Modern Statistics for Modern Biology: Clustering

Data Science Seminar

Greg Botwin

Cedars-Sinai

2019-MAY-08

Clustering Overview

- Takes data (continuous or quasi-continuous) and adds to them a new categorical group variable
- Can assist in simplifying decision making, but comes at a cost of ignoring intermediate states
- caveat: clustering algorithms are designed to find clusters, so they will find clusters, even where there are none
 - cluster validation is an essential component of our process, especially if there is no prior domain knowledge that supports the existence of clusters.

How do we measure similarity

- Decide what we mean by similar (e.g. similar by height or similar by habitat)
- Chose how to combine features into a single number
 - Do they have to be in the same scale?
- Mathematical notation distance between two points $A=(a_1,\ldots,a_p)$ and $B=(b_1,\ldots,b_p)$ in p dimensionsal space.

Which of the two cluster centers is the red point closest to?

Test Data

```
# X Y Z
# 1 0 1 1
# 2 0 0 1
# 3 0 1 1
# 4 1 1 0
# 5 1 0 1
# 6 1 1 1
```

• 6 points A, in 3 dimensions p

Parameters to dist() Function

```
# to use less space than n^2 positions,
# by default returns only lower triangle
dist(test)
# 2 1.000000
# 3 0.000000 1.000000
# 4 1.414214 1.732051 1.414214
# 5 1.414214 1.000000 1.414214 1.414214
# 6 1.000000 1.414214 1.000000 1.000000 1.000000
# by default "euclidian" method
dist(test)
# also accepts, euclidean", "maximum", "manhattan", "canberra", "bina
dist(test, method = "binary")
```

Full Similarity Matrix

Note 0 perfectly similar

Computations related to distance in R Types

Euclidean Similarity

$$d(A,B) = \sqrt{(a_1-b_1)^2 + (a_2-b_2)^2 + \ldots + (a_p-b_p)^2}$$

ullet is the square root of the sum of squares of the differences in all p coordinate directions, also called L2

```
## 1 2 3 4 5
## 2 1.000000
## 3 0.000000 1.000000
## 4 1.414214 1.732051 1.414214
## 5 1.414214 1.000000 1.414214 1.414214
## 6 1.000000 1.414214 1.000000 1.000000
```

Euclidean Distance (simple example)

Euclidean Distance (simple example)


```
dist(example_1)
```

```
## 1
## 2 4.472136
```

Maximum Distance

$$d_{\infty}(A,B) = \max_i |a_i - b_i|.$$

- The maximum of the absolute differences between coordinates is also called the L $_{\infty}$ distance:

```
dist(test, method = "maximum")

## 1 2 3 4 5

## 2 1

## 3 0 1

## 4 1 1 1 1

## 5 1 1 1 1 1
```

Maximum Distance (simple example)

```
dist(example_1, method = "maximum")
## 1
## 2 4
```


Manhattan Distance

$$d(A,B) = |a_1 - b_1| + |a_2 - b_2| + \ldots + |a_p - b_p|.$$

• The Manhattan, City Block, Taxicab or L1 distance takes the sum of the absolute differences in all coordinates

```
test[1:3,]
##
     X \ Y \ Z
## 1 0 1 1
## 2 0 0 1
## 3 0 1 1
dist(test, method = "manhattan")
## 1 2 3 4 5
## 2 1
## 3 0 1
## 4 2 3 2
## 5 2 1 2 2
## 6 1 2 1 1 1
```

Weighted Euclidean Distance

- Generalization of the ordinary Euclidean distance, by giving different directions in feature space different weights
- Mahalanobis distance is a Euclidean distance that takes into account the
 fact that different features may have a different dynamic range, and that
 some features may be positively or negatively correlated with each other.
 The weights in this case are derived from the covariance matrix of the
 features.

