台灣寵物數量分析

李旻思 2022/08/25

一、 研究動機:

- ◆ 自己家裡本身就養了幾隻寵物,周圍養寵物的人數也不少,衍生想了解台灣 飼養寵物的夥伴數量,在網路上進行相關資訊的查詢。
- ◆ 根據 2018 年內政部、農委會與時勢公司整理分析,0~14 歲幼年人口與全台 犬貓數量於 2020 年達到黃金交叉,估計 2021 年將首度發生寵物數量比幼年 人口數還多的情況。
- ◆ 因以上原因而進行台灣寵物數量的分析,並產生了以下疑惑…

二、 資料概述:

- 寵物登記數與除戶數 (1998~2021)
 - 寵物登記管理資訊網
- 出生人口 & 0~14 歲人口 (1998~2070)
 - 國家發展委員會 人口推估查詢系統
- 平均薪資(1998~2021)
 - 行政院主計總處 薪情平台
- 消費者物價指數 (1998~2021)
 - 中華民國統計資訊網
- 銷售額與家數 (版本六:2008~2012,版本七:2013~2018)
 - 中華民國財政部 財政統計資料庫查詢
- 抗憂鬱藥物使用人數 (2012~2020)
 - 政府資料開放平台
- 家貓家犬數量 (2013、2015、2017、2019、2021)
 - 動物保護資訊網

三、 圖表分析:

(一) 寵物與人口

(二)原因分析

經濟壓力 + 時間 + 陪伴 "寧養寵物不養小孩"

2017年

全球教育支出排行

排名	國家地区	花費(元)		
1	香	港	4,070,559	
2	阿聯	酋	3,060,842	
3	新加	坡	2,184,921	
4	美	或	1,800,691	
5	台	灣	1,737,859	
6	中	或	1,321,074	
7	澳	洲	1,121,182	
8	馬來西	32	784,753	
9	英	國	765,750	
10	墨西	哥	702,610	

備註:每位子女由小學到大學的平均花費 資料來源:HSBC,時勢公司整理。

2019年 (富邦產險整理)

貓狗花費表格

各種費用	養貓花費	養狗花費					
晶片費用	植入費:300元+登記費用						
伙食費	一年大約5,000~15,000元						
施打疫苗	三合一疫苗500~900元	幼犬:三劑五合一疫苗+狂犬病疫苗3,000~3,900元 成犬:五合一疫苗+狂犬病疫苗3,000~3,900元 心絲蟲預防200~300元/月					
其他開銷	3,000~5,000元/年	2,000~5,000元/年					
醫療費	不一定,500~上萬元不等						
	2,500~50,000元						

光教育費用 ~170萬

不含生病、意外、物品損毀50~60萬(壽命10年)

回歸分析: (2012~2020年)

金錢 (總平均月薪,消費者物價指數) 心理 (抗憂鬱症藥物人數)

1. 抗憂鬱藥物人數

2. 總平均月薪

3. 消費者物價指數

總平均月薪為最主要影響寵物數量的因素,服用 抗憂鬱藥物人數次之。

這三種自變數無未來推估資訊無法進行多元回歸預測...

都市化程度較高的區域, 寵物的數量較多

(三)未來預測

假設其他未考慮的因素變化率固定,以年份進行多項式回歸推估,推測未來2025年小於15歲人口將低於寵物的數量

回歸預測: 1999~2021年 → 預測2021年以後 (同以 20% 測試資料計算得分結果)

線性回歸:(自變數為年份)

R-Squared(解釋力): 0.853

RMSE(誤差): 212703.528(隻)

MAPE(誤差): 0.449

二次回歸: (自變數為年份)

R-Squared(解釋力): 0.997

RMSE(誤差): 31292.816(隻)

MAPE(誤差): 0.097

(四)延伸

中央氣象局臺灣長期氣候變化全書:https://www.cwb.gov.tw/V8/C/K/Encyclopedia/climate/climate7_all.html

每年飼養貓與狗數量分布

家犬的數量>家貓 但飼養貓的佔筆有逐年 增長的趨勢

四、 結論:

- ◆ 登記寵物的數量隨著時間日益增長,隨著生育小孩的意願降低,在2018年時 出生人口數就已經低於登記寵物的數量。
- ◆ 造成寧願養寵物不養小孩的原因,與經濟上的壓力高度相關,在此情況下心理上的陪伴需求增加,寵物數量逐漸升高,相關行業看準商機家數與銷售額逐年增長。
- ◆ 假設其他未考慮的因素變化率固定,以年份進行多項式回歸推估,推測未來 2025年小於15歲人口將低於寵物的數量。
- ◆ 都市化程度較高的區域, 寵物的數量較多,且大多數人偏好養狗,但飼養貓的 佔比有逐年增長的趨勢。

