Class 17: Mini Project

Patrick Tran

The goal of this hands-on mini-project is to examine and compare the Covid-19 vaccination rates around San Diego.

We will start by downloading the most recently dated "Statewide COVID-19 Vaccines Administered by ZIP Code" CSV file from: https://data.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code

Data Import

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

	as_of_date zip_code_ta	abulation area lo	cal health in	riediction	county			
		-	car_nearth_ju.		•			
1	2021-01-05	95446		Sonoma	Sonoma			
2	2021-01-05	96014		Siskiyou	Siskiyou			
3	2021-01-05	96087		Shasta	Shasta			
4	2021-01-05	96008		Shasta	Shasta			
5	2021-01-05	95410		Mendocino	Mendocino			
6	2021-01-05	95527		Trinity	Trinity			
	vaccine_equity_metric_quartile vem_source							
1		2 Healthy	Places Index	Score				
2		2 CDPH	-Derived ZCTA	Score				
3		2 CDPH	-Derived ZCTA	Score				
4		NA	No VEM As	signed				
5		3 CDPH	-Derived ZCTA	Score				
6		2 CDPH	-Derived ZCTA	Score				
	age12_plus_population	age5_plus_popula	tion tot_popu	lation				
1	4840.7	!	5057	5168				
2	135.0		135	135				
3	513.9		544	544				

```
4
                  1125.3
                                           1164
                                                             NA
5
                   926.3
                                            988
                                                            997
6
                   476.6
                                            485
                                                            499
  persons_fully_vaccinated persons_partially_vaccinated
                         NA
1
2
                         NA
                                                         NA
3
                                                         NA
                         NA
4
                         NA
                                                         NA
5
                         NA
                                                         NA
6
                                                         NA
                         NA
  percent_of_population_fully_vaccinated
                                         NA
1
2
                                         NA
3
                                         NA
4
                                         NA
5
                                         NA
  percent_of_population_partially_vaccinated
1
                                             NA
2
                                             NA
3
                                             NA
4
                                             NA
5
                                             NA
6
                                             NA
 percent_of_population_with_1_plus_dose booster_recip_count
                                                              NA
1
                                         NA
2
                                         NA
                                                              NA
3
                                         NA
                                                              NA
4
                                         NA
                                                              NA
5
                                         NA
                                                              NA
                                                              NA
  bivalent_dose_recip_count eligible_recipient_count
1
                           NA
2
                          NA
                                                       0
3
                          NA
                                                       2
                                                       2
4
                           NA
5
                                                       0
                           NA
6
                           NA
                                                       0
                                                                    redacted
1 Information redacted in accordance with CA state privacy requirements
2 Information redacted in accordance with CA state privacy requirements
```

3 Information redacted in accordance with CA state privacy requirements 4 Information redacted in accordance with CA state privacy requirements

- ${\tt 5}$ Information redacted in accordance with CA state privacy requirements
- 6 Information redacted in accordance with CA state privacy requirements
- Q1. What column details the total number of people fully vaccinated? vax\$persons_fully_vaccinated
- Q2. What column details the Zip code tabulation area? vax\$zip_code_tabulation_area
 - Q3. What is the earliest date in this dataset?

```
vax$as_of_date[1]
```

[1] "2021-01-05"

Q4. What is the latest date in this dataset?

```
vax$as_of_date[nrow(vax)]
```

[1] "2023-02-28"

We can use the skim() function for a quick overview of a new dataset like this:

```
skimr::skim(vax)
```

Table 1: Data summary

Name	vax
Number of rows	199332
Number of columns	18
Column type frequency: character numeric	5 13
Group variables	None

Variable type: character

skim_variable	n_missing	complete_	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	113	0
local_health_jurisdiction	0		1	0	15	565	62	0
county	0		1	0	15	565	59	0
vem_source	0		1	15	26	0	3	0
redacted	0		1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missing	g mplete	meten	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_a	rea 0	1.00	93665.	.111817.3	389000	192257	.793658	.5905380	.5997635	.0
vaccine_equity_metric_	_9831 tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.	.0148993	.870	1346.9	513685	.1301756	.128556	.7
age5_plus_population	0	1.00	20875.	.2241105	.970	1460.5	5015364	.0304877	.0100190	2.0
$tot_population$	9718	0.95	23372.	.7272628	.512	2126.0	018714	.0808168	.001116	5.0
persons_fully_vaccinate	e d 16525	0.92	13962.	.3B5054	.091	930.00	8566.0	0023302	.0807566	.0
persons_partially_vacci	16525	0.92	1701.6	642030.I	18 11	165.00	1196.0	002535.0	039913	.0
percent_of_population_	270812 5_vac	c on9 0e	0.57	0.25	0	0.42	0.60	0.74	1.0	
percent_of_population_	20825 ally	_0a9@ir	1a 0e01 8	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population_	2 185 91_	p lu8 9 d	o s e63	0.24	0	0.49	0.67	0.81	1.0	
booster_recip_count	72872	0.63	5837.3	317165.8	81 11	297.00	2748.0	009438.2	2559553	.0
bivalent_dose_recip_co	u 58664	0.20	2924.9	33583.4	4511	190.00	1418.0	004626.2	2527458	.0
eligible_recipient_count	0	1.00	12801.	.8144908	.330	504.00	6338.0	0021973	.007234	.0

Q5. How many numeric columns are in this dataset?

