

Master 2 Monnaie Banque Finance Assurance

Réalisé par : Akbarli Nurlan Tirado Alejandro

Sous la direction de : **Madame SEYTE Françoise** Responsable de Master MBFA parcours ARB

Année Universitaire : 2021-2022

Remerciement

Nous voudrions dans un premier temps remercier infiniment notre enseignante Madame SEYTE Françoise pour ses explications durant le semestre.

Un grand merci également à Monsieur BENHMAD François pour ses explications détaillées en ligne.

Nous aimerions exprimer notre gratitude à la faculté des sciences économiques pour nous avoir permis de bénéficier d'une grande variété des œuvres.

Table des matières

Introduction	4
I. Prévision du cours boursière d'EXXON MOBIL par la méthode de Box et Jenkins	5
1. Histoire de l'indice XOM	
2. Analyse da la chronique	5
2.1. Analyse graphique	5
2.2. Analyse du corrélogramme	6
2.3. Analyse de la variance	6
3. Détection de la saisonnalité et la tendance	7
4. Analyse de la stationnarité	8
5. Modélisation ARMA par la méthode de Box & Jenkins	11
5.1. Identification	12
5.2. Estimation	12
5.3. Validation	13
6. LES MODELES ARCH	15
6.1. Identification	15
6.2. Estimation	15
6.3. Validation	17
7. Prévision	19
II. Analyse multivariée	21
1. Présentation des indices	21
1.1. British Petroleum Company (BP)	
1.2. Pétrole	21
2. Analyse des indices	22
3. Modélisation VAR	26
3.1. Identification du modèle VAR	27
3.2. Estimation du modèle VAR	
3.3. Vérification de la stationnarité du modèle	28
3.4. Test sur les résidus	29
4. Fonction de réponse impulsionnelle	31
5. Décomposition de la variance	
6. Analyse de la causalité	
6.1. Causalité au sens de GRANGER	34
6.2. Causalité au sens de SIMS	36
7. La Cointégration	37
7.1. Test de Granger et Engle	
7.2. TEST de Johansen	41
O CONCLUCION	4.4

INTRODUCTION

Dès le début du siècle dernier, l'importance d'analyse des séries temporelles a commencé à augmenter de manière significative. De nombreux ouvrages ont été écrits sur cette sujet tout au longdu 20e siècle. Aujourd'hui, analyse des séries temporelles occupe une des principales places dans la science de l'économétrie. Nous avons donc décidé d'analyser une série temporelle dans cet article.

Nous pouvons investir à beaucoup de secteurs, même aux matières premières dans les marchés financiers. L'une de ces matières premières est le pétrole qui est important au niveau mondial depuis plus d'un siècle. De ce fait, on a analysé le cours boursier de la plus grande compagnie pétrolière du monde qu'elle s'appelle Exxon Mobil. Cette analyse est basée sur les valeurs historiques qui sont de 2010 à 2020.

La première partie de notre analyse consiste à l'analyse univarié. Notre objectif est de faire des prévisions en utilisant la méthode de Box et Jenkins. D'abord on va parler de l'histoire de cet indice puis on va commencer à analyser la série brute. Si la série est non-stationnaire, nous allons enlever les composants non-stationnaires pour démarrer l'algorithme de Box et Jenkins. A la fin de cette partie on va mesurer la qualité du modèle retenu.

Dans la deuxième partie nous allons mener une analyse multivariée d'Exxon Mobil avec une autre compagnie qu'elle s'appelle British Petroleum (BP) et le cours du pétrole. Le but de cette partie est de voir la relation entre les 3 séries pétrolières. On va estimer le modèle VAR, analyser l'effet des chocs sur les séries. Nous allons compléter notre analyse après avoir effectué des tests de causalité et decointégration.

I. Prévision du cours boursière d'EXXON MOBIL par la méthode de Box et Jenkins

1. Histoire de l'indice XOM

ExxonMobil corporation est une des plus grandes entreprises des États-Unis fondée en 1999 par la fusion des sociétés Exxon et Mobil. Elle est une des principaux fournisseurs d'énergie et producteurs de produits chimiques connus pour ses activités telles que l'exploitation pétrolière et la commercialisation de carburants, des lubrifiants, de l'essence et des autres produits sous quatre marques Esso, Exxon, Mobil et ExxonMobil. L'entreprise est connue comme l'un des acteurs clés de la transformation d'une nouvelle génération d'énergie visant à réduire le changement climatique.

Elle est cotée à la Bourse de New York sous le nom de XOM depuis octobre 1999. Son chiffre d'affaires était 145 milliards de dollars en 2020. On va le nommer comme XOM durant notre analyse. La distribution géographique du chiffre d'affaires est comme suite : États-Unis (35%) , Canada (7%), Royaume Uni (6,5%), France (5%) et le reste du monde(55%). Sa capitalisation boursière est plus de 340 milliards de dollars, ce qui représente 2% de la capitalisation de la bourse de New York.

Son comportement en bourse est lié notamment au comportement du prix du pétrole. La direction de l'entreprise a pris une série des décisions d'inversion liés à la non-diversification de son activité après la chute de cours pétrolière de 2013. Pour cette raison ses chiffres d'affaires ont diminué entre les années 2014 et 2019. En plus, la crise sanitaire de 2019 a affecté négativement son cour boursière. Le cours a chuté de 70\$ à moins de 40\$ pendent quelques mois.

2. Analyse da la chronique

Avant de commencer l'analyse économétrique, on étudie la série brute de l'indice XOM. Cette partie se compose de plusieurs étapes : analyse de la variance, la saisonnalité, la tendance, le corrélogramme, et la stationnarité.

2.1. Analyse de graphique

La caractéristique de la tendance est parfois à la hausse et parfois à la baisse. Donc la série n'est passtationnaire en moyenne. Il y a eu de nombreuses crises à la fin de la première décennie des années 2000 : crise de subprimes, crise de la Grecque etc. L'effet de ces crises s'est davantage fait sentir au cours de la deuxième décennie. Elle a été affectée par la faillite de Lehman Brothers comme de nombreuses entreprises américaines. De plus, la chronique a été affectée par la baisse du prix de pétrole en 2014 et la crise du covid en 2020. Ainsi la fréquence de la volatilité a augmenté à la suitede ces chocs. Ces fluctuations montrent que la série n'est pas stationnaire en variance.

2.2. Analyse du corrélogramme

H0 : ρ = 0 ; l'absence d'autocorrélation entre les prix mensuelsH1

: $\rho \neq 0$; l'existence d'autocorrélation

Correlogram of XOM										
Date: 01/10/22 Time: 16:05 Sample: 2010M01 2020M12 Included observations: 132 Autocorrelation Partial Correlation AC PAC Q-Stat Prob										
		1	0.930	0.930	116.71	0.000				
	1 [1	2	0.858	-0.045	216.94	0.000				
	101	3	0.781	-0.080	300.60	0.000				
	1 11	4	0.717	0.054	371.65	0.000				
	1 1 1	5	0.655	-0.024	431.36	0.000				
	101	6	0.592	-0.053	480.50	0.000				
	1 1	7	0.529	-0.032	520.04	0.000				
I	1 1	8	0.467	-0.025	551.20	0.000				
	1 1	9	0.408	-0.028	575.17	0.000				
	101	10	0.344	-0.082	592.33	0.000				
1	1 1	11	0.284	-0.011	604.16	0.000				
1	I 🔳	12	0.256	0.194	613.80	0.000				
1	1 🗓 1	13	0.244	0.086	622.65	0.000				
I 🔲	1 [1	14	0.233	-0.035	630.79	0.000				
1	1 🛭 1	15	0.213	-0.056	637.67	0.000				
1	1 1	16	0.194	0.006	643.41	0.000				
1	1 1	17	0.178	0.002	648.28	0.000				
	1 1	18	0.162	-0.032	652.37	0.000				
I 🔟	1 1	19	0.151	0.016	655.95	0.000				
1 🔟	101	20	0.130	-0.082	658.62	0.000				
1 🔲	1 11 1	21	0.122	0.057	660.98	0.000				
. =.	ا بائر ا	22	0.440	0.000	660.00	0.000				

D'après ce corrélogramme, la chronique est un AR (1) typique. Au niveau de la PAC, il y a la présence d'un pic significatif au premier retard et la partie de l'autocorrélation a une décroissance exponentielle.

Les probabilités critiques sont inférieures à 0,05 pour tous les retards. Cela signifie qu'il y a 0,00 % chance qu'on accepte l'hypothèse nulle. Donc en rejetant H0, on accepte que les prix de l'action de EXXON MOBILE sont fortement corrélés.

2.3. Analyse de la variance

Heteroskedasticity Test: ARCH

F-statistic		Prob. F(1,129)	0.0000
Obs*R-squared	114.3043	Prob. Chi-Square(1)	0.0000

Test Equation:

Dependent Variable: RESID^2

Tableau 1 : Test ARCH sur la série brute

H0: Homoscédasticité

H1: Hétéroscédasticité

Le test ARCH se base sur la statistique Chi2. Au niveau de 5% on rejet H0, parce que la probabilité critique est inférieure à 5% (0,00<0,05). Donc la variance des résidus est hétéroscédastique, c'est-à-dire la série n'est pas stationnaire en variance

3. Détection de la saisonnalité et la tendance

On applique sur la série brute la transformation Box-Cox basé sur le logarithme afin de réduire l'amplitude des données sans déformer notre série et rendre plus simple notre analyse.

	M1	- 1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	Moyenne	Ecart
2010	4,	166	4,174	4,204	4,216	4,102	4,044	4,089	4,079	4,124	4,197	4,242	4,292	4,161	0,0741856
2011	4,	390	4,449	4,432	4,477	4,424	4,399	4,379	4,304	4,285	4,358	4,388	4,440	4,394	0,05709394
2012	4,	428	4,460	4,463	4,458	4,365	4,449	4,464	4,469	4,516	4,513	4,479	4,461	4,460	0,03883913
2013	4,	499	4,495	4,501	4,489	4,505	4,504	4,541	4,468	4,455	4,496	4,538	4,617	4,509	0,0417238
2014	4,	524	4,567	4,582	4,629	4,610	4,612	4,595	4,600	4,544	4,572	4,506	4,527	4,572	0,03965568
2015	4,	471	4,483	4,443	4,470	4,445	4,421	4,372	4,321	4,309	4,416	4,403	4,356	4,409	0,05859268
2016	4,	355	4,384	4,426	4,482	4,489	4,541	4,488	4,468	4,469	4,423	4,469	4,503	4,458	0,05222147
2017	4,	430	4,398	4,407	4,402	4,388	4,391	4,383	4,335	4,406	4,423	4,422	4,427	4,401	0,02598377
2018	4,	469	4,327	4,312	4,353	4,397	4,416	4,401	4,384	4,443	4,378	4,376	4,222	4,373	0,06492538
2019	4,	294	4,370	4,392	4,386	4,259	4,339	4,309	4,227	4,257	4,213	4,221	4,245	4,293	0,06552136
2020	4,	129	3,940	3,637	3,839	3,817	3,800	3,740	3,687	3,536	3,485	3,641	3,719	3,748	0,17595104
Moyenne	4,	378	4,368	4,345	4,382	4,346	4,356	4,342	4,304	4,304	4,316	4,335	4,346	4,343	0,02594857

Tableau 2 : Tableau de Buys Ballot

	somme des carres	DDL	designation	variance	F	F critique
sp	0,081472699	11	variance periode	0,00740661	1,41129338	1,87673198
sa	6,102577168	10	vaniance année	0,61025772	116,281645	1,91782714
sr	0,577291014	110	variance residue	0,0052481		
st	6,761340881	121	variance total	0,05587885		

Tableau 3

Tableau 3 nous permet de détecter à la fois la présence d'une saisonnalité et d'une tendance. Ces résultats sont obtenus à l'aide d'outils d'analyse de données, notamment l'analyse de la variance sous Excel. Les formules des sommes des carrés sont ci-dessous :

$$S_p = N \sum_j (x_{.j} - x_{..})^2 = 0.08$$

$$S_A = p \sum_i (x_{i.} - x_{..})^2 = 6.10$$

$$S_T = \sum_i \sum_j (x_{ij} - x_{i.} - x_{.j} + x_{..})^2 = 0.57$$

$$S_T = S_A + S_P + S_R = 6.76$$

Ce tableau nous montre également la variance de chaque ligne. Nous devons savoir les variances pour calculer la valeur de Ficher empirique qu'on compare au Ficher lu dans la table. Les formules des variances sont ci-dessous :

$$V_p = S_p / (p-1) = 0,007$$

$$V_a = S_a/(N-1) = 0.61$$

$$V_r = S_r / [(p-1)*(N-1)] = 0,0052$$

$$V_T = S_T / [N*(p-1)] = 0.056$$

Test de l'influence des facteurs

Premièrement on va appliquer ce test sur le facteur colonne, donc on va tester la présence de la saisonnalité.

HO: non saisonnalité

H1: saisonnalité

Ce test se base sur la valeur de F. On peut calculer F_c grâce à la formule suivante :

$$F_c = Vp / Vr = 1,41.$$

On compare Fc au F_{lu} qui est la statistique de test F au niveau de 5% et égale à 1,88. Ainsi onconfirme que F_C est inférieur à F_{lu} , c'est-à-dire on accepte H0, la série n'est pas saisonnière.

Pour tester l'importance du facteur annuel on va appliquer ce test sur les lignes.

H0: pas de tendance

H1 : la série présente une tendance

$$Fc = Va /Vr = 116,28.$$

La statistique de la test F est égale à 1,91 donc est supérieure à Fc. Alors on rejet H0, la série est affectée par une tendance.

D'après ces analyses on constate que la série boursière d'Exxon Mobil n'est pas saisonnière mais elle présent une tendance.

4. Analyse de la stationnarité.

Le sujet de la stationnarité est important lorsque on analyse d'une chronique. Si une série n'est pas stationnaire on ne peut pas faire une bonne prévision. Donc il faut tester la stationnarité. Si elle n'est pas stationnaire, on va la rendre stationnaire en utilisant la méthode de la différence première.

