1 A review of automatic theorem proving

1.1 Introduction

- Proving B follows from A: conditions of first-order predicate calculus
- Single non-empty collection *D*: **universe of discourse**
- Relation symbols on D^n (n is degree of relation)
- Relation symbols with n=0, truth value already determined
- Variables, arbitrary values of D
- Terms, from functions composed with their arguments
- Atomic formulae or atoms: relation symbol followed by a parenthesized list of terms; either T or F
- -B is said to follow from A iff no way for D to be chosen, so that $(A \wedge \neg B)$ is T.
- Statement can't be T is **unsatisfiable**. If choice that is T, satisfiable.

1.2 A quick summary of the background theory

- Show statment, S, containing $n \ge 0$ vars, is unsatisfiable S is treated as a combination of atoms.
- $-S(x_1,...,X_n)$, show no interpretation of vocabularly $R_1...,R_k$, $f_1,...f_m$ of S which makes S T.

2 Introduction

This is a test

3 MATHEMATICAL THEORY OF AUTOMATA

I FINITE AUTOMATA

word on Σ for a finite sequence $x = \sigma_0 \sigma_1 ... \sigma_{n-1}, \sigma_i \in \Sigma$ The length l(x) is the no. of elements in x Λ is the empty word. " Σ^* is a free semigroup under" concatenation $\sigma \in \Sigma$ are "free generators" of this semi-group For events (or subsets) $A \subseteq \Sigma^*, B \subseteq \Sigma^*$ $A^* = A^0 \cup A...$

DEFINITION 1: "A finite automata (f.a.) over Σ is a system $\mathfrak{U} = \langle S, M, s_0, F \rangle$ where S is a finite set (the set of states), $M: S \times \Sigma \to S$ (the table of transitions of \mathfrak{U}) $s_0 \in S$ (s_0 is the initial state), $F \subseteq S$ (F is the set of designated final states)."

$$M$$
 "can be uniquely extended to" $M^*: S \times \Sigma^* \to S$; $M^*(s, \Lambda) = s, s \in S$ $M^*(s, x\sigma) = M(M^*(s, x), \sigma, s \in S, \sigma \in \Sigma, x \in \Sigma^*$

M is the state-transition function with respect to \mathfrak{U} . In a similar manner, M^* describes state-transitions under input words $x \in \Sigma^*$.

DEFINITION 2: "The set $T(\mathfrak{U}) = \{x | x \in \Sigma^*, M^*(s_0, x) \in F\}$ is the *set* (event) *defined* by \mathfrak{U} . A set $A \subseteq \Sigma^*$ is called a *regular event* if for some finite automaton $\mathfrak{U}, A = T(\mathfrak{U})$."

I.1 F.a. mappings

Little distinction between automata in DEFINITION 1 and those that "yield a mapping from input sequences to output sequences".

Associate "state $s \in F$ the output 1 and with each $s \in S - F$ the output 0".

Associate \mathfrak{U} the mapping $T: \Sigma^* \to \{0,1\}^*$ s.t. $T(\sigma_0 \sigma_1 ... \sigma_{n-1})$,

Where for $i \in [0, n-1], \tau_i = 1$ "if $M^*(s_0, \sigma_0...\sigma_i) \in F$ and and $r_i = 0$ otherwise."

Generalizations possible:

- 1. Partitioning S into disjoint "union of k sets", where $S = F_0 \cup ... \cup F_{k-1}$; mapping $T: \Sigma^* \to \{0, 1, ..., k-1\}^*$ into words from a k-letter alphabet.
- 2. Output of F_i , $i \in [0, k-1]$ as a word, w_i on alphabet Ω . Mapping is $T: \Sigma^* \to \Omega^*$ ("not even length preserving")
- 3. Output as function $f(s,\sigma)$ with respect to the current state and current input of \mathfrak{U}

I.2 Nonderministic automata

 \mathfrak{U} in state s with input σ ; can go into any one of a number of states $s' \in S'$, where $S \subset S$ is a set depending on s and σ .

