Numerické cvičenie č. 1 – Základy vektorovej algebry

- 1. V kartézskej súradnicovej sústave sú zadané body A[1,2,4], B[4,3,9], C[7,5,0] a D[1,8,3]. Vypočítajte súradnice:
- a) polohového vektora bodu A vzhľadom na bod B b) polohového vektora bodu A vzhľadom na bod C
- c) polohového vektora bodu A vzhľadom na bod D d) polohového vektora bodu D vzhľadom na bod C
- v danej súradnicovej sústave. Uvedené vektory znázornite graficky. Vypočítajte veľkosti uvedených vektorov. (súradnice bodov sú v cm)
- 2. Štvorec ABCD má strany veľkosti a = 5 cm. Vypočítajte súradnice polohových vektorov jednotlivých vrcholov štvorca v kartézskej súradnicovej sústave, ktorej stred je v strede štvorca a os x je orientovaná v smere uhlopriečky AC. Vypočítajte súradnice polohového vektora vrcholu B vzhľadom na vrchol C v takto zvolenej súradnicovej sústave. Uvedené vektory znázornite graficky. (Zvoľte súradnicovú sústavu v rovine)
- 3. Kocka ABCDEFGH má veľkosť strany a = 4 cm. Vypočítajte súradnice polohových vektorov jednotlivých vrcholov kocky v kartézskej vzťažnej sústave, ktorej počiatok je v strede kocky a súradnicová os x je a) rovnobežná so stranou AB b) rovnobežná s niektorou uhlopriečkou štvorca
- 4. Polohy bodov sú v kartézskej súradnicovej sústave dané súradnicami A[2,1,-1] a B[1,3,1]. Určte, akým skalárom musíme vynásobiť polohový vektor bodu B, aby vektor daný súčtom polohových vektorov oboch bodov bol na polohový vektor bodu B kolmý!
- 5. Dané sú vektory $\vec{a} = 2\vec{i} + \vec{j} \vec{k}$ a $\vec{b} = 3\vec{i} 2\vec{j} + 3\vec{k}$. Určite veľkosť priemetu vektora \vec{a} do smeru vektora \vec{b} . (Súradnice vektorov sú v cm)
- 6. Polohy bodov sú v kartézskej súradnicovej sústave dané súradnicami A[4,2,-1], B[1,2,5] a C[-2,-1,4]. Určte veľkosť plochy trojuholníka ABC. (Súradnice bodov sú v cm.)
- 7. V priestore sú dané tri body A[2,0,2], B[2,2,0] a C[0,1,1]. Vypočítajte súradnice jednotkových vektorov, ktoré sú kolmé na rovinu určenú bodmi A, B a C. Určite uhol medzi polohovým vektorom bodu A vzhľadom na bod C a polohovým vektorom bodu C vzhľadom na bod B. Súradnice bodov sú v cm.
- 8. Zistite, pre aké číslo α sú vektory \vec{a} , \vec{b} navzájom kolmé, ak:

a)
$$\vec{a} = 2\vec{i} - 5\vec{j} + 3\alpha\vec{k}$$
, $\vec{b} = \alpha\vec{i} + 2\vec{j} + \vec{k}$

b)
$$\vec{a} = (\alpha^2 - 4)\vec{i} + 8\vec{j} - (4\alpha - 20)\vec{k}$$
, $\vec{b} = \vec{i} - 2\vec{j} + \vec{k}$

- 9. Sú dané dva vektory: $\vec{a} = 2\vec{i} + \vec{j} \vec{k}$, $\vec{b} = \vec{i} + 3\vec{j} + \vec{k}$. Určte, akým číslom c musíme vynásobiť vektor \vec{b} , aby vektor daný súčtom $\vec{a} + c\vec{b}$ bol kolmý na vektor \vec{a} .
- 10. Vektory \vec{a} , \vec{b} a \vec{c} majú v kartézskej súradnicovej sústave nasledovné súradnice: \vec{a} =[2,1,-1], \vec{b} = [4,-2,7], $\vec{c} = [9,1,3]$ (súradnice sú v cm). Určite súradnice a veľkosti nasledovných vektorov:

a)
$$(\vec{a} \times \vec{b}) \cdot \vec{c}\vec{b}$$

b)
$$(\vec{a} \times \vec{b}) \vec{c} \cdot \vec{b}$$

c)
$$(\vec{a} \times \vec{c}) \vec{a} \cdot \vec{b}$$

d)
$$(\vec{a} \times \vec{b}) \cdot \vec{c} (\vec{b} \times \vec{a})$$

a)
$$(\vec{a} \times \vec{b}) \cdot \vec{c}\vec{b}$$
 b) $(\vec{a} \times \vec{b})\vec{c} \cdot \vec{b}$ c) $(\vec{a} \times \vec{c})\vec{a} \cdot \vec{b}$ d) $(\vec{a} \times \vec{b}) \cdot \vec{c}(\vec{b} \times \vec{a})$ e) $(\vec{a} \times \vec{b})\vec{c} \cdot (\vec{b} \times \vec{a})$

