	Theoretical	Theoretical Computer Science Cheat Sheet
	J Ĕ.	Series
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{m} i^m = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{m} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^m \right) \right]$
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{k=0}^\infty i^m = rac{1}{m+1} \sum_{k=0}^\infty inom{m+1}{k} B_k n^{m+1-k}.$
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.]8
$\sup S$	least $b \in \mathbb{R}$ such that $b \ge s$, $\forall s \in S$.	(2)
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{\infty} ic^i = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^2}, c \neq 1, \sum_{i=0}^{\infty} ic^i = \frac{c}{(1-c)^2}, c < 1.$
$\liminf_{n\to\infty} a_n$	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	
$\limsup_{n\to\infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1} H_i = (n+1)H_n - n, \sum_{i=1} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$
$\left[\begin{smallmatrix} y \\ u \end{smallmatrix} \right]$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$2. \sum_{k=0}^{n} \binom{n}{k}$
$\left\{ egin{array}{c} \eta \\ n \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4 \cdot \binom{k}{k} = \frac{1}{k} \binom{k-1}{k-1}, \qquad 5 \cdot \binom{k}{k} = \binom{k}{k} + \binom{k-1}{k-1},$ $6 \cdot \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad 7 \cdot \sum_{k=1}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$
$\langle {n \atop k} \rangle$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	
$\langle\!\langle {n\atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	
C_n	Catalan Numbers: Binary trees with $n+1$ vertices.	12. $\binom{n}{2} = 2^{n-1} - 1$, 13. $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$,
14.)!, $15. \begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$	1)! H_{n-1} , 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1$, 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix}$,
18. $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$	$\binom{n-1}{k} + \binom{n-1}{k-1}$, 19. $\binom{r}{n-1}$	
$22. \ \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1,$	$\left \begin{array}{c} 0 \\ -1 \end{array} \right = 1,$ 23. $\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle = \left\langle \begin{array}{c} 0 \end{array} \right $	$\binom{n}{n-1-k}$, $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$,
$25. \ \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right.$	if $k = 0$, otherwise 26. $\begin{cases} r \\ 1 \end{cases}$	$27. \ \ \left< \frac{n}{2} \right> = 2^n - n - 1, \ 27. \ \ \left< \frac{n}{2} \right> = 3^n - (n+1)2^n + \binom{n+1}{2},$
$28. \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle$	28. $x^n = \sum_{k=0}^n {n \choose k} {x+k \choose n},$ 29. ${n \choose m} = \sum_{k=0}^m {n \choose k}$	$\binom{n+1}{k}(m+1-k)^n(-1)^k, \qquad 30. \ m! \binom{n}{m} = \sum_{k=0}^n \binom{n}{k} \binom{k}{n-m},$
31. $\binom{n}{m} = \sum_{k=0}^{n}$	${n \brace k} {n-k \choose m} (-1)^{n-k-m} k!,$	32. $\binom{n}{0} = 1$, 33. $\binom{n}{n} = 0$ for $n \neq 0$,
34. $\left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle = (k + 1)^n$	$\left\langle\!\!\left\langle n\atop k\right\rangle\!\!\right\rangle = (k+1)\!\left\langle\!\!\left\langle n-1\atop k\right\rangle\!\!\right\rangle + (2n-1-k)\!\left\langle\!\!\left\langle n-1\atop k-1\right\rangle\!\!\right\rangle,$	
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \left\{ \begin{array}{c} x \\ x \end{array} \right\}$	36. $ \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \sum_{k=0}^{n} \left\langle \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \left(x+n-1-k \right), $	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}$

