Autor:

Basilio Puente Varela 🛅

©Todos los derechos reservados

INDICE

1.	Ir	ntroduc	cción	5
2.	E:	specifi	cación del Modelo Conceptual	7
	2.1.	. Des	cripción del Sistema	7
	2.2.	. Pro	pósito y Requisitos del Modelo	8
	2.3.	. Fun	damentos Teóricos del Sistema	8
	2.	.3.1.	Estado del arte y teorías seleccionadas	8
	2.	.3.2.	Hipótesis y simplificaciones	9
	2.	.3.3.	Fuentes de datos (data pedigree)	10
	2.4.	. Car	acterísticas del Modelo	10
	2.	.4.1.	Dominios de la Física Modelados	10
	2.	.4.2.	Tipo de modelo	10
	2.5.	. Var	iables de Interés	11
	2.	.5.1.	Parámetros (parameters)	12
	2.	.5.2.	Entradas (inputs)	13
	2.	.5.3.	Salidas (outputs)	14
	2.	.5.4.	Variables internas expuestas y valores iniciales (exposed variables)	15
	2.6.	. Pla	n de Validación	16
	2.	.6.1.	Validación Conceptual	16
	2.	.6.2.	Validación Empírica	16
	2.7.	. Lim	itaciones del Modelo	17
	2.	.7.1.	Limitaciones Teóricas	17
3.	Α	NEXO -	Especificación del entregable FMU	18
	3.1.	. Car	acterísticas técnicas	18
	3.2.	. Doc	umentación del modelo	18
	3.	.2.1.	Descripción del modelo	18
	3.	.2.2.	Experimento tipo	18
	3.	.2.3.	Documentación	19
	3.3.	. Doc	umentación específica del cliente	20
	3.4.	. Imp	olementación de las limitaciones del modelo	21
	3.	.4.1.	Limitaciones que usan los mecanismos de aviso del estándar FMU	21
	<mark>3</mark> .	<mark>.4.2.</mark>	Código de Funcionamiento (Opcional)	22
4.	Α	NEXO -	Control de Calidad del Modelo	23
	4.1.	. Cor	ntrol automático de calidad del FMU	23

Basilio Puente Varela

4.2.	Control de calidad específico del FMU	23
4.3.	Control de calidad del código	23
4.4.	Buenas prácticas en el modelo	24
5. ANI	EXO - Otros Estándares	25
5.1.	Versionado	25
5.2.	Nombres de Variables	26
5.3.	Sistema de Unidades	27

INDICE DE FIGURAS

Figura 1: <mark>Esquema desarrollo de modelos (NASA-STD-7009)</mark>	6
Figura 2: Ejemplos de resistencias cerámicas (Hill Technical Sales Corp.)	7
Figura 3: Dominios de validación (Trucano, T.G. et al (2002))	16
INDICE DE TABLAS	
Tabla 1: Matriz de requisitos del modelo	8
Tabla 2: Dominios de la Física Modelados	
Tabla 3: Tabla de parámetros del modelo (parameters)	
Tabla 4: Tabla de entradas del modelo (inputs)	
Tabla 5: Tabla de salidas del modelo (outputs)	14
Tabla 6: Tabla de variables del modelo (variables)	15
Tabla 7: Descripción del modelo	18
Tabla 8: Checklist de calidad del FMU	
Tabla 9: Checklist de calidad del código	
Tabla 10: Checklist de buenas prácticas del modelo	
Tabla 11: Ejemplo de nombres de variables	26
Tabla 12: Ejemplo de definición de unidades físicas	

1. Introducción

Este documento contiene dos partes diferenciadas:

- Especificación del modelo conceptual
 - Esta parte incluye:
 - Desarrollo del modelo conceptual:
 - Descripción del sistema, propósito y requisitos
 - Fundamentos teóricos del sistema
 - Modelo matemático a desarrollar
 - Variables de interés
 - Plan de validación
 - Limitaciones teóricas del modelo
 - A estas limitaciones de la fase conceptual, habrá que añadir las limitaciones numéricas que deriven del desarrollo del modelo.
 - Plan de validación: Como se va a validar el modelo.
- Especificación del FMU
 - Esta especificación contiene el tipo y los campos del FMU que se deben cubrir, de forma que produzcan un entregable compacto (un solo archivo), con documentación autocontenida y sea procesable automáticamente para archivarlo en una librería.
 - El Anexo de otros estándares proporciona información para estandarizar nombres y versionado.

Además de la especificación del modelo conceptual, se incluye una parte de la especificación del modelo de simulación, que se corresponde a la comunicación del mismo con el exterior y sus características principales deseadas.

Figura 1: Esquema desarrollo de modelos (NASA-STD-7009)

Se incluye también la especificación de la documentación del modelo y un checklist básico de calidad que deberá ser comprobado previo a la emisión del mismo.

Este documento tiene un anexo con información de interés.

2. Especificación del Modelo Conceptual

2.1. Descripción del Sistema

En este apartado se describe en que consiste el sistema a modelar.

El sistema a modelar se trata de una resistencia cerámica usada típicamente en la descarga de emergencia de supercondensadores. Estas resistencias disipan la energía eléctrica de los supercondensadores calentándose desde la temperatura inicial del entorno hasta unos 120°C, en un tiempo de unos 30 segundos, para luego enfriarse lentamente mediante convección natural (o forzada) en un plazo de 4 a 6 horas aproximadamente.

Figura 2: Ejemplos de resistencias cerámicas (Hill Technical Sales Corp.)

Además, el modelo debe ser válido para otras resistencias eléctricas de tipo filamento en una corriente de aire (como puede ser un secador), mediante ajuste del número de elementos discretos en los que se compone el cilindro y su longitud.

2.2. Propósito y Requisitos del Modelo

En este apartado se establece el propósito del modelo y los requisitos del mismo.

El propósito del modelo es obtener con precisión el estado térmico del modelo y determinar la cantidad de calor disipada por medio del aire que le rodea.

La siguiente tabla lista los requisitos del modelo:

ID	Requisito	Etapa verificación
	El modelo incluirá los efectos transitorios de calor internos del	Modelo conceptual/
R.1	cilindro y su intercambio con el aire exterior	Modelo simulación
R.2	Se podrán ajustar las dimensiones y materiales del cilindro	Modelo simulación
	Se podrá eliminar los transitorios internos ó aumentar la precisión del cálculo de los mismos, mejorando el tiempo de	
R.3	cálculo	Modelo simulación
	El modelo debe funcionar tanto en convección natural como	Modelo conceptual/
R.4	forzada	Modelo simulación
		Modelo conceptual/
R.5	El modelo incluirá los efectos del calor por radiación	Modelo simulación
R.6	El modelo deberá validarse con literatura de referencia	Validación final

Tabla 1: Matriz de requisitos del modelo

2.3. Fundamentos Teóricos del Sistema

2.3.1. Estado del arte y teorías seleccionadas

Teoría física del comportamiento del modelo.

El comportamiento térmico transitorio de un cilindro es un fenómeno profundamente estudiado en la literatura donde se proporcionan soluciones exactas para el tipo unidimensional, que dependen de la función error, en número de Fourier y la función Bessel de primera clase¹.

Además, en una simplificación de lo anterior son las gráficas de Heisler donde se relacionan gráficamente los números de Biot y Fourier junto con la distribución de temperaturas².

Pero el uso de soluciones exactas sólo sería válido para determinar el fenómeno transitorio bajo unas condiciones constantes (velocidad del aire y su temperatura), siendo además costoso computacionalmente obtener la temperatura en diversos puntos del cilindro.

Por este motivo se decide implementar un modelo de elementos discretos ("lumpedelement") que discretice el cilindro en anillos que generan calor internamente y transmiten

¹ Véase capítulo 3 de Transferencia de Calor, 1 edición; J.M. Saiz Jabardo et al.

² Véase capítulo 5 de Fundamentals of Heat and Mass Transfer, 3 edición; Frank P. Incropera, David P. de Witt

calor entre ellos. Esta aproximación por métodos numéricos es abordada de la misma forma en la literatura.³

Por otro lado, el factor de convección promedio exterior del cilindro tiene diversas formulaciones empíricas dependiendo del número de Péclet, para determinar si el régimen es de convección natural o forzada, y dentro de la convección forzada el número de Reynolds. En la literatura figuran correlaciones ampliamente usadas para el cálculo de dicha convección.⁴

Respecto a la radiación, estes equipos están encerrados en un espacio con temperatura relativamente contante, que así se mantiene al circular el mismo aire a su alrededor. Para este tipo de radiación, con la temperatura exterior, el factor de emisividad del cilindro y su área se puede determinar el calor por radiación.

2.3.2. Hipótesis y simplificaciones

Hipótesis y simplificación usadas al aplicar las teorías seleccionadas.

