CAP4770/5771 Introduction to Data Science Fall 2016

University of Florida, CISE Department Prof. Daisy Zhe Wang

Based on notes from CS194/294 at UC Berkeley by Michael Franklin, John Canny, and Jeff Hammerbacher

Data Types, Collection and Preparation

Data Types
Data Sources
Data Models
Data Preparation

Data Science – A Visual Definition

Kandel et. al. Data Science and Analysis Process Model

- Discover data necessary to complete an analysis tasks.
- Wrangle data into a desired format.
- Profile data to verify its quality and its suitability for the analysis tasks.
- Model data for summarization or prediction.
- Report procedures and insights to consumers of the analysis.
- Additional Challenge in Workflow Management

Challenges in Data Science

- Preparing Data (Noisy, Incomplete, Diverse, Streaming ...)
- Analyze Data (Scalable, Accurate, Realtime, Advanced Methods, Probabilities and Uncertainties ...)
- Represent Analysis Results (i.e. data product) (Story-telling, Interactive, explainable...)

- Data Types and Sources
- Data Models
- Data Preparation

Data Sources at Web Companies

- Examples from Facebook
 - Application databases
 - Wikipedia (and other knowledge bases)
 - Web server logs
 - Event logs
 - API server logs
 - Ad server logs
 - Search server logs
 - Advertisement landing page content
 - Images and video

Structured Data

Semi-structured Data

Unstructured Data

From structured to unstructured

The (changing) role of Schema

Schema specify the **structure** and **types** of a data repository, e.g. the types of each column in a table. They may also specify constraints **within** or **between** data fields.

Traditional databases are **schema-on-write**. You cannot load data into a table without a schema.

Newer (noSQL) data stores are **schema-on-read** or **schemaless**: You can defer applying a schema until you read the data, or avoid schema altogether.

SQL:

CREATE SCHEMA Sprockets

CREATE TABLE NineProngs (source int, cost int, partnumber int) GO

INSERT INTO NineProngs (source, cost, partnumber) VALUES (5, 100, 45312453)

XML: Generalizes HTML and specifies data **structure**. XML schema can be applied later to interpret XML data and specify **data types**. Here is some XML-encoded **data**:

```
<location>
     <latitude>37.78333</latitude>
     <longitude>122.4167</longitude>
</location>
```

When stored without a schema, the numerical data are stored as **strings**.

Schema-on-Read vs. Schema-on-Write

- "Schema on Write"
 - Traditional Approach
- "Schema on Read"
 - Data is simply copied to the file store, no transformation is needed.
 - A SerDe (Serializer/Deserlizer) is applied during read time to extract the required columns (late binding)
 - New data can start flowing anytime and will appear retroactively once the SerDe is updated to parse it.
 - Read is Fast
 - Standards/Governance

- · Load is Fast
- Flexibility/Agility

- What is a table?
 - A table is a collection of rows and columns
 - Each row has an index (a.k.a., key)
 - Each column has a name
 - A **cell** is specified by an (index, name) pair
 - A cell may or may not have a value

Tabular Data

• Fortune 500

	Α	В	С	D	E	F	G	Н	- 1
1	rank	company	cik	ticker	sic	state_location	state_of_incorporation	revenues	profits
2	1	Wal-Mart Stores	104169	WMT	5331	AR	DE	421849	16389
3	2	Exxon Mobil	34088	XOM	2911	TX	NJ	354674	30460
4	3	Chevron	93410	CVX	2911	CA	DE	196337	19024
5	4	ConocoPhillips	1163165	COP	2911	TX	DE	184966	11358
6	5	Fannie Mae	310522	FNM	6111	DC	DC	153825	-14014
7	6	General Electric	40545	GE	3600	CT	NY	151628	11644
8	7	Berkshire Hathaway	1067983	BRKA	6331	NE	DE	136185	12967
9	8	General Motors	1467858	GM	3711	MI	MI	135592	6172
10	9	Bank of America Corp.	70858	BAC	6021	NC	DE	134194	-2238
11	10	Ford Motor	37996	F	3711	MI	DE	128954	6561
12	11	Hewlett-Packard	47217	HPQ	3570	CA	DE	126033	8761
13	12	AT&T	732717	T	4813	TX	DE	124629	19864
14	13	J.P. Morgan Chase & Co.	19617	JPM	6021	NY	DE	115475	17370
15	14	Citigroup	831001	С	6021	NY	DE	111055	10602
16	15	McKesson	927653	MCK	5122	CA	DE	108702	1263
17	16	Verizon Communications	732712	VZ	4813	NY	DE	106565	2549
18	17	American International Group	5272	AIG	6331	NY	DE	104417	7786
19	18	International Business Machines	51143	IBM	3570	NY	NY	99870	14833
20	19	Cardinal Health	721371	CAH	5122	ОН	OH	98601.9	642.2
21	20	Freddie Mac	37785	FMC	2800	PA	DE	98368	-14025

