Patient Vital Signs Analysis for Risk Level Classification

Problem Statement

Healthcare professionals rely on vital signs to assess patient conditions and prioritize care. This dataset contains vital sign measurements (such as heart rate, respiratory rate, oxygen saturation, blood pressure, and temperature) along with consciousness level and oxygen support status for individual patients. Each patient is assigned a risk level — Low, Medium, or High — based on their clinical condition.

The goal of this analysis is to explore patterns and correlations within the patient data that can help identify key indicators associated with high-risk patients. By analyzing this dataset using Python and Pandas, we aim to:

Understand the distribution and relationship between different vital signs.

Identify how vital signs vary across different risk levels.

Determine which factors may contribute to a patient being classified as high risk.

Assist in building foundational insights that can support triage systems and decision-making in clinical settings.

```
import pandas as pd
import numpy as np

df=pd.read_csv('/content/Health_Risk_Dataset.csv')
df.head()
```

→		Patient_ID	Respiratory_Rate	Oxygen_Saturation	02_Scale	Systolic_BP	Heart_Rate
	0	P0522	25	96	1	97	107
	1	P0738	28	92	2	116	151
	2	P0741	29	91	1	79	135
	3	P0661	24	96	1	95	92
	4	P0412	20	96	1	97	97

df.shape

→ (1000, 10)

df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 1000 entries, 0 to 999
 Data columns (total 10 columns):

Column	Non-Null Count	Dtype
Patient_ID	1000 non-null	object
Respiratory_Rate	1000 non-null	int64
Oxygen_Saturation	1000 non-null	int64
02_Scale	1000 non-null	int64
Systolic_BP	1000 non-null	int64
Heart_Rate	1000 non-null	int64
Temperature	1000 non-null	float64
Consciousness	1000 non-null	object
On_Oxygen	1000 non-null	int64
Risk_Level	1000 non-null	object
	Patient_ID Respiratory_Rate Oxygen_Saturation O2_Scale Systolic_BP Heart_Rate Temperature Consciousness On_Oxygen	Patient_ID 1000 non-null Respiratory_Rate 1000 non-null Oxygen_Saturation 1000 non-null O2_Scale 1000 non-null Systolic_BP 1000 non-null Heart_Rate 1000 non-null Temperature 1000 non-null Consciousness 1000 non-null On_Oxygen 1000 non-null

dtypes: float64(1), int64(6), object(3)

memory usage: 78.3+ KB

df.describe()

→		Respiratory_Rate	Oxygen_Saturation	02_Scale	Systolic_BP	Heart_Rate	Ten
	count	1000.000000	1000.00000	1000.000000	1000.000000	1000.000000	10
	mean	21.511000	92.59000	1.124000	106.160000	98.460000	;
	std	5.287517	4.47302	0.329746	17.897562	19.694626	
	min	12.000000	74.00000	1.000000	50.000000	60.000000	;
	25%	17.000000	90.00000	1.000000	94.000000	84.000000	;
	50%	20.000000	94.00000	1.000000	109.000000	95.500000	;
	75%	25.000000	96.00000	1.000000	119.000000	109.000000	;
	max	40.000000	100.00000	2.000000	146.000000	163.000000	4

df.isnull().sum()

Patient_ID 0

0

Respiratory_Rate 0

Oxygen_Saturation 0

O2_Scale 0

Systolic_BP 0

Heart_Rate 0

Temperature 0

Consciousness 0

On_Oxygen 0

Risk_Level 0

dtype: int64

Here, we have average heart rate, respiratory rate, and oxygen saturation

mean_heart_rate=df['Heart_Rate'].mean()
print(mean_heart_rate)

€ 98.46

mean_respiratory_rate=df['Respiratory_Rate'].mean()
print(mean_respiratory_rate)

21.511

mean_oxygen_saturation=df['Oxygen_Saturation'].mean()
print(mean_oxygen_saturation)

→ 92.59

SO,

- 1. avg heart rate of patients is 98.46
- 2. avg respiratory rate of patients is 21.511
- 3. avg oxygen saturation of patients is 92.59

Mean Heart rates with respect to Risk level

df.groupby('Risk_Level')['Heart_Rate'].mean()

		_
	•	_
_	7	-
	-	_
_		_

Heart_Rate

Risk_Level		
High	120.913978	
Low	89.192157	
Medium	98.254902	
Normal	74.468750	

dtype: float64

So,

- 1. High risk level patients have the avg Heart rate of 120.91
- 2. Low risk level patients have the avg Heart rate of 89.19
- 3. Medium risk level patients have the avg Heart rate of 98.25
- 4. Normal patients have the avg Heart rate of 74.46

From this data we can conclude that as Heart rate increase risk increases

Patients with low oxygen saturation

df[df['Oxygen_Saturation'] < 94]</pre>

→		Patient_ID	Respiratory_Rate	Oxygen_Saturation	02_Scale	Systolic_BP	Heart_Ra
	1	P0738	28	92	2	116	1
	2	P0741	29	91	1	79	1
	5	P0679	20	91	2	121	
	6	P0627	16	90	1	116	
	7	P0514	17	90	1	118	1
	984	P0373	21	92	1	127	
	986	P0459	23	92	1	119	1
	989	P0467	20	93	1	96	
	997	P0861	39	82	1	101	1
	998	P0436	15	92	1	106	1

479 rows × 10 columns

These are the details of patients with low oxygen level

df['Consciousness'].value_counts()

→

count

Consciousness				
Α	914			
V	33			
U	26			
Р	20			

dtype: int64

here A is the most common consciousness level

7

High-risk patients on oxygen

df[(df['Risk_Level'] == 'High') & (df['On_Oxygen'] == 1)]

