

EE501

USN

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU)

BANGALORE - 560 054

SEMESTER END EXAMINATIONS - JANUARY 2015

Course & Branch : B.E: Electrical & Electronics Engg.

Semester

Subject

4.

Digital Signal Processing

Max. Marks 100

Subject Code

EE501

Duration : 3 Hrs

Instructions to the Candidates:

· Answer one full question from each unit.

UNIT - I

1. Distinguish between Digital Signal Processing and Analog Signal processing. (06)b) Let $x(n) = \{2,1,1,0,3,2,0,3,4,6\}$ with a 10 point DFT X(k). Evaluate the

(06)

following without explicitly computing the DFT.

 $\Sigma_{k=0}^{9} e^{\frac{-j4\pi k}{5}} X(K) \text{ ii) } \Sigma_{k=0}^{9} |X(k)|^2 \text{ iii) } X(0)$

Derive DFT formula from DTFT.

(80)

2 a) Find the 10 point inverse DFT of (06)

 $X(K) = \{ 3, K=0 \}$

 $1 \le K \le 9$, without explicitly using IDFT formula.

b) Find the N point DFT of the sequence $x(n)=4+\cos^2(2\pi n/N)$, n=0,1,...,N-1(06)

Prove the following properties of DFT

(80)

- Circular frequency shift i)
- ii) Circular time shift
- (iii Parseval's theorem

UNIT - II

a) Perform x(n) (*)_N h(n) for the sequence x(n) and h(n) given below , using (06)overlap and add fast convolution technique $h(n)=\{1,-2,1\}$, $x(n) = \{1, 2, 3, 4, 5, 6, -1, -2, -3, -4, -5, -6\}$ consider block length 6.

b) A designer is having a number of 8 point FFT chips. Show explicitly how he

(06)

should interconnect three chips in order to dompute a 24 point DFT. Find the real valued x(n) using DITFFT method , where the 3 samples of a 4 point DFT is given as X(0)=12, X(1)=1+j2, X(2)=4 also find y(n) where

(80)

 $Y(K)=W_2^kX(K)$ without explicitly using the DFT formula.

(10)(10)

Derive 8 point radix 2 DIF FFT algorithm. The sequence $x[n] = \{1, 2, 3, \overline{3}, 2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$ is filtered through a filter whose impulse response is $h[n] = \{3, 2, 1, 1\}$. Compute the output of the filter y[n] using overlap and save method. Use 9 point circular convolution.

UNIT - III

a) Derive the expression for h(n), using frequency sampling technique for even (06)and odd values of N.

b) Write a note on i) Rectangular window, ii) Hanning window and Hamining (06)window.

Page 1 of 2

EE501

The desired frequency response to pass filter is given by Hd(w)= $\{e^{-j3w}, |w| \le 3\pi/4$

(80)

, 3π/4≤|w|≤π}

Determine the frequency response of the FIR filter, if a Hamming window is used with N=7

- a) Design an ideal band pass filter with frequency response Hd(w)=1 for (12) $\pi/4 \le |w| \le 3\pi/4$. Use windowing technique with $\Delta w = 2.87$ sample(transition width) and $\delta s=0.03$, in your design. Calculate 10 samples of h(n).
 - (80)b) Design a low pass FIR filter using frequency sampling technique having cut off frequency of n/2 rad/sample. The filter should have linear phase and length of 19.

UNIT - IV

Design a LPF using BLT to satisfy the following specifications: 7. a)

(12)

- i. Monotonic stop and pass band,
- ii. -3.01dB cut off frequency of o.5n radian,
- iii. Magnitude down by at least 15 dB at 0.75π radian.

Verify your design and give the difference equation.

(80)

b) Write the advantages and disadvantages of IIR filter.

8.

(06)

 $2\log_{10}(\Omega p/\Omega s)$

b) Distinguish between Butterworth and chebychev IIR filter.

- (06)(80)
- c) Apply bilinear transformation to obtain digital low pass filter to approximate H(S) = 2/(s+1)(s+2). Assume cutoff frequency of 100Hz and sampling frequency of 1kHz. For the analog transfer function determine H(z) using impulse invariant method?

UNIT - V

a) An LTI system is shown in figure below. Write the input- output relationship 9. (12)and

Realize the system in the following forms:

- Direct form I realization. (i)
- (ii) Direct form II realization.
- Draw the transpose of the direct form II structure. (iii)
- b) Realize the following system in:

(80)

i) Direct form ii) Cascade form $H(z)=1+ \frac{3}{4}z^{-1}+ \frac{1}{8}z^{-2}+ \frac{3}{4}z^{-3}+z^{-4}$

10. a) Obtain the cascade and parallel realization and also find the transpose of the (12)parallel form realization for the system function given below.

 $2(1-z^{-1})(1+\sqrt{2}z^{-1}+z^{-2})$ H(z) =----_____, use 1st order and 2nd order system $(1+0.5z^{-1})(1-0.9z^{-1}+0.81z^{-2})$

b) Realize a Linear phase FIR filter with the following impulse response. (80) $h(n) = \delta(n) + \frac{1}{2} \delta(n-1) - \frac{1}{4} \delta(n-2) + \delta(n-4) + \frac{1}{2} \delta(n-3)$. Sive necessary equations. ******

Page 2 of 2