Econometría I Esperanza Condicional y Modelo Lineal de Regresión

Ramiro de Elejalde

Facultad de Economía y Finanzas Universidad Alberto Hurtado

Outline

Esperanza condicional

Ley de esperanzas iteradas

Descomposición

Mejor predicción

Descomposición de varianza

Modelo de regresión lineal

Descomposición

Regresión particionada

Justificación de utilizar el modelo de regresión

Descomposición de varianza

Referencias: Cap. 3.1.1 y 3.1.2 de Angrist and Pischke, cap. 2 de Hansen y cap. 2 de Wooldridge.

En esta unidad, identificamos momentos poblacionales para medir el efecto causal de interés.

Ejemplo: ¿Cuál es el efecto causal de un año adicional de educación en salarios?

En esta unidad, identificamos momentos poblacionales para medir el efecto causal de interés.

Ejemplo: ¿Cuál es el efecto causal de un año adicional de educación en salarios?

Suponemos que hay asignación aleatoria al grupo tratamiento o control.
 ¿Qué momento poblacional mide el efecto de un año adicional de educación en salarios?

En esta unidad, identificamos momentos poblacionales para medir el efecto causal de interés.

Ejemplo: ¿Cuál es el efecto causal de un año adicional de educación en salarios?

- Suponemos que hay asignación aleatoria al grupo tratamiento o control.
 ¿Qué momento poblacional mide el efecto de un año adicional de educación en salarios?
 - ⇒ Esperanza condicional

→ educación-salarios

En esta unidad, identificamos momentos poblacionales para medir el efecto causal de interés.

Ejemplo: ¿Cuál es el efecto causal de un año adicional de educación en salarios?

- Suponemos que hay asignación aleatoria al grupo tratamiento o control.
 ¿Qué momento poblacional mide el efecto de un año adicional de educación en salarios?
 - ⇒ Esperanza condicional

▶ educación-salarios

En esta unidad, identificamos momentos poblacionales para medir el efecto causal de interés.

Ejemplo: ¿Cuál es el efecto causal de un año adicional de educación en salarios?

- Suponemos que hay asignación aleatoria al grupo tratamiento o control.
 ¿Qué momento poblacional mide el efecto de un año adicional de educación en salarios?
 - ⇒ Esperanza condicional

▶ educación-salarios

⇒ Modelo de Regresión Lineal: Es la mejor aproximación lineal a la esperanza condicional.

▶ educación-salarios

Repaso de estadística

Repaso de estadística

Población

El grupo o colección de todos los posibles elementos de interés. Pensamos en la población como infinitamente grande.

• Variable aleatoria y

Resumen numérico de un resultado aleatorio.

Función de probabilidad de y

Probabilidad que y asuma distintos valores en la población: Pr(y = t).

Repaso de estadística

- Esperanza o media poblacional: $\mu = \mathbb{E}(y) = \sum_t t \ \mathsf{Pr}(y=t)$.
 - Propiedades: La esperanza es un operador lineal. $\mathbb{E}(a+bx) = a+b\,\mathbb{E}(x)$
- Varianza: $\sigma^2 = \text{Var}(y) = \mathbb{E}[(y \mathbb{E}(y))^2]$
 - Propiedades $Var(y) = \mathbb{E}(y^2) \mathbb{E}(y)^2$ $Var(a + bx) = b^2 Var(x)$ $Var(bx + cy) = b^2 Var(x) + c^2 Var(y) + 2bc Cov(x, y)$

Función de probabilidad conjunta y condicional

- Función de probabilidad conjunta de x, y: Probabilidad que x e y asuman distintos valores en la población Pr(x = u, y = t).
 - Función de probabilidad marginal de y: $Pr(y = t) = \sum_{u} Pr(x = u, y = t)$
- Función de probabilidad condicional

La probabilidad de y dado un valor de otra variable aleatoria x: $Pr(y|x) = \frac{Pr(y,x)}{Pr(x)}$.

Definición

La esperanza condicional de la variable dependiente y dado un vector de K variables explicativas $x = (x_1, ..., x_K)$ es la media poblacional de y manteniendo fijas las x's.

• Si $\mathbb{E}|y| < \infty$, la función de esperanza condicional de y dado x = u es

$$\mathbb{E}(y|x=u) = \int t f_{y|x}(t|u) dt$$

para y continua, y

$$\mathbb{E}(y|x=u) = \sum_{t} t \Pr(y=t|x=u)$$

para y discreta.