Las siguientes hipótesis y simplificaciones son usadas en el modelo:

- Material homogéneo: No hay cambios en las características del material en el espacio.
- Generación interna de calor homogénea: La generación interna de calor es debida a la resistencia eléctrica ofrecida por el cilindro. En corriente continua (supercondesadores) la corriente es homogénea por el medio, pero en corriente alterna existe el efecto skin, donde a altas frecuencias la corriente eléctrica suele discurrir por la superficie exterior. Por lo tanto, este modelo puede no ser adecuado en corriente alterna.
- Flujo de calor unidimensional: Sólo se considera transmisión de calor en sentido radial dentro del cilindro. No existe calor en la dirección del eje (extremos aislados) ni entre sectores circulares del mismo.)
- Aislado en los extremos: En caso que el ratio de aspecto sea alto (longitud/radio), esta hipótesis es válida. Para ratios de aspecto bajos es posible que se necesite considerar un modelo que incluya transmisión de calor en los extremos.
- Factor de convección promedio de la superficie: Aunque existen correlaciones para determinar el factor de convección en cada segmento del circulo exterior del cilindro, éstas no son usadas para simplificar el modelo, ya que tampoco usa una discretización que permita flujo de calor multidimensional en su interior.
- Factor de convección para flujo transversal: El factor de convección usado es para flujo puramente transversal al cilindro.
- Factores de convección: Los factores de convección están basados en las propiedades del aire a 20°C.
- Calor por radiación simplificado: El calor por radiación ocurre con un entorno a la misma temperatura y va al aire, totalmente encerrado en el mismo. Esta hipótesis es válida si el cilindro está en el interior de una carcasa y siempre y cuando no sea un

³ Véase capítulo V de Transmisión de Calor, 3 edición, Alan J. Chapman

⁴ Véase A Heat Transfer Textbook, 3 edición, John H. Lienhard (IV & V)

cilindro largo hecho con varias vueltas, ya que el factor de visibilidad entre superficies es diferente.

2.3.3. Fuentes de datos (data pedigree)

Describir las fuentes de datos usadas en el desarrollo del modelo, su origen e incertidumbre asociada. Envejecimiento del sistema y modelo

Las fuentes de datos del material dependen del valor introducido por el usuario.

Las correlaciones empíricas se consideran fuentes de datos??

2.4. Características del Modelo

2.4.1. Dominios de la Física Modelados

Dominio	Incluido	Opcional	Notas
Mecánica Clásica			
Térmico	Х		
Fluidos			
Electricidad			
Máquinas Eléctricas			
Electrónica			
Electromagnetismo			
Química			
Control			
Acustica			
•••			

Tabla 2: Dominios de la Física Modelados

2.4.2. Tipo de modelo

Indicar si el modelo es:

- Estático ó dinámico
- Físico / Físico-empírico / modelo de datos / IA / ROM
- Modelo tiempo real (tiempo ejecución << tiempo real) depende HW

El modelo es del tipo:

- Dinámico: Posee derivadas respecto del tiempo y requiere inicializar su estado.
- **Físico-empírico**: Basado en la física, usando correlaciones empíricas para el factor de convección.
- Tiempo real: Se espera un tiempo de ejecución muy inferior al tiempo real.

2.5. Variables de Interés

Las siguientes tablas muestran las variables de interés requeridas para el modelo de simulación. Están agrupadas en cuatro categorías:

- Entradas (inputs): Son las variables de entrada del FMU.
- Salidas (outputs): Son las variables de salida del FMU.
- Parámetros (parameters): Son los parámetros del modelo, a definir antes de comenzar la simulación.
- Variables expuestas (exposed variables): Son variables internas que están expuestas al usuario del FMU. Algunas de ellas necesitan inicializar su valor antes de la simulación para definir el estado inicial del sistema.

2.5.1. Parámetros (parameters)

							Ir	iteger	Real		
				Data Type ⁴							relativeQu antity ¹⁰
	Nombre 1	Descripción ²	Fuente ³	Real Integer Boolean String	start ⁵	min ⁶	max ⁶	quantity ⁷	unit ⁸	display Unit ⁹	true?
1	R	Radius of the Cylinder [m]		Real	0.1	0		Length	m		
2	L	Length of the Cylinder [m]		Real	1	0		Length	m		
3	k	Heat conductivity [W/(m.K)]		Real	16	0		ThermalConductivity	W/(m.K)		
4	е	Cilinder surface radiation emissivity [-]		Real	1	0	1		•		
5	С	Specific heat capacity (rho*C_p) [J/(m3.K)]		Real	35000	0		SpecificHeatCapacity	J/(m3.K)		
6	T_start	Cylinder homogeneous start temperature [K]		Real	273.15	0		ThermodynamicTemper ature	K	degC	
7	N	Number of discrete elements [>=1, typical 10, increase with Biot number]		Integer	10	1			-		
8											
9											
10											
11											
12											

Tabla 3: Tabla de parámetros del modelo (parameters)

¹ Nombre acorde a los criterios de codificación expuestos

² Descripción breve de la variable

³ Indicación de dónde se obtiene el dato de la variable. Sólo informativo, este campo no se incluye dentro del FMU

⁴ Tipo de datos: Real: tipo de datos que almacena un número real (2.73, 1.32e6, pi,) / Integer: tipo de datos que almacena un número entero positivo (0, 1, 2, ...) / Boolean: tipo de datos que almacena un valor booleano (true // false) / String: tipo de datos que almacena un texto ("texto de ejemplo")

⁵ Valor del parámetro: es el valor fijado para el parámetro antes de iniciar la simulación. El usuario final puede modificar este valor inicial antes de simular, el valor indicado aquí es sólo un valor por defecto del experimento tipo

^{6 [}opcional] Indicación sobres los valores mínimo y máximo para los cuales está diseñado el modelo. En caso de excederse, el FMU muestra un aviso (warning) pero no detiene la simulación

⁷ [opcional] Cantidad física que representa la unidad definida. Por ejemplo, la unidad "N.m" puede representar las cantidades de "Torque", "Energy" ó "AngularImpulseFlowRate"

⁸ Unidades en las que está expresada la variable de acuerdo a la ISO 31-0 (1992)

 $^{^{9}}$ [opcional] Unidades alternativas en las que se puede mostrar la variable, por ejemplo "rad" y "deg"

^{10 [}opcional] Si se indica "true", entonces se trata de una variable con unidades relativas, por ejemplo una diferencia de temperaturas

2.5.2. Entradas (inputs)

					Integer				Real	
	Nombre ¹	Descripción ²	Fuente 3	Pata Type 4 Real Integer Boolean String	min ⁵	max ⁵	quantity ⁶	unit ⁷	displayUnit ⁸	relativeQuantity ⁹ true?
1	power	Homogeneous total heat into the cylinder [W]		Real			Power	W		
2	externalTemp	External air temperature [K]		Real	0		ThermodynamicTemperature	K	degC	
3	u_inf	Air speed [m/s]		Real	0		Velocity	m/s		
4										
5										
6										
7										
8										
9										
10										
11										
12										

Tabla 4: Tabla de entradas del modelo (inputs)

¹ Nombre acorde a los criterios de codificación expuestos

² Descripción breve de la variable

³ Indicación de dónde se obtiene el dato de la variable. Sólo informativo, este campo no se incluye dentro del FMU

⁴ Tipo de datos: Real: tipo de datos que almacena un número real (2.73, 1.32e6, pi,) / Integer: tipo de datos que almacena un número entero positivo (0, 1, 2, ...) / Boolean: tipo de datos que almacena un valor booleano (true // false) / String: tipo de datos que almacena un texto ("texto de ejemplo")

⁵ [opcional] Indicación sobres los valores mínimo y máximo para los cuales está diseñado el modelo. En caso de excederse, el FMU muestra un aviso (warning) pero no detiene la simulación

⁶ [opcional] Cantidad física que representa la unidad definida. Por ejemplo, la unidad "N.m" puede representar las cantidades de "Torque", "Energy" ó "AngularImpulseFlowRate"

⁷ Unidades en las que está expresada la variable de acuerdo a la ISO 31-0 (1992)

⁸ [opcional] Unidades alternativas en las que se puede mostrar la variable, por ejemplo "rad" y "deg"

⁹ [opcional] Si se indica "true", entonces se trata de una variable con unidades relativas, por ejemplo una diferencia de temperaturas

2.5.3. Salidas (outputs)

									Real			
i						Int	eger		133.			
			Data Type ³	variability ⁴						relativeQuantity 9		
	Nombre ¹	Descripción ²	Real Integer Boolean String	discrete continuous	min ⁵	max ⁵	quantity ⁶	unit ⁷	displayUnit ⁸	true?		
1	meanTemp	Mean cylinder temperature [K]	Real	continuous	0		ThermodynamicTemperature	K	degC			
2	heat	Total dissipated heat to the air [W]	Real	continuous			Power	W				
3												
4												
5												
6												
7												
8												
9												
10	_											
11			-					-				
12												

