Chapter 6 of Tuckman Measures of Price Sensitivity Based on Parallel Yield Shifts

Parallel Yield Shifts

- Bonds are functions of their yields.
- Assume that yields shifts in parallel, we can calculate DV01 or duration and find out hedging ratio efficiently.

Bonds as functions of yields

 Yield-based measures assume that the yield of a security is the risk factor

$$P(y) = \frac{100c}{2} \sum_{t=1}^{2T} \frac{1}{\left(1 + \frac{y}{2}\right)^t} + \frac{100}{\left(1 + \frac{y}{2}\right)^{2T}}$$

or

$$P(y) = \frac{100c}{y} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right) + \frac{100}{\left(1 + \frac{y}{2}\right)^{2T}}$$

Duration and DV01

Recall that

$$D = -\frac{1}{P} \frac{dP}{dy}$$

and

$$DV01 = \frac{-P}{10000} \frac{1}{P} \frac{dP}{dy} = \frac{-1}{10000} \frac{dP}{dy}$$

Yield-Based Duration

 Taking the negation of the derivative of the above two price expressions, we obtain

$$D = \frac{1}{P} \frac{1}{1 + \frac{y}{2}} \left[\frac{100c}{2} \sum_{t=1}^{2T} \frac{t}{2} \frac{1}{\left(1 + \frac{y}{2}\right)^t} + T \frac{100}{\left(1 + \frac{y}{2}\right)^{2T}} \right]$$

or

$$D = \frac{1}{P} \left[\frac{100c}{y^2} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right) + T \left(1 - \frac{c}{y} \right) \frac{100}{\left(1 + \frac{y}{2}\right)^{2T+1}} \right]$$

An Example

 Table 4.6 calculates the DV01 and duration of the U.S. Treasury 2s due May 31, 2015, as of May 28, 2010, for the market yield of 2.092%.

TABLE 4.6 DV01 and Duration Calculations for the $2\frac{1}{8}$ s of May 31, 2015, as of May 28, 2010, at a Yield of 2.092 Percent

Date	Term	Cash Flow	Present Value	Time- Wtd. PV	% of Wtd. Sum
11/30/10	0.5	1.0625	1.0515	.5258	.1%
5/31/11	1.0	1.0625	1.0406	1.0406	.2%
11/30/11	1.5	1.0625	1.0298	1.5448	.3%
5/31/12	2.0	1.0625	1.0192	2.0384	.4%
11/30/12	2.5	1.0625	1.0086	2.5216	.5%
5/31/13	3.0	1.0625	.9982	2.9946	.6%
11/30/13	3.5	1.0625	.9879	3.4575	.7%
5/31/14	4.0	1.0625	.9776	3.9105	.8%
11/30/14	4.5	1.0625	.9675	4.3538	.9%
5/31/15	5.0	101.0625	91.0749	455.3746	95.3%
Total			100.1559	477.7621	
DV01 Duration		.04728 4.7208			

Table 4.6

DV01 and **Duration** for **Zero Coupon Bonds**

• Let *c*=0 in

$$D = \frac{1}{P} \left[\frac{100c}{y^2} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right) + T \left(1 - \frac{c}{y} \right) \frac{100}{\left(1 + \frac{y}{2}\right)^{2T+1}} \right]$$

$$DV01 = \frac{1}{10,000} \left[\frac{100c}{y^2} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right) + T\left(1 - \frac{c}{y}\right) \frac{100}{\left(1 + \frac{y}{2}\right)^{2T+1}} \right]$$

We obtain

$$D_{c=0} = \frac{T}{\left(1 + \frac{y}{2}\right)}$$

$$DV01_{c=0} = \frac{T}{100\left(1 + \frac{y}{2}\right)^{2T+1}} = \frac{TP}{10,000\left(1 + \frac{y}{2}\right)}$$

Duration and DV01 for Par Bonds

• For a par bond, take P=100 and c=y, we have

$$D_{c=y} = \frac{1}{y} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right)$$

$$DV01_{c=y} = \frac{1}{100y} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right)$$

