Complete the design of the 4-bit BCD counter from the lecture of 3/3/2023. You must show:

a) The K-Maps for T_B and T_C

T_B				
DC BA	00	01	11	10
00				
01				
11				
10				

T_C				
DC BA	00	01	11	10
00				
01				
11				
10				

b) The reduced SOP expressions you derived from the K-Maps

$$T_B =$$
 $T_C =$

c) The complete counter circuit (including the parts for T_A and T_D that were derived in lecture)

