

Análise de Complexidade

Estrutura de Dados II

Prof. João Dallyson Sousa de Almeida Núcleo de Computação Aplicada NCA - UFMA Dep. De Informática - Universidade Federal do Maranhão

Apresentação

Ementa

- Algoritmos de ordenação e busca.
- Árvore de busca multidirecional balanceada.
- Hashing. Noções de organização de arquivos.
- Noções de grafos: conceitos, coloração, árvores geradoras..
- Algoritmos em grafos: caminho mínimo, fluxo máximo e outros.

Bibliografia: básica

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: Teoria e Prática. Editora Campus, 2002
- Algorithms 4th edition by R. Sedgewick and K. Wayne, Addison-Wesley Professional, 2011, ISBN 0-321-57351-X
- Ziviani, N. Projeto de Algoritmos Com Implementações em Pascal e C, Cengage Learning, 2004.

Bibliografia: complementar

- TENENBAUM, Aaron; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas de dados usando C. São Paulo: Makron Books, 1995. ISBN: 9788534603485
- ASCENCIO, Ana Fernanda Gomes; ARAUJO, Graziela Santos. Estruturas de Dados: Algoritmos, análise da complexidade e implementações em Java e C/C++. Pearson Prentice Hall, 2010
- DROZDEK, Adam. Adam Drozdek. Data Structures and Algorithms in Java. 2. Cengage Learning. 2004. 2. Cengage Learning. 2004
- GOODRICH, Michael T. Estruturas de dados e algoritmos em java. 4 ED. Porto Alegre: Bookman, 2007. 600.
- SKIENA, Steven S.. The Algorithm Design Manual. 2. Springer-Verlag. 2008

Motivação: Custos

- Infelizmente os computadores têm recursos limitados!
 - Recurso: poder de processamento (tempo)
 - Recurso :armazenagem de dados (memória)

Dois algoritmos distintos que realizam a mesma tarefa podem diferenciar brutalmente em relação aos custos em tempo e memória!

Motivação: exemplo

- Seja dois métodos de ordenação:
 - Ordenação por inserção:
 - Custo em tempo: c₁n² para ordenar n números
 - Ordenação por intercalação (Merge Sort):
 - ▶ Custo em tempo: c₂nlog₂n para ordenar para ordenar n números
- Suponha dois computadores:
 - Computador A:
 - ► Executa 1.000.000.000 de instruções por segundo
 - Computador B:
 - Executa 10.000.000 de instruções por segundo

Motivação: exemplo cont...

- O melhor programador do mundo implementa a ordenação por inserção em código de máquina no computador A
- Um programador mediano implementa a ordenação por intercalação em linguagem de alto-nível no computador B
- Tempo em cada computador (ordenar um milhão de números)
 - Computador A $(c_1 = 2)$

$$\frac{2 \cdot (10^6)^2 instruções}{10^9 instruções / segundo} = 2.000 segundos$$

• Computador B ($c_2 = 50$)

$$\frac{50 \cdot 10^6 \log_2 10^6 instruções}{10^7 instruções / segundo} \approx 100 segundos$$

Motivação: exemplo cont...

Desta forma:

- Mesmo utilizando um compilador fraco, o computador B funciona 20 vezes mais rápido que o computador A!
- Este exemplo mostra que a escolha do algoritmo pode ser bem mais crítica do que a escolha do Hardware e da linguagem e/ou experiência do programador!

Portanto:

- Tanto os algoritmos quanto o Hardware constituem uma tecnologia!
- O desempenho total do sistema depende da escolha correta de ambos!

O que é a análise de algoritmos

- Segundo Cormen (2002), é a previsão dos recursos de que o algoritmo necessitará.
 - Memória.
 - Largura de banda de comunicação.
 - Hardware de computação.
 - Tempo de computação.

Thomas H. Cormem Prof. Emérito de Ciência da Computação Dartmouth College

Como escolher um algoritmo?

Tempo de Processamento?

 Um algoritmo que realiza uma tarefa em 4 horas é melhor que outro que realiza em 4 dias

Quantidade de Memória necessária?

