Putting Home Economics into Macroeconomics Greenwood et al. (1993)

Manuel Bieri & Michael Wagner

Seminar: Macroeconomics and International Economics

June 2023

Table of Contents

Motivation

Model

Results

Future Research

Conclusion

Motivation I

Figure: OECD Countries 2009 - 2016 (Ortiz-Ospina et al., 2020)

Motivation II

Key Figures U.S. Data

- ▶ 25 percent of discretionary time spend on unpaid work
 - e.g. cleaning, cooking, caretaking
- ▶ 33 percent of discretionary time spent on paid work
- Household capital spending exceeds market capital spending by 15 percent (Greenwood et al., 1993)
 - e.g. consumer durables or residential structures
- ► Household sector output between 20-50 percent of measured GDP (Eisner, 1988)

Model

¹Increased willingness to substitute

Model Specifications

- ▶ Model 1: Home production minimized
- Model 2: Increased willingness to substitute between home and market
- Model 3: Increased incentive to substitute between home and market
 - ▶ Note: Model 2 & 3 should deliver similar results
- ▶ Model 4: More general home production function

Business Cycle Properties I

- ► Compare the business cycle properties of a specific model with data and other models
- Model 1 is the benchmark model
- Ratios of standard deviations
 - ► Total investments (x) relative to output
 - Market consumption (c_M) relative to output
 - \blacktriangleright Market hours (h_M) relative to output
 - Real wages or productivity (w) relative to output
 - Market hours relative to productivity
- Correlations
 - Market hours and productivity $(c_M \text{ and } w)$
 - \triangleright market and home investments (x_M and x_H)

Business Cycle Properties II

- Model 2 & 3 (similar results):
 - Ratios of standard deviations: More accurate than the benchmark
 - ► Correlations: Bad performance
- Introduce model 2a (increased standard error of home innovation)
 - Adequate performance in terms of correlation between the market hours and productivity
 - Worse performance in other properties compared to the benchmark
- Model 4 (and 4a) captures the correlation between market and home investments
 - Worse performance in other properties compared to the benchmark

Further Results

- Detailed results of the business cycle properties in the appendix Results
- ► Selected IRFs: appendix
- ► All Results (Dynare outputs, all IRFs, ...): manuelbieri.ch/Greenwood_1993/

Discussion Results

- Model calibration is crucial
- ▶ Better performance in some aspects than the benchmark
- ▶ Potential to fine-tune performance w.r.t. correlations

Existing Research Extension (Selection)

- Government spending and taxes
 - ► Christiano and Eichenbaum (1992)
 - ► McGrattan et al. (1993)
 - ► McGrattan et al. (1997)
- International Markets
 - Canova and Ubide (1998)
- Market and home sector as complements
 - Fisher (1997)
- Endogenous Shocks
 - ► Einarsson and Marquis (1997)

Research Extensions (Selection)

- ► Multiple Sectors (Plosser, 1989)
- Introduction of inflation, e.g. by a cash-in-advance constraint suggested by Cooley and Hansen (1989)
- Introduce heterogeneity amongst the consumers
 - Evidence that the importance of the household side changes (Baxter and Jermann, 1999)
- ► Comparison between countries Chart Time Use
 - ► Evidence of the relative importance of the household sector in a country (Aguiar and Hurst, 2005)
 - Developed vs. developing countries (Hicks, 2015)

Conclusion

- ► Including a home production function improves Real Business Cycle (RBC) model's ability to better model the economy
- ► Fragile model
 - Depends highly on the parameters chosen
 - Little evidence about the true parameters
- Performance of an RBC with home production only valid for post-war U.S. economy
 - Comparison between countries

References I

References

- **Aguiar, Mark and Erik Hurst**, "Consumption versus Expenditure," *Journal of Political Economy*, 2005, *113* (5), 919–948.
- Baxter, Marianne and Urban J. Jermann, "Household Production and the Excess Sensitivity of Consumption to Current Income," *American Economic Review*, September 1999, 89 (4), 902–920.
- **Canova, Fabio and Angel J. Ubide**, "International business cycles, financial markets and household production," *Journal of Economic Dynamics and Control*, 1998, *22* (4), 545–572.
- Christiano, Lawrence J. and Martin Eichenbaum, "Current Real-Business-Cycle Theories and Aggregate Labor-Market Fluctuations," *The American Economic Review*, 1992, 82 (3), 430–450.

