# Lecture 16

**Chapter 7 Quadratic Form and Applications** 

# 7.1 Quadratic Form and its Matrix Representation

## Quadratic polynomials in 1 variable

$$p(x) = ax^2 + bx + c$$

## Quadratic polynomials in 2 variables

$$p(x_1, x_2) = a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 + b_1x_1 + b_2x_2 + c$$

If we introduce

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \qquad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

symmetric

then 
$$p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c.$$

## **Quadratic polynomials in 3 variables**

$$p(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2$$

$$+2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3$$

$$+b_1x_1 + b_2x_2 + b_3x_3 + c$$

If we introduce

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \qquad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

symmetric

then 
$$p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c.$$

## Quadratic polynomials in n variables

$$p(x_1, ..., x_n) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2$$

$$+2a_{12}x_1x_2 + 2a_{13}x_1x_3 + \dots + 2a_{n-1,n}x_{n-1}x_n$$

$$+b_1x_1 + b_2x_2 + \dots + b_nx_n + c$$

If we denote symmetric

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}, \qquad \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \qquad \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

then quadratic polynomial of n variables can be written as

$$p(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c.$$

Notice that *A* is a **symmetric** matrix.

**Definition 1.** A quadratic form [二次型] or purely quadratic real function [纯二次实值函数] is a homogeneous polynomial of degree two in n variables, which is denoted by  $q(x) = x^T A x$ ,

where A is a real  $n \times n$  symmetric matrix and  $x \in \mathbb{R}^n$ .

**Example.** (the number of variables n = 1,2,3)

Unary [一元二次型]:  $q(x) = ax^2$ ;

Binary [二元二次型]:  $q(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ ;

Ternary [三元二次型]:  $q(x_1, x_2, x_3) = ax_1^2 + bx_2^2 + cx_3^2 + 2dx_1x_2 + 2ex_2x_3 + 2fx_1x_3$ .

#### Exercises.

(1) Find the matrix associated with the following quadratic form

$$q(x, y, z) = x^2 - y^2 + 3z^2 + 2xy + 4yz - 3zx.$$

(2) Find the quadratic form associated with the following symmetric matrix

$$A = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 3 & 5 \\ -2 & 5 & 10 \end{pmatrix}.$$

**Definition 2.** Let  $q(x) = x^T A x$  be a quadratic form and the coefficient matrix A be a real  $n \times n$  symmetric matrix. We say

- (1) q(x) and A are **definite** [定的] if  $q(x) \ge 0$  or  $q(x) \le 0$  for all  $x \in \mathbb{R}^n$ ; otherwise, they are **indefinite** [不定的];
- (2) q(x) and A are **positive definite** [正定的] if q(x) > 0 for all  $x \neq 0$ ;
- (3) q(x) and A are positive semidefinite [半正定的] if  $q(x) \ge 0$  for all  $x \in \mathbb{R}^n$ ;
- (4) q(x) and A are negative definite [负定的] if q(x) < 0 for all  $x \neq 0$ ;
- (5) q(x) and A are positive semidefinite [半负定的] if  $q(x) \le 0$  for all  $x \in \mathbb{R}^n$ .

**Proof.** (I. Factorization) Notice that

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = (x_1, x_2) \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= 3x_1^2 - 2x_1x_2 + 3x_2^2$$
$$= (x_1 + x_2)^2 + 2(x_1 - x_2)^2,$$

so that, q(x) > 0 for any  $x \neq 0$ .

Therefore, q(x) is positive definite.

**Proof.** (II. Diagonalization) Consider the characteristic polynomial of matrix *A* 

$$\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} = \lambda^2 - 6\lambda + 8 = (\lambda - 2)(\lambda - 4).$$

Therefore, A has two eigenvalues  $\lambda_1 = 2$ ,  $\lambda_2 = 4$ .

