

SRM Institute of Science and Technology

College of Engineering and Technology **DEPARTMENT OF MATHEMATICS**

 $SRM\ Nagar,\ Kattankulathur-603203,\ Chengalpattu\ District,\ Tamilnadu$

Academic Year: 2022 -2023 (EVEN)

Test : CLAT-2 Date

: 31.03.23

SLOT - A2

Course Code & Title: 21MAB301T - PROBABILITY AND STATISTICS

Duration : 2 Periods

Year & Semester

: II & IV

Max. Marks: 50

Note:

- Part-A should be answered in Question paper within 20 minutes and the same should be handed over to hall (i) invigilator at the end of 20th minute.
- (ii) Only A/B/C/D have to be mentioned as answer for MCQ in the space provided in the Question paper.
- (iii) Any Striking or overwriting in the answer (A/B/C/D) under Part-A will not be accepted.
- (iv) Part-B should be answered in answer booklet.

Course Articulation Matrix

		Course Arth	cuiati	OII IVE							200	nΩ	PO	PO
.N.		Course Outcome		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	11	12
l	COI	Implement the concept of probability and random variable in engineering problems.	3	3	-	-	-	-	-	-	-	-	-	-
2	CO2	Identify random variable and model them using various distribution.	3	3	-	-	•	-	-	-	-	-	-	-
3	CO3	Infer results by using hypothesis testing on large and small samples.	3	3	-	-	•	-	-	-	- ,	-	-	-
4	CO4	Utilize quality control techniques to solve wide variety of real-world problems in industry.		3	-	-	-	-	-	-	-	7-	-,	-
5	CO5	Apply the probability techniques and statistics in science and engineering.	3	3	-	-	-	-	-	-	-	-	-	

Part - A $(11 \times 1 = 11 \text{ Marks})$

	Answer	Marks	BL	CO	PO
Q. No		1	1	2	1
1.	(d) $\frac{1}{p}$	1	2	2	1
2.	(a) $P(X > t)$	1	1	2	1
3.	(b) $\frac{(b-a)^2}{12}$	1	2	2	2
4.	(c) $\frac{1}{3}$	1	2	2	1
5.	(a) λ	1	1	3	1
6.	(a) 1.645	1	1	3	1
7.	(b) $v = n_1 + n_2 - 2$	1	1	3	2
8.	(b) Type II error	1	1	3	2
9.	(d) $H_1: \mu \neq 0$	1	2	3	1
10.	(c) the level of significance	1	2	3	1
11	(a) Sample, population				

