Содержание

Must have		2
Задача 1А.	Перевёрнутый массив [5 sec, 256 mb]	2
Задача 1В.	А квадрат плюс Б квадрат [0.25 sec, 256 mb]	3
Задача 1С.	Число Фибоначчи [0.5 sec, 256 mb]	4
Обязательн	ые задачи	5
Задача 1D.	Сосчитайте[0.5 sec, 256 mb]	5
Задача 1Е.	Перестановки [0.5 sec, 256 mb]	6
Задача 1F.	Площадь и прямоугольники [0.5 sec, 256 mb]	7
Задача 1 G .	Про спрайт [0.5 sec, 256 mb]	8
Дополнител	выные задачи	9
Задача 1Н.	Маленький холодильник [2 sec, 256 mb]	9
Задача 11.	Большой холодильник [5 sec, 256 mb]	10

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Обратите внимание на GNU C++ компиляторы с суффиксом inc.

Подни можно пользоваться дополнительной библиотекой (optimization.h).

То есть, использовать быстрый ввод-вывод: пример про числа и строки.

И быструю аллокацию памяти (ускоряет vector-set-map-весь-STL): пример.

Для тех, кто хочет разобраться, как всё это работает.

Короткая версия быстрого ввода-вывода (тык) и короткая версия аллокатора (тык).

Must have

Задача 1A. Перевёрнутый массив [5 sec, 256 mb]

Переверните массив целых чисел от -10^9 до 10^9 .

Формат входных данных

Массив. Формат смотрите в примере. Длина до 10^6 .

Формат выходных данных

Массив.

Пример

stdin	stdout
3	-3 2 1
1 2 -3	

Замечание

Эта задача нужна, чтобы вы оценили, сколько времени работает ваш любимый способ ввода/вывода. В течение курса могут появиться задачи с аналогичным объёмом ввода/вывода, но при этом с time limit всего 0.5 секунд.

Задача 1В. А квадрат плюс Б квадрат [0.25 sec, 256 mb]

Найдите количество решений уравнения вида $a^2 + b^2 = n$ в натуральных числах.

Формат входных данных

На первой строке число тестов t ($1\leqslant t\leqslant 1000$). Далее на каждой строке очередное число n_i ($1\leqslant n_i\leqslant 10^9$).

Формат выходных данных

Для каждого теста выведите на отдельной строке число решений.

Примеры

stdin	stdout
4	0
1	1
2	2
5	4
1000	

Замечание

$$2 = 1^2 + 1^2$$

 $5 = 1^2 + 2^2 = 2^2 + 1^2$
 $1000 = 10^2 + 30^2 = 30^2 + 10^2 = 18^2 + 26^2 = 26^2 + 18^2$

Подсказка по решению

TL пройдёт решение за $\mathcal{O}(n^{1/2})$ операций «сложение, умножение».

Задача 1С. Число Фибоначчи [0.5 sec, 256 mb]

Числа Фибоначчи $F_0, F_1, F_2, \ldots, F_n$ определяются следующим образом: $F_0 = F_1 = 1$, а для любого n > 1 выполнено равенство $F_n = F_{n-1} + F_{n-2}$.

По заданному числу n выведите число Фибоначчи F_n .

Формат входных данных

В первой строке входного файла задано единственное число $n\ (0\leqslant n\leqslant 45).$

Формат выходных данных

Выведите число F_n в первой строке выходного файла.

Примеры

stdin	stdout
1	1
2	2
3	3
4	5
5	8
6	13

Подсказка по решению

Нужно решение за $\mathcal{O}(n)$.

Обязательные задачи

Задача 1D. Сосчитайте... [0.5 sec, 256 mb]

Ваша задача — подсчитать количество неотрицательных целых решений неравенства

$$x_1 + x_2 + \ldots + x_m \leqslant n,$$

где $1 \le m \le 30, 0 \le n \le 30.$

Формат входных данных

Входной файл состоит из двух целых чисел m и n.

Формат выходных данных

В выходной файл необходимо вывести количество решений этого неравенства в неотрицательных целых числах.

Пример

stdin	stdout
3 5	56

Замечание

Обратите внимания на переполнения. Запустите

ручками у себя на машине на разных тестах, чтобы посмотреть, переполняется ли.

64-битный тип – int64_t, его должно хватить.

У переборного рекурсивного решения есть простая оптимизация – кеширование (дп)!

Формульное решение: $C_n^k = \frac{n!}{k!(n-k)!}$ – плохая формула, точно переполнится.

Подумайте, как можно лучше считать. Само $C_n^k \leqslant 2^{60}$, результат помещается.

Задача 1E. Перестановки [0.5 sec, 256 mb]

Во входном файле задано число $n\ (1\leqslant n\leqslant 8)$. Выведите в выходной файл в лексикографическом порядке все перестановки чисел от 1 до n.

Пример

stdin	stdout
3	1 2 3
	1 3 2
	2 1 3
	2 3 1
	3 1 2
	3 2 1

Подсказка по решению

Учимся в рекурсию. Лучше потренироваться и написать самому, чем использовать стандартную магию.

