【一化基础大合集】【选必一 化学平衡】【考点精华】等效平衡应用-恒温恒容-恒温恒压-恒容绝热(拔高) 等效平衡应用: 恒温恒容、恒温恒压、恒容绝热

现有 a、b、c 三个容器, a 容器恒温恒容, b 容器恒温恒压, c 容器恒容绝热。在三个容器中各充入 1mol I₂(g) 和 2mol H_2 发生反应 $I_2(g) + H_2(g) \Longrightarrow 2HI(g) \Delta H < 0$,初始时三个容器的体积和温度均相等,则反应达到平衡 后,三个容器中 $I_2(g)$ 的转化率的大小关系是 ()

A. a=b>c

B. b>a>c

C. c>b>a

D. a=b < c

在甲、乙、丙三个不同密闭容器中按不同方式投料,一定条件下发生反应(起始温度和起始体积相同): $A_2(g)+3B_2(g)$ \Longrightarrow $2AB_3(g)$ $\Delta H<0$,相关数据如下表所示:

容器	甲	Z	丙
相关条件	恒温恒容	绝热恒容	恒温恒压
反应物投料	$1 \operatorname{mol} A_2$, $3 \operatorname{mol} B_2$	2 mol AB_3	2mol AB ₃
反应物的转化率	$\alpha_{\mathbb{H}}$	$\alpha_{\mathbb{Z}}$	$lpha_{ar{ extsf{p}}}$
反应的平衡常数 $K = \frac{c^2(AB_3)}{c(A_2) \cdot c^3(B_2)}$	$K_{\mathbb{H}}$	$K_{\mathbb{Z}}$	$K_{\overline{ ho}}$
平衡时AB3的浓度/mol·L-1	c _#	\mathbf{c}_{Z}	$c_{ar{ extsf{p}}}$
平衡时AB₃的反应速率/mol·L-1·min-1	v _#	\mathbf{v}_{Z}	${f v}_{f ar{f p}}$

下列说法正确的是()

A. v甲=v丙

B. c乙 < c丙 C. $\alpha_{\text{m}} + \alpha_{\text{Z}} < 1$ D. $K_{\text{Z}} \leq K_{\overline{\text{M}}}$