Operating System

Course Objective:

The objective of the course is to be familiar with the different aspects of operating system and use the idea in designing operating system.

- 1.Introduction (5 hours)
 - a. Operating System and Function
 - b. Evolution of Operating System
 - c. Type of Operating System: Batch, Interactive, Multiprocessing, Time Sharing and Real Time System
 - d. Operating System Components
 - e.Operating System Structure: Monolithic, Layered, Micro-Kernel, Client-Server, Virtual Machine
 - f. Operating System Services
 - i. System calls
 - ii. Shell commands
 - iii. Shell programming
 - g. Examples of O. S.: UNIX, Linux, MS-Windows, Handheld OS.
- 2. Process Management (6 hours)
 - a.Introduction to Process
 - i. Process description
 - ii. Process states
 - iii. Process control
 - b.Threads
 - c.Processes and Threads
 - d.Scheduling
 - i. Types of scheduling
 - ii. Scheduling in batch system
 - iii. Scheduling in Interactive System
 - iv. Scheduling in Real Time System
 - v. Thread Scheduling
 - e.Multiprocessor Scheduling concept
- 3. Process Communication and Synchronization (5 hours)
 - a. Principles of Concurrency
 - b.Critical Region
 - c.Race Condition
 - d.Mutual Exclusion
 - e.Semaphores and Mutex
 - f. Message Passing
 - g. Monitors
 - h.Classical Problems of Synchronization: Readers-Writers Problem, Producer Consumer Problem, Dining Philosopher problem
- 4. Memory Management (6 hours)
 - a. Memory address, Swapping and Managing Free Memory Space
 - b.Resident Monitor
 - c.Multiprogramming with Fixed Partition
 - d. Multiprogramming With Variable Partition
 - e. Multiple Base Register

- f. Virtual Memory Management
 - i.Paging
 - ii. Segmentation
 - iii. Paged Segmentation
- g. Demand Paging
- h. Performance
- i. Page Replacement Algorithms
- j. Allocation of Frames
- k. Thrashing
- 5. File Systems (6 hours)
 - a. File: Name, Structure, Types, Access, Attribute, Operations
 - b.Directory and File Paths
 - c.File System Implementation
 - i. Selecting Block Size
 - ii.Impact of Block Size Selection
 - iii.Implementing File: Contiguous Allocation, Link List Allocation, Link List
 - Allocation with Table, Inode
 - iv.Implementing Directory
 - d.Impact of Allocation Policy on Fragmentation
 - e. Mapping File Blocks on The Disk Platter
 - f.File System Performance
 - g.Example File Systems: CD ROM file system, MS-DOS file system, Unix File system
- 6. I/O Management & Disk Scheduling (4 hours)
 - a. Principles of I/O Hardware
 - b. Principles of I/O software
 - c.I/O software Layer
 - d.Disk
 - i.Hardware
 - ii. Formatting
 - iii. Arm scheduling
 - iv. Error handling
 - v. Stable Storage
- 7. Deadlock (5 hours)
 - a. Principles of deadlock
 - b.Deadlock Prevention
 - c.Deadlock Avoidance
 - d.Deadlock Detection
 - e.Recovery from deadlock
 - f. An Integrated Deadlock Strategies
 - g.Other Issues: Two phase locking, Communication Deadlock, Livelock, Starvation
- 8. Security (4 hours)
 - a. Security breaches
 - b. Types of Attacks
 - c. Security Policy and Access Control
 - d. Basics of Cryptography

- e. Protection Mechanisms
- f. Authentication
- g. OS Design Considerations For Security
- h. Access Control Lists And OS Support
- 9. System administration (4 hours)
 - a. Administration Tasks
 - b. User Account Management
 - c. Start And Shutdown Procedures
 - d. Setting up Operational Environment for a New User
 - e. AWK tool, Search, Sort tools, Shell scripts, Make tool

Practical:

- 1. Shell commands, shell programming: write simple functions, basic tests, loops, patterns, expansions, substitutions
- 2. Programs using the following system calls of UNIX operating system: fork, exec, getpid, exit, wait, close, stat, opendir, readdir
- 3. Programs using the I/O system calls of UNIX operating system
- 4. Implement the Producer Consumer problem using semaphores.
- 5. Implement some memory management schemes

Reference Books:

- 1. Andrew S. Tanenbaum, "Modern Operating Systems", 3rd Edition, PHI
- 2. Stalling William, "Operating Systems", 6th Edition, Pearson Education
- 3. Silbcrschatz A., Galvin P., Gagne G., "Operating System Concepts", 8th Edition, John Wiley and Sons,
- 4. Milan Milenkovic, "Operating Systems Concepts and Design", TMGH
- 5.Das Sumitabha, "Unix Concepts and Applications", 3rd Edition, Tata McGraw Hill, 2003
- 6.M. J. Bach, "The Design of The Unix Operating System", PHI.
- 7. Charles Crowley, "Operating Systems: A Design-oriented Approach", TMH.

Evaluation Scheme:

The questions will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below.

Chapters	Hour	Marks Distribution*
1	5	10
2	6	10
3	5	10
4	6	10
5	6	10
7	5	10
6, 8, 9	12	20
Total	45	80

^{*}Note: There may be minor deviation in marks distribution