Lista A2 - Inferência Estatística

Professor: Philip Thompson Monitores: Eduardo Adame & Ezequiel Braga

Instruções

• É recomendável justificar bem os passos e argumentos usados. Parte da avaliação consiste em verificar a explanação matemática *além* da conclusão final.

Questões

Questão 1. Seja X variável aleatória com distribuição exponencial com parâmetro β . Suponha que queiramos testar as hipóteses $H_0: \beta \geq 1$ versus $H_1: \beta < 1$. Considere o teste δ em que

$$\delta(X)$$
 rejeita H_0 sse $X \ge 1$.

- a) Determine a função poder do teste δ .
- b) Compute o tamanho do teste δ .

Questão 2. Suponha que $\boldsymbol{X}=(X_1,\ldots,X_n)$ seja uma amostra de uma distribuição uniforme no intervalo $[0,\theta]$. Queremos testar as hipóteses:

$$H_0: \quad \theta \ge 2$$

 $H_1: \quad \theta < 2.$

Seja $Y_n = \max\{X_1, \dots, X_n\}$ e considere o teste δ em que

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $Y_n \leq 1.5$.

- a) Determine a função poder do teste $\delta.$
- b) Compute o tamanho do teste $\delta.$

Questão 3. Suponha que a distribuição amostrada seja uma Bernoulli com parâmetro $p \in (0,1)$. Queremos testar as hipóteses:

$$H_0: p = 0.2$$

 $H_1: p \neq 0.2.$

Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\dots,X_{20})$ e denote $Y_n=\sum_{i=1}^{20}X_i$. Considere o teste δ em que

1

 $\delta(\boldsymbol{X})$ rejeita H_0 sse $Y_n \leq 1$ ou $Y_n \geq 7$.

- a) Determine a função poder do teste δ nos pontos $p \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1\}$. Plote-a nestes pontos.
- b) Compute o tamanho do teste δ .

Questão 4. Suponha que tenhamos apenas uma amostra X da distribuição uniforme no intervalo $[\theta-0.5, \theta+0.5]$. Queremos testar as hipóteses:

$$H_0: \quad \theta \leq 3$$

 $H_1: \quad \theta > 4.$

Construa um teste δ para o qual a função poder seja $\pi_{\delta}(\theta)=0$ para $\theta\leq 3$ e $\pi_{\delta}(\theta)=1$ para $\theta\geq 4$.

Questão 5. Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\ldots,X_n)$ de uma distribuição uniforme no intervalo $[\theta-0.5,\theta+0.5]$. Queremos testar as hipóteses:

$$H_0: 3 \le \theta \le 4$$

 $H_1: \theta < 3 \text{ or } \theta > 4.$

Seja $Y_n = \max\{X_1, \dots, X_n\}$. Considere os testes:

- $\delta(\boldsymbol{X})$ rejeita H_0 sse $Y_n \leq 2.9$ ou $Y_n \geq 4$.
- $\delta_*(\boldsymbol{X})$ rejeita H_0 sse $Y_n \leq 2.9$ ou $Y_n \geq 4.5$.

Mostre que

- a) Prove que $\pi_{\delta_*}(\theta) = \pi_{\delta}(\theta)$ para $\theta \leq 4$.
- b) Prove que $\pi_{\delta_*}(\theta) < \pi_{\delta}(\theta)$ para $\theta > 4$.
- c) Qual dos dois testes é melhor?

Questão 6. Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\dots,X_n)$ de uma distribuição normal $\mathcal{N}(\mu,1)$. Queremos testar as hipóteses:

$$H_0: \quad \mu \le \mu_0$$

$$H_1: \quad \mu > \mu_0.$$

Seja $Z = \sqrt{n}(\bar{X} - \mu_0)$ e considere os testes

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $Z \geq c$.

Mostre que

- a) Mostre que a função poder $\pi_\delta(\mu) = \mathbb{P}_\mu(Z \geq c)$ é crescente.
- b) Ache o valor crítico c tal que o teste tenha tamanho α_0 .

c) Justificando, ache uma fórmula para o valor-p do teste numa realização onde Z=z.

Questão 7. Suponha que tenhamos uma amostra única X de uma distribuição Cauchy centrada em θ , isto é, com pdf

$$f(x|\theta) = \frac{1}{\pi[1 + (x - \theta)^2]}.$$

Queremos testar as hipóteses:

$$H_0: \quad \theta \le \theta_0$$

 $H_1: \quad \theta > \theta_0.$

Considere o teste

$$\delta_c(X)$$
 rejeita H_0 sse $X \geq c$.

Mostre que

- a) Mostre que a função poder $\pi_{\delta_c}(\theta) = \mathbb{P}_{\theta}(X \geq c)$ é crescente.
- b) Ache o valor crítico c tal que o teste tenha tamanho 0.05.
- c) Justificando, ache uma fórmula para o valor-p do teste numa realização onde X=x.

