Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (УНИВЕРСИТЕТ ИТМО)

Факультет «Систем управления и робототехники»

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3

По дисциплине «Частотные методы» на тему: «Жесткая фильтрация»

Студент: Охрименко Ева

Преподаватели: Догадин Егор Витальевич Пашенко Артем Витальевич

> г. Санкт-Петербург 2025

Содержание

1	Tas	k. Жес	СТЕ	ΚI	1e	ф	ИJ	њ	трі	Ы																			
	1.1	I Краткое условие																											
	1.2	2 Убираем высоки																											
			П																										
		1.2.2																											
			В																										
		1.2.4																											
			В																										
	1.3	.3 Убираем специфические частоты																											
1.4	1.4	Убирае	аем	I	ш	3KI	1 е	ча	ст	тс	ы?	•																	
2		k. Фильтрация звука																											
	2.1	Кратко	coe	V	СЛ	OB	ие																						

1 Task. Жесткие фильтры

1.1 Краткое условие

Рассмотрите функцию g(t), заданную как:

$$g(t) = \begin{cases} a, & t \in [t_1, t_2], \\ 0, & t \notin [t_1, t_2], \end{cases}$$

и её зашумлённую версию:

$$u(t) = g(t) + b\xi(t) + c\sin(dt),$$

где $\xi(t) \sim U[-1,1]$ — белый шум, а b,c,d — параметры.

- При c=0 найдите Фурье-образ u(t), обнулите его вне $[-\nu_0,\nu_0]$ и выполните обратное преобразование. Исследуйте влияние ν_0 и b.
- При ненулевых b, c, d обнулите Фурье-образ на выбранных частотах, подавляя шум и гармонику. Исследуйте влияние параметров.
- бнулите Фурье-образ в окрестности $\nu = 0$, пропустите сигнал через фильтр и оцените результат.

Ожидаемые результаты:

Графики исходного, зашумлённого и фильтрованного сигналов, а также их Фурье-образов. Выводы по каждому пункту.

1.2 Убираем высокие частоты

1.2.1 Предподготовка

Для начала выберу все нужные параметры для этого задания:

$$a = 4, t_0 = 0, t_1 = 3, c = 0, d = 5$$

Тогда у меня получится прямоугольная функция:

$$g(t) = \begin{cases} 4, & t \in [0,3], \\ 0, & t \notin [0,3], \end{cases}$$

Теперь посмотрим, какая функция белого шума получилась:

$$u(t) = g(t) + 0.5\xi(t) + 0\sin(dt),$$

где $\xi(t) \sim U[-1,1]$ — равномерное распределение на интервале [-1,1].

Слагаемое с синусом отсутствует, поэтому колебаний у шума также не будет.

Теперь посмотрим на график функций g(t) и u(t):

Рис. 1: График g(t) и u(t)

Дальше в задании нужно найти фурье-образ u(t), обнулить его значение на диапазоне $[-\nu_0, \nu_0]$ и восстановить сигнал с помощью обратного преобразования фурье. Код задания.

1.2.2 Фиксирую b

Для начала выберем значения $\nu_0 = 0.5$ и b = 0.5. Теперь посмотрим на график получившегося отфильтрованного сигнала при этих значениях. Также я приведу графики модулей фурье образов сигнала g(t), зашумленного сигнала u(t) и отфильтрованного сигнала.

Рис. 2: Графики при $\nu_0 = 0.5$ и b = 0.5

Внизу можно заметить 2 бегунка, с помощью которых можно менять параметры. В этой части задания я зафиксирую параметр b=0.5 и буду исследовать влияние на поведение функций параметра ν_0 . Выберу несколько $\nu_0=\{\,1,1.5,3,10\,\}$ и отрисую графики:

Рис. 3: Графики при $\nu_0 = 1$ и b = 0.5

Рис. 4: Графики при $\nu_0=1.5$ и b=0.5

Рис. 5: Графики при $\nu_0=3$ и b=0.5

Рис. 6: Графики при $\nu_0 = 10$ и b = 0.5

1.2.3 Вывод

- С увеличением ν_0 изменялось количество колебаний отфильтрованного сигнала. Число гармоник увеличивалось, однако при большем значении ν_0 не всегда удавалось получить хорошо отфильтрованный сигнал. Наиболее удачным оказался график при параметрах $\nu_0 = 3$ и b = 0.5. На этом графике форма отфильтрованного сигнала практически идеально совпадает с исходной, а шум удалён наиболее эффективно.
- Можно заметить, что графики модулей Фурье-образов отфильтрованного сигнала и шума совпадают при всех выбранных значениях ν_0 . Теперь обратим внимание на синюю линию модуль Фурье-образа. С увеличением ν_0 синий график постепенно начинает совпадать с остальными, практически полностью повторяя их форму. Это означает, что при увеличении частоты среза ν_0 фильтр пропускает больше частот, что приводит к лучшему сохранению формы сигнала.

1.2.4 Фиксирую ν_0

Для этого задания выберу несколько значений $b=\{0,0.5,1,2\}$, чтобы исследовать поведение графиков при фиксированном значении $\nu_0=3$. Это значение было выбрано, поскольку ранее мне показалось, что при этом значении сигнал хорошо фильтруется. Ниже рассмотрим эти графики:

Рис. 7: Графики при $\nu_0=3$ и b=0

Рис. 8: Графики при $\nu_0=3$ и b=0.5

Рис. 9: Графики при $\nu_0=3$ и b=1

Рис. 10: Графики при $\nu_0=3$ и b=2

1.2.5 Вывод

- При увеличении *b* увеличивается шум, а также растет число колебаний синего графика. То есть чем больше шум, тем больше помех в отфильтрованном сигнале . Идеальным графиком будет первый, поскольку шума совсем нет, соответственно мы фактически фильтруем не зашумленный сигнал, а идеальный.
- ullet Спектр отфильтрованного сигнала близок к спектру g(t), но остаются небольшие шумовые компоненты. Различия между модулями фурье-образов слабо заметны при моих параметрах b.

- 1.3 Убираем специфические частоты
- 1.4 Убираем низкие частоты?
- 2 Task. Фильтрация звука
- 2.1 Краткое условие