Cartesian Cubical Computational Type Theory

Favonia

U of Minnesota

Joint work with Carlo Angiuli, Evan Cavallo, Daniel R. Grayson, Robert Harper, Anders Mörtberg and Jonathan Sterling

Oxford - 2018/7/8

Some History

Coquand's notes 20??

BL 2014

/ B

AHW 2016 (CHTT Part I)

Cartesian cubical + computational

AH 2017 (CHTT Part II)

Dependent types

AFH 2017 (CHTT Part III)

Univalent Kan universes

CH 2018 (CHTT Part IV)

Higher inductive types Identification types

Some History

Some History

New Features of HoTT

Univalence

if e is an equivalence between types A and B, then ua(E):A=B

Higher Inductive Types

Equality and Paths

Definitional Equality

Silent in theory

If A = B and M : A then M : B

Paths

Visible in theory

If P : Path(A, B) and M : A then transport(M,P) : B

Not Math Equality!

Definitional Equality Issue #1

Not very extensional

$$x : \mathbb{N}, y : \mathbb{N} \vdash x + y \not\equiv y + x : \mathbb{N}$$

(various reasonable trade-offs)

Not Math Equality!

Definitional Equality Issue #2

```
winding : \pi_1(S^1) \to \mathbb{Z}
winding(loop) \neq any numeral
```

Not Math Equality!

Definitional Equality Issue #2

winding : $\pi_1(S^1) \to \mathbb{Z}$ winding(loop) \neq any numeral

Canonicity

For any $M : \mathbb{N}$, there is a numeral \mathbb{N}^* such that $\mathbb{N} = \mathbb{N}^* : \mathbb{N}$

Canonicity for IN means canonicity for every type

Canonicity for IN means canonicity for *every* type

$$M : \mathbb{N} \times A$$

 $fst(M) \equiv ??? : \mathbb{N}$

Want $M \equiv \langle P, Q \rangle$ and then $fst(M) \equiv fst \langle P, Q \rangle \equiv P \equiv some numeral$

But canonicity fails for paths!

But canonicity fails for paths!

$$J(ua(E), x.N) = ???$$
$$J(loop, x.N) = ???$$

Can we have canonicity + univalence?

Yes with De Morgan cubes [CCHM 2016] Yes with Cartesian cubes [AFH 2017]

And higher inductive types?

Important examples with De Morgan cubes [CHM 2018] Yes with Cartesian cubes [CH 2018]

Cubes

Idea: each type manages its own paths

Cubes

Idea: each type manages its own paths

loop:base = base

Cubes

Idea: each type manages its own paths

loop : base = base

loop_x: a constructor of *the circle*

 $x:\mathbb{I} \vdash loop_x : S1$

 $loop_0 \equiv base : S1 \quad loop_1 \equiv base : S1$

Cartesian Cubes

Introducing I the formal interval

$$\Gamma \vdash 0: \mathbb{I} \qquad \Gamma \vdash 1: \mathbb{I}$$
 $\Gamma, x: \mathbb{I}, \Gamma' \vdash x: \mathbb{I}$

$$x_1:\mathbb{I}, x_2:\mathbb{I}, ..., x_n:\mathbb{I} \vdash M : A$$
 $\Leftrightarrow M \text{ is an n-cube in } A$

Cartesian Cubes

Introducing I the formal interval

$$\Gamma \vdash 0: \mathbb{I} \qquad \Gamma \vdash 1: \mathbb{I}$$
 $\Gamma, x: \mathbb{I}, \Gamma' \vdash x: \mathbb{I}$

Cartesian: works as normal contexts

Ordinary Types

Ordinary typing rules hold uniformly

$$\Gamma, a:A \vdash M : B$$
$$\Gamma \vdash \lambda a.M : (a:A) \longrightarrow B$$

with any number of I in the Γ

Ordinary Types

Ordinary typing rules hold uniformly

$$\frac{\Gamma, a:A \vdash M:B}{\Gamma \vdash \lambda a.M:(a:A) \longrightarrow B}$$

with any number of I in the Γ

$$F(M_x\langle 0/x\rangle) \xrightarrow{ap_F(M)} F(M_x) F(M_x\langle 1/x\rangle)$$

