Homework 7

D. Zack Garza

November 6, 2019

Contents

T	Problem 1	1
	1.1 Part 1	1
	1.2 Part 2	2
2	Problem 2	3
	2.1 Part 1	3
	2.2 Part 2	3
3	Problem 3	3
	3.1 Part 1	3
	3.2 Part 2	4
	3.3 Part 3	5
4	Problem 4	6
5	Problem 5	7
	5.1 Part (a)	
	5.2 Part (b)	8
	5.3 Part (c)	8

1 Problem 1

1.1 Part 1

In order for IS to be a submodule of A, we need to show the following implication:

$$x \in IS, \ a \in A \implies xa, ax \in IS.$$

Suppose $x \in IS$. Then by definition, $x = \sum_{i=1}^{n} r_i a_i$ for some $r_i \in R, a_i \in A$.

But then

$$xa = \left(\sum_{i=1}^{n} r_i a_i\right) a$$
$$= \sum_{i=1}^{n} r_i a_i a$$
$$:= \sum_{i=1}^{n} r_i a'_i,$$

where $a'_i := a_i a$ for each i, which is still an element of A since A itself is a module and thus closed under multiplication.

But this expresses xa as an element of IS. Similarly, we have

$$ax = a \left(\sum_{i=1}^{n} r_i a_i \right)$$

$$= \sum_{i=1}^{n} a r_i a_i a$$

$$\coloneqq \sum_{i=1}^{n} r_i a a_i,$$

$$\coloneqq \sum_{i=1}^{n} r_i a'_i,$$

and so $ax \in IS$ as well.

1.2 Part 2

Letting $R/I \curvearrowright A/IA$ be the action given by $r+I \curvearrowright +IA := ra+IA$, we need to show the following:

- r.(x + y) = r.x + r.y,
- (r+r').x = r.x + r'.x,
- (rs).x = r.(s.x), and
- 1.x = x.

Letting \oplus denote the addition defined on cosets, we have

$$\begin{split} r &\curvearrowright (x + IA \oplus y + IA) \coloneqq r \curvearrowright x + y + IA \\ &\coloneqq r(x + y) + IA \\ &= rx + ry + IA \\ &\coloneqq rx + IA \oplus ry + IA \\ &\coloneqq (r \curvearrowright x + IA) \oplus (r \curvearrowright y + IA). \end{split}$$

$$(r+s) \curvearrowright x + IA := (r+s)x + IA$$

 $:= rx + sx + IA$
 $:= rx + IA \oplus sx + IA$
 $:= (rs \curvearrowright IA) \oplus (sx \curvearrowright IA).$

$$(rs) \curvearrowright x + IA := rsx + IA$$

= $r(sx) + IA$
:= $r \curvearrowright (sx + IA)$
= $r \curvearrowright (s \curvearrowright x + IA)$.

$$1 \curvearrowright x + IA := 1x + IA = x + IA$$
.

2 Problem 2

2.1 Part 1

We want to show that every simple R-module M is cyclic, i.e. if the only ideals of M are (0) and M itself, that $M = \langle m \rangle$ for some element $m \in M$.

Towards a contradiction, let M be a simple R-module and suppose M is not cyclic, so $M \neq \langle m \rangle$ for any $m \in M$. But then let $a \in M$ be an arbitrary nontrivial element; then (a) is a non-empty ideal (since it contains a), so $(a) \neq 0$. Since M is simple, we must have (a) = M, a contradiction.

2.2 Part 2

Let $\phi:A\to A$ be a module endomorphism on a simple module A. Then im $\phi:=\phi(A)$ is a submodule of A. Since A is simple, we have either im $\phi=0$, in which case ϕ is the zero map, or im $\phi=A$, so ϕ is surjective. In this case, we can also consider $\ker\phi$, which is a submodule of A. Since A is simple, we can again only have $\ker\phi=A$, which can not happen if ϕ is not the zero map, or $\ker\phi=0$, in which case ϕ is both a surjective and an injective map and thus an isomorphism of modules.

3 Problem 3

3.1 Part 1

We want to show that if A, B are R-modules then $X = (\text{hom}_{R\text{-mod}}(A, B), + \text{ is an abelian group.}$ Let $f, g, h \in X$, we then need to show the following:

- a. Closure: $f + g \in X$
- b. Associativity: f + (g + h) = (f + g) + h

c. Identity: $id \in X$ d. Inverses: $f^{-1} \in X$

e. Commutativity: f + g = g + f

Closure: This follows from the definition, because $(f+g) \curvearrowright x := f(x) + g(x)$ pointwise, which is well-defined homomorphism $A \to B$.

