Problem Solving Homework (Week 8)

161180162 Xu Zhiming

May 6, 2018

JH Chapter 4

4.3.2.3

(a) One subgraph can be as follows:

- b) 2-Approx-Min-VCP(G)
 - 1 Let V' be a new empty set of vertexes
 - 2 **for** each edge $(u, v) \in G.E$
 - 3 **if** $u \notin V'$ and $v \notin V'$
 - $V'=V'\cup\{u,v\}$
 - 5 return V'

VCP-SCP.

Lemme. 4.3.2.12

(b) G_n can be a matching with 2n vertexes, as is shown below

$$a_1 - b_1$$

$$a_2 \quad ---- \quad b_2$$

$$a_n - b$$

大有201十一个产生的完全国

4.3.2.6

Algorithm 4.3.2.1 will always computes an optimal vertex cover for the infinite family of stars starting from K2, n, i.e., K_n , $n = 3, 4, \cdots$

4.3.2.9

(a) Tree-Min-VCP(r)

八叶诗的加州、艺楼和文代艺和建筑基。
Repeat. until.

1 **if** *r*==NULL

2 return 0

3 **if** $r \rightarrow left == NULL$ and $root \rightarrow right == NULL$

4 return 0

5 size incl = 0

6 **if** $r \rightarrow left$

7

size $incl=1+Min-VCP(r\rightarrow left\rightarrow left)+Min-VCP(r\rightarrow left\rightarrow right)$

8 **if** $r \rightarrow right$

9 size $excl=1+Min-VCP(r\rightarrow right\rightarrow left)+Min-VCP(r\rightarrow right\rightarrow right)$

10 **return** min(size_incl, size_excl)