Bioinformatic resources

Giacomo Fantoni telegram: @GiacomoFantoni Ilaria Cherchi telegram: @ilariacherchi

 $Github:\ https://github.com/giacThePhantom/thesis_notes$

June 25, 2022

Contents

1	Intr	oductio	on	3			
	1.1	Bioinfo	rmatics	3			
		1.1.1	The human genome	3			
	1.2	Involve	ment of computer science	3			
		1.2.1	Databases	3			
		1.2.2	Program	4			
		1.2.3	Algorithm	4			
2	Scientific literature 5						
	2.1	Literat	ure sources	5			
		2.1.1	Primary literature	5			
			Secondary literature	5			
	2.2		re of a scientific article	5			
	2.3		measures	6			
		-	Impact of a journal	6			
			Personal impact	6			
			Peer review	6			
3	Biol	logical (databases	7			
•	3.1 Introduction						
	0.1		Classification of databases	7 7			
			Data sources	7			
			Nomenclature	7			
		00	Reference genome	7			
			Popular databases	8			
			GenBank	8			
			RefSeq	8			
			UniProt	8			
			Others	8			
			Genome browser	8			
4	Mot	tif analy	vsis	10			
•	4.1		, ····	10			
	1.1			10			
				10			
	4.2			10			
				11			

${\tt CONTENTS}$

	4.3	4.2.3 4.2.4 Motif 4.3.1	Positional matrix Hidden Markov model Sequence logos identification Finding known motifs - pattern matching Finding de novo motifs - pattern discovery	12 12 13 13		
5	Expression analysis					
6	Gene set enrichment					
7	Network analysis					
8	Genome wide association studies					

CONTENTS 2

Introduction

1.1 Bioinformatics

Bioinformatics can be defined as the development of new algorithms and statistical methods that allow to establish relations between members of huge sets of data. It can also be described as the analysis and interpretation of different data types including nucleotide and amino acid sequences, protein domains and protein structures. The development and implementation of these programs allow efficient access and management of different types of information.

1.1.1 The human genome

The human genome contains around 3.2 billion base pairs. About 80% of it is associated with a biochemical function. Of particular interest is non-coding DNA, which doesn't code for proteins but is mainly involved in:

- Protection of the genome.
- Gene switches.
- Gene expression regulation.
- Transcription factor binding sites.
- Operators.
- Enhancers.

- Promoters.
- Silencers.

1.2 Involvement of computer science

Computer science plays a fundamental part in bioinformatics, providing the algorithms necessary to exploit data collected in experiment to reach a significant conclusion.

1.2.1 Databases

Databases or data banks are collections of correlated data utilized to represent a portion of the real world. They are structured in a way to allow data organization and management in terms of:

- Insertion.
- Update.
- Search.
- Deletion.

1.2.2 Program

A program codifies an algorithm into a programming language. It is used to test and realize a proposed solution. Computer science can be defined as the science of the automatic elaboration of information, with algorithm as its central focus.

1.2.3 Algorithm

Algorithms (from the name of the Persian mathematician *Muhammad ibn Musa al-Khwarizmi*) can be defined as a system of well-defined rules and procedures that lead to the solution of a problem with a finite number of steps. They can be described in pseudo-code.

1.2.3.1 Substring search algorithm

A substring search algorithm is an algorithm that searches the occurrence of a string in another, allowing to understand if the former is contained in the latter. A naïve implementation is described in figure 1.1.

ACTGGATAGCCGCCGTTTATATACCTAGAGAGATGCGCTTAC

```
ACCTA
ACCTA
ACCTA
```

- 1) Set i=1
- 2) Set i=i
- 3) If S1[j] is equal to S2[i] increment j by 1 and repeat step 3
- 4) If j-i is equal to N return YES; Otherwise increment i by 1.
- 5) If M-i is less than N-1 return NO; Otherwise back to step 2.

Figure 1.1: Naïve implementation of a substring search algorithm

Scientific literature

2.1 Literature sources

All bioinformatics works are based on literature. Different sources of literature can be found.

2.1.1 Primary literature

Primary literature is defined as original materials. It is authored by researchers, contains original research data and is usually published in a peer-reviewed journal. Primary literature works can be:

- Journal articles or conference proceedings, which are usually the first formal appearance of a result.
- Original articles: the original research conducted by the authors, including methods and resources used.
- Letters or communications: short reports of original research focused on an outstanding finding whose importance means that it will be of interest to scientists in other fields.

