группа: Геом-10 *14 января 2020 г.*

Серия 11. Разнобой.

1. Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезку AL пересекает описанную окружность ABC в точках P и Q. Докажите, что описанная окружность треугольника PLQ касается стороны BC.

- **2.** Дан правильный треугольник ABC. Прямая, параллельная прямой AC, пересекает прямые AB и BC в точках M и P соответственно. Точка D центр правильного треугольника PMB, точка E середина отрезка AP. Найдите углы треугольника DEC.
- **3.** В треугольнике ABC угол A равен 60° . На сторонах AB и AC выбраны точки K и L соответственно так, что BK = KL = LC. Докажите, что угол KLC в два раза больше угла ABC.
- **4.** В разностороннем остроугольном треугольнике ABC проведены высоты AA_1 , BB_1 и CC_1 . Прямая B_1C_1 пересекает прямую BC в точке P, а прямая, проведенная через A_1 параллельно B_1C_1 , пересекает AB и AC в точках Q и R соответственно. Докажите, что одна из точек пересечения описанных окружностей треугольников $A_1B_1C_1$ и PQR лежит на BC.
- **5.** Биссектрисы BB_1 и CC_1 треугольника ABC пересекаются в точке I. Прямая B_1C_1 пересекает описанную окружность треугольника ABC в точках P и Q. Докажите, что радиус описанной окружности треугольника PIQ вдвое больше радиуса описанной окружности треугольника ABC.
- 6. Окружность ω , вписанная в треугольник ABC, касается сторон BC, AC и AB в точках A_0 , B_0 и C_0 соответственно. Биссектрисы углов B и C пересекают серединный перпендикуляр к отрезку AA_0 в точках Q и P соответственно. Докажите, что прямые PC_0 и QB_0 пересекаются на окружности ω .
- 7. На отрезке AB треугольника ABC выбрана точка X. Докажите, что ортоцентр треугольника, образованного биссектрисами углов BAC, BXC и ABC лежит на прямой AB.
- 8. На сторонах AB и AC треугольника ABC отметили точки D и E, соответственно, такие, что DB = BC = CE. Прямые CD и BE пересекаются в точке F. Пусть I центр вписанной окружности треугольника ABC, H ортоцентр треугольника DEF, а M середина дуги BAC описанной окружности треугольника ABC. Докажите, что I, H и M лежат на одной прямой.