```
In [1]: from matplotlib import pyplot as plt
        from matplotlib.dates import MonthLocator, num2date
        from matplotlib.ticker import FuncFormatter
        from prophet import Prophet
        from prophet.diagnostics import cross validation, performance metrics
        from prophet.plot import add changepoints to plot
        import pandas as pd
        import numpy as np
        import datetime as dt
        from collections import defaultdict
        import time
        import datetime as dt
        from pytz import timezone
        tz = timezone('EST')
        from tqdm import tqdm
        from sklearn.metrics import mean absolute error, mean absolute percentage error,
        import seaborn as sns
        %config InlineBackend.figure format = 'retina'
        %matplotlib inline
        from matplotlib import pyplot as plt
        from matplotlib import style
        sns.set()
```

```
In [3]: nh2017 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    nh2018 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    nh2019 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    nh2020 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    nh2021 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
    nh2022 = pd.read_excel(r"C:\Users\Rohan\Desktop\Big Data\Load Data\smd_hourly_201
```

In [4]: nh2022

Out[4]:

	Date	Hr_End	DA_Demand	RT_Demand	DA_LMP	DA_EC	DA_CC	DA_MLC	RT_LMP	RT_
0	2022- 01-01	1	1005.6	1042.181	32.93	32.35	0.10	0.48	26.38	25.
1	2022 - 01-01	2	985.4	994.703	32.91	32.31	0.13	0.47	26.28	25.
2	2022 - 01-01	3	930.9	964.326	31.31	30.85	0.00	0.46	27.94	27.
3	2022- 01-01	4	912.0	951.081	30.11	29.69	0.00	0.42	25.53	25.
4	2022- 01-01	5	917.7	953.029	31.33	30.86	0.00	0.47	29.76	29
739	2022- 01-31	20	1683.1	1727.322	227.22	226.40	0.00	0.82	298.61	295.
740	2022- 01-31	21	1585.7	1655.507	203.58	202.82	0.00	0.76	266.56	264.
741	2022- 01-31	22	1456.6	1559.954	183.16	183.42	0.00	-0.26	253.85	251.
742	2022- 01-31	23	1362.5	1452.523	180.39	179.93	0.00	0.46	191.90	190.
743	2022- 01-31	24	1237.7	1370.635	190.67	190.54	0.00	0.13	191.20	189.

744 rows × 14 columns

```
In [6]: val2011 = nh2011['DEMAND']
    val2012 = nh2012['DEMAND']
    val2013 = nh2013['DEMAND']
    val2014 = nh2014['DEMAND']
    val2015 = nh2015['DEMAND']
    val2016 = nh2016['RT_Demand']
    val2017 = nh2017['RT_Demand']
    val2018 = nh2018['RT_Demand']
    val2019 = nh2019['RT_Demand']
    val2020 = nh2020['RT_Demand']
    val2021 = nh2021['RT_Demand']
    val2022 = nh2022['RT_Demand']
In [7]: values = [val2011, val2012, val2013, val2014, val2015, val2016, val2017, val2018]
```

values_df = pd.concat(values, axis=0, ignore_index=False)

values_df = values_df.reset_index()

period = len(values_df)

```
In [8]: rng = pd.date range('2011-01-01', periods=period, freq='1H')
         date_df = pd.DataFrame({ 'ds': rng})
         date_df = date_df.reset_index()
 In [9]: frames = [date_df, values_df]
         nh_load = pd.concat(frames, axis=1, ignore_index=False)
         nh_load = nh_load.rename(columns={nh_load.columns[1]: 'ds', nh_load.columns[3]:
         frames2 = [nh load['ds'], nh load['y']]
         nh load = pd.concat(frames2, axis=1, ignore_index=False)
         nh_load
 Out[9]:
                              ds
                                       У
              0 2011-01-01 00:00:00
                                1044.000
              1 2011-01-01 01:00:00
                                  985.000
              2 2011-01-01 02:00:00
                                  937.000
              3 2011-01-01 03:00:00
                                  914.000
              4 2011-01-01 04:00:00
                                  911.000
          97171 2022-01-31 19:00:00 1727.322
          97172 2022-01-31 20:00:00 1655.507
          97173 2022-01-31 21:00:00 1559.954
          97174 2022-01-31 22:00:00 1452.523
          97175 2022-01-31 23:00:00 1370.635
         97176 rows × 2 columns
In [10]: model = Prophet(
                  changepoint prior scale=0.5,
                  seasonality_mode='multiplicative',
                  interval width=0.95,
         model.add_country_holidays(country_name='US')
Out[10]:  content out[10]:   prophet.forecaster.Prophet at 0x25a71276fa0>
In [11]: model.fit(nh_load)
In [12]: | future_pd = model.make_future_dataframe(
                  periods=365,
                  freq='1H',
                  include history=True
              )
         # make predictions
         forecast_pd = model.predict(future_pd)
```

In [13]: forecast_pd[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail()

Out[13]:

	ds	yhat	yhat_lower	yhat_upper
97536	2022-02-16 00:00:00	1182.456664	936.096702	1420.472398
97537	2022-02-16 01:00:00	1130.074481	897.272045	1382.218908
97538	2022-02-16 02:00:00	1101.156882	859.554086	1335.352320
97539	2022-02-16 03:00:00	1101.677719	868.771191	1346.728065
97540	2022-02-16 04:00:00	1141.990520	910.164419	1388.278845

In [14]: fig1 = model.plot(forecast_pd)

In [15]: fig2 = model.plot_components(forecast_pd)

In [16]: forecast_pd

Out[16]:

	ds	trend	yhat_lower	yhat_upper	trend_lower	trend_upper	Christmas Day	Chris Day_
0	2011- 01-01 00:00:00	1294.464824	764.192191	1240.217515	1294.464824	1294.464824	0.0	
1	2011- 01-01 01:00:00	1294.481304	712.119613	1181.324228	1294.481304	1294.481304	0.0	
2	2011- 01-01 02:00:00	1294.497785	683.595736	1176.224546	1294.497785	1294.497785	0.0	
3	2011- 01-01 03:00:00	1294.514265	677.266281	1158.822168	1294.514265	1294.514265	0.0	
4	2011- 01-01 04:00:00	1294.530746	713.115710	1210.343837	1294.530746	1294.530746	0.0	
							•••	
97536	2022- 02-16 00:00:00	1324.972282	936.096702	1420.472398	1323.260162	1327.330826	0.0	
97537	2022- 02-16 01:00:00	1324.974901	897.272045	1382.218908	1323.256722	1327.355235	0.0	
97538	2022- 02-16 02:00:00	1324.977519	859.554086	1335.352320	1323.253283	1327.371442	0.0	
97539	2022- 02-16 03:00:00	1324.980138	868.771191	1346.728065	1323.249843	1327.380809	0.0	
97540	2022- 02-16 04:00:00	1324.982756	910.164419	1388.278845	1323.243724	1327.390050	0.0	
		_						

97541 rows × 73 columns

In []: