Reg. No.:

Name

VIT

Vellore Institute of Technology (Decined to be University model section) of UGC Act, 1990)

Continuous Assessment Test (CAT-2) - May 2023

Programme	: B.Tech (CSE)	Semester	: Winter 2022-2023
		Code	: BECE102L
Course	: Digital System Design	Class Nbr	: CH2022232300522 CH2022232300543 CH2022232300532 CH2022232300556 CH2022232300195 CH2022232300524
Faculty	: Dr.Nithya Venkatesan, Dr.B.Sri Revathi, Dr.G.Kanimozhi, Dr.S.Angalaeswari, Dr.Ravi Tiwari, Prof. Mohammed Ancesh	Slot	: B2+TB2
Time	: 90 minutes	Max. Marks	: 50

Answer ALL the Questions

S.No.	Question Description	Marks
1.	Perform multiplication of (20) x (-19) using Booth's Multiplication algorithm. Also find out the number of additions, number of subtractions and number of arithmetic shifts required.	[10]
2.	Perform multiplication of (1010) ₂ x (101) ₂ using unsigned array multiplier and draw equivalent logic diagram of 4 x 3 Multiplier.	[10]
	Consider a simple human counter system for an elevator overload indication in which the number of persons entering the elevator is detected by an IR sensor. By default, it must display value '0' and increment the number on the display by one each time a human enters the elevator. Assume the maximum capacity of the elevator is 9 persons and if it exceeds the count of 9, there will be an alarm sound to indicate the overload condition and reset the counter. Draw state diagram and design an appropriate control circuit which performs increment operation using T-Flip flop and explain each state in detail.	0° ne ce [10]
	Design a synchronous counter which can count the random state sequence as 001,100,011,101,111,110,010,001 using JK flip flops. a) Draw the state diagram. (2 marks) b) Draw the state table and excitation table. (2 marks) c) Draw the required K Maps and find the expression. (4 marks) d) Draw the logic diagram of the given counter. (2 marks)	[10]

A sequential circuit has three D flip-flops with outputs as A, B, and C and one input, x. It is described by the following flip-flop input functions:

this three D flip-flops with outputs as A. B. and C and one input, x. It is following flip-flop input functions:

$$D_A = (BC' + B'C)x + (BC + B'C')x'$$

$$D_B = A$$

$$D_C = B$$
ic diagram of the above function. (3 marks)

Sativaprakash

- (a) Draw the logic diagram of the above function. (3 marks)
- (b) Derive the state table for the circuit. (3 marks)

Saityaprakash

(c) Draw two state diagrams: one for x = 0 and the other for x = 1. (4 marks)

Continuous Assessment Test II - May 2023

Programme : B.Tech CSE Semester : Winter 2022-23
Course : Digital System Design Code : BECE102L

Course : Digital System Design Code : BECE102L Faculty : G. Angeline Ezhilarasi Slot : B2+TB2

Class Number : CH2022232300528

Time : $1\frac{1}{2}$ Hours Max. Marks : 50

Answer ALL Questions

Design a synchronous sequential circuit to realize the state diagram shown below.

(a) Obtain the state table for design using JK flip flop.

(6)

(6)

(b) Find combinational circuit required for the design using k-maps.

(3)

(c) Draw the sequential circuit.

- Design a asynchronous sequential circuit using a positive edge triggered D Flip Flop to generate a 4 KHz timing signal from a 16kHz clock frequency signal.
 - (a) How many flip flops are required for the design? Verify the output with a timing diagram.
 - (b) How will the operation of the circuit change if all the flip flops in the design are triggered simultaneously with the same clock signal. Validate your answer with the output.
- A Finite State Machine (FSM) is required to detect the sequence 10101 in a serial input. Draw the state diagram for
 - (a) Mealy FSM with overlapping bit pattern.
 - (b) Moore FSM with non-overlapping bit pattern.

(6)

(4)

(5)

(5

- 4. Observe the sequential circuit shown below, where w is the input and z is the output.
 - (a) Write the necessary input and output equations.

 (b) Obtain the action of the contract of
 - (b) Obtain the state table and draw the state diagram.