Associativity: We have

$$f + (g+h) \curvearrowright x := f(x) + (g+h)(x)$$
$$:= f(x) + (g(x) + h(x))$$
$$= (f(x) + g(x)) + h(x)$$
$$= (f+g) + h \curvearrowright x.$$

Identity: We can define $\mathbf{0}: A \to B$ by $\mathbf{0}(x) = 0 \in B$. Then

$$(f + \mathbf{0}) \curvearrowright x = f(x) + 0 = f(x) = 0 + f(x) = (\mathbf{0} + f) \curvearrowright x.$$

Inverses: Given $f \in X$, we can define $-f : A \to B$ as -f(x) = -x. Then

$$(f+-f) \curvearrowright x = f(x) + -f(x) = f(x) - f(x) = x - x = 0 = \mathbf{0} \curvearrowright x$$

 $(-f+f) \curvearrowright x = -f(x) + f(x) = -f(x) + f(x) = -x + x = 0 = \mathbf{0} \curvearrowright x.$

Commutativity: Since B is a module, by definition (B, +) is an abelian group. Thus

$$(f+q) \curvearrowright x = f(x) + g(x) = g(x) + f(x) = (g+f) \curvearrowright x.$$

3.2 Part 2

By part 1, $(\hom_{R-\text{mod}}(A, A), +)$ is an abelian group, We just need to check that $(\hom_R(A, A), \circ)$ is a monoid, i.e.:

• Associativity: $f \circ (g \circ h) = (f \circ g) \circ h$

• Identity: $id \circ f = f$

• Closure: $f \circ g \in \text{hom}_{R\text{-mod}}(A, A)$

Associativity: We have

$$f \circ (g \circ h) \curvearrowright x := (f \circ (g \circ h))(x)$$

$$= f((g \circ h)(x))$$

$$= f(g(h(x)))$$

$$= (f \circ g)(h(x))$$

$$= ((f \circ g) \circ h)(x)$$

$$:= (f \circ g) \circ h \curvearrowright x.$$

Identity: Take $id_A: A \to A$ given by $id_A(x) = x$, then

$$f \circ \mathrm{id}_A \curvearrowright x = f(\mathrm{id}_A(x)) = f(x) = \mathrm{id}_A(f(x)) = \mathrm{id}_A \circ f \curvearrowright x.$$

Closure: If $f:A\to A$ and $g:A\to A$ are homomorphisms, then $f\circ g:A\to A$ as a set map, and is an R-module homomorphism because

$$f \circ g \curvearrowright (r+s)(x+y) = f(g((r+s)(x+y)))$$

$$= f((r+s)(g(x) + g(y)))$$

$$= (r+s)(f(g(x)) + f(g(y)))$$

$$= (f \curvearrowright (r+s)(x+y)) \circ (g \curvearrowright (r+s)(x+y)).$$

3.3 Part 3

For arbitrary $x, y \in A$, we need to check the following:

a.
$$f \curvearrowright (x+y) = f \curvearrowright x+f \curvearrowright y$$

b.
$$(f+g) \curvearrowright x = f \curvearrowright x + g \curvearrowright x$$

c.
$$f \circ g \curvearrowright x = f \curvearrowright (g \curvearrowright x)$$

d.
$$id_a \curvearrowright x = x$$

For (a):

$$\begin{split} f &\curvearrowright (x+y) \coloneqq f(x+y) \\ &= f(x) + f(y) \qquad \text{since } f \text{ is a homomorphism} \\ &= f \curvearrowright x + f \curvearrowright y \end{split}$$

For (b):

$$(f+g) \curvearrowright x = (f+g)(x)$$

$$= f(x) + g(x)$$

$$= f \curvearrowright x + g \curvearrowright x.$$

For (c):

$$f \circ g \curvearrowright x = (f \circ g)(x)$$

$$= f(g(x))$$

$$= f \curvearrowright g(x)$$

$$= f \curvearrowright (g \curvearrowright x).$$

For (d):

$$id_A \curvearrowright x = id_A(x) = x.$$

4 Problem 4

Injectivity: We have the following situation:

where we would like to show that f is a monomorphism, i.e. that $\ker f = 0$. So let $x \in \ker f$, so $y := f(x) = 0 \in B_3$.

We will show that $x = 0 \in A_3$:

- Since $y = 0 \in B_3$, applying $B_3 \to B_4$ yields $y \mapsto 0 \in B_4$ since these maps are homomorphisms and always map zero to zero.
- Pull back $0 \in B_4$ to $0 \in B_3$ along α_4 , which can be done since α_4 is injective, giving $0 \in A_4$.
- Since this is 0 in A_4 , it is in the kernel of $A_3 \to A_4$, yielding some $x \in A_3$.
- By commutativity of the third square, $x \mapsto f(x)$ under $f: A_3 \to B_3$.
- Since $x \in \ker(A_3 \to A_4) = \operatorname{im}(A_2 \to A_3)$ by exactness, there is some $\alpha \in A_2$ such that $\alpha_2(a) = x \in A_3$.
- By injectivity of α_2 , a maps to a unique element $\alpha_2(a) \in B_2$.
- By commutativity of the middle square, since $a \in A_2 \mapsto 0 \in B_3$, we must have $\alpha_2(a) \mapsto 0 f(x)$ under $B_2 \to B_3$.
- Then $\alpha_2(a) \in \ker(B_2 \to B_3) = \operatorname{im}(B_1 \to B_2)$, so it pulls back to some $b \in B_1$.
- By surjectivity of α_1 , b pulls back to some $a' \in A_1$.
- By commutativity of square 1, $a' \mapsto a$ under $A_1 \to A_2$.
- So $a \mapsto x$ under $A_1 \to A_3$.
- But then $a \in \text{im } (A_1 \to A_2) = \text{ker}(A_2 \to A_3)$, so $a \mapsto 0$ under $A_1 \to A_3$.
- So x = 0 as desired.

