Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

1	1. (Original) A method for efficiently transferring a spacecraft to a desired
2	orbit, the method comprising:
3	computing a continuous-firing thrust trajectory to achieve an orbit transfer;
4	computing thrust effectiveness values for time intervals over the continuous-firing
5	thrust trajectory;
6	comparing the thrust effectiveness values with a thrust effectiveness threshold
7	value; and
8	computing an intermittent-firing thrust trajectory to achieve the orbit transfer, the
9	intermittent-firing thrust trajectory comprising thruster-on regions where the thrust effectiveness
10	value is about or above the thrust effectiveness threshold value, and thruster-off regions where
11	the thrust effectiveness value is below the thrust effectiveness threshold value.
1	2. (Original) The method as recited in claim 1, wherein computing the
2	2. (Original) The method as recited in claim 1, wherein computing the intermittent-firing thrust trajectory comprises:
3	determining one or more thruster-off regions for a first orbit revolution;
4	computing a first updated thrust trajectory for the entire orbit transfer using the
5	thruster-off regions identified for the first orbit revolution in the calculation;
6	determining one or more thruster-off regions for a second orbit revolution using
7	the first updated trajectory;
8	computing a second updated thrust trajectory for the entire orbit transfer using the
9	thruster-off regions identified for the first and the second orbit revolutions in the calculation; and
10	continue computing thruster-off regions for each successive orbit revolution and
11	further updated thrust trajectories until a final intermittent-firing thrust trajectory is determined
12	for all orbits of the entire orbit transfer.
1	3. (Original) The method as recited in claim 2, wherein the thruster-on
2	regions, the thruster-off regions and the final intermittent-firing thrust trajectory are determined
3	prior to carrying out the orbit transfer.

- 1 4. (Original) The method as recited in claim 1, wherein the thrust
- 2 effectiveness value is calculated according to the equation:

$$\Gamma(t) = 1 - \frac{\lambda_6 \dot{F}}{\lambda^T \dot{z}}$$

- 1 5. (Original) The method as recited in claim 1, wherein prior to comparing
- 2 the thrust effectiveness value with a thrust effectiveness threshold value, the method further
- 3 comprises determining the thrust effectiveness threshold value.
- 6. (Original) The method as recited in claim 5, wherein the thrust
- 2 effectiveness threshold value is a function of thruster shut-off time, fuel savings and increase in
- 3 orbit transfer time.
- 7. (Original) The method as recited in claim 5, wherein the thrust
- 2 effectiveness threshold value is denoted Γ_0 and can be solved for by evaluating the integrals

$$T_{1}(\Gamma_{0}) = \int_{0}^{T} \eta \Gamma dt \qquad \eta = 1 \quad \text{if } \Gamma \leq \Gamma_{0}$$

$$T_{2}(\Gamma_{0}) = \int_{0}^{T} \eta (1 - \Gamma) dt \qquad \text{where,} \qquad \eta = 0 \quad \text{if } \Gamma > \Gamma_{0}$$

- for values of Γ_0 between 0 and 1 with a reasonable resolution, wherein T_1 gives a
- 5 relationship between the thrust effectiveness threshold value Γ_0 and a total increase in the orbit
- 6 transfer time, and wherein T_2 gives a relationship between the thrust effectiveness threshold
- 7 value Γ_0 and a reduction in firing time.
- 1 8. (Original) The method as recited in claim 1, wherein an amount of fuel
- 2 required to perform the orbit transfer is lower than the amount of fuel required to perform a time-
- 3 optimal continuous-firing orbit transfer.
- 1 9. (Original) The method as recited in claim 1, wherein an increase in
- 2 transfer time compared to a time-optimal continuous firing orbit transfer is minimized

