On Being a Scientist: Responsible Conduct in Research, Second Edition (1995)

http:/iwww..nap.edu/openbook/0309051967/html/R1.html

Copyright 1995, 2000 The National Academy of Sciences, all rights reserved

ON BEING A SCIENTIST Responsible conduct in research

COMMITTEE ON SCIENCE,
ENGINEERING, AND PUBLIC POLICY
NATIONAL ACADEMY OF SCIENCES
NATIONAL ACADEMY OF
ENGINEERING

NATIONAL ACADEMY PRESS Washington, D.C. 1995

Copyright 1995 by the National Academy of Sciences. All rights reserved.

This document may be reproduced solely for educational purposes without the written permission of the National Academy of Sciences.

NATIONAL ACADEMY PRESS

2101 Constitution Av., NW Washington. DC 20418

NOTICE. This volume was produced as part of a project approved by the Governing Board of the National Research Council. whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering. and the Institute of Medicine. It is a result of work done by the Committee on Science, :Engineering, and Public Policy (COSEPUP) which has authorized its release to the public. This report has been reviewed by a group other than the authors according to procedures approved by COSEPUP and the Report Review Committee.

FINANCIAL SUPPORT: The development of this document was supported by grants from the Howard Hughes Medical Institute and the Alfred P.Sloan Foundation. Support for dissemination of this document was provided by the following corporations and disciplinary societies: Bristol Myers Squibb Company. Glaxo Research Institute. SmithKline Beecham Corp., Sigma Xi, the Federation of American Societies for Experimental Biology, the American Society for Microbiology. the American Chemical Society, the American Institute for Biological Sciences, the American Sociological Association, the American Statistical Association, the Association of American Medical Colleges, the American Institute of Physics and the American Physical Society. Additional support was provided by the Basic Science Fund of the National Academy of Sciences, whose contributors include the AT&T Foundation, Atlantic Richfield Foundation, BP America, Dow Chemical Company, E.I. du Pont de Nemours & Co., IBM Corporation, Merck and Company, Inc., Monsanto Company, and Shell Oil Companies Foundation.

INTERNET ACCESS: This report is available on the National Academy of Sciences' Internet host. It may be accessed via World Wide Web at http://www.nas.edu. via Gopher at gopher.nas.edu, or via FTP at ftp.nas.edu.

Additional copies of "On Being a Scientist" are available as follows:

QUANTITY PRICE	
1	\$5.00 each
2-9	\$4.00 each
10 or more	\$2.50 each

Order from: National Academy Press, 2101 Constitution Ave., N.W. Washington, D.C. 20418. All orders must be prepaid with delivery to a single address. No additional discounts apply. Prices are subject to change without notice. To order by credit card, call 1-800-624-6242.

ON THE COVER: The cover depicts the names of some of the scientists who have been awarded the Nobel Prize. The design of the cover and the report was done by Isely &/or Clark Design.

DOCUMENT STRICTEMENT RÉSERVÉ À L'USAGE PERSONNEL DES PARTICIPANTS AUX RÉFLEXIVES $^{ ext{@}}$ - $\,$ $\,$ $\,$ $\,$ $\,$

PHOTOCRAPH CREDITS: CalaR Alto Observatory (page 16); Ira Wexler/College of Engineering/University of Maryland (Page 12); National Library of Medicine/National Institutes of Health (Page 25); U.S. Department of Agriculture (Pages 1. 2, 4. 6. 8, 13, 23).

International Standard Book Number 0-309-05196-7

Printed in the United States of America.

First Printing, January 1995 Second Printing, June 1995 Third Printing, April 1996

COMMITTEE ON SCIENCE, ENGINEERING, AND PUBLIC POLICY

PHILLIP A. GRIFFITHS

(Chair), Director, Institute for Advanced Study

ROBERT McCORMICK ADAMs

Secretary Emeritus, Smithsonian Institution

BRUCE M. ALBERTS

President, National Academy of Sciences

ELKAN R. BLOUT

Harkness Professor, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School

Felix E. BROWDER

University Professor, Department of Mathematics,

Rutgers University

DAVID R. CHALLONER, M.D.

Vice President of Health Affairs, University of Florida

ALBERT F. COTTON

Distinguished Professor of Chemistry (term ending 6/94)

ELLIS B. COWLING

Director, Southern Oxidants Study, School of Forest Resources, North Carolina State University

BERNARD N. FIELDS, M.D.

Adele Lehman Professor; Chairman, Department of Microbiology and Molecular Genetics. Harvard Medical School

ALEXANDER H. FLAX

Senior Fellow, National Academy of Engineering

RALPH E. GOMORY

President, Alfred P. Sloan Foundation

THOMAS D.LARSON

Consultant

MARY J. OSBORN

Head, Department of Microbiology, University of Connecticut Health Center

C. KUMAR N. PATEL .

Vice Chancellor, Research Programs, University of California, Los Angeles (term ending 6/94)

PHILLIP A. SHARP

Head, Department of Biology, Center for Cancer Research, Massachusetts Institute of Technology

KENNETH I. SHINE

President, Institute of Medicine

ROBERT M. SOLOW

Institute Professor, Department of Economics, Massachusetts Institute of Technology (term ending 6/94).

H. GUYFORD STEVER

Member, Carnegie Commission On Science and Technology (term ending 6/94)

MORRIS TANENBAUM

Vice President, National Academy of Engineering

ROBERT M. WHITE President, National Academy of Engineering

LAWRENCE E. McCRAY
Executive Director

PRINCIPAL PROJECT STAFF

STEVE OLSON, Consultant/Writer

DEBORAH D. STINE, Project Director

PREFACE

The scientific research enterprise, like other human activities, is built on a foundation of trust. Scientists trust that the results reported by others are valid. Society trusts that the results of research reflect an honest attempt by scientists to describe the world accurately and without bias. The level of trust that has characterized science and its relationship with society has contributed to a period of unparalleled scientific productivity. But this trust will endure only if the scientific community devotes exemplifying and transmitting the values associated with ethical scientific conduct.

In the past, young scientists learned the ethics of research largely through informal means-by working with senior scientists and watching how they dealt with ethical questions. That tradition is still vitally important. But science has become so complex and so closely intertwined with society's needs that a more formal introduction to research ethics and the responsibilities that these commitments imply is also needed-an introduction that can supplement the informal lessons provided by research supervisors and mentors.

The original "On Being a Scientist," published by the National Academy of Sciences in 1989, was designed to meet that need. Written for beginning researchers it sought to describe the ethical foundations of scientific practices and some of the personal and professional issues that researchers encounter in their work. It was meant to apply to all forms of research-whether in academic, industrial, or governmental settings-and to all scientific disciplines. Over 200,000 copies of the booklet were distributed to graduate and undergraduate science students. It continues to be used today in courses, seminars, and informal discussions.

Much has happened in the six years since "On Being a Scientist" first appeared. Research institutions and federal agencies have developed important new policies for dealing with behaviors that violate the ethical standards of science. A distinguished panel convened by the National Academies of Sciences and Engineering and the Institute of Medicine issued a major report on research conduct entitled Responsible Science: Ensuring the Integrity of the Research Process. Continued questions have reemphasized the importance of the ethical decisions that researchers must make.

To reflect the developments of the last six years, the National Academy complex is issuing this new version of "On Being a Scientist." This version incorporates new material from Responsible Science and other rectal reports. It reflects suggestions from readers of the original booklet, from instructors who used the original booklet in their classes and seminars, and from graduate students and professors who critiqued drafts of the revision. This version of "On Being a Scientist" also includes a number of hypothetical scenarios, which have proved in recent years to provide an effective means of presenting research ethics. An appendix at the end of the booklet offers guidance in thinking about and discussing these scenarios, but the scenarios remain essentially openended. As is the case for the entire document, input from readers is welcomed.

Though "On Being a Scientist" is aimed primarily at graduate students and beginning researchers, its lessons apply to all scientists at all stages of their scientific careers. In particular, senior scientists have a special responsibility in upholding the highest standards for conduct, serving as role models for students and young scientists, designing educational programs, and responding to alleged violations of ethical norms. Senior scientists can themselves gain a new appreciation for the importance of ethical issues by discussing with their students what had previously been largely tacit knowledge. In the process, they help provide the leadership that is essential for high standards of conduct to be maintained.

The original "On Being a Scientist" was produced under the auspices of the National Academy of Sciences by the Committee on the Conduct of Science, which consisted of Robert McCormick Adams, Francisco Ayala (chairman), Mary-Dell Chilton, Gerald Holton, David Hull, Kumar Patel, Frank Press, Michael Ruse, and Phillip Sharp. Several members of that committee were involved directly in the revision of the booklet, and the

others were consulted during the revision and reviewed the resulting document.

This new version of the booklet was prepared under the auspices of the Committee on Science, Engineering and the Institute of Medicine. The revision was overseen by a guidance group consisting of Robert McCormick Adams, David Challoner, Bernard Fields, Kumar Patel, Frank Press, and Phillip Sharp (group chairman).

The future of science depends on attracting outstanding young people to researchnot only people of enormous energy and talent but people of strong character who will be tomorrow's leaders. It is incumbent on all scientists and all administrators of science to help provide a research environment that, through its adherence to high ethical standards and creative productivity, will attract and retain individuals of outstanding intellect and character to one of society's most important professions.

BRUCE ALBERTS President, National Academy of Sciences KENNETH SHINE President, Institute of Medicine ROBERT WHITE President, National Academy of Engineering

A NOTE ON USING THIS BOOKLET

This booklet makes the point that scientific knowledge is defined collectively through discussion and debate. Collective deliberation is also the best procedure to apply in using this booklet. Group discussion-whether in seminars, orientations, research settings, or informal settings-can demonstrate how different individuals would react in specific situations, often leading to conclusions that no one would have arrived at individually.