Duration and DV01 for Perpetuities

• Let $T \to +\infty$, we obtain

$$D_{T=\infty} = \frac{1}{y}$$

$$DV01_{T=\infty} = \frac{1}{100} \frac{c}{y^2}$$

Yield-Based Convexity

The general formula for convexity is

$$C = \frac{1}{P} \frac{1}{\left(1 + \frac{y}{2}\right)^2} \left[\frac{100c}{2} \sum_{t=1}^{2T} \frac{t}{2} \frac{t+1}{2} \frac{1}{\left(1 + \frac{y}{2}\right)^t} + T(T+.5) \frac{100}{\left(1 + \frac{y}{2}\right)^{2T}} \right]$$

Table 4.6

Yield-Based Convexity

• Setting c=0 and $P=100\left(1+\frac{\gamma}{2}\right)^{-2T}$, we obtain

$$C_{c=0} = \frac{T(T+.5)}{\left(1+\frac{y}{2}\right)^2}$$

Convexity of Par Bonds

Differentiate

$$P(y) = \frac{100c}{y} \left(1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right) + \frac{100}{\left(1 + \frac{y}{2}\right)^{2T}}$$

twice and set c=y, we obtain

$$C_{c=y} = \frac{2}{y^2} \left[1 - \frac{1}{\left(1 + \frac{y}{2}\right)^{2T}} \right] - \frac{2T}{y\left(1 + \frac{y}{2}\right)^{2T+1}}$$

THE BARBELL VERSUS THE BULLET

TABLE 4.7	Data on Three U.S. Treasury Bonds as of May 28, 2010						
Coupon	Maturity	Price	Yield	Duration	Convexity		
$2\frac{1}{2}$	3/31/15	102.5954	2.025%	4.520	23.4		
$3\frac{3}{8}$	11/15/19	100.8590	3.288%	8.033	74.8		
$2\frac{1}{2}$ $3\frac{3}{8}$ $4\frac{3}{8}$	11/15/39	102.7802	4.221%	16.611	389.7		

 The three bonds in the table have maturities of approximately 5 years, 10 years, and 30 years, respectively.

- Two strategies
 - -bullet investment in the 10-year 3%s
 - barbell portfolio of the shorter maturity, 5-year 2½s, and the longer maturity, 30-year 43/8s.
- In particular, the barbell portfolio would be constructed to cost the same and have the same duration as the bullet investment.

• Let V^5 and V^{30} be the value in the barbell portfolio of the 5-year and 30-year bonds, respectively. Then, by matching the value

$$V^5 + V^{30} = 100,859,000$$

and the duration

$$\frac{V^5}{100,859,000} \times 4.520 + \frac{V^{30}}{100,859,000} \times 16.611 = 8.033$$

• We have $V^5 = 71.555 m and $V^{30} = 29.304 m (70.95% and 29.05% of the portfolio).

Finally, the convexity of the portfolio

$$70.95\% \times 23.4 + 29.05\% \times 389.7 = 129.8$$

 An insight is that spreading out the cash flows of a portfolio, without changing duration, raises convexity.

 What then is the disadvantage of the barbell portfolio? The weighted yield of the barbell portfolio is

$$70.95\% \times 2.025\% + 29.05\% \times 4.221\% = 2.663\%$$

 Hence, the barbell will not do as well as the bullet portfolio if yields remain at current levels.

Limitations of Duration and Convexity

- Two major limitations
 - First, they are defined only for securities with fixed cash flows.
 - Second, as will be seen shortly, their use implicitly assumes parallel shifts in yield, which is not a particularly good assumption.

Yield-based risk metrics

- Yet there are several reasons fixed income professionals must understand these measures.
 - First, these measures of price sensitivity are simple to compute, easy to understand, and, in many situations, reasonable to use.
 - Second, these measures are already widely used in the financial industry.
 - Third, much of the intuition gained from a full understanding of these measures carries over to more general measures of price sensitivity.