This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

MARIA COMMENTERS TO THE STATE OF THE STATE O

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

10/019683

2CT/EP 0 0 / 0 6 2 3

EP00/6230

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 12 MAI 2000

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Pour le Directeur général de l'Institut national de la propriété industrielle Le Chef du Département des brevets

Martine PLANCHE

ेर इस ेर वर्ष हो। यहेरा ४ सन्दर्

SIEGE

INSTITUT National de La propriete 26 bis, rue de Saint Petersbourg 75800 PARIS Cédex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

ETABLISSEMENT PUBLIC NATIONAL

CREE PAR LA LOI Nº 51-444 DU 19 AVRIL 1951

DREVEL DINVENTION, CERTIFICAL D'UTILITE

Code de la propriété intellectuelle-Livre VI

REQUÊTE EN DÉLIVRANCE

26 bis, rue de Saint Pétersbourg

DATE DE REMISE DES PIÈCES

75800 Paris Cedex 08

La kg n' 16-17 du 6 janvier 1978 relative à l'informatique aux fichiers et aux libertès s'applique aux réponses faites à ce formulaire. Elle garantit un droit d'accès et de rectification pour les données vous concernant auprès de l'INPI.

Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30 - Réservé a l'INPI -

Confirmation	d'un	dépôt	par	télécopie	•

NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE

Nº 55-1328

Cet imprimé est à remplir a l'encre noire en lettres capitales

1

DATE DE REMISE DES PIÈCES N° D'ENREGISTREMENT NATIONAL	6 JUIL 1999 9908714	A QUI LA	CORRESPONDANCE DOIT ÊTRE	
DÉPARTEMENT DE DÉPÔT	75 INPI PARIS		ET LAVOIX ce d'Estienne d'	Owne
DATE DE DÉPÔT		75441	PARIS CEDEX 09	OI ves
DATE DE DEI OT	0 6 JUIL. 199	99		
Etablissement du rapport de recherche Le demandeur, personne physique, requiert l' Titre de l'invention (200 caractères ma	ande divisionnaire demand rmation d'une demande et européen différè différè différè aximum)	vention		téléphone 53-20-14-20 date lipidémies, de cet procédés de
3 DEMANDEUR (S) " SIREN .		code APE-NAF		
Nom et prénoms (souligner le nom pa	itronymique) ou dénomination		Form	ne juridique
LIPHA				
Nationalité (s) Française Adresse (s) complète (s)			Pays FR	-
34, rue Saint-Roma	III 03000 DIGH		•••	· -
			- 5	
4 INVENTEUR (S) Les inventeurs so	ent les demandeurs oui	En cas d'insuffisance de place, poursuivre sur papier i Parie non Si la réponse est non, fournir une		
5 RÉDUCTION DU TAUX DES REDEVA	ANCES requise pour	la 1ère fois requise antérieuremen	t au dépôt ; joindre copie de la décis	sion d'admission
6 DÉCLARATION DE PRIORITÉ OU RI pays d'origine	EQUÊTE DU BÉNÉFICE DE LA DATE D num ér o	DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE date de dépôt	nature de la demande	
7 DIVISIONS antérieures à la prèse		date	ne	date
8 SIGNATURE DU DEMANDEUR OU ((nom et qualité du signataire) CABINET LAVOIX N. RONCHENT nº 9		SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION	SIGNATURE APRES ENREGISTR	EMENT DE LA DEMANDE À L'INPL

DÉSIGNATION DE L'INVENTEUR

(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

DEPARTEMENT DES BREVETS

26bis, rue de Saint-Pétersbourg 75800 Paris Cédex 08

Tél.: 01 53 04 53 04 - Télécopie: 01 42 93 59 30

TITRE DE L'INVENTION :

Dérivés de benzodiazépines utilisables dans le traitement de dyslipidémies, de l'athérosclérose et du diabète, compositions pharmaceutiques les contenant et procédés de préparation.

LE(S) SOUSSIGNÉ(S)

LIPHA

34, rue Saint-Romain 69008 LYON FRANCE

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

Jean-Jacques BERTHELON
8, rue du Panorama 69005 LYON FRANCE

Daniel GUERRIER 35C, route de Charly 69230 SAINT GENIS LAVAL FRANCE

Michel BRUNET 17, allée des Bleuets 69780 TOUSSIEU FRANCE

Jean-Jacques ZEILLER 25, rue Laurent Carle 69008 LYON FRANCE

Francis CONTARD 29, rue Roger Bréchan 69003 LYON FRANCE

Frédéric AUSSEIL Le Musset Bâtiment C - Appartement 26 2, Impasse de la Terrasse 31500 TOULOUSE FRANCE

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire

Paris, le 6 Juillet 1999

CABINET LAVOIX
M. MONCHENY nº 92.1179

A Northery

DOCUMENT COMPORTANT DES MODIFICATIONS

PAGE(S) DE LA DESCRIPTION OU DES REVENDICATIONS OU PLANCHE(S) DE DESSIN			DATE	TAMPON DATEUR		
Modifiée(s)	Supprimée(s)	Ajoutée(s)	R.M.*	DE LA CORRESPONDANCE	DU CORRECTEUR	
57		7		24 Aout 99	AMH 3 D AOUT 1999	
		······································				

Un changement apporté à la rédaction des revendications d'origine, sauf si celui-ci découle des dispositions de l'article R.612-36 du code de la Propriété Intellectuelle, est signalé par la mention «R.M.» (revendications modifées).

La présente invention concerne des dihydrobenzodiazépines utilisables dans le traitement de dyslipidémies, de l'athérosclérose, du diabète et de ses complications.

5

10

15

20

25

30

La maladie cardiovasculaire demeure dans la plupart des pays une des principales maladies et la principale cause de mortalité. Environ un tiers des hommes développent une maladie cardiovasculaire majeure avant l'âge de 60 ans, les femmes présentent un risque inférieur (rapport 1 à 10). Avec la vieillesse (après 65 ans, les femmes deviennent aussi vulnérables aux maladies cardiovasculaires que les hommes), cette maladie prend encore de l'ampleur. Les maladies vasculaires comme la maladie coronaire, l'accident vasculaire cérébral, la resténose et la maladie vasculaire périphérique demeurent la première cause de mortalité et de handicap à travers le monde.

Tandis que le régime alimentaire et le style de vie peuvent accélérer le développement de maladies cardiovasculaires, une prédisposition génétique conduisant à des dyslipidémies est un facteur significatif dans les accidents cardiovasculaires et les décès.

Le développement de l'athérosclérose semble être relié principalement à la dyslipidémie, ce qui signifie des niveaux anormaux de lipoprotéines dans le plasma sanguin. Cette dysfonction est particulièrement évidente dans la maladie coronaire, le diabète et l'obésité.

Le concept destiné à expliquer le développement de l'athérosclérose a été principalement orienté sur le métabolisme du cholestérol et sur le métabolisme des triglycérides.

Chez l'homme, l'hypertriglycéridémie est une atteinte relativement commune avec 10% des hommes de 35 à 39 ans présentant des concentrations plasmatiques supérieures à 250 mg/dl (LaRosa J.C., L.E. Chambless, M.H. Criqui, I.D. Frantz, C.J. Glueck, G. Heiss, and J.A. Morisson, 1986. Circulation 73: Suppl. 1.12-29.). Chez certains individus, la perturbation est d'origine génétique mais pour d'autres des causes secondaires, telles que la consommation excessive d'alcool, l'obésité, le diabète ou l'hypothyroïdisme, prédominent.

5

10

15

20

25

30

Les causes génétiques clairement identifiées de l'hypertriglycéridémie sont l'homozygotie pour des allèles dysfonctionnels de la LPL ou de l'apo CII [Fojo S.S., J.L. de Gennes, U. Beisiegel, G. Baggio, S.F. Stahlenhoef, J.D. Brunzell, and H.B. Brewer, Jr 1991. Adv. Exp. Med. Biol. 285: 329-333; Brunzell, J.D. 1995. In the Metabolic Basis of Inherited Disease, 6th ed. C. Scriver, A. Sly and D. Valle, editors. Mc Graw-Hill, Inc., New York. 1913-1932.]. Ces conditions ne surviennent cependant que dans un cas sur un million et sont considérées comme rares. Il existe des preuves, provenant d'études réalisées chez l'homme et chez des souris déficientes en LPL [Brunzell, J.D. 1995. In the Metabolic Basis of Inherited Disease, 6th ed. C. Scriver, A. Sly and D. Valle, editors. Mc Graw-Hill, Inc., New York. 1913-1932; Coleman T., et al. 1995. J. Biol. Chem. 270: 12518-12525; Aalto-Setälä K., Weinstock P.H., Bisgaier C.L., Lin Wu, Smith J.D. and Breslow J.L., 1996, Journal of Lipid Research, 37, 1802-1811] montrant que l'hétérozygotie pour un allèle dysfonctionnel de la LPL peut contribuer à l'hypertriglycéridémie avec toutefois une fréquence d'occurrence faible dans la population. La concentration plasmatique d'apolipoprotéine CIII (apo CIII), régulée par l'expression du gène apo CIII, associée ou non à une cause secondaire, peut être une nouvelle et plus fréquente cause de l'hypertriglycéridémie chez l'Homme [Weinstock P.H., C.L. Bisgaier, K. Aalto-Setälä, H. Radner, R. Ramakrishnan, S. Levak-Frank, A.D. Essenburg, R. Zechner, and J.L. Breslow, 1995. J.Clin. Invest. 96: 2555-2568].

L'apo CIII est un composant des lipoprotéines très basse densité (very low density lipoproteins ou VLDL), des chylomicrons et des lipoprotéines haute densité (high density lipoproteins ou HDL).

De nombreuses études montrent que l'apo CIII joue un rôle important dans le métabolisme des lipoprotéines riches en triglycérides (TGRL). Des études cliniques montrent une forte corrélation entre l'apo CIII plasmatique et la concentration en triglycérides [Schonfeld. G., P.K. George, J. Miller, P. Reilly, and J. Witztum, 1979. 28: 1001-1010.; Shoulders C.C., et al. 1991. Atherosclerosis 87: 239-247; Le N-A., J.C. Gibson, and H.N. Ginsberg, 1988. J. Lipid Res. 29: 669-677]. De plus, des études épidémiologiques montrent une association entre certains allèles de l'apo CIII et la concentration en

triglycérides [Rees A., J. Stocks, C.R. Sharpe, M.A. Vella, C.C. Shoulders, J. Katz, N.I. Jowett, F.E. Baralle, and D.J. Galton, 1985 J. Clin. Invest. 76: 1090-1095; Aalto-Setälä, et al. 1987. Atherosclerosis 66: 145-152; Tas, S. 1989. Clin. Chem. 35: 256-259; Ordovas J.M., et al. 1991. Atherosclerosis 87: 75-86; Ahn, Y.I., et al. 1991. Hum. Hered 41: 281-289; Zeng Q., M. Dammerman, Y. Takada, A. Matsunage, J.I. Breslow and J. Sasaki, 1994. Hum. Genet 95: 371-375].

L'apo CIII a la capacité d'inhiber l'activité de la lipoprotéine lipase (LPL) [C.S. Wang, W.J. Mc Connathy, H.U. Kloer and P. Alaupovic, J. Clin. Invest., 75, 384 (1984)] et de diminuer l'élimination des "remnants" des lipoprotéines riches en triglycérides (TGRL) par la voie des récepteurs de l'apolipoprotéine E [F. Shelburne, J. Hanks, W. Meyers and S. Quarfordt, J. Clin. Invest., 65, 652 (1980); E. Windler and R.J. Havel, J. Lipid Res., 26, 556, (1985)]. Chez les patients déficients en apo CIII, le catabolisme des TGRL est accéléré [H. N. Ginsberg, N.A. Le, I.A. Goldberg, J.C. Gibson, A. Rubinstein, P. Wang-Iverson, R. Norum and W.V. Brown, J. Clin. Invest., 78, 1287 (1986)]. A l'inverse, la surexpression de l'apo CIII humaine chez des souris transgéniques est associée à une hypertriglycéridémie sévère [Y. Ito, N. Azrolan, A. O'Connell, A. Walsh and J.L. Breslow, Science, 249, 790 (1990)].

10

15

20

25

30

Par ces mécanismes, l'apo CIII entraine la réduction du catabolisme des TGRL conduisant à une hausse de la concentration en triglycérides. La réduction de la concentration plasmatique d'apo CIII apparaît donc d'un intérêt certain lorsque la baisse de la triglycéridémie est recherchée comme objectif thérapeutique chez des populations à risque.

Les composés de l'invention sont des dihydrobenzodiazépines capables de diminuer la sécrétion d'apo CIII.

