Teil 6: Regressionen

 Das Ziel der Regression ist das Modellieren einer Gleichung oder Formel, die die Beziehung zwischen Variablen am besten beschreibt.

$$y = 2x$$

- Wie finden wir eine Regressionsgerade (Best-Fit-Linie)?
- Betrachten wir ein Datenset mit nur einer Variablen

• Die am besten passende Linie ist hier nur der Mittelwert der

Datenpunkte

- Eine Betriebsleiterin möchte wissen, wann ihre Mitarbeiter zur Arbeit erscheinen
- Die Schicht beginnt um 8:30 Uhr
- Sie nimmt fünf zufällige Zeitkarten und zeichnet die Ankunftsminuten in ein Diagramm ein

Stempel karte	Minuten nach 8:00am
Α	37
В	25
С	27
D	36
E	25
Total:	150
Mittel	30

Was macht y = 30 zur best-fit line?

Betrachten wir die Abweichungen (Residuen)

Wir sehen, dass die Summe der "Abstände" oberhalbwoß ter Geraden, die Summe derjenigen unter der Geraden ausgleicht

Abweichung (E)	Abweichung im Quadrat(SE)
+7	49
-5	25
-3	9
+6	36
-5	25
Quadrat- summe der Abweichungen (SSE)	144

Was ist, wenn wir die Linie verschieben?
Setzen wir sie stattdessen auf $y = \frac{3}{3}$

Wie wirkt sich das auf SSE aus?

Abweichung (E)		ir	ichung n rat(SE)
+7	+6	49	36
-5	-6	25	36
-3	-4	9	16
+6	+5	36	25
-5	-6	25	36
Quadrat- summe der Abweichungen (SSE)		144	149

- Das ist es! Ziel der Regression ist es, die Gerade zu finden, die unsere Daten am besten beschreibt.
- Glücklicherweise müssen wir uns nicht aufs Ausprobieren verlassen.
- Wir haben Algebra!

• Erinnern wir uns an die Gleichung einer Geraden

$$y = mx + b$$
 bei der

- m ist die Steigung darstellt und
- b der Punkt ist, an dem die Gerade die y-Achse schneidet wenn x = 0 (b ist der y-Achsenabschnitt)

• In einer linearen Regression, in der wir versuchen, die Beziehung zwischen Variablen zu formulieren, wird y = mx + b

$$\hat{y} = b_0 + b_1 x$$

• Unser Ziel ist es, den Wert einer abhängigen Variablen (y) auf der Basis einer unabhängigen Variablen (x) vorherzusagen.

$$\hat{y} = b_0 + b_1 x$$

• Wie man b_1 and b_0 ableitet:

$$b_1 = \rho_{x,y} \frac{\sigma_y}{\sigma_x}$$

 $\rho_{x,y} = Pearson Korrelationskoef fizienz$ $\sigma_x, \sigma_y = Standardabweichung$

$$= \frac{\sum (x-\bar{x})(y-\bar{y})}{\sqrt{\sum (x-\bar{x})^2}\sqrt{\sum (y-\bar{y})^2}} \cdot \frac{\sqrt{\frac{\sum (y-\bar{y})^2}{n}}}{\sqrt{\frac{\sum (x-\bar{x})^2}{n}}} = \frac{\sum (x_i-\bar{x})(y_i-\bar{y})}{\sum (x_i-\bar{x})^2}$$

$$\hat{y} = b_0 + b_1 x$$

• Wie man b_1 and b_0 ableitet:

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Einschränkungen der linearen Regression

- Das Anscombe-Quartett zeigt die Fallen auf, wenn man sich auf reine Berechnungen verlässt.
- Jedes Diagramm führt zur selben, berechnete Regressionsgeraden.

Lineare Regression Beispiel

• Ein Manager möchte die Beziehung zwischen der Anzahl der Stunden, die eine Anlage pro Woche in Betrieb ist, und der wöchentlichen Produktion herausfinden.

• Hier ist die **unabhängige Variable** x die Betriebsstunden und die **abhängige Variable** y ist das Produktionsvolumen.

• Der Manager entwickelt die folgende Tabelle:

Produktions- stunden (x)	Produktions- volumen (y)
34	102
35	109
39	137
42	148
43	150
47	158

Stelle die Daten zunächst grafisch dar

Produktions- stunden (x)	Produktions- volumen (y)
34	102
35	109
39	137
42	148
43	150
47	158

gibt es einen linearen Zusammenhang?

$$\hat{y} = b_0 + b_1 x b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} b_0 = \bar{y} - b_1 \bar{x}$$

