(y) + f(y - \frac{1}{\beta} \nabla \phi(y)) - f(y) - \langle \nabla f(y), -\frac{1}{\beta} \nabla \phi(y) \rangle + \langle \nabla f(y), -\frac{1}{\beta} \nabla \phi(y) \rangle + \langle \nabla f(y), -\frac{1}{\beta} \nabla \phi(y) \rangle$$

 $\langle \nabla f(x), \frac{1}{\beta} \nabla \phi(y) \rangle$

 $\leq \phi(y) + \frac{1}{2\beta} \|\nabla \phi(y)\|^2 + \langle \nabla f(x) - \nabla f(y), \frac{1}{\beta} \nabla \phi(y) \rangle, \text{ since}(1)$

 $\leq \phi(y) + \frac{1}{2\beta} \|\nabla \phi(y)\|^2 + \langle \beta(x-y), \frac{1}{\beta} \nabla \phi(y) \rangle$, since the β -smooth

 $\leq \phi(y) + \frac{1}{2\beta} \|\nabla \phi(y)\|^2 + \langle -\frac{1}{\beta} \nabla \phi(y), \frac{1}{\beta} \nabla \phi(y) \rangle$, since the definition of $\phi(x)$

 $\leq \phi(y) - \frac{1}{2\beta} \|\nabla \phi(y)\|^2$

Hence $f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\beta} ||\nabla f(x) - \nabla f(y)||^2 \le f(y)$ Obviously, f is convex.

$$\begin{array}{l} (3) \ \frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle \\ \text{according to} \ (2), & f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2\beta} \|\nabla f(x) - \nabla f(y)\|^2 \leq f(y) \\ \text{reverse x and y,} \ f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2\beta} \|\nabla f(y) - \nabla f(x)\|^2 \leq f(x) \\ \text{add this two inequality, get} \ \frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle \\ \end{array}$$

Next applying Cauchy-Schwartz to (3)

$$\frac{1}{\beta} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le \|\nabla f(x) - \nabla f(y)\| \|x - y\|$$
 Hence f is β -smooth, $\|\nabla f(x) - \nabla f(y)\| \le \beta \|x - y\|$ Also f is convex, since $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$

$$(4) \ 0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le \beta ||x - y||^2$$

From(3),
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$

From(1),
$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{\beta}{2} ||x - y||^2$$

Reverse x and y, $f(x) - f(y) - \langle \nabla f(y), x - y \rangle \le \frac{\beta}{2} ||y - x||^2$

Add this two inequalities, get (4).

To deduce (1) from (4), let
$$\phi(x) = -f(x) + \frac{\beta}{2} ||x||^2$$

The gradient of $\phi(x)$ is, $\nabla \phi(x) = -\nabla f(x) + \beta x$

Similarly, $\nabla \phi(y) = -\nabla f(y) + \beta y$

$$(\nabla \phi(x) - \nabla \phi(y))(x - y) = \beta ||x - y||^2 - \langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0, \text{ since } (4).$$

Thus, $\nabla \phi(x)$ is monotone and therefore $\phi(x)$ is convex.

From the gradient inequality of $\phi(x)$, $\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle$

since
$$\nabla \phi(x) = -\nabla f(x) + \beta x$$
, $\nabla \phi(y) = -\nabla f(y) + \beta y$, we can get $f(y) - f(x) - \langle \nabla f(x), y - x \rangle \leq \frac{\beta}{2} ||x - y||^2$

Exercise 2.11

Consider a C^1 -smooth convex function $f: \mathbf{E} \to \mathbf{R}$. Fix a linear subspace $\mathcal{L} \subset \mathbf{E} \text{ and } g : \mathbf{L} \to \mathbf{R}, f_{\mathcal{L}} = f.$

First, assume $x \in \mathcal{L}$ minimizes the restriction $f_{\mathcal{L}} : \mathcal{L} \to \mathbf{R}$.

Based on the Corollary 2.10, we know that $\nabla f_{\mathcal{L}}(x) = 0$.

We have $\nabla f(x) = (\nabla f_{\mathcal{L}}(x), \nabla f_{\mathbf{E}-\mathcal{L}}(x))$. Let $x = (x_{\mathcal{L}}, 0) \in \mathcal{L}$, we have $\nabla f(x)x = 0$. Hence the gradient $\nabla f(x)$ is orthogonal to \mathcal{L} .