1	10. (Original) The method as recited in claim 1, wherein the thrusters are not
2	fired when the orbit change is insensitive to thrusting.
1	11. (Original) The method as recited in claim 1, wherein the thrusters are not
2	fired when a required rate of change of thrust trajectory direction is too large for the spacecraft to
3	follow
1	12. (Original) The method as recited in claim 1, wherein the change in orbit
2	comprises a transfer from a launch vehicle injection orbit to a final mission orbit.
1	13. (Original) The method as recited in claim 1, wherein the thrusters are not
2	fired when continuously firing the thrusters will not reduce the velocity change required to
3	complete the orbit transfer by at least a threshold amount.
1	14. (Original) A spacecraft orbit transfer system adapted to transfer the
2	spacecraft from a first orbit to a second orbit, the system comprising:
3	spacecraft thrusters; and
4	at least one controller adapted to control the spacecraft orbit transfer;
5	the spacecraft orbit transfer system being adapted to:
6	compute a continuous-firing thrust trajectory to achieve an entire orbit
7	transfer;
8	compute thrust effectiveness values for time intervals over the continuous-
9	firing thrust trajectory;
10	compare the thrust effectiveness values with a thrust effectiveness
11	threshold value; and
12	compute an intermittent-firing thrust trajectory to achieve the orbit
13	transfer, the intermittent-firing thrust trajectory comprising thruster-on regions where the
14	thrust effectiveness value is at about or above the thrust effectiveness threshold value and
15	thruster-off regions where the thrust effectiveness value is below the thrust effectiveness
16	threshold value, wherein the spacecraft thrusters are turned-on during the thruster-on
17	regions, and the spacecraft thrusters are turned-off during the thruster-off regions.

- 1 15. (Currently Amended) The system as recited in claim 14, wherein the at
- 2 least one controller is selected from the group consisting of at least one controller on the
- 3 spacecraft, at least one controller on the earth, and a combination of at least one controller on the
- 4 spacecraft and at least one controller on the earth.
- 1 16. (Original) The system as recited in claim 14, wherein the spacecraft orbit
- 2 transfer system computes the intermittent-firing thrust trajectory by:
- determining one or more thruster-off regions for a first orbit revolution;
- 4 computing a first updated thrust trajectory for the entire orbit transfer using the
- 5 thruster-off regions identified for the first orbit revolution in the calculation;
 - determining one or more thruster-off regions for a second orbit revolution using
- 7 the first updated trajectory;

6

- 8 computing a second updated thrust trajectory for the entire orbit transfer using the
- 9 thruster-off regions identified for the first and the second orbit revolutions in the calculation; and
- 10 continue computing thruster-off regions for each successive orbit revolution and
- 11 further updated thrust trajectories until a final intermittent-firing thrust trajectory is determined
- for all orbits of the entire orbit transfer.
 - 1 17. (Original) The system as recited in claim 16, wherein the spacecraft orbit
 - 2 transfer system determines the thruster-on regions, the thruster-off regions and the final
 - 3 intermittent-firing thrust trajectory prior to carrying out the orbit transfer.
 - 1 18. (Original) The system as recited in claim 14, wherein the thrust
- 2 effectiveness value is calculated according to the equation:

$$\Gamma(t) = 1 - \frac{\lambda_6 \dot{F}}{\lambda^T \dot{z}}$$

- 1 19. (Original) The system as recited in claim 14, wherein the spacecraft orbit
- 2 transfer system determines the thrust effectiveness threshold value prior to comparing the thrust
- 3 effectiveness value with a thrust effectiveness threshold value.

- 1 20. (Original) The system as recited in claim 19, wherein the thrust 2 effectiveness threshold value is a function of thruster shut-off time, fuel savings and increase in
- 3 orbit transfer time.
- 1 21. (Original) The system as recited in claim 19, wherein the thrust
- 2 effectiveness threshold value is denoted Γ_0 and can be solved for by evaluating the integrals

$$T_{1}(\Gamma_{0}) = \int_{0}^{T} \eta \Gamma dt \qquad \eta = 1 \quad \text{if } \Gamma \leq \Gamma_{0}$$

$$T_{2}(\Gamma_{0}) = \int_{0}^{T} \eta (1 - \Gamma) dt \qquad \text{where,} \qquad \eta = 0 \quad \text{if } \Gamma > \Gamma_{0}$$