Tabla 5: Tabla de salidas del modelo (outputs)

¹ Nombre acorde a los criterios de codificación expuestos

² Descripción breve de la variable

³ Tipo de datos: Real: tipo de datos que almacena un número real (2.73, 1.32e6, pi,) / Integer: tipo de datos que almacena un número entero positivo (0, 1, 2, ...) / Boolean: tipo de datos que almacena un valor booleano (true // false) / String: tipo de datos que almacena un texto ("texto de ejemplo")

⁴ [opcional] Variabilidad de la variable. "continuous" significa que la variable evoluciona de forma continua en el tiempo, por ejemplo la altura de una pelota que cae, por ello sólo pueden ser variables de tipo "Real". "discrete" significa que variable sólo cambia de valor en un instante del tiempo, siendo constante entre cambios, es decir varia a saltos, por ejemplo la posición de un interruptor (del tipo "boolean", true ó false)

⁵ [opcional] Indicación sobres los valores mínimo y máximo para los cuales está diseñado el modelo. En caso de excederse, el FMU muestra un aviso (warning) pero no detiene la simulación

⁶ [opcional] Cantidad física que representa la unidad definida. Por ejemplo, la unidad "N.m" puede representar las cantidades de "Torque", "Energy" ó "AngularImpulseFlowRate"

⁷ Unidades en las que está expresada la variable de acuerdo a la ISO 31-0 (1992)

⁸ [opcional] Unidades alternativas en las que se puede mostrar la variable, por ejemplo "rad" y "deg"

⁹ [opcional] Si se indica "true", entonces se trata de una variable con unidades relativas, por ejemplo una diferencia de temperaturas

2.5.4. Variables internas expuestas y valores iniciales (exposed variables)

							Real Integer					
			Data Type ³	variability 4	initial ⁵							relativeQuantity 11
	Nombre ¹	Descripción ²	Real Integer Boolean String	discrete continuous	exact approx calculated	start ⁶	min ⁷	max ⁷	quantity ⁸	unit ⁹	displayUnit ¹⁰	true?
1												
2												
3												
4												
5												
6												
7												
8												
9												
10		_										
11												_
12	_			_	_							

Tabla 6: Tabla de variables del modelo (variables)

¹ Nombre acorde a los criterios de codificación expuestos

² Descripción breve de la variable

³ Tipo de datos: Real: tipo de datos que almacena un número real (2.73, 1.32e6, pi,) / Integer: tipo de datos que almacena un número entero positivo (0, 1, 2, ...) / Boolean: tipo de datos que almacena un valor booleano (true // false) / String: tipo de datos que almacena un texto ("texto de ejemplo")

⁴ [opcional] Variabilidad de la variable. "continuous" significa que la variable evoluciona de forma continua en el tiempo, por ejemplo la altura de una pelota que cae, por ello sólo pueden ser variables de tipo "Real". "discrete" significa que variable sólo cambia de valor en un instante del tiempo, siendo constante entre cambios, es decir varia a saltos, por ejemplo la posición de un interruptor (del tipo "boolean", true ó false)

⁵ [opcional] Un valor inicial de "exact" significa que el valor inicial que se le proporciona antes de la simulación es usado directamente. "approx" significa que antes del inicio de la simulación, se calcula el valor inicial de la variable partiendo del valor aproximado propuesto y después de alcanzar un equilibrio en la fase de inicialización (no todos los softwares de simulación soportan esta característica). "calculated" significa que el valor inicial es establecido directamente a partir de los valores de otras variables

⁶ Valor inicial de la variable: es el valor de la variable al inicio de la simulación. El usuario final puede modificar este valor inicial antes de simular, el valor indicado aquí es sólo un valor por defecto del experimento tipo

⁷ [opcional] Indicación sobres los valores mínimo y máximo para los cuales está diseñado el modelo. En caso de excederse, el FMU muestra un aviso (warning) pero no detiene la simulación

⁸ [opcional] Cantidad física que representa la unidad definida. Por ejemplo, la unidad "N.m" puede representar las cantidades de "Torque", "Energy" ó "AngularImpulseFlowRate"

⁹ Unidades en las que está expresada la variable de acuerdo a la ISO 31-0 (1992)

¹⁰ [opcional] Unidades alternativas en las que se puede mostrar la variable, por ejemplo "rad" y "deg"

^{11 [}opcional] Si se indica "true", entonces se trata de una variable con unidades relativas, por ejemplo una diferencia de temperaturas

2.6. Plan de Validación

Indicar el tipo de validación tanto del modelo conceptual como del modelo de simulación.

En el modelo conceptual es una validación teórica:

- Se está omitiendo un campo de la física que influye en los objetivos del modelo?
- Se esta definiendo con el detalle óptimo el modelo acorde a sus objetivos (sub parametrizar / sobreparametrizar)?
- El tipo de modelo y los fundamentos teóricos son compatibles?

En el modelo de simulación se debe especificar la validación empírica:

Figura 3: Dominios de validación (Trucano, T.G. et al (2002))

- Definir el tipo de validación:
 - Comparación con experimentos realizados ad-hoc para la validación del modelo
 - Comparación con experimentos previos obtenidos de la literatura
- Definir el dominio de validación
- Definir el muestreo de experimentos
- Simular y validar.

2.6.1. Validación Conceptual

2.6.2. Validación Empírica

Validación mediante Pruebas:

Validación con la Literatura:

2.7. Limitaciones del Modelo

2.7.1. Limitaciones Teóricas

Indicar las limitaciones teóricas del modelo acorde al dominio de validación y a las teorías usadas.

Las únicas limitaciones teóricas del modelo están en las correlaciones empíricas usadas para determinar el factor de convección. Por ello se establecen warnings para los siguientes límites:

- "!W0001 [ConvectionHorizontalCylinder]: Natural convection only applicable for Ra_D >= 1e-5"
- "!W0002 [ConvectionHorizontalCylinder]: Forced convection correlation has no data above Re_D > 1e7"

3. ANEXO - Especificación del entregable FMU

3.1. Características técnicas

Las características del modelo entregable en formato FMU son las siguientes:

- FMI Standard 2.0 (con características hasta v2.0.2)
- FMU Model Exchange y Co-Simulation compilado como mínimo para la plataforma "win64".
- Código fuente incluido en el FMU, siendo posible una compilación posterior a otras plataformas (como "linux32", "linux64", "arm64", etc...)
- Sin licencias de ejecución (no runtime licenses). Debe indicarse en el FMU como "needsExecutionTool=false" (elemento "CoSimulation" del XML).
- Nombres de variables estructuradas ("variableNamingConvention=structured").
- Indicar el solver usado en CS dentro de la documentación: Euler explicit, CVODE, etc...
- Indicar que sistema de índices de arrays es usado (basados en 0- o en 1-).

3.2. Documentación del modelo

3.2.1. Descripción del modelo

En el XML de fmiModelDescription, se detallarán los siguientes campos:

Atributo	Descripción
modelName	(nombre del modelo) ¹
description	(descripción breve del modelo) ¹
author	(nombre y empresa desarrolladora)
version	(ver "versionado" en el Anexo)¹
copyright	(© empresa)
license	"see /documentation/licenses/license.txt" ²
variableNamingConvention	structured

¹ Habitualmente estos campos son exportados por la herramienta de simulación.

Tabla 7: Descripción del modelo

3.2.2. Experimento tipo

No es necesario establecer un tiempo inicial y final determinado del experimento tipo "DefaultExperiment" en el *fmiModelDescription*.

Sin embargo, es necesario establecer la tolerancia de cálculo ("tolerance") que es de especial interés cuando se usan solvers de paso variable. Además, se debe indicar el paso de tiempo típico del modelo ("stepSize") que indica en la resolución nominal en la que fue diseñado el modelo. No es recomendable utilizar el modelo con pasos de tiempo superiores a este valor.

² Si la licencia es un texto largo, debe usarse el archivo .txt en esa ruta y poner esta frase en dicho metadato.

3.2.3. Documentación

La documentación del modelo se incluirá acorde al estándar FMI, como un archivo HTML en la ruta "/documentation/index.html" del FMU.

Este archivo de documentación contendrá los siguientes apartados:

• Información:

En este apartado se resume la descripción del modelo conceptual, citando los campos de la física modelados y las teorías e hipótesis usadas.

• Funcionamiento:

En este apartado se describe el funcionamiento haciendo uso del nombre de los parámetros, variables internas expuestas y su inicialización, variables de entrada (inputs) y variables de salida (outputs). Se pueden describir casos de ejemplo en este apartado.

Además, se incluirá la definición de cada uno de los estados del código de funcionamiento.

