PROPOSITIONAL LOGIC

Discrete Structures I COMP 1805 A

Today's Class

- Propositional Logic
 - A.k.a. statement logic
- Propositions
- Negations
- Conjunctions
- Disjunctions
- Solving Expressions
- Truth Tables
- Conditional Statement
- Bidirectional/Biconditional

What is a Proposition?

Proposition: Declarative statement that has a value of True (T) or False (F), but not both

- □ Examples (Exs):
 - I am your instructor
 - Canada is the largest country in the world

What is NOT a proposition?

- Propositions must be defined
- Not all statements are propositions
- □ Exs:
 - X is taller than 150 cm
 - Y + Z = 5
 - **These are not** propositions: the definition of x is not concrete, and Y and Z are completely **undefined**
 - Watch out!
 - How far is the closest washroom?
 - Not propositions because they are neither true nor false

Atomic Propositions

- Propositions that cannot be divided into smaller propositions are considered **Primitive** or **Atomic**
 - Express a single fact
 - Its truth value does not depend on other propositions

Ex: I am a student.

 Counterex: Mercury is a metal that is liquid at room temperature.

Propositional Variables

All variables must be defined

- We can use propositional variables to refer to propositions
 - Ex: let p be the proposition "..."
 - Ex: z= 'it is raining'

Logical Operators

 We can use logical operators to create new propositions from one or more existing propositions

- Unary operator: affects one proposition
 - Negation

Negation

- Let p be a proposition.
- □ The negation of p is a new proposition with the opposite truth value of p (i.e. ¬p, "not p")
- □ Exs:

¬m is True when m is False
¬m is False when m is True
¬(a is even) means a is odd
p is "1<3" and ¬p is "1≥3"
"Penguins cannot fly"

Logical Operators and Compound Propositions

- Binary operator: logical connective for two propositions
 - Exs: Conjunction; Disjunction
- Creates a compound proposition: proposition that contains one or more logical connectives

Conjunction (AND)

- Let p and q be propositions.
- The conjunction of p and q, denoted p Λ q, is a new proposition whose truth value is true when both p and q are true, and false otherwise.
- In English, these are conjunctions:
 - And, but, so, also
- Ex: It is raining and I bring my umbrella

Disjunction (OR)

- The disjunction 'p or q' denoted p V q, is a new proposition whose truth value is true if p is true, q is true, or both p and q are true, and false otherwise.
 - $\square p \lor q$ is false when both p and q are false
 - Otherwise, pVq has a value of true
- □ Inclusive 'or'
- □ Ex: Cats meow or mice meow1hr = 60 mins or 1 min= 60 sec

Exclusive Or

The exclusive or of p xor q, denoted p

q, is a new proposition that is true if exactly one of p or q is true; otherwise false (not both)

 \square p \bigoplus q is read "p xor q" or "p exclusive or q"

Exs: Soup or saladI am telling the truth or I am lying

Useful Mnemonic

- - "¬" is used for Negation and is similar to an "n"

- $\square \land N D$
 - "A" is used for Conjunction and is similar to an "A"

- - "V" is used for Disjunction and is similar to an "r"

Solving Logical Expressions

- Complex expressions are formed from simpler subexpressions
- To solve the complex expressions, the subexpressions must be evaluated and the results are then substituted back into the expression
 - A.k.a. reduction

Solving an Arithmetic Expression

$$(((8 - 3) + 1) / 3) + ((7 - 4) 2)$$

= $(((8 - 3) + 1) / 3) + (3 \cdot 2)$
= $((5 + 1) / 3) + (3 \cdot 2)$
= $(6 / 3) + (3 \cdot 2)$

Solving a General Expression

```
(\neg(((6 + 1) > 7) \land (4 > 3))) \lor F
(\neg((7 > 7) \land (4 > 3))) \lor F
(\neg (\mathbf{F} \land (4 > 3))) \lor \mathbf{F}
(\neg(F \land T)) \lor F
(¬F) ∨ F
T V F
```

Solving a Logical Expression

```
(((\neg F) \lor T) \land F) \lor (\neg (F \land F))
((\mathbf{T} \vee \mathsf{T}) \wedge \mathsf{F}) \vee (\neg(\mathsf{F} \wedge \mathsf{F}))
(\mathbf{T} \wedge \mathbf{F}) \vee (\neg(\mathsf{F} \wedge \mathsf{F}))
(T \wedge F) \vee (\neg F)
(T \land F) \lor T
\mathbf{F} \vee \mathsf{T}
```