Minkowski Distance

$$d(A,B) = ((a_1-b_1)^m + (a_2-b_2)^m + \ldots + (a_p-b_p)^m)^{rac{1}{m}}.$$

- Generalization allowing the exponent to be m
- If m = 1, same as manhattan
- If m = 2, same as euclidian

```
dist(test, method = "minkowski", p = 1.5)
```


Hamming Distance

- This distance is the simplest way to compare character sequences.
- It simply counts the number of differences between two character strings
- "AAGGCCTT" vs "AAGGCCAA" = 2

```
library(Biostrings)
stringDist(c("AAGGCCTT", "AAGGCCAA"), method = "hamming")

## 1
## 2 2
```

Binary Distance

y 1

- non-zero elements treated as 'on' and the zero elements as 'off'
- computes the proportion of features having only one bit on amongst those features that have at least one bit on

Jaccard Index

$$J(S,T)=rac{f_{11}}{f_{01}+f_{10}+f_{11}},$$

- Occurrence of traits or features can be translated into presence and absence and encoded as 1's and 0's
- Use if co-existence is more important than co-absence (e.g. mutation patterns)
- f_{11} = the number of times a feature co-occurs in S and T
- f_{10} and f_{01} the number of times a feature occurs in S but not in T (and vice versa)
- f_{00} he number of times a feature is co-absent
- dissimilarity is simply 1 Jaccard Index

```
s <- c(0,0,1,1,1,1)
t <- c(1,0,1,1,0,1)
# similarity
3 / (1 + 1 + 3)</pre>
```

```
## [1] 0.6
```

Jaccard Distance Example

```
mut <- read.csv("data/HIVmutations.csv")
dim(mut)

## [1] 5 57

mut[1:3, 10:16]

## p32I p33F p34Q p35G p43T p46I p46L
## 1 0 1 0 0 0 0 0
## 2 0 1 0 0 0 1 0
## 3 0 1 0 0 0 0 0</pre>
```

Jaccard Distance Example

```
library(vegan)
vegdist(mut, meto = "jaccard")
##
                                  3
## 2 0.6666667
## 3 0.6000000 0.8000000
## 4 0.8181818 0.6363636 0.7333333
## 5 1.0000000 0.6666667 0.8000000 0.8181818
as.dist(sqrt(2 * (1 - cor(t(mut)))))
##
                                        4
## 2 1.186342
## 3 1.104026 1.302931
## 4 1.318368 1.133893 1.298780
## 5 1.452966 1.186342 1.302931 1.318368
```

Non-numeric Feature Space

- General dissimilarity coefficient of Gower you are able to handle other variable types as well (e.g. nominal, ordinal, (a)symmetric binary) even when different types occur in the same data set.
- The dissimilarity between two rows is the weighted mean of the contributions of each variable

```
library(cluster)
library(ggplot2)
head(diamonds)
```

```
## # A tibble: 6 x 10
##
    carat cut
                  color clarity depth table price
                                                             Z
    <dbl> <ord>
                  <ord> <ord>
                               <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
##
## 1 0.23 Ideal
                        SI2
                                61.5
                                       55
                                           326 3.95 3.98 2.43
## 2 0.21 Premium
                       SI1
                                59.8
                                           326 3.89 3.84
                                       61
                                                          2.31
                                56.9
## 3 0.23 Good
                     VS1
                                           327 4.05 4.07 2.31
                                       65
## 4 0.290 Premium
                    VS2
                                62.4
                                           334 4.2 4.23 2.63
                                       58
## 5 0.31 Good
                        SI2
                                63.3
                                       58
                                           335 4.34 4.35 2.75
## 6 0.24 Very Good J
                        VVS2
                                62.8
                                           336 3.94 3.96
                                       57
                                                          2.48
```

Gower Dissimilarity

```
## Dissimilarities :
## 1 2 3 4 5
## 2 0.2329529
## 3 0.4240170 0.3126328
## 4 0.4974255 0.5537117 0.5950373
## 5 0.6600680 0.7663542 0.7243464 0.2626424
## 6 0.4344866 0.4984852 0.5151703 0.3343932 0.4578689
##
## Metric : mixed ; Types = I, O, O, O, I, I, I, I, I
## Number of objects : 6
```

