Subject Index

Volume 47

- acid-catalyzed isomerization, X-ray crystallography, sterol, 283
- acid catalyzed isomerization, X-ray crystallography, sterol, conformational analysis, 273
- acyl migrations, hydroxy thiol esters, glycidol esters, mercaptoglycerol esters, 217
- allyl benzyl sn-glycerol, 3,4-isopropylidene-p-mannitol, glyceryl esters, glyceryl ethers, glyceryl ether/ester, chemical synthesis, 47
- calorimetry, glycolipids, galactolipids, X-ray scattering, electron microscopy, phase transitions, 245
- chemical synthesis, 3,4-isopropylidene-D-mannitol, glyceryl esters, glyceryl ethers, glyceryl ether/ester, allyl benzyl sn-glycerol, 47
- chemical synthesis, phospholipids, lysophospholipids, lysolecithins, lysocephalins, lysophosphatidyl glycerol, lysophosphatidyl serines, 63
- chirality, polymerizable lipid, tubule formation, isomers, 135 chromiumtricarbonyl complex, synthesis, spectroscopic properties, 1,1-diphenyl-1-alkanols, 209
- conformational analysis, X-ray crystallography, sterol, acid catalyzed isomerization, 273
- cytochrome c oxidase, diphosphatidylglycerol, cytochrome P-450, stereospecific, phospholipase, 261
- cytochrome P-450, diphosphatidylglycerol, cytochrome c oxidase, stereospecific, phospholipase, 261
- demethylation, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphate tri-ester, phosphate methyl ester, 55
- diacylglycerols, hydroxyacylglycerols, oxoacylglycerols, glycidol esters, oxo-acid anhydrides, synthesis, HPLC analysis. 75
- dielectric relaxation, dimyristoylphosphatidylcholine, gramicidin A, zwitterion relaxation, protein-lipid interaction, lipid phase transition, 299
- diffusion, phospholipids, monolayer, fluorescence, mobility, 291
- 4,4-dimethyl-15-oxygenated sterols, sterol synthesis inhibitors, 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, 187
- dimyristoylphosphatidylcholine, dielectric relaxation, gramicidin A, zwitterion relaxation, protein-lipid interaction, lipid phase transition, 299
- 1,1-diphenyl-1-alkanols, synthesis, spectroscopic properties, chromiumtricarbonyl complex, 209

- diphosphatidylglycerol, cytochrome P-450, cytochrome c oxidase, stereospecific, phospholipase, 261
- dopamine, ion gradients, large unilamellar vesicles, 97
- electron microscopy, glycolipids, galactolipids, calorimetry, X-ray scattering, phase transitions, 245
- electron microscopy, phospholipids, swelling, morphology, L-phase, small-angle X-ray scattering, 225
- electron spin resonance, a-tocopherol, vitamin E, phase separation, perdeutero di-t-butyl nitroxide, phospholipid liposomes, 129
- ether lipids, Staphylococcus aureus, lipases, stereospecificity, 117
- fatty acid methyl esters, transmethylation, reductive transmethylation, 149
- fluorescence, phospholipids, monolayer, mobility, diffusion, 291
- Fourier transformed infrared spectroscopy, phosphatidylethanolamine, hydrogen-bonds, freeze fracture electron microscopy, 109
- freeze fracture electron microscopy, phosphatidylethanolamine, hydrogen-bonds, Fourier transformed infrared spectroscopy, 109
- galactolipids, glycolipids, calorimetry, X-ray scattering, electron microscopy, phase transitions, 245
- glyceryl esters, 3,4-isopropylidene-D-mannitol, glyceryl ethers, glyceryl ether/ester, allyl benzyl sn-glycerol, chemical synthesis, 47
- glyceryl ether/ester, 3,4-isopropylidene-p-mannitol, glyceryl esters, glyceryl ethers, allyl benzyl sn-glycerol, chemical synthesis, 47
- glyceryl ethers, 3,4-isopropylidene-D-mannitol, glyceryl esters, glyceryl ether/ester, allyl benzyl sn-glycerol, chemical synthesis, 47
- glycidol esters, hydroxyacylglycerols, oxoacylglycerols, diacylglycerols, oxo-acid anhydrides, synthesis, HPLC analysis, 75
- glycidol esters, hydroxy thiol esters, mercaptoglycerol esters, acyl migrations, 217
- glycolipids, galactolipids, calorimetry, X-ray scattering, electron microscopy, phase transitions, 245
- gramicidin A, dielectric relaxation, dimyristoylphosphatidylcholine, zwitterion relaxation, protein-lipid interaction, lipid phase transition, 299

