TD 9 : Normalisation et dépendances

Dépendances fonctionnelles

2024-11-22

- L3 MIASHS/Ingémath
- Université Paris Cité
- Année 2024-2025
- Course Homepage
- Moodle

Définitions

Une dépendance fonctionnelle est une expression de la forme

$$A_1, A_2, \dots, A_k \to A_{k+1}, \dots, A_n$$

où $A_1,A_2,\dots,A_k,A_{k+1},\dots,A_n$ sont des attributs (colonnes) d'une base de données.

Elle signifie que deux tuples ayant la même valeur sur A_1,\ldots,A_k doivent avoir la même valeur sur chaque colonnes A_{k+1},\ldots,A_n (en français : A_1,\ldots,A_k déterminent A_{k+1},\ldots,A_n . On dit que les attributs A_{k+1},\ldots,A_n dépendent fonctionnellement de A_1,A_2,\ldots,A_k .

La notion de dépendance est transitive : si $A \to B$ et $B \to C$ alors $A \to C$.

Un ensemble de dépendances fonctionnelles \mathcal{F} est 1 si aucune dépendance ne peut être déduite des autres en utilisant les règles suivantes :

- trivialité : si $Y \subseteq X$ alors $X \to Y$
- augmentation : si $X \to Y$ alors $X, Z \to Y, Z$ pour toute suite d'attributs Z.
- transitivité : si $X \to Y$ et $Y \to Z$ alors $X \to Z$
- union : si $X \to Y$ et $X \to Z$ alors $X \to Y, Z$
- décomposition/séparation si $X \to Y$ et $Z \subseteq Y$ alors $X \to Z$

La clôture transitive des attributs A_1, \ldots, A_k pour un ensemble de dépendances fonctionnelles $\mathcal F$ est l'ensemble des attributs B_1, \ldots, B_ℓ qui dépendent fonctionnellement de A_1, \ldots, A_k .

On la note

$$[A_1,\ldots,A_k]_{\mathscr{F}}^+$$

en oubliant \mathcal{F} si le contexte est clair.

Un ensemble d'attributs A_1, \ldots, A_k est une super-clé pour une relation $R(B_1, \ldots, B_\ell)$ si ce sont des attributs de R et si sa clôture transitive contient B_1, \ldots, B_ℓ . C'est une clé si elle est minimale, c'est-à-dire, aucun sous-ensemble strict de cette super-clé n'est une clé.

Un schéma est en :

- FN₁ si tout attribut est atomique.
- FN₂ si un attribut ne fait pas partie d'une clef, il ne peut pas dépendre d'une partie stricte d'une clef.
- FN₃ Pour toute dépendance fonctionnelle non triviale, le membre de gauche contient une clef ou tout attribut du membre de droit appartient à une clef.

Un schéma et un ensemble de dépendances fonctionnelles peut se décomposer en une collection de schémas, dans le sens où chaque relation R peut se décomposer en R_1, \ldots, R_k tels que $R_i = \pi_i(R)$ pour une certaine projection π_i .

On dit cette décomposition sans perte d'information si toute relation R du schéma d'origine peut être retrouvée à partir des relations $R_1, \ldots, R_k : R = \pi_1(R) \bowtie \ldots \bowtie \pi_k(R)$.

On dit que cette décomposition respecte les dépendances fonctionnelles si celles-ci sont toujours satisfaites par la nouvelle décomposition.

Exercice

Soit une relation concernant des personnes en France avec les attributs suivants~ :\ Nom, Numéro de sécurité sociale, Commune, Département, Code postal, Numéro de téléphone

Quelles sont les dépendances fonctionnelles censées être satisfaites~?

Exercice

Soit un schéma d'attributs $A_1, A_2, \dots A_n$ et un ensemble de dépendances fonctionnelles. Calculer le nombre de super-clefs (en fonction de n) dans les cas suivants \sim :

- La seule clef est $\{A_1\}$.
- Les seules clefs sont $\{A_1\}$ et $\{A_2\}$.
- Les seules clefs sont $\{A_1, A_2\}$ et $\{A_3, A_4\}$.
- Les seules clefs sont $\{A_1, A_2\}$ et $\{A_1, A_3\}$.

Exercice

Soit le schéma $\mathcal{A} = \{A, B, C, D\}$ et l'ensemble de dépendances fonctionnelles

$$\Sigma = \{A \longrightarrow B, B \longrightarrow C\}$$

- Quelle est la fermeture $\{A\}^+$ de $\{A\}$?
- Quelles sont les super-clés? Les clés?

