Lec 7 Introduction to MRI

Discovery of MRI led to Nobel prize in Physiology or Medicine in 2003

Press Release

6 October 2003

The Nobel Assembly at Karolinska Institutet has today decided to award
The Nobel Prize in Physiology or Medicine for 2003 jointly to

Paul C Lauterbur and Peter Mansfield

for their discoveries concerning "magnetic resonance imaging"

Can you guess how many more Nobel prizes are related to magnetic resonance?

1952 (Physics): Bloch and Purcell (new methods for nuclear magnetic precision measurements)

1991 (Chemistry): Ernst (methodology for high precision nuclear magnetic resonance spectroscopy)

2002 (Chemistry): Wuthrich (nuclear magnetic resonance spectroscopy for determining the 3D structure of biological macromolecules in solution)

Reference material for MRI

- Hendee: chapters 23 and 24
- Smith and Webb: pages 204 222
- There's an online book by Joseph Hornak at http://www.cis.rit.edu/htbooks/mri/inside.htm

Interaction between spin magnetic moments in tissue and external magnetic fields.

Frequency (RF) of external magnetic field matches with "some" internal frequency in tissue.

Deals with behavior of atomic nuclei in magnetic field.

What magnetic fields do we have?

Steady magnetic field, B_o (initially align spins)

- RF magnetic field, B₁ (excites aligned spins)

Spatial modulation of B_o for image encoding

https://www.researchgate.net/figure/MRI-scanner-cutaway-thanks-for-the-image-from-34_fig1_280792219

Some pre-MRI checks for patients

- Ferromagnetic objects
- Non-ferromagnetic objects: local image distortion
- Claustrophobia (~ 45 60 min)
- Movement (due to sneeze, cough, etc.)
- Acoustic protection (ear plugs for high noise levels)

Not all patients can undergo an MRI!

- Steady magnetic
 field ~ 1.5 3T
- Earth's magnetic field $\sim 50 \mu T$

Origin of magnetic moment in tissue

MRI measures signal from hydrogen nuclei

Element	Biological Abundance	
Hydrogen	0.63	
Carbon	0.094	
Nitrogen	0.015	
Sodium	0.00041	
Phosphorus	0.0024	
Calcium	0.0022	
Oxygen	0.26	

Frequency range

Clinical MRI: between 15 and 80 MHz for hydrogen imaging.

Classical magnetic moment (due to a current)

$$\vec{m} = i\vec{A}$$

Magnetic moment = (current) x (area of the current loop)

Magnetic moment of hydrogen nuclei

- Spin is actually a quantum mechanical concept. We give an oversimplified classical analogy in this course!
- Each spinning hydrogen nucleus (positive charge) has a "spin magnetic moment".

Calculate the number of spins inside a voxel.

- Take a voxel to be a cube of side 1 mm
- Hint: first find the number of water molecules in the voxel.

In absence of B_o

A single voxel (\sim mm³) has \sim 10¹⁹ spins.

Randomly oriented spins. No net magnetization. What happens in B_o field?

In presence of B_o

- Spins line up with **B**₀
- Non-zero net magnetization

Some spins are parallel and some are anti-parallel to $\mathbf{B}_{\mathbf{0}}$.

Spins are "quantized" in a magnetic field

Low energy

Parallel

High energy

Anti-parallel

Lec 9 (MRI: the role of B_o field)

What decides how many spins will be up and how many will be down?

- Temperature
- The actual numbers are given by the Boltzmann distribution

Boltzmann distribution of spins

$N^-/N^+ = \exp(-\Delta E/kT)$

N: Number of spins at higher energy

N⁺: Number of spins at lower energy

 ΔE : Energy difference between two states

Signal ~ population <u>difference</u> between two states $(N^+ - N^-)$.

- 1. What will be the value of N^- when T = 0?
- 2. When do you think N^+ and N^- are likely to be equal?

$$N^-/N^+ = \exp(-\Delta E/kT)$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

What happens during MRI? (3)

6. B₁ is turned off. Only B₀ remains.

7. The XY-projection of M_z reduces with time, while Z-projection increases and returns to its equilibrium value ("relaxation").

