

Школа Java Middle Developer **Kafka** Мониторинг Kafka

Содержание

- 1. Показатели брокеров Kafka
- 2. Показатели топиков и партиций
- 3. Мониторинг клиентов

Основы показателей

Как получить доступ к показателям

- ✓ Ко всем показателям Kafka можно обращаться через JMX
- ✓Чтобы упростить настройку приложений, подключающихся к

JMX брокера Kafka напрямую, следует указать настроенный

ЈМХ-порт в настройках брокера

✓Чтобы получить информацию о настройках, можно

воспользоваться утилитой ZooKeeper CLI

Внешние и внутренние показатели

- ▶Предоставляемые по интерфейсу JMX показатели внутренние, они формируются и выдаются самим контролируемым приложением
- ▶К внешним показателям можно отнести общее время выполнения запроса или доступность конкретного типа запроса, т.е. те, которые можно оценить извне приложения

Контроль состояния приложения

Необходимо также контролировать общее состояние процесса приложения с помощью простой проверки рабочего состояния. Сделать это можно двумя способами:

- ▶с помощью внешнего процесса, который сообщает, работает брокер или отключен;
- ➤ посредством того, что брокер Kafka оповещает об отсутствии показателей.

Охват показателей

- ▶Важно тщательно выбирать, на какие показатели обращать внимание (особенно при настройке уведомлений)
- ➤Например, вы можете получать одно уведомление о масштабной проблеме, с тем чтобы сразу начать собирать дополнительные данные для выяснения конкретики

Показатели брокеров Kafka

Множество компаний используют Kafka для сбора показателей приложений, системных показателей и журналов логов для дальнейшей отправки в централизованную систему мониторинга. Чтобы не попасть в ловушку, необходимо:

- ❖воспользоваться для Kafka отдельной, независимой от нее системой мониторинга
- ❖при наличии нескольких ЦОД сделать так, чтобы показатели кластера Каfka в ЦОД А отправлялись в ЦОД Б и наоборот

Недореплицированные партиции

Показатель	Недореплицированные разделы
Управляемый	kafka.server.type=ReplicaManager,
компонент	name=UnderReplicatedPartitions
(MBean) JMX	
Диапазон значений	Целое число, равное нулю или больше него

- ▶Если многие брокеры кластера сообщают о постоянном (не меняющемся) числе недореплицированных партиций, то обычно это значит, что один из брокеров кластера отключен
- ▶Прежде чем пытаться выяснить причины проблемы, следует проверить, была ли выбрана предпочтительная реплика

Недореплицированные партиции

- ▶Если число недореплицированных партиций меняется или оно постоянно, но отключенных брокеров нет, то дело обычно в проблеме с производительностью кластера: связана проблема с отдельным брокером или со всем кластером?
- ▶Если недореплицированные партиции есть на нескольких брокерах, дело может быть в проблеме с кластером или с отдельным брокером
- ➤ Если мы увидим, что все недореплицированные партиции относятся к одному брокеру, то это указывает на то, что у него есть проблемы с репликацией сообщений, поэтому имеет смысл сосредоточиться на нем

Проблемы уровня кластера

Проблемы с кластером обычно относятся к одной из двух категорий:

- ✓дисбаланс нагрузки;
- ✓исчерпание ресурсов.

Для диагностики от брокеров кластера понадобятся данные по следующим показателям:

- ≻количество партиций;
- ▶количество ведущих партиций;
- >суммарная по всем топикам входящая скорость передачи данных [байт/с];
- >суммарная по всем топикам исходящая скорость передачи данных [байт/с);
- >суммарная частота входящих сообщений по всем топикам.

Проблемы уровня кластера

В идеально сбалансированном кластере показатели будут примерно одинаковыми для всех брокеров кластера, как в таблице:

Брокер	Партиция	Ведущая реплика	байтов,	Исходящих байтов, Мбайт/с
1	100	50	3,56	9,45
2	101	49	3,66	9,25
3	100	50	3,23	9,82

Проблемы уровня кластера

Распространенная проблема с производительностью кластера – превышение пределов возможностей брокеров по обслуживанию запросов. Для диагностики подобных проблем существует множество показателей, которые можно отслеживать на уровне операционной системы, в том числе:

- ▶использование CPU;
- ▶пропускная способность сети на вход;
- ▶пропускная способность сети на выход;
- >среднее время ожидания диска;
- ▶процент использования диска.