 (c) Ukurita it is in Mark 1991.
 - (c) Identify if it is Mealy FSM or Moore FSM. Justify your answer.

 (3)

Sativalian

Continuous Assessment Test - 11 (CAT 2) - May 2023

		Semester	: Winter 22-23
Programme	B. Tech CSE & Spins	Code	: BECE102L
Course	: Digital Systems Design	Slot	: B1+TB1
Faculty	: Dr. Ashok Mondal Dr. Deepa T Prof. Deepa M Dr. Meera P S. Dr. Sriramalakshml P	Class Nbr	CH2022232300193 CH2022232300530 CH2022232300191 CH2022232300559 CH2022232300535 CH2022232300526
	Dr. Subbulekshmi D	Max. Marks	: 50
Time	: 1.5 hours	· · · · · · · · · · · · · · · · · · ·	

Answer ALL Questions

		Marks
Q.No.	Question Description Question Description 11 as the multiplicand and B = 13 as	
1	Compute the output of a 5 bit booth multiplier taking $A = 11$ as the multiplicand and $B = -13$ as	10
•	the multiplier.	
1		

- a) In computer computations it is often necessary to compare numbers. Two four-bit signed numbers, $X = x_3x_2x_1x_0$ and $Y = y_3y_2y_1y_0$, can be compared using the subtractor circuit shown 2. in Figure, which performs the operation X - Y . The three outputs denote the following:
 - Z = 1 if the result is 0; otherwise Z = 0
 - N = 1 if the result is negative; otherwise N = 0
 - V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how Z, N, and V can be used to determine the cases X = Y, X < Y, $X \le Y$, X > Y, and $X \ge Y$ with the help of an example . (5 marks)

10

b) Draw the logic diagram of a 4 bit cascaded full adder/subtractor. Perform the addition of two unsigned numbers 11 and 14 using the above circuit and mark the inputs and outputs correctly in the diagram. (5 marks) 3. Design a synchronous modulo 8 up/down counter using D flip flops. 4. A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
unsigned numbers 11 and 14 using the above circuit and mark the inputs and outputs correctly in the diagram. (5 marks) 3. Design a synchronous modulo 8 up/down counter using D flip flops. 4. A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
the diagram. (5 marks) 3. Design a synchronous modulo 8 up/down counter using D flip flops. 4. A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
3. Design a synchronous modulo 8 up/down counter using D flip flops. 4 A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
4 A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
4 A carry look ahead (CLA) adder is designed to add two 4-bit numbers. The circuit of CLA adder
is made up of full adders, half adders and logical AND gates. The input bits for CLA adder are
A ₃ A ₂ A ₁ A ₀ and B ₃ B ₂ B ₁ B ₀ respectively.
The state of the s
to ce the day bull adders and logical AND gates.
cast - 149
5. a) What is the function table for the feedback circuit shown in Figure ? Can it work as a flip-flop
or not? Give reasons. (5 marks)
Y P
b) The shift register shown in Figure is initially loaded with 1010. If clock is applied
continuously, after how many clock pulses the content of the shift register becomes 1010 again ?
(5 marks)
CIX
CATE OF CAME
1,0
+ + + + + + + + + + + + + + + + + + +
26,
THE STATE OF THE S

Continuous Assessment Test II - May 2023

	· AKASI S	Vell street	lore Institute of	Technology	30	Swain
2	5,	Continuous Ass	essment Test II		1.	WS 2022-23
Programme	: B.Tech		X	Semester	1:-	BECE102L
Course	: Digital System D	esian		Code		CH2022232300125
	Digital Gystell D	co.B.	6	Class Nbr		The second secon
Faculty	: Prof.K.Srivatsan			Slot	1: 1	D1
Time	: 90 Minutes			Max. Marks	:	50