These observations apply with particular force to the hypothetical scenarios in this booklet. Each scenario concludes with a series of questions, but these questions have many answers-some better, some worse-rather than a single right answer. An appendix at the end of this booklet examines specific issues involved in several of the scenarios as a way of suggesting possible topics for consideration and discussion.

This booklet bas been prepared for use in many different settings, including:

- · Classes on research ethics
- · Classes on research methods or statistics
- · Classes on the history, sociology, or philosophy of science
- Seminars to discuss research practices or results
- · Meetings sponsored by scientific societies on a local, regional, or national level
- Meetings held to develop ethics, policies or guidelines for a specific laboratory or institution
- · Orientation sessions
- Journal clubs

A useful format in any of these situations is to have a panel discussion involving three or four researchers who are at different stages of their careers for example, a graduate student, a postdoctoral fellow, a junior faculty member, and a senior faculty member. Such panels can identify the ambiguities in a problem situation, devise ways to get the information needed to resolve the ambiguities, and demonstrate the full range of perspectives that are involved in ethical deliberations. They can also show how institutional policies and resources can influence an individual's response to a given situation, which will emphasize the importance for all researchers to know what those institutional policies and resources are.

Finally, discussion of these issues with a broad range of researchers can demonstrate that research ethics is not a complete and finalized body of knowledge. These issues are still being discussed, explored, and debated, and all researchers have a responsibility to move the discussion forward.

ACKNOWLEDGMENTS

The committee thanks the graduate students of Boston University, the Massachusetts Institute of Technology. and the University of California, Irvine, who participated in focus group sessions which provided invaluable feedback on earlier drafts of the document, as well as Charles Cantor, Frank Solomon, and F. Sherwood Rowland, who sponsored those sessions at the respective institutions.

In addition, the committee thanks a number of individuals who teach research ethics and provided guidance on earlier drafts as to the "teachability" of the document, especially: Joan Steitz, Caroline Whitbeck. Penny Gilmer, Michael Zigmond. Frank Solomon, and Indira Nair.

Finally, the committee thanks its able staff: Steve Olson, science writer, whose help in drafting this revision was invaluable; Deborah Stine, who managed the project and ran the focus groups on the document; and Jeffrey Peck and Patrick Sevcik, who provided administrative support at various stages

CONTENTS

- 1 Introduction
- **3** The Social Foundations of Science
- 4 Experimental
 Techniques and the
 Treatment of Data
- 6 Values in Science
- 8 Conflicts of Interest
- 9 Publication and Openness
- **12** The Allocation of Credit
- 13 Authorship Practices
- **15** Error and Negligence in Science
- 16 Misconduct in Science
- 18 Responding to Violations of Ethical Standards
- 20 The Scientist in Society
- 22 Bibliography
- 25 Appendix: Discussion of Case Studies

INTRODUCTION

The geneticist Barbara McClintock once said of her research, "I was just so interested in what I was doing I could hardly wait to get up in the morning and get at it. One of my friends, a geneticist, said I was a child, because only children can't wait to get up in the morning to get at what they want to do."

Anyone who has experienced the childlike wonder evoked by observing or understanding something that no one has ever observed or understood before will recognize McClintock's enthusiasm. The pursuit of that experience is one of the forces that keep researchers rooted to their laboratory benches, climbing through the undergrowth of a sweltering jungle, or following the threads of a difficult theoretical problem. To succeed in research is a personal triumph that earns and deserves individual recognition. But it is also a communal achievement, for in learning something new the discoverer both draws on and contributes to the body of knowledge held in common by all scientists.

Scientific research offers many other satisfactions in addition to the exhilaration of discovery. Researchers have the opportunity to associate with colleagues who have made important contributions to human knowledge, with peers who think deeply and care passionately about subjects of common interest, and with students who can be counted on to challenge assumptions. With many important developments occurring in areas where disciplines overlap, scientists have many opportunities to work with different people, explore new fields, and broaden their expertise. Researchers often have considerable freedom both in choosing what to investigate and in deciding how to organize their professional and personal lives. They are part of a community based on ideals of trust and freedom, where hard work and achievement are recognized as deserving the highest rewards. And their work can have a direct and immediate impact on society, which ensures that the public will have an interest in the findings and implications of research.

Research can entail frustrations and disappointments as well as satisfactions. An experiment may fail because of poor design, technical complications, or the sheer intractability of nature. A favored hypothesis may turn out to be incorrect after consuming months of effort. Colleagues may disagree over the validity of experimental data, the interpretation of results, or credit for work done. Difficulties such as these are virtually impossible to avoid in science. They can strain the composure of the beginning and senior scientist alike. Yet struggling with them can also be a spur to important progress.

Scientific progress and changes in the relationship between science and society are creating new challenges for the scientific community.

The numbers of trained researchers and exciting research opportunities have grown faster than have available financial resources, which has increased the pressure on the research system and on individual scientists. Research endeavors are becoming larger, more complex and more expensive, creating new kinds of situations and relationships among researchers. The conduct of research is more closely monitored and regulated than it was in the past. The part played by science in society has become more prominent and more complex, with consequences that are both invigorating and stressful.

To non-scientists, the rich interplay of competition, elation, frustration, and cooperation at the frontiers of scientific research seems paradoxical. Science results in knowledge that is often presented as being fixed and universal. Yet scientific knowledge obviously emerges from a process that is intensely human, a process indelibly shaped by human virtues, values, and limitations and by societal contexts. How is the limited, sometimes fallible, work of individual scientists converted into the enduring edifice of scientific knowledge?

The answer lies partly in the relationship between human knowledge and the physi-

cal world. Science has progressed through a uniquely productive marriage of human creativity and hard-nosed skepticism, of openness to new scientific contributions and persistent questioning of those contributions and the existing scientific consensus. Based on their observations and their ideas about the world, researchers make new observations and develop new ideas that seem to describe the physical, biological, or social world more accurately or completely. Scientists engaged in applied research may have more utilitarian aims, such as improving the reliability of a semiconductor chip. But the ultimate effect of their work is the same: they are able to make claims about the world that are subject to empirical tests.

The empirical objectivity of scientific claims is not the whole story, however. As will be described in a moment, the reliability of scientific knowledge also derives partly from the interactions among scientists themselves. In engaging in these social interactions, researchers must call on much more than just their scientific understanding of the world. They must also be able to convince a community of peers of the correctness of their concepts, which requires a fine understanding of the methods, techniques, and social conventions of science.

By considering many of the hard decisions that researchers make in the course of their work, this booklet examines both the epistemological and social dimensions of scientific research. It looks at such questions as: How should anomalous data be treated? How do values influence research? How should credit for scientific accomplishments be allocated? What are the borderlines between honest error, negligent error, and misconduct in science?

These questions are of interest to more than just the scientific community. As the influence of scientific knowledge has grown throughout society, non-scientists have acquired a greater interest in assessing the validity of the claims of science. With science becoming an increasingly important social institution, scientists have become more accountable to the broader society that expects to benefit from their work.

THE SOCIAL FOUNDATIONS OF SCIENCE

Throughout the history of science, philosophers and scientists have sought to describe a single systematic procedure that can be used to generate scientific knowledge, but they have never been completely successful. The practice of science is too multifaceted and its practitioners are too diverse to be captured in a single overarching description. Researchers collect and analyze data, develop hypotheses, replicate and extend earlier work, communicate their results with others, review and critique the results of their peers, train and supervise associates and students, and otherwise engage in the life of the scientific community.

Science is also far from a self-contained or self-sufficient enterprise. Technological developments critically influence science, as when a new device, such as a telescope, microscope, rocket, or computer, opens up whole new areas of inquiry. Societal forces also affect the directions of research, greatly complicating descriptions of scientific progress.

Another factor that confounds analyses of the scientific process is the tangled relationship between individual knowledge and social knowledge in science. At the heart of the scientific experience is individual insight into the workings of nature. Many of the outstanding achievements in the history of science grew out of the struggles and successes of individual scientists who were seeking to make sense of the world.

At the same time, science is inherently a social enterprise-in sharp contrast to a popular stereotype of science as a lonely, isolated search for the truth. With few exceptions, scientific research cannot be done without drawing on the work of others or collaborating

"Scientists are people of very dissimilar temperaments doing different things in very different ways.

Among scientists are collectors, classifiers and compulsive tidiers up; many are detectives by temperament and many are explorers; some are artists and others artisans.

There are post-scientists and even a few mystics."

Peter MEDAWAR, Plato's Republic, Oxford University Press, New York,1982. p. 116

with others. It inevitably takes place within a broad social and historical context, which gives substance, direction, and ultimately meaning to the work of individual scientists.

The object of research is to extend human knowledge of the physical, biological, or social world beyond what is already known. But an individual's knowledge properly enters the domain of science only after it is presented to others in such a fashion that they can independently judge its validity. This process occurs in many different ways. Researchers talk to their colleagues and supervisors in laboratories, in hallways, and over the telephone. They trade data and speculations over computer networks. They give presentations at seminars and conferences. They write up their results and send them to scientific journals, which in turn send the papers to be scrutinized by reviewers. After a paper is published or a finding is presented, it is judged by other scientists in the context of what they already know from other sources. Throughout this continuum of discussion and deliberation the ideas of individuals are collectively judged, sorted, and selectively incorporated into the consensual but ever evolving scientific worldview. In the process, individual knowledge is gradually converted into generally accepted knowledge.

This ongoing process of review and revision is critically important. It minimizes the influence of individual subjectivity by requiring that research results be accepted by other scientists. It also is a powerful inducement for researchers to be critical of their own conclusions because they know that their objective must be to try to convince their ablest colleagues.

The social mechanisms of science do more than validate what comes to be known as scientific knowledge. They also help generate and sustain the body of experimental techniques, social conventions, and other "methods" that scientists use in doing and reporting research. Some of these methods are permanent features of science; others evolve over time or vary from discipline to discipline. Because they reflect socially accepted standards in science, their application is a key element of responsible scientific practice.

EXPERIMENTAL TECHNIQUES AND THE TREATMENT OF DATA

One goal of methods is to facilitate the independent verification of scientific observations. Thus, many experimental techniques-such as statistical tests of significance, double-blind trials, or proper phrasing of questions on surveys-have been designed to minimize the influence of individual bias in research. By adhering to these techniques, researchers produce results that others can more easily reproduce, which promotes the acceptance of those results into the scientific consensus.

If research in a given area does not use generally accepted methods, other scientists will be less likely to accept the results. This was one of several reasons why many scientists reacted negatively to the initial reports of cold fusion in the late 1980s. The claims were so physically implausible that they required extraordinary proof. But the experiments were not initially presented in such a way that other investigators could corroborate or disprove them. When the experimental techniques became widely known and were replicated, belief in cold fusion quickly faded.

In some cases the methods used to arrive at scientific knowledge are not very well defined. Consider the problem of distinguishing the "facts" at the forefront of a given area of science. In such circumstances experimental techniques are often pushed to the limit, the signal is difficult to separate from the noise, unknown sources of error abound, and even the question to be answered is not well defined. In such an uncertain and fluid situation, picking out reliable data from a mass of confusing and sometimes contradictory observations can be extremely difficult.

In this stage of an investigation, researchers have to be extremely clear, both to

themselves and to others, about the methods being used to gather and analyze data. Other scientists will be judging not only the validity of the data but also the validity and accuracy of the methods used to derive those data. The development of new methods can be a controversial process, as scientists seek to determine whether a given method can serve as a reliable source of new information. If someone is not forthcoming about the procedures used to derive a new result, the validation of that result by others will be hampered.

Methods are important in science, but like scientific knowledge itself, they are not infallible. As they evolve over time, better methods supersede less powerful or less acceptable ones. Methods and scientific knowledge thus progress in parallel, with each area of knowledge contributing to the other.

A good example of the fallibility of methods occurred in astronomy in the early part of the twentieth century. One of the most ardent debates in astronomy at that time concerned the nature of what were then known as spiral nebulae-diffuse pinwheels of light that powerful telescopes revealed to be quite common in the night sky. Some astronomers thought that these nebulae were spiral galaxies like the Milky Way at such great distances from the earth that individual stars could not be distinguished. Others believed that they were clouds of gas within our own galaxy.

One astronomer who thought that spiral nebulae were within the Milky Way, Adriaan van Maanen of the Mount Wilson Observatory, sought to resolve the issue by comparing photographs of the nebulae taken several years apart. After making a series of painstaking measurements, van Maanen announced that he had found roughly consistent unwinding motions in the nebulae. The detection of such motions indicated that the spirals had to be within the Milky Way, since motions would be impossible to detect in distant objects.

Van Maanen's reputation caused many astronomers to accept a galactic location for the nebulae. A few years later, however, van Maanen's colleague Edwin Hubble, using the new 100-inch telescope at Mount Wilson, conclusively demonstrated that the nebulae were in fact distant galaxies; van Maanen's observations had to be wrong. Studies of van Maanen's procedures have not revealed any intentional misrepresentation or sources of systematic error. Rather, he was working at the limits of observational accuracy, and his expectations influenced his measurements.

THE SELECTION OF DATA

Deborah, a third-year graduate student, and Kathleen, a post-doc, have made a series of measurements on a new experimental semiconductor material using an expensive neutron source at a national laboratory. When they get back to their own laboratory and examine the data, they get the following data points. A newly proposed theory predicts results indicated by the curve.

During the measurements at the national laboratory, Deborah and Kathleen observed that there were power fluctuations they could not control or predict. Furthermore, they discussed their work with another group doing similar experiments, and they knew that the other group had gotten results confirming the theoretical prediction and was writing a manuscript describing their results.

In writing up their own results for publication, Kathleen suggests dropping the two anomalous data points near the abscissa (the solid squares) from the published graph and from a statistical analysis. She proposes that the existence of the data points be mentioned in the paper as possibly due to power fluctuations and being outside the expected standard deviation calculated from the remaining data points. "These two runs," she argues to Deborah, "were obviously wrong".

- How should the data from the two suspected runs be handled?
- 2. Should the data be included in tests of statistical significance and why?
- 3. What other sources of information, in addition to their faculty advisor, can Deborah and Kathleen use to help decide?

Though van Maanen turned out to be wrong, he was not ethically at fault. He was using methods that were accepted by the astronomical community as the best available at the time, and his results were accepted by most astronomers. But in hindsight he relied on a technique so susceptible to observer effects that even a careful investigator could be misled.

The fallibility of methods is a valuable reminder of the importance of skepticism in science. Scientific knowledge and scientific methods, whether old or new, must be continually scrutinized for possible errors. Such skepticism can conflict with other important features of science, such as the need for creativity and for conviction in arguing a given position. But organized and searching skepticism as well as an openness to new ideas are essential to guard against the intrusion of dogma or collective bias into scientific results.

VALUES IN SCIENCE

Scientists bring more than just a toolbox of techniques to their work. Scientists must also make complex decisions about the interpretation of data, about which problems to pursue, and about when to conclude an experiment. They have to decide the best ways to work with others and exchange information. Taken together, these matters of judgment contribute greatly to the craft of science, and the character of a person's individual decisions helps determine that person's scientific style (as well as, on occasion, the impact of that person's work).

Much of the knowledge and skill needed to make good decisions in science is learned through personal experience and interactions with other scientists. But some of this ability is hard to teach or even describe. Many of the intangible influences on scientific discovery-curiosity, intuition, creativity-largely defy rational analysis, yet they are among the tools that scientists bring to their work.

When judgment is recognized as a scientific tool, it is easier to see how science can be influenced by values. Consider, for example, the way people judge between competing hypotheses. In a given area of science, several different explanations may account for the available facts equally well, with each suggesting an alternate route for further research. How do researchers pick among them?

Scientists and philosophers have proposed several criteria by which promising scientific hypotheses can be distinguished from less fruitful ones. Hypotheses should be internally consistent so that they do not generate contradictory conclusions. Their ability to provide accurate experimental predictions, sometimes in areas far removed from the original domain of the hypothesis, is viewed with great favor. With disciplines in which experimentation is less straightforward, such as geology, astronomy, or many of the social sciences, good hypotheses should be able to unify disparate observations. Also highly prized are simplicity and its more refined cousin, elegance.

Other kinds of values also come into play in science. Historians, sociologists, and other students of science have shown that social and personal beliefs-including philosophical, thematic, religious, cultural, political, and economic beliefs can shape scientific judgment in fundamental ways. For example, Einstein's rejection of quantum mechanics as an irreducible description of nature-summarized in his insistence that "God does not play dice"-seems to have been based largely on an aesthetic conviction that the physical universe could not contain such an inherent component of randomness. The nineteenth-century geologist Charles Lyell, who championed the idea that geological change occurs incrementally rather than catastrophically, may have been influenced as much by his religious views as by his geological observations. He favored the notion of a God who is an unmoved mover and does not intervene in His creation.

Such a God, thought Lyell, would produce a world in which the same causes and effects keep cycling eternally, producing a uniform geological history.

Does holding such values harm a person's science? In some cases the answer has to be "yes." The history of science offers a number of episodes in which social or personal beliefs distorted the work of researchers. The field of eugenics used the techniques of science to try to demonstrate the inferiority of certain races. The ideological rejection of Mendelian genetics in the Soviet Union beginning in the 1930s crippled Soviet biology for decades.

Despite such cautionary episodes, it is clear that values cannot -and should not- be separated from science. The desire to do good work is a human value. So is the conviction that standards of honesty and objectivity need to be maintained. The belief that the universe is simple and coherent has led to great advances in science. If researchers did not believe that the world can be described in terms of a relatively small number of fundamental principles, science would amount to no more than organized observation. Religious convictions about the nature of the universe have also led to important scientific insights, as in the case of Lyell discussed above.

POLYWATER AND THE ROLE OF SKEPTICISM

The case of polywater demonstrates how the desire to believe in a new phenomenon can sometimes overpower the demand for solid, well controlled evidence. In 1966 the Soviet scientist Boris Valdimirovich Derjaguin lectured in England on a new form of water that he claimed had been discovered by another Soviet scientist, N.N. Fedyakin. Formed by heating water and letting it condense in quartz capillaries, this "anomalous water", as it was originally called, had a density higher than normal water, a viscosity 15 times that of normal water, a boiling point higher than 100 degrees Centigrade, and a freezing point lower than zero degree.

Over the next several years, hundreds of papers appeared in the scientific literature describing the properties of what soon came to be known as polywater.

Theorists developed models, supported by some experimental measurements, in which strong hydrogen bonds were causing water to polymerize. Some even warned that if polywater escaped from the laboratory, it could autocatalytically polymerize all of the world's water.

Then the case for polywater began to crumble.Because polywater could only be formed in minuscule capillaries, very little was available for analysis. When small samples were analyzed, polywater proved to be contaminated with a variety of other substances, from silicon to phospholipids.

Electron microscopy revealed that polywater actually consisted of finely divided particulate matter suspended in ordinary water.

Gradually, the scientists who had described the properties of polywater admitted that it did not exist. They had been misled by poorly controlled experiments and problems with experimental procedures. As the problems were resolved and experiments gained better controls, evidence for the existence of polywater disappeared.

