CSC165H1: Problem Set 3

Due November 15, 2017 before 10pm

1. (a)

WTS: $\forall m \in \mathbb{Z}, \forall a, b \in S, (m \neq 0) \Longrightarrow (\forall n \in \mathbb{N}^+, (\forall k \leq n, a_k \equiv b_k (mod m)) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k (mod m))$

 $P(n): (\forall k \le n, a_k \equiv b_k (mod \ m)) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \ (mod \ m)$

Proof: We will prove this statement using induction on n.

Let $m \in \mathbb{Z}$, let $a, b \in S$, assume $m \neq 0$

Base case:

Let n=1.

We assume $\forall k \leq n, a_k \equiv b_k \pmod{m}$ that is $a_0 \equiv b_0 \pmod{m}$ and $a_1 \equiv b_1 \pmod{m}$, we want to prove that $\prod_{k=0}^{k=1} a_k \equiv \prod_{k=0}^{k=1} b_k \pmod{m}$ that is $a_0 \times a_1 \equiv b_0 \times b_1 \pmod{m}$ Since $\forall a, b, c, d, n \in \mathbb{Z}$, with $n \neq 0$, if $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $ab \equiv cd \pmod{n}$ (course note 2.18(c))

And $a_0 \equiv b_0 \pmod{m}$ and $a_1 \equiv b_1 \pmod{m}$ (what we assumed before) So $a_0 \times a_1 \equiv b_0 \times b_1 \pmod{m}$

Hence $(\forall k \leq n, a_k \equiv b_k (mod \ m)) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \ (mod \ m)$

Induction step:

Let $n \in \mathbb{N}^+$ and assume that $(\forall k \leq n, a_k \equiv b_k (mod \ m)) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \ (mod \ m)$ We want to prove that $(\forall k \leq n+1, a_k \equiv b_k (mod \ m)) \Rightarrow \prod_{k=0}^{k=n+1} a_k \equiv \prod_{k=0}^{k=n+1} b_k \ (mod \ m)$ Assume that $(\forall k \leq n+1, a_k \equiv b_k (mod \ m))$ we want to prove that $\prod_{k=0}^{k=n+1} a_k \equiv \prod_{k=0}^{k=n+1} b_k \ (mod \ m)$

Since $\forall k \leq n+1, a_k \equiv b_k \pmod{m}$ and n < n+1 so $\forall k \leq n, a_k \equiv b_k \pmod{m}$, so $\prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \pmod{m}$ (by induction hypothesis)

Since $\forall k \leq n+1, a_k \equiv b_k \pmod{m}$ so $a_{n+1} \equiv b_{n+1} \pmod{m}$

Since $\forall a, b, c, d, n \in \mathbb{Z}$, with $n \neq 0$, if $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then $ab \equiv cd \pmod{n}$ (course note 2.18(c))

Hence $\prod_{k=0}^{k=n} a_k \times a_{n+1} \equiv \prod_{k=0}^{k=n} b_k \times b_{n+1} \pmod{m}$ that is $\prod_{k=0}^{k=n+1} a_k \equiv \prod_{k=0}^{k=n+1} b_k \pmod{m}$

In all, we have proven that $\forall m \in \mathbb{Z}, \forall a, b \in S, \ (m \neq 0) \Longrightarrow (\ \forall n \in \mathbb{N}^+, (\forall k \leq n, a_k \equiv b_k (mod \ m)) \Rightarrow \prod_{k=0}^{k=n} a_k \equiv \prod_{k=0}^{k=n} b_k \ (mod \ m)) \blacksquare$

(b)

$$\begin{split} & \text{WTS:} \forall \mathbf{d} \in \mathbb{N}, \ \forall \mathbf{b} \in \mathbb{S}, \ (\mathbf{d} > 1 \ \land \ (\forall \mathbf{m} \in \mathbb{N}, \ b_m > 0)) \ \Longrightarrow (\forall \mathbf{n} \in \mathbb{N}, \ (\forall \, \mathbf{i} \in \mathbb{N}, \mathbf{i} \leq \mathbf{n} \Longrightarrow \gcd(\mathbf{d}, b_i) = 1) \Longrightarrow d \nmid \prod_{i=0}^{i=n} b_i) \end{split}$$

 $P(n): (\forall i \in \mathbb{N}, i \leq n \Longrightarrow \gcd(d, b_i) = 1) \Longrightarrow d \nmid \prod_{i=0}^{i=n} b_i$

Proof: We will prove this statement using induction on n.

