Planche nº 6. Espaces préhilbertiens

* très facile *** facile *** difficulté moyenne **** difficile $**** très difficile \$I:Incontournable

Exercice nº 1 (*** I) (Polynômes de LEGENDRE)

Soit $E=\mathbb{R}[X].$ On munit E du produit scalaire $P|Q=\int_{-1}^1 P(t)Q(t)\ dt.$

- 1) Pour $n \in \mathbb{N}$, on pose $L_n = ((X^2 1)^n)^{(n)}$.
 - a) Montrer que la famille $(L_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E, |).
 - b) Déterminer $||L_n||$ pour $n \in \mathbb{N}$.
- 2) Déterminer l'orthonormalisée de SCHMIDT de la base canonique de E.
- 3) Déterminer la distance de X^3 à $\mathbb{R}_1[X]$.

Exercice n° 2 (*** I) (Polynômes d'HERMITE) (nécessite d'avoir traité le chapitre « Intégration sur un intervalle quelconque »).

 $\mathrm{Soit}\ E=\mathbb{R}[X].\ \mathrm{Pour}\ (P,Q)\in E^2,\ \mathrm{on\ pose}\ \phi(P,Q)=\int_0^{+\infty}P(t)Q(t)e^{-t}\ dt.\ \mathrm{Pour}\ n\in\mathbb{N},\ \mathrm{on\ pose}\ h_n=\left(X^ne^{-X}\right)^{(n)}e^X.$

- 1) Montrer que φ est un produit scalaire sur E.
- 2) a) Pour $n \in \mathbb{N}$, préciser les coefficients de h_n . Montrer que la famille $(h_n)_{n \in \mathbb{N}}$ est une base de E.
 - b) Montrer que la famille $(h_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E, φ) .
 - c) Pour $n \in \mathbb{N}$, déterminer $\|h_n\|$. En déduire une base orthonormée de l'espace préhilbertien (E, φ) .

Exercice n° 3 (** I) (Polynômes de TCHEBYCHEV) (nécessite d'avoir traité le chapitre « Intégration sur un intervalle quelconque »).

Soit $E = \mathbb{R}[X]$. Pour $(P,Q) \in E^2$, on pose $\phi(P,Q) = \int_{-1}^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt$. Pour $n \in \mathbb{N}$, on note T_n le n-ème polynôme de TCHEBYCHEV de première espèce c'est-à-dire l'unique polynôme tel que $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

- 1) Montrer que φ est un produit scalaire sur E.
- 2) a) Montrer que $(T_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E,ϕ) .
 - b) Pour $n \in \mathbb{N}$, déterminer $\|T_n\|$.

Exercice nº 4 (** I)

On note E l'ensemble des suites réelles de carrés sommables c'est-dire les suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que

$$\sum_{n=0}^{+\infty} u_n^2 < +\infty.$$

- 1) Montrer que E est un \mathbb{R} -espace vectoriel.
- $\textbf{2)} \ \mathrm{Pour} \ (u, v) \in E^2, \ \mathrm{on \ pose} \ \phi(u, v) = \sum_{n=0}^{+\infty} u_n \nu_n. \ \mathrm{Montrer \ que} \ \phi \ \mathrm{est \ un \ produit \ scalaire \ sur \ E}.$

Exercice nº 5 (* I)

Soit Φ l'application qui à deux matrices carrées réelles A et B de format $\mathfrak n$ associe $\mathrm{Tr}\left(A^T\times B\right)$. Montrer que Φ est un produit scalaire sur $\mathscr M_{\mathfrak n}(\mathbb R)$. Est ce que Φ est un produit scalaire sur $\mathscr M_{\mathfrak n}(\mathbb C)$?

Exercice n° 6 (****) Soit E un \mathbb{R} -espace vectoriel muni d'une norme, notée $\| \|$, vérifiant l'identité du parallélogramme. Montrer que cette norme est hilbertienne.

Exercice nº 7 (** I)

Soit E un espace préhilbertien réel et $(e_1,...,e_n)$ une famille de n vecteurs unitaires de E $(n \in \mathbb{N}^*)$ telle que pour tout vecteur x de E, on ait $\|x\|^2 = \sum_{k=1}^n \left(x|e_k\right)^2$. Montrer que la famille $(e_1,...,e_n)$ est une base orthonormée de E.