11. Nech pre vektory \vec{a} , \vec{b} platí:

$$\left| \vec{a} \right| = 3$$
 , $\left| \vec{b} \right| = \frac{\sqrt{2}}{3}$

Aký uhol musia zvierať vektory \vec{a} , \vec{b} , aby vektor $\vec{a} \times \vec{b}$ bol jednotkový?

- 12. Sú dané dva vektory: $\vec{a} = 2$ $\vec{i} + \vec{j} \vec{k}$, $\vec{b} = \vec{i} + 3\vec{j} + \vec{k}$. Určte, akým číslom c musíme vynásobiť vektor \vec{b} , aby vektor daný súčtom $\vec{a} + c\vec{b}$ bol kolmý na vektor \vec{a} .
- 13. Na základe pravidiel známych z vektorovej algebry dokážte, že uhlopriečky rovnobežníka sa pretínajú práve v polovici svojich dĺžok.
- 14. V kartézskej súradnicovej sústave sú dané body A [2,1,3] a B [4,0,6]. Bod A pôsobí na bod B silou F = 8 N, ktorej vektor má smer spojnice bodov AB a smeruje od bodu A do bodu B. Vypočítajte súradnice vektora uvedenej sily v danej súradnicovej sústave. Znázornite graficky.

- 15. Dva hmotné body umiestnené v polohách A [3,1,8] a B [4,1,5] pôsobia na tretí hmotný bod umiestnený v polohe C [10,0,5] silami s veľkosťou $F_1 = 10$ N a $F_2 = 5$ N v smere spojníc príslušných bodov. Sila F_1 má smer spojnice bodov AC (smeruje do bodu C) a sila F_2 má smer spojnice bodov BC (smeruje do bodu C). Vypočítajte veľkosť celkovej sily pôsobiacej na tretí hmotný bod umiestnený v polohe C i súradnice vektora tejto sily v danej súradnicovej sústave. Aké sú súradnice jednotkových vektorov v smere síl F_1 a F_2 v danej súradnicovej sústave? (Súradnice sú v cm.)
- 16. Hmotné body umiestnené v dvoch vrcholoch rovnostranného trojuholníka pôsobia na hmotný bod umiestnený v treť om vrchole silami $F_1 = 2$ N a $F_2 = 5$ N orientovanými v smere strán trojuholníka. Vypočítajte veľkosť celkovej sily pôsobiacej na tretí hmotný bod, ak dĺžka strany trojuholníka je a = 3 cm. Vektory síl smerujú do tretieho vrcholu. Znázornite graficky.
- 17. Vo vrchole kocky pôsobia sily veľkosti $F_1 = 1$ N, $F_2 = 2$ N a $F_3 = 3$ N v smere stenových uhlopriečok idúcich z tohto vrcholu. Nájdite veľkosť výslednice týchto síl. Znázornite graficky.
- 18. Hmotné body umiestnené vo vrcholoch kvádra so stranami a = 2 cm, b = 3 cm a c = 5 cm pôsobia na hmotný bod umiestnený v strede kvádra silami $F_1 = 8$ N, $F_2 = 3$ N, $F_3 = 6$ N, $F_4 = 1$ N, $F_5 = 9$ N, $F_6 = 7$ N, $F_7 = 2$ N a $F_8 = 4$ N. Vektory síl sú orientované v smere telesových uhlopriečok a smerujú od vrcholov do stredu kvádra. Vypočítajte veľkosť celkovej sily pôsobiacej na hmotný bod v strede kvádra.
- 19. Závažie s hmotnosťou m=100 kg je zavesené na dvoch závesoch dĺžky L_1 =50 cm a L_2 =80 cm. Závesy sú upevnené v bodoch, ktorých vzájomná vzdialenosť je a=1 m. Vypočítajte veľkosti síl F_1 a F_2 , ktorými sú oba závesy napínané.
- 20. Závažie m = 200 kg je zavesené na štyroch závesoch. Akou silou sú napínané závesy, keď dĺžka každého z nich je L = 5 m a body upevnenia závesov tvoria obdĺžnik so stranami a = 1 m a b = 2 m?