

SEQUENCE LISTING

O I P E
DEC 03 2001
RECEIVED
<110> Raucy, Judy

<120> Composition and Methods for Induction of Proteins Involved in Xenobiotic Metabolism

<130> PUR-00114.P.1.1.1.1

<150> US 10/222,679

<151> 2002-08-16

<150> US 09/832,621

<151> 2001-04-11

<150> US 60/196,681

<151> 2000-04-12

<150> US 60/241,391

<151> 2000-10-17

<160> 37

<170> PatentIn version 3.2

<210> 1

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> synthetic construct

<400> 1

atggaggtga gacccaaaga a

21

<210> 2

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> synthetic construct

<400> 2

ctcagctacc tgtgatgccg a

21

<210> 3
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 3
agactcacct ctgttcaggg aaa

23

<210> 4
<211> 16
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 4
caccttggaa gttggc

16

<210> 5
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 5
gattgttcaa agtggacccc a

21

<210> 6
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 6
tgtccttcct gaggaatgct a

21

<210> 7		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 7		
atggaggtga gacccaaaga a		21
<210> 8		
<211> 22		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 8		
tcaagctaccc cgtgatgccg aa		22
<210> 9		
<211> 1305		
<212> DNA		
<213> Monkey		
<400> 9		
ctggaggtga gacccaaaga aggctggaac catgctgact ttgtatactg tgaggacaca		60
gagtttgctc ctggaaagcc cactgtcaac gcagatgagg aagttggggg tccccaaatc		120
tgccgtgtat gtggggacaa ggccactggt tatcaattca atgtcatgac atgtgaaggg		180
tgcaagggct ttttcaggag ggccatgaaa cgcaacgccc gccttaggtg ccccttccgg		240
aagggcgcct gcgagatcac ccggaagacc cggcgacagt gccaggcctg cggctgcgc		300
aagtgcctgg agagcggcat gaagaaggag atgatcatgt ccgacgcggc cgtagaggag		360
aggcgggcct tcatcaagag gaagaaaaga gaacggatcg ggactcagcc acccggagtg		420
caggggctga cggaggagca gcggatgatg atcagggagc tgatggacgc tcagatgaaa		480
acctttgaca ctacttctc ccatttcaag aatttccggc tgccaggggt gcttagcagt		540
ggctgtgaga tgccagagtc tctgcaggcc ccatcgaggg aagaagctgc caagtggAAC		600
caggtcagga aagatctgtg gtctgtgaag gtctccgtgc agctgcgggg ggaggatggc		660
agtgtctgga actacaaacc cccagccgac aatggcgaaa aagagattt ctccctgctg		720
ccccacatgg ctgacatgtc aacctacatg ttcaaaggca tcatcaactt tgccaaagtc		780
atctcctact tcagggacct gcccatttag gaccagatct ccctactgaa gggggccact		840

tttgagctgt	gccagctgag	attcaacaca	gtattcaacg	tggagactgg	aacttgggag	900
tgtggccggc	tgtcctactg	cttggaaagac	cctgcaggtg	gttccagca	acttctgctg	960
gagccccatgc	tgaaaattcca	ctacatgctg	aagaagctgc	agctacacga	ggaggagtat	1020
gtgctgatgc	aggccatctc	cctcttctcc	ccagaccgccc	caggtgttgt	gcagcaccac	1080
gtgggtggacc	agctgcagga	gcaatacgct	attactctga	agtcctacat	tgaatgcaat	1140
cggcccccagc	ctgctcatag	gttcctgttc	ctgaagatca	tggctatgct	caccgagctc	1200
cgcagcatca	acgcccagca	cacccagcgg	ctgctgcgca	tccaggacat	acaccccttt	1260
gctacgcccc	tcatgcagga	gttggcggc	atcacgggta	gctga		1305

<210> 10
<211> 434
<212> PRT
<213> Monkey

<400> 10

Leu	Glu	Val	Arg	Pro	Lys	Glu	Gly	Trp	Asn	His	Ala	Asp	Phe	Val	Tyr
1				5					10				15		

Cys	Glu	Asp	Thr	Glu	Phe	Ala	Pro	Gly	Lys	Pro	Thr	Val	Asn	Ala	Asp
			20				25					30			

Glu	Glu	Val	Gly	Gly	Pro	Gln	Ile	Cys	Arg	Val	Cys	Gly	Asp	Lys	Ala
					35		40				45				

Thr	Gly	Tyr	His	Phe	Asn	Val	Met	Thr	Cys	Glu	Gly	Cys	Lys	Gly	Phe
				50			55				60				

Phe	Arg	Arg	Ala	Met	Lys	Arg	Asn	Ala	Arg	Leu	Arg	Cys	Pro	Phe	Arg
65					70				75			80			

Lys	Gly	Ala	Cys	Glu	Ile	Thr	Arg	Lys	Thr	Arg	Arg	Gln	Cys	Gln	Ala
					85			90				95			

Cys	Arg	Leu	Arg	Lys	Cys	Leu	Glu	Ser	Gly	Met	Lys	Lys	Glu	Met	Ile
					100		105						110		