Pour tester la stationnarité on va utiliser le test Dickey Fuller. Vu que la série présente l'hétéroscédasticité en variance, il faut appliquer le test de Philips Perron avant celui de Dickey Fuller.

Phillips-Perron Unit Root Test on LXOM

Null Hypothesis: LXOM has a unit root Exogenous: Constant, Linear Trend

Bandwidth: 8 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test st Test critical values:	atistic 1% level	-1.151206 -4 029595	0.9154
root official values.	5% level 10% level	-3.444487 -3.147063	

H0: Non stationnarité

H1: Stationnarité

La probabilité critique de ce test est égale à 0,91 qui est supérieure à 0,05, c'est-à-dire on accepte H0, la série a une racine unitaire donc elle n'est pas stationnaire.

On va tester la stationnarité de la série avec le tes de Dickey Fuller. On a 132 observations donc ce n'est pas beaucoup. Vu qu'il n'y a pas beaucoup de données dans la série, on sélectionne le nombre de retards selon le critère d'Akaike. Il y a 3 types de ce test :

1)
$$Y_t = \Phi_1 Y_{t-1} + \varepsilon_t$$
 Modèle sans constant et sans tendance

2)
$$Y_t = \Phi_1 Y_{t-1} + C + \varepsilon_t$$
 Modèle avec un constant et sans tendance

3)
$$Y_t = \Phi_1 Y_{t-1} + bt + c + \varepsilon_t$$
 Modèle avec un constant et une tendance

D'abord on prend le modèle avec un constant et une tendance.

H0 : présence de la racine unitaire

H1 : absence de la racine unitaire

Augmented Dickey-Fuller Unit Root Test on LXOM

Null Hypothesis: LXOM has a unit root Exogenous: Constant, Linear Trend

Lag Length: 11 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fr Test critical values:	uller test statistic 1% level 5% level 10% level	-0.084394 -4.036310 -3.447699 -3.148946	0.9946

La probabilité critique est égale à 0,99 qui est largement supérieur à 5%. On accepte H0, la série n'est pas stationnaire. Si on compare les valeurs de t-statistique, on trouve le même résultat : la série n'est pas stationnaire parce que -0,08 est inférieur en valeur absolue à -3,43 qui est la valeur de niveau 5%, donc on accepte H0.

Le critère d'Akaike détermine 11 retards dans le modèle. Donc il y a une présence d'autocorrélation entre les résidus. On rajout 11 retards afin de corriger cette autocorrélation. Ainsi nous commençons notre analyse avec le modèle 6:

$$\Delta Y_t = \rho Y_{t-1} - \Sigma \Phi_j \Delta Y_{t-j+1} + C + bt + \epsilon_t$$

D(LXOM(-10)) D(LXOM(-11)) C @TREND("2010M01")	0.196983	0.115644	1.703367	0.0914
	-0.313299	0.120386	-2.602446	0.0106
	0.050540	0.214622	0.235483	0.8143
	-0.000560	0.000223	-2.508609	0.0136
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.203063 0.105325 0.061229 0.397388 172.3474 2.077635 0.021264	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.004776 0.064732 -2.639123 -2.313916 -2.507055 2.051441

D'après ce test la somme des carrés des résidus de Modèle 6 est 0,3974 (SCR6)

Modèle 6 consisté à deux tests d'hypothèses jointes :

Premier Test d'hypothèses joints

 $H0^6$: $(c, b, \rho) = (c,0,0)$

 $H1^6: (c, b, \rho) \neq (c, 0, 0)$

Si F6 est inférieur à la valeur lue dans la table de McKinnon, on accepte H0⁶.

D'abord il faut calculer F6:

$$F6 = [(SCRD - SCR6)/2]/[SCR6/(n - (p-1) - 3)] = 3,136$$

D'après la régression, SCR de modèle contraint, c'est à dire SCR6^{C1} (ou SCRD) est égale à 0,4209. Le nombre des retards c'est-à-dire (p-1) est égale à 11 et on a 120 observations. On trouve que F6 = 3,136 qui est inférieur à F de McKinnon qui vaut à 6,25. Donc on accepte $H0^6$.

Si on a accepté H0⁶ alors il faut tester l'autre hypothèse joint qui s'appelle H0⁵, parce que le dernier modèle n'est pas bon.

 $H0^5: (c, b, \rho) = (0,0,0)$

 $H1^5: (c, b, \rho) \neq (0,0,0)$

SCR de ce modèle contraint c'est-à-dire SCRC est égale à 0.,424035.

$$F5 = [(SCRC - SCR6) / 3] / [SCR6 / (n - (p-1) - 3)] = 2,369$$

F5 = 2,369 < 4,68. On accepte $H0^5$. Donc il faut passer à l'autre modèle.

Modèle 5 :
$$\Delta Y_t = \rho Y_{t-1} - \Sigma \Phi_j \Delta Y_{t-j+1} + C + \varepsilon_t$$

Hypothèses générales du modèle :

HO: Racine unitaire.

H1 : Pas de racine unitaire

		t-Statistic	Prob.*
Augmented Dickey-Fuller	test statistic	-0.525958	0.8813
Test critical values:	1% level	-3.480818	
	5% level	-2.883579	
	10% level	-2.578601	

Selon la probabilité critique et t-statistique on accepte H0 donc la série a une racine unitaire, elle n'est pas stationnaire. SCR5 = 0.420981. On va tester l'hypothèse $H0^4$

 $H0^4$: $(c, \rho) = (0,0)$

 $H1^4:(c,\rho)\neq(0,0)$

$$F4 = [(SCRC - SCR5) / 2] / [(SCR5) / (n - (p-1) - 2)] = 0,389$$

F4 = 0.389 < 4.59 donc on accepte $H0^4$.

Ainsi on conclut que notre série est un processus DS sans dérivé. Il n'y a pas de partie déterministe dans cette série. Autrement dit la série est Marché au hasard. En général les séries boursières sont marché au hasard.

On peut conclure le même résultat en faisant le test de la nullité de la moyenne.

Hypothesis Testing for LXOM Date: 01/09/22 Time: 21:46 Sample: 2005M01 2020M12

Included observations: 192

Test of Hypothesis: Mean = 0.000000

Sample Mean = 4.320297 Sample Std. Dev. = 0.210046

 Method
 Value
 Probability

 t-statistic
 285.0030
 0.0000

D'après la probabilité critique qui est inférieure à 5% on rejette H0 donc la moyenne est différente de 0. C'est-à-dire la sérié présente un processus DS sans dérivé.

5. Modélisation ARMA par la méthode de Box & Jenkins

Cette méthode a été proposé par Box et Jenkins en 1970. Il s'agit d'un algorithme pour prévoir les séries temporelles. Cette méthode est fondée sur l'utilisation des modèles ARMA. Les modèles ARMA sont suivent utilisés quand il faut plusieurs différenciations pour rendre la stationnaire la série.

Cet algorithme consiste à 4 étapes :

- Identification: Dans cette étape on définit l'ordre du modèle ARMA (p, q) c'est-à-dire on définit le nombre des retards pour les deux parties; AR(p) qui représente la mémoire de la variable et MA(q) qui représente la mémoire d'erreur.
- **Estimation**: Il s'agit d'estimer les coefficients des retards identifiés dans la première étape. On va vérifier la significativité des paramètres en fonction du test de student et va sélectionner un bon modèle selon le critère d'Akaike.
- Validation : le but de cette étape est de valider le modèle : on fait plusieurs tests tant que Ljung- Box, ARCH, Jarque-Bera etc. pour vérifier que les résidus du modèle sont Bruit Blanc. Si ce n'est pas le cas, la qualité de la prévision ne sera pas bonne.
- **Prévision**: Une fois que le modèle est validé on commence à faire la prévision dans cette étape

Il faut que la série soit stationnaire pour commencer à appliquer cet algorithme. On a déjà rendu stationnaire cette série en faisant la différence première ci-dessus et on a conclu qu'elle est DS sans constante et sans la tendance déterministe. Donc on applique algorithme de Box Jenkins sur la série en différence première.

5.1. Identification

On a pris plusieurs retards pour trouver le meilleur modèle. Tableau 4 nous présente ces modèles avec leurs propriétés caractéristiques.

Processus	Signif. des paramètres	Normalité	Absence d'autocorrélation	Homoscédasticité	R ²	AIC
	•					
AR(1)	NON	NON	OUI	NON	-0,0021	-2,64
AR(2)	NON	NON	OUI	NON	0,0002	-2,62
AR(5)	NON	NON	OUI	NON	0,016	-2,59
MA(1)	NON	NON	OUI	NON	-0,02	-2,63
MA(2)	NON	NON	OUI	NON	-0,0003	-2,62
MA(5)	NON	NON	OUI	NON	0,021	-2,59
ARMA(1,1)	NON	NON	OUI	NON	-0,0019	-2,62
ARMA(2,2)	OUI	NON	OUI	NON	0,057	-2,64
ARMA(3,3)	NON	NON	OUI	NON	0,061	-2,61
ARMA(5,5)	NON	NON	OUI	NON	0,11	-2,59

Tableau 4 : Identifications des modèles ARMA

5.2. Estimation

D'après le tableau 4 on voit que la majorité des coefficients ne sont pas significatifs. On n'a qu'un seul modèle où les coefficients des paramètres sont significatifs. C'est le modèle ARMA (2,2). La valeur du critère d'Akaike est le meilleur par rapport aux autres modèles. Selon la pondération de R²le modèle est deuxième avec 5,7%. Donc le modèle ARIMA (2, 1, 2) est le meilleur modèle par rapport aux autres.

Dependent Variable: DLXOM

Method: ARMA Maximum Likelihood (BFGS)

Date: 01/11/22 Time: 15:36 Sample: 2010M02 2020M12 Included observations: 131

Convergence achieved after 38 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1) AR(2) MA(1) MA(2) SIGMASQ	1.361267 -0.970288 -1.403434 0.958469 0.003824	0.111217 0.092068 0.137204 0.125713 0.000327	12.23976 -10.53887 -10.22880 7.624285 11.70976	0.0000 0.0000 0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.057208 0.027278 0.063051 0.500899 178.0070 1.939522	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.003410 0.063929 -2.641328 -2.531588 -2.596736

- AR(1) et AR(2) sont les parties autorégressives, leurs coefficients sont 1,36 et -0,97. C'est-à-dire la valeur actuelle dépend 1,36 fois de la valeur précédente (t-1), et -0,97 fois de la valeur de deux périodes précédentes (t-2).
- MA(1) et MA(2) sont les parties moyenne mobiles, leurs coefficients sont -1,4 et 0,96. Cela signifie que la valeur actuelle dépend -1,4 fois de l'erreur précédente et 0,96 fois de l'erreur de deux période précédentes (t-2).

 $DLXOM_t = 1,36*DLXOM_{t-1} - 0,97*DLXOM_{t-2} + \varepsilon_t - 1,40* \varepsilon_{t-1} + 0,96* \varepsilon_{t-2}$

5.3. Validation

Dans cette étape on va appliquer 3 tests :

A) Test de Ljung-Box

HO: Absence autocorrelation

H1: Autocorrelation

Date: 01/11/22 Time: 15:40 Sample (adjusted): 2010M02 2020M12 Q-statistic probabilities adjusted for 4 ARMA terms									
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob				
		1 0.025 2 0.023 3 -0.044 4 0.053 5 0.003 6 0.018 7 0.071 8 -0.058 9 -0.070 10 0.178 11 -0.112 12 -0.008	0.025 0.022 -0.045 0.055 0.002 0.014 0.075 -0.066 -0.069 0.194 -0.143 -0.008	0.0810 0.1523 0.4199 0.8035 0.8048 0.8514 1.5598 2.0357 2.7339 7.3004 9.1071 9.1168	0.370 0.653 0.669 0.729 0.741 0.294 0.245 0.333				
 		13 -0.019 14 0.064 15 0.063 16 -0.108	0.023	9.1686 9.7793 10.369 12.146	0.422 0.460 0.498 0.434				
 []]		17 0.079	0.064 -0.002 0.014	13.100 13.416 13.553	0.440 0.494 0.560				

D'après ce corrélogramme on conclut qu'il n'y a pas d'autocorrélation entre les résidus du modèle.

B) Test de normalité

HO: Normalité de la distribution des résidus

H1: Absence de la normalité

On a fait le test de Jarque-Bera. La probabilité critique est égale à 0,00. Donc on rejet H0, la distribution des résidus n'est pas normale.

C) Test d'hétéroscédasticité

Pour vérifier la présence de l'homoscédasticité on applique le test ARCH sur les résidus de ce modèle.

HO: Homoscédasticité

H1: Hétéroscédasticité

Heteroskedasticity Test: ARCH					
F-statistic	2.329501	Prob. F(12,106)	0.0109		
Obs*R-squared	24.83336	Prob. Chi-Square(12)	0.0156		

Test Equation:

Dependent Variable: RESID² Method: Least Squares Date: 01/11/22 Time: 15:54

Sample (adjusted): 2011M02 2020M12 Included observations: 119 after adjustments

La probabilité critique est inférieure à 0,05 donc on rejet l'hypothèse nulle. La variance des résidus de model ARIMA(2, 1, 2) n'est pas homoscédastique.

Conclusion : On a défini un modèle parmi plusieurs mais dans l'étape de validation on conclut que ce modèle n'est pas bon parce que ses résidus ne suivent pas le processus de Bruit Blanc.

6. LES MODELES ARCH

Les modèles classiques de prévision comme les modèles ARMA constatent que la variance de la série est constante (homoscédasticité). Mais les séries boursières sont très variables. Le prix d'une action dépend aussi de l'information qui peut l'affecter positivement ou négativement. Après chaque choc négatif, le prix peut chuter. Notre série est de l'année 2010 à 2020 donc c'est une période très volatile. Parce qu'elle passe de la période après la crise de 2008 et celle de la crise sanitaire de 2020. C'est pour ça notre modèle qu'elle s'appelle ARMA (2, 2) ne peut pas capter l'hétéroscédasticité conditionnelle.

