6. VECTOR CALCUSUS

DOT/SCALAR PRODUCT:	CORSS/ VECTOR PRODUCT:
$\bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = a b \cos \theta$	$\bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \end{vmatrix} = a b \sin \theta \ \hat{n}$
	$\begin{vmatrix} b_1 & b_2 & b_3 \end{vmatrix}$
DIVERGENCE OF FUNCTION: $\nabla \cdot \bar{F}$	NIBAL OR DEL $(\nabla) = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
CURL OF FUNCTION: $\nabla \times \bar{F}$	

GRADIENT OF A SCALAR FUNCTION: $\nabla * \overline{F} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

- 1. Gradient of a scalar function gives vector function.
- 2. Gradient of a scalar function is rate of change of function with respect to "x", "y", "z".
- 3. From a scalar field, we can obtain vector filed by gradient.

APPLICATION OF GRADIENT OF A SCALAR FUNCTION:

1.	The unit normal vector to the surface $\emptyset(x, y, z)$ at point p is given by,	$\hat{n} = \frac{\nabla \emptyset}{ \nabla \emptyset } \bigg _{at \ p}$
2.	The directional derivative of surface $\emptyset(x, y, z)$ at point p in the direction \bar{a} of is given by,	$\nabla \emptyset _{@p} \cdot \frac{\overline{a}}{ \overline{a} }$
3.	The maximum value of the directional derivative of surface $\emptyset(x, y, z)$ at point p is given by,	$\nabla \emptyset _{@p}$

SUMMARY OF DIVERGENCE OF FUNCTION:

1.	The divergence of the vector field given by,	$\nabla \cdot \bar{a} = \frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}$
2.	From a vector field, we can obtain scalar filed by gradient.	
3.	The divergence of the gradient is Laplacian.	$\nabla \cdot (\nabla \bar{a}) = \nabla^2 \bar{a} = \frac{\partial^2 a_1}{\partial x^2} + \frac{\partial^2 a_2}{\partial y^2} + \frac{\partial^2 a_3}{\partial z^2}$
4.	The divergence measures outflow minus in flow.	·
5.	\bar{a} is referred to solenoidal or divergence free, if $\nabla \cdot \bar{a} = 0$	

SUMMARY OF CURL:

1.	\bar{a} is Curl free/irrotational vector, if $\nabla \times \bar{a} = \bar{0}$	
2.	Gradient field are irrotational.	$\nabla \times (\nabla \bar{a}) = \bar{0}$
3.	Divergence of curl of a vector function is zero.	$\nabla \cdot (\nabla \times \bar{a}) = \bar{0}$

INTRODUCTION TO VECTOR INTEGRATION:

Line Integration: $\int_a^b f(x)dx$	Line/Contour Integration: $\int_{c} \vec{F} \cdot d\vec{r}$
Double Integration: $\iint_{Region} f(x, y) dxdy$	Closed Contour Integration: $\oint_C \vec{F} \cdot d\vec{r}$
Double Integration: $\iint_{Region} f(x, y) dxdy$	Surface Integration: $\iint_{S} \vec{F} \cdot \hat{n} dS$
Triple Integration: $\iiint f(x, y, z) dx dy dz$	Closed Surface Integration: $\oiint_S \vec{F} \cdot \hat{n}dS$

Area of a triangle formed by the tips of vectors \vec{a} , \vec{b} , $\vec{c} = \frac{1}{2} |(\vec{a} - \vec{b}) \times (\vec{a} - \vec{c})|$ Vector triple product $\vec{a} \times (\vec{b} \times \vec{c})$ of three vectors \vec{a} , \vec{b} , $\vec{c} = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$

The parametric representation of the curve C is given by,

$\vec{r}(t) = (x(t), y(t), z(t)), a \le t \le b, \vec{r}(t) = 1$ $d\vec{r}(t) = \vec{r}'(t) dt = [dx(t), dy(t), dz(t)]$ $\vec{F} = F_1 i + F_2 j + F_3 k$	$\int_{c} \vec{F} \cdot d\vec{r} = \int_{c} \vec{F} \cdot \vec{r}' dt$
---	--

- 1) In the aerodynamics and fluid mechanics $\oint_C \vec{F} \cdot d\vec{r}$ is called circulation of \vec{F} around C where $\vec{F} = Fluid\ velocity$.
- 2) Work done by Force: \vec{F} is a force acting on a particle which moves a point P_1 to P_2 , along the line integral $\int_C \vec{F} \cdot d\vec{r}$ gives the total amount of work done by \vec{F} .