	Answer ALL the questions	
Q.No.	Sub- divisio Question Text	Marks
<i>y.</i>	Indicate the input, output and clock pattern as waveforms in every clock cycle for Scrial In Serial Out Register for the following input pattern "1110". Initially assume the output of every flip-flop as zero.	[5]
2.	Implement the Boolean function $F(A, B, C) = \Sigma(3, 5, 6, 7)$ with a 4:1 multiplexer. b) Write a Verilog code for the above design	[10]
3.	Generate a parity bit for the binary code "0110" to be in even parity. Include the generated parity bit to determine the binary code "0100" at the receiver side is error free. Draw the logic circuit for the same.	[10]
4.	Determine the product of the following integers (14 x -8) using appropriate multiplication algorithm that uses addition and shift operation.	[10]
5.	Write a Verilog code for the given circuit using adder instantiations	
<u> </u>		

[10]

[5]

Determine the output states for this J-K flip-flop, given the pulse inputs shown:

Sativaprakashswair o saitya.Prakash swalin Q

	Character 1 to 11 of 11	2023	
Programme	: B.Tech (ECE/ECM)	Semester	WS 2022-23
Course		Code	BECE102L
	Digital System Design	Class Nb;	: CH2023240100388 CH2023240100550 CH2023240100549 CH2023240100406 CH2023240100387 CH2023240100553
Faculty	: Dr. Kaustab Ghosh, Dr. S. Umadevi, Dr. V. Prakash, Dr. Chandramauleshwar Roy, Dr. Jeans Jenifer, Ms. Hemavathy	Slot	: B2+TB2
Time	: 90 Minutes	Max. Marks	: 50

Answer ALL the questions

Q. No.	Sub. Sec.	Questions	Marks	Modul e No.	Level	Hot7	CO's
1.		Consider that you need to design an Arithmetic and Logic Unit (ALU) circuit in your lab which will perform either addition or subtraction operation depending upon a single one-bit binary input as 0 or 1. However, your lab has only full adder IC chips along with all chips of all other logic gates. Explain how you would design this ALU with the minimum facilities available in your lab. The ALU should be designed by considering arithmetic operations upto 5 bits of binary numbers. Explain the design and working of the ALU by taking 21 and 26 as two the numbers. The circuit should add this numbers or subtract 21 from 26 and produce the output.		\ \frac{1}{2}	D	Y	3
2.		Perform multiplication of (-25) x (-15) using Booth's Multiplication algorithm. Also list out the number of additions, number of subtractions and number of arithmetic shifts required.	[10]	4	D	Y	3
3.	1	Assume a control unit designed for a rice packing machine with the purpose of making rice packs, each weighing precisely 5 kilograms. The machine measures the weight of the pack and represent it as a 3-bit binary number. This measured weight is then compared to a reference value of 5 kilograms. If the rice pack weighs less or more than 5 kilograms, a control signal is generated to either add or remove excess rice from the pack. If the rice pack's weight is exactly 5 kilograms, a control signal is generated to seal the pack. For the given requirement operform the following, (i) Design an appropriate control circuit for this comparison operation using basic logic gates. [6 marks] (ii) Write a Verilog HDL code in dataflow modelling for the same	1	4	E	Y	3
		(ii) Write a Verilog HDL code in datation massing				Page	Lot

Reg. No.:

Name :

Continuous Assessment Test II - March 2024

Programme	B. Tech. (CSE-AIM), B. Tech. (CSE), B. Tech. (CSE-CPS) & Samp; B. Tech. (CSE-AIR)	Semester :	WS 2023-24
	60	Code :	BECE102L
Course	: DIGITAL SYSTEMS DESIGN	Class Nbr.	CH2023240502074, CH2023240502114, CH2023240502132, CH2023240502083, CH2023240502148, CH2023240502122, CH2023240502499, CH2023240503428, CH2023240502062, CH2023240502095
Faculty	Dr. Shoba S, Dr. Kiruthika V, Dr.Sukriti, Dr. Ranjeet Kumar, Dr. K. Srivatsan, Dr. Girija Shankar Sahoo, Dr. V.Sumathi, Dr. A. Bharathi Sankar, Dr. Ravi Tiwari, Dr. Dheeren Ku Mahapatra	Slot :	A2+TA2
·	90 Minutes	Max. Marks	50

