Chapitre IX

Fonctions dérivables

Généralités 1

1.1 **Définition**

<u>Définition : dérivabilité</u>

- Soient I un intervalle ouvert de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

 f est **dérivable en** x_0 si et seulement si $\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) f(x_0)}{x x_0}$ existe et est finie. On note cette limite $f'(x_0)$ et on l'appelle dérivée de f en x_0 .
- f est dérivable sur I si f est dérivable en tout point $x \in I$. On peut alors définir la fonction dérivée de f sur I:

$$f': \mathbb{R} \to \mathbb{R}$$
$$x \mapsto f'(x)$$

Remarque: pour les calculs, il est préférable d'utiliser la formule équivalente:

$$f'(x_0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}$$

Exemple: vérifier la dérivabilité de la fonction racine carrée sur \mathbb{R}^{+*} . Calculer sa dérivée. Est-elle dérivable en 0?

Etude de la dérivabilité en $x_0 \in \mathbb{R}^{+*}$:

Pour tout
$$h \neq 0$$
, $\frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} = \frac{(x_0 + h) - (x_0)}{h(\sqrt{x_0 + h} + \sqrt{x_0})} = \frac{h}{h(\sqrt{x_0 + h} + \sqrt{x_0})} = \frac{1}{\sqrt{x_0 + h} + \sqrt{x_0}}$.
Or $\lim_{h \to 0} \sqrt{x_0 + h} + \sqrt{x_0} = 2\sqrt{x_0} \neq 0$, donc $\lim_{h \to 0 \atop h \neq 0} \frac{\sqrt{x_0 + h} - \sqrt{x_0}}{h} = \frac{1}{2\sqrt{x_0}}$.

Etude de la dérivabilité en $\theta:\sqrt{0+\underline{h}}$ n'est définie que pour $h\geqslant 0.$

Pour tout
$$h > 0$$
, $\frac{\sqrt{0+h}-\sqrt{0}}{h} = \frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}}$, donc $\lim_{\substack{h \to 0 \\ h \neq 0}} \frac{\sqrt{0+h}-\sqrt{0}}{h} = +\infty$.

Conclusion: la fonction racine carrée est dérivable sur \mathbb{R}^{+*} mais pas en 0. Sa dérivée est :

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2\sqrt{x}} \end{array}$$

1.2 Dérivabilité et continuité

Propriété

Soient I un intervalle ouvert de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

Si f est dérivable en x_0 alors f est continue en x_0 .

 $D\'{e}monstration$

Posons

$$\varepsilon: I \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) & \text{si } x \neq x_0 \\ 0 & \text{si } x = x_0 \end{cases}$$

Comme f est dérivable en x_0 , ε est continue en x_0 .

Pour tout $x \in I$, $f(x) - f(x_0) = (f'(x_0) + \varepsilon(x))(x - x_0)$ c.a.d.

$$f(x) = f(x_0) + (f'(x_0) + \varepsilon(x))(x - x_0).$$

D'après les théorèmes concernant les opérations sur les fonctions continues, on en conclut que f est continue en x_0 .

1.3 Tangente au graphe

Propriété

Soient I un intervalle ouvert de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

Si f est **dérivable** en x_0 alors le graphe de f admet une tangente au point $M(x_0, f(x_0))$ d'équation $y = (x - x_0)f'(x_0) + f(x_0)$

FIGURE IX.1 – Tangente au graphe d'une fonction dérivable

1.4 Dérivée à gauche, à droite

Définition

Soient I un intervalle ouvert, $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

• f est **dérivable à gauche** en x_0 si $\lim_{\substack{x \to x_0 \\ x < x_0}} \frac{f(x) - f(x_0)}{x - x_0}$ existe. On la note alors $f'_g(x_0)$.

