积分变换笔记

南京工程学院

Serein

2023年1月21日

目录

第一章	Fourier 变换	1
1.1	Fourier 积分公式	2
1.2	Fourier 变换与其逆变换	2
1.3	单位脉冲函数及其 Fourier 变换	3
1.4	Fourier 变换的性质	4
1.5	卷积	6
公一立	T 1 715-14	_
第二章	Laplace 变换	7
	Laplace 变换 Laplace 变换的概念	7
2.1		
2.1 2.2	Laplace 变换的概念	9
2.1 2.2 2.3	Laplace 变换的概念	10

第一章 Fourier 变换

1.1 Fourier 积分公式

Fourier 积分公式

当在 t 处连续时,有

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(\tau) e^{-i\omega\tau} d\tau \right] e^{i\omega t} d\omega$$

当在 t 处间断时,有

$$f(t) = \frac{f(t+0) + f(t-0)}{2}$$

注意: 当在 t 处间断时, 应取该点左右极限计算

Fourier 积分公式的复数形式

$$f\left(t\right) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f\left(\tau\right) e^{-i\omega\tau} d\tau \right] e^{i\omega t} d\omega$$

Dirichlet 积分

$$\int_0^{+\infty} \frac{\sin x}{x} \mathrm{d}x = \frac{\pi}{2}$$

1.2 Fourier 变换与其逆变换

Fourier 变换式

$$\mathscr{F}[f(t)] = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt = F(\omega)$$

 $F(\omega)$ 为 f(t) 的象函数

Fourier 逆变换式

$$\mathscr{F}^{-1}\left[F\left(\omega\right)\right] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F\left(\omega\right) e^{i\omega t} d\omega = f\left(t\right)$$

f(t) 为 $F(\omega)$ 的象原函数

1.3 单位脉冲函数及其 Fourier 变换

 \mathbf{Dirac} 函数(δ 函数)

若 $\delta(t)$ 满足

$$\delta\left(t\right) = 0, t \neq 0$$

以及

$$\int_{-\infty}^{+\infty} \delta(t) \, \mathrm{d}t = 1$$

则 $\delta(t)$ 为 δ 函数

性质

对性质良好的 f(t), δ 函数有如下性质

性质一

$$\int_{-\infty}^{+\infty} \delta(t) f(t) dt = f(0)$$

$$\int_{-\infty}^{+\infty} \delta(t - t_0) f(t) dt = f(t_0)$$

性质二

$$\int_{-\infty}^{+\infty} \delta'(t) f(t) dt = -f'(0)$$

$$\int_{-\infty}^{+\infty} \delta^{(n)}(t) f(t) dt = (-1)^n f^{(n)}(0)$$

性质三

$$\delta\left(t\right) = \delta\left(-t\right)$$

性质四

$$\int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$$

$$u(t) = \begin{cases} 1, t > 0 \\ 0, t < 0 \end{cases}$$

$$\frac{du(t)}{dt} = \delta(t)$$

性质五

$$\delta(at) = \frac{1}{|a|}\delta(t)$$
$$\delta(at - b) = \frac{1}{|a|}\delta\left(t - \frac{b}{a}\right)$$

常见函数的 Fourier 变换

表 1.1: 常见函数的 Fourier 变换

<u> </u>						
函数	Fourier 变换					
$\delta\left(t\right)$	1					
$\delta\left(t-t_{0}\right)$	$e^{-i\omega t_0}$					
$u\left(t\right)$	$rac{1}{\mathrm{i}\omega}+\pi\delta\left(\omega ight)$					
$\sin\left(\omega_0 t\right)$	$\pi i \left[\delta \left(\omega + \omega_0 \right) - \delta \left(\omega - \omega_0 \right) \right]$					
$\cos\left(\omega_0 t\right)$	$\pi \left[\delta \left(\omega + \omega_0 \right) + \delta \left(\omega - \omega_0 \right) \right]$					
1	$2\pi\delta\left(\omega ight)$					
$\delta^{\prime}\left(t\right)$	$\mathrm{i}\omega$					
$\delta^{(n)}\left(t\right)$	$(\mathrm{i}\omega)^n$					