2.1.2 Secondary literature

Secondary literature is the summary or review of the theories and results of original scientific research. Secondary literature works can be:

- Open letters.
- News.
- Correspondence.

back-

• Protocols.

- Comments.
- Reviews.
- Opinions.

2.2 Structure of a scientific article

Scientific articles tend to have a well defined structure, composed, in order, of:

1. Title.

3. Keywords.

5. Methods or experiments.

2. Abstract.

- 4. Introduction ground.
- 6. Results or analysis.

- 7. Discussion.
- 8. Conclusion.
- 9. References or bibliography.
- 10. Figures and tables.
- 11. Supplementary materials.

2.3 Impact measures

An impact measure is used to define the goodness of a research or if it had a big impact in the community.

2.3.1 Impact of a journal

A measure of impact of a journal measure the impact of the publication of a journal. It can be measured in different ways:

• Impact factor (IF): a measure that reflects the average number of citations of articles published in a science journal. It can be biased due to self-citations, journal-forced citations and it does not take into account negative citations. It is computed as:

$$IF_y = \frac{Citations_y}{Publications_{y-1} + Publications_{y-2}}$$

- Journal of Citation reports JCR.
- Scimago Journal Rank SJR.

2.3.2 Personal impact

The personal impact measure the impact of a researcher. I can be measured as:

• H-index: an index that attempts to measure both the productivity and the impact of the published work of a scientist or scholar. A scholar with an index of h has published h papers each of which has been cited by others at least h times. It serves as an alternative to more traditional journal impact factor metrics in the evaluation

of the impact of the work of a particular researcher.

- Web of Science WOS.
- Scoups.
- Google Scholar.

2.3.3 Peer review

Peer-reviewed articles are also called refereed articles. Peer review allows to:

- Independently verify theories and assumptions.
- Asses appropriateness for publication.
- Check for transparency of research.
- To screen for the works ethic.
- Assess the quality of the research.

Depending on the journal or publisher this process can takes from weeks to months.

Biological databases

3.1 Introduction

3.1.1 Classification of databases

A huge number of biological databases are available and they can be distinguished as:

 Primary databases containing sequences of nucleotides and amino acids.

• Derived and specialized databases contain-

ing protein domains and motifs, protein structures, genes, transcripts, expression profiles, variations, pathways and many other informations.

Each database is characterized by a central biological element which constitutes the object around which the principal entry of the database is constructed.

3.1.2 Data sources

Data in these databases is derived from:

• Literature.

- In-vitro and in-vivo analysis.
- In-silico analysis.

3.1.3 Nomenclature

One of tha main problems related with biological database is nomenclature. There can be different name for the same gene or different genes with the same name. To uniquely identify genes and proteins and manage the large amount of information related, primary data banks assign an accession number to each element they store.

3.1.4 Reference genome

A reference genome is a digital sequence of nucleic acids assembled to be a representative sequence for a given species. It is assembled from DNA sequencing of a set of donors. An example of reference genome is GRCh38 from which hg38 is derived aggregating many donor informations.

3.1.5 Popular databases

3.1.6 GenBank

GenBank contains nucleotide sequences. The aim of the database is to store and archive historically important but redundant nucleotide sequences. Data can be submitted singularly or in a batch manner.

3.1.7 RefSeq

RefSeq is a curated and non redundant collection of DNA, RNA and protein sequences. Each RefSeq entry represents a sings molecule in a particular organism. Its basis is compiled with a process of collaboration, extraction and computation from GenBank. Each molecule is annotated reporting the name of the organism, the correct gene symbol for that organism and informative names of proteins when possible.

3.1.8 UniProt

UniProt is a comprehensive, high-quality and freely accessible resource of protein sequence and functional information. It provides protein sequences, domains and structural information like subcellular location for many species. It also includes some alignment and mapping tools.

3.1.9 Others

Other examples of derived databases are:

• dbGap. • Structure. • Gene. • Biosystems.

3.1.10 Genome browser

A genome browser is a database containing reference sequence assemblies for one or more genomes. It allows to browse data at various detail levels, from chromosome to gene, down to a single exon or intron. It also allows for the comparison between species and data extraction.

3.1.10.1 UCSC genome browser

The UCSC genome browser contains the genome of about 100 species, but it does not provide a browser for all of them. It integrates informations like SNPs, sequence conservation, regulatory elements (ENCODE) and others.