Ejemplo: Educación y salarios

Cuadro 1: Función de esperanza condicional

	$\mathbb{E}(\textit{ahe} \textit{bachelor})$	Pr(bachelor)
bachelor=0	15.33	0.52
$\mathit{bachelor} = 1$	22.91	0.48

Ejemplo: Educación y salarios

Figura 1: Esperanza condicional del log salarios semanales dado el nivel educativo. La muestra incluye hombres blancos entre 40 y 49 años de la muestra del 5 % del Censo 1980 (IPUMS).

Ley de esperanzas iteradas

Ley de esperanzas iteradas (LEI)

• Propiedad:

$$\mathbb{E}(y) = \mathbb{E}[\mathbb{E}(y|x)]$$

Ley de esperanzas iteradas (LEI)

Propiedad:

$$\mathbb{E}(y) = \mathbb{E}[\mathbb{E}(y|x)]$$

Importante: $\mathbb{E}(y) = \mathbb{E}_x[\mathbb{E}_y(y|x)]$, tomamos primero la esperanza en y manteniendo constante x y luego tomamos la esperanza en x.

Demostración: Utilizar $f_y = \int_X f_{xy} dx$ y $f_{y|x} = f_{xy}/f_x$.

Ejemplo: LEI $\mathbb{E}(y) = \mathbb{E}[\mathbb{E}(y|x)]$

Cuadro 2: Función de esperanza condicional

	$\mathbb{E}(\mathit{ahe} \mathit{bachelor})$	Pr(bachelor)
bachelor=0	15.33	0.52
$\mathit{bachelor} = 1$	22.91	0.48

Ejemplo: LEI $\mathbb{E}(y) = \mathbb{E}[\mathbb{E}(y|x)]$

Cuadro 3: Función de esperanza condicional

	$\mathbb{E}(\textit{ahe} \textit{bachelor})$	Pr(bachelor)
bachelor = 0	15.33	0.52
$\mathit{bachelor} = 1$	22.91	0.48

$$\begin{split} \mathbb{E}(\textit{ahe}) &= \mathbb{E}[\mathbb{E}(\textit{ahe}|\textit{bachelor})] \\ &= \mathbb{E}(\textit{ahe}|\textit{bachelor} = 0) \, \mathsf{Pr}(\textit{bachelor} = 0) \\ &+ \mathbb{E}(\textit{ahe}|\textit{bachelor} = 1) \, \mathsf{Pr}(\textit{bachelor} = 1) \\ &= 15,33 \times (1-0,48) + 22,91 \times 0,48 = 18,97 \end{split}$$

Independencia

```
x \perp y (independientes) si Pr(y|x) = Pr(y).
```

Una definición equivalente: $x \perp y$ (independientes) si Pr(x, y) = Pr(y) Pr(x).

• Independencia en media

$$\mathbb{E}(y|x) = \mathbb{E}(y).$$

- Covarianza entre x, y: $Cov(x, y) = \mathbb{E}[(x \mathbb{E}(x))(y \mathbb{E}(y))]$
 - Mide la relación lineal entre x e y.
 - Propiedades:

$$Cov(x, y) = \mathbb{E}(xy) - \mathbb{E}(x)\mathbb{E}(y)$$
$$Cov(y, a + bx) = b Cov(x, y)$$

• Independencia en media implica ausencia de correlación

$$\mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(x,y) = 0.$$

• Independencia en media implica ausencia de correlación

$$\mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(x,y) = 0.$$

• Demostración: Utilice la LEI en

$$\mathbb{E}(xy) = \mathbb{E}[x \,\mathbb{E}(y|x)] = \mathbb{E}(x) \,\mathbb{E}(y),$$

y reemplace en la definición de $Cov(x, y) = \mathbb{E}(xy) - \mathbb{E}(x)\mathbb{E}(y)$.

Independencia en media implica ausencia de correlación

$$\mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(x,y) = 0.$$

• Demostración: Utilice la LEI en

$$\mathbb{E}(xy) = \mathbb{E}[x \,\mathbb{E}(y|x)] = \mathbb{E}(x) \,\mathbb{E}(y),$$

y reemplace en la definición de $Cov(x, y) = \mathbb{E}(xy) - \mathbb{E}(x)\mathbb{E}(y)$.

Independencia en media implica ausencia de correlación con cualquier función de x:

$$\mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(g(x),y) = 0$$
 para cualquier función $g(x)$.

