RACHUNEK PRAWDOPODOBIEŃSTWA 1R LISTA ZADAŃ NR 5

- **1.** Czy λ -układ jest zawsze σ -ciałem?
- 2. Niech X i Y będą zmiennymi losowymi. Oznaczmy przez μ_X i μ_Y ich rozkłady. Pokaż, że rodzina

$$\mathcal{L} = \{ A \in \mathcal{B}(\mathbb{R}) : \ \mu_X(A) = \mu_Y(A) \}.$$

jest λ -układem.

 ${\bf 3}^*$. Dane są miary probabilistyczne μ na $\mathbb R$ oraz ν na $\mathbb R^2$ takie, że dla dowolnych s,t

$$\mu((-\infty, s]) \cdot \mu([t, \infty)) = \nu((-\infty, s] \times [t, \infty)).$$

Pokaż, że $\nu = \mu \otimes \mu$.

- **4.** Dane są dwie miary probabilistyczne μ i ν na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ takie, że dla dowolnej liczby t>0 mamy $\nu([-t,t])=\mu([-t,t])$. Uzasadnić, że $\mu(A)=\nu(A)$ dla dowolnego symetrycznego zbioru $A\in\mathcal{B}(\mathbb{R})$ (zbiór A nazywamy symetrycznym jeżeli A=-A).
- 5. Wykonujemy niezależnie ciąg identycznych doświadczeń, w których prawdopodobieństwo pojedynczego sukcesu wynosi p. Niech X będzie momentem otrzymania pierwszego sukcesu. Wyznacz rozkład zmiennej losowej X.
- **6.** Wykonujemy niezależnie ciąg identycznych doświadczeń, w których prawdopodobieństwo pojedynczego sukcesu wynosi $p_n=\lambda/n,\,\lambda>0.$ W ciagu jednej sekundy wykonujemy n doświadczeń. Niech X_n będzie momentem otrzymania pierwszego sukcesu. Wyznacz rozkład zmiennej losowej X_n . Zbadaj zachowanie tego rozkładu, gdy $n\to\infty$.
- 7. Wykaż, że rozkłady z dwóch poprzednich zadań mają tzw. własność braku pamięci: jeśli X ma rozkład geometryczny bądź wykładniczy, to

$$\mathbb{P}(X > t + s | X > t) = \mathbb{P}(X > s),$$

gdzie $s,t\in\mathbb{N}$ w przypadku rozkładu geometrycznego oraz $s,t\in\mathbb{R}^+$ w przypadku rozkładu wykładniczego. (*) Udowodnij, że są to jedyne procesy z własnością braku pamięci: geometryczny na \mathbb{N} , wykładniczy jest jedynym bezatomowym rozkładem z brakiem pamięci na \mathbb{R}^+ .

8. (Twierdzenie Poissona) Niech $p_{k,n}$ będzie prawdopodobieństwem zajścia dokładnie k sukcesów w n próbach Bernoulliego o prawdopodobieństwie pojedynczego sukcesu p_n . Dla każdego ustalonego $k \in \mathbb{N}$ wyznacz

$$\lim_{n\to\infty} p_{k,n} \;, \qquad \text{jeśli} \quad \lim_{n\to\infty} n p_n = \lambda > 0 \;.$$

- 9. Zmienna losowa X ma rozkład normalny N(0,1). Niech $Y=e^X$, $Z=X^2$. Wyznacz dystrybuanty i gestości zmiennych losowych X i Y.
- 10. Zmienna losowa X ma rozkład Cauchy'ego, tzn. rozkład z gestością

$$g(x) = \frac{1}{\pi} \frac{1}{1 + x^2}$$

Udowodnij, że 1/X ma ten sam rozkład, co X.

- **11.** Niech μ będzie miarą probabilistyczną na \mathbb{R}^d . Wskaż przestrzeń probabilityczną oraz d-wymiarową zmienną losową, której rozkład jest miarą μ .
- **12.** Mówimy, że zmienna losowa X jest niezdegenerowana, tzn. $\mathbb{P}[X=a]<1$ dla każdego $a\in\mathbb{R}$. Wyznacz wszystkie zmienne losowe X oraz liczby rzeczywiste b,c takie, że X ma taki sam rozkład jak

$$bX + c$$
.

13. Niech (X,Y)będzie 2-wymiarową zmienną losową o gęstości

$$f(x,y) = \left\{ \begin{array}{cc} 4x^2y + 2y^5 & 0 \leq x,y \leq 1, \\ 0 & \text{w przeciwnym razie} \end{array} \right.$$

- (1) Sprawdź, że f jest rzeczywiście gęstością. (2) Oblicz $\mathbb{P}[1/2 \le X \le 3/4, 1/4 \le Y \le 1/2]$. (3) Znajdź rozkłady brzegowe X i Y. Czy są one absolutnie ciągłe? Jeżeli tak, to oblicz ich gęstości.

14. Niech (X,Y) będzie 2-wymiarową zmienną losową o gęstości

$$f(x,y) = \left\{ \begin{array}{cc} Cye^{-xy} & 0 \leq x,y \leq 1, \\ 0 & \text{w przeciwnym razie} \end{array} \right.$$

- (1) Oblicz wartość stałej C.
- (2) Oblicz $\mathbb{P}[1/2 \le X \le 3/4, 1/4 \le Y \le 1/2]$.
- (3) Znajdź rozkłady brzegowe X i Y. Czy są one absolutnie ciągłe? Jeżeli tak, to oblicz ich gestosci.