3.1.10.1.1 UCSC table browser The UCSC table browser allow to extract data from the database tables without the need for a graphical interface. It can also align sequences, annotate SNPs and convert data between genome versions. It is a flexible tool that can retrieve data for one or more genes in a variety of formats. When submitting heavy task it will redirect them to Galaxy, an online workflow system.

3.1.10.2 Ensembl genome browser

The Ensembl genome browser is the European genome browser. It focuses on vertebrate genomes. It includes genomic variants, both somatic and structural, and regulatory elements data. It offers an interfcace to access data directly BioMart. All Ensemble transcripts are based on proteins and mRNAs contained in the databases:

- UniProt/Swiss-Prot (manually curated).
- UniProt/TrEMBL (not reviewed).
- NCBI RefSeq (manually curated).

3.1.10.2.1 Biomart Biomart is a data mining platform which is able to address complex queries on ENSEMBL. It is similar to the USCS table browser, while being more powerful as it can retrieve both annotation and sequences.

Motif analysis

4.1 Introduction

4.1.1 Definition

A DNA motif is a pattern of nucleotide sequences. They are usually associated to DNA-protein binding site and so to regulatory regions. They are a small pattern, usually between 5 and 30bp that can recur many times in the genome and many times in the same gene. Motifs can be:

• Standard.

• Palindromes.

• Gapped.

4.1.2 Functions

DNA motif functions include:

- Sequence specific binding sites reached by transcription factors, nucleases and ribosomes.
- mRNA processing:
 - Splicing: exonic splicing enhancer ESE.
- Editing: protospacer adjacent motif PAM, a DNA sequence that immediately follows the target DNA sequence of the Cas9 nuclease in the CRISPR system.
- Polyadenilation.
- Transcription termination.

4.1.2.1 Degenerate motifs

Motifs in regulatory regions are often similar but variable: they are degenerate. Transcription factors are often pleiotropic, meaning that they regulate a lot of genes, but they need to be expressed at different levels. Degenerate motifs cause non-specific binding: a protein can bind genomic position different with respect to the one corresponding to the expected functional state.

4.2 Motif search

The objectives of motif search are to identify:

- Over-represented motifs in the genome.
- Motifs conserved in ortholog sequences.
- Sequences that can be candidates for transcription factor binding.

Motifs can be represented as a consensus sequence or as profiles like positional matrices or HMMs.

4.2.1 Consensus sequence

A consensus sequence represents the result of multiple sequence alignments with the goal of finding recurrent motifs across the sequences. This sequence can be potentially different from all input sequence: it presents only the most conserved sequences for each position. It is built such that it minimizes the distance from each input sequence at each position. It can be also written following a IUPAC notation.

4.2.2 Positional matrix

A positional matrix is an alternative way to represent a motif than the consensus sequencs. The elements in the matrix represent all possible bases at each position. Example of these matrices are:

- Position frequency matrix PFM or PSWM.
- Position weight matrix PWM or PSSM.

11

• Position probability matrix PPM or PFM.

4.2.2.1 Populating a position frequency matrix

A position frequency matrix is computed as:

$$M_{k,j} = \sum_{i=1}^{N} \delta(X_{i,j} = k)$$

Given k the set of all symbols in the alphabet. N the number of aligned sequences. j iterates over the length of the sequence.

4.2.2.2 Populating a position probability matrix

A position probability matrix is very similar with respect to the position frequency matrix, with the exception that each cell represent the probability that in that sequence position a particular base will be found. Its cells are computed as:

$$M_{k,j} = \frac{1}{N} \sum_{i=1}^{N} \delta(X_{i,j} = k)$$

4.2.2.3 Assessing the probability that a sequence belong to a PPM

To assess the probability for a sequence to belong to a PPM the probabilities for each base i found at each position j are multiplied:

$$P(seq \in PPM) = \prod_{j=1}^{R} M_{seq_j,j}$$

CHAPTER 4. MOTIF ANALYSIS

4.2.2.4 Correcting PPMs

4.2.2.4.1 Laplace smoothing Laplace smoothing introduces pseudocounts to allow to estimate probabilities in case of too few observations. A pseudocount is an amount added to the number of observed cases in order to change the expected probability.

4.2.2.4.2 Adding a background model Another way to correct PPMs is to add a background model. With this a new matrix is computed as:

$$M_{k,j} = \log_2 \frac{M_{k,j}}{b_k}$$

Where b represent a background model and can vary across nucleotides for organisms with high GC content. It is typically computed as:

$$b_k = \frac{1}{|k|}$$

And so is 0.25 for nucleotides and 0.05 for amino acids.

