EE 236 Devices Lab Lab - 03

Anupam Rawat, 22b3982 24th August, 2024

Temperature and material dependence of PN diode, IV characteristics

1 Dark I-V Characteristics of Photodiode

1.1 Aim of the experiment

Obtain the dark I-V characteristics of the given photodiode for forward as well as reverse bias

1.2 Design

Figure 1: Caption

1.3 Forward Bias

Vpd	Ipd	$\log(\mathrm{abs}(\mathrm{I}_{-}\mathrm{pd}))$	Vpd	Ipd	$\log(\mathrm{abs}(\mathrm{I_pd}))$
0.50	1.00E-12	-12	0.75	6.6	0.8195
0.51	0.1	-1	0.76	7	0.8451
0.53	0.1	-1	0.77	8.2	0.9138
0.55	0.3	-0.5229	0.78	8.6	0.9345
0.56	0.4	-0.3979	0.79	9.9	0.9956
0.59	0.8	-0.0969	0.80	11	1.0414
0.60	1	0	0.81	11.8	1.0719
0.62	1.4	0.1461	0.82	12.9	1.1106
0.64	1.9	0.2788	0.83	13.9	1.1430
0.65	2.2	0.3424	0.835	14.1	1.1492
0.66	2.7	0.4314	0.84	16.2	1.2095
0.67	3.2	0.5051	0.85	17.77	1.2497
0.69	3.6	0.5563	0.86	19.4	1.2878
0.70	4	0.6021	0.87	21.4	1.3304
0.71	4.5	0.6532	0.88	22	1.3424
0.72	5	0.6990			
0.73	5.6	0.7482			
0.74	5.8	0.7634			

Table 1: V_{pd} v/s I_{pd}

Parameter	Value
slope	12.1790547
intercept	-7.2826286
η	3.1580069

Table 2: Slope, Intercept and Ideality Factor for Forward Bias

Figure 2: I/V Characteristic Linear Scale

Figure 3: I/V Characteristic Log Scale

1.4 Reverse Bias

Vd (mV)	Id (µA)	$\ln(\mathrm{abs}(\mathrm{Id}))$
-0.48	-0.3	-1.204
-0.94	-0.4	-0.916
-2.13	-0.5	-0.693
-2.7	-0.6	-0.511
-3.9	-0.7	-0.357
-4.58	-0.8	-0.223

Table 3: Measurements of Vd, Id, and $\ln(abs(Id))$

2 Photodiode response to lights of different intensities and wavelengths

2.1 Aim of the Experiment

Investigate the response of a photodiode to different intensities and wavelengths of light emitted by various LEDs and calculate the efficiency of each LED.

2.2 Design

Figure 4: Caption

2.3 V_{out} and I_{out} of LEDs at different intensities

Red LED (750 nm)			Blue LED (450 nm)		
$I_{-}out (mA)$	$V_{-}out (mv)$	Intensity	$I_{-}out (mA)$	$V_{-}out (mV)$	Intensity
2	0.24	1000	0.301	13.9	1000
3	0.32	1500	0.416	19.3	1500
4	0.38	2000	0.572	28.1	2000
Green LED (520 nm)			IR LED (950 nm)		
I_out	$V_{-}out (mV)$	Intensity	I_out	$\mathbf{V}_{ extsf{-}}\mathbf{out}$	Intensity
0.188	33.2	1000	4.51	0.303	1000
0.294	52.4	1500	5.17	0.359	1500
0.371	66.6	2000	6.28	0.456	2000

Table 4: Photodiode response to different LEDs at various intensities

Red LED (750 nm)		IR LED (950 nm)	
Intensity	Efficiency	Intensity	Efficiency
1000	12	1000	6.72
1500	10.67	1500	6.94
2000	9.5	2000	7.26

Table 5: Response of Red and IR LEDs at various intensities

Green LED (520 nm)		Blue LED (450 nm)		
Intensity	Efficiency	Intensity	Efficiency	
1000	17.66	1000	4.62	
1500	17.82	1500	4.64	
2000	17.95	2000	4.91	

Table 6: Response of Green and Blue LEDs at various intensities

Figure 5: V_{out} v/s Intensity for each LED

Figure 6: V_{out} v/s Wavelength for each intensity

3 Application of photodiode as optical signal sensor

3.1 Circuit Design

Figure 7: Experiment 3

3.2 Rise time and Fall time for different Frequencies

Frequency (kHz)	Rise Time (µs)	Fall Time (µs)
1	5.070	3.957
5	3.985	2.404
10	3.393	2.021
15	2.631	1.540
20	2.411	1.321
25	2.938	1.707
30	2.307	2.141
35	2.442	1.427

Table 7: Rise and Fall Times at Various Frequencies

Figure 8: For 1KHz

Figure 9: For 5KHz

Figure 10: For 10KHz

Figure 11: For 15KHz

Figure 12: For 25KHz

Figure 13: For 30KHz

Figure 14: For 35KHz