5.1.4. Метод дихотомии

Постановка залачи

Требуется найти безусловный минимум функции f(x) одной переменной, т.е. такую точку $x^* \in R$, что $f(x^*) = \min_{x \in R} f(x)$.

Стратегия поиска

Метод относится к последовательным стратегиям. Задается начальный интервал неопределенности и требуемая точность. Алгоритм опирается на анализ значений функции в двух точках (см. рис. 5.2). Для их нахождения текущий интервал неопределенности делится пополам и в обе стороны от середины откладывается по $\frac{\varepsilon}{2}$, где ε - малое положительное число. Условия окончания процесса поиска стандартные: поиск заканчивается, когда длина текущего интервала неопределенности оказывается меньше установленной величины.

Алгоритм

Шаг 1. Задать начальный интервал неопределенности $L_0 = [a_0, b_0]$, $\varepsilon > 0$ - малое число, l > 0 - точность.

U аг 2. Положить k=0.

Шаг 3. Вычислить
$$y_k = \frac{a_k + b_k - \varepsilon}{2}$$
, $f(y_k)$, $z_k = \frac{a_k + b_k + \varepsilon}{2}$, $f(z_k)$.

Шаг 4. Сравнить $f(y_k)$ с $f(z_k)$:

а) если $f(y_k) \le f(z_k)$, положить $a_{k+1} = a_k$, $b_{k+1} = z_k$ (рис. 5.6, a) и перейти к шагу 5;

б) если
$$f(y_k) > f(z_k)$$
, положить $a_{k+1} = y_k$, $b_{k+1} = b_k$ (рис. 5.6, 6).

Шаг 5. Вычислить $|L_{2(k+1)}| = |b_{k+1} - a_{k+1}|$ и проверить условие окончания:

а) если $\left|L_{2(k+1)}\right| \leq l$, процесс поиска завершается и $x^* \in L_{2(k+1)} = \left[a_{k+1}, b_{k+1}\right]$. В качестве приближенного решения можно взять середину последнего интервала: $x^* \cong \frac{a_{k+1} + b_{k+1}}{2}$;

б) если $|L_{2(k+1)}| > l$, положить k = k+1 и перейти к шагу 3.

Сходимость

Для метода дихотомии характеристика относительного уменьшения начального интервала неопределенности находится по формуле $R(N) = \frac{1}{2^{\frac{N}{2}}}$, где N - количество вычислений функции.

Замечання 5.5.

- 1. Текущие интервалы неопределенности L_0, L_2, L_4, \ldots имеют четные номера, указывающие на количество сделанных вычислений функции, как и в методе деления интервала пополам.
- 2. Эффективность методов дихотомии и деления интервала пополам при малых є можно считать одинаковой.

Пример 5.4. Найти минимум функции $f(x) = 2x^2 - 12x$ методом дихотомии.

- \square 1. Зададим начальный интервал неопределенности: $L_0 = [0,10]$ (см. п. 1 примера 5.2). Положим $\varepsilon = 0,2$, l=1.
 - 2. Положим k=0.
 - 3⁰. Вычислим

$$y_0 = \frac{a_0 + b_0 - \varepsilon}{2} = \frac{0 + 10 - 0.2}{2} = 4.9$$
; $z_0 = \frac{a_0 + b_0 + \varepsilon}{2} = \frac{0 + 10 + 0.2}{2} = 5.1$; $f(y_0) = -10.78$; $f(z_0) = -9.18$.

- 4^{0} . Tak kak $f(y_{0}) < f(z_{0})$, to $a_{1} = a_{0} = 0$, $b_{1} = z_{0} = 5,1$ (puc. 5.6, a).
- 5^0 . Получим $L_2 = [0;5,1]$, $|L_2| = 5,1 > l = 1$. Положим k = 1 и перейдем к шагу 3.
 - 3¹. Вычислим

$$y_1 = \frac{a_1 + b_1 - \varepsilon}{2} = \frac{0 + 5, 1 - 0, 2}{2} = 2,45;$$
 $z_1 = \frac{a_1 + b_1 + \varepsilon}{2} = \frac{0 + 5, 1 + 0, 2}{2} = 2,65;$ $f(y_1) = -17,395;$ $f(z_1) = -17,755.$

- 4^{1} . Tak kak $f(y_1) > f(z_1)$, to $a_2 = y_1 = 2,45$; $b_2 = b_1 = 5,1$ (puc. 5.6, 6).
- 5^{l} . Получим $L_4 = \begin{bmatrix} 2,45;5,1 \end{bmatrix}$, $\left| L_4 \right| = 5,1-2,45 = 2,65 > l = 1$. Положим k=2 и перейдем к шагу 3.
 - 3². Вычислим

$$y_2 = \frac{a_2 + b_2 - \varepsilon}{2} = \frac{2,45 + 5,1 - 0,2}{2} = 3,675;$$
 $z_2 = \frac{a_2 + b_2 + \varepsilon}{2} = \frac{2,45 + 5,1 + 0,2}{2} = 3,875;$ $f(y_2) = -17,089;$ $f(z_2) = -16,469.$

- 4^2 . Так как $f(y_2) < f(z_2)$, то $a_3 = a_2 = 2.45$; $b_3 = z_2 = 3.875$ (рис. 5.6, a).
- 5^2 . Получим $L_6 = [2,45;3,875]$, $|L_6| = 3,875 2,45 = 1,425 > l = 1$. Положим k = 3 и перейдем к шагу 3.
 - 3³. Вычислим

$$y_3 = \frac{a_3 + b_3 - \varepsilon}{2} = \frac{2,45 + 3,875 - 0,2}{2} = 3,06$$
; $z_3 = \frac{a_3 + b_3 + \varepsilon}{2} = \frac{2,45 + 3,875 + 0,2}{2} = 3,26$; $f(y_3) = -17,99$; $f(z_3) = -17,86$.

- 4^3 . Так как $f(y_3) < f(z_3)$, то $a_4 = a_3 = 2,45$; $b_4 = z_3 = 3,26$ (рис. 5.6, a).
- 5^3 . Получим $L_8 = [2,45;3,26]$, $|L_8| = 3,26 2,45 = 0,81 < l = 1$;

$$x^* \in [2,45;3,26], N = 8, x^* \cong \frac{2,45+3,26}{2} = 2,855.$$

Рис. 5.7

Первые итерации поиска изображены на рис. 5.7. ■