- $u_6 = 9$ و $u_3 = 3$ حيث r وأساسها u_0 وأساسة حدّها الأوّل u_0
 - u_0 أوجد الأساس r و حدّها الأوّل الساس (1
 - n اكتب عبارة الحد العام u_n بدلالة (2
 - (3) هل العدد 37 حدا من حدود المتتالية (u_n) ? إذا كان حدا ما رتبته
 - $S = u_0 + u_1 + u_2 + \dots + u_{20}$: $S = u_0 + u_1 + u_2 + \dots + u_{20}$
 - $S_n = u_0 + u_1 + u_2 + \ldots + u_n$ احسب المجموع $S_n = u_0 + u_1 + u_2 + \ldots + u_n$ (5

<u>الحل:</u>

- u_0 ايجاد الأساس r و حدّها الأوّل u_0
- . r=2 أي 9=3+3r أي $u_6=u_3+3r$ أي $u_6=u_3+3r$
 - $u_0 = 3$ أي $u_0 = 3$ ولدينا $u_3 = u_0 + 3r$ يعني $u_3 = u_0 + 3r$
 - n كتابة عبارة الحد العام u_n بدلالة (2
 - $u_n = -3 + 2n$ ومنه $u_n = u_0 + nr$
 - (u_n) هل العدد 37 حدا من حدود المتتالية (3)
- حد من حدود المتتالية (u_n) معناه يوجد عدد طبيعي k بحيث $u_k=37$ أي 37+2k=30 ومنه 20+3+2k=30 اذن العدد 37 حد من
 - من حدود المتتالية (u_n) و هو الحد الحادي والعشرون.
 - $\sqrt{S} = u_0 + u_1 + u_2 + \dots + u_{20}$ حساب المجموع S ؛ حيث: (4
 - $S = \frac{21}{2}(u_0 + u_{20}) = \frac{21}{2}(-3 + (-3 + 2 \times 20)) = 357$
 - $S_n = u_0 + u_1 + u_2 + ... + u_n$: حساب المجموع $S_n = u_0 + u_1 + u_2 + ... + u_n$ (5
 - $S_n = u_0 + u_1 + u_2 + \dots + u_n = \frac{n+1}{2} (u_0 + u_n) = \frac{n+1}{2} (-3 3 + 2n)$ =(n+1)(-3+n)

التمرين الثاني:

- +b+c=9 : حيث \overline{c} عداد متتابعة لمتتالية حسابية متزايدة أساسها \overline{c} حيث \overline{c}
 - a بدلالة a بدلالة b احسب b أي احسب b بدلالة a
 - $a \times c = -16$ ب) علما أنّ
 - c و a قمّ استنتج a و c
 - .5 متتالية حسابية حدّها الأول $u_0 = -2$ و أساسها .2
 - n الحد العام u بدلالة أ
 - $.S = u_0 + u_1 + u_2 + ... + u_{15}$: ب) احسب u_{15} ثمّ استنتج المجموع
 - $v_n 8u_n = 0$ بالعلاقة: N متتالية عددية معرّفة على العلاقة: $v_n 8u_n = 0$
 - . $S' = v_0 + v_1 + v_2 + ... + v_{15}$: Lewy large l

- a و كتابة a و بدلالة b بدلالة a
- a+c=2b اي a+b+c=9 لدينا a+b+c=9 ومنه a+b+c=9
 - c=3+r وعليه a=b-r أي a=3-r وعليه a=b-r
 - c و a با تعيين الأساس r ثمّ استنتاج
- لدينا $a \times c = -16$ معناه $a \times c = -16$ يكافئ $a \times c = -16$ يكافئ $a \times c = -16$ ومنه $a \times c = -16$ وبما أن المتثالية r = 5 متزايدة فإن
 - u_n بدلالة u_n التعبير عن الحد العام العبير عن 2.

 $\overline{u_n} = -2 + 5n$ ومنه $u_n = u_0 + nr$

 $S = u_0 + u_1 + u_2 + \dots + u_{15}$: المجموع يقم استنتاج المجموع (ب

$$u_{15} = -2 + 5 \times 15 = 73$$

$$S = \frac{16}{2} \left(u_0 + u_{15} \right) = 8 \left(-2 + 73 \right) = 568$$

 $v_n - 8u_n = 0$ متتالية عددية معرّفة على العلاقة: $v_n - 8u_n = 0$

$$S' = v_0 + v_1 + v_2 + ... + v_{15}$$
: $= v_0 + v_1 + v_2 + ... + v_{15}$

$$v = 8u$$
 دبنا $v - 8u = 0$ ومنه

$$S$$
 '= v_0 + v_1 + v_2 +...+ v_{15} : حساب المجموع : $v_n = 8u_n$ ومنه $v_n - 8u_n = 0$ لدينا S '= v_0 + v_1 + v_2 +...+ v_{15} = $8u_0$ + $8u_1$ + $8u_2$ +...+ $8u_{15}$

$$=8(u_0+u_1+u_2+\dots+u_{15})=8S=4544$$

$$u_{n+1} = \frac{u_n}{u_n + 1}$$
 ، $u_n = \frac{u_n}{u_n + 1}$ ، $u_n = \frac{u_n}{u_n + 1}$ ومن أجل كل عدد طبيعي

 u_n ثمّ أعط تخمينا لعبارة u_n ثمّ أعط تخمينا لعبارة u_3 ، u_2 ، u_1 ، احسب u_1

$$u_n = \frac{1}{n+1}$$
 ، n عدد طبیعي ، n عدد أنّه من أجل كل عدد عدد التراجع أنّه من أجل كل عدد التراجع أنّه من أجل كل

3- ادرس اتجاه تغیّر المتتالیة (u_n) واحسب نهایتها.

$$.u_{3} = \frac{u_{2}}{u_{2}+1} = \frac{\frac{1}{3}}{\frac{1}{3}} = \frac{1}{\frac{1}{3}} \cdot u_{2} = \frac{u_{1}}{u_{1}+1} = \frac{\frac{1}{2}}{\frac{1}{2}+1} = \frac{\frac{1}{2}}{\frac{3}{2}} = \frac{1}{3} \cdot u_{1} = \frac{u_{0}}{u_{0}+1} = \frac{1}{2}$$

$$u_n = \frac{1}{n+1}$$
 يبدو أنّ

$$u_n = \frac{1}{n+1}$$
، n عدد طبیعي ، n فرن أجل كل عدد طبیعي -2

$$n=0$$
 ومنه الخاصية صحيحة من أجل $u_0=rac{1}{0+1}=1$

$$.u_{_{n+1}}=rac{1}{n+2}$$
 نفرض أن $u_{_{n+1}}=rac{1}{n+1+1}$ ونبر هن أن $u_{_{n}}=rac{1}{n+1}$ نفرض أن

$$u_{n+1} = \frac{\frac{1}{n+1}}{\frac{1}{n+1}+1} = \frac{\frac{1}{n+1}}{\frac{n+2}{n+1}} = \frac{1}{n+2}$$
 دينا من أجل كل عدد طبيعي $u_{n+1} = \frac{u_n}{u_n+1}$ ، $u_n = \frac{u_n}{u_n+1}$ دينا من أجل كل عدد طبيعي

$$u_n = \frac{1}{n+1}$$
 ومنه حسب مبدأ الاستدلال بالتراجع فإن

دراسة اتجاه تغيّر المتتالية
$$(u_n)$$
 واحسب نهايتها. -3

لدينا من أجل كل عدد طبيعي
$$u_n + 1 < n$$
 معناه $u_n + 2 < \frac{1}{n+2}$ أي $u_{n+1} < u_n$ وبالتالي المتتالية u_n معناه $u_{n+1} < u_n$ أي المتالية المتتالية u_n

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} = \frac{1}{n+1} = 0$$

 $u_{n+1}=rac{3u_n+2}{4}$ ، $u_n=1$ ومن أجل كل عدد طبيعي المعرّفة ب $u_0=1$ لتكن $u_n=1$

- u_3, u_2, u_1 | 1
- $u_{n} < 2$ فإنّ n فإنّ عدد طبيعي n فإنّ $u_{n} < 2$
 - (u_n) متزايدة تماما. (u_n)
 - (u_n) متقاربة استنتج أنّ المتتالية
- $v_n = u_n 2$: ب ب ، n ب عتبر المتتالية (v_n) المعرّفة من أجل كل عدد طبيعي
 - أ ـ بيّن أنّ (v_n) متتالية هندسية، يطلب تحديد أساسها وحدّها الأوّل.
 - u_n بدلالة u_n ثمّ استنتج عبارة v_n بدلالة v_n
 - (u_n) ؟ المتتالية (u_n)
- $T_n = u_0 + u_1 + ...u_n$: حيث: $T_n = u_0 + u_1 + ...u_n$ واستنتج المجموع $S_n = v_0 + v_1 + ... + v_n$: حيث $S_n = v_0 + v_1 + ... + v_n$ احسب المجموع $S_n = v_0 + v_1 + ... + v_n$ احسب المجموع $S_n = v_0 + v_1 + ... + v_n$
 - $\underbrace{u_3\cdot u_2\cdot u_1}$ حساب الحدود (1

$$.u_{3} = \frac{3u_{2} + 2}{4} = \frac{3 \times \frac{23}{16} + 2}{4} = \frac{121}{64} \cdot u_{2} = \frac{3u_{1} + 2}{4} = \frac{3 \times \frac{5}{4} + 2}{4} = \frac{23}{16} \cdot u_{1} = \frac{3u_{0} + 2}{4} = \frac{3 \times 1 + 2}{4} = \frac{5}{4}$$

- $u_n < 2$ أ ـ برهان بالتراجع أنّه من أجل كل عدد طبيعي n، فإنّ 2
 - n=0 لدينا $u_0 < 2$ لدينا
- $\langle u_n \rangle < 2$ نفرض أنّ $\langle u_n \rangle < 2$ نفرض أن $\langle u_n \rangle < 2$ نفرض أن
- لدينا $u_n < 2$ معناه $u_n < 6$ يكافئ $u_n + 2 < 2$ يكافئ $u_n + 2 < 3$ يكافئ $u_n < 6$ لدينا $u_n < 2$
 - $u_{x} < 2$ وهذا حسب مبدأ الإستدلال بالتراجع.
 - ب ـ تبيان أنّ المتتالية (u_n) متزايدة تماما.
 - لیکن n عددا طبیعیا.
 - $u_{n+1} u_n = \frac{3u_n + 2}{4} u_n = \frac{2 u_n}{4}$
 - لدينا من أجل كل عدد طبيعي $u_n < 2$ ، $u_n > 0$ ومنه $u_n < 2$ إذن $u_{n+1} u_n > 0$ وبالتّالية المتتالية المتالية المتالية المتتالية المتالية المتتالية المتتالية المتتالية المتتالية المتتالية المتتالية المتتالية المتتالية المتالية الم
 - جـ استنتاج أنّ المتتالية (u_n) متقاربة.
 - بما أن المتتالية (u_n) متزايدة ومحدودة من الأعلى بالعدد 2 فهي متقاربة.
 - ن تبيان أن (v_n) متتالية هندسية، يطلب تحديد أساسها وحدّها الأوّل.

$$v_{n+1} = u_{n+1} - 2 = \frac{3u_n + 2}{4} - 2 = \frac{3u_n - 6}{4} = \frac{3(u_n - 2)}{4} = \frac{3}{4}v_n$$

- $v_0 = u_0 2 = -1$ إذن $v_0 = u_0 2 = -1$ إذن $v_n = \frac{3}{4}$ إذن إذن أدم الأول
 - n بدلالة عبارة v_{x} بدلالة

$$.v_{n}=-igg(rac{3}{4}igg)^{n}$$
 ي متتالية هندسية إذن $v_{n}=v_{0}igg(rac{3}{4}igg)^{n}$ متتالية هندسية إذن $\left(v_{n}
ight)$

لة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

استنتاج عبارة _س بدلالة n.

$$u_n = -\left(\frac{3}{4}\right)^n + 2$$
 لدينا $v_n = v_n + 2$ ومنه $v_n = u_n - 2$ لدينا

 $\mathcal{F}(u_n)$ جـ - تعيين نهاية المتتالية

$$\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0 \text{ فإن } -1 < \frac{3}{4} < 1 \text{ فإن } \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left[-\left(\frac{3}{4}\right)^n + 2 \right] = 2$$

 $T_n = u_0 + u_1 + ...u_n$: حيث: $T_n = u_0 + u_1 + ...u_n$ واستنتاج المجموع $S_n = v_0 + v_1 + ...+v_n$: حيث: $S_n = v_0 + v_1 + ...+v_n$ عساب المجموع $S_n = v_0 + v_1 + ...+v_n$ عساب المجموع $S_n = v_0 + v_1 + ...+v_n$

$$S_{n} = v_{0} + v_{1} + \dots + v_{n} = v_{0} \left(\frac{1 - \left(\frac{3}{4}\right)^{n+1}}{1 - \frac{3}{4}} \right) = -\left(\frac{1 - \left(\frac{3}{4}\right)^{n+1}}{\frac{1}{4}} \right)$$

$$S_n = 4 \left(\left(\frac{3}{4} \right)^{n+1} - 1 \right)$$

 $T_n = u_0 + u_1 + \dots u_n$:حيث: $T_n = u_0 + u_1 + \dots u_n$

$$T_n = u_0 + u_1 + ... u_n = (v_0 + 2) + (v_1 + 2) + ... + (v_0 + 2) = 2(n+1) + v_0 + v_1 + ... + v_n$$

$$T_n = u_0 + u_1 + ... u_n = (v_0 + 2) + (v_1 + 2) + ... + (v_0 + 2)$$

$$=2(n+1)+v_0+v_1+...+v_n$$

$$= 2(n+1) + 4\left(\left(\frac{3}{4}\right)^{n+1} - 1\right)$$

لتمرين الخامس:

. $u_0 = 6$ متتالية عددية معرّفة بحدّها الأوّل $u_0 = 6$ والعلاقة التراجعية: $u_0 = 4$ من أجل كل عدد طبيعي $u_0 = 6$

 (u_n) عنتر المتتالية u_2 ، ماذا تخمن بالنسبة لاتجاه تغيّر المتتالية u_2 ، u_1 .1

$$u_{n+1} - 3 = \frac{1}{3}(u_n - 3)$$
، $u_{n+1} - 3 = \frac{1}{3}(u_n - 3)$ عدد طبیعي 2.

 $u_n \ge 3$ ، n عدد طبیعي ، n قنه من أجل كل عدد طبيعي .3

4. أ - برهن أنّ المتتالية (u_n) متناقصة.

 \boldsymbol{u}_n متقاربة. استنتج أنّ المتتالية

5. نعتبر المتتالية العددية (v_n) المعرّفة من أجل كل عدد طبيعي n كما يلي: $v_n=u_n+lpha$ حيث α عدد حقيقي.

أ ـ عيّن العدد الحقيقي $\, lpha \,$ بحيث تكون المتتالية $\, (v_n) \,$ هندسية، يطلب تعيين أساسها وحدّها الأوّل.

 $\lim_{n\to +\infty} u_n$ بدلالة v_n أحسب ، واستنتج كتابة u_n بدلالة v_n بدلالة واستنتج

. n بدلالة $S_n = u_0 + u_1 + ... + u_n$ بدلالة $S_n = u_0 + u_1 + ... + u_n$

<u>الحل:</u>

 $u_3 u_2 \cdot u_1 + u_2 \cdot u_1$

$$u_3 = \frac{1}{3}u_2 + 2 = \frac{1}{3} \times \frac{10}{3} + 2 = \frac{28}{9} \cdot u_2 = \frac{1}{3}u_1 + 2 = \frac{1}{3} \times 4 + 2 = \frac{10}{3} \cdot u_1 = \frac{1}{3}u_0 + 2 = \frac{1}{3} \times 6 + 2 = 4$$

 $\left(u_{n}\right)$ التخمين بالنسبة لاتجاه تغيّر المتتالية

لدينا (u_n) متناقصة. $u_0 > u_1 > u_2 > u_3$ لدينا

 $u_{n+1} - 3 = \frac{1}{3}(u_n - 3)$ ، n عدد طبيعي عدد التحقق أنّه من أجل كل عدد طبيعي .2

$$u_{n+1} - 3 = \frac{1}{3}u_n + 2 - 3 = \frac{1}{3}u_n - 1 = \frac{1}{3}(u_n - 3)$$

 $u_n \ge 3$ ، n جدد طبیعی آنه من أجل کل عدد طبیعی 3.

 $u_0 \geq 3$ لدينا $u_0 \geq 3$ لدينا

 $u_{n+1} \ge 3$ نفرض أنّ $u_n \ge 3$ ونبر هن صحة الخاصية

 $\frac{1}{3}(u_n-3) \ge 0$ لدينا من أجل كل عدد طبيعي $u_n-3 \ge 0$ ، $u_{n+1}-3 = \frac{1}{3}(u_n-3)$ وحسب الفرضية لدينا من أجل كل عدد طبيعي $u_n-3 \ge 0$ $u_n \ge 3$ ، ومنه $u_{n+1} \ge 3$ ومنه $u_{n+1} \ge 3$ ومنه $u_{n+1} \ge 3$ ومنه $u_{n+1} \ge 3$ ومنه ومنه $u_n \ge 3$

 u_n . أ - برهان أنّ المتتالية u_n متناقصةً u_n

$$u_{n+1} - u_n = \frac{1}{3}u_n + 2 - u_n = \frac{-2}{3}u_n + 2$$

 (u_n) المتتالية $u_{n+1} - u_n \le 0$ الدينا من أجل كل عدد طبيعي $u_{n+1} - u_n \ge 3$ معناه $u_n \ge 3$ يكافئ $u_n \ge 3$ يكافئ يكافئ $u_n \ge 3$ الدينا من أجل كل عدد طبيعي

ب ـ استنتاج أنّ المتتالية (u_n) متقاربة.

بما أن المتتالية $(u_{_n})$ متناقصة ومحدودة من الأسفل فهي متقاربة.

5. أ - تعيين العدد الحقيقي lpha بحيث تكون المتتالية (v_n) هندسية، يطلب تعيين أساسها وحدّها الأوّل.

$$v_{n+1} = u_{n+1} + \alpha = \frac{1}{3}u_n + 2 + \alpha$$
$$= \frac{1}{3}(v_n - \alpha) + 2 + \alpha$$
$$= \frac{1}{3}v_n + 2 + \frac{2}{3}\alpha$$

$$\alpha=-3$$
 أي $2+rac{2}{3}lpha=0$ متتالية هندسية أساسها $rac{1}{3}$ إذا وفقط إذا كان (v_n)

$$v_0 = u_0 - 3 = 6 - 3 = 3$$
 فيكون حدها الأول

n بدلالة v_n بدلالة n

$$v_n = v_0 \left(\frac{1}{3}\right)^n = 3\left(\frac{1}{3}\right)^n = \left(\frac{1}{3}\right)^{n-1}$$

n استنتاج کتابه u_n بدلاله

$$u_n = v_n + 3 = \left(\frac{1}{3}\right)^{n-1} + 3$$

.
$$\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \left(\left(\frac{1}{3}\right)^{n-1} + 3 \right) = 3$$
 ومنه $\lim_{n\to +\infty} \left(\frac{1}{3}\right)^{n-1} = 0$ لدينا

التمرين السادس: التمرين السادس: u_0 متتالية حسابية متناقصة معرّفة على $\mathbb N$ بحدّها الأوّل u_0 و أساسها u_0 .

$$\begin{cases} u_1 + u_2 + u_3 = 24 \\ u_1^2 + u_2^2 + u_3^2 = 210 \end{cases}$$
 أ عين u_2 ثم u_2 علما أنّ:

 $\boldsymbol{S}_n = \boldsymbol{u}_0 + \boldsymbol{u}_2 + + \boldsymbol{u}_n$: ب - اكتب \boldsymbol{u}_n بدلالة \boldsymbol{n} ، ثمّ احسب المجموع: \boldsymbol{u}_n

سر النجام أن تكون مخلصاً لأهدافك

ين يعتبر المتتالية (v_n) المعرّفة كما يلي: $v_n=e^{14-3n}$ حيث e أساس اللو غاريتم النيبيري.

أ ـ بيّن أنّ (v_n) متتالية هندسية يطلب تعيين أساسها q وحدّها الأوّل؛ ثمّ احسب (v_n) متالية هندسية يطلب تعيين أساسها

 $P_{n} = v_{0} \times v_{1} \times \times v_{n}$ الجداء $T_{n} = v_{0} + v_{1} + + v_{n}$: احسب المجموع:

 $u_{1}=8$ اي $u_{1}=u_{2}=u_{1}+u_{2}+u_{3}=24$ اين $u_{1}=u_{2}=u_{1}+u_{3}$ اي $u_{2}=u_{1}+u_{3}=24$ اين الدينا $u_{1}=u_{2}=u_{3}=u_{1}+u_{3}=24$

 $u_3 = u_2 + r = 8 + r$ و $u_1 = u_2 - r = 8 - r$ لدينا

r=-3 من أجل r=3 نجد $u_3=11$ مرفوض لأن المتتالية

 $S_n = u_0 + u_2 + \dots + u_n$ ب د كتابة u_n ، وحساب المجموع:

 $u_n = 14 - 3n$ ومنه $u_n = 8 - 3(n - 2)$ ومنه $u_n = u_2 + (n - 2)r$

 $S_n = u_0 + u_2 + \dots + u_n = \frac{n+1}{2} (u_0 + u_n) = \frac{n+1}{2} (14 + 14 - 3n)$

 $.S_n = \frac{n+1}{2}(28-3n)$

. $\lim v_n$ متتالية هندسية يطلب تعيين أساسها q وحدّها الأقل؛ وحساب (v_n) . 2.