- for values of Γ_0 between 0 and 1 with a reasonable resolution, wherein T_1 gives a
- 5 relationship between the thrust effectiveness threshold value Γ_0 and a total increase in the orbit
- 6 transfer time, and wherein T_2 gives a relationship between the thrust effectiveness threshold
- 7 value Γ_0 and a reduction in firing time.
- 1 22. (Original) The system as recited in claim 14, wherein an amount of fuel
- 2 required to perform the orbit transfer is lower than the amount of fuel required to perform a time-
- 3 optimal continuous-firing orbit transfer.
- 1 23. (Original) The system as recited in claim 14, wherein an increase in
- 2 transfer time compared to a time-optimal continuous firing orbit transfer is minimized.
- 1 24. (Original) The system as recited in claim 14, wherein the thrusters are not
- 2 fired when the spacecraft orbit change is insensitive to thrusting.
- 1 25. (Original) The system as recited in claim 14, wherein the thrusters are not
- 2 fired when a required rate of change of thrust trajectory direction is too large for the spacecraft to
- 3 follow.
- 1 26. (Original) The system as recited in claim 14, wherein the first orbit
- 2 comprises a launch vehicle injection orbit and the second orbit comprises a final mission orbit.

1	27. (Original) The system as recited in claim 14, wherein the thrusters are not
2	fired when continuously firing the thrusters will not reduce the velocity change required to
3	complete the orbit transfer by at least a threshold amount.
1	28. (Original) A spacecraft adapted to transfer from a first orbit to a second
2	orbit, comprising:
3	spacecraft thrusters; and
4	an orbit transfer system adapted to transfer the spacecraft from a first orbit to a
5	second orbit, the orbit transfer system comprising at least one controller adapted to control the
6	spacecraft orbit transfer, the spacecraft orbit transfer system being adapted to:
7	compute a continuous-firing thrust trajectory to achieve an entire orbit
8	transfer;
9	compute thrust effectiveness values for time intervals over the continuous-
10	firing thrust trajectory;
11	compare the thrust effectiveness values with a thrust effectiveness
12	threshold value; and
13	compute an intermittent-firing thrust trajectory to achieve the orbit
14	transfer, the intermittent-firing thrust trajectory comprising thruster-on regions where the
15	thrust effectiveness value is at about or above the thrust effectiveness threshold value and
16	thruster-off regions where the thrust effectiveness value is below the thrust effectiveness
17	threshold value, wherein the spacecraft thrusters are turned-on during the thruster-on
18	regions, and the spacecraft thrusters are turned-off during the thruster-off regions.
1	29. (Currently Amended) The spacecraft as recited in claim 28, wherein the at
2	least one controller is selected from the group consisting of at least one controller on the
3	spacecraft, at least one controller on the earth, and a combination of at least one controller on the
4	spacecraft and at least one controller on the earth.
	30. (Original) The spacecraft as recited in claim 28, wherein the orbit transfer
	system computes the intermittent-firing thrust trajectory by:

determining one or more thruster-off regions for a first orbit revolution;

1

computing a first updated thrust trajectory for the entire orbit transfer using the thruster-off regions identified for the first orbit revolution in the calculation;

determining one or more thruster-off regions for a second orbit revolution using the first updated trajectory;

computing a second updated thrust trajectory for the entire orbit transfer using the thruster-off regions identified for the first and the second orbit revolutions in the calculation; and continue computing thruster-off regions for each successive orbit revolution and further updated thrust trajectories until a final intermittent-firing thrust trajectory is determined for all orbits of the entire orbit transfer.

31. (Original) A method for transferring a spacecraft from a first orbit to a second orbit, comprising:

calculating thruster-off regions within the orbit transfer in which it is efficient to turn-off spacecraft thrusters; and

turning off the spacecraft thrusters in the thruster-off regions.