

EMC EMISSIONS - TEST REPORT (Full)

Test Report No.	3151965DEN-002R	Issue Date:	Thursday 22/May/2008
Model / Serial No.	MN: BR-003-02 /SN: 50015		
Product Type	2 way IR/RF Remote Control		
Client	BOCS		
Manufacturer	BOCS		
License holder	BOCS		
Address	1685 38 th St.		
	Boulder, CO 80301		
Test Criteria Applied Test Result	FCC 47 CFR Part 15.249 IC RSS-210		R 15: RADIO FREQUENCY
	PASS	Low-power	Licence-exempt
Test Project Number References	3151965	(All Freque	nunication Devices ncy Bands): Equipment.
Total Pages Including Appendices:	33	Category	Ечирттепт.
Midwl Solo	7	3 0	
Tested By : Michael Sp	ataro Re	viewed By:	

REVISION SUMMARY - The following changes have been made to this Report:

Rev.	Revision Statement	Author	Revision Date
	Initial Release of Document	See above	See above

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

DIRECTORY

Documentation	Page(s)
Test report	1 - 33
Directory	2
Test Regulations	3
General Remarks	4
Test-setup Photographs	5 - 8
Appendix A	
Test Data Sheets and Test Equipment Used	9 - 27
Appendix B	
Test Plan/Constructional Data Form	28
Appendix C	
Measurement Protocol/Test Procedures	29 - 33

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150kHz - 30MHz is calculated to be ± 2.30 dB and for Radiated Emissions is calculated to be ± 3.60 dB in the frequency range of 30MHz - 200MHz and ± 3.38 dB in the frequency range of 200MHz - 1000MHz.

EUT Received Date: 12-May-2008

Testing Start Date: 12-May-2008

Testing End Date: 15-May-2008

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15 subpart C
- 2. IC RSS-210 Issue 7:2007

Emission Test Results:

Conducted	Emissions	15 207	- NA
Conauctea	Emissions	15.207	- NA

Test Result

Minimum limit margin NA dB at NA MHz

Remarks: EUT is battery powered

Radiated Unintentional and Spurious Emissions 15.249(d) /15.205 - PASS

Test Result

Minimum limit margin -5.7 dB at 36.10 MHz

Remarks:

Field Strength of the Fundamental 15.249(a) - PASS

Test Result

Minimum limit margin -0.2 dB at 924.74 MHz

Remarks: High Channel

Field Strength of Harmonics 15.249(a) - PASS

Test Result

Minimum limit margin -0.2 dB at 5431.5 MHz

Remarks: Low Channel

Project File: 3151965 Page 3 of 33

Fax: 303 449 6160

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at Intertek, ETL Semko.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

EUT is battery powered.

Sample: ⊠Production	□Prototype	□See RFQ	
Modifications re	quired to pass:	None	
Test Specification	on Deviations: Ad	dditions to or Exclusions from: None	Э

Project File: 3151965 Page 4 of 33

Project File: 3151965 Page 6 of 33

Test-setup photo(s): Radiated Emissions:

Test-setup photo(s): Radiated Emissions:

Project File: 3151965 Page 9 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Project File: 3151965 Page 10 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Radiated Electromagnetic Emissions

3151965 Run 04 °C Test Report #: Pinewood Site 1 (3m) 22.6 Test Area: Temperature: Test Method: FCC Part 15.209 Test Date: 14-May-2008 Relative Humidity: 25 % Air Pressure: EUT Model #: XG-002-001 (Settop Box); BR-**EUT Power:** 120VAC; 60Hz; 3VDC 102 kPa 003-02 (Remote) Battery 50001; 50015 EUT Serial #: **BOCS** Manufacturer: Level Key **EUT Description:** Settop Box and Remote Pk - Peak Nb - Narrow Band Qp – QuasiPeak Settop Box and Remote were tested at the same time. Bb - Broad Band Notes: Av - Average

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
34.68	47.7 Qp	0.6 / 12.1 / 28.2	32.1	V / 1.0 / 0.0	-7.9	-7.9
53.71	47.2 Qp	0.7 / 9.3 / 28.2	29.0	V / 1.0 / 0.0	-11.0	-11.0
68.85	50.7 Qp	0.8 / 8.3 / 28.2	31.7	V / 1.0 / 0.0	-8.3	-8.3
86.61	48.8 Qp	1.0 / 7.1 / 28.1	28.8	V / 1.0 / 0.0	-11.2	-11.2
118.12	48.8 Qp	1.2 / 11.3 / 27.9	33.2	V / 1.0 / 0.0	-10.3	-10.8
180.84	40.5 Qp	1.4 / 12.4 / 27.5	26.9	V / 1.0 / 0.0	-16.6	-17.1
121.00	49.0 Qp	1.2 / 11.5 / 27.9	33.7	V / 1.0 / 0.0	-9.8	-10.3
72.46	50.1 Qp	0.8 / 7.9 / 28.1	30.7	V / 1.0 / 0.0	-9.3	-9.3
36.10	48.5 Qp	0.6 / 11.9 / 28.2	32.8	V / 1.0 / 0.0	-7.2	-7.2
36.10	49.6 Qp	0.6 / 11.9 / 28.2	33.9	V / 1.0 / 90.0	-6.1	-6.1
86.61	48.9 Qp	1.0 / 7.1 / 28.1	28.8	V / 1.0 / 90.0	-11.2	-11.2
118.12	52.2 Qp	1.2 / 11.3 / 27.9	36.7	V / 1.0 / 90.0	-6.8	-7.3
121.00	52.6 Qp	1.2 / 11.5 / 27.9	37.4	V / 1.0 / 90.0	-6.1	-6.6
180.84	41.5 Qp	1.4 / 12.4 / 27.5	27.9	V / 1.0 / 90.0	-15.6	-16.1
72.46	51.8 Qp	0.8 / 7.9 / 28.1	32.4	V / 1.0 / 180.0	-7.6	-7.6
80.98	48.6 Qp	0.9 / 6.8 / 28.1	28.2	V / 1.0 / 180.0	-11.8	-11.8
161.98	47.2 Qp	1.4 / 12.0 / 27.7	32.9	V / 1.0 / 180.0	-10.6	-11.1
188.98	39.0 Qp	1.4 / 12.7 / 27.5	25.6	V / 1.0 / 180.0	-17.9	-18.4
161.98	48.9 Qp	1.4 / 12.0 / 27.7	34.6	V / 1.0 / 270.0	-8.9	-9.4
134.98	48.5 Qp	1.3 / 12.3 / 27.8	34.3	V / 1.0 / 270.0	-9.2	-9.7
The following	g are maximize	d.				
36.10	50.0 Qp	0.6 / 11.9 / 28.2	34.3	V / 1.0 / 162.3	-5.7	-5.7
72.46	52.1 Qp	0.8 / 7.9 / 28.1	32.7	V / 1.0 / 237.3	-7.3	-7.3
118.12	52.6 Qp	1.2 / 11.3 / 27.9	37.1	V / 1.0 / 99.6	-6.4	-6.9
121.00	52.3 Qp	1.2 / 11.5 / 27.9	37.0	V / 1.0 / 111.8	-6.5	-7.0