Questão 8. Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\ldots,X_n)$ de uma distribuição normal $\mathcal{N}(\mu,1)$. Queremos testar as hipóteses:

$$H_0: \quad \mu = \mu_0$$

 $H_1: \quad \mu \neq \mu_0.$

Considere o teste

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $\bar{X} \leq c_1$ ou $\bar{X} \geq c_2$.

Denote por $\pi_{\delta}(\mu)$ a função poder deste teste.

- a) Determine os valores $c_1 < c_2$ tais que $\pi_{\delta}(\mu_0) = 0.1$ e a função $\pi_{\delta}(\mu)$ seja simétrica em relação ao ponto $\mu = \mu_0$.
- b) Determine o menor valor de n para o qual vale o item a) e $\pi_{\delta}(\mu_0 1) = \pi_{\delta}(\mu_0 + 1) \ge 0.95$.

Questão 9 (Intervalo de confiança para a variância). Suponha que tenhamos uma amostra $\boldsymbol{X}=(X_1,\ldots,X_n)$ de uma distribuição normal $\mathcal{N}(\mu,\sigma^2)$ com (μ,σ^2) desconhecidos. Construa um intervalo de confiança para σ^2 com nível de confiança $1-\alpha$ com $\alpha\in(0,1)$. DICA: você deve usar um pivot visto em aula.

Questão 10. Suponha que tenhamos uma amostra de tamanho 9 de uma distribuição normal $\mathcal{N}(\mu, \sigma^2)$ com (μ, σ^2) desconhecidos tais que $\bar{X}_9 = 22$ e $\sum_{i=1}^9 (X_i - \bar{X}_9)^2 = 72$.

a) Conclua o resultado do teste das hipóteses à seguir com nível de significância 0.05:

$$H_0: \quad \mu \le 20$$

 $H_1: \quad \mu > 20.$

- b) Calcule o valor-p do teste do item a) para o correspondente valor da estatística obtida.
- c) Construa o intervalo com confiança 0.95 correspondente para μ .

Questão 11. Considere os dados do exercício anterior.

a) Conclua o resultado do teste das hipóteses à seguir com nível de significância 0.05:

$$H_0: \quad \mu = 20$$

 $H_1: \quad \mu \neq 20.$

- b) Calcule o valor-p do teste do item a) para o correspondente valor da estatística obtida.
- c) Construa o intervalo com confiança 0.95 correspondente para μ .

Questão 12 (Teste de hipóteses para a variância). Suponha que tenhamos uma amostra $X = (X_1, \ldots, X_n)$ de uma distribuição normal $\mathcal{N}(\mu, \sigma^2)$ com (μ, σ^2) desconhecido. Queremos testar as hipóteses:

$$H_0: \quad \sigma^2 \le \sigma_0^2$$

$$H_1: \quad \sigma^2 > \sigma_0^2.$$

Seja $S_n^2 := \sum_{i=1}^n (X_i - \bar{X}_n)^2$ e considere o teste

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $V:=S_n^2/\sigma_0^2\geq c.$

Denote por $\pi_{\delta}(\mu, \sigma^2)$ a função poder deste teste. Para um nível de significância $\alpha_0 \in (0, 1)$, determine o valor de c tal que:

•
$$\pi_{\delta}(\mu, \sigma^2) = \alpha_0$$
 se $\sigma^2 = \sigma_0^2$.

•
$$\pi_{\delta}(\mu, \sigma^2) < \alpha_0 \text{ se } \sigma^2 < \sigma_0^2$$
.

•
$$\pi_{\delta}(\mu, \sigma^2) > \alpha_0$$
 se $\sigma^2 > \sigma_0^2$.

Questão 13 (Teste de hipóteses para a variância). Considere novamente o exercício anterior. Obtenha uma formula para o valor-p do teste δ num valor de estatística V=v. DICA: o quantil usado deverá ser da distribuição χ^2 .

4

Questão 14 (O teste-t como teste de razão de verossimilhança). Suponha que tenhamos uma amostra $X = (X_1, \dots, X_n)$ de uma distribuição normal $\mathcal{N}(\mu, \sigma^2)$ com (μ, σ^2) desconhecido. Queremos testar as hipóteses:

$$H_0: \mu \le \mu_0$$

 $H_1: \mu > \mu_0.$

Recorde que a verossimilhança é dada por

$$f_n(\boldsymbol{x}|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right]$$

A razão de verossimilhança é a estatística definida por:

$$\Lambda(\boldsymbol{x}) := \frac{\max_{(\mu,\sigma^2): \mu > \mu_0} f(\boldsymbol{x}|\mu,\sigma^2)}{\max_{(\mu,\sigma^2)} f(\boldsymbol{x}|\mu,\sigma^2)}.$$

