This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY

As rescanning documents will not correct images please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05235446 A

(43) Date of publication of application: 10.09.93

(21) Application number: 04039255 (71) Applicant: RICOH CO LTD

(22) Date of filing: 26.02.92 (72) Inventor: TAKEYAMA YOSHINOBU EMA HIDETOSHI ISHIDA MASAAKI

(54) SEMICONDUCTOR LASER DRIVE CONTROL CIRCUIT

(57) Abstract:

PURPOSE: To prevent the missetting of a luminous level command signal by surge current at the time of power application and under unstable circuit conditions, by comparing the magnitudes of a constant potential and a potential of a power voltage minus a constant voltage, and generating a timing signal for generating a luminous level command signal, when the constant potential side s smaller.

CONSTITUTION: A power voltage monitor circuit 9 compares the magnitudes of a constant potential and a potential of a power voltage Vcc minus a constant voltage, and judges whether or not the power voltage Vcc is higher than a specified potential. If the constant potential is lower, a timing signal generator circuit 10 is started. On the other hand, if the constant potential is higher, a specified command signal is outputted to a comparison amplifier 2 and a current transformer 7, and control is performed so that driving current may not flow in a semiconductor laser 3. Consequently, it becomes possible to drive the semiconductor laser stably without missetting caused by the variance of the power

voltage and the changes of the surrounding temperature.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公 開 特 許 公 報 (A)

(11)特許出顧公開番号

特開平5-235446

(43)公開日 平成5年(1993)9月10日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H01S 3/096

7131-4M

審査請求 未請求 請求項の数6(全 9 頁)

(21)出願番号	特願平4-39255	(71)出顯人	000006747 株式会社リコー
(22)出願日	平成4年(1992)2月26日	(72)発明者	東京都大田区中馬込1丁目3番6号 竹山 佳伸
			東京都大田区中馬込1丁目3番6号 株式 会社リコー内
		(72)発明者	江間 秀利 東京都大田区中馬込1丁目3番6号 株式 会社リコー内
		(72) 発明者	石田 雅章 東京都大田区中馬込1丁目3番6号 株式 会社リコー内
		(74)代理人	弁理士 柏木 明 (外1名)

(54) 【発明の名称】 半導体レーザ駆動制御回路

(57)【要約】

【目的】 電源投入時のサージ電流や回路不安定状態での、発光レベル指令信号の誤設定を防止し、高い制御精度を簡易な構成で達成すること。

【構成】 受光素子4で検知の受光信号と第1の発光レベル指令信号S1とが等しくなるように半導体レーザ3の順方向電流を制御する光・電気負帰還ループ5と、受光信号と発光レベル指令信号S1とが等しくなるように半導体レーザ3の光出力・順方向電流特性等の特性に基づいた第2の発光レベル指令信号S2を順方向電流に変換する変換手段7とを備え、光・電気負帰還ループ5の制御電流と変換手段7で生成の電流との和電流で半導体レーザ3を駆動制御するものにおいて、一定電位と電源電圧Vccから一定電圧降下した電位との大小を比較する電位比較部を有する電源電圧監視回路9と、一定電位側が小さい時に起動されて発光レベル指令信号S2生成用のタイミング信号を生成するタイミング信号発生回路10とを設けた。

【特許請求の範囲】

【請求項1】 半導体レーザの光出力を受光検知する受 光素子と、この受光素子により検知されて得られる半導 体レーザの光出力に比例した受光信号と第1の発光レベ ル指令信号とが等しくなるように前配半導体レーザの順 方向電流を制御する光・電気負帰還ループと、前配受光 信号と前記第1発光レベル指令信号とが等しくなるよう に前記半導体レーザの光出力・順方向電流特性、前記受 光素子と前記半導体レーザの光出力との結合係数、及び 前記受光素子の光入力・受光信号特性に基づいた第2の 10 発光レベル指令信号を前記半導体レーザの順方向電流に 変換する変換手段とを備え、前記光・電気負帰還ループ の制御電流と前記変換手段により生成された電流との和 電流により前記半導体レーザを駆動制御するようにした 半導体レーザ駆動制御回路において、一定電位と電源電 圧から一定電圧降下した電位との大小を比較する電位比 較部を有する電源電圧監視回路と、前記一定電位側が小 さい時に起動されて前記第2の発光レベル指令信号を生 成するためのタイミング信号を生成するタイミング信号 発生回路とを設けたことを特徴とする半導体レーザ駆動 20 制御回路。