8. Relaxation of M_z to its equilibrium value produces a voltage signal, which we measure.

Once we have grasped these concepts, we will bring on gradient field.

Larmor equation

Torque
$$(\mathbf{T}) = (\mathbf{m}_i \times \mathbf{B}_o) = d\mathbf{L}_i/dt$$

$$\gamma (\mathbf{m_i} \times \mathbf{B_o}) = d\mathbf{m_i}/dt$$

(since
$$\mathbf{m} = \gamma \mathbf{L}$$
)

For hydrogen, gyromagnetic ratio $(\gamma) \square = 42.58$ MHz/Tesla

Larmor precession

Individual spin magnetic moments will precess about the magnetic field with Larmor frequency ($v = \gamma B_o$).

Gyromagnetic ratio (γ)

Individual spin magnetic moments will precess about the magnetic field with Larmor frequency ($v = \gamma B_o$).

For hydrogen, gyromagnetic ratio (γ) = 42.58 MHz/Tesla

Nuclei with higher γ will precess faster in a given magnetic field.

Precession angle

- *Quantum mechanics* allows specific values of $m_{\underline{z}}$. This makes only specific precession angles possible.
- Precession angle can have <u>any value</u> in *classical mechanics*.

Different nuclei precess with different Larmor frequencies (due to different g)

Element	Biological Abundance	γ
¹ H	0.63	42.58
13 C	0.094	10.71
²³ Na	0.00041	11.26
³⁹ K	0.0024	1. 99

Need unpaired spin. Why?

Nuclear magnetic moment

- Both protons and neutrons can have magnetic moment. This is why our current-carrying loop explanation of spin is oversimplified (i.e. this can't explain why neutrons have magnetic moment).
- The magnetic moments of a proton and a neutron <u>do not</u> exactly cancel each other.

- A nucleus with either an <u>odd number of protons</u> or <u>odd</u> <u>number of neutrons</u> will have a net magnetic moment.
- Why does ¹⁴N have a net magnetic moment then?

Nuclide	Number of Protons	Number of Neutrons
¹ H	1	0
^{2}H	1	1
¹³ C	6	7
¹⁴ N	7	7
¹⁷ O	8	9
¹⁹ F	9	10
²³ Na	11	12
³¹ P	15	16
³⁹ K	19	20

Net bulk magnetization is along B_o

Bulk magnetization:
$$\mathbf{M} = \sum_{i=1}^{N} \mathbf{m}_{i}$$

$$< M_z > \neq 0, < M_x > = 0, < M_y > = 0$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

Lec 10 (MRI: the role of B_0 and B_1 fields)

- A nucleus with either an <u>odd number of protons</u> or <u>odd</u> <u>number of neutrons</u> will have a net magnetic moment.
- Why does ¹⁴N have a net magnetic moment then?

Nuclide	Number of Protons	Number of Neutrons
¹ H	1	0
² H	1	1
¹³ C	6	7
¹⁴ N	7	7
¹⁷ O	8	9
¹⁹ F	9	10
²³ Na	11	12
³¹ P	15	16
³⁹ K	19	20

Net bulk magnetization is along B_o

Bulk magnetization:
$$\mathbf{M} = \sum_{i=1}^{N} \mathbf{m}_{i}$$

$$< M_z > \neq 0, < M_x > = 0, < M_y > = 0$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

What happens in $B_1(t)$ field?

Magnetization in X-Y plane: RF field

- Apply RF pulse (10-100 MHz) B₁ along x-axis.
- $B_1 (\sim \mu T- mT) << B_o (\sim T)$.

Net magnetization in xy plane (for $\pi/2$ pulse).

- M_z starts rotating about z-axis
- M_z returns to its equilibrium position along z-axis when RF field is turned off

If the magnitude of B_1 is much smaller (\sim mT) than B_o (\sim T), then how is it possible that B_1 can flip some spins?

How do we detect M_z ?

Can't detect constant M_z (with B_o alone).

