Introduction à la modélisation statistique bayésienne

Ladislas Nalborczyk GIPSA-lab, CNRS, Univ. Grenoble Alpes

Planning

Cours n°01: Introduction à l'inférence bayésienne

Cours n°02: Modèle Beta-Binomial

Cours n°03: Introduction à brms, modèle de régression linéaire

Cours n°04: Modèle de régression linéaire (suite)

Cours n°05: Markov Chain Monte Carlo

Cours n°06: Modèle linéaire généralisé

Cours n°07: Comparaison de modèles

Cours n°08: Modèles multi-niveaux

Cours n°09 : Modèles multi-niveaux généralisés

Cours n°10: Data Hackaton

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

• Construire le modèle (likelihood + priors).

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

- Construire le modèle (likelihood + priors).
- Mettre à jour grâce aux données (updating), afin de calculer la distribution postérieure.

```
y_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(60, 10)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{HalfCauchy}(0, 1)
```

Objectif de la séance : comprendre ce type de modèle.

Les constituants de nos modèles seront toujours les mêmes et nous suivrons les trois mêmes étapes :

- Construire le modèle (likelihood + priors).
- Mettre à jour grâce aux données (updating), afin de calculer la distribution postérieure.
- Interpréter les estimations du modèle, évaluer ses prédictions, éventuellement modifier le modèle.


```
library (rethinking)
library (tidyverse)

data (Howell1)
d <- Howell1
str(d)</pre>
```

```
library(rethinking)
library(tidyverse)

data(Howell1)
d <- Howell1
str(d)

'data.frame': 544 obs. of 4 variables:
$ height: num 152 140 137 157 145 ...
$ weight: num 47.8 36.5 31.9 53 41.3 ...
$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$ male : int 1 0 0 1 0 1 0 1 0 1 ...</pre>
```

```
library(rethinking)
library(tidyverse)

data(Howell1)
d <- Howell1
str(d)

'data.frame': 544 obs. of 4 variables:
$ height: num    152 140 137 157 145 ...
$ weight: num    47.8 36.5 31.9 53 41.3 ...
$ age    : num    63 63 65 41 51 35 32 27 19 54 ...
$ male    : int    1 0 0 1 0 1 0 1 0 1 ...

d2 <- d %>% filter(age >= 18)
head(d2)
```

```
library (rethinking)
library (tidyverse)
data(Howell1)
d <- Howell1
str(d)
'data.frame': 544 obs. of 4 variables:
 $ height: num 152 140 137 157 145 ...
 $ weight: num 47.8 36.5 31.9 53 41.3 ...
 $ age : num 63 63 65 41 51 35 32 27 19 54 ...
 $ male : int 1 0 0 1 0 1 0 1 0 1 ...
d2 <- d %>% filter(age >= 18)
head (d2)
  height weight age male
1 151.765 47.82561 63
2 139.700 36.48581 63
3 136.525 31.86484 65 0
4 156.845 53.04191 41
5 145.415 41.27687 51 0
6 163.830 62.99259 35 1
```

$h_i \sim \text{Normal}(\mu, \sigma)$

```
d2 %>%
    ggplot(aes(x = height) ) +
    geom_histogram(bins = 10, col = "white") +
    theme_bw(base_size = 18)
```


Loi normale

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

```
data.frame(value = rnorm(1e4, 10, 1) ) %>% # 10.000 samples from Normal(10, 1)
    ggplot(aes(x = value) ) +
    geom_histogram(col = "white") +
    theme_bw(base_size = 20)
```


Certaines valeurs sont fortement probables (autour de la moyenne μ). Plus on s'éloigne, moins les valeurs sont probables (en suivant une décroissance exponentielle).

$$y = \exp\left[-x^2\right]$$

On étend notre fonction aux valeurs négatives.

$$y = \exp\left[-x^2\right]$$

Les points d'inflection nous donnent une bonne indication de là où la plupart des valeurs se trouvent (i.e., entre les points d'inflection). Les pics de la dérivée nous montrent les points d'inflection.

$$y = \exp\left[-\frac{1}{2}x^2\right]$$

Ensuite on standardise la distribution de manière à ce que les deux points d'inflection se trouvent à x=-1 et x=1.

$$y = \exp\left[-\frac{1}{2\sigma^2}x^2\right]$$

On insère un paramètre σ^2 pour contrôler la distance entre les points d'inflection.

$$y = \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On insère ensuite un paramètre μ afin de pouvoir contrôler la position (la tendance centrale) de la distribution.

$$y = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Mais... cette distribution n'intègre pas à 1. On divise donc par une constante de normalisation (la partie gauche), afin d'obtenir une distribution de probabilité.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de μ et σ et les classer par leurs probabilités respectives.

Nous allons construire un modèle de régression, mais avant d'ajouter un prédicteur, essayons de modéliser la distribution des tailles.

On cherche à savoir quel est le modèle (la distribution) qui décrit le mieux la répartition des tailles. On va donc explorer toutes les combinaisons possibles de μ et σ et les classer par leurs probabilités respectives.

