095309.57644US

DaimlerChrysler AG

, 30 min mi

Method for the production of a vehicle component, particularly a chassis frame

5

METHOD FOR THE PRODUCTION OF A VEHICLE COMPONENT, PARTICULARLY A CHASSIS FRAME

BACKGROUND AND SUMMARY OF THE INVENTION

- This application is a National Phase of PCT/EP2004/011519, filed October 14, 2004, and claims the priority of German patent document DE 103 51 137.7, filed November 3, 2003, the disclosure of which is expressly incorporated by reference herein.
- 15 The invention relates to a method for the production of a vehicle component, particularly a chassis frame.
- Chassis frames of motor vehicles are usually formed by made up of profiled longitudinal member plates, transverse member plates as end-side end transverse 20 connections of the longitudinal members, crossbar plates for securing the transmission and the axle mountings. Longitudinal and transverse link bearings, body mountings and the spring strut mountings are additionally also connected to the longitudinal members 25 as console plates belonging to the frame. connection of the numerous individual parts are generally connected to form a high-value frame generally takes place either by customary conventional welding methods, or [[else]] mechanically[[,]] (for 30 example, by means of bolts). The magnetic pulsed-[[is]] described current welding method International patent document WO 97/00151 [[as a]] is an example of a particular joining technique.

The diversity of number of different parts used in the case of these previous known frame constructions is very high due to the accumulation of functions, which requires; thus complicated production of individual parts, and is the reason for varied joining operations are required, which are frequently difficult to carry out [[-]] (also because of meager construction spaces). As a result, [[-]] in addition to [[the]] high storage costs for the individual parts, [[-]] the production of the entire frame is relatively expensive. Furthermore, 10 extremely high demands are imposed on the connections with regard to in terms of mechanical loadbearing capacity which they do not meet, at least with the service life over the medium to long term, with the. As a result, that, as a consequence of cracks or even breaks at the joining points[[,]] inevitably cause which impairs driving safety damage relevant to inevitably occurs.

Furthermore, the public has ever greater expectations in terms of safety and comfort with regard to roadholding[[, as]]. As a result, of which a main feature in the production of a frame is the greatest possible flexural and torsional rigidity. The known sheet-metal construction is also only able to cannot adequately meet this expectation inadequately.

The invention is based on the object of indicating a One object of the invention, therefore, is to provide a simple method for the production of a vehicle component which, in a relatively simple manner, firstly permits a very complex design form with substantially improved stability of the component. Another object of the invention is to provide such a method which minimizes the need for and secondly permits as little diversity of the components for the component as possible.

30

35

The object is achieved according to the invention by the features of patent claim 1.

Owing to the design according to the invention of These and other objects and advantages are achieved by the method according to the invention. In particular, by designing the cross members as tubular hollow profiles, [[of]] and the crossbars and [[of the]] longitudinal members as hollow profiles, the torsional and flexural 10 rigidity, and therefore the stability of the entire frame, are [[is]] improved quite considerably. improved with regard to the torsional and flexural rigidity and therefore its stability. In the course of the The special "construction-space-matched" and precise design 15 of the cross-sectional shape and [[of the]] surface profile of the longitudinal member by [[the]] internal high pressure forming technique, which, already with relatively simple means, permits provide a economical technique which accommodates a complex 20 design of the component, components (in particular of the chassis frame), in an economical manner in terms of method during the expansion of the longitudinal member hollow profiles[[,]]. In this manner, the body the bearing mountings for mountings and 25 longitudinal links are likewise formed in [[one]] a single working step laterally from the longitudinal member hollow profile as secondary shaped elements. These are subsequently, of course, to be perforated, for example by means of drilling or punching. Owing to this

This possibility of forming said mountings or other consoles of complex configuration[[,]] (which are otherwise used as separate add-on parts, and are to be joined onto the longitudinal members[[,]]) from the

BEST AVAILABLE COPY

10

longitudinal member hollow profile material with little outlay (and therefore of achieving the ability to achieve unity of various functional components of the component [[,]]) permits an extremely high degree of integration is obtained and [[the]] substantially reduces the necessary diversity of components is therefore drastically reduced. In this connection, the component does not suffer from any losses of rigidity whatsoever, and at the same time no weak points are produced in the mechanical load-bearing capacity due to consoles being joined to the longitudinal member, so that the stability is ensured.

owing to the improved torsional Furthermore, the component achieved 15 flexural rigidity of designing its members being designed in the form of hollow profiles configured by internal high pressure, permits the wall thickness of the component [[can]] to be reduced, so that weight in the component or frame construction is saved, which. This saving is highly 20 beneficial to the lightweight construction of motor vehicles that is generally required on account of for lowering emissions and saving fuel. From the great variety of vehicle frames, in addition to the chassis frame and the frame structure of the body, [[a] use of 25 also method according to the invention is conceivable, for example, in the case of a seat frame.

Expedient refinements of the invention can be gathered

from the subclaims; furthermore, the invention is
explained in more detail below with reference to an
exemplary embodiment illustrated in the drawings, in
which:

Other objects, advantages and novel features of the present invention will become apparent from the

095309.57644US

following detailed description of the invention when considered in conjunction with the accompanying drawings.

