Edgar Andrade, Ph.D.

Matemáticas Aplicadas y Ciencias de la computación

Última revisión: Noviembre de 2023







### Contenido

Introducción

Regla de aprendizaje

Explorar vs. Aprovechar

Recompensa a largo plazo

Métodos de diferencia temporal







### Contenido

#### Introducción

Regla de aprendizaje

Explorar vs. Aprovechai

Recompensa a largo plazo

Métodos de diferencia tempora







### Resolviendo un entorno

**Problema:** ¿Cómo podemos resolver el entorno si no conocemos el modelo subyacente?







### Resolviendo un entorno

**Problema:** ¿Cómo podemos resolver el entorno si no conocemos el modelo subyacente?





El agente debe aprender a actuar con base en su experiencia sobre un periodo prolongado de tiempo.

- ► Regla de aprendizaje
- Explorar vs. Aprovechar
- Recompensa a largo plazo



Matemáticas Aplicadas y Ciencias de la Computación



- Regla de aprendizaje
- Explorar vs. Aprovechar
- ► Recompensa a largo

Aprendizaje como corrección del error del estimador de utilidad con base en la experiencia.





- ► Regla de aprendizaje
- Explorar vs. Aprovechar
- ► Recompensa a largo

Balance entre aprovechar la información actual y explorar para conseguir mejor información.





- ► Regla de aprendizaje
- ► Explorar vs. Aprovechar
- Recompensa a largo plazo

El agente debe aprender a maximizar la recompensa total del episodio, no solo la recompensa por la acción actual.





### Contenido

Regla de aprendizaje











































Cada ronda queremos estimar un número natural q a partir de observaciones imperfectas  $G_1, \ldots, G_T$ , en donde  $G_i$  es la observación obtenida en la ronda i-ésima. Supongamos que Q es nuestra estimación actual.



¿Qué fórmula nos sirve para medir la dirección y magnitud del cambio en la estimación?



Cada ronda observamos un  $G_i$  y vemos la variación respecto a nuestra estimación actual q.



El error en la estimación es  $\delta = G_2 - Q$ .





Cada ronda observamos un  $G_i$  y vemos la variación respecto a nuestra estimación actual q.



 $G_2$  no es el dato real q, por lo que debemos ponderar el error por una tasa de aprendizaje  $\alpha$ .



Cada ronda observamos un  $G_i$  y vemos la variación respecto a nuestra estimación actual q.



Actualizamos Q mediante la regla

$$Q \leftarrow Q + \alpha \delta$$



Cada ronda observamos un  $G_i$  y vemos la variación respecto a nuestra estimación actual q.



El error en la estimación es  $\delta = G_3 - Q$ .



Cada ronda observamos un  $G_i$  y vemos la variación respecto a nuestra estimación actual q.



$$Q \leftarrow Q + \alpha (G_3 - Q)$$





### Multi-armed bandits



Problema de agendamiento estocástico

El agente jala la palanca de alguna de las máquinas y obtiene una recompensa 0 o 1.





### Multi-armed bandits



Problema de agendamiento estocástico

La probabilidad de éxito en cada máquina es distinta e inicialmente desconocida por el agente.





# Multi-armed bandit problem



**Problema:** ¿Cuál máquina a otorga éxito con mayor probabilidad Q(a)?





Estimar la probabilidad de éxito q(a) de cada máquina a.





## Plan de solución

Estimar la probabilidad de éxito q(a) de cada máquina a.

Cada ronda i seleccionamos una máquina a y observamos la recompensa  $r_i$ .





## Plan de solución

Estimar la probabilidad de éxito q(a) de cada máquina a.

 $^{\square}$  Cada ronda i seleccionamos una máquina a y observamos la recompensa  $r_i$ .

