## HỘI TOÁN HỌC VIỆT NAM KỲ THI OLYMPIC TOÁN SINH VIÊN VÀ HỌC SINH NĂM 2022



Môn thi: Giải tích Thời gian làm bài: 180 phút

# ĐÁP ÁN BẢNG B

## Lời giải bài B.1

| Ý | Cách | Bước | Nội dung                                                                                                                                                 | Điểm<br>B.1 |
|---|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a |      |      | Tìm tất cả các số nguyên dương $n$ sao cho $u_n>3/2$                                                                                                     | 2,00        |
|   |      | 1    | Khẳng định $(u_n)$ đơn điệu tăng                                                                                                                         | 1,00        |
|   |      |      | Từ định nghĩa $u_{n+1}=rac{1}{1!}+\cdots+rac{1}{n!}+rac{1}{(n+1)!}>rac{1}{1!}+\cdots+rac{1}{n!}=u_n$                                                | 1,00        |
|   |      |      | với mọi $n \geq 1$ . Vậy ta suy ra $u_{n+1} > u_n$ với mọi $n \geq 1$ .                                                                                  | 1.00        |
|   |      | 2    | Khẳng định $u_n>3/2$ khi và chỉ khi $n\geq 3$                                                                                                            | 1,00        |
|   |      |      | Do $u_2=1+rac{1}{2}=3/2$                                                                                                                                | 1,00        |
|   |      |      | nên từ tính đơn điệu của $(u_n)$ ta suy ra $u_n>3/2$ khi và chỉ khi $n\geq 3$ .                                                                          |             |
| b |      |      | Chứng minh rằng dãy số $(u_n)_{n=1}^\infty$ hội tụ                                                                                                       | 4,00        |
|   |      | 1    | Khẳng định $(u_n)$ bị chặn trên                                                                                                                          | 2,00        |
|   |      |      | Sử dụng đánh giá $n!\geq n(n-1)$ để thấy $u_n=rac{1}{1!}+\cdots+rac{1}{n!}\leq 1+rac{1}{1	imes 2}+\cdots+rac{1}{(n-1)	imes n}<2$ với mọi $n\geq 2$ . | 2,00        |
|   |      | 2    | Khẳng định $(u_n)$ hội tụ                                                                                                                                | 2,00        |
|   |      |      | Dãy $(u_n)$ đơn điệu tăng và bị chặn trên nên hội tụ.                                                                                                    | 2,00        |

#### HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích



Thời gian làm bài: 180 phút

# ĐÁP ÁN BẢNG B

## Lời giải bài B.2

| Ý | Cách | Bước | Nội dung                                                                                                                                                                       | Điểm<br>B.2 |
|---|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a |      |      | Chứng minh $f$ liên tục tại $0$                                                                                                                                                | 2,00        |
|   |      | 1    | Tính giới hạn của $m{f}$ tại $m{0}$                                                                                                                                            | 1,00        |
|   |      |      | Với mọi $x$ ta luôn có $0 \le  f(x)  = \sin^2 x \le x^2.$ Do đó theo nguyên lý kẹp thì $\lim_{x \to 0} f(x) = 0.$                                                              | 1,00        |
|   |      | 2    | Khẳng định tính liên tục của $f$ tại $0$                                                                                                                                       | 1,00        |
|   |      | _    | Ở bước trên ta đã có $\lim_{x \to 0} f(x) = 0$ . Nhưng $0 \in \mathbb{Q}$ nên $f(0) = \sin^2 0 = 0$ . Vậy $f$ liên tục tại $0$ .                                               | 1,00        |
| b |      |      | Hàm $f$ có khả vi tại $0$ không?                                                                                                                                               | 2,00        |
|   |      | 1    | Chuyển về khảo sát giới hạn của $f(x)/x$                                                                                                                                       | 1,00        |
|   |      |      | Ta khảo sát giới hạn                                                                                                                                                           |             |
|   |      |      | $\lim_{x 	o 0} rac{f(0+x) - f(0)}{x} = \lim_{x 	o 0} rac{f(x)}{x}.$                                                                                                          | 1,00        |
|   |      | 2    | Tính giới hạn của $f(x)/x$                                                                                                                                                     | 1,00        |
|   |      |      | Rỗ ràng với $x  eq 0$ thì $0 \le \left  f(x)/x \right  \le x$ . Vậy                                                                                                            |             |
|   |      |      | $\lim_{x\to 0}\frac{f(x)}{x}=0.$                                                                                                                                               | 1,00        |
|   |      |      | Từ đó hàm $m{f}$ khả vi tại $m{0}$ .                                                                                                                                           |             |
| С |      |      | Tìm tất cả các điểm mà ở đó hàm $f$ khả vi                                                                                                                                     | 2,00        |
|   |      | 1    | Khẳng định $f$ không khả vi tại $x  eq k\pi$ với $k \in \mathbb{Z}$                                                                                                            | 1,00        |
|   |      |      | Nhận xét: nếu $x  eq k\pi$ với $k \in \mathbb{Z}$ thì $\sin x  eq 0$ . Có 2 trường hợp xảy ra:                                                                                 |             |
|   |      |      | <b>Nếu</b> $x \in \mathbb{Q}$ . Trong trường hợp này $f(x) = \sin^2 x$ . Lấy 1 dãy các điểm $x_n \notin \mathbb{Q}$ sao cho $x_n \to x$ . Từ tính liên tục của hàm sin ta thấy |             |
|   |      |      | $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} (-\sin^2 x_n) = -\sin^2 x \neq \sin^2 x = f(x).$                                                                                 | 1,00        |
|   |      |      | Nếu $x \notin \mathbb{Q}$ . Trong trường hợp này $f(x) = -\sin^2 x$ . Lấy 1 dãy các điểm $x_n \in \mathbb{Q}$ sao cho $x_n \to x$ . Từ tính liên tục của hàm sin ta thấy       | 1,00        |
|   |      |      | $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} \sin^2 x_n = \sin^2 x \neq -\sin^2 x = f(x).$                                                                                    |             |
|   |      | 2    | Khẳng định $f$ khả vi tại $k\pi$ với $k\in\mathbb{Z}$                                                                                                                          | 1,00        |
|   |      |      | Cuối cùng chú ý rằng $f(k\pi)=0$ với mọi $k\in\mathbb{Z}$ . Do                                                                                                                 |             |
|   |      |      | $\Big \frac{f(k\pi+x)-f(k\pi)}{x}\Big =\Big \frac{f(x)}{x}\Big ,$                                                                                                              | 1,00        |
|   |      |      | lý luận như ý (b) ta thấy tại các điểm $k\pi$ với $k\in\mathbb{Z}$ thì $f$ khả vi với $f'(k\pi)=0.$                                                                            |             |

#### HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích



Thời gian làm bài: 180 phút

# ĐÁP ÁN BẢNG B

## Lời giải bài B.3

| Ý | Cách | Bước | Nội dung                                                                                                                                                                | Điểm<br>B.3 |
|---|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a |      |      | Chứng minh rằng tồn tại dãy số $(x_n)_{n=1}^\infty$ dần ra $+\infty$ sao cho $f'(x_n)	o 0$                                                                              | 2,00        |
|   |      | 1    | Sử dụng công thức giá trị trung bình                                                                                                                                    | 1,00        |
|   |      |      | Sử dụng công thức giá trị trung bình trên các đoạn $[n,n+1]$ ta thu được                                                                                                |             |
|   |      |      | $f'(x_n) = f(n+1) - f(n)$                                                                                                                                               |             |
|   |      |      | với $x_n \in (n,n+1)$ nào đó.                                                                                                                                           |             |
|   |      | 2    | Chỉ ra sự tồn tại một dãy $(x_n)_n$ cần tìm                                                                                                                             | 1,00        |
|   |      |      | Hiển nhiên dãy $(x_n)_n$ xác định như ở bước trên tiến ra $+\infty$ . Hơn nữa do $\lim_{x \to +\infty} f(x) = 0$ nên                                                    | 1,00        |
|   |      |      | $\lim_{n	o +\infty}f'(x_n)=0.$ Chứng minh rằng nếu $f''$ bị chặn trên $\mathbb R$ thì $\lim_{x	o +\infty}f'(x)=0$                                                       | 4.00        |
| b |      |      | Chứng minh rằng nếu $f''$ bị chặn trên $\mathbb R$ thị $\lim_{x 	o +\infty} f'(x) = 0$                                                                                  | 4,00        |
|   |      | 1    | Đánh giá $f^\prime$ thông qua khai triển Taylor                                                                                                                         | 2,00        |
|   |      |      | Từ công thức Khai triển Taylor ta có                                                                                                                                    |             |
|   |      |      | $f(x+h)=f(x)+f'(x)h+\frac{f''(x+\theta h)}{2}h^2$                                                                                                                       |             |
|   |      |      | với $x,h>0$ và $\theta\in(0,1)$ phụ thuộc vào $x$ và $h$ . Do $f''$ bị chặn nên tồn tại $M>0$ sao cho $ f''(x) < M$ với mọi $x>0$ . Khi đó từ công thức khai triển trên | 2,00        |
|   |      |      | $ f'(x)  \leq \frac{ f(x+h)-f(x) }{h} + \frac{Mh}{2}.$                                                                                                                  |             |
|   |      | 2    | Kết luận giới hạn của $f^\prime$                                                                                                                                        | 2,00        |
|   |      |      | Do $\lim_{x \to +\infty} f(x) = 0$ nên với mỗi $arepsilon > 0$ tùy ý tồn tại $x_0 > 0$ sao cho $ f(x)  < rac{arepsilon}{2} \ \ orall x \ge x_0.$                      |             |
|   |      |      | Do đó $ f'(x)  \leq rac{arepsilon}{h} + rac{Mh}{2}  orall x \geq x_0.$                                                                                               | 2,00        |
|   |      |      | Đến đây ta lấy                                                                                                                                                          |             |
|   |      |      | $h=\sqrt{rac{2arepsilon}{M}}$                                                                                                                                          |             |
|   |      |      | để thu được $ f'(x)  \leq \sqrt{2arepsilon M}  orall x \geq x_0.$                                                                                                      |             |
|   |      |      | Do $arepsilon>0$ tùy ý nên $\lim_{x\to +\infty}f'(x)=0.$                                                                                                                |             |

#### ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích





# ĐÁP ÁN BẢNG B

## Lời giải bài B.4



| Ý | Cách | Bước | Nội dung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Điểm<br>B.4 |
|---|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   |      |      | Xác định chiều dài ngắn nhất có thể có của thang $AB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,00        |
|   |      | 1    | Đặt bài toán                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,00        |
|   |      |      | Đặt $BD=x$ mét với $x\geq p/2$ . Khi đó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
|   |      |      | $BM=\sqrt{x^2+h^2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|   |      |      | Vì $\Delta BDM \sim \Delta BCA$ ta suy ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|   |      |      | $MA = rac{DC}{DB} 	imes MB = rac{p/2 + q}{x} \sqrt{x^2 + h^2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,00        |
|   |      |      | Vậy $AB=MA+MB=\sqrt{x^2+h^2}rac{x+p/2+q}{x}=:f(x).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
|   |      | 2    | Khảo sát hàm $f$ trên $[p/2,\infty)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,00        |
|   |      |      | Tính toán để thu được $f'(x)=rac{2x^3-(p+2q)h^2}{2x^2\sqrt{x^2+h^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
|   |      |      | Rỗ ràng $f'(x)=0$ tại duy nhất $x=\left((rac{p}{2}+q)h^2 ight)^{1/3}=:x_0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,00        |
|   |      | 3    | Kết luận độ dài ngắn nhất của thang $m{AB}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,00        |
|   |      |      | Có 2 trường hợp xảy ra: $ \begin{array}{l} \text{Trường hợp 4}(p+2q)h^2 \leq p^3 \text{: Khi đó hàm $f$ đồng biến trên } [p/2,\infty) \text{ và vị trí thang $AB$ cần tìm là khi $B\equiv N$, tức là khi thang tựa trên giá đỡ. Lúc này chiều dài của thang $AB$ là  (p+q)\sqrt{1+\big(\frac{2h}{p}\big)^2}. \\ \text{Trường hợp 4}(p+2q)h^2 > p^3 \text{: Khi đó hàm $f$ nghịch biến trên } [p/2,x_0] \text{ và đồng biến trên } [x_0,\infty) \text{ và vị trí thang $AB$ cần tìm là khi $BN=x_0-p/2$. Lúc này chiều dài của thang $AB$ là  \Big(x_0+\frac{p}{2}+q\Big)\sqrt{1+\big(\frac{h}{x_0}\big)^2}. \end{array} $ | 2,00        |