Can detect <u>time-varying</u> flux of M_z (generated using B_o and B_1)

RF coils for generating B_1 can also detect the voltage signal (Faraday induction).

$$V \sim - d\Phi/dt$$

Rotating Frame

• In reality, each spin sees a slightly different magnetic field. Solving equations (that describe the time evolution of the magnetization vector, **M**) becomes a nightmare.

У

• All MRI hardware has been designed to work assuming a rotating reference frame.

Frame rotates about z-axis with Larmor frequency.

Lab frame coordinates: x, y, z

Rotating frame coordinates: x', y', z'

What do we see if we are sitting on the rotating frame?

B₁ is constant. B₀ vanishes.

Lec 11 (MRI: B₁ field)

What do we see if we are sitting on the rotating frame?

B₁ is constant. B₀ vanishes.

What happens to magnetization in the rotating frame?

Bloch equations

- Used describe the time evolution of "magnetization"
- Phenomenological equations

Time derivative of a vector (A) in lab (fixed) frame

Describes motion of vector in the rotating frame.

Time-derivative of magnetization

$$DM/Dt = dM/dt - (\omega \times M) ---- (1)$$

We have already seen
$$d\mathbf{M}/dt = (\gamma \mathbf{M} \times \mathbf{B})$$
 ----- (2) (Larmor equation)

From (1) and (2)

$$DM/Dt = \gamma(M \times B) - (\omega \times M)$$

$$\Rightarrow$$
 DM/Dt = γ (M x B) + (M x ω)

$$\boxed{\frac{\overrightarrow{DM}}{Dt} = \gamma \overrightarrow{M} \times \left(\overrightarrow{B} + \frac{\overrightarrow{\omega}}{\gamma}\right)} - \dots (3)$$

$$\frac{\overrightarrow{DM}}{\overrightarrow{Dt}} = \gamma \overrightarrow{M} \times \left(\overrightarrow{B} + \frac{\overrightarrow{\omega}}{\gamma} \right) - \cdots (3)$$

Here,
$$\overrightarrow{B} = B_1 \widehat{\boldsymbol{x}} + B_0 \widehat{\boldsymbol{z}} - (4)$$

We choose,
$$B_0 = -\frac{\omega}{\gamma}$$

What magnetic fields do we see if we are sitting on the rotating frame?

B₁ is constant.B₀ vanishes.

What happens to magnetization in rotating frame?

Magnetization (blue) precesses around B_1 with frequency γB_1 .

Tip angle (α)

- Tip angle (α): angle through which magnetization (M) is rotated by applying RF field.
- Depends on both B_1 and the duration of pulse (τ_{B1}) .

$$\alpha = \omega \tau_{B1} = 2\pi\gamma B_1 \tau_{B1}$$

$$=> \tau_{B1} = \alpha / (2\pi\gamma B_1)$$

For a typical MRI scenario, $B_1 = 10\mu T$, => $\tau \sim 0.5$ ms

Typical pulses

- $\pi/2$ pulse leads to maximum transverse component of magnetization
- π pulse rotates magnetization from + z to -z. No transverse component.

What happens when RF-field is turned off?

- Magnetization returns to its equilibrium position along z-axis.
- We are interested in <u>how</u> it returns to equilibrium.
- This is when we measure the MRI signal (i.e. after RF field is turned off).

Relaxation

Relaxation of magnetization is measured after B₁ is turned off

Apply relaxation behaviour to magnetization components.

$$\frac{dM_{z}}{dt} = -\frac{(M_{z} - M_{0})}{T_{1}}$$

$$\frac{dM_{x}}{dt} = -\frac{M_{x}}{T_{2}}$$

$$\frac{dM_{y}}{dt} = -\frac{M_{y}}{T_{2}}$$

- There are two relaxation times and they are different.
- Why is there no *Mo* in the equations for the transverse components?

Lec 12 (MRI: relaxation)

Bloch equations with spin relaxation

$$\frac{d\overrightarrow{M}}{dt} = \gamma \overrightarrow{M} \times \overrightarrow{B}_{o} - \frac{M_{x}\widehat{x}}{T_{2}} - \frac{M_{v}\widehat{y}}{T_{2}} - \frac{(M_{z} - M_{0})\widehat{z}}{T_{1}}$$

$$\frac{d}{dt}M_x = \gamma M_y B_0 - \frac{M_x}{\tau_2}$$

$$\frac{d}{dt}M_y = -\gamma M_x B_0 - \frac{M_y}{\tau_2}$$

$$\frac{d}{dt}M_z = -\frac{M_z - M_0}{\tau_1}$$

T₁-relaxation (longitudinal)

M_z returns to its equilibrium value (M_o) with time.