Exercice

Soit le schéma $\mathcal{A} = \{A, B, C, D, E, F\}$ et l'ensemble de dépendances fonctionnelles

$$\Sigma = \Big\{ \{A,B\} \rightarrow C, \{B,C\} \rightarrow \{A,D\}, D \rightarrow E, \{C,F\} \rightarrow B \Big\}$$

- Calculer la fermeture $\{A, B\}^+$ de $\{A, B\}$.
- Est-ce que Σ implique la dépendance fonctionnelle $\{A, B\} \to D_{\sim}$?
- Est-ce que Σ implique la dépendance fonctionnelle $D \to A \sim ?$

Exercice

Montrer que les assertions suivantes sont fausses~:

- $A \to B$ implique $B \to A$.
- Si $\{A, B\} \to C$ et $A \to C$ alors $B \to C$.
- Si $\{A, B\} \to C$ alors $A \to C$ ou $B \to C$.

Exercice

- Soit le schéma $\mathcal{A} = \{A, B, C, D, E, F, G, H\}$ et soit

$$\Sigma = \{AB \longrightarrow C; B \longrightarrow D; CD \longrightarrow E; CE \longrightarrow GH; G \longrightarrow A\}$$

Est-ce que les dépendances

- $A, B \longrightarrow E$
- $B, G \longrightarrow C$
- $A, B \longrightarrow G$

sont déductibles de $\Sigma \sim ?$

• Soit

$$\Sigma_1 = \{A \longrightarrow B; C, E \longrightarrow H; C \longrightarrow E; A \longrightarrow C, H\}$$

et

$$\Sigma_2 = \{A \longrightarrow B, C; C \longrightarrow E, H\}$$

Les deux ensembles de dépendances fonctionnelles Σ_1 et Σ_2 sont-ils équivalents ?

Exercice: Décomposition et perte d'information

• On considère le schéma de relation $\mathcal{A} = \{A, B, C\}$ et la dépendance fonctionnelle suivante :

$$\Sigma = \{A, B \longrightarrow C\}.$$

Déterminer si la décomposition suivante est sans perte d'information

$$\mathcal{A}_1 = \{A, B\}, \quad \mathcal{A}_2 = \{B, C\}$$

en étudiant le cas de la table suivante :

• On considère le schéma de relation $\mathcal{A}=\{A,B,C,D,E\}$ et les dépendances fonctionnelles suivantes :

$$\Sigma = \{A \longrightarrow C; B \longrightarrow C; C \longrightarrow D; D, E \longrightarrow C; C, E \longrightarrow A\}.$$

Appliquer l'algorithme de poursuite pour déterminer si la décomposition suivante est sans perte d'information :

$$A_1 = \{A, D\}, A_2 = \{A, B\}, A_3 = \{B, E\}, A_4 = \{C, D, E\}, A_5 = \{A, E\}$$

Même question pour la décomposition :

$$\mathcal{A}_1 = \{A, D\}, \mathcal{A}_2 = \{A, B\}, \mathcal{A}_3 = \{B, E\}, \mathcal{A}_4 = \{C, D\}, \mathcal{A}_5 = \{D, E\}, \mathcal{A}_6 = \{A, E\}$$

Exercice

Soit $\mathcal{A}=\{A,B,C,D,E\}$ un schéma et soit la décomposition $\{\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_3\}$ où

$$\mathcal{A}_1 = \{A,B,C\} \quad \mathcal{A}_2 = \{B,C,D\} \quad \mathcal{A}_3 = \{A,C,E\}$$

Pour chaque ensemble Σ de dépendances fonctionnelles ci-dessous, appliquer l'algorithme de poursuite pour déterminer si la décomposition est sans perte d'information. Dans le cas où il y a perte d'information, donner une relation R de schéma \mathcal{A} satisfaisant Σ et telle que

$$\pi_{\mathcal{A}_1}(R) \bowtie \pi_{\mathcal{A}_2}(R) \bowtie \pi_{\mathcal{A}_3}(R) \not\subset R$$

- $\Sigma = \{B \to E, CE \to A\}$
- $\Sigma = \{AC \rightarrow E, BC \rightarrow D\}$
- $\Sigma = \{A \rightarrow D, D \rightarrow E, B \rightarrow D\}$
- $\Sigma = \{A \rightarrow D, CD \rightarrow E, E \rightarrow D\}$

${\bf Exercice: Normalisation}$

On considère le schéma de relation R(C,T,H,S,E,N) :

R(Cours, Enseignant, Horaire, Salle, Étudiant, Note)

et les dépendances fonctionnelles suivantes :

$$\mathcal{F} = \{ \mathbf{C} \to \mathbf{T}; \quad \mathbf{H,S} \to \mathbf{C}; \quad \mathbf{H,T} \to \mathbf{S}; \quad \mathbf{C,E} \to \mathbf{N}; \quad \mathbf{H,E} \to S \}.$$

- Calculer une clé.
- Mettre en Boyce-Codd Normal Form (BCNF), donner plusieurs résultats possibles.