Arbeitsunterlagen zu FOS ET (12.1 und 12.6)

Thomas Maul

Brühlwiesenschule, Hofheim

V 0.1 - im Aufbau Stand: 7. Oktober 2025

Für eigene Teile gilt:

Teil I

Themenfeld 12.1 - Gleichstromnetzanalyse

Zweipole

Überlagerungssatz

Zweipole

Zweipole

In der Schaltung unten sollen die Widerstände R_3 bis R_5 als ein virtuelles Bauteil dargestellt werden.

Werte für Berechnung

$$R_{1} = 10\Omega$$

 $R_{2} = 20\Omega$
 $R_{3} = 30\Omega$
 $R_{4} = 40\Omega$
 $R_{5} = 50\Omega$
 $U_{q1} = 5V$,
 $U_{q2} = 12V$

Berechnung des Ersatzwiderstands

 $R_{21145} = 22.5\Omega$

$$R_{45} = 40\Omega + 50\Omega$$
 (2)
 $R_{45} = 90\Omega$ (3)
 $\frac{1}{R_{3||45}} = \frac{1}{R_3} + \frac{1}{R_45}$ (4)
 $\frac{1}{R_{3||45}} = \frac{1}{30\Omega} + \frac{1}{90\Omega}$

(5)

(6)

 $R_{45} = R4 + R5$ (1)

Abbildung: Berechnung des Erstatwiderstands

Übungen zu Zweipole I

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega$$
 $R3 = R5 = 230\Omega$ $R4 = 470\Omega$
b $R1 = R2 = R3 = R5 = 230\Omega$ $R4 = 470\Omega$
c $R1 = R2 = R4 = R5 = 230\Omega$ $R3 = 470\Omega$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 1

Übungen zu Zweipole II

Berechnen Sie jeweils den Ersatzwiderstand zwischen den Klemmen C und D zur Schaltung unten.

a
$$R1 = R2 = 220\Omega$$
 $R3 = R5 = 230\Omega$ $R4 = 470\Omega$
b $R1 = R2 = R3 = R5 = 230\Omega$ $R4 = 470\Omega$
c $R1 = R2 = R4 = R5 = 230\Omega$ $R3 = 470\Omega$

Abbildung: Schaltung zu Übung Ersatzzweipol - Teil 2

Überlagerungssatz

Inhalt

Zweipole

Überlagerungssatz Nur Quelle U1 aktiv

Nur Quelle U2 aktiv

Überlagerungssatz

Zwei Spannungsquellen U1 und U2

Abbildung: Zwei Quellen aktiv

Arbeitsunterlagen zu FOS ET (12.1 und 12.6)

Überlagerungssatz

└Nur Quelle U1 aktiv

Nur Quelle U1 aktiv

Abbildung: Nur Quelle 1 aktiv

└Nur Quelle U1 aktiv

Berechnung Ersatzwiderstand I

$$U_{2'} = I_2 * R_2 ||R_3||R_4 + R_5$$

$$U_{2'} = I_2 * \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}$$

(7)

(8)

 I_2 ist nicht bekannt.

└ Nur Quelle U1 aktiv

Berechnung Ersatzwiderstand II

$$U_{q1} = U_1 + U_2$$

$$U_2 = U_{q1} * \frac{R_2 ||R3||R45}{R! + R_2 ||R3||R45}$$
(10)

└Nur Quelle U1 aktiv

Einsetzen I

$$U_{2'} = U_{q1} * \frac{R_2 ||R3||R45}{R1 + R_2 ||R3||R45}$$

$$U_{2'} = U_{q1} * \frac{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}$$
(12)

Arbeitsunterlagen zu FOS ET (12.1 und 12.6)

Überlagerungssatz

Einsetzen II

└ Nur Quelle U1 aktiv

$$U_{2'} = U_{q1} * rac{R_2||R3||R45}{R1 + R_2||R3||R45}$$
 $U_{2'} = U_{q1} * rac{rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}{R_1 + rac{1}{rac{1}{R_2} + rac{1}{R_3} + rac{1}{R_4 + R_5}}}$

$$U_{2'} = 5V * \frac{22,5\Omega}{10\Omega + 22,5\Omega}$$

$$U_{2'} = 5V * 0,69$$

$$U_{2'} = 3,46V$$
(14)
(15)

└Nur Quelle U2 aktiv

Nur Quelle U2 aktiv

Abbildung: Nur Quelle zwei aktiv

Nur Quelle U2 aktiv

Quelle 2, Einsetzen I

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$

(17)

(18)

Nur Quelle U2 aktiv

Quelle 2, Einsetzen II

$$U_{2''} = U_{q2} * \frac{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$

$$U_{2''} = 12 V * \frac{\frac{1}{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega}}}{40\Omega + 50\Omega + \frac{1}{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega}}}$$

$$U_{2''} = 0,24 V$$
(21)

Addition

Nur Quelle U2 aktiv

Zum Abschluss werden die beiden Teilspannungen addiert.

$$U_2 = U_{2'} + U_{2''}$$
 (22)
 $U_2 = 3,46V + 0,24V$ (23)
 $U_2 = 3,7V$ (24)

Teil II

Themenfeld 12.6 - Elektrisches und magnetisches Feld

Elektronen und Atome

- Die Materie besteht aus Atomen.
- Kern: Protonen und Neutronen, Hülle: Elektronen
- Bei Leitern: Elektronen ,mobil', bei Nichtleitern fest(er)
- ▶ Reibung von 2 Nichtleitern (Stoff und Glasstab)⇒ Ladungstrennung

Ladungen, Kräfte

Katze mit Styroporflocken

Abbildung: Katze mit Styroporflocken

1

¹Quelle: Von Original image: Sean McGrath from Saint John, NB, CanadaDerived image: Black Rainbow 999 - Diese Datei ist ein Ausschnitt aus einer anderen Datei, CC BY 2.0,

Anziehung und Abstoßung von Ladungen

- gleichnamige Ladungen stoßen sich ab.
- ungleichnamige Ladungen ziehen sich an.
- ▶ bei Elektrostatik gibt es keine Bewegung, nur Kräfte

Wiederholung Vektoren

Abbildung: Zwei Vektoren in zweidimensionalen Raum

Addition von Vektoren

Abbildung: Zwei Vektoren in zweidimensionalen Raum

Literatur

Wikibooks https://de.wikibooks.org/wiki/Elektrostatik

Marinescu, Marlene Elektrische und magnetische Felder, Eine praxisorientierte
Einführung; A 3 (2012); Springer