Let $d \in \mathbb{N}$, let $b \in S$, we assume that d > 1 and $(\forall m \in \mathbb{N}, b_m > 0)$

Base case:

Let n=0

We assume that $\forall i \in \mathbb{N}, i \leq n \Longrightarrow \gcd(d, b_i) = 1$, that is $\gcd(d, b_0) = 1$

We want to show that $d \nmid \prod_{i=0}^{i=n} b_i$ that is $d \nmid b_0$

We will prove this by contradiction

Assume that $d|b_0$

Since d|d, so $gcd(d, b_0) \ge d > 1$

Hence $gcd(d, b_0) \neq 1$, and we get a contradiction

So
$$(\forall i \in \mathbb{N}, i \leq n \Longrightarrow \gcd(d, b_i) = 1) \Longrightarrow d \nmid \prod_{i=0}^{i=n} b_i$$

Induction step:

Let $n \in \mathbb{N}$ and assume that $(\forall i \in \mathbb{N}, i \leq n \Rightarrow \gcd(d, b_i) = 1) \Rightarrow d \nmid \prod_{i=0}^{i=n} b_i$

We want to prove that $(\forall i \in \mathbb{N}, i \leq n+1 \Longrightarrow \gcd(d, b_i) = 1) \Longrightarrow d \nmid \prod_{i=0}^{i=n+1} b_i$

Assume that $\forall i \in \mathbb{N}, i \leq n+1 \Longrightarrow \gcd(d, b_i) = 1$

We want to show that $d \nmid \prod_{i=0}^{i=n+1} b_i$

We will prove this by contradiction

Assume that $d|\prod_{i=0}^{i=n+1}b_i$ that is $d|\prod_{i=0}^{i=n}b_i\times b_{n+1}$

Since $\forall i \in \mathbb{N}, i \leq n+1 \Longrightarrow \gcd(d, b_i) = 1$ and n+1>n

So \forall $i \in \mathbb{N}$, $i \le n \Longrightarrow \gcd(d, b_i) = 1$ so $d \nmid \prod_{i=0}^{i=n} b_i$, that is $\gcd(d, \prod_{i=0}^{i=n} b_i) = 1$ (by induction hypothesis)

Since $\forall a, b \in \mathbb{N}$, $\forall c \in \mathbb{Z}$, $(\gcd(a, b) = 1 \land a|bc) \Rightarrow (a|c)$ (2(g) from problem set 2)

Since $\gcd(d, \prod_{i=0}^{i=n} b_i)=1$ and $d, \prod_{i=0}^{i=n} b_i \in \mathbb{N}$ and $b_{n+1} \in \mathbb{Z}$ and $d \mid \prod_{i=0}^{i=n} b_i \times b_{n+1}$

Thus $d|b_{n+1}$

So $gcd(d, b_{n+1}) \ge d > 1$

But we already know from our assumption that $\gcd(d,\ b_{n+1})=1$, so we get a contradiction Hence $d\nmid\prod_{i=0}^{i=n+1}b_i$

In all we have proven that $\forall d \in \mathbb{N}$, $\forall b \in S$, $(d > 1 \land (\forall m \in \mathbb{N}, b_m > 0)) \implies (\forall n \in \mathbb{N}, (\forall i \in \mathbb{N}, i \leq n \implies \gcd(d, b_i) = 1) \implies d \nmid \prod_{i=0}^{i=n} b_i) \blacksquare$

(c)

WTS: $\forall n \in \mathbb{N}$, $n > 1 \Longrightarrow \sum_{j=n+1}^{j=2n} \frac{1}{j} > \frac{13}{24}$

P(n):
$$\sum_{j=n+1}^{j=2n} \frac{1}{i} > \frac{13}{24}$$

Proof:

We will prove this statement using induction on n.

Base case:

Let n=2 (2>1)

$$\sum_{j=n+1}^{j=2n} \frac{1}{j} = \frac{1}{2+1} + \frac{1}{2 \times 2} = \frac{14}{24} > \frac{13}{24}$$

So
$$\sum_{j=n+1}^{j=2n} \frac{1}{j} > \frac{13}{24}$$

Induction step:

Let $n \in \mathbb{N}$, and assume that n > 1

We assume that $\sum_{j=n+1}^{j=2n} \frac{1}{j} > \frac{13}{24}$

We want to prove that $\sum_{j=n+2}^{j=2n+2} \frac{1}{j} > \frac{13}{24}$

$$\sum_{j=n+2}^{j=2n+2} \frac{1}{j} = \sum_{j=n+1}^{j=2n} \frac{1}{j} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2}$$
$$= \sum_{j=n+1}^{j=2n} \frac{1}{j} + \frac{1}{2n+1} - \frac{1}{2n+2}$$

Since 2n+2>2n+1>0

So
$$\frac{1}{2n+1} > \frac{1}{2n+2} > 0$$

So
$$\frac{1}{2n+1} - \frac{1}{2n+2} > 0$$

So
$$\sum_{j=n+1}^{j=2n} \frac{1}{j} + \frac{1}{2n+1} - \frac{1}{2n+2} > \sum_{j=n+1}^{j=2n} \frac{1}{j} > \frac{13}{24}$$
 (by induction hypothesis)

Hence
$$\sum_{j=n+2}^{j=2n+2} \frac{1}{j} > \frac{13}{24}$$

(d)

$$\text{WTS:} \forall \mathbf{c} \in \mathbf{S}, (c_n = \begin{cases} 0, & \text{if } n = 0 \\ c_{n-1} + 3n^2 - 3n + 1, & \text{if } n > 0 \end{cases}) \Longrightarrow (\forall \mathbf{n} \in \mathbb{N}, c_n = n^3)$$

P(n): $c_n = n^3$

Proof: We will prove this statement using induction on n.

