This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

24701/501

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 98/05292

A61K

(43) International Publication Date:

12 February 1998 (12.02.98)

(21) International Application Number:

PCT/US97/13383

(22) International Filing Date:

6 August 1997 (06.08.97)

(30) Priority Data:

08/700,628

8 August 1996 (08.08.96)

US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033 (US).

(72) Inventors: LOWE, Derek, B.; 237 North 9th Street, Kenilworth, NJ 07033 (US). CHANG, Wei, K.; 63 West Cedar Street, Livingston, NJ 07039 (US). KOZLOWSKI, Joseph, A.; P.O. Box 7391, Princeton, NJ 08543-7391 (US). BERGER, Joel, G.: 5675 North Camino Esplandora, Tucson, AZ 85718 (US). McQUADE, Robert; 221 Mountainview Avenue, Scotch Plains, NJ 07076 (US). BAR-NETT, Allen; 13 Flanders Drive, Pine Brook, NJ 07058 (US). SHERLOCK, Margaret; 34 Parkway West, Bloomfield, NJ 07003 (US). TOM, Wing; 133 Cedar Grove Parkway, Cedar Grove, NJ 07009 (US). DUGAR, Sundeep; 749 Wingate Drive, Bridgewater, NJ 08807 (US). CHEN, Lian-Yong: 10 Pond View Drive, Plainsboro, NJ 08536 (US). CLADER, John, W.; 428 North Union Avenue, Cranford, NJ 07016 (US). CHACKALAMANNIL, Samuel; 79 Stratford Road, East Brunswick, NJ 08816 (US). WANG,

Yuguang; 38 Princess Drive, North Brunswick, NJ 08902 (US). McCOMBIE, Stuart, W.; 28 Hanford Place, Caldwell, NJ 07006 (US). TAGAT, Jayaram, R.; 133 Boynton Court, Westfield, NJ 07090 (US). VICE, Susan, F.; 1144 Sawmill Road, Mountainside, NJ 07092 (US). VACCARO, Wayne, D.; 1706 Westover Road, Yardley, PA 19067 (US). GREEN, Michael, J.; 1146 Rancho Encinitas Drive, Encinitas, CA 92024 (US). BROWNE, Margaret, E.; 26 Highfield Road, Bloomfield, NJ 07003 (US). ASBEROM, Theodros: 525 Eagle Rock Avenue, West Orange, NJ 07052 (US). BOYLE, Craig, D.; 180 Northfield Road, Bridgewater, NJ 08807 (US). JOSIEN, Hubert, B.; 5441 Washington Boulevard, Jersey City, NJ 07310 (US).

(74) Agents: MAGATTI, Anita, W. et al.; Schering-Plough Corporation, Patent Dept. K-6-1 1990, 2000 Galloping Hill Road, Kenilworth, NJ 07033 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: MUSCARINIC ANTAGONISTS

$$11-x-\left(\frac{1}{2}\right)^{11} \left(\frac{1}{2}\right)^{11} \left(\frac{1}{2}\right)^{11}$$

(57) Abstract

Di-N-substituted piperazine or 1,4 di-substituted piperidine compounds in accordance with formula I (including all isomers, salts, esters, and solvates) wherein R, R¹, R², R³, R⁴, R²¹, R²⁸, X, Y and Z as defined herein are muscarinic antagonists useful for treating cognitive disorders such as Alzheimer's disease. Pharmaceutical compositions and methods of preparation are also disclosed. Also disclosed are synergistic combinations of compounds of the above formula with acetylcholinesterase inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuenia	. SK -	- Slovakia 🛴 🗀 🗀 🖂 🖂
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad ,
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH ·	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Grzece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
B.J	Benin	lE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IТ	Italy	МX	Mexico	uz	Uzbekistan /
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CII	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cı	Côle d'Ivoire	KP	Democratic People's	NZ.	New Zealand		•
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	^ KR	Republic of Korea	PT	Portugal		•
Cυ	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		•
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

10

15

MUSCARINIC ANTAGONISTS

20

25

30

BACKGROUND OF THE INVENTION

The present invention relates to di-N-substituted piperazines and 1,4-di-substituted piperidines useful in the treatment of cognitive disorders, pharmaceutical compositions containing the compounds, methods of treatment using the compounds, and to the use of said compounds in combination with acetylcholinesterase inhibitors.

Alzheimer's disease and other cognitive disorders have received much attention lately, yet treatments for these diseases have not been very successful. According to Melchiorre et al. (J. Med. Chem. (1993), 36, 3734-3737), compounds that selectively antagonize M2 muscarinic receptors, especially in relation to M1 muscarinic receptors, should possess activity against cognitive disorders. Baumgold et al. (Eur. J. of Pharmacol., 251, (1994) 315-317) disclose $3-\alpha$ -chloroimperialine as a highly selective m2 muscarinic antagonist.

The present invention is predicated on the discovery of a class of di-N-substituted piperazines and 1,4-di-substituted piperidines, some of which have m2 selectivity even higher than that of 3-α-chloroimperialine. Logemann et al (Brit. J. Pharmacol. (1961), 17, 286-296) describe

certain di-N-substituted piperazines, but these are different from the

35

inventive compounds of the present invention. Furthermore, the compounds of Logemann et al. are not disclosed to have activity against cognitive disorders.

5 SUMMARY OF THE INVENTION

The present invention relates to compounds according to the structural formula I,

including all isomers and pharmaceutically acceptable salts, esters, and solvates thereof,

wherein one of Y and Z is N and the other is N, CH, or C-alkyl; X is -O-, -S-, -SO-, -SO₂-, -NR⁶-, -CO-, -CH₂-, -CS-, -C(OR⁵)₂-, -C(SR⁵)₂-, -CONR²⁰-, -C(alkyl)₂-, -C(H)(alkyl)-, -NR²⁰-SO₂-, -NR²⁰-, -NR²⁰CO-, -O-CO-NH-, -NH-CO-O-,

-3-

5

10

15

20

Alkyl-N
$$N-C_6H_4$$
- Alkyl-N N - Acyl-N $N-C_6H_4$ -

hydrogen, acyl, alkyl, alkoxy, alkenyl, cycloalkyl, cycloalkyl substituted with one or two groups selected from the group consisting of alkyl and carbonyl, cycloalkenyl, bicycloalkyl, arylalkenyl, benzyl, benzyl substituted with up to three independently selected R³ groups, cycloalkylalkyl, polyhaloacyl, benzyloxyalkyl, hydroxyC2-C20alkyl, alkenylcarbonyl, alkylarylsulfonyl, alkoxycarbonylaminoacyl, alkylsulfonyl, or arylsulfonyl, additionally, when X is -CH2-, R may also be -OH; in further addition, when X is not N, R may also be hydroxymethyl, in further addition, R and X may combine to form the group Prot-(NOAA)r-NH- wherein r is an integer of 1 to 4, Prot is a nitrogen protecting group and when r is 1, NOAA is a naturally occuring amino acid or an enantiomer thereof, or when r is 2 to 4, each NOAA is a peptide of an independently selected naturally occuring amino acid or an enantiomer thereof;

R¹ and R²¹ are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkenyl, bicycloalkyl, alkynyl, cyano, aminoalkyl, alkoxycarbonyl, aminocarbonyl, hydroxyamidino, alkoxycarbonylalkyl, phenyl alkyl, alkylcarbonlyoxyalkyl,

15

20

25

H, —OH, (provided R¹ and R²¹ are both not —OH and Y is not N), formyl, —CO alkyl, -COacyl, —COaryl, and hydroxyalkyl; additionally R¹ and R²¹ together may form the group = CH_2 , =N-OR⁵, =N-CN, =N-N(R⁵)₂,

alkyl

=CH-alkyl, alkylene, =C-alkyl or =C(halo)₂; in further addition, R¹

and R²¹ together with the carbon atom to which they are attached may

orm the group or or

form the group / or R1 and R21 together with the carbon atom to which they are attached or R1 and R21 together with the carbon atom to which they are attached may form a saturated heterocyclic ring containing 3 to 7 carbon atoms, one or more of which may be optionally substituted by alkyl, and one or two groups independently selected from S, O, and N-R20;

R² is

R3, R4, R22, R24, and R25 are independently selected from the group consisting of alkyl, H, halo, alkoxy, benzyloxy, benzyloxy substituted by nitro or aminoalkyl, haloalkyl, polyhaloalkyl, nitro, cyano, sulfonyl, hydroxy, amino, alkylamino, formyl, alkylthio, polyhaloalkoxy, acyloxy, trialkylsilyl, alkylsulfonyl, arylsulfonyl, acyl, alkoxycarbonyl alkylsulfinyl; -OCONH2, -OCONH-alkyl, alkylaminoalkyl, dialkylaminoalkyl, -COOH, -CON(R20)2, -OCON(alkyl)2, -NHCOO-alkyl, -NHCOO-alkyl, phenyl, hydroxyalkyl, or morpholino;

each R⁵ and R⁶ is independently selected from the group consisting of H and alkyl, provided that when X is C(OR⁵)₂ or C(SR⁵)₂, both R⁵ groups cannot be H, and in addition, when X is C(OR⁵)₂ or C(SR⁵)₂, the two R⁵ groups in X may be joined to form —(CR²⁰₂)_p-wherein p is an integer of 2 to 4;

R⁷ is independently selected from the group consisting of H, alkyl, arylalkyl, cycloalkyl, aryl and aryl substituted with R³ and R⁴ as defined herein;

15

20

25

each R⁸ is independently selected from the group consisting of H, hydroxyalkyl or alkyl, or two R⁸ groups may be joined to form an alkylene group;

R⁹ is H, alkyl, aralkyl, or acyl;

5 R²⁰ is H, aryl or alkyl;

R²⁷ and R²⁸ are independently selected from the group consisting of H, alkyl, hydroxyalkyl, arylalkyl, aminoalkyl, haloalkyl, thioalkyl, alkylthioalkyl, carboxyalkyl, imidazolyalkyl, and indolyalkyl; or R²⁷ and R²⁸ may combine to form an alkylene group;

R²⁹ is H, alkyl, -CO-alkyl, -CO-cycloalkyl, alkoxycarbonyl, amino-carbonyl, aryloxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylsulfonyl, arysulfonyl or -SO₂-NH-R²⁰;

R³⁰ is H, alkyl, aryl, cycloalkyl, hydroxyalkyl, aminoalkyl, -COOR²⁰, -CON(R²⁰)₂ or cyano;

 R^{31} and R^{32} are the same as R^{30} and in addition, two R^{30} , R^{31} and R^{32} groups may form the group -(CH₂)_{Γ} (wherein r is 1 to 6), in further addition, R^{31} and R^{32} can also be hydroxy, -N(R^{20})₂, -O-acyl, -N(R^{20})_{acyl}, -OCOOR²⁰, or -OCON(R^{20})₂;

R³³ is aryl or heteroaryl, with the proviso that when R³³ is heteroaryl, the CO-R³³ bond is to a carbon atom in the R³³ group;

R³⁴ is alkyl, cycloalkyl or aryl and in addition R³⁴ may also be H when R¹ and R²¹ together with the carbon atom to which they are attached form a saturated heterocyclic ring containing 3 to 7 carbon atoms and two groups independently selected from S, O, and N-R²⁰;

R35 is -CH2-, -NR20- or -O-;

R³⁶ is -NH₂, alkyl or alkoxy;

R³⁷ is independently selected from the group consisting of H and alkyl;

R38 is -CO-(CH₂)₀₋₅-OR⁵, -SO₂-(alkyl), or

30

wherein q_1 and q_2 are independently 1-5, provided that the sum of q_1 and q_2 is 2-5; and

R³⁹ and R⁴⁰ are independently selected from the group consisting of =O and (H,H).

In a preferred group of compounds Y and Z are N.
In another preferred group of compounds Y is CH and Z is N.
In another preferred group of compounds R is

$$R^3$$
 or $N=$

and X is O, SO, SO₂, CH₂, CH(alkyl), C(alkyl)₂, -CH(OH)-, or -N(\mathbb{R}^{20})CO.

In another preferred group of compounds R³ and R⁴ are H and either R¹ is cycloalkyl, or alkyl, and R²¹ is H or R¹ and R²¹ together form =O.

In another preferred group of compounds R is

X is O ,SO, SO₂, CH₂, CH(alkyl), C(alkyl)₂, or -N(R²⁰)CO; R^3 and R^4 are H and either R¹ is cycloalkyl or alkyl; and R²¹ is H or R¹ and R²¹

15 together form =0 or $\overset{\circ}{\sim}$.

In another preferred group of compounds at least one of R²⁷ and R²⁸ is alkyl.

In another preferred group of compound one of R^{27} or R^{28} is methyl and the other is hydrogen.

20 In another preferred group of compounds R is

In another preferred group of compounds X is SO_2 , CH_2 , or $-N(CH_3)-CO-$.

In another group of preferred compounds, R2 has the formula

10

- 15

20

25

and R³⁰ is H or CH₃: R³¹ and R³² are H: and R³³ is ortho-substituted aryl or heteroaryl, preferably

In another group of preferred compounds, R2 has the formula

R34 is methyl and R31 and R32 are H.

Preferred specific compounds of this invention are listed hereinafter as compound numbers: 17, 18,25, 30, 31, 32, 34, 35, 36, 37, 41, 43, 44, 49, 53, 54, 56, 57, 58, 59, 80, 82, 84, 85, 94, 98, 100, 108, 121, 126, 127, 137, 145, 151, 152, 154, 155, 162, 166, 178, 179, 181, 185, 190, 191, 194, 199, 214, 215, 216, 225, 247, 253, 256, 257, 337, 339, 340, 341, 349, 351, 367, 409, 459, 479, 488, 489, 490, 500, 501, 502, 503, 505, 506, 507, 515, 516, 517, 555, 562.

Another aspect of the invention is a pharmaceutical composition which comprises a compound having structural formula I as defined above in combination with a pharmaceutically acceptable carrier.

Another aspect of the invention is the use of a compound formula I for the preparation of a pharmaceutical composition useful in the treatment of cognitive disorders and neurodegenerative diseases such as Alzheimer's disease.

Yet another aspect of the invention comprises a method for making a pharmaceutical composition comprising mixing a compound of formula I with a pharmaceutically acceptable carrier.

Another aspect of this invention is a method for treating a cognitive or neurodegenerative disease comprising administering to a patient suffering from said disease an effective amount of a compound of formula I.

Another aspect of this invention is a method for treating a cognitive or neurodegenerative disease comprising administering to a patient suffering from said disease an effective amount of a combination of a compound of formula I with an acetycholinesterase inhibitor.

Another aspect of this invention is a kit comprising in separate containers in a single package pharmaceutical compounds for use in combination to treat cognitive disorders in one container a compound of formula I in a pharmaceutically acceptable carrier and in a second container an acetylcholinesterase inhibitor in a pharmaceutically acceptable carrier, the combined quantities being an effective amount.

15

20

25

30

35

10

DETAILED DESCRIPTION

Except where stated otherwise the following definitions apply throughout the present specification and claims. These definitions apply regardless of whether a term is used by itself or in combination with other terms. Hence the definition of "alkyl" applies to "alkyl" as well as the "alkyl" portions of "alkoxy", "haloalkyl", etc.

Alkyl represents a straight or branched saturated hydrocarbon chain having 1 to 20 carbon atoms, more preferably 1 to 8 carbon atoms.

Alkenyl represents a straight or branched hydrocarbon chain of from 2 to 15 carbon atoms, more preferably 2 to 12 carbon atoms, having at least one carbon-to-carbon double bond.

Alkynyl represents a straight or branched hydrocarbon chain of from 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, having at least one carbon-to-carbon triple bond.

Cycloalkyl represents a saturated carbocyclic ring having 3 to 12 carbon atoms.

Cycloalkenyl represents a carbocyclic ring having from 5 to 8 carbon atoms and at least one carbon-to-carbon double bond in the ring.

Bicycloalkyl represents a saturated bridged carbocyclic ring having 5 to 12 carbon atoms.

10

15

20

30

35

Acyl represents a radical of a carboxylic acid having the formula alkyl-CO-, aryl-CO-, aralkyl-CO-, cycloalkyl-CO-, alkylcycloalkyl-CO-, and heteroaryl-CO-.

Halo represents fluoro, chloro, bromo or iodo.

Aryl represents phenyl or naphthyl optionally substituted with 1 to 5 R³ groups.

Heteroaryl represents a cyclic group of 5 or 6 atoms, or a bicyclic group of 9 or 10 atoms, at least one of which is carbon and having at least one O, S, or N atom interrupting a carbocyclic ring having a sufficient number of pi electrons to provide aromatic character. Carbon atoms may optionally be substituted by R³ groups. Nitrogen atoms may optionally be substituted -R²⁰ or -COR²⁰ groups. Preferred heteroaromatic groups are pyridyl, furanyl, benzofuranyl, thienyl, benzothienyl, thiazolyl, thiadiazolyl, imidazolyl, pyrimidinyl, pyrazinyl, pyridazinyl, 1,3,5-triazinyl, and indolyl.

Polyhalo represents substitution of at least 2 halo atoms to the group modified by the term "polyhalo".

Hydroxyamidino represents a group having the formula

| NH₂-C=N-OH |

Azabicyclo represents a saturated bridged ring containing from 4 to 8

carbon atoms and at least one nitrogen atom.
Sulfonyl represents a group of the formula -SO₂-...
Sulfinyl represents a group of the formula -SO-.

Alkylene represents a group having the formula -(CH₂)_q, wherein q is an integer of from 1 to 20.

Naturally occurring amino acid (NOAA) means an acid selected from the group consisting of alanine(ala), arginine (arg), asparagine (asn), aspartic acid (asp), cysteine (cys), glutamine (gln), glutamic acid (glu), glycine (gly), histadine (his), isoleucine (ile), leucine (leu), lysine (lys), methionine (met), phenylalanine (phe), proline (pro), serine (ser), threonine (thr), tryptophan (trp), tyrosine (tyr), and valine (val).

Nitrogen protecting group (Prot) means a group capable of protecting a nitrogen on a naturally occurring amino acid (or an enantiomer thereof) from reaction. Preferred nitrogen protecting groups

10

15

20

25

30

35

are carbobenzyloxy (CBZ), CH3OCO(CH2)9CO, and t-butoxycarbonyl (BOC). Of course any operable nitrogen protecting group is included.

When a variable appears more than once in the structural formula, for example R^5 when X is $-C(OR^5)_2$ -, the identity of each variable appearing more than once may be independently selected from the definition for that variable.

Compounds of this invention may exist in at least two stereo configurations based on the asymmetric carbon to which R¹ is attached, provided that R¹ and R²¹ are not identical. Further stereoisomerism is present when X is SO, or C(OR⁵)² (when the two R⁵ groups are not the same) or when R²² or R²³ is not hydrogen. Also within formula I there are numerous other possibilities for stereoisomerism. All possible stereoisomers of formula I are within the scope of the invention.

Compound of formula I can exist in unsolvated as well as solvated forms, including hydrated forms. In general, the solvated forms, with pharmaceutically acceptable solvents such as water, ethanol and the like, are equivalent to the unsolvated forms for purposes of this invention.

A compound of formula I may form pharmaceutically acceptable salts with organic and inorganic acids. Examples of suitable acids for salt formation are hydrochloric, sulfuric, phosphoric, acetic, citric, malonic, salicylic, malic, fumaric, succinic, ascorbic, maleic, methanesulfonic and other mineral and carboxylic acids well known to those skilled in the art. The salts are prepared by contacting the free base forms with a sufficient amount of the desired acid to produce a salt in the conventional manner. The free base forms may be regenerated by treating the salt with a suitable dilute aqueous base solution such as dilute aqueous sodium hydroxide, potassium carbonate, ammonia or sodium bicarbonate. The free base forms differ from their respective salt forms somewhat in certain physical properties, such as solubility in polar solvents, but the salts are otherwise equivalent to their respective free base forms for purposes of the invention.

Compounds in accordance with formula I may be produced by processes known to those skilled in the art as shown by the following reaction steps:

General Description of Methods:

Compounds wherein R2 has the formula

can be made as shown in Scheme I.

5

Scheme 1

For compounds wherein R² has the formula

10

Intermediate III is treated with a suitably activated carboxylic acid derivative, R₃₃CO-X, where X is a leaving group such as halogen or OCOCH₃. Alternatively, a mixture of compound III and R₃₃COOH can be treated with N-hydroxybenzotriazole and a carbodiimide such as N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide hydrochloride or dicyclohexylcarbodiimide in the presence of a base such as triethylamine and a solvent such as DMF to give I. Alternatively, intermediate IIIc is treated with a group R₂₉-X, where X and R₂₉ are as previously defined (except R₂₉≠H), in the presence of a base such as triethylamine.

Intermediates III can be made via a variety of methods. When X= CH₂ or CO, III can be made as shown in Scheme 2:

Scheme 2

10

Aryl halide IV is treated with an alkyllithium such as n-butyllithium or t-butyllithium followed by reaction with an RCON(CH₃)OCH₃ to give compound IIIa, which can be deprotected and converted to I as shown above. Additionally, IIIa can be reduced to the alcohol V with a suitable reducing agent such as sodium borohydride. Compound V can also be made by treatment of IV with an alkyllithium as previously described followed by reaction with RCHO. Compound V is converted to compounds IIIb by treating V with a reducing agent such as triethylsilane in the presence of a strong acid such as trifluoroacetic acid.

Compounds of formula Ia, Ib, and Ic can be prepared via a related sequence as shown in Scheme 3:

Scheme 3

10

Intermediate Illa is prepared as shown in Scheme 2, deprotected and then converted to la using methods of Scheme 1. This can then be converted to Ib and Ic using methods of Scheme 2.

Other compounds of this invention can be prepared by methods similar to those described in Schemes 2-3 wherein the aryl lithium reagent derived from IV is reacted with various electrophiles. For instance, compounds where X is NHCO or N(alkyl)CO can be prepared as shown in Scheme 4:

Scheme 4

Intermediate IV is reacted with an alkyllithium as previously described followed by addition of an isocyanate RNCO. The intermediate is deprotected and converted to compounds of type 1d as described in Scheme 1. Compounds of type 1d are converted to compounds 1e by reacting with an alkyliodide such as methyliodide in the presence of a suitable base such as sodium hydride.

Intermediate IV can be prepared via one of the following procedures:

10

5

Scheme 5

Intermediate IVa:

15

Benzylamine V is protected as its trifluoroacetamide, treated with a halogenating agent such as bromine, dibromodimethylhydantoin, or bis(trifluoroacetoxy)iodobenzene, and deprotected with aqueous base to give VI. This is treated with a carboxylic ester derivative containing a leaving group such as trifluoromethanesulfonate in the 2-position followed by chloroacetyl chloride to give VII. Treatment of VII with ammonia followed by reduction with NaBH₄/BF₃ etherate gives VIII. Treatment of VIII with an N-BOC 4-piperidinone derivative preferable in the presence of a Lewis acid such as titanium tetraisopropoxide followed by a reducing agent such as sodium cyanoborohydride affords IVa.

Scheme 6

Intermediate IVb:

10

15

A piperidine 4-carboxylic acid derivative IX is protected on nitrogen using trifluoroacetic anhydride and converted to the corresponding acid chloride XI using thionyl chloride. Intermediate XI is reacted with an arylhalide in the presence of a Lewis acid such as aluminum chloride to give XII. The carbonyl group of XII is protected by treatment with ethylene glycol in the presence of a strong acid such a toluenesulfonic acid. The nitrogen is deprotected using aqueous alcoholic base, and the resulting compound treated with an N-BOC 4-piperidinone derivative as described in Scheme 5 to afford IVb.

Compounds of formula If (where $R_{30} \neq H$) and II are prepared as shown in Scheme 7:

Intermediate XIII is treated with an N-BOC 4-piperidinone derivative preferably in the presence of a Lewis acid such as titanium

lf

R³²

tetraisopropxide followed by treatment with diethylaluminum cyanide to give XIV. This is treated with Grignard reagent R34MgCl followed by hydrolysis with aqueous acid to give IIIc. Compound IIIc can be converted to compounds of type If and II using the method shown in Scheme 1.

In addition to methods described above, compounds of formula **Ig** (where **A** is O, S or N-R²0) can be prepared as described in Scheme 8.

<u>Scheme 8</u>

In the compound HA- $(CH_2)_{2-5}$ -AH, each A is independently O, S, or N-R₂₀, and each CH₂ group may optionally be substituted by one or more alkyl groups. Examples of the compound HA- $(CH_2)_{2-5}$ -AH, include

5

10

15

Compound XV (where R" is either R₃₀ or R₃₄) is prepared as described in schemes 7 and 10. This is treated with HA-(CH₂)₂₋₅-AH optionally in the presence of an acid catalyst and a dehydrating agent. When A is O, the acid catalyst is preferably an organic protic acid such as toluenesulfonic acid and the dehydrating agent is triethyl orthoformate. When A is S, a Lewis acid such as boron trifluoride etherate serves as both acid catalyst and dehydrating agent. The resulting product XVI is hydrolyzed with a strong base such as potassium hydroxide to give XVII. This is converted to to le via methods described in scheme 1.

When X= S, SO, or SO₂, intermediates III are prepared as shown in the following schemes:

Scheme 9

The above reactions may be followed if necessary or desired by one or more of the following steps; (a) removing any protective groups

NCO₂Et

10

15

20

25

30

from the compound so produced; (b) converting the compound soproduced to a pharmaceutically acceptable salt, ester and/or solvate; (c) converting a compound in accordance with formula I so produced to another compound in accordance with formula I, and (d) isolating a compound of formula I, including separating stereoisomers of formula I.

Based on the foregoing reaction sequence, those skilled in the art will be able to select starting materials needed to produce any compound in accordance with formula I.

In the above processes it is sometimes desirable and/or necessary to protect certain groups during the reactions. Conventional protecting groups, familiar to those skilled in the art, are operable. After the reaction or reactions, the protecting groups may be removed by standard procedures.

The compounds of formula I exhibit selective m2 and/or m4 muscarinic antagonizing activity, which has been correlated with pharmaceutical activity for treating cognitive disorders such as Alzheimers disease and senile dementia.

The compounds of formula I display pharmacological activity in test procedures designated to indicate m1 and m2 muscarinic antagonist activity. The compounds are non-toxic at pharmaceutically therapeutic doses. Following are descriptions of the test procedures.

MUSCARINIC BINDING ACTIVITY

The compound of interest is tested for its ability to inhibit binding to the cloned human m1, m2, m3, and m4 muscarinic receptor subtypes. The sources of receptors in these studies were membranes from stably transfected CHO cell lines which were expressing each of the receptor subtypes. Following growth, the cells were pelleted and subsequently homogenized using a Polytron in 50 volumes cold 10 mM Na/K phosphate buffer, pH 7.4 (Buffer B). The homgenates were centrifuged at 40,000 x g for 20 minutes at 4°C. The resulting supernatants were discarded and the pellets were resuspended in Buffer B at a final concentration of 20 mg wet tissue/ml. These membranes were stored at -80°C until utilized in the binding assays described below.