Q.	Questions	Mark	В		СР
No 12	It is known that the probability of an item produced by a certain	S	L		
	machine will be defective is 5%. If the produced items are sent to the market in packets of 20, find the number of packets containing (i) At least 2 defective items (ii) Exactly 2 defective items (iii) At most 2 defective items using Binomial distribution.		3	2	2
	$n = 20, p = 0.05, q = 0.95, P(X = x) = 20C_x(0.05)^x(0.95)^{20-x}$				
	(i) $P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)] = 0.2641$				
	(ii) $P(X = 2) = 20C_2(0.05)^2(0.95)^{20-2} = 0.189$				
	(iii) $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.9246$				
13	(a) If the model 122 of				
13	(a) If the probability that an applicant for a driver's license will pass the road test on any given trial is 0.8. Calculate the probability that he will finally pass the test (a) On the fourth trial (b) In less than 4 trials?	4	3	2	2
	Solution: Let X denote the number of trials required to achieve the first success. Then X follows a geometric distribution given by $P(X = r) = q^{r-1}p$; $r = 1,2,3,$ Here $p = 0.8$ and $q = 0.2$				
	(a) $P(X = 4) = 0.8 \times (0.2)^{4-1} = 0.0064$				
	(b) $P(X < 4) = \sum_{r=1}^{3} (0.8) \times (0.2)^{r-1} = 0.9984$.				
	(b) The time (in hours) required to repairs a machine is exponential,	4	3	2	2
	distributed with parameter $\lambda = \frac{1}{2}$. (i) What is the probability that the repair time exceeds 2 hours? (ii) What is the conditional probability that				
	a repair takes at least 10 hours given that its duration exceeds 9 hours?				
	$f(x) = \lambda e^{-\lambda x}, \ x > 0$				
	(i) $P(X > 2) = \int_2^{\infty} \frac{1}{2} e^{-\frac{x}{2}} dx = \frac{1}{2} \left[\frac{e^{-\frac{x}{2}}}{\frac{1}{2}} \right]_2^{\infty} = e^{-1} = 0.3679$				
	(ii) $P(X \ge 10/X > 9) = P(X > 1) = \int_{1}^{\infty} \frac{1}{2} e^{-\frac{X}{2}} dx = \frac{1}{2} \left[\frac{e^{-\frac{X}{2}}}{\frac{1}{2}} \right]_{1}^{\infty} = e^{-\frac{1}{2}} = 0.6065$				
14	(a) The heights of college students in a city are normally distributed with	4	4	3	2
	S.D. 6 cm. A sample of 100 students has mean height 158 cm. Test the hypothesis that the mean height of college students in the city is 160 cm.				
	$n = 100, \mu = 160, \bar{x} = 158, \sigma = 6, H_0: \mu = 160, H_1: \mu \neq 160 \text{ (two tailed)}, z_\alpha = 1.96 \text{ at } 5\%$				
	$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{158 - 160}{6/\sqrt{100}} = 3.333 z > z_{\alpha}, H_0 \text{ is rejected}$				

(1	light physical 1.6	4	3	3	1 2
S	light physical defect. In another large city B, 18.5% of a random sample				
0	f 1600 school boys had the same defect. Is the difference between the				
n	Toportions significance				
P	roportions significant?				
	Solution $p_1 = 0.2$, $p_2 = 0.185$, $n_1 = 900$ and $n_2 = 1600$.				
	$H_0: p_1 = p_2$				
	$H_1: p_1 \neq p_2$ Two-tailed test is to be used.				
	Let LOS be 5%. Therefore, $z_{ij} = 1.96$.				
	(1)				
	$z = \frac{p_1 - p_2}{\sqrt{PQ\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$				
	Since P , the population proportion, is not given, we estimate it as				
	$\hat{P} = \frac{n_1 \ p_1 + n_2 \ p_2}{n_1 + n_2} = \frac{180 + 296}{900 + 1600} = 0.1904.$				
	Using in (1), we have				
	$z = \frac{0.2 - 0.185}{0.2 - 0.185} = 0.92$				
	$z = \frac{0.2 - 0.185}{\sqrt{0.1904 \times 0.8096 \times \left(\frac{1}{900} + \frac{1}{1600}\right)}} = 0.92$				
	$ z \le z_{cc}$ Therefore The difference between p_1 and p_2 is not significant at 5% level.				
	·		-	3	2
1.5	f 40, 42, 50, 60, 45, 40, 55, 58, 62, 60 are the sample observations drawn	8	3	3	2
15 I	from a normal population. Test if the population mean can be equal to				
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\sum x = 512; \sum x^2 = 29622; n = 10$				
	$\bar{x} = \frac{\sum x}{n} = \frac{512}{10} = 51.2$				
	$s^{2} = \frac{\sum_{n} x^{2}}{n} - \left(\frac{\sum_{n} x}{n}\right)^{2} = \frac{29622}{10} - (51.2)^{2} = 70.76$				
	$ t = \left \frac{\overline{x} - \mu_0}{\sqrt{5^2 / n - 1}} \right = \left \frac{51.2 - 50}{\sqrt{70.76/10 - 1}} \right = 0.427$				
1	The 5% t distribution table value is 2.262.				
	Inference: Since the calculated value is less than the t distribution table value at				
	L.S with n-1=10-1=9 d.f. So we accept the Ho. It may be conclude that the				
	L.S with n-1=10-1=9 a.j. So we accept the population mean is equal to 50.				
	роришной темп в сут				