1.4 Fourier 变换的性质

A、线性性质

若
$$\mathscr{F}\left[f_{1}\left(t\right)\right]=F_{1}\left(\omega\right)$$
, $\mathscr{F}\left[f_{2}\left(t\right)\right]=F_{2}\left(\omega\right)$, 则
$$\mathscr{F}\left[\alpha f_{1}\left(t\right)+\beta f_{2}\left(t\right)\right]=\alpha F_{1}\left(\omega\right)+\beta F_{2}\left(\omega\right)$$
 $\mathscr{F}^{-1}\left[\alpha F_{1}\left(\omega\right)+\beta F_{2}\left(\omega\right)\right]=\alpha f_{1}\left(t\right)+\beta f_{2}\left(t\right)$

B、位移性质

若
$$\mathscr{F}\left[f\left(t\right)\right]=F\left(\omega\right)$$
,则

$$\mathscr{F}\left[f\left(t+t_{0}\right)\right]=\mathrm{e}^{\mathrm{i}\omega t_{0}}F\left(\omega\right)$$

$$\mathscr{F}\left[e^{i\omega_0 t} f\left(t\right)\right] = F\left(\omega - \omega_0\right)$$

C、微分性质

设 $\mathscr{F}[f(t)] = F(\omega)$,若 f(t) 在 $(-\infty, +\infty)$ 上连续或只有有限个可去间断点,且当 $|t| \to +\infty$, $f(t) \to 0$,则

$$\mathscr{F}[f'(t)] = i\omega F(\omega)$$

$$\mathscr{F}[f^{(n)}(t)] = (i\omega)^n F(\omega)$$

$$\mathscr{F}[tf(t)] = iF'(\omega)$$

$$\mathscr{F}[t^n f(t)] = i^n F^{(n)}(\omega)$$

D、积分性质

设 $\mathscr{F}[f(t)] = F(\omega)$,

当 $t \to +\infty$ 时, $g(t) = \int_{-\infty}^{t} f(t) dt \to 0$,则

$$\mathscr{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{i\omega} F(\omega)$$

当 $\lim_{t\to +\infty} g(x) \neq 0$ 时,则

$$\mathscr{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{i\omega} F(\omega) + \pi F(0) \delta(\omega)$$

E、相似性质

设 $\mathscr{F}[f(t)] = F(\omega)$,且 $a \neq 0$,则

$$\mathscr{F}\left[f\left(at\right)\right] = \frac{1}{|a|}F\left(\frac{\omega}{a}\right)$$

补充

在求 Fourier 变换时,我们或许会遇到被变换式中有 $\sin \omega_0 t$ 或是 $\cos \omega_0 t$,此时我们需要用定义展开,同时用欧拉公式表示出 $\sin \omega_0 t$ 或 $\cos \omega_0 t$,根据 Euler 公式,我们有

$$\sin \omega_0 t = \frac{e^{i\omega_0 t} - e^{-i\omega_0 t}}{2i}$$

以及

$$\cos \omega_0 t = \frac{e^{i\omega_0 t} + e^{-i\omega_0 t}}{2}$$

1.5 卷积

概念

$$f_1(t) * f_2(t) = \int_{-\infty}^{\infty} f_1(\tau) f_2(t - \tau) d\tau$$

满足的运算律

(1) 交换律

$$f_1(t) * f_2(t) = f_2(t) * f_1(t)$$

(2) 结合律

$$f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t)$$

(3) 分配律

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t)$$

(4) 设 α 为常数,则

$$\alpha [f_1(t) * f_2(t)] = [\alpha f_1(t)] * f_2(t) = f_1(t) * [\alpha f_2(t)]$$

