# SfM-Net: Learning of Structure and Motion from Video

120170157 안권환

Dept. of Electronic Engineering
Sogang University

# **Outline**

- Introduction
- What is SfM-Net?
- Preliminaries
- Intuition & Contributions
- Network Architecture
- Training
- Problem Setting & result
- References





## What is SfM-Net?

• *SfM-Net* =

3D rotation and translations +

Single image depth map

Image masking

SE3-Net [1] 3D image interpreter [2]



depth CNN [3]



+

Spatial transformer networks [4]

- 3D rotation and translations
  - use an actuation force from a robot
  - an input point cloud to forecast a set of 3D rigid object motions
- Single image depth map
  - Using only single image, extract pixel depth.
- Differentiable image warping





## **Preliminaries**

- Structure from motion (SfM): **SLAM!** 
  - 2차원 정보와 로컬 모션 신호를 결합해서 3차원 구조를 추정하는 방법
  - Point cloud: A set of voxels
- Differentiable image warping
  - learn invariance to translation, scale, rotation and more generic warping



Figure 1: Point cloud.



Figure 2: Differentiable image warping.





## **Intuition & Contributions**

- Contributions
  - The model can be trained with various degrees of supervision
  - Supervised by ego-motion (camera motion)
  - Supervised by depth (e.g., as provided by RGBD sensors).

#### • No Direct!



- 여러가지를 할 수 있는 하나의 network!
- 어려운 것을 풀기 위해서, 하나하나 씩





# **Network Architecture**

Differentiable image warping 4 Make optical flow map • Multi-Inputs and Multi-Outputs: Deep Autoencoder skip connected Network 2 Estimate Motion information Fully connected layer Camera Motion classification 512 Object Motion Transformed Point Cloud (3) Mask K objects Transformed MOTION NETWORK classification  $3 \times 3$  convolution layer Point Cloud 1 Extract depth information STRUCTURE NETWORK Point Cloud







512 512 1024 1024

128

# **Training**

- Supervised learning / Unsupervised
  - Supervised
    - supervised by ego-motion (camera motion)
    - supervised by depth (e.g., as provided by RGBD sensors)
  - self-supervised by the reprojection photometric error (completely unsupervised)

### Supervised learning



## Unsupervised learning







# **Problem Setting & result**

#### Definition 1. Prediction Problem

Given frames  $I_t$ ,  $I_{\{t+1\}} \in \mathbf{R}^{\{w \times h\}}$ , Predict

- 1. Frame depth  $d_t \in [0, \infty)^{w \times h}$
- 2. Camera rotation and translation  $\{R_t^c, t_t^c\} \in SE3$
- 3. A set of K motion masks  $m_t^k \in [0,1]^{w \times h}, k \in 1, \dots, K$

# **Ground Truth Flow**

(sequence)











**Ground Truth Mask** 



















# References

- [1] A. Byravan and D. Fox. SE3-Nets: Learning rigid body motion using deep neural networks. CoRR, abs/1606.02378, 2016.
- [2] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman. Single image 3D interpreter network. In ECCV, 2016.
- [3] R. Garg, B. V. Kumar, G. Carneiro, and I. Reid. Unsupervised cnn for single view depth estimation: Geometry to the rescue. In ECCV, 2016.
- [4] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In NIPS, 2015.