• Independencia implica independencia en media.

$$y \perp \!\!\! \perp x \iff f_{y|x} = f_y \implies \mathbb{E}(y|x) = \mathbb{E}(y).$$

Demostración: Utilice la definición de esperanza condicional.

• Independencia implica independencia en media.

$$y \perp \!\!\! \perp x \iff f_{y|x} = f_y \implies \mathbb{E}(y|x) = \mathbb{E}(y).$$

Demostración: Utilice la definición de esperanza condicional.

• Independencia implica independencia en todos los momentos de y. En particular, $y \perp x \implies Var(y|x) = Var(y)$.

Demostración: Utilice la definición de la varianza condicional $Var(y|x) = \mathbb{E}[(y - \mathbb{E}(y|x))^2|x].$

• Resumen:

$$y \perp x \implies \mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(x,y) = 0$$

• Resumen:

$$y \perp x \implies \mathbb{E}(y|x) = \mathbb{E}(y) \implies \mathsf{Cov}(x,y) = 0$$

 $\mathsf{Cov}(y,x) = 0 \implies \mathbb{E}(y|x) = \mathbb{E}(y) \implies y \perp x$

• Resumen:

$$y \perp x \implies \mathbb{E}(y|x) = \mathbb{E}(y) \implies \text{Cov}(x,y) = 0$$

 $\text{Cov}(y,x) = 0 \implies \mathbb{E}(y|x) = \mathbb{E}(y) \implies y \perp x$

- En la ayudantía se ven casos en donde:
 - 1. $\mathbb{E}(y|x) = \mathbb{E}(y) \implies y \perp x$,
 - 2. $Cov(y,x) = 0 \implies \mathbb{E}(y|x) = \mathbb{E}(y)$

Descomposición

Descomposición utilizando la esperanza condicional

• Siempre podemos descomponer a la variable aleatoria y en

$$y = \mathbb{E}(y|x) + u,$$

donde u es independiente en media de x, es decir $\mathbb{E}(u|x) = 0$.

Descomposición utilizando la esperanza condicional

ullet Siempre podemos descomponer a la variable aleatoria y en

$$y = \mathbb{E}(y|x) + u,$$

donde u es independiente en media de x, es decir $\mathbb{E}(u|x) = 0$.

Demostración: Reemplace $u = y - \mathbb{E}(y|x)$ en $\mathbb{E}(u|x)$.

• Interpretación: Una variable aleatoria y se puede descomponer en una parte "explicada por x" y otra parte que no depende de x.

Mejor predicción

La esperanza condicional es el mejor predictor de y

• La esperanza condicional es la función de x que minimiza el error cuadrático medio de predicción, es decir

$$\mathbb{E}(y|x) = \arg\min_{m(x)} \mathbb{E}[(y - m(x))^2].$$

La esperanza condicional es el mejor predictor de y

• La esperanza condicional es la función de x que minimiza el error cuadrático medio de predicción, es decir

$$\mathbb{E}(y|x) = \arg\min_{m(x)} \mathbb{E}[(y - m(x))^2].$$

• Demostración:

$$\mathbb{E}[(y - m(x))^{2}] = \mathbb{E}\{[(y - \mathbb{E}(y|x)) - (m(x) - \mathbb{E}(y|x))]^{2}\}$$

$$= \mathbb{E}\{(y - \mathbb{E}(y|x))^{2} + (m(x) - \mathbb{E}(y|x))^{2}$$

$$- 2(y - \mathbb{E}(y|x))(m(x) - \mathbb{E}(y|x))\}$$

$$= \mathbb{E}[(y - \mathbb{E}(y|x))^{2}] + \mathbb{E}[(m(x) - \mathbb{E}(y|x))^{2}]$$

$$> \mathbb{E}[(y - \mathbb{E}(y|x))^{2}],$$

donde en la tercer línea utilizamos la LEI para demostrar que $\mathbb{E}[(v - \mathbb{E}(v|x))(m(x) - \mathbb{E}(v|x))] = 0.$

Esperanza condicional

Descomposición de varianza

Descomposición de varianza

• La varianza de la variable aleatoria y se puede descomponer como

$$Var(y) = Var(\mathbb{E}(y|x)) + \mathbb{E}(Var(y|x)),$$

$$= Var(\mathbb{E}(y|x)) + \mathbb{E}(u^2),$$
(2)

donde $Var(y|x) = \mathbb{E}[(y - \mathbb{E}(y|x))^2|x]$ es la varianza de y condicional en x.