Solver:

En este apartado se cita el solver usado en el desarrollo y validación del modelo, así como la tolerancia usada y el paso de tiempo típico.

Se debe indicar al final la herramienta de simulación y su versión utilizada para generar el FMU, así como las opciones principales seleccionadas. Se debe indicar si los arrays son basados en 0- o en 1-.

• Limitaciones del modelo:

En este apartado se describe la zona de validación y la zona de aplicación. De la misma forma se citan los warning y errors preprogramados y su significado.

Problemas conocidos:

Cualquier problema conocido del modelo debe ser indicado aquí. Es habitual que dichos problemas no interfieran en el funcionamiento normal del mismo y sólo sucedan ante unas determinadas situaciones.

Referencias:

Las referencias bibliográficas usadas tanto en el desarrollo conceptual del modelo como en su validación deben ser indicadas.

De la misma forma, se deberán listar todas las librerías de terceros cuyos componentes fueron usados en el modelo, indicando el nombre de la librería y la versión usada.

Copyright:

En este apartado se indicará el desarrollador/desarrolladores principales del modelo y la empresa desarrolladora, además del año de emisión del modelo. Se establecerá una dirección de contacto con la misma en forma de email y

teléfono. También se reproducirá el texto de la licencia, ó se indicará que se encuentra disponible en la ruta "/documentation/licenses/license.txt".

• Revisión:

Se indicará la versión actual del modelo de la forma:

"Rev. 1.3.0 (13-06-2021) [B.Puente]: Modelo actualizado para aceptar diferentes tipos de líquidos."

Donde:

Rev. 1.3.0 : Es la revisión mayor (1) junto con la revisión menor (3) y el parche (0).

(13-06-2021): Es la fecha de la emisión de la revisión va entre paréntesis en formato dd-mm-aaaa.

[B.Puente]: Es la identificación del autor de la revisión.

A continuación, se añade una breve descripción del motivo de revisión.

Además, dentro de esta carpeta de documentación, se pueden incluir las subcarpetas:

- ".../sourcefiles/": Carpeta donde se incluyen los archivos y/o código fuente que generan el FMU. En caso de necesitar alguna explicación, se incluirá un archivo "instructions.pdf" con las instrucciones. El archivo será del tipo PDF/A.
- ".../validation/": Carpeta donde se incluyen los archivos y justificación técnica de la validación del modelo.

Cualquier documentación incorporada en PDF deberá cumplir con el estándar PDF/A.

3.3. Documentación específica del cliente

En la carpeta "/extra/com.company" del FMU (FMI v2.0.2) se incluirá la documentación específica del cliente, por ejemplo:

• meta.xml: Metadatos específicos del cliente sobre el modelo.

En la carpeta "/extra/signatures" se puede incluir firmas electrónicas del contenido del FMU de la siguiente forma:

- Fichero de texto plano "files.list" que contienee la lista de archivos del FMU (excluyendo aquellos en "/extra/singatures/") de la forma:
 - o Ruta completa del archivo dentro del FMU
 - o Tamaño del archivo en bytes
 - Hash en SHA256
- Este fichero "files.list" es firmado electrónicamente usando preferiblemente XAdES, ó CAdES.

3.4. Implementación de las limitaciones del modelo

Las limitaciones en el modelo se implementan mediante las siguientes técnicas:

3.4.1. Limitaciones que usan los mecanismos de aviso del estándar FMU

• Valores min/max de variables (FMI standard):

Se deben establecer valores mínimos y/o máximos en variables cuyo exceso de dichos límites provoque un funcionamiento fuera de la zona de validación del modelo. En ese caso el FMU emitirá un mensaje de aviso pero continuará su funcionamiento.

NOTA: El uso de estos valores no previene un posible error numérico (p.ej. división entre cero), por lo cual no puede ser usado para este propósito y el código debe ser protegido adecuadamente.

Warnings (FMI standard):

Su funcionamiento es similar a los valores min/max de variables, pero puede configurarse para que avise cuando se cupla con una expresión cualquiera. Debe usarse cuando se cumpla una condición interna del modelo que provoque que trabaje fuera de la zona de validación (p.ej. el numero de Reynolds exceda los límites de la validación).

Se establece el siguiente formato de mensaje:

"!W0001 [modelClass] (instanceName): Intensity above validation zone"

Donde:

- o "!W0001" es el código de warning
- o [modelClass] es el nombre de la clase del modelo que lanza el aviso
- o (instanceName) es el nombre de la instancia que lanza el aviso
- o y a continuación el texto explicativo.

En la documentación del modelo se listarán y explicarán los códigos disponibles.

• Error (FMI standard):

Se configura mediante una expresión que emite un mensaje de error y <u>termina la simulación</u> cuando suceda. Debe usarse para proteger (o indicar al usuario) al modelo de un error fatal ó una operación fuera del dominio de aplicación del modelo.

Se establece el siguiente formato de mensaje:

"!E0001 [modelClass] (instanceName): Intensity above validation zone"

Donde:

- o "!E0001" es el código de error
- o [modelClass] es el nombre de la clase del modelo que lanza el error
- o (instanceName) es el nombre de la instancia que lanza el error
- o y a continuación el texto explicativo.

En la documentación del modelo se listarán y explicarán los códigos disponibles.

3.4.2. Código de Funcionamiento (Opcional)

El código de funcionamiento es una variable expuesta del modelo, de tipo "integer", situada en el primer nivel del FMU y llamada "WorkingStatus" que tendrá los siguientes valores:

- 1 = Modelo funcionando dentro de los límites de validación
- 2 = Modelo funcionando fuera de los límites de validación y dentro de los límites de aplicabilidad
- 3 = Modelo funcionando dentro de los límites de validación, tras funcionar fuera de los mismos (sólo para modelos dinámicos)

4. ANEXO - Control de Calidad del Modelo

4.1. Control automático de calidad del FMU

El FMU deberá pasar el chequeo mediante FMPy con el comando fmpy.validation -> validate_fmu.

4.2. Control de calidad específico del FMU

ltem	Check
¿Las características técnicas del FMU se corresponden a las indicadas?	
¿El nombre, descripción, autor, versión, copyright y licencia están incluidos en el XML?	
¿La tolerancia y el paso de tiempo están incluidos en el experimento tipo?	
¿El FMU contiene el texto de la licencia en "/documentation/licenses/license.txt"?	
¿El archivo de documentación "/documentation/index.html" está completo y funciona una vez descomprimido el FMU?	
¿La documentación específica del cliente está incluida en "/extra/"?	
¿Las variables del modelo tienen el nombre, descripción, unidades, valores por defecto, etc bien definidas?	

Tabla 8: Checklist de calidad del FMU

4.3. Control de calidad del código

Item	Check
¿Los atributos de las variables se corresponden a los indicados en este documento?	
¿El código fuente usa el identado correctamente?	
¿El código fuente esta correctamente organizado y comentado?	
¿Están protegidos los límites de aplicabilidad del modelo?	
¿Están protegidas las posibles divisiones entre cero?	
¿Están protegidas las posibles raíces de números negativos?	
¿Están protegidas las funciones trigonométricas?	
¿Están protegidas otras funciones que puedan llevar a un error en el modelo?	
¿Están protegidas las comparaciones entre números reales? ¿Están protegidos los eventos basados en dichas comparaciones?	
¿El paso de tiempo es adecuado para el funcionamiento adecuado del modelo?	

Tabla 9: Checklist de calidad del código

4.4. Buenas prácticas en el modelo

Item	Check
¿Se usan ayudas a la inicialización en sistemas grandes de ecuaciones no lineales?	
¿Existe la opción de linealizar ecuaciones para aumentar la velocidad de ejecución?	
¿Se indica la derivabilidad de funciones al compilador?	
¿Se evitan los eventos (discontinuidades) en todo lo posible?	
¿Las variables necesarias están reducidas al mínimo y ocultas las no relevantes?	

Tabla 10: Checklist de buenas prácticas del modelo

5. ANEXO - Otros Estándares

5.1. Versionado

La codificación de la versión seguirá el siguiente criterio:

MAYOR.MENOR.PARCHE

Donde:

MAYOR: Revisión mayor, cuando los parámetros, conectores ó funcionamiento interno no es compatible con una revisión mayor anterior. Las revisiones menor y parche deben ser reiniciadas a cero al emitir una revisión mayor.

MENOR: Revisión menor, cuando se añade funcionalidad que es compatible con versiones anteriores dentro de la misma revisión mayor.

PARCHE: Corrección de errores compatible con las revisiones anteriores. Debe ser reiniciado a cero cuando una nueva revisión menor se emita. En algunos casos se omite la revisión PARCHE, acumulando todas las correcciones para emitirlas en una nueva revisión menor.