Binding to the cloned human muscarinic receptors was performed using ³H-quinuclidinyl benzilate (QNB) (Watson et al., 1986). Briefly. membranes (approximately 8, 20, and 14 µg of protein assay for the m1, m2, and m4 containing membranes, respectively) were incubated with ³H-QNB (final concentration of 100-200 pM) and increasing concentrations of unlabeled drug in a final volume of 2 ml at 25°C for 90 minutes. Non-specific binding was assayed in the presence of 1 µM atropine. The incubations were terminated by vacuum filtration over GF/B glass fiber filters using a Skatron filtration apparatus and the filters were washed with cold 10mM Na/K phosphate butter, pH 7.4. 10 Scintillation cocktail was added to the filters and the vials were incubated overnight. The bound radioligand was quantified in a liquid scintillation counter (50% efficiency). The resulting data were analyzed for IC50 values (i.e. the concentration of compound required to inhibit binding by 50%) using the EBDA computer program (McPherson, 1985). Affinity values (Ki) were then determined using the following formula (Cheng and Prusoff, 1973);

$$K_{i} = \frac{IC_{50}}{1 + \frac{\text{concentration of radioligand}}{\text{affinity (KD) of radioligand}}}$$

Hence, a lower value of Ki indicates greater binding affinity.

To determine the degree of selectivity of a compound for binding the m2 receptor, the K_i value for m1 receptors was divided by the K_i value for m2 receptors. A higher ratio indicates a greater selectivity for binding the m2 muscarinic receptor.

RESULTS OF THE TESTS

20

25	Ki (nM)					
	Compound					
	No.	m1	m2	m4		
-	17	47.33	0.14	2.26		
	<u>18</u>	48.37	0.11	0.77		
	25	337.68	0.55	6.51		
	<u>3 1</u>	308.95	0.63	12.10		
•	<u>4 1</u>	29.9	0.06	1.47		
	44	36.79	0.11	0.76		

10

15

20

25

84	12.32	0.04	0.06
94	28.99	0.02	0.76
100	6497	0.12	3.38
554	0.81	0.01	0.04
590	29.33	0.03	0.80

For the compounds appearing in the TABLE OF COMPOUNDS the following range of muscarinic antagonistic activity was observed

m2: 0.01 nM to 106 nM

m1: 0.24 nM to 1900 nM

m4: 0.02 nM to 705 nM

For preparing pharmaceutical compositions from the compounds of formula I, compounds capable of enhancing ACh release, and ACh'ase inhibitors, pharmaceutically acceptable, inert carriers are admixed with the active compounds. The pharmaceutically acceptable carriers may be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. A solid carrier can be one or more substances which may also act as dilutents, flavoring agents, solubilizers, lubricants, suspending agents, binders or tablet disintegrating agents; it may also be an encapsulating material.

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parentertal administration. Such liquid forms include solutions, suspensions and emulsions. These particular solid form preparations are most conveniently provided in unit dose form and as such are used to provide a single liquid dosage unit.

The invention also contemplates alternative delivery systems including, but not necessarily limited to, transdermal delivery. The transdermal compositions can take the form of creams, lotions and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

10

15

20

25

30

35

Preferably, the pharmaceutical preparation is in unit dosage form. In such form, the preparation is subdivided into unit doses containing appropriate quantities of the active components. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation such as packeted tablets, capsules and powders in vials or ampules. The unit dosage form can also be a capsule, cachet or tablet itself, or it may be the appropriate number of any of these in a packaged form.

The quantity of active compound in a unit dose preparation may be varied or adjusted from 1 mg to 100 mg according to the particular application and the potency of the active ingredient and the intended treatment. This would correspond to a dose of about 0.001 to about 20 mg/kg which may be divided over 1 to 3 administrations per day. The composition may, if desired, also contain other therapeutic agents.

The dosages may be varied depending on the requirement of the patient, the severity of the condition being treating and the particular compound being employed. Determination of the proper dosage for a particular situation is within the skill of those in the medical art. For convenience, the total daily dosage may be divided and administered in portions throughout the day or by means providing continuous delivery. When a compound of formula I or a compound capable of enhancing ACh release is used in combination with an acetylcholinesterase inhibitor to treat cognitive disorders these two active components may be co-administered simultaneously or sequentially, or a single pharmaceutical composition comprising a compound of formula 1 or a compound capable of enhancing ACh release and an acetylcholinesterase inhibitor in a pharmaceutically acceptable carrier can be administered. The components of the combination can be administered individually or together in any conventional oral or parenteral dosage form such as capsule, tablet, powder, cachet. suspension, solution, suppository, nasal spray, etc. The dosage of the acetylcholinesterase inhibitor may range from 0.001 to 100 mg/kg body weight.

The invention disclosed herein is exemplified by the following preparation and examples which should not be construed to limit the

10

15

20

25

scope of the disclosure. Alternative mechanistic pathways and analogous structures may be apparent to those skilled in the art.

In the following examples intermediate numerals have normal type and are enclosed by parenthesis, e.g., (5). Product compounds are in bold type and underlined, e.g., 5

Example 1: Synthesis of Compound No. 4

An ether (650 ml) solution of the bromide (15.5 g, 0.07 mol) was cooled in a dry ice acetone bath where t-BuLi (100 ml, 1.7 M) was added dropwise. After stirring for 3h, the sulfur powder (4.9 g, 0.15 mol) was added and stirring continued for an additional hour. The temperature was warmed to room temperature and stirring continued for 16h. After quenching with water, ether (Et₂O) was added and the organic phase was washed with 5% HCl, water, 10% Na₂CO₃ and then brine. The solution was concentrated and purified by chromatography with 5% ethyl acetate (EtOAc) / hexane (Rf = 0.7/ CH₂Cl₂: hexane 1:1) with 33 g yellow solid collected.

The sample was dissolved in THF (50 mL) and cooled in an ice water bath where it was added to a mixture of LAH (0.91g, 0.02 mol) and 20 mL THF. Stirring was continued for 10 minutes, then warmed to room temperature and stirred for 1h. The reaction was diluted with EtOAc and quenched with water. 10% HCl was added and the organic layer separated, washed with water and brine. After concentration and drying under vacuum, 6.6 g of a yellow oil was collected.

The thiol (19 g, 124 mmol) was dissolved in DMF (180 ml) and cooled in an ice bath where NaH (4.9 g, 60% in oil) was added in portions. Stirring was continued for 1h, then warmed to room temperature and stirred for an additional 1h. The 4-fluoroacetophenone (18.7 g, 136 mmol) was added dropwise and then stirred at 70°C for 3h. The reaction was concentrated on a rotovap, diluted with EtOAc, and washed with

water and brine. The solution was evaporated on a rotovap and the residue chromatographed on silica gel (20% EtOAc/hexane) to collect 24.5g (73%) of a pale yellow solid.

To a solution of the alcohol (10.1 g,40 mmol) in toluene (100mL) was slowly added the trimethyl boroxine (3.3 g, 27 mmol). After 4h, the volatiles were removed by distillation (oil bath temp=140-150°C). Cooling to room temperature was followed by addition of toluene (50mL), and removal of the volatiles by distillation (repeat again). The residue was placed under high vacuum and the flask heated to 150°C. After drying under vacuum overnight the off white solid was dissolved in THF (100ml) and used without further purification.

The ketone (36 g, 133 mmol) was dissolved in THF (200 ml), followed by addition of the catalyst (8.8 g in 80 ml THF). BH₃(CH₃)₂S (42 ml, 2mol/L in THF) was added dropwise, and the reaction stirred for 30min. CH₃OH (200mL) was added and the solution concentrated. The residue was dissolved in EtOAc and washed with water and brine. The solution was dried over Na₂SO₄, filtered and concentrated to give 40.3 g of a pink oil.

A CH₂Cl₂ (600 ml) solution of the sulfide (40.3g, 147mmol) was cooled in an ice water bath where MCPBA (79.7 g, 70%) was added in portions. After stirring for 1h the temperature was warmed to room temperature and stirred for 4h. After diluting with CH₂Cl₂, the reaction

10

15

20

was washed with 10%Na₂CO₃, water, and brine. The solution was dried over, Na₂SO₄, filtered and concentrated to collect 42.5g of an off white solid.

A CH₂Cl₂ (250 ml) solution of the alcohol (21.4 g, 70 mmol) and triethyl amine (Et₃N) (19.5 ml) was cooled in an ice water bath where methanesulfonyl chloride (6.5 ml) were added dropwise. After 1h the reaction was diluted with CH₂Cl₂ and washed with 2% HCl, water, saturated NaHCO₃, water, brine, and dried over Na₂SO₄. Filtration and concentration gave 27g of an oil which was used without further purification.

A mixture of the mesylate (made from 21.4 g alcohol), piperazine (18 g, 0.07 mol), and 2,2,6,6-tetramethyl piperidine (11.8 g, 0.084 mol) was stirred in CH₃CN (200 ml) at reflux overnight. After cooling to room temperature the CH₃CN was removed on a roto vap and replaced with EtOAc. The solution was washed with 10% Na₂CO₃, and water. After concentration the residue was chromatographed on silica gel using 1:3 EtOAc/hexane. 21.9g (60%) of a gum was collected.

10

15

20

A mixture of the CBZ amine (10.3g, 19.6 mmol), 100 ml water, CH₃OH (100 ml), and 100 ml conc. HCl was heated in an oil bath at 100°C for 5h. The mixture was cooled in an ice bath and 50% NaOH was added until the pH=9. EtOAc was added, followed by separation and washing with water. The organic solution was concentrated and the residue chromatographed on silica gel (CH₂Cl₂:CH₃OH 50:1, saturated with NH₄OH solution). The product was collected in 86% as a heavy oil.

The amine (1.0 g, 2.5 mmol), N-BOC piperidinone (0.5 g, 2.5 mmol), and HOAc (0.15 ml) were dissolved in CH₂Cl₂ (20 ml). NaBH (OAc)₃

(0.55 g, 3.8 mmol) was added in several portions and the solution stirred overnight. CH₂Cl₂ was added and washed with saturated NaHCO₃, water and brine. The solution was dried over Na₂SO₄, filtered and concentrated. The residue was chromatographed using EtOAc. A colorless gum (0:96g) was obtained in 65% yield.

The N-BOC compound (0.87 g, 1.5 mmol) was dissolved in EtOAc (20 ml), and 6N HCl (3.5 ml) was added with stirring. After 2h, CH_2Cl_2 was added and the solution was washed with saturated NaHCO₃, and

10

15

dried over Na₂SO₄. After filtration the solution was concentrated and dried under vacuum to give a white powder (0.6g, 85%).

Stir for 20h. at RT a solution of intermediate (1) (0.025 g), N-hydroxybenzotriazole (HOBT) (0.01 g), benzoic acid (0.0125 g), Et₃N (0.01 mL) and N-ethyl-N-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) (0.025 g) in DMF (0.3 ml). Dilute with EtOAc, wash with water and with NaHCO₃ solution, dry over MgSO₄ and filter through a small plug of silica gel, washing with EtOAc. Evaporate to obtain the free base form of the title compound. Dissolve this in CH₂Cl₂ (0.2 mL) and add to a solution of HCl in dioxane (4M; 0.1 mL) in Et₂O (1.5 mL). Stir for 5 min., centrifuge, wash by suspension and centrifugation 3x with Et₂O and dry at RT in a stream of N₂, then at high vacuum to obtain the dihydrochloride. Mp: 215-225°C, with decomposition; Mass spectrum: MH+ = 574.

Example 2: Synthesis of Compound No. 17

15

Stir for 20h. a mixture of intermediate (1) from example 1, (0.05 g), CH_2Cl_2 (1.5 ml), o-toluoyl chloride (0.1 ml) and 1N aq. NaOH (2 ml). Separate the organic phase, dry and evaporate. Purify by preparative tlc, eluting with 5% $CH_3OH-CH_2Cl_2$. Extract the major band with 50% $CH_3OH-CH_2Cl_2$ and evaporate. Precipitate, wash and dry the hydrochloride (yield = 0.065 g) in the manner described in the foregoing preparation. Mp: 182-190°C with decomposition; Mass spectrum: MH+=588.

Example 3: Synthesis of Compound No. 28

This synthesis can be carried out using either intermediate (3a) or (3b) produced as shown in examples 10 and 11. To a solution of (3b) (1.86 g) in dry THF (30 ml) at -70°C under N₂ add n-BuLi (2.5 M in hexanes; 1.6 ml), stir for 10 min. and add a solution of N-piperonoyl-N,O-dimethyl-hydroxylamine (0.83 g) in THF (1 ml). Stir without cooling for 2h., add EtOAc, wash with water , dry (MgSO₄) and evaporate.

10

Chromatograph on silica gel with EtOAc-CH₂Cl₂ to obtain the major component intermediate (4) as a thick oil (1.21 g). Stir a solution of (4) (0.4 g) in EtOAc (24 ml) and conc. HCl (4.5 ml) at RT for 3h. Dilute with EtOAc, and wash with excess 1N NaOH solution. Extract with EtOAc, wash with saturated brine, dry and evaporate to obtain the NH compound. Dissolve this in CH₂Cl₂ (10 ml), and stir for 20h. at RT with o-toluoyl chloride (0.15 g) and NaOH (0.8 g) in H₂O (10 ml). Extract with CH₂Cl₂, dry (MgSO₄), evaporate and chromatograph on silica gel with 4% CH₃OH-CH₂Cl₂. Evaporate the pure fractions to obtain the free base as a foam (0.33 g) Dissolve a small portion this in CH₂Cl₂ and precipitate the hydrochloride salt as described in previous preparations. M.p.: 200-210°C, with decomposition; Mass spectrum: MH+ = 554

Example 4: Synthesis of Compound No. 30

Stir a solution of the product of example 3 (0.31 g), ethanol (15 ml) and sodium borohydride (0.042 g) at RT for 3h. Evaporate, add water, extract with EtOAc, dry, evaporate and chromatograph on silica gel with 10% CH₃OH-CH₂Cl₂ to obtain the product (0.28 g) as a white foam, a mixture of diastereoisomers. Mp: 85-95°C; Mass spectrum:

MH+ = 556.

Example 5: Synthesis of Compound No. 31

Stir a solution of the product of example 4 (0.1 g) in CH₂Cl₂ (3 ml) and add triethylsilane (0.3 mL) and trifluoroacetic acid (0.12 mL). Stir at

RT for 72h. Add excess 1N NaOH solution, extract with EtOAc, dry, evaporate and purify by preparative tlc on silica plates, eluting with 5% CH₃OH-CH₂Cl₂. Remove and extract the major band, evaporate the eluate, and convert to the hydrochloride in the usual manner, to obtain a white powder (0.08 g). Mp: 210-215°C, with decomposition; Mass spectrum: MH+ = 540.

Example 6: Preparation of Compound No. 24

To a solution of (3b) (Example 10) (1.38 g) in dry THF (20 ml) at -70°C under dry N₂ add n-BuLi (2.5M in hexanes; 1.7 ml). Stir for 5 min., and add a solution of 3,4-methylenedioxyphenyl isocyanate (crude product, prepared by heating the corresponding acyl azide in toluene) (0.68 g) in THF (5 ml). Stir for 30 min without cooling, and work up in EtOAc-aq.NaHCO₃, dry (MgSO₄) and evaporate. Isolate the desired

15 compound

(Rf = 0.4 in 5% CH₃OH-CH₂Cl₂) by column chromatography on silica gel, and evaporate to a pale brown foam (0.54 g).

Convert a small portion to the HCl salt in the previously described manner.

20 Mp: 240-250°C, with decomposition; Mass spectrum: MH+ = 551.

Stir a mixture of free base (8) (0.5 g), EtOAc (5 mL) and conc. HCl (3 ml) at RT for 2h. Add excess aq.NaOH, extract with CH₂Cl₂, dry and evaporate to a foam (0.35 g). Dissolve 0.12 g of this in CH₂Cl₂ (4 ml) and stir for 2h. at RT with 1N-NaOH (5 ml) and o-toluoyl chloride (0.05 mL). Separate and evaporate the organic phase, and isolate the product by preparative tlc on silica with 5% CH₃OH-CH₂Cl₂. Convert a small portion to the hydrochloride in the usual way. Mp: 220-230°C, with decomposition; Mass spectrum: MH+ = 569.

Example 7: Synthesis of Compound No. 25

10

15

Stir a solution of the product of example 6 (0.08 g) in DMF (1 ml) and add NaH (0.044 g), then after 10 min. add CH_3I and stir for 30 min. Work up in EtOAc- H_2O , dry, evaporate, purify by preparative tlc and convert to the HCl salt as in the foregoing preparation. Mp: 190-200°C, with decomposition; Mass spectrum: $MH_+ = 583$.

Example 8: Synthesis of Compound No. 83 and 84

300 ml of trifluoroacetic anhydride (TFAA) was added to 96 g of isonipecotic acid at 0°C. After the addition, the reaction mixture was

10

15

20

25

30

heated at reflux for 4h. Excess TFAA was removed under vacuo and the reaction mixture taken up in EtOAc and washed with water and concentrated to give 160 g of the amide. 50 g of this amide was treated with 300 ml SOCl₂ and the reaction mixture heated at reflux overnight. At the end of this time excess SOCl₂ was removed under vacuo to give 54 g of the acid chloride.

11g AlCl₃ was added slowly to a solution of 10 g of the above acid chloride in 40 ml of bromobenzene at ambient temperature and the reaction mixture heated at reflux for 4 h. It was then cooled and poured into a mixture of conc. HCl and ice and product extracted with EtOAc. The organic layer was separated and washed with water, half saturated NaHCO₃ solution and concentrated to give 16.21 g of the ketone.

16.21 g of the ketone was dissolved in 200 ml toluene containing 25 ml ethylene glycol and 0.5 g p-toluenesulfonic acid. The reaction mixture was heated at reflux with azeotropic removal of water until no further water was collected. The reaction mixture was concentrated to give 17.4 g of the ketal.

17.4 g of the crude ketal was dissolved in 100 ml of CH₃OH and to this was added 25 ml of water and 12 g of K₂CO₃ and the reaction mixture stirred at ambient temperature overnight. The reaction mixture was diluted with water and extracted with EtOAc. The organic layer was separated and washed with water and brine and concentrated to give 12.55 g of (10).

A mixture of 6.5 g of (10), 4.15 g of N-BOC-4-piperidone and 10 ml of Ti(OiPr)4 was stirred at ambient temperature overnight. The reaction mixture was cooled to 0°C and 3.2 g of NaCNBH3 dissolved in 40 mL of CH3OH was added. The reaction mixture was then allowed to warm to ambient temperature and stirred for 1 h., diluted with 100 ml of EtOAc and quenched with a mixture of 60 ml water/20 ml of conc. NH4OH. The mixture was stirred for 1 h. and filtered though celite. The aqueous layer was extracted with 3x100 ml of EtOAc. The combined organic layers were dried over MgSO4, filtered and concentrated. The crude was purified by flash chromatography using 100% EtOAc as eluent. To give 6.8 g, 66% of (11).

15

20

To a stirred solution of (11) in 25 mL of THF at -78°C was added 1.7 ml (1.6 M in Hex.) of ⁿBuLi. The mixture was stirred at -78°C for 10 min., then 700 mg of piperonal dissolved in 5 ml of THF was added. The mixture was allowed to reach ambient temperature and stirred for 2 h. The mixture was quenched with 30 ml of water and extracted with 3x50 ml of EtOAc. The combined organic layers were dried over MgSO4, filtered and concentrated. The crude was purified by silica gel flash chromatography using 10%Et3N-ether to give 475 mg, 41.5% of (12).

To a stirred solution of 475 mg of (12) and 1 ml of Et₃SiH in 10 ml of CH₂Cl₂ was added 3 ml of TFA. The mixture was stirred at ambient temperature for 2 h. The solvent was evaporated and the residue was taken up in 20 ml of CH₂Cl₂, washed with 20 ml of 10% NaOH. The aqueous layer was extracted with 3x30 ml of CH₂Cl₂, the combined organic layers were dried over MgSO₄, filtered and concentrated to give a mixture of (13) & (14) which was used without purification. (350 mg, 90%).

350 mg of the crude mixture of (13) and (14) and 1 ml of Et3N in 10 ml of CH₂Cl₂ was treated with 0.5 ml (1.2 eq.) of o-toluoyl chloride for 3 h. The mixture was then concentrated and the residue purified by silica get prep. TLC using 4% Et3N-Et₂O to give compounds <u>83</u> and <u>84</u>. The HCl salts of compounds <u>83</u> and <u>84</u> were prepared by dissolving the free base in EtOAc and adding HCl-ether solution. After evaporating the solvent, the salts were collected as powder.

Compound No. 83 (50 mg, 54%) (M+H)+ Cal: 525.2753;

25

Found: 525.2746

Compound No. 84 (190 mg, 50%) (M+H)+ Cal: 569.3015;

Found: 569.3022

Example 9: Synthesis of Compound No. 85

The piperazine (17) (1.1 g, 2.8 mmol), prepared as described in example 1, is dissolved in CH₂Cl₂ (10 ml) followed by addition of the N-BOC piperidinone (0.85 g, 4.25 mmol) and Ti(OiPr)₄ (0.8 g, 2.8 mmol). The mixture is stirred overnight at room temperature. A 1 molar toluene solution of diethylaluminum cyanide (6.5 ml, 5.6 mmol) is added, via syringe, and the mixture stirred for an additional 20h. The mixture is then diluted with EtOAc and washed with 10% Na₂CO₃, water and brine. The organic phase is concentrated in vacuo and the residue

15

20

25

30

35

chromatographed through a silica gel column (1:1 EtOAc/hexane). The product (18) is collected as a colorless oil (0.93 g, 55%).

The cyano intermediate (18) (0.13 g, 0.19 mmol) is dissolved in THF (4 ml) followed by the addition of CH₃MgBr (0.64 ml, 3.0 M, 1.9 mmol), via syringe. After stirring for 10 min the temperature is raised to 60°C where stirring is continued for 2.5h. Cooling to room temperature is followed by quenching with water (1 ml) and then saturated NaHCO₃ (20 ml). After 10 min EtOAc (50 ml) is added, stirred vigorously, and separated. The organic layer is washed with brine and dried over Na₂SO₄. Filtration and concentration with under vacuum gives a viscous oil which is purified on silica gel prep TLC plates (100% EtOAc). The intermediate (19) is collected in 60% yield.

The N-BOC piperidine (19) (0.27 g, 0.4 mmol) is dissolved in EtOAc (10 ml) and 1.5 ml of a 6N HCl solution added with vigorous stirring. After 1.5h saturated NaHCO₃ is added until the pH was basic. CH₂Cl₂ (25 ml) is added and the layers separated, and the aqueous phase extracted with CH₂Cl₂. The organic layer is dried over Na₂SO₄, filtered and concentrated to collect 0.22 g, 95%, of (20) as a thick oil which solidifies under vacuum.

The amine (20) (0.025 g, 0.044 mmol) is dissolved in CH₂Cl₂ (1 ml) followed by the addition of Et₃N (11 ul, 0.08 mmol) and the 2,6difluoro-benzoyl chloride (0.014 g, 0.08 mmol). After stirring at room temperature overnight, saturated NaHCO3 and CH2Cl2 are added. The layers are separated and the organic phase dried over Na₂SO₄. The solvent is removed and the residue dissolved in EtOAc. The solution was placed on a preparative TLC plate and eluted with EtOAc (100%). Compound 85 is collected as a clear oil (0.026 g), yield = 95%. This is converted to the dihydochloride salt as follows: The free amine (26 mg) is dissolved in 1 ml EtOAc and stirred while HCl / Et2O is added until the pH persists at 2. The precipitate is transferred to a centrifuge tube and spun in a centrifuge. The supernatant was removed and replaced with E₂O (gentle stirring with a spatula), and the sample spun again. The process is repeated 3X. After removal of the solvent, the solid is transferred to a vial where it is dried under vacuum. 15 mg of a white solid was collected (m.p. = 242-245 dec).

Example 10: Synthesis of Intermediate (3a) from example 3

Step 1

5

TFAA (150 ml, 1.06 mol) in CH_2Cl_2 (500 ml) was cooled to 0°C. A solution of (S)- α -methylbenzylamine (22) (100 g, 0.83 mol) in CH_2Cl_2 (200 ml) was added slowly over 30 min. The cooling bath was removed and the mixture was stirred for ~2h, transferred to a separatory funnel,

10

15

20

25

30

35

washed with water, dried over anhydrous MgSO₄, filtered, and concentrated to give 189 g (~100%) of (23) as a white solid **Step 2**

lodine (41 g, 162 mmol) was added to a solution of (23) (65.4 g. 301 mmol) in CH₂Cl₂ (500 ml) at room temperature. [Bis(trifluoroacetoxy)iodo]-benzene (75 g, 174 mmol) was added. The mixture was stirred for 30 min, a mild exotherm occurred (30°C), then kept in the dark overnight. The mixture was added slowly to a stirred mixture of NaHCO₃ (50 g), sodium bisulfite (10g) and water (600 ml). washing in with CH2Cl2. The mixture was stirred for 15 min, filtered and the filter cake was well washed with CH₂Cl₂ until TLC (100% CH₂Cl₂, Rf=0.75) shows no product in the washings. (Note: the initial solid contains considerable product which is moderately soluble in CH2Cl2). The filtrate was dried over anhydrous MgSO4, filtered through a 1" pad of flash silica gel, washed with 2% Et₂O/ CH₂Cl₂. The filtrate was evaporated to a slurry, Et₂O (-75 ml) and hexanes (-700 ml) were added and the mixture was stirred for 30 min. The resulting solid was collected, washed well with hexanes, air dried and then dried under vacuum to give 63.05 g (61%) of (24) as a white solid. Filtrates were evaporated to an oil and some crystals, added hexanes (500 ml), stirred at room temperature for 1h, collected and additional 4.6 g (4%) of (24) Step 3

(24) (10g, 29.15 mmol) was dissolved in CH₃OH (150 ml) and water (15 ml). 50% NaOH (30g) was added and the mixture was stirred at room temperature overnight (20 h). TLC (50% EtOAc/hex.) indicated consumption of starting material. Most of CH₃OH was removed in vacuo, the residue was dissolved in water and CH₂Cl₂, transferred to a separatory funnel and extracted with CH₂Cl₂. The extracts were combined, dried over anhydrous Na₂CO₃, filtered and concentrated to give 6.7 g (93%) of (25) as a white solid.

Triflic anhydride (10.6 ml, 62.98 mmol) was added to a 0°C solution of (S) ethyl lactate (26) (7.0 ml, 61.75 mmol) in CH_2Cl_2 (100 ml) at 0°C. 2,6-Lutidine (7.55 ml, 64.83 ml) was added and the mixture was stirred for 1h. The mixture was transferred to a separatory funnel,

10

15

20

25

30

35

washed with 0.5 M HCl and brine, dried over anhydrous Na₂SO₄, concentrated almost to dryness, filtered through a plug of silica eluting with CH₂Cl₂, conc. to provide 10.8 g (70%) (27) as a reddish oil. Step 5

(25) (6.7 g, 27.11 mmol) was added to a mixture of CH₂Cl₂ (90 ml), water (90 ml) and K₂CO₃ (5.5 g, 39.6 mmol). Ethyl (S) lactate triflate (27) (7.5 g, 29.82 mmol) was added and the mixture was stirred overnight (20 h). TLC (50% EtOAc/hex.) indicated consumption of starting material. Ammonia (conc.) (30 ml) was added, stirred 15 min, transferred to a separatory funnel, washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated to give 10.3 g (~110%) of (28).