5 BRIEF DESCRIPTION OF THE DRAWINGS

- [[fig.]] <u>Fig.</u> 1 <u>shows, in is</u> a perspective view[[, a]] <u>of the rear [[part]] portion</u> of a chassis frame according to the invention[[,]];
- [[fig.]] Fig. 2 shows, in is a perspective view[[, a]]
 of the front part of a chassis frame according to the
 invention, directly adjoining the rear part from
 [[fig.]] Fig. 1[[,]];
- 15 [[fig.]] Fig. 3 shows, in is a perspective view[[,]] of the spring strut mounting of the front part of the chassis frame from [[fig.]] Fig. 2[[,]];
- [[fig.]] Fig. 4 shows, in is a perspective view[[,]] of
 the crossbars of the chassis frame according to the
 invention, from [[figs.]] Figs. 1 and 2, in a joining
 position[[,]];
- [[fig.]] <u>Fig.</u> 5 shows, in <u>is</u> a perspective view[[,]] <u>of</u>
 25 a body mounting of the rear part of the chassis frame
 from [[fig.]] <u>Fig.</u> 1[[,]];
- [[fig.]] <u>Fig.</u> 6 <u>shows, in is</u> a perspective view[[,]] <u>of</u> a bearing mounting of a longitudinal link in the rear part of the chassis frame from [[fig.]] Fig. 1[[,]];
 - [[fig.]] Fig. 7 shows, in is a perspective view[[,]] of a body mounting of the rear part of the chassis frame

from [[fig.]] <u>Fig.</u> 1, which body mounting has been produced by pinching the longitudinal member hollow profile[[,]];

- 5 [[fig.]] Fig. 8 shows[[, in]] a cross section[[,]] of
 the body mounting from [[fig.]] Fig. 7[[,]];
- [[fig.]] <u>Fig.</u> 9 [[shows]] <u>is</u> a cross <u>section</u> <u>sectional</u> <u>perspective view</u> of a longitudinal member hollow profile of the chassis frame according to the invention with form-fitting elements, in a perspective,;
- [[fig.]] Fig. 10 shows the production of a spring strut
 mounting of the chassis frame according to the
 invention in a perspective view of the bent shape of
 the section of the longitudinal member hollow profile
 after a first bending step[[,]];
- [[fig.]] Fig. 11 shows the bent shape of the spring
 20 strut mounting from [[fig.]] Fig. 10 after a second
 bending step[[,]];
- [[fig.]] Fig. 12 shows the bent shape of the spring
 strut mounting from [[fig.]] Fig. 11 after a third
 25 bending step[[,]];
 - [[fig.]] <u>Fig.</u> 13 shows the fully bent spring strut mounting from [[fig.]] <u>Fig.</u> 10 after the fourth bending step[[,]]; and

[[fig.]] $\underline{\text{Fig.}}$ 14 shows the spring strut mounting from [[fig.]] $\underline{\text{Fig.}}$ 13 after flattening and perforating.

DETAILED DESCRIPTION OF THE DRAWINGS

30

35 Fig. 1 illustrates a rear part of a chassis frame 1 of a motor vehicle[[,]] (in particular, [[of]] an off-road

vehicle), the rear part containing which includes two longitudinal member hollow profiles 2, 3, which run that are parallel to each other and [[are]] spaced apart from each other in the horizontal plane, a tubular cross member hollow profile 4, a hollow-profile-like crossbar 5 for receiving a rear axle, a differential and a transverse link, and also body mountings 6, 24 of the frame 1 and bearing mountings 19 of longitudinal links.

10

15

20

25

30

35

The hollow profile 4 for the rear cross member is designed in blank form as a tube, and can be expanded [[in]] into its final form with respect to its blank form by internal high pressure forming in a manner matched to construction space conditions or functional requirements. It is likewise conceivable also possible to leave the hollow profile 4 in the blank form, leaving it as such being which is simple and cost-saving cost effective in terms of [[the]] method technique with regard to for producing the entire frame 1.

The wide-surfaced hollow crossbar 5 is formed from an oval tube. The oval tube is placed into a divided internal high pressure forming die and, after the forming die is closed, one longitudinal side 9 of the oval tube is pressed in in the central region 67 over the entire longitudinal extent of the [[oval]] tube by means of a punch, which is integrated in the forming die, until the two longitudinal sides 9 and 10 of the undeformed oval tube, which sides run parallel and rectilinearly, come to bear against each other. This results in the formation of two end-side cavities 11 and 12 which contain - as seen in the width direction - the curvatures of the oval tube and are spaced apart by a channel 13 which has a pressed-in longitudinal side 9

as base. The cavities 11 and 12 are then closed by axial punches by means of which so that high-pressure liquid can be introduced into the interior of the cavities 11, 12. While the press-in punch remains in its pressed-in position, the cavities 11, 12 are placed under internal high pressure with the longitudinal sides 9, 10 therefore remaining permanently against each other (Fig. 1). Next, after which they are deformed in an expanding manner to form tubes running parallel and having a virtually circular cross section in accordance with the impression of internal high pressure forming die and the contour of the punch. After the tension of the hydraulic liquid is released, [[and]] the punch is pulled back, and after subsequent opening of the internal high pressure forming die, a crossbar 5 can be removed from the latter[[, said]]. Such a crossbar having has high flexural rigidity owing to being because it is designed at the two width ends 69 (Fig. 4) in a manner similar tube, a cylindrical and very great rigidity because of the single-piece connection of the ends 69 by means of a web. The latter, which is in the form of a sheet-metal double layer[[,]] formed by the longitudinal sides 9, 10 of the oval tube.

25

30

35

10

15

20

It is similarly conceivable possible to replace the punch by an appropriate design of the impression of the forming die, with the result so that the oval tube is pressed in at its longitudinal side 9 by the closing operation of the internal high pressure forming die. The background for this is the simplification of, which simplifies the entire die and [[of]] the process control. Furthermore, it is also conceivable possible to [[allow]] perform the pressing-in to take place under internal high pressure. Under some circumstances, this may improve the process reliability, since the

tube material is already fluid during the pressing-in operation and can therefore be more easily formed. Since, however, the longitudinal ends of the oval tube cannot be pressed in on account of the sealing punch which is required, the oval tube has to be shortened on both sides in a subsequent cutting operation, which undesirably increases outlay and costs for producing the crossbar 5.

