From Shallow to Deep Language Representations

1 Basics 2 Shallow Models 3 Transformer 4 BERT

KDD19' Anchorage

Aston Zhang, Haibin Lin, Leonard Lausen, Sheng Zha, Alex Smola

www.d2l.ai gluon-nlp.mxnet.io

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Duwamish River every day.

2. I went to the **bank** to open a savings account.

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Yangtze River every day.

2. I went to the **bank** to open a savings account.

Context Matters: Retail Bank or River Bank?

1. I jog along the **bank** of Yangtze River every day.

2. I went to the bank to open a savings account.

With word embedding, the vector representing "bank" is the same in both sentences

Can we have representations that depend on the **context**?

Representations

- Context-free representation
 - CBOW/Skip-gram
 - FastText
- Contextual representation
 - ELMo: Embedding from Language Model
 - BERT: Bidirectional Embedding Representation from Transformers

BERT

Bidirectional Embedding from Transformers

General Language Understanding Evaluation (GLUE Benchmark)

Includes datasets for acceptability, sentiment, paraphrase, sentence similarity, natural language inference

Natural Language Inference Example:

Input_0: A man inspects the uniform of a figure in some East Asian country.

Input_1: The man is sleeping

Output: contradiction

Model	Avg Score
CBOW	58.6
BERT	80.5

BERT

- Pre-training: learn contextual representation on large scale corpus
- 2. Fine-tuning: add a simple output layer on BERT and fine-tune with the task at hand

I love this movie

BERT Architecture

- A (big) Transformer encoder
- BERT Base
 - # blocks = 12
 - # parameters = 110M
- BERT Large
 - # blocks = 24
 - # parameter = 340M

BERT

BERT Pre-training

- Pre-training tasks:
 - masked language modeling
 - next sentence prediction
- Dataset: Wikipedia and BooksCorpus (>3B words)

Pre-training Task 1: Masked Language Model

Original sentence:

Deep learning is fun.

Masked sentence:

Deep learning [mask] fun.

$$loss = -\log p(is | deep, learning, [mask], fun)$$

Pre-training Task 2: Next Sentence Prediction

Each example is a pair of sentences

is_next_sentence: NLP is fun. GluonNLP is awesome.

not_next_sentence: NLP is fun. Hello world.

Sentence level binary classification

Pre-training Task 2: Next Sentence Prediction

Pre-training Task 2: Next Sentence Prediction

Segment Embedding

BERT Pre-training

- Pre-training tasks:
 - masked language modeling
 - next sentence prediction
- Dataset: Wikipedia and BooksCorpus (>3B words)

BERT Fine-tuning

- BERT returns a (contextual) feature vector for each token
- Different fine-tuning tasks use a different set of vectors

Fine-tuning: Sentence Classification

Input: This movie is great

Output: positive

Input: This movie is

Output: positive

Fine-tuning: Sentence Classification

Feed the [CLS] token vector into a dense output layer.

Fine-tuning: Sentence Pair Classification

Input 0: The processor was announced in San Jose at the Forum.

Input_1: The processor was unveiled at the Forum in San Jose.

Output: is_paraphrase

Fine-tuning: Sentence Pair Classification

Feed the [CLS] token vector into a dense output layer.

Fine-tuning: Named Entity Recognition

Input: Jim bought 3000 shares of Amazon in 2006.

Output: [person] [organization] [time]

Fine-tuning: Named Entity Recognition

Feed each non-special token vector into a dense output layer

Input: Jim bought 3000 shares of Amazon in 2006. Output: [person] [organization] [time]

Fine-tuning: Question Answering

Given a question and a description text, find the answer, which is a text segment in the description

Input_0: KDD 2019 is held in Anchorage

Input_1: Where is KDD held

Output: Anchorage

Fine-tuning: Question Answering

Input_0: KDD 2019 is held in Anchorage

Input_1: Where is KDD held

Output: Anchorage

BERT Fine-tuning

- BERT returns a (contextual) feature vector for each token
- Different fine-tuning tasks use a different set of vectors

BERT in GluonNLP

from gluonnlp import model model.get_model("bert_12_768_12",

dataset name="wiki cn cased"

book_corpus_wiki_en_uncased book_corpus_wiki_en_cased openwebtext_book_corpus_wiki_en_uncased wiki_multilingual_uncased

wiki_multilingual_cased wiki_cn_cased scibert_scivocab_uncased scibert scivocab cased

biobert_v1.1_pubmed_cased

clinicalbert_uncased

ernie_baidu_cn_uncased

scibert basevocab uncased

scibert_basevocab_cased biobert_v1.0_pmc_cased

Available in biobert_v1.0_pubmed_cased **GluonNLP** biobert_v1.0_pubmed_pmc_case

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectiona arXiv preprint arXiv:1810.04805 (2018). gluon-nlp.mxnet.io

bert_12_768_12

/

/

bert_24_1024_16

 \checkmark

Χ

Χ

Х

Х

Х

Χ

Χ

Х

Х

Х

Notebook: BERT for Sentiment Analysis

07_bert_app/bert.ipynb

