

© International Baccalaureate Organization 2021

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2021

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2021

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Química Nivel Superior Prueba 2

Miércoles 10 de noviembre de 2021 (tarde)

Null	ICIO	ue c	UIIVU	Calui	ia ue	ı aıuı	ШО	

2 horas 15 minutos

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- En esta prueba es necesario usar una calculadora.
- Se necesita una copia sin anotaciones del cuadernillo de datos de Química para esta prueba.
- La puntuación máxima para esta prueba de examen es [90 puntos].

-2- 8821-6126

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

24FP02

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.

- 1. Una muestra de 4,406 g de un compuesto que contiene solo C, H y O se hizo arder con exceso de oxígeno. Se produjeron 8,802 g de CO₂ y 3,604 g de H₂O.
 - (a) Determine la fórmula empírica del compuesto usando la sección 6 del cuadernillo de datos.

[3]

																																				٠	
																					•																
																																			•		
												٠	٠																						•	٠	
									-											-			٠														
																					•																
																					•																
																					•																

(b)	Determine la fórmula molecular de este compuesto si su masa molar es 88,12 g mol ⁻¹ . Si no obtuvo respuesta en (a), use CS pero esta no es la respuesta correcta.	[1

-4- 8821-6126

(Pregunta 1: continuación)

Los siguientes espectros muestran los espectros infrarrojos del 1-propanol, el propanal y el ácido propanoico.

(Pregunta 1: continuación)

(c)	Identifique cada compuesto a partir de los espectros dados, use absorciones
	comprendidas de rango de 1700 cm ⁻¹ a 3500 cm ⁻¹ . Explique la razón de su elección,
	haciendo referencia a la sección 26 del cuadernillo de datos.

[3]

Espectro	Identidad	Razón
А		
В		
С		

(d) Prediga el número de señales en la RMN de ¹H y el patrón de desdoblamiento previsto para el –CH₃ de la propanona (CH₃COCH₃) y el propanal (CH₃CH₂CHO). [2]

Espectro	Número de señales	Patrón de desdoblamiento del –CH₃
propanona		
propanal		

(e)	Prediga el fragmento responsable de un <i>m</i> / <i>z</i> de 31 en el espectro de masas del 1-propanol. Use la sección 28 del cuadernillo de datos.	[1]

(a)	Explique el aumento general de la tendencia de las energías de primera ionización de los elementos del periodo 3, del Na al Ar.
(b)	El sodio emite luz amarilla de frecuencia de $5,09 \times 10^{14}$ Hz cuando se produce transición electrónica desde el orbital 3p a 3s.
		Calcule la diferencia de energía, en J, entre esos dos orbitales usando las secciones 1 y 2 del cuadernillo de datos.
E	El fós	sforo blanco es un alótropo de fósforo y existe como P ₄ .
(a)	(i) Dibuje aproximadamente la estructura de Lewis (representación de electrones mediante puntos) de la molécula de P ₄ , solo con enlaces simples.

(Pregunta 3: continuación) Escriba una ecuación para la reacción del fósforo blanco, (P₄), con cloro gaseoso para formar tricloruro de fósforo (PCl₃). [1] Deduzca la geometría molecular y del dominio electrónico usando la TRPEV, y (b) (i) estime el ángulo del enlace Cl-P-Cl en el PCl₃. [3] Geometría del dominio electrónico: Geometría molecular: Ángulo de enlace: Resuma la razón por la cual la molécula de PCl₅ es no polar, mientras que la (ii) molécula de PCl₄F es polar. [3] PCl₅ es no polar: PCl₄F es polar:

Véase al dorso

(Pregunta 3: continuación)

(c) Existe un equilibrio entre el PCl₃ y el PCl₅.

$$PCl_3(g) + Cl_2(g) \rightleftharpoons PCl_5(g)$$

(i) Calcule la variación de entalpía estándar (ΔH^{\ominus}) para la reacción directa en kJ mol⁻¹.

$$\Delta H_{f}^{\ominus} PCl_{3}(g) = -306.4 \text{ kJ mol}^{-1}$$

$$\Delta H_{f}^{\ominus} PCl_{5}(g) = -398.9 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$
 [1]

.....

