Ray Tracing

Some Slides/Images adapted from Marschner and Shirley and David Levin

Announcements

Assignment 2 is due tonight

Assignment 3 is available (due 2 June)

Any Questions?

Ray Tracing

(Today)

Review Ray Casting
Point and Directional Lights

Lambertian Shading Model

Blinn-Phong Shading Model

(Next week)

Shadows

Reflection

Transparency and Refraction

Ray Casting

```
for each pixel in the image {
   Generate a ray
   for each object in the
   scene {
      if (Intersect ray with
          object) { Set pixel
          colour
```


Light and Surfaces

Light and Surfaces Reflection

Lights

Two types of lights:

Directional Light:

Direction of light does not depend on the position of the object. Light is very far away

Point Light

Direction of light depends on position of object relative to light.

Directional Light

Lights

Two types of lights:

Directional Light:

Direction of light does not depend on the position of the object. Light is very far away

Point Light

Direction of light depends on position of object relative to light.

Point Light

Ray Casting

```
for each pixel in the image {
   Generate a ray
   for each object in the
   scene {
      if (Intersect ray with
          object) { Set pixel
          colour
```

Light and Surfaces Reflection

Light and Surfaces

the amount of energy from a light source that falls on an area of surface depends on the angle of the surface to the light.

- Lambert (18th century)

the amount of energy from a light source that falls on an area of surface depends on the angle of the surface to the light.

- Lambert (18th century)

$$L = k_d I \max(0, \mathbf{n} \cdot \mathbf{l})$$

$$L = k_d I \max(0, \mathbf{n} \cdot \mathbf{l})$$

Specular Reflection

Blinn-Phong Shading Model

"The idea is to produce reflection that is at its brightest when v and I are symmetrically positioned across the surface normal, which is when mirror reflection would occur; the reflection then decreases smoothly as the vectors move away from a mirror configuration."

Marschner and Shirley

Blinn-Phong Shading

The Half Vector

$$\mathbf{h} = \frac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$$

The Half Vector

$$\mathbf{h} = \frac{\mathbf{v} + \mathbf{l}}{\|\mathbf{v} + \mathbf{l}\|}$$

$$L \propto \theta_{\mathbf{h}}^{\mathbf{n}}$$

Segmentation of Rough Surfaces using | McGunnigle and Chantler

Putting it All Together: The Full Blinn-Phong Model

Light obeys the superposition principle

Total amount of received light is sum of light from all incoming sources.

$$L = lambertian + specular$$

Putting it All Together: The Full Blinn-Phong Model

Light obeys the superposition principle

Total amount of received light is sum of light from all incoming sources.

$$L = k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

No Global Effects

Putting it All Together: The Full Blinn-Phong Model

Light obeys the superposition principle

Total amount of received light is sum of light from all incoming sources.

$$L = k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

Ambient Light

$$L = k_a I_a$$

Putting it All Together: The Full Blinn-Phong Model

Light obeys the superposition principle

Total amount of received light is sum of light from all incoming sources.

$$L = k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

Putting it All Together: The Full Blinn-Phong Model

Light obeys the superposition principle

Total amount of received light is sum of light from all incoming sources.

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

Ray Casting

```
for each pixel in the image {
   Generate a ray
   for each object in the
   scene {
      if (Intersect ray with
          object) { Set pixel
          colour
```