Part –	\mathbf{C}	1x15	= 15	Marks
Part –	C (IXIS	- 13	Maik

			rait.	-C(1x)	15 – 1.) Walk					
Q.			Quest	ions				Marks	BL	CO	PO
No											
16	In an engineering ex							15	3	2	2
(a)	secured second class, first class and distinction, according as he scores										
	less than 45%, between 45% and 60%, between 60% and 75% and										
	above 75% respectively. In a particular year 10% of the students failed										
	in the examination and 5% of the students got distinction. Find the										
	percentages of students who have got first class and second class.										
	P(X < 45) = 0.10	and	P(X > 75)) = 0.05						
	$P(-\infty < 7 < \frac{45-}{2})$	$\frac{\mu}{2} = 0.1$	and	P (2	$5-\mu$ < 7 <	$n_0 = l_{\infty}$	15				
	σ - / u=4	5)	wan	. (σ 7	5-11)	,				
	P(X < 45) = 0.10 and $P(X > 75) = 0.05P\left(-\infty < Z < \frac{45 - \mu}{\sigma}\right) = 0.1 and P\left(\frac{75 - \mu}{\sigma} < Z < \infty\right) = 0.05P\left(0 < Z < \frac{\mu - 45}{\sigma}\right) = 0.4 and P\left(0 < Z < \frac{75 - \mu}{\sigma}\right) = 0.45From the table, \frac{\mu - 45}{\sigma} = 1.28 and \frac{75 - \mu}{\sigma} = 1.64$										
	From the table, $\frac{\mu - 45}{2} = 1.28$ and $\frac{75 - \mu}{2} = 1.64$										
	$\mu - 1.28\sigma = 45$ (1) and $\mu + 1.64\sigma = 75$ (2) Solve (1),(2) $\mu = 58.15$, $\sigma = 10.28$										
	P(1st class) = P(60 < X < 75) = P(0.18 < Z < 1.64)										
	= P(0 < Z < 1.64) - P(0 < Z < 0.18) = 0.4495 - 0.0714 = 0.3781, % first class = 38										
	% of second class = 100 -										
		(, -	, 60.	u.u.u.u.u.u	, 100	(10 / 00	, 2,				
				((OR)						
(b)	The nicotine contents in two random sample of tobacco is given							15	4	2	2
	below:										
	Sample I	21	24	25	26	27	-				
	Sample II	22	27	28	30	31	36				
	Can you say that the two samples came from the same normal										
	population?										
	$n_1 = 5, \ n_2 = 6, \ \overline{x} = 24.6, \ \overline{y} = 29; \ H_0: \mu_1 = \mu_2, \ H_1: \mu_1 \neq \mu_2 \ (two \ tailed)$										
	$d.f. = n_1 + n_2 - 2 = 9 \text{ at } 5\% = 2.26;$										
	$\sum (x - \bar{x})^2 = 21.2; \ \sum (y - \bar{y})^2 = 108; s^2 = \frac{\sum (x - \bar{x})^2 + \sum (y - \bar{y})^2}{n_1 + n_2 - 2} = 14.35$										
	$t = \frac{\bar{x} - \bar{y}}{\sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = -1.92 \Rightarrow t = 1.92$, Calculate value $t < \text{Tabulated t. H}_0$ is accepted.										
	$\hat{\sigma}_1^2 = \frac{5}{4} \times 4.24 = 5.30$ and $v = 4$; $\hat{\sigma}_2^2 = \frac{6}{5} \times 18.0 = 21.60$ and $v = 5$										
	$H_0: \hat{\sigma}_1^2 = \hat{\sigma}_2^2; H_1: \hat{\sigma}_1^2 \neq \hat{\sigma}_2^2$										
	$F = \frac{\hat{\sigma}_2^2}{\hat{\sigma}_1^2} = \frac{21.60}{5.30} = 4.07$										
	$F_{0.05}(5,4) = 6.20$	6.									
	Since $F < F_{0.05}$, H_0 is accepted. Therefore, the variances of the two populations can be regarded as equal.										