LINKSOCIAL: Linking User Profiles Across Multiple Social Media Platforms

Vishal Sharma and Curtis Dyreson Department of Computer Science Utah State University

Outline

- Introduction of User Profile Linkage (UPL)
- Applications and challenges of UPL
- Related Work
- LinkSocial Framework
- Data Collection and Feature Engineering
- Predictive Model
- Computation Cost Reduction
- Results and Conclusion

User Profile Linkage (UPL)

- More than 42% of adults use more than two social media platforms
- A social media platform exposes an aspect of a user
 - Personal
 - Professional
 - Ideological
- UPL is process of linking user profiles across social media platforms
- There are several applications and challenges of UPL

Applications

- Security
- User behaviour across social media platforms
- Information verification
- Recommendation

Challenges

- Data collection
- Incomplete information
- False information
- Missing information across platform
- Limited access

Previous Work

COMPARISON WITH PREVIOUS RESEARCH

Linkage	Authors et. al	Features	Dataset Public	Scalable	Reduce Cost	Scalable Across Platform
Pair-Wise	P. Jain[28]	Private	×	×	×	×
	A. Mal[8]	Public	×	~	/	×
	R. Zafa[22]	Public	×	×	×	×
	Y. Li[31]	Private	×	×	×	×
	LINKSOCIAL	Public	~	~	✓	/
Across	X. Mu[32]	Private	×	×	×	~
	S. Liu[6]	Private	×	×	×	~
Α	LINKSOCIAL	Public	/	/	✓	/

LinkSocial Framework

Data Collection

- About.me
 - o B. Lim et. al. organized 15,298 usernames
 - o G+, Insta, Tumblr, Twitter, Youtube, Flickr
- We selected
 - o G+, Twitter, Insta
- Public profile
 - o username, name, bio and profile image
- Data collection using web crawlers

Dataset Analysis

- Avg. username length 11-13
- Avg. bios on G+ 164 characters
- Avg. bios on Twitter, Insta 96 and 70
- 28%, 13%, 21% atleast one missing attribute on G+, Twitter and Insta
- Lot of deactivated profiles
- 2% of Insta profile all attributes missing

Social Media	Profile Count
Instagram - Google+	614
Twitter - Instagram	2451
Google+ - Twitter	2974
Google+ - Twitter - Instagram	7729
	13768

Feature Engineering

- Bi-gram: Captures a range of different ways to create a username.
- Character distribution: bi-gram cannot capture all scenarios (e.g., john_snow, nhoj_wons)

	username	name	merge	Similarity measure
example	john_snow	John snow	john_snow John snow	
Bi-gram	[jo,oh,hn,n_,_s]	[jo,oh,hn,n,s]	[jo,oh, Jo,hn,]	Jaccard Similarity
Character dist	{j:1, o:2,h:1}	{j:1, o:2,}	{j:2, o:4, s:2,]	KL Divergence

- Profile picture similarity
 - Openface crops image to extract face and represents it in 128D vector
 - Use euclidean distance to calculate distance between vectors

Matching

- Generate scores from engineered features
- Use Stochastic Gradient Descent (SGD) to learn feature weights
 - Mean Squared Error (MSE) as cost function
 - Learning rate of 0.001 with 1,000 iterations
- We use computed weights on test data to predict a match
 - Highest score producing profile is considered a match
- Accuracy: Number of correctly predicted match / Number of correct match

Computation Cost

- UPL is computationally expensive
- Consider 7,729 *pair* user profiles (G+, Twitter)
- Number of comparisons: 7,729 * 7,729 = 59,729,712
- Assuming we perform 1,000 comparison/sec (high ballpark)
- Total time UPL ~17 hours

Imagine UPL on millions of user profiles

Computation Cost Reduction

- We introduce candidate profile clustering
- We choose bi-gram of username and name as profile clustering features
- We rank using Jaccard Coefficient as similarity measure

- Cluster Size: Percentage of top score profile
- We choose top 10% of profiles.

Experimental Setup

- Baseline
 - Jaro-Winkler: username and name similarity
 - TF-IDF and Cosine: *bios* similarity
 - Match would be highest score
 - Each feature equal weights
- Calculating Weights
 - Generate all features correct and (equally) incorrect matches
 - Using Random Forest (RF) and Stochastic Gradient Descent (SGD) for weights calculation
- Dataset randomly sampled 60-40 for Training and Testing

Results

LINK SOCIAL PERFORMANCE ON PAIR-WISE UPL

	Social Media Pairs (Accuracy				
Experiments	G+≡I	$T \equiv I$	G+≡T		
baseline	55.36%	77.86%	56.86%		
Prediction witho	ut enginee	red featur	es and clustering.		
with RF	77.53%	82.08%	77.14%		
with SGD	76.61%	82.21%	66.24%		
Prediction with clustering, no engineered features.					
with CP & RF	82.62%	83.33%	81.40%		
with CP & SGD	82.47%	83.32%	81.19%		
Prediction with	h engineere	ed features	s, no clustering.		
with RF	86.54%	91.17%	84.56%		
with SGD	86.63%	91.68%	84.58%		
Prediction with engineered features and clustering.					
with CP & RF	84.85%	87.92%	83.20%		
with CP & SGD	84.91%	88.29%	83.23%		

LINKSOCIAL PERFORMANCE ON MULTI-PLATFORM UPL

	Cross Platform			
Experiments	$T \rightarrow (G+, I)$	$G+\rightarrow (T, I)$	$I \rightarrow (G+,T)$	
CP & RF	71.56%	72.50%	73.70%	
CP & SGD	72.95%	72.86%	74.18%	

*RF-Random Forest, SGD-Stochastic Gradient Descent, CP-Candidate Profiles using Clustering, T-Twitter, G+-Google+, I-Instagram

Model Interpretation

- Partial Dependence plots
- Username dist. and Merged dist. highly correlated to model
- username and name similarity score until
 0.75 are highly correlated
- Instances when username and name similarity scores are very high (close to 1), selected profiles do not belong to the same individual
- <u>Conclusion</u> username and name are unreliable features for linking profiles

Conclusion

- We investigate problem of UPL (pair and across platform)
- We proposed a solution
 - Linksocial: A Large scale, Efficient and Scalable
- We perform data collection, feature engineering and train model
- We perform extensive experiments and evaluation on LinkSocial
- We achieve
 - **91.68**% in *pair-wise* linkage
 - **74.18**% in multi platform linkage

Future Work

- Analyse user behaviour across platform
- Adding more features (text, videos, images)
- Enhance Scalability and Efficiency of LinkSocial
- Evaluate LinkSocial on more social media platforms

Vishal Sharma

Utah State University vishalusu@gmail.com

Contribution

- Data Collection: Across social media platform user
- Feature Engineering
- Computation cost reduction
- Predictive Model
- Model Analysis