Führe nun die Kalkulationen durch

Produktions- stunden (x)	Produktions- volumen (y)	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$
34	102	-6	-32	192	36
35	109	-5	-25	125	25
39	137	-1	3	-3	1
42	148	2	14	28	4
43	150	3	16	48	9
47	158	7	24	168	49
40	134	Summe:		558	124
				$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\overline{x})^2$

$$\hat{y} = b_0 + b_1 x b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} b_0 = \bar{y} - b_1 \bar{x}$$

Führe nun die Kalkulationen durch

Produktions- stunden (x)	Produktions- volumen (y)
34	102
35	109
39	137
42	148
43	150
47	158
40	134

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{558}{124} = 4.5$$

$$b_0 = \bar{y} - b_1 \bar{x} = 134 - (4.5 \times 40) = -46$$

$$\widehat{y} = -46 + 4.5x$$

Summe:	558	124
	$\Sigma(x-\overline{x})(y-\overline{y})$	$\Sigma(x-\overline{x})^2$

• Basierend auf dieser Formel, kann man nun berechnen, wie lange die

Produktions- stunden (x)	Produktions- volumen (y)
34	102
35	109
39	137
42	148
43	150
47	158

Anlage laufen sollten, wenn der Manager 125 Einheiten pro Woche produzieren möchte:

$$\hat{y} = b_0 + b_1 x$$

$$125 = -46 + 4.5x$$

$$x = \frac{171}{4.5} = 38 Stunden pro Woche$$

Regressionen mit Excel Data Analysis

Lineare Regressionen mit Python

```
>>> from scipy stats import linregress
\rightarrow > > x = [34, 35, 39, 42, 43, 47]
\Rightarrow \Rightarrow y = [102, 109, 137, 148, 150, 158]
>>> slope = round(linregress(x,y).slope,1)
>>> intercept = round(linregress(x,y).intercept,1)
>>> print(f'y = {intercept} + {slope}x')
y = -46.0 + 4.5x
```

Multiple Regressionsanalyse

• In der linearen Regression haben wir eine unabhängige Variable, die sich auf eine abhängige Variable beziehen kann mit der Formel:

$$\hat{y} = b_0 + b_1 x$$

- Mit der multiplen Regression können wir mehrere unabhängige Variablen gleichzeitig mit einer abhängigen Variablen vergleichen.
- Jede unabhängige Variable erhält einen Index: x_1 , x_2 , x_3 usw.

Die Grundformel wird erweitert:

lineare Regression

$$\hat{y} = b_0 + b_1 x$$

multiple Regression

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \cdots$$

- b_1 ist der Koeffizient für x_1
- b_1 gibt die Veränderung von \hat{y} an, für eine gegebene Änderung von x_1 , wobei alles andere konstant bleibt

Die Formeln für die Koeffizienten werden auch erweitert:

lineare Regression

$$b_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Die Formeln für die Koeffizienten werden auch erweitert:

Multiple Regression

 $b_0 = \overline{y} - b_1 \overline{x_1} - b_2 \overline{x_2}$

$$b_{1} = \frac{\sum (x_{2} - \overline{x_{2}})^{2} \sum (x_{1} - \overline{x_{1}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{2} - \overline{x_{2}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

$$b_{2} = \frac{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})(y - \overline{y}) - \sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}) \sum (x_{1} - \overline{x_{1}})(y - \overline{y})}{\sum (x_{1} - \overline{x_{1}})^{2} \sum (x_{2} - \overline{x_{2}})^{2} - (\sum (x_{1} - \overline{x_{1}})(x_{2} - \overline{x_{2}}))^{2}}$$

Multiple Regression

 Zum Beispiel könnte eine Gebrauchtwagenhändler wissen wollen, welche Variablen den Nettogewinn beeinflussen

• Er erstellt eine Liste von Faktoren auf, die mit dem Profit korrelieren

könnten:

Alter Marke
Preis
Farbe Stil

Multiple Regression

- Sie wollen die Korrelation jeder Variable zum Nettogewinn messen
- Allerdings könnten einige Faktoren untereinander miteinander korrelieren:

Multiple Regression

 Das Alter eines Autos könnte sich direkt auf den Verkaufspreis auswirken

 Man kann hier keinen Faktor verändern ohne dass es einen anderen beeinflusst

• Dies wird Multikollinearität genannt

Multiple Regressionsanalyse Beispiel

- Eine Apotheke liefert Medikamente an die umliegenden Gemeinden.
- Die Fahrer können pro Lieferung mehrere Stopps einlegen.
- Der Eigentümer möchte die "Länge der Zeit", die eine Lieferung benötigt, basierend auf einer oder zwei zusammenhängenden Variablen vorhersagen.

