Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ЭНЕРГИТИЧЕСКИЙ ИНСТИТУТ» (ФГБОУ ВО «НИУ «МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки радиосигналов

Отчет по лабораторной работе №2 «Обработка массивов данных»

Дисциплина: Цифровая и микропроцессорная техника

Выполнил студент

группы ЭР-11-21

Тимохин С.А.

Бригада № 2

Преподаватель:

Соловьёв Е.Д.

ОБРАБОТКА МАССИВОВ ДАННЫХ Цель лабораторной работы

Познакомиться с пакетом MPLAB IDE X; с архитектурой 8-разрядных микроконтроллеров на примере МК PIC18F2520; с этапами проектирования программы для микроконтроллеров на языке «Ассемблер». В результате работы должны быть разработаны программы в соответствии с заданием на языке «Ассемблер», проведена функциональная проверка работоспособности программ.

Таблица 1 – Индивидуальное задание (часть 2)

Вариант, №	Начальное значение y_0	Значение функции $y = f(x)$ на интервале								
		[0; 64)	[64; 128)	[128; 192)	[192; 255]					
15	64	x	-x	3 <i>x</i>	-x					

Домашняя подготовка

Ход лабораторной работы

Согласно индивидуальному заданию на лабораторную работу, в среде MPLAB X были созданы необходимые файлы проекта. Объявлены переменные и написан код, реализующий программу, согласно блок-схеме, изображенной на рисунке 2.

На рисунке 3 изображен фрагмент окна программы MPLAB с объявлением переменных. На рисунке 4 – код программы.

```
UDATA

WREG_TEMP RES 1
STATUS_TEMP RES 1
BSR_TEMP RES 1
DLIT RES 1
```

Pисунок 1 - Oбъявление переменных

```
Main:
                     movlw .64
movlw .64
movwf DLIT
                     movwf INDF0
movlw 0x02
                     incf WREG
movwf FSR0H
                     incf WREG
movlw 0x00
                     incf WREG
movwf FSR0L
movlw .64 ; start_number incf FSR0L
                     decf DLIT, f
M1:
                     bnz M3
movwf INDF0
incf WREG
                     movlw .64
decf DLIT, f
                     movwf DLIT
                      movlw .255
                     M4:
movlw .64
movlw .64
movwf DLIT
                     movwf INDF0
                     decf WREG
                      incf FSR0L
movlw .128
                      decf DLIT, f
M2:
                      bnz M4
movwf INDF0
decf WREG
decf DLIT, f
                     movlw .64
                      movwf DLIT
                      movlw .0
                      NOP
movlw .64
             END
movwf DLIT
```

Рисунок 2 – Код программы

Address	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
200	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4 F
210	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
220	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
230	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F
240	80	7F	7E	7D	7C	7B	7A	79	78	77	76	75	74	73	72	71
250	70	6F	6E	6D	6C	6B	6A	69	68	67	66	65	64	63	62	61
260	60	5F	5E	5D	5C	5B	5A	59	58	57	56	55	54	53	52	51
270	50	4F	4E	4D	4C	4B	4A	49	48	47	46	45	44	43	42	41
280	40	43	46	49	4C	4F	52	55	58	5B	5E	61	64	67	6A	6D
290	70	73	76	79	7C	7F	82	85	88	8B	8E	91	94	97	9A	9D
2A0	A0	A3	A6	A9	AC	AF	B2	B5	В8	BB	BE	C1	C4	C7	CA	CD
2B0	D0	D3	D6	D9	DC	DF	E2	E5	E8	EB	EE	F1	F4	F7	FA	FD
2C0	FF	FE	FD	FC	FB	FA	F9	F8	F7	F6	F5	F4	F3	F2	F1	F0
2D0	EF	EE	ED	EC	EB	EA	E9	E8	E7	E6	E5	E4	E3	E2	E1	E0
2E0	DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
2F0	CF	CE	CD	CC	СВ	CA	C9	C8	C7	C6	C5	C4	C3	C2	C1	C0

Рисунок 3 — Значения функции, записанные по адресам, начиная с 0x200

Также с помощью плагина DMCI, можно более наглядно отобразить информацию, изображенную на рисунке 3.

Pисунок 4 — График функции y = f(x) в MPLAB X

Вывод по лабораторной работе №2

В ходе выполнения данной лабораторной работы была написана программа с использованием косвенной адресации. В ходе выполнения необходимо было записывать значения функции y = f(x) начиная с адреса памяти 0x200, и чтобы правильно обращаться к адресам в памяти МК, использовались регистры FSR0H и FSR0L, так как регистр WREG имеет 8 разрядов. Для реализации программы использовались циклы. График, полученный в результате лабораторной работы, соответствует исходным данным.