Les composés de l'invention ont pour formule I:

$$(R_1)_{\Pi}$$
 R_2
 R_3
 N
 R_4
 X
 R_5

dans laquelle

5

10

15

20

25

30

les pointillés indiquent la présence éventuelle d'une double liaison ;

 R_1 représente (C_1 - C_{18})alkyle éventuellement halogéné, (C_1 - C_{18})alcoxy éventuellement halogéné, halogène, nitro, hydroxy ou (C_8 - C_{10})aryle (éventuellement substitué par (C_1 - C_8)alkyle éventuellement halogéné, (C_1 - C_8)alcoxy éventuellement halogéné, halogène, nitro ou hydroxy);

n représente 0, 1, 2, 3 ou 4;

 R_2 et R_3 représentent indépendamment l'un de l'autre hydrogène ; $(C_1\text{-}C_{18})$ alkyle éventuellement halogéné ; $(C_1\text{-}C_{18})$ alcoxy ; $(C_6\text{-}C_{10})$ aryle ; $(C_6\text{-}C_{10})$ aryl- $(C_1\text{-}C_6)$ alkyle ; hétéroaryle ; hétéroaryl $(C_1\text{-}C_6)$ alkyle ; $(C_6\text{-}C_{10})$ aryl- $(C_1\text{-}C_6)$ alcoxy ; hétéroaryloxy ; ou hétéroaryl $(C_1\text{-}C_6)$ alcoxy ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S, et, dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par halogène, $(C_1\text{-}C_6)$ alcoxy éventuellement halogéné, $(C_1\text{-}C_6)$ alkyle éventuellement halogéné, nitro et hydroxy ;

 R_4 représente hydrogène, (C_1-C_{18}) alkyle ou (C_8-C_{10}) aryle, ledit groupe aryle étant éventuellement substitué par halogène, (C_1-C_6) alcoxy éventuellement halogéné, (C_1-C_6) alkyle éventuellement halogéné, nitro ou hydroxy;

X représente S, O ou -NT où T représente un atome d'hydrogène, (C_1 - C_6)alkyle, (C_6 - C_{10})aryle, (C_6 - C_{10})aryl-(C_1 - C_6)alkyle ou (C_6 - C_{10}) arylcarbonyle;

 R_5 représente (C_1 - C_{18})alkyle ; hydroxy-(C_1 - C_{18})alkyle ; (C_6 - C_{10})aryl-(C_1 - C_6)alkyle ; (C_3 - C_8)cycloalkyle-(C_1 - C_6)alkyle ; isoxazolyl-(C_1 - C_6)alkyle éventuellement substitué par (C_1 - C_6)alkyle ; un groupe - CH_2 - CR_a = CR_bR_c dans lequel R_a , R_b et R_c sont indépendamment choisis parmi (C_1 - C_{18})alkyle, (C_2 - C_{18})alcényle, hydrogène et (C_6 - C_{10})aryle ; un groupe - CH_2 -CO-Z où Z représente (C_1 - C_1)alkyle, (C_1 - C_1)alcoxycarbonyle, (C_6 - C_1)aryl-(C_1 - C_6)alkyle, (C_6 - C_{10})aryle éventuellement condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S ; ou hétéroaryle de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et

S; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par halogène, hydroxy, (C_1-C_6) alkyle éventuellement halogéné, (C_1-C_6) alcoxy éventuellement halogéné, nitro, di (C_1-C_6) alcoxyphosphoryl (C_1-C_6) alkyle ou (C_6-C_{10}) aryle (éventuellement substitué par halogène, (C_1-C_6) alkyle éventuellement halogéné, (C_1-C_6) alcoxy éventuellement halogéné, nitro ou hydroxy);

ou bien R_4 et R_5 forment ensemble le groupe - CR_6 = CR_7 - dans lequel CR_6 est relié à X et dans lequel :

 R_6 représente un atome d'hydrogène ; $(C_1\text{-}C_{18})$ alkyle ; $(C_3\text{-}C_8)$ cycloalkyle ; $(C_6\text{-}C_{10})$ aryle ; carboxy- $(C_1\text{-}C_6)$ alkyle ; $(C_1\text{-}C_6)$ alcoxy-carbonyl- $(C_1\text{-}C_6)$ alkyle ; hétéroaryle ; $(C_1\text{-}C_6)$ aryl- $(C_1\text{-}C_6)$ alkyle ; et hétéroaryl- $(C_1\text{-}C_6)$ alkyle ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S et dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par $(C_1\text{-}C_6)$ alkyle, $(C_1\text{-}C_6)$ alcoxy, hydroxy, nitro, halogène ou di $(C_1\text{-}C_6)$ alcoxyphosphoryl $(C_1\text{-}C_6)$ alkyle ;

10

15

20

25

30

 R_7 représente un atome d'hydrogène ; hydroxy ; di(C1-C6)alkylamino(C1-C6)alkyle ; (C1-C18)alkyle ; carboxy ; (C1-C6)alcoxycarbonyle ; (C6-C10)aryle ; hétéroaryle ; (C8-C10)aryl-(C1-C6)alkyle ; ou hétéroaryl-(C1-C6)alkyle ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S et dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par halogène, hydroxy, (C1-C6)alkyle éventuellement halogéné, (C1-C6)alcoxy éventuellement halogéné, carboxy, (C1-C6)alcoxycarbonyle, nitro, di(C1-C6)alcoxyphosphoryl(C1-C6)alkyle, (C6-C10)aryle (celui-ci étant éventuellement substitué par hydroxy, nitro, (C1-C6)alkyle éventuellement halogéné, (C1-C6)alcoxy éventuellement halogéné ou halogène) ou (C6-C10)aryle condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S ;

ou bien R_6 et R_7 forment ensemble une chaîne alkylène en C_3 - C_6 éventuellement interrompue par un atome d'azote lequel est éventuellement substitué par $(C_1$ - C_6)alkyle ou $(C_6$ - C_{10})aryle ou $(C_6$ - C_{10})aryl- $(C_1$ - C_6)alkyle, (les

parties aryle de ces radicaux étant éventuellement substituées par halogène, nitro, hydroxy, (C_1-C_6) alkyle éventuellement halogéné ou (C_1-C_6) alcoxy éventuellement halogéné).

Il doit être entendu que les composés de formule I dans laquelle X = S; n = 0; R_2 représente méthyle et R_3 représente un atome d'hydrogène ; R_4 et R_5 forment ensemble le groupe - CR_6 = CR_7 - dans lequel CR_6 est relié à X, R_6 et R_7 forment ensemble une chaîne - $(CH_2)_3$ - ou - $(CH_2)_4$ - ou bien R_6 représente un atome d'hydrogène ou un groupe propyle et R_7 est un groupe phényle éventuellement substitué par - OCH_3 ou un groupe hydroxy, sont exclus du cadre de l'invention.

5

10

15

20

25

30

Les sels pharmaceutiquement acceptables avec des acides ou des bases des composés de formule I font également partie de l'invention.

J. Heterocycl. Chem. 1969, 6 (4), 491 décrit des dérivés de benzodiazépine présentant une structure analogue à celle du tétramisole (chlorhydrate de DL-2,3,5,6-tétrahydro-6-phénylimidazo[2,1-b]thiazole) lequel est un puissant agent anthelmintique. Parmi ces composés, ceux dont la structure répond à la formule I ci-dessus ont été exclus, par disclaimer du cadre de l'invention.

L'invention vise, non seulement les composés de formule I, mais également leurs sels.

Lorsque le composé de formule I comprend une fonction acide, et par exemple une fonction carboxylique, celui-ci peut former un sel avec une base minérale ou organique.

A titre d'exemple de sels avec des bases organiques ou minérales, on peut citer les sels formés avec des métaux et notamment des métaux alcalins, alcalino-terreux et de transition (tels que le sodium, le potassium, le calcium, le magnésium, l'aluminium), ou avec des bases comme l'ammoniac ou des amines secondaires ou tertiaires (telles que la diéthylamine, la triéthylamine, la pipéridine, la pipérazine, la morpholine) ou avec des acides aminés basiques, ou avec des osamines (telles que la méglumine) ou avec des amino alcools (tels que le 3-amino-butanol et le 2-aminoéthanol).

Lorsque le composé de formule I comprend une fonction basique, et par exemple un atome d'azote, celui-ci peut former un sel avec un acide organique ou minéral.

Les sels avec des acides organiques ou minéraux sont par exemple les chlorhydrate, bromhydrate, sulfate, hydrogénosulfate, dihydrogénophosphate, citrate, maléate, fumarate, 2-naphtalènesulfonate et paratoluène sulfonate.

5

10

15

20

25

30

L'invention couvre également les sels permettant une séparation ou une cristallisation convenable des composés de formule I tels que l'acide picrique, l'acide oxalique ou un acide optiquement actif, par exemple l'acide tartrique, l'acide dibenzoyltartrique, l'acide mandélique ou l'acide camphosulfonique.

La formule I englobe tous les types d'isomères géométriques et de stéroisomères des composés de formule I.

Selon l'invention, le terme "alkyle" désigne un radical hydrocarboné linéaire ou ramifié tel que méthyle, éthyle, propyle, isopropyle, butyle, tert-butyle, isobutyle, pentyle, hexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, pentadécyle, hexadécyle, heptadécyle ou octadécyle.

Par "éventuellement halogéné", on entend éventuellement substitué par un ou plusieurs atomes d'halogène.

Lorsque le groupe alkyle est éventuellement halogéné, on préfère qu'il représente perfluoroalkyle et notamment pentafluoroéthyle ou trifluorométhyle.

Le terme "alcoxy" désigne un groupe alkyle tel que défini ci-dessus lié à un atome d'oxygène. Des exemples en sont les radicaux méthoxy, éthoxy, isopropyloxy, butoxy et hexyloxy.

Lorsque le groupe alcoxy est halogéné, on préfère qu'il soit perfluoré. Des exemples en sont alors -OCF₃ et -O-CF₂-CF₃.

Par groupe alkylène, on entend des groupes alkylène linéaires ou ramifiés, c'est-à-dire des radicaux bivalents qui sont des chaînes alkyle bivalentes linéaires ou ramifiées.

Le terme "cycloalkyle" désigne des groupements hydrocarbonés saturés qui peuvent être mono- ou polycycliques et comprennent de 3 à 12 atomes de carbone, de préférence de 3 à 8. On préfère plus particulièrement les

groupements cycloalkyle monocycliques tels que cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, cycloheptyle, cyclooctyle, cyclononyle, cyclodécyle, cycloundécyle et cyclododécyle.

Par "cycloalcényle", on entend selon l'invention un groupe cycloalkyle tel que défini ci-dessus, présentant une ou plusieurs doubles liaisons, de préférence une double liaison.

5

10

15

20

25

30

Par "halogène" on entend un atome de fluor, de chlore, de brome ou d'iode.

Par "alcényle", on entend une chaine hydrocarbonée linéaire ou ramifiée comprenant une ou plusieurs doubles liaisons. Des exemples de groupes alcényle particulièrement préférés sont les groupes alcényle portant une seule double liaison tels que -CH₂-CH₂-CH=C(CH₃)₂, vinyle ou allyle.

Le terme "aryle" représente un groupement hydrocarboné mono- ou bicyclique aromatique comprenant 6 à 10 atomes de carbone, tel que phényle ou naphtyle.

Le terme hétéroaryle désigne des groupes aromatiques monocycliques de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S. Des exemples en sont les groupes furyle, thiényle, pyrrolyle, oxazolyle, isoxazolyle, thiazolyle, isothiazolyle, imidazolyle, pyrazolyle, oxadiazolyle, triazolyle, thiadiazolyle, pyridyle, pyridazinyle, pyrazinyle et triazinyle.

Les hétéroaryles préférés comprennent de 4 à 5 atomes de carbone et de 1 à 2 hétéroatomes.

Les groupes hétérocycliques insaturés de 5 à 7 chaînons présentant 1. 2 ou 3 hétéroatomes endocycliques choisis parmi O, N et S sont les dérivés insaturés des groupes hétéroaryles décrits ci-dessus. De préférence l'hétérocycle insaturé comprend une seule double liaison. Des exemples préférés d'hétérocycles insaturés sont dihydrofuryle, dihydrothiényle. dihydropyrrolyle, pyrrolinyle, oxazolinyle, thiazolinyle, imidazolinyle, pyrazolinyle, isoxazolinyle, isothiazolinyle, oxadiazolinyle, pyranyle et les dérivés mono- insaturés de la pipéridine, du dioxane, de la pipérazine, du trithiane, de la morpholine, du dithiane, de la thiomorpholine, ainsi que

tétrahydropyridazinyle, tétrahydropyrimidinyle, et tétrahydrotriazinyle.

Lorsque Z ou R_7 représente (C_8 - C_{10}) aryle éventuellement condensé à un héterocycle insaturé de 5 à 7 chaînons, l'hétérocyle insaturé présente préférablement une seule insaturation en commun avec le groupe aryle.

Selon l'invention, l'expression "éventuellement substitué par" signifie généralement "éventuellement substitué par un ou plusieurs des radicaux cités".

A titre d'exemple, lorsque R_1 représente (C_6 - C_{10}) aryle, le groupe aryle est éventuellement substitué par un ou plusieurs radicaux choisis parmi :

- (C_1-C_6) alkyle éventuellement halogéné ;
- (C₁-C₆) alcoxy;
- halogène ;
- nitro ; et

5

10

15

20

25

30

- hydroxy.

Néanmoins, le nombre de substituants est limité par le nombre possible de substitutions.

Ainsi, lorsque R₈ et R₇ forment ensemble une chaîne alkylène interrompue par un atome d'azote, celui-ci ne peut-être substitué que par un seul radical choisi parmi alkyle, aryle et arylalkyle.

Un premier groupe des composés de l'invention est constitué des dérivés bicycliques dans lesquels R_4 et R_5 ne forment pas ensemble le groupe $-CR_6=CR_7$.

Un second groupe des composés de l'invention est constitué des dérivés tricycliques dans lesquels R_4 et R_5 forment ensemble le groupe – $CR_6=CR_7$ -, étant entendu que R_6 et R_7 ne forment pas ensemble une chaîne alkylène éventuellement interrompue par un atome d'azote.

Un troisième groupe des composés de l'invention est constitué des dérivés tétracycliques dans lesquels R_4 et R_5 forment ensemble le groupe $-CR_6=CR_7$ - où R_6 et R_7 forment ensemble une chaîne alkylène éventuellement interrompue par un atome d'azote.

Selon l'invention, un premier groupe de composés préférés (groupe 1) est constitué des composés de formule I dans laquelle X représente -NT où T est tel que défini ci-dessus et R_4 et R_5 forment ensemble - CR_6 = CR_7 -

Parmi ces composés on préfère ceux dans lesquels R_6 représente un atome d'hydrogène ; et R_7 représente hydroxyle ; ou (C_6-C_{10}) aryle éventuellement substitué par halogène, nitro, hydroxy, (C_1-C_6) alkyle éventuellement halogéné ou (C_1-C_6) alcoxy.

Tout particulièrement R₇ est choisi parmi hydroxy et phényle.

Des significations préférées de T sont un atome d'hydrogène et (C_1-C_6) alkyle, par exemple méthyle.

Un second groupe de composés préférés (groupe 2) est constitué des composés de formule I dans laquelle X représente S ;

R₄ représente un atome d'hydrogène ;

5

10

15

20

25

R₅ représente -CH₂-CRa=CR₀Rc où Ra est un atome d'hydrogène, (C₁- C_6)alkyle ou (C_6-C_{10}) aryle, R_b est (C_1-C_6) alkyle ou un atome d'hydrogène et R_c représente un atome d'hydrogène ou (C2-C10)alcényle ; un groupe -CH2-CO-Z où Z représente (C_1-C_{10}) alkyle, (C_6-C_{10}) aryl- (C_1-C_6) alkyle, hétéroaryle de 5 à 6 chaînons ou (C₆-C₁₀)aryle éventuellement condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons ; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par halogène, hydroxy, (C1- C_6)alkyle, (C_1-C_6) alcoxy, nitro ou (C_6-C_{10}) aryle (éventuellement substitué par halogène, (C₁-C₆)alkyle éventuellement halogéné, (C₁-C₆)alcoxy éventuellement halogéné ou nitro) ; (C_1-C_6) alkyle ; hydroxy (C_1-C_6) alkyle ; (C_6-C_6) alkyle ; (C_{10})aryl- (C_1-C_6) alkyle; (C_5-C_8) cycloalcényle- (C_1-C_6) alkyle; ou isoxazolyle- (C_1-C_6) C₅)alkyle éventuellement substitué par un ou plusieurs (C₁-C₅)alkyle ;

ou bien R₄ et R₅ forment ensemble le groupe -CR₆=CR₇- dans lequel

 R_6 représente un atome d'hydrogène, (C_1-C_6) alkyle, (C_6-C_{10}) aryle (éventuellement substitué par halogène, hydroxy, nitro, (C_1-C_6) alkyle ou (C_1-C_6) alcoxy), carboxy- (C_1-C_6) alkyle, ou bien (C_1-C_6) alcoxycarbonyl- (C_1-C_6) alkyle; et

 R_7 représente un atome d'hydrogène ; hydroxy ; di(C_1 - C_6)alkylamino(C_1 - C_6)alkyle ; (C_1 - C_1 0)alkyle ; (C_1 - C_6)alcoxycarbonyle ; (C_6 - C_1 0)aryle ; hétéroaryle ; (C_6 - C_1 0)aryl-(C_1 - C_6)alkyle ; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par (C_1 - C_6)alcoxycarbonyle, halogène, hydroxy, (C_1 - C_6)alkyle, (C_6 - C_1 0)aryle, (ce dernier étant éventuellement substitué par halogène, (C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy ou nitro) ou

 (C_6-C_{10}) aryle condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S); ou bien R_6 et R_7 forment ensemble une chaîne alkylène interrompue par un atome d'azote éventuellement substitué par (C_6-C_{10}) aryl- (C_1-C_6) alkyle dans lequel la partie aryle est éventuellement substituée par halogène, (C_1-C_6) alkyle éventuellement halogéné, (C_1-C_6) alcoxy, hydroxy ou nitro.