Project File: 3151965 Page 11 of 33

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
188.98	38.7 Qp	1.4 / 12.7 / 27.5	25.3	H / 2.5 / 90.0	-18.2	-18.7
No higher em	nissions found	between 30 and 200MHz at 1	80 degrees h	orizontal.		
No higher em	issions found	between 30 and 200MHz at 2	70 degrees h	orizontal.		
The following	emission is m	i			-	
188.98	41.8 Qp	1.4 / 12.7 / 27.5	28.4	H / 1.8 / 122.3	-15.1	-15.6
	T					
216.00	45.0 Qp	1.6 / 11.1 / 27.3	30.3	V / 1.0 / 0.0	-13.2	-13.7
243.00	37.4 Qp	1.7 / 11.8 / 27.2	23.7	V / 1.0 / 0.0	-22.3	-22.3
270.00	27.4 Qp	1.8 / 12.5 / 27.0	14.7	V / 1.0 / 0.0	-31.3	-31.3
296.98	28.4 Qp	1.9 / 13.7 / 27.1	16.9	V / 1.0 / 0.0	-29.1	-29.1
323.99	28.2 Qp	2.0 / 14.1 / 27.1	17.2	V / 1.0 / 0.0	-28.8	-28.8
350.99	29.1 Qp	2.1 / 14.4 / 27.4	18.2	V / 1.0 / 0.0	-27.8	-27.8
377.99	28.1 Qp	2.1 / 15.0 / 27.7	17.6	V / 1.0 / 0.0	-28.4	-28.4
404.99	29.2 Qp	2.2 / 15.5 / 27.7	19.2	V / 1.0 / 0.0	-26.8	-26.8
431.96	34.0 Qp	2.3 / 16.1 / 28.0	24.4	V / 1.0 / 0.0	-21.6	-21.6
458.99	31.0 Qp	2.5 / 16.7 / 28.2	22.0	V / 1.0 / 0.0	-24.0	-24.0
513.00	35.9 Qp	2.6 / 18.0 / 28.3	28.1	V / 1.0 / 0.0	-17.9	-17.9
540.00	30.0 Qp	2.6 / 17.9 / 28.3	22.2	V / 1.0 / 0.0	-23.8	-23.8
567.00	34.2 Qp	2.7 / 18.4 / 28.4	26.9	V / 1.0 / 0.0	-19.1	-19.1
621.00	33.8 Qp	2.9 / 19.3 / 28.2	27.7	V / 1.0 / 0.0	-18.3	-18.3
648.01	29.9 Qp	3.0 / 20.0 / 28.3	24.5	V / 1.0 / 0.0	-21.5	-21.5
675.01	26.3 Qp	3.1 / 21.0 / 28.1	22.3	V / 1.0 / 0.0	-23.7	-23.7
702.01	27.1 Qp	3.3 / 21.2 / 28.0	23.5	V / 1.0 / 0.0	-22.5	-22.5
809.97	24.6 Qp	3.3 / 21.6 / 27.8	21.7	V / 1.0 / 0.0	-24.3	-24.3
836.97	26.6 Qp	3.4 / 21.9 / 27.8	24.1	V / 1.0 / 0.0	-21.9	-21.9
917.97	26.7 Qp	3.6 / 22.8 / 27.4	25.7	V / 1.0 / 0.0	-20.3	-20.3
971.97	25.2 Qp	3.7 / 23.4 / 27.3	25.0	V / 1.0 / 0.0	-29.0	-21.0
239.99	33.6 Qp	1.7 / 11.5 / 27.2	19.7	V / 1.0 / 0.0	-26.3	-26.3
263.98	30.4 Qp	1.8 / 12.7 / 27.0	17.8	V / 1.0 / 0.0	-28.2	-28.2
287.98	38.5 Qp	1.9 / 13.2 / 27.1	26.6	V / 1.0 / 0.0	-19.4	-19.4
311.98	25.8 Qp	1.9 / 14.8 / 27.0	15.5	V / 1.0 / 0.0	-30.5	-30.5
335.98	41.6 Qp	2.0 / 14.2 / 27.2	30.6	V / 1.0 / 0.0	-15.4	-15.4
359.98	43.0 Qp	2.1 / 14.8 / 27.3	32.6	V / 1.0 / 0.0	-13.4	-13.4
383.98	38.8 Qp	2.1 / 15.0 / 27.7	28.2	V / 1.0 / 0.0	-17.8	-17.8
407.98	33.4 Qp	2.2 / 15.5 / 27.8	23.3	V / 1.0 / 0.0	-22.7	-22.7
431.98	34.0 Qp	2.3 / 16.1 / 28.0	24.5	V / 1.0 / 0.0	-21.5	-21.5
455.98	31.5 Qp	2.5 / 16.6 / 28.1	22.4	V / 1.0 / 0.0	-23.6	-23.6
575.98	27.6 Qp	2.8 / 18.5 / 28.4	20.6	V / 1.0 / 0.0	-25.4	-25.4
959.98	26.8 Qp	3.7 / 23.1 / 27.3	26.2	V / 1.0 / 0.0	-19.8	-19.8
351.98	30.8 Qp	2.1 / 14.5 / 27.4	19.9	V / 1.0 / 0.0	-26.1	-26.1
399.97	28.1 Qp	2.2 / 15.4 / 27.7	18.0	V / 1.0 / 0.0	-28.0	-28.0
339.98	29.9 Qp	2.0 / 14.3 / 27.3	18.8	V / 1.0 / 0.0	-27.2	-27.2
343.98	28.3 Qp	2.0 / 14.3 / 27.3	17.4	V / 1.0 / 0.0	-28.6	-28.6
347.98	30.1 Qp	2.1 / 14.4 / 27.4	19.1	V / 1.0 / 0.0	-26.9	-26.9

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
355.99	32.2 Qp	2.1 / 14.5 / 27.4	21.4	V / 1.0 / 0.0	-24.6	-24.6
363.99	28.3 Qp	2.1 / 15.5 / 27.5	18.5	V / 1.0 / 0.0	-27.5	-27.5
371.98	27.5 Qp	2.1 / 15.8 / 27.5	17.9	V / 1.0 / 0.0	-28.1	-28.1
572.06	31.9 Qp	2.8 / 18.5 / 28.3	24.8	V / 1.0 / 0.0	-21.2	-21.2
345.93	29.6 Qp	2.1 / 14.4 / 27.3	18.6	V / 1.0 / 0.0	-27.4	-27.4
347.62	33.5 Qp	2.1 / 14.4 / 27.4	22.6	V / 1.0 / 0.0	-23.4	-23.4
349.31	34.5 Qp	2.1 / 14.4 / 27.4	23.5	V / 1.0 / 0.0	-22.5	-22.5
354.36	34.9 Qp	2.1 / 14.5 / 27.3	24.1	V / 1.0 / 0.0	-21.9	-21.9
389.71	30.4 Qp	2.2 / 15.1 / 27.7	19.9	V / 1.0 / 0.0	-26.1	-26.1
396.55	32.6 Qp	2.2 / 15.3 / 27.7	22.4	V / 1.0 / 0.0	-23.6	-23.6
403.31	32.5 Qp	2.2 / 15.4 / 27.7	22.5	V / 1.0 / 0.0	-23.5	-23.5
545.06	36.5 Qp	2.6 / 17.9 / 28.3	28.7	V / 1.0 / 0.0	-17.3	-17.3
551.81	36.8 Qp	2.7 / 18.0 / 28.4	29.1	V / 1.0 / 0.0	-16.9	-16.9
558.57	35.6 Qp	2.7 / 18.2 / 28.3	28.2	V / 1.0 / 0.0	-17.8	-17.8
	<u>'</u>			1		
216.00	45.2 Qp	1.6 / 11.1 / 27.3	30.6	V / 1.0 / 90.0	-12.9	-13.4
239.99	36.7 Qp	1.7 / 11.5 / 27.2	22.7	V / 1.0 / 90.0	-23.3	-23.3
296.98	29.7 Qp	1.9 / 13.7 / 27.1	18.2	V / 1.0 / 90.0	-27.8	-27.8
311.98	29.3 Qp	1.9 / 14.8 / 27.0	19.0	V / 1.0 / 90.0	-27.0	-27.0
345.93	30.6 Qp	2.1 / 14.4 / 27.3	19.7	V / 1.0 / 90.0	-26.3	-26.3
347.62	36.1 Qp	2.1 / 14.4 / 27.4	25.2	V / 1.0 / 90.0	-20.8	-20.8
349.31	36.5 Qp	2.1 / 14.4 / 27.4	25.5	V / 1.0 / 90.0	-20.5	-20.5
351.98	31.7 Qp	2.1 / 14.5 / 27.4	20.8	V / 1.0 / 90.0	-25.2	-25.2
404.99	30.1 Qp	2.2 / 15.5 / 27.7	20.0	V / 1.0 / 90.0	-26.0	-26.0
407.98	34.0 Qp	2.2 / 15.5 / 27.8	23.9	V / 1.0 / 90.0	-22.1	-22.1
455.98	33.8 Qp	2.5 / 16.6 / 28.1	24.7	V / 1.0 / 90.0	-21.3	-21.3
+55.56	00.0 Qp	2.07 10.07 20.1	24.1	V / 1.0 / 30.0	-21.5	21.0
311.98	30.8 Qp	1.9 / 14.8 / 27.0	20.5	V / 1.0 / 180.0	-25.5	-25.5
323.99	30.0 Qp	2.0 / 14.1 / 27.1	19.0	V / 1.0 / 180.0	-27.0	-27.0
335.98	-			+		
345.93	42.9 Qp	2.0 / 14.2 / 27.2	31.9	V / 1.0 / 180.0	-14.1	-14.1
	34.5 Qp	2.1 / 14.4 / 27.3	23.5	V / 1.0 / 180.0	-22.5	-22.5
347.62	39.5 Qp	2.1 / 14.4 / 27.4	28.6	V / 1.0 / 180.0	-17.4	-17.4
349.31	39.5 Qp	2.1 / 14.4 / 27.4	28.6	V / 1.0 / 180.0	-17.4	-17.4
350.99	32.9 Qp	2.1 / 14.4 / 27.4	22.0	V / 1.0 / 180.0	-24.0	-24.0
354.36	37.0 Qp	2.1 / 14.5 / 27.3	26.3	V / 1.0 / 180.0	-19.7	-19.7
356.06	37.0 Qp	2.1 / 14.5 / 27.4	26.1	V / 1.0 / 180.0	-19.9	-19.9
377.99	31.8 Qp	2.1 / 15.0 / 27.7	21.2	V / 1.0 / 180.0	-24.8	-24.8
404.99	31.8 Qp	2.2 / 15.5 / 27.7	21.8	V / 1.0 / 180.0	-24.2	-24.2
431.98	36.4 Qp	2.3 / 16.1 / 28.0	26.9	V / 1.0 / 180.0	-19.1	-19.1
455.98	37.0 Qp	2.5 / 16.6 / 28.1	27.9	V / 1.0 / 180.0	-18.1	-18.1
342.56	38.5 Qp	2.0 / 14.3 / 27.3	27.5	V / 1.0 / 180.0	-18.5	-18.5
416.81	36.6 Qp	2.3 / 15.7 / 27.8	26.9	V / 1.0 / 180.0	-19.1	-19.1
421.87	36.0 Qp	2.3 / 15.9 / 27.8	26.4	V / 1.0 / 180.0	-19.6	-19.6
423.57	36.4 Qp	2.3 / 15.9 / 27.9	26.7	V / 1.0 / 180.0	-19.3	-19.3
428.63	35.6 Qp	2.3 / 16.0 / 27.9	26.0	V / 1.0 / 180.0	-20.0	-20.0
430.32	34.7 Qp	2.3 / 16.1 / 27.9	25.2	V / 1.0 / 180.0	-20.8	-20.8
435.38	34.0 Qp	2.4 / 16.2 / 28.0	24.6	V / 1.0 / 180.0	-21.4	-21.4