Проблемы уровня хоста

Если проблемы возникают на одном или двух брокерах, то имеет смысл взглянуть на соответствующий сервер и разобраться, чем он отличается от остального кластера. Подобные проблемы делятся на следующие общие категории:

- ✓ отказы аппаратного обеспечения;
- ✓ конфликты между процессами;
- ✓ различия локальных настроек.

Проблемы уровня хоста

- ▶ Сбои аппаратного обеспечения вещь очевидная, при этом сервер просто перестает работать, а снижение производительности бывает вызвано менее очевидными проблемами
- ➤ Распространенный тип аппаратного сбоя, приводящий к снижению производительности Kafka отказ диска. Отказ одного диска на одном-единственном брокере может свести на нет производительность всего кластера
- ▶ Передача данных по сети еще одна сфера, в которой частичные сбои могут вызвать проблемы
- ➤ Если аппаратных проблем нет, то часто имеет смысл поискать работающее в той же системе другое приложение, которое потребляет ресурсы и затрудняет работу брокера Kafka

Показатели брокеров

Признак текущего контроллера

- ➤Показатель «признак текущего контроллера» (active controller count) указывает, является ли данный брокер текущим контроллером кластера
- ➤ Если два брокера утверждают, что являются текущим контроллером кластера, то имеется проблема: поток выполнения контроллера не завершил работу как полагается, а завис

Показатель	Признак текущего контроллера
Управляемый компонент (MBean) JMX	kafka.controller:type=KafkaController,
	name=ActiveControllerCount
Диапазон значений	0 или 1

Коэффициент простоя обработчиков запросов

- ➤ Kafka использует два пула потоков выполнения для обработки всех запросов клиентов: сетевые потоки и обработчики запросов
- ➤Нет необходимости задавать в настройках больше потоков, чем процессоров на брокере
- ▶Показатель «коэффициент простоя обработчиков запросов» отражает долю времени (в процентах), в течение которого обработчики запросов

Показатель	Признак текущего контроллера
Управляемый	kafka.server:type=KafkaRequestHandlerPool,
компонент	name=RequestHandlerAvgIdlePercent
(MBean) JMX	
Диапазон значений	Число с плавающей запятой между 0 и 1 включительно

Суммарная входящая скорость передачи данных

- ▶Суммарная по всем топикам входящая скорость передачи данных, выраженная в байтах в секунду, полезна в качестве показателя количества сообщений, получаемых брокерами от клиентов-производителей
- ➤Не помешает вычислить это показатель в случае, когда один из брокеров кластера получает больше трафика, чем другие

Показатель	Входящая скорость, байт/с
Управляемый компонент (MBean) JMX	kafka.server:type=BrokerTopicMetrics,
	name=BytesInPerSec
Диапазон значений	Скорость - число с двойной точностью,
	количество - целочисленное значение

Суммарная входящая скорость передачи данных

Атрибуты подобных показателей. Первые два атрибута не показатели, но они полезны для понимания:

- ➤ EventType единица измерения для всех атрибутов, в данном случае байты;
- ➤ RateUnit для атрибутов скорости/частоты представляет собой период времени, за которое рассчитывается скорость, в данном случае секунды.

Атрибуты скорости с различным шагом детализации:

- ➤ OneMinuteRate среднее значение за предыдущую минуту;
- ➤ FiveMinuteRate среднее значение за предыдущие 5 минут;
- ➤ FifteenMinuteRate среднее значение за предыдущие 15 минут;
- ➤ MeanRate среднее значение за всё время, прошедшее с момента запуска брокера.