Let
$$c \in S$$
, and assume that $c_n = \begin{cases} 0, & \text{if } n = 0 \\ c_{n-1} + 3n^2 - 3n + 1, & \text{if } n > 0 \end{cases}$

Base case:

Let n=0,
$$c_n = 0 = n^3$$
,

Induction step:

Let $n \in \mathbb{N}$,

Assume $c_n = n^3$

We want to show that $c_{n+1} = (n+1)^3$

Since $n \in \mathbb{N}$, so $n \ge 0$, hence n+1>0

Thus:

$$c_{n+1} = c_n + 3(n+1)^2 - 3(n+1) + 1$$

= $n^3 + 3(n+1)^2 - 3(n+1) + 1$ (by induction hypothesis)
= $n^3 + 3n^2 + 3n + 1$

$$=(n+1)^3$$

In all, we have proven that $\forall c \in S$, $(c_n = \begin{cases} 0, & \text{if } n = 0 \\ c_{n-1} + 3n^2 - 3n + 1, & \text{if } n > 0 \end{cases}) \Longrightarrow (\forall n \in \mathbb{N}, c_n = n^3)$

2.(a)

WTS:
$$\forall$$
n, k \in N, k \leq n \Longrightarrow $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

$$P(n): \ \forall \ k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Proof:

Let $n, k \in \mathbb{N}$, assume k=n, we know that the number of subsets S of size |s| is always 1,

so
$$\binom{n}{k}=1$$
 and $\frac{n!}{k!(n-k)!}=\frac{n!}{n!0!}=1$, hence $\forall n,k\in\mathbb{N},k=n\Longrightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is always true.

Let $n, k \in \mathbb{N}$, assume k=0, we know that the number of empty subset of a set is always 1,

so
$$\binom{n}{k}=1$$
 and $\frac{n!}{k!(n-k)!}=\frac{n!}{n!0!}=1$, hence $\forall n,k\in\mathbb{N},k=0\Longrightarrow\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is always true.

Therefore, we only need to prove $\forall n, k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

We will prove this statement using induction on n.

Base case:

Let n=0

Let $k \in \mathbb{N}$, assume 0 < k < n, that is 0 < k < 0 and this is false, so $0 < k < n \Longrightarrow \binom{n}{k} = n$

$$\frac{n!}{k!(n-k)!} \text{ is true. Hence } \forall \ k \in \mathbb{N}, 0 < \ k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Let n=1

Let $k \in \mathbb{N}$, assume 0 < k < n, that is 0 < k < 1 since $k \in \mathbb{N}$, so this assumption is false, so 0 < k < 1

$$k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 is true. Hence $\forall k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Let n=2

Let $k \in \mathbb{N}$, assume 0 < k < n, that is 0 < k < 2, so k = 1, since there are two elements in a set which size is two. So the number of subsets S of size 1 is 2, so $\binom{n}{k} = 2$

And
$$\frac{n!}{k!(n-k)!} = \frac{2}{1 \times 1} = 2$$

Thus
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
. Hence $\forall k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Induction step:

Let $n \in \mathbb{N}$, assume that $\forall k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Since $\forall n, k \in \mathbb{N}, k = n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$ is always true and $\forall n, k \in \mathbb{N}, k = 0 \Longrightarrow \binom{n}{k} = 0$

 $\frac{n!}{k!(n-k)!}$ is always true. We can write the assumption as \forall $k \in \mathbb{N}, 0 \le k \le n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

We want to show that $\forall k \in \mathbb{N}, 0 < k < n+1 \Longrightarrow \binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$

Let $k \in \mathbb{N}$, assume that 0 < k < n+1, we want to show that $\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$

When it comes to a set S with |S|=n+1, we can let the elements in the set be $\{s_1,s_2,\ldots,s_n,s_{n+1}\}$ Let $S'=\{s_1,s_2,\ldots,s_n\}$ so that $S=S'U\{s_{n+1}\}$, also |S'|=n

• First, counting subset of size k that contains s_{n+1} : Since every subset of S of size k that contains s_{n+1} must contain exactly k-1 elements

from S', there are $\binom{n}{k-1}$ choices of elements from S'. Since 0 < k < n+1 so $0 \le k-1 \le n-1$, thus $0 \le k-1 \le n$, Hence $\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!}$ (by induction hypothesis)

Hence there is $\frac{n!}{(k-1)!(n-k+1)!}$ subsets of S of size k that contains s_{n+1}

• Second, counting subset of size k that does not contain s_{n+1} : Every subset of size k of S that does not contain s_{n+1} must contain k of the elements $\{s_1, s_2, ..., s_n\}$. That is, these subsets are exactly the subsets of size k of S', so the number of these subsets is $\binom{n}{k}$.