- HPLC analysis, hydroxyacylglycerols, oxoacylglycerols, glycidol esters, diacylglycerols, oxo-acid anhydrides, synthesis, 75
- hydrated cerebrosides, hydrogen-bonding, theoretical models, 83
- hydrogen-bonding, hydrated cerebrosides, theoretical models, 83
- hydrogen-bonds, phosphatidylethanolamine, Fourier transformed infrared spectroscopy, freeze fracture electron microscopy, 109
- 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, sterol synthesis inhibitors, 4,4-dimethyl-15-oxygenated sterols, 187
- hydroxyacylglycerols, oxoacylglycerols, glycidol esters, diacylglycerols, oxo-acid anhydrides, synthesis, HPLC analysis, 75
- hydroxy thiol esters, glycidol esters, mercaptoglycerol esters, acyl migrations, 217
- interbilayer swelling, phosphatidylethanolamine, phosphatidic acid, lipid polymorphism, 123
- ion gradients, dopamine, large unilamellar vesicles, 97
- isomers, chirality, polymerizable lipid, tubule formation, 135
- 3,4-isopropylidene-D-mannitol, glyceryl esters, glyceryl ethers, glyceryl ether/ester, allyl benzyl sn-glycerol, chemical synthesis, 47

15-ketosterol, 15-oxygenated sterol, 177

- $L_{\rm e}$ -phase, phospholipids, swelling, morphology, small-angle X-ray scattering, electron microscopy, 225
- lanthanoide ions, phosphatidyl choline bilayer, unilamellar liposomes, ¹¹C-NMR relaxation, statistical mechanics, 69 large unilamellar vesicles, dopamine, ion gradients, 97
- lipases, Staphylococcus aureus, ether lipids, stereospecificity,
- lipid monolayers, polymyxin B₁, polymyxin B₁ nonapepitide, phosphatidic acid, phase transition, 155
- lipid phase transition, dielectric relaxation, dimyristoylphosphatidylcholine, gramicidin A, zwitterion relaxation, protein-lipid interaction, 299
- lipid polymorphism, phosphatidylethanolamine, phosphatidic acid, interbilayer swelling, 123
- lysocephalins, phospholipids, lysophospholipids, lysolecithins, lysophosphatidyl glycerol, lysophosphatidyl serines, chemical synthesis, 63
- lysolecithins, phospholipids, lysophospholipids, lysocephalins, lysophosphatidyl glycerol, lysophosphatidyl serines, chemical synthesis, 63
- lysophosphatidyl glycerol, phospholipids, lysophospholipids, lysolecithins, lysocephalins, lysophosphatidyl serines, chemical synthesis, 63
- lysophosphatidyl serines, phospholipids, lysophospholipids, lysolecithins, lysocephalins, lysophosphatidyl glycerol, chemical synthesis, 63
- lysophospholipids, phospholipids, lysolecithins, lysocephalins, lysophosphatidyl glycerol, lysophosphatidyl serines, chemical synthesis, 63