	48.	46.	44.	42.	40.	38.			
Recurrences		47. [₇	$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \textbf{45.} \ (n-m)$	43	41. $\begin{bmatrix} n \\ m \end{bmatrix}$	$38. \ \left[{n+1\atop m+1} \right] = \sum_k \left[{n\atop k} \right] \binom{k}{m} = \sum_{k=0}^n \left[{k\atop m} \right] n^{\underline{n-k}} = \underline{n!} \sum_{k=0}^n \frac{1}{k!} \left[{k\atop m} \right], \qquad 39. \ \left[{x\atop x-n} \right] = \sum_{k=0}^n \left\langle \!\!\! \binom{n}{k} \right\rangle \!\!\! \binom{x+k}{2n},$		Theoretical Computer Science Cheat Sheet	
	only if every internal node has 2 sons.	$\sum_{i=1}^{i=1}$ and equality holds	$d_1, \dots, d_n : \\ \sum_{n=1}^{n} 2^{-d_i} \le 1,$	of the leaves of a binary tree are	euges. Kraft inequal- ity: If the deaths	Every tree with n vertices has $n-1$	${ m Trees}$		

3	
method.	

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then
$$T(n) = \Theta(n^{\log_b a} \log_2 n).$$

for large n, then $T(n) = \Theta(f(n)).$ and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$,

$$T(n) = \Theta(f(n)).$$

following recurrence Substitution (example): Consider the

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i$, $t_1 = 1$. Note that T_i is always a power of two.

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

the previous equation by 2^{i+1} we get t_{i+1} 2^i t_i Let $u_i = t_i/2^i$. Dividing both sides of

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

the following recurrence Summing factors (example): Consider that T_i has the closed form $T_i = 2^{i2^{i-1}}$. which is simply $u_i = i/2$. So we find

$$T(n) = 3T(n/2) + n$$
, $T(1) = 1$.

are on the left side Rewrite so that all terms involving TT(n) - 3T(n/2) = n.

a factor which makes the left side "tele-Now expand the recurrence, and choose

$$1\big(T(n) - 3T(n/2) = n\big)$$

$$3(T(n/2) - 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} \big(T(2) - 3T(1) = 2 \big)$$

 $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$

$$\sum_{i=1}^{m-1} \frac{n}{2i} 3^{i} = n \sum_{i=1}^{m-1} \left(\frac{3}{2}\right)^{i}.$$

 $\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=1}^{m-1} \left(\frac{3}{2}\right)^i.$

et
$$c = \frac{3}{2}$$
. Then we have
$$\sum_{i=m}^{m-1} c_i = m \left(\frac{c^m - 1}{2} \right)$$

Let $c = \frac{3}{2}$. Then we have $n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$ $=2n^k-2n,$ $= 2n(c^{(k-1)\log_c n} - 1)$ $=2n(c^{\log_2 n}-1)$

currences can often be changed to limited and so $T(n) = 3n^k - 2n$. Full history rehistory ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{b} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

And so $T_{i+1} = 2T_i = 2^{i+1}$.

Generating functions:

- 1. Multiply both sides of the equation by x^i
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function $\widetilde{G}(x)$. Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- Example: 5. The coefficient of x^i in G(x) is g_i .

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

Multiply and sum:
$$\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2g_i x^i + \sum_{i\geq 0} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify:
$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for G(x):

$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions: $\begin{pmatrix} 2 & 1 \\ 1 & \end{pmatrix}$

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x} \right)$$

$$= x \left(2 \sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i \right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1) x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

22

$\sum_{k=1}^{n} pq - \frac{n}{p}$		1 10 45 120 210 252 210 120 45 10 1	5 120 210 25	1 10 4
$\mathbf{F}[X] - \sum_{k=a}^{\infty} k - 1 = \frac{1}{2}$	nH_n .	$1\ 9\ 36\ 84\ 126\ 126\ 84\ 36\ 9\ 1$	9 36 84 126	<u> </u>
$\Pr[X = k] = pq^{-1}, q = 1 - p,$	lect all n types is) 56 28 8 1	1 8 28 56 70 56 28 8 1	
Geometric distribution:	number of days to pass before we to col-	35 21 7 1	1 7 21 35 35 21 7 1	
$\Pr\left[\left X - \operatorname{E}[X]\right \geq \lambda \cdot \sigma\right] \leq \frac{1}{\lambda^2}.$	different types of coupons. The distribu-) 15 6 1	$1\ 6\ 15\ 20\ 15\ 6\ 1$	
	random coupon each day, and there are n	10 5 1	15101051	
$\Pr\left[X > \lambda \operatorname{E}[X]\right] < \frac{1}{-}$	The "coupon collector": We are given a	4 1	$1\ 4\ 6\ 4\ 1$	
Moment inequalities:	$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	3 1	1331	
$k = 2$ $i_i < \dots < i_k$ $j = 1$	Normal (Gaussian) distribution:	<u>.</u>	191	
$\sum_{(-1)^{k+1}}^{n} \sum_{\mathbf{Pr}} \left[\bigwedge_{X_{i}}^{k} \right]$	$\frac{1}{k!} \frac{(x - n) - \frac{1}{k!}}{k!} \frac{(x - n)}{n!} \frac{(x - n)}{n!}$		<u></u>	
i=1	$\frac{\lambda}{\lambda}$	0		
$\Pr \left igcup X_i ight = \sum \Pr[X_i] + $	Poisson distribution:	Triangle	Pascal's Triangle	
	$k=1$ $(k)^{r-1}$,296 131	4,294,967,296	32
Inclusion evaluation: $L_{j}=1+\lfloor (+j\rfloor+\lfloor (-j\rfloor+j\rfloor)\rfloor$	$F[X] = \sum_{n=1}^{n} k^{\binom{n}{n}} p^k q^{n-k} = p p$,648 127	2,147,483,648	31
$\Pr[A_i B] = rac{\sum_{i=1}^n \left[\sum_{i=1}^n \Pr[A_i] \Pr[B A_i]}{\sum_{i=1}^n \Pr[A_i] \Pr[B A_i]}.$,824 113	1,073,741,824	30
Dayes theorem: $\Pr[B A.]\Pr[A.]$	$\Pr[X = k] = \binom{n}{n} p^k q^{n-k}, \qquad q = 1 - p,$	912	536,870,912	29
$\mathbb{E}[cX] = c \mathbb{E}[X].$	Binomial distribution:	456 107	268,435,456	28
$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y],$	$\alpha(i) = \min\{j \mid a(j, j) \ge i\}.$	728 103	134,217,728	27
if X and Y are independent. $A = \begin{bmatrix} x & y \\ y \end{bmatrix}$	(a(i-1,a(i,j-1))	101	67,108,864	26
$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y],$	j = 1	.32 97	33,554,432	25
For random variables X and Y :	$(2^{j} \qquad \qquad i=1$	89	16,777,216	24
$\Pr[B]$	Ackermann's function and inverse:	08 83	8,388,608	23
$\Pr[A B] = \frac{\Pr[A \land B]}{}$	$n! = \sqrt{2\pi n} \left(\frac{n}{e} \right) \left(1 + \Theta \left(\frac{1}{e} \right) \right).$	04 79	4,194,304	22
iff A and B are independent.	(m) n/ (1) /	52 73	2,097,152	21
$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$	1, 2, 6, 24, 120, 720, 5040, 40320, 362880,	76 71	1,048,576	20
$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$	Factorial, Stirling's approximation:	8 67	524,288	19
For events A and B :			262,144	18
$\sigma = \sqrt{\mathrm{VAR}[X]}.$	$H_n = \ln n + \gamma + O\left(\frac{1}{-}\right).$		131,072	17
$VAR[X] = E[X^2] - E[X]^2,$	$ \ln n < H_n < \ln n + 1, $		65,536	16
Variance, standard deviation:			32,768	15
$\mathbb{E}[g(x)] = \int_{-\infty}^{-\infty} g(x)p(x) dx = \int_{-\infty}^{-\infty} g(x) dx (x).$	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$		16,384	14
$\mathbf{E}[a(X)] = \int_{-a(x)}^{\infty} a(x) dx = \int_{-a(x)}^{\infty} dD(x)$	Harmonic numbers:		8,192	13
If X continuous then	$(1+\frac{1}{n})^n = e - \frac{1}{2n} + \frac{1}{24n^2} - O(\frac{1}{n^3}).$		4,096	12
$\mathbb{E}[g(X)] = \sum_{x} g(x) \Pr[X = x].$			2,048	11
Expectation: If A is discrete	$(1+\frac{1}{2})^n < e < (1+\frac{1}{2})^{n+1}$.		1,024	10
Exportation: If V is disprete	$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e^x.$		512	, 9
$P(a) = \int_{-\infty}^{\infty} p(x) dx.$	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	19	256	
P and p both exist then		17	128	7
then P is the distribution function of X . If	$\log_a b$ 2a	13	64	6
$\Pr[X < a] = P(a),$	$\log_b x = \frac{\log_a x}{1}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{1}.$	11	32	OT
$X. \ \mathrm{If}$	ıadra	7	16	4
J_a	$\mathcal{B}_6 = \frac{1}{42}, \mathcal{B}_8 = -\frac{1}{30}, \mathcal{B}_{10} = \frac{1}{66}.$	లా	œ	c
$\Pr[a < X < b] = \int p(x) dx,$	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$. w	2	2
Continuous distributions: If	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	2	. 2	щ
Probability	General	p_i	2^{i}	i
$\approx 1.61803, \qquad \hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx61803$	2.71828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$, e ≈	$\pi \approx 3.14159$	
	Table Control Control Control Control			
Sheet	Theoretical Computer Science Cheat Sheet			

23

Trigonometry $\begin{pmatrix} \bullet & & & \\ (0,1) & & \\ (0,1) & & \\ & \theta & (\cos\theta,\sin\theta) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{pmatrix}$	
$A^2 + B^2$.	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$
$\sin a = A/C, \cos a = B/C,$ $\csc a = C/A, \sec a = C/B,$ $\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$	$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$
scribed circle:	$= \frac{aei + bfg + cdh}{-ceg - fha - ibd.}$
+ C.	Permanents: $\binom{n}{n}$
$\cos x =$	$\operatorname{perm} A = \sum_{\pi} \prod_{i=1} a_{i,\pi(i)}.$ Hyperbolic Functions
$\tan x = \frac{1}{\cot x}, \qquad \qquad \sin^2 x + \cos^2 x = 1,$	ns: $e^x - e^{-x}$
$\cot^2 x$, $1 + \cot^2 x = \csc^2 x$, $-x$), $\sin x = \sin(\pi - x)$,	$\frac{2}{-e^{-x}}, \cosh x = \frac{-e^{-x}}{+e^{-x}}, \operatorname{csch} x = \frac{1}{-e^{-x}}$
tan $x = \cot\left(\frac{\pi}{2} - x\right)$,	$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$
$\cot \frac{x}{2} - \cot x,$	Identities: $\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$
$\operatorname{sm}(x \pm y) = \operatorname{sm} x \cos y \pm \cos x \operatorname{sm} y,$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$	1,
	$ \cosh(-x) = \cosh x, \qquad \tanh(-x) = -\tanh x, $ $ \sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y, $
	$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$
$\sin 2x = \frac{2\tan x}{1 + \tan^2 x},$	$\sinh 2x = 2\sinh x \cosh x,$ $\cosh 2x - \cosh^2 x + \sinh^2 x$
$\cos 2x = \cos^2 x - \sin^2 x, \qquad \cos 2x = 2\cos^2 x - 1,$ $\cos 2x = 1 - 2\sin^2 x, \qquad \cos 2x = \frac{1 - \tan^2 x}{1 - \tan^2 x},$	$ \cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x}, $
	$(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, n \in \mathbb{Z},$ $2\sinh^2 \frac{x}{2} = \cosh x - 1, \qquad 2\cosh^2 \frac{x}{2} = \cosh x + 1.$
$=\sin^2 x - \sin^2 y,$	$\theta \sin \theta \cos \theta \tan \theta$ in mathematics
$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$	0 1 0 you don't m
Euler's equation: $e^{ix} = \cos x + i \sin x$, $e^{i\pi} = -1$.	$2\sqrt{2}$
v2.02 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden	$\frac{7}{3}$ $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$ — J. von Neumann $\frac{\pi}{2}$ 1 0 ∞

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. – George Bernard Shaw	$A_k = rac{1}{k!} \left[rac{a^n}{dx^k} \left(rac{N(x)}{D(x)} ight) \right]_{x=a}.$	where $1 \left[\frac{d^k}{d^k} \left(N(x) \right) \right]$	For a repeated factor: $\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$	where $A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$	$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$	where the degree of N' is less than that of D . Second, factor $D(x)$. Use the following rules: For a non-reneated factor:	$rac{N(x)}{D(x)} = Q(x) + rac{N'(x)}{D(x)},$	than or equal to the degree of D , divide N by D , obtaining	N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater	Let $N(x)$ and $D(x)$ be polynomial functions of x . We can break down	Partial Fractions	$= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} -$	$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$ $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$	s series:	$\frac{\hat{6}}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{3^1 \cdot 3}{3^1 \cdot 3} + \frac{3^2 \cdot 5}{3^2 \cdot 5} - \frac{3^3 \cdot 7}{3^3 \cdot 7} + \cdots \right)$	1	$\frac{6}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$ Sharp's series:	1 1 1.3	$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$ Newton's series:		2+-	$\frac{\pi}{4} = 1 + \frac{1^2}{3}$	Brouncker's continued fraction expansion:	Wallis' identity: $\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$	77	Theo	
If G is planar then $n-m+f=2$, so $f \le 2n-4$, $m \le 3n-6$. Any planar graph has a vertex with degree < 5 .	$\sum_{v \in V} \deg(v) = 2m.$	$+O\left(\frac{n}{(\ln n)^4}\right).$	$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$	_ +	Prime numbers:	$(n-1)! \equiv -1 \bmod n.$	ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. Wilson's theorem: n is a prime iff	Perfect Numbers: x is an even perfect num-	$S(x) = \sum_{i=1}^{n} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{n-1}.$	If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	$\gcd(a,b) = \gcd(a \bmod b, b).$	The Euclidean algorithm: if $a>b$ are integers then	Fermat's theorem: $1 \equiv a^{p-1} \bmod p.$		prime then $1 \equiv a^{\phi(b)} \bmod b.$	Euler's theorem: If a and b are relatively	$\phi(x) = \prod_{i=1}^{\infty} p_i^{e_i-1}(p_i-1).$	prime to x . If $\prod_{i=1}^{n} p_i$ is the prime ractorization of x then	~ 원 그	if m_i and m_j are relatively prime for $i \neq j$.	$C \equiv r_n \bmod m_n$		$C \equiv r_1 \bmod m_1$	The Chinese remainder theorem: There exists a number C such that:	Number Theory	Theoretical Computer Science Cheat Sheet	
arth have	91 e, vol	$\begin{bmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{bmatrix} = 0.$	₆	$\begin{array}{ccc} (0,0) & \ell_1 & (x_1,y_1) \\ \cos \theta = \frac{(x_1,y_1) \cdot (x_2,y_2)}{\frac{\theta}{2} \cdot \frac{\theta}{2}}. \end{array}$	ℓ_2 (x_2, y_2)	, re	$\frac{1}{2} abs \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$	Area of triangle (x_0, y_0) , (x_1, y_1)	$\lim_{p \to \infty} \left[x_1 - x_0 ^p + y_1 - y_0 ^p \right]^{1/p}.$	$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2},$ $\left[x_1-x_0 ^p+ y_1-y_0 ^p\right]^{1/p},$	metric: $\sqrt{\frac{2}{2} + \frac{12}{2} + \frac{12}{2}}$	forn	x + b	$(x, y, z) = (cx, cy, cz) \forall c \neq 0.$ Cartesian Projective	ot all x , y and z	Geometry Projective coordinates: triples											

George Bernard Shaw

Any planar graph has a vertex with degree $\leq 5.$

- Issac Newton

Theoretical Computer Science Cheat Sheet

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \dots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \dots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \dots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \dots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!},$$

$$\ln(1+x)$$

$$\ln \frac{1}{1-x}$$

$$\frac{1-x}{\sin x}$$

$$\cos x$$

$$\tan^{-1} x$$

$$(1+x)^n$$

$$\frac{1}{(1-x)^{n+1}}$$

$$\frac{1}{2x}(1-\sqrt{1-4x})$$

$$\frac{1}{\sqrt{1-4x}}$$

$$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x} \right)^{1}$$

$$\frac{1}{1-x} \ln \frac{1}{1-x}$$

$$\begin{array}{c}
x \\
1-x-x^{2} \\
\hline
1-x-x^{2} \\
F_{n}x \\
(F_{n-1}+F_{n+1})x-(-1)^{n}x^{2}
\end{array}$$

$$\frac{1}{-4x} \left(\frac{1 - \sqrt{1 - 4x}}{2x} \right)$$

$$\frac{1}{1 - x} \ln \frac{1}{1 - x}$$

$$\frac{1}{2} \left(\ln \frac{1}{1 - x} \right)^2$$

$$\frac{x}{1 - x - x^2}$$

$$\frac{1}{2} \left(\ln \frac{1}{1-x} \right)$$

$$\frac{x}{1-x-x^2}$$

$$F_n x$$

$$\frac{x}{1-x-x^2}$$

$$F_n x$$

$$= 1 + x + x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} \sum_{x=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{3} + x^{4} + \dots = \sum_{i=1}^{\infty} x^{2} + x^{2}$$

$$= x + 2^{n}x^{2} + 3^{n}x^{3} + 4^{n}x^{4} + \dots =$$

$$= 1 + x + \frac{1}{2}x^{2} + \frac{1}{6}x^{3} + \dots =$$

$$= 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots$$

i! ;

$$= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \dots = \sum_{i=1}^{i=0} (-1)^{i+1} \frac{x^i}{i},$$
$$= x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \dots = \sum_{i=1}^{\infty} \frac{x^i}{i},$$

$$= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots = \sum_{i=1}^{5}$$

$$= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!},$$

$$= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!},$$

$$= x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)},$$

$$1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} {n \choose i} x^i$$

$$= 1 + (n+1)x + {\binom{n+2}{2}}x^2 + \dots = \sum_{i=0}^{\infty} {\binom{i+n}{i}}x^i,$$

$$= 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \dots = \sum_{i=0}^{\infty} \frac{B_i x^i}{i!},$$

$$=1+x+2x^2+5x^3+\cdots = \sum_{i=0}^{i=0} \frac{1}{i+1} {2i \choose i} x$$

$$= 1 + x + 2x^{2} + 6x^{3} + \cdots = \sum_{i=0}^{\infty} {2i \choose i} x^{i},$$

$$= 1 + (2+n)x + {4+n \choose 2} x^{2} + \cdots = \sum_{i=0}^{\infty} {2i+n \choose i} x^{i},$$

$$= 1 + (2 + n)x + {\binom{4+n}{2}}x^2 + \dots = \sum_{i=0}^{\infty} {\binom{2i+n}{i}}x^i$$

$$= x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \dots = \sum_{i=1}^{\infty} H_i x^i,$$

$$= \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \dots = \sum_{i=2}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$= x + x^2 + 2x^3 + 3x^4 + \dots = \sum_{i=0}^{\infty} F_i x^i,$$

$$= F_n x + F_{2n}x^2 + F_{3n}x^3 + \dots = \sum_{i=0}^{\infty} F_{ni}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

 ix^i

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$
$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$\frac{\sum_{k=0}^{\infty} \sum_{i=0}^{\infty} a_{i+k}x}{x^{k}}$$

$$A(cx) = \sum_{i=0}^{\infty} c^{i}a_{i}x^{i},$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1)a_{i+1}x^{i},$$

$$xA'(x) = \sum_{i=1}^{\infty} ia_i x^i,$$
$$\int A(x) dx = \sum_{i=1}^{\infty} \frac{a_{i-1}}{i} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i}x^{2i},$$
$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1}x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^{i} a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i$$

all the rest is the work of man. God made the natural numbers; Leopold Kronecker