Electric Machinery 电机学

Pinjia Zhang

Self Introduction

- Pinjia Zhang
- West main building 3-313-2
- TEL:62788629

- 张品佳
- 西主楼3区313-2
- 电话: 62788629

Email: pinjia.zhang@tsinghua.edu.cn

Text Book

- Electric Machinery (Seventh Edition)
- Stephen D. Umans
- 电子工业出版社

Reference Book

- 电机学
- 孙旭东王善铭
- 清华大学出版社

Problem Discussions

- 2 problem discussions
- Problems will be released one week ahead
- Will include standard problem and open problems
- Volunteers for open problem discussion may be eligible for bonus points

Presentations

- Students will be divided into 10 groups
- Every group provides a 20 min presentation on a given topic – a special type of electric machine
- Presentation needs to cover:
 - Fundamentals of the given type of machine
 - How does it convert energy?
 - Advantage & disadvantage
 - Where are they typically used? And why?

Assessment

- Homework 10%
- Presentations 10%
- Midterm Exam 30%
- Final Exam 50%

 Problem discussions – additional bonus points available (up to 5%)

Course Info

- 以英文教材内容为主
- 在英文教材基础上增加部分内容
- 考试内容以讲授内容为准
- 专业英文词汇首次出现会标注并解释

"电机学 (英文)"教学日历

(2018-2019 学年度 春季学期)

周次	节次	日期/星期	讲 课 内 容
1	1	2.25 / —	Introduction to Electric Machinery; Machinery Principles
	2	2.27 / 三	Machinery Principles: magnetic field, linear dc machine
2	1	3.04 / —	Transformers: Introduction to Transformers; Ideal Transformer
	2	3.06 / 三	Transformers: Real Transformer; Equivalent Circuit
3	1	3.11 / —	Transformers: Parameter testing; Voltage Regulation
	2	3.13 / 三	Transformers: Three Phase Transformers; Per-unit System
4	1	3.18 / —	Student presentation 1
	2	3.20 / 三	Introduction to rotating machines: induced voltage & torque on rotating loops; induced voltage & torque on stationary winding
5	1	3.25 / —	Introduction to rotating machines: emf of distributed windings
	2	3.27 / 三	Introduction to rotating machines: rotating magnetic field
6	1	4.01 / —	Introduction to rotating machines: mmf of polyphase windings
	2	4.03 / 三	Introduction to rotating machines: leakage reactance and power flow
7	1	4.08 / —	Problem discussion
	2	4.10 / 三	Midterm Exam

8	1	4.15 / —	Synchronous machines: introduction; no load operation	
	2	4.17 / 三	Synchronous machines: loaded operation; armature reaction	
9	1	4.22 / —	Synchronous machines: phasor diagram; equivalent circuit	
	2	4.24 / 三	Synchronous machines: salient-pole generator; parameter testing	
11	1	5.06 / —	Synchronous machines: voltage regulation; parallel operation	
	2	5.08 / 三	Synchronous machines: frequency regulation; synchronous motor	
12	1	5.13 / —	Student Presentation 2	
	2	5.15 / 三	Induction machines: introduction; locked-rotor analysis	
13	1	5.20 / —	Induction machines: normal operation analysis; equivalent circuit	
	2	5.22 / 三	Induction machines: parameter testing; power & torque, torque-speed relation	
14	1	5.27 / —	Induction machines: speed control; asynchronous generator	
	2	5.29/ 三	DC machines: introduction; armature winding	
15	1	6.03 / —	Student Presentation 3	
	2	6.05 / 三	DC machines: armature reaction; emf and torque	
16	1	6.10 / —	DC machines: equivalent circuit; voltage regulation and speed control	
	2	6.12 / 三	Problem discussion	
第 17~18 周 Final Exam				

注: 本日历给出了预定的教学进度计划,届时视具体情况可能有局部调整。上课时间:周一第4大节,周三第2大节。上课地点:三教1103。

Q&A Every Wed 11:30-12:00 after class Open office: Wed 15:00-17:00

Course outline

Course Outlines - Overview of relative electromagnetic theories (1 wk)

- Magnetic field (磁场): Ampere's law
- Magnetic flux (磁通): magnetic material, hysteresis characteristics
- Voltage: Faraday's law

Course Outlines - Overview of relative electromagnetic theories (conti)

- Magnetic circuit (磁路)
- Motor/generator: Induced voltage, induced force

Course Outlines - Transformer (2wks)

- Ideal/non-ideal transformer (变压器)
- Equivalent transformer circuit (变压器等效电路)
- Voltage regulation, efficiency

Course Outlines - Basic electric machine (motor/generator) theories (3wks)

- AC machine: winding (绕组) structure
- Mmf (magnetomotive force,磁动势)
- Emf (electromotive force, 电动势)
- How the motor rotates?
 - Torque/speed
- How the generator builds output voltage?
 - Voltage/current

Course Outline - synchronous machine (3wks)

- Synchronous generator (SG,同步发电机) the most widely used generator in the world
 - Structure and operation theories of SG
 - Equivalent circuit of SG
 - Voltage/current characteristics
 - Parallel operation
- Synchronous motor
 - Operation principles
 - Starting of synchronous motor
 - Torque/speed characteristics

Course Outline - induction (asynchronous) machine (3wks)

- Induction motor (IM,感应电机) the most widely used ac motor in the world
 - Structure and operation theories of IM
 - Equivalent circuit of IM
 - Torque/speed characteristics
 - Basic motor control
- Induction generator (rarely used)
 - Output voltage control
 - Voltage/current characteristics

Course Outline - DC machine (2wks)

DC machines

- Structure and operation theories of DC machines
- Equivalent circuit of DC machines
- Torque/speed characteristics
- Basic motor control