

Simulation and modelling in RE Systems - Intro and continuous dynamic models-

"We've done a computer simulation of your projected performance in five years. You're fired."

Overview of today's seminar

Modelling fundamentals

Steady-state models

- Dimensional analysis
- One-dimensional models

Dynamic models

- One-dimensional models
- (- Multi-dimensional models)

Systems of differential equations

- Euler-Cauhy
- Runge-Kutta, fourth order

Modeling fundamentals

What is a model?

- A **simplified representation** of a given system

Be aware: it is NOT a copy of that system!

→ Ergo: all models are WRONG

but they are useful!

Modeling fundamentals Which is "better"?

Modeling fundamentals

The modeling process

Source: Ortlieb, 2013

Modelling fundamentals

Steps in the modeling process

- Definition of research/modeling question: goals and aims!
- Underlying priciples:
 Available theoretical approaches, mathematical laws,...
- Relevant information: relevant vs. irrelevant information, suitable simplifications,...
- Variables and parameters:
 Input ranges for relevant parameters and variables, estimation errors, initial values

Source: Ortlieb, 2013

Modeling fundamentals

Modeling fundamentals

- Stationary (static) / dynamic
- Discrete / continuous
- Deterministic / stochastic (statistic)

Modeling fundamentals

Assessment criteria for a model

Validation: is the model doing *the right thing*? Is the model chosen suitable/accurate for the desired purpose?

- a. Plausibility check: (also called functional-validation)
- Test the model under extreme conditions
- Test the model under simplified conditions
- b. Calibration: comparison with measurements, refining input parameters

Verfication: is the model doing *the right thing right*? Is the model is **correctly implemented** with respect to the conceptual

model? Is its syntax logically acceptable?

e.g. extrapolating outside validity range...

Overview of today's seminar

Modelling fundamentals

Steady-state models

- Dimensional analysis
- One-dimensional models

Dynamic models

- One-dimensional models
- (- Multi-dimensional models)

Systems of differential equations

- Euler-Cauhy
- Runge-Kutta, fourth order

- no time dependency: "instantaneous adaptation"
- only equilibrium states

T(t) Stationary model

t = 0

Examples of stationary models:

- Ohm's law
$$U=I\cdot R$$

- Ideal gas law
$$p \cdot V = n \cdot r \cdot T$$

- "The" collector equation

$$Q = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (\theta_m - \theta_a) - a_2 \cdot (\theta_m - \theta_a)^2 \right]$$

Dr. Herena Torio

"The" collector equation:

$$\eta = \frac{1}{G} \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

$$\varrho_{out} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

T_a [K] ambient temperature

T_m [K] mean fluid temperature

A [m²] Aperture area

 $\eta_0 [K] = F'(\alpha \tau)_{en}$ zero-loss efficiency

a₁ [Wm⁻²K⁻¹] linear coefficient for heat losses

a₂ [Wm⁻²K⁻²] cuadratic coefficient for heat losses

"The" collector equation:

$$\eta = \frac{1}{G} \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

$$\dot{Q}_{out} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

a₁ [Wm⁻²K⁻¹] linear coefficient for heat losses

a₂ [Wm⁻²K⁻²] cuadratic coefficient for heat losses

a₆₀ [Wm⁻²K⁻¹] effective coefficient for heat losses at 60°C temperature difference

Dr. Herena Torio

"The" collector equation:

$$\eta = \frac{1}{G} \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

$$\dot{Q}_{out} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

$$\eta = \frac{1}{G} \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

"The" collector equation:

$$\dot{Q}_{out} = A \cdot [G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2]$$

What type of model is it?

Lets give the child a name:

One dimensional (only one system variable) stationary (no dynamic processes) boxmodel (not differentiated in space)

also called

One-node (stationary) collector model

$$\eta = \frac{1}{G} \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

"The" collector equation:

$$\dot{Q}_{out} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

General equation form

for one dimensional box stationary models:

$$S_i = p_i \cdot \varsigma_i$$

 S_i , system variable: $T_{m,i}$

 ς_{i} , outside relation/influence: G, T_{a}

 p_i , system parameters: η_0 , a_1 , a_2

- Stationary / dynamic

t = 0 Time

Overview of today's seminar

Modelling fundamentals

Steady-state models

- Dimensional analysis
- One-dimensional models

Dynamic models

- One-dimensional models
- (- Multi-dimensional models)

Systems of differential equations

- Euler-Cauhy
- Runge-Kutta, fourth order

Dynamic models – One node

Stationary
$$\dot{Q}_{\text{out}} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right]$$

Dynamic

$$C_{eff} \cdot \frac{dT_m}{dt} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right] - \dot{m}_F \cdot c_F \cdot (T_{Fout} - T_{Fin})$$

$$\dot{Q}_{in} = \dot{Q}_{loss} + \dot{Q}_{out} + \dot{Q}_{eff}$$

$$\dot{Q}_{\rm eff} = \dot{Q}_{in} - \dot{Q}_{loss} - \dot{Q}_{out}$$

Dynamic models – Two nodes

Dynamic + multi-dimensional

Two node collector model

Temperature node: Absorber

$$\dot{Q}_{in} = \dot{Q}_{int} + \dot{Q}_V + \dot{Q}_A$$

$$\dot{Q}_{\rm in} - \dot{Q}_{\rm int} - \dot{Q}_{V} = m_{A} \cdot c_{A} \cdot \left(\frac{dT_{A}}{dt}\right)$$

$$\dot{Q}_{in} = A \cdot G \cdot \eta_{opt}$$

Temperature node: Fluid

$$m_F \cdot c_F \cdot \left(\frac{dT_F}{dt}\right) = \dot{Q}_{int} - \dot{m}_F \cdot c_F \cdot \left(T_{Fout} - T_{Fin}\right)$$

$$\dot{Q}_{\rm int} = \frac{1}{R_{\rm int}} \cdot (T_A - T_m) = U_{int} \cdot A_A \cdot (T_A - T_m)$$

