01/07/2023, 12:31 DecisionTree

Building a decision Tree

Importing Necessary Libraries

In the following block of codes, We will import necessary libraries that include Pandas, Matplotlib and Sklearn

```
In [1]: from pandas import Series, DataFrame
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split #This was cross_validat
   from sklearn.tree import DecisionTreeClassifier
   from sklearn.metrics import classification_report
   import sklearn
```

Loading the Dataset

The dataset is from *The National Longitudinal Study of Adolescent Health* (AddHealth) is a representative school-based survey of adolescents in grades 7-12 in the United States. The Wave 1 survey focuses on factors that may influence adolescents' health and risk behaviors, including personal traits, families, friendships, romantic relationships, peer groups, schools, neighborhoods, and communities.

```
In [2]: AH_data = pd.read_csv("../datasets/datasetfortree.csv")
```

Checking first five rows of the data

In [3]:	AH_data.head()												
Out[3]:		BIO_SEX	HISPANIC	WHITE	BLACK	NAMERICAN	ASIAN	age	TREG1	ALCEVR1			
	0	2.0	0.0	0.0	1.0	0.0	0.0	NaN	0.0	1.0			
	1	2.0	0.0	0.0	1.0	0.0	0.0	19.427397	1.0	1.0			
	2	1.0	0.0	1.0	0.0	0.0	0.0	NaN	0.0	0.0			
	3	1.0	0.0	0.0	1.0	0.0	0.0	20.430137	1.0	0.0			
	4	2.0	0.0	0.0	1.0	0.0	0.0	NaN	0.0	1.0			

5 rows × 25 columns

Creating a cleaned dataset by dropping missing values

```
In [4]: data_clean = AH_data.dropna()
```

Looking at the descriptive Statistics of the cleaned data

01/07/2023, 12:31 DecisionTree

In [5]:	<pre>data_clean.describe()</pre>											
Out[5]:		BIO_SEX	HISPANIC	WHITE	BLACK	NAMERICAN	ASIAN					
	count	4575.000000	4575.000000	4575.000000	4575.000000	4575.000000	4575.000000	4!				
	mean	1.521093	0.111038	0.683279	0.236066	0.036284	0.040437					
	std	0.499609	0.314214	0.465249	0.424709	0.187017	0.197004					
	min	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000					
	25%	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000					
	50%	2.000000	0.000000	1.000000	0.000000	0.000000	0.000000					
	75%	2.000000	0.000000	1.000000	0.000000	0.000000	0.000000					
	max	2.000000	1.000000	1.000000	1.000000	1.000000	1.000000					

8 rows × 25 columns

Modelling and Prediction

Spliting data into training and Testing Sets

Defining Predictors

* If the student ever had alcohol and if the student ever had marijuana

```
In [6]:
          predictors = data_clean[['ALCEVR1', 'marever1']]
          Defining Target varaible: 'Treg1'
 In [7]:
          targets = data_clean.TREG1
          Predicting training test and target data with 40% of test size
 In [8]:
          pred_train, pred_test, tar_train, tar_test = train_test_split(predictors,
          Checking the dimensions of the target and training data
 In [9]:
          pred_train.shape
          (2745, 2)
 Out[9]:
In [10]:
          pred_test.shape
          (1830, 2)
Out[10]:
In [11]:
          tar_train.shape
          (2745,)
Out[11]:
In [12]:
          tar_test.shape
```

01/07/2023, 12:31 DecisionTree

```
Out[12]: (1830,)
```

Build model on training data

Confusion matrix

The confusion matrix above shows that out of 1830, 330 observations are mispridected by the model, Now lets see the accuracy score

```
In [14]: sklearn.metrics.accuracy_score(tar_test, predictions)
Out[14]: 0.819672131147541
```

The accuracy score is 81.96% which is much better

Displaying the Decision Tree

```
In [15]:
          from sklearn import tree
          from io import StringIO
          from IPython.display import Image
          out = StringIO()
          tree.export_graphviz(classifier, out_file=out)
          import pydotplus
          graph=pydotplus.graph_from_dot_data(out.getvalue())
          Image(graph.create_png())
Out[15]:
                                                x[1] \le 0.5
                                               gini = 0.287
                                              samples = 2745
                                            value = [2268, 477]
                                                           False
                                           True
                                    x[0] \le 0.5
                                                            x[0] \le 0.5
                                    gini = 0.155
                                                           gini = 0.497
                                  samples = 2099
                                                          samples = 646
                                 value = [1921, 178]
                                                        value = [347, 299]
              gini = 0.057
                                     gini = 0.27
                                                           gini = 0.439
                                                                                gini = 0.499
            samples = 1216
                                   samples = 883
                                                          samples = 77
                                                                              samples = 569
           value = [1180, 36]
                                  value = [741, 142]
                                                         value = [52, 25]
                                                                             value = [295, 274]
 In [ ]:
```