Las siguientes reglas aplican a las revisiones:

- Los números usados para MAYOR, MENOR y PARCHE deben ser enteros no negativos sin ceros iniciales. Los números serán incrementados con las revisiones, es decir la revisión "1.11.0" es posterior a la "1.9.3".
- Tras un lanzamiento de una versión, cualquier modificación debe ser en una revisión nueva.
- La revisión MAYOR igual a cero (0.y.z) es reservada para el desarrollo inicial, donde todo puede cambiar en cualquier momento. Estas revisiones pueden no ser compatibles entre sí.
- Una revisión en pruebas (pre-release) se marca con un guion al final y una indicación de la forma "1.3.1-alpha", donde:
 - o -nightly: Versión diaria en continuo desarrollo.
 - o -alpha: Versión con nuevas características añadidas.
 - o -beta: Versión completa en fase de depuración de errores.
 - o *-release-candidate:* Versión con una distribución ampliada a otros usuarios para su prueba final antes de emitir la versión oficial.

Para mas información, véase Semantic Versioning 2.0.0 (https://semver.org).

5.2. Nombres de Variables

Los nombres de las variables serán en inglés y tendrán las siguientes características técnicas:

- 1. Los nombres de las variables serán de tipo jerárquico (ver FMI 2.0 standard, sección 2.2.9), por ejemplo: "Propeller.diameter". El FMU tendrá activado el atributo "variableNamingConvention=structured".
- 2. Los nombres de las variables del modelo comienzan con un carácter en minúscula, por ejemplo "speed", con la excepción que son habituales de representar con un carácter, por ejemplo "Q" para el calor.
- 3. Si el nombre de la variable consta de varias palabras, el primer carácter de cada palabra es escrito en mayúscula, con excepción de la primera palabra donde se aplicarán las reglas precedentes, por ejemplo "speedEngine" ó "Qflow" (ver convención de nombres "camelCase").
- 4. El guion bajo solo se emplea al final de los nombres o al final de cada palabra para indicar subíndices, por ejemplo "valve_1.position".

La siguiente tabla muestra un ejemplo de nombres de variables:

Variable Name	Quantity
а	acceleration
A	area
С	Capacitance
d	damping, density, diameter
dp	pressureDrop
e	specificEntropy
E	energy, entropy
eta	efficiency
f	force, frequency
G	conductance
Н	enthalpy
h	height, specificEnthalpy
HFlow	enthalpyFlow
i	current
J	inertia
ı	length
L	Inductance
m	mass
М	mutualInductance
mFlow	massFlow
P	power
р	pressure
Q	heat
Qflow	heatFlow
r	radius
R	radius, resistance
t	time
Т	temperature
tau	torque
U	internalEnergy
v	electricPotential, specificVolume, velocity, voltage
V	volume
w	angularVelocity
Х	reactance
Z	impedance

Tabla 11: Ejemplo de nombres de variables

5.3. Sistema de Unidades

Los conceptos clave al trabajar con unidades son los siguientes:

- Unidades (unit): Son las unidades de medida del dato en cuestión. Serán en el sistema internacional de acuerdo a la ISO 31-0 (1992). Por ejemplo "N.m" como Newtonmetro.
- **Dimensiones:** Son los exponentes expresados en las unidades básicas de medida (BaseUnit) siguientes: kg, m, s, A, K, mol, cd y rad (unidad derivada). Por ejemplo, la presión tiene dimensiones de (kg=1, m=-1, s=-2), es decir kg.m⁻¹.s⁻².
- Cantidades (quantity): Son las cantidades físicas que miden cada unidad. Por ejemplo, un par es una fuerza multiplicada por una distancia (N.m), al igual que la energía (N.m = J). Por lo tanto, aunque el momento y la energía tengan las mismas dimensiones (Fuerza * distancia) se tratan de dos cantidades diferentes.

Reglas a seguir:

- 1. Se utilizarán unidades del sistema internacional de unidades, de acuerdo a la ISO 31-0 (1992).
- 2. Se establecerán en el FMU los exponentes, el factor y el offset que permita comprobar su conexión con otros FMU's.

La siguiente tabla muestra un ejemplo de definición de unidades físicas:

Name	type	quantity	unit	displayUni t	mi n	ma x
Angle	Real	Angle	rad	deg		
SolidAngle	Real	SolidAngle	sr			
Length	Real	Length	m			
PathLength	Length					
Position	Length					
Distance	Length				0	
Breadth	Length				0	
Height	Length				0	
Thickness	Length				0	
Radius	Length				0	
Diameter	Length				0	
Area	Real	Area	m2			
Volume	Real	Volume	m3			
Time	Real	Time	S			
Duration	Time					
AngularVelocity	Real	AngularVelocity	rad/s			
AngularAcceleration	Real	AngularAcceleration	rad/s2			
AngularJerk	Real	AngularJerk	rad/s3			
Velocity	Real	Velocity	m/s			
Acceleration	Real	Acceleration	m/s2			
Jerk	Real	Jerk	m/s3			
Period	Real	Time	S			
Frequency	Real	Frequency	Hz			
AngularFrequency	Real	AngularFrequency	rad/s			
Wavelength	Real	Wavelength	m			
WaveNumber	Real	WaveNumber	m-1			
CircularWaveNumber	Real	CircularWaveNumber	rad/m			
AmplitudeLevelDifference	Real	AmplitudeLevelDifference	dB			
PowerLevelDifference	Real	PowerLevelDifference	dB			
DampingCoefficient	Real	DampingCoefficient	s-1			
LogarithmicDecrement	Real	LogarithmicDecrement	1/S			
AttenuationCoefficient	Real	AttenuationCoefficient	m-1			
PhaseCoefficient	Real	PhaseCoefficient	m-1			

Name	type	quantity	unit	displayUni t	mi n	ma x
PropagationCoefficient	Real	PropagationCoefficient	m-1			
Mass	Real	Mass	kg		0	
Density	Real	Density	kg/m3	g/cm3	0	
RelativeDensity	Real	RelativeDensity	1		0	
SpecificVolume	Real	SpecificVolume	m3/kg		0	
LinearDensity	Real	LinearDensity	kg/m		0	
SurfaceDensity	Real	SurfaceDensity	kg/m2		0	
Momentum	Real	Momentum	kg.m/s			
Impulse	Real	Impulse	N.s			
AngularMomentum	Real	AngularMomentum	kg.m2/s			
AngularImpulse	Real	AngularImpulse	N.m.s			
MomentOfInertia	Real	MomentOfInertia	kg.m2			
Force	Real	Force	N			
TranslationalSpringConstant	Real	TranslationalSpringConstant	N/m			
TranslationalDampingConstant	Real	TranslationalDampingConstant	N.s/m			
Torque	Real	Torque	N.m			
ElectricalTorqueConstant	Real	ElectricalTorqueConstant	N.m/A			
ImpulseFlowRate	Real	ImpulseFlowRate	N			
AngularImpulseFlowRate	Real	AngularImpulseFlowRate	N.m			
RotationalSpringConstant	Real	RotationalSpringConstant	N.m/rad			
RotationalDampingConstant	Real	RotationalDampingConstant	N.m.s/rad			
Pressure	Real	Pressure	Pa	bar		
		riessure	Pa	Dai		
Stress	Real	Ctroin	1			
Strain	Real	Strain	1			
VolumeStrain	Real	VolumeStrain	1			
PoissonNumber	Real	PoissonNumber	m4			
SecondMomentOfArea	Real	SecondMomentOfArea				
SectionModulus	Real	SectionModulus	m3			
CoefficientOfFriction	Real	CoefficientOfFriction	1		_	
DynamicViscosity	Real	DynamicViscosity	Pa.s		0	
KinematicViscosity	Real	KinematicViscosity	m2/s		0	
SurfaceTension	Real	SurfaceTension	N/m			
Work	Real	Work	J .			
Energy	Real	Energy	J			
EnergyDensity	Real	EnergyDensity	J/m3			
Power	Real	Power	W			
EnergyFlowRate	Power					
EnthalpyFlowRate	Real	EnthalpyFlowRate	W			
Efficiency	Real	Efficiency	1		0	
MassFlowRate	Real	MassFlowRate	kg/s			
VolumeFlowRate	Real	VolumeFlowRate	m3/s			
MomentumFlux	Real	MomentumFlux	N			
AngularMomentumFlux	Real	AngularMomentumFlux	N.m			
ThermodynamicTemperature	Real	ThermodynamicTemperature	K			
TemperatureDifference	Real	ThermodynamicTemperature	К			
TemperatureSlope	Real	TemperatureSlope	K/s			
LinearTemperatureCoefficient	Real	LinearTemperatureCoefficient	1/K			
QuadraticTemperatureCoefficient	Real	QuadraticTemperatureCoefficient	1/K2			
LinearExpansionCoefficient	Real	LinearExpansionCoefficient	1/K			
CubicExpansionCoefficient	Real	CubicExpansionCoefficient	1/K			
RelativePressureCoefficient	Real	RelativePressureCoefficient	1/K			
PressureCoefficient	Real	PressureCoefficient	Pa/K			
Compressibility	Real	Compressibility	1/Pa			
IsothermalCompressibility	Compressibility					
IsentropicCompressibility	Compressibility					
Heat	Real	Energy	J			
HeatFlowRate	Real	Power	W			
HeatFlux	Real	HeatFlux	W/m2			
DensityOfHeatFlowRate	Real	DensityOfHeatFlowRate	W/m2			
ThermalConductivity	Real	ThermalConductivity	w/			
CoefficientOfHeatTransfer	Real	CoefficientOfHeatTransfer	w/			
SurfaceCoefficientOfHeatTransfer	CoefficientOfHeatTransfer		<u> </u>			
SurfaceCoefficientOrneat Fransier						

