Formes quadratiques

Algèbre 1

Question 1/35

Cône isotrope de q

Réponse 1/35

$$C(q) = \{x \in E, q(x) = 0\}$$
$$\ker(q) \subset C(q)$$

Question 2/35

Groupe orthogonal

Réponse 2/35

$$O(E) = \{ u \in GL(E), \forall (x, y) \in E^2, b_q(u(x), u(y)) = b_q(x, y) \}$$

Question 3/35

$$\ker(q_{|V})$$

Réponse 3/35

$$V\cap V^\perp$$

Question 4/35

Classification des formes quadratiques sur \mathbb{R}

Réponse 4/35

Si q est une forme quadratique sur \mathbb{R} alors il existe $(r,s) \in \mathbb{N}^2$ et $(\mu_1, \cdots, \mu_{r+s}) \in (E^*)^{r+s}$

tel que
$$q = \sum_{i=1}^{r} \mu_i^2 - \sum_{i=r+1}^{r} \mu_i^2$$

Deux formes quadratiques sur \mathbb{R} sont isomorphes si et seulement si elles ont la même signature (couple (r,s))

Question 5/35

Poupriétés de q exprimée dans la base duale de (e_1, \dots, e_n) base orthogonale de E

Réponse 5/35

$$q = \sum_{i=1}^{n} q(e_i) \mu_i^2, \ (\mu_i) \text{ base duale de } (e_i)$$
Réciproquement, si $q = \sum_{i=1}^{n} a_i \mu_i^2$ alors la base antéduale de (μ_i) est (e_i) et $q(e_i) = a_i$

$$\operatorname{rg}(q) = \left| \{ i \in \llbracket 1, n \rrbracket, a_i \neq 0 \} \right|$$

$$\operatorname{discr}(q) = \begin{cases} 0 & \text{si } \exists i \in \llbracket 1, n \rrbracket, a_i = 0 \\ \prod_{i=1}^{n} a_i \bmod \left(\mathbb{k}^{\times} \right)^2 & \text{sinon} \end{cases}$$

$$\ker(q) = \bigcap_{i \in \llbracket 1, n \rrbracket} \ker(\mu_i)$$

Question 6/35

CNS pour que $(q, q') \in Q(E)^2$ soient isomorphes

Réponse 6/35

 $\operatorname{Mat}_{\mathcal{B}}(q)$ et $\operatorname{Mat}_{\mathcal{B}}(q')$ sont congruentes

Question 7/35

Classification des formes quadratiques sur \mathbb{C}

Réponse 7/35

Si q est une forme quadratique sur \mathbb{C} alors il existe $(\mu_1, \dots, \mu_{\operatorname{rg}(q)}) \in (E^*)^{\operatorname{rg}(q)}$ tel que

$$q = \sum_{i=1}^{\operatorname{rg}(q)} \mu_i^2$$

Deux formes quadratiques sur \mathbb{C} sont isomorphes si et seulement si elles ont le même rang

Question 8/35

Espace quadratique

Réponse 8/35

(E,q) avec q une forme quadratique sur E

Question 9/35

 $\ker(q)$

Réponse 9/35

$$E^{\perp} = \ker(\ell_{\varphi})$$

Question 10/35

Polynôme homogène associée à $q \in Q(E)$

Réponse 10/35

$$\rho_q \colon \mathbb{k}^n \longrightarrow \mathbb{k}$$

$$(x_1, \cdots, x_n) \longmapsto q \left(\sum_{i=1}^n x_i e_i \right)$$

$$\rho_q \text{ est homogène de degré 2 si et seulement si}$$

$$q \in \mathcal{Q}(E)$$

Question 11/35

q est une forme quadratique

Réponse 11/35

Il existe
$$\varphi \in \text{Bil}(E, E)$$
 tel que $q(x) = \varphi(x, x)$

Question 12/35

Méthode de Gauss

Réponse 12/35

Si $f \in \mathbb{k}[X_1, \dots, X_n]_2$ et $(X_i := \mu_i)$ est une base de E^* alors il existe un algorithme qui permet de trouver

$$(L_1, \cdots, L_n) \in (\mathbb{k}[X_1, \cdots, X_n]_1)^n \text{ et}$$

 $(a_1, \cdots, a_n) \in \mathbb{k}^n \text{ tels que } f = \sum_{i=1}^n a_i L_i^2$

Question 13/35

A et A' sont congruentes

Réponse 13/35

$$\exists P \in \mathrm{GL}_n(\mathbb{k}), A = {}^t P A P$$

Question 14/35

Racine carrée d'un endomorphisme symétrique

Réponse 14/35

Si
$$u \in S^{++}(E)$$
, $E \mathbb{R}$ -ev, il existe un unique $h \in S^{++}(E)$ tel que $u = h^2$
De plus, $h \in \mathbb{R}[u]$

Question 15/35

$$(E,q)$$
 et (E',q') sont isomorphes

Réponse 15/35

Il existe $u: E \to E'$ un isomorphisme tel que u(E) = E' et $q' = q \circ u$

Question 16/35

Espace euclidien

Réponse 16/35

Espace quadratique (E, q) sur \mathbb{R} de dimension n et q > 0 $||x|| = \sqrt{q(x)}$ est une norme sur E