Parmi ces composés on préfère notamment ceux dans lesquels l'un ou plusieurs des substituants R_4 , R_5 , R_6 et R_7 sont définis comme suit :

• R_5 représente - CH_2 - CR_a = CR_bR_c où R_a est (C_1 - C_6) alkyle, phényle ou un atome d'hydrogène, R_b est (C_1 - C_6) alkyle ou un atome d'hydrogène, et R_C représente un atome d'hydrogène ou (C_2 - C_{10}) alcényle monoinsaturé ; un groupe

10

15

20

25

30

- -CH₂ COZ où Z représente (C_1 - C_{10}) alkyle, benzyle, (C_1 - C_8) alcoxycarbonyle, phényle (éventuellement substitué par phényle ou hydroxy), naphtyle, phényle condensé à dihydrofuryle, à dihydrothiényle ou à dihydropyrrolyle, furyle, thiényle ou pyrrolyle; (C_1 - C_6) alkyle; hydroxy -(C_1 - C_6) alkyle; benzyle; (C_3 - C_8) cycloalcényle -(C_1 - C_6) alkyle; ou isoxazolyl -(C_1 - C_6) alkyle éventuellement substitué par (C_1 - C_8) alkyle;
- R_4 et R_5 forment ensemble - CR_6 = CR_7 dans lequel l'un de R_6 ou R_7 , ou les deux sont tels que définis ci-dessous en (i), (ii) ou (iii) :
- (i) R_6 représente un atome d'hydrogène ; (C_1-C_6) alkyle ; phényle éventuellement substitué par halogène, (C_1-C_6) alkyle, (C_1-C_6) alcoxy, hydroxy ou nitro ; carboxy $-(C_1-C_6)$ alkyle ; ou (C_1-C_6) alcoxycarbonyl $-(C_1-C_6)$ alkyle ;
- (ii) R_7 représente un atome d'hydrogène ; hydroxy ; di (C_1-C_8) alkylamino (C_1-C_8) alkyle ; (C_1-C_{10}) alkyle ; (C_1-C_8) alcoxycarbonyle ; naphtyle ; phényle éventuellement substitué par halogène, (C_1-C_8) alcoxycarbonyle, hydroxy, phényle (lui-même éventuellement substitué par halogène, hydroxy, (C_1-C_8) alkyle éventuellement halogéné, (C_1-C_8) alcoxy, (C_1-C_8) alcoxycarbonyle ou nitro) ou phényle condensé à dihydrofuryle, dihydrothiényle ou dihydropyrrolyle ; pyridyle ; furyle ; thiényle ; pyrrolyle ; ou benzyle ;

(iii) R_6 et R_7 forment ensemble une chaîne alkylène interrompue par un atome d'azote éventuellement substitué par phényl -(C_1 - C_6) alkyle dans lequel la partie alkyle est éventuellement substituée par halogène.

Parmi les composés préférés des groupes 1 et 2, on préfère que l'un au moins de n, R₁, R₂, et R₃ soit tel que défini ci-dessous :

- R₃ représente un atome d'hydrogène ;
- R_2 représente un atome d'hydrogène ou un groupe (C_6-C_{10}) aryle éventuellement substitué par halogène, (C_1-C_6) alcoxy, (C_1-C_6) alkyle éventuellement halogéné, nitro ou hydroxy;
 - R₁ représente un atome d'halogène ;
- n représente 0, 1 ou 2, mieux encore n représente 0 ou 1. Plus préférablement n est 0.

Les composés des exemples 1 à 67 ci-après sont préférés.

Parmi ces composés, on préfère tout particulièrement les :

3-(biphényl-4-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine (exemple 4);

3-(2-furyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine (exemple 43);

3-[4-(éthoxy-carbonyl)phényl]-5,6-dihydrothiazolo-[2,3-b]-1,3-benzodiazépine (exemple 36);

1-(2-furyl)-2-(4,5-dihydro-3*H*-1,3-benzodiazépine-2-ylsulfamyl)éthanone (exemple 14);

1-(biphényl-4-yl)-2-(4,5-dihydro-3*H*-1,3-benzodiazépine-2-ylsulfamyl)éthanone (exemple 5);

3-(biphényl-3-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine (exemple 38);

1-(3,4-dihydroxyphényl)-2-(4,5-dihydro-3*H*-1,3-benzodiazépine-2-ylsulfamyl)éthanone (exemple 29);

3-(3,4-dihydroxyphényl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine (exemple 59); et

3-(biphényl-4-yl)-7-chloro-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine (exemple 66).

10

15

5

20

25.

30

Les composés de formule I peuvent être préparés simplement en utilisant l'un des procédés ci-dessous.

A) Cas des composés de formule I dans laquelle X représente S, R_4 et R_5 ne forment pas ensemble -CR $_6$ =CR $_7$ - et les pointillés ne représentent rien.

Ces composés peuvent être préparés simplement par réaction d'une thione de formule II :

10

20

25

30

$$(R_1)_n$$
 R_2
 NR_4
 R_3
 R_4
 R_4

dans laquelle:

15 n. R₁. R₂. R₃

n, R_1 , R_2 , R_3 et R_4 sont tels que définis ci-dessus pour la formule I avec un dérivé halogéné de formule III :

dans laquelle Hal¹ représente un atome d'halogène, (C_1-C_6) alkylsulfonyle dans lequel la partie alkyle est éventuellement halogénée ou (C_6-C_{10}) arylsulfonyle dans lequel la partie aryle est éventuellement substituée par (C_1-C_6) alkyle ; et R_5 est tel que défini ci-dessus pour la formule l.

De façon avantageuse Hal¹ représente halogène, tosyle ou mésyle. La réaction est préférablement mise en oeuvre dans un solvant polaire, inerte vis-à-vis des réactifs.

Un solvant approprié est un éther linéaire ou cyclique tel que les éthers de dialkyle (éther de diéthyle, éther de diisopropyle) ou les éthers cycliques (tels que le tétrahydrofurane ou le dioxane) ou bien les polyéthers du type du diméthoxyéthane ou de l'éther diméthylique de diéthylèneglycol.

La température à laquelle est réalisée la réaction est généralement comprise entre -20 et 70° C, de préférence entre 0 et 50° C, mieux encore entre 15 et 35° C, par exemple à température ambiante.

Un cas particulier d'application de ce procédé est illustré ci-dessous pour la préparation des composés de formule I dans laquelle X représente S,

R₄ est tel que défini ci-dessus et R₅ représente -CH₂-CO-Z où Z est tel que défini ci-dessus pour la formule I.

Selon ce procédé, on fait réagir dans les mêmes conditions que cidessus une thione de formule II avec une α -halogénocétone de formule IVa :

5

10

15

20

25

30

où Z est tel que défini ci-dessus et Hal² représente un atome d'halogène. On préfère dans le cadre de ce mode de réalisation particulier, mettre en oeuvre des conditions réactionnelles douces telles que notamment une température comprise entre 0 et 60° C, de préférence entre 15 et 35° C.

Lorsque les composés de formule I obtenus par mise en oeuvre du procédé A ci-dessus sont tels que R₄ représente un atome d'hydrogène, la préparation des composés correspondants dans lequels R₄ représente (C₁-C₁₈)alkyle est facilement réalisée par alkylation au moyen d'un agent d'alkylation approprié.

Ainsi, on peut faire réagir le composé dans lequel R_4 = H avec un dérivé halogéné de formule générale R_4 -X où R_4 représente (C_1 - C_{18})alkyle et X représente halogène, en présence d'une base.

Des exemples de bases convenant particulièrement bien sont la triéthylamine, la N-méthylmorpholine, la 4-(N,N-diméthylamino)pyridine, la N,N-diéthylamine, les bases inorganiques de type hydroxyde de métal alcalin (NaOH, KOH), les carbonates de métal alcalin (NaHCO₃, K₂CO₃) et les hydrures de métal alcalin tels que NaH.

B) Cas des composés de formule I dans laquelle X représente S, R_4 et R_5 forment ensemble le groupe -CR $_6$ =CR $_7$ - et les pointillés ne représentent rien.

Ces composés peuvent être préparés selon l'invention, par réaction d'une α -halogénocétone de formule IVb :

dans laquelle R₆ et R₇ sont tels que définis ci-dessus et Hal³ représente un atome d'halogène, avec une thione de formule IIa :

dans laquelle R_1 , n, R_2 et R_3 sont tels que définis ci-dessus pour la formule I, dans un acide carboxylique aliphatique en C_2 - C_6 en tant que solvant, à une température comprise entre 90 et 130° C.

5

10

15

20

25

30

Les conditions exactes de mise en oeuvre seront déterminées par l'homme du métier en fonction de la réactivité des composés en présence.

Comme exemple d'acide carboxylique, on peut citer l'acide acétique, l'acide propionique, l'acide butyrique, l'acide pivalique, et l'acide valérique.

Il est possible, dans le cadre de l'invention, d'opérer en présence d'un mélange de solvants incluant un ou plusieurs acides carboxyliques aliphatiques et éventuellement un ou plusieurs autres solvants polaires, miscibles, inertes vis-à-vis des composés en présence.

De tels solvants additionnels sont par exemple des alcools aliphatiques monohydroxylés en C₂-C₈ tels que l'éthanol, l'isopropanol et le tert-butanol.

Une plage préférée de température va de 100 à 125° C.

Il peut être commode d'opérer au reflux du solvant, et notamment lorsque le solvant utilisé est l'acide acétique.

C) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X représente NH, R₄ et R₅ forment ensemble -CR₅=CR₁- et R₁ n'est pas le groupe hydroxy.

Selon l'invention, ces composés peuvent être préparés simplement en deux étapes par mise en oeuvre du procédé suivant.

Dans une première étape, on fait réagir un sulfure de formule V :

$$R_2$$
 R_3
 R_3
 R_3
 R_3
 R_4
 R_4
 R_5
 R_4

dans laquelle R_1 , n, R_2 et R_3 sont tels que définis pour I ci-dessus et alk représente (C_1 - C_6)alkyle avec un dérivé protégé de l'acétone de formule VI :

5

10

15

20

25

30

dans lequel le groupe carbonyle de R_6 est protégé par un groupe protecteur labile en milieu acide, R_6 et R_7 étant tels que définis ci-dessus.

Des exemples de groupes protecteurs de la fonction carbonyle, labiles en milieu acide, sont donnés dans "Protective Groups in Organic Synthesis, Greene T.W. et Wuts P.G.M., ed. John Wiley et Sons, 1991 et dans Protecting Groups, Kocienski P.J., 1994, Georg Thieme Verlag.

De façon particulièrement avantageuse, le groupe carbonyle peut être protégé sous la forme de cétal, cyclique ou non cyclique.

Ainsi, le dérivé protégé de la cétone de formule VI réagissant avec le sulfure V a préférablement pour formule la formule VIa suivante :

dans laquelle R_6 et R_7 sont tels que définis ci-dessus pour I et R_a , R_b sont indépendamment (C_1 - C_6)alkyle ou bien forment ensemble une chaîne (C_2 - C_6)alkylène linéaire ou ramifiée, de préférence une chaîne (C_2 - C_3)alkylène.

Les cétals préférés sont notamment les 1,3-dioxolanes et les cétals méthyliques.

On peut néanmoins envisager de protéger le groupement carbonyle par d'autres groupes protecteurs tels que dithio- et hémithiocétals ou par formation d'éther d'énol, d'éther de thioénol, de thiazolidines ou d'imidazolidines.

Le solvant utilisé pour cette réaction est un solvant polaire capable de dissoudre les réactifs en présence. A titre de solvant, on peut ainsi sélectionner un nitrile tel que l'acétonitrile ou l'isobutyronitrile.

Lorsque la réaction est mise en oeuvre à partir du cétal VIa, on obtient, à l'issue de la première étape, le composé de formule :

$$(R_1)_n \xrightarrow{R_2} \begin{array}{c} R_3 \\ NH \\ NH-CHR_6-C-R_7 \end{array}$$

dans laquelle n, R₁, R₂, R₃, R₆, R₇, R_a et R_b sont tels que définis cidessus pour les formules I et VIa. Le composé résultant de la réaction de II sur le dérivé protégé de la cétone de formule VI, et par exemple le composé VII cidessus, est alors traité en milieu acide de façon à provoquer la cyclisation.

5

10

15

20

25

En ce but on peut utiliser indifféremment un acide de Brönsted ou un acide de Lewis, un acide minéral ou un acide organique.

Des exemples d'acides appropriés sont notamment l'acide acétique, l'acide formique, l'acide oxalique, l'acide méthanesulfonique, l'acide p-toluènesulfonique, l'acide trifluoroacétique, l'acide trifluorométhanesulfonique, des acides de Lewis tels que le trichlorure de bore, le trifluorure de bore, le tribromure de bore, ou bien encore l'acide chlorhydrique.

La réaction est généralement effectuée entre 15 et 50° C, notamment entre 20 et 30° C.

Le solvant utilisé pour la réaction dépend de l'acide mis en oeuvre. Lorsque l'acide est l'acide chlorhydrique, la réaction est avantageusement conduite dans un (C_1-C_6) alcanol tel que l'éthanol.

Le procédé ci-dessus conduit à la préparation de composés de formule I dans lesquels T représente un atome d'hydrogène.