6.1. Identification

Nous avons d'abord essayé de trouver un bon modèle comme nous l'avons fait avec les modèles ARMA. Nous avons appliqué des modèles de la famille ARCH tels que GARCH, EGARCH, TGARCH et PARCH. On a identifié environ 100 modèles et sélectionné 8 modèles parmi eux. Le tableau 5 nous les représente .

Modèles	Signif des	Absence	Normalité	Homoscédasticité	R^2	Akaike
	paramètres	d'autocorrélation				
ARCH(1, 0)	OUI	OUI	NON	OUI	0,12	-2,95
ARCH(2, 0)	NON	OUI	NON	OUI	-0,02	-2,78
ARCH(6, 0)	NON	OUI	NON	NON	-0,01	-2,77
GARCH (1, 1)	NON	OUI	OUI	OUI	0,04	-2,81
GARCH (1, 2)	NON	OUI	OUI	OUI	0.01	-2.82
TGARCH (1, 2, 1)	OUI	OUI	OUI	OUI	0.21	-3.11
PGARCH (2, 1, 0)	OUI	OUI	OUI	OUI	0,01	-2,89
EGARCH (0,3,4)	OUI	OUI	NON	NON	0.03	-2.81

Tableau 5 : Identification des modèles

6.2.Estimation

On a 4 modèles où les coefficients des paramètres sont significatifs et parmi eux il n'y a que 2 modèles où les résidus suivent le processus bruit blanc. Ils sont TGARCH (1,2,1) et PGARCH(2,1).

On compte sur le critère de la minimisation d'Akaike donc on doit choisir la valeur minimale selon ce critère. Nous avons choisi le modèle TGARCH avec un retard dans la partie ARCH, deux retards dans la partie GARCH et un retard dans la partie Treshold. De plus, la valeur de R² est plus élevée parrapport aux autres. Ça aussi est une bonne raison pour choisir ce modèle.

Les modèles GARCH sont largement utilisées en finance. Parce que ces modèles sont capables à capter de l'hétéroscédasticité conditionnelle. Donc la variance change au cours de temps.

$$\sigma_t^2 = \omega + \sum \alpha_i \, \epsilon_{t-i}^2 + \sum \beta_i \sigma_{t-i}^2$$

Omega est le constant. La première partie montre le nombre de retards dans la partie ARCH, c'est-àdire la variance conditionnelle est expliquée par le carré des erreurs précédentes dans cette partie. La deuxième partie présente le nombre des retards dans la partie GARCH. Cela signifie que la variance conditionnelle dépend du carré des variances conditionnelles passées.

Les modèles ARCH et GARCH sont basé sur l'hypothèse de symétrie. Mais il est difficile de trouver de la symétrie dans les séries boursières. Pour prendre en compte le comportement asymétrique de la volatilité, les extensions des modèles GARCH ont été développées par les économètres. Un de ces modèles est le modèle TARCH (ou TGARCH) qui a été développé par Zokoïan en 1994.

$$\sigma_{t}^{\;2} = \omega + \sum \alpha_{i} \, \epsilon_{t-i}^{\;\;2} + \sum \gamma_{k} \, \epsilon_{t-k}^{\;\;2} \, I_{t-k} + \sum \beta_{j} \, \sigma_{t-j}^{\;\;2}$$

On voit que la formule se ressemble à celle du modèle GARCH. La seule différence est la partie de $\sum \gamma_k \, \epsilon_{t-k}{}^2 \, I_{t-k}$. « I » est une variable dichotomique qui peut vaut à 0 et 1. Si le choc est négatif cette variable va égale à 1 mais si le choc est positif elle va prendre 0. Donc ce modèle est basé sur l'effet de « bad news » et « good news ». Le paramètre « γ » mesure l'impact de choc négatif sur la volatilité. Donc si « ϵ_{t-i} » < 0 on va la multiplier avec « γ » et va prendre en compte l'asymétrie.

y = 0 : Absence de l'asymétrie

γ < 0 : L'impact du choc positif est plus forte que celui du choc négatif

 $\gamma > 0$: L'impact du choc négatif est plus forte que celui du choc positif

Plus précisément, après une mauvaise nouvelle il y aura l'impact d'un choc négatif sur la série et la partie de $\sum \gamma_k \, \epsilon_{t-k}^2 \, I_{t-k}$ va isoler cette l'asymétrie.

Dependent Variable: DLXOM

Method: ML - ARCH Date: 01/16/22 Time: 19:56

Sample (adjusted): 2010M04 2020M12 Included observations: 129 after adjustments

Failure to improve likelihood (non-zero gradients) after 173 iterations Coefficient covariance computed using outer product of gradients

MA Backcast: OFF (Roots of MA process too large) Presample variance: backcast (parameter = 0.7)

 $GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*RESID(-1)^2*(RESID(-1)<0)$

+ C(8)*GARCH(-1) + C(9)*GARCH(-2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
AR(1) AR(2) MA(1) MA(2)	0.013729 -0.921631 0.016554 1.145845	9.01E-05 0.000353 0.000484 4.77E-05	152.3443 -2607.698 34.20099 24006.21	0.0000 0.0000 0.0000 0.0000
	Variance	Equation		
C RESID(-1)*2 RESID(-1)*2*(RESID(-1)<0) GARCH(-1) GARCH(-2)	4.28E-07 -0.225130 0.236574 0.725834 0.366103	9.13E-05 0.004852 0.061573 0.007575 0.012201	0.004691 -46.39486 3.842138 95.82338 30.00601	0.9963 0.0000 0.0001 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.214820 0.195976 0.057699 0.416154 209.8997 1.982646	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.003763 0.064348 -3.114724 -2.915203 -3.033655

Cette sortie d'eviews nous présente le modèle TGARCH (1, 2, 1) qu'on a choisi pour capter la volatilité conditionnelle et asymétrique de la série boursière d'Exxon Mobil.

- RESID(-1)^2 est la partie d'ARCH, son coefficient (alpha) est -0,23
- RESID(-1)^2*(RESID(-1)<0) est la partie Treshold, son coefficient (gamma) est 0,236 donc positif. Cela signifie que la série est affectée par un choc négatif.
- GARCH(-1) et GARCH(-2) sont les parties GARCH

Le paramètre ω est presque 0, donc n'est pas significatif. Le gamma est significativement positif, c'est-à-dire l'effet de «bad news » est significatif donc la variable « I » va égale à 1.

$$\begin{aligned} & \text{DLXOM}_t = 0.013729*\text{DLXOM}_{t-1} - 0.921631*\text{DLXOM}_{t-2} + \varepsilon_t + 0.016554* \varepsilon_{t-1} + 1.145845* \varepsilon_{t-2} \\ & \text{Avec } \varepsilon_t = u_t * \sigma_t \text{ où } u_t >>> N \ (0,1) \end{aligned}$$

$$& \text{et } \sigma_t^2 = 0 - 0.22513 \ \varepsilon_{t-1}^2 + 0.236574* 1* \varepsilon_{t-1}^2 + 0.725834 \ \sigma_{t-1}^2 + 0.366103 \ \sigma_{t-2}^2 \end{aligned}$$

$$& \text{Alors } \sigma_t^2 = 0.011444 \ \varepsilon_{-1}^2 + 0.725834 \ \sigma_{t-1}^2 + 0.366103 \ \sigma_{t-2}^2$$

La dernière est la variance conditionnelle qui varie au cours du temps.

6.3. Validation de Modèle:

A) Test de Ljung-BOX

H0: Absence autocorrélation entre les résidus

Correlogram of Standardized Residuals

H1: Autocorrélation

Date: 02/09/22 Time: 11:29 Sample (adjusted): 2010M04 2020M12 Q-statistic probabilities adjusted for 4 ARMA terms						
Autocorrelation	AC	PAC	Q-Stat	Prob*		
		2 0.017 3 -0.111 4 0.006 5 -0.067 6 0.096 7 -0.014 8 -0.019 9 -0.091 10 0.147	-0.110 -0.008 -0.066 0.078 -0.003 -0.035 -0.078 0.137 -0.146 -0.066 0.030 0.072 0.044 -0.168 0.113 0.035	4.1296 4.1569 4.2056 5.3724 8.4295 12.090 12.157 12.161 13.538 13.595	0.379 0.372 0.208 0.098 0.144 0.204 0.195 0.256 0.209 0.220	

Toutes les probabilités critiques sont supérieures à 5%. Ça nous dit qu'il n'y a pas d'autocorrélation entre les erreurs.

B) Test de normalité

H0: Normalité de la distribution des résidus

H1: Absence de normalité

La probabilité critique est supérieure à 5%, donc on accepte H0 qui signifie la normalité de la distribution des résidus. La Skewness est négatif c'est-à-dire la probabilité de perte est plus forte que celle de gain.

C) Test d'hétéroscédasticité

Pour vérifier la présence de l'homoscédasticité on applique le test ARCH sur les résidus de ce modèle.

H0: Homoscédasticité

H1: Hétéroscédasticité

 Heteroskedasticity Test: ARCH						
			0.8733 0.8552			

La probabilité critique de CHI deux est largement supérieure à 5% ; on accepte H0 donc ce modèle a bien enlevé l'hétéroscédasticité.

Les erreurs sont distribuées normal, pas d'autocorrélation entre eux et la présence d'homoscédasticité en variance. Donc on conclut que les erreurs du modèle TGARCH (1, 2, 1) suivent le processus Bruit Blanc. Ça nous dit qu'on valide ce modèle et passe à l'étape de la prévision.

7. Prévision

D'abord on a essayé de faire la prévision sous Excell. Le tableau ci-dessous nous montre bien chaque composante de la formule du modèle ARM(2, 2).

Date	MA(1)MA(2)	AR(1)AR(2)	DLXOM	DLXOMcalculé	ERREUR
nov-20	-0,12261182	0,138795341	0,156075834	0,016183521	0,139892312
déc-20	-0,051604524	0,049232671	0,0779222	-0,002371853	0,080294052
janv-21	0,161624094	-0,142774533	0,018592264	0,018849561	-0,000257297
févr-21	0,092000279	-0,071560262	0,020257328	0,020440018	-0,000182689

AR(1)AR(2) – La partie Autorégressive

MA(1) MA(2) – La partie Moyenne Mobil c'est à dire $\theta_I^* \mathcal{E}_{t-I} + \theta_2^* \mathcal{E}_{t-2}$ ERREUR --- l'erreur actuel c'est à dire DLXOM - DLXOMcalculé

Maintenant on a toutes les valeurs. Ainsi nous pouvons calculer le cours du mois janvier ;

```
En Janvier 2021 AR(1)AR(2) = 0.013*DLXOM \, d\acute{e}c - 0.92*DLXOM \, nov = -0.142774533 MA(1)MA(2) = 0.016*ERREUR \, d\acute{e}c + 1.145*ERREUR \, nov = 0.161624094 DLXOM \, janv = AR(1)AR(2) + MA(1)MA(2) + ERREUR \, janv = 0.018592264
```

Nous pouvons également calculer les valeurs des autres mois avec cette séquence. A l'aide du logiciel d'eviews on peut facilement calculer les valeurs mensuelles en 2021. Le tableau ci-dessous nous montres ces valeurs.

Date	DLXOM	LXOM	XOM prévu	XOM réel	et^2
déc-20	DECOM	3,7189240	Aoin piera	XOIII ICCI	0. 2
janv-21	0,01859226	3,737516264	41,99355961	44,84	8,10222287
févr-21	0,02025733	3,757773592	42,85291164	54,369999	132,643301
mars-21	-0,01685709	3,740916503	42,13659077	55,830002	187,509511
avr-21	-0,01890121	3,722015293	41,34763781	57,240002	252,567239
mai-21	0,01527652	3,737291811	41,98413509	58,369999	268,496536
juin-21	0,01762967	3,75492148	42,73086444	63,080002	414,087399
juil-21	-0,01383727	3,741084209	42,14365793	57,57	237,97203
août-21	-0,01643802	3,72464619	41,45656242	54,52	170,653401
sept-21	0,01252718	3,737173367	41,97916264	58,82	283,613803
oct-21	0,01532177	3,752495138	42,62731043	64,470001	477,103131
nov-21	-0,01133508	3,741160059	42,14685464	59,84	313,047393
déc-21	-0,01427664	3,726883423	41,54941423	61,19	385,752609
				SCR	3131,54858
				MSE	260,962381

Les valeurs prévues par le modèle TGARCH (1, 2, 1) sont dans la deuxième colonne. Ça nous donne la

série à la fois en différence première et en logarithme. Alors il faut enlever les deux derniers pour trouver les vraies valeurs.

 $DLXOM_t = LXOM_t - LXOM_{t-1}$

$XOM_t = exp(LXOM_t)$

On n'a pas mal prévu pour le premier mois. Mais à partir de deuxième mois on voit les grandes écartes. Ça peut expliquer par le fait que la vitesse de l'information qui affecte le prix, est très rapide. Chaque jour les nouvelles informations (bad ou good news) peuvent venir donc beaucoup de choses peuvent changer pendent un mois. Par conséquent, dans les séries boursières l'analyse des séries journaliers est plus préférable par rapport celle des séries mensuelles.

II. Analyse multivariée

Dans cette partie nous allons faire analyse multivariée entre les cours boursières d'Exxon Mobil, de Pétrole et de BP. Exxon Mobil et BP sont classées parmi les 10 plus grandes compagnies pétrolières mondiales. Est-ce que leurs cours sont interdépendants ? Comment le prix du pétrole les affectent-il? Pour trouver aux réponses à ces questions on a décidé d'analyser ces sociétés avec le cours pétrolier. Le but de cette partie est de voir les relations entre ces séries pétrolières. Nous allons parler d'une petite histoire des composantes de la partie multivariée avant de commencer à notre analyse.

