INT102 Algorithmic Foundations And Problem Solving Sequence Alignment by Dynamic Programming

Dr Pengfei Fan Department of Intelligent Science

Learning Outcomes

- >Longest Common Subsequence (LCS)
- >Pairwise Sequence Alignment Problem
 - 1. Global Alignment
 - 2. Local Alignment

DNA Sequence Comparison A topic in Bioinformatics

 Finding sequence similarities with genes of known function is a common approach to infer a newly sequenced gene's function

 Gene similarities between two genes with known and unknown function alert biologists to some possibilities

 Computing a similarity score between two genes tells how likely it is that they have similar functions

Aligning DNA Sequences

Alignment: $2 \times k \text{ matrix } (k \geq m, n)$

n = 8

W = TGCATAC

m = 7

- 4 matches
- ₁ mismatches
- 3 insertions
- 2 deletions

Longest Common Subsequence (LCS)

Longest Common Subsequence (LCS)

- DNA analysis, two DNA string comparison.
- DNA string: a sequence of symbols A,C,G,T.
 - S=ACCGGTCGAGCTTCGAAT
- Subsequence (of X): is X with some symbols left out.
 - Z=CGTC is a subsequence of X=ACGCTAC.
- Common subsequence Z (of X and Y): a subsequence of X and also a subsequence of Y.
 - Z=CGA is a common subsequence of both X=ACGCTAC and Y=CTGACA.
- Longest Common Subsequence (LCS): the longest one of common subsequences.
 - -Z' =CGCA is the LCS of the above X and Y.
- LCS problem: given $X=\langle x_1, x_2,..., x_m \rangle$ and $Y=\langle y_1, y_2,..., y_n \rangle$, find their LCS.

LCS Intuitive Solution –brute force

- List all possible subsequences of X, check whether they are also subsequences of Y, keep the longer one each time.
- Each subsequence corresponds to a subset of the indices $\{1,2,...,m\}$, there are 2^m . So exponential.
- Dynamic Programming (DP)

Dynamic Programming (DP)

- Initialization
- Recursive Solution
- Trace Back

Analysis

LCS DP – Step 1: Optimal Substructure

Let
$$X=\langle x_1, x_2, ..., x_m \rangle$$
 (= X_m) and $Y=\langle y_1, y_2, ..., y_n \rangle$ (= Y_n)

and

$$Z = \langle z_1, z_2, ..., z_k \rangle$$
 (= Z_k) be any LCS of X and Y,

- 1. if $x_m = y_n$, then $z_k = x_m = y_n$, and Z_{k-1} is the LCS of X_{m-1} and Y_{n-1} .
- 2. if $x_m \neq y_n$, then $z_k \neq x_m$ implies Z is the LCS of X_{m-1} and Y_n .
- 3. if $x_m \neq y_n$, then $z_k \neq y_n$ implies Z is the LCS of X_m and Y_{n-1} .

For example: X = ABCD X = ABCD X = ABCD

Y = ACD Y = ABC Y = ECDF

Z = ACD and D = D = D Z = ABC and $C \neq F$ Z = CD and $D \neq F$

Analysis

LCS DP - Step 2: Recursive Solution

- What Step 1 says:
 - If $x_m = y_{n}$, find LCS of X_{m-1} and Y_{n-1} , then append x_m .
 - If $x_m \neq y_{n_n}$ find LCS of X_{m-1} and Y_n and LCS of X_m and Y_{n-1} , take which one is longer.
- Overlapping substructure:
 - Both LCS of X_{m-1} and Y_n and LCS of X_m and Y_{n-1} will need to solve LCS of X_{m-1} and Y_{n-1} .
- c[i,j] is the length of LCS of X_i and Y_j .

$$c[i,j] = \begin{cases} 0 & \text{if } i=0, \text{ or } j=0 \\ c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i = y_j \\ \max\{c[i-1,j], c[i,j-1]\} & \text{if } i,j>0 \text{ and } x_i \neq y_j \end{cases}$$

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence

```
X "aab"
Y "azb"
```

How to decompose the original problem?

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence

LCS DP Algorithm

```
LCS-LENGTH(X, Y)
 1 m \leftarrow length[X]
 2 n \leftarrow length[Y]
 3 for i \leftarrow 1 to m
 4 do c[i, 0] \leftarrow 0
 5 for j \leftarrow 0 to n
           do c[0, j] \leftarrow 0
     for i \leftarrow 1 to m
 8
            do for j \leftarrow 1 to n
                      do if x_i = y_j
10
                             then c[i, j] \leftarrow c[i - 1, j - 1] + 1
11
                                    b[i, j] \leftarrow " \setminus "
12
                             else if c[i - 1, j] \ge c[i, j - 1]
13
                                       then c[i, j] \leftarrow c[i-1, j]
14
                                             b[i,j] \leftarrow "\uparrow"
15
                                       else c[i, j] \leftarrow c[i, j-1]
16
                                             b[i, j] \leftarrow "\leftarrow"
17
      return c and b
```

LCS DP – Step 3: Computing the Length of LCS

- Matrix c[0..m,0..n], where c[i,j] is defined as above.
 - -c[m,n] is the answer (length of LCS).
- b[1..m,1..n], where b[i,j] points to the table entry corresponding to the optimal subproblem solution chosen when computing c[i,j].
 - From b[m,n] backward to find the LCS.

