AIR Workers' Compensation Model for Earthquakes and Terrorism

Jack Seaquist AIR Worldwide Corporation May 19, 2008

BETTER DECISIONS

A I R

www.air-worldwide.com

https://www.casact.org/education/reinsure/2008/ handouts/seaquist2.pdf (retrieved 25 October 2015)

Building Physical Damage Outcome Largely Determines Distribution of Injury Severity Levels

2008 AIR Worldwide Corporation

CONTINENT

Workers' Compensation Modeling

- Provides loss analyses for workers' compensation, and also group life, accident, short-term disability, long-term disability lines
- Input data needed for modeling
 - Location details address, construction type
 - > Employees or payroll and average wage
 - Costs of injuries by type
 - > Distribution of employees by shift
- □ Ability to view monetary losses and injuries by type
- □ Probabilistic and deterministic (defined scenario) modes

© 2008 AIR Worldwide Corporation

CONFIDENTI

Building Physical Damage Affects Resulting Injury Severity Levels

Injury Severity Levels

njury Severity Level Injury Description

Severity 1: Injuries requiring basic medical aid without required hospitalization

Severity 2: Injuries requiring a greater degree of medical care ar Moderate hospitalization, but not expected to progress to a life

threatening status

subsequent entrapment or impairment of the or verity 4: Instantaneously killed or mortally wounded

Source: HAZUS®

Modeling the Full Range of Possible Damage States and Resulting Injuries at Each Building

Default Injury Costs Assumptions for Workers' Compensation

- Users can enter mean (distribution applied automatically) or use AIR defaults
- □ AIR default workers' compensation injury costs
 - > Include medical and indemnity costs
 - Vary by state and injury type
 - > Derived from latest 3 years of claims data obtained from the NCCI
 - > NCCI experience data brought to current benefit levels
 - Trended for medical and wage inflation
 - > Adjusted to incorporate mental stress of catastrophic events

À

© 2008 AIR Worldwide Corporation

CONFIDENTI

Default Injury Costs for Workers' Compensation

NCCI Injury Category	HAZUS Category	Range of State Averages	
Laceration			
Contusion	Minor	\$800 - \$1,750	
Sprain			
Fracture			
Burn	Moderate	\$70,000 - \$160,000	
Inhalation			
Crush			
Closed head injury	Life Threatening	\$650,000 - \$1,610,000	
Harmful substances			
Fatality	Fatality	\$225,000 - \$515,000	

Æ

2008 AIR Worldwide Corporation

CONFIDENTIAL

Earthquake Damage for Commercial Properties

Veterans Administration Medical Center in Sepulveda (1994 Northridge Earthquake)

American Insurance Consultants building in Sherman Oaks (1994 Northridge Earthquake) – Joints in moment frame fractured

CONFIDENTIA

Modeling Workers' Compensation Losses Resulting from U.S. Earthquakes

- Injury severity is a function of the severity and nature of the damage sustained by buildings
- Injuries in workplace buildings are caused by
 - > Failure of structural elements beams and columns
 - > Damage to non-structural elements ceilings and windows
 - > Contents displacement
- Collapsed buildings cause the most severe injuries, particularly if the construction includes heavy structural elements as in concrete buildings

Æ.

© 2008 AIR Worldwide Corporation

CONFIDENTIA

AIR's Advanced Component Method™ (ACM™) Computes Physical Damage at the Component Level Building → Design — Type Seismic Analysis Component Deformation History Component Physical Damage State Expert Opinion Component Component Physical Damage onetary Damage State State Building Monetary Damage State Monetary Damage Curve ACM™

Physical Damage Curve

Tilt - Un

Light Metal

st Concrete - Mid Rise

Light Metal Braced Steel Frame - Low Rise Steel MRF - Perimeter - Mid Rise Steel MRF - Distributed - High Rise

