The Lambda Calculus and the Functional Programming Paradigm

The theoretical basis of functional programming is the **lambda calculus**.

The Lambda Calculus

$$f(x, y) = x^2 + y$$

The value of f can be written as

$$\lambda x \cdot \lambda y \cdot x^2 + y$$

Why we cannot say the value of f is $x^2 + y$?

Syntax of Lambda Calculus

An expression can be

- 1. A variable *x*, *y*, *z*, *time*, *numberOfPeople*, ...
- A predefined constant
 — for <u>impure</u> or <u>applied</u> lambda calculus only
- 3. Function applications (combinations) (<expression> <expression>)
- 4. Lambda abstractions (function definitions) $(\lambda < \text{variable} > . < \text{expression} >)$

Lambda abstraction:

Function application:

Some examples

combination	result	remarks
$((\lambda n . n^3) (3))$	27	3^3
$//$ $((\lambda x \cdot x) (E))$	E	identity function
$//((\lambda n \cdot (add \ n \ 1)) \ (5))$	6	
$((\lambda x . x) (E))$ $((\lambda n . (add n 1)) (5))$ $(((\lambda f . (\lambda x . (f (f x)))) sqr) 3)$	81	(sqr (sqr 3))

Many parentheses!!

This is a **polymorphic operation**: allow many argument types

Syntactic conventions:

- 1. Uppercase letters and identifiers are used to denote lambda expressions.
- 2. $E_1 E_2 E_3$ means $((E_1 E_2) E_3)$.
- 3. λx . E₁ E₂ E₃ means $(\lambda x$. (E₁ E₂ E₃)).
- 4. $\lambda x y z$. E means $(\lambda x . (\lambda y . (\lambda z . E)))$.
- 5. Functions can be named define Twice = $\lambda f \cdot \lambda x \cdot f(f x)$ then (Twice $(\lambda n \cdot (add n \cdot 1)) \cdot 5) = 7$

(Twice
$$(\lambda n \cdot (\text{add } n \cdot 1)) \cdot 5) = 7$$

 $((\lambda f \cdot \lambda x \cdot f(fx)) \cdot (\lambda n \cdot (\text{add } n \cdot 1)) \cdot 5) = 7$

Example

$$(\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x)) (\lambda g \cdot \lambda y \cdot g y)$$

What does this mean?

$$(\lambda n . \lambda f . \lambda x . f (n f x))$$
 $(\lambda g . \lambda y . g y)$ $(\lambda n . (\lambda f . \lambda x . f (n f x)))$ $(\lambda g . (\lambda y . g y))$ $(\lambda n . (\lambda f . (\lambda x . f (n f x))))$ $(\lambda g . (\lambda y . (g y)))$ $(\lambda n . (\lambda f . (\lambda x . (f (n f x)))))$ $(\lambda g . (\lambda y . (g y)))$

Curried Functions

λx . E One Parameter Only?

Two ways to represent functions with more than one parameter.

Example: sum(a, b) = a + b $(\lambda a \cdot (\lambda b \cdot (add \ a \ b)))$

- sum : $N \times N \rightarrow N$ Note: sum can be seen as sum($\langle a, b \rangle$) = a + b.
- $(\lambda a \cdot (\lambda b \cdot (add \ a \ b))) : N \rightarrow (N \rightarrow N)$ Note: $((\lambda a \cdot (\lambda b \cdot (add \ a \ b))) \ 1) = (\lambda b \cdot (add \ 1 \ b))$ Computationally these two functions are the same, but their signatures are different.