Descomposición de varianza

• Demostración: Para (1)

$$\begin{aligned} \mathsf{Var}(y) &= \mathbb{E}[(y - \mathbb{E}(y))^2], \\ &= \mathbb{E}\{[(y - \mathbb{E}(y|x)) + (\mathbb{E}(y|x) - \mathbb{E}(y))]^2\}, \\ &= \mathbb{E}[(y - \mathbb{E}(y|x))^2] + \mathbb{E}[(\mathbb{E}(y|x) - \mathbb{E}(y))^2], \\ &= \mathbb{E}[\mathbb{E}((y - \mathbb{E}(y|x))^2|x)] + \mathsf{Var}(\mathbb{E}(y|x)), \\ &= \mathbb{E}(\mathsf{Var}(y|x)) + \mathsf{Var}(\mathbb{E}(y|x)), \end{aligned}$$

donde utilizamos la LEI en la tercer y cuarta línea.

Descomposición de varianza

• Demostración: Para (2), utilizamos $y = \mathbb{E}(y|x) + u$ para escribir

$$Var(y|x) = Var(u|x),$$

= $\mathbb{E}(u^2|x).$

Por lo tanto,

$$\mathbb{E}(\mathsf{Var}(y|x)) = \mathbb{E}(\mathbb{E}(u^2|x)),$$
$$= \mathbb{E}(u^2),$$

utilizando la LEI.

Modelo de regresión lineal

Modelo de regresión lineal

Definición

Modelo de Regresión Lineal : $\mathbb{L}(y|x) = x'\beta$

• Mejor predictor lineal: Es la función lineal $\mathbb{L}(y|x) = x'\beta$ que minimiza el error cuadrático medio de predicción entre las funciones lineales en x, es decir

$$\beta = \arg\min_{b} \mathbb{E}[(y - x'b)^{2}],$$

donde y es un escalar, $x=(x_1,...,x_K)'$ es un vector de $K\times 1$ (casi siempre incluye una constante), y $\beta=(\beta_1,...,\beta_K)'$ es un vector de $K\times 1$.

Ejemplo: Tamaño de clase y notas

¿Cómo se obtiene β de $\mathbb{L}(y|x) = x'\beta$?

¿Cómo se obtiene β de $\mathbb{L}(y|x) = x'\beta$?

Utilizando las condiciones de primer orden

$$\frac{\partial \mathbb{E}[(y - x'b)^2]}{\partial b} = 2 \mathbb{E}[x(y - x'\beta)] = 0$$
$$\implies \beta = \mathbb{E}(xx')^{-1} \mathbb{E}(xy).$$

- Si $\mathbb{E}(xx')$ es no singular, entonces β existe y es única.
- Método de momentos: β tal que $\mathbb{E}[x(y-x'\beta)]=0$.

Ejemplo: Modelo de regresión simple

• Si
$$x=(1,x_1)$$
, entonces $\mathbb{L}(y|x)=\beta_0+\beta_1 x$ con
$$\beta_1=\frac{\mathsf{Cov}(x_1,y)}{\mathsf{Var}(x_1)}, \ \mathbf{y}$$

$$\beta_0=\mathbb{E}(y)-\beta_1\,\mathbb{E}(x_1).$$

Modelo de regresión lineal

me de l'eglection initial

Descomposición

ullet Siempre podemos descomponer a la variable aleatoria y en

$$y = x'\beta + u$$
,

donde u cumple que $\mathbb{E}(xu) = 0$.

• Siempre podemos descomponer a la variable aleatoria y en

$$y = x'\beta + u$$
,

donde u cumple que $\mathbb{E}(xu) = 0$.

- Demostración: $\mathbb{E}(xu) = \mathbb{E}(x(y-x'\beta)) = 0$ que se cumple por la definición de modelo de regresión por el método de momentos.
- x casi siempre incluye una constante, entonces $\mathbb{E}(u)=0$. Por lo tanto si $\mathbb{E}(xu)=0$ entonces $\mathrm{Cov}(x,u)=0$.

ullet Siempre podemos descomponer a la variable aleatoria y en

$$y = x'\beta + u$$
,

donde u cumple que $\mathbb{E}(xu) = 0$.

• Interpretación: Una variable aleatoria y se puede descomponer en una parte "explicada por x" y otra parte no correlada con x.

• Siempre podemos descomponer a la variable aleatoria y en

$$y = x'\beta + u$$
,

donde u cumple que $\mathbb{E}(xu) = 0$.