Regional Differences are Significant

- Building construction practices and local code enforcement strongly influence casualty rates
- International casualty experience is not the same as U.S.
 - > Kobe, Japan, 5:46 am, 1995 more than 5,000 fatalities
 - Northridge, CA, 4:30 am, 1994 57 fatalities
- □ AIR damage curves in ACM™ reflect regional differences in building vulnerability – e.g., New Madrid Seismic Zone has higher damageability than California
- AIR uses HAZUS injury rates, tied to physical damage states from ACM

2008 AIR Worldwide Corporation

CONFIDENTIAL

Modeled vs. Historical Losses for the Loma Prieta and Northridge Earthquakes

Loma Prieta Earthquake - Commute Time Event

Injury Severity	Model Counts (Employees Only)	Estimated Number of Actual Injuries and Fatalities that Occurred at the Workplace
Minor	852	
Moderate	160	
Life Threatening	49	
Total Non-fatal Injuries	1,061	657
Total Fatalities	49	11
All Injuries	1,110	668
Loss	\$64.2 million*	NA
* At current benefits		

Northridge Farthquake - Nighttime ever

Injury Severity	Model Counts (Employees Only)	Actual Workers' Compensation Claims (Source CA DOI)
Minor	186	
Moderate	42	
Life Threatening	15	
Total Non-fatal Injuries	243	
Total Fatalities	15	
All Injuries	258	167
Loss	\$19.1 million*	\$2.9 million**

* At current benefits **Partially developed as of March, 1995

ONFIDENTIA

Significant Workers' Compensation Losses Have Not Occurred Over the Past 40 Years

Year	Location	Magnitude	Injuries	Fatalities
2000	Napa Valley/Sonoma	5.2	25	-
1994	Northridge	6.9	9,000+	57
1992	Landers/Big Bear	5.0	402	1
1992	Petrolia	7.2	356	-
1992	Joshua Tree	6.1	32	-
1991	Sierra Madre	5.8	100	2
1990	Upland	5.4	38	-
1989	Loma Prieta	7.1	3,757	63
1987	Superstition Hills	6.6	94	-
1987	Whittier Narrows	5.9	200	8
1986	Oceanside	5.3	28	1
1986	North Palm Springs	5.8	29	-
1984	Morgan Hill	6.2	27	-
1983	Coalinga	6.7	200	-
1980	Cape Mendocino	7.2	8	-
1980	Mammoth Lakes	6.2	13	-
1980	Livermore	5.8	44	1
1979	Imperial Valley	6.5	91	-
1979	Coyote Lake	5.8	16	-
1978	Santa Barbara	5.1	65	-
1973	Point Mugu	5.3	15	-
1971	San Fernando	6.6	2,000	65
1969	Santa Rosa	5.7	15	-

Source: California DOI, 2003

2008 AIR Worldwide Corporation

What Would It Take to Cause Large Workers' Compensation Losses Due to Earthquake?

Return Period Workers' Compensation Losses, All States

Æ 0:

2008 AIR Worldwide Corporation

CONFIDENTIAL

AIR Workers' Compensation Model for Earthquakes and Terrorism

Jack Seaquist AIR Worldwide Corporation May 19, 2008

Potential Large Terrorism Event Loss Scenarios

- Workers' Compensation Industry Modeled Losses

Scenario	New York	Washington	San Francisco	Des Moines
Truck bomb – delivery	\$3.5	\$2.8	\$3.9	\$1.5
Chemical - sarin	\$313	\$72	\$51	\$22
Biological - anthrax	\$484	\$127	\$88	\$31

Historical Injury Severity Distributions for Collapsed Buildings

% of Occupants

Injury Severity Distribution

Higher Overpressure from Larger Bombs Amplifies Injury Rates

NEDENTAL

Summary

- Catastrophe losses in workers' compensation occur when buildings collapse or partially collapse during working hours
- Model-based analysis depends on the availability of detailed exposure data
- □ Large scale earthquakes have not occurred during business hours
- We have incorporated recent research from the medical community changing the distribution of injury type in terrorist bombing attacks
- Potential losses from terrorist use of CBRN weapons could exceed the P&C industry capital

▲

2000 File Worldwide Corporation

CONFIDENTIAL