Mantenemos los estimadores  $Q_i(a)$  y actualizamos mediante la regla:

$$Q_i(a) = egin{cases} Q_{i-1}(a) + lphaig(r_i - Q_{i-1}(a)ig), & ext{si } a ext{ es seleccionada} \ Q_{i-1}(a), & ext{en otro caso} \end{cases}$$





# Ejemplo

Supongamos  $\alpha = \frac{1}{2}$ .

Máquina 1

Estado inicial:  $Q_0(1) = 0$ 

Máquina 2

• Estado inicial:  $Q_0(2) = 0$ 

Ambos estimadores comienzan en 0



Supongamos  $\alpha = \frac{1}{2}$ .

#### Máquina 1

- Estado inicial:  $Q_0(1) = 0$
- Turno 1:  $Q_1(1) = 0 + \alpha(1-0) = \frac{1}{2}$

#### Máguina 2

- Estado inicial:  $Q_0(2) = 0$
- ► Turno 1:  $Q_1(2) = 0$

Seleccionamos 1 y obtenemos éxito  $(r_1 = 1)$ 





# Ejemplo

Supongamos  $\alpha = \frac{1}{2}$ .

#### Máquina 1

- Estado inicial:  $Q_0(1) = 0$
- Turno 1:  $Q_1(1) = 0 + \alpha(1-0) = \frac{1}{2}$
- Turno 2:  $Q_2(1) = \frac{1}{2} + \alpha(0 \frac{1}{2}) = \frac{1}{4}$

### Máquina 2

- Estado inicial:  $Q_0(2) = 0$
- Turno 1:  $Q_1(2) = 0$
- Turno 2:  $Q_2(2) = 0$

Seleccionamos 1 y no obtenemos éxito  $(r_2 = 0)$ 





# **Ejemplo**

Supongamos  $\alpha = \frac{1}{2}$ .

0000000

#### Máguina 1

- $\triangleright$  Estado inicial:  $Q_0(1)=0$
- ► Turno 1.  $Q_1(1) = 0 + \alpha(1-0) = \frac{1}{2}$
- Turno 2:

$$Q_2(1) = \frac{1}{2} + \alpha(0 - \frac{1}{2}) = \frac{1}{4}$$

► Turno 3:  $Q_3(1) = \frac{1}{4}$ 

### Máguina 2

- ightharpoonup Estado inicial:  $Q_0(2)=0$
- ► Turno 1:  $Q_1(2) = 0$
- ► Turno 2:  $Q_2(2) = 0$
- ► Turno 3:
  - $Q_3(2) = 0 + \alpha(1-0) = \frac{1}{2}$

Seleccionamos 2 y obtenemos éxito  $(r_3 = 1)$ 





000000

Explorar vs. Aprovechar







# Explorar vs. Aprovechar (1/3)

Dos enfoques extremos:

- Explorar: Muestrear ambos brazos.
- ► **Aprovechar**: Seleccionar el brazo que haya dado mejores beneficios hasta ahora (estrategia avara).





# Explorar vs. Aprovechar (1/3)

Dos enfoques extremos:

- **Explorar**: Muestrear ambos brazos.
- **Aprovechar**: Seleccionar el brazo que haya dado mejores beneficios hasta ahora (estrategia avara).



La estrategia de muestreo exhibe un comportamiento aleatorio.





# Explorar vs. Aprovechar (1/3)

Dos enfoques extremos:

- **Explorar**: Muestrear ambos brazos.
- **Aprovechar**: Seleccionar el brazo que haya dado mejores beneficios hasta ahora (estrategia avara).



- La estrategia de muestreo exhibe un comportamiento aleatorio.
- La estrategia avara probó el brazo óptimo y tuvo éxito.



# Explorar vs. aprovechar (2/3)

Dos enfoques extremos:

- **Explorar**: Muestrear ambos brazos.
- ▶ **Aprovechar**: Seleccionar el brazo que haya dado mejores beneficios hasta ahora (estrategia avara).



- La estrategia avara probó el brazo óptimo sin éxito.
- A continuación, la estrategia avara tuvo éxito al probar el brazo que NO es óptimo.