13

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

```
fullyVacNAtotal <- sum(is.na(vax$persons_fully_vaccinated))
fullyVacNAtotal</pre>
```

[1] 16525

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
fullyVacNotNAtotal <- sum(!is.na(vax$persons_fully_vaccinated))
round(fullyVacNAtotal/(fullyVacNAtotal+fullyVacNotNAtotal) * 100, digits=1)
[1] 8.3</pre>
```

```
# You can also use `nrow(vax)` to get total rows
```

Working with dates

The lubridate package makes working with dates and times in R much less of a pain.Let's have a first play with this package here.

```
library(lubridate)

Attaching package: 'lubridate'

The following objects are masked from 'package:base':
    date, intersect, setdiff, union

today()

[1] "2023-03-07"

# Specify that we are using the year-month-day format vax$as_of_date <- ymd(vax$as_of_date)

Now we can magically do math with dates

today() - ymd("2021-01-05")</pre>
```

Time difference of 791 days

How old am I

```
today() - ymd("2002-06-07")
```

Time difference of 7578 days

How many days have passed since the first vaccination reported in this dataset?

```
today() - vax$as_of_date[1]
```

Time difference of 791 days

How many days does the dataset span?

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
```

Time difference of 784 days

Q9. How many days ago was the dataset updated?

```
today() - vax$as_of_date[nrow(vax)]
```

Time difference of 7 days

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?

```
length(unique(vax$as_of_date))
```

[1] 113

Working with ZIP codes

ZIP codes are also rather annoying things to work with as they are numeric but not in the conventional sense of doing math.

Just like dates we have special packages to help us work with ZIP codes.

```
zip_distance('92037','92127')

zipcode_a zipcode_b distance
1 92037 92127 15.56
```

More usefully, we can pull census data about ZIP code areas (including median household income etc.). For example:

```
reverse_zipcode(c('92037', "92127") )
# A tibble: 2 x 24
 zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                               lat
                                                                     lng timez~5
 <chr>
          <chr>
                     <chr>>
                             <chr>
                                         <blob> <chr> <dbl> <dbl> <chr>
                    La Jol~ La Jol~ <raw 20 B> San D~ CA
1 92037
         Standard
                                                              32.8 -117. Pacific
                                                              33.0 -117. Pacific
2 92127
         Standard
                    San Di~ San Di~ <raw 21 B> San D~ CA
 ... with 14 more variables: radius in miles <dbl>, area_code_list <blob>,
   population <int>, population_density <dbl>, land area in sqmi <dbl>,
   water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
   1: zipcode_type, 2: major_city, 3: post_office_city, ...
```

