Équations aux Dérivées Partielles

Cours IV - Distributions

CentraleSupélec - Cursus ingénieur

10 janvier 2020

II.1.Dualité topologique II.2.Distributions II.3.Espaces de Sobolev

Pour poser vos questions **pendant** et **entre** les cours, Daskit :

daskit.com/edp19-20

Ces slides sont préparées à partir de celles du cours CIPEDP (2018-2019) de P. Lafitte et J. Cagnol. Toute erreur ou typo ne relève en revanche que de ma responsabilité, merci dès lors de me les signaler!

- Dualité topologique
 - Espace de Hilbert
 - $L^1_{loc}(\mathcal{I})$ et $L^2(\mathcal{I})$
- 2 Distributions
- 3 Espaces de Sobolev

Contexte

Concept de dualité déjà vu dans le cadre euclidien/hilbertien

- en dimension finie avec les coordonnées
- en dimension infinie avec le théorème de projection sur un sev fermé

Utilité : résoudre des équations linéaires par intersection d'hyperplans / orthogonalité

Exemple en dimension n:

$$\Pi = vect(v_1, v_2, \dots, v_{n-1}) = \{x \in \mathbb{R}^3 : (x, v_n) = 0\}$$

Dualité topologique : notion très importante dans le cadre des espaces fonctionnels.

Intégration par parties

"How far can you with the Cauchy-Schwarz inequality and integration by parts?"

L. Gross

• IPP "classique" : Soient $u, v \in C^1([a, b])$. Alors

$$\int_a^b u(x) \, v'(x) \, dx = u(b)v(b) - u(a)v(a) - \int_a^b v(x) \, u'(x) \, dx.$$

dans le cours V de CIP :

Théorème V.3.3

Pour $a < b \in \mathbb{R}$, soient $f, g \in L^1([a, b], \mathcal{B}([a, b]), \lambda)$.

On pose $\forall x \in [a,b]$, $F(x) = \int_{[a,x]} f(t) \lambda(dt)$ et $G(x) = \int_{[a,x]} g(t) \lambda(dt)$.

Alors

$$\int_{[a,b]} G(t)f(t) \lambda(dt) = [GF]_a^b - \int_{[a,b]} g(t)F(t) \lambda(dt),$$

où
$$[GF]_a^b = G(b)F(b) - G(a)F(a)$$
.

Théorème de Riesz

Soit $(\mathcal{H}, \langle, \rangle)$ un espace de Hilbert sur \mathbb{R} .

 $\mathcal{H}'=\mathcal{L}(\mathcal{H},\mathbb{R})$: ensemble des formes linéaires continues sur $\mathcal{H}.$

Théorème de Riesz

Soit $(\mathcal{H}, \langle, \rangle)$ un espace de Hilbert sur \mathbb{R} .

 $\mathcal{H}' = \mathcal{L}(\mathcal{H}, \mathbb{R})$: ensemble des formes linéaires continues sur \mathcal{H} .

Théorème de représentation de Riesz (CIP, cours II)

Soit \mathcal{H} un Hilbert et $u \in \mathcal{H}'$. Alors il existe un unique $x_u \in \mathcal{H}$ tel que

$$\forall x \in \mathcal{H}, \quad u(x) = \langle x, x_u \rangle.$$

Cela permet de définir un isomorphisme entre \mathcal{H} et \mathcal{H}' .

Théorème (CIP, cours IV)

Soit (E, \mathcal{E}, μ) un espace mesuré. L'espace $L^2(E, \mathcal{E}, \mu)$ muni du produit scalaire suivant

$$\langle f, g \rangle := \int f g \ d\mu$$

est un espace de Hilbert.

Théorème (CIP, cours IV)

Soit (E, \mathcal{E}, μ) un espace mesuré. L'espace $L^2(E, \mathcal{E}, \mu)$ muni du produit scalaire suivant

$$\langle f, g \rangle := \int f g \ d\mu$$

est un espace de Hilbert.

Dans toute la séance, \mathcal{I} désigne un intervalle ouvert de \mathbb{R} .

Corollaire (de la représentation de Riesz)

Soit
$$u \in (L^2(\mathcal{I}))'$$
. Il existe un unique $g_u \in L^2(\mathcal{I})$ tel que $\forall f \in L^2(\mathcal{I}), \quad u(f) = \langle f, g_u \rangle.$

Théorème (CIP, cours IV)

Soit (E, \mathcal{E}, μ) un espace mesuré. L'espace $L^2(E, \mathcal{E}, \mu)$ muni du produit scalaire suivant

$$\langle f, g \rangle := \int f g \ d\mu$$

est un espace de Hilbert.

Dans toute la séance, \mathcal{I} désigne un intervalle ouvert de \mathbb{R} .

Corollaire (de la représentation de Riesz)

Soit $u \in (L^2(\mathcal{I}))'$. Il existe un unique $g_u \in L^2(\mathcal{I})$ tel que

$$\forall f \in L^2(\mathcal{I}), \quad u(f) = \langle f, g_u \rangle = \int_{\mathcal{I}} f \ g_u \ d\lambda.$$

Théorème (CIP, cours IV)

Soit (E, \mathcal{E}, μ) un espace mesuré. L'espace $L^2(E, \mathcal{E}, \mu)$ muni du produit scalaire suivant

$$\langle f, g \rangle := \int f g \ d\mu$$

est un espace de Hilbert.

Dans toute la séance, \mathcal{I} désigne un intervalle ouvert de \mathbb{R} .

Corollaire (de la représentation de Riesz)

Soit $u \in (L^2(\mathcal{I}))'$. Il existe un unique $g_u \in L^2(\mathcal{I})$ tel que

$$\forall f \in L^2(\mathcal{I}), \quad u(f) = \langle f, g_u \rangle = \int_{\mathcal{I}} f \ g_u \ d\lambda.$$

On écrira alors $(L^2(\mathcal{I}))' \simeq L^2(\mathcal{I})$.

