### 6475789

+

1/34

FIG. 1

|       | T 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B, CD F       | Mol. weight | ᡆ    |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|------|
| ı     | CONTRACTION CONTRACTOR |               | 116.000     | 10.6 |
|       | ][ <i>[[]</i> [[[][]][]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 127.000     | 11.3 |
| l     | CLARIB VIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Z             | 123.000     | 10.1 |
| 50 ya |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ZSC_Est2p     | p 103.000   | 10.0 |
| 3     | msDNAs market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |      |
|       | Non-LTR Retrotransposons RENZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |             |      |
|       | Hepadnaviruses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |             |      |
|       | LTR Retrotransposons (Copia-Ty1) REP-TZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |      |
|       | Retroviruses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>第38774</b> |             |      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HIV-1 RT      |             |      |

<u>.</u> ق

+-







| D 82<br>P 87<br>N 68                                                                                                                                                                | 4/34<br>52 50 30 30                                                                                                       | otif E<br>W G S<br>KKRMPFFGFSV 181<br>HGLFPWCGLLL 197<br>QDYCDWIGISI 179<br>KELEVWKHSST 146                                                                                                                                   | hlg h<br>Flgyni<br>Ylgvil<br>Wmgitl                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| hhK K<br>IFRIV <b>K</b> KKL <b>K</b> I<br>TEVIASII <b>K</b><br>STFL <b>K</b> TTKL:                                                                                                  | IKEL <b>K</b> RYIS!<br>LLKLAKILP`<br>)FRKYTAFTI                                                                           | Motif E  W G S  17 KKRMPFFGFSV 19 HGLFPWCGLLL 23 QDYCDWIGISI 20 KELEVWKHSST                                                                                                                                                   | hLG h<br>4 ETPARFLGYNI<br>25 ESKQSYLGVIL<br>0 EPPFLWMGITL                                                                         |
| Motif A  PCLYFh hDh CYD I hhK K  FGRKKYFVRIDIKSCYDRIKQDLMFRIVKKKLKD  PPPELYFVKVDVTGAYDTIPQDRLTEVIASIIKP  GQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLL  VLPELYFMKFDVKSCYDSIPRMECMRILKDALKN  AF | h hDh GY h 7 FGGSNWFIEVDLKKCFDTISHDLIIKELKRYISD 2 RKEYCSAVFLDISEAFDRVWHEGLLLKLAKILPY 0 LKKKKSVTVLDVGDAYFSVPLDEDFRKYTAFTIP | Motif D  A F h G c p N cK  AKKFLNLSLRGFEKHNFSTSLEKTVI 1  AKTFLRTLVRGVPEYGCVVNLRKTVV 1  AVLFIEKLINVSRENGFKFNMKKLQT 2  O VINIKKLAMGGFQKYNAKANRKLQT 3                                                                            |                                                                                                                                   |
| FRAL A K FRALT A A FRLITULRKRFLIKMGSNKKMLVSTNQTL 4C LRPIVNMDYVVGARTFRREKRAERLTSRV 45 FRPIMTFNKKIVNSDRKTTKLTTNTKLLN 41 FRIIAIPCRGADEEEFTIYKENHKNAIQP 42                              | K<br>SVGNPRDKIVQEVMRMILDTIFDKK 2<br>SLLSGLSKMFERLLLKRLFRVDLFK 3<br>VDFRELNKRTQDFWEVQLGIPHPAG                              | Motif C LLRL DDFLhIT 6 LLRVVDDFLFITVNKKD 0 5 LLRLVDDFLLVTPHLTH 0 14 LMRLTDDYLLITTQENN 0 8 ILKLADDFLISTDQQQ 0                                                                                                                  | h Y DDhhh<br>55 YVRYA <i>DDIL</i> IGVLGSKN 2<br>7 LSTYA <i>DDI</i> TVCSSDILA 6<br>4 IYOYM <i>DD</i> LYVGSDLEIG 1                  |
| Motif 1  h hRhiPKK p  hNVRMDTQKTTLPPAVIRLLPKKNT- 0 EVRQHREARPALLTSRLRFIPKPDG- 0 KEVEEWKKSLGFAPGKLRLIPKKTT- 0 CRNHNSYTLSNFNHSKMRIIPKKSNN 1                                           | p hh h <b>K</b> LSNELGTGKFKFKPMRIVNIPKPKGG 0 IRPL: SILRIGYYPDAWKHAQVKMILKPGKS 6 YRPI EGKISKIGPENPYNTPVFAIKKKDST 1 WRKL:   | Motif B'  TRT con K Y Q GIPQGS LS hL h Y DL F  Sp trtlp SQYLQKVGIPQGSILSSFLCHFYMEDLIDEYLSFT htrt KSYVQCQGIPQGSILSTLLCSLCYGDMENKLFAGI Ea p123 KFYKQTKGIPQGLCVSSILSSFYYATLEESSLGFL Sc_Est2p KCYIREDGLFQGSSLSAPIVDLVYDDLLEFYSEFK | hPQG pP hh h<br>TYHKPMLGLPQGSLISPILCNIVMTLVDNWLEDYI<br>RAGQIGAGVPQGSNLGPILXSIFSSDMPLPHIYHP<br>GIRYOYNVLPOGWKGSPAIFOSSMTKILEPFKKON |
| TRT con Sp rrtlp hTRT Ea p123 Sc Est2p                                                                                                                                              | RI con<br>Sc al<br>Dm TART<br>HIV-1                                                                                       | TRT con Sp Trtlp hTRT Ea_p123 Sc_Est2p                                                                                                                                                                                        | RT con<br>Sc_a1<br>Dm_TART<br>HIV-1                                                                                               |

WL hh hh pFEY TE p p Y RK W L h I K 549 WLYNSFIIPILQSFFYITESSDIRNRTVYFRKDIWKLLCRPFITSMKM 8 546 WLMSVYVVELLRSFFYVTETFQKNRLFFYRKSVWSKLQSIGIRQHLK 10 441 WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKK 8 366 WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTWNKLITPFIVEYFK 8

Sp\_Trtlp hTRT

TRT con

Ea\_p123 Sc\_Est2p

Motif T

+

FIG. 4



lamda Gphi5.5 NCO1 19329 NCO1 30730 NCO1 29459 NCO1 19329 NCO1 30730 SAL1 34841 NOT1 34874 NCO1



FIG. 7





FIG. 8







FIG. 9

+





FIG. 10A

+





FIG. 10B

十



### Telomerase Specific Motifs

+

| MOTIF T' | В                    | 13 EAEVR                                                 | 12 ENNVR                                                 | 12 EKEVE                                                 | 9 ENNVC                                                 |
|----------|----------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| MOTIF T  | WI FFY TE Y RK W 1 I | 546 WLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGI 13 EAEVR | 429 WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCRPFI 12 ENNVR | 441 WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSI 12 EKEVE | 366 WLFRQLIPKIIQTFFYCTEISSTVT.IVYFRHDTWNKLITPFI 9 ENNVC |
|          |                      | 546                                                      | 429                                                      | 441                                                      | 366                                                     |
|          | TRT con              | hTRT                                                     | $\operatorname{spTRT}$                                   | Ea p123                                                  |                                                         |

## Telomerase RT Motifs (Fingers)

| MOTIF B' Y Q GipQGs 1S 1 Y 104 YVQCQGIPQGSILSTLLCSLCY 99 YLQKVGIPQGSILSSFLCHFYM 117 YKQTKGIPQGLCVSSILSSFYY 85 YIREDGLFQGSSLSAPIVDLVY hPQG pP hh h |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| MOTIF A  p lyF D cYD i  69 PELYFVKUDVTGAYDTI  66 RKKYFVRIDIKSCYDRI  67 PKLFFATMDIEKCYDSV  68 PELYFMKFDVKSCYDSI  h hDh AF h  GY                    |
| MOTIF 2 fR I 0 LRPIV 0 FRLIT 0 FREIM 2 FRIIA hR h                                                                                                 |
| MOTIF 1 MOTIF 2 R iPKk fR I 11 SRLRFIPKPDG 0 LRPIV 10 AVIRLLPKKNT 0 FRLIT 10 GKLRLIPKKTT 0 FRPIM 13 SKMRIIPKKSN 2 FRIIA p hh h K hR h             |
| TRT con<br>hTRT<br>spTRT<br>Ea_p123<br>Sc_Est2<br>RT_con                                                                                          |

# Telomerase RT Motifs (Palm, Primer Grip)

. J



> NFkB\_CS1 GGGRQTYYQC NFkB-MHC-I.2 TGGGCTTCCCC

### 

301 GCTGGGGTTGAGGGCGGCCGGGGGGAACCAGCGACATGCGGAGAGCAGCGCAGGCGACTCCGACCCCAACTCCCGCCGGCCCCCTTGGTCGCTGTACGCCTCTCGTCGCGTCGCTGAG

NFkB\_CS1
GGGRQTYYQC
NFkB\_CS2
RGGGRMTYYCC
Topo\_II\_cleavage\_site
RNYNNCNNGYNGKTNYNY
\*\*\*\*\*\*\*\*

361 AGGGCGCTTCCCCCGCAGGTGTCCTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCAGAGG TCCCGCGAAGGGGGCGTCCACAGGACGACTTCCTCGACCACCGGGCTCACGACGTCTCC

FIG. 12

╫



| 1    | AAAACCCCAA | AACCCCAAAA | CCCCTTTTAG  | AGCCCTGCAG | TTGGAAATAT |
|------|------------|------------|-------------|------------|------------|
| 51   | AACCTCAGTA | TTAATAAGCT | CAGATTTTAA  | ATATTAATTA | CAAAACCTAA |
| 101  | ATGGAGGTTG | ATGTTGATAA | TCAAGCTGAT  | AATCATGGCA | TTCACTCAGC |
| 151  | TCTTAAGACT | TGTGAAGAAA | TTAAAGAAGC  | TAAAACGTTG | TACTCTTGGA |
| 201  | TCCAGAAAGT | TATTAGATGA | AGAAATCAAT  | CTCAAAGTCA | TTATAAAGAT |
| 251  | TTAGAAGATA | TTAAAATATT | TGCGCAGACA  | AATATTGTTG | CTACTCCACG |
| 301  | AGACTATAAT | GAAGAAGATT | TTAAAGTTAT  | TGCAAGAAAA | GAAGTATTTT |
| 351  | CAACTGGACT | AATGATCGAA | CTTATTGACA  | AATGCTTAGT | TGAACTTCTT |
| 401  | TCATCAAGCG | ATGTTTCAGA |             | CTTCAATGAT | TTGGATTTCA |
| 451  | ACTTAAGGGA | AATCAATTAG | CAAAGACCCA  | TTTATTAACA | GCTCTTTCAA |
| 501  | CTCAAAAGCA | GTATTTCTTT | CAAGACGAAT  | GGAACCAAGT | TAGAGCAATG |
| 551  | ATTGGAAATG | AGCTCTTCCG | ACATCTCTAC  | ACTAAATATT | TAATATTCCA |
| 601  | GCGAACTTCT | GAAGGAACTC | TTGTTCAATT  | TTGCGGGAAT | AACGTTTTTG |
| 651  | ATCATTTGAA | AGTCAACGAT | AAGTTTGACA  | AAAAGCAAAA | AGGTGGAGCA |
| 701  | GCAGACATGA | ATGAACCTCG | ATGTTGATCA  |            | ACAATGTCAA |
| 751  | GAATGAGAAA | GATCACTTTC | TCAACAACAT  | CAACGTGCCG | AATTGGAATA |
| 801  | ATATGAAATC | AAGAACCAGA | ATATTTTATT  | GCACTCATTT | TAATAGAAAT |
| 851  | AACCAATTCT | TCAAAAAGCA | TGAGTTTGTG  | AGTAACAAAA | ACAATATTTC |
| 901  | AGCGATGGAC | AGAGCTCAGA | CGATATTCAC  | GAATATATTC | AGATTTAATA |
| 951  | GAATTAGAAA | GAAGCTAAAA | GATAAGGTTA  | TCGAAAAAAT | TGCCTACATG |
| 1001 | CTTGAGAAAG | TCAAAGATTT | TAACTTCAAC  | TACTATTTAA | CAAAATCTTG |
| 1051 | TCCTCTTCCA | GAAAATTGGC | GGGAACGGAA  | ACAAAAAATC | GAAAACTTGA |
| 1101 | TAAATAAAAC | TAGAGAAGAA | AAGTCGAAGT  | ACTATGAAGA | GCTGTTTAGC |
| 1151 | TACACAACTG | ATAATAAATG | CGTCACACAA  | TTTATTAATG | AATTTTTCTA |
| 1201 | CAATATACTC | CCCAAAGACT | TTTTGACTGG  | AAGAAACCGT | AAGAATTTTC |
| 1251 | AAAAGAAAGT | TAAGAAATAT | GTGGAACTAA  | ACAAGCATGA | ACTCATTCAC |
| 1301 | AAAAACTTAT | TGCTTGAGAA | GATCAATACA  | AGAGAAATAT | CATGGATGCA |
| 1351 | GGTTGAGACC | TCTGCAAAGC | ATTTTTTATTA | TTTTGATCAC | GAAAACATCT |
| 1401 | ACGTCTTATG | GAAATTGCTC | CGATGGATAT  | TCGAGGATCT | CGTCGTCTCG |
| 1451 | CTGATTAGAT | GATTTTTCTA | TGTCACCGAG  | CAACAGAAAA | GTTACTCCAA |
| 1501 | AACCTATTAC | TACAGAAAGA | ATATTTGGGA  | CGTCATTATG | AAAATGTCAA |
| 1551 | TCGCAGACTT | AAAGAAGGAA | ACGCTTGCTG  | AGGTCCAAGA | AAAAGAGGTT |
| 1601 | GAAGAATGGA | AAAAGTCGCT | TGGATTTGCA  | CCTGGAAAAC | TCAGACTAAT |
| 1651 | ACCGAAGAAA | ACTACTTTCC | GTCCAATTAT  | GACTTTCAAT | AAGAAGATTG |
| 1701 | TAAATTCAGA | CCGGAAGACT | ACAAAATTAA  | CTACAAATAC | GAAGTTATTG |
| 1751 | AACTCTCACT | TAATGCTTAA | GACATTGAAG  | AATAGAATGT | TTAAAGATCC |
| 1801 | TTTTGGATTC | GCTGTTTTTA | ACTATGATGA  | TGTAATGAAA | AAGTATGAGG |
| 1851 | AGTTTGTTTG | CAAATGGAAG | CAAGTTGGAC  | AACCAAAACT | CTTCTTTGCA |
| 1901 | ACTATGGATA | TCGAAAAGTG | ATATGATAGT  | GTAAACAGAG | AAAAACTATC |
| 1951 | AACATTCCTA | AAAACTACTA | AATTACTTTC  | TTCAGATTTC | TGGATTATGA |
| 2001 | CTGCACAAAT | TCTAAAGAGA | AAGAATAACA  | TAGTTATCGA | TTCGAAAAAC |
| 2051 | TTTAGAAAGA | AAGAAATGAA | AGATTATTTT  | AGACAGAAAT | TCCAGAAGAT |
| 2101 | TGCACTTGAA | GGAGGACAAT | ATCCAACCTT  | ATTCAGTGTT | CTTGAAAATG |
| 2151 | AACAAAATGA | CTTAAATGCA | AAGAAAACAT  | TAATTGTTGA | AGCAAAGCAA |
| 2201 | AGAAATTATT | TTAAGAAAGA | TAACTTACTT  | CAACCAGTCA | TTAATATTTG |
| 2251 | CCAATATAAT | TACATTAACT | TTAATGGGAA  | GTTTTATAAA | CAAACAAAAG |
| 2301 | GAATTCCTCA | AGGTCTTTGA | GTTTCATCAA  | TTTTGTCATC | ATTTTATTAT |
| 2351 | GCAACATTAG | AGGAAAGCTC | CTTAGGATTC  | CTTAGAGATG | AATCAATGAA |
|      |            |            |             |            |            |

FIG. 13A



| 2401 | CCCTGAAAAT | CCAAATGTTA | ATCTTCTAAT | GAGACTTACA | GATGACTATC |
|------|------------|------------|------------|------------|------------|
| 2451 | TTTTGATTAC | AACTCAAGAG | AATAATGCAG | TATTGTTTAT | TGAGAAACTT |
| 2501 | ATAAACGTAA | GTCGTGAAAA | TGGATTTAAA | TTCAATATGA | AGAAACTACA |
| 2551 | GACTAGTTTT | CCATTAAGTC | CAAGCAAATT | TGCAAAATAC | GGAATGGATA |
| 2601 | GTGTTGAGGA | GCAAAATATT | GTTCAAGATT | ACTGCGATTG | GATTGGCATC |
| 2651 | TCAATTGATA | TGAAAACTCT | TGCTTTAATG | CCAAATATTA | ACTTGAGAAT |
| 2701 | AGAAGGAATT | CTGTGTACAC | TCAATCTAAA | CATGCAAACA | AAGAAAGCAT |
| 2751 | CAATGTGGCT | CAAGAAGAAA | CTAAAGTCGT | TTTTAATGAA | TAACATTACC |
| 2801 | CATTATTTTA | GAAAGACGAT | TACAACCGAA | GACTTTGCGA | ATAAAACTCT |
| 2851 | CAACAAGTTA | TTTATATCAG | GCGGTTACAA | ATACATGCAA | TGAGCCAAAG |
| 2901 | AATACAAGGA | CCACTTTAAG | AAGAACTTAG | CTATGAGCAG | TATGATCGAC |
| 2951 | TTAGAGGTAT | CTAAAATTAT | ATACTCTGTA | ACCAGAGCAT | TCTTTAAATA |
| 3001 | CCTTGTGTGC | AATATTAAGG | ATACAATTTT | TGGAGAGGAG | CATTATCCAG |
| 3051 | ACTTTTTCCT | TAGCACACTG | AAGCACTTTA | TTGAAATATT | CAGCACAAAA |
| 3101 | AAGTACATTT | TCAACAGAGT | TTGCATGATC | CTCAAGGCAA | AAGAAGCAAA |
| 3151 | GCTAAAAAGT | GACCAATGTC | AATCTCTAAT | TCAATATGAT | GCATAGTCGA |
| 3201 | CTATTCTAAC | TTATTTTGGA | AAGTTAATTT | TCAATTTTTG | TCTTATATAC |
| 3251 | TGGGGTTTTG | GGGTTTTGGG | GTTTTGGGG  |            |            |

FIG. 13B

| 1    | MEVDVDNQAD | NHGIHSALKT | CEEIKEAKTL  | YSWIQKVIRC | RNQSQSHYKD |
|------|------------|------------|-------------|------------|------------|
| 51   | LEDIKIFAQT | NIVATPRDYN | EEDFKVIARK  | EVFSTGLMIE | LIDKCLVELL |
| 101  | SSSDVSDRQK | LQCFGFQLKG | NQLAKTHLLT  | ALSTQKQYFF | QDEWNQVRAM |
| 151  | IGNELFRHLY | TKYLIFQRTS | EGTLVQFCGN  | NVFDHLKVND | KFDKKQKGGA |
| 201  | ADMNEPRCCS | TCKYNVKNEK | DHFLNNINVP  | NWNNMKSRTR | IFYCTHFNRN |
| 251  | NQFFKKHEFV | SNKNNISAMD | RAQTIFTNIF  | RFNRIRKKLK | DKVIEKIAYM |
| 301  | LEKVKDFNFN | YYLTKSCPLP | ENWRERKQKI  | ENLINKTREE | KSKYYEELFS |
| 351  | YTTDNKCVTQ | FINEFFYNIL | PKDFLTGRNR  | KNFQKKVKKY | VELNKHELIH |
| 401  | KNLLLEKINT | REISWMQVET | SAKHFYYFDH  | ENIYVLWKLL | RWIFEDLVVS |
| 451  | LIRCFFYVTE | QQKSYSKTYY | YRKNIWDVIM  | KMSIADLKKE | TLAEVQEKEV |
| 501  | EEWKKSLGFA | PGKLRLIPKK | TTFRPIMTFN  | KKIVNSDRKT | TKLTTNTKLL |
| 551  | NSHLMLKTLK | NRMFKDPFGF | AVFNYDDVMK  | KYEEFVCKWK | QVGQPKLFFA |
| 601  | TMDIEKCYDS | VNREKLSTFL | KTTKLLSSDF  | WIMTAQILKR | KNNIVIDSKN |
| 651  | FRKKEMKDYF | RQKFQKIALE | GGQYPTLFSV  | LENEQNDLNA | KKTLIVEAKQ |
| 701  | RNYFKKDNLL | QPVINICQYN | YINFNGKFYK  | QTKGIPQGLC | VSSILSSFYY |
| 751  | ATLEESSLGF | LRDESMNPEN | PNVNLLMRLT  | DDYLLITTQE | NNAVLFIEKL |
| 801  | INVSRENGFK | FNMKKLQTSF | PLSPSKFAKY  | GMDSVEEQNI | VQDYCDWIGI |
| 851  | SIDMKTLALM | PNINLRIEGI | LCTLNLNMQT  | KKASMWLKKK | LKSFLMNNIT |
| 901  | HYFRKTITTE | DFANKTLNKL | FISGGYKYMQ  | CAKEYKDHFK | KNLAMSSMID |
| 951  | LEVSKIIYSV | TRAFFKYLVC | NIKDTIFGEE  | HYPDFFLSTL | KHFIEIFSTK |
| 1001 | KYTENRVCMT | LKAKEAKLKS | DOCOSTITOYD | Α          |            |