Name	type	quantity	unit	displayUni t	mi n	ma x
ThermalResistance	Real	ThermalResistance	K/W			
ThermalConductance	Real	ThermalConductance	W/K			
ThermalDiffusivity	Real	ThermalDiffusivity	m2/s			
HeatCapacity	Real	HeatCapacity	J/K			
SpecificHeatCapacity	Real	SpecificHeatCapacity	J/			
SpecificHeatCapacityAtConstantPressure	SpecificHeatCapacity	Specific redecapacity	.,			
SpecificHeatCapacityAtConstantVolume	SpecificHeatCapacity					
SpecificHeatCapacityAtSaturation	SpecificHeatCapacity					
		PatioOfSpacificHeatCapacities	1			
RatioOfSpecificHeatCapacities	Real	RatioOfSpecificHeatCapacities	1			
IsentropicExponent	Real	IsentropicExponent	J/K			
Entropy	Real	Entropy				
EntropyFlowRate	Real	EntropyFlowRate	J/			
SpecificEntropy	Real	SpecificEntropy	J/			
InternalEnergy	Heat					-
Enthalpy	Heat					
HelmholtzFreeEnergy	Heat					
GibbsFreeEnergy	Heat					
SpecificEnergy	Real	SpecificEnergy	J/kg			
SpecificInternalEnergy	SpecificEnergy					
SpecificEnthalpy	SpecificEnergy					
SpecificHelmholtzFreeEnergy	SpecificEnergy					
SpecificGibbsFreeEnergy	SpecificEnergy					
MassieuFunction	Real	MassieuFunction	J/K			
PlanckFunction	Real	PlanckFunction	J/K			
DerDensityByEnthalpy	Real		kg.s2/m5			
DerDensityByPressure	Real		s2/m2			
DerDensityByTemperature	Real		kg/			
			J.m.s2/kg			
DerEnthalpyByPressure	Real		2			
DerEnergyByDensity	Real		J.m3/kg			
DerEnergyByPressure	Real		J.m.s2/kg			
DerPressureByDensity	Real		Pa.m3/kg			
Der Pressure By Temperature	Real		Pa/K			
ElectricCurrent	Real	ElectricCurrent	Α			
Current	ElectricCurrent					
CurrentSlope	Real	CurrentSlope	A/s			
ElectricCharge	Real	ElectricCharge	С			
Charge	ElectricCharge					
VolumeDensityOfCharge	Real	VolumeDensityOfCharge	C/m3		0	
SurfaceDensityOfCharge	Real	SurfaceDensityOfCharge	C/m2		0	
ElectricFieldStrength	Real	ElectricFieldStrength	V/m			
ElectricPotential	Real	ElectricPotential	V			
Voltage	ElectricPotential					
PotentialDifference	ElectricPotential					
ElectromotiveForce	ElectricPotential					
VoltageSecond	Real	VoltageSecond	V.s			
VoltageSlope	Real	VoltageSlope	V/s			
ElectricFluxDensity	Real	ElectricFluxDensity	C/m2			
Electric luxDensity	Real	ElectricFlux	C			
	İ		F		0	
Capacitance	Real	Capacitance	+		U	
CapacitancePerArea	Real	CapacitancePerArea	F/m2 F/m		0	\vdash
Permittivity Of / revum	Real	Permittivity	F/III		U	-
PermittivityOfVacuum	Permittivity					
RelativePermittivity	Real	RelativePermittivity	1			
ElectricSusceptibility	Real	ElectricSusceptibility	1 6/2			-
ElectricPolarization	Real	ElectricPolarization	C/m2			
Electrization	Real	Electrization	V/m			
ElectricDipoleMoment	Real	ElectricDipoleMoment	C.m			<u> </u>
CurrentDensity	Real	CurrentDensity	A/m2			<u> </u>
LinearCurrentDensity	Real	LinearCurrentDensity	A/m			
MagneticFieldStrength	Real	MagneticFieldStrength	A/m			
MagneticPotential	Real	MagneticPotential	А			

Name	type	quantity	unit	displayUni t	mi n	ma x
MagnetomotiveForce	Real	MagnetomotiveForce	Α			
CurrentLinkage	Real	CurrentLinkage	Α			
MagneticFluxDensity	Real	MagneticFluxDensity	T			
MagneticFlux	Real	MagneticFlux	Wb			
MagneticVectorPotential	Real	MagneticVectorPotential	Wb/m			
Inductance	Real	Inductance	Н			
SelfInductance	Inductance				0	
MutualInductance	Inductance					
CouplingCoefficient	Real	CouplingCoefficient	1			
LeakageCoefficient	Real	LeakageCoefficient	1			
Permeability	Real	Permeability	H/m			
PermeabilityOfVacuum	Permeability					
RelativePermeability	Real	RelativePermeability	1			
MagneticSusceptibility	Real	MagneticSusceptibility	1			
ElectromagneticMoment	Real	ElectromagneticMoment	A.m2			
MagneticDipoleMoment	Real	MagneticDipoleMoment	Wb.m			
Magnetization	Real	Magnetization	A/m			
MagneticPolarization	Real	MagneticPolarization	Т			
ElectromagneticEnergyDensity	Real	EnergyDensity	J/m3			
PoyntingVector	Real	PoyntingVector	W/m2			
Resistance	Real	Resistance	Ohm			
Resistivity	Real	Resistivity	Ohm.m			
Conductivity	Real	Conductivity	S/m			
Reluctance	Real	Reluctance	H-1			
Permeance	Real	Permeance	Н			
PhaseDifference	Real	Angle	rad	deg		
Impedance	Resistance			- ŭ		
ModulusOfImpedance	Resistance					
Reactance	Resistance					
QualityFactor	Real	QualityFactor	1			
LossAngle	Real	Angle	rad	deg		
Conductance	Real	Conductance	S			
Admittance	Conductance	Conductance				
ModulusOfAdmittance	Conductance					
Susceptance	Conductance					
InstantaneousPower	Real	Power	W			
ActivePower	Real	Power	w			
ApparentPower	Real	Power	V.A			
ReactivePower	Real	Power	var			
PowerFactor	Real	PowerFactor	1			
LinearTemperatureCoefficientResistance	Real	LinearTemperatureCoefficientResistance	Ohm/K			
QuadraticTemperatureCoefficientResistanc	neur	QuadraticTemperatureCoefficientResistanc				
e	Real	e	Ohm/K2			
Transconductance	Real	Transconductance	A/V2			
InversePotential	Real	InversePotential	1/V			
ElectricalForceConstant	Real	ElectricalForceConstant	N/A			
RadiantEnergy	Real	Energy	J			
RadiantEnergyDensity	Real	EnergyDensity	J/m3			
SpectralRadiantEnergyDensity	Real	SpectralRadiantEnergyDensity	J/m4			
RadiantPower	Real	Power	W			
RadiantEnergyFluenceRate	Real	RadiantEnergyFluenceRate	W/m2			
RadiantIntensity	Real	RadiantIntensity	W/sr			
Radiance	Real	Radiance	W/			
RadiantExitance	Real	RadiantExitance	W/m2			
Irradiance	Real	Irradiance	W/m2			
Emissivity	Real	Emissivity	1			
SpectralEmissivity	Real	SpectralEmissivity	1			
DirectionalSpectralEmissivity	Real	DirectionalSpectralEmissivity	1			
LuminousIntensity	Real	LuminousIntensity	cd			
LuminousFlux	Real	LuminousFlux	lm			
QuantityOfLight	Real	QuantityOfLight	lm.s			
Luminance	Real	Luminance	cd/m2			
LuminousExitance	Real	LuminousExitance	lm/m2	İ		