The empirical link between scientific knowledge and the physical, biological. and social world constrains the influence of values in science. Researchers are continually testing their theories about the world against observations. If hypotheses do not accord with observations, they will eventually fall from favor (though scientists may hold on to a hypothesis even in the face of some conflicting evidence since sometimes it is the evidence rather than the hypothesis that is mistaken).

The social mechanisms of science also help eliminate distorting effects that personal values might have. They subject scientific claims to the process of collective validation, applying different perspectives to the same body of observations and hypotheses.

The challenge for individual scientists is to acknowledge and try to understand the suppositions and beliefs that lie behind their own work so that they can use that self-knowledge to advance their work. Such self-examination can be informed by study in many areas outside of science, including history, philosophy, sociology, literature, art, religion, and ethics. If narrow specialization and a single-minded focus on a single activity keep a researcher from developing the perspective and fine sense of discrimination needed to apply values in science, that person's work can suffer.

A CONFLICT OF INTEREST

John, a third-year graduate student, is participating in a departmentwide seminar where students, postdocs, and faculty members discuss work in progress. An assistant professor prefaces her comments by saying that the work she is about to discuss is sponsored by both a federal grant and a biotechnology firm for which she consults. In the course of the talk John realizes that he has been working on a technique that could make a major contribution to the work being discussed. But his faculty advisor consults for a different, and competing, biotechnology

- 1. How should John participate in this seminar?
- 2. What, if anything, should he say to his advisor-and when?
- 3. What implications does this case raise for the traditional openness and sharing of data, materials, and findings that have characterized modern science?

CONFLICTS OF INTEREST

Ometimes values conflict. For example, a particular circumstance might compromise-or appear to compromise-professional judgments. May be a researcher has a financial interest in a particular company, which might create a bias in scientific decisions affecting the future of that company (as might be the case if a researcher with stock in a company were paid to determine the usefulness of a new device produced by the company). Or a scientist might receive a manuscript or proposal to review that discusses work similar to but a step ahead of that being done by the reviewer. These are difficult situations that require trade-offs and hard choices, and the scientific community is still debating what is and is not proper when many of these situations arise.

Virtually all institutions that conduct research now have policies and procedures for managing conflicts of interest. In addition, many editors of scientific journals have established explicit policies regarding conflicts of interest.

These policies and procedures are designed to protect the integrity of the scientific process, the missions of the institutions, the investment of stakeholders in institutions (including the investments of parents and students in universities), and public confidence in the integrity of research.

Disclosure of conflicts of interest subjects these concerns to the same social mechanisms that are so effective elsewhere in society. In some cases it may only be necessary for a researcher to inform a journal editor of a potential conflict of interest, leaving it for the editor to decide what action is necessary, In other cases careful monitoring of research activities can allow important research with a potential conflict of interest to go forward while protecting the integrity of the institution and of science. In any of these cases the intent is to involve outside monitors or otherwise create checks to reduce the possibility that bias will enter into science.

INDUSTRIAL SPONSORSHIP OF ACADEMIC RESEARCH

Sandra was excited about being accepted as a graduate student in the laboratory of Dr. Frederick, a leading scholar in the field, and she embarked on her assigned research project eagerly. But after a few months she began to have misgivings. Though part of Dr. Frederick's work was supported by federal grants, the project on which she was working was totally supported by a grant from a single company. She had known this before coming to the lab and had not thought it would be a problem. But she had not known that Dr. Frederick also had a major consulting agreement with the company.

She also heard from other graduate students that when it came time to publish her work, any paper would be subject to review by the company to determine if any of her work was patentable.

- 1. What are the advantages and disadvantages of Sandra doing research sponsored entirely by a single company?
- 2. How can she address the specific misgivings she has about her research?
- 3. If Sandra wishes to discuss her qualms with someone at her university, to whom should she turn?

PUBLICATION AND OPEN NESS

Science is not an individual experience. It is shared knowledge based on a common understanding of some aspect of the physical or social world. For that reason, the social conventions of science play an important role in establishing the reliability of scientific knowledge. If these conventions are disrupted, the quality of science can suffer.

Many of the social conventions that have proven so effective in science arose during the birth of modern science in the latter half of the seventeenth century. At that time, many scientists sought to keep their work secret so that others could not claim it as their own. Prominent figures of the time, including Isaac Newton, were loathe to convey news of their discoveries for fear that someone else would claim priority- a fear that was frequently realized.

The solution to the problem of making new discoveries public while assuring their author's credit was worked out by Henry Oldenburg, the secretary of the Royal Society of London. He won over scientists by guaranteeing rapid publication in the society's *Philosophical Transactions* as well as the official support of the society if the author's priority was brought into question. Oldenburg also pioneered the practice of sending submitted manuscripts to experts who could judge their quality. Out of these innovations rose both the modern scientific journal and the practice of peer review.

The continued importance of publication in learned journals accounts for the convention that the first to publish a view or finding, not the first to discover it, tends to get most of the credit for the discovery. Once results are published, they can be freely used by other researchers to extend knowledge. But until the results become common knowledge, people who use them are obliged to recognize the discoverer through citations. In this way scientists are rewarded through peer recognition for making results public.

Before publication, different considerations apply. If someone else exploits unpublished material that is seen in a privileged grant application or manuscript, that person is essentially stealing intellectual property. In industry the commercial rights to scientific work belong more to the employer than the employee, but similar provisions apply: research results are privileged until they are published or otherwise publicly disseminated.

Many scientists are generous in discussing their preliminary theories or results with colleagues, and some even provide copies of raw data to others prior to public disclosure to facilitate related work. But scientists are not expected to make their data and thinking available to others at all times. During the initial stages of research, a scientist deserves a period of privacy in which data are not subject to disclosure. This privacy allows individuals to advance their work to the point at which they have confidence both in its accuracy and its meaning.

After publication, scientists expect that data and other research materials will be shared with qualified colleagues upon request. Indeed, a number of federal agencies, journals, and professional societies have established policies requiring the sharing of research materials. Sometimes these materials are too voluminous, unwieldy, or costly to share freely and quickly. But in those fields in which sharing is possible, a scientist who is unwilling to share research materials with qualified colleagues runs the risk of not being trusted or respected. In a profession where so much depends on interpersonal interactions, the professional isolation that can follow a loss of trust can damage a scientist's work.

Publication in a peer-reviewed journal remains the standard means of disseminating scientific results, but other methods of communication are subtly altering how scientists divulge and receive information. Posters, abstracts, lectures at professional gatherings, and proceedings volumes are being used more often to present preliminary results before full review. Preprints and computer networks are increasing the ease and speed of scientific communications. These new methods of communication are in many cases just elaborations of the informal exchanges that pervade science. To the extent that they speed and improve communication and revision, they will strengthen science. But if publication practices, either new or traditional, bypass quality mechanisms, they risk weakening conventions that have served science well.

An example is the scientist who releases important and controversial results directly to the public before submitting them to the scrutiny of peers. If the researcher has made a mistake or the findings are misinterpreted by the media or the public, the scientific community and the public may react adversely. When such news is to be released to the press, it should be done when peer review is complete-normally at the time of publication in a scientific journal.

"We thus begin to see that the institutionalized practice of citations and references in the sphere of learning is not a trivial matter. While many a general reader- that is, the lav reader located outside the domain of science and scholarshipmay regard the lowly footnote of the remote endnote or the bibliographic parenthesis as a dispensable nuisance, it can be argued that these are in fact central to the incentive system and an underlying sense of distributive justice that do much to energize the advancement of knowledge"

- Robert K. MERTON, "The Sociology of Science", Chicago, 1973

Sometimes researchers and the institutions sponsoring research have different interests in making results public. For example, a scientist doing research sponsored by industry may want to publish results quickly, while the industrial sponsor may want to keep results private-at least temporarily-to establish intellectual property rights prior to disclosure. Research institutions and government agencies have started to adopt explicit policies to reduce conflicts over such issues of ownership and access.

In research has the potential of being financially profitable, openness can be maintained by the granting of patents. Patents enable an individual or institution to profit from a scientific discovery in return for making the results public. Scientists who may be doing patentable work have special obligations to the sponsors of that work. For example, they may need to have their laboratory notebooks validated and dated by others. They may also have to disclose potentially valuable discoveries promptly to the patent official of the organization sponsoring the research. In some situations, such as proprietary research sponsored by industry or militarily sensitive research, openness in disseminating research results may not be possible. Scientists working under such conditions may need to find other ways of exposing their work to professional scrutiny. Unclassified summaries of classified work can compensate for the lack of open scrutiny that allows the validation of results elsewhere in science. Properly structured visiting committees can examine proprietary or classified research while maintaining confidentiality.

THE SHARING OF RESEARCH MATERIALS

Ed, a fourth-year graduate student, was still several months away from finishing an ongoing research project when a new postdoc arrived from a laboratory doing similar work. After the two were introduced, Ed automatically asked about the work going on in the other lab and was surprised to hear that researchers there had successfully developed a reagent that he was still strugg1ing to perfect. Knowing that both labs had policies requiring the sharing of research materials.

Ed wrote a letter to the head of the other lab asking if the laboratory could share some of the reagent with him. He didn't expect there to be a problem, because his project was not in competition with the work of the other lab, but a couple of weeks later he got a letter from the lab director saying that the reagent could not be shared because it was still poorly developed and characterized! The new postdoc, upon hearing the story, said, "That's ridiculous. They just don't want to give you a break."

- 1. Where can Ed go for help in obtaining the materials?
- 2. Are there risks in involving other people in this situation? What kinds of information is it appropriate for researchers to share with their colleagues when they change laboratories?