FIG. 14



1469 1018 1078 1198 1272 86 1332 1405 260 128 agctcttggagtagctcacagaaatccttacaaatcttctgatgagagctatattagattcattacagtccgtgcatattc ggtaccgatttactttcctttccttcataagctaattgcttcctcgaacgctcctaaatctctggaaatatttttacaaga actcaataacaataccaagtcaaattccaatatgaaggtgttattagtgatcgataatatttctattttatcggtcgtta gttgataattatttgcaaaatcatgtccttagtggtggtaatccgcgaaagttttttgatgcttgcacacgtctagcatg ccaaatatgtatcatctcgtattaggcttttttccgttttactcctggaatcgtacctttttcactattccccctaatga ataatctaaattagtttcgcttataattgatagtagtagaaagattggtgattctactcgtgtaatgttattagtttaaa gtatatattttttttttgtttttgttttttttttctattcgggatagctaatatggggcag ccaagtataaggacaaaaagaacaacttccttcccctaaaqacttttactttattaatttacttttcaattttca ggttcgcttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggatat ttaacatggagccttacactttagatgagtcacgtcgcatgatggagtatttggtatcatccaacgtttgccttgaaaag attgagatattcaaaaaatttctatccactacaactcctttaacgcggttttatttttctattttctattctcatgttgtt gtaaggtattctaattgtgaaatatttacctgcaattactgtttcaaagaga GTA TCG AAT  $\mathtt{TAT}$ AGC AAT N CAA GTA CAA AAT N GAG AAC N TCG CTA GAG E GTA 999 CAT H TTTATG ( CGC R AGT GAA GCC CIIGTT GAA E GAT ATT I CGA GAT D CLI CCC AAA AGC AGG P K S R  $\operatorname{TLI}$ CAA AGC  $_{
m F}^{
m TTC}$ GTA ATG  $\mathtt{GAT}$ AGA Ω CAG TAT GAA 団 GATATG 1406 ttgtatttaaccgataaag AAT CAT 114 N H S AAA ĸ AAT GAG JCC CAC CAT ACC H H T GAA ы TTA TCA $^{\mathrm{TGC}}$ ACC CAG ATA AAA K  $_{\mathrm{IGI}}$ TCACIA ATG TAC CAT AAA K TAT 1019 1079 1139 1199 1273 401 561 641 61 87 107 721 481 801

-1G. 15A



| 3960<br>818 | 4020<br>838                 | 4089<br>848                                       | 4149<br>868          | 4209<br>888 | 4274<br>903                   | 4339<br>917                            | 4401<br>935          | 4468<br>946                         | 4528<br>966          | 4588<br>986          | 4665<br>989                                                                   |
|-------------|-----------------------------|---------------------------------------------------|----------------------|-------------|-------------------------------|----------------------------------------|----------------------|-------------------------------------|----------------------|----------------------|-------------------------------------------------------------------------------|
| TGT         | 999<br>9                    | A TCG                                             | TCT                  | AAA<br>K    | G gtgagtacttattttaactaga<br>D | TTG GCC<br>L A                         | gtacgtgtc            | AAA<br>K                            | ACT                  | ATA<br>I             | TAA tgtcattttcaatttattatatacatcctttattactggtgtcttaaacaatattattactaagtata<br>* |
| GCA<br>A    | ATG<br>M                    | cag                                               | AAT<br>N             | TTA<br>L    | taa                           | 3 TŢ                                   | gtace                | TTG                                 | $_{\rm L}^{\rm TTG}$ | AGA<br>R             | taa                                                                           |
| TTA<br>L    | CAT<br>H                    | aato                                              | TTC<br>F             | TAC<br>Y    | cattí                         | A AAG<br>K                             | TG<br>W              | GGT<br>G                            | TCA<br>S             | AGA<br>R             | atta(                                                                         |
| TTG<br>L    | AAA<br>K                    | Jaaat                                             | AAA<br>K             | GCA<br>A    | cacti                         | 3 AAJ                                  | AAA<br>K             | GAT<br>D                            | CAG<br>Q             | CAT<br>H             | tatta                                                                         |
| ACA<br>T    | ACG<br>T                    | ctgad                                             | TCA<br>S             | CAA<br>Q    | gagt                          | r TG(                                  | GAA GTC              | AGA<br>R                            | TTT<br>F             | TTA<br>L             | acaal                                                                         |
| GAT<br>D    | $_{\rm L}^{\rm CTG}$        | atago                                             | AAT<br>N             | GCA<br>A    | ត<br>ភូមិ                     | GGA AGA AAA ATT TGG AAA<br>G R K I W K | GAA<br>E             | ATG<br>M                            | CAA<br>Q             | TTT<br>F             | ttaa                                                                          |
| CIT         | GAG<br>E                    | aata                                              | CAC H                | AGA<br>R    | ACG                           | A AAJ                                  | GCA<br>A             | GGA<br>G                            | TAC<br>Y             | TTA<br>L             | tgtci                                                                         |
| TCT<br>S    | GTA<br>V                    | actga                                             | ACC                  | ATG<br>M    | ATA<br>I                      | A AG                                   | TCT                  | CTT<br>L                            | ATA<br>I             | GTG<br>V             | tggi                                                                          |
| AGG<br>R    | TCT                         | gta                                               | ATT                  | TGT<br>C    | TTC<br>F                      | r GGZ                                  | TCC                  | TGT                                 | CTA<br>L             | CAG<br>Q             | atta                                                                          |
| ATG<br>M    | ACA<br>T                    | actgi                                             | ATT GAC I            | ATG<br>M    | ATG<br>M                      | r AT:<br>I                             | $_{\rm L}^{\rm TTG}$ | ${ m TTT}$                          | CAG<br>Q             | CGA<br>R             | attt                                                                          |
| AAC<br>N    | TCT                         | AG gtatactgtgtaactgaataatagctgacaaataatcag A<br>R | ATT<br>I             | TCT         | AGA<br>R                      | TTG AAT GTT ATT<br>L N V I             | TTC                  | $_{\rm L}^{\rm CTT}$                | GAA<br>E             | TTG<br>L             | cato                                                                          |
| GTG<br>V    | AAC<br>N                    | AG<br>R                                           | TTT                  | TAC<br>Y    | CAA<br>O                      | AA S                                   | CGT<br>R             | ggtctcgagacttcagcaatattgacacatcag G | TTC                  | GTT<br>V             | tata                                                                          |
| TCT<br>S    | $\mathop{\mathrm{TTT}}_{F}$ | CTA<br>L                                          | GTA<br>V             | GGA<br>G    | CCC                           | r TT(                                  | AGG<br>R             | cato                                | TGC                  | CCA<br>P             | atta(                                                                         |
| TTC<br>F    | TTA<br>L                    | ATT<br>I                                          | CAA<br>O             | CTA<br>L    | ATT<br>I                      | r CTT<br>L                             | AGT<br>S             | gacae                               | CCA                  | AGA<br>R             | attta                                                                         |
| GGT<br>G    | GCC                         | AAA<br>K                                          | GCA                  | AGG<br>R    | TTT<br>F                      | aaagtcattaattaaccttag AT               | ACG AGT A            | tatte                               | CAT<br>H             | CTA<br>L             | ttca                                                                          |
| TTC<br>F    | GAA<br>E                    | TAC<br>Y                                          | TTT<br>F             | TAT<br>Y    | ATA<br>I                      | actta                                  | TAT<br>Y             | gcaal                               | TAT<br>Y             | CCG<br>P             | catt                                                                          |
| TTC<br>F    | GAT<br>D                    | TTT<br>F                                          | TCC                  | ATA<br>I    | GAT<br>D                      | ttaa                                   | ATA TTA GGA<br>I L G | ttcae                               | AAA<br>K             | AAG<br>K             | tgt                                                                           |
| CCA<br>P    | ATT<br>I                    | TTT<br>F                                          | GCA<br>A             | AAT<br>N    | AAG<br>K                      | ttaal                                  | $_{\rm L}^{\rm TTA}$ | agaci                               | TTC<br>F             | ATC                  |                                                                               |
| ATG<br>M    | AAA<br>K                    | TCT<br>S                                          | $_{\rm L}^{\rm CTT}$ | TGC<br>C    | ATG<br>M                      | gtcal                                  | ATA<br>I             | ctcg                                | TCT                  | $_{\rm L}^{\rm CTT}$ | GAT<br>D                                                                      |
| AGA<br>R    | CCT                         | AAA<br>K                                          | AGC<br>S             | TGC         | AGG<br>R                      |                                        | GAA                  |                                     | CCC                  | GAT<br>D             | GCT<br>A                                                                      |
| 3901<br>799 | 3961<br>819                 | 4021<br>839                                       | 4090<br>849          | 4150<br>869 | 4210<br>889                   | 4275<br>904                            | 4340<br>918          | 4402<br>936                         | 4469<br>947          | 4529<br>967          | 4589<br>987                                                                   |
|             |                             |                                                   |                      |             |                               |                                        |                      |                                     |                      |                      |                                                                               |

-1G. 15E



FIG. 15F

1 gcagegetge gteetgetge gcaegtggga ageeetggee eeggeeacee eegegatgee gegegeteee egetgeegag cegtgegete cetgetgege agecactace gegaggtget 121 geogetggee aegttegtge ggegeetggg geoecaggge tggeggetgg tgeageggg 181 ggacceggeg gettteegeg egetggtgge ceagtgeetg gtgtgegtge eetgggaege 241 aeggeegeee eeegeegeee eeteetteeg eeaggtgtee tgeetgaagg agetggtgge 541 ggeteccage tgegeetace aggtgtgegg geegeegetg taccageteg gegetgeeae 601 teaggeeegg ecceegeeae aegetagtgg acceegaagg egtetgggat gegaaeggge 661 ctggaaccat agcgtcaggg aggccggggt ccccctgggc ctgccagccc cgggtgcgag qaqqqqqqq qgcagtqcca gccgaagtct gccgttgccc aagaggccca ggcgtggcgc 781 tgccctgag ccggagcgga cgcccgttgg gcaggggtcc tgggcccacc cgggcaggac 841 gegtggaceg agtgacegtg gtttetgtgt ggtgteacet geeagaceeg eegaagaage 901 cacetettg gagggtgege tetetggeae gegeeactee cacecateeg tgggeegeea 961 gcaccacgcg ggccccccat ccacatcgcg gccaccacgt ccctgggaca cgccttgtcc 1021 cccggtgtac gccgagacca agcacttcct ctactcctca ggcgacaagg agcagctgcg 1081 gccctccttc ctactcagct ctctgaggcc cagcctgact ggcgctcgga ggctcgtgga 1141 gaccatcttt ctgggttcca ggccctggat gccagggact ccccgcaggt tgccccgcct 1201 gccccagcgc tactggcaaa tgcggcccct gtttctggag ctgcttggga accacgcgca 1261 gtgcccctac ggggtgctcc tcaagacgca ctgcccgctg cgagctgcgg tcaccccagc 1321 agceggtgte tgtgeeeggg agaageeeca gggetetgtg geggeeeeeg aggaggagga 1381 cacagaeeee egtegeetgg tgeagetget eegeeageae ageageeeet ggeaggtgta 1441 cggcttcgtg cgggcctgcc tgcgccggct ggtgccccca ggcctctggg gctccaggca 1501 caacgaacge egetteetea ggaacaccaa gaagtteate teeetgggga ageatgeeaa 1561 gctctcgctg caggagctga cgtggaagat gagcgtgcgg gactgcgctt ggctgcgcag 1621 gageccaggg gtiggetgig tieeggeege agageacegt etgegtgagg agateeigge 1681 caagtteetg caetggetga tgagtgtgta egtegtegag etgeteaggt etttettta 1741 tgteaeggag accaegttte aaaagaacag getetttte taeeggaaga gtgtetggag 1801 caagttgcaa agcattggaa tcagacagca cttgaagagg gtgcagctgc gggagctgtc 1861 ggaagcagag gtcaggcagc atcgggaagc caggcccgcc ctgctgacgt ccagactccg 1921 cttcatccc aagcctgacg ggctgcggcc gattgtgaac atggactacg tcgtgggagc 1981 cagaacgttc cgcagagaaa agagggccga gcgtctcacc tcgagggtga aggcactgtt 2041 cagegtgete aactaegage gggegeggeg eeceggeete etgggegeet etgtgetggg 2101 cctggacgat atccacaggg cctggcgcac cttcgtgctg cgtgtgcggg cccaggaccc 2161 geogeetgag etgtaetttg teaaggtgga tgtgaeggge gegtaegaea eeateeeca 2221 ggacaggete acggaggtea tegecageat cateaaacce cagaacacgt actgegtgeg 2281 teggtatgee gtggteeaga aggeegeesa tgggeaegte egeaaggeet teaagageea 2341 cgtctctacc ttgacagacc tccagccgta catgcgacag ttcgtggctc acctgcagga 2401 gaccagccg ctgagggatg ccgtcgtcat cgagcagagc tcctccctga atgaggccag 2461 cagtggcete ttegaegtet teetaegett catgtgeeae caegeegtge geateagggg 2521 caagteetae gteeagtgee aggggateee geagggetee atecteteea egetgetetg 2581 cageetgtge taeggegaea tggagaacaa getgtttgeg gggattegge gggaeggget gctcctgcgt ttggtggatg atttcttgtt ggtgacacct cacctcaccc acgcgaaaac 2641 cttcctcagg accctggtcc gaggtgtccc tgagtatggc tgcgtggtga acttgcggaa 2761 gacagtggtg aacttccctg tagaagacga ggccctgggt ggcacggctt ttgttcagat 2821 geeggeeeae ggeetattee eetggtgegg eetgetgetg gataceegga eeetggaggt 2881 gcagagcgac tactccagct atgcccggac ctccatcaga gccagtetca cettcaaccg 2941 cggcttcaag gctgggagga acatgcgtcg caaactcttt gggggtcttgc ggctgaagtg 3001 teacageetg tttetggatt tgeaggtgaa cageeteeag aeggtgtgea ceaacateta 3061 caagateete etgetgeagg egtacaggtt teacgeatgt gtgetgeage teecatttea 3121 teageaagtt tggaagaace ceacatittt eetgegegte atetetgaea eggeeteeet 3181 ctgctactcc atcctgaaag ccaagaacgc agggatgtcg ctgggggcca agggcgccgc 3241 cggcctctg cctccgagg ccgtgcagtg gctgtgccac caagcattcc tgctcaagct 3301 gactcgacac cgtgtcacct acgtgccact cctggggtca ctcaggacag cccagacgca 3361 getgagtegg aageteeegg ggaegaeget gaetgeeetg gaggeegeag ceaaceegge 3421 aetgeeetea gaetteaaga ceateetgga etgatggeea eeegeeeaca geeaggeega 3481 gagcagacac cagcagccct gtcacgccgg gctctacgtc ccagggaggg aggggcggcc cacacccagg cccgcaccgc tgggagtctg aggcctgagt gagtgtttgg ccgaggcctg 3601 catgtccggc tgaaggetga gtgtccgget gaggeetgag egagtgteca gecaaggget 3661 gagigtecag cacacetgee gretteaett ceccacagge tggegetegg etecaceca gggccagett tteeteacea ggageeegge tteeacteee cacataggaa tagteeatee ccagattege cattgtteac cectegeect geceteettt geetteeace cecaecatee 3841 aggtggagac cctgagaagg accctgggag ctctgggaat ttggagtgac caaaggtgtg 3901 cctgtacac aggcgaggac cctgcacctg gatgggggtc cctgtgggtc aaattggggg 3961 gaggtgctgt gggagtaaaa tactgaatat atgagttttt cagttttgaa aaaaa

FIG. 16

+

MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPOGWRLVORGDP AAFRALVAQCLVCVPWDARPPPAAPSFRQVSCLKELVARVLQRL CERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPNTVTDALR GSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPPLY OLGAATOARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPG ARRRGGSASRSLPLPKRPRRGAAPEPERTPVGQGSWAHPGRTRG PSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPP STSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRP SLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLEL LGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEE EDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNE RRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGC VPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNR LFFYRKSVWSKLOSIGIROHLKRVOLRELSEAEVROHREARPAL LTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKA LFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPP ELYFVKVDVTGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQ KAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVI EOSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSI LSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHA KTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVOMPA HGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGR NMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRF HACVLQLPFHQQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL GAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQ TQLSRKLPGTTLTALEAAANPALPSDFKTILD

### FIG. 17

TTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTG GAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCT CCGCTTCATCCCCAAGCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGG AGCCAGAACGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACT GTTCAGCGTGCTCAACTACGAGCGGGCGCGCGCCCCCGGCCTCCTGGGCGCCTCTGTGCT GGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGA CCCGCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCGCGTACGACACCATCCC CCAGGACAGGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGT GCGTCGGTATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAG CCACGTCCTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCCACGCTGCTCT GCAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGC TGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCACCCACGCGAAAA  $\tt CCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTGCGTGGTGAACTTGCGGA$ AGACAGTGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGA TGCCGGCCCACGGCCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCCTGGAGG TGCAGAGCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACC GCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGT GTCACAGCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCT ACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTC ATCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCC TCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCCAAGGGCCCCG CCGGCC7TCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCAAGCATTCCTGCTCAAGC TGACTCGACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGC AGCTGAGTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGAGCCAACCCGG CACTGCCCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCG GCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGC TGAGTGTCCAGCACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCC AGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATC CCCAGATTCGCCATTGTTCACCCCTCGCCCTGCCCTCCTTTGCCTTCCACCCCCACCATC CAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGT GCCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGG AAAAAAAAAAAA

+

MetSerValTyrValValGluLeuLeuArgSerPhePhe TyrValThrGluThrThrPheGlnLysAsnArgLeuPhe PheTyrArgLysSerValTrpSerLysLeuGlnSerIle GlyIleArgGlnHisLeuLysArgValGlnLeuArgGlu LeuSerGluAlaGluValArqGlnHisArqGluAlaArq ProAlaLeuLeuThrSerArgLeuArgPheIleProLys ProAspGlyLeuArgProIleValAsnMetAspTyrVal  ${\tt ValGlyAlaArgThrPheArgArgGluLysArgAlaGlu}\\$ ArgLeuThrSerArgValLysAlaLeuPheSerValLeu AsnTyrGluArgAlaArgArgProGlyLeuLeuGlyAla SerValLeuGlyLeuAspAspIleHisArgAlaTrpArg ThrPheValLeuArgValArgAlaGlnAspProProPro GluLeuTyrPheValLysValAspValThrGlyAlaTyr AspThrIleProGlnAspArgLeuThrGluValIleAla SerIleIleLysProGlnAsnThrTyrCysValArgArg TyrAlaValValGlnLysAlaAlaHisGlyHisValArg LysAlaPheLysSerHisValLeuArgProValProGly AspProAlaGlyLeuHisProLeuHisAlaAlaLeuGln ProValLeuArgArgHisGlyGluGlnAlaValCysGly AspSerAlaGlyArgAlaAlaProAlaPheGlyGly

### FIG. 19

| GCAG       | GCGC       | rgcg:      | rccto             | GCTG       | CGCAC      | CGTG       | GGAA(      | GCC.             | rggc       | CCCG       | GCCA       | cccc       | CGCG              | 1<br>met<br>ATG |
|------------|------------|------------|-------------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|-------------------|-----------------|
| pro<br>CCG | arg<br>CGC | ala<br>GCT | pro<br>CCC        | arg<br>CGC | cys<br>TGC | arg<br>CGA | ala<br>GCC | 10<br>val<br>GTG | arg<br>CGC | ser<br>TCC | leu<br>CTG | leu<br>CTG | arg<br>CGC        | ser<br>AGC      |
| his<br>CAC | tyr<br>TAC | arg<br>CGC | 20<br>glu<br>GAG  | val<br>GTG | leu<br>CTG | pro<br>CCG | leu<br>CTG | ala<br>GCC       | thr<br>ACG | phe<br>TTC | val<br>GTG | arg<br>CGG | 30<br>arg<br>CGC  | leu<br>CTG      |
|            |            |            |                   |            |            |            |            |                  |            |            |            | pro<br>CCG |                   |                 |
| phe<br>TTC | arg<br>CGC | ala<br>GCG | 50<br>leu<br>CTG  | val<br>GTG | ala<br>GCC | gln<br>CAG | cys<br>TGC | leu<br>CTG       | val<br>GTG | cys<br>TGC | val<br>GTG | pro<br>CCC | 60<br>trp<br>TGG  | asp<br>GAC      |
| ala<br>GCA | arg<br>CGG | pro<br>CCG | pro<br>CCC        | pro<br>CCC | ala<br>GCC | ala<br>GCC | pro<br>CCC | 70<br>ser<br>TCC | phe<br>TTC | arg<br>CGC | gln<br>CAG | val<br>GTG | ser<br>TCC        | cys<br>TGC      |
|            |            |            |                   |            |            |            |            |                  |            |            |            | cys<br>TGC |                   |                 |
|            |            |            |                   |            |            |            |            |                  |            |            |            | leu<br>CTG |                   |                 |
| ala<br>GCC | arg<br>CGC | gly<br>GGG | 110<br>gly<br>GGC | pro<br>CCC | pro<br>CCC | glu<br>GAG | ala<br>GCC | phe<br>TTC       | thr<br>ACC | thr<br>ACC | ser<br>AGC | val<br>GTG | 120<br>arg<br>CGC | ser<br>AGC      |