Recorde que definimos o teste-t usando a estatística

$$U(\boldsymbol{X}) := \sqrt{n} \frac{\bar{X}_n - \mu_0}{\hat{\sigma}},$$

onde $\hat{\sigma}^2:=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X}_n)^2.$ Mostre que o teste $\delta(\boldsymbol{X})$ em que, para algum k<1,

$$\delta(X)$$
 rejeita H_0 sse $\Lambda(X) \leq k$,

é exatamente o teste-t em que rejeita-se H_0 sse $U(\mathbf{X}) \geq c$, desde que

$$c=\sqrt{\left(\frac{1}{k^{1/2}}-1\right)(n-1)}.$$

Questão 15. Suponha que tenhamos duas amostras independentes, $\mathbf{X} = (X_1, \dots, X_m)$ de uma distribuição normal $\mathcal{N}(\mu_1, \sigma^2)$ e $\mathbf{Y} = (Y_1, \dots, Y_n)$ de uma distribuição normal $\mathcal{N}(\mu_2, \sigma^2)$. Queremos testar as hipóteses:

$$H_0: \quad \mu_1 = \mu_2$$

 $H_1: \quad \mu_1 \neq \mu_2.$

Dado $\alpha_0 \in (0,1)$, recorde o teste do livro texto tal que

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $U \geq c$,

onde $c = T_{m+n-2}^{-1}(1 - \alpha_0/2)$ e U é dado por (9.6.3).

Mostre que o valor-p deste teste na realização U = u observada é $2[1 - T_{m+n-2}(|u|)]$.

Questão 16. Suponha que tenhamos duas amostras independentes, $\boldsymbol{X}=(X_1,\ldots,X_6)$ de uma distribuição normal $\mathcal{N}(\mu_1, \sigma_1^2)$ e $\mathbf{Y} = (Y_1, \dots, Y_{10})$ de uma distribuição normal $\mathcal{N}(\mu_2, \sigma_2^2)$. Queremos testar as hipóteses:

$$H_0: \quad \sigma_1^2 \le \sigma_2^2$$

 $H_1: \quad \sigma_1^2 > \sigma_2^2$.

Dado $\alpha_0 \in (0,1)$, recorde o teste do livro texto tal que

$$\delta(\boldsymbol{X})$$
 rejeita H_0 sse $V \geq c$,

onde
$$c = G_{15.9}^{-1}(1 - \alpha_0)$$
 e V é dado por (9.7.4).

Suponha que observamos $\sum_{i=1}^{16} X_i = 84$, $\sum_{i=1}^{16} X_i^2 = 563$, $\sum_{i=1}^{10} Y_i = 18$, $\sum_{i=1}^{10} Y_i^2 = 72$. Tomando $\alpha_0 = 0.05$, escreva a conclusão do teste argumentando de duas maneiras diferentes: comparando V = v com c e comparando o valor-p em V = v com α_0 .

Questão 17. Prove o Teorema 9.7.5 do livro texto.

Questão 18. Mostre
$$\sum_{i=1}^{n} (c_1 x_i + c_2)^2 = c_1^2 \sum_{i=1}^{n} (c_1 x_i + c_2)^2 + n(c_1 \bar{x} + c_2)^2$$
.

Questão 19. Considere os dados $(y_1, x_1), \ldots, (y_n, x_n)$ em $\mathbb{R} \times \mathbb{R}$ e o vetor $(\hat{\beta}_0, \hat{\beta}_1)$ a solução do método de mínimos quadrados

$$(\hat{\beta}_0, \hat{\beta}_1) \in \underset{(\beta_0, \beta_1)}{\operatorname{argmin}} Q(\beta_0, \beta_1),$$

onde

$$Q(\beta_0, \beta_1) := \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Defina

$$s_x^2 := \sum_{i=1}^n (x_i - \bar{x})^2$$
.

Mostre que:

a)
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{s_x^2}$$
.

b)
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})y_i}{s_x}$$
.

c)
$$\hat{\beta}_0 = \hat{\beta}_1 \bar{x} - \hat{\beta}_0$$
.

Questão 20. No problema de regressa
o linear visto em aula, mostre que, condicionalmente à (X_1,\ldots,X_n) ,

a)
$$\mathbb{E}[\hat{\beta}_1] = \beta_1$$
.

b)
$$\mathbb{E}[\hat{\beta}_0] = \beta_0$$
.

c)
$$\mathbb{V}(\hat{\beta}_1) = \frac{\sigma^2}{s_x^2}$$
.

d)
$$\mathbb{V}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{s^2} \right)$$
.

e)
$$\operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\bar{X}\sigma^2}{s_2^2}$$
.