## Appendix: Evaluating Wine Quality

Nick Wawee

12/4/2020

#### Introduction

This document will explore two datasets that comprises physichemical properties and quality ratings of red and white wines.

What do the distirubtions look like of both red and white wines?

# **Properties of Red and White Wine**



#### What are the letter values of red and white wine?

```
##
## Table: fixed.acidity
##
                   | White| Red|
## |:----:|----:|
## | Minimum | 3 800 | 7.10 | ## | 10utor "
## |Outer Upper Fence | 9.300| 13.40|
## |Inner Upper Fence | 7.800| 10.25|
## |Inner Lower Fence | 5.800 | 6.05 |
## |Outer Lower Fence | 4.300 | 2.90 |
## Table: volatile.acidity
##
                  | White| Red|
## |:----:|----:|
## |Median
                   | 0.278| 0.528|
## |Lower Fourth | 0.210| 0.390| ## |Minimum | 0.080| 0.120|
## |Outer Upper Fence | 0.540| 1.140|
## |Inner Upper Fence | 0.375| 0.765|
## |Inner Lower Fence | 0.155| 0.265|
## |Outer Lower Fence | -0.010| -0.110|
##
##
## Table: citric.acid
## |
                   | White| Red|
## |:----:|----:|
## | Maximum | 1.660 | 1.000 | ## | Upper Fourth | 0.390 | 0.420 | | 0.320 | 0.260 |
## |Median
                   | 0.320| 0.260|
## |Mean
                   | 0.334| 0.271|
## |Lower Fourth | 0.270 | 0.090 | ## |Minimum | 0.000 | 0.000 |
## |Outer Upper Fence | 0.630 | 1.080 |
## |Inner Upper Fence | 0.450| 0.585|
## |Inner Lower Fence | 0.210 | -0.075 |
## |Outer Lower Fence | 0.030| -0.570|
##
##
## Table: residual.sugar
```

```
| White| Red|
## |:----:|----:|
## |Minimum | 0.600| 0.900|
## |Outer Upper Fence | 26.300| 4.000|
## |Inner Upper Fence | 14.000| 2.950|
## |Inner Lower Fence | -2.400 | 1.550 |
## |Outer Lower Fence | -14.700 | 0.500 |
##
## Table: chlorides
##
                 | White| Red|
## |:----:|----:|
## |Outer Upper Fence | 0.078 | 0.130 |
## |Inner Upper Fence | 0.057| 0.100|
## |Inner Lower Fence | 0.029| 0.060|
## |Outer Lower Fence | 0.008| 0.030|
##
## Table: free.sulfur.dioxide
                 | White| Red|
## |:----:|
## | Maximum | 289.000 | 72.000 | ## | Upper Fourth | 46.000 | 21.000 | ## | Median | 34.000 | 14.000 |
## |Mean
                 | 35.308| 15.875|
## |Lower Fourth | 23.000| 7.000|
## |Minimum | 2.000| 1.000|
## |Outer Upper Fence | 92.000| 49.000|
## |Inner Upper Fence | 57.500| 28.000|
## |Inner Lower Fence | 11.500| 0.000|
## |Outer Lower Fence | -23.000| -21.000|
## Table: total.sulfur.dioxide
                 | White| Red|
## |:----:|----:|
## |Mean
                  | 138.361| 46.468|
```

```
## |Lower Fourth | 108.000| 22.000|
## |Minimum | 9.000| 6.000|
## |Outer Upper Fence | 285.000 | 142.000 |
## |Inner Upper Fence | 196.500| 82.000|
## |Inner Lower Fence | 78.500|
## |Outer Lower Fence | -10.000| -58.000|
##
##
## Table: density
##
## |
                   | White| Red|
## |:----:|----:|
## |Maximum | 1.039| 1.004|
## |Upper Fourth | 0.996| 0.998|
## |Median
                   | 0.994| 0.997|
                    | 0.994| 0.997|
## |Mean
## |Lower Fourth | 0.992| 0.996|
## |Minimum
                   | 0.987| 0.990|
## |Outer Upper Fence | 1.005| 1.002|
## |Inner Upper Fence | 0.998 | 0.999 |
## |Inner Lower Fence | 0.990 | 0.994 |
## |Outer Lower Fence | 0.983 | 0.991 |
##
##
## Table: pH
##
## |
                   | White| Red|
## |:----:|----:|
## |Maximum | 3.820| 4.010|
## |Upper Fourth | 3.280| 3.400|
## |Median
                    | 3.180| 3.310|
                   | 3.188| 3.311|
## |Mean
                  | 3.090| 3.210|
## |Lower Fourth
## |Minimum
                   | 2.720| 2.740|
## |Outer Upper Fence | 3.660| 3.780|
## |Inner Upper Fence | 3.375| 3.495|
## |Inner Lower Fence | 2.995 | 3.115 |
## |Outer Lower Fence | 2.710 | 2.830 |
##
##
## Table: sulphates
##
                    | White|
## |:----:|----:|
## |Maximum
                    1.08| 2.000|
                   | 0.55| 0.730|
## |Upper Fourth
## |Median
                    0.47 | 0.620 |
## |Mean
                   | 0.49| 0.658|
                   | 0.41| 0.550|
## |Lower Fourth
                   | 0.22| 0.330|
## |Minimum
## |Outer Upper Fence | 0.83| 1.090|
## |Inner Upper Fence | 0.62| 0.820|
## |Inner Lower Fence | 0.34| 0.460|
## |Outer Lower Fence | 0.13 | 0.190 |
```

```
##
##
## Table: alcohol
##
                    | White|
## |:----:|----:|
## | Maximum
                   | 14.200| 14.900|
## |Upper Fourth | 11.400| 11.100|
## |Median
                   | 10.400| 10.200|
## |Mean
                   | 10.514| 10.423|
## |Lower Fourth
                  9.500
                              9.500|
## |Minimum
                   8.000
## |Outer Upper Fence | 15.200| 14.300|
## |Inner Upper Fence | 12.350 | 11.900 |
## |Inner Lower Fence | 8.550|
## |Outer Lower Fence | 5.700|
##
##
## Table: quality
## |
                    | White|
## |:----:|----:|
                   9.000| 8.000|
## |Maximum
                  | 6.000| 6.000|
## |Upper Fourth
## |Median
                   | 6.000| 6.000|
## |Mean
                   | 5.878| 5.636|
## |Lower Fourth
                   | 5.000| 5.000|
## |Minimum
                    | 3.000| 3.000|
## |Outer Upper Fence | 8.000| 8.000|
## |Inner Upper Fence | 6.500| 6.500|
## |Inner Lower Fence | 4.500| 4.500|
## |Outer Lower Fence | 3.000| 3.000|
```