FIG. 20A

|            |            |            |                   |            |            |            |            |                   |            |            |            |            |                   | •          |
|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
| tyr<br>TAC | leu<br>CTG | pro<br>CCC | asn<br>AAC        | thr<br>ACG | val<br>GTG | thr<br>ACC | asp<br>GAC | 130<br>ala<br>GCA | leu<br>CTG | arg<br>CGG | gly<br>GGG | ser<br>AGC | gly<br>GGG        | ala<br>GCG |
| trp<br>TGG | gly<br>GGG | leu<br>CTG | 140<br>leu<br>CTG | leu<br>CTG | arg<br>CGC | arg<br>CGC | val<br>GTG | gly<br>GGC        | asp<br>GAC | asp<br>GAC | val<br>GTG | leu<br>CTG | 150<br>val<br>GTT | his<br>CAC |
|            |            |            |                   |            | ala<br>GCG |            |            |                   |            |            |            |            |                   |            |
| ala<br>GCC | tyr<br>TAC | gln<br>CAG | 170<br>val<br>GTG | cys<br>TGC | gly<br>GGG | pro<br>CCG | pro<br>CCG | leu<br>CTG        | tyr<br>TAC | gln<br>CAG | leu<br>CTC | gly<br>GGC | 180<br>ala<br>GCT | ala<br>GCC |
| thr<br>ACT | gln<br>CAG | ala<br>GCC | arg<br>CGG        | pro<br>CCC | pro<br>CCG | pro<br>CCA | his<br>CAC | 190<br>ala<br>GCT | ser<br>AGT | gly<br>GGA | pro<br>CCC | arg<br>CGA | arg<br>AGG        | arg<br>CGT |
|            |            |            |                   |            | ala<br>GCC |            |            |                   |            |            |            |            |                   |            |
| val<br>GTC | pro<br>CCC | leu<br>CTG | gly<br>GGC        | leu<br>CTG | pro<br>CCA | ala<br>GCC | pro<br>CCG | 220<br>gly<br>GGT | ala<br>GCG | arg<br>AGG | arg<br>AGG | arg<br>CGC | gly<br>GGG        | gly<br>GGC |
| ser<br>AGT | ala<br>GCC | ser<br>AGC | 230<br>arg<br>CGA | ser<br>AGT | leu<br>CTG | pro<br>CCG | leu<br>TTG | pro<br>CCC        | lys<br>AAG | arg<br>AGG | pro<br>CCC | arg<br>AGG | 240<br>arg<br>CGT | gly<br>GGC |
|            |            |            |                   |            | glu<br>GAG |            |            |                   |            |            |            |            |                   |            |
| ala<br>GCC | his<br>CAC | pro<br>CCG | 260<br>gly<br>GGC | arg<br>AGG | thr<br>ACG | arg<br>CGT | gly<br>GGA | pro<br>CCG        | ser<br>AGT | asp<br>GAC | arg<br>CGT | gly<br>GGT | 270<br>phe<br>TTC | cys<br>TGT |
| val<br>GTG | val<br>GTG | ser<br>TCA | pro<br>CCT        | ala<br>GCC | arg<br>AGA | pro<br>CCC | ala<br>GCC | 280<br>glu<br>GAA | glu<br>GAA | ala<br>GCC | thr<br>ACC | ser<br>TCT | leu<br>TTG        | glu<br>GAG |
| gly<br>GGT | ala<br>GCG | leu<br>CTC | 290<br>ser<br>TCT | gly<br>GGC | thr<br>ACG | arg<br>CGC | his<br>CAC | ser<br>TCC        | his<br>CAC | pro<br>CCA | ser<br>TCC | val<br>GTG | 300<br>gly<br>GGC | arg<br>CGC |
| gln<br>CAG | his<br>CAC | his<br>CAC | ala<br>GCG        | gly<br>GGC | pro<br>CCC | pro<br>CCA | ser<br>TCC | 310<br>thr<br>ACA | ser<br>TCG | arg<br>CGG | pro<br>CCA | pro<br>CCA | arg<br>CGT        | pro<br>CCC |
| trp<br>TGG | asp<br>GAC | thr<br>ACG | 320<br>pro<br>CCT | cys<br>TGT | pro<br>CCC | pro<br>CCG | val<br>GTG | tyr<br>TAC        | ala<br>GCC | glu<br>GAG | thr<br>ACC | lys<br>AAG | 330<br>his<br>CAC | phe<br>TTC |

FIG. 20B

+

| 340        |            |            |                   |            |            |            |            |                   |            | •          |            |            |                   |            |
|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
| leu<br>CTC | tyr<br>TAC | ser<br>TCC | ser<br>TCA        | gly<br>GGC | asp<br>GAC | lys<br>AAG | glu        | gln               | leu<br>CTG | arg<br>CGG | pro<br>CCC | ser<br>TCC | phe<br>TTC        | leu<br>CTA |
| leu<br>CTC | ser<br>AGC | ser<br>TCT | 350<br>leu<br>CTG | arg<br>AGG | pro<br>CCC | ser<br>AGC | leu<br>CTG | thr<br>ACT        | gly<br>GGC | ala<br>GCT | arg<br>CGG | arg<br>AGG | 360<br>leu<br>CTC | val<br>GTG |
| glu<br>GAG | thr<br>ACC | ile<br>ATC | phe<br>TTT        | leu<br>CTG | gly<br>GGT | ser<br>TCC | arg<br>AGG | 370<br>pro<br>CCC | trp<br>TGG | met<br>ATG | pro<br>CCA | gly<br>GGG | thr<br>ACT        | pro<br>CCC |
| arg<br>CGC | arg<br>AGG | leu<br>TTG | 380<br>pro<br>CCC | arg<br>CGC | leu<br>CTG | pro<br>CCC | gln<br>CAG | arg<br>CGC        | tyr<br>TAC | trp<br>TGG | gln<br>CAA | met<br>ATG | 390<br>arg<br>CGG | pro<br>CCC |
| leu<br>CTG | phe<br>TTT | leu<br>CTG | glu<br>GAG        | leu<br>CTG | leu<br>CTT | gly<br>GGG | asn<br>AAC | 400<br>his<br>CAC | ala<br>GCG | gln<br>CAG | cys<br>TGC | pro<br>CCC | tyr<br>TAC        | gly<br>GGG |
|            |            |            |                   |            | his<br>CAC |            |            |                   |            |            |            |            |                   |            |
| ala<br>GCA | ala<br>GCC | gly<br>GGT | val<br>GTC        | cys<br>TGT | ala<br>GCC | arg<br>CGG | glu<br>GAG | 430<br>lys<br>AAG | pro<br>CCC | gln<br>CAG | gly<br>GGC | ser<br>TCT | val<br>GTG        | ala<br>GCG |
| ala<br>GCC | pro<br>CCC | glu<br>GAG | 440<br>glu<br>GAG | glu<br>GAG | asp<br>GAC | thr<br>ACA | asp<br>GAC | pro<br>CCC        | arg<br>CGT | arg<br>CGC | leu<br>CTG | val<br>GTG | 450<br>gln<br>CAG | leu<br>CTG |
|            |            |            |                   |            | ser<br>AGC |            |            |                   |            |            |            |            |                   |            |
| ala<br>GCC | cys<br>TGC | leu<br>CTG | 470<br>arg<br>CGC | arg<br>CGG | leu<br>CTG | val<br>GTG | pro<br>CCC | pro<br>CCA        | gly<br>GGC | leu<br>CTC | trp<br>TGG | gly<br>GGC | 480<br>ser<br>TCC | arg<br>AGG |
| his<br>CAC | asn<br>AAC | glu<br>GAA | arg<br>CGC        | arg<br>CGC | phe<br>TTC | leu<br>CTC | arg<br>AGG | 490<br>asn<br>AAC | thr<br>ACC | lys<br>AAG | lys<br>AAG | phe<br>TTC | ile<br>ATC        | ser<br>TCC |
| leu<br>CTG | gly<br>GGG | lys<br>AAG | 500<br>his<br>CAT | ala<br>GCC | lys<br>AAG | leu<br>CTC | ser<br>TCG | leu<br>CTG        | gln<br>CAG | glu<br>GAG | leu<br>CTG | thr<br>ACG | 510<br>trp<br>TGG | lys<br>AAG |
| met<br>ATG | ser<br>AGC | val<br>GTG | arg<br>CGG        | asp<br>GAC | cys<br>TGC | ala<br>GCT | trp<br>TGG | 520<br>leu<br>CTG | arg<br>CGC | arg<br>AGG | ser<br>AGC | pro<br>CCA | gly<br>GGG        | val<br>GTT |
| gly<br>GGC | cys<br>TGT | val<br>GTT | 530<br>pro<br>CCG | ala<br>GCC | ala<br>GCA | glu<br>GAG | his<br>CAC | arg<br>CGT        | leu<br>CTG | arg<br>CGT | glu<br>GAG | glu<br>GAG | 540<br>ile<br>ATC | leu<br>CTG |

FIG. 20C

|            | 550        |            |                   |            |            |            |            |                   |            |            |            |            |                   |            |
|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
|            |            |            |                   |            | trp<br>TGG |            | met        | ser               |            |            |            |            |                   |            |
|            |            |            |                   |            | tyr<br>TAT |            |            |                   |            |            |            |            |                   |            |
| arg<br>AGG | leu<br>CTC | phe<br>TTT | phe<br>TTC<br>590 | tyr<br>TAC | arg<br>CGG | lys<br>AAG | ser<br>AGT | 580<br>val<br>GTC | trp<br>TGG | ser<br>AGC | lys<br>AAG | leu<br>TTG | gln<br>CAA<br>600 | ser<br>AGC |
| ile<br>ATT | gly<br>GGA | ile<br>ATC | arg<br>AGA        | gln<br>CAG | his<br>CAC | leu<br>TTG | lys<br>AAG | arg<br>AGG        | val<br>GTG | gln<br>CAG | leu<br>CTG | arg<br>CGG | glu<br>GAG        | leu<br>CTG |
| ser<br>TCG | glu<br>GAA | ala<br>GCA | glu<br>GAG        | val<br>GTC | arg<br>AGG | gln<br>CAG | his<br>CAT | 610<br>arg<br>CGG | glu<br>GAA | ala<br>GCC | arg<br>AGG | pro<br>CCC | ala<br>GCC        | leu<br>CTG |
| leu<br>CTG | thr<br>ACG | ser<br>TCC | 620<br>arg<br>AGA | leu<br>CTC | arg<br>CGC | phe<br>TTC | ile<br>ATC | pro<br>CCC        | lys<br>AAG | pro<br>CCT | asp<br>GAC | gly<br>GGG | 630<br>leu<br>CTG | arg<br>CGG |
| pro<br>CCG | ile<br>ATT | val<br>GTG | asn<br>AAC        | met<br>ATG | asp<br>GAC | tyr<br>TAC | val<br>GTC | 640<br>val<br>GTG | gly<br>GGA | ala<br>GCC | arg<br>AGA | thr<br>ACG | phe<br>TTC        | arg<br>CGC |
| arg<br>AGA | glu<br>GAA | lys<br>AAG | 650<br>arg<br>AGG | ala<br>GCC | glu<br>GAG | arg<br>CGT | leu<br>CTC | thr<br>ACC        | ser<br>TCG | arg<br>AGG | val<br>GTG | lys<br>AAG | 660<br>ala<br>GCA | leu<br>CTG |
| phe<br>TTC | ser<br>AGC | val<br>GTG | leu<br>CTC        | asn<br>AAC | tyr<br>TAC | glu<br>GAG | arg<br>CGG | 670<br>ala<br>GCG | arg<br>CGG | arg<br>CGC | pro<br>CCC | gly<br>GGC | leu<br>CTC        | leu<br>CTG |
| gly<br>GGC | ala<br>GCC | ser<br>TCT | 680<br>val<br>GTG | leu<br>CTG | gly<br>GGC | leu<br>CTG | asp<br>GAC | asp<br>GAT        | ile<br>ATC | his<br>CAC | arg<br>AGG | ala<br>GCC | 690<br>trp<br>TGG | arg<br>CGC |
| thr<br>ACC | phe<br>TTC | val<br>GTG | leu<br>CTG        | arg<br>CGT | val<br>GTG | arg<br>CGG | ala<br>GCC | 700<br>gln<br>CAG | asp<br>GAC | pro<br>CCG | pro<br>CCG | pro<br>CCT | glu<br>GAG        | leu<br>CTG |
|            |            |            |                   |            | asp<br>GAT |            |            |                   |            |            |            |            |                   | pro<br>CCC |
| gln<br>CAG | asp<br>GAC | arg<br>AGG | leu<br>CTC        | thr<br>ACG | glu<br>GAG | val<br>GTC | ile<br>ATC | 730<br>ala<br>GCC | ser<br>AGC | ile<br>ATC | ile<br>ATC | lys<br>AAA | pro<br>CCC        | gln<br>CAG |
| asn<br>AAC | thr<br>ACG | tyr<br>TAC | 740<br>cys<br>TGC | val<br>GTG | arg<br>CGT | arg<br>CGG | tyr<br>TAT | ala<br>GCC        | val<br>GTG | val<br>GTC | gln<br>CAG | lys<br>AAG | 750<br>ala<br>GCC | ala<br>GCC |

FIG. 20D

760 his gly his val arg lys ala phe lys ser his val leu arg pro CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC CTA CGT CCA val pro gly asp pro ala gly leu his pro leu his ala ala leu GTG CCA GGG GAT CCC GCA GGG CTC CAT CCT CTC CAC GCT GCT CTG 790 gln pro val leu arg arg his gly glu gln ala val cys gly asp CAG CCT GTG CTA CGG CGA CAT GGA GAA CAA GCT GTT TGC GGG GAT ser ala gly arg ala ala pro ala phe gly gly OP TCG GCG GGA CGG GCT GCT CCT GCG TTT GGT GGA TGA TTTCTTGTTGGT GACACCTCACCTCACCCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGA GTATGGCTGCGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTAGAAGACGAGGC CCTGGGTGGCACGGCTTTTGTTCAGATGCCGGCCCACGGCCTATTCCCCTGGTGCGGCCT GCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACTACTCCAGCTATGCCCGGACCTC CATCAGAGCCAGTCTCACCTTCAACCGCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAA ACTCTTTGGGGTCTTGCGGCTGAAGTGTCACAGCCTGTTTCTGGATTTGCAGGTGAACAG CCTCCAGACGTGTGCACCAACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCA CGCATGTGTGCTGCAGCTCCCATTTCATCAGCAAGTTTGGAAGAACCCCACATTTTTCCT GCGCGTCATCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGG GATGTCGCTGGGGGCCAAGGGCGCCGCCGCCTCTGCCCTCCGAGGCCGTGCAGTGGCT GTGCCACCAAGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACGTGCCACTCCT GGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCCCGGGGACGACGCTGAC TGCCCTGGAGGCCGCAGCCAACCCGGCACTGCCCTCAGACTTCAAGACCATCCTGGACTG CTACGTCCCAGGGAGGGGGGGCCCACACCCAGGCCCGCACCGCTGGGAGTCTGAGG CCTGAGTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAG GCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACCCTGCCGTCTTCACTTCCC CACAGGCTGGCGCTCGGCTCCACCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTC CACTCCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCCTCGCCCTGCC CTCCTTTGCCTTCCACCCCCACCATCCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTC TGGGAATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGAT GGGGGTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATATG 

FIG. 20E

+



**FIG. 21A** 

+

| 4321 | GGTGTTTTTAAGCCAATNANAAAATTTTTTNATGTTGTTTNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4381 | NUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4441 | ИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4501 | имимимимимимимимимимимимимимимимимимим                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4561 | ИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4621 | NUMURANIANIANIANIANIANIANIANIANIANIANIANIANIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4681 | NAMANAMANAMANAMANAMANAMANAMANAMANAMANAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4741 | HARDINARIAN MARIAN MARI |
| 4801 | MUNUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4861 | NUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4921 | UNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUNUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4981 | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5041 | NGCCANGRAGGGGGCCAGGTTCCAANTTCCCAACCKTTTTWGGARGGACNGCCCCCAGGG<br>NCGGTNCYTCCCCCGGTCCAAGGTTNAAGGGTTGGMAAAAWCCTYCCTGNCGGGGGTCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5101 | GGGGATRAACAGANTNGGGGGKGGTWGGGTTNAKGGTGGGAACNCCTTNGCGCCTGGAG<br>CCCCTAYTTGTCTNANCCCCCMCCAWCCCAANTMCCACCCTTGNGGAANCGSCGGACCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5161 | AACGTGCAAAGAGGAAATGAAGGGCCTGKGTCAAGGAGCCCAAGTNGGCGGGGRAGTTTG<br>TTGCACGTTTCTCCTTTACTTCCCGGACMCAGTTCCTCGGGTTCANCCGCCCCYTCAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5221 | CAGGGAGGCACTCCGGGGAGGTCCSGCGTGCCCGTCCAAGGGAGCAATGCGTCCTTCGGGGTCCCTCCGTGAGGCCCCTCCAGGSCGCACGGGCAGGTTCCCTCGTTACGCAGGAAGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5281 | TTCGTCCCCAWGCCGCGTCTACGCGCCTYCCGTCCTCCCCTTCACGTTCCGGCATTCGTG AAGCAGGGGTWCGGCGCAGATGCGCGGARGGCAGGGGGAAGTGCAAGGCCGTAAGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5341 | GTGCCCGGAGCCCGACGCCCCGCGTCCGGACCTGGAGCCCTGGGTCTCCGGATCAGCACGGGCCTCGGGCTCGGGCCTAGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5401 | $\tt GCCAGCGGCCAAAGGGTCGCCGCACGCACCTGTTCCCAGGGCCTCCACATCATGGCCCCTCGGTCGCCGGTTTCCCAGCGGCGTGCGT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

FIG. 21B

5461 CCCTCGGGTTACCCCACAGCCTAGGCCGGATTCGACCTCTCTCCGCTGGGGCCCTCGCCT GGGAGCCCAATGGGGTGTCGGATCCGGCCTAAGCTGGAGAGAGGCGACCCCGGGAGCGGA Sp1 5521 GGCGTCCCTGCACCCTGGGAGCGCGAGCGCGCGCGGGGGGGAAGCGCGGCCCATACCC CCGCAGGGACGTGGGACCCTCGCGCTCGCCGCGCCCCCCTTCGCGCCCGGGTATGGG 5581 CCGGGTCCGCCGGAAGCAGCTGCGCTGTCGGGGCCAGGCCGGGCTCCCAGTGGATTCGC GGCCCAGGCGGGCCTTCGTCGACGCGACAGCCCCGGTCCGGCCCGAGGGTCACCTAAGCG Topo II cleavage site \*\*\*\*\*\* 5641 GGGCACAGACGCCCAGGACCGCGCTTCCCACGTGGCGGAAGGACTGGGGACCCGGGCACC CCCGTGTCTGCGGGTCCTGGCGCGAAGGGTGCACCGCCTTCCTGACCCCTGGGCCCGTGG E2F \*\*\*\*\*\* GCAGGACGGGGAAGTGGAAGGTCGAGGCGAAGAAGGCGCGCCTGGGCCGGGGCAGGGCTT Ε Sp1 ======== NFkB h 2F \*\*\*\*\*\*\* \*\*\*\*\*\* \*\*\*\* 5821 CGCGGCCCCCCCTCTCCTTCGCGGCGCGAGTTTCAGGCAGCGCTGCGTCCTGCTGCGCA GCGCCGGGCGGAGAGGAAGCGCCGCTCAAAGTCCGTCGCGACGCAGGACGACGCGT 5860 5875 ECO47III FSP1 TRT5 ' \*\*\*\*\*\*\*\*\* 5881 CGTGGGAAGCCCTGGCCCCGGCCACCCCGCGATGCCGCGCTCCCCGCTGCCGAGCCG GCACCCTTCGGGACCGGGGCCGGTGGGGGGCGCTACGGCGCGCGAGGGGCGACGGCTCGGC 5941 TGCGCTCCCTGCTGCGCAGCCACTACCGCGAGGTGCTGCCGCTGGCCACGTTCGTGCGGC ACGCGAGGGACGACGCGTCGTGATGGCGCTCCACGACGGCGACCGGTGCAAGCACGCCG 5953 FSP1 6001 GCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAGCGCGGGGACCCGGCGGCTTTCCGCGCGC CGGACCCCGGGGTCCCGACCGCCGACCACGTCGCGCCCCTGGGCCGCCGAAAGGCGCGCG NFkB

FIG. 21C

\_\_\_\_\_

6121 CCTTCCGCCAGGTGGGCCTCCCCGGGGTCGGCGTCCGGCTTGAGGGCGGCCGGGG GGAAGGCGGTCCACCCGGAGGGGCCCCAGCCGCAGGCCGACCCCAACTCCCGCCGGCCCC Topo II cleavage s NFkB \_\_\_\_\_\_ Intron1 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 6181 GGAACCAGCGACATGCGGAGAGCAGCGCAGGCGACTCAGGGCGCTTCCCCCGCAGGTGTC CCTTGGTCGCTGTACGCCTCTCGTCGCGTCCGCTGAGTCCCGCGAAGGGGGCGTCCACAG ite GACGGACTTCCTCGACCACCGGGCTCACGACGTCTCCGACACGCTCGCGCCGCGCTTCTT 6301 CGTGCTGGCCTTCGGCTTCGCGCTGCTGGACGGGGCCCGCGGGGGCCCCCCGAGGCCTT 6361 CACCACCAGCGTGCGCAGCTACCTGCCCAACACGGTGACCGACGCACTGCGGGGGGAGCGG GTGGTGGTCGCACGCGTCGATGGACGGGTTGTGCCACTGGCTGCGTGACGCCCCCTCGCC 6372 FSP1 6421 GGCGTGGGGCTGCTGCGCCGCGTGGGCGACGACGTGCTGGTTCACCTGCTGCACG CCGCACCCCGACGACGCGCGCGCCCCCGCTGCTGCACGACCAAGTGGACGACCGTGC 6481 CTGCGCGCTCTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGCCGCCGCT GACGCGGGGAAACACGACCACCGAGGGTCGACGCGGATGGTCCACACGCCCGGCGGCGA 6541 GTACCAGCTCGGCGCTGCCACTCAGGCCCGGCCCCCGCACACGCTAGTGGACCCCGAAG CATGGTCGAGCCGCGACGGTGAGTCCGGGCCGGGGCGGTGTGCGATCACCTGGGGCTTC 6601 GCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGTCCCCCTGGG CGCAGACCCTACGCTTGCCCGGACCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGACCC 6661 CCTGCCAGCCCGGGTGCGAGGAGGCGCGGGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCC GGACGGTCGGGGCCCACGCTCCTCCGCGCCCCCGTCACGGTCGGCTTCAGACGGCAACGG 6721 CAAGAGGCCCAGGCGTGCCCCTGAGCCGGAGCGGACGCCCGTTGGGCAGGGGTC GACCCGGGTGGGCCCGTCCTGCGCACCTGGCTCACTGGCACCAAAGACACACCACAGTGG 6841 TGCCAGACCCGCCGAAGAAGCCACCTCTTTGGAGGGTGCGCTCTCTGGCACGCGCCACTC ACGGTCTGGGCGCTTCTTCGGTGGAGAAACCTCCCACGCGAGAGACCCGTGCGCGGTGAG 6901 CCACCCATCCGTGGGCCGCCAGCACCACGCGGGCCCCCATCCACATCGCGGCCACCACG GGTGGGTAGGCACCCGGCGGTCGTGGTGCGCCCGGGGGGTAGGTGTAGCGCCGGTGGTGC