- □ Can we evaluate x+5?
- \square Without the value of x you cannot reduce...
- \square ...but what if you knew that $x \in 1,2,3$?
- Since the set of possible values is finite you could enumerate the set of possible solutions

- In propositional logic, the set of possible values for a variable is always finite
 - □ (i.e. {True, False})
- Thus, it is always possible to enumerate all possible solutions to an expression

 \square What are the possible solutions to this expression? $x \land \mathsf{True}$

- \square x can be: True or False
 - \blacksquare when \boldsymbol{x} is True, solution is True
 - $lue{}$ when $oldsymbol{x}$ is False, solution is False

 \square What are the possible solutions to this expression? $x \wedge y$

- \square Possible Values for (x, y): (T, T), (T, F), (F, T), or (F, F)
 - \square when (x, y) is (T, T), solution is True
 - □ False otherwise

Binary Operation Tables

- We can use Binary Operation Tables to find truth values to compound propositions because:
 - Operands are finite
 - Truth values are only True or False
- Thus, create a Truth Table with each distinct
 operator used to construct the logical expression
- Truth tables are used to exhibit the relationship between the truth values of a compound proposition and the truth values of its component propositions

Constructing Truth Tables

- □ Lists all possible outcomes
- 2ⁿ rows (one for each possible combination of truth values for the operands required)
- Every propositional variable has its own column (on the left, alphabetized)
 - Any helper propositions (smaller propositions) are given a column
 - Final column specifies the result
 - Order of the T's and F's matters!

Truth Table for Negation

- □ If j is "My name is John"
- □ Then ¬j is "My name is not John"

Person talking is John

Person talking is not John

j	٦j

Truth Table for Negation

- □ If j is "My name is John"
- □ Then ¬j is "My name is not John"

Person talking is John

□ Person talking is not John

j	٦j
Т	
F	

Truth Table for Negation

- □ If j is "My name is John"
- □ Then ¬j is "My name is not John"

Person talking is John

□ Person talking is not John

j	٦j
Т	F
F	Т

Conjunction Truth Table

- I'm Mila and I teach.
- Let "a" be "My name is Mila" and "b" be "I teach"

A				A A •	
\square \triangle	teac	her	named	$\Delta \Delta \Pi$	
			HIMITOM	<i> </i>	\sim

- A non teacher named Mila
- A teacher named Julie
- A non teacher named Julie

a	b	a A b

Conjunction Truth Table

- I'm Mila and I teach.
- Let "a" be "My name is Mila" and "b" be "I teach"

A			$A A \bullet I$	
\square Δ	teacher	named	$\Delta \Delta II$	\sim
\Box	ICACIICI	HAIHEA	/ Y \	u

- A non teacher named Mila
- A teacher named Julie
- A non teacher named Julie

a	b	aΛb
T	T	
T	F	
F	Т	
F	F	

Conjunction Truth Table

- I'm Mila and I teach.
- Let "a" be "My name is Mila" and "b" be "I teach"

A				A A •	
\square \triangle	teac	her	named	$\Delta \Delta \Pi$	
			HIMITOM	<i> </i>	\sim

- A non teacher named Mila
- A teacher named Julie
- A non teacher named Julie

a	b	aΛb
Т	T	Т
T	F	F
F	Т	F
F	F	F

Disjunction Truth Table

You like computers or you need this credit.

□ Let "p" be "you like computers" and "q" be "you

p V q

need this credit"

		/_	i+	an	٦	N	eed	٦ :	+
Ш	LIF	(e	IT	an	a	IN	eec	a 1	Τ

- □ Like it but don't need it
- Don't like it but need it
- Don't like it and don't need it

Disjunction Truth Table

You like computers or you need this credit.

□ Let "p" be "you like computers" and "q" be "you

need this credit"

П	Like	it	and	N	eed	it
ш			MIIM	1 7	CCU	

- Like it but don't need it
- Don't like it but need it
- Don't like it and don't need it

p	q	рVq
Т	Т	
Т	F	
F	T	
F	F	

Disjunction Truth Table

You like computers or you need this credit.

