Работа 1.4.5 Изучение колебаний струны

Валеев Рауф Раушанович группа 825

17 декабря 2018 г.

ляется в горизонтальном положении между двумя стоиками с захи на массивной станине 4. Один конец струны закреплен в зажиме 2 ному концу струны, перекинутому че-рез блок, прикреплена платф натяжение струны. Зажим 3 можно передвигать по станине, устаны. Возбуждение и регистрация колебаний струны осуществляются датчиков (вибраторов), расположенных на станине под струной. Эх ключен к звуковому генератору 7 и служит для возбуждения коле измеряется с помощью частотомера 10 (в некоторых установках ча Колебания струны регистрируются с помощью электромагнитного дредается на вход осциллографа 9. Разъёмы, через которые датчики с генератором и осциллографом, расположены на корпусе станины.	е неподвижно. К противополож- рорма с грузами 5, создающими авливая требуемую длину стру- и с помощью электромагнитных пектромагнитный датчик 6 под- баний струны, частота которых астотомер встроен в генератор). датчика 8, сигнал с которого пе- с помощью кабелей соединяются
с тенератором и осциллографом, расположены на корпусе станины.	
145_2.png	

Схема установки Схема установки приведена на Рис. 3. Стальная гитарная струна 1 закреп-

Визуальное наблюдение стоячих волн

1. Освобождаем зажим струны на стойке 3, установливаем длину струны $L=50~{\rm cm}.$ Натягиваем

струну, поставив на платформу грузы $(F \approx 1 \text{ кг})$ (учитывая вес платформы и крепежа). Осторожно зажимаем струну в стойке, не деформируя струну. Возбуждающий датчик 6 должен располагаться рядом с неподвижной стойкой 2, т.е. вблизи узла стоячей волны.

2. Проводим предварительные расчёты. Оцениваем скорость распространения волн по формуле

$$u = \sqrt{\frac{T}{\rho_1}}$$

M_susp, g	$M_c arg 0, g$	$\rho_1, g/m$	u, m/c
111,6	$969,\!6$	$0,\!5684$	137,9196

где используя табличное значение плотности стали и приняв диаметр струны равным $d\approx 0,3$ мм. Для заданных значений длины струны и силы натяжения рассчитываем частоту основной гармоники ν_1 согласно формуле

$$\nu_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{T}{\rho_1}}, n \in N$$

- 3. Включаем в сеть звуковой генератор и частотомер. Устанавливаем на генераторе тип сигнала синусоидальный, частоту основной гармоники ν_1 и максимальную амплитуду напряжения. При этом сигнал с выхода генератора должен быть подан на возбуждающий датчик 6 (проверяем правильность соединения проводов!)
- 4. Медленно меняя частоту звукового генератора в диапазоне $\nu = \nu_1 \pm 5$ Гц, добиваемся возбуждения стоячей волны на основной гармонике (одна пучность). Если при колебаниях струна касается регистрирующего датчика 8, осторожно сдвигаем датчик по скамье в сторону подвижного зажима струны 3. Определяем частоту первой гармоники по частотомеру.

5. Увеличив частоту в 2 раза, получаем картину стоячих волн на второй гармонике, а затем и на более высоких гармониках. Обычно визуально удается наблюдать до 5-7 гармоник. Запишем значения частот ν_n стоячих волн, которые удастся пронаблюдать.

f_{harm}	Номер	
теория	практика	помер
137,92	137,8	1
275,84	278,6	2
413,76	418,9	3
551,68	560,2	4
689,6	690	5
827,52	830,8	6
965,44	974,5	7

Регистрация стоячих волн с помощью осцилогрофа

- 1. Визуально настраиваем струну на основной гармонике, не меняя нагрузку струны и её длину. Устанавливаем регистрирующий датчик 8 в центре под струной (в пучности стоячей волны). Уменьшаем уровень выходного сигнала генератора так, чтобы при колебаниях струна не касалась датчика. Проверяем правильность соединения проводов. Сигнал колебаний струны с регистрирующего датчика 8 (основной сигнал) подается на вход канала CH2(Y) осциллографа. На вход канала CH1(X) подается опорный сигнал с генератора на частоте возбуждения струны.
- 2. Включите осциллограф в сеть. Для наблюдения колебаний струны в одноканальном режиме переключатель режима работы МОDE блока вертикального отклонения должен стоять в положении CH2; тумблер режима работы канала Y в положение АС; на блоке синхронизации устанавливаем SOURCE CH2. Устанавливаем такие значения коэффициента усиления канала Y (VOLTS/DIV); постоянную времени развертки (TIME/DIV) и уровень синхронизации (LEVEL), чтобы на экране было удобно наблюдать форму сигнала. Подстраиваем частоту ν генератора так, чтобы амплитуда сигнала была максимальна. Добиваемся отсутствия нелинейных искажений, уменьшая уровень возбуждения (амплитуду напряжения генератора) и подстраивая при этом частоту так, чтобы она соответствовала максимуму сигнала. Запишем окончательное значение частоты основной гармоники ν.
- 3. Проводим измерение частот не менее 5 нечетных (n=1,3,5,7,9) гармоник стоячих волн при длине струны 50 см и массе грузов ≈ 1 кг. Для наблюдения нечетных гармоник регистрирующий датчик следует размещать в центре под струной (как для основной гармоники).
- 4. Измеряем частоты четных (n=2,4,...) гармоник. Для этого осторожно смещайте регистрирующий датчик 8 по станине в предварительно рассчитанные положения пучностей. Во избежание взаимного влияния («резонирования») датчиков регистрирующий датчик следует сдвигать в строну подвижного зажима струны 3.
- 5. Проведите опыты пп. 8 и 9 не менее, чем для пяти различных натяжений струны. При изменении нагрузки следует ослабить зажим струны в стойке 3, положить груз на чашку и вновь осторожно зажать струну. Максимальная нагрузка не выше 3,5 кг!