 $v_{0}=e^{14-3\times0}=e^{14}$ وحدها الأول $q=e^{-3}$ متتالية هندسية أساسها $q=e^{-3}$ وحدها الأول $v_{n+1}=e^{14-3(n+1)}=e^{14-3n-3}=e^{14-3n}$

ي متقاربة. (v_n) متقاربة. $\lim_{n\to\infty}v_n=\lim_{n\to\infty}e^{14-3n}=0$

 $P_{n} = v_{0} \times v_{1} \times \times v_{n}$ الجداء $T_{n} = v_{0} + v_{1} + + v_{n}$: ثمّ الجداء بالمجموع:

$$T_n = v_0 + v_1 + \dots + v_n = v_0 \left(\frac{1 - (e^{-3})^{n+1}}{1 - e^{-3}} \right) = e^{14} \left(\frac{1 - e^{-3(n+1)}}{1 - e^{-3}} \right)$$

 $P_n = v_0 imes v_1 imes imes v_n = e^{u_0} imes e^{u_1} imes ... imes e^{u_n}$ لدينا $v_n = e^{14-3n} = e^{u_n}$ لدينا

$$P_n = e^{u_0 + u_1 + \dots + u_n} = e^{S_n} = e^{\frac{n+1}{2}(28-3n)}$$

 $\lim_{n\to\infty} e^{-3(n+1)} = 0 \quad \forall \quad \lim_{n\to\infty} T_n = \lim_{n\to\infty} e^{-14} \left(\frac{1-e^{-3(n+1)}}{1-e^{-3}} \right) = \frac{e^{-14}}{1-e^{-3}} \rightarrow \frac{1}{1-e^{-3}}$

$$\lim_{n \to \infty} \frac{n+1}{2} (28-3n) = -\infty$$
 لأنّ $\lim_{n \to +\infty} P_n = \lim_{n \to +\infty} e^{\frac{n+1}{2}(28-3n)} = 0$

التمرين السابع: التمرين السابع: q متتالية هندسية متزايدة تماما حدّها الأوّل u_1 وأساسها q حيث:

$$\begin{cases} u_1 + 2u_2 + u_3 = 32 \\ u_1 \times u_2 \times u_3 = 216 \end{cases}$$

 u_1 لهذه المتتالية واستنتج الحد الأوّل u_2 لهذه المتتالية واستنتج الحد الأوّل.

 u_n بدلالة u_n بدلالة . u

 $S_n = 728$ بحيث يكون $S_n = u_1 + u_2 + ... + u_n$ بحيث يكون $S_n = u_1 + u_2 + ... + u_n$ بحيث يكون $S_n = 728$

 $v_{n+1} = \frac{3}{2}v_n + u_n$ و $v_1 = 2$ و $v_1 = 2$ و $v_{n+1} = \frac{3}{2}v_n + u_n$ و $v_1 = 2$ و $v_1 = 2$ و $v_2 = 2$

 v_3 v_2 v_3

 $w_n = \frac{v_n}{u} - \frac{2}{3}$: n عدد طبیعي غیر معدوم کا عدد عدد طبیعي غیر معدوم

.
$$\frac{1}{2}$$
 بیّن أنّ (w_n) متتالیة هندسیة أساسها

n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n

الحل: u_1 متتالية هندسية متزايدة تماما حدّها الأوّل u_1 وأساسها q حيث:

$$\int_{u_1 \times u_2 \times u_3} u_1 + 2u_2 + u_3 = 32$$

$$u_1 \times u_2 \times u_3 = 216$$

 u_1 لهذه المتتالية واستنتج الحد الأوّل u_2 لهذه المتتالية واستنتج الحد الأوّل .1

 $u_{1} = 6$ لاينا $u_{2}^{3} = 216$ ومنه $u_{1} \times u_{2} \times u_{3} = 216$ ومنه $u_{1} \times u_{3} = u_{2}^{2}$ لدينا

$$.u_3 = qu_2 = 6q$$
 و $u_1 = \frac{u_2}{q} = \frac{6}{q}$ لدينا

وي $u_1 + 2u_2 + u_3 = 32$ أي $u_1 + 2u_2 + u_3 = 32$ أي $u_1 + 2u_2 + u_3 = 32$

 $q = \frac{1}{2}$ او q = 3 بعد حساب المميز نجد q = 3 او q = 3

 $u_3=3$ من أجل $q=\frac{1}{3}$ نجد $q=\frac{1}{3}$ مرفوض لأن المتتالية $q=\frac{1}{3}$ من أجل

 u_n بدلالة عبارة الحد العام u_n بدلالة

$$u_n = u_1 q^{n-1} = 2(3)^{n-1}$$

 $S_n = u_1 + u_2 + \dots + u_n$ بدلالة S_n بدلالة بديث:

$$S_n = u_1 \left(\frac{3^n - 1}{3 - 1} \right) = 2 \left(\frac{3^n - 1}{2} \right) = 3^n - 1$$

 $S_n = 728$ تعيين العدد الطبيعي n بحيث يكون

$$n = \frac{\ln 729}{\ln 3} = 6$$
 معناه $n \ln 3 = \ln 729$ معناه $n \ln 3 = \ln 729$ معناه $3^n = 1 \ln 729$ معناه $3^n = 729$ معناه $3^n = 729$

2. أ ـ حساب ، ٧ و ، ٧.

$$v_3 = \frac{3}{2}v_2 + u_2 = \frac{3}{2} \times 5 + 6 = \frac{27}{2}$$
 $v_2 = \frac{3}{2}v_1 + u_1 = 3 + 2 = 5$

 $rac{1}{2}$ متتالية هندسية أساسها - تبيين أنّ

$$u_{n+1} = 3u_n$$
 ولدينا u_n متتالية هندسية أساسها $u_{n+1} = \frac{v_{n+1}}{u_{n+1}} - \frac{2}{3} = \frac{\frac{3}{2}v_n + u_n}{u_{n+1}} - \frac{2}{3}$

$$w_{n+1} = \frac{\frac{3}{2}v_n + u_n}{3u_n} - \frac{2}{3} = \frac{\frac{3}{2}v_n}{3u_n} + \frac{u_n}{3u_n} - \frac{2}{3}$$

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

$$w_{n+1} = \frac{1}{2} \frac{v_n}{u_n} + \frac{1}{3} - \frac{2}{3} = \frac{1}{2} \frac{v_n}{u_n} - \frac{1}{3} = \frac{1}{2} \left(\frac{v_n}{u_n} - \frac{2}{3} \right)$$

$$w_{n+1} = \frac{1}{2}w_n$$

 $\frac{1}{2}$ ن $\binom{w}{m}$ متتالية هندسية أساسها

n بدلالة w بدلالة m

$$w_n = w_0 \left(\frac{1}{2}\right)^n = \frac{1}{3} \left(\frac{1}{2}\right)^n$$

n استنتاج v_n بدلالة

$$v_n = (3)^{n-1} \left(\left(\frac{1}{2} \right)^{n-1} + 4 \right)$$
 يكافئ $v_n = 2(3)^n \left(\frac{1}{3} \left(\frac{1}{2} \right)^n + \frac{2}{3} \right)$ يكافئ $v_n = u_n \left(w_n + \frac{2}{3} \right)$ يكافئ $v_n = \frac{v_n}{u_n} - \frac{2}{3}$ لدينا

 $u_8 = 9u_{10}$ و $u_0 = e^2$ و يا و معرّفة بـ $u_0 = e^2$ و التمرين الثامن $u_0 = 0$

- . $\lim_{n\to+\infty} u_n$ عيّن أساس هذه المتتالية واحسب (1
- $P_n = u_0 \times u_1 \times u_2 \times ... \times u_n$ احسب بدلالة n الجداء P_n حيث: (2
 - $w_n = \ln(u_n)$:المتتالية (w_n) معرّفة على ب

أ ـ برهن أنّ (w_n) متتالية حسابية، يطلب تعيين أساسها وحدّها الأوّل.

 $S_n = w_0 + w_1 + ... + w_n$: حيث: $S_n = w_0 + w_1 + ... + w_n$ المجموع

. $\lim_{n\to+\infty}\frac{S_n}{n^2}$ حسب

<u>الحل:</u>

 $\lim_{n o +\infty} u_n$. $\lim_{n o +\infty} u_n$ تعيين أساس هذه المتتالية وحساب

 $u_n = u_p q^{n-p}$. q الحد العام لمتتالية هندسية أساسها

 $u_{10} = u_8 \times q^2$ لدينا

 $q = \frac{1}{3}$ يكافئ $q^2 = \frac{1}{9}$ وبما أن حدود المتتالية موجية تماما فإن $u_8 = 9 \times u_8 \times q^2$ معناه $u_8 = 9 \times u_8 \times q^2$

 $\lim_{n\to+\infty}u_n$ — Luna

$$\lim_{n\to +\infty} u_n = 0 \text{ (خن } -1 < \frac{1}{3} < 1 \text{ (خن } \lim_{n\to +\infty} \left(\frac{1}{3}\right)^n = 0 \text{ (e. 1)}$$
 لاينا

. $P_n = u_0 \times u_1 \times u_2 \times ... \times u_n$: حساب بدلالة n الجداء P_n الجداء (2

الدينا من أجل كل عدد طبيعي
$$u_n = e^2 \left(\frac{1}{2}\right)^n$$
 ، n ومنه:

$$P_n = e^2 \left(\frac{1}{3}\right)^0 \times e^2 \left(\frac{1}{3}\right)^1 \times e^2 \left(\frac{1}{3}\right)^2 \times ... \times e^2 \left(\frac{1}{3}\right)^n$$

$$P_n = \left(e^2\right)^{n+1} \left(\frac{1}{3}\right)^{0+1+2+\ldots+n} = e^{2(n+1)} \left(\frac{1}{3}\right)^{\frac{n(n+1)}{2}}$$

3. أ - برهان أنّ $\left(w_{n}\right)$ متتالية حسابية، يطلب تعيين أساسها وحدّها الأوّل.

سلسلة نمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

$$w_{n+1} = \ln(u_{n+1}) = \ln(\frac{1}{3}u_n) = \ln(\frac{1}{3}) + \ln(u_n) = \ln(\frac{1}{3}) + w_n$$

$$.w_0 = \ln(u_0) = \ln e^2 = 2$$
 وحدها الأول $\ln(\frac{1}{3})$ متتالية حسابية أساسها

بما أن (w_n) متتالية حسابية أساسها سالب فهي متتالية متناقصة.

 $S_n = W_0 + W_1 + ... + W_n$ ب حساب بدلالة n المجموع $S_n = S_n$

$$S_n = \frac{n+1}{2} (w_0 + w_n) = \frac{n+1}{2} \left(2 + 2 + n \ln \left(\frac{1}{3} \right) \right)$$

$$S_n = \frac{n+1}{2} (4 - n \ln 3)$$

$$\lim_{n\to+\infty}\frac{S_n}{n^2}$$

$$\lim_{n \to +\infty} \frac{S_n}{n^2} = \lim_{n \to +\infty} \frac{\frac{n+1}{2}(4-n \ln 3)}{n^2} = \lim_{n \to +\infty} \frac{\frac{n+1}{2}}{n} \times \frac{4-n \ln 3}{n}$$

$$\lim_{n \to +\infty} \frac{S_n}{n^2} = \lim_{n \to +\infty} \frac{n+1}{2n} \times \frac{4 - n \ln 3}{n} = \frac{1}{2} \times (-\ln 3) = -\frac{\ln 3}{2}$$

التمرين التاسع:

 $u_{n+1}=\sqrt{u_n}$ ، $u_n=0$ ومن أجل كل عدد طبيعي $u_n=0$ المتتالية المعرفة كما يلي: $u_n=0$

 $u_n > 1$ ، n عدد طبیعي انه من أجل كل عدد التراجع أنه من أجل 1.

2. ادرس اتجاه تغير المتتالية (u_n) واستنتج تقاربها.

. $v_n = \ln\left(u_n\right)$ يلي: (v_n) المعرفة كما يلي: (3

أ ـ بين أن $\binom{v_n}{n}$ متتالية هندسية يطلب تعيين أساسها وحدها الأول.

. (u_n) بهایة المتتالیه u_n بدلاله u_n بدلاله u_n

 $.P_n = u_0 imes u_1 imes \dots imes u_n$ و $S_n = v_0 + v_1 + \dots + v_n$ نضع $S_n = v_0 + v_1 + \dots + v_n$ أ ـ احسب $S_n = v_0 + v_1 + \dots + v_n$ أ ـ احسب $S_n = v_0 + v_1 + \dots + v_n$

 $P_n=e^{rac{7}{4}}$ ب ـ عين العدد الطبيعي n حتى يكون

<u>الحل:</u>

 $u_{n+1} = \sqrt{u_n}$ ، u_n المتتالية المعرفة كما يلي: $u_0 = e$ ومن أجل كل عدد طبيعي (u_n)

 $u_n > 1$ ، n عدد طبیعي 1.

n=0 لدينا $u_{0}>1$ الخاصية صحيحة من أجل

 $u_n > 1$ ، n ومنه $u_n > 1$ وعليه حسب مبدأ الاستدلال بالتراجع فإنه من ألجل كل عدد طبيعي $u_{n+1} > 1$ نفرض أنّ $u_n > 1$

 (u_n) دراسة اتجاه تغير المتتالية .2

بما أنّ $u_n>u_n>u_n$ فإنّ $u_n>u_n>u_n$ ومنه $u_n>\sqrt{u_n}$ ومنه $u_n>1$ أي $u_n>1$ إذا المتتالية $u_n>1$ متناقصة.

بما أن المتتالية (u_n) متناقصة ومحدودة من الأسفل بالعدد 1 فهي متقاربة.

 $v_n = \ln(u_n)$: المعرفة كما يلي: (v_n) المعرفة 3

أ ـ تبيان أن $\binom{v_n}{}$ متتالية هندسية يطلب تعيين أساسها وحدها الأول.

لیکن n عددا طبیعیا

وحدها الأوّل $v_{n+1} = \ln u_{n+1} = \ln \sqrt{u_n} = \ln u_n^{\frac{1}{2}} = \frac{1}{2} \ln u_n = \frac{1}{2} v_n$ إذن $v_{n+1} = \ln u_{n+1} = \ln u_n = \frac{1}{2} v_n$

$$u_n = e^{v_n} = e^{\left(\frac{1}{2}\right)^n}$$
 $v_n = v_0 \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^n$

 $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} e^{\left(\frac{1}{2}\right)^n} = 1$ ومنه $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n = 0$ لدينا

 $.P_n = u_0 \times u_1 \times ... \times u_n$ و $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$ في $S_n = v_0 + v_1 + ... + v_n$

$$S_{n} = v_{0} + v_{1} + \dots + v_{n} = v_{0} \left(\frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}} \right) = 2 \left(1 - \left(\frac{1}{2}\right)^{n} \right)$$

 $P_{n} = u_{0} \times u_{1} \times ... \times u_{n} = e^{v_{0}} \times e^{v_{1}} \times ... \times e^{v_{n}} = e^{v_{0} + v_{1} + ... + v_{n}}$

 $P_n=e^{rac{7}{4}}$ ب ـ تعيين العدد الطبيعي n حتى يكون

$$e^{2\left(1-\left(rac{1}{2}
ight)^{n}
ight)}=rac{1}{8}$$
 يكافئ $e^{2\left(1-\left(rac{1}{2}
ight)^{n}
ight)}=e^{rac{7}{4}}$ يكافئ $e^{2\left(1-\left(rac{1}{2}
ight)^{n}
ight)}=e^{rac{7}{4}}$ معناه $e^{2\left(1-\left(rac{1}{2}
ight)^{n}
ight)}=e^{rac{7}{4}}$

n=3 وعليه $\left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^n$

. دالة معرّفة على (C) ، $f(x) = \frac{7x+2}{x+8}$: (0;1] دالة معرّفة على f(1)

أ - ادرس اتجاه تغيّر الدالة f

 $0 \le f(x) \le 1$ فإنّ $0 \le x \le 1$

جـ تحقّق أنّه لما $1 \le x \le 1$ فإنّ: (C) فإنّ: (C) فإنّ: (C) فإنّ: (C) بالنسية

. y=x إلى المستقيم Δ ذي المعادلة

.
$$\begin{cases} u_0=0\\ u_{n+1}=f\left(u_n\right)=\frac{7u_n+2}{u_n+8} \end{cases}$$
 كما يلي: $\begin{cases} u_0=0\\ u_{n+1}=f\left(u_n\right)=\frac{7u_n+2}{u_n+8} \end{cases}$ كما يلي: (2)

. $0 \le u_n \le 1$ ، n عدد طبیعي أنّه من أجل كل عدد أبيعي أنّه من أجل أ

ب ـ استنتج اتجاه تغيّر المتتالية (سي)

جـ هل المتتالية (u_n) متقاربة ؟ علل.

سلسلة تمارين محلولة في المتتاليات

. $v_n = \frac{u_n + 2}{u_n - 1}$ كما يلي: $\mathbb N$ كما المعرّفة على المعرّفة (3

ا ـ برهن أنّ (v_n) متتالية هندسية أساسها

 $u_n=rac{-2ig(rac{3}{2}ig)^n+2}{-2ig(rac{3}{2}ig)^n-1}$ ہے۔ عیّن v_n بدلالة v_n ثمّ بین آنیہ من أجل کل عدد طبیعي v_n

 $\lim_{n\to+\infty}u_n$

. $P_n = v_0 \times v_1 \times ... \times v_n$ و $S_n = v_0 + v_1 + ... + v_n$ و S_n کلا من S_n کلا من S_n د احسب بدلالة S_n

الحل: أ ـ دراسة اتجاه تغيّر الدالة f .

 $f'(x) = \frac{7(x+8)-(7x+2)}{(x+8)^2}$ ولدينا $f'(x) = \frac{54}{(x+8)^2}$ ولدينا $f'(x) = \frac{7(x+8)-(7x+2)}{(x+8)^2}$

من أجل كل عدد حقيقي x من المجال [0;1] لدينا 0 (x) f ومنه دالة متزايدة تماما على [0;1].

 $0 \le f(x) \le 1$ فإنّ $0 \le x \le 1$ ب ـ تبيان أنّه لما

 $0 \le f(x) \le 1$ من أجل $0 \le x \le 1$ لدينا $0 \le f(x) \le f(x) \le f(x)$ أي $0 \le x \le 1$ وبالتالي $0 \le x \le 1$ من أجل

 $f(x) - x = \frac{(1-x)(x+2)}{x+8}$ فإنّ: $0 \le x \le 1$ أنّه لما

[0;1] ليكن x عددا حقيقيا من المجال

$$f(x)-x = \frac{7x+2}{x+8}-x = \frac{7x+2-x(x+8)}{x+8}$$

$$f(x)-x = \frac{-x^2-x-6}{x+8} = \frac{(1-x)(x+2)}{x+8}$$

. y=x المعادلة Δ المستقيم (Δ) بالنسبة إلى المستقيم (Δ) بالنسبة الم

من أجل كل عدد حقيقي x من المجال]0;1[لدينا [x > 0] لدينا [x > 0] د من أجل كل عدد حقيقي [x > 0] من أجل كل عدد حقيقي [x > 0]

(C) موجود فوق

 $0 \le u_n \le 1$ ، n عدد طبیعي أنّه من أجل كل عدد طبيعي (2

n=0 لدينا $u \leq u_0 \leq 1$ ومنه الخاصية صحيحة من أجل

 $0 \le u_{n+1} \le 1$ نفرض أنّ $0 \le u_n \le 1$ من أجل عدد طبيعي 0 ولنبر هن أنّ

لدينا $0 \le u_n \le 1$ وحسب نتيجة السؤال 1) ب. فإن $0 \le f\left(u_n\right) \le 1$ أي $0 \le u_{n+1} \le 1$ ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي $0 \le u_n \le 1$ ، $0 \le u_n \le 1$.

 $\left(u_{n}
ight)$ ب - استنتاج اتجاه تغیّر المتتالیة

من أجل كل عدد حقيقي x من المجال [0;1] لدينا [0;1] لدينا [0;1] لدينا [0;1] لدينا [0;1] عدد طبيعي [0;1] فإن [0;1] من أجل كل عدد حقيقي [0;1] من المجال [0;1] لدينا [0;1] لدينا [0;1] المتتالية [0;1] متز ايدة.

بما أن المتتالية (u_n) متزايدة ومحدودة من الأعلى فهي متقاربة.

