absolute Häufigkeit: h_i

relative Häufigkeit: $f_i = \frac{h_i}{n}$

kumulative Häufigkeitsverteilung: $H(x) = \sum_{i:a_i < x} h_i$

empirische Verteilfunktion: $F(x) = \frac{1}{n}H(x) = \sum_{i:a_i < x} f_i$

arithmetisches Mittel: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} \sum_{i=1}^{n} h_i a_i$

geometrisches Mittel $\bar{x}_{geom} = \sqrt[n]{\prod_{i=1}^{n} x_i}$

 $\overline{x}_{geom} \leq \overline{x}$

median: $\tilde{x} = \frac{1}{2}(\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{2} \rceil) // 50\%$ größer bzw. kleiner

Modus = häufigster Wert

empirische Varianz: $s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n \overline{x}^2 \right) = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$

Standardabweichung: $s = \sqrt{varianz}$

Kovarianz: $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

Korrelationskoeffizient: $r_{xy} = \frac{s_{xy}}{s_x \cdot s_y}$

Bedingte Wahrscheinlichkeiten

$$\begin{aligned} \operatorname{prob}(\mathbf{A}) &= \frac{|\operatorname{günstige F\"{a}llel}}{|\operatorname{alle F\"{a}llel}} \\ \operatorname{prob}(B|A) &= \frac{\operatorname{prob}(B \cap A)}{\operatorname{prob}(A)} \\ \operatorname{Unabh\"{a}ngig} &\Leftrightarrow \operatorname{prob}(A \cap B) = \operatorname{prob}(A) \cdot \operatorname{prob}(B) \\ \operatorname{Satz von Bayes:} \operatorname{prob}(B|A) &= \operatorname{prob}(A|B) \frac{\operatorname{prob}(B)}{\operatorname{prob}(A)} \\ \operatorname{prob}(B|A) &= \frac{\operatorname{prob}(A|B) \cdot \operatorname{prob}(B)}{\operatorname{prob}(B) \cdot \operatorname{prob}(A|B) + \operatorname{prob}(\overline{B}) \cdot \operatorname{prob}(A|\overline{B})} \end{aligned}$$

Erwartungswert

diskret:
$$E(X) = \sum_{i=0}^{n} prob(x_i) \cdot x_i$$

stetig: $E(X) = \int_{-\infty}^{\infty} x f(x) dx$

$$E(X+Y) = E(X) + E(Y);$$
 $E(aX) = aE(X)$
wenn f symmetrisch um c dann $E(X) = c$
wenn X,Y unabhängig: $E(XY) = E(X) \cdot E(Y)$

Kovarianz

$$Cov(X,Y) = E(X \cdot Y) - E(X)E(Y) = E((X - E(X)) \cdot (Y - E(Y))$$

varianz

diskret:
$$\sigma^2 = \sum_{i=1}^{n} prob(x_i) \cdot (x_i - E(X))^2$$

stetig: $\sigma^2 = \int_{-\infty}^{\infty} (x - E(X))^2 f(x) dx$
 $\sigma^2 = E(X^2) - E(X)^2$
 $Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$
 $Var(aX+b) = a^2 Var(X)$

Standardisierung

standartisierte Zufallsvariable
$$Z := \frac{X - \mu}{\sigma} \Rightarrow E(X) = 0$$
, $Var(X) = 1$

Verteilungsfunktionen

Verteilungsfunktion $F(x) = prob(X \le x)$

steigt monoton von 0 nach 1

Dichte: f(x);

$$f(x) = F'(x);$$

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

Bsp

$$f(x) = \begin{cases} ax & -2 < x \le 1\\ ax^2 & 1 < x \le 5\\ 0 & sonst \end{cases}$$

$$\int_{-\infty}^{x} 0 dx = 0; = > F(-2) = 0$$

$$0 + \int_{-2}^{x} ax dx = \frac{1}{2} ax^{2} \Big|_{-2}^{x} = \frac{1}{2} ax^{2} + 2a = > F(1) = 2,5a$$

