# Random Forest and Boost Trees



### Agenda

**Decision Trees** 

Tree Ensemble (Random forest)

**XGBoost** 

Intro to Neural Networks

#### **Decision Trees**

A tree structure that separates data into groups by the feature attributes Can be used for classification and regression



## What's a good decision tree?

Separates the data nicely Within a certain budget (smaller trees) - less overfitting



## How to create a good decision tree?

Pick the attribute that best separates the classes Keep doing it until a leave contains entirely one class or you decide it's not worth it to add more nodes



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

## Entropy

A measure of randomness

$$E(S) = \sum_{c} -p(c) \log_2 p(c)$$
 for  $c \in C$ 



The whole sample space

## Entropy



## Information Gain (IG)

A measure of how much entropy is reduced

$$E = \sum_{c} -p(c) \log_2 p(c) \text{ for } c \in C$$

The whole sample space

All child nodes by that attribute

IG (parent,child) = E(parent) - 
$$\sum_t p(t)E(t)$$
 when t  $\epsilon T$ 



Probability of going to that child node

Entropy of the child node

## Information Gain (IG)

A measure of how much entropy is reduced

$$E = \sum_{c} -p(c) \log_2 p(c) \text{ for } c \in C$$

The whole sample space

All child nodes by that attribute

IG (parent,child) = E(parent) - 
$$\sum_t p(t)E(t)$$
 when t  $\epsilon T$ 

Find the way to split that maximizes IG

#### Problems with Decision Trees

Can overfitting easily

Susceptible to noise or badly labelled data



# TREE ENSEMBLE MODEL

#### Tree ensemble model

Ensemble types are models that combine multiple models together

A group of experts voting on a subject Can lead to less overfitting

Tree ensemble = Multiple trees = Random Forest!

## Bagging

Create multiple subsets of data Each subset is used to train a different tree The final answer is the average or mode

Less overfitting and can handle mislabeled data

#### Random Forest

We can also use bagging on features Each tree has different training samples AND set of features

## **Boosting vs Bagging**

Boosting is another way to create multiple trees

But boosting is iterative, the next tree is based on the errors from the previous trees



https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

## **Boosting vs Bagging**

The selection of training data (bagging process) is based on the previous errors



https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

## **Gradient Boosting**

A method of boosting that use gradient-based methods



## Tree Gradient Boosting

Similar to decision tree

Difference is the leaf node contains a score



https://xgboost.readthedocs.io/en/latest/tutorials/model.html

## Tree Gradient Boosting

= 2 + 0.9= 2.9 f(

Multiple trees with different rules. The subsequent tree try to correct the errors from the previous trees



## Extreme Gradient Boosting (XGBoost)

Super popular Tree Boosting library

Highly recommended for spreadsheets type of input data

```
model = XGBClassifier(
    n jobs=16,
    n estimators=400,
    max depth=4,
    objective="binary:logistic",
    learning rate=0.07,
    subsample=0.9,
    min child weight=6,
    colsample bytree=.9,
    scale pos weight=0.8,
    gamma=8,
    reg alpha=6,
    reg lambda=1.3)
```

Objective <- type of problem you want to solve

Max\_depth <- max depth of tree, higher more overfitting Min\_child\_weight <- how strong must the leave be, higher less overfitting

Gamma <- when to stop splitting early

Reg\_alpha, reg\_lambda <- reduce overftting

Scale\_pos\_weight <- weight for class imbalance

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning\_\_-xgboost-with-codes-python/

## Notes on feature encoding

Categorical features does not mean anything

Type of animal

1 if mouse

Animal type = 2 if bird

3 if dog

4 if insect

Makes it hard to do decision trees

>3

<=3

Animal type

<=3

Animal type

<2

>=2

yes

Is it green?

no

## One hot encoding

Split categorical features into multiple binary features

Type of animal (as one hot)

 $Is_{mouse} = (0,1)$ 

 $Is_bird = (0,1)$ 

 $Is_dog = (0,1)$ 

 $Is_insect = (0,1)$ 

Doesn't change much

Is it green?



## Target encoding

Encode information by looking at how the feature correlates with the final answer

Encoded feature = P(answer = yes| feature value)

0 if mouse

0.3 if bird

Animal type = 0 if dog

0.5 if insect

Need some further smoothing to improve this.

https://dl.acm.org/citation.cfm?id=507538

Is it green?



#### Other XGBoost variants

LightGBM

CatBoost

Different ways to handle categorical encoding.

Different ways to do node splitting (faster)

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

#### Lab

HR data

Class imbalance

XGboost

Encoding

Visualizing trees and feature importance