1. Présentation des indices

1.1. British Petroleum Company (BP)

British Petroleum Company, fondée en 1909, est une compagnie britannique qui explore, extrait, raffine et vend du pétrole depuis plus d'un siècle. BP a des opérations dans près de 80 pays à travers le monde, produisait environ 3,7 millions de barils par jour (590 000 m3/j) d'équivalent pétrole et disposait de réserves prouvées totales de 19,945 milliards de barils (3,1710 × 109 m3) d'équivalent pétrole. L'entreprise compte environ 18 700 stations-service dans le monde. Sa plus grande parte est BP America aux États-Unis. En Russie, BP détient 19,75% des actions de Rosneft qui est la plus grande société pétrolière et gazière cotée en bourse au monde en termes de réserves et de production d'hydrocarbures. BP est coté à la Bourse de Londres et fait partie de l'indice FTSE 100. Elle est également cotée à la Bourse de Francfort et à la Bourse de New York. En 2020, BP a été classée 357e plus grande entreprise publique au monde dans le Forbes Global 2000. Ses grands actionnaires institutionnels sont suivants : BlackRock Investment Management Ltd.(3.35%), The Vanguard Group (3,12%), Norges Bank Investment Management (2.21%) and Legal & General Investment Management Ltd. (2.07%).

Le but de cette partie est de faire analyse multivariée entre Exxon Mobil, BP et Pétrole. Pour étudier mieux sa relation avec Exxon Mobil, nous allons analyser le cours de l'action de BP à la Bourse de New York où les actions sont cotées en dollars américains.

La marée noire de Deepwater Horizon en avril 2010 a entraîné une forte baisse du cours des actions et les actions de BP ont perdu environ 50% de leur valeur en 50 jours. Les actions BP sont tombées à 26,97 \$ par action au 25 juin 2010. Le cours a atteint à 49,50 dollars après une hausse au début 2011. Ainsi, comme Exxon, il a subi quelques chocs pendant cette période. Dans cette partie de notre analyse, nous parlerons des effets de ces chocs sur BP et les autres composantes.

1.2. Pétrole

Avec une trajectoire intéressante de son marché et plein des mouvements liés à la géopolitique, le cours du pétrole devient de plus en plus intéressant. Le prix mondial du pétrole brut était relativement constant au XIXe siècle et au début du XXe siècle. Cela a changé dans les années 1970, avec une augmentation significative du prix du pétrole à l'échelle mondiale. Il y a eu un certain nombre de moteurs structurels des prix mondiaux du pétrole dans le passé, notamment des chocs

sur l'offre, la demande et le stockage de pétrole, et des chocs sur la croissance économique mondiale affectant les prix du pétrole.

Le premier choc pétrolier intervient en 1973 pendant le conflit arabo-israélien quand les pays arabes décrètent un embargo contre les pays alliés d'Israël. En 1979 à cause de la révolution iranienne on a connu une nouvelle crise de production et exportation. Les prix ont chuté même après la crise financière de 2008. En 2013 la surabondance d'approvisionnement en pétrole a conduit aux "plus fortes baisses des prix du pétrole de l'histoire moderne" et il a duré de 2014 à 2016. En 2020 la série pétrolière a été affectée par la crise sanitaire comme plusieurs séries financières.

2. Analyse des indices

Dans cette section on va analyser la série boursière de BP et de Pétrole. Notre objectif est de vérifier ce que les deux séries suivent le même ordre comme Exxon Mobil. Si elles ne respectent pas à l'ordre que Exxon suit, nous ne pourrons pas modéliser le modèle VAR.

2.1. Analyse de l'indice BP

View Proc Object Properties | Print Name Freeze | Default

On voit les chuts à la suite des crises de 2008, 2013 et de 2020. Donc il y a une non-stationnarité en moyenne et en variance.

Détection de la saisonnalité et la tendance :

	somme des c	degre de libe	designation	variance	F	F critique
sa	4,921666092	10	variance peri	0,492166609	38,71893305	1,91782714
sp	0,2774273	11	vaniance ann	0,025220664	1,984119135	1,876731984
sr	1,398239124	110	variance resid	0,012711265		
st	6,597332516	121	variance tota	0,054523409		

Dans les deux lignes la valeur de F calculé est supérieure à celle de F critique. Cela signifie que la série est affectée d'une tendance et d'une saisonnalité. Il faut désaisonnaliser la série avant d'enlever la tendance.

	Coefficients	Erreur-type	Statistique t	Probabilité	pour se
Constante	0,705998023	0,292574881	2,413050706	0,039053164	0,0441
Variable X 1 (moyenne)	-0,1649115	0,079955201	-2,0625488	0,069194018	-0,345
probab de moyen est sup de 5% d	donc schema	est additif			
constatnt est signif					
ecart = -0,16moy + 0,706					

Puisque le schéma est additif, on utilise la méthode Census afin d'enlever la saisonnalité.

Analyse de la stationnarité : TEST ADF

Augmented Dickey-Fuller Unit Root Test on LBP_SA

Null Hypothesis: LBP_SA has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-1.920358 -4.029595 -3.444487 -3.147063	0.6383

On accepte H0 qui confirme la présence d'une racine unitaire. Selon le critère d'Akaike il n'y a aucun retard dans la série. Alors on prend la direction vers le Modèle 3.

La structure est même à ce qu'on a fait pour l'indice XOM.

Test joint:

 $H0^3$: $(c, b, \rho) = (c, 0, 0)$

H1³: $(c, b, \rho) \neq (c, 0, 0)$

F3 = ((SCRD - SCR3)/2)/(SCR3/(n-3))

F3 = ((0.83604-0.809359)/2) / (0.809359/(132-0-3)) = 2.13

F3 est inférieur à F de McKinnon qui vaut à 6,25. Alors on accepte H0³ et passe à tester l'autre hypothèse joint

 $H0^2$: $(c, b, \rho) = (0,0,0)$

 $H1^2$: $(c, b, \rho) \neq (c, 0, 0)$

F2 = ((SCRC - SCR3)/3)/(SCR3/(n-3))

 $SCRC = n \times (\sigma^2 + moyenne^2) = 0.85623054$

F2 = ((0.85623054-0.809359)/3)/(0.809359/(132-3)) = 2.49

2,49 < 4,68 c'est-à-dire nous acceptons H0 et passons à Model 2

Augmented Dickey-Fuller Unit Root Test on LBP_SA

Null Hypothesis: LBP_SA has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.187217 -3.480818 -2.883579 -2.578601	0.6788

 $H0^1: (c, \rho) = (0,0)$

 $H1^1$: $(c, \rho) \neq (0,0)$

F1 = [(SCRC - SCR2)/2]/[(SCR2)/(n-2)]

F1 = ((0,85623054-0,827004)/2) /(0,827004/(132-2)) = 2,297

2,297 < 4,59, donc H0¹ est acceptée

Ainsi on conclut que cette série est une DS sans constante et sans tendance déterministe. Autrement dit la série est Marché au hasard. On fait la différence première afin de la rendre stationnaire.

2.2. Analyse de la série pétrolière

Le prix a chuté deux fois pendant cette période. On voit la non-stationnarité en moyenne et en variance. On va faire le test ADF pour justifier cette non-stationnarité par l'approche mathématique.

Détection de la saisonnalité et la tendance :

	somme des ca	degre de liber	designation	variance	F	F critique
sa	16,0595048	10	variance perio	1,60595048	90,9766106	1,91782714
sp	0,03665073	11	vaniance anne	0,00333188	0,18875023	1,87673198
sr	1,94175791	110	variance resid	0,01765234		
st	18,0379135	121	variance total	0,14907366		

D'après ce tableau, l'effet annuelle est significatif donc il y a une tendance. Mais l'effet périodique n'est pas significatif, alors la série n'est pas saisonnière.

Analyse de la stationnarité : TEST ADF

Augmented	d Dickey-Fuller Unit I	Root Test on LPE	TROLE
Exogenous: Constant	FROLE has a unit root , Linear Trend atic - based on AIC, m		
		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-2.213187 -4.031309 -3.445308 -3.147545	0.4779

H0 est accepté, la série a une racine unitaire. Selon le critère d'Akaike il y a 3 retards dans ce modèle. Donc on commence à notre analyse de Modèle 6.

```
Test joint:

H0^6: (c, b, \rho) = (c,0,0)

H1^6: (c, b, \rho) \neq (c,0,0)

F6 = ((SCRD - SCR6)/2)/(SCR6/(n - (p-1)-3))
```

 $F6 = ((1,401228 - 1,345704)/2) \, / (\, 1,345704/(\, 132 - 3 - 3 \,)) = 2,599$

2,599 < 6,25 H0 est acceptée

```
H0<sup>5</sup>: (c, b, \rho) = (0,0,0)

H1<sup>5</sup>: (c, b, \rho) \neq (c,0,0)

F5 = ((SCRC - SCR6)/3) / (SCR6/(n-3))

F5 = ((1,404191-1,345704)/3) / (1,345704/(132-3-3)) = 1,825

1,825 < 4,68 donc H0<sup>5</sup> acceptée
```

```
H0<sup>4</sup>: (c, \rho) = (0,0)

H1<sup>4</sup>: (c, \rho) \neq (0,0)

F4 = [(SCRC - SCR5) / 2] / [(SCR5) / (n -3-2)]

F4 = ((1,404191 - 1.383801)/2) / (1.383801/(132-3-2)) = 0,936

0,936 < 4,59, donc H0<sup>4</sup> est acceptée
```

Le test ADF justifie que la série pétrolière est une série DS sans constant et sans tendance déterministe. Alors on dit que cette série est un Marché au hasard comme Exxon et BP.

Nous avons justifié que les trois séries suivent le même ordre. Maintenant on peut passer à l'étape de la modélisation VAR.

3. Modélisation VAR

Lorsque on crée un portefeuille avec plusieurs variables, il est important de les modéliser dans le cadre multivarié. Les modèles VAR nous donnent beaucoup d'informations sur les relations des variables. S'il y a une dépendance entre les variables, est-ce important ou non ? Une variable cause-t-elle à l'autre ? S'il y a un choc sur une variable, son impact sur les autres comment sera-t-il ? Pour trouver aux réponses à ces questions il est important de modéliser les variables dans le cadre de VAR. Les modèles sont appuyés sur la stationnarité des séries. Donc il faut les rendre stationnaire avant de commencer à notre analyse multivariée. Les variables à analyser dans le cadre de VAR sont :DLXOM, DLPETROLE et DLBP_SA.

3.1. Identification du modèle VAR

La première étape est l'identification du modèle. Dans cette étape on va prendre plusieurs retards et on va se focaliser les critères suivants : les critères d'informations d'Akaike (AIK), et de Schwarz (SIC) et ainsi que la log-vraisemblance (LV). Le tableau suivant nous présente les valeurs de ces critères.

Nombre des retards	LV	AIK	SIC	Significativité des paramètres
P = 0	472.8819	-7.497176	-7.227114	Non
P = 1	501.8939	-7.536829	-7.272133	Non
P = 2	498.3906	-7.401404	-6.935854	Non
P = 3	501.6603	-7.369693	-6.701248	Non
P = 4	501.7570	-7.287511	-6.414100	Non
P = 5	522.6025	-7.533373	-6.452885	Non

On cherche les valeurs minimales dans la partie AIK et SIC, en revanche on sélectionne la valeur maximale dans la partie LV. Les valeurs en rouges sont les meilleurs selon chaque critère. Donc on a sélectionné le modèle VAR avec un seul retard.

3.2. Estimation du modèle VAR

	DLXOM	DLPETROLE	DLBP_SA
DLXOM(-1)	0.138173	0.541463	0.340405
ecar type	(0.12764)	(0.20949)	(0.15668)
t-statistique	[1.08253]	[2.58469]	[2.17268]
DLPETROLE(-1)	-0.103788	-0.082827	0.015025
ecar type	(0.06963)	(0.11428)	(0.08547)
t-statistique	[-1.49051]	[-0.72474]	[0.17579]
DLBP_SA(-1)	-0.005153	-0.109652	-0.276288
ecar type	(0.09112)	(0.14956)	(0.11185)
t-statistique	[-0.05655]	[-0.73318]	[-2.47010]
С	-0.003298	-0.002001	-0.007811
ecar type	(0.00567)	(0.00930)	(0.00696)
t-statistique	[-0.58186]	[-0.21513]	[-1.12270]
R^2	0.018882	0.057598	0.059083
SCR	0.521113	1.403734	0.785178
LV	174.2939	109.8839	147.6476
AIC	-2.619907	-1.628983	-2.209963
SIC	-2.531675	-1.540751	-2.121732

Au seuil de 5% la majorité des paramètres du modèle ne sont pas significatifs parce que leurs valeurs des coefficients de t-student sont inférieurs à 1,95 en valeur absolue. Dans ce cas on accepte l'hypothèse nulle qui présente la non-significativité des paramètres. Mais il y a 3 coefficients qui sont significativement différents de 0 : DLPETROLE dépend 0,54 fois de la valeur précédente de DLXOM et DLBP_SA aussi dépend 0,34 fois de DLXOM(-1), -0,27 fois de sa valeur précédente. (Annexe 3)

DLXOM = 0,1381173*DLXOM(-1) - 0,103788*DLPETROLE(-1) - 0,005153*DLBP_SA(-1) - 0,003298

DLPETORLE = 0,541463*DLXOM(-1) - 0,082827*DLPETROLE(-1) - 0,109652*DLBP_SA(-1) - 0,002001

DLBP_SA = 0,340405*DLXOM(-1) + 0,015025*DLPETROLE(-1) - 0,276288*DLBP_SA(-1) - 0,007811

3.3. Vérification de la stationnarité du modèle

D'abord on commence à vérifier la stationnarité les séries. Parce que les modèles VAR sont basé sur la stationnarité. Le graphique ci-dessous nous présente l'évaluation des prix à la fois en log et en différence première.