【請求項2】 電位比較部による比較の結果、一定電位 側が大きい時には半導体レーザに対する駆動電流を遮断 するスイッチ素子を有する電源電圧監視回路としたこと を特徴とする請求項1記載の半導体レーザ制御回路。

【請求項3】 ダイオード接続された第1トランジスタ のベースとこの第1トランジスタのエミッタ面積より小 さいエミッタ面積を有する第2トランジスタのベースと を接続し、前記第1トランジスタのエミッタを第1抵抗 を介して前記第2トランジスタのエミッタに接続し、前 30 記第1トランジスタのコレクタを第2抵抗を介して前記 第2トランジスタのコレクタに接続してこの第2トラン ジスタのエミッタ・コレクタ間に一定電圧を生成する2 つの電圧生成部と、負端子側がグランドに接続された一 方の電圧生成部の正端子と電源との間に接続した第3抵 抗と第4抵抗との接続中点に一方の入力が接続され、正 端子が電源に接続された他方の電圧生成部の負端子とグ ランドとの間に接続した第5抵抗と定電流源との接続中 点に他方の入力が接続された2入力差動スイッチによる 電位比較部とを有する電源電圧監視回路としたことを特 徴とする請求項1又は2記載の半導体レーザ駆動制御回 路。

【請求項4】 一定電圧を生成する2つの電圧生成部と、負端子側がグランドに接続された一方の電圧生成部の正端子と電源との間に接続した第1抵抗と第2抵抗との接続中点に一方の入力が接続され、正端子が電源に接続された他方の電圧生成部の負端子に第3抵抗を介して他方の入力が接続された2入力差動スイッチによる電位比較部と、この2入力差動スイッチの片方の入出力間に接続されたカレントミラーとを有する電源電圧監視回路 50

としたことを特徴とする請求項1又は2記載の半導体レーザ駆動制御回路。

【請求項5】 回路起動後、光・電気負帰還ループの制御時間よりも長く設定された一定時間だけタイミング信号を発生させるタイミング信号発生回路としたことを特徴とする請求項1,2,3又は4記載の半導体レーザ駆動制御回路。

【請求項6】 タイミング信号の発生期間中は、半導体レーザの光出力が最大となるように第1の発光レベル指令信号を強制的に最大レベルとさせる発光レベル指令信号生成手段を設けたことを特徴とする請求項5記載の半導体レーザ駆動制御回路。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、レーザプリンタ、レーザファクシミリ等のように半導体レーザを用いた光書込み装置に用いられる半導体レーザ駆動制御回路に関する。

[0002]

【従来の技術】半導体レーザは小型であり、かつ、駆動 電流により高速変調を直接行えることから、近年、レー ザプリンタ等の光書込み装置の光源として広く利用され ている。

【0003】ここに、半導体レーザはその光出力・順方向電流特性が温度により著しく変化するので、半導体レーザの光出力を所望値に設定しようとする場合に問題となる。そこで、種々のAPC回路(自動パワー制御回路)が提案されているが、中でも、光・電気負帰還ループを利用した特開平2-205375号公報に示されるような駆動制御方式が、高速・高精度・高分解能の点で有望といえる。

【0004】一方、半導体レーザを駆動させる場合、電源投入時におけるサージ電流や回路不安定状態での過大電流による半導体レーザの劣化を防止するため、通常は、スタートアップ回路等の半導体レーザ保護回路が設けられている。

[0005]

【発明が解決しようとする課題】ところが、このような 保護回路の多くは、コイル、コンデンサ等でフィルタを 形成したものであり、フィルタ値が大きな値になるた め、駆動制御回路を構成するIC内部に組み込めず、外 付け部品となり、回路の実装面積が大きくなってしま う。これでは、小型である半導体レーザの特徴を損なう ものとなる。