- does not *inevitably* 10 Furthermore, the oval tube to be pressed in only on necessarily have longitudinal side 9; [[but]] rather this can also take place at its longitudinal side 10 by a second punch at the same time as or offset in time to the pressing-in of the longitudinal side 9. The web formed by the 15 then lies at double sheet-metal layer approximately in the axial plane of the longitudinal axes 70 of the two cavities 11 and 12. Finally, in the pressed-together central region 67 of the longitudinal sides 9, 10, the rear axle mountings 14, the securing 20 mountings 16 for the differential (not shown here) and, in the case of the crossbar 15 (which is shown in [[fig.]] $\underline{\text{Fig.}}$ 2 and is designed identically to the shape of the crossbar 5), the securing holes 8 for securing the transmission (see fig. Fig. 4) are punched 25 out or produced by metal-cutting in a simple manner. In this connection, it is also possible to [[let]] perform the punching operation within the internal high pressure forming die, take place with or without internal high pressure, which affords advantages with 30 regard to saving saves further clamping and with regard exact reproducibility facilitates location of the mountings.
- 35 Furthermore, it is also conceivable possible to achieve a further increase in stiffening by the introduction of

introducing beads running diagonally, preferably crosswise, over the double sheet-metal layer, by means of an impressing punch integrated in the internal high pressure forming die. Finally, a further securing means 17 can be fitted on the crossbar 5 for the transverse link.

size and shape of the cross section of longitudinal member hollow profiles 2, 3 are expanded by means of internal high pressure forming example, as here, from a tubular blank with a circular cross section into a final form with a rectangular cross section - and, as a result, are matched to the construction space conditions. In order, process, not to [[allow]] avoid the degrees of forming to become becoming too large, the internal pressure forming process can be preceded by mechanical processes, for example bendings forming pinchings of the hollow profile 2, 3. At the same time as the creation of the cross-sectional shape and size assisted by internal high pressure, bead-like secondary shaped elements are formed laterally outward from the longitudinal member hollow profile 2, 3[[,]] (i.e., on the side which faces away from the respectively other longitudinal member hollow profile 2, 3) by means of exertion the application of [[the]] fluidic internal high pressure (in particular [[figs.]] Figs. 5 and 6).

10

15

20

25

These secondary shaped elements, which are formed [[both]] in the case of both the rear and in the case of the front [[part]] parts of the chassis frame 1, are situated, on the one hand, in the rear part upward directly adjacent to the cross member 4 and, on the other hand, on that side of the crossbar 5 which faces away from the cross member and in the vicinity of that end 18 of the longitudinal member hollow profile 2, 3

which points toward the front part of the chassis frame

1. The secondary shaped elements formed at this end 18

[[form]] provide bearing mountings 19 with longitudinal links, with the. The receiving holes 20 subsequently [[being]] are produced in the normal direction or horizontally at an oblique angle with respect to the outside 21 of the longitudinal member hollow profile 2,

3. The other secondary shaped elements mentioned, which contain the [[side]] lateral edge 22 of the upper side 23 of the respective hollow profile 2, 3 and constitute there, as it were, an extensive expansion of the upper side 23, are perforated vertically and form body mountings 24 of the frame 1.

5

10

Figs. 7 and 8 show a variant to the design of the 15 secondary shaped element of [[fig.]] Fig. 5[[,]] (i.e., the body mountings 24). There are number a possibilities for their production[[.]]: Firstly, it is conceivable first of all as previously customary to form First, as previously known, the secondary shaped 20 element can be formed in a first internal high pressure forming die, and then, [[in]] by closing a second internal high pressure forming die (different from the first one with regard to the impression at the location of the secondary shaped element), [[for]] to pinch the 25 secondary shaped element, by closing this die, to be pinched flat (with a radially protruding sheet-metal 25 being formed, after which). Thereafter, radiating creases or indentations arising in the sheet metal of the hollow profile 2, 3 [[by]] due to the pinching are equalized by production application of an internal high pressure in the hollow profile 2, Whereas [[fig.]] Fig. 7 illustrates the final shape, [[fig.]] Fig. 8 shows the state of the hollow profile 2, 3 after the pinching and before the compensating 35 compensation of the indentations. Secondly, it is

shaped element by the punch integrated in the forming die, it is possible to act upon the secondary shaped element in the vertical direction in such a manner that the discussed sheet-metal fold 25 arises. With this possibility, a In this manner, cost-intensive internal high pressure forming die which takes up construction space, can be [[saved]] avoided, and the pressure control simplified, since the internal high pressure applied for forming the secondary shaped elements can remain. However, [[an]] additional control with regard to the movement of the punches is required.

10

Furthermore, there is the possibility of pinching It is also possible to pinch the sheet-metal fold 25 outside 15 an internal high pressure forming die. Following the fold 25, the the sheet-metal formation of mountings 24 are perforated vertically. This can take place [[-]] (as also in the case of the bearing mountings 19 of the longitudinal links) [[-]] by means 20 hole punches integrated in the internal high pressure forming die. Owing to the The sheet-metal fold 25, at which the two fold walls 26 and 27 lie tightly against each other, punching makes it especially simple to punch through in this case is particularly simple, 25 advantageous under the aspect of ensuring advantageously helps to ensure the dimensional accuracy of the body mounting 24.

Although the cross member 4 and the crossbar 5 corresponding to the front cross member 41 and the crossbar 15 of the front frame part can be fitted releasably or nonreleasably to the elongate tubular longitudinal member hollow profiles 2, 3 and 39 and 40 with known means[[,]] (such as by welding, adhesive bonding, screwing or riveting), in this exemplary

embodiment an entirely different, advantageous path is taken.

