

16TH EUROPEAN CONFERENCE ON

COMPUTER VISION

WWW.ECCV2020.EU

Hierarchical Kinematic Human Mesh Recovery

Georgios
Georgakis*

Ren Li*

Srikrishna Karanam

Terrence Chen

Jana Kosecka

Ziyan Wu

Current Works

[Kanazawa et al. 2018]

[Kolotouros et al. 2019]

SMPL Body Model

- Differentiable generative model parameterized by pose θ and shape β .
- Hierarchical structure inspired by the standard skeletal rig.

Forward process of the SMPL model

The standard skeletal rig: root first followed by other joints

Regressing 3D Rotations

- Direct regression of rotation parameters is very challenging [Kendall et al. CVPR 2017]
 - Euler angles wrap around 2π radians.
 - Rotation matrices are overparametrized.
 - More pronounced in occlusions.
- Considering geometry when designing the regressor.
 - Geometry of human body model → Modeling the interdependencies of the limbs and the joints.
 - Can help infer occluded joints.

$$\Theta^{t} = [\theta^{t}_{root}, \theta^{t}_{head}, \theta^{t}_{R.arm}, \theta^{t}_{L.arm}, \theta^{t}_{R.leg}, \theta^{t}_{L.leg}] \qquad \Longrightarrow \qquad [\beta^{t-1}, \Theta^{t}, \Phi] \Longrightarrow \beta^{t}$$

Drawing Inspiration from Inverse Kinematics

- Estimate how joint angles change together to reach certain pose.
- Typically solved in iterative fashion.

Inner Chain Iterations

Learning Objective

- 3D Joints: $\sum_{i=1}^{N} ||\hat{X}_{i}^{t} X_{i}||_{1}$
- 2D Joints: $\sum_{i=1}^{N} \|\hat{x}_i^t x_i\|_1$
- SMPL parameters: $\| [\widehat{\Theta}^t, \widehat{\beta}^t] [\Theta, \beta] \|_2^2$
- Pose prior: $KL(Z_{\widehat{\Theta}^t} || \mathcal{N}(0, \mathcal{I}))$ [Pavlakos et al. 2019]

We perform a single backward pass by adding all losses over T outer iterations.

Experiments

LSP Human3.6M MPII COCO

• Evaluation metric: Mean per joint position error (MPJPE)

Synthetically generated occlusion set

(a) Original

(b) Oriented bar

(c) Circle

(d) Rectangle

Encoder-Regressor

	#Param	Standard		Bar		Circle		Rectangle	
		P1	P2	P1	P2	P1	P2	P1	P2
HMR [5]	26.8M	87.97	88.00	98.74	98.54	95.28	91.71	100.23	99.61
CMR [8]	42.7M	74.70	71.90	82.99	78.85	83.50	79.24	89.01	84.73
HKMR	26.2M	71.08	67.74	78.34	74.91	77.60	71.38	81.33	76.79

Robustness to varying degrees of occlusion

Encoder-Regressor-Optimizer

	3.6M Standard		Bar		Circle		Rectangle		MPII	MPJPE	PCK
MPJPE (mm)↓	P1	P2	P1	P2	P1	P2	P1	P2	Invisible	$(pixel) \downarrow$. (%)↑
SPIN [6]	65.60	62.23	74.40	68.61	74.06	67.03	77.21	70.35	SPIN [6]	59.52	62.16
\mathbf{HKMR}_{MF}	64.02	59.62	70.10	64.91	69.60	63.22	70.10	64.91	\mathbf{HKMR}_{MF}	55.56	66.24

LSP	FB Seg.		Part Seg.		Human3.6M	P1	P2
	acc.	f1	acc.	f1	HMR [5]	87.97	88.00
Oracle [3]	92.17	0.88	88.82	0.67	Arnab $et \ al. \ [20]$	-	77.80
SMPLify [3]	91.89	0.88	87.71	0.64	HoloPose [16]	-	64.28
SMPLify+[28]	92.17	0.88	88.24	0.64	CMR [8]	74.70	71.90
HMR[5]	91.67	0.87	87.12	0.60	DaNet [17]	-	61.50
CMR [8]	91.46	0.87	88.69	0.66	DenseRaC [18]	76.80	-
TexturePose [21]	91.82	0.87	89.00	0.67	VIBE [19]	-	65.60
SPIN [6]	91.83	0.87	89.41	0.68	SPIN [6]	65.60	62.23
\mathbf{HKMR}_{MF}	92.23	0.88	89.59	0.69	\mathbf{HKMR}_{MF}	64.02	59.62

Conclusion

- A new method for human mesh recovery that exploits the geometry of the parametric human model.
- Demonstrates robustness to occlusions and achieves state-of-art results on popular benchmarks.
- Compatible with existing model paradigms.