As a result of DEFINITION 1: $M: S \times \Sigma \to P(S)$; "P(S) is the power set of S and s_0 is replaced by a set $S_0 \subseteq S$ of initial states."

If $x = \sigma_0 \sigma_1 ... \sigma_{n-1}$, the sequence of states $(s_0, s_1, ..., s_n)$ is **compatible** w/ x "if $s_0 \in S_0$ " and for $i \in [0, n-1]$.

 \mathfrak{U} accepts x if for some sequence of states through s_n is compatible w/x, $s_n \in F$. The set $T(\mathfrak{U})$ consists of all words accepted by \mathfrak{U} .

THEOREM 1: "For every nonderministic automata \mathfrak{U} there exists a f.a. \mathfrak{B} " s.t. " $T(\mathfrak{U}) = T(\mathfrak{B})$. If \mathfrak{U} has n states, then \mathfrak{B} " has less than " 2^n states."

I.3 Regular expressions and events

Let $Y_1, Y_2, ...$ be vars "ranging over subsets of Σ^* The set of regular terms in $Y_1, Y_2, ...$, \mathbf{R} "is the smallest set satisfying the conditions":

- 1. $Y_n \in \mathbf{R}$, where $n \in [1, \infty)$
- 2. if $R_1 \in \mathbf{R}, R_2 \in \mathbf{R}$ then $R_1 \cup R_2 \in \mathbf{R}, (R_1 R_2) \in \mathbf{R}, R_1^* \in \mathbf{R}$

Every element of **R** is called a regular expression $R(\sigma_1, ..., \sigma_n)$, which is a singleton set.

A regular expression a way of expressing subsets of Σ^*

THEOREM 2. "A set $T \subseteq \Sigma^*$ is f.a. definable (regular)" iff $\exists R(\sigma_1, ..., \sigma_n)$ where $\sigma_i \in \Sigma, i \in [1, k]$ s.t. $T = R(\sigma_1, ..., \sigma_k)$

Every regular event is representable by a regular expression.

Two regular terms $R(Y_1,...,Y_n)$ and $Q(Y_1,...,Y_n)$ are called equivalent if $\forall A_1 \subseteq \Sigma^*,...,\forall A_n \subseteq \Sigma^*$,

$$R(A_1, ..., A_n) = Q(A_1, ..., A_n)$$

The "equivlance of regular terms is effectively solvable."

If fixed letters of Σ are part of "term formulation", $Y_n \in \mathbf{R}'$, $\sigma \in \mathbf{R}'$, $n = 1, 2, ... \sigma \in \Sigma$. Regular expressions yield f.a. definable sets.

I.4 Algebraization of f.a.

E is an equiv. relation on Σ^* is a right-invariant if xEy implies $xzEyz\forall x,y,z\in\Sigma^*$ left-invariant(?)

congruence on Σ^* : given a set T that is a subset of Σ^* , one can define two relations...

THEOREM 3.

 $T \subseteq \Sigma^*$ is regular iff it's "the union of equiv. classes of a right-invariant relation E (on Σ^*) with finite index." T is regular iff " E_T has a finite index."

 $\exists \mathfrak{U}$ "with index (E_T) states" s.t. $T = T(\mathfrak{U})$. "No automaton with fewer than index (E_T) states defines T."

THEOREM 3 "is very useful in show that certain sets $T \subseteq \Sigma^*$ are or are not regular."

THEOREM 4."A set $T \subseteq \Sigma^*$ is regular" iff "it is a union of equivalence classes of a congruence \equiv (on Σ^* with finite index." "...T is regular" iff "index(\equiv_T) is finite."

"Given a congruence relation" on Σ^* , the partitioned set Σ^*/\equiv of equivalence classes of Σ^* with respect to \equiv , into semi-group so that mapping $\phi_0: x \to [x]_{\equiv}$ of ea. $x \in \Sigma^*$ into equiv. class is a homomorphism of Σ^* onto Σ^*/\equiv .

Conversely, to ea. homomorphism $\phi_1: \Sigma^* \to M$ of Σ^* onto semi-group, M - corresponding congruence \equiv def by $x \equiv y$ iff $\phi_1(x) = \phi_1(y)$.

