

TTT4120 Digital Signal Processing Fall 2017

Design of Digital Filters: FIR

Prof. Stefan Werner stefan.werner@ntnu.no Office B329

> Department of Electronic Systems © Stefan Werner

Lecture in course book*

- Proakis, Manolakis Digital Signal Processing, 4th Ed.
 - 10.2.2 Design of linear-phase FIR filters using windows
 - 10.2.4 Design of optimum equiripple linear-phase FIR filters
- A compressed overview of topics treated in the lecture, see
 "Design av digitale filtre" on Blackboard

*Level of detail is defined by lectures and problem sets

Contents and learning outcomes

- Filter specifications
- FIR versus IIR
- · Window method
- Equirippel design

:

Filter design

• Systems may be designed to amplify or attenuate parts of the input signal (e.g., remove noise, suppress interference)

$$x[n]$$
 $X(\omega), X(z)$
 $h[n]$
 $Y(\omega) = h[n] * x[n]$
 $Y(\omega) = H(\omega)X(\omega)$
 $Y(z) = H(z)X(z)$

- A discrete-time filter modifies the Fourier representation of x[n]
 - Lowpass
 - Highpass
 - Bandpass
 - Bandstop, etc.

Filter design...

Ideal lowpass filter:

$$H_{\mathrm{D}}(\omega) = \begin{cases} 1, & |\omega| \leq \omega_{c} \\ 0, \omega_{c} \leq \omega \leq \pi \end{cases}$$

• Impulse response in the sinc function:

 $H_{\mathrm{D}}(\omega)$

- Problems:
 - Ideal filters are not causal \Rightarrow not physically realizable
 - Infinite complexity and delay, not BIBO stable, etc.

5

Filter design...

- We want causal linear-phase filters ⇒ approximations needed
 - Truncate time-domain pulse (windowing)
 - Control frequency response (equirippel design)

Filter design...

- In practice, ideal filter characteristics are not absolutely necessary
- Find filter of minimum complexity satisfying a given specification
 - Nonconstant magnitude in passband (small ripple)
 - Non-zero stopband (small value or small amount of ripple)
 - Allow for non-zero transition band from passband to stopband
- The more restrictions on the design, the more complex it will be

7

Filter design...

- Real-valued, causal filters of the form: $H(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + \dots + a_N z^{-N}}$
- FIR: $H(z) = \sum_{k=0}^{M-1} b_k z^{-k} \Rightarrow y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$
- IIR: $H(z) = \frac{\sum_{k=0}^{M-1} b_k z^{-k}}{1 + \sum_{k=1}^{M-1} a_k z^{-k}} \Rightarrow y[n] = -\sum_{k=1}^{M-1} a_k z^{-k} + \sum_{k=0}^{M-1} b_k x[n-k]$
- Find $\{a_k\}$ and $\{b_k\}$ that satisfy filter specification

FIR versus IIR

- FIR filters:
 - Always stable
 - Can achieve exactly linear phase
 - Easily designed with linear methods
 - Easy to implement
- IIR filters:
 - Fewer parameters (low filter order)
 - Less memory
 - Low delay
 - Lower computational complexity
 - Typically designed by transforming an analog filter design

9

FIR versus IIR...

- Example: $H(z) = \frac{1}{1 az^{-1}}, |a| < 1$
- IIR implementation: y[n] = ay[n-1] + x[n]

• FIR approximation: $y[n] = \sum_{k=0}^{M} a^k x[n-k]$, M large

Linear-phase FIR filters

• Moving average filter, or an all-zero filter, of order M

$$H(z) = \sum_{k=0}^{M-1} b_k z^{-k} = b_0 z^{-(M-1)} \prod_{k=1}^{M-1} (z - z_k)$$

- Design of $\{b_k\} \Leftrightarrow$ moving zeros in the z-plane
 - Can be designed using some optimality criterion
- Impulse response h[n] of an FIR filter given by the filter weights
 - Easily verified by setting $x[n] = \delta[n]$

11

Linear-phase FIR filters...

- FIR filters can be causal and have linear phase
 - Implies a linear shift in time domain (no distortion)
 - Exact linear phase not possible in IIR filters
- Linear phase filters must have symmetric impulse response
 - Four possibilities: M even/odd, h[n] symmetric/antisymmetric

Linear-phase FIR filters...

• Let us review the case of M odd and h[n] symmetric (Lecture 7) $\Rightarrow M-1$ even and h[n]=h[M-1-n]

13

Linear-phase FIR filters...

$$\begin{split} H(z) &= \sum_{k=0}^{M-1} b_k z^{-k} = \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=(M+1)/2}^{M-1} h[k] z^{-k} \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=(M+1)/2}^{M-1} h[M-1-k] z^{-k} \\ &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{l=0}^{(M-3)/2} h[l] z^{l-(M-1)} \end{split}$$

Linear-phase FIR filters...