For  $\lambda_1 = 2$ , we have to solve (A - 2I)x = 0

$$A - 2I = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$$

and

$$N(A - 2I) = \text{Span}\{(1,1)^T\}.$$

We can take  $x_1 = (1,1)^T$  as the eigenvector belonging to the eigenvalue  $\lambda_1 = 2$ .

**Proof.** (II. Diagonalization, continue) For  $\lambda_2 = 4$ , we have

$$A - 4I = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}$$
$$N(A - 4I) = \operatorname{Span}\{(-1,1)^T\}.$$

and

We can take  $x_2 = (-1,1)^T$  as the eigenvector belonging to the eigenvalue  $\lambda_2 = 4$ .

Let 
$$v_1 = \left(\frac{1}{\|x_1\|}\right) x_1 = \frac{1}{\sqrt{2}} (1,1)^T,$$

$$v_2 = \left(\frac{1}{\|x_2\|}\right) x_2 = \frac{1}{\sqrt{2}} (-1,1)^T$$

Then  $v_1$ ,  $v_2$  are eigenvectors of A and they form an **orthonormal** set.

Proof. (II. Diagonalization, continue) The orthogonal matrix

$$S = (v_1, v_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

diagonalizes the matrix A:

$$\Lambda = S^{-1}AS = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
$$= S^{T}AS = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}.$$

**Proof.** (II. Diagonalization, continue)

$$\Lambda = S^T A S = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}.$$

If we take  $\mathbf{x} = S\mathbf{y}$ , or equivalently  $\mathbf{y} = S^T\mathbf{x}$ , the quadratic form  $q(\mathbf{x})$  can be changed into

$$q(\mathbf{x}) = (S\mathbf{y})^T A(S\mathbf{y}) = \mathbf{y}^T (S^T A S) \mathbf{y} = \mathbf{y}^T \Lambda \mathbf{y} = \overline{q}(\mathbf{y}),$$

and  $\bar{q}(y) = 2y_1^2 + 4y_2^2$ . It is clear that  $\bar{q}(y) > 0$  for all  $y \neq 0$ .

Therefore, q(x) > 0 for all  $x \neq 0$ , q is a positive definite quadratic form.

$$\bar{q}(\mathbf{y}) = 2y_1^2 + 4y_2^2$$
: Standard form [标准型]

**Example 2.** Let  $A_2 = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix}$ . Then the quadratic form  $q(x) = x^T A_2 x$  is negative definite.

**Example 3.** Let  $A = \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}$ . Then the quadratic form  $q(x) = x^T A x$  is indefinite.

# 7.2 Diagonalization of Real Symmetric Matrices

**Theorem 1.** Let A be a real  $n \times n$  symmetric matrix and  $\lambda$ is one of its eigenvalues, then  $\lambda$  must be a real number.

Proof.

$$Ax = \lambda x, \qquad x \neq 0.$$

Then

$$A\overline{x} = \overline{A}\overline{x} = \overline{Ax} = \overline{\lambda}\overline{x} = \overline{\lambda}\overline{x}$$

which means that  $\bar{\lambda}$  is also an eigenvalue of A with eigenvector  $\overline{\boldsymbol{\chi}}$ .

$$(A\overline{x})^T x = \overline{x}^T A x = \lambda \overline{x}^T x,$$

$$(A\overline{x})^T x = (\overline{\lambda}\overline{x})^T x = \overline{\lambda}\overline{x}^T x,$$

and therefore

$$(\lambda - \bar{\lambda})\bar{x}^T x = 0.$$

Since  $x \neq 0$ , then  $\overline{x}^T x \neq 0$ , which implies  $\lambda = \overline{\lambda}$ ,  $\lambda$  is a real number.

**Remark.** The eigenvectors of a real symmetric matrix can be taken as real vectors.

**Theorem 2.** Let A be a real  $n \times n$  symmetric matrix, and  $\lambda_1, \lambda_2$  be two distinct eigenvalues of A. If  $x_1$  and  $x_2$  are eigenvectors belonging to  $\lambda_1$  and  $\lambda_2$ , respectively, then  $x_1 \perp x_2$ .