#### What are the characteristics of quality outliers?

#### White Wine

There are 1043 mild outliers and 5 extreme outliers. Below will plot the characteristics of the mild outliers.





Both

# **Outlier Properties of White Wine**



Red Wine Low Quality Count Count Count Count 10 20 10 20 10 5.0 7.5 10.0 12.5 **fixed.acidity** 0.0 0.4 0.8 citric.acid 0.3 0.6 0.9 1.2 10 residual.suga volatile.acidity 12.5 10.0 20 Count Count Count Count 20 15 30 20 10 7.5 10 5.0 5 2.5 0.0 0.995099750000 density 0 10 20 30 40 0.2 0.4 0.6 40 chlorides free.sulfur.dioxi total.sulfur.diox 25 20 15 10 5 15 Count Count 30 Count 10 20 5 alcohol 3.5 **pH** 0.5 1.0 1.5 2.0 3.0 4.0 sulphates



Both

# **Outlier Properties of Red Wine**



### What does the symmetry of each variable look like?

#### **Before Transformation**



#### Transforming by Optimizing Hinkley Value

Table 1: Red Wine Results

|                      | $\min$ _Hinkley | Power |
|----------------------|-----------------|-------|
| fixed.acidity        | 0.0002313       | -1.65 |
| volatile.acidity     | -0.0000051      | 0.74  |
| citric.acid          | -0.0009887      | 0.87  |
| residual.sugar       | -0.0005884      | -1.20 |
| chlorides            | 0.0004822       | -0.68 |
| free.sulfur.dioxide  | 0.0008651       | 0.41  |
| total.sulfur.dioxide | 0.0002937       | 0.15  |
| density              | -0.0006838      | 2.00  |
| pН                   | 0.0000015       | 0.69  |
| sulphates            | -0.0000682      | -1.43 |
| alcohol              | -0.0469389      | -2.00 |
| quality              | -0.3257718      | 2.00  |

