1/2

2023T05NA0129 Durée: 04 heures

Série: T1 - Coef. 5

Série: T2 – Coef. 4

SCHEMENT AND CHRISTIA MARKET

OFFICE DU BACCALAUREAT

E. mail : office@ucad.edu.sn Site web : officedu bac.sn

Epreuve du 1er groupe

MATHEMATIQUES

EXERCICE 1 (04,5 points)

Dans l'espace muni du repère orthonormal direct $(O; \vec{i}, \vec{j}, \vec{k})$, on considère les points suivants :

A(1,0,0), B(0,2,0) et C(0,0,3).

1. a) Déterminer les coordonnées du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$.

(01 pt)

b) Justifier alors que les points A, B et C déterminent un plan (P).

(0,5 pt)

c) Déterminer une équation cartésienne de (P).

(0,5 pt)

2. Soit *I* et *J* les milieux respectifs des segments [*AB*] et [*AC*]

On désigne par Δ la droite passant par I et de vecteur directeur \vec{k} et par Δ' la droite passant par J et de vecteur directeur \vec{j} .

- a) Déterminer une représentation paramétrique pour chacune des droites Δ et Δ' . (02×0,5 pt)
- b) Soit Ω le point d'intersection de Δ et Δ' . Déterminer les coordonnées de Ω , (0,5 pt)
- c) Calculer la distance du point Ω au plan (\mathcal{P}) . (01 pt)

EXERCICE 2 (05,5 points)

- 1. On considère dans \mathbb{C} l'équation (E): $\mathbf{z}^2 (3 \mathbf{i})\mathbf{z} + \mathbf{4} = \mathbf{0}$.
 - a) Résoudre (E). On écrira les solutions z_1 et z_2 sous forme algébrique où z_1 est la solution dont la partie imaginaire est strictement positive. (01 pt)
 - b) Mettre z_1 et z_2 sous forme trigonométrique. (01 pt)
- **2.** On considère dans \mathbb{C} une autre équation (E'): $3z^3 (9-i)z^2 + (14+6i)z 8i = 0$.
 - a) Montrer (E') admet une racine imaginaire pure que l'on déterminera. On la notera z_0 · (0.75 pt)
 - b) Résoudre alors (E'). (0,75 pt)
- 3. Dans le plan complexe, on considère les points A, B et C d'affixes respectives 1 + i, 2 2i et $\frac{2}{3}i$.

On pose $Z = \frac{z_{B-Z_A}}{z_{C-Z_A}}$

- a) Déterminer le module et l'argument principal de Z puis les interpréter géométriquement. (01,5 pt)
- b) Déterminer alors la nature exacte du triangle ABC.

(0,5 pt)

PROBLEME

(10 points)

PARTIE A (03 points)

Soit g la fonction définie sur $]0, +\infty[$ par $g(x) = x^2 + 3x - 4 + 4 \ln x.$

1. Déterminer la limite de g en 0 et la limite de g en $+\infty$

 $(02 \times 0.5 \text{ pt})$

2. Soit g' la dérivée de g.

a) Montrer que pour tout réel x strictement positif, $g'(x) = \frac{2x^2 + 3x + 4}{x}$. (0,5 pt)

b) Dresser alors le tableau de variations de *g*.

(0.75 pt)

3. Calculer g(1), puis en déduire le signe de g(x) sur $]0, +\infty[$.

(0,25 pt+0,5 pt)

2023T05NA0129 Séries : T1-T2

Epreuve du 1er groupe

PARTIE B (05,75 points)

Soit f la fonction définie sur]0, $+\infty$ [par : $f(x) = x + 3 \ln x - \frac{4 \ln x}{x}$.

On note (C_f) la courbe de f dans un repère orthonormal $(0; \vec{\iota}, \vec{j})$ (unité : 3 cm).

1. Déterminer la limite de f en 0 puis interpréter géométriquement le résultat. (0,5 pt+0,25pt)

On pourra remarquer que : $\forall x \in]0, +\infty[, f(x) = x + \left(3 - \frac{4}{x}\right) \ln x.$

2. a) Déterminer la limite de f en $+\infty$ (0,5 pt)

b) Etudier la branche infinie de (C_f) en $+\infty$. (0,5 pt)

3. a) Montrer que pour tout réel x strictement positif : $f'(x) = \frac{g(x)}{x^2}$. (0,75pt)

b) En utilisant les résultats de la partie A, dresser le tableau de variations de f. (0,75pt)

4. a) Déterminer les points d'intersection de (C_f) et de la droite $\Delta : y = x$. (0,75pt)

b) Etudier la position relative de (C_f) et Δ · (0,75pt)

c) Tracer soigneusement (C_f) et Δ . (01pt)

PARTIE C (01,25 point)

- 1. Soit h la fonction définie sur $]0, +\infty[$ par : $h(x) = x \ln x x$. (0,25pt) Calculer h'(x) où h' est la dérivée de h sur $]0, +\infty[$.
- 2. Calculer en cm² l'aire \mathcal{A} du domaine plan délimité par (C_f) , Δ , $(D_1): x = 1$ et $(D_2): x = \frac{4}{3}$.

 On donnera la valeur exacte de \mathcal{A} et une valeur approchée à 10^{-2} près. (01pt)