+

| 6961             | AGGACCCTGTGCCCCGGTGTACGCCGAGCCCAAGCACTTCCTCTACTCCTC AGGGACCCTGTGCGGAACAGGGGGCCACATGCGGCTCTGGTTCGTGAAGGAGATGAGGAG                     |  |  |  |  |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 7021             | ${\tt AGGCGACAAGGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCTGACTCGCTGTTCCTCGTCGACGCCGGGAGGAAGGA$                                  |  |  |  |  |  |  |  |  |  |  |
| 7081             | ${\tt TGGCGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCCTGGATGCCAGGGACACCGCGAGCCTCCGAGCACCTCTGGTAGAAAGACCCAAGGTCCGGGACCTACGGTCCCTG}$     |  |  |  |  |  |  |  |  |  |  |
| 7141             | ${\tt TCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACTGGCAAATGCGGCCCCTGTTTCTGGAAGGGGCGTCCAACGGGGCGGACGAGGGCGATGACCGTTTACGCCGGGGACAAAGACCT}$        |  |  |  |  |  |  |  |  |  |  |
| 7167<br>ECO47III |                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
| 7201             | GCTGCTTGGGAACCACGCGCAGTGCCCCTACGGGGTGCTCCTCAAGACGCACTGCCCGCT<br>CGACGAACCCTTGGTGCGCGTCACGGGGATGCCCCACGAGGAGTTCTGCGTGACGGGCGA         |  |  |  |  |  |  |  |  |  |  |
| 7261             | ${\tt GCGAGCTGCGGTCACCCCAGCAGCCGGTGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGTCGCTCGACGCCAGTGGGGTCGTCGGCCACAGACACGGGCCCTCTTCGGGGTCCCGAGACACACAC$ |  |  |  |  |  |  |  |  |  |  |
| 7321             | ${\tt GGCGGCCCCGAGGAGGAGGACACAGACCCCCGTCGCCTGGTGCAGCTGCTCCGCCAGCACGCCGGGGGGGCTCCTCCTCTGTGTCTGGGGGCAGCGGACCACGTCGACGAGGCGGTCGT}$      |  |  |  |  |  |  |  |  |  |  |
| 7381             | ${\tt CAGCAGCCCTGGCAGGTGTACGGCTTCGTGCGGGGCCTGCCT$                                                                                    |  |  |  |  |  |  |  |  |  |  |
| 7441             | ${\tt AGGCCTCTGGGGCTCCAGGCACCAACGAACGCCGCTTCCTCAGGAACACCAAGAAGTTCATTCCGGAGACCCCGAGGTCCGTGTTGCTTGC$                                   |  |  |  |  |  |  |  |  |  |  |
| 7501             | $\tt CTCCCTGGGGAAGCATGCCAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCGGAGGGACCCCTTCGTACGGTTCGAGAGCGACGTCCTCGACTGCACCTTCTACTCGCACGC$       |  |  |  |  |  |  |  |  |  |  |
| 7561             | **************************************                                                                                               |  |  |  |  |  |  |  |  |  |  |
|                  | 7575<br>FSP1                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 7621             | Intron2  ***********************************                                                                                         |  |  |  |  |  |  |  |  |  |  |
| 7681             | **************************************                                                                                               |  |  |  |  |  |  |  |  |  |  |
| 7741             | **> ATCGAGGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCATA TAGCTCCAGCTGAGATCTCCTAGGGGCCCATGGCTCGAGCTTAAGCATTAGTACCAGTAT        |  |  |  |  |  |  |  |  |  |  |
|                  | 7747                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |

FIG. 21E



FIG. 22

FIG. 23

 $\label{totacct} {\tt TCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGAGACCAGCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCCAGCAGTGGCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATCAGGGGCAAGTC\\ {\tt AGGGGCAAGTC}$ 

FIG. 24



FIG. 25

--

+



| Φ.                   |                                                     | _                    | _                    |             |             | 4                                           | 7           | 7                    | 7           | 7                  | 7           | 7                    |        |
|----------------------|-----------------------------------------------------|----------------------|----------------------|-------------|-------------|---------------------------------------------|-------------|----------------------|-------------|--------------------|-------------|----------------------|--------|
| 1529<br>148          | 1601<br>155                                         | 1661<br>175          | 1721<br>195          | 1781<br>215 | 1841<br>235 | 1907<br>245                                 | 1967<br>265 | 2027<br>285          | 2087<br>305 | 2147<br>325        | 2207<br>345 | 2267<br>365          |        |
| CA.A.                | 9<br>9                                              | GAC                  | GTG<br>V             | AAA<br>K    | TAT<br>Y    |                                             | AGG<br>R    | GTA<br>V             | ACA<br>T    | ATT<br>I           | GCG<br>A    | ATA<br>I             |        |
| -                    | ATC (                                               |                      |                      |             |             | AAC<br>N                                    |             |                      |             |                    |             |                      |        |
| TGG<br>W             | T<br>H A                                            | AAT<br>N             | ACT<br>T             | CGC<br>R    | TCC         | TTT .                                       | CCA         | CTG<br>L             | CAA<br>O    | TAT<br>Y           | TTT<br>F    | AGG<br>R             |        |
| AAT<br>N             | ag<br>g                                             | CCA<br>P             | GAA<br>E             | GCC         | TCA<br>S    | TAT T<br>Y                                  | TTT<br>F    | CCA<br>P             | GAA<br>E    | CCA<br>P           | GTG<br>V    | CAA<br>Q             |        |
| AAA<br>K             | gtat                                                | CTT<br>L             | GAG<br>E             | AGC<br>S    | AGG<br>R    | CTA TZ<br>L Y                               | ATT         | ATT<br>I             | ATT<br>I    | TGC                | CAG<br>Q    | AAC<br>N             |        |
| TCA                  | acaa                                                | GCT<br>A             | TTT<br>F             | AAA<br>K    | TAC<br>Y    | AT CT                                       | TGG<br>W    | GTG<br>V             | TTA<br>L    | TAT<br>Y           | AAC<br>N    | GGT                  |        |
| GAG<br>E             | actg                                                | GAG                  | GTG<br>V             | AAT<br>N    | TTT<br>F    |                                             | CAA         | AAA<br>K             | CCT         | CAT<br>H           | CCG         | TGG<br>W             |        |
| CTT                  | caag                                                | TTT<br>F             | AAT<br>N             | CAA         | ATT<br>I    | ttt                                         | CTT         | CAC<br>H             | TAC<br>Y    | AAC                | AAG<br>K    | ATC<br>I             |        |
| ATA<br>I             | tgaa                                                | ATT<br>I             | AAT<br>N             | ACT         | AGC<br>S    | ctaa                                        | TGG<br>W    | $_{ m L}^{ m TTG}$   | GTA<br>V    | TAC<br>Y           | TTA<br>L    | TTA<br>L             |        |
| TCT<br>S             | actt                                                | AGT                  | AAA<br>K             | ATT<br>I    | TTT<br>F    | ataa                                        | ATG<br>M    | CAA                  | AAG<br>K    | GTT<br>V           | TCC         | AAA<br>K             | •      |
| ATA<br>I             | gtaaataccggttaagatgttgcgcactttgaacaagactgacaagtatag | GGA<br>G             | $_{\rm F}^{\rm TT}$  | TCC         | AGG<br>R    | G gtaactaatactgttatccttcataactaattttag<br>D | CAC<br>H    | AAG<br>K             | CTA<br>L    | AAA<br>K           | TAT<br>Y    | CCT                  | į      |
| $_{\rm L}^{\rm CTT}$ | tgtt                                                | AAA<br>K             | $_{\rm L}^{\rm CTT}$ | ACA<br>T    | AGT<br>S    | tato                                        | GTA<br>V    | GTG<br>V             | CTC         | TCA<br>S           | AGT<br>S    | TTT<br>F             | (<br>i |
| TAC<br>Y             | aaga                                                | TCC                  | CCA<br>P             | gaa<br>E    | ATT<br>I    | ıctgt                                       | ACA         | CAA<br>Q             | CGT<br>R    | CTA<br>L           | CTT<br>L    | GTG<br>V             | •      |
| AAT<br>N             | ggtt                                                | $_{\rm L}^{\rm TTA}$ | ATA<br>I             | ATT<br>I    | TCA<br>S    | aata                                        | AAC         | ${ m TTT}$           | AAA<br>K    | TCT                | ATC<br>I    | CGA<br>R             |        |
| CCT<br>P             | ıtacc                                               | TTA<br>L             | 3 <b>3</b> 3         | ACC         | ATT<br>I    | aact                                        | CGG<br>R    | GCA                  | CCC         | ATT<br>I           | AAA<br>K    | GTT<br>V             |        |
| TTT<br>F             | Jtaaa                                               | TAC<br>Y             | TCT<br>S             | CGA<br>R    | AGC<br>S    |                                             | GAT<br>D    | AAC                  | GTG<br>V    | CGT<br>R           | GAA<br>E    | $_{\rm L}^{\rm CTT}$ |        |
| ACT<br>T             | AT                                                  | CAT<br>H             | ATT<br>I             | AAG<br>K    | AAT<br>N    | CAA                                         | TGT<br>C    | ATA<br>I             | GTT<br>V    | CAT<br>H           | GAT<br>D    | ATT<br>I             |        |
| TCT<br>S             | GAA<br>E                                            | ATG<br>M             | CAG<br>Q             | AGA<br>R    | TGG<br>W    | AAG<br>K                                    | ATT<br>I    | $_{\rm L}^{\rm CTT}$ | ACA         | $_{ m L}^{ m CTC}$ | GAT<br>D    | TCC                  |        |
| GTT<br>V             | TTA<br>L                                            | GCC                  | $_{\rm L}^{\rm CTT}$ | AAA<br>K    | TCC<br>S    | TTT<br>F                                    | TCT         | GGA<br>G             | AGT<br>S    | CGA<br>R           | CAC<br>H    | CGA<br>R             |        |
| CTC                  | $\mathop{\mathrm{TTG}}_{\mathrm{L}}$                | GAT<br>D             | TAC<br>Y             | AAA<br>K    | GTT<br>V    | AAG<br>K                                    | CAC<br>H    | TTT<br>F             | CAG<br>Q    | AAG<br>K           | ACC         | $_{\rm L}^{\rm CTT}$ |        |
| GAT<br>D             | $_{\rm L}^{\rm CTT}$                                | AGT<br>S             | AAT<br>N             | TCA<br>S    | GAA<br>E    | A.A.G<br>K                                  | TTA<br>L    | CAA                  | TCA<br>S    | GCA                | GAC<br>D    | $_{\rm F}^{\rm TTT}$ |        |
| 1470<br>129          | 1530<br>149                                         | 1602<br>156          | 1662<br>176          | 1722<br>196 | 1782<br>216 | 1842<br>236                                 | 1908<br>246 | 1968<br>266          | 2028        | 2088<br>306        | 2148<br>326 | 2208<br>346          |        |
|                      |                                                     |                      |                      |             |             |                                             |             |                      |             |                    |             |                      |        |

E E

2465 405 2525 425 2585 445 2645 465 2705 485 2775 495 2835 515 2906 524 2967 542 3027 562 3088 581 TTC TTA ATA AAG gtattaatttttggtcatcaatgtactttacttctaatctatta F  $\,$  L  $\,$  I  $\,$  K gtaat 2706 gtattttaaagtatttttgcaaaagctaattttcag AAC AAT GTT AGG ATG GAT ACT CAG AAA ACT 486 CTC GAA ACT L E T GAG E CGT CTA TTA CCT AAG AAG AAT ACC TTT CGT CTC ATT ACG R L L P K K N T F R L I T GTG V GAG E  $_{
m L}$ TGG W AAA ATA AAC K I N CCT P ზ ი TTA CGA ( AAC N AAA G gtattgtataaaatttattaccactaacgattttaccag AC K D TTT F GAT D AGT S CAA ACT GAA E TGG CCA P AAG K AAA K CAA TTA L GAA CGC R AGA R TTT F ATT TTA L GCG A ATG TTA GTC AGT ACG AAC M L V S T N GGT G AAG K TAT Y GAG AAA E K TTT F TCA GAA ATT S E I ATTAGT AGT S S GAA E CTT CAT H CCT P TAT Y ATA ATA I I TTT F GTT V TCA ATG AAA ATG S M K M GAA GAA E E GAT CGA ACT R T GAT D AGT S 2397 gtaatatgccaaattttttaccattaattaacaatcag ATT 396 TTA AGT L S AAG AAG K K TTT F AAT N AAT N TCG AGA TAC GAG TCT S R Y E S ATT ACA ' ATC TGC C CGA R AAA K AAT N AAA ATG 1 K M C GTT ATT ( TAC Y TTA L AAA K TTA L GAT D AAC N CAT H CTA L  $ext{TTT}$ GCG A CCA GCA AAA AGA K R TTATGG W AGT S က္လ သ TCA S AAA K ATA TTA L AAT TAC TTG TGC CGA L C R TCA S GGT G CTG L GAG ATA A TTA AGA I TTG AAA L K AGG TCA R S ATC I TTG CCT L P ATG M ATA I GAA E TAC Y TTC ACT T TCG S 2907 ttagcag 525 2466 AAA 4 2646 CTC 7 466 L 1 2776 ACT 496 T 2836 AAT 5 2526 GAA 426 E TTC F ATC I GCA A TTTGTT V 2586 446 3028 366

FIG. 15C



iG. 151



Approximate Cell No.

5,000 5,000 5,000 5,000

FIG. 25

FIG. 23

TCTACCTTGACAGACCTCCAGCCGTACATGCGACAGTTCGTGGCTCACCTGCAGGAG ACCAGCCCGCTGAGGGATGCCGTCGTCATCGAGCAGAGCTCCTCCCTGAATGAGGCC AGCAGTGGCCTCTTCGACGTCTTCCTACGCTTCATGTGCCACCACGCCGTGCGCATC AGGGGCAAGTC

FIG. 24



FIG. 22

| 6961 | TCCCTGGGACACGCCTTGTCCCCCGGTGTACGCCGAGACCAAGCACTTCCTCTACTCCTC AGGGACCCTGTGCGGAACAGGGGGCCACATGCGGCTCTGGTTCGTGAAGGAGATGAGGAG    |
|------|------------------------------------------------------------------------------------------------------------------------------|
| 7021 | AGGCGACAAGGAGCAGCTGCGGCCCTCCTTCCTACTCAGCTCTCTGAGGCCCAGCCTGAC<br>TCCGCTGTTCCTCGTCGACGCCGGGAGGAAGGATGAGTCGAGAGACTCCGGGTCGGACTG |
| 7081 | TGGCGCTCGGAGGCTCGTGGAGACCATCTTTCTGGGTTCCAGGCCCTGGATGCCAGGGAC<br>ACCGCGAGCCTCCGAGCACCTCTGGTAGAAAGACCCAAGGTCCGGGACCTACGGTCCCTG |
| 7141 | TCCCCGCAGGTTGCCCCGCCTGCCCCAGCGCTACTGGCAAATGCGGCCCCTGTTTCTGGA<br>AGGGGCGTCCAACGGGGCGGACGGGGTCGCGATGACCGTTTACGCCGGGGACAAAGACCT |
|      | 7167<br>ECO47III                                                                                                             |
| 7201 | GCTGCTTGGGAACCACGCGCAGTGCCCCTACGGGGTGCTCCTCAAGACGCACTGCCCGCT<br>CGACGAACCCTTGGTGCGCGTCACGGGGATGCCCCACGAGGAGTTCTGCGTGACGGGCGA |
| 7261 | GCGAGCTGCGGTCACCCCAGCAGCCGGTGTCTGTGCCCGGGAGAAGCCCCAGGGCTCTGT<br>CGCTCGACGCCAGTGGGGTCGTCGGCCACAGACACGGGCCCTCTTCGGGGTCCCGAGACA |
| 7321 | GGCGGCCCCGAGGAGGAGACACAGACCCCCGTCGCCTGGTGCAGCTGCTCCGCCAGCA<br>CCGCCGGGGGCTCCTCCTGTGTCTGGGGGCAGCGGACCACGTCGACGAGGCGGTCGT      |
| 7381 | CAGCAGCCCCTGGCAGGTGTACGGCTTCGTGCGGGCCTGCCT                                                                                   |
| 7441 | AGGCCTCTGGGGCTCCAGGCACAACGAACGCCGCTTCCTCAGGAACACCAAGAAGTTCAT<br>TCCGGAGACCCCGAGGTCCGTGTTGCTTGCGGCGAAGGAGTCCTTGTGGTTCTTCAAGTA |
| 7501 | CTCCCTGGGGAAGCATGCCAAGCTCTCGCTGCAGGAGCTGACGTGGAAGATGAGCGTGCG<br>GAGGGACCCCTTCGTACGGTTCGAGAGCGACGTCCTCGACTGCACCTTCTACTCGCACGC |
|      | **********                                                                                                                   |
| 7561 | GGACTGCGCTTGGCTGCGCAGGAGCCCAGGTGAGGAGGTGGTGGCCGTCGAGGGCCCAGG<br>CCTGACGCGAACCGACGCGTCCTCGGGTCCACTCCTCCACCACCGGCAGCTCCCGGGTCC |
|      | 7575<br>FSP1                                                                                                                 |
|      | Intron2                                                                                                                      |
|      | ***********                                                                                                                  |
| 7621 | CCCCAGAGCTGAATGCAGTAGGGGCTCAGAAAAGGGGGCAGGCA                                                                                 |
|      | * * * * * * * * * * * * * * * * * * * *                                                                                      |
| 7681 | GTCTCCATCGTCACGTGGGCACACGTGGCTTTTCGCTCAGGACGTCGAGTGGACACGGTG                                                                 |
|      | CAGAGGTAGCAGCCCGTGTGCACCGAAAAGCGAGTCCTGCAGCTCACCTGTGCCAC                                                                     |
|      | **>                                                                                                                          |
| 7741 | ATCGAGGTCGACTCTAGAGGATCCCCGGGTACCGAGCTCGAATTCGTAATCATGGTCATA TAGCTCCAGCTGAGATCTCCTAGGGGCCCATGGCTCGAGCTTAAGCATTAGTACCAGTAT    |
|      | 7747<br>SAL1                                                                                                                 |

FIG. 21 (CONTINUED)

|      | 30/34                                                                                                                         |
|------|-------------------------------------------------------------------------------------------------------------------------------|
| 6121 | **************************************                                                                                        |
|      | Topo_II_cleavage_s<br>::::::::::::::::::::::::::::::::::::                                                                    |
|      | ======================================                                                                                        |
| 6181 | Intron1 ************************************                                                                                  |
|      | ite                                                                                                                           |
|      |                                                                                                                               |
|      |                                                                                                                               |
| 6241 | CTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCAGAGGCTGTGCGAGCGCGCGC                                                                         |
| 6301 | CGTGCTGGCCTTCGGCTTCGCGCTGCTGGACGGGGCCCCGCGGGGGCCCCCCGAGGCCTT<br>GCACGACCGGAAGCCGAAGCGCGACGACCTGCCCCGGGCGCCCCCCGGGGGGGCTCCGGAA |
| 6361 | CACCACCAGCGTGCGCAGCTACCTGCCCAACACGGTGACCGACGCACTGCGGGGGAGCGGGTGGTGGTCGCACGCGTCGATGGACGGGTTGTGCCACTGGCTGACGCCCCCTCGCC          |
|      | 6372<br>FSP1                                                                                                                  |
| 6421 | GGCGTGGGGGCTGCTGCGCCGCGTGGGCGACGACGTGCTGGTTCACCTGCTGGCACGCCCCCCCGACGACGACGCGCGCG                                              |
| 6481 | CTGCGCGCTCTTTGTGCTGGTGGCTCCCAGCTGCGCCTACCAGGTGTGCGGGCCGCCGCGGAGACACACGACCACGAGGGTCGACGCGGATGGTCCACACGCCCGGCGGCGC              |
| 6541 | GTACCAGCTCGGCGCTGCCACTCAGGCCCGGCCCCCCCCACACGCTAGTGGACCCCGAAGCATGGTCGAGCCGCGACGGTGAGTCCGGGCCGGGGGGGG                           |
| 6601 | GCGTCTGGGATGCGAACGGGCCTGGAACCATAGCGTCAGGGAGGCCGGGGTCCCCTGGGCCGAGACCCTACGCTTGCCCGGACCTTGGTATCGCAGTCCCTCCGGCCCCAGGGGGACCC       |
| 6661 | CCTGCCAGCCCGGGTGCGAGGAGGCGCGGGGGGCAGTGCCAGCCGAAGTCTGCCGTTGCCGGACGGTCGGGGCCCACGCTCCTCCGCGCCCCCGTCACGGTCGGCTTCAGACGGCAACGG      |
| 6721 | CAAGAGGCCCAGGCGTGGCGCTGCCCCTGAGCCGGAGCGGACGCCCGTTGGGCAGGGGTCGTTCTCCGGGTCCGCACCGCGACGGGGACTCGGCCTCGCCTGCGGCAACCCGTCCCCAG       |
| 6781 | CTGGGCCCACCCGGGCAGGACGCGTGGACCGAGTGACCGTGGTTTCTGTGTGTG                                                                        |
| 6841 | TGCCAGACCCGCCGAAGAAGCCACCTCTTTGGAGGGTGCGCTCTCTGGCACGCGCCACTC                                                                  |

