Chapter 6

主理想整环上的模

定义 6.1 主理想整环(PID): 每个理想均由一个元素生成的整环. 例 6.1: \mathbb{Z} , $\mathbb{C}[x]$ 为 PID. PID 必诺特. \mathbb{R} 为整环, $a, b, r, s \in R$, (1)定义 6.2 整除: r 整除 $s \iff s = xr, x \in R$, 记作 $r \mid s$. (2)定义 6.3 单位: R 中的可逆元. 例 6.2: \mathbb{Z} 中的 1 和 -1 互逆, 故 1 和 -1 均为单位, 实际上, $\mathbb{Z}^* \equiv \mathbb{Z} - \{0\}$ 中的元素均为单位. (3)定义 6.4 素元: $0 \neq q \in R$, 若 $p \mid ab \Longrightarrow p \mid a$ 或 $p \mid b$, 则称 p 为素元. (4)定义 6.5 不可约元: $0 \neq r \in R$, 若 $r = ab \Longrightarrow a$ 或 b 为单位, 则称 r 为不可约元. (5)

注意:

• 单元必素, 必不可约.

证: 设 $0 \neq r \in R$ 为单位, 则必 $\exists a$ 的逆 a^{-1} . 若 $r \mid ab$, 则 $(ar^{-1})r = a$, $(br^{-1})r = b \Longrightarrow r$ 为素元. 若 r = ab, 则 $r^{-1}r = r^{-1}(ab) = (r^{-1}a)b = 1$, $r^{-1}a$ 为 b 的逆元, 即 b 可逆 $\Longrightarrow r$ 为不可约元.

定义 6.6 互素: r 与 b 互素 $\Longrightarrow a 与 b$ 无非单位公因子.

• 对于整环来说, 素元不可约, 反之未必.

证: 设 p 为素元, 若 p = ab, 则 $1p = p = ab \Longrightarrow p \mid ab$.

 $\therefore p$ 为素元, $\therefore p \mid a$ 或 p = b.

无妨 $p \mid a$, 则 a = px, 其中 $x \in R$

 $\implies p = ab = pxb \Longrightarrow p(1 - xb) = 0,$

 $\therefore p \neq 0$ 且 R 为整环 (R 无零因子), $\therefore 1 - xb = 0 \Longrightarrow xb = 1 \Longrightarrow b$ 为单位, 故 p 为不可约元.

例 6.3: (不可约元非素的例子) $R = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ 为整环.

 $9 = 3^2 = (2 + \sqrt{-5})(2 - \sqrt{-5}),$

3 不可约 (证略), $3 \mid (2 + \sqrt{-5})(2 - \sqrt{-5})$, 但 $3 \nmid (2 + \sqrt{-5})$, $3 \nmid (2 - \sqrt{-5}) \Longrightarrow 3$ 非素.

• 对于非整环来说, 素元未必不可约.

例 6.4: ($\mathbb{Z}_6, +, \cdot$) 非整环, [2] 为素元, 但 [2] = [2][4], [2] 和 [4] 均非单位 \Longrightarrow [2] 可约.

定理 **6.1** (课本定理**0.29**): R 为 PID, $a,b \in R$,

a 与 b 互素 $\iff \exists r, t \in R, \text{ s.t. } ra + tb = 1.$

证: " \Longrightarrow ": R 为 PID, 令 $I = \langle a, b \rangle$,

: R 是主理想, : I 可由一个元素生成, 设 $I = \langle c \rangle$, 其中 $c \in R$,

又 $: a \in I, b \in I, : c \mid a, c \mid b \Longrightarrow c$ 为 a 和 b 的公因子,

 $\therefore a, b$ 互素, $\therefore c$ 为单位, 即 $\exists c^{-1} \in R$, s.t. $1 = c^{-1}c \in I$,

 $\therefore 1 \in I, \therefore 1 = ra + tb.$

" \rightleftharpoons ": 取 c 为 a 和 b 的公因子,

 $\therefore 1 = ra + tb, \therefore c \mid 1 \Longrightarrow c$ 可逆, 即 c 为单位.