THE ALLOCATION OF CREDIT

The principle of fairness and the role of personal recognition within the reward system of science account for the emphasis given to the proper allocation of credit. In the standard scientific paper, credit is explicitly acknowledged in three places: in the list of authors, in the acknowledgments of contributions from others, and in the list of references or citations. Conflicts over proper attribution can arise in any of these places.

Citations serve many purposes in a scientific paper. They acknowledge the work of other scientists, direct the reader toward additional sources of information, acknowledge conflicts with other results, and provide support for the views expressed in the paper. More broadly, citations place a paper within its scientific context, relating it to the present state of scientific knowledge.

Failure to cite the work of others can give rise to more than just hard feelings. Citations are part of the reward system of science. They are connected to funding decisions and to the future careers of researchers. More generally, the misallocation of credit undermines the incentive system for publication.

CREDIT WHERE CREDIT IS DUE

Ben, a third-year graduate student, had been working on a research project that involved an important new experimental technique. For a national meeting in his discipline, Ben wrote an abstract and gave a brief presentation that mentioned the new technique. After his presentation, he was surprised and pleased when Dr. Freeman, a leading researcher from another university, engaged him in an extended conversation. Dr. Freeman asked Ben extensively about the new technique, and Ben described it fully. Ben's own faculty advisor often encouraged his students not to keep secrets from other researchers, and Ben was flattered that Dr. Freeman would be so interested in his work.

Six months later Ben was leafing through a journal when he noticed an article by Dr. Freeman. The article described an experiment that clear1y depended on the technique that Ben had developed. He didn't mind; in fact, he was again somewhat flattered that his technique had so strongly influenced Dr Freeman's work. But when he turned to the citations, expecting to see a reference to his abstract or presentation, his name was nowhere to be round.

- 1. Does Ben have any way of receiving credit for his work?
- 2. Should he contact Dr. Freeman in an effort to have his work recognized?
- 3. Is Ben's faculty advisor mistaken in encouraging his students to be so open about their work?

In addition, scientists who routinely fail to cite the work of others may find themselves excluded from the fellowship of their peers. This consideration is particularly important in one of the more intangible aspects of a scientific career-that of building a reputation. Published papers document a person's approach to science, which is why it is important that they be clear, verifiable, and honest. In addition, a researcher who is open, helpful, and full of ideas becomes known to colleagues and will benefit much more than someone who is secretive or uncooperative.

Some people succeed in science despite their reputations. Many more succeed at least in part because of their reputations.

AUTHORSHIP PRACTICES

The allocation of credit can also become an issue in the listing of authors' names. Science bas become a much more collaborative enterprise than it was in the past. The average number of authors for articles in the *New England Journal of Medicine*, for example, has risen from slightly more than one in 1925 to more than six today. In some areas, such as high-energy physics or genome sequencing, the number of authors can rise into the hundreds. This increased collaboration has produced many new opportunities for researchers to work with colleagues at different stages in their careers, in different disciplines, or even in widely separated locations. It has also increased the possibility for differences to arise over questions of authorship.

In many fields, the earlier a name appears in the list of authors, the greater the implied contribution, but conventions differ greatly among disciplines and among research groups. Sometimes the scientist with the greatest name recognition is listed first, whereas in other fields the research leader's name is always last. In some disciplines supervisors' names rarely appear on papers, while in others the professor's name appears on almost every paper that comes out of the lab. Some research groups and journals avoid these decisions by simply listing authors alphabetically.

Frank and open discussion of the division of credit within research groups-as early in the research process as possible and preferably at the very beginning, especially for research leading to a published paper-can prevent later difficulties. The best practice is for authorship criteria to be explicit among all collaborators. In addition, collaborators should be familiar with the conventions in a particular field to understand their rights and obligations. Group meetings provide an occasion to discuss ethical and policy issues in research.

The allocation of credit can be particularly sensitive when it involves researchers at different stages of their careers-for example, post-docs and graduate students, or senior faculty and student researchers. In such situations, differences in roles and status compound the difficulties of according credit.

WHO SHOULD GET CREDIT FOR THE DISCOVERY OF PULSARS?

A much-discussed example of the difficulties associated with allocating credit between junior and senior researchers was the 1967 discovery by Jocelyn Bell,

then a 24-year-old graduate student, of pulsars. Over the previous two years, Bell and several other students, under the supervision of Bell's thesis advisor, Anthony Hewish, had built a 4.5-acre radiotelescope to investigate scintillating radio sources in the sky. After the telescope began functioning, Bell was in charge of operating it and analyzing its data under Hewish's direction. One day Bell noticed "a bit of scruff" on the data chart. She remembered seeing the same signal earlier and by measuring the period of its recurrence, determined that it had to be coming from an extraterrestrial source.

Together Bell and Hewish analyzed the signal and found several similar examples elsewhere in the sky. After discarding the idea that the signals were coming from an extraterrestrial intelligence, Hewish, Bell, and three other people involved in the project published a paper announcing the discovery, which was given the name "pulsar" by a British science reporter.

Many argued that Bell should have shared the Nobel Prize awarded to Hewish for the discovery, saying that her recognition of the signal was the crucial act of discovery. Others, including Bell herself, said that she had received adequate recognition in other ways and should not have been so lavishly rewarded for doing what a graduate student is expected to do in a project conceived and set up by others.

Several considerations must be weighed in determining the proper division of credit between a student or research assistant and a senior scientist, and a range of practices are acceptable. If a senior researcher has defined and put a project into motion and a junior researcher is invited to join in, major credit may go to the senior researcher, even if at the moment of discovery the senior researcher is not present. By the same token, when a student or research assistant is making an intellectual contribution to a research project, that contribution deserves to be recognized. Senior scientists are well aware of the importance of credit in science and are expected to give junior researchers credit where warranted. In such cases, junior researchers may be listed as coauthors or even senior authors, depending on the work, traditions within the field, and arrangements within the team.

Occasionally a name is included in a list of authors even though that person had little or nothing to do with the content of a paper. Such "honorary authors" dilute the credit due the people who actually did the work, inflate the credentials of those so "honored," and make the proper attribution of credit more difficult. Several scientific journals now state that a person should be listed as the author of a paper only if that person made a direct and substantial contribution to the paper. Some journals require all named authors to sign the letter that accompanies submissions of the original article and all subsequent revisions to ensure that no author is named without consent and that all authors agree with the final version.

As with citations, author listings establish accountability as well as credit. When a paper is found to contain errors, whether caused by mistakes or deceit, authors might wish to disavow responsibility, saying that they were not involved in the part of the paper containing the errors or that they had very little to do with the paper in general. However, an author who is willing to take credit for a paper must also bear responsibility for its contents. Thus, unless a footnote or the text of the paper explicitly assigns responsibility for different parts of the paper to different authors, the authors whose names appear on a paper must share responsibility for all of it.

ERROR AND NEGLIGENCE IN SCIENCE

Scientific results are inherently provisional. Scientists can never prove conclusively that they have described some aspect of the natural or physical world with complete accuracy. In that sense all scientific results must be treated as susceptible to error.

Errors arising from human fallibility also occur in science. Scientists do not have 1 imitless working time or access to unlimited resources. Even the most responsible scientist can make an honest mistake. When such errors are discovered, they should be acknowledged, preferably in the same journal in which the mistaken information was published. Scientists who make such acknowledgments promptly and openly are rarely condemned by colleagues.

Mistakes made through negligent work are treated more harshly. Haste, carelessness, inattention-any of a number of faults can lead to work that does not meet the standards demanded in science. If scientists cut corners for whatever reason, they are placing their reputation, the work of their colleagues, and the public's confidence in science at risk.

Some researchers may feel that the pressures on them are an inducement to haste at the expense of care. For example, they may believe that they have to do substandard work to compile a long list of publications and that this practice is acceptable. Or they may be tempted to publish virtually the same research results in two different places or publish their results in "least publishable units"- papers that are just detailed enough to be published but do not give the full story of the research project described.

"Of all the traits which qualify a scientist for citizenship it the republic of science, I would put a sense of responsibility as a scientist at the very top. A scientist can be brilliant, imaginative, clever with his hands, profound, broad, narrow-but he is not much as a scientist unless the is responsible"

- Alvin WEINBERG
"The obligations of Citizenship in the of Science" *Minerva*, 16:1-3,

PUBLICATION PRACTICES

Paula, a young assistant professor, and two graduate students have been working on a series of related experiments for the past several years. During that time, the experiments have been written up in various posters, abstracts, and meeting presentations. Now it is time to write up the experiments for publication, but the students and Paula must first make an important decision. They could write a single paper with one first author that would describe the experiments in a comprehensive manner, or they could write a series of shorter, less complete papers so that each student could be a first author

Paula favors the first option, arguing that a single publication in a more visible journal would better suit all of their purposes. Paula's students, on the other hand, strongly suggest that a series of papers be prepared. They argue that one paper encompassing all the results would be too long and complex and might damage their career opportunities because they would not be able to point to a paper on which they were first authors.

1978

- 1. If the experiments are part of a series, are Paula and her students justified in not publishing them together?
- 2. If they decided to publish a single paper, how should the listing of authors be handled?
- 3. If a single paper is published, how can they emphasize to the review committees and funding agencies their various roles and the importance of the paper?

Sacrificing quality to such pressures can easily backfire. A lengthy list of publications cannot outweigh a reputation for shoddy research. Scientists with a reputation for publishing a work of dubious quality will generally find that all of their publications are viewed with skepticism by their colleagues. Reflecting the importance of quality, some institutions and federal agencies have recently adopted policies that limit the number of papers that will be considered when an individual is evaluated for appointment, promotion, or funding.

By introducing preventable errors into science, sloppy or negligent research can do great damage-even if the error is eventually uncovered and corrected. Though science is built on the idea of peer validation and acceptance, actual replication is selective. It is not practical (or necessary) to reconstruct all the observations and theoretical constructs that go into an investigation. Researchers have to trust that previous investigators performed the work as reported.