Proof.

$$Ax_1 = \lambda_1 x_1, \qquad Ax_2 = \lambda_2 x_2.$$

Notice that

$$\lambda_1 x_1^T x_2 = (Ax_1)^T x_2 = x_1^T A^T x_2 = x_1^T A x_2 = \lambda_2 x_1^T x_2$$

implying  $(\lambda_1 - \lambda_2) \mathbf{x_1}^T \mathbf{x_2} = 0.$ 

Since  $\lambda_1 \neq \lambda_2$ , we deduce that  $x_1 \perp x_2$ .

**Theorem 3.** Let A be a real  $n \times n$  symmetric matrix. There exists an **orthogonal** matrix Q such that

$$\Lambda = Q^T A Q$$

is a diagonal matrix.

**Remark.** Indeed,  $\Lambda = \text{diag}(\lambda_1, ..., \lambda_n)$ , where  $\lambda_1, ..., \lambda_n$  are eigenvalues of A. The matrix Q is an orthogonal matrix which takes the corresponding orthonormal eigenvectors as column vectors.

**Example 1.** Let  $A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ . Find the orthogonal matrix

Q and the diagonal matrix  $\Lambda$ , such that  $\Lambda = Q^T A Q$ .

**Solution.** The characteristic polynomial of *A* is

$$\det(A - \lambda I) = \begin{vmatrix} \frac{3}{2} - \lambda & -\frac{1}{2} & 0\\ -\frac{1}{2} & \frac{3}{2} - \lambda & 0\\ 0 & 0 & 1 - \lambda \end{vmatrix} = -(\lambda - 1)^{2}(\lambda - 2).$$

Therefore the eigenvalues of A are  $\lambda_1 = \lambda_2 = 1$ ,  $\lambda_3 = 2$ .

**Example 1.** Let 
$$A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find the orthogonal matrix

Q and the diagonal matrix  $\Lambda$ , such that  $\Lambda = Q^T A Q$ .

**Solution.** (continue) For  $\lambda_1 = \lambda_2 = 1$ , we have

$$A - I = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0\\ -\frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

so that  $N(A - I) = \text{Span}\{(1,1,0)^T, (0,0,1)^T\}.$ 

By using **Gram-Schmidt process**, we can find two orthonormal vectors as basis of N(A - I):

$$q_1 = \frac{1}{\sqrt{2}}(1,1,0)^T, \qquad q_2 = (0,0,1)^T.$$

**Example 1.** Let 
$$A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find the orthogonal matrix

Q and the diagonal matrix  $\Lambda$ , such that  $\Lambda = Q^T A Q$ .

**Solution.** (continue) For  $\lambda_3 = 2$ , we have

$$A - 2I = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

so that  $N(A - 2I) = \text{Span}\{(1, -1, 0)^T\}$ . We take

$$q_3 = \frac{1}{\sqrt{2}}(1, -1, 0)^T.$$

**Example 1.** Let 
$$A = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find the orthogonal matrix

Q and the diagonal matrix  $\Lambda$ , such that  $\Lambda = Q^T A Q$ .

**Solution.** (continue) We take the orthogonal matrix

$$Q = (\mathbf{q_1}, \mathbf{q_2}, \mathbf{q_3}) = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$

and the diagonal matrix 
$$\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(Check directly that  $\Lambda = Q^T A Q$ .)

**Theorem 4.** Let A be a real  $n \times n$  symmetric matrix. It is positive definite if and only if all its eigenvalues are positive.

**Proof.** Let  $\lambda_i$ , i = 1, ..., n be eigenvalues of A (the multiplicity are counted),  $q_i$  be eigenvectors belonging to eigenvalue  $\lambda_i$  such that  $\{q_1, ..., q_n\}$  is an orthonormal basis of  $\mathbb{R}^n$  (consequence of **Theorem 3**).

We have for any  $x \in \mathbb{R}^n$ ,

$$x = \alpha_1 q_1 + \cdots + \alpha_n q_n$$
.