$M_s usp = 111, 6g, \rho_1 = 0, 5684g/m$						
теория	практика	— 111, о <u>д,</u> Номер	теория	практика	Номер	
$M_c arg0 = 969, 6g$			$M_c arg 0 = 1944, 2g$			
137,9196	137,8	1	190,1794	188,5	1	
275,8392	268	2	380,3587	384	2	
413,7588	414,8	3	570,5381	567,6	3	
551,6784	557,1	4	760,7175	776,5	4	
689,598	693,7	5	950,8968	947,9	5	
827,5176	835	6	1141,076	1165,3	6	
965,4372	974,5	7	1331,256	1329	7	
1103,357	1110,3	8	1521,435	1557,1	8	
1241,276	1259	9	1711,614	1712,8	9	
1379,196	1387,3	10	1901,794	1906	10	
$M_c a$	rg0 = 1460,	8g	$M_c a$	rg0 = 2281,	$\overline{1g}$	
166,3238	164,1	1	205,1715	203,4	1	
332,6477	335	2	410,3431	413,8	2	
498,9715	495	3	615,5146	612,5	3	
665,2953	670	4	820,6861	828,8	4	
831,6192	826,4	5	1025,858	1022,2	5	
997,943	1000	6	1231,029	1244,8	6	
1164,267	1156,8	7	1436,201	1434,6	7	
1330,591	1335	8	1641,372	1662,3	8	
1496,914	1491,8	9	1846,544	1849,2	9	
1663,238	1660	10	2051,715	2086	10	

$M_c arg 0$	=2773,7	7g
225,3038	224	1
$450,\!6075$	450,5	2
675,9113	673	3
901,2151	902,2	4
1126,519	1122	5
1351,823	1355,1	6
1577,126	1573	7
1802,43	1810,2	8
2027,734	2026	9
2253,038	2278	10

u, m/c	T, H	$\sigma_u, m/c$
139,7	10,6	0,9
166	15,4	1
191,4	20,1	3
207,8	23,4	2,2
226,9	28,3	1,7

145_6.jpg

где T1 = 10, 6H, T2 = 15, 4H, T3 = 20, 1H, T4 = 23, 4H, T5 = 28, 3H

Отсюда мы получаем, что $\rho_l = (5, 5 \pm 0, 1) \cdot 10^{-4} kg/m \approx 5, 7 \cdot 10^{-4} kg/m$

6. Благодаря высокой добротности струны, возможно возбуждение её колебаний при кратных частотах генератора, меньших, чем ν_1 . Для наблюде-ния явления переключите осциллограф в режим (X-Y) и настройте установку на наблюдение основной гармоники. Затем уменьшите частоту возбуждения в два раза, установив на генераторе $\nu = 0.5\nu_1$. На экране осциллографа должна наблюдаться фигура Лиссажу с одним самопересечением.

145_7.png		
характеристику (АЧХ) вблизи ется выбрать ν_1 или ν_3) для Для расчётов воспользуйтесь лебательной системы свя-зана	руны как колебательной системы, изме-ри одной из резонансных частот (в качене-скольких натяжений струны (по узизвест-ным из теории колебаний резустрезонансной частотой ν_{res} и ширино $8,7$ где ширина резонансной кривой ω_{res} от амплитуды в резонансе.	стве таковых ре коменду- каза-нию преподавателя). льтатом: добротность ко- й резонансной кривой $\Delta \nu$
145_3.png		

	1	2	3	4	5	6	7	8	9	10
f, Hz	137,8	137,78	137,77	137,75	137,74	137,72	137,71	137,7	137,68	137,66
U, V	0,036	0,034	0,032	0,03	0,026	0,024	0,022	0,02	0,016	0,014
U/U_0	1	0,94	0,89	0,83	0,72	0,67	0,61	0,56	0,44	0,39
	11	12	13	14	15	16	17	18	19	20
f, Hz	137,64	137,63	137,61	137,6	137,58	137,57	137,55	137,54	137,52	137,5
U, V	0,014	0,012	0,01	0,009	0,009	0,008	0,008	0,007	0,006	0,006
U/U_0	0,39	0,33	0,28	0,25	0,25	0,22	0,22	0,2	0,17	0,17
	21	22	23	24	25	26	27	28	20	30
	Z1		25	24	_ 20				29) JU
f, Hz	137,49	137,47	$\frac{25}{137,46}$	137,82	137,83	137,85	137,86	137,88	137,89	137,91
$\begin{array}{ c c }\hline f,Hz\\\hline U,V\end{array}$										
	137,49	137,47	137,46	137,82	137,83	137,85	137,86	137,88	137,89	137,91
U, V	137,49 0,006	137,47 0,006	137,46 0,006	137,82 0,036	137,83 0,034	137,85	137,86 0,026	137,88 0,024	137,89 0,022	137,91 0,018
U, V	137,49 0,006 0,17	137,47 0,006 0,17	137,46 0,006 0,17	137,82 0,036 1	137,83 0,034	137,85	137,86 0,026	137,88 0,024	137,89 0,022	137,91 0,018
U,V U/U_0	137,49 0,006 0,17 31	137,47 0,006 0,17 32	137,46 0,006 0,17 33	137,82 0,036 1 34	137,83 0,034	137,85	137,86 0,026	137,88 0,024	137,89 0,022	137,91 0,018

145_	_4.jpg			