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence

X "aab" Y "azb"

a a b
a
z
b

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence

X "aab" Y "azb"

		a	a	b
	0	0	0	0
a	0	1	1	1 —
Z	0	1	1	1
b	0	1	1	2

LCS DP – Step 4: Constructing LCS

```
PRINT-LCS(b, X, i, j)
  if i = 0 or j = 0
      then return
3 if b[i, j] = "
"
      then PRINT-LCS(b, X, i-1, j-1)
           print x_i
   elseif b[i, j] = "\uparrow"
      then PRINT-LCS(b, X, i - 1, j)
   else PRINT-LCS(b, X, i, j - 1)
```

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence

X "aab" Y "azb"

		а	a	b
	0	0	0	0
a	0	1	1	1 —
Z	0	1 1	1	1 1
b	0	1	1	2

Figure 15.6 The c and b tables computed by LCS-LENGTH on the sequences $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$. The square in row i and column j contains the value of c[i, j] and the appropriate arrow for the value of b[i, j]. The entry 4 in c[7, 6]—the lower right-hand corner of the table—is the length of an LCS $\langle B, C, B, A \rangle$ of X and Y. For i, j > 0, entry c[i, j] depends only on whether $x_i = y_j$ and the values in entries c[i-1, j], c[i, j-1], and c[i-1, j-1], which are computed before c[i, j]. To reconstruct the elements of an LCS, follow the b[i, j] arrows from the lower right-hand corner; the path is shaded. Each " \nwarrow " on the path corresponds to an entry (highlighted) for which $x_i = y_j$ is a member of an LCS.

LCS Intuitive Solution – Dynamic Programming

Longest Common Subsequence: Exercise

X "acb" Y "czb"

	a	C	b
C			
Z			
b			

Sequence Alignment

WHALE

HUMAN

@1998 GARLAND PUBLISHING

Aligning DNA Sequences

Alignment: $2 \times k \text{ matrix } (k \geq m, n)$

n = 8

W = TGCATAC

m = 7

- 4 matches
- ₁ mismatches
- 3 insertions
- 2 deletions

Pairwise Sequence Alignment Problem

- Given
 - a pair of sequences (DNA or protein)
 - a method for scoring a candidate alignment
- Do
 - find an alignment for which the score is maximized

What do we mean by this?

TREE V.S. REED

TREE TREE_ TRE_E_ TRE_E_
REED _REED _REED RE ED

Difficulty of Pairwise Sequence Alignment (PSA)

- Consider two sequences of length n
 - Number of possible global alignments

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{(\pi n)}}$$

- For n = 40, there are over 10^{23} possible alignments
- Approaches
 - "Optimal" solution
 - Dynamic programming
 - Heuristic solutions
 - Dot matrix plot
 - FASTA
 - BLAST

Dynamic Programming (DP)

Alignment

- Problem can be subdivided
- Optimal solutions

 1...n-1 nth
- Optimal alignment of n bases
 - 1. Incorporates optimal alignment of 1...n-1 bases
 - 2. Combine with best alignment for nth base

Bioinformatics application

Global alignment [Needleman-Wunsch 1970]

Local alignment [Smith-Waterman 1981]

Complexity

- O(n^2) or O($n \times m$) algorithm (sequences of length n, m)
- Feasible for moderate-sized sequences, not entire genomes

Dynamic Programming (DP)

- Dynamic programming usually consists of three components.
 - Recursive relation (Initialization)
 - Tabular computation (Matrix Filling)
 - Trace back (Trace Back)
- This efficient recursive method is used to search through all possible alignments and find the one with the optimal score.

Intuition of Dynamic Programming

Considering sequences: "HEAGA" and "PA"

Intuition of Dynamic Programming

If we already have the optimal solution to:

XY

AB

then we know the **next** pair of characters will either be:

```
XYZ or XY- or XYZ
ABC ABC AB-
(where "-" indicates a gap).
```

So we can extend the match by determining which of these has the highest score.