有算法可以在给定 a,b 下找到 s,t, 此处不赘述.

定理 **6.2** (课本定理0.29): R 是 PID, $\forall 0 \neq r \in R$, $r = up_1 \cdots p_n$ 且该分解式唯一, 其中 u 为单位, p_i 是 R 中的不可约元, $n \in \mathbb{Z}^+$.

证: 若 r 不可约,则直接得证.

若 r 可约, 则设 $r = r_1 r_2$, r_1 和 r_2 至少有一个非单位,

无妨 r_1 不是单位, 则 r_1 不可约.

若 r_2 不可约, 则得证,

若 r_2 可约,则 $\langle r \rangle \subseteq \langle r_2 \rangle$,

对 r_2 继续如上分解, 可得 $\langle r \rangle \subseteq \langle r_2 \rangle \subseteq \cdots$,

又 :: R 为 PID, :: R 诺特, 即 $\exists K \in \mathbb{Z}^+$, s.t. $\langle r_K \rangle = \langle r_{K+1} \rangle = \cdots$,

故重复如上分解操作, 最终可将 r 表为有限个不可约元的乘积.

定义 6.7 挠元(Torsion): $M \in R - \text{mod}$, $v \in M$, 若 $\exists 0 \neq r \in R$, s.t. rv = 0, 则称 v 为 M 的挠元.

定义 6.8 挠模: 所有元素均为挠元的模.

定义 6.9 无挠: 若一模无非零挠元,则称该模无挠.

与线性无关类似, 若 $0 \neq v \in M$, $r \in R$, rv = 0, 且 M 无挠, 则 r = 0.

定义 6.10 挠子模: $M_{\text{tor}} = \{v \in M \mid v \text{ 为挠元}\}.$

 $\therefore 0$ 为 M 的挠元, $0 \in M_{\text{tor}}, \therefore M_{\text{tor}} \neq \emptyset$.

 M_{tor} 为 M 的子模.

证: $\forall u, v \in M_{\text{tor}}, \exists 0 \neq r_1, r_2 \in R, \text{ s.t. } r_1 u = 0, r_2 v = 0,$

 $\forall s, t \in R, \ (r_1 r_2)(su + tv) = r_2 s(r_1 u) + r_1 t(r_2 v) = r_2 s \cdot 0 + r_1 t \cdot 0 = 0 + 0 = 0 \ \text{且} \ r_1 r_2 \neq 0 \Longrightarrow (su + tv) \in M_{\text{tor}}, \ \text{故}$ 得证.

 $\frac{M}{M_{\text{tor}}}$ 无挠.

证: 假设 $[0] \neq [v] \in \frac{M}{M_{\text{tor}}}$ 为挠元, 则 $\exists 0 \neq r \in R, r[v] = [rv] = [0] = M_{\text{tor}} \Longrightarrow rv \in M_{\text{tor}} \Longrightarrow v = r^{-1}(rv) \in M_{\text{tor}} \Longrightarrow [v] = M_{\text{tor}} = [0],$ 与假设矛盾, 故假设错误, 得证.

定义 6.11 零化子: $v \in M \in R - \text{mod}$, v 的零化子 $\text{ann}(v) \equiv \{r \in R \mid rv = 0\} \subseteq R$.

N 是 M 的子模, 则 $\operatorname{ann}(N) = \{r \in R \mid rN \equiv \{rv \mid v \in N\} = \{0\}\} \subseteq R$.

ann(v) 是 R 的理想.

故得证.

证: $\forall s, t \in \text{ann}(v), sv = tv = 0 \Longrightarrow sv - tv = (s - t)v = 0 \Longrightarrow s - t \in \text{ann}(v),$ $\forall r \in R, (rs)v = r(sv) = r \cdot 0 = 0 \Longrightarrow rs \in \text{ann}(v).$ 综上,得证.

同理, ann(N) 也是 R 的理想

定义 6.12 阶: 若 R 为 PID, 则 ann(v), ann(N) 均为主理想, 其生成元分别称为 v 和 N 的阶.

定理 6.3 (课本定理6.5): R 为 PID, $M \in R - \text{mod}$ 自由, 则 M 的子模均自由.

证: (不严谨的证明, 仅针对) M 有限生成 (的特殊情况) 且自由. 设 $M = \langle \langle v_1, \cdots, v_n \rangle \rangle = \{ \sum_{i=0}^n r_i v_i \mid r_i \in R \}$, 其中 $\{v_1, \cdots, v_n\}$ 线性无关.

 $\forall v \in M, v = \sum_{i=1}^{n} r_i v_i$ 展开唯一, 定序后, $M \longleftrightarrow R^n, v \longleftrightarrow \begin{pmatrix} r_1 \\ \vdots \\ r_n \end{pmatrix}$ 模同构.

设 $S \in \mathbb{R}^n$ 的子模, 取 R 的理想 $I_k = \{r_k \in R \mid \exists a_1, \dots, a_{k-1} \in R, \text{ s.t. } (a_1, \dots, a_{k-1}, r_k, 0, \dots, 0) \in S\}.$

 $\therefore R$ 为 PID, $\therefore I_k$ 由一个元素生成, 设 $I_k = \langle r_k \rangle$, 其中 $r_k \neq 0, k = 1, \dots, n$.

取 $u_k = (a_1^k, \dots, a_{k-1}^k, r_k, 0, \dots, 0) \in S, S = \langle u_1, \dots, u_n \rangle$ 生成 (下证) 且显然 $\{u_1, \dots, u_n\}$ 线性无关.

取 $(b_1, \dots, b_n) \in S$, 若 $b_n \neq 0$, 则 $b_n \in I_n = \langle r_n \rangle \Longrightarrow \exists x_n \in R$, s.t. $b_n = x_n r_n \Longrightarrow (b_1, \dots, b_n) - x_n b_n = (\dots, 0)$,

重复如上操作, 最终可将 (b_1, \cdots, b_n) 用 $\{u_1, \cdots, u_n\}$ 表示.

3 / 7

П

定理 6.4 (课本定理6.6): R 为 PID, $M \in R - \text{mod}$ 有限生成,

M 自由 \iff M 无挠.

证: " \Longrightarrow ": 设 $M = \langle \langle v_1, \cdots, v_n \rangle \rangle$ 且 $\{v_1, \cdots, v_n\}$ 线性无关.

 $\forall v \in V, \ v = \sum_{i=1}^{n} r_i v_i,$

若 rv = 0, 则 $r(\sum_{i=1}^{n} r_i v_i) = \sum_{i=1}^{n} (rr_i) v_i = 0$,

- $: \{v_1, \dots, v_n\}$ 线性无关, $: rr_1 = \dots = rr_n = 0$,
- $\therefore R$ 为整环 (无零因子), \therefore 若 $r \neq 0$, 则 $r_1 = \cdots = r_n = 0 \Longrightarrow v = 0$, 故 M 无挠.

"\\equiv ": $\mathbb{R} M = \langle \langle u_1, \cdots, u_m \rangle \rangle$,

无妨设 u_1, \dots, u_k 是其中最大的线性无关组, 即 $\forall i = k+1, \dots, m, \{u_1, \dots, u_k, u_i\}$ 线性相关

 \Longrightarrow ∃ 不全为零的 $a_{i1}, \cdots, a_{ik}, a_i$, s.t. $a_{i1}u_1 + \cdots + a_{ik}u_k + a_iu_i = 0$,

显然 $a_i \neq 0$ (否则 $a_{i1}u_1 + \cdots + a_{ik}u_k = 0 \Longrightarrow a_{i1} = \cdots = a_{ik} = 0$, 矛盾) $\Longrightarrow a_iu_i = -(a_{i1}u_1 + \cdots + a_{ik}u_k)$.

