PRACTICE QUIZ 14 SOLUTIONS

ADRIAN PĂCURAR

Time: 15 min

Time to beat: ? min

Problem 1. Compute the limit $\lim_{x\to\infty} \frac{\sin x}{x}$.

We know that the sine function oscillates between -1 and 1, i.e

$$-1 < \sin x < 1$$

and since we are computing a limit as $x \to +\infty$, we can assume x is positive. Then dividing everything by x doesn't change the inequality sign, so

$$\frac{-1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$$

Now both the left and the right functions (-1/x and 1/x) go to zero as $x \to \infty$, so by the Squeeze Theorem

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

Note this is the rigorous way of doing it. In practice, I always just think of $\sin(x)$ as something between -1 and 1, so dividing that by x is like having $\frac{C}{x}$ where I treat C as a constant. Then clearly the limit as $x \to \infty$ must be zero.

Problem 2. Compute $\lim_{x\to\infty} \frac{2-\cos x}{x+3}$.

We know

$$-1 < \cos x < +1$$

We somehow want the middle term to first look like $2 - \cos x$ then divide by x + 3, which will give us our original function in the middle. First multiply by -1 so the order of the inequality switches

$$1 > -\cos x > -1$$

and add 2 to all sides

$$3 > 2 - \cos x > 1$$

which we may as well write as

$$1 < 2 - \cos x < 3$$

Now in our limit $x \to +\infty$, so we assume x is positive, and so is x + 3, which allows us to divide by x + 3 without switching inequalities, which gives us

$$\frac{1}{x+3} \le \frac{2 - \cos x}{x+3} \le \frac{3}{x+3}$$

Finally since both the left and the right functions go to zero as $x \to \infty$, the Squeeze Theorem tells us that

$$\lim_{x \to \infty} \frac{2 - \cos x}{x + 3} = 0$$

This is how we do it rigorously. But in practice it helps to think of $\cos x$ as something between -1 and 1, so we can treat the numerator as some constant. Dividing that by x+3 means the limit has to be zero as $x \to \infty$, because it's as if we had $\frac{C}{x+3}$ for some constant C.

Problem 3. Compute $\lim_{x\to\infty} \frac{\cos^2 x}{3-2x}$.

We know

$$-1 \le \cos(x) \le +1$$

which we may as well write in terms of absolute value as

$$|\cos(x)| \le 1$$

Now squaring both sides preserves the inequality, so

$$|\cos(x)|^2 \le 1^2 = 1$$

and by the properties of absolute value this is

$$|\cos^2(x)| \le 1$$

but squaring something is always nonnegative so we can drop the absolute value and just write

$$0 \le \cos^2(x) \le 1$$

Now as $x \to +\infty$, the denominator 3-2x is negative so dividing by it switches our inequalities, giving us

$$\frac{0}{3-2x} \ge \frac{\cos^2(x)}{3-2x} \ge \frac{1}{3-2x}$$

which is the same as

$$\frac{1}{3 - 2x} \le \frac{\cos^2(x)}{3 - 2x} \le 0$$

but since $\lim_{x\to\infty}\frac{1}{3-2x}=0$, and the right side is also zero, the Squeeze Theorem tells us that

$$\lim_{x \to \infty} \frac{\cos^2 x}{3 - 2x} = 0$$

This is how we do it rigorously. In practice, I know cosine is between -1 and 1, so its square must be between 0 and 1. Then it's as if I'm taking the limit of $\frac{C}{3-2x}$ for some constant C between 0 and 1, but that's zero as $x \to \infty$.

Problem 4. Compute the left-sided limit $\lim_{x\to 0^-} x^3 \cos\left(\frac{2}{x}\right)$.

We've seen a few solutions on how to do it the formal way, being careful with inequalities and such. Let's do this one the informal way. I know that no matter what I plug into my cosine function, it will be something between -1 and 1 (same is true for sine).

So I can think of my limit as $\lim_{x\to 0^-} Cx^3$ for some constant C between 0 and 1. But $x^3\to 0$, so the limit has to be zero.

Alternately, because of what we know about cosine, we have

$$(-1) \cdot |x^3| \le \left| x^3 \cos\left(\frac{2}{x}\right) \right| \le (+1) \cdot |x^3|$$

but the left and right functions both go to zero as $x \to 0^-$. So my limit is zero.

Problem 5. Find $\lim_{x\to\infty} \frac{x^2(2+\sin^2 x)}{x+100}$.

The $2 + \sin^2 x$ term in the numerator oscillates between 2 and 3 (because the sine squared is between 0 and 1), so really we are looking at a limit of the form (C is a positive constant between 2 and 3):

$$\lim_{x \to \infty} \frac{Cx^2}{x + 100} = +\infty$$

so our original limit has to be $+\infty$ (i.e. does not exist).