Second, assume the gradient $\nabla f(x)$ is orthogonal to \mathcal{L} . From the reverse of the above statement, we can derive $\nabla f_{\mathcal{L}}(x) = 0$, so x is a critical point of $f_{\mathcal{L}}$. According to Corollary 2.10, $x \in \mathcal{L}$ minimizes the restriction $f_{\mathcal{L}} : \mathcal{L} \to \mathbf{R}$

Exercise 2.13

Suppose $g(x) = f(x) - \frac{\alpha}{2} ||x||^2$ is convex. The gradient of g(x) is $\nabla g(x) =$ $\nabla f(x) - \alpha x$

According to the gradient inequality, $g(y) \ge g(x) + \langle \nabla g(x), y - x \rangle$ $|f(y) - \frac{\alpha}{2} ||y||^2 \ge |f(x) - \frac{\alpha}{2} ||x||^2 + \langle \nabla f(x) - \alpha x, y - x \rangle$

Hence
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$$

Suppose $f: U \to \mathbf{R}$ is α -strongly convex, then

 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\alpha}{2} ||y - x||^2$ holds for all $x, y \in U$

Revise x and y, we get $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\alpha}{2} ||x - y||^2$ Add this two inequalities, we get $\langle \nabla f(x) - \nabla f(y), y - x \rangle + \alpha ||y - x||^2 \le 0$

To prove the g(x) is convex, we could prove $\langle \nabla g(y) - \nabla g(x), y - x \rangle \geq 0$ for all $x, y \in U$.

$$\langle \nabla g(y) - \nabla g(x), y - x \rangle = \langle \nabla f(y) - \alpha y - (\nabla f(x) - \alpha x), y - x \rangle = \langle \nabla f(y) - \nabla f(x), y - x \rangle - \alpha ||y - x||^2 \ge 0$$
, since the inequality we deduced above.

Hence $\nabla g(x)$ is monotone and therefore g(x) is convex.

Exercise 2.18*

Consider a differentiable convex function, $f: \mathbf{E} \to \mathbf{R}$ and let x^* be any of its minimizers.

Consider the gradient descent iterates $x_{k+1} = x_k - \gamma_k \nabla f(x_k)$, for some sequence $\alpha_k \geq 0$

(1)
$$||x_{k+1} - x^*||^2 = ||(x_{k+1} - x_k) + (x_k - x^*)||^2$$

$$\frac{1}{2} \|x_{k+1} - x^*\|^2 = \frac{1}{2} \|x_k - x^*\|^2 + \|x_{k+1} - x_k\| \|x_k - x^*\| + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

$$= \frac{1}{2} \|x_k - x^*\|^2 + \gamma_k \|\nabla f(x_k)\| \|x_k - x^*\| + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

$$= \frac{1}{2} \|x_k - x^*\|^2 + \gamma_k \langle \nabla f(x_k), x_k - x^* \rangle + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

$$= \frac{1}{2} \|x_k - x^*\|^2 + \gamma_k (\langle \nabla f(x_k), x_k - x^* \rangle + f(x_k) - f(x_k)) + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

$$\leq \frac{1}{2} \|x_k - x^*\|^2 + \gamma_k (f(x^*) - f(x_k)) + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2, \text{ since the inequality of gradient}$$

Hence,
$$\frac{1}{2} \|x_{k+1} - x^*\|^2 \le \frac{1}{2} \|x_k - x^*\|^2 - \gamma_k \left(f(x_k) - f(x^*)\right) + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

$$(2) \ \frac{1}{2} \|x_{k+1} - x^*\|^2 \le \frac{1}{2} \|x_k - x^*\|^2 - \gamma_k \left(f(x_k) - f(x^*) \right) + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$$

To minimize the right hand of this inequality, let $F(\gamma_k) = \frac{1}{2} \|x_k - x^*\|^2 - \gamma_k (f(x_k) - f(x^*)) + \frac{\gamma_k^2}{2} \|\nabla f(x_k)\|^2$

Take
$$\nabla F(\gamma_k) = 0$$
, get $-(f(x_k) - f(x^*)) + \gamma_k ||\nabla f(x_k)||^2 = 0$

Hence,
$$\gamma_k = \frac{f(x_k) - f^*}{\|\nabla f(x_k)\|^2}$$

Substitute γ_k to the initial inequality, thereby yielding the guarantee $\|x_{k+1} - x^*\|^2 \le \|x_k - x^*\|^2 - \left(\frac{f(x_k) - f^*}{\|\nabla f(x_k)\|}\right)^2$

(3) since f is β -smooth, we have

$$f(x_{k+1}) \leq f(x_k) - \langle \nabla f(x_k), \alpha_k \nabla f(x_k) \rangle + \frac{\beta}{2} \|\alpha_k \nabla f(x_k)\|^2$$

$$= f(x_k) - (f(x_k) - f^*) + \frac{\beta}{2} \frac{(f(x_k) - f^*)^2}{\|\nabla f(x_k)\|^2}$$

$$= f^* + \frac{\beta}{2} \frac{(f(x_k) - f^*)^2}{\|\nabla f(x_k)\|^2}$$

$$\leq f^* + \frac{\beta}{2} \left(\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2 \right)$$