Um algoritmo que usa 1MB de memória
 RAM é melhor que outro que usa 1GB

Complexidade Computacional

 Termo criado por Juris Hartmanis e Richard Stearns (1965)

 Relação entre o tamanho do problema e seu consumo de tempo e espaço durante a execução

Tempo de Processamento

Medir o tempo gasto por um algoritmo

- Não é a melhor opção
- Depende do compilador
 - Pode preferir algumas construções ou otimizar melhor

•GPU vs CPU, desktop vs. Smartphone.

Estudar o número de vezes que operações são executadas

Tipos de Problemas

Analisando classes de algoritmos.

- Qual é o algoritmo de menor custo possível para resolver um problema particular?
- Toda família de algoritmos é investigada.
- Procura-se identificar um que seja o melhor possível.
- Coloca-se limites para a complexidade computacional dos algoritmos pertencentes à classe.

Custo de um Algoritmo

- Determinando o menor custo possível para resolver problemas de uma dada classe, temos a medida da dificuldade inerente para resolver o problema.
- Quando o custo de um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada.
- Podem existir vários algoritmos para resolver o mesmo problema.
- Se a mesma medida de custo é aplicada a diferentes algoritmos, então é possível compará-los e escolher o mais adequado

O modelo RAM de computação

- Os algoritmos são uma parte importante e durável da ciência da computação, porque eles podem ser estudados em uma máquina / linguagem de forma independente.
- Modelo RAM de computação:
 - Cada operação simples (+,-,=,IF,chamada) leva 1 passo.
 - Loops e subrotinas não são operações simples. Eles dependem do tamanho do dado e do conteúdo de uma sub-rotina.
 "Ordenação" não é uma operação de 1 passo simples.
 - Cada acesso à memória custa exatamente 1 passo.

Método do Custo por meio de um Modelo Matemático

- Usa um modelo matemático baseado em um computador idealizado
- Deve ser especificado o conjunto de operações e seus custos de execuções.
- Recomenda-se ignorar o custo de algumas das operações e considerar apenas as operações mais significativas (Turing, 1947).
- Ex.: algoritmos de ordenação. Consideramos o número de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulações de índices, caso existam.

Função de Complexidade

- Para medir o custo de execução de um algoritmo é comum definir uma função de custo ou função de complexidade f.
- f(n) é a medida do tempo necessário para executar um algoritmo para um problema de tamanho n.
- Função de complexidade de tempo: f(n) mede o tempo necessário para executar um algoritmo em um problema de tamanho n.
- Função de complexidade de espaço: f(n) mede a memória necessária para executar um algoritmo em um problema de tamanho n.
- Utilizaremos f para denotar uma função de complexidade de tempo daqui para a frente.

Exemplo: Maior Elemento

 Considere o algoritmo para encontrar o maior elemento de um vetor de inteirosv[0..n – 1], n

```
int vmax(int *vec, int n) {
    int i;
    int max = vec[0];
    for(i = 1; i < n; i++) {
        if(vec[i] > max) {
            max = vec[i]; A < n-1
        }
        n-1
        return max;
}</pre>
```


Exemplo: Maior Elemento (2)

- Seja f uma função de complexidade tal que f(n) é o número de comparações entre os elementos de v, se v contiver n elementos.
- Para encontrar o maior, é necessário mostrar que cada um dos n-1 elementos é maior que algum outro.
- Logo f(n) = n 1, para n > 0.
- Esse algoritmo é ótimo.

Tamanho da Entrada de Dados

- A medida do custo de execução de um algoritmo depende principalmente do tamanho da entrada dos dados.
- É comum considerar o tempo de execução de um programa como uma função do tamanho da entrada.
- Para alguns algoritmos, o custo de execução é uma função da entrada particular dos dados, não apenas do tamanho da entrada.
- No caso do método max do programa do exemplo, o custo é uniforme sobre todos os problemas de tamanho n.
- Já para um algoritmo de ordenação isso não ocorre: se os dados de entrada já estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos.

Melhor Caso, Pior Caso e Caso Médio

- Melhor caso: menor tempo de execução sobre todas as entradas de tamanho n.
- Pior caso: maior tempo de execução sobre todas as entradas de tamanho n.
 - Se f é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que f(n).
- Caso médio (ou caso esperado): média dos tempos de execução de todas as entradas de tamanho n.
- Na análise do caso esperado, supõe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n e o custo médio é obtido com base nessa distribuição.

