Estimation COCOMO

Introduction

Combien pèse un projet?

La charge ou effort est la quantité de travail nécessaire mesurée en moisxhommes (ou joursxhommes ou annéesxhommes). Dans de telles unités.

Il faut prendre en compte le fait qu'un mois correspond à 20 jours si les week-ends ne sont pas des périodes de travail.

Connaissant la charge et le coût unitaire du moisxhomme.

⇒ On peut avoir une estimation du coût en ressources humaines d'un projet.

En se limitant aux projets de type informatique, où le coût d'un programmeur est estimé à environ 400 € HT par jour

La durée se calcule à partir de la charge lorsque l'on sait combien de personnes sont affectées au projet.

Exemple:

Une charge de 6 moisxhommes

- ⇒ une durée de 6 mois si on ne dispose que d'une seule personne.
- ⇒ 1 mois si on dispose de 6 personnes

Toutefois ce mode de calcul est relativement théorique car toutes les personnes ne sont pas équivalentes (et n'ont pas la même spécialité) et les tâches sont en général interdépendantes

Il existe un certain nombre de méthodes.

Il existe aussi des "trucs" (malheureusement plus courants qu'on ne le croit) qui sont des agissements ni scientifiques, ni honnêtes :

- La "méthode" de la dilatation consiste à ajuster le temps de développement d'un projet au temps disponible ("le travail se dilate jusqu'à remplir le temps disponible");
- La "méthode" du marché consiste à ajuster la charge au prix proposé (dans un appel d'offres par exemple).

Plus sérieusement, les méthodes employées sont :

- la méthode Delphi
- · la méthode de la répartition proportionnelle
- · la méthode d'évaluation analytique
- la méthodes COCOMO
- la méthode des points fonctionnels

COCOMO: Objectif

COCOMO COnstructive COst Model

La méthode a été développée par Dr. Barry Boehm pour:

- Estimer l'effort
- Estimer le temps

de développement d'un produit logiciel.

A l'origine elle a été construite à partir d'une analyse des données par régression pratiquée sur 63 projets logiciels (gestion et informatique industrielle) comprenant de 2000 à 100.000 lignes de code dans l'entreprise TRW (USA).

Aujourd'hui, COCOMO II est un nouveau produit beaucoup plus adapté à l'aspect réutilisation des composants (modules existants).

Le modèle COCOMO 81 est en fait constitué de trois modèles :

- 1- Le modèle de base
- 2- Le modèle intermédiaire
- 3- Modèle expert « détaillé »

Objectif du COCOMO. Evaluer les critères de projet:

- Effort
- Durée
- Effectif
- Productivité

Cette méthode, qui ne s'applique qu'à l'étape de réalisation, suppose l'existence d'une corrélation entre la taille (en instructions source) d'un programme et la charge consommée.

Principe COCOMO

Les 3 types de projet identifiés sont :

Туре	Taille	Description
Organique	< 50 KLOC	projets simples menés avec de petites équipes
Médian (Semi-detached)	< 300 KLOC	projets intermédiaires menés avec des équipes mixtes
Imbriqué (Embedded)	> 300 KLOC	projets complexes devant obéir à des ensembles de contraintes

KLOC représente le nombre, en milliers, de lignes de code (LOC = Lines Of Code) ; en fait il s'agit du nombre d'instructions source.

Modèle de base

Il faut identifier le mode de développement : organique, médian ou imbriqué.

Le résultat s'exprime par la formule suivante dans le modèle de base Cocomo81 :

> Effort = $a \times (KLOC)^b$ en homme mois TDEV = 2.5 x (effort)c en mois

Boehem a déterminé les valeurs a, b et c à partir des résultats d'analyse statistique sur un échantillon significatif de projets.

Mode (Type)	а	ь	С
Organique	2.4	1.05	0.38
Semi-detached	3.0	1.12	0.35
Imbriqué	3.6	1.20	0.32

Modèle de base

Equations pour calculer l'effort et la productivité selon le type de projet

Types de projet	Effort	Productivité
Organique	$MM = 2,4 * (KLOC)^{1,05}$	$TDEV = 2.5 * (MM)^{0.38}$
Semi-détaché	$MM = 3 * (KLOC)^{1,12}$	$TDEV = 2.5 * (MM)^{0.35}$
Imbriqué	$MM = 3.6 * (KLOC)^{1.20}$	$TDEV = 2.5 * (MM)^{0.32}$

Exemple1:

Soit un projet estimé à 32000 lignes de code.

