Digital Electronics and Microprocessors

Class 20

CHHAYADEVI BHAMARE

Digital Arithmetic: Operations and Circuits(Chapter 6)

Arithmetic operations

- □ Binary addition
- Representing Signed Numbers
- □ Addition and subtraction in the 2's complement systems.
- Multiplication and division of binary numbers
- □ BCD addition
- □ Hexadecimal Arithmetic

Digital Arithmetic: Operations and Circuits(Chapter 6)

Arithmetic Circuits

- □ Design of a full adder
- □ Parallel binary adder
- □ Complete parallel adder with registers
- □ Carry propogation
- □ IC arithmetic circuits (parallele adder, cascading of parallel adder, ALU IC etc)

Signed binary numbers: Possible

representations

□ Sign Magnitude:

One's Complement

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -0$
 $101 = -1$
 $110 = -2$
 $111 = -3$

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -3$
 $101 = -2$
 $110 = -1$
 $111 = -0$

$$000 = +0$$
 $001 = +1$
 $010 = +2$
 $011 = +3$
 $100 = -4$
 $101 = -3$
 $110 = -2$
 $111 = -1$

- ☐ Issues: balance, number of zeros, ease of operations
- □ Which one is best? Why?
- □ Pick the representation that made the hardware simple

Combined Addition and Subtraction

BCD ADDER

- □ Add the BCD code groups for each decimal digit position; use ordinary binary addition.
- □ For those positions where the sum is 9 or less, the sum is in proper BCD form and no correction is needed
- □ When the sum of two digits is greater than 9, a correction of 0110 should be added to that sum to produce the proper BCD result. This will produce a carry to be added to the next decimal position.
 - $A_3A_2A_1A_0 \leftarrow BCD$ code group
 - $\underline{B}_{\underline{3}}\underline{B}_{\underline{2}}\underline{B}_{\underline{1}}\underline{B}_{\underline{0}} \leftarrow$ BCD code group

$$S_4S_3S_2S_1S_0 \leftarrow \text{straight binary sum}$$

Truth table

\mathtt{S}_4	S ₃	S ₂	s_1	s _o	
0	1	0	1	0	(10)
0	1	0	1	1	(11)
0	1	1	0	0	(12)
0	1	1	0	1	(13)
0	1	1	1	0	(14)
0	1	1	1	1	(15)
1	0	0	0	0	(16)
1	0	0	0	1	(17)
1	0	0	1	0	(18)

$$X=S_4+S_3(S_2+S_1)$$

A BCD adder

Fig. 4-14 Block Diagram of a BCD Adder

Example

□ Determine the inputs and outputs when the below circuit is used to add 538₁₀ to 247₁₀. Assume CARRY IN=0.

ALU(1 bit)

ALU(4-Bit) Integrated Circuits

Operations

- □ CLEAR
- □ ADD
- □ SUBTRACT
- □ XOR
- □ OR
- □ AND
- PRESET

Expanding the ALU

Notes: Z1 adds lower-order bits. Z2 adds higher-order bits.

 $\Sigma_7 - \Sigma_0 = 8$ -bit sum.

OVR of Z2 is 8-bit overflow indicator.

Assignment 3

4 6-26 to 6-39