Team 5 Codebook - Baby Cry Project

Brandon Erickson, Bryan Mui, Carolynn Rui, Jeremy Reyes, Ivy Le, Zijia Zhang

Libraries:

```
library(tidyverse)
library(readxl)
library(dplyr)
library(ggplot2)
library(ggpubr)
library(janitor)
library(randomForest)
library(mice)
library(caret)
library(xgboost)
library(MLmetrics)
library(reshape2)
library(pROC)
library(factoextra)
library(e1071)
library(stats)
library(igraph)
library(kernlab)
library(dbscan)
library(knitr)
library(mclust)
library(cluster)
library(nnet)
library(GGally)
library(skimr)
```

```
Rows: 1250 Columns: 27
-- Column specification ------

Delimiter: ","

chr (2): ParentFile, Filename

dbl (25): shimmerLocaldB_sma3nz_stddevNorm, loudness_sma3_percentile20.0, F3...

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

demographics <- read_csv("./Data/demographics_students.csv")
```

full_data_odd <- read_csv("./Data/filtered_full_data_odd.csv")</pre>

```
Rows: 2500 Columns: 6
-- Column specification ------
Delimiter: ","
chr (4): ID, Reason, Age, Gender
dbl (2): Date, sample

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Cleaning:

Find the groups of demographics dataset:

```
demographics %>%
  group_by(Reason) %>%
  summarise(count = n())
```

```
# A tibble: 5 x 2
Reason count
<hr/>
<hr/>
<hr/>
1 Diaper-Change 500<br/>
2 Fussy 500<br/>
3 Hungry 500<br/>
4 Pain 500<br/>
5 Tired 500
```

I see some no email and no gender and no age. clean the demographics data

```
# demographics <- demographics %>%
# filter(ID != 'NO-EMAIL', Age != 'NO-AGE', Gender != 'NO-GENDER')
# demographics %>%
# group_by(Reason) %>%
# summarise(count = n())
```

```
full_data_odd %>%
  group_by(ParentFile) %>%
  summarise(count = n())
```

```
demographics %>%
  group_by(Reason) %>%
  summarise(count = n())
```

```
# A tibble: 5 x 2
Reason count
<chr> <chr> 1 Diaper-Change 500
2 Fussy 500
3 Hungry 500
4 Pain 500
5 Tired 500
```

Join the two datasets:

```
# # Filter out email and no email separately
# demographics_no_em <- demographics %>%
   filter(ID == "NO-EMAIL")
# demographics_em <- demographics %>%
   filter(ID != "NO-EMAIL")
# full_data_no_em <- full_data_odd %>%
   filter(str_detect(Filename, "^NO-EMAIL"))
# full_data_em <- full_data_odd %>%
   filter(!str_detect(Filename, "^NO-EMAIL"))
# For the email, join by ID
full_data_mod <- full_data_odd %>%
 #mutate(ID = str_split(Filename, "_")[1]) %>%
 separate(Filename, into = paste0("Comp", 1:8), sep = "_") %>%
 relocate(paste0("Comp", 1:8), .before = ParentFile) %>%
 rename(ID = `Comp1`, Reason = Comp2, Age = Comp3, Gender = Comp4, Date = Comp5, Sample = Comp6)
  select(-Comp7, -Comp8)
# join_em <- left_join(full_data_em, demographics_em)</pre>
# For the no email, join by the sample ID plus date
```

```
# write_csv(full_data_mod, "full_data_mod.csv")
```

Question 1: EDA

```
# reading in data
full_data_odd <- read.csv("./Data/filtered_full_data_odd.csv", header = TRUE)
demographics <- read.csv("./Data/demographics_students.csv", header = TRUE)</pre>
```

```
# analyze rows
head(demographics)
```

```
      ID
      Reason
      Age
      Gender
      Date

      1 bfb4662ea7ea4b8468d74c7ad1909ef1
      Diaper-Change
      49
      female
      181002

      2 79eb1cf511da7ca57dd1996f0e0dca9e
      Diaper-Change
      122
      female
      210811

      3 1bb7c3a247deb74ec63b50048d97295b
      Diaper-Change
      NO-AGE
      male
      210609
```

```
4 aefc074bf9d634beeb762f45600060b7 Diaper-Change NO-AGE female 220223
5 NO-EMAIL Diaper-Change NO-AGE NO-GENDER 181223
6 5c78e65a7f0c779bc56ef188171ec829 Diaper-Change 241 female 180810 sample
1 340074
2 1099184
3 1048016
4 1306174
5 402716
```

Reason Distribution Bar Plot

283764

```
# see how the distributions stack up
table(demographics$Reason)
```

 Diaper-Change
 Fussy
 Hungry
 Pain
 Tired

 500
 500
 500
 500
 500

```
barplot(table(demographics$Reason),
    col = "lightgreen",
    main = "Cry Type Distribution",
    ylab = "Count")
```

Cry Type Distribution

Reason with Gender Proportion

```
# see how the reasons vary with gender
table(demographics$Gender, demographics$Reason)
```

```
Diaper-Change Fussy Hungry Pain Tired
female
                             215
                                    181
                                           167
                                                198
                                                      189
                              189
                                                      191
male
                                    199
                                           184
                                                181
MULT-REDCAP-GENDER
                               0
                                    0
                                             0
                                                  0
                                                        2
NO-GENDER
                               96
                                    120
                                           149 121
                                                      118
```

```
library(ggplot2)
ggplot(demographics, aes(x = Reason, fill = Gender)) +
  geom_bar(position = "fill") +
  labs(title = "Gender Proportion by Cry Type", y = "Proportion") +
  theme_minimal()
```


Chi-Square

```
# chi square test between gender and reason
chisq.test(table(demographics$Gender, demographics$Reason))
```

Warning in stats::chisq.test(x, y, \dots): Chi-squared approximation may be incorrect

```
Pearson's Chi-squared test
```

```
data: table(demographics$Gender, demographics$Reason)
X-squared = 27.608, df = 12, p-value = 0.00631
```

ANOVA w/ removed missing ages

```
# anova between age and reason
# convert missing ages to NA
demographics$Age[demographics$Age == "NO-AGE"] <- NA
demographics$Age <- as.numeric(demographics$Age)</pre>
```

Warning: NAs introduced by coercion

```
anova_result <- aov(Age ~ Reason, data = demographics)
summary(anova_result)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
Reason 4 3832052 958013 3.648 0.00575 **
Residuals 1761 462429901 262595
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
734 observations deleted due to missingness
```

```
# visuaally see age by reason
boxplot(Age ~ Reason, data = demographics,
    main = "Age Distribution by Cry Type",
    xlab = "Cry Type",
    ylab = "Age (Months)",
    col = "lightgreen")
```

Age Distribution by Cry Type

Scree Plot by Cry Acoustics Dimensions

```
# see how the acoustic feastures measure
library(factoextra)
# get numeric only
acoustic_features <- full_data_odd %>%
    select(where(is.numeric)) %>%
    na.omit()

#scale for scree plot
scaled_features <- scale(acoustic_features)
pca <- prcomp(scaled_features, center = TRUE, scale. = TRUE)

# plot the scree plot
fviz_eig(pca, addlabels = TRUE, barfill = "steelblue") +
    labs(title = "Scree Plot")</pre>
```


Summary Statistics

data6 <- read.csv("full_data_cleaned_without_nas.csv", header=TRUE) #loading data
data <- data6

Summary stats variables
skim(data6)</pre>

Table 1: Data summary

Name	data6
Number of rows	868
Number of columns	33
Column type frequency:	
character	4
numeric	29
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
ID	0	1	32	32	0	822	0
Reason	0	1	4	13	0	5	0
Gender	0	1	4	6	0	2	0
ParentFile	0	1	4	6	0	5	0

Variable type: numeric

skim_variable n_miss	sin g omplete_	_ra tn ean	sd	p0	p25	p50	p75	p100	hist
newID 0	1	620.69	361.92	1.00	309.50	618.00	941.25	1250.00	
Age 0	1	173.88	689.98	-1.00	37.00	73.50	139.00	11561.00)
Date 0	1	189951	123503.7	0 180516.	0080628	.0080825	.5095667.	75 20307.0	00
Sample 0	1	471968	45408597.	23 4262.0	0 153291	.75305825	.0 6 67055.	75 32 10 11.	.00
$shimmerLocaldB_sma3nz_stddevN0r$	m 1	0.74	0.23	0.00	0.59	0.72	0.88	1.76	
loudness_sma3_percentile20.0 0	1	0.31	0.26	0.01	0.13	0.23	0.43	2.63	
$F3 amplitude Log Rel F0_sma3nz_am@a$	an 1	-96.11	41.59	-	-	-89.53	-65.08	-4.44	
				201.00	125.00				
loudness_sma3_percentile50.0 0	1	0.85	0.62	0.02	0.35	0.71	1.20	3.74	
loudness_sma3_amean 0	1	0.98	0.53	0.07	0.55	0.92	1.30	3.35	
F2amplitudeLogRelF0_sma3nz_am@a	an 1	-94.68	42.17	-	-	-88.53	-63.58	-0.75	
				201.00	124.14				
F3amplitudeLogRelF0_sma3nz_std@deltacker	evNorm 1	-1.11	0.79	-15.33	-1.33	-1.02	-0.72	0.00	
MeanUnvoicedSegmentLength 0	1	0.33	0.38	0.03	0.16	0.23	0.38	4.93	
$F2 amplitude Log Rel F0_sma3nz_std@delta.$	evNorm 1	-1.26	3.27	-95.48	-1.40	-1.06	-0.74	0.00	
F0semitoneFrom27.5Hz_sma3nz_per	centile80.01	49.94	4.40	0.00	47.77	49.63	51.64	62.20	
F1amplitudeLogRelF0_sma3nz_am@a	an 1	-	44.14	-	-	-	-71.78	-12.54	
		105.95		201.00	140.67	100.39			
F0semitoneFrom27.5Hz_sma3nz_p&	lrange0.2 1	6.75	6.53	0.00	3.11	4.67	7.96	47.69	
$alphaRatioV_sma3nz_stddevNorm0$	1	1.24	80.10	-	-1.34	0.34	1.57	2138.09	
				725.55					
StddevUnvoicedSegmentLength 0	1	0.27	0.24	0.00	0.11	0.19	0.33	1.86	
loudness_sma3_stddevNorm 0	1	0.76	0.25	0.25	0.59	0.72	0.87	1.98	
loudness_sma3_percentile80.0 0	1	1.62	0.89	0.10	0.88	1.56	2.18	5.22	
$shimmerLocaldB_sma3nz_amean \ \ 0$	1	1.05	0.34	0.00	0.80	1.01	1.25	2.58	
$F0 semitone From 27.5 Hz_sma 3 nz_st 0 details a semisor of the contraction of the cont$	devNorm 1	0.11	0.08	0.00	0.06	0.09	0.13	0.68	
F0semitoneFrom27.5Hz_sma3nz_per	centile50.01	47.26	4.46	0.00	45.66	47.52	49.20	59.41	
HNRdBACF_sma3nz_amean 0	1	7.72	3.12	-2.41	5.59	7.85	9.93	16.11	
$slopeV500.1500_sma3nz_amean$ 0	1	0.00	0.01	-0.04	-0.01	0.00	0.01	0.05	
$loudness_sma3_meanRisingSlope \ \ 0$	1	7.96	5.34	-1.54	4.03	6.87	10.52	34.88	
$alphaRatioV_sma3nz_amean$ 0	1	0.36	8.08	-27.30	-5.38	0.22	5.71	24.36	
$F0 semitone From 27.5 Hz_sma 3 nz_p \textcircled{r}$	centile20.01	43.19	6.94	0.00	41.92	44.81	46.79	56.82	
$F1 amplitude Log Rel F0_sma3nz_std0 log Rel$	evNorm 1	-1.05	0.58	-5.03	-1.32	-0.98	-0.65	0.00	

Histogram of Features

```
geom_histogram(bins = 30, fill = "steelblue", color = "white") +
facet_wrap(~ Feature, scales = "free", ncol = 2) +
theme_minimal() +
labs(title = "Distribution of Selected Acoustic Features")
```

Distribution of Selected Acoustic Features

Distribution After Cleaning Data:

```
# eda: dist after cleaing data
ggplot(data6, aes(x = Reason, fill = Reason)) +
  geom_bar() +
  theme_minimal() +
  labs(title = "Distribution of Parent-Labeled Cry Reasons", x = "Reason", y = "Count") +
  theme(axis.text.x = element_text(angle = 30, hjust = 1))
```


Reason by Gender Plot

```
# reason by gender plot
ggplot(data6, aes(x = Gender, fill = Reason)) +
   geom_bar(position = "fill") +
   scale_y_continuous(labels = scales::percent) +
   labs(title = "Cry Reasons by Gender (Proportion)", y = "Proportion") +
   theme_minimal()
```

Reason

PCA Components

```
pca_data <- data %>% # obtain pca data for narrowing variables
  select(starts_with("shimmer"),
         starts_with("F0"),
         starts_with("alpha"),
         starts_with("F1"),
         starts_with("F2")) %>%
  na.omit()
scaled_pca_data <- scale(pca_data) # scaling data</pre>
pca <- prcomp(scaled_pca_data, center = TRUE, scale. = TRUE)</pre>
# plot the pca
fviz_eig(pca,
         addlabels = TRUE,
         barfill = "steelblue",
         barcolor = "black") +
  labs(title = "Scree Plot: Variance Explained by Principal Components",
       x = "Principal Component",
       y = "Percentage of Variance Explained")
```

Scree Plot: Variance Explained by Principal Components

head(pca\$rotation)

PC1 PC2 PC3
0.14060167 -0.2277505 0.1181830
-0.19888243 0.2829413 -0.2517309
0.08453555 0.3675123 -0.4520854
-0.31991083 -0.1730493 -0.4920759
-0.33579359 -0.2221301 -0.3931566
0.19478719 0.4187253 -0.2476559
PC4 PC5 PC6
0.6113230 -0.078572404 -0.154634749
-0.4048324 0.009026781 0.155641722
0.3462639 -0.047279228 0.052364008
0.1456982 -0.030310265 0.025561808
0.1045340 -0.012357769 0.006258527
0.3490690 -0.034529828 0.038692272
PC7 PC8 PC9
-0.41584646 0.57751810 0.05605189
0.13664452 0.77599034 0.05747031
0.10803950 -0.04580176 -0.21182055
-0.04104088 -0.10468064 0.34650253
-0.10110678 -0.04419690 -0.65588479
0.15347305 -0.11672533 0.38471018
PC10 PC11
0.003899279 0.01308935
-0.063155752 -0.02233004
0.538763936 0.03771055
0.280639918 -0.06396673
-0.450214466 0.16147718
-0.644141475 -0.02395427

```
PC12 PC13 shimmerLocaldB_sma3nz_stddevNorm -0.028435276 1.570508e-08 shimmerLocaldB_sma3nz_amean -0.014266926 2.495110e-08 F0semitoneFrom27.5Hz_sma3nz_percentile80.0 0.049052825 4.192829e-01 F0semitoneFrom27.5Hz_sma3nz_pctlrange0.2 0.002301818 -6.222620e-01 F0semitoneFrom27.5Hz_sma3nz_stddevNorm 0.032875355 -1.672766e-08 F0semitoneFrom27.5Hz_sma3nz_percentile50.0 0.013501964 2.981236e-08
```

Question 2: Unsupervised learning

K-means Clustering Attempt 1

```
data <- read.csv("./full_data_cleaned_without_nas.csv", header=TRUE) #loading data
data2 <- data
data2$Reason <- as.factor(data$Reason) # factor data

set.seed(333) # set up training data
trainIndex <- createDataPartition(data2$Reason, p = 0.8, list = FALSE)
trainData <- data2[trainIndex, ]
testData <- data2[-trainIndex, ]

ctrl <- trainControl(method = "cv", number = 10, verboseIter = FALSE)</pre>
```

```
# tart fresh
data5 <- data

# only acoustic data
acoustic_numeric <- data5 %>%
    select(where(is.numeric))

# Scale the features
acoustic_scaled <- scale(acoustic_numeric)

#k-means clustering (k=5)
set.seed(123)
k <- 5
kmeans_res <- kmeans(acoustic_scaled, centers = k, nstart = 25)

# add cluster labels to data5
data5$Cluster <- factor(kmeans_res$cluster)

#print results
table(Cluster = data5$Cluster, Reason = data5$Reason)</pre>
```

Reason

```
Cluster Diaper-Change Fussy Hungry Pain Tired
     1
                  45
                        22
                               50
                                    56
                                          28
     2
                  45
                        34
                               76
                                    47
                                          61
     3
                  48
                        70
                              41
                                    28
                                          40
                                    7
      4
                   9
                         8
                               5
                                          7
                  32
                              0
     5
                        44
                                    30
                                          35
```

```
data5$Cluster <- factor(data5$Cluster) # facotr data</pre>
#prepare dataset for classification
dataset_for_cluster_pred <- data5 %>%
  select(-Reason, -Gender, -Age, -newID, -Date, -Sample) # keep acoustic + Cluster
# 10-fold cross-validation
set.seed(123)
ctrl <- trainControl(method = "cv", number = 10, verboseIter = FALSE)</pre>
# rando forest to predict clusters from features
invisible(capture.output({
  suppressMessages({
    suppressWarnings({
      cluster_pred_model <- train(</pre>
        Cluster ~ .,
        data = dataset_for_cluster_pred,
        method = "rf",
        trControl = ctrl
    })
  })
}))
# CV accuracy for predicting clusters
mean(cluster_pred_model$resample$Accuracy)
```

[1] 0.7799013

K means Clustering w/ PCA

K-means Clustering of Baby Cries (PCA Projection)


```
# table for predicitng clusters
table(Cluster = data5$Cluster, Reason = data5$Reason)
```

Reason

```
Cluster Diaper-Change Fussy Hungry Pain Tired
     1
                  45
                        22
                              50
                                   56
     2
                  45
                        34
                              76
                                   47
                                         61
     3
                  48
                        70
                             41
                                   28
                                         40
     4
                   9
                              5
                                   7
                                         7
                        8
     5
                  32
                        44
                              0
                                   30
                                         35
```

```
data7 <- data
# ACOUSTIC ONLY AGAIN
acoustic_only2 <- data7 %>%
    select(-Reason, -Gender, -Age, -newID, -ID, -Date, -Sample, -ParentFile)
acoustic_scaled <- scale(acoustic_only2)
# K-means clustering
set.seed(123)
kmeans_model <- kmeans(acoustic_scaled, centers = 5, nstart = 25)
# Add cluster labels
data7$Cluster <- as.factor(kmeans_model$cluster)</pre>
```

```
set.seed(123)
ctrl <- trainControl(method = "cv", number = 10, verboseIter = FALSE)</pre>
```

[1] 0.2499599

```
# table for results
table_cluster_reason <- table(data7$Cluster, data7$Reason)
table_cluster_reason</pre>
```

```
Diaper-Change Fussy Hungry Pain Tired
          53
               59
                     60 49
                               67
1
2
          30
               20
                     39
                          41
                               31
                     39 29
             72
3
          50
                              46
4
          37
               19
                     29
                          42
                               20
5
           9
               8
                     5 7
                              7
```

Cluster vs Reason Heatmap


```
# Create a contingency table
table(data7$Cluster, data7$Reason)
```

```
Diaper-Change Fussy Hungry Pain Tired
              53
                     59
                             60
                                   49
                                          67
1
2
              30
                     20
                             39
                                   41
                                          31
3
              50
                     72
                             39
                                   29
                                          46
4
              37
                     19
                             29
                                   42
                                          20
5
               9
                      8
                              5
                                    7
                                           7
```

```
# data frame too
cluster_reason_df <- as.data.frame(table(data7$Cluster, data7$Reason))
print(cluster_reason_df)</pre>
```

```
Var1
                  Var2 Freq
1
      1 Diaper-Change
                          53
2
      2 Diaper-Change
                          30
3
      3 Diaper-Change
                          50
      4 Diaper-Change
4
                          37
5
      5 Diaper-Change
                           9
6
      1
                 Fussy
                          59
7
      2
                 Fussy
                          20
8
      3
                          72
                 Fussy
9
      4
                 Fussy
                          19
10
      5
                 Fussy
                           8
11
      1
                Hungry
                          60
12
      2
                Hungry
                          39
13
      3
                Hungry
                          39
```

```
14
     4
              Hungry
                       29
15
     5
                        5
              Hungry
                       49
16
     1
                Pain
17
     2
                Pain
                      41
                       29
18
     3
                Pain
19
     4
                Pain
                      42
                       7
20
     5
                Pain
21
               Tired 67
     1
22
     2
               Tired 31
23
     3
               Tired 46
24
     4
               Tired
                       20
25
               Tired
                       7
     5
```

```
# show proportions within each cluster
prop.table(table(data7$Cluster, data7$Reason), margin = 1)
```

```
Diaper-Change Fussy Hungry Pain Tired
1 0.1840278 0.2048611 0.2083333 0.1701389 0.2326389
2 0.1863354 0.1242236 0.2422360 0.2546584 0.1925466
3 0.2118644 0.3050847 0.1652542 0.1228814 0.1949153
4 0.2517007 0.1292517 0.1972789 0.2857143 0.1360544
5 0.2500000 0.2222222 0.1388889 0.1944444 0.1944444
```

K-means Clustering Attempt 2

```
# loading incomplete and complete data into R
data_with_nas <- read.csv("full_data_cleaned_include_nas.csv")</pre>
data_complete <- read.csv("full_data_cleaned_without_nas.csv")</pre>
# removing columns (newID, ID, Date, Sample, ParentFile)
rf_with_nas <- read.csv("full_data_cleaned_include_nas.csv")[, -c(1, 2, 6:8)]
rf_complete <- read.csv("full_data_cleaned_without_nas.csv")[, -c(1, 2, 4:8)]
rf_with_nas$Reason <- as.factor(rf_with_nas$Reason)</pre>
rf_complete$Reason <- as.factor(rf_complete$Reason)</pre>
# create method vector for mice
methods <- make.method(rf_with_nas)</pre>
rf_with_nas$Gender[rf_with_nas$Gender == "MULT-REDCAP-GENDER"] <- NA
rf_with_nas$Gender <- as.factor(rf_with_nas$Gender)</pre>
init <- mice(rf_with_nas, maxit = 0)</pre>
methods <- init$method</pre>
methods["Reason"] <- ""</pre>
methods["Gender"] <- "logreg" # or "polyreg" if >2 levels
# impute missing values using mice
imputed_data <- mice(rf_with_nas, m = 1, method = methods, seed = 605794011)</pre>
```