(ii) Calcule la variación de entropía, ΔS , en J K⁻¹ mol⁻¹, para esta reacción.

Sustancia	Entropía JK ⁻¹ mol ⁻¹
PCl ₃ (g)	311,7
PCl₅(g)	364,5
Cl ₂ (g)	223,0

Γ	1
	- 1

(Pregunta 3: continuación)

(iii)	Calcule la variación de energía libre de Gibbs (ΔG), en kJ mol $^{-1}$, para esta reacción a 25 °C. Use la sección 1 del cuadernillo de datos.	
	Si no obtuvo una respuesta en c(i) o c(ii), use $-87.6\mathrm{kJmol^{-1}}\mathrm{y}-150.5\mathrm{Jmol^{-1}}\mathrm{K^{-1}}$ respectivamente, pero esas no son las respuestas correctas.	[2]
(iv)	Determine la constante de equilibrio, K , para esta reacción a 25°C, haciendo referencia a la sección 1 del cuadernillo de datos.	
	Si no obtuvo una respuesta en (c)(iii), use $\Delta G = -43.5\mathrm{kJmol^{-1}}$, pero esta no es la respuesta correcta.	[2]
(v)	Indique la expresión de la constante de equilibrio, $K_{\rm c}$, para esta reacción.	[1]
(vi)	Indique, dando una razón, el efecto de un aumento de temperatura sobre la posición de este equilibrio.	[1]

4.	El 1-	cloro	entano re	acciona con hidróxido de sodio acuoso.	
	(a)	(i)	Identifiqu	ue el tipo de reacción.	[1]
		(ii)	Resuma	el rol del ion hidróxido en esta reacción.	[1]
		(iii)	el 1-cloro	dando una razón, por qué el 1-yodopentano reacciona más rápido que opentano en las mismas condiciones. Use la sección 11 del cuadernillo para coherencia.	[2]
	(b)	Dibu	je aproxim	repitió a menor temperatura. nadamente curvas de distribución de energía rotuladas de Maxwell– a temperatura original (T_1) y la nueva temperatura menor (T_2) .	[2]
			Fracción de partículas		
			L	Energía cinética	

5.		El ácido fosfórico, H ₃ PO ₄ puede formar tres sales diferentes con el hidróxido de sodio, dependiendo del grado de neutralización.							
	(a)	Formule una ecuación para la reacción de un mol de ácido fosfórico con un mol de hidróxido de sodio.	[1]						
	(b)	Formule dos ecuaciones para mostrar la naturaleza anfiprótica del H ₂ PO ₄ ⁻ .	[2]						
	(c)	Calcule la concentración de $\rm H_3PO_4$ si $25,00\rm cm^3$ son neutralizados completamente por la adición de $28,40\rm cm^3$ de NaOH $0,5000\rm moldm^{-3}$.	[2]						
	(d)	Resuma las razones por las que el hidróxido de sodio se considera una base de Brønsted–Lowry y de Lewis.	[1]						
	Bas	e de Brønsted–Lowry:							
	Bas	e de Lewis:							

(a)	Resuma qué mide la DBO.	
(b)	Un alumno disolvió 0,1240 \pm 0,0001 g de Na $_2$ S $_2$ O $_3$ para preparar 1000,0 \pm 0,4 cm 3 de solución para usar en el método Winkler.	
	Determine la incertidumbre porcentual en la concentración molar.	
(c)	Una muestra de agua de 25,00 cm³ se trató de acuerdo con el método Winkler.	
	Etapa I: $2Mn^{2+}(aq) + O_2(g) + 4OH^-(aq) \rightarrow 2MnO_2(s) + 2H_2O(l)$	
	Etapa II: $MnO_2(s) + 2I^-(aq) + 4H^+(aq) \rightarrow Mn^{2+}(aq) + I_2(aq) + 2H_2O(l)$	
	Etapa III: $2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow 2I^-(aq) + S_4O_6^{2-}(aq)$	
	El yodo producido se tituló con 37,50 cm 3 de Na $_2$ S $_2$ O $_3$ 5,000 \times 10 $^{-4}$ mol dm $^{-3}$.	
	(i) Calcule la cantidad, en moles de Na ₂ S ₂ O ₃ usada en la titulación.	
	(ii) Deduzca la relación molar del ${\rm O_2}$ consumido en la etapa I con respecto al ${\rm S_2O_3}^{\rm 2-}$ usado en la etapa III.	_