 $\frac{f(x) - f(x_0)}{x - x_0}$ existe. On la note alors $f'_d(x_0)$. • f est **dérivable à droite** en x_0 si $\lim_{\substack{x \to x_0 \\ x > x_0}}$

FIGURE IX.2 – Demies tangentes en x_0 où f est dérivable à gauche et à droite

Géométriquement, si f est dérivable à droite en x_0 , le graphe de f admet une demie tangente à droite en $M_0(x_0, f(x_0))$ de pente $f'_d(x_0)$. Si f est dérivable à gauche en x_0 , le graphe de f admet une demie tangente à gauche en $M_0(x_0, f(x_0))$ de pente $f'_q(x_0)$.

Opérations 1.5

Propriétés

Soient I un intervalle de \mathbb{R} , $x_0 \in I$, f et g des applications de I dans \mathbb{R} .

f dérivable sur I	g dérivable sur I	$f + g$ dérivable sur I et pour tout $x \in I$,
		(f+g)'(x) = f'(x) + g'(x)
f dérivable sur I	g dérivable sur I	$f.g$ dérivable sur I et pour tout $x \in I$,
		(f.g)'(x) = f'(x)g(x) + f(x)g'(x)
f dérivable sur I	$\lambda \in \mathbb{R}$	$\lambda.f$ dérivable sur I et pour tout $x \in I$,
		$(\lambda . f)'(x) = \lambda . f'(x)$
f dérivable en x_0	et $f(x_0) \neq 0$	$\frac{1}{f}$ dérivable en x_0 et $\left(\frac{1}{f}\right)'(x_0) = \frac{-f'(x_0)}{f^2(x_0)}$
f dérivable sur I	g dérivable sur I et	$\frac{f}{g}$ dérivable sur I et pour tout $x \in I$,
	$\forall x \in I, \ g(x) \neq 0$	$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$
f dérivable sur I	g dérivable sur $f(I)$	$g \circ f$ dérivable sur I et pour tout $x \in I$,
		$(g \circ f)'(x) = f'(x).(g'(f(x)))$

Démonstration pour la dérivabilité de $\frac{1}{f}$ en x_0 :

 $f(x_0) \neq 0$ et f est continue en x_0 car dérivable en x_0 , donc il existe un intervalle ouvert I centré sur x_0 tel que f ne s'annule pas sur I.

Pour tout
$$x \in I - \{x_0\}$$
, $\frac{\frac{1}{f(x)} - \frac{1}{f(x_0)}}{x - x_0} = \frac{f(x_0) - f(x)}{x - x_0} \frac{1}{f(x) f(x_0)}$.

La continuité de f en x_0 implique $\lim_{x \to x_0} \frac{1}{f(x).f(x_0)} = \frac{1}{\left(f(x_0)\right)^2}$.

La dérivabilité de f en x_0 implique $\lim_{\substack{x \to x_0 \ x \neq x_0}} \frac{f(x_0) - f(x)}{x - x_0} = -f'(x_0)$.

On en conclut que $\lim_{\substack{x \to x_0 \ x \neq x_0}} \frac{\frac{1}{f(x)} - \frac{1}{f(x_0)}}{x - x_0}$ existe et vaut $\frac{-f'(x_0)}{f^2(x_0)}$,

c.à.d. que
$$(\frac{1}{f})'(x_0) = \frac{-f'(x_0)}{f^2(x_0)}$$
.

2 Théorème des accroissements finis et applications

2.1 Dérivée et extremum local

Soient I un intervalle **ouvert** de \mathbb{R} et $f: I \to \mathbb{R}$ une application.

Si f a un **extremum** en $x_0 \in I$ et si f est **dérivable** en x_0 alors $f'(x_0) = 0$.

Démonstration

FIGURE IX.3 – Extremum en x_0 où f est dérivable (à gauche) ou non dérivable (à droite)

2.2 Théorème de Rolle

Théorème

Soit $f:[a,b] \to \mathbb{R}$ (avec a < b) une application **continue sur** [a,b] **et dérivable sur**]a,b[.

Si f(a) = f(b) = 0 alors il existe $c \in]a, b[$ tel que f'(c) = 0.

 $D\'{e}monstration$

2.3 Théorème des accroissements finis

Théorème

Soit $f:[a,b] \to \mathbb{R}$ (avec a < b) une application **continue sur** [a,b] **et dérivable sur** [a,b[, il existe $c \in]a,b[$ tel que f(b)-f(a)=f'(c) (b-a).