	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
437.06	33.4 Qp	2.4 / 16.2 / 28.0	24.0	V / 1.0 / 180.0	-22.0	-22.0
442.12	33.3 Qp	2.4 / 16.4 / 28.0	24.1	V / 1.0 / 180.0	-21.9	-21.9
443.81	33.8 Qp	2.4 / 16.4 / 28.0	24.6	V / 1.0 / 180.0	-21.4	-21.4
448.88	34.0 Qp	2.4 / 16.5 / 28.1	24.8	V / 1.0 / 180.0	-21.2	-21.2
450.56	35.4 Qp	2.4 / 16.5 / 28.1	26.3	V / 1.0 / 180.0	-19.7	-19.7
347.98	30.6 Qp	2.1 / 14.4 / 27.4	19.6	V / 1.0 / 180.0	-26.4	-26.4
000.00	00.7.0	4.0./40.7./07.0	00.4	N/40/0700	05.0	05.0
263.98	32.7 Qp	1.8 / 12.7 / 27.0	20.1	V / 1.0 / 270.0	-25.9	-25.9
270.00	29.7 Qp	1.8 / 12.5 / 27.0	17.0	V / 1.0 / 270.0	-29.0	-29.0
356.06	34.6 Qp	2.1 / 14.5 / 27.4	23.8	V / 1.0 / 270.0	-22.2	-22.2
407.98	39.0 Qp	2.2 / 15.5 / 27.8	28.9	V / 1.0 / 270.0	-17.1	-17.1
he following	are maximize	d.				
216.00	46.6 Qp	1.6 / 11.1 / 27.3	32.0	V / 1.0 / 13.1	-11.5	-12.0
335.98	43.4 Qp	2.0 / 14.2 / 27.2	32.4	V / 1.0 / 191.3	-13.6	-13.6
359.98	42.2 Qp	2.1 / 14.8 / 27.3	31.8	V / 1.0 / 17.0	-14.2	-14.2
239.99	39.2 Qp	1.7 / 11.5 / 27.2	25.2	H / 1.6 / 0.0	-20.8	-20.8
243.00	45.2 Qp	1.7 / 11.8 / 27.2	31.5	H / 1.6 / 0.0	-14.5	-14.5
287.98	47.1 Qp	1.9 / 13.2 / 27.1	35.1	H / 1.6 / 0.0	-10.9	-10.9
311.98	34.6 Qp	1.9 / 14.8 / 27.0	24.3	H / 1.6 / 0.0	-21.7	-21.7
371.98	29.4 Qp	2.1 / 15.8 / 27.5	19.7	H / 1.6 / 0.0	-26.3	-26.3
287.98	48.5 Qp	1.9 / 13.2 / 27.1	36.6	H / 2.5 / 0.0	-9.4	-9.4
311.98	35.1 Qp	1.9 / 14.8 / 27.0	24.8	H / 2.5 / 0.0	-21.2	-21.2
	T					
216.00	48.6 Qp	1.6 / 11.1 / 27.3	34.0	H / 1.6 / 90.0	-9.5	-10.0
239.99	42.0 Qp	1.7 / 11.5 / 27.2	28.0	H / 1.6 / 90.0	-18.0	-18.0
335.98	45.7 Qp	2.0 / 14.2 / 27.2	34.7	H / 1.6 / 90.0	-11.3	-11.3
455.98	37.7 Qp	2.5 / 16.6 / 28.1	28.6	H / 1.6 / 90.0	-17.4	-17.4
044.00	00.00	4.0./44.0./07.0	05.7	11/40/4000	20.0	20.0
311.98	36.0 Qp	1.9 / 14.8 / 27.0	25.7	H / 1.6 / 180.0	-20.3	-20.3
323.99	31.0 Qp	2.0 / 14.1 / 27.1	20.0	H / 1.6 / 180.0	-26.0	-26.0
347.98	32.5 Qp	2.1 / 14.4 / 27.4	21.6	H / 1.6 / 180.0	-24.4	-24.4
356.06	33.6 Qp	2.1 / 14.5 / 27.4	22.8	H / 1.6 / 180.0	-23.2	-23.2
377.99	32.5 Qp	2.1 / 15.0 / 27.7	21.9	H / 1.6 / 180.0	-24.1	-24.1
450.56	36.8 Qp	2.4 / 16.5 / 28.1	27.7	H / 1.6 / 180.0	-18.3	-18.3
350.99	31.9 Qp	2.1 / 14.4 / 27.4	21.0	H / 2.5 / 270.0	-25.0	-25.0
354.36	36.9 Qp	2.1 / 14.5 / 27.3	26.1	H / 2.5 / 270.0	-19.9	-19.9
356.06	36.9 Qp	2.1 / 14.5 / 27.4	26.0	H / 2.5 / 270.0	-20.0	-20.0
399.97	29.9 Qp	2.2 / 15.4 / 27.7	19.8	H / 2.5 / 270.0	-26.2	-26.2
675.01	28.9 Qp	3.1 / 21.0 / 28.1	24.9	H / 2.5 / 270.0	-21.1	-21.1
270.00	30.8 Qp	1.8 / 12.5 / 27.0	18.1	H / 1.6 / 270.0	-27.9	-27.9
356.06	33.9 Qp	2.1 / 14.5 / 27.4	23.0	H / 1.6 / 270.0	-23.0	-23.0
	55.5 Qp	2.2 / 15.4 / 27.7	21.0	H / 1.6 / 270.0	-25.0	-25.0