- Betrachten wir zuerst, welche Variablen sich auf die Lieferzeit auswirken könnten:
 - Anzahl der Stopps
 - die zu fahrende Distanz
 - Außentemperatur
 - Benzinpreise

• Erstelle nun für jede Variable gegen die Lieferzeit ein Diagramm, um zu sehen, ob es eine Beziehung gibt

Zeit zu Entfernung

Zeit zu Stopps

Zeit zu Temperatur

Zeit zu Benzinpreis

- Sobald wir unsere Variablen x_1 und x_2 gewählt haben, testen wir normalerweise auf **Multikollinearität**
- Wir wollen wissen, ob unsere beiden unabhängigen Variablen eng miteinander verbunden sind
- Wenn ja, ist es sinnvoll, eine davon zu verwerfen!

Eine Lieferung könnte an einen weit entfernten Kunden oder an eine Gruppe von eng aneinander liegenden Haltestellen gehen.

y = Lieferzeit (Minuten)

 $x_1 = Anzahl der Stopps$

 $x_2 = Entfernung(km)$

y	x_1	x_2	$(y-\overline{y})$	$(x_1-\overline{x_1})$	$(x_1-\overline{x_1})^2$	$(x_2-\overline{x_2})$	$(x_2-\overline{x_2})^2$	$(x_1-\overline{x_1})(y-\overline{y})$	$(x_2-\overline{x_2})(y-\overline{y})$	
29	1	8	-1	-1	1	2	4	1	-2	-2
31	3	4	1	1	1	-2	4	1	-2	-2
36	2	9	6	0	0	3	9	0	18	0
35	3	6	5	1	1	0	0	5	0	0
19	1	3	-11	-1	1	-3	9	11	33	3
\overline{y}	$\overline{x_1}$	$\overline{x_2}$			$\Sigma(x_1-\overline{x_1})^2$		$\Sigma(x_2-\overline{x_2})^2$	$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	$\Sigma(x_1-\overline{x_1})(x_2-\overline{x_2})$
30	2	6			4		26	18	47	-1

y = Lieferzeit (Minuten)

 $x_1 = Anzahl der Stopps$

 $x_2 = Entfernung (km)$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

$$\frac{\Sigma(x_1-\overline{x_1})^2}{4}$$

$\Sigma(x_2-\overline{x_2})^2$	$\Sigma(x_1-\overline{x_1})(y-\overline{y})$	$\Sigma(x_2-\overline{x_2})(y-\overline{y})$	
26	18	47	-1

y = Lieferzeit (Minuten)

 $x_1 = Anzahl der Stopps$

 $x_2 = Entfernung (km)$

$$\hat{y} = 8 + 5x_1 + 2x_2$$

$$b_1 = \frac{(26)(18) - (-1)(47)}{(4)(26) - ((-1))^2} = \frac{515}{103} = 5$$

$$b_2 = \frac{(4)(47) - (-1)(18)}{(4)(26) - ((-1))^2} = \frac{206}{103} = 2$$

$$b_0 = \overline{y} - b_1 \overline{x_1} - b_2 \overline{x_2}$$

$$= 30 - (5)(2) - (2)(6)$$

$$= 30 - 10 - 12 = 8$$

$$\frac{\Sigma(x_1-\overline{x_1})^2}{4}$$

$$\frac{\Sigma(x_2 - \overline{x_2})^2}{26} \frac{\Sigma(x_1 - \overline{x_1})(y - \overline{y})}{18} \frac{\Sigma(x_2 - \overline{x_2})(y - \overline{y})}{47} \frac{\Sigma(x_1 - \overline{x_1})(x_2 - \overline{x_2})}{-1}$$

y = Lieferzeit (Minuten)

 $x_1 = Anzahl \ der \ Stopps$

 $x_2 = Entfernung (km)$

$\hat{y} = 8 +$	$5x_1$	$+2x_{2}$
-----------------	--------	-----------

y	x_1	x_2
29	1	8
31	3	4
36	2	9
35	3	6
19	1	3

Basierend auf unserer Analyse haben Apothekenlieferungen eine feste Fahrtzeit von 8 Minuten, plus 5 Minuten für jeden Stopp, und 2 Minuten für jeden gefahrenen Kilometer

Multiple Regression in Excel

- Die Schritte sind die gleichen wie bei der linearen Regression,
- außer man wählt einen breiten x-Achsen Abschnitt aus

Multiple Regression in Excel

Multiple Regression in Python

```
>>> from sklearn.linear_model import LinearRegression
\rightarrow \rightarrow x1, x2 = [1,3,2,3,1], [8,4,9,6,3]
>>> y = [29,31,36,35,19]
>>> reg = LinearRegression()
>>> reg.fit(list(zip(x1,x2)), y)
>>> b1,b2 = reg.coef_[0], reg.coef_[1]
>>> b0 = reg.intercept_
>>> print(f'y = \{b0:.\{3\}\} + \{b1:.\{3\}\}x1 + \{b2:.\{3\}\}x2')
y = 8.0 + 5.0x1 + 2.0x2
```

Als nächstes: Chi-Quadrat Analyse