- marine invertebrate, phospholipid, sterol, phase transition, 165
- mercaptoglycerol esters, hydroxy thiol esters, glycidol esters, acyl migrations, 217
- metabolism of 15-ketosterol, 15-oxygenated sterol, 1
- mobility, phospholipids, monolayer, fluorescence, diffusion, 291
- monolayer, phospholipids, fluorescence, mobility, diffusion, 291
- morphology, phospholipids, swelling, L.-phase, small-angle X-ray scattering, electron microscopy, 225
- ¹²C-NMR relaxation, phosphatidyl choline bilayer, unilamellar liposomes, lanthanoide ions, statistical mechanics, 69
- oxo-acid anhydrides, hydroxyacylglycerols, oxoacylglycerols, glycidol esters, diacylglycerols, synthesis, HPLC analysis, 75
- oxoacylglycerols, hydroxyacylglycerols, glycidol esters, diacylglycerols, oxo-acid anhydrides, synthesis, HPLC analysis. 75
- 15-oxygenated sterol, metabolism of 15-ketosterol, 1
- 15-oxygenated sterol, 15-ketosterol, 177
- 15-oxygenated sterol, sterol synthesis, 21
- perdeutero di-t-butyl nitroxide, electron spin resonance, etocopherol, vitamin E, phase separation, phospholipid liposomes, 129
- phase separation, electron spin resonance, a-tocopherol, vitamin E, perdeutero di-t-butyl nitroxide, phospholipid liposomes, 129
- phase transition, phospholipid, sterol, marine invertebrate, 165
- phase transition, polymyxin B₁, polymyxin B₁ nonapepitide, phosphatidic acid, lipid monolayers, 155
- phase transitions, glycolipids, galactolipids, calorimetry, Xray scattering, electron microscopy, 245
- phosphate methyl ester, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphate tri-ester, demethylation, 55
- phosphate tri-ester, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphate methyl ester, demethylation, 55
- phosphatidic acid, phosphatidylethanolamine, lipid polymorphism, interbilayer swelling, 123
- phosphatidic acid, polymyxin B₁, polymyxin B₁ nonapepitide, lipid monolayers, phase transition, 155
- phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylglycerol, phosphate tri-ester, phosphate methyl ester, demethylation, 55
- phosphatidylethanolamine, hydrogen-bonds, Fourier transformed infrared spectroscopy, freeze fracture electron microscopy, 109
- phosphatidylethanolamine, phosphatidic acid, lipid polymorphism, interbilayer swelling, 123

phosphatidylethanolamine, phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphate tri-ester, phosphate methyl ester, demethylation, 55

phosphatidylgycerol, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine, phosphate tri-ester, phosphate methyl ester, demethylation, 55

phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphate tri-ester, phosphate methyl ester, demethylation, 55

phosphatidyl choline bilayer, unilamellar liposomes, ¹¹C-NMR relaxation, lanthanoide ions, statistical mechanics,

phospholipase, diphosphatidylglycerol, cytochrome P-450, cytochrome c oxidase, stereospecific, 261

phospholipid, sterol, phase transition, marine invertebrate, 165

phospholipids, lysophospholipids, lysolecithins, lysocephalins, lysophosphatidyl glycerol, lysophosphatidyl serines, chemical synthesis, 63

phospholipids, monolayer, fluorescence, mobility, diffusion, 291

phospholipids, swelling, morphology, L_s-phase, small-angle X-ray scattering, electron microscopy, 225

phospholipid liposomes, electron spin resonance, a-tocopherol, vitamin E, phase separation, perdeutero di-t-butyl nitroxide, 129

polymerizable lipid, chirality, tubule formation, isomers, 135 polymyxin B₁, polymyxin B₁ nonapepitide, phosphatidic acid, lipid monolayers, phase transition, 155

polymyxin B₁ nonapepitide, polymyxin B₁, phosphatidic acid, lipid monolayers, phase transition, 155

protein-lipid interaction, dielectric relaxation, dimyristoylphosphatidylcholine, gramicidin A, zwitterion relaxation, lipid phase transition, 299

reductive transmethylation, transmethylation, fatty acid methyl esters, 149

small-angle X-ray scattering, phospholipids, swelling, morphology, L_-phase, electron microscopy, 225

spectroscopic properties, synthesis, 1,1-diphenyl-1-alkanols, chromiumtricarbonyl complex, 209

Staphylococcus aureus, lipases, ether lipids, stereospecificity, 117

statistical mechanics, phosphatidyl choline bilayer, unilamellar liposomes, "C-NMR relaxation, lanthanoide ions, 69 stereospecific, diphosphatidylglycerol, cytochrome P-450, cytochrome c oxidase, phospholipase, 261

stereospecificity, Staphylococcus aureus, lipases, ether lipids, 117

sterol, phospholipid, phase transition, marine invertebrate, 165

sterol, X-ray crystallography, acid-catalyzed isomerization, 283

sterol, X-ray crystallography, acid catalyzed isomerization, conformational analysis, 273

sterol synthesis, 15-oxygenated sterol, 21

sterol synthesis inhibitors, 4,4-dimethyl-15-oxygenated sterols, 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, 187