$$2,5a + \int_{1}^{x} ax^{2} dx = \frac{1}{3} ax^{3} \Big|_{1}^{x} + 2,5a = \frac{1}{3} ax^{3} + \frac{1}{3} a + 2,5a = > F(5) = 44,5a$$

$$44,5a + \int_{5}^{x} 0 dx = 44,5a$$

$$\Rightarrow$$
 44,5 $a = 1...$

1

Gleichverteilung

$$f(x) = \frac{1}{b-a} fallsa < x < b, sonst0$$

$$F(x) = \frac{x-a}{b-a} fallsa < x < b, sonst0bzw.1$$

$$E(X) = (b+a)/2$$

Hypergeometrische Verteilung

N Elemente, M Treffermöglichkeiten, Stichprobe mit n (kein Zurücklegen)

$$\operatorname{prob}(X=x) = \frac{\binom{M}{x} \cdot \binom{N-M}{n-x}}{\binom{N}{n}}$$

$$E(X) = n\frac{M}{N}$$
 $Var(X) = n\frac{M}{N}\left(1 - \frac{M}{N}\right)\frac{N-n}{N-1}$

Näherungbei $20n \le N$ durch Binomialverteilung

binomialverteilung

Stichprobe mit n, wahrscheinlichkeit pro Teil: p

$$prob(X = x) = {n \choose x} p^x (1-p)^{n-x}$$

$$E(X) = np;$$
 $Var(X) = np(1-p)$

Wenn X = Bi(n;p) und Y = Bi(m;p) unabhängig, dann X + Y = Bi(m+n;p)

NäherungBei $n \ge 50, p \le 0.1$ durch Poisson-Verteilung mit $\lambda = np$

NäherungBei
$$np(1-p) \ge 9$$
: $F_B(x) \approx F_N(x+0.5) = \Phi\left(\frac{x+0.5-np}{\sqrt{np(1-p)}}\right)$

Poisson-Verteilung

Auftreten von Ereignis in Zeitinterval:

$$prob(X = x) = \frac{\lambda^{x}}{x!}e^{-\lambda}$$

$$E(X) = Var(X) = \lambda$$

NäherungBei
$$\lambda \ge 9 F_P(x) \approx F_N(x+0.5) = \Phi\left(\frac{x+0.5-\lambda}{\sqrt{\lambda}}\right)$$

Exponentialverteilung

$$F(x) = 1 - e^{-\lambda x}$$
;
 $f(x) = \lambda e^{-\lambda x}$ für $x > 0$
 $E(X) = 1/\lambda = Durchschnittliche Lebensdauer$
 $Var(X) = 1/\lambda^2$

Normalverteilung

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-0.5\left(\frac{x-\mu}{\sigma}\right)^2}$$

$$\mu = erwartungswert, \sigma^2 = Varianz$$

$$X = N(\mu; \sigma^2), Y = aX + b \Rightarrow Y = N(a\mu + b; a^2\sigma^2)$$

Standard-Normalverteilung z_p

Dichte:
$$\phi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-0.5x^2}$$

Verteilung: Φ $\Phi(-x) = 1 - \Phi(x)$
 $E(X) = 0$; $Var(X) = 1$;

Ablesen an Standard-Normalverteilung:
$$F(X) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
, $f(x) = \frac{\phi}{\sigma}\left(\frac{x-\mu}{\sigma}\right)$

Zentraler Grenzwertsatz, schwache Konvergenz

Summe über identisch Verteilte Zufallsvariablen $X_i mit E(X_i) = \mu, Var(X_i) = \sigma^2$ $X_1 + X_2 + \cdots + X_n$ Für große n: Normalverteilt mit $E = n\mu$ Var $= n\sigma^2$

Zufallsstichproben

n gewählte Elemente, die Werte sind zufällig verteilt; wenn ausgreichend Große Grundgesamtheit: Werte unabhängig und gleich verteilt

