```
טענה: \mathbb{Z}\subseteq\mathbb{R}. a-b\in S וכן a-b\in S וכן a+b\in S מתקיים a,b\in S מתקיים a+b\in S וכן a-b\in S טענה: \mathbb{Z} סגורה ביחס לחיבור חיסור וכפל. S=a תורת המספרים: קבוצה S=a המקיימת את האי־שיוויון היסודי של תורת המספרים: קבוצה S=a המקיימת את אי־שיוויון היסודי של תורת המספרים. S=a המקיימת את אי־שיוויון היסודי של תורת המספרים. S=a המקיימת את האי־שיוויון היסודי של תורת המספרים וכן סגורה ביחס לחיבור חיסור וכפל אזי S=a טענה: תהא S=a המקיימת את האי־שיוויון היסודי של תורת המספרים וכן סגורה ביחס לחיבור חיסור וכפל אזי S=a טענה: תהא S=a הסומה מלרע באשר S=a אזי S=a אזי S=a אזי S=a חסומה מלרע באשר S=a אזי S=a אזי S=a אזי S=a חסומה מלרע וכן אינה חסומה מלעיל.
```

מסקנה עיקרון האינדוקציה: יהי P פרידיקט מעל \mathbb{N} באשר P וכן לכל \mathbb{N} מתקיים \mathbb{N} מתקיים \mathbb{N} אזי \mathbb{N} לכל \mathbb{N} . \mathbb{N}

 $(\forall m < n.P\left(m
ight)) \Longrightarrow P\left(n+1
ight)$ מתקיים $n \in \mathbb{N}$ וכן לכל $P\left(0
ight)$ באשר פרידיקט מעל $P\left(n+1
ight)$ פרידיקט מעל $P\left(n+1
ight)$ באשר אזי $P\left(k\right)$ לכל $P\left(k\right)$

ab=ac המקיים המספר עבורו קיים $a\in\mathbb{Z}$ אזי אזי $b\in\mathbb{Z}$ המקיים מספר מתחלק מספר

a|b אזי aב מתחלק ב $a,b\in\mathbb{Z}$ אזי סימון: יהיו

 $a \nmid b$ אזי a באשר b אינו מתחלק ב־ $a,b \in \mathbb{Z}$ אינו מחלק

.a|0 טענה: יהי $a\in\mathbb{Z}$ אזי

-1|a טענה: יהי $a\in\mathbb{Z}$ אזי $a\in\mathbb{Z}$

|a| (db + ec) מתקיים $c,d \in \mathbb{Z}$ אזי לכל |a|וכן וכן a|b באשר $a,b,c \in \mathbb{Z}$ מתקיים

a|c אזיb|c וכן a|b באשר $a,b,c\in\mathbb{Z}$ טענה: יהיו

 $a \leq b$ אזי a|b באשר $a,b \in \mathbb{N}$ טענה: יהיו

 $.((a|b)\wedge(b|a))\Longleftrightarrow(a\in\{\pm b\})$ אזי $a,b\in\mathbb{Z}$ טענה: יהיו

a=qd+r טענה חלוקה עם שארית: יהי $d\in\mathbb{N}_+$ ויהי $a\in\mathbb{Z}$ אזי קיימים ויחידים $q,r\in\mathbb{Z}$ באשר וכן

a אזי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי מנה של חלוקה: יהי חלוקה: יהי מנה של

x אזי $a\in\mathbb{Z}$ אזי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי אויהיו של חלוקה. יהי חלוקה: יהי אוי יהי $a\in\mathbb{Z}$ יהי

 $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי $a\in\mathbb{Z}$ יהי מסקנה:

 $|x|=\max\left((-\infty,x]\cap\mathbb{Z}
ight)$ אזי $x\in\mathbb{R}$ החלק השלם/ערך שלם תחתון: יהי

 $q=\lfloor rac{a}{d}
floor$ יהי $d\in \mathbb{N}_+$ יהי $a\in \mathbb{Z}$ ויהיו $a\in \mathbb{Z}$ ויהיו $a\in \mathbb{Z}$ יהי מסקנה: יהי

 $H=d\mathbb{Z}$ עבורו עבורו אזי קיים ויחיד אזי איז איז אזי ענה: תהא $H\leq \mathbb{Z}$

 $a\mathbb{Z}+b\mathbb{Z}\leq\mathbb{Z}$ טענה: יהיו $a,b\in\mathbb{Z}$ אזי טענה:

 $d\mathbb{Z}=a\mathbb{Z}+b\mathbb{Z}$ עבורו $d\in\mathbb{N}$ אזי $a,b\in\mathbb{Z}$ יהיו מירבי: מחלק משותף מירבי:

 $\gcd\left(a,b
ight)=d$ אזי $a,b\in\mathbb{Z}$ ויהי $d\in\mathbb{N}$ המחלק המשותף המירבי של

 $(a,b)=\gcd{(a,b)}$ אזי $a,b\in\mathbb{Z}$ סימון: יהיו

 $\gcd\left(a,b\right)|b$ וכן $\gcd\left(a,b\right)|a$ אזי $a,b\in\mathbb{Z}$ טענה: יהיו

 $\gcd\left(a,b
ight)=na+mb$ עבורם $n,m\in\mathbb{Z}$ אזי קיימים מסקנה: יהיו $a,b\in\mathbb{Z}$

 $c|\gcd(a,b)$ אזי c|b וכן c|a באשר $a,b,c\in\mathbb{Z}$ טענה: יהיו

 $\gcd(a,b)=\max\{d\in\mathbb{Z}\mid (d|a)\land (d|b)\}$ אזי $\{a,b\}
eq\{0\}$ באשר באשר $a,b\in\mathbb{Z}$ יהיו

 $\gcd(a,b)=d$ אזי d=na+mb אזי $n,m\in\mathbb{Z}$ פעעה: יהיו dו וכן dו וכן dו וכן dו וכן dו אזי ויהי $d\in\mathbb{N}$ אזי ויהי