Seminar: Few-Shot Bayesian Imitation Learning with Logical Program Policies

Yu-Zhe Shi

May 3, 2020

Auther Profiles

- Joshua B. Tenenbaum, Prof, The Computational Cognitive Science Group, MIT.http://web.mit.edu/cocosci/josh.html
- ► Tom Silver, PhD, The Computational Cognitive Science Group, MIT.http://web.mit.edu/tslvr/www/index.html
- Kesley Allen, PhD, The Computational Cognitive Science Group, MIT.https://web.mit.edu/krallen/www/
- ► Alex Lew, PhD, The Computational Cognitive Science Group, MIT.http://alexlew.net/
- Leslie Kaelbling, Prof, Computer Science and Engineering, MIT.https: //www.csail.mit.edu/person/leslie-kaelbling

Overview

Algorithm 1: LPP imitation learning

```
input: Demos \mathcal{D}, ensemble size K, max iters L
Create anti-demos \overline{\mathcal{D}} = \{(s, a') : (s, a) \in \mathcal{D}, a' \neq a\};
Set labels y[(s, a)] = 1 if (s, a) \in \mathcal{D} else 0;
Initialize approximate posterior q;
for i in 1, ..., L do
    f_i = \text{generate\_next\_feature()};
    X = \{(f_1(s, a), ..., f_i(s, a))^T : (s, a) \in \mathcal{D} \cup \overline{\mathcal{D}}\}\
      \mu_i, w_i = \text{logical\_inference}(X, y, p(f), K);
     update_posterior(q, \mu_i, w_i);
end
return q;
```

Dilemma of Imitation Learning

- ▶ Behavior Cloning: Overfitting, underconstrained policy class and weak prior.
- Policy logical learning: need hand-crafted predicates, poor scalability.
- Program synthesis: Large search space.

Logical Program Policies

- ▶ "Top": Logical structure.
- "Bottom": Domain specific language expressions.
- Logically generate infinite policy classes from small scale DSL and score the candidates with likelihood and prior to prune searching space.

Prerequisites

- ▶ Objective: Given demo \mathcal{D} , learn policies $p(\pi|\mathcal{D})$
- $ightharpoonup \mathcal{D} = (s_0, a_0, \dots, s_{T-1}, a_{T-1}, s_T)$, states $s \in \mathcal{S}$, actions $a \in \mathcal{A}$
- Markov Process: $\mathcal{M} = (\mathcal{S}, \mathcal{A}, T, \mathcal{G})$ where $\mathcal{G} \subset \mathcal{S}$ is goal states, T(s'|s, a) is transition distribution.
- State-conditional distribution over actions:

$$\pi(a|s) \in \Pi \tag{1}$$

where Π is hypothesis classes.

▶ We learn π^* which is optimal to \mathcal{M} .

Policy classes

Want to learn State-action classifiers:

$$h: \mathcal{S} \times \mathcal{A} \to \{0, 1\} \tag{2}$$

- h(s, a) = 0 action a never takes place when s.
- h(s, a) = 1 action a may takes place when s.
- ▶ $\pi(a|s) \propto 1$ when $\forall a, h(s, a) = 0$

Bottom Level: Invent Predicates by Domain Specific Language

- ▶ Bottom Level: feature detection functions $f \in \mathcal{H} : \mathcal{S} \times \mathcal{A} \rightarrow \{0,1\}.$
- ► Input: *s*, *a*.
- Output: Binary decision of wether a should take place when s.

Top Level: Disjunctive Normal Form

$$h(s,a) = \bigvee_{i=1}^{m} (\wedge_{i=1}^{n_i} f_{i,j}(s,a))$$
 (3)

 $h(s,a) = \bigvee_{i=1}^{m} \left(\bigwedge_{j=1}^{n_i} f_{i,j}(s,a)^{b_{i,j}} (1 - f_{i,j}(s,a))^{1-b_{i,j}} \right)$ (4)

where $b_{i,j}$ determines whether $f_{i,j}$ is negated.

DSL

Method	Type	Description		
cell_is_value	$V \to C$	Check whether the attended cell has a given value		
shifted	$O \times C \rightarrow C$	Shift attention by an offset, then check a condition		
scanning	$O\times C\times C\to C$	Repeatedly shift attention by the given offset, and		
		check which of two conditions is satisfied first		
at_action_cell at_cell_with_value	$\begin{matrix} C \to P \\ V \times C \to P \end{matrix}$	Attend to the action cell and check a condition Attend to a cell with the value and check condition		