Punktschätzer

Test einer Verteilung mit zu schätzendem Parameter θ Eigenschaften:

- 1. erwartungstreu falls $E(T) = \theta$; bias= $E(T) \theta$
- 2. asymptotisch erwartungstreu: $\lim_{n\to\infty} E(T_n) = \theta$
- 3. konsistent: konvergiert stochastisch gegen θ $(\lim_{n\to\infty} prob(|T_n-\theta|<\varepsilon)=1 \text{ für alle } \varepsilon>0$
- 4. konsistent im quadratischen Mittel: $\lim_{n\to\infty} E((T_n-\theta)^2)=0$ bzw. wenn asymptotisch erwartungstreu und $Var(X) \rightarrow 0$ => ist auch konsistent; Bsp: arithmetisches Mittel, empirische Verteilung

Maximum-Likelihood

asymptotisch erwartungstreu, asymptotisch normalverteilt mit $\mu = \theta$, Varianz minimal

- 1. Berechne f(x) wenn nicht gegeben (Ableiten von F(x) nach x)
- 2. $L = \prod_{i=1}^{n} f(x_i, \theta)$
- 3. berechne log(L)
- 4. berechne maximum von L (ABLEITEN nach λ , = 0

- 1. Bsp: $f(x) = \lambda e^{-\lambda x_i}$
- 2. $L = \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$
- 3. $z.B.log(L) = nln(\lambda) \lambda \sum_{i=1}^{n} x_i$
- 4. $n/\lambda \sum_{i=1}^{n} x_i \dots = 0$ auflösen $\lambda = n/\sum_{i=1}^{n} x_i$

Logarithmen:

- log(xy) = log(x) + log(y)
- $log(x^c) = clog(x)$
- $e^{log(x)} = x$

Least Squares/Regressionsrechnung (Gauß):

Zu nähernde Funktion f(x) in Parameterform, z.B. Gerade: y = mx + tStichprobe mit Wertepaaren: $(x_1, y_1) \dots (x_n, y_n)$

- 1. Bilde $s\Delta := \sum_{i=1}^{n} (y_i f(x_i))^2$
- 2. Leite nach jedem Parameter ab, setze gleich Null, bestimme Parameter

Alternative für Geraden: $m = r_{xy} \frac{s_y}{s}, d = \overline{y} - k\overline{x}$

Intervallschätzung / Konfidenzinterval

Irrtumswahrscheinlichkeit: α Konfidenzniveau: $1-\alpha$

zweiseitiges Konfidenzintervall: Intervall zwischen $\bar{x} \pm Abweichung$ //siehe Folgende einseitiges Konfidenzintervall: $[-\infty; \bar{x} + Abweichung]$

wenn σ nicht gegeben

Abweichung(zweiseitig): $\frac{s}{\sqrt{n}} \cdot t_{n-1; 1-\alpha/2}$ Abweichung(einseitig): $\frac{s}{\sqrt{n}} \cdot t_{n-1; 1-\alpha}$

wenn σ gegeben

Abweichung(zweiseitig): $\frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$ Abweichung(einseitig): $\frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha}$

t-Test

Stichprobe mit Mittelwert \bar{x} ; Hypothese $H_0: \mu = \mu_0$

Prüfwert:
$$z = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

zweiseitig

Ablehnungsbereich: $|z| > t_{n-1;1-\alpha/2} = > H_0$ muss verworfen werden

einseitig

Ablehnungsbereich: $|z| > t_{n-1:1-\alpha} => H_0$ muss verworfen werden

Chi-Quadrat-Anpassungstest

Test auf Verteilung = vermutete Verteilung Vorraussetzung: große Stichprobe: $(np_i \ge 5)$ für alle i

- 1. Teile Werte in Intervalle I_i auf; // Aus angabe entnehmen
- 2. h_i : Anzahl der Werte in I_i // Aus angabe entnehmen
- 3. p_i : Wahrscheinlichkeit von I_i laut vermuteter Verteilung // Berechne aus Verteilungsfunktion obere Grenze -untere Grenze