It is essential in this case that the longitudinal member hollow profiles 2, 3 are doubled into a lower and an upper hollow profile strand 28, 29, so that, with the two strands 28, 29 bearing tightly against each other, a respective double chamber hollow profile is formed, which considerably increases the flexural rigidity of the longitudinal members. The doubling 10 comes about here as a result of the fact that the respective, originally single-stranded longitudinal member hollow profile 2, 3 is bent back through 180° on itself about a horizontal axis running transversely until the two resultant hollow profile strands 28, 29 15 come to lie on each other. The starting length of the longitudinal member hollow profile 2, 3 used has, of course, to be doubled for this for expedient use in vehicle construction. The bent edge 30 now forms the one end of the longitudinal member. 20

It is now possible, firstly first, to place the cross member 4 and the crossbar 5 onto the one half of the longitudinal member hollow profile 2, 3 and, during the bending-back operation, to clamp them by the strands 28 and 29 in the manner of a pair of tongs. This results in crushed deformations of the cross the crossbar 5 and [[of]] [[of]] member 4, longitudinal member hollow profile 2, [[These]] 3. However, undesired deformations can be equalized with the exertion of by applying an internal high pressure in the longitudinal member hollow profile 2, 3, so that the hollow profile 2, 3 are matched to the deformed contours of the cross member 4 and of the crossbar 5. The pressure to be applied for this matching is [[to be]] selected in such a manner that the cross member 4

25

30

and the crossbar 5 are firmly and nonreleasably enclosed in a press fit by the strands 28, 29 of the longitudinal member.

During [[the]] internal high pressure forming of the longitudinal member hollow profile 2, 3, in which at the same time the secondary shaped elements for the body mountings 24 and the bearing mountings 19 for the longitudinal links can also be formed, a fluidic counterpressure is built up in the crossbar 5 and in 10 the cross member 4[[, said]]. Such counterpressure having the effect that prevents the forming pressure forming in the longitudinal member hollow profiles 2, 3 does not reach from reaching over to the crossbar 5 and the cross member 4, and in a manner undesirably 15 deforming or even destroying them. In this variant, the crossbar 5 and the cross member 4 always remain deformed by crushing.

It is advantageous in the case of this technique for 20 production of the connection between the longitudinal member hollow profiles 2, 3 and the cross member 4 and the crossbar 5, that[[,]] in addition to the press fit an intimate connection of said obtained, components comes—about are intimately connected by 25 formation of a form-fitting connection, due [[owing]] to the crushed contours of the components caused by internal high pressure to engage in one another in a manner corresponding to the shape, which leads to a considerable increase in considerably increases the 30 However, the connection. strength of crushing of the connecting parts (crossbar 5, cross member 4 and longitudinal member hollow profile 2, 3), damage to these parts, such as cracks, etc., may occur leading to reject parts because of the resultant lack 35 of reliability of the parts during operation,

therefore the potential risk [[of]] to the operating safety. The consequence of this would be an increased outlay on quality control.

Secondly, it is possible Second, before [[the]] bending [[in]] those regions of the longitudinal member hollow profile 2, 3 which are indirectly adjacent on both sides to the bent edge 30, it is possible to introduce depressions 31, 32, 33 and 34 into the longitudinal member hollow profiles 2, 3 mechanically by means of a 10 punch or by internal high pressure forming of the longitudinal member hollow profile 2, 3 in an internal high pressure forming die, into which depressions after which the cross member 4 and the crossbar 5 are placed into the resulting depressions. After the bending 15 [[said]] components are likewise operation, such extensively enclosed, as in the preceding variant, but remain undeformed with regard to crushings, since the depressions 31-34 are matched in their depth contour with play to the dimensions of the cross member 20 4 and of the crossbar 5.

After the cross member 4 and the crossbar 5 are enclosed between the hollow profile strands 28, 29, the longitudinal member hollow profiles 2, 3 are acted upon in an expanding manner with expanded by a fluidic internal high pressure, such that, on the one hand, an immovable press fit of the longitudinal member hollow profile 2, 3 is immovably press fitted on the cross member 4 and on the crossbar 5 is produced and, on the other hand, the body mountings 24 and the longitudinal link bearing mountings 19 are formed. In this case, both the cross member 4 and the tubular cavities 11, 12 of the crossbar 5 are acted upon by a fluidic counterpressure which prevents the crossbar 5 and the cross member 4 from being compressed by the internal

25

30

high pressure in the longitudinal member hollow profiles 2, 3.

As an alternative, it is also conceivable to achieve the press fit by internal high pressure in the cavities of the crossbar 5 or in the cross member 4, with the crossbar 5 or the cross member 4 being locally expanded at the location of the leadthroughs formed by the depressions 31-34 of the longitudinal member hollow profiles 2, 3. In this case, a deformation-preventing 10 counterpressure has to prevail in both strands 28, of the longitudinal member hollow profile 2, 3, which is lower than the internal counterpressure pressure within the cavities 11, 12. The difference in pressure [[is to]] must be such that an expansion of 15 the cavities 11, 12 takes place, leading so that, after the process is ended, to a springing back of the material of the hollow profile strands 28, 29 springs back, producing the press fit. However, this press fit may be of sufficient size - given a simultaneously 20 corresponding, great level of the high internal [[high]] pressure in the crossbar 5 - such that the body mountings 24 and the bearing mountings 19 are formed in the upper hollow profile strand 28. It is likewise conceivable in this case already to form these 25 mountings 24 and 19 by internal high pressure forming before the bending of the longitudinal member hollow profile 2, 3. In all cases, the perforations of the mountings 19 and 24 must not take place, for sealing reasons, until after the crossbar 5 and the cross 30 member 4 are connected to the longitudinal member hollow profiles 2, 3. The end sections 35 and 36 of the cross member 4 and the rear axle mountings 14 of the crossbar 5 now protrude through the hollow profile strands 28, 29, which lie on each other, of 35 longitudinal member.

In every case, the achieving achievement of a nonreleasable connection of the longitudinal member hollow profiles 2, 3 with the crossbar 5 is assisted facilitated by the fact that, by means of the configuration of the crossbar 5 (double tubular profile with spacing double sheet-metal layer), the crossbar 5 is grasped in a form-fitting manner in the course of the expansion of the longitudinal member hollow profiles 2, 3 by means of internal high pressure.