```
iter imp variable
1  1 Age Gender
2  1 Age Gender
```

```
3
      1 Age Gender
  4
      1 Age Gender
  5
      1 Age Gender
Warning: Number of logged events: 10
data_imputed <- complete(imputed_data, action = 1)</pre>
# ensure target and gender are factors
data_imputed$Reason <- as.factor(data_imputed$Reason)</pre>
data_imputed$Gender <- as.factor(data_imputed$Gender)</pre>
# set seed for reproducibility
set.seed(605794011)
# train/test split
train_index2 <- createDataPartition(data_imputed$Reason, p = 0.8, list = FALSE)
train_imputed <- data_imputed[train_index2, ]</pre>
test_imputed <- data_imputed[-train_index2, ]</pre>
# remove categorical columns
clust_data <- data_imputed %>%
  select_if(is.numeric)
# scale (standardize) the data
clust_data_scaled <- scale(clust_data)[, -1]</pre>
# set seed for reproducibility
set.seed(605794011)
# establish k as number of groups
k < -5
# run k-means variable
kmeans_result <- kmeans(clust_data_scaled, centers = k, nstart = 25)</pre>
print(kmeans_result)
K-means clustering with 5 clusters of sizes 388, 489, 53, 1, 319
Cluster means:
  shimmerLocaldB_sma3nz_stddevNorm loudness_sma3_percentile20.0
                                                       -0.5481103
                        -0.32181019
                         0.32973971
                                                       -0.2367317
                        -0.44991143
                                                       -0.1268494
                        -0.08906947
                                                        0.8788965
                        -0.03901565
                                                        1.0478769
  F3amplitudeLogRelF0_sma3nz_amean loudness_sma3_percentile50.0
                         -1.0652047
                                                       -0.8046027
                          0.3356373
                                                       -0.1738951
                         -0.8886649
                                                       -0.4146459
                          2.2333977
                                                       -0.1016758
                                                        1.3144153
                          0.9217512
  loudness_sma3_amean F2amplitudeLogRelF0_sma3nz_amean
          -0.73942615
                                              -1.0698033
```

1

2

3

4

5

1

2

3 4

5

```
2
          -0.19241236
                                               0.3486303
3
          -0.43838587
                                              -0.8814712
           0.04614704
                                               2.2534950
5
           1.26700719
                                               0.9061691
  F3amplitudeLogRelF0_sma3nz_stddevNorm MeanUnvoicedSegmentLength
1
                               0.63608777
                                                           0.6048689
2
                             -0.02150155
                                                          -0.2439456
3
                              0.63161267
                                                           0.4773037
4
                            -19.17557759
                                                          -0.7801443
5
                             -0.78554135
                                                          -0.4386102
  F2amplitudeLogRelF0_sma3nz_stddevNorm
1
                              0.21075295
2
                              0.01651836
3
                               0.20453175
4
                            -34.05784428
5
                             -0.20887761
  F0semitoneFrom27.5Hz_sma3nz_percentile80.0 F1amplitudeLogRelF0_sma3nz_amean
                                                                       -1.0711121
1
                                    0.09795817
2
                                   -0.13437268
                                                                        0.4149819
3
                                                                       -0.7709568
                                   -1.26674525
4
                                    2.17632572
                                                                        1.7622032
5
                                    0.29047538
                                                                        0.7892284
  F0semitoneFrom27.5Hz_sma3nz_pctlrange0.2 alphaRatioV_sma3nz_stddevNorm
1
                                 -0.06616199
                                                               -0.017495302
2
                                 -0.20140314
                                                               -0.048697149
3
                                  3.25423181
                                                               -0.025148063
4
                                  0.16305650
                                                               -0.005821306
5
                                -0.15197604
                                                                0.100124613
  StddevUnvoicedSegmentLength loudness_sma3_stddevNorm
1
                    0.85781251
                                              0.66657536
2
                   -0.30024284
                                             -0.12508868
3
                   -0.04802405
                                             -0.01923197
4
                   -1.00374957
                                             -0.43289505
5
                   -0.57198583
                                             -0.61445357
  loudness_sma3_percentile80.0 shimmerLocaldB_sma3nz_amean
                     -0.6673099
                                                    0.4222571
1
2
                     -0.1604694
                                                   -0.4704828
3
                     -0.4741000
                                                    0.5366185
4
                     -0.2659146
                                                   -0.1858470
5
                      1.1372382
                                                    0.1190452
  FOsemitoneFrom27.5Hz_sma3nz_stddevNorm
                               -0.01272255
1
2
                              -0.18455482
3
                               3.13545130
4
                               -0.33707109
5
                               -0.22149904
  F0semitoneFrom27.5Hz_sma3nz_percentile50.0 HNRdBACF_sma3nz_amean
1
                                                           -0.3489994
                                    0.08706357
2
                                   -0.04038745
                                                            0.5741044
3
                                   -2.00237605
                                                           -1.1221022
4
                                    1.71690887
                                                            0.5132584
5
                                    0.28331605
                                                           -0.2707432
  slopeV500.1500_sma3nz_amean loudness_sma3_meanRisingSlope
                    0.09406474
1
                                                    -0.3101952
2
                   -0.34319895
                                                    -0.2268026
```

```
3
                   -0.38939617
                                                    -0.2230488
4
                    2.18205869
                                                     1.1166997
5
                    0.46953952
                                                     0.7585175
  alphaRatioV_sma3nz_amean F0semitoneFrom27.5Hz_sma3nz_percentile20.0
                  0.0601328
                                                              0.12636406
1
2
                -0.4186523
                                                              0.09343233
3
                 -1.1745944
                                                             -3.82428437
4
                  2.9566687
                                                              1.31635629
5
                  0.7545025
                                                              0.33433558
  F1amplitudeLogRelF0_sma3nz_stddevNorm
1
                               0.5483013
2
                              -0.1205928
3
                               0.4802127
4
                               -2.4176686
5
                               -0.5542464
```

Clustering vector:

Within cluster sum of squares by cluster: [1] 5815.796 4821.056 2521.809 0.000 6146.645 (between_SS / total_SS = 38.2 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

Too few points to calculate an ellipse


```
# run pca analysis
pca_result <- prcomp(clust_data, scale. = TRUE)

# calculate proportion of variance explained
pve <- (pca_result$sdev)^2 / sum(pca_result$sdev^2)

# plot proportion of variance for principal components
plot(pve, type = "b", pch = 19, col = "steelblue", lwd = 2,</pre>
```

```
xlab = "Principal Component",
   ylab = "Proportion of Variance Explained",
   main = "PVE for Principal Components",
   cex.main = 1.2, cex.lab = 1.1, cex.axis = 0.9)

# add grid lines to graph
grid()

# label each point with exact variance value
text(x = 1:length(pve), y = pve,
   labels = round(pve, 2),
   pos = 3, cex = 0.4, col = "black")
```

Proportion of Variance Explained

PVE for Principal Components

print proportion of variance for PC1 and PC2
pve[1:2]

[1] 0.2904021 0.1183942

pve[1]+pve[2]

[1] 0.4087963

```
# create a data frame with cluster assignments and true labels
df <- data.frame(Cluster = clustered_data$Cluster, CryType = data_imputed$Reason)
# generate a contingency table: distribution of true labels within each cluster</pre>
```

```
label_distribution <- table(df$Cluster, df$CryType)

# neat printed table
kable(label_distribution, caption = "Distribution of Cry Types Within Each Cluster")</pre>
```

Table 4: Distribution of Cry Types Within Each Cluster

Diaper-Change	Fussy	Hungry	Pain	Tired
88	112	65	52	71
85	91	98	98	117
13	10	8	9	13
1	0	0	0	0
63	37	79	91	49

```
# convert to proportions within each cluster
prop_distribution <- prop.table(label_distribution, margin = 1)
# for proportions
kable(round(prop_distribution, 2), caption = "Proportion of Cry Types Within Each Cluster")</pre>
```

Table 5: Proportion of Cry Types Within Each Cluster

Diaper-Change	Fussy	Hungry	Pain	Tired
0.23	0.29	0.17	0.13	0.18
0.17	0.19	0.20	0.20	0.24
0.25	0.19	0.15	0.17	0.25
1.00	0.00	0.00	0.00	0.00
0.20	0.12	0.25	0.29	0.15

```
# data frame with cluster assignments, reasons and frequency associated with each cluster/reason
cluster_counts <- df %>%
 group_by(Cluster, CryType) %>%
 summarise(Frequency = n(), .groups = 'drop')
# plot each reason against the cluster assignments
ggplot(cluster_counts, aes(x = CryType, y = Frequency, fill = CryType)) +
 geom_bar(stat = "identity", show.legend = FALSE) +
 facet_wrap(~ Cluster, ncol = 2) +
 labs(
   title = "Distribution of Cry Reasons Within Each Cluster",
   x = "Cry Reason",
   y = "Frequency"
 theme_minimal(base_size = 12) +
 theme(
   axis.text.x = element_text(angle = 30, hjust = 1),
   strip.text = element_text(face = "bold")
 )
```

Distribution of Cry Reasons Within Each Cluster


```
# dimensions
dim(clust_data)
```

[1] 1250 26

Spectral Clustering

```
# generate random data for clustering
set.seed(605794011)
k < -5
# extract the first two principal components
PC1 <- pca_result$x[, 1]
PC2 <- pca_result$x[, 2]
# compute the similarity matrix
similarity_matrix <- exp(-dist(clust_data)^2)</pre>
# perform spectral decomposition
eigen_result <- eigen(similarity_matrix)</pre>
# extract the top-k eigenvectors
k_eigenvectors <- eigen_result$vectors[, 1:k]</pre>
# perform k-means clustering on the eigenvectors
cluster_assignments <- kmeans(k_eigenvectors, centers = k)$cluster</pre>
# visualize clusters
cluster_colors <- rainbow(k)</pre>
```

```
plot(PC1, PC2, col = cluster_colors[cluster_assignments], pch = 19, cex = 0.7,
    main = "Spectral Clustering with k-means", xlab = "PC1", ylab = "PC2")
legend("topright", legend = paste("Cluster", 1:k), col = cluster_colors, pch = 19)
```

Spectral Clustering with k-means

Gaussian Mixture Models

```
df <- read.csv("full_data_cleaned_without_nas.csv")

# Identify all numeric columns
numeric_cols <- sapply(df, is.numeric)
numeric_col_names <- names(df)[numeric_cols]

# Exclude the non-numeric/irrelevant columns
cols_to_exclude <- c("newID", "Age", "Date", "Sample")
numeric_data <- df[, setdiff(numeric_col_names, cols_to_exclude)]

# Perform GMM
gmm <- Mclust(numeric_data)

# Get the cluster assignments
cluster_assignments <- gmm$classification</pre>
```

```
# Perform PCA on the data used for GMM
pca_res <- prcomp(numeric_data, scale. = TRUE) # scale.=TRUE is important for PCA

# Create a data frame for plotting PCA results with cluster assignments
pca_data <- as.data.frame(pca_res$x)</pre>
```

```
pca_data$cluster <- as.factor(cluster_assignments)</pre>
```

```
# Plot the first two principal components, colored by cluster
table(cluster_assignments)
```

```
cluster_assignments
1 2 3 4
356 291 194 27
```

GMM Clusters Visualized with PCA

Question 3: Supervised Learning

Regression Models

```
data2$Reason <- as.factor(data$Reason) # factor data</pre>
set.seed(333) # set up training data
trainIndex <- createDataPartition(data2$Reason, p = 0.8, list = FALSE)
trainData <- data2[trainIndex, ]</pre>
testData <- data2[-trainIndex, ]</pre>
ctrl <- trainControl(method = "cv", number = 10, verboseIter = FALSE)
set.seed(333) # logistic model, just a test!
invisible(capture.output({
  suppressMessages({
    suppressWarnings({
      model_logit <- train(</pre>
        Reason ~ . - ID,
        data = trainData,
        method = "multinom",
        trControl = ctrl
      )
    })
  })
}))
model_logit$results
```

head(data)

```
newID
                                       ID
                                                 Reason Age Gender
                                                                      Date
      1 bfb4662ea7ea4b8468d74c7ad1909ef1 Diaper-Change 49 female 181002
1
2
                                                          23 female 210717
      4 3b09f1cad01fe3972282858c331f52d5 Diaper-Change
3
      5 e8f2d8b96f020af62e904e8e49445ce3 Diaper-Change
                                                          60
                                                               male 190606
      6 6a82f817144649d0b8ff551570c6824e Diaper-Change
                                                          74
                                                               male 180711
5
      9 8222356f4d4be372fb94488cdaabb075 Diaper-Change
                                                           8
                                                               male 180705
6
     10 5ec09ae3e9fd6fb143bf92b431e182f1 Diaper-Change
                                                          81 female 190212
   Sample ParentFile shimmerLocaldB_sma3nz_stddevNorm
  340074
                                             0.7027443
              diaper
2 1079369
              diaper
                                             0.6111611
  526227
              diaper
                                             1.3477150
  224920
              diaper
                                             0.5269586
5
  201998
              diaper
                                             1.1081220
  458364
              diaper
                                             0.8726283
  loudness_sma3_percentile20.0 F3amplitudeLogRelF0_sma3nz_amean
1
                    0.11481330
                                                       -147.90350
2
                    0.07673505
                                                        -74.69855
3
                    0.49998700
                                                        -53.44516
4
                    0.40500970
                                                       -108.06370
5
                    0.28399970
                                                        -69.01035
6
                    0.43889410
                                                        -49.47916
```

```
loudness_sma3_percentile50.0 loudness_sma3_amean
1
                      0.1428274
                                            0.4213910
2
                      0.4041929
                                            0.4412344
3
                      1.6900650
                                            1.6746600
4
                      0.6827049
                                            0.7537612
5
                      2.6455030
                                            2.2942330
6
                      1.4687040
                                            1.3787450
  F2amplitudeLogRelF0_sma3nz_amean F3amplitudeLogRelF0_sma3nz_stddevNorm
1
                         -146.46640
                                                                  -0.5471651
2
                          -72.39424
                                                                  -1.3117100
3
                          -47.35921
                                                                  -1.4569950
4
                                                                  -0.9248785
                         -111.10530
5
                          -66.83566
                                                                  -1.2720410
6
                          -48.83880
                                                                  -1.7023990
  MeanUnvoicedSegmentLength F2amplitudeLogRelF0_sma3nz_stddevNorm
                   0.2428571
1
                                                           -0.5677297
2
                   0.3620000
                                                           -1.3779880
3
                   0.1700000
                                                           -1.7414370
4
                   0.2141667
                                                           -0.8698995
5
                   0.1577778
                                                           -1.3362150
                   0.1614286
6
                                                           -1.7253130
  F0semitoneFrom27.5Hz_sma3nz_percentile80.0 F1amplitudeLogRelF0_sma3nz_amean
1
                                      46.81261
                                                                       -152.73810
2
                                      46.94024
                                                                        -76.52715
3
                                      50.69794
                                                                        -50.17403
4
                                      44.43988
                                                                       -131.68280
5
                                      47.34345
                                                                        -73.17527
                                                                        -51.49702
6
                                      48.19924
  F0semitoneFrom27.5Hz_sma3nz_pctlrange0.2 alphaRatioV_sma3nz_stddevNorm
1
                                    5.167824
                                                                   -2.190032
2
                                    6.519093
                                                                    1.314629
3
                                    4.542534
                                                                   -3.228497
4
                                                                    7.815800
                                    1.203712
5
                                    6.009083
                                                                    1.168851
6
                                    3.712673
                                                                    2.269837
  StddevUnvoicedSegmentLength loudness_sma3_stddevNorm
1
                    0.25220260
                                                1.2175340
2
                    0.30472280
                                                0.8059498
3
                    0.10832050
                                                0.6468157
4
                    0.19750350
                                                0.5271363
5
                    0.12335840
                                                0.5847681
6
                    0.08407965
                                                0.5834538
  loudness_sma3_percentile80.0 shimmerLocaldB_sma3nz_amean
1
                      0.9868522
                                                    1.0691180
2
                      0.8503428
                                                    1.0793920
3
                      2.5423420
                                                    0.5166118
4
                      1.0504700
                                                    1.0174220
5
                      3.5476430
                                                    0.7986757
6
                                                    0.8547453
                      1.9161340
  FOsemitoneFrom27.5Hz_sma3nz_stddevNorm
1
                                0.06150837
2
                                0.09242810
3
                                0.09557015
4
                                0.09890169
5
                                0.12676860
```

```
6
                                0.06160650
  FOsemitoneFrom27.5Hz_sma3nz_percentile50.0 HNRdBACF_sma3nz_amean
                                      44.66841
                                                              7.481863
1
2
                                      44.59288
                                                              7.745597
3
                                      47.33990
                                                             13.455450
4
                                      43.78660
                                                              5.959348
5
                                      44.88856
                                                              8.342858
6
                                      46.69179
                                                              8.056822
  slopeV500.1500_sma3nz_amean loudness_sma3_meanRisingSlope
1
                   0.008295592
                                                      8.998878
2
                   0.021390640
                                                      2.926372
                   0.004193363
3
                                                     18.998730
4
                   0.005033952
                                                      4.795324
5
                   0.012155850
                                                     23.805280
6
                   0.012637170
                                                      9.674027
  alphaRatioV_sma3nz_amean F0semitoneFrom27.5Hz_sma3nz_percentile20.0
                 -3.4233770
                                                                 41.64479
1
2
                  5.9832670
                                                                 40.42115
3
                 -3.3107370
                                                                 46.15540
4
                  0.8115537
                                                                 43.23617
5
                                                                 41.33437
                  4.8444340
6
                  3.6916260
                                                                 44.48657
  {\tt F1amplitudeLogRelF0\_sma3nz\_stddevNorm}
1
                               -0.5381386
2
                               -1.3479890
3
                               -1.9113570
4
                               -0.7263191
5
                               -1.3526220
6
                               -1.7327520
```

Logistic Regression

New names:

* `Age` -> `Age...1` * `Age` -> `Age...29`

```
# preferred model
data$Reason <- as.factor(data$Reason)
data$Gender <- as.factor(data$Gender)

data_clean <- data %>%
    select(-newID, -ID, -Date, -Sample) # remove categorical data

acoustic_features <- data_clean %>%
    select_if(is.numeric) %>%
    select_if(is.numeric) %>%
    scale() %>%
    as.data.frame() # get the acoustic features

data_model <- bind_cols(acoustic_features, data %>% select(Reason, Gender, Age))
```

```
set.seed(123)
logit_model <- multinom(Reason ~ ., data = data_model) # logstic model creation</pre>
```

```
# weights: 150 (116 variable)
initial value 1396.992108
iter 10 value 1341.955910
iter 20 value 1320.397761
iter 30 value 1307.343988
iter 40 value 1303.640738
iter 50 value 1301.603012
iter 60 value 1300.152200
iter 70 value 1299.670833
iter 80 value 1299.431509
iter 90 value 1299.130402
iter 100 value 1298.864561
final value 1298.864561
stopped after 100 iterations
```

```
preds <- predict(logit_model, newdata = data_model)
conf_mat <- confusionMatrix(preds, data_model$Reason) # produce confusion matrix
print(conf_mat$overall['Accuracy'])</pre>
```

Accuracy 0.3306452

print(conf_mat\$table)

Reference

```
Prediction
                Diaper-Change Fussy Hungry Pain Tired
  Diaper-Change
                            35
                                   20
                                          21
                                               17
                                                      11
  Fussy
                            38
                                   80
                                          29
                                               23
                                                      49
                            38
                                   27
                                          56
                                               29
                                                      38
  Hungry
                                                      32
  Pain
                            40
                                   22
                                          39
                                               75
  Tired
                                   29
                                          27
                                                      41
                            28
                                               24
```

```
conf_df <- as.data.frame(conf_mat$table) # print the matrix
ggplot(conf_df, aes(Prediction, Reference, fill = Freq)) +
  geom_tile() +
  geom_text(aes(label = Freq), color = "white", size = 4) +
  scale_fill_gradient(low = "blue", high = "red") +
  theme_minimal() +
  labs(title = "Confusion Matrix")</pre>
```

Confusion Matrix

Linear Regression

```
Call:
```

```
lm(formula = loudness_sma3_amean ~ ., data = data_lm)
```

Residuals:

```
Min 1Q Median 3Q Max -1.29770 -0.24596 -0.05427 0.20554 1.62916
```

```
Coefficients: (1 not defined because of singularities)
```

```
shimmerLocaldB_sma3nz_stddevNorm
                                            3.014e-01 6.790e-02
                                                                   4.438
shimmerLocaldB_sma3nz_amean
                                            7.408e-02 4.955e-02
                                                                   1.495
F0semitoneFrom27.5Hz sma3nz percentile80.0 -3.633e-03 5.909e-03 -0.615
FOsemitoneFrom27.5Hz_sma3nz_pctlrange0.2
                                            4.401e-03 3.952e-03
                                                                   1.114
                                            9.466e-02 3.060e-01
                                                                   0.309
F0semitoneFrom27.5Hz_sma3nz_stddevNorm
F0semitoneFrom27.5Hz_sma3nz_percentile50.0
                                            2.422e-03 5.418e-03
                                                                   0.447
FOsemitoneFrom27.5Hz_sma3nz_percentile20.0
                                                   NA
                                                              NA
                                                                      NA
alphaRatioV_sma3nz_stddevNorm
                                            7.477e-05 1.670e-04
                                                                   0.448
alphaRatioV_sma3nz_amean
                                            2.075e-02 2.115e-03
                                                                   9.814
F1amplitudeLogRelF0_sma3nz_amean
                                           -3.856e-04 1.561e-03 -0.247
F1amplitudeLogRelF0_sma3nz_stddevNorm
                                           -1.124e-01 6.117e-02 -1.838
F2amplitudeLogRelF0_sma3nz_amean
                                            5.896e-03 1.350e-03
                                                                   4.368
F2amplitudeLogRelF0_sma3nz_stddevNorm
                                            1.380e-02 4.413e-03
                                                                   3.128
                                           Pr(>|t|)
(Intercept)
                                           3.23e-06 ***
Age
                                            0.93127
Gendermale
                                            0.95530
shimmerLocaldB_sma3nz_stddevNorm
                                           1.03e-05 ***
shimmerLocaldB_sma3nz_amean
                                            0.13526
F0semitoneFrom27.5Hz_sma3nz_percentile80.0 0.53884
F0semitoneFrom27.5Hz_sma3nz_pctlrange0.2
                                            0.26570
F0semitoneFrom27.5Hz_sma3nz_stddevNorm
                                            0.75713
FOsemitoneFrom27.5Hz_sma3nz_percentile50.0
                                            0.65499
FOsemitoneFrom27.5Hz_sma3nz_percentile20.0
                                                 NA
alphaRatioV_sma3nz_stddevNorm
                                            0.65444
                                            < 2e-16 ***
alphaRatioV_sma3nz_amean
F1amplitudeLogRelF0 sma3nz amean
                                            0.80494
F1amplitudeLogRelF0_sma3nz_stddevNorm
                                            0.06646 .
F2amplitudeLogRelF0_sma3nz_amean
                                           1.41e-05 ***
F2amplitudeLogRelF0_sma3nz_stddevNorm
                                            0.00182 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.393 on 853 degrees of freedom
Multiple R-squared: 0.4559,
                                Adjusted R-squared: 0.447
F-statistic: 51.05 on 14 and 853 DF, p-value: < 2.2e-16
data_lm$Predicted <- predict(lm_model, newdata = data_lm)
# plot the model
ggplot(data_lm, aes(x = loudness_sma3_amean, y = Predicted)) +
  geom_point(alpha = 0.5) +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  theme_minimal() +
  labs(title = "Predicted vs Actual Cry Loudness",
       x = "Actual",
       y = "Predicted")
```

[`]geom smooth()` using formula = 'y ~ x'

Predicted vs Actual Cry Loudness