Since 0 < k < n+1 so $0 < k \le n$ thus $0 \le k \le n$, Hence $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ (by induction hypothesis)

Hence there is $\frac{n!}{k!(n-k)!}$ subsets of S of size k that does not contain s_{n+1}

By combining the two counts from the first and second part, the total number of subsets of size k of S is $\frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$

That is
$$\binom{n+1}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!} = \frac{n!k+n!(n-k+1)}{k!(n-k+1)!} = \frac{n!(n+1)}{k!(n-k+1)!} = \frac{(n+1)!}{k!(n-k+1)!} = \frac{(n+1$$

Hence we have shown that $\binom{n+1}{k} = \frac{(n+1)!}{k!(n+1-k)!}$

In all we have proven that $\forall n, k \in \mathbb{N}, 0 < k < n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$ And $\forall n, k \in \mathbb{N}, k = n \Longrightarrow \binom{n}{k} = \binom{n}{k!}$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 and $\forall n, k \in \mathbb{N}, k = 0 \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

Therefore we have proven that $\forall n, k \in \mathbb{N}, k \leq n \Longrightarrow \binom{n}{k} = \frac{n!}{k!(n-k)!}$

(b) The elements of DTP_2 : $\{\emptyset, \{1,2\}\}$, $\{\{1\}, \{2\}\}$

The elements of DTP_3 : $\{\emptyset, \{1,2,3\}\}$, $\{\{1\}, \{2,3\}\}$, $\{\{2\}, \{1,3\}\}$, $\{\{3\}, \{1,2\}\}$

(c)

$$\forall n \in \mathbb{N}, \qquad |DTP_n| = \begin{cases} 1, & \text{if } n = 0 \\ 2^{n-1}, & \text{if } n > 0 \end{cases}$$

Proof:

WTS:
$$\forall n \in \mathbb{N}$$
, $|DTP_n| = \begin{cases} 1, & \text{if } n = 0 \\ 2^{n-1}, & \text{if } n > 0 \end{cases}$

$$P(n)$$
: $|DTP_n| = 2^{n-1}$

1. Let n=0

Since we got from the question that $DTP_0 = \{\{\emptyset, \emptyset\}\}\}$, so $|DTP_0| = 1$ So our statement is true when n=0.

2. We will prove the following statement using induction on n.

Base case:

Let n=1

Since we got from the question that $DTP_1 = \{\{\{1\}, \emptyset\}\}, so | DTP_1| = 1$

Since
$$2^{n-1} = 2^0 = 1$$

So
$$|DTP_n| = 2^{n-1}$$

Induction step:

Let $n \in \mathbb{N}$, assume n > 0, we assume $|DTP_n| = 2^{n-1}$

We want to prove that $|DTP_{n+1}| = 2^n$

Since $S_{n+1}=\{1,2,\ldots,n,n+1\}$, $S_n=\{1,2,\ldots,n\}$ so that $S_{n+1}=S_n\cup\{n+1\}$ (Definition 3)

According to the definition of DTP_{n+1} : $DTP_{n+1} = \{\{A, B\} | A, B \subseteq S_{n+1} \text{ and } A \cup B = S_{n+1} \text{ and } A \cap B = \emptyset\}$

Let $\{A, B\} \in DTP_{n+1}$, so n+1 must be in and only be in one of A,B

If $n + 1 \in A$, take C=A without n+1, D=B.

If $n + 1 \in B$, take C=A, D=B without n+1.

Let's first consider the number of {C,D}, then consider the number of {A,B} which is $|DTP_{n+1}|$

Since {A, B}'s definition is : A, B $\subseteq S_{n+1}$ and $A \cup B = S_{n+1}$ and $A \cap B = \emptyset$ and we also know that $S_{n+1} = S_n \cup \{n+1\}$

So the definition of $\{C,D\}$ is : $C,D\subseteq S_{n+1}\setminus\{n+1\}=S_n$ and $C\cup D=S_{n+1}\setminus\{n+1\}=S_n$ and $C\cap D=\emptyset$

Hence we can find that $\{C,D\}$'s definition is equal to the definition of DTP_n , so the number of $\{C,D\}$ is equal to $|DTP_n|$ which is 2^{n-1} (by induction hypothesis)

Now let's consider the number of {A,B} which is $|DTP_{n+1}|$, since

If $n + 1 \in A$, take C=A without n+1, D=B.

If $n + 1 \in B$, take C=A, D=B without n+1.