$D\'{e}monstration$

FIGURE IX.4 – Illustration du théorème des accroissements finis

2.4 Inégalité des accroissements finis

Théorème

Soit $f:[a,b] \to \mathbb{R}$ (avec a < b) une application **continue sur** [a,b] **et dérivable sur** [a,b[.

Si |f'| est majorée sur]a, b[par un réel M, c'est à dire que $|f'(x)| \leq M$ pour tout $x \in]a, b[$, alors $|f(b) - f(a)| \leq M |b - a|$.

Démonstration : d'après le théorème des accroissements finis, il existe $c \in]a,b[$ tel que $f(b)-f(a)=f'(c)\,(b-a).$

Or
$$|f'(c)| \leq M$$
, donc $|f(b) - f(a)| = |f'(c)| |b - a| \leq M|b - a|$

2.5 Application au sens de variation d'une fonction

On appelle **intérieur de** I, l'intervalle ouvert de même borne que I. Par exemple, l'intérieur des intervalles [a, b], [a, b], [a, b] et [a, b] est [a, b], l'intérieur des intervalles $[a, +\infty[$ et $[a, +\infty[$ est $[a, +\infty[$.

Théorème

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une application continue sur I et dérivable à l'intérieur de I.

- 1) f est constante sur I si et seulement si pour tout x à l'intérieur de I, f'(x) = 0.
- 2) f est **croissante** sur I si et seulement si pour tout x à l'intérieur de I, $f'(x) \ge 0$.
- 3) f est **décroissante** sur I si et seulement si pour tout x à l'intérieur de I, $f'(x) \leq 0$.
- 4) Si f'(x) > 0 pour tout x à l'intérieur de I alors f est strictement croissante sur I.

Démonstration du 2)

- $LHS \Rightarrow RHS$: si f est croissante, pour tout x_0 à l'intérieur de I et tout $x \in I$, $\frac{f(x) f(x_0)}{x x_0} \geqslant 0$. Comme f est dérivable en x_0 , on en déduit par passage à la limite que $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} \geqslant 0$, autrement dit $f'(x_0) \geqslant 0$.
- $RHS \Rightarrow LHS$: on suppose $f'(x) \ge 0$ pour tout x à l'intérieur de I. Soient x et y quelconques dans I tels que x < y, d'après le théorème des accroissements finis, il existe $z \in]x, y[$ tel que $\frac{f(y) - f(x)}{y - x} = f'(z)$.

z est à l'intérieur de I donc $f'(z) \ge 0$. On en déduit que $\frac{f(y) - f(x)}{y - x} \ge 0$.

Comme on a fait le raisonnement pour tous x et y dans I tels que x < y, on en déduit que f est croissante.

3 Dérivée d'une application réciproque

Théorème

Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application **bijective** de I sur J = f(I), f admet une réciproque $f^{-1}: J \to \mathbb{R}$.

Si f est **dérivable** en x_0 et si $f'(x_0) \neq 0$ alors f^{-1} est **dérivable** en $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

 $D\'{e}monstration$

Géométriquement, la courbe de f^{-1} est la symétrique de la courbe de f par rapport à l'axe y = x. Si le graphe de f admet une tangente au point $M(x_0, f(x_0))$, le graphe de f^{-1} admet une tangente de pente $\frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$ au point $M'(y_0, f^{-1}(y_0))$ avec $y_0 = f(x_0)$ et $f^{-1}(y_0) = x_0$. De plus, ou bien les pentes des deux tangentes valent 1 et elles sont parallèles, ou bien les deux tangentes sont sécantes sur l'axe y = x.

FIGURE IX.5 – Tangente au graphe de la réciproque d'une fonction dérivable

3.1 Etude de la fonction Arc sinus

Propriété: réciproque d'une fonction impaire

La réciproque d'une fonction impaire est impaire.