(5) 函数卷积的绝对值小于等于函数绝对值的卷积,即

$$|f_1(t) * f_2(t)| \le |f_1(t)| * |f_2(t)|$$

卷积定理

设
$$\mathscr{F}\left[f_{1}\left(t\right)\right]=F_{1}\left(\omega\right)$$
, $\mathscr{F}\left[f_{2}\left(t\right)\right]=F_{2}\left(\omega\right)$, 则

$$\mathscr{F}\left[f_1(t) * f_2(t)\right] = F_1(\omega) \cdot F_2(\omega)$$

$$\mathscr{F}^{-1}\left[F_1(\omega) \cdot F_2(\omega)\right] = f_1(t) * f_2(t)$$

$$\mathscr{F}\left[f_1(t) \cdot f_2(t)\right] = \frac{1}{2\pi} F_1(\omega) * F_2(\omega)$$

$$\mathscr{F}\left[f_1(t) f_2(t) \cdots f_n(t)\right] = \frac{1}{(2\pi)^{n-1}} F_1(\omega) * F_2(\omega) * \cdots * F_n(\omega)$$

第二章 Laplace 变换

2.1 Laplace 变换的概念

定义

Laplace 变换

$$F(s) = \mathcal{L}[f(t)] = \int_0^{+\infty} f(t) e^{-st} dt$$

Laplace 逆变换

$$f(t) = \mathcal{L}^{-1}[F(s)]$$

常见函数的 Laplace 变换

表 2.1: 常见函数的 Laplace 变换

函数	Laplace 变换
1	$\frac{1}{s}$
$u\left(t\right)$	$\frac{1}{s}$
e^{kt}	$\frac{1}{s-k}$
t^m	$rac{m!}{s^{m+1}}$
$\sin\left(kt\right)$	$\frac{k}{s^2 + k^2}$
$\cos\left(kt\right)$	$\frac{s}{s^2+k^2}$
$\delta\left(t\right)$	1
$\delta^{(n)}\left(t\right)$	s^n

几种单位阶跃函数变形的 Laplace 变换

例 2.1.1.

$$\mathscr{L}\left[u\left(t-1\right)\right] = \mathscr{L}\left[u\left(t-1\right)u\left(t-1\right)\right] = e^{-s}\mathscr{L}\left[u\left(t\right)\right] = \frac{e^{-s}}{s}$$

例 2.1.2.

$$\mathscr{L}\left[u\left(1-t\right)\right] = \mathscr{L}\left[1-u\left(t-1\right)\right] = \frac{1}{s} - \frac{\mathrm{e}^{-s}}{s}$$

例 2.1.3.

$$\mathscr{L}\left[u\left(2t-2\right)\right]=\mathscr{L}\left[u\left(t-1\right)\right]=\mathscr{L}\left[u\left(t-1\right)u\left(t-1\right)\right]=\mathrm{e}^{-s}\mathscr{L}\left[u\left(t\right)\right]=\frac{\mathrm{e}^{-s}}{s}$$

例 2.1.4.

$$\mathscr{L}\left[u\left(t+1\right)\right] = \frac{1}{s}$$

2.2 Laplace 变换的性质

A、线性性质

若
$$\mathscr{L}[f_1(t)] = F_1(s)$$
, $\mathscr{L}[f_2(t)] = F_2(s)$, 则
$$\mathscr{L}[\alpha f_1(t) + \beta f_2(t)] = \alpha F_1(s) + \beta F_2(s)$$

$$\mathscr{L}^{-1}[\alpha F_1(s) + \beta F_2(s)] = \alpha \mathscr{L}^{-1}[F_1(s)] + \beta \mathscr{L}[F_2(s)]$$

B、微分性质

若 $\mathcal{L}[f(t)] = F(s)$,则

$$\mathcal{L}[f'(t)] = sF(s) - f(0)$$

$$\mathcal{L}[f''(t)] = s^2F(s) - sf(0) - f'(0)$$

$$\mathcal{L}[tf(t)] = -F'(s)$$

$$\mathcal{L}[t^nf(t)] = (-1)^n F^{(n)}(s)$$

C、积分性质

若 $\mathcal{L}[f(t)] = F(s)$,则

$$\mathcal{L}\left[\int_{0}^{t} f(\tau) d\tau\right] = \frac{1}{s} F(s)$$

$$\mathcal{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{+\infty} F(s) ds$$