Notre but, une fois encore, est de décrire la distribution postérieure, qui sera donc d'une certaine manière une distribution de distributions.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

 $\mu \sim \text{Normal}(178, 20)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

$\mu \sim \text{Normal}(178, 20)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

 $\sigma \sim \text{Uniform}(0, 50)$

On définit $p(\mu, \sigma)$, la distribution a priori conjointe de tous les paramètres du modèle. On peut spécifier ces priors indépendamment pour chaque paramètre, sachant que $p(\mu, \sigma) = p(\mu)p(\sigma)$.

$\sigma \sim \text{Uniform}(0, 50)$

Visualiser le prior

```
library(ks)
sample_mu <- rnorm(1e4, 178, 20) # prior on mu
sample_sigma <- runif(1e4, 0, 50) # prior on sigma
prior <- data.frame(cbind(sample_mu, sample_sigma)) # multivariate prior
H.scv <- Hscv(x = prior, verbose = TRUE)
fhat_prior <- kde(x = prior, H = H.scv, compute.cont = TRUE)
plot(
    fhat_prior, display = "persp", col = "steelblue", border = NA,
    xlab = "\nmu", ylab = "\nsigma", zlab = "\n\np(mu, sigma)",
    shade = 0.8, phi = 30, ticktype = "detailed",
    cex.lab = 1.2, family = "Helvetica")</pre>
```


Prior predictive checking

```
sample_mu <- rnorm(1000, 178, 20)
sample_sigma <- runif(1000, 0, 50)

data.frame(x = rnorm(1000, sample_mu, sample_sigma)) %>%
    ggplot(aes(x)) +
    geom_histogram() +
    labs(x = "Taille (en cm)", y = "Nombre d'échantillons") +
    theme_bw(base_size = 20)
```


Fonction de vraisemblance

```
mu_exemple <- 151.23
sigma_exemple <- 23.42
d2$height[34] # une observation de taille (pour exemple)</pre>
```

[1] 162.8648

Fonction de vraisemblance

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

Fonction de vraisemblance

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

dnorm(d2\$height[34], mu exemple, sigma exemple)

[1] 0.01505675

On veut calculer la probabilité d'observer une certaine valeur de taille, sachant certaines valeurs de μ et σ , c'est à dire :

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

On peut calculer cette densité de probabilité à l'aide des fonctions dnorm, dbeta, dt, dexp, dgamma, etc.

```
dnorm(d2$height[34], mu_exemple, sigma_exemple)
```

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  return(bell / norm)
}</pre>
```

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)
  return(bell / norm)
}</pre>
```

normal likelihood(d2\$height[34], mu exemple, sigma exemple)

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(\mu - x)^2\right]$$

Ou à la main...

```
normal_likelihood <- function (x, mu, sigma) {
  bell <- exp( (- 1 / (2 * sigma^2) ) * (mu - x)^2 )
  norm <- sqrt(2 * pi * sigma^2)

  return(bell / norm)
}

normal_likelihood(d2$height[34], mu_exemple, sigma_exemple)

[1] 0.01505675</pre>
```

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_i \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_i \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i) , et deux paramètres à estimer μ et σ .

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i), et deux paramètres à estimer μ et σ .

Pour calculer la vraisemblance marginale (en vert), il faut donc intégrer sur deux paramètres : μ et σ .

$$p(\mu, \sigma \mid h) = \frac{\prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)}{\int \int \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50) d\mu d\sigma}$$
$$p(\mu, \sigma \mid h) \propto \prod_{i} \text{Normal}(h_{i} \mid \mu, \sigma) \text{Normal}(\mu \mid 178, 20) \text{Uniform}(\sigma \mid 0, 50)$$

Il s'agit de la même formule vue lors des cours 1 et 2, mais cette fois en considérant qu'il existe plusieurs observations de taille (h_i), et deux paramètres à estimer μ et σ .

Pour calculer la vraisemblance marginale (en vert), il faut donc intégrer sur deux paramètres : μ et σ .

On réalise ici encore que la probabilité a posteriori est proportionnelle au produit de la vraisemblance et du prior.

Distribution postérieure - Grid approximation

```
# définit une grille de valeurs possibles pour mu et sigma
mu.list < - seq(from = 140, to = 160, length.out = 200)
sigma.list \leftarrow seg(from = 4, to = 9, length.out = 200)
# étend la grille en deux dimensions (chaque combinaison de mu et sigma)
post <- expand.grid(mu = mu.list, sigma = sigma.list)</pre>
# calcul de la log-vraisemblance (pour chaque couple de mu et sigma)
post$LL <-
  sapply(
    1:nrow(post),
    function(i) sum(dnorm(
      d2$height,
      mean = post$mu[i],
      sd = post$sigma[i],
      log = TRUE)
# calcul de la probabilité a posteriori (non normalisée)
post$prod <-</pre>
  post$LL +
  dnorm(post$mu, 178, 20, log = TRUE) +
  dunif(post\$sigma, 0, 50, log = TRUE)
# on "annule" le log en avec exp() et on standardise par la valeur maximale
                                                                                             22
post$prob <- exp(post$prod - max(post$prod) )</pre>
```