D'après ce graphique les séries semblent stationnaire. On peut justifier la stationnarité du model en utilisant les autres approches.

Le modèle est bien stationnaire vu que les 3 points bleus sont à l'intérieure du cercle.

On peut vérifier la stationnarité par l'approche mathématique aussi:

VAR Stability Condition Check

Roots of Characteristic Polynomial Endogenous variables: DLXOM DLPETROLE DLBP_SA Exogenous variables: C Lag specification: 1 1 Date: 01/29/22 Time: 17:36

Root	Modulus
-0.234482	0.234482
0.006770 - 0.189716i	0.189837
0.006770 + 0.189716i	0.189837

No root lies outside the unit circle. VAR satisfies the stability condition.

D'après ce tableau toutes les racines en module sont inférieures à 1, c'est-à-dire le model VAR(1) est stationnaire.

3.4. Test sur les résidus

1/ Test de normalité

Component	Skewness	Chi-sq	df	Prob.*
1 2 3	-0.925191 -0.294266 -1.230245	18.54620 1.876170 32.79255	1 1 1	0.0000 0.1708 0.0000
Joint		53.21493	3	0.0000
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3	6.173735 5.133933 8.808318	54.55988 24.66571 182.7397	1 1 1	0.0000 0.0000 0.0000
Joint		261.9653	3	0.0000
Component	Jarque-B	df	Prob.	
1 2 3	73.10608 26.54188 215.5323	2 2 2	0.0000 0.0000 0.0000	
Joint	315.1802	6	0.0000	

Dans la première partie de test on teste l'absence de l'asymétrie. Selon H0 la distribution est symétrique mais l'hypothèse alternative dit que la distribution est asymétrique. La probabilité critique est largement inférieure à 5% donc il y a une forte asymétrie dans ce modèle. En revanche dans le deuxième component , c'est-à-dire dans la série de dipetrole il y a une symétrie de la distribution.

Deuxième partie nous montre le test de kurtosis autrement dit l'aplatissement de la distribution. H0 :aplatissement, H1 : non aplatissement. On accepte H1.

La probabilité critique de la test Jarque Bera est largement inférieure à 5% dans tous les components. Donc le modèle ne présente pas la normalité entre les résidus.

2/Test d'autocorrélation

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h
Date: 02/11/22 Time: 03:55
Sample: 2010M01 2020M12

Included observations: 130

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	0.117043		0.117950		
2	3.073504	0.9613	3.120606	0.9593	9
3	15.41797	0.6331	15.75668	0.6095	18
4	18.35766	0.8922	18.78969	0.8775	27
5	24.44231	0.9282	25.11772	0.9131	36
6	34.63208	0.8683	35.80055	0.8348	45
7	44.14824	0.8283	45.85828	0.7769	54
8	46.40239	0.9420	48.26023	0.9149	63
9	55.95015	0.9186	58.51816	0.8741	72
10	61.82009	0.9443	64.87727	0.9047	81
11	69.04838	0.9507	72.77371	0.9076	90
12	73.16456	0.9760	77.30849	0.9477	99

On a fait le test Portmanteau sur les résidus du modèle. La probabilité critique de QLB est largement supérieure à 5%, c'est-à-dire H0 accepté. Donc il n' y a pas autocorrélation entre les résidus.

Le Test LM aussi nous montre le même résultat : absence d'autocorrélation

VAR Residual Serial Correlation LM Tests Date: 02/11/22 Time: 03:59 Sample: 2010M01 2020M12

Included observations: 130

Null hyp	othesis: No se	rial co	rrelation a	t lag h		
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	1.201666	9	0.9988	0.132217	(9, 294.6)	0.9988
2	3.048831	9	0.9623	0.336500	(9, 294.6)	0.9623
3	12.45422	9	0.1889	1.396523	(9, 294.6)	0.1889
4	3.050309	9	0.9623	0.336664	(9, 294.6)	0.9623
5	6.123212	9	0.7275	0.679322	(9, 294.6)	0.7276
6	10.59467	9	0.3045	1.184284	(9, 294.6)	0.3046
7	10.00030	9	0.3505	1.116725	(9, 294.6)	0.3505
8	2.487107	9	0.9812	0.274243	(9, 294.6)	0.9812
9	11.14594	9	0.2658	1.247065	(9, 294.6)	0.2659
10	8.897920	9	0.4468	0.991778	(9, 294.6)	0.4468
11	10.86466	9	0.2851	1.215017	(9, 294.6)	0.2852
12	5.068411	9	0.8283	0.561303	(9, 294.6)	0.8283

3/Test d'hétéroscédasticité

Sample: 2010M01 2020M12 Included observations: 130

Joint test:		
Chi-sq	df	Prob.
150.7939	36	0.0000

Individual components:

Dependent R-squared F(6,123) Prob.	Chi-sq(6) Prob.
res1*res1 0.266333 7.441814 0.000 res2*res2 0.222211 5.856763 0.000 res3*res3 0.300410 8.802892 0.000 res2*res1 0.217652 5.703170 0.000 res3*res1 0.214441 5.596054 0.000 res3*res2 0.174555 4.335086 0.000	0 28.88743 0.0001 0 39.05335 0.0000 0 28.29475 0.0001 0 27.87728 0.0001

Puisque la probabilité critique du Khi-deux est largement inférieure à 5%, on rejette H0 qui est fondé sur l'homoscédasticité des résidus. Donc les résidus du modèle sont hétéroscédastiques.

4. Fonction de réponse impulsionnelle

Dans les séries financières on peut voir plusieurs chocs. Un choc peut chuter du prix de l'action d'une société. Par exemple après la crise de subprime plusieurs banques ont été faillites. Donc il est important d'anticiper les chocs et leurs effets. Pour mesurer la conséquence d'un choc sur les variables on utilise la fonction de réponse impulsionnelle. Cette fonction mesure l'effet d'un choc d'une innovation sur les valeurs futures des variables endogènes.

Response to Cholesky One S.D. (d.f. adjusted) Innovations

Response of DLPETROLE to Innovations

Les droites nous montrent les chocs sur les variables. Le premier graphique explique la réaction de DLXOM aux chocs et le deuxième explique celle de DLPETROLE.

Interprétation du graphique 1 : On a analysé les effets d'un choc sur 10 périodes. Si on regarde le premier graphique, on peut voir que la série DLXOM est affecté par le choc sur elle-même, c'est normal, parce que c'est la même série, la valeur d'aujourd'hui peut être affectée celle d'hier. L'effet de ce choc est disparu après le troisième retard. En plus, Exxon est influencé par un choc qui vient

de DLPETROLE. Mais c'est un choc négatif et son effet est faible et va disparaitre dans 3 mois.

Interprétation du graphique 2 : Le choc sur DLXOM affecte DLPETROLE. Vu que la valeur actuelle de DLPETROLE dépend 0,53 fois de la valeur présente de DLXOM, c'est logique que le choc subi par Exxon affecte la valeur future du pétrole et son effet disparu après 4e période. Cet effet est expliqué par la courbe bleu. La courbe orange nous explique la réponse de DLPETROLE à un choc qui vient de lui-même.

Response to Cholesky One S.D. (d.f. adjusted) Innovations

Ces graphiques nous présentent la relation entre DLXOM et DLBP_SA. D'après le premier graphique on conclut que le choc sur les rendements du BP n'influence pas les rendements de Exxon Mobil. Cependant le deuxième graphique nous montre que le choc sur DLXOM affecte la série DLBP_SA qui dépende 0,34 foi de la valeur précédente de DLXOM. L'effet de ce choc va disparaitre à partir de 4ieme mois.

5. Décomposition de la variance

Dans notre model VAR il y a 3 variables. Si on essaye de faire prévision en utilisant ce model en quoi consisteront-elles les erreurs de prévision ? L'analyse de la décomposition de la variance consiste à déterminer le pourcentage de la variance de l'erreur de prévision du processus VAR qui est expliqué par un choc subi par une variable « k » du système entre du temps « t » et « t+h »

Variance	Decompos	sition of D	LXOM:
Period	DLXOM	DLPETROLE	DLBP_SA
1	100.0000	0.000000	0.000000
2	98.31582	1.681888	0.002297
3	98.30276	1.682312	0.014925
4	98.29934	1.685192	0.015466
5	98.29934	1.685190	0.015469
6	98.29934	1.685192	0.015470
7	98.29934	1.685192	0.015470
8	98.29934	1.685192	0.015470
9	98.29934	1.685192	0.015470
10	98.29934	1.685192	0.015470

Au début la variance de DLXOM est expliquée seulement par elle-même. A partir du deuxième période DLPETROLE explique 1,68% de la variance de DLXOM mais la parte de DLBP_SA est presque 0% dans ce secteur. Ainsi, nous avons trouvé presque le même résultat avec la fonction de réponse impulsionnelle qui a justifié que le choc sur DLBP_SA n'affecte pas DLXOM, et celui de DLPETROLE a un effet faible.

Variance	e Decomp	osition of	DLPETROLE:
Period	DLXOM	DLPETROLE	DLBP_SA
1	41.76321	58.23679	0.000000
2	44.16483	55.46439	0.370772
3	44.11625	55.47251	0.411242
4	44.11908	55.46909	0.411824
5	44.11906	55.46910	0.411839
6	44.11906	55.46909	0.411842
7	44.11906	55.46909	0.411843
8	44.11906	55.46909	0.411843
9	44.11906	55.46909	0.411843
10	44.11906	55.46909	0.411843

D'après ce tableau on voit que DLXOM explique 44% de la variance de l'erreur de prévision de DLPETROLE. Ce chiffre est très important. Ça nous dire qu'il y a un effet important d'un choc subi par DLXOM sur DLPETROLE. Ainsi on conclut que la variance de DLPETROLE est due pour 55% à ses propres chocs, 44% à celle de DLXOM et 0,41% à celle de DLBP_SA.

Variance Decomposition of DLBP_SA:						
Period	DLXOM	DLPETROLE	DLBP_SA			
1	39.81394	1.754981	58.43108			
2	38.88391	1.700724	59.41536			
3	38.75800	1.789113	59.45289			
4	38.75248	1.792898	59.45462			
5	38.75226	1.792892	59.45484			
6	38.75225	1.792892	59.45486			
7	38.75225	1.792892	59.45486			
8	38.75225	1.792892	59.45486			
9	38.75225	1.792892	59.45486			
10	38.75225	1.792892	59.45486			

La fonction de la réponse impulsionnelle nous a présenté que le choc sur DLXOM affecte la série de DLBP_SA. Pour cette raison on voit que la pondération de DLXOM (39%) est importante sur la décomposition de la variance de l'erreur de prévision de DLBP_SA. Les autres parties sont comme suivant : 59% de ses propres chocs, 1,79% de celui de DLPETROLE.

6. Analyse de la causalité

6.1. Causalité au sens de GRANGER

Parfois il est important de savoir ce que le choc d'une variable peut affecter les autres variables ou pas. Pour cela on applique le test de la causalité au sens de Granger.

$$X_t = \sum a_i X_{t-i} + \sum b_j Y_{t-j} + u_t$$

$$Y_t = \sum c_i Y_{t-i} + \sum d_j X_{t-j} + v_t$$

H0: dj = 0 c'est-à-dire Xt ne cause pas Yt

H1 : dj est significativement diffèrent de 0, alors Xt cause Yt

Si on test la significativité du paramètre bj, on va vérifier la causalité de Yt sur Xt.

Dans notre modèle il y a 3 variables mais la logique de teste est pareil. On va appliquer 3 fois ce test entre ces variables.

Pairwise Granger Causality Tests Date: 01/31/22 Time: 18:06 Sample: 2010M01 2020M12 Lags: 1 Null Hypothesis: F-Statistic Prob. DLPETROLE does not Granger Cause DLXOM 2.37298 0 1259 DLXOM does not Granger Cause DLPETROLE 6.35477 0.0129 DLBP_SA does not Granger Cause DLXOM 0.13464 0.7143 DLXOM does not Granger Cause DLBP_SA DLBP_SA does not Granger Cause DLPETROLE 0.18047 0.6717 DLPETROLE does not Granger Cause DLBP_SA 1 79455 0 1828

D'après cette sortie eviews on peut dire que la série DLXOM cause la série DLPETROLE et DLBP_SA.

Parce que ces probabilité critiques sont 0,013 et 0,011 donc inférieures à 5%, alors on rejet H0. Autrement dit s'il y a un choc dans la série des rendements de Exxon Mobil, ce choc va affecter les rendements du pétrole et celles de BP. Cependant la variable dépendante du modèle, c'est-à-dire DLXOM n'est pas affecté par les variables explicatives.

On peut appliquer le test de Granger d'une autre manière :

$$F_c = [(SCRR - SCRU)/C]/[SCRU/(n-k-1)] \sim F(C, n-k-1)$$

N – nombre des observations

<u>k – nombre des variables explicatives dans le modèle</u>

SCRR – Somme des carrés des résidus du modèle contraint

SCRU – Somme des carrés des résidus du modèle non-contraint

C – nombre des coefficients dont on teste la nullité

HO : les variables explicatives ne causent pas la variable dépendante

H1 : Les variables explicatives causent la variable dépendante

La structure du test : si Fc < F du tableau de Ficher on accepte H0, au cas contraire on la rejette. Si on accepte H0 cela signifie qu'il n' y a pas de causalité.

A) L'impact sur DLXOM

Puisque on va vérifier la causalité entre deux variables, on doit tester la significativité d'un seul coefficient. Ainsi « C » toujours égale à 1. On a 130 observations. SCRU est la somme des carrés des résidus du modèle VAR(1) que nous avons estimé au début. Pour trouver SCRR nous devons faire une régression entre la variable dépendante, sa valeur passé avec un retard et constant. (Annexe 4)

Fc =
$$[(0.530864 - 0.521113)/1]/[0.521113/(130 - 2 - 1)] = 2.38$$
 et F(1.127) ~ 3.9

H0 accepté, c'est-à-dire les rendements du pétrole et de BP n'affecte pas ensemble les rendements d'EXXON.