FIG. 21 (CONTINUED)

6901 CCACCCATCCGTGGGCCGCCAGCACCACGCGGGCCCCCCATCCACATCGCGGCCACCACG

| 5461 | CCCTCGGGTTACCCCACAGCCTAGGCCGGATTGGGAGCCCAATGGGGTGTCGGATCCGGCCTAA        |              |                                  |                           |
|------|-------------------------------------------------------------------------|--------------|----------------------------------|---------------------------|
|      |                                                                         | *            | Sp1<br>*****                     |                           |
| 5521 | GGCGTCCCTGCACCCTGGGAGCGCGCGCGCGCGCAGGGACGTGGGACCCTCGCGCTCGCCGC          |              |                                  |                           |
| 5581 | CCGGGTCCGCCCGGAAGCAGCTGCGCTGTCGG<br>GGCCCAGGCGGGCCTTCGTCGACGCGACAGCC    |              |                                  |                           |
|      |                                                                         |              | o_II_cleavage_                   |                           |
| 5641 | GGGCACAGACGCCCAGGACCGCGCTTCCCACG<br>CCCGTGTCTGCGGGGTCCTGGCGCGAAGGGTGC   |              |                                  |                           |
|      |                                                                         | _            | 2F<br>****                       |                           |
| 5701 | CGTCCTGCCCCTTCACCTTCCAGCTCCGCTTC<br>GCAGGACGGGGAAGTGGAAGGTCGAGGCGAAG    |              |                                  |                           |
|      | -                                                                       | •            |                                  | ****                      |
| 5761 | CCCTTCCCAGGTCCCGGCCCAGCCCCTTCCGG<br>GGGAAGGGTCCAGGGCCGGGTCGGGGAAGGCC    | GCCC         | TCCCAGCCCCTCCC<br>AGGGTCGGGGAGGG | CTTCCTTTTC<br>GGAAGGAAAAG |
|      | Sp1<br>=======                                                          |              |                                  |                           |
|      | 2F NFkB                                                                 |              | ********                         | h                         |
| 5821 | ***** CGCGGCCCCGCCCTCTCCTTCGCGGCGCGAGT GCGCCGGGGCGGGAGAGGAAGCGCCGCGCTCA | TTCA         | GGCAGCGCTGCGTC                   | CTGCTGCGCA                |
|      |                                                                         |              | 5860<br>ECO47III                 | 5875<br>FSP1              |
|      | TRT5'                                                                   |              |                                  |                           |
| 5881 | CGTGGGAAGCCCTGGCCCCGCG<br>GCACCCTTCGGGACCGGGGCCGGTGGGGGCGC              | ATGC<br>TACG | CGCGCGCTCCCGG<br>GCGCGCGAGGGGC   | TGCCGAGCCG<br>ACGGCTCGGC  |
| 5941 | TGCGCTCCCTGCTGCGCAGCCACTACCGCGAGACGCGCGCG                               |              |                                  |                           |
|      | 5953<br>FSP1                                                            |              |                                  |                           |
| 6001 | GCCTGGGGCCCCAGGGCTGGCGGCTGGTGCAG<br>CGGACCCCGGGGTCCCGACCGCCGACCACGTC    |              |                                  |                           |
| 6061 | TGGTGGCCCAGTGCCTGGTGTGCGTGCCCTGG<br>ACCACCGGGTCACGGACCACACGCACGGGACC    |              |                                  |                           |
|      | NFkB                                                                    |              |                                  |                           |
|      | =========                                                               |              |                                  |                           |

FIG. 21 (CONTINUED)

| 4321 | $\label{thm:colored} GGTGTTTTTAAGCCAATNANAAAATTTTTTNATGTTGTTTNNNNNNNNNN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4381 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4441 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4501 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4561 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4621 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4681 | ИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4741 | ИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4801 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4861 | ИМИМИИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4921 | ИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4981 | NNINNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5041 | NGCCANGRAGGGGCCAGGTTCCAANTTCCCAACCKTTTTWGGARGGACNGCCCCAGGG<br>NCGGTNCYTCCCCCGGTCCAAGGTTNAAGGGTTGGMAAAAWCCTYCCTGNCGGGGGTCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5101 | GGGGATRAACAGANTNGGGGGKGGTWGGGTTNAKGGTGGGAACNCCTTNGCGCCTGGAG<br>CCCCTAYTTGTCTNANCCCCCMCCAWCCCAANTMCCACCCTTGNGGAANCGSCGGACCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5161 | AACGTGCAAAGAGGAAATGAAGGGCCTGKGTCAAGGAGCCCAAGTNGGCGGGGRAGTTTG<br>TTGCACGTTTCTCCTTTACTTCCCGGACMCAGTTCCTCGGGTTCANCCGCCCCYTCAAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5221 | CAGGGAGGCACTCCGGGGAGGTCCSGCGTGCCCGTCCAAGGGAGCAATGCGTCCTTCGGGGTCCCTCCGTGAGGCCCCTCCAGGSCGCACGGGCAGGTTCCCTCGTTACGCAGGAAGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5281 | TTCGTCCCCAWGCCGCGTCTACGCGCCTYCCGTCCTCCCCTTCACGTTCCGGCATTCGTGAAGCAGGGGTWCGGCGCAGATGCGCGGGARGGCAGGAGGGGAAGTGCAAGGCCGTAAGCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5341 | GTGCCCGGAGCCCGACGCCCGCGTCCGGACCTGGAGCCCTGGGGTCTCCGGATCAGCACGCGCCTCGGGCCTGGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCAGAGCCCTAGGCCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCTAGGCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCAGAGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCTAGGCCCCAGAGCCCTAGGCCCTAGGCCCTAG |
| 5401 | GCCAGCGGCCAAAGGGTCGCCGCACGCACCTGTTCCCAGGGCCTCCACATCATGGCCCCTCGGTCGCCGGGTTTCCCAGCGGCGTGCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | FIG. 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|      |                                                                          | •                                                 |
|------|--------------------------------------------------------------------------|---------------------------------------------------|
| 3601 | ATCGATTGGGCCCGAGATCTCGCGCGCGAGGCCTCTAGCTAACCCGGGCTCTAGAGCGCGCGC          |                                                   |
|      | 3615<br>BGL2                                                             | 3636<br>NCO1                                      |
| 3661 | TGGGANGCTGCAGGCTTCAGGTCCCAGTGGGGTTCACCCTNCGACGTCCGAAGTCCAGGGTCACCCCAAG   |                                                   |
| 3721 | AGAATCAGGGCGCGAGTGTGGACACTGTCCTGAATCTTAGTCCCGCGCTCACACCTGTGACAGGACTT     |                                                   |
| 3781 | CATGTAGAAATTAAAGTCCATCCCTCCTACTCTAGGTACATCTTTAATTTCAGGTAGGGAGGATGAGATG   |                                                   |
| 3841 | CCCCAGGGGCAGAGGAGTTCCTCACTCCTGTCGGGGGGTCCCCGTCTCCTCAAGGAGAGTGAGGACAC     |                                                   |
|      | _                                                                        | ****                                              |
| 3901 | TTTCACTGCTGGTACTGAATCCACTGTTTCATTTCAAAGTGACGACCATGACTTAGGTGACAAAGTAAA    | GTTGGTTTGTTTGTTTTGAGA<br>CAACCAAACAAACAAACAAACTCT |
|      | ******                                                                   | ++++++                                            |
| 3961 | AGCGGTTTCACTCTTGTTGCTCAGGCTGGANGGA<br>TCGCCAAAGTGAGAACAACGAGTCCGACCTNCCT | GTGCAATGGCGCGATCTTGGCTTACT                        |
|      | ALU                                                                      |                                                   |
|      | *********                                                                | ******                                            |
| 4021 | GCAGCCTCTGCCTCCCAGGTTCAAGTGATTCTCCCCGTCGGAGACGGAGGGTCCAAGTTCACTAAGAGG    |                                                   |
|      |                                                                          |                                                   |
| 4081 | **************************************                                   |                                                   |
|      |                                                                          | A                                                 |
| 4141 | GGGGTGGGGTTCACATGTTGGCCAAGCTGGTCTCCCCCACCCCAAGTGTACAACCGGTTCGACCAGAGC    | GAACTTCTGAACTCAGATGATCCANC                        |
|      | LU                                                                       |                                                   |
|      |                                                                          | =======================================           |
| 4201 | TGCCTCTGCCTCCTAAAATTGCTGGGATTACAGGACGGAGACGGAGATTTTAACGACCCTAATGTCC      | TGTNANCCACCATGCCCAACTCAAAA                        |
| 4261 | TTTACTCTGTTTANAAACATCTGGGTCTAAGGTAAAATGAGACAAATNTTTGTAGACCCAGATTCCAT     |                                                   |

760 his gly his val arg lys ala phe lys ser his val leu arg pro CAT GGG CAC GTC CGC AAG GCC TTC AAG AGC CAC GTC CTA CGT CCA val pro gly asp pro ala gly leu his pro leu his ala ala leu GTG CCA GGG GAT CCC GCA GGG CTC CAT CCT CTC CAC GCT GCT CTG 790 gln pro val leu arg arg his gly glu gln ala val cys gly asp CAG CCT GTG CTA CGG CGA CAT GGA GAA CAA GCT GTT TGC GGG GAT 800 807 ser ala gly arg ala ala pro ala phe gly gly OP TCG GCG GGA CGG GCT GCT CCT GCG TTT GGT GGA TGA TTTCTTGTTGGT GACACCTCACCTCACCCACGCGAAAACCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGA GTATGCTGCGTGAACTTGCGGAAGACAGTGGTGAACTTCCCTGTAGAAGACGAGGC CCTGGGTGGCACGCTTTTGTTCAGATGCCGGCCCACGGCCTATTCCCCTGGTGCGGCCT GCTGCTGGATACCCGGACCCTGGAGGTGCAGAGCGACTACTCCAGCTATGCCCGGACCTC CATCAGAGCCAGTCTCACCTTCAACCGCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAA ACTCTTTGGGGTCTTGCGGCTGAAGTGTCACAGCCTGTTTCTGGATTTGCAGGTGAACAG CCTCCAGACGGTGTGCACCAACATCTACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCA CGCATGTGTGCTGCAGCTCCCATTTCATCAGCAAGTTTGGAAGAACCCCACATTTTTCCT GCGCGTCATCTCTGACACGGCCTCCCTCTGCTACTCCATCCTGAAAGCCAAGAACGCAGG GATGTCGCTGGGGGCCAAGGGCGCCGCCGGCCTCTGCCCTCCGAGGCCGTGCAGTGGCT GTGCCACCAAGCATTCCTGCTCAAGCTGACTCGACACCGTGTCACCTACGTGCCACTCCT GGGGTCACTCAGGACAGCCCAGACGCAGCTGAGTCGGAAGCTCCCGGGGACGACGCTGAC TGCCCTGGAGGCCGCCGCCACCCGGCACTGCCCTCAGACTTCAAGACCATCCTGGACTG CTACGTCCCAGGGAGGGGGGGCGCCCACACCCAGGCCCGCACCGCTGGGAGTCTGAGG CCTGAGTGAGTGTTTGGCCGAGGCCTGCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAG GCCTGAGCGAGTGTCCAGCCAAGGGCTGAGTGTCCAGCACCTGCCGTCTTCACTTCCC CACAGGCTGGCGCTCCGCCCCAGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTC CACTCCCCACATAGGAATAGTCCATCCCCAGATTCGCCATTGTTCACCCCTCGCCCTGCC CTCCTTTGCCTTCCACCCCCACCATCCAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTC TGGGAATTTGGAGTGACCAAAGGTGTGCCCTGTACACAGGCGAGGACCCTGCACCTGGAT GGGGGTCCCTGTGGGTCAAATTGGGGGGGGGGTGCTGTGGGAGTAAAATACTGAATATATG 

FIG. 20 (CONTINUED)

550 ala lys phe leu his trp leu met ser val tyr val val glu leu GCC AAG TTC CTG CAC TGG CTG ATG AGT GTG TAC GTC GTC GAG CTG 560 leu arg ser phe phe tyr val thr glu thr thr phe gln lys asn CTC AGG TCT TTC TTT TAT GTC ACG GAG ACC ACG TTT CAA AAG AAC 580 arg leu phe phe tyr arg lys ser val trp ser lys leu gln ser AGG CTC TTT TTC TAC CGG AAG AGT GTC TGG AGC AAG TTG CAA AGC ile gly ile arg gln his leu lys arg val gln leu arg glu leu ATT GGA ATC AGA CAG CAC TTG AAG AGG GTG CAG CTG CGG GAG CTG 610 ser glu ala glu val arg gln his arg glu ala arg pro ala leu TCG GAA GCA GAG GTC AGG CAG CAT CGG GAA GCC AGG CCC GCC CTG leu thr ser arg leu arg phe ile pro lys pro asp gly leu arg CTG ACG TCC AGA CTC CGC TTC ATC CCC AAG CCT GAC GGG CTG CGG 640 pro ile val asn met asp tyr val val gly ala arg thr phe arg CCG ATT GTG AAC ATG GAC TAC GTC GTG GGA GCC AGA ACG TTC CGC arg glu lys arg ala glu arg leu thr ser arg val lys ala leu AGA GAA AAG AGG GCC GAG CGT CTC ACC TCG AGG GTG AAG GCA CTG 670 phe ser val leu asn tyr glu arg ala arg arg pro gly leu leu TTC AGC GTG CTC AAC TAC GAG CGG GCG CGC CCC GGC CTC CTG gly ala ser val leu gly leu asp asp ile his arg ala trp arg GGC GCC TCT GTG CTG GGC CTG GAC GAT ATC CAC AGG GCC TGG CGC 700 thr phe val leu arg val arg ala gln asp pro pro pro glu leu ACC TTC GTG CTG CGT GTG CGG GCC CAG GAC CCG CCG CCT GAG CTG 710 tyr phe val lys val asp val thr gly ala tyr asp thr ile pro TAC TTT GTC AAG GTG GAT GTG ACG GGC GCG TAC GAC ACC ATC CCC 730 gln asp arg leu thr glu val ile ala ser ile ile lys pro gln CAG GAC AGG CTC ACG GAG GTC ATC GCC AGC ATC ATC AAA CCC CAG 740 asn thr tyr cys val arg arg tyr ala val val gln lys ala ala AAC ACG TAC TGC GTG CGT CGG TAT GCC GTG GTC CAG AAG GCC GCC

FIG. 20 (CONTINUED)

340 leu tyr ser ser gly asp lys glu gln leu arg pro ser phe leu CTC TAC TCC TCA GGC GAC AAG GAG CAG CTG CGG CCC TCC TTC CTA 350 leu ser ser leu arg pro ser leu thr gly ala arg arg leu val CTC AGC TCT CTG AGG CCC AGC CTG ACT GGC GCT CGG AGG CTC GTG 370 glu thr ile phe leu gly ser arg pro trp met pro gly thr pro GAG ACC ATC TTT CTG GGT TCC AGG CCC TGG ATG CCA GGG ACT CCC 380 arg arg leu pro arg leu pro gln arg tyr trp gln met arg pro CGC AGG TTG CCC CGC CTG CCC CAG CGC TAC TGG CAA ATG CGG CCC 400 leu phe leu glu leu leu gly asn his ala gln cys pro tyr gly CTG TTT CTG GAG CTG CTT GGG AAC CAC GCG CAG TGC CCC TAC GGG 410 val leu leu lys thr his cys pro leu arg ala ala val thr pro GTG CTC CTC AAG ACG CAC TGC CCG CTG CGA GCT GCG GTC ACC CCA 430 ala ala gly val cys ala arg glu lys pro gln gly ser val ala GCA GCC GGT GTC TGT GCC CGG GAG AAG CCC CAG GGC TCT GTG GCG 440 ala pro glu glu glu asp thr asp pro arg arg leu val gln leu GCC CCC GAG GAG GAC ACA GAC CCC CGT CGC CTG GTG CAG CTG 460 leu arg gln his ser ser pro trp gln val tyr gly phe val arg CTC CGC CAG CAC AGC AGC CCC TGG CAG GTG TAC GGC TTC GTG CGG 470 480 ala cys leu arg arg leu val pro pro gly leu trp gly ser arg GCC TGC CTG CGC CGG CTG GTG CCC CCA GGC CTC TGG GGC TCC AGG 490 his asn glu arg arg phe leu arg asn thr lys lys phe ile ser CAC AAC GAA CGC CGC TTC CTC AGG AAC ACC AAG AAG TTC ATC TCC 500 510 leu gly lys his ala lys leu ser leu gln glu leu thr trp lys CTG GGG AAG CAT GCC AAG CTC TCG CTG CAG GAG CTG ACG TGG AAG 520 met ser val arg asp cys ala trp leu arg arg ser pro gly val ATG AGC GTG CGG GAC TGC GCT TGG CTG CGC AGG AGC CCA GGG GTT 530 gly cys val pro ala ala glu his arg leu arg glu glu ile leu GGC TGT GTT CCG GCC GCA GAG CAC CGT CTG CGT GAG GAG ATC CTG

FIG. 20 (CONTINUED)

|            |            |            |                   |            |            |            |            | 120               |            |            |            |            |                   |            |
|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|
| tyr<br>TAC | leu<br>CTG | pro<br>CCC | asn<br>AAC        | thr<br>ACG | val<br>GTG | thr<br>ACC | asp<br>GAC | 130<br>ala<br>GCA | leu<br>CTG | arg<br>CGG | gly<br>GGG | ser<br>AGC | gly<br>GGG        | ala<br>GCG |
| trp<br>TGG | gly<br>GGG | leu<br>CTG | 140<br>leu<br>CTG | leu<br>CTG | arg<br>CGC | arg<br>CGC | val<br>GTG | gly<br>GGC        | asp<br>GAC | asp<br>GAC | val<br>GTG | leu<br>CTG | 150<br>val<br>GTT | his<br>CAC |
| leu<br>CTG | leu<br>CTG | ala<br>GCA | arg<br>CGC        | cys<br>TGC | ala<br>GCG | leu<br>CTC | phe<br>TTT | 160<br>val<br>GTG | leu<br>CTG | val<br>GTG | ala<br>GCT | pro<br>CCC | ser<br>AGC        | cys<br>TGC |
| ala<br>GCC | tyr<br>TAC | gln<br>CAG | 170<br>val<br>GTG | cys<br>TGC | gly<br>GGG | pro<br>CCG | pro<br>CCG | leu<br>CTG        | tyr<br>TAC | gln<br>CAG | leu<br>CTC | gly<br>GGC | 180<br>ala<br>GCT | ala<br>GCC |
| thr<br>ACT | gln<br>CAG | ala<br>GCC | arg<br>CGG        | pro<br>CCC | pro<br>CCG | pro<br>CCA | his<br>CAC | 190<br>ala<br>GCT | ser<br>AGT | gly<br>GGA | pro<br>CCC | arg<br>CGA | arg<br>AGG        | arg<br>CGT |
| leu<br>CTG | gly<br>GGA | cys<br>TGC | 200<br>glu<br>GAA | arg<br>CGG | ala<br>GCC | trp<br>TGG | asn<br>AAC | his<br>CAT        | ser<br>AGC | val<br>GTC | arg<br>AGG | glu<br>GAG | 210<br>ala<br>GCC | gly<br>GGG |
| val<br>GTC | pro<br>CCC | leu<br>CTG | gly<br>GGC        | leu<br>CTG | pro<br>CCA | ala<br>GCC | pro<br>CCG | 220<br>gly<br>GGT | ala<br>GCG | arg<br>AGG | arg<br>AGG | arg<br>CGC | gly<br>GGG        | gly<br>GGC |
| ser<br>AGT | ala<br>GCC | ser<br>AGC | 230<br>arg<br>CGA | ser<br>AGT | leu<br>CTG | pro<br>CCG | leu<br>TTG | pro<br>CCC        | lys<br>AAG | arg<br>AGG | pro<br>CCC | arg<br>AGG | 240<br>arg<br>CGT | gly<br>GGC |
|            | ala<br>GCC |            |                   |            |            |            |            |                   |            |            |            |            |                   |            |
| ala<br>GCC | his<br>CAC | pro<br>CCG | 260<br>gly<br>GGC | arg<br>AGG | thr<br>ACG | arg<br>CGT | gly<br>GGA | pro<br>CCG        | ser<br>AGT | asp<br>GAC | arg<br>CGT | gly<br>GGT | 270<br>phe<br>TTC | cys<br>TGT |
|            | val<br>GTG |            |                   |            |            |            |            |                   |            |            |            |            |                   | glu<br>GAG |
| gly<br>GGT | ala<br>GCG | leu<br>CTC | 290<br>ser<br>TCT | gly<br>GGC | thr<br>ACG | arg<br>CGC | his<br>CAC | ser<br>TCC        | his<br>CAC | pro<br>CCA | ser<br>TCC | val<br>GTG | 300<br>gly<br>GGC | arg<br>CGC |
| gln<br>CAG | his<br>CAC | his<br>CAC | ala<br>GCG        | gly<br>GGC | pro<br>CCC | pro<br>CCA | ser<br>TCC | 310<br>thr<br>ACA | ser<br>TCG | arg<br>CGG | pro<br>CCA | pro<br>CCA | arg<br>CGT        | pro<br>CCC |
| trp<br>TGG | asp<br>GAC | thr<br>ACG | 320<br>pro<br>CCT | cys<br>TGT | pro<br>CCC | pro<br>CCG | val<br>GTG | tyr<br>TAC        | ala<br>GCC | glu<br>GAG | thr<br>ACC | lys<br>AAG | 330<br>his<br>CAC | phe<br>TTC |

FIG. 20 (CONTINUED)