 T_1 : time constant describing how M_Z returns to its equilibrium value

Don't take this projection drawing from Smith and Webb too literally for understanding the origin of T_2 .

What will the solution look like?

$$\frac{d}{dt}M_z = -\frac{M_z - M_0}{\tau_1}$$

What boundary conditions (for 90° pulse) will you use to solve this equation?

$$\mathbf{M_z} = \mathbf{M_o} \left(1 - \mathbf{e}^{\frac{-\mathbf{t}}{T_1}} \right)$$
 (for $\frac{\pi}{2}$ pulse)

Solutions of Bloch equations

$$\frac{d}{dt}M_x = \gamma M_y B_0 - \frac{M_x}{\tau_2}$$

$$\frac{d}{dt}M_y = -\gamma M_x B_0 - \frac{M_y}{\tau_2}$$

$$\frac{d}{dt}M_z = -\frac{M_z - M_0}{\tau_1}$$

$$M_{x,y}(t) = M_{x,y}(0)e^{-t/\tau_2}\cos\gamma B_0 t$$

$$M_z(t) = M_0(1 - e^{-t/\tau_1})$$

Measurement of relaxation times $(T_1 \text{ and } T_2)$

- Saturation recovery (T₁)
- Inversion recovery (T₁)
- Spin echo (T₂)

1. Saturation recovery

We use free induction decay to measure T_1 in an experiment

- Assume M to be along B_o.
- Switch on B₁ for time 't' such that, $\gamma \mathbf{B}_1 \mathbf{t} = \frac{\pi}{2}$

- Magnetization tips to x-y plane.

- Switch off B1 to allow magnetization to "relax" and reach its equilibrium value M_o.

- Changing magnetization induces signal in RF coil (free induction decay). But it is difficult to capture the FID signal in just one shot.

- Initial magnitude of FID voltage gives the initial "length" of the magnetization vector. It is this initial voltage that we measure, as we can't really capture the entire decay signal due to a limitation of measurement electronics.

So we tweak the experiment a bit.

- 1. Apply one $\pi/2$ pulse.
- 2. Wait for time t_d for magnetization to relax partially without measuring anything. Will M_z be comparable to M_o after t_d ?
- 3. The time $\mathbf{t_d}$ is set by you, and is, at first, a fraction of $\mathbf{T_1}$. The relaxation of $\mathbf{M_z}$ over a period $\mathbf{t_d}$ is then incomplete.
- 4. The magnetization vector after $\mathbf{t_d}$ has a length that is much smaller than its equilibrium value $\mathbf{M_o}$.

- 5. Now give a second $\pi/2$ pulse.
- 6. This forces M_z (now with a value much smaller than M_o) to get turned on to the x-y plane.
- 7. Allow this small M_z to relax completely. This time we will measure its relaxation.
- 8. Measure the FID signal during this relaxation step. This will give you the magnitude of M_z for the value of t_d you chose.
- 9. Repeat steps 1 8 by gradually increasing the value of t_d until it is at least $\sim 5T_1 10T_1$.

- Usually, $t_R \sim 5T_1 =>$ ensures full "saturation"
- Vary t_d (from a fraction of T_1 to a few times T_1).

Saturation recovery: $\pi/2 - t_d - \pi/2$ pulse

$$M_z(t) = M_0(1 - e^{-t/\tau_1})$$

At
$$t = \infty$$
, $M_z = M_o$

$$M_z(t) = M_0(1 - e^{-t/\tau_1})$$

$$\ln \frac{(Mo-Mz)}{M_o} = -\frac{t}{T_1}$$

Lec 14 (Spin echo and contrast in MRI images)

Recap: Measuring T₂ from FID is difficult

- FID decays with T₂* time constant.

$$\frac{1}{{T_2}^*} = \frac{1}{{T_2}^+} + \frac{1}{{T_2}}$$

Inhomogeneous mag. field spin-spin interaction (property of MR set-up)

Recap: Dephasing of magnetization ("pure" T₂ effect)

- Each spin sees a slightly different magnetic field.
- Magnetization for each spin packet rotates <u>at its own Larmor frequency</u>.
- Net magnetization starts to dephase.
- Vector sum of transverse component is zero when totally dephased.