De façon à synthétiser le composé correspondant de formule I dans lequel T représente (C_1-C_6) alkyle, (C_6-C_{10}) aryle ou (C_6-C_{10}) aryl- (C_1-C_6) alkyle, on fait réagir le composé I obtenu pour lequel T représente hydrogène avec un réactif halogéné de formule Hal-T où T représente (C_1-C_6) alkyle, (C_6-C_{10}) aryle ou (C_6-C_{10}) aryl- (C_1-C_6) alkyle et Hal représente un atome d'halogène, en présence d'une base appropriée.

Des exemples de base sont notamment les bases organiques telles que la N-méthylmorpholine, la triéthylamine, la tributylamine, la diisopropyléthylamine, la dicyclohexylamine, la N-méthylpipéridine, la pyridine,

la 4-(1-pyrrolidinyl)pyridine, la picoline, la 4-(N,N-diméthylamino)pyridine, la N,N-diméthylaniline et la N,N-diéthylaniline.

Les conditions de mise en oeuvre de cette réaction sont connues de l'homme du métier.

5

D) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X représente -NT où T est distinct d'un atome d'hydrogène, R₄ et R₅ forment ensemble le groupe -CR₆=CR₇- et R₇ représente hydroxy.

10

Ces composés peuvent être préparés par réaction d'un sulfure de formule V:

15

$$(R_1)_n$$
 R_2
 $N-H$
 $N-H$
 $N-H$
 $N-H$

dans laquelle n,
$$R_1$$
, R_2 , R_3 , R_4 et alk sont tels que définis ci-dessus, avec un dérivé de formule VIII :

20

25

dans laquelle T et R_s sont tels que définis ci-dessus pour la formule I et Y est un groupe partant, à une température comprise entre 50 et 150° C, de préférence à une température comprise entre 60 et 100° C.

A titre de groupe partant, on peut mentionner un atome d'halogène, un

groupe (C₁-C₆)alcoxy, un groupe imidazolyle ou un groupe (C₆-C₁₀)aryl-(C₁-C₆)alcoxy. Cette réaction est généralement conduite dans un solvant polaire et

notamment un nitrile tel que l'acétonitrile ou l'isobutyronitrile. On préfère utiliser

l'acétonitrile comme solvant.

30

E) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X représente -NT, R4 n'est pas un atome d'hydrogène et R₄ et R₅ ne forment pas -CR₆=CR₇-.

On peut préparer ces composés par réaction d'un sulfure Va :

$$(R_1)_n$$
 R_2
 R_3
 $N-R_4$
 $N-R_4$

dans laquelle n, R₁, R₂, R₃, R₄ et alk sont tels que définis ci-dessus pour les formules I et V, avec une amine de formule IX :

dans laquelle T et R_5 sont tels que définis ci-dessus pour la formule I. Cette réaction est préférablement conduite à une température comprise entre 15 et 50° C, par exemple entre 20 et 30° C, dans un solvant de type nitrile tel que l'acétonitrile ou l'isobutyronitrile, l'acétonitrile étant préféré.

F) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X = S, R_4 et R_5 forment ensemble -CR₆=CR₇- et R_7 représente hydroxy.

Ces composés sont facilement préparés par réaction d'une thione de formule lla :

$$(R_1)_n \xrightarrow{R_2} R_3$$

$$- \qquad \qquad (R_1)_n \xrightarrow{R_2} R_3$$

15

20

dans laquelle n, R_1 , R_2 et R_3 sont tels que définis ci-dessus pour la formule I, avec un dérivé halogéné de formule X :

dans laquelle Hal⁴ représente halogène et R_s et Y sont tels que définis ci-dessus pour la formule VIII.

Cette réaction est de préférence réalisée dans un hydrocarbure aromatique en C₆-C₁₀ de type toluène ou benzène. La température à laquelle est réalisée la réaction est généralement comprise entre 80 et 130° C, par exemple entre 100 et 120° C. Des conditions préférées sont par exemple le reflux du toluène.

5

10

15

20

25

30

G) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X = S, R_4 et R_5 forment ensemble -CH=CH-.

Selon l'invention, ces composés sont préparés en faisant réagir sur la thione suivante de formule XI:

$$(R_1)_n$$
 R_2
 R_3
 $N-CH_2-CH \stackrel{OR_a}{<} OR_b$
 N

dans laquelle n, R_1 , R_2 , R_3 , R_a et R_b sont tels que définis ci-dessus pour les formules I et VII, un acide fort tel que l'acide sulfurique ou l'acide chlorhydrique, ou bien encore l'un des acides énumérés ci-dessus, dans le cas de la variante C.

Selon ce procédé, la température réactionnelle nécessaire dépend de la force de l'acide utilisé.

Généralement, une température comprise entre 10 et 40° C suffit, par exemple entre 20 et 30° C.

Cette réaction peut être conduite en milieu aqueux. Dans ce cas, le milieu réactionnel obtenu doit être homogène.

H) Cas des composés de formule I dans laquelle les pointillés ne représentent rien, X représente O, R_4 et R_5 forment ensemble -CR₆=CR₇-.

Ces composés sont préparés par cyclisation thermique d'un composé de formule XII :

dans laquelle n, R_1 , R_2 , R_3 , R_6 et R_7 sont tels que définis ci-dessus pour la formule I et alk représente (C_1 - C_6)alkyle, puis déshydrogénation du composé résultant de formule XIII :

5

10

15

20

$$(R_1)_n$$
 R_2
 R_3
 R_7
 R_6
 R_6

selon les procédés classiques de la chimie organique, de façon à obtenir le composé attendu de formule I. La cyclisation thermique peut être par exemple réalisée dans un alcool aliphatique monohydroxylé en C₂-C₆ tel que l'éthanol, l'isopropanol ou le tert-butanol comme solvant à une température comprise entre 80 et 160° C.

Cas des composés de formule I dans laquelle les pointillés indiquent la présence d'une double liaison.

Ces composés sont préparés par déshydrogénation des composés correspondants de formule I dans lesquels les pointillés ne représentent rien.

Cette réaction de déshydrogénation est réalisée de façon connue en soi, par exemple par action de :

- soufre (cf. Organic Synthesis, vol. 2, edition John Wiley & Sons, 1988, page 423; Organic Synthesis, vol. 3, edition John Wiley & Sons, 1988, page 729);
 - palladium sur charbon à 5% au reflux de la décaline (cf. Organic Synthesis, vol. 4, edition John Wiley & Sons, 1988, page 536);
- 2,3-dichloro-5,6-dicyano-1,4-benzoquinone ou DDQ (cf. Organic Synthesis, vol. 5, edition John Wiley & Sons, 1988, page 428; Synthesis, 1983, 310).

Les thiones de formules II et IIa sont des composés facilement préparés par synthèse organique à partir de produits commerciaux.

Les thiones de formule II a sont des thiones de formule II dans lesquelles R₄ représente un atome d'hydrogène.

Ces composés peuvent notamment être préparés en suivant et éventuellement en adaptant l'un quelconque des procédés décrits dans :

5

10

15

- Spindler Juergen; Kempter Gerhard; Z. Chem.; 27; 1. 1987; 36-37 ou
- Setescak Linda L.; Dekow Frederick W.; Kitzen Jan M.; Martin Lawrence L.; J. Med. Chem.; 27; 3; 1984; 401-404.

Ces deux publications décrivent plus particulièrement la synthèse de la 1,3,4,5-tétrahydro-(1H,3H)-1,3-benzodiazépine-2-thione, de la 1,3,4,5-tétrahydro-(1H,3H)-4-phényl-1,3-benzodiazépine-2-thione et de la 1,3,4,5-tétrahydro-(1H,3H)-3-méthyl-4-phényl-1,3-benzodiazépine-2-thione.

A titre d'exemple, lorsque R₂ représente aryle ou hétéroaryle éventuellement substitué et R₃ représente H, une voie de synthèse de la thione de formule II dans laquelle les pointillés ne représentent rien est proposée sur le schéma 1 ci-dessous.

$$(R_1)_{\Pi} \longrightarrow (R_1)_{\Pi} \longrightarrow (R_1$$

SCHEMA 1

La cétone XIV est traitée, dans les conditions usuelles, par un réactif de Grignard de formule CH₃MgHal⁶ où Hal⁶ est un atome d'halogène. On opère par exemple dans un éther, de préférence un éther aliphatique tel que l'éther de diéthyle ou de diisopropyle ou le tétrahydrofurane, à une température comprise entre 20 et 50° C, de préférence entre 30 et 40° C.

5

10

15

20

Après déshydratation de l'alcool intermédiaire (en milieu acide), on récupère le composé XV sous forme de sel. La nature du contre-ion, dans le composé XV (lequel contre-ion n'est pas représenté sur le schéma 1) dépend de l'acide utilisé pour la déshydratation. A l'étape suivante, on traite le composé XV par du nitrite de sodium en présence d'un acide fort tel que l'acide chlorhydrique, puis le composé intermédiaire est traité par une base et préférablement par un hydroxyde du type hydroxyde de métal alcalin ou hydroxyde d'ammonium.

Le composé diazo de formule XVI obtenu est ensuite soumis à une hydrogénation en présence de nickel dans un solvant de type polaire tel qu'un (C_1-C_6) alcanol ou un amide du type diméthylformamide, à une température comprise entre 30 et 100° C, de préférence à une température de 50 à 70° C.

La thione est finalement préparée en faisant réagir le composé hydrogéné XVII avec du disulfure de carbone, dans des conditions appropriées tel que par exemple au reflux d'un alcool aliphatique en C₁-C₆, par exemple au reflux de l'éthanol.

Un autre procédé de préparation de thiones de formule II dans laquelle R_2 et R_3 représentent tous deux un atome d'hydrogène et les pointillés ne représentent rien, est illustré sur le schéma 2 ci-dessous.

$$(R_1)_n \xrightarrow{NO_2} \underbrace{SOCl_2}_{CH_2\text{-}COOH} \qquad (R_1)_n \xrightarrow{CH_2\text{-}CO-CI} \qquad (R_1)_n \xrightarrow{NO_2} \underbrace{NH_3}_{CH_2\text{-}CO-CI} \qquad (R_1)_n \xrightarrow{CH_2} \underbrace{CH_2}_{C=O} \qquad (R_1)_n \xrightarrow{NH_2} \underbrace{CH_2}_{C=O} \qquad (R_1)_n \xrightarrow{NH_2} \underbrace{CH_2}_{CH_2} \qquad (R_2)_n \xrightarrow{NH_2}$$

SCHEMA 2

ll

L'amine de formule XXIa est préparée de façon conventionnelle par action de chlorure de thionyle, puis d'ammoniac et enfin par hydrogénation catalytique en présence de nickel de Raney.

5

10

15

20

25

30

Puis, on procède à la réduction de la fonction carbonyle du composé XXIa par action d'un agent réducteur approprié. Des exemples de réducteurs appropriés sont les hydrures (tels que l'hydrure de lithium et aluminium, le borohydrure de sodium, le cyanoborohydrure de sodium, BH₃/BF₃-Et₂O et Et₃SiH), le zinc en milieu acide chlorhydrique, le lithium en milieu ammoniacal ou le nickel de Raney en milieu éthanolique.

La réduction peut également être réalisée par hydrogénation catalytique, par exemple en présence de palladium sur charbon ou d'oxyde de platine.

On préfère opérer en présence de AlLiH₄. La réduction du composé XXIa conduit au composé XXIb.

On fait ensuite réagir l'amine XXIb avec du disulfure de carbone, de préférence dans un solvant polaire de type alcanol en C_1 - C_6 , (tel que par exemple l'éthanol) à une température entre 80 et 150° C en fin de réaction.

Les sulfures de formule Va sont facilement obtenus à partir des thiones correspondantes de formule II.

Une voie de synthèse possible consiste à faire réagir la thione de formule II appropriée :

$$(R_1)_n$$
 R_2
 NR_4
 NR_4

dans laquelle n, R₁, R₂, R₃ et R₄ sont tels que définis ci-dessus avec un halogénure Hal⁵-alk dans lequel Hal⁵ représente un atome d'halogène et alk représente (C₁-C₆)alkyle dans un solvant polaire protique tel qu'un alcool aliphatique, par exemple un (C₁-C₆)alcanol. Il est fortement souhaitable que la chaîne alkyle de l'alcool utilisé comme solvant corresponde exactement à la chaîne alk du dérivé halogéné.

La réaction de la thione II sur ce dérivé halogéné est préférablement conduite à une température comprise entre 15 et 50° C, de préférence entre 20 et 30° C, par exemple à température ambiante.

Ce procédé est particulièrement avantageux pour la préparation de composés de formule Va dans lesquels alk représente méthyle.

De manière préférée, Hal⁵ représente un atome d'iode.

Les composés de formule XI dans laquelle R₃ représente un atome d'hydrogène peuvent être préparés en utilisant le procédé illustré sur le schéma 3 ci-dessous.

$$(R_1)_{H} \longrightarrow (R_1)_{H} \longrightarrow (R_1$$

XI

SCHEMA 3

L'amide de formule XXIV est préparé de façon conventionnelle au départ de l'acide de formule XXII par action de chlorure de thionyle et de l'amine appropriée de formule $NH_2-CH_2-CH(OR_a)(OR_b)$ dans laquelle R_a et R_b sont tels que définis ci-dessus pour la formule XI.

Puis l'amide XXIV est soumis à une réaction d'hydrogénation en présence de palladium sur charbon de façon à convertir la fonction nitro en fonction amine. Cette transformation est réalisée dans les conditions classiques de la chimie organique.

5

10

15

La fonction carbonyle de l'amine résultante est alors réduite par action d'un hydrure approprié par exemple l'hydrure de lithium et aluminium, le borohydrure de sodium, le cyanoborohydrure de sodium ou l'hydrure de diisobutylaluminium.

Puis l'amine obtenue, XXVI, est traitée par du disulfure de carbone dans les mêmes conditions que décrit ci-dessus dans le cas du composé XVII (schéma 1) ou dans le cas du composé XXIb (schéma 2).

Les composés de formule XII dans laquelle R_3 représente l'hydrogène peuvent être synthétisés par mise en oeuvre du procédé illustré sur le schéma 4 suivant :

$$(R_1)_n \longrightarrow (R_1)_n \longrightarrow (R_1$$

SCHEMA 4

L'amine de formule XXVII est préparée simplement en faisant réagir une amine de formule NH₂-CHR₇-CHR₆-OH dans laquelle R₆ et R₇ sont tels que définis ci-dessus pour la formule I avec le chlorure d'acide de formule XXIII. Cette réaction est mise en oeuvre dans les conditions classiques, de préférence en présence d'une base, et préférablement d'une base organique. Les trois étapes suivantes, qui conduisent au composé de formule XXX, sont mises en oeuvre dans des conditions comparables au cas de la transformation du composé XXIV en composé XI (schéma 3). Puis le composé XXX est mis à réagir avec Hal⁷-alk dans laquelle Hal⁷ représente un atome d'halogène et alk est (C₁-C₆)alkyle. Cette réaction pourra être mise en oeuvre dans les conditions précisées ci-dessus pour la transformation de la thione II en sulfure de formule Va. On préfère réaliser cette réaction dans un alcanol en C₁-C₆ dont la chaîne alkyle correspond exactement à la chaîne alk de alk-Hal⁷ et avec un halogénure alk-Hal⁷ dans lequel Hal⁷ représente un atome d'iode.

