# Recap: Principles of Reliable Data Transfer

- What can happen over unreliable channel?
  - Packet error, packet loss
- What mechanisms for packet error?
  - Error detection, feedback, retransmission, sequence#
- What mechanisms for packet loss?
  - Timeout!
- We built simple reliable data transfer protocol
  - Real-world protocol (e.g., TCP) is more complex, but <u>with</u> <u>same principles!</u>

# Performance of rdt3.0

- □ rdt3.0 works, but performance stinks
- □ example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

$$T_{transmit} = \frac{L (packet length in bits)}{R (transmission rate, bps)} = \frac{8kb/pkt}{10**9 b/sec} = 8 microsec$$

O U sender: utilization – fraction of time sender busy sending

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
- o network protocol limits use of physical resources!

# Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-beacknowledged pkts

- o range of sequence numbers must be increased
- buffering at sender and/or receiver



■ Two generic forms of pipelined protocols: *go-Back-N*, *selective repeat* 

# Pipelining: increased utilization



# Go-Back-N

#### Sender:

- □ k-bit seq # in pkt header
- "window" of up to N, consecutive unack'ed pkts allowed



- □ ACK(n): ACKs all pkts up to, including seq # n "cumulative ACK"
  - o may receive duplicate ACKs (see receiver)
- □ timer for each in-flight pkt
- □ timeout(n): retransmit pkt n and all higher seq # pkts in window

### GBN: sender extended FSM



# GBN in action



# Selective Repeat

- receiver *individually* acknowledges all correctly received pkts
  - o buffers pkts, as needed, for eventual in-order delivery to upper layer
- sender only resends pkts for which ACK not received
  - sender timer for each unACKed pkt
- sender window
  - N consecutive seq #'s
  - o again limits seq #s of sent, unACKed pkts

### Selective repeat: sender, receiver windows



(b) receiver view of sequence numbers

### Selective repeat in action



# Selective repeat: dilemma

#### Example:

- □ seq #'s: 0, 1, 2, 3
- □ window size=3
- □ receiver sees no difference in two scenarios!
- incorrectly passes duplicate data as new in (a)

Q: what relationship between seq # size and window size is safe?



# Chapter 3 outline

- 3.1 Transport-layer services
- 3.2 Multiplexing and demultiplexing
- 3.3 Connectionless transport: UDP
- □ 3.4 Principles of reliable data transfer

- 3.5 Connection-oriented transport: TCP
  - segment structure
  - o reliable data transfer
  - o flow control
  - connection management
- 3.6 Principles of congestion control
- 3.7 TCP congestion control