– Assumptions:

- Random Sample is normally distributed in both populations --> sampling distribution for difference between sample means is also normal
- Standard deviation is the same in both populations --> if this is not true, use Welch's approximate t-test instead*

• two-sample t-test is fairly robust to violations of assumptions if *n* is similar between the two groups.

Unlike in a paired t-test, there are two variables from two entirely different populations. Instead of one variable describing the difference, \overline{d} , you have two: \overline{Y}_1 - \overline{Y}_2

Standard Error of \overline{Y}_1 - \overline{Y}_2 :

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{s_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}$$

Pooled sample variance:

 Weighted average; the average of the variances of the samples weighted by their degrees of freedom

$$s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$$

DEHRENS-FISHER problem

· when variances of two populations are not equal

· we can illustrate the problem with two extreme

· Two sample t-test 1s not robust when

and ni # nz

Situation

larger sample has larger variance: n1>>n2 j 0, >302

population 1

. pooled variance allows the larger sample, with 1ts much larger variance, to contribute more Hin - L and - "

Actual what we Crthcal are looking value at in reality for x =0,05 Situation 2

larger sample has smaller variance 02 > 30,

2 is inflated pooled t critical (ACTUPY) distra we

believe we

have

BEHRENS-Proble

· Two sample t-test Situation 1

larger sample has larger variance:

pooled variance allows the larger sample, with its much larger variance, to contribute more

· when variances of two populations +ISHER are not equal · we can illustrate the problem with two extreme Situations ot robust when 5, 452 and n, # n2 Situation 2 larger sample has & maller variance U1>>U5>301 - population 1 2 is inflated ochio's pooled + critica (ACTUPE) distra we believe we have

Student's t-distribution of two-sample design:

Compares the means of a numerical variable between two populations

$$t = \frac{(\overline{Y}_1 - \overline{Y}_2) - (\mu_1 - \mu_2)}{SE_{\overline{Y}_1 - \overline{Y}_2}}$$

Total degrees of freedom:

$$df = df_1 + df_2 = n_1 + n_2 - 2$$

Two means are estimated, so subtract 2

Example: 2 genotypes of lettuce: susceptible and resistant. Do these genotypes differ in fitness in the absence of aphids.

The proxy for fitness that is measured are number of buds.

Two-sample Design:

Example: 2 genotypes of lettuce: susceptible and resistant. Do these genotypes differ in fitness in the absence of aphids.

	Susceptible	Resistant
Mean number of buds	720	582
SD of number of buds	223.6	277.3
Sample size	15	16

Both of the distributions are normally distributed

Two-sample Design:

Example: 2 genotypes of lettuce: susceptible and resistant. Do these genotypes differ in fitness in the absence of aphids.

	Susceptible	Resistant
Mean number of buds	720	582
SD of number of buds	223.6	277.3
Sample size	15	16

 H_0 : There is no difference between the number of buds in susceptible and resistant plants ($\mu_1 = \mu_2$)

 H_A : There is a difference between the number of buds in susceptible and resistant plants ($\mu_1 \neq \mu_2$)

Two-sample Design:

Example: 2 genotypes of lettuce: susceptible and resistant. Do these genotypes differ in fitness in the absence of aphids.

	Susceptible	Resistant
Mean number of buds	720	582
SD of number of buds	223.6	277.3
Sample size	15	16

 H_0 : There is no difference between the number of buds in susceptible and resistant plants (μ_1 = μ_2)

 H_A : There is a difference between the number of buds in susceptible and resistant plants ($\mu_1 \neq \mu_2$)

t-test:

$$df = 15+16 - 2 = 29$$

$$\alpha = 0.05$$

$$s_p^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2} = \frac{14(223.6)^2 + 15(277.3)^2}{14 + 15} = 63909.9$$

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{s_p^2 (\frac{1}{n_1} + \frac{1}{n_2})} = \sqrt{63909.9 (\frac{1}{15} + \frac{1}{16})} = \sqrt{8255.02} = 90.86$$

Two-sample Design:

<u>Example:</u> 2 genotypes of lettuce: *susceptible* and *resistant*. Do these genotypes differ in fitness in the absence of aphids.

	Susceptible	Resistant
Mean number of buds	720	582
SD of number of buds	223.6	277.3
Sample size	15	16

 $\mathbf{H_0}$: There is no difference between the number of buds in susceptible and resistant plants ($\mu_1 = \mu_2$)

 $\mathbf{H}_{\mathbf{A}}$: There is a difference between the number of buds in susceptible and resistant plants $(\ddot{\mu}_1 \neq \dot{\mu}_2)$

Two sample t-test:

Assumptions have been met

$$t = \frac{(\overline{Y}_1 - \overline{Y}_2) - (\mu_1 - \mu_2)}{SE_{\overline{Y}_1 - \overline{Y}_2}} = \frac{(720 - 582)}{90.86} = 1.52$$

$$\alpha = 0.05$$

<u>Critical value</u>: $t_{0.05(2),29}$ = 2.05 : t < 2.05 so Fail to reject. These data are not sufficient to say there is resistance

Confidence Interval: Two-sample Design:

$$(\overline{Y}_{1} - \overline{Y}_{2}) - t_{\alpha(2),df} SE_{\overline{Y}_{1} - \overline{Y}_{2}} < \mu_{1} - \mu_{2} < (\overline{Y}_{1} - \overline{Y}_{2}) + t_{\alpha(2),df} SE_{\overline{Y}_{1} - \overline{Y}_{2}}$$

$$138 - 2.05(90.86) < \mu_1 - \mu_2 < 138 + 2.05(90.86)$$

 $-48.21 < \mu_1 - \mu_2 < 324.26$

Note: this interval includes 0 which supports our conclusion (FTR)

What is the total degree of freedom and the standard error of difference between mean₁ = 32 and mean₂ = 30, given that n_1 = 10, n_2 = 15; s_1 = 2 and s_2 = 3. (The variable in both population is normally distributed)

A.
$$df = 23$$
; $SE = 1.13$

B.
$$df = 24$$
; $SE = 1.13$

C.
$$df = 23$$
; $SE = 1.08$

D.
$$df = 24$$
; $SE = 1.08$

E.
$$df = 23$$
; $SE = 0.66$