☑ deor.mx

factor(era)

LANGUAGE PLASTICITY: Genes, Brain, COGNITION, Computation IGERT INTEGRATIVE GRADUATE **EDUCATION & RESEARCH TRAINEESHIP**

Sagi, E., Clark, B., Kaufmann, S. (2011). In K. Allen & J. Robinson (Eds.) Current Methods in Historical Semantics, pgs.

Manin, D. Y. (2008). *Cognitive Science, 32*(7), 1075-1098. Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT press.

on variability in the contextual usage of words. Behavior Research Methods, 45(3), 718-30.

Jones, M. N., Johns, B. T., & Recchia, G. (2012). The role of semantic diversity in lexical organization. Canadian Journal of Experimental Psychology, 66(2), 115–24. Hoffman, P., Lambon Ralph, M. a, & Rogers, T. T. (2013). Semantic diversity: a measure of semantic ambiguity based

ACKNOWLEDGMENTS

Thanks to audiences at the 2014 UCONN Language Fest for their feedback. This work is supported by NSF IGERT 1144399 to UCONN.

Russell Richie¹, Stefan Kaufmann², & Whitney Tabor¹

¹ University of Connecticut, Department of Psychology, Cognitive Science Program, Language Plasticity IGERT ² University of Connecticut, Department of Linguistics, Cognitive Science Program

INTRODUCTION

Various accounts of word comprehension & production⁴,

Zipf's Law², and semantic change¹ rely on constructs of words'

planet

comet

star

britney

specificity and location in semantic space

How to measure specificity/location?

Handcrafted ontologies, e.g. dictionaries or WordNet? Too rigid.

BETTER: word/word and word/document cooccurrence in corpora:

Contextual Diversity⁴, Semantic Distinctiveness⁴, & Semantic Diversity⁵ estimates of word meaning size/diversity, not location

OUR METHOD

- 1) Word-word cooccurrences \rightarrow vector representing word type general meaning (type vector)
- 2) Sum of type vectors of words around a word token \rightarrow context vector \rightarrow meaning of that token
- 3) Context vectors of a given type \rightarrow \downarrow cloud in semantic space
- 4) Volume of convex hull³ of context vectors -> meaning specificity and location

APPLICATION – ZIPF'S LAW

161-183, De Gruyter Mouton.

Zipf's Law: word frequency ∞^{-1} frequency rank; One explanation²:

Word meanings broaden/narrow to avoid excessive synonymy, yielding 'Zipfian covering'. 2) Word meaning ∝ word frequency

Our method replicates known findings about meaning specificity, has promise for novel applications. Next Steps:

- 1. Test 2nd premise of Manin (2008), based on locations
- 2. Better measure than convex hulls of meaning specificity (e.g., kernel density estimation)
- 3. Further comparison with existing measures
- 4. Psycholinguistic applications of our method⁵?