 $\Leftrightarrow a = a_{k+1} \cdot \cdots \cdot a_m, \ \mathbb{M} \ a \neq 0,$

 $aM = \langle \langle au_1, \cdots, au_k, au_{k+1}, \cdots, au_m \rangle \rangle \subseteq \langle \langle u_1, \cdots, u_k \rangle \rangle$

- $\{u_1,\cdots,u_k\}$ 线性无关, $\langle\langle u_1,\cdots,u_k\rangle\rangle$ 是自由模,
- $\therefore R$ 为 PID, 自由具有遗传性, $\therefore aM$ 自由. 构造映射 $\tau: M \to aM, v \mapsto av$.
 - (1) τ 线性.
 - (2) : M 无挠且 $a \neq 0$, : $\ker \tau = \{v \in M \mid av = 0\} = \{0\}$.
 - (3) τ 满射.

故 τ 同构 \Longrightarrow M 也自由.

综上, 得证.

 $M \triangleq \bigoplus, M = \langle \langle v_1, \cdots, v_n \rangle \rangle,$

又 :: $\{v_1, \dots, v_n\}$ 线性无关, :. 对 $i \neq j$, $\langle\langle v_i \rangle\rangle \cap \langle\langle v_j \rangle\rangle = \{0\} \Longrightarrow M = \langle\langle v_1 \rangle\rangle \oplus \cdots \oplus \langle\langle v_n \rangle\rangle$.

定理 6.5 (课本定理6.8): R 是 PID, $M \in R - \text{mod}$ 有限生成, 则 $M = M_{\text{free}} \oplus M_{\text{tor}}$, 其中 $M_{\text{free}} = \frac{M}{M_{\text{tor}}}$.

证: M_{tor} 为挠子模且 $\frac{M}{M_{\text{tor}}}$ 无挠.

 $\Pi: M \to \frac{M}{M_{tor}}, u \to [u]$ 满同态且 M 有限生成, 由引理 6.1 得 $\frac{M}{M_{tor}}$ 有限生成.

又: $\frac{M}{M_{\text{tor}}}$ 无挠,: $\frac{M}{M_{\text{tor}}}$ 自由.

取 $\frac{M}{M_{\mathrm{tor}}} = \langle \langle [u_1], \cdots, [u_t] \rangle \rangle$, 其中 $\{u_1, \cdots, u_t\}$, 线性无关 (下证),

证: 若
$$\sum_{i=1}^{t} r_i u_i = 0$$
, 则 $\prod \left(\sum_{i=1}^{t} r_i u_i \right) = \sum_{i=1}^{t} r_i \prod(u_i) = \sum_{i=1}^{t} r_i [u_i] = 0$, 又 $: \{ [u_1], \dots, [u_t] \}$ 线性无关, $: r_1 = \dots = r_t = 0 \Longrightarrow \{ u_1, \dots, u_t \}$ 线性无关.

故 $\langle\langle u_1, \cdots, u_t \rangle\rangle$ 为自由模, 记作 M_{free} .

确定了 M_{free} 和 M_{tor} 后, 下面来证 $M = M_{\text{free}} \oplus M_{\text{tor}}$:

$$\forall v \in M, \ \Pi(v) = [v] \in \frac{M}{M_{\text{tor}}} = \langle \langle [u_1], \cdots, [u_t] \rangle \rangle \Longrightarrow \Pi(v) = [v] = \sum_{i=1}^t l_i[u_i].$$

 $\Pi(v-u) = \Pi(v) - \Pi(u) = 0 \Longrightarrow v - u \in \ker \Pi = M_{\text{tor}},$

于是 v = u + (v - u), 其中 $u \in M_{\text{free}}, v - u \in M_{\text{tor}} \Longrightarrow M = M_{\text{free}} + M_{\text{tor}}$.

取 $w \in M_{\text{free}} \cap M_{\text{tor}}$, 则 $w \in M_{\text{free}} \iff w = \sum_{i=1}^{t} \alpha_i u_i$,

 $\exists w \in M_{\text{tor}} \iff \Pi(w) = 0$

$$\Longrightarrow 0 = \Pi(w) = \Pi\left(\sum_{i=1}^t \alpha_i u_i\right) = \sum_{i=1}^t \alpha_t \Pi(u_i) \Longrightarrow \alpha_1 = \dots = \alpha_t = 0 \Longrightarrow w = 0 \Longrightarrow M_{\text{free}} \cap M_{\text{tor}} = \{0\}.$$
 综上,得证.