# Explorar vs. aprovechar (3/3)

Dos enfoques extremos:

- **Explorar**: Muestrear ambos brazos.
- **Aprovechar**: Seleccionar el brazo que haya dado mejores beneficios hasta ahora (estrategia avara).

Recompensa a largo plazo



Promedio sobre 50 experimentos de 50 trials cada uno.





## Posibles soluciones

Existe un abanico de maneras de enfrentar el dilema entre explorar vs. aprovechar:

- Avaro optimista inicial
- $ightharpoonup \epsilon$ -greedy
- $ightharpoonup \epsilon$ -greedy con recocido (annealing)
- Upper Confidence Bound
- Softmax
- ► Ftc

Aquí solo mencionaremos la estrategia  $\epsilon$ -greedy.





# $\epsilon$ -greedy (1/2)

Balance entre aprovechar (con probabilidad  $1 - \epsilon$ ) y explorar (con probabilidad  $\epsilon$ ).

```
Algorithm 1: \epsilon-greedy bandit algorithm

Data: una probabilidad de exploración \epsilon (donde 0 \le \epsilon \le 1)

Result: índice del brazo seleccionado Q(a) \leftarrow 0 para cada brazo a;

while True do

if probabilidad 1 - \epsilon then

| a \leftarrow \arg\max Q(a);
else

| a \leftarrow a aleatoria;
end

Presentar la acción a al entorno y obtener la recompensa r;

Q(a) \leftarrow Q(a) + \alpha \left[r - Q(a)\right]
end
```





000000

#### Resultados:



#### Protocolo:

10 brazos. 50 experimentos de 50 trials.



Recompensa a largo plazo

00000

### Contenido

Recompensa a largo plazo







#### Utilidad:

$$G = r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots = \sum_{t=0}^{\infty} \gamma^k r_{t+1}$$

Recompensa a largo plazo

00000





#### **Definiciones**

Utilidad:

$$G = r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots = \sum_{t=0}^{\infty} \gamma^k r_{t+1}$$

▶ **Política**: Una función  $\pi$  que para cada estado s retorna una distribución de probabilidades sobre las acciones posibles, de tal manera que  $\pi(a|s)$  es la probabilidad de la acción a en el estado s.





Explorar vs. Aprovechar

Utilidad:

$$G = r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots = \sum_{t=0}^{\infty} \gamma^k r_{t+1}$$

- **Política**: Una función  $\pi$  que para cada estado s retorna una distribución de probabilidades sobre las acciones posibles, de tal manera que  $\pi(a|s)$  es la probabilidad de la acción a en el estado s.
- **Valor de un estado**: La utilidad esperada  $v_{\pi}(s)$  de seguir la política  $\pi$  desde el estado s:  $v_{\pi}(s) = \mathbb{E}[G|s]$ .





Explorar vs. Aprovechar

## **Definiciones**

Utilidad:

$$G = r_1 + \gamma r_2 + \gamma^2 r_3 + \ldots = \sum_{t=0}^{\infty} \gamma^k r_{t+1}$$

- **Política**: Una función  $\pi$  que para cada estado s retorna una distribución de probabilidades sobre las acciones posibles, de tal manera que  $\pi(a|s)$  es la probabilidad de la acción a en el estado s.
- **Valor de un estado**: La utilidad esperada  $v_{\pi}(s)$  de seguir la política  $\pi$  desde el estado s:  $v_{\pi}(s) = \mathbb{E}[G|s]$ .
- Valor de una acción: La utilidad esperada de ejecutar una acción a en el estado s y luego actuar de acuerdo a  $\pi$ :

$$q_{\pi}(s,a) = \mathbb{E}[G|s,a]$$





#### Estocasticidad de las transiciones



Después de que el agente ejecuta la acción a en el estado s, se obtiene el estado  $s_i$  con probabilidad  $p(s_i|s,a)$ .