Step 6

CICH₂OCI (12 ml, 150 mmol) was added to a solution of (28) (9.37g, 27.11) in dichloroethane (80 ml). The mixture was refluxed for 2h. TLC (20% EtOAc/hex.) indicated consumption of starting material. The solution was cooled to room temperature, diluted with CH₂Cl₂, water (200 ml) followed by K₂CO₃ (~15g) added in small portions. The mixture was stirred for an additional 15 min., transferred to a separatory funnel, washed with water, dried over anhydrous Na₂SO₄, filtered and concentrated to give 11.53g (~110%) of (29).

(29) (27.11 mmol) was dissolved in dimethyl sulfoxide (DMSO) (120 ml). Concentrated aqueous ammonia (24 ml) and NaI (13 g) were added. CH₃OH (10 ml) was used in the NaI. The mixture was stirred over the weekend (60h, overnight is sufficient). TLC (50% EtOAc/hex.) indicated consumption of starting material. Water (500 ml) was added, the mixture was stirred for 30 min and the resulting precipitate was collected via vacuum filtration. The precipitate was well washed with water and dried under vacuum to afford 8.2g (84%) of (30).

Step 8

(30) (8.2 g, 22.9 mmol) was added to a mixture of NaBH₄ (8.66 g, 228.9 mmol) in dimethoxyethane (250 ml). Boron trifluoride etherate (16.9 ml, 137.3 mmol) was added and the resulting mixture was refluxed under nitrogen for 3h. TLC (5% CH₃OH/CH₂Cl₂) indicated consumption

10

of starting material. The mixture was cooled to 0°C, CH₃OH (60 ml) was added slowly and the resulting mixture was stirred for 20 min. Concentrated HCI (10 ml) was added slowly and the resulting mixture was refluxed for 1h. TLC (5% CH₃OH/CH₂Cl₂) indicated formation of a more polar product consistent with an amine. The mixture was cooled to room temperature and concentrated almost to dryness. The residue was partitioned between 2N NaOH and CH₂Cl₂, transferred to a separatory funnel and extracted with CH₂Cl₂. The extracts were combined, washed with water, dried over anhydrous Na₂SO₄ and concentrated to provide 6.5 g (87%) of (31) as an oil.

Step 9:

Intermediate (31) was converted to 3a using using procedures described in example 8.

Example 11: Synthesis of Intermediate (3b) from example 3

15

20

25

A solution of TFAA (0.4 mol) in 300 ml cold CH₂Cl₂ is treated with 0.3 mol (S)-α-methylbenzylamine in 100 ml CH₂Cl₂. The resulting mixture is stirred with ice cooling for 30 minutes and at room temperature for 1.5 hours. The solution is again cooled in an ice bath and 80 ml CH₃SO₃H is added followed by 45 grams dibromodimethylhydantoin. Stirring is continued until the mixture is homogeneous, then the mixture is allowed to stand overnight in the dark. A solution of 20 g NaHSO₃ in 300 ml ice water is added. The organic layer is separated and washed twice with water and dried over MgSO₄. The solution is filtered through a 4" pad of flash-grade silica gel, eluting with 400 ml CH₂Cl₂, and

evalporated to a solid. The solid is suspended in 200 ml Et₂O and 11 hexane is added. After stirring 30 minutes, the solids are collected, washed with hexane, and dried to give 35.7 grams of intermediate (24b). This compound is converted to (3b) using the same sequence described in scheme 9.

Example 12: Synthesis of Compound No. 53

To a stirred solution of (32) prepared via the procedure described for intermediate (7) of example 14, but using N-ethyoxycarbonyl-4-piperidinone instead of N-tBOC-4-piperidinone (1.80 g, 3.41 mmol) in toluene (34 ml) was added dry ethylene glycol (1.33 ml, 23.8 mmol), triethylorthoformate (1.70 ml, 10.2 mmol) and p-toluenesulfonic acid monohydrate (0.97 g, 5.12 mmol). The reaction was heated overnight at 55°C under nitrogen. The mixture was diluted with CH₂Cl₂, washed sequentially with 1N NaOH and brine, dried over Na₂SO₄, filtered and

10

15

20

25

concentrated in vacuo. The resulting product (33) (2.40 g) was used without further purification.

The crude ketal (33) (0.83 g, ~1.45 mmol) was dissolved in ethylene glycol (44 ml) and crushed KOH (2.90 g, 51.6 mmol) was added to the rigorously stirred solution. The reaction was heated for 24 h at 100°C. After cooling to room temperature, the mixture was diluted with EtOAc followed by the addition of 1N NaOH. The aqueous portion was extracted with EtOAc and the combined organics washed several times with 1N NaOH. The crude solution was dried over Na₂SO₄, filtered, and concentrated to yield 0.31 g of (34) which was used without further purification.

To a solution of (34) (31.4 mg, 62.8 μ mol) in CH₂Cl₂ (0.60 ml) was added *n*-propylsulfonyl chloride (20 μ L, 178 μ mol) and Et₃N (30 μ L, 215 μ mol). The reaction was stirred for 2 h at room temperature under nitrogen. The mixture was concentrated under reduced pressure and purified by PTLC (10/90 CH₃OH/CH₂Cl₂), yielding (35) (12.3 mg, 32% over 3 steps). LRMS (FAB): (M+H)=606

Example 13: Synthesis of Compound No. 22

To a solution of (36) prepared via the procedure described for intermediate (7) of example 14, substituting 4-mercaptoanisole for 4-mercaptomethylenedioxybenzene and N-ethyoxycarbonyl-4-piperidinone for N-tBOC-4-piperidinone (29.5 mg, 58.9 μmol) in CH₂Cl₂ (0.24 ml) was added ethanedithiol (7.4 μL, 88 μmol) and BF₃•OEt₂ (11 μL, 88 μmol). The reaction was stirred overnight at room temperature under nitrogen, then diluted with CH₂Cl₂ and washed with 10% NaOH.

The crude mixture was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by PTLC (10/90 CH₃OH/CH₂Cl₂) yielded 37 (17 mg, 50% yield). LRMS (FAB): (M+H)=591.

Example 14: Synthesis of Compound 43

To a stirred solution of 41 ml of anhydrous DMF was added 43 ml of SO₂Cl₂ at 0-10°C followed by slow addition of 61 grams of methylenedioxy-benzene. After the addition was completed, the mixture was heated at 80°C for 10 min., and then 5-10 min. at 110°C. The reaction mixture turned to dark brown. The mixture was cooled to 40°C and was poured into a mixture composed of 200 ml H₂O/200g crushed ice/300 ml CHCl₃. Two layers were separated, the organic layer was

15

20

25

30

35

dried over MgSO₄, filtered, and concentrated to give a crude product (1) which was triturated with 100 ml of hexanes. (60.6 g, 53%)

To a stirred suspension of 16 g LAH in 500 ml of THF at 0°C, was added dropwise 60.6 g of (1) dissolved in 100 ml of THF. The temperature was allowed to reach RT and the mixture was stirred at this temperature for 2 h.. The reaction mixture was then quenched carefully with 1N HCl at 0°C to pH=1, diluted with 1 L EtOAc. The organic phase was washed with 500 ml of water, dried over MgSO₄, filtered and concentrated to give a crude which was used directly in the next step without purification. (29 g, 68%)

28 g of the crude thiol (2) dissolved in 20 ml of DMF was added to a stirred suspension of 8 g of NaH(60%) in 80 ml of DMF. The mixture was stirred at RT for 1 h., ketone (3) dissolved in 150 ml of DMF was added at once. The mixture was heated at 70°C over night. The mixture was diluted with 400 ml of CH₂Cl₂ and then quenched with 300 ml of water. The organic phase was washed with 3x200 ml of water, dried with MgSO₄, filtered and concentrated to give crude (4) which was purified by flash chromatography using EtOAc/Hex./CH₂Cl₂=1/4.5/4.5 as eluents. (35 g, 53%)

To a stirred solution of 6 g of (4) in in 100 ml of CH₂Cl₂ was added 10 ml of TFA. The mixture was stirred at RT for 1 h. The solvent was eliminated under reduced pressure and the residue was taken up in 100 ml of CH₂Cl₂ and extracted with 3x60 ml of CH₂Cl₂. The combined organic phase was chloride, quenched with 50 ml of 10% NaOH. The aqueous phase was dried over MgSO₄, filtered and concentrated to give crude (5), used without purification. (4.6 g, 100%)

A mixture of 3.4 g of (5) 2.4 g of N-BOC-4-piperidone and 5.9 ml of Ti(OiPr)4 was stirred at RT over night. 1.6 g of NaCNBH3 dissolved in 40 ml of CH3OH was added at 0°C. The mixture was stirred at RT for 1 h. diluted with 100 ml of EtOAc, quenched with a mixture of 60 ml water/20 ml of NH4OH. The mixture was stirred at RT for 1 h. and filtered though celite. The aqueous phase was extracted with 3x100 ml of EtOAc. The combined organic phases were dried over MgSO4, filtered and concentrated. The crude (6) was purified by flash chromatography using 100% EtOAc as eluent. (3.8 g, 73%)

10

15

20

To a solution of 1.32 g of (6) in 15 ml of HOAc was added 1.41 g of NaBO3•4H₂O, and the mixture was stirred at RT for 3 days. The solvent was evaporated and the residue was quenched with 20 ml of 10% NaOH, then extracted with 3x50 ml of EtOAc. The combined organic extract was dried over MgSO₄, filtered and concentrated. The crude (7) was purified by silica gel prep TLC using 20%EtOH-EtOAc. (620 mg, 44%)

620 mg of (7) in 15 ml of CH₂Cl₂ and 5 ml of TFA was stirred at RT for 3 h. The solvent was evaporated and residue was treated with 10% NaOH, then extracted with EtOAc. The organic extract was dried over MgSO₄, filtered and concentrated to give crude product (510 mg, 100%). 0.052 mmol of the resultant crude free amine was reacted with 1.2 eq. of o-toluoyl chloride and 1.3 eq. of Et₃N in 3 ml of CH₂Cl₂ for 3 h. The mixture was concentrated and the residue was purified by silica gel preparative TLC using 20% EtOH-EtOAc. (18 mg, 50%) (M+H)+ Cald: 575.2216; Found: 575.2223.

The HCl salts were prepared by dissolving <u>43</u> in EtOAc and adding HCl-ether solution. After evaporating the solvent, the salts were collected as powder.

Example 15: Preparation of Compound No. 82

10

15

Stir a solution of compound (4) from Example 3 (0.5 g) and NaBH₄ (0.2 g) in ethanol (3 ml) at RT for 3 h. Add water, extract with CH₂Cl₂, dry over MgSO₄ and evaporate. To the residue in CH₂Cl₂ (5 ml) add triethylsilane (3 ml) and TFA (3 ml), relux for 3 h., evaporate, partition with CH₂Cl₂ and 1N aq. NaOH, dry and evaporate to obtain (11) as a thick oil, used as such in subsequent acylation experiments.

Stir a mixture of (11) (0.03 g), CH_2Cl_2 (2 ml) and 1N aq. NaOH (2 ml) and add 2,3-dimethylbenzoyl chloride (0.07 g). Stir at RT for 18 h., extract with CH_2Cl_2 , dry and evaporate. Dissolve the residue in 1:1 CH_2Cl_2 :acetone and filter through a small plug of silica gel, washing with the same solvent mixture. Evaporate, dissolve the residue in a small volume of CH_2Cl_2 and precipitate the dihydrochloride by adding to excess HCl in Et_2O as described in earlier preparations. Wash with Et_2O and dry to obtain the product compound No. 82 as an off-white powder (0.036 g). Mp: 207-212°C, with decomposition; MS: MH+ = 554.

Example 16: Preparation of Compound No. 94

10

15

20

25

30

To a stirred solution of 899 mg (1.72 mmol) of (4), prepared as described in Example 14, in 15 ml of anhydrous CH₃OH is added by portion 130 mg of NaBH₄. The mixture is stirred at room temperature for 30 min. and then quenched with 15 ml of 10% NaOH solution. The aqueous layer is extracted with 4x20 ml of EtOAc. The combined organic layers are dried over Na₂SO₄, filtered and concentrated to give 859 mg (95%) of (8).

To a stirred solution of 850 mg of crude (8) in 5 ml of CH₂Cl₂ is added 563 mg (3 eq.) of triethylsilane, followed by 2 ml of TFA. The mixture is stirred at room temperature for 3 hrs. and then is concentrated. The residue is taken up in 15 ml of CH₂Cl₂ and 15 ml of 10% NaOH. The aqueous layer is extracted with 3x15 ml of CH₂Cl₂. The combined organic layers are dried over MgSO₄, filtered and concentrated to give 600 mg (92%) of crude (9).

To a stirred solution of 600 mg of (9) and 455 mg of Et₃N in 5 ml of CH₂Cl₂ is added 464 mg of o-toluoyl chloride. The mixture is stirred at room temperature for 2 hrs. The mixture is quenched with 20 ml of water, extracted with 3x20 ml of EtOAc. The combined organic layers are dried over MgSO₄, filtered and concentrated to give a crude. Purification on silica gel prep TLC affords 555 mg (70%) of (10).

To a stirred solution of 43 mg of (10) and 0.5 ml of CH₃SO₃H (0.5 M CH₂Cl₂) in 5 ml of CH₂Cl₂ is added at 0°C, 58 mg (57-86%) of mCPBA. The mixture is stirred at 0°C for 1 h. and is quenched with 15 ml of 10% NaHCO₃. The aqueous layer was extracted with 3x15 ml of EtOAc. The combined organic layers are dried over MgSO₄, filtered and concentrated to give a crude product. Purification on silica gel prep. TLC affords 36 mg (80%) of free base of compound number <u>94</u>. The HCl salt is prepared by dissolving the free base in EtOAc and adding HCl-ether solution. After evaporating the solvent, the salts are collected as powder. (M+H)+ Cal: 561.2423; Found: 561.2416.

Using appropriate starting materials in the above procedures, with modifications well known in the art, the compounds exemplified in the following table are prepared:

TABLE OF COMPOUNDS

	TABLE OF COMIT COMES	, , , , , , , , , , , , , , , , , , ,
NO.	STRUCTURE	PHYSICAL DATA
1	CH ₃ CH ₃ N N N N N N N N N N N N N	-
2	CH ₃ CH ₃ O S S N N CI N CI O C	-
<u>3</u>	CH ₃ CH ₃ O S O O CH ₃ O	
<u>4</u>	CH ₃ CH ₃	mp=215-225°C (dec) MS MH+=574
<u>5</u>	CH ₃ CH ₃ N N N N N N N N N N N N N	_

6	CH ₃ CH ₃ N N N N N N N N N N N N N	<u>-</u>
7	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N	_
<u>8</u>	CH ₃ CH ₃ O = S O =	-
9	CH, Z Z Z Z O	-
10	CH ₃ CH ₃ N N CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	-
11	CH ₃ CH ₃ O=S N N N N N N N N N N N N N N N N N N	_

12	CH ₃ CH ₃	-
13	CH ₃ CH ₃ O S S N N N N N N N N N N N N N N N N N	_ /
14	CH ₃ CH ₃ N N N CH ₃ CH ₃ CH ₃	-
<u>15</u>	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N	-
16	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N	-
17	CH ₃ CH ₃ O = S O H ₃ C	mp=182-190 oC (dec) MS MH+=588

		· · · · · · · · · · · · · · · · · · ·
18	O=S N N N	-
,	Q CH ₃ CCH ₃	·
19	O CH ₃ CH ₃	·-
	N H ₃ C O H ₃ C	
20	o=s	-
	H ₃ CO N O	
21	0=s, N	-
ter vije stag	H ₃ CO NOE1	ar of the Manager of the second
22	O = S N N OEI	LRMS (FAB) Calc. for C ₂₉ H ₃₈ O ₅ N ₂ S ₃ (M+H): 591
	H ₃ CO O	Found: 591
23	CH ₃ CH ₃ N N N N N N N N N N N N N N N N N N N	-
		

24	ONH NH NH3C	mp=220-230°C (dec) MS MH+=569
<u>25</u>	O CH ₃ N CH ₃ N CH ₃ O C	mp=190-200°C (dec) MS MH+ = 583
26	H ₃ C N N	-
27		HRMS Calcd: 573.2278 Found: 573.2271
28	III N N CH3	mp = 200-210°C (dec) MS MH+ = 554
29		_

30	HO N N O CH3	mp = 85-95°C (dec) MS MH+ = 556
31		mp= 210-215°C (dec) MS MH+=540
32	O = S CH ₃ N N N N N N N N N N N N N N N N N N N	mp=235-237°C (dec)
33	Br N N CH ₃	-
34		mp=185-200°C (dec) MH+ 608/610
35		mp=178-190°C (dec) MS MH+ = 652/654

<u>36</u>	0=S N N N O OCH3	mp=180-190°C (dec) MH+= 604
37	IIIIIII NO SIN O O O O O O O O O O O O O O O O O O O	mp=180-195°C (dec) MH+=593
38	O S S S N N OEt	-
<u>39</u>		mp= 190-205°C (dec) MS MH+=578
40	III N N CH ₃	
41	0 = S	mp = 180-290°C (dec) MS MH+=594

42		-
43	0=S	HRMS Calcd 575.2216 Found 575.2223
44	OF SCH3 OF SCH3 OF SCH3 OF SCH3	HRMS Calcd 589.2372 Found 589.2379
<u>45</u>	O S C4F9 O S C4F9	mp=255-257°C (dec)
<u>46</u>	CH ₃ N. S=0 CF ₃ O CF ₃	FAB MH+=694
47	O S O O O O O O O O O O O O O O O O O O	-

48		
	O=S N CH ₃	-
49	O"S CF3 CF3 CF3	FAB MH+=632
50		mp=195-200°C (dec)
<u>51</u>		-
<u>52</u>		-
<u>53</u>		LRMS (FAB) Calc. for C ₂₉ H ₃₈ O ₈ N ₂ S ₂ (M+H): 606 Found: 606

<u>54</u>	0=S CH ₃ CH ₃ N S 0	FAB (NBA-G/TG- DMSO): 590 (M+), 574, 406, 389
<u>55</u>	H ₃ CO	HRMS calcd 594.2672 found 594.2668
<u>5 6</u>	H ₃ CO CH ₃	HRMS calcd 642.2686 found 642.2685
5.7	O=S N N N O CH ₃	HRMS calcd 606.3002 found 606.2987
5.8		mp=218-220°C (dec)
59	O=S CH3 O H3C	mp=203-205°C (dec)

<u>60</u>		_
<u>61</u>	O=S N N N CH ₃ CCH ₃	-
<u>62</u>		LRMS (FAB) Calc. for C31H40O8N2S (M+H): 601 Found: 601
<u>63</u>	0=S CH ₃ N CH ₃ N CH ₃ N CF ₃ O F ₂ CF ₃	FAB MH+=682
64	H ₃ CO	HRMS calcd 636.3107 found 636.3119

<u>6 5</u>		-
	ر م	
<u>66</u>		mp=157-160°C (dec)
67	O=S N N CH ₃ F ₂ CC. CF ₃	FAB MH+=632
6.8		mp=172-175°C (dec)
69	N N F	=
7.0	N F F	

71		
	N CI	
72		
		·
73		
	of N CI CI	
74	N N	
	N F	
7.5	N	
	N CI	
<u>76</u>		
	N N F	

7.7		
		·
<u>78</u>	ON NO CI CI	
79	H ₃ CO OCH ₃ OCH ₃ OCH ₃ OCH ₃	HRMS calcd 622.2951 found 622.2932
	H ₃ CO OCH ₃ OCH ₃ OCH ₃ OCH ₃	HRMS calcd 606.3002 found 606.2999
81	O S S S S S S S S S S S S S S S S S S S	HRMS calcd 634.2952 tound 634.2962
82	N H ₃ C CH ₃	mp: 207-212 °C (dec) Mass spectrum: MH+ = 554

		1
83		_
	N H ₃ C	
,		\
84		
		HRMS Calcd 579.3015
	N H ₃ C	Found 569.3022
<u>8 5</u>		mp=242-245
	O=S N CH ₃ F	(dec)
- C	0 F	
<u>86</u>	0 CH ₃	mp=206-209
	N CH ₃	(dec)
	N _S N _N	
8.7		mp=237-239
	O=S N N CH ₃ Cl O	(dec)
	N.S. NH	
8.8		
	O S CH ₃	FAB (SIMS): 630 (M+), 391, 329,
.		307, 289

		
89	O = S CH ₃	FAB (SIMS): 568 (M+), 391, 307, 232
90	0 S CH ₃	FAB (NBA-G/TG- DMSO): 554 (M+), 538, 389, 289
91	O S CH ₃	FAB (NBA-G/TG- DMSO): 610 (M+), 594, 490, 426, 322
9.2	H ₃ CO	HRMS calcd 572.3488 tound 572.3491
93	H ₃ CO Br	HRMS calcd 620.2488 found 620.2478
94		HRMS Calcd 561.2323 Found 561.2423

95	H ₃ CO OCH ₃ O=S O=S O=S N N N N N O Br	HRMS calcd 700.2056 found 700.2044
96		LRMS (FAB) Calc. for C ₃₃ H ₃₅ O ₇ N ₂ SCI (M+H): 639 Found: 639
<u>97</u>	0=S CH ₃ N CH ₃	FAB (NBA-G/TG- DMSO): 616 (M+), 432, 389, 328
9.8	CI N N N N CI S	-
99	CI N N N N CI S	-
100	CH3 CH3 NNN H3C	mp: 210-220°C (dec) Mass spectrum: MH+ = 546.

101	CH3 CH3	-
102	H ₃ CO	HRMS calcd 650.2593 found 650.2588
103	H ₃ CO	HRMS calcd 606.3099 found 606.3084
104	H ₃ CO	HRMS calcd 592.3209 found 592.3215
105	H ₃ CO OCH ₃ H ₃ CO S	HRMS calcd 592.3209 found 592.3215
106	H ₃ CO OCH ₃ OCI	HRMS calcd 606.3099 found 606.3090

107	N N	HRMS calcd 650.2593
	H ₃ CO OCH ₃ OCH ₃ O Br	found 650.2579
108		_
109	Ö Br	-
110		LRMS(FAB): M+H = 732
111		LRMS(FAB): M+H = 724
112		mp: 190-195 °C (dec) Mass spectrum: MH+ = 546.

113	Br CH ₃	MH+ = 618, 620
114		mp=191°C (dec) MH ⁺ = 611
115	O H ₃ C	MH* = 540

Example 17

Step 1:

To a mixture of piperidone monohydratehydrochloride (27.5 g, 0.18 mol), K₂CO₃ (50g), 350 ml CH₂Cl₂, 250 ml water, cooled in an ice water bath, was added dropwise (over 1h) a solution of o-toluoyl

10

20

25

chloride (26 g, 0.17 mol) in 25 ml CH₂Cl₂. The mixture was warmed to room temperature and stirred overnight. The organic phase was separated, washed with water, dried over Na₂SO₄, filtered and concentrated on a rotarty evaporator. The crude product was purified on a silica column using hexane: EtOAc (4:1). Yield =93% Step 2:

To a solution of 2-(R)-methylpiperazine (6.1 g, 61 mmol) in CH_2Cl_2 (250 ml) was added acetic acid (3.6ml), N-o-toluoylpiperidone (13.3 g, 61 mmol), and NaBH(OAc)3 (15.5 g, 73 mmol). The mixture was stirred overnight followed by dilution with CH_2Cl_2 , washing with 10% Na_2CO_3 and water. Concentration of the organic phase was followed by purification on a silica column ($CH_2Cl_2:CH_3OH=20:1$, sat'd with aq. NH_3). Yield = 50%

15 Step 3:

To NaBH(OAc)3 (0.042 g, 0.2 mmol) was added a solution of the product of Step 2 (0.03 g, 0.1 mmol), acetic acid (0.006 ml), and 4-phenoxy-benzaldehyde (0.1 mmol). The mixture was stirred overnight followed by dilution with CH₂Cl₂ (10 ml), washing with 10% Na₂CO₃, and drying over Na₂SO₄. Concentration of the organic phase was followed by purification on a silica column (EtOAc). The hydrochloride was prepared by dissolving the product in a minimum amount of EtOAc, followed by addition of anhydrous HCl. The precipitate was collected on a centrifuge and washed with Et₂O (3x), followed by drying under vacuum. Yield = 66%. M.p. 217-219°C (dec).

Example 18

To NaBH(OAc)3 (0.026 g, 0.12 mmol) was added CH₂Cl₂ (1 ml), a solution of cyclohexanecarboxaldehyde (0.125 ml, 1M), acetic acid

(0.004 ml), and intermediate (20) of Example 9 (0.03 g, 0.06 mmol). The mixture was stirred ovemight followed by dilution with CH2Cl2 (10 ml), washing with 10% Na₂CO₃ and drying over Na₂SO₄. Concentration of the organic phase was followed by purification on a silica column (EtOAc). The hydrochloride was prepared as described in Example 17. Yield=67%. M.p. 208-209°C (dec).

Example 19

160 mg. of compound 28 were taken up in 4 ml ethanol with 45 mg of H2NOH+HCl. 2 ml of pyridine were added and the mixture was heated to reflux for 5 hours. The solvent was removed in vacuo, and the reaction was diluted with CH₂Cl₂ and extracted with aqueous NaHCO₃. The organic layers were dried over MgSO₄, evaporated, and the residue purified by column chromatography in a gradient of CH₃OH/EtOAc. This 15 gave 130 mg of product as a mixture of syn and anti isomers. . FAB (MH+) = 541.

Examples 20A and 20B

20A:

10

20

25

1.1 g of the product of Example 19 were taken up in 15 ml CH₂Cl₂ with 2 eq. of Et₃N, and cooled to -78°C under N₂. 440 mg (1.1 eq.) of chlorodiphenylphosphine were taken up in 2 ml of CH2Cl2 and added slowly to the reaction at this temperature. The reaction was stirred for 2 h in the cold and allowed to come to room temperature overnight. The solvent was removed in vacuo, and the crude material was taken up in 20 ml THF. 100 mg (excess) NaBH₄ was added and the mixture was stirred for 16 h at room temperature. The solvent was removed in vacuo, and the crude product was dissolved in a mixture of 10 ml of 6N HCl and

10

15

20

25

30 ml of CH₃OH. This mixture was stirred overnight at room temperature. The CH₃OH was evaporated from the mixture, and the reaction was taken to pH 9 with the addition of aqueous NaOH. This solution was extracted with CH₂Cl₂ and the organic layers washed with water, dried over MgSO₄ and evaporated to a crude oily product. This was purified by column chromatography in a gradient of CH₃OH/EtOAc to give 356 mg of amine product. MS (FAB): 527.5 (M+1), 510.5

25 mg of the product of Step 20A were taken up in 2 ml CH₂Cl₂ with 90 mg of sodium triacetoxyborohydride. 9 microliters of acetaldehyde were added, and the mixture was stirred at room temperature for 1.5 hours. The reaction was diluted with additional solvent and extracted with aqueous NaHCO₃. The organic layers were dried over MgSO₄, evaporated, and purified by preparative thin-layer chromatography in 5% CH₃OH/EtOAc. This gave 12 mg of the desired product as an oil. FAB (M+) = 583.