引理 6.1: $\tau: M \to N$ 满同态, 若 M 有限生成, 则 N 有限生成.

证: $: \tau : M \to N$ 满同态, $: \forall w \in N$, $\exists u \in M$, s.t. $w = \tau(u)$, 又 : M 有限生成, 设 $M = \langle \langle v_1, \cdots, v_k \rangle \rangle$, $: u = \sum_{i=1}^k r_i u_i \Longrightarrow \tau(u) = \tau \left(\sum_{i=1}^k r_i u_i \right) = \sum_{i=1}^k r_i \tau(u_i)$, 故 $N = \langle \langle \tau(u_1), \cdots, \tau(u_k) \rangle \rangle$, 即 N 有限生成.

至此, $M_{\text{free}} = \langle \langle u_1, \cdots, u_t \rangle \rangle = \langle \langle u_1 \rangle \rangle \oplus \cdots \oplus \langle \langle u_t \rangle \rangle$ 已拆解到位. 那么能否以及如何继续拆解 M_{tor} 呢?

定理 6.6 (课本定理6.10): R 为 PID, $M \in R - \text{mod}$ 为挠模且 $\text{ann}(M) = \langle \langle \mu \rangle \rangle$, 其中 $\mu = up_1^{e_1} \cdots p_m^{e_m}$, u 为单位, p_i 均不可约且互不相等, $e_i \in \mathbb{Z}^+$,

则 $M=M_{p_1}\oplus\cdots\oplus M_{p_m}$, 其中 $M_{p_i}=\{v\in M\mid p_i^{e_i}v=0\}$ 是阶为 $p_i^{e_i}$ (即 $\mathrm{ann}(M_{p_i})=\langle p_i^{e_i}\rangle$) 的准素子模.

证: 不失一般性, 设 $\mu = pq$, p = q 互素, 要证 $M = M_p \oplus M_q$, 其中 $M_p = \{v \mid pv = 0\}$, $M_q = \{v \mid qv = 0\}$.

 $\therefore p \ni q \subseteq \mathbb{Z}_{n}, \therefore \exists r, t \in R, \text{ s.t. } rp + tq = 1.$

 $\forall v \in M, \ v = 1v = (rp + tq)v = (rp)v + (tq)v,$

 $q(rp)v = (qrp)v = (rpq)v = r(pq)v = r\mu v,$

又 $::\langle\langle\mu\rangle\rangle$ 为零化子 $::q(rpv)=r\mu v=0\Longrightarrow rpv\in M_q,$

同理, $tqv \in M_p$, 故 $M = M_p + M_q$.

若 $v \in M_p \cap M_q$, 则 $v \in M_p \iff pv = 0$,

 $\perp v \in M_q \iff qv = 0$

 $\implies v = 1v = (rp + tq)v = rpv + tqv = r0 + t0 = 0 + 0 = 0 \Longrightarrow M_p = M_q = \{0\}.$ $\therefore M_p = \{v \mid pv = 0\}, \therefore \operatorname{ann}(M_p) = \langle p \rangle, \ \text{易推广} \ H_{p_i} = \langle p_i^{e_i} \rangle.$ 综上,得证.

然后准素子模能否进一步分解呢?

定理 6.7 (课本定理6.11): R 为 PID, $M \in R - \text{mod}$ 有限生成且为挠模, $\text{ann}(M) = \langle p^e \rangle$, 其中 p 不可约, $e \in \mathbb{Z}^+$,

则 $M = \langle \langle v_1 \rangle \rangle \oplus \cdots \oplus \langle \langle v_n \rangle \rangle$, 其中 $\operatorname{ann}(v_i) = \langle p^{e_i} \rangle$, 且 $e = e_1 \ge \cdots \ge e_n$.

