Extracción Estructurada de Documentos con Deep Learning

Dr. Cristian Muñoz Villalobos

Introducción

La extracción de documentos estructurados es una tarea importante en muchas organizaciones y áreas de investigación. Encaja como un proceso de organización de datos (Data Curation) donde la recolección y gestión de datos son pasos clave para tener un fácil acceso que permita encontrar y comprender los datos.

Normas

Economia

Biomedicina

De los enfoques para automatizar la organización de datos (Data Curation)

En términos generales, tenemos dos formas de automatizar el proceso de curación de datos:

 Podemos escribir un conjunto de instrucciones que le digan a la computadora cómo procesar la fecha, definiendo un conjunto de reglas.

 Podemos dejar que la computadora aprenda a procesar la fecha a partir de ejemplos empíricos, utilizando el aprendizaje profundo.

Enfoques basados en reglas

- Los enfoques basados en reglas tienen la ventaja de ser fáciles de entender. La mayoría de nosotros estamos acostumbrados a interactuar con la computadora a través de enfoques basados en reglas.
- Ciertamente tienen su importancia, pero hemos identificado que presentan poco rendimiento como por ejemplo: los documentos históricos.
- La complejidad y el ruido son enemigos de las reglas, y muchos tipos de documentos presentan muchas situaciones complejas y ruidosas.

Deep Learning

Aprende un mapeamiento robusto entre los datos brutos y la salida deseada.

Generaliza de forma que podamos procesar con precisión los nuevos datos a los cuales el modelo no fue expuesto durante el entrenamiento.

Los modelos raramente se entrenan desde cero.

Como la IA participa en la extracción estructurada de documentos?

Necesitamos detectar y extraer:

- Texto (Escaneado es del tipo más complicado)
 Título? subtítulo? Pie de página? encabezado?
- Tablas
- Imágenes
- Ecuaciones
- Manuscritos (Textos o firmas)
- Informaciones clave-valor

https://icdar2021.org/program-2/competitions/competitionon-scientific-literature-parsing/ Análisis de documentos históricos

Reconocimiento de emociones en es cenas de Comics

 Sistemas Visuales Pregunta Respuesta para documentos

Ejemplo: OCR Comerciales

- Los softwares comerciales de OCR se basan principalmente en documentos limpios y modernos con diseños simples, como libros de una columna.
- En la práctica, a menudo nos interesan los documentos ruidosos, muchos de los cuales tienen diseños muy complejos.
- Las soluciones de OCR existentes a menudo tienen problemas con los diseños y las fuentes.
- Estamos muy lejos de llegar a la Inteligencia Artificial General. Si el software no ha sido entrenado en documentos que se parecen a los documentos que desea procesar, tendrán un desempeño deficiente.

No hay un aplicativo que haga eso isso?

- Muchas personas pueden pensar "pero no existe un aplicativo(o algún otro producto comercial) que haga eso?
- Existen muchas empresas que ofrecen soluciones a la extracción de información:

https://cloud.google.com/document-ai

https://www.ibm.com/cloud/document-processing

https://aws.amazon.com/machine-learning/ml-use-cases/document-processing/

https://azure.microsoft.com/en-us/services/form-recognizer/#overview

- Desafortunadamente, no existen soluciones listas para usar para todos los tipos de conservación de datos (en CV o NLP), o las soluciones comerciales existentes a menudo no se acercan a una precisión aceptable.
- Una de las plataformas de código abierto más populares para resolver este tipo de problemas fue propuesta por la profesora Melissa Dell de la Universidad de Stanford.

https://twitter.com/MelissaLDell/status/1380173059001307136

Layout Parser: Una solución Open Source

Paper with Complex Layouts

Magazine Scans & Websites

Historical Documents

Layout Parser

Detección de composición de documentos

Una riqueza de modelos pre entrenado en conjuntos de datos diferentes

PubLayNet HJDataset PRImA Newspaper Navigator TableBank

Post-Processing

Manipulación y procesamiento de los componentes detectados:

Operation Name	Description
block.pad(top, bottom, right, left)	Enlarge the current block according to the input
block.scale(fx, fy)	Scale the current block given the ratio in x and y direction
block.shift(dx, dy)	Move the current block with the shift distances in x and y direction
block1.is_in(block2)	Whether block1 is inside of block2
block1.intersect(block2)	Return the intersected region of block1 and block2. Coordinate type to be determined based on the inputs.
block1.union(block2)	Return the union region of block1 and block2. Coordinate type to be determined based on the inputs.
block1.relative_to(block2)	Convert the absolute coordinates of block1 to relative coordinates to block2
block1.condition_on(block2)	Calculate the absolute coordinates of block1 given the canvas block2's absolute coordinates
block.crop_image(image)	Obtain the image segments in the block region

Post-Processing

Visualizar, exportar y almacenar!

Mode I: Showing Layout on the Original Image

Mode II: Drawing OCR'd Text at the Correspoding Position

Personalización

Entrenamiento de los modelos.

Layout-Parser/layout-model-training: The scripts for training Detectron2-based Layout Models on popular layout analysis...

The scripts for training Detectron2-based Layout Models on popular layout analysis datasets - GitHub - Layout-Parser/layout-model-training: The scripts for training Detectron2-based Layout Models ...

GitHub

https://github.com/Layout-Parser/layout-model-training

Otras utilidades:)