Суммарная исходящая скорость передачи данных

- ▶ Суммарная исходящая скорость передачи данных обобщенный показатель масштабирования, отражает исходящую скорость чтения потребителями данных
- ▶ Исходящая скорость включает и трафик реплик. Это значит, что если коэффициент репликации всех топиков в настройках равен 2, то при отсутствии клиентов-потребителей исходящая скорость передачи данных будет равна входящей. При чтении всех сообщений кластера одним клиентом-потребителем исходящая скорость будет вдвое превышать входящую

Показатель	Исходящая скорость, байт/с
Управляемый компонент	kafka.server:type=BrokerTopicMetrics,
(MBean) JMX	name=BytesOutPerSec
Диапазон значений	Скорость - число с двойной точностью, количество -
	целочисленное значение

Суммарное по всем топикам число входящих сообщений

Скорости передачи данных отражают трафик брокера в абсолютных показателях - в байтах, в то время как показатель входящих сообщений отражает количество отдельных сгенерированных в секунду входящих сообщений вне зависимости от их размера

Показатель	Сообщений в секунду
Управляемый компонент	kafka.server:type=BrokerTopicMetrics,
(MBean) JMX	name=MessagesInPerSec
Диапазон значений	Скорость - число с двойной точностью,
	количество - целочисленное значение

Количество партиций

➤Показатель количества партиций для брокера обычно незначительно меняется с течением времени, ведь он представляет собой общее количество партиций, назначенных данному брокеру

Показатель	Количество партиций
Управляемый компонент	kafka.server:type=ReplicaManager,
(MBean) JMX	name=PartitionCount
Диапазон значений	Целое число, равное нулю или больше него

Количество ведущих реплик

- ➤Количество ведущих реплик отражает количество партиций, для которых данный брокер в настоящий момент является ведущей репликой
- ▶Отражает несбалансированность кластера даже в случае идеального баланса реплик по числу и размеру

Показатель	Количество ведущих реплик
Управляемый компонент	kafka.server:type=ReplicaManager,
(MBean) JMX	name=LeaderCount
Диапазон значений	Целое число, равное нулю или больше него

Отключенные партиции

- >Критически важен мониторинг количества отключенных партиций
- ▶ Без ведущей реплики партиция может остаться по двум причинам.
 - > Останов всех брокеров, на которых находятся реплики данной партиции;
 - ➤ Ни одна согласованная реплика не может стать ведущей из-за расхождения числа сообщений (в случае, когда отключен «нечистый» выбор ведущей реплики).
- ➤ При промышленной эксплуатации кластера Kafka отключенные партиции могут влиять на клиенты-производители, приводя к потере сообщений или отрицательному обратному влиянию в приложении

Показатель	Число отключенных партиций
Управляемый компонент	kafka.controller:type=KafkaController,
(MBean) JMX	name=OfflinePartitionCount
Диапазон значений	Целое число, равное нулю или больше него

С помощью определенных показателей можно контролировать функционирование следующих типов запросов:

- **♦** ApiVersions;
- **❖**ControlledShutdown;
- CreateTopics;
- ❖DeleteTopics;
- ❖Fetch;
- ❖ Fetchconsumer
- ❖FetchFollower;
- GroupCoordinator;

- ❖ Heartbeat;
- ❖JoinGroup;
- ❖LeaderAndIsr;
- LeaveGroup;
- ListGroups;
- ❖ Metadata;
- OffsetCommit;
- OffsetFetch;

- **❖**Offsets;
- ❖Produce;
- ❖SasHandshake;
- StopReplica;
- SyncGroup;
- ❖UpdateMetadata.

Название	Управляемый компонент (MBean) JMX
Общее время	kafka.network:type=RequestMetrics,name=TotalTimeMs,
	request=Fetch
Время нахождения запроса в очереди	kafka.network:type=RequestMetrics,name=RequestQueueTimeMs,
	request=Fetch
Локальное время	kafka.network:type=RequestMetrics,name=LocalTimeMs,
	request=Fetch
Удаленное время	kafka.network:type=RequestMetrics,name=RemoteTimeMs,
	request=Fetch
Длительность притормаживания	kafka.network:type=RequestMetrics,name=ThrottleTimeMs,
	request=Fetch
Время нахождения ответа в очереди	kafka.network:type=RequestMetrics,name=ResponseQueueTimeMs,
	request=Fetch
Длительность отправки запроса	kafka.network:type=RequestMetrics,name=ResponseSendTimeMs,
	request=Fetch
Запросов в секунду	kafka.network:type=RequestMetrics,name=RequestsPerSec,
	request=Fetch

Показатели подсчитываются с момента запуска брокера и отражают следующие этапы обработки запроса:

- ≻Общее время
- ▶Время нахождения запроса в очереди
- ≻Локальное время
- ➤Удаленное
- >Длительность притормаживания
- ▶Время нахождения ответа в очереди
- >Длительность отправки запроса

- У всех показателей имеются следующие атрибуты:
- ≻процентили 50thPercentile, 75thPercentile, 95thPercentile, 98thPercentile,
- ➤99thPercentile, 999thPercentile;
- ➤ Count фактическое количество запросов с момента запуска процесса;
- ➤ Min минимальное значение по всем запросам;
- ➤ Мах максимальное значение по всем запросам;
- ➤ Mean среднее значение по всем запросам;
- ➤ StdDev стандартное отклонение показателей хронометража запросов в совокупности.

