Number System

Integer Representation

Size of Data and Value:

SIZE	BINARY	DEC	HEXA
8	0000 0000 1111 1111	0 - 255	00 - FF
12	0000 0000 0000 1111 1111 1111	0 - 4095	000 - FFF
16	0000 0000 0000 0000 1111 1111 1111 1111	$0 - (2^{16} - 1)$	0000- FFFF
20	0000 0000 0000 0000 0000 1111 1111 1111	$0 - (2^{20} - 1)$	00000 - FFFFF
32	0000	$0 - (2^{32} - 1)$	00000000 - FFFFFFF

Integer Representation

- Only have 0 & 1 to represent everything
- numbers stored in binary
 - -e.g. 41=00101001
- No minus sign (negative nos.)
- No period (for real nos.)
- Negative Numbers
 - —Sign-Magnitude
 - —Two's compliment

Sign-Magnitude

- Left most bit is sign bit (MSB)
 - —0 means positive
 - ─1 means negative
- \bullet +18 = 00010010
- -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - —Two representations of zero (+0 and -0)

Two's Compliment

- \bullet +3 = 00000011
- \bullet +2 = 00000010
- \bullet +1 = 0000001
- \bullet +0 = 00000000
- -1 = 111111111
- -2 = 111111110
- -3 = 111111101

Benefits

- One representation of zero
- Arithmetic works easily
- Negating is fairly easy
 - -3 = 00000011
 - —Boolean complement gives 11111100
 - —Add 1 to LSB 11111101

Negation Special Case 1

- \bullet 0 = 00000000
- Bitwise not 11111111
- Add 1 to LSB +1
- Result 1 00000000
- Overflow is ignored, so:
- - 0 = 0 $\sqrt{ }$

Negation Special Case 2

- \bullet -128 = 10000000
- bitwise not 01111111
- Add 1 to LSB +1
- Result 10000000
- So:
- \bullet -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

8 bit 2s compliment

```
-+127 = 011111111 = 2^7 -1
```

- $-128 = 10000000 = -2^7$
- 16 bit 2s compliment

```
-+32767 = 01111111111111111111111 = 2^{15} - 1
```

 $-32768 = 100000000 00000000 = -2^{15}$

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - $-1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Where is the binary point?
- Fixed?
 - —Very limited
- Moving?
 - —How do you show where it is?

Floating Point

- +/- .significand x 2^{exponent}
- Misnomer
- Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - -e.g. Excess (bias) 128 means
 - —8 bit exponent field
 - —Pure value range 0-255
 - —Subtract 128 to get correct value
 - —Range -128 to +127

Normalization

- FP numbers are usually normalized
- i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- e.g. 3.123×10^3)

Floating Point Examples

(b) Examples

FP Ranges

- For a 32 bit number
 - —8 bit exponent
 - $-+/-2^{127} \approx 1.5 \times 10^{77}$
- Accuracy
 - —The effect of changing lsb of mantissa
 - -23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - —About 6 decimal places

IEEE 754

- Standard for floating point storage
- 32 and 64 bit standards
- 8 and 11 bit exponent respectively

IEEE 754 Formats

(a) Single format

(b) Double format

Other Codes

- Excess Code (Excess-128)
- GREY Code
- BCD (Binary Coded Decimal)

Character Representation

- ASCII (American Standard Code for Information Interchange)
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
- UNICODE