Example of LPP

$$h(s,a) = (f_{11}(s, a) \land f_{12}(s, a) \land \neg f_{13}(s, a)) \lor A$$

$$(f_{11}(s, a) \land f_{22}(s, a) \land \neg f_{23}(s, a))$$

$$f_{11} = at_action_cell(cell_is_value())$$

$$f_{12} = at_action_cell(shifted(), cell_is_value()))$$

$$f_{13} = at_action_cell(shifted(), cell_is_value()))$$

$$f_{22} = at_action_cell(shifted(), cell_is_value()))$$

$$f_{23} = at_action_cell(shifted(), cell_is_value()))$$

Imitation Learning

 \triangleright Prior distribution of π over LPP:

$$p(\pi) \propto \prod_{i=1}^{m} \prod_{j=1}^{n_i} p(f_{i,j})$$
 (5)

where p(f) is a probabilistic context-free grammar, indicating how likely different rewritings are. The intuition is that we want to encode the prior with fewer and simpler fs.

Likelyhood $p(\mathcal{D}|\pi)$ indicates the probabilistic of generating a demo \mathcal{D} from policies π .

$$p(\mathcal{D}|\pi) \propto \prod_{i=1}^{n} \prod_{j=1}^{T_i} \pi(a_{ij}|s_{ij})$$
 (6)

p(f)

Production rule	Probability			
Programs				
$P \to \texttt{at_cell_with_value}(V\!,C)$	0.5			
$P \rightarrow \text{at_action_cell}(C)$	0.5			
Conditions				
$C \to \text{shifted}(O,B)$	0.5			
$\mathbf{C} \to \mathbf{B}$	0.5			
Base conditions				
$B \to \texttt{cell_is_value}(V)$	0.5			
$B \to \text{scanning}(O, C, C)$	0.5			
Offsets				
$O \rightarrow (N, 0)$	0.25			
$O \rightarrow (0, N)$	0.25			
$O \rightarrow (N,N)$	0.5			
Numbers				
$N o \mathbb{N}$	0.5			
$N o - \mathbb{N}$	0.5			
Natural numbers (for $i = 1, 2,$)				
$\mathbb{N} o i$	$(0.99)(0.01)^{i-1}$			
Values (for each value v in this game)				
$V \to \mathtt{v}$	1/ V			

Approximate the posterior

ightharpoonup q is a weighted mixture of K policies μ_1,\ldots,μ_K

$$q(\pi) \approx p(\pi|\mathcal{D})$$
 (7)

▶ Minimize KL divergence $D_{KL}(q(\pi)|p(\pi|\mathcal{D}))$

$$q(\mu_j) = \frac{p(\mu_i|\mathcal{D})}{\sum_{i=1}^K p(\mu_i|\mathcal{D})}$$
(8)

Training Algorithm

- 1. Given a set of demos \mathcal{D} where h(s, a) = 1.
- 2. Generate negative samples

$$\overline{\mathcal{D}} = \{ (s, a') | (s, a) \in \mathcal{D}, a \neq a' \}$$
 (9)

3. At iteration i, we use i simplist (i.e. of highest probability under p(f)) feature detectors f_1, \ldots, f_i converting (s, a) into

$$\mathbf{x} \in \{0,1\}^i = (f_1(s,a), \dots, f_i(s,a))^T$$
 (10)

- 4. A stochastic greedy decision-tree learner to learn a binary classifier h(s, a).
- 5. Induce a candidate policy $\mu_*(a|s) \propto (s,a)$, calculate $p(\mu_*), p(\mathcal{D}|\mu_*)$ to decide whether to include μ_* into the mixture q.

Inference

$$\pi_*(s) = \arg_{a \in \mathcal{A}} \max \mathbb{E}_q[\pi(a|s)] = \arg_{a \in \mathcal{A}} \max \sum_{\mu \in q} q(\mu) \mu(a|s) \tag{11}$$

Experiments

Experiments: Baseline Comparison

▶ Local Linear Network, Fully Connected Network, CNN: trained to classify whether each cell should be clicked based on 8 surrounding cells. Vanilla Program Induction: Policy Learning with brute force.

Number of Programs Enumerated

-+- Stop the Fall

Ablation Study

	Nim	CT	Chase	STF	RFTS	Fence
LPP	1.0	1.0	1.0	1.0	1.0	1.0
Features + NN	1.0	0.67		0.0	0.22	0.67
Features + NN + L_1 Reg	1.0	0.11		0.0	0.0	0.0
No Prior	1.0	0.44	0.78	1.0	1.0	1.0
Sparsity Prior	1.0	0.78	1.0	0.78	1.0	1.0

Summary and Inspiration

- ► Logical Program Policies: Reduce predicate invention into binary classification.
- Shared Domain Specific Language serves as meta-feature.
- Bayesian Imitation Learning: exploits probabilistic context-free grammar as priori to approximate posterior.