PARCIAL 1: UD2 Y UD3

El esquema relacional representa el sistema de información de una cooperativa de taxis.

Taxi(matrícula: char(10), años: entero, km: entero, capacidad: char(15))

CP: {matrícula}

VNN: {km, capacidad, años}

Taxista(dni: char(10), nombre: char(50), tfno: char(10), dirección: char(50), edad: entero)

CP: {dni}

VNN: {nombre}

Taller(codt: char(5), nombre: char(50), CP: char(5), tfno: char(10), responsable: char(50))

CP: {codt}

VNN: {responsable}

Conduce(dni: char(10), matrícula: char(10), fecha: date, h_inicio: time, h_fin: time)

CP: {dni, fecha}
VNN: {matrícula}
CAj: {dni}→ Taxista

CAj: {matrícula}→ Taxi

VNN: {h_inicio}

Revision(codt: char(5), matrícula: char(10), fecha: date)

CP: {matrícula,fecha}

VNN:{codt}

CAj: {codt}→ Taller

CAj: {matrícula}→ Taxi

donde los atributos tienen el siguiente significado:

Taxi: matrícula: matrícula del coche

años: de antigüedad del coche

km: kilómetros que lleva recorridos el taxi

capacidad: cuántos pasajeros puede llevar como máximo

Taxista: *dni*: D.N.I. del taxista

nombre: nombre del taxista

edad: del taxista

tfno: teléfono particular del taxista dirección: dirección del taxista

Taller: codt: código del taller

nombre: nombre del taller CP: código postal del taller tfno: teléfono del taller

responsable: persona responsable del taller

Conduce: el taxista de DNI *dni* condujo (o conduce) el taxi de matrícula *matrícula* el día

fecha desde las h inicio hasta las h fin.

Revisión: el taller de código *codt* revisó el taxi de matrícula *matrícula* el día *fecha*.

Resuelva las siguientes cuestiones:

- 1) ¿Cuáles son las cuatro propiedades que aseguran el correcto procesamiento de transacciones? Enúmeralas y di en qué consisten dos de ellas (sólo dos) (0,5 puntos)
- 2) Escriba en SQL las instrucciones que permitirían resolver las siguientes consultas:
 - a) Obtener la matrícula y la capacidad del taxi de más de 10 años de antigüedad que más kilómetros ha recorrido. (0'5 puntos)
 - b) Obtener la matrícula y la capacidad de los taxis que no hayan pasado ninguna revisión y que sólo han sido conducidos por un taxista. (0'75 puntos)
 - c) Obtener el código y el nombre del taller que más taxis revisó en un mismo día. (puntos 0'75)
 - d) Obtener para cada taxi que hay en la base de datos, la matrícula, los años de antigüedad, la cantidad de revisiones que ha pasado y la cantidad de taxistas que lo han conducido. (0'75 puntos)
 - e) Obtener la matrícula y la capacidad de los taxis que hayan sido revisados por todos los talleres del código postal 46006 (si que es hay alguno). (0'75 puntos)

SOLUCIONES

1)

Las propiedades que aseguran el correcto procesamiento de transacciones son:

- Atomicidad: una transacción es una unidad atómica de ejecución en la que o se ejecutan todas sus operaciones o no se ejecuta ninguna.
- Consistencia: la transacción debe conducir a la base de datos de un estado consistente a otro estado consistente. Un estado consistente es aquel en el que se cumplen todas las restricciones de integridad especificadas en el esquema de la base de datos.
- Aislamiento: una transacción debe ejecutarse como si estuviera ejecutándose ella sola y no concurrentemente con otras transacciones.
- Persistencia: cuando una transacción es confirmada, sus cambios deben ser grabados sobre la base de datos y no deben perderse debido a fallos de otras transacciones o del sistema.

```
2)
 a)
SELECT T.matrícula, T.capacidad
FROM Taxi T
WHERE T.años>10 AND km = (SELECT MAX(T1.km)
                          FROM Taxi T1
                          WHERE T1.años>10);
 b)
SELECT T.matrícula, T.capacidad
FROM Taxi T
WHERE T.matrícula NOT IN (SELECT R.matrícula
                          FROM Revisión R)
      AND
      (SELECT COUNT (DISTINCT C.dni)
      FROM Conduce C
      WHERE C.matrícula=T.matrícula)=1;
 c)
SELECT T.codt, T.nombre
FROM Taller T
WHERE T.codt IN (SELECT codt
                FROM Revisión R
                GROUP BY R.codt, R.fecha
                HAVING COUNT(R.matrícula) =
                        (SELECT MAX (COUNT (R1.matrícula))
                          FROM Revisión R1
                          GROUP BY R1.codt, R1.fecha);
 d)
/*SOLUCIÓN 1*/
SELECT T.matrícula, T.años, COUNT(DISTINCT R.fecha),
        COUNT (DISTINCT dni)
FROM Taxi T LEFT JOIN Revisión R ON T.matrícula=R.matrícula
            LEFT JOIN Conduce C ON T.matrícula=C.matrícula
GROUP BY T.matrícula, T.años;
```

```
/*SOLUCIÓN 2*/
SELECT T.matrícula, T.años, (SELECT COUNT(R.fecha)
                            FROM Revisión R
                            WHERE T.matrícula=R.matrícula),
                             (SELECT COUNT (DISTINCT (ni)
                            FROM Conduce C
                            WHERE T.matrícula=C.matrícula)
FROM Taxi T;
 e)
SELECT T.matrícula, T.capacidad
FROM Taxi T
WHERE NOT EXISTS (SELECT *
                 FROM Taller X
                  WHERE X.CP='46006' AND
                        NOT EXISTS (SELECT *
                                    FROM Revision R
                                    WHERE T.matrícula=R.matrícula AND
                                         R.codt=X.codt) AND
     EXISTS (SELECT * FROM Taller X1 WHERE X1.CP='46006');
```