What Is Pattern Discovery?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?
 - What code segments likely contain copy-and-paste bugs?
 - What word sequences likely form phrases in this corpus?

Pattern Discovery: Why Is It Important?

- Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
- k-itemset: X = {x1, ..., xk}
 - Ex. {Beer, Nuts, Diaper} is a 3-
- (absolute) support (count) of X,
 sup{X}: Frequency or the number of occurrences of an itemset X
 - Ex. sup{Beer} = 3 sh transection is beer of
 - Ex. $\sup\{\text{Diaper}\}=4$
 - Ex. sup{Beer, Diaper} = 3
 - Ex. $\sup\{\text{Beer}, \text{Eggs}\} = 1$

munuros transections naturavanan

Tid	Items bought							
10	transaction	n 1	Beer, Nuts, Diaper					
20	1	2	Beer, Coffee, Diaper					
30	ч	3	Beer, Diaper, Eggs					
40	4	Δ	Nuts, Eggs, Milk					
50	4 6	Nuts	, Coffee, Diaper, Eggs, Milk					

(relative) support, $s\{X\}$: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)

- Ex. $s\{Beer\} = 3/5 = 60\%$
- Ex. $s\{Diaper\} = 4/5 = 80\%$
 - Ex. $s\{Beer, Eggs\} = 1/5 = 20\%$

(threshold) moneion 18/21/ 100 Mins

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ in threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid	Items bought				
10	Beer, Nuts, Diaper				
20	Beer, Coffee, Diaper				
30	Beer, Diaper, Eggs				
40	Nuts, Eggs, Milk				
50	Nuts, Coffee, Diaper, Eggs, Milk				

- Why do these itemsets (shown on the left) form the complete set of frequent *k*-itemsets (patterns) for any *k*?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
- Ex. Diaper -> Beer \$0 Dioper and Beer ind
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
- Measuring association rules: $X \rightarrow Y(s, c)$
 - Both X and Y are itemsets
- Support, s: The probability that a transaction contains X UY - Fordowil
- Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- Confidence, c: The conditional probability that a transaction containing X also contains Y
 - Calculation: $c = \sup(X \cup Y) / \sup(X)$

Tid Items bought 10 Beer, Nuts, Diaper 20 Beer, Coffee, Diaper 30 Beer, Diaper, Eggs 40 Nuts, Eggs, Milk 50 Coffee, Diaper, Eggs, Milk both diaper {Beer} Diape {Diaper} Containing beer {Beer} U {Diaper} = {Beer,

Note: X U Y: the union of two itemsets

The set contains both X and Y

(并)	Ex. $c =$	sup { L	Japer.	Beer }	/sup{	Jiaper !	$= \frac{3}{4} =$

Mining Frequent Itemsets and Association Rules

waram= itemset

Association rule mining

Given two thresholds: minsup, minconf

Find all of the rules, $X \rightarrow Y(s, c)$

such that, $s \ge minsup$ and $c \ge minconf$

Let minsup = 50% minsup 184 50%.

Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3

Freq. 2-itemsets: {Beer, Diaper}: 3 -> item ismasogisasoulur vos itemset nouna

dt

- Let minconf = 50% sing in with
- Beer→Diaper (60%, 100%) → Sup(Beet U Diaper) Sup (Beer) Diaper -> Beer (60%, 75%)

- Items bought 10 Beer, Nuts, Diaper 20 Beer, Coffee, Diaper 30 Beer, Diaper, Eggs 40 Nuts, Eggs, Milk 50 Nuts, Coffee, Diaper, Eggs, Milk
- Observations:
- Mining association rules and mining frequent patterns are very close problems
 - Scalable methods are needed for mining large datasets

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

Efficient Pattern Mining Methods

- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- · Extensions or Improvements of Apriori
- · Mining Frequent Patterns by Exploring Vertical Data Format
- FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

Malloto

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

ถ้าเกิด itemset ที่เค็กกลาปปกน จาศัลลิ้ง

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test) 🔫 เรียนเป็น รื่น เป็น
 - Initially, scan DB once to get frequent 1-itemset
- Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k + 1
- Until no frequent or candidate set can be generated
- Return all the frequent itemsets derived

The Apriori Algorithm—An Example

