Sets

Set

A set is a well-defined collection of objects. A Collection is said to be well-defined when there is no ambiguity regarding inclusion and exclusion of the object and all objects have same common properties. Each object of a set is called an element of a set.

Methods of Representing a Set

- (*i*) Roster or Tabular Form: In this form, a set is described by listing elements, separated by commas, within braces {}.
- (ii) Set-builder Form: In this form, a set is described by a characterizing property P(x) of its elements x. In such a case, the set is described by $\{x: P(x) \text{ holds}\}$, which is read as 'the set of all x such that P(x) holds'.

Types of Sets

- (i) Empty Set: A set having no element in it is called an empty set
- (ii) Singleton Set: A set Containing one element is called a singleton set.
- (iii) Finite Set: A set having fixed no. of elements is called a finite set.
- (iv) Infinite Set: A set that is not finite is infinite set.
- (ν) Equal sets: Two sets A and B are said to be equal if every element of A is a member of B and Vice-Versa.

Subsets

A set A is said to be a subset of a set B if every element of A is also an element of B. i.e., $A \subset B$ if $a \in A \Rightarrow a \in B$

Note that:

- (i) Every set is a subset of itself.
- (ii) Empty set ϕ is a subset of every set.

Intervals as Subsets of R

Let $a,b \in R$ and a < b, then

- (i) Closed Interval $[a, b] = \{x \in R : a \le x \le b\}$
- $[a, b] \{x \in \mathbb{R} : a \le x\}$ (ii) Open Interval

$$(a, b) = \{x \in R : a < x < b\}$$

(iii) Semi-open or Semi-closed Interval

$$(a, b] = \{x \in R : a < x \le b\} \text{ and } [a, b) = \{x \in R : a \le x \le b\}$$

Power Set

The collection of all subsets of set A is called the power set of A. It is denoted by P(A). Every element in P(A) is a set. Note that if A is a finite set having n elements, then P(A) has 2^n elements.

Universal Set

It is a set which includes all the elements of the sets under consideration. It is denoted by U. Eg., if $A = \{1, 2, 3\}$, $B = \{3, 4, 7\}$ and $C = \{2, 8, 9\}$, then $U = \{1, 2, 3, 4, 7, 8, 9\}$

Venn Diagrams

Most of the relationships between sets can be represented by means of diagrams which are known as Venn diagrams.

Operations on Sets

Union of Sets: The union of two sets A and B is the set of all those elements which are either in A or in B. It is denoted by $A \cup B$.

Properties of the Operation of Union

- (i) $A \cup B = B \cup A$ (Commutative Law)
- (ii) $(A \cup B) \cup C = A \cup (B \cup C)$ (Associative Law)
- (iii) $A \cup \phi = A$ (Law of identity element, ϕ is the identity of U)
- (iv) $A \cup A = A$ (Idempotent Law)
- (v) $U \cup A = U$ (Law of U)

Intersection of Sets

The intersection of two sets A and B is the set of all the elements which are common. It is denoted by $A \cap B$.

Properties of the Operation of Intersection

- (i) $A \cap B = B \cap A$ (Commutative Law)
- (ii) $(A \cap B) \cap C = A \cap (B \cap C)$ (Associative Law)
- (iii) $\phi \cap A = \phi$, $U \cap A = A$ (Law of ϕ and \cup)
- (iv) $A \cap A = A$ (Idempotent Law)
- (v) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive Law)

Difference of Sets

The difference of two sets A and B i.e., A–B, is the set of all those elements of A which do not belong to B.

Thus,
$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

Similarly,
$$B - A = \{x : x \in B \text{ and } x \notin A\}$$

Some Important Results on Number of Elements in Sets

- (i) If A and B are finite sets such that $A \cap B = \emptyset$, then $n(A \cup B) = n(A) + n(B)$
- (ii) If $A \cup B \neq \emptyset$, then

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

(iii) If A, B and C are finite sets, then

$$(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$$

Complement of a Set

Let U be the universal set and let A be a set such that $A \subset U$. Then, the complement of A with respect to U is denoted by A^c or A' or U - A and is defined as the set of all those elements of U which are not in A.

Therefore,
$$A' = \{x \in U : x \notin A\}$$

Clearly, $x \in A' \Leftrightarrow x \notin A$

Properties of Complement Sets

- (1) Complement Laws
 - (i) $A \cup A' = U$
- (ii) $A \cap A' = \emptyset$
- (2) De Morgan's Law

$$(i) (A \cup B)' = A' \cap B'$$

$$(ii) \ (A \cap B)' = A' \cup B'$$

(3) Law of Double Complementation

$$(A')' = A$$

(4) Laws of ϕ and U

$$\phi' = U$$
 and $U' = \phi$