

Studying the emotional impact of the Covid-19 pandemic using social media

Bachelor Degree Thesis Presentation, (TeX)

Simone Alghisi

Supervisor: Alberto Montresor

Co-Supervisors: Cristian Consonni, David Laniado

June 27, 2021

Università degli Studi di Trento

Contents

	ucti	

Data collection

Methods

Results and discussion

Conclusions

Introduction

Introduction to the problem

The project consisted in an analysis of emotions as emerging from Twitter messages during the pandemic.

Figure 1: An example of a tweet.

This could allow us to contrast the emotional reaction with the evolution of contagions and deaths, and with the different lockdown and de-escalation stages, in different areas.

Emotion detection

Also called emotion recognition, is the **process of identifying human emotions**.¹ To solve this task, it is possible to use lexicon-based techniques, where each word is assigned to a set of zero or more emotions/sentiments.

Figure 2: Emotion detection for a particular sentence.

¹Wikipedia contributors. *Emotion recognition — Wikipedia, The Free Encyclopedia*. https://en.wikipedia.org/w/index.php?title=Emotion_recognition&oldid=1023798177. [Online; accessed 14-June-2021]. 2021.

Contributions

In general, my contribution to the research mostly regarded:

- retrieving and organizing the data
- processing the tweets to understand users' emotions
- plotting graphics in order to visualize more clearly the results
- normalizing the results obtained to compare different emotions or categories
- inferring demographic information about the users
- geocoding the location of the user

Furthermore, I am particularly proud of my personal contribution to improve m3inference. In practice, I opened a pull request on GitHub to solve some issues while downloading images from Twitter.

Data collection

Dataset description and stats

The echen102/COVID-19-TweetIDs GitHub repository contains an ongoing collection of tweet IDs starting on January 28th, 2020.²

Number of files	10 402
Number of identified languages	65
Number of tweets	1 055 843 481
Number of unique tweets (no retweets)	323 504 667
Dataset compressed size	865 GB
Dataset estimated uncompressed size	6.252 TB

Table 1: Dataset general statistics

²Emily Chen, Kristina Lerman, and Emilio Ferrara. "Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set". In: *JMIR Public Health and Surveillance* 6.2 (2020), e19273.

We decided to analyze the tweets from January 2020 to March 2021, keeping only the most relevant information.

```
"id": 1307025659294674945.
"full_text": "Here's an article that highlights the updates...",
"lang": "en",
"created at": "Fri Sep 18 18:36:15 +0000 2020".
"retweet count": 11.
"favorite count": 70.
"user": {
 "id": 2244994945,
 "id_str": "2244994945",
 "screen name": "TwitterDev".
  "name": "Twitter Dev".
 "description": "The voice of the #TwitterDev team and your official...",
 "location": "127.0.0.1",
 "followers_count": 513958,
 "statuses_count": 3635,
  "default profile image": false.
  "profile_image_url_https": "https:\/\/pbs.twimg.com\/profile_images\/1283786620521652229\/
        1EODkLTh_normal.jpg"
```

Listing 1: Final ison object for a tweet

Methods

We used

- EmoLex, a list of English words and their associations with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive),³ to detect the emotions
- LIWC, a widely used computerized text analysis program that outputs the percentage of words in a given text that falls into one or more linguistic, psychological, and topical categories,⁴ to validate the results

³Saif Mohammad. NRC Emotion Lexicon.

https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm. [Online; accessed 13-June-2021].

⁴Wikipedia contributors. James W. Pennebaker — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=James_W._Pennebaker&oldid=1023542720. [Online; accessed 24-June-2021]. 2021.

Emotion detection metrics

To correctly **detect the users' emotions**, we decided to follow one of the approaches discussed by Aiello et al. 5

- emotions in a binary way (e.g. whether at given time the user expressed joy or not)
- users over tweets (e.g. the number of unique users, instead of tweets, that expressed joy at a given time)

Definition

Given $U_e(t)$, the number of distinct users that expressed emotion e at time t in a tweet, and U(t), the number of distinct users that tweeted at time t,

$$f_e(t) = \frac{U_e(t)}{U(t)}$$

is the proportion of users that expressed emotion e at time t.

⁵Luca Maria Aiello et al. How Epidemic Psychology Works on Social Media: Evolution of responses to the COVID-19 pandemic. 2020. arXiv: 2007.13169 [cs.CY].

Emotion detection over time

We decided to analyze for the whole time frame the emotions of different set of users. In particular we grouped them

- by language (e.g. Catalan, Italian, English, Spanish, ...)
- by **gender** (male or female)
- ▶ by **age** (\ge 40 or < 40)
- by **location** (e.g. per state, country, county, . . .)

Data Normalization

The issue is that the **emotions course are not easily comparable**. For this reason, it was decided to normalize the data using the *z-score*.