Distribution postérieure - grid approximation

Distribution postérieure - distributions marginales

```
BEST::plotPost(
   sample.mu, breaks = 40, xlab =
expression(mu)
)
```

```
BEST::plotPost(
   sample.sigma, breaks = 40, xlab =
expression(sigma)
)
```


Introduction à brms

Under the hood: Stan est un langage de programmation probabiliste écrit en C++, et qui implémente plusieurs algorithmes de MCMC: HMC, NUTS, L-BFGS...

```
data {
  int<lower=0> J; // number of schools
 real y[J]; // estimated treatment effects
  real<lower=0> sigma[J]; // s.e. of effect estimates
parameters {
 real mu;
 real<lower=0> tau;
  real eta[J];
transformed parameters {
  real theta[J];
 for (j in 1:J)
    theta[j] = mu + tau * eta[j];
model -
  target += normal lpdf(eta | 0, 1);
  target += normal lpdf(y | theta, sigma);
                                                                                          25
```

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

se spécifie avec brms (comme avec lme4) de la manière suivante:

Le package brms (Bürkner, 2017) permet de fitter des modèles multi-niveaux (ou pas) linéaires (ou pas) bayésiens en Stan mais en utilisant la syntaxe de lme4.

Par exemple, le modèle suivant :

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \alpha_{subject[i]} + \alpha_{item[i]} + \beta x_i$

se spécifie avec brms (comme avec lme4) de la manière suivante:

```
brm(y \sim x + (1 \mid subject) + (1 \mid item), data = d, family = gaussian())
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme4.

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme4.

```
Reaction ~ Days + (1 + Days | Subject)
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

La partie droite permet de définir les prédicteurs. L'intercept est généralement implicite, de sorte que les deux écritures cidessous sont équivalentes.

Le package brms utilise la même syntaxe que les fonctions de base R (comme lm) ou que le package lme 4.

```
Reaction ~ Days + (1 + Days | Subject)
```

La partie gauche représente notre variable dépendante (ou *outcome*, i.e., ce qu'on essaye de prédire). Le package brms permet également de fitter des modèles multivariés (plusieurs outcomes) en les combinant avec mybind ().

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
```

La partie droite permet de définir les prédicteurs. L'intercept est généralement implicite, de sorte que les deux écritures cidessous sont équivalentes.

```
mvbind(Reaction, Memory) ~ Days + (1 + Days | Subject)
mvbind(Reaction, Memory) ~ 1 + Days + (1 + Days | Subject)
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

```
brm(Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )
```

Si l'on veut fitter un modèle sans intercept (why not), il faut le spécifier explicitement comme ci-dessous.

```
mvbind(Reaction, Memory) ~ 0 + Days + (1 + Days | Subject)
```

Par défaut brms postule une vraisemblance gaussienne. Ce postulat peut être changé facilement en spécifiant la vraisemblance souhaitée via l'argument family.

```
brm(Reaction ~ 1 + Days + (1 + Days | Subject), family = lognormal() )
```

Lisez la documentation (c'est très enthousiasmant à lire) accessible via ?brm.

Quelques fonctions utiles

Quelques fonctions utiles

```
# générer le code du modèle en Stan
make stancode(formula, ...)
stancode(fit)
# définir les priors
get prior(formula, ...)
set prior(prior, ...)
# récupérer les prédiction du modèle
fitted(fit, ...)
predict(fit, ...)
marginal effects(fit, ...)
# posterior predictive checking
pp check(fit, ...)
# comparaison de modèles
loo(fit1, fit2, ...)
bayes factor(fit1, fit2, ...)
model weights(fit1, fit2, ...)
# test d'hypothèse
hypothesis(fit, hypothesis, ...)
```

Un premier exemple

Ces données représentent les distributions marginales de chaque paramètre. En d'autres termes, la *probabilité* de chaque valeur de μ , après avoir *moyenné* sur toutes les valeurs possible de σ , est décrite par une distribution gaussienne avec une moyenne de 154.58 et un écart type de 0.41. L'intervalle de crédibilité (\neq intervalle de confiance) nous indique les 95% valeurs de μ ou σ les plus probables (sachant les données et les priors).

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les prios qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les prios qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

```
get prior(height ~ 1, data = d2)
```

Par défaut brms utilise un prior très peu informatif centré sur la valeur moyenne de la variable mesurée. On peut donc affiner l'estimation réalisée par ce modèle en utilisant nos connaissances sur la distribution habituelle des tailles chez les humains.