 \overline{u} : (存在性证明) 不失一般性, 只需证 M 由两个生成元时, 定理成立, 即可由数学归纳法推广到一般情况.

设 $M = \langle \langle u_1, u_2 \rangle \rangle$ 且 $u_1, u_2 \neq 0$, $ann(M) = \{r \in R \mid rM = \{0\}\} = \langle p^e \rangle$.

 $u_1 \in M, \quad p^e u_1 = 0 \Longrightarrow p^e \in \operatorname{ann}(u_1),$

同理, $p^e \in \operatorname{ann}(u_2)$.

若 ann $(u_1) = \langle b_1 \rangle$, 则 : p 不可约, : $b_1 \mid p^e \Longrightarrow b_1 = p^{l_1}, l_1 \leq e$,

同理, 若 ann $(u_2) = \langle b_2 \rangle$, 则 $b_2 = p^{l_2}$, $l_2 \leq e$.

假设 $l_1 < e, l_2 < e, \Leftrightarrow l = \max\{l_1, l_2\},$ 则 $p^e \nmid p^l$ 且 $p^l \in \text{ann}(M),$ 与 $\text{ann}(M) = \langle p^e \rangle$ 矛盾, 故假设错误, l_1, l_2 中至 少有一个 = e.

无妨设 $l_1 = e$ 即 $\operatorname{ann}(u_1) = \langle p^e \rangle$.

 $M = \langle \langle u_1, u_2 \rangle \rangle \Longrightarrow M = \langle \langle u_1 \rangle \rangle + \langle \langle u_2 \rangle \rangle,$

6. 主理想整环上的模

若 $\langle \langle u_1 \rangle \rangle \cap \langle \langle u_2 \rangle \rangle = \{0\}$, 则 $M = \langle \langle u_1 \rangle \rangle \oplus \langle \langle u_2 \rangle \rangle$, 得证.

若 $\langle \langle u_1 \rangle \rangle \cap \langle \langle u_2 \rangle \rangle \neq \{0\}$, 则 $\exists 0 \neq r \in R$, s.t. $ru_2 \in \langle \langle u_1 \rangle \rangle$.

取 R 的理想 $J = \{r \in R \mid ru_2 \in \langle\langle u_1 \rangle\rangle\}.$

 $\therefore R$ 为 PID, $\therefore J$ 由一个元素生成, 设 $J = \langle \langle t \rangle \rangle$.

 $p^e u_2 = 0 \Longrightarrow p^e \in J, \therefore p^e \in J \Longrightarrow t \mid p^e,$

又:p不可约: $t = p^{e_2}$ 且 $e_2 \le e$,

 $\implies p^{e-e_2}(p^{e_2}u_2 - \alpha u_1) = 0 \implies p^e u_2 - p^{e-e_2}\alpha u_1 = 0,$

 $X : p^e u_2 = 0, \therefore p^{e-e_2} \alpha u_1 = 0 \Longrightarrow p^{e-e_2} \alpha \in \operatorname{ann}(u_1),$

 $X :: \operatorname{ann}(u_1) = \langle p^e \rangle, :: p^e \mid p^{e-e_2} \alpha \Longrightarrow p^{e_2} \mid \alpha \Longrightarrow \exists \beta \in R, \text{ s.t. } \alpha = \beta p^{e_2},$

回代到 $p^{e_2}u_2 - \alpha u_1 = 0$ 得 $p^{e_2}u_2 - p^{e_2}\beta u_1 = 0 \Longrightarrow p^{e_2}(u_2 - \beta u_1) = 0$.

