离散数学 (2023) 作业 05

周帛岑 221900309

2023年3月20日

1 Problem 1

证:

- a): 不是,函数中不能出现一个自变量对应多个因变量的关系。
- b): 是,函数的定义域为 Z 时,所有结果均落在 R 中,故 R 为函数的陪域,满足 $Z\rightarrow R$
- c): 不是,对于该函数,当 x 取 ±2 时,函数不成立,故原函数定义域不为 Z,故不是 Z \rightarrow R 的函数

2 Problem 2

解:

- a): 是
- b): 不是,对于 n 取两正负性相反的数,结果相同,不满足单射条件
- c): 不是, 当 n 取-2 时, 原函数不存在, 则定义域不为 R, 故不可能为 $R\rightarrow R$ 的双射函数
- d): 是

3 Problem 3

解:

- a): $\{1,-1\}$
- b):{x|-1<x<0 或 0<x<1}
- a): $\{x | x < -2$ 或 $x > 2\}$

4 Problem 4

证: 不妨设有 x_1 和 x_2 且 $x_1 \neq x_2$, 故 $f(x_1)-f(x_2) = a(x_1-x_2)$, 由 $x_1 \neq x_2$ 且 a0, 即 $f(x_1)-f(x_2) \neq 0$, 即 f(x) 满足一对一,故 f(X) 可逆。

下面寻找反函数, \Diamond f(x) = y,x = g(y),则有

$$y = a \cdot g(y) + b$$
 化简有: $g(y) = \frac{(y-b)}{a}$

该函数即为原函数的反函数

5 Problem 5

解:

- a): 定义域为 $\{m, n | (m,n), 其中 m, n \in Z^+ 且 m < n\}$ 值域为 $\{x | x \ge 1, 且 x \in Z^+\}$
- b): 定义域为所有位串 值域为 $\{x|x\geq 0, 且 x\in Z\}$
- d): 定义域为 Z^+ , 值域为 0, 1, 2, 3, 4, 5, 6, 7, 8

订正:a) 中定义域,d) 中值域有错误

- a): 定义域为全体正整数序偶 值域为 $\{x|x\in Z^+\}$
- d): 定义域为 Z⁺, 值域为 {0, 1, 2, 3, 4, 5, 6, 7, 8}

6 Problem 6

解:

- a): 对于 ∀m,n∈Z,2m-n 的值显然可取 Z 上所有数, 故为满射
- b): 对于 ∀m,n∈Z,m+n+1 的值显然可取 Z 上所有数, 故为满射
- c): 对于 ∀m,n∈Z,|m|-|n| 的值显然可取 Z 上所有数, 故为满射
- d): 对于 ∀m,n∈Z,2≥-4, 无法取到 Z 上所有数, 故不为满射
- e): 对于 $\forall m, n \in \mathbb{Z}, m^2 n^2$ 无法取到所有整数 (例如 6), 故不为满射

7 Problem 7

证: 当 f 为满射时,对于 $\forall y \in B$,存在 $x \in A$ 使 f(x) = y,又 |A| = |B|, A 与 B 中元素个数相同,故若 B 中所有元素均能在 A 中找到原像,且 B 中元素各不相同,则 A 中不能存在两个元素

 x_1, x_2 , 且 $x_1 \neq x_2$ 使 $f(x_1) = f(x_2)$, 即 f 为单射。

当 f 为单射时, $\forall x_1, x_2 \in A$,且 $x_1 \neq x_2$,有 f(x_1) \neq f(x_2),又 |A| = |B|,即 A 中每个元素能唯一与 B 中的某个元素对应,且 B 中不存在未被对应上的元素,故 f 为满射

8 Problem 8

证:

假设有 $f \circ g = I_Y, g \circ f = I_X$

即 $f(g(Y)) \equiv g(Y)$, 又 g 的值域此时为 f 的定义域, g 取 Y 时, g (Y) 为 f(X) 中 X 的对应值, 即 $X \equiv g(Y)$, 同理, 我们有 $g(f(X)) \equiv f(X)$, 即有 $Y \equiv f(X)$, 即 $f^{-1} = g, g^{-1} = f$

下面假设有 $f^{-1} = g,g^{-1} = f$

此时我们有 $Y \equiv f(X)$ 和 $X \equiv g(Y)$,由反函数的定义,对于 $\forall X$,有 g(f(X)) 等于 f(X) 中 X 的 取值,即 X,即 $g(f(X)) \equiv g(Y)$,又 $X \equiv g(Y)$,即有 $g(f(X)) \equiv X$ 。同理,我们也可以得到 $f(g(Y)) \equiv Y$ 。即有 $f \circ g = I_Y$, $g \circ f = I_X$

9 Problem 9

a):

证: 不妨假定 y 在 $f(S \cup T)$ 中,且 f(x) = y, 此时 $x \in (S \cup T)$ 。若 $x \in S$ 时, $f(x) = y \in f(S)$,若 $x \in T$, $f(x) = y \in f(T)$,即 $\forall x \in (S \cup T)$,均有 $f(x) \in (f(S) \cup f(T))$,此时, $f(S \cup T) \subseteq f(S) \cup f(T)$ 。

反之,假定 y 在 $f(S)\cup f(T)$ 中,且 f(x)=y,则此时 $x\in T$ 或 $x\in S$,即 $x\in (S\cup T)$,此时我们有 $f(S\cup T)\supseteq f(S)\cup f(T)$

b):

证: 不妨假定 y 在 $f(S\cap T)$ 中,且 f(x) = y,此时 $x\in (S\cap T)$,即 y 在 f(S) 中,也在 f(T) 中,即 $\forall x\in (S\cap T)$,均有 $f(x)\in (f(S)\cap f(T))$,即 $f(S\cap T)\subseteq f(S)\cap f(T)$

命题得证。

10 Problem 10

证:由 f 存在反函数,故 f 为单射函数,即 $\forall a \in A, \exists ! b \in B$,使得 f(a) = b。由反函数的定义可知,S 为 f 的一个值域,由 f 为单射,不妨设该值域对应的定义域为 T。 又 $S \cup \overline{S} = B$ 。 $\forall a \in S$, $\exists ! b \in T$,使得 $f^{-1}(a) = b$ 。

对于 \overline{S} , 不妨设该值域对应的定义域为 M, \exists ! $b \in M$, 使得 $f^{-1}(a) = b$ 。由于 f 为一单射函数, $M \cup T = B$,故 $M = \overline{T}$ 即 $f^{-1}(\overline{S}) \cup f^{-1}(S) = A$ 即 $f^{-1}(\overline{S}) = \overline{f^{-1}(S)}$