Example 21

44 mg. of <u>28</u> were taken up in 20 ml of dry toluene with 2 ml of ethylene glycol and excess p-toluenesulfonic acid. The reaction was heated to reflux with a Dean-Stark water trap attached for 24 hours. NMR analysis showed partial reaction. Additional glycol and acid were added, and the reaction was heated an additional 24 hours. The mixture was extracted with aqueous NaHCO₃, evaporated, and purified by column chromatography in a gradient of CH₃OH/EtOAc to give 15 mg of

10

product, which still contains small amounts of the starting ketone. MS (electrospray): 598 (M+1), 302.

Example 22

24 mg of compound <u>30</u> were taken up in 1 ml of CF₃CO₂H. An excess of 2-oxazolidinone was added and the mixture was stirred for 72 h at room temperature. Excess saturated NaHCO₃ solution was added, and the mixture was extracted with EtOAc. This was dried over Na₂SO₄, evaporated, and the residue purified by column chromatography in 5% CH₃OH/EtOAc to give approx. 15 mg of product as an oil. MS (electrospray): 625.2 (M+1), 302.

Example 23

Step 1:

15

20

11 g of piperidinone hydrochloride were stirred in 100 ml CH₂Cl₂. 100 ml of 20% aqueous K₂CO₃ solution were added with vigorous stirring, followed by 8.8 ml of ortho-toluyl chloride. The mixture was stirred overnight at room temperature. The organic layer was separated and the aqueous layer was washed with additional solvent. The combined CH₂Cl₂ layers were dried over Na₂SO₄, evaporated, and purified by column chromatography in a gradient of hexane/EtOAc to give the product as an oil that solidified on standing. Step 2:

10

25

5.55 g of the product of Step 1 were combined with 4.75 g (1 eq.) of N-(t-butoxycarbonyl)piperazine in 100 ml of CH₂Cl₂. Sodium triacetoxy-borohydride (5.4 g) was added and the reaction was stirred at room temperature for 72 hours. An additional gram of sodium triacetoxy-borohydride was added, along with 2 ml of acetic acid, and the mixture was stirred an additional 24 hours. 25 ml of CH₃OH was added and the mixture was evaporated. The crude material was dissolved in CH₂Cl₂ and extracted with water. The organic layer was dried over Na₂SO₄, evaporated, and the residue purified by column chromatography in a gradient of EtOAc/hexane to give 6.7 grams of product.

6.7 g of the product of Step 2 were taken up in 100 ml CH₂Cl₂,
and 20 ml of CF₃CO₂H were added slowly at room temperature. The
reaction was stirred for 24 hours. 20 ml of water were added and the
reaction was brought to pH 10 by the slow addition of solid NaOH. The
organic layers were separated and the aqueous layers washed with
additional CH₂Cl₂. The organic layers were dried over Na₂SO₄ and
evaporated to give 5.1 g of product as a solid, which was used directly.
Step 4:

3.9 g of the product of Step 3 were taken up in 200 ml THF with 7.15 g (3 eq.) of 1,4-(bis)-chloromethylbenzene and 2 ml (1 eq.) of Et₃N. The mixture was heated to reflux for 7 hours and cooled to room

10

15

20

temperature. 300 ml of Et₂O were added and the precipitated Et₃N•HCl was removed by filtration. 34 ml of 1M HCl in Et₂O (2.1 eq.) was added in portions, with stirring, and the precipitate was filtered off and dried in vacuo to give 5.6 g of the dihydrochloride salt of the product, slightly contaminated with Et₃N•HCl.

Compound 123:

65 mg of the product of Step 4 (as a mixture containing 60% Et₃N•HCl) were taken up in 2 ml dry DMF with excess K₂CO₃. The mixture was stirred for 1 h at room temperature until the solid starting material had dissolved. In a separate flask, excess succinimide was reacted with NaH in 1 ml dry DMF for 30 min. at room temperature. The DMF solution of the free amine was removed from the K₂CO₃ and added to this anion, and the mixture was stirred for 16 h at room temperature. Water was added, and the mixture was extracted twice with EtOAc. The organic layers were washed with water, dried over Na₂SO₄ and evaporated. This gave the product in sufficient purity to form its HCl salt directly. MS (electrospray): 489.1 (M+1), 276.

Compound 124:

In a manner similar to that described for compound 123, but using pyrrolidinone in place of succinimide and potassium hexamethyldisilazide (KHMDS) (in toluene) in place of NaH, compound 124 was prepared in sufficient purity to form its HCl salt directly.

MS (electrospray): 475 (M+1), 408.

Example 24:

25 Step 1:

10

15

20

0.8 ml (6.35 mmol) of N-methyl-o-toluidine, 1.0 g (5.29 mmol) of 4-chloromethyl(benzoyl chloride) and 1.4 ml (7.93 mmol) of (iPr)₂NEt were taken up in CH₂Cl₂ (20 ml) at 0°C. The solution was warmed to r.t., stirred at r.t. for 17 h, then was diluted with CH₂Cl₂ and washed with 1M HCl(aq.). The aqueous layer was washed with CH₂Cl₂. The combined CH₂Cl₂ layers were dried over NaSO₄, filtered and concentrated to give the desired benzyl chloride as a light brown oil (1.55 g, quant.). Step 2:

The product of Step 1 (1.45 g, 5.29 mmol), piperazine-piperidine Boc compound (1.42g, 5.29 mmol), and (iPr)₂NEt (1.84 ml, 10.6 mmol) were taken up in CH₃CN (25 ml). The solution was heated at reflux for 2.75 h. The solution was partitioned between CH₂Cl₂ and 1 N NaOH (aq.). The aqueous layer was extracted with CH₂Cl₂. The combined CH₂Cl₂ layers were dried over Na₂SO₄. Filtration and concentration gave gave a tan foam (2.7 g). Purification via flash chromatography(15/1 CH₂Cl₂/MeOH, SiO₂) gave 2.26 g (84 %) of a colorless foam. Step 3:

The BOC-protected product of Step 2 (2.26 g, 4.47 mmol) was taken up in CH₂Cl₂ (20 ml) and cooled to 0°C. TFA (5 ml) was added, and the solution was warmed to r.t. The solution was atirred at r.t. for 20 h. The solution was concentrated and the residue triturated with CH₂Cl₂/Et₂O to give a white solid. The solid was washed with Et₂O and dried, which gave 4.1 g (99 %) of the TFA salt of the amine.

25 Step 4:

Using a procedure similar to that described in Example 1, treat the product of Step 3 to obtain <u>125</u>. M.p. = $235 - 240^{\circ}$ C. HRMS (FAB) calc'd for C₃₃H₄₁N₄O₂ (MH): 525.3230. Found: 525.3239.

15

-78-

Step 1: To a stirred solution of 10.0 g (22.6 mmol) of (61) in 50 ml of anhydrous CH₃OH was added NaBH₄ in portions at 0°C. The mixture was stirred at rt for 30 min and then quenched with water. The aqueous layer was extracted with (4x30 ml) EtOAc. The combined layers were dried over Na₂SO₄, filtered and concentrated to give 10.0 g (99%) of an alcohol which was used directly. To a stirred solution of the alcohol 10.0 g (22.5 mmol) in CH₂Cl₂ (100 ml) was added 16 ml of Et₃SiH, followed by 40 ml of TFA. The mixture was stirred at rt for 3 h and then quenched with 1N NaOH. The aqueous layer was extracted with CH₂Cl₂ (100 ml). The combined organic layers were dried over Na₂SO₄ and concentrated to yield 6.0 g (82%) of (62) as a colorless oil.

Step 2: To a stirred solution of (62) (5.0 g,15.29 mmol) in Et₂O (200 ml) and 40 ml of 10% NaOH was added BOC2O. The mixture was then stirred at rt for 24 h. The layers were separated and the organic layer washed with water, dried (Na₂SO₄), filtered, concentrated and chromatographed to yield 5.7 g (87%) of (63) as colorless oil. 5 Step 3: To a stirred solution of (63) (5.7 g, 13.34 mmol) in acetic acid was added NaBO₃•4H₂O and stirred for 24 h at rt. The reaction mixture was then quenched with 25% NaOH. The organic layer was then extracted with EtOAc (3x30 ml). The combined organic layers were dried (Na₂SO₄), filtered, concentrated and chromatographed to yield 2.8 10 g (46%) of (64). Step 4: To a stirred solution of (64) (1.5 g, 3.26 mmol) in CH₂Cl₂ (35 ml) was added TFA (2 ml). The mixture was stirred at rt for 1 h and concentrated. The residue was then diluted with CH2Cl2 and washed with 10% NaOH. The extracts were dried (Na₂SO₄), filtered and 15 concentrated to yield 0.983 g (84%) of (65). Step 5: To a stirred solution of (65) (0.983 g, 2.73 mmol) and t-butoxycarbonyl piperidine (0.571 g, 2.87 mmol) in CH2Cl2 (3 ml) was added Ti(iOPr)4 (1 ml). The reaction mixture was stirred at rt for 24 h and to the resulting solution was added 1.0 M toluene solution of Et₂AlCN (8.7 ml). 20 The reaction was the stirred at rt for 2 h, diluted with EtOAc (10 ml) and quenched with water (3 ml). The resulting slurry was then filtered through celite, concentrated and chromatographed to yield 1.1 g (74%) Fof (66).

Step 6: To a stirred solution of (66) (0.225 g, 0.398 mmol) in CH₂Cl₂ was added TFA (1 ml). The mixture was stirred at rt for 1 h and concentrated. The residue was then diluted with CH₂Cl₂ and washed with 10% NaOH. The extracts were dried (Na₂SO₄), filtered and concentrated to yield crude amine which was used directly in the next step without purification 0.164 g (89%).

To a stirred solution of crude amine (0.053 g, 0.115 mmol) in CH_2Cl_2 (1 ml) was added Et_3N (0.100 ml) followed by n-PrSO $_2Cl$ (0.05 ml) and stirred at rt for 1 h. The reaction was quenched with 2N NaOH and the organic layer was extracted with CH_2Cl_2 . The combined

organic layers were dried (NaSO₄), filtered, concentrated and chromatographed to afford 0.025 g (50%) of (67).

Step 7: To a stirred solution of (67) (0.018 g, 0.031 mmol) in THF (2 ml) was added 3.0 M solution of MeMgBr in Et₂O dropwise at rt. The reaction was the stirred for 2 h at rt and quenched with H₂O. The aqueous layer was then extracted with EtOAc, dried (Na₂SO₄), filtered, concentrated and chromatographed to yield 0.010 g (60%) of 126. LRMS: calc'd: 562; found (M+H+) 563.

Example 26

10

15

5

Intermediate (1) (0.029 g) was dissolved in pyridine (0.1 ml) and isatoic anhydride (0.044 g) was added. The reaction solution was stirred for 48 h at room temperature then diluted with EtOAc (10 ml), washed with water, dried over MgSO4, filtered and evaporated to give a solid. The acetone-soluble portion of this solid was purified by thin layer

The acetone-soluble portion of this solid was purified by thin layer chromatography (silica gel adsorbent; 95:5 EtOAc:Et3N eluant) to give a light colored foam (0.029 g) in 65% yield. MP (of hydrochloride): decomp >205°C

Example 27

20

25

To a solution of 127 (0.096 g) and CH₂Cl₂ (0.32 ml) was added pyridine (0.01ml), acetic anhydride (0.02 ml) and N, N-dimethyl aminopyridine (4.8 mg). The resulting solution was stirred for 1.5 h, water (0.4 ml) was added and the mixture was extracted with CH₂Cl₂ (3 X 1 ml). The organic extract was dried over MgSO₄, filtered and evaporated to give a solid residue which was purified by thin layer chromatography (silica gel adsorbent; 9:1 CH₂Cl₂:CH₃OH eluant) to

give light colored foam (0.036 g) in 37% yield. MP (of hydrochloride): decomp >181°C.

To a solution of the acetate shown above (prepared as described in Example 1) (0.071 g), and CH₃OH (0.32 ml) was added Et₃N in three portions, over a 3 h period (0.06 ml total). The resulting solution was stirred 3 days at room temperature, water was added and the solution was extracted with CH₂Cl₂. The organic extracts were dried over MgSO₄, filtered and evaporated to give the product (0.075 g) in 100% yield. M.p. (of hydrochloride): decomp >130°C.

Example 29

Step 1:

15

20

5

10

To a cooled (-78°C) solution of intermediate (3b) (0.41 g; 0.88 mmol) and THF (4.2 ml) was added nBuLi (0.34 ml of a 2.7 M solution in heptane) and the resulting solution was stirred for 3 min. Pyridine-3-uocarboxaldehyde was added as a solution in THF (0.17 ml in 2 ml, respectively) dropwise, over 1.5 min. The solution was stirred for 10 min at low temperature, 40 min at room temperature, poured into water,

10

extracted with EtOAc, washed with brine and dried over MgSO4. After filtration and evaporation, the resulting crude yellow oil was chromatographed on silica gel (77 g), eluting with 76:19:5 EtOAc: hexanes:Et₃N. Evaporation of the appropriate fractions gave, as a diastereomeric mixture of carbinols, (37) as a clear oil (0.28 g) in 64% yield. HRMS: MH+: C₂₉H4₃N₄O₃: calc'd: 495.3335; found: 495.3319. Step 2:

Treat the product of Step 1 with o-toluoyl chloride using a procedure similar to that described in Example 3 to obtain the desired compound 130. MP (of hydrochloride): 174-177°C.

Examples 30A and 30B

30A:

Steps 1 to 4:

Step 1:

15

20

25

To a cooled (-78°C) solution of (24b) (17.9 g) and THF (170 ml) was added CH₃Li (43.2 ml of a 1.4 M solution in hexane) and the resulting solution was stirred for 10 min. N-BuLi (24.0 ml of a 2.5 M solution in hexane) was added and the resulting solution was stirred for 15 min. Piperonal was added as a solution in THF (9.6 g in 30 ml, respectively) dropwise and the cooling bath was removed. The solution was stirred for 15 min at room temperature, poured into dilute HCl and Et₂O and the Et₂O extracts were dried over MgSO₄. After filtration and evaporation, the resulting crude yellow oil was chromatographed on silica gel, eluting with 1:1 hexane:CH₂Cl₂ then 0→20 % Et₂O:CH₂Cl₂.

10

15

20

25

30

The fractions containing the desired product were combined and evaporated to give as a mixture of carbinols (38) (16.1 g) in 75% yield. Step 2:

To a solution of (38) (15.8 g), CH₂Cl₂ (300 ml) and Et₃SiH (25 ml) was added TFA (25 ml). After 15 min at room temperature, the solution was washed with water, aqueous NaHCO₃, dried over MgSO₄ and filtered through a pad (20g) of silica, washing through the product with CH₂Cl₂. Evaporation and trituration with hexane (200 ml) gave, after filtration and drying, a white solid, (39) (13.9 g) in 92% yield. M.p.: 99-101°C.

Step 3:

To a solution of (39) (2.23 g, 6.37 mmol), CH₂Cl₂ (23 ml) and iodine (1.84 g) was added, in one portion, silver trifluoroacetate (1.60 g). The resulting mixture was stirred for 1.5 h at room temperature, stored at 5°C for 14 h, diluted with CH₂Cl₂ (126 ml) and filtered. The resulting CH₂Cl₂ extract was poured onto a column of silica gel (63 g) and the product washed through with CH₂Cl₂. Any fractions containing a light pink color were washed with 10% Na₂S₂O₃ and dried, then combined with the other fractions and evaporated, to give (40) (2.86 g) as a white solid in 94% yield. M.p.: 125-127°C.

Step 4:

(40) (1.50 g, 3.14 mmol) was dissolved in N,N-dimethylacetamide (10 ml) and CuCN (0.94 g) and Nal (0.14 g) were added. The resulting mixture was degassed and heated at 110°C for 8 h. The mixture was cooled, diluted with CH₂Cl₂, filtered and the resulting solids were washed with CH₂Cl₂. The combined CH₂Cl₂ extracts were washed with 1:1 NH₄OH:H₂O (3X), water and brine, dried over MgSO₄, filtered, evaporated and applied to a silica gel column (55 g). After elution with hexanes (100 ml) and 4:1 hexanes:EtOAc, the desired fractions were evaporated to give a waxy white solid, (41), (1.10 g) in 94% yield. M.p.: 114-116°C.

Steps 5 and 6:

$$(41) \longrightarrow \begin{pmatrix} CN & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Step 5:

5

10

15

20

Treat (41) using a similar procedure to that described in Example 10, Step 3, to give the amine (42) as a white solid in 70% yield.

M.p.: 55-58°C

Step 6:

To a cooled (0°C) solution of diol (43) (0.88g), CH₂Cl₂ (29 ml) and Et₃N (1.21 ml) was added CH₃SO₂Cl (0.46 ml). The resulting solution was stirred at 0°C for 15 min and at room temperature for 1 h. The solution was poured into a mixture of CH₂Cl₂ and ice water, the CH₂Cl₂ layer was removed and washed with water, brine and dried over Na₂SO₄. After filtration and careful evaporation of the solvent, CH₃CN (2.30 ml) and iPr₂EtN (1.20 ml) and (42) (0.64 g) were added and the mixture was heated at 80°C for 12 h. The resulting solution was diluted with EtOAc, washed with 2 N NaOH, water and brine, dried over MgSO₄, filtered and evaporated to give a gold foam which was applied to a silica gel (91 g) column and eluted with 3:1 hexane:EtOAc, then 2:1 hexane:EtOAc. The desired fractions were combined and evaporated to give (44) (1.09 g) as a gold foam in 87% yield. HRMS:MH+: C₂₈H₂₉O₆N₄S: calc'd: 549.1808; measured: 549.1803.

Step 7:

10

15

20

Part A: To a cooled (0°C) mixture of piperidone hydrate hydrochloride (27.5 g), CH₂Cl₂ (350 ml), K₂CO₃ (50 g) and water (250 ml) was added dropwise a solution of o-toluoyl chloride (22 ml) and CH2Cl2 (25 ml). After the addition was complete, the cooling bath was removed and the mixture was stirred for 24 h, the CH2Cl2 layer was removed, washed with water, dried over MgSO4, filtered and evaporated to give a clear oil. The oil was chromatographed on silica gel (320 g), eluting with 4:1 hexane:EtOAc and the desired fractions were combined and evaporated. The resulting clear oil crystallized on standing to give a white solid, (46), (35.7 g) in 92% yield. Part B: To a solution of (44) (0.21 g) and DMF (0.75 ml) was added PhSH (0.047 ml) and K2CO3 (0.15 g) and the resulting mixture was stirred for 28 h. The reaction mixture was diluted with EtOAc and water and 2 N NaOH (1.0 ml) were added. The aqueous layer was extracted with EtOAc (three portions), the EtOAc extracts were combined and washed with brine, dried over MgSO₄, filtered and evaporated to give 0.55 g of an oil (45) which was taken up in CH2Cl2 (0.55 ml) and acetic acid (9 μ l). To this solution was added (46) (0.04 g) and NaB(OAc)3H (0.048 g). After stirring for 6 h, the reaction solution was partitioned between CH2Cl2 and 2 N NaOH. The CH2Cl2 layer was washed with water and brine, dried over MgSO₄, filtered, evaporated and applied to a thin layer silica plate. After elution with 2:1 CH2Cl2:acetone, the desired product, 131, was collected as a foam (0.72 g) in 85% yield. M.p. (hydrochloride): 165-167°C.

25 30B:

30

To a solution of 131 (0.029 g) and THF (0.5 ml) was added nBu4NOH (0.085 ml) and 30% H2O2 (0.017 ml). More nBu4NOH and H2O2 were added as described above after 3 h and 48 h then the reaction was stirred 3 h more after the last addition. The reaction was diluted with EtOAc, the aqueous layer was removed, extracted with

EtOAc (3X) and the EtOAc extracts were combined, washed with water and brine, dried over MgSO4, filtered and evaporated to give a white crystalline solid which was further purified by chromatography (silica gel; 100 mg; 95:5 EtOAc:Et3N eluant). The desired product was collected and evaporated to give a white solid, 132, (10.5 mg) in 35% yield.

M.p. (of hydrochloride): decomp >164°C.

Example 31

10

15

20

25

To a solution of piperazine (13 g), N-BOC 4-piperidone (10 g), CH₂Cl₂ (200 ml) and acetic acid (2.0 ml) was added NaB(OAc)₃H (20 g) in four portions over 2 h. The mixture was stirred for 22 h, diluted with CH₂Cl₂ and added slowly to 1 N NaOH (250 ml). The aqueous layer was extracted with CH₂Cl₂ (3X), the CH₂Cl₂ extracts were combined, washed with water and dried over MgSO₄. The solution was filtered, concentrated and purified by silica gel chromatography (eluant: 8:1 CH₂Cl₂:CH₃OH, then 10:5:1 CH₂Cl₂:CH₃OH: NH₃(aq)). After evaporation of the solvent, (47) was collected as a white solid (7.18 g) in 53 % yield.

To a solution of p-bromo benzaldehyde (5.25 g), CH₂Cl₂ (100 ml) and (47) (8.72 g) was added NaB(OAc)₃H (8.05 g) in 8 portions over 40 min. After stirring for 19 h, CH₂Cl₂ (20 ml) and NaB(OAc)₃H (1.05 g) were added, the reaction mixture was stirred for 2 h, diluted with CH₂Cl₂, poured into 2 N NaOH and the aqueous layer was extracted with CH₂Cl₂. The CH₂Cl₂ extracts were washed with water and brine, dried over MgSO₄, filtered, evaporated and chromatographed on silica gel (250 g), eluting with 76:19:5 hexane:EtOAc:Et₃N. The desired fractions

10

15

were combined and evaporated to give (48) as a white solid (8.48 g) in 69 % yield. M.p.: 87-90°C.

Part B:

To a solution of m-toluene sulfonyl chloride (13.2 g) and acetone (107 ml) was added a solution of KF (11 g) and water (87 ml), slowly dropwise. The resulting solution was diluted with EtOAc and the organic layer was removed. The aqueous layer was extracted with EtOAc, combined with the initial EtOAc extract, dried over MgSO4, filtered and evaporated to give (49), (11.7 g) in 97% yield, which was used directly without further purification.

(50) was prepared using a procedure similar to Example 29, except (49) was used in place of 3-pyridine carboxaldehyde. Using procedures described in Example 1 (or Example 2), (50) was converted to 133. M.p. (hydrochloride): decomp >227°C.

Example 32

Part A:

The amino acid (0.21 g), DME (15 ml) and 1 M NaOH (3 ml) were mixed and allyl chloroformate (0.2 ml) was added. The solution was stirred for 15 h, cooled to 0°C, acidified with 1 M HCl and extracted with EtOAc. The EtOAc extracts were washed with brine and dried over

10

15

20

Na₂SO₄, filtered and concentrated to give (51) as a colorless foam, which was used directly in the next procedure.

Cyanuric fluoride (0.41 g), (51) (0.50 g), pyridine (0.15 ml) and CH₂Cl₂ (15 ml) were mixed at 0°C. The mixture was stirred at 0°C for 3.75 h, diluted with CH₂Cl₂ and poured into cold water. The aqueous layer was extracted with CH₂Cl₂ and the combined CH₂Cl₂ extracts were dried over MgSO₄, filtered and concentrated to give crude (52) (0.50 g) as a thick oil, which was used directly in the next procedure.

The acid fluoride (52) (0.31 g) and CH₂Cl₂ (10 ml) were mixed and NaBH₄ (72 mg) was added followed by CH₃OH (0.9 ml), dropwise over 10 min. The reaction was stirred for 20 min at room temperature, poured into a separatory funnel containing 1 M HCl and EtOAc and the aqueous layer extracted with EtOAc. The organic extracts were combined, washed with brine, dried over MgSO₄, filtered and concentrated to give (53) as an oil (0.30 g) in 51 % yield.

Palladium acetate (4 mg), 3,3',3"-phosphinidynetris(benzene sulfonic acid) sodium salt (20 mg), Et₂NH (1.3 g) and (53) (0.28 g) were mixed with CH₃CN (3 ml) and water (3 ml) and stirred for 3 h. The reaction mixture was co-evaporated with toluene (6 ml) to obtain (54), which was used directly in the next part.

Part B:

(57)
$$CH_2N((CH_2)_2OH)_2$$
 (59) (HCI) $CH_2N((CH_2)_2CI)_2$

10

15

20

25

30

(55) (0.50 g) (prepared using the procedure of Example 1, using p-fluorobenzaldehyde) was taken up in CH₃OH (20 ml) and CH₂Cl₂ (10 ml), cooled to 0°C and NaBH4 (80 mg) was added. After stirring for 2.5 h at room temperature, the solution was partitioned between EtOAc and 1 M HCI. The EtOAc layer was removed, the aqueous layer was extracted with EtOAc, the organic extracts were combined, washed with brine, dried over MgSO4, filtered and evaporated to give (56) (0.52 g) as a colorless oil. A solution of CH2Cl2, SOCl2 (0.13 ml) and DMF (0.033 ml) was stirred for 4 h at room temperature and concentrated. The residue was co-evaporated with toluene (2x 20 ml) to give a yellow solid (57) (0.20 g) which was dissolved in CH₃CN (10 ml) and diethanolamine (0.24 g). After heating at reflux for 2 h, the reaction solution was partitioned between water and EtOAc, the EtOAc layer was removed, the aqueous layer was extracted with EtOAc, the organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered and evaporated to give the product (58) (0.26 g) as a colorless oil. This product was dissolved in 1,2-dichloroethane (5 ml), SOCI2 (0.16 ml) was added and the resulting mixture was heated at reflux for 3 h. The volatile materials were removed in vacuo to give the product (59) as a thick gum, which solidified on storage at 5°C. This material (0.17 g) was mixed with (54) (0.10 g), NaI (0.20 g), CH₃CN (10 ml) and diisopropyl ethyl amine (0.45 ml) and the resulting mixture was heated at reflux for 3.5 h. The reaction solution was partitioned between water and EtOAc, the EtOAc layer was removed, the aqueous layer was extracted with EtOAc, the organic extracts were combined, washed with brine, dried over Na₂SO₄, filtered and evaporated to give a brown oil. Purification on silica gel, eluting with 10:1 CH2Cl2: CH3OH, gave (60) (77 mg) as an oil. HRMS:MH+:C29H40N3O7S calc'd: 574.2587; measured: 574.2580.

(60) (77 mg) was dissolved in 1 M HCl in CH₃OH (5 ml), stirred for 24 h, concentrated and the residue was taken up in CH₃OH and

15

20

triturated with Et₂O to give a white solid (59 mg). Using the procedure of Example 1, (60) was converted to 134. HRMS (FAB) calc'd for C₃₂H₃₈N₃O₆S (MH+): 592.2481; found: 592.2467; m.p. 187-197°C.