```
# just a simple plot for more linear regression showcase
ggplot(data, aes(x = Reason, y = loudness_sma3_amean, fill = Reason)) +
geom_boxplot(alpha = 0.7, outlier.shape = NA) +
geom_jitter(width = 0.2, alpha = 0.3, color = "black") +
theme_minimal() +
labs(
   title = "Cry Loudness by Parent-Labeled Reason",
   x = "Cry Type (Reason)",
   y = "Average Loudness"
) +
theme(axis.text.x = element_text(angle = 30, hjust = 1)) +
guides(fill = FALSE)
```

Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as of ggplot2 3.3.4.

Cry Loudness by Parent-Labeled Reason

Non-Linear Supervised Learning Models

```
# loading incomplete and complete data into R
data_with_nas <- read.csv("full_data_cleaned_include_nas.csv")
data_complete <- read.csv("full_data_cleaned_without_nas.csv")

# removing columns (newID, ID, Date, Sample, ParentFile)
rf_with_nas <- read.csv("full_data_cleaned_include_nas.csv")[, -c(1, 2, 6:8)]
rf_complete <- read.csv("full_data_cleaned_without_nas.csv")[, -c(1, 2, 4:8)]
rf_with_nas$Reason <- as.factor(rf_with_nas$Reason)
rf_complete$Reason <- as.factor(rf_complete$Reason)</pre>
```

Random Forest

```
# set seed for reproducibility
set.seed(605794011)

# train/test split
train_index <- createDataPartition(rf_complete$Reason, p = 0.8, list = FALSE)
train_complete <- rf_complete[train_index, ]
test_complete <- rf_complete[-train_index, ]

# fit random forest model
randomforest_complete <- randomForest(Reason ~ ., data = train_complete, importance = TRUE)

# predictions and evaluation of accuracy
preds_complete <- predict(randomforest_complete, test_complete)</pre>
```

conf_matrix_complete <- confusionMatrix(preds_complete, test_complete\$Reason) accuracy_complete <- conf_matrix_complete\$overall['Accuracy'] # show results print(conf_matrix_complete)</pre>

Confusion Matrix and Statistics

Reference

Prediction	Diaper-Change	Fussy	Hungry	Pain	Tired
Diaper-Change	10	3	6	5	5
Fussy	6	15	9	5	8
Hungry	5	6	10	8	8
Pain	11	3	5	12	8
Tired	3	8	4	3	5

Overall Statistics

Accuracy : 0.3041

95% CI : (0.2362, 0.3789)

No Information Rate : 0.2047 P-Value [Acc > NIR] : 0.001373

Kappa : 0.1302

Mcnemar's Test P-Value : 0.509556

Statistics by Class:

	Class: Diape	er-Change	Class: Fussy	Class: Hungry
Sensitivity		0.28571	0.42857	0.29412
Specificity		0.86029	0.79412	0.80292
Pos Pred Value		0.34483	0.34884	0.27027
Neg Pred Value		0.82394	0.84375	0.82090
Prevalence		0.20468	0.20468	0.19883
Detection Rate		0.05848	0.08772	0.05848
Detection Prevalence		0.16959	0.25146	0.21637
Balanced Accuracy		0.57300	0.61134	0.54852
	Class: Pain	Class: Ti	ired	
Sensitivity	0.36364	0.14	1706	
Specificity	0.80435	0.86	8861	
Pos Pred Value	0.30769	0.21	1739	
Neg Pred Value	0.84091	0.80)405	
Prevalence	0.19298	0.19	9883	
Detection Rate	0.07018	0.02	2924	
Detection Prevalence	0.22807	0.13	3450	
Balanced Accuracy	0.58399	0.50	784	

print(accuracy_complete)

Variable Importance (Complete Data)


```
# creating a confusion matrix heatmap (pretty)
cm_df <- as.data.frame(conf_matrix_complete$table)
ggplot(cm_df, aes(x = Reference, y = Prediction)) +
    geom_tile(aes(fill = Freq), color = "white") +
    geom_text(aes(label = Freq), size = 4) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    theme_minimal() +
    labs(title = "Confusion Matrix Heatmap", x = "Actual", y = "Predicted")</pre>
```

Confusion Matrix Heatmap

Random Forest w/ mice imputation

```
# create method vector for mice
methods <- make.method(rf_with_nas)
rf_with_nas$Gender[rf_with_nas$Gender == "MULT-REDCAP-GENDER"] <- NA
rf_with_nas$Gender <- as.factor(rf_with_nas$Gender)
init <- mice(rf_with_nas, maxit = 0)
methods <- init$method
methods["Reason"] <- ""
methods["Gender"] <- "logreg" # or "polyreg" if >2 levels

# impute missing values using mice
imputed_data <- mice(rf_with_nas, m = 1, method = methods, seed = 605794011)</pre>
```

```
iter imp variable
1    1 Age Gender
2    1 Age Gender
3    1 Age Gender
4    1 Age Gender
5    1 Age Gender
```

Warning: Number of logged events: 10

```
data_imputed <- complete(imputed_data, action = 1)

# ensure target and gender are factors
data_imputed$Reason <- as.factor(data_imputed$Reason)</pre>
```

```
data_imputed$Gender <- as.factor(data_imputed$Gender)

# set seed for reproducibility
set.seed(605794011)

# train/test split
train_index2 <- createDataPartition(data_imputed$Reason, p = 0.8, list = FALSE)
train_imputed <- data_imputed[train_index2, ]

test_imputed <- data_imputed[-train_index2, ]

# fit random forest model
rf_imputed <- randomForest(Reason ~ ., data = train_imputed, importance = TRUE)

# predictions and evaluations of accuracy
preds_imputed <- predict(rf_imputed, test_imputed)
conf_matrix_imputed <- conf_usionMatrix(preds_imputed, test_imputed$Reason)
accuracy_imputed <- conf_matrix_imputed$overall['Accuracy']

# show results
print(conf_matrix_imputed)</pre>
```

Confusion Matrix and Statistics

Reference

Prediction	Diaper-Change	Fussy	Hungry	Pain	Tired
Diaper-Change	10	8	5	11	8
Fussy	15	12	11	6	10
Hungry	8	13	12	12	7
Pain	7	6	12	14	9
Tired	10	11	10	7	16

Overall Statistics

Accuracy: 0.256

95% CI : (0.2031, 0.3148)

No Information Rate : 0.2 P-Value [Acc > NIR] : 0.01852

Kappa : 0.07

Mcnemar's Test P-Value: 0.89596

Statistics by Class:

	Class:	Diaper-Change	Class: Fussy	Class: 1	Hungry
Sensitivity		0.2000	0.2400	(0.2400
Specificity		0.8400	0.7900	(0.8000
Pos Pred Value		0.2381	0.2222	(0.2308
Neg Pred Value		0.8077	0.8061	(0.8081
Prevalence		0.2000	0.2000	(0.2000
Detection Rate		0.0400	0.0480	(0.0480
Detection Prevalence		0.1680	0.2160	(0.2080
Balanced Accuracy		0.5200	0.5150	(0.5200

Class: Pain Class: Tired

```
Sensitivity
                           0.2800
                                         0.3200
Specificity
                           0.8300
                                         0.8100
Pos Pred Value
                           0.2917
                                         0.2963
                                         0.8265
Neg Pred Value
                           0.8218
                           0.2000
                                         0.2000
Prevalence
Detection Rate
                           0.0560
                                         0.0640
Detection Prevalence
                           0.1920
                                         0.2160
Balanced Accuracy
                           0.5550
                                         0.5650
```

```
print(accuracy_imputed)
```

```
Accuracy 0.256
```

```
varImpPlot(rf_imputed, main = "Variable Importance (MICE Imputed Data)", cex = 0.7)
```

Variable Importance (MICE Imputed Data)

шш

0 20 MeanDecreaseG


```
# creating a confusion matrix heatmap (pretty)
cm_df <- as.data.frame(conf_matrix_imputed$table)
ggplot(cm_df, aes(x = Reference, y = Prediction)) +
    geom_tile(aes(fill = Freq), color = "white") +
    geom_text(aes(label = Freq), size = 4) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    theme_minimal() +
    labs(title = "Confusion Matrix Heatmap (Imputed Data)", x = "Actual", y = "Predicted")</pre>
```

Confusion Matrix Heatmap (Imputed Data)


```
# extract variable importance
var_imp <- importance(rf_imputed, type = 1) # MeanDecreaseAccuracy</pre>
var_imp_df <- as.data.frame(var_imp)</pre>
colnames(var_imp_df) <- make.names(colnames(var_imp_df)) # Ensure clean column names
var_imp_df$Variable <- rownames(var_imp_df)</pre>
# select top 20 variables
top_n <- 20
var_imp_df <- as_tibble(var_imp_df) %>%
  arrange(desc(MeanDecreaseAccuracy)) %>%
  dplyr::slice(1:top n)
# create pretty plot for variable importance
ggplot(var_imp_df, aes(x = reorder(Variable, MeanDecreaseAccuracy),
                       y = MeanDecreaseAccuracy)) +
  geom_col(fill = "#4682B4") +
  coord_flip() +
  theme_minimal(base_size = 13) +
  labs(title = "Top 20 Most Important Variables",
       subtitle = "Measured by Mean Decrease in Accuracy (Imputed Data)",
       x = NULL,
       y = "Mean Decrease in Accuracy") +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 15),
    plot.subtitle = element_text(hjust = 0.5, size = 12),
    axis.text.y = element_text(size = 8),
    axis.text.x = element_text(size = 11)
  )
```

Top 20 Most Important Variables

Measured by Mean Decrease in Accuracy (Imputed Data)

Random Forest w/ subset of features

```
# subset of variables from variable importance
rf_with_nas <- rf_with_nas[, c("Reason", "loudness_sma3_percentile50.0",
    "loudness_sma3_stddevNorm", "F2amplitudeLogRe1F0_sma3nz_stddevNorm",
    "StddevUnvoicedSegmentLength", "loudness_sma3_percentile20.0",
    "F2amplitudeLogRe1F0_sma3nz_amean", "MeanUnvoicedSegmentLength", "loudness_sma3_amean",
    "loudness_sma3_percentile80.0", "F1amplitudeLogRe1F0_sma3nz_stddevNorm")]

# impute missing values using mice
imputed_data <- mice(rf_with_nas, m = 1, method = "pmm", seed = 605794011)</pre>
```

```
iter imp variable
1    1
2    1
3    1
4    1
5    1
```

```
data_imputed <- complete(imputed_data, action = 1)

# ensure target and gender are factors
data_imputed$Reason <- as.factor(data_imputed$Reason)

# set seed for reproducibility
set.seed(605794011)</pre>
```

```
# train/test split
train_index2 <- createDataPartition(data_imputed$Reason, p = 0.8, list = FALSE)
train_imputed <- data_imputed[train_index2, ]
test_imputed <- data_imputed[-train_index2, ]

# fit random forest model with selected variables
rf_imputed <- randomForest(Reason ~ ., data = train_imputed, importance = TRUE)

# predictions and evaluations of accuracy
preds_imputed <- predict(rf_imputed, test_imputed)
conf_matrix_imputed <- confusionMatrix(preds_imputed, test_imputed$Reason)
accuracy_imputed <- conf_matrix_imputed$overall['Accuracy']

# show results
print(conf_matrix_imputed)</pre>
```

Confusion Matrix and Statistics

Reference

Prediction	Diaper-Change	Fussy	Hungry	Pain	Tired
Diaper-Change	11	8	10	10	7
Fussy	17	10	11	8	11
Hungry	12	11	10	9	14
Pain	6	10	13	19	6
Tired	4	11	6	4	12

Overall Statistics

Accuracy: 0.248

95% CI : (0.1957, 0.3063)

No Information Rate : 0.2 P-Value [Acc > NIR] : 0.03705

Kappa: 0.06

Mcnemar's Test P-Value: 0.45915

Statistics by Class:

Neg Pred Value

Prevalence

	Class:	Diaper	-Change	Class: Fussy	Class:	Hungry
Sensitivity			0.2200	0.2000		0.2000
Specificity			0.8250	0.7650		0.7700
Pos Pred Value			0.2391	0.1754		0.1786
Neg Pred Value			0.8088	0.7927		0.7938
Prevalence			0.2000	0.2000		0.2000
Detection Rate			0.0440	0.0400		0.0400
Detection Prevalence			0.1840	0.2280		0.2240
Balanced Accuracy			0.5225	0.4825		0.4850
	Class:	Pain C	lass: T	ired		
Sensitivity	0	.3800	0.2	2400		
Specificity	0	.8250	0.8	8750		
Pos Pred Value	0	.3519	0.3	3243		

0.8418

0.2000

0.8216

0.2000

```
        Detection Rate
        0.0760
        0.0480

        Detection Prevalence
        0.2160
        0.1480

        Balanced Accuracy
        0.6025
        0.5575
```

```
print(accuracy_imputed)
```

Accuracy 0.248

```
varImpPlot(rf_imputed, main = "Variable Importance (MICE Imputed Data)", cex = 0.7)
```

Variable Importance (MICE Imputed Data)

MeanUnvoicedSegmentLength
StddevUnvoicedSegmentLength
F1amplitudeLogRelF0_sma3nz_stddevNorm
loudness_sma3_stddevNorm
loudness_sma3_percentile20.0
loudness_sma3_percentile50.0
F2amplitudeLogRelF0_sma3nz_amean
F2amplitudeLogRelF0_sma3nz_stddevNorm
loudness_sma3_amean
loudness_sma3_percentile80.0

0

0

0

0

0

. 0

0

80

40

MeanDecreaseGir

XGBoost

```
# ensure Reason is a factor
data_imputed$Reason <- as.factor(data_imputed$Reason)

# clean up class levels to be valid R variable names
levels(data_imputed$Reason) <- make.names(levels(data_imputed$Reason))

# train/test split (optional if using cross-validation)
set.seed(605794011)
train_index <- createDataPartition(data_imputed$Reason, p = 0.8, list = FALSE)
train_data <- data_imputed[train_index, ]
test_data <- data_imputed[-train_index, ]

