

Facial Expression Recognition

Supervisor: Đinh Viết Sang

Our team:

- Nguyễn Minh Dũng
- Lê Công Pha
- Nguyễn Duy Nhất
- Võ Minh Tâm

Contents

- 1. Facial Expression Recognition Overview
- 2. Prior experiments
- 3. Our approaches
- 4. Our experiments
- 5. Conclusions

Introduction - The problem

Introduction - Applications

Customer services

Assistant Robot

Introduction - Applications

Autopilot

Surveillance

Dataset

Name	Facial Expression Recognition 2013 (FER-2013)
Originators	Pierre-Luc Carrier and Aaron Courville
Source	Challenges in Representation Learning: Facial Expression Recognition Challenge
Num of samples	35887 (train:val:test 8:1:1)
Num of classes	7 (0: Angry, 1: Disgust, 2: Fear, 3: Happy, 4: Sad, 5: Surprise, 6: Neutral)
Size of each sample	48x48x1

Dataset

Prior experiments

Imbalanced data

Prior experiments

Accuracy: 0.5932

Our Approach - Imbalanced data

Balance method	Model	Val Accuracy		
RandomOverSampling	ResNet50	0.5943		
SMOTE	ResNet50	0.5982		
AugDisgust + Class weight	ResNet50	0.5690		

Some faces generated by SMOTE

Accuracy of RandomOverSampling and SMOTE: approximately the same

--> We choose RandomOverSampling method to balance data

Our Approach - Improve accuracy

EfficientNet B3/B4

VGGFace2

Our Approach

Based on approaches in kilean notebook*: fine-tuning VGGFace2

Layer (type)	Output	Shape	Param #
vggface_resnet50 (Functional	(None,	1, 1, 2048)	23561152
flatten (Flatten)	(None,	2048)	Θ
dropout (Dropout)	(None,	2048)	0
dense (Dense)	(None,	2048)	4196352
dropout_1 (Dropout)	(None,	2048)	0
dense_1 (Dense)	(None,	1024)	2098176
classifer (Dense)	(None,	7)	7175

Total params: 29,862,855 Trainable params: 6,301,703 Non-trainable params: 23,561,152

#	△pub	Team Name	Team Members	Score @
1	_	RBM	•	0.71161
2	_	Unsupervised		0.69267
3	-	Maxim Milakov	•	0.68821

Private Leaderboard of FER

Validation	0.6761
Test	0.6981

Kilean notebook result

^{*}https://www.kaggle.com/kilean/emotion-detection-accuracy70 in Challenges in representation learning: facial expression recognition challenge

Our Approach - Cleaned data

- Removed 86 images not a face
- Fine-tuning VGGFace2 with RanOS, ADASYN

Mô hình	Sử dụng	Dataset	Val Acc
VGGFace2	RandomOverSampler	cleaned FER-2013	0.7031
VGGFace2	ADASYN	cleaned FER-2013	0.7051

^{--&}gt; Cleaned data is better

Our Approach - Cleaned data

Fine-tuning VGGFace1, EfficientNetB3, EfficientNetB4

accuracy(left)	and	loss(right).	Ir=1e-4.	ep=15
			,	9

Layer (type)	Output	Shape	Param #
vggface_vgg16 (Functional)	(None,	7, 7, 512)	14714688
global_average_pooling2d_3 ((None,	512)	0
batch_normalization_3 (Batch	(None,	512)	2048
dropout_7 (Dropout)	(None,	512)	0
dense_6 (Dense)	(None,	512)	262656
dropout_8 (Dropout)	(None,	512)	0
dense_7 (Dense)	(None,	128)	65664
classifer (Dense)	(None,	7)	903

Total params: 15,045,959 Trainable params: 330,247 Non-trainable params: 14.715.712

Mô hình	Sử dụng	Dataset	Val Acc
VGGFace1	RandomOverSampler	cleaned FER-2013	0.7062
EfficientNetB4	RandomOverSampler	cleaned FER-2013	0.5234
EfficientNetB3	RAndomOverSampler	cleaned FER-2013	0.5017

--> Acc on VGGFace1 is better than EfficientNet

Our Approach - Ensemble learning

Mô hình	Sử dụng	Dataset	Val Acc
VGGFace1+2	RandomOverSampler	cleaned FER-2013	0.7283

^{--&}gt; Ensemble VGGFace with VGGFace2 has the best accuracy on validation set

Our Approach - Ensemble learning

Methods	Acc on Test
kilean's notebook	0.6761
first leaderboard	0.7116
Our model	0.74.7

RANK	MODEL	ACCURACY *	TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	Ensemble ResMaskingNet with 6 other CNNs	76.82	~	Challenges in Representation Learning: A report on three machine learning contests	C	Ð	2020
2	Residual Masking Network	74.14	~	Challenges in Representation Learning: A report on three machine learning contests	0	Ð	2020
3	VGG	72.7	×	Facial Expression Recognition using Convolutional Neural Networks: State of the Art	0	Ð	2016
4	Res-Net	72.4	×	Facial Expression Recognition using Convolutional Neural Networks: State of the Art	0	Ð	2016
5	Inception	71.6	×	Facial Expression Recognition using Convolutional Neural Networks: State of the Art	0	Ð	2016
6	DeepEmotion	70.02	×	Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network	O	Ð	2019

Some result

predict: Angry label: Angry

predict: Fear label: Fear

predict: Angry label: **Fear**

predict: Angry label: **Sad**

FER+ dataset

- The FER+ annotations provide a set of new labels (labeled by 10 crowd-sourced taggers) for the standard Emotion FER dataset.
- Class: neutral, happiness, surprise, sadness, anger, disgust, fear, contempt, unknown, NF

Phân bố dữ liệu FER+

Label of FER (top), new label FER+ (bottom)

Ensemble learning on FER+

Method	Acc on Test						
Our model	0.8432						
PSR(VGG16)	0.8975						

TN	Mô hình	Sử dụng	Dataset	Val Acc		
1	VGGFace1	RandomOverSampler	cleaned FER-2013	0.8477		
2	VGGFace2	RandomOverSampler	cleaned FER-2013	0.8365		
3	VGGFace1+2	RandomOverSampler	cleaned FER-2013	0.857		

Bảng 4.4: Kết quả thực nghiệm trên bộ dữ liệu FER+

Conclusions

Use: RandomOverSampling,

ADASYN (Adaptive Synthetic),

Augment+Class weight, SMOTE (Synthetic Minority Over-sampling Technique).

- Use pre-trained models: VGGFace, VGGFace2, EfficientNet, ResNet50.
 - => VGGFace, VGGFace2, ensemble better.
- A demo in Python using Flask framework.

Thank you

Task assignment

		4-Jan	5-Jan	6-Jan	7-Jan	8-Jan	9-Jan	10-Jan	11-Jan	12-Jan	13-Jan	14-Jan	15-Jan	16-Jan	17-Jan	18-Jan
Analyze	Data augmentation	All														
	Pretrained CNN models		Nhat, Dun	ng, Tam												
Act	Training on FER2013				Pha , Nha	t, Tam										
	Demo										All					
	Report								All							