Example 33

Step 1: To a cooled (-78°C) mixture of 4-amino benzyl alcohol (0.50 g), diisopropyl ethyl amine (1.41 ml) and CH2Cl2 (40 ml) was added TMSCl 10 (0.52-ml). The resulting slurry was stirred at -78°C for 15 min and at 0°C for 1 h. The resulting solution was cooled to -78°C, p-methoxyphenyl sulfonyl chloride (0.84 g) was added, the cooling bath was removed and the reaction was stirred at room temperature for 15 h. The reaction solution was diluted with CH2Cl2 and water was added. The aqueous layer was extracted with CH2Cl2, the combined organic extracts were dried over MgSO4, filtered and evaporated to give a yellow oil, which was taken up in CH₃OH (20 ml) and K₂CO₃ (1.5 g) was added. The resulting mixture was stirred for 1 h., filtered through a plug of Celite, concentrated, taken up in EtOAc and washed with water. The aqueous layer was extracted with EtOAc, the combined organic extracts were dried over MgSO₄, filtered and evaporated to give a yellow oil (0.78 g), which was used without further purification in the next step.

15

Step 2: (68) (0.47 g) and MnO₂ (3.0 g) were mixed with CH₂Cl₂ (20 ml) and stirred for 20 h. The solution was filtered through Celite and concentrated to give 0.30 g of a thick oil, (69), which was used directly in the next step.

5 Step 3: Use a procedure similar to the second portion of Part A in Example 31, with intermediates (69) and (70) as the reactants. Crude (71) (0.30 g) was used directly in the next step.

Step 4: Treat (71) (148 mg) using a procedure similar to that in the last portion of Part A of Example 32 to obtain the corresponding brown crude amine, which was used directly in the next step.

Step 4: Using the procedure of in Example 1, treat (71) to obtain 135. M.p. (with decompostion) 190-200°C.

Example 34

-HCI

- 1) MCPBA, McSO₃H
- 2) TFA, CH₂Cl₂
- 3) o-MePhCOCI, Et3N
- (74) 4) HCl, Et₂O

136

Step 1: To a stirred 0°C solution of 4,4'-bispiperidine hydrochloride (2.53 g, 10.5 mmol) in a 1:1 solution of Et₂O/10% aq. NaOH (26 ml) was added a 2.5 M solution of di-*tert*-butyldicarbonate in Et₂O (10 ml, 23.1 mmol) over 30 min with vigorous stirring. After stirring at room

10

15

30

35

temperature for 2 h, the mixture was poured into a separatory funnel, extracted with Et₂O, washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The resulting product (3.00 g) was used without further purification.

The crude bispiperidine (2.74 g, 7.44 mmol) was dissolved in CH₂Cl₂ (50 ml) and TFA (0.57 ml, 7.44 mmol) was added to the solution. The reaction stirred at room temperature and monitored by TLC. After two more equivalents of TFA were added, the reaction was approximately a 1:2:1 mixture of starting material, (72), and 4,4'-bispiperidine. The mixture was diluted with CH₂Cl₂, washed with 1N NaOH, dried over Na₂SO₄, filtered, and concentrated. Purification by flash chromatography (10/90 CH₃OH/CH₂Cl₂, then 5/10/85 NH₄OH/CH₃OH/CH₂Cl₂) yielded 1.00 g of (72) (53% yield). Step 2: To a solution of (73) (480 mg, 1.85 mmol) in CH₂Cl₂ (7.4 ml) was added (72) (520 mg, 2.04 mmol) and sodium triacetoxyborohydride (590 mg, 2.78 mmol). The reaction was stirred for 12 h at room temperature under N₂. The mixture was quenched with NaHCO₃ (sat), extracted with EtOAc, dried over Na₂SO₄, filtered, and concentrated

Step 3: To a solution of (74) (880 mg, 1.72 mmol) in CH₂Cl₂ (8.6 ml) was added CH₃SO₃H (0.17 ml, 2.58 mmol) in CH₂Cl₂ (4.7 ml). After cooling to 0°C with stirring, 60% MCPBA (1.04 g, 3.61 mmol) in CH₂Cl₂ was added dropwise. The reaction was stirred for 1 h at room temperature under N₂. The mixture was washed with Na₂S₂O₃ (sat), 1 N NaOH, and H₂O, dried over Na2SO₄, filtered, and concentrated to yield 0.93 g of the sulfone (100% yield).

under reduced pressure, yielding (74) (880 mg, 94% yield).

The sulfone (0.93 g, 1.71 mmol) was dissolved in CH_2Cl_2 (11.4 ml) and TFA (2.6 ml, 34.2 mmol) was added. The reaction was stirred for 2 h at room temperature under N_2 . The mixture was diluted with CH_2Cl_2 , washed with 1N NaOH, filtered, and concentrated under reduced pressure, yielding the free amine (0.45 g, 59% yield).

To a solution of the amine (23.6 mg, 53.3 μ mol) in CH₂Cl₂ (0.53 ml) was added o-toluoyl chloride (8.3 μ L, 64 μ mol) and Et₃N (11 μ L, 80 μ mol). The reaction was stirred for 2 h at room temperature under N₂. The mixture was concentrated under reduced pressure and purified by

10

15

20

25

PTLC (10/90 CH₃OH/CH₂Cl₂), concentrated in the presence of 1N HCl/Et₂O, yielding <u>136</u> (15.8 mg, 50% over three steps). LRMS calc'd: 560; found (M+H): 561.

Example 35

$$F \longrightarrow N \longrightarrow NBOC \longrightarrow S \longrightarrow N \longrightarrow NBOC$$

$$(75) \qquad (76) \qquad (77) \qquad NH \longrightarrow 137$$

NaH (0.59 g, 14.6 mmol, 60% purity) was suspended in DMF (10 ml) followed by addition of 2-propanethiol (1 ml, 11.2 mmol) at 0°C under N₂. The reaction mixture was stirred at room temperature for 5 min. (75) (2.94 g, 7.5 mmol) in DMF (10 ml) was added dropwise. The reaction mixture was heated with stirring for 2 hrs. The reaction mixture was then diluted with 1N NaOH (40 ml) and extracted with Et₂O (3x 80 ml). The organic extract was dried with NaHCO₃. Removal of solvent and recrystallization with Et₂O afforded (76) (1.08 g, 32%).

(76) (1.08 g, 2.4 mmol) was dissolved in CH₃OH (10 ml) followed by addition of NaBH₄ (0.14 g, 3.6 mmol). The reaction mixture was stirred at room temperature for 1 hr. The reaction mixture was diluted with CH₂Cl₂ (200 ml) followed by washing with 1N NaOH (50 ml). The organic solution was dried with NaHCO₃ and concentrated to give solid residue which was then dissolved in CH₂Cl₂ (10 ml). To this solution was added Et₃SiH (1.5 ml) followed by TFA (3 ml). The reaction mixture was stirred at room temperature for 1hr. The reaction mixture was diluted with CH₂Cl₂ (100 ml), washed with 1N NaOH (100 ml), and dried with NaHCO₃. Removal of solvent afforded pure (77) (0.7 g, 88%).

(77) (49 mg, 0.15 mmol) was dissolved in a solution of CH₂Cl₂ (3 ml) and Et₃N (0.3 ml) followed by addition of 1-naphthoyl chloride (0.5 ml). The reaction mixture was stirred for 30 min and separated by PTLC

10

15

20

to afford 137 (53 mg, 74%) as free base. HRMS: calc'd: (M+1): 487.2783; found 487.2798.

Example 36

(83) --- 138

(78) (1 g, 3.6 mmol) was dissolved in a solution of CH₂Cl₂ (20 ml) and Et₃N (1.5 ml) followed by addition of (CF₃CO)₂O (0.82 ml, 5.7 mmol). The reaction mixture was stirred at room temperature ovemight. The reaction mixture was diluted with CH₂Cl₂ (150 ml), washed with 1N HCl (50 ml) followed by 1N NaOH (50 ml), and dried with MgSO₄. Removal of solvent afforded crude (79).

(79) was dissolved in CH₃OH (25 ml) followed by addition of NaBH4 (0.2 g, 5.3 mmol). The reaction mixture was stirred at room temperature for 1 hr. The reaction mixture was diluted with CH₂Cl₂ (100 ml) followed by washing with 1N NaOH (50 ml). The organic solution was dried with MgSO₄ and concentrated to give a residue which was then dissolved in CH₂Cl₂ (30 ml). To this solution was added Et₃SiH (3 ml) followed by TFA (10 ml). The reaction mixture was stirred at room temperature for 4 hrs. The reaction mixture was diluted with CH₂Cl₂ (200 ml), washed with 1N NaOH (100 ml), and dried with MgSO₄. Removed solvent to afford crude (80).

(80) was dissolved in CH_2CI_2 (5 ml) followed by addition of 1M BBr3/ CH_2CI_2 (8.6 ml) at 0°C. The reaction mixture was stirred at 0°C for

10

15

1 hr, diluted with CH₂Cl₂ (100 ml), washed with 10% NaHCO₃, and dried with MgSO₄. Removed solvent followed by column chromatography (20% EtOAc/hexane) to afford (81) (0.725 g, 58% from (78)).

(81) (0.35 g, 1.2 mmol), 2-propanol (0.084 g, 1.4 mmol) and PPh₃ (0.38 g, 1.4 mmol) were dissolved in THF (5 ml) under N₂. The reaction mixture was cooled to 0°C followed by addition of DEAD (0.27 ml, 1.mmol). The reaction mixture was stirred at room temperature overnight and separated by PTLC without workup to afford (82) (0.3 g, 75 %).

(82) (0.3 g, 0.9 mmol) was dissolved in a solution of CH₃OH/water (5:1) (10 ml) followed by addition of K₂CO₃ (0.5 g, 3.6 mmol). The reaction mixture was stirred at room temperature for 1h. Standard aqueous workup afforded (83) (0.203 g, 96%).

(83) was converted to <u>138</u> following the procedures described in Example 35. HRMS: calc'd: (M+1): 471.3012; found 471.3009.

Example 37

ON CHICA

(84) (0.85 g, 3.4 mmol) and N-BOC-4-piperidone (1g, 5.0 mmol)
were dissolved to 1,2-dichloroethane (50 ml) followed by addition of Na(OAc)3BH (2.2 g, 10.1 mmol). The reaction mixture was stirred at room temperature for two days. The reaction mixture was diluted with CH₂Cl₂ (200 ml), washed with 1N NaOH (100 ml) and dried with

10

15

NaHCO3. Column chromatography (5% CH₃OH/CH₂Cl₂) afforded (85) (1.27 g, 87%).

(85) (0.2 g, 0.46 mmol) was dissolved in THF (8 ml) under N₂ and cooled down to -78°C followed by addition of 2.5 M n-BuLi (0.3 ml, 0.73 mmol). The reaction mixture was stirred at -78°C for 45 min followed by addition of a solution of (86) (0.06 g, 0.83 mmol) in THF (1 ml). The reaction mixture was stirred at -78°C for 30 min, diluted with CH₂Cl₂ (100ml), washed with water (50 ml), and dried with NaHCO₃. The organic solution was concentrated and column chromatography (5% CH₃OH/CH₂Cl₂) afforded (87) (0.135 g, 69%).

To a mixture of (87) (0.135 g, 0.32 mmol) and EtgSiH (1ml) was added 20% TFA/CH₂Cl₂ (5 ml). The reaction mixture was stirred at room temperature for 1h and concentrated to give (88) (0.09 g, 91%).

(88) was treated in a manner similar to that decribed in Example 35 to obtain 139. HRMS: calc'd: (M+1): 467.3062; found 467.3066.

To a suspension of 500 mg of NaH (60% in mineral oil) in 60 ml of DMF was added slowly 1.0 g of tert-butyl thiol. The mixture was stirred at room temperature for 30 min. To this mixture, 3.1 g (10 mmol) of ketone

10

15

20

25

30

35

(89) was added dropwise. The mixture was heated at 70°C overnight. After cooling down to room temperature, the mixture was quenched with 100 ml of water. The aqueous phase was extracted with 3X100 ml of CH₂Cl₂. The combined organic phases were dried over MgSO₄, filtered and concentrated. The crude (90) was purified by column chromatography on silica gel using 5% EtOAc-Hexanes (2.65 g, 69%).

To a solution of 2.65 g of (90) in 40 ml of CH₂Cl₂ was added 10 ml of TFA. The mixture was stirred at room temperature for 2 hours and then was concentrated. The residue was taken up in 100 ml of CH₂Cl₂, washed with 10% NaOH. The organic layer was dried over Na₂SO₄, filtered and concentrated to give a crude (91) (1.8 g, 92%).

A mixture of (91) (1.8 g), N-Boc-4-piperidone (1.5 g, 1.1 eq.), NaB(OAc)₃H (2.8 g, 2 eq.) and 0.5 ml HOAc in 40 ml of 1,2-dichloro-ethane was stirred at room temperature over night. The mixture was quenched with 10% NaOH, extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, filtered and concentrated. The crude (92) was purified by column chromotography on silica gel using 20% EtOH/EtOAc (2.7 g, 90.3%).

To a solution of (92) (2.5 g) in 100 ml of CH₃OH was added 500 mg (2 eq.) of NaBH₄. The mixture was stirred at room temperature for 1 hour and then was concentrated to dryness. The residue was taken up in 70 ml of 10% NaOH and extracted with 3X70 ml of CH₂Cl₂. The combined organic phases were dried over MgSO₄, filtered and concentrated (1:8 g crude). This crude was dissolved in 40 ml of CH₂Cl₂ and 1ml of Et₃SiH. To this mixture was added 20 ml of TFA and stirred at room temperature for 1 hour. The mixture was concentrated to dryness and the residue was washed with cold hexanes. The residue was taken up in 100 ml of CH₂Cl₂ and washed with 10% NaOH. The combined organic phases were dried over MgSO₄, filtered and concentrated to give a crude (93) (810 mg, 43%).

(93) and 1.3 ml (4 eq.) of Et3N were dissolved in 40 ml of 1,2-dichloroethane and this solution was used for parallel synthesis to react with different acid chlorides. Typical yield of the coupling reaction is 80%. The Hcl salts were prepared by adding HCl•OEt2 to the free base. 140: LRMS calc'd: 500; found 501; 141: LRMS calc'd: 478; found 479.

10

15

20

A mixture of (89) (7.9 g, 25.6 mmol), sesamol (1.1 g, 1 eq.) and K₂CO₃ (1.5 g) in 40 ml of dimethylacetamide was heated at 150°C over night. The mixture was allowed to cool to room temperature and then was quenched with 200 ml of water. The aqueous phase was extracted with 3X150 ml of CH₂Cl₂. The combined organic phases were dried over MgSO₄, filtered and concentrated. The crude (94) was purified by column chromatography on silica gel using 20% EtOAc-Hexanes (2.8 g, 26%).

To a solution of (94) (2.8 g) dissolved in 50 ml of CH₂Cl₂ was added 5 ml of TFA. The mixture was stirred at room temperature for 1 h and was then concentrated to dryness. The residue was taken up in 150 ml of CH₂Cl₂, washed with 100 ml of 10% NaOH. The aqueous layer was extracted with 3X100 ml of CH₂Cl₂. The combined organic phases were dried over MgSO₄, filtered and concentrated to give crude (95) as a solid (1.7 g, 79%).

The crude (95) (1.7 g, 5.2 mmol) was treated with N-BOC-4-piperidone, NaB(OAc)3H and acetic acid (1.3 g, 4 eq.) in a manner similar to that described in Example 38 to obtain crude (96) (2.3 g, 87%).

20

The BOC-group was removed to give a crude (97) (1.7 g, 93%), which was reacted with 2-toluoyl chloride as described in Example 14, Step 8, followed by purification by TLC on silica gel using 20% EtOH-EtOAc to obtain 142 (197 mg, 90%). The hydrochloride salt was prepared by adding HCI•Et2O to the free base. LRMS calc'd: 526; found: 527.

Examples 40A and 40B

To a stirred solution of 500 mg of (98) in 10 ml of THF was added 0.6 ml of BuLi (2 M in hexane) at -78°C. The mixture was stirred at this temperature for 15 mins. and then a solution of 179 mg of the isocyanate in 15 ml of THF was added. The mixture was stirred at -78°C for 1 hour. The mixture was quenched with water, extracted with EtOAc. The organic phase was dried (Na₂SO₄), filtered and concentrated. The crude (99) was purified by prep.TLC on silica gel using 25%EtOH-EtOAc (388 mg).

To a stirred solution of 328 mg of (99) in 50 ml of THF was added 41 mg (60% in mineral oil) NaH, followed by 85 mg of CH₃l. The mixture was stirred at room temperature for 1 hour and then was purified by prep. TLC on silica gel using 25%EtOH-EtOAc to obtain 141 mg of 143. LRMS calc'd: 593; found: 594.

To 92 mg of (99) in 20 ml of CH₂Cl₂ was added 5 ml of TFA. The solution was stirred at RT for 1 hour, quenched with 10% NaOH, extracted with CH₂Cl₂. The organic layer was dried (K₂CO₃), filtered and concentrated (66 mg crude). This crude was dissolved in 20 ml of CH₂Cl₂, added 0.25 ml of Et₃N followed by 0.25 ml (1M in CH₂Cl₂) of 2,3-dimethylbenzoyl chloride. The mixture was stirred at RT for 1 hour and was purified by prep. TLC using 25%EtOH-EtOAc to obtain 81 mg 144. LRMS calc'd: 611; found: 612.

Example 41

10

15

5

To a stirred solution of <u>83</u> (255 mg) in 50 ml of CH₃OH was added 186 mg of NaBH₄, the mixture was stirred at room temperature for 30 min. and was then quenched water. The mixture was extracted with EtOAc and the organic layer was dried over Na₂SO₄, filtered and concentrated to give a yellowish oil (286 mg). The crude was dissolved in 10 ml of CH₂Cl₂ and 2ml of Et₃SiH. To this mixture, 2ml of TFA was added and the mixture was stirred at room temperature for 5 hours. The mixture was neutralized with 3N NaOH, the organic layer was dried over Na₂SO₄, filtered and concentrated. The crude was purified by prep.

20 TLC on silica gel using 25%EtOH-EtOAc (20 mg, 10%). LRMS: calc'd: 510; found: 511.

Example 42

10

15

To a stirred solution of (100) in 10 ml of DMSO was added 10 ml of Ac₂O, the mixture was stirred at room temperature for 2 h, quenched with water and extracted with CH₂Cl₂. The organic phase was dried (Na₂SO₄), filtered and concentrated. The crude (101) was purified by prep. TLC on silica gel using 25%EtOH-EtOAc (110 mg). (101) was dissolved in 40 ml of CH₂Cl₂, and 5 ml of TFA was added. The mixture was stirred at room temperature for 30 min., concentrated to dryness. The residue was taken up in 100 ml of CH₂Cl₂ and was washed with 10% NaOH. The organic phase was dried (Na₂SO₄), filtered and concentrated to give a crude (102) (108 mg).

To a stirred solution of 28 mg of (102) and 0.1 ml of Et₃N in 3 ml of CH₂Cl₂ was added 0.25 ml of 2,3-dimethylbenzoyl chloride (1.0 M solution in CH₂Cl₂). The mixture was stirred at room temperature for 1.5 h. The crude was purified by prep. TLC on silica gel using 25%EtOH-EtOAc to obtain 146 (25 mg). LRMS calc'd: 596; found: 597.

Example 43

Step1:

20

25

m-Thiocresol (5.0 g), 1-bromo-4-iodobenzene (10.5 g), CuI (7.7 g) and K₂CO₃ (20.0 g) in anhyd. DMF (100 ml) was heated at 130°C under N₂ overnight. The mixture was diluted with EtOAc and 10% NH₄OH/NH₄Cl and stirred, open to air, for 2 hours. The layers were separated, the organic phase was washed with the buffer solution 2x, followed by a water wash (3x). The organics were dried over sodium

sulfate, filtered and concentrated to a dark brown oil. The crude was flash chromatographed (silica gel) eluted with hexane to give a pale yellow oil which solidified on standing under vacuum (10.9g of (103)). Step 2:

5

10

To a cold (-78°C) solution of (103) (2.0g) in anhyd. THF (50 ml) was slowly added n-BuLi (3.2 ml, 7.92 mmol) and the mixture was stirred at -78°C for 15 min. Ethyltriflouroacetate (1.53 g, neat) was added in one portion and this mixture was stirred at -78°C to room temp over 3 h. The mixture was poured into water, THF was removed in vacuo and the aqueous residue was extracted with EtOAc. The organics were washed with brine, dried over anhyd. Na₂SO₄ and concentrated to 1.97 g of a yellow oil, 2 (104)

Step 3:

15

20

25

To a solution of crude (104) (1.9g) and t-butyl -1-piperazine-carboxylate (3.6 g) in dry dichloroethane (20 ml) was added titanium IV chloride (6.4 ml, 6.4 mmol) in portions. This was stirred at room temp. for 2 days. The reaction was cooled to 0°C and NaBH₃CN (1.2 g) in CH₃OH (20 ml) was added. The mixture was stirred overnight at room temp, then filtered through a pad of celite. The layers were separated and the organic was washed with water and brine, then dried over Na₂SO₄, filtered and concentrated to a pale red viscous oil. The crude was purified by column chromatography eluted with hexane (neat) to 10% EtOAc/hexane to give 1.7g of viscous pale yellow oil, (105). Step 4:

(107)

5

10

15

20

To a solution of (105) (1.72 g) in CH₂Cl₂ (25 ml) was added TFA (20 ml). he reaction was stirred for 1 hour, cooled to 0°C and neutralized with NaHCO₃. The aqueous phase was saturated with NaCl crystals and extracted with CH₂Cl₂. The organics were dried over Na₂SO₄, fittered and concentrated to 1.32g of viscous pale yellow oil, (106). Step 5:

A solution of (106) (1.32g) and 1-t-butyloxycarbonyl-4-piperidone (858 mg) in dichloroethane (15 ml) was treated with NaBH(OAc)₃ (1.1 g) followed by HOAc (0.42 ml, 7.4 mmol). The mixture was stirred at room temp under N₂ for 4 days. The reaction was diluted with EtOAc, washed with 1N NaOH (2x), water, and brine. The organics were dried over Na₂SO₄, filtered and concentrated. The crude was purified by column chromatography eluted with 25% EtOAc/hexane to give 1.1g of viscous clear oil (107).

Step 6:

A solution of (107) (1.0 g) in anhyd. CH₂Cl₂ (10 ml) was treated with TFA (10 ml) and stirred at room temp, under N₂ for 1 hour. The mixture was then cooled to 0°C, neutralized with saturated NaHCO₃ and extracted with CH₂Cl₂. The organics were dried over Na₂SO₄, filtered and concentrated to 949 mg of pale yellow foam, (108).

Step 7:

To a solution of (108) (100 g) in anhyd. CH₂Cl₂ (1.0 ml) containing Et₃N (38 μl, 0.27 mmol) was added 1-naphthoyl chloride (41 μl,0.27 mmol). This solution was stirred overnight at room temp. The

10

crude was purified by directly applying to a Preparative TLC plate (1x2000 micron) eluted with 5% Et₃N/EtOAc to give 86.4 mg of (109). Step 8:

To a solution of (109) (63.3mg) in anhyd. CH_2Cl_2 (4.0 ml) was added 0.5M CH_3SO_2H solution in CH_2Cl_2 (1.2 ml. 0.6 mmol). After stirring for 0.5 h, 30% H_2O_2 (31 μ l, 0.6 mmol) was added and stirred overnight at room temp. The mixture was diluted with CH_2Cl_2 , neutralized with saturated NaHCO₃. The layers were separated, dried over Na₂SO₄ and applied to a Preparative TLC plate (2000 micron) eluted with 5% $Et_3N/EtOAc$. Isolated 19.4 mg of 147. HRMS calc'd: 636.2508; found: 636.2509.

10

15

20

25

30

To a stirred solution of (110) (9.3 g, 53.2 mmol) and NH₄NO₃ (4.4 g, 55.8 mmol) was added trifluroacetic anhydride (40 ml) at -15°C. The solvent was evaporated under vacum at rt. The resulting oil was then diluted with water and the compound was extracted with CH₂Cl₂ (2x50 ml). The combined organic layers were washed sequentially with dilute NaHCO₃ and brine, dried (Na₂SO₄), concentrated and chromatographed to afford (111) (3.8 g, 43%) as colorless oil.

To a stirred solution of (111) (3.8 g, 12.0 mmol) in $CH_3OH:H_2O$ (5:1) 100 ml was added K_2CO_3 (3.3 g, 24.0 mmol) and stirred for 3 h at rt. The reaction mixture was concentrated and poured into 2N NaOH and extracted with CH_2Cl_2 (2x50 ml). The combined layers were dried (Na₂SO₄), filtered, concentrated to yield (112) (1.79 g, 70%) as a colorless oil.

(112) was treated with N-BOC-4-piperidone, then extracted as described in Example 38 to yield (113) (0.700g, 20%) as a colorless oil.

The BOC group on (113) was removed with TFA to obtain the amine (114), and (114) was reacted with 1-naphthoyl chloride as described in Example 14, step 8, to obtain (115) (0.448 g, 73%) as a colorless oil.

To a solution of (115) (0.170 g, 0.345 mmol) in CH₃OH (5 ml) was added SnCl₂ (0.262 g, 1.38 mmol) and concentrated HCl (1 ml) and the reaction was heated to reflux for 12 h. The reaction mixture was then cocled to rt and poured into 10% NaOH and extracted with CH₂Cl₂ (2x10 ml). The extracts were dried (Na₂SO₄), filtered, and concentrated to yield (116) (0.150 g, 100%).

To a solution of (116) (0.02 g, 0.047 mmol) in CH₂Cl₂ (1 ml) was added Et₃N (0.013 ml, 0.094 mmol) followed by isobutyryl chloride (0.010 ml, 0.07 mmol) and the mixture stirred at rt for 2 h. The reaction mixture was then poured into sat'd aq NaHCO₃ and extracted with CH₂Cl₂ (2x5 ml). The extracts were dried (Na₂SO₄), filtered, concentrated and chromatographed to yield <u>148</u> (0.014 g, 65%). LRMS: calc'd: 497; found (M+H+): 498.

10

Example 45

To a solution of (1) (20.0 mg, 0.042 mmol) in anhydrous THF (0.4 ml) at 0°C were successively added n-butyl sulfamoyl chloride (117) (literature prep.) (14.4 mg, 0.084 mmol) and Et₃N (11.8 μ l, 0.084 mmol) and the resulting mixture was stirred 14 h at room temperature. After evaporation of the solvent, the residue was treated with saturated aquous NaHCO₃ solution (10 ml), extracted with CH₂Cl₂ (3 x 5 ml), dried over Na₂SO₄ and evaporated. Purification of the crude by preparative silica gel chromatography (eluent CH₂Cl₂/CH₃OH/NH₃ 96:4:1) provided 149 (17.3 mg, 66%) as an oil: MH+ = 621 (hydrochloride salt).

Example 46

ОН

15

10

15

20

25

30

To a stirred 0°C solution of (118) (50.0 g, 205 mmol) in a 1:1 solution of Et₂O/10% aq. NaOH (500 ml) was added a 2.5 M solution of di-*tert*-butyldicarbonate in Et₂O (100 ml, 246 mmol) over 30 min with vigorous stirring. After stirring at room temperature for 2 h, the mixture was extracted with Et₂O, washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The resulting product (73.9 g) was used without further purification.

