

Lecture 1 - Databases and Users

Dr. Edmund Sadgrove

Reading

Chapter 1 from Fundamentals of Database Systems

Summary

- Welcome to COSC210
- House Keeping
- · The Basics
- The Database Approach
- · Database Users
- Advantages of the DB Approach
- · When not to use a DBMS

Welcome to COSC210

- Welcome to Databases!
- In this unit you will be coving:
 - The fundamentals of designing and implementing effective and productive databases using database management system software.
 - The use of Structured Query Language to create, modify and query database.
 - The use of Relational Algebra and Relational Calculus to describe data queries in a language-independent manner.
 - The use of Entity-Relationship modelling for database design.
 - Data Normalisation.

Welcome to COSC210

- Further topics in the unit, that relate the functionality and implementation of the under-lying *Database Management System* (DBMS):
 - · Query Processing and Optimisation
 - Transaction Management
 - · Roll-back and Recovery
 - Security

Welcome to COSC210

- Practical Topics:
 - Applying SQL
 - Developing data-driven applications

- · Creating Data-driven web application
- Using/developing Spatial Databases

Welcome to COSC210

- Theres lots to learn but its all very useful for a Computer Scientist / Software Engineer / Data Scientist to know.
- The topics are only a sub-set of those presented in the text so we won't be crawling cover to cover!

House Keeping

- All content will be presented through the moodle homepage for this unit.
- This doesn't necessarily mean it will actually be hosted on moodle however.
 - Lectures and Prac. material will be hosted on *turing.une.edu.au* (This is because moodle can't run the web-based slideshow application I am using to present the slides and notes.)
 - Some videos will be hosted via youtube (to get access to their bandwidth sorry in advance if you get spammed with adds)

House Keeping

- The textbook for this unit is Fundamentals of Database Systems by Ramez Elmasri and Shamkant Navathe.
- United Campus Bookstore link: http://orders.ucb.net.au/ViewBook.aspx?acc=9781292097619
- Buy it from the bookstore, they have free delivery and the correct edition.
- If you are buying elsewhere, make sure you get the International Edition

House Keeping

- Questions about assignments, practicals and lectures should be communicated via the relevant discussion board
- Remember your discussion board etiquette!
- Make sure you use a descriptive subject line for your post.
- · An Example post:

A Sample Question

by Mitchell Welch - Wednesday, 4 February 2015, 10:42 AM

Hi Mitchell

No characters appear when I enter in my password in the linux terminal.

I am not sure what I am doing wrong. Can you provide guidance?

Kind regards,

John Smith

Edit | Delete

House Keeping

- Questions about your personal issue/progression/studies in COSC210 should be communicated by email
- The subject line of you email should be in for form: Student Number, First Name Last Name Subject
- For example: 222211113333, John Smith Extension on Assignment 2

· Sample email:

Hi Mitchell,

Would it be possible for you to grant me an extension on assignment 2 till next Friday?

Kind regards,

John

House Keeping

- COSC210 has 2 Assignments for you to complete:
 - 1 Theory Assignment This will be diagrams and interpretation questions (worth 20%).
 - 2 Practical Assignments This will cover PSQL DDL and DML (worth 10% each)..
- There are also 10 Quizzess to complete (worth 1% each)
- The Exam is worth 50% of the final mark
- Please review the moodle site and study guide for the due dates and submission methods.

House Keeping

- · Two lectures per week
- · One Practical session
- Please check the timetable page for timings and locations on these.

The Basics

- Database
 - A collection of related data.
- Data
 - Not information
 - known facts that have real world meaning.
- UOD
 - · Miniworld or Universe of Discourse (UOD)
 - UOD determines the meaning of the data.

55 3 A, S, E, U

The Basics

- Databases can be of any size and have any level of complexity:
 - The Australian Taxation Office (ATO).
 - Amazon.com and Ebay.com
 - UNE's student database.
- · Large and Complex databases need to be efficiently managed.
- Databases are constructed for a particular purpose.

The Basics

- Database Management System (DBMS) is responsible for organising and retrieving data items.
- A DBMS is a *collection* of one or more programs.

• Users and Developers use a DBMS to:

- · Define data items.
- Construct the database.
- Manipulate and retrieve data.

- DBMS allow *Application Programs* to access data through **structured requests** called *queries*.
- The DBMS is responsible for protecting the data from:
 - Security threats (Restricted Access, auditing)
 - System failure (Recovery)

* Invalid Data (Constraints)

The Basics

* University database example * Each Entity or **table** will have **records** of the same type. * *Students*, *Courses*, *Sections*, *Grades* and *Pre-requisites* * **Record** structure is defined when the database is created. * Columns will have a specified **data-type**. * Integers. * Floating point. * Character Strings.

The Basics

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Figure 1.2 A database that stores student and course information.

- A DBMS will access data in a structured way to retrieve and manipulate:
- · Examples of Retrieval:
 - 'List all courses and grades for the student with last name smith'
 - 'List the names of all students who have taken Databases in 2009'
- · Examples of updates:
 - 'Change the course name of Databases to Database Management Systems'
 - 'Change the Credit hours on Data Structures to 5'

The Traditonal Approach

- Traditional file processing architectures.
- For example, the dreaded MS excel **spreadsheet** file.
 - · Data sharing is limited.
 - Users or departments will have their own data (file).

* When scaled up, this system is inherently inefficient.

The Database Approach

* In the *Database***Approach. * Single storage point. * Defined once and used repeatedly. * External access. * Key characteristics of this approach include: * Self-descriptive nature. * Insulation between programs and the underlaying implementation - abstraction * Support

for different *Views* * Sharing of data with multiuser *transaction management*.