# cross-validation setup</pre>
```

```
ctrl <- trainControl(</pre>
  method = "cv",
                 # 10 fold cross-validaton
  number = 10,
  classProbs = TRUE,  # needed for multiclass AUC etc.
  summaryFunction = multiClassSummary,
  verboseIter = FALSE
# train XGBoost model
set.seed(605794011)
invisible(capture.output({
  suppressMessages({
    suppressWarnings({
      xgb_model <- train(</pre>
        Reason ~ .,
        data = train_data,
        method = "xgbTree",
        trControl = ctrl,
        tuneLength = 5,  # tries 5 different combinations of params, trains 10 models per set
        \rightarrow of params, 10 x 5 = 50 models total
       metric = "Accuracy"
      )
   })
  })
}))
# print model summary and best tuning parameters
print(xgb_model)
eXtreme Gradient Boosting
1000 samples
  10 predictor
   5 classes: 'Diaper.Change', 'Fussy', 'Hungry', 'Pain', 'Tired'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 900, 900, 900, 900, 900, 900, ...
Resampling results across tuning parameters:
```

eta	${\tt max_depth}$	colsample_bytree	subsample	nrounds	logLoss	AUC
0.3	1	0.6	0.500	50	1.622083	0.5531000
0.3	1	0.6	0.500	100	1.653972	0.5460375
0.3	1	0.6	0.500	150	1.682211	0.5389875
0.3	1	0.6	0.500	200	1.712036	0.5370000
0.3	1	0.6	0.500	250	1.733616	0.5343375
0.3	1	0.6	0.625	50	1.610880	0.5623375
0.3	1	0.6	0.625	100	1.641706	0.5511875
0.3	1	0.6	0.625	150	1.674356	0.5439000
0.3	1	0.6	0.625	200	1.699994	0.5379500
0.3	1	0.6	0.625	250	1.722548	0.5365250
0.3	1	0.6	0.750	50	1.609826	0.5589875
0.3	1	0.6	0.750	100	1.644689	0.5479625
0.3	1	0.6	0.750	150	1.674628	0.5410000

0.3	1	0.6	0.750	200	1.707059	0.5311125
0.3	1	0.6	0.750	250	1.725706	0.5300625
0.3	1	0.6	0.875	50	1.612310	0.5558000
0.3	1	0.6	0.875	100	1.646947	0.5443875
0.3	1	0.6	0.875	150	1.676778	0.5359875
0.3	1	0.6	0.875	200	1.701503	0.5300750
0.3	1	0.6	0.875	250	1.727169	0.5256750
0.3	1	0.6	1.000	50	1.609522	0.5518000
0.3	1	0.6	1.000	100	1.634070	0.5442250
0.3	1	0.6	1.000	150	1.656421	0.5391750
0.3	1	0.6	1.000	200	1.677213	0.5340250
0.3	1	0.6	1.000	250	1.693684	0.5302250
0.3	1	0.8	0.500	50	1.623325	0.5506375
0.3	1	0.8	0.500	100	1.652338	0.5476375
0.3	1	0.8	0.500	150	1.685991	0.5424750
0.3	1	0.8	0.500	200	1.714671	0.5339875
0.3	1	0.8	0.500	250	1.749256	0.5252500
0.3	1	0.8	0.625	50	1.616717	0.5538000
0.3	1	0.8	0.625	100	1.647852	0.5503875
0.3	1	0.8	0.625	150	1.677386	0.5422375
0.3	1	0.8	0.625	200	1.705661	0.5381250
0.3	1	0.8	0.625	250	1.732034	0.5314875
0.3	1	0.8	0.750	50	1.614770	0.5543250
0.3	1	0.8	0.750	100	1.646151	0.5489375
0.3	1	0.8	0.750	150	1.678405	0.5402250
0.3	1	0.8	0.750	200	1.703874	0.5342375
0.3	1	0.8	0.750	250	1.729168	0.5291000
0.3	1	0.8	0.875	50	1.614045	0.5527625
0.3	1	0.8	0.875	100	1.646158	0.5443625
0.3	1	0.8	0.875	150	1.673664	0.5387625
0.3	1	0.8	0.875	200	1.699860	0.5343625
0.3	1	0.8	0.875	250	1.720030	0.5328000
0.3	1	0.8	1.000	50	1.610616	0.5508750
0.3	1	0.8	1.000	100	1.633327	0.5454375
0.3	1	0.8	1.000	150	1.654971	0.5398125
0.3	1	0.8	1.000	200	1.676281	0.5343000
0.3	1	0.8	1.000	250	1.694432	0.5293250
0.3	2	0.6	0.500	50	1.704025	0.5313750
0.3	2	0.6	0.500	100	1.804554	0.5254625
0.3	2	0.6	0.500	150	1.894354	0.5186875
0.3	2	0.6	0.500	200	1.975006	0.5105125
0.3	2	0.6	0.500	250	2.053404	0.5076500
0.3	2	0.6	0.625	50	1.697298	0.5338750
0.3	2	0.6	0.625	100	1.785582	0.5315125
0.3	2	0.6	0.625	150	1.867173	0.5186625
0.3	2	0.6	0.625	200	1.954038	0.5105000
0.3	2	0.6	0.625	250	2.016966	0.5113875
0.3	2	0.6	0.750	50	1.678522	0.5425125
0.3	2	0.6	0.750	100	1.782315	0.5242375
0.3	2	0.6	0.750	150	1.870244	0.5184750
0.3	2	0.6	0.750	200	1.957353	0.5090625
0.3	2	0.6	0.750	250	2.031823	0.5071750
0.3	2	0.6	0.875	50	1.685350	0.5354250
0.3	2	0.6	0.875	100	1.777469	0.5237000
0.3	2	0.6	0.875	150	1.851991	0.5201625

0.3	2	0.6	0.875	200	1.934409	0.5140500
0.3	2	0.6	0.875	250	2.006926	0.5141250
0.3	2	0.6	1.000	50	1.683403	0.5242750
0.3	2	0.6	1.000	100	1.778992	0.5113500
0.3	2	0.6	1.000	150	1.856043	0.5074875
0.3	2	0.6	1.000	200	1.927269	0.5054000
0.3	2	0.6	1.000	250	2.002188	0.5035625
0.3	2	0.8	0.500	50	1.697815	0.5441125
0.3	2	0.8	0.500	100	1.797511	0.5314875
0.3	2	0.8	0.500	150	1.879019	0.5285250
0.3	2	0.8	0.500	200	1.946467	0.5261625
0.3	2	0.8	0.500	250	2.001980	0.5264000
0.3	2	0.8	0.625	50	1.683613	0.5455250
0.3	2	0.8	0.625	100	1.790812	0.5298000
0.3	2	0.8	0.625	150	1.885236	0.5205000
0.3	2	0.8	0.625	200	1.970900	0.5143375
0.3	2	0.8	0.625	250	2.035335	0.5159250
0.3	2	0.8	0.750	50	1.700770	0.5265000
0.3	2	0.8	0.750	100	1.803632	0.5161625
0.3	2	0.8	0.750	150	1.898353	0.5085750
0.3	2	0.8	0.750	200	1.981210	0.5048125
0.3	2	0.8	0.750	250	2.048161	0.5063875
0.3	2	0.8	0.875	50	1.693418	0.5291500
0.3	2	0.8	0.875	100	1.793934	0.5173250
0.3	2	0.8	0.875	150	1.882952	0.5095875
0.3	2	0.8	0.875	200	1.961864	0.5086125
0.3	2	0.8	0.875	250	2.036155	0.5064250
0.3	2	0.8	1.000	50	1.686902	0.5210250
0.3	2	0.8	1.000	100	1.791116	0.5078875
0.3	2	0.8	1.000	150	1.875663	0.5056875
0.3	2	0.8	1.000	200	1.956712	0.5027125
0.3	2	0.8	1.000	250	2.034742	0.5024375
0.3	3	0.6	0.500	50	1.785456	0.5325375
0.3	3	0.6	0.500	100	1.937698	0.5262000
0.3	3	0.6	0.500	150	2.076342	0.5198875
0.3	3	0.6	0.500	200	2.191872	0.5184500
0.3	3	0.6	0.500	250	2.285524	0.5190500
0.3	3	0.6	0.625	50	1.766163	0.5327750
0.3	3	0.6	0.625	100	1.907255	0.5275875
0.3	3	0.6	0.625	150	2.056634	0.5201875
0.3	3	0.6	0.625	200	2.188347	0.5183625
0.3	3	0.6	0.625	250	2.297910	0.5166000
0.3	3	0.6	0.750	50	1.752932	0.5331375
0.3	3	0.6	0.750	100	1.905769	0.5225250
0.3	3	0.6	0.750	150	2.037538	0.5202375
0.3	3	0.6	0.750	200	2.160441	0.5172125
0.3	3	0.6	0.750	250	2.263703	0.5187250
0.3	3	0.6	0.875	50	1.743639	0.5310250
0.3	3	0.6	0.875	100	1.881258	0.5236125
0.3	3	0.6	0.875	150	2.015180	0.5182875
0.3	3	0.6	0.875	200	2.135446	0.5133750
0.3	3	0.6	0.875	250	2.250090	0.5141875
0.3	3	0.6	1.000	50	1.756958	0.5141625
0.3	3	0.6	1.000	100	1.898359	0.5073125
0.3	3	0.6	1.000	150	2.020832	0.5079500
•	-					

0.3	3	0.6	1.000	200	2.128670	0.5130000
0.3	3	0.6	1.000	250	2.235146	0.5121375
0.3	3	0.8	0.500	50	1.804273	0.5245375
0.3	3	0.8	0.500	100	1.965675	0.5199500
0.3	3	0.8	0.500	150	2.104190	0.5196375
0.3	3	0.8	0.500	200	2.236054	0.5159125
0.3	3	0.8	0.500	250	2.348667	0.5157500
0.3	3	0.8	0.625	50	1.787780	0.5268375
0.3	3	0.8	0.625	100	1.965410	0.5167375
0.3	3	0.8	0.625	150	2.101618	0.5142875
0.3	3	0.8	0.625	200	2.224935	0.5131375
0.3	3	0.8	0.625	250	2.339229	0.5133000
0.3	3	0.8	0.750	50	1.787846	0.5220000
0.3	3	0.8	0.750	100	1.929335	0.5160375
0.3	3	0.8	0.750	150	2.070357	0.5119125
0.3	3	0.8	0.750	200	2.205844	0.5091875
0.3	3	0.8	0.750	250	2.335594	0.5085875
0.3	3	0.8	0.875	50	1.763780	0.5233000
0.3	3	0.8	0.875	100	1.902349	0.5219500
0.3	3	0.8	0.875	150	2.031215	0.5231375
0.3	3	0.8	0.875	200	2.155945	0.5196625
0.3	3	0.8	0.875	250	2.262672	0.5210750
0.3	3	0.8	1.000	50	1.764181	0.5151125
0.3	3	0.8	1.000	100	1.914320	0.5079625
0.3	3	0.8	1.000	150	2.044156	0.5090250
0.3	3	0.8	1.000	200	2.182249	0.5042875
0.3	3	0.8	1.000	250	2.294187	0.5053875
0.3	4	0.6	0.500	50	1.846647	0.5417250
0.3	4	0.6	0.500	100	2.058554	0.5334500
0.3	4	0.6	0.500	150	2.225476	0.5284375
0.3	4	0.6	0.500	200	2.349253	0.5287000
0.3	4	0.6	0.500	250	2.458246	0.5272750
0.3	4	0.6	0.625	50	1.872512	0.5190125
0.3	4	0.6	0.625	100	2.063698	0.5179375
0.3	4	0.6	0.625	150	2.239773	0.5155000
0.3	4	0.6	0.625	200	2.391921	0.5138500
0.3	4	0.6	0.625	250	2.500370	0.5159750
0.3	4	0.6	0.750	50	1.846563	0.5200750
0.3	4	0.6	0.750	100	2.064267	0.5131000
0.3	4	0.6	0.750	150	2.238595	0.5126625
0.3	4	0.6	0.750	200	2.399115	0.5096250
0.3	4	0.6	0.750	250	2.519784	0.5103875
0.3	4	0.6	0.875	50	1.838767	0.5173000
0.3	4	0.6	0.875	100	2.037352	0.5118250
0.3	4	0.6	0.875	150	2.205579	0.5104125
0.3	4	0.6	0.875	200	2.361102	0.5090000
0.3	4	0.6	0.875	250	2.493581	0.5089250
0.3	4	0.6	1.000	50	1.801902	0.5259375
0.3	4	0.6	1.000	100	2.007103	0.5122625
0.3	4	0.6	1.000	150	2.172361	0.5111000
0.3	4	0.6	1.000	200	2.317634	0.5092625
0.3	4	0.6	1.000	250	2.455366	0.5063250
0.3	4	0.8	0.500	50	1.894025	0.5297875
0.3	4	0.8	0.500	100	2.136454	0.5231750
0.3	4	0.8	0.500	150	2.296164	0.5221625

0.3	4	0.8	0.500	200	2.413732	0.5231500
0.3	4	0.8	0.500	250	2.534928	0.5230875
0.3	4	0.8	0.625	50	1.899705	0.5185875
0.3	4	0.8	0.625	100	2.112119	0.5224875
0.3	4	0.8	0.625	150	2.300240	0.5182750
0.3	4	0.8	0.625	200	2.455384	0.5153125
0.3	4	0.8	0.625	250	2.574158	0.5143500
0.3	4	0.8	0.750	50	1.858542	0.5245750
0.3	4	0.8	0.750	100	2.075272	0.5170875
0.3	4	0.8	0.750	150	2.252813	0.5182375
0.3	4	0.8	0.750	200	2.414003	0.5149500
0.3	4	0.8	0.750	250	2.547417	0.5126125
0.3	4	0.8	0.875	50	1.861176	0.5176625
0.3	4	0.8	0.875	100	2.066304	0.5148375
0.3	4	0.8	0.875	150	2.250467	0.5115875
0.3	4	0.8	0.875	200	2.408329	0.5119250
0.3	4	0.8	0.875	250	2.541988	0.5102750
0.3	4	0.8	1.000	50	1.834338	0.5153625
0.3	4	0.8	1.000	100	2.030163	0.5145500
0.3	4	0.8	1.000	150	2.209464	0.5121125
0.3	4	0.8	1.000	200	2.365060	0.5103625
0.3	4	0.8	1.000	250	2.493914	0.5105500
0.3	5	0.6	0.500	50	1.956974	0.5228625
0.3	5	0.6	0.500	100	2.203522	0.5223875
0.3	5	0.6	0.500	150	2.380039	0.5204375
0.3	5	0.6	0.500	200	2.486656	0.5232125
0.3	5	0.6	0.500	250	2.581081	0.5211500
0.3	5	0.6	0.625	50	1.948299	0.5263500
0.3	5	0.6	0.625	100	2.180571	0.5237250
0.3	5	0.6	0.625	150	2.371336	0.5208000
0.3	5	0.6	0.625	200	2.491180	0.5209500
0.3	5	0.6	0.625	250	2.582363	0.5207125
0.3	5	0.6	0.750	50	1.950875	0.5143000
0.3	5	0.6	0.750	100	2.213657	0.5108750
0.3	5	0.6	0.750	150	2.396411	0.5128500
0.3	5	0.6	0.750	200	2.533701	0.5117250
0.3	5	0.6	0.750	250	2.631277 1.893787	0.5122625
0.3	5 5	0.6 0.6	0.875 0.875	50 100	2.127066	0.5228875 0.5171250
0.3	5	0.6	0.875	150	2.127000	0.5171230
0.3	5	0.6	0.875	200	2.469419	0.5148500
0.3	5	0.6	0.875	250	2.589145	0.5142300
0.3	5	0.6	1.000	50	1.870577	0.5124373
0.3	5	0.6	1.000	100	2.112933	0.5220230
0.3	5	0.6	1.000	150	2.297277	0.5066625
0.3	5	0.6	1.000	200	2.436720	0.5074875
0.3	5	0.6	1.000	250	2.549722	0.5079125
0.3	5	0.8	0.500	50	1.974677	0.5306000
0.3	5	0.8	0.500	100	2.223919	0.5315250
0.3	5	0.8	0.500	150	2.404203	0.5277125
0.3	5	0.8	0.500	200	2.522440	0.5275750
0.3	5	0.8	0.500	250	2.612327	0.5251250
0.3	5	0.8	0.625	50	1.927424	0.5422125
0.3	5	0.8	0.625	100	2.192999	0.5355062
0.3	5	0.8	0.625	150	2.370406	0.5312750
-			-	•	· · · ·	

0.3	5	0.8	0.625	200	2.500201	0.5286375
0.3	5	0.8	0.625	250	2.592108	0.5264750
0.3	5	0.8	0.750	50	1.939876	0.5271125
0.3	5	0.8	0.750	100	2.206185	0.5260625
0.3	5	0.8	0.750	150	2.402630	0.5216875
0.3	5	0.8	0.750	200	2.543338	0.5188875
0.3	5	0.8	0.750	250	2.639612	0.5184500
0.3	5	0.8	0.875	50	1.910769	0.5244500
0.3	5	0.8	0.875	100	2.167223	0.5169125
0.3	5	0.8	0.875	150	2.374245	0.5139500
0.3	5	0.8	0.875	200	2.522419	0.5133375
0.3	5	0.8	0.875	250	2.637521	0.5112125
0.3	5	0.8	1.000	50	1.888179	0.5233750
0.3	5	0.8	1.000	100	2.130499	0.5148875
0.3	5	0.8	1.000	150	2.336260	0.5105000
0.3	5	0.8	1.000	200	2.481311	0.5099625
0.3	5	0.8	1.000	250	2.593438	0.5104500
0.4	1	0.6	0.500	50	1.632317	0.5546062
0.4	1	0.6	0.500	100	1.682137	0.5397250
0.4	1	0.6	0.500	150	1.721360	0.5330875
0.4	1	0.6	0.500	200	1.748899	0.5319125
0.4	1	0.6	0.500	250	1.783398	0.5261875
0.4	1	0.6	0.625	50	1.629020	0.5525500
0.4	1	0.6	0.625	100	1.674983	0.5404250
0.4	1	0.6	0.625	150	1.712610	0.5360500
0.4	1	0.6	0.625	200	1.748655	0.5276875
0.4	1	0.6	0.625	250	1.786947	0.5202500
0.4	1	0.6	0.750	50	1.629429	0.5513875
0.4	1	0.6	0.750	100	1.668785	0.5405875
0.4	1	0.6	0.750	150	1.708984	0.5325250
0.4	1	0.6	0.750	200	1.745277	0.5255000
0.4	1	0.6	0.750	250	1.776291	0.5212875
0.4	1	0.6	0.875	50	1.626931	0.5514875
0.4	1	0.6	0.875	100	1.666880	0.5416125
0.4	1	0.6	0.875	150	1.702917	0.5346000
0.4	1	0.6	0.875	200	1.733429	0.5288250
0.4	1	0.6	0.875	250	1.765518	0.5205500
0.4	1	0.6	1.000	50	1.619198	0.5508625
0.4	1	0.6	1.000	100	1.649340	0.5411625
0.4	1	0.6	1.000	150	1.676589	0.5343250
0.4	1	0.6	1.000	200	1.701308	0.5290500
0.4	1	0.6	1.000	250	1.719932	0.5261625
0.4	1	0.8	0.500	50	1.633057	0.5526000
0.4	1	0.8	0.500	100	1.685640	0.5395000
0.4	1	0.8	0.500	150	1.721810	0.5328125
0.4	1	0.8	0.500	200	1.760350	0.5245250
0.4	1	0.8	0.500	250	1.798366	0.5194625
0.4	1 1	0.8	0.625	50 100	1.640257 1.677580	0.5462250 0.5445250
0.4	1	0.8	0.625	150	1.717510	0.5445250
$0.4 \\ 0.4$	1	0.8 0.8	0.625 0.625	200	1.717510	
	1			200 250	1.789885	0.5277250 0.5209875
0.4	1	0.8 0.8	0.625 0.750	250 50	1.623250	0.5209875
0.4		0.8	0.750	100	1.623250	0.5575000
0.4	1 1	0.8	0.750	150	1.703143	0.5382500
0.4	1	0.0	0.130	100	1.103143	0.0002000

0.4	1	0.8	0.750	200	1.740830	0.5313125
0.4	1	0.8	0.750	250	1.773578	0.5252250
0.4	1	0.8	0.875	50	1.628184	0.5485250
0.4	1	0.8	0.875	100	1.666179	0.5410125
0.4	1	0.8	0.875	150	1.704857	0.5333000
0.4	1	0.8	0.875	200	1.741617	0.5263250
0.4	1	0.8	0.875	250	1.771211	0.5208125
0.4	1	0.8	1.000	50	1.618461	0.5506375
0.4	1	0.8	1.000	100	1.650245	0.5408625
0.4	1	0.8	1.000	150	1.677539	0.5345500
0.4	1	0.8	1.000	200	1.700703	0.5289375
0.4	1	0.8	1.000	250	1.721144	0.5250625
0.4	2	0.6	0.500	50	1.765501	0.5217000
	2					
0.4	2	0.6	0.500	100	1.909731	0.5069625
0.4		0.6	0.500	150	2.013817	0.5066750
0.4	2	0.6	0.500	200	2.102888	0.5081375
0.4	2	0.6	0.500	250	2.192846	0.5098500
0.4	2	0.6	0.625	50	1.740726	0.5334000
0.4	2	0.6	0.625	100	1.871112	0.5192000
0.4	2	0.6	0.625	150	1.987919	0.5166875
0.4	2	0.6	0.625	200	2.081047	0.5145500
0.4	2	0.6	0.625	250	2.162637	0.5131875
0.4	2	0.6	0.750	50	1.738168	0.5249500
0.4	2	0.6	0.750	100	1.846239	0.5162000
0.4	2	0.6	0.750	150	1.950031	0.5154125
0.4	2	0.6	0.750	200	2.035452	0.5152250
0.4	2	0.6	0.750	250	2.124255	0.5148625
0.4	2	0.6	0.875	50	1.729665	0.5293125
0.4	2	0.6	0.875	100	1.863797	0.5133375
0.4	2	0.6	0.875	150	1.969232	0.5099375
0.4	2	0.6	0.875	200	2.078498	0.5060750
0.4	2	0.6	0.875	250	2.170221	0.5061125
0.4	2	0.6	1.000	50	1.722131	0.5196875
0.4	2	0.6	1.000	100	1.832714	0.5135500
0.4	2	0.6	1.000	150	1.939370	0.5083750
0.4	2	0.6	1.000	200	2.037825	0.5065875
0.4	2	0.6	1.000	250	2.134664	0.5061750
0.4	2	0.8	0.500	50	1.761315	0.5349250
0.4	2	0.8	0.500	100	1.867661	0.5355750
0.4	2	0.8	0.500	150	1.988282	0.5236375
0.4	2	0.8	0.500	200	2.089383	0.5209875
0.4	2	0.8	0.500	250	2.155299	0.5247750
0.4	2	0.8	0.625	50	1.750705	0.5307250
0.4	2	0.8	0.625	100	1.895448	0.5173250
0.4	2	0.8	0.625	150	2.013512	0.5094250
0.4	2	0.8	0.625	200	2.107394	0.5131750
0.4	2	0.8	0.625	250	2.204735	0.5094625
0.4	2	0.8	0.750	50	1.744933	0.5213500
0.4	2	0.8	0.750	100	1.876671	0.5110875
0.4	2	0.8	0.750	150	1.990412	0.5071125
0.4	2	0.8	0.750	200	2.087944	0.5076500
0.4	2	0.8	0.750	250	2.196062	0.5023875
0.4	2	0.8	0.875	50	1.741763	0.5211875
0.4	2	0.8	0.875	100	1.864845	0.5162875
0.4	2	0.8	0.875	150	1.970035	0.5155000
J. I	_	0.0	0.070	100	1.010000	0.010000

0.4	2	0.8	0.875	200	2.076957	0.5099375
0.4	2	0.8	0.875	250	2.168041	0.5096875
0.4	2	0.8	1.000	50	1.717290	0.5238625
0.4	2	0.8	1.000	100	1.837392	0.5139875
0.4	2	0.8	1.000	150	1.952682	0.5091625
0.4	2	0.8	1.000	200	2.047707	0.5069375
0.4	2	0.8	1.000	250	2.147941	0.5063250
0.4	3	0.6	0.500	50	1.878745	0.5308000
0.4	3	0.6	0.500	100	2.084280	0.5213250
0.4	3	0.6	0.500	150	2.261435	0.5139250
0.4	3	0.6	0.500	200	2.409308	0.5149875
0.4	3	0.6	0.500	250	2.534038	0.5106500
0.4	3	0.6	0.625	50	1.852744	0.5258750
0.4	3	0.6	0.625	100	2.061435	0.5172125
0.4	3	0.6	0.625	150	2.259549	0.5128500
0.4	3	0.6	0.625	200	2.413165	0.5118625
0.4	3	0.6	0.625	250	2.539079	0.5109500
0.4	3	0.6	0.750	50	1.823096	0.5271875
0.4	3	0.6	0.750	100	2.020498	0.5195500
0.4	3	0.6	0.750	150	2.200892	0.5166250
0.4	3	0.6	0.750	200	2.363433	0.5153625
0.4	3	0.6	0.750	250	2.493720	0.5147625
0.4	3	0.6	0.875	50	1.819953	0.5251625
0.4	3	0.6	0.875	100	2.005132	0.5180750
0.4	3	0.6	0.875	150	2.152457	0.5207375
0.4	3	0.6	0.875	200	2.295760	0.5214250
0.4	3	0.6	0.875	250	2.428434	0.5221125
0.4	3	0.6	1.000	50	1.811074	0.5162000
0.4	3	0.6	1.000	100	1.979506	0.5134375
0.4	3	0.6	1.000	150	2.143206	0.5107125
0.4	3	0.6	1.000	200	2.275218	0.5129500
0.4	3	0.6	1.000	250	2.410403	0.5110750
0.4	3	0.8	0.500	50	1.887573	0.5282750
0.4	3	0.8	0.500	100	2.100579	0.5227250
0.4	3	0.8	0.500	150	2.273973	0.5227125
0.4	3	0.8	0.500	200	2.428786	0.5175125
0.4	3	0.8	0.500	250	2.563832	0.5163875
0.4	3	0.8	0.625	50	1.860841	0.5292875
0.4	3	0.8	0.625	100	2.094780	0.5126125
0.4	3	0.8	0.625	150	2.268076	0.5126750
0.4	3	0.8	0.625	200	2.424759	0.5109375
0.4	3	0.8	0.625	250	2.552819	0.5115000
0.4	3	0.8	0.750	50	1.836440	0.5297875
0.4	3	0.8	0.750	100	2.035441	0.5221375
0.4	3	0.8	0.750	150	2.208698	0.5215250
0.4	3	0.8	0.750	200	2.364617	0.5198875
0.4	3	0.8	0.750	250	2.515558	0.5165500
0.4	3	0.8	0.875	50	1.813931	0.5342875
0.4	3	0.8	0.875	100	2.025420	0.5195000
0.4	3	0.8	0.875	150	2.193708	0.5193250
0.4	3	0.8	0.875	200	2.352313	0.5181625
0.4	3	0.8	0.875	250	2.491643	0.5177250
0.4	3	0.8	1.000	50	1.827960	0.5131000
0.4	3	0.8	1.000	100	2.022742	0.5077250
0.4	3	0.8	1.000	150	2.180338	0.5076125

0.4	3	0.8	1.000	200	2.333556	0.5062500
0.4	3	0.8	1.000	250	2.489699	0.5051375
0.4	4	0.6	0.500	50	2.004810	0.5196875
0.4	4	0.6	0.500	100	2.276647	0.5114375
0.4	4	0.6	0.500	150	2.483665	0.5093875
0.4	4	0.6	0.500	200	2.635350	0.5090250
0.4	4	0.6	0.500	250	2.749064	0.5054250
0.4	4	0.6	0.625	50	1.975794	0.5216500
0.4	4	0.6	0.625	100	2.227814	0.5235625
0.4	4	0.6	0.625	150	2.429752	0.5240750
0.4	4	0.6	0.625	200	2.562406	0.5223625
0.4	4	0.6	0.625	250	2.681322	0.5213000
0.4	4	0.6	0.750	50	1.996209	0.5090750
0.4	4	0.6	0.750	100	2.238932	0.5149250
0.4	4	0.6	0.750	150	2.417397	0.5177625
0.4	4	0.6	0.750	200	2.560308	0.5192625
0.4	4	0.6	0.750	250	2.682177	0.5187625
0.4	4	0.6	0.875	50	1.919118	0.5225500
0.4	4	0.6	0.875	100	2.156219	0.5216500
0.4	4	0.6	0.875	150	2.359137	0.5210000
0.4	4	0.6	0.875	200	2.533044	0.5192250
0.4	4	0.6	0.875	250	2.655566	0.5190000
0.4	4	0.6	1.000	50	1.889881	0.5210375
0.4	4	0.6	1.000	100	2.126331	0.5134375
0.4	4	0.6	1.000	150	2.333438	0.5095125
0.4	4	0.6	1.000	200	2.495440	0.5077250
0.4	4	0.6	1.000	250	2.625655	0.5059875
0.4	4	0.8	0.500	50	2.007596	0.5248625
0.4	4	0.8	0.500	100	2.278026	0.5195000
0.4	4	0.8	0.500	150	2.458493	0.5201500
0.4	4	0.8	0.500	200	2.600591	0.5185375
0.4	4	0.8	0.500	250	2.708361	0.5160500
0.4	4	0.8	0.625	50	2.035149	0.5069500
0.4	4	0.8	0.625	100	2.305754	0.5055375
0.4	4	0.8	0.625	150	2.502881	0.5081000
0.4	4	0.8	0.625	200	2.671480	0.5041500
0.4	4	0.8	0.625	250	2.779576	0.5049750
0.4	4	0.8	0.750	50	1.954644	0.5236625
0.4	4	0.8	0.750	100	2.240623	0.5171125
0.4	4	0.8	0.750	150	2.453239	0.5159750
0.4	4	0.8	0.750	200	2.603189	0.5160250
0.4	4	0.8	0.750	250	2.712333	0.5163500
0.4	4	0.8	0.875	50	1.932006	0.5265625
0.4	4	0.8	0.875	100	2.194969	0.5206000
0.4	4	0.8	0.875	150	2.404689	0.5185000
0.4	4	0.8	0.875	200	2.563578	0.5184750
0.4	4	0.8	0.875	250	2.688240	0.5165625
0.4	4	0.8	1.000	50	1.911366	0.5161125
0.4	4	0.8	1.000	100	2.158304	0.5126625
0.4	4	0.8	1.000	150	2.370105	0.5124875
0.4	4	0.8	1.000	200	2.532255	0.5125000
0.4	4	0.8	1.000	250	2.656985	0.5135500
0.4	5	0.6	0.500	50	2.119384	0.5226750
0.4	5	0.6	0.500	100	2.417031	0.5163000
0.4	5	0.6	0.500	150	2.581004	0.5145875

0.4 5	0.6	0	.500	200	2.687803	0.5130000
0.4 5	0.6	0	.500	250	2.766937	0.5126125
0.4 5	0.6	0	.625	50	2.053051	0.5301875
0.4 5	0.6	0	.625	100	2.348487	0.5236125
0.4 5	0.6	0	.625	150	2.539558	0.5229875
0.4 5	0.6	0	.625	200	2.640786	0.5235250
0.4 5	0.6	0	.625	250	2.719239	0.5227750
0.4 5	0.6	0	.750	50	2.041403	0.5297375
0.4 5	0.6	0	.750	100	2.336032	0.5279250
0.4 5	0.6	0	.750	150	2.527214	0.5234750
0.4 5	0.6	0	.750	200	2.647308	0.5234750
0.4 5	0.6	0	.750	250	2.731680	0.5224750
0.4 5	0.6	0	.875	50	1.996648	0.5267125
0.4 5	0.6	0	.875	100	2.276300	0.5274000
0.4 5	0.6	0	.875	150	2.500888	0.5196000
0.4 5	0.6	0	.875	200	2.643933	0.5163125
0.4 5	0.6	0	.875	250	2.737430	0.5160500
0.4 5	0.6	1	.000	50	1.984762	0.5155875
0.4 5	0.6	1	.000	100	2.252942	0.5113250
0.4 5	0.6	1	.000	150	2.442682	0.5109000
0.4 5	0.6	1	.000	200	2.591718	0.5108125
0.4 5	0.6	1	.000	250	2.693523	0.5112375
0.4 5	0.8	0	.500	50	2.138886	0.5192250
0.4 5	0.8	0	.500	100	2.440891	0.5140125
0.4 5	0.8	0	.500	150	2.626910	0.5113625
0.4 5	0.8	0	.500	200	2.754321	0.5088375
0.4 5	0.8			250	2.812949	0.5095250
0.4 5	0.8		.625	50	2.109922	0.5263375
0.4 5	0.8	0	.625	100	2.423349	0.5220375
0.4 5	0.8			150	2.597857	0.5185625
0.4 5	0.8			200	2.712671	0.5162000
0.4 5	0.8			250	2.794734	0.5146625
0.4 5	0.8		.750	50		0.5218375
0.4 5	0.8			100	2.402814	0.5174750
0.4 5	0.8			150	2.574556	0.5188875
0.4 5	0.8			200	2.692567	0.5165875
0.4 5	0.8			250	2.774315	0.5154000
0.4 5	0.8		.875	50	2.052983	0.5158125
0.4 5	0.8			100	2.355130	0.5118875
0.4 5	0.8			150	2.560160	0.5124875
0.4 5	0.8			200	2.690163	0.5126875
0.4 5	0.8			250	2.774833	0.5128750
0.4 5	0.8		.000	50	2.017544	0.5135875
0.4 5	0.8			100	2.313075	0.5094625
0.4 5	0.8			150	2.522506	0.5092125
0.4 5	0.8			200	2.673726	0.5094750
0.4 5	0.8			250	2.782299	0.5089000
prAUC	Accuracy	Kappa	Mean_F1	_	ensitivity	
0.2409999	0.247	5.875000e-02				
0.2347799 0.2317203	0.233 0.228	4.125000e-02 3.500000e-02	0.2322273 0.2233178			
0.2317203	0.228	3.125000e-02	0.2235788			
0.2316555	0.225	3.125000e-02 3.875000e-02	0.235788			
0.2314141	0.251	6.875000e-02	0.2501568			
0.2446351	0.255	5.75000e-02	0.2467271			
0.2413440	0.240	J.730000e-02	0.2401211	0.240		

0.2360568	0.227	3.375000e-02	0.2297852	0.227
0.2331528	0.210	1.250000e-02	0.2238900	0.210
0.2310396	0.203	3.750000e-03	0.2156322	0.203
0.2479057	0.272	9.000000e-02	0.2623901	0.272
0.2350077	0.242	5.250000e-02	0.2451579	0.242
0.2320909	0.222	2.750000e-02	0.2191149	0.222
0.2263472	0.212	1.500000e-02	0.2173695	0.212
0.2271454	0.204	5.000000e-03	0.2140044	0.204
0.2408065	0.257	7.125000e-02	0.2434317	0.257
0.2331056	0.240	5.000000e-02	0.2416736	0.240
0.2300423	0.230	3.750000e-02	0.2345899	0.230
0.2268929	0.212	1.500000e-02	0.2245720	0.212
0.2248866	0.204	5.000000e-03	0.1987182	0.204
0.2390402	0.272	9.000000e-02	0.2668467	0.272
0.2340166	0.247	5.875000e-02	0.2368959	0.247
0.2318819	0.241	5.125000e-02	0.2358329	0.241
0.2290295	0.226	3.250000e-02	0.2252870	0.226
0.2258954	0.227	3.375000e-02	0.2265921	0.227
0.2430118	0.248	6.000000e-02	0.2423893	0.248
0.2382267	0.232	4.000000e-02	0.2299045	0.232
0.2332135	0.223	2.875000e-02	0.2242644	0.223
0.2284968	0.211	1.375000e-02	0.2112733	0.211
0.2273446	0.225	3.125000e-02	0.2263265	0.225
0.2411929	0.254	6.750000e-02	0.2542639	0.254
0.2397291	0.244	5.500000e-02	0.2558097	0.244
0.2323955	0.223	2.875000e-02	0.2343192	0.223
0.2311884	0.218	2.250000e-02	0.2277165	0.218
0.2271412	0.219	2.375000e-02	0.2269628	0.219
0.2428945	0.263	7.875000e-02	0.2522821	0.263
0.2321509	0.234	4.250000e-02	0.2323638	0.234
0.2294227	0.226	3.250000e-02	0.2319939	0.226
0.2281486	0.223	2.875000e-02	0.2238630	0.223
0.2273702	0.217	2.125000e-02	0.2199336	0.217
0.2395192	0.261	7.625000e-02	0.2538851	0.261
0.2363835	0.237	4.625000e-02	0.2309410	0.237
0.2300172	0.228	3.500000e-02	0.2267693	0.228
0.2289620	0.205	6.250000e-03	0.2078806	0.205
0.2280531	0.211	1.375000e-02	0.2148572	0.211
0.2370578	0.270	8.750000e-02	0.2597719	0.270
0.2338413	0.247	5.875000e-02	0.2368319	0.247
0.2320999	0.236	4.500000e-02	0.2325500	0.236
0.2290467	0.228	3.500000e-02	0.2268140	0.228
0.2257330	0.218	2.250000e-02	0.2185306	0.218
0.2264010	0.211	1.375000e-02	0.2132341	0.211
0.2233933	0.210	1.250000e-02	0.2123071	0.210
0.2230237	0.212	1.500000e-02	0.2158151	0.212
0.2192765	0.205	6.250000e-03	0.2092237	0.205
0.2160506	0.209	1.125000e-02	0.2117212	0.209
0.2309321	0.234	4.250000e-02	0.2287816	0.234
0.2281354	0.225	3.125000e-02	0.2290207	0.225
0.2231926	0.225	3.125000e-02	0.2215484	0.225
0.2172180	0.214	1.750000e-02	0.2117696	0.214
0.2171076	0.210	1.250000e-02	0.2078450	0.210
0.2322075	0.227	3.375000e-02	0.2278490	0.227
0.2242312	0.196	-5.000000e-03	0.1986030	0.196