Further Reading

References II

References

- Cooley, Thomas F. and Gary D. Hansen, "The Inflation Tax in a Real Business Cycle Model," *The American Economic Review*, 1989, 79 (4), 733–748.
- **Einarsson, Tor and Milton H. Marquis**, "Home production with endogenous growth," *Journal of Monetary Economics*, 1997, *39* (3), 551–569.
- **Eisner, Robert**, "Extended Accounts for National Income and Product," *Journal of Economic Literature*, 1988, 26 (4), 1611–1684.
- **Fisher, Jonas D. M.**, "Relative prices, complementarities and comovement among components of aggregate expenditures," *Journal of Monetary Economics*, 1997, 39 (3), 449–474.
- **Greenwood, Jeremy**, Evolving Households: The Imprint of Technology on Life January 2019.

Further Reading

. . .

References III

- and Zvi Hercowitz, "The allocation of capital and time over the business cycle," *Journal of political Economy*, 1991, 99 (6), 1188–1214.
- _ , Richard Rogerson, and Randall Wright, "Putting home economics into macroeconomics," Federal Reserve Bank of Minneapolis Quarterly Review, 1993, 17 (3).
- _ , _ , and _ , "6. Household Production in Real Business Cycle Theory," in "frontiers of Business cycle research," Princeton University Press, 2020, pp. 157–174.
- **Hicks, Daniel L.**, "Consumption Volatility, Marketization, and Expenditure in an Emerging Market Economy," *American Economic Journal: Macroeconomics*, 2015, 7 (2), 95–123.

References IV

- McGrattan, Ellen R., Richard Rogerson, and Randall Wright, "Household Production and Taxation in the Stochastic Growth Model," Federal Reserve Bank of Minneapolis, 1993.
- _ , _ , and _ , "An Equilibrium Model of the Business Cycle with Household Production and Fiscal Policy," *International Economic Review*, 1997, 38 (2), 267–290.
- Ortiz-Ospina, Esteban, Charlie Giattino, and Max Roser, "Time Use," *Our World in Data*, 2020.
- **Plosser, Charles I.**, "Understanding Real Business Cycles," *Journal of Economic Perspectives*, 1989, *3* (3), 51–77.

Representative Household I

▶ The household maximizes:

$$U = \sum_{t=0}^{\infty} \beta^{t} [b \log(C_{t}) + (1-b) \log(I_{t})]$$
 (1)

▶ Allocation of time between paid work (h_{Mt}) , unpaid work (h_{Ht}) and leisure (I_t)

$$I_t = 1 - h_{Mt} - h_{Ht} \tag{2}$$

Consumption from the market (c_{Mt}) or from home production (c_{Ht})

$$C_t = \left[ac_{Mt}^e + (1-a)c_{Ht}^e\right]^{\frac{1}{e}} \tag{3}$$

Further Reading

Representative Household II

Allocation of capital between the market and the household

$$c_{Mt} + x_t = w_t(1 - \tau_h)h_{Mt} + r_t(1 - \tau_k)k_{Mt} + \delta_M \tau_k k_{Mt} + T_t$$
 (4)

- Home production function
 - Note: Home production can only be consumed

$$c_{Ht} = g(h_{Ht}, k_{Ht}, z_{Ht}) = k_{Ht}^{\eta} (z_{Ht} h_{Ht})^{1-\eta}$$
 (5)

► More general home production function (model 4)

$$c_{Ht} = g(h_{Ht}, k_{Ht}, z_{Ht}) = [\eta k_{Ht}^{\Psi} + (1 - \eta)(z_{Ht}h_{Ht})^{\Psi}]^{\frac{1}{\Psi}}$$
 (6)

Representative Firm

- ▶ Profit maximizing firm with Cobb-Douglas production function
- ▶ Maximizes profits by choosing input factors k_{Mt} and h_{Mt}

$$y_t = k_{Mt}^{\theta} (z_{Mt} h_{Mt})^{1-\theta} \tag{7}$$

Government

References

ightharpoonup Government income is transferred entirely back to the households via a lump-sum transfer T_t

$$G_t = w_t \tau_h h_{Mt} + r_t \tau_k k_{Mt} - \delta_M \tau_k k_{Mt} - T_t = 0$$
 (8)