Exemplo - Registros de um Arquivo

 Considere o problema de acessar os registros de um arquivo. Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo.

- O problema: dada uma chave qualquer, localize o registro que contenha esta chave.
 - O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial.

Exemplo - Registros de um Arquivo (2)

- Seja f uma função de complexidade tal que f(n) é o número de registros consultados no arquivo (número de vezes que a chave de consulta é comparada com a chave de cada registro).
 - melhor caso: f(n) = 1 (registro procurado é o primeiro consultado);
 - pior caso: f(n) = n (registro procurado é o último consultado ou não está presente no arquivo);
 - caso médio: f(n) = (n + 1)/2.

Exemplo - Maior e Menor Elemento

 Considere o problema de encontrar o maior e o menor elemento de um vetor de inteiros v[0..n – 1], n 1.

• Um algoritmo simples pode ser derivado do algoritmo apresentado no programa para achar o maior elemento.

 O vetor maxMin definido localmente no método maxMin1 é utilizado para retornar nas posições 0 e 1 o maior e o menor elemento do vetor v, respectivamente.

Exemplo - Maior e Menor Elemento (2)

```
package cap1;
public class MaxMin1 {
  public static int [] maxMin1 (int v[], int n) {
    int max = v[0], min = v[0];
    for (int i = 1; i < n; i++) {
      if (v[i] > max) max = v[i];
      if (v[i] < min) min = v[i]:
    int maxMin[] = new int[2];
   maxMin[0] = max; maxMin[1] = min;
    return maxMin;
                                melhor caso: f(n) = 2(n-1)
                                pior caso: f(n) = 2(n-1)
                                caso médio: f(n) = 2(n-1)
```


Exemplo - Maior e Menor Elemento (3)

- Seja f(n) o número de comparações entre os elementos de v, se v contiver n elementos.
- Logo f(n) = 2(n 1), para n > 0, para o melhor caso, pior caso e caso médio.
- MaxMin1 pode ser facilmente melhorado: a comparação v[i] < min só é necessária quando a comparação v[i] > max é falsa.
- A seguir, apresentamos essa versão melhorada

Exemplo - Maior e Menor Elemento (4)

```
package cap1;
public class MaxMin2 {
  public static int [] maxMin2 (int v[], int n) {
    int max = v[0], min = v[0];
    for (int i = 1; i < n; i++) {
                                            melhor caso:
      if (v[i] > max) max = v[i];
                                               (crescente)
      else if (v[i] < min) min = v[i];
                                              f(n) = n-1
                                            pior caso:
    int maxMin[] = new int[2];
                                               (decrescente)
    \max Min[0] = \max; \max Min[1] = \min;
                                              f(n) = 2(n-1)
                                            caso médio:
    return maxMin;
                                              (aleatório)
                                              f(n) > 3(n-1)/2
```


Exemplo - Maior e Menor Elemento (5)

- Para a nova implementação temos:
 - melhor caso: f(n) = n 1 (quando os elementos estão em ordem crescente);
 - pior caso: f(n) = 2(n 1) (quando os elementos estão em ordem decrescente);
 - caso médio: f(n) = 3n/2 3/2.
- No caso médio, v[i] é maior do que max a metade das vezes.

$$f(n) = n - 1 + \frac{n-1}{2} = \frac{3n}{2} - \frac{3}{2}$$
, para $n > 0$.

Ex. Maior Menor.

Comparar elementos par-a-par

Custo: n/2 comparações

Mantra:

É possível fazer melhor?

Ex. Maior Menor. Dá para fazer melhor?

