01:640:350H - Homework 9

Pranav Tikkawar

November 11, 2024

1. Sec. 5.4 Problem 2(b)

For each of the following linear operators T on the vector space V, and if V is the determine wheter the given subspace W is a T-invariant subspace of V.

$$V = P(R), \quad T(f(x)) = xf(x), \quad W = P_2(R)$$

Solution: Clearly W is not a T-invariant subspace of V since if we take $f(x) = x^2$, then $T(f(x)) = x^3$ which is not in W.

2. Sec. 5.4 Problem 3

Let T be a linear operator on a finite dimensional bector space V. Prove that the following subspaces are T-invariant subspaces of V.

- (a) $\{0\}$ and V
- (b) N(T) and R(T)
- (c) E_{λ} for any eigenvalue λ of T

Solution: Case: $\{0\}$

This is trivial since T(0) = 0 and $0 \in \{0\}$.

Case: V

This is also trivial since T(v) = w for any $v \in V$ and $w \in V$.

Case: N(T)

Let $v \in N(T)$, then T(v) = 0. Since T is a linear operator, T(0) = 0 and $0 \in N(T)$.

Thus N(T) is a T-invariant subspace of V.

Case: R(T)

Let $v \in R(T)$, then T(v) = w. $w \in R(t)$ by definition of R(T). Thus R(T) is a T-invariant subspace of V.

Case: E_{λ}

Let $v \in E_{\lambda}$, then $T(v) = \lambda v$. Since T is a linear operator, $T(\lambda v) = \lambda T(v) = \lambda^2 v$. Thus E_{λ} is a T-invariant subspace of V.

3. Sec. 5.4 Problem 6(a) For each of the linear operator T on the vector space V, find an ordered basis for the T-cyclic subspace generated by the vector z.

$$V = R^4$$
 $T(a, b, c, d) = (a + b, b - c, a + c, a + d)$ $z = e_1$

Solution: Since T is a linear operator we can say $T = L_A$ for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Let W be the T-cyclic subspace generated by z and γ be the basis of W. We know that the generating set of W is $\{z, T(z), T^2(z), \ldots, T^{n-1}(z)\}$. Thus we need the longest LI set of vectors from this set.

Thus

$$T(z) = (1, 0, 1, 1)$$

 $T^{2}(z) = (1, -1, 2, 2)$
 $T^{3}(z) = (0, -3, 3, 3)$

Clearly $T^3(z) = -3T(z) + 3T^2(z)$. Thus $\gamma = \{z, T(z), T^2(z)\}$ is a basis for W. Now we can see that for any $v \in W$, $v = a_1z + a_2T(z) + a_3T^2(z)$. Which implies $T(v) = a_1T(z) + a_2T^2(z) + a_3T^3(z) = (a_1 - 3a_3)T(z) + (a_2 + 3a_3)T^2(z)$ which is in W.

Thus we can see that W is a T-invariant subspace of V.

4. Sec. 5.4 Problem 6(b) For each of the linear operator T on the vector space V, find an ordered basis for the T-cyclic subspace generated by the vector z.

$$V = P_3(R)$$
 $T(f(x)) = f''(x)$ $z = x^3$

Solution: We can see that $T = L_A$ for

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Let W be the T-cyclic subspace generated by z and γ be the basis of W. We know that the generating set of W is $\{z, T(z), T^2(z), \ldots, T^{n-1}(z)\}$. Thus we need the longest LI set of vectors from this set to be the basis for W. Thus

$$T(z) = 6x$$
$$T^2(z) = 0$$

We can see that for any k > 2, $T^k(z) = 0$. Thus $\gamma = \{z, T(z)\} = \{x^3, x\}$ is a basis for W.

5. Sec. 5.4 Problem 9 (for 6(a),(b)) For each Linear operator T and cyclic subspace W in Exercise 6, compute the characteristic polynomial of T_W in two ways as in Example 6.

