The CFMIP meeting, 9 Jun. 2015

Changes in Marine Fog in a Future Climate

Hideaki Kawai, Tsuyoshi Koshiro, and Hirokazu Endo

Meteorological Research Institute, JMA

Purposes

- □ Changes in marine fog
- What controls the changes?
- ☐ Impact of Changes in Marine Fog on Cloud Feedback

Used Data

- ☐ AMIP, AMIP+4K and AMIP_future runs using MRI-CGCM3
 - The 31 years average (1979–2009)
 - Model level data (L48)
 - Monthly & Daily Data
- ☐ CMIP5 multi model data
 - Sea Level Pressure

Frequency of occurrence of fog (July)

MRI-CGCM3 (Cloud Fraction at z=1)

KU CALIPSO Cloud Mask 0-240m (2007-2009)

- * Around Kamchatka Peninsula
- * Near Newfoundland
- * North of Iceland
- * Arctic Ocean along Eurasia * Southern Ocean

MRI-CGCM3 seems to represent fog relatively well.

(cf. Teixeira (1999), Kawai et al. (2015))

Vertical Structure of Clouds in the model

North Pacific (July, average: 170E-170W)

Shade: Cloud Fraction or RH Contour: Potential Temperature

based on Daily Data

Future Change in Marine Fog

Decrease: Central N. Pac., Western N. Atl.

Eastern N. Pac: A pair of increase and decrease

Changes in Meteorological Fields

July

Future Change in Marine Fog & Met. Fields

Weakened N. Pac high pressure system Weakened low pressure area over N. American Cnt.

Decrease: Central N. Pac., Western N. Atl.

Increase: Eastern N. Pac.

Future Change in Marine Fog & Met. Fields

Changes in Meteorological Fields - CMIP5 models -

Changes in SLP for CMIP5 models show common characteristics.

Impact of Change in Marine Fog on Cloud Feedback

Contribution of clouds, for example, between 960hPa and the surface, to cloud feedback for short wave radiation is roughly estimated as follows:

CRE due to clouds between 960hPa & Surface for SW

≈ SWup(all sky, at 960hPa) – SWup(clear sky, at 960hPa)
– (SWup(all sky, at surface) – SWup(clear sky, at surface))

- SWup: upward short wave radiative flux
- Downward: positive
- cf. CRE at the top for SW = $SWup(all sky, at z_{top}) SWup(clear sky, at z_{top})$

Impact of Change in Marine Fog on Cloud Feedback

Wind – Cloud relationship

based on Daily Data

clear correlations: between V & cloud fraction between V & in-cloud LWC

in-cloud LWC is increased in AMIP+4K.

← increased q_{sat}

Summary

- ☐ Changes in marine fog
 - (NH) July: Decrease in Central N. Pac., Western N. Atl.
 - Increase in Eastern N. Pac.
 - Jan: A pair of increase and decrease in Eastern N. Pac.
- ☐ Changes in marine fog correspond to changes in sea level pressure patterns
 - (NH) July: Weakened N. Pac high pressure system.
 - Jan: Deepened Aleutian low pressure system near Alaska.
- ☐ Changes in SLP for CMIP5 models show common characteristics.
- □ Impact of Change in Marine Fog on Cloud Feedback is (not ignorable but) not significant.
- ☐ In-cloud LWC is increased in the future climate.

Backup Slides

SWup(all sky, z) – SWup(clear sky, z) Downward: positive

Vertical Structure of Clouds in the model

North Pacific (January, average: 170E-170W)

Shade: Cloud Fraction or RH Contour: Potential Temperature

based on Daily Data

Vertical Structure of Clouds in the model

Southern Ocean (July, average: Zonal)

Shade: Cloud Fraction or RH Contour: Potential Temperature

based on Daily Data