$$\{p(s_1|s,a); p(s_2|s,a); \ldots; p(s_n|s,a)\}$$





Independencia del camino



$$p(s_{t+1}|s_0,a_0,s_1,a_1,\ldots,s_t,a_t) = p(s_{t+1}|s_t,a_t)$$



Explorar vs. Aprovechar

# Componentes de los MDP

#### Reinforcement Learning Loop:



- Conjunto de estados
- Subconjunto de terminales
- Conjunto de acciones
- ightharpoonup Transiciones p(s'|s,a)
- ightharpoonup Recompensas r(s, a, s')







# Componentes de los MDP





- Conjunto de estados
- Subconjunto de terminales
- Conjunto de acciones
- ightharpoonup Transiciones p(s'|s,a)
- ightharpoonup Recompensas r(s, a, s')

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \Big( p(s'|s,a) \Big[ r(s,a,s') + \gamma v_{\pi}(s') \Big] \Big)$$



MACC Matemáticas Aplicadas



# Componentes de los MDP



- Conjunto de estados
- Subconjunto de terminales
- Conjunto de acciones
- ightharpoonup Transiciones p(s'|s,a)
- ightharpoonup Recompensas r(s, a, s')

□ Vamos a asumir que no conocemos el modelo del MDP.

Explorar vs. Aprovechar





# Componentes de los MDP



- Conjunto de estados
- Subconjunto de terminales
- Conjunto de acciones
- ightharpoonup Transiciones p(s'|s,a)
- ightharpoonup Recompensas r(s, a, s')

Intentamos estimar  $v_*$  y  $q_*$  directamente.



**MACC** Matemáticas Aplicadas y Ciencias de la Computacio



#### Contenido

Introducción

Regla de aprendizaje

Explorar vs. Aprovechai

Recompensa a largo plazo

Métodos de diferencia temporal







### Usando la ecuación de Bellman

#### Programación dinámica:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \left( p(s'|s,a) \left[ r + \gamma V_k(s') \right] \right)$$



#### **Temporal difference:**



The backup diagram for TD(0)





## Usando la ecuación de Bellman

#### Programación dinámica:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \left( p(s'|s,a) \left[ r + \gamma V_k(s') \right] \right)$$



#### **Temporal difference:**

$$V_{k+1}(s) \leftarrow V_k(s) + \alpha \left( G - V_k(s) \right)$$



The backup diagram for TD(0)





#### Programación dinámica:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \left( p(s'|s,a) \left[ r + \gamma V_k(s') \right] \right)$$



#### Temporal difference:

$$V_{k+1}(s) \leftarrow V_k(s) + \alpha \left(r + \gamma V_k(s') - V_k(s)\right)$$



The backup diagram for TD(0)





# Regla de aprendizaje

estimado nuevo dato
$$V(s) \leftarrow V(s) + \underbrace{\alpha}_{\text{step}} \underbrace{\left(r_1 + \gamma V(s_1) - V(s)\right)}_{\text{bootstrap}} + \underbrace{V(s)}_{\text{estimado}}$$





# Aprendiendo una política (SARSA)

Suponga una política  $\pi$ .





# Aprendiendo una política (SARSA)

Suponga una política  $\pi$ .

Regla para actualizar valores de pares estado acción:

Explorar vs. Aprovechar

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big( r + \gamma Q(s', a') - Q(s, a) \Big)$$

Donde s' es el estado al que se llegó al realizar a en s, y  $a' \leftarrow$  acción al muestrear  $\pi(s')$ .





# Aprendiendo una política (SARSA)

Suponga una política  $\pi$ .

Regla para actualizar valores de pares estado acción:

Explorar vs. Aprovechar

$$Q(s, a) \leftarrow Q(s, a) + \alpha \Big( r + \gamma Q(s', a') - Q(s, a) \Big)$$

Donde s' es el estado al que se llegó al realizar a en s,  $\forall a' \leftarrow acción al muestrear \pi(s').$ 

• Mejorar  $\pi(s)$  con  $\epsilon$ -greedy sobre Q para todo s.