Definition

Given $f_e(t)$ and the period of time [0, T],

$$z_e(t) = \frac{f_e(t) - \mu_{[0,T]}(f_e)}{\sigma_{[0,T]}(f_e)}$$

where
$$\mu_{[0,T]}(f_{\mathrm{e}}) = \frac{1}{\mid T \mid} \sum_{t=0}^{T} f_{\mathrm{e}}(t)$$
, and $\sigma_{[0,T]}(f_{\mathrm{e}}) = \sqrt{\frac{1}{\mid T \mid} \sum_{t=0}^{T} \left(f_{\mathrm{e}}(t) - \mu_{[0,T]}(f_{\mathrm{e}})\right)^2}$

Users inference

UNIVERSITÀ

To infer data about the users, we used m3inference, a **deep learning system for demographic inference** (gender, age, and person/organization) available on Python.⁶

```
{
    "gender": {
        "male": 0.8758,
        "female": 0.1242
},
    "age": {
        "<=18": 0.0053,
        "19-29": 0.0363,
        "30-39": 0.9239,
        ">>40": 0.0346
},
    "org": {
        "non-org": 0.9965,
        "is-org": 0.0035
}
}
```

Listing 2: Json object returned by m3inference

⁶Zijian Wang et al. "Demographic inference and representative population estimates from multilingual social media data". In: *The World Wide Web Conference*. ACM. 2019, pp. 2056–2067.

Geocoding

To link users to a specific place, we need to perform **address geocoding**, the process of taking a text-based description of a location and returning its geographic coordinates.

For this project, we decided to use <code>OpenStreetMap</code> (OSM) and the data made available by this particular service.⁷

```
{
  "place_id": 317098601,
  "licence": "Data \u00a9 OpenStreetMap contributors, ODbL 1.0. https://osm.org/copyright",
  "boundingbox": ["45.3867381", "45.5358482", "9.0408867", "9.2781103"],
  "lat": "45.4668",
  "lon": "9.1905",
  "display_name": "Milano, Lombardia, Italia",
  "address": {
  "city": "Milano",
  "county": "Milano",
  "county": "Lombardia",
  "country": "Italia",
  "country": "Italia",
  "country": "talia",
  "country_code": "it"
}
```

Listing 3: Json object returned by Geopy given "Milano, Lombardia" as input

⁷OpenStreetMap contributors. *Planet dump retrieved from https://planet.osm.org.* https://www.openstreetmap.org. 2017.

Results and discussion

Emotions in the English tweets

Figure 3: Proportion of weekly users per emotion in the English tweets

Normalized emotions in the English tweets

Figure 4: Z-score of weekly users per emotion in the English tweets

Emotions expressed by men/women in the English tweets

The gray dotted line indicates the average value of a particular emotion expressed by all the users (i.e. independently from the category) over the whole period.

Figure 5: Men/Women expressing the weekly proportion of a particular emotion w.r.t. the average value among all users

Emotions expressed per age in the English tweets

Figure 6: Proportion of weekly users per age expressing a particular emotion in the English tweets

Emotions expressed per state in the English tweets

Figure 7: Proportion of weekly users that expressed anger in Lombardia, Lazio, Emilia Romagna and Campania

Conclusions

Unfortunately, I was only able to scratch the surface of this research field. To improve some of the results, it would be possible to

- take into account the context of the words in a sentence using NLP algorithms to avoid opposite emotions bias
- use LIWC for more than validation
- build a dataset to link the emotional peaks to real events

Thanks for the attention.

References

Aiello, Luca Maria et al. How Epidemic Psychology Works on Social Media: Evolution of responses to the COVID-19 pandemic. 2020. arXiv: 2007.13169 [cs.CY].

Chen, Emily, Kristina Lerman, and Emilio Ferrara. "Tracking social media discourse about the covid-19 pandemic: Development of a public coronavirus twitter data set". In: *JMIR Public Health and Surveillance* 6.2 (2020), e19273.

Mohammad, Saif. NRC Emotion Lexicon. https://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm. [Online; accessed 13-June-2021].

OpenStreetMap contributors. *Planet dump retrieved from https://planet.osm.org.* https://www.openstreetmap.org. 2017.

Wang, Zijian et al. "Demographic inference and representative population estimates from multilingual social media data". In: The World Wide Web Conference. ACM. 2019, pp. 2056–2067.

Wikipedia contributors. Emotion recognition — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Emotion_recognition&oldid=1023798177. [Online; accessed 14-June-2021]. 2021.

- .James W. Pennebaker — Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=James_W._Pennebaker&oldid=1023542720.
[Online; accessed 24-June-2021]. 2021.