Tabular Data

• Fortune 500

Fortune 500 with ticker and EDGAR 🌣

Tabular Data -> csv text files

• Fortune 500

Protein Data Bank – delimited files

```
HEADER APOPTOSIS
                                05-OCT-10 3IZA
TITLE STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX
COMPND MOL ID: 1;
COMPND 2 MOLECULE: APOPTOTIC PROTEASE-ACTIVATING FACTOR 1:
COMPND 3 CHAIN: A, B, C, D, E, F, G;
COMPND 4 SYNONYM: APAF-1:
COMPND 5 ENGINEERED: YES
SOURCE MOL ID: 1:
SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS;
SOURCE 3 ORGANISM COMMON: HUMAN;
SOURCE 4 ORGANISM TAXID: 9606;
SOURCE 5 GENE: APAF1, KIAA0413;
SOURCE 6 EXPRESSION SYSTEM: SPODOPTERA FRUGIPERDA:
SOURCE 7 EXPRESSION_SYSTEM_TAXID: 7108;
SOURCE 8 EXPRESSION SYSTEM STRAIN: SF21:
SOURCE 9 EXPRESSION SYSTEM VECTOR_TYPE: INSECT VIRUS;
SOURCE 10 EXPRESSION SYSTEM PLASMID: PFASTBAC1
KEYWDS APOPTOSOME, APAF-1, PROCASPASE-9 CARD, APOPTOSIS
EXPDTA ELECTRON MICROSCOPY
AUTHOR S.YUAN, X.YU, M.TOPF, S.J.LUDTKE, X.WANG, C.W.AKEY
REVDAT 1 03-NOV-10 3IZA 0
SPRSDE 03-NOV-10 3IZA 3IYT
JRNL AUTH S.YUAN, X.YU, M.TOPF, S.J.LUDTKE, X.WANG, C.W.AKEY
JRNL TITL STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX
JRNL
       REF STRUCTURE
                                V. 18 571 2010
```


Internet of Things: Example measurements

In the news: Erika: data collecting sensors are dropped by airplanes

Tabular Data from Sensors

Challenges

- May be many missing fields (a particular sensor may not produce all types of output).
- Device may go offline for a while.
- Device may be damaged (permanently or intermittently).
- Timestamps usually critical but may not be accurate.
- Other meta-data (location, device ID) may have errors.

Log Files – Example Apache Web Log

Processes, usually daemons, create logs e.g., httpd, mysqld, syslogd

- 66.249.65.107 - [08/Oct/2007:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"
- 111.111.111.111 - [08/Oct/2007:11:17:55 -0400] "GET / HTTP/1.1" 200 10801 "http://www.google.com/search?q=log+analyzer&ie=utf-8&oe=utf-8 & aq=t&rls=org.mozilla:en-US:official&client=firefox-a" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"
- 111.111.111.111 - [08/Oct/2007:11:17:55 -0400] "GET /style.css HTTP/1.1" 200 3225 ""<a href="http://www.loganalyzer.net/" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

Syslog – A Standard for System Messages

- Developed by Eric Allman (at Berkeley) as part of the Sendmail project
- Standardized by the IETF in RFC 3164 and RFC 5424
- Listens on port 514 using UDP
- Puts data in /var/log/messages by default

dhcp-47-129:DataScienceF14> syslog -w 10

- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAccounting read:]: unexpected field ID 23 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMUser read:]: unexpected field ID 17 with type 12. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAuthenticationResult read:]: unexpected field ID 6 with type 11. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAuthenticationResult read:]: unexpected field ID 7 with type 11. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAccounting read:]: unexpected field ID 19 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMAccounting read:]: unexpected field ID 23 with type 8. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMUser read:]: unexpected field ID 17 with type 12. Skipping.
- Feb 3 15:18:11 dhcp-47-129 Evernote[1140] < Warning>: -[EDAMSyncState read:]: unexpected field ID 5 with type 10. Skipping.
- Feb 3 15:18:49 dhcp-47-129 com.apple.mtmd[47] <Notice>: low priority thinning needed for volume Macintosh HD (/) with $18.9 \le 20.0$ pct free space

