Test Compression

- Introduction
- Software Techniques
 - Dynamic Test Compression (DTC)
 - Static Test Compression (STC)
- Hardware Techniques
 - Test Stimulus Compression
 - Test Response Compression
 - Industry Practices
- Conclusion

Review: STC vs. DTC

- Dynamic test compression
 - performed during TPG
 - more CPU time
 - more effective
- Static test compression
 - performed after TPG
 - less CPU time
 - less effective

Test Compression

- Introduction
- Software Techniques
 - Dynamic Test Compression
 - Static Test Compression
 - With fault dictionary
 - Without fault dictionary
 - Compatibility graph (X-unfilled)
 - Reverse order fault simulation (X-filled)
- Hardware Techniques
 - Test Stimulus Compression
 - Test Response Compression
 - Industry Practices
- Conclusion

3 cases

STC with Fault Dictionary

- Suppose we have a fault dictionary (without fault dropping)
- Covering table
 - Each row is a test pattern, each column is a fault
- Goal: Find minimum test set (select fewest test patterns)
 - Detect all faults
- Finding minimum test set is minimum set covering problem
 - NP-hard, but don't give up...

	f ₁	f ₂	f ₃	f ₄	f ₅
<i>t</i> ₁				X	
t ₂		X	X		X
<i>t</i> ₃		X		Х	X
<i>t</i> ₄	X			X	

Each row is a pattern
Each column is a fault
X= detection
(not don't care!)

Quine-McCluskey Method [McCluskey 56]

- First EDA algorithm for 2-level logic synthesis
- Fault that is detected only once is essential fault
 - Must select essential patterns that detect essential faults
- Example:
 - f_1 , f_3 are essential faults; t_2 , t_4 are essential patterns
 - Test set selected = $\{t_2, t_3, t_4\}$ or $\{t_1, t_2, t_4\}$, minimum test length = 3

Each row is a pattern
Each column is a fault
X= detection

What if No Essential Faults?

Quine-McCluskey Method (cont'd)

- 1. Remove redundant equivalent row, keep one row is enough
 - Row t₁ is equal to row t₂ because they have X in same columns
- 2. Remove dominated row
 - Row t₃ dominates row t₄ because
 - (1) row t_3 has X in all columns where row t_4 has X, and
 - (2) row t_3 has at least one X where row t_4 does not have X

		f ₁	f ₂	f ₃	f_4	f ₅
	t ₁	X	X	X		X
_	t ₂	X	X	X		X
	<i>t</i> ₃		Х	Х	Х	Х
	t ₄			X	X	X
	<i>t</i> ₅	X			Х	X

equivalent row

dominated row

Quine-McCluskey Method (cont'd)

- 3. Remove dominating column
 - Column f_5 dominates column f_4 (f_3 , f_2 , f_1 also) because
 - (1) column f_5 has X in all rows where column f_4 has X, and
 - (2) column f_5 has at least one X where column f_4 does not have X
- 4. Secondary essential
 - ◆ After steps 1~3, t₃ is now secondary essential pattern
- Minimum test set $\{t_1, t_3\}$ or $\{t_3, t_5\}$, minimum test length =2

Quiz

Q1: Which are essential faults?

Q2: Which are dominated rows? Dominating columns?

Q3: What is minimum test length?

	f ₁	f ₂	f ₃	f ₄	f ₅
<i>t</i> ₁			X	X	X
t ₂		X	X		Х
<i>t</i> ₃			X		
<i>t</i> ₄	Х				
t ₅		Х		Х	Х

QM Solves Many Cases in Polynomial Time

but not all...

FFT

- Mini-set covering is NP-hard
 - Q1: Show an special case where no rule of QM can be applied
 - Q2: What are you going to do with it?

	f ₁	f ₂	f ₃	f ₄
<i>t</i> ₁	X	X		
<i>t</i> ₂		Х	X	
<i>t</i> ₃			Х	Х
<i>t</i> ₄	Х			Х

Alternative Solution, 01-ILP

Model STC as 01-Integer Linear Programming problem

Objective:
$$\min \sum_{i} t_{i}$$
s.t. $\sum_{i} d_{i,j} \times t_{i} \ge 1$, for each fault j

- t_i=1 ,if test i is selected; t_i=0 otherwise
- d_{i,j}=1 if test pattern t_i detects fault f_j
- Example: $t_1 = 0$, $t_2 = t_3 = t_4 = 1$

	f ₁	f ₂	f ₃	f_4	f ₅
<i>t</i> ₁		X			
<i>t</i> ₂			X		X
<i>t</i> ₃		Х		X	Х
<i>t</i> ₄	Х			X	

$$\begin{aligned} &\min & t_1 + t_2 + t_3 + t_4 \\ &s.t. \\ &t_4 \ge 1 \\ &t_1 + t_3 \ge 1 \\ &t_2 \ge 1 \\ &t_3 + t_4 \ge 1 \\ &t_2 + t_3 \ge 1 \end{aligned}$$

It is Well-solved... What Is Wrong?