La fonction get_prior () permet de visualiser une liste des priors par défaut ainsi que de tous les prios qu'on peut spécifier, sachant une certaine formule (i.e., une manière d'écrire notre modèle) et un jeu de données.

```
priors <- c(
  prior(normal(178, 20), class = Intercept),
  prior(exponential(0.01), class = sigma)
)

mod2 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
)</pre>
```



```
summary (mod2)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1
  Data: d2 (Number of observations: 352)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup samples = 4000
Population-Level Effects:
         Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                       0.41 153.83 155.42 1.00
                                                       3604
                                                                2502
Intercept 154.61
Family Specific Parameters:
     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                            7.25 8.37 1.00
                                                   3651 <u>2549</u>
         7.78
                   0.29
sigma
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

En utilisant un prior plus informatif

```
priors <- c(
  prior(normal(178, 0.1), class = Intercept),
  prior(exponential(0.01), class = sigma)
)

mod3 <- brm(
  height ~ 1,
  prior = priors,
  family = gaussian(),
  data = d2
)</pre>
```


En utilisant un prior plus informatif

```
summary (mod3)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1
   Data: d2 (Number of observations: 352)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000
Population-Level Effects:
          Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
Intercept 177.87
                    0.10 177.67 178.06 1.00
                                                        3053
                                                                 \frac{1}{2}313
Family Specific Parameters:
      Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                           22.90 26.55 1.00
                                                    2619
                                                             \frac{-}{2542}
         24.59
                   0.93
siama
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

On remarque que la valeur estimée pour μ n'a presque pas "bougée" du prior...mais on remarque également que la valeur estimée pour σ a largement augmentée. Nous avons dit au modèle que nous étions assez certain de notre valeur de μ , le modèle s'est ensuite "adapté", ce qui explique la valeur de σ ... 35

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Qui implique une quantité de données $n=1/\sigma_{post}^2$. Notre prior avait un $\sigma=0.1$, ce qui donne $n=1/0.1^2=100$.

Le prior peut généralement être considéré comme un posterior obtenu sur des données antérieures.

On sait que le σ d'un posterior gaussien nous est donné par la formule :

$$\sigma_{post} = 1/\sqrt{n}$$

Qui implique une quantité de données $n=1/\sigma_{post}^2$. Notre prior avait un $\sigma=0.1$, ce qui donne $n=1/0.1^2=100$.

Donc, on peut considérer que le prior $\mu \sim \text{Normal}(178, 0.1)$ est équivalent au cas dans lequel nous aurions observé 100 tailles de moyenne 178.

Récupérer et visualiser les échantillons de la distribution postérieure

```
post <- posterior_samples(mod2) %>%
    mutate(density = get_density(b_Intercept, sigma, n = 1e2) )

ggplot(post, aes(x = b_Intercept, y = sigma, color = density) ) +
    geom_point(size = 2, alpha = 0.5, show.legend = FALSE) +
    theme_bw(base_size = 20) +
    labs(x = expression(mu), y = expression(sigma)) +
    viridis::scale_color_viridis()
```


gets the first 6 samples
head(post)

```
# gets the first 6 samples
head(post)
```

```
b_Intercept sigma lp_ density

1 154.5120 7.951412 -1226.913 1.0187405

2 154.6809 7.564516 -1226.848 1.1616618

3 154.7534 7.271092 -1228.152 0.3024678

4 154.6569 7.798223 -1226.666 1.0948305

5 154.7599 7.564664 -1226.903 1.0763746

6 154.4327 7.824484 -1226.768 1.0358084
```

```
# gets the first 6 samples
head(post)

b_Intercept sigma lp_ density
1 154.5120 7.951412 -1226.913 1.0187405
2 154.6809 7.564516 -1226.848 1.1616618
3 154.7534 7.271092 -1228.152 0.3024678
4 154.6569 7.798223 -1226.666 1.0948305
5 154.7599 7.564664 -1226.903 1.0763746
6 154.4327 7.824484 -1226.768 1.0358084

# gets the median and the 95% credible interval
t(sapply(post[, 1:2], quantile, probs = c(0.025, 0.5, 0.975) ))
```

```
# gets the first 6 samples
head (post)
  b Intercept
                 sigma
                                   density
                            lp
  154.5120 7.951412 -1226.913 1.0187405
   154.6809 7.564516 -1226.848 1.1616618
    154.7534 7.271092 -1228.152 0.3024678
   154.6569 7.798223 -1226.666 1.0948305
   154.7599 7.564664 -1226.903 1.0763746
  154.4327 7.824484 -1226.768 1.0358084
# gets the median and the 95% credible interval
t(\text{sapply}(\text{post}[, 1:2], \text{ quantile, probs} = c(0.025, 0.5, 0.975)))
                  2.5%
                             50%
                                      97.5%
b Intercept 153.830044 154.61231 155.418797
sigma
              7.246072
                        7.76851
                                 8.365361
```

Visualiser la distribution postérieure

```
H.scv <- Hscv(post[, 1:2])
fhat_post <- kde(x = post[, 1:2], H = H.scv, compute.cont = TRUE)

plot(fhat_post, display = "persp", col = "purple", border = NA,
    xlab = "\nmu", ylab = "\nsigma", zlab = "\np(mu, sigma)",
    shade = 0.8, phi = 30, ticktype = "detailed",
    cex.lab = 1.2, family = "Helvetica")</pre>
```


Visualiser la distribution postérieure

Ajouter un prédicteur

Comment est-ce que la taille co-varie avec le poids?

```
d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  theme_bw(base_size = 20)
```