- Comparar elementos par-a-par
 - Custo: n/2 comparações
- •Elementos vermelhos são maiores que os azuis
- Encontrar o máximo entre os elementos vermelhos
 - Custo: n/2 comparações
- Encontrar o mínimo entre os elementos azuis
 - Custo: n/2 comparações

Ex. Maior Menor. Dá para fazer melhor?

```
void minmax3(int *vec, int n, int *min, int *max) {
             int i;
             int *min = INT MAX;
             int *max = INT MIN;
    n/2
             for (i = 0; i < n; i += 2) {
    n/2
                 if(vec[i] < vec[i+1]) {
    n/4
                    a = i; v = i+1;
                 } else {
    n/4
                    a = i+1; v = i;
    n/2
                 if(vec[a] < *min)</pre>
A < n/2
                    *min = vec[a];
    n/2
                 if(vec[v] > *max)
B < n/2
                   *max = vec[v];
```

```
melhor caso:
  f(n) = 3n/2
pior caso:
  f(n) = 3n/2
caso médio:
  f(n) = 3n/2
```

Algoritmo ótimo

Ex. Maior Menor, comparação

Os Três	f(n)		
Algoritmos	Melhor caso	Pior caso	Caso médio
MaxMin1	2(n-1)	2(n-1)	2(n-1)
MaxMin2	n-1	2(n-1)	3n/2-3/2
MaxMin3	3n/2-2	3n/2-2	3n/2-2

FONTE: [ZIVIANE, 2006]

Análise exata é difícil!

- Analisar o Melhor, o pior, e o caso médio são difíceis de tratar com precisão porque os detalhes são muito complicados.
- É fácil falar sobre limites superiores e inferiores da função. Notação assintótica (O, Θ, Ω) nos permite lidar com funções de complexidade

Comportamento assintótico

- Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco para ser executado, mesmo os ineficientes
 - Escolha de um algoritmo não é um problema crítico
- Logo, analisamos algoritmos para grandes valores de n
 - Estudamos o comportamento assintótico das funções de complexidade de um programa (comportamento pra grandes valores de n)

Dominação assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares.
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada.
- Definição: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e m tais que, para n>=m, temos |g(n)| <= c x |f(n)|.

Dominação assintótica

Exemplos

- $f(n) = n, g(n) = -n^2$
- f(n) não domina assintoticamente g(n)
- ▶ c=1, m=0
- If (n) <= 1 $\log(n)$ $\log(n)$ = 0

Verificação da equação	$ n \leq c \cdot -n^2 $
------------------------	---------------------------

n	$ n \leq c \cdot -n^2 \ (c=1)$		
1	1 ≤ 1		
2	2 ≤ 4		
3	3 ≤ 9		
4	4 ≤ 16		
649	(***)		

Exemplos

- Sejam $g(n) = (n + 1)^2 e f(n) = n^2$.
- As funções g(n) e f(n) dominam assintoticamente uma a outra.
 Qual a prova?

Notação O (ômicron maiúscula)

- Escrevemos g(n) = O(f(n)) para expressar que f(n) domina assintoticamente g(n). Lê-se g(n) é da ordem de no máximo f(n).
- Exemplo: quando dizemos que o tempo de execução T(n) de um programa é O(n²), significa que existem constantes c e m tais que, para valores de n >= m, T(n) <= cn².

Notação O

Exemplo gráfico de dominação assintótica que ilustra a notação O.

- O valor da constante m mostrado é o menor valor possível, mas qualquer valor maior também é válido.
- A notação O nos dá um limite superior assintótico

Exemplos de Notação O

• Exemplo: $g(n) = (n + 1)^2$.

• Exemplo: $g(n) = n e f(n) = n^2$

Exemplos de Notação O

• Exemplo: $g(n) = 3n^3 + 2n^2 + n \in O(n^3)$.

Operações com a Notação O

$$f(n) = O(f(n))$$

 $c \times O(f(n)) = O(f(n))$ $c = constante$
 $O(f(n)) + O(f(n)) = O(f(n))$
 $O(O(f(n)) = O(f(n))$
 $O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$
 $O(f(n))O(g(n)) = O(f(n)g(n))$
 $f(n)O(g(n)) = O(f(n)g(n))$

Exemplo

- Regra da soma O(f(n)) + O(g(n)).
 - Suponha três trechos cujos tempos de execução são O(n), O(n²) e
 O(n log n).
 - O tempo de execução dos dois primeiros trechos é O(max(n, n²)), que é O(n²).
 - O tempo de execução de todos os três trechos é então O(max(n², n log n)), que é O(n²).