FREQ	LEVEL	0.1015/.005.110				
	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
287.98	48.8 Qp	1.9 / 13.2 / 27.1	36.8	H / 2.6 / 0.0	-9.2	-9.2
216.00	49.9 Qp	1.6 / 11.1 / 27.3	35.2	H / 1.2 / 99.8	-8.3	-8.8
335.98	50.8 Qp	2.0 / 14.2 / 27.2	39.8	H / 1.0 / 108.0	-6.2	-6.2
Antenna is p	arallal					
		n 5 and 30MHz at 0 degrees	narallal			
THO CITIESTOTI	s lourid betwee	and Joining at 0 degrees	parallel.			
No omission	found between	on F and 20MHz at 00 dagrage	n n a roll a l			
No emission	s round betwee	n 5 and 30MHz at 90 degrees	s parallel.			
No omission	found hotwar	n 5 and 20MHz at 100 dagge	ne parallal			
NO emission	s iouria betwee	n 5 and 30MHz at 180 degree	es paraner.			
No omissis =	found hoters	n F and 20MUz at 270 da	no porollol			
No emission:	s round betwee	n 5 and 30MHz at 270 degree	es parallel.			
The following	are noise floo	r.				
6.00	10.1 Qp	0.1 / 10.7 / 0.0	20.9	V / 1.0 / 270.0	-48.6	-19.1
11.00	7.0 Qp	0.2 / 10.7 / 0.0	18.0	V / 1.0 / 270.0	-51.5	-22.0
11.00 30.00	7.0 Qp 6.2 Qp	0.2 / 10.7 / 0.0 0.5 / 8.1 / 0.0	18.0 14.9	V / 1.0 / 270.0 V / 1.0 / 270.0	-51.5 -25.1	-22.0 -25.1
	 					
30.00	6.2 Qp		14.9	V / 1.0 / 270.0		
30.00	6.2 Qp	0.5 / 8.1 / 0.0	14.9	V / 1.0 / 270.0		
30.00 No emissions	6.2 Qp	0.5 / 8.1 / 0.0	14.9	V/1.0/270.0		
30.00 No emissions	6.2 Qp	0.5 / 8.1 / 0.0 en 5 and 30MHz at 0 degrees	14.9	V/1.0/270.0		
30.00 No emissions No emissions	6.2 Qp	0.5 / 8.1 / 0.0 en 5 and 30MHz at 0 degrees	14.9 perpendicula	V / 1.0 / 270.0		
30.00 No emissions No emissions	6.2 Qp	0.5 / 8.1 / 0.0 en 5 and 30MHz at 0 degrees en 5 and 30MHz at 90 degrees	14.9 perpendicula	V / 1.0 / 270.0		
No emissions No emissions No emissions	6.2 Qp	0.5 / 8.1 / 0.0 en 5 and 30MHz at 0 degrees en 5 and 30MHz at 90 degrees	perpendiculars perpendiculars	V / 1.0 / 270.0 v. ar.		
No emissions No emissions No emissions	6.2 Qp	o.5 / 8.1 / 0.0 on 5 and 30MHz at 0 degrees on 5 and 30MHz at 90 degrees on 5 and 30MHz at 180 degree	perpendiculars perpendiculars	V / 1.0 / 270.0 v. ar.		
No emissions No emissions No emissions No emissions	6.2 Qp	o.5 / 8.1 / 0.0 on 5 and 30MHz at 0 degrees on 5 and 30MHz at 90 degrees on 5 and 30MHz at 180 degree on 5 and 30MHz at 270 degree	perpendiculars perpendiculars	V / 1.0 / 270.0 v. ar.		
No emissions No emissions No emissions No emissions	6.2 Qp 6.2 Qp 6 found between 6 found between 6 found between 6 found between	o.5 / 8.1 / 0.0 on 5 and 30MHz at 0 degrees on 5 and 30MHz at 90 degrees on 5 and 30MHz at 180 degree on 5 and 30MHz at 270 degree	perpendiculars perpendiculars	V / 1.0 / 270.0 v. ar.		
No emissions No emissions No emissions The following	6.2 Qp s found betweens found between found be	0.5 / 8.1 / 0.0 on 5 and 30MHz at 0 degrees on 5 and 30MHz at 90 degrees on 5 and 30MHz at 180 degree on 5 and 30MHz at 270 degree on 5 and 30MHz at 270 degree or.	perpendiculars perpen	V / 1.0 / 270.0 ar. alar.	-25.1	-25.1

Project File: 3151965 Page 15 of 33

Fax: 303 449 6160

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz			
******* Measurement Summary ********									
36.10	50.0 Qp	0.6 / 11.9 / 28.2	34.3	V / 1.0 / 162.3	-5.7	-5.7			
121.00	52.6 Qp	1.2 / 11.5 / 27.9	37.4	V / 1.0 / 90.0	-6.1	-6.6			
335.98	50.8 Qp	2.0 / 14.2 / 27.2	39.8	H / 1.0 / 108.0	-6.2	-6.2			
118.12	52.6 Qp	1.2 / 11.3 / 27.9	37.1	V / 1.0 / 99.6	-6.4	-6.9			
72.46	52.1 Qp	0.8 / 7.9 / 28.1	32.7	V / 1.0 / 237.3	-7.3	-7.3			
34.68	47.7 Qp	0.6 / 12.1 / 28.2	32.1	V / 1.0 / 0.0	-7.9	-7.9			
68.85	50.7 Qp	0.8 / 8.3 / 28.2	31.7	V / 1.0 / 0.0	-8.3	-8.3			
216.00	49.9 Qp	1.6 / 11.1 / 27.3	35.2	H / 1.2 / 99.8	-8.3	-8.8			
161.98	48.9 Qp	1.4 / 12.0 / 27.7	34.6	V / 1.0 / 270.0	-8.9	-9.4			
134.98	48.5 Qp	1.3 / 12.3 / 27.8	34.3	V / 1.0 / 270.0	-9.2	-9.7			
287.98	48.8 Qp	1.9 / 13.2 / 27.1	36.8	H / 2.6 / 0.0	-9.2	-9.2			
53.71	47.2 Qp	0.7 / 9.3 / 28.2	29.0	V / 1.0 / 0.0	-11.0	-11.0			
86.61	48.9 Qp	1.0 / 7.1 / 28.1	28.8	V / 1.0 / 90.0	-11.2	-11.2			
80.98	48.6 Qp	0.9 / 6.8 / 28.1	28.2	V / 1.0 / 180.0	-11.8	-11.8			
359.98	43.0 Qp	2.1 / 14.8 / 27.3	32.6	V / 1.0 / 0.0	-13.4	-13.4			
243.00	45.2 Qp	1.7 / 11.8 / 27.2	31.5	H / 1.6 / 0.0	-14.5	-14.5			
188.98	41.8 Qp	1.4 / 12.7 / 27.5	28.4	H / 1.8 / 122.3	-15.1	-15.6			
180.84	41.5 Qp	1.4 / 12.4 / 27.5	27.9	V / 1.0 / 90.0	-15.6	-16.1			
551.81	36.8 Qp	2.7 / 18.0 / 28.4	29.1	V / 1.0 / 0.0	-16.9	-16.9			
407.98	39.0 Qp	2.2 / 15.5 / 27.8	28.9	V / 1.0 / 270.0	-17.1	-17.1			
545.06	36.5 Qp	2.6 / 17.9 / 28.3	28.7	V / 1.0 / 0.0	-17.3	-17.3			
347.62	39.5 Qp	2.1 / 14.4 / 27.4	28.6	V / 1.0 / 180.0	-17.4	-17.4			
349.31	39.5 Qp	2.1 / 14.4 / 27.4	28.6	V / 1.0 / 180.0	-17.4	-17.4			
455.98	37.7 Qp	2.5 / 16.6 / 28.1	28.6	H / 1.6 / 90.0	-17.4	-17.4			
383.98	38.8 Qp	2.1 / 15.0 / 27.7	28.2	V / 1.0 / 0.0	-17.8	-17.8			
558.57	35.6 Qp	2.7 / 18.2 / 28.3	28.2	V / 1.0 / 0.0	-17.8	-17.8			
513.00	35.9 Qp	2.6 / 18.0 / 28.3	28.1	V / 1.0 / 0.0	-17.9	-17.9			
239.99	42.0 Qp	1.7 / 11.5 / 27.2	28.0	H / 1.6 / 90.0	-18.0	-18.0			
450.56	36.8 Qp	2.4 / 16.5 / 28.1	27.7	H / 1.6 / 180.0	-18.3	-18.3			
621.00	33.8 Qp	2.9 / 19.3 / 28.2	27.7	V / 1.0 / 0.0	-18.3	-18.3			
342.56	38.5 Qp	2.0 / 14.3 / 27.3	27.5	V / 1.0 / 180.0	-18.5	-18.5			
6.00	10.1 Qp	0.1 / 10.7 / 0.0	20.9	V / 1.0 / 270.0	-48.6	-19.1			
416.81	36.6 Qp	2.3 / 15.7 / 27.8	26.9	V / 1.0 / 180.0	-19.1	-19.1			
431.98	36.4 Qp	2.3 / 16.1 / 28.0	26.9	V / 1.0 / 180.0	-19.1	-19.1			
567.00	34.2 Qp	2.7 / 18.4 / 28.4	26.9	V / 1.0 / 0.0	-19.1	-19.1			
423.57	36.4 Qp	2.3 / 15.9 / 27.9	26.7	V / 1.0 / 180.0	-19.3	-19.3			
5.00	10.0 Qp	0.2 / 10.5 / 0.0	20.6	V / 1.0 / 270.0	-48.9	-19.4			
421.87	36.0 Qp	2.3 / 15.9 / 27.8	26.4	V / 1.0 / 180.0	-19.6	-19.6			
354.36	37.0 Qp	2.1 / 14.5 / 27.3	26.3	V / 1.0 / 180.0	-19.7	-19.7			
959.98	26.8 Qp	3.7 / 23.1 / 27.3	26.2	V/1.0/0.0	-19.8	-19.8			
356.06	37.0 Qp	2.1 / 14.5 / 27.4	26.1	V / 1.0 / 180.0	-19.9 20.0	-19.9			
428.63	35.6 Qp	2.3 / 16.0 / 27.9	26.0	V / 1.0 / 180.0	-20.0	-20.0			
311.98 917.97	36.0 Qp 26.7 Qp	1.9 / 14.8 / 27.0 3.6 / 22.8 / 27.4	25.7 25.7	H / 1.6 / 180.0 V / 1.0 / 0.0	-20.3 -20.3	-20.3 -20.3			