10

15

20

25

30

L'activité hypolipidémiante des composés de l'invention résultent de leur aptitude à diminuer la sécrétion d'apo CIII. Le test biologique suivant a été mis au point de façon à mettre en évidence cette activité. Il révèle la capacité des composés de l'invention à diminuer la sécrétion d'Apo CIII par une lignée d'hépatocytes humains en culture Hep G2.

La lignée cellulaire Hep G2 provient d'un carcinome hépatique humain (ref. ECACC n° 85011430).

Les cellules sont mises en culture à 37°C, 5% CO₂ dans des plaques de microtitration de 96 puits à raison de 40 000 cellules (200 µl) par puits dans un tampon DMEM, 10% sérum de veau foetal, 1% Glutamax + antibiotiques pendant 24 heures. Le milieu de culture est ensuite retiré et remplacé par le même milieu contenant les substances à tester à une concentration de 10 µm. Les cellules sont incubées pendant 24 heures à 37°C, 5% CO₂ puis le milieu est prélevé.

La quantité d'apolipoprotéine CIII sécrétée dans le milieu est mesurée à l'aide d'un dosage de type ELISA. Chaque échantillon de milieu de culture est dilué au 1/5 dans un tampon phosphate 100 mM, BSA 1%. 100 µl de chaque dilution sont déposés dans les puits de plaques de microtitration à 96 puits préalablement sensibilisés avec un anticorps polyclonal anti Apo CIII humain

pendant 18 heures et passivés à raison de 1 µg par puits dans du PBS 100 mM et passivés avec 200 µl de PBS 100 mM, BSA 1% pendant 1 heure à 20°C.

Chaque dilution de milieu est incubée pendant 2 heures à 37°C, puis les puits sont lavés par 4 bains de PBS 100 mM, Tween 20 à 0,3%. 100 μ l d'une solution diluée dans du PBS 100 mM, BSA 1% d'anticorps polyclonal anti Apo CIII couplé à la peroxydase sont ajoutés dans chaque puits et incubés à 37°C pendant 2 heures. Après un nouveau lavage identique au précédent, 100 μ l d'un tampon phosphate 50 mM, citrate 15 mM, pH = 5,5 contenant 1,5 mg/ml d'orthophénylènediamine et 0,5 μ l/ml de peroxyde d'hydrogène (H_2O_2) sont ajoutés dans chaque puits. La plaque est mise à incuber pendant 20 minutes à l'obscurité puis la réaction est arrêtée par ajout de 100 μ l d'HCl 1N.

La densité optique est lue directement au spectrophotomètre à 492 nm. La quantité d'Apo CIII est calculée par rapport à une courbe d'étalonnage réalisée à partir d'un sérum humain titré en Apo CIII et dilué dans les mêmes conditions que l'Apo CIII contenue dans le milieu de culture.

En l'absence de traitement chimique, la réponse des cellules est de 100% (0% inhibition). Dans les conditions utilisées, l'effet du DMSO sur les cellules est négligeable. La toxicité des substances chimiques sur les cellules est mesurée par la technique de coloration au rouge neutre.

Les substances actives entraînent une diminution de la sécrétion d'Apo CIII dans le milieu par les cellules adhérentes. La concentration d'Apo CIII est mesurée pour chaque traitement et comparée au test témoin (pas de traitement).

Le pourcentage d'inhibition est calculé selon :

100 - (concentration Apo CIII avec traitement x 100)
concentration Apo CIII sans traitement

Le pourcentage d'inhibition n'est calculé que pour les substances ne présentant pas de toxicité sur les cellules Hep G2.

30

5

10

15

20

25

A titre d'exemple, le pourcentage d'inhibition mesuré pour le composé de formule I dans laquelle X = S; n = 0; R_2 = R_3 = R_6 = H; R_7 = 4-biphényle et R_4 et R_5 forment ensemble -CR $_6$ =CR $_7$ (exemple 4 ci-après) est de 80% à 100 micromolaires. La concentration en composé de l'exemple 4 conduisant à une inhibition de 50% de la sécrétion d'Apo CIII dans ce test est de 17,4 μ M. Aucune toxicité cellulaire n'est observée avec le composé de l'exemple 4 pour les concentrations étudiées.

L'invention est illustrée dans la suite à l'aide de préparations et d'exemples. Elle n'entend pas se limiter à la divulgation de ces exemples spécifiques.

PREPARATION 1

10

15

20

25

30

Préparation de la thione de formule lla dans laquelle n=0; et $R_2=R_3=H$

Le composé du titre est préparé par mise en œuvre du procédé décrit dans Spindler Juergen ; Kempter Gerhard ; Z. Chem. ; 27 ; 1 ; 1987 ; 36-37. Son point de fusion est de 195° C.

PREPARATION 2

Préparation de la thione de formule lla dans laquelle n=0 ; $R_2=-C_6H_5$ et $R_3=H$

Le composé du titre est préparé conformément à l'enseignement de FR 2 528 838.

PREPARATION 3

Préparation de la thione de formule XI dans laquelle n = 0; $R_2 = R_3 = H$; $R_2 = R_3 = -CH_3$

(a) N-(2,2-diméthoxyéthyl)-2-(2-nitrophényl)acétamide

On place dans un réacteur 21,0 g (0,2 mol) de l'acétal diméthylique de l'aminoacétaldéhyde en solution dans 200 ml de chloroforme ensemble avec 22,2 g (0,22 mol) de triéthylamine. Le milieu réactionnel est porté et maintenu à 10° C. Dans cette solution, on coule une solution de 0,2 mol de chlorure de l'acide 2-nitrophénylacétique dans 200 ml de chloroforme. On laisse le milieu

réactionnel revenir à température ambiante et on poursuit l'agitation pendant 12 heures.

On ajoute alors une solution aqueuse de soude puis on laisse décanter la phase organique que l'on sépare et sèche sur sulfate de sodium anhydre. Après évaporation du solvant sous pression réduite, on obtient un solide beige que l'on recristallise dans un mélange d'hexane et d'acétate d'éthyle. On isole ainsi 35 g d'un solide présentant un point de fusion compris entre 89 et 90° C.

(b) N-(2,2-diméthoxyéthyl)-2-(2-aminophényl)acétamide.

5

10

15

20

25

30

On procède à l'hydrogénation de 40 g du composé obtenu à l'étape (a) ci-dessus en solution dans 750 ml d'éthanol dans un autoclave en présence de 5 g de palladium sur charbon à 5% sous une pression de 120 bars d'hydrogène.

Après filtration du catalyseur et évaporation du solvant, on obtient 35 g d'une huile utilisée à l'état brut dans la suite de la synthèse.

(c) N-(2,2-diméthoxyéthyl)-2-(2-aminophényl)éthylamine.

Dans un réacteur d'un litre maintenu sous atmosphère inerte, on place 28,1 g (0,74 mol) d'hydrure de lithium et aluminium en suspension dans 280 ml de tétrahydrofurane anhydre.

On refroidit le milieu réactionnel à une température inférieure à 10° C et on coule dans cette solution, maintenue à cette température, 35,3 g du composé obtenu à l'étape (b) dissous dans 350 ml de tétrahydrofurane anhydre. L'ensemble est porté sous agitation pendant 8 heures au reflux du solvant.

On refroidit à nouveau le milieu réactionnel à une température inférieure à 10° C et on coule lentement 100 ml d'eau dans cette solution afin de détruire l'excès d'hydrure présent. On essore les hydroxydes d'aluminium formés et on les rince au chloroforme.

Les phases organiques séparées sont séchées sur sulfate de sodium anhydre puis évaporées sous pression réduite. On isole ainsi 23 g d'une huile que l'on utilise à l'état brut à l'étape suivante.

(d) 3-(2,2-diméthoxyéthyl)-4,5-dihydro-(1H,3H)-1,3-benzodiazépine-2-thione.

Dans un réacteur de 500 ml, on place 22,6 g (0,298 mol) de sulfure de carbone en solution dans 180 ml d'éthanol.

Dans cette solution, on coule, à température ambiante, 0,149 mol du composé obtenu à l'étape précédente en solution dans 150 ml d'éthanol. La température s'élève de 18 à 22° C. On laisse le milieu réactionnel sous agitation pendant 12 heures à la température ambiante puis on porte le milieu réactionnel 6 heures au reflux du solvant. On laisse ensuite revenir à température ambiante puis on évapore sous pression réduite le solvant. On obtient une huile épaisse verte que l'on recristallise dans 100 ml d'éthanol. On isole ainsi 21 g d'un solide présentant un point de fusion de 79 à 81° C.

PREPARATION 4

5

10

15

20

25

30

Préparation de la thione de formule XXX dans laquelle n = 0 ; R_2 = R_6 = H ; R_7 = -C $_6$ H $_5$

Le composé du titre est préparé conformément à l'enseignement de FR 2 518 544.

PREPARATION 5

Préparation du composé de formule XIII dans lequel n=0 ; $R_2=R_3=R_6=H:R_7=-C_6H_5$

Dans un réacteur de 250 ml, on place 11,6 g (0,039 mol) de 3-(2-hydroxy-1 phényléthyl)-(1H,3H)-1,3-benzodiazépine-2-thione en suspension dans 120 ml d'éthanol.

A cette solution an ajoute 11,0 g (0,078 mol) d'iodure de méthyle puis on porte le milieu réactionnel 1 heure au reflux du solvant. On observe un dégagement important de méthylmercaptan.

On laisse l'ensemble revenir à la température ambiante puis on évapore le solvant sous pression réduite. On reprend le résidu avec de l'éther diéthylique et une solution aqueuse diluée d'hydroxyde d'ammonium. Il se forme un précipité blanc que l'on isole par essorage. On obtient 7,6 g d'un

produit présentant un point de fusion de 137 à 139° C que l'on recristallise dans un mélange d'hexane et d'acétate d'éthyle. Le produit ainsi isolé présente un point de fusion de 142 à 144° C.

Le chlorhydrate du composé du titre recristallise dans l'acétone et présente un point de fusion de 132 à 135° C.

PREPARATION 6

5

10

15

20

25

30

Préparation du sulfure de formule V dans laquelle n=0; $R_2=R_3=H$ et alk = -CH₃

Dans un réacteur de 1 I, on charge 33,2 g (0,1862 mole) de la thione obtenue à la préparation 1 et 300 ml de méthanol. Le mélange est agité jusqu'à dissolution complète. Puis on coule, goutte à goutte, dans ce mélange 23,2 ml (0,3724 mol, 2 éq.) de CH₃I en solution dans 50 ml de méthanol.

On porte au reflux le milieu réactionnel. Après 1 h, le solvant est évaporé sous pression réduite puis le résidu est repris dans 500 ml d'éther diéthylique. Un précipité se forme, lequel est dissous et lavé trois fois avec 50 ml d'éther diéthylique puis séché sous pression réduite. On isole ainsi 59,3 g d'un produit couleur crème (rendement = 99,4 %) présentant un point de fusion de 171-173° C.

RMN 1 H (300 MHz, DMSO) δ (ppm) :

11,42 (1H, s); 10,10 (1H, s); 7,45-7,24 (4H, m); 3,80-3,77 (2H, m); 3,27-3,24 (2H, m); 2,85 (3H, s).

EXEMPLE 1

Préparation du composé de formule I dans laquelle $X = -NCH_3$; n = 0; $R_2 = R_3 = R_6 = H$; $R_4 + R_5 = -CR_6 = CR_7 -$; $R_7 = -OH$

Dans un réacteur de 250 ml maintenu sous atmosphère d'azote, on charge 8,5 g (0,0264 mol) du sulfure de formule V obtenu à la préparation 6, 125 ml d'acétonitrile séché sur tamis moléculaire (4 Å) et 6,8 g de sarcosinate d'éthyle. On laisse l'ensemble sous agitation à température ambiante pendant 15 h, puis on additionne à nouveau 2 g de sarcosinate d'éthyle et on porte le milieu réactionnel 6 h au reflux. Ensuite, on ajoute à nouveau au milieu

réactionnel 2 g de sarcosinate d'éthyle et on maintient l'ensemble à nouveau 14 h au reflux. Après ce temps de réaction, le dégagement de CH₃SH n'est plus observé.

On concentre alors le milieu réactionnel par évaporation sous pression réduite, puis on reprend le solide beige obtenu dans 200 ml d'eau plus 30 ml d'une solution aqueuse de bicarbonate de sodium à 7%. On extrait la solution au dichlorométhane, sèche sur sulfate de sodium anhydre, puis évapore les solvants. Le résidu est alors purifié par chromatographie sur gel de silice en utilisant un mélange dichlorométhane/acétate d'éthyle:4/1. On isole ainsi 3,4 g d'un solide jaune d'un point de fusion de 132-134° C. Après recristallisation dans un mélange de 30 ml d'hexane et de 40 ml d'acétate d'éthyle, on isole 2,7 g d'un solide jaune clair (rendement = 47,5%) d'un point de fusion de 132-134° C.

RMN 1 H (300 MHz, DMSO) δ (ppm) :

¹⁵ 7,30-7,27 (1H, m); 7,22-7,16 (2H, m); 7,05-6,99 (1H, m); 4,18 (2H, s); 3,88 (2H, s); 3,14 (3H, s); 3,12-3,07 (2H, s).

EXEMPLE 2

Préparation du composé de formule I dans laquelle X = -NH ; n = 0 ; $R_2 = R_3 = R_6 = H ; R_4 + R_5 = -CR_6 = CR_7 - ; R_7 = -C_6H_5$

a) Préparation du composé de formule VII dans laquelle $R_6 = R_2 = R_3 = H$; n = 0; $R_7 = -C_6H_5$; R_a et R_b forment ensemble -CH₂-CH₂-

Dans un réacteur de 100 ml maintenu sous atmosphère d'azote, on charge 4,4 g (0,01381 mol) du sulfure obtenu à la préparation 6, 80 ml d'acétonitrile et 5,2 g (0,029 mol ; 2,1 éq.) de l'amine suivante :

5

10

On porte l'ensemble 12 h à 50° C, puis on laisse revenir le milieu réactionnel à température ambiante (20° C). On additionne alors 100 ml d'éther diéthylique. Le précipité formé est filtré à 20° C et lavé 3 fois avec 15 ml d'éther diéthylique puis séché sous pression réduite. On obtient ainsi 5,5 g d'un produit solide couleur crème d'un point de fusion de 220°C. Le résidu est repris avec une solution aqueuse de bicarbonate de sodium à 7% (100 ml) et laissé 30 mn sous agitation, puis filtré, lavé à l'eau et séché sous pression réduite.