 $\frac{3}{2}$ أ ـ برهان أنّ (v_n) متتالية هندسية أساسها

لیکن n عددا طبیعیا:

$$v_{n+1} = \frac{u_{n+1} + 2}{u_{n+1} - 1} = \frac{\frac{7u_n + 2}{u_n + 8} + 2}{\frac{7u_n + 2}{u_n + 8} - 1} = \frac{\frac{9u_n + 18}{u_n + 8}}{\frac{6u_n - 6}{u_n + 8}}$$

$$v_{n+1} = \frac{9u_n + 18}{6u_n - 6} = \frac{9(u_n + 2)}{6(u_n - 1)} = \frac{9}{6}v_n = \frac{3}{2}v_n$$

إذن $\binom{3}{2}$ متتالية هندسية أساسها $\binom{v_n}{2}$ ب عيين v_n بدلالة v_n

$$v_n = -2\left(\frac{3}{2}\right)^n$$
 ولاينا $v_n = -2\left(\frac{3}{2}\right)^n$ ولاينا $v_n = v_0\left(\frac{3}{2}\right)^n$

 $u_n = \frac{-2\left(\frac{3}{2}\right)^n + 2}{-2\left(\frac{3}{2}\right)^n - 1}$ ، n عدد طبیعي n عدد طبیعي

$$u_{n} = \frac{-2\left(\frac{3}{2}\right)^{n} + 2}{-2\left(\frac{3}{2}\right)^{n} - 1}$$
 الدينا $u_{n} = \frac{v_{n} + 2}{v_{n} - 1}$ ومنه $u_{n} = \frac{v_{n} + 2}{v_{n} - 1}$ ومنه $u_{n} = \frac{v_{n} + 2}{v_{n} - 1}$ ومنه $v_{n} = \frac{u_{n} + 2}{u_{n} - 1}$ الدينا $v_{n} = \frac{u_{n} + 2}{u_{n} - 1}$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{-2\left(\frac{3}{2}\right)^n + 2}{-2\left(\frac{3}{2}\right)^n - 1} = \lim_{n \to +\infty} \frac{\left(\frac{3}{2}\right)^n \left(-2 + \frac{2}{\left(\frac{3}{2}\right)^n}\right)}{\left(\frac{3}{2}\right)^n \left(-2 - \frac{1}{\left(\frac{3}{2}\right)^n}\right)}$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{\left(\frac{3}{2}\right)^n}{-2 - \frac{1}{\left(\frac{3}{2}\right)^n}}$$

$$\lim_{n \to +\infty} u_n = 1$$
 ومنه $\lim_{n \to +\infty} \frac{1}{\left(\frac{3}{2}\right)^n} = 0$ ومنه $\lim_{n \to +\infty} \frac{2}{\left(\frac{3}{2}\right)^n} = 0$ ومنه $\lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = 1$ ومنه $\lim_{n \to +\infty} \left(\frac{3}{2}\right)^n = 1$

. $P_n = v_0 \times v_1 \times ... \times v_n$ و $S_n = v_0 + v_1 + ... + v_n$ و S_n د . حساب بدلالة n ، كلا من S_n

$$.S_{n} = v_{0} \left(\frac{\left(\frac{3}{2}\right)^{n+1} - 1}{\frac{3}{2} - 1} \right) = -2 \left(\frac{\left(\frac{3}{2}\right)^{n+1} - 1}{\frac{1}{2}} \right)$$

$$S_n = 4\left(\frac{3}{2}\right)^{n+1} - 1 = 4\left(1 - \left(\frac{3}{2}\right)^{n+1}\right)$$

$$P_n = v_0 \times v_1 \times ... \times v_n = -2 \left(\frac{3}{2}\right)^0 \times -2 \left(\frac{3}{2}\right)^1 \times ... \times -2 \left(\frac{3}{2}\right)^n$$

$$P_{n} = (-2)^{n+1} \left(\frac{3}{2}\right)^{0+1+\dots+n} = (-2)^{n+1} \left(\frac{3}{2}\right)^{\frac{n(n+1)}{2}}$$

التمرين الحادي عشر: في الشكل المقابل، $\binom{C_f}{f}$ هو التمثيل البياني للدّالة $\binom{C_f}{f}$ المعرّفة على المجال [0:1] بالعلاقة

$$y=x$$
 ، و $f(x)=\frac{2x}{x+1}$ ، و $f(x)=\frac{2x}{x+1}$

المنتالية العددية المعرّفة على $\mathbb N$ بحدّها الأوّل، $u_0=1$ ومن أجل كل عدد طبيعي (u_n)

 $u_{n+1} = f(u_n) \cdot n$

أ ـ أعد رسم هذا الشكل، ثمّ مثّل الحدود u_1 ، u_2 ، u_1 ، u_2 و u_3 على محور الفواصل دون حسابها، مبرزا خطوط التمثيل.

 \mathbf{v} - ضع تخمينا حول اتجاه تغيّر المتتالية (u_n) وتقاربها.

.
$$[0;1]$$
 أثبت أنّ الدالة f متزايدة تماما على المجال $[0;1]$

$$u_n < 1$$
، $u_n < 1$ ، من أجل كل عدد طبيعي أنّه، من أجل كل عدد طبيعي

$$(u_n)$$
 ادرس اتجاه تغیّر المتتالیة

.
$$v_n = \frac{u_n - 1}{u_n}$$
 :كما يلي كما يلي المنتالية العددية المعرّفة على \mathbb{N} كما يلي المنتالية العددية المعرّفة على

.
$$v_0$$
 الأوّل المتتالية $\left(v_n\right)$ هندسية أساسها $\frac{1}{2}$ ، يطلب حساب حدّها الأوّل (أ

$$(u_n)$$
 احسب نهایة (ب

$$S_n = \frac{1}{v_0} + \frac{1}{v_1} + \dots + \frac{1}{v_n}$$
: حيث S_n المجموع S_n المجموع (ج

$$u_3$$
 و u_2 ، u_1 ، u_0 و u_3 الحدود u_3 ، u_3 ، u_4 ، u_5 ، u_5 ، u_5 ، u_6 .

$$u_1 < u_2 < u_3$$
 بـ يدو أن المتتالية (u_n) متز ايدة ومتقاربة.

.
$$[0;1]$$
 أ) إثبات أنّ الدالمة f متزايدة تماما على المجال

x عددا حقيقيا من المجال x عددا

$$f'(x) = \frac{2(x+1)-2x}{(x+1)^2} = \frac{2}{(x+1)^2}$$

من أجل كل عدد حقيقي x من المجال [0;1] لدينا (x)>0 لدينا f ومنه الدالة f متز ايدة تماما على المجال [0;1].

13

 $0 < u_n < 1$ ، n برهان بالتراجع أنّه، من أجل كل عدد طبيعي بالتراجع

محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

سلسلة تمارين محلولة في المتتاليات لدينا $0 < u_0 < 1$ ومنه الخاصية صحيحة من أجل n = 0 .

 $0 < u_{n+1} < 1$ من أجل عدد طبيعي كيفي n ونبر هن صحة الخاصية $0 < u_n < 1$ نفرض أن

 $f\left(1\right)=1$ ، $f\left(0\right)=0$ وبما أن الدالة f متزايدة تماما على المجال $\left[0;1\right]$ فإن $\left[0;1\right]$ فإن $\left[0;1\right]$ فإن $\left[0;1\right]$ ولدينا $\left[0;1\right]$ متزايدة تماما على المجال $\left[0;1\right]$ فإن $\left[0;1\right]$ فإن $\left[0;1\right]$ ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي $\left[0;1\right]$ ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي $\left[0;1\right]$

 (u_n) دراسة اتجاه تغيّر المتتالية

لیکن n عددا طبیعیا

$$u_{n+1} - u_n = \frac{2u_n}{u_n + 1} - u_n = \frac{2u_n - u_n^2 - u_n}{u_n + 1} = \frac{u_n - u_n^2}{u_n + 1} = \frac{u_n (1 - u_n)}{u_n + 1}$$

 $u_{n+1} - u_n > 0$ ومنه $u_n < 0$ ومنه $u_n < 0$ ومنه $u_n < 1$ ومنه $u_n < 0$ ومنه $u_n < 1$ ومنه $u_n < 1$

وبالتالي المتتالية (u_n) متزايدة تماما.

 v_0 الأوّل المتتالية (v_n) هندسية أساسها v_n هندسية ألك والمتالية (الأوّل المتالية الأوّل) برهان أنّ

$$v_{n+1} = \frac{u_{n+1} - 1}{u_{n+1}} = \frac{\frac{2u_n}{u_n + 1} - 1}{\frac{2u_n}{u_n + 1}} = \frac{\frac{2u_n - u_n - 1}{u_n + 1}}{\frac{2u_n}{u_n + 1}} = \frac{\frac{u_n - 1}{u_n + 1}}{\frac{2u_n}{u_n + 1}} = \frac{\frac{u_n - 1}{u_n + 1}}{\frac{2u_n}{u_n + 1}} = \frac{1}{2}v_n$$

$$v_0$$
 وحدها الأول $v_n = \frac{-\frac{1}{2}}{\frac{1}{2}} = -1$ إذن المتتالية v_n هندسية أساسها v_n وحدها الأول v_n

 $\cdot(u_{\scriptscriptstyle n})$ جساب نهایة (ب

$$\lim_{n\to +\infty}v_n=\lim_{n\to +\infty}-\left(rac{1}{2}
ight)^n=0$$
 ومنه $v_n=-\left(rac{1}{2}
ight)^n$ لاينا

$$\lim_{n\to +\infty} u_n = 1$$
 إذن $\lim_{n\to +\infty} u_n = 0$ ومنه $\lim_{n\to +\infty} \frac{u_n-1}{u_n} = 0$

$$S_{n} = \frac{1}{v_{0}} + \frac{1}{v_{1}} + \frac{1}{v_{2}} + \dots + \frac{1}{v_{n}} = \frac{1}{-1\left(\frac{1}{2}\right)^{0}} + \frac{1}{-1\left(\frac{1}{2}\right)^{1}} + \frac{1}{-1\left(\frac{1}{2}\right)^{2}} + \dots + \frac{1}{-1\left(\frac{1}{2}\right)^{n}}$$

$$S_n = -\left(1 + \frac{1}{\frac{1}{2^1}} + \frac{1}{\frac{1}{2^2}} + \dots + \frac{1}{\frac{1}{2^n}}\right) = -\left(1 + 2^1 + 2^2 + \dots + 2^n\right)$$

$$S_n = -\left(\frac{1-2^{n+1}}{1-2}\right) = 1-2^{n+1}$$

$$1+q+q^2+...+q^n=rac{1-q^{n+1}}{1-q}$$

سلسلة تمارين محلولة في المتتاليات التمرين الثاني عشر: إعداد: عبد العزيز مصطفاي

 $u_{n+1} = \frac{u_n}{2} + \frac{1}{u}$ ، u_n عدد طبیعی $u_0 = 2$ نعتبر المنتالیة u_n المعرّفة ب

- $f(x) = \frac{x}{2} + \frac{1}{x}$ المعرّفة كما يلي: $f(x) = \frac{x}{2} + \frac{1}{x}$ المعرّفة كما يلي: 1.
 - $\sqrt{2} \le f(x) \le 2$ فإنّ : $\sqrt{2} \le x \le 2$ فانّ : 2. تحقق أنّه إذا كان : 2.
 - $\sqrt{2} \le u_n \le 2$. فإنّ: $2 \le u_n \le 2$. فإنّ: $3 \le u_n \le 2$.
 - $f(x) \le x$ فإنّ: $\sqrt{2} \le x \le 2$ فانّ: 4.
 - u_n متناقصة. u_n متناقصة.
 - 6. تحقّق أنّ (u_n) متقاربة، ثمّ عيّن نهايتها.

$\sqrt{2}$, به المجال على المجال على الدالة المجال .1

 $\sqrt{2}$ عددا حقيقيا من المجال x عددا

$$f'(x) = \frac{1}{2} - \frac{1}{x^2} = \frac{x^2 - 2}{2x^2} = \frac{\left(x - \sqrt{2}\right)\left(x + \sqrt{2}\right)}{2x^2}$$

من أجل كل عدد حقيقي x من المجال $\sqrt{2};+\infty$ لدينا $\sqrt{2};+\infty$ لدينا $\sqrt{2};+\infty$ و منه $\sqrt{2}>0$ ومنه $\sqrt{2}$ وبالتالي $-\sqrt{2};+\infty$ الدالة f متزايدة تماما على متزايدة

> . $\sqrt{2} \le f(x) \le 2$ فإنّ: $2 \le x \le 2$ فان. 2 . $\lceil \sqrt{2}; +\infty \rceil$ دالة متزايدة تماما على المجال f دلينا

 $\sqrt{2} \le f(x) \le 2$ ومنه $\sqrt{2} \le f(x) \le \frac{3}{2}$ ومنه $\sqrt{2} \le f(x) \le f(2)$ فإنّ $\sqrt{2} \le f(2) \le f(2)$ ومنه $\sqrt{2} \le f(2) \le f(2)$

 $\sqrt{2} \le u_n \le 2$. فإنّ ، n فإنّ من أجل كل عدد طبيعي n ، فإنّ $\sqrt{2} \le u_n \le 2$. 3

n=0 لدينا $u_0=2$ ومنه $u_0\leq u_0\leq 2$ إذن الخاصية محققة من أجل

نفرض أن $2 \le u_n \le \sqrt{2}$ ومنه حسب مبدأ الاستدلال بالتراجع أي $\sqrt{2} \le u_n \le 2$ أي $\sqrt{2} \le u_n \le 2$ ومنه حسب مبدأ الاستدلال بالتراجع . $\sqrt{2} \le u_n \le 2$ ، n فإنه من أجل كل عدد طبيعي

 $f(x) \le x$ فإنّ $\sqrt{2} \le x \le 2$. برهان أنّه إذا كان: 4

$$f(x)-x = \frac{x}{2} + \frac{1}{x} - x = \frac{1}{x} - \frac{x}{2} = \frac{2-x^2}{2x} = \frac{\left(\sqrt{2} + x\right)\left(\sqrt{2} - x\right)}{2x}$$
لدينا

من أجل كل عدد حقيقي x من المجال $\left\lceil \sqrt{2};2 \right\rceil$ لدينا $\left\lceil \sqrt{2};2 \right\rceil$ لدينا $\left\lceil \sqrt{2};2 \right\rceil$ لدينا عدد حقيقي $\left\lceil \sqrt{2};2 \right\rceil$ من أجل كل عدد حقيقي من المجال $\left\lceil \sqrt{2};2 \right\rceil$ لدينا $\left\lceil \sqrt{2};2 \right\rceil$ $f(x) \leq x$

5. استنتاج أنّ المتتالية (u_n) متناقصة.

لدينا من أجل كل عدد طبيعي $u_n \leq 2 \cdot u_n \leq \sqrt{2}$ ومنه $u_n \leq u_n \leq u_n$ أي $u_{n+1} \leq u_n \leq 1$ متناقص

6. التحقّق أنّ (u_n) متقاربة، و تعيين نهايتها.

بما أن المتتالية $\left(u_{n}\right)$ متناقصة ومحدودة من الأسفل بالعدد وهي متقاربة

تعيين نهايتها

بما أن (u_n) متقاربة فإن $u_{n+1} = \frac{u_n}{2} + \frac{1}{2}$ عدد حقيقي ولدينا $u_n = \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_{n+1} = \ell$ وعليه

ومنه
$$\ell = -\sqrt{2}$$
 ومنه $\ell = \sqrt{2}$ ومنه أنه من $\ell = \sqrt{2}$ ومنه $\ell = \sqrt{2}$ ومنه

. $\lim u_n = \sqrt{2}$ اِذْن $\ell = \sqrt{2}$ فَإِن $\ell = \sqrt{2}$

 $u_n=\alpha u_{n-1}+2$ وبالعلاقة التراجعية $u_0=1$ حيث حدّها الأوّل $u_0=1$ وبالعلاقة التراجعية $\mathbb N$ متتالية معرّفة على $u_n=\alpha u_{n-1}$

 $\alpha\in\mathbb{R}$ من \mathbb{R}^* مع $\alpha\in\mathbb{R}$ من $\alpha\in\mathbb{R}$ من α من α متالية ثابتة α عين α حتّى تكون α متتالية ثابتة α

 $v_n=u_n-rac{2}{1-\alpha}$:ب lpha
eq 1 ونعتبر المنتالية lpha المعرّفة على lpha من أجل كل عدد طبيعي lpha
eq -1 و ونعتبر المنتالية lpha المعرّفة على lpha

. q أ - برهن أنّ $\left(v_{n}\right)$ هي متتالية هندسية، يطلب تعيين كها الأوّل وأساسها

 (v_n) متقاربة ويتم lpha حتّى تكون المتتالية (v_n) متقاربة في المتتالية المتتالية lpha

تعیین α حتّی تکون $(u_{_n})$ متتالیة ثابتة.

. $\alpha=-1$ أي $1=\alpha$ يكافئ $u_0=\alpha u_0+2$ معناه $u_0=u_{n-1}=u_n$ أي ثابتة معناه $\left(u_n\right)$

 $\alpha = 1$ ب ـ طبيعة المتتالية (u_n) إذا كان

من أجل $\alpha=1$ لدينا من أجل كل عدد طبيعي $u_n=u_{n-1}+2$ ، $u_n=u_{n-1}+2$ من أجل $\alpha=1$ لدينا من أجل كل عدد طبيعي من أجل $\alpha=1$

q وأساسها v_0 . أ - برهان أنّ v_0 متتالية هندسية، يطلب تعيين حدّها الأوّل v_0 وأساسها q

$$v_{n+1} = u_{n+1} - \frac{2}{1-\alpha} = \alpha u_n + 2 - \frac{2}{1-\alpha} = \alpha u_n + \frac{2-2\alpha-2}{1-\alpha}$$

$$v_{n+1} = \alpha u_n - \frac{2\alpha}{1-\alpha} = \alpha \left(u_n - \frac{2}{1-\alpha} \right) = \alpha v_n$$

 $v_0=u_0$ يا متتالية هندسية أساسها $q=\alpha$ وحدها الأول $q=\alpha$ وحدها الأول $q=\alpha$

ب ـ تعیین قیم α حتّی تکون المتتالیة (ν) متقاربة.

 $[v_n] = v_0 \alpha^n = \frac{-1-\alpha}{1-\alpha} \alpha^n$ لدينا $[v_n] = v_0 \alpha^n = \frac{-1-\alpha}{1-\alpha} \alpha^n$ لدينا

 (v_n) حساب نهاية المتتالية

 $\lim_{n \to +\infty} \alpha^n = 0 \quad \forall \quad \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{-1 - \alpha}{1 - \alpha} \alpha^n = 0$

. $\mathbb N$ من $u_{n+1}=rac{2}{3}u_n-2n+rac{5}{3}$ و $u_0=3$ لكل $u_0=3$ من الية عددية معرّفة كما يلي: $\left(u_n
ight)_{n\in\mathbb N}$

 $u_3, u_2, u_1 + 1$.

ي. لتكن المنتالية (v_n) المعرّفة على $\mathbb N$ بـ: $v_n=u_n+lpha n+eta$ من أجل كل n ، حيث lpha و lpha عددان حقيقيان $v_n=u_n+lpha n+eta$

. $\frac{2}{2}$ هندسية أساسها $\frac{2}{2}$.

 $\beta = -23$ و $\alpha = 6$ نفرض فيما يلى: 3

أ ـ اكتب عبارة v_n ثمّ u بدلالة n

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

$$S_n = v_0 + v_1 + \ldots + v_n$$
 ، $\pi_n = u_0 + u_1 + \ldots + u_n$: نضع

 π_n بدلاله n ثمّ استنتج عباره S_n احسب

الحل:

 $.u_{3}, u_{2}, u_{1} \rightarrow .1$

$$u_{2} = \frac{2}{3}u_{1} - 2 \times 1 + \frac{5}{3} = \frac{2}{3} \times \frac{11}{3} - 2 + \frac{5}{3} = \frac{19}{9} \quad u_{1} = \frac{2}{3}u_{0} - 2 \times 0 + \frac{5}{3} = \frac{2}{3} \times 3 + \frac{5}{3} = \frac{11}{3}$$

$$u_{3} = \frac{2}{3}u_{2} - 2 \times 2 + \frac{5}{3} = \frac{2}{3} \times \frac{19}{9} - 4 + \frac{5}{3} = \frac{-25}{27}$$

 $rac{2}{3}$ المحدين lpha و eta بحيث تكون المتتالية lpha هندسية أساسها .2

$$u_n = v_n - \alpha n - \beta$$
 ولدينا $v_{n+1} = u_{n+1} + \alpha (n+1) + \beta = \frac{2}{3}u_n - 2n + \frac{5}{3} + \alpha n + \alpha + \beta$

$$v_{n+1} = \frac{2}{3} (v_n - \alpha n - \beta) - 2n + \frac{5}{3} + \alpha n + \alpha + \beta$$

$$v_{n+1} = \frac{2}{3}v_n - \frac{2}{3}\alpha n - \frac{2}{3}\beta - 2n + \frac{5}{3} + \alpha n + \alpha + \beta$$

$$v_{n+1} = \frac{2}{3}v_n + \frac{1}{3}\alpha n - 2n + \frac{1}{3}\beta + \alpha + \frac{5}{3}$$

$$v_{n+1} = \frac{2}{3}v_n + n\left(\frac{1}{3}\alpha - 2\right) + \frac{1}{3}\beta + \alpha + \frac{5}{3}$$

و عليه
$$\alpha = 6$$
 و عليه $\alpha = 6$ و عليه $\alpha = 6$ و عليه $\alpha = 6$ يكافئ $\alpha = 6$ و عليه $\alpha = 6$ و علي

$$. \beta = -23 \ \varrho \ \alpha = 6$$

$$n$$
 عبارة u_n ثم يدلالة u_n عبارة عبارة عبارة .3

$$v_n = v_0 \left(\frac{2}{3}\right)^n = -20 \left(\frac{2}{3}\right)^n$$
 ومنه $v_0 = u_0 + 6 \times 0 - 23 = -20$

$$u_n = -20\left(\frac{2}{3}\right)^n - 6n + 23$$
 لدينا $u_n = v_n - \alpha n - \beta = v_n - 6n + 23$

$$S_n = v_0 + v_1 + \ldots + v_n$$
 ، $\pi_n = u_0 + u_1 + \ldots + u_n$: ب - نضع

$$n$$
 بدلالة S_n بدلالة

$$S_n = v_0 \left(\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} \right) = -20 \left(\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{\frac{1}{3}} \right) = -60 \left(1 - \left(\frac{2}{3}\right)^{n+1} \right)$$

 π_n استنتاج عبارة

$$\pi_n = u_0 + u_1 + \dots + u_n = (v_0 - 6 \times 0 + 23) + (v_1 - 6 \times 1 + 23) + \dots + (v_n - 6n + 23)$$

$$\pi_n = (v_0 + v_0 + ... + v_n) - 6(0 + 1 + ... + n) + 23(n + 1)$$

$$\pi_n = -60 \left(1 - \left(\frac{2}{3} \right)^{n+1} \right) - 6 \left(\frac{n(n+1)}{2} \right) + 23(n+1)$$

$$\pi_n = -60 \left(1 - \left(\frac{2}{3} \right)^{n+1} \right) - 3 \left(n \left(n+1 \right) \right) + 23 \left(n+1 \right)$$

$$\pi_n = -60 \left(1 - \left(\frac{2}{3} \right)^{n+1} \right) + (n+1)(-3n+23)$$

التمرين الخامس عشر: $u_0 = 3$ المعرّفتين بـ: $u_0 = 3$ و من أجل كل عدد طبيعي $u_0 = 3$: نعتبر المتتاليتين u_n ومن أجل كل عدد طبيعي

$$v_{n+1} = \frac{u_{n+1} + v_n}{2} \quad \text{o} \quad u_{n+1} = \frac{u_n + v_n}{2}$$

3. ادرس اتجاه تغیّر المتتالیتین (u_n) و (u_n) تُمّ استنتج أنّهما متجاورتان.