When to scale

- If variables are not scaled
 - variable with largest range has most weight
 - distance depends on scale
- Scaling gives every variable equal weight
- Scale if,
 - variables measure different units (kg, meter, sec,...)
 - you explicitly want to have equal weight for each variable

Nonparametric mixture detection

- Work well in high-dimensional settings, where we cannot easily use probability densities, the EM algorithm and parametric mixture
- Besides the distance measure, the main choice to be made is the number of clusters k
- The centers of the groups are sometimes called medoids, thus the name PAM (partitioning around medoids)

Steps in PAM

- 1. Starts from a matrix of p features measured on a set of n observations.
- 2. Randomly pick k distinct cluster centers out of the n observations ("seeds").
- 3. Assign each of the remaining observation to the group to whose center it is the closest.
- 4. For each group, choose a new center from the observations in the group, such that the sum of the distances of group members to the center is minimal; this is called the medoid.
- 5. Repeat Steps 3 and 4 until the groups stabilize.

PAM vs k-means

- k-means replaces the medoids by the arithmetic means (centers of gravity) of the clusters
- In PAM, the centers are observations, this is not, in general, the case with k-means.
- Both work well when the clusters are of comparable size and convex (blob-shaped)
- Poor performance if the true clusters are very different in size, the larger ones will tend to be broken up; or they have pronounced non-spherical or non-elliptic shapes.

Tight clusters with resampling

- Repeating a clustering procedure multiple times on the same data, but with different starting points creates strong forms
- Repeated subsampling of the dataset and applying a clustering method will result in groups of observations that are "almost always" grouped together; these are called tight clusters

Question 5.4

```
library(clusterExperiment)
library(scRNAseq)
library(SummarizedExperiment)
data("fluidigm", package = "scRNAseq")
assay(fluidigm)[1:5,1:5]
```

```
NROW(fluidigm) # number of genes
```

```
## [1] 26255
```

Sample Metadata

```
SummarizedExperiment::colData(fluidigm)[,1:5]
```

```
## DataFrame with 130 rows and 5 columns
##
                NREADS
                        NALIGNED
                                    RALIGN TOTAL DUP
                                                       PRIMER
##
             <numeric> <numeric> <numeric> <numeric> <numeric>
              10554900
## SRR1275356
                       7555880
                                  71.5862
                                            58.4931 0.0217638
## SRR1274090
              196162
                       182494
                                  93.0323 14.5122 0.0366826
## SRR1275251
                                  68.7213 65.0428 0.0351827
              8524470
                         5858130
## SRR1275287
              7229920
                                  81.4884
                                            49.7609 0.0208685
                         5891540
## SRR1275364
                                  82.9609
                                            66.5788 0.0298284
              5403640
                         4482910
## ...
## SRR1275259
               5949930
                         4181040
                                  70.2705
                                            52.5975 0.0205253
## SRR1275253
                        7458710
                                  72.2747
                                            54.9637 0.0205342
              10319900
## SRR1275285
               5300270
                         4276650
                                   80.6873
                                            41.6394 0.0227383
## SRR1275366
              7701320
                                     82.76
                                            68.9431 0.0266275
                         6373600
## SRR1275261
              13425000
                         9554960
                                   71.1727
                                            62.0001 0.0200522
```

```
NCOL(fluidigm) #number of samples
```

Filtering and Normalization

```
# limit the analysis to the samples corresponding to high sequencing
se <- fluidigm[,colData(fluidigm)[,"Coverage Type"]=="High"]</pre>
# retain only those genes with at least 10 reads in at least 10 cells
wh_zero <- which(rowSums(assay(se))==0)</pre>
pass filter <- apply(assay(se), 1, function(x) length(x[x >= 10]) >=
se <- se[pass_filter,]</pre>
dim(se)
## [1] 7069
               65
# quantile normalization
fq <- round(limma::normalizeQuantiles(assay(se)))</pre>
assays(se) <- list(normalized counts=fg)</pre>
#update names
wh<-which(colnames(colData(se)) %in% c("Cluster1", "Cluster2"))
colnames(colData(se))[wh]<-c("Published1","Published2")</pre>
```

Perform Clustering

• Set the choice of genes to include at either the 60, 100 or 150 most variable genes.

