Engenharia de Software

Modelos de Dinâmica – Parte 2

Luís Morgado

Instituto Superior de Engenharia de Lisboa

Departamento de Engenharia de Electrónica e Telecomunicações e de Computadores

Transições Internas

- Eventos podem produzir execução de acções sem causar transição de estado
 - Transição interna
 - Análogo a entry e exit mas associadas a eventos específicos
 - Caso não existam acções entry e exit,
 comportamento idêntico a auto-transições (estado destino = estado origem)

Partilha de comportamento

- Subestados apenas necessitam de especificar as diferenças de comportamento em relação aos respectivos superestados
- Reutilização de comportamento
 - Permite abstrair o que é comum
 - Automaticamente processado nos níveis superiores
 - Subestados partilham comportamento com o superestado

Abstracção

- Controlo de complexidade (redução selectiva de complexidade)
 - Zoom IN/OUT
- Sem abstracção mesmo sistemas moderadamente complexos tornam-se difíceis de modelar e implementar

 Estruturação do modelo a diferentes níveis de abstracção

Semântica

- Se um sistema está num subestado E1.1 também está (implicitamente) no respectivo superestado E1
 - Estado composto
- Se o sistema está no subestado E1.1, o processamento dos eventos será feita nesse contexto.
 - Se n\u00e3o for definido um evento para E1.1 ?
 - Será processado no contexto do estado mais geral E1

Exemplo

Organização de sub-máquinas de estado

Pseudo-estados

- Entrada (entry): Representa entrada num estado composto
- Saída (exit): Representa saída de um estado composto

Exemplo

Planificação

- Máquinas de Estados Hierárquicas (MEH) não são apenas uma forma de representação visual
- São um método de reutilização comportamental
 - Factorização comportamental
 - Ao evitar repetições permite o crescimento da complexidade do sistema a descrever sem que isso provoque um aumento exponencial da complexidade do modelo

Regiões Ortogonais

- Decomposição hierárquica
 - Decomposição disjuntiva (OR)
 - Exemplo: O sistema está no estado E2.1 ou no estado E2.2
 - Decomposição conjuntiva (AND)
 - Duas ou mais regiões ortogonais (independentes)
 - Um sistema está em todos os estados ortogonais em simultâneo
 - Permite lidar com o problema do aumento combinatório de estados em sistemas compostos por partes independentes que operam em concorrência

Regiões Ortogonais (Sub-estados concorrentes)

Regiões Ortogonais

- As regiões (sub-máquinas) podem não ser totalmente ortogonais
 - Interacção (coordenação de comportamento através da troca de eventos)
 - Sincronização

• UML

- Não requer:
 - Execução independente (thread) para cada região ortogonal (apesar de poder assim ser implementado)
- Requer:
 - Não assumir uma ordem específica de processamento de eventos entre regiões ortogonais

Sequência de Transição de Estado

- MEH com regiões ortogonais
 - Sistema pode estar em diferentes estados
 - Todos os estados da hierarquia
 - Estados das regiões ortogonais
 - Árvore de estados
 - Estado global do sistema
 - Configuração de estado

Executar

- Acções de saída da configuração de estado origem (exit)
- Acções associadas à transição
- Acções de entrada da configuração de estado destino (entry)

Acções de Entrada e de Saída

Sequência de activação

- A activação de acções de entrada (entry) deve acontecer do estado mais exterior para o mais interior
- A activação de acções de saída (exit) deve acontecer na ordem inversa, do estado mais interior para o mais exterior

Modelo de Execução

- Na prática as acções não são instantâneas
- Duas situações de operação de uma ME
 - Inactiva (IDLE)
 - Activa (BUSY)
- O que acontece se ocorrer um evento enquanto está a decorrer o processamento de outro evento?
- Gestão de eventos
 - Preemptiva
 - Potenciais problemas de concorrência
 - Não preemptiva
 - "Run to completion"

Processamento de Eventos

Tipos adicionais (UML)

- Sinal
 - Representa a recepção de um sinal assíncrono
 - <nome-sinal> ((lista-parâmetros>)
- Evento temporal
 - Representa o expirar de um limite temporal
 - AFTER <duração>
- Evento condicional
 - Representa a satisfação de uma condição booleana específica
 - WHEN <condição>
- Evento de evocação
 - Representa a evocação síncrona de uma operação
 - <nome-operação> ((lista-parâmetros>)

Caso Prático

A empresa XYZ, proprietária de uma rede de lojas alimentares, pretende implementar um sistema que permita gerir a circulação de produtos nas suas várias lojas [...]

Os clientes podem fazer encomendas. Quando uma encomenda de um cliente é recebida fica pendente, até que um supervisor dê autorização para a sua realização. Deve ser mantido o registo do supervisor que autorizou cada encomenda. Após a autorização de um supervisor é preparada a encomenda. No início da preparação é sempre criada uma nota de encomenda com o código da encomenda.

Após a encomenda estar completa esta fica preparada para ser despachada para o cliente. O despacho pode no entanto não acontecer de imediato, pelo que, após 3 dias de espera por despacho, a prioridade da encomenda deve ser aumentada. Após o despacho o cliente deve ser notificado.

Uma encomenda pode ser cancelada enquanto está em preparação. Após o despacho ou o cancelamento, o registo da encomenda mantém-se durante um prazo predefinido. Após esse prazo a encomenda é arquivada e o seu registo eliminado do armazém.

Caso Prático

Bibliografia

[Booch et al., 1998]

G. Booch, J. Rumbaugh, I. Jacobson, *The Unified Modeling Language User Guide*, Addison Wesley, 1998.

[Eriksson et al., 2004]

H. Eriksson, M. Penker, B. Lyons, D. Fado, UML 2 Toolkit, Wiley, 2004.

[OMG, 2020]

Unified Modeling Language (Specification), OMG, 2020.