On obtient ainsi 4,5 g d'un solide couleur crème présentant un point de fusion de 217-219°C. Après recristallisation dans 100 ml d'éthanol, on isole 4,3 g d'un solide de couleur blanche d'un point de fusion de 217-219° C. Ce composé est le sel iodhydrate du composé du titre, ainsi qu'il résulte de l'analyse centésimale du produit obtenu (rendement = 69 %).

RMN 1 H (300 MHz, DMSO) δ (ppm) :

5

10

15

20

25

30

9,39 (s, 1H); 8,36 (1H, s); 7,32-7,00 (7H, m); 6,87 (2H, t, J = 7 Hz); 3,9-3,88 (2H, m); 3,62-3,60 (2H, m); 3,48 (2H, s); 3,26 (2H, t, J = 4,5 Hz); 2,80 (2H, t, J = 4,6 Hz).

b) Préparation du composé de formule I dans laquelle X = NH; n = 0; $R_2 = R_3 = R_6 = H$; $R_4 + R_5 = -CR_6 = CR_7 -$; $R_7 = -C_6H_5$

Dans un réacteur de 500 ml maintenu sous atmosphère azote, on charge 3 g du composé obtenu à l'étape a) ci-dessus (0,009277 mol), 200 ml d'éthanol et 200 ml d'HCl 5N. On porte l'ensemble au reflux pendant 5 h puis le solvant est évaporé sous pression réduite. On additionne au résidu 200 ml d'eau, et on lave 2 fois avec 150 ml d'éther diéthylique. La solution est basifiée avec une solution aqueuse d'hydroxyde de sodium à 30 % en maintenant la température au-dessous de 20° C. Le précipité crème formé est filtré puis lavé à l'eau et séché sous pression réduite à 80° C. On isole ainsi 1,8 g (rendement = 73,8%) d'un solide de couleur crème présentant un point de fusion de 194-206° C.

RMN 1 H (300 MHz, DMSO) δ (ppm) :

9,18 (1H, s); 7,28-7,11 (8H, m); 6,67-6,65 (1H, m); 6,55 (1H, s); 3,94 (2H, t, J = 4,7 Hz); 2,91 (2H, t, J = 4,6 Hz).

EXEMPLE 3

5

10

15

20

25

30

Préparation du composé de formule I dans laquelle X = NCH₃ ; n = 0 ; R_2 = R_3 = R_6 = H ; R_4 + R_5 = -CR₆=CR₇ ; R_7 = -C₆H₅

Dans un réacteur de 100 ml, on charge 1,4 g (0,00531 mol) du composé obtenu à l'exemple 2, 46 ml de diméthylformamide séché sur tamis moléculaire (4 Å). L'ensemble est agité jusqu'à dissolution complète. On additionne alors, à 20° C, 0,22 g d'une dispersion d'hydrure de sodium à 60% dans l'huile (0,005575; 1,05 éq.) et on laisse l'ensemble réagir, sous agitation pendant 30 mn. Ensuite on additionne en une seule fois 0,4 ml (0,006372; 1,2 éq.) d'iodure de méthyle. On laisse l'ensemble 48 h sous agitation puis on verse le milieu réactionnel dans 600 ml d'eau et on extrait la solution au dichlorométhane. Les extraits réunis sont lavés à l'eau, séchés sur sulfate de sodium anhydre, et le solvant est évaporé sous pression réduite. On obtient 1,1 g d'une huile jaune. Le sel maléate de ce composé est préparé par action d'un équivalent d'acide maléique dans le méthanol à température ambiante. Le solvant est évaporé et le résidu est recristallisé dans le méthanol. On isole ainsi 0,78 g (rendement = 37,5 %) d'un solide blanc d'un point de fusion de 173-175° C.

RMN 1 H (300 MHz, DMSO) δ (ppm):

7,51-7,23 (10H, m); 6,10 (2H, s); 4,11-4,08 (2H, m); 3,54 (3H, s); 3,19 (2H, t, J = 5,1 Hz).

EXEMPLE 4

Préparation d'un composé de formule I dans laquelle X=S; n=0; $R_2=R_3=R_8=H$; $R_7=p$ -(phényl)phényle; R_4 et R_5 forment ensemble -CR $_8$ =CR $_7$ -

Dans un réacteur de 500 ml muni d'un réfrigérant, on introduit 16,5 g (92,5 mmol) de la thione obtenue à la préparation 1, 390 ml d'acide acétique glacial et 25,5 g (92,5 mmol) de (bromeméthyl)(para-phénylphényl)cétone. l'ensemble est porté progressivement au reflux, sous agitation, et maintenu 3 h

au reflux. Le milieu réactionnel est alors refroidi à 15° C. Le précipité est filtré (bromhydrate), rincé à l'éther diéthylique et séché. Le résidu est repris dans 200 ml d'eau glacée et la solution résultante est basifiée lentement par addition d'une solution aqueuse de soude à 30% sous agitation vigoureuse. On additionne ainsi la quantité nécessaire de soude pour observer la stabilité du pH alcalin. La solution est ensuite extraite 2 fois au chlorure de méthylène. Puis les extraits sont rincés à l'eau et séchés sur sulfate de sodium anhydre puis le solvant est évaporé sous pression réduite. On isole ainsi un solide jaune pâle (rendement = 85 %) qui est recristallisé dans le toluène de façon à obtenir le composé du titre, sous forme pure, lequel présente un point de fusion de 199,5-200° C (exemple 4).

Le sel chlorhydrate de ce composé est préparé par addition d'une solution à 33% d'acide chlorhydrique dans l'éthanol. Le point de fusion de ce sel est de 299,5-300°C (exemple 44).

RMN ¹H (300 MHz, DMSO-d6):

3,02 (2H,m); 3,97 (2H, m); 6,4 (1H, s); 6,8 (1H, m); 7 (2H, m); 7,1 (1H,m); 7,4-7,6 (5H, m); 7,7-7,9 (4H, m).

RMN ¹H (300 MHz, DMSO-d6) du chlorhydrate :

3 (2H, m); 4 (2H, m); 6,8-7,7 (14H); 13 (1H, s échangeable).

20

25

30

10

15

EXEMPLE 5

Préparation d'un composé de formule I dans laquelle X = S; n = 0; $R_4 = R_2 = R_3 = H$; $R_5 = CH_2$ -CO-(p-phénylphényle)

Dans un tricol de 250 ml muni d'un réfrigérant avec garde à CaCl₂, on introduit 2,7 g (15 mmol) de la thione obtenue à la préparation 1 et 150 ml de tétrahydrofurane.

On chauffe légèrement jusqu'à dissolution complète de la thione puis on ajoute lentement au milieu réactionnel 6,6 g (24 mmol; 1,6 équivalent) de (bromométhyl)(para-phénylphényl)cétone dans 50 ml de tétrahydrofurane. On observe un produit qui précipite. Le milieu réactionnel est maintenu sous agitation 1H30. Puis le précipité est filtré et rincé à l'éther diéthylique. Le précipité est alors mis en suspension dans 200 ml d'eau glacée, puis la

suspension est basifiée lentement par addition d'une solution aqueuse de soude à 33% sous agitation vigoureuse. La quantité de soude ajoutée est la quantité nécessaire pour obtenir stabilité du pH alcalin. Le solide blanc est alors filtré et recristallisé dans l'éthanol. On isole ainsi le composé du titre, lequel présente un point de fusion de 239,5-240°C (rendement = 68%).

RMN¹H(300 MHz, DMSO-d6) δ (ppm): 3(2H, m); 3,2(1H, m); 3,4(1H, m); 3,5(1H, d, J=11,8Hz); 3,7(1H, d, J=11,8Hz); 6,9-7,9 (13H, m).

EXEMPLE 6

10

15

20

25

30

Préparation d'un composé de formule I dans laquelle X=S; n=0; R_4 et R_5 forment ensemble -CR $_6$ =CR $_7$ -; R_2 = -C $_6$ H $_5$; R_3 = H; R_6 = H; R_7 = -OH

Dans un réacteur de 250 ml contenant 125 ml d'acide acétique, on introduit 10 g (0,039 mol) de la thione obtenue à la préparation 2. On coule goutte à goutte dans cette solution, 7,9 g (0,047 mol) de bromoacétate d'éthyle et on porte le milieu réactionnel 9 heures à reflux. Il se forme un précipité blanc. Après retour à la température ambiante, on essore le bromhydrate formé. On sèche le produit et on le met en suspension dans l'eau. On additionne à cette suspension une solution d'hydroxyde d'ammonium à 30 % jusqu'à pH basique. On essore puis sèche le produit avant d'effectuer une recristallisation dans un mélange d'hexane et d'acétate d'éthyle. On isole ainsi 8,2 g du composé du titre, lequel présente un point de fusion de 156-158° C.

EXEMPLE 7

Préparation d'un composé de formule I dans laquelle X = S ; n = 0 ; R_4 et R_5 forment ensemble -CR $_6$ =CR $_7$ -; R_2 = R_3 = R_6 = H; R_7 = OH

On place dans un tricol de 250 ml, 3,0 g (0,0168 mol) de 2-thione-4,5-dihydro-1,3-benzodiazépine et 3,75 ml (0,0336 mol) de bromoacétate d'éthyle dans 50 ml de toluène.

On porte ensuite le mélange réactionnel 1 heure au reflux sous agitation. On laisse revenir l'ensemble à température ambiante puis on ajoute de l'eau et une solution aqueuse d'hydroxyde d'ammonium au milieu réactionnel et on extrait par de l'acétate d'éthyle. Après séchage des différents extraits organiques sur sulfate de sodium anhydre, on évapore le milieu

réactionnel. On isole ainsi 1,4 g d'un solide ocre qui recristallise dans l'éthanol. Après recristallisation, le point de fusion de ce solide est de 111 à 112° C.

RMN¹H(300 MHz, CDCl₃) δ (ppm) : 3,23-3,25 (2H,m); 4,18(4H,s); 7,26-7,3(2H,m); 7,43-7,5(2H,m).

5

10

15

EXEMPLE 8

Préparation d'un composé de formule I dans laquelle X = S ; n = 0 ; R_4 et R_5 forment ensemble -CR₆=CR₇-; R_2 = R_3 = R_6 = R_7 = H

Dans un réacteur de 250 ml on introduit 14,0 g du composé obtenu à la préparation 3 dans 140 ml d'une solution aqueuse d'acide sulfurique à 50%. On porte l'ensemble 2 heures au reflux du solvant. On laisse le milieu réactionnel revenir à la température ambiante puis on jette le milieu réactionnel sur un mélange d'eau et de glace. Après extraction au chloroforme et séchage des extraits sur sulfate de sodium anhydre on évapore le solvant. On obtient ainsi 9 g d'une huile épaisse. Cette huile est dissoute dans 100 ml d'acétone. On ajoute alors 5,7 g d'acide maléique. Le produit obtenu après concentration de la solution est la maléate du composé du titre. Celui-ci est recristallisé dans l'acétone. Le produit obtenu présente un point de fusion compris entre 121 et 123° C.

20

25

30

Les composés des exemples suivants 9 à 67 ont été obtenus en utilisant les procédés illustrés dans les exemples 1 à 8 précédents.

Les tableaux 1 à 3 suivants rapportent les données de caractérisation obtenues pour chacun de ces composés.

F désigne le point de fusion.

Les spectres RMN ont été enregistrés à 300 MHz dans le solvant S.

Les abréviations s, d, t et m ont les significations suivantes :

s : singulet

d : doublet

t: triplet

m: massif.

Tableau 1	Ţ.	S-R.
	u	

RMN'H 8(ppm)	200-200,5 S = CDCl ₃	1,2(9H,s);3,2(2H,m);7(1H,d,J=7,5Hz); 7,1(1H,t,J=7,5Hz);7,3(1H,t,J=7,5Hz);7,5(1H	S = DMSO-d6	1,2(3H,t,J=7,1Hz);3,2(2H,m);3,7(2H,m);3,7,(1H,d,J=12,3Hz);4,0(1H,d,J=12,3Hz);4,2(2H,m,J=7,1Hz);7,3(4H,m);8,7,1H,6changold;6,17,2,2,11,4,2,11,4,11,4,11,4,11,4,11,4,	119-119,5 S = DMSO-d6	1,5-1,7(9H,m); 3,1(2H,m); 3,6(2H,m); 4(2H);5(1H); 5,3(1H);7,1-7,4(4H,m); 10,5(1H échangeable,s);11,5	(1H échangeable,s).	194-195 S = DMSO-d6 3(2H,m);3,3(1H,m);3,6(1H,m);3,8(1H,d,J=12,2Hz); 4(1H,d,J=12,2Hz).	
F (°C)	200-200,5		174-175		119-119,5			194-195	
Ŗ	CH ₂ -CO-'Bu		CH ₂ -CO-CO-Oet		-CH ₂ /			CH ₂ —CO	
Ехетріе	6		10		7	НВ		5	1

<u>6</u>		200-200,5	200-200,5 S = DMSO-d6
	CH ₂ —CO—		2,9(2H,m);3,1(1H,m);3,3(1H,m);3,4(1H,d,J=11,8Hz);3,6(1H,d,J=11,8Hz); 6.8(1H,m);6,9(2H,m);7,1(1H,m)
			;7,4(1H échangeable,s) ; 7,5(1H,m);7,9(1H,m); 8,6(1H m):8,8(1H m)
14		158-158,5	158-158,5 S = DMSO-d6
	CH, CO-		3(2H,m);3,3(2H,m);3,5(1H,d,J=11,8Hz);3,9(1H,d,J=
			11,8Hz); $6.6-6.8$ (2H, 2m); 7 (1H, t, J = 1,5 Hz)
15		217,2-	S = DMSO-d6
	CH2-CO-	217.4	2,9(2H,m);3,1(1H,m);3,3(1H,m);3,4(1H,d,J=12,1Hz);3,
		:	5(1H,d,J=12,1Hz);7,5(1H échangeable,s); 6,8-
16	-CH ₂ -C(=CH ₂)-C ₆ H ₅	209,8-210	209,8-210 S = DMSO-d6
			3,1(2H,m);3,6(2H,m);4,5(2H,s);5,5(1H,s);5,6(1H,s);7,2
			échangeable,s);
17	CH ₂ -C ₆ H ₅	187,5-188	187,5-188 S = DMSO-d6
			4,o(zh,s);3(zh,m);3,6(zh,m);7,1-7,5(m).
8	-CH ₂ -CH=C(CH ₃) ₂	159,7-160	159,7-160 S = DMSO-d6
			1,5(6H);3(2H);3,5(2H);3,9(2H);5,1(1H);7,4(4H);10,8(1 H échangeable);11,5(1H).