$$\begin{split} H(z) &= \sum_{k=0}^{(M-3)/2} h[k] z^{-k} + h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{l=0}^{(M-3)/2} h[l] z^{l-(M-1)} \\ &= h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=0}^{(M-3)/2} h[k] \left(z^{-k} + z^{k-(M-1)} \right) \\ &= h \left[\frac{M-1}{2} \right] z^{-(M-1)/2} + \sum_{k=0}^{(M-3)/2} h[k] z^{-(M-1)/2} \left(z^{-(k-(M-1)/2)} + z^{k-(M-1)/2} \right) \\ &= \left(h \left[\frac{M-1}{2} \right] + \sum_{k=0}^{(M-3)/2} h[k] \left(z^{-(k-(M-1)/2)} + z^{k-(M-1)/2} \right) \right) z^{-(M-1)/2} \end{split}$$

• Frequency response obtained by substituting $z = e^{j\omega}$

$$H(\omega) = \left(h \left[\frac{M-1}{2} \right] + 2 \sum_{k=0}^{(M-3)/2} h[k] \cos[\omega((M-1)/2 - k)] \right) e^{-j\omega(M-1)/2}$$

1

Linear-phase FIR filters...

• Frequency response M odd and h[n] symmetric

$$H(\omega) = \left(h\left[\frac{M-1}{2}\right] + 2\sum_{k=0}^{\frac{M-3}{2}} h[k]\cos\left[\omega\left(\frac{M-1}{2} - k\right)\right]\right)e^{-\frac{j\omega(M-1)}{2}}$$
$$= H_{R}(\omega) e^{-\frac{j\omega(M-1)}{2}}$$

- Amplitude of filter $H_R(\omega) \in \mathbb{R}$ similar to $|H(\omega)|$ since $|H_R(\omega)| = |H(\omega)|$
- However, note that $H_{\rm R}(\omega)$ can be less than 0
- Linear shift $e^{-\frac{j\omega(M-1)}{2}}$: $H(\omega)$ has piecewise linear phase
 - When $H_{\rm R}(\omega)$ changes sign, phase jumps π radians (usually in stopband)

Linear-phase FIR filters...

- All possibilities (similar derivations):
 - Type I. Symmetric, h[n] = h[M-1-n], M odd:

$$H(\omega) = \left(h \left[\frac{M-1}{2} \right] + 2 \sum_{n=0}^{(M-3)/2} h[n] \cos \left[\frac{M-1}{2} - n \right] \right) e^{-j\omega(M-1)/2}$$

- Type II. Symmetric, h[n] = h[M - 1 - n], M even:

$$H(\omega) = \left(2\sum_{n=0}^{(M-2)/2} h[n] \cos\left[\frac{M-1}{2} - n\right]\right) e^{-j\omega(M-1)/2}$$

- Type III. Antisymmetric, h[n] = -h[M-1-n], M odd:

$$H(\omega) = \left(2\sum_{n=0}^{(M-3)/2} h[n] \cos\left[\frac{M-1}{2} - n\right]\right) e^{-j\left[\frac{\omega(M-1)}{2} + \frac{\pi}{2}\right]}$$

- Type IV. Antisymmetric, h[n] = -h[M-1-n], M even:

$$H(\omega) = \left(2\sum_{n=0}^{(M-2)/2} h[n] \sin\left[\frac{M-1}{2} - n\right]\right) e^{-j\left[\frac{\omega(M-1)}{2} + \frac{\pi}{2}\right]}$$

17

Linear-phase design using windowing

• Basic design principle: Start with a desired frequency specification $H_D(\omega)$ and determine impulse response

$$h_{\rm D}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{\rm D}(\omega) d\omega$$

- In general $h_D[n]$ is of infinite length and need to be truncated
- To obtain causal FIR filter of length M we can multiply $h_D[n]$ with a rectangular window

Linear-phase design using windowing...

• Truncation of $h_D[n] \Leftrightarrow$ multiplying $h_D[n]$ by window w[n]

$$h[n] = h_{\rm D}[n] w_{\rm R}[n]$$

where

$$w_{\rm R}[n] = \begin{cases} 1 & \text{for } 0 \le n \le L - 1 \\ 0 & \text{otherwise} \end{cases}$$

19

Linear-phase design using windowing...

Multiplication in time-domain corresponds to

$$H(\omega) = H_{\rm D}(\omega) * W(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\lambda)W(\omega - \lambda)d\lambda$$

with
$$W(\omega) = e^{-j\omega(M-1)/2} \frac{\sin\frac{\omega M}{2}}{\sin\frac{\omega}{2}}$$

- Rectangular window has a mainlobe and sidelobes
 - Mainlobe smoothens desired frequency response
 - Sidelobes introduce ringing effects

Linear-phase design using windowing...

• Illustration: $\frac{1}{M}|W(\omega)| = \frac{1}{M} \frac{|\sin\frac{\omega M}{2}|}{|\sin\frac{\omega}{2}|}$

21

Linear-phase design using windowing

Large dynamic range ⇒ plot magnitude response in dB

Matlab
M = 31;
wR = window(@rectwin,M);
[WR,w]=freqz(wR,1,1024);
plot(w/2/pi,20*log10(abs(WR)/M))

Linear-phase design using windowing...

