

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по домашнему заданию № 1

Вариант 5

Дисциплина: Дискретная математика

Название домашнего задания: Нахождение максимального потока в сети

Студент гр. ИУ6-42		Бурлаков А.С.		
	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель		Гуренко В.В.		
-	(Полпись, лата)	(И.О. Фамилия)		

ЗАДАНИЕ

Вариант 5.

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	x_8	x_9	x_{10}	<i>x</i> ₁₁	x ₁₂
x_1	1	18	14	15	16	-	ı	ı	ı	ı	1	-
x_2	1	ı	4	1	ı	-	15	ı	1	ı	1	-
x_3	ı	ı	1	ı	ı	12	19	1	ı	_	-	-
x_4	-	-	7	-	5	-	1	1	-	14	-	-
x_5	-	-	-	-	-	-	-	18	-	-	-	-
x_6	-	-	-	-	-	-	-	-	-	-	-	16
<i>x</i> ₇	-	-	-	7	-	5	-	-	9	-	-	-
<i>x</i> ₈	-	ı	-	8	ı	-	-	-	ı	12	10	_
<i>x</i> ₉	-	ı	ı	1	ı	4	ı	ı	1	4	1	14
<i>x</i> ₁₀	-	-	-	-	-	-	11	-	-	_	18	18
<i>x</i> ₁₁	-	-	-	-	-	-	-	-	-	-	-	15
<i>x</i> ₁₂	-	-	-	-	-	-	-	-	-	-	-	-

РЕШЕНИЕ

1)
$$\varphi = 0$$

2) Рассмотрим согласно т.1 следующие пути:

 $\delta = \min(18,\ 15,\ 5,16) = 5$, следовательно увеличеваем поток во всех ребрах пути на 5.

Ребро x7-x6 становится насыщенным $\phi_{\Pi} = 5$

 $\delta = \min(14, 19, 9, 14) = 9$, следовательно увеличеваем поток во всех ребрах пути на 9.

Ребро x7-x9 становится насыщенным $\varphi_{\Pi} = 14$

 $\delta = \min(18-5, 4, 12, 16-5) = 4$, следовательно увеличеваем поток во всех ребрах пути на 4.

Ребро x2-x3 становится насыщенным $\varphi_{\pi} = 18$

 $\delta = \min(14-9,12-4,16-9) = 5$, следовательно увеличеваем поток во всех ребрах пути на 5.

Ребро x1-x3 становится насыщенным $\phi_{\Pi}=23$

 $\delta = \min(15,\ 14,\ 18) = 14$, следовательно увеличеваем поток во всех ребрах пути на 14.

Ребро x4-x10 становится насыщенным $\varphi_{\pi} = 37$

 $\delta = \min(16,\ 18,\ 10,\ 15) = 10$, следовательно увеличеваем поток во всех ребрах пути на 10.

Ребро x8-x11 становится насыщенным $\varphi_{\pi} = 47$

Путь х1-х4-х3-х6-х12

 $\delta = \min(15-14,\ 7,\ 12-9,\ 16-14) = 1$, следовательно увеличеваем поток во всех ребрах пути на 1.

Ребро x1-x4 становится насыщенным $\varphi_{\Pi} = 48$

Путь х1-х5-х8-х10-х12

 $\delta = \min(16-10,\ 18-10,\ 12,\ 18-14) = 4$, следовательно увеличеваем поток во всех ребрах пути на 4.

Ребро x7-x9 становится насыщенным $\varphi_{\pi} = 52$

Путь x1-x2-x7-x4-x5-x8-x10-x11-x12

 $\delta = \min(18-9,\ 15-5,\ 7,\ 4,\ 18-14,\ 12-4,\ 18,\ 15-10) = 4$, следовательно увеличеваем поток во всех ребрах пути на 4.

Ребра x4-x5 и x5-x8 становятся насыщенными $\varphi_{\Pi} = 56$

Путь х1-х2-х7-х4-х3-х6-х12

 $\delta = \min(18-13,\ 15-9,\ 7-4,\ 7,\ 12-10,\ 16-15) = 1$, следовательно увеличеваем поток во всех ребрах пути на 1.

Ребро x6-x12 становится насыщенным $\varphi_{\Pi} = 57$

Вывод: Путей больше нет, согласно теореме 1 имеем $\phi_{\scriptscriptstyle \Pi} = 57$

На входе 14+14+15+14=57, на выходе 16+9+18+14=57, баланс соблюдается.

3) Пытаемся пометить х12 согласно алгоритму разметки сети.

х12 пометить не удается — увеличивающих цепей в сети нет. Согласно теореме 3 имеем ситуацию $\,\phi_{max}\,$

4) В А входят непомеченные вершины при попытке найти увеличивающуюся цепь.

$$A = \{x8, x9, x10, x11, x12\}$$

Дуги, по которым проходит минимальный разрез:

$$(x6, x12), (x7, x9), (x4, x10), (x5, x8)$$

На основании теоремы Форда-Фалкерсона можем сказать:

$$\varphi_{max} = c(x6, x12) + c(x7, x9) + c(x4, x10) + c(x5, x8) = 16 + 9 + 14 + 18 = 57$$

Ответ: $\varphi_{max} = 57$