- Q: What is practical issue of STC with dictionary?
 - A: Complete fault dictionary is very large, very slow

	f ₁	f ₂	f ₃	f ₄	f ₅
t ₁		X	X		
t ₂	X	Х	X		Х
<i>t</i> ₃			X		X
<i>t</i> ₄	X			X	

Need STC without Dictionary

Test Compression

- Introduction
- Software Techniques
 - Dynamic Test Compression
 - Static Test Compression
 - With fault dictionary
 - Without fault dictionary
 - Compatibility graph (X-unfilled)
 - Reverse order fault simulation (X-filled)
- Hardware Techniques
 - Test Stimulus Compression
 - Test Response Compression
 - Industry Practices
- Conclusion

STC w/o Dictionary (X-unfilled)

- Suppose that we do NOT have dictionary
 - but we have don't care bits in test cubes
- Two test cubes are compatible iff no conflict in specified bits
- Compatible test cubes can be merged into one test cube
- Example
 - t₀ and t₁ are compatible, merged to 0xx10
 - Feasible solution:
 - * 4 patterns: $\{t_0+t_1+t_2, t_3+t_6, t_4+t_5, t_7\}$
 - * Any better solution?

t ₀	0xx10
<i>t</i> ₁	0xx1x
<i>t</i> ₂	0x01x
<i>t</i> ₃	01xx0
<i>t</i> ₄	x 0 xx 0
t ₅	1xxxx
<i>t</i> ₆	x1x00
<i>t</i> ₇	11xx0

x = don't cares

Any Alg	gorithr	n	
to Solv	e This	Prob	lem?

Compatibility Graph

- Compatibility graph G(V, E)
 - Vertex v_i represents a test cube t_i
 - Edge e_{ij} between v_i and v_j means two test cubes are compatible
 - Adjacent vertices can be merged into one
- Example
 - t_0 and t_1 are adjacent, can be merged

t ₀	0xx10
t ₁	0xx1x
<i>t</i> ₂	0x01x
<i>t</i> ₃	01xx0
t ₄	x0xx0
t ₅	1xxxx
<i>t</i> ₆	x1x00
<i>t</i> ₇	11xx0

Clique

- Clique is a subset of vertices such that
 - Each pair of vertices are connected
 - Clique is a complete subgraph
- Minimum clique partition problem
 - Partition graph into minimum number of cliques
- Example:
 - $\{v_0, v_1, v_2, v_3\} \{v_5, v_6, v_7\}$ are cliques
 - minimum clique partition
 - * $\{v_0, v_1, v_2, v_3\}\{v_4\}\{v_5, v_6, v_7\}$
 - * 3 partitions

- MCP is NP-hard problem
 - Can be solved by Tseng-Siewiorek
 - Greedy algorithm, does NOT guaranteed optimal solution

Tseng-Siewiorek Idea

- Select two adjacent vertices of maximum common neighbors
- Merge two vertices into a supervertex
 - e.g., merge $v_0 v_1 \rightarrow v_{0,1}$ supervertices
- Iteratively merge vertices until no more edge

Tseng-Siewiorek Algorithm (1)

```
G_c^k = compatibility graph in K_{th} iteration
  k \leftarrow 0:
                                                                                                                                                                                                                                                                                                                      V_c^k = set of vertices in G_c^k
G_c^k(V_c^k, E_c^k) \leftarrow G_c(V_c, E_c);
                                                                                                                                                                                                                                                                                                                     E_c^k = set of edges in G_c^k
while (E_c^k \neq \emptyset) {
               find (v_i, v_i) \in E_c^k with largest set of common neibors;
                 N \leftarrow set\ of\ common\ neibors\ of\ v_i\ and\ v_i;
                   s \leftarrow i \cup j;
                                                                                                                                                                                                                                                                                                                                                                                                                   v_s=supervertex of v_i and v_i
                   V_c^{k+1} \leftarrow V_c^k \cup \{v_s\} \setminus \{v_i, v_i\}; \quad \text{\ \ \ } \text{\ \ } 
                    E_c^{k+1} \leftarrow \emptyset;
                 for \ each (v_m, v_n) \in E_c^k build new edges
                                        if(v_m \neq v_i \land v_m \neq v_i \land v_n \neq v_i \land v_n \neq v_i)
                                                          E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_m, v_n)\};
                   for each v_n \in N
                                     E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_n, v_s)\};
                k \leftarrow k + 1:
```

