Raport - Zadanie numeryczne 5

Grzegorz Janysek

16 grudnia 2021

1 Wstęp teoretyczny

1.1

Rozwiazywanie układów równań liniowych za pomoca metod iteracyjnych polega na znalezieniu przybliżenia dokładnego wyniku na drodze skończonej liczby iteracji poczynając od dowolnie wybranego wektora. Uzyskuje się to powtażając obliczenia i znajdując z każdą kolejną iteracją lepsze przybliżenie rozwiązania równiania.

Wykonanie rozkładu macierzy w arytmetyce dokładnej pozwala na obliczenie ścisłego wyniku, natomiast w przypadku omawianych metod iteracyjnych ścisły wynik musiał by być efektem iteracji których ilość daży do nieskończoności. W praktyce dokładność przybliżenia; ograniczoną typem danch, wybiera się dowolnie. Mniejszy błąd przybliżenia wyniku równiania uzyskiwany jest większaliczba iteracji.

Szybkością zbiegania metody iteracyjnej określa się tępo z jakim maleje błąd przybliżenia wyniku z każdą kolejną iteracją. Zakładając stałą złożoność iteracji, metoda która dla danego problemu zbiega się szybciej będzie lepsza.

1.2

Porównywane dalej metody to metoda Jacobiego i metoda Gaussa-Seidela należa do ogólnej kategorii metod iteracyjnych:

$$Mx^{(k+1)} = Nx^{(k)} + b (1)$$

Gdzie indeks k oznacza numer iteracji. Dla równania Ax = b, A = M - N jest podziałem wybranym w różny sposób w zależności od metody iteracyjnej. Podział dla metody Jacobiego (2) i Gaussa-Seidela (3)

$$A = D + (L + U)$$
 $M = D$ $N = -(L + U)$ (2)
 $A = (D + L) + U$ $M = D + L$ $N = -U$ (3)

$$A = (D+L) + U \qquad \qquad M = D+L \qquad \qquad N = -U \tag{3}$$

Z powyższych wzorów można wyprowadzić wyrażenia na i-ty element wektora w k+1 iteracji odpowiednio dla obu metod:

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_i^{(k)} - \sum_{j=i+1}^{N} a_{ij} x_i^{(k)} \right)$$
(4)

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_i^{(k+1)} - \sum_{j=i+1}^{N} a_{ij} x_i^{(k)} \right)$$
 (5)

2 Wyniki

Rysunek 1: Bezwzględny błąd przybliżenia wyniku E od ilości iteracji k dla metod Jacobiego i Gaussa-Seidela

3 Podsumowanie

Przewaga metod iteracyjnych jest widoczna gdy rozwiązanie równiania za pomocą faktoryzacji macierzy staje się zbyt kosztowne.

Dla gęstej macierzy A złożoność rozkładu to $O(n^3)$. Złożoność pojedynczej iteracji dla takiej macieży to $O(n^2)$, stąd złożoność metody iteracyjnej dla k iteracji $O(k*n^2)$. Jeżeli n jest bardzo duże i z przyczyn praktycznych nie możliwa jest faktoryzacja, metody iteracyjne pozwalają na uzyskanie przybliżenia i poprawianie go w kolejnych krokach w przypadku nie wystarczającej dokładności, przez co są bardziej plastyczne od rozkładu.

W porównywanych metodach iteracujnych istotne jest aby wykożystać strukturę macierzy i nie iterować po znanych elementach zerowych. W równaniu z zadania pozwala to na osiągnięcie liniowej złożoności pojedynczej iteracji.