10

In order to ensure the stability of the longitudinal members with respect to forces which act transversely and shear the two hollow profile strands 28 and 29 apart from each other, the hollow profile strands 28 15 and 29 which lie on each other can have form-fitting and mating form-fitting elements in the manner form of correspondingly shaped depressions and elevations corresponding in shape, for example in the form of ribs 37 and corresponding channels 38 according to [[fig.]] 20 Fig. 9 with an undercut-free cross section[[,]] (here, for example, a trapezoidal cross section). The channels 38 can be produced before the operation of bending of the longitudinal member hollow profile 2, 3 through 180° by an impressing operation or, in an economical 25 manner in terms of method in the forming operation to rectangular cross section the longitudinal member hollow profiles 2, 3 by internal high pressure during the closure of the internal high pressure forming die or by one or more punches 30 integrated in the forming die. The ribs 37 and the desired precise contour of the channels 38 can then be formed in the course of this internal high pressure forming. During the abovementioned bending operation, during the movement of the hollow profile strands 28, 35

29 toward each other, the rib 37 then engages in the shape-negative channel 38.

It is also conceivable, after the bending operation, when the two hollow profile strands 28, 29 bear against each other in the course of the production of the press fit by internal high pressure forming, for the rib 37 to be formed from the depression-free hollow profile strand 28 into the channel 38 formed in the lower 29, which hollow profile strand firstly has 10 advantage that a precise and therefore complicated bringing of the hollow profile strands 28, 29 toward each other is not required in order to achieve a formfitting connection, and secondly that a method, which in order to secure the is required in any case, 15 the cross member 4 can crossbar 5 and simultaneously in a manner economical for the method. The two hollow profile strands 28 and 29 are finally joined nonreleasably to each other, for example by welding in the parting line 60, in particular laser 20 welding, gas tungsten pulsed-current arc welding or plasma pulsed-current welding. Adhesive bonding likewise possible, with the lower side of the upper hollow profile strand 28 and/or the upper side of the lower hollow profile strand 29 being coated with an 25 adhesive. The soldering of these surfaces is likewise conceivable, after which each part of the chassis frame 1 or the frame 1 as a whole has to be subjected to a heat treatment in a furnace.

30

35

Fig. 2 illustrates the front part of the chassis frame 1, which part contains two longitudinal member hollow profiles 39, 40, which run parallel and are spaced apart from each other in the horizontal plane, the crossbar 15 with the securing holes 8 for the securing of the transmission, a front cross member 41, body

mountings 7 and 42, bearing mountings 43 for the longitudinal links and a spring strut mounting 44.

The front part is manufactured in a similar manner similar to that of the rear part of the chassis frame 5 1, but the crossbar 15 is arranged in the region of the open ends 45, 66 of the longitudinal members, which ends point toward the rear part. Following it toward the cross member 41, which, together with end-side body mountings 7 of the longitudinal members forms in the 10 region of the bent edge 46 of the longitudinal member 39, 40, which are bent hollow profiles through 180°, the front terminating themselves component of the chassis frame 1, are the bearing mountings 43 for the longitudinal link, further body 15 mountings 42 and then - in a section 47 bent in the vertical direction - the spring strut mounting Although the section 47 does not absolutely have to be bent in some vehicles, such as in the case of trucks, this is indispensable for nonself-supporting bodywork 20 structures[[,]] (for example in the case of off-road vehicles). The bent portion can be formed in the first internal high pressure forming operation when profiling the longitudinal member hollow profiles 39, 40, which originally run rectilinearly, upon closure of 25 forming die which is designed corresponding to shape. Furthermore, the crossbars 15 and 5 can be arranged in a manner such that they are displaced in the longitudinal position of the frame 1 in comparison to the exemplary embodiment shown such that an optimum 30 protection with regard to a side impact is provided for the vehicle occupants.

The production of each spring strut mounting 44 can 35 take place before or after the first internal high pressure forming operation, with it being possible for

be formed as a single piece from each them to longitudinal member hollow profile 39, 40 or to be manufactured as two pieces. In both cases, that section 50 of the respective hollow profile 39, 40 which is adjoined to the bent stage 49 toward the front cross member 41 is bent upward through an angle of at least 90° about a horizontal axis 52, which intersects the central longitudinal axis 51 of the hollow profile 39, 40 or - in this exemplary embodiment - of the upper hollow profile strand 61 at an angle of approximately 10 45° and can be seen from [[fig.]] Fig. 3, so that. Thus, the section 50 protrudes radially outward in a direction facing away from the respectively other hollow profile 39, 40 and with respect to directional profile of the rest of the hollow profile 15 39, 40. The hollow profile 39, 40 therefore protrudes with regard to essentially laterally there, its rectilinear directional profile, outside the spring strut mounting 44. After this bending operation, the lateral excess length is angled into a horizontal plane 20 such that it points outward after a certain height offset with respect to the hollow profile 39, running outside the spring strut mounting 44 and is flattened. Following After forming this [[one]] half of the spring strut mounting 44 formed in this manner, in 25 order to form the other half of the spring strut mounting 44, the hollow profile 39, 40 itself[[,]] (or in the case of a two-piece design of the hollow profile 39, 40, the second part of the hollow profile) is bent in a mirror-inverted manner with respect to this half, 30 is angled in the same direction and flattened.

When a two-piece longitudinal member hollow profile 39, 40 according to [[figs.]] Figs. 2 and 3 is used, the interconnecting hollow profile strands 28, 29 of the rear part of the chassis frame 1 are independent

components in themselves here. These are formed by an upper, shorter hollow profile strand 61, which has the body mounting 42, which that is formed by internal high pressure and is in the vicinity of the crossbar, and the bearing mounting 43 for the longitudinal link and, with its end 62 in the vicinity of the cross member, forms one half of the spring strut mounting 44, and by 63 hollow profile strand which longer essentially downward, is bent back on itself through 180° in the region of the cross member 41 and tapers to 10 the end 62 of the upper hollow profile strand 61[[, the]]. The end 64 [[there]] of the strand 63 forming forms the other half of the spring strut mounting 44, and the front body mounting 42 [[being]] is formed by means of applying internal high pressure [[on]] to the 15 strand 63 in the region of the cross member 41. Those parallel ends 62 and 64 of the hollow profile strands 61 and 63, which i) point obliquely upward and outward in the transverse direction to the longitudinal axis 51 of the respective part 48 of the hollow profile strand 20 61 and 63[[,]] (which part does not belong to the spring strut mounting 44 and is situated next to it), and [[which]] ii) protrude over this part 48 of the 63, which that part runs essentially strand 61, rectilinearly and in the horizontal plane, are now bent 25 over. In particular, such that they are folded over outward after a certain desired height offset with respect to said horizontal plane such that the ends 62 and 64 continue to run parallel to this plane.

