Completness of real numbers (corrections)

Textbook Reading: [JL] Sections 2.2, 2.3, 2.4, 2.5 (Lebl)

Exercises

- 1. (Exercise 2.3.5) is omitted.
- 2. (Exercise 2.3.5)

(a)
$$x_n = \frac{(-1)^n}{n}$$
, $n > 0$: We have, by the Squeeze-Theorem

$$0 \leqslant \left| \frac{(-1)^n}{n} \right| \leqslant \frac{1}{n} \implies x_n \to 0 \implies \limsup x_n = \liminf x_n = 0.$$

(b)
$$x_n = \frac{(n-1)(-1)^n}{n}$$
, $n > 0$: Since $\forall n > 0$; $-1 < x_n < 1$ then we have

$$-1 \leq \liminf x_n \leq \limsup x_n \leq 1.$$

On the other hand
$$\left\{\frac{(n-1)}{n}\right\}_{n>0} = \left\{1 - \frac{1}{n}\right\}_{n>0}$$
, then

$$x_{2p} = \frac{2p-1}{2p} \to 1 \implies 1 \leqslant \limsup x_n$$

thus $1 \leq \limsup x_n \leq 1 \implies \limsup x_n = 1$, and similarly

$$x_{2p+1} = -\frac{2p}{2p+1} \to -1 \implies 1 \geqslant \liminf x_n$$

thus $-1 \leqslant \liminf x_n \leqslant -1 \implies \liminf x_n = 1$.

3. (Exercise 2.3.6) Let $\{x_n\}$ and $\{y_n\}$ bounded such that $x_n \leq y_n$, for all n. We have

$$\limsup x_n = \lim_{n \to +\infty} a_n^x$$
 and $\limsup y_n = \lim_{n \to +\infty} a_n^y$

where

$$a_n^x = \sup\{x_k, k \geqslant n\}$$
 and $a_n^y = \sup\{y_k, k \geqslant n\}$

and we have, for all $k \ge n$, $x_k \le y_k \le a_n^y$ thus a_n^y is an upper bound of $\{x_k, k \ge n\}$ and since $a_n^x = \sup\{x_k, k \ge n\}$ is the least upper bound then $a_n^x \le a_n^y$ and this holds for all n, then, passing to the limit, we obtain

$$\lim_{n \to +\infty} a_n^x \leqslant \lim_{n \to +\infty} a_n^y \implies \limsup x_n \leqslant \limsup y_n.$$

Similar reasoning using the definition of the infimum will conduct us to $\liminf x_n \geqslant \liminf y_n$.

- 4. (Exercise 2.3.7) Let $\{x_n\}$ and $\{y_n\}$ bounded.
 - (a) $\{x_n\}$ and $\{y_n\}$ bounded then there exist $C_1 > 0$ and $C_2 > 0$ such that, for all n,

$$|x_n| \leqslant C_1$$
 and $|y_n| \leqslant C_2$,

then

$$|x_n + y_n| \le |x_n| + |y_n| \le C_1 + C_2 = C > 0$$

hence, $\{x_n + y_n\}_n$ is bounded.

(b) Let us show that

$$\lim\inf\{x_n\} + \lim\inf\{y_n\} \leqslant \lim\inf\{x_n + y_n\}.$$

From (a), $\{x_n + y_n\}_n$ is bounded then one can extract a convergent subsequence to $\liminf\{x_n + y_n\}$, say

$$x_{n_k} + y_{n_k} \to \liminf\{x_n + y_n\}, \text{ as } k \to +\infty,$$

on the other hand, we have

$$\liminf x_n = \inf\{x_k, k \ge n\} \le x_n, \forall n, \Longrightarrow \liminf x_n \le x_{n_k}$$

$$\liminf y_n = \inf\{y_k, k \geqslant n\} \leqslant y_n, \ \forall n, \Longrightarrow \liminf y_n \leqslant y_{n_k}$$

thus

$$\lim \inf x_n + \lim \inf y_n \leqslant x_{n_k} + y_{n_k}$$

then, passing to the limit as $k \to +\infty$, one obtains

$$\lim\inf x_n + \lim\inf y_n \leqslant \lim\inf \{x_n + y_n\}.$$

(c) Let pick up a counter example when this last inequality is strict. Let $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$ then

$$\lim\inf x_n = \lim\inf y_n = -1 - 1 = -2$$

and, since $x_n + y_n = 0$, for all n,

$$\lim \inf \{x_n + y_n\} = 0 > -2.$$

5. (Exercise) Let $\{x_n\}$ be a bounded sequence of real numbers. Let us show that

$$x_n \to 0 \iff \limsup |x_n| = 0$$
?

We know that

$$x_n \to 0 \iff |x_n| \to 0,$$

 \iff) we have

$$0 = \limsup |x_n| = \lim_{n \to +\infty} a_n$$

where

$$a_n = \sup\{|x_k|, k \geqslant n\}$$

and for all n,

$$0 \leqslant |x_n| \leqslant a_n$$

thus, passing to the limit, we obtain by the Squeeze-theorem

$$\lim_{n \to +\infty} |x_n| = 0$$

 \Longrightarrow) Assume $\lim_{n\to+\infty}|x_n|=0$ then any subsequence of $\{|x_n|\}$ converges to 0. However, we know that there exists a subsequence $\{|x_n|\}$ of $\{|x_n|\}$ that converges to $\limsup |x_n|$, hence

$$\lim\sup |x_n|=\lim_{k\to +\infty}|x_{n_k}|=\lim_{n\to +\infty}|x_n|=0.$$

6. (Exercise) By contradiction, assume there exists a sequence $\{x_n\}$ such that

$$\lim \inf x_n = -1, \lim_{n \to +\infty} x_n = 0, \lim \sup x_n = 1$$

Since $\lim_{n\to+\infty} x_n = 0$ then $\{x_n\}$ is bounded and in this case we know that $\{x_n\}$ converges if and only if

$$\lim\inf x_n = \lim\sup x_n$$

which is in contradiction with hypothesis. Thus, no such a sequence exists.

7. (Exercise 2.4.8) Let $\{x_n\}$ Cauchy sequence, then

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n, \ n+1 > n \geqslant N \implies |x_{n+1} - x_n| < \varepsilon.$$

This means that the sequence $y_n = x_{n+1} - x_n \to 0$. However, the given assertion

$$\exists M \in \mathbb{N}, \ \forall n \geqslant M : |x_{n+1} - x_n| \leqslant |x_n - x_{n-1}|$$

means that the sequence $\{y_n\}$ is monotone decreasing after a rank M. We can thus seek for a counter example of a Cauchy sequence $\{x_n\}$ such that $\{y_n\}$ is not monotone! Let us put $x_n = \frac{(-1)^n}{n}$ then we know that $x_n \to 0$ thus $\{x_n\}$ is Cauchy. However,

$$y_n = x_{n+1} - x_n = \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n} = (-1)^{n+1} \left(\frac{1}{n} + \frac{1}{n+1}\right)$$

has an alternating sign thus it is not monotone, in fact observe that

$$y_{2p} < 0, \ y_{2p+1} > 0, y_{2p+2} < 0.$$

Hence, the given assertion is false.