五、 問題與解決:

(一)資料蒐集(已判斷為公開資料可取用)

Try 1: 爬蟲(失敗)

Try 2: 截圖轉表格(失敗)

```
from selenium import webdriver from PIL import Image
import time
from selenium.webdriver.common.by import By
driver = webdriver.Chrome("chromedriver")
driver.get("https://www.pet.gov.tw/Web/0302.aspx?PG=1")
year = list(range(1998,2022))
def get_pic(year, path):
         print(year[i])
         print(year[1])
filename = path+str(year[i])+".png"
select_start = driver.find_element(By.ID,"txtSDATE")
select_end = driver.find_element(By.ID,"txtEDATE")
date = str(year[i])+"/01/01"
colort_strate_d_bux(drta)
         select start.send keys(date)
         date = str(year[i])+"/12/31
select_end.send_keys(date)
          driver.find_element(By.ID, "aSearch").click()
         time.sleep(10)
         driver.execute script("document.body.style.zoom='0.5';")
                                                          ment.documentElement.scrollTop=350")
          driver.execute_script("var action=documents
         driver.get_screenshot_as_file(filename)
          webpage=Image.open(filename)
                               page.crop(box=(left,upper,right,bottom))
         image_crop=webpage.crop(box=(15, 90, 1025, 750))
          image crop.save(filename)
          image_crop=Image.open(filename)
         driver.execute_script("document.body.style.zoom='1';")
          select_start.clear()
          select_end.clear()
```

```
for j in driver.find_elements(By.CLASS_NAME, "form-check-label"):
# print(i.text)
if j.text == "全部":
    print(format(" 全部 ","=^30"))
    j.click()
    path = "./data/pic/Pet_All_"
    get_pic(year, path)
elif j.text == "狗":
    print(format(" 狗 ","=^30"))
    j.click()
    path = "./data/pic/Pet_Dog_"
    get_pic(year, path)
elif j.text == "貓":
    print(format(" 貓 ","=^30"))
    j.click()
    path = "./data/pic/Pet_Cat_"
    get_pic(year, path)
driver.quit()
```

截圖結果

先嘗試用現有圖片轉表格方式,結果差(數字->英文) 手動輸入每年合計資料,截圖方便確認資料...

未來可嘗試用深度學習模型來判斷表格內容...

(二)資料清理

- ☑ 營利事業家數及銷售額 第6次修訂.csv
- ☑ 營利事業家數及銷售額 第7次修訂.csv

```
| (日本) |
```

兩個版本分開處理 (年份・排序・清理・重排・型態)

```
sale6 = pd.read_csv(r"./data/營利事業家數及銷售額一第6次修訂.csv", encoding=("ANSI"))
sale6.dropna(inplace=True)
sale6["統計期"] = sale6["統計期"].str.replace("年","").astype(int)+1911
sale6.sort_values(["行業別","統計期"], inplace=True)
sale6.replace("(D)", np.nan, inplace=True)
sale6.dropna(inplace=True)
sale6.reset_index(drop=True, inplace=True)
sale6["<b>家數總計</b>"] = sale6["<b>家數總計</b>"].astype(int)
sale6["<b>銷售額總計</b>"] = sale6["<b>銷售額總計</b>"].astype(int)
sale7 = pd.read_csv(r"./data/營利事業家數及銷售額一第7次修訂.csv", encoding=("ANSI"))
sale7.dropna(inplace=True)
sale7["統計期"] = sale7["統計期"].str.replace("年","").astype(int)+1911
sale7.sort_values(["行業別","統計期"], inplace=True)
sale7.replace("(D)", np.nan, inplace=True)
sale7.replace("-", np.nan, inplace=True)
sale7.dropna(inplace=True)
sale7.reset_index(drop=True, inplace=True)
sale7["<b>家數總計</b>"] = sale7["<b>家數總計</b>"].astype(int)
sale7["<b>銷售額總計</b>"] = sale7["<b>銷售額總計</b>"].astype(int)
```

(三)回歸處理(多元,一次,二次)