3,4-Methylenedioxythiophenol (19.1 g, 124 mmol) was added dropwise to a stirred 0°C suspension of NaH (5.46 g of a 60% dispersion, 136 mmol) in DMF (75 ml). After stirring 30 min at 0°C, (118) (31.8 g, 103 mmol) in DMF (75 ml) was added and the solution warmed to room temperature ovemight. The reaction was quenched with water and extracted with EtOAc. The organics were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was recrystallized from EtOAc/hexanes, with the first two crops yielding 15.8 g pure sulfide (35% yield).

The sulfide was treated with TFA to obtain the free amine, then reacted with N-BOC-4-piperidone as described in Example 38 to obtain (119) (8.20 g, 69% yield).

The BOC-group was removed and the resultant amine was reacted with 2-toluoyl chloride in a manner similar to that described in Example 14, Step 8. The mixture was concentrated under reduced pressure, yielding the aryl amide (0.65 g, 100% yield).

A solution of the aryl amide (0.21 g, 0.39 mmol) in THF (0.70 ml) was cooled to 0°C under N₂. A solution of Normant reagent (~ 0.5 M) in THF was added in 1 ml portions until the reaction was complete by TLC (10/90 CH₃OH/CH₂Cl₂). The reaction was quenched with NH₄Cl (sat), diluted with CH₂Cl₂, and 1 N NaOH was added. The aqueous layer was extracted with CH₂Cl₂, and the combined organics were dried over K₂CO₃, filtered, and concentrated to yield 150 (0.17 g, 71% yield). LRMS calc'd: 602; found (M+H): 603.

Example 47

10

15

$$(120) \frac{\text{LiAlH}_{4}}{\text{Cul}} \xrightarrow{\text{O}_{2}\text{Na}} \xrightarrow{\text{O}_{2}\text{OH}} \xrightarrow{\text{CO}_{2}\text{El}} \xrightarrow{\text{CO}_{2}\text{El}} \xrightarrow{\text{CO}_{2}\text{El}} \xrightarrow{\text{CO}_{2}\text{El}} \xrightarrow{\text{CO}_{2}\text{El}} \xrightarrow{\text{CO}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{CH}_{2}\text{OH}} \xrightarrow{\text{NBoc}} \xrightarrow{\text{CO}_{2}\text{Me}} \xrightarrow{\text{NBoc}} \xrightarrow$$

Step 1: Ethyl 3-hydroxy-4-iodobenzoate (2.92 g), sodium 3,4-methylenedioxybenzenesulfinate (3.2 g), copper (I) iodide (2.8 g) and DMF (20 ml) were heated under N₂ for 20 h, added to 20% aqueous NaI (200 ml), extracted with EtOAc, dried and evaporated. The residue was flash-chromatographed on silica, eluting with hexanes-EtOAc, and pure fractions evaporated to give the product (120) as a solid (0.81 g), mp 133-135°C.

Step 2 (120) (0.40 g) in THF (5 ml) was added to a stirred, ice-cooled mixture of LiAlH₄ (0.08 g) and THF (10 ml). After 0.5 h, the mixture was treated with H₂O then 1N HCI, extracted with EtOAc, dried over MgSO₄ and evaporated to give (121), which was used in the next step.

Step 3: (121) in CH₂Cl₂ (20 ml) and Et₃N (1.0 ml) was stirred with ice cooling and CH₃SO₂Cl (0.21 ml) added. After 0.5 h, the mixture was washed with 1N HCl, and then NaHCO₃ solution, dried and evaporated. This residue was stirred with diisopropylethylamine (0.3 ml) and the piperazine derivative (0.5 g) in DMF (3 ml) for 20 h at RT, worked up in water-EtOAc, dried, evaporated and

-5

10

15

chromatographed on flash silica, eluting with 1 to 3% CH₃OH in CH_2Cl_2 . Pure fractions were evaporated to give the product (122) as a white foam (0.60 g). Mass spectrum: MH+ = 638.

Step 4: (122) (0.43 g) was stirred for 45 min at RT in CH_2Cl_2 (2 ml) and 95% TFA (5 ml), evaproated, worked up in EtOAc - aq, NaHCO₃, dried, and evaporated to give (123) as a white foam (0.27 g). Mass spectrum: MH+ = 538.

<u>Step 5:</u> (123) (0.07 g) and o-toluoyl chloride (0.06 g) were stirred for 45 min at RT in CH_2CI_2 (5 ml) and saturated NaHCO₃ (5 ml). The mixture was extracted with CH_2CI_2 and the organics were evaporated. The residue was sittred for 0.5 h in a 5% solution of NaOH in 95% CH_3OH (4 ml), diluted with H_2O and CH_2CI_2 , and treted with stirring with small portions of solid CO_2 until the pH of the aq. phase was 7-8. The organic phase was dried and evaporated, and the residue dissolved in CH_2CI_2 (2 ml) and added to Et_2O (15 ml) containing 4M HCI-dioxan (0.4 ml). The precipitate was centrifuged, the solid washed twice with Et_2O , and dried at RT in N_2 to give the hydrochloride of <u>485</u> as a white powder (0.051 g). Mass spectrum: $MH_1 = 607$.

20

Step 1: The Grignard reagent prepared by reacting 3,4-methylene-dioxy bromobenzene (20 g) and Mg (3 g) in THF (60 ml) was cooled in ice and 3-benzyloxybenzaldehyde (16 g) in THF (60 ml) was added slowly. After 15 min, the mixture was added to a stirred mixture of ice and HCl (75 ml of 2N), extracted with Et₂O, washed with NaHCO₃ solution, dried and evaporated. The residue was extracted by stirring followed by decanting with hexanes (2 x 100 ml) and the residue was dried at high vacuum to a brown oil.

10

5

This material was shaken in H_2 (60 psi) at RT for 4 h in EtOAc (150 ml), HOAc (1.5 ml) and 20% palladium hydroxide on carbon (1.5 g). After filtration and evaporation, the residue was triturated with 1:1 Et₂O-hexanes (2 x 50 ml) and dried at RT to give (124) as a white solid (8.2 g). Mp 139-142°C.

Step 2: (124) (8.1 g) was stirred with Et₃SiH (20 ml) in CH₂Cl₂ (200 ml) and TFA (10 ml) was added dropwise. After 0.5 h. the solution was washed twice with H₂O and evaporated. The residue in CH₂Cl₂ (100 ml) was treated for 15 min. with 1M tetrabutylammonium fluoride in THF (50 ml), washed with 1N H₂SO₄, dried, evaporated and chromatographed on flash silica,

H₂SO₄, dried, evaporated and chromatographed on flash slitca, eluting with 0 to 2% Et₂O in CH₂Cl2. Pure fractions on evaporation gave (125) as a thick oil (6.28 g). Mass spectrum: MH+ = 229. Step 3: A mixture of (125) (2.3 g), 4-t-butoxycarbonyl-2-(R)-methylpiperazine (2.4 g), ethanol (40 ml), 37% formalin (2.5 ml) and

25 4M HCI-dioxan (1.25 ml) was refluxed for 24 h, worked up in CH₂Cl₂: aq. NaHCO₃, dried, evaporated and the residue was chromatographed on flash silica, eluting with 5 to 30% Et₂O-hexanes. Pure fractions were evaporated to give (126) as a white foam (2.6 g). Mass spectrum: MH+ = 441.

30 Step 4: A solution of (126) (1.7 g) in CH₂Cl₂ (20 ml), H₂O (0.5 ml) and TFA (5 ml) was stirred at RT for 1 h., diluted with CH₂Cl₂ and H₂O, and treated with small portions of K₂CO₃ until the pH of the

10

15

aqueous phase remained at 8-9. The organic phase was dried and evaporated to give (127) as a white foam (1.2 g). Mass spectrum: MH+=341.

<u>Step 5</u>: A mixture of (127) (1.12 g), 1-(o-toluoyl)-4-piperidinone (0.8 g), CH_2Cl_2 (25 ml) and NaBH(OAc)₃ (1.5 g) was stirred at RT for 20 h, washed with excess aq. NaHCO₃, dried and evaporated. The residue was dissolved in CH_3OH containing 4M HCl-dioxan (2 ml), evaporated, co-evaporated with CH_3OH (100 ml), and this residue dissolved in CH_3OH (1 ml) and CH_2Cl_2 (15 ml) and added to stirred Et_2O (100 ml) containing 4M HCl-dioxan (1 ml). The precipitate was filtered, washed with Et_2O and dried to give the hydrochloride of 300 as a white powder (1.76 g). Mass spectrum: $MH_+ = 542$.

Example 49

Step 1: A mixture of 3-iodophenol (1.76 g), the piperazine (1.35 g), 37% formalin (1.25 ml) and ethanol (15 ml) was refluxed for 1 h, then additional formalin (0.75 ml) was added and heating continued for

20

10h. The reaction was cooled, worked up in CH₂Cl₂-H₂O, dried and evaporated. The major product was isolated by flash chromatography on silica, eluting with 0 to 1.5% CH₃OH in EtOAc. Evaporation of pure fractions gave a yellow foam, (128) (1.31 g).

5 Mass spectrum: MH+ = 502.

Step 2: (128) (1.25 g) and t-butylchlorodimethylsilane (0.8 g) with Et_3N (0.8 ml) amd dimethylaminopyridine (0.03 g) was stirred in CH_2Cl_2 (30 ml) for 40h, evaporated, and chromatographed on flash silica in EtOAc to obtain the product (129) as a white foam (1.48 g).

10 Mass spectrum: MH+ = 602.

<u>Step 3</u>: A solution of (129) (1.42 g) in dry THF (25 ml) at -70°C was treated with n-BuLi in hexanes (2M; 1.4 ml). Immediately, a solution of 3,4-methylenedioxybenzenesulfonyl fluoride (0.65 g) in THF (1 ml) was added, and the mixure stirred to RT over 0.5h. The reaction was partitioned in H_2O - EtOAc, dried and evaporated, and the residue chromatographed on flash silica in hexanes-EtOAc. Pure fractions were evaporated to give the product (130) as a pale yellow foam (0.76 g). Mass spectrum: MH_1 = 674.

Step 4: (130) (0.55 g) was stirred for 20 h in CH₃OH (15 ml) containing HOAc (0.1 g) and KF (1.0 g), partitioned in H₂O-CH₂Cl₂, dried and evaporated. Flash chromatography on silica with EtOAc gave the pure product (131) as a pale yellow foam (0.41 g). Mass spectrum: MH+=560.

Step 5: A mixture of (131) (0.37 g), CH₂Cl₂ (3 ml). H₂O (0.05 ml) and TFA (2 ml) was kept at RT for 2 h, evaporated, and partitioned in H₂O-CH₂Cl₂ with sufficient NaHCO₃ to maintain the aq. phase at pH 8-9. The CH₂Cl₂ extracts were dried and evaporated, and this residue in DMF (15 ml) stirred 20 h at RT with o-toluic acid (0.2 g), 1-hydroxybenzotriazole (0.15 g) and EDCl (0.4 g). The mixture was partitioned in EtOAc and aq. NaHCO₃, dried and evaporated. The major component was isolated by ptlc on silica plates with 3% CH₃OH-CH₂Cl₂ to give a white foam (0.38 g) which was mainly the N,O-di-toluoyl compound. 0.3 g of his material was stirred for 24 h at RT in CH₃OH (7 ml) and H₂O (0.8 ml) with NaOH (0.5 g). The

35 solution was stirred with H2O-CH2Cl2 and neutralised to pH 7-8 with

solid CO_2 . The organic phase was dried and evaporated, and the hydrochloride of <u>210</u> precipitated as described in earlier examples, and dried at RT in vacuum to give a white solid (0.22 g). Mass spectrum: MH+=578.

5

10

Example 50

27 mg of <u>30</u> were taken up in 1.5 mL of glacial HOAc. The solution was stirred for 7 h at 40°C. Excess saturated NaHCO₃ solution was added, and the mixture was extracted with EtOAc. This was dried over Na₂SO₄, evaporated, and the residue purified by column chromatography in 10% CH₃OH/EtOAc, to give approx. 17 mg of <u>520</u> as an oil. MS (FAB): 598.4 (M+1), 538.5.

Example 51

15

10

15

20

25

30

35

To a solution of (132) (2.31 g, 6.00 mmol) in anhydrous CH₃CN (30 ml) were successively added 4-piperidone ethylene ketal (0.77 ml, 6.00 mmol) and 2,2,6,6-tetramethyl piperidine (1.22 ml, 7.20 mmol), and the mixture was heated 14 h at 60°C. After evaporation of the solvent, the residue was taken up in saturated aqueous NaHCO₃ (100 ml), extracted with CH₂Cl₂ (3 x 50 ml), dried over Na₂SO₄, and evaporated. The oil thus obtained (2.89 g) was refluxed with 6 N HCl (40 ml) for 7 h then evaporated. Workup as above and purification by flash chromatography (SiO₂, CH₂Cl₂/CH₃OH/NH₃ 96:4:1) afforded (133) (1.26 g, 49%).

To a solution of (133) (470 mg, 1.21 mmol) and N-Boc piperazine (255 mg, 1.27 mmol) in anhydrous CH₂Cl₂ (1 ml) was added titanium (IV) isopropoxide (447 ml, 1.21 mmol), and the mixture was stirred 3 days at room temperature. The solution was diluted with CH2Cl2 (1 ml), Et₂AICN 1 N in toluene (3.65 ml) was added at 0°C and the resulting mixture was allowed to warm to room temperature and stirred 2 h. Upon addition of Celite and water (100 ml), the final suspension was filtered over Celite, dried over Na₂SO₄ and evaporated. The crude thus obtained (655 mg,-93%) was dissolved in anhydrous THF (7 ml), treated at 0°C with CH₃MgBr 3 N in Et₂O (3.8 ml, 11.3 mmol) and the solution was allowed to warm to room temperature then heated 3 h at 55°C. After cooling, Celite (2 g) and CH₂Cl₂ (10 ml) were added and the suspension was slowly poured into ice. The resulting suspension was filtered over Celite and worked up as before to provide (134) (375 mg, 58%), after flash chromatography (SiO2, eluent CH2Cl2/CH3OH/NH3 80:20:1).

Removal of the Boc group with TFA gave, after basic workup with 1 N NaOH and extraction with CH_2Cl_2 , 260 mg of intermediate. This (20 mg, 0.042 mmol) was subjected to *N*-acylation with *o*-toluoyl chloride to provide, after conversion to the hydrochlorid salt, <u>587</u> (15 mg) as a white solid: $MH_+ = 590.2$.

Using the appropriate starting materials in the procedures described above or modifications of those procedures well known to those skilled in the art, the compounds shown in the following tables are prepared.

No.	R	W	Physical Data
151	SIT .	Br S	m.p. = 198-206 ⁰ C
152	SXY	O CI	m.p. = 186-192 ⁰ C
153	SII	H300-C5	(M-15) = 596
154	(XX)	in	m.p. = 210-15 ⁰ C
155	SI	S COH 3	MH+ = 612
156	SI	FSI an	MH+ = 596
157	SI	H _F S	MH+ = 660
158	SIJ	©H 2CH3	MH+ = 626
159	SIJ.	S CH3	MH+ = 610
160	< I	o s oi,	MH+ = 650
161	F ₃ C	° 64,	HRMS calc'd: 614.2664 found: 614.2664
162	H ₂ C	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	HRMS calc'd: 560.2947 found: 560.2955
163	F ₃ C	· C	Mass spec. (FAB)M+1=635
164	F ₃ C	S. Br	Mass spec. (FAB)M+1=687
165	F ₃ C	io	Mass spec. (FAB)M+1=656

-			
166	H ₃ C	o Cl	Mass spec. (FAB)M+1=580
			(FAB)NI+1=380
		<u>о</u> он,	HRMS
167			calc'd: 560.2947
			found: 560.2933
168		0 8 r	HRMS
100		人)	calc'd: 610.1738
			lound: 610.1739
169		0 CH 3 CH3	HRMS
			calc'd: 546.2790 found: 546.2787
		0 013	HRMS
170			calc'd: 588.2896
			found: 588.2897
171	~~		HRMS
'''			calc'd: 624.2896
			lound: 624.2903
170	F	0 81	HRMS
172			calc'd: 628.1645
	•		found: 628.1646
173	F->>		HRMS
'''		° ()	calc'd: 600.2696
			found: 600.2694
174	F. 0.4	0 0	HRMS
''~) - N	calc'd: 541.2285
L			found: 541.2289
175	F	O Br	HRMS calc'd: 646.1551
	F F		found: 646.1150
176	F	0	HRMS
) CN	calc'd: 559.2191
	F	0 CH ₃	found: 559.2202 HRMS
177	1 co/~		calc'd: 604.2845
	1 co*/	 / / /	found: 604.2840
178	-0		HRMS
1/8	B 1 10 1		calc'd: 640.2845
	1 Cold		found: 640.2840
122		0 B1	HRMS
179			calc'd: 668.1794
1	1000		found: 668.1785
180	CI	o 043	HRMS
			calc'd: 580.2401
			found: 580.2401
181	CI	0	HRMS
1.		<u> </u>	calc'd: 616.2401 found: 616.2395
1			
	1		

182		° ∞1,	FAB(MH+) = 606
183		O(CH2}CH:	FAB(MH+) = 648
184		(CH) 2CH3	FAB(MH+) = 632
185		0 8043	FAB(MH+) = 606
186	SI		FAB(MH+) = 652
187		0 N-N OH ₃	FAB(MH+) = 636
188	(X)	of him	FAB(MH+) = 636
189		O N O Is	FAB(MH+) = 686
190	SI	943	m.p. = 200-202 ^O C (dec)
191	SIN .	H ₃ C 0 OH ₃	m.p. = 201-203 ^O C (dec)
192	H ₃ 00		m.p. = 215-216 ^o C (dec)
193	н,20-О	° cl	m.p. = 210-201°C (dec)
194	H ₃ 00	0 04, 04,	m.p. = 219-220 ^O C (dec)
195	HgD ()	° €4,	FAB(MH+) = 582
196	CI	, on,	m.p. = 204-206 ⁰ C (dec)

197	CI	0 043 043	m.p. = 198-200 ⁰ C (dec)
198	SI	OH3	MH+ = 596
199			MH+ = 610
200		O OH;	MH+ = 620
201	SXY	O 0H3	MH+ = 606
202	S) J	O H 3	MH+ = 541
203	SII	0 043	MH+ = 591
204	H _W	, or,	MH+ = 620
205	OH,	, SH,	MH+ = 620
206	(C)	о О	MH+ = 620
207	SI	0 0H ₃ 0H ₃	MH+ = 605
208	SI)	O GH3	MH+ = 592
209	SIJ	of Chi	MH+ = 520
211	H ₂ 00	O Br	MH+ = 684
212		O CH ₃	MH+ = 621

213	H,00	0 043 043	MH+ = 634
214	(X)		m.p.= decomp >225 ⁰ C
215	SII	\$.	m.p.= decomp 184 ⁰ C
216	SIJ .		m.p.= decomp above 189 ⁰ C
217	SIJ	, н н,	m.p.= 172-176 ⁰ C

No.	R	W	R ¹	R ²⁷	X	Physical Data
218		, A	H	н	-SO-	MS (electrospray): 546 (M+1), 487 (isomer A)
219	SII		Н	Н	-\$0-	MS (electrospray): 546 (M+1), 463 (isomer B)
-220	H ₃ 00	O OH 3 OH 3	Ĥ	H ²² / ₂	-SO ₂ - :	
221	H ₃ 00	0 0H3	н	н	-SO ₂ -	MS (FAB): 548 (M+1), 461
222	ндо С	° 643	н	Н	-SO ₂ -	MS (electrospray): 548.2 (M+1), 465
223	ндо С	٦٠	н	н	-SO ₂ -	MS (electrospray): 534.2 (M+1), 472
224	ндО С	0 B1	н	н	-SO ₂ -	MS (electrospray): 613, 615 (M+1), 472

225	SI)	, H	н	Н	-SO ₂ -	m.p.= 230-246 ⁰ C
226			Н	н	-SO ₂ -	m.p.= 220 ⁰ C _(dec)
227	SIJ	0 OH 3 OH 3	Н	н	-SO ₂ -	m.p.≐ decomp above 245 ⁰ C
228	SI)		Н	Н	-SO ₂ -	m.p.= 169-171 ⁰ C
229	SI		н	н	-SO ₂ -	m.p.= decomp above 235 ^o C
230	HC C	نك	н	н	-SO ₂ -	m.p.= decomp above 202 ^o C
231	SXY	, WH.3	н	Н	-SO ₂ -	m.p.= decomp above 208 ^O C
232	H ₃ C	نك	н	Н	-SO ₂ -	m.p.= decomp above 195 ^o C
233	SII	٠٠	н	н	-SO ₂ -	m.p.= decomp above 235 ⁰ C
234		ο αντ. 5 Σ	Н	Н	-SO ₂ -	m.p.= decomp above 217 ⁰ C
235	SIJ	230	н	н	-SO ₂ -	m.p.= decomp above 185 ⁰ C
236	(XX)	OH,	н	н	-SO ₂ -	m.p.= decomp above 207 ^o C
237	SIJ	OH CH₃	Н	н	-SO ₂ -	m.p.= 164-166 ⁰ C
238	H ₃ C	O Br	Н	Н	-SO ₂ -	m.p.= decomp above 250 ^o C
239	SI	9°S	н	н	-SO ₂ -	m.p.= decomp above 239 ^o C

240	нзСТ	о М ,	н	H	-SO ₂ -	m.p.= 204 ^O C
241			н	Н	-SO ₂ -	m.p.= decomp above 232 ⁰ C
242	ST	Ç.	Н	н	-SO ₂ -	m.p.= decomp above 205 ^O C
243			·H	Н	-SO ₂ -	m.p.= decomp above 180 ^O C
244	H _S C		н	н	-SO ₂ -	m.p.= decomp above 200 ^o C
245		ر د کی	CH₃ ₹	Н	-SO ₂ -	MH+ = 576
246			CH₃	Н	-SO ₂ -	MH+ = 596
247	SI	о М ,	н	CH₃ ₹	-SO ₂ -	m.p.= 174-177 ⁰ C
248	SII	O 043	ÇH₃	н	-ç- 어	MH+ = 542
249	SI	3. T	н	Н	-ü-	FAB(MH+) = 526
250	CI	00,	ÇH₃	ÇH₃	-3-	HRMS calc'd: 544:2731 found: 544.2724
251	CI	· 0,	ÇH₃	ÇH₃	-CH OH	Mass. Spec. (FAB)M+1 = 548
252	OTT NO2	° 64,	CH₃	CH ₃	ОН -С-	Mass. Spec. (FAB)M+1 = 601
253	SII	о он,	ÇH₃	Н	-CH ₂ -	MH+ = 526
254	SIJ	о он ₃	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 554.3383 found: 554.3366

255		о Н ,	ÇH₃	ÇH₃ Ţ	-CH ₂ -	HRMS calc'd: 530.2938 found: 530.2943
256	Hyao Chaons	о М 3	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 556.3539 found: 556.3547
257	SI	, di	ÇH₃	ÇH₃	-CH ₂ -	Mass. Spec. (FAB)M+1 = 538
258	SI	, BH,	ÇH₃ Ţ	ÇH₃ F	-CH ₂ -	HRMS calc'd: 554.3383 found: 554.3366
259	au	O CH 3 CH 3	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 552.3590 found: 552.3602
260	ay	O OH,	CH₃ ₹	CH₃ Ţ	-CH ₂ -	HRMS calc'd: 544.2998 found: 544.2987
261	ндс	0 OH 3 OH 3	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 524.3641 found: 524.3647
262	нзс	A.	ÇH₃	ÇH₃ Ţ	-CH ₂ -	HRMS calc'd: 510.3484 found: 510.3476
263	ндс		ÇH₃	ÇH₃ Ţ	-CH ₂ -	HRMS calc'd: 574.2433 found: 574.2414
264	H ₃ C	O CH3	CH₃ F	ÇH₃	-CH ₂ -	HRMS calc'd: 511.3437 found: 511.3448
265	н50	O CH3	CH₃ Ţ	ÇH₃	-CH ₂ -	HRMS calc'd: 527.3386 found: 527.3386
266	H ₂ D ()	0 0H3	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 526.3434 found: 526.3442
267	H ₃ D O		ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 590.2382 found: 590.2391
268	H ₃ 00	O CH 3 CH 3	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 540.3590 found: 540.3611
269	C _S	о д ,	CH₃ ₹	ÇH₃	-CH ₂ -	HRMS calc'd: 502.2892 found: 502.2898

270	€S.	<u> </u>	CH₃ ₹	CH₃ Ţ	-CH ₂ -	HRMS calc'd: 566.1841 found: 566.1839
271	€S .)	ÇH ₃	ÇH₃	-CH ₂ -	HRMS calc'd: 479.2481 found: 479.2477
272	CI	о dн,	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 530.2938 found: 530.2954
273	60		CH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 574.3434 found: 574.3436
274	F C	○ di,	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 514.3234 found: 514.3233
275	F	; S	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 550.3234 found: 550.3218
276	(s)	O 043	ÇH₃ Ÿ	CH₃ F	-CH ₂ -	HRMS calc'd: 502.2892 found: 502.2893
277	(s)		CH₃ F	ÇH₃ F	-CH ₂ -	HRMS calc'd: 479.2481 found: 479.2469
278	(s)	\$	ÇH₃	ÇH₃ ₹	-CH ₂ -	HRMS calc'd: 538.2892 found: 538.2884
279		N->OI,	ÇH₃	ÇH₃	-CH ₂ -	FAB(MH+) = 542
280	SII	ئى ا	ÇH₃	CH₃ Ţ	-CH ₂ -	FAB(MH+) = 556
281	SI)		CH₃ ₹	ÇH₃ Ţ	-CH ₂ -	FAB(MH+) = 528
282		~~~.	ÇH₃	ÇH₃		FAB(MH+) = 556
283		<u> </u>	ÇH₃		<u> </u>	FAB(MH+) = 602
284		~~~	ÇH₃	ÇH₃	-CH ₂ -	FAB(MH+) = 578

		·				
285		0 × 2 × 3	ÇH₃	ÇH₃	-CH ₂ -	FAB(MH+) = 579
286	SI	100	ÇH₃	CH₃	-CH ₂ -	FAB(MH+) = 591
287	(X)	<u>.</u>	ÇH₃	CH₃ F	-CH ₂ -	FAB(MH+) = 611
288	SII	ψ, wi,	ÇH₃	ĒH3	-CH ₂ -	m.p.= 215-216 ⁰ C (dec)
289	SII	° ∞, ∞,	ÇH₃	ÇH₃	-CH ₂ -	m.p.= 178-179 ⁰ C (dec)
290	SII	© &H,	ÇH ₃	ÇH₃	-CH ₂ -	m.p.= 209-211 ⁰ C (dec)
291	SI	0 0H3	ÇH₃	CH₃ F	-CH ₂ -	MH+ = 530
292	SII	O 0H ₃	ÇH₃	ÇH₃	-CH ₂ -	MH+ = 541
293	SI	0 0H ₃	ÇH₃	CH₃	-CH ₂ -	MH+ = 546
294	1 -7 1 9	o ci	ÇH₃	CH ₃	-CH ₂ -	MH+ = 561
295	'STT	° 6043	ÇH₃	CH₃ ▼	-CH ₂ -	MH+ = 556
290		, N	ÇH₃	ÇH₃	-CH ₂ -	MH+ = 527
29	7 8	Ů.	ÇH:	gH₃	-CH ₂ -	MH+ = 527
29	8 8		ÇH	3 <u>C</u> H ₃	-CH ₂ -	MH+ = 526
L						