 $t_n = \frac{1}{3}(u_n + 2v_n)$ ب نعتبر أنّ $t_n = \frac{1}{3}(u_n + 2v_n)$ هي المتتالية المعرّفة من أجل كل عدد طبيعي $t_n = \frac{1}{3}(u_n + 2v_n)$

أ ـ برهن أنّ $\binom{t_n}{n}$ متتالية ثابتة.

 (v_n) و (u_n) بالنهاية المشتركة للمتتاليتين (u_n)

 (v_n) و (u_n) و (u_n) و بدلالة (v_n) ، ثمّ أوجد مرّة ثانية نهايتي (v_n) و (v_n) .

$$u_{2} = \frac{u_{1} + v_{1}}{2} = \frac{\frac{7}{2} + \frac{15}{4}}{2} = \frac{\frac{29}{4}}{2} = \frac{\frac{29}{4}}{2} = \frac{\frac{15}{2} + \frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot u_{1} = \frac{u_{0} + v_{0}}{2} = \frac{\frac{3+4}{2}}{2} = \frac{\frac{7}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot u_{1} = \frac{\frac{u_{0} + v_{0}}{2}}{2} = \frac{\frac{3+4}{2}}{2} = \frac{\frac{7}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot u_{1} = \frac{\frac{u_{0} + v_{0}}{2}}{2} = \frac{\frac{3+4}{2}}{2} = \frac{\frac{7}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{2} = \frac{\frac{15}{2}}{4} \cdot \frac{\frac{15}{2}}{2} = \frac{\frac{$$

$$v_2 = \frac{u_2 + v_1}{2} = \frac{\frac{29}{8} + \frac{15}{4}}{2} = \frac{\frac{59}{8}}{2} = \frac{59}{16}$$

2. - تبيان أنّ المتتالية (w_n) هندسية.

$$w_{n+1} = v_{n+1} - u_{n+1} = \frac{u_{n+1} + v_n}{2} - \frac{u_n + v_n}{2} = \frac{u_{n+1} - u_n}{2}$$

$$w_{n+1} = \frac{\frac{u_n + v_n}{2} - u_n}{2} = \frac{\frac{v_n - u_n}{2}}{2} = \frac{w_n}{4} = \frac{1}{4}w_n$$

 $\frac{1}{4}$ إذن (w_n) متتالية هندسية أساسها

تعيين نهاية المتتالية (س).

$$w_{n} = w_{0} \left(\frac{1}{4}\right)^{n} = \left(\frac{1}{4}\right)^{n}$$
 ومنه $w_{0} = v_{0} - u_{0} = 4 - 3 = 1$ لدينا

.
$$\lim_{n\to +\infty} w_n=0$$
 وبالتالي $\lim_{n\to +\infty} \left(\frac{1}{4}\right)^n=0$ فإنّ $-1<\frac{1}{4}<1$

 (v_n) و (u_n) دراسة اتجاه تغيّر المتتاليتين (u_n) و 3

$$u_{n+1} - u_n = \frac{u_n + v_n}{2} - u_n = \frac{u_n + v_n - 2u_n}{2}$$

$$u_{n+1} - u_n = \frac{v_n - u_n}{2} = \frac{w_n}{2} = \frac{\left(\frac{1}{4}\right)^n}{2}$$

سلسلة تمارين محلولة في المتتاليات

من أجل كل عدد طبيعي (u_n) متزايدة تماما. $u_{n+1}-u_n>0$ ومنه (u_n) متزايدة تماما.

$$v_{n+1} - v_n = \frac{u_{n+1} + v_n}{2} - v_n = \frac{u_{n+1} + v_n - 2v_n}{2} = \frac{u_{n+1} - v_n}{2}$$

$$v_{n+1} - v_n = \frac{u_{n+1} + v_n}{2} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2}$$

$$v_{n+1} = \frac{u_n - v_n}{4} = \frac{-w_n}{4} = \frac{-\left(\frac{1}{4}\right)^n}{4}$$

من أجل كل عدد طبيعي n ، n $v_{n+1} - v_n < 0$ متناقصة تماما.

استنتاج أنهما متجاورتان.

لدينا $\lim_{n\to +\infty} (v_n - u_n) = \lim_{n\to +\infty} (v_n - u_n)$ و وما أن للمتتاليتين $\lim_{n\to +\infty} (v_n - u_n) = \lim_{n\to +\infty} w_n = 0$ لدينا

4. أ ـ برهان أنّ (t_n) متتالية ثابتة.

لیکن n عددا طبیعیا

$$t_{n+1} = \frac{1}{3} \left(u_{n+1} + 2v_{n+1} \right) = \frac{1}{3} \left(\frac{u_n + v_n}{2} + 2 \left(\frac{u_{n+1} + v_n}{2} \right) \right)$$

$$t_{n+1} = \frac{1}{3} \left(\frac{u_n + v_n}{2} + u_{n+1} + v_n \right)$$

$$t_{n+1} = \frac{1}{3} \left(\frac{u_n + v_n}{2} + \frac{u_n + v_n}{2} + v_n \right) = \frac{1}{3} \left(u_n + v_n + v_n \right)$$

$$t_{n+1} = \frac{1}{3} \left(u_n + 2v_n \right)$$

$$t_{n+1} = t_n$$

 $t_n = t_0 = \frac{1}{3}(u_0 + 2v_0) = \frac{1}{3} \times 11 = \frac{11}{3}$ ، n عدد طبیعی من أجل كل عدد طبیعی (t_n) متثالیة ثابتة حیث من أجل كل عدد طبیعی

. (v_n) و (u_n) و ب - تعيين ℓ ، النهاية المشتركة للمتتاليتين ℓ

 ℓ بما أن المتتاليتان (u_n) و (v_n) متجاورتان فهما متقاربتان ولهما نفس النهاية

ولدينا من أجل كل عدد طبيعي $t_n = \frac{1}{3}(\ell+2\ell)$ معناه $t_n = \lim_{n \to +\infty} \frac{1}{3}(u_n + 2v_n)$ معناه $t_n = \frac{1}{3}(u_n + 2v_n)$ ، n ولدينا من أجل كل عدد طبيعي $t_n = \frac{1}{3}(u_n + 2v_n)$ معناه $t_n = \frac{1}{3}(u_n + 2v_n)$

$$\ell = \frac{11}{3}$$
 $\ell = \frac{11}{3} = \frac{1}{3} \times 3\ell$

 \cdot_n بدلالة v_n و v_n بدلالة جـ - ايجاد عبارتي

لدينا
$$u_n + 2v_n$$
 عناه $u_n + 2v_n$ أولينا $u_n + 2v_n$ ولدينا $u_n + 2v_n$ عناه $u_n + 2v_n$ معناه $u_n + 2v_n$ انحصل

$$v_n = \frac{1}{3} \left(11 + \left(\frac{1}{4} \right)^n \right)$$
 يلى الجملة $\begin{cases} 11 + \left(\frac{1}{4} \right)^n \end{cases}$ بجمع المعادلتين نجد $\begin{cases} 11 + \left(\frac{1}{4} \right)^n \\ \left(\frac{1}{4} \right)^n \end{cases} = v_n - u_n \end{cases}$

 $u_n = 11 - \frac{2}{3} \left(11 + \left(\frac{1}{4} \right)^n \right)$ من المعادلة الأولى لدينا $u_n = 11 - 2v_n$ أي

 (v_n) و (u_n) ایجاد مرّة ثانیة نهایتی

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

$$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0 \quad \dot{\mathcal{C}}^{\dot{\lambda}} \quad \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{1}{3} \left(11 + \left(\frac{1}{4}\right)^n\right) = \frac{11}{3}$$

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left[11 - \frac{2}{3} \left(11 + \left(\frac{1}{4} \right)^n \right) \right] = 11 - \frac{2}{3} \times 11 = \frac{11}{3}$$

التمرين السادس عشر:

$$v_n = \frac{5^{n+1}}{6^n}$$
 بالمتتالية (v_n) معرّفة على (v_n)

- لك بين أنّ (v_n) متتالية هندسية يطلب تحديد أساسها وحدّها الأوّل.
 - $\lim_{n\to+\infty}v_n \pmod{2}$

$$u_{n+1}=\sqrt{5u_n+6}$$
 ، $u_n=1$ عدد طبیعی $u_0=1$ معرّفة ب $u_0=1$ معرّفة ب

- $1 \le u_n \le 6$ بر هن بالتراجع أنّه، من أجل كل عدد طبيعي (1
 - (u_n) ادرس اتجاه تغيّر المتتالية (2

$$6-u_{n+1} \le \frac{5}{6}(6-u_n)$$
 ، n عدد طبیعی عدد الله، من أجل كل عدد عدد طبیعی (1)

 $\lim_{n \to +\infty} u_n$ بیّن أنّه، من أجل كل عدد طبیعي $n = 6 - u_n \leq v_n$ ، n عدد طبیعی بیّن أنّه، من أجل كل عدد طبیعی

<u>الحل:</u>

متتالية هندسية يطلب تحديد أساسها وحدَها لِلْأَوْلِي (v_n) أَن أَن (v_n)

$$\frac{5}{6}$$
 اِذن (v_n) متالیة هندسیة اسلها $v_{n+1} = \frac{5^{n+1+1}}{6^{n+1}} = \frac{5^{n+1} \times 5}{6^n \times 6} = \frac{5}{6} \times \frac{5^{n+1}}{6^n} = \frac{5}{6} v_n$

. $\lim_{n\to+\infty}v_n$ عساب (2

$$\lim_{n \to +\infty} \left(\frac{5}{6} \right)^n = 0 \quad \dot{\psi} \quad \lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{5^{n+1}}{6^n} = \lim_{n \to +\infty} \frac{5 \times 5^n}{6^n} = \lim_{n \to +\infty} 5 \left(\frac{5}{6} \right)^n = 0$$

 $1 \le u_n \le 6$ ، n برهان بالتراجع أنّه، من أجل كل عدد طبيعي (1 (II

n=0 لدينا $1 \leq u_0 \leq 6$ لدينا

 $1 \le u_{n+1} \le 6$ نفرض أن $1 \le u_n \le 6$ من أجل عدد طبيعي كيفي n ونبر هن صحة الخاصية

 $1 \le u_{n+1} \le 6$ لدينا $0 \le \sqrt{5u_n + 6} \le \sqrt{36}$ يكافئ $0 \le 5u_n + 6 \le 36$ يكافئ $0 \le 5u_n + 6 \le 36$ وهذا يعني أن $0 \le 5u_n + 6 \le 36$ لدينا $0 \le 30$ معناه $0 \le 30$ معناه $0 \le 30$ عناه من أجل كل $0 \le 30$ منه حسب مبدأ الاستدلال بالتراجع فانه من أجل كل $0 \le 30$ من $0 \le 30$ فإنّ $0 \le 30$

 (u_n) دراسة اتجاه تغيّر المتتالية (2

لیکن n عددا طبیعیا

$$u_{n+1} - u_n = \sqrt{5u_n + 6} - u_n = \frac{\left(\sqrt{5u_n + 6} - u_n\right)\left(\sqrt{5u_n + 6} + u_n\right)}{\sqrt{5u_n + 6} + u_n}$$

$$u_{n+1} - u_n = \frac{5u_n + 6 - u_n^2}{\sqrt{5u_n + 6} + u_n} = \frac{(u_n + 1)(6 - u_n)}{\sqrt{5u_n + 6} + u_n}$$

 $u_{n+1}-u_n\geq 0$ بما أنّ $1\leq u_n\leq 0$ فإنّ $1\leq u_n\leq 0$ و $\sqrt{5u_n+6}+u_n>0$ و منه $1\leq u_n\leq 6$ بما أنّ (u_n) متزايدة.

 $6-u_{n+1} \leq \frac{5}{6}(6-u_n)$ ، n عدد طبیعي عدد أجل كل عدد عدد طبیعي () (3

$$6 - u_{n+1} = 6 - \sqrt{5u_n + 6} = \frac{\left(6 - \sqrt{5u_n + 6}\right)\left(6 + \sqrt{5u_n + 6}\right)}{6 + \sqrt{5u_n + 6}}$$

$$6 - u_{n+1} = \frac{36 - (5u_n + 6)}{6 + \sqrt{5u_n + 6}} = \frac{30 - 5u_n}{6 + \sqrt{5u_n + 6}} = \frac{5(6 - u_n)}{6 + \sqrt{5u_n + 6}}$$

 $5(6-u_n) \ge 0$ دينا من أجل كل عدد طبيعي $u_n = \frac{1}{6+\sqrt{5u_n+6}} < \frac{1}{6}$ يكافئ $u_n = \frac{1}{6+\sqrt{5u_n+6}} < \frac{1}{6}$ وبما أن

 $\lim_{n\to +\infty}u_n$ بيان أنّه، من أجل كل عدد طبيعي u_n من أجل كل عدد طبيعي u_n من أجل كا عدد طبيعي u_n و u_n إذن $u_n \leq v_n$ إذن $u_n \leq v_n$ إذن $u_n \leq v_n$ أي الخاصية صحيحة من أجل $u_n = 0$ لدينا $u_n = 0$ و $u_n = 0$ إذن $u_n = 0$ أي الخاصية صحيحة من أجل

n نفرض أن $\frac{5}{6}(6-u_n) \le v_{n+1}$ نفرض أن $\frac{5}{6}(6-u_n) \le \frac{5}{6}v_n$ ومنه $\frac{5}{6}v_n$ ومنه $\frac{5}{6}v_n$ عدد طبيعي

 $6-u_n \le v_n$ ، ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي $6-u_{n+1} \le v_{n+1}$ ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي

ومن جهة أخرى لدينا من أجل كل عدد طبيعي $u_n \leq 6$ ، $u_n \leq 6$ ومنه $u_n \leq 6$ ومنه $u_n \leq 6$ ومن جهة أخرى لدينا من أجل كل عدد طبيعي

لدينا من أجل كل عدد طبيعي n ، n وهذا يعني $\lim_{n \to +\infty} 6 - u_n = 0$ و بما أنّ $\lim_{n \to +\infty} \sqrt{n}$ فإنه حسب النهايات بالحصر $\lim_{n \to +\infty} 6 - u_n \leq v_n$ وهذا يعني

التمرين السابع عشر:

 $u_{n+1}=\frac{2}{3}u_n+\frac{1}{3}n+1$ و $u_0=2$:- $\mathbb N$ المعرفة على المعرفة على (u_n) و المتتالية u_n

 $(u_{_n})$ أحسب الحدود $u_{_1}$ ، $u_{_2}$ و $u_{_3}$ ثم ضع تخمينا حول اتجاه تغير المتتالية $u_{_1}$

 $u_n \le n+3$ ، n عدد طبیعی انه من أجل كل عدد عبر بالتراجع أنه من أجل كل عدد n+3

 (u_n) ادرس اتجاه تغیر المتتالیة

ج ـ استنتج أن $\left(u_{n}
ight)$ محدودة من الأسفل ؛ هل يمكن القول أن $\left(u_{n}
ight)$ متقاربة؟

 $v_n = u_n - n$:ب المعرفة على المعرفة (v_n) المعرفة على 3.

أ ـ بين أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

. $\lim_{n\to+\infty} u_n$ بدلالة n ثم احسب عن v_n ثم v_n عبر عن

 $S_n = u_0 + u_1 + u_2 + ... + u_n$ المجموع n المجموع المجموع

 $t_n = \ln(v_n)$ بـ: \mathbb{N} بـ المعرفة على المتتالية (t_n) المعرفة على 4.

أ ـ بين أن $\binom{t_n}{t}$ متتالية حسابية يطلب تعيين أساسها وحدها الأول.

. P_n واستنتج بدلالة n المجموع $v_1 \times v_2 \times ... \times v_n$ واستنتج بدلالة n الجداء $A_n = t_0 + t_1 + t_2 + ... + t_n$ المجموع n

 $\underline{u_1}$ <u>الحل:</u> 1. احسب الحدود u_1 ، u_2 و u_3

$$u_2 = \frac{2}{3}u_1 + \frac{1}{3} \times 1 + 1 = \frac{2}{3} \times \frac{7}{3} + \frac{1}{3} + 1 = \frac{26}{9}$$
 $u_1 = \frac{2}{3}u_0 + \frac{1}{3} \times 0 + 1 = \frac{2}{3} \times 2 + 1 = \frac{7}{3}$

$$u_3 = \frac{2}{3}u_2 + \frac{1}{3} \times 2 + 1 = \frac{2}{3} \times \frac{26}{9} + \frac{2}{3} + 1 = \frac{97}{27}$$

لدينا (u_n) متزايدة. $u_0 < u_1 < u_2 < u_3$ لدينا

 $u_n \leq n+3$ ، ، التراجع أنه من أجل كل عدد طبيعي n+3، و أ ـ برهان بالتراجع أنه من أجل كل

n=0 لأن $u_0=2$ ومنه الخاصية محققة من أجل $u_0=2$ لاينا $u_0=2$

 $.u_{n+1} \le n+4$ نفرض أن $u_{n+1} \le (n+1)+3$ نفرض أن $u_n \le n+3$ نفرض أن

لدينا
$$n+3$$
 معناه $n+2$ يكافئ $n+2$ يكافئ $n+2+\frac{1}{3}$ يكافئ $n+2+\frac{1}{3}$ يكافئ $n+3$ الدينا $n+3$ الدينا $n+3$ معناه $n+3$ يكافئ $n+3$

ومنه حسب مبدأ الاستدلال بالتراجع فإنه من $u_{n+1} \leq n+4 \leq u_{n+1} \leq n+3 \leq u_{n+1} \leq n+3$ ومنه حسب مبدأ الاستدلال بالتراجع فإنه من $u_{n+1} \leq n+3 \leq u_{n+1} \leq n+3$

 $u_n^{\bigcirc} \le n+3$ ، n عدد طبیعی أجل كل عدد طبیعي ب - دراسة اتجاه تغیر المتتالیة (u_n)

$$u_{n+1} - u_n = \frac{2}{3}u_n + \frac{1}{3}n + 1 - \frac{1}{3}u_n = -\frac{1}{3}u_n + \frac{1}{3}n + 1 = \frac{1}{3}(-u_n + n + 3)$$

ولدينا من أجل كل عدد طبيعي n + 1 + 3 = 0 يعني $u_n + n + 3 \ge 0$ ومنه $u_{n+1} - u_n \ge 0$ ولدينا من أجل كل عدد طبيعي $u_n \le n + 3$ متزايدة.

ج ـ استنتج أن (u_n) محدودة من الأسفل

لدينا $u_n \geq 2$ ومنه $u_n \geq 2$ متزايدة إذن من أجل كل عدد طبيعي $u_n \geq 2$ ، $u_n \geq 2$ ومنه $u_n \geq 2$ لدينا $u_n \geq 2$

لا يمكن القول أن المتتالية (u_n) متقاربة.