B) L'impact sur DLPETROLE

SCRR = 1.480262, SCRU = 1.403734 (Annexe 5)

Fc = 6,92 > F (1, 127). On rejette H0, parce que Fc supérieure à F(1, 127) lu au tableau de Ficher. C'està-dire dans ce modèle les variables DLXOM et DLBP_SA causent ensemble la variable DLPETROLE. En faisant ce test entre les deux variables (DLPETROLE et DLBP_SA) on avait justifié que DLBP_SA ne cause pas DLPETROLE. Puis que DLXOM cause DLPETROLE et en plus la corrélation entreDLXOM et DLPETROLE est assez forte, donc il est normal que DLXOM le cause également avec DLBP_SA

c)L'impact sur DLBP_SA

SCRR = 0,826105 (Annexe 6)

SCRU = 0.785178

Fc = 6,61 > 3,9. On rejette H0, les variables DLXOM et DLPETROLE causent ensemble la variable DLBP_SA. On trouve le même résultat avec la partie B de ce test : Bien que DLPETROLE seul ne puisse pas causer DLBP_SA, ils (DLXOM et DLPETROLE) lui affectent ensemble dans le modèle. Celaaussi est expliqué par l'effet forte de DLXOM sur DLBP_SA.

6.2. Causalité au sens de SIMS

Sims a modifié le sujet de causalité de Granger dans le temps. Il a introduit les valeurs futures de Yt. Si les valeurs présentes de Xt sont expliquées par les valeurs futures de Yt, alors Y cause X.

$$Y_t = a_1^0 + \sum a_{1i}^1 Y_{t-i} + \sum a_{1i}^2 X_{t-i} + \sum b_i^2 X_{t+i} + \epsilon_{1t}$$

$$X_{t} = a_{2}^{0} + \sum a_{2}^{1} X_{t-i} + \sum a_{2}^{2} Y_{t-i} + \sum b_{1}^{1} Y_{t+i} + \in_{1t}$$

Si $b_i^2 = \dots = b_p^2 = 0$, H0 accepté, c'est-à-dire X ne cause pas YSi

 $b^1 \mp = b^1 \mp 0$, H0 accepté, alors Y ne cause pas X

La structure de ce test est presque égale avec celle de Granger. La seule différence est le calcul de SCRR. Pour trouver la somme des carrés des résidus du modèle contraint on fait la régression entre Xt, Xt(-1), Yt et Yt(+1).

A) 1.La causalité de Pétrole sur EXXON

La régression entre DLXOM, DLXOM(-1), DLPETROLE et DLPETROLE(+1) (Annexe7)

SCRU = 0,521126, SCRR = 0,489037

Fc = [(0.489037 - 0.521126)/1]/[0.521126/(130 - 2 - 1)] < F(1, 127), H0 accepté

Ainsi on conclut que les rendements du pétrole ne causent pas ceux d'Exxon Mobil.

A) 2. La causalité d'EXXON sur Pétrole

SCRU = 1.409723, SCRR = 1.399376 (Annexe7)

Fc = ((1,399376-1,409723)/1) / (1,409723/(130-2-1)) = -0,93

Fc < F(1, 127), donc on accepte H0, c'est-à-dire DLXOM ne cause pas DLPETROLE. Mais il y avait la causalité au sein de Granger.

B) 1\La causalité de BP_SA sur EXXON

SCRU = 0,530301, SCRR = 0,516599 (Annexe8)

Fc = ((0.516599 - 0.530301)/1) / (1.409723/(130-2-1)) = -1.23

Fc < F (1, 127) >>> H0 acceptée, BP ne cause pas Exxon Mobil

B) 2\La causalité d'EXXON sur BP

SCRU = 0.785371, SCRR = 0.784751 (Annexe8)

On calcule de la même manière la valeur de Fc

Fc < F(1, 127) >>> H0 acceptée, Exxon ne cause pas BP. Contrairement au test de Granger, ce test conclut qu'Exxon ne peut pas causer BP.

C) 1\La causalité de Pétrole sur BP

SCRU = 1.478161, SCRR = 1.473005 (Annexe9)

Fc < F (1, 127) >>> HO acceptée, Pétrole ne cause pas BP

C) 2\La causalité de BP sur Pétrole

SCRU = 0.814595, SCRR = 0.809868 (Annexe9)

Fc < F (1, 127) >>> H0 acceptée, BP ne cause pas Pétrole

Selon le test de Granger DLXOM cause DLPETROLE et DLBP, cependant DLEXXON ne les cause pas au sens de SIMS. Quelle décision doit être prise? Tout dépend de l'anticipation des agents. Si l'agent compte sur les données précèdent il va préférer au résultat du test de Granger. S'il veut prendre la décision à la base des données futures alors il va accepter le résultat de test de Sims.

7. La Cointégration

La théorie de cointégration constitue une véritable évolution dans le domaine de l'analyse des séries temporelles. Cette théorie est introduite pour la première fois par Granger et développée par les plusieurs économistes comme Engle.

Les modèles VAR est fondé sur les stationnarités des séries. On élimine les tendances stochastiques en faisant la différence première. Ainsi on évite de la régression fallacieuse. Mais dans ce cas on se rencontre à un problème. Puisque on élimine la tendance d'une série temporelle qui est la composante de long terme, on perd l'information de long terme. Alors on peut conclure que le VAR n'est que l'information à court terme. Les séries temporelles ont une tendance à se séparer les unes par rapport les autres à court terme. Mais elles marchent ensemble à long terme suivant une relation commune. Cette relation commune s'appelle la cointégration ou bien la relation d'équilibre. Après un choc, les variables peuvent s'éloigner l'une par rapport à l'autre à court terme. Cependant ces variables sont liées par une relation d'équilibre à long terme.

La cointégration veut dire que la combinaison linéaire entre les variables intégrées d'ordre 1 (donc non stationnaire) va former une quantité stationnaire qui est intégré d'ordre 0 (stationnaire). Donc il s'agit du résidu de cette combinaison linéaire.

7.1. Test de Granger et Engle

D'abord on va utiliser le test de Granger et Engle pour tester la cointégration. Ce test consiste à 2 étapes :

1. Régression entre les variables non-stationnaires :

$$Y_t = a + b*X_t + e_t >>> Y \text{ et } X \sim I (1)$$

$$e_t = Y_t - a - b*X_t$$

$$e_t \sim I (0)$$

Donc le résidu doit être stationnaire.

S'il y a la cointégration à long terme, alors que se passe-t-il à court terme ?

Il y a une rupture de la relation à la suite d'un choc. Existe-t-il un mécanisme de retour à l'équilibre ou larupture est-elle irréversible ?

Pour trouver une réponse à ces questions on passe à la deuxième étape du test de Granger et Engle

2) Le modèle à correction d'erreur (MCE) :

$$\Delta Y_t = a + \sum a_i \Delta Y_{t-i} + b_0 \Delta X_t + \sum b_i \Delta X_{t-i} + \gamma e_{t-1} + u_t$$

Dans cette étape on fait la régression entre les variables stationnaires et la valeur retardé du terme de correction d'erreur (e_{t-1}) . Donc cette régression est basée sur les séries stationnaires.

Dans cette formule, « j » signifie le nombre des retards, b_0 signifie la relation contemporaine entre la variable dépendante et explicative.

Le vecteur de correction d'erreur montre l'ajustement de court terme des variables vers l'équilibre de long terme. Gamma (γ) décrit la pondération de correction périodique. Si on a une série mensuelle, chaque mois MCE va corriger gamma % d'erreur (déséquilibre)

Le résidu représente la déviation par rapport à la relation de long terme. S'il est égal à 0, ça veut dire qu'il n'y a aucune écarte, la série est toujours autour de 0 et à l'équilibre. Donc le coefficient d'erreur retardé (γ) doit être significativement diffèrent de 0. C'est la première condition pour ce coefficient. De plus, ce coefficient doit être négatif afin de montrer qu'il y a une correction. Ça veut dire qu'il y a un chemin vers la relation équilibre. Donc il trace un chemin inverse, c'est pour ça son coefficient doit être significativement négatif.

D'abord il faut chercher le résidu dans le modèle. On va faire la régression entre LXOM, Pétrole , LBP_SA et constant.

EXXON =
$$\mathcal{F}$$
 (Pétrole, BP)
 $LXOM_t = a + b*LPETROLE_t + c*LBP_SA_t + e_t$

Dependent Variable: LPETROLE Method: Least Squares Date: 02/03/22 Time: 00:18 Sample: 2010M01 2020M12 Included observations: 132

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LXOM	-0.139160	0.150139	-0.926873	0.3557
LBP_SA	1.353200	0.154694	8.747616	0.0000
C	-0.063631	0.425208	-0.149647	0.8813

.

$e_t = LXOM_t - a - bLPETROLE_t - cLBP_SA_t$

Pour tester la stationnarité du résidu on va appliquer le test DICKEY FULLER sans tendance et sans constante. Parce que on analyse le résidu et il est autour de 0 donc il n'est pas affecté d'une tendance et constante. Puisque on a 130 observations, on va prendre la décision selon le critère d'information d'Akaike

Augmented Dickey-Fuller Unit Root Test on RESIDU1

Null Hypothesis: RESIDU1 has a unit root

Exogenous: None

Lag Length: 5 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	uller test statistic 1% level 5% level 10% level	-1.709561 -2.583444 -1.943385 -1.615037	0.0827

D'après ce sortie d'ewievs le résidu n'est pas stationnaire. Parce que la probabilité critique est égale à 8% et donc supérieure à 5%. Ainsi on accepte H0, le résidu n'est pas stationnaire. Si le résidu n'est pas stationnaire c'est-à-dire il n'y a pas de la cointégration entre ces variables. A long terme les séries ne peuvent pas revenir à l'équilibre suite un choc.

Puisqu'il n'y a pas de la cointégration entre les variables, on ne peut pas appliquer le model de la correction des erreurs. Donc on arrête ici notre analyse pour la série boursière d'Exxon Mobil.

Nous avons essayé de trouver une cointégration entre ces variables afin d'approfondir notre analyse.

On a changé la place des variables dans la régression. Ainsi on va traiter la variable pétrole come la variable dépendante.

Pétrole = \mathcal{F} (Pétrole, BP)

 $LPETROLE_t = a + b*LXOM_t + c*LBP_SA_t + e_t$

 $e_t = LPETROLE_t - a - b*LXOM_t - c*LBP_SA_t$

On fait test Dickey Fuller sur le résidu de cette régression :

Augmented Dickey-Fuller Unit Root Test on RESID_PET_SA

Null Hypothesis: RESID_PET_SA has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on AIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ıller test statistic	-2.434250	0.0150
Test critical values:	1% level	-2.582734	
	5% level	-1.943285	
	10% level	-1.615099	

La probabilité critique est inférieure à 5% donc on rejette H0, cela signifie que le résidu est stationnaire. Puisque le résidu est stationnaire on pourrait parler de la cointégration.

2) Le modèle à correction d'erreur (MCE) :

Selon le critère d'Akaike le retard optimal de notre modèle VAR était égale à 1. Ainsi notre régression pour le modèle MCE sera comme ci-dessous :

$$\begin{aligned} & \mathsf{DLPETROLE}_t = a_0 + a_1 * \mathsf{DLPETROLE}_{t\text{-}1} + b_0 * \mathsf{DLXOM}_t + b_1 * \mathsf{DLXOM}_{t\text{-}1} + c_0 * \mathsf{DLBP_SA}_t \\ & + c_1 * \mathsf{DLBP_SA}_{t\text{-}1} + \gamma * e_{t\text{-}1} + u_t \end{aligned}$$

Dependent Variable: DLPETROLE Method: Least Squares Date: 02/03/22 Time: 00:20 Sample (adjusted): 2010M03 2020M12

Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.002696	0.007000	0.385055	0.7009
DLXOM(-1)	0.350789	0.159892	2.193912	0.0301
DLXOM	0.891307	0.141126	6.315670	0.0000
DLPETROLE(-1)	0.036938	0.088361	0.418034	0.6767
DLBP SA(-1)	-0.073991	0.117272	-0.630931	0.5293
DLBP SA	0.243747	0.115346	2.113181	0.0366
RESID PET SA(-1)	-0.059602	0.029484	-2.021523	0.0454

Dependent Variable: DLPETROLE Method: Least Squares Date: 02/03/22 Time: 00:44 Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments

	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	С	0.003129	0.006927	0.451711	0.6523
ı	DLXOM(-1)	0.329279	0.109603	3.004293	0.0032
ı	DLXOM	0.870903	0.136803	6.366119	0.0000
ı	DLBP_SA	0.263852	0.110701	2.383470	0.0187
ı	RESID_PET_SA(-1)	-0.055995	0.028732	-1.948856	0.0536
	R-squared	0.482332	Mean depen	dent var	-0.003110

Dans la première régression les coefficients retardés de BP et de pétrole ne sont pas significatifs. La vitesse de l'information qui affecte d'une série à l'autre est très rapide. Dans les séries boursières elle arrive dans moins d'un mois (parfois d'un jour). Donc la transmission d'un choc est très rapide. Pour cette raison ces deux coefficients ne sont pas significatifs. Puisque certains coefficients ne sont pas significatifs, on a estimé le deuxième modèle. Le coefficient de résidu retardé est 5,6% et presque significatif.

Resid_PET_SA(-1) est le gamma de la formule qui montre la vitesse d'ajustement. C'est la force de rappel qui va forcer un retour des variables vers la relation d'équilibre. Cet ajustement à une vitesse de 5,6% par période d'un mois. Ça veut dire que chaque mois 5,6% d'erreur sera corrigée. Alors sur la base de ces résultats on peut dire que dans combien de temps l'erreur sera corrigée totalement.

1/0,055995 = 17,85

Donc la relation d'équilibre sera réparée dans 17,85 périodes. Puisque on analyse les séries mensuelles, on conclut que la rupture sera corrigée dans 18 mois.