Sum up from 0 to k-1, we have

$$\sum_{i=0}^{k-1} f(x_{i+1}) - kf^* \le \frac{\beta}{2} \left(\|x_0 - x^*\|^2 - \|x_k - x^*\|^2 \right)$$

Setting $\lim_{k\to\infty} x_k = x^*$ and considering f is convex, we have $f\left(\frac{1}{k}\sum_{i=0}^{k-1}x_i\right) - f^* \leq \frac{1}{k}\sum_{i=0}^{k-1}f\left(x_{i+1}\right) - f^* \leq \frac{\beta\|x_0 - x^*\|^2}{2k}$

If
$$f$$
 is in addition α -strongly convex, we have $\|x_{k+1} - x^*\|^2 = \|x_k - x^* - \alpha_k \nabla f(x_k)\|^2$

$$= \|x_{k} - x^{*}\|^{2} + 2\alpha_{k} \langle \nabla f(x_{k}), x^{*} - x_{k} \rangle + \alpha_{k}^{2} \|\nabla f(x_{k})\|^{2}$$

$$\leq \|x_{k} - x^{*}\|^{2} + 2\alpha_{k} \left(f^{*} - f(x_{k}) - \frac{\alpha}{2} \|x_{k} - x^{*}\|^{2}\right) + \alpha_{k}^{2} \|\nabla f(x_{k})\|^{2}$$

$$= (1 - \alpha\alpha_{k}) \|x_{k} - x^{*}\|^{2} + \alpha_{k} \left(2f^{*} - 2f(x_{k}) + \alpha_{k} \|\nabla f(x_{k})\|^{2}\right)$$

$$= (1 - \alpha \alpha_k) \|x_k - x^*\|^2 + \left(\frac{f(x_k) - f^*}{\|\nabla f(x_k)\|}\right)^2$$

$$\leq (2 - \alpha \alpha_k) \|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2$$

So we have

$$||x_{k+1} - x^*||^2 \le \left(1 - \frac{\alpha}{2}\alpha_k\right) ||x_k - x^*||^2$$

$$= \left(1 - \frac{\alpha}{2} \frac{f(x_k) - f^*}{||\nabla f(x_k)||^2}\right) ||x_k - x^*||^2$$

Based on strong convex, we know that $f(x_k) - f^* \ge \frac{\alpha}{2} \|x_k - x^*\|^2$ Based on β -smooth, we know that $\|\nabla f(x) - \nabla f(y)\|_2 \le \beta \|x - y\|_2$ That is, $\|\nabla f(x_k)\|^2 \le \beta^2 \|x_k - x^*\|^2$, since $\nabla f(x^*) = 0$

Put it in the above equation, we have $\|x_{k+1} - x^*\|^2 \le \left(1 - \frac{\alpha^2}{\beta^2}\right) \|x_k - x^*\|^2$

Exercise 2.22 (1)

$$f_k(z_1, z_2, \dots, z_n) = \frac{\beta}{4} \left(\frac{1}{2} \left(z_1^2 + \sum_{i=1}^{k-1} (z_i - z_{i+1})^2 + z_k^2 \right) - z_1 \right)$$

Take the derivative

$$\frac{\partial f_k}{\partial z_1} = \frac{\beta}{4} \left(\frac{1}{2} (2z_1 + 2(z_1 - z_2)) - 1 \right)
= \frac{\beta}{4} (z_1 - z_2 - 1)
\frac{\partial f_k}{\partial z_{i,2 \le i \le k-1}} = \frac{\beta}{4} \left(\frac{1}{2} (2(z_i - z_{i+1}) - 2(z_{i-1} - z_i)) \right)
= \frac{\beta}{4} (2z_i - z_{i-1} - z_{i+1})$$

For $k \leq i$

$$\begin{aligned} \frac{\partial f_k}{\partial z_k} &= \frac{\beta}{4} \left(\frac{1}{2} \left(-2 \left(z_{k-1} - z_k \right) + 2 z_k \right) \right) \\ &= \frac{\beta}{4} \left(2 z_k - z_{k-1} \right) \end{aligned}$$

$$\frac{\partial f_k}{\partial z_{i,i>k}} = 0$$

Let
$$x_1=z_1=1-\frac{1}{k+1}$$
, we can deduct that $\overline{x}_{k,i}=\left\{ egin{array}{ll} 1-\frac{i}{k+1}, & \mbox{if } i=1,\ldots,k \\ 0 & \mbox{if } i=k+1,\ldots,n \end{array}
ight.$ Substitute the \overline{x}_k value to the equation, we have

$$f_k\left(\overline{x}_{k,1},\overline{x}_{k,2},\ldots,\overline{x}_{k,n}\right)$$