Name	type	quantity	unit	displayUni	mi	ma
Illuminance	Real	Illuminance	lx	t	n	х
LightExposure	Real	LightExposure	lx.s			
LuminousEfficacy	Real	LuminousEfficacy	lm/W			
SpectralLuminousEfficacy	Real	SpectralLuminousEfficacy	lm/W			
LuminousEfficiency	Real	LuminousEfficiency	1			
SpectralLuminousEfficiency	Real	SpectralLuminousEfficiency	1			
CIESpectralTristimulusValues	Real	CIESpectralTristimulusValues	1			
ChromaticityCoordinates	Real	CromaticityCoordinates	1			
SpectralAbsorptionFactor	Real	SpectralAbsorptionFactor	1			
SpectralReflectionFactor	Real	SpectralReflectionFactor	1			
SpectralTransmissionFactor	Real	SpectralTransmissionFactor	1			
SpectralRadianceFactor	Real	Spectral Radiance Factor	1			
LinearAttenuationCoefficient	Real	AttenuationCoefficient	m-1			
LinearAbsorptionCoefficient	Real	LinearAbsorptionCoefficient	m-1			
'	Real	· ·	m2/mol			
MolarAbsorptionCoefficient RefractiveIndex	Real	MolarAbsorptionCoefficient RefractiveIndex	1			
		Remactivemuex	1			
StaticPressure	AbsolutePressure					
SoundPressure	StaticPressure	Law-Ale	m			
SoundParticleDisplacement	Real	Length	m m/s			
SoundParticleVelocity	Real	Velocity	m/s			-
SoundParticleAcceleration	Real	Acceleration	m/s2			
VelocityOfSound	Real	Velocity	m/s			1
SoundEnergyDensity	Real	EnergyDensity	J/m3			
SoundPower	Real	Power	W			
SoundIntensity	Real	SoundIntensity	W/m2			
AcousticImpedance	Real	AcousticImpedance	Pa.s/m3			
SpecificAcousticImpedance	Real	SpecificAcousticImpedance	Pa.s/m			
MechanicalImpedance	Real	MechanicalImpedance	N.s/m			
SoundPressureLevel	Real	SoundPressureLevel	dB			
SoundPowerLevel	Real	SoundPowerLevel	dB			
DissipationCoefficient	Real	DissipationCoefficient	1			
ReflectionCoefficient	Real	ReflectionCoefficient	1			
TransmissionCoefficient	Real	TransmissionCoefficient	1			
AcousticAbsorptionCoefficient	Real	AcousticAbsorptionCoefficient	1			
SoundReductionIndex	Real	SoundReductionIndex	dB			
EquivalentAbsorptionArea	Real	Area	m2			
ReverberationTime	Real	Time	S			
LoudnessLevel	Real	LoudnessLevel	phon			
Loudness	Real	Loudness	sone			
RelativeAtomicMass	Real	RelativeAtomicMass	1			
RelativeMolecularMass	Real	RelativeMolecularMass	1			
NumberOfMolecules	Real	NumberOfMolecules	1			
AmountOfSubstance	Real	AmountOfSubstance	mol		0	
Molality	Real	Molality	mol/kg			
MolalConcentration	Molality					
MolarMass	Real	MolarMass	kg/mol		0	
MolarVolume	Real	MolarVolume	m3/mol		0	
MolarDensity	Real	MolarDensity	mol/m3			
Molarity	MolarDensity					
MolarConcentration	MolarDensity					
MolarEnergy	Real	MolarEnergy	J/mol			
MolarInternalEnergy	MolarEnergy					
MolarHeatCapacity	Real	MolarHeatCapacity	J/			
MolarEntropy	Real	MolarEntropy	J/			
MolarEnthalpy	MolarEnergy					
MolarFlowRate	Real	MolarFlowRate	mol/s			
NumberDensityOfMolecules	Real	NumberDensityOfMolecules	m-3			
MolecularConcentration	Real	MolecularConcentration	m-3			
MassConcentration	Real	MassConcentration	kg/m3			
MassFraction	Real	MassFraction	1		0	1
	Real	Concentration	mol/m3			
Concentration		concentration				
VolumeFraction	Real	VolumeFraction	1			

Name	type	quantity	unit	displayUni t	mi n	ma x
ChemicalPotential	Real	ChemicalPotential	J/mol	-		
AbsoluteActivity	Real	AbsoluteActivity	1			
PartialPressure .	AbsolutePressure	,				
Fugacity	Real	Fugacity	Pa			
StandardAbsoluteActivity	Real	StandardAbsoluteActivity	1			
ActivityCoefficient	Real	ActivityCoefficient	1			
ActivityOfSolute	Real	ActivityOfSolute	1			
ActivityCoefficientOfSolute	Real	ActivityCoefficientOfSolute	1			
StandardAbsoluteActivityOfSolute	Real	StandardAbsoluteActivityOfSolute	1			
ActivityOfSolvent	Real	ActivityOfSolvent	1			
OsmoticCoefficientOfSolvent	Real	OsmoticCoefficientOfSolvent	1			
StandardAbsoluteActivityOfSolvent	Real	StandardAbsoluteActivityOfSolvent	1			
OsmoticPressure	Real	Pressure	Pa	bar	0	
StoichiometricNumber	Real	StoichiometricNumber	1	- Sui		
Affinity	Real	Affinity	J/mol			
MassOfMolecule	Real	Mass				
			kg C.m			
ElectricDipoleMomentOfMolecule	Real	ElectricDipoleMomentOfMolecule	-			-
ElectricPolarizabilityOfAMolecule	Real	ElectricPolarizabilityOfAMolecule	C.m2/V			-
MicrocanonicalPartitionFunction	Real	MicrocanonicalPartitionFunction	1			-
Canonical Partition Function	Real	CanonicalPartitionFunction	1			
GrandCanonicalPartitionFunction	Real	GrandCanonicalPartitionFunction	1			
MolecularPartitionFunction	Real	MolecularPartitionFunction	1			-
StatisticalWeight	Real	StatisticalWeight	1			-
MeanFreePath	Length					
DiffusionCoefficient	Real	DiffusionCoefficient	m2/s			
ThermalDiffusionRatio	Real	ThermalDiffusionRatio	1			
ThermalDiffusionFactor	Real	ThermalDiffusionFactor	1			
ThermalDiffusionCoefficient	Real	ThermalDiffusionCoefficient	m2/s			
ElementaryCharge	Real	ElementaryCharge	С			
ChargeNumberOflon	Real	ChargeNumberOflon	1			
FaradayConstant	Real	FaradayConstant	C/mol			
IonicStrength	Molality					
DegreeOfDissociation	Real	DegreeOfDissociation	1			
ElectrolyticConductivity	Real	ElectrolyticConductivity	S/m			
MolarConductivity	Real	MolarConductivity	S.m2/mol			
TransportNumberOflonic	Real	TransportNumberOflonic	1			
ProtonNumber	Real	ProtonNumber	1			
NeutronNumber	Real	NeutronNumber	1			
NucleonNumber	Real	NucleonNumber	1			
AtomicMassConstant	Real	Mass	kg			
MassOfElectron	Real	Mass	kg			
MassOfProton	Real	Mass	kg			
MassOfNeutron	Real	Mass	kg			
HartreeEnergy	Real	Energy	J			
MagneticMomentOfParticle	Real	MagneticMomentOfParticle	A.m2			
BohrMagneton	MagneticMomentOfParticle					
NuclearMagneton	MagneticMomentOfParticle					
GyromagneticCoefficient	Real	GyromagneticCoefficient	A.m2/			
GFactorOfAtom	Real	GFactorOfAtom	1			
GFactorOfNucleus	Real	GFactorOfNucleus	1			
LarmorAngularFrequency	Real	AngularFrequency	s-1			
NuclearPrecessionAngularFrequency	Real	AngularFrequency	s-1			
CyclotronAngularFrequency	Real	AngularFrequency	s-1			
NuclearQuadrupoleMoment	Real	NuclearQuadrupoleMoment	m2			
NuclearRadius	Real	Length	m			
ElectronRadius	Real	Length	m			
ComptonWavelength	Real	Length	m			<u> </u>
MassExcess	Real	Mass	kg			\vdash
						\vdash
MassDefect	Real	Mass	kg 1			-
RelativeMassExcess	Real	RelativeMassExcess	1			-
RelativeMassDefect	Real	RelativeMassDefect				
PackingFraction	Real	PackingFraction	1			-
BindingFraction	Real	BindingFraction	1			