Considere el entorno del ABC, presentado hace dos clases.



| Izquierda | Derecha |
|-----------|---------|
| 0         | 0       |
| 0         | 0       |
| 0         | 0       |
|           | 0       |







Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | 0         | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

Aleatoriamente, el agente escoge la acción Izquierda.



Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | 0         | 0       |
| В | 0         | 0       |
| C | 0         | 0       |
|   |           |         |

El agente se queda en el estado A.

$$s = A$$
 $a = Izquierda$ 
 $s' = A$ 
 $a' \leftarrow acción aleatoria$ 





Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | 0         | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

El agente se queda en el estado A.

$$egin{aligned} s &= A \ a &= \mathsf{Izquierda} \ s' &= A \ a' &\leftarrow \mathsf{Derecha} \end{aligned}$$





Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | 0         | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

$$q(A, I) + = \alpha \Big( -1 + \gamma q(A, D) - q(A, I) \Big)$$





Considere el entorno del ABC, presentado hace dos clases.



$$q(A, I) + = 0.1(-1 + 0.8 \times 0 - 0)$$

|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | 0         | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

Suponga  $\alpha = 0.1$ 



Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | -0.1      | 0       |
| В | 0         | 0       |
| C | 0         | 0       |







Considere el entorno del ABC, presentado hace dos clases.

Explorar vs. Aprovechar



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | -0.1      | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

El agente escoge la acción con mayor valor q, a saber, Derecha (esto ocurre con probabilidad  $\epsilon$ ).





Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | -0.1      | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

Supongamos que el agente llega a B (esto ocurre con probabilidad 0.9).

$$s = A$$
 $a = Derecha$ 
 $s' = B$ 
 $a' \leftarrow Derecha$ 





Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | -0.1      | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

$$q(A, D) += \alpha \left(-1+\gamma q(B, D)-q(A, D)\right)$$





#### Considere el entorno del ABC, presentado hace dos clases.



|   | Izquierda | Derecha |
|---|-----------|---------|
| Α | -0.1      | 0       |
| В | 0         | 0       |
| C | 0         | 0       |

$$q(A, D) += 0.1(-1 + 0.8 \times 0 - 0)$$





Considere el entorno del ABC, presentado hace dos clases.



| Aleatoriamente, el agente escoge la | а |
|-------------------------------------|---|
| acción Derecha.                     |   |

| Izquierda | Derecha   |  |
|-----------|-----------|--|
| -0.1      | -0.1      |  |
| 0         | 0         |  |
| 0         | 0         |  |
|           | -0.1<br>0 |  |

$$s = B$$
  
 $a = Derecha$   
 $s' = C$   
 $a' \leftarrow Derecha$ 





Considere el entorno del ABC, presentado hace dos clases.



| Izquierda | Derecha   |
|-----------|-----------|
| -0.1      | -0.1      |
| 0         | 0         |
| 0         | 0         |
|           | -0.1<br>0 |

El agente llega a C.







Considere el entorno del ABC, presentado hace dos clases.



| Izquierda |      | Derecha |
|-----------|------|---------|
| Α         | -0.1 | -0.1    |
| В         | 0    | 0       |
| C         | 0    | 0       |

$$q(B, D) += \alpha \Big(10 + \gamma q(C, D) - q(B, D)\Big)$$





Considere el entorno del ABC, presentado hace dos clases.



| Izquierda |      | Derecha |
|-----------|------|---------|
| Α         | -0.1 | -0.1    |
| В         | 0    | 0       |
| C         | 0    | 0       |

$$q(B, D) + = 0.1(10 + 0.8 \times 0 - 0)$$



MACC Matemáticas Aplicadas y



Considere el entorno del ABC, presentado hace dos clases.