4.
$$y = \sum_{i=1}^k \frac{(h_i - np_i)^2}{np_i} = 1/n \left(\sum_{i=1}^k \frac{h_i^2}{p_i}\right) - n$$
 ist asymptotisch $\chi^2(k-1)$ verteilt

5. 0 geschätzte Parameter: Ablehnungsbereich: $y > \chi^2_{k-1;1-\alpha}$ g geschätzte Parameter: Ablehnungsbereich: $y > \chi^2_{k-1-g;1-\alpha}$

Ableitungen

Kettenregel: $f(g)' = f'(g) \cdot g'$ // Nachleiten

Bsp:
$$(e^{-5x^2})' = e^{-5x^2} \cdot (-10x)$$

Bsp:
$$((x-4)^2 + (4x+5)^2)' = 2(x-4) + 2(4x+5) \cdot 4$$

368 A Tabellen

A.2 Standardnormalverteilung $\Phi(z)$

Standardnormalverteilung $\Phi(z)$ ($\Phi(-z) = 1 - \Phi(z)$):

Juan	uarunor	marveru	mung v	(%) (\$P(-	-2) — 1	– Ψ(~)).				
z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
						22 . 1		7 11 0 0		G 1:

Ablesebeispiel: Der Funktionswert für z=0.23 steht in der Zeile 0.2 und der Spalte 0.03. Also $\Phi(0.23)=0.591$.

p-Quantile z_p $(z_{1-p} = -z_p)$:

P	deliterio A	$p (\sim 1-p)$	~p).							
p	0.6	0.7	0.8	0.9	0.95	0.975	0.99	0.995	0.999	0.9995
z_p	0.2533	0.5244	0.8416	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905

A.3 Quantile der Chi-Quadrat-Verteilung

p-Quantile χ^2 ...:

p-Quan	tile χ_m^2	;p:								
$m \setminus p$	0.005	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.99	0.995
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.60
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.34	12.84
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.14	13.28	14.86
5	0.412	0.554	0.831	1.145	1.610	9.236	11.07	12.83	15.09	16.75
6	0.676	0.872	1.237	1.635	2.204	10.64	12.59	14.45	16.81	18.55
7	0.989	1.239	1.690	2.167	2.833	12.02	14.07	16.01	18.48	20.28
8	1.344	1.646	2.180	2.733	3.490	13.36	15.51	17.53	20.09	21.95
9	1.735	2.088	2.700	3.325	4.168	14.68	16.92	19.02	21.67	23.59
10	2.156	2.558	3.247	3.940	4.865	15.99	18.31	20.48	23.21	25.19
11	2.603	3.053	3.816	4.575	5.578	17.28	19.68	21.92	24.72	26.76
12	3.074	3.571	4.404	5.226	6.304	18.55	21.03	23.34	26.22	28.30
13	3.565	4.107	5.009	5.892	7.042	19.81	22.36	24.74	27.69	29.82
14	4.075	4.660	5.629	6.571	7.790	21.06	23.68	26.12	29.14	31.32
15	4.601	5.229	6.262	7.261	8.547	22.31	25.00	27.49	30.58	32.80
16	5.142	5.812	6.908	7.962	9.312	23.54	26.30	28.85	32.00	34.27
17	5.697	6.408	7.564	8.672	10.09	24.77	27.59	30.19	33.41	35.72
18	6.265	7.015	8.231	9.390	10.86	25.99	28.87	31.53	34.81	37.16
19	6.844	7.633	8.907	10.12	11.65	27.20	30.14	32.85	36.19	38.58
20	7.434	8.260	9.591	10.85	12.44	28.41	31.41	34.17	37.57	40.00
21	8.034	8.897	10.28	11.59	13.24	29.62	32.67	35.48	38.93	41.40
22	8.643	9.542	10.98	12.34	14.04	30.81	33.92	36.78	40.29	42.80
23	9.260	10.20	11.69	13.09	14.85	32.01	35.17	38.08	41.64	44.18
24	9.886	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	36.74	40.11	43.19	46.96	49.64
28	12.46	13.56	15.31	16.93	18.94	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
31	14.46	15.66	17.54	19.28	21.43	41.42	44.99	48.23	52.19	55.00
32	15.13	16.36	18.29	20.07	22.27	42.58	46.19	49.48	53.49	56.33
33	15.82	17.07	19.05	20.87	23.11	43.75	47.40	50.73	54.78	57.65
34	16.50	17.79	19.81	21.66	23.95	44.90	48.60	51.97	56.06	58.96
35	17.19	18.51	20.57	22.47	24.80	46.06	49.80	53.20	57.34	60.27
36	17.89	19.23	21.34	23.27	25.64	47.21	51.00	54.44	58.62	61.58
37	18.59	19.96	22.11	24.07	26.49	48.36	52.19	55.67	59.89	62.88
38	19.29	20.69	22.88	24.88	27.34	49.51	53.38	56.90	61.16	64.18
39	20.00	21.43	23.65	25.70	28.20	50.66	54.57	58.12	62.43	65.48