7.2. TEST de Johansen

Quand il y a plus de 2 variables dans le modèle VAR, le test de Granger et Engle ne donne pas un bon résultat. Johansen a développé le test de Granger et Engle en apportant un nouveau test en économétrie. Son test est sur la base du modèle de VAR. Donc il est capable de présenter à la fois l'effet de long terme et l'effet de courte terme.

Ce test est une généralisation de test ADF dans le cadre multivarié.

Le VAR sous la forme VECM:

$$\Delta Y_t = \Pi^* Y_{t-1} + \sum \Gamma^* \Delta Y_{t-i} + u_t$$

La matrice Π détermine la relation vers l'équilibre. Elle décrit l'ajustement vers l'équilibre à la suite d'un choc exogène. Elle consiste à 2 autres matrices : α et β . La matrice β contient des coefficients de « r » relations de long terme. Les coefficients de la matrice α montre la vitesse d'ajustement vers l'équilibre. On a aussi l'autre matrice qu'elle s'appelle Γ montre la dynamique de court terme.

Ce test appuyé sur l'estimation de la rang « r » de la matrice Π.

- Si r=0 >>> pas de cointégration, on applique le modèle VAR sur delta Y
- Si r=k (nombre de variables) >>> pas de cointégration, on applique le modèle VAR sur Y
- Si 0<r<k alors la présence d'une cointégration, dans ce cas on applique le modèle VECM sur delta Y

Analyse de la relation entre Exxon Mobil, Pétrole et BP:

Pour commence le test de Johansen il faut estimer un modèle VAR sur la base des séries nonstationnaires. On a justifié précédemment que ces trois séries ne sont pas stationnaires. Alors il faut sélectionner le nombre des retards pour estimer le model VECM. Mais ici le nombre des retards seront « p-1 ». VAR Lag Order Selection Criteria

Endogenous variables: LXOM LPETROLE LBP_SA

Exogenous variables: C Date: 02/07/22 Time: 00:53 Sample: 2010M01 2020M12 Included observations: 120

Lag	LogL	LR	FPE	AIC	SC	HQ
0	96.40893	NA	4.23e-05	-1.556815	-1.487128	-1.528515
1	486.3018	753.7929	7.40e-08	-7.905030	-7.626281*	-7.791828*
2	497.1353	20.40312	7.18e-08*	-7.935588*	-7.447777	-7.737486
3	499.9921	5.237522	7.96e-08	-7.833202	-7.136329	-7.550199
4	507.8477	14.00902	8.13e-08	-7.814128	-6.908193	-7.446223
5	513.5726	9.923312	8.60e-08	-7.759544	-6.644547	-7.306739
6	522.5819	15.16560	8.63e-08	-7.759699	-6.435640	-7.221992
7	528.9379	10.38137	9.06e-08	-7.715631	-6.182510	-7.093024
8	536.1344	11.39456	9.39e-08	-7.685574	-5.943391	-6.978065
9	541.1938	7.757697	1.01e-07	-7.619896	-5.668652	-6.827487
10	545.4990	6.386107	1.10e-07	-7.541650	-5.381344	-6.664340
11	558.3845	18.46915*	1.05e-07	-7.606408	-5.237040	-6.644197
12	569.5917	15.50325	1.02e-07	-7.643194	-5.064764	-6.596082

^{*} indicates lag order selected by the criterion

On sélectionne le modèle avec 2 retards selon le critère d'Akaike.

Dans notre série il n'y a pas de composant déterministe. On a vu que les 3 séries sont marché au hasard, donc on n'a que la composante stochastique. Donc c'est pour ça on sélectionne « no deterministic trend ». Intervalle de retard est égale à 1 parce que p-1 = 2-1 =1 (parce que cette analyse est uniquement pour la différence première, c'est logique si on a 2 retards dans un modèle, on en aura 1 dans les séries en différences premières.)

Le test de Johansen est basé sur les 2 statiques :

1) Test de Trace

H0: nombre de vecteurs de cointégration <= r

H1: nombre de vecteurs de cointégration > r

2) Test de Maximum Eigenvalue

H0: nombre de vecteurs de cointégration = r H1

: nombre de vecteurs de cointégration = r+1

Une fois que H0 est acceptée on arrête le processus, sinon on avance.

Johansen Cointegration Test

Date: 02/07/22 Time: 01:56

Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments

Trend assumption: No deterministic trend (restricted constant)

Series: LXOM LPETROLE LBP_SA Lags interval (in first differences): 1 to 1

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None	0.131687	26.75643	35.19275	0.3013
At most 1 At most 2	0.047585 0.015735	8.399962 2.061879	20.26184 9.164546	0.7906 0.7654

Nombre de retards est sur la base de la série en différence premières. Dans le tableau au gauche il y a des nombres des cointégrations. « None » signifie qu'il n'y a aucune cointégration dans le modèle. La valeur de la statistique de Trace est inférieure à la valeur critique au niveau de 5%, c'est-à-dire on accepte H0 pour la ligne « None ». Puisque on a accepté H0, nous arrêtons notre analyse ici. Donc selon le test de Trace, il n'y a pas de cointégration entre ces 3 séries.

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None	0.131687	18.35646	22.29962	0.1625
At most 1	0.047585	6.338083	15.89210	0.7492
At most 2	0.015735	2.061879	9.164546	0.7654

Le test de Maximum Eigenvalue aussi nous représente le même résultat : il n'y a aucune cointégration dans le modèle.

CONCLUSION

Dans la première partie nous avons étudié la série temporelle d'Exxon Mobile. On a vu que la série brute n'était pas stationnaire et ses résidus ne suivaient pas le processus Bruit Blanc. On a détecté une tendance et son caractère était aléatoire. Mais la série n'était pas saisonnière. Après avoir effectué les tests de la racine unitaire tel que Dickey Fuller et Philips Perrons on a défini que la série est une DS sans dérivé ou bien un Marché au hasard. On a enlevé la tendance en faisant la différencepremière afin de rendre stationnaire la série. Dans l'étape suivant nous avons commencé l'algorithme de Box et Jenkins. On a identifié plusieurs modèles mais parmi eux il n'y avait qu'un seul bon modèle. C'était le modèle ARMA (2, 2). Puis que les séries financières sont très volatiles, les résidus de ce modèle n'étaient pas bruit blanc. De ce fait, on a appelé aux modèles ARCH. Nous avons choisi le modèle TGARCH (1, 2, 1) selon le critère d'Akaike. On a vérifié que les résidus suiventle processus de bruit blanc. Ainsi on a fait la prévision pour l'année 2021 en utilisant ce modèle.

Dans la partie multivariée nous avons pris un modèle VAR avec un seul retard. On a commencé à étudier l'effet de chocs endogène à court terme après avoir vérifié la stationnarité du modèle. Selonle test de Granger, Exxon cause BP et Pétrole. Cependant, elle ne les cause pas selon le test de Sims. Ala fin de cette partie nous avons cherché la cointégration dans le modèle. On a fait deux tests : Engle Granger et Johansen. Les deux tests nous ont donné le même résultat : il n'y a pas de cointégration dans le modèle.

BIBLIOGRAPHIE

- Analyse des séries temporelles (R. Bourbonnais de M. Térraza)
- Econométrie (R. Bourbonnais)
- Économétrie des séries temporelles macroéconomiques et financières (S.Lardic et V.Mignon)

https://archive.nytimes.com/www.nytimes.com/gwire/2010/06/10/10greenwire-bps-pr-blunders-mirror-exxons-appear-destined-98819.html

 $\frac{https://www.reuters.com/article/uk-oil-spill/bp-shares-soar-as-spill-spreads-idUKTRE64U00W20100706$

https://markets.ft.com/data/equities/tearsheet/profile?s=BP.:LSE

https://web.archive.org/web/20120815163243/http://www.bp.com/sectiongenericarticle.do?categ oryId=9038743&contentId=7070796

https://en.wikipedia.org/wiki/BP#cite note-BPShare-272

Annexe 1 : Modèle contraint pour tester H0⁶

Dependent Variable: DLXOM Method: Least Squares Date: 02/10/22 Time: 17:40 Sample (adjusted): 2011M01 2020M12 Included observations: 120 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LXOM(-1))	0.036804	0.094195	0.390722	0.6968
D(LXOM(-2))	-0.064177	0.092499	-0.693814	0.4893
D(LXOM(-3))	-0.139443	0.091923	-1.516951	0.1322
D(LXOM(-4))	0.056451	0.094153	0.599564	0.5501
D(LXOM(-5))	0.019633	0.094326	0.208137	0.8355
D(LXOM(-6))	0.094833	0.094184	1.006885	0.3162
D(LXOM(-7))	0.194381	0.094493	2.057094	0.0421
D(LXOM(-8))	-0.057481	0.094903	-0.605681	0.5460
D(LXOM(-9))	-0.125192	0.099094	-1.263358	0.2092
D(LXOM(-10))	0.253433	0.110284	2.298008	0.0235
D(LXOM(-11))	-0.273516	0.118939	-2.299628	0.0234
C	-0.005122	0.005805	-0.882406	0.3795
R-squared	0.155712	Mean depen	dent var	-0.004776
Adjusted R-squared	0.069720	S.D. depend	lent var	0.064732
S.É. of regression	0.062435	Akaike info criterion		-2.614738
Sum squared resid	0.420999	Schwarz criterion		-2.335989
Log likelihood	168.8843	Hannan-Quinn criter.		-2.501537
F-statistic	1.810765	Durbin-Wats	son stat	2.035037

Annexe 2 : Modèle contraint pour tester H05

Dependent Variable: DLXOM Method: Least Squares Date: 02/10/22 Time: 17:47 Sample (adjusted): 2011M01 2020M12 Included observations: 120 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LXOM(-1))	0.043628	0.093782	0.465204	0.6427
D(LXOM(-2))	-0.057208	0.092068	-0.621364	0.5357
D(LXOM(-3))	-0.133669	0.091597	-1.459320	0.1474
D(LXOM(-4))	0.061200	0.093904	0.651727	0.5159
D(LXOM(-5))	0.023995	0.094101	0.254991	0.7992
D(LXOM(-6))	0.098118	0.094015	1.043646	0.2990
D(LXOM(-7))	0.197244	0.094341	2.090751	0.0389
D(LXOM(-8))	-0.054760	0.094757	-0.577900	0.5645
D(LXOM(-9))	-0.119830	0.098807	-1.212763	0.2278
D(LXOM(-10))	0.255913	0.110136	2.323607	0.0220
D(LXOM(-11))	-0.275016	0.118806	-2.314826	0.0225
R-squared	0.149625	Mean depen	dent var	-0.004776
Adjusted R-squared	0.071609	S.D. depend		0.064732
S.E. of regression	0.062372	Akaike info criterion		-2.624221
Sum squared resid	0.424035	Schwarz criterion		-2.368701
Log likelihood	168.4533	Hannan-Qui	nn criter.	-2.520453
Durbin-Watson stat	2 033560			

Annexe 3 : Estimation du modèle VAR(1)

Vector Autoregression Estimates Date: 01/29/22 Time: 18:23 Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments Standard errors in () & t-statistics in []

	DLXOM	DLPETROLE	DLBP_SA
DLXOM(-1)	0.138173	0.541463	0.340405
DENOM(-1)	(0.12764)	(0.20949)	(0.15668)
	[1.08253]	[2.58469]	[2.17268]
	[1.00200]	[2.00 100]	[2.17200]
DLPETROLE(-1)	-0.103788	-0.082827	0.015025
22.2	(0.06963)	(0.11428)	(0.08547)
	[-1.49051]	[-0.72474]	[0.17579]
	[[[
DLBP SA(-1)	-0.005153	-0.109652	-0.276288
	(0.09112)	(0.14956)	(0.11185)
	[-0.05655]	[-0.73318]	[-2.47010]
С	-0.003298	-0.002001	-0.007811
	(0.00567)	(0.00930)	(0.00696)
	[-0.58186]	[-0.21513]	[-1.12270]
R-squared	0.018882	0.057598	0.059083
Adj. R-squared	-0.004478	0.035160	0.036680
Sum sq. resids	0.521113	1.403734	0.785178
S.E. equation	0.064310	0.105550	0.078940
F-statistic	0.808316	2.566982	2.637300
Log likelihood	174.2939	109.8839	147.6476
Akaike AIC	-2.619907	-1.628983	-2.209963
Schwarz SC	-2.531675	-1.540751	-2.121732
Mean dependent	-0.003504	-0.003110	-0.007148
S.D. dependent	0.064167	0.107456	0.080429
D-titidi	(-1-61:)	0.775.00	
Determinant resid covari		9.77E-08	
Determinant resid covari	ance	8.90E-08	
Log likelihood		501.8939	
Akaike information criterio	on	-7.536829	
Schwarz criterion		-7.272133	

Annexe 4 : Granger Exxon

Dependent Variable: DLXOM Method: Least Squares Date: 02/01/22 Time: 14:44

Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLXOM(-1) C	0.023049 -0.003411	0.088912 0.005660	0.259237 -0.602610	0.7959 0.5478
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000525 -0.007284 0.064400 0.530864 173.0890 0.067204 0.795869	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.003504 0.064167 -2.632138 -2.588022 -2.614213 1.985645

Annexe 5 : Granger pétrole

Dependent Variable: DLPETROLE

Method: Least Squares
Date: 02/01/22 Time: 15:43
Sample (adjusted): 2010M03 2020M12
Included observations: 130 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLPETROLE(-1) C	0.078822 -0.002872	0.088055 0.009435	0.895142 -0.304406	0.3724 0.7613
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.006221 -0.001543 0.107539 1.480262 106.4335 0.801278 0.372392	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.003110 0.107456 -1.606669 -1.562553 -1.588743 1.997418