```
0.2152748
           0.191
                      -1.125000e-02
                                     0.1887355
                                                 0.191
0.2134469
           0.188
                      -1.500000e-02
                                     0.1854663
                                                 0.188
                      -1.375000e-02
                                     0.1874732
0.2118808
           0.189
                                                 0.189
0.2277894
           0.217
                       2.125000e-02
                                     0.2112236
                                                 0.217
0.2229202
                                     0.2063301
           0.205
                       6.250000e-03
                                                 0.205
0.2202569
           0.210
                       1.250000e-02
                                     0.2078773
                                                 0.210
0.2185088
           0.195
                      -6.250000e-03
                                     0.1942899
                                                 0.195
0.2177217
                       5.000000e-03
                                     0.2068482
                                                 0.204
           0.204
0.2264963
           0.229
                       3.625000e-02
                                     0.2279212
                                                 0.229
0.2155296
           0.201
                       1.250000e-03
                                     0.2048074
                                                 0.201
0.2146717
           0.194
                      -7.500000e-03
                                     0.1922373
                                                 0.194
0.2112501
                       1.000000e-02
                                     0.2101337
                                                 0.208
           0.208
0.2102697
           0.203
                       3.750000e-03
                                     0.1990501
                                                 0.203
0.2353534
           0.238
                       4.750000e-02
                                     0.2432074
                                                 0.238
0.2281197
           0.242
                       5.250000e-02
                                     0.2394429
                                                 0.242
                       2.625000e-02
0.2238184
           0.221
                                     0.2197166
                                                 0.221
0.2237588
           0.210
                       1.250000e-02
                                     0.2070927
                                                 0.210
0.2219595
           0.211
                       1.375000e-02
                                     0.2104611
                                                 0.211
0.2284403
           0.216
                       2.000000e-02
                                     0.2104717
                                                 0.216
0.2256250
           0.204
                       5.000000e-03
                                     0.2000876
                                                 0.204
                       1.125000e-02
0.2198980
                                     0.2067102
                                                 0.209
           0.209
0.2182240
           0.209
                       1.125000e-02
                                     0.2081292
                                                 0.209
0.2182189
                       1.125000e-02
                                     0.2111807
                                                 0.209
           0.209
0.2239029
           0.202
                       2.500000e-03
                                     0.2094683
                                                 0.202
0.2176049
           0.203
                       3.750000e-03
                                     0.2013041
                                                 0.203
0.2134180
                      -8.750000e-03
                                     0.1901633
           0.193
                                                 0.193
0.2129760
           0.204
                       5.000000e-03
                                     0.2009315
                                                 0.204
0.2098715
           0.189
                      -1.375000e-02
                                     0.1865899
                                                 0.189
                       3.375000e-02
0.2292437
           0.227
                                     0.2350691
                                                 0.227
0.2199296
           0.201
                       1.250000e-03
                                     0.2124127
                                                 0.201
0.2168152
                      -6.250000e-03
                                     0.2135832
           0.195
                                                 0.195
0.2152661
           0.196
                      -5.000000e-03
                                     0.2026198
                                                 0.196
0.2155137
                      -1.125000e-02
                                     0.1913954
           0.191
                                                 0.191
0.2233461
           0.218
                       2.250000e-02
                                     0.2225963
                                                 0.218
0.2130304
           0.202
                       2.500000e-03
                                     0.1995190
                                                 0.202
                                                 0.196
0.2120732
                      -5.000000e-03
                                     0.1956527
           0.196
0.2122928
           0.195
                      -6.250000e-03
                                     0.1941984
                                                 0.195
           0.191
0.2102378
                      -1.125000e-02
                                     0.1925338
                                                 0.191
                       2.250000e-02
0.2243871
           0.218
                                     0.2187763
                                                 0.218
0.2243036
           0.223
                       2.875000e-02 0.2184594
                                                 0.223
0.2198020
           0.222
                       2.750000e-02
                                     0.2188925
                                                 0.222
0.2203050
           0.211
                       1.375000e-02
                                     0.2071638
                                                 0.211
0.2167840
           0.219
                       2.375000e-02
                                     0.2147121
                                                 0.219
                       3.375000e-02
0.2250515
                                     0.2310645
                                                 0.227
           0.227
0.2285194
           0.217
                       2.125000e-02
                                     0.2235287
                                                 0.217
0.2234450
                       3.000000e-02
                                     0.2308258
           0.224
                                                 0.224
0.2227441
           0.225
                       3.125000e-02
                                     0.2242466
                                                 0.225
0.2193273
                       1.625000e-02
                                     0.2103140
                                                 0.213
           0.213
0.2283092
           0.218
                       2.250000e-02
                                     0.2246244
                                                 0.218
0.2245363
           0.222
                       2.750000e-02
                                     0.2170807
                                                 0.222
0.2220229
                       1.250000e-02
                                     0.2045292
                                                 0.210
           0.210
0.2193838
           0.213
                       1.625000e-02
                                     0.2100425
                                                 0.213
0.2185168
           0.211
                       1.375000e-02
                                     0.2121598
                                                 0.211
                       1.125000e-02
0.2254597
           0.209
                                     0.2072258
                                                 0.209
0.2206421
           0.220
                       2.500000e-02
                                     0.2169906
                                                 0.220
```

```
2.000000e-02
0.2165215
           0.216
                                      0.2209890
                                                 0.216
0.2147679
           0.203
                       3.750000e-03
                                      0.1994127
                                                 0.203
           0.200
                      -6.938894e-18
                                                 0.200
0.2156936
                                      0.1965944
0.2200766
           0.216
                       2.000000e-02
                                      0.2212949
                                                 0.216
0.2137747
           0.212
                       1.500000e-02
                                      0.2146908
                                                 0.212
0.2111204
           0.205
                       6.250000e-03
                                      0.2005575
                                                 0.205
0.2135535
           0.201
                       1.250000e-03
                                      0.1990031
                                                 0.201
0.2151709
           0.204
                       5.000000e-03
                                      0.2012590
                                                 0.204
                       4.000000e-02
                                      0.2287386
0.2186153
           0.232
                                                 0.232
0.2238087
           0.209
                       1.125000e-02
                                      0.2104064
                                                 0.209
0.2234543
           0.230
                       3.750000e-02
                                      0.2258133
                                                 0.230
0.2214059
           0.210
                       1.250000e-02
                                      0.2084192
                                                 0.210
0.2235399
           0.201
                       1.250000e-03
                                      0.1990640
                                                 0.201
0.2253018
           0.208
                       1.000000e-02
                                      0.2103702
                                                 0.208
0.2190482
           0.211
                       1.375000e-02
                                      0.2093877
                                                 0.211
0.2172883
                       1.375000e-02
                                      0.2075475
           0.211
                                                 0.211
0.2154009
           0.203
                       3.750000e-03
                                      0.2016788
                                                 0.203
0.2138527
                      -7.500000e-03
                                      0.1898500
           0.194
                                                 0.194
0.2187046
           0.204
                       5.000000e-03
                                      0.2083207
                                                 0.204
0.2178481
           0.211
                       1.375000e-02
                                      0.2062808
                                                 0.211
0.2160489
                      -1.000000e-02
                                      0.1879366
           0.192
                                                 0.192
0.2141158
           0.201
                       1.250000e-03
                                      0.1975849
                                                 0.201
0.2135488
                       1.250000e-03
                                      0.1991497
                                                 0.201
           0.201
0.2210938
           0.226
                       3.250000e-02
                                      0.2283350
                                                 0.226
0.2222101
           0.214
                       1.750000e-02
                                      0.2116639
                                                 0.214
0.2231894
                       1.500000e-02
                                      0.2077410
           0.212
                                                 0.212
0.2201541
           0.212
                       1.500000e-02
                                      0.2074974
                                                 0.212
0.2216445
           0.213
                       1.625000e-02
                                      0.2091134
                                                 0.213
0.2161614
                       2.125000e-02
           0.217
                                      0.2134198
                                                 0.217
0.2128443
           0.197
                      -3.750000e-03
                                      0.1940553
                                                 0.197
0.2121343
                                      0.2016762
                                                 0.206
           0.206
                       7.500000e-03
0.2101652
           0.198
                      -2.500000e-03
                                      0.1938532
                                                 0.198
0.2117544
                      -5.000000e-03
                                      0.1916503
           0.196
                                                 0.196
0.2283416
           0.225
                       3.125000e-02
                                      0.2275391
                                                 0.225
0.2268189
                                      0.2126025
           0.215
                       1.875000e-02
                                                 0.215
0.2230606
           0.205
                       6.250000e-03
                                      0.2034793
                                                 0.205
0.2220488
           0.215
                       1.875000e-02
                                      0.2133003
                                                 0.215
0.2218928
           0.210
                       1.250000e-02
                                      0.2064827
                                                 0.210
0.2195069
                       6.250000e-03
                                      0.2029074
           0.205
                                                 0.205
0.2191273
           0.211
                       1.375000e-02
                                      0.2091661
                                                 0.211
0.2200214
                       1.500000e-02
                                      0.2104695
           0.212
                                                 0.212
0.2189714
           0.206
                       7.500000e-03
                                      0.2058200
                                                 0.206
0.2194734
           0.205
                       6.250000e-03
                                      0.2009062
                                                 0.205
                       1.125000e-02
0.2180124
                                      0.2051706
           0.209
                                                 0.209
0.2160251
           0.207
                       8.750000e-03
                                      0.2004331
                                                 0.207
0.2169255
                      -1.387779e-17
                                      0.1981978
           0.200
                                                 0.200
0.2146731
           0.206
                       7.500000e-03
                                      0.2038978
                                                 0.206
0.2141647
           0.206
                       7.500000e-03
                                      0.2022514
                                                 0.206
0.2158417
           0.210
                       1.250000e-02
                                      0.2103950
                                                 0.210
0.2138753
           0.188
                      -1.500000e-02
                                      0.1865900
                                                 0.188
                                                 0.190
0.2131287
                      -1.250000e-02
                                      0.1910533
           0.190
0.2128228
           0.189
                      -1.375000e-02
                                      0.1868380
                                                 0.189
0.2129802
           0.193
                      -8.750000e-03
                                      0.1886261
                                                 0.193
0.2262997
                                      0.2255397
           0.226
                       3.250000e-02
                                                 0.226
0.2190181
           0.188
                      -1.500000e-02
                                      0.1832013
                                                 0.188
```

```
0.2174408
           0.193
                      -8.750000e-03
                                      0.1869588
                                                 0.193
0.2181677
           0.190
                      -1.250000e-02
                                      0.1836790
                                                 0.190
0.2156553
           0.192
                      -1.000000e-02
                                      0.1864809
                                                 0.192
0.2255228
           0.215
                       1.875000e-02
                                      0.2112336
                                                 0.215
0.2201006
           0.214
                       1.750000e-02
                                      0.2113237
                                                 0.214
0.2210079
           0.213
                       1.625000e-02
                                      0.2079000
                                                 0.213
0.2198716
           0.217
                       2.125000e-02
                                      0.2113761
                                                 0.217
0.2210269
                       1.125000e-02
                                      0.2054713
                                                 0.209
           0.209
0.2217720
           0.202
                       2.500000e-03
                                      0.2003184
                                                 0.202
0.2225565
           0.202
                       2.500000e-03
                                      0.2003637
                                                 0.202
0.2214077
           0.197
                      -3.750000e-03
                                      0.1931507
                                                 0.197
0.2189570
                      -1.250000e-03
                                      0.1954007
           0.199
                                                 0.199
0.2173664
           0.196
                      -5.000000e-03
                                      0.1920709
                                                 0.196
0.2248324
           0.214
                       1.750000e-02
                                      0.2124932
                                                 0.214
0.2201629
           0.215
                       1.875000e-02
                                      0.2118150
                                                 0.215
0.2172056
           0.207
                       8.750000e-03
                                      0.2044335
                                                 0.207
0.2165323
           0.206
                       7.500000e-03
                                      0.2035580
                                                 0.206
0.2147429
                      -8.750000e-03
                                      0.1900371
           0.193
                                                 0.193
0.2150034
           0.207
                       8.750000e-03
                                      0.2074214
                                                 0.207
0.2175540
           0.202
                       2.500000e-03
                                      0.1993145
                                                 0.202
                       2.500000e-03
                                                 0.202
0.2152609
           0.202
                                      0.1985456
0.2155368
           0.203
                       3.750000e-03
                                      0.1990381
                                                 0.203
                                                 0.203
0.2148830
                       3.750000e-03
                                      0.1999330
           0.203
0.2182655
           0.213
                       1.625000e-02
                                      0.2161286
                                                 0.213
0.2169196
           0.198
                      -2.500000e-03
                                      0.1931317
                                                 0.198
                      -6.250000e-03
                                      0.1871579
0.2153041
           0.195
                                                 0.195
0.2145709
           0.184
                      -2.000000e-02
                                      0.1843865
                                                 0.184
0.2155953
           0.182
                      -2.250000e-02
                                      0.1765333
                                                 0.182
                      -7.500000e-03
0.2192705
           0.194
                                      0.1907551
                                                 0.194
0.2206791
           0.202
                       2.500000e-03
                                      0.2001344
                                                 0.202
0.2210108
                       1.500000e-02
           0.212
                                      0.2091837
                                                 0.212
0.2226803
           0.212
                       1.500000e-02
                                      0.2102390
                                                 0.212
0.2229813
                       1.625000e-02
                                      0.2109878
           0.213
                                                 0.213
0.2199584
           0.210
                       1.250000e-02
                                      0.2060965
                                                 0.210
0.2186813
           0.209
                       1.125000e-02
                                      0.2065464
                                                 0.209
0.2165868
                      -6.245005e-18
                                      0.1978508
                                                 0.200
           0.200
0.2158218
           0.200
                      -9.714451e-18
                                      0.1982908
                                                 0.200
0.2157674
                       1.250000e-02
                                      0.2084522
                                                 0.210
           0.210
0.2219977
           0.212
                       1.500000e-02
                                      0.2114828
                                                 0.212
0.2168732
           0.185
                      -1.875000e-02
                                      0.1815553
                                                 0.185
0.2173513
                                      0.1794157
           0.185
                      -1.875000e-02
                                                 0.185
0.2166802
                      -8.750000e-03
                                      0.1871277
           0.193
                                                 0.193
0.2164864
           0.192
                      -1.000000e-02
                                      0.1878552
                                                 0.192
0.2213153
                      -9.714451e-18
           0.200
                                      0.1977400
                                                 0.200
0.2189335
           0.201
                       1.250000e-03
                                      0.1993089
                                                 0.201
0.2172693
           0.196
                      -5.000000e-03
                                      0.1969627
                                                 0.196
0.2168061
           0.190
                      -1.250000e-02
                                      0.1865150
                                                 0.190
0.2161111
                      -1.595946e-17
           0.200
                                      0.1971155
                                                 0.200
0.2195626
           0.202
                       2.500000e-03
                                      0.2092047
                                                 0.202
0.2130053
           0.195
                      -6.250000e-03
                                      0.1922614
                                                 0.195
0.2133217
                      -6.938894e-18
                                      0.1979112
           0.200
                                                 0.200
0.2137489
           0.188
                      -1.500000e-02
                                      0.1816979
                                                 0.188
0.2150876
           0.196
                      -5.000000e-03
                                      0.1906667
                                                 0.196
                                      0.2306810
0.2264020
           0.233
                       4.125000e-02
                                                 0.233
0.2247049
           0.224
                       3.000000e-02
                                      0.2203098
                                                 0.224
```

0.2228017	0.224	3.000000e-02	0.2201473	0.224
0.2204899	0.220	2.500000e-02	0.2163414	0.220
0.2205387	0.212	1.500000e-02	0.2087822	0.212
0.2330138	0.221	2.625000e-02	0.2176180	0.221
0.2272738	0.215	1.875000e-02	0.2122686	0.215
0.2278419	0.214	1.750000e-02	0.2133356	0.214
0.2239820	0.219	2.375000e-02	0.2199197	0.219
0.2229884	0.212	1.500000e-02	0.2130478	0.212
0.2256930	0.217	2.125000e-02	0.2163465	0.217
0.2217226	0.202	2.500000e-03	0.2033738	0.202
0.2193078	0.196	-5.000000e-03	0.1924584	0.196
0.2197346	0.201	1.250000e-03	0.1988611	0.201
0.2192944	0.200	-9.714451e-18	0.1974393	0.200
0.2247208	0.202	2.500000e-03	0.2001283	0.202
0.2207738	0.212	1.500000e-02	0.2085562	0.212
0.2188889	0.202	2.500000e-03	0.1993652	0.202
0.2193692	0.206	7.500000e-03	0.2046190	0.206
0.2167942	0.205	6.250000e-03	0.2046628	0.205
0.2211577	0.206	7.500000e-03	0.2009796	0.206
0.2173476	0.199	-1.250000e-03	0.1984272	0.199
0.2139910	0.195	-6.250000e-03	0.1937316	0.195
0.2151695	0.198	-2.500000e-03	0.1986158	0.198
0.2154852	0.191	-1.125000e-02	0.1925975	0.191
0.2446248	0.244	5.500000e-02	0.2374985	0.244
0.2310221	0.227	3.375000e-02	0.2250719	0.227
0.2232945	0.218	2.250000e-02	0.2202560	0.218
0.2230581	0.223	2.875000e-02	0.2263714	0.223
0.2218094	0.211	1.375000e-02	0.2208103	0.211
0.2367505	0.249	6.125000e-02	0.2392071	0.249
0.2307242	0.238	4.750000e-02	0.2368110	0.238
0.2273906	0.220	2.500000e-02	0.2256341	0.220
0.2232768	0.200	-5.551115e-18	0.2046158	0.200
0.2174263	0.203	3.750000e-03	0.2114551	0.203
0.2384554	0.251	6.375000e-02	0.2470744	0.251
0.2337062	0.234	4.250000e-02	0.2439665	0.234
0.2283931	0.213	1.625000e-02	0.2266363	0.213
0.2229745	0.205	6.250000e-03	0.2173705	0.205
0.2218470	0.207	8.750000e-03	0.2057156	0.207
0.2359819	0.254	6.750000e-02	0.2423574	0.254
0.2313894	0.227	3.375000e-02	0.2240722	0.227
0.2284365	0.219	2.375000e-02	0.2292567	0.219
0.2238023	0.216	2.000000e-02	0.2287367	0.216
0.2204791	0.202	2.500000e-03	0.2146497	0.202
0.2371424	0.261	7.625000e-02	0.2497876	0.261
0.2328174	0.242	5.250000e-02	0.2380853	0.242
0.2279170	0.221	2.625000e-02	0.2214009	0.221
0.2259457	0.220	2.500000e-02	0.2258791	0.220
0.2232385	0.214	1.750000e-02	0.2155556	0.214
0.2391148	0.248	6.000000e-02	0.2504459	0.248
0.2325913	0.224	3.000000e-02	0.2262325	0.224
0.2278632	0.217	2.125000e-02	0.2152290	0.217
0.2227093	0.223	2.875000e-02	0.2251228	0.223
0.2194538	0.210	1.250000e-02	0.2170307	0.210
0.2371204	0.244	5.500000e-02	0.2422181	0.244
0.2366632	0.252	6.500000e-02	0.2542352	0.252

0.2281821	0.226	3.250000e-02	0.2243088	0.226
0.2228921	0.217	2.125000e-02	0.2204697	0.217
0.2197377	0.208	1.000000e-02	0.2129353	0.208
0.2406016	0.232	4.000000e-02	0.2276057	0.232
0.2311009	0.220	2.500000e-02	0.2205026	0.220
0.2296527	0.208	1.000000e-02	0.2182622	0.208
0.2253093	0.205	6.250000e-03	0.2112149	0.205
0.2216556	0.209	1.125000e-02	0.2266954	0.209
0.2365327	0.253	6.625000e-02	0.2484185	0.253
0.2336041	0.236	4.500000e-02	0.2360631	0.236
0.2295860	0.215	1.875000e-02	0.2157095	0.215
0.2251515	0.207	8.750000e-03	0.2100142	0.207
0.2218728	0.200	-1.040834e-17	0.2060838	0.200
0.2372082	0.259	7.375000e-02	0.2500688	0.259
0.2319068	0.247	5.875000e-02	0.2387550	0.247
0.2281607	0.226	3.250000e-02	0.2241062	0.226
0.2253912	0.217	2.125000e-02	0.2171624	0.217
0.2223995	0.209	1.125000e-02	0.2071955	0.209
0.2186408	0.212	1.500000e-02	0.2074039	0.212
0.2086883	0.216	2.000000e-02	0.2140937	0.216
0.2132115	0.214	1.750000e-02	0.2130461	0.214
0.2123606	0.206	7.500000e-03	0.2034550	0.206
0.2124575	0.199	-1.250000e-03	0.1963723	0.199
0.2292357	0.215	1.875000e-02	0.2209095	0.215
0.2186876	0.211	1.375000e-02	0.2176474	0.211
0.2172458	0.217	2.125000e-02	0.2189947	0.217
0.2147783	0.220	2.500000e-02	0.2238205	0.220
0.2131920	0.208	1.000000e-02	0.2065600	0.208
0.2224189	0.213	1.625000e-02	0.2079606	0.213
0.2193877	0.210	1.250000e-02	0.2130258	0.210
0.2192262	0.215	1.875000e-02	0.2217217	0.215
0.2191236	0.216	2.000000e-02	0.2217450	0.216
0.2182662	0.204	5.000000e-03	0.2078177	0.204
0.2258969	0.226	3.250000e-02	0.2268085	0.226
0.2169799	0.208	1.000000e-02	0.2094183	0.208
0.2126487	0.202	2.500000e-03	0.2095965	0.202
0.2115959	0.192	-1.000000e-02	0.1981254	0.192
0.2103810	0.197	-3.750000e-03	0.2039441	0.197
0.2212117	0.228	3.500000e-02	0.2243642	0.228
0.2149721	0.210	1.250000e-02	0.2123521	0.210
0.2136501	0.197	-3.750000e-03	0.2045317	0.197
0.2152349	0.195	-6.250000e-03	0.1979160	0.195
0.2140972	0.201	1.250000e-03	0.1991490	0.201
0.2295022	0.212	1.500000e-02	0.2243739	0.212
0.2298628	0.244	5.500000e-02	0.2494829	0.244
0.2254549	0.224	3.000000e-02	0.2231083	0.224
0.2208028	0.209	1.125000e-02	0.2077074	0.209
0.2197535	0.218	2.250000e-02	0.2228612	0.218
0.2279055	0.239	4.875000e-02	0.2363587	0.239
0.2181872	0.215	1.875000e-02	0.2108937	0.215
0.2139886	0.201	1.250000e-03	0.2035510	
0.2161767	0.198	-2.500000e-03	0.2040678	0.198
0.2142438 0.2218787	0.198 0.203	-2.500000e-03 3.750000e-03	0.1993591 0.2020489	0.198
0.2218787	0.203	-1.250000e-03	0.2020489	0.203
0.2155179	0.199	-1.250000e-03	0.19032/5	0.199