Ablesebeispiel: $\chi^2_{12;0.9}=18.55$ Für m>39 kann folgende Approximation verwendet werden:

$$\chi_{m;p}^2 \approx m(1 - \frac{2}{9m} + z_p \sqrt{\frac{2}{9m}})^3,$$

wobei z_p das $p\text{-}\mathrm{Quantil}$ der Standardnormalverteilung ist.

370 A Tabellen

A.4 Quantile der t-Verteilung

	tile t_m ;					
$m \setminus p$	0.9	0.95	0.975	0.99	0.995	0.999
1	3.078	6.314	12.71	31.82	63.66	318.3
2	1.886	2.920	4.303	6.965	9.925	22.33
3	1.638	2.353	3.182	4.541	5.841	10.21
4	1.533	2.132	2.776	3.747	4.604	7.173
5	1.476	2.015	2.571	3.365	4.032	5.893
6	1.440	1.943	2.447	3.143	3.707	5.208
7	1.415	1.895	2.365	2.998	3.499	4.785
8	1.397	1.860	2.306	2.896	3.355	4.501
9	1.383	1.833	2.262	2.821	3.250	4.297
10	1.372	1.812	2.228	2.764	3.169	4.144
11	1.363	1.796	2.201	2.718	3.106	4.025
12	1.356	1.782	2.179	2.681	3.055	3.930
13	1.350	1.771	2.160	2.650	3.012	3.852
14	1.345	1.761	2.145	2.624	2.977	3.787
15	1.341	1.753	2.131	2.602	2.947	3.733
16	1.337	1.746	2.120	2.583	2.921	3.686
17	1.333	1.740	2.110	2.567	2.898	3.646
18	1.330	1.734	2.101	2.552	2.878	3.610
19	1.328	1.729	2.093	2.539	2.861	3.579
20	1.325	1.725	2.086	2.528	2.845	3.552
21	1.323	1.721	2.080	2.518	2.831	3.527
22	1.321	1.717	2.074	2.508	2.819	3.505
23	1.319	1.714	2.069	2.500	2.807	3.485
24	1.318	1.711	2.064	2.492	2.797	3.467
25	1.316	1.708	2.060	2.485	2.787	3.450
26	1.315	1.706	2.056	2.479	2.779	3.435
27	1.314	1.703	2.052	2.473	2.771	3.421
28	1.313	1.701	2.048	2.467	2.763	3.408
29	1.311	1.699	2.045	2.462	2.756	3.396
30	1.310	1.697	2.042	2.457	2.750	3.385
31	1.309	1.696	2.040	2.453	2.744	3.375
32	1.309	1.694	2.037	2.449	2.738	3.365
33	1.308	1.692	2.035	2.445	2.733	3.356
34	1.307	1.691	2.032	2.441	2.728	3.348
35	1.306	1.690	2.030	2.438	2.724	3.340
36	1.306	1.688	2.028	2.434	2.719	3.333
37	1.305	1.687	2.026	2.431	2.715	3.326
38	1.304	1.686	2.024	2.429	2.712	3.319
39	1.304	1.685	2.023	2.426	2.708	3.313