Annexe6: Granger BP

Dependent Variable: DLBP_SA Method: Least Squares

Date: 02/01/22 Time: 16:17

Sample (adjusted): 2010M03 2020M12 Included observations: 130 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLBP_SA(-1) C	-0.100105 -0.007902	0.087868 0.007077	-1.139269 -1.116634	0.2567 0.2662
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.010038 0.002304 0.080336 0.826105 144.3449 1.297934 0.256718	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var criterion terion nn criter.	-0.007148 0.080429 -2.189921 -2.145805 -2.171996 1.977491

Annexe 7 : SIMS entre XOM et Pétrole

Dependent Variable: DLXOM Method: Least Squares
Date: 02/01/22 Time: 17:26
Sample (adjusted): 2010M03 2020M11
Included observations: 129 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLXOM(-1)	0.117622	0.112667	1.043979	0.2985
DLPETROLE(-1)	-0.109423	0.066518	-1.645020	0.1025
DLPETROLE(1)	0.127989	0.051342	2.492897	0.0140
C	-0.003590	0.005530	-0.649143	0.5174
R-squared	0.067543	Mean depen	-0.004135	
Adjusted R-squared	0.045164	S.D. depend	0.064011	
S.E. of regression	0.062548	Akaike info d	-2.675237	
Sum squared resid	0.489037	Schwarz cri	-2.586560	

Dependent Variable: DLPETROLE Method: Least Squares Date: 02/01/22 Time: 17:37 Sample (adjusted): 2010M03 2020M11 Included observations: 129 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
DLPETROLE(-1) DLXOM(-1) DLXOM(1) C	-0.100269 0.459681 -0.135829 -0.002272	0.112523 0.190850 0.145573 0.009368	-0.891098 2.408593 -0.933064 -0.242514	0.3746 0.0175 0.3526 0.8088
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.056908 0.034273 0.105806 1.399376	Mean depen S.D. depend Akaike info d Schwarz cri	lent var riterion	-0.003694 0.107668 -1.623894 -1.535217

Annexe 8 : Sims entre XOM et BP

View Proc Object Print Dependent Variable: I Method: Least Square Date: 02/01/22 Time Sample (adjusted): 20 Included observations	DLXOM es : 21:24 010M03 2020M1		ast _į Stats _į Res	sias j	[]	Proc Object Dependent Varia Method: Least So Date: 02/01/22 Sample (adjusted Included observa	ble: DLB quares Time: 17 d): 2010l	P_SA :44 //03 2020N	111		Jordes	(CSIUS)
Variable	Coefficient	Std. Error	t-Statistic	Prob.		Variable	(Coefficient	Std. E	rror t	t-Statist	ic Prob.
DLXOM(-1) DLBP_SA(-1) DLBP_SA(1) C	0.039797 -0.052297 0.088111 -0.003704	0.112829 0.090715 0.071122 0.005735	0.352721 -0.576503 1.238864 -0.645915	0.7249 0.5653 0.2177 0.5195		DLBP_SA(-1) DLXOM(-1) DLXOM(1) C)	-0.278612 0.350111 -0.009950 -0.008065	0.139 0.109	125 021 -	2.49206 2.51652 0.09126 1.14496	3 0.013 3 0.927
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.014991 -0.008649 0.064287 0.516599 173.0164	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui	ent var riterion terion	-0.004135 0.064011 -2.620409 -2.531733 -2.584378		R-squared Adjusted R-squa S.E. of regressio Sum squared res Log likelihood	n	0.059464 0.036891 0.079234 0.784751 146.0489	S.D. de Akaike Schwa	depender ependen info crite irz criteri n-Quinn	t var erion ion	-0.00723 0.08073 -2.20230 -2.11363 -2.16627

View Proc Object Print			e Forecasi	· · ·	Resids		View Proc Obje	ect Print	Name Freeze	Estimate	Forecast	Stats	Resids	
Dependent Variable: I Method: Least Square Date: 02/01/22 Time: Sample (adjusted): 20 Included observations	s : 21:40 :10M03 202		S		,		Dependent Va Method: Least Date: 02/01/22 Sample (adjus Included obse	t Squares 2 Time: sted): 201	: 21:35 0M03 2020N				Í	
Variable	Coefficie	ent Std.	Error	t-Statist	ic	Prob.	Variab	le	Coefficient	Std. E	rror t-	Statis	tic	Prob.
DLBP_SA(-1) DLPETROLE(-1) DLPETROLE(1) C	-0.1738 0.1000 0.0508 -0.0082	99 0.07 55 0.06	7081 6186	1.65323 1.29862 0.76836 1.14811	28 30	0.1008 0.1965 0.4437 0.2531	DLPETRO DLBP_SA DLBP_S. C	A(-1)	0.054406 0.046550 0.058088 -0.002512	0.141 0.120	567 0 141 0	.5231 .3288 .4835 .2594	20 03	0.601 0.742 0.629 0.795
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.0293 0.0060 0.0804 0.8098 144.01	65 S.D. o 92 Akaike 68 Schw	dependen dependen e info crite arz criter an-Quinn	t var erion ion	0. -2. -2.	007231 080737 170803 082127 134772	R-squared Adjusted R-sq S.E. of regres Sum squared Log likelihood	sion resid	0.007286 -0.016539 0.108554 1.473005 105.4337	S.D. de Akaike Schwa	lependent ependent info criter rz criterio n-Quinn o	var rion on	0. -1. -1.	00369 10766 57261 48393 53658

Annexe 10 : Tableau BB de LBP

Année/Mois	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	Moyenne	Ecart
2010	4,027	3,974	4,044	3,954	3,760	3,363	3,650	3,550	3,718	3,709	3,689	3,788	3,769	0,204223776
2011	3,860	3,881	3,787	3,832	3,834	3,791	3,816	3,674	3,585	3,788	3,774	3,755	3,781	0,081772269
2012	3,827	3,854	3,807	3,771	3,596	3,702	3,686	3,739	3,746	3,759	3,732	3,729	3,746	0,068061913
2013	3,796	3,699	3,746	3,775	3,759	3,731	3,724	3,721	3,738	3,839	3,850	3,884	3,772	0,058500283
2014	3,848	3,924	3,873	3,924	3,921	3,966	3,891	3,868	3,783	3,772	3,672	3,641	3,840	0,103130016
2015	3,659	3,724	3,666	3,765	3,725	3,688	3,610	3,513	3,420	3,575	3,544	3,442	3,611	0,113315077
2016	3,477	3,370	3,407	3,514	3,447	3,570	3,538	3,522	3,560	3,571	3,556	3,621	3,513	0,073980827
2017	3,583	3,524	3,542	3,536	3,588	3,545	3,559	3,548	3,649	3,705	3,691	3,738	3,601	0,075093337
2018	3,756	3,660	3,702	3,798	3,825	3,821	3,809	3,758	3,831	3,770	3,698	3,635	3,755	0,066948013
2019	3,716	3,753	3,778	3,778	3,707	3,731	3,682	3,610	3,637	3,635	3,622	3,631	3,690	0,062135259
2020	3,587	3,443	3,194	3,170	3,142	3,149	3,093	3,041	2,860	2,740	2,973	3,021	3,118	0,230116152
Moyenne	3,740	3,710	3,686	3,711	3,664	3,642	3,642	3,595	3,593	3,624	3,618	3,626	3,654	0,103

Annexe 11 : Régression pour trouver SCRD de BP

Annexe 12 : Tableau BB de LPétrole

. / /2.010	2000	-7 1	722		12.2114	2.0				0 . 1		6/	122	-
Année/MOIS	Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Moyenne	Ecart
2010	4,26549282	4,34976167	4,41073556	4,47072409	4,30851464	4,31321232	4,35824611	4,30891816	4,40793802	4,41944284	4,44875027	4,54637514	4,3840093	0,08137961
2011	4,61015773	4,71617474	4,76217393	4,83620254	4,75832037	4,71805234	4,75900653	4,74162231	4,62781192	4,69263146	4,70329458	4,67562865	4,71675643	0,06193268
2012	4,7100706	4,8109641	4,81145238	4,78113827	4,62291187	4,58046757	4,6510036	4,74362693	4,71903444	4,68573583	4,71088064	4,71177992	4,71158885	0,07081689
2013	4,74996293	4,70907965	4,69829616				4,68027766							
2014	4,66654747	4,69217323	4,67907099			Constitution of the Consti	4,65890051			200				The second secon
2015	3,9592882	4,12971171	4,01259206	4,2011041	4,18189746	4,14614606	3,94623118	3,9680252	3,88176996	3,90015283	3,79638766	3,62620586	3,97912602	0,16985074
2016							3,76884524		-	-				
2017			,				3,96423588				,			
2018							4,30476755							
2019	Company of the Compan	CONT. CO. C.	STATE OF THE PARTY	10. C.	N. P. ST. S. DONALO CO. CASTA S. C.		4,16215896	(V. * 0.000 (C. 0.000 (C. 0.000)	Contract Contract Contract	0.0000000000000000000000000000000000000	AND SOURCE STORY	CONTRACTOR OF STATE	DAMESTIC CONTROL CONTROL CONTROL	
2020	4,03636228	3,91402101	3,25192368	3,28877495	3,62540703	3,71940866	3,77184097	3,81727267	3,73981018	3,63177986	3,87328218	3,94545778	3,7179451	0,24239873
Moyenne	4,26743807	4,30189522	4,25026718	4,29736128	4,28281575	4,28715878	4,27504674	4,29046356	4,27854336	4,25935787	4,24959812	4,26543501	4,27544841	0,11414476

Annexe 13 : TEST ADF avec la tendance et constante sur la série de Ipétrole

		ne Freeze Sa	mple Genr Sh	eet Graph					
Null Hypothesis: LPETROLE has a unit root Exogenous: Constant, Linear Trend Lag Length: 3 (Automatic - based on AIC, maxlag=12)									
			t-Statistic	Prob.*					
Augmented Dickey-Full Test critical values:	er test statisti 1% level 5% level 10% level	С	-2.213187 -4.031309 -3.445308 -3.147545	0.4779					
*MacKinnon (1996) one	-sided p-valu	es.							
Sample (adjusted): 201 Included observations:			t-Statistic	Prob.					
L DETROLE(1)	-0.083748	0.037841	-2.213187	0.028					
LPETROLE(-1) D(LPETROLE(-1))	0.105606	0.037841	1.196858						
	0.019596	0.090449	0.216649	0.233					
D(LPETROLE(-2))		0.090449	0.210049	0.233 0.828					
	-0.187172	0.090390	-2.070720	0.828 0.040					
D(LPETROLE(-2)) D(LPETROLE(-3)) C	-0.187172 0.399855	0.090390 0.181062	-2.070720 2.208382	0.828 0.040 0.029					
D(LPETROLE(-2))	-0.187172	0.090390	-2.070720	0.828					
D(LPETROLE(-2)) D(LPETROLE(-3)) C	-0.187172 0.399855	0.090390 0.181062	-2.070720 2.208382 -1.858450	0.828 0.040 0.029 0.065					
D(LPETROLE(-2)) D(LPETROLE(-3)) C @TREND("2010M01")	-0.187172 0.399855 -0.000682	0.090390 0.181062 0.000367	-2.070720 2.208382 -1.858450	0.828 0.040 0.029 0.065					
D(LPETROLE(-2)) D(LPETROLE(-3)) C @TREND("2010M01") R-squared Adjusted R-squared S.E. of regression	-0.187172 0.399855 -0.000682 0.091547 0.054315 0.105026	0.090390 0.181062 0.000367 Mean deper S.D. depen Akaike info	-2.070720 2.208382 -1.858450 Indent var dent var criterion	0.828 0.040 0.029 0.065 -0.00410 0.10799 -1.62348					
D(LPETROLE(-2)) D(LPETROLE(-3)) C @TREND("2010M01") R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.187172 0.399855 -0.000682 0.091547 0.054315 0.105026 1.345704	0.090390 0.181062 0.000367 Mean deper S.D. depen Akaike info Schwarz cr	-2.070720 2.208382 -1.858450 Indent var dent var criterion iterion	0.828 0.040 0.029 0.065 -0.00410 0.10799 -1.62348 -1.48979					
D(LPETROLE(-2)) D(LPETROLE(-3)) C @TREND("2010M01") R-squared Adjusted R-squared S.E. of regression	-0.187172 0.399855 -0.000682 0.091547 0.054315 0.105026	0.090390 0.181062 0.000367 Mean deper S.D. depen Akaike info	-2.070720 2.208382 -1.858450 Indent var dent var criterion iterion inn criter.	0.828 0.040 0.029 0.065 -0.00410 0.10799 -1.62348					

Annexe 14 : Régression pour trouver SCRD de pétrole

Dependent Variable: DLPETROLE

Method: Least Squares
Date: 02/12/22 Time: 16:39
Sample (adjusted): 2010M05 2020M12
Included observations: 128 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LPETROLE(-1)) D(LPETROLE(-2)) D(LPETROLE(-3)) C	0.069143 -0.016616 -0.223467 -0.004824	0.087606 0.089647 0.089568 0.009421	0.789257 -0.185347 -2.494931 -0.512074	0.4315 0.8533 0.0139 0.6095
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.054064 0.031178 0.106303 1.401228 107.3155 2.362358 0.074508	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-0.004104 0.107999 -1.614304 -1.525178 -1.578092 1.994865

Annexe 15 : Régression pour trouver SCR de pétrole

Dependent Variable: DLPETROLE Method: Least Squares Date: 02/12/22 Time: 16:50 Sample (adjusted): 2010M05 2020M12 Included observations: 128 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LPETROLE(-1)) D(LPETROLE(-2)) D(LPETROLE(-3))	0.070784 -0.014444 -0.221845	0.087288 0.089282 0.089248	0.810923 -0.161784 -2.485721	0.4190 0.8717 0.0142
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.052064 0.036897 0.105988 1.404191 107.1803 1.993729	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui	lent var riterion terion	-0.004104 0.107999 -1.627817 -1.560972 -1.600657

Annexe 16 : Régression pour trouver SCR5 de pétrole