Name	type	quantity	unit	displayUni t	mi n	ma x
MeanLife	Real	Time	S			_ ^
LevelWidth	Real	LevelWidth	J			
Activity	Real	Activity	Bq			
SpecificActivity	Real	SpecificActivity	Bq/kg			
DecayConstant	Real	DecayConstant	s-1			
HalfLife	Real	Time	S			
AlphaDisintegrationEnergy	Real	Energy	J			
MaximumBetaParticleEnergy	Real	Energy	J			
BetaDisintegrationEnergy	Real	Energy	J			
ReactionEnergy	Real	Energy	J			
ResonanceEnergy	Real	Energy	J			
CrossSection	Real	Area	m2			
TotalCrossSection	Real	Area	m2			
AngularCrossSection	Real	AngularCrossSection	m2/sr			
SpectralCrossSection	Real	SpectralCrossSection	m2/J			
SpectralAngularCrossSection	Real	SpectralAngularCrossSection	m2/			
MacroscopicCrossSection	Real	MacroscopicCrossSection	m-1			
TotalMacroscopicCrossSection	Real	TotalMacroscopicCrossSection	m-1			
ParticleFluence	Real	ParticleFluence	m-2			
ParticleFluenceRate	Real	ParticleFluenceRate	s-1.m2			
EnergyFluence	Real	EnergyFluence	J/m2			
EnergyFluenceRate	Real	EnergyFluenceRate	W/m2			
CurrentDensityOfParticles	Real	CurrentDensityOfParticles	m-2.s-1			
MassAttenuationCoefficient	Real	MassAttenuationCoefficient	m2/kg			
MolarAttenuationCoefficient	Real	MolarAttenuationCoefficient	m2/mol			
AtomicAttenuationCoefficient	Real	AtomicAttenuationCoefficient	m2			
HalfThickness			m			
	Real	Length	J/m			
TotalLinearStoppingPower	Real	TotalLinearStoppingPower	J.m2			
TotalAtomicStoppingPower	Real	TotalAtomicStoppingPower	_			
TotalMassStoppingPower	Real	TotalMassStoppingPower	J.m2/kg			
MeanLinearRange	Real	Length	m ka/m2			
MeanMassRange	Real	MeanMassRange	kg/m2			
Linearlonization	Real	Linearlonization	m-1			
Totallonization	Real	Totallonization	12/			
Mobility	Real	Mobility	m2/			
IonNumberDensity	Real	IonNumberDensity	m-3			
RecombinationCoefficient	Real	RecombinationCoefficient	m3/s			
NeutronNumberDensity	Real	NeutronNumberDensity	m-3			
NeutronSpeed	Real	Velocity	m/s			
NeutronFluenceRate	Real	NeutronFluenceRate	s-1.m-2			
TotalNeutronSourceDensity	Real	TotalNeutronSourceDensity	s-1.m-3			
SlowingDownDensity	Real	SlowingDownDensity	s-1.m-3			
ResonanceEscapeProbability	Real	ResonanceEscapeProbability	1			
Lethargy	Real	Lethargy	1			
SlowingDownArea	Real	Area	m2			
DiffusionArea	Real	Area	m2			
MigrationArea	Real	Area	m2			
SlowingDownLength	Real	SLength	m			
DiffusionLength	Length					
MigrationLength	Length					
NeutronYieldPerFission	Real	NeutronYieldPerFission	1			
NeutronYieldPerAbsorption	Real	NeutronYieldPerAbsorption	1			
FastFissionFactor	Real	FastFissionFactor	1			
ThermalUtilizationFactor	Real	ThermalUtilizationFactor	1			
NonLeakageProbability	Real	NonLeakageProbability	1			
Reactivity	Real	Reactivity	1			
ReactorTimeConstant	Real	Time	S			
EnergyImparted	Real	Energy	J			
MeanEnergyImparted	Real	Energy	J			
SpecificEnergyImparted	Real	SpecificEnergy	Gy			
AbsorbedDose	Real	AbsorbedDose	Gy			
DoseEquivalent	Real	DoseEquivalent	Sv	I		
Doscequivalent	Itcui	Dosecquivalent	3.			

Name	type	quantity	unit	displayUni t	mi n	ma x
LinearEnergyTransfer	Real	LinearEnergyTransfer	J/m			
Kerma	Real	Kerma	Gy			
KermaRate	Real	KermaRate	Gy/s			
MassEnergyTransferCoefficient	Real	MassEnergyTransferCoefficient	m2/kg			
Exposure	Real	Exposure	C/kg			
ExposureRate	Real	ExposureRate	C/			
ReynoldsNumber	Real	ReynoldsNumber	1			
EulerNumber	Real	EulerNumber	1			
FroudeNumber	Real	FroudeNumber	1			
GrashofNumber	Real	GrashofNumber	1			
WeberNumber	Real	WeberNumber	1			
MachNumber	Real	MachNumber	1			
KnudsenNumber	Real	KnudsenNumber	1			
StrouhalNumber	Real	StrouhalNumber	1			
FourierNumber	Real	FourierNumber	1			
PecletNumber	Real	PecletNumber	1			
RayleighNumber	Real	RayleighNumber	1			
NusseltNumber	Real	NusseltNumber	1			
BiotNumber	NusseltNumber					
StantonNumber	Real	StantonNumber	1			
FourierNumberOfMassTransfer	Real	FourierNumberOfMassTransfer	1			
PecletNumberOfMassTransfer	Real	PecletNumberOfMassTransfer	1			
GrashofNumberOfMassTransfer	Real	GrashofNumberOfMassTransfer	1			
NusseltNumberOfMassTransfer	Real	NusseltNumberOfMassTransfer	1			
			1			
StantonNumberOfMassTransfer	Real	StantonNumberOfMassTransfer	1			
PrandtlNumber	Real	PrandtlNumber	1			
SchmidtNumber	Real	SchmidtNumber				
LewisNumber	Real	LewisNumber	1			
MagneticReynoldsNumber	Real	MagneticReynoldsNumber	1			
AlfvenNumber	Real	AlfvenNumber	1			
HartmannNumber	Real	HartmannNumber	1			
CowlingNumber	Real	CowlingNumber	1			
BraggAngle	Angle					
OrderOfReflexion	Real	OrderOfReflexion	1			
ShortRangeOrderParameter	Real	RangeOrderParameter	1			<u> </u>
LongRangeOrderParameter	Real	RangeOrderParameter	1			<u> </u>
DebyeWallerFactor	Real	DebyeWallerFactor	1			
CircularWavenumber	Real	CircularWavenumber	m-1			
FermiCircularWavenumber	Real	FermiCircularWavenumber	m-1			
DebyeCircularWavenumber	Real	DebyeCircularWavenumber	m-1			
DebyeCircularFrequency	Real	AngularFrequency	s-1			
8.4	ThermodynamicTemperatur					
DebyeTemperature	e		- / 2			
SpectralConcentration	Real	SpectralConcentration	s/m3			
GrueneisenParameter	Real	GrueneisenParameter	1			-
MadelungConstant	Real	MadelungConstant	1			-
DensityOfStates	Real	DensityOfStates	J-1/m-3			
ResidualResistivity	Real	ResidualResistivity	Ohm.m			
LorenzCoefficient	Real	LorenzCoefficient	V2/K2			<u> </u>
HallCoefficient	Real	HallCoefficient	m3/C			<u> </u>
ThermoelectromotiveForce	Real	ThermoelectromotiveForce	V			
SeebeckCoefficient	Real	SeebeckCoefficient	V/K			
PeltierCoefficient	Real	PeltierCoefficient	V			
ThomsonCoefficient	Real	ThomsonCoefficient	V/K			<u> </u>
RichardsonConstant	Real	RichardsonConstant	A/			<u> </u>
FermiEnergy	Real	Energy	eV			
GapEnergy	Real	Energy	eV			<u> </u>
DonorlonizationEnergy	Real	Energy	eV			
AcceptorIonizationEnergy	Real	Energy	eV			
ActivationEnergy	Real	Energy	eV			
	ThermodynamicTemperatur					
FermiTemperature	е					<u> </u>
ElectronNumberDensity	Real	ElectronNumberDensity	m-3			

Name	type	quantity	unit	displayUni t	mi n	ma x
HoleNumberDensity	Real	HoleNumberDensity	m-3			
IntrinsicNumberDensity	Real	IntrinsicNumberDensity	m-3			
DonorNumberDensity	Real	DonorNumberDensity	m-3			
AcceptorNumberDensity	Real	AcceptorNumberDensity	m-3			
EffectiveMass	Mass					
MobilityRatio	Real	MobilityRatio	1			
RelaxationTime	Time					
CarrierLifeTime	Time					
ExchangeIntegral	Real	Energy	eV			
CurieTemperature	ThermodynamicTemperatur e					
NeelTemperature	ThermodynamicTemperatur e					
LondonPenetrationDepth	Length					
CoherenceLength	Length					
LandauGinzburgParameter	Real	LandauGinzburgParameter	1			
FluxoidQuantum	Real	FluxoidQuantum	Wb			
TimeAging	Real	1/Modelica.Units.SI.Time	1/s			
ChargeAging	Real	1/Modelica.Units.SI.ElectricCharge	1/			
PerUnit	Real		1			
DimensionlessRatio	Real		1			

Tabla 12: Ejemplo de definición de unidades físicas