Formes bilinéaires : continuité

Rappel : continuité des formes bilinéaires

On dit qu'une forme bilinéaire $a: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est continue s'il existe une constante C telle que

$$\forall (x, y) \in \mathcal{H} \times \mathcal{H}, \quad |a(x, y)| \leq C \|x\|_{\mathcal{H}} \|y\|_{\mathcal{H}},$$

En dimension finie, la linéarité implique la continuité. Ce n'est plus le cas dans les espaces de dimension infinie.

Définition IV.1.1

On dit qu'une forme bilinéaire a : $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est coercive s'il existe une constante $\alpha > 0$ telle que

$$\forall x \in \mathcal{H}, \quad a(x,x) \ge \alpha ||x||_{\mathcal{H}}^2.$$

Définition IV.1.1

On dit qu'une forme bilinéaire a : $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est coercive s'il existe une constante $\alpha > 0$ telle que

$$\forall x \in \mathcal{H}, \quad a(x,x) \ge \alpha ||x||_{\mathcal{H}}^2.$$

Exemple 1 : Pour $\mathcal{H} = \mathbb{R}^2$,

- $a(x,y) = 2x_1y_1 + 3x_2y_2$.
- $a(x,y) = 2x_1y_1 3x_2y_2.$
- $a(x,y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2.$

Définition IV.1.1

On dit qu'une forme bilinéaire a : $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est coercive s'il existe une constante $\alpha > 0$ telle que

$$\forall x \in \mathcal{H}, \quad a(x,x) \ge \alpha ||x||_{\mathcal{H}}^2.$$

Exemple 1 : Pour $\mathcal{H} = \mathbb{R}^2$,

- $a(x, y) = 2x_1y_1 + 3x_2y_2$. Coercive
- $a(x,y) = 2x_1y_1 3x_2y_2$.
- $a(x,y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2.$

Définition IV.1.1

On dit qu'une forme bilinéaire a : $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est coercive s'il existe une constante $\alpha > 0$ telle que

$$\forall x \in \mathcal{H}, \quad a(x,x) \ge \alpha ||x||_{\mathcal{H}}^2.$$

Exemple 1 : Pour $\mathcal{H} = \mathbb{R}^2$,

- $a(x, y) = 2x_1y_1 + 3x_2y_2$. Coercive
- $a(x, y) = 2x_1y_1 3x_2y_2$. Non coercive
- $a(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2$.

Définition IV.1.1

On dit qu'une forme bilinéaire a : $\mathcal{H} \times \mathcal{H} \to \mathbb{R}$ est coercive s'il existe une constante $\alpha > 0$ telle que

$$\forall x \in \mathcal{H}, \quad a(x,x) \ge \alpha ||x||_{\mathcal{H}}^2.$$

Exemple 1 : Pour $\mathcal{H} = \mathbb{R}^2$,

- $a(x, y) = 2x_1y_1 + 3x_2y_2$. Coercive
- $a(x, y) = 2x_1y_1 3x_2y_2$. Non coercive
- $a(x,y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2$. Coercive

Exemple 2 : Soit $A \in \mathcal{M}_q(\mathbb{R})$ une matrice symétrique définie positive (SDP), c'est-à-dire telle que $\forall x \in \mathbb{R}^q \setminus \{0\}, \ \langle Ax, x \rangle > 0$.

Alors $(x,y) \mapsto \langle Ax,y \rangle$ est bilinéaire, continue et coercive, et on peut choisir $C = \max_{\lambda \in \operatorname{Sp}(A)} \lambda$ et $\alpha = \min_{\lambda \in \operatorname{Sp}(A)} \lambda$.

Théorème de Lax-Milgram

Théorème IV.1.2 (Lax-Milgram)

Soit \mathcal{H} un espace de Hilbert. Soit a une forme bilinéaire continue et coercive sur $\mathcal{H} \times \mathcal{H}$. Alors pour tout $u \in \mathcal{H}'$,

$$\exists ! x \in \mathcal{H} : \forall y \in \mathcal{H}, \quad a(x, y) = u(y).$$

Théorème de Lax-Milgram

Théorème IV.1.2 (Lax-Milgram)

Soit \mathcal{H} un espace de Hilbert. Soit a une forme bilinéaire continue et coercive sur $\mathcal{H} \times \mathcal{H}$. Alors pour tout $u \in \mathcal{H}'$,

$$\exists ! x \in \mathcal{H} : \forall y \in \mathcal{H}, \quad a(x,y) = u(y).$$

Si, de plus, a est symétrique, alors x est caractérisé par

$$\begin{cases} x \in \mathcal{H} \\ \frac{1}{2}a(x,x) - u(x) = \min_{y \in \mathcal{H}} \left\{ \frac{1}{2}a(y,y) - u(y) \right\}. \end{cases}$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

On peut reformuler le problème ainsi :

$$\exists ? \mathbf{x} \in \mathcal{H} : \forall \mathbf{y} \in \mathcal{H}, \ \mathbf{a}(\mathbf{x}, \mathbf{y}) = \mathbf{u}(\mathbf{y}),$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

On peut reformuler le problème ainsi :

$$\exists ? \mathbf{x} \in \mathcal{H} : \ \forall y \in \mathcal{H}, \ a(\mathbf{x}, y) = u(y),$$

οù

• $\mathcal{H} = \mathbb{R}^2$ (c'est un espace de Hilbert);

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

On peut reformuler le problème ainsi :

$$\exists ? \mathbf{x} \in \mathcal{H} : \forall \mathbf{y} \in \mathcal{H}, \ \mathbf{a}(\mathbf{x}, \mathbf{y}) = \mathbf{u}(\mathbf{y}),$$

οù

- $\mathcal{H} = \mathbb{R}^2$ (c'est un espace de Hilbert);
- l'application $a(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2$ est une forme bilinéaire continue et coercive;

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

On peut reformuler le problème ainsi :

$$\exists ? \mathbf{x} \in \mathcal{H} : \ \forall \mathbf{y} \in \mathcal{H}, \ \mathbf{a}(\mathbf{x}, \mathbf{y}) = \mathbf{u}(\mathbf{y}),$$

οù

- $\mathcal{H} = \mathbb{R}^2$ (c'est un espace de Hilbert);
- l'application $a(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2$ est une forme bilinéaire continue et coercive;
- et $u(y) = y_1 + y_2$ est une application linéaire continue.

