## Discrete Assignment EE1205 Signals and Systems

Nimal Sreekumar EE23BTECH11044

Question 11.9.5.32: 150 workers were engaged to finish a job in a certain number of days, 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.

## **Solution:**

| Variable | values                    | Description       |
|----------|---------------------------|-------------------|
| x(0)     | 150                       | first term        |
| d        | -4                        | common difference |
| x(n)     | $(150 - 4n)\mathbf{u}(n)$ | General term      |
| y (n)    | $(148n - 2n^2 + 150)u(n)$ | sum of n+1 terms  |

TABLÉ 0 Input Parameters

Let p be the number of days required to complete the work when all 150 workers work continuously for p days.

$$\implies$$
 total work done = 150 $p$  (1)

Given that after first day, 4 workers starts leaving each day. This forms an A.P. with

$$x(n) = (150 - 4n) u(n)$$
 (2)

$$X(z) = \frac{150}{1 - z^{-1}} - \frac{4z^{-1}}{(1 - z^{-1})^2}$$
 (3)

$$y(n) = x(n) * u(n)$$
 (4)

$$Y(z) = X(z) U(z)$$

$$Y(z) = \frac{150}{(1 - z^{-1})^2} - \frac{4z^{-1}}{(1 - z^{-1})^3}$$
 (6)

Using the z transforms given below:

$$(n+1) u(n) \stackrel{z}{\longleftrightarrow} \frac{1}{(1-z^{-1})^2} , |z| > 1$$
 (8)

1

$$n((n+1)u(n)) \stackrel{z}{\longleftrightarrow} \frac{2z^{-1}}{(1-z^{-1})^3} , |z| > 1$$
(9)

$$\implies y(n) = 150(n+1)u(n) - 2n((n+1)u(n))$$
(10)

$$y(n) = (148n - 2n^2 + 150)u(n)$$
 (11)

And its given in the question that it takes 8 additional (p + 8) days to complete the work when 4 workers start dropping out each day.

$$\implies$$
 total work done =  $y(p+7)$  (12)

Equating eq(1) and eq(12)

$$120p - 2p^2 + 1088 = 150p \tag{13}$$

$$(p-17)(p+32) = 0 (14)$$

$$p = 17, -32 \tag{15}$$

No. of days cannot be negative  $\implies p = 17$ 

Total no. of days it took to complete work = p+8=25

(5)



Fig. 0. Plot of x(n) vs n