```
0.2123557
           0.193
                      -8.750000e-03
                                      0.1915231
                                                 0.193
0.2119446
           0.192
                      -1.000000e-02
                                      0.1891060
                                                 0.192
0.2105250
                                      0.1817283
           0.184
                      -2.000000e-02
                                                 0.184
0.2222112
           0.221
                       2.625000e-02
                                      0.2181284
                                                 0.221
0.2183926
           0.202
                       2.500000e-03
                                      0.2014801
                                                 0.202
0.2202252
           0.212
                       1.500000e-02
                                      0.2144517
                                                 0.212
0.2154875
           0.209
                       1.125000e-02
                                      0.2108433
                                                 0.209
0.2169136
                       6.250000e-03
                                      0.2061595
                                                 0.205
           0.205
0.2250200
           0.219
                       2.375000e-02
                                      0.2265605
                                                 0.219
0.2179745
           0.224
                       3.000000e-02
                                      0.2225625
                                                 0.224
0.2133413
           0.206
                       7.500000e-03
                                      0.2087332
                                                 0.206
0.2130792
                       8.750000e-03
                                      0.2021840
                                                 0.207
           0.207
0.2123613
           0.202
                       2.500000e-03
                                      0.2050595
                                                 0.202
0.2261801
           0.224
                       3.000000e-02
                                      0.2201507
                                                 0.224
0.2213810
                       2.125000e-02
                                      0.2153984
                                                 0.217
           0.217
                       2.000000e-02
0.2152945
           0.216
                                      0.2127358
                                                 0.216
0.2150829
           0.216
                       2.000000e-02
                                      0.2139873
                                                 0.216
0.2127547
                      -1.250000e-03
           0.199
                                      0.2047225
                                                 0.199
0.2245282
           0.223
                       2.875000e-02
                                      0.2287103
                                                 0.223
0.2210522
           0.212
                       1.500000e-02
                                      0.2101384
                                                 0.212
0.2200900
                       1.500000e-02
           0.212
                                      0.2081659
                                                 0.212
0.2202847
           0.216
                       2.000000e-02
                                      0.2204222
                                                 0.216
0.2195648
                       2.125000e-02
                                      0.2151252
                                                 0.217
           0.217
0.2209510
           0.206
                       7.500000e-03
                                      0.2055992
                                                 0.206
0.2169283
           0.201
                       1.250000e-03
                                      0.1987623
                                                 0.201
0.2176653
           0.200
                      -1.040834e-17
                                      0.1969514
                                                 0.200
0.2172366
           0.202
                       2.500000e-03
                                      0.1985700
                                                 0.202
0.2161070
           0.198
                      -2.500000e-03
                                      0.1944916
                                                 0.198
0.2219180
           0.210
                       1.250000e-02
                                      0.2102115
                                                 0.210
0.2181596
           0.202
                       2.500000e-03
                                      0.2019572
                                                 0.202
0.2184596
                                      0.2052344
           0.200
                      -9.714451e-18
                                                 0.200
0.2189140
           0.197
                      -3.750000e-03
                                      0.1969988
                                                 0.197
0.2180063
                      -1.250000e-03
                                      0.1973756
           0.199
                                                 0.199
0.2185090
           0.221
                       2.625000e-02
                                      0.2154289
                                                 0.221
0.2151721
           0.193
                      -8.750000e-03
                                      0.2011837
                                                 0.193
0.2151609
                      -6.250000e-03
                                      0.1987973
                                                 0.195
           0.195
0.2162272
           0.194
                      -7.500000e-03
                                      0.1887614
                                                 0.194
0.2152142
                      -1.250000e-02
                                      0.1903925
                                                 0.190
           0.190
                       3.125000e-02
0.2253469
           0.225
                                      0.2215290
                                                 0.225
0.2251641
           0.204
                       5.000000e-03
                                      0.2028760
                                                 0.204
0.2243702
                       2.625000e-02
                                      0.2186901
           0.221
                                                 0.221
0.2234050
           0.207
                       8.750000e-03
                                      0.2044911
                                                 0.207
0.2239937
           0.210
                       1.250000e-02
                                      0.2081616
                                                 0.210
0.2242399
                       1.250000e-02
                                      0.2072897
           0.210
                                                 0.210
0.2153813
           0.197
                      -3.750000e-03
                                      0.2005146
                                                 0.197
0.2165037
                      -7.500000e-03
           0.194
                                      0.2047887
                                                 0.194
0.2169470
           0.201
                       1.250000e-03
                                      0.1948150
                                                 0.201
0.2151675
                       3.750000e-03
                                      0.1960843
           0.203
                                                 0.203
0.2251150
           0.204
                       5.000000e-03
                                      0.2079392
                                                 0.204
0.2218920
           0.191
                      -1.125000e-02
                                      0.1883791
                                                 0.191
0.2188379
                       8.750000e-03
                                      0.2029903
                                                 0.207
           0.207
0.2176785
           0.201
                       1.250000e-03
                                      0.1974980
                                                 0.201
0.2159262
           0.196
                      -5.000000e-03
                                      0.1926957
                                                 0.196
0.2241339
           0.210
                       1.250000e-02
                                      0.2081455
                                                 0.210
0.2162610
           0.196
                      -5.000000e-03
                                      0.1923196
                                                 0.196
```