→ *		Patient_ID	Respiratory_Rate	Oxygen_Saturation	O2_Scale	Systolic_BP	Heart_Ra
	1	P0738	28	92	2	116	1
	10	P0812	30	80	1	91	1
	14	P0939	33	89	2	90	1
	15	P0900	29	80	1	78	1
	17	P0884	30	82	1	100	1
	970	P0956	34	78	1	91	1
	973	P0806	25	83	1	83	1
	977	P0770	34	100	1	88	1
	982	P0872	34	82	1	85	1
	997	P0861	39	82	1	101	1

181 rows × 10 columns

These are the details of patients with High risk level and are on oxygen

percentage of patients on oxygen

```
percentage_on_oxygen = (df['On_Oxygen'].sum() / len(df)) * 100
round((percentage_on_oxygen),2)
```

so, 27.4% patients of total patients are on oxygen.

oxygen saturation variation by O2_Scale

oxygen_stats_by_scale = df.groupby('02_Scale')['0xygen_Saturation'].describe()
oxygen_stats_by_scale

average systolic BP by consciousness level

avg_bp_by_consciousness=df.groupby('Consciousness')['Systolic_BP'].mean()
avg_bp_by_consciousness

Systolic_BP
108.031729
86.285714
88.050000
87.884615
83.909091

- dtype: float64
- 1. Patients who are alert (A) have the highest average systolic blood pressure, with a mean of approximately 108.03 mmHg.
- 2. Patients classified as Verbal (V) have the lowest average systolic blood pressure, around 83.91 mmHg.

- 3. Those in Pain (P) and Unresponsive (U) states have similar average systolic BP readings, 88.05 mmHg and 87.88 mmHg respectively.
- 4. Confused (C) patients have a lower average systolic BP (86.29 mmHg) than both Pain (P) and Unresponsive (U) groups
- 5. Overall, there is a noticeable decline in average systolic blood pressure as the patient's level of consciousness decreases from Alert to Verbal.

To determine whether there is any correlation between oxygen saturation and being on oxygen

df.groupby('On_Oxygen')['Oxygen_Saturation'].mean()

Oxygen_Saturation
On_Oxygen

0 93.669421
1 89.729927

dtype: float64

So, patients on oxygen have on an avg lower oxygen saturation than patients who are not on oxygen

To, Visualize this Relationship

import seaborn as sns
sns.boxplot(x='0n_0xygen',y='0xygen_Saturation',data=df)

Axes: xlabel='On_Oxygen', ylabel='Oxygen_Saturation'>

From the above boxplot, it is clearly visible that people who are not on oxygen have oxygen saturation mostly between 90-96 and people who are on oxygen have oxygen saturation between 85-95

Box plot for Heart_Rate by Risk_Level

sns.boxplot(x='Risk_Level',y='Heart_Rate',data=df)

- 1. The people who are normal have the lowest and the safest Heart_Rate
- 2. The people who are on the low risk levels have slightly higher Heart Rate
- 3. The people who are on the medium risk level have Heart_Rate between 95 to 105
- 4. The people who are at high risk have the Heart_rate between 115 to 140, which is higher than normal systolic bp level.

Bar Chart: Consciousness

```
import matplotlib.pyplot as plt

plt.figure(figsize=(6,4))
sns.countplot(data=df,x='Consciousness')
plt.title('Bar chart for consciousness')
plt.xlabel('Consciousness')
plt.ylabel('count')
plt.show()
```


From the above barchart it is clearly visible that most of the patients in hospital are of consciousness of category A

to check whether there is statistically significant difference in heart rate between risk levels using ONE WAY ANNOVA

```
from scipy.stats import f_oneway

#group the heart_rate risk wise

high_hr=df[df['Risk_Level']=='High']['Heart_Rate']

medium_hr=df[df['Risk_Level']=="Medium"]['Heart_Rate']

low_hr=df[df['Risk_Level']=='Low']['Heart_Rate']

f,p=f_oneway(low_hr,medium_hr,high_hr)

print('f_stats:',f)
print('p_value:',p)

f_stats: 473.004101487191
    p_value: 3.57215975436701e-138
```

So,here p_value is much smaller than 0.05 significance level so there is a statistical significance difference between heart_rates of three risk levels

To check whether oxygen saturation is significantly lower in patients who are on oxygen (On_Oxygen = 1) using t-test

Here, there is statistical difference in oxygen saturation as pvalue is less than 0.05 significance level

Overall Insights from Patient Vital Signs and Risk Levels

1. Vital Signs Are Strong Indicators of Risk Level

High respiratory rate, low oxygen saturation, high heart rate were consistently associated with high-risk patients.

These signs align with clinical expectations of respiratory distress or systemic infection, common in high-acuity cases.

2. Heart Rate Differs Significantly Across Risk Levels

One-way ANOVA revealed a statistically significant difference in heart rate between different risk levels.

High-risk patients tended to have heart rates > 130 bpm, suggesting elevated cardiovascular stress or compensation for hypoxia.

3. Oxygen Saturation Alone Is Not a Perfect Predictor

On_Oxygen status did not always correspond with low oxygen saturation, possibly due to: Patients already receiving oxygen and improving. Clinician judgment-based oxygen administration.

A t-test showed limited significance with small sample size, but patterns were still clinically suggestive

- 4. clear thresholds for classifying high-risk patients:
 - 1] Heart Rate > 130 bpm
 - 2] Respiratory Rate > 25 bpm
 - 3] Oxygen Saturation < 93%
 - 4] Systolic BP < 90 mmHg (hypotension)

These thresholds are interpretable and actionable for triage and monitoring.

This dataset confirms that vital signs, especially respiratory rate, oxygen saturation, heart rate, and temperature, are highly predictive of patient risk levels. Simple thresholds — especially in combination — can serve as powerful tools for early warning, triage, or automation of clinical decision support.