4.2.3 Hidden Markov model

A Markov chain is a mathematical system that experiences transitions from one state to another according to certain probabilistic rules. The possible future states are fixed and not based on how the process arrived at its present state. The state is directly visible to the observer: state transition probabilities are the only parameter. The state remain transparent, while the output is easily obtainable. A HMM of the first order is defined as:

- A finite set of states S.
- A discrete alphabet of symbols.
- A matrix of transition probabilities T = P(i|j), the probability of transition from

state j to i >

• A matrix of emission probabilities (the probability of skipping a state) T = P(X|i), the probability of X emission in state i.

4.2.3.1 Assessing the probability that a sequence is generated by a HMM

The probability that a sequence is generated by a HMM can be computed as:

$$P(S|w) = \sum_{\pi} P(S, \pi|w)$$

Where S is the sequence, w are the probabilities parameters, π are all possible computationally inefficient paths. Efficient algorithm to compute this probability are Forward-Backward and Viterbi.

4.2.4 Sequence logos

Sequence logos are visual representation of positional matrices and simple HMM profiles. The height of each character in a sequence logo is proportional to its information content: 2 bit if 1 base occurs in all input sequences, 1 if two bases occur and 0 if all bases occur equally. The higher the variability, the lower the height of a specific base. In particular the height of base b at position l is computed as:

$$f(b, l)R_{sequence}(l)$$

Where:

$$R_{sequence}(l) = 2 - (H(l) + e(n))$$

Such that H(l) is the Shannon entropy and is computed as:

$$H(l) = -\sum_{b=a}^{t} f(b, l) \log_2 f(b, l)$$

And

$$e(n) = \frac{1}{\ln 2} \cdot \frac{4-1}{2n}$$

4.3 Motif identification

There are two types of motification: pattern matching and pattern discovery.

4.3.1 Finding known motifs - pattern matching

Pattern matching is the problem of finding known motifs, for example seeing if a binding of a protein to an upstream region of a gene is significant. In order to find out whether a transcription factor matches a promoter the PFM matrix is used to compute a score for each sliding window. This scores can be plotted against a threshold, so as to identify regions able to support a putative binding.

4.3.1.1 Total binding affinity

Total binding affinity TBA is a cutoff-free method. The TBA is a method used to describe the affinity of a DNA sequence for a transcription factor described by a PFM with a single score. It takes into account binding sites of all possible affinities and considers the whole sequence, keeping into account both high and low affinity sites.

4.3.2 Finding de novo motifs - pattern discovery

Pattern discovery if the problem of finding de novo motif, for example finding the motifs upstream of a specific gene. Given a set of sequences, the objective is to find the most represented motifs. Using the MEME suit it is possible to identify new sequences and through Jaspar they can be compared to already characterized transcription factors. Methods can be:

• Exact: give optimal solution given specific parameters.

• Approximated: give suboptimal solu-

tion decreasing the computational burden. They are MULTIPROFILER, CONSENSUS, MEME, Gibbs sampler and Motif-Sampler for example.

4.3.2.1 Distance between a real motif and the consensus

The distance between a real motif and the consensus is generally less that that for two real motifs. The consensus sequence must be guess and a scoring function to compare different guesses and choose the best one must be chosen.

4.3.2.2 Elements of the problem

The problem of finding de novo motifs can be formalized considering the following elements:

- \bullet *n* the length of each sequence.
- DNA, an array of size $t \times n$.
- ullet l, the length of the motif or l-mer.
- s_i , the starting position of an l-mer in sequence l.
- $s = (s_1, s_2, \dots, s_t)$, an array of motifs starting position.

If the starting positions s are given, finding the consensus is easy. When those are not given, finding the best motif is solving the median string problem.

4.3.2.3 The median string problem

Given a set of t DNA sequences the objective is to find a pattern that appears in all t sequences with the minimum number of mutations. The Hamming distance is used, such that:

 $d_h(v, w) = \#$ nucleotide pairs that do not match when v and w are aligned

Then, for each DNA sequence I, all $d_h(v, x)$ are computed, where x is an l-mer with starting position s_i . Then the minimum $d_h(v, x)$ among all l-mers of the sequence. The TotalDistance(v, DNA) is the sum of the minimum Hamming distances for each DNA sequence I, so

$$TotalDistance(v, DNA) = \min_{s} d_h(v, s)$$

Where s is the set of starting positions.

Expression analysis

Gene set enrichment

Network analysis

Genome wide association studies