```
0.2187034
           0.191
                      -1.125000e-02
                                      0.1866893
                                                 0.191
0.2191949
           0.209
                       1.125000e-02
                                      0.2034672
                                                 0.209
0.2197344
           0.203
                       3.750000e-03
                                      0.1986221
                                                 0.203
0.2142483
           0.208
                       1.000000e-02
                                      0.2039194
                                                 0.208
0.2115605
           0.187
                      -1.625000e-02
                                      0.1814111
                                                 0.187
0.2111677
           0.189
                      -1.375000e-02
                                      0.1894417
                                                 0.189
0.2110429
           0.195
                      -6.250000e-03
                                      0.1931651
                                                 0.195
0.2115844
                      -1.125000e-02
                                      0.1940137
           0.191
                                                 0.191
0.2194263
           0.207
                       8.750000e-03
                                      0.2044050
                                                 0.207
0.2149856
           0.205
                       6.250000e-03
                                      0.2013635
                                                 0.205
0.2130251
           0.204
                       5.000000e-03
                                      0.1999909
                                                 0.204
0.2122451
                       5.000000e-03
                                      0.2032587
                                                 0.204
           0.204
0.2122077
           0.195
                      -6.250000e-03
                                      0.1919931
                                                 0.195
0.2260346
           0.224
                       3.000000e-02
                                      0.2209833
                                                 0.224
0.2265256
           0.211
                       1.375000e-02
                                      0.2042835
                                                 0.211
                       2.375000e-02
                                      0.2176605
0.2240080
           0.219
                                                 0.219
0.2225465
           0.218
                       2.250000e-02
                                      0.2152623
                                                 0.218
0.2225644
           0.218
                       2.250000e-02
                                      0.2155637
                                                 0.218
0.2143111
           0.189
                      -1.375000e-02
                                      0.1865827
                                                 0.189
0.2178149
                      -7.500000e-03
                                      0.1944325
                                                 0.194
           0.194
0.2171269
           0.197
                      -3.750000e-03
                                      0.1944378
                                                 0.197
0.2186960
           0.200
                      -6.938894e-18
                                      0.1972468
                                                 0.200
0.2171114
                      -3.750000e-03
                                      0.1951718
           0.197
                                                 0.197
0.2197973
           0.222
                       2.750000e-02
                                      0.2198337
                                                 0.222
0.2198275
           0.217
                       2.125000e-02
                                      0.2140552
                                                 0.217
0.2196221
                       8.750000e-03
                                      0.2033728
           0.207
                                                 0.207
0.2194844
           0.206
                       7.500000e-03
                                      0.2015133
                                                 0.206
0.2190818
           0.201
                       1.250000e-03
                                      0.1966547
                                                 0.201
0.2234624
           0.216
                       2.000000e-02
                                      0.2150143
                                                 0.216
0.2166411
                      -1.000000e-02
                                      0.1988550
                                                 0.192
           0.192
0.2140047
                      -7.500000e-03
           0.194
                                      0.1952749
                                                 0.194
0.2124495
           0.188
                      -1.500000e-02
                                      0.1885648
                                                 0.188
0.2131811
                      -7.500000e-03
           0.194
                                      0.1918179
                                                 0.194
0.2231659
           0.208
                       1.000000e-02
                                      0.2077436
                                                 0.208
0.2172951
           0.201
                       1.250000e-03
                                      0.1996676
                                                 0.201
0.2159146
                      -1.125000e-02
                                      0.1897235
           0.191
                                                 0.191
0.2126446
           0.193
                      -8.750000e-03
                                      0.1896185
                                                 0.193
0.2112960
                      -1.375000e-02
                                      0.1824039
                                                 0.189
           0.189
0.2135652
           0.199
                      -1.250000e-03
                                      0.1980569
                                                 0.199
0.2093379
           0.201
                       1.250000e-03
                                      0.1960621
                                                 0.201
                      -3.750000e-03
                                      0.1932999
0.2112799
           0.197
                                                 0.197
0.2088879
                      -1.000000e-02
                                      0.1950457
           0.192
                                                 0.192
0.2109118
                      -1.375000e-02
                                      0.1941749
                                                 0.189
           0.189
0.2228670
                       6.250000e-03
           0.205
                                      0.2026023
                                                 0.205
0.2172037
           0.210
                       1.250000e-02
                                      0.2086998
                                                 0.210
0.2170285
                       2.500000e-03
                                      0.1959678
           0.202
                                                 0.202
0.2183179
           0.204
                       5.000000e-03
                                      0.2010574
                                                 0.204
0.2182418
                       6.250000e-03
                                      0.2029892
           0.205
                                                 0.205
0.2225763
           0.213
                       1.625000e-02
                                      0.2081793
                                                 0.213
0.2184617
           0.213
                       1.625000e-02
                                      0.2101055
                                                 0.213
0.2160817
                       8.750000e-03
                                      0.2032567
                                                 0.207
           0.207
0.2178479
           0.207
                       8.750000e-03
                                      0.2063948
                                                 0.207
0.2167988
           0.208
                       1.000000e-02
                                      0.2044854
                                                 0.208
0.2186005
           0.216
                       2.000000e-02
                                      0.2103699
                                                 0.216
0.2194525
           0.197
                      -3.750000e-03
                                      0.1945179
                                                 0.197
```

0.2164540 0.193	-8.750000e-03	0.1849824	0.193	
0.2147081 0.187	-1.625000e-02	0.1808251	0.187	
0.2154776 0.188	-1.500000e-02	0.1828215	0.188	
0.2159999 0.219	2.375000e-02	0.2158098	0.219	
0.2156625 0.207	8.750000e-03	0.2048638	0.207	
0.2172117 0.212	1.500000e-02	0.2087230	0.212	
0.2138104 0.208	1.000000e-02	0.2061858	0.208	
0.2156620 0.207	8.750000e-03	0.2052188	0.207	
0.2259850 0.215	1.875000e-02	0.2111993	0.215	
0.2211819 0.217	2.125000e-02	0.2134049	0.217	
0.2204743 0.218	2.250000e-02	0.2162388	0.218	
0.2196458 0.220	2.500000e-02	0.2198954	0.220	
0.2192947 0.218	2.250000e-02	0.2173364	0.218	
0.2266130 0.212	1.500000e-02	0.2136050	0.212	
	6.250000e-02	0.2131583		
			0.205	
0.2217841 0.197	-3.750000e-03	0.1966749	0.197	
0.2214899 0.199	-1.250000e-03	0.1977709	0.199	
0.2203802 0.204	5.000000e-03	0.2036024	0.204	
0.2250234 0.210	1.250000e-02	0.2067367	0.210	
0.2269014 0.206	7.500000e-03	0.2018968	0.206	
0.2209999 0.199	-1.250000e-03	0.1941027	0.199	
0.2207992 0.199	-1.250000e-03	0.1937113	0.199	
0.2204015 0.198	-2.500000e-03	0.1933616	0.198	
0.2152900 0.193	-8.750000e-03	0.1903016	0.193	
0.2147347 0.205	6.250000e-03	0.2066431	0.205	
0.2151158 0.201	1.250000e-03	0.1979902	0.201	
0.2158473 0.200	-1.734723e-17	0.1960983	0.200	
0.2154519 0.195	-6.250000e-03	0.1913092	0.195	
0.2148758 0.189	-1.375000e-02	0.1849656	0.189	
0.2120329 0.179	-2.625000e-02	0.1791084	0.179	
0.2096373 0.183	-2.125000e-02	0.1789474	0.183	
0.2100827 0.185	-1.875000e-02	0.1819778	0.185	
0.2114167 0.191	-1.125000e-02	0.1880615	0.191	
0.2210004 0.216	2.000000e-02	0.2131798	0.216	
0.2187855 0.211	1.375000e-02	0.2068425	0.211	
0.2163721 0.207		0.2031730	0.207	
0.2159710 0.208	1.000000e-02	0.2046194	0.208	
0.2149262 0.204	5.00000e-03	0.2002145	0.204	
0.2228298 0.220		0.2175557	0.220	
0.2189754 0.203		0.2004602	0.203	
0.2183200 0.204		0.2198826	0.204	
0.2183103 0.203		0.2074747		
0.2162329 0.205		0.2101146	0.205	
0.2140347 0.193		0.1934401	0.193	
0.2166241 0.202	2.500000e-03 -3.750000e-03	0.2082615	0.202	
0.2155014 0.197		0.1948730	0.197	
0.2156409 0.193	-8.750000e-03	0.1909040	0.193	
0.2153983 0.197		0.1954665	0.197	
0.2159348 0.219		0.2153273	0.219	
0.2196045 0.207		0.2024985		
0.2189498 0.213		0.2094642		
0.2198827 0.209	1.125000e-02	0.2060623	0.209	
0.2190713 0.206	7.500000e-03	0.2032478		
Mean_Specificity			~	
0.81175	0.2387100	0.81255	63	0.2387100

0.80825	0.2277826	0.8087348	0.2277826
0.80700	0.2274336	0.8072635	0.2274336
0.80625	0.2272636	0.8061586	0.2272636
0.80775	0.2344315	0.8075554	0.2344315
0.81375	0.2547062	0.8145977	0.2547062
0.81150	0.2471288	0.8118193	0.2471288
0.80675	0.2317502	0.8067141	0.2317502
0.80250	0.2129675	0.8023974	0.2129675
0.80075	0.2065979	0.8006093	0.2065979
0.81800	0.2702748	0.8191015	0.2702748
0.81050	0.2434176	0.8107652	0.2434176
0.80550	0.2239098	0.8056048	0.2239098
0.80300	0.2127425	0.8031006	0.2127425
0.80100	0.2036221	0.8010037	0.2036221
0.81425	0.2450211	0.8158562	0.2450211
0.81000	0.2353998	0.8105951	0.2353998
0.80750	0.2290304	0.8077133	0.2290304
0.80300	0.2158663	0.8028792	0.2158663
0.80100	0.2062737	0.8008900	0.2062737
0.81800	0.2599808	0.8198968	0.2599808
0.81175	0.2364930	0.8127194	0.2364930
0.81025	0.2350653	0.8109077	0.2350653
0.80650	0.2250258	0.8067583	0.2250258
0.80675	0.2244708	0.8070610	0.2244708
0.81200	0.2445431	0.8127708	0.2445431
0.80800	0.2273684	0.8084894	0.2273684
0.80575	0.2250239	0.8057350	0.2250239
0.80275	0.2124155	0.8027307	0.2124155
0.80625	0.2257345	0.8062403	0.2257345
0.81350	0.2504571	0.8144414	0.2504571
0.81100	0.2414672	0.8115765	0.2414672
0.80575	0.2259744	0.8058800	0.2259744
0.80450	0.2187552	0.8045875	0.2187552
0.80475	0.2169849	0.8049160	0.2169849
0.81575	0.2532008	0.8172456	0.2532008
0.80850	0.2310968	0.8088503	0.2310968
0.80650	0.2285519	0.8065660	0.2285519
0.80575	0.2234368	0.8058395	0.2234368
0.80425	0.2174510	0.8042141	0.2174510
0.81525	0.2447458	0.8168157	0.2447458
0.80925	0.2310332	0.8099655	0.2310332
0.80700	0.2308729	0.8071810	0.2308729
0.80125	0.2080264	0.8011453	0.2080264
0.80275	0.2161174	0.8025342	0.2161174
0.81750	0.2611239	0.8192486	0.2611239
0.81175	0.2388762	0.8127074	0.2388762
0.80900	0.2276320	0.8097410	0.2276320
0.80700	0.2237478	0.8073882	0.2237478
0.80450	0.2166812	0.8046411	0.2166812
0.80275	0.2092082	0.8029539	0.2092082
0.80250	0.2068238	0.8026757	0.2068238
0.80300	0.2112684	0.8031470	0.2112684
0.80125	0.2069395	0.8011537	0.2069395
0.80225	0.2105589	0.8022090	0.2105589
0.80850	0.2289481	0.8090359	0.2289481

0.80625	0.2243912	0.8064467	0.2243912
0.80625	0.2192976	0.8065970	0.2192976
0.80350	0.2138418	0.8035465	0.2138418
0.80250	0.2100606	0.8024839	0.2100606
0.80675	0.2243340	0.8070771	0.2243340
0.79900	0.1947020	0.7990322	0.1947020
0.79775	0.1899438	0.7977648	0.1899438
0.79700	0.1868559	0.7970566	0.1868559
0.79725	0.1921172	0.7970315	0.1921172
0.80425	0.2131074	0.8045899	0.2131074
0.80125	0.2060070	0.8012032	0.2060070
0.80250	0.2068819	0.8026488	0.2068819
0.79875	0.1923262	0.7988337	0.1923262
0.80100	0.2004306	0.8010797	0.2004306
0.80725	0.2224651	0.8077831	0.2224651
0.80025	0.1969166	0.8005536	0.1969166
0.79850	0.1884877	0.7987854	0.1884877
0.80200	0.2081212	0.8020813	0.2081212
0.80075	0.2011586	0.8009287	0.2011586
0.80950	0.2423063	0.8093992	0.2423063
0.81050	0.2417794	0.8106312	0.2417794
0.80525	0.2213049	0.8052680	0.2213049
0.80250	0.2081207	0.8025795	0.2081207
0.80275	0.2143827	0.8025630	0.2143827
0.80400	0.2121288	0.8042092	0.2121288
0.80100	0.2010369	0.8011169	0.2010369
0.80225	0.2078718	0.8022514	0.2078718
0.80225	0.2100274	0.8021854	0.2100274
0.80225	0.2099399	0.8020759	0.2099399
0.80050	0.1959303	0.8008585	0.1959303
0.80075	0.1986233	0.8010059	0.1986233
0.79825	0.1926383	0.7982583	0.1926383
0.80100	0.2013690	0.8011372	0.2013690
0.79725	0.1879794	0.7972950	0.1879794
0.80675	0.2227928	0.8071072	0.2227928
0.80025	0.2017094	0.8001806	0.2017094
0.79875	0.1949101	0.7986315	0.1949101
0.79900	0.1948755	0.7989787	0.1948755
0.79775	0.1890300	0.7977891	0.1890300
0.80450	0.2127755	0.8050487	0.2127755
0.80050	0.2022603	0.8005335	0.2022603
0.79900	0.1934694	0.7990940	0.1934694
0.79875	0.1876971	0.7990743	0.1876971
0.79775	0.1850642	0.7980155	0.1850642
0.80450	0.2142526	0.8047548	0.2142526
0.80575	0.2208271	0.8060322	0.2208271
0.80550	0.2234433	0.8056604	0.2234433
0.80275	0.2101893	0.8029843	0.2101893
0.80475	0.2175151	0.8049617	0.2175151
0.80675	0.2261021	0.8070021	0.2261021
0.80425	0.2170267	0.8042368	0.2170267
0.80600	0.2277559	0.8060594	0.2277559
0.80625	0.2294788	0.8061103	0.2294788
0.80325	0.2119057	0.8033552	0.2119057
0.80450	0.2174438	0.8046177	0.2174438

0.80550	0.2200584	0.8059094	0.2200584
0.80250	0.2051828	0.8028419	0.2051828
0.80325	0.2122018	0.8033994	0.2122018
0.80275	0.2094824	0.8029491	0.2094824
0.80225	0.2046806	0.8025681	0.2046806
0.80500	0.2234394	0.8050591	0.2234394
0.80400	0.2191004	0.8039626	0.2191004
0.80075	0.2015357	0.8008202	0.2015357
0.80000	0.1975719	0.8001902	0.1975719
0.80400	0.2131477	0.8043279	0.2131477
0.80300	0.2059048	0.8033649	0.2059048
0.80125	0.2015303	0.8015157	0.2015303
0.80025	0.1968208	0.8004621	0.1968208
0.80100	0.1991028	0.8013137	0.1991028
0.80800	0.2302841	0.8081913	0.2302841
0.80225	0.2076422	0.8023946	0.2076422
0.80750	0.2275005	0.8077689	0.2275005
0.80250	0.2115155	0.8024399	0.2115155
0.80025	0.2029439	0.8001705	0.2029439
0.80200	0.2096819	0.8018943	0.2096819
0.80275	0.2156627	0.8025893	0.2156627
0.80275	0.2105608	0.8027678	0.2105608
0.80075	0.1969226	0.8011078	0.1969226
0.79850	0.1903042	0.7986460	0.1903042
0.80100	0.2023569	0.8011394	0.2023569
0.80275	0.2087741	0.8030375	0.2087741
0.79800	0.1924299	0.7980653	0.1924299
0.80025	0.2040879	0.8000923	0.2040879
0.80025	0.2025135	0.8002279	0.2025135
0.80650	0.2263499	0.8066834	0.2263499
0.80350	0.2145576	0.8035762	0.2145576
0.80300	0.2106044	0.8031981	0.2106044
0.80300	0.2091909	0.8032430	0.2091909
0.80325	0.2115174	0.8034597	0.2115174
0.80425	0.2107681	0.8047088	0.2107681
0.79925	0.1963246	0.7993436	0.1963246
0.80150	0.2023925	0.8017774	0.2023925
0.79950	0.1957348	0.7997125	0.1957348
0.79900	0.1924378	0.7992962	0.1924378
0.80625	0.2268714	0.8061812	0.2268714
0.80375	0.2178438	0.8037326	0.2178438
0.80125	0.2073041	0.8010235	0.2073041
0.80375	0.2169144	0.8035890	0.2169144
0.80250	0.2082442	0.8025517	0.2082442
0.80125	0.2057614	0.8012070	0.2057614
0.80275	0.2120625	0.8027190	0.2120625
0.80300	0.2138444	0.8029433	0.2138444
0.80150	0.2043534	0.8016446	0.2043534
0.80125	0.2017597	0.8014796	0.2017597
0.80225	0.2057486	0.8025036	0.2057486
0.80175	0.2042652	0.8020519	0.2042652
0.80000	0.1984011	0.8000590	0.1984011
0.80150	0.2048472	0.8015232	0.2048472
0.80150	0.2044272	0.8015582	0.2044272
0.80250	0.2072296	0.8027580	0.2072296

0.79700	0.1828352	0.7972864	0.1828352
0.79750	0.1883132	0.7976196	0.1883132
0.79725	0.1877314	0.7973250	0.1877314
0.79825	0.1896445	0.7984271	0.1896445
0.80650	0.2267485	0.8067597	0.2267485
0.79700	0.1813489	0.7974196	0.1813489
0.79825	0.1869165	0.7987102	0.1869165
0.79750	0.1834014	0.7979845	0.1834014
0.79800	0.1870793	0.7983894	0.1870793
0.80375	0.2125852	0.8039037	0.2125852
0.80350	0.2136552	0.8035942	0.2136552
0.80325	0.2099421	0.8035649	0.2099421
0.80425	0.2126810	0.8046943	0.2126810
0.80225	0.2079611	0.8024175	0.2079611
0.80050	0.2031401	0.8004778	0.2031401
0.80050	0.2029536	0.8003503	0.2029536
0.79925	0.1947805	0.7993720	0.1947805
0.79975	0.1980046	0.7998358	0.1980046
0.79900	0.1933795	0.7991487	0.1933795
0.80350	0.2134372	0.8035633	0.2134372
0.80375	0.2145041	0.8038754	0.2145041
0.80175	0.2077410	0.8017510	0.2077410
0.80150	0.2075024	0.8014523	0.2075024
0.79825	0.1937067	0.7982581	0.1937067
0.80175	0.2040656	0.8020151	0.2040656
0.80050	0.1990169	0.8008132	0.1990169
0.80050	0.2006545	0.8006370	0.2006545
0.80075	0.2011951	0.8009344	0.2011951
0.80075	0.2024254	0.8008198	0.2024254
0.80325	0.2073781	0.8036202	0.2073781
0.79950	0.1924057	0.7998126	0.1924057
0.79875	0.1897747	0.7991166	0.1897747
0.79600	0.1777795	0.7963785	0.1777795
0.79550	0.1761868	0.7958464	0.1761868
0.79850	0.1923404	0.7986388	0.1923404
0.80050	0.2031482	0.8004612	0.2031482
0.80300	0.2127876	0.8030858	0.2127876
0.80300	0.2140073	0.8029806	0.2140073
0.80325	0.2139509	0.8032761	0.2139509
0.80250	0.2063886 0.2090129	0.8027130	0.2063886
0.80225 0.80000	0.2090129	0.8021977 0.7999931	0.2090129 0.2004375
0.80000	0.2004375	0.7999931	0.2004373
0.80250	0.2115819	0.8024148	0.2007034
0.80300 0.79625	0.2145306 0.1850089	0.8028607 0.7961563	0.2145306 0.1850089
0.79625	0.1831623	0.7963194	0.1831623
0.79825	0.1913625	0.7983197	0.1031025
0.79825	0.1891061	0.7980807	0.1913625
0.80000	0.1954275	0.8003010	0.1091001
0.80005	0.1954275	0.8005698	0.1954275
0.79900	0.1973227	0.7993596	0.1973227
0.79750	0.1882992	0.7976749	0.1882992
0.80000	0.1998245	0.8001148	0.1882992
0.80050	0.1983926	0.8006681	0.1983926
0.00000	0.1000020	0.000001	0.1000020

0.79875	0.1886903	0.7990578	0.1886903
0.80000	0.1942373	0.8003508	0.1942373
0.79700	0.1816409	0.7973566	0.1816409
0.79900	0.1907152	0.7993060	0.1907152
0.80825	0.2356087	0.8082552	0.2356087
0.80600	0.2197497	0.8064357	0.2197497
0.80600	0.2217984	0.8062492	0.2217984
0.80500	0.2177865	0.8052151	0.2177865
0.80300	0.2108887	0.8031174	0.2108887
0.80525	0.2205994	0.8054439	0.2205994
0.80375	0.2158062	0.8038048	0.2158062
0.80350	0.2186396	0.8033069	0.2186396
0.80475	0.2233485	0.8045117	0.2233485
0.80300	0.2153047	0.8028498	0.2153047
0.80425	0.2108999	0.8047113	0.2108999
0.80050	0.1987913	0.8007518	0.1987913
0.79900	0.1927744	0.7992638	0.1927744
0.80025	0.2006160	0.8003605	0.2006160
0.80000	0.1998998	0.8000943	0.1998998
0.80050	0.2040627	0.8004099	0.2040627
0.80300	0.2107641	0.8032100	0.2107641
0.80050	0.2028650	0.8005661	0.2028650
0.80150	0.2099444	0.8014279	0.2099444
0.80125	0.2095684	0.8010454	0.2095684
0.80150	0.2008492	0.8018523	0.2008492
0.79975	0.1951727	0.8000546	0.1951727
0.79875	0.1899588	0.7991397	0.1899588
0.79950	0.1970206	0.7996972	0.1970206
0.79775	0.1907561	0.7978376	0.1907561
0.81100	0.2404968	0.8114279	0.2404968
0.80675	0.2287161	0.8067390	0.2287161
0.80450	0.2166250	0.8046147	0.2166250
0.80575	0.2214970	0.8059152	0.2214970
0.80275	0.2120033	0.8027080	0.2120033
0.81225	0.2458704	0.8128852	0.2458704
0.80950	0.2424083	0.8094229	0.2424083
0.80500	0.2261000	0.8047279	0.2261000
0.80000	0.2018111	0.7998550	0.2018111
0.80075	0.2073102	0.8004782	0.2073102
0.81275	0.2537117	0.8131527	0.2537117
0.80850	0.2344325	0.8087572	0.2344325
0.80325	0.2165277	0.8031283	0.2165277
0.80125	0.2065099	0.8011288	0.2065099
0.80175	0.2089016	0.8017155	0.2089016
0.81350	0.2467125	0.8144949	0.2467125
0.80675	0.2235374	0.8070519	0.2235374
0.80475	0.2221393	0.8046741	0.2221393
0.80400	0.2197113	0.8038527	0.2197113
0.80050	0.2046946	0.8002368	0.2046946
0.81525	0.2560049	0.8166473	0.2560049
0.81050	0.2331799	0.8113729	0.2331799
0.80525	0.2188578	0.8055129	0.2188578
0.80500	0.2150637	0.8054320	0.2150637
0.80350	0.2129328	0.8036836	0.2129328
0.81200	0.2410868	0.8126837	0.2410868

0.80600	0.2245258	0.8060574	0.2245258
0.80425	0.2169263	0.8042864	0.2169263
0.80575	0.2217451	0.8059398	0.2217451
0.80250	0.2139228	0.8023491	0.2139228
0.81100	0.2428757	0.8114319	0.2428757
0.81300	0.2592378	0.8129290	0.2592378
0.80650	0.2308153	0.8063137	0.2308153
0.80425	0.2234824	0.8039622	0.2234824
0.80200	0.2156592	0.8015945	0.2156592
0.80800	0.2252149	0.8088223	0.2252149
0.80500	0.2196658	0.8050998	0.2196658
0.80200	0.2036365	0.8021916	0.2036365
0.80125	0.2051684	0.8012264	0.2051684
0.80225	0.2123333	0.8020529	0.2123333
0.81325	0.2464065	0.8142327	0.2464065
0.80900	0.2332725	0.8093493	0.2332725
0.80375	0.2190022	0.8036209	0.2190022
0.80175	0.2113770	0.8016493	0.2113770
0.80000	0.2044051	0.7997590	0.2044051
0.81475	0.2522162	0.8160796	0.2522162
0.81175	0.2387898	0.8126378	0.2387898
0.80650	0.2221525	0.8068910	0.2221525
0.80425	0.2115302	0.8046443	0.2115302
0.80225	0.2084643	0.8023488	0.2084643
0.80300	0.2074860	0.8032100	0.2074860
0.80400	0.2166113	0.8039738	0.2166113
0.80350	0.2162384	0.8033813	0.2162384
0.80150	0.2065191	0.8014569	0.2065191
0.79975	0.1984253	0.7998085	0.1984253
0.80375	0.2151396	0.8037763	0.2151396
0.80275	0.2107525	0.8028832	0.2107525
0.80425	0.2187102	0.8041982	0.2187102
0.80500	0.2216735	0.8049972	0.2216735
0.80200	0.2109470	0.8017775	0.2109470
0.80325	0.2099882	0.8034503	0.2099882
0.80250	0.2100275	0.8024801	0.2100275
0.80375	0.2199565	0.8034856	0.2199565
0.80400	0.2188168	0.8038700	0.2188168
0.80100	0.2067626	0.8008255	0.2067626
0.80650	0.2236166	0.8067007	0.2236166
0.80200	0.2035061	0.8021973	0.2035061
0.80050	0.1965299	0.8007501	0.1965299
0.79800	0.1875818	0.7982020	0.1875818
0.79925	0.1922924	0.7994830	0.1922924
0.80700	0.2192951	0.8074594	0.2192951
0.80250	0.2060895	0.8027022	0.2060895
0.79925	0.1969697	0.7992244	0.1969697
0.79875	0.1928646	0.7988664	0.1928646
0.80025	0.2019167	0.8001954	0.2019167
0.80300	0.2139214	0.8028988	0.2139214
0.81100	0.2454842	0.8109832	0.2454842
0.80600	0.2260029	0.8059125	0.2260029
0.80225	0.2112835	0.8020588	0.2112835
0.80450	0.2205461	0.8043438	0.2205461
0.80975	0.2385771	0.8098938	0.2385771

0.80375	0.2125254	0.8039658	0.2125254
0.80025	0.2002425	0.8001643	0.2002425
0.79950	0.1997066	0.7992497	0.1997066
0.79950	0.1955709	0.7995059	0.1955709
0.80075	0.2012251	0.8009772	0.2012251
0.79975	0.1978398	0.7998208	0.1978398
0.79825	0.1946672	0.7982068	0.1946672
0.79800	0.1906639	0.7980754	0.1906639
0.79600	0.1826529	0.7959957	0.1826529
0.80525	0.2199970	0.8053626	0.2199970
0.80050	0.2032750	0.8003611	0.2032750
0.80300	0.2122199	0.8029833	0.2122199
0.80225	0.2087902	0.8022313	0.2087902
0.80125	0.2054861	0.8011268	0.2054861
0.80475	0.2135072	0.8050766	0.2135072
0.80600	0.2186440	0.8064158	0.2186440
0.80150	0.1986654	0.8019066	0.1986654
0.80175	0.2043678	0.8019270	0.2043678
0.80050	0.1997755	0.8005784	0.1997755
0.80600	0.2211172	0.8062750	0.2211172
0.80425	0.2172097	0.8042030	0.2172097
0.80400	0.2132512	0.8042390	0.2132512
0.80400	0.2160124	0.8040467	0.2160124
0.79975	0.1971599	0.7997695	0.1971599
0.80575	0.2268897	0.8056084	0.2268897
0.80300	0.2130208	0.8029570	0.2130208
0.80300	0.2099212	0.8032411	0.2099212
0.80400	0.2187974	0.8038596	0.2187974
0.80425	0.2182562	0.8042347	0.2182562
0.80150	0.2018639	0.8017051	0.2018639
0.80025	0.1935786	0.8006052	0.1935786
0.80000	0.1979967	0.8001123	0.1979967
0.80050	0.1984127	0.8006504	0.1984127
0.79950	0.1944621	0.7996335	0.1944621
0.80250	0.2078827	0.8026619	0.2078827
0.80050	0.1986780	0.8007556	0.1986780
0.80000	0.1967896	0.8002102	0.1967896
0.79925	0.1948108	0.7993491	0.1948108
0.79975	0.1972009	0.7998368	0.1972009
0.80525	0.2182227	0.8055505	0.2182227
0.79825	0.1927455	0.7982896	0.1927455
0.79875	0.1935760	0.7988580	0.1935760
0.79850	0.1940957	0.7985412	0.1940957
0.79750	0.1855694	0.7977162	0.1855694
0.80625	0.2209014	0.8065116	0.2209014
0.80100	0.2061133	0.8008826	0.2061133
0.80525	0.2205519	0.8052848	0.2205519
0.80175	0.2063842	0.8017885	0.2063842
0.80250	0.2105890	0.8024587	0.2105890
0.80250	0.2110967	0.8025491	0.2110967
0.79925	0.1942358	0.7993410	0.1942358
0.79850	0.1904493	0.7985960	0.1904493
0.80025	0.1969826	0.8004909	0.1969826
0.80075	0.1997345	0.8009045	0.1997345
0.80100	0.2002613	0.8012155	0.2002613

0.79775	0.1906311	0.7977856	0.1906311
0.80175	0.2051958	0.8019322	0.2051958
0.80025	0.2005886	0.8003682	0.2005886
0.79900	0.1961871	0.7990901	0.1961871
0.80250	0.2108069	0.8024131	0.2108069
0.79900	0.1942690	0.7991137	0.1942690
0.79775	0.1871791	0.7980050	0.1871791
0.80225	0.2067128	0.8023348	0.2067128
0.80075	0.2005186	0.8008751	0.2005186
0.80200	0.2029529	0.8022660	0.2029529
0.79675	0.1810979	0.7971266	0.1810979
0.79725	0.1808097	0.7977237	0.1808097
0.79875	0.1893763	0.7992008	0.1893763
0.79775	0.1855571	0.7981271	0.1855571
0.80175	0.2075770	0.8018167	0.2075770
0.80125	0.2034414	0.8013878	0.2034414
0.80100	0.2012047	0.8011544	0.2012047
0.80100	0.2014319	0.8011326	0.2014319
0.79875	0.1928395	0.7988803	0.1928395
0.80600	0.2227126	0.8061307	0.2227126
0.80275	0.2090600	0.8029217	0.2090600
0.80475	0.2212368	0.8047172	0.2212368
0.80450	0.2172714	0.8046354	0.2172714
0.80450	0.2170786	0.8046226	0.2170786
0.79725	0.1861474	0.7974389	0.1861474
0.79850	0.1898907	0.7987459	0.1898907
0.79925	0.1956148	0.7993683	0.1956148
0.80000	0.1989549	0.8001431	0.1989549
0.79925	0.1982180	0.7992774	0.1982180
0.80550	0.2234004	0.8054431	0.2234004
0.80425	0.2139375	0.8046276	0.2139375
0.80175	0.2053091	0.8020138	0.2053091
0.80150	0.2032155	0.8017566	0.2032155
0.80025	0.1983303	0.8004765	0.1983303
0.80400	0.2131310	0.8041875	0.2131310
0.79800	0.1861547	0.7984222	0.1861547
0.79850	0.1903499	0.7987513	0.1903499
0.79700	0.1853013	0.7971338	0.1853013
0.79850	0.1926161	0.7986293	0.1926161
0.80200	0.2110931	0.8018296	0.2110931
0.80025	0.2034917	0.8001255	0.2034917
0.79775	0.1917295	0.7976662	0.1917295
0.79825	0.1944307	0.7981966	0.1944307
0.79725	0.1875066	0.7972830	0.1875066
0.79975	0.2006782	0.7996689	0.2006782
0.80025	0.1962190	0.8005601	0.1962190
0.79925	0.1948391	0.7994126	0.1948391
0.79800	0.1890228	0.7981646	0.1890228
0.79725	0.1888184	0.7972295	0.1888184
0.80125	0.2049213	0.8012647	0.2049213
0.80250	0.2075838	0.8026347	0.2075838
0.80050	0.1998816	0.8006604	0.1998816
0.80100	0.2040305	0.8010681	0.2040305
0.80125	0.2066349	0.8012108	0.2066349
0.80325	0.2076287	0.8035982	0.2076287

0.80325	0.2125647	0.8033501	0.2125647
0.80175	0.2048130	0.8018306	0.2048130
0.80175	0.2070324	0.8018386	0.2070324
0.80200	0.2074726	0.8020668	0.2074726
0.80400	0.2106876	0.8046267	0.2106876
0.79925	0.1946348	0.7994467	0.1946348
0.79825	0.1861282	0.7986967	0.1861282
0.79675	0.1797886	0.7971305	0.1797886
0.79700	0.1825422	0.7973730	0.1825422
0.80475	0.2179404	0.8049524	0.2179404
0.80175	0.2073670	0.8017849	0.2073670
0.80300	0.2106544	0.8031256	0.2106544
0.80200	0.2090975	0.8019858	0.2090975
0.80175	0.2077645	0.8016994	0.2077645
0.80375	0.2126954	0.8037940	0.2126954
0.80425	0.2150751	0.8043694	0.2150751
0.80450	0.2199560	0.8042893	0.2199560
0.80500	0.2235626	0.8047246	0.2235626
0.80450	0.2211307	0.8042498	0.2211307
0.80300	0.2090913	0.8031552	0.2090913
0.80125	0.2064991	0.8011145	0.2064991
0.79925	0.2013708	0.7989771	0.2013708
0.79975	0.2019737	0.7995112	0.2019737
0.80100	0.2083279	0.8006931	0.2083279
0.80250	0.2089059	0.8025416	0.2089059
0.80150	0.2030607	0.8017320	0.2030607
0.79975	0.1944015	0.8000057	0.1944015
0.79975	0.1937536	0.8001011	0.1937536
0.79950	0.1938267	0.7997679	0.1938267
0.79825	0.1870730	0.7986547	0.1870730
0.80125	0.2002003	0.8015673	0.2002003
0.80025	0.1992661	0.8004046	0.1992661
0.80000	0.1969368	0.8002321	0.1969368
0.79875	0.1921970	0.7989784	0.1921970
0.79725	0.1852887	0.7973483	0.1852887
0.79475	0.1736462	0.7950844	0.1736462
0.79575	0.1809618	0.7959439	0.1809618
0.79625	0.1842140	0.7963011	0.1842140
0.79775	0.1909880	0.7978489	0.1909880
0.80400	0.2146217	0.8041080	0.2146217
0.80275	0.2093104	0.8029608	0.2093104
0.80175	0.2059094	0.8019379	0.2059094
0.80200	0.2079617	0.8020757	0.2079617
0.80100	0.2025256	0.8011323	0.2025256
0.80500	0.2220155	0.8049103	0.2220155
0.80075	0.2032174	0.8007491	0.2032174
0.80100	0.2005513	0.8012023	0.2005513
0.80075	0.2006688	0.8009013	0.2006688
0.80125	0.2006254	0.8015053	0.2006254
0.79825	0.1921766	0.7982565	0.1921766
0.80050	0.2015947	0.8006207	0.2015947
0.79925	0.1983312	0.7993189	0.1983312
0.79825	0.1942053	0.7982732	0.1942053
0.79925	0.1983458	0.7992333	0.1983458
0.80475	0.2170939	0.8048562	0.2170939

0.80175	0.2059614	0.8020013	0.2059614
0.80325	0.2142148	0.8034165	0.2142148
0.80225	0.2121441	0.8023410	0.2121441
0.80150	0.2099171	0.8015537	0.2099171
Mean_Recall	Mean_Detection_Rate	Mean_Balanced_Accuracy	
0.247	0.0494	0.529375	
0.233	0.0466	0.520625	
0.228	0.0456	0.517500	
0.225	0.0450	0.515625	
0.231	0.0462	0.519375	
0.255	0.0510	0.534375	
0.246	0.0492	0.528750	
0.227	0.0454	0.516875	
0.210	0.0420	0.506250	
0.203	0.0406	0.501875	
0.272	0.0544	0.545000	
0.242	0.0484	0.526250	
0.222	0.0444	0.513750	
0.212	0.0424	0.507500	
0.204	0.0408	0.502500	
0.257	0.0514	0.535625	
0.240	0.0480	0.525000	
0.230	0.0460	0.518750	
0.212	0.0424	0.507500	
0.204	0.0408	0.502500	
0.272	0.0544	0.545000	
0.247	0.0494	0.529375	
0.241	0.0482	0.525625	
0.226	0.0452	0.516250	
0.227	0.0454	0.516875	
0.248	0.0496	0.530000	
0.232	0.0464	0.520000	
0.223	0.0446	0.514375	
0.211	0.0422	0.506875	
0.225	0.0450	0.515625	
0.254	0.0508	0.533750	
0.244	0.0488	0.527500	
0.223	0.0446	0.514375	
0.218	0.0436	0.511250	
0.219	0.0438	0.511875	
0.263	0.0526	0.539375	
0.234	0.0468	0.521250	
0.226	0.0452	0.516250	
0.223	0.0446	0.514375	
0.217	0.0434	0.510625	
0.261	0.0522	0.538125	
0.237	0.0474	0.523125	
0.228	0.0474	0.517500	
0.225	0.0410	0.503125	
0.205	0.0410	0.505125	
0.211	0.0422	0.543750	
0.247	0.0494	0.529375	
0.236	0.0472	0.522500	
0.228	0.0456	0.517500	
0.218	0.0436	0.511250	

0.211	0.0422	0.506875
0.210	0.0420	0.506250
0.212	0.0424	0.507500
0.205	0.0410	0.503125
0.209	0.0418	0.505625
0.234	0.0468	0.521250
0.225	0.0450	0.515625
0.225	0.0450	0.515625
0.214	0.0428	0.508750
0.210	0.0420	0.506250
0.227	0.0454	0.516875
0.196	0.0392	0.497500
0.191	0.0382	0.494375
0.188	0.0376	0.492500
0.189	0.0378	0.493125
0.217	0.0434	0.510625
0.205	0.0410	0.503125
0.210	0.0420	0.506250
0.195	0.0390	0.496875
0.204	0.0408	0.502500
0.229	0.0458	0.518125
0.201	0.0402	0.500625
0.194	0.0388	0.496250
0.208	0.0416	0.505000
0.203	0.0406	0.501875
0.238	0.0476	0.523750
0.242	0.0484	0.526250
0.221	0.0442	0.513125
0.210	0.0420	0.506250
0.211	0.0422	0.506875
0.216	0.0432	0.510000
0.204	0.0408	0.502500
0.209	0.0418	0.505625
0.209	0.0418	0.505625
0.209	0.0418	0.505625
0.202	0.0404	0.501250
0.203	0.0406	0.501875
0.193	0.0386	0.495625
0.204	0.0408	0.502500
0.189	0.0378	0.493125
0.227	0.0454	0.516875
0.201	0.0402	0.500625
0.195	0.0390	0.496875
0.196	0.0392	0.497500
0.191	0.0382	0.494375
0.218	0.0436	0.511250
0.202	0.0404	0.501250
0.196	0.0392	0.497500
0.195	0.0390	0.496875
0.191	0.0382	0.494375
0.218	0.0436	0.511250
0.223	0.0446	0.514375
0.222	0.0444	0.513750
0.211	0.0422	0.506875
0.219	0.0438	0.511875

0.227	0.0454	0.516875
0.217	0.0434	0.510625
0.224	0.0448	0.515000
0.225	0.0450	0.515625
0.213	0.0426	0.508125
0.218	0.0436	0.511250
0.222	0.0444	0.513750
0.210	0.0420	0.506250
0.213	0.0426	0.508125
0.211	0.0422	0.506875
0.209	0.0418	0.505625
0.220	0.0440	0.512500
0.216	0.0432	0.510000
0.203	0.0406	0.501875
0.200	0.0400	0.500000
0.216	0.0432	0.510000
0.212	0.0424	0.507500
0.205	0.0410	0.503125
0.201	0.0402	0.500625
0.201	0.0408	0.502500
0.232	0.0464	0.520000
0.209	0.0418	0.505625
0.230	0.0460	0.518750
0.210	0.0420	0.506250
0.201	0.0402	0.500625
0.208	0.0416	0.505000
0.211	0.0422	0.506875
0.211	0.0422	0.506875
0.203	0.0406	0.501875
0.194	0.0388	0.496250
0.204	0.0408	0.502500
0.211	0.0422	0.506875
0.192	0.0384	0.495000
0.201	0.0402	0.500625
0.201	0.0402	0.500625
0.226	0.0452	0.516250
0.214	0.0428	0.508750
0.212	0.0424	0.507500
0.212	0.0424	0.507500
0.213	0.0426	0.508125
0.217	0.0434	0.510625
0.197	0.0394	0.498125
0.107	0.0412	0.503750
0.200	0.0396	0.498750
0.196	0.0392	0.497500
0.225	0.0450	0.515625
0.215	0.0430	0.509375
0.205	0.0410	0.503125
0.215	0.0430	0.509375
0.210	0.0420	0.506250
0.205	0.0410	0.503125
0.211	0.0422	0.506875
0.212	0.0424	0.507500
0.206	0.0412	0.503750
0.205	0.0410	0.503125

0.209	0.0418	0.505625
0.207	0.0414	0.504375
0.200	0.0400	0.500000
0.206	0.0412	0.503750
0.206	0.0412	0.503750
0.210	0.0420	0.506250
0.188	0.0376	0.492500
0.190	0.0380	0.493750
0.189	0.0378	0.493125
0.193	0.0386	0.495625
0.226	0.0452	0.516250
0.188	0.0376	0.492500
0.193	0.0386	0.495625
0.190	0.0380	0.493750
0.192	0.0384	0.495000
0.215	0.0430	0.509375
0.214	0.0428	0.508750
0.213	0.0426	0.508125
0.217	0.0434	0.510625
0.209	0.0418	0.505625
0.202	0.0404	0.501250
0.202	0.0404	0.501250
0.197	0.0394	0.498125
0.199	0.0398	0.499375
0.196	0.0392	0.497500
0.214	0.0428	0.508750
0.215	0.0430	0.509375
0.207	0.0414	0.504375
0.206	0.0412	0.503750
0.193	0.0386	0.495625
0.207	0.0414	0.504375
0.202	0.0404	0.501250
0.202	0.0404	0.501250
0.203	0.0406	0.501875
0.203	0.0406	0.501875
0.213	0.0426	0.508125
0.198	0.0396	0.498750
0.195	0.0390	0.496875
0.184	0.0368	0.490000
0.182	0.0364	0.488750
0.194	0.0388	0.496250
0.202	0.0404	0.501250
0.212	0.0424	0.507500
0.212	0.0424	0.507500
0.213	0.0426	0.508125
0.210	0.0420	0.506250
0.209	0.0418	0.505625
0.200	0.0400	0.500000
0.200	0.0400	0.500000
0.210	0.0420	0.506250
0.212	0.0424	0.507500
0.185	0.0370	0.490625
0.185	0.0370	0.490625
0.193	0.0386	0.495625
0.192	0.0384	0.495000

0.200	0.0400	0.500000
0.201	0.0402	0.500625
0.196	0.0392	0.497500
0.190	0.0380	0.493750
0.200	0.0400	0.500000
0.202	0.0404	0.501250
0.195	0.0390	0.496875
0.200	0.0400	0.500000
0.188	0.0376	0.492500
0.196	0.0392	0.497500
0.233	0.0466	0.520625
0.224	0.0448	0.515000
0.224	0.0448	0.515000
0.220	0.0440	0.512500
0.212	0.0424	0.507500
0.221	0.0442	0.513125
0.215	0.0430	0.509375
0.214	0.0428	0.508750
0.219	0.0438	0.511875
0.212	0.0424	0.507500
0.217	0.0434	0.510625
0.202	0.0404	0.501250
0.196	0.0392	0.497500
0.201	0.0402	0.500625
0.200	0.0400	0.500000
0.202	0.0404	0.501250
0.212	0.0424	0.507500
0.202	0.0404	0.501250
0.206	0.0412	0.503750
0.205	0.0410	0.503125
0.206	0.0412	0.503750
0.199	0.0398	0.499375
0.195	0.0390	0.496875
0.198	0.0396	0.498750
0.191	0.0382	0.494375
0.244	0.0488	0.527500
0.227	0.0454	0.516875
0.218	0.0436	0.511250
0.223	0.0446	0.514375
0.211	0.0422	0.506875
0.249	0.0498	0.530625
0.238	0.0476	0.523750
0.220	0.0440	0.512500
0.200	0.0400	0.500000
0.203	0.0406	0.501875
0.251	0.0502	0.531875
0.234	0.0468	0.521250
0.213	0.0426	0.508125
0.205	0.0410	0.503125
0.207	0.0414	0.504375
0.254	0.0508	0.533750
0.227	0.0454	0.516875
0.219	0.0438	0.511875
0.216	0.0432	0.510000
0.202	0.0404	0.501250

0.261	0.0522	0.538125
0.242	0.0484	0.526250
0.221	0.0442	0.513125
0.220	0.0440	0.512500
0.214	0.0428	0.508750
0.248	0.0496	0.530000
0.224	0.0448	0.515000
0.217	0.0434	0.510625
0.223	0.0446	0.514375
0.210	0.0420	0.506250
0.244	0.0488	0.527500
0.252	0.0504	0.532500
0.226	0.0452	0.516250
0.217	0.0434	0.510625
0.208	0.0416	0.505000
0.232	0.0464	0.520000
0.220	0.0440	0.512500
0.208	0.0416	0.505000
0.205	0.0410	0.503125
0.209	0.0418	0.505625
0.253	0.0506	0.533125
0.236	0.0472	0.522500
0.215	0.0430	0.509375
0.207	0.0414	0.504375
0.200	0.0400	0.500000
0.259	0.0518	0.536875
0.247	0.0494	0.529375
0.226	0.0452	0.516250
0.217	0.0434	0.510625
0.209	0.0418	0.505625
0.212	0.0424	0.507500
0.216	0.0432	0.510000
0.214	0.0428	0.508750
0.206	0.0412	0.503750
0.199	0.0398	0.499375
0.215	0.0430	0.509375
0.211	0.0422	0.506875
0.217	0.0434	0.510625
0.220	0.0440	0.512500
0.208	0.0416	0.505000
0.213	0.0426	0.508125
0.210	0.0420	0.506250
0.215	0.0430	0.509375
0.216	0.0432	0.510000
0.204	0.0408	0.502500
0.226	0.0452	0.516250
0.208	0.0416	0.505000
0.202	0.0404	0.501250
0.192	0.0384	0.495000
0.197	0.0394	0.498125
0.228	0.0456	0.517500
0.210	0.0420	0.506250
0.197	0.0394	0.498125
0.195	0.0390	0.496875
0.201	0.0402	0.500625

0.212	0.0424	0.507500
0.244	0.0488	0.527500
0.224	0.0448	0.515000
0.209	0.0418	0.505625
0.218	0.0436	0.511250
0.239	0.0478	0.524375
0.215	0.0430	0.509375
0.201	0.0402	0.500625
0.198	0.0396	0.498750
0.198	0.0396	0.498750
0.203	0.0406	0.501875
0.199	0.0398	0.499375
0.193	0.0386	0.495625
0.192	0.0384	0.495000
0.184	0.0368	0.490000
0.221	0.0442	0.513125
0.202	0.0404	0.501250
0.212	0.0424	0.507500
0.209	0.0418	0.505625
0.205	0.0410	0.503125
0.219	0.0438	0.511875
0.224	0.0448	0.515000
0.206	0.0412	0.503750
0.207	0.0414	0.504375
0.202	0.0404	0.501250
0.224	0.0448	0.515000
0.217	0.0434	0.510625
0.216	0.0432	0.510000
0.216	0.0432	0.510000
0.199	0.0398	0.499375
0.223	0.0446	0.514375
0.212	0.0424	0.507500
0.212	0.0424	0.507500
0.216	0.0432	0.510000
0.217	0.0434	0.510625
0.206	0.0412	0.503750
0.201	0.0402	0.500625
0.200	0.0400	0.500000
0.202	0.0404	0.501250
0.198	0.0396	0.498750
0.210	0.0420	0.506250
0.202	0.0404	0.501250
0.200	0.0400	0.500000
0.197	0.0394	0.498125
0.199	0.0398	0.499375
0.221	0.0442	0.513125
0.193	0.0386	0.495625
0.195	0.0390	0.496875
0.194	0.0388	0.496250
0.190	0.0380	0.493750
0.225	0.0450	0.515625
0.204	0.0408	0.502500
0.221	0.0442	0.513125
0.207	0.0414	0.504375
0.210	0.0420	0.506250

0.210	0.0420	0.506250
0.197	0.0394	0.498125
0.194	0.0388	0.496250
0.201	0.0402	0.500625
0.203	0.0406	0.501875
0.204	0.0408	0.502500
0.191	0.0382	0.494375
0.207	0.0414	0.504375
0.201	0.0402	0.500625
0.196	0.0392	0.497500
0.210	0.0420	0.506250
0.196	0.0392	0.497500
0.191	0.0382	0.494375
0.209	0.0418	0.505625
0.203	0.0406	0.501875
0.208	0.0416	0.505000
0.187	0.0374	0.491875
0.189	0.0378	0.493125
0.195	0.0390	0.496875
0.191	0.0382	0.494375
0.207	0.0414	0.504375
0.205	0.0410	0.503125
0.204	0.0408	0.502500
0.204	0.0408	0.502500
0.195	0.0390	0.496875
0.224	0.0448	0.515000
0.211	0.0422	0.506875
0.219	0.0438	0.511875
0.218	0.0436	0.511250
0.218	0.0436	0.511250
0.189	0.0378	0.493125
0.194	0.0388	0.496250
0.197	0.0394	0.498125
0.200	0.0400	0.500000
0.197	0.0394	0.498125
0.222	0.0444	0.513750
0.217	0.0434	0.510625
0.207	0.0414	0.504375
0.206	0.0412	0.503750
0.201	0.0402	0.500625
0.216	0.0432	0.510000
0.192	0.0384	0.495000
0.194	0.0388	0.496250
0.188	0.0376	0.492500
0.194	0.0388	0.496250
0.208	0.0416	0.505000
0.201	0.0402	0.500625
0.191	0.0382	0.494375
0.193	0.0386	0.495625
0.189	0.0378	0.493125
0.199	0.0398	0.499375
0.201	0.0402	0.500625
0.197	0.0394	0.498125
0.192	0.0384	0.495000
0.189	0.0378	0.493125

0.205	0.0410	0.503125
0.210	0.0420	0.506250
0.202	0.0404	0.501250
0.204	0.0408	0.502500
0.205	0.0410	0.503125
0.213	0.0426	0.508125
0.213	0.0426	0.508125
0.207	0.0414	0.504375
0.207	0.0414	0.504375
0.208	0.0416	0.505000
0.216	0.0432	0.510000
0.197	0.0394	0.498125
0.193	0.0386	0.495625
0.187	0.0374	0.491875
0.188	0.0376	0.492500
0.219	0.0438	0.511875
0.207	0.0414	0.504375
0.212	0.0424	0.507500
0.212	0.0416	0.505000
0.207	0.0414	0.504375
0.207	0.0414	0.509375
0.217	0.0434	0.510625
0.218	0.0436	0.511250
0.220	0.0440	0.512500
0.218	0.0436	0.511250
0.212	0.0424	0.507500
0.205	0.0410	0.503125
0.197	0.0394	0.498125
0.199	0.0398	0.499375
0.204	0.0408	0.502500
0.210	0.0420	0.506250
0.206	0.0412	0.503750
0.199	0.0398	0.499375
0.199	0.0398	0.499375
0.198	0.0396	0.498750
0.193	0.0386	0.495625
0.205	0.0410	0.503125
0.201	0.0402	0.500625
0.200	0.0400	0.500000
0.195	0.0390	0.496875
0.189	0.0378	0.493125
0.179	0.0358	0.486875
0.173	0.0366	0.489375
0.185	0.0370	0.490625
0.191	0.0382	0.494375
0.216	0.0432	0.510000
0.211	0.0422	0.506875
0.207	0.0414	0.504375
0.208	0.0416	0.505000
0.204	0.0408	0.502500
0.220	0.0440	0.512500
0.203	0.0406	0.501875
0.204	0.0408	0.502500
0.203	0.0406	0.501875
0.205	0.0410	0.503125

0.193	0.0386	0.495625
0.202	0.0404	0.501250
0.197	0.0394	0.498125
0.193	0.0386	0.495625
0.197	0.0394	0.498125
0.219	0.0438	0.511875
0.207	0.0414	0.504375
0.213	0.0426	0.508125
0.209	0.0418	0.505625
0.206	0.0412	0.503750

Tuning parameter 'gamma' was held constant at a value of $\mathbf{0}$ Tuning

parameter 'min_child_weight' was held constant at a value of 1 Accuracy was used to select the optimal model using the largest value. The final values used for the model were nrounds = 50, max_depth = 1, eta = 0.3, gamma = 0, colsample_bytree = 0.6, min_child_weight = 1 and subsample = 0.75.

plot(xgb_model)