swelling, phospholipids, morphology, L_s-phase, small-angle X-ray scattering, electron microscopy, 225

synthesis, hydroxyacylglycerols, oxoacylglycerols, glycidol esters, diacylglycerols, oxo-acid anhydrides, HPLC analysis. 75

synthesis, spectroscopic properties, 1,1-diphenyl-1-alkanols, chromiumtricarbonyl complex, 209

theoretical models, hydrated cerebrosides, hydrogen-bonding, 83

a-tocopherol, electron spin resonance, vitamin E, phase separation, perdeutero di-t-butyl nitroxide, phospholipid liposomes, 129

transmethylation, reductive transmethylation, fatty acid methyl esters, 149

tubule formation, chirality, polymerizable lipid, isomers, 135

unilamellar liposomes, phosphatidyl choline bilayer, "C-NMR relaxation, lanthanoide ions, statistical mechanics,

vitamin E, electron spin resonance, a-tocopherol, phase separation, perdeutero di-t-butyl nitroxide, phospholipid liposomes, 129

X-ray crystallography, acid-catalyzed isomerization, sterol, 283

X-ray crystallography, sterol, acid catalyzed isomerization, conformational analysis, 273

X-ray scattering, glycolipids, galactolipids, calorimetry, electron microscopy, phase transitions, 245

zwitterion relaxation, dielectric relaxation, dimyristoylphosphatidylcholine, gramicidin A, protein-lipid interaction, lipid phase transition, 299

Author Index

Volume 47 (1988)

Ayanoglu, E.	165	1.1.014	
Ayanogiu, E.	163	Lok, C.M.	7:
Balgavý, P.	69	Loughrey, H.	91
Bally, M.B.	97	MacDonald A.I.	
Beurer, G.	155	MacDonald, A.L.	83
Brabson, J.S.	1	Madden, T.D.	97
Buchet, R.	299	Mantsch, H.H.	109
Burke, T.G.	135	Mayer, L.D.	97
Dutae, 1.G.	133	Meyer, H.W.	225
Calvert, J.M.	135	Miller, L.R.	17
Cannistraro, S.	129	Monger, D.J.	21
Chen, CH.	237	-	
Chen, LI.S	237	Oltmans, E.	123
Cullis, P.R.	97		
Junio, a sec	,	Pagliuca, G.	149
Degovics, G.	225	Parish, E.J.	187
le Groot, W.Th.M	75	Pink, D.A.	83
De Kruijff, B.	123	Piretti, M.V.	149
Djerassi, C.	165	Powell, G.L.	261
Düzgünes, N.	165	Price, R.R.	13:
Eibl, H.	47, 55, 63, 117	Quinn, B.	8:
		Quiocho, F.A.	273, 283
ehrenbach, FJ.	117		
Powler, Jr., W.T.	261	Raulston, D.L. Redelmeier, T.	17
Galla, HJ.	155	200000000000000000000000000000000000000	,
Georger, J.H.	135	Schoen, P.E.	13:
Geurts van Kessel, W.S.M.	123	Schroepfer Jr., G.J.	1, 21, 177, 187, 273, 28
Courts van Rosser, W.O.M.		Schulze, G.	22
Harrigan, R.P.	97	Sen. A.	10
ierendeen, B.	135	Severcan, F.	12
linz, HJ.	245	Singh, A.	13
	97	omga, re.	13.
lope, M.J.	109	Tenchov, B.	24
łui, SW.	109	Tsuda, M.	18
Inczedy-Marcsek, M.	245		
		Uhriková, D.	6
Kandutsch, A.A.	187		
Close, G.	225	Van der Kleij, A.A.M.	12
König, B.	225	Vasina, M.	14
Kotting, J.	117		
Koynova, R.	245	Ward, J.P.	75, 21
Kuttenreich, H.	245	Warncke, F.	15
Automoton, 11.	245	Wilson, D.K.	273, 28
Laggner, P.	245	Wilson, W.K.	273, 28
	291	Wong, K.	9
Lakhdar-Ghazal, F.	209	Woolley, P.	
Lam, W.L.K.		woolley, F.	47, 55, 6
Lambeth, J.D.	261	Voses P	
Li, H.	165	Yager, P.	13
Lie Ken Jie, M.S.F.	209	Yang, P.W.	10

