7 Числовые ряды

Будем сразу рассматривать числовые ряды с комплексными членами.

7.1 Понятие ряда и его суммы

Важным примером применения теории пределов числовой последовательности является понятие числового ряда.

Определение 7.1.1 Пусть дана последовательность a_n ($a_n \in \mathbb{R}$ или \mathbb{C}). Символ

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

называется числовым рядом, последовательность a_n – общим членом ряда.

Определение 7.1.2 Последовательность S_k : сумма первых k членов ряда

$$S_k = a_1 + a_2 + a_3 + \dots + a_k = \sum_{n=1}^k a_n$$

называется частичной суммой ряда, а её предел, если он существует в $\bar{\mathbb{C}}$, называется суммой ряда:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k.$$

Если последовательность S_k сходится, то ряд называется сходящимся, иначе – расходящимся. Разность $R_k = S - S_k$ называется остатком ряда.

Пример 7.1.1 1. $\sum_{n=1}^{\infty} 0$ сходится и его сумма равна 0.

- 2. $\sum_{n=1}^{\infty} q^n \ (q \in \mathbb{C})$ геометрическая прогрессия. Сходится, если |q| < 1, и его сумма равна $\frac{1}{1-q}$.
- 3. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Рассмотрим частичную сумму

$$S_k = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k(k+1)} = 1 - \frac{1}{n+1} \to 1,$$

следовательно, ряд сходится, и его сумма равна 1.

- 4. $\sum_{n=1}^{\infty} (-1)^n$ расходится, т.к. последовательность частичных сумм состоит из чередующихся $0 \ u 1$.
- 5. При $x \in \mathbb{R}$ из соответствующих формул Тейлора следуют равенства

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sin x, \qquad \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos x.$$

 $Hanucahhue ряды называются рядами Тейлора (Маклорена) функций <math>e^x$, $\sin x$, $\cos x$.

Замечание 7.1.1 Изменение, отбрасывание или добавление конечного числа членов ряда не влияет на его сходимость.

Лемма 7.1.1 (Критерий сходимости через остаток) *Ряд сходится тогда и только тогда, когда его остаток стремится к нулю.*

▶ Запишем для ряда

$$\sum_{n=1}^{\infty} a_n = S_k + R_k.$$

Тогда $\lim_{k\to\infty} S_k = S$ равносильно тому, что $\lim_{k\to\infty} R_k = 0$.

7.2 Основные свойства рядов

Теорема 7.2.1 (Критерий Коши сходимости ряда) Для того, чтобы ряд $\sum_{n=1}^{\infty} a_n$ сходился, необходимо и достаточно, чтобы для любого ε можно было найти номер k_0 такой, что для всех $k \geqslant k_0$ и для всех $p \in \mathbb{N}$ выполнялось неравенство $\left|\sum_{n=k+1}^{k+p} a_n\right| < \varepsilon$.

Доказательство. Доказательство следует из критерия Коши для частичных сумм.

Пример 7.2.1 Гармонический ряд:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

Запишем

$$S_{2k} - S_{k-1} = \frac{1}{k} + \frac{1}{k+1} + \dots + \frac{1}{2k} > \frac{1}{2k} \cdot k = \frac{1}{2}.$$

Это означает, что критерий Коши не выполняется и ряд расходится.

Теорема 7.2.2 (Необходимое условие сходимости ряда) Ecnu ряд $\sum_{n=1}^{\infty} a_n \ cxo\partial umcs, \ mo \ a_n \to 0.$

lacktriangle Запишем $a_n=S_n-S_{n-1}.$ Так как $S_n o S$ и $S_{n-1} o S$, то $a_n o S-S=0.$

Замечание 7.2.1 Условие $a_n \to 0$ не является достаточным для сходимости ряда $\sum_{n=1}^{\infty} a_n$. Но если $a_n \not\to 0$, то $\sum_{n=1}^{\infty} a_n$ расходится.

Лемма 7.2.1 (**Линейность суммирования**) Пусть сходятся ряды с общими членами a_k и b_k . Тогда при любых $\alpha, \beta \in \mathbb{C}$ сходится ряд с общим членом $\alpha a_k + \beta b_k$, причем

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=1}^{\infty} a_k + \beta \sum_{k=1}^{\infty} b_k.$$

Доказательство. Обозначим $S^A = \sum_{k=1}^{\infty} a_k$, $S_n^A = \sum_{k=1}^n a_k$, $S^B = \sum_{k=1}^{\infty} b_k$, $S_n^B = \sum_{k=1}^n b_k$. Тогда

$$S_n = \sum_{k=1}^n (\alpha a_k + \beta b_k) = \alpha S_n^A + \beta S_n^B \xrightarrow[n \to +\infty]{} \alpha S_n^A + \beta S_n^B,$$

что и доказывает утверждение.