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

On peut reformuler le problème ainsi :

$$\exists ? \mathbf{x} \in \mathcal{H} : \ \forall \mathbf{y} \in \mathcal{H}, \ \mathbf{a}(\mathbf{x}, \mathbf{y}) = \mathbf{u}(\mathbf{y}),$$

οù

- $\mathcal{H} = \mathbb{R}^2$ (c'est un espace de Hilbert);
- l'application $a(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2$ est une forme bilinéaire continue et coercive;
- et $u(y) = y_1 + y_2$ est une application linéaire continue.

Alors, le théorème de Lax-Milgram donne :

$$\forall y \in \mathcal{H}, \exists ! \ x \in \mathcal{H} \ \mathsf{tq} \ a(x,y) = u(y).$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

Il était plus simple ici de résoudre directement

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ [y_1 \ y_2] \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = [y_1 \ y_2] \left[\begin{array}{c} 1 \\ 1 \end{array} \right],$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2$$
, $2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2$?

Il était plus simple ici de résoudre directement

$$\forall (y_1,y_2) \in \mathbb{R}^2, \ [y_1 \ y_2] \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = [y_1 \ y_2] \left[\begin{array}{c} 1 \\ 1 \end{array} \right],$$

ce qui donne

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array}\right]^{-1} \left[\begin{array}{c} 1 \\ 1 \end{array}\right],$$

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2$$
, $2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2$?

Il était plus simple ici de résoudre directement

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ [y_1 \ y_2] \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = [y_1 \ y_2] \left[\begin{array}{c} 1 \\ 1 \end{array} \right],$$

ce qui donne

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array}\right]^{-1} \left[\begin{array}{c} 1 \\ 1 \end{array}\right],$$

et ainsi $x_1 = \frac{3}{7}$, $x_2 = \frac{1}{7}$.

Existe-t-il $(x_1, x_2) \in \mathbb{R}^2$ tel que

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ 2x_1y_1 + x_1y_2 + x_2y_1 + 4x_2y_2 = y_1 + y_2 ?$$

Il était plus simple ici de résoudre directement

$$\forall (y_1, y_2) \in \mathbb{R}^2, \ [y_1 \ y_2] \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] = [y_1 \ y_2] \left[\begin{array}{c} 1 \\ 1 \end{array} \right],$$

ce qui donne

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{cc} 2 & 1 \\ 1 & 4 \end{array}\right]^{-1} \left[\begin{array}{c} 1 \\ 1 \end{array}\right],$$

et ainsi $x_1 = \frac{3}{7}$, $x_2 = \frac{1}{7}$.

Lax-Milgram sera vraiment utile plus tard, sur des problèmes plus compliqués.

$$L^1_{loc}(\mathcal{I})$$

Dans toute la séance, ${\mathcal I}$ désigne un intervalle ouvert de ${\mathbb R}.$

Définition IV.1.3

On note $L^1_{loc}(\mathcal{I})$ l'ensemble des fonctions dites localement intégrables, i.e.

$$L^1_{loc}(\mathcal{I}) = \left\{f: \mathcal{I} o \mathbb{R} \; extit{mesurable}: \; f\mathbb{1}_{\mathcal{K}} \in L^1(\mathcal{I}), \; orall \mathcal{K} \subset \mathcal{I} \; extit{compact}
ight\}.$$

$L^1_{loc}(\mathcal{I})$

Dans toute la séance, $\mathcal I$ désigne un intervalle ouvert de $\mathbb R$.

Définition IV.1.3

On note $L^1_{loc}(\mathcal{I})$ l'ensemble des fonctions dites localement intégrables, i.e.

$$L^1_{loc}(\mathcal{I}) = \left\{f: \mathcal{I} o \mathbb{R} \; extit{mesurable}: \; f\mathbb{1}_K \in L^1(\mathcal{I}), \; orall K \subset \mathcal{I} \; extit{compact}
ight\}.$$

On a
$$L^1(\mathcal{I}) \subset L^1_{loc}(\mathcal{I})$$
.

Exemple

Avec
$$\mathcal{I} =]0,1[$$
, la fonction $f: x \mapsto \frac{1}{x} \in L^1_{loc}(\mathcal{I}) \setminus L^1(\mathcal{I})$.

Quelle norme sur $L^1_{loc}(\mathcal{I})$?

Définition IV.1.4

Soit $f: \mathcal{I} \to \mathbb{R}$ une fonction. On appelle support de f l'ensemble

$$\operatorname{supp}(f) = \overline{\{t \in \mathcal{I}: \ f(t) \neq 0\}}.$$

Définition IV.1.4

Soit $f: \mathcal{I} \to \mathbb{R}$ une fonction. On appelle support de f l'ensemble

$$\operatorname{supp}(f) = \overline{\{t \in \mathcal{I}: \ f(t) \neq 0\}}.$$

Définition IV.1.5

L'ensemble des fonctions continues de \mathcal{I} dans \mathbb{R} et à support compact est noté $C_c^0(\mathcal{I})$.

- $L^2(\mathcal{I})$ est un Hilbert et $(L^2(\mathcal{I}))' \simeq L^2(\mathcal{I})$.
- $L^2(\mathcal{I})$ contient des fonctions non dérivables,
- mais contient aussi un sev de fonctions sympathiques :

- $L^2(\mathcal{I})$ est un Hilbert et $(L^2(\mathcal{I}))' \simeq L^2(\mathcal{I})$.
- $L^2(\mathcal{I})$ contient des fonctions non dérivables,
- mais contient aussi un sev de fonctions sympathiques :

Définition IV.1.6

On appelle $\mathcal{D}(\mathcal{I})$ (ou $C_c^{\infty}(\mathcal{I})$) l'ensemble des fonctions à support compact de classe C^{∞} dans \mathcal{I} , encore appelées fonctions-test :

$$\mathcal{D}(\mathcal{I}) := \{ f \in C^{\infty}(\mathcal{I}) : \operatorname{supp}(f) \text{ compact de } \mathcal{I} \}.$$

 $\mathcal{D}(\mathcal{I})$ est un espace vectoriel.