MetSerValTyrValValGluLeuLeuArgSerPhePhe TyrValThrGluThrThrPheGlnLysAsnArgLeuPhe PheTyrArgLysSerValTrpSerLysLeuGlnSerIle GlyIleArgGlnHisLeuLysArgValGlnLeuArgGlu LeuSerGluAlaGluValArgGlnHisArgGluAlaArg ProAlaLeuLeuThrSerArgLeuArgPheIleProLys ProAspGlyLeuArgProIleValAsnMetAspTyrVal ValGlyAlaArgThrPheArgArgGluLysArgAlaGlu ArgLeuThrSerArgValLysAlaLeuPheSerValLeu AsnTyrGluArgAlaArgArgProGlyLeuLeuGlyAla SerValLeuGlyLeuAspAspIleHisArgAlaTrpArg ThrPheValLeuArgValArgAlaGlnAspProProPro GluLeuTyrPheValLysValAspValThrGlyAlaTyr AspThrIleProGlnAspArgLeuThrGluValIleAla SerIleIleLysProGlnAsnThrTyrCysValArgArg TyrAlaValValGlnLysAlaAlaHisGlyHisValArg LysAlaPheLysSerHisValLeuArgProValProGly AspProAlaGlyLeuHisProLeuHisAlaAlaLeuGln ProValLeuArgArgHisGlyGluGlnAlaValCysGly AspSerAlaGlyArgAlaAlaProAlaPheGlyGly

| 1<br>met                                                                                                                    |        |
|-----------------------------------------------------------------------------------------------------------------------------|--------|
| GCAGCGCTGCGTCCTGCGCACGTGGGAAGCCCTGGCCCCGGCCACCCCCGCG ATG                                                                    | 7      |
| pro arg ala pro arg cys arg ala val arg ser leu leu arg ser CCG CGC GCT CCC CGC TGC CGA GCC GTG CGC TCC CTG CTG CGC AGC     |        |
| 20  his tyr arg glu val leu pro leu ala thr phe val arg arg leu CAC TAC CGC GAG GTG CTG CCG CTG GCC ACG TTC GTG CGG CGC CTG |        |
| gly pro gln gly trp arg leu val gln arg gly asp pro ala ala<br>GGG CCC CAG GGC TGG CGG CTG GTG CAG CGC GGG GAC CCG GCG GCT  | I      |
| 50  phe arg ala leu val ala gln cys leu val cys val pro trp asp TTC CGC GCG CTG GTG GCC CAG TGC CTG GTG TGC GTG CCC TGG GAC | )<br>! |
| ala arg pro pro pro ala ala pro ser phe arg gln val ser cys<br>GCA CGG CCG CCC CCC GCC CCC TCC TTC CGC CAG GTG TCC TGC      | 1<br>1 |
| 80  leu lys glu leu val ala arg val leu gln arg leu cys glu arg CTG AAG GAG CTG GTG GCC CGA GTG CTG CAG AGG CTG TGC GAG CGC |        |
| gly ala lys asn val leu ala phe gly phe ala leu leu asp gly GGC GCG AAG AAC GTG CTG GCC TTC GGC TTC GCG CTG CTG GAC GGG     |        |
| ala arg gly gly pro pro glu ala phe thr thr ser val arg ser GCC CGC GGG GGC CCC CCC GAG GCC TTC ACC ACC AGC GTG CGC AGC     |        |

MPRAPRCRAVRSLLRSHYREVLPLATFVRRLGPOGWRLVORGDP AAFRALVAQCLVCVPWDARPPPAAPSFRQVSCLKELVARVLQRL CERGAKNVLAFGFALLDGARGGPPEAFTTSVRSYLPNTVTDALR-GSGAWGLLLRRVGDDVLVHLLARCALFVLVAPSCAYQVCGPPLY QLGAATQARPPPHASGPRRRLGCERAWNHSVREAGVPLGLPAPG ARRRGGSASRSLPLPKRPRRGAAPEPERTPVGOGSWAHPGRTRG PSDRGFCVVSPARPAEEATSLEGALSGTRHSHPSVGRQHHAGPP STSRPPRPWDTPCPPVYAETKHFLYSSGDKEQLRPSFLLSSLRP SLTGARRLVETIFLGSRPWMPGTPRRLPRLPQRYWQMRPLFLEL LGNHAQCPYGVLLKTHCPLRAAVTPAAGVCAREKPQGSVAAPEE EDTDPRRLVQLLRQHSSPWQVYGFVRACLRRLVPPGLWGSRHNE RRFLRNTKKFISLGKHAKLSLQELTWKMSVRDCAWLRRSPGVGC VPAAEHRLREEILAKFLHWLMSVYVVELLRSFFYVTETTFQKNR LFFYRKSVWSKLQSIGIRQHLKRVQLRELSEAEVRQHREARPAL LTSRLRFIPKPDGLRPIVNMDYVVGARTFRREKRAERLTSRVKA LFSVLNYERARRPGLLGASVLGLDDIHRAWRTFVLRVRAQDPPP ELYFVKVDVTGAYDTIPQDRLTEVIASIIKPQNTYCVRRYAVVQ KAAHGHVRKAFKSHVSTLTDLQPYMRQFVAHLQETSPLRDAVVI EQSSSLNEASSGLFDVFLRFMCHHAVRIRGKSYVQCQGIPQGSI LSTLLCSLCYGDMENKLFAGIRRDGLLLRLVDDFLLVTPHLTHA KTFLRTLVRGVPEYGCVVNLRKTVVNFPVEDEALGGTAFVQMPA HGLFPWCGLLLDTRTLEVQSDYSSYARTSIRASLTFNRGFKAGR NMRRKLFGVLRLKCHSLFLDLQVNSLQTVCTNIYKILLLQAYRF HACVLOLPFHOQVWKNPTFFLRVISDTASLCYSILKAKNAGMSL GAKGAAGPLPSEAVQWLCHQAFLLKLTRHRVTYVPLLGSLRTAQ TOLSRKLPGTTLTALEAAANPALPSDFKTILD

### FIG. 17

TTATGTCACGGAGACCACGTTTCAAAAGAACAGGCTCTTTTTCTACCGGAAGAGTGTCTG GAGCAAGTTGCAAAGCATTGGAATCAGACAGCACTTGAAGAGGGTGCAGCTGCGGGAGCT CCGCTTCATCCCCAAGCCTGACGGGCTGCGGCCGATTGTGAACATGGACTACGTCGTGGG AGCCAGAACGTTCCGCAGAGAAAAGAGGGCCGAGCGTCTCACCTCGAGGGTGAAGGCACT GTTCAGCGTGCTCAACTACGAGCGGGCGCGCGCCCCGGCCTCCTGGGCGCCTCTGTGCT GGGCCTGGACGATATCCACAGGGCCTGGCGCACCTTCGTGCTGCGTGTGCGGGCCCAGGA CCCGCCGCCTGAGCTGTACTTTGTCAAGGTGGATGTGACGGCGCGCTACGACACCATCCC CCAGGACAGGCTCACGGAGGTCATCGCCAGCATCATCAAACCCCAGAACACGTACTGCGT GCGTCGGTATGCCGTGGTCCAGAAGGCCGCCCATGGGCACGTCCGCAAGGCCTTCAAGAG CCACGTCCTACGTCCAGTGCCAGGGGATCCCGCAGGGCTCCATCCTCTCCACGCTGCTCT GCAGCCTGTGCTACGGCGACATGGAGAACAAGCTGTTTGCGGGGGATTCGGCGGGACGGGC TGCTCCTGCGTTTGGTGGATGATTTCTTGTTGGTGACACCTCACCTCACCCACGCGAAAA CCTTCCTCAGGACCCTGGTCCGAGGTGTCCCTGAGTATGGCTGCGTGGTGAACTTGCGGA AGACAGTGGTGAACTTCCCTGTAGAAGACGAGGCCCTGGGTGGCACGGCTTTTGTTCAGA TGCCGGCCCACGGCTATTCCCCTGGTGCGGCCTGCTGCTGGATACCCGGACCCTGGAGG TGCAGAGCGACTACTCCAGCTATGCCCGGACCTCCATCAGAGCCAGTCTCACCTTCAACC GCGGCTTCAAGGCTGGGAGGAACATGCGTCGCAAACTCTTTGGGGTCTTGCGGCTGAAGT GTCACAGCCTGTTTCTGGATTTGCAGGTGAACAGCCTCCAGACGGTGTGCACCAACATCT ACAAGATCCTCCTGCTGCAGGCGTACAGGTTTCACGCATGTGTGCTGCAGCTCCCATTTC ATCAGCAAGTTTGGAAGAACCCCACATTTTTCCTGCGCGTCATCTCTGACACGGCCTCCC TCTGCTACTCCATCCTGAAAGCCAAGAACGCAGGGATGTCGCTGGGGGCCAAGGGCGCCG CCGGCC7TCTGCCCTCCGAGGCCGTGCAGTGGCTGTGCCACCAAGCATTCCTGCTCAAGC TGACTCGACACCGTGTCACCTACGTGCCACTCCTGGGGTCACTCAGGACAGCCCAGACGC AGCTGAGTCGGAAGCTCCCGGGGACGACGCTGACTGCCCTGGAGGCCGCAGCCAACCCGG CACTGCCTCAGACTTCAAGACCATCCTGGACTGATGGCCACCCGCCCACAGCCAGGCCG GCATGTCCGGCTGAAGGCTGAGTGTCCGGCTGAGGCCTGAGCGAGTGTCCAGCCAAGGGC TGAGTGTCCAGCACACCTGCCGTCTTCACTTCCCCACAGGCTGGCGCTCGGCTCCACCCC AGGGCCAGCTTTTCCTCACCAGGAGCCCGGCTTCCACTCCCCACATAGGAATAGTCCATC CCCAGATTCGCCATTGTTCACCCCTCGCCCTGCCCTCTTTGCCTTCCACCCCCACCATC CAGGTGGAGACCCTGAGAAGGACCCTGGGAGCTCTGGGAATTTGGAGTGACCAAAGGTGT GCCTGTACACAGGCGAGGACCCTGCACCTGGATGGGGGTCCCTGTGGGTCAAATTGGGG AAAAAAAAAAAAA

FIG 18

1 gcagegetge gteetgetge geaegtggga ageeetggee eeggeeaeee eegegatgee 61 gegegetece egetgeegag cegtgegete eetgetgege agecactace gegaggtget 121 gccgctggcc acgttcgtgc ggcgcctggg gccccagggc tggcggctgg tgcagcgcg 181 ggacceggeg gettteegeg egetggtgge ceagtgeetg gtgtgegtge eetgggaege 241 acggccgccc cccgccgccc cctccttccg ccaggtgtcc tgcctgaagg agctggtggc 301 ccgagtgetg cagaggetgt gegagegegg egegaagaae gtgetggeet teggettege 361 gctgctggac ggggcccgcg ggggcccccc cgaggccttc accaccagcg tgcgcagcta tgctgctgcg 421 cctgcccaac acggtgaccg acgcactgcg ggggagcggg gcgtgggggc 481 ccgcgtgggc gacgacgtgc tggttcacct gctggcacgc tgcgcgctct ttgtgctggt 541 ggctcccagc tgcgcctacc aggtgtgcgg gccgccgctg taccagctcg gcgctgccac 601 tcaggcccgg cccccgccac acgctagtgg accccgaagg cgtctgggat gcgaacgggc 661 ctggaaccat agcgtcaggg aggccggggt ccccctgggc ctgccagccc cgggtgcgag gaggegeggg ggcagtgcca gccgaagtet geegttgeec aagaggeeca ggcgtggege 781 tgcccctgag ccggagcgga cgcccgttgg gcaggggtcc tgggcccacc cgggcaggac 841 gcgtggaccg agtgaccgtg gtttctgtgt ggtgtcacct gccagacccg ccgaagaagc 901 cacctetttg gagggtgege tetetggeae gegeeaetee cacceateeg tgggeegeea 961 gcaccacgcg ggcccccat ccacatcgcg gccaccacgt ccctgggaca cgccttgtcc 1021 cccggtgtac gccgagacca agcacttcct ctactcctca ggcgacaagg agcagctgcg 1081 geceteette etaeteaget etetgaggee eageetgaet ggegetegga ggetegtgga 1141 gaccatettt etgggtteca ggeeetggat geeagggaet eeeegeaggt tgeeeegeet 1201 gccccaqcgc tactggcaaa tgcggccct gtttctggag ctgcttggga accacgcgca 1261 gtgcccctac ggggtgctcc tcaagacgca ctgcccgctg cgagctgcgg tcaccccagc 1321 agccggtgtc tgtgcccggg agaagcccca gggctctgtg gcggcccccg aggaggagga 1381 cacagaccc cgtcgcctgg tgcagctgct ccgccagcac agcagcccct ggcaggtgta 1441 cggcttcgtg cgggcctgcc tgcgccggct ggtgccccca ggcctctggg gctccaggca 1501 caacgaacgc cgcttcctca ggaacaccaa gaagttcatc tccctgggga agcatgccaa 1561 gctctcgctg caggagctga cgtggaagat gagcgtgcgg gactgcgctt ggctgcgcag 1621 gageccaggg gttggetgtg tteeggeege agageaeegt etgegtgagg agateetgge 1681 caagtteetg cactggetga tgagtgtgta cgtcgtcgag ctgctcaggt ctttctttta 1741 tgtcacggag accacgtttc aaaagaacag gctctttttc taccggaaga gtgtctggag 1801 caagttgcaa agcattggaa tcagacagca cttgaagagg gtgcagctgc gggagctgtc 1861 ggaagcagag gtcaggcagc atcgggaagc caggcccgcc ctgctgacgt ccagactccg 1921 cttcatcccc aagcctgacg ggctgcggcc gattgtgaac atggactacg tcgtgggagc 1981 cagaacgttc cgcagagaaa agagggccga gcgtctcacc tcgagggtga aggcactgtt 2041 cagegtgete aactaegage gggegeggeg eeeeggeete etgggegeet etgtgetggg 2101 cctggacgat atccacaggg cctggcgcac cttcgtgctg cgtgtgcggg cccaggaccc 2161 gccgcctgag ctgtactttg tcaaggtgga tgtgacgggc gcgtacgaca ccatcccca 2221 ggacaggete aeggaggtea tegecageat cateaaacee cagaacaegt aetgegtgeg 2281 teggtatgee gtggteeaga aggeegeea tgggeaegte egeaaggeet teaagageea 2341 cgtctctacc ttgacagacc tccagccgta catgcgacag ttcgtggctc acctgcagga 2401 gaccageceg etgagggatg cegtegteat egageagage teeteeetga atgaggeeag 2461 cagtggcete ttegaegtet teetaegett catgtgeede caegeegtge geateagggg 2521 caagteetae gteeagtgee aggggateee geagggetee atectetee egetgetetg 2581 cageetgtge taeggegaea teggagaacaa getgtttgeg gggattegge gggaeggget 2641 geteetgegt ttggtggatg atttettgtt ggtgacacet caceteacee acgegaaaac 2701 cttcctcagg accctggtcc gaggtgtccc tgagtatggc tgcgtggtga acttgcggaa 2761 gacagtggtg aacttccctg tagaagacga ggccctgggt ggcacggctt ttgttcagat 2821 geoggeceae ggeetattee eetggtgegg cetgetgetg gataceegga eeetggaggt 2881 gcagagegae tactecaget atgeceggae etecateaga gecagtetea cetteaaceg 2941 cggcttcaag gctgggagga acatgcgtcg caaactcttt ggggtcttgc ggctgaagtg 3001 tcacagecty tttetggatt tgcaggtgaa cagectecag aeggtgtgea ceaacateta 3061 caagateete etgetgeagg egtacaggtt teaegeatgt gtgetgeage teeeatttea 3121 teageaagtt tggaagaace ceacatittt cetgegegte atetetgaca eggeeteeet 3181 ctgctactcc atcctgaaag ccaagaacgc agggatgtcg ctgggggcca agggcgccgc 3241 cggccctctg ccctccgagg ccgtgcagtg gctgtgccac caagcattcc tgctcaagct 3301 gactogacac cgtgtcacct acgtgccact cctggggtca ctcaggacag cccagacgca 3361 gctgagtcgg aagctcccgg ggacgacgct gactgccctg gaggccgcag ccaacccggc 3421 actgeectea gaetteaaga ecateetgga etgatggeea ecegeecaea geeaggeega 3481 gagcagacac cagcagecet gtcacgcegg getetacgte ccagggaggg aggggeggee 3541 cacacccagg cccgcaccgc tgggagtctg aggcctgagt gagtgtttgg ccgaggcctg 3601 catgteegge tgaaggetga gigteegget gaggeetgag egagtgteea geeaaggget 3661 gagtgtccag cacacctgcc gtcttcactt ccccacaggc tggcgctcgg ctccacccca 3721 gggecagett tteeteacea ggageeegge tteeacteee cacataggaa tagteeatee 3781 ccagattege cattgtteae ecctegeeet geeeteettt geetteeaee eecaecatee 3841 aggtggagac cctgagaagg accctgggag ctctgggaat ttggagtgac caaaggtgtg 3901 ccctgtacac aggcgaggac cctgcacctg gatgggggtc cctgtgggtc aaattggggg 3961 gaggtgctgt gggagtaaaa tactgaatat atgagttttt cagttttgaa aaaaa

tratcettataettttaagaaagattgacagtggttgetgactaetgeccacatgeccattaaaegggagtggttaaaea ttaaaagtaatacatgaggctaatctcctttcatttagaataaggaaagtggttttctataatgaataatgcccgcacta atgcaaaaagacgaagattatcttctaaacaaggggggtttaagcatatccgaaggaaaagaggagtaatatcccagtgtt gttgaagaaagcaaggataatttggaacaagcttctgcagatgacaggctaaattttggtgaccgaattttggtaaaagc cccaggttatccatggtggccggccttgctactgagacgaaaagaaactaaggatagtttgaatactaatagctcattta

### tccgaaatagccaaatttcttggttcctcaaagcggaagtctaaaagaacttattgaagcttatgaggcttcaaaaaactcc tcctgatttaaaggaggaatcttccaccgatgaggaaatggatagcttatcagctgctgaggagaagcctaattttttgc aaaaaagaaaatatcattgggagacatctcttgatgaatcagatgcggagagtatctccagcggatccttgatgtcaata actictatitcigaaaigiatggicciacigicgcticgacticigacticicgiagciagciaggiaagigaccaaaggiacc FIG. 15 (CONTINUED)

| 3960<br>818          | 4020<br>838 | 4089<br>848                               | 4149<br>868 | 4209<br>888 | 4274<br>903                         | 4339<br>917                                                       | 4401<br>935       | 4468<br>946                         | 4528<br>966 | 4588<br>986 | 4665<br>989                                                                    |
|----------------------|-------------|-------------------------------------------|-------------|-------------|-------------------------------------|-------------------------------------------------------------------|-------------------|-------------------------------------|-------------|-------------|--------------------------------------------------------------------------------|
| TGT                  | 999         | TCG<br>S                                  | TCT<br>S    | AAA<br>K    | ACG G gtgagtacttattttaactaga<br>T D | AAG TTG GCC<br>K L A                                              | TG gtacgtgtc<br>W | AAA<br>K                            | ACT<br>T    | ATA<br>I    | TAA tgtcattttcaatttattatatacatcctttattactggtgtcttaaaacaatattattactaagtata<br>* |
| GCA                  | ATG<br>M    | gtatactgtgtaactgaataatagctgacaaataatcag A | AAT<br>N    | TTA<br>L    | taac                                | , TTG<br>L                                                        | ıtacg             | ${ m TTG}$                          | ${ m TTG}$  | AGA<br>R    | taag                                                                           |
| TTA<br>L             | CAT<br>H    | aatc                                      | ${ m TTC}$  | TAC<br>Y    | attt                                | A AAG<br>K                                                        | TG<br>B           | GGT<br>G                            | TCA<br>S    | AGA<br>R    | attac                                                                          |
| $_{\rm L}^{\rm TTG}$ | AAA<br>K    | aaat                                      | AAA<br>K    | GCA<br>A    | cactt                               | S AAA                                                             | AAA<br>K          | GAT<br>D                            | CAG<br>Q    | CAT<br>H    | tattõ                                                                          |
| ACA<br>T             | ACG<br>T    | stgac                                     | TCA<br>S    | CAA<br>Q    | tgagt                               | CTT TTG AAT GTT ATT GGA AGA AAA ATT TGG AAA L L N V I G R K I W K | GCA GAA GTC A     | AGA<br>R                            | TTT<br>F    | TTA<br>L    | acaal                                                                          |
| GAT<br>D             | CTG<br>L    | atago                                     | AAT<br>N    | GCA         | Ω<br>g                              | A AT                                                              | GAA<br>E          | ATG<br>M                            | CAA<br>Q    | TTT<br>F    | ttaa                                                                           |
| $_{\rm L}^{\rm CTT}$ | GAG<br>E    | aata                                      | CAC<br>H    | AGA<br>R    | ACG<br>T                            | A AA                                                              | GCA<br>A          | GGA<br>G                            | TAC         | TTA<br>L    | tgtc                                                                           |
| TCT<br>S             | GTA<br>V    | actg                                      | ACC<br>T    | ATG<br>M    | ATA<br>I                            | A AG                                                              | TCT<br>S          | CTT                                 | ATA         | GTG<br>V    | ctgg                                                                           |
| AGG<br>R             | TCT<br>S    | tgta                                      | ATT         | TGT         | $\mathrm{TTC}$                      | T<br>G                                                            | TCC               | TGT                                 | CTA<br>L    | CAG<br>Q    | atta                                                                           |
| ATG<br>M             | ACA<br>T    | actg                                      | GAC         | ATG<br>M    | ATG<br>M                            | r AT<br>I                                                         | $	ext{TTG}$       | TTT<br>F                            |             | CGA<br>R    | ctt                                                                            |
| AAC                  | TCT         | gtat                                      | ATT<br>I    | TCT         | AGA<br>R                            | r GT'<br>V                                                        | TTC<br>F          | $_{\rm L}^{\rm CTT}$                | GAA<br>E    | $	ext{TTG}$ | cato                                                                           |
| GTG<br>V             | AAC<br>N    | AG<br>R                                   | $	ext{TTT}$ | TAC<br>Y    | CAA<br>Q                            | S AA'                                                             | CGT<br>R          | ag G                                | TTC<br>F    | GTT<br>V    | tata                                                                           |
| TCT<br>S             | TTT<br>F    | CTA<br>L                                  | GTA<br>V    | GGA<br>G    | CCC                                 | r<br>TT                                                           | AGG<br>R          | cato                                | TGC         | CCA<br>P    | atta                                                                           |
| TTC<br>F             | TTA<br>L    | ATT<br>I                                  | CAA<br>Q    | CTA<br>L    | ATT<br>I                            | r<br>L                                                            | AGT<br>S          | ggtctcgagacttcagcaatattgacacatcag G | CCA<br>P    | AGA<br>R    | attt                                                                           |
| GGT<br>G             | GCC         | AAA<br>K                                  | GCA<br>A    | AGG<br>R    | T'TT<br>F                           | aaagtcattaattaaccttag AT                                          | ACG               | tatt                                | CAT<br>H    | CTA<br>L    | ttca                                                                           |
| TTC<br>F             | GAA<br>E    | TAC<br>Y                                  | TTT<br>F    | TAT<br>Y    | ATA<br>I                            | cctt                                                              | TAT<br>Y          | gcaa                                | TAT<br>Y    | CCG<br>P    | catt                                                                           |
| ${ m TTC}$           | GAT<br>D    | $\Pr_{F}$                                 | TCC         | ATA<br>I    | GAT<br>D                            | ttaa                                                              | GGA<br>G          | ttca                                | AAA<br>K    | AAG<br>K    | tgt                                                                            |
| CCA<br>P             | ATT<br>I    | $\Pr_{F}$                                 | GCA<br>A    | AAT<br>N    | AAG<br>K                            | ttaa                                                              | TTA<br>L          | agac                                | TTC         | ATC         | TAA<br>*                                                                       |
| ATG<br>M             | AAA<br>K    | TCT                                       | CTT<br>L    | TGC<br>C    | ATG<br>M                            | gtca                                                              | ATA<br>I          | ctcg                                | TCT         | CTT<br>L    | GAT                                                                            |
| AGA<br>R             | CCT<br>P    | AAA<br>K                                  | AGC<br>S    | TGC         | AGG<br>R                            |                                                                   | GAA<br>E          |                                     | CCC<br>P    | GAT<br>D    | GCT                                                                            |
| 3901<br>799          | 3961<br>819 | 4021<br>839                               | 4090<br>849 | 4150<br>869 | 4210<br>889                         | 4275<br>904                                                       | 4340<br>918       | 4402<br>936                         | 4469<br>947 | 4529<br>967 | 4589                                                                           |
|                      |             |                                           |             |             |                                     |                                                                   |                   |                                     |             |             |                                                                                |