Показатели топиков и партиций

- ❖Удобны при отладке конкретных проблем с клиентами
- ❖Показатели уровня топиков можно использовать для поиска конкретного топика, который вызывает большой прирост объема трафика кластера

Название	Управляемый компонент (MBean) JMX
Скорость входящей передачи	kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec,
данных, байт/с	topic=TOPICNAME
Скорость исходящей передачи	kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec,
данных, байт/с	topic=TOPICNAME
Частота неудачного	kafka.server:type=BrokerTopicMetrics,name=FailedFetchRequestsPerSec,
извлечения данных	topic=TOPICNAME
Частота неудачной генерации	kafka.server:type=BrokerTopicMetrics,name=FailedProduceRequestsPerSec,
сообщений	topic=TOPICNAME
Частота входящих сообщений	kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec,
	topic=TOPICNAME
Частота запросов на	kafka.server:type=BrokerTopicMetrics,name=TotalFetchRequestsPerSec,
извлечение данных	topic=TOPICNAME
Частота запросов от	kafka.server:type=BrokerTopicMetrics,name=TotalProduceRequestsPerSec,
производителей	topic=TOPICNAME

Показатели уровня топика

Показатели уровня партиции

- ❖Отражают объем данных (в байтах), хранящийся в настоящий момент на диске для определенной партиции
- ❖Если их суммировать, можно узнать объем хранимых данных отдельного топика

Название	Управляемый компонент (MBean) JMX	
Размер раздела	kafka.log:type=Log,name=Size,	
	topic=TOPICNAME,partition=0	
Количество	kafka.log:type=Log,name=NumLogSegments,	
сегментов журнала	topic=TOPICNAME,partition=0	
Начальное	kafka.log:type=Log,name=LogEndOffset,	
смещение журнала	topic=TOPICNAME,partition=0	
Конечное смещение	kafka.log:type=Log,name=LogStartOffset,	
журнала	topic=TOPICNAME,partition=0	

Мониторинг JVM

Помимо показателей для брокера Kafka следует контролировать стандартный набор показателей для всех серверов и самой виртуальной машины Java JVM. Благодаря им вы также сможете понять причину изменения показателей далее по конвейеру, в брокере.

- ▶Сборка мусора
- ➤ Мониторинг операционной системы из Java
- ➤ Мониторинг ОС

Мониторинг JVM

Следите по крайней мере за статистикой дисков, на которых хранятся данные Kafka:

- >число операций записи и чтения в секунду
- >средние размеры очередей на чтение и запись
- >среднее время ожидания
- > эффективность использования диска в процентах

Журналирование

Существует два механизма журналирования, записывающих информацию в отдельные файлы на диске:

- ➤ kafka.controller на уровне INFO, он служит для получения информации конкретно о контроллере кластера
- ➤ kafka.server.ClientQuotaManager, тоже уровня INFO. Он используется для отображения сообщений, связанных с квотами на операции генерации и потребления

Журналирование

Не помешает также занести в журнал информацию о состоянии потоков сжатия журналов. Не существует отдельного показателя, отражающего состояние этих потоков, и сбой сжатия одной партиции может полностью застопорить потоки сжатия журналов, причем пользователь не получит никакого оповещения об этом. Для вывода информации о состоянии этих потоков необходимо включить механизмы журналирования kafka.log.LogCleaner, kafka.log.Cleaner и kafka.log.LogCleanerManager на уровне DEBUG

Журналирование

Будет полезно включить еще некоторые виды журналирования при отладке проблем с Kafka. Например, kafka.request.logger, на уровне DEBUG или TRACE. Он заносит в журнал информацию обо всех отправленных брокеру запросах. На уровне DEBUG данный журнал включает конечные точки соединений, хронометраж запросов и сводную информацию.