Ablesebeispiel: $t_{12;0.9} = 1.356$

Für m > 39 kann folgende Approximation verwendet werden:

$$t_{m;p} \approx z_p (1 + \frac{1 + z_p^2}{4m}),$$

wobei z_p das Quantil der Standardnormalverteilung ist.

A.5 Quantile der F-Verteilung

	30	20 4.17	34 3.32	95 2.92	2.71 2.69		56 2.53	56	-	-	-									
	26 28	4.23 4	3.37 3.	2.98 2.	2.74 2	2.59 2.	2.47 2	2.39 2.	2.32 2.	2.27 2.	2.22	2.15 2	2.09 2	2.05 2.	2.02	1.99	1.97	1.95	1.93	1 01
	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.13	2.09	2.05	2.03	2.00	1.98	1.97	1 05
	22	4.30	3.44	3.05	2.82	5.66	2.55	2.46	2.40	2.34	2.30	2.23	2.17	2.13	2.10	2.07	2.05	2.03	2.01	00 6
	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.22	2.18	2.15	2.12	2.10	2.08	2.07	906
	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19	2.17	2.15	2.13	9 19
	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28	2.25	2.24	2.22	9 91
	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39	2.37	2.35	2.33	9 39
	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	5.69	2.64	2.60	2.57	2.54	2.52	2.51	2.49	87.6
	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.05	2.98	2.91	2.86	2.83	2.80	2.77	2.75	2.74	2.72	0 71
	6	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94	2.92	2.90	2.89	2 84
	8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15	3.13	3.12	3.10	3 00
	7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44	3.43	3.41	3.40	3 30
	9	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87	3.86	3.84	3.83	3 89
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56	4.54	4.53	4.52	7.50
	4	7.71	6.94	6.59	6.39	6.26	6.16	60.9	6.04	00.9	5.96	5.91	5.87	5.84	5.82	5.80	5.79	5.77	5.76	2
	3	10.1	9.55	9.58	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66	8.65	8.64	8.63	698
11,1162,P=0.00	2	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.4	19.5	19.5	19.5	10.5
- 1161	1	161	199	216	225	230	234	237	239	241	242	244	245	246	247	248	249	249	249	950
	$_1 \backslash m_2$		2	3	4	5	9	-1	8	6	10	12	14	16	18	20	22	24	26	86

Able sebcispiel: $F_{2;12;0.95} = 3.89$ Approximation für m > 30: $F_{m;1;m_2;0.95} = \exp(\frac{3.2897}{\sqrt{h-0.95}} - 1.568g)$ mit $g = \frac{1}{m_1} - \frac{1}{m_2}$ und $h = \frac{2m_1m_2}{m_1+m_2}$ Es gilt $F_{m_1;m_2;1-p} = \frac{1}{F_{m_2;m_1;p}}$.

