020-156 Summer Semester 2009 - Solutions 1 (a) (i) Not possible

(ii) $A_{5} = \begin{bmatrix} -3 & 1 & 3 \\ 4 & -2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 \end{bmatrix}$

 $(iii) \quad \bigvee \bigvee \bigvee^{\mathsf{T}} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \quad \textcircled{D}$

(iv) $y^{\tau}y = [-1 \ 1 \ 1] \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = 3$ (iv)

(b) (i) -3x+y+3z=0 (ii) 6x+2y=-14x-2y=0 (ii) 2x-y=2 (i)

 $2(\alpha)$ det $H = det \begin{bmatrix} 1 & 1 & 1 \\ sin^2x & sin^2p & sin^2Y \\ cos^2x & cos^2p & cos^2Y \end{bmatrix}$

 $\mathbb{C} = \det \begin{bmatrix} 1 & 1 & 1 \\ \sin^2 x & \sin^2 \beta & \sin^2 \gamma \\ 1 & 1 & 1 \end{bmatrix}$

 $= \det \begin{bmatrix} 1 & 1 & 1 \\ \sin^2 x & \sin^2 p & \sin^2 x \\ 0 & 0 & 0 \end{bmatrix}$

Subtracting row Of from row B

 $sin^2\theta + cos^2\theta = 1$

adding row 10 to

We know that a square matrix is nivertible if and only if its determinant is non-zero.

But the determinant of H is zero, so it is not invertible.

Hence
$$C^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 Answer (1)

$$C_{1}\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = C_1 \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}$$

$$=\begin{bmatrix}0\\0\\0\\2\end{bmatrix}$$

$$\alpha = \det \begin{bmatrix} i & j & k \\ 1 & 1 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

$$= \frac{i}{2} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} - \frac{i}{2} \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$$

(b) This is the same as the area of the triangle formed by (0,0,0), (-3,2,-1), (0,3,1), which in turn is half the area of the parallelogram formed by (-3,2,-1) and (0,3,1):

$$\frac{1}{2} \| (-3,2,-1) \times (0,3,1) \| = \frac{1}{2} \sqrt{\| (-3,2,-1) \|^2 \| (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

$$= \frac{1}{2} \sqrt{\| (+3,2,-1) \times (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

$$= \frac{1}{2} \sqrt{\| (+3,2,-1) \times (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

$$= \frac{1}{2} \sqrt{\| (+3,2,-1) \times (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

$$= \frac{1}{2} \sqrt{\| (+3,2,-1) \times (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

$$= \frac{1}{2} \sqrt{\| (+3,2,-1) \times (0,3,1) \|^2 - ((-3,2,-1) \cdot (0,3,1))^2}$$

5 (a) H

Consider the point (1,0) ni H. Scalar multiplication by (-1) gives the point (-1,0) & H. The set is not closed under scalar multiplication, and so is not a subspace.

(b) a+d=0

With the correspondence [ab] (a,b,c,d) elli we recognise and =0 as a homogeneous linear eq. We know that homogeneous linear equations forms a subspace of IR*, so we suspect S is a subspace of M2,2.

Then, with
$$\alpha$$
 a scalar $\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{bmatrix}$

and $x_{\alpha+x_{\alpha}d} = x_{\alpha+\alpha}d = 0$ since $x_{\alpha+\alpha}d = 0$ Hence $x_{\alpha+\alpha} = x_{\alpha+\alpha}d = 0$ $x_{\alpha+\alpha}d = 0$ $x_{$

(b) { (1,0,0,1,-20), (0,1,0,-1,58), (0,0,1,0,67)}, () using the fact that the non-zero rows in RE form are a basis for the row space

$$(C) \left\{ \begin{bmatrix} 1 \\ 3 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -2 \\ -10 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 8 \\ 0 \\ 1 \end{bmatrix} \right\}$$

- (d) No. The rank of the matrix formed by these vectors is 3.
- (e) Three (1)

$$(f)$$
 $(3,13,2,0) = (1,3,1,2) + (-1)(-2,-10,-1,2)$

(9) Let the variables be denoted $3(1,3)_2,...,3)_5$.

There is no leading entry for 31_4 & 31_5 so we set $31_5=1_5$, $31_4=5$. Back substitution gives $31_3=-673_5=-671_5$ $31_2=31_4-583_5=5-581_5$ $31_3=-31_4+203_5=-3+201_5$

$$\begin{bmatrix} 31_{1} \\ 31_{2} \\ 31_{3} \\ 31_{44} \\ 31_{5} \end{bmatrix} = 5 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} 20 \\ -58 \\ -67 \\ 0 \\ 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} -1\\1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 2.0\\-58\\-67\\0\\1 \end{bmatrix} \right\}$$

(b)
$$5\begin{bmatrix} 21 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 21 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 21 \\ 3 \end{bmatrix}$$
 Hence $A_5 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (C)

$$R\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{Hence} \quad A_R = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

8. (a)
$$A_{\tau} = \begin{bmatrix} 3 & -1 & -6 \\ -2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$
 (3)

(b)
$$\begin{bmatrix} 3 & -1 & -6 \\ -2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix}$$
 $\textcircled{0} + \frac{2}{3} \textcircled{0}$ $\sim \begin{bmatrix} 3 & -1 & -6 \\ 0 & 13 & 1 \\ 0 & 4 & 12 \end{bmatrix}$ $\textcircled{3} - 12 \times \textcircled{2}$

We know that Ker (T) is the same as the solution space of AT. For this, 24 has no leading entry, so set

Back substitution gives $\frac{1}{3}x_2 = -x_3 = -t \Rightarrow x_2 = -3t$, $3x_1 = x_2 + 6x_3 \Rightarrow 3x_1 = -3t + 6t = 3t$

$$\begin{bmatrix} 3/3 \\ 3/3 \end{bmatrix} = \begin{bmatrix} f \\ -3f \\ f \end{bmatrix} = f \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$$

so a basis is $\left\{ \begin{bmatrix} 1\\-3\\1 \end{bmatrix} \right\}$ This is a line through the origin in \mathbb{R}^3 .