3. أ - تبيان أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

لدينا
$$v_{n+1} = 2u_n - 2n$$
 يكافئ $v_{n+1} = 2u_n + n + 3 - 3n - 3$ يكافئ $v_{n+1} = 3u_{n+1} - 3n - 3$ يكافئ $v_{n+1} = u_{n+1} - n - 1$ يكافئ $v_{n+1} = u_{n+1} - n - 1$

$$u_n=2\left(\frac{2}{3}\right)^n+n$$
 أي $u_n=v_n+n$ معناه $v_n=u_n-n$ ولدينا $v_n=2\left(\frac{2}{3}\right)^n$ - ب

$$\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{الذينا} \quad \lim_{n\to+\infty} \left(\frac{2}{3}\right)^n = 0 \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{3}\right)^n + n\right) = +\infty \quad \text{(b)} \quad \lim_{n\to+\infty} \left(2\left(\frac{2}{$$

 $S_n = u_0 + u_1 + u_2 + \dots + u_n$ المجموع n المجموع المجموع

 $u_n = v_n + n$ ، n دينا من أجل كل عدد طبيعي

$$S_n = (v_0 + 0) + (v_1 + 1) + (v_2 + 2) + \dots + (v_n + n)$$

$$S_n = (v_0 + v_1 + v_2 + ... + v_n) + (0 + 1 + 2 + ... + n)$$

$$v_0 + v_1 + v_2 + \dots + v_n = v_0 \left(\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}} \right) = 2 \left(\frac{1 - \left(\frac{2}{3}\right)^{n+1}}{\frac{1}{3}} \right) = 6 \left(1 - \left(\frac{2}{3}\right)^{n+1}\right)$$
 ادینا (v_n) متتالیة هندسیة ومنه

$$0+1+2+...+n=\frac{n(n+1)}{2}$$
 ولدينا

$$S_n = 6\left(1 - \left(\frac{2}{3}\right)^{n+1}\right) + \frac{n(n+1)}{2}$$
 إذن

أ ـ تبيان أن $\binom{t_n}{n}$ متتالية حسابية يطلب تعيين أساسها وحدها الأول.

$$t_{n+1} = \ln(v_{n+1}) = \ln(\frac{2}{3}v_n) = \ln(\frac{2}{3}) + \ln(v_n) = \ln(\frac{2}{3}) + t_n$$

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

$$t_0 = \ln(v_0) = \ln 2$$
 وحدها الأول $\ln\left(\frac{2}{3}\right)$ وحدها الأول الذي المتالية حسابية أساسها

 $A_n = t_0 + t_1 + t_2 + \ldots + t_n$ ب ـ حساب بدلالة n المجموع

$$A_n = \frac{n+1}{2} (t_0 + t_n) = \frac{n+1}{2} \left(\ln 2 + \ln 2 + n \ln \left(\frac{2}{3} \right) \right)$$

$$A_n = \frac{n+1}{2} \left(\ln 4 + n \ln \left(\frac{2}{3} \right) \right)$$

 $P_n = v_0 \times v_1 \times v_2 \times ... \times v_n$ الجداء n الجداء الجداء

$$\ln(P_n) = \ln(v_0 \times v_1 \times v_2 \times ... \times v_n) = \ln(v_0) + \ln(v_1) + \ln(v_2) + ... + \ln(v_n)$$
 لاينا

$$\ln(P_n) = t_0 + t_1 + t_2 + \dots + t_n = A_n$$

$$\mathcal{I}P_n=e^{rac{n+1}{2}\left(\ln 4+n\ln\left(rac{2}{3}
ight)
ight)}$$
 ومنه $P_n=e^{A_n}$ ومنه

التمرين التامن عشر: () المتعلمة المدرة المستنا

المتتالية العددية المعرّفة كما يلي: (u_n)

 $u_n = \sqrt{\frac{u_{n-1}}{e}}$: $u_0 = e^2$ ومن أجل كل عدد طبيعي غير معدوم $u_0 = e^2$

$$v_n = \frac{1}{2} \ln u_n + \frac{1}{2}$$
 كما يلي: $0 = \frac{1}{2} \ln u_n$ المتتالية العددية المعرّفة على $0 = \frac{1}{2} \ln u_n$

بيّن أنّ
$$\left(v_{n}
ight)$$
 متتالية هندسية أساسها $\frac{1}{2}$ ، ثمّ احسب حدّها الأوّل $\left(1
ight)$

$$n$$
 اکتب u_n بدلاله n ، ثمّ استنتج عباره u_n بدلاله (2

.
$$\lim_{n\to\infty} S_n$$
 احسب بدلالة n المجموع $S_n=v_0+v_1+...+v_n$: حيث $S_n=v_0+v_1+...+v_n$ المجموع (3

$$\lim_{n\to +\infty} P_n$$
 احسب بدلالة n الجداء P_n : حيث P_n حيث P_n خيث P_n احسب بدلالة n الجداء P_n

$\cdot \frac{1}{2}$ تبیان أنّ (v_n) متتالیة هندسیة أساسها (1

لیکن n عددا طبیعیا.

$$v_{n+1} = \frac{1}{2} \ln u_{n+1} + \frac{1}{2} = \frac{1}{2} \left(\ln u_{n+1} + 1 \right) = \frac{1}{2} \left(\ln \sqrt{\frac{u_n}{e}} + 1 \right)$$

$$v_{n+1} = \frac{1}{2} \left(\frac{1}{2} \ln \left(\frac{u_n}{e} \right) + 1 \right) = \frac{1}{2} \left(\frac{1}{2} \left(\ln \left(u_n \right) - \ln e \right) + 1 \right)$$

$$v_{n+1} = \frac{1}{2} \left(\frac{1}{2} \ln (u_n) - \frac{1}{2} + 1 \right) = \frac{1}{2} \left(\frac{1}{2} \ln (u_n) + \frac{1}{2} \right) = \frac{1}{2} v_n$$

$$\frac{1}{2} \ln u_0 + \frac{1}{2} = \frac{1}{2} \ln e^2 + \frac{1}{2} = \frac{1}{2} \times 2 + \frac{1}{2} = \frac{3}{2}$$
 إذن (v_n) متتالية هندسية أساسها $\frac{1}{2}$ وحدها الأول $\frac{1}{2}$

n بدلالة n ، ثمّ استنتاج عبارة u_n بدلالة (2

$$v_n = \frac{3}{2} \left(\frac{1}{2}\right)^n \quad \text{if} \quad v_n = v_0 \left(\frac{1}{2}\right)^n$$

$$u_n = e^{3\left(\frac{1}{2}\right)^n - 1}$$
 يكافئ $u_n = e^{2v_n - 1}$ يكافئ $\ln u_n = 2v_n - 1$ يكافئ $\ln u_n = v_n - \frac{1}{2}$ يعني $v_n = \frac{1}{2} \ln u_n + \frac{1}{2}$ لدينا

 $S_n = v_0 + v_1 + ... + v_n$: حساب بدلالة n المجموع S_n المجموع (3

$$.S_{n} = v_{0} \left(\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} \right) = \frac{3}{2} \left(\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}} \right) = 3 \left(1 - \left(\frac{1}{2}\right)^{n+1} \right)$$

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} 3 \left(1 - \left(\frac{1}{2} \right)^{n+1} \right) = 3$$
 ومنه 0 ومنه 0 ومنه $-1 < \frac{1}{2} < 1$ لدينا

. $P_n = u_0 \times u_1 \times \dots \times u_n$: حساب بدلالة n الجداء $P_n = u_0 \times u_1 \times \dots \times u_n$ عدد طبيعي $u_n = e^{2\nu_n - 1} \cdot n$ ومنه $u_n = e^{2\nu_n - 1} \cdot n$ لدينا من أجل كل عدد طبيعي $u_n = e^{2\nu_n - 1} \cdot n$ ومنه $P_n = e^{(2v_0-1)+(2v_1-1)+...+(2v_n-1)}$

 $.P_n = e^{\frac{2(v_0 + v_1 + \dots + v_n) - (n+1)}{2}} = e^{\frac{6\left(1 - \left(\frac{1}{2}\right)^{n+1}\right) - (n-1)}{2}} = e^{\frac{6\left(1 - \left(\frac{1}{$

 $u_{n+1} = 3 + \sqrt{u_n - 3}$: $u_n = \frac{13}{4}$ ومن أجل كل عدد طبيعي $u_0 = \frac{13}{4}$ ومن أجل كل عدد طبيعي المتتالية العددية المعرّفة بحدّها الأوّل

 $3/< u_n < 4: n$ برهن بالتراجع أنّه من أجل كل عدد طبيعي 1

بیّن أنّه من أجل کل عدد طبیعي $u_n = \frac{-u_n^2 + 7u_n - 12}{\sqrt{u_n - 3} + u_n - 3}$: n متزایدة تماما. (2) بیّن أنّه من أجل کل عدد طبیعي

برّر لماذا (u_n) متقاربة.

. $v_n = \ln(u_n - 3)$:ب $\mathbb N$ بندرية المعرّفة على المتتالية العددية المعرّفة على المتتالية المعرّفة المعرّفة على المتتالية المعرّفة المعرّفة على المتتالية المعرّفة ا

اً) برهن أنّ (v_n) متتالية هندسية أساسها $rac{1}{2}$ ، ثمّ احسب حدّها الأوّل.

 $\lim_{n\to+\infty}u_n$. $\lim_{n\to+\infty}u_n$ کلا من u_n و u_n بدلالة u_n ثمّ احسب

 $P_n = (u_0 - 3) \times (u_1 - 3) \times \dots \times (u_n - 3)$ نضع من أجل كل عدد طبيعي $n = (u_0 - 3) \times \dots \times (u_n - 3)$

. $\lim_{n\to+\infty} P_n = \frac{1}{16}$: أكتب P_n بدلالة n ، ثمّ بيّن أنّ

 $3 < u_n < 4$: n برهان بالتراجع أنّه من أجل كل عدد طبيعي (1

لدينا $3 < u_0 < 4$ ومنه خاصية الإبتداء صحيحة

لیکن k عددا طبیعیا

نفرض أن $u_k < 4$ إذن $u_k < 3 < u_{k+1}$ ومنه $u_k < 3 < 1$ يكافئ $u_k < 4$ يكافئ $u_k < 4$ أي $u_k < 4$ ومنه حا $3 < u_n < 4$ ، n عدد طبیعي مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبیعي

 $u_{n+1} - u_n = \frac{-u_n^2 + 7u_n - 12}{\sqrt{u_n - 3} + u_n - 3}$: n تبيان أنّه من أجل كل عدد طبيعي (2

$$u_{n+1} - u_n = 3 + \sqrt{u_n - 3} - u_n = \sqrt{u_n - 3} - (u_n - 3)$$

 $u_{n+1} - u_n = \frac{\left(\sqrt{u_n - 3} - (u_n - 3)\right)\left(\sqrt{u_n - 3} + (u_n - 3)\right)}{\left(\sqrt{u_n - 3} + (u_n - 3)\right)} = \frac{u_n - 3 - (u_n - 3)^2}{\left(\sqrt{u_n - 3} + (u_n - 3)\right)}$

$$.u_{n+1} - u_n = \frac{u_n - 3 - (u_n^2 - 6u_n + 9)}{(\sqrt{u_n - 3} + (u_n - 3))} = \frac{-u_n^2 + 7u_n - 12}{(\sqrt{u_n - 3} + (u_n - 3))}$$

من أجل كل عدد حقيقي x من المحال]3;4 لدينا $3 < u_n < 4$ ، n عدد حقيقي x من أجل كل عدد حقيقي x من أجل كل عدد حقيقي من أجل كل عدد حقيقي من أجل كل عدد حقيقي x من أجل كل عدد حقيقي x من أجل كل عدد حقيقي من أجل كل عدد حقيقي x من المحال]3;4 أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x من المحال x أحد من أجل كل عدد حقيقي x أحد من أحد $u_n = \frac{1}{\sqrt{u_n - 3}} + (u_n - 3) > 0$ ومنه $\sqrt{u_n - 3} > 0$ ولاين $u_n = \frac{1}{\sqrt{u_n - 3}} + (u_n - 3) > 0$ ومنه $u_n = \frac{1}{\sqrt{u_n - 3}} + (u_n - 3) > 0$ إذن

أي
$$u_n > 0$$
 وبالتالي المتتالية (u_n) متزايدة تماما. $\frac{-u_n^2 + 7u_n - 12}{\left(\sqrt{u_n - 3} + (u_n - 3)\right)} > 0$

تبریر لماذا (u_n) متقاربة.

بما أن المتتالية (u_n) متزايدة ومحدودة من الأعلى بالعدد 4 فهي متقاربة.

ا) برهان أنّ (v_n) متتالية هندسية أساسها (v_n)

$$v_{n+1} = \ln(u_{n+1} - 3) = \ln(3 + \sqrt{u_n - 3} - 3) = \ln(\sqrt{u_n - 3})$$

$$\int_{0}^{\infty} v_{n+1} = \ln\left(\sqrt{u_{n}-3}\right)^{\frac{1}{2}} = \frac{1}{2}\ln\left(\sqrt{u_{n}-3}\right) = \frac{1}{2}v_{n}$$

$$v_0 = \ln(u_0 - 3) = \ln(\frac{13}{4} - 3) = \ln(\frac{1}{4})$$
 إذن $v_0 = \ln(u_0 - 3) = \ln(\frac{13}{4} - 3) = \ln(\frac{1}{4})$ وحدها الأول

 $\lim_{n o +\infty} u_n$ ب) كتابة كلا من v_n و u_n بدلالة n ، ثمّ احسب

$$v_n = \left(\ln\frac{1}{4}\right) \left(\frac{1}{2}\right)^n$$

$$.u_{n}=e^{\left(\frac{1}{2}\right)^{n}\left(\ln\frac{1}{4}\right)}+3=e^{\ln\left(\frac{1}{4}\right)^{\left(\frac{1}{2}\right)^{n}}}+3=\left(\frac{1}{4}\right)^{\left(\frac{1}{2}\right)^{n}}+3=\left(\frac{1}{4}\right)^{$$

$$\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \left(\frac{1}{4}\right)^{\left(\frac{1}{2}\right)^n} + 3 = 4$$
 النب $\lim_{n\to +\infty} \left(\frac{1}{4}\right)^{\left(\frac{1}{2}\right)^n} = 1$ ومنه $\lim_{n\to +\infty} \left(\frac{1}{2}\right)^n = 0$ ومنه $\lim_{n\to +\infty} \left(\frac{1}{2}\right)^n = 0$ ومنه $\lim_{n\to +\infty} \left(\frac{1}{2}\right)^n = 0$ ومنه $\lim_{n\to +\infty} \left(\frac{1}{4}\right)^{\left(\frac{1}{2}\right)^n} = 1$

.
$$u_n - 3 = e^{v_n}$$
 ، n لدينا من أجل كل عدد طبيعي $P_n = (u_0 - 3) \times (u_1 - 3) \times ... \times (u_n - 3) = e^{v_0} \times e^{v_1} \times ... \times e^{v_n} = e^{v_0 + v_1 + ... + v_n}$ ومنه

$$v_0 + v_1 + \dots + v_n = \left(\ln \frac{1}{4}\right) \left(\frac{1 - \left(\frac{1}{2}\right)^{n+1}}{\frac{1}{2}}\right) = \left(\ln \frac{1}{16}\right) \left(1 - \left(\frac{1}{2}\right)^{n+1}\right)$$
ولدينا

$$\cdot P_n = e^{\left(\ln \frac{1}{16}\right)\left(1-\left(rac{1}{2}
ight)^{n+1}
ight)}$$
 ينن

$$\lim_{n\to+\infty}P_n=rac{1}{16}$$
 :تبیان أنّ

$$\lim_{n \to +\infty} P_n = \lim_{n \to +\infty} e^{\left(\ln \frac{1}{16}\right)\left(1 - \left(\frac{1}{2}\right)^{n+1}\right)} = e^{\ln \frac{1}{16}} = \frac{1}{16} \quad \text{id} \quad \lim_{n \to +\infty} \left[1 - \left(\frac{1}{2}\right)^{n+1}\right] = 1 \quad \text{extraction} \quad \text{where} \quad \lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n+1} = 0$$
 لدينا $e^{\left(\ln \frac{1}{16}\right)\left(1 - \left(\frac{1}{2}\right)^{n+1}\right)} = e^{\ln \frac{1}{16}} = \frac{1}{16}$

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

لتمرين العشرون:

. $u_{n+1}=\frac{-4}{u_n-4}$ ، n عدد طبيعي عدد $u_0=1$. $u_0=1$ المتتالية العددية المعرّفة بــ: $u_0=1$

- u_3 و u_2 ، u_1 من (1
- $u_n \neq 2$ باستعمال البرهان بالتراجع بيّن أنّ $u_n \neq 2$

$$v_n = \frac{1}{u_n - 2}$$
 : نعتبر المنتالية (v_n) المعرفة كما يلي (3

أ ـ بيّن أنّ (v_n) متتالية حسابية يُطلب إيجاد أساسها و حدّها الأول

n بدلالة n ، ثمّ استفتح عبارة u_n بدلالة v_n بدلالة

جـ - هل المتتالية (u_n) متقاربة ؟ برّر إجابتك.

<u>الحل:</u>

. $u_{n+1}=\frac{-4}{u_n-4}$ ، n عدد طبيعي $u_0=1$ عدد المعرّفة بـ $u_0=1$

 u_3 و u_2 ، u_1 کلا من (1

$$u_3 = \frac{-4}{u_2 - 4} = \frac{-4}{\frac{3}{2}} = \frac{10}{4} \quad u_2 = \frac{-4}{u_1 - 4} = \frac{-4}{\frac{4}{3} - 4} = \frac{3}{2} \quad u_1 = \frac{-4}{u_0 - 4} = \frac{4}{3}$$

 $u_n \neq 2$ تبيان أنّ: 2

من أجل n=0 نجد n=0 ومنه مرحلة الإبتداء صحيحة n=0 بكن n=0 عددا طبيعيا

 $u_{k+1} \neq 2$ نفرض أن $u_k \neq 2$ نفرض

$$u_{k+1} - 2 = \frac{-4}{u_k - 4} - 2 = \frac{-4 - 2u_k + 8}{u_k - 4} = \frac{-2(u_k - 2)}{u_k - 4}$$
 لدينا

. $u_{k+1} \neq 2$ الفرضية $u_{k+1} = 0$ ومنه $u_{k+1} = 0$ الفرضية $u_{k+1} \neq 0$

 $u_n \neq 2$: n إذن من أجل كل عدد طبيعي

اً - تبيان أنّ (v_n) متتالية حسابية يُطلب إيجاد أساسها و حدّها الأول (3

$$v_{n+1} - v_n = \frac{1}{u_{n+1} - 2} - \frac{1}{u_n - 2} = \frac{1}{\frac{-4}{u_n - 4} - 2} - \frac{1}{u_n - 2} = \frac{1}{\frac{-2u + 4}{u_n - 4}} - \frac{1}{u_n - 2}$$

$$v_{n+1} - v_n = \frac{u_n - 4}{-2(u_n - 2)} - \frac{1}{u_n - 2} = \frac{u_n - 4}{-2(u_n - 2)} + \frac{2}{-2(u_n - 2)} = \frac{-1}{2}$$

$$r=-rac{1}{2}$$
 إذن $\left(v_{n}\right)$ متتالية حسابية أساسها

$$v_0 = \frac{1}{u_0 - 2} = \frac{1}{1 - 2} = -1$$
 وحدها الأوّل

. n بدلالة u_n بدلالة n ، واستنتاج عبارة عبارة v_n بدلالة

$$v_n = v_0 + nr = -1 - \frac{1}{2}n$$

$$u_n = \frac{1}{v_n} + 2 = \frac{2v_n + 1}{v_n}$$
 این $u_n - 2 = \frac{1}{v_n}$ ومنه $v_n = \frac{1}{u_n - 2}$

$$u_n = \frac{2\left(-1 - \frac{1}{2}n\right) + 1}{-1 - \frac{1}{2}n} = \frac{-n - 1}{-1 - \frac{1}{2}n} = \frac{-\frac{1}{2}(2n + 2)}{-\frac{1}{2}(2 + n)} = \frac{2n + 2}{2 + n}$$

$$\lim_{n\to +\infty} u_n = \lim_{n\to +\infty} \frac{2n+2}{2+n} = 2$$
 جـ - المتتالية (u_n) متقاربة لأن

$$u_{n+1} = \frac{u_n - 8}{2u_n - 9}$$
 و $u_0 = -3$ كما يلي: $u_0 = -3$ و المتتالية العددية المعرّفة على $u_0 = -3$

.
$$f(x) = \frac{x-8}{2x-9}$$
 : بيانيا الدالة f المعرّفة على f المعرّفة على أ) أ) مثل بيانيا الدالة f

ب) استعمل منحنى الدّالة
$$f$$
 لتخمين تصرف المتتالية (u_n) .

$$u_n \le 1$$
 بر هن بالتراجع أنّه، من أجل كل عدد طبيعي (2

(3 برهن أنّ
$$(u_n)$$
 متزايدة وأنّها متقاربة.

$$v_n = 1 - u_n$$
: من أجل كل عدد طبيعي $\left(v_n\right)$ حيث من أجل كل عدد طبيعي (4

$$0 < v_n < 4 \left(\frac{1}{7}\right)^n$$
 اَن الله عنه من أجل كل عدد طبيعي $v_{n+1} < \frac{1}{7}v_n$ ، $v_{n+1} < \frac{1}{7}v_n$.

$$(v_n)$$
 ماهي نهاية المتتالية (با

$$(u_n)$$
 ج) ماهي نهاية المتتالية ج

$$u_{n+1} = \frac{u_n - 8}{2u_n - 9}$$
 و $u_0 = -3$ يلي: $u_0 = -3$ و المتتالية العددية المعرّفة على $u_0 = -3$

$$(x)=rac{x-8}{2x-9}:$$
 ب $(x)=rac{8}{2}$ ب $(x)=rac{8}{2}$ با الدالة $(x)=rac{8}{2}$ المعرّفة على $(x)=rac{9}{2}$

ب) حسب الشكل يبدو أن المتتالية
$$(u_n)$$
 متزايدة.

$$u_n < 1$$
، n عدد طبیعي انه، من أجل كل عدد طبیعي (2

من أجل
$$n=0$$
 نجد $u_0 < 1$ من أجل مرحلة الإبتداء صحيحة.

ليكن للم عددا طبيعيا.

$$u_{k+1} < 1$$
 نفترض أن $u_k < 1$ ولنبر هن أن

اذن
$$u_k < 1$$
 الفرضية $u_{k+1} - 1 = \frac{u_k - 8}{2u_k - 9} - 1 = \frac{-u_k + 1}{2u_k - 9}$

ومنه
$$u_{_{k+1}} < 1$$
 اي $u_{_{k+1}} < 1$ ومنه $u_{_{k+1}} - 1 < 0$ ومنه $u_{_{k}} - 1 < 0$ ومنه $u_{_{k}} < 1 < 0$ کل عدد طبیعي $u_{_{n}} < 1$ ، n

ن الله متقاربة (
$$u_n$$
) برهان أن (u_n) برهان أن (3

لیکن n عددا طبیعیا

$$u_{n+1} - u_n = \frac{u_n - 8}{2u_n - 9} - u_n = \frac{-2u_n + 10u_n - 8}{2u_n - 9} = \frac{-2(u_n - 1)(u_n - 4)}{2u_n - 9}$$

لدينا
$$u_n < 1$$
 ومنه $u_n < 1 < 0$ و $u_n = 1 < 0$ و $u_n = 1 < 0$ ومنه $u_n < 1$ ومنه $u_n < 1$ وبالتالية $u_n < 1 < 0$ ومنه $u_n < 1$ ومنا الأعلى بالعدد 1 فهي متقاربة.

$$v_{n+1} < \frac{1}{7}v_n$$
 ، n برهان أنّه، من أجل كل عدد طبيعي (4)

$$v_{n+1} = 1 - u_{n+1} = 1 - \frac{u_n - 8}{2u_n - 9} = \frac{-(1 - u_n)}{2u_n - 9}$$

$$\frac{-1}{2u_n-9} < \frac{1}{7}$$
 تكافئ $\frac{1}{2u_n-9} > \frac{-1}{7}$ تكافئ $2u_n-9 < -7$ تكافئ $u_n < 1$ لدينا $u_n < 1$

$$v_{n+1} < \frac{1}{7}v_n$$
 $\lim_{n \to \infty} \frac{-(1-u_n)}{2u_n-9}$ $\lim_{n \to \infty} \frac{1}{7}(1-u_n)$ $\lim_{n \to \infty} 1-u_n > 0$ $\lim_{n \to \infty} 1-u_n > 0$

$$0 < v_n < 4\left(\frac{1}{7}\right)^n$$
استنتاج أنّ:

$$\begin{bmatrix} v_1 < \frac{1}{7}v_0 \\ v_2 < \frac{1}{7}v_1 \end{bmatrix}$$

$$v_{3} < \frac{1}{7}$$
 ومنه $v_{n+1} < \frac{1}{7}$ ومنه کل عدد طبیعي در البینا من أجل کل عدد طبیعي

$$v_n = v_{n-1}$$

 $v_n < \left(\frac{1}{7}\right)^n v_0$ ولدينا $v_1 \times v_2 \times v_3 \times \dots \times v_n < \frac{1}{7} v_0 \times \frac{1}{7} v_1 \times \frac{1}{7} v_2 \times \dots \times \frac{1}{7} v_{n-1}$ ولدينا

$$v_n < 4\left(\frac{1}{7}\right)^n$$
 $v_0 = 1 - u_0 = 4$

$$0< v_n < 4 \left(rac{1}{7}
ight)^n$$
 ولدينا من جهة أخرى $0 < v_n > 0$ ومنه $v_n > 0$ ومنه

يمكن استعمال البرهان بالتراجع. (v_n) تعيين نهاية المتتالية (v_n) ?