New Path Types

Dimension abstraction

$$x: \mathbb{I} \vdash M : A$$

$$\langle \mathbf{x} \rangle \mathbf{M} : Path_{\mathbf{x}, \mathbf{A}}(\mathbf{M} \langle 0/\mathbf{x} \rangle, \mathbf{M} \langle 1/\mathbf{x} \rangle)$$

$$P: Path_{x.A}(N_0, N_1)$$

 $x: \mathbb{I} \vdash M : A$

$$P@r : A\langle r/x\rangle$$

 $(\langle x \rangle M)@r = M\langle r/x \rangle : A\langle r/x \rangle$

$$P : Path_{x,A}(N_0,N_1)$$

 $P: Path_{x,A}(N_0,N_1)$

$$P@0 = N_0 : A\langle 0/x \rangle$$

 $P@1 = N_1 : A\langle 1/x \rangle$

 $M: A\langle r/x \rangle$ $coe_{x,A}[r \rightsquigarrow r'](M): A\langle r'/x \rangle$

$$\frac{M : A\langle r/x \rangle}{\operatorname{coe}_{x,A}[r \rightsquigarrow r'](M) : A\langle r'/x \rangle}$$

$$\begin{array}{ccc}
M \\
 & \\
A\langle 0/x \rangle & \\
A\langle 1/x \rangle
\end{array}$$

$$\frac{M : A\langle r/x \rangle}{\operatorname{coe}_{x,A}[r \rightsquigarrow r'](M) : A\langle r'/x \rangle}$$

$$A\langle 0/x\rangle$$

$$coe_{x.A}[0\sim 1](M)$$

$$A\langle 1/x\rangle$$

$$\frac{M : A\langle r/x \rangle}{\operatorname{coe}_{x,A}[r \rightsquigarrow r'](M) : A\langle r'/x \rangle}$$

$$A\langle 0/x\rangle$$

$$coe_{x.A}[0\sim 1](M)$$

$$A\langle 1/x\rangle$$

$$A\langle 1/x\rangle$$

$$coe_{x,A}[r \sim r](M) \equiv M : A\langle r/x \rangle$$

$$M: A\langle r/x \rangle$$

$$coe_{x,A}[r \rightsquigarrow r'](M): A\langle r'/x \rangle$$

$$\begin{array}{ccc}
M & coe_{x,A}[0 \sim x](M) & coe_{x,A}[0 \sim 1](M) \\
 & \rightarrow & & \rightarrow \\
A\langle 0/x \rangle & & A\langle 1/x \rangle
\end{array}$$

$$coe_{x,A}[r \sim r](M) \equiv M : A\langle r/x \rangle$$

 $hcom_A[r \sim r'](M; ..., r_i=r'_i \hookrightarrow y.N, ...) : A$

 $hcom_A[r \sim r'](M; ..., r_i=r'_i \hookrightarrow y.N, ...) : A$

hcom_A[r \sim r'](M; ..., r_i=r'_i \hookrightarrow y.N, ...) : A hcom_A[0 \sim 1](M; x=0 \hookrightarrow y.N₀, x=1 \hookrightarrow y.N₁] N₀ N_1 N_1

 $hcom_A[r \sim r'](M; ..., r_i=r'_i \hookrightarrow y.N, ...) : A$

 $hcom_A[0\sim 1](M; x=0 \hookrightarrow y.N_0, x=1 \hookrightarrow y.N_1]$

 $hcom_A[r \sim r](M; ...) \equiv M : A$

 $hcom_A[r \sim r'](M; ..., r_i=r_i \hookrightarrow y.N_i, ...) \equiv N_i \langle r'/y \rangle : A$

Fiberwise Fibrant Replacement (the cubical way)

S1: hcom as the third constructor

Fiberwise Fibrant Replacement (the cubical way)

S1: hcom as the third constructor

add only homogeneous ones⇒ compat with base changes⇒ no size blow-up!