La fonction sinus est impaire, continue et strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

D'après le théorème de la bijection, $\sin\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) = \left[\sin\left(-\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right] = 1$ et la restriction de la fonction sinus à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ admet une réciproque appelée **Arc sinus, notée** arcsin, **définie sur** [-1, 1].

Propriété

La fonction $\arcsin: [-1,1] \to \mathbb{R}$ est impaire, continue et strictement croissante.

La fonction sinus est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annule qu'en $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ donc : **Propriété**

La fonction arcsin est dérivable sur]-1,1[et admet en -1 et 1 des tangentes verticales.

Pour tout $b \in]-1,1[$, on note $a=\arcsin(b)$ et on a $\arcsin'(b)=\frac{1}{\sin'(\arcsin(b))}=\frac{1}{\cos(a)}$. $a \in \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ donc $\cos(a) \geqslant 0$. Comme $\cos^2(a)=1-\sin^2(a)=1-b^2$, il suit que $\cos(a)=\sqrt{1-b^2}$.

Finalement $\arcsin'(b) = \frac{1}{\sqrt{1-b^2}}$.

Propriété

Pour tout
$$x \in]-1,1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

3.2 Etude de la fonction Arc cosinus

La fonction cosinus continue et strictement décroissante sur $[0, \pi]$.

D'après le théorème de la bijection, $\cos([0,\pi]) = [\cos(\pi),\cos(0)] = [-1,1]$ et la restriction de la fonction cosinus à $[0,\pi]$ admet une réciproque appelée **Arc cosinus, notée** arccos, **définie sur** [-1,1].

Propriété

La fonction $\arccos: [-1,1] \to \mathbb{R}$ est continue et strictement décroissante.

La fonction cosinus est dérivable sur $[0,\pi]$ et sa dérivée ne s'annule qu'en 0 et π donc : **Propriété**

La fonction arccos est dérivable sur]-1,1[et admet en -1 et 1 des tangentes verticales.

Chapitre IX : Fonctions dérivables

Propriété

Pour tout
$$x \in [-1,1]$$
, $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$.

En effet, notons $a = \arcsin(x)$, alors $a \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - a \in [0, \pi]$. De plus $\cos\left(\frac{\pi}{2} - a\right) = \sin a$ donc $\arccos(x) = \frac{\pi}{2} - a$ (CQFD).

On déduit de cette égalité deux propriétés :

Propriété

Pour tout
$$x \in]-1,1[$$
, $\arccos'(x) = -\arcsin'(x) = \frac{-1}{\sqrt{1-x^2}}$.

Propriété

Les graphes des fonctions Arc sin et Arc cosinus sont symétriques par rapport à l'axe $y = \frac{\pi}{4}$.

3.3 Etude de la fonction Arc tangente

La fonction tangente continue et strictement croissante sur $]-\frac{\pi}{2},\frac{\pi}{2}[...$

D'après le théorème de la bijection, $\tan\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right) = \lim_{x \to -\frac{\pi}{2}}\tan(x), \lim_{x \to \frac{\pi}{2}}\tan(x) = \mathbb{R}$ et la restriction de la fonction tangente à $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ admet une réciproque appelée **Arc** tangente, notée arctan, définie sur \mathbb{R} .

Propriété

La fonction
$$\arctan: \mathbb{R} \to \mathbb{R}$$
 est impaire, continue, strictement croissante, et $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$ et $\lim_{x \to -\infty} \arctan(x) = \frac{\pi}{2}$

La fonction tangente est dérivable sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ et sa dérivée ne s'annule pas donc : **Propriété**

La fonction \arctan est dérivable sur \mathbb{R} .

Pour tout $b \in \mathbb{R}$, on note $a = \arctan(b)$ et on a $\arctan'(b) = \frac{1}{\tan'(\arctan(b))} = \frac{1}{\tan'(a)}$.

Or
$$\tan'(a) = 1 + \tan^2(a) = 1 + b^2$$
 donc $\arctan'(b) = \frac{1}{1 + b^2}$.

Propriété

Pour tout
$$x \in \mathbb{R}$$
, $\arctan'(x) = \frac{1}{1+x^2}$.