Advanced Formal Tools PRISM: Probabilistic Model Checking

Created and actively maintained by:

- <u>Dave Parker</u> (University of Oxford)
- <u>Gethin Norman</u> (University of Glasgow)
- <u>Marta Kwiatkowska</u> (University of Oxford)

Tansen RAHMAN

<u>Tansen.Rahman@etu.unige.ch</u>

Stéphane Nguyen

Stephane.Nguyen@etu.unige.ch

University of Geneva

May 30th 2023

Overview

- 1. Background and Theory
- 2. PRISM Usage and Limitations
- 3. Case Study
- 4. Future Work
- 5. Conclusion

Background and theory

Probabilistic models

- Discrete Time Markov Chain
- Markov Decision Processes

Discrete Time Markov Chain

States:
$$S = \{s_0, s_1, s_2, s_3, s_4, s_5, s_6, s_7\}$$

Example transition: $\mathbf{s_0} \! \to \! \mathbf{s_1}$, probability of 1, thus $p(s_1|s_0) = 1$

- States:
 - alive (init. state)
 - dead
- Actions:
 - crouch
 - jump

Non-deterministic, choose crouch or jump from alive?

States:

- alive (init. state)
- dead
- Actions:
 - crouch
 - jump

Non-deterministic, choose crouch or jump from alive?

• Env. dynamics:

Ex:
$$P[S_{t+1} = \text{alive}, R_{t+1} = 1 | S_t = \text{alive}, A_t = \text{crouch}] = 0.8$$

Policy & objective function

Policy/Strategy:

$$\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$$

• Expected cumulative reward:

$$E(\pi) = \mathbb{E}_{\pi} \left[\sum_{i=1}^{\infty} R_i \middle| S_0 = s_0 \right]$$

Policy & objective function

Policy/Strategy:

$$\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$$

Expected cumulative reward:

$$E(\pi) = \mathbb{E}_{\pi} \left[\sum_{i=1}^{\infty} R_i \middle| S_0 = s_0 \right]$$
 • Best policy:

$$\pi^* = \operatorname{argmax}_{\pi} E(\pi)$$

Max. expected cumulative reward:

$$E(\pi^*)$$

Rmax=? [F"end"] in PRISM with "end": s=0 (dead)

Policy & objective function

Policy/Strategy:

$$\pi: \mathcal{S} \times \mathcal{A} \to [0,1]$$

• Expected cumulative reward:

$$E(\pi) = \mathbb{E}_{\pi} \left[\sum_{i=1}^{\infty} R_i \middle| S_0 = s_0 \right]$$
• Best policy:

$$\pi^* = \operatorname{argmax}_{\pi} E(\pi)$$

Max. expected cumulative reward:

$$E(\pi^*)$$

What about worst policy? Min. expected cumulative reward?

Rmax=? [F"end"] in PRISM with "end": s=0 (dead)

Reward structures

Expected cumulative reward:

$$E(\pi) = \mathbb{E}_{\pi} \left[\sum_{i=1}^{\infty} R_i \middle| S_0 = s_0 \right]$$

• Best policy:

$$\pi^* = \operatorname{argmax}_{\pi} E(\pi)$$

• Max. expected cumulative reward: $E(\pi^*)$

- Different reward distributions: reward structures
 - Enable verification of different props.
 - Implicit verification of many MDPs.
 - Ex: # of steps

Prism Usage and Limitations

<u>Usage</u>

- Coding
- Analysis

Limitations

PRISM Representation

```
mdp
module mdp example
s: [0..1] init 1; // Alive initially
// non-deterministic choice from s =1
// jump vs crouch
[jump] (s=1) \rightarrow 0.3: (s'=1) + 0.7: (s'=0);
[crouch] (s=1) \rightarrow 0.8: (s'=1) + 0.2: (s'0);
[noop] (s=0) \rightarrow (s'=0); // absorbing state
endmodule
rewards
  (s=1): 1; // reward for staying alive
  (s=0):0; // died
endrewards
rewards "steps"
  true: 1;
endrewards
```


PRISM Model Analysis

Simulator

- Sample/simulate paths from probabilities
- Manually choose transitions

Properties

- PRISM's logics subsumes PCTL and others:
 - Extension with rewards
 - Extension with quantitative prop.

Example of CTL vs PCTL for a given strategy:

CTL EG s=1 Exist path where always alive

PCTL P>0[G<=10 s=1] Exist a path where alive for at least 10 steps

PRISM P=?[G<=10 s=1] PRISM can get the value (quant. prop.)

PRISM Limitations

Dev0ps

- No CTRL+F
- Missing standard graph tools, need to export data
- No for-loops

Modeling

- No negative rewards
- Can't assign probability distribution over rewards
- Simulation uses a uniform strategy to resolve non-determinism

Case study: Market Bidding Investor

Description

- Motivations
- Visual representation
- State transition

Analysis and Results

Original Case Study

Original Case Study

Visual Representation

Extended Version

State transition Representation

Month Module:

Market Module:

Investor Module:

Representation with Changes

Investor Module:

Market Module:

Month Module:

Results

Zero interest rate

reward

maximum

inita value of the states, vinit

Some quantitive properties with: p_bar=0:0.1:1, interest=0, v init=0:1:10, tmax=12 months Rmax=? [Fis done=1] Rmin=? [F is done=1] 0.04 0.02 0.00 -0.02 -0.0410.0 10.0 7.5 7.5 0.00_{0.25} 0.50_{0.75} 1.00 0.0 0.0000.2500.7500.75 5.0 Jink 5.0 Juit R{"steps"}max=?[Fis_done=1] R{"steps"}min=?[Fis_done=1] 25.0 24.5 24.0 23.5 23.0 10.0 10.0 7.5 7.5 0.00_{0.25}_{0.50</sup>_{0.75}_{1.00}} 0.00 0.25 0.50 0.75 1.00 0.0 5.0 Jink 5.0

Non-zero interest rate

probability of choosing to bar: p bar

Future Work

- Analyze effect of interest together with max_stocks on number of steps
- Analyze effect of max_stocks on expected reward

PRISM-Games extension

- Analyze the case where market has no predefined strategy (stochastic multiplayer game)
- Introduce another investor, they take turns buying/selling to each other
- Implement a stock Future (both actors settle on a price now, for later)

Conclusion

. . . .