The Database Approach

- A DBMS not only stores data, but also a complete description of:
 - The structure of all tables/files.
 - Any constraints on the data held within.
 - · Users/Applications access privileges.
- This Meta-Data is stored in the DBMS catalogue
- In the file processing approach, data structures are defined within the applications.

The Database Approach

- A DBMS insulates applications/programs from the underlaying implementation.
- · This is referred to as data abstraction.
- Changes made to the underlaying platform, do not affect the client applications.
- The DBMS provides Client applications with a **conceptual representation**.

- Keeping the implementation details hidden.
- · Allowing further data abstraction.

The Database Approach

- Conceptual representations mean the definition of different Views.
- · Client applications may view data in different ways
- · DBMS allows for the definition of different views:
 - Views may be a **subset** of data.
 - Historical.
 - User Privileges.
 - Views may contain Virtual or Aggregate Data.
 - Averages.
 - Total.
 - Minimum.

* Maximum.

The Database Approach

- A DBMS allows multiple client applications to access a single database.
 - · Multiple applications, departments and even organisations.
- Multi-user support requires concurrency controls.
- A DBMS achieves this by using a transaction management process.
- * Individual transactions should be: * Isolated (parallel processing)

* Atomic (stops partial operations)

Database Users

- Database Designers obtain data requirements:
 - o Data to be stored.
 - · Appropriate structures for storage.
 - They also design.
 - Views, Constraints and Database functions.
- Database Administrators are responsible for maintaining a database.
 - · Authorising access to users and applications.
 - Acquiring hardware and resources.
 - Monitoring usage and performance.

Database Users

- End-users are responsible for using the database querying, updating and generating reports.
 - · Casual end users (variable tasks).
 - Naive users such as bank tellers.
 - Sophisticated users such as scientists, engineers and analysts.
 - Stand-alone users such as the ATOs E-Tax software, MS Access and OpenOffice Base.

lock

unlock

Locked

Unlocked

Figure 1.1 A simplified database system environment.

try to lock

finish locking

Wait for another

thread to unlock

Database Users

- · Behind the scenes:
 - DBMS System Designers and Engineers construct the actual DBMS software and add-on modules.
 - Tool Developer build design tools for database development.
 - Data Centre and Maintenance Personnel make sure the DB and network hardware are capable of providing the required functionality.

Advantages of the DB Approach

- There are a series of advantages of the DB approach over file-processing architecture.
- * Controlling data Redundancy through normalisation (more on this later).
- * Improves efficiency.
- * Prevents inconsistency.
- * **Restricting Access** * *fine-grain access protocols* for data: * Retrieval, manipulation, creation and removal.

Advantages of the DB Approach

- · Persistent Storage of Objects
 - Object-Oriented DBMSs can allow for *persistent* storage of class objects.
 - Objects can also be shared between applications.
- Efficient Processing
 - · DBMSs typically have:
 - Highly efficient data structures and powerful search algorithms for query processing.
 - · DBMSs can utilise:
 - Indexing (for searching), query optimisations and Caching (regular return values).

Advantages of the DB Approach

- Backup and Recovery
 - Most DBMSs provide automated back-up and recovery procedures.
 - Even if the failure occurs during a complex transaction.
- * Multiple User Interfaces and Views * Mulitple views for different tasks. * This can include specialised GUIs: * Advanced data analysis and/or casual data retreival.

Advantages of the DB Approach

- Representation of Complex Relationships
 - A relational DBMS can provide the facilities to represent complex relationships between relations (tables) within the database.
- Enforcement of Integrity Constraints
 - An Integrity Constraint is a condition that must always be true.
 - A data-type for a particular attribute (column) of data.

- Uniqueness constraint per table record key (Entity Integrity Constraint).
- The relationship between tables keys (Referential Integrity Constraint).
- Contraints not defined by the DBMS may be referred to as **Business Rules**.

Advantages of the DB Approach

- Inferencing and Triggering Actions
 - DBMSs can allow users to define *deduction rules* and infer new information.
 - A simple example is the calculation of an individuals age.
 - This can be calculated from their DOB.
 - DBMSs allow for operations to be *triggered* by changes to data items.
 - The operations triggered can be combinations of standard functions or stored procedures
 - These triggers and stored procedures become part of the database definition.
 - For Example: PL/pgSQL.

Advantages of the DB Approach

- * Operations and development benefits:
 - · Enforcement of standards.
 - Reduced development times.
 - · Flexibility.
 - · Availability of information.
 - Scale-up, Scale-down and replication/distribution.

When not to use a DBMS

- Initial investment and training costs.
- Admin overhead.
- Database doesn't change and grow.
- DBMSs can have a large technology footprint (e.g. memory space required, storage space, processing overhead).
- Real-time data processing requirements and storage restrictions e.g. imbedded sensing systems
- Single user access to data.

A quick Tour of the Technology

- PostgreSQL A relational DBMS
- <u>PostGIS Spatial Database functionality for Postgres</u>
- MongoDB A NoSQL database
- JDBC/JDO Connect Java programs to a database
- PHP Web Programming with database-driven webpages

Summary

- · Welcome to COSC210
- House Keeping
- · The Basics
- The Database Approach

- Database Users
- · Advantages of the DB Approach
- · When not to use a DBMS

Questions?

Next Lecture

• Database System Concepts and Architecture

Reading

- Chapter 1 from Fundamentals of Database Systems
- Start on Chapter 2 from Fundamentals of Database Systems for next lecture.
- Start on Chapter 4 (Basic SQL) from *Fundamentals of Database Systems* for the start of the practicals next week.