-Plot the clustering results for k varying between 4 and 9

```
ce = clusterMany(se, clusterFunction = "pam", ks = 5:10, run = TRUE,
  isCount = TRUE, reduceMethod = "var", nFilterDims = c(60, 100, 150)
clusterLabels(ce) = sub("FilterDims", "", clusterLabels(ce))
plotClusters(ce, whichClusters = "workflow", axisLine = -1)
```

Cluster Plot (cell = column)

Flow cytometry and mass cytometry

[1] 91392

41

```
library("flowCore")
library("flowViz")
fcsB = read.FCS("data/Bendall 2011.fcs")
slotNames(fcsB)
                 "parameters" "description"
## [1] "exprs"
# How many variables were measured?
head(colnames(fcsB))
## [1] "Time"
             ## [4] "Ir(192.962)-Dual" "Rh(102.905)-Dual" "In(114.903)-Dual"
# How many Cells Were Measures
dim(exprs(fcsB))
```

Data preprocessing

```
#match isotype name to marker name
markersB = readr::read csv("data/Bendall 2011 markers.csv")
head(markersB)
## # A tibble: 6 x 2
                     marker
## isotope
## <chr>
                     <chr>
## 1 Nd(144.912)-Dual CD4
## 2 Nd(145.913)-Dual CD8
## 3 Sm(146.914)-Dual CD20
## 4 Gd(157.924)-Dual CD33
## 5 Er(169.935)-Dual CD56
## 6 Ir(190.960)-Dual DNA191
mt = match(markersB$isotope, colnames(fcsB))
stopifnot(!any(is.na(mt)))
colnames(fcsB)[mt] = markersB$marker
```

Clustering on One Marker

```
flowPlot(fcsB, plotParameters = colnames(fcsB)[2:3], logy = TRUE)
```

Data Transformation

$$asinh(x) = \log(x + \sqrt{x^2 + 1}).$$

- for large values of x , asinh(x) behaves like the log
- for small x the function is close to linear in x

Transformation Example

```
library(patchwork)
v1 = seq(0, 1, length.out = 100)
v3 = seq(30, 3000, length = 100)
```


One Dimensional Clustering

```
# one dimensional k-means
kf = kmeansFilter("CD3all" = c("Pop1","Pop2"), filterId="myKmFilter")
fres = flowCore::filter(fcsBT, kf)
summary(fres)

## Pop1: 33429 of 91392 events (36.58%)
## Pop2: 57963 of 91392 events (63.42%)
```

Two dims. plot by the CD3 and CD56

Use Contours and Shadding to Avoid Over Plotting

```
flowPlot(fcsBT, plotParameters = c("CD3all", "CD56"), logy = FALSE)
contour(fcsBT[, c(40, 19)], add = TRUE)
```


Density Based Clustering

##

77655

1

230 5114 4616 3310

- looks for regions of high density separated by sparser regions
- advantage of being able to cope with clusters that are not necessarily convex

```
library("dbscan")
mc5 = Biobase::exprs(fcsBT)[, c(15,16,19,40,33)]
head(mc5, 3)
##
              CD4
                        CD8
                                  CD20
                                          CD3all
                                                      CD56
## [1,] -0.9547135 -0.278349 -1.2781241 4.002830 2.144493
## [2,] -0.5113526 1.110159 -0.1752901 -2.318107 1.272534
## [3,] -0.5421367 2.343449 -0.7316469 3.688635 -1.207639
res5 = dbscan::dbscan(mc5, eps = 0.65, minPts = 30)
mc5df = data.frame(mc5, cluster = as.factor(res5$cluster))
# how many cells assigned to clluster
table(mc5df$cluster)
##
```

207 231

29

Overlaping of contours highlights multidimensional nature of the clustering

