

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

"Spatial Analysis" | | Map Algebra

History – Map Algebra

• Ian McHarg:

- Design with Nature (1969)
- "Layer method"
- Theoretical basics for GIS developed(!)
- Software GRID, IMGRID (Harvard Labs) 1970ies
- Dana Tomlin, Joseph Berry, etc.
 - Map Analysis Package (Mid 1970ies Early 1980ies)
- PhD Dana Tomlin (1983) >> Map Algebra
- C. D. Tomlin
 - Geographic Information Systems and Cartographic Modeling (1990)
 - GIS and Cartographic Modeling (2012)

Map Algebra

Map Algebra

- Not another type of spatial analysis but a "systematical view" on analytical operations on raster data
- Set-based algebraic approach to analyze spatial data
- Defines a number of "operations" in a GIS, that allow to analyze several raster data layers having similar resolution and extent!

Properties:

- The approach is flexible extendable
- Universal modeling language
- Concept can be extented to vector data as well

Map Algebra

- Mathematics with map
 - Cartographic Modeling
 - "mapemathics"
 - map modeling
- Attributes in space are represented by numerical values
- Modeling methodologies are based on mathematics

Map Algebra - Operators

Local

- Non spatial (to be honest!)
- Process information of exactly on cell location(!)

Focal

Information of neighboring cells are processed (nb! neighborhood)

Zonal

Processes information of cell zones having the same properties

Incremental

Part of global operators

Global

Caluclation result at a specific cell is dependent (at least theoretically)
on all cells in the raster layer.

Local Operators

- Local operators can combine 1, ..., n raster layers
- Only 1 cell of the raster layer is considered
- Examples:
 - localSinus
 - localInteger
 - localSum
 - localMean
 - localRange
 - localStddev

Local Operators

Focal Operators

- Neighborhood definition
 - Rook's, Queen's case
 - Circular, donut, wedge
 - Irregular shape
- Moving Window: defined by neighborhood (MW moves over the entire raster layer!)
- Examples:
 - focalSum
 - focalMin
 - focalMajority
 - •

Focal Operators

Focal Operators

focalSUM	
focalMEAN	
focalMIN	
focalMAX	
focalRANGE	

27	33	49	42	39	26
41	40	53	44	44	30
56	52	61	56	55	41
54	55	62	63	57	45
41	50	59	65	61	57
27	40	52	57	59	62

Eingabe RASTER

Ausgabe RASTER

Zonal Operators

Calculation based on disjoint regions (=zones) having the same properties

Zones are independent of the neighborhood!

zonalSUM
zonalMEAN
zonalMIN
zonalMAX
zonalRANGE

11	2	10	7	3	5
8	8	10	9	13	6
9	11	3	6	7	13
8	5	16	12	1	7
9	17	13	9	12	10
15	8	4	17	6	6

Werte RASTER

Zonen RASTER

F ... Forst

A ... Acker

S ... Siedlung

126	86	126	104	104	126
104	86	86	126	126	126
104	86	104	104	104	126
104	104	126	104	126	126
86	126	86	104	126	104
86	86	86	104	86	126

Incremental Operators

- Result of an incremental calculation step are input for the calculation of the neighboring raster cell values.
- Examples:
 - DEM >> slope
 - Hydrological models
 - Distance surfaces

Global Operators

- Caluclation result at a specific cell is dependent (at least theoretically) on all cells present in the raster layer.
- Example:
 - Cost surfaces
 - Interpolation

Global Operators

Global Operators

"Spatial Analysis" | Raster Overlay

Spatial Analysis

- Cross-Tabulation
 - Combines several raster layer in a single raster data set
 - Each possible combination of values is allowed results in 9 classes when having 2 input layers with 3 classes each.

Spatial Analysis

Cost Surfaces

Cost/Distance surfaces

- Distance concepts with raster data
 - Euclidean distances
 - Spherical distances
 - Cost Surfaces

Distance surfaces

21

Euclidean Distance

- "as the crow flies …"
- Calcluation of continuous distance surfaces based on point datasets (e.g. bus stops, schools, ...)

- Cost surfaces model the "cost" necessary to move through space
 - Costs are function of movement costs and costs induced by frictions and forces
- Force: supports movement in space
 - Example:
 - Driving downhill
- Frictions: hinder movement in space
 - Example: driving uphill

distance =
$$\sqrt{(x^2 + y^2)}$$

e.g., D = $\sqrt{(20^2 + 10^2)}$
= 22.4

20	10	source cell
22.4	14.1	10
28.3	22.4	20

cost = distance * fixed cost factor
e.g.,
cost = distance * 2

40	20	source cell
44.8	28.2	20
56.6	44.8	40

cost = cell distance * friction

friction surface

output cost surface

50	20	source cell	
39.1	14.1	10	
42.3	22.4	20	
10			

units

cost = row/column distance * friction

output cost surface

50	20	source cell	
55	40	10	
45	30	20	
$ \leftarrow \begin{array}{c} 10 \\ \leftarrow \text{units} \end{array} $			

Applying Straightening Equation DC' = i + ((9-i)/9) * DiscreteCost

Path *i* = 1

Path i = 1.5

Path i = 2

Methods in Spatial Analysis PS | LV.Nr. 856.141

Paris-Lodron University Salzburg Department of Geoinformatics – Z_GIS

Johannes Scholz

TU Graz, Institute of Geodesy Research Group Geoinformation

johannes.scholz@tugraz.at | johannes.scholz@plus.ac.at

ifg.tugraz.at | | www.johannesscholz.net

@Joe_GISc @Joe_GISc@mastodon.online

