Principal Component Analysis (PCA) for Dimensionality Reduction

Welcome! Today we'll explore how Principal Component Analysis (PCA) helps us reduce data dimensionality without sacrificing valuable information.

What is Dimensionality Reduction?

Simplifying Complexity

Dimensionality reduction is a technique used to simplify data by reducing the number of variables (dimensions) while preserving meaningful information.

Reducing Noise

It can remove irrelevant or noisy features that might obscure the true underlying patterns in your data.

		More	Descripe	Tie	Car	Ay	Tant	Sad	Cut	Cat	Seal
	Seel	1,600	197 5100	19490	100	2,800	1150	11500	2690	1456	2600
ıterm	124/074,000	18300	160-2020	55500	15.0	30.00	1550	11500	1300	1590	1667
tpacy	145/021,000	36800	100-5000	32900	29 0	26160	1580	12500	1153	2525	3090
Stary	126/027,000	38080	100-5051	32200	46.0	2,490	1520	15600	1457	2650	3890
day	124/825.000	55000	100-4150	161000	39.0	32170	1590	11310	1629	1290	3680
way	194/627.000	18600	308 4000	11200	16.0	12170	1240	61800	2227	1897	2800
tack	155/404.000	15000	170-3000	11200	15.0	21470	1500	17300	1620	1570	3190
nnnat	195/303,000	36000	500-4060	22500	54 0	31050	1700	37700	6699	1751	3780
r Dagt.	145/867,000	50900	500-4600	23400	36.0	21610	2740	51600	2240	2629	2180
n Stan	134/278,000	15700	260-5000	11500	38.0	31658	2500	32470	2729	2090	2799
nvrezt.	148/469,000	36000	140-6600	13400	36.0	31270	2100	65900	2479	3490	3280
rwak	199/200.000	30000	300-5700	13400	36.0	41470	1790	42960	2497	2680	2277
nua,	194/804,000	38900	300-3000	10400	36.0	31370	1350	31500	2320	3040	3100
ercat	106/200,000	59700	510-4000	13400	58.0	31336	1005	97960	3320	5920	5240
day	114/2011,000	59000	300-1570	44500	38.0	25,22	1570	35300	3325	3590	6590
reit	125/2451,000	19000	880-1099	32600	59.0	36520	1640	55700	5570	1890	5570
reat	3532071,000	16070	400-5580	13200	53.0	25926	4500	65500	5930	5550	6380
reat	193@627.000	16000	400-5820	16800	45.0	31590	1750	25900	4630	1560	5220

	Stall	Done	You Last	Eless	Cleyin	Cost	Citty	Lant	Table
	3660							-	
8	3568							-	
	9681							-	
	6689							-	
	8090							-	
8	5892							-	
	3500							**	
	9572							-	
	3600							-	
								-	
88	2400							-	
	2008							-	

Need for Dimensionality Reduction

1 Improved Performance 2

Reduces computational time for algorithms.

3 Reduced Storage

Requires less storage space.

Enhanced Visualization

Makes data easier to visualize and interpret.

Avoid Overfitting

Prevents models from becoming too complex and losing generalization.

Overview of Principal Component Analysis (PCA)

PCA is a powerful technique that finds a new set of orthogonal axes (principal components) that capture the most variance in the data. These components are ordered by their variance, with the first component capturing the most variance.

Geometric Intuition behind PCA

8.70.6.00.10.30,00,.30,.30 7.99.6.00,10.30,00,.40).10

$$PCA = -ix$$

1	1	10	30	10	91	60	20	30	50	40
1	1	10	30	50	40	60	50	40	20	40
111	+++	111	1111	1111	1111	1111	1111	1111	1111	++++

PCA									
10	11	40	90	29	13	30	50	70	40
01	12	61	50	55	60	32	30	60	50

Calculating Principal Components

PCA involves calculating the covariance matrix of your data and then finding its eigenvectors and eigenvalues. Eigenvectors represent the principal components, and eigenvalues measure the variance explained by each component.

Selecting the Number of Principal Components

You can choose the number of principal components based on the amount of variance you wish to retain. Techniques like the "elbow" method help visualize where diminishing returns set in.

Advantages and Limitations of PCA

Advantages

- Reduces dimensionality
- Improves performance
- Enhances visualization

Limitations

- Loss of interpretability
- Sensitive to outliers
- Assumptions about data distribution

PCA Unlenventitioanity *red*uvation

	Neresinantades peatlity	Linitesiona oventti
DVANTAGES	*	~
Invantages of dimentialitg and lontically.	~	~
Lour destilous abroigy, and finy rerstryy ead sreets.	~	*
Pre-eragelly natullus offenal	✓	~
Conrtent or all patinet.	✓	~
In finnet aves runple, to rage feemive natices	✓	~
Larn a lasy foorts	✓	~
2.Store cocurand biagpt eathetiry you thi of dinenianyremetion.	✓	~
SPertx your bight/ensy shanes and be feclight	*	~
	*	/

Applications of PCA

Facial Recognition

PCA can be used to identify individuals based on facial features.

Image Compression

PCA can reduce image storage size by removing redundant information.

Financial Analysis

PCA can identify underlying trends in stock market data.

Conclusion and Key Takeaways

PCA is a powerful tool for reducing dimensionality, improving performance, and enhancing understanding of data. Remember to consider its limitations and choose the right number of principal components for your application.