Exemple

$$\phi: x \longmapsto \exp\left(\frac{1}{x^2-1}\right) \mathbf{1}_{\{|x| \le 1\}}$$

On peut vérifier que ϕ est infiniment dérivable partout (en particulier en -1 et 1). Ainsi $\phi \in \mathcal{D}(\mathbb{R}) \subset L^2(\mathbb{R})$.

- Dualité topologique
- ② Distributions
 - Définition et premières propriétés
 - Exemples
 - $L^1_{loc}(\mathcal{I})$ comme sous-espace de $\mathcal{D}'(\mathcal{I})$
 - Opérations sur les distributions
- Espaces de Sobolev

Propriétés topologiques de $\mathcal{D}(\mathcal{I})$

On munit $\mathcal{D}(\mathcal{I})$ de la notion de convergence suivante :

Définition IV.2.1

Soient $(\phi_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathcal{D}(\mathcal{I})$ et $\phi\in\mathcal{D}(\mathcal{I})$.

On dit que ϕ_n converge vers ϕ si

(a) les supports des (ϕ_n) sont inclus dans un **compact fixe** :

 $\exists K \text{ compact de } \mathcal{I} : \forall n \in \mathbb{N}, \text{ supp}(\phi_n) \subset K$

$$\forall m \in \mathbb{N}, \forall \varepsilon > 0, \exists N \in \mathbb{N}: \quad \forall n \geq N, \ \|\phi_n^{(m)} - \phi^{(m)}\|_{\infty} \leq \varepsilon.$$
 On notera $\phi_n \overset{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$.

Propriétés topologiques de $\mathcal{D}(\mathcal{I})$

On munit $\mathcal{D}(\mathcal{I})$ de la notion de convergence suivante :

Définition IV.2.1

Soient $(\phi_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathcal{D}(\mathcal{I})$ et $\phi\in\mathcal{D}(\mathcal{I})$.

On dit que ϕ_n converge vers ϕ si

(a) les supports des (ϕ_n) sont inclus dans un **compact fixe** :

 $\exists K \text{ compact de } \mathcal{I} : \forall n \in \mathbb{N}, \text{ supp}(\phi_n) \subset K$

$$\forall m \in \mathbb{N}, \forall \varepsilon > 0, \exists N \in \mathbb{N}: \quad \forall n \geq N, \ \|\phi_n^{(m)} - \phi^{(m)}\|_{\infty} \leq \varepsilon.$$
 On notera $\phi_n \overset{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$.

Attention : La topologie de $\mathcal{D}(\mathcal{I})$ n'est pas métrisable (i.e. pas associée à une distance)... voir électif en 2A!

Définition et premières propriétés Exemples $L^{\mathbf{1}}_{\mathbf{loc}}(\mathcal{I})$ comme sous-espace de $\mathcal{D}'(\mathcal{I})$ Opérations sur les distributions

$$n \geq 1, \quad \phi_n: x \longmapsto \left(rac{n+1}{n}
ight)^2 \exp{\left\{rac{1}{\left(rac{n}{n+1}x
ight)^2-1}
ight\}}.$$

Espace des distributions

Définition IV.2.2

L'espace $\mathcal{D}'(\mathcal{I})$ est le dual topologique de $\mathcal{D}(\mathcal{I})$, i.e. $\mathcal{T} \in \mathcal{D}'(\mathcal{I})$ si $\mathcal{T} : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$ est une application linéaire continue.

Les éléments de $\mathcal{D}'(\mathcal{I})$ sont appelés distributions.

Pour
$$\phi \in \mathcal{D}(\mathcal{I})$$
, on note $T(\phi) = \langle T, \phi \rangle$.

Caractérisation

Soit $T \in \mathcal{D}'(\mathcal{I})$. Alors $T : \mathcal{D}(\mathcal{I}) \to \mathbb{R}$ est

• linéaire : $\forall \lambda \in \mathbb{R}, \forall \phi, \psi \in \mathcal{D}(\mathcal{I})$,

$$\langle T, \lambda \phi + \psi \rangle = \lambda \langle T, \phi \rangle + \langle T, \psi \rangle.$$

ullet continue pour la convergence dans $\mathcal{D}(\mathcal{I})$:

$$\forall \phi_n \xrightarrow{\mathcal{D}(\mathcal{I})} \phi, \langle T, \phi_n \rangle \xrightarrow{\mathbb{R}} \langle T, \phi \rangle.$$

Définition IV.2.3

On appelle distribution de Dirac en $a \in \mathcal{I}$, notée δ_a , la forme linéaire continue sur $\mathcal{D}(\mathcal{I})$:

$$\forall \phi \in \mathcal{D}(\mathcal{I}), \quad \langle \delta_{\mathsf{a}}, \phi \rangle = \phi(\mathsf{a}).$$

Définition IV.2.3

On appelle distribution de Dirac en $a \in \mathcal{I}$, notée δ_a , la forme linéaire continue sur $\mathcal{D}(\mathcal{I})$:

$$\forall \phi \in \mathcal{D}(\mathcal{I}), \quad \langle \delta_{\mathsf{a}}, \phi \rangle = \phi(\mathsf{a}).$$

 δ_a distribution car :

• δ_a est une forme linéaire

Définition IV.2.3

On appelle distribution de Dirac en $a \in \mathcal{I}$, notée δ_a , la forme linéaire continue sur $\mathcal{D}(\mathcal{I})$:

$$\forall \phi \in \mathcal{D}(\mathcal{I}), \quad \langle \delta_{\mathsf{a}}, \phi \rangle = \phi(\mathsf{a}).$$

 δ_a distribution car :

- δ_a est une forme linéaire
- Continuité : $\forall \phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$,

$$|\langle \delta_{\mathsf{a}}, \phi_{\mathsf{n}} \rangle - \langle \delta_{\mathsf{a}}, \phi \rangle| = |\langle \delta_{\mathsf{a}}, (\phi_{\mathsf{n}} - \phi) \rangle|$$
$$= |(\phi_{\mathsf{n}} - \phi)(\mathsf{a})|$$

