Лабораторная работа №2. Элементы теории распознавания образов.

Наша задача состоит в том, чтобы по наблюдаемому признаку х установить, какая из гипотез верна.

Таблица	1-Выборка	A
т аолица	I Diloopia.	

9,47	9,99	10,59	9,49	8,52	11,22	10,46	9,54	10,19
11,55	11,28	10,79	8,59	8,53	10,77	9,18	11,64	8,76
9,29	9,54	10,82	8,15	9,67	10,38	8,64	12,42	7,38
10,73	9,9	9,86	10,38	8,58	10,22	9,72	9,65	10,37
11,66	8,52	9,52	11,2	9,73	9,44	10,53	10,28	10,19
10,72	8,77	10,94	10,75	8,22	9,36	8,63	12,27	8,47
						_		

Таблица 2–Выборка Б

16,36	13,79	15,24	16,01	14,55	12,5	10,73	13,19	17,08
14,78	13,39	16,08	14,84	14,23	18,22	15,83	17,05	13,96
15,53	16,89	16,62	15,06	14,94	16,07	14,67	13,35	13,49
12,57	16,41	14,77	13,21	17,21	16,2	14,46	13,94	14,5
16,63	17,34	16,8	16,96	15,06	12,1	16,34	16,48	15,88
16,07	15,91	14,11	15,63	15,55	15,71	14,03	14,02	16,51

Таблица 3 – Выборка Д

10,02	11,21	16,45	9,64	6,33	11,48	10,9	11,84	12,88
6,62	12,25	11,77	12,41	8,65	11,96	10,48	10,92	12,15
14,35	8,31	10,69	9,44	11,42	10,12	9,47	11,73	8,22
12,57	16,41	14,77	13,21	17,21	16,2	14,46	13,94	14,5
16,63	17,34	16,8	16,96	15,06	12,1	16,34	16,48	15,88
16,07	15,91	14,11	15,63	15,55	15,71	14,03	14,02	16,51

Пусть в некотором районе имеются два класса пегматитов - рудные и безрудные. На хорошо геологически изученных участках из каждого класса пегматитов взяты выборки, в которых изучено какое-либо свойство X.

Полученные данные обработаны: для каждой выборки определены эмпирические функции распределения и функции плотности распределения. Результаты обработки сведены в таблицы.

Таблица 4 – Результат по выборке А

Интервал	x_i	n_i	w_i	v_i	F_{i}
78	7,5	1	0,02	0,02	0,02
89	8,5	12	0,22	0,22	0,24

910	9,5	16	0,30	0,30	0,54
1011	10,5	17	0,31	0,31	0,85
1112	11,5	6	0,11	0,11	0,96
1213	12,5	2	0,04	0,04	1,00

Таблица 5 – Результат по выборке Б

Интервал	x_i	n_i	w_i	v_i	F_i
1011	10,5	1	0,02	0,02	0,02
1112	11,5	3	0,06	0,06	0,07
1213	12,5	8	0,15	0,15	0,22
1314	13,5	12	0,22	0,22	0,44
1415	14,5	10	0,19	0,19	0,63
1516	15,5	15	0,28	0,28	0,91
1617	16,5	4	0,07	0,07	0,98
1718	17,5	1	0,02	0,02	1,00

Классы А и Б.

Рис.1 – Классы А и Б

Постоим интегральную и дифференциальную функцию распределения.

$$a = 1 - 0.94 = 0.06$$

 $\beta = 0.06$

Также будем считать вероятности попадания равными:

$$P(H_1) = P(H_2) = 0.5$$

Подставим получившиеся значения в формулу Байеса: $\gamma = P(H_1)\alpha + P(H_2)\beta = 0.5 * 0.06 + 0.5 * 0.06 = 0.06$

Вывод: если $x < x_{\kappa p}$, то порода относится к А классу, если $x > x_{\kappa p}$, то порода относится к Б классу.

Таблица 6 – Результат по выборке А

Интервал	x_i	n_i	w_i	v_i	F_{i}
78	7,5	1	0,02	0,02	0,02
89	8,5	12	0,22	0,22	0,24
910	9,5	16	0,30	0,30	0,54
1011	10,5	17	0,31	0,31	0,85
1112	11,5	6	0,11	0,11	0,96
1213	12,5	2	0,04	0,04	1,00

Таблица 7 – Результат по выборке Д

Интервал	X	n	W	V	F
68	7	2	0,04	0,02	0,04
810	9	6	0,11	0,06	0,15
1012	11	13	0,24	0,12	0,39
1214	13	8	0,15	0,07	0,54
1416	15	13	0,24	0,12	0,78
1618	17	12	0,22	0,11	1,00

Рис.2 – Классы А и Д

Постоим интегральную и дифференциальную функцию распределения.

a = 1 - 0,9=0,1

$$\beta$$
 = 0,32

Также будем считать вероятности попадания равными: $P(H_1) = P(H_2) = 0.5$

Подставим получившиеся значения в формулу Байеса: $\gamma = P(H_1)\alpha + P(H_2)\beta = 0.5*0.1+0.5*0.32=0.21$

Вывод: если $x < x_{\kappa p}$, то порода относится к А классу, если $x > x_{\kappa p}$, то порода относится к Б классу

Таблица 7 – Результат по выборке Б

Интервал	x_i	n_i	w_i	v_i	F_i
1011	10,5	1	0,02	0,02	0,02
1112	11,5	3	0,06	0,06	0,07
1213	12,5	8	0,15	0,15	0,22
1314	13,5	12	0,22	0,22	0,44
1415	14,5	10	0,19	0,19	0,63
1516	15,5	15	0,28	0,28	0,91
1617	16,5	4	0,07	0,07	0,98
1718	17,5	1	0,02	0,02	1,00

Таблица 8 – Результат по выборке Д

	1 0001111111111111111111111111111111111	0 100511210	T HO BBIOOP		
Интервал	X	n	W	V	F
68	7	2	0,04	0,02	0,04
810	9	6	0,11	0,06	0,15
1012	11	13	0,24	0,12	0,39
1214	13	8	0,15	0,07	0,54
1416	15	13	0,24	0,12	0,78
1618	17	12	0,22	0,11	1,00

Рис.3. – Классы Б и Д

Постоим интегральную и дифференциальную функцию распределения.

$$a2 = 1 - 0.94 = 0.06$$
 $a1 = 0.08$ $a = 0.06 + 0.08 = 0.14$ $\beta = 0.81 - 0.40 = 0.41$

Также будем считать вероятности попадания равными: $P(H_1) = P(H_2) = 0.5$ Подставим получившиеся значения в формулу Байеса:

$$\gamma = P(H_1)\alpha + P(H_2)\beta = 0.5 * 0.014 + 0.5 * 0.41 = 0.21$$

Вывод: если $x < x_{\kappa p}$, то порода относится к Д классу, если $x > x_{\kappa p}$, то порода относится к Б классу