Effort?

 \Rightarrow Effort = Charge = 2.4 * (32)^1.05 = 91 hm

Temps de développement?

 \Rightarrow TDEV= Délais= 2.5 * (91)^0.38 = 14 mois

Productivité?

⇒ Productivité = Taille(en LOC)/Effort = 32000/91 = 352 LOC/hm Nombre Moven de personnel?

 \Rightarrow Taille de l'équipe = Effort /Temps = 91/14 = 7 personnes

Taille	Effort	Productivité	Moyen de personnel
8 KLOC			
128 KLOC			

Modèle intermédiaire

Le **modèle intermédiaire Cocomo81** est plus élaboré et prend en compte des facteurs d'ajustement intégrant les conditions de développement. L'équation donnant la charge est alors :

Effort = a x (EAF)x(KLOC)^b en homme mois

où **EAF** (Effort Adjustment Factor), qui vaut 1 dans le modèle de base, est calculé à partir de 15 critères regroupés en **4 catégories** : produit, ordinateur, personnel et projet.

- 1- Produit (Logiciel)
- 2- Matériels (Ordinateur)
- 3- Personnel
- 4- Projet

Le tableau ci-après donne les valeurs affectées à chaque paramètre suivant son importance. **EAF** est le produit de toutes ces valeurs.

Modèle intermédiaire

_				Evaluation		
Facteurs de productivité	Très bas	Bas	Nominal	Haut	Très haut	Extrêmement haut
Attributs du produit						
RELY	.75	.88	1.00	1.15	1.40	
DATA		.94	1.00	1.08	1.16	
CPLX	.70	.85	1.00	1.15	1.30	1.65
Attributs de l'ordinateur						
TIME			1.00	1.11	1.30	1.66
STOR			1.00	1.06	1.21	1.56
VIRT		0.87	1.00	1.15	1.30	
TURN		0.87	1.00	1.07	1.15	
Attributs du personnel						
ACAP	1.46	1.19	1.00	.86	.71	
AEXP	1.29	1.13	1.00	.91	.82	
PCAP	1.42	1.17	1.00	.86	.70	
VEXP	1.21	1.10	1.00	.90		
LEXP	1.14	1.07	1.00	.95		
Attributs du projet						
MODP	1.24	1.10	1.00	.91	.82	
TOOL	1.24	1.10	1.00	.91	.83	
SCED	1.23	1.08	1.00	1.04	1.10	

Modèle intermédiaire

Par ailleurs, les valeurs de a, b et c sont données par le tableau ci-dessous :

Mode (Type)	а	Ь	С
Organique	3.2	1.05	0.38
Semi-detached	3.0	1.12	0.35
Imbriqué	2.8	1.20	0.32

Modèle intermédiaire: Exemple

Exemple:

- RELY: fiabilité requise pour le logiciel
- Projet de 10 KLOC.

Effort?

 \Rightarrow Effort = Charge = 3.2 * (10)^1.05 = 36 hm

Choix du facteur correcteur:

- Très faible fiabilité: Effort * 0.75= 27 hm
- Très forte fiabilité: Effort * 1.4 = 50.4 hm

Etapes d'utilisation

Les étapes

- ⇒ Identifier le mode du développement
- ⇒Estimer le nombre de LOC
- ⇒ Calculer la charge (effort) en nombre de mois.hommes
- ⇒Estimer les 15 facteurs de productivité
- ⇒ Calculer le facteur d'ajustement (EAF)
- ⇒ Multiplier l'effort nominal par le facteur d'ajustement.

Méthode de répartition proportionnelle

Cette méthode est basée sur l'observation d'une proportionnalité entre les charges de réalisation des diverses étapes du cycle de vie d'un projet.

Les ratios habituellement observés sont :

Etape	Ratio
Etude préalable	10% du projet
Etude détaillée	23% du projet
Etude technique	10%de la charge de réalisation
Réalisation	2 fois la charge de l'étude détaillée
Mise en œuvre	35% de la charge de réalisation

Méthode de répartition proportionnelle

Les charges complémentaires:

Etape	Charge complementaire
Encadrement réalisation	(20% de la charge de réalisation)
Encadrement autres étapes	(10% de la charge totale des autres étapes)
Recette	(20% de la charge de réalisation)
Documentation utilisateur	(5% de la charge de réalisation)