| Izquierda | Derecha   |
|-----------|-----------|
| -0.1      | -0.1      |
| 0         | 1         |
| 0         | 0         |
|           | -0.1<br>0 |







# Pseudocódigo SARSA

#### Algorithm 3: SARSA agent (update rule)

```
Data: Una acción a, un estado s' y una recompensa r
Q(s, a) \leftarrow \text{self.} Q(s, a) (action-value para cada (s, a));
\pi \leftarrow \text{self.}\pi \text{ (política }\epsilon\text{-greedy sobre }Q);
s \leftarrow \text{self.s} (estado anterior):
a' \leftarrow acción dada por \pi en s':
self.Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma Q(s', a') - Q(s, a));
self.\pi \leftarrow mejorar \pi(s) con \epsilon-greedy sobre Q;
self.s \leftarrow s':
```

Explorar vs. Aprovechar





# SARSA vs. Q-learning (1/2)

#### SARSA:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \Big( r + \gamma Q(s',a') - Q(s,a) \Big)$$
  
Mejorar  $\pi(s)$  con  $\epsilon$ -greedy y  $Q$ 

### **Q-learning:**

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a)\right)$$
  
Mejorar  $\pi(s)$  con  $\epsilon$ -greedy y  $Q$ 





#### Algorithm 3: SARSA agent (update rule)

```
Data: Una acción a, un estado s' y una recompensa r
Q(s, a) \leftarrow \text{self.} Q(s, a) (action-value para cada (s, a));
\pi \leftarrow \text{self.}\pi \text{ (política }\epsilon\text{-greedy sobre }Q);
s \leftarrow \text{self.s} (estado anterior);
a' \leftarrow acción dada por \pi en s';
self.Q(s, a) \leftarrow Q(s, a) + \alpha (r + \gamma Q(s', a') - Q(s, a));
self.\pi \leftarrow meiorar \pi(s) con \epsilon-greedy sobre Q:
self.s \leftarrow s';
```

#### Algorithm 5: Q-learning agent

```
Data: Una acción a, un estado s' y una recompensa r
Q(s, a) \leftarrow \text{self.} Q(s, a) (action-value para cada (s, a));
\pi \leftarrow \text{self.}\pi \text{ (política }\epsilon\text{-greedy sobre }Q);
s \leftarrow \text{self.s} (estado anterior);
self.Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a)\right);
self.\pi \leftarrow actualizar \pi(s) con \epsilon-greedy sobre Q:
self.s \leftarrow s';
```

máticas Aplicadas y Ciencias de la Computación





Figure 3-1. A depiction of the grid environment with a cliff along one side.1

Explorar vs. Aprovechar





# Optimal policy — SARSA vs Q-learning



Figure 3-3. The policies derived by Q-learning and SARSA agents. Q-learning tends to prefer the optimal route. SARSA prefers the safe route.

#### Tabla Q

|    | Izquierda | Derecha | Arriba | Abajo |
|----|-----------|---------|--------|-------|
| 20 | -11       | -10     | -11    | -100  |
| 21 | -10       | -9      | -10    | -100  |

¿Cuál es el valor actualizado de q(20, Derecha)

si a' = Abajo, usando:

- ► SARSA?
- ▶ Q-learning ?





# Utility — SARSA vs Q-learning



Figure 3-2. A comparison of Q-learning against SARSA for a simple grid problem. The agents were trained upon the environment in Figure 3-1. I used  $\gamma = 1.0$ ,  $\epsilon = 0.1$ , and  $\alpha = 0.5$ . The rewards for each episode were captured and averaged over 100 trials.





### En esta sesión usted aprendió:

- Analizar el aprendizaje por refuerzo como la combinación de la estimación de la recompensa a largo plazo, la corrección del error de estimación y el balance entre aprovechar y explorar.
- Los métodos de diferencia temporal SARSA y Q-learning.

Explorar vs. Aprovechar