30

35

Furthermore, the folded-over ends 62 and 64 are flattened and perforated in order to form the lead-through 71 of the spring strut mounting 44. Before the perforation, the flattened portion 65 can be bent over at right angles downward on the end [[side]], so that the flattened portion 65 produces a flexurally stiff U

the remaining hollow profile 39, 40 adjoining the spring strut mounting 44, but with a height and lateral offset thereto. In this case, one half of the spring strut mounting 44 extends from the rectilinear section 48, which is in the vicinity of the crossbar, at the foot of the bent-up region of the section 50 as far as the center of the subsection 54. The other half of the spring strut mounting 44 adjoins directly and extends from this center as far as the foot of the bent-down region of the rectilinear section 48 which is in the vicinity of the cross member.

Bending steps which are mirror-inverted with respect to these bending operations then take place. Following the subsection 54, the section 50 is namely bent downward 15 and backward through approximately 90° about a likewise horizontal axis 55 which is situated at the same height 53, but angle axis at an parallel approximately 90° with respect thereto, so that the end of the hollow profile 39, 40 is situated pointing 20 radially inward with respect to the respective other hollow profile 39, 40. Finally, in the continuing sequence, the section 50 is bent forward through at least 90° about an axis 56 which is parallel to the horizontal axis 55 and is spaced apart in the vertical 25 direction therefrom corresponding to the relative position of the horizontal axis 52 from the parallel axis 53, so that that end 57 of the section 50 which approximately faces the front cross member 41 is aligned with the part 48 of the hollow profile 39, 40 30 spring strut mounting front of the subsection 54 protruding radially over the remaining longitudinal profile of the hollow profile 39, 40 is then flattened.

35

profile. Finally [[-]] (however, before the perforating operation, which can advantageously be brought about by punching), [[-]] the flattened ends 62 and 64 are connected nonreleasably to each other[[,]] (preferably welded[[,]]) at their point of abutment. After the spring strut mounting 44 is formed in this manner, its and 64 can be expanded by internal high pressure forming in the upwardly bent region to form struts with a roughly approximately circular cross section[[, thus]; this further increasing increases the torsional and flexural rigidity of the spring strut mounting 44. In order to realize an end 64, which is expanded in such a manner, of the hollow profile strand 63, which is expanded in such a manner, a connecting opening [[has to]] <u>must</u> be provided on the latter, between the bent edge 46 of the longitudinal member hollow profile 39, 40 and the end 64 of the spring the introduction of 44, for mounting hydraulic fluid, [[since]] because the bent edge 46 of the longitudinal member hollow profile 39, relatively sharp and therefore a pressurization of the end 64 from that end 66 of the lower strand 63 which faces the rear part of the chassis frame 1 is not possible.

25

30

35

10

15

20

In the case of a single-piece longitudinal member hollow profile 39, 40, the production of which (with regard to the spring strut mounting 44) is described [[figs.]] Figs. 10-14, accompanied by radially protruding section 50 is now bent forward 90° parallel to the approximately through direction of the longitudinal member longitudinal hollow profile 39, 40 - about a further parallel axis 53 spaced apart vertically from the horizontal axis 52, that a subsection 54 of the section 50 approximately parallel to the longitudinal extent of

Subsequently, the longitudinal member hollow profile 39, 40 is placed into an internal high pressure forming die and, with the flattened portion 65 being retained, is expanded by exertion application of an internal high pressure at both ends of the longitudinal member hollow profile 39, 40. In this connection, the previously the cross section mentioned shaping of longitudinal member, which [[is]] originally provided with has a circular cross section, and the formation of the body mountings 42 and of the bearing mountings 43 for the longitudinal links can take place at the same time. In a particularly advantageous manner, in the case of this internal high pressure forming operation, the cross sections of the two struts 58, 59 of the spring strut mountings 44[[,]] (which struts are formed by the bending operations, produce the height offset from the remaining longitudinal member hollow profile 39, 40 and are severely crushed during the bending), are formed circularly again in a rough approximation. As a result, a particularly high degree of flexural rigidity is conferred on the spring strut mounting 44.

Finally, the spring strut mountings 44 are perforated on their flattened portion 65, in an economical manner, in terms of method in one working step on their flattened portion 65, in the same manner as the bearing mountings 43 and the body mountings 42, by means of hole punches integrated in the internal high pressure forming die, in which the longitudinal member hollow profiles 39, 40 are formed by internal high pressure, with the leadthrough 71 of the spring strut mounting 44 being produced. Only then does the bending of the longitudinal member hollow profile 39, 40 through 180° take place with the bent edge 46 being produced.

35

10

15

20

25

30

35

With the bending technique described, it is possible even to integrate in the respective longitudinal member hollow profile 39, 40 as a single piece the spring strut mounting 44 which is offset severely in height profile laterally from the actual longitudinal member hollow profiles 39, 40 and is of complex design, and, with as little outlay on material and joining as possible, to produce degrees of forming which cannot be realized solely by means internal high pressure forming technique. Owing to the 10 profile of the longitudinal double chamber members[[,]] compensates a possible weakening of the longitudinal member hollow profile 39, 40 in terms of flexural rigidity in the vertical direction at spring strut mounting 15 location of the 44, compensated for by the unweakened hollow profile strand 63 which runs downward and remains largely undeformed. In the case of the design of the spring strut mounting 44, the ductility of the hollow profile material (and therefore the flexibility or the deformability of the 20 hollow profile 39, 40) can be improved, when steel is used, by intermediate annealing between the individual bending steps. When aluminum and other materials having a considerably lower melting point are used, this can take place by means of other types of heat treatment 25 concentrated in particular locally on the to be bent.