$$\int_{0}^{+\infty} \frac{f(t)}{t} dt = \int_{0}^{+\infty} F(s) ds$$

D、位移性质

若 $\mathcal{L}[f(t)] = F(s)$,则

$$\mathscr{L}\left[e^{at}f\left(t\right)\right] = F\left(s - a\right)$$

E、延迟性质

若 $\mathcal{L}[f(t)] = F(s)$, 则对于 $\forall \tau > 0$, 有

$$\mathscr{L}\left[f\left(t-\tau\right)u\left(t-\tau\right)\right] = e^{-s\tau}F\left(s\right)$$

Fourier 与 Laplace 变换性质

表 2.2: Fourier 与 Laplace 变换性质						
性质	Fourier 变换	Laplace 变换				
	$\mathscr{F}\left[f'\left(t\right)\right] = \mathrm{i}\omega F\left(\omega\right)$	$\mathscr{L}\left[f'\left(t\right)\right] = sF\left(s\right) - f\left(0\right)$				
微分性质	$\mathscr{F}\left[f^{(n)}\left(t\right)\right] = \left(\mathrm{i}\omega\right)^{n} F\left(\omega\right)$	$\mathscr{L}\left[f''\left(t\right)\right] = s^{2}F\left(s\right) - sf\left(0\right) - f'\left(0\right)$				
D. 人工/人	$\mathscr{F}\left[tf\left(t\right)\right]=\mathrm{i}F'\left(\omega\right)$	$\mathscr{L}\left[tf\left(t\right)\right] = -F'\left(s\right)$				
	$\mathscr{F}\left[t^{n}f\left(t\right)\right]=\mathrm{i}^{n}F^{(n)}\left(\omega\right)$	$\mathscr{L}\left[t^{n}f\left(t\right)\right] = \left(-1\right)^{n}F^{(n)}\left(s\right)$				
		$\mathscr{L}\left[\int_0^t f(\tau) d\tau\right] = \frac{1}{s} F(s)$				
积分性质	$\mathscr{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{i\omega} F(\omega)$	$\mathscr{L}\left[\frac{f(t)}{t}\right] = \int_{s}^{+\infty} F(s) \mathrm{d}s$				
		$\int_0^{+\infty} \frac{f(t)}{t} dt = \int_0^{+\infty} F(s) ds$				
位移性质	$\mathscr{F}\left[f\left(t+t_{0}\right)\right]=\mathrm{e}^{\mathrm{i}\omega t_{0}}F\left(\omega\right)$	$\mathscr{L}\left[e^{at}f\left(t\right)\right] = F\left(s - a\right)$				
	$\mathscr{F}\left[e^{i\omega_{0}t}f\left(t\right)\right] = F\left(\omega - \omega_{0}\right)$	$\mathscr{L}\left[0,f\left(t\right)\right]=1,\left(s-u\right)$				
Fourier 变换相似性质	$\mathscr{F}[f(at)] = \frac{1}{ a } F\left(\frac{\omega}{a}\right)$	$\mathcal{L}\left[f\left(t-\tau\right)u\left(t-\tau\right)\right] = e^{-s\tau}F\left(s\right)$				
Laplace 变换延迟性质	$\mathcal{F}\left[J\left(av\right)\right] = \frac{1}{ a }T\left(\frac{a}{a}\right)$	$\mathscr{L}\left[J\left(\iota-I\right)u\left(\iota-I\right)\right]=e^{-I}\left(\mathfrak{d}\right)$				

Laplace 逆变换 2.3

部分分式法

有些题目可将有理分式化为多个真分式之和,真分式形如

$$\frac{b}{(x+a)^m}$$

$$\frac{dx+e}{(ax^2+bx+c)^n}, a \neq 0, b^2-4ac < 0$$

配方法

有些题目可将分母进行配方,配凑出 $\sin(kt)$ 或者 $\cos(kt)$ 的 Laplace 变换形式

例 2.3.1.

