Programme de colle – Semaine 19 du 17/03/2025 au 21/03/2025

Cours:

Dynamique (Énergie)

- Expression du travail d'une force $\delta W = \vec{F} \cdot d\vec{u}$, et $W = \int \delta W$.
- Puissance d'une force $P = \vec{F} \cdot \vec{v}$.
- Théorème de l'énergie cinétique.
- Définition d'une force conservative, lien avec l'énergie potentielle

$$\vec{F} = -\overrightarrow{\text{grad}}(E_p) \tag{1}$$

- Théorème de l'énergie mécanique.
- Définition d'une position d'équilibre en fonction de l'énergie potentielle : $\frac{\mathrm{d}E_p}{\mathrm{d}x}=0$
- Position d'équilibre stable $\frac{d^2E_p}{dx^2} > 0$ et instable $\frac{d^2E_p}{dx^2} < 0$. Modélisation du mouvement au voisinage d'une position d'équilibre stable par un oscillateur harmonique.

Mouvement de particules chargées

— Force de Lorentz exercée sur une particule chargée

$$\vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B}) \tag{2}$$

- Puissance de la force de Lorentz.
- Mouvement dans un champ électrique uniforme et stationnaire (mouvement uniformément accéléré.
- Mouvement dans un champ magnétique uniforme et stationnaire. Déterminer le rayon de la trajectoire du mouvement circulaire.

Moment cinétique et solides en rotation

- Définition du moment cinétique d'un point matériel $\overrightarrow{L}_O(M) = \overrightarrow{OM} \wedge m\overrightarrow{v}$.
- Moment cinétique d'un point par rapport à un axe orienté $L_{\Delta}(M) = \overrightarrow{L}_{O \in \Delta}(M) \cdot \overrightarrow{e}_{\Delta}$.
- Moment cinétique d'un solide par rapport à un axe orienté : $L_{\Delta}=J_{\Delta}\omega.$
- Définition du moment d'inertie J_{Δ} et savoir expliquer comment il dépend de la répartition des masses du solide.
- Moment d'une force par rapport à un point et par rapport à un axe orienté. Déterminer la valeur du moment par rapport à un axe en utilisant le bras de levier.
- Théorème du moment cinétique (TMC) pour un point matériel et pour un solide.
- Énergie cinétique d'un solide en rotation autour d'un axe fixe $E_c = \frac{1}{2}J_{\Delta}\omega^2$. — Puissance d'un moment de force exercé sur un solide en rotation autour d'un axe $\Delta : P =$
- Puissance d'un moment de force exercé sur un solide en rotation autour d'un axe $\Delta : P = \mathcal{M}_{\Delta}(\overrightarrow{F})\omega$.
- Loi de l'énergie cinétique pour un solide en rotation : $\frac{dE_c}{dt} = \sum P_i$.

Exercices:

- Dynamique, surtout sur l'énergie (TD11)
- Mouvement de particules chargées (TD13)
- Moment cinétique et solides en rotation (TD14) exercices simples