REVIEW DAY 4: INVERSE FUNCTION, EXPONENTIAL FUNCTIONS, & LOGARITHMIC FUNCTIONS

1. In your own words, explain what it means for $f^{-1}(x)$ to be the *inverse* of f(x)? You might try explaining it using graphs, algebra, or numerical calculations.

explaining it using graphs, algebra, of numerical calculations.

$$a \to f(x) \to b$$

$$f^{-1} \text{ undoes } f$$

$$graph \text{ of } f^{-1} \text{ is the } graph \text{ of } f \text{ reflected over}$$

$$b \to f^{-1}(x) \to a$$

2. Without doing a bunch of algebra, find $f^{-1}(x)$ for each function below:

(a)
$$f(x) = 2x$$
 $y = 2x$ (b) $f(x) = x^3$ $y = x^3$ $f^{-1}(x) = \frac{1}{2}x$ $x = y^3$ or $y = \frac{1}{2}$ $y = \frac{1}{2}x$

3. Without explicitly finding a formula for $f^{-1}(x)$, find $f^{-1}(1)$ for each function below:

- 4. Explain why the directions "Find $f^{-1}(1)$ " don't make sense for the following examples:
- (a) $f(x) = x^2 3$ (b) $\frac{x}{f(x)} = \frac{0}{3} = \frac{1}{3} = \frac{1}{4} = \frac{1}{5} = \frac{1}{5$

5. Give a not-too-big rough sketch of $f(x) = \sin x$ and ask yourself whether or not it makes since to be asked to find $\sin^{-1}(1)$. (Recall that $\sin^{-1}(1)$ could be written $\arcsin(1)$ or $\operatorname{invsin}(1)$.)

6. Evaluate the following:

(a)
$$\arcsin(1) = \frac{\pi}{2}$$

(c)
$$\arctan(1) = \frac{\pi}{4}$$

(d)
$$\arcsin(10) = DNE$$

arcsine will only input values between -1 and 1 (!!)

Exponential Functions & Logarithms

7. On the axes below, sketch:

- Simplify $2 \cdot 2 = 2^{7}$ because $2^{3} \cdot 2^{7} = (222)(22222) = 22222222 = 2^{7}$
- · what is e-1? e2? e2? = t e.e Te
- logy 64= y or 4 = 64 S.A=3
- · What is $\log_{4} 2$? $\log_{4} 64$? $\log_{4} 2 = ?$ or $4^{?} = 2$
- $y = log_4 \times is$ the inverse of $y = 4^{\times}$. OR

8. Find the exact value of each expression.

(a)
$$\log_2 16 = 4$$

(b)
$$e^{\ln 5} = 5$$

because ex and lnx are

inverses.

Inverses.
So
$$e^{\ln x} = x \left(also \ln(e^x) = x\right)$$

5. Solve each equation below for x.

(a)
$$10 = 2e^{x+1}$$

 $5 = e^{x+1}$
In $5 = x+1$
 $x = (\ln 5)-1$

(b)
$$\ln(x^2 - 1) = 1$$

 $x^2 - 1 = e^1$
 $x^2 = e + 1$
 $x = \pm \sqrt{e + 1}$

6. Sketch each function. Include domain, range, intercepts and asymptotes.

