Методы параллельной обработки сверхбольших баз данных с использованием распределенных колоночных индексов

05.13.11 - математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Диссертация на соискание ученой степени кандидата физико-математических наук

Елена Владимировна Иванова

Научный руководитель: СОКОЛИНСКИЙ Леонид Борисович, доктор физ.-мат. наук, профессор

Проблема больших данных

- Объем хранимой информации удваивается каждые два года
- из всего объема существующих данных потенциально полезны 22%, из которых менее 5% были подвергнуты анализу

Тенденции в развитии технологий обработки больших данных

- Для обработки больших данных необходимо использовать СУБД (Майкл Стоунбрейкер)
- Кластерные вычислительные системы с большой суммарной оперативной памятью
- Базы данных в оперативной памяти
- Многоядерные ускорители
- Колоночное представление данных со сжатием

Цель диссертационной работы

Разработка и исследование эффективных методов параллельной обработки сверхбольших баз данных с использованием колоночного представления информации, ориентированных на кластерные вычислительные системы, оснащенные многоядерными ускорителями, и допускающих интеграцию с реляционными СУБД

Основные задачи

- 1. Разработать колоночные индексы и методы их фрагментации
- 2. Разработать методы декомпозиции реляционных операций для распределенных колоночных индексов
- 3. Реализовать предложенные подходы и методы в виде колоночного сопроцессора КСОП для кластерных вычислительных систем
- 4. Провести вычислительные эксперименты с использованием КСОП

Работы по теме диссертации

_		
	Ramamurthy R., Dewitt D., Su Q. A case for fractured mirrors // Proceedings of the VLDB Endowment. 2002. Vol. 12, No. 2. P. 89-101.	«Разбитое зеркало»
2	Abadi D.J., Madden S.R., Hachem N. Column-Stores vs. Row-Stores: How Different Are They Really? // Proceedings of the 2008 ACM SIGMOD international conference on Management of data, June 9-12, 2008, Vancouver, BC, Canada. ACM, 2008. P. 967-980.	Эмуляция колоночного представления в строчной СУБД
3	Bruno N. Teaching an Old Elephant New Tricks // Online Proceedings of Fourth Biennial Conference on Innovative Data Systems Research (CIDR 2009), Asilomar, CA, USA, January 4-7, 2009.	С-таблицы
2	El-Helw A., Ross K.A., Bhattacharjee B., Lang C.A., Mihaila G.A. Columnoriented query processing for row stores // Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP (DOLAP '11), October 28, 2011, Glasgow, United Kingdom. ACM, 2011. P. 67-74.	Только индексные планы
5	Larson PA., Clinciu C., Hanson E. N., Oks A., Price S. L., Rangarajan S., Surna A., Zhou Q. SQL server column store indexes // Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (SIGMOD '11), June 12-16, 2011, Athens, Greece. ACM, 2011. P. 1177-1184.	Индексы колоночной памяти (column store indexes)
6	Jha S., He B., Lu M., Cheng X., Huynh H. P. Improving main memory hash joins on Intel Xeon Phi processors: an experimental approach // Proceedings of the VLDB Endowment. 2015. Vol. 8, No. 6. P. 642-653.	Использование Xeon Phi

Предлагаемое решение

Колоночный индекс

Формальное определение колоночного индекса

Пусть R(A, B, ...) – отношение R с суррогатным ключом A и атрибутом B. A состоит из целочисленных неотрицательных элементов.

 \mathfrak{D}_B – домен атрибута B. На множестве \mathfrak{D}_B задано отношение линейного порядка. T(R) = n – количество элементов в R.

Колоночным индексом $I_{R.B}$ атрибута B отношения R называется упорядоченное отношение, удовлетворяющее следующим требованиям:

$$T(I_{R,B}) = n \quad \text{if } \pi_A(I_{R,B}) = \pi_A(R); \tag{1}$$

$$\forall x_1, x_2 \in I_{R.B} \left(x_1 \le x_2 \iff x_1.B \le x_2.B \right), \tag{2}$$

$$\forall r \in R \big(\forall x \in I_{R.B} \big(r.A = x.A \Longrightarrow r.B = x.B \big) \big). \tag{3}$$

Распределение данных

Формальное определение доменно- интервальной фрагментации

Разбиение домена \mathfrak{D}_B на k непересекающихся интервалов:

$$V_{0} = [v_{0}; v_{1}); V_{1} = [v_{1}; v_{2}); \dots; V_{k-1} = [v_{k-1}; v_{k});$$

$$v_{0} < v_{1} < \dots < v_{k};$$

$$\mathfrak{D}_{B} = \bigcup_{i=0}^{k-1} V_{i}$$

Доменная функция фрагментации

$$\varphi_{\mathfrak{D}_B} \colon \mathfrak{D}_B \to \{0, \dots, k-1\}$$

Доменно-интервальная функция фрагментации колоночного индекса: $\forall i \in \{0, ..., k-1\} \left(\forall b \in \mathfrak{D}_B (\varphi_{\mathfrak{D}_B}(b) = i \Leftrightarrow b \in V_i) \right)$

$$\varphi_{I_{R.B}}: I_{R.B} \to \{0, \dots, k-1\}$$

$$\forall x \in I_{R.B} \left(\varphi_{I_{R.B}}(x) = \varphi_{\mathfrak{D}_B}(x.B) \right)$$

і-тый фрагмент колоночного индекса:

$$I_{R.B}^{i} = \{ x \mid x \in I_{R.B}; \ \varphi_{I_{R.B}}(x) = i \}$$

Пример двухуровневого разбиения колоночного индекса на фрагменты и сегменты

Параллельные алгоритмы выполнения реляционных операций

- Проекция
- Выбор
- Удаление дубликатов
- Пересечение
- Объединение
- Естественное соединение
- Группировка