Notação Ω (Ômega)

- Especifica um limite inferior para g(n).
- Definição: Uma função g(n) é $\Omega(f(n))$ se existirem duas constantes c e m tais que g(n) >= cf(n), para todo n >= m.
- **Exemplo:** Para mostrar que g(n) = $3n^3 + 2n^2 \in \Omega(n^3)$ basta fazer c = 1, e então $3n^3 + 2n^2 >= n^3$ para n >= 0.
- Exemplo: Seja g(n) = n para n ímpar (n >= 1) e g(n) = $n^2/10$ para n par (n >= 0).
 - Neste caso g(n) é Ω (n²), bastando considerar c = 1/10 e n = 0, 2, 4, 6, . . .

Exemplo gráfico para a notação Ω (ômega)

- Uma função g(n) é $\Omega(f(n))$ se g(n) domina assintoticamente f(n)
- Notação O denota um limite superior e a notação Ω denota um limite inferior

Para todos os valores à direita de m, o valor de g(n) está sobre ou acima do valor de cf(n).

Notação θ

- Definição: Uma função g(n) é θ(f(n)) se existirem constantes positivas c1, c2 e m tais que 0 <= c1f(n) <= g(n) <= c2f(n), para todo n >= m.
- Definição equivalente: $g(n) = \theta(f(n))$ se g(n) = O(n) e $g(n) = \Omega(f(n))$

Notação θ

- Dizemos que g(n) = θ(f(n)) se existirem constantes c1, c2 e m tais que, para todo n >= m, o valor de g(n) está sobre ou acima de c1f(n) e sobre ou abaixo de c2f(n).
- Isto é, para todo n >= m, a função g(n) é igual a f(n) a menos de uma constante.
- Neste caso, f(n) é um limite assintótico firme.

Exemplo de Notação θ

- Seja g(n) = $n^2/3 2n$. Vamos mostrar que g(n) = $\theta(n^2)$.
- Temos de obter constantes c1, c2 e m tais que c1n² <= (1/3)n²
 2n <= c2n² para todo n >= m.
 - Dividindo por n^2 leva a $c1 \le 1/3 2/n \le c2$
 - O lado direito da desigualdade será sempre válido para qualquer valor de n >= 1 quando escolhemos c2 >= 1/3.
 - Escolhendo c1 <= 1/21, o lado esquerdo da desigualdade será válido para qualquer valor de n >= 7.
 - Logo, escolhendo c1 = 1/21, c2 = 1/3 e m = 7, verifica-se que $n^2/3 2n = (n^2)$.
 - Outras constantes podem existir, mas o importante é que existe alguma escolha para as três constantes.

Notação

Usando limites para comparar ordem de crescimento

 Em vez de procurar por constantes c e m que satisfaçam uma inequação, podemos determinar diretamente se uma função é da ordem de outra verificando se a seguinte igualdade é satisfeita:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=k, \text{ onde } k\in\Re.$$

Usando limites para comparar ordem de crescimento

- t(n) tem ordem de crescimento
- t (n) tem ordem de crescimento maior que g(n)

Usando limites para comparar ordem de crescimento

Ex: comparar a ordem de crescimento de (1/2)n(n-1) e n²

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}.$$

Como o limite é igual a uma constante positiva, as funções tem a mesma ordem de crescimento

$$\frac{1}{2}n(n-1) \in \Theta(n^2)$$
.

Exercício

• [Poscomp 2003]

- 37. Qual é o número mínimo de comparações necessário para encontrar o menor elemento de um conjunto qualquer não ordenado de n elementos?
 - (a) 1
 - (b) n-1
 - (c) n
 - (d) n+1
 - (e) $n \log n$

Exercicio POSCOMP 2015

Sejam $T_1(n)=100 \cdot n+15$, $T_2(n)=10 \cdot n^2+2 \cdot n$ e $T_3(n)=0.5 \cdot n^3+n^2+3$ as equações que descrevem a complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n. A respeito da ordem de complexidade desses algoritmos, pode-se concluir que

- (A) as complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(n), $O(n^2)$ e $O(n^3)$.
- (B) as complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(n), $O(n^2)$ e $O(n^2)$.
- (C) as complexidades assintóticas de Alg1, Alg2 e Alg3 estão, respectivamente, em O(100), O(10) e O(0,5).
- (D) Alg2 e Alg3 pertencem às mesmas classes de complexidade assintótica.
- (E) Alg1 e Alg2 pertencem às mesmas classes de complexidade assintótica.

