

SEMICONDUCTOR TECHNICAL DATA

LM358F

BIPOLAR LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIER

FEATURES

- · In the Linear Mode the Input Common Mode Voltage Range Includes Ground.
- · Two Internally Compensated OP Amps are in Single Package.
- · Low Power Dissipation and Power Drain Suitable for Battery Operation.
- · Differential Input Voltage Range Equal to the Power Supply Voltage.
- · Wide Power Supply Voltage Range and Signal Power Supply
 - : Sungle Supply $3V_{DC}$ to $32V_{DC}$ Dual Supplies $\pm 1.5V_{DC}$ to $\pm 16V_{DC}$
- \cdot Large Output Voltage Swing : $0V_{DC}$ to V_{CC} -1.5 V_{DC} (Typ.)
- · Low Input Biasing Current : I_I=45nA_{DC} (Typ.)

PIN CONNECTION (TOP VIEW)

MARKING

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	V _{CC}	32, +16	- V	
	V _{EE}	0, -16		
Differential Input Voltage	V _{I(DIFF)}	±32	V	
Input Voltage	V _I	-0.3~32	V	
Power Dissipation	P_{D}	280	mW	
Operating Temperature	T _{OPR}	-40~85	°C	
Storage Temperature	T _{STG}	-65~150	°C	
Junction Temperature	T_{J}	125	c	

EQUIVALENT CIRCUIT

ELECTRICAL CHARACTERISTICS (V_{CC} =5V, V_{EE} =GND, Ta=25 $^{\circ}$ C, unless otherwise specified)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	V_{CM} =0V to V_{CC} -1.5V $V_{O(P)}$ =1.4V, R_S =0 Ω	-	2.9	7.0	mV
Input Offset Current	I _{IO}	-	-	5	50	nA
Input Bias Current	I _{BIAS}	-	-	45	250	nA
Input Common Mode Voltage	V _{I(CM)}	V _{CC} =30V	0	-	V _{CC} -1.5	V
Power Supply Current	т	$R_L = \infty$, $V_{CC} = 30V$	-	0.8	2.0	mA
	I_{CC}	$R_L = \infty$, Full Temperature Range	-	0.5	1.2	mA
Large Signal Voltage Gain	G_{V}	$V_{CC}=15V, R_L \ge 2k \Omega$ $V_{O(P)}=1V\sim 11V$	25	100	-	V/mV
Output Voltage Swing	V	V_{CC} =30V, R_L =2k Ω	26	-	-	V
	$V_{O(H)}$	V_{CC} =30V, R_L =10k Ω	27	28	-	V
Common Mode Rejection Ratio	CMRR	-	65	80	-	dB
Power Supply Rejection Ratio	PSRR	-	65	100	-	dB
Channel Separation	CS	f=1KHz ~ 20kHz	-	120	-	dB
Short Circuit Current to Ground	I_{SC}	-	-	40	60	mA
Output Current I _{SIN}	I _{SOURCE}	V _I (+)=1V, V _I (-)=0V V _{CC} =15V, V _{O(P)} =2V	10	30	-	mA
	ī	$V_{I}(+)=0V, V_{I}(-)=1V$ $V_{CC}=15V, V_{O(P)}=2V$	10	15	-	mA
	¹ SINK	V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _{O(P)} =200mV	12	100	-	mA
Differential Input Voltage	V _{I(DIFF)}	-	-	-	V _{CC}	V

LM358F

Fig. 1 Input Current vs Temperature

Fig. 3 Voltage Gain vs Supply Voltage

Fig. 5 Large signal Frequency Response

Fig. 2 Supply Current vs Supply Voltage

Fig. 4 Open Loop Frequency Response

Fig. 6 CMRR vs Frequency

Fig. 7 Voltage Follower Pulse Response

Fig. 9 Output Characteristics Current Sourcing

Fig. 11 Current Limiting

Fig. 8 Voltage Follower Response (Small Signal)

Fig. 10 Output Characteristics Current Sinking

Output Sink Current (mA)