"Inhomogeneous" T₂-relaxation

$$\frac{1}{{T_2}^*} = \frac{1}{{T_2}^+} + \frac{1}{{T_2}}$$
Inhomogeneous mag. field spin-spin interaction

- Magnet design

(property of MR set-up)

- Different magnetic susceptibilities (e.g. near surgical implant, at tissue boundaries with different magnetic properties, etc.).

Spin echo measures T₂

Spin debunching happens due to T_2^+ processes (field inhomogeneities)

- **TE** is echo time and **TR** is repetition time

Repetition time and echo time

These times are chosen by the experimenter.

- TR is the length of the relaxation time between two excitation $(\pi/2)$ pulses.
- **TE** is the time interval between the excitation pulse $(\pi/2)$ and measurement of MR signal.

T₁, T₂ ave tissue properties. We do not choose them.

T_1 and T_2 of tissues

- Different tissues have different values of T₁ and T₂.
- Diseased tissues have different T_1 and T_2 compared to healthy tissues.
- T_1 and T_2 are not related.

T_1 , T_2 (milliseconds) of tissues

Tissue	T ₁ (@ 1.5T)	T ₁ (@ 3T)
Brain (white)	790	1100
Brain (grey)	920	1600
Liver	500	800
Skeletal muscle	870	1420
Lipid (subcutaneous)	290	360
Cartilage	1060	1240

T_2	T_2
(@ 1.5T)	(@ 3T)
90	60
100	80
50	40
60	30
160	130
42	37

What can you infer from this table?

- $T_2 < T_1$ for all tissues
- The values of T_1 and T_2 depend on the magnetic field (B_0) .

$$\boldsymbol{M}_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$$

T_1 , T_2 determine if we can measure signals from a particular tissue

- Can't measure MRI signals from **bone**.
- Extremely small T_2 (~ 0.01 ms).
- Signal disappears before measurement!

Image contrast

High signal intensity: bright

Low signal intensity: dark

<u>Intermediate</u> signal intensity: gray

Can we exploit T_1 and T_2 of different brain tissues to enhance image contrast?

Tissue	T ₁ (1.5T)	T ₂ (1.5T)
White matter	790 ms	90 ms
Grey matter	920 ms	100 ms
CSF	2400 ms	200 ms
Fat	270 ms	80 ms

T₁ weighing of MRI images

- <u>Short TR</u> (appropriately chosen) will not allow some tissues to recover equilibrium magnetization (M_o).

$$\boldsymbol{M}_0 = \frac{N(\gamma\hbar)^2 B_0}{4kT}$$

- Long TR allows <u>all</u> tissues to recover completely.
- Keep TE short (~ 15ms) to neglect T₂ dependency.

How "short" should TR be?

T₁ weighed image

 $TR \sim 500 \text{ ms}, TE \sim 15 \text{ ms}$

T₁- weighting gives strong signal for tissues with short relaxation times.

T ₁ (1.5T) in ms	
CSF	2400
Fat	270

 $TR \sim 3000 \text{ ms}, TE \sim 100 \text{ ms}$

T₂- weighting gives strong signal for tissues with long relaxation times.

	T_1	T_2
CSF	2400	200
Fat	270	80

Are these images T_1 or T_2 weighed?

 T_I -weighted (TR = 600, TE = 11)

 T_2 -weighted (TR = 3800, TE = 102)

	T_1	T_2
CSF	2400	200
Fat	270	80

Is it a good idea to exploit both T_1 and T_2 dependencies simultaneously to enhance the image contrast in MRI? Why or why not?

-No! Topoghing &

The beighing give opposite effects
on the fissive. This would

degrade the contrast.