- Interpretación: Una variable aleatoria y se puede descomponer en una parte "explicada por x" y otra parte no correlada con x.
- Propiedad: Si denotamos el valor predicho de y dado x como $\hat{y} = \mathbb{L}(y|x) = x'\beta$ entonces $\mathbb{E}(\hat{y}u) = 0$ y si x incluye la constante $Cov(\hat{y}, u) = 0$.

Modelo de regresión lineal

Regresión particionada

Regresión particionada

• Dado el modelo de regresión múltiple

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + ... + \beta_K x_K + u.$$

Podemos recuperar β_k a partir de la regresión simple entre y y \tilde{x}_k , el residuo de la regresión de x_k en el resto de las variables explicativas $x_1, ..., x_{k-1}, x_{k+1}, ..., x_K$:

$$\beta_k = \frac{\mathsf{Cov}(\tilde{x}_k, y)}{\mathsf{Var}(\tilde{x}_k)},$$

donde

$$x_k = \sum_{j \neq k} \gamma_j \, x_j + \tilde{x}_k = \hat{x}_k + \tilde{x}_k.$$

Ejemplo: Dado $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$, tenemos $x_1 = \gamma_0 + \gamma_1 x_2 + \tilde{x}_1$ y $y + \delta_0 + \delta_1 \tilde{x}_1 + e$. Entonces $\delta_1 = \beta_1$.

Regresión particionada

$$\beta_k = \frac{\mathsf{Cov}(\tilde{x}_k, y)}{\mathsf{Var}(\tilde{x}_k)}$$

• Interpretación: β_k mide el efecto de x_k sobre y, una vez que filtramos (controlamos por) el efecto de las demás variables explicativas.

Regresión particionada

• Demostración:

$$\frac{\mathsf{Cov}(\tilde{x}_k, y)}{\mathsf{Var}(\tilde{x}_k)} = \frac{\mathsf{Cov}(\tilde{x}_k, \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \dots + \beta_K x_K + u)}{\mathsf{Var}(\tilde{x}_k)}$$

- (1) $Cov(\tilde{x}_k, x_j) = 0$ para todo $j \neq k$, por construcción,
- (2) $Cov(\tilde{x}_k, u) = 0$ porque u no está correlado con x's y \tilde{x}_k es una función lineal de x's.

Entonces,

$$\frac{\operatorname{Cov}(\tilde{x}_{k}, y)}{\operatorname{Var}(\tilde{x}_{k})} = \beta_{k} \frac{\operatorname{Cov}(\tilde{x}_{k}, x_{k})}{\operatorname{Var}(\tilde{x}_{k})},$$

$$= \beta_{k} \frac{\operatorname{Cov}(\tilde{x}_{k}, \hat{x}_{k} + \tilde{x}_{k})}{\operatorname{Var}(\tilde{x}_{k})},$$

$$= \beta_{k} \frac{\operatorname{Cov}(\tilde{x}_{k}, \tilde{x}_{k})}{\operatorname{Var}(\tilde{x}_{k})},$$

$$= \beta_{k}.$$

regresión

Modelo de regresión lineal

Justificación de utilizar el modelo de

Justificación de utilizar el modelo de regresión como aproximación a la esperanza condicional.

- Si esperanza condicional es lineal entonces el modelo de regresión coincide con la esperanza condicional.
- El modelo de regresión es el mejor predictor lineal de y.
- El modelo de regresión es la mejor aproximación lineal a la esperanza condicional.

Esperanza condicional es lineal

• Si la esperanza condicional es lineal entonces coincide con el modelo de regresión.

Esperanza condicional es lineal

• Si la esperanza condicional es lineal entonces coincide con el modelo de regresión.

Demostración: $\mathbb{E}(y|x) = x'\beta^*$.

Por la propiedad de descomposición podemos escribir $y = \mathbb{E}(y|x) + u$ donde

$$\mathbb{E}(u|x) = 0$$
. Esto implica $\mathbb{E}[x(y - \mathbb{E}(y|x))] = 0$, entonces

$$\mathbb{E}[x(y - \mathbb{E}(y|x))] = \mathbb{E}[x(y - x'\beta^*)] = 0.$$

De donde,

$$\beta^* = \mathbb{E}(xx')^{-1}\,\mathbb{E}(xy) = \beta.$$

Esperanza condicional es lineal

• Si la esperanza condicional es lineal entonces coincide con el modelo de regresión.

Demostración: $\mathbb{E}(y|x) = x'\beta^*$.

