1. Máquina de Lavar

Considere o problema da **Máquina de Lavar com Controle** *Fuzzy*. Neste problema temos duas variáveis de entrada:

- X₁ Grau de sujeira da roupa (Sujeira)
- X_2 Manchas presentes na roupa (Manchas)

e uma variável de saída

• Y Tempo de lavagem da máquina

Suponha um sistema *fuzzy* (modelo MAMDANI definido por um especialista para resolver este problema) composto por uma base de dados, base de regras e mecanismo de inferência conforme mostrado a seguir:

1. BASE DE DADOS

Na base de dados, as variáveis lingüísticas X_1 X_2 e Y possuem os seguintes conjuntos de termos lingüísticos:

 $T(X_1) = \{PS(pequena sujeira), MS(média sujeira), GS(grande sujeira)\}$

 $T(X_2) = \{SM(sem mancha), MM(média mancha), GM(grande mancha)\}$

 $T(Y) = \{MC(muito curto), C(curto), M(médio), L(longo), ML(muito longo)\}$

A regra semântica M, definida pelo especialista, associa cada rótulo dos termos nos conjuntos T às funções de pertinência mostradas a seguir:

Partição no universo X_1

Grau de sujeira na roupa

Partição no Universo X,

Manchas na roupa

2. BASE DE REGRAS

A base de regras envolvendo as entradas (grau de sujeira e manchas na roupa) e a saída (tempo de lavagem) é dada por:

	SM	MM	GM
PS	MC	M	L
MS	С	M	L
GS	M	L	ML

O que define o seguinte conjunto de regras fuzzy:

R1: Se
$$X_1$$
 é **PS** E X_2 é **SM** então Y é **MC**

R2: Se
$$X_1$$
 é **PS** E X_2 é **MM** então Y é **M**

•

R9: Se
$$X_1$$
 é **GS** E X_2 é **GM** então Y é **ML**

E de forma não abreviada:

R1: Se grau de sujeira é **pequena sujeira** E manchas na roupa é **sem manchas** então o tempo de lavagem é **muito curto**

3. MECANISMO de RACIOCÍNIO

O especialista definiu os seguintes operadores para o raciocínio *fuzzy* do modelo:

- Composição sup-t = sup-min (*matching* = possibilidade)
- Agregação dos Antecedentes = Min
- Semântica das Regras (ou implicação) = Min (regra de Mamdani)
- Agregação das Regras = Max
- Método de Defuzificação = MOM

Exercício 1)

a) Utilizando o toolbox do software Matlab implemente o modelo a seguir e defina a saída *crisp* considerando-se como entrada os valores *crisp*

$$x_1 = 60$$
 e $x_2 = 70$ y = _____

b) Quantas e quais regras foram ativadas considerando-se as entradas anteriores ?

Exercício 2) Modifique as entradas anteriores para os seguintes conjuntos de valores

x_1	x_2	y
10	70	
90	10	
0	40	
30	0	

Exercício 3) Visualize o mapeamento gerado pelo sistema fuzzy.

Exercício 4) Modifique os operadores do raciocício fuzzy para os seguintes valores

- Composição sup-t = sup-min (matching = possibilidade)
- Agregação dos Antecedentes = produto algébrico
- Semântica das Regras (ou implicação) = produto (regra de Larsen)
- Agregação das Regras = Soma
- Método de Defuzificação = CoG (centróide ou método do centro de gravidade)

E refaça os exercícios 1) 2) e 3) (Compare com os resultados obtidos)

Exercício 5) Salve o FIS (fuzzy inference system) no workspace com o nome MaqLav. Avalie agora no worksape o sistema MaqLav para o seguinte conjunto de entradas

$x_{_1}$	x_2	y
0	0	
0	10	
0	100	
10	0	
10	10	
10	100	
100	0	
100	10	_
		_
100	100	

Dica: Utilize a função evalfis para resolver o problema.

Descrição resumida da função evalfis

```
output= evalfis(input,fismat)

onde
    input é uma matriz LxN (L dados com N variáveis de entrada)
    fismat é um FIS que deve estar disponível no workspace
```

Dica utilize o seguinte código para gerar a entrada (input)

```
lin=1;
for(i=0:10:100),
  for(j=0:10:100),
    entrada(lin,:) = [i j];
    lin = lin+1;
    end
end

saida = evalfis(entrada,MaqLav);
```

Exercício 4) Refaça os Exercícios 1), 2), 3), 4) (dois primeiros itens) e 5) considerando agora

- o modelo TAKAGI-SUGENO de ordem ZERO
 - com as mesmas funções de pertinências das variáveis de entrada consideradas no modelo Mamdani
 - e com os seguintes conseqüentes:

Rj	$\mathbf{g}_{j}(\mathbf{w}_{j},\mathbf{x}) = k_{j}$
R1	0.5
R2	23
R3	42
R4	10
R5	26
R6	42
R7	27
R8	41
R9	60