Probabilistic Graphical Models (NAIL104) Pravděpodobnostní grafické modely

Marta Vomlelová KTIML, S303 marta@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~marta

Literature

Key:

- Finn V. Jensen, Thomas D. Nielsen: Bayesian Networks and Decision Graphs, Springer 2007
- Højsgaard, Søren, Edwards, David, Lauritzen, Steffen: Graphical Models with R, Springer 2012

Additional:

- http://people.math.aau.dk/~sorenh/misc/2012-Oslo-GMwR/GMwR-notes.pdf
- John Lafferty, Andrew McCallum, Rernando Pereira: Conditional random fields: Probabilistic models for segmenting and labeling sequence data, Morgan Kaufmann 2001, pp. 282—289
- Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, Volume 101, pp. 99-134, 1998
- S. Russell, P. Norvig: Artificial Intelligence; A Modern Approach, 1995.

Software

- Genie
- R

```
library(gRain)
library(gRbase)
library(RBGL)
library(igraph)
library(ggm)
library(Rgraphviz)
library(depmixS4)
```

- Hugin
- MSBN
- OpenMarkov

Course Outline

- Bayesian Networks (BN)
- Precise Optimized Evaluation (Junction Tree Evaluation)
- Approximate Evaluation
- Probabilistic Classifiers (Naive Bayes, Tree Augmented Naive Bayes)
- Continuous Variables, Conflict Measure, OOBNs, DBNs
- Parameter Learning in BNs
- Structure Learning of BNs
- Decision Graphs (=Influence Diagrams)
- POMDPs

Might be included

- Log-linear Models
- Markov Decision Processes and Reinforcement Learning
- Conditional Markov Fields.

Probability Theory Basics

- Random variables Gender, Hair with binary or discrete domain sp(),
- Cartesian product of random variables X is the sample space (obor hodnot) of all elementary events.
- Potential set $\mathcal{P}(\mathcal{X})$: set of all subsets is a set of **events** (**jevy**).
- Probability distribution P is a mapping $P: \mathcal{P}(\mathcal{X}) \to \langle 0, 1 \rangle$, such that:
 - ullet $P(\mathcal{X})=1$ and
 - $\mathcal{A}, \mathcal{B} \subseteq \mathcal{X}, \mathcal{A} \cap \mathcal{B} = 0 \Rightarrow P(\mathcal{A} \cup \mathcal{B}) = \mathcal{P}(\mathcal{A}) + \mathcal{P}(\mathcal{B}).$
- Probability distribution is fully specified by the assignment to elementary events.

```
\label{eq:phase_parameter} $$ p.HG<-parameter(c("Hair","Gender"), $$ levels=list(c("none", "short","long"),c("male","female")), $$ values=c(.1,.3,.1,.01,.29,.2)) $$
```

p.HG	male	female
none	0.10	0.01
short	0.30	0.29
long	0.10	0.20

> p.HG[,2]
none short long
0.01 0.29 0.20

Marginalization

- We are interested in a subset of random variables $\{Hair\}$.
- We *sum over* other variables { *Gender* }, precisely

$$P(hair) = \Sigma_{gender} P(hair, gender) = P(\{(h, g); h = hair\})$$

It is often written in multi-dimensional form

$$P(Hair) = \Sigma_{Gender} P(Hair, Gender).$$

We say we marginalize to Hair or the variable Gender is marginalized out.

p.HG	male	female
none	0.10	0.01
short	0.30	0.29
long	0.10	0.20

> tableMargin(p.HG, "Hair") Hair none short long 0.11 0.59 0.30

> tableMargin(p.HG, "Gender") Gender male female 0.5 0.5

Marginalization Example

```
\label{eq:phgs} $$ p.HGS<-parray(c("Hair","Gender","MFF"), levels=list(c("none", "short","long"),c("male","female"),c("no",'yes')), $$ values=c(.1,.3,.1,.01,.19,.2,.01,.06,.02,.001,.005,.004)) $$
```

MFF=no	male	female	MFF=yes	male	female
none	0.10	0.01	none	0.010	0.001
short	0.30	0.19	short	0.060	0.005
long	0.10	0.20	long	0.020	0.004

```
> tableMargin(p.HGS, c("Hair","MFF"))

MFF

Hair no yes

none 0.11 0.011

short 0.49 0.065

long 0.30 0.024

StableMargin(p.HGS, c("Gender"))

Gender

male female

0.59 0.41
```

Evidence (Observations)

We enter the evidence Hair=short by multiplying all inconsistent events by 0, i.e. we cut of the only layer that belongs to the observed evidence.