$$\mathcal{L}^{-1}\left[\frac{2}{(s+1)(s+2)}\right] = \mathcal{L}^{-1}\left[2\cdot\left(\frac{1}{s+1} - \frac{1}{s+2}\right)\right]$$
$$= 2\mathcal{L}^{-1}\left[\frac{1}{s+1} - \frac{1}{s+2}\right]$$
$$= 2\left(e^{-t} - e^{-2t}\right)$$

例 2.3.2.

$$\mathcal{L}^{-1}\left[\frac{s-1}{s(s+1)(s+2)}\right]$$

不妨设

$$\frac{s-1}{s(s+1)(s+2)} = \frac{a}{s} + \frac{b}{s+1} + \frac{c}{s+2}$$

易得

$$s-1 = a(s+1)(s+2) + bs(s+2) + cs(s+1)$$

因此有

$$\frac{s-1}{s(s+1)(s+2)} = \frac{-\frac{1}{2}}{s} + \frac{2}{s+1} + \frac{-\frac{3}{2}}{s+2}$$

从而

$$\mathcal{L}^{-1}\left[\frac{s-1}{s(s+1)(s+2)}\right] = \mathcal{L}^{-1}\left[\frac{-\frac{1}{2}}{s} + \frac{2}{s+1} + \frac{-\frac{3}{2}}{s+2}\right]$$

$$= -\frac{1}{2}\mathcal{L}^{-1}\left[\frac{1}{s}\right] + 2\mathcal{L}^{-1}\left[\frac{1}{s+1}\right] - \frac{3}{2}\mathcal{L}^{-1}\left[\frac{1}{s+2}\right]$$

$$= -\frac{1}{2} + 2e^{-t} - \frac{3}{2}e^{-2t}$$

例 2.3.3.

$$\mathscr{L}^{-1}\left[\frac{s+2}{s\left(s+1\right)^2}\right]$$

不妨设

$$\frac{s+2}{s(s+1)^2} = \frac{a}{s} + \frac{b}{s+1} + \frac{c}{(s+1)^2}$$

则我们有

$$s + 2 = a(s+1)^{2} + bs(s+1) + cs$$

易得

$$\frac{s+2}{s(s+1)^2} = \frac{2}{s} + \frac{-2}{s+1} + \frac{-1}{(s+1)^2}$$

而

$$\frac{-1}{\left(s+1\right)^2} = \left(\frac{1}{s+1}\right)'$$

且

$$\mathscr{L}\left[tf\left(t\right)\right] = -F'\left(s\right)$$

因此

$$\mathcal{L}^{-1}\left[\frac{-1}{(s+1)^2}\right] = te^{-t}$$

从而

$$\mathcal{L}^{-1} \left[\frac{s+2}{s(s+1)^2} \right] = \mathcal{L}^{-1} \left[\frac{2}{s} + \frac{-2}{s+1} + \frac{-1}{(s+1)^2} \right]$$
$$= 2\mathcal{L}^{-1} \left[\frac{1}{s} \right] - 2\mathcal{L}^{-1} \left[\frac{1}{s+1} \right] + \mathcal{L}^{-1} \left[\frac{-1}{(s+1)^2} \right]$$
$$= 2 - 2e^{-t} + te^{-t}$$

例 2.3.4.

$$\mathscr{L}^{-1}\left[\frac{s}{\left(s^2+1\right)^2}\right]$$

注意到

$$\left(\frac{1}{s^2+1}\right)' = -\frac{2s}{\left(s^2+1\right)^2}$$

从而

$$\mathcal{L}^{-1}\left[\frac{s}{(s^2+1)^2}\right] = \mathcal{L}^{-1}\left[\frac{-2s}{(s^2+1)^2}\right] \times \left(-\frac{1}{2}\right)$$
$$= -\frac{1}{2}\mathcal{L}^{-1}\left[\left(\frac{1}{s^2+1}\right)'\right]$$
$$= \frac{1}{2}\mathcal{L}^{-1}\left[-\left(\frac{1}{s^2+1}\right)'\right]$$
$$= \frac{1}{2}t\sin t$$