Currying and Uncurrying

```
define Curry = \lambda f \cdot \lambda x \cdot \lambda y \cdot f \langle x, y \rangle
define Uncurry = \lambda f \cdot \lambda p \cdot f (head p) (tail p)
Example
             Curry sum
      = (\lambda f \cdot (\lambda x \cdot \lambda y \cdot f \langle x, y \rangle)) sum
      = (\lambda x \cdot \lambda y \cdot \text{sum} \langle x, y \rangle)
      = (\lambda x \cdot (\lambda y \cdot (add x y)))
             Uncurry (\lambda x \cdot (\lambda y \cdot (add x y)))
      = (\lambda f.(\lambda p.f(\text{head }p)(\text{tail }p))) (\lambda x.(\lambda y.(\text{add }x y)))
      = (\lambda p \cdot \text{add (head } p) \cdot (\text{tail } p))
      = (\lambda p \cdot \text{add } p) = \text{sum}
```

'Partial application' via currying

define Twice = $\lambda f \cdot \lambda x \cdot f(f x)$

The signature of Twice:

 λ **x** . sqr (sqr **x**)

Twice : $(D \rightarrow D) \rightarrow (D \rightarrow D)$

Hence

(Twice sqr) : $N \rightarrow N \ll$

Semantics of Lambda Expressions

Meaning of a lambda expression: results after all its combinations are carried out.

$$((\lambda n \cdot n^3) (3)) = 27$$

Free and bound occurrences of a variable

Substitution

$$E[\upsilon \rightarrow E_1]$$

Replace each *free* occurrence of v in E by E_1 .

 $(\lambda x \cdot (\text{mul } y x))[y \rightarrow 3]$ $(\lambda x \cdot (\text{mul } 3 x))$ **valid!**

A substitution is **valid** (or **safe**) if no free variable in E_1 becomes bound as a result.

 $(\lambda x \cdot (\text{mul } y \cdot x))[y \rightarrow x]$ $(\lambda x \cdot (\text{mul } x \cdot x))$ **unsafe!** This is called a **variable capture** or a **name clash**.

Definition

FV(E): set of free variables in E.

- 1. $FV(c) = \emptyset$ (c is a constant)
- 2. $FV(x) = \{x\}$ (x is a variable)
- 3. $FV(E_1 E_2) = FV(E_1) \cup FV(E_2)$
- $4. FV(\lambda x \cdot E) = FV(E) \setminus \{x\}$

E is closed iff
$$FV(E) = \emptyset$$
.

Formal definition of substitution

```
a) v[v 
ightharpoonup E_1] = E_1 for any variable v
b) x[v 
ightharpoonup E_1] = x for any variable x \neq v
c) c[v 
ightharpoonup E_1] = c for any constant c
d) (E_1 E_2)[v 
ightharpoonup E_3] = ((E_1[v 
ightharpoonup E_3]) (E_2[v 
ightharpoonup E_3]))
e) (\lambda v \cdot E)[v 
ightharpoonup E_1] = (\lambda v \cdot E)
f) (\lambda x \cdot E)[v 
ightharpoonup E_1] = \lambda x \cdot (E[v 
ightharpoonup E_1])
if x \neq v and x \notin FV(E_1)
g) (\lambda x \cdot E)[v 
ightharpoonup E_1] = \lambda z \cdot (E[x 
ightharpoonup z)[v 
ightharpoonup E_1])
if x \neq v and x \notin FV(E_1) and z \neq v and z \notin FV(E_1)
```

Lambda Reduction

Evaluation of a lambda expression: reduce the expression until no more reduction rules apply.

Main reduction rule: β-reduction (function application) $(\lambda v \cdot E) E_1 \Rightarrow_{\beta} E[v \rightarrow E_1]$ L.H.S.: a βredex (reduction application)

Name changing rule:

 α -reduction (safe substitution for free variables)

$$\lambda v \cdot E \Rightarrow_{\alpha} \lambda w \cdot E[v \rightarrow w]$$

provided that w does not occur in E at all.

Evaluation is a sequence of β -reductions and α -reductions. **Goal of evaluation** is a lambda expression that contains no β -redexes.

Notation:

$$\boldsymbol{E} \Rightarrow \boldsymbol{F} : E \Rightarrow_{\alpha} F \text{ or } E \Rightarrow_{\beta} F$$

 $E \Rightarrow^* F$: the reflexive, transitive closure of ' \Rightarrow '

Reversed β -reduction β -abstraction

$$E[\nu \rightarrow E_1] \Rightarrow_{\beta} (\lambda \nu. E) E_1.$$

β -conversion

$$E \Leftrightarrow_{\beta} F \text{ if } E \Rightarrow_{\beta} F \text{ or } F \Rightarrow_{\beta} E.$$

E and *F* are **equivalent** (or **equal**) if $E \Leftrightarrow^* F$.