[0006]

【課題を解決するための手段】請求項1記載の発明では、半導体レーザの光出力を受光検知する受光素子と、この受光素子により検知されて得られる半導体レーザの光出力に比例した受光信号と第1の発光レベル指令信号とが等しくなるように前記半導体レーザの順方向電流を

制御する光・電気負帰還ループと、前記受光信号と前記第1発光レベル指令信号とが等しくなるように前記半導体レーザの光出力・順方向電流特性、前記受光素子と前記半導体レーザの光出力との結合係数、及び前記受光素子の光入力・受光信号特性に基づいた第2の発光レベル指令信号を前記半導体レーザの順方向電流に変換する変換手段とを備え、前記光・電気負帰還ループの制御電流と前記変換手段により生成された電流との和電流により前記半導体レーザを駆動制御するようにした半導体レーザ駆動制御回路において、一定電位と電源電圧から一定電圧降下した電位との大小を比較する電位比較部を有する電源電圧監視回路と、前記一定電位側が小さい時に起動されて前記第2の発光レベル指令信号を生成するためのタイミング信号を生成するタイミング信号を生成するタイミング信号を生成するタイミング信号を生成するタイミング信号を生成するとを設けた。

【0007】請求項2記載の発明では、請求項1記載の発明の電源電圧監視手段を、電位比較部による比較の結果、一定電位側が大きい時には半導体レーザに対する駆動電流を遮断するスイッチ素子を有するものとした。

【0008】これらの発明において、請求項3記載の発 20 明では、ダイオード接続された第1トランジスタのベー スとこの第1トランジスタのエミッタ面積より小さいエ ミッタ面積を有する第2トランジスタのベースとを接続 し、前記第1トランジスタのエミッタを第1抵抗を介し て前記第2トランジスタのエミッタに接続し、前記第1 トランジスタのコレクタを第2抵抗を介して前記第2ト ランジスタのコレクタに接続してこの第2トランジスタ のエミッタ・コレクタ間に一定電圧を生成する2つの電 圧生成部と、負端子側がグランドに接続された一方の電 圧生成部の正端子と電源との間に接続した第3抵抗と第30 4抵抗との接続中点に一方の入力が接続され、正端子が 電源に接続された他方の電圧生成部の負端子とグランド との間に接続した第5抵抗と定電流源との接続中点に他 方の入力が接続された2入力差動スイッチによる電位比 較部とを有する電源電圧監視回路とした。

【0009】また、請求項4記載の発明では、一定電圧を生成する2つの電圧生成部と、負端子側がグランドに接続された一方の電圧生成部の正端子と電源との間に接続した第1抵抗と第2抵抗との接続中点に一方の入力が接続され、正端子が電源に接続された他方の電圧生成部の負端子に第3抵抗を介して他方の入力が接続された2入力差動スイッチによる電位比較部と、この2入力差動スイッチの片方の入出力間に接続されたカレントミラーとを有する電源電圧監視回路とした。

【0010】さらに、請求項5記載の発明では、回路起動後、光・電気負帰還ループの制御時間よりも長く設定された一定時間だけタイミング信号を発生させるタイミング信号発生回路とした。

【0011】請求項6記載の発明では、タイミング信号 の発生期間中は、半導体レーザの光出力が最大となるよ 50

うに第1の発光レベル指令信号を強制的に最大レベルと させる発光レベル指令信号生成手段を設けた。

[0012]

【作用】請求項1記載の発明によれば、電源電圧監視回路を設けて、一定電位と電源電圧から一定電圧降下した電位との大小を比較し、一定電位のほうが小さくて電源電圧が所定値であることを確認してから、タイミング信号発生回路を起動させてタイミング信号を出力させ、このタイミングで半導体レーザの光出力・順方向電流特性等に基づいた第2の発光レベル指令信号を生成させることで、電源電圧のバラツキや環境温度変化による誤設定のない、安定した半導体レーザの駆動が可能となる。

