PROBLEMAS 6.3

1. Sea D_n el conjunto de las matrices diagonales de $n \times n$ con componentes reales bajo las operaciones usuales de matrices. Si A y B están en D_n , defina

$$(A, B) = a_{11}b_{11} + a_{22}b_{22} + \cdots + a_{nn}b_{nn}$$

Pruebe que D_n es un espacio con producto interno.

- **2.** Si $A \in D_n$, demuestre que ||A|| = 1 si y sólo si $a_{11}^2 + a_{22}^2 + \cdots + a_{nn}^2 = 1$.
- 3. Encuentre una base ortonormal para D_m
- **4.** Encuentre una base ortonormal para D_2 comenzando con $A = \begin{pmatrix} 5 & 0 \\ 0 & -5 \end{pmatrix}$ y $B = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5.** En \mathbb{C}^2 encuentre una base ortonormal comenzando con la base $\begin{pmatrix} 1+i\\1-i \end{pmatrix}$, $\begin{pmatrix} 1-i\\1+i \end{pmatrix}$.
- **6.** Encuentre una base ortonormal para $\mathbb{P}_3[0, 1]$.
- 7. Encuentre una base ortonormal para $\mathbb{P}_2[-1, 1]$. Los polinomios que se obtienen se denominan **polinomios normalizados de Legendre**.
- 8. Encuentre una base ortogonal para $\mathbb{P}_2[-1, 1]$ si el producto interno está definido como

$$\langle U_n, U_m \rangle \int_{-1}^1 U_n(x) U_m(x) \sqrt{1-x^2} dx$$

con $U_n(x)$ y $U_m(x)$ elementos de $\mathbb{P}_2[-1, 1]$. Los polinomios que se obtienen se denominan **polinomios de Tchebyshev de segunda clase**.

- 9. Encuentre una base ortonormal de polinomios para $\mathbb{P}_2[a, b]$, a < b, con el producto interno definido en la ecuación (6.3.2).
- **10.** Si $A = (a_{ij})$ es una matriz real de $n \times n$, la **traza** de A, que se escribe tr A, es la suma de las componentes de la diagonal de A: tr $A = a_{11} + a_{22} + \cdots + a_n n$. En \mathbb{M}_{nn} defina $\langle A, B \rangle = \text{tr}(AB^{\mathsf{T}})$. Demuestre que con este producto interno \mathbb{M}_{nn} es un espacio con producto interno.
- 11. Si $A \in \mathbb{M}_{nn}$, demuestre que $||A||^2 = \operatorname{tr}(AA^{\top})$ es la suma de los cuadrados de los elementos de la diagonal principal de A. [Nota. Aquí $||A|| = \sqrt{\langle A, A \rangle}$, utilice la notación del problema 10.]
- 12. Encuentre una base ortonormal para M_{22} .
- 13. Se puede pensar en el plano complejo como en un espacio vectorial sobre los reales con vectores básicos 1, i. Si z = a + ib y w = c + id, defina $\langle z, w \rangle = ac + bd$. Demuestre que éste es un producto interno y que ||z|| es la longitud usual de un número complejo.
- **14.** Sean a, b y c tres números reales distintos. Sean p y q elementos de \mathbb{P}_2 y defina $\langle p, q \rangle = p(a)q(a) + p(b)q(b) + p(c)q(c)$. Demuestre que es un producto interno en \mathbb{P}_2 .
- **15.** En \mathbb{R}^2 , si $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ y $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, sea $(\mathbf{x}, \mathbf{y})_* = x_1 y_1 + 3x_2 y_2$. Demuestre que $(x, y)_*$ es un producto interno en \mathbb{R}^2 .
- **16.** Con el producto interno del problema 14, calcule $\left\| \begin{pmatrix} 2 \\ -3 \end{pmatrix} \right\| *$.

Polinomios normalizados de Legendre

Polinomios de Tchebyshev de segunda clase

> Traza de una matriz