На уровне TRACE - также информацию о топике и партиции - практически всю информацию запроса, за исключением содержимого самого сообщения

Мониторинг клиентов

Показатели производителя

Новый клиент-производитель Kafka существенно повысил компактность имеющихся показателей, сделав их доступными в виде атрибутов небольшого числа управляемых компонентов (mbeans)

Название	Управляемый компонент (MBean) JMX
В целом по производителю	kafka.producer:type=producer-metrics,
	client-id=CLIENTID
Для отдельного брокера	kafka.producer:type=producer-node-metrics, client-id=CLIENTID, node-id=node-BROKERID
Для отдельного топика	kafka.producer:type=producer-topic-metrics, client-id=CLIENTID, topic=TOPICNAME

Общие показатели производителя

- ❖Имеет смысл настроить оповещение для атрибута record-error-rate. Этот показатель всегда должен быть равен 0, и если он > 0, значит, производитель отменяет сообщения, которые пытается отправить брокерам Kafka
- ❖Можно отслеживать record-retry-rate, но он не так важен, как частота ошибок, поскольку повторы отправки свидетельствуют о нормальном функционировании
- ♦ Атрибут outgoing-byte-rate говорит о трафике сообщений в байтах в секунду
- ❖record-send-rate описывает трафик в терминах числа сгенерированных сообщений в секунду
- ❖request-rate позволяет узнать число отправленных от производителей брокерам запросов в секунду

Общие показатели производителя

- ❖С помощью request-size-avg можно получить средний размер запросов, отправляемых брокерам производителями, в байтах
- ❖С помощью batch-size-avg средний размер отдельного пакета сообщений, состоящего по умолчанию из сообщений, предназначенных для отдельной партиции топика, в байтах
- ❖record-size-avg показывает средний размер отдельной записи в байтах
- ❖Существует records-per-request-avg, описывающий среднее число сообщений в отдельном запросе от производителя
- ❖record-queue-time-avg представляет собой среднее время, которое отдельному сообщению приходится ожидать в производителе после отправки его приложением и до фактической генерации его для Kafka

Показатели уровня брокера и топика

- ❖Наиболее полезный из показателей производителей, относящихся к отдельным брокерам, - request-latency-avg. Значение этого показателя практически всегда постоянно (при стабильной работе пакетной отправки сообщений), параметр может отражать проблемы с подключением к конкретным брокерам
- ❖outgoing-byte-rate и request-latency-avg, меняются в зависимости от партиций, для которых данный брокер является ведущим
- ❖ Атрибуты record-send-rate и record-error-rate можно использовать для выяснения того, к какому топику относятся отмененные сообщения

Показатели потребителей

❖Клиент-потребитель в Kafka объединяет множество показателей в атрибуты всего лишь нескольких компонентов показателей. Из этих показателей исключены процентные показатели для задержки и скользящие средние скорости/частоты

Название	Управляемый компонент (MBean) JMX	
В целом по потребителю	kafka.consumer:type=consumer-metrics,	
	client-id=CLIENTID	
Диспетчер извлечения	kafka.consumer.type=consumer-fetch-manager-metrics,	
	client-id=CLIENTID	
Для отдельного	kafka.consumer:type=consumer-fetch-manager-metrics,	
топика	client-id=CLIENTID	
Для отдельного брокера	kafka.consumer:type=consumer-node-metrics,	
	client-id=CLIENTID,	
	node-id=node-BROKERID	
Координатор	kafka.consumer:type=consumer-coordinator-metrics,	
	client-id=CLIENTID	

Показатели диспетчера извлечения

- ❖fetch-latency-avg с его помощью можно выяснить, сколько времени занимает выполнение запросов на извлечение к брокерам
- ❖Параметрами fetch.min.bytes и fetch.max.wait.ms конфигурации потребителя определяется длительность задержки
- ❖Показатели bytes-consumed-rate или records-consumed-rate помогут узнать объемы обрабатываемого клиентом-потребителем трафика сообщений
- ❖fetch-rate сообщает число выполняемых потребителем запросов на извлечение в секунду
- ❖fetch-size-avg средний размер этих запросов на извлечение в байтах
- ❖Показатель records-per-request-avg дает среднее число сообщений в каждом запросе на извлечение

Спасибо за внимание