If that trust is misplaced and the previous results are inaccurate, the truth will likely emerge as problems arise in the ongoing investigation. But researchers can waste months or years of effort because of erroneous results, and public confidence in the integrity of science can be seriously undermined.

MISCONDUCT IN SCIENCE

Beyond honest errors and errors caused through negligence are a third category of errors: those that involve deception. Making up data or results (fabrication), changing or misreporting data or results (falsification), and using the ideas or words of another person without giving appropriate credit (plagiarism)- all strike at the heart of the values on which science is based. These acts of scientific misconduct not only undermine progress but the entire set of values on which the scientific enterprise rests. Anyone who engages in any of these practices is putting his or her scientific career at risk. Even infractions that may seem minor at the time can end up being severely punished.

The ethical transgressions discussed in earlier sections-such as misallocation of credit or errors arising from negligence-are matters that generally remain internal to the scientific community. Usually they are dealt with locally through the mechanisms of peer review, administrative action, and the system of appointments and evaluations in the research environment. But misconduct in science is unlikely to remain internal to the scientific community. Its consequences are too extreme: it can harm individuals outside of science (as when falsified resu1ts become the basis of a medical treatment), it squanders public funds, and it attracts the attention of those who would seek to criticize science. As a result, federal agencies, Congress, the media, and the courts can all get involved.

Within the scientific community, the effects of misconduct-in terms of lost time, for-feited recognition to others, and feelings of personal betrayal-can be devastating. Individuals, institutions, and even entire research fields can suffer grievous setbacks from instances of fabrication, falsification, or plagiarism even if they are only tangentially associated with the case.

When individuals have been accused of scientific misconduct in the past, the institutions responsible for responding to those accusations have taken a number of different approaches. In general, the most successful responses are those that clearly separate a preliminary investigation to gather information from a subsequent adjudication to judge guilt or innocence and issue sanctions if necessary. During the adjudication stage, the individual accused of misconduct has the right to various due process protections, such as reviewing the evidence gathered during the investigation and cross-exarmining witnesses.

FABRICATION IN A GRANT APPLICATION

Don is a first year graduate student applying to the National Science Foundation for a predoctoral fellowship. His work in a lab where he did a rotation project was later carried on successfully by others, and it appears that a manuscript will be prepared for publication by the end of the summer. However, the fellowship application deadline is June 1, and Don decides it would be advantageous to list a publication as "submitted." Without consulting the faculty member or other colleagues involved, Don makes up a title and author list for a "submitted" paper and cites it in his application.

After the application has been mailed, a lab member sees it and goes to the faculty member to ask about the "submitted" manuscript. Don admits to fabricating the submission of the paper but explains his actions by saying that he thought the practice, was not uncommon in science.

The faculty members in Don's department demand that he withdraw his grant application and dismiss him from the graduate program. After leaving the university, Don applies for a master's

degree, since he has fulfilled the course requirements. Although the department votes not to grant him a degree, the university administration does so because il is not stated in the university graduate bulletin that a student in Don's department must be in "good standing" to receive a degree. They fear that Don will bring suit against the university if the degree is denied. Likewise, nothing will appear in Don's university transcript regarding his dismissal.

- 1. Do you agree with Don that scientists often exaggerate the publication status of their work in written materials?
- 2. Do you think the department acted too harshly in dismissing Don from the graduate program?
- 3. Do you believe that being in "good standing" should be a pre-requisite for obtaining an advanced degree in science?
- If Don later applied to a graduate program at another institution, does that institution have the right to know what happened?

In addition to falsification, fabrication, and plagiarism, other ethical transgressions directly associated with research can cause serious harm to individuals and institutions. Examples include cover ups of misconduct in science, reprisals against whistleblowers, malicious allegations of misconduct in science, and violations of due process in handling complaints of misconduct in science. Policymakers and scientists have not decided whether such actions should be considered misconduct in science-and therefore subject to the same procedures and sanctions as falsification, fabrication, and plagiarismor whether they should be investigated and adjudicated through different channels. Regulations adopted by the National Science Foundation and the Public Health Service define misconduct to include "other serious deviations from accepted research practices," in addition to falsification, fabrication, and plagiarism, leaving open the possibility that other actions could be considered misconduct in science. The problem with such language is that it could allow a scientist to be accused of misconduct for using novel or unorthodox research methods, even though such methods are sometimes needed to proceed in science. Federal officials respond by saying that this language is needed to prosecute ethical breaches that do not strictly fall into the categories of falsification, fabrication, or plagiarism and that no scientist has been accused of misconduct on the basis of using unorthodox research methods. This area of science policy is still evolving.

Another category of behaviors- including sexual or other forms of harassment, misuse of funds, gross negligence in a person's professional activities, tampering with the experiments of others or with instrumentation, and violations of government research regulations-are not necessarily associated with scientific conduct. Institutions need to discourage and respond to such behaviors. But these behaviors are subject to generally applicable legal and social penalties and should be dealt with using the same procedures that would be applied to anyone.

A CASE OF PLAGIARISM

May is a second-year graduate student preparing the written portion of her qualifying exam. She incorporates whole sentences and paragraphs verbatim from several published papers. She does not use quotation marks, but the sources are suggested by statements like "(see ... for more details)." The faculty on the qualifying exam committee note inconsistencies in the writing styles of different paragraphs of the text and check the sources, uncovering May's plagiarism.

After discussion with the faculty, May's plagiarism is brought to the attention of the dean of the graduate school, whose responsibility it is to review such incidents that "plagiarism, that is, the failure in a dissertation, essay, or other written exercise to acknowledge ideas, research or language taken from others" is specifically prohibited. The dean expels May from the program with the stipulation that she can reapply for the next academic year.

- 1. Is plagiarism like this a common practice?
- 2. Are there circumstances that should have led to May's bein forgiven for plagiarizing?
- 3. Should May be allowed to reapply to the program?

RESPONDING TO VIOLATIONS OF ETHICAL STANDARDS

One of the most difficult situations that a researcher can encounter is to see or suspect that a col1eague has violated the ethical standards of the research community. It is easy to find excuses to do nothing, but someone who has witnessed misconduct has an unmistakable obligation to act. At the most immediate level, misconduct can seriously obstruct or damage one's own research or the research of colleagues. More broadly, even a single case of misconduct can malign scientists and their institutions, result in the imposition of counterproductive regulations, and shake public confidence in the integrity of science.

To be sure, raising a concern about unethical conduct is rarely an easy thing to do. In some cases, anonymity is possible-but not always. Reprisals by the accused person and by skeptical colleagues have occurred in the past and have had serious consequences. Any allegation of misconduct is a very important charge that needs to be taken seriously. If mishandled, an allegation can gravely damage the person charged, the one who makes the charge, the institutions involved, and science in general.

Someone who is confronting a problem involving research ethics usually has more options than are immediately apparent. In most cases the best thing to do is to discuss the situation with a trusted friend or advisor. In universities, faculty advisors, department chairs, and other senior faculty can be invaluable sources of advice in deciding whether to go forward with a complaint.

An important consideration is deciding when to put a complaint in writing. Once in writing, universities are obligated to deal with a complaint in a more formal manner than if it is made verbally. Putting a complaint in writing can have serious consequences for the career of a scientist and should be undertaken only after thorough consideration.

The National Science Foundation and Public Health Service require all research institutions that receive public funds to have procedures in place to deal with allegations of unethical practice. These procedures take into account fairness for the accused, protection for the accuser, coordination with funding agencies, and requirements for confidentiality and disclosure.

In addition, many universities and other research institutions have designated an ombudsman, ethics officer, or other official who is available to discuss situations involving research ethics. Such discussions are carried out in strictest confidence whenever possible. Some institutions provide for multiple entry points, so that complainants can go to a person with whom they feel comfortable.

A CAREER IN THE BALANCE

Francine was just months away from finishing her Ph.D. dissertation when she realized that something was seriously amiss with the work of a fellow graduate student, Sylvia. Francine was convinced that Sylvia was not actually making the measurements she claimed to be making. They shared the same lab, but Sylvia rarely seemed to be there. Sometimes Francine saw research materials thrown away unopened. The results Sylvia was turning in to their common thesis advisor seemed too clean to be real.

Francine knew that she would soon need to ask her thesis advisor for a letter of recommendation for faculty and postdoc positions. If she raised the issue with her advisor now, she was sure that it would affect the letter of recommendation. Sylvia was a favorite of her advisor, who had often helped Sylvia before when her project ran into problems. Yet Francine also knew that if she waited to raise the issue the question would inevitably arise as to when she first suspected problems.

Both Francine and her thesis advisor were using Sylvia's results in their own research. If Sylvia's results were inaccurate, they both needed to know as soon as possible.

- 1. Should Francine first try to talk with Sylvia, with her thesis advisor, or with someone else entirely?
- 2. Does she know enough to be able to raise concerns?
- 3. Where else can Francine go for information that could help her decide what to do?

Government agencies, including the National Science Foundation and Public Health Service, enforce laws and regulations that deal with misconduct in science. At the Public Health Service in Washington, D.C., complaints can be referred to the appropriate office through the Office of Research Integrity. At the National Science Foundation in Arlington, Virginia, complaints can be directed to the Office of the Inspector General. Within universities, research grant officials can provide guidance on whether federal rules may be involved in filing a complaint.

Many institutions have prepared written materials that offer guidance in situations involving professional ethics. Volume II of Responsible Science: Ensuring the Integrity of the Research Process (National Academy Press, Washington, D.C., 1993) reprints a number of these documents. Sigma Xi, a national society of research scientists head-

quartered in Research Triangle Park, North Carolina, the American Association for the Advancement of Science in Washington, D.C., and other scientific and engineering professional organizations also are prepared to advise scientists who encounter cases of possible misconduct.