Table 2: White Wine Results

|                      | min_Hinkley | Power |
|----------------------|-------------|-------|
| fixed.acidity        | -0.0001077  | -0.08 |
| volatile.acidity     | 0.0004603   | -0.17 |
| citric.acid          | 0.0011695   | 0.41  |
| residual.sugar       | 0.0001969   | 0.41  |
| chlorides            | -0.0007633  | 0.04  |
| free.sulfur.dioxide  | 0.0002793   | 0.68  |
| total.sulfur.dioxide | 0.0000249   | 0.36  |
| density              | -0.0625470  | -2.00 |
| pН                   | 0.0000900   | -1.36 |
| sulphates            | -0.0000883  | -0.64 |
| alcohol              | 0.0001319   | -0.65 |
| quality              | -0.0605442  | 2.00  |

Table 3: Combined Results

|                      | Mean_Power |
|----------------------|------------|
| fixed.acidity        | -0.865     |
| volatile.acidity     | 0.285      |
| citric.acid          | 0.640      |
| residual.sugar       | -0.395     |
| chlorides            | -0.320     |
| free.sulfur.dioxide  | 0.545      |
| total.sulfur.dioxide | 0.255      |
| density              | 0.000      |
| pН                   | -0.335     |
| sulphates            | -1.035     |
| alcohol              | -1.325     |
| quality              | 2.000      |

#### Plotting Transformed Variables



#### Which variables are statistically different between the untransformed data?

Below will employ a two sample t test to test if the populations are equal for each variable. We assume unequal variances despite the power transformation as the IQR spread is not equal in all cases. We will also run a Mood's Median test to test for differences in median rather than mean.

Table 4: t-test Results

|                                | t       | p     |
|--------------------------------|---------|-------|
| volatile.acidity               | -53.059 | 0.000 |
| density                        | -42.709 | 0.000 |
| sulphates                      | -37.056 | 0.000 |
| chlorides                      | -34.240 | 0.000 |
| fixed.acidity                  | -32.423 | 0.000 |
| рН                             | -27.775 | 0.000 |
| alcohol                        | 2.859   | 0.004 |
| quality                        | 10.149  | 0.000 |
| citric.acid                    | 12.229  | 0.000 |
| residual.sugar                 | 47.802  | 0.000 |
| free.sulfur.dioxide            | 54.428  | 0.000 |
| ${\it total. sulfur. dioxide}$ | 89.872  | 0.000 |

Table 5: Mood's Median Results

|                      | Z       | p     |
|----------------------|---------|-------|
| chlorides            | -42.494 | 0.000 |
| total.sulfur.dioxide | -41.700 | 0.000 |
| sulphates            | -35.480 | 0.000 |
| free.sulfur.dioxide  | -33.739 | 0.000 |
| fixed.acidity        | -27.227 | 0.000 |
| pН                   | -23.440 | 0.000 |
| quality              | -7.051  | 0.000 |
| citric.acid          | -6.897  | 0.000 |
| alcohol              | 3.462   | 0.001 |
| residual.sugar       | 32.532  | 0.000 |
| density              | 33.500  | 0.000 |
| volatile.acidity     | 39.328  | 0.000 |

### Which factors impact the quality score the most?

**Examining Correlations with Quality** 



#### MLR

#### Modeling

##
## Call:
## lm(formula = quality ~ 0 + fixed.acidity + volatile.acidity +

```
##
       total.sulfur.dioxide + density + pH + sulphates + alcohol,
##
       data = whitedf)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -3.9144 -0.4958 -0.0333 0.4675 3.1762
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## fixed.acidity
                        -0.0505906  0.0150754  -3.356  0.000797 ***
                        -1.9585102  0.1138903  -17.196  < 2e-16 ***
## volatile.acidity
## citric.acid
                        -0.0293492
                                    0.0961648 -0.305 0.760229
                        0.0249884
## residual.sugar
                                    0.0025917
                                                9.642 < 2e-16 ***
## chlorides
                        -0.9425824
                                    0.5430204
                                              -1.736 0.082660 .
## free.sulfur.dioxide
                         0.0047908
                                    0.0008390
                                                5.710 1.20e-08 ***
## total.sulfur.dioxide -0.0008776
                                               -2.352 0.018699 *
                                    0.0003731
## density
                         2.0420461
                                    0.3532997
                                                5.780 7.94e-09 ***
## pH
                                    0.0835957
                                                2.014 0.044022 *
                         0.1683951
## sulphates
                         0.4164536 0.0973279
                                                4.279 1.91e-05 ***
                         0.3656334 0.0111203 32.880 < 2e-16 ***
## alcohol
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.7562 on 4887 degrees of freedom
## Multiple R-squared: 0.9839, Adjusted R-squared: 0.9838
## F-statistic: 2.707e+04 on 11 and 4887 DF, p-value: < 2.2e-16
```