Por la propiedad de descomposición podemos escribir $y = \mathbb{E}(y|x) + u$ donde $\mathbb{E}(u|x) = 0$. Esto implica $\mathbb{E}[x(y - \mathbb{E}(y|x))] = 0$, entonces

$$\mathbb{E}[x(y - \mathbb{E}(y|x))] = \mathbb{E}[x(y - x'\beta^*)] = 0.$$

De donde,

$$\beta^* = \mathbb{E}(xx')^{-1}\,\mathbb{E}(xy) = \beta.$$

- Ejemplos:
 - (1) (y,x) se distribuyen conjuntamente normal,
 - (2) Modelos saturados. Ejemplo: Cuando x es binaria, $\mathbb{E}(y|x) = \mathbb{E}(y|x=0) + [\mathbb{E}(y|x=1) \mathbb{E}(y|x=0)]x$ es lineal.

Mejor predicción lineal

ullet El modelo de regresión lineal es el mejor predictor lineal de y dado x.

Mejor aproximación lineal a la esperanza condicional

• El modelo de regresión lineal es la mejor aproximación lineal a la esperanza condicional. Es decir,

$$\beta = \arg\min_b \mathbb{E}[(\mathbb{E}(y|x) - x'b)^2]$$

Mejor aproximación lineal a la esperanza condicional

• El modelo de regresión lineal es la mejor aproximación lineal a la esperanza condicional. Es decir,

$$\beta = \arg\min_{b} \mathbb{E}[(\mathbb{E}(y|x) - x'b)^{2}]$$

Demostración:

$$\mathbb{E}[(y - x'b)^{2}] = \mathbb{E}\{[(y - \mathbb{E}(y|x)) + (\mathbb{E}(y|x) - x'b)]^{2}\}$$

$$= \mathbb{E}\{(y - \mathbb{E}(y|x))^{2} + (\mathbb{E}(y|x) - x'b)^{2}$$

$$+ 2(y - \mathbb{E}(y|x))(\mathbb{E}(y|x) - x'b)\}$$

$$= \mathbb{E}[(y - \mathbb{E}(y|x))^{2}] + \mathbb{E}[(\mathbb{E}(y|x) - x'b)^{2}].$$

El primer término no depende de b, entonces

$$\beta = \arg\min_b \mathbb{E}[(y - x'b)^2] \iff \beta = \arg\min_b \mathbb{E}[(\mathbb{E}(y|x) - x'b)^2].$$

Ejemplo: Educación y salarios

Figura 2: Regresión y esperanza condicional del log salarios semanales en el nivel educativo. La muestra incluye hombres blancos entre 40 y 49 años de la muestra del 5 % del Censo 1980 (IPLIMS)

Modelo de regresión lineal

Descomposición de varianza

Descomposición de varianza en regresión

 Si x incluye una constante, la varianza de la variable aleatoria y se puede descomponer como

$$Var(y) = Var(x'\beta) + \mathbb{E}(u^2).$$

Demostración: Utilice la descomposición de $y = x'\beta + u$ y $\mathbb{E}(ux) = \text{Cov}(u, x) = 0$.

Descomposición de varianza en regresión

 Si x incluye una constante, la varianza de la variable aleatoria y se puede descomponer como

$$Var(y) = Var(x'\beta) + \mathbb{E}(u^2).$$

Demostración: Utilice la descomposición de $y = x'\beta + u$ y $\mathbb{E}(ux) = \text{Cov}(u, x) = 0$.

• Coeficiente de determinación: R²,

$$R^2 = 1 - \frac{\mathbb{E}(u^2)}{\mathsf{Var}(y)}.$$

Indicador de la bondad de ajuste del modelo de regresión.

Ejemplo: Educación y salarios en US

Figura 3: Esperanza condicional del log salarios semanales dado el nivel educativo. La muestra incluye hombres blancos entre 40 y 49 años de la muestra del 5 % del Censo 1980 (IPUMS).

Ejemplo: Educación y salarios en Chile

Figura 4: Esperanza condicional del log de salarios dado el nivel educativo. La muestra incluye hombres trabajadores en Casen 2009.

back

Ejemplo: Educación y salarios en US

Figura 5: Regresión y esperanza condicional del log salarios semanales en el nivel educativo. La muestra incluye hombres blancos entre 40 y 49 años de la muestra del 5 % del Censo 1980 (IPLIMS)

49

Ejemplo: Educación y salarios en Chile

Ejemplo: Educación y salarios en Chile

Figura 7: Regresión y esperanza condicional del log salarios semanales en el nivel educativo. La muestra incluye hombres trabajadores en Casen 2009. • back