Equivalence of functions

η-reduction

$$\lambda \nu \cdot (E \ \nu) \Rightarrow_{\eta} E$$

provided that E denotes a function and v has no free occurrence in E.

Example: $\lambda x \cdot (\operatorname{sqr} x) \Rightarrow_{\eta} \operatorname{sqr}$

For applied lambda calculus (with constants)

δ -reduction

all rules that involve predefined constants

Examples: (add 3 5) $\Rightarrow_{\delta} 8$

(not true) \Rightarrow_{δ} false

```
Twice (\lambda n . (add \ n \ 1)) \ 5

= (\lambda f . \lambda x . (f (f x))) (\lambda n . (add \ n \ 1)) \ 5

\Rightarrow_{\beta} (\lambda x . ((\lambda n . (add \ n \ 1)) ((\lambda n . (add \ n \ 1)) \ x))) \ 5

\Rightarrow_{\beta} (\lambda n . (add \ n \ 1)) ((\lambda n . (add \ n \ 1)) \ 5)

\Rightarrow_{\beta} (add ((\lambda n . (add \ n \ 1)) \ 5) \ 1)

\Rightarrow_{\beta} (add (add \ 5 \ 1) \ 1)

\Rightarrow_{\delta} 7
```

Normal Form

A lambda expression is in **normal form** if it contains no β -redexes (and no δ -redexes in an applied lambda calculus), so that it cannot be further reduced using the β -rule or the δ -rule.

An expression in normal form has no more function applications (combinations) to evaluate.

Not all lambda expressions can be reduced to normal form.

$$(\lambda x \cdot x \cdot x) (\lambda x \cdot x \cdot x) \Rightarrow_{\beta} (\lambda x \cdot x \cdot x) (\lambda x \cdot x \cdot x)$$

Reduction Strategies

Normal order reduction:

Always reduces the leftmost outermost β -redex (or δ -redex) first.

For any lambda expression of the form

$$E = ((\lambda x . B) A)$$

A β -redex E is outside any β -redex that occurs in B or A. A β -redex is outermost if there is no β -redex outside it.

Applicative order reduction:

Always reduces the leftmost innermost β -redex (or δ -redex) first.

For any lambda expression of the form

$$E = ((\lambda x . B) A)$$

Any β -redex that occurs in B or A is inside the β -redex E. A β -redex is innermost if there is no β -redex inside it.

Uniqueness of Normal Form

Church-Rosser Theorem I

For any lambda expressions E, F and G, if E \Rightarrow * F and E \Rightarrow * G, then there is a lambda expression Z such that F \Rightarrow * Z and G \Rightarrow * Z.

Corollary

For any lambda expressions E, M and N, if E \Rightarrow * M and E \Rightarrow * N where M and N are in normal form, then M and N are variants of each other (equivalent with respect to a α -reduction).

Completeness of Reduction Strategy

Church-Rosser Theorem II

For any lambda expressions E and N, if E \Rightarrow * N where N is in normal form, there is a normal order reduction from E to N.

A normal order reduction may

- 1.reach a unique normal form (up to an α -conversion);
- 2.never terminate.

Constants

How to represent constants in pure lambda calculus? (Hence δ -reductions are not really needed)

Example: Natural numbers

```
define 0 = \lambda f \cdot \lambda x \cdot x

define 1 = \lambda f \cdot \lambda x \cdot f x

define 2 = \lambda f \cdot \lambda x \cdot f (f x)

define 3 = \lambda f \cdot \lambda x \cdot f (f (f x))

...

define add = \lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f (n f x)
```

Functional Programming

```
fun factorial (n) =

if n > 0

then n * factorial (n - 1)

else 1

factorial =

\lambda n \cdot \text{if } n > 0

then n * factorial (n - 1)

else 1
```

Functional Programming

- A program is a function composed using simpler functions.
- As a result, there is no variable.
- As loops can be defined using recursively recursive functions replace loops.