es. 1)

- a) Sia $K \subseteq F$ im 'esteusione finita $t.c. [F: K] = 2^m$, $n \in \mathbb{N}$. Dim. che $\forall f \in K[x] t.c. deg f = 3 \land$ f ha mor zeror in F, possiede già mor zeror in K \Rightarrow sia $\mathcal{L} \in F$ $t.c. <math>f(\mathcal{L}) = \mathcal{O}_F$
 - ⇒ il poliumir minimer h de 2 divide f
 - \Rightarrow deg $h \leqslant 3$
 - \Rightarrow consideriour $K \subseteq K(\alpha) \subseteq F$ compor intermedia: $[K(\alpha):K] 2^m$, $m \le m$
 - $\Rightarrow 2^m \leq 3 \Rightarrow m = 0 \vee m = 1$
 - \Rightarrow se m=0, $2^{m}=1$ e $\lambda \in \mathbb{N} V$
 - ⇒ se m=1, $2^m=2$ e f ē divisilile per h ⇒ $f=h\cdot g$ com deg g=1 ⇒ g ha war zero in K ⇒ f ha war zero in K
- b) Sia $K \subseteq K(\alpha)$ esteurione di deg dispori. Dive. che $K(\alpha) = K(\alpha^2)$
 - $\Rightarrow \mathcal{K}(\mathcal{A}^2) \subseteq \mathcal{K}(\mathcal{A}) (\mathcal{A}^2 = \mathcal{A} \cdot \mathcal{A})$
 - $\Rightarrow \mathcal{K} \subseteq \mathcal{K}(\prec^2) \subseteq \mathcal{K}(\prec)$ deg = 2n + 1
 - $\Rightarrow [K(x): K(x^2)] = 2n + 1$
 - $\Rightarrow \angle$ i rodice di $\times^2 \angle^2 \in \mathbb{K}(\angle^2)[\times]$
 - $\Rightarrow \left[K(\lambda) : K(\lambda^2) \right] \leqslant 2 \Rightarrow 2n+1 \leqslant 2 \Leftrightarrow n=0$
 - $\Rightarrow [K(\lambda): K(\lambda^2)] = 1$
- c) Sia $u = \sqrt{3} + i\sqrt{2}$. É vero che $Q(u) = Q(u^2)$

$$\Rightarrow u^2 = 3 - 2 + 2i\sqrt{6} \iff u^2 - 4 = 2i\sqrt{6}$$

$$\Rightarrow$$
 $f(x) = x^4 - 2x^2 + 25$ è irriducible (riduaine mod 7)
quindi è il poliumio minimo

$$\Rightarrow [Q(u): Q] = 4$$

$$Q \subseteq Q(u^2) \subseteq Q(u) \Rightarrow [Q:Q(u^2)] = ?$$

$$\Rightarrow$$
 y^2 è radice di $x^2-2x+25$

$$\Rightarrow \triangle = -24 < 0 \Rightarrow \bar{e}$$
 irriducilile in Q

$$\Rightarrow f(x) = x^2 - 2x + 25 \text{ e il polinour minimo di } u^2$$
su Q

$$\Rightarrow \left[Q : Q(u^2) \right] = 2 \Rightarrow \left[Q(u) : Q(u^2) \right] = 2 \neq 1$$

$$\Rightarrow Q(u) \neq Q(u^2)$$

es. 2)

Sia λ una fissata radice culica di 3, e sia $\alpha = \lambda + \lambda^2$ a) Verificare che $\alpha = \alpha$ algebrica su $\alpha = \alpha$ e travare il sua polinania uninima $\alpha = \alpha$

$$\Rightarrow \lambda^{3} = \lambda^{3} + 3\lambda^{4} + 3\lambda^{5} + \lambda^{6}$$

$$= \lambda^{3} (1 + 3\lambda + 3\lambda^{2} + \lambda^{3})$$

$$= 3(1 + 3(\lambda + \lambda^{2}) + 3)$$

$$= 3(4 + 3\lambda)$$

$$\Rightarrow$$
 \angle $=$ radice di $f(x) = x^3 - 9x - 12$

$$\Rightarrow$$
 f \bar{e} irriducilile per Eisenstein ($p = 3$)

b) Verificare le
$$Q(x) = Q(x)$$

 $\leq : \Rightarrow x = x + x^2$, $B_{Q(x)} = \{1, x, x^2\} \Rightarrow x \in Q(x)$
 $\Rightarrow B_{Q(x)} = \{1, x, x^2\}$, $x^2 = x^2 + 2x^3 + x^4$
 $= x^2 + 3x + 6$
 $\Rightarrow x^2 - x = 3x + 6 - x = 2x + 6$
 $\Rightarrow x = \frac{1}{2}(x^2 - x - 6)$

es. 3)
Sia
$$F = \frac{72/572[x]}{1}$$
, $I = (x^2 + 2x - 1)$

a) Verificare che Fè un compor

⇒ deve essere:

I manimale \(\Leftarrow \) f irréducilile

$$\Rightarrow f(x) = x^2 + 2x - 1$$

$$\Rightarrow f(0) = -1, f(1) = 2, f(2) = 2, f(3) = -1$$

$$f(4) = 3$$

⇒ firriducible ⇒ F campor

6) Calcolore IFI

$$\Rightarrow [F: 72/572] = 2 \Rightarrow |F| = 5^2 = 25$$

c) Verificare che $\overline{X} = X + I$ è radice cultica di $\overline{3} = 3 + I$ in F

$$\Rightarrow \overline{X}^3 = \overline{3} \Rightarrow X^3 = X(1-2x) = X-2x^2$$

$$= x-2(1-2x) = x-2+4x = -2 = 3$$

es. 4) Verr or falsor?

- a) Se fé poliumier minimos di un elemento a EK (K compor) e g é poliumier minimos di un elemento b EK, allora fg è poliumier minimos di ab EK
- ⇒ FALSO, f, g som irriducibili MA fg NON la ē
- b) Se p \bar{e} primer, allora cor $(D[x]/(x^2-p))=p$
- \Rightarrow FALSO, con $Q = O \Rightarrow Q[x]/(x^2-p) \approx Q(Np)$ e con Q(Np) = O

es. 5)

Sin
$$f(x) = x^3 + x + 1$$
, $g(x) = x^2 + x + 1$

- a) Scampane of in polinami irriducibili in 72/372[x] $\Rightarrow g(1) = 3 = 0 \Rightarrow g(x) = (x-1)q(x)$ $\Rightarrow g(x) = x^2-2x+1 = (x-1)^2$
- 6) Scampare f in poliumi isriducilili in 72/372[x] $\Rightarrow f(1) = 0 \Rightarrow f(x) = (x-1)q(x)$

$$\Rightarrow f(x) = (x-1)(x^2 + x - 1) = (x-1)(x^2 - 4x + 4)$$

$$= (x-1)(x-2)^2$$

c) Calcalore MCD
$$\{f,g\}$$
 in $7L/37L[x]$
 $\Rightarrow f(x) = (x+2)g(x) + (x-1)$
 $=: V(x)$

$$\Rightarrow$$
 MCD $\{f,g\} = \times -1$

$$\Rightarrow f(x) = x^3 + x + 1, g(x) = x^2 + x + 1$$

es. 6) Verr or falsor?

a)
$$7L/27L \subseteq 7L/27L[x]/(x^4+x^2+1)$$
 è un 'esteusione di compi di deg = 4

 \Rightarrow $\times^2 + \times + 4 = \times (x+1) + 4$

$$\Rightarrow \times^{4} + \times^{2} + 1$$
 NON ha zen, Euttaria:

$$(x^2 + x + 1)^2 = x^4 + x^2 + 1$$

c)
$$= \frac{1}{2} = \frac{1}{2} =$$

$$\Rightarrow \times^{3} - \times^{2} + \times -1 = \times^{2} (\times -1) + (\times -1)$$

$$\Rightarrow \times^{2} \qquad | \times -1 \rangle \Rightarrow \times^{2} = (\times -1)(\times +1) + (1)$$

$$\xrightarrow{N \in \mathbb{N}} \times +1$$

$$\Rightarrow \times^{2} \qquad | \times - \underline{1} \rangle \Rightarrow \times^{2} = (\times - \underline{1})(\times + \underline{1}) + (\underline{1})_{MCD}$$

$$= \underline{1}$$

$$\Rightarrow 1 = x^{2} - (x-1)(x+1) = x^{2} - ((x^{3} - x^{2} + x - 1))$$

$$- x^{2}(x-1)(x+1) = x^{2} - (x+1)f + (x^{2} - 1)x^{2}$$

$$= -(x+1)f + x^{2}x^{2}$$

d) Un divisne di
$$OER$$
 anellar NON è MAI invertible $a \neq 0$ $E.c.$ $\exists b \neq 0$ con $ab = 0$

$$a^{1}ab = a^{1}0 \Rightarrow b = 0$$
 { a non \bar{a} divisore $d\bar{a}$ $d\bar{a}$ $d\bar{a}$

⇒ FALSO