{A,B} is {C,D} add up with n+1, for every {C,D}, we can add up n+1 on C or on D, so there are two ways to add on n+1. That is the number of {A,B} is equal to $2 \times \text{the number of } \{C,D\}$. Hence $|DTP_{n+1}| = 2 \times |DTP_n| = 2 \times 2^{n-1} = 2^n$

In all we have proven that

$$\forall n \in \mathbb{N}, \qquad |DTP_n| = \begin{cases} 1, & \text{if } n = 0\\ 2^{n-1}, & \text{if } n > 0 \end{cases}$$

3. (a)

WTS:Theorem 5.8.: For all $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, if f(n) is eventually greater than or equal to 1, then $[f] \in \Theta(f)$ and $[f] \in \Theta(f)$

The definition of big-Theta: Definition 5.6. Let $f,g:\mathbb{N}\to\mathbb{R}^{\geq 0}$. We say that g is (Big-)Theta of f if and only if g is both Big-Oh of f and Omega of f. In this case, we can write $g\in\Theta(f)$ Equivalently, g is Theta of f if and only if there exist constants $c_1,c_2,n_0\in\mathbb{R}^+$ such that for all f if f is f in f in

Proof:

Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ we assume that f(n) is eventually greater than or equal to 1 that is $\exists n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow f(n) \geq 1$, let n_0 be that value.

We want to show that $\exists c_{11}, c_{21}, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Rightarrow c_{11}f(n) \leq [f] \leq c_{21}f(n)$ And $\exists c_{12}, c_{22}, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_2 \Rightarrow c_{12}f(n) \leq [f] \leq c_{22}f(n)$

First, from the worksheet, we know that: Given any real number x, the floor of x, denoted [x], is defined to be the largest integer that is less than or equal to x. Similarly, the ceiling of x , denoted [x], is defined to be the smallest integer that is greater than or equal to x. Hence we know that $x-1 < [x] \le x$ and $x \le [x] < x+1$

- show that $\exists c_{11}, c_{21}, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Longrightarrow c_{11}f(n) \leq [f] \leq c_{21}f(n)$
 - **1.** If f(n) is eventually greater than or equal to 1 but smaller than 2: That is $\exists n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow 2 > f(n) \geq 1$, let n_0 be that value.

Let
$$c_{11} = \frac{1}{2}$$
, $c_{21} = 1$, $n_1 = n_0$, so c_{11} , c_{21} , $n_1 \in \mathbb{R}^+$, since n_0 , $\frac{1}{2}$, $1 \in \mathbb{R}^+$

Let $n \in \mathbb{N}$, assume $n \ge n_1$

We want to show that $c_{11}f(n) \leq [f] \leq c_{21}f(n)$

 \Rightarrow Since $n \ge n_1 = n_0$, so $2 > f(n) \ge 1$, so $1 > \frac{1}{2}f(n) \ge \frac{1}{2}$

So
$$c_{11}f(n) = \frac{1}{2}f(n) < 1$$

Since $n \ge n_1 = n_0$, so $2 > f(n) \ge 1$, so [f] = 1

Hence
$$c_{11}f(n) = \frac{1}{2}f(n) < 1 = [f]$$

That is $c_{11}f(n) \leq [f]$

 \Leftrightarrow Since $n \ge n_1 = n_0$, so $2 > f(n) \ge 1$, so [f] = 1So $[f] \le f(n) = c_{21}f(n)$ (since $c_{21} = 1$)

Hence we have shown that $c_{11}f(n) \leq [f] \leq c_{21}f(n)$

2. If f(n) is eventually greater than or equal to 2:

That is $\exists n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Longrightarrow f(n) \geq 2$, let n_0 be that value.

Let
$$c_{11} = \frac{1}{3}$$
, $c_{21} = 1$, $n_1 = n_0$, so c_{11} , c_{21} , $n_1 \in \mathbb{R}^+$, since n_0 , $\frac{1}{3}$, $1 \in \mathbb{R}^+$

Let $n \in \mathbb{N}$, assume $n \ge n_1$

We want to show that $c_{11}f(n) \leq [f] \leq c_{21}f(n)$

 \Rightarrow Since $n \ge n_1 = n_0$, so $f(n) \ge 2$, thus $\frac{2}{3}f(n) \ge \frac{4}{3} > 1$

So
$$f(n) - \frac{1}{2} f(n) > 1$$

Thus $f(n) - c_{11} f(n) > 1$

So
$$c_{11} f(n) < f(n) - 1$$

Since [f] > f - 1 no matter what f is

So
$$[f] > f - 1 > c_{11} f(n)$$

 \diamond Since $[f] \leq f$ no matter what f is

So
$$[f] \le f = c_{21}f(n)$$
 (since $c_{21} = 1$)

Hence we have shown that $c_{11}f(n) \leq |f| \leq c_{21}f(n)$

In all we have shown that $\exists c_{11}, c_{21}, n_1 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_1 \Longrightarrow c_{11}f(n) \leq [f] \leq c_{21}f(n)$