$$= \frac{\beta}{4} \left(\frac{1}{2} \left(\overline{x}_{k,1}^2 + \sum_{i=1}^{k-1} \left(\overline{x}_{k,i} - \overline{x}_{k,i+1} \right)^2 + \overline{x}_{k,k}^2 \right) - \overline{x}_{k,1} \right)^2 + \left(1 - \frac{k}{k+1} \right)^2 \right) - \left(1 - \frac{1}{k+1} \right) \right)$$

$$= \frac{\beta}{8} \left(-1 + \frac{1}{k+1} \right)$$
(2)
$$\|\overline{x}_k\|^2 = \sum_{i=1}^k \left(1 - \frac{i}{k+1} \right)^2$$

$$= \frac{1}{(k+1)^2} \sum_{i=1}^k \left((k+1)^2 - 2i(k+1) + i^2 \right)$$

$$= \frac{1}{(k+1)^2} \left(k(k+1)^2 - 2(k+1) \frac{k(k+1)}{2} + \sum_{i=1}^k (i^2) \right)$$

$$\leq \frac{1}{3} (k+1)$$

Let $x = (x_1, x_2, \dots, x_i, 0, 0 \dots 0) \in \mathbf{R}^i \times \{0\}^{n-i}$. Substitute to the function, we have:

$$f_{j}(x_{1}, x_{2}, \dots, x_{n})$$

$$= \frac{\beta}{4} \left(\frac{1}{2} \left(x_{1}^{2} + \sum_{k=1}^{j-1} (x_{k} - x_{k+1})^{2} + x_{j}^{2} \right) - x_{1} \right)$$

$$= \frac{\beta}{4} \left(\frac{1}{2} \left(x_{1}^{2} + \sum_{k=1}^{i-1} (x_{k} - x_{k+1})^{2} + 0 + x_{i}^{2} \right) - x_{1} \right)$$

$$= \frac{\beta}{4} \left(\frac{1}{2} \left(x_{1}^{2} + \sum_{k=1}^{i-1} (x_{k} - x_{k+1})^{2} + x_{i}^{2} \right) - x_{1} \right)$$

$$= f_{i}(x_{1}, x_{2}, \dots, x_{n})$$

Based on the gradient result at question (1), we know that the gradient $\nabla f_k(x)$ lies in $\mathbf{R}^i \times \{0\}^{n-(i)} \in \mathbf{R}^{i+1} \times \{0\}^{n-(i+1)}$

Exercise 2.23*

For any point
$$x \in \mathbf{R}^n$$
, The equality $f(x) - f^* = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle - (\frac{1}{2} \langle Ax^*, x^* \rangle - \langle b, x^* \rangle)$ $= \frac{1}{2} (\langle Ax, x \rangle - \langle Ax, x^* \rangle + \langle Ax, x^* \rangle - \langle Ax^*, x^* \rangle) - \langle b, x - x^* \rangle$ $= \frac{1}{2} (\langle Ax, x - x^* \rangle + \langle Ax^*, x - x^* \rangle) - \langle b, x - x^* \rangle$ $= \frac{1}{2} (\langle A(x + x^*), x - x^* \rangle) - \langle b, x - x^* \rangle$ $= \frac{1}{2} (\langle A(x + x^*) - 2b, x - x^* \rangle)$ $= \frac{1}{2} (\langle A(x - x^*), x - x^* \rangle)$, since $Ax^* = b$ $= \frac{1}{2} \|x - x^*\|_A^2$

Exercise 2.24*

$$t_k = \operatorname{argmin}_t f(x_k + tv_k).$$

From optimal conditions, let $\nabla f(x_k + tv_k) = 0$

Then,
$$A(x_k + tv_k) - b)v_k = 0$$
, we get $t = \frac{bv_k - Ax_kv_k}{Av_k^2} = \frac{\langle r_k, v_k \rangle}{\|v_k\|_A^2}$

Exercise 2.30

Assuming $a_k \leq \frac{2}{k+2}$, k > 0, then if we can prove $a_{k+1} \leq \frac{2}{k+2}$, it will show that there is a bound $a_k \leq \frac{2}{k+2}$, for each $k \geq 0$

Since
$$a_{k+1} = \frac{\sqrt{a_k^4 + 4a_k^2} - a_k^2}{2} \le \frac{a_k^2 + 2a_k - a_k^2}{2} \le a_k \le \frac{2}{k+2}$$

Not sure how to use tighter bound to prove $a_{k+1} \leq \frac{2}{k+3}$

Exercise 2.42*

Figure 1:

Figure 2:

Figure 3:

Exercise 2.43

Figure 4:

Figure 5:

Figure 6:

Exercise 2.44*

Figure 7:

Figure 8:

Figure 9: