# Título del proyecto final ó nombre del artículo

José Galaz, Jaime Soto

#### Abstract

A menudo la propagación y superposición de ondas en bahías puede generar oscilaciones de períodos largos que ocasionan inundación y daño inesperado en embarcaciones y estructuras, sin embargo, a partir de las ecuaciones de Navier-Stokes es posible deducir que, cuando estas ondas largas poseen pequea amplitud, las frecuencias y modos de oscilacin corresponden a los valores y vectores propios dados por la ecuacin de Helmholtz. En este trabajo ha sido posible desarrollar una formulacin variacional del problema, e implementar computacionalmente el mtodo de Galerkin para calcular los modos de resonancia aproximados para una bahía de geometra arbitraria. Ha sido posible validar con soluciones analíticas y se ha aplicado el mtodo para estudiar la bahía de Concepcin, Chile, encontrando que los perodos de oscilacin son de orden de magnitud esperado y la forma de los modos principales concuerda con lo que se reporta en la literatura [10].

### 1 Introducción

El fenómeno de resonancia al interior de una región semicerrada reviste una especial importancia en el estudio del comportamiento de ondas que se propagan desde el océano hacia zonas costeras y que pueden inducir la amplificación de estas al ingresar a una región semicerrada [6]. El fenómeno de resonancia puede condicionar el diseo de puertos y comportamiento de naves al interior de estos [8], la inundación por efecto de tormentas y marejadas [6] y en la amplificación y/o aparición de ondas de tsunami tardía, horas después de la llegada de la primera onda [6]. Esta última podra ser una explicación para describir las características que tuvo el tsunami de Maule 2010 [9].

Existen varias formas de aproximarse a una identificación y cuantificación de los modos propios de oscilación al interior de una bahía. Una aproximación es propagar varias ondas (distinta frecuencia y dirección) hacia el interior y cuantificar la amplificación de estas. Esta propagación puede ser lineal o no lineal [7]. Otra aproximación consiste en calcular directamente los modos propios de oscilación de la bahía [10, 7]. Esta última aproxiamción es la utilizada en este trabajo.

El objetivo de este trabajo es determinar los modos de oscilación de una bahía utilizando una aproximación por elementos finitos. La mayor dificultad que presenta una aproximación directa para la determinación de los modos propios es la seleccionar una condición de borde apropiada a cada caso [7, 11]. Como una primera aproxiamción se considerará una bahía cerrada.

Para encontrar una aproximación a los modos propios se resuelve la ecuación de Helmholtz, mediante el método de elementos finitos, aplicado a una bahía cerrada con condiciones de borde Neumman  $u_{,i} n_i = 0$ . Las ecuación de Helmholtz es derivada de la ecuación de Navier-Stokes y presentada en su formualción fuerte. Se obtiene la formulación variacional y galerkin asociada al problema fuerte y se implementan elementos tipo tri3 para la resolución de la ecuación matricial. El modelo es validado en una geometría rectangular cuya solución analítica es conocida y alicado al caso real de la Bahía de Talcahuano

### 2 Marco Teórico

#### 2.1 Ecuaciones fundamentales

Sea  $\Omega' \subset \mathbb{R}^3$  el dominio de interés,  $t_f > 0$  el tiempo final de la simulación,  $\vec{v} : [0, t_f] \times \Omega' \to \mathbb{R}^3$  el campo de velocidad, y  $p : [0, t_f] \times \Omega' \to \mathbb{R}$  el campo de presiones, de un fluido incompresible con densidad  $\rho \in \mathbb{R}^+$ , que escurre sobre un fondo (topografía - batimetría) de forma dada por  $b : \Omega' \to \mathbb{R}$ . Si se desprecian efectos disipativos y se consideran fuerzas de volumen  $\vec{f_b} = (0, 0, -g)^T$ , con g la aceleración de gravedad, las ecuaciones de Navier-Stokes son [?]

$$\nabla \cdot \vec{v} = 0$$

$$\frac{\partial}{\partial t} \vec{v} + \nabla \cdot \vec{v} \otimes \vec{v} = -\frac{1}{\rho} \nabla p + \vec{f}_b$$

$$v_3|_{z=\eta} = \frac{\partial \eta}{\partial t} + (\vec{v} \cdot \nabla) \eta$$

$$v_3|_{z=b} = \frac{\partial b}{\partial t} + (\vec{v} \cdot \nabla) b$$

$$p|_{z=\eta} = 0$$

$$(1)$$

En particular, en una bahía de interior  $\Omega \subset \mathbb{R}^2$ , con borde impermeable  $\partial \Omega_h$  y linea nodal  $\partial \Omega_g$  tales que  $\partial \Omega = \partial \Omega_h \cup \partial \Omega_g$ , y bajo el supuesto que las ondas son suficietemente largas, de forma que las aceleraciones verticales no tienen influencia significtiva sobre el perfil de presiones hidrostático, y por medio de integración vertical entre el fondo b y la superficie libre  $\eta$ , las Ecuaciones No Lineales de Aguas Someras (Non-Linear Shallow water Equations, NSWE) son,

$$\frac{\partial}{\partial t}(\eta) + \frac{\partial}{\partial x}(hu) + \frac{\partial}{\partial y}(hv) = 0 \text{ si } x \in \Omega$$

$$\frac{\partial}{\partial t}(hu) + \frac{\partial}{\partial x}(hu^2 + \frac{1}{2}gh^2) + \frac{\partial}{\partial y}(huv) = -gh\frac{\partial}{\partial x}b \text{ si } x \in \Omega$$

$$\frac{\partial}{\partial t}(hu) + \frac{\partial}{\partial x}(huv) + \frac{\partial}{\partial y}(hv^2 + \frac{1}{2}gh^2) = -gh\frac{\partial}{\partial y}b \text{ si } x \in \Omega$$

$$(hu, hv) \cdot \vec{n} = 0 \text{ si } x \in \partial\Omega_h$$

$$\eta = 0 \text{ si } x \in \partial\Omega_g$$

$$(2)$$

donde, viendo la figura 1,  $h:(t,x,y)\in[0,t_f]\times\Omega\to\eta(t,x,y)-b(x,y)\in\mathbb{R}^+$  es la altura de la columna de agua, y (u,v) las componentes de velocidad horizontal promediadas en la vertical, dadas por

$$(u,v) = \frac{1}{h} \int_{b}^{\eta} (v_1, v_2) dz$$

Las ecuaciones en (2), forman un sistema hiperbólico de ecuaciones diferenciales parciales no lineales, que admite ondas de choque e interfaces seco-mojado, cuando h tiende a 0. Sin embargo, es posible obtener una linealización del sistema (2) si se consideran pequeñas perturbaciones a una masa de agua en reposo, es decir si

$$\eta = h_0 + \eta' \quad u = 0 + u', \quad v = 0 + v'$$



Figure 1: Vist esquemtica de la varibles hidrodinámicas definidas para las Ecuaciones No Lineales de Aguas Somers (NSWE).

donde la notación  $\square'$  indica pequeñas perturbaciones sobre  $\square$ , y  $h_0: \Omega \to \mathbb{R}$  representa la altura de la columna de agua, de forma que <sup>1</sup>

$$\left| \frac{\eta'(t, x, y)}{h_0(x, y)} \right| << 1$$

para cualquier  $(t, x, y) \in [0, t_f] \times \Omega$ . Bajo estos supuestos, se deducen las Ecuaciones Lineales de Aguas Someras (LSWE), dadas por

$$\frac{\partial \eta'}{\partial t} + \frac{\partial h_0 u'}{\partial x} + \frac{\partial h_0 v'}{\partial y} = 0 \text{ si } x \in \Omega$$

$$\frac{\partial u'}{\partial t} + g \frac{\partial \eta'}{\partial x} = 0 \text{ si } x \in \Omega$$

$$\frac{\partial v'}{\partial t} + g \frac{\partial \eta'}{\partial y} = 0 \text{ si } x \in \Omega$$

$$(h_0 u', h_0 v') \cdot \vec{n} = 0 \text{ si } x \in \partial \Omega_h$$

$$\eta' = 0 \text{ si } x \in \partial \Omega_q$$
(3)

Si ademas  $\eta', u', v' \in \mathcal{C}^2(\Omega)$ , multiplicando la segunda y tercera ecuación de (3), por h y derivando respecto a x e y es cierto que

$$\frac{\partial^2 \eta}{\partial t^2} - \nabla \cdot (gh\nabla \eta) = 0, \text{ si } x \in \Omega$$

$$\frac{\partial \eta}{\partial \vec{n}} = 0 \text{ si } x \in \partial \Omega_h$$

$$\eta = 0 \text{ si } x \in \partial \Omega_g$$
(4)

donde se cambió de notación al usar  $\square$  como  $\square'$ . Las ecuaciones (4) corresponden a la ecuación lineal de onda, de celeridad  $c = \sqrt{gh}$ , revelando la similitud entre la propagación de ondas de amplitud pequeña en una bahía, con la de ondas acústicas o elásticas lineales.

Finalmente, si se estudian ondas estacionarias, es posible separar variables y escribir (abusando de notación en u), con  $u: \Omega \to \mathbb{R}$ 

$$\eta(t, x, y) = Re\left\{u(x, y)e^{-i\omega t}\right\} \tag{5}$$

<sup>&</sup>lt;sup>1</sup>Aquí el lector debe notar que este supuesto es equivalente a asumir que las ondas son de amplitud pequeña.

lo cual, sustituyendo en (4), conduce a

$$\nabla \cdot (gh_0 \nabla u) + \omega^2 u = 0 \text{ si } x \in \Omega$$

$$\frac{\partial u}{\partial \vec{n}} = 0 \text{ si } x \in \partial \Omega_h$$

$$u = 0 \text{ si } x \in \partial \Omega_g$$
(6)

El sistema (6) es más conocido como la Ecuación de Helmholtz, y denota un problema de valores y vectores propios del operador diferencial de la ecuación de Poisson ( $\nabla \cdot c^2 \nabla \Box$ ). Es posible demostrar [1], que la extensión débil del operador de Poisson definido sobre  $L^2(\Omega, \mathbb{R})$  posee una cantidad numerable de valores y vectores propios  $(\lambda_n, u_n)_{n \in \mathbb{N}}$ , tales que  $u_n \neq 0$  y  $0 \leq \lambda_1$  y  $\lambda_n \leq \lambda_{n+1}$ . Además es fácil verificar, que para el caso en que  $\partial \Omega_g = \emptyset$ , como es el caso de una bahía cerrada, si  $u(x,y) = K \in \mathbb{R}$  para cualquier  $(x,y) \in \Omega$ , entonces (6) se satisface trivialmente y  $\lambda = 0$  es el primer valor propio, lo cual corresponde físicamente a cuando la superficie libre del agua está a un nivel constante, es decir, cuando la masa de agua está en reposo. Lo anterior se debe tener en consideración al examinar los valores propios obtenidos numéricamente.

#### 2.2 Formulación variacional y de Galerkin

La formulación fuerte del problema de valor de frontera es: (ecuación (6)

Dados 
$$g, h: \Omega \to \mathbb{R}$$
, encontrar  $(u, \omega^2)$  tal que:  

$$\omega^2 u + (ghu_{,i})_{,i} = 0, \quad \boldsymbol{x} \in \Omega$$

$$\frac{\partial u}{\partial n} = u_{,i} n_i = 0, \quad \boldsymbol{x} \in \partial \Omega_h$$

$$u = 0, \quad \boldsymbol{x} \in \partial \Omega_g$$
(S)

Sean:

$$\mathcal{V} = \left\{ v \in H^1(\Omega, \mathbb{R}) / v|_{\partial \Omega_g} = 0 \right\}$$
  
$$\mathcal{S} = \left\{ u \in H^1(\Omega) / u_{,i} n_i = 0, \ \mathbf{x} \in \partial \Omega_h \right\}$$

multiplicando la ecuación de Helmholtz por  $-v \in \mathcal{V}$  e integrando por partes:

$$-\int_{\Omega} v\left(\omega^{2} u + (ghu_{,i})_{,i}\right) d\boldsymbol{x} = 0$$
$$-\int_{\Omega} v(\omega^{2} u) d\boldsymbol{x} - \int_{\partial\Omega} v(ghu_{,i}) n_{i} dS + \int_{\Omega} v_{,i} ghu_{,i} d\boldsymbol{x} = 0$$

Pero, por condición de borde:  $u_{,i} n_i = 0 \ \forall \boldsymbol{x} \in \partial \Omega_h$ , luego

$$-\int_{\Omega} v(\omega^2 u) d\mathbf{x} + \int_{\Omega} v_{,i} ghu_{,i} d\mathbf{x} = 0$$

O, en forma abstracta:

$$a(v,u) - \omega^2(v,u) = 0 \tag{7}$$

Luego,

Dados 
$$g, h: \Omega \to \mathbb{R}$$
, encontrar  $(u, \omega^2), u \in \mathcal{S}, \omega \in \mathbb{R}$ , tal que:  
$$a(v, u) - \omega^2(v, u) = 0 \qquad (W)$$

Formulación Galerkin: Sean  $u^h \in \mathcal{S}^h (\equiv \mathcal{V}^h)$  con  $\mathcal{V}^h \in \mathcal{V}$ entonces:

$$a(v^h, u^h) - \omega^2(v^h, u^h) = 0$$

Luego la formulación galerkin queda:

Dados 
$$g, h: \Omega \to \mathbb{R}$$
, encontrar  $(u, \omega^2), u \in \mathcal{V}^h, \omega \in \mathbb{R}$ , tal que:
$$a(v^h, u^h) - \omega^2(v^h, u^h) = 0 \qquad (W)$$

Para hallar las ecuaciones matriciales asociadas, debemos expresar  $v^h$  y  $u^h$  en términos de las funciones de forma  $N(\boldsymbol{x})$ :

$$v^h = \sum_{A \in \eta} N_A(\boldsymbol{x}) v_A$$

$$u^h = \sum_{A \in \eta} N_A(\boldsymbol{x}) u_A$$

donde  $\eta$ : Nodos del dominio

Reemplazando, se tiene:

$$\sum_{A \in \eta} v_A \left\{ \sum_{B \in \eta} (N_A(\boldsymbol{x}), N_B(\boldsymbol{x})) u_B - \omega^2 \sum_{B \in \eta} a(N_A(\boldsymbol{x}), N_B(\boldsymbol{x})) u_B \right\} = 0$$

Como  $v_A \neq 0$ , entonces:

$$\left(\sum_{B\in\eta}(N_A(\boldsymbol{x}),N_B(\boldsymbol{x})) - \omega^2 \sum_{B\in\eta}a(N_A(\boldsymbol{x}),N_B(\boldsymbol{x}))\right)u_B = 0$$

Luego, el problema matricial queda:

$$(M - \omega^2 K) \boldsymbol{u_B} = 0$$

donde:

$$K_{AB} = a(N_A(\boldsymbol{x}), N_B(\boldsymbol{x})) = \int_{\Omega} gh N_{A,i}(\boldsymbol{x}) N_{B,i}(\boldsymbol{x}) d\boldsymbol{x}$$

$$M_{AB} = (N_A(\boldsymbol{x}), N_B(\boldsymbol{x})) = \int_{\Omega} N_A(\boldsymbol{x}) N_B(\boldsymbol{x}) d\boldsymbol{x}$$

A nivel de elemento:

$$K_{ab} = a(N_a(\boldsymbol{x}), N_b(\boldsymbol{x})) = \int_{\Omega_a} ghN_{a,i}(\boldsymbol{x})N_{b,i}(\boldsymbol{x})d\boldsymbol{x}$$

$$M_{ab} = (N_a(\boldsymbol{x}), N_b(\boldsymbol{x})) = \int_{\Omega_a} N_a(\boldsymbol{x}) N_b(\boldsymbol{x}) d\boldsymbol{x}$$

Los elementos utilizados en este estudio fueron elementos isoparamétricos Tri3.

### 3 Resultados

#### 3.1 Bahía rectangular de ancho unitario

Para validar los resultados de la implementación del algoritmo, y estudiar la convergencia de éste, se ha escogido una solución anlítica al problema presentado en la ecuación (6). Este caso corresponde a una bahía cuadrada de largo unitario cuyo interior es  $\Omega = [0,1] \times [0,1]$ , la cual se encuentra cerrada por bordes impermeables, es decir,  $\partial \Omega_g = 0$ , y fondo a profundidd  $h_0 \in \mathbb{R}^+$ . Por medio de separación de variables, al asumir que u puede escribirse como u(x,y) = f(x)g(y), y al considerar las condiciones de borde, se deduce que los modos de oscilación vienen dados por

$$u_{nm}(x,y) = A_{nm}\cos(n\pi x)\cos(m\pi y) \quad \text{con } n,m \in \mathbb{N}_0 \text{ y } A_{nm} \in \mathbb{R}$$
 (8)

y el período de oscilación asociado

$$T_{nm} = \frac{2}{\sqrt{gh}} (n^2 + m^2)^{-1/2} \quad \text{con } n, m \in \mathbb{N}_0$$
 (9)

La solución mediante FEM es implementada para distintas resoluciones de malla y analizada su convergencia mediante la determinación del error asociado al valor propio y el error asociado al vector propio correspondiente.

Para el caso del error en el valor propio se utilza norma natural de  $\mathbb{R}$ 

$$E = |\lambda^h - \lambda|$$

donde  $\lambda$  es la longitud de onda obtenida mediante la solución analítica  $\lambda^h$  es la longitud de onda obtenida mediante aproximación por FEM

Para el caso del error en el valor de la desnivelación superficial el error se calcula mediante la norma de  $\mathcal{L}^2(\Omega,\mathbb{R})$ 

$$E = \left(\int_{\Omega} (u^h - u) \mathrm{d}\boldsymbol{x}\right)^{1/2}$$



Figure 2: Resultados aproximación valores propios mediante FEM y errores asociados

Los resultados para el valor propio se muestran en la figura 2

Ajustando una curva a los datos (log(E), log(h)) se obtiene una recta log(E) = log(C) + plog(h) donde p es la taza de convergencia

| Modo | С          | р          |
|------|------------|------------|
| 1    | 0.62007961 | 2.4403783  |
| 3    | 0.39830035 | 2.33894099 |
| 5    | 0.69813644 | 2.26494859 |
| 7    | 0.71017628 | 2.33846474 |
| 9    | 0.68486822 | 2.12311422 |
| 11   | 0.70325574 | 2.17136287 |

Table 1: Coeficientes de ajuste de las curvas  $\log(E_{\lambda}) = \log(C) + p \log(h)$ 

Para el caso de la convergencia de los vectores propios, los resultados se muestran en la figura

Ajustando una recta a los datos (log(E), log(h))

3

En ambos casos se puede ver que la taza de convergencia es de orden 2.

### 3.2 Aplicación a la bahía de Concepción

A partir de información de cartas náuticas del Servicio Hidrográfico y Oceánico de la Armada de Chile [CITAS] se interpoló la topografía y batimetría correspondiente a la zona de la bahía de Concepción, y se utilizó el software computacional AnuGA[CITA] para generar la malla de elementos triangulares en el lugar de interés, como se puede ver en la figura 6. La malla posee un



Figure 3: Errores en norma  $\mathcal{L}^2$  de los vectores asociados a cada modo propio



Figure 4: Modos de oscilación 1 y 2 usando h=1/25 usando el método de Elementos Finitos.

| Modo | С          | р          |
|------|------------|------------|
| 1    | 0.0765871  | 2.04894336 |
| 3    | 0.29036431 | 2.09300275 |

Table 2: Coeficientes de ajuste de las curvas  $\log(E_u) = \log(C) + p \log(h)$ 



Figure 5: Modos de oscilación 3 y 6 obtenidos numéricamente para h=1/25 (primera columna) y mediante la solución analítica para (n,m)=(1,1) y (n,m)=(1,2) (segunda columna)

total de 2697 nodos y 57600 triángulos, y se impuso que el área de cada triangulo fuera menor que  $57600m^2$ .

La condición de borde por el lado que da hacia el océano no es trivial de implementar, y como una primera aproximación se simuló como un borde sólido, lo cual es consistente con el caso límite en que las ondas quedan completamente atrapadas al interior. De esta forma, la bahía completa se consideró como si estuviera cerrada por todos los bordes.

Dadas estas definiciones, los seis primeros modos de oscilación y los períodos asociados se encuentran representados en la figura 7.

### 4 Discusion

## References

[1] M. Nica. Eigenvalues and Eigenfunctions of the Laplacian. *The Waterloo Mathematics Review* 2011; 1, No.2, 23–34.



Figure 6: Batimetría y topografía de Talcahuano y malla triangular utilizada en la bahía de Concepción



Figure 7: Primeros seis modos y períodos de oscilación obtenidos para la configuración de la bahía de Concepción

- [2] T.J.R. Hughes, The finite element method: Linear static and dynamic finite element analysis. Dover Publications, 2000.
- [3] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, *The finite element method: Its basis and fundamentals*. Sixth edition, Butterworth-Heinemann, 2006.
- [4] http://www.ruf.rice.edu/ bioslabs/tools/report/reportform.html
- [5] S. Göktepe and E. Kuhl. Computational modeling of cardiac electrophysiology: A novel finite element approach. *International Journal for Numerical Methods in Engineering* 2009; **79**, 156–178.
- [6] Z. Kowalik and T.S. Murty. Numerical modeling of ocean dynamics. Advanced Series.on Ocean Engineering, vol. 5. World Scientific, Singapore. 1993;
- [7] C. Mei, M. Stiassnie and D. Yue *Theory and applicaction of suface ocean Waves, vol. 5.* World Scientific, Singapore. 2005;
- [8] http://www.tdx.cat/bitstream/handle/10803/10618/
- [9] http://ciperchile.cl/2012/01/18/tsunami-paso-a-paso-los-escandalosos-errores-y-omisione
- [10] Belloti et al. Modal analysis of semi-enclosed basins. Coastal Engineering 2012; 64, 16–25.
- [11] A.B. Rabinovich. Seiches and harbor oscillations. *Handbook of coastal and ocean engineering*. World Scientific Publ 2009; **64**, 193–236.

### A Sobre los apéndices

Los apéndices contienen información que no es de carácter esencial para entender el artículo. Muchas derivaciones de ecuaciones, demostraciones de teoremas (con la salvedad de artículos en revistas de matemática), tablas de datos, etc., son incluídas en el apéndice.

### B Sobre la evaluación del artículo final

El artículo final será evaluado tanto en los aspectos académicos (calidad de los resultados obtenidos) como en aspectos de presentación y redacción. En particular, se considerará en la evaluación la redacción, diagramación, ortografía, correcta referenciación (incluir las citas y bibliografía), gráficos y figuras, entre otros.