S = DMSO-d6 2,7-3,4(8H,m);4,4(2H,m),6,6-7,3(7H,m)	S = DMSO-d6 3,8(1H,d,J=12,3Hz);4,0(1H,d,J=12,3Hz);3- 3,7(4H,m);6,5-7,8(7H,m);8,7(1H échangeable,s) ;	S=DMSO-d6 2,7-2,8(2H,m);2,8-2,9(1H,m);3,1-3,2(1H,m) 3,3(1H,d,J=12Hz); 3,4(1H,d,J=12Hz); 6,7-7,0(5H,m)	S=DMSO-d6 1,4(3H,s);2,9(2H,m);3,2(1H,d,J=11Hz);3,3(1H,d,J=11 Hz);3,3-3,5(2H,m);6,5(1H,s);6,8-7,1(4H,m)	S=DMSO-d6 0,9(3H,t,J=7Hz);1,5-1,6(2H,m);3,0-3,1(2H,m) 3,3(2H,t,J=7Hz);3,5-3,6(2H,m);7,0-7,1(1H,m);7,2-7,3(2H,m);7,3-7,4(1H,m)	S=CDCl ₃ 0,8(3H,t,J=7Hz);1,2-1,4(12H,m);1,7-1,8(2H,m);2,8-3,0(3H,m);3,3-3,4(2H,m);3,6-3,7(1H,m);4,0(1H,s,proton échangeable avec	S=DMSO-d6 0,7-0,9(3H,m);1,1-1,3(10H,m);1,4-1,6(2H,m);2,5- 2,6(2H,m);3,1-3,2(2H,m);4,2-4,3(2H,m);6,8(1H,s);7,0-
187-187,5 S = DMSO-d6 2,7-3,4(8H,m);	199-199,2 S = DMSO-d6 3,8(1H,d,J=12,3Hz);4,0 3,7(4H,m);6,5-7,8(7H,n 13(1H 6changable s)	210°C S=DMSO-d6 2,7-2,8(2H,m);2 3,3(1H,d,J=12H);7,2-7,4(4H m)	184-186 S=DMSO-d6 1,4(3H,s);2,9 Hz):3.3-3.5(2	152-154 S=DMSO-d6 0,9(3H,t,J=7) 3,3(2H,t,J=7) 7,3(2H,m): 7	134-136 S=CDCI ₃ 0,8(3H,t,J=7 3,0(3H,m);3, 3,7(1H,m);4,	150-152 S=DMSO-d6 0,7-0,9(3H,m);1,1-1,3(10 2,6(2H,m);3,1-3,2(2H,m)
CH ₂ —CO—	CH2—CO—CH2	-CH ₂ -CO-C ₆ H ₆	-CH ₂ -CO-CH ₃	-CH ₂ -CH ₃	-CH ₂ -CO-(CH ₂),-CH ₃	-(CH ₂) ₇ -CH ₃
ב	20	21	22	23	54	52

26	חט חט טט אט	40E 407	0-0110-0
ì 		201-201	2-DM3O-00 2,8-2,9(5H,m);3,2(1H,d,J=12Hz);3,3-3,4(1H,m);3,5- 3,6(1H,m);6,5(1H,s,échangeable avec CF ₃ COOD);
27	-CH,-C(CH,)=CH,	170-172	6,7-6,9(4H,m);7,1-7,2(5H,m). S=DMSO-d6
			1,6(3H,s);2,8-2,9(2H,m);3,4- 3,5(2H,m);3,9(2H,s);4,7(1H,s);4,8(1H,s);6,9- 7,1(3H,m);7,3-7,4(1H,m).
78	CH ₂	121-123	S = DMSO-d6
	CF CF		2,5(3H,s);2,6(3H,s);3,2- 3,3(2H,m);3,6(2H,s,échangeable avec CF ₃ CO ₂ D);3,8- 3.9(2H,m);4,8(2H,s);7,4-7,6(3H,m);7,7,7,8(1H,m)
	CH3		
29	HO	180-185	180-185 S = DMSO-d6 2,85-3,66(6H,m);
	CH ₂ —CO—COH		6,77-7,26(8H,m);9,06(2H,s;échangeable CF ₃ COOD).
30	-CH ₂	74-76	S=CDCI ₃ 1.6-1.4(4H.m):2.0-1.9(4H.m):3.0-2.9(2H m):3.7-
		·	3,5(4H,m); 5,0(1H,s,échangeable D ₂ O);5,6(1H,s);7,1-6,8(4H,m).

Les trois composés suivants du tableau 2 illustrent par ailleurs la préparation de composés de formule I dans lesquels X = S, $R_4 = H$, $R_3 = H$.

Tableau 2

Ex	n/R,	R ₂	Rs	F(°C)	RMN'H 8(ppm)
31	-/0			202-204	S = DMSO-d6
			CH ₂ -CO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		3,4-3,2(4H,m) ; 4,4-4,3
		ō)		(1H,m); 7,9-6,7 (17H, m)
32	-/0	C _H s	СҺ²-СҺ²-ОН	181-185	1
33	1/7-CI	I		190-192	S=DMSO-d6
	,				2,75(m,2H);2,9-
	,		03-43		3,0(m,1H);3,1-
					3,2(m,1H);3,3(d,J=12Hz,1H)
					;3,4(d,J=12Hz,1H);6,9-
					6,8(m,2H);7,1-
					7,0(m,1H);7,6-7,2(m,9H).
					Married Control of the Control of th

Tableau 3

κ	J.

푸	1 -		157-158	S = DMSO-d6
	T		- 1	3,1(2H,m);4;2(2H,m);6,5(1H);6,8(1H,s); 6,9-7,3(5H,m);7,7(4H,s);13,5(1H
+	Y		299,5-300	
-CH ₂ -COOH -C ₆ H ₅	r, H,		216	
-H	r L		223-231	S=DMSO-d6 3,4-3,5(2H,m);4,3-4,4(2H,m);7,3- 7,5(4H,m);7,6-7,7(6H,m);
-H 2-naphtyle	2-naph	lyle	188,5-189,5	14 (1H,s,echangeable avec CF ₃ COOD).
-CH ₃ -C ₆ H ₅	-C ₆ H ₅		112-113	
+		Ī	154°C	S = CDC ₁₃ 3,04-3,08(2H,m); 3,9-3,93(2H,m);5,94 (1H,s); 6,9-6,95(2H,m); 7,18- 7,29(4H,m): 7,41-7,44(2H,m);
ب ّ	بِّ		194-196	S=DMSO-d6 0,7(3H,s);3,3-3,4(2H,m);4,3- 4,4(2H,m);7,0(1H,s); 7,1-7,2(1H,m);7,3-
-HCH ₂ -C ₆ H ₅	ÇH,-C		130-132	S=CDCl ₃ 2,8-2,9(2H,m);3,7(2H,s);3,7- 3,5(2H,m);5,6(1H,s); 6,7-6,8(2H,m);7,0-
				7,3(7H,m).

	<u> </u>	,	·		
S=CDCI ₃ 3,26-3,29(2H,m);4,12- 4,15(2H,m);6,15(1H,s); 7,11-7,18(2H,m) ;7,36-7,5(4H,m); 7,78-7,8 (2H, m)	S=CDC ₁₃ 3,04-3,07(2H,m);3,85(3H,s);3,96- 4(2H,m) ; 5,92(1H,s) ; 6,86-7,6(12H,m).	S=DMSO-d6 3,0(2H,m);3,9(2H,m);6,4(1H,s);6,8- 7,0(4H,m) ; 7,5-7,6(4H,m) ; 7,7- 7,8(4H,m).	S=CDC ₁₃ 2,88-2,91(2H,m);3,79-3,82(2H,m) 5,79(1H,s);6,68-6,77(2H,m);6,96- 7,02(2H,m);7,07-7,26(2H,m);7,46- 7,56(6H,m).	S=CDCl ₃ 2,58(3H,s);3,24(2H,t;J=4,6Hz);4,16(2H,t ;J =4,6Hz); 6,11(1H,s); 7,02- 7,12(2H,m); 7,31-7,81(10H,m).	S=CDCl ₃ 3,23(2H,q;J=2,33Hz); 4,14(2H,q;J=2,33Hz); 6,14(1H,s); 7,07- 7,09(2H,m); 7,34-7,79(10H,m).
154°C	189°C	226-228	201°C	213	174-175
	SHO-O-CH ⁸		-CF3	CH ₃	<u></u>
- 푸	푸	푸	Ŧ	Ŧ	Ŧ.
2 5	£	4	<u>က</u>	9	<u> </u>

e l				
<u></u>	-		173	S=CDCI ₃ 3.08(2H f: !=4 6Hz):3.32(2H f: !=8.75Hz)
				-1(-: :;;
				4,02(2H,t;J=4,6Hz);4,67(2H,t;J=8,78Hz)
		>		7.5,96(1H,s);6,88-7,01(3H,m);7,2-7,4/6H m:7,77,7,86/2H m)
20	7		100 702	,,,(m,,1,1,1,1,1,1,1).
}_		₽,	183-185	9P-OSWIQ=S
				3,11-3,12(2H,m);3,98-
		E C		4,01(2H,m);6,28(1H,s);6,81-
•				7,23(7H,m);9,4(2H,s;échangeable
-				CF ₃ COOD).
3	ŗ		176	S=CDCi3
			-	1,52(9H,s);3,21(2H,q;J=2,3Hz);4,14(2H
				q;J=2,3Hz); 6,09(1H,s);7-7,07(2H,m);7-
3				32-7,8(10H,m).
5	ŗ		120-123	S = CDCI,
				3,15(2H,t;J=4,65Hz);4,07(2H,t;J=4,65
				Hz); 6,08(1H,s); 6,96-8,54(12H,m).
		NO ₂		

Le tableau 4 suivant illustre en outre la préparation de composés répondant à la formule suivante :

4
⊒
<u>6</u>
g

	-					
-R ₆	(mdd					
S S S S S S S S S S S S S S S S S S S	RMN'H:8(ppm)					
	F(°C)	192-193	104-106	223-225	-	
(R ₁)n	R,	-Ç.H.	-CH ₂ -CH ₂ -NEt ₂ 104-106			
·	చి	CH ₂ -CO-OEt	푸	*	€ S	
	n/R ₁	/ 0	70	-/o		
	ŭ	62		7 9		

	(190-192 S=CDCl ₃ 3,0-2,9(2H,m); 3,9-3,8 (2H,m); 5,9(1H,s);6,8(1H,m); 7,1-6,9(2H,m);7,6-7,3(9H,m).
299-301	190-192
	부
· ·/O	1/7-CI
92	99

EXEMPLE 66

En utilisant les procédés illustrés dans les exemples précédents, on prépare le composé de formule :

10

présentant un point de fusion de 184-185° C.

REVENDICATIONS

1. Dérivé de benzodiazépine de formule 1 :

$$(R_1)_n \xrightarrow{R_2} \begin{array}{c} R_3 \\ N - R_4 \\ X - R_5 \end{array}$$

dans laquelle

5

10

15

20

25 .

30

les pointillés indiquent la présence éventuelle d'une double liaison;

 R_1 représente (C_1-C_{18}) alkyle éventuellement halogéné, (C_1-C_{18}) alcoxy éventuellement halogéné, halogène, nitro, hydroxy ou (C_6-C_{10}) aryle (éventuellement substitué par (C_1-C_8) alkyle éventuellement halogéné, (C_1-C_8) alcoxy éventuellement halogéné, halogène, nitro ou hydroxy);

n représente 0, 1, 2, 3 ou 4 ;

 R_2 et R_3 représentent indépendamment l'un de l'autre hydrogène ; (C₁-C₁₈)alkyle éventuellement halogéné ; (C₁-C₁₈)alcoxy ; (C₆-C₁₀)aryle ; (C₈-C₁₀)aryl-(C₁-C₆)alkyle ; hétéroaryle ; hétéroaryl(C₁-C₆)alkyle ; (C₆-C₁₀)aryloxy ; (C₆-C₁₀)aryl-(C₁-C₆)alcoxy ; hétéroaryloxy ; ou hétéroaryl(C₁-C₆)alcoxy ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S, et, dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par halogène, (C₁-C₆)alcoxy éventuellement halogéné, (C₁-C₆)alkyle éventuellement halogéné, nitro et hydroxy ;

 R_4 représente hydrogène, (C_1-C_{18}) alkyle ou (C_6-C_{10}) aryle, ledit groupe aryle étant éventuellement substitué par halogène, (C_1-C_6) alcoxy éventuellement halogéné, (C_1-C_6) alkyle éventuellement halogéné, nitro ou hydroxy;

X représente S, O ou -NT où T représente un atome d'hydrogène, (C_1 - C_6)alkyle, (C_6 - C_{10})aryle, (C_6 - C_{10})aryl-(C_1 - C_6)alkyle ou (C_6 - C_{10})arylcarbonyle;

 R_5 représente (C_1-C_{18}) alkyle ; hydroxy- (C_1-C_{18}) alkyle ; (C_6-C_{10}) aryl- (C_1-C_6) alkyle ; (C_3-C_8) cycloalkyle- (C_1-C_6) alkyle ; (C_5-C_8) cycloalcényle- (C_1-C_6) alkyle ; isoxazolyl- (C_1-C_6) alkyle éventuellement substitué par (C_1-C_6) alkyle ; un groupe -

 CH_2 - CR_a = CR_bR_c dans lequel R_a , R_b et R_c sont indépendamment choisis parmi (C_1 - C_{18})alkyle, (C_2 - C_{18})alcényle, hydrogène et (C_6 - C_{10})aryle ; un groupe - CH_2 -CO-Z où Z représente (C_1 - C_{18})alkyle, (C_1 - C_6)alcoxycarbonyle, (C_6 - C_{10})aryl-(C_1 - C_6)alkyle, (C_6 - C_{10})aryle éventuellement condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S ; ou hétéroaryle de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par halogène, hydroxy, (C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy éventuellement halogéné, nitro, di(C_1 - C_6)alcoxyphosphoryl(C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy éventuellement substitué par halogène, (C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy éventuellement halogéné, nitro ou hydroxy);

5

10

20

25

30

ou bien R_4 et R_5 forment ensemble le groupe - CR_6 = CR_7 - dans lequel CR_6 est relié à X et dans lequel :