【0013】この際、請求項2記載の発明では、一定電位のほうが大きい時には電源電圧がまだ所定電圧以下であると判断してスイッチ素子により半導体レーザの駆動電流を遮断するので、簡易で実装面積を小さくし得る電源電圧監視回路を付加するだけで、電源投入時の半導体レーザの劣化を防止し、高速・高精度・高分解能な駆動制御機能を安定して発揮させることができる。

【0014】また、請求項3記載の発明によれば、このような機能を果たす電源電圧監視回路を電圧生成部を含めてトランジスタと抵抗だけで構成したので、駆動制御回路用のIC内部に組み込むことも可能となり、小型化を促進し得るものとなる。

【0015】一方、請求項4記載の発明によれば、電位 比較部をなす2入力差動スイッチの片側出力としてカレ ントミラーを設けて、このカレントミラー出力による電 圧を2入力差動スイッチの片側の入力電圧として加える ようにしたので、2入力差動スイッチのスイッチングが より高速に行われるものとなり、電源電圧監視が良好に 行なわれる。

【0016】さらに、請求項5記載の発明によれば、電源立上げ時の一定時間内において常に半導体レーザの光出力・順方向電流特性等に基づいた電流の設定を行うので、経時変化や環境温度変化などがあっても、良好なる変換電流が得られ、光出力の高速制御が可能なものとなる。

【0017】また、請求項6記載の発明によれば、タイミング信号発生期間中には半導体レーザの光出力が最大となるように第1の発光レベル指令信号を強制的に最大レベルとさせて半導体レーザの光出力・順方向電流特性等に基づいた電流の設定を行うので、設定光量のフルスケールにおける如何なる光量に対しても最適な変換電流が得られ、やはり、光出力の高速制御が可能となる。

[0018]

【実施例】本発明の一実施例を図面に基づいて説明する。まず、発光レベル指令信号生成手段となるD/A変換器1により生成された第1の発光レベル指令信号S1は比較増幅器2に入力され、制御対象となる半導体レーザ3の光出力の一部が受光素子4によりモニタされる。

ここに、比較増幅器 2 と半導体レーザ3 と受光素子4 とは光・電気負帰還ループ5 を形成しており、比較増幅器 2 は受光素子4 に誘起された光起電流(半導体レーザ3 の光出力に比例する)に比例する受光信号と前記第1の発光レベル指令信号 S₁ とを比較して、その結果により半導体レーザ3 の順方向電流を受光信号と第1の発光レベル指令信号 S₁ とが等しくなるように制御する。

【0019】また、D/A変換器6により生成された第2の発光レベル指令信号S2が入力される電流変換器(変換手段)7が設けられている。この電流変換器7は10前記受光信号と第1の発光レベル指令信号S1とが等しくなるように、半導体レーザ3の光出力・順方向電流特性、受光素子4と半導体レーザ3の光出力との結合係数、及び、受光素子4の光入力・順方向電流特性に基づき設定回路8で予め設定された電流に比例した第2の発光レベル指令信号S2に従い、半導体レーザ3の順方向電流を出力するものである。よって、この電流変換器7の出力電流と比較増幅器2から出力される制御電流との和電流が半導体レーザ3の順方向電流となって制御されることになる。20

【0020】このような半導体レーザ制御回路に対して、本実施例では、電源電圧監視回路9とタイミング信号発生回路10とが付加されている。この電源電圧監視回路9は一定電位と、電源電圧Vccから一定電圧降下した電位との大小を比較することで、電源電圧Vccが所定電位以上であるか否かを判断する機能を有し、一定電位のほうが小さければ電源電圧Vccが所定電位以上に立上っていると判断し、前記タイミング信号発生回路10に信号を出力してこのタイミング信号発生回路10に信号を出力してこのタイミング信号発生回路10を起動させる機能を持つ。前記設定回路8は起動されたタイミング信号発生回路10から出力されるタイミング信号により上述したような設定を行うことになる。

【0021】一方、本実施例の電源電圧監視回路9は、電位比較の結果、一定電位のほうが大きい状態では電源電圧Vccがまだ所定電位以下であると判断して、前記比較増幅器2及び電流変換器7に所定の指令信号を出力し、半導体レーザ3に駆動電流が流れないように制御する機能も有する。