FIG. 15 (CONTINUED)

| 2336<br>375                             | 2396<br>395          | 2465<br>405                    | 2525<br>425 | 2585<br>445          | 2645<br>465          | 2705<br>485 | 2775<br>495                   | 2835<br>515          | 2906<br>524                                  | 2967<br>542 | 3027<br>562          | 3088<br>581                   |
|-----------------------------------------|----------------------|--------------------------------|-------------|----------------------|----------------------|-------------|-------------------------------|----------------------|----------------------------------------------|-------------|----------------------|-------------------------------|
| A ACT<br>T                              | AAG<br>K             | GGA                            | GCG<br>A    | TAT<br>Y             | AAA<br>K             | GAG<br>E    | A ACT<br>T                    | ACG<br>T             | gtattaatttttggtcatcaatgtactttacttctaatctatta | GTG<br>V    | GAG<br>E             | gtaat                         |
| GAA<br>E                                | ATA<br>I             | CTT                            | $	ext{TTT}$ | TTT<br>F             | TGG<br>₩             | AAC<br>N    | s AAA<br>K                    | ATT<br>I             | atc                                          | CCT<br>P    | $_{\rm L}^{\rm TTG}$ | ဗ္ဗ ဗ                         |
| CTC                                     | AAC<br>N             | GTC<br>V                       | ATA<br>I    | TTT<br>F             | ATT<br>I             | ATA<br>I    | CAG<br>Q                      | CTC                  | tota                                         | CGA<br>R    | AAC<br>N             | TTT<br>F                      |
| g AC                                    | AGT<br>S             | CTA<br>L                       | CAA<br>Q    | TCT<br>S             | GAT<br>D             | AAA<br>K    | ACT<br>T                      | CGT<br>R             | tact                                         | TTA<br>L    | $	ext{TTT}$          | ATG<br>M                      |
| gtattgtataaaatttattaccactaacgattttaccag | ATG<br>M             | TGG<br>W                       | AAG<br>K    | CAA<br>Q             | AAA<br>K             | GAA<br>E    | GAT<br>D                      | $	ext{TTT}$          | actt                                         | ACT<br>T    | CCA<br>P             | CGA<br>R                      |
| ונננ                                    | TTA<br>L             | GAA<br>E                       | CGC<br>R    | TTA<br>L             | AGA<br>R             | TTT<br>F    | ATG<br>M                      | ACC<br>T             | aatgt                                        | CAA         | ATT<br>I             | CAC<br>H                      |
| ıacga                                   | $_{\rm Y}^{\rm TAT}$ | ATT<br>I                       | AAA<br>K    | ATT<br>I             | TTT.<br>F            | GCG<br>A    | r AGG<br>R                    | AAT<br>N             | satca                                        | AAC<br>N    | GGT<br>G             | AAG<br>K                      |
| acta                                    | CAT<br>H             | GAA<br>E                       | GAG<br>E    | CCT<br>P             | $_{\rm Y}^{\rm TAT}$ | GAA<br>E    | r GTT<br>V                    | AAG<br>K             | ggto                                         | ACG         | AGT<br>S             | CTT<br>L                      |
| tacc                                    | TTA<br>L             | TCA<br>S                       | TTT<br>F    | ATA<br>I             | GTT<br>V             | ATG<br>M    | N N                           | AAG<br>K             | ttt.                                         | AGT<br>S    | AGT<br>S             | CTT<br>L                      |
| ttat                                    | AGT<br>S             | ATT<br>I                       | GAT<br>D    | ATA<br>I             | ACT<br>T             | AAA<br>K    | J AAC<br>N                    | CCT<br>P             | taat                                         | GTC<br>V    | GAA<br>E             | GAT<br>D                      |
| laaat                                   | TTT<br>F             | cag                            | AGT<br>S    | $	ext{TrT}$          | CGA<br>R             | ATG<br>M    | tcaç                          | TTA<br>L             |                                              | TTA<br>L    | GAA<br>E             | AAG<br>K                      |
| ıtata                                   | TCT                  | ıcaat                          | TTA<br>L    | TCG<br>S             | AAT<br>N             | TCA<br>S    | attt                          | $_{\rm L}^{\rm CTA}$ | AAG<br>K                                     | ATG<br>M    | AAT<br>N             | AAG<br>K                      |
| attg                                    | GAG<br>E             | ıttaa                          | TGC         | AAT<br>N             | CGA<br>R             | ACA<br>T    | taat                          | CGT<br>R             | ATA<br>I                                     | AAA<br>K    | ATC<br>I             | $_{\tilde{F}}^{\mathrm{TTT}}$ |
| G gt<br>D                               | $_{\rm Y}^{\rm TAC}$ | ccaaattttttaccattaattaacaatcag | ATG<br>M    | TAC<br>Y             | TTA<br>L             | ATT<br>I    | aagtatttttgcaaaaagctaattttcag | ATT<br>I             | TTA<br>L                                     | AAA<br>K    | $	ext{TTA}$          | ACT<br>T                      |
| AAA<br>K                                | AGA<br>R             | acce                           | AAA<br>K    | $_{\rm L}^{\rm CTA}$ | GAT<br>D             | $	ext{TTT}$ | ycaaa                         | GTT<br>V             | TTC                                          | AAC<br>N    | CAT<br>H             | $_{\rm L}^{\rm CTT}$          |
| $_{\rm L}^{\rm TTA}$                    | TCG<br>S             | ttt                            | GCG<br>A    | TGG<br>W             | AGT<br>S             | CCC<br>P    | ttt                           | GCA                  | AGA<br>R                                     | TCA<br>S    | AAA<br>K             | CTT<br>L                      |
| ATA<br>I                                | TTA                  | ıattt                          | AAT<br>N    | TAC<br>Y             | TCA<br>S             | CGA<br>R    | attt                          | CCA<br>P             | AAA<br>K                                     | GGT<br>G    | CTG<br>L             | AAG<br>K                      |
| ATA<br>I                                | AAA<br>K             | Jccae                          | TCA<br>S    | ATC<br>I             | GAA<br>E             | TGC<br>C    | aaagt                         | CCT                  | AGA<br>R                                     | ATG<br>M    | ATA<br>I             | ATG<br>M                      |
| GAG<br>E                                | TTG<br>L             | tatg                           | AGG<br>R    | ${ m TTC}$           | ACT                  | TTG<br>L    | ttta                          | TTG<br>L             | TTA<br>L                                     | gcag        | TCG<br>S             | TAC<br>Y                      |
| $	ext{TTT}$                             | ${ m TTC}$           | gtaa                           | AAA<br>K    | GAA<br>E             | ATC<br>I             | CTC<br>L    | gtatt                         | ACT<br>T             | AAT                                          | ttagca      | GCA                  | GTT<br>V                      |
| 2268<br>366                             | 2337                 | 2397<br>396                    | 2466<br>406 | 2526<br>426          | 2586<br>446          | 2646<br>466 | 2706<br>486                   | 2776<br>496          | 2836<br>516                                  | 2907<br>525 | 2968<br>543          | 3028<br>563                   |

FIG. 15 (CONTINUED)

| 1529<br>148          | 1601<br>155                                   | 1661<br>175          | 1721<br>195          | 1781<br>215 | 1841<br>235 | 1907<br>245                          | 1967<br>265          | 2027<br>285        | 2087<br>305 | 2147<br>325 | 2207<br>345          | 2267<br>365          |
|----------------------|-----------------------------------------------|----------------------|----------------------|-------------|-------------|--------------------------------------|----------------------|--------------------|-------------|-------------|----------------------|----------------------|
| CAA<br>Q             | ၁၅၁                                           | GAC                  | GTG<br>V             | AAA<br>K    | TAT<br>Y    | Ų.                                   | AGG<br>R             | GTA<br>V           | ACA<br>T    | ATT<br>I    | GCG<br>A             | ATA<br>I             |
| TGG<br>W             | ATC                                           | AAT<br>N             | ACT<br>T             | CGC<br>R    | TCC<br>S    | TTT AAC<br>F N                       | CCA<br>P             | $^{ m CTG}_{ m L}$ | CAA         | TAT.<br>Y   | TTT<br>F             | AGG<br>R             |
| AAT<br>N             | ag T                                          | CCA<br>P             | GAA                  | GCC<br>A    | TCA<br>S    | TAT TT<br>Y                          | $	ext{TTT}$          | CCA<br>P           | GAA         | CCA<br>P    | GTG<br>V             | CAA<br>Q             |
| AAA<br>K             | gtatag                                        | $_{\rm L}^{\rm CTT}$ | GAG<br>E             | AGC<br>S    | AGG<br>R    | CTA TA<br>L Y                        | ATT<br>I             | ATT                | ATT<br>I    | TGC         | CAG<br>Q             | AAC                  |
| TCA<br>S             | acaa                                          | GCT<br>A             | $	au_{	ext{F}}$      | AAA<br>K    | TAC         | AT CT<br>L                           | TGG<br>W             | GTG<br>V           | TTA<br>L    | TAT<br>Y    | AAC<br>N             | GGT<br>G             |
| GAG                  | gtaaataccggttaagatgttgcgcactttgaacqagactgacaa | GAG<br>E             | GTG<br>V             | AAT<br>N    | TTT         |                                      | CAA                  | AAA<br>K           | CCT         | CAT<br>H    | CCG<br>P             | TGG<br>W             |
| $_{\rm L}^{\rm CTT}$ | срад                                          | $	ext{TTT}$          | AAT<br>N             | CAA<br>Q    | ATT<br>I    | ıttt                                 | $_{\rm L}^{\rm CTT}$ | CAC<br>H           | TAC<br>Y    | AAC<br>N    | AAG<br>K             | ATC<br>I             |
| ATA (                | tgaa                                          | ATT<br>I             | AAT<br>N             | ACT         | AGC<br>S    | ıctaa                                | TGG                  | TTG<br>L           | GTA<br>V    | TAC<br>Y    | TTA<br>L             | TTA<br>L             |
| TCT<br>S             | actt                                          | AGT<br>S             | AAA<br>K             | ATT<br>I    | $	ext{TTT}$ | ataa                                 | ATG<br>M             | CAA<br>Q           | AAG<br>K    | GTT<br>V    | TCC<br>S             | AAA<br>K             |
| ATA<br>I             | gcgc                                          | GGA<br>G             | TTT<br>F             | TCC         | AGG<br>R    | ctto                                 | CAC<br>H             | AAG<br>K           | CTA<br>L    | AAA<br>K    | $_{\rm Y}^{\rm TAT}$ | CCT<br>P             |
| CTT                  | tgtt                                          | AAA<br>K             | CTT<br>L             | ACA<br>T    | AGT<br>S    | tato                                 | GTA<br>V             | GTG<br>V           | CTC         | TCA         | AGT<br>S             | TTT<br>F             |
| TAC<br>Y             | aaga                                          | TCC<br>S             | CCA<br>P             | GAA<br>E    | ATT<br>I    | ctgt                                 | ACA<br>T             | CAA                | CGT<br>R    | CTA<br>L    | CTT<br>L             | GTG<br>V             |
| AAT                  | ggtt                                          | TTA<br>L             | ATA<br>I             | ATT<br>I    | TCA<br>S    | gtaactaatactgttatccttcataactaattttag | AAC<br>N             | TTT<br>F           | AAA<br>K    | TCT         | ATC<br>I             | CGA<br>R             |
| CCT<br>P             | tacc                                          | TTA<br>L             | 0<br>0               | ACC         | ATT<br>I    | aact                                 | CGG<br>R             | GCA<br>A           | CCC         | ATT<br>I    | AAA<br>K             | GTT<br>V             |
| TTT<br>F             | taaa                                          | TAC<br>Y             | TCT<br>S             | CGA<br>R    | AGC<br>S    | G gt<br>D                            | GAT<br>D             | AAC<br>N           | GTG<br>V    | CGT<br>R    | GAA<br>E             | CTT<br>L             |
| ACT<br>T             | AT 9<br>I                                     | CAT<br>H             | ATT<br>I             | AAG<br>K    | AAT<br>N    | CAA<br>O                             | TGT<br>C             | ATA<br>I           | GTT<br>V    | CAT<br>H ·  | GAT<br>D             | ATT<br>I             |
| TCT<br>S             | GAA                                           | ATG<br>M             | CAG<br>Q             | AGA<br>R    | TGG<br>W    | AAG<br>K                             | ATT<br>I             | CTT<br>L           | ACA<br>T    | CTC<br>L    | GAT<br>D             | TCC<br>S             |
| GTT<br>V             | TTA<br>L                                      | GCC                  | $_{\rm L}^{\rm CTT}$ | AAA<br>K    | TCC         | $	ext{TTT}$                          | TCT                  | GGA<br>G           | AGT<br>S    | CGA<br>R    | CAC<br>H             | CGA<br>R             |
| $_{ m L}^{ m CTC}$   | ${ m TTG}_{ m L}$                             | GAT<br>D             | TAC<br>Y             | AAA<br>K    | GTT<br>V    | AAG<br>K                             | CAC<br>H             | $	ext{TTT}$        | CAG<br>Q    | AAG<br>K    | ACC<br>T             | $_{\rm L}^{\rm CTT}$ |
| GAT<br>D             | CTT                                           | AGT<br>S             | AAT<br>N             | TCA<br>S    | GAA<br>E    | AAG<br>K                             | TTA<br>L             | CAA                | TCA<br>S    | GCA<br>A    | GAC<br>D             | TTT<br>F             |
| 1470                 | 1530<br>149                                   | 1602<br>156          | 1662<br>176          | 1722<br>196 | 1782<br>216 | 1842<br>236                          | 1908<br>246          | 1968<br>266        | 2028<br>286 | 2088<br>306 | 2148<br>326          | 2208<br>346          |

| auctactttcctttcttcataagctaattgcttcctcgaacgctcctaaatctctggaaatatttttacaaga 80 taaggacaaaaagaacaaattccaatatgaaggtgttattagtgatcgataattttctattttatcggtcgtta 160 taaggacaaaaagaacaacttccttcccccctaaagacttttactttattatttcattttcaatatttcg 240 ttacttttaatcgtggtactgttttagctgctacttctagccaaccgcgtgtttctaccccgtcattggata 320 ggagtagctcacagaaatccttacaaatcttctgatgagactattaggtgttcctaccccgtcattggatat 400 ggagccttacactttagatgagtcacgtcgtgatgagagattttggtatcatccaacgtttgccttgaaaag 480 attatttgcaaaatcatgagtcacgtcgctagatgagagatttttggtatcatcccaacgtttgccttgaaaag 560 tattcaaaaaatttctatccactacaactcctttaacgcggattttatttttctatttttctatttctattctattctattgtgt tgtatcatccgtattaggcttttactcctggaaatcgtaccttttcattttcattttagatga 720 tagtatcatccgtattagatagtagaaaagattggtgattctactcgtgtaatgttaaa 800 tgcaaaacatttattagctatatataaaaaaaaaacctataattaaaattataaaatattaaaaaa | 3AA CAC CAT ACC CCC AAA AGC AGG ATT CTT CGC TTT CTA GAG AAT CAA TAT GTA 1018<br>3 H H T P K S R I L R F L E N Q Y V 20 | FIGT ACC TTA AAT GAT TAT GTA CAA CTT GTT TTG AGA GGG TCG CCG GCA AGC TCG $1078$ c $_{ m C}$ $_{$ | AAT ATA TGC GAA CGC TTG AGA AGC GAT GTA CAA ACG TCC TTT TCT ATT TTT CTT 1138<br>N I C E R L R S D V Q T S F S I F L 60 | ACT GTA GTC GGC TTC GAC AGT AAG CCA GAT GAA GGT GTT CAA TTT TCT TCT CCA 1198<br>r v v g f d s k p d e g v Q f s s p 80 | FCA CAG TCA GAG gtatatattttttgtttttgatttttttctattcgggatagctaatatggggagg $1272$ S $$ E | SCG AAT GTT GTA AAA CAG ATG TTC GAT GAA AGT TTT GAG CGT CGA AGG AAT CTA 1332<br>A N V V K Q M F D E S F E R R R N L 106 | $^{4}$ AA GGG TTT TCC ATG gtaaggtattctaattgtgaaatatttacctgcaattactgtttcaaagaga 1405 K G F S M | аассgataaag AAT CAT GAA GAT TTT CGA GCC ATG CAT GTA AAC GGA GTA CAA AAT 1469<br>N H E D F R A M H V N G V Q N 128 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1 ggtaccgatttactttcctttct<br>81 actcaataacaataccaagtcaa.<br>161 ccaagtataaggacaaaaagaac.<br>241 ggttcgcttacttttaatcgtgg<br>321 agctcttggagtagctcacagaa.<br>401 ttaacatggagccttacacttta.<br>481 gttgataattatttgcaaaatca.<br>561 attgagatattcattctaa.<br>641 ccaaatatgtatcatccgtatt.<br>721 ataatctaaattagtttcgctta.<br>801 gatactttgcaaaacattatta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAT<br>H                                                                                                               | TTA<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TGC                                                                                                                    | GTC<br>V                                                                                                               | TCA<br>S                                                                              | GTT<br>V                                                                                                                | TTT<br>F                                                                                      | 1406 ttgtatttaaccgataaag AAT<br>114 N                                                                             |

| 2401 | CCCTGAAAAT  | CCAAATGTTA | ATCTTCTAAT | GAGACTTACA | GATGACTATC |
|------|-------------|------------|------------|------------|------------|
| 2451 | TTTTGATTAC  | AACTCAAGAG | AATAATGCAG | TATTGTTTAT | TGAGAAACTT |
| 2501 | ATAAACGTAA  | GTCGTGAAAA | TGGATTTAAA | TTCAATATGA | AGAAACTACA |
| 2551 | GACTAGTTTT  | CCATTAAGTC | CAAGCAAATT | TGCAAAATAC | GGAATGGATA |
| 2601 | GTGTTGAGGA  | GCAAAATATT | GTTCAAGATT | ACTGCGATTG | GATTGGCATC |
| 2651 | TCAATTGATA  | TGAAAACTCT | TGCTTTAATG | CCAAATATTA | ACTTGAGAAT |
| 2701 | AGAAGGAATT  | CTGTGTACAC | TCAATCTAAA | CATGCAAACA | AAGAAAGCAT |
| 2751 | CAATGTGGCT  | CAAGAAGAAA | CTAAAGTCGT | TTTTAATGAA | TAACATTACC |
| 2801 | CATTATTTTA  | GAAAGACGAT | TACAACCGAA | GACTTTGCGA | ATAAAACTCT |
| 2851 | CAACAAGTTA  | TTTATATCAG | GCGGTTACAA | ATACATGCAA | TGAGCCAAAG |
| 2901 | AATACAAGGA  | CCACTTTAAG | AAGAACTTAG | CTATGAGCAG | TATGATCGAC |
| 2951 | TTAGAGGTAT  | CTAAAATTAT | ATACTCTGTA | ACCAGAGCAT | TCTTTAAATA |
| 3001 | CCTTGTGTGC  | AATATTAAGG | ATACAATTTT | TGGAGAGGAG | CATTATCCAG |
| 3051 | ACTTTTTCCT  | TAGCACACTG | AAGCACTTTA | TTGAAATATT | CAGCACAAAA |
| 3101 | AAGTACATTT  | TCAACAGAGT | TTGCATGATC | CTCAAGGCAA | AAGAAGCAAA |
| 3151 | GCTAAAAAGT  | GACCAATGTC | AATCTCTAAT | TCAATATGAT | GCATAGTCGA |
| 3201 | CTATTCTAAC  | TTATTTTGGA | AAGTTAATTT | TCAATTTTTG | TCTTATATAC |
| 3251 | ጥርርርርርጥጥጥጥር | CCCTTTTCCC | CTTTTCCCC  | •          |            |