□ Let "p" be "you like computers" and "q" be "you

need this credit"

П	Like	it	and	Ne	ed	it
ш			and	1 7 6	$\mathbf{C}\mathbf{G}$	

- Like it but don't need it
- Don't like it but need it
- Don't like it and don't need it

р	q	рVq
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

Exclusive Or Truth Table

- □ Soup or salad?
- □ Let "p" be "soup" and "q" be "salad"

- ☐ You order both
- Soup
- Salad
- Neither

þ	q	рФа
T	T	F
T	F	Т
F	Т	Т
F	F	F

 $(a \wedge b) \vee c$

- What are the possible values for
 - □ aş
 - □ Ps
 - □ cŞ
 - □ a ∧ b?
 - □ (a ∧ b) ∨ c?
- Truth table!

$(a \land b) \lor c$

a	b	С	(a ∧ b)	(a ∧ b) V c

Complete Truth Table for: $(a \land b) \lor c$

 Rightmost column contains the solution for each possible combination

a	b	С	(a ∧ b)	(a ∧ b) ∨ c
Т	Т	Т		
Т	Т	F		
T	F	Т		
T	F	F		
F	T	T		
F	T	F		
F	F	Т		
F	F	F		

Complete Truth Table for: $(a \land b) \lor c$

 Rightmost column contains the solution for each possible combination

a	b	С	(a ∧ b)	(a ∧ b) ∨ c
Т	Т	Т	Т	
T	T	F	Т	
T	F	T	F	
T	F	F	F	
F	T	T	F	
F	T	F	F	
F	F	T	F	
F	F	F	F	

Complete Truth Table for: $(a \land b) \lor c$

 Rightmost column contains the solution for each possible combination

a	b	С	(a ∧ b)	(a ∧ b) V c
Т	Т	Т	Т	T
Т	T	F	T	Т
Т	F	T	F	Т
Т	F	F	F	F
F	T	T	F	Т
F	T	F	F	F
F	F	T	F	Т
F	F	F	F	F

Complete Truth Table for: $(a \land b) \lor c$

 Rightmost column contains the solution for each possible combination

a	b	С	(a ∧ b)	(a ∧ b) ∨ c
T	Т	Т	Т	T
Т	T	F	Т	Т
Т	F	Т	F	Т
Т	F	F	F	F
F	Т	T	F	Т
F	Т	F	F	F
F	F	T	F	Т
F	F	F	F	F

Operations Thus Far

Lets complete the table

a	b	¬a	aΛb	a V b	a \bigoplus b

Operations Thus Far

All possible truth values

a	b	¬a	aΛb	a V b	a \bigoplus b
Т	Т	F	Т	T	F
Т	F	F	F	Т	Т
F	T	Т	F	Т	Т
F	F	Т	F	F	F

More Connectives

Conditional Statement/Implication (if, then)

Bidirectional/Biconditional (iff)

Implication

- □ The **implication** $a \rightarrow b$ is a new proposition whose truth value is:
 - Only false when p is true and q is false
 - True otherwise
 - Read "if a then b" or "a implies b"

Implication

- \square P \rightarrow Q can be said in many ways:
- □ If P, then Q
- □ If P, Q
- □ P only if Q
- □ Q if P
- □ Q when P
- Q whenever P

- P implies Q
- Q follows from P
- P is sufficient for Q
- A necessary condition for P is Q
- Q is necessary for P
- A sufficient condition for Q is P

Implication

- \square In a \rightarrow b,
 - a is called the antecedent (or hypothesis)
 - b is called the consequent (or conclusion)

"if a then b" means you conclude b if a is true

It asserts nothing if 'a' is false, so the expression must be considered true

- \Box a \rightarrow b
 - False only when a is true and b is false
- \square Otherwise, a \rightarrow b is True

a	b	a o b
T	T	Т
T	F	F
F	Т	Т
F	F	Т

- If you have a Canadian passport, then you are a Canadian citizen
 - Let a be "You have a Canadian Passport"
 - Let b be "You are a Canadian Citizen"

What are all possible pairs of truth values for these propositions?

- □ Case 1: a = True, b = True
 - Maybe you have Canadian Passport and you are a Canadian Citizen
- Obviously true for this case

a	b	a o b
T	T	T
T	F	F
F	Т	Т
F	F	Т

- \square Case 2: a = False, b = False
 - Maybe you do not have a Canadian Passport and you are not a Canadian Citizen
- □ True for this case

a	b	$a \rightarrow b$
T	Т	Т
Т	F	F
F	T	Т
F	F	T

True: no contradiction.

- \square Case 3: a = False, b = True
 - Maybe you do not have a Canadian Passport but you are a Canadian Citizen
- □ True for this case

a	b	a o b
T	Т	Т
T	F	F
F	T	T
F	F	Т

Maybe it expired and you didn't update

- □ Case 4: a = True, b = False
- □ Can someone have a passport but not be a citizen?
 - definitely not

a	b	a o b
T	Т	Т
T	F	F
F	T	Т
F	F	Т

Implication Statement Rules

- \blacksquare Implication: if a then b (a \rightarrow b)
 - □ Inverse: if not a then not b

$$\blacksquare \neg a \rightarrow \neg b$$

- □ Converse: if b then a
 - \blacksquare a \leftarrow b or b \rightarrow a
- Contrapositive: if not b then not a

$$\neg b \rightarrow \neg a$$

Implication Statement Rules

• If the converse is true, then inverse true too

- Contrapositive is both inverted and converted and it is the only one of the three that is equivalent to a → b
 - If original statement is true, then contrapositive is true

Implication Statement Example 1

- Statement: If two angles are congruent, then they have the same measures
- Inverse: If two angles are not congruent, then they do not have the same measures
- Converse: If two angles have the same measures, then they are congruent
- Contrapositive: If two angles do not have the same measures, then they are not congruent
- Note: Here, the hypothesis and conclusion are equivalent, so all are true... Not always the case!

Implication Statement Example 2

- Statement: If a <u>quadrilateral is a rectangle</u>, then <u>it has</u> two pairs of parallel sides
- Converse: If a quadrilateral has two pairs of parallel sides, then it is a rectangle (FALSE)
- Inverse: If a quadrilateral is not a rectangle, then it does not have two pairs of parallel sides (FALSE)
- Contrapositive: If a quadrilateral does not have two pairs of parallel sides, then it is not a rectangle

a	b	¬a	¬Ь	Implication $\mathbf{a} \rightarrow \mathbf{b}$	Inverse ¬ a→ ¬ b	Converse	Contrapositive
				a o b	' a→ ' b	$\mathbf{p} \to \mathbf{q}$	$\mathbf{P} \rightarrow \mathbf{Q}$
Т	Т						
Т	F						
F	Т						
F	F						

a	b	٦a	¬Ь	Implication $a \rightarrow b$	Inverse ¬ a→ ¬ b	·
					·u··	· D -/ · u
Т	Т	F	F			
Т	F	F	T			
F	Т	Т	F			
F	F	T	T			

а	b	¬a	¬b	$a \rightarrow b$	Inverse ¬ a→ ¬ b	$b \to a$	Contrapositive $\neg b \rightarrow \neg a$
T	Т	F	F	Т			
Т	F	F	T	F			
F	Т	Т	F	Т			
F	F	T	T	Т			

a	b	¬a	¬b	Implication $a \rightarrow b$	Inverse ¬ a→ ¬ b	·
T	T	F	F	Т	Т	
Т	F	F	T	F	Т	
F	Т	Т	F	Т	F	
F	F	Т	Т	Т	Т	

a	b	¬a	¬b	Implication $\mathbf{a} o \mathbf{b}$		Converse $b \rightarrow a$	
Т	Т	F	F	T	T	Т	
Т	F	F	Т	F	Т	Т	
F	Т	Т	F	Т	F	F	
F	F	Т	Т	Т	Т	Т	

a	b	٦a	¬b	Implication $a \rightarrow b$	Inverse ¬ a→ ¬ b	Converse $b \rightarrow a$	Contrapositive $\neg b \rightarrow \neg a$
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	T	F	Т	Т	F
F	Т	T	F	Т	F	F	Т
F	F	T	T	Т	Т	Т	Т

Bidirectional/Biconditional

□ We often want the conjunction of an implication and its converse: $a \rightarrow b \land b \rightarrow a$

If and Only If (iff):
$$a \leftrightarrow b$$

 True when a's and b's truth values are the same, else false

Biconditional Truth Table

a	b	$a \leftrightarrow b$
Т	T	T
Т	F	F
F	Т	F
F	F	Т

Biconditional in English

- \square p \leftrightarrow q can be said in a couple ways:
- p if and only iff q
- piff q
- □ if p then q and q implies p
- p is necessary and sufficient for q
- p is true whenever q is

Biconditional Examples

- Let's assume that the pool is full of water, that it is too deep to stand, that I know how to swim, and that I am not drowning.
- I am swimming if and only if I am in a pool
 - If I am swimming then I must be in pool
 - If I am in a pool then I must be swimming

- I am breathing IFF I am alive
 - If I am breathing then I am alive
 - If I am alive then I am breathing

Questions?

□ Thank you!