```
# predict on test set
xgb_preds <- predict(xgb_model, newdata = test_data)

# confusion matrix and accuracy
conf_matrix <- confusionMatrix(xgb_preds, test_data$Reason)
print(conf_matrix)</pre>
```

Confusion Matrix and Statistics

Reference

Prediction	Diaper.Change	Fussy	Hungry	${\tt Pain}$	Tired
Diaper.Change	6	11	7	6	8
Fussy	13	13	9	3	11
Hungry	13	10	15	12	9
Pain	14	9	14	24	14
Tired	4	7	5	5	8

Overall Statistics

Accuracy: 0.264

95% CI : (0.2105, 0.3232)

No Information Rate : 0.2 P-Value [Acc > NIR] : 0.008598

Kappa: 0.08

Mcnemar's Test P-Value: 0.099593

Statistics by Class:

```
Class: Diaper.Change Class: Fussy Class: Hungry
Sensitivity
                                    0.1200
                                                  0.2600
                                                                0.3000
Specificity
                                    0.8400
                                                  0.8200
                                                                0.7800
Pos Pred Value
                                                                0.2542
                                    0.1579
                                                  0.2653
Neg Pred Value
                                    0.7925
                                                  0.8159
                                                                0.8168
Prevalence
                                    0.2000
                                                  0.2000
                                                                0.2000
Detection Rate
                                                                0.0600
                                    0.0240
                                                  0.0520
Detection Prevalence
                                    0.1520
                                                  0.1960
                                                                0.2360
Balanced Accuracy
                                    0.4800
                                                  0.5400
                                                                0.5400
                     Class: Pain Class: Tired
Sensitivity
                           0.4800
                                        0.1600
Specificity
                           0.7450
                                        0.8950
Pos Pred Value
                           0.3200
                                        0.2759
Neg Pred Value
                           0.8514
                                        0.8100
Prevalence
                           0.2000
                                        0.2000
Detection Rate
                           0.0960
                                        0.0320
Detection Prevalence
                           0.3000
                                        0.1160
Balanced Accuracy
                           0.6125
                                        0.5275
```

```
accuracy <- conf_matrix$overall['Accuracy']
print(accuracy)</pre>
```

Accuracy 0.264

```
# creating a confusion matrix heatmap (pretty)
cm_df <- as.data.frame(conf_matrix$table)
ggplot(cm_df, aes(x = Reference, y = Prediction)) +
    geom_tile(aes(fill = Freq), color = "white") +
    geom_text(aes(label = Freq), size = 4) +
    scale_fill_gradient(low = "white", high = "steelblue") +
    theme_minimal() +
    labs(title = "Confusion Matrix Heatmap (XGBoost)", x = "Actual", y = "Predicted")</pre>
```

Confusion Matrix Heatmap (XGBoost)


```
# extract variable importance
xgb_imp <- varImp(xgb_model)$importance</pre>
xgb_imp$Variable <- rownames(xgb_imp)</pre>
# choose top 20 important features
top_n <- 20
xgb_imp <- as_tibble(xgb_imp) %>%
  arrange(desc(Overall)) %>%
  dplyr::slice(1:top_n)
# make a clean ggplot for variable importance
ggplot(xgb_imp, aes(x = reorder(Variable, Overall), y = Overall)) +
  geom_col(fill = "#1f78b4") +
  coord_flip() +
  theme_minimal(base_size = 13) +
  labs(title = "Top 20 Variable Importances",
       subtitle = "XGBoost Model (Caret)",
       x = NULL,
       y = "Importance Score") +
    plot.title = element_text(hjust = 0.5, face = "bold", size = 15),
    plot.subtitle = element_text(hjust = 0.5, size = 12),
    axis.text.y = element_text(size = 9),
    axis.text.x = element_text(size = 11)
  )
```

Top 20 Variable Importances

XGBoost Model (Caret)