Dynamic models

Overview of today's seminar

Modelling fundamentals

Steady-state models

- Dimensional analysis
- One-dimensional models

Dynamic models

One-dimensional models(- Multi-dimensional models)

Systems of differential equations

- Euler-Cauhy
- Runge-Kutta, fourth order

Dynamic models – Two nodes

Dynamic

General: System of differential equations

Analytic solutions: only for linear systems and for *some* non-linear systems!!

Otherwise: Numeric integration methods!

- Euler-Cauchy
- Runge-Kutta

Differential equations

Dynamic – one node

$$C_{eff} \cdot \frac{dT_m}{dt} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right] - \dot{m}_F \cdot c_F \cdot (T_{Fout} - T_{Fin})$$

Instead of derivative (analytical) solutions...

... "approximative methods": Discretization

Dynamic models Numeric integration methods

Discretization

$$\frac{dz}{dt} = \frac{z_{k+1} - z_k}{\Delta t}$$

Euler Cauchy

$$\frac{dz}{dt} = f(z,t)$$

$$z(t + \Delta t) = z(t) + f(z,t) \cdot \Delta t$$

Runge-Kutta

$$k_{1} = f(z,t) \cdot \Delta t$$

$$k_{2} = f\left(z + k_{1} \cdot \frac{1}{2}, t + \frac{\Delta t}{2}\right) \Delta t$$

$$k_{3} = f\left(z + k_{2} \cdot \frac{1}{2}, t + \frac{\Delta t}{2}\right) \Delta t$$

$$k_{4} = f\left(z + k_{3} \cdot 1, t + \Delta t\right) \cdot \Delta t$$

$$z(t + \Delta t) = z(t) + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6}$$

Dynamic models

Numeric integration methods

Euler Cauchy

$$\frac{dz}{dt} = f(z,t)$$
$$z(t + \Delta t) = z(t) + f(z,t) \cdot \Delta t$$

Dynamic models **Numeric integration methods**

Runge Kutta

$$z(t + \Delta t) = z(t) + \frac{k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4}{6}$$

 $k_1 = f(z,t) \cdot \Delta t$

 $k_A = f(z + k_3 \cdot 1, t + \Delta t) \cdot \Delta t$

Abb. 19.4. a) Prädiktor-Korrektor-Verfahren

b) Runge-Kutta-Verfahren

Dynamic models

Numeric integration methods

$$C_{\it eff} = A \cdot c_{\it eff}$$

$$m_F = A \cdot m$$

Trial: Euler Cauchy and Runge-Kutta go Octave/Matlab/Excel!

$$C_{eff} \cdot \frac{dT_m}{dt} = A \cdot \left[G \cdot \eta_0 - a_1 \cdot (T_m - T_a) - a_2 \cdot (T_m - T_a)^2 \right] - \dot{m}_F \cdot c_F \cdot (T_{F,out} - T_{F,in})$$

Parameter	Value	Unit	
η_0	0,651	-	
a ₁	1,631	Wm ⁻² K ⁻¹	
a ₂	0,0096	Wm-2K-1	
C _{eff}	44030	Jm ⁻² K ⁻¹	
A	1,33	m ²	
m	10	Kgh ⁻¹ m ⁻²	
Ta	5		

Parameter	Value	Unit
G	700	Wm ⁻²
$T_{F,in} = T_{F,out,0}$	10	°C
CF	4180	Jkg ⁻¹ K ⁻¹
Timestep	1	second
	1	minute
	10	minutes
	1	hour

Dynamic models

Assignment I: Numeric integration methods

a) For the parameters and (initial) conditions given on the previous slide calculate the outlet temperature of the collector using the Euler-Cauchy AND Runge-Kutta numerical methods for the following times and timesteps:

Timestep:	Time:	b) Calculate for the same parameters
1 second	1 minute	(taking into account only those applicable in the steady-state equation)
1 minute	1 minute	the steady state collector outlet
	10 minutes	temperature
10 minutes	10 minutes	c) Draw main conclussions from your
	60 minutes	résults: e.g. for which purpose(s) would a steady-state approach be justified?
30 minutes	30 minutes	which numeric integration method could
	60 minutes	be used under which conditions?

References

- Stafell I. et al., 2012. A review of domestic heat pumps. Energy and Environmental Science, 2012,5, 9291-9306, DOI: 10.1039/C2EE22653G
- ISFH, 2013. Abschlussbericht zum Vorhaben Hocheffiziente Flachkollektoren mit selektiv beschichteten Zweischeibenverglasungen. 2013.
- Fischer, Müller-Steinberger. Einführung eines 2-Knotenmodells zur besseren Beschreibung der thermischen Leistungsfähigkeit von Sonnenkollektoren. OTTI - 16. Symposium Thermische Solarenergie, 2006
- Themenschwerpunkt Simulation und Planungswerkzeuge
- Westermann. Mathematik für Ingenieure Ein anwendungsorientiertes Lehrbuch. Springer Verlag, 2011.