【0022】このような機能を果たす電源電圧監視回路 9は、例えば図2に示すように構成される。まず、電位 40 比較部を形成する2入力差動スイッチ11が定電流源1 2を介して電圧Vccなる電源に接続されている。2入力 差動スイッチ11を構成する一方のトランジスタQ1の ベース(一方の入力)は、電源と負端子側がグランドに 接続された一定電圧Vrの電圧生成部13の正端子との*

 $Vs = (2+R_2/R_1) \cdot Vr + (1+R_2/R_1) \cdot V_2 \cdots (1)$

のように設定される。

【0027】また、電源電圧Vccが

 $Va \leq Vcc - Vb$

なる関係を満たすようになり、電源電圧Vccが(1)式で 50 れ、タイミング信号発生回路10を起動させることにな

*間に直列に接続した抵抗R₁, R₂の接続中点に接続されている。即ち、トランジスタQ₁ のベースには抵抗R₂を介して一定電位Vrが与えられている。また、2入力差動スイッチ11を構成する他方のトランジスタQ₂ のベース(他方の入力)は、正端子が電源に接続された一定電圧Vr の電圧生成部14の負端子とグランドとの間に直列に接続した抵抗R₃ と定電流源15との接続中点に接続されている。即ち、トランジスタQ₂のベースには電源電圧Vccから一定電圧降下した電位(Vcc-Vr) が与えられている。

6

【0023】また、2入力差動スイッチ11の一方のトランジスタQ1のコレクタには、ダイオード接続されたトランジスタQ3が接続され、トランジスタQ4とカレントミラー16が形成されている。このトランジスタQ4からの出力信号(コレクタ電流i)が前記タイミング信号発生回路10に入力され、このタイミング信号発生回路10を起動させるものとなる。

【0024】一方、2入力差動スイッチ11の他方のト

ランジスタQ2 のコレクタにはダイオード接続されたト ランジスタQ5 が接続され、請求項2記載の発明にいう スイッチ素子となるトランジスタQ6 とカレントミラー 17が形成されている。このトランジスタQ6 の出力 (コレクタ)は前記半導体レーザ3に対する駆動トラン ジスタQ7 による駆動電流を制御するための比較増幅器 2及び電流変換器7内の制御部d点に接続されている。 ここに、d点に接続されたトランジスタQg のベース a には発光レベル指令信号に対応した信号が入力される。 【0025】このような構成において、その動作を説明 する。まず、抵抗R2 の端子間電圧をV1、抵抗R3の端 子間電圧をV2とすると、トランジスタQ1のベースはグ ランドに対して一定電圧Va (=Vr+V1)上がった電 位であるのに対し、トランジスタQ2のベースは電源電 圧Vccから一定電圧Vb(=Vr+V2)下がった電位で あるので、電源電圧Vccが

Va >Vcc-Vb

なる関係を満たすと、トランジスタQ2のベース電位が、トランジスタQ1のベース電位よりも低いため、トランジスタQ1がオフ状態でトランジスタQ2がオン状態となる。よって、カレントミラー17、即ちトランジスタQ5、Q6に電流が流れ、トランジスタQ6により d点の電位を引下げるので、駆動トランジスタQ7がオフし、半導体レーザ3には駆動電流が流れない。【0026】ここに、2入力差動スイッチ11がスイッチングする電位Vs は、

求められる電位Vs 以上となると、トランジスタQ1側がオンしトランジスタQ2側がオフすることで、定電流源12の電流I0に比例した電流がトランジスタQ4に流

る。同時に、トランジスタQ6 が関与しない状態となり、 d 点の電位がトランジスタQ6 により制御されるものとなる。即ち、図1で説明したように、半導体レーザ3には発光レベル指令信号に応じた駆動電流が流れ、所望の光出力が得られるものとなる。