Show that $\exists c_{12}, c_{22}, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_2 \Rightarrow c_{12}f(n) \leq [f] \leq c_{22}f(n)$ Let $c_{12} = 1$, $c_{22} = 3$, $n_2 = n_0$, so c_{12} , c_{22} , $n_2 \in \mathbb{R}^+$, since n_0 , 3,1 $\in \mathbb{R}^+$ Let $n \in \mathbb{N}$, assume $n \ge n_2$

We want to show that $c_{12}f(n) \leq [f] \leq c_{22}f(n)$

- \diamond Since $[f] \geq f$ no matter what f is So $[f] \ge f = c_{12}f(n)$ (Since $c_{12} = 1$)
- \Rightarrow Since $n \ge n_2 = n_0$, so $f(n) \ge 1$, so $2f(n) \ge 2 > 1$ So $3f(n) \ge f + 1$

Thus $c_{22} f(n) \ge f + 1$ (Since $c_{22} = 3$)

We also know that f + 1 > [f] no matter what f is

Hence $c_{22} f(n) \ge f + 1 > [f]$

Hence we have shown that $c_{12}f(n) \leq [f] \leq c_{22}f(n)$

In all we have shown that $\exists c_{12}, c_{22}, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_2 \Rightarrow c_{12}f(n) \leq [f] \leq c_{22}f(n)$

Therefore we have proven that For all $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, if f(n) is eventually greater than or equal to 1, then $[f] \in \Theta(f)$ and $[f] \in \Theta(f)$

(b)

WTS: $\forall a, b \in \mathbb{R}^+, (b > a \land a > 1) \Longrightarrow b^n \notin O(a^n)$

That is: $\forall a, b \in \mathbb{R}^+, (b > a \land a > 1) \Longrightarrow (\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, (n \ge n_0) \land (b^n > c \times a^n))$

Let $a, b \in \mathbb{R}^+$,assume b > a and a > 1

We want to prove that $\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, (n \ge n_0) \land (b^n > c \times a^n)$

Let $c, n_0 \in \mathbb{R}^+$, take $n = \max(\lceil \log_{\frac{b}{2}} c \rceil + 1, \lceil n_0 \rceil + 1)$, so $n \in \mathbb{N}$

We want to prove that $(n \ge n_0) \land (b^n > c \times a^n)$

• We want to prove that $n \ge n_0$:

Since
$$n = \max(\lceil \log_{\frac{b}{a}} c \rceil + 1, \lceil n_0 \rceil + 1)$$

So
$$n \ge [n_0] + 1 > [n_0] \ge n_0$$

Hence $n \ge n_0$

• We want to prove that $b^n > c \times a^n$:

Since
$$n = \max(\lceil \log_{\frac{b}{a}} c \rceil + 1, \lceil n_0 \rceil + 1)$$

So
$$n \ge \lceil \log_{\frac{b}{a}} c \rceil + 1 > \lceil \log_{\frac{b}{a}} c \rceil \ge \log_{\frac{b}{a}} c$$

Hence $n > \log_{\frac{b}{a}} c$

Since b > a and a > 1 so $\frac{b}{a} > 1$

Hence
$$(\frac{b}{a})^n > (\frac{b}{a})^{\log_{\frac{b}{a}}c}$$

That is
$$(\frac{b}{a})^n > c$$

Since a > 1 so $a^n > 0$

Hence $b^n > c \times a^n$

Hence we have shown that $(n \ge n_0) \land (b^n > c \times a^n)$

Therefore we have proven that $\forall a, b \in \mathbb{R}^+, (b > a \land a > 1) \Longrightarrow b^n \notin O(a^n)$

(c)

WTS: $RT_{xacd} \in O(\lg n)$

Proof:

Let $n, m \in \mathbb{N}$, we want to show that $RT_{xgcd} \in O(\lg n)$

(There is one assignment and one return sentence in the whole function and we will consider them only when there is no iteration in the loop. Cause $2 \in O(\lg n)$ (take c=1 and n_0 =1000, so $\forall n \in \mathbb{N}, n \geq n_0 = 1000, c \times \lg n = \lg n \geq \lg 1000 > 2$) and from therem5.5 we know that for all $f,g,h:\mathbb{N} \to \mathbb{R}^{\geq 0}$, if $f \in O(h)$ and $g \in O(h)$, then $f+g \in O(h)$, so we only need to consider whether the running time of the loop is a big-Oh of $\lg n$.)

assume $m \neq 0$, and $n \neq 0$

• CASE1: n=m:

If n=m, then the quotient will be r0//r1=1

Hence after one iteration, r1=n-(n//m)m=n-m=0

And the loop is over.

