XV6 Null Pointer Dereference in Two-Level Page Tables

1. Project Objective:

- How XV6 initializes address spaces via exec()
- How page tables are copied during fork()
- The kernel's mechanism for handling page faults and dereferences a null pointer in the two-level page table of Xv6.

2. Key Components Analyzed:

A. XV6's Two-Level Page Table Structure

Code:

```
// kernel/mmu.h is location typedef uint64 pte_t; // Page Directory (points to page tables) typedef uint64 *pagetable_t; // 512 PTEs per page table Page Table (maps to physical pages)
```

B. Critical Functions

Function	Location	Purpose
exec()		Loads program into memory, sets up page tables
fork()	kernel/proc.c	Copies parent's page tables to child
walk()	kernel/vm.c	Translates VA to PA using page tables

3. Build and implementation:

- **Prerequisites:**
 - RISC-V toolchain (riscv64-unknown-elf-gcc)
 - QEMU (qemu-system-riscv64)

Step:

- 1) Clone XV6: git clone https://github.com/mit-pdos/xv6-riscv.git
- 2) Modified and Overwrite kernel/trap.c and kernel/start.c

- 3) Add user/null_deref.c file
- 4) Modified Makefile add _null_deref\ inside uprogs from root directory of xv6
- 5) Run terminal command make clean & make qemu
- 6) Now xv6 os booted and open interface of xv6
- 7) Run xv6 terminal command null deref
- 8) Expected output:

Dereferencing null pointer... pid 3: page fault at 0x00000000 Null pointer detected!

-----End-----

Documented by:

Digonto Biswas Roll-23053429 Section-CSE38 KIIT DU