GEOMETRY

Homework 1

Daniel Halmrast

April 18, 2018

Problem 1

Suppose M is a complete Riemannian manifold of dimension n, and suppose there exist constants a>0 and $c\geq 0$ such that for all pairs of points and all minimizing geodesics $\gamma(s)$ parameterized by arc length s, joining these points, we have

$$R(\gamma'(s)) \ge a + \partial_s f$$

where f is a function of s and $|f(s)| \leq c$ along γ . Prove that M is compact.

Proof. To show M is compact, we just need to show M is bounded. That is, there is some number N such that d(p,q) < N for all $p,q \in M$.

Let γ be a minimizing geodesic connecting two points p, q in M. We calculate the second variation in energy along γ in a manner similar to the proof of the Bonnet-Meyers theorem in

Do Carmo. In particular, we know

$$\frac{1}{2}E''(0) = \int_0^1 \sin^2(\pi t)((n-1)\pi^2 - (n-1)\ell^2 R_{\gamma}(e_n(t)))dt
= (n-1) \left[\frac{\pi^2}{2} - \int_0^1 \ell^2 R_{\gamma}(e_n(t))\right]
\leq (n-1) \left[\frac{\pi^2}{2} - \int_0^1 \sin^2(\pi s)\ell^2 \partial_s f ds\right]
= (n-1) \left[\frac{\pi^2}{2} - \int_0^1 \sin^2(\pi s)\ell^2 (a + \partial_s f) ds\right]
= (n-1) \left[\frac{\pi^2 - \ell^2 a}{2} - \int_0^1 \sin^2(\pi s)\ell^2 \partial_s f ds\right]
= (n-1) \left[\frac{\pi^2 - \ell^2 a}{2} + \int_0^1 \pi \sin(\pi s)\ell^2 f ds\right]
\leq (n-1) \left[\frac{\pi^2 - \ell^2 a}{2} + \int_0^1 \pi c |\sin(\pi s)|\ell^2 ds\right]
= (n-1) \left[\frac{\pi^2 - \ell^2 a}{2} + \pi c \ell^2 (\frac{2}{\pi})\right]
= (n-1) \left[\frac{\pi^2 - \ell^2 a}{2} + 2c \ell^2\right]$$

which is negative for $\ell^2 \geq \frac{\pi^2}{a-4c}$. Since γ is assumed to be minimal, this implies that $\ell^2 < \frac{\pi^2}{a-4c}$ and thus M is bounded with the diameter of M less than $\frac{\pi}{\sqrt{a-4c}}$ as desired.

<++>