Hence when n=m, $RT_{xgcd}=1\in O(\lg n)$ (take c=1 and $n_0=1000$, so $\forall n\in\mathbb{N}, n\geq n_0=1000, c\times\lg n=\lg n\geq \lg 1000>1)$

CASE2: m<n:</p>

Let r_0 be the original value of r0, r_1 be the value of r0 after one loop iteration, and

 r_2 the value of r0 after two loop iterations. We want to prove that $r_2 \leq \frac{1}{2} r_0$

From the question, we get that $r_2 = r_0 - (r_0//r_1)r_1$

Since m<n from the "r0, r1 = r1, r0 - quotient * r1", we know that $r_1 < r_0$, since r_1 is either be the remainder that the last r0 divides r_0 or be m when r_0 be n.

We divide up this proof into two cases:

$$\Leftrightarrow$$
 Case1: $0 \le r_1 \le \frac{1}{2}r_0$

(If $r_1=0$, although the loop will end at that time, we may assume that the loop is going on till the next iteration when r_2 is something related with r_0 and the loop end at that time. Since we are calculating the worst situation.)

Since
$$(r_0//r_1) \times r_1 + r_0 \% r_1 = r_0$$

So
$$r_2 = r_0 - (r_0//r_1)r_1 = r_0\%r_1$$

Since
$$r_0 \% r_1 < r_1$$
 and $r_1 \le \frac{1}{2} r_0$

Thus
$$r_2 = r_0 \% r_1 \le \frac{1}{2} r_0$$
, that is $r_2 \le \frac{1}{2} r_0$

$$\Leftrightarrow$$
 Case2: $\frac{1}{2}$ $r_0 < r_1 < r_0$

Since
$$\frac{1}{2}$$
r₀ < r₁ < r₀, so r₀//r₁ = 1 (since if r₀//r₁ \neq 1, then r₀//r₁ =

 $0~or~r_0//r_1>1$, for $~r_0//r_1=0$, then $r_0\%r_1=r_0< r_1$, we get a contradiction. For $r_0//r_1>1$, then $~r_0\geq 2r_1>r_0$, we get a contradiction. Thus $~r_0//r_1=1$)

So
$$r_2 = r_0 - (r_0//r_1)r_1 = r_0 - r_1$$

Since
$$\frac{1}{2}$$
r₀ < r₁ < r₀

So
$$-\frac{1}{2}\mathbf{r}_0 > -r_1 > -r_0$$

So
$$r_0 - \frac{1}{2}r_0 > r_0 - r_1 > r_0 - r_0$$
 (since $r_0 \in \mathbb{N}$)

Hence
$$\frac{1}{2}r_0 > r_0 - r_1$$

Thus
$$r_2 = r_0 - r_1 < \frac{1}{2}r_0$$
, that is $r_2 \le \frac{1}{2}r_0$

In all we have shown that $r_2 \leq \frac{1}{2} r_0$

That is every two iterations of the loop reduces r0 by at least half.

And the loop will be over when r1=0 that is when r0 becomes the gcd(n.m), (since the loop is to get the extended gcd(n,m) and r0=gcd(n,m), r0=s0n+t0m)

Since we want to get the big-Oh of RT_{xgcd} , hence we can think about the worst condition that is gcd(n.m)=1. Hence when $1 \le r0 < 2$, the loop will get over. (Since sometime we won't get 1 when divide n by 2 everytime and the gcd(n,m) must be

greater or equal to 1)

After 2k iterations, r0 will be $\frac{n}{2^k}$, and take this into $1 \le r0 < 2$, we get $1 \le \frac{n}{2^k} < 2$, so

$$k = \lfloor \log_2 n \rfloor$$

Hence the number of actual iterations is at most $2[\log_2 n]$, with each iteration costing a single step

Thus $RT_{xgcd} \le 2[\log_2 n]$

Take
$$c_1 = \frac{\ln 10}{\ln 2}$$
, $c_2 = 2 \times \frac{\ln 10}{\ln 2}$, $n_0 = 100$ so $\forall n \in \mathbb{N}, n \ge n_0$: $c_2 \lg n = 2 \log_2 n \ge n$

$$2[\log_2 n]$$
, $c_1 \lg n = \log_2 n < \log_2 n + \log_2 n - 2 < 2[\log_2 n]$
So $2[\log_2 n] \in \Theta(\lg n)$, hence $RT_{xqcd} \in O(\lg n)$

CASE3: m>n:

So the first iteration will do the work that exchange the value of r1 and r0, so r1 will be n and r0 will be m, and the second iteration will do the work that change n back to r0, and r1 at this time is the remainder of m divides n which is smaller than n, let's call it m'.

Start with the third iteration. Let r_0 be the original value of r0, r_1 be the value of r0 after one loop iteration, and r_2 the value of r0 after two loop iterations. We want to

prove that
$$r_2 \leq \frac{1}{2} r_0$$

From the question, we get that $r_2 = r_0 - (r_0//r_1)r_1$

Since m'<n from the "r0, r1 = r1, r0 - quotient * r1", we know that $r_1 < r_0$, since r_1 is either be the remainder that the last r0 divides r_0 or be m' when r_0 be n. We divide up this proof into two cases:

$$\Leftrightarrow \quad \text{Case1: } 0 \le r_1 \le \frac{1}{2} r_0$$

(If $r_1=0$, although the loop will end at that time, we may assume that the loop is going on till the next iteration when r_2 is something related with r_0 and the loop end at that time. Since we are calculating the worst situation.)

Since
$$(r_0//r_1) \times r_1 + r_0 \% r_1 = r_0$$

So
$$r_2 = r_0 - (r_0//r_1)r_1 = r_0\%r_1$$

Since
$$\mathbf{r}_0 \% r_1 < r_1$$
 and $r_1 \le \frac{1}{2} \mathbf{r}_0$

Thus
$$r_2 = r_0 \% r_1 \le \frac{1}{2} r_0$$
, that is $r_2 \le \frac{1}{2} r_0$

$$\Leftrightarrow$$
 Case2: $\frac{1}{2}$ $r_0 < r_1 < r_0$

Since
$$\frac{1}{2}r_0 < r_1 < r_0$$
, so $r_0//r_1 = 1$ (since if $r_0//r_1 \neq 1$, then $r_0//r_1 = 1$

 $0~or~r_0//r_1>1$, for $~r_0//r_1=0$, then $~r_0\%r_1=r_0< r_1$, we get a contradiction. For $~r_0//r_1>1$, then $~r_0\geq 2r_1>r_0$, we get a contradiction. Thus $~r_0//r_1=1$) So $~r_2=r_0-(r_0//r_1)r_1=r_0-r_1$

Since
$$\frac{1}{2}$$
 r₀ < r₁ < r₀

So
$$-\frac{1}{2}\mathbf{r}_0 > -r_1 > -r_0$$

So
$$\mathbf{r}_0 - \frac{1}{2}\mathbf{r}_0 > \mathbf{r}_0 - r_1 > \mathbf{r}_0 - \mathbf{r}_0$$
 (since $\mathbf{r}_0 \in \mathbb{N}$)

Hence
$$\frac{1}{2}r_0 > r_0 - r_1$$

Thus
$$r_2 = r_0 - r_1 < \frac{1}{2}r_0$$
, that is $r_2 \le \frac{1}{2}r_0$

In all we have shown that $r_2 \leq \frac{1}{2}r_0$

That is every two iterations of the loop reduces r0 by at least half.

And the loop will be over when r1=0 that is when r0 becomes the gcd(n.m), (since the loop is to get the extended gcd(n,m) and r0=gcd(n,m), r0=s0n+t0m) Since we want to get the big-Oh of RT_{xgcd} , hence we can think about the worst condition that is gcd(n.m)=1. Hence when $1 \le r0 < 2$, the loop will get over. (Since sometime we won't get 1 when divide n by 2 everytime and the gcd(n,m) must be greater or equal to 1)

After 2k iterations, r0 will be $\frac{n}{2^k}$, and take this into $1 \le r0 < 2$, we get $1 \le \frac{n}{2^k} < 2$, so

$$k = \lfloor \log_2 n \rfloor$$

Hence the number of actual iterations is at most $2[\log_2 n] + 2$ (since the first iteration will do the work that exchange the value of r1 and r0, so r1 will be n and r0 will be m, and the second iteration will do the work that change n back to r0, and r1 at this time is the remainder of m divides n which is smaller than n, so we gonna add 2 here) ,with each iteration costing a single step

Thus $RT_{xqcd} \le 2[\log_2 n] + 2$

Take
$$c_1 = \frac{\ln 10}{\ln 2}$$
, $c_2 = 3 \times \frac{\ln 10}{\ln 2}$, $n_0 = 100$ so $\forall n \in \mathbb{N}, n \ge n_0$: $c_2 \lg n = 3 \log_2 n \ge n_0$

$$2\log_2 n + 2 \ge 2[\log_2 n] + 2$$
, $c_1|g_1 = \log_2 n < \log_2 n + \log_2 n < 2[\log_2 n]$
So $2[\log_2 n] + 2 \in \Theta(\lg n)$, hence $RT_{xgcd} \in O(\lg n)$

If m=0:

So the condition is wrong at the first time

And $RT_{xgcd}=2\in O(\lg n)$ (take c=1 and $n_0=1000$, so $\forall n\in\mathbb{N}, n\geq n_0=1000$, $c\times\lg n=\lg n_0\geq \lg n_0$)

If n=0 and $m\neq 0$

There is only 1 iteration

And $RT_{xgcd}=1\in O(\lg n)$ (take c=1 and $n_0=1000$, so $\forall n\in\mathbb{N}, n\geq n_0=1000, c\times\lg n= \lg n\geq \lg 1000>1)$

Therefore we have shown that $RT_{xacd} \in O(\lg n)$