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	BETS-7 <1GHz
430.32	34.7 Qp	2.3 / 16.1 / 27.9	25.2	V / 1.0 / 180.0	-20.8	-20.8
10.00	8.2 Qp	0.2 / 10.7 / 0.0	19.1	V / 1.0 / 270.0	-50.4	-20.9
971.97	25.2 Qp	3.7 / 23.4 / 27.3	25.0	V / 1.0 / 0.0	-29.0	-21.0
675.01	28.9 Qp	3.1 / 21.0 / 28.1	24.9	H / 2.5 / 270.0	-21.1	-21.1
448.88	34.0 Qp	2.4 / 16.5 / 28.1	24.8	V / 1.0 / 180.0	-21.2	-21.2
572.06	31.9 Qp	2.8 / 18.5 / 28.3	24.8	V / 1.0 / 0.0	-21.2	-21.2
435.38	34.0 Qp	2.4 / 16.2 / 28.0	24.6	V / 1.0 / 180.0	-21.4	-21.4
443.81	33.8 Qp	2.4 / 16.4 / 28.0	24.6	V / 1.0 / 180.0	-21.4	-21.4
648.01	29.9 Qp	3.0 / 20.0 / 28.3	24.5	V / 1.0 / 0.0	-21.5	-21.5
442.12	33.3 Qp	2.4 / 16.4 / 28.0	24.1	V / 1.0 / 180.0	-21.9	-21.9
836.97	26.6 Qp	3.4 / 21.9 / 27.8	24.1	V / 1.0 / 0.0	-21.9	-21.9
11.00	7.0 Qp	0.2 / 10.7 / 0.0	18.0	V / 1.0 / 270.0	-51.5	-22.0
437.06	33.4 Qp	2.4 / 16.2 / 28.0	24.0	V / 1.0 / 180.0	-22.0	-22.0
345.93	34.5 Qp	2.1 / 14.4 / 27.3	23.5	V / 1.0 / 180.0	-22.5	-22.5
702.01	27.1 Qp	3.3 / 21.2 / 28.0	23.5	V / 1.0 / 0.0	-22.5	-22.5
403.31	32.5 Qp	2.2 / 15.4 / 27.7	22.5	V / 1.0 / 0.0	-23.5	-23.5
396.55	32.6 Qp	2.2 / 15.3 / 27.7	22.4	V / 1.0 / 0.0	-23.6	-23.6
25.00	6.6 Qp	0.5 / 9.1 / 0.0	16.2	V / 1.0 / 270.0	-53.3	-23.8
540.00	30.0 Qp	2.6 / 17.9 / 28.3	22.2	V / 1.0 / 0.0	-23.8	-23.8
350.99	32.9 Qp	2.1 / 14.4 / 27.4	22.0	V / 1.0 / 180.0	-24.0	-24.0
458.99	31.0 Qp	2.5 / 16.7 / 28.2	22.0	V / 1.0 / 0.0	-24.0	-24.0
377.99	32.5 Qp	2.1 / 15.0 / 27.7	21.9	H / 1.6 / 180.0	-24.1	-24.1
404.99	31.8 Qp	2.2 / 15.5 / 27.7	21.8	V / 1.0 / 180.0	-24.2	-24.2
809.97	24.6 Qp	3.3 / 21.6 / 27.8	21.7	V / 1.0 / 0.0	-24.3	-24.3
347.98	32.5 Qp	2.1 / 14.4 / 27.4	21.6	H / 1.6 / 180.0	-24.4	-24.4
355.99	32.2 Qp	2.1 / 14.5 / 27.4	21.4	V / 1.0 / 0.0	-24.6	-24.6
399.97	31.1 Qp	2.2 / 15.4 / 27.7	21.0	H / 1.6 / 270.0	-25.0	-25.0
30.00	6.2 Qp	0.5 / 8.1 / 0.0	14.9	V / 1.0 / 270.0	-25.1	-25.1
351.98	31.7 Qp	2.1 / 14.5 / 27.4	20.8	V / 1.0 / 90.0	-25.2	-25.2
575.98	27.6 Qp	2.8 / 18.5 / 28.4	20.6	V / 1.0 / 0.0	-25.4	-25.4
263.98	32.7 Qp	1.8 / 12.7 / 27.0	20.1	V / 1.0 / 270.0	-25.9	-25.9
323.99	31.0 Qp	2.0 / 14.1 / 27.1	20.0	H / 1.6 / 180.0	-26.0	-26.0
389.71	30.4 Qp	2.2 / 15.1 / 27.7	19.9	V / 1.0 / 0.0	-26.1	-26.1
371.98	29.4 Qp	2.1 / 15.8 / 27.5	19.7	H / 1.6 / 0.0	-26.3	-26.3
339.98	29.9 Qp	2.0 / 14.3 / 27.3	18.8	V / 1.0 / 0.0	-27.2	-27.2
363.99	28.3 Qp	2.1 / 15.5 / 27.5	18.5	V / 1.0 / 0.0	-27.5	-27.5
296.98	29.7 Qp	1.9 / 13.7 / 27.1	18.2	V / 1.0 / 90.0	-27.8	-27.8
270.00	30.8 Qp	1.8 / 12.5 / 27.0	18.1	H / 1.6 / 270.0	-27.9	-27.9
343.98	28.3 Qp	2.0 / 14.3 / 27.3	17.4	V / 1.0 / 0.0	-28.6	-28.6

Radiated Electromagnetic Emissions

3151965 Run 03 °C Test Report #: Pinewood Site 1 (3m) 19.9 Test Area: Temperature: Test Method: FCC Part 15.209 Test Date: 13-May-2008 Relative Humidity: 32.3 % EUT Model #: XG-002-001 (Settop Box); BR-**EUT Power:** 120VAC; 60Hz; 3VDC Air Pressure: 102 kPa 003-02 (Remote) Battery 50001; 50015 EUT Serial #: **BOCS** Manufacturer: Level Key **EUT Description:** Settop Box and Remote Pk – Peak Nb - Narrow Band Qp – QuasiPeak Settop Box and Remote were tested at the same time. Bb - Broad Band Notes: Av - Average