It should be emphasized once more [[here]] that one of the essential important integration [[steps]] step for reducing the diversity of components is the production of the spring strut mountings from the longitudinal member hollow profile by the special bending technique with which the longitudinal member hollow profile is formed. The single-piece design achieved therewith first of all renders makes it unnecessary to use complicated joining operations for joining a separate

10

the longitudinal member console to receiving unnecessary, which joining operations always constitute points of weakness in the stability of the frame construction[[,]] (in particular in the event of high mechanical loads[[,]]) and are exposed to functionreducing corrosion and joining deficiencies. At the same time, the single-piece design obtains achieves an improvement in the torsional rigidity. Furthermore, an extremely high degree of clamping produced in the longitudinal member at the location of the spring strut mounting by the multiple bending operation particularly greatly increases the flexural and torsional rigidity of the spring strut mounting.

By means of the use of the internal high pressure 15 forming technique, in which, in this case, longitudinal member is expanded, the region which is directly adjacent to the flattened region of the spring strut mounting and is provided with folds by expanded 20 twisting and bending is to form an approximately round, fold-free cross-sectional shape, as a result of which the and flexural rigidity is thus further increased. The expansion takes place in an economical manner in terms of method in the course of the special and precise configuration of the cross-25 sectional shape and of the surface profile of longitudinal member, which configuration is matched to the construction space, so that no further forming step is required during the production of the fold-free cross-sectional shape on the spring strut mounting. By 30 means of the bending technique described, shapes can be produced on hollow profiles using high degrees of forming which, [[-]] if they can be obtained at all, [[-]] cannot be obtained, at least reliably, by internal high pressure forming with the corresponding 35 This applies in particular to the expansion length.

possible use in this case of lightweight construction materials of low ductility, such as, for example, most aluminum alloys, with which only low degrees of forming during expansion can be obtained by pure internal high pressure forming, with the result that. As a result, even against this background, an even further saving on weight can be made during the production of the frame 1.

10 Both in the case of the single-piece design and in the case of the two-piece design of the longitudinal member hollow profiles 39, 40, the hollow profile strands 61 and 63, like the hollow profile strands 28 and 29 of the rear part of the chassis frame 1, are secured to each other.

After formation of the two parts of the chassis frame 1 has taken place, the front part and the rear part are joined by plugging the ends 18 of plugged longitudinal member hollow profiles 2, 3 into the open ends 45, 66 of the longitudinal member hollow profiles 39, 40, which [[ends]] point toward the rear part. The ends 18 are finally welded or adhesively bonded to the 46 in the plugged-in position with 45, another. The plug-in connection is very advantageous with regard to [[the]] crash behavior in the case of a side crash owing to because of the wall doubling obtained by the overlapping of the ends of longitudinal member hollow profiles 2, 3 and 39, 40.

30

35

20

25

As an alternative [[to]] <u>for</u> a nonreleasable securing of the two parts of the chassis frame 1 to each other even under a large application of force, it is <u>conceivable also possible</u>, in the plugged-in position, to press the ends of the longitudinal member hollow profiles onto one another in the overlapping region of

10

15

20

the ends, by local internal high pressure forming and to expand them together in such a manner that a doublewalled bulge is formed. This bulge is then composed of form-fitting inner element, least one at preferably, owing to (for reasons of stability and durability reasons of the mechanically highly loaded frame 1)[[,]] from a plurality of inner form-fitting elements, which form fitting element/elements is/are distributed over the circumference of the profile end and is/are formed at the end plugged in in each case, and from in each case one outer mating formfitting element which is shape-negative with respect to said inner form-fitting element and is formed at the receiving end. In this case, the inner form-fitting element is fixed in an entirely form-fitting manner in the mating form-fitting element. For this internal high pressure forming operation, on that longitudinal member hollow profile which has the end to be plugged in, a connecting opening $\frac{1}{1}$ has to be $\frac{1}{1}$ provided in the region of the end, so that the hydraulic fluid can be into the hollow profile and the introduced pressurization can therefore take place.

Furthermore, it is also possible already to form these form-fitting elements at the ends even before the ends 25 are plugged together. In this connection case, bulging or impressing technique or else the internal high pressure forming technique can be used. However, the form-fitting elements which correspond in shape to one another then have to be designed in such a manner 30 that, within the scope of the elasticity of the hollow profile material of the end to be plugged in, the formfitting elements can be briefly pressed back during plugging-in and can then snap into the mating formfitting elements of the receiving end[[, as]]. As a 35 result, of which the rear part of the chassis frame 1 is locked on the front part in a manner such that it is secure against displacement and rotation in the longitudinal direction and circumferential direction.

it is also possible for the mating form-Finally, fitting element to already be formed in the receiving end by one of the abovementioned techniques, after which the other end is plugged in in an undeformed manner and only then, by means of internal high pressure forming, is the form-fitting element shaped 10 into the existing mating form-fitting element. form-fitting and mating form-fitting elements are to be designed such that they are undercut-free, so that, after the forming, the respective hollow profile can be removed again from the die in a manner free from 15 becoming jammed.

The connection of the frame parts by means of formfitting elements of this type enables the frame 1 to behave in a sufficiently rigid manner with respect to mechanical stresses as arise in the driving mode. In addition to its simple production, the connection described is advantageous inthat, during situations, with an increased application of force the connection can be released in a relatively simple manner by detaching the form-fitting elements from the mating form-fitting elements, so that only the part in which damage has occurred has to be exchanged while the other part which is still usable can continue to be used.

