

Light-weight Visualization System for Large Genomics Data

DNA Sequencing

Human Genome Project (HGP) was an international research effort to determine the sequence of the human genome and identify the genes that it contains.

The HGP was a 13 years (1990 – 2003) effort that cost billions of effort coordinated by:

- 1- National Institutes of Health (NIH)
- 2- Department of Energy (DOE)

Applications of HGP

- Identification of human genes and their functions
- Understanding of polygenetic disorders such as cancer
- Improvements in gene therapy
- Improved diagnosis of diseases
- Development of pharmacogenesis

First-generation sequencing versus Next-Generation Sequencing

Next generation sequencing (NGS), massively parallel or deep sequencing are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS an entire human genome can be sequenced within a single day at a cost of 1000 USD.

In contrast, the previous Sanger sequencing technology, used to decipher the human genome, required over a decade to deliver the final draft.

How does Next-Generation Sequencing take place?

Single-stranded DNA Template

Slide adapted from Ben Langmead

Slide adapted from Ben Langmead

Slide adapted from Ben Langmead

Definition Problem

Functional fast and low cost data visualization systems of genomic data has been controversial because of their expense in terms of money and computational cost.

By rethinking our approach to management of NGS data by visualizing them through various aspects in comparison to a reference genome to spot changes, we can offer best practices for best adoption of these new technologies for genomic data.

Motivation

- Batch Mode Generation of quick images.
- Plots associated to databases with annotations.

Why do we need visualization?

- Detect Mutations
- Assure sequencing covers all exons
- Assure sequencing generates reads covering whole reference genome

Related Works

IGV

- Java based
- loads BAM files, annotations, and other tracks
- Not the fastest in performance

Tablet

- Delicate balance between performance, features, and aesthetics
- Good interface
- Does not display read insertions correctly

BamView

- Very fast simple BAM file viewer
- No much features, just display and drag

Database Generation

DNA extraction from a sample

DNA sequencing

Raw sequencing reads are aligned to a reference genome

 Convert aligned reads from Sam file format to Bam

Sort and Index BAM file

SAM FILE

190_1188_	1731_F	3	0	Chr13	74413080		255	40M	*	0	0	CATCCAGTCTCTGGCC	TCCAGCAGCCCGGA	ATCCCCGACCC	
HHGGGGHGG	GGHGGG	-G@@@@HG	GGFGAAA@	FEEEEEAAA	,)	(A:i:2	MD:Z:27	C9T2	NM:i:2						
689_1478_	1241_F	3	0	Chr13	74413128		250	75M	*	0	0				
GCAGGTGAT	CCGAGA	ATGCTGTG	CACAAACC	CATTTTATA	GTTGGGGA	\ACTGAG(CCCATAC	ACCGGAAG	GACT	*	Z0:i:251	.49 Z1:i:251	.49 CM:i:6	0 NM:i:3	
AS:i:641		CS:Z:T1	31201123	203222031	321113111	10010013	30003332	10100020	01212203	0013322	1030202021	2			
XX:Z:GCAG	(X:Z:GCAGGTGATCCGAGAATGCTGTGCACAAACCCATTTTATAGTTGGGGAAACTGAGGCCCATAGACCGGAAGGACT														
322_1007_	1216_F	3	0	Chr13	74413129		250	75M	*	0	0				
CAGGTGATC	CGAGAA	rgcTgTgC/	ACAAACCC.	ATTTTATAC	TTGGGGAAA	ACTGAGG	CCATAGA	CCGGAAGG	ACTT	*	Z0:i:251	.49 Z1:i:251	.49 CM:i:6	0 NM:i:3	
AS:i:641	AS:i:641 CS:Z:T212011232032220313211131110010013000333210100020012122030013322103020202120														
XX:Z:CAGGTGATCCGAGAATGCTGTGCACAAACCCATTTTATAGTTGGGGAAACTGAGGCCCATAGACCGGAAGGACTT															
74_444_10)49_F3	16	Chr13	74413134	. 2	250	75M	*	0	0					
GCCCCGAGA	ATGCTG	rgcacaaa	CCCATTTT	ATAGTTGGG	GAAACTGAG	GCCCATA	AGACCGGA	AGGACTTG	CCCA	*	Z0:i:251	.41 Z1:i:251	.41 CM:i:6	0 NM:i:3	
AS:i:641															
XX:Z:TGGG	XX:Z:TGGGCAAGTCCTTCCGGTCTATGGGCCTCAGTTTCCCCAACTATAAAATGGGTTTGTGCACAGCATTCTCGGGGC														
575_1420_	134_F3	0	Chr13	74413135	; 2	250	75M	*	0	0					
ATCCGAGAA	ATGCTGT	GCACAAAC	CCATTTTA	TAGTTGGG	AAACTGAG	CCCATA	GACCGGAA	GGACTTGC	CCAG	*	Z0:i:251	.49 Z1:i:251	.49 CM:i:6	0 NM:i:3	
AS:i:641		CS:Z:T3	32032220	313211131	110010013	30003332	21010002	00121220	30013322	1030202	0212013001	2			
XX:Z:ATCC	XX:Z:ATCCGAGAATGCTGTGCACAAACCCATTTTATAGTTGGGGAAACTGAGGCCCATAGACCGGAAGGACTTGCCCAG														
630_1342_	868_F3	0	Chr13	74413140	1 2	255	67M	*	0	0					
AGAATGCTG	TGCACA	AACCCATT	TTATAGTT	GGGGAAACT	GAGGCCCAT	AGACCG(GAAGGACT	TGCC	HHHHHH	ІНННННН	HHHHHHHGG	GGGA>8AHGHHHHFFF	GHFFFGHEEEEGG)GEG>>>>AAAAAA	
XA:i:2 M	XA:i:2 MD:Z:4A8T53 NM:i:2														
289_347_6	555_F3	0	Chr13	74413145		255	70M	*	0	0					
GCTGTGCAC	CAAACCC	ATTTTATA	GTTGGGGA	AACTGAGGC	CCATAGACO	GGAAGGA	ACTTGCCC	AGAGCCG	HHHHHH	ІНННННН	НННННННН	IHHHHHHHHGGGGHHHH	IHHEEEEHEDEDGA <i>A</i>	AAAGEEEEF<	AAA
XA:i:1 M	1D:Z:8T	51	NM:i:1												
575_1268_	_1764_F	3	16	Chr13	74413148		255	43M	*	0	0	GTGCACAAACCCATTT	TATAGTTGGGGAAA	ACTGAGGCCCATAG	
@BBD>BDDD	SAAAA<	ABAAAAA<	BBBGGGEG	G@BBBEEEE	EHG >	(A:i:1	MD:Z:5T	37	NM:i:1						
289_1069_	1663_F	3	0	Chr13	74413149		255	67M	*	0	0				
TGCACAAAC	CCATTT	FATAGTTG(GGGAAACT	GAGGCCCAT	AGACCGGAA	AGGACTTO	CCCAGAC	CCGT	HHHHHH	IHHHHHH	ННННННННН	ІННННННННННННССС	iGG;;;;FEEEDEAA	\AAGBBBBE>>>>@	
XA:i:1 M	1D:Z:4T	52	NM:i:1												
341_1280_	573_F3	16	Chr13	74413149	2	255	62M	*	0	0					
TGCACAAAC	CCATTT	FATAGTTG(GGGAAACT	GAGGCCCAT	AGACCGGAA	AGGACTTO	CCCAGA	@@@@@EEI	DDDEDDDD	GFGFGHG	GGGHHHHHHG	GGGHEGGGHFFFFHHH	IHHHGHHHHGGGGHF	ł XA:i:1	
MD:7:4T57	1	NM:i:1						1889 134 TGB59/X							1900
												Plain Text 🗸	Tab Width: 8 ∨	Ln 1, Col 1	INS

