

Τα διανύσματα που δίνονται έχουν συντεταγμένες $\vec{\alpha}$ = (3 , $3\sqrt{3}$) , $\vec{\beta}$ = ($\sqrt{2}$, 0) , $\vec{\gamma}$ = (0 ,- 3) και $\vec{\delta}$ = (-1 , 1).

α) Ο συντελεστής διεύθυνσης διανύσματος, όταν η τετμημένη του δεν είναι μηδέν, ορίζεται ως το πηλίκο τεταγμένη του διανύσματος προς τετμημένη του διανύσματος. Οπότε

$$\lambda_{\vec{\alpha}} = \frac{3\sqrt{3}}{3} = \sqrt{3}$$
, $\lambda_{\vec{\beta}} = \frac{0}{\sqrt{2}} = 0$, $\lambda_{\vec{\delta}} = \frac{1}{-1} = -1$.

β) Γνωρίζουμε ότι η εφαπτομένη της γωνίας που σχηματίζει ένα διάνυσμα με το θετικό ημιάξονα Οχ ισούται με το συντελεστή διεύθυνσης του διανύσματος.

Αν ω είναι η γωνία που σχηματίζει το διάνυσμα $\vec{\alpha}$ με το θετικό ημιάξονα Οχ, επειδή $\lambda_{\vec{\alpha}}$ = $\sqrt{3}$ (από ερώτημα α), θα ισχύει εφω = $\sqrt{3}$. Επιπλέον το πέρας του διανύσματος βρίσκεται στο 1° τεταρτημόριο, αφού έχει θετικές συντεταγμένες, άρα ω = 60°.

Το διάνυσμα $\vec{\beta} = (\sqrt{2} , 0)$, έχει τεταγμένη 0, άρα $\vec{\beta}//x'x$, και επειδή το $\vec{\beta}$ έχει θετική τετμημένη σχηματίζει με το θετικό ημιάξονα 0x γωνία 0x0.

Το διάνυσμα $\vec{\delta}=(0\,$, -3), έχει τετμημένη 0, άρα $\vec{\gamma}//y'y$, και επειδή το $\vec{\gamma}$ έχει αρνητική τεταγμένη σχηματίζει με το θετικό ημιάξονα Οχ γωνία 270°.

Αν φ είναι η γωνία που σχηματίζει το διάνυσμα $\vec{\delta}$ με το θετικό ημιάξονα Οχ, επειδή $\lambda_{\vec{\delta}} = -1$ (από ερώτημα α), θα ισχύει εφφ = -1. Επιπλέον το διάνυσμα έχει αρνητική τετμημένη και θετική τεταγμένη, οπότε το πέρας του βρίσκεται στο 2° τεταρτημόριο, άρα φ = 145°.

$$\gamma$$
) $|\vec{\alpha}| = \sqrt{3^2 + (3\sqrt{3})^2} = \sqrt{36} = 6$

$$|\vec{\gamma}| = \sqrt{0^2 + (-3)^2} = 3$$
.