2023-April Session-08-04-2023-shift-1-16-30

EE24BTECH11033 - KOLLURU SURAJ

16)	The number	of ways,	in	which 5	girls	and	7	boys	can	be	seated	at	a round	table	so
	that no two girls sit together, is									(April-2023					23)

- a) $7(720)^2$
- b) 720
- c) $7(360)^2$ d) $126(5!)^2$

1

17) Let
$$f(x) = \frac{\sin x + \cos x - \sqrt{2}}{\sin x - \cos x}$$
, $x \in [0, \pi] - \left\{\frac{\pi}{4}\right\}$. Then $f\left(\frac{7\pi}{12}\right)f''\left(\frac{7\pi}{12}\right)$ is equal to (April-2023)

- a) $\frac{-2}{3}$
- b) $\frac{2}{9}$
- c) $\frac{-1}{2\sqrt{2}}$ d) $\frac{2}{2\sqrt{2}}$

18) If the equation of the plane containing the line
$$x + 2y + 3z - 4 = 0$$
, $2x + y - z + 5 = 0$ and perpendicular to the plane $\mathbf{r} = (\mathbf{i} - \mathbf{j}) + \lambda (\mathbf{i} + \mathbf{j} + \mathbf{k}) + \mu (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$ is $ax + by + cz = 4$, then $(a - b + c)$ is equal to (April-2023)

a) 22

b) 24

c) 20

d) 18

19) Let
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
. If $|adj|adj|adj 2A|| = (16)^n$, then n is equal to (April-2023)

a) 8

b) 9

c) 12

d) 10

20) Let
$$I(x) = \int \frac{(x+1)}{x(1+xe^x)^2} dx$$
, $x > 0$. If $\lim_{x \to \infty} I(x) = 0$, then $I(1)$ is equal to (April-2023)

a) $\frac{e+1}{e+2} - \log_e(e+1)$ b) $\frac{e+2}{e+1} + \log_e(e+1)$

c) $\frac{e+2}{e+1} - \log_e(e+1)$ d) $\frac{e+1}{e+1} + \log_e(e+1)$

21) Let
$$A = [0, 3, 4, 6, 7, 8, 9, 10]$$
 and R be the relation defined on A such that $R = \{(x, y) \in A \times A : x - y \text{ is an odd positive integer or } x - y = 2\}$. The minimum number of elements that must be added to the relation R so that it is a symmetric relation is equal to

(April-2023)

22) Let
$$[t]$$
 denote the greatest integer $\leq t$. If the constant term in the expansion of $\left(3x^2 - \frac{1}{2x^2}\right)^7$ is α , then $[\alpha]$ is equal to (April-2023)

23) Let
$$\lambda_1, \lambda_2$$
 be the values of λ for which the points $\left(\frac{5}{2}, -1, \lambda\right)$ and $(-2, 0, 1)$ are at equal distance from the plane $2x + 3y - 6z + 7 = 0$. If $\lambda_1 > \lambda_2$, then the distance of the point $(\lambda_1 - \lambda_2, \lambda_2, \lambda_1)$ from the line $\frac{x-5}{1} = \frac{y-1}{2} = \frac{z+7}{2}$ (April-2023)

- 24) If the solution curve of the differential equation $(y 2\log_e x) dx + (x\log_e x^2) dy = 0$, x > 1 passes through the points $(e, \frac{4}{3})$ and (e^4, α) , then α is equal to (April-2023)
- 25) Let $\mathbf{a} = 6\mathbf{i} + 9\mathbf{j} + 12\mathbf{k}$, $\mathbf{b} = \alpha \mathbf{i} + 11\mathbf{j} 2\mathbf{k}$ and \mathbf{c} be vectors such that $\mathbf{a} \times \mathbf{c} = -\mathbf{a} \times \mathbf{b}$. If $\mathbf{a} \cdot \mathbf{c} = -12$, $\mathbf{c} \cdot (\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = 5$, then $\mathbf{c} \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k})$ is equal to (April-2023)
- 26) The largest natural number n such that 3^n divides 66! is (April-2023)
- 27) If a_a is the greatest term in the sequence $a_n = \frac{n^3}{n^4 + 147}$, n = 1, 2, 3,, then a is equal to (April-2023)
- 28) Let the mean and variance of 8 numbers x, y, 10, 12, 6, 12, 4, 8 be 9 and 9.25 respectively. If x > y, then 3x 2y is equal to (April-2023)
- 29) Consider a circle $C_1: x^2 + y^2 4x 2y = \alpha 5$. Let its mirror image in the line y = 2x + 1 be another circle $C_2: 5x^2 + 5y^2 10fx 10gy + 36 = 0$.Let r be the radius of C_2 . Then $\alpha + r$ is equal to (April-2023)
- 30) Let [t] denote the greatest integer $\leq t$. The $\frac{2}{\pi} \int_{\pi/6}^{5\pi/6} (8 [cosecx] 5 [cot x]) dx$ is equal to (April-2023)