(iii)	Calcule la concentración de oxígeno disuelto en la muestra, en mol dm ⁻³ .	[2]
(iv)	Las tres etapas del método Winkler son reacciones rédox.	
	Deduzca la semiecuación de reducción para la etapa II.	[1]
(v)	Sugiera una razón por la cual el método Winkler usado para medir la demanda bioquímica de oxígeno (DBO) se debe realizar a temperatura constante.	[1]

	alcanos sufren combustión y sustitución.	
(a)	Determine la entalpía molar de combustión de un alcano si $8,75 \times 10^{-4}$ moles arden, elevando la temperatura de 20,0 g de agua en 57,3 $^{\circ}$ C.	[2]
(b)	Formule ecuaciones para las dos etapas de propagación y una etapa de terminación en la formación de cloroetano a partir de etano.	[3]
(b)		[3]

8. El potencial estándar de electrodo del cinc se puede medir usando el electrodo estándar de hidrógeno (EEH).

Dibuje y anote el diagrama para mostrar el aparato completo requerido para medir el potencial estándar de electrodo del cinc.

[4]

9. Una delgada lámina de oro fue bombardeada con núcleos de helio (⁴He²⁺) a gran velocidad y la mayoría la atravesó sin desviarse, pero algunos se desviaron ampliamente de su trayectoria. El diagrama ilustra este experimento histórico.

(a) Sugiera qué conclusión sobre el átomo de oro se puede extraer de este experimento. [2]

Lamay	oría del ⁴	He ⁻ atr	aveso sı	n desvia	rse:				
Muy poo	cos ⁴ He ²⁻	⁺ se des	viaron a	mpliame	ente de s	u trayect	oria:		
Muy poo	cos ⁴ He ²⁻	⁺ se des	viaron a	mpliame	ente de s	u trayect	oria:	 	
Muy poo	cos ⁴ He ²⁻	se des	viaron a	mpliame	ente de s	u trayect	oria: 	 	

(Pregunta 9: continuación)

(b)	(i)	Experimentos posteriores demostraron que los electrones existen en niveles
		energéticos ocupando varias formas orbitales.

	Dibuje diagramas	de 1s, 2s y 2p.		[2]
	1s	2s	2p	
(ii)	Indique la configu	ración electrónica del cobre.		[1]
(iii)	Un complejo [Cu(etal de transición que forma diferer H ₂ O) ₆] ²⁺ (aq) cambia de color cuand	ntes complejos coloreados. do se le añade exceso de Cl ⁻ (a	ıq).
	Explique la causa cuadernillo de da	i de este cambio de color, usando l tos.	as secciones 3 y 15 del	[3]

La hibridación de los hidrocarburos afecta su reactividad.

10.

Enlace pi (π): (ii) Identifique la hibridación del carbono en el etano, eteno y etino. Etano Eteno Etino Hibridación del carbono (b) (i) Indique, dando una razón, si el 1-buteno presenta isomería cis-trans.	
(ii) Identifique la hibridación del carbono en el etano, eteno y etino. Etano Eteno Etino Hibridación del carbono	
(ii) Identifique la hibridación del carbono en el etano, eteno y etino. Etano Eteno Etino Hibridación del carbono	
(ii) Identifique la hibridación del carbono en el etano, eteno y etino. Etano Eteno Etino Hibridación del carbono	
Etano Eteno Etino Hibridación del carbono	
Etano Eteno Etino Hibridación del carbono	
Etano Eteno Etino Hibridación del carbono	
Hibridación del carbono	[1]
(b) (i) Indique, dando una razón, si el 1-buteno presenta isomería cis-trans.	
(b) (i) Indique, dando una razón, si el 1-buteno presenta isomería cis-trans.	
	[1]
 (ii) Indique el tipo de reacción que se produce entre el 1-buteno y el yoduro de hidrógeno a temperatura ambiente. 	[1]
Esta pregunta continúa en la página siguiente)	

