Classical Theories of Monetary-Fiscal Interaction

Livio Maya †

†Insper

Course Content

- 1. The Two-Period Model
- 2. Production + Marginal Taxation
- 3. Uncertainty and Income Insurance
- 4. Overlapping Generations and Pension
- 5. Classical Monetary-Fiscal Interactions
- 6. Fiscal Theory of the Price Level
- 7. Fiscal Multipliers
- 8. Brazilian Case

Hyperinflations

Country	Beginning	End	P _t /P ₀	Av Monthly Inflation Rate (%)	Av Monthly M Growth (%)
Austria	Oct. 1921	Aug. 1922	70	47	31
Germany	Aug. 1922	Nov. 1923	1x10 ¹⁰	322	314
Greece	Nov. 1943	Nov. 1944	4.7x10 ⁶	365	220
Hungary 1	Mar. 1923	Feb. 1924	44	46	33
Hungary 2	Aug. 1945	Jul. 1946	3.8x10 ²⁷	19800	12200
Poland	Jan. 1923	Jan. 1923	699	82	72
Russsia	Dec. 1921	Dec. 1921	1.2x10 ⁵	57	49
Brazil	Jan. 1983	Jun. 1994	1.4x10 ¹⁰	20	19

Source: Ayres et al. (2019)

Model with Nominal Debt

- Real interest: $1 + r_t = 1 + i_{t-1} / 1 + \pi_{t+1}$
- Government budget constraint:

$$B_0 = P_1 s_1 + \Delta M_1$$

 $B_{-1} = Q_0 B_0 + P_0 s_0 + \Delta M_0$

Households:

$$\begin{aligned} \max_{c \geq 0, M \geq 0, B_0} \quad & u(c_0) + h(m_0) + \beta \left[u(c_1) + h(m_1) \right] \\ Q_0 B_0 + M_0 + P_0 c_0 \leq B_{-1} + M_{-1} + P_0 (y_0 - \tau_0) \\ P_1 c_1 + M_1 \leq B_0 + M_0 + P_1 (y_1 - \tau_1) \end{aligned}$$

• Equilibrium:

$$u'(y_0 - g_0) = \beta(1 + r_1)u'(y_1 - g_1)$$

 $h'(m_0) = \frac{i_0}{1 + i_0}u'(y_0 - g_0)$
 $h'(m_1) = u'(y_1 - g_1)$

Cagan (1956)

- Hyperinflations: real variables r, y exogenous
- Log money \hat{m} demand

$$\hat{m}_t + \eta i_t = p_t$$

• Adaptive expectations

$$\pi_{t+1}^e = p_t - p_{t-1}$$

• Solution:

$$p_t = \frac{\eta}{\eta - 1} p_{t-1} - \frac{m_t}{\eta - 1}$$

$$\eta > 1$$
?

Sargent and Wallace (1981)

• Real debt and currency

$$P_t b_{t-1} = P_t s_t + \Delta M_t$$

- Passive monetary policy prevents default
- Constant V and y: $m_{-1} = m_0 = m_1$

$$b_0 = \left(s_0 + \frac{\pi_0}{1 + \pi_0} m_{-1}\right) + q_0 \left(s_1 + \frac{\pi_1}{1 + \pi_1} m_0\right).$$

Monetary shock M'₀ < M₀:

$$P_0' < P_0 \qquad b_0' > b_0 \qquad M_1' > M_1 \qquad P_1' > P_1$$

References I

- Ayres, J., Garcia, M., Guillén, D., and Kehoe, P. (2019). The Monetary and Fiscal History of Brazil, 1960-2016. Technical Report w25421, National Bureau of Economic Research, Cambridge, MA.
- Cagan, P. (1956). The Monetary Dynamics of Hyperinflation. In *Studies* in the Quantity Theory of Money, pages 25–117. University of Chicago Press, milton friedman edition.
- Sargent, T. J. and Wallace, N. (1981). Some Unpleasant Monetarist Arithmetic. Federal Reserve Bank of Minneapolis Quarterly Review, 5.