### FIG. 13 (CONTINUED)

| 1    | MEVDVDNQAD | NHGIHSALKT | CEEIKEAKTL | YSWIQKVIRC | RNQSQSHYKD |
|------|------------|------------|------------|------------|------------|
| 51   | LEDIKIFAOT | NIVATPRDYN | EEDFKVIARK | EVFSTGLMIE | LIDKCLVELL |
| 101  | SSSDVSDRQK | LQCFGFQLKG | NQLAKTHLLT | ALSTQKQYFF | QDEWNQVRAM |
| 151  | IGNELFRHLY | TKYLIFQRTS | EGTLVQFCGN | NVFDHLKVND | KFDKKQKGGA |
| 201  | ADMNEPRCCS | TCKYNVKNEK | DHFLNNINVP | NWNNMKSRTR | IFYCTHFNRN |
| 251  | NQFFKKHEFV | SNKNNISAMD | RAQTIFTNIF | RFNRIRKKLK | DKVIEKIAYM |
| 301  | LEKVKDFNFN | YYLTKSCPLP | ENWRERKQKI | ENLINKTREE | KSKYYEELFS |
| 351  | YTTDNKCVTQ | FINEFFYNIL | PKDFLTGRNR | KNFQKKVKKY | VELNKHELIH |
| 401  | KNLLLEKINT | REISWMQVET | SAKHFYYFDH | ENIYVLWKLL | RWIFEDLVVS |
| 451  | LIRCFFYVTE | QQKSYSKTYY | YRKNIWDVIM | KMSIADLKKE | TLAEVQEKEV |
| 501  | EEWKKSLGFA | PGKLRLIPKK | TTFRPIMTFN | KKIVNSDRKT | TKLTTNTKLL |
| 551  | NSHLMLKTLK | NRMFKDPFGF | AVFNYDDVMK | KYEEFVCKWK | QVGQPKLFFA |
| 601  | TMDIEKCYDS | VNREKLSTFL | KTTKLLSSDF | WIMTAQILKR | KNNIVIDSKN |
| 651  | FRKKEMKDYF | RQKFQKIALE | GGQYPTLFSV | LENEQNDLNA | KKTLIVEAKQ |
| 701  | RNYFKKDNLL | QPVINICQYN | YINFNGKFYK | QTKGIPQGLC | VSSILSSFYY |
| 751  | ATLEESSLGF | LRDESMNPEN | PNVNLLMRLT | DDYLLITTQE | NNAVLFIEKL |
| 801  | INVSRENGFK | FNMKKLQTSF | PLSPSKFAKY | GMDSVEEQNI | VQDYCDWIGI |
| 851  | SIDMKTLALM | PNINLRIEGI | LCTLNLNMQT | KKASMWLKKK | LKSFLMNNIT |
| 901  | HYFRKTITTE | DFANKTLNKL | FISGGYKYMQ | CAKEYKDHFK | KNLAMSSMID |
| 951  | LEVSKIIYSV | TRAFFKYLVC | NIKDTIFGEE | HYPDFFLSTL | KHFIEIFSTK |
| 1001 | KYIFNRVCMI | LKAKEAKLKS | DQCQSLIQYD | A          |            |

FIG. 14

### 12/34 .

| 1    | AAAACCCCAA               | AACCCCAAAA | CCCCTTTTAG               | AGCCCTGCAG | TTGGAAATAT |
|------|--------------------------|------------|--------------------------|------------|------------|
| 51   | AACCTCAGTA               | TTAATAAGCT | CAGATTTTAA               | ATATTAATTA | CAAAACCTAA |
| 101  | ATGGAGGTTG               | ATGTTGATAA | TCAAGCTGAT               | AATCATGGCA | TTCACTCAGC |
| 151  | TCTTAAGACT               | TGTGAAGAAA | TTAAAGAAGC               | TAAAACGTTG | TACTCTTGGA |
| 201  | TCCAGAAAGT               | TATTAGATGA | AGAAATCAAT               | CTCAAAGTCA | TTATAAAGAT |
| 251  | TTAGAAGATA               | TTAAAATATT | TGCGCAGACA               | AATATTGTTG | CTACTCCACG |
| 301  | AGACTATAAT               | GAAGAAGATT | TTAAAGTTAT               | TGCAAGAAAA | GAAGTATTTT |
| 351  | CAACTGGACT               | AATGATCGAA | CTTATTGACA               | AATGCTTAGT | TGAACTTCTT |
| 401  | TCATCAAGCG               | ATGTTTCAGA | TAGACAAAAA               | CTTCAATGAT | TTGGATTTCA |
| 451  | ACTTAAGGGA               | AATCAATTAG | CAAAGACCCA               | TTTATTAACA | GCTCTTTCAA |
| 501  | CTCAAAAGCA               | GTATTTCTTT | CAAGACGAAT               | GGAACCAAGT | TAGAGCAATG |
| 551  | ATTGGAAATG               | AGCTCTTCCG | ACATCTCTAC               | ACTAAATATT | TAATATTCCA |
| 601  | GCGAACTTCT               | GAAGGAACTC | TTGTTCAATT               | TTGCGGGAAT | AACGTTTTTG |
| 651  | ATCATTTGAA               | AGTCAACGAT | AAGTTTGACA               | AAAAGCAAAA | AGGTGGAGCA |
| 701  | GCAGACATGA               | ATGAACCTCG | ATGTTGATCA               | ACCTGCAAAT | ACAATGTCAA |
| 751  | GAATGAGAAA               | GATCACTTTC | TCAACAACAT               | CAACGTGCCG | AATTGGAATA |
| 801  | ATATGAAATC               | AAGAACCAGA | ATATTTTATT               | GCACTCATTT | TAATAGAAAT |
| 851  | AACCAATTCT               | TCAAAAAGCA | TGAGTTTGTG               | AGTAACAAAA | ACAATATTTC |
| 901  | AGCGATGGAC               | AGAGCTCAGA | CGATATTCAC               | GAATATATTC | AGATTTAATA |
| 951  | GAATTAGAAA               | GAAGCTAAAA | GATAAGGTTA               | TCGAAAAAAT | TGCCTACATG |
| 1001 | CTTGAGAAAG               | TCAAAGATTT | TAACTTCAAC               | TACTATTTAA | CAAAATCTTG |
| 1051 | TCCTCTTCCA               | GAAAATTGGC | GGGAACGGAA               | ACAAAAAATC | GAAAACTTGA |
| 1101 | TAAATAAAAC               | TAGAGAAGAA | AAGTCGAAGT               | ACTATGAAGA | GCTGTTTAGC |
| 1151 | TACACAACTG               | ATAATAAATG | CGTCACACAA               | TTTATTAATG | AATTTTTCTA |
| 1201 | CAATATACTC               | CCCAAAGACT | TTTTGACTGG               | AAGAAACCGT | AAGAATTTTC |
| 1251 | AAAAGAAAGT               | TAAGAAATAT | GTGGAACTAA               | ACAAGCATGA | ACTCATTCAC |
| 1301 | AAAAACTTAT               | TGCTTGAGAA | GATCAATACA               | AGAGAAATAT | CATGGATGCA |
| 1351 | GGTTGAGACC               | TCTGCAAAGC | ATTTTTATTA               | TTTTGATCAC | GAAAACATCT |
| 1401 | ACGTCTTATG               | GAAATTGCTC | CGATGGATAT               | TCGAGGATCT | CGTCGTCTCG |
| 1451 | CTGATTAGAT               | GATTTTTCTA | TGTCACCGAG               | CAACAGAAAA | GTTACTCCAA |
| 1501 | AACCTATTAC               | TACAGAAAGA | ATATTTGGGA               | CGTCATTATG | AAAATGTCAA |
| 1551 | TCGCAGACTT               | AAAGAAGGAA | ACGCTTGCTG               | AGGTCCAAGA | AAAAGAGGTT |
| 1601 | GAAGAATGGA               | AAAAGTCGCT | TGGATTTGCA               | CCTGGAAAAC | TCAGACTAAT |
| 1651 | ACCGAAGAAA               | ACTACTTTCC | GTCCAATTAT               | GACTTTCAAT | AAGAAGATTG |
| 1701 | TAAATTCAGA               | CCGGAAGACT | ACAAAATTAA               | CTACAAATAC | GAAGTTATTG |
| 1751 | AACTCTCACT               | TAATGCTTAA | GACATTGAAG               | AATAGAATGT | TTAAAGATCC |
| 1801 | TTTTGGATTC               | GCTGTTTTTA | ACTATGATGA               | TGTAATGAAA | AAGTATGAGG |
| 1851 | AGTTTGTTTG               | CAAATGGAAG | CAAGTTGGAC               | AACCAAAACT | CTTCTTTGCA |
| 1901 | ACTATGGATA               | TCGAAAAGTG | ATATGATAGT               | GTAAACAGAG | AAAAACTATC |
| 1951 | AACATTCCTA               | AAAACTACTA | AATTACTTTC               | TTCAGATTTC | TGGATTATGA |
| 2001 | CTGCACAAAT               | TCTAAAGAGA | AAGAATAACA               | TAGTTATCGA | TTCGAAAAAC |
|      |                          | AAGAAATGAA | AGATTATTTT               | AGACAGAAAT | TCCAGAAGAT |
| 2051 | TTTAGAAAGA<br>TGCACTTGAA | GGAGGACAAT | ATCCAACCTT               | ATTCAGTGTT | CTTGAAAATG |
| 2101 |                          | CTTAAATGCA |                          | TAATTGTTGA | AGCAAAGCAA |
| 2151 | AACAAAATGA               |            | TAACTTACTT               | CAACCAGTCA | TTAATATTTG |
| 2201 | AGAAATTATT               | TTAAGAAAGA |                          | GTTTTATAAA | CAAACAAAAG |
| 2251 | CCAATATAAT               | TACATTAACT | TTAATGGGAA               | TTTTGTCATC | ATTTTATTAT |
| 2301 | GAATTCCTCA               | AGGTCTTTGA | GTTTCATCAA<br>CTTAGGATTC | CTTAGAGATG |            |
| 2351 | GCAACATTAG               | AGGAAAGCTC | CTTAGGATTC               | CITAGAGATG | AMICAMIGAM |

FIG. 13

> NFkB\_CS1 GGGRQTYYQC NFkB-MHC-I.2 TGGGCTTCCCC

### Intron1

301 GCTGGGGTTGAGGGCGGCCGGGGGGAACCAGCGACATGCGGAGAGCAGCGCAGCGACTCCGACCCCAACTCCCGCCGGCCCCCTTGGTCGCTGTACGCCTCTCGTCGCGCTCAG

NFkB\_CS1 GGGRQTYYQC NFkB\_CS2 RGGGRMTYYCC

Topo\_II\_cleavage\_site RNYNNCNNGYNGKTNYNY \*\*\*\*\*\*

361 AGGGCGCTTCCCCGCAGGTGTCCTGCCTGAAGGAGCTGGTGGCCCGAGTGCTGCAGAGGGTCCCCGCGAAGGGGGCGTCCACAGGACGACTTCCTCGACCACCGGGCTCACGACGTCTCC

## Telomerase Specific Motifs

| MOTIF T' | ν я                | 3 EAEVR                                                  | 2 ENNVR                                                  | L2 EKEVE                                                 | 9 ENIMVC                                                        |
|----------|--------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
|          | н                  | Н                                                        | Н                                                        | Н                                                        | н                                                               |
| MOTIF T  | WI FFY TE Y RK W 1 | 546 WLMSVYVVELLRSFFYVTETTFQKNRLFFYRKSVWSKLQSIGI 13 EAEVR | 429 WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCRPFI 12 ENNVR | 441 WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSI 12 EKEVE | Sc_Est2 366 WLFRQLIPKIIQTFFYCTEISSTVT.IVYFRHDTWNKLITPFI 9 ENNVC |
|          |                    | 546                                                      | 429                                                      | 441                                                      | 366                                                             |
|          | TRT con            | hTRT                                                     | SPTRT                                                    | Ea p123                                                  | Sc_Est2                                                         |

## Telomerase RT Motifs (Fingers)

| MOTIF B' | Y q GipQGs lS l y | PELYFVKVDVTGAYDTI 104 YVQCQGIPQGSILSTLLCSLCY | 99 YLQKVGIPQGSILSSFLCHFYM | 67 PKLFFATMDIEKCYDSV 117 YKQTKGIPQGLCVSSILSSFYY | 85 YIREDGLFQGSSLSAPIVDLVY | hPQG pP hh h |            |
|----------|-------------------|----------------------------------------------|---------------------------|-------------------------------------------------|---------------------------|--------------|------------|
| MOTIF A  | p lyF D cYD i     | 69 PELYFVKVDVTGAYDTI                         | 66 RKKYFVRIDIKSCYDRI      | 67 PKLFFATMDIEKCYDSV                            | 68 PELYFMKFDVKSCYDSI      | h hDh AF h   | <b>∧</b> ℃ |
| MOTIF 2  | fR I              | 0 LRPIV                                      | 0 FRLIT                   | 0 FRPIM                                         | 2 FRIIA                   | hR h         |            |
| MOTIF 1  | R iPKk            | 11 SRLRFIPKPDG 0 LRPIV                       | 10 AVIRLLPKKNT 0 FRLIT    | 10 GKLRLIPKKTT 0 FRPIM                          |                           | p hh h K     |            |
|          | TRT con           | hTRT                                         | SPTRT                     | Ea p123                                         | Sc Est2                   | RT con       |            |

# Telomerase RT Motifs (Palm, Primer Grip)

|         |               | 192                                              | 176                 | 174                             | 141                                     |           |    |
|---------|---------------|--------------------------------------------------|---------------------|---------------------------------|-----------------------------------------|-----------|----|
| MOTIF E | wgs 1         | WCGLLLDTRTL                                      | FFGFSVNMRSL         | VSRENGFKFNMKKLQT 28 WIGISIDMKTL | WKHSSTMNNFH                             | hLG h     |    |
|         |               | 24                                               | [ 22 F              | 28                              | 25                                      |           |    |
|         |               | TVV                                              | TVI                 | LQT                             | ILA                                     | ᅺ         |    |
| Ω       | r<br>X        | ILRK                                             | SLEK                | MKK                             | RDK                                     | Gh h cK   |    |
| MOTIF D | H             | Į,                                               | STS                 | FKF                             | 4KA                                     | ιh        |    |
| MO      |               | EXG                                              | 15 GFEKHNFSTSLEKTVI | ENG                             | KYN/                                    | ซิ        |    |
|         | ם             | GVP                                              | GFE                 | VSR                             | GFQ                                     |           |    |
|         |               | 15                                               | 15                  | 15                              | 15                                      |           |    |
| MOTIF C | 111rl DDfL it | LLLRLVDDFLLVT 15 GVPEYGCVVNLRKTVV 24 WCGLLLDTRTL | 16 VLLRVVDDFLFIT    | 24 LLMRLTDDYLLIT                | 18 LILKLADDFLIIS 15 GFQKYNAKANRDKILA 25 | h Y DDhhh | Ĺŧ |
|         |               | 15                                               | 16                  | 24                              | 18                                      |           |    |
| ٠       | TRT con       | hTRT                                             | SPTRT               | Ea p123                         | Sc_Est2                                 | RT con    |    |



FIG. 10B



FIG. 10A





FIG. 9



FIG. 8

TOWNSEND & TOWNSEND & CREW 15389-26PC 1215 WOODWORKS 408 378-2790

### 5/34



FIG. 6



FIG. 7

WCLIFT P Y RK W L h I K 429 WLYNSFIIPILQSFFYITESSDLRNRTVYFRKDIWKLLCRPFITSMKM 8 546 WLMSVYVVELLRSFTYTFQKNRLFFYRKSVWSKLQSIGIRQHLK 10 441 WIFEDLVVSLIRCFFYVTEQQKSYSKTYYYRKNIWDVIMKMSIADLKK 8 366 WLFRQLIPKIIQTFFYCTEISSTVT-IVYFRHDTWNKLITPFIVEYFK 8

TRT con Sp\_rrtlp hrrr Ea\_p123 Sc\_Est2p

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4/34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 181<br>197<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 82<br>87<br>100<br>68<br>20<br>25<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| hriprik printing frhi h hriprik keveewkrslgfapgkttlprkkriteringsnkkmlvstnotl 40 fgrkkyfvridikscydrikgdlmfrivkklkd keveewkrslgfapgkltlprkrth- 0 frlitniskriteringsnkkmlvstnotl 40 fgrkkyfvridikscydrikgdlmfrivklyderingsnkkriteringsnkmlikgreg 0 lrpintprkrth- 0 frpintprkrth- | Motif B  KY Q GIPQGS LS hL h Y DL F LLRL DDFLhIT  KSYVQCQGIPQGSILSFLCHFYMEDLIDEYLSFT  KSYVQCQGIPQGSILSTLCSCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KRYKQTKGIPQGILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KSYVQCQGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKQTKGIPQGSILSTLLCSLCXGDMENKLFAGI  KAKTALNISLINGSLEGT  KAKTAMAGITLL  GIRYQXNVLPQGWKGSPAIFQSSMTKILEPFKKQN  4 IYQYMDDLYVGSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  6 IRYQXNVLPQGWKGSPAIFQSSMTKILEPFKKQN  4 IYQYMDDLYVGSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  6 IRYQXNVLPQGWKGSPAIFQSSMTKILEPFKKQN  7 LSTYADDTIVUSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  6 IRYQXNVLPQGWKGSPAIFQSSMTKILEPFKKQN  7 LSTYADDTIVUSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  6 IRYQXNVLPQGWKGSPAIFQSSMTKILEPFKKQN  7 LSTYADDTIVUSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  7 LSTYADDTIVUSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  7 LSTYADDTIVUSDLEIG 1 HRTKIEELRQHLLRWGLTTPDKKHQK  8 ILKLADDFLINTH 1 |
| TRT con<br>Sp_rrtlp<br>hrRT<br>Ea_p123<br>Sc_Est2p<br>RT con<br>Sc_a1<br>bm_rART<br>HIV-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRT con<br>Sp_Trtlp<br>hTRT<br>Ea_p123<br>Sc_Est2p<br>RT con<br>Sc_a1<br>Dm_TART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |





FIG. 5

| ht pl<br>10.6<br>11.3<br>10.1                           |                                                                            |                                                                                                                          |
|---------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Mol. weight<br>116.000<br>127.000<br>123.000<br>103.000 |                                                                            |                                                                                                                          |
| Sp_Trt1p<br>- hTRT<br>- Ea_p123<br>Sc_Est2p             |                                                                            |                                                                                                                          |
| T 1 2 A B'CD E -(7772)                                  | <b>RRBZZ2ー(****) - (****) - (****) - (*****) - (*****) - (**********</b>   |                                                                                                                          |
|                                                         | msDNAs<br>Mito.plasmid/RTL<br>Group II introns<br>Non-LTR Retrotransposons | Hepadnaviruses<br>LTR Retrotransposons (Copia-Ty1)<br>LTR Retrotransposons (Gypsy-Ty3)<br>Caulimoviruses<br>Retroviruses |

50 aa

| MOCIT 0  AKFLHWLMSVYVVELLRSFFYVTETTFQKNR ISEIEWLVLGKRSNAKMCLSDFEKRKQIFAEFIYWLYNSFIIPILQSFFYITESSDLRNR. LKBFRWLFISDIWFTKHNFENLNQLAICFISWLFRQLIPKIIQTFFYCTEISSTVT- TREISWMQVET-SAKHFYYFDHEN-IYVLWKLLRWIFEDLVVSLIRCFFYVTEQQKSYSK | Motif 1 LFFYRKSVWSKLQSIGIRQHLKRVQLRDVSEAEVRQHREARPALLTSRLRFIPKPDGL TVYFRKDIWKLLCRPFI-TSMKMEAFEKINENNVRMDTQK-TTLPPAVIRLLPKKNTF IVYFRHDTWNKLITPFIVEYFKTYLVENNVCRNHNSYTLSNFNHSKMRIIPKKSNNEF TYYYRKNIWDVIMKMSI-ADLKKETLAEVQEKEVEEWKKS-LGFAPGKLRLIPKKTTF | MOCÍÍ 2<br>RPIVNMDYVVGARTFRREKRAERLTSRVKALF-SVLNYERA<br>RLITN-LRKRFLIKMGSNKKMLVSTNQTLRPVASILKHLINEESSGIPFNLEVYMKLLTF<br>RIIAIPCRGADEEEFTIYKENHKNAIQPTQKILEYLRNKRPTSFTKIYSPTQIADRIKEF<br>RPIMTFNKKIVNSDRKTTKLTTNTKLLNSHLMLKTLKN-RMFKDPFGFAVFNYDDVMKKY<br>* * | MOLIÍ 3 (A) KKDLLKHRMFGR-KKYFVRIDIKSCYDRIKQDLMFRIVKK-KLKDPEFVIRKYATIHATS KQRLLKKFNNVLPELYFMKFDVKSCYDSIPRMECMRILKD-ALKNENGFFVRSQYFFNTN EEFVCKWKQVGQPKLFFATMDIEKCYDSVNREKLSTFLKTTKLLSSDFWIMTAQILKRKN |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| human<br>tez1<br>EST2<br>p123                                                                                                                                                                                                 | human<br>tez1<br>EST2<br>p123                                                                                                                                                                                                                       | human<br>tez1<br>EST2<br>p123                                                                                                                                                                                                                               | tez1<br>EST2<br>p123                                                                                                                                                                               |