Lanczos Iterations i Conjugate Gradients Record $K_{-}(A,b) = span \{b, Ab, ..., 1^{-1}b\}$ [| Ab - A" b] = Q_R, AQ_ = Q_m H_n Q_AQ_ = 1+_ Approx. => Solve Ax=Ax and Ax=b ustry Qn and Hn. Lanczos Iteration A = A (real symmetric) H = Q TAQ (>> H = (Q TAQ) = Q A Con ××× ××× ××× = T_n(=H_n) = QIAQn = H2

$$A \begin{bmatrix} q, q, \dots, q \\ q, q, \dots, q \end{bmatrix} = \begin{bmatrix} q, q, \dots, q, \dots \\ q, q, \dots, q, \dots \\ q, q, \dots, q, \dots \end{bmatrix}$$

 $A_{2x} = B_{x-1}g_{x+1} \, \alpha_{x}g_{x} + B_{x}g_{x+1}$ $g_{x+1} = (-A_{2x} + \alpha_{x}g_{x} + B_{x-1}g_{x+1}) \frac{1}{B_{x}}$ $g_{x+1} = \frac{1}{B_{x}} [(\alpha_{x}I - A)g_{x} + B_{x-1}g_{x-1}]$

3-term recurrence = no emplicit
orthogonalization
21,-, 2k-2

=> Use Taweow to appropria. Axedx.

=> Convergence related to theory of orthogonal polynomials and their roots.

Loss of orthogonality is a problem in flowthey-point.

Treorthogonalization

Traplicit restarts

The metho	d of Conjuga	te Godienk
"SPO"		x ^T Ax > 0
	Ax=5 Esymathic	positive det.

CG is an analogue of GMRES for SPP matrices: approx. x = 2A'b by solving an optimization problem over kn (1,6).

$$x^{7}Ay = \langle x, y \rangle_{A}$$

"A-inner product"

= $\sqrt{x^{7}Ay}$

"A-norm"

=) (6 minimizes en = X4-Xn over

xa 6Ka (A, b) in the norm 11.11.

CG Iteration

Scorch directions

$$X_0=0$$
, $\Gamma_0=1$, $\rho_0=\Gamma_0$

If $\rho_0=1$, $\rho_0=1$

for $\rho_0=1$, $\rho_0=1$
 $\rho_0=1$, $\rho_0=1$
 $\rho_0=1$

=> Only 1 mut -vec / iteration

=> No explicit orthogonalization

Than I If range of (ast yet converged)

 $K_n = span \{b, Ab, ..., A^{n-1}\}$ = $span \{x_1, x_2, ..., x_n\}$

= span { [0, [1, ..., [n-1]

= span { p, p, -, pa, }

ratification, and priApico jun

Thm 2 Pa-, 20, Xm is the

unique minimizer of Henly and

c=2 for some nsm

en = Xx - Xu.