Лемма 7.2.2 (Монотонность суммирования) Пусть $a_k, b_k \in \mathbb{R}$ и $a_k \leqslant b_k$ и ряды с общими членами a_k и b_k сходятся в $\overline{\mathbb{R}}$. Тогда

$$\sum_{k=1}^{\infty} a_k \leqslant \sum_{k=1}^{\infty} b_k.$$

Доказательство. Обозначим $S^A = \sum_{k=1}^{\infty} a_k$, $S_n^A = \sum_{k=1}^n a_k$, $S^B = \sum_{k=1}^{\infty} b_k$, $S_n^B = \sum_{k=1}^n b_k$. Тогда, согласно условию,

$$S_n^A \leqslant S_n^B \Rightarrow \lim_{n \to +\infty} S_n^A \leqslant \lim_{n \to +\infty} S_n^B \Rightarrow S^A \leqslant S^B.$$

Определение 7.2.1 Пусть дан ряд с общим членом a_k и $n_1 < n_2 < ... < n_k < ...$ — возрастающая последовательность номеров. Положим $n_0 = 0$ и

$$A_j = \sum_{k=n_j+1}^{n_{j+1}} a_k.$$

Тогда ряд

$$\sum_{j=0}^{\infty} A_j$$

называется группировкой исходного ряда.

Отметим, что группировка ряда сохраняет исходный порядок членов ряда, но меняет общий член ряда.

Замечание 7.2.2 Мы знаем на примере ряда с общим членом $a_k = (-1)^k$, что группировка ряда может сходиться даже в том случае, когда ряд расходится:

$$(-1+1) + (-1+1) + \dots + (-1+1) + \dots = 0.$$

Ответим на вопрос, как связаны сходимость ряда и сходимость его группировок.

Теорема 7.2.3 (О группировках ряда) 1. Пусть ряд с общим членом a_k имеет сумму $S \in \mathbb{R}$ или \mathbb{C} . Тогда и любая его группировка имеет сумму S, то есть

$$\sum_{j=0}^{\infty} A_j = S.$$

2. Пусть группировка $\sum_{j=0}^{\infty} A_j$ ряда с общим членом a_k имеет сумму $S \in \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, причем $a_k \xrightarrow[k \to +\infty]{} 0$ и каждая группа содержит не более $L \in \mathbb{N}$ членов. Тогда

$$\sum_{k=1}^{\infty} a_k = S.$$

3. Пусть группировка $\sum_{j=0}^{\infty} A_j$ ряда с общим членом $a_k \in \mathbb{R}$ имеет сумму $S \in \overline{\mathbb{R}}$, а все члены внутри каждой группы имеют один и тот же знак. Тогда

$$\sum_{k=1}^{\infty} a_k = S.$$

Доказательство. 1. Пусть \widetilde{S}_p – частичная сумма группировки:

$$\widetilde{S}_p = \sum_{j=0}^p A_j = \sum_{k=1}^{n_p} a_k = S_{n_p},$$

то есть является подпоследовательностью последовательности $S_n = \sum_{k=1}^n a_k$. Следовательно,

$$\lim_{p \to +\infty} \widetilde{S}_p = \lim_{p \to +\infty} S_{n_p} = \lim_{n \to +\infty} S_n = S.$$

2. Рассмотрим случай $S\in\mathbb{C}$. Пусть $\varepsilon>0$. Так как $a_k\xrightarrow[k\to+\infty]{}0$, то существует k_0 , что при $k>k_0$ выполняется

$$|a_k| < \frac{\varepsilon}{2L}$$

Так как перестановка имеет сумму S, то существует j_0 такой, что при $j>j_0$ выполняется

 $|\widetilde{S}_j - S| < \frac{\varepsilon}{2}.$

Пусть $n > \max(k_0, n_{j_0+1})$. Тогда существует t, что $n_t < n \leqslant n_{t+1}$, причем $n_t \geqslant n_{j_0+1}$. Но тогда

$$|S_n - S| \le |S_n - \widetilde{S}_t| + |\widetilde{S}_t - S| = \left| \sum_{k=n,+1}^n a_k \right| + |\widetilde{S}_t - S| < \frac{\varepsilon}{2L} L + \frac{\varepsilon}{2} = \varepsilon.$$

Случаи $S=\pm\infty$ ответственный студент разберет самостоятельно.

3. Рассмотрим случай $S \in \mathbb{R}$. Пусть $\varepsilon > 0$. Так как перестановка имеет сумму S, то найдется j_0 такой, что при $j > j_0$ выполняется

$$|\widetilde{S}_j - S| < \varepsilon.$$

Пусть $n>n_{j_0+1}$. Тогда найдется t, что $n_t< n\leqslant n_{t+1}$, причем $n_t\geqslant n_{j_0+1}$. Если все члены группы A_t неотрицательны, то

$$\widetilde{S}_t \leqslant S_n \leqslant \widetilde{S}_{t+1},$$

а если неположительны, то

$$\widetilde{S}_{t+1} \leqslant S_n \leqslant \widetilde{S}_t.$$

В любом из двух описанных случаев,

$$|S_n - S| \le \max(|\widetilde{S}_t - S|, |\widetilde{S}_{t+1} - S|) < \varepsilon.$$

Не забудьте рассмотреть случаи $S=\pm\infty$ и $S=\infty$.

	210	JKC	47	ln	6H	616	OR_	961

$$\int Q_n \geq 0$$

$$\int_{n}^{\infty} = \sum_{K=1}^{n} q_{K}$$

Neuma

3)
$$\sum_{n=0}^{\infty} q_n = c_{x-n} = c_{$$

Теорема (Признаки сравнения)

Теорена (Разикальный признак Коши)