Définition IV.2.3

On appelle distribution de Dirac en $a \in \mathcal{I}$, notée δ_a , la forme linéaire continue sur $\mathcal{D}(\mathcal{I})$:

$$\forall \phi \in \mathcal{D}(\mathcal{I}), \quad \langle \delta_{\mathsf{a}}, \phi \rangle = \phi(\mathsf{a}).$$

δ_a distribution car :

- δ_a est une forme linéaire
- Continuité : $\forall \phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$,

$$\begin{aligned} |\langle \delta_{\mathsf{a}}, \phi_{\mathsf{n}} \rangle - \langle \delta_{\mathsf{a}}, \phi \rangle| &= |\langle \delta_{\mathsf{a}}, (\phi_{\mathsf{n}} - \phi) \rangle| \\ &= |(\phi_{\mathsf{n}} - \phi)(\mathsf{a})| \\ &\leq \|\phi_{\mathsf{n}} - \phi\|_{\infty}, \end{aligned}$$

d'où
$$|\langle \delta_a, \phi_n \rangle - \langle \delta_a, \phi \rangle| \to 0$$
.

22/41

Définition et premières propriétés Exemples $\mathcal{L}_{loc}^{\bullet}(\mathcal{I})$ comme sous-espace de $\mathcal{D}'(\mathcal{I})$ Opérations sur les distributions

2è exemple

Soit $K \subset \mathcal{I}$, K compact. On définit l'**intégrale sur K** par

$$I_{\mathcal{K}}: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) \lambda(\mathrm{d}x)$$

2è exemple

Soit $K \subset \mathcal{I}$, K compact. On définit l'**intégrale sur K** par

$$I_{\mathcal{K}}: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) \lambda(\mathrm{d}x)$$

 $I_K \in \mathcal{D}'(\mathcal{I})$ car :

• *I_K* est une forme linéaire

2è exemple

Soit $K \subset \mathcal{I}$, K compact. On définit l'**intégrale sur K** par

$$I_{\mathcal{K}}: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{\mathcal{K}} \phi(x) \lambda(\mathrm{d}x)$$

- I_K est une forme linéaire
- Continuité : $\forall \phi_n \xrightarrow{\mathcal{D}(\mathcal{I})} \phi$,

$$|\langle I_{K}, \phi_{n} \rangle - \langle I_{K}, \phi \rangle| = \left| \int_{K} (\phi_{n}(x) - \phi(x)) \lambda(\mathrm{d}x) \right|$$

$$\leq \lambda(K) \|\phi_{n} - \phi\|_{\infty},$$

2è exemple

Soit $K \subset \mathcal{I}$, K compact. On définit l'**intégrale sur K** par

$$I_{K}: \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \int_{K} \phi(x) \lambda(\mathrm{d}x)$$

- IK est une forme linéaire
- Continuité : $\forall \phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$,

$$|\langle I_{K}, \phi_{n} \rangle - \langle I_{K}, \phi \rangle| = \left| \int_{K} (\phi_{n}(x) - \phi(x)) \lambda(\mathrm{d}x) \right|$$

$$\leq \lambda(K) \|\phi_{n} - \phi\|_{\infty},$$

d'où
$$|\langle I_K, \phi_n \rangle - \langle I_K, \phi \rangle| \to 0.$$

Définition et premières propriétés Exemples $L^{\mathbf{1}}_{loc}(\mathcal{I})$ comme sous-espace de $\mathcal{D}'(\mathcal{I})$ Opérations sur les distributions

3è exemple : distributions régulières

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

 $T_f \in \mathcal{D}'(\mathcal{I})$ car :

 \bullet T_f est une forme linéaire

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

- T_f est une forme linéaire
- Continuité : Soit $\phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$ et soit $K \supset \bigcup_n \operatorname{supp}(\phi_n)$, alors

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

- T_f est une forme linéaire
- Continuité : Soit $\phi_n \stackrel{\mathcal{D}(\mathcal{I})}{\longrightarrow} \phi$ et soit $K \supset \bigcup_n \operatorname{supp}(\phi_n)$, alors

$$|\langle T_f, \phi_n \rangle - \langle T_f, \phi \rangle| = \left| \int_{\mathcal{I}} f(x) \left(\phi_n(x) - \phi(x) \right) \lambda(\mathrm{d}x) \right|$$

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

- T_f est une forme linéaire
- Continuité : Soit $\phi_n \xrightarrow{\mathcal{D}(\mathcal{I})} \phi$ et soit $K \supset \bigcup_n \operatorname{supp}(\phi_n)$, alors $|\langle T_f, \phi_n \rangle \langle T_f, \phi \rangle| = \left| \int_{\mathcal{I}} f(x) \left(\phi_n(x) \phi(x) \right) \lambda(\mathrm{d}x) \right|$ $\leq \|\phi_n \phi\|_{\infty} \int_{K} |f| d\lambda$

Définition IV.2.4

Soit $f \in L^1_{loc}(\mathcal{I})$. On définit la distribution régulière T_f par

$$T_f: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \int_{\mathcal{I}} f(x) \phi(x) \lambda(\mathrm{d}x).$$

Remarque : 1) Le 2è exemple était un cas particulier avec $f = \mathbb{1}_K$.

2) La distribution de Dirac n'est pas régulière!

- T_f est une forme linéaire
- Continuité : Soit $\phi_n \xrightarrow{\mathcal{D}(\mathcal{I})} \phi$ et soit $K \supset \bigcup_n \operatorname{supp}(\phi_n)$, alors $|\langle T_f, \phi_n \rangle \langle T_f, \phi \rangle| = \left| \int_{\mathcal{I}} f(x) \left(\phi_n(x) \phi(x) \right) \lambda(\mathrm{d}x) \right|$ $\leq \|\phi_n \phi\|_{\infty} \int_{K} |f| d\lambda \to 0.$

Théorème IV.2.5 (Identification de L^1_{loc})

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

Définition et premières propriétés Exemples $\mathcal{L}_{loc}^{1}(\mathcal{I})$ comme sous-espace de $\mathcal{D}'(\mathcal{I})$ Opérations sur les distributions

Statut de $\overline{L^1_{loc}(\mathcal{I})}$

Théorème IV.2.5 (Identification de L^1_{loc})

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

Théorème IV.2.5 (Identification de L^1_{loc})