			<u> </u>			
299		O N CH ₃	ÇH₃ Ţ	ÇH₃	-CH ₂ -	MH+ = 541
301		O CH3	ÇH₃	ÇH₃ Ţ	-CH ₂ -	MH+ = 541
303		O OH	ÇH₃	ÇH₃	-CH ₂ -	MH+ = 570
304	(LT)	O CH ₃	ÇH₃ ₹	CH₃ ₹	-CH ₂ -	MH+ = 555
305	(C)	,	ÇH₃ ₹	ÇH₃ ₹	-CH ₂ -	MH+ = 543
306	SI	O N N CH3	CH₃ Ţ	ÇH₃	-CH ₂ -	MH+ = 542
307		O CH ₃	Н	н	-CH ₂ -	m.p.= 216-223°C
308	SI)	CH ₃	н	CH₃ CH₃ V	-CH ₂ -	m.p.= decomp. above 145°C
309	SI	O CH ₃	н	CH ₃	-CH ₂ -	m.p.= decomp. above110°C
309 A		о С _{Н3}	н	ÇH₃ Ţ	-CH ₂ -	m.p.= 228°C (dec)
494	CIS	HST CHY	ÇH₃	ÇH₃ Ţ	-CH ₂ -	FAB(MH+) = 546
495	S COLO	OCH2CH3	CH₃ ₹	ÇH₃	-CH ₂ -	FAB(MH+) = 576
490	S CO	O Br	CH ₃	CH₃ ₹	-CH ₂ -	m.p. = 195-201 ^O C
49	7 827	OCH,	ÇH₃	ÇH₃	-CH ₂ -	m.p. = 202- 204 ^o C

498	(XX)	a CH3	ÇH₃	ÇH₃ Ţ	-CH ₂ -	m.p. = 202- 204 ⁰ C
499	SII	ů s	ÇH₃	CH3	-CH ₂ -	m.p. = 228-232°C
500	SIJ	OCH ₃	ÇH₃	ÇH₃	-CH ₂ -	MH+ = 562
501	() I)	S CH3	ÇH₃ Ţ	CH₃ ₹	-CH ₂ -	MH+ = 560
521	н₃С-{}	O, CH ₃	Н	CH ₃	- O-	m.p. = 197-199°C
522	CI-CI	о, С _{Н3}	н	CH ₃	. O-	m.p. = 175-177°C
523	F	O CH ₃	н	ÇH₃	•	m.p. = 195-197°C
524		O CH ₃	н	ÇH₃	-O-	m.p. = 60-62°C
525		O CH ₃	н	CH₃	-0-	m.p. = 196-200°C (isomer A)
520	6	O CH ₃	н	ÇH₃	-0-	FAB(MH+) = 523 (isomer B)
52	H ₃ CO-	O CH ₃	Н	н	-c-	HRMS (FAB) calc'd (MH+): 450.2757 Found: 450.2752 m.p. = 245-260°C
55	i9 () [o NH₂	н	н	-SO ₂ -	m.p.= decomp above 115 ^o C

560	€ _N	OH3	ÇH₃	Ę CH₃	H-01	m.p.= 161-166 ⁰ C
561	Br	O CH ₃	CH ₃	CH₃ ₹	0-01 1	Mass. Spec. (FAB)M+1 = 635
562	Br	O CH ₃	ÇH₃	ÇH₃	-CH ₂ -	HRMS calc'd: 618.2331 found: 618.2316
592	CH₃	O Br	-CF3	н	-SO ₂ -	HRMS calc'd: 664.1456 found: 664.1452
593	F_		ÇH₃	ÇH₃ Ç	OH -C- H	HRMS calc'd: 566.3183 found: 566.3180

No.	R	w	R ¹	R ²⁷	R ²⁰	Physical Data
310	(II)	° CI	ÇH₃	CH₃	-CH ₃	MH+ = 603
311	SI	OCH ₃	ÇH₃ ÿ	CH ₃	-CH ₃	
312	ET;	O CH ₃	ÇH₃	CH₃ ₹	-CH ₃	MH+ = 597
313	(I)	° CH₃	ÇH₃	ÇH ₃	H ₂ N→	·
314	(II)	O CH ₃	ÇH₃	ÇH₃	EtO \$	
315	SIJ	O CH3	ÇH₃ Ţ	ÇH₃ Ţ	n-Pr	MH+ = 611

						101 504
316		O NH ₂	CH₃ Ţ	CH₃ l	-CH ₃	MH+ = 584
317		° CH₃	н	H	-CH ₃	HRMS calc'd: 555.2971 found: 555.2983 m.p.=235-240°C
318		O H ₃ C CH ₃	н `	н	-CH ₃	HRMS calc'd: 569.3128 found: 569.3132 m.p.=170-175°C
319		o F	Н	н	-CH ₃	HRMS calc'd: 559.2721 found: 559.2732 m.p.=192-198°C
320		CI	Н	н	-CH₃	HRMS calc'd: 575.2425 found: 575.2418 m.p.=205-210°C
321		O Br	Н	Н	-CH ₃	HRMS calc'd: 619.20 found: 619.1911 m.p.=170-180°C
322	H ₃ CO	O H ₃ C CH ₃	н	н	-CH ₃	HRMS calc'd: 555.3355 found: 555.3355 m.p.=175-185°C
323	OCH₃	O H ₃ C CH ₃	Н	H	-CH ₃	HRMS calc'd: 555.3335 found: 555.3330 m.p.=180-190°C
324		O H ₃ C CH ₃	н	н	-CH ₃	HRMS calc'd: 525.3230 found: 525.3224 m.p.=205-210°C
325	CH₃	O CH ₃	Н	Н	-CH ₃	HRMS calc'd: 539.3386 found: 539.3397 m.p.=228-237°C
326	H ₃ C	CH ₃ C	н	Н	-CH ₃	HRMS calc'd: 539.3386 found: 539.3396 m.p.=234-239°C

						1
327	(II)		н	H	-CH3	HRMS calc'd: 591.2971 found: 591.2966 m.p.=195-200°C
329	CH ₃		н	н	-CH ₃	m.p 185-190°C (dec)
330	CH ₃	Bi J	н	Н	-CH ₃	m.p 240-248°C (dec)
331	CH₃	o C	н	н	-CH ₃	m.p 235-240°C (dec)
332	CH ₃	O NH ₂	н	Н	-CH ₃	m.p 185-195°C (dec)
333	CH ₃	○ NHCH ₃	н	н	-CH ₃	m.p 175-195°C (dec)
334	€CH ₃	2	н	н	-CH ₃	m.p 230-235°C (dec)
335	CH ₃	O OCH₃	н	н	-CH ₃	m.p 245-255°C (dec)
336	CH ₃	O Br	н	н	-CH ₃	m.p 250-255°C (dec)

	R1F	27		•	
<i>(</i> =	X	~			
X	IJ -		\checkmark	\ \ !-	-w
R			_	, IV-	•

No.	T	W	R1, R21	Х	Physical Data
No.	ST)	O CH; CH	\$ 0	-CH ₂ -	LRMS: calc'd: 582 found: 583
338	ST)	O CH's CH's	=0	-CH ₂ -	LRMS: catc'd: 538 found: 539
339	SXX.	o o o o o o o o o o o o o o o o o o o	√ °	-CH ₂ -	LRMS: calc'd: 574 found: 575

					(DMC)
340	(X)	OCH,	~	-CH ₂ -	LRMS: calc'd: 584 found: 585
341	SI)	O OCH ₃	= O	-CH ₂ -	LRMS: calc'd: 540 found: 541
342		£ 5	н, он	-CH ₂ -	LRMS: calc'd: 526 found: 527
436	SI)	075 CO	_o	-SO ₂ -	LRMS: calc'd: 632 found: 633
437	(X)	07.55°0	°,	-SO ₂ -	LRMS: calc'd: 646 found: 647
438	H ₃ CO-()	To CH3	~ 0	-SO ₂ -	LRMS: calc'd: 558 found (M+H): 559
439	н₃со СТ	O CH3	000	-SO ₂ -	LRMS: calc'd: 572 found (M+H): 573
440	H ₃ CO-	O CH3	s\s	-SO ₂ -	LRMS (FAB): calc'd (M+H): 591 found: 591
441	SI)	Yoych ₃	7	-SO ₂ -	LRMS (FAB): calc'd: 600 found (M+H): 601
442	SI	бо сн.	(hu o)	-SO ₂ -	LRMS (FAB): calc'd: 626 found (M+H): 627
443	SI	0,5 CH ₃	50	-CH ₂ -	LRMS: calc'd: 592 found (M+H): 593
444	SI	О, СН,		-SO ₂ -	LRMS: calc'd: 626 found (M+H): 627
445	(X)	0,5 °0 CH₃	6,000	·so ₂ -	LRMS: calc'd: 634 found (M+H): 635
446	SI	0°5°0 CH3	4. CO	-SO ₂ -	found (M+H): 621
447	SI	O CHo	4,000	-SO ₂ -	found (M+H): 647
448		025 0	4,100	-SO ₂ -	found (M+H): 607
449	1 ()	O CH3 CH3	4. / ° ° °	-SO ₂ -	LRMS: calc'd: 660 found (M+H): 661

450		CH,	4,	-SO ₂ -	LRMS: calc'd: 652 found (M+H): 653
451		~ CH3	\(\)	-so-	LRMS; calc'd: 592 found (M+H): 593
452		OFS NO CH3	s s	-SO-	LRMS: calc'd: 622 found (M+H): 623
453	SII	OFS NO	4,700	-80-	LRMS: calc'd: 618 found (M+H): 619
454	SIJ	o ch	°,	-SO-	LRMS: calc'd: 602 found (M+H): 603
455	SI	o Cth	4 , 0, 0	-SO-	LRMS: calc'd: 630 found (M+H): 631
456	SI)	O CH3	s\s	-SO ₂ -	LRMS: calc'd: 650 found (M+H): 651
457	SIJ	0,5 ×0 CH3	s\s	-SO ₂ -	LRMS: calc'd: 638 found (M+H): 639
458	() I)	O CH	s\s	-SO ²	LRMS: calc'd: 634 found (M+H): 635
459		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	-S-	LRMS: calc'd: 586 found (M+H): 587
460		ors ≈o	\$ 0	-S-	LRMS: calc'd: 574 found (M+H): 575
461		O CH ₃	000	-S-	LRMS: calc'd: 614 found (M+H): 615
462	(C)	· CH	s s	-S-	LRMS: calc'd: 618 found (M+H): 619
463	SI)	grs ≈o CH3	s\s	-S-	LRMS: calc'd: 606 found (M+H): 607
464	SI	o S ≈ 0 Co	000	-S-	LRMS: calc'd: 602 found (M+H): 603
465	SI	CF ₃	~	-SO ₂ -	LRMS: calc'd: 596 found (M+H): 597
466	SIJ .	Н	50	-SO ₂ -	LRMS: calc'd: 500 found (M+H): 501

			_		
467	SI)	CH ₃ O(CH ₂) ₃ N CH ₃	50	-SO ₂ -	LRMS: calc'd: 691 found (M+H): 692
468	SXY	CH ₃ CH ₂ O(CH ₂) ₂ N CH ₃ CH ₂	~	-SO ₂ -	LRMS: calc'd: 705 found (M+H): 706
469		√ O(CH ₂) ₃ CH ₃	°}	-SO ₂ -	LRMS: calc'd: 662 found (M+H):663
470	SI)	\sim	\(\cdot\)	-SO ₂ -	LRMS: calc'd: 620 found (M+H):621
471	SI	<u>څ</u>	ǰ>	-SO ₂ -	LRMS: calc'd: 654 found (M+H): 655
472	SI)	O CH ₃	C°	-S-	LRMS: calc'd: 584 found (M+H): 585
473	(C)	O CH ₃	Ç	-so-	LRMS: calc'd: 600 found (M+H): 601
474	SXX	O CH ₃	Co	-SO ₂ -	LRMS: calc'd: 616 found (M+H): 617
475	SI	O CH ₃	ОН, (СН ₂) ₃ ОН	-so-	LRMS: calc'd: 618 found (M+H): 619
476	SI	O CH3	OH, (CH ₂) ₃ OH	-SO ₂ -	LRMS: calc'd: 634 found (M+H): 635
477	H ₃ CO-()	ors o CH₃	√ 0	-SO ₂ -	LRMS: calc'd: 592 found (M+H): 593
478	H ₃ CO-	ors ≈ o CH ₃	4,700	-SO ₂ -	found (M+H): 621
479	H ₃ CO-()	O CH ₃	50	-SO ₂ -	found (M+H): 605
480	H ₃ CO-	OCH3	6 , 7	-SO ₂ -	LRMS: calc'd: 632 tound (M+H): 633

					1.0140
481	H ₃ CO-C)	OFS NO	s_s	-SO ₂ -	LRMS: calc'd: 625 found (M+H): 625
482	H ₃ CO-()	O CH ₃	s\s	-SO ₂ -	LRMS: calc'd: 636 found (M+H): 637
483	н₃со-СТ	ors No	(°)	-so-	LRMS: calc'd: 576 found (M+H): 577
484	H ₃ CO-()	O CH ₃	(%)	-SO-	LRMS: calc'd: 588 found (M+H): 589
488	SX)	о осн, ————————————————————————————————————	=O	-SO ₂ -	LRMS: calc's: 590 found: 591
489	SI)	Č,	=O	-SO ₂ -	LRMS: calc's: 580 found: 581
490	(XX)		н, он	-SO ₂ -	LRMS: calc's: 576 found: 577
491	SI)	O CH3	CH3, OH	-SO ₂ -	LRMS: calc's: 590 found: 591
492	()I)	O CH	H₃C JL O	-SO ₂ -	LRMS: calc's: 618 found: 619
493	SI)	O CHS	=0	-S-	LRMS: calc's: 542 found (M+H): 543
502	SI	CH,	н, н	-SO ₂ -	LRMS: calc's: 566 found: 567
503	(II)	0 CH ₃	н, н	-SO ₂ -	LRMS: calc's: 576 found: 577
504	SI	رُيْ ا	н, н	-SO ₂ -	LRMS: calc's: 546 found: 547
505	SI		н, н	-SO ₂ -	LRMS: calc's: 581 found: 581
506	SII	O Br	н,н	-SO ₂ -	LRMS: calc's: 625 found: 626
507	(L)	جُـــاً المارية	н, н	-SO ₂ -	found: 565
508	ST.	, OCF,	н, н	-SO ₂ -	LRMS: calc's: 630 found: 631

			·		
509	H ₃ CO-C)	O CH	н, н	-SO ₂ -	LRMS: calc's: 546 found: 547
510	H ₃ CO-C)	o CH, CH,	н, н	-SO ₂ -	LRMS: calc's: 560 found: 561
511	H ₃ CO-C	H.C.	н, н	-\$O ₂ -	LRMS: calc's: 552 found: 553
512	H ₃ CO-C	~~~	н,н	-SO ₂ -	LRMS: calc's: 567 found: 567
513	н₃со СТ	O Br	н, н	-so ₂ -	LRMS: calc's:611.6 found: 613
514	H ₃ CO-()	O OCH,	н, н	-SO ₂ -	LRMS: calc's:562 found: 563
515	SI)	بك	н, н	-SO ₂ -	LRMS: calc's:672 found:673
516	H ₃ CO-	ن	н, н	-SO ₂ -	LRMS: calc's:582 found:583
517	SI)		н, н	-SO ₂ -	LRMS: calc's:596 found:597
518	SI)	o SO ₂ OH ₃	н, н	-SO ₂ -	LRMS: calc's:624 found:625
519	СН ₃ н₃со-{	28	H, H	-SO ₂ -	LRMS: calc's:596 found (M+H ⁺):597
563	(CH ₃) ₂ CH ₂ -	° N	н, н	-S-	HRMS: calc'd (M+1): 488.2736 found: 488.2728
564	(CH ₃) ₂ CH ₂ -		н, н	-SO ₂ -	HRMS: calc'd (M+1): 519.2681 found: 519.2685
565	(CH ₃) ₂ CH ₂ .	O _{CH3}	н, н	-SO ₂ -	HRMS: calc'd (M+1): 483.2681 found: 483.2688
566	(CH ₃) ₂ CH ₂ -	9 CI	н, н	-SO ₂ -	HRMS: calc'd (M+1): 503.2135 found: 503.2144

					LUDVIC:
567	(CH ₃) ₂ CH ₂ -	OCH3	н,н	-S-	HRMS: calc'd (M+1): 451.2873 found: 451.2870
568	(CH ₃) ₂ CH ₂ .		н, н	-CH ₂ -	HRMS: calc'd (M+1): 469.3219 found: 469.3219
569	(CH3)2CH2-	o N	н, н	-S-	HRMS: calc'd (M+1): 489.2688 found: 489.2687
570	(CH ₃) ₂ CH ₂ .	o N	н, н	-S-	HRMS: calc'd (M+1): 488.2736 found: 488.2739
571		N O	н, н	-0-	HRMS: calc'd (M+1): 424.2600 found: 424.2608
572	-CH ₃	- N	н, н	-0-	HRMS: calc'd (M+1): 384.2287 found: 384.2294
573	(CH ₃) ₂ CH ₂ -		н, н	-S-	HRMS: calc'd (M+1): 488.2736 found: 488.2751
574	(CH ₃) ₂ CH ₂ .	o N	н, н	-0-	HRMS: calc'd (M+1): 472.2964 found: 472.2964
575	(CH3)2CH2-		н,н	-so-	HRMS: calc'd (M+1): 503.2732 found: 503.2723
576	CH ₃ CH ₂ SO ₂ -	کی	н, н	-NH-	LRMS: calc'd: 519 found (M+H+): 520
577	-CH ₃		н, н	-NH-	LRMS: calc'd: 441 found (M+H+): 442
578	SIJ	O CH ₃ O CH ₃ H ₃ C	0,0	=0	LRMS: calc'd: 564 found: 565

	•				
579	927	O O CH₃ H₃C	(%)	ОН -С-	LRMS: calc'd: 754 found: 755
580	C)	° C C C C C C C C C C C C C C C C C C C	(%)	=0	LRMS: calc'd: 603 found: 603
581	SIT	-SO ₂ (CH ₂) ₂ CH ₃	(°)	=0 .,	LRMS: calc'd: 570 found: 571
582	SIJ	~ s & O	(°)	=0	LRMS: calc'd: 596 found: 597
583), s, o	°>°	=0	LRMS: calc'd: 610 found: 611
584	(II)	O CH₃ O CH₃ H₃C	(%)	iz,	LRMS: calc'd: 579 found: 580
585	SXX	OCH3	н, он	=0	LRMS: calc'd: 528 found: 529
586	SIJ	° СН ₃	н, н	=0	LRMS: calc'd: 512 found: 513
590	SI)	O CH ₃	н, н	-SO ₂ -	LRMS: calc'd: 574 found: 575
591		کی	н, н	- O-	HRMS: calc'd (M+1): 483.3012 found: 483.3008

	<u>., </u>			MO ((EAR)), EGO 4
534	N OH -C-	ÇH₃	ÇH₃ F	MS (fFAB): 569.4 (M+1), 553,302
535	N_COH ₃ -C-	ÇH₃	CH₃	MS (IFAB): 583.4 (M+1), 302, 282
536	H ₂ N	ÇH₃	ÇH₃	MS (fFAB): 611 (M+1), 554
	H ₂ N NH N NH -C-			(isomer A)
537	A	ÇH₃	CH3	MS (IFAB): 611 (M+1), 325
	H ₂ N \ NH N OH -C-	·		(isomer B)
538	н₃со∜	ÇH₃	ÇH₃	MS (IFAB): 626.4 (M+1), 554
	NH NH			
539	H ₃ C	CH3 ₹	ÇH₃	MS (IFAB): 610.3 (M+1), 460
	NH N NH			(isomer A)
540	H ₃ C(O	ÇH₃	CH₃	MS (fFAB): 610.2 (M+1), 554, 309
	N NH - C -			(isomer B)
-541		.ÇH₃.	ÇH ₃	MS (electrospray): 620 (M+1),
	Z			551,433 (isomer A)
542	N-N	ÇH₃	ÇH₃	MS (electrospray): 620 (M+1),
	N N T			551,433 (isomer B)
543	-0-	Н	Н	MS (IFAB): 599.4 (M+1), 510, 277
	HN -G-			
	<u> </u>	1		1

EAA		011	611	MS (fFAB): 627.4
544	H ₃ C~O~O	ÇH₃	ÇH₃	(M+1), 326, 302
	HŅ.			
	-c-			
				MS (IFAB): 597.5
545	H₃C _V O	ÇH₃	ÇH₃	(M+1), 302
	HN	·		
	•			
	ļ UT			
546	H ₃ C, CH ₃		Н	MS (electrospray):
'	N-	H.	П	555 (M+1),
	-C-			510,392
547				MS (IFAB): 581.4
		Н _	Н	(M+1), 510
	I,			
1	NH	l		
i	-c <u>-</u>			
548	07			MS (IFAB): 667.4
		Н	Н	(M+1), 510
	NH	l		
	-ċ-			
549	H			MS
349	H ₃ C O	Н	lн	(electrospray):
	,,,,	``		619.2 (M+1), 510
	HN -C-	ł		
L	<u>й</u>	<u> </u>	<u> </u>	2.5000
550	/ -0			FAB(MH+) = 611
i mir i		Н	H	
	NH	1		
1	-C-		1	`
	Н	ļ	<u> </u>	
551	N-CH ₃	1	Н	MS (electrospray):
1 .	(')	H	"	(electrospray): 624.2 (M+1), 510
	NH	1		
	-C-	1		
552	HOH ₂ C CH ₂ CH ₃			MS
	CH CH	H	ļН	(electrospray): 599.2 (M+1), 510
	CH NH	1	1	555.2 (33117), 516
	-c-			
1	H	_1	1	<u></u>

No.	R	W	R ¹	R ²⁷	R ³⁰	Physical Data
343	<u></u>		Н	Н	-CH ₃	MS (electrospray): 524.1 (M+1), 373
344		H-cH₃	CH ₃	CH₃	-CH ₃	MH+ = 579
345		H CH₂CH₃	CH₃ F	ÇH₃	-CH ₃	MH+ = 593
346		ors o	CH₃	CH₃ Ţ	-CH ₃	MH+ = 641
347		CH ₃ H N	CH₃ Ţ	ÇH₃	-CH ₃	MH+ = 655
348		CH ₃ CH ₃	CH₃	ÇH₃	-CH₃	MH+ = 669
349	SI)	O CH ₃	ÇH₃	ÇH₃	-CH ₃	FAB (MH+) = 618
350	SIJ	Å GH,	ÇH₃	ÇH₃	-CH ₃	FAB (MH+) = 610
351	SI)	O OCH ₃	ÇH₃	ÇH₃	-CH ₃	FAB (MH+) = 620
352	SIJ	O CH ₃	ÇH₃	ÇH₃	-CH ₃	FAB (MH+) = 578
353	SI)	o, S CH₃	ÇH₃	ÇH₃	CH ₃	FAB (MH+) = 592
354		O CH ₃	ÇH₃	ÇH₃	1	FAB (MH+) = 590

355	н₃со-СУ	O CH ₃	CH₃	CH₃	-CH ₃	m.p. = 233-235°C (dec)
356	насо-С	O H ₃ C CH ₃	ÇH₃ Ţ	ÇH₃	-CH ₃	m.p. = 237-239°C (dec)
357	н₃со-СТ	ors ≈ o CH₃	ÇH₃ Ç	CH ₃	-CH ₃	m.p. = 228-229°C (dec)
358	н₃со Ст	CH,	ÇH₃ Ţ	ÇH₃	-CH ₃	m.p. = 231-233°C (dec)
359	H ₃ CO ()	S CH ₃	ÇH₃ Ţ	ÇH₃	-CH ₃	FAB(MH+) = 564
360		O'S O (CH ₂) ₃ CI	ÇH₃	CH3 F	-CH ₃	m.p. = 225-226°C (dec)
361		NH(CH₂)₂CH₃ O	CH₃ ₹	ÇH₃	-CH3	FAB(MH+) = 571
362		TZ CCOCO	CH ₃	ÇH₃	-CH ₃	FAB(MH+) = 629
363	ET;	PH VIO	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 645
364	(II)	o, Q	ÇH ₃	ÇH₃	-CH ₃	FAB(MH+) = 670,668
365		V CH ₃ CH ₃	CH ₃	ÇH₃	-CH ₃	FAB(MH+) = 571
366	SI	NH(CH ₂) ₃ CH ₃	ÇH₃ ÿ	ÇH₃	-CH ₃	FAB(MH+) = 585
367		O H ₃ C	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 632

368		NH(CH ₂) ₄ CH ₃ O	ÇH₃	ÇH₃ Ţ	-CH ₃	FAB(MH+) = 613
369		H-CH₂CH₃	CH ₃	ÇH₃ Î	-CH ₃	m.p. = 207-208°C (dec)
370		OCH₃ O	CH ₃	ÇH₃ Ţ	-CH ₃	m.p. = 229-220°C (dec)
371			CH₃ F	ÇH₃ F	-CH ₃	m.p. = 223-224°C (dec)
372		₩ CH3	ÇH₃ ₹	ÇH₃	-CH ₃	FAB(MH+) = 619
373		₩ O _{CH3}	CH₃ ₹	ÇH₃ Ţ	-CH ₃	FAB(MH+) = 619
374		₩ D _{OCH3}	CH₃ Ţ	CH₃	-CH ₃	FAB(MH+) = 635
375	(C)	OCH3 OCH3	ÇH₃ Ţ	ÇH₃ F	-CH3	FAB(MH+) = 665
376		O CH₃	CH₃ F	ÇH₃	-CH ₃	FAB(MH+) = 586
.377		O CH₃	CH₃	ÇH₃ Ţ	-CH ₃	FAB(MH+) = 558
378		OCH ₃	ÇH₃ ÿ	ÇH₃ Ţ	-CH3	FAB(MH+) = 572
379		CH ₃	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 570
380		° F	CH₃ Ţ	ÇH₃	-CH ₃	FAB(MH+) = 626
381	(II)	OCH ₂ CH ₃	ÇH₃ Ţ	ÇH₃	-CH ₃	FAB(MH+) = 586