citric.acid + residual.sugar + chlorides + free.sulfur.dioxide +

Table 6: White Wine Regression Coefficients

|                      | Estimate | Std. Error | t value | $\Pr(> t )$ |
|----------------------|----------|------------|---------|-------------|
| volatile.acidity     | -1.959   | 0.114      | -17.196 | 0.000       |
| chlorides            | -0.943   | 0.543      | -1.736  | 0.083       |
| fixed.acidity        | -0.051   | 0.015      | -3.356  | 0.001       |
| citric.acid          | -0.029   | 0.096      | -0.305  | 0.760       |
| total.sulfur.dioxide | -0.001   | 0.000      | -2.352  | 0.019       |
| free.sulfur.dioxide  | 0.005    | 0.001      | 5.710   | 0.000       |
| residual.sugar       | 0.025    | 0.003      | 9.642   | 0.000       |
| рН                   | 0.168    | 0.084      | 2.014   | 0.044       |
| alcohol              | 0.366    | 0.011      | 32.880  | 0.000       |
| sulphates            | 0.416    | 0.097      | 4.279   | 0.000       |
| density              | 2.042    | 0.353      | 5.780   | 0.000       |

```
##
## Call:
## lm(formula = quality ~ 0 + fixed.acidity + volatile.acidity +
##
       citric.acid + residual.sugar + chlorides + free.sulfur.dioxide +
       total.sulfur.dioxide + density + pH + sulphates + alcohol,
##
       data = reddf)
## Residuals:
##
       Min
                  1Q
                      Median
                                    30
                                            Max
## -2.66872 -0.36621 -0.04653 0.45604 2.04187
```

```
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
                       0.0041937 0.0164513 0.255 0.79882
## fixed.acidity
                       -1.0997431 0.1200969 -9.157 < 2e-16 ***
## volatile.acidity
## citric.acid
                      -0.1841460 0.1471717 -1.251 0.21103
## residual.sugar
                      0.0070712 0.0120512 0.587 0.55745
## chlorides
                       -1.9114188   0.4177542   -4.575   5.12e-06 ***
                                            2.102 0.03574 *
## free.sulfur.dioxide 0.0045478 0.0021639
## total.sulfur.dioxide -0.0033186  0.0007269  -4.565  5.37e-06 ***
## density
                       4.5291462 0.6253297
                                             7.243 6.82e-13 ***
## pH
                       -0.5228983 0.1599968 -3.268 0.00111 **
## sulphates
                       0.8870761 0.1107998 8.006 2.27e-15 ***
## alcohol
                        0.2970228  0.0172513  17.217  < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.648 on 1588 degrees of freedom
## Multiple R-squared: 0.9871, Adjusted R-squared: 0.987
## F-statistic: 1.108e+04 on 11 and 1588 DF, p-value: < 2.2e-16
```

Table 7: Red Wine Regression Coefficients

|                      | Estimate | Std. Error | t value | $\Pr(> t )$ |
|----------------------|----------|------------|---------|-------------|
| chlorides            | -1.911   | 0.418      | -4.575  | 0.000       |
| volatile.acidity     | -1.100   | 0.120      | -9.157  | 0.000       |
| pН                   | -0.523   | 0.160      | -3.268  | 0.001       |
| citric.acid          | -0.184   | 0.147      | -1.251  | 0.211       |
| total.sulfur.dioxide | -0.003   | 0.001      | -4.565  | 0.000       |
| fixed.acidity        | 0.004    | 0.016      | 0.255   | 0.799       |
| free.sulfur.dioxide  | 0.005    | 0.002      | 2.102   | 0.036       |
| residual.sugar       | 0.007    | 0.012      | 0.587   | 0.557       |
| alcohol              | 0.297    | 0.017      | 17.217  | 0.000       |
| sulphates            | 0.887    | 0.111      | 8.006   | 0.000       |
| density              | 4.529    | 0.625      | 7.243   | 0.000       |

#### **Plotting Coefficients**