Resource Constraint

► Feasibility implies that market output is allocated across market consumption, total investment, and government spending (=0)

$$y_t = c_{Mt} + x_t \tag{9}$$

- Real Business Cycle model including a home production function
- Agents
 - ▶ Representative Household → Utility maximizing
 - Allocation of consumption $(C_t = [ac_{Mt}^e + (1-a)c_{Ht}^e]^{\frac{1}{e}})$
 - ▶ Allocation of time $(I_t = 1 h_{Mt} h_{Ht})$
 - ightharpoonup Allocation of investment (x_{Mt}, x_{Ht})
 - ► Home Production Function: $c_{Ht} = k_{Ht}^{\eta} (z_{Ht} h_{Ht})^{1-\eta}$
 - ▶ Representative Firm → Profit maximizing
 - $\mathbf{v}_t = k_{Mt}^{\theta} (z_{Mt} h_{Mt})^{1-\theta}$
 - ▶ Government → Absent (zero spending)
 - $G_t = W_t \tau_b h_{Mt} + r_t \tau_b k_{Mt} \delta_M \tau_b k_{Mt} T_t = 0$
- Exogenous shocks to home and market technology ("innovation")

Business Cycle Properties

Table: Effects of Adding Home Production to RBC Model

	σ_y	$\frac{\sigma_{\scriptscriptstyle X}}{\sigma_{\scriptscriptstyle Y}}$	$\frac{\sigma_{c_{M}}}{\sigma_{\gamma}}$	$\frac{\sigma_{h_M}}{\sigma_{y}}$	$\frac{\sigma_w}{\sigma_y}$	$\frac{\sigma_{h_{M}}}{\sigma_{w}}$	$\rho_{h_M,w}$	ρ_{x_M,x_H}
Data	1.96	2.61	0.54	0.78	0.73	1.06	-0.12	0.30
1	1.40	2.81	0.40	0.41	0.60	0.69	0.96	-0.13
2	1.56	2.56	0.60	0.50	0.55	0.91	0.84	-0.90
2a	2.36	2.73	1.36	0.94	0.35	2.66	-0.01	-1.00
3	1.47	2.45	0.55	0.48	0.54	0.88	0.94	-0.83
4	1.13	4.09	0.41	0.29	0.74	0.40	0.86	-0.60
4a	1.30	3.10	0.38	0.37	0.64	0.57	0.96	0.26

- ► The data corresponds to the U.S. time series between 1947 and 1987
- Numbers correspond to the model specifications

Impulse Response Function I

Figure: Impulse Response Functions for Home Technology Shock

Impulse Response Function II

Figure: Impulse Response Functions for Market Technology Shock

References

Table: Endogenous Variables

	Meaning	
a C	Total consumption	
^а С _Н	Goods and services produced in the home	
$^{a}\mathcal{C}_{\mathcal{M}}$	Goods and services purchased in the market	
$^{\mathrm{b}}h_{H}$	Labour hours spent working in the household	
$^{\mathrm{b}}h_{M}$	Labour hours spent working in the market	
ь/	Leisure time $(1 - h_H - h_M)$	
ck	Total capital	
c kH	Household capital	
$^{c}k_{M}$	Market capital	
a _r	Price at which business capital can be rented to firms	
^b T	Lump-sum transfer payment from the government	

Meaning b_W Real wage rate in the market b_{x} Total investment $^{\rm b}$ XH Investment in household capital $^{\rm b}X_{M}$ Investment in business capital b_V Market output ^CZH Technology level in the home $^{c}Z_{M}$ Technology level in the market c _{ŽH} Shock resulting from technological changes in the home c \tilde{z}_M Shock resulting from technological changes in the market

- ^a denotes forward-looking variables (jumpers)
- b denotes static variables
- ^c denotes state variables

Exogenous Variables

Table: Exogenous Variables

	Meaning	Standard deviation
ϵ_{H}	Innovations in the home	σ_H
ϵ_{M}	Innovations in the market	σ_{M}

Parameters I

References

Table: Parameters

	Meaning
а	Share of c_{Mt} of total consumption
b	Weight factor of consumption vis-a-vis leisure
e	Willingness of a household to substitute between market
	consumption c_{Mt} and home consumption c_{Ht}
β	Discount factor
δ_H	Depreciation rate on household capital
δ_{M}	Depreciation rate on business capital (tax-deductible)
η	Capital share in the home production function
γ	Measures the household's incentive, to move economic
	activity between the home and the market

References

	Meaning
ρ_H	Persistence of market technology shock
$ ho_{M}$	Persistence of home technology shock
σ_{H}	Standard deviation of innovations in the household
σ_{M}	Standard deviation of innovations in the market
$ au_{k}$	Tax rate on capital income
$ au_{h}$	Tax rate on labour income
θ	Capital share in the market production function
λ	Growth rate of all endogenous variables besides
	h_{Mt} , h_{Ht} , l_t and r_t
Ψ	Willingness of a household to substitute between
	capital k_{Ht} and time h_{Ht} in the home production

Further Reading

References

- ► Greenwood and Hercowitz (1991)
- ► Greenwood (2019)
- ► Greenwood et al. (2020)

Further Reading