Solution: Case: 6(a)

By means of Theorem 5.21 we can see that $T^3(z) = -3T(z) + 3T^2(z)$. Hence

$$0z + 3T(z) - 3T^{2}(z) + T^{3}(z) = 0$$

Therefore by Theorem 5.21, the characteristic polynomial of T_W is

$$f(t) = (-1)^3(0 + 3t - 3t^2 + t^3) = -t^3 + 3t^2 - 3t$$

By means of determinants we can see that $\gamma = \{z, T(z), T^2(z)\}$ is a basis for W. $T(z) = (1, 0, 1, 1), T^2(z) = (1, -1, 2, 2), T^3(z) = (0, -3, 3, 3).$

$$T(z) = (1, 0, 1, 1) \implies [(0, 1, 0)]_{\gamma}$$

 $T^{2}(z) = (1, -1, 2, 2) \implies [(0, 0, 1)]_{\gamma}$
 $T^{3}(z) = (0, -3, 3, 3) \implies [(0, -3, 3)]_{\gamma}$

Thus $[T_W]_{\gamma} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix}$. Thus the characteristic polynomial of T_W is

$$f(t) = det(A - tI) = \begin{vmatrix} -t & 0 & 0\\ 1 & -t & -3\\ 0 & 1 & 3 - t \end{vmatrix}$$

$$= -t \begin{vmatrix} -t & -3 \\ 1 & 3 - t \end{vmatrix} = -t(t^2 - 3t + 3) = -t^3 + 3t^2 - 3t$$

Case: 6(b)

By means of Theorem 5.21: we can see that $T^2(z) = 0$. Hence

$$0z + 0T(z) + T^2(z) = 0$$

Therefore by Theorem 5.21, the characteristic polynomial of T_W is

$$f(t) = (-1)^2(0 + 0t + t^2) = t^2$$

By means of determinants we can see that $\gamma = \{z, T(z)\} = \{x^3, x\}$ is a basis for W. $T(z) = 6x, T^2(z) = 0$.

$$T(z) = 6x \implies [(0,6)]_{\gamma}$$

 $T^2(z) = 0 \implies [(0,0)]_{\gamma}$

Thus $[T_W]_{\gamma} = \begin{bmatrix} 0 & 0 \\ 6 & 0 \end{bmatrix}$. Thus the characteristic polynomial of T_W is

$$f(t) = det(A - tI) = \begin{vmatrix} -t & 0 \\ 6 & -t \end{vmatrix} = t^2$$

6. Sec. 5.4 Problem 10 (for 6(a),(b))

For each linear operator in Exercise 6, find the characteristic polynomial f(t) of T, and verify that the characteristic polynomial of T_W divides f(t).

Solution: Case: 6(a)

We can see that $T = L_A$ for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial of T is

$$f(t) = det(A - tI) = \begin{vmatrix} 1 - t & 1 & 0 & 0 \\ 0 & 1 - t & -1 & 0 \\ 1 & 0 & 1 - t & 0 \\ 1 & 0 & 0 & 1 - t \end{vmatrix} = t^4 - 4t^3 + 6t^2 - 3t$$

The characteristic polynomial of T_W is

$$f(t) = -t^3 + 3t^2 - 3t$$

We can see that $f(t) = (1-t)(t^3-3t^2+3t)$. Thus $f_W(t)$ divides f(t).

Case: 6(b)

We can see that $T = L_A$ for

$$A = \begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The characteristic polynomial of T is

$$f(t) = det(A - tI) = \begin{vmatrix} -t & 0 & 2 & 0 \\ 0 & -t & 0 & 6 \\ 0 & 0 & -t & 0 \\ 0 & 0 & 0 & -t \end{vmatrix} = t^4$$

The characteristic polynomial of T_W

$$f(t) = t^2$$

We can see that $f(t) = t^2(t^2)$. Thus $f_W(t)$ divides f(t).

7. Sec. 5.4 Problem 16

Let T be a linear operator on a finite-dimensional vector space V

- (a) Prove that if the characteristic polynomial of T splits, then so oes the characteristic polynomial of the restriction of T to any T-invariant subspace of V.
- (b) Deduce if the characteristic polynomial of T splits, then any non trivial T-invariant subspace of V contains an eigenvector of T.