Взаимодействие SQL-сервера с колоночным сопроцессором КСОП

SELECT D, C FROM R, S WHERE R.B = S.B AND C<13;

$$\pi_{I_{R.B}.A o A_R,I_{S.B}.A o A_S}(I_{R.B} \bowtie \sigma_{C < 13}(I_{S.C}^B))$$

SQL-сервер

Вычислительный кластер

19/30

Реконструкция результата на SQL-сервере

S							
A	В	С					
1 2 3 4 5	11	12					
2	86	10					
თ	86	15					
4	61	14					
5	58	21					
6	102	7					
7	6	11					
8	115	18					
9	21	10					
10	21	7					
11	86	25					
12	58	6					
13	11	21					
14	115	6					
15	58	7					
16	27	11					
17	40	16					
18	61	14					

```
SELECT D, C FROM R INNER JOIN ( THB INNER JOIN S ON (S.A = THB.A<sub>S</sub>) ON (R.A = THB.A<sub>R</sub>)
```


Формальное определение декомпозиции естественного соединения $Q = \pi_{*_{\backslash A}}(R) \bowtie \pi_{*_{\backslash A}}(S)$

Схема БД: R(A, B, D); S(A, B, C).

Колоночные индексы $I_{R.B}$ и $I_{S.B}$, для которых задана доменно-интервальная фрагментация степени k по атрибуту B:

$$I_{R.B} = \bigcup_{i=0}^{k-1} I_{R.B}^{i}$$
 $I_{S.B} = \bigcup_{i=0}^{k-1} I_{S.B}^{i}$

$$P^i = \pi_{I_{R.B}^i.A
ightarrow A_R, \, I_{S.B}^i.A
ightarrow A_S} igg(I_{R.B}^i igotimes_{I_{R.B}^i.B = I_{S.B}^i.B} I_{S.B}^i igg)$$

$$P = \bigcup_{i=0}^{k-1} P^i$$

$$Q = \{ (\&_R(p.A_R).B, \&_S(p.A_S).C, \&_R(p.A_R).D) | p \in P \}$$

Реализация КСОП

- Язык программирования: Си
- Технологии параллельного программирования: MPI и OpenMP
- Исходные тексты приложения свободно доступны в сети Интернет: https://github.com/elena-ivanova/colomnindices/

Характеристики вычислительных систем

	«Торнадо ЮУрГУ»	«RSC PetaStream»
Количество узлов:	384	64
Тип процессоров:	2 x Intel Xeon X5680 (12 ядер по 3.33 ГГц; 2 потока на ядро)	
Оперативная память узла:	24 Гб	
Тип сопроцессора:	Intel Xeon Phi SE10X: (61 ядро по 1.1 ГГц; 4 потока на ядро)	Intel Xeon Phi 7120 (61 ядро по 1.24 ГГц)
Память сопроцессора:	8 Гб	16 Гб
Тип системной сети:	InfiniBand QDR	InfiniBand FDR
Тип управляющей сети:	Gigabit Ethernet	Gigabit Ethernet
Операционная система:	Linux CentOS 6.2	Linux CentOS 7.0

Тестовая база данных

Тестовый запрос

Выдать заказы (с информацией о покупателе), общая стоимость которых не превышает величину Sel*100 000:

SELECT *
FROM CUSTOMER, ORDERS
WHERE (CUSTOMER.ID_CUSTOMER=ORDERS.ID_CUSTOMER)
AND (ORDERS.TOTALPRICE <= Sel*100 000).

Балансировка загрузки процессорных ядер Xeon Phi

Размер хранилища: 63 млн. записей Вычислительная система: «Торнадо ЮУрГУ»

Масштабируемость КСОП

Размер хранилища: 63 млн. записей Размер хранилища: 630 млн. записей

Вычислительная система: «Торнадо ЮУрГУ»

Масштабируемость КСОП

Размер хранилища: 63 млн. записей

Вычислительная система: «RSC PetaStream»

Использование КСОП при выполнении SQL-запросов

	Время в минутах					
Конфигурация	Sel=0.0005		Sel=0.005		Sel=0.05	
	1-й запуск	2-й запуск	1-й запуск	2-й запуск	1-й запуск	2-й запуск
PostgreSQL	7.3	1.21	7.6	1.29	7.6	1.57
PostgreSQL & B-Trees	2.62	2.34	2.83	2.51	2.83	2.63
PostgreSQL & CCOP	0.073	0.008	0.65	0.05	2.03	1.72
$rac{t_{\it PostgreSQL}}{t_{\it PostgreSQL~\&~CCOP}}$	100	151	12	27	4	0.9
$rac{t_{PostgreSQL\&B-Trees}}{t_{PostgreSQL\&COP}}$	36	293	4	50	1.4	1.53

Основные результаты, выносимые на защиту

- 1) Разработана доменно-колоночная модель представления данных, на базе которой выполнена декомпозиция основных реляционных операций с помощью распределенных колоночных индексов.
- 2) Разработаны высокомасштабируемые параллельные алгоритмы выполнения основных реляционных операций, использующие распределенные колоночные индексы.
- 3) Выполнена реализация колоночного сопроцессора для кластерных вычислительных систем. Общий объем кода на языке Си составил около 2500 строк. Исходные тексты прототипа свободно доступны в Интернет по адресу: https://github.com/elena-ivanova/colomnindices/.
- 4) Проведены вычислительные эксперименты, подтверждающие эффективность предложенных подходов.