The Law of Universal Gravitation:

Any two masses, anywhere in the universe, are attracted to each other by this formula:

$$F_g = G \frac{m_1 m_2}{d^2}$$

Symbol	Quantity	SI Unit
F_{g}	Force of Gravity	Newtons
G	6.67 x 10-11	$\frac{\text{N m}^2}{\text{kg}^2}$
m_1	First mass	kilograms
m_2	Second mass	kilograms
d	Distance between masses**	meters

^{**} Actually, the difference between the centers of mass.

Part 1: Force between objects in space

1. Imagine two baseballs near each other in space. Each baseball has a mass of .145 kg. Their centers are 0.200 m apart. What is the force between the baseballs?

Looking for	Formula	 	
Already Know			
Answer in a complete sent	ence with unit:		

2. Imagine two bowling balls near	ar each other in space.	Each bow	ling ball has a m	ass of 6.00 kg.
The centers of the bowling balls	are 3.00 meters apart.	What is th	ne gravitational fo	orce between
the bowling balls?				

Looking for	Formula		
Already Know			
Answer in a complete se	ntence with unit:	ı	

3. Mass of the earth = $5.97 \times 10^{24} \text{ kg}$

Mass of the sun = $1.99 \times 10^{30} \text{ kg}$

Distance earth to sun = $1.50 \times 10^{11} \text{ m}$

What is the gravitational force between the sun and the earth?

Looking for	Formula	
Already Know		
Answer in a complete so	entence with unit:	

4a. Distance earth to moon $=3.84 \times 10^8$ meters.

Mass of the moon = 7.35×10^{22}

What is the gravitational force between the earth and the moon?

Looking for	Formula	
Already Know		
Answer in a complete senten	ce with unit:	

5a. Distance from Jupiter to the Sun = $7.79 \times 10^{11} \text{ m}$ Mass of Jupiter = $1.90 \times 10^{27} \text{ kg}$

What is the force of gravitational attraction between the Sun and Jupiter?

Looking for	Formula	
Already Know		
Answer in a complete sentence	with unit:	

v2.1