DP (Global Alignment)

Recursive formula

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) & \text{c1} \\ F(i-1,j) + d & \text{c2} \\ F(i,j-1) + d & \text{c3} \end{cases}$$

Notation

```
-x_i i<sup>th</sup> letter of string x
```

$$-y_i$$
 jth letter of string y

$$-x_{1..i}$$
 prefix of x from letters 1 through i

$$F(i, j)$$
 represents optimal score lining up $x_{1..i}$ with $y_{1..j}$

Constant vs. Non-constant Gap Penalty

Constant gap penalty

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j), \\ F(i-1, j) + d, \\ F(i, j-1) + d. \end{cases}$$

Non-constant gap penalty

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j), \\ F(k,j) + \gamma(i-k), & k = 0,..., i-1, \\ F(i,k) + \gamma(j-k), & k = 0,..., j-1. \end{cases}$$

DP (Global Alignment)

Algorithm

- Initialize: F(0,0) = 0, $F(i,0) = i \times d$, $F(0,j) = j \times d$ (gap penalties)
- Fill from top left to bottom right using recursive formula

While building the table, keep track of where optimal score came from, then reverse arrows

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) & \text{c1} \\ F(i-1,j) + d & \text{c2} \\ F(i,j-1) + d & \text{c3} \end{cases}$$

DP Example

Sequences

– Seq1: HEAGAWGHEE

– Seq2: PAWHEAE

— Gap Penalty: -8 (Constant)

Scoring Matrix (Blosum 50)

	Н	Ε	Α	G	Α	W	G	Н	Ε	Ε
Р	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
Н	10	0	-2	-2	-2	-3	-2	10	0	0
Е	0	6	-1	-3	-1	-3	-3	0	6	6
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
Е	0	6	-1	-3	-1	-3	-3	0	6	6

DP Example

Algorithm

Initialize F(0,0) = 0, $F(i,0) = i \times d$, $F(0, j) = j \times d$ (gap penalties)

Fill from top left to bottom right using recursive formula

Blosum 50

	Н	Е	Α	G	Α	W	G	Н	Ε	Е
Р	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
Н	10	0	-2	-2	-2	-3	-2	10	0	0
Е	0	6	-1	-3	-1	-3	-3	0	6	6
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
Е	0	6	-1	-3	-1	-3	-3	0	6	6

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i,y_j) & \text{c1} \\ F(i-1,j) + d & \text{c2} \\ F(i,j-1) + d & \text{c3} \end{cases}$$

DP Example

Algorithm

Initialize F(0,0) = 0, $F(i,0) = i \times d$, $F(0, j) = j \times d$ (gap penalties)

Fill from top left to bottom right using recursive formula

Blosum 50

	Н	Е	Α	G	Α	W	G	Н	Е	Е
P	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
Н	10	0	-2	-2	-2	-3	-2	10	0	0
E	0	6	-1	-3	-1	-3	-3	0	6	6
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
Е	0	6	-1	-3	-1	-3	-3	0	6	6

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) & \text{c1} \\ F(i-1,j) + d & \text{c2} \\ F(i,j-1) + d & \text{c3} \end{cases}$$

DP Example (Traceback)

- Trace arrows from bottom right to top left
 - Diagonal both match
 - Up left sequence match a gap
 - Or insert a gap to top sequence
 - Left top sequence match a gap
 - Or insert a gap to left sequence

Optimal global alignment

HEAGAWGHE-E

Global alignment vs. local alignment

- Global alignment: the entire sequence of each protein or DNA sequence is contained in the alignment.
- Local alignment: only regions of greatest similarity between two sequences are aligned

percent identity: ~26%

glycodelin: 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 81

Global alignment vs. local alignment

- Global alignment are often not effective for highly diverged sequences - do not reflect the biological reality that two sequences may only share limited regions of conserved sequence.
- Global methods are useful when you want to force two sequences to align over their entire length
- Local alignment is almost always used for database searches such as BLAST. It is useful to find domains (or limited regions of homology) within sequences.

DP (Local Alignment)

- Make 0 minimal score (i.e., start new alignment)
- Alignment can start / end anywhere
 - Start at highest score(s)
 - End when 0 reached

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \\ 0 \end{cases}$$

DP (Local Alignment)

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - 8 \\ F(i,j-1) - 8 \\ 0 \end{cases}$$

Blosum 50

	Н	Ε	Α	G	Α	W	G	Н	Ε	Е
P	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3
Н	10	0	-2	-2	-2	-3	-2	10	0	0
Е	0	6	-1	-3	-1	-3	-3	0	6	6
Α	-2	-1	5	0	5	-3	0	-2	-1	-1
Ε	0	6	-1	-3	-1	-3	-3	0	6	6

DP (Local Alignment)

- Traceback
 - Start at highest score and trace arrows back to first 0

Learning Outcomes

- >Longest Common Subsequence (LCS)
- >Pairwise Sequence Alignment Problem
 - 1. Global Alignment
 - 2. Local Alignment