$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)</pre>
```

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)

Mean StdDev    2.5%  97.5%
(Intercept) 113.88    1.91 110.13 117.63
weight    0.91    0.04    0.82    0.99</pre>
```

$$h_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta x_i$

```
linear_model <- lm(height ~ weight, data = d2)
precis(linear_model, prob = 0.95)</pre>
```

```
Mean StdDev 2.5% 97.5% (Intercept) 113.88 1.91 110.13 117.63 weight 0.91 0.04 0.82 0.99
```


On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à:

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à :

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

$$h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma).$$

On considère un modèle de régression linéaire avec un seul prédicteur, une pente, un intercept, et des résidus distribués selon une loi normale. La notation :

$$h_i = \alpha + \beta x_i + \epsilon_i$$
 avec $\epsilon_i \sim \text{Normal}(0, \sigma)$

est équivalente à :

$$h_i - (\alpha + \beta x_i) \sim \text{Normal}(0, \sigma)$$

et si on réduit encore un peu:

$$h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma).$$

Les notations ci-dessus sont équivalentes, mais la dernière est plus flexible, et nous permettra par la suite de l'étendre plus simplement aux modèles multi-niveaux.

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

Dans ce modèle μ n'est plus un paramètre à estimer (car μ est déterminé par α et β). À la place, nous allons estimer α et β .

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta x_i

\alpha \sim \text{Normal}(178, 20)

\beta \sim \text{Normal}(0, 10)

\sigma \sim \text{Exponential}(0.01)
```

Dans ce modèle μ n'est plus un paramètre à estimer (car μ est déterminé par α et β). À la place, nous allons estimer α et β .

Rappels : α est l'intercept, c'est à dire la taille attendue, lorsque le poids est égal à $0.\beta$ est la pente, c'est à dire le changement de taille attendu quand le poids augmente d'une unité.

Régression linéaire à un prédicteur continu

```
priors <- c(
    prior(normal(178, 20), class = Intercept),
    prior(normal(0, 10), class = b),
    prior(exponential(0.01), class = sigma)
)

mod4 <- brm(
    height ~ 1 + weight,
    prior = priors,
    family = gaussian(),
    data = d2
)</pre>
```

Régression linéaire à un prédicteur continu

```
Desterior_summary(mod4)

Estimate Est.Error Q2.5 Q97.5

b_Intercept 113.9091739 1.90340939 110.1174643 117.5865082

b_weight 0.9044274 0.04181662 0.8241147 0.9872964

sigma 5.1053312 0.19635602 4.7449906 5.5041008

lp__ -1083.3609326 1.18601814 -1086.4338689 -1081.9880833
```

- $\beta = 0.90, 95\%$ CrI [0.82, 0.99] nous indique qu'une augmentation de 1kg entraîne une augmentation de 0.90cm.
- $\alpha = 113.91,95\%$ CrI [110.12, 117.59] représente la taille moyenne quand le poids est égal à Okg...

Régression linéaire à un prédicteur continu

• Après avoir centré la réponse, l'intercept représente la valeur attendue de taille lorsque le poids est à sa valeur moyenne.

```
d2 %>%
    ggplot(aes(x = weight, y = height)) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
    geom_abline(intercept = fixef(mod4)[1], slope = fixef(mod4)[2], lwd = 1) +
    theme_bw(base_size = 20)
```


Représenter l'incertitude sur μ via fitted()

6 141.0420 0.6845806 139.6550 142.4029 7 141.9464 0.6463082 140.6439 143.2329

8 142.8509 0.6085024 141.6297 144.0550 9 143.7553 0.5712560 142.6001 144.8849

10 144.6597 0.5346857 143.5895 145.7123

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1))

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod4, newdata = weight.seq)) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de mu
head(mu, 10)

Estimate Est.Error Q2.5 Q97.5 weight
1 136.5199 0.8807902 134.7469 138.2552 25
2 137.4243 0.8410521 135.7460 139.0875 26
3 138.3287 0.8015256 136.7262 139.9143 27
4 139.2331 0.7622435 137.6986 140.7338 28
5 140.1376 0.7232456 138.6741 141.5626 29
```

31

33

34

Représenter l'incertitude sur μ via fitted()

```
d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
   stat = "identity",
  color = "black", alpha = 0.8, size = 1
   ) +
  theme_bw(base_size = 20)
```


Pour rappel, voici notre modèle: $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions?

Pour rappel, voici notre modèle: $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions?

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )
# on récupère les prédictions du modèle pour ces valeurs de poids
pred_height <- data.frame(predict(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)
# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
```

Pour rappel, voici notre modèle: $h_i \sim \text{Normal}(\alpha + \beta x_i, \sigma)$. Pour l'instant, on a seulement représenté les prédictions pour μ . Comment incorporer σ dans nos prédictions?

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 25, to = 70, by = 1) )

# on récupère les prédictions du modèle pour ces valeurs de poids
pred_height <- data.frame(predict(mod4, newdata = weight.seq) ) %>% bind_cols(weight.seq)

# on affiche les 10 premières lignes de pred_height
head(pred_height, 10)
```

```
Estimate Est.Error
                     Q2.5
                                Q97.5 weight
1 136.4334 5.156982 126.3597 146.5687
2 137.4228 5.172193 127.2720 147.5865
                                          26
3 138.2495 5.196426 128.1297 148.3102
                                          27
4 139.2875 5.149738 129.1324 149.4651
5 140.0878 5.108313 129.8216 150.1605
 141.0650 5.250530 130.8891 151.3670
7 141.8594 5.093503 131.5897 151.9159
8 142.8869 5.048090 132.9920 152.9313
9 143.7208 5.226576 133.3834 154.0676
                                          33
10 144.6954 5.202136 135.0953 155.1228
                                          34
```

```
d2 %>%
  ggplot(aes(x = weight, y = height) ) +
  geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
  geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q2.5, ymax = Q97.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
  geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   ) +
  theme_bw(base_size = 20)
```


Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Incertitude aléatoire: La distribution des données simulées est elle, une distribution qui contient de l'incertitude liée à un processus d'échantillonnage (i.e., générer des données à partir d'une gaussienne).

Deux sources d'incertitude dans le modèle : incertitude concernant l'estimation de la valeur des paramètres mais également concernant le processus d'échantillonnage.

Incertitude épistémique: La distribution a posteriori ordonne toutes les combinaisons possibles des valeurs des paramètres selon leurs plausibilités relatives.

Incertitude aléatoire: La distribution des données simulées est elle, une distribution qui contient de l'incertitude liée à un processus d'échantillonnage (i.e., générer des données à partir d'une gaussienne).

Voir aussi ce court article par O'Hagan (2012).

Régression polynomiale

```
d %>% # on utilise d au lieu de d2
ggplot(aes(x = weight, y = height) ) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
theme_bw(base_size = 20)
```


Si on considère tout l'échantillon (pas seulement les adultes), la relation entre taille et poids semble incurvée...

Scores standardisés

```
d <- d %>% mutate(weight.s = (weight - mean(weight) ) / sd(weight) )

d %>%
    ggplot(aes(x = weight.s, y = height) ) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
    theme_bw(base_size = 20)
```



```
c(mean(d$weight.s), sd(d$weight.s))
```

[1] -2.712698e-18 1.000000e+00

Scores standardisés

Pourquoi standardiser les prédicteurs?

- Interprétation. Un changement d'une unité du prédicteur correspond à un changement d'un écart-type sur la réponse. Permet de comparer les coefficients de plusieurs prédicteurs.
- Fitting. Quand les prédicteurs contiennent de grandes valeurs, cela peut poser des problèmes...

Modèle de régression polynomiale - exercice

```
h_i \sim \text{Normal}(\mu_i, \sigma)
\mu_i = \alpha + \beta_1 x_i + \beta_2 x_i^2
\alpha \sim \text{Normal}(156, 100)
\beta_1, \beta_2 \sim \text{Normal}(0, 10)
\sigma \sim \text{Exponential}(0.01)
```

À vous de construire ce modèle en utilisant brms::brm()...

57

Modèle de régression polynomiale

```
priors <- c(
   prior(normal(156, 100), class = Intercept),
   prior(normal(0, 10), class = b),
   prior(exponential(0.01), class = sigma)
   )

mod6 <- brm(
   # NB: polynomials should be written with the I() function...
   height ~ 1 + weight.s + I(weight.s^2),
   prior = priors,
   family = gaussian(),
   data = d
   )</pre>
```

Modèle de régression polynomiale

```
summary (mod6)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + weight.s + I(weight.s^2)
  Data: d (Number of observations: 544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup samples = 4000
Population-Level Effects:
           Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
            146.67
                        0.38 145.93 147.40 1.00
                                                       3571
                                                                2769
Intercept
weight.s
            21.39
                      0.29 20.83 21.97 1.00
                                                       3451
                                                                2955
                    0.28 -8.97 -7.90 1.00
Iweight.sE2 -8.42
                                                       3536
                                                                2972
Family Specific Parameters:
     Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS
                                                  4182
                                                         2934
         5.78
                   0.18
                           5.44
                                    6.14 1.00
sigma
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seg \leftarrow data.frame(weight.s = seg(from = -2.5, to = 2.5, length.out = 50))
# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(fitted(mod6, newdata = weight.seg) ) %>% bind cols(weight.seg)
pred height <- data.frame(predict(mod6, newdata = weight.seq) ) %>% bind cols(weight.seq)
# on affiche les 10 premières lignes de pred height
head (pred height, 10)
   Estimate Est.Error Q2.5 Q97.5 weight.s
1 40.38125 5.959401 28.60277 52.16339 -2.500000
2 46.88754 5.924126 35.44837 58.54749 -2.397959
3 53.26769 5.803171 42.21123 64.71465 -2.295918
4 59.24837 5.920341 47.63192 71.00610 -2.193878
5 65.01056 5.839967 53.12504 76.45687 -2.091837
 70.75569 5.746343 59.25683 81.78785 -1.989796
7 76.34011 5.892929 64.94176 87.82885 -1.887755
8 81.65611 5.869747 70.34955 93.23042 -1.785714
9 86.87202 5.815200 75.39549 98.25968 -1.683673
10 91.77386 5.785625 80.44357 102.82518 -1.581633
```

```
d %>%
    ggplot(aes(x = weight.s, y = height)) +
    geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
    geom_ribbon(
        data = pred_height, aes(x = weight.s, ymin = Q2.5, ymax = Q97.5),
        alpha = 0.2, inherit.aes = FALSE
        ) +
    geom_smooth(
        data = mu, aes(y = Estimate, ymin = Q2.5, ymax = Q97.5),
        stat = "identity", color = "black", alpha = 0.8, size = 1
        ) +
    theme_bw(base_size = 20)
```


Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Marsman et al. (2017), Marsman et al. (2019) généralisent des méthodes existantes pour calculer un ρ^2 pour les designs de type ANOVA (i.e., avec prédicteurs catégoriels), qui représente une estimation de la taille d'effet *dans la population*, et non basé sur l'échantillon.