 $\Leftrightarrow w = u_2 - \beta u_1, \ \mathbb{M} \ M = \langle \langle u_1, w \rangle \rangle, \ \mathbb{H} \ \langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle = \{0\} \ (\text{Fig.}),$

证: 设 $v \in \langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle$, 则 $v \in \langle \langle u_1 \rangle \rangle$,

 $\exists v \in \langle \langle w \rangle \rangle \Longrightarrow \exists r \in R, v = rw$

 $\implies v = rw = ru_2 - r\beta u_1 \in \langle\langle u_1 \rangle\rangle,$

 $rac{1}{r}$ $rac{1}{r}$ rac

回代得 $v = rw = p^{e_2}r_1u_2 - p^{e_2}r\beta u_1 = p^{e_2}r_1u_2 - p^{e_2}r_1\beta u_1 = p^{e_2}r_1u_2 - r_1(\beta p^{e_2})u_1 = r_2(p^{e_2}u_2 - \alpha u_1) = r_20 = 0 \Longrightarrow \langle \langle u_1 \rangle \rangle \cap \langle \langle w \rangle \rangle = \{0\}.$

故 $M = \langle \langle u_1 \rangle \rangle \oplus \langle \langle w \rangle \rangle$, 其中 u_1 的阶为 p^{e_1} , w 的阶为 p^{e_2} , $e_2 \leq e_1 = e$.

总结定理 6.5, 6.6 和 6.7, 可得:

定理 6.8 (课本定理6.12): R 为 PID, $M \in R - \text{mod}$ 有限生成,

则 $M = M_{\text{free}} \oplus M_{\text{tor}}$, 其中 $M_{\text{free}} = \frac{M}{M_{\text{tor}}}$.

若 ann $(M_{tor}) = \langle \mu \rangle$, 其中 $\mu = up_1^{e_1} \cdots p_n^{e_n}$, u 为单位, p_i 不可约且互不相等, $e_i \in \mathbb{Z}^+$,

则 $M_{\text{tor}} = M_{p_1} \oplus \cdots \oplus M_{p_n}$, 其中 $M_{p_i} = \{v \in M_{\text{tor}} \mid p_i(v) = 0\}$ 即 $\text{ann}(M_{p_i}) = \langle p_i^{e_i} \rangle$,

 $M_{p_i} = \langle \langle v_i \rangle \rangle \oplus \cdots \langle \langle v_{it_i} \rangle \rangle$, $\not\exists P \text{ ann}(v_{ij}) = \langle p_i^{e_{ij}} \rangle$, $e_i = e_{i1} \ge \cdots \ge e_{it_i}$.

故
$$M = \overbrace{\left(\bigoplus_{i=1}^{m} \langle \langle u_i \rangle \rangle\right)}^{M_{\text{free}}} \oplus \overbrace{\left(\bigoplus_{i=1}^{n} \left(\bigoplus_{j=1}^{t_i} \langle \langle v_{ij} \rangle \rangle\right)\right)}^{M_{\text{free}}}.$$

由定理 6.7, $M_{\text{tor}} = \bigoplus_{ij} \langle \langle v_{ij} \rangle \rangle$, 其中 $\text{ann}(v_{ij}) = \langle p_i^{e_{ij}} \rangle$, $e_{i1} \ge \cdots \ge e_{it_i}$. 这里,

$$\begin{cases}
v_{11} & v_{12} & \cdots & v_{1t_1} \\ v_{21} & v_{22} & \cdots & v_{2t_2} \\ \vdots & \vdots & \ddots & \vdots \\ v_{n1} & v_{n2} & \cdots & v_{nt_n}
\end{cases}$$

生成了 M_{tor} , 其阶为

定义 6.13 初等因子: *M* 的初等因子:

$$\left\{ \begin{aligned} p_1^{e_{11}} & p_1^{e_{12}} & \cdots & p_1^{e_{1t_1}} \\ p_2^{e_{21}} & p_2^{e_{22}} & \cdots & p_2^{e_{2t_2}} \\ \vdots & \vdots & \ddots & \vdots \\ p_n^{e_{n1}} & p_n^{e_{n2}} & \cdots & p_n^{e_{nt_n}} \end{aligned} \right\}.$$

此外, 还定义了

定义 6.14 不变因子: *M* 的不变因子:

$$q_{1} = \prod_{i} p_{i}^{e_{1i}},$$
 $q_{2} = \prod_{i} p_{i}^{e_{2i}},$
 $\vdots,$
 $q_{t} = \prod_{i} p_{i}^{e_{ti}}.$