THEOREM 4 (restated).

"A set $T \subseteq \Sigma^*$ is regular" iff $\exists M, H \subseteq M$ and a homomorphism $\phi : \Sigma^* \to M$ s.t. $T = \phi^{-1}(H)$, where M is a finite semigroup.

Associate with ea. $\sigma \in \Sigma$ a function f_{σ} . The system $\langle A, a_0, f_{\sigma} \rangle_{\sigma \in \Sigma}$ is an algebra of type Σ if $a_0 \in A$

I.5 Decision problems and algorithms

Skipped.

I.6 Finite automata and infinite sequences

A f.a. \mathfrak{U} accepting a word, $x = \sigma_0 \sigma_1 ... \sigma_n ..., x$ is a denumerable seq. of letters $\sigma_n \in \Sigma$. Let \mathfrak{U} be a NFA. A denumerable seq. of states $(s_0, s_1 ...)$ "is called *compatible* with x if $s_0 \in S_0$

and $S_{n+1} \in M(s_n, \sigma_n), 0 \le n < \infty$."

DEFINITION 3. " \mathfrak{U} accepts x if for s" (a sequence), " $\{n|S_n \in F\}$ is infinite." "Set of all denumerable" seq. "accepted by \mathfrak{U} will be denoted by $T_{\infty}(\mathfrak{U})$ "

THEOREM 6 (Büchi)."If $H_1 \subseteq \Sigma_{\infty}$ and $H_2\Sigma_{\infty}$ " are f.a. definable, so are the union, intersection of H_1 and H_2 as well as $\Sigma_{\infty} - H_1$

II PROBALISTIC AUTOMATA

Not relevant to problem.

III TREE-AUTOMATA

Tree automata have a tree for input.

A version of tree automata can be applied to context-free languages [Mezei and Wright, "Generalized Algol-like Languages"].

 $\mathfrak{U} = \langle S, M, S_0, F \rangle$ f.a over Σ ; $x = \sigma_0 \sigma_1 \sigma_2 \in \Sigma$. Terminal node has no value. Except for the initial state s_0 , elements of F not indexed.

 $M: S \times S \times \Sigma \to S$ (note: M earlier defined as transition table). Inputs for $\mathfrak U$ finite binary trees, nodes val. by Σ .

III.1 Binary trees

Paper defines trees "as sets of words on alphabet $\Omega = \{0,1\}$." Let $x,y \in \Omega^*, x$ is "...the prefix of y if some $z \in \Omega^*, y = xz$." "...Subset $H \subseteq \Omega^*$ is prefix closed if $y \in H$ and x prefix of y imply $x \in H$. "The prefix closure of $G \subseteq \Omega^*$ "is the smallest prefix closed set $G \subseteq G$." is the empty word as a member.

"A (binary) tree is a prefix-closed subset $H \subseteq \Omega^*$." ."..Elements $x \in H$ " are nodes. "The node $\Lambda \in H$ is the" tree's root. (why use the empty word symbol? (ZO: If you think of the root node as the start of the binary string, then Λ is the

empty word $\{\}$. Following an edge from the root Λ to either 0 or 1 would add a character to the string, producing the string $\{0\}$ or $\{1\}$. Following another edge from that 0-node would give either $\{0,0\}$ or $\{0,1\}$, and so on.))

If $x \in H$ and $x_0 \notin H$ and $x_1 \notin H$, x is a terminal node.

H is frontiered if $\forall x \in H$ (x is non-terminal) we have $x_0 \in H$ and $x_1 \in H$. Ft(H) is "the set of all terminal nodes of H." (ZO: Fr(H) seems to mean the same thing as Ft(H). I think Ft(H) is a typo in the original.)

III.2 Tree-automata

A Σ -valued tree is a pair (v, H), where H is a finite frontiered tree; $v : (H - Fr(H)) \to \Sigma$. Each non-terminal node $x \in H$ is assigned a symbol $v(x) \in \Sigma$.

"The set of all valued trees" is denoted by $V(\Sigma, \Omega)$.