The value of the integral of a vector point function $\int_{P_1}^{P_2} \vec{F} \cdot d\vec{r}$ depends on the path C joining P_1 and P_2 (unless the vector function is irrotational.)

If the \vec{F} is a conservative field or an irrotational vector (i.e. $\nabla \times \vec{F} = \vec{0}$) in a region "R" then

1. The line integral is $\int_{P_1}^{P_2} \vec{F} \cdot d\vec{r}$ independent of path C joining P_1 and P_2 in region "R" and

$$\int_{P_1}^{P_2} \vec{F} \cdot d\vec{r} = \int_{P_1}^{P_2} \nabla \emptyset \cdot d\vec{r} = \int_{P_1}^{P_2} \mathrm{d}\emptyset = \emptyset(P_2) - \emptyset(P_1), where \ \emptyset = scalar \ potential \ function$$

2. $\oint_C \vec{F} \cdot d\vec{r} = 0$ around any closed curve C in region "R".

GREENS THEOREM:

Let "R" be a closed bounded region in the XY-plane whose boundary C. Let $\vec{F} = F_1 i + F_2 j$ be a vector function such that $F_1(x, y)$ and $F_2(x, y)$ are functions that are continuous and have continuous partial derivatives. Then

$$\int_{c} \vec{F} \cdot d\vec{r} = \oint_{c} F_{1} dx + \oint_{c} F_{2} dy = \iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy, Where The direction of C is counter Clockwise.$$

$$\int_{c} \vec{F} \cdot d\vec{r} = -\iint_{R} \left(\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right) dx dy, Where The direction of C is Clockwise.$$

SURFACE INTEGRAL:

Consider a surface "S". Divide the area "S" into "M" elements of area ΔS_p where p=1,2,3,...,M. Choose any point Q_p coordinates are (x_p,y_p,z_p) . Let $\vec{F}(x_p,y_p,z_p)=\overrightarrow{F_p}$ and $\overrightarrow{n_p}$ be the positive unit normal vector to ΔS_p and Q_p . Form the sum $\sum_{p=1}^{M} \overrightarrow{F_p} \cdot \vec{n} \, \Delta S_p$. Where, $\overrightarrow{F_p} \cdot \vec{n}$ is normal component of $\overrightarrow{F_p}$ at Q_p . Now take the limit of this sum as $M \rightarrow \infty$.

This limit is called surface integral of the normal component of \vec{F} over S and is denoted by $\iint_S \vec{F} \cdot \vec{n} \, dS$.

$\iint_{S} \vec{F} \cdot \vec{n} dS = \sum_{p=1}^{M} \overrightarrow{F_{p}} \cdot \vec{n} \Delta S_{p} = \int_{S} \vec{F} \cdot \vec{n} dS$	$ \oint_S \vec{F} \cdot \vec{n} dS = closed surface integral. $

Method of evolution of surface integral:

If R_1 is the projection of S on XY-plane	$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{R_{1}} (\vec{F} \cdot \vec{n}) \frac{dxdy}{ \vec{n} \cdot \vec{k} }$
If R_2 is the projection of S on YZ-plane	$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{R_{2}} (\vec{F} \cdot \vec{n}) \frac{dxdy}{ \vec{n} \cdot \vec{i} }$
If R_3 is the projection of S on ZX-plane	$\iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{R_{3}} (\vec{F} \cdot \vec{n}) \frac{dxdy}{ \vec{n} \cdot \vec{j} }$

STOKES THEOREM (LINE INTEGRAL TO SURFACE INTEGRAL):

If $\vec{F} = F_1 i + F_2 j + F_3 k$ is a differential vector function defined open surface S bounded by a simple closed curve C,

$$\int_{c} \vec{F} \cdot d\vec{r} = \oint_{c} F_{1} dx + \oint_{c} F_{2} dy + \oint_{c} F_{3} dz = \iint_{S} (\nabla \times \vec{F}) \cdot \vec{n} ds,$$

Where, \vec{n} is the outward unit normal vector to the surface S.

GAUSS DIVERGENCE THEOREM (CLOSED SURFACE INTEGRAL TO VOLUME INTEGRAL):

If $\vec{F} = F_1 i + F_2 j + F_3 k$ is a differential vector function defined open surface S enclosing volume V,

$$\iint_{S} \vec{F} \cdot \vec{n} \, dS = \iiint_{V} (\nabla \times \vec{F}) \, dV$$