HTML – a Standard Generalized Markup Language

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"</pre>
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<a href="http://www.w3.org/1999/xhtml">
<head><!-- types/widgets/pages/common/page.tmpl home/index v3.html generated by index v3 on
Wed 29 Feb 2012 11:04:41 PM PST -->
<title>San Francisco Bay Area &mdash; News, Sports, Business, Entertainment, Classifieds:
SFGate</title>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="description" content="Find local news & mp; information, updated weather, traffic,
classifieds, sports scores, real estate, jobs, cars, food & prince, travel, entertainment, events and
more on SFGate.com. Connect to the Bay Area community." />
<meta name="keywords" content="San Francisco, San Francisco Bay Area, news, local events,
breaking news, world news, San Francisco Chronicle, SFGate" />
<meta property="fb:page id" content="105702905593" />
<meta property="fb:admins" content="653226748,658759748" />
<!-- /widgets/sitewide/css/all/inc.html widgets/pages/common/post write mtime/css inc.tmpl -->
<!-- generated by sitewidecss on Thu 16 Feb 2012 10:41:53 AM PST -->
k rel="stylesheet" type="text/css" title="SFGate" media="all"
href="http://imgs.sfgate.com/css1329417713/sitewide/css/sitewide.css" />
<!-- sitewide/css/all/inc.html end css_ inc.tmpl -->
```

- What are the tags in HTML used for?
- There's plenty of data, and there are many crawlers for targeted exploration...
 - HTTrack, ...
- Common Crawl, about 5 billion web pages, between 0.2-0.5% of Google's web crawl.
 - 60 TB, hosted on Amazon S3, also available for download.
 - Includes link data, page rank.
 - In ARC (Internet Archive) File format.

Most large web sites today actively discourage screen-scraping to get their content, and provide Web Service APIs instead.

This is the "right" way to get data from online sources.

W3C definition:

a "Web service" as "a software system designed to support interoperable machine-to-machine interaction over a network".

Two kinds:

- XML-based RPC-style messages: WSDL and SOAP
- REST-style stateless interactions, URLs encode state

Application API for Data Aquisition

- Twitter: REST API and streaming API with JSON content. Provides sampling, searching and filtering capabilities.
- Amazon: has a "product advertising API" in XML with a WSDL spec. Includes product search, reviews etc.
- Livejournal: RSS/Atom + custom XML/RPC. Search by keyword, topic, follow friend links.
- Netflix: Javascript, Atom and REST interfaces.
- Ebay: Many APIs for searching, buying and posting. WSDL descriptions, client code in Java and .NET
- Flickr: Comprehensive API set, free for non-commercial use. REST, XML-RPC, SOAP, with client code in many languages.
- vBulletin: REST interface, most actions supported

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- bookstore.xml -->
<bookstore>
  <book ISBN="0123456001">
    <title>Java For Dummies</title>
    <author>Tan Ah Teck</author>
    <category>Programming</category>
    <year>2009</year>
    <edition>7</edition>
    <price>19.99</price>
  </book>
```


- XML = Extensible Markup Language.
- While HTML uses tags for formatting (e.g., "italic"), XML uses tags for semantics (e.g., "this is an address").
- Key idea: create tag sets for a domain (e.g., genomics), and translate all data into properly tagged XML documents.

JSON (Javascript Object Notation) by contrast is a schemaless data description language (Schema support was added later):

```
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {
     "streetAddress": "21 2nd Street",
     "city": "New York",
     "state": "NY",
     "postalCode": "10021-3100" },
"phoneNumbers": [
    { "type": "home",
      "number": "212 555-1234" },
    { "type": "office",
      "number": "646 555-4567" } ],
"children": [],
"spouse": null
```


JSON is typically used to represent hierarchical data structures directly in the target language (Javascript or Java).

Transformations on the data are **procedural** in the target language (not declarative in a language as in XML/Xquery).

Easier for some tasks, but painful for e.g. schema changes.

Twitter Data in JSON Format

18 April 2010

Multimodal Data Sources on World Cup Common

The Structure Spectrum

Other special types of data

- Graph data
- High dimensional data
- Hyperspectral/Lidar data
- Spatial & temporal data

Streaming vs. static data vs. dynamic

One Size Does not Fit All

Dr. Michael Stonebraker, Turing Award 2015

Graph Data

Lots of interesting data has a graph structure:

- Social networks
- Communication networks
- Computer Networks
- Road networks
- Citations
- Collaborations/Relationships
- •

Some of these graphs can get quite large (e.g., Facebook* user graph)