The research system exerts many pressures on beginning and experienced researchers alike. Principal investigators need to raise funds and attract students. Faculty members must balance the time spent on research with the time spent teaching undergraduates. Industrial sponsorship of research introduces the possibility of conflicts of interest.

All parts of the research system have a responsibility to recognize and respond to these pressures. Institutions must review their own policies, foster awareness of research ethics, and ensure that researchers are aware of the policies that are in place. And researchers should constantly be aware of the extent to which ethically based decisions will influence their success as scientists.

THE SCIENTIST IN SOCIETY

This booklet has concentrated on the responsibilities of scientists for the advancement of science, but scientists have additional responsibilities to society. Even scientists conducting the most fundamental research need to be aware that their work can ultimately have a great impact on society. Construction of the atomic bomb and the development of recombinant DNA-events that grew out of basic research on the nucleus of the atom and investigations of certain bacterial enzymes, respectively are two examples of how seemingly arcane areas of science can have tremendous societal consequences.

The occurrence and consequences of discoveries in basic research are virtually impossible to foresee. Nevertheless, the scientific community must recognize the potential for such discoveries and be prepared to address the questions that they raise. If scientists do find that their discoveries have implications for some important aspect of public affairs, they have a responsibility to call attention to the public issues involved. They might set up a suitable public forum involving experts with different perspectives on the issue at band. They could then seek to develop a consensus of informed judgment that can be disseminated to the public. A good example is the response of biologist to the development of recombinant DNA technologies-first calling for a temporary moratorium on the research and then helping to set up a regulatory mechanism to ensure its safety.

This document cannot describe the many responsibilities incumbent upon researchers because of science's function in modern society. The bibliography lists several volumes that examine the social roles of scientists in detail. The important point is that science and technology have become such integral parts of society that scientists can no longer isolate themselves from societal concerns. Nearly half of the bills that come before Congress have a significant scientific or technological component. Scientists are increasingly called upon to contribute to public policy and to the public understanding of science. They play an important role in educating nonscientists about the content and processes of science.

In fulfilling these responsibilities scientists must take the time to relate scientific knowledge to society in such a way that members of the public can make an informed decision about the relevance of research. Sometimes researchers reserve this right to themselves, considering nonexperts unqualified to make such judgments. But science

- "All research organization requires generous measures of the following:
- social space for personal initiative and creativity
- time for ideas to grow
- hospitality toward novelty and
- respect for specialized expertise

(These) may sound too soft and old fashioned to stand up against the cruel modern realities of administrative acceptability and economic stringency. On the contrary, I believe that they are fundamental requirements for the continued advancements of scientific knowledge-and of course, for its eventual social benefits"

- John ZIMAN Prometheus Bound : Science in a Dynamic Steady State Cambridge University Press, New York, 1994, p276

THE NATIONAL RESEARCH COUNCIL AND SERVICE TO SOCIETY

One way in which scientists serve the needs of the broader society is by participating in the activities of the National Research Council, which is administered by the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The National Research Council brings together leaders from academia, industry, government, and other sectors to address critical national issues and provide advice to the U.S. government and its citizens.

Over the course of a typical year, about 650 committees involving approximately 6,400 individuals study societally important issues that involve science and technology.

All of these experts volunteer their time to serve on study committees, plan and participate in seminars, review documents, and oth-erwise assist in the work of the institution. Study committees work independently of government, sponsors, and special-interest groups.

Continuous oversight and formal anonymous review of the results of the studies enhance objectivity and quality. offers only one window on human experience. While upholding the honor of their profession, scientists must seek to avoid putting scientific knowledge on a pedestal above knowledge obtained through other means.

Many scientists enjoy working with the public. Others see this obligation as a distraction from the work they would like to be doing. But concern and involvement with the broader uses of scientific knowledge are essential if scientists are to retain the public's trust. The research enterprise has itself been changing as science has become increasingly integrated into everyday life. But the core values on which the enterprise is based- honesty, skepticism, fairness, collegiality, openness- remain unchanged. These values have helped produce a research enterprise of unparalleled productivity and creativity. So long as they remain strong, science-and the society it serves- will prosper.

BIBLIOGRAPHY

Volume I of Responsible Science: Ensuring the Integrity of the Research Process (National Academy Press, Washington, D.C., 1992) presents a thorough analysis of scientific misconduct made by the Panel on Scientific Responsibility and the Conduct of Research under the Committee on Science, Engineering, and Public Policy of the National Academy of Sciences, National Academy of Engineering, and Institute of Medicine. Volume II of Responsible Science (National Academy Press, Washington, D.C., 1993) contains a number of background papers, a selection of guidelines for the conduct of research, and examples of specific research policies and procedures for handling allegations of misconduct in science.

In *The Responsible Conduct of Research in the Health Sciences* (National Academy Press, Washington, D.C., 1989), the Institute of Medicine's Committee on the Responsible Conduct of Research examines institutional policies and procedures designed to strengthen the professional standards of academic research. *Sharing Research Data*, edited by Stephen E. Fienberg, Margaret E. Martin, and Miron L. Straf (National Academy Press, Washington, D.C., 1985), lays out general principles to govern the sharing of research results and the materials used in research.

An early but still excellent book on experimental and statistical methods for data reduction is E. Bright Wilson's *An Introduction to Scientific Research* (McGraw-Hill, New York, 1952). A more general book from the same period that remains useful today is *The Art of Scientific Investigation* by W. I. B. Beveridge (Third Edition, Vintage Books, New York, 1957).

A broad overview of the philosophy, sociology, politics, and psychology of science can be found in John Ziman's *An Introduction to Science Studies: The Philosophical and Social Aspects of Science and Technology* (Cambridge University Press, New York, 1984), Ziman analyzes many of the changes going on in contemporary science in *Prometheus Bound: Science in a Dynamic Steady State* (Cambridge University Press, New York, 1994).

Many pioneering essays by Robert K. Merton have been collected in *The Sociology of Science* (University of Chicago Press, Chicago, 1973). Stephen Cole analyzes and critiques some of the more modern work in the sociology of science in *Making Science: Between Nature and Society* (Harvard University Press, Cambridge, Mass. 1992).

Gerald Holton discusses the thematic presuppositions of scientists and the integrity of science in chapters 1 and 12 of his book *Thematic Origins of Scientific Thought: Kepler to Einstein* (Revised Edition, Harvard University Press, Cambridge, Mass., 1988). Holton elaborates on the historical context of research ethics in "On Doing One's Damnedest: The Evolution of Trust in Scientific Findings," which is chapter 7 in *Einstein, History, and Other Passions* (American Institute of Physics, New York, 1994). The roles of recognition and credit in science are discussed in chapters 8-10 of David Hull's *Science as Process: An Evolutionary Account of the Social and Conceptual Development of Science* (University of Chicago Press, Chicago, 1988).

Peter B. Medawar addresses the concerns of beginning researchers in his book *Advice to a Young Scientist* (Harper & Row, New York, 1979). "Honor in Science" by C. Ian Jackson, is a booklet offering "practical advice to those entering careers in scientific research" (Sigma Xi, The Scientific Research Society, Research Triangle Park, N. C., 1992). *Ethics, Values, and the Promise of Science* (Sigma Xi, The Scientific Research Society, Research Triangle Park, N. C., 1993), the proceedings of a 1992 forum held by Sigma Xi, contains a number of interesting papers on ethical scientific conduct.

Several insightful books offer advice for researchers about succeeding in a scientific career, including *A Ph.D. Is Not Enough: A Guide to Survival in Science* by Peter J. Feibelman (Addison-Wesley, Reading, Mass., 1993), *The Incomplete Guide to the Art of Discovery* by Jack E. Oliver (Columbia University Press, New York, 1991), and *The Joy of Science* by Carl J. Sindermann (Plenum Publishers, New York, 1985.

Alexander Kohn presents a number of case studies of misconduct and self-deception from the history of science and medicine in *False Prophets: Fraud and Error in Science and Medicine* (Basil Blackwell, New York, 1988). A lively book that discusses several historic cases of self-deception in science is *Diamond Dealers and Feather Merchants: Tales from the Sciences* by Irving M. Klotz (Birkhauser, Boston, 1986). The story of cold fusion is well told in *Cold Fusion: The Scientific Fiasco of the Century* by John. R. Huizenga (Oxford University Press, New York, 1993) and in Gary Taubes' *Bad Science: The Short Life & Hard Times of Cold Fusion* (Random House, New York, 1993).

Harriet Zuckerman gives a thorough, scholarly analysis of scientific misconduct in "Deviant Behavior and Social Control in Science" (pp. 87-138 in *Deviance and Social Change*, Sage Publications, Beverly Hills, Calif., 1977). Frederick Grinnell has a chapter on scientific misconduct in the second edition of *The Scientific Attitude* (Guilford Press. New York, 1992).

The American Association of Medical Colleges has gathered a large number of case studies in *Teaching the Responsible Conduct of Research Through a Case Study Approach* (American Association of Medical Colleges. Washington, D.C., 1994). *Research Ethics: Cases and Materials*, edited by Robin Levin Penslar (Indiana University Press, Bloomington, 1994), contains a number of extended case studies as well as essays on various aspects of research ethics. In *Understanding Ethical Problems in Engineering Practice and Research* (Cambridge University Press, New York, 1995), Caroline Whitbeck examines issues of professional ethics (such as the engineer's or chemist's responsibility for safety) and research ethics. The American Association for the Advancement of Science and the American Bar Association have jointly issued several publications on issues of scientific ethics, including *Good Science and Responsible Scientists: Meeting the Challenge of Fraud and Misconduct in Science*, by Albert H. Teich and Mark S. Frankel (American Association for the Advancement of Science, Washington, D.C., 1991).