Plusieurs méthodes pour calculer les tailles d'effet dans les modèles bayésiens. Gelman & Pardoe (2006) proposent une méthode pour calculer un \mathbb{R}^2 basé sur l'échantillon.

Marsman et al. (2017), Marsman et al. (2019) généralisent des méthodes existantes pour calculer un ρ^2 pour les designs de type ANOVA (i.e., avec prédicteurs catégoriels), qui représente une estimation de la taille d'effet *dans la population*, et non basé sur l'échantillon.

"Similar to most of the ES measures that have been proposed for the ANOVA model, the squared multiple correlation coefficient ρ^2 [...] is a so-called proportional reduction in error measure (PRE; Reynolds, 1977). In general, a PRE measure expresses the proportion of the variance in an outcome y that is attributed to the independent variables x" (Marsman et al., 2019).

$$\rho^{2} = \frac{\sum_{i=1}^{n} \pi_{i} (\beta_{i} - \beta)^{2}}{\sigma^{2} + \sum_{i=1}^{n} \pi_{i} (\beta_{i} - \beta)^{2}}$$

$$\rho^{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}}{\sigma^{2} + \frac{1}{n} \sum_{i=1}^{n} \beta_{i}^{2}}$$

$$\rho^{2} = \frac{\beta^{2} \tau^{2}}{\sigma^{2} + \beta^{2} \tau^{2}}$$

```
post <- posterior_samples(mod4)
beta <- post$b_weight
sigma <- post$sigma

f1 <- beta^2 * var(d2$weight)
rho <- f1 / (f1 + sigma^2)</pre>
```

Attention, si plusieurs prédicteurs, dépend de la structure de covariance...

```
BEST::plotPost(rho, showMode = TRUE, xlab = expression(rho) )
```


summary(lm(height ~ weight, data = d2))\$r.squared

[1] 0.5696444

```
bayes_R2 (mod4)

Estimate Est.Error Q2.5 Q97.5
R2 0.5679634 0.02278667 0.5206285 0.6090996

BEST::plotPost(bayes_R2 (mod4, summary = FALSE), showMode = TRUE, xlab = expression(rho))
```


On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

La fonction fitted () permet de récupérer les prédictions d'un modèle fitté avec brms (i.e., un modèle de classe brmsfit).

On a présenté un nouveau modèle à deux puis trois paramètres : le modèle gaussien, puis la régression linéaire gaussienne, permettant de mettre en relation deux variables continues.

Comme précédemment, le théorème de Bayes est utilisé pour mettre à jour nos connaissances a priori quant à la valeur des paramètres en une connaissance a posteriori, synthèse entre nos priors et l'information contenue dans les données.

La package brms permet de fitter toutes sortes de modèles avec une syntaxe similaire à celle utilisée par lm ().

La fonction fitted () permet de récupérer les prédictions d'un modèle fitté avec brms (i.e., un modèle de classe brmsfit).

La fonction predict () permet de simuler des données à partir d'un modèle fitté avec brms.

Travaux pratiques - 1/2

Sélectionner toutes les lignes du jeu de données Howelll correspondant à des individus mineurs (age < 18). Cela devrait résulter en une dataframe de 192 lignes.

Fitter un modèle de régression linéaire en utilisant la fonction <code>brms::brm()</code>. Reporter et interpréter les estimations de ce modèle. Pour une augmentation de 10 unités de <code>weight</code>, quelle augmentation de taille (<code>height</code>) le modèle prédit-il?

Faire un plot des données brutes avec le poids sur l'axe des abscisses et la taille sur l'axe des ordonnées. Surimposer la droite de régression du modèle et un intervalle de crédibilité à 89% pour la moyenne. Ajouter un intervalle de crédibilité à 89% pour les tailles prédites.

Que pensez-vous du fit du modèle ? Quelles conditions d'application du modèle seriez-vous prêt.e.s à changer, afin d'améliorer le modèle ?

Travaux pratiques - 2/2

Imaginons que vous ayez consulté une collègue experte en allométrie (i.e., les phénomènes de croissance différentielle d'organes) et que cette dernière vous explique que ça ne fait aucun sens de modéliser la relation entre le poids et la taille... alors qu'on sait que c'est le *logarithme* du poids qui est relié à la taille!