Exercício Poscomp 2017

QUESTÃO 21 – A análise de algoritmos que estabelece um limite superior para o tempo de execução de qualquer entrada é denominada análise

- A) do melhor caso.
- B) do caso médio.
- C) do pior caso.
- D) da ordem de crescimento.
- E) do tamanho da entrada.

Exercício Poscomp 2022

QUESTÃO 22 - Considere as funções a seguir:

$$f1(n) = O(n)$$

 $f2(n) = O(n!)$
 $f3(n) = O(2^n)$
 $f4(n) = O(n^2)$

A ordem dessas funções, por ordem crescente de taxa de crescimento, é:

- A) f2 f1 f3 f4.
- B) f3 f2 f4 f1.
- C) f1 f4 f3 f2.
- D) f1 f4 f2 f3.
- E) f4 f3 f1 f2.

[Poscomp 2023]

QUESTÃO 23 - Considere o seguinte trecho de código:

```
for (i = 1; i <= n; i++) {
   for (j = 1; j <= m; j++) {
      // instruções O(1)
   }
}</pre>
```

Qual das seguintes afirmações é verdadeira sobre a complexidade assintótica desse trecho de código?

- A) A complexidade é O(n) se m for uma constante, e O(m) se n for uma constante.
- B) A complexidade é O(n log m) se m for uma constante, e O(m log n) se n for uma constante.
- C) A complexidade é O(n + m) se n e m forem do mesmo tamanho.
- D) A complexidade é O(1) em todos os casos.
- E) A complexidade é O(nm) em todos os casos.

Exercício

Qual a complexidade do algoritmo abaixo:

Input: arrays A and B of n integers each.

Output: Whether or not there is an integer t contained in both A and B.

```
\begin{aligned} & \mathbf{for} \ i := 1 \ \mathbf{to} \ n \ \mathbf{do} \\ & \mathbf{for} \ j := 1 \ \mathbf{to} \ n \ \mathbf{do} \\ & \mathbf{if} \ A[i] = B[j] \ \mathbf{then} \\ & \mathbf{return} \ \mathbf{TRUE} \\ & \mathbf{return} \ \mathbf{FALSE} \end{aligned}
```


Exercício

Qual a complexidade do algoritmo abaixo:

Input: array A of n integers.Output: Whether or not A contains an integer more than once.

```
\begin{aligned} \mathbf{for} \ i &:= 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{for} \ j &:= i + 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{if} \ A[i] &= A[j] \ \mathbf{then} \\ \mathbf{return} \ \mathbf{TRUE} \\ \mathbf{return} \ \mathbf{FALSE} \end{aligned}
```


Exercicio

► [ZIVIANI] Qual algoritmo você prefere: um algoritmo que requer n⁵ passos ou um que requer 2^{n?}

Exercício

Indique se as afirmativas a seguir são verdadeiras ou falsas e justifique a sua reposta:

- a) $2^{n+1} = O(2^n)$
- b) $2^{2n} = O(2^n)$
- c) $7n^2 = O(n)$
- d) $5n^2 + 7n = \Theta(n^2)$
- e) $9n^3 + 3n = \Omega(n)$

Referências

- Thomas Cormen, Charles Leiserson and Ronald Rivest. Introduction to Algorithms. Second Edition. McGraw-Hill, 2007.
- Udi Mamber. Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.
- Nivio Zizanni. Projeto de Algoritmos com implementações em Java e C++. Tomson, 2006.
- ASCENCIO, Ana Fernanda Gomes; ARAUJO, Graziela Santos. Estruturas de Dados: algoritmos, análise da complexidade e implementações em JAVA e C/C++. São Paulo: Perarson Prentice Halt, v. 3, 2010.
- Notas de Aula Disciplina Estruturas de Dados II: Prof. Dr. Geraldo Braz. DEINF/UFMA
- Notas de Aula Disciplina Algoritmos e Estruturas de Dados II: Prof. Dr. Ítalo Cunha. Departamento de Ciência da Computação. UFMG.
- Notas de Aula Disciplina Análise e Projeto de Algoritmos. Prof. Tiago A. E. Ferreira. Departamento de Estatística e Informática da Universidade Federal Rural de Pernambuco