【0028】ところで、電源電圧監視回路9中に含まれる電圧生成部13,14としては、図3に示すようにトランジスタと抵抗とにより構成することができる。これは、請求項3記載の発明に相当するものである。即ち、ダイオード接続されたトランジスタQ9のベースとトランジスタQ10のベースとを接続し、トランジスタQ9のエミッタを抵抗R4を介してトランジスタQ10のエミッタに接続し、トランジスタQ9のコレクタを抵抗R5を介してトランジスタQ10のコレクタに接続してこのトランジスタQ10のエミッタ・コレクタ間に一定電圧Vrを生成させるようにしたものである。ここに、トランジスタQ9のエミッタ面積はトランジスタQ10のエミッタ面積のk倍(kは1よりも大きな値)とされている。

【0029】このような電圧生成部13,14の構成において、いま、電源電圧VccがトランジスタQgのバンドギャップ以上の電圧であり、トランジスタQg、Q10の各々のベース・エミッタ間電圧をVBE(Qg),VBE(Q10)とすると、抵抗R4の端子間電圧Ve は、Vt = 0.08617×絶対温度(mv)とすると、

 $Ve = V_{BE}(Q_{10}) - V_{BE}(Q_{9}) = V t \cdot 1 n(k)$ となる。従って、トランジスタ Q_{10} のエミッタ・コレク タ間に発生する電圧 V_{r} は、

 $Vr = Ve + V_{BE}(Qg) + (R_5/R_4) / Ve$ = $(1+R_5/R_4) \cdot Vt \cdot 1n(k) + V_{BE}(Qg)$ として求まり、抵抗比 R_5/R_4 とトランジスタQg, Q10 のエミッタ面積比kとにより、ほぼ一定となることが判る。

【0030】よって、図2に示した電源電圧監視回路9において、電圧生成部13,14を図3のような回路構成のものとすれば、全てをトランジスタと抵抗とにより構成できるものとなり、半導体レーザ駆動制御回路用のIC内部に組み込めるものとなり、小型化が促進される。

【0031】ところで、電源投入時に電源電圧Vccが徐々に立ち上がる場合を考える。電源電圧Vccがトランジ 40 スタQg のバンドギャップ以下の電圧でトランジスタQ 10による一定電圧Vrが生成されない状態では、トランジスタQ1のベース電位は抵抗R1により電源電圧Vccに従い上昇するが、トランジスタQ2のベース電位は電源に接続された電圧生成部14がオフ状態であり定電流源15にも電流が流れないため、ほぼ0であり、トランジスタQ2がオン状態となる。即ち、一定電圧Vrが生成されない場合であっても、2入力差動スイッチ11においてトランジスタQ2 側のオンが確保され、半導体レーザ3に電流が流れないものとなり、回路不安定状態での過50

大電流による半導体レーザ3の劣化が確実に防止される。一定電圧Vr が生成された後は、前述したように(1)式の関係を電源電圧Vccが満たすまでトランジスタQ2 側のオン状態、即ち半導体レーザ3の駆動電流遮断状態が維持される。

【0032】さらに、電源電圧監視回路9に関しては、 図4に示すように、図2に示した定電流源15に代え て、トランジスタQ11を設け、トランジスタQ5, Q11 によるカレントミラー18をトランジスタQ2の入出力 間(コレクタ・ベース間)に接続したものとしてもよ い。これは、請求項4記載の発明に相当する。

【0033】このような構成によれば、電源電圧Vccが 設定電位近傍に達すると、トランジスタQ5 に流れる電 流が減少し、これに伴いトランジスタQ11に流れる電流 も減少する。すると、抵抗R3による電圧降下が減少す るため、トランジスタQ2のベース電位が上昇し、トラ ンジスタQ2がオフしトランジスタQ1がオンするスイッ チング動作が素早く行なわれ、通常の駆動制御に移行す るものとなる。

20 【0034】また、本実施例で用いるタイミング発生回路10としては、例えば図5に示すように構成される。即ち、電源電圧監視回路9中のトランジスタQ4からの電流iが入力されて時定数τ0=C0R0なる時定数回路19が接続されたコンパレータ20と、時定数τ1=C1R1なる時定数回路21が接続されたコンパレータ22とを2段接続し、各々のコンパレータ20,22がタイミング信号t0,t1をを出力するようにしたものである。