 $\lim_{n\to+\infty}v_n=0$ لدينا النهايات بالمقارنة فإن $\lim_{n\to+\infty}4\left(\frac{1}{7}\right)^n=0$ لدينا

 (u_n) حساب نهایة المتتالیة (

 $\lim_{n \to \infty} u_n = 1$ لاينا $\lim_{n \to \infty} 1 - u_n = 0$ ومنه $\lim_{n \to \infty} v_n = 0$

 $u_{n+1}=(u_n-1)^2+1$ ، $u_n=(u_n-1)^2+1$ ، $u_n=(u_n-1)^2+1$ ، $u_n=(u_n-1)^2+1$ ، $u_n=(u_n-1)^2+1$ ، $u_n=(u_n-1)^2+1$

عين قيم العدد الحقيقي α حتى تكون (u_n) متتالية ثابتة.

. $\alpha = \frac{3}{2}$ نفرض فيما يلي أن

 $1 < u_n < 2$ ، أ ـ برهن أنه من أجل كل عدد طبيعي 2.

ب ـ بين أن (u_n) متتالية متناقصة؛ استنتج أنها متقاربة ثم عين نهايتها.

 $v_n = \ln(u_n - 1)$: بـ: n متتالیة عددیة معرفة من أجل کل عدد طبیعي ، بـ: $v_n = \ln(u_n - 1)$.3

أ ـ برهن أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

ب ـ اكتب عبارة v_n بدلالة n ثم u_n بدلالة n ؛ تأكد من النهاية المحصل عليها في 2. ب

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

 $n_{n} : N_{n} : S_{n} = v_{0}^{2} + v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2} : n \in \mathbb{N}$ د ـ نضع من أجل كل

الحل:

lphaتعيين قيم العدد الحقيقي lphaحتى تكون (u_n) متتالية ثابتة.

$$.\,\alpha=2\,\,\text{ (}\,\alpha-1)\big(-\alpha+2\big)=0\,\,\text{ (}\,u_0-1\big)\big(-u_0+2\big)=0\,\,\text{ (}\,u_0-1\big)\big(1-(u_0-1)\big)=0$$

 $1 < u_n < 2$ ، أ ـ برهان أنه من أجل كل عدد طبيعي ، 2

 $1 < u_0 < 2$ لدينا $u_0 = \frac{3}{2}$ لدينا

 $1 < u_{n+1} < 2$ نفرض أن $1 < u_n < 2$ من أجل عدد طبيعي $1 < u_n < 2$ نفرض

$$1 < u_{n+1} < 2$$
 ومنه $1 < (u_n - 1)^2 + 1 < 2$ ومنه $0 < (u_n - 1)^2 < 1$ أي $0 < u_n - 1 < 1$ معناه $1 < u_n < 2$

 $1 < u_n < 2$ ، n عدد طبيعي $1 < u_n < 2$ ، n عدد طبيعي

ب ـ تبيان أن (u_n) متتالية متناقصة.

لیکن n عددا طبیعیا

$$u_{n+1} - u_n = (u_n - 1)^2 + 1 - u_n = (u_n - 1)^2 - (u_n - 1)$$

$$u_{n+1} - u_n = (u_n - 1)(u_n - 1 - 1) = (u_n - 1)(u_n - 2)$$

بما أن $u_n > 1$ فإن $u_n = u_n = u_n$ وبما أن $u_n = u_n = u_n$ فإن $u_n = u_n = u_n$ وبالتالي المتتالية $u_n = u_n = u_n$ وبالتالي المتتالية $u_n = u_n = u_n$ متناقصة.

استنتاج أنها متقاربة

المتتالية (u_n) متناقصة ومحدودة من الأسفل بالعدد 1 فهي متقاربة ونهايتها عد حقيقي ℓ

تعيين نهايتها.

$$x\mapsto (x-1)^2+1$$
 والدالة $u_{n+1}=(u_n-1)^2+1$ ولدينا $\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}u_n=\ell$ والدالة $u_n=\ell$

مستمرة على
$$\mathbb{R}$$
 إذن $1=\ell=\ell$ ومنه $\ell=\ell$ ومنه $\ell=\ell$ أو $\ell=\ell=\ell$ ولدينا $\ell=\ell=\ell$ مستمرة على $\ell=\ell$ مستمرة على المتالية $\ell=\ell=\ell$

 $\lim_{n \to +\infty} u_n = 1$

أ ـ برهان أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

$$v_{n+1} = \ln(u_{n+1} - 1) = \ln((u_n - 1)^2 + 1 - 1)$$

$$v_{n+1} = \ln(u_n - 1)^2 = 2\ln(u_n - 1) = 2v_n$$

$$v_0 = \ln(u_0 - 1) = \ln(\frac{3}{2} - 1) = \ln(\frac{1}{2}) = -\ln 2$$
 إذن $v_0 = \ln(u_0 - 1) = \ln(\frac{3}{2} - 1) = \ln(\frac{3}{2} - 1)$

 u_n ب د کتابهٔ عبارهٔ v_n بدلالهٔ u_n به بدلالهٔ ب

 $v_n = \left(-\ln 2\right) 2^n$

$$u_n = e^{v_n} + 1 = e^{(-\ln 2)2^n} + 1$$
 دينا $u_n = e^{v_n} + 1$ معناه $v_n = \ln(u_n - 1)$

التأكد من النهاية المحصل عليها في 2. ب.

.
$$\lim_{n\to +\infty} u_n = e^{(-\ln 2)2^n} + 1 = 1$$
 إذن $\lim_{n\to +\infty} e^{(-\ln 2)2^n} = 0$ ومنه $\lim_{n\to +\infty} (-\ln 2)2^n = -\infty$ لدينا

$$S_n = \frac{v_0}{2^0} + \frac{v_1}{2^1} + \frac{v_2}{2^2} + \ldots + \frac{v_n}{2^n}$$
 ' $n \in \mathbb{N}$ کل کل جہ ۔ نضع من اُجل کل

$$S_n = (-n-1)\ln 2$$
 تبيان أن

$$S_n = \frac{\left(-\ln 2\right)2^0}{2^0} + \frac{\left(-\ln 2\right)2^1}{2^1} + \dots + \frac{\left(-\ln 2\right)2^n}{2^n}$$

$$S_n = (-\ln 2) + (-\ln 2) + ... + (-\ln 2)$$

$$S_n = (n+1)(-\ln 2) = (-n-1)\ln 2$$

$$S_{n} = v_{0}^{2} + v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}$$
 المجال کل $n \in \mathbb{N}$ د ـ نضع من أجل کل د ـ نضع من أجل کل

n بدلالة S'

$$S'_n = ((-\ln 2)2^0)^2 + ((-\ln 2)2^1)^2 + ((-\ln 2)2^2)^2 + ... + ((-\ln 2)2^n)^2$$

$$S'_n = (\ln 2)^2 (2^0)^2 + (\ln 2)^2 (2^1)^2 + (\ln 2)^2 (2^2)^2 + ... + (\ln 2)^2 (2^n)^2$$

$$S'_n = (\ln 2)^2 \left[(2^0)^2 + (2^1)^2 + (2^2)^2 + \dots + (2^n)^2 \right]$$

$$S_n = (\ln 2)^2 \left[(2^2)^0 + (2^2)^1 + (2^2)^2 + \dots + (2^2)^n \right]$$

$$S'_n = (\ln 2)^2 \left[4^0 + 4^1 + 4^2 + \dots + 4^n \right]$$

$$S'_n = (\ln 2)^2 \left(\frac{4^{n+1}-1}{4-1}\right) = (\ln 2)^2 \left(\frac{4^{n+1}-1}{3}\right)$$

 $u_{n+1}=(1+u_n)e^{-2}-1$ المتتالية العددية المعرّفة بـ: $u_0=e^2-1$ ومن أجل كل عدد المعرّفة بـ: $u_0=e^2-1$

- $u_3 = u_2 \cdot u_1 + u_2$ (1)
- $1+u_n>0$ ، n أثبت أنه من أجل كل عدد طبيعي (2
- 3) بين أن المتتالية (u_n) متناقصة. هل هي متقاربة ؟ علل.
- . $v_n = 3(1+u_n)$ ، n نضع من أجل كل عدد طبيعي (4
- أ) أثبت أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدّها الأوّل.
 - . $\lim_{n} u_n$. و u_n بدلالة n ثم احسب v_n و بدلالة
- $\ln v_0 + \ln v_1 + ... + \ln v_n = (n+1)(-n+2+\ln 3)$: $\mathbb N$ من n من أجل كل n من أجل كل

$$u_{n+1}=(1+u_n)e^{-2}-1$$
 ، u_n المتتالية العددية المعرّفة بـ: $u_0=e^2-1$ ومن أجل كل عدد طبيعي (u_n)

 $.u_{3}$ و u_{2} ، u_{1} حساب (1

$$u_2 = (1+u_1)e^{-2} - 1 = e^{-2} - 1$$
 $u_1 = (1+u_0)e^{-2} - 1 = e^2 \times e^{-2} - 1 = 0$

$$u_3 = (1 + u_2)e^{-2} - 1 = (e^{-2})e^{-2} - 1 = e^{-4} - 1$$

 $1+u_n>0$ ، n إثبات أنه من أجل كل عدد طبيعي (2

. n=0 لدينا $u_0=e^2$ لدينا $u_0=e^2$ ومنه $u_0=e^2$ لدينا

 $1+u_{n+1} > 0$ نفرض أنّ $1+u_n > 0$ نفرض أنّ

 $1+u_{n+1}>0$ ومنه $1+u_n>0$ لاينا حسب الفرضية $1+u_n>0$ ومنه $1+u_{n+1}=(1+u_n)e^{-2}$ لاينا

 $1+u_n>0$ ، $\mathbb N$ من n من أجل كل بالتراجع فإنه من أجل عليه حسب مبدأ الاستدلال بالتراجع فإنه من أجل

تبيين أن المتتالية (u_n) متناقصة.

سلسلة تمارين محلولة في المتتاليات

$$u_{n+1} - u_n = (1 + u_n)e^{-2} - 1 - u_n = (1 + u_n)e^{-2} - (1 + u_n)$$
 لدينا

$$u_{n+1} - u_n = (1 + u_n)(e^{-2} - 1)$$

 $u_{n+1}-u_n < 0$ وبما أنه من أجل كل عدد طبيعي $n_n < 0$ ، $n_n = 1+u_n > 0$ وبما أنه من أجل كل عدد طبيعي $u_n = 1+u_n > 0$ وبما أنه من أجل كل عدد طبيعي أ

وبالتالي المتتالية $\left(u_{n}
ight)$ متناقصة.

يمكن استعمال البرهان بالتراجع.

 $u_{n+1} < u_n : n$ لنبر هن بالتراجع أنه من أجل كل عدد طبيعي لنبر هن بالتراجع أنه من أجل كل عدد طبيعي

 $u_1=0$ دينا $u_0=e^2-1$ دينا $u_1=0$ و منه $u_1=0$ و منه $u_1=0$

 $u_{k+1} < u_{k+1}$ نفرض أن $u_{k+1} < u_k$ ونبر هن أن

لدينا $(1+u_{k+1})e^{-2} < (1+u_k)e^{-2}$ يكافئ $(1+u_{k+1})e^{-2}$ معناه $u_{k+1} < 1+u_k$ يكافئ

وعليه نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل عدد طبيعي $u_{k+2} < u_{k+1}$ وعليه نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل عدد طبيعي $u_{k+1} < u_{k+1}$ وعليه نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل عدد طبيعي $u_{k+1} < u_{k+1}$ وبالتالي المتتالية u_n متناقصة.

لدينا من أجل كل عدد طبيعي $n:u_n>0$ أي $u_n>1$ أي $u_n>0$ أي أبيا متناقصة فهي متقاربة.

أ) البيات أن (v_n) متتالية هندسية يطلب تعيين أساسها وحدها الأول.

وحدها الأوّل $v_{n+1} = 3(1+u_{n+1}) = 3((1+u_n)e^{-2}) = e^{-2}v_n$ وحدها الأوّل

 $v_0 = 3(1+u_0) = 3e^2$

 u_n ب كتابة v_n و u_n بدلالة

$$v_n = 3e^2(e^{-2})^n = 3e^{-2n+2}$$

$$u_n = e^{-2n+2} - 1$$
 لدينا $u_n = \frac{1}{3}v_n - 1$ ومنه $v_n = 3(1+u_n)$ لدينا

.
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} e^{-2n+2} - 1 = -1$$
 ومنه $\lim_{n \to +\infty} e^{-2n+2} = 0$

. $v_n=3e^2\left(e^{-2}\right)^n$: n عدد طبیعي خدینا من أجل كل عدد طبیعي

$$v_0 \times v_1 \times ... \times v_n = 3e^2 (e^{-2})^0 \times 3e^2 (e^{-2})^1 \times ... \times 3e^2 (e^{-2})^n$$
 إذن

$$v_0 \times v_1 \times ... \times v_n = (3e^2)^{n+1} (e^{-2})^{0+1+...+n} = (3e^2)^{n+1} (e^{-2})^{\frac{n(n+1)}{2}}$$

$$v_0 \times v_1 \times ... \times v_n = (3e^2)^{n+1} \times e^{-n(n+1)} = (3e^2 \times e^{-n})^{n+1} = (3e^{2-n})^{n+1}$$

$$\ln(v_0 \times v_1 \times ... \times v_n) = \ln(3e^{2-n})^{n+1} = (n+1)\ln(3e^{2-n})$$

$$\ln v_0 + \ln v_n + ... + \ln v_n = (n+1)(-n+2+\ln 3)$$

طريقة ثانية:

 $\ln v_n = \ln \left(3e^{-2n+2}\right) = \ln 3 + \ln e^{-2n+2}$ معناه $v_n = 3e^{-2n+2}$ ، n دينا من أجل كل عدد طبيعي . $\ln v_n = \ln 3 + 2 - 2n$

$$\ln v_0 + \ln v_1 + ... + \ln v_n = (\ln 3 + 2 - 2 \times 0) + (\ln 3 + 2 - 2 \times 1) + ... + (\ln 3 + 2 - 2n)$$

$$\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2) - 2(0+1+\dots+n)$$

$$\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2) - 2\frac{n(n+1)}{2}$$

$$\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2) - n(n+1)$$

$$\ln v_0 + \ln v_1 + ... + \ln v_n = (n+1)(\ln 3 + 2 - n)$$

كما أنه يمكن الإستدلال على الخاصية بالتراجع.

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$.

$$f(x) = \frac{4x+1}{x+1}$$
 :-- $f(x) = \frac{4x+1}{x+1}$:-- $f(x) = \frac{4x+1}{x+1}$:-- $f(x) = \frac{4x+1}{x+1}$

$$\begin{bmatrix} -1 \\ 0;+\infty \end{bmatrix}$$
عين إتجاه تغيّر الدالة f على المجال (1

.
$$y=x$$
 ادرس وضعية C_f بالنسبة إلى المستقيم (D) ذي المعادلة C_f

$$[0,6]$$
 مثل (C_f) و (D) على المجال $(3,6)$

$$\begin{cases} v_0 = 5 \\ v_{n+1} = f\left(v_n\right) \end{cases} = \begin{cases} u_0 = 2 \\ u_{n+1} = f\left(u_n\right) \end{cases} \text{ (II)}$$

 $.v_{3}$ و v_{2} $.v_{1}$ $.v_{0}$ $.u_{3}$ $.u_{2}$ $.u_{1}$ $.u_{0}$ و $.u_{3}$ و $.u_{2}$

$$(v_n)$$
 و (u_n) حمن اتجاه تغیر و تقارب کل من المتتالیتین (u_n) و

$$\alpha = \frac{3+\sqrt{13}}{2}$$
 : حيث $\alpha < v_n \le 5$ عدد طبيعي $\alpha < v_n \le 5$ عدد طبيعي () ()

$$(v_n)$$
 و (u_n) و استنتج اتجاه تغیّر کل من المتثالیتین (u_n)

$$v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$$
 ، n عدد طبیعي (1) (3) اثبت أنه من أجل كل عدد طبیعي $v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$ ، n عدد طبیعي بین أنه من أجل كل عدد طبیعي

$$0 < v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$$
 ، n عدد طبیعي عدد $v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$

$$(v_n)$$
 و (u_n) جـ) استنتج أن $\lim_{n\to+\infty} (v_n-u_n)=0$ ثم حدد نهاية كل من (u_n) و $\frac{U_n}{U_n}$

 $rac{ ext{ILO}.:}{1}$ تعيين إتجاه تغيّر الدالمة f .

$$f$$
 عبين إتجاه تغيّر الدالة f . f .

من أجل كل عدد حقيقي x من المجال $0;+\infty$ لدينا $0;+\infty$ لدينا f'(x)>0 وبالتالي الدالة f متزايدة تماما على f'(x)>0 .

$$(D)$$
 دراسة وضعية (C_f) بالنسبة إلى المستقيم (2

x عددا حقيقيا من المجال x عددا

$$f(x)-x = \frac{4x+1}{x+1}-x = \frac{4x+1-x^2-x}{x+1}$$

$$f(x)-x = \frac{-x^2 + 3x + 1}{x + 1} = \frac{\left(\frac{3 + \sqrt{13}}{2} - x\right)\left(\frac{-3 + \sqrt{13}}{2} + x\right)}{x + 1}$$

سلسلة تمارين محلولة في المتتاليات

من أجل كل عدد حقيقي x من المجال $f\left(x\right)-x$ من أجل كل عدد حقيقي x من المجال $f\left(x\right)-x$ مثل إشارة x+1

$$\left(-x + \frac{3 + \sqrt{13}}{2}\right)$$

	//
X	$0 \qquad \qquad \frac{3+\sqrt{13}}{2} \qquad \qquad +\infty$
f(x)-x	+ 0 -
الوضعية	(D) تحت (C_f) ووق (C_f) و (C_f)
	يتقاطعان في النقطة ذات $\frac{3+\sqrt{13}}{2}; \frac{3+\sqrt{13}}{2}$ الإحداثيتين

 $\begin{cases} v_0 = 5 \\ v_{n+1} = f \end{cases}$ و $\begin{cases} u_0 = 2 \\ u_{n+1} = f \end{cases}$ المعرفتين كما يلي: $\begin{cases} u_0 = 2 \\ u_n \end{cases}$ المعرفتين كما يلي: $\begin{cases} u_0 = 2 \\ u_n \end{cases}$

 v_3 و v_2 ، v_1 ، v_0 ، u_3 ، u_2 ، u_1 ، u_0 الحدود الفواصل الحدود (1)

 (v_n) و (u_n) ب تخمين اتجاه تغير وتقارب كل من المتتاليتين (u_n) و

 $\frac{3+\sqrt{13}}{2}$ حسب الشكل يبدو أن المتتالية (u_n) متزايدة و (v_n) متزايدة ويتقار مان نحو العدد

lpha< $v_n\leq 5$ و $2\leq u_n< lpha$ ، n عدد طبيعي 1 و $1\leq u_n< lpha$ لدينا $1\leq u_0< lpha$ ومنه الخاصية صحيحة من أجل $1\leq u_0< lpha$

2 عدد طبیعي n ونبر هن صحة الخاصیة $2 \leq u_n < \alpha$ نفرض أن $2 \leq u_n < \alpha$

. $[0;+\infty[$ معناه f معناه f معناه f لأن الدالة f لأن الدالة f معناه f معن

 $2 \le u_{n+1} < \alpha$ بما أن $u_{n+1} = f(u_n)$ و $u_{n+1} = f(u_n)$ بما أن $u_{n+1} = f(u_n)$ بما أن

 $2 \le u_n < \alpha$ ، n عدد طبیعي عدم مبدأ الاستدلال بالتراجع یکون من أجل کل عدد طبیعي

. n=0 وكذلك لدينا $\alpha < v_0 \le 5$ ومنه الخاصية صحيحة من أجل

 $lpha < v_{n+1} \le 5$ نفرض أن $lpha < v_n \le 5$ من أجل عدد طبيعي n ونبر هن صحة الخاصية

. $[0;+\infty[$ when also in arithm of like f (α) < f

 $\alpha < v_{n+1} \le 5$ بما أن $\alpha < u_{n+1} \le \frac{7}{2}$ و $f(5) = \frac{7}{2}$ و $f(\alpha) = \alpha$ أي $v_{n+1} = f(v_n)$ بما أن $v_{n+1} = f(v_n)$

 $\alpha < v_n \le 5$ ، n ومنه حسب مبدأ الاستدلال بالتراجع يكون من أجل كل عدد طبيعي

ب) استنتاج اتجاه تغیّر المتتالیتین (v_n) و (v_n)

لدينا من أجل كل عدد حقيقي x من المجال $[0;\alpha]$ ، $[0;\alpha]$ وبما أنه من أجل كل عدد طبيعي x من المجال $u_n = 2 \le u_n$ وعليه المتتالية $u_n = u_n > 0$ أي $u_n = u_n > 0$ وعليه المتتالية $u_n = u_n = u_n > 0$ أي $u_n = u_n = u_n > 0$

ومن أجل كل عدد حقيقي x من المجال $\alpha < v_n \le 5$ لدينا $\alpha < v_n \le 5$ وبما أنه من أجل كل عدد طبيعي $\alpha < v_n \le 0$ فإن $\alpha < v_n \le 0$ أي $\alpha < v_n < 0$ وعليه المتتالية $\alpha < v_n < 0$ متناقصة.

