Soluzioni ai tutorati

Corso di Fisica - CdL in Informatica

26 marzo 2018

Soluzioni

• Tutorato 1: Calcolo Vettoriale

1.
$$\|\vec{v}\| = \sqrt{58}$$
, $\|\vec{u}\| = \sqrt{41}$, $\vec{s} = (7, 12)$, $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = 47$, $\vec{v} \cdot \vec{v} = 58$

2.
$$\vec{v} = (15.3, -79^{\circ}), \ \vec{u} = (9, 0^{\circ})$$

3.
$$\|\vec{v}\| = 11.2$$
, $\|\vec{u}\| = 13.6$, $\|\vec{u} + \vec{v}\| = 22.7$

4.
$$\|\vec{u} \times \vec{v}\| = 3$$

5. ragionamento

6.
$$\|\vec{u} \times \vec{v}\| = 0$$
, $\vec{u} \cdot \vec{v} = 30$

7.
$$\vec{d} = (2,5) = (5.4,68^{\circ}), \ \theta = 3.4^{\circ}$$

8.
$$\vec{r}_{AB} = (12, -5), ||\vec{r}_{AB}|| = 13$$

9.
$$\vec{r_{AB}} = (4, -3), \ \vec{r_{AC}} = (4, 0), \ \vec{r_{AB}} \cdot \vec{r_{AC}} = 16$$

10.
$$\vec{s} = (3,3), \ \vec{d} = (1,-1)$$

• Tutorato 2: Elettrostatica 1

1.
$$F_e = 89.88N$$

2.
$$q = 1.5 \times 10^{-5} r$$

3.
$$E_r = 9 \times 10^5 \, N \cdot C^{-1}$$
, $E_{2r} = 2.2 \times 10^5 \, N \cdot C^{-1}$

4.
$$q = 1.2 \times 10^{-8} \, C$$

5.
$$L = 6 \times 10^{-5} J$$

6.
$$F_g = 3.6 \times 10^{-47} \, N \,, \ F_e = 8.2 \times 10^{-8} \, N$$

• Tutorato 3: Elettrostatica 2

1.
$$r = 23 \, cm$$

2.
$$q_1 = 1 \times 10^{-6} C$$
, $q_2 = 2 \times 10^{-6} C$

3.
$$\vec{F}_e = (0, 7.32) N$$

4.
$$\epsilon_r = 24$$

5.
$$\vec{F}_e = (0, 5.1) N$$

6.
$$r = 6.7 \, m$$

7.
$$E = 108kN \cdot C^{-1}$$

8.
$$L = 5 \times 10^{-4} J$$

9.
$$q = 48.5 \text{ nC}$$

10.
$$0J$$
, $-10^{-3}J$, $2.3 \times 10^{-3}J$

• Tutorato 4: Elettrostatica 3

1.
$$E_x = kxQ/(x^2 + a^2)$$

2.
$$E_x = -2.16 \times 10^7 \ N \cdot C^{-1}$$

3.
$$E = \frac{\sigma}{2\epsilon_0} \left(1 - x / \sqrt{x^2 + R^2} \right)$$

4. Interno:
$$E = 0$$
, Esterno: $E(r) = \sigma R^2/r^2 \epsilon_0$

5. Interno:
$$E(r) = \rho r/3\epsilon_0$$
, Esterno: $E(r) = \rho R^3/3r^2\epsilon_0$

• Tutorato 5: Elettrostatica 4

1.
$$C = 9.63 \, pF$$
, $V = 6.9V$

$$2. \ \epsilon_r = 2$$

3.
$$V = 1.6kV, Q = 3C$$

4.
$$\Delta V = 8.6 \, V \,, \; \rho_E = 2 \cdot 10^{-5} J/m^3$$