- Design example: $H_{\rm D}(\omega) = \begin{cases} 1 \cdot e^{-j\omega(M-1)/2}, & |\omega| \le \omega_c \\ 0, & \omega_c \le \omega \le \pi \end{cases}$
- Corresponding impulse response $h_{\rm D}[n] = \frac{\omega_c}{\pi} \frac{\sin \omega_c [n (M-1)/2]}{\omega_c [n (M-1)/2]}$
- Truncated response: $h[n] = w_R[n]h_D[n]$

Linear-phase design using windowing...

- Oscillations do not disappear as *M* increases (Gibbs)
- Use other windows to reduce ripples in passband and stopband

Different windows in time domain

- Type 'window' at Matlab command prompt
- Transition bandwidth depends on window length and type
- Passband attenuation
 - Depends on window chosen
- Rectangular window narrowest mainlobe
 - Smallest transition region but worst attenuation in stopband

2

Different windows in time domain...

Equiripple design of linear-phase filters

- Major disadvantage of window method is the lack of precise control of the critical frequencies at band edges, i.e., ω_p and ω_s
- Instead, find filter coefficients $h_R[n]$ to minimize the maximal deviation from a desired response $H_D(\omega)$

27

Equiripple design of linear-phase filters...

- Define an error function $E(\omega) = W(\omega)[H_D(\omega) H_R(\omega)]$
 - $-H_{\rm D}(\omega)$ is the desired frequency response
 - $-H_{\rm R}(\omega)$ is the frequency response with filter coefficients $h[n]=b_n$
 - $W(\omega)$ is a weight function given by the filter specs

$$W(\omega) = \begin{cases} \frac{\delta_2}{\delta_1} & \omega \le \omega_p \\ 0 & \omega \ge \omega_s \end{cases}$$

• Find filter coefficients h[n] that minimizes maximal deviation $\min_{h[n]} \max_{\omega} |W(\omega)[H_{\mathrm{D}}(\omega) - H_{\mathrm{R}}(\omega)]|$

Result of minimization is a filter with equirippel characteristic

Equiripple design of linear-phase filters...

• Let us consider linear-phase filter of Type 1 (symmetric, M odd):

$$H(\omega) = H_{\rm R}(\omega) \, e^{-\frac{j\omega(M-1)}{2}},$$

with
$$H_{\rm R}(\omega) = h\left[\frac{M-1}{2}\right] + 2\sum_{k=0}^{(M-3)/2} h[k]\cos\left[\omega\left(\frac{M-1}{2} - k\right)\right]$$

• Design $H(\omega)$ equivalent to design $H_R(\omega)$: slightly different specs

Equiripple design of linear-phase filters

• Goal is to find optimal $H_{\mathbb{R}}(\omega)$ that complies with specifications

$$H_{\rm R}(\omega) = h \left[\frac{M-1}{2} \right] + 2 \sum_{k=0}^{(M-3)/2} h[k] \cos \left[\omega \left(\frac{M-1}{2} - k \right) \right]$$

- Optimization over the filter taps h[n], n = 0, ..., (M-1)/2 + 1
- The weighted error function is

$$\begin{split} E(\omega) &= W(\omega)[H_{\rm D}(\omega) - H_{\rm R}(\omega)] \\ &= W(\omega) \left[H_{\rm D}(\omega) - \left(h \left[\frac{M-1}{2} \right] + 2 \sum_{k=0}^{(M-3)/2} h[k] \cos \left[\omega \left(\frac{M-1}{2} - k \right) \right] \right) \right] \end{split}$$

• Alternation theorem: The optimal $H_R(\omega)$ will touch the error bounds at (M-1)/2 + 2 frequencies in interval $[0,\pi]$

Equiripple design of linear-phase filters...

- Alternation theorem: The optimal $H_R(\omega)$ will touch the error bounds at (M-1)/2+2 frequencies in interval $[0,\pi]$
- Remez Exchange algorithm finds coefficients h[k] such that $H_R(\omega)$ satisfies the alternation theorem
 - Always converges to an equiripple solution
 - May not have the passband/stopband characteristics needed for a given M ⇒ increase M

31

Equiripple design of linear-phase filters...


```
Matlab
E = [0 0.3 0.4 1];
A = [1 1 0 0];
M = 15;
B = firpm(M-1, E, A)
w = linspace(0,pi,500);
H = freqz(B,1,w);
figure
subplot(2,1,1),
stem(B);
subplot(2,1,2),
plot(w/pi,abs(H));
```

- (M-1)/2 + 2 = (15-1)/2 + 2 = 9 alterations
- Change width of transition band (comment on result)

Equiripple design of linear-phase filters...

• Check pole-zero plot with zplane (B, 1)

33

Equiripple design of linear-phase filters...

(M-1)/2 + 2 = (101-1)/2 + 2 = 52 alterations

Summary

- Today we discussed:
 - Basics of filter design
 - Linear phase filters using windowing and equiripple designs
- Next:
 - IIR filter design

35

Matlab: filterbuilder...

Type filterbuilder at Matlab command prompt:

-