382		90	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 716
383		O, S O O O O O O O O O O O O O O O O O O	ÇH₃	ÇH₃	-CH ₃	m.p. = 230-231°C (dec)
384		CH ₃ CH ₃	ÇH₃	ÇH ₃	-CH ₃	m.p. = 244-245°C (dec)
385		% P	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 608
386			ÇH₃ Ţ	ÇH₃	-CH ₃	FAB(MH+) = 580
387	?II	H ₃ CO O OCH ₃	ÇH₃ F	ÇH₃	-CH₃	FAB(MH+) = 650
388		o s	ÇH₃	CH ₃	-CH ₃	FAB(MH+) = 610
389	(II)	Ö OCH₃	ÇH₃ Ţ	ÇH₃ Ţ	-CH ₃	FAB(MH+) = 633
390	CII;	NH ₂ CH ₃	ÇH₃	CH ₃	-CH ₃	FAB(MH+) = 599
391	SIT	NH ₂ CH ₃ CH ₃	ÇH₃	CH₃ Ţ	-CH ₃	FAB(MH+) = 599
392		Br O'S O	ÇH₃	ÇH₃	-CH ₃	m.p. = 230-231°C (dec)
393	ST)	Br O.S.O CH3	ÇH₃	ÇH₃	-CH ₃	m.p. = 225-226°C (dec)
394	CI)	0.25 O OCH3	ÇH₃	ÇH₃	-CH ₃	m.p. = 208-209°C (dec)

						· · · · · · · · · · · · · · · · · · ·
395	(II)	OF O CN	ÇH₃ Ţ	ÇH₃ Ţ	-CH ₃	m.p. = 218-219°C (dec)
396		O NO2	CH₃	ÇH₃	-CH ₃	m.p. = 218-219°C (dec)
397	(II)	NO ₂	ÇH₃ Ţ	ÇH₃	-CH₃	m.p. = 229-230°C (dec)
398		O S NO2	ÇH₃	ÇH₃	-CH ₃	m.p. = 229-230°C (dec)
399	(II)	O NO ₂	ÇH₃	ÇH₃	-CH ₃	m.p. = 215-216°C (dec)
400	(C)	NO₂ O CH ₃	CH₃	ÇH₃	-CH ₃	m.p. = 220-221°C (dec)
401	(II)	— O(CH ₂) ₂ CH ₃ O	CH₃ Ţ	CH₃ F	-CH₃	m.p. = 224-225°C (dec)
402	SI)	F C	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 673
403		CO₂CH₃	CH ₃	ÇH3	-CH ₃	FAB(MH+) = 663
404		U S	CH ₃	H ₃	-CH ₃	FAB(MH+) = 596
405		O NH ₂	CH ₃	ÇH₃	-CH ₃	FAB(MH+) = 671
406	cl-{_}	O H ₃ C CH ₃	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 608

407	CI-()	O CH ₃	CH₃ Ţ	CH₃ Ţ	-CH ₃	FAB(MH+) = 594
408	CI-{_}	ors no ch₃	ÇH₃ Ş	ÇH₃	-CH ₃	FAB(MH+) = 582
409		S	ÇH₃	ÇH₃	-CH ₃	FAB(MH+) = 640
410	н₃со-О	CH ₃	CH₃ 	ÇH₃	-CH ₃	FAB(MH+) = 619
411		ors,	ĘH3	ÇH₃	-CH ₃	LRMS: calc'd:617 found (M+H+): 618
412		0=5,0	ĘH₃	ÇH₃	-CH ₃	LRMS: calc'd:603 found (M+H+): 604
413		O CH ₃ CI	ÇH₃	CH₃ Ţ	-CH ₃	LRMS: calc'd:673 found (M+H+): 674
414		0, 0, 0 0, 0, 0	CH ₃	CH ₃	-CH ₃	LRMS: calc'd:673 found (M+H+): 674
415	SI)	0='S,	ÇH₃ Ţ	ÇH₃ F	-CH ₃	LRMS: calc'd:659 found (M+H+): 660
416	CI	H ₃ C O=S CH ₃	ÇH₃	ÇH₃	-CH ₃	LRMS: calc'd:667 found (M+H+): 668
417	(II)	0=S-CH ₃	CH₃	ÇH₃	-CH3	LRMS: calc'd:639 found (M+H+): 640
418		-SO ₂ (CH ₂) ₂ CF ₃	CH₃	ÇH₃	-CH ₃	LRMS: calc'd:645 found (M+H+): 646
419		CH ₃	CH ₃	ÇH₃	-CH ₃	LRMS: calc'd:673 found (M+H+): 674

					- 	LRMS: calc'd:639
420		o=s,	ÇH₃ F	ÇH₃ Ţ	-CH ₃	found (M+H+): 640
421	CI H ₃ OC-	-SO ₂ (CH ₂) ₂ CH ₃	CH₃ Ţ	ÇH₃	-CH ₃	LRMS: calc'd:611 found (M+H+): 612
422	CI H ₃ OC-	-SO ₂ CH ₂ CH ₃	CH₃ Ţ	ÇH₃ Ţ	-CH ₃	LRMS: calc'd:597 found (M+H+): 598
423	CI H ₃ OC-	O CH ₃	ÇH₃ Ţ	ÇH₃	-CH ₃	LRMS: calc'd:623 found (M+H+): 624
424	CI H₃OC- (_)—	O CH ₃	ÇH₃	CH₃	-CH ₃	LRMS: calc'd:637 found (M+H+): 637
425	\bigcirc	-SO ₂ (CH ₂) ₂ CH ₃	CH₃ F	CH₃ ₹	-CH ₃	LRMS: calc'd:547 found (M+H+): 548
426	\bigcirc	-SO ₂ CH ₂ CH ₃	CH3	CH₃ F	-CH ₃	LRMS: calc'd:533 found (M+H+): 534
427	FOU	-SO ₂ (CH ₂) ₂ CH ₃	ÇH₃	ÇH3	-CH ₃	LRMS: calc'd:627 found (M+H+): 628
428	FOLI	O CH ₃	ÇH₃	CH₃	-CH ₃ :	640
429		O.N	ÇH₃	ÇH₃	-CH ₃	LRMS: calc'd:580 found (M+H+): 581
430	H ₃ C H ₃ OC	O CH ₃	ÇH₃	ÇH₃ Ţ	-CH ₃	LRMS: calc'd:603 found (M+H+): 604
431	H ₃ C	O.N	ÇH₃	ÇH₃	-CH ₃	LRMS: calc'd:580 found (M+H+): 581
432			ÇH3	ÇH₃	-CH ₃	LRMS: calc'd:595 found (M+H+): 596

	1					
433	F	S	ÇH₃ Ţ	ÇH₃	-CH ₃	LRMS: calc'd:613 found (M+H+): 614
434	н₃ос-{_}_	B	ÇH₃	ÇH₃	-CH ₃	LRMS: calc'd:626 found (M+H+): 627
435	H₃CQ H₃OC-()—	S.	ÇH₃	ÇH₃	-CH ₃	LRMS: calc'd:655 found (M+H+): 656
528		√°.	ÇH₃	ÇH₃	-CH ₃	m.p. = 212-214°C (dec)
529		-CH ₂ CH ₂ CH ₃	ÇH₃	CH₃ ₹	-CH ₃	m.p. = 215-217°C (dec)
530		CH ₃ CH ₃	ÇH₃	CH ₃	-CH ₃	m.p. = 210-211°C (dec)
531		CH ₃ CH ₃	CH₃ ₹	CH₃ ₹	-CH ₃	m.p. = 223-225°C (dec)
532		ÇOOCH₂CH₃	ÇH₃	CH₃ Ţ	-CH ₃	m.p. = 209-211°C (dec)
563		° CI	н	н	ОН	HRMS calc'd: 612.1935 found: 612.1952 m.p.=187-197°C
564		O H ₃ C CH ₃	H -	H	ОН	HRMS calc'd: 606.2638 found: 606.2638 m.p.=185-195°C
565	SU)	% Q	н	н	OH	m.p. = 178-188°C
566	(II)	O _{CH3}	Н	н	OCH₃	HRMS calc'd: 606.2638 found: 606.2633 m.p.=175-183°C
567	SI	O Br	Н	н	ОН	HRMS calc'd: 656.1430 found: 656.1438 m.p.=185-192°C
568		O H ₃ C CH ₃	ÇH₃	ÇH₃	OH	HRMS calc'd: 634.2951 found: 634.2968 m.p.=185-195°C

569	-SO ₂ (CH ₂) ₂ CH ₃	CH₃ ₹	CH₃ ÿ	ОН	HRMS calc'd: 608.2464 found: 608.2477 m.p.=205-215°C
570	-SO ₂ CH ₂ CH ₃	CH₃	CH₃ ₩	OH	HRMS calc'd: 594.2308 found: 594.2311 m.p.=175-185°C
571	O, CH ₃	CH3	CH₃ F	OH	HRMS calc'd: 620.2794 found: 620.2805 m.p.=185-190°C

No.	W	H30	Physical Data
553	-SO ₂ (CH ₂) ₂ CH ₃	-CN	LRMS: calc'd: 573;found (M+1)*: 574
554	O) CH ₃	-CH3	LRMS: calc'd: 574 found (M+1)+: 575
555		-CH3	LRMS: calc'd: 576 found (M+1)+: 577
556	-SO ₂ CH ₂ CH ₃	-CH3	LRMS: calc'd: 548; found (M+1)+: 549
557	-SO ₂ CH ₂ CF ₃	-CH ₃	LRMS: calc'd: 602; found (M+1)+: 603
558	2.5.0	-CH ₃	LRMS: calc'd: 560 found (M+1)+: 561

What is Claimed:

A compound having the structural formula

$$R-X$$
 R^3
 R^4
 R^1
 R^{21}
 R^{27}
 R^{28}
 R^2

5 including all isomers and pharmaceutically acceptable salts, esters, and solvates thereof,

wherein one of Y and Z is N and the other is N, CH, or C-alkyl;

X is -O-, -S-, -SO-, -SO₂-, -NR⁶-, -CO-, -CH₂-, -CS-, -C(OR⁵)₂-,

 $-C(SR^5)_{2^-}, -CONR^{20}-, -C(alkyl)_{2^-}, -C(H)(alkyl)-, -NR^{20}-SO_{2^-},\\$

10 -SO₂-NR²⁰-, -NR²⁰CO-, -O-CO-NH-, -NH-CO-O-,

. Ris

5

10

15

20

hydrogen, acyl, alkyl, alkoxy, alkenyl, cycloalkyl, cycloalkyl substituted with one or two groups selected from the group consisting of alkyl and carbonyl, cycloalkenyl, bicycloalkyl, arylalkenyl, benzyl, benzyl substituted with up to three independently selected R³ groups, cycloalkylalkyl, polyhaloacyl, benzyloxyalkyl, hydroxyC²-C²0alkyl, alkenylcarbonyl, alkylarylsulfonyl, alkoxycarbonylaminoacyl, alkylsulfonyl, or arylsulfonyl, additionally, when X is -CH²-, R may also be -OH; in further addition, when X is not N, R may also be hydroxymethyl, in further addition, R and X may combine to form the group Prot-(NOAA)r-NH- wherein r is an integer of 1 to 4, Prot is a nitrogen protecting group and when r is 1, NOAA is a naturally occuring amino acid or an enantiomer thereof, or when r is 2 to 4, each NOAA is a peptide of an independently selected naturally occuring amino acid or an enantiomer thereof;

R1 and R21 are independently selected from the group consisting of H, alkyl, alkenyl, cycloalkyl, cycloalkenyl, bicycloalkyl, alkynyl, cyano, aminoalkyl, alkoxycarbonyl, aminocarbonyl, hydroxyamidino, alkoxycarbonylalkyl, phenyl alkyl, alkylcarbonlyoxyalkyl,

H, —OH, (provided R^1 and R^{21} are both not —OH and Y is not N), formyl, —CO alkyl, -COacyl, —COaryl, and hydroxyalkyl; additionally R^1 and R^{21} together may form the group =CH₂, =N-OR⁵, =N-CN, =N-N(R⁵)₂,

=CH-alkyl, alkylene, =C-alkyl or =C(halo)2; in further addition, R1

20

and R21 together with the carbon atom to which they are attached may

or R¹ and R²¹ together with the carbon atom to which they are attached may form a saturated heterocyclic ring containing 3 to 7 carbon atoms, one or more of which may be optionally substituted by alkyl, and one or two groups independently selected from S, O, and N-R²0;

R² is

R3. R4. R22, R24, and R25 are independently selected from the group consisting of alkyl, H, halo, alkoxy, benzyloxy, benzyloxy substituted by nitro or aminoalkyl, haloalkyl, polyhaloalkyl, nitro, cyano, sulfonyl, hydroxy, amino, alkylamino, formyl, alkylthio, polyhaloalkoxy, acyloxy, trialkylsilyl, alkylsulfonyl, arylsulfonyl, acyl, alkoxycarbonyl alkylsulfinyl; -OCONH2, -OCONH-alkyl, alkylaminoalkyl, dialkylaminoalkyl, -COOH, -CON(R20)2, -OCON(alkyl)2, -NHCOO-alkyl, -NHCO-alkyl, phenyl, hydroxyalkyl, or morpholino;

each R⁵ and R⁶ is independently selected from the group consisting of H and alkyl, provided that when X is C(OR⁵)₂ or C(SR⁵)₂, both R⁵ groups cannot be H, and in addition, when X is C(OR⁵)₂ or C(SR⁵)₂, the two R⁵ groups in X may be joined to form —(CR²⁰₂)_p-wherein p is an integer of 2 to 4;

R⁷ is independently selected from the group consisting of H, alkyl, arylalkyl, cycloalkyl, aryl and aryl substituted with R³ and R⁴ as defined herein;

each R⁸ is independently selected from the group consisting of H, hydroxyalkyl or alkyl, or two R⁸ groups may be joined to form an alkylene group;

R⁹ is H, alkyl, aralkyl, or acyl; R²⁰ is H, aryl or alkyl;

R27 and R28 are independently selected from the group consisting of H, alkyl, hydroxyalkyl, arylalkyl, aminoalkyl, haloalkyl, thioalkyl, alkylthioalkyl, carboxyalkyl, imidazolyalkyl, and indolyalkyl; or R27 and R28 may combine to form an alkylene group;

5

R29 is H, alkyl, -CO-alkyl, -CO-cycloalkyl, alkoxycarbonyl, aminocarbonyl, aryloxycarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl. alkylsulfonyl, arysulfonyl or -SO2-NH-R20;

R30 is H, alkyl, aryl, cycloalkyl, hydroxyalkyl, aminoalkyl, -COOR²⁰, -CON(R²⁰)₂ or cyano;

R31 and R32 are the same as R30 and in addition, two R30, R31 10 and R32 groups may form the group -(CH2)r (wherein r is 1 to 6), in further addition, R31 and R32 can also be hydroxy, -N(R20)2, -O-acyl, -N(R²⁰)acyl, -OCOOR²⁰, or -OCON(R²⁰)₂;

R33 is anyl or heteroaryl, with the proviso that when R33 is heteroaryl, the CO-R³³ bond is to a carbon atom in the R³³ group;

R³⁴ is alkyl, cycloalkyl or aryl and in addition R³⁴ may also be H when R1 and R21 together with the carbon atom to which they are attached form a saturated heterocyclic ring containing 3 to 7 carbon atoms and two groups independently selected from S, O, and N-R²⁰;

R³⁵ is -CH₂-, -NR²⁰- or -O-;

R36 is -NH2, alkyl or alkoxy;

R37 is independently selected from the group consisting of H and

R38 is -CO-(CH₂)₀₋₅-OR⁵, -SO₂-(alkyl), or

25

15

20

wherein q1 and q2 are independently 1-5, provided that the sum of q1 and q2 is 2-5; and

R39 and R40 are independently selected from the group consisting of =O and (H,H).

30

- A compound of claim 1 wherein Y and Z are N 2.
- A compound of claim 1 wherein Y is CH and Z is N 3.

4. A compound of any of claims 1, 2 or 3 wherein R is

$$R^3$$
 or $N=$

and X is O, SO, SO₂, CH₂, CH(alkyl), C(alkyl)₂ , CH(OH), or N(R²⁰)CO.

5 5. A compound of any of claims 1, 2, 3, 4 or 5 wherein R³ and R⁴ are H; either R¹ is H, cycloalkyl or alkyl and R²¹ is H or R¹ and R²¹

together form =0 or $\frac{0}{0}$; and wherein at least one of \mathbb{R}^{27} and \mathbb{R}^{28} is alkyl.

10 6. A compound of any of claims 1, 2, 3, 4 or 5 wherein R² is

and R^{30} is H or CH_3 : R^{31} and R^{32} are H: and R^{33} is ortho-substituted aryl or heteroaryl.

15 7. A compound of claim 6 wherein R³³ is

8. A compound of any one of claims 1 to 5 wherein R² is

- 20 and R³⁴ is methyl and R³¹ and R³² are H.
 - 9. A compound as defined in claim 1 selected from the group consisting of compound numbers 17, 18,25, 30, 31, 32, 34, 35, 36,

- 37, 41, 43, 44, 49, 53, 54, 56, 57, 58, 59, 80, 82, 84, 85, 94, 98, 100, 108, 121, 126, 127, 137, 145, 151, 152, 154, 155, 162, 166, 178, 179, 181, 185, 190, 191, 194, 199, 214, 215, 216, 225, 247, 253, 256, 257, 337, 339, 340, 341, 349, 351, 367, 409, 459, 479, 488, 489, 490, 500, 501, 502, 503, 505, 506, 507, 515, 516, 517, 555 and 562 from the tables of compounds appearing in the specification.
- 10. A pharmaceutical composition which comprises a compound as10 defined in claim 1 in combination with a pharmaceutically acceptable carrier.
- 11. A process for the preparation of a pharmaceutical composition as defined in claim 10 comprising admixing a compound as claimed in any
 15 of claims 1 to 9 with a pharmaceutically acceptable carrier.
 - 12. The use of a compound of claim 1 for the preparation of a medicament for treating a cognitive or neurodegenerative disease.
- 13. A kit for treating a cognitive or neurodegenerative disease comprising in separate containers in a single package pharmaceutical compounds for use in combination, in one container a compound in accordance with claim 1 and in a separate container an acetylcholinesterase inhibitor, said compound and inhibitor each being in a pharmaceutically acceptable carrier and their combined quantities being an effective amount.
- 14. A method for treating a cognitive or neurodegenerative disease comprising administering to a patient suffering from said disease an
 30 effective amount of a compound of claim 1, alone or in combination with an acetylcholinesterase inhibitor.

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07D 405/14, A61K 31/495 C07D 409/14, 401/04, 413/14

A3

(11) International Publication Number:

WO 98/05292

(43) International Publication Date:

12 February 1998 (12.02.98)

(21) International Application Number:

PCT/US97/13383

(22) International Filing Date:

6 August 1997 (06.08.97)

(30) Priority Data:

08/700,628

8 August 1996 (08.08.96)

US

(71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033 (US).

(72) Inventors: LOWE, Derck, B.; 237 North 9th Street, Kenilworth, NJ 07033 (US). CHANG, Wei, K.; 63 West Cedar Street, Livingston, NJ 07039 (US). KOZLOWSKI, Joseph, A.; P.O. Box 7391, Princeton, NJ 08543-7391 (US). BERGER, Joel, G.; 5675 North Camino Esplandora, Tucson, AZ 85718 (US). McQUADE, Robert; 221 Mountainview Avenue, Scotch Plains, NJ 07076 (US). BAR-NETT, Allen; 13 Flanders Drive, Pine Brook, NJ 07058 (US). SHERLOCK, Margaret; 34 Parkway West, Bloomfield, NJ 07003 (US). TOM, Wing: 133 Cedar Grove Parkway, Cedar Grove, NJ 07009 (US). DUGAR, Sundeep; 749 Wingate Drive, Bridgewater, NJ 08807 (US). CHEN, Lian-Yong; 10 Pond View Drive, Plainsboro, NJ 08536 (US). CLADER, John, W.; 428 North Union Avenue, Cranford, NJ 07016 (US). CHACKALAMANNIL, Samuel; 79 Stratford Road, East Brunswick, NJ 08816 (US). WANG,

Yuguang; 38 Princess Drive, North Brunswick, NJ 08902 (US). McCOMBIE, Swart, W.; 28 Hanford Place, Caldwell, NJ 07006 (US). TAGAT, Jayaram, R.; 133 Boynton Court, Westfield, NJ 07090 (US). VICE, Susan, F.; 1144 Sawmill Road, Mountainside, NJ 07092 (US). VACCARO, Wayne, D.; 1706 Westover Road, Yardley, PA 19067 (US). GREEN, Michael, J.; 1146 Rancho Encinitas Drive, Encinitas, CA 92024 (US). BROWNE, Margaret, E.; 26 Highfield Road, Bloomfield, NJ 07003 (US). ASBEROM, Theodros; 525 Eagle Rock Avenue, West Orange, NJ 07052 (US). BOYLE, Craig, D.; 180 Northfield Road, Bridgewater, NJ 08807 (US). JOSIEN, Hubert, B.; 5441 Washington Boulevard, Jersey City, NJ 07310 (US).

(74) Agents: MAGATTI, Anita, W. et al.; Schering-Plough Corporation, Patent Dept. K-6-1 1990, 2000 Galloping Hill Road. Kenilworth, NJ 07033 (US).

(81) Designated States: AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAP! patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report: 2 April 1998 (02.04.98)

(54) Title: PIPERIDINE AND PIPERAZINE DERIVATIVES AND THEIR USE AS MUSCARINIC ANTAGONISTS

(57) Abstract

Di-N-substituted piperazine or 1,4 di-substituted piperidine compounds in accordance with formula I (including all isomers, salts, esters, and solvates) wherein R, R¹, R², R³, R⁴, R²¹, R²⁷, R²⁸, X, Y and Z as defined herein are muscarinic antagonists useful for treating cognitive disorders such as Alzheimer's disease. Pharmaceutical compositions and methods of preparation are also disclosed. Also disclosed are synergistic combinations of compounds of the above formula with acetylcholinesterase inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Zbaiu	-			
'AM		Fi	Finland	LT	Lithuania .	.sk,	Slovakia
	VIIII	FR	France	LU	Luxemhourg	SN -	·Scnegal
AT	Austria	GA	Gabon	LV	Latvia .	SZ	Swaziland
AU	Australia	CB	United Kingdom	MC	Monaco	TD	Chad
AZ -	Azerbaijan	GE	Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herregovina	CH	Ghana	MG	Madagascar	TJ	Tajikistan
88	Barbados	GN	Guinea	МK	The former Yugoslav	TM	Turkmenistan
BE	Reigium	GR	Greece	*	Republic of Macedonia	∖ TR	Turkey
BF	Burkina Faso			MÎ.	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary Ireland	MN	Mongolia	UA	Ukraine
Ŋ	Benin	1E		MR	Mauritania	UG	Uganda
BK	Brazil	IL .	Israel	MW	Malawi	US	United States of America
DY	Belarus	IS	keland	MX	Mexico	UZ	Uzbekistan
CA	Canada	IT .	Italy	NE.	Niger	VN	Viet Nam
CF	Central African Republic	J۲	Japan	NL NL	Netherlands	YU	Yugoslavia
CG	Congo	KE	Kenya			7.W	Zimbabwe
CH	Switzerland	KG	Kyrgyzsian	NO	Norway	2,44	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	•	Republic of Korea	ľ1.	Poland	•	
CN	China	KR	Republic of Korea	PT	Portugal	-	
CU	Cuba	KZ	Kazakstan	RO	Romania ,		
cz	Czech Republic	LC	Saint Lucia	RU -	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	1.K	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liheria	SG	Singapore		

PCT/US 97/13383

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D405/14 A61K31/495 C07D409/14 C07D401/04 CO7D413/14 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with Indication, where appropriate, of the relevant passages WO 96 26196 A (SCHERING CORP) 29 August 1-13 P.X see the whole document EP 0 711 763 A (SANTEN PHARMA CO LTD) 15 1 May 1996 see claim 1 US 5 010 078 A (ABOU-GHARBIA MAGID A ET A AL) 23 April 1991 see claim 1 EP 0 343 961 A (AMERICAN HOME PROD) 29 A November 1989 see claim 1 US 2 792 398 A (KYRIDES) 14 May 1957 1 see claim 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. X I * Special categories of cited documents : "I" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance. invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed inve-cannot be considered novel or cannot be conside filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ints, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "E" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 1 3. 11. 97 28 October 1997 **Authorized officer** Name and mailing address of the ISA European Patent Office, P.B. 5818 Petentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Gettins, M Fax: (+31-70) 340-3016

tns Alonal Application No PCT/US 97/13383

ategory *	CHEMICAL ABSTRACTS, vol. 45, no. 12, 25 June 1951 Columbus, Ohio, US; abstract no. 5153, OCHIACHI ET AL: "Electrolytic reduction of the pyridinium ion." column 1; xP002044214 see abstract & IBID, pages 313-316,		Relevant to claim No.
	25 June 1951 Columbus, Ohio, US; abstract no. 5153, OCHIACHI ET AL: "Electrolytic reduction of the pyridinium ion." column 1; XP002044214 see abstract & IBID,		
	XP002044214 see abstract & IBID.		
			i .
1		•.	
			·
			e de la composição de l
·.			
			·

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

...emational application No.

PCT/US 97/13383

Box I	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X	Claims Nos.: 14 because they relate to subject matter not required to be searched by this Authority, namely:
	Although claim 14 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2.	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
L	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
, \Box	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
	of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
	restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.
	· · · · · · · · · · · · · · · · · · ·

ini itional Application No PCT/US 97/13383

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9626196 A	29-08-96	AU 4971796 A	11-09-96
EP 0711763 A	15-05-96	FI 960364 A NO 960270 A	26-01-96 23-01-96
		CA 2168264 A	09-02-95
		CN 1128026 A	31-07-96
		WO 9504050 A	09-02-95
		JP 7089949 A	04-04-95
US 5010078 A	23-04-91	US 5482940 A	09-01-96
		US 5380725 A	10-01-95
		US 5106849 A	21-04-92
		US 5278160 A	11-01-94
		US 5254552 A	19-10-93 15-01-96
		AT 132862 T AU 628341 B	17-09-92
		AU 3502589 A	30-11-89
		DE 68925385 D	22-02-96
		DE 68925385 T	15-05-96
		DK 249989 A	25-11-89
		EP 0343961 A	29-11-89
	•	ES 2081302 T	01-03-96
•		FI 94130 B	13-04-95
		GB 2218988 A,B	29-11-89 . 12-07-95
		IE 64151 B	30-03 - 95
		1L 90279 A JP 2015059 A	18-01-90
		PT 90633 B	30-11-94
EP 0343961 A	29-11-89	AT 132862 T	15-01-96
EF 0343301 V	. 25 22 05	AU 628341 B	17-09-92
		AU 3502589 A	30-11-89
		DE 68925385 D	22-02-96
		DE 68925385 T	15-05-96 25-11-89
		DK 249989 A ES 2081302 T	01-03-96
		ES 2081302 T FI 94130 B	13-04-95
• • •	A STATE OF STATE	GB 2218988 A.B	29-11-89
		IE 64151 B	12-07-95
		IL 90279 A	30-03-95

Ins tional Application No PCT/US 97/13383

Patent document sited in search report	Publication date	Patent family member(s)	Publication date
EP 0343961 A		JP 2015059 A	18-01-90
		PT 90633 B	30-11-94
		US 5482940 A	09-01-96
		US 5380725 A	10-01-95
		US 5010078 A	23-04-91
		US 5106849 A	21-04-92
		US 5278160 A	11-01-94
		US 5254552 A	19-10-93
JS 2792398 A	14-05-57	NONE	,

THIS PAGE BLANK (USPTO)