Tools and Libraries used

- Python, as main programming language to write the code for the project
- Pandas, to perform small operation on the datasets
- Matplotlib and Plotly, for data visualization
- Twarc, to retrieve (hydrate) tweets from Twitter using TweetIDs
- m3inference, a deep learning system for demographic inference (gender, age, and person/organization)
- peopy and Nominatim, to geocode the locations of the users
- NRC Word-Emotion Association Lexicon (aka EmoLex), to perform sentiment analysis on the tweets of the users

Languages with the most tweets

language	ISO	unique tweets	retweets	total	percentage
English	en	195 645 826	473 950 322	669 596 148	63.41%
Spanish	es	35 533 886	111 464 189	146 998 075	13.92%
Portuguese	pt	15 459 760	29 912 427	45 372 187	4.30%
French	fr	9 547 251	23 635 273	33 182 524	3.14%
Indonesian	in	9 029 012	16 479 537	25 508 549	2.41%
German	de	8 091 516	11 447 554	19 539 070	1.85%
Japanese	ja	3 228 542	10 220 609	13 449 151	1.27%
Italian	it	5 256 748	7 173 234	12 429 982	1.18%
Turkish	tr	3 347 597	6 698 252	10 045 849	0.95%
Thai	th	350 268	9 028 730	9 378 998	0.89%

Table 2: Top 10 languages with the most tweets

Tweets over time

 $\textbf{Figure 8:} \ \ \textbf{Number of tweets in logarithmic scale over time for the top } 10 \ \ \textbf{languages}$

Data organization

To access directly to a specific category of tweets (e.g. the tweets written in English on the 3rd of June 2020), we grouped them

- first according to the language, using the lang field from Twitter
- secondly by **year-month**
- and finally by day

Later on, we decided to aggregate them in weekly batches for a clearer visualization and to average the results.

Personal contribution to m3inference

During the project I encountered several errors while using m3inference, for this reason I decided to open a Pull Request on GitHub⁸ to contribute to the project.

fix urllib errors while trying to fetch a profile image from twitter

The version of m3inference on the packet manager was updated when the same issue was notified by another user⁹.

⁸Pull request: fix urllib errors while trying to fetch a profile image from twitter #20

⁹issue: Error fetching images will fail the infer method #21

Valid users - gender

Definition

A user u belongs to the category $c \in C$ iif their prediction confidence pc is greater or equal than 0.95, i.e.

$$u \in c \iff pc(u, c) \ge 0.95$$

In particular, the following methodology was applied:

- irst we check if the user's account belongs to an organization
- then, if the user is male (or female)
- finally, if none of the previous constraints were satisfied, we do not consider this user

Definition

A user u belongs to the age bracket $a \in A$ iif their prediction confidence pc is greater or equal than 0.95, i.e.

$$u \in a \iff pc(u, a) \ge 0.95$$

To consider only the users that comply with Theorem 4, we applied the following methodology:

- First we check if $pc(u, >=40) \ge 0.95$
- then, if $1 pc(u, >=40) \ge 0.95$ (i.e. if they have less than forty years)
- finally, if none of the previous constraints were satisfied, we do not consider this user

Valid users - statistics

language	inferred users	valid users	males %	females %	orgs %
Catalan	98 132	73 835	67.30	22.95	9.75
English	3 099 883	2 335 112	63.88	32.16	3.96
Italian	217 340	167 093	67.21	27.96	4.83
Spanish	2 555 941	2 029 765	63.88	33.23	2.89

Table 3: General users statistics for Catalan, English, Italian and Spanish tweets (gender)

language	inferred users	valid users	< 40 %	≥ 40 %
Catalan	98 132	42 383	57.83	42.17
English	3 099 883	1 717 733	68.84	33.16
Italian	217 340	122 271	64.54	35.46
Spanish	2 555 941	1 542 935	84.82	15.18

Table 4: General users statistics for Catalan, English, Italian and Spanish tweets (age)

Data normalization (categories)

We also wanted to study whether a certain category $c \in C$ expressed at time t more (or less) emotion e (e.g. sadness, anger) w.r.t the mean value for emotion e in the period of time [0, T], regardless of the category.

For this reason, we applied Theorem 5 to our data:

Definition

Given $f_{e,c}(t)$, i.e. the proportion of users belonging to category $c \in C$ that expressed emotion e at time t, and the period of time [0, T],

$$v_{e,c}(t) = rac{f_{e,c}(t) - \mu_{[0,T]}(f_e)}{\mu_{[0,T]}(f_e)}$$

where
$$\mu_{[0,T]}(f_e) = \frac{1}{\mid T \mid} \sum_{t=0}^{T} f_e(t) = \frac{1}{\mid T \mid} \sum_{t=0}^{T} \sum_{c \in C} f_{e,c}(t)$$

Comparison between EmoLex and LIWC

 $\begin{tabular}{ll} Figure 9: Comparison between the z-score of the emotions and the z-score of the LIWC categories \\ \end{tabular}$

Emotion in the English tweets (subplots)

 $\textbf{Figure 10:} \ \ \textbf{Proportion of weekly users expressing a particular emotion in the English tweets}$

Most used words on 2020/02/24 in the English tweets

 $\textbf{Figure 11:} \ \ Proportion of most used words on 2020/02/24 \ that express emotion/sentiment in the English tweets$

Figure 12: Proportion of 15 most used words on 2020/02/24 per emotion in the English tweets

Number of emotions per age for a given week in the English tweets

Figure 13: Proportion of users per age expressing zero or more emotions/sentiments

Users per state in the Italian tweets

Figure 14: Proportion of users per state in Italy

Tweets from Campania expressing anger per week

Figure 15: Italian tweets from Campania expressing anger per week

Tweets from Campania expressing joy per week

Figure 16: Italian tweets from Campania expressing joy per week