(c) T is not invertible since Rank T = 2 < 3 (dimension of 183). ((d) We know that Im (T) is the same as the column space of At. Since the leading entries are in columns D&D, a basis is

$$\left\{ \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} \right\}$$

This corresponds to a plane through the origin in IR3.

(e) We observe that (4,-3,0) = (3,-2,3) + (-1)(-1,1,3)

and so is in the span of the basis vectors for Im(T), and is thus an element of Im(T). We read off from this that

$$\left[(4,-3,0) \right]_{\mathcal{C}} = \left[\begin{array}{c} 1 \\ -1 \end{array} \right]$$

(\frac{1}{2})

9. (a) We know that B is a basis if and only if

has rank 3. Now

which indeed has

(b) We can write down the transition matrixe Ps,B from B. In Le standard basis:

$$\mathcal{P}_{S,\mathcal{B}} = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

0

$$P_{s,s} = P_{s,s}^{-1}$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & -0 & -1 & 2 & 1 & 0 & 0 \\ 0 & -0 & -1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{bmatrix}$$
 (4) \textcircled{C}

$$\sim
\begin{bmatrix}
1 & 0 & 0 & | & 1 & 1 & -1 \\
0 & 1 & 0 & | & -1 & -1 & 2 \\
0 & 0 & 1 & | & -1 & 0 & 1
\end{bmatrix}$$

Hence
$$P_{S,B}^{-1} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{bmatrix} = P_{B,S}$$
 2

(c)
$$\begin{bmatrix} y \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

10. (a)
$$det(A-\lambda I) = \begin{vmatrix} 7-\lambda -2 \\ 15-4-\lambda \end{vmatrix}$$

=
$$(\lambda - 7)(\lambda + 4) + 30 = \lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1)$$

(b) Eigenvalues
$$\lambda = 2$$
, $\lambda = 1$.

$$\lambda = 1$$
 eigenvector: $\begin{bmatrix} 6 & -2 & 0 \\ 15 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 6 - 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Set
$$y=t$$
. Back substitution gives $x=\frac{1}{3}t$
Taking for example $t=3$ gives the eigenvector $\begin{bmatrix} 1\\ 3 \end{bmatrix}$

(C) A is diagonalizable because the eigenvectors of are linearly independent (Hais is always the case when the eigenvalues are distinct)

$$A = bDb_{-1}$$
 with $b = \begin{bmatrix} 1 & 5 \\ 3 & 5 \end{bmatrix}$, $D = \begin{bmatrix} 7 & 0 \\ 0 & 5 \end{bmatrix}$

with equality it and only if u= v=0.

Here

$$= 2n_s - n_s$$

$$= 2n_s - n_s$$

$$= 2n_s - n_s$$

$$= 2n_s - n_s$$

But with u=0, v=1 (for example) this is negative, which violates (ii).

(C) (i)
$$2 = (((1, 1), 1), ((1$$

$$\Psi_{u,s} = \begin{bmatrix} x_1^T \\ x_2^T \\ x_3^T \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

where, with

$$A = \begin{bmatrix} 1 & -3 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad \tilde{\beta} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 3 \end{bmatrix}$$

$$A^{T}A\begin{bmatrix} a \\ b \end{bmatrix} = A^{T}y$$

Now
$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$

and so
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 14 & 0 \\ 0 & 114 \end{bmatrix} A^{T} y$$

But
$$A^{T}y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 14 & 0 \\ 0 & 1/24 \end{bmatrix} \begin{bmatrix} 2 \\ 12 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 6/7 \end{bmatrix}$$

Hence y= 1/2 or is the line of best fit

15

Wirh or = -2 His gives
$$y = \frac{1}{7} - \frac{12}{7} - 1^{\circ}C$$
.

2

$$\Rightarrow \begin{vmatrix} 3-\lambda & 4 \\ 4 & -3-\lambda \end{vmatrix} = 0$$

$$\Rightarrow \lambda^2 - 9 - 16 = 0 \Rightarrow \lambda = \pm 5.$$

(2)

=> eigenvector
$$t\begin{bmatrix} 2\\1 \end{bmatrix}$$
 => normalized eigenvector $\frac{1}{\sqrt{5}}\begin{bmatrix} 2\\1 \end{bmatrix}$

=) eigenvector
$$\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
 => normalized eigenvector $\begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$

thus demonstrating that the vectors are orthogonal.

- (b) The transformation scales by a factor of -5 in the direction of
 - 2 $\begin{bmatrix} 1\\2 \end{bmatrix}$, and scales by a factor of $\begin{bmatrix} 2\\1 \end{bmatrix}$
 - (e) A' [2] = 5' [2] since [2] is an eigenvector.