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I}) \to \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

$$\langle T_f, \phi \rangle$$

Théorème IV.2.5 (Identification de L^1_{loc})

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

$$\langle f, \phi \rangle = \int_{\mathcal{I}} f \phi$$

Théorème IV.2.5 (Identification de L^1_{loc})

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I}) \to \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

Théorème IV.2.5 (Identification de L_{loc}^1)

La fonctionnelle $T_{\cdot \cdot}: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$

$$T.: L^1_{loc}(\mathcal{I}) \rightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

$$\langle \begin{array}{ccc} f & , & \phi & \rangle & = & \int_{\mathcal{I}} f \phi \\ & & & & \\ L^1_{loc}(\mathcal{I}) & & \mathcal{D}(\mathcal{I}) & \\ & & & & \\ & & & L^2(\mathcal{I}) & \end{array}$$

Théorème IV.2.5 (Identification de L_{loc}^1)

La fonctionnelle
$$T.: L^1_{loc}(\mathcal{I})
ightarrow \mathcal{D}'(\mathcal{I})$$
 $f \mapsto T_f$

est injective
$$(T_f = T_g \Rightarrow f = g)$$
.

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :
$$\langle Z, \phi + \lambda \psi \rangle = \langle T_1, \phi + \lambda \psi \rangle + \langle T_2, \phi + \lambda \psi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :

$$\langle Z, \phi + \lambda \psi \rangle = \langle T_1, \phi \rangle + \lambda \langle T_1, \psi \rangle + \langle T_2, \phi \rangle + \lambda \langle T_2, \psi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :

$$\langle Z, \phi + \lambda \psi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle + \lambda (\langle T_1, \psi \rangle + \langle T_2, \psi \rangle)$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :
$$\langle Z, \phi + \lambda \psi \rangle = \langle Z, \phi \rangle + \lambda \langle Z, \psi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :
$$\langle Z, \phi + \lambda \psi \rangle = \langle Z, \phi \rangle + \lambda \langle Z, \psi \rangle$$

Z est continue : Soit $(\phi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\mathcal{I})^{\mathbb{N}}$ tq $\phi_n \longrightarrow \phi$ dans $\mathcal{D}(\mathcal{I})$.
 $\langle Z, \phi_n \rangle = \langle T_1, \phi_n \rangle + \langle T_2, \phi_n \rangle$
Comme : $\lim_{n \to +\infty} \langle T_1, \phi_n \rangle = \langle T_1, \phi \rangle$ et $\lim_{n \to +\infty} \langle T_2, \phi_n \rangle = \langle T_2, \phi \rangle$
on obtient $\lim_{n \to +\infty} \langle Z, \phi_n \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$
 $\lim_{n \to +\infty} \langle Z, \phi_n \rangle = \langle Z, \phi \rangle$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors Z par

$$\langle Z, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

$$Z \text{ est linéaire} : \langle Z, \phi + \lambda \psi \rangle = \langle Z, \phi \rangle + \lambda \langle Z, \psi \rangle$$

$$Z \text{ est continue} : \text{Soit } (\phi_n)_{n \in \mathbb{N}} \in \mathcal{D}(\mathcal{I})^{\mathbb{N}} \text{ tq } \phi_n \longrightarrow \phi \text{ dans } \mathcal{D}(\mathcal{I}).$$

$$\langle Z, \phi_n \rangle = \langle T_1, \phi_n \rangle + \langle T_2, \phi_n \rangle$$

$$\text{Comme} : \lim_{n \to +\infty} \langle T_1, \phi_n \rangle = \langle T_1, \phi \rangle \text{ et }$$

$$\lim_{n \to +\infty} \langle T_2, \phi_n \rangle = \langle T_2, \phi \rangle$$
on obtient $\lim_{n \to +\infty} \langle Z, \phi_n \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$

$$\lim_{n \to +\infty} \langle Z, \phi_n \rangle = \langle Z, \phi \rangle$$

Ainsi Z est une distribution.

Somme de distributions

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Définissons alors $T_1 + T_2$ par

$$\langle T_1 + T_2, \phi \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

Z est linéaire :

$$\langle T_1 + T_2, \phi + \lambda \psi \rangle = \langle T_1 + T_2, \phi \rangle + \lambda \langle T_1 + T_2, \psi \rangle$$

Z est continue : Soit $(\phi_n)_{n\in\mathbb{N}}\in\mathcal{D}(\mathcal{I})^{\mathbb{N}}$ tq $\phi_n\longrightarrow\phi$ dans $\mathcal{D}(\mathcal{I})$.

$$\langle T_1 + T_2, \phi_n \rangle = \langle T_1, \phi_n \rangle + \langle T_2, \phi_n \rangle$$

Comme : $\lim_{n \to +\infty} \langle T_1, \phi_n \rangle = \langle T_1, \phi \rangle$ et

$$\lim_{n\to+\infty} \langle T_2, \phi_n \rangle = \langle T_2, \phi \rangle$$

on obtient

$$\lim_{n \to +\infty} \langle T_1 + T_2, \phi_n \rangle = \langle T_1, \phi \rangle + \langle T_2, \phi \rangle$$

$$\lim_{n \to +\infty} \langle T_1 + T_2, \phi_n \rangle = \langle T_1 + T_2, \phi \rangle$$

Ainsi $T_1 + T_2$ est une distribution.

Cette opération étend la somme de L^1_{loc} : $T_{f_1+f_2} = T_{f_1} + T_{f_2}$.

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Peut-on définir $T_1 \times T_2$ par

$$\langle T_1 \times T_2, \phi \rangle = \langle T_1, \phi \rangle \ \langle T_2, \phi \rangle ?$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Peut-on définir $T_1 \times T_2$ par

$$\langle T_1 \times T_2, \phi \rangle = \langle T_1, \phi \rangle \langle T_2, \phi \rangle$$
?

 $T_1 \times T_2$ linéaire?

$$\langle T_1 \times T_2, \phi + \lambda \psi \rangle = \langle T_1, \phi + \lambda \psi \rangle \langle T_2, \phi + \lambda \psi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Peut-on définir $T_1 \times T_2$ par

$$\langle T_1 \times T_2, \phi \rangle = \langle T_1, \phi \rangle \langle T_2, \phi \rangle$$
?