Exercice nº 8 (***)

Soit f une fonction continue sur [0,1], non nulle à valeurs réelles positives. Pour P et Q polynômes donnés, on pose $\Phi(P,Q) = \int_0^1 f(t)P(t)Q(t) \ dt.$

- 1) Montrer que Φ est un produit scalaire sur $\mathbb{R}[X]$.
- $\textbf{2)} \ \text{Montrer qu'il existe une base orthonormale } (P_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} \ \text{pour } \Phi \ \text{telle que, pour tout entier naturel } \mathfrak{n}, \ \deg(P_{\mathfrak{n}}) = \mathfrak{n}.$
- 3) (****) Soit $(P_n)_{n\in\mathbb{N}}$ une telle base. Montrer que chaque polynôme P_n , $n\in\mathbb{N}^*$, a n racines réelles simples.

Exercice n° 9 (*** I) (Matrices et déterminants de Gram) Soit E un espace préhilbertien réel.

Pour $n \in \mathbb{N}^*$ et (x_1, \ldots, x_n) dans E^n , on pose $G(x_1, \ldots, x_n) = (x_i | x_j)_{1 \le i, j \le n}$ (matrice de Gram) puis $\gamma(x_1, \ldots, x_n) = \det(G(x_1, \ldots, x_n))$ (déterminant de Gram).

- 1) Montrer que $\operatorname{rg}(G(x_1,\ldots,x_n)) = \operatorname{rg}(x_1,\ldots,x_n)$.
- 2) Montrer que la famille $(x_1, ..., x_n)$ est liée si et seulement si $\gamma(x_1, ..., x_n) = 0$ et que la famille $(x_1, ..., x_n)$ est libre si et seulement si $\gamma(x_1, ..., x_n) > 0$.
- 3) On suppose que la famille (x_1,\ldots,x_n) est libre dans E. On pose $F=\mathrm{Vect}\,(x_1,\ldots,x_n)$. Pour $x\in E$, on note $\mathfrak{p}_F(x)$ la projection orthogonale de x sur F puis d(x,F) la distance de x à F (c'est-à-dire $d(x,F)=\|x-\mathfrak{p}_F(x)\|^2$). Montrer que $d(x,F)=\sqrt{\frac{\gamma(x,x_1,\ldots,x_n)}{\gamma(x_1,\ldots,x_n)}}.$

Planche nº 7. Espaces euclidiens

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable

Exercice nº 1 (*** I)

 $\text{Montrer que la matrice de Hilbert } H_n = \left(\frac{1}{\mathfrak{i}+\mathfrak{j}-1}\right)_{1\leqslant \mathfrak{i},\mathfrak{j}\leqslant n} \text{ est définie positive (c'est-à-dire } \forall X\in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXH_nX\geqslant 0$ avec égalité si et seulement si X=0).

Exercice nº 2 (*** I)

- 1) Soit A une matrice carrée réelle de format n et $S = A^T A$. Montrer que S est une matrice symétrique positive.
- 2) Réciproquement, montrer que pour toute matrice S symétrique positive, il existe une matrice A carrée réelle de format n telle que $S = A^T A$. A-t-on l'unicité de A?
- 3) Montrer que S est définie positive si et seulement si A est inversible.
- 4) Montrer que rg(A) = rg(S).
- 5) (Racine carrée d'une matrice symétrique positive) Soit S une matrice symétrique positive.

Montrer qu'il existe une et une seule matrice R symétrique positive telle que $R^2 = S$.

Exercice nº 3 (**** I)

Soit E un espace euclidien de dimension n non nulle. Soit $(x_1,...,x_p)$ une famille de p vecteurs de E $(p\geqslant 2)$. On dit que la famille $(x_1,...,x_p)$ est une famille obtusangle si et seulement si $\forall (i,j) \in [\![1,p]\!]^2$ $(i < j \Rightarrow x_i | x_j < 0)$. Montrer que si la famille $(x_1,...,x_p)$ est une famille obtusangle alors $p\leqslant n+1$.

Exercice nº 4 (** I) (Inégalité de HADAMARD)

Soit E un espace euclidien de dimension $n \ge 1$ et \mathscr{B} une base orthonormée de E.

Montrer que pour tout n-uplet de vecteurs $(x_1,...x_n)$, on a : $|\det_{\mathscr{B}}(x_1,...,x_n)| \leq ||x_1||...||x_n||$. Cas d'égalité?

Exercice no 5 (**)

 $\text{Montrer que pour toute matrice carrée } A \text{ réelle de format } \mathfrak{n}, \text{ on a } |\text{det} A| \leqslant \sqrt{\prod_{j=1}^n \left(\sum_{i=1}^n \mathfrak{a}_{i,j}^2\right)}.$

Exercice nº 6 (***)

Soit A une matrice orthogonale. A l'aide du vecteur colonne U dont toutes les composantes sont égales à 1, montrer que la valeur absolue de la somme des coefficients de A est inférieure ou égale à n. Cas d'égalité si de plus tous les coefficients de A sont positifs ?

Exercice no 7 (** I)

Soit $E = \mathcal{M}_n(\mathbb{R})$. Pour $(A, B) \in E^2$, on pose $\langle A, B \rangle = \operatorname{Tr} (A^T B)$.

- 1) Montrer que \langle , \rangle est un produit salaire sur E. On note $\| \|$ la norme associée.
- 2) Montrer que $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- 3) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Déterminer la distance de A à $\mathcal{A}_n(\mathbb{R})$ (dans (E, || ||)).

Exercice nº 8 (***)

Soit A une matrice carrée réelle symétrique positive de format n. Montrer que $1 + \sqrt[n]{\det(A)} \leqslant \sqrt[n]{\det(I_n + A)}$.

Exercice nº 9 (**)

Déterminer card $(O_n(\mathbb{R}) \cap \mathcal{M}_n(\mathbb{Z}))$.

Exercice nº 10 (**)

Soit A une matrice carrée réelle. Montrer que les matrices A^TA et AA^T sont orthogonalement semblables.

Exercice nº 11 (*** I)

Montrer que le produit de deux matrices symétriques réelles positives est à valeurs propres réelles positives.

Exercice nº 12 (*** I)

Soient A et B deux matrices carrées réelles symétriques positives. Montrer que $\det(A) + \det(B) \leq \det(A + B)$.

Exercice nº 13 (*** I)

Soit f un endomorphisme d'un espace euclidien (E, \langle , \rangle) de dimension $n \in \mathbb{N}^*$ qui conserve l'orthogonalité. Montrer qu'il existe un réel positif k tel que $\forall x \in E, \|f(x)\| = k\|x\|$.

Exercice nº 14 (** I)

Soit P le plan de \mathbb{R}^4 d'équations $\begin{cases} x+y+z+t=0\\ x+y-2z-t=0 \end{cases}$ dans une base orthonormée \mathcal{B} de \mathbb{R}^4 muni de sa structure euclidienne canonique.

- 1) Déterminer les matrices dans \mathcal{B} de la projection orthogonale sur P et de la symétrie orthogonale par rapport à P.
- 2) Calculer la distance d'un vecteur quelconque de \mathbb{R}^4 à P.

Exercice no 15 (***)

 $O_n(\mathbb{R})$ est-il convexe?

Exercice no 16 (***)

Résoudre dans $\mathcal{M}_n(\mathbb{R})$ l'équation M = com(M) $(n \ge 2)$.

Exercice nº 17 (**)

 $\mathrm{Soit}\;(E,\langle\;,\;\rangle)\;\mathrm{un}\;\mathrm{espace}\;\mathrm{euclidien}.\;\mathrm{Soit}\;f\in\mathbb{L}(E)\;\mathrm{tel}\;\mathrm{que}\;f^2=0.\;\mathrm{Montrer}\;\mathrm{que}\;\mathrm{Ker}\,(f+f^*)=\mathrm{Ker}(f)\cap\mathrm{Ker}\,(f^*).$

Exercice nº 18 (** I)

Soient (E, \langle , \rangle) un espace euclidien puis $f \in \mathcal{L}(E)$. Montrer que deux des trois propriétés suivantes entrainent la troisième :

- (1) $f^2 = -Id_E$,
- (2) $f \in O(E)$,
- (3) $\forall x \in E, \langle f(x), x \rangle = 0.$

Exercice no 19 (*** I)

- 1) Soit $A \in \mathscr{S}_n^{++}(\mathbb{R})$. Montrer qu'il existe une matrice triangulaire supérieure inversible T telle que $A = T^T T$ (décomposition de Choleski) (on pourra considérer l'orthonormalisée de la base canonique de $\mathscr{M}_{n,1}(\mathbb{R})$ pour le produit scalaire $(X,Y) \mapsto X^T A Y$). Réciproque?
- $\textbf{2)} \ \mathrm{Soit} \ A = (\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n} \in \mathscr{S}_n^{++}(\mathbb{R}). \ \mathrm{Montrer} \ \mathrm{que} \ \mathrm{det}(A) \leqslant \prod_{i=1}^n \mathfrak{a}_{i,i}.$

Exercice n° 20 ()** Soit (E, \langle , \rangle) un espace euclidien. Soit $f \in \mathcal{L}(E)$. f eswt dit *normal* si et seulement si $f^* \circ f = f \circ f^*$. Déterminer tous les endomorphismes normaux de f quand dim(E) = 2.