Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Examen Final. [2 de Diciembre de 2004]

- [Ej. 1] [clases (20 puntos)] Escribir los siguientes métodos del TAD Conjunto, implementado con árboles binarios de búsqueda set<>: erase(n), find(x), insert(x) (donde n es nodo y x elemento). Escribir las declaraciones de la clase y los componentes necesarios para implementar las funciones indicadas.
- [Ej. 2] [programacion (total = 80 puntos)]
 - a) [merge-dict (total = 40 puntos)] Implemente una función void merge_map(const map< string, list<int> > &A, const map< string, list<int> > &B, map< string, list<int> > &C)

que a partir de los diccionarios A y B construya un diccionario C de acuerdo a las siguientes reglas:

- Si una clave key esta contenida en A o B pero no en ambos, entonces C debe contener dicha clave y su valor asociado debe ser la lista asociada a key en A o B pero sin repeticiones.
- Si una clave key esta contenida en A y B a la vez, entonces C debe contener dicha clave y su valor asociado debe ser una lista que contenga todos los elementos de las listas asociadas a key en A y B, pero sin repeticiones (es decir, su unión como conjunto, $C[key] \leftarrow A[key] \cup B[key]$).

Por ejemplo, dados:

b) [intersect-tree (total = 40 puntos)] Dados dos árboles binarios A y B, escribir una función void intersect_tree(btree<int>&A, btree<int>&B, btree<int>&B) que devuelve en C la intersección entre los dos árboles, es decir áquellos nodos que (estructuralmente) están en los dos árboles y que contienen el mismo valor. Por ejemplo, si A=(8 (3 6 (7 10 11)) (5 4 .)) y B=(8 (3 6 (9 . 3)) (5 7 .)) entonces C=(8 (3 6.) 5).

[Ej. 3] [operativos (total=80pts) - LIBRES]

- a) [abb (30 ptos)] Dados los enteros {6, 5, 8, 2, 10, 7, 3, 1, 9, 15, 0} insertarlos, en ese orden, en un "árbol binario de búsqueda". Mostrar las operaciones necesarias para eliminar los elementos 6, 3 y 7.
- b) [misc-arbol (20pt)]: Dado el árbol binario (z (w (x k .) (y m n)) p),
 - 1) Dibuje el árbol correspondiente.
 - 2) De los nodos que están a la izquierda de y ¿Cuál es el que está a mayor profundidad?
 - 3) Particione el árbol con respecto al nodo w, es decir indique cuales son sus antecesores y descendientes propios, derecha e izquierda.
 - 4) ¿ Es completo?
- c) [heap-sort (30 ptos)] Dados los enteros {15, 14, 17, 11, 19, 6, 12} ordenarlos por el método de "montículos" ("heap-sort"). Mostrar el montículo (minimal) antes y después de cada inserción/supresión.
- [Ej. 4] [Preguntas (total = 20 puntos, 5puntos por pregunta) LIBRES] Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son intencionalmente "descabelladas" y tienen puntajes negativos!!]

Apellido y Nombre:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
Carrera: DNI:	Algoritmos y Estructuras de Datos
(
Sea el árbol (5 7 (8 6 9)). Después de	
hacer:	
n = D.find(7);	(5 7 (8 2 6 9))
n++;	Da un error.
<pre>n = n.lchild();</pre>	
<pre>n = n.lchild();</pre>	[(5 7 (8 6 2 9))
n = D.insert(n,2);	(5 7 (8 (6 2) 9))
¿Cuál de las opciones es verdadera?	
	$O(n \log n)$ sólo en el caso promedio.
¿Cuál es el tiempo de ejecución de la operación de sort en montículos?	Siempre $O(n \log n)$.
	$O(\log n)$ sólo en el caso promedio.
	\square Siempre $O(\log n)$.
	\square $O(1)$
	\square $O(\log_2 n)$
¿Cuál es el tiempo de ejecución de splice(p,q)	para árboles?
Sea un tabla de dispersión cerrada con B cubetas	\sqrt{n}
elementos. Asumiendo que la función de dispers	ión $\alpha/(1-\alpha)$
es lo suficientemente buena como para distribuir	$\log \frac{1}{(1-\alpha)}$
elementos en forma uniforme entre las cubetas	$\begin{array}{ccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{cccc} & \alpha/(1-\alpha) & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{ccccc} & \alpha/(1-\alpha) & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$
costo medio de una inserción exitosa $(\alpha = n/B)$	en cte
promedio	