(Pregunta 10: continuación)

(iii ₎	Explique el mecanismo de la reacción entre el 1-buteno y el yoduro de hidrógeno usando flechas curvas para representar el movimiento de los pares electrónicos. [4]
(iv) Indique, dando una razón, si el producto de esta reacción presenta estereoisomería. [1]
Esta pregunt	ta continúa en la página siguiente)

(Pregunta 10: continuación)

(c) Se llevaron a cabo experimentos para investigar el mecanismo de la reacción entre 2-cloropentano y el hidróxido de sodio acuoso.

Experimento	[NaOH] (moldm ⁻³)	[C₅H₁₁Cl] (mol dm ⁻³)	Velocidad inicial (mol dm ⁻³ s ⁻¹)
1	0,20	0,10	$2,50 \times 10^{-2}$
2	0,20	0,15	$3,75 \times 10^{-2}$
3	0,40	0,20	1,00 × 10 ⁻¹
4	0,60	0,25	

(i) Deduzca la expresión de velocidad para esta reacción.	[1]
(ii) Deduzca las unidades de la constante de velocidad.	[1]
(iii) Determine la velocidad inicial de reacción del experimento 4.	[2]

(Pregunta 10: continuación)

(e) Discuta la razón por la cual el benceno es más reactivo con un electrófilo que con un nucleófilo.	(d)	Deduzca, dando una razón, el mecanismo de la reacción entre 2-cloropentano e hidróxido de sodio.
	(e)	·

11.	Se añadieron 50,00 cm³ de hidróxido de sodio 0,75 mol dm⁻³ en porciones de 1,00 cm³ a 22,50 cm³ de ácido cloroetanoico 0,50 mol dm⁻³.		
	(a)	Calcule el pH inicial, antes de cualquier añadido de hidróxido de sodio, usando la sección 21 del cuadernillo de datos.	[2]
	(b)	La concentración del exceso de hidróxido de sodio era 0,362 mol dm ⁻³ . Calcule el pH de la solución al final del experimento.	[1]

(Pregunta 11: continuación)

(c) Dibuje aproximadamente la curva de neutralización obtenida **y** rotule el punto de equivalencia.

[3]

Fuentes:

1. (c) NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?ID=C71238&Un its=SI&Type=IRSPEC&Index=3#IR-SPEC [consultado el 6 de mayo de 2020]. Fuente adaptada.

NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?ID=C79094&Units=SI&Mask=80#IR-Spec [consultado el 6 de mayo de 2020]. Fuente adaptada.

NIST Mass Spectrometry Data Center Collection © 2021 copyright by the U.S. Secretary of Commerce on behalf of the United States of America [derechos de autor del Secretario de Comercio de los Estados Unidos en nombre de los Estados Unidos de América]. Todos los derechos reservados. https://webbook.nist.gov/cgi/cbook.cgi?Name=propanal&Units=SI&cIR=on&cTZ=on#IRSpec [consultado el 6 de mayo de 2020]. Fuente adaptada.

- 3. (c) (ii) Chemistry 2e, Chpt. 21 Nuclear Chemistry, Appendix G: Standard Thermodynamic Properties for Selected Substances https://openstax.org/books/chemistry-2e/pages/g-standard-thermodynamic-properties-for-selected-substances#page_667adccf-f900-4d86-a13d-409c014086ea © 1999-2021, Rice University. Salvo que se indique lo contrario, los libros de texto de este sitio están autorizados conforme a la licencia de Creative Commons Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/deed.es.
- 9. Figura de *PPLATO / FLAP (Flexible Learning Approach To Physics)*, http://www.met.reading.ac.uk/pplato2/h-flap/phys8_1.html#top 1996 The Open University y The University of Reading.

Los demás textos, gráficos e ilustraciones: © Organización del Bachillerato Internacional, 2021

