Tarea 15

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
2 de diciembre de 2022

Tarea 15

Sección 7.5

${\bf \acute{I}ndice}$

Punto 1	3
Punto 2	3
Punto 3	3
Punto 4	3
Punto 5	4
Punto 7	4
Punto 8	5
Punto 9	5
Punto 10	5

Punto 1

Reflexividad de "="

$$(\forall x \in \mathbb{R} \mid : x = x)$$

Basta demostrar x = x en \mathbb{R} (MT 7.20)

$$0. \ x = x \quad \text{Bx6}$$

Punto 2

Simetría de "="

$$(\forall x, y \in \mathbb{R} \,|\, x = y : y = x)$$

 Γ

Basta demostrar $x=y\to y=x$ en $\mathbb R$ Suponga $\Gamma=\{x=y, \neg y=x\}$

 $0. \ x = y$

1. $\neg y = x$

2. $\neg y = x \rightarrow (\neg y = x)[x := y]$ Bx4(p0)

3. $(\neg y = x)[x := y]$ MPP(p2, p1)

 $4. \ \neg y = y \tag{p3}$

5. false $y = y \equiv true$

Punto 3

Transitividad de "="

$$(\forall x, y, z \in \mathbb{R} \mid x = y \land y = z :)$$

Basta con demostrar $x = y \land y = x \rightarrow x = z$ en \mathbb{R}

Punto 4

"Leibniz" con igualdad

0. t = u Suposición

1. u = t Reflexividad(=)(p0)

2. $t = u \rightarrow (\phi \equiv \phi[t := u])$ Bx7(p0)

3. $\phi \equiv \phi[t := u]$ MPP(p2, p0)

4. $u = t \rightarrow (\phi \equiv \phi[u := t])$ Bx7(p1)

5. $\phi \equiv \phi[u := t]$ MPP(p4, p1)

6. $\phi[t:=u] \equiv \phi[x:=t][t:=u] \equiv \phi[x:=u]$ t, u libres para x en ϕ

7. $\phi[u:=t] \equiv \phi[x:=u][u:=t] \equiv \phi[x:=t]$ t, u libres para x en ϕ

8. $\phi[u:=t] \equiv \phi[t:=u]$ Transitividad(p3, p5)

9. $\phi[x:=t] \equiv \phi[t:=u]$ (p8, p6, p5)

Punto 5

```
Teo 7.28.2 (\exists x \mid x = t : \phi)
\equiv \langle \text{Azúcar sintáctico} \rangle
\exists x(x = t \land \phi)
\equiv \langle \text{Def.}(\forall x), \text{Dist.}(\neg, \land) \rangle
\neg \forall x(\neg x = t \lor \neg \phi)
\equiv \langle (\text{alt.})\text{Def.}(\rightarrow) \rangle
\neg \forall x(x = t \to \neg \phi)
\equiv \langle \text{Regla de un punto} (\forall x) \rangle
\neg \neg \phi[x := t]
\equiv \langle \text{Doble negación} \rangle
\phi[x := t]
```

Punto 7

Punto 8

si a y b se dividen entre si, a = b o a = -b $(\forall a, b \in \mathbb{N} \mid a \cdot \mid b \land b \cdot \mid a : a = b \lor a = -b)$ Basta demostrar $a \cdot |b \wedge b \cdot |a \rightarrow a = b \vee a = -b$ en \mathbb{N} $a{\cdot}|\ b \wedge b{\cdot}|\ a \to a = b \vee a = -b$ $\equiv \langle \operatorname{Def.}(\cdot|) \rangle$ $\exists x (ax = b) \land \exists y (by = a) \rightarrow a = b \lor a = -b$ $\equiv \langle \text{Dist.}(\exists x, \land) \rangle$ $\exists x (ax = b \land \exists y (by = a)) \rightarrow a = b \lor a = -b$ \equiv \langle Teo 7.20.2 \rangle $\forall x (ax = b \land \exists y (by = a) \rightarrow a = b \lor a = -b)$ $\{ax = b \land \exists y(by = a)\} \vdash_{DS(\mathcal{L})} a = b \lor a = -b$ $ax = b \land \exists y(by = a) \rightarrow a = b \lor a = -b$ $\equiv \langle \text{Dist.}(\exists x, \land) \rangle$ $\exists y (ax = b \land by = a) \rightarrow a = b \lor a = -b$ \equiv \langle Teo 7.20.2 \rangle $\forall y (ax = b \land by = a \rightarrow a = b \lor a = -b)$ $\equiv \langle \rangle$ ${ax = b \land by = a} \vdash_{DS(\mathcal{L})} a = b \lor a = -b$ 0. ax = bSuposición 1. by = aSuposición 2. $a = \frac{b}{r}$ Álgebra(p0) $3. \ by = \frac{b}{x}$ Transitividad(=)(p2, p1) 4. $y = \frac{1}{x}$ Álgebra(p3)

Álgebra(p4), $(x, y \in \mathbb{N})$

Transitividad(=)(p5, p0)

5. $x = y = -1 \lor x = y = 1$

6. $-a = b \lor a = b$

Punto 9

Punto 10