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 >1GHz	BETS-7 >1GHz
No emissions	found betwee	n 8 and 13GHz vertical.				
The following	are noise floo	r.				
8000.00	41.9 Av	7.6 / 37.1 / 46.8	39.8	V / 1.0 / 0.0	-14.2	-26.2
11000.0	43.5 Av	9.2 / 37.8 / 48.8	41.7	V / 1.0 / 0.0	-12.3	-24.3
13000.0	42.2 Av	0.7 / 39.6 / 46.9	35.7	V / 1.0 / 0.0	-18.3	-30.3
No emissions	were found be	etween 8 and 13GHz horizont	al.			
The following	are noise floo	r.				
8500.00	43.3 Av	8.2 / 37.0 / 48.0	40.6	H / 1.0 / 0.0	-13.4	-25.4
10000.0	44.9 Av	8.8 / 38.1 / 49.3	42.4	H / 1.0 / 0.0	-11.6	-23.6
12000.0	41.9 Av	0.5 / 38.9 / 46.0	35.3	H / 1.0 / 0.0	-18.7	-30.7
No emissions	were found be	etween 4 and 8GHz horizonta	l.			
The following	are noise floo	r.				
4000.00	33.5 Av	4.8 / 32.4 / 39.9	30.7	H / 1.0 / 0.0	-23.3	-25.3
6000.00	32.6 Av	6.2 / 35.1 / 39.9	34.0	H / 1.0 / 0.0	-20.0	-32.0
7500.00	32.1 Av	7.5 / 36.6 / 39.5	36.7	H / 1.0 / 0.0	-17.3	-29.3
The following	2 emissions v	vere the only emissions found	between 4 a	nd 8GHz vertical.		
5469.42	34.8 Av	6.1 / 34.4 / 40.0	35.3	V / 1.0 / 173.8	-18.7	-30.7
5430.42	35.5 Av	6.1 / 34.4 / 39.9	36.0	V / 1.0 / 181.1	-18.0	-30.0
					_	
1555.90	36.5 Av	2.6 / 25.3 / 37.3	27.0	V / 1.0 / 0.0	-27.0	-29.0
1619.79	35.0 Av	2.6 / 25.6 / 37.4	25.7	V / 1.0 / 0.0	-28.3	-30.3
1625.00	35.1 Av	2.6 / 25.6 / 37.5	25.9	V / 1.0 / 0.0	-28.1	-30.1
No higher emi	ssions found	between 1 and 2GHz at 90 de	grees vertica	ıl.		
1619.79	35.0 Av	2.6 / 25.6 / 37.4	25.7	V / 1.0 / 180.0	-28.3	-30.3
1187.94	36.6 Av	2.2 / 24.4 / 38.3	25.0	V / 1.0 / 270.0	-29.0	-31.0
		l l		1		

Project File: 3151965 Page 18 of 33

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 >1GHz	BETS-7 >1GHz
	I			<u> </u>		
No emissions	found between	en 2 and 4GHz vertical.				
The following	are noise floo	r.				
2000.00	35.8 Av	3.0 / 27.2 / 38.1	27.8	V / 1.0 / 270.0	-26.2	-28.2
3000.00	36.1 Av	3.8 / 30.9 / 38.1	32.7	V / 1.0 / 270.0	-21.3	-23.3
3950.00	35.0 Av	4.7 / 32.3 / 37.2	34.7	V / 1.0 / 270.0	-19.3	-21.3
1619.79	35.0 Av	2.6 / 25.6 / 37.4	25.7	H / 1.0 / 0.0	-28.3	-30.3
No higher em		between 1and 2GHz at 90 de between 1and 2GHz at 180 d	<u> </u>			
No higher em			<u> </u>		-27.2	-29.2
No higher em No higher em	issions found 36.2 Av	between 1and 2GHz at 180 d	egrees horizo	H / 1.0 / 270.0	-27.2	-29.2
No higher em No higher em	issions found 36.2 Av	between 1and 2GHz at 180 d	egrees horizo	H / 1.0 / 270.0	-27.2	-29.2
No higher em No higher em 1555.90 No emissions	36.2 Av	between 1and 2GHz at 180 d	egrees horizo	H / 1.0 / 270.0	-27.2	-29.2
No higher em No higher em 1555.90 No emissions No emissions	36.2 Av	between 1and 2GHz at 180 d 2.6 / 25.3 / 37.3 ad 2GHz were within 25dB of t en 2and 4GHz horizontal.	egrees horizo	H / 1.0 / 270.0	-27.2	-29.2
No higher em No higher em 1555.90 No emissions No emissions	36.2 Av between 1 and a found between	between 1and 2GHz at 180 d 2.6 / 25.3 / 37.3 ad 2GHz were within 25dB of t en 2and 4GHz horizontal.	egrees horizo	H / 1.0 / 270.0	-27.2	-29.2
No higher em No higher em 1555.90 No emissions No emissions The following	36.2 Av between 1 an found between are noise floor	between 1and 2GHz at 180 do 2.6 / 25.3 / 37.3 and 2GHz were within 25dB of the control of the	egrees horizo 26.8 he limit horizo	ontal. H / 1.0 / 270.0 ontal.		

Fax: 303 449 6160

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 >1GHz	BETS-7 >1GHz
		****** Mo	easurem	ent Summar	y ******	
10000.0	44.9 Av	8.8 / 38.1 / 49.3	42.4	H / 1.0 / 0.0	-11.6	-23.6
11000.0	43.5 Av	9.2 / 37.8 / 48.8	41.7	V / 1.0 / 0.0	-12.3	-24.3
8500.00	43.3 Av	8.2 / 37.0 / 48.0	40.6	H / 1.0 / 0.0	-13.4	-25.4
8000.00	41.9 Av	7.6 / 37.1 / 46.8	39.8	V / 1.0 / 0.0	-14.2	-26.2
7500.00	32.1 Av	7.5 / 36.6 / 39.5	36.7	H / 1.0 / 0.0	-17.3	-29.3
5430.42	35.5 Av	6.1 / 34.4 / 39.9	36.0	V / 1.0 / 181.1	-18.0	-30.0
13000.0	42.2 Av	0.7 / 39.6 / 46.9	35.7	V / 1.0 / 0.0	-18.3	-30.3
5469.42	34.8 Av	6.1 / 34.4 / 40.0	35.3	V / 1.0 / 173.8	-18.7	-30.7
12000.0	41.9 Av	0.5 / 38.9 / 46.0	35.3	H / 1.0 / 0.0	-18.7	-30.7
3950.00	35.0 Av	4.7 / 32.3 / 37.2	34.7	V / 1.0 / 270.0	-19.3	-21.3
6000.00	32.6 Av	6.2 / 35.1 / 39.9	34.0	H / 1.0 / 0.0	-20.0	-32.0
3750.00	35.5 Av	4.6 / 31.9 / 38.3	33.6	H / 1.0 / 270.0	-20.4	-22.4
3250.00	35.7 Av	4.1 / 31.2 / 38.0	32.9	H / 1.0 / 270.0	-21.1	-23.1
3000.00	36.1 Av	3.8 / 30.9 / 38.1	32.7	V / 1.0 / 270.0	-21.3	-23.3
4000.00	33.5 Av	4.8 / 32.4 / 39.9	30.7	H / 1.0 / 0.0	-23.3	-25.3
2500.00	36.3 Av	3.2 / 28.8 / 38.5	29.8	H / 1.0 / 270.0	-24.2	-26.2
2000.00	35.8 Av	3.0 / 27.2 / 38.1	27.8	V / 1.0 / 270.0	-26.2	-28.2
1555.90	36.5 Av	2.6 / 25.3 / 37.3	27.0	V / 1.0 / 0.0	-27.0	-29.0
1625.00	35.1 Av	2.6 / 25.6 / 37.5	25.9	V / 1.0 / 0.0	-28.1	-30.1
1619.79	35.0 Av	2.6 / 25.6 / 37.4	25.7	H / 1.0 / 0.0	-28.3	-30.3
1187.94	36.6 Av	2.2 / 24.4 / 38.3	25.0	V / 1.0 / 270.0	-29.0	-31.0

Fax: 303 449 6160

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #:	3151965	Test Area:	PW 1 (3M)	Temperature:	22.4	°C	
Test Method:	FCC 47 CFR part 15 subpart C	Test Date:	12-May-2008	Relative Humidity:	Relative Humidity: 27.2		
EUT Model #:	BR-003-02	EUT Power:	3VDC Battery	Air Pressure:	101	– kPa	
EUT Serial #:	50015	=					
Manufacturer:	BOCS			Leve	el Key		
EUT Description:	Remote Control			Pk – Peak	Nb – Na	arrow Band	
Notes: 2 way r	emote IR/RF			Qp – QuasiPeak	Bb – Br	road Band	
				Av - Average			
-							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

40mS

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.249 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.249 and the emission/limit delta was calculated.