p-Guantine		$m_1; m_2; p=0.975$.975																	
$m_1 \backslash m_2$	1	2	3	4	2	9	-1	∞	6	10	12	14	16	18	20	22	24	56	82	30
-	648	38.5	17.4	12.2	10.0	8.81	8.07	7.57	7.21	6.94	6.55	6.30	6.12	5.98	2.87	5.79	5.72	5.66	5.61	5.57
2	262	39.0	16.0	10.6	8.43	7.26	6.54	90.9	5.71	5.46	5.10	4.86	4.69	4.56	4.46	4.38	4.32	4.27	4.22	4.18
3	864	39.2	15.4	9.98	7.76	09.9	5.89	5.42	5.08	4.83	4.47	4.24	4.08	3.95	3.86	3.78	3.72	3.67	3.63	3.59
4	006	39.2	15.1	09.6	7.39	6.23	5.52	5.05	4.72	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.38	3.33	3.29	3.25
22	922	39.3	14.9	9.36	7.15	5.99	5.29	4.82	4.48	4.24	3.89	3.66	3.50	3.38	3.29	3.22	3.15	3.10	3.06	3.03
9	937	39.3	14.7	9.20	86.9	5.82	5.12	4.65	4.32	4.07	3.73	3.50	3.34	3.22	3.13	3.05	2.99	2.94	2.90	2.87
7	948	39.4	14.6	9.07	6.85	5.70	4.99	4.53	4.20	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.82	2.78	2.75
∞	957	39.4	14.5	8.98	92.9	5.60	4.90	4.43	4.10	3.85	3.51	3.29	3.12	3.01	2.91	2.84	2.78	2.73	5.69	2.65
6	963	39.4	14.5	8.90	89.9	5.52	4.82	4.36	4.03	3.78	3.44	3.21	3.05	2.93	2.84	2.76	2.70	2.65	2.61	2.57
10	696	39.4	14.4	8.84	6.62	5.46	4.76	4.30	3.96	3.72	3.37	3.15	5.99	2.87	2.77	2.70	2.64	2.59	2.55	2.51
12	226	39.4	14.3	8.75	6.52	5.37	4.67	4.20	3.87	3.62	3.28	3.05	2.89	2.77	2.68	2.60	2.54	2.49	2.45	2.41
14	983	39.4	14.3	89.8	6.46	5.30	4.60	4.13	3.80	3.55	3.21	2.98	2.82	2.70	2.60	2.53	2.47	2.42	2.37	2.34
16	286	39.4	14.2	8.63	6.40	5.24	4.54	4.08	3.74	3.50	3.15	2.92	2.76	2.64	2.55	2.47	2.41	2.36	2.32	2.28
18	066	39.4	14.2	8.59	6.36	5.20	4.50	4.03	3.70	3.45	3.11	2.88	2.72	2.60	2.50	2.43	2.36	2.31	2.27	2.23
20	993	39.4	14.2	8.56	6.33	5.17	4.47	4.00	3.67	3.42	3.07	2.84	2.68	2.56	2.46	2.39	2.33	2.28	2.23	2.20
22	995	39.5	14.1	8.53	6.30	5.14	4.44	3.97	3.64	3.39	3.04	2.81	2.65	2.53	2.43	2.36	2.30	2.24	2.20	2.16
24	266	39.5	14.1	8.51	6.28	5.12	4.41	3.95	3.61	3.37	3.02	2.79	2.63	2.50	2.41	2.33	2.27	2.22	2.17	2.14
56	666	39.5	14.1	8.49	6.26	5.10	4.39	3.93	3.59	3.34	3.00	2.77	2.60	2.48	2.39	2.31	2.25	2.19	2.15	2.11
28	1000	39.5	14.1	8.48	6.24	5.08	4.38	3.91	3.58	3.33	2.98	2.75	2.58	2.46	2.37	2.29	2.23	2.17	2.13	2.09
30	1000	39.5	14.1	8.46	6.23	5.07	4.36	3.89	3.56	3.31	2.96	2.73	2.57	2.44	2.35	2.27	2.21	2.16	2.11	2.07

Able sebeispiel: $F_{2;12;0:975} = 5.10$ Approximation für m > 30: $F_{m_1;m_2;0.95} = \exp(\frac{3.9197}{\sqrt{h-1.14}} - 1.948g)$ mit $g = \frac{1}{m_1} - \frac{1}{m_2}$ und $h = \frac{2m_1m_2}{m_1+m_2}$ Es gilt $F_{m_1;m_2;1-p} = \frac{1}{F_{m_2;m_1;p}}$.