Solution: Part (a)

Assume the characteristic polynomial of T splits. Let W be a T-invariant subspace of V. Let T_W be the restriction of T to W. Let γ be a basis for W. Since T and T_W is a linear operator, $T = L_A$ for some A and $T_W = L_B$ for some B. We can see that B is a submatrix of A. Thus the characteristic polynomial of T_W is a factor of the characteristic polynomial of T.

Thus if the characteristic polynomial of T splits, then so does the characteristic polynomial of the restriction of T to any T-invariant subspace of V.

Part (b)

Assume the characteristic polynomial of T splits. Let W be a non-trivial T-invariant

subspace of V. By part (a) we know that the characteristic polynomial of T_W is a factor of the characteristic polynomial of T. Since the roots of the characteristic polynomial are eigenvalues of a Linear operator, there must be some eigenvector of T in W.

8. Sec. 5.4 Problem 18

Let A be an $n \times n$ matrix with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0$$

- (a) Prove that A is invertable iff $a_0 \neq 0$.
- (b) Prove that of A is invertable, then $A^-1 = (-1/a_0)[(-1)^n A^{n-1} + a_{n-1}A^{n-2} + \cdots + a_1I]$.
- (c) Use (b) to compute A^{-1} for

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{bmatrix}$$

Solution: Part (a)

We can see that $a_0 = det(A)$ as the characteristic polynomial is generated by det(A - tI) and if we take t = 0 we get det(A) and all elements of f(t) (the characteristic polynomial) go to zero except the constant a_0 term. Thus $a_0 = det(A)$.

Thus A is invertible iff $det(A) \neq 0$ iff $a_0 \neq 0$.

Part (b)

From the Cayley Hamilton theorem we know that a matrix A satisfies its characteristic polynomial. Thus f(A) = 0. Thus we can see that

$$(-1)^n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 I = A_0$$

were A_0 is the zero matrix. Thus we can see that

$$A((-1)^n A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1 I) = -a_0 I$$

Thus $A^{-1} = (-1/a_0)[(-1)^n A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I].$

Part (c)

First we can compute the characteristic polynomial of A as

$$det(A - tI) = \begin{vmatrix} 1 - t & 2 & 1 \\ 0 & 2 - t & 3 \\ 0 & 0 & -1 - t \end{vmatrix} = (1 - t)(2 - t)(-1 - t) = -t^3 + 2t + t - 2$$

Thus
$$a_0 = -2, a_1 = 1, a_2 = 2$$
 We also can see that $A^2 = \begin{bmatrix} 1 & 6 & 6 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ Thus

$$A^{-1} = (1/2) \left(A^2 + 2A + I \right)$$

Pranav Tikkawar 01:640:350H Homework 9

$$= (1/2) \left(-\begin{bmatrix} 1 & 6 & 6 \\ 0 & 4 & 3 \\ 0 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right)$$
$$= \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1/2 & -3/2 \\ 0 & 0 & -1 \end{bmatrix}$$

Clearly we can see that this is the inverse of A.

9. Sec. 5.4 Problem 21

Let T be a linear operator on a two-dimensional vector space V. Prove that either V is a T-cyclic subspace of itself or T = cI for some scalar c.

Solution: Let T be a linear operator on a two-dimensional vector space V. Let z be a vector in V.

We need to prove that either V is a T-cyclic subspace of itself or T=cI for some scalar c.

Let us consider two cases T(z) = cIz and $T(z) \neq cIz$.

In other words we will consider if z is an eigenvector of T or not.

Case 1: T(z) = cIz

Clearly we get the our second condition that we need to prove of T=cI for some scalar c.

Case 2: $T(z) \neq cIz$

Let us consider the set $\{z, T(z)\}$. Since $T(z) \neq cIz$, we can see that z and T(z) are linearly independent. Thus $\{z, T(z)\}$ is a basis for V since it is a linearly independent set of vectors in a two-dimensional vector space.