DEFINITION 9: "A finite tree automaton (f.t.a) is a system $\mathfrak{U} = \langle S, M_t, s_0, F \rangle$." Symbols S, s_0, F in DEFINITION 1. $M_t : S \times S \times \Sigma \to S$

DEFINITION 10: "The f.t.a. \mathfrak{U}_t is said to accept $(v, H) \in V(\Sigma, \Omega)$, if $\exists \phi : H \to S$ satisfying:"

- 1. " $\phi(x) = s_0$ for $x \in Fr(H)$ "
- 2. "if $x \in Fr(H)$ (hence, $x_0, x_1 \in H$) then $\phi(x) = M_t(\phi(x_0)\phi(x_1), v(x))$ "
- 3. " $\phi(\Lambda) \in F$ "

Set of all inputs accepted denoted $T(\mathfrak{U})$. T is the set defined by \mathfrak{U}_t . $T \subseteq V(\Sigma, \Omega)$ is f.t.a. definable if for some \mathfrak{U}_t , $T = T(\mathfrak{U}_t)$.

Note: The function ϕ is unique.

non-deterministic f.t.a. $-\phi: H \to S$ compatible with $(v, H), T(\mathfrak{U}_t)$ defined by a non-deterministic f.t.a.

Results that follow from f.a. to finite tree automata:

"...Class of all f.t.a. definable subsets $T \subseteq V(\Sigma, \Omega)$ is a boolean algebra." "For every non-deterministic f.t.a." $T(\mathfrak{U}_t) \exists$ a deterministic f.t.a. \mathfrak{B}_t s.t. $T(\mathfrak{U}_t) = T(\mathfrak{B}_t)$.

"The emptiness and equivalence problems for f.t.a are solvable." (? what is the emptiness problem (ZO: "The emptiness problem is the question of determining whether a language is empty given some representation of it, such as a finite-state automaton." [Sipser, Introduction to the Theory of Computation, 2012]. In other words, is there some input that the automaton will accept?); does the equivalence problem have to do with the eq. relation material earlier? (ZO: Maybe?))

III.3 Valued trees and terms

There is "a one-to-one correspondence between terms and valued trees..."

 $T_0 = (v_0, H_0)$ and $T_1 = (v_1, H_1)$ are Σ -valued trees and $\sigma \in \Sigma$. H_0 and H_1 are trees, which can be combined: $H = \{\Lambda\} \cup 0H_0 \cup 1H_1$.

combined valued tree is denoted $C(\sigma, T_0, T_1)$ is defined to be (v_0, H) where $v(\Lambda) = \sigma, v(0x) = v_0(x)$ for $x \in H_0, v(1x) = v_1(x)$ for $x \in H_1$.

"Associate with each $\sigma \in \Sigma$ " a binary function (operation) symbol F_{σ} and let u_0 be a fixed symbol. V_2 , set of all terms, is "...the smallest set" s.t. " $u_0 \in V_2$ if $t_0 \in V_2$ and $t_1 \in V_2$ then $F_{\sigma}(t_0, t_1) \in V$ for $\sigma \in \Sigma$."

 ϕ is a one-to-one correspondence between $V(\Sigma, \Omega)$ and V_2 , defined recursively by all of the following statements.

$$\phi(\Lambda) = u_0 \tag{1}$$

$$\phi(C(\sigma, T_0, T_1)) = F_{\sigma}(\phi(T_0), \phi(T_1)) \tag{2}$$

$$\sigma \in \Sigma \tag{3}$$

$$T_0, T_1 \in V(\Sigma, \Omega)$$
 (4)

"A set $K \subseteq V_2$ of terms is...f.t.a definable if for some definable $T \subseteq V(\Sigma, \Omega)$ we have $K = \phi(T)$.

If terms $t \in V_2$ are words on the alphabet $\{F_{\sigma} | \sigma \in \Sigma\}$, definable sets that are not always regular events per DEFINITION 2.

"t is often stored in memory in tree (list) form and the evaluation of $\phi(x)$ for each node done successively, "starting from the terminals for which $\phi(x) = s_0$, ending with $\phi(\Lambda)$."