The report *Scientific Freedom and Responsibility*, prepared by John T. Edsall (American Association for the Advancement of Science, Washington, D.C., 1975), remains an important statement on the social obligations of scientists in the modern world. Rosemary Chalk has compiled a series of papers from *Science* magazine on ethics, scientific freedom, social responsibility, and a number of other topics in *Science*, *Technology, and Society: Emerging Relationships* (American Association for the Advancement of Science, Washington, D.C., 1988).

The Barbara McClintock quotation on the first page of the document came from *A Feeling for the Organism: The Life and Work of Barbara McClintock* by Evelyn Fox Keller (W.H. Freeman, San Francisco, 1983).

Among audiovisual materials, the NOVA program "Do Scientists Cheat?" stands out as a balanced treatment of ethical issues in the conduct of research.

APPENDIX: DISCUSSION OF CASE STUDIES

The hypothetical scenarios included in this booklet raise many different issues that can be discussed and debated. The observations and questions given below suggest just some of the areas that can be explored.

THE SELECTION OF DATA

Deborah and Kathleen's principal obligation, in writing up their results for publication, is to describe what they have done and give the basis for their actions. They must therefore examine how they can meet this obligation within the context of the experiment they have done. Questions that need to be answered include: If the authors state in the paper that data have been rejected because of problems with the power supply, should the data points still be included in the published chart? Should statistical analyses be done that both include and exclude the questionable data? If conventions within their discipline allow for the use of statistical devices to eliminate outlying data points, how explicit do Deborah and Kathleen need to be in the published paper about the procedures they have followed?

A CONFLICT OF INTEREST

Science thrives in an atmosphere of open communication. When communication is limited, progress is limited for everyone. John therefore needs to weigh the advantages of keeping quiet-if in fact there are any-against the damage that accrues to science if he keeps his suggestion to himself. He might also ask himself how keeping quiet might affect his own life in science. Does he want to appear to his advisor and his peers as someone who is less than forthcoming with his ideas? Will he enjoy science as much if he purposefully limits communication with others?

INDUSTRIAL SPONSORSHIP OF ACADEMIC RESEARCH

Sandra has enrolled in the university to receive an education, not to work for industry. But working on industrially sponsored research is not necessarily incompatible with getting a good education. In fact, it can be a valuable way to gain insight into industrially oriented problems and to prepare for future work that has direct applications to societal needs. The question that must be asked is whether the nature of the research is sub-

verting Sandra's education. Sandra's faculty advisor has entered into a relationship that could result in conflicts of interest. That relationship is therefore most likely to be subject to review by third parties. Can Sandra turn to those responsible for overseeing the research for help in resolving her own uncertainties? What would be the possible effects on her career if she did so?

THE SHARING OF RESEARCH MATERIALS

After a research material like a reagent has been described in a publication, sharing that material speeds and in some cases enables the replication of results and therefore contributes to the progress of science. But the reagent in this situation has not yet been described in a published paper, so the provisions for sharing it are different. Ed needs to consider the other laboratory's legitimate interest in developing that material and establishing how it works before publication. He also needs to consider the relationship between the two laboratories. If he turns to his faculty advisor for help in acquiring the reagent, how is his advisor likely to respond? Is there any way he can work with the other laboratory and thereby come a step closer to forming an agreement with them about the use of the reagent?

CREDIT WHERE CREDIT IS DUE

Ben is to be commended for being open and for seeking to involve others in his work. He will benefit from that openness, even if he seems not to have benefited in this situation. At the same time, Ben has to ask himself honestly if his comments were a critical factor in Dr. Freeman's work. If Dr. Freeman had already had the same ideas, he should have told Ben this during their conversation. But could the same ideas have come from elsewhere?

If Ben is still convinced that he has not been treated fairly, he will need to work with his research advisor to see if his contributions can be acknowledged. One option would be to see if his advisor would cosign a letter with Ben or write a letter on Ben's behalf addressing this issue. Ben will need to think about the possible implications of this course of action for his own career. What if Dr. Freeman writes back and says that the lack of credit was an oversight and that he will credit Ben in the future? What if he says that Ben's objections are not warranted and gives the reasons why?

PUBLICATION PRACTICES

Contributions to a scientific field are not counted in terms of the number of papers. They are counted in terms of significant differences in how science is understood. With that in mind, Paula and her students need to consider how they are most likely to make a significant contribution to their field. One determinant of impact is the coherence and completeness of a paper. Paula and her students may need to begin writing before they can tell whether one or more papers is needed.

In retrospect, Paula and her students might also ask themselves about the process that led to their decision. Should they have discussed publications much earlier in the process? Were the students led to believe that they would be first authors on published papers? If so, should that influence future work in the lab?

FABRICATION IN A GRANT APPLICATION

Even though Don did not introduce spurious results into science, he fabricated the submission of the research paper and therefore engaged in misconduct. Though his treatment by the department might seem harsh, fabrication strikes so directly at the foundations of science that it is not excusable.

This scenario also demonstrates that researchers and administrators in an institution may differ on the appropriate course of action to take when research ethics are violated. Sometimes institutions may be unwilling or unable to respond to an ethical transgression in the way the scientific community would desire. Researchers might then have to decide the extent to which they are willing to impose and enforce sanctions themselves.

A CASE OF PLAGIARISM

A broad spectrum of misconduct falls into the category of plagiarism, ranging from obvious theft to uncredited paraphrasing that some might not consider dishonest at all. In a lifetime of reading, theorizing, and experimenting, a person's work will inevitably incorporate and overlap with that of others. However, occasional overlap is one thing; systematic use of the techniques, data, words, or ideas of others without appropriate acknowledgment is another.

A person's background can play a role in considering episodes of plagiarism. For example, what if May had never been taught the conventions and institutional policies governing the attribution of other's work? Should she then have been treated more leniently?

A CAREER IN THE BALANCE

Francine's most obvious option is to discuss the situation with her research advisor, but she has to ask herself if this is the best alternative. Her advisor is professionally and emotionally involved in the situation and may not be able to take an impartial stance. In addition, because the advisor is involved in the situation, she may feel the need to turn the inquiry into a formal investigation or to report the inquiry to her supervisors.

Francine should also consider whether she can discuss the situation directly with Sylvia. Many suspicions evaporate when others have a chance to explain actions that may have been misinterpreted.

If Francine feels that she cannot talk with Sylvia, she needs some way to discuss her concerns confidentially. Maybe she could turn to a trusted friend, another member of the faculty, someone on the university's administrative staff, or an ombudsman designated by the university. That person can help Francine explore such questions as: What is known and what is not known about the situation? What are the options available to her? Should she put her concerns in writing, an action likely to lead to a formal investigation?

The Committee on Science, Engineering and Public Policy (COSEPUP) is a joint committee of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. It includes members of the councils of all three bodies.

The National Academy of Sciences (NAS) is a private, non-profit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research dedicated to the furtherance of science and technology and to their use for the generation of welfare. Under the authority of the charter granted to it by Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of. the NAS.

The National Academy of Engineering (NAE) was established in 1964, under the charter of the NAS, as a parallel organization of distinguished engineers. It is autonomous in its administration and in the selection of members, sharing with the NAS its responsibilities for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the NAE.

The Institute of Medicine (IOM) was established in 1970 by the National Academy, of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences in its congressional charter to be an advisor to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the IOM.

NOTES PERSONNELLES

Octobre 2001 - Indice de classement: X 50-550

NORMALISATION FRANÇAISE

Indice de classement : X 50-550

ICS: 03.100.40; 03.120.10

E: Research quality approach - General principles and recommendations

D: Konzeption der Forschungsqualitât -Aligemeine Prinzipien und Empfehlungen

Démarche qualité en recherche

PRINCIPES GÉNÉRAUX ET RECOMMANDATIONS

Fascicule de documentation

publié par AFNOR en octobre 2001,

Correspondance

À la date de publication du présent document, il n'existe pas de travaux européens ou internationaux traitant du même sujet.

Analyse

Le présent document fournit des recommandations pour mettre en place une démarche qualité dans les activités de recherche ainsi que dans le fonctionnement des entités dans lesquelles elles sont menées.

Descripteurs

Thésaurus International Technique: recherche, innovation, qualité, assurance de qualité, principe, mise en œuvre.

Modifications - Corrections

Par rapport au 1er tirage, corrections éditoriales dans le corps du texte.

Édité et diffusé par l'Association Française de Normalisation (AFNOR) 11, avenue Francis de Pressensé -93571 Saint-Denis La Plaine Cedex

- Tél.: + 33 (0)141628000 - Fax: + 33 (0)1491790 OO-

www.afnor.fr

© AFNOR 2001 AFNOR 2001 2° tirage 2002-05-F

QUALITÉ EN RECHERCHE

AFNOR X580

MEMBRES DE LA COMMISSION DE NORMALISATION

Président : MME PIEDALLU

Secrétariat: : MMES MONTOYA et NIEDZIELA - AFNOR

M	ANDRE	INSTITUT DE RECHERCHE PIERRE FABRE
---	-------	------------------------------------

M CAUSSIGNAC LCPC

M D'AUTUMEMINISTERE DE LA RECHERCHE - DIRECTION DE LA TECHNOLOGIE

MME DE SAINT MARTININSTITUT PASTEUR

MME DRAGACCIAFSSA

M ENJUANESMINISTERE DE L'AGRICULTURE - DGER

M FARGESUNIVERSITE DE TECHNOLOGIE DE COMPIEGNE

M GASTIGER ...INERIS
M HANGOUET ...IGN
MME KOUM BESSON ...INSERM
M LARET ...CSTB