 $T_1 \times T_2$ linéaire?

$$\langle T_1 \times T_2, \phi + \lambda \psi \rangle = \langle T_1, \phi + \lambda \psi \rangle \langle T_2, \phi + \lambda \psi \rangle$$

$$= \langle T_1, \phi \rangle \langle T_2, \phi \rangle$$

$$+ \lambda \langle T_1, \phi \rangle \langle T_2, \psi \rangle + \lambda \langle T_1, \psi \rangle \langle T_2, \phi \rangle$$

$$+ \lambda^2 \langle T_2, \psi \rangle \langle T_2, \psi \rangle$$

Soient $T_1, T_2 \in \mathcal{D}'(\mathcal{I})$. Peut-on définir $T_1 \times T_2$ par

$$\langle T_1 \times T_2, \phi \rangle = \langle T_1, \phi \rangle \langle T_2, \phi \rangle$$
?

 $T_1 \times T_2$ linéaire?

$$\begin{split} \langle T_1 \times T_2, \phi + \lambda \psi \rangle &= \langle T_1, \phi + \lambda \psi \rangle \langle T_2, \phi + \lambda \psi \rangle \\ &= \langle T_1, \phi \rangle \langle T_2, \phi \rangle \\ &+ \lambda \langle T_1, \phi \rangle \langle T_2, \psi \rangle + \lambda \langle T_1, \psi \rangle \langle T_2, \phi \rangle \\ &+ \lambda^2 \langle T_2, \psi \rangle \langle T_2, \psi \rangle \end{split}$$

Non!

Produit d'une distribution et d'une fonction test

Définition-Théorème IV.2.6 (Multiplication par une fonction régulière)

Pour toute distribution $T \in \mathcal{D}'(\mathcal{I})$ et toute fonction $h \in \mathcal{C}^{\infty}(\mathcal{I})$,

$$h \cdot T : \phi \in \mathcal{D}(\mathcal{I}) \longmapsto \langle T, h \phi \rangle$$

est une distribution.

Dérivation d'une distribution

Définition-Théorème IV.2.7

Soit $T \in \mathcal{D}'(\mathcal{I})$. On définit

$$S: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \langle S, \phi \rangle = -\langle T, \phi' \rangle$$

alors S est une distribution, appelée dérivée de T et notée S = T'.

Exemple: Fonction de Heaviside

Dérivation d'une distribution

Définition-Théorème IV.2.7

Soit $T \in \mathcal{D}'(\mathcal{I})$. On définit

$$S: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

$$\phi \longmapsto \langle S, \phi \rangle = -\langle T, \phi' \rangle$$

alors S est une distribution, appelée dérivée de T et notée S = T'.

Exemple: Fonction de Heaviside

Définition-Proposition IV.2.8

Soit $T \in \mathcal{D}'(\mathcal{I})$. Soit $k \in \mathbb{N}$. On définit la k-ème dérivée de T par

$$T^{(k)}: \mathcal{D}(\mathcal{I}) \longrightarrow \mathbb{R}$$

 $\phi \longmapsto (-1)^k \langle T, \phi^{(k)} \rangle.$

 $T^{(k)}$ est une distribution.

Deux notions de dérivées

Proposition IV.2.9

Soit \mathcal{I} intervalle ouvert de \mathbb{R} .

Si $f \in L^1_{loc}(\mathcal{I})$ dérivable sur \mathcal{I} et $f' \in L^1_{loc}(\mathcal{I})$, $T_{f'} = (T_f)'$.

Théorème IV.2.10 (Formule des sauts en dimension 1)

Soit $\mathcal{I} =]a_0, a_{k+1}[$. Soit $f \in C^1_{par\ morceaux}(\mathcal{I})$. Soient $a_1 < \ldots < a_k$, les points de discontinuité de f. Alors

$$(T_f)' = T_{f'} + \sum_{i=1}^k (f(a_i^+) - f(a_i^-))\delta_{a_i},$$

où f' est la dérivée de la restriction de f à chaque sous-intervalle $|a_i, a_{i+1}|$, $0 \le i \le k$.

Conclusion : $\mathbb{R} \subset \mathbb{C}$ et $L^1_{loc}(\mathcal{I}) \subset D'(\mathcal{I})$

$$\mathbb{R} \subset \mathbb{C}$$

$$L^1_{loc}(\mathcal{I})\subset D'(\mathcal{I})$$

On peut maintenant prendre la racine carrée de tout élément.

On étend : + et \times .

On perd : la relation d'ordre \leq compatible avec + et \times .

On peut maintenant dériver tout élément.

On étend : +, le produit avec une fonction C^{∞} , la dérivation.

On perd : \times , entre autres... (eg

l'évaluation de T en tout point de \mathcal{I}).

- Dualité topologique
- 2 Distributions
- Sepaces de Sobolev
 - Définitions et premières propriétés
 - Régularité
 - Trace
 - $H_0^1(a,b)$

Définition de $H^1(\mathcal{I})$

Définition IV.3.1

L'espace de Sobolev d'ordre 1 sur $\mathcal I$ est défini par

$$H^{1}(\mathcal{I}) := \left\{ v \in L^{2}(\mathcal{I}) : (T_{v})' \in L^{2}(\mathcal{I}) \right\}$$
$$:= \left\{ v \in L^{2}(\mathcal{I}) : v' \in L^{2}(\mathcal{I}) \right\}$$

avec v' dérivée de v au sens des distributions.

Notation

Si \mathcal{I} intervalle borné, $\mathcal{I} =]a, b[$, on note $H^1(\mathcal{I}) = H^1(a, b)$.

$H^1(\mathcal{I})$ espace de Hilbert

Théorème IV.3.2

L'espace $H^1(\mathcal{I})$ muni du produit scalaire

$$(\cdot,\cdot)_{H^1(\mathcal{I})}:(u,v)\mapsto (u,v)_{L^2(\mathcal{I})}+(u',v')_{L^2(\mathcal{I})}$$

est complet pour la norme
$$\|\cdot\|_{H^1(\mathcal{I})}: v \mapsto \sqrt{\|v\|_{L^2(\mathcal{I})}^2 + \|v'\|_{L^2(\mathcal{I})}^2}$$
.