(known by many experts in cubical TT)

Fiberwise Fibrant Replacement

(the cubical way)

If A has coercion, the replacement of raw susp(A) is Kan

Fiberwise Fibrant Replacement (the cubical way)

If A has coercion, the replacement of raw susp(A) is Kan

If objects on a span have coercion, the replacement of raw pushout is Kan (Note: the raw pushout might not have coercion!)

Important examples with De Morgan cubes [CHM 2018] A general schema with Cartesian cubes [CH 2018]

Univalent Universes $V_x(A,B,E)$ type

A line between $A\langle 0/x\rangle$ and $B\langle 1/x\rangle$ witnessed by the equivalence E

A type [r=0] B type E: A
$$\simeq$$
 B [r=0]
$$V_r(A,B,E) \text{ type}$$

$$V_0(A,B,E) \equiv A \qquad V_1(A,B,E) \equiv B$$
expert only

Univalent Kan Universes

$$hcom_U[r \sim r'](A; ...)$$
 type

Make the universes Kan

Major difficulty:

Kan structure of the hcom types themselves (Good news: greatly simplified after Part III is out)

Oh, Diagonals!

$$coe_{x.hcom[s\sim s'](A;...)}[r\sim r'](M)$$

Oh, Diagonals!

$$coe_{x.hcom[s \sim s'](A; ...)}[r \sim r'](M)$$

```
when s=s' \mapsto coe_{x.A}[r \rightsquigarrow r'](M)
when r=r' \mapsto M
```

Oh, Diagonals!

$$coe_{x.hcom[s \sim s'](A; ...)}[r \sim r'](M)$$

when
$$s=s' \mapsto coe_{x.A}[r \rightsquigarrow r'](M)$$

when $r=r' \mapsto M$

hcom[s \sim s'](..., r=r' \hookrightarrow ...) diagonals for coherence conditions

Transition system for closed terms

```
\lambda a.M \text{ val} \qquad (\lambda a.M) N \mapsto M[N/a]
\langle x \rangle M \text{ val} \qquad (\langle x \rangle M) @r \mapsto M \langle r/x \rangle
```

Transition system for closed terms (other than dim. vars)

```
\lambda a.M \text{ val} \qquad (\lambda a.M) N \mapsto M[N/a]
\langle x \rangle M \text{ val} \qquad (\langle x \rangle M) @ r \mapsto M \langle r/x \rangle
A \mapsto A'
coe_{x,A}[r \rightsquigarrow r'](M) \mapsto coe_{x,A'}[r \rightsquigarrow r'](M)
```

Transition system for closed terms (other than dim. vars)

$$\lambda a.M \text{ val} \qquad (\lambda a.M) N \mapsto M[N/a]$$

$$\langle x \rangle M \text{ val} \qquad (\langle x \rangle M) @ r \mapsto M \langle r/x \rangle$$

$$A \mapsto A'$$

$$coe_{x,A}[r \rightsquigarrow r'](M) \mapsto coe_{x,A'}[r \rightsquigarrow r'](M)$$

Computational semantics: values Canonicity as a corollary

Directly usable as a type theory

$$x : \mathbb{N}, y : \mathbb{N} \gg x + y \stackrel{.}{=} y + x \in \mathbb{N}$$

with all the extensionalities

See our Part III for details

Implementations

RedPRL

In Nuprl style redprl.org

redtt (work in progress) github.com/RedPRL/redtt

yacctt

A proof of concept based on cubicaltt github.com/mortberg/yacctt

Open Problems for HoTT

	Cubical	Simplicial
Standard?	???	Yes
HITs?	Yes	???

Open Problems for HoTT

	Cubical	Simplicial
Standard?	???	Yes
HITs?	Yes	???

HoTTopia
Very general construction with HITs

Summary of Cartesian Cubes

We have everything!

Univalent Kan universes Higher inductive types Identification types

...and proof assistants

redprl.org github.com/RedPRL/redtt github.com/mortberg/yacctt