conditional probabilities & bayes' rule

Dr. Mine Çetinkaya-Rundel

2015 Gallup poll on use of online dating sites:

		18-29	30-49 <i>B</i>	50-64	65+	Total
Used online dating site	Yes A	60	86	58	21	225
	No	255	426	450	382	1513
	Total	315	512	508	403	1738

% of 30-49 year olds using online dating sites =
$$86/(512) \approx 0.17$$

Ruse online dating site 1 30-49 year old)

Bayes' rule:

$$P(A \mid B) = \frac{P(A \& B)}{P(B)}$$

Bayes' rule

Thomas Bayes (1702 – 1761)

2015 Gallup poll on use of online dating sites:

		18-29	30-49	50-64	65+	Total
Used online dating site	Yes	60	86	58	21	225
	No	255	426	450	382	1513
	Total	315	512	508	403	1738

Ruse online dating site 1 30-49 year old) =

Ruse online dating site & 30-49 year old)

$$R(30-49 \text{ year old})$$

$$= \frac{86 / 1738}{512 / 1738} = \frac{86}{512} \approx 0.17$$