Modéliser alors la relation entre la taille (cm) et le log du poids (log-kg). Utiliser la dataframe Howelll en entier (les 544 lignes). Fitter le modèle suivant en utilisant brms::brm().

```
h_i \sim \text{Normal}(\mu_i, \sigma)

\mu_i = \alpha + \beta \cdot \log(w_i)

\alpha \sim \text{Normal}(178, 100)

\beta \sim \text{Normal}(0, 100)

\sigma \sim \text{Exponential}(0.01)
```

Où h_i est la taille de l'individu i et w_i le poids de l'individu i. La fonction pour calculer le log en R est simplement \log (). Est-ce que vous savez interpréter les résultats? Indice: faire un plot des données brutes et surimposer les prédictions du modèle...

Proposition de solution

```
data(Howell1)
# on garde seulement les individus ayant moins de 18 ans
d <- Howell1 %>% filter(age < 18)

priors <- c(
   prior(normal(150, 100), class = Intercept),
   prior(normal(0, 10), class = b),
   prior(exponential(0.01), class = sigma)
)

mod7 <- brm(
   height ~ 1 + weight,
   prior = priors,
   family = gaussian(),
   data = d
)</pre>
```

Proposition de solution

```
summary (mod7, prob = 0.89)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + weight
   Data: d (Number of observations: 192)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000
Population-Level Effects:
         Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
            58.23
                    1.39
                               56.00 60.48 1.00
                                                       4234
                                                                3068
Intercept
weight
             2.72
                       0.07 2.61 2.83 1.00
                                                       4154
                                                                2543
Family Specific Parameters:
      Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
         8.55
                   0.44
                            7.87
                                     9.29 1.00
                                                   \overline{4}177 \overline{2}547
sigma
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

70

```
# on crée un vecteur de valeurs possibles pour "weight"
weight.seq <- data.frame(weight = seq(from = 5, to = 45, length.out = 1e2))

# on récupère les prédictions du modèle pour ces valeurs de poids
mu <- data.frame(
    fitted(mod7, newdata = weight.seq, probs = c(0.055, 0.945))
    ) %>%
    bind_cols(weight.seq)

pred_height <- data.frame(
    predict(mod7, newdata = weight.seq, probs = c(0.055, 0.945))
    ) %>%
    bind_cols(weight.seq)

# on affiche les 6 premières lignes de pred_height
head(pred_height)
```

```
Estimate Est.Error Q5.5 Q94.5 weight
1 71.75561 8.535062 58.20070 85.10458 5.000000
2 73.02142 8.590257 59.01128 86.42330 5.404040
3 73.96282 8.382328 60.68347 87.40413 5.808081
4 75.10487 8.673878 60.94780 89.00061 6.212121
5 76.37712 8.762384 62.12747 90.25081 6.616162
6 77.26529 8.554469 63.74763 90.86176 7.020202
```



```
d %>%
   ggplot(aes(x = weight, y = height) ) +
   geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
   geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
   geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   ) +
   theme_bw(base_size = 20)
```


Proposition de solution

```
# on considère maintenant tous les individus
d <- Howell1

mod8 <- brm(
    # on prédit la taille par le logarithme du poids
    height ~ 1 + log(weight),
    prior = priors,
    family = gaussian(),
    data = d
    )</pre>
```

Proposition de solution

```
summary (mod8, prob = 0.89)
 Family: gaussian
 Links: mu = identity; sigma = identity
Formula: height ~ 1 + log(weight)
   Data: d (Number of observations: 544)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
        total post-warmup samples = 4000
Population-Level Effects:
         Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
Intercept -23.61 1.37 -25.81 -21.40 1.00
                                                      4354
                                                               3192
logweight 47.02
                       0.39
                               46.40 47.65 1.00
                                                   4409
                                                               3217
Family Specific Parameters:
     Estimate Est.Error 1-89% CI u-89% CI Rhat Bulk ESS Tail ESS
         5.15
                   0.15
                            4.92
                                     5.41 1.00
                                                  3972 <u>2674</u>
sigma
Samples were drawn using sampling (NUTS). For each parameter, Bulk ESS
and Tail ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

```
Estimate Est.Error Q5.5 Q94.5 weight 1 52.23800 5.265516 43.96558 60.61920 5.000000 2 57.34252 5.175260 48.88584 65.17004 5.606061 3 62.32088 5.197434 54.15168 70.79880 6.212121 4 66.70109 5.088207 58.56606 74.75198 6.818182 5 70.64608 5.280222 62.08034 78.96780 7.424242 6 74.40413 5.198329 66.21465 82.77536 8.030303
```

```
d %>%
ggplot(aes(x = weight, y = height) ) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   ) +
theme_bw(base_size = 20)
```



```
d %>%
ggplot(aes(x = weight, y = height) ) +
geom_point(colour = "white", fill = "black", pch = 21, size = 3, alpha = 0.8) +
geom_ribbon(
   data = pred_height, aes(x = weight, ymin = Q5.5, ymax = Q94.5),
   alpha = 0.2, inherit.aes = FALSE
   ) +
geom_smooth(
   data = mu, aes(y = Estimate, ymin = Q5.5, ymax = Q94.5),
   stat = "identity", color = "black", alpha = 0.8, size = 1
   ) +
theme_bw(base_size = 20)
```

