UV melting experiments

Simple setup - (many) useful informations

Maciej Jasiński 20 X 2016

UV melting experiments

Experimental curve

Linear fit of: low T plateau (A_D) high T plateau (A_S)

$$f_D = \frac{A - A_S}{A_D - A_S}$$

melting temperature definition: $f_D(T_m) = 0.5$

Why you are not using this method?

- You don't believe me, that it's useful
- You didn't know how to do it
 - There wasn't a tool available that would do it automatically
 - Most of us use functions from the software that came with the spectrophotometer (mainly differentiate).

Why it should be used?

 Because other methods do not work

Table 1. Does the First Derivative Maximum Correspond to the $T_{\scriptscriptstyle M}$?^a

Derivative	Equilibrium		
	Intramolecular	Bimolecular	
dA/dT	Nob	Nob	
dA/d(1/T)	No^b	No^b	
$d\theta/dT$	Almost ^c	No^d	
$d\theta/d(1/T)$	Yes	No ^d	

Mergny, JL, Lacroix, L (2003). Analysis of thermal melting curves. Oligonucleotides, 13, 6:515-37.

From f, K vs T can be derived

TABLE II
TWO-STATE ANALYSIS OF NUCLEIC ACID TRANSITIONS

TWO-DIVID THANDING OF TANDERS THE TELESTREET				
Reaction type	Equilibrium constants	ΔH° from slope of f versus T	Concentration dependence of $T_{\rm m}$	
Monomolecular S = H	$K = \frac{[H]}{[S]} = \frac{(f)}{(1-f)}$	$\Delta H^{\circ} = 4RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$		
Bimolecular (self-complementary) 2S = D	$K = \frac{[D]}{[S]^2} = \frac{f}{2(1-f)^2 c_t}$	$\Delta H^{\circ} = 6RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{\Delta S^{\rm o}}{\Delta H^{\rm o}}$	
Bimolecular (non-self-complementary) $S_A + S_B = D$	$K = \frac{[D]}{[S_A][S_B]} = \frac{2f}{(1-f)^2 c_t}$	$\Delta H^{\circ} = 6RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{(\Delta S^{\rm o} - R \ln 4)}{\Delta H^{\rm o}}$	
Trimolecular (identical strands) 3S = T	$K = \frac{[T]}{[S]^3} = \frac{f}{3c_t^2(1-f)^3}$	$\Delta H^{\circ} = 8RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{2R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{\left[\Delta S^{\rm o} - R \ln 4/3\right)\right]}{\Delta H^{\rm o}}$	
Trimolecular (nonidentical strands) $S_A + S_B + S_C = T$	$K = \frac{[T]}{[S_A][S_B][S_C]} = \frac{9f}{c_t^2(1-f)^3}$	$\Delta H^{\circ} = 8RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{2R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{(\Delta S^{\rm o} - 2R \ln 6)}{\Delta H^{\rm o}}$	
Tetramolecular (identical strands) 4S = Q	$K = \frac{[Q]}{[S]^4} = \frac{f}{4c_t^3(1-f)^4}$	$\Delta H^{\circ} = 10RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{3R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{(\Delta S^{\rm o} R \ln 2)}{\Delta H^{\rm o}}$	
Tetramolecular (nonidentical strands) $S_A + S_B + S_C + S_D = Q$	$K = \frac{[Q]}{[S_A][S_B][S_C][S_D]} = \frac{64f}{c_t^3(1-f)^4}$	$\Delta H^{\circ} = 10RT_{\rm m}^2 \left(\frac{df}{dT}\right)_{T=T_{\rm m}}$	$\frac{1}{T_{\rm m}} = \frac{3R}{\Delta H^{\rm o}} \ln c_{\rm t} + \frac{(\Delta S^{\rm o} - 3R \ln 8)}{\Delta H^{\rm o}}$	

Why is Kimportant?

Perform fitting in the T range where f is linear: 0.2 < f < 0.8

It has an energy inside

$$\Delta G = -RT \ln K$$

$$\Delta G = \Delta H - T\Delta S$$

By fitting a linear function to the ln(K) vs 1/T one can derive both enthalpy and entropy

$$\ln K = -\frac{\Delta H}{R} \frac{1}{T} + \frac{S}{R}$$

Hill's coefficient

$$f(T) = \frac{T^b}{T_m^b + T^b}$$

- b = Hill's coefficient
- Describes cooperativity of binding

Hill's coefficient small

Hill's coefficient large

I've made perfect tool

- Works on the ASCII (.txt) files from UV-Vis Nicolet Evolution 300 Spectrophotometer (Thermo Scientific)
- Analyses:
 - T_m
 - energy: dH, dS and dG
 - Hill's coefficient
- Need a Linux

How to use it?

- Download from the https://github.com/maciejj/UV-Tm
- Adjust editable parameters in the Tm.py
- Run: python Tm.py <filename>.txt
- Let the magic happen

Parameters

```
#Adjustable parameters:
#Temperature in C for energy analysis:
Tenergy = 20
#Reaction type
#monomolecular=1; bimolecular(selfcomplementary)=2; bimolecular(non-self-complementary)=3
reactionType=1
#concentration in M; needed only when reactionType is not equal to 1
concentration=0.000002
#Temperature range in C for analyze. Zero values mean, it analyses whole curves
Tlow=0
Tmax=0
#Range for the InK fitting. Usually 0.2 - 0.8 is OK
#If not try for example 0.3 to 0.7
InKlow=0.2
InKhigh=0.8
```

Outputs

- Files with calculated values of:
 - melting temperatures <filename>.Tms
 - thermodynamic parameters <filename>.Energy
 - Hill's coefficients <filename>.Hills
- Multiple xmgrace ready files
 - <filename>_f.out
 - <filename>_fit.out
 - <filename>_InK_fit.out

Magic happens

What can go wrong?

Lower and upper plateau should not intersect

$$f_D = \frac{A - A_S}{A_D - A_S}$$

 Set different temperature range for analysis e.g.

Tlow=15

Tmax=70

What can go wrong

- The In(K) vs 1/T is not linear
- Investigate the f vs T curve
- Set different f range for energy analysis e.g. InKlow=0.3 InKhigh=0.7

