EAIiIB	Piotr Morawie	cki, Tymoteusz Paszun	Rok II	Grupa 3a	Zespół 6	
Temat: Moduł Younga			Numer ćwiczenia: 11			
Data wykonania: 8.11.2017r.	Data oddania: 15.11.2017r.	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:	

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie modułu Younga metodą statyczną przy pomocy pomiaru wydłużenia drutu obciążonego stałą siłą.

2 Wstęp teoretyczny

$$\Delta l = \frac{Fl}{ES}$$

$$\sigma=E\varepsilon$$

$$E = \frac{4l}{\pi d^2 a}$$

3 Opis doświadczenia

Rysunek 1: Przyrząd pomiarowy

4 Wyniki pomiarów

4.1 Drut stalowy

Zmierzona długość drutu: $l=1065\,\mathrm{mm}$. Średnica drutu: $d=\frac{0.715\,\mathrm{mm}+0.705\,\mathrm{mm}+0.71\,\mathrm{mm}}{3}=0,71\,\mathrm{mm}$.

Tablica 1: Pomiary wydłużenia dla drutu wykonanego ze stali

Masa odważników [kg]	Siła F [N]	Wskazanie czujnika przy dodawaniu obciążenia	Wskazanie czujnika przy odejmowaniu obciążenia	$\Delta l [\mathrm{mm}]$
0,957	9,38817	0,290	0,38	0,16750
1,968	19,30608	0,780	$0,\!83$	0,40250
2,956	28,99836	1,110	1,17	0,57000
3,951	38,75931	$1,\!425$	1,48	0,72625
4,918	$48,\!24558$	1,780	1,78	0,89000
5,946	58,33026	2,070	$2,\!07$	1,03500
6,928	67,96368	2,320	$2,\!38$	1,17500
7,961	78,09741	2,630	$2,\!65$	1,32000
8,989	88,18209	2,915	2,92	1,45875
9,972	$97,\!82532$	3,230		1,61500

Tablica 2: Pomiary wydłużenia dla drutu wykonanego z mosiądzu

Masa odważników [kg]	Siła F [N]	Wskazanie czujnika przy dodawaniu obciążenia	Wskazanie czujnika przy odejmowaniu obciążenia	$\Delta l [\mathrm{mm}]$
0,957	9,38817	0,42	$0,\!43$	0,2125
1,968	19,30608	0,91	$0,\!92$	0,4575
2,956	28,99836	1,31	1,33	0,6600
3,951	38,75931	1,70	1,73	0,8575
4,918	$48,\!24558$	2,06	2,08	1,0350
5,946	58,33026	2,44		1,2200

4.2 Drut mosiężny

Zmierzona długość drutu: $l=1070,5\,\mathrm{mm}$. Średnica drutu: $d=\frac{0.79\,\mathrm{mm}+0.79\,\mathrm{mm}+0.795\,\mathrm{mm}}{3}=0,7917\,\mathrm{mm}$.

5 Wykresy

Rysunek 2: Wykres zależności wydłużenia drutu od przyłożonej siły dla stali

Rysunek 3: Wykres zależności wydłużenia drutu od przyłożonej siły dla mosiądzu

6 Opracowanie wyników

6.1 Analiza błędów

W wynikach pomiarów dla drutu stalowego zauważyliśmy odstawanie pierwszego punktu pomiarowego od prostej wyznaczonej metodą regresji liniowej. W dalszych obliczeniach odrzuciliśmy ten pomiar. Dla drutu wykonanego z mosiądzu nie zauważyliśmy odstawania żadnych punktów pomiarowych.

6.2 Niepewności pomiarów

Niepewność pomiaru długości drutu (typu B) - wynika z zastosowania przymiaru o podziałce o dokładności 1 mm:

$$u(l) = \frac{1 \text{ mm}}{\sqrt{3}} = 0,577 \text{ mm}$$

Niepewność pomiaru średnicy drutu (typu B) - wynika z zastosowania śruby mikrometrycznej o dokładności $0.01\,\mathrm{mm}$:

$$u(d) = \frac{0.01 \,\mathrm{mm}}{\sqrt{3}} = 0.00577 \,\mathrm{mm}$$

Niepewność wpółczynnika kierunkowego $a=1,523\cdot 10^-5\,\frac{\rm m}{\rm N}$ dla prostej dopasowanej metodą najmniejszych kwadratów dla pomiarów drutu stalowego:

$$u(a) = 4,275 \cdot 10^8 \, \frac{\text{m}}{\text{N}}$$

Niepewność wpółczynnika kierunkowego $a=2,04\cdot 10^-5\,\frac{\text{m}}{\text{N}}$ dla prostej dopasowanej metodą najmniejszych kwadratów dla pomiarów drutu wykonanego z mosiądzu:

$$u(a) = 1,36 \cdot 10^7 \, \frac{\text{m}}{\text{N}}$$

6.3 Moduł Younga dla drutu stalowego

Wartość modułu Younga:

$$E = \frac{4l}{\pi d^2 a} = 176,61 \,\text{GPa}$$

Niepewność złożona wyznaczonej wartości modułu Younga:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2} = \sqrt{\left(\frac{0,577}{1065}\right)^2 + \left(-2\frac{0,00577}{0,71}\right)^2 + \left(-\frac{4,275 \cdot 10^8}{0,00001582471518}\right)^2} = 0,016$$

$$u_c(E) = E \cdot 0,016 = 2,826 \text{ [GPa]}$$

6.4 Moduł Younga dla drutu z mosiądzu

Wartość modułu Younga:

$$E = \frac{4l}{\pi d^2 a} = 106,52 \,\text{GPa}$$

Niepewność złożona wyznaczonej wartości modułu Younga:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2} = \sqrt{\left(\frac{0,577}{1065}\right)^2 + \left(-2\frac{0,00577}{0,71}\right)^2 + \left(-\frac{1,36\cdot10^7}{0,00002}\right)^2} = 0,0146$$

$$u_c(E) = E\cdot 0,0146 = 1,556 \, [\text{GPa}]$$

7 Wnioski