 $v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$ ، n نبیان أنه من أجل كل عدد طبیعي (أ (3)

$$v_{n+1} - u_{n+1} = \frac{4v_n + 1}{v_n + 1} - \frac{4u_n + 1}{u_n + 1} = \frac{4v_n u_n + 4v_n + u_n + 1 - 4v_n u_n - v_n - 4u_n - 1}{(v_n + 1)(u_n + 1)}$$

$$v_{n+1} - u_{n+1} = \frac{3v_n - 3u_n}{(v_n + 1)(u_n + 1)} = \frac{3(v_n - u_n)}{(v_n + 1)(u_n + 1)}$$

 $v_n+1\geq 3$ معناه $\alpha< v_n\leq 5$ لأن $v_n\geq 2$ و $u_n+1\geq 3$ معناه $u_n\geq 2$ ، معناه $\alpha< v_n\leq 5$ لدينا من أجل كل عدد طبيعي

$$v_n > u_n$$
 ، n يكافئ $\frac{3}{(v_n + 1)(u_n + 1)} \le \frac{3}{(v_n + 1)(u_n + 1)} \le \frac{1}{3}$ وبما أنه من أجل كل عدد طبيعي

$$v_{n+1} - u_{n+1} \le \frac{1}{3} \left(v_n - u_n \right)$$
 فإن $\frac{3(v_n - u_n)}{(v_n + 1)(u_n + 1)} \le \frac{1}{3} \left(v_n - u_n \right)$ فإن

 $0 < v_n - n < (\frac{1}{3})^{n-1}$ ، n عدد طبیعي عدد الجل کل عدد عدد طبیعي بات بیین انه من اجل کل عدد طبیعي

.
$$n=0$$
 لدينا $v_0-u_0 \le \left(\frac{1}{3}\right)^{0-1}$ و $u_0 = \left(\frac{1}{3}\right)^{0-1} = \left(\frac{1}{3}\right)^{0-1} = \left(\frac{1}{3}\right)^{0-1} = 0$ ومنه الخاصية صحيحة من أجل $v_0-u_0 = 5-2=3$

$$v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^n$$
 نفرض أن $v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^{n+1-1}$ نفرض أن $v_{n} - u_{n} < \left(\frac{1}{3}\right)^{n-1}$ نفرض أن

لدينا حسب السؤال السابق من أجل كل
$$\frac{1}{3}(v_n-u_n)<\frac{1}{3}(v_n-u_n)<\frac{1}{3}(\frac{1}{3})^{n-1}$$
 ولدينا حسب السؤال السابق من أجل كل لدينا

$$v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^n$$
 عدد طبیعی $v_{n+1} - u_{n+1} \le \frac{1}{3}(v_n - u_n)$ ، n عدد طبیعی

$$v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$$
 ، n عدد طبيعي عدد طبيعي

 $v_n-u_n<\left(rac{1}{3}
ight)$ ، n وعيبه من أجل حل عدد طبيعي $v_n-u_n<0$ ومن جهة أخرى لدينا من أجل كل عدد طبيعي $u_n<\alpha$ ، n و $u_n<\alpha$ ومن جهة أخرى لدينا من أجل كل عدد طبيعي

$$0 < v_n - u_n < \left(\frac{1}{3}\right)^{n-1} : n$$
 وبالنالي من أجل كل عدد طبيعي : وبالنالي من أجل كل عدد طبيعي

.
$$\lim_{n\to+\infty} (v_n - u_n) = 0$$
 في استنتاج أن

$$\lim_{n\to +\infty} (v_n-u_n)=0$$
 بما أنّ $\lim_{n\to +\infty} (v_n-u_n)=0$ حسب النهايات بالمقارنة نستنتج أن $\lim_{n\to +\infty} (1/3)^{n-1}=0$

 (v_n) و (u_n) تحدید نهایة کل من

لدينا المتتالية (u_n) متزايدة والمتتالية (v_n) متناقصة و (v_n) متناقصة و (v_n) متناقصة و المتتالية (u_n) متناقصة و المتتالية (u_n) متباورتان فهما

$$\ell=f\left(\ell
ight)$$
 بما أن $u_{n+1}=f\left(u_{n}
ight)$ متقاربة فإن $u_{n}=\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}u_{n}=\ell$ والدالة $u_{n}=0$ متقاربة فإن

.
$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=\frac{3+\sqrt{13}}{2}$$
 و و و النالي $\ell=\frac{3+\sqrt{13}}{2}$

. $u_{n+1}=\sqrt{6u_n+16}$ ، n عدد طبیعي من أجل كل عدد $u_0=0$ الأول الأول $u_0=0$ المعرفة بحدها الأول

سلسلة تمارين محلولة في المتتاليات إعداد: عبد العزيز مصطفاي

الدالة المعرفة على المجال
$$-\frac{8}{3}$$
 بـ: $-\frac{8}{3}$ بـ: $-\frac{8}{3}$ الدالة المعرفة على المستوي المنسوب إلى معلم h

متعامد ومتجانس و $\left(\Delta\right)$ المستقيم ذو المعادلة y=x أنظر الشكل)

- u_3 u_2 u_1 u_0 u_1 u_2 u_3 u_2 u_3 u_4 u_5 u_5
 - ب) ضع تخمينا حول اتجاه تغير (u_n) وتقاربها.
- $0 \le u_n < 8$: n برهن بالتراجع أنه من أجَل كل عدد طبيعي أ) برهن بالتراجع أنه من أجَل كل عدد طبيعي
 - ب) بين أنه من أجل كل عدد طبيعي n

$$u_{n+1} - u_n = \frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16} + u_n}$$

- (u_n) استنتج اتجاه تغیر (ج
- $0 < 8 u_{n+1} \le \frac{1}{2}(8 u_n)$ ، n عدد طبیعي (1) (3)

.
$$\lim_{n\to+\infty}u_n$$
 ثم استنتج $0<8$ بین أنه من أجل كل عدد طبیعي n : n

<u>الحل:</u>

- u_3 9 u_2 u_1 u_0 1 u_0 1 u_1 u_1 u_2 u_3 u_1 u_2 u_3 u_4 u_5
- ب) حسب تمثيل الحدود يبدو أن المتتالية (u_n) متزايدة ومتقار أبة
- $0 \le u_n < 8: n$ أ) برهان بالتراجع أنه من أجل كل عدد طبيعي أ(2
 - . n=0 ومنه الخاصية صحيحة من أجل $0 \le u_0 < 8$
 - لنفرض أن $0 \le u_n < 48$ وعليه $0 \le u_n < 8$ يكافئ
- يكافئ $8 < \sqrt{6u_n + 16} < 8$ لأن دالة الجذر $4 \le \sqrt{6u_n + 16} < 8$
- $0 \le u_{n+1} < 8$ أي $0 \le \sqrt{6u_n + 16} < 8$ التربيعي متزايدة تماما ومنه
- إذن من أجل كل عدد طبيعي n يكون $8 > u_n < 8$ وهذا حسب مبدأ الإستدلال بالتر اجع.

$$u_{n+1} - u_n = \frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16} + u_n} : n$$
 ب تبیان أنه من أجل كل عدد طبیعي ب

$$u_{n+1} - u_n = \sqrt{6u_n + 16} - u_n = \frac{\left(\sqrt{6u_n + 16} - u_n\right)\left(\sqrt{6u_n + 16} + u_n\right)}{\left(\sqrt{6u_n + 16} + u_n\right)}$$

$$u_{n+1} - u_n = \frac{6u_n + 16 - u_n^2}{\left(\sqrt{6u_n + 16} + u_n\right)} = \frac{-\left(u_n^2 - 6u_n - 16\right)}{\left(\sqrt{6u_n + 16} + u_n\right)}$$

$$u_{n+1} - u_n = \frac{-(u_n - 8)(u_n + 2)}{\left(\sqrt{6u_n + 16} + u_n\right)} = \frac{(8 - u_n)(u_n + 2)}{\left(\sqrt{6u_n + 16} + u_n\right)}$$

- (u_n) استنتاج اتجاه تغیّر المتتالیة (ج.
- $0 \le u_n < 8$ من أجل كل عدد طبيعي n لدينا

$$u_{n+1} - u_n > 0$$
 ومنه $\frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16} + u_n} > 0$ ومنه $\frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16} + u_n}$ أي $u_n + 2 > 0$ ومنه

وبالتالي المتتالية (u_n) متزايدة.

 $0 < 8 - u_{n+1} \le \frac{1}{2} (8 - u_n)$ ، n عدد طبیعي أنه من أجل كل عدد طبيعي (أ

 $u_n < 8$ دينا من أجل كل عدد طبيعي $u_n < 8$ دينا من أجل كل

$$8 - u_{n+1} = 8 - \sqrt{6u_n + 16} = \frac{\left(8 - \sqrt{6u_n + 16}\right)\left(8 + \sqrt{6u_n + 16}\right)}{\left(8 + \sqrt{6u_n + 16}\right)} = \frac{64 - \left(6u_n + 16\right)}{\left(8 + \sqrt{6u_n + 16}\right)}$$

$$8 - u_{n+1} = \frac{48 - 6u_n}{\left(8 + \sqrt{6u_n + 16}\right)} = \frac{6\left(8 - u_n\right)}{\left(8 + \sqrt{6u_n + 16}\right)} = \frac{6\left(8 - u_n\right)}{\left(8 + \sqrt{6u_n + 16}\right)}$$

 $8+\sqrt{6u_n+16}\geq 12$ يكافئ $12\leq 6u_n+16\geq 16$ ومنه $16\leq 6u_n+16\geq 16$ يكافئ $10\leq 6u_n+16\geq 16$ لدينا من أجل كل عدد طبيعي

 $0 < 8 - u_{n+1} \le \frac{1}{2} (8 - u_n)$: n عدد طبیعی من أجل كل عدد $8 - u_{n+1} \le \frac{1}{2} (8 - u_n)$

 $0 < 8 - u_n \le 8 \left(\frac{1}{2}\right)^n$: n عدد طبیعي عدد طبیعي (ب

 $\hat{8}-u_n>0$ ، n لدينا من أجل كل عدد طبيعي

 $u_0=0$ لدينا $u_0=8$ و $u_0=8$ و $u_0=8$ اي $u_0=8$ أي $u_0=8$ أي $u_0=8$ ومنه الخاصية محيحة من أجل $u_0=8$

 $8-u_{n+1} \le 8 \left(\frac{1}{2}\right)^{n+1}$ نفرض أن $8-u_n \le 8 \left(\frac{1}{2}\right)^n$ من أجل عدد طبيعي n ولنبر هن صحة الخاصية

: n ويما أنه من أجل كل عدد طبيعي $\frac{1}{2}(8-u_n) \le 8\left(\frac{1}{2}\right)^{n+1}$ أي $\frac{1}{2}(8-u_n) \le 8 \times \frac{1}{2}\left(\frac{1}{2}\right)^n$ معناه $8-u_n \le 8\left(\frac{1}{2}\right)^n$

: n ومنه حسب مبدأ الإستدلال بالتراجع يكون من أجل كل عدد طبيعي $8-u_{n+1} \le 8 \left(\frac{1}{2}\right)^{n+1}$ فإن $8-u_{n+1} \le \frac{1}{2} \left(8-u_n\right)$

 $0 < 8 - u_n \le 8 \left(\frac{1}{2}\right)^n$ $\beta - u_n \le 8 \left(\frac{1}{2}\right)^n$

. $\lim_{n\to+\infty}u_n=8$ يكون حسب النهايات بالمقارنة $8-u_n=0$ أي $\lim_{n\to+\infty}8\left(\frac{1}{2}\right)^n=0$ بما أن 0

التمرين السادس والعشرون:

 $u_{n+1} = \frac{2+3u_n^2}{1+3u_n}$ ، $u_{n+1} = \frac{2+3u_n^2}{1+3u_n}$ ، $u_{n+1} = \frac{2+3u_n^2}{1+3u_n}$ ، $u_{n+1} = \frac{2+3u_n^2}{1+3u_n}$ ، $u_{n+1} = \frac{2+3u_n^2}{1+3u_n}$

 $2-u_{n+1} = \frac{3u_n}{1+3u_n}(2-u_n)$: n عدد طبیعي عدد طبیعي 1.1

. $0 < u_n < 2$: n عدد طبیعي بالتراجع أنه من أجل كل عدد عدد طبیعي

ج ـ بين أن المتتالية $\left(u_{n}\right)$ متزايدة ثم استنتج أنها متقاربة.

سلسلة تمارين محلولة في المتتاليات

 $\frac{3u_n}{1+3u_n} < \frac{6}{7}$: n عدد طبیعي عدد أجل كل عدد عدد عدد عدد أجل 2.

 $2-u_n \le \left(\frac{6}{7}\right)^n$: n عدد طبیعی عدد أنه من أجل كل عدد عدد طبیعی

 (u_n) ج ـ حدد نهاية المتتالية

الحل:

 $2-u_{n+1} = \frac{3u_n}{1+3u_n} (2-u_n)$: 1 عدد طبیعی عدد طبیعی 1.1 ا .1

لیکن n عددا طبیعیا

$$2 - u_{n+1} = 2 - \frac{2 + 3u_n^2}{1 + 3u_n} = \frac{2 + 6u_n - 2 - 3u_n^2}{1 + 3u_n} = \frac{3u_n(2 - u_n)}{1 + 3u_n} = \frac{3u_n}{1 + 3u_n}(2 - u_n)$$

. $0 < u_n < 2$: n عدد طبیعی باتراجع أنه من أجل كل عدد طبيعي باتراجع أنه من أجل كل

n=0 لدينا $0< u_0< 1$ لدينا

 $0 < u_{n+1} < 2$ نفرض أن $0 < u_n < 2$ ونبر هن أن

$$u_{n+1} > 0$$
 اي $\frac{2+3u_n^2}{1+3u_n} > 0$ ومنه $\frac{2+3u_n^2}{1+3u_n} > 0$ اي الفرضية $\frac{2+3u_n^2}{1+3u_n} > 0$ ومنه $\frac{2+3u_n^2}{1+3u_n} > 0$ اي الدينا من الفرضية

ولدينا من أجل كل عدد طبيعي
$$u_n > 0$$
 ، $u_n > 0$ ولدينا من أجل كل عدد طبيعي $u_n > 0$ ، $u_n > 0$ ولدينا من أجل كل عدد طبيعي $u_n > 0$ ، $u_n > 0$ ولدينا من أجل كل عدد طبيعي

$$u_{n+1} < 2$$
 کن $u_n > 0$ کن

. $0 < u_n < 2$ ، n عدد طبیعي عدد الاستدلال بالتراجع فإنه من أجل كل عدد طبیعي

ج ـ تبيان أن المتتالية (u_n) متزايدة.

لیکن n عددا طبیعیا

$$u_{n+1} - u_n = \frac{2 + 3u_n^2}{1 + 3u_n} - u_n = \frac{2 + 3u_n^2 - u_n - 3u_n^2}{1 + 3u_n} = \frac{2 - u_n}{1 + 3u_n}$$

$$\left(u_{n}\right)$$
 ولدينا $u_{n+1}-u_{n}>0$ و $\frac{2-u_{n}}{1+3u_{n}}>0$ و منه $\frac{2-u_{n}}{1+3u_{n}}>0$ و ولدينا $\frac{2-u_{n}}{1+3u_{n}}>0$ و عناه $\frac{2-u_{n}}{1+3u_{n}}>0$

متزايدة.

بما أن المتتالية (u_n) متزايدة ومحدودة من الأعلى بالعدد 2 فهي متقاربة.

 $\frac{3u_n}{1+3u_n} < \frac{6}{7}$: n عدد طبیعي عدد أجل كل عدد عدد أجل 2.

$$\frac{3u_n}{1+3u_n} = \frac{1+3u_n-1}{1+3u_n} = 1 - \frac{1}{1+3u_n}$$
 لدينا

$$\frac{1}{1+3u_n} - \frac{1}{1+3u_n} - \frac{1}{1+3u_n} - \frac{1}{1+3u_n} = \frac{1}{1+3u_n} + \frac{1}{1+3u_n}$$
ولدينا $u_n < 2$ عناه $u_n < 2$ يكافئ $u_n < 2$ يكافئ $u_n < 2$

 $.\frac{3u_n}{1+3u_n} < \frac{6}{7}$

$$2-u_n \le \left(\frac{6}{7}\right)^n$$
: n عدد طبیعي عدد أنه من أجل كل عدد عدد طبیعي

$$2-u_0 \le \left(\frac{6}{7}\right)^0$$
 ي أي $2-u_0 = 1$ و $2-u_0 = 1$

$$2-u_{n+1} \le \left(\frac{6}{7}\right)^{n+1}$$
 نفرض أن $2-u_n \le \left(\frac{6}{7}\right)^n$ نفرض أن

من الفرضية
$$\frac{3u_n}{1+3u_n} \le \left(\frac{6}{7}\right)^{n+1}$$
 أي $\frac{3u_n}{1+3u_n} < \frac{6}{7}$ ومنه من أجل $\frac{3u_n}{1+3u_n} < \frac{6}{7}$ ومنه من أجل من الفرضية $\frac{3u_n}{1+3u_n} < \frac{6}{7}$

$$2-u_n \le \left(\frac{6}{7}\right)^n$$
 ، n کل عدد طبیعي $2-u_n \le \left(\frac{6}{7}\right)^n$ کل عدد طبیعي $3-u_n \le \frac{6}{7}$

$$\lim_{n\to +\infty} 2 - u_n = 0 \text{ و يما أن } 1 < \frac{6}{7} < 1 \text{ فإن } 0 < 2 - u_n \leq \left(\frac{6}{7}\right)^n \text{ or } n$$
 لدينا من أجل كل عدد طبيعي $n = 0$ و بما أن $n = 0$ فإن $n = 0$

. $(O; \vec{i}, \vec{j})$ الدالة المعرفة على المجال [C] بـ: $\frac{x^2+3}{x+1}$ بـ $[-1; +\infty[$ الدالة المعرفة على المجال [C] بـ الدالة المعرفة على المجال البياني في المعلم المتعامد والمتجانس المتعامد والمتعامد والمتجانس المتعامد والمتعامد و

f ادرس تغیرات الداله f

ين أن المستقيم Δ ذا المعادلة y=x-1 مقارب مائل للمنحنى $u_0=1$. $\begin{cases} u_0=1\\ u_{n+1}=f(u_n) \end{cases}$ يعتبر المتتالية $u_n=f(u_n)$ المعرفة من أجل كل عدد طبيعي $u_n=f(u_n)$ كما يلي: $u_n=f(u_n)$

. u_3 و u_2 ، u_1 ، u_0 مثل على محور الحدود y=x و المستقيم ذي المعادلة y=x

ب - اعط تخمينا حول اتجاه تغير المتتالية (u_n) وتقاربها.

 $u_n \leq 3$ ، n أ ـ باستعمال البرهان بالتراجع بين أنه من أجل كل عدد طبيعي $u_n \leq 3$ ب بین أن (u_n) متزایدة ؛ هل هي متقاربة (u_n)

 $3-u_{n+1} \le \frac{3}{4}(3-u_n)$ ، n عدد طبیعي عدد أجل كل عدد عدد طبیعي أ

$$3-u_n \le 2\left(\frac{3}{4}\right)^n$$
 ب ـ استنتج أن

الحل: الحل تغيرات الدالة f .

الدالة f تقبل الإشتقاق على $]-1;+\infty$ ولدينا

$$f'(x) = \frac{2x(x+1)-x^2-3}{(x+1)^2} = \frac{x^2+2x-3}{(x+1)^2} = \frac{(x-1)(x+3)}{(x+1)^2}$$

من أجل كل عدد حقيقي x من المجال $[-1;+\infty]$ لدينا $[-1;+\infty]$ لدينا $[-1;+\infty]$ ومنه إشارة $[-1;+\infty]$ من نفس إشارة

f'(x) > 0 ، $x \in]1;+\infty[$ من أجل كل f'(x) < 0 ، $x \in]-1;1[$ من أجل كل

ومنه الدالة f متناقصة تماما على [1;1-[ومتزايدة تماما على $[1;+\infty[$.