Therefore, the quadratic form

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = (\alpha_1 \mathbf{q}_1 + \dots + \alpha_n \mathbf{q}_n)^T A (\alpha_1 \mathbf{q}_1 + \dots + \alpha_n \mathbf{q}_n)$$

$$= \sum_{i,j=1}^n (\alpha_i \mathbf{q}_i)^T A (\alpha_j \mathbf{q}_j) = \sum_{i,j=1}^n \alpha_i \alpha_j \lambda_j \mathbf{q}_i^T \mathbf{q}_j = \sum_{i=1}^n \lambda_i \alpha_i^2.$$

As a result, q is positive definite if and only if  $\lambda_i > 0$  for all i = 1, 2, ..., n.

#### Remark.

- A is **positive definite**  $\Leftrightarrow$  all its eigenvalues are **positive**.
- A is **negative definite**  $\Leftrightarrow$  all its eigenvalues are **negative**.
- A is **indefinite**  $\Leftrightarrow$  some of its eigenvalues are **positive** and some are **negative**.

**Exercise.** Determine the following symmetric matrices are positive definite, negative definite or indefinite.

$$\begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$
,  $\begin{pmatrix} -1 & 3 \\ 3 & -10 \end{pmatrix}$ ,  $\begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}$ .

# 7.3 Conic Sections and Quadric Surfaces

# **Conic Sections**

On the Cartesian plane, graphs of quadratic equations in two variables are curves called **conic sections** [圆锥曲线].

$$ax_1^2 + 2bx_1x_2 + cx_2^2 + dx_1 + ex_2 + f = 0$$
,

where a, b, c, e, d, e, f are all real numbers.

#### **Standard forms of conic sections:**

- (1)Circle [\overline{B}]:  $x_1^2 + x_2^2 = r^2$ ;
- (2)Ellipse [椭圆]:  $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$ ;
- (3)**Hyperbola** [双曲线]:  $\frac{x_1^2}{a^2} \frac{x_2^2}{b^2} = 1$  or  $-\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$ ;
- (4)Parabola [抛物线]:  $x_2^2 = ax_1$  or  $x_1^2 = ax_2$ .



# **Quadric Surfaces**

Consider quadratic equation in 3 variables. Graphs of these equations are called **quadric surfaces** [二次曲面].

$$ax^{2} + by^{2} + cz^{2} + 2dxy + 2exz + 2fyz + gx + hy + iz + \alpha = 0,$$
 or

$$\mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + \alpha = 0,$$

where

$$\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \qquad A = \begin{pmatrix} a & d & e \\ d & b & f \\ e & f & c \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} g \\ h \\ i \end{pmatrix}$$

Standard forms of quadric surfaces in Oxyz coordinate system.

(1) Ellipsoid [椭球面]: 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
;

- (2) Elliptic paraboloid [椭圆抛物面]:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$ ;
- (3) Elliptic cone [椭圆锥面]:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$ ;
- (4) Hyperboloid of one sheet [单叶双曲面]:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ ;
- (5) Hyperboloid of two sheets [双叶双曲面]:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = -1$ ;
- (6) Hyperbolic paraboloid [双曲抛物面]:  $\frac{y^2}{b^2} \frac{x^2}{a^2} = \frac{z}{c}$ , c > 0.



#### Ellipsoid [椭球面]

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$





#### Elliptic paraboloid [椭圆抛物面]:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$$

#### Elliptic cone [椭圆锥面]

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$



# Hyperboloid of one sheet

[单叶双曲面]

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$



### Hyperboloid of two sheets

[双叶双曲面]

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$



# Hyperbolic paraboloid [双曲抛物面]:

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = \frac{z}{c}, \qquad c > 0$$

# **Review**

- Quadratic Form and its matrix representation
- Diagonalization of Real Symmetric Matrices
- Conic Sections and Quadric Surfaces

### **Preview**

The END