#### HỘI TOÁN HỌC VIỆT NAM ĐỀ THI OLYMPIC TOÁN SINH VIÊN HỌC SINH NĂM 2022 Môn thi: Giải tích



Thời gian làm bài: 180 phút

# ĐÁP ÁN BẢNG B

## Lời giải bài B.5

| Ý | Cách | Bước | Nội dung                                                                                                                                                                                                                                                                                                                                                                          | Điểm<br>B.5 |
|---|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| a |      | 1    | Chứng minh rằng nếu $f \in \mathcal{F}$ thì $f$ liên tục                                                                                                                                                                                                                                                                                                                          | 2,00        |
|   |      |      | Lấy $x\in[-1,1]$ và $\varepsilon>0$ bất kỳ. Ta chứng minh tồn tại $\delta>0$ (có thể phụ thuộc vào $x$ và $\varepsilon$ ) sao cho $ f(x)-f(y) <\varepsilon$ với mọi $y\in[-1,1]$ thỏa mãn $ x-y <\delta$ . Thật vậy ta lấy $\delta=\frac{\varepsilon}{2022}.$ Khi đó với $y\in[-1,1]$ bất kỳ thỏa mãn $ x-y <\delta$ ta sẽ có $ f(x)-f(y) \leq 2022 x-y <2022\delta=\varepsilon.$ | 2,00        |
| ь |      |      | Chứng minh rằng nếu $f \in \mathcal{F}$ thì $\int_{-1}^1 f(x) dx \geq rac{1}{2022}$                                                                                                                                                                                                                                                                                              | 4,00        |
|   |      | 1    | Chứng minh $f(x) \geq \max(1+2022( x -1),0)$ với mọi $x \in [-1,1].$                                                                                                                                                                                                                                                                                                              | 2,00        |
|   |      |      | Rỗ ràng $\max(1+2022( x -1),0)=0  \forall x\in[-\frac{2021}{2022},\frac{2021}{2022}].$ Với $-1\leq x<-\frac{2021}{2022}$ ta có $f(x)\geq f(-1)- f(x)-f(-1) \geq 1-2022 x+1 =1+2022( x -1).$ Với $\frac{2021}{2022}< x\leq 1$ ta có $f(x)\geq f(1)- f(x)-f(1) \geq 1-2022 x-1 =1+2022( x -1).$                                                                                     | 2,00        |
|   |      | 2    | Tính tích phân $\int_{-1}^1 f(x) dx$                                                                                                                                                                                                                                                                                                                                              | 2,00        |
|   |      |      | Do $f \ge 0$ trên $[-1,1]$ nên $\int_{-1}^{1} f(x)dx \ge \int_{-1}^{-\frac{2021}{2022}} \left(1 - 2022(x+1)\right)dx + \int_{\frac{2021}{2022}}^{1} \left(1 + 2022(x-1)\right)dx$ $= \frac{1}{2022}.$                                                                                                                                                                             | 2,00        |