Übungsblatt 1 zur Algebraischen Zahlentheorie

Aufgabe 1. Erste Schritte im Ring der gaußschen Zahlen

Zerlege folgende Elemente von $\mathbb{Z}[i]$ in irreduzible Faktoren in $\mathbb{Z}[i]$:

a)
$$119 - 49i$$

b)
$$153 + 24i$$

Aufgabe 2. Ein Beispiel für einen nicht-faktoriellen Ring

Wir betrachten den Ring $\mathcal{O} := \mathbb{Z}[\sqrt{-5}] := \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}.$

- a) Was sind die Einheiten von \mathcal{O} ?
- b) Zeige, dass folgende Elemente von $\mathcal O$ alle irreduzibel sind:

3, 7,
$$1+2\sqrt{-5}$$
, $1-2\sqrt{-5}$.

c) Zeige, dass $\mathcal O$ nicht faktoriell ist, indem du $21 \in \mathcal O$ auf zwei verschiedene Arten zerlegst.

Aufgabe 3. Ein Beispiel für einen faktoriellen Ring

Zeige, dass der Ring $\mathcal{O}:=\mathbb{Z}[\frac{1+\sqrt{-7}}{2}]:=\{a+b\frac{1+\sqrt{-7}}{2}\,|\,a,b\in\mathbb{Z}\}\subseteq\mathbb{C}$ euklidisch ist.

Aufgabe 4. Geschenkte Ganzzahligkeit rationaler Lösungen

- a) Zeige, dass eine rationale Zahl genau dann ganzzahlig ist, wenn sie ganz über $\mathbb Z$ ist, also Nullstelle eines normierten Polynoms mit ganzzahligen Koeffizienten ist.
- b) Zeige damit schnell und mühelos: $\sqrt[n]{2}$ ist für $n \geq 3$ nicht rational.
- c) Folgere die Behauptung von b) aus dem Großen Fermatschen Satz. Was ist daran besonders witzig?