

Christoph Alt*, Marc Hübner*, Leonhard Hennig

Speech and Language Technology Group, German Research Center for Artificial Intelligence (DFKI)

AKBC 2019 - May 20, 2019

The Task: Relation Extraction

Examples

Current RE Methods ...

- ... rely on explicit features (POS, DEP, NER, ...)
 - Requires an additional preprocessing step
 - Error propagation of automated labeling
- ... require large amounts of labeled data
 - Typically limited training examples available
 - Specific to languages and domains
- ... rely on task-specific architectures
 - Dataset-specific components (e.g. tree-pruning or piecewise splitting)
 - Requires extensive hyperparameter tuning

Our Approach

Relation Extraction via LM

- Use pre-trained OpenAl GPT
- Specific input format for RE
- Fine-tune a LM to the RE task
- Reduce overfitting and catastrophic forgetting via aux. LM objective

Language modeling

- Provides implicit features via pre-training
- Extracts syntactic and semantic knowledge from unlabeled data

General purpose architecture

- Task adaption only requires change to input format
- Future work: Extend with supporting facts in natural language

Key Insights

- Improved supervised RE performance compared to state-of-the-art approaches (on TACRED and SemEval 2010 Task 8)
- Increased sample-efficiency, achieving baseline performance with only 20% of the data
- Language models perform better on generic entities (SemEval) than on named entities (TACRED)
- Entity Masking improved generalization for named entities

TACRED

System	Р	R	F1
LR^{\dagger}	72.0	47.8	57.5
CNN^\dagger	72.1	50.3	59.2
Tree-LSTM †	66.0	59.2	62.4
$PA-LSTM^{\dagger}$	65.7	64.5	65.1
C - GCN^{\dagger}	69.9	63.3	66.4
TRE (ours)	70.1	65.0	67.4

SemEval 2010 Task 8

System	Р	R	F1
SVM^{\dagger}	_	_	82.2
$PA-LSTM^{\dagger}$	_	_	82.7
C-GCN^{\dagger}	_	_	84.8
DRNN^{\dagger}	_	_	86.1
BRCNN^{\dagger}	_	_	86.3
TRE (ours)	88.0	86.2	87.1

Come to our Poster!!!

Github: https://github.com/DFKI-NLP/TRE

Contact: {christoph.alt, marc.huebner, leonhard.hennig}@dfki.de