Focus on the San Diego area

Let's now focus in on the San Diego County area by restricting ourselves first to vax\$county == "San Diego" entries. We have two main choices on how to do this. The first using base R the second using the dplyr package:

```
# Subset to San Diego county only areas
  sd <- vax[vax$county == "San Diego", ]</pre>
  nrow(sd)
[1] 12091
It is time to revisit the most awesome dplyr package.
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 12091
  sd.10 <- filter(vax, county == "San Diego" &</pre>
                   age5_plus_population > 10000)
  nrow(sd.10)
[1] 8588
     How many ZIP code areas are we dealing with?
  n_distinct(sd.10$zip_code_tabulation_area)
```

```
[1] 76
    Q11. How many distinct zip codes are listed for San Diego County?
  n_distinct(sd$zip_code_tabulation_area)
[1] 107
    Q12. What San Diego County Zip code area has the largest 12 + Population in
    this dataset?
  ind <- which.max(sd$age12_plus_population)</pre>
  sd$zip_code_tabulation_area[ind]
[1] 92154
  reverse zipcode("92154")
# A tibble: 1 x 24
 zipcode zipcode_~1 major~2 post_~3 common_c~4 county state
                                                                  lat
                                                                        lng timez~5
                     <chr>
                              <chr>
                                           <blook> <chr> <dbl> <dbl> <dbl> <chr>
                     San Di~ San Di~ <raw 21 B> San D~ CA
1 92154
          Standard
                                                                 32.6 -117 Pacific
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
   population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
   water_area_in_sqmi <dbl>, housing_units <int>,
   occupied_housing_units <int>, median_home_value <int>,
   median household income <int>, bounds west <dbl>, bounds east <dbl>,
   bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
    1: zipcode_type, 2: major_city, 3: post_office_city, ...
    Q13. What is the overall average "Percent of Population Fully Vaccinated" value
    for all San Diego "County" as of THE MOST RECENT DATE - "2022-11-15"-?
  vax$as_of_date[nrow(vax)]
[1] "2023-02-28"
```

```
# Base R method
  mean(na.omit(sd$percent_of_population_fully_vaccinated[sd$as_of_date == "2023-02-28"]))*10
[1] 74.00878
  ## sd$as_of_date
  sd.today <- filter(sd, as_of_date == "2023-02-28")</pre>
  sd.today$percent_of_population_fully_vaccinated
  [1] 1.000000 1.000000 1.000000 0.984120 0.726054 0.920272 0.734358 0.700946
  [9] 0.734790 0.638003 0.759673 0.787543 0.663165 1.000000 0.807560 1.000000
 [17] 0.734300 0.736979 0.670901 1.000000 0.737450 0.765885 0.636239 0.651027
 [25] 0.538707 0.711592 0.578497 0.790538 0.672144 0.720655
                                                                    NA 0.486705
 [33] 0.666286 0.997774 0.491870 0.835292
                                                 NA 1.000000 0.929570 0.712216
 [41] 0.971820 0.851489 0.264069 0.797235 0.630450 0.801880
                                                                    NA 0.769643
 [49] 0.885968 0.008840 0.675936 0.380369 0.759775 0.557065 0.989647 0.821669
 [57] 0.532749
                     NA 0.698135 0.684678 0.761721
                                                          NA 0.740617
 [65]
                     NA 0.694732 0.796063 0.825653 0.747976 0.690588 0.907481
            NA
 [73] 0.643372 0.884224 0.669047 0.930439 0.560752 0.682451 0.668887 0.685905
 [81] 0.728650 1.000000 0.867612 0.647183 0.763726 0.669399 0.625292 0.712209
 [89] 0.675998 0.968281 0.694572 0.899551 0.715753 0.738527 0.740673 0.776934
 [97] 0.550296 0.602507 0.717638 0.358891 1.000000 0.716221 0.936865 0.735863
[105] 0.492547 0.695887 0.745186
  mean(sd.today$percent_of_population_fully_vaccinated, na.rm=T)
[1] 0.7400878
    Q14. Using either ggplot or base R graphics make a summary figure that shows
    the distribution of Percent of Population Fully Vaccinated values as of THE MOST
```

RECENT DATE "2023-02-28"?

```
# Using base R graphics
hist(sd.today$percent_of_population_fully_vaccinated, breaks=20)
```

Histogram of sd.today\$percent_of_population_fully_vaccinate

sd.today\$percent_of_population_fully_vaccinated

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 8 rows containing non-finite values (`stat_bin()`).

Vaccination rate across San Diego as of last week

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

Comparing to similar sized areas

Look across every zip code area with a population at least as large as that of 92037 on $as_of_date"2023-02-28"$

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-02-28". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
ave <- mean(vax.36$percent_of_population_fully_vaccinated)
ave</pre>
```

[1] 0.7213331

```
ucplot + geom_hline(yintercept = ave, color = "red", linetype=2)
```

Vaccination rate for La Jolla CA 92109

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2023-02-28"?

```
summary(vax.36$percent_of_population_fully_vaccinated)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3804 0.6457 0.7181 0.7213 0.7907 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36) +
  aes(percent_of_population_fully_vaccinated) +
  geom_histogram() +
  xlim(0,1) +
  labs(x="Percent Vaccinated", y="Count")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Warning: Removed 2 rows containing missing values (`geom_bar()`).

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
#vax %>% filter(as_of_date == "2023-02-28") %>%
    #filter(zip_code_tabulation_area=="92109") %>%
    #select(percent_of_population_fully_vaccinated)

#vax %>% filter(as_of_date == "2023-02-28") %>%
    #filter(zip_code_tabulation_area=="92040") %>%
    #select(percent_of_population_fully_vaccinated)

x <- filter(vax.36, zip_code_tabulation_area %in% c("92109", "92040"))
x$percent_of_population_fully_vaccinated</pre>
```

[1] 0.694572 0.550296

The ZIP code areas are below the average value.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a $age5_plus_population > 36144$.

```
vax.36.all <- filter(vax, age5_plus_population > "36144")

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   ylim(0,1) +
   labs(x="Date", y="Percent Vaccinated",
        title="Vaccination rate across California",
        subtitle="Only areas with a population above 36k are shown") +
   geom_hline(yintercept = ave, linetype=2)
```

Warning: Removed 6549 rows containing missing values (`geom_line()`).

Vaccination rate across California Only areas with a population above 36k are shown