2.4 卷积

概念

$$f_{1}(t) * f_{2}(t) = \int_{0}^{t} f_{1}(\tau) f_{2}(t - \tau) d\tau$$

满足的运算律

对于 Laplace 卷积, 其满足的运算律与 Fourier 卷积满足的运算律一致

卷积定理

设
$$\mathscr{L}\left[f_{1}\left(t\right)\right]=F_{1}\left(s\right)$$
, $\mathscr{L}\left[f_{2}\left(t\right)\right]=F_{2}\left(s\right)$, 则

$$\mathcal{L}\left[f_{1}\left(t\right)\ast f_{2}\left(t\right)\right]=F_{1}\left(s\right)\cdot F_{2}\left(s\right)$$

$$\mathcal{L}^{-1}\left[F_{1}\left(s\right)\cdot F_{2}\left(s\right)\right]=f_{1}\left(t\right)\ast f_{2}\left(t\right)$$

例 2.4.1. 求

$$f_1(t) = \begin{cases} 0, t \leq 0 \\ t, t > 0 \end{cases}$$

与

$$f_2(t) = \begin{cases} 0, t \leq 0\\ \sin t, t > 0 \end{cases}$$

的卷积

解

1) 当
$$t \leq 0$$
 时, $f_1(t) * f_2(t) = 0$

2) 当 t > 0 时,

$$\mathscr{L}\left[f_{1}\left(t\right)*f_{2}\left(t\right)\right]=\mathscr{L}\left[f_{1}\left(t\right)\right]\cdot\mathscr{L}\left[f_{2}\left(t\right)\right]$$

由于

$$\mathscr{L}\left[f_1\left(t\right)\right] = \frac{1}{s^2}$$

$$\mathscr{L}\left[f_2\left(t\right)\right] = \frac{1}{s^2 + 1}$$

则

$$\mathscr{L}[f_1(t) * f_2(t)] = \frac{1}{s^2} \cdot \frac{1}{s^2 + 1} = \frac{1}{s^2} - \frac{1}{s^2 + 1}$$

因此

$$f_1(t) * f_2(t) = \mathcal{L}^{-1} \left[\frac{1}{s^2} - \frac{1}{s^2 + 1} \right] = t - \sin t$$

2.5 Laplace 变换的应用

解线性微分方程

例 2.5.1. 解线性微分方程:

$$y'' + 2y' - 3y = e^{-t}$$

且满足初值条件:

$$y(0) = 0, y'(0) = 1$$

解

令 $y=y\left(t\right)$ 是该微分方程的解,且 $\mathscr{L}\left[y\left(t\right)\right]=Y\left(s\right)$

则我们有

$$\mathscr{L}\left[y''\left(t\right)\right] + 2\mathscr{L}\left[y'\left(t\right)\right] - 3\mathscr{L}\left[y\left(t\right)\right] = \mathscr{L}\left[\mathrm{e}^{-t}\right]$$

而又由于

$$\mathcal{L}[y''(t)] = s^2 Y(s) - sy(0) - y'(0)$$
$$\mathcal{L}[y'(t)] = sY(s) - y(0)$$

则

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 3Y(s) = \frac{1}{s+1}$$

整理得

$$(s^2 + 2s - 3) Y(s) = \frac{s+2}{s+1}$$

即

$$Y(s) = \frac{s+2}{(s+1)(s-1)(s+3)}$$

而又由于

$$\frac{s+2}{(s+1)(s-1)(s+3)} = \frac{-\frac{1}{4}}{s+1} + \frac{\frac{3}{8}}{s-1} + \frac{-\frac{1}{8}}{s+3}$$

则

$$y(t) = \mathcal{L}^{-1} \left[\frac{-\frac{1}{4}}{s+1} + \frac{\frac{3}{8}}{s-1} + \frac{-\frac{1}{8}}{s+3} \right]$$
$$= -\frac{1}{4} e^{-t} + \frac{3}{8} e^{t} - \frac{1}{8} e^{-3t}$$
$$= \frac{1}{8} \left(3e^{t} - 2e^{-t} - e^{-3t} \right)$$