Met	Ser	Asp	Ala	Ala	Val	Glu	Glu	Arg	Arg	Ala	Leu	Ile	Lys	Arg	Lys
						115		120				125			

Lys	Arg	Glu	Arg	Ile	Gly	Thr	Gln	Pro	Pro	Gly	Val	Gln	Gly	Leu	Thr
						130		135			140				

Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys
145 150 155 160

Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly
165 170 175

Val Leu Ser Ser Gly Cys Glu Met Pro Glu Ser Leu Gln Ala Pro Ser
180 185 190

Arg Glu Glu Ala Ala Lys Trp Asn Gln Val Arg Lys Asp Leu Trp Ser
195 200 205

Val Lys Val Ser Val Gln Leu Arg Gly Glu Asp Gly Ser Val Trp Asn
210 215 220

Tyr Lys Pro Pro Ala Asp Asn Gly Gly Lys Glu Ile Phe Ser Leu Leu
225 230 235 240

Pro His Met *ala* Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Asn
245 250 255

Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln
260 265 270

Ile Ser Leu Leu Lys Gly Ala Thr Phe Glu Leu Cys Gln Leu Arg Phe
275 280 285

Asn Thr Val Phe Asn Val Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu
290 295 300

Ser Tyr Cys Leu Glu Asp Pro Ala Gly Gly Phe Gln Gln Leu Leu Leu
305 310 315 320

Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His
325 330 335

Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp
340 345 350

Arg Pro Gly Val Val Gln His His Val Val Asp Gln Leu Gln Glu Gln
355 360 365

Tyr Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro
 370 375 380

Ala His Arg Phe Leu Phe Leu Lys Ile Met *ala* Met Leu Thr Glu Leu
 385 390 395 400

Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp
 405 410 415

Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr
 420 425 430

Gly Ser

<210> 11
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 11
atgacagcca ccccaacacg t

21

<210> 12
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 12
aaggaagtga gcatggcctc a

21

<210> 13
<211> 1104
<212> DNA
<213> Monkey

<400> 13
atgacagcca ccccaacacg tgatgtcatg gccagtaggg aagatgagct gaggaactgt 60

gtggtatgtg gggaccaggc cacaggctac cacttcaacg cgctgacttg tgagggctgc 120

aagggtttct tcaggagaac agtcagcaa agcattggtc ccacctgccc ctttgctgga 180

agctgtgaag tcagcaagat tcagaggcgc cactgcccag cctgcagggtt gcagaagtgc 240

ttagatgctg gcatgaggaa agacatgata ctgtcggcag aagccctggc attgcggcga	300
gcaaaggcagg cccagcggcg ggcacagcaa acaccatgc aactgagtaa tgagcaagaa	360
gagttgatcc agacactcct gggggcccac acccgccaca tgggcaccat gtttgaacag	420
tttgtgcagt tttaggcctcc agctcatctg ttcatccatc accagccctt gcccacccctg	480
gcgcctgtgc tgcctctggc cacacacttc gcagacgtca acacgttcat ggtacagcaa	540
gtcatcaagt ttaccaagga cctgcctgtc ttccgttctc tgcccattga agaccagatc	600
tcccttctca agggagcagc tgtggaaatc tgtcatatcg tactcaatac cactttctgt	660
ctccaaacac aaaacttcct ctgcgggcct ctgcgttaca caattgaaga cgccagccgt	720
gtatctcccg cagtggggtt ccaggttagag tttttggagt tgctcttca cttccatgga	780
acactacgaa aactgcagct ccaggagcct gagtatgtgc tcttggctgc catggccctc	840
ttctctcctg accgacacctgg agttacccag agacatgaga ttgatcagct gcaagaggag	900
atggcaactga ctctgcaaag ctacatcaag ggccagcagc aaaggccccg ggatcggttt	960
ctgtatgcga agttgctggg cctgctggct gagctccgga gcattaatga ggcctacggg	1020
taccaaatcc agcacatcca gggcctgtct gccatgtatgc cattgctcca ggagatctgc	1080
agctgaggcc atgctcactt cctt	1104