20

25

30

35

As an alternative to the two-part frame 1 described, a single-part production of the frame 1 is also conceivable possible. In this case, use is made in each case of a longitudinal member hollow profile is used which is lengthened by approximately double the length

of the longitudinal member in the finished frame 1, and the spring strut mounting 44 is formed by means of the bending technique described, after which. Thereafter, the body mountings and the longitudinal link bearing mountings are formed by means of internal high pressure and the depressions for the subsequent mounting of the crossbars and the cross members are formed. In this case, the internal high pressure also has an effect on the formation of the struts of the spring strut mounting 44.

10

15

20

25

30

35

After the crossbars and the cross members are placed into the depressions, the longitudinal member hollow profile is then bent back on itself through 180° about a horizontal transverse axis at the locations of the ends of the future double chamber longitudinal member, so that the two hollow profile strands produced in this manner come to lie on each other and then extensively enclose the crossbars and cross members. which, for example, run up to one another in the spring strut mounting and, correspondingly formed, form the two halves thereof or come to lie next to one another in the lower hollow profile strand and are plugged together, [[are]] welded to one another or connected releasably to one another in another manner. Then, they are subsequently secured - as described in the case of the two-part frame - by actuation of the cavities of the crossbars and of the cross members by means of internal high pressure by the press fit produced during and form-fitting connection in the expansion depressions of the longitudinal member hollow profiles.

In the other variant, in which the respective longitudinal member hollow profile is expanded with the contour of the crossbars and of the cross members being retained, in order to secure them, at least one

connection is to be provided for introducing the hydraulic fluid. Finally, due - owing to tightness considerations, [[-]] only then can the flattening of the spring strut mounting and the perforations in the respective mountings be produced flattened. Owing to Because of the omission of the joining techniques when connecting two parts, the single-part version of the frame 1 requires less manufacturing outlay and produces a further reduction in components in the manufacturing of the frame 1. In addition, because of the virtually single-piece profile interruption-free, longitudinal members, which are stiffened in the manner double chambers, it has a particularly rigid composition, which can be a positive feature protection of individuals in the passenger cell during head-on and offset crashes.

10

15

It should be emphasized once more at this point that the spring strut mountings 44 can be designed according to the invention in a number of ways. Firstly, the 20 longitudinal member hollow profile 39, 40 can be formed from two separate individual hollow profiles arranged in a row next to each other, irrespective of whether the hollow profile 39, 40 comprises one hollow profile strand or a plurality of strands lying one on another; 25 only the uppermost strand has the spring strut mounting 44. The spring strut mounting 44 is divided here into two halves[[. The]]: one half is formed by bending and angling one end of the one individual hollow profile and the other half is formed by bending the facing end 30 of the other individual hollow profile in a mirrorinverted manner with respect to the [[one]] first half, and by angling the bent end of the other individual hollow profile in the same direction. The two halves connected fixedly to each other[[,]] 35 then (preferably [[are]] welded and/or adhesively bonded).

Finally, the angled region is flattened and perforated, as a result of which whereupon the spring strut mounting is finished.

Secondly Second, each of the longitudinal member hollow profile 39, 40 can be composed of in each case two separate hollow profile strands 61 and 63 lying on each other and, likewise (as in the variant discussed above)[[,]] the spring strut mounting 44 can be composed of two initially separate halves. The one One 10 half of the spring strut mounting 44 is formed from that end 62 of the hollow profile strand 61 that is in the vicinity of the cross member, and the other half of the spring strut mounting 44 is formed from an end 64, which tapers to this end 62, of the longer hollow 15 profile strand 63 which runs essentially downward and is bent back on itself through 180°. To a certain extent, by being bent back through 180°, the lower hollow profile strand 63 forms part of the upper strand 61. After the mirror-inverted bending with respect to 20 each other according to the invention, the two ends 62 and 64 are then, following this, thereafter angled in the same direction upward - as before - about an axis parallel to the longitudinal axis of that part of the longitudinal member hollow profile 39, 40 which does 25 not belong to the spring strut mounting 44 and is situated next to it. The ends 62 and 64 which bear against each other are then connected nonreleasably, (preferably welded[[,]]) at their point of abutment. The flattening and perforating of the angled portion 30 can take place then be flattened and perforated before or after the joining operation.

Furthermore, the spring strut mounting 44 of the frame 1 can be formed as a single piece from the longitudinal member hollow profile 39, 40, with the hollow profile

39, 40 comprising a single hollow profile strand. In this case, longitudinal member hollow profile 39, 40 is bent back at both ends through 180°, with its ends subsequently being bent in a mirror-inverted manner with respect to each other about the horizontal axis 52, with in each-case-one. One half of [[the]] each and spring strut mounting 44 [[being]] is formed, same direction; and [[being]] is angled in the subsequently the halves bearing that bear laterally against each other [[being]] are connected fixedly to each other. The flattening and perforating of the angled portion can likewise take place before or after the joining operation.

10

Carlotte and the second

Furthermore, the spring strut mounting 44 can be formed 15 without a separating joint of the halves. For this purpose, the radially protruding section 50 is bent forward through approximately 90° about a parallel axis 53 spaced apart vertically from the horizontal axis 52, after which it runs parallel to the 20 longitudinal direction of the longitudinal hollow profile 39, 40, so that a subsection 54 of the 50 lies approximately parallel section remaining longitudinal longitudinal extent of the member hollow profile 39, 40 adjoining the spring strut 25 mounting 44, but with a height and lateral offset thereto. The one half of the spring strut mounting 44 extends as far as the center of the subsection 54. The production of the other half of the spring strut mounting 44, which [[half]] runs from the center of the 30 subsection 54 in the direction of the front cross member 41, takes place is produced in a simple manner by mirror-inverted further bending of the section 50 following the subsection 54 according to [[figs.]] Figs. 12 and 13. This is followed by the flattening and 35 perforating of Thereafter, the angled region resulting from the special bending operation is flattened and perforated.

The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.