N={common neighbors}

Tseng-Siewiorek Algorithm (2)

```
k \leftarrow 0:
G_c^k(V_c^k, E_c^k) \leftarrow G_c(V_c, E_c);
while (E_c^k \neq \emptyset) {
   find(v_i, v_i) \in E_c^k with largest set of common neibors;
   \mathbb{N} \leftarrow set\ of\ common\ neibors\ of\ v_i\ and\ v_i;
    s \leftarrow i \cup j;
                                                      keep edges touch
    V_c^{k+1} \leftarrow V_c^k \cup \{v_s\} \setminus \{v_i, v_i\};
                                                      neither v_i nor v_i
    E_c^{k+1} \leftarrow \emptyset;
                                                      e.g. edge (v_{012}, v_3)
   for each (v_m, v_n) \in E_c^k
        if(v_m \neq v_i \land v_m \neq v_i \land v_n \neq v_i \land v_n \neq v_i)
            E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_m, v_n)\};
   for each v_n \in N
        E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_n, v_s)\};
   k \leftarrow k + 1:
                                        new edge between N and v_s
                                        e.g. edge (v_5, v_7)
```


Quiz

Q1: Draw compatibility graph

Q2: What is minimum test length using T-S algorithm?

t ₀	0xx10
<i>t</i> ₁	x1x10
t ₂	0x11x
<i>t</i> ₃	00x11

FFT

- Q: What is practical problem with this method?
 - Practically, there are many don't cares in test cubes
 - X-unfilled test generation is slower and length is longer
 - than X-filled test generation

t_0	0xx10xxxxxx1
<i>t</i> ₁	0xx1xxxxxxxx
t ₂	0x01xxx1xxxx
<i>t</i> ₃	01xx0xxxxxxx
<i>t</i> ₄	X0xx0xxxx0x
t ₅	1xxxxxxxxxx
t ₆	x1x00xxxx1xx
<i>t</i> ₇	11xx0xxxxxx0

<i>t</i> ₀	011101100011
t ₁	010111000000
<i>t</i> ₂	010011010101

Need STC with X-filled

Test Compression

- Introduction
- Software Techniques
 - Dynamic Test Compression
 - Static Test Compression
 - With fault dictionary
 - Without fault dictionary
 - Compatibility graph (X-unfilled)
 - Reverse order fault simulation (X-filled)
- Hardware Techniques
 - Test Stimulus Compression
 - Test Response Compression
 - Industry Practices
- Conclusion

STC with X-filled (1)

- Reverse-order fault simulation
 - Fault simulate X-filled patterns in reverse order of ATPG
 - * Delete redundant test patterns
 - Example:
 - * First simulate t_4 , and then t_3 , t_2 , t_1
 - * Delete t_1 . Choose test set $\{t_4, t_3, t_2\}$
 - Advantage: Simple, no dictionary needed. Most popular STC

			f ₁	f ₂	f ₃	f ₄	f ₅	
ATPG order		t ₁		X				Fault sim order
		t ₂			X		X	
		<i>t</i> ₃		X		X	Х	
		<i>t</i> ₄	X			Х		

Q: Why ATPG generated redundant t₁ at beginning?

STC with X-filled (2)

- Random-order fault simulation
 - Fault simulate test patterns in random order
 - Example:
 - * First simulate t_4 , and then t_2 , t_1 , t_3
 - * Choose test set {t₄, t₁, t₂}

	f ₁	f ₂	f_3	f_4	f ₅
<i>t</i> ₁		X			
<i>t</i> ₂			X		X
<i>t</i> ₃		X		X	Х
<i>t</i> ₄	Х			Х	

Too Many Orders to Try

Summary

- Static test compression
 - With fault dictionary
 - * Minimum set-covering problem
 - Quine-McCluskey or 01-ILP
 - Too large dictionary
 - Without fault dictionary
 - Compatibility graph (X-unfilled)
 - T-S Algorithm
 - Reverse order fault simulation (X-filled)
 - Most popular solution

 CUT

 VLSI Test 15.2 © National Taiwan University

Three Authors Together

- Prof. Siewiorek, Prof. McCluskey, Prof. James Li
- 2016 Stanford University

FFT1

```
k \leftarrow 0:
G_c^k(V_c^k, E_c^k) \leftarrow G_c(V_c, E_c);
while (E_c^k \neq \emptyset) {
   find(v_i, v_i) \in E_c^k with largest set of common neibors;
   \mathbb{N} \leftarrow set\ of\ common\ neibors\ of\ v_i\ and\ v_i;
    s \leftarrow i \cup j;
                                                      keep edges touch
    V_c^{k+1} \leftarrow V_c^k \cup \{v_s\} \setminus \{v_i, v_i\};
                                                      neither v_i nor v_i
    E_c^{k+1} \leftarrow \emptyset;
                                                      e.g. edge (v_{012}, v_3)
   for each (v_m, v_n) \in E_c^k
        if(v_m \neq v_i \land v_m \neq v_i \land v_n \neq v_i \land v_n \neq v_i)
            E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_m, v_n)\};
   for each v_n \in N
       E_c^{k+1} \leftarrow E_c^{k+1} \cup \{(v_n, v_s)\};
   k \leftarrow k + 1:
                                               new edges between N and v_s
                                               e.g. edge (v_5, v_7)
```


FFT2

- MCP is NP-hard
- Show an example when TS-algorithm fails to find an optimal solution