.
$$\lim_{x \to -1} x + 1 = 0^+$$
 $\lim_{x \to -1} x^2 + 3 = 4$ $\lim_{x \to -1} f(x) = +\infty$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

$$f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

$$f(x) = \lim_{x \to +\infty} f(x)$$

$$f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

	~/_ }/	<u></u>		9 #	
\boldsymbol{x}			1		$+\infty$
f'(x)	0	_	0	+	
f(x)	\	<u> </u>	2		▼ +∞

(C) تبيان أن المستقيم (Δ) ذا المعادلة x = x مقارب مائل للمنحنى (2)

$$\lim_{x \to +\infty} \left[f(x) - (x-1) \right] = \lim_{x \to +\infty} \frac{x^2 + 3}{x+1} - (x-1) = \lim_{x \to +\infty} \frac{x^2 + 3 - x^2 + 1}{x+1} = \lim_{x \to +\infty} \frac{4}{x+1} = 0$$
each thorising (\Delta) above the interval of the proof of the p

$$u_3$$
 و u_2 ، u_1 ، u_0 احتمثیل علی محور الحدود u_1 ، u_0 و u_2 ب اعطاء تخمینا حول اتجاه تغیر المتتالیة u_1 و و و اتجاه تغیر المتتالیة u_2 و تقاربها

حسب الشكل المقابل يبدو أن المتتالية $(u_{_n})$ متزايدة ومتقاربةً.

$$1 \le u_n \le 3$$
، n عدد طبیعي أجل كل عدد أجل أ - تبيان أنه من أجل كل عدد الم

n=0 لدينا $1 \le u_0 \le 3$ ومنه الخاصية محققة من أجل

$$1 \le u_{n+1} \le 3$$
 نفرض أن $1 \le u_n \le 3$ نفرض أن

لدينا $u_n \leq 1$ وبما أن الدالة f متزايدة تماما على المجال $u_n \leq 1$ فإن

$$1 \le u_{n+1} \le 3$$
 وبالتالي $2 \le u_{n+1} \le 3$ أي $f(1) \le f(u_n) \le f(3)$

 $1 \leq u_n \leq 3$ ، n ومنه حسب مبدأ الاستدلال بالتراجع فإنه من أجل كل عدد طبيعي

ب ـ تبيان أن (u_n) متزايدة ؛

 $u_{n+1} \ge u_n$ ، n لنبر هن بالتراجع أنه من أجل كل عدد طبيعي

.
$$n=0$$
 لدينا $u_0=1$ لدينا $u_1=0$ لدينا $u_1=0$ لدينا $u_1=0$ لدينا $u_1=0$ لدينا $u_1=0$ لدينا $u_1=0$

لیکن n عددا طبیعیا

. $u_{n+2} \ge u_{n+1}$ نفرض أن $u_{n+1} \ge u_n$ ونبر هن صحة الخاصية

لدينا
$$u_{n+1} \ge u_{n+1}$$
 والدالة f متزايدة تماما على المجال [1;3] إذن $f\left(u_{n+1}\right) \ge f\left(u_{n}\right)$ و ولاينا $u_{n+1} \ge u_{n}$

 $.\,u_{\scriptscriptstyle n+2}\geq u_{\scriptscriptstyle n+1}$ ومنه $f\left(u_{\scriptscriptstyle n}\right)=u_{\scriptscriptstyle n+1}$

إذن حسب مبدأ الاستدلال بالتراجع من أجل كل عدد طبيعي u_n ، $u_n \geq u_n$ أي المتتالية u_n مقر ايدة. المتتالية (u_n) متقاربة لأنها متزايدة ومحدودة من الأعلى بالعدد 3.

$$3-u_{n+1} \leq \frac{3}{4}(3-u_n)$$
 ، n عدد طبیعي عدد طبیعي أ د تبیان أنه من أجل كل عدد طبیعي (5

$$3 - u_{n+1} = 3 - \frac{u_n^2 + 3}{u_n + 1} = \frac{3u_n + 3 - u_n^2 - 3}{u_n + 1} = \frac{u_n (3 - u_n)}{u_n + 1} = \frac{u_n}{u_n + 1} (3 - u_n)$$

$$\frac{u_n}{u_n+1} = \frac{u_n+1-1}{u_n+1} = 1 - \frac{1}{u_n+1}$$
 لدينا

سلسلة تمارين محلولة في المتتاليات

 $3-u_n \le 2\left(\frac{3}{4}\right)^n$ ب ـ استنتاج أن

نستعمل البرهان بالتراجع

. n=0 لدينا $u_0=2$ و منه $2\left(\frac{3}{4}\right)^0$ و منه $2\left(\frac{3}{4}\right)^0=2$ و منه $2\left(\frac{3}{4}\right)^0=2$ لدينا

 $3-u_{n+1} \le 2\left(\frac{3}{4}\right)^{n+1}$ لنفرض أن $n = 3-u_n \le 2\left(\frac{3}{4}\right)^n$ من أجل عدم طبيعي $n = 3-u_n = 3$

 $\frac{3}{4}(3-u_n) \le 2\left(\frac{3}{4}\right)^{n+1}$ این $\frac{3}{4}(3-u_n) \le 2 \times \frac{3}{4}\left(\frac{3}{4}\right)^n$ معناه $3-u_n \le 2\left(\frac{3}{4}\right)^n$ الدينا

 $3-u_{n+1} \le 2\left(\frac{3}{4}\right)^{n+1}$ ولدينا حسب السؤال السابق من أجل كل عدد طبيعي n ، n عدد طبيعي ولدينا حسب السؤال السابق من أجل كل عدد طبيعي

 $3-u_n \le 2\left(\frac{3}{4}\right)^n$ اذن نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل عدد طبيعي الم

 $\lim_{n\to +\infty} u_n$ جـ تحدید

 $0 \le 3 - u_n \le 2 \left(\frac{3}{4}\right)^n$ من أجل كل عدد طبيعي n لدينا

 $\lim_{n\to+\infty}u_n=3$

تماربن مقترحة

تمرين 01:

 $u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12}$ و $u_0 = 0$ بالشكل: \mathbb{N} بالشكل المعرّفة على المعرفة على المعرفة على المعرّفة على المعرفة على ال

. احسب الحدود الخمس الأولى. $v_n = u_n^2 - 4$: n عدد طبیعي (v_n) المعرفة كما يلي من أجل كل عدد طبيعي .2

أ ـ برهن أنّ (v_n) متتالية هندسية .

 u_n فوجد عبارة v_n بدلالة v_n ، ثم استنتج عبارة وجد عبارة و

 (u_n) ثمّ نهایة (v_n) ثمّ نهایة ج

تمرين <u>02</u>:

$$\begin{cases} u_0 = -2 \\ u_{n+1} = \frac{1}{3} \begin{pmatrix} u_n - 2 \end{pmatrix}, n \in \mathbb{N} \end{cases}$$
 کما یلي: $\begin{cases} u_0 = -2 \\ u_{n+1} = \frac{1}{3} \begin{pmatrix} u_n - 2 \end{pmatrix}, n \in \mathbb{N} \end{cases}$ کما یلي:

 $u_3, u_2, u_1 + \dots = 1$

 $v_n = u_n - \alpha$: n عدد حقیقي، نضع من أجل كل عدد طبیعي α .2

أ - عيّن قيمة α حتى تكون المتتالية (v_n) هندسية.

 u_n بدلالة u_n واستنتج بدلالة v_n بدلالة .

ج - هل المنتاليتان (u_n) و (u_n) متقاربتان ؟

 $S_n = V_0 + V_1 + ... V_n$ المجموع: n المجموع: د ـ احسب بدلالة $L_n = u_0 + u_1 + \dots u_n$: e lla e

-ما هي نهاية L_n عندما يؤول n إلى $\infty+$?

تمرین 03:

 $u_{n+1} = \frac{2}{3}u_n + \frac{4}{3}$: n ومن أجل كل عدد طبيعي $u_0 = 1$ عددية معرّفة كما يلي: $u_0 = 1$

 $f\left(x\right)=rac{2}{3}x+rac{4}{3}$ والمنحنى $f\left(x
ight)=rac{2}{3}x+rac{4}{3}$ المعرّفة على $\mathbb R$ ، كما يلي:

 u_3 و u_2 ، u_1 ، u_0 الدور u_0 باستعمال الرّسم السابق، مثّل على حامل محور الفواصل وبدون حساب الحدود

ج) أعط تخمينا حول اتجاه تغيّر المتتالية (u_n) وتقاربها.

. $u_{1} \le 4 : n$ برهن بالتراجع أنّه، من أجل كل عدد طبيعي (2

 (u_n) ادرس اتجاه تغيّر المتتالية

ج) هل (u_n) متقاربة ؟ برّر إجابتك.

نعتبر (v_n) المتتالية العددية المعرّفة كما يلي $v_n=u_n+\alpha$ عدد حقيقي. عين قيمة α حتى تكون (v_{i}) متتالية هندسية يطلب تعيين أساسها و حدّها الأول -

 $\alpha = -4$ نضع (4

أ) أكتب عبارة v_n بدلالة n ، ثمّ استنتج عبارة u_n بدلالة v_n

 (u_n) تحقق من صحة تخمينك حول تقارب المتتالية

 $T_n = u_0 + u_1 + \dots u_n$ و $S_n = v_0 + v_1 + \dots + v_n$:جـ المجموعين n المجموعين (ج

تمرين 04:

سلسلة تمارين محلولة في المتتاليات

في الشكل المقابل، C) هو التمثيل البياني للدّالة f المعرّفة على Cا بـ:

.
$$y = x$$
 و Δ المستقيم ذو المعادلة $f(x) = \frac{5x+2}{x+3}$

- $[0;+\infty]$. أ ـ ادرس اتجاه تغيّر الدّالة على المجال المجاد . $[0;+\infty]$
- $f(x) \in [0;3]$ فإن $x \in [0;3]$ ب ـ بيّن أنّه إذا كان

،
$$u_0 = \frac{1}{2}$$
 المعرّفة u_n المعرّفة u_n المعرّفة u_n المعرّفة u_n المعرّفة u_n ، u_n

$$u_{n+1} = f\left(u_n\right)$$

أ ـ أعد رسم الشكل على ورقة الإجابة ثم مثل على محور الفواصل الحدود

$$u_3 \circ u_2 \circ u_1 \circ u_0$$

ب ـ ضع تخمينا حول اتجاه تغيّر وتقارب المتتالية (μ_n) .

$$0 < u_n < u_{n+1} < 3$$
 ، n عدد طبیعی ، انّه من أجل كل عدد طبیعی .3

ب ـ استنتج أنّ المتتالية (u_n) متقاربة ثمّ احسب نهايتها \mathcal{N}_n

تمرين <u>05:</u>

$$u_{n+1} = \frac{3u_n}{1+u_n}$$
 ، متتالية معرّفة بـ: $u_0 = 1$ ، ومن أجل كل عدد طبيعي $\left(u_n\right)$

 u_3 ، u_2 ، u_1 بحسب .1

$$^{''}$$
 . $0\!<\!u_{n}\!<\!2$. برهن بالتراجع من أجل عدد طبيعي n ، أنَّ:

3. أثبت أنّ المتتالية (u_n) متزايدة، ثمّ استنتج أنّها متقاربة، حدّد نهايتها (u_n)

$$v_n = 1 - \frac{2}{u_n}$$
 بـ: \mathbb{N} بـ المعرّفة على المعرّفة على 4.

أ ـ بيّن أنّ المتتالية $\left(v_{_{n}}
ight)$ هندسية، عيّن أساسها وحدّها الأوّل.

 \cdot ، u_n بدلالة v_n ، ثمّ استنتج u_n بدلالة v_n

ج - تحقّق من نهاية u_n المحسوبة في السؤال 3

. $S_n = v_0 + v_1 + \ldots + v_n$: حيث S_n ؛ ميث ، المجموع ، المجموع

تمرين 06:

.
$$\begin{cases} u_1 + u_3 = 30e \\ \ln(u_2) - \ln(u_4) + 2\ln 3 = 0 \end{cases}$$
 : call the content of the c

حيث In اللو غاريتم النيبيري ذو الأساس e.

 (u_n) أساس u_1 و يتن u_1

n بدلالة u_n عبّر عن u_n بدلالة .2

 $S_n = u_1 + u_2 + ... + u_n$: المجموع: n ، المجموع: 3

. $v_n = \ln \left(u_{n+2} \right) + \ln \left(u_{n+1} \right)$ كما يلي: $\mathbb N$ كما عدية معرّفة على $\left(v_n \right)$.4

أ ـ اكتب v_n بدلالة n ، ثمّ بيّن أنّ (v_n) متتالية حسابية.

. $v_0 + v_1 + ... + v_n = 12 + 48 \ln 3$: بحيث n بحيث ، n بحيث العدد الطبيعي

تمرین 07:

لتكن المنتالية $u_0=lpha$ المعرّفة على مجموعة الأعداد الطبيعية $u_0=lpha$ بـ: $u_0=lpha$ حيث lpha عدد حقيقي

 $u_{n+1} = 4u_n - \frac{3}{2}$: n عدد طبيعي عدد طبيعي

ابتة. α عين قيمة α حتى تكون المتتالية α

 $u_n > \frac{1}{2}$: n برهن بالتراجع أنّه، من أجل كل عدد طبيعي $\alpha = \frac{5}{2}$ برهن بالتراجع أنّه، من أجل

 $v_n = \ln\left(u_n - \frac{1}{2}\right)$:- نعتبر المتتالية $v_n = \ln\left(u_n - \frac{1}{2}\right)$ المعرّفة من أجل كل عدد طبيعي $v_n = \ln\left(u_n - \frac{1}{2}\right)$

. v_n متتالية حسابية عبيل أساسها، ثمّ عبّر عن v_n بدلالة v_n

 $S_n = v_0 + v_1 + \dots + v_n$ المجموع $S_n = v_0 + v_1 + \dots + v_n$:

 $T_n=u_0+u_1+\dots u_n$: حيث عبارة الحد العام u_n بدلالة u_n ، ثمّ احسب بدلالة u_n ، المجموع u_n ؛ حيث u_n

 $2u_{n+2}=3u_{n+1}-u_n$: n ومن أجل كل عدد طبيعي $u_1=2$ ، $u_0=1$ كما يلي: $u_1=3u_{n+1}-u_n$ كما يلي: $u_1=3u_{n+1}-u_n$. $v_n = u_{n+1} - u_n$: كما يلي كما معرفة على المتتالية (v_n) معرفة على

 $v_1 \cdot v_0 + v_0 - 1$

بيّن أنّ المتتالية (v_n) هندسية يطلب تعيين أساسها.

. $S_n = v_0 + v_1 + \ldots + v_{n-1}$ علما أنّ: $S_n = u_n - 1$ علما أنّ: -3 v_n بدلالة n، ثمّ احسب نهاية v_n

جـ - برهن أنّه، من أجل كل عدد طبيعي n:n +1:n متقاربة. $u_n=2$

 $w_n = u_{n+1} - \frac{1}{2}u_n$ كما يلي: $\mathbb N$ معرّفة على (w_n) معرّفة على -4

أ ـ بيّن أنّ المتتالية (س) ثابتة يطلب تعيين قيمتها.

 $u_n = 2 \left(1 - \left(\frac{1}{2}\right)^n\right) + 1 : n$ عدد طبیعی عدد الله مرّة ثانیة أنّه من أجل كل عدد الله عدد ال

عدد حقيقي موجب تماما ويختلف عن 1 ولتكن (u_n) المتتالية العددية المعرفة بـ: $u_0 = u_0$ ومن أجل كل عدد a

طبيعي $u_{n+1}=au_n^2:n$ ونعرّف في $\mathbb N$ المتتالية $u_{n+1}=au_n^2:n$ طبيعي $u_{n+1}=au_n^2:n$

التي من أجلها تكون المتتالية (v_n) هندسية، عيّن عندئذ حدها الأول وأساسها. b

 u_n استنتج بدلالة a و a الحد العام (2

. $p_n = u_0 \times u_1 \times u_2 \times ... \times u_n$: n عدد طبیعي (3

 $p_n = a^{2^{n+1}-(n+2)}$: فإن العدد الطبيعي ما العدد الطبيعي ما العدد الطبيعي

 $+\infty$ ادرس حسب قيم a نهاية p_n عندما عندما (4

تمرین 10:

$$\left\{ egin{align*} u_0 = 0, u_1 = 1 \\ u_{n+2} = rac{2}{5} u_{n+1} - rac{1}{25} u_n \end{array}
ight.$$
نعتبر المنتالية $\left(u_n \right)$ المعرّفة كما يلي:

. $w_n = 5^n u_n$ و $v_n = u_{n+1} - \frac{1}{5} u_n$ ، n و عدد طبيعي من أجل كل عدد طبيعي

أ ـ بيّن أنّ المتتالية (v_n) هندسية أساسها أ ـ أ

. n بدلالة v_n بدلالة

 \cdot . m بدلالة w_n بين أنّ w_n بدلالة w_n بدلالة السها بين أنّ بين أنّ بدلالة السها بدلالة السها بين أنّ

سلسلة تمارين محلولة في المتتاليات $S_n = v_0 + v_1 + \ldots + v_{n-1}$ حيث: $S_n = v_0 + v_1 + \ldots + v_{n-1}$ حيث: إعداد: عبد العزيز مصطفاي

 u_n بدلالة u_n عيّن

 $0 < u_{n+1} \le \frac{2}{5}u_n$ ، n فير معدوم عدد طبيعي غير معدوم کل عدد طبيعي غير معدوم

 $0 < u_n \le \left(\frac{2}{5}\right)^n$ ، من أجل كل عدد طبيعي غير معدوم n ، استنتج أنّه، من أجل كل عدد طبيعي

 $u_{n+1} = \frac{3u_n + 4}{u_n + 3}$ و $u_0 = 1$ المتتالية العددية المعرّفة كما يلي: $u_0 = 1$

ا المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$. دون حساب مثل على المستقيم المدود $(O; \vec{i})$ f والمنحنى (C) الممثل للدالة العددية y=x والمعادلة y=x والمنحنى الممثل للدالة العددية u_3 و u_2 ، u_1 ، u_0 $f(x) = \frac{3x+4}{x+3}$ المعرّفة على المجال $[-3;+\infty]$ كما يلي:

 μ - أعط تخمينا حول اتجاه تغيّر وتقارب ونهاية المتثالية (u_n) .

. $0 < u_n$ أ أنبت أنّه، من أجل كل عدد طبيعي غير معدوم n ، فإنّ (2)

 (u_n) ادرس اتجاه تغیّر المتتالیة ا

 (u_n) متقاربة واحسب نهايتها.

 $v_n = \frac{w_n - 2}{u_n + 2}$. كما يلي: $v_n = \frac{w_n - 2}{u_n + 2}$ المتتالية العددية المعرّفة من أجل كل عدد طبيعي (v_n) (3

اً ـ أثبت أنّ $\left(v_n
ight)$ متتالية هندسية، يطلب تعيين أساسها وحدّها الأوّل $\left(v_n
ight)$

. - جـ احسب v_n النبية السؤال v_n المسؤال v_n

تمرين <u>12</u>:

 α عدد $\begin{cases} u_0=\alpha \\ u_{n+1}=\frac{5}{6}u_n+335 \end{cases}$ حيث α حيث α عدد المتتالية (u_n) المعرّفة على α

لنية (u_n) عين العدد الحقيقى α الذي تكون من أجله المتتالية α ثابتة.

 $\alpha = 2009$ نضع فيما يلي: 2

. $u_n < 2010$: n عدد طبیعي عدد أنّه، من أجل كل عدد طبیعي أ - أثبت، باستعمال البر هان بالتراجع أنّه، من أجل كل عدد طبیعي

 (u_n) متزايدة. (u_n)

 (u_n) متقاربة. (u_n) متقاربة.

. $v_n = u_n - 2010$: كما يلي كما المعرّفة على المعرّفة على المعرّفة على 3

أ ـ أثبت أنّ (v_n) متتالية هندسية يطلب تعيين أساسها وحدّها الأوّل.

. n بدلالة u_n عبارة الحد العام v_n بدلالة n ، ثمّ عبارة بدلالة

ج - احسب lim *u*

 $T_n = v_0 + 6v_1 + 6^2v_2 + ... + 6^nv_n$ و $S_n = v_0 + v_1 + ... + v_n$ و $S_n = v_0 + 6v_1 + 6^2v_2 + ... + 6^nv_n$ و $S_n = v_0 + v_1 + ... + v_n$

تمرين 13:

$$\left\{ egin{align*} u_0 = 0 \\ u_{n+1} = \sqrt{3u_n + 4} \end{array}
ight.$$
 کما یلي: $\left\{ egin{align*} u_0 = 0 \\ u_{n+1} = \sqrt{3u_n + 4} \end{array}
ight.$

سلسلة تمارين محلولة في المتتاليات محلولة في المتاليات محلولة في المتاليات مدد طبيعي $u_n \leq 4: n$. $0 \leq u_n \leq 4: n$

 (u_n) أ) ادرس اتجاه تغيّر المتتالية (u_n) .

ب) هل المتتالية (u_n) متقاربة ؟ علّل إجابتك.

. $4-u_{n+1} \le \frac{1}{2}(4-u_n)$: n عدد طبیعی کل عدد (أ -3

. $\lim_{n\to +\infty}u_n$ ب استنتج أنّه، من أجل كل عدد طبيعي n=1 : n عدد طبيعي ب استنتج أنّه، من أجل كل عدد طبيعي

 $u_0 = 2$ حيث $u_0 = 1$ حيث $u_{n+1} = \frac{1}{5}(u_n - 4n)$ حيث $u_{n+1} = \frac{1}{5}(u_n - 4n)$ حيث $u_n = 1$

 (v_n) بیّن أنّ (v_n) متتالیة هندسیة أساسها (v_n)

$$T_n = \frac{1}{4} \left(5 - \frac{1}{5^n} \right) - \frac{(n+1)(n-2)}{2}$$
 و $S_n = \frac{1}{4} \left(5 - \frac{1}{5^n} \right)$: بيّن أنّ

 $u_{n+1} = \frac{2u_n^2 - 3}{u_n + 2}$ نعتبر المتتالية $u_{n+1} = \frac{2u_n^2 - 3}{u_n + 2}$

 $u_n > 3$ ؛ n عدد طبیعي (1

 (u_n) ادرس رتابة المتتالية (2

 $u_{n+1} - 3 > \frac{3}{2}(u_n - 3)$ بین أنه من أجل كل عدد طبیعي n ؛ n عدد طبیعي (3

 $u_n > \left(\frac{3}{2}\right)^n + 3$! n عدد طبیعي (4

؛ هل المتتالية (u_n) متقاربة