【0035】このような構成において、トランジスタQ 4 から電流iが入力されると、時定数回路19の時定数 τ0で電圧V0に変換されてコンパレータ20に入力される。ここで、設定電位Vthを越えると、図6に示すよう にタイミング信号t0 が生成される。さらに、このタイミング信号t0 は容量C1を時定数τ1で充電し、その充電電位V1 が設定電位Vthを越えると、図6に示すよう にコンパレータ22によりタイミング信号t1 が生成出力される。

【0036】設定回路8ではこのようなタイミング信号が発生している期間 t、即ち、t=t1-t0の期間中に、半導体レーザ3の光出力・順方向電流特性、受光素子4と半導体レーザ3の光出力との結合係数、及び受光素子4の光入力・受光信号特性に基づいた信号を設定するものとなる。タイミング信号 t1以降は、入力データによる設定信号に比例した第2の発光レベル指令信号S2に応じて、電流変換器7が半導体レーザ3の駆動電流に変換して出力する。ここに、タイミング信号 t の発生期間は、光・電気負帰還ループ5の制御時間よりも長く設定されている。よって、電源立上げ時には、常に、一定期間 t 内で、半導体レーザ3の光出力・順方向電流特性等に基づいて電流の設定が行われるものとなり、経時

変化や環境温度変化があっても、良好なる変換電流が得られるものとなり、光出力の高速制御が可能となる。

【0037】ついで、第1の発光レベル指令信号S1を 生成するためのD/A変換器(発光レベル指令信号生成 手段) 1の具体的構成例を図7に示す。このD/A変換 器1は、一方のトランジスタのベース端子に外部からの 入力データDが入力された2入力差動スイッチ23と定 電流源24とによる入力部D/A25と、一方のトラン ジスタのベース端子が2入力差動スイッチ23の入力デ ータD側トランジスタのコレクタに接続され他方のトラ 10 ンジスタのベース端子に制御信号Aが入力された2入力 差動スイッチ26と定電流源27とによる制御部D/A 28と、一方のトランジスタのベース端子が2入力差動 スイッチ23の入力データD側でないトランジスタのコ レクタに接続され他方のトランジスタのベース端子に制 御信号Bが入力された2入力差動スイッチ29と定電流 源30とによる制御部D/A31と、これらの制御部D **/A28,31にベース端子が接続された2つのトラン** ジスタQ12, Q13による2入力差動スイッチ32と定電 流源33による出力部D/A34とにより構成され、ト ランジスタQ12のコレクタから第1の発光レベル指令信 号S₁ が取出される。ここに、制御信号A, Bはタイミ ング信号 to, toのタイミングで制御されるものであ

【0038】このような構成により、基本的には、外部からの入力データDをD/A変換することで第1の発光レベル指令信号 S_1 が得られる。ここに、タイミング信号 t_0 が発生するまでは制御信号AはLレベル、制御信号BはHレベルであり、入力データDに関係なく、回路内部のデータ、即ち、出力部D/A34のトランジスタ Q_{12} のベース電位レベルがLレベルとなり、第1の発光レベル指令信号 S_1 は最小レベルとなり、半導体レーザ3にはオフセット電流が流れるだけとなる。

【0039】ついで、タイミング信号t0 が発生する と、制御信号AがHレベル、制御信号BがLレベルとな り、入力データDに関係なく、出力部D/A34のトラ ンジスタQ12のベース電位レベルがHレベルとなり、第 1の発光レベル指令信号S1 は最大レベルとなり、半導 体レーザ3にはこの第1の発光レベル指令信号S1 によ って定められた最大の駆動電流が流れることになる。設 定回路8はこのような半導体レーザ3の駆動電流の変化 量を検出し、回路内の基準電流とこの変化電流との大小 を比較することにより、前述したような信号の設定を行 う。実際の回路では、入力データDは5ビットであり、 図7に示すような回路が5個並列に接続されて構成され る。よって、タイミング信号tの発生中に、入力データ Dに関係なく、常に設定できる最大の光量(5ビットデ ータが全てH)で電流設定を行うので、設定光量のフル スケールにおける、如何なる光量に対しても最適な変換 電流が得られるものとなる。