Задача 1F. Площадь и прямоугольники [0.5 sec, 256 mb]

На плоскости задано N прямоугольников с вершинами в точках с целыми координатами и сторонами, параллельными осям координат. Необходимо посчитать площадь их пересечения.

Формат входных данных

В первой строке входного файла указано число N ($1 \le N \le 1500$). В следующих N строках заданы по 4 целых числа x_1, y_1, x_2, y_2 — сначала координаты левого нижнего угла прямоугольника, потом правого верхнего ($-10^9 \le x_1 \le x_2 \le 10^9, -10^9 \le y_1 \le y_2 \le 10^9$). Обратите внимание, что прямоугольники могут вырождаться в отрезки и даже в точки.

Формат выходных данных

Выведите требуемое число.

Примеры

stdin	stdout
2	1
0 0 2 2	
1 1 3 3	

Подсказка по решению

Очень простая задача! Очень. Никаких if-ов.

Есть решения вида for { 4 строки } + вывести ответ.

Задача 1G. Про спрайт [0.5 sec, 256 mb]

86 класс решил на слет взять много Спрайта. Для этого они собрались сконструировать переносной холодильник $a \times b \times c$, который будет вмещать ровно n кубических банок Спрайта размером $1 \times 1 \times 1$ Чтобы лимонад доехал как можно более холодным, они хотят минимизоровать теплопотери; то есть минимизировать площадь поверхности.

Например, если емкость холодильника должна равняться 12, то возможны следующие варианты:

 $3~2~2 \rightarrow 32$

 $4\ 3\ 1 \rightarrow 38$

 $621 \to 40$

 $12\ 1\ 1 \to 50$

В этом примере оптимальным является холодильник 322.

Помогите 8б найти оптимальный холодильник в общем случае.

Формат входных данных

Число $n \ (1 \le n \le 10^6)$

Формат выходных данных

Три числа a, b, c ($1 \le n \le 10^6$) — размеры наилучшего холодильника.

Если оптимальных ответов несколько, выведите минимальную тройку чисел. Тройки чисел сравниваются следующим образом: сперва первое число, при равенстве второе, при равенстве третье.

Пример

stdin	stdout
12	2 2 3
13	1 1 13
1000000	100 100 100

Замечание

Идейная. Будет разобрана на практике.

Дополнительные задачи

Задача 1H. Маленький холодильник [2 sec, 256 mb]

Дано целое число n ($1 \le n \le 10^{12}$). Нужно найти натуральные a,b,c: abc = n и при этом 2(ab+bc+ca) минимально. Т.е. при фиксированном объеме минимимизировать площадь поверхности.

Формат входных данных

На первой строке число n ($1 \le n \le 10^{12}$).

Формат выходных данных

На первой строке четыре целые числа — 2(ab + bc + ca) и a, b, c.

Примеры

stdin	stdout
120	148 4 6 5

Задача 11. Большой холодильник [5 sec, 256 mb]

Вася хочет купить новый холодильник. Он считает, что холодильник должен быть прямоугольным параллелепипедом с целочисленными длинами ребер. Вася рассчитал, что для повседневного пользования ему понадобится холодильник объема не меньше V. Кроме того, Вася по натуре минималист, поэтому объем должен быть и не больше V — к чему занимать лишнее место в квартире? Определившись с объемом холодильника, Вася столкнулся с новой непростой задачей — чтобы холодильник было проще мыть, при фиксированном объеме V он должен иметь минимальную площадь поверхности.

Объем и площадь поверхности холодильника с ребрами a, b, c равны V = abc и S = 2(ab + bc + ca), соответственно.

Помогите Васе по заданному объему V найти такие целые длины ребер холодильника a, b, c, чтобы объем холодильника был равен V и при этом его площадь поверхности S была минимальна.

Формат входных данных

В первой строке записано единственное целое число $t\ (1\leqslant t\leqslant 500)$ — количество наборов данных.

Далее следует описание t наборов данных. Каждый набор состоит из одного целого числа V ($2 \le V \le 10^{18}$), заданного своим разложением на множители следующим образом.

Пусть $V=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$, где p_i — различные простые числа, а a_i — положительные целые степени.

Тогда в первой строке описания набора данных записано единственное положительное целое число k — количество различных простых делителей V. В следующих k строках записаны простые числа p_i и их степени a_i , разделенные пробелом. Все p_i различны, все $a_i > 0$.

Формат выходных данных

Выведите t строк, в i-й строке выведите ответ на i-й набор данных — четыре целых числа, записанные через пробел: минимальная возможная площадь поверхности S и соответствующие длины ребер a, b, c. Если вариантов длин ребер, дающих минимальную площадь, несколько, разрешается вывести любой из них. Длины ребер холодильника разрешается выводить в любом порядке.

Примеры

stdin	stdout
3	24 2 2 2
1	70 1 1 17
2 3	148 4 6 5
1	
17 1	
3	
3 1	
2 3	
5 1	

Замечание

В первом наборе данных примера объем холодильника $V=2^3=8,$ и минимальную площадь поверхности дадут ребра одинаковой длины.

Во втором наборе данных объем V=17, и его можно получить из единственного набора ребер целочисленных длин.