MFF=no	male	female
none	0.10	0.01
short	0.30	0.19
long	0.10	0.20

MFF=yes	male	female
none	0.010	0.001
short	0.060	0.005
long	0.020	0.004

> p.HGS[2,,] MFF Gender no yes male 0.30 0.060 female 0.19 0.005

An Algebra of Potentials

 Our tables need not be (conditional) probabilities and they are generally called potentials(tabulky).

Definition (potential)

A **potential** ϕ is a real-valued function over a domain of finite variables \mathcal{X} :

$$\phi: sp(\mathcal{X}) \to \Re.$$

The domain of the potential is denoted by $dom(\phi)$.

• For example, $dom(P(A, B|C)) = \{A, B, C\}$.

Definition

- Extending a potential $\phi(A, B)$ to the domain $\{A, B, C\}$ means copying the potential for every possible value of $c \in sp(C)$.
- Multiplication, division of potentials can be defined as extending both potentials to the union of their domains and then multiplying pointwise values corresponding to the same element of the domain.

Conditional Probability

- Given the information about Hair, what is the probability of resulting random events?
- Conditional probability distribution P(A|B) is a probability distribution that fulfills the *fundamental rule*: P(A|B)P(B) = P(A,B).
- If P(B = b) > 0 for every $b \in sp(B)$ then P(A|B) = P(A,B)/P(B).

p.HG	male	female	> tableMargin(p.HG, "Hair")
none	0.10	0.01	Hair
short	0.30	0.29	none short long
long	0.10	0.20	0.11 0.59 0.30
			0.11 0.03 0.00

> tableDiv(p.HG, tableMargin(p.HG,"Hair")) Gender Hair male female none 0.9090909 0.09090909 short 0.5084746 0.49152542 long 0.3333333 0.66666667

tableMult(tableDiv(p.HG, tableMargin(p.HG,"Hair")),tableMargin(p.HG,"Hair"))

Bayes Formula

• Bayes formula: For any non-zero P(B|C) following holds:

$$P(A|B,C) = \frac{P(B|A,C) \cdot P(A|C)}{P(B|C)} = \frac{P(A,B|C)}{P(B|C)} = \frac{P(A,B|C)}{P(B|C)} = \frac{P(B|A,C) \cdot P(A|C)}{\sum_{a \in sp(A)} P(B|A = a,C) \cdot P(A = a|C)}.$$

Example:

- We have two random variables, Rain, Wet grass, both either yes or no.
- We know:
 - If it rains (Rain=yes), then the grass is wet with probability $\frac{3}{4}$,
 - if it does not rain, the grass is wet with probability $\frac{1}{8}$,
 - The probability of the rain is $\frac{1}{3}$ (prior), (apriorní pr.).
 - We see the grass is wet in the morning.
- What is the probability it has been raining during the night? (posterior) $(\frac{3}{4})$

Example: Algebra of Potentials

- If it rains (Rain=yes), then the grass is wet with probability $\frac{3}{4}$,
- if it does not rain, the grass is wet with probability $\frac{1}{8}$,
- The probability of the rain is $\frac{1}{3}$.
- We see the grass is wet in the morning.

```
        p.Rain
        p.Wet
        yes
        no

        Rain
        yes
        0.75
        0.12

        yes no
        no
        0.25
        0.88

        0.33333333 0.6666667
```

```
\label{eq:continuous_series} $$yn=c("yes","no")$ p.Rain<-parray(~Rain, values=c(1,2), levels=list(yn), normalize='all')$ p.Wet<-parray(~Wet:Rain, values=c(3,1,1,7), levels=list(yn,yn), normalize='first')$ e.Wet<-parray(~Wet,values=c(1,0),levels=list(yn),normalize='none')$ un.normalized<- tableMult(tableMult(p.Wet,p.Rain),e.Wet)$ un.normalized/sum(un.normalized)
```

Exercise: Monty Hall

- There are three doors A, B, C. Exactly behind one of them is hidden gold.
- You select one door (C).
- The organizer opens some other door (A, B), there is no gold behind them.
- You may change your mind: select any of closed doors.
- What is the probability of the gold being behind each door? Calculate it.

Monty 2

```
> tableMargin(tableMult(tableMult(m.Gold,m.Org),m.You),c("Gold",'Org'))
Org
Gold A B C
A 0.0000000 0 0.3333333
B 0.1666667 0 0.1666667
C 0.3333333 0 0.0000000
```

Graph structure

- The graph structure represents conditional independencies of variables.
- It enables simplification of the model, calculations, estimates.

Independence

Definition (Independence)

Two random variables A, B are independent iff

$$\forall a \in sp(A), b \in sp(B) : P(A = a, B = b) = P(A = a) \cdot P(B = b).$$

Lemma (independence)

Variables A, B are independent iff

$$\forall a \in sp(A), b \in sp(B) : P(A = a \mid B = b) = P(A = a).$$

Example: Idependence, Depencence, Conditional Independence

Fig.: Biased coins: Second flop with the same coin depends on the first flop result.