the DTCF is	s calculated	as follows 20*log ₁₀ (duty	cycle in 10	00mS) "not to exceed	20dB"			
Part 15.249	and 15.205	Respectively						
Axis 1 EUT	is flat on the	table						
Low Chann	nel							
905.24	64.1 Pk	3.6 / 22.7 / 0.0	90.4	V / 1.6 / 174.0	0.0	90.4	94	-3.6
905.24	66.5 Pk	3.6 / 22.8 / 0.0	92.8	H / 1.0 / 129.0	0.0	92.8	94	-1.2
Mid 1 Char	nnel							
911.74	62.7 Pk	3.6 / 22.7 / 0.0	89	H / 1.0 / 130.0	0.0	89	94	-5.0
911.74	60.5 Pk	3.6 / 22.7 / 0.0	86.8	V / 1.0 / 171.0	0.0	86.8	94	-7.2
Mid 2 Char	nnel							
918.29	61.1 Pk	3.6 / 22.8 / 0.0	87.5	V / 1.4 / 187.0	0.0	87.5	94	-6.5
918.29	62.2 Pk	3.6 / 22.8 / 0.0	88.6	H / 1.0 / 126.0	0.0	88.6	94	-5.4
High Chan	nel							
924.74	64.7 Pk	3.6 / 22.8 / 0.0	91.1	H / 1.0 / 319.0	0.0	91.1	94	-2.9
924.74	63.4 Pk	3.6 / 22.8 / 0.0	89.8	V / 1.5 / 180.0	0.0	89.8	94	-4.2
Axis 2 EUT	is vertical or	n the table.						
High Chan	nel							
924.74	64.8 Pk	3.6 / 22.8 / 0.0	91.2	V / 1.0 / 123.0	0.0	91.2	94	-2.8
924.74	61.9 Pk	3.6 / 22.8 / 0.0	88.3	H / 1.2 / 180.0	0.0	88.3	94	-5.7
Low Chann	nel							
905.24	63.1 Pk	3.6 / 22.8 / 0.0	89.5	H / 1.2 / 0.0	0.0	89.5	94	-4.5
905.24	65.8 Pk	3.6 / 22.8 / 0.0	92.2	V / 1.2 / 155.0	0.0	92.2	94	-1.8
Mid 1 Char	nnel							
911.74	62.5 Pk	3.6 / 22.7 / 0.0	88.8	V / 1.0 / 91.0	0.0	88.8	94	-5.2
911.79	60.3 Pk	3.6 / 22.7 / 0.0	86.6	H / 1.2 / 318.0	0.0	86.6	94	-7.4
Mid 2 Char								
918.24	59.6 Pk	3.6 / 22.8 / 0.0	86	H / 1.2 / 318.0	0.0	86	94	-8.0
918.24	62.5 Pk	3.6 / 22.8 / 0.0	88.9	V / 1.0 / 22.0	0.0	88.9	94	-5.1
Axis 3 EUT	is vertical or	n the resting on the righ	nt hand side				·	
Mid 2 Char	nnel							
918.24	60.8 Pk	3.6 / 22.8 / 0.0	87.2	V / 1.0 / 233.0	0.0	87.2	94	-6.8

Project File: 3151965 Page 22 of 33

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
918.24	64.6 Pk	3.6 / 22.8 / 0.0	91	H / 1.0 / 141.0	0.0	91	94	-3.0
High Chan	nel		I .			•		
924.74	67.3 Pk	3.6 / 22.8 / 0.0	93.8	H / 1.0 / 144.0	0.0	93.8	94	-0.2
924.74	62.8 Pk	3.6 / 22.8 / 0.0	89.2	V / 1.1 / 123.0	0.0	89.2	94	-4.8
Low Chann 905.24		26/227/00	90.2	V//4.4./226.0	0.0	00.0	94	2.0
905.24	63.9 Pk 67.1 Pk	3.6 / 22.7 / 0.0 3.6 / 22.8 / 0.0	93.4	V / 1.1 / 236.0 H / 1.1 / 148.0	0.0	90.2 93.4	94	-3.8 -0.6
Mid 1 Char		3.0722.070.0	33.4	117 1.17 140.0	0.0	33.4	34	-0.0
911.74	64.1 Pk	3.6 / 22.7 / 0.0	90.4	H / 1.1 / 146.0	0.0	90.4	94	-3.6
911.74	60.1 Pk	3.6 / 22.7 / 0.0	86.5	V / 1.1 / 123.0	0.0	86.5	94	-7.5
Axis 3 was	determined t	o be the worst case.						
		easured in this axis.						
Low Chann						1		
1810.47	64.0 Pk	2.8 / 26.4 / 37.3	55.9	H / 1.0 / 50.0	-8.0	47.9	54	-6.1
1810.48 2715.77	60.3 Pk 37.2 Pk	2.8 / 26.4 / 37.3 3.5 / 29.7 / 37.9	52.1 32.5	V / 1.2 / 212.0 H / 1.2 / 120.0	-8.0 -8.0	44.1 24.5	54 54	-9.9 -29.5
2715.77	49.8 Pk	3.5 / 29.7 / 37.9	32.5 45	V / 1.1 / 199.0	-8.0 -8.0	37.0	54 54	-29.5 -17.0
3621.08	49.6 FK 44.4 Pk	4.5 / 31.7 / 38.4	42.2	V / 1.0 / 195.0	-8.0	34.2	54	-17.0
3621.11	40.6 Pk	4.5 / 31.7 / 38.4	38.3	H / 1.2 / 120.0	-8.0	30.3	54	-23.7
4526.15	43.9 Pk	5.3 / 32.3 / 40.3	41.2	V / 1.2 / 185.0	-8.0	33.2	54	-20.8
4526.34	47.8 Pk	5.3 / 32.3 / 40.3	45.1	H / 1.0 / 212.0	-8.0	37.1	54	-16.9
5431.6	61.3 Pk	6.1 / 34.4 / 39.9	61.8	H / 1.6 / 187.7	-8.0	53.8	54	-0.2
5431.64	61.1 Pk	6.1 / 34.4 / 39.9	61.6	V / 1.1 / 205.0	-8.0	53.6	54	-0.4
6336.6	59.1 Pk	6.6 / 35.2 / 40.4	60.5	V / 1.1 / 196.0	-8.0	52.5	54	-1.5
6336.65	53.1 Pk	6.6 / 35.2 / 40.4	54.6	H / 1.0 / 190.8	-8.0	46.6	54	-7.4 45.7
7241.88 7242.16	43.2 Pk 49.5 Pk	7.3 / 36.3 / 40.5 7.3 / 36.3 / 40.5	46.3 52.5	H / 1.0 / 191.6 V / 1.0 / 212.0	-8.0 -8.0	38.3 44.5	54 54	-15.7 -9.5
9052.74	59.1 Pk	8.4 / 37.9 / 48.7	56.8	H / 1.5 / 210.1	-8.0	48.8	54	- 9.3 -5.2
9052.75	53.2 Pk	8.4 / 37.9 / 48.7	50.9	V / 1.0 / 193.7	-8.0	42.9	54	-11.1
		re not seen above the		.,,				
Mid 1 Char								
1823.47	59.1 Pk	2.8 / 26.4 / 37.3	51	H / 1.0 / 142.0	-8.0	43.0	54	-11.0
1823.56	59.9 Pk	2.8 / 26.4 / 37.3	51.8	V / 1.0 / 96.0	-8.0	43.8	54	-10.2
2735.19	50.1 Pk	3.5 / 29.8 / 37.9	45.5	V / 1.1 / 196.0	-8.0	37.5	54	-16.5
2735.26	41.0 Pk 44.4 Pk	3.5 / 29.8 / 37.9 5.3 / 32.4 / 40.3	36.4 41.7	H / 1.0 / 355.0 H / 1.1 / 196.0	-8.0 -8.0	28.4 33.7	54 54	-25.6 -20.3
4558.83 5470.35	60.8 Pk	6.1 / 34.4 / 39.9	61.5	H / 1.2 / 203.5	-8.0	53.5	54	-20.3 -0.5
5470.35	58.1 Pk	6.1 / 34.4 / 39.9	58.7	V / 1.0 / 207.3	-8.0	50.7	54	-3.3
6382.13	57.2 Pk	6.7 / 35.2 / 40.4	58.8	V / 1.6 / 190.1	-8.0	50.8	54	-3.2
6382.42	51.3 Pk	6.7 / 35.2 / 40.4	52.9	H / 1.0 / 195.0	-8.0	44.9	54	-9.1
7293.87	47.0 Pk	7.3 / 36.3 / 40.5	50.1	V / 1.0 / 229.9	-8.0	42.1	54	-11.9
7294.2	45.0 Pk	7.3 / 36.3 / 40.5	48.1	H / 1.4 / 168.5	-8.0	40.1	54	-13.9
9117.34	52.9 Pk	8.4 / 38.0 / 48.7	50.7	V / 1.0 / 225.0	-8.0	42.7	54	-11.3
9117.74	58.4 Pk	8.4 / 38.0 / 48.7	56.1	H / 1.4 / 151.0	-8.0	48.1	54	-5.9
Mid 2 Char		re not seen above the	noise floor.					
1836.56	59.3 Pk	2.8 / 26.5 / 37.4	51.2	H / 1.0 / 153.0	-8.0	43.2	54	-10.8
1836.56	54.0 Pk	2.8 / 26.5 / 37.4	45.9	V / 1.1 / 194.0	-8.0	37.9	54	-16.1
2754.7	49.8 Pk	3.5 / 29.9 / 37.9	45.2	V / 1.1 / 199.0	-8.0	37.2	54	-16.8
2754.74	42.0 Pk	3.5 / 29.9 / 37.9	37.5	H / 1.0 / 153.0	-8.0	29.5	54	-24.5
3672.93	46.2 Pk	4.5 / 31.8 / 38.5	44.1	V / 1.0 / 202.0	-8.0	36.1	54	-17.9
4591.12	44.1 Pk	5.3 / 32.5 / 40.3	41.6	H / 1.3 / 198.8	-8.0	33.6	54	-20.4
5509.36	58.2 Pk	6.1 / 34.5 / 39.8	59	V / 1.0 / 208.1	-8.0	51.0	54	-3.0
5509.36	60.6 Pk	6.1 / 34.5 / 39.8	61.3	H / 1.0 / 203.4	-8.0	53.3	54	-0.7
6427.65	51.1 Pk	6.7 / 35.3 / 40.3	52.8 58	H / 1.4 / 137.6	-8.0 -8.0	44.8	54 54	-9.2 -4.0
6427.92 7345.87	56.4 Pk 46.1 Pk	6.7 / 35.3 / 40.3 7.4 / 36.4 / 40.4	49.5	V / 1.1 / 218.6 V / 1.0 / 222.1	-8.0 -8.0	50.0 41.5	54 54	-4.0 -12.5
7345.89	41.6 Pk	7.4 / 36.4 / 40.4	44.9	H / 1.0 / 219.6	-8.0	36.9	54	-12.5
9182.39	52.9 Pk	8.5 / 38.1 / 48.8	50.7	V / 1.4 / 169.9	-8.0	42.7	54	-11.3
9182.76	56.2 Pk	8.5 / 38.1 / 48.8	54	H / 1.6 / 153.6	-8.0	46.0	54	-8.0
Harmonics	not listed we	re not seen above the	noise floor.					
High Chani								
1849.56	58.6 Pk	2.8 / 26.5 / 37.4	50.6	V / 1.1 / 98.0	-8.0	42.6	54	-11.4
1849.56	61.4 Pk	2.8 / 26.5 / 37.4	53.4	H / 1.0 / 150.0	-8.0	45.4	54	-8.6