Question 17/35

q est définie positive (resp. définie négative) (E,q) espace quadratique sur $\mathbb R$

Réponse 17/35

$$\forall x \neq 0, \ q(x) > 0 \ (\text{resp.} < 0)$$

Dans ce cas, $\mathcal{C}(q) = \{0\}$ et pour tout sev V , $q_{|V}$ est non dégénérée

Question 18/35

$$(E,q)$$
espace quadratique, φ forme polaire associée à q .

$$A^{\perp}$$

Réponse 18/35

$$\ell_\varphi(A)^\perp$$

Question 19/35

Décomposition polaire

Réponse 19/35

Si
$$g \in GL(E)$$
, $E \mathbb{R}$ -ev, il existe un unique $(u, s) \in O(E) \times S^{++}(E)$ tel que $g = us$
De plus, $u \in \mathbb{R}[g^*g]$

Question 20/35

Factorisation d'une forme quadratique

Réponse 20/35

Si q est une forme quadratique sur E alors il existe une unique forme quadratique

 $q': E/\ker(q) \to \mathbb{k}$ q' est non dégénérée

Question 21/35

Propriétés des valeurs propres de $u \in S(E)$

Réponse 21/35

$$\operatorname{sp}(u) \subset \mathbb{R}$$

Question 22/35

Cône

Réponse 22/35

Partie d'un ev stable par multiplication scalaire

Question 23/35

Forme polaire associée à q

Réponse 23/35

$$\pi^{-1}(q)$$
 où $\pi : Bil(E, E) \longrightarrow Q(E)$

$$\varphi \longmapsto q_{\varphi} := \varphi(\cdot, \cdot)$$
 π est un isomorphisme

Question 24/35

Forme bilinéaire associée à $u \in \mathcal{L}(E)$

Réponse 24/35

$$\Phi_u: E \times E \longrightarrow \mathbb{R}
(x,y) \longmapsto \langle u(x), y \rangle
\mathcal{L}(E) \longrightarrow \text{Bil}(E)
u \longmapsto \Phi_u \text{ est un isomorphisme}$$

Question 25/35

$$u \in \mathcal{L}(E)$$
 est symétrique, $E \mathbb{R}$ -ev

Réponse 25/35

 Φ_u est une forme bilinéaire symétrique De manière équivalente, $u^* = u$

Question 26/35

q est positive (resp. négative) (E,q) espace quadratique sur $\mathbb R$

Réponse 26/35

$$\forall x \in E, q(x) \geqslant 0 \text{ (resp. } \leqslant 0)$$

Question 27/35

u

Réponse 27/35

Si (E,q) est un espace quadratique non dégénéré et φ la forme polaire associée à q et $u \in \mathcal{L}(E)$ alors il existe un unique $u^* \in \mathcal{L}(E)$ telle que $\varphi(u(x), y) = \varphi(x, u^*(y))$

Question 28/35

$$\operatorname{im}(u^*)$$

Réponse 28/35

$$\ker(u)^{\perp}$$

Question 29/35

$$u \in S(E)$$
 est positif (resp. défini positif), E
 \mathbb{R} -ev

Réponse 29/35

La forme quadratique q_u associée à Φ_u est positive (resp. définie positive)

Question 30/35

Théorème spectral

Réponse 30/35

Si $u \in S(E)$, $E \mathbb{R}$ -ev, il existe une base orthonormale \mathcal{B} telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ est diagonale

Question 31/35

$$\operatorname{discr}(q)$$

Réponse 31/35

$$\begin{cases} 0 & \text{si } q \text{ dégénérée} \\ \det_{\mathcal{B}}(q) \mod (\mathbb{k}^{\times})^2 \text{ sinon} \end{cases}$$

Question 32/35

CN entre
$$V$$
 et $\mathcal{C}(q)$ pour avoir $E = V \oplus V^{\perp}$

Réponse 32/35

$$V \cap \mathcal{C}(q) = \{0\}$$

Question 33/35

Matrice de $q \in Q(E)$ dans une base \mathcal{B} de E

Réponse 33/35

$$\operatorname{Mat}_{\mathcal{B}}(q) = \operatorname{Mat}_{\mathcal{B}}(\pi^{-1}(q)) \in \mathcal{S}_n(\mathbb{k})$$

Question 34/35

Théorème d'inertie de Sylvester

Réponse 34/35

Si (E,q) est un espace quadratique sur \mathbb{R} et

$$q = \sum_{i=1}^{r} \mu_i^2 - \sum_{i=r+1}^{r+s} \mu_i^2 \text{ alors}$$

$$r = \max(\left\{\dim(F), F \text{ sev}, q_{|F} > 0\right\}),$$

$$s = \max(\left\{\dim(F), F \text{ sev}, q_{|F} < 0\right\})$$

Question 35/35

$$\ker(u^*)$$

Réponse 35/35

$$\operatorname{im}(u)^{\perp}$$