自變數(X) →	抗憂鬱症藥物人數	總平均月薪	消費者物價指數				
回歸係數 (未標準化)	1.10	99.84	22858.53				
回歸係數 (標準化)	160573.88	210513.72	46109.40				

```
# LinearRearession 1999~2021 --
year = pd.DataFrame(range(1998,2041)).values
x = pd.DataFrame(pet.loc[dy:,"年份"]).values
y = pd.DataFrame(pet_sum[dy:])
xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size=0.25, random_state=100)
lm_tt = LinearRegression(positive=True).fit(xTrain, yTrain) # 非質
pet_lm_predict_tt = lm_tt.predict(year)
   # https://accandrew2.pixnet.net/blog/post/359720873-python-%E
# LinearRearession 1999~2021 --- 2050 (二次方
poly = PolynomialFeatures(degree=2).fit(xTrain) # 2次方
                                                                             2001
                                                                                    4.004e+06
x_new = poly.transform(xTrain)
lm2_tt = LinearRegression().fit(x_new, yTrain)
pet_lm2_predict_tt = lm2_tt.predict(poly.transform(year))
# 办等元二次多項式回歸-多項式特徵陣列
# from sklearn.pipeline import make_pipeline
                                                                             2004
                                                                                    4.01602e+06
 lm4_tt = make_pipeline(PolynomialFeatures(degree=2), Linear)
# pet_lm4_predict_tt = lm4_tt.predict(year)
# pet_lm2_predict_tt = lm2_tt.predict(year)
# 2012~2020 (金錢,憂鬱)
# 無未來預測,直接訓練全部
x_new2 = pd.DataFrame([data[1], income.loc[14:22, "月薪總平均"], index.loc[14:22, "總指數"]]).T
ss = StandardScaler().fit(x_new2)
                                     多元回歸 – 標準化
x_{new2} = ss.transform(x_{new2})
lm3_tt = LinearRegression().fit(x_new2, y.loc[14-dy:22-dy])
pet_lm3_predict_tt = lm3_tt.predict(x_new2)
```

(四)繪圖問題 - 交點、方形區域、文字顯示

```
寵物數量未來推估
                               y = k1x+b1
                                                                500
  面腦鍵的交點計算 (應右更好的方法)
                                                 解聯立
def cross_point(line1,line2):
                               y = k2x+b2
                                                                400
   x1=line1[0]; y1=line1[1]; x2=line1[2]; y2=line1[3]
                                                                                        年份: 2024
   x3=line2[0]; y3=line2[1]; x4=line2[2]; y4=line2[3]
                                                                                        數量: 278.0萬
                                                                       <15歳人數
                                                                300
   k1=(y2-y1)*1.0/(x2-x1) # 計算k1,避免點均爲整數,需要進行浮點數轉化
                                                                       龍物隻數(線性回歸)
   b1=y1*1.0-x1*k1*1.0 # <u>整型轉浮點型是關鍵</u>
if (x4-x3)==0: # L2直線斜率不存在操作
                                                                       龍物隻數(二次回歸)
                                                              ₩ 200
                                                                      原始龍物隻數(除戶)
      k2=None
                                                                                                         2036
                                                                                                     數量: 226.5萬
                                                                100
      k2=(v4-v3)*1.0/(x4-x3)#斜枣存存操作
      b2=v3*1.0-x3*k2*1.0
                                                                       ****
   if k2==None:
                                                                   2000
                                                                        2005 2010 2015
                                                                                       2020
                                                                                            2025
                                                                                                 2030 2035 2040
      x=x3
      x=(b2-b1)*1.0/(k1-k2)
                          plt.title("寵物數量未來推估", fontsize=18)
                          y=k1*x*1.0+b1*1.0
   return [x,y]
                          plt.plot(year, pet_lm_predict_tt/10000, label="寵物隻數(線性回歸)")
                          plt.plot(year, pet_lm2_predict_tt/10000, label="寵物隻數(二次回歸)")
```


六、 Python 認證合格證明

測驗日期	考試名稱	考生姓名	英文姓名	身分證統一編號	考場名稱	學科成績	錯誤率	術科成績	錯誤率	總分	錯誤率	合格
2022/7/26	程式語言-專業級(Python 3)	李旻恩	LEE, MIN-EN		聯成新莊認證中心	0	#	100	無	100	無	專業級
2022/8/4	軟體開發知識-專業級	李旻思	LEE, MIN-EN		聯成新莊認證中心	98	#	0	無	98	無	專業級
2022/8/4	網頁資料擷取與分析·專業級(Python 3)	李旻恩	LEE, MIN-EN		聯成新莊認證中心	0	#	100	無	100	無	專業級
2022/8/16	人工智慧:機器學習-專業級(Python 3)	李旻思	LEE, MIN-EN		聯成新莊認證中心	0	無	100	無	100	無	專業級
測驗日期	考試名稱	考生姓名	英文姓名	身分證統一編號	考場名稱	學科成績	錯誤率	術科成績	錯誤率	總分	錯誤率	合格