Surjectivity: We now have this situation:

$$A_{2} \longrightarrow A_{3} \longrightarrow A_{4} \longrightarrow A_{5}$$

$$\downarrow \alpha_{2} \qquad \qquad \downarrow f \qquad \qquad \downarrow \alpha_{4} \qquad \qquad \downarrow \alpha_{5}$$

$$B_{2} \longrightarrow B_{3} \longrightarrow B_{4} \longrightarrow B_{5}$$

Let $y \in B_3$; we want to then show that there exists an $x \in A_3$ such that f(x) = y.

- Apply $B_3 \to B_4$ to y to obtain $y_4 \in B_4$.
- By surjectivity of α_4 , this pulls back to some $a_4 \in A_4$.
- Also by exactness of $B_3 \to B_4 \to B_5$, y_4 pushes forward to $0 \in B_5$
- By injectivity of α_5 , this pulls back to $0 \in A_5$.
- By commutativity of the right square, $y_4 \mapsto 0$ under $A_4 \rightarrow A_5$.
- Since $a_4 \in \ker(A_4 \to A_5)$, it pulls back to some $x \in A_3$ by exactness of $A_3 \to A_4 \to A_5$.
- Then $f(x) \in B_3$, and it remains to show that f(x) = y.
- By commutativity of the middle square, $f(x) \mapsto y_4$ under $B_3 \to B_4$.
- Since $a \mapsto y_4$ we as well, we have $z := f(x) y \in B_3$ maps to $0 \in B_4$.
- Since $z \in \ker(B_3 \to B_4)$, by exactness it pulls back to some $b_2 \in B_2$.
- By surjectivity of α_2 , this pulls back to some $a_2 \in A_2$.
- By commutativity of the first square, $a_2 \mapsto z \in B_3$.
- $a_2 \mapsto a_3 \in A_3$, where a_3 may not equal x, but $f(a_3) = z := f(a) y$.
- Then $f(a_3) = f(x) y \implies y = f(x) f(a_3) = f(x a_3)$ since f is a homomorphism.
- This shows that $x a_3 \mapsto y$ under f, which is the element we wanted to produce.

5 Problem 5

5.1 Part (a)

We want to show that if $(p) \leq R$ is a prime ideal then R/(p) is a field, so we'll proceed by letting $x + (p) \in R/(p)$ be arbitrary where $x \notin (p)$ and producing a multiplicative inverse.

Since R is a principal ideal domain, prime ideals are maximal, so (p) is maximal. Then $x \in R \setminus (p)$, so define

$$I := \{ p + rx \ni p \in (p), r \in R \} \triangleleft R,$$

which is an ideal in R.

In particular, since $x \notin (p)$, we have a strict containment (p) < I, but since (p) was maximal this forces I = R.

Then $1 \in I$, so there exists some p, r such that p + rx = 1, i.e. $rx - 1 \in (p)$.

But then

$$r + (p) \cdot x + (p) = rx + (p) = 1 + (p),$$

which says that $(x + (p))^{-1} = r + (p)$ in R/(p).

5.2 Part (b)

Images and kernels of module homomorphisms are always submodules, so define

$$\phi: A \to A$$
$$x \mapsto px.$$

This is a module homomorphism, and

$$\begin{split} &\text{im } \phi \coloneqq \{px \ \ni x \in A\} \coloneqq pA, \\ &\text{ker } \phi \coloneqq \{a \in A \ \ni pA = 0\} \coloneqq A[p]. \end{split}$$

5.3 Part (c)

Since R/(p) is a field, we just need to show that $A/pA \curvearrowright R/(p)$ defines a module. $r \cdot (x+y) = rx + ry$:

$$\begin{aligned} r+(p) &\curvearrowright x+pA+y+pA \coloneqq r+(p) \curvearrowright x+y+pA \\ &\coloneqq r(x+y)+pA \\ &= rx+ry+pA \\ &\coloneqq rx+pA+ry+pA \\ &\coloneqq r \curvearrowright x+pA \oplus r \curvearrowright y+pA. \end{aligned}$$