E0 217: Efficient and Secure Digital Circuits and Systems

Project

Utsav Banerjee

Indian Institute of Science

Project Objectives

- ☐ Understand design trade-offs
- ☐ Optimize a circuit from gate level to architecture level
- □ Appreciate the economics of electronics industry

Project Objectives

Project Tasks:

- □ Design a digital circuit for Fast Fourier Transform (FFT) in Verilog
- ☐ Create an appropriate test bench in Verilog to test the design
- □ Simulate the design using Icarus Verilog and visualize the simulated VCD waveforms using GTKWave to verify functionality
- □ Synthesize the design using Yosys with the Nangate Open Cell 45nm standard cell library in the typical TT corner
- □ Analyze timing and power of the implementation using OpenSTA

FFT Specifications:

- \Box Input $x = \{x_0, x_1, \dots, x_7\}$
- \Box Output $X = \{X_0, X_1, \dots, X_7\}$
- \Box Output *X* is the 8-point FFT of input *x*
- ☐ Output related to input as follows:

$$X_k = \sum_{m=0}^{7} x_m e^{-i\left(\frac{2\pi km}{8}\right)}$$
 for $k = 0, 1, \dots, 7$

Reference: https://en.wikipedia.org/wiki/Fast_Fourier_transform

FFT Specifications:

□ Each input element x_m (for m = 0,1,...,7) is a complex number with real and imaginary parts each represented as a signed 16-bit fixed-point quantity with 1 sign bit, 7 bits for decimal part and 8 bits for fractional part, as shown below:

FFT Specifications:

□ Each output element X_k (for k = 0,1,...,7) is a complex number with real and imaginary parts each represented as a signed 16-bit fixed-point quantity with 1 sign bit, 7 bits for decimal part and 8 bits for fractional part, as shown below:

Block Diagram:

Signal	Туре	Description
in0_real [15:0]	Input	16-bit real part of x_0
in0_imag [15:0]	Input	16-bit imaginary part of x_0
in1_real [15:0]	Input	16-bit real part of x_1
in1_imag [15:0]	Input	16-bit imaginary part of x_1
in2_real [15:0]	Input	16-bit real part of x_2
in2_imag [15:0]	Input	16-bit imaginary part of x_2
in3_real [15:0]	Input	16-bit real part of x_3
in3_imag [15:0]	Input	16-bit imaginary part of x_3

Signal	Type	Description
in4_real [15:0]	Input	16-bit real part of x_4
in4_imag [15:0]	Input	16-bit imaginary part of x_4
in5_real [15:0]	Input	16-bit real part of x_5
in5_imag [15:0]	Input	16-bit imaginary part of x_5
in6_real [15:0]	Input	16-bit real part of x_6
in6_imag [15:0]	Input	16-bit imaginary part of x_6
in7_real [15:0]	Input	16-bit real part of x_7
in7_imag [15:0]	Input	16-bit imaginary part of x_7

Signal	Туре	Description
out0_real [15:0]	Output	16-bit real part of X_0
out0_imag [15:0]	Output	16-bit imaginary part of X_0
out1_real [15:0]	Output	16-bit real part of X_1
out1_imag [15:0]	Output	16-bit imaginary part of X_1
out2_real [15:0]	Output	16-bit real part of X ₂
out2_imag [15:0]	Output	16-bit imaginary part of X_2
out3_real [15:0]	Output	16-bit real part of X ₃
out3_imag [15:0]	Output	16-bit imaginary part of X_3

Signal	Туре	Description
out4_real [15:0]	Output	16-bit real part of X_4
out4_imag [15:0]	Output	16-bit imaginary part of X_4
out5_real [15:0]	Output	16-bit real part of X_5
out5_imag [15:0]	Output	16-bit imaginary part of X_5
out6_real [15:0]	Output	16-bit real part of X ₆
out6_imag [15:0]	Output	16-bit imaginary part of X_6
out7_real [15:0]	Output	16-bit real part of X ₇
out7_imag [15:0]	Output	16-bit imaginary part of X_7

Signal	Туре	Description
CLK	Input	Clock signal
RST_N	Input	Active-low reset signal
write	Input	Input write signal
start	Input	FFT computation start signal
ready	Output	FFT computation done signal

Timing Diagram:

Note: in* and out* refer to the FFT inputs and outputs respectively

≥1 cycles FFT computation time

Functional Verification:

- Must use the following in the test bench to verify functionality
- ☐ Inputs:

$$x_0 = 0.0 + i0.0, x_1 = 1.0 + i0.0, x_2 = 2.0 + i0.0, x_3 = 3.0 + i0.0,$$

 $x_4 = 4.0 + i0.0, x_5 = 5.0 + i0.0, x_6 = 6.0 + i0.0, x_7 = 7.0 + i0.0$

□ Calculate the expected outputs X'_0, X'_1, \dots, X'_7 corresponding to 8-point FFT of x_0, x_1, \dots, x_7 using MATLAB or Python

Functional Verification:

■ Expected Outputs:

$$X'_0 = 28.0 + i0.0, X'_1 = -4.0 + i4.0(\sqrt{2} + 1),$$

$$X'_2 = -4.0 + i4.0, X'_3 = -4.0 + i4.0(\sqrt{2} - 1),$$

$$X'_4 = -4.0 + i0.0, X'_5 = -4.0 - i4.0(\sqrt{2} - 1),$$

$$X'_6 = -4.0 - i4.0, X'_7 = -4.0 - i4.0(\sqrt{2} + 1)$$

Functional Verification:

- \Box Obtain the FFT circuit simulated outputs X_0, X_1, \dots, X_7
- Calculate the maximum absolute error by comparing the real and imaginary parts of each element of the simulated outputs and the expected outputs as

$$\max(|\operatorname{Re}(X'_0) - \operatorname{Re}(X_0)|, |\operatorname{Im}(X'_0) - \operatorname{Im}(X_0)|, |\operatorname{Re}(X'_1) - \operatorname{Re}(X_1)|, |\operatorname{Im}(X'_1) - \operatorname{Im}(X_1)|, ..., |\operatorname{Re}(X'_7) - \operatorname{Re}(X_7)|, |\operatorname{Im}(X'_7) - \operatorname{Im}(X_7)|,)$$

Functional Verification:

- Although verified with one input/output combination (test vector), circuit must be functional for all possible input/output combinations
- ☐ Feel free to simulate with additional random test vectors
- □ Note the number of clock cycles required by the circuit to complete 8-point FFT computation, that is, from rising edge of "start" signal to rising edge of "ready" signal

Implementation Aspects:

- □ Inputs x_0, x_1, \dots, x_7 stored in input register (8 × 2 × 16 = 256 bits) and outputs X_0, X_1, \dots, X_7 stored in output register (8 × 2 × 16 = 256 bits)
- Contains both combinational and sequential logic
- ☐ Arithmetic circuits are very important components in the design
- ☐ Need not be restricted to what has been taught in lectures
- ☐ Feel free to refer to books, papers and online resources
- ☐ Must cite all references in final project report

Implementation Metrics:

- Number of clock cycles per FFT (from Icarus Verilog & GTKWave)
- Area of synthesized design (from Yosys)
- Maximum clock frequency (from OpenSTA)
- ☐ Total power consumption (from OpenSTA)
- ☐ Energy consumption per FFT
- □ Accuracy of FFT computation

Implementation Aspects:

- ☐ Optimize the implementation for one of the following:
 - low power
 - low latency
 - high throughput
 - low area
 - low energy
 - high accuracy

Implementation Aspects:

- Implementation must be functionally correct with small error
- Explore different data flows (butterfly operations in FFT)
- ☐ Analyze architectures for signed fixed-point arithmetic
- ☐ Implement arithmetic with complex numbers
- ☐ Tune precision of twiddle factors
- ☐ Understand design trade-offs
- Ш ...

Project Report

- ☐ One implementation and one final report per group
- Both team members must submit same report separately in Teams
- ☐ Clearly document the following in report (format to be shared later):
 - architecture details with block diagrams
 - screenshots of simulation and synthesis results
 - Verilog descriptions for design and test bench
 - contributions of each team member

Project Grading

- ☐ Project has 20% weightage in course
- ☐ Total 20 points
 - 5 points for implementing / simulating circuit and preparing report
 - 5 points for explaining design and providing Verilog descriptions
 - 5 points for calculating implementation metrics
 - 5 points for design trade-offs
- □ Implementations with very similar design and/or metrics will receive less score ⇒ do not copy each other's designs!