10

【0040】 さらに、タイミング信号 t_1 が発生すると 制御信号A、BはともにLレベルとなり、出力部D/A 340トランジスタ Q_{12} 、 Q_{13} は外部からの入力データ Dを受付け、この入力データDに応じて第10発光レベル指令信号 S_1 を出力する。

【0041】なお、D/A変換器 6 側も図 7 に示すような構成のものであり、 $タイミング信号 t_0$, t_1 に基づき第2の発光レベル指令信号 S_2 が制御される。

[0042]

【発明の効果】本発明は、上述したように構成したので、請求項1記載の発明によれば、電源電圧監視回路を設けて、一定電位と電源電圧から一定電圧降下した電位との大小を比較し、一定電位のほうが小さくて電源電圧が所定値であることを確認してから、タイミング信号発生回路を起動させてタイミング信号を出力させ、このタイミングで半導体レーザの光出力・順方向電流特性等に基づいた第2の発光レベル指令信号を生成させるようにしたことにより、電源電圧のバラツキや環境温度変化による誤設定のない、安定した半導体レーザの駆動を可能とすることができる。

【0043】この際、請求項2記載の発明では、一定電位のほうが大きい時には電源電圧がまだ所定電圧以下であると判断してスイッチ素子により半導体レーザの駆動電流を遮断する電源電圧監視回路としたので、簡易で実装面積を小さくし得る電源電圧監視回路を付加するだけで、電源投入時の半導体レーザの劣化を防止し、高速・高精度・高分解能な駆動制御機能を安定して発揮させることができる。

【0044】また、請求項3記載の発明によれば、このような機能を果たす電源電圧監視回路を電圧生成部を含めてトランジスタと抵抗だけで構成したので、駆動制御回路用のIC内部に組み込むことも可能となり、小型化を促進することができる。

【0045】一方、請求項4記載の発明によれば、電位 比較部をなす2入力差動スイッチの片側出力としてカレントミラーを設けて、このカレントミラー出力による電 圧を2入力差動スイッチの片側の入力電圧として加える ようにしたので、2入力差動スイッチのスイッチングが より高速に行われるものとなり、電源電圧監視を良好に 行い得るものとなる。

【0046】さらに、請求項5記載の発明によれば、電源立上げ時の一定時間内において常に半導体レーザの光出力・順方向電流特性等に基づいた電流の設定を行うようにしたので、経時変化や環境温度変化などがあっても、良好なる変換電流が得られ、光出力の高速制御を可能とすることができる。

【0047】また、請求項6記載の発明によれば、タイミング信号発生期間中には半導体レーザの光出力が最大となるように第1の発光レベル指令信号を強制的に最大 りベルとさせて半導体レーザの光出力・順方向電流特性 11

等に基づいた電流の設定を行うようにしたので、設定光 量のフルスケールにおける如何なる光量に対しても最適 な変換電流が得られ、やはり、光出力の高速制御を可能 とすることができる。

【図面の簡単な説明】

- 【図1】本発明の一実施例を示すブロック図である。
- 【図2】その電源電圧監視回路を示す回路図である。
- 【図3】電圧生成部を示す回路図である。
- 【図4】電源電圧監視回路の変形例を示す回路図であ

る。

- 【図5】タイミング信号発生回路を示す回路図である。
- 【図6】その動作を示すタイミングチャートである。
- 【図7】D/A変換器構成を示す回路図である。

【符号の説明】

- 1 発光レベル指令信号生成手段
- 3 半導体レーザ
- 4 受光素子

- 5 光・電気負帰還ループ
- 7 変換手段
- 9 電源電圧監視回路
- 10 タイミング信号発生回路
- 11 2入力差動スイッチによる電位比較部

12

- 13 電圧生成部
- 14 電圧生成部
- 15 定電流源
- 17 カレントミラー
- 10 Q6 スイッチ素子
 - 40 20122383
 - Q9 第1トランジスタ Q10 第2トランジスタ
 - R₁ 第3抵抗
 - VI 25.0160V
 - R₂ 第4抵抗
 - R3 第5抵抗
 - R4 第1抵抗
 - R₅ 第2抵抗

【図1】

【図3】

【図5】

【図6】

【図2】

【図4】

【図7】