$H^1(\mathcal{I})$ espace de Hilbert

Théorème IV.3.2

L'espace $H^1(\mathcal{I})$ muni du produit scalaire

$$(\cdot,\cdot)_{H^1(\mathcal{I})}:(u,v)\mapsto (u,v)_{L^2(\mathcal{I})}+(u',v')_{L^2(\mathcal{I})}$$

est complet pour la norme $\|\cdot\|_{H^1(\mathcal{I})}: v\mapsto \sqrt{\|v\|_{L^2(\mathcal{I})}^2+\|v'\|_{L^2(\mathcal{I})}^2}.$

Théorème IV.3.3

Soit $k \in \mathbb{N}$. L'espace

$$H^k(\mathcal{I}):=\left\{u\in L^2(\mathcal{I}):\quad u^{(m)}\in L^2(\mathcal{I}),\ 0\leq m\leq k\right\}$$

muni du prod. scalaire $(u, v) \mapsto \sum_{0 \le m \le k} \int_{\mathcal{I}} u^{(m)} v^{(m)}$ est un Hilbert.

Exemple

Posons $\mathcal{I} =]0,2[$. Considérons la fonction **chapeau** :

$$f: x \mapsto \begin{cases} x & \text{si } x \in]0,1[,\\\\ 2-x & \text{si } x \in [1,2[.\\ \end{cases}$$

- La fonction f est-elle dans $H^1(0,2)$?
- La fonction f est-elle dans $H^2(0,2)$?

Régularité des espaces de Sobolev en dimension 1

Théorème IV.3.4 (Rellich)

Soit $\mathcal{I}=]a,b[$ un intervalle ouvert borné de \mathbb{R} . Toute fonction u de $H^1(a,b)$ admet un représentant continu \overline{u} sur [a,b] qui est une primitive de u', i.e. tel que

$$\forall x, y \in [a, b], \quad \overline{u}(x) - \overline{u}(y) = \int_{[y, x]} u'(t) \, \lambda(dt).$$

De plus,

lacktriangle il existe une constante C>0, ne dépendant que de b-a, tq

$$\forall u \in H^1(a,b), \quad \|\overline{u}\|_{\infty} \leq C \|u\|_{H^1}$$

① de toute suite bornée de $H^1(a,b)$, on peut extraire une sous-suite qui converge dans $C^0([a,b])$.

Théorème de trace en dimension 1

On a vu que, si $\mathcal{I} =]a, b[$, $H^1(a, b) \subset C^0([a, b])$ \Longrightarrow les valeurs au bord de $u \in H^1(a, b)$ sont définies!

Définition IV.3.5

Pour $u \in H^1(a,b)$, (u(a),u(b)) est appelée la trace de u, et l'application linéaire $\gamma_0: u \mapsto (u(a),u(b))$ l'opérateur de trace.

Théorème IV.3.6 (Théorème de trace)

La distribution de Dirac δ_x est une forme linéaire continue sur $H^1(a,b)$: il existe C ne dépendant que de b-a tel que

$$\forall x \in [a, b], \ \forall u \in H^1(a, b), \quad |u(x)| \le C \|u\|_{H^1(a, b)}.$$

L'application linéaire γ_0 est donc continue de $H^1(a,b)$ dans \mathbb{R}^2 .

Application: IPP

Théorème IV.3.7 (Intégration par parties)

Soient $u, v \in H^1(a, b)$. Alors

$$\int_{]a,b[}u\ v'\ d\lambda=-\int_{]a,b[}v\ u'\ d\lambda\ +u(b)v(b)-u(a)v(a).$$

Théorème IV.3.8 (Intégration par parties 2)

Soient $u \in H^2(a, b)$ et $v \in H^1(a, b)$. Alors

$$\int_{]a,b[} u'' \ v \ d\lambda = - \int_{]a,b[} u' \ v' \ d\lambda \ + u'(b)v(b) - u'(a)v(a).$$

L'espace $\overline{H_0^1(a,b)}$

 $\mathcal{D}(a,b)$ est dense dans $L^2(a,b)$, mais pas dans $H^1(a,b)$.

Définition IV.3.9

$$H_0^1(a,b) := \gamma_0^{-1}(\{(0,0)\}).$$

Proposition IV.3.10

- $lacksquare H^1_0(a,b) \subset H^1(a,b) \ ext{et} \ H^1_0(a,b)
 eq H^1(a,b).$
- ① L'espace $H_0^1(a, b)$ muni de la norme H^1 est un espace de Hilbert.
- **a** L'adhérence de $\mathcal{D}(a,b)$ pour la norme H^1 est $H^1_0(a,b)$.

Inégalité de Poincaré

Théorème IV.3.11 (Poincaré ou Friedrichs)

 $Si \mathcal{I} =]a, b[$, alors il existe une constante C ne dépendant que de b-a telle que

$$\forall v \in H_0^1(a,b), \quad \|v\|_{L^2(a,b)} \leq C \|v'\|_{L^2(a,b)}.$$

La semi-norme $v\mapsto \|v'\|_{L^2(\mathcal{I})}$ définie sur H^1 par

$$v\mapsto |v|_{H^1(\mathcal{I})}:=\|v'\|_{L^2(\mathcal{I})}$$

vérifie dans $H_0^1(a,b)$:

$$\forall v \in H_0^1(a,b), \quad |v|_{H^1(\mathcal{I})} \le ||v||_{H^1(\mathcal{I})} \le \sqrt{1+C^2} |v|_{H^1(\mathcal{I})}.$$

Conséquence sur $H_0^1(a, b)$

Définition IV.3.12

On définit $\|\cdot\|_{H^1_0}:=|\cdot|_{H^1}$ et

$$(\cdot,\cdot)_{H_0^1}:(u,v)\in H_0^1\times H_0^1\longmapsto \int_{\mathcal{I}}u'\ v'\ d\lambda.$$

Théorème IV.3.13

L'espace $H^1_0(a,b)$ muni du produit scalaire $(\cdot,\cdot)_{H^1_0}$ est un espace de Hilbert.