 $R_{\rm e}$ représente un atome d'hydrogène ; $(C_1\text{-}C_{18})$ alkyle ; $(C_3\text{-}C_8)$ cycloalkyle ; $(C_6\text{-}C_{10})$ aryle ; carboxy- $(C_1\text{-}C_6)$ alkyle ; $(C_1\text{-}C_6)$ alcoxy-carbonyl- $(C_1\text{-}C_6)$ alkyle ; hétéroaryle ; $(C_1\text{-}C_6)$ aryl- $(C_1\text{-}C_6)$ alkyle ; et hétéroaryl- $(C_1\text{-}C_6)$ alkyle ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S et dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par $(C_1\text{-}C_6)$ alkyle, $(C_1\text{-}C_6)$ alcoxy, hydroxy, nitro, halogène ou di($C_1\text{-}C_6)$ alcoxyphosphoryl($C_1\text{-}C_6)$ alkyle ;

 R_7 représente un atome d'hydrogène ; hydroxy ; $di(C_1-C_6)$ alkylamino (C_1-C_6) alkyle ; (C_1-C_{18}) alkyle ; carboxy ; (C_1-C_6) alcoxycarbonyle ; (C_6-C_{10}) aryle ; hétéroaryle ; (C_8-C_{10}) aryl- (C_1-C_6) alkyle ; ou hétéroaryl- (C_1-C_6) alkyle ; dans lesquels hétéroaryle représente un hétérocycle aromatique de 5 à 7 chaînons présentant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S et dans lesquels les parties aryle et hétéroaryle de ces radicaux sont éventuellement substituées par halogène, hydroxy, (C_1-C_6) alkyle éventuellement halogéné, (C_1-C_6) alcoxy éventuellement halogéné, carboxy, (C_1-C_6) alcoxycarbonyle, nitro, $di(C_1-C_6)$ alcoxyphosphoryl (C_1-C_6) alkyle, ou (C_6-C_6) alcoxyphosphoryl (C_1-C_6) alkyle, ou (C_6-C_6) alcoxycarbonyle, nitro, $di(C_1-C_6)$ alcoxyphosphoryl (C_1-C_6) alkyle, ou (C_6-C_6) alcoxyphosphoryle, ou (C_6-C_6) alcoxyphoryle, ou (C_6-C_6) alcoxyphoryle, ou (C_6-C_6) alcoxyphoryle, ou (C_6-C_6) alcoxyphoryle, ou (C_6-C_6) alcoxy

 C_{10})aryle (celui-ci étant éventuellement substitué par hydroxy, nitro, (C_1-C_6) alkyle éventuellement halogéné, (C_1-C_6) alcoxy éventuellement halogéné ou halogène) ou (C_6-C_{10}) aryle condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S;

5

10

15

ou bien R_6 et R_7 forment ensemble une chaîne alkylène en C_3 - C_6 éventuellement interrompue par un atome d'azote lequel est éventuellement substitué par $(C_1$ - $C_6)$ alkyle ou $(C_6$ - $C_{10})$ aryle ou $(C_6$ - $C_{10})$ aryl- $(C_1$ - $C_6)$ alkyle , (les parties aryle de ces radicaux étant éventuellement substituées par halogène, nitro, hydroxy, $(C_1$ - $C_6)$ alkyle éventuellement halogéné ou $(C_1$ - $C_6)$ alcoxy éventuellement halogéné);

à l'exclusion des composés de formule I dans laquelle X=S; n=0; R_2 représente méthyle et R_3 représente un atome d'hydrogène ; R_4 et R_5 forment ensemble le groupe -CR $_6$ =CR $_7$ - dans lequel CR $_6$ est relié à X, R_6 et R_7 forment ensemble une chaîne -(CH $_2$) $_3$ - ou -(CH $_2$) $_4$ - ou bien R_6 représente un atome d'hydrogène ou un groupe propyle et R_7 est un groupe phényle éventuellement substitué par -OCH $_3$ ou un groupe hydroxy ;

et leurs sels pharmaceutiquement acceptables avec des acides ou des bases.

- Composé selon la revendication 1, caractérisé en ce que X représente
 -NT où T est tel que défini à la revendication 1 et R₄ et R₅ forment ensemble
 -CR₆=CR₇.
 - 3. Composé selon la revendication 1 ou la revendication 2, caractérisé en ce que R_3 représente un atome d'hydrogène.
- Composé selon l'une quelconque des revendications 1 à 3, caractérisé en
 ce que R₂ représente un atome d'hydrogène ou un groupe (C₆-C₁₀)aryle éventuellement substitué par halogène, (C₁-C₆)alcoxy, (C₁-C₆)alkyle éventuellement halogéné, nitro et hydroxy.
 - 5. Composé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que n est 0 ou 1 et R₁ représente un atome d'halogène.
- 6. Composé selon l'une quelconque des revendications 1 et 3 à 5, caractérisé en ce que X représente S;

R₄ représente un atome d'hydrogène ;

 R_5 représente -CH₂-CR_a=CR_bR_c où R_a est un atome d'hydrogène, (C₁-C₆)alkyle ou (C₆-C₁₀)aryle, R_b est (C₁-C₆)alkyle ou un atome d'hydrogène et R_c représente un atome d'hydrogène ou (C₂-C₁₀)alcényle ; un groupe -CH₂-CO-Z où Z représente (C₁-C₁₀)alkyle, (C₆-C₁₀)aryl-(C₁-C₆)alkyle, hétéroaryle de 5 à 6 chaînons ou (C₆-C₁₀)aryle éventuellement condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons ; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par halogène, hydroxy, (C₁-C₆)alkyle, (C₁-C₆)alcoxy, nitro ou (C₆-C₁₀)aryle (éventuellement substitué par halogène, (C₁-C₆)alkyle éventuellement halogéné, (C₁-C₆)alcoxy éventuellement halogéné ou nitro) ; (C₁-C₆)alkyle ; hydroxy(C₁-C₆)alkyle ; (C₆-C₁₀)aryl-(C₁-C₆)alkyle ; (C₅-C₈)cycloalcényle-(C₁-C₆)alkyle ; ou isoxazolyle-(C₁-C₆)alkyle éventuellement substitué par un ou plusieurs (C₁-C₆)alkyle ;

5

10

15

20

25

30

ou bien R₄ et R₅ forment ensemble le groupe -CR₆=CR₇- dans lequel

 R_6 représente un atome d'hydrogène, (C_1-C_6) alkyle, (C_6-C_{10}) aryle (éventuellement substitué par halogène, hydroxy, nitro, (C_1-C_6) alkyle ou (C_1-C_6) alcoxy), carboxy- (C_1-C_6) alkyle, ou bien (C_1-C_6) alcoxycarbonyl- (C_1-C_6) alkyle; et

 R_7 représente un atome d'hydrogène ; hydroxy ; di(C_1 - C_6)alkylamino(C_1 - C_6)alkyle ; (C_1 - C_1)alkyle ; (C_1 - C_6)alcoxycarbonyle ; (C_6 - C_1)aryle ; hétéroaryle ; (C_6 - C_1)aryl-(C_1 - C_6)alkyle ; les parties aryle et hétéroaryle de ces radicaux étant éventuellement substituées par (C_1 - C_6)alcoxycarbonyle, halogène, hydroxy, (C_1 - C_6)alkyle, (C_6 - C_{10})aryle, (ce dernier étant éventuellement substitué par halogène, (C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy ou nitro) ou (C_6 - C_{10})aryle condensé à un hétérocycle aromatique ou insaturé de 5 à 7 chaînons comprenant un, deux ou trois hétéroatomes endocycliques choisis parmi O, N et S ; ou bien R_6 et R_7 forment ensemble une chaîne alkylène interrompue par un atome d'azote éventuellement substitué par (C_6 - C_{10})aryl-(C_1 - C_6)alkyle dans lequel la partie aryle est éventuellement substituée par halogène, (C_1 - C_6)alkyle éventuellement halogéné, (C_1 - C_6)alcoxy, hydroxy ou nitro.

7. Composé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que X représente -NT; et R₄ et R₅ forment ensemble le groupe -CR₆=CR₇-dans lequel R₆ représente un atome d'hydrogène et R₇ représente hydroxyle ou

 (C_6-C_{10}) aryle éventuellement substitué par halogène, nitro, hydroxy, (C_1-C_6) alkyle éventuellement halogéné ou (C_1-C_6) alcoxy.

8. Composé selon la revendication 1, choisi parmi les :

3-(biphényl-4-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine;

3-(2-furyl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine;

3-[4-(éthoxy-carbonyl)phényl]-5,6-dihydrothiazolo-[2,3-b]-1,3-

benzodiazépine;

1-(2-furyl)-2-(4,5-dihydro-3H-1,3-benzodiazépine-2-ylsulfamyl)éthanone;

1-(biphényl-4-yl)-2-(4,5-dihydro-3H-1,3-benzodiazépine-2-ylsulfamyl)-

10 éthanone:

5

3-(biphényl-3-yl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine;

1-(3,4-dihydroxyphényl)-2-(4,5-dihydro-3*H*-1,3-benzodiazépine-2-ylsulfamyl)éthanone ;

3-(3,4-dihydroxyphényl)-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine; et 3-(biphényl-4-yl)-7-chloro-5,6-dihydrothiazolo[2,3-b]-1,3-benzodiazépine.

9. Procédé pour la préparation d'un composé de formule I selon la revendication 1 dans laquelle X représente S ; et R_4 et R_5 ne forment pas ensemble - CR_6 = CR_7 -, comprenant la réaction d'une thione de formule II :

20

30

15

$$(R_1)_n$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4

25 dans laquelle:

R₁, n, R₂, R₃ et R₄ sont tels que définis à la revendication 1 avec un dérivé halogéné de formule III :

Hal¹-R₅ III

dans laquelle R_5 est tel que défini à la revendication 1 et Hal¹ est un atome d'halogène, (C_1-C_6) alkylsulfonyle éventuellement halogéné ou (C_6-C_1) arylsulfonyle éventuellement substitué dans la partie aryle par (C_1-C_6) alkyle.

10. Procédé selon la revendication 9, caractérisé en ce que l'on fait réagir la thione de formule II avec une α -halogénocétone de formule IVa :

où Z est tel que défini à la revendication 1 et Hal^2 est un atome d'halogène, de façon à obtenir les composés correspondants de formule I dans laquelle R_5 représente - CH_2 -CO-Z.

- 11. Procédé selon la revendication 9 ou la revendication 10, comprenant en outre l'alkylation d'un composé de formule I obtenu selon le procédé de la revendication 9 ou de la revendication 10 dans lequel R₄ représente un atome d'hydrogène au moyen d'un agent d'alkylation approprié, de façon à obtenir le composé correspondant de formule I dans lequel R₄ représente (C₁-C₁₈)alkyle.
- 12. Procédé pour la préparation de composés de formule I selon la revendication 1, dans laquelle X représente S et R_4 et R_5 forment ensemble le groupe - CR_6 = CR_7 -, comprenant la réaction d'une thione de formule IIa :

$$(R_1)_n$$
 R_3 R_3 R_4 R_3 R_4 R_5

20

25

15

5

10

dans laquelle $\,$ n, $\,$ R $_1$, $\,$ R $_2$ et $\,$ R $_3$ sont tels que définis à la revendication 1 avec une α -halogénocétone de formule IVb :

dans laquelle R_6 et R_7 sont tels que définis à la revendication 1, et Hal^3 représente un atome d'halogène, dans un acide carboxylique aliphatique en C_2 - C_6 à une température comprise entre 90 et 130° C.

30 13. Procédé selon la revendication 12, caractérisé en ce que l'acide carboxylique aliphatique est l'acide acétique.

14. Procédé selon l'une quelconque des revendications 12 à 13, caractérisé en ce que la température est maintenue entre 100 et 125° C.

15. Procédé pour la préparation de composés de formule I selon la revendication 1 dans laquelle X représente -NH, R_4 et R_5 forment ensemble le groupe -CR $_6$ =CR $_7$ -, et R $_7$ n'est pas hydroxy, comprenant la réaction d'un sulfure de formule V :

10

5

$$(R_1)_n$$
 $N-H$
 $S-alk$

dans laquelle n, R₁, R₂ et R₃ sont tels que définis à la revendication 1, R₄ et R₅ forment ensemble le groupe -CR₆=CR₇-, et alk représente (C₁-C₆)alkyle, avec un dérivé protégé de la cétone de formule VI :

dans lequel le groupe carbonyle est protégé par un groupement protecteur labile en milieu acide, $R_{\rm s}$ et $R_{\rm 7}$ étant tels que définis à la revendication 1, puis le traitement par un acide du composé résultant.

16. Procédé pour la préparation de composés de formule I selon la revendication 1 dans laquelle X représente -NT où T n'est pas un atome d'hydrogène, R_4 et R_5 forment ensemble le groupe -CR $_6$ =CR $_7$, et R $_7$ représente hydroxy, comprenant la réaction d'un sulfure de formule V:

$$(R_1)_n$$
 R_2
 $N-H$
 $S-alk$

30

20

25

dans laquelle n, R_1 , R_2 et R_3 sont tels que définis à la revendication 1, et alk représente $(C_1\text{-}C_6)$ alkyle,

avec un dérivé de formule VIII:

10

15

HTN-CHR₆-CO-Y

VIII

- dans laquelle T et R₆ sont tels que définis à la revendication 1 et Y est un groupe partant, à une température comprise entre 50 et 150° C, de préférence à une température comprise entre 60 et 100° C.
 - 17. Procédé selon la revendication 15 comprenant en outre la réaction du composé obtenu par mise en oeuvre du procédé de la revendication 15, avec un réactif halogéné de formule Hal-T où T représente (C_1-C_6) alkyle, (C_8-C_{10}) aryle ou (C_6-C_{10}) aryl- (C_1-C_6) alkyle et Hal est un atome d'halogène, en présence d'une base, de façon à synthétiser le composé correspondant de formule I dans lequel T représente (C_1-C_6) alkyle, (C_8-C_{10}) aryle ou (C_6-C_{10}) aryl- (C_1-C_6) alkyle.
 - 18. Composition pharmaceutique contenant une quantité efficace d'au moins un composé de formule (I) selon l'une quelconque des revendications 1 à 8 en association avec au moins un véhicule pharmaceutiquement acceptable.
 - 19. Utilisation d'un composé de formule I selon l'une quelconque des revendications 1 à 8 pour la préparation d'un médicament destiné à prévenir ou traiter les dyslipidémies, l'athérosclérose, le diabète et ses complications.

EXEMPLE 66

5

10

15

20

En utilisant les procédés illustrés dans les exemples précédents, on prépare le composé de formule :

présentant un point de fusion de 184-185° C.

L'invention concerne en outre les compositions pharmaceutiques contenant une quantité efficace d'au moins un composé de formule I tel que défini ci-dessus en association avec au moins un véhicule pharmaceutiquement acceptable.

Selon un autre de ses aspects, l'invention concerne l'utilisation d'un composé de formule I tel que défini ci-dessus pour la préparation d'un médicament destiné à prévenir ou traiter les dyslipidémies, l'athérosclérose, le diabète ou ses complications.

Profit of the second

THIS PAGE BLANK (USPTO)