Fig.: Knowing the coin bias, first and second flip are conditionally independent.

Conditional Independence $A \perp \!\!\!\perp B|\mathcal{C}$

Definition (Conditional Independence)

Random variables A, B are conditionally independent given C, $A \perp\!\!\!\!\perp B \mid C$, $C \subseteq V \setminus \{A, B\}$ iff $\forall a \in sp(A), b \in sp(B), c = \langle c_1, \dots, c_k \rangle \in C$

$$P(A=a,B=b|C=c) = P(A=a|C=c) \cdot P(B=b|C=c).$$

- Some conditional independencies can be read from the graph structure.
- There may be more independencies hidden in the probability distribution.

Bayesian Networks

Definition (Bayesian Network)

Bayesian network is a pair (G, P), where

- G = (V, E) is a DAG (directed acyclic graph with set of vertexes V and set of edges E) and
- P is a list of conditional probability distributions such that for every vertex X there is a probability table P(X|pa(X)) where pa(X) denotes the set of parents of a vertex in G.

The graph represents conditional independencies of the join probability distribution $\prod_{X \in V} P(X|pa(X)).$

BN Example: Wet grass


```
require(gRain)
yn=c("yes","no")
p.Rain<-cptable(~Rain, values=c(1,2), levels=yn,
normalize=TRUE)
p.Wet<-cptable(\simWet+Rain, values=c(3,1,1,7),
levels=yn, normalize=TRUE)
plist<-compileCPT(list(p.Rain, p.Wet))
bnet<-grain(plist)
bnet.f<-setEvidence(bnet,
nodes=c('Wet'),state=c('yes'), propagate=TRUE)
querygrain(bnet.f,nodes=c('Rain'))
> querygrain(bnet.f,nodes=c('Rain'))
```

Chain Rule (řetězcové pravidlo)

Definition (Topological Ordering)

Topological ordering of a directed graph is a linear ordering of vertices such that for every edge the index of the head is smaller then the tail index.

• For any probability distribution on topologically ordered variables A_1, \ldots, A_k we can write:

$$P(A_1,\ldots,A_k) = \frac{P(A_1) \cdot \prod_{j=2,\ldots,k} P(A_j|A_1,\ldots,A_{j-1})}{\text{chain rule}}$$

• For topologically ordered Bayesian network we can write:

$$P(A_1,\ldots,A_k) = P(A_1) \cdot \prod_{j=2,\ldots,k} P(A_j|pa(A_j))$$

• that is the structure encodes the set of conditional independencies i < j, $A_i \notin pa(A_i)$:

$$A_i \perp \!\!\! \perp A_i | pa(A_i)$$
.

Exercise

- Find a topological ordering.
- Find as many conditional independencies as you can.
- Does the set of independencies depend on selected ordering?

Asia, Smoking, Bronchitis $A \perp \!\!\! \perp_d B|S$ is not discovered in the ordering Smoking, Bronchitis, Asia.

d-separation

Definition (d-separation)

Two nodes $A, B \in V$ of a BN with G = (V, E) a d-separated $A \perp_d B \mid C$ by $C \subseteq V \setminus \{A, B\}$ iff each (non-oriented) path from A to B contains at least one node Blocking of one of following types:

- Blocking $\in C$ and Blocking is a tail of at least one edge of the path,
- {Blocking, succ(Blocking)} $\cap C = \emptyset$ and Blocking is the head of both edges of the path.

Theorem (d-separation)

If A, B are d-separated given C $(A \perp \!\!\! \perp_d B | C)$ in BN B, then they are conditionally independent $(A \perp \!\!\! \perp B | C)$.

d-separation

Definition (d-separation)

Two nodes $A, B \in V$ of a BN with G = (V, E) a **d-separated** $A \perp \!\!\! \perp_d B \mid \mathcal{C}$ by $\mathcal{C} \subseteq V \setminus \{A, B\}$ iff each (non-oriented) path from A to B contains at least one node *Blocking* of one of following types:

- ullet Blocking $\in \mathcal{C}$ and Blocking is a tail of at least one edge of the path,
- $\{Blocking, succ(Blocking)\} \cap C = \emptyset$ and Blocking is the head of both edges of the path.

Does hold following?

- E ⊥⊥_d B
- E ⊥⊥_d D
- $E \perp \!\!\! \perp_d D|A$
- E ⊥⊥_d D|C
- $E \perp \!\!\! \perp_d D | \{C, F\}$
- E ⊥⊥_d B|F

yes, no, no, yes, no, no

Summary

Summary

- Conditional probability
- Algebra on potentials: multiplication, division, marginalization
- Conditional independence
- Bayesian network
- d-separation.

Thank you for attention.