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
2774.23	48.7 Pk	3.5 / 30.0 / 37.9	44.3	V / 1.1 / 194.0	-8.0	36.3	54	-17.7
2774.32	43.2 Pk	3.5 / 30.0 / 37.9	38.9	H / 1.1 / 179.0	-8.0	30.9	54	-23.1
3699.12	47.4 Pk	4.5 / 31.8 / 38.5	45.3	V / 1.0 / 197.0	-8.0	37.3	54	-16.7
4623.84	45.4 Pk	5.4 / 32.6 / 40.3	43	H / 1.3 / 190.4	-8.0	35.0	54	-19.0
5548.36	58.9 Pk	6.1 / 34.6 / 39.8	59.7	V / 1.1 / 215.1	-8.0	51.7	54	-2.3
5548.6	61.2 Pk	6.1 / 34.6 / 39.8	62.1	H / 1.1 / 204.2	-8.0	54.1	54	0.1
5548.6	60.4 Pk	6.1 / 34.6 / 39.8	61.2	H / 1.1 / 202.5	-8.0	53.2	54	-0.8
6473.14	57.5 Pk	6.8 / 35.3 / 40.3	59.2	V / 1.0 / 221.5	-8.0	51.2	54	-2.8
6473.43	51.5 Pk	6.8 / 35.3 / 40.3	53.1	H / 1.5 / 137.3	-8.0	45.1	54	-8.9
7397.88	44.6 Pk	7.4 / 36.5 / 40.4	48.1	H / 1.6 / 198.3	-8.0	40.1	54	-13.9
7397.88	47.8 Pk	7.4 / 36.5 / 40.4	51.3	V / 1.0 / 223.1	-8.0	43.3	54	-10.7
9247.35	54.6 Pk	8.5 / 38.2 / 48.8	52.4	V / 1.6 / 162.8	-8.0	44.4	54	-9.6
9247.76	56.9 Pk	8.5 / 38.2 / 48.8	54.8	H / 1.6 / 152.5	-8.0	46.8	54	-7.2
Harmonics	not listed we	re not seen above the	noise floor.					

Project File: 3151965 Page 24 of 33

Fax: 303 449 6160

20dB Bandwidth

Test Report #:	3151965	Test Area:	PW 1 (3M)	Temperature:	22.4	°C
Test Method:	FCC 47 CFR part 15 subpart C Test Date:		15-May-2008	15-May-2008 Relative Humidity:		%
EUT Model #:	BR-003-02	EUT Power:	3VDC Battery	Air Pressure:	101	kPa
EUT Serial #:	50015			_		
Manufacturer:	BOCS			Leve	el Key	
Manufacturer: EUT Description:	BOCS Remote Control			Pk – Peak		arrow Band
EUT Description:				_	Nb – Na	arrow Band pad Band

Project Report

Technician Mike Spataro **Project** 3151965

Capital Asset I	DManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
18730	Hewlett-Packard	11947A	2820A00277	Transient Limiter	C Conducted Emissions	For Ver	3/4/2008	3/4/2009
18890	RHODE & SCHWARZ	ESH2-Z5	830364/002	LISN 50 ohm/50uH 3 line (1kHz - 30 MHz)	C Conducted Emissions	For Ver	3/6/2008	3/6/2009
18909	RHODE & SCHWARZ	ESHS 30	842806/001	EMI Test Receiver	C Conducted Emissions	For Cal	2/20/2008	2/20/2009
18808	EMCO	3146	9203-3376	Log Periodic Antenna	R Radiated Emissions	For Cal	10/12/2007	10/12/2008
18880	Hewlett-Packard	85650A	2811A01300	Q.P Adapter	R Radiated Emissions	For Cal	11/15/2007	11/15/2008
18882	Hewlett-Packard	8566B	2410A00154	Spectrum Analyzer (dc-22 GHz)	R Radiated Emissions	For Cal	11/13/2007	11/13/2008
18887	EMCO	3115	9205-3886	Horn Antenna 1-18GHz	R Radiated Emissions	For Cal	3/6/2008	3/6/2009
18889	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	10/11/2007	10/11/2008
18900	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18901	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18906	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	5/2/2008	5/2/2009

Begin Date: 5/12/2008 **End Date:** 5/15/2008

	1
Appendix B	
Test Plan	
Test Plan	
and	
Constructional Data Form	

Project File: 3151965 Page 28 of 33

5541 Central Avenue, Suite 110
Boulder, Colorado 80301

Voice: 303 786 7999

Fax: 303 449 6160

Appendix C	
Measurement Protocol	
And	
Test Procedures	

Project File: 3151965 Page 29 of 33

Voice: 303 786 7999 Fax: 303 449 6160

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse \log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

Measured Level	+	Transducer & Cable Loss factor	=	Corrected Reading	Specification Limit	-	Corrected Reading	=	Delta Specification
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dB _µ V/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

Project File: 3151965 Page 30 of 33

Voice: 303 786 7999 Fax: 303 449 6160

DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50\,\Omega/50\,\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.

Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

Project File: 3151965 Page 31 of 33

Conducted Emissions Diagram:

Fax: 303 449 6160

Radiated Emissions Diagram:

Project File: 3151965 Page 33 of 33 Voice: 303 786 7999 Fax: 303 449 6160