Answer ALL the questions

Q. No.	Sub Sec		
1.			Marks
	(i)	Construct the truth table of 4-bit parity generator for odd parity and implement its Boolean function using 4:1 multiplexer.	
	(ii)	Write a Verilog HDL program for designing 1 × 8 De-multiplexer using 1 × 2 De-multiplexer.	8+7=15
2.		Use a suitable algorithm, perform multiplication of (14) x (-24). [7 Marks]	
		 (i) Find the register size used for the calculation using specific algorithm [1 mark] (ii) Elaborate each step of calculation using the algorithm selected, for the required number of steps or count. Show step wise algorithmic variables used, as a tabulation and obtain the final result [7 marks] (iii) Why you have selected the specific algorithm and mention any two advantages [2 marks] 	10
3.		Design an adder circuit that reduces the propagation delay with inputs A= '1101' and B = '1000'. Explain the concept and determine the output for each stage. [7 Marks]	10
4.	(i)	inputs on their respective output simultaneously until all the 5 pieces of inputs '11010' are filled. Design and write the Verilog HDL for the same A	
3		and you are designing a security access control system for a high and it is	7+8=15

Course Faculty

Reg. No.: 238411038 : Ad: Higon . D

Continuous Assessment Test II - March 2024

Programme	: B.Tech. (CSE - All Programme)	Semester :	WS 2023-24
Course	Division D.	Code :	BECE102L
	Digital System Design	Slot :	A1 + TA1
Faculty	RANJEET KUMAR G LAKSHMI PRIYA DHEEREN KU MAHAPATRA KIRUTHIKA GIRIJA SHANKAR SUKRITI JEAN JENIFER NESAM J	Class Nbr	CH2023240502023 CH2023240502025 CH2023240502027 CH2023240502029 CH2023240502033 CH2023240502045 CH2023240502054
Time	: 90 Minutes	Max. Marks	50

Answer ALL the questions

Q.No.

Questions

Marks

10

Figure.1

Errors may arise during the data transmission process depicted in Figure 1 when noise is introduced into the signal. These errors occur particularly when the level of noise surpasses a threshold significant enough to disrupt the transmitted data. To ensure data transmissions between communication nodes are accurate, design an even parity checker with data inputs A, B, and C. Also implement the circuit using suitable multiplexer and write the Verilog HDL code for the same.

- Identify and implement the algorithm that involves 2's complement, addition, subtraction and shifting operations, to perform multiplication of two numbers 15 and -12. Elaborate on the step-by-step procedure involved using a flowchart.
 - (a)Can JK flip-flop be considered as a universal flip-flop? If yes, then justify by 10 comparing and contrasting with the help of its truth table and other flip-flops. (6 marks)

Page 1 of 2

10

2.

- (b) Complete the timing diagram shown in Figure 2 for two types of D flip-flop devices:
- (i) an active HIGH enabled latch and (ii) a positive edge-triggered D flip-flop. (4 marks)

Figure.2

- 4. Consider a control unit for a wheat packing machine to pack wheat of 6kg each. Present weight of the pack is measured and then it is compared with the reference value (6kg). If the wheat pack is less/greater than 6kg control signal generated to add/remove excess wheat into/from the wheat pack. If the wheat pack weight is exactly 6kg then control signal is generated to make a pack. Design an appropriate control circuit for the above mentioned comparison operation using basic logic gates. Also write a Verilog HDL code in dataflow modelling for the same.
 - (a) Draw the logic diagram of a 4-bit register incorporating D flip-flop and a 4×1 multiplexer with mode selection inputs S_1 and S_0 . The register functions according to the following Table 1: (5 Marks)

Sı	S ₀	Register Operation
0	0	No change
0	1	Complement the output
1	0	Clear register to 0
1	1	Load Data

Table. 1

(b) For the circuit shown in figure 3, two 4-bit parallel-in serial-out shift registers loaded with the data shown are used to feed the data to a Full Subtractor (FS). Initially, all the flip-flops are in clear state. After applying two clock pulses, identify the outputs of the Full Subtractor (FS). (5 Marks)

Figure.3