<210> 14
<211> 361
<212> PRT
<213> Monkey

<400> 14

Met Thr Ala Thr Pro Thr Arg Asp Val Met *ala* Ser Arg Glu Asp Glu
1 5 10 15

Leu Arg Asn Cys Val Val Cys Gly Asp Gln Ala Thr Gly Tyr His Phe
20 25 30

Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Thr Val
35 40 45

Ser Lys Ser Ile Gly Pro Thr Cys Pro Phe Ala Gly Ser Cys Glu Val
50 55 60

Ser Lys Ile Gln Arg Arg His Cys Pro Ala Cys Arg Leu Gln Lys Cys
65 70 75 80

Leu Asp Ala Gly Met Arg Lys Asp Met Ile Leu Ser Ala Glu Ala Leu
85 90 95

Ala Leu Arg Arg Ala Lys Gln Ala Gln Arg Arg Ala Gln Gln Thr Pro
100 105 110

Met Gln Leu Ser Asn Glu Gln Glu Glu Leu Ile Gln Thr Leu Leu Gly
115 120 125

Ala His Thr Arg His Met Gly Thr Met Phe Glu Gln Phe Val Gln Phe
130 135 140

Arg Pro Pro Ala His Leu Phe Ile His His Gln Pro Leu Pro Thr Leu
145 150 155 160

Ala Pro Val Leu Pro Leu Val Thr His Phe Ala Asp Val Asn Thr Phe
165 170 175

Met Val Gln Gln Val Ile Lys Phe Thr Lys Asp Leu Pro Val Phe Arg
180 185 190

Ser Leu Pro Ile Glu Asp Gln Ile Ser Leu Leu Lys Gly Ala Ala Val
195 200 205

Glu Ile Cys His Ile Val Leu Asn Thr Thr Phe Cys Leu Gln Thr Gln
210 215 220

Asn Phe Leu Cys Gly Pro Leu Arg Tyr Thr Ile Glu Asp Ala Ala Arg
225 230 235 240

Val Ser Pro Ala Val Gly Phe Gln Val Glu Phe Leu Glu Leu Leu Phe
245 250 255

His Phe His Gly Thr Leu Arg Lys Leu Gln Leu Gln Glu Pro Glu Tyr
260 265 270

Val Leu Leu Ala Ala *Met ala* Leu Phe Ser Pro Asp Arg Pro Gly Val
275 280 285

Thr Gln Arg His Glu Ile Asp Gln Leu Gln Glu Glu *Met ala* Leu Thr
290 295 300

Leu Gln Ser Tyr Ile Lys Gly Gln Gln Gln Arg Pro Arg Asp Arg Phe
305 310 315 320

Leu Tyr Ala Lys Leu Leu Gly Leu Leu Ala Glu Leu Arg Ser Ile Asn
325 330 335

Glu Ala Tyr Gly Tyr Gln Ile Gln His Ile Gln Gly Leu Ser Ala Met
340 345 350

Met Pro Leu Leu Gln Glu Ile Cys Ser
355 360

100

<210> 15
<211> 26
<212> DNA
<213> Homo sapiens

<400> 15
aaccaaactc ttctgacccc caatct

26

<210> 16
<211> 6
<212> DNA
<213> Homo sapiens

<400> 16
aggta

6

<210> 17
<211> 6
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(6)
<223> n is t or g

<400> 17
agntca

<210> 18
<211> 12
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> n is t or g

<220>
<221> misc_feature
<222> (2)..(2)
<223> n is any nucleotide

<220>
<221> misc_feature
<222> (9)..(9)
<223> n is a or c

<220>
<221> misc_feature
<222> (10)..(10)

<223> n is g or c	
<400> 18	
nngcgtgann aa	12
<210> 19	
<211> 30	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic construct	
<400> 19	
ttgcgtgcga ttgcgtgcga ttgcgtgcga	30
<210> 20	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 20	
ttgcgtgcga	10
<210> 21	
<211> 38	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic construct	
<400> 21	
tcgatcgac gcaatcgac gcaatcgac gcaagtac	38
<210> 22	
<211> 10	
<212> DNA	
<213> Homo sapiens	
<400> 22	
tcgcacgcaa	10

<210> 23
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 23
aaataagctt gaggagctca cctctg

26

<210> 24
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 24
agtttccat ggccaagtct gggat

25

<210> 25
<211> 24
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 25
atttgagctc tggggtcccc cttg

24

<210> 26
<211> 26
<212> DNA
<213> artificial sequence

<220>
<223> synthetic construct

<400> 26
cacagcttagc aatgatcaaa gatgac

26

<210> 27
<211> 24
<212> DNA
<213> artificial sequence

<220>		
<223> synthetic construct		
<400> 27		
taaagtcgac aaaaatttaa cgcg		24
<210> 28		
<211> 21		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 28		
agagggtcgac ggtatacaga c		21
<210> 29		
<211> 25		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 29		
ataaggtacc aactgttcat tggtc		25
<210> 30		
<211> 25		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 30		
aattctcgag cttataaaaa cacca		25
<210> 31		
<211> 25		
<212> DNA		
<213> artificial sequence		
<220>		
<223> synthetic construct		
<400> 31		
ggttggaaagc taacccttgt gattt		25
<210> 32		
<211> 25		
<212> DNA		

<213> artificial sequence	
<220>	
<223> synthetic construct	
<400> 32	
cgagatgggt aactgaagtg aacat	25
<210> 33	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic construct	
<400> 33	
tcccgaaaaga tctgtgctct t	21
<210> 34	
<211> 21	
<212> DNA	
<213> artificial sequence	
<220>	
<223> synthetic construct	
<400> 34	
agtctcttcc aagcagtagg a	21
<210> 35	
<211> 25	
<212> DNA	
<213> Homo sapiens	
<400> 35	
aatgaaccct atcataaact atgag	25
<210> 36	
<211> 22	
<212> DNA	
<213> Homo sapiens	
<400> 36	
cctgtacttt cctgaccctg aa	22

105

<210> 37
<211> 21
<212> DNA
<213> Homo sapiens

<400> 37
aatgaacttg ctgaccctct g

21