Disciplina: Estimação de estado em Sistemas de Energia Elétrica Lista de exercícios n°3

1) Estimar as variáveis de estado do sistema apresentado na Figura 1. Lembre-se que é para utilizar o Estimador de Estado Estático Linear por Mínimos Quadrados, baseado no modelo Pθ, versões não ponderada e ponderada. Para ambos os casos considere os valores das medidas de potência ativa disponíveis apresentados na Tabela 1. Para executar a versão ponderada é para utilizar os desvios padrão apresentados na Tabela 1.

Observação: Na figura a seguir os símbolos ● e **v** indicam, respectivamente, medidas de injeção e de fluxo de potência ativa.

Figura 1

_				
- 1	0	hal		-1
	11	1)0	171	- 1

Tuocia 1				
Medida	Valor (p.u.)	σ (p.u.)		
P12	6,2452	0,008		
P21	-6,234	0,008		
P13	6,992	0,008		
P23	1,13	0,008		
P1	13,265	0,010		
P2	-5,0055	0,010		

Resposta:

(i) Versão não ponderada: $\hat{\theta}_1 = 0$ rad(referência) $\hat{\theta}_2 = -0.2504$ rad e $\hat{\theta}_3 = -0.3488$ rad

(ii) Versão ponderada: $\hat{\theta}_1 = 0$ rad(referência) $\hat{\theta}_2 = -0.2504$ rad e $\hat{\theta}_3 = -0.3484$ rad

3) No circuito de corrente contínua mostrado na Figura 2, medem-se todas as correntes nos ramos e todas as tensões nodais (correntes em Ampere e tensões em Volts)¹.

$$Z = [112 \ 121 \ 113 \ 131 \ 123 \ 132 \ V1 \ V2 \ V3]^{t} = [52 \ -49 \ -15 \ 16 \ -82 \ 80 \ 11 \ 6 \ 14]^{t}$$

a)Determine o estado (tensões nodais) pelo método dos mínimos quadrados ponderados (W = matriz identidade).

Resposta: $\underline{v} = [11,499 \ 5,950 \ 13,550]^{t}$

b)Supondo que os erros das medidas I12, e I13 têm variância 10 vezes menores que os demais, repita o item (a) utilizando o método dos mínimos quadrados ponderados.

Resposta: $v = [11,5543 \ 6,1924 \ 13,2531]^t$

c)Nas condições do item (b) determine o vetor resíduo de estimação.

Resposta: r = [-1, 6187, 4,6187, 1,9874, -0,9874, -11,3937, 9,3937, -0,5543, -0,1924, 0,7468]

¹ Observe que o modelo de medição será formado por medidas de corrente (fluxo de corrente contínua em ramos) e de tensão contínua (lembrando que $I_{km}^{medido} = (v_k - v_m)_{R_{km}} + w_{I_{km}}; V_k^{medido} = v_k + w_{V_k}$). Dessa forma, as variáveis de estado são as magnitudes de tensão, sendo **desnecessária** a utilização de uma barra como referência angular.

Figura 2

4) Utilizando uma tabela para distribuição N(0,1), calcule as seguintes probabilidades para uma variável aleatória $X \sim N(20,25)^2$:

a) $p(x \le 10)$

Resposta : 2,28 % **b**) $p(-1 \le x \le 10)$ Resposta : 2,28 %

 2 Considerando a seguinte notação $N(\mu,\sigma^2),$ isto é $\sigma^2=25.$