Materials

- > SAM/BAM files
- Linux OS
- > Python Packages:
 - -Plotly
 - -Pysam
 - -Docopt
 - -BioPython

Visualization in comparison to reference genome

- Color codes to reference genome
- Reads Annotations
- Color codes to reads indicating direction (reverse complimented or forward)
- Read Coverage bar graph
- Paired End
- Visualization Start & End Regions
- Command Line UI

Features: Color codes to reference genome

Having the capability to read the reference genome gene by gene in color codes each color representing a different gene type:

A – in red

C – in yellow

G - green

T – in blue

Which aids in a more detailed and precise comparison of the sequence assembly to the reference genome.

Features: Reads Alignment Direction

Reverse or Forward complimentary strands in the sequence alignment:

- An inversion in a sequence is a section of the DNA that is reversed in the subject genome compared to the reference genome.
- An inversion in paired-end reads are variant reads from the reference genome

Results: Color Codes

Features: Reads Annotations

Acquiring all the details of a single read by a single click or mouse positioning on the desired read from read position and sequence to the reference genome details.

Results: Annotations

Features:

Coverage and Depth

<u>Coverage</u>: the number of times a genome has been sequenced.

Coverage or depth of sequencing needed depends on the application of sequencing and varies such as:

- For detecting mutations, SNPs, and rearrangements
- For RNA sequencing
- For ChIP-Seq

Features: Coverage and Depth

When to sequence more?

- The effects seen are not statistically significant
- Events investigated are very rare
- Publication requires a higher level of coverage for a particular application
- Certain genomes may require more sequencing

Results

Genome Visualization

Features: Paired-End

Paired-end sequencing allows users to sequence both ends of a fragment and generate high-quality, alignable sequence data.

Paired-end sequencing facilitates detection of genomic rearrangements and repetitive sequence elements, as well as gene fusions and novel transcripts.

Features: Paired-End Single-end reads reference sequence Paired-end reads reference sequence sequenced fragment unknown sequenced fragment sequence 200 - 1000bp

Results: Paired End Lines 1.06^{-} 1.04^{-} 0.98 -0.96 -

Results: Paired End Lines

Results: Paired End Lines

Command Line UI

root@fatma:/home/fatma/Documents/PairedEnd/IGV# python test.py -help
Usage:
vst_main.py (-view FILE) [(-ref NAME --start VALUE --end VALUE)] [-reff FASTAFILE] [--mp]
vst_main.py (-h | --help)

Visualizes or plots reads in SAM/BAM files to aid in the analysis of data through different plotting manners with features enhancing analyzing effects

Arguments:

FILE input file to be visualized [BAM format]

VALUE start and end regions' values

<path> directory at which to execute the plots

FASTAFILE input fasta refeerence genome

Options:

-view FILE Imports and Views BAM files

-ref NAME Name of the reference chromosome

-s,--start VALUE Determines specific starting region in file

-e, --end VALUE Determines the ending region in file (optional)[default: end]

--mp Displays matepairs among plots

-h, --help Shows help document and quit

-reff FASTAFILE Plots reference genome

THANK YOU!