SEARCHING

Pencarian (Searching)

- Pada suatu data seringkali dibutuhkan pembacaan kembali informasi (information retrieval) dengan cara searching.
- Searching adalah proses pencarian data yang ada pada suatu deret data dengan cara menelusuri data-data tersebut.
- Tahapan paling penting pada searching: memeriksa jika data yang dicari sama dengan data yang ada pada deret data.

Algoritma Pencarian

- 1. Input x (x=data yang dicari)
- 2. Bandingkan x dengan deret data
- 3. Jika ada data yang sama cetak pesan "Ada"
- 4. Jika tidak ada data yang sama cetak pesan "tidak ada".

Algoritma Pencarian

Macam algoritma pencarian:

- •Sequential Search
- Binary Search

Sequential Search

Merupakan teknik yang sederhana dan langsung dapat digunakan pada struktur data baik array maupun linked-list.

Pencarian data secara urut mulai dari data pertama sampai kunci yang dicari ditemukan atau sampai seluruh data telah dicari dan tidak ditemukan

Dilakukan pada data yang tidak terurut

(I) Sequential Search

- Disebut juga linear search atau Metode pencarian beruntun.
- Tidak efisien untuk data yang list yang besar
- Adalah suatu teknik pencarian data yang akan menelusuri tiap elemen satu per-satu dari awal sampai akhir.
- Data awal = tidak harus dalam kondisi terurut.

Case

- Best case: jika data yang dicari terletak di indeks array terdepan (elemen array pertama) sehingga waktu yang dibutuhkan untuk pencarian data sangat sebentar (minimal).
- Worst case: jika data yang dicari terletak di indeks array terakhir (elemen array terakhir) sehingga waktu yang dibutuhkan untuk pencarian data sangat lama (maksimal).

Ilustrasi Sequential Search

Misalnya terdapat array satu dimensi sebagai berikut:

0	1	2	3	4	5	6	7	indeks
8	10	6	-2	11	7	1	100	value

- Kemudian program akan meminta data yang akan dicari, misalnya 6 (x = 6).
- Iterasi:

$$6 = 8 \text{ (tidak!)}$$

$$6 = 10$$
 (tidak!)

 Jika sampai data terakhir tidak ditemukan data yang sama maka output: "data yang dicari tidak ada".

Best & Worst Case

Contoh:
DATA = 5 6 9 2 8 1 7 4
bestcase ketika x = 5
worstcase ketika x = 4
*x = key/data yang dicari

Contoh Sequential Search

	Nim	Nama	IPK
[O]	135410001	Mulyadi	2.94
[1]	135410005	Willy Johan	3.15
[2]	135410003	Anthony Liberty	2.78
[3]	135410004	Ferry Santoso	3.37
[4]	135410002	Jaya Mulya	2.93
[5]	135410007	Budi Santoso	3.01
[6]	135410006	Indra Gunawan	3.56
[7]	135410008	M. Rudito W	3.44

Contoh Sequential Search

```
Kunci pencarian? 135410004
NIM[0] == kunci? → tidak
NIM[1] == kunci? → tidak
NIM[2] == kunci? → tidak
NIM[3] == kunci? → ya → Ferry
Santoso, 3.37
```

Contoh Sequential Search

Kunci pencarian? 135410010

```
NIM[0] == kunci? → tidak
```

Semua data telah di cari, kunci tidak ditemukan

Algoritma 8.1. Linear Search

```
function pencarianLinier(input aray : larik; kunci, ukuran : integer) : integer
Deklarasi
       ketemu: boolean
       i, n: integer
Deskripsi
   ketemu ← false {belum ketemu }
   n \leftarrow 1 { mulai dari elemen pertama }
   while ((n < ukuran) and (not ketemu)) do
     if (aray[n] = kunci) then { dibandingkan }
          ketemu ← true { data ketemu }
          i \leftarrow n
                                  { pada posisi ke-i, posisi disimpan }
     endif
     else n \leftarrow n+1
                                  { cek data berikutnya }
   endwhile
   if ketemu then pencarianLinier ← i { data ketemu pada posisi ke-i }
   else pencarianLinier ← -1 { data tidak ketemu }
   endif
end
```

Bahasa C++

```
#include <iostream.h>
#define UKURAN 100
int pencarianLinier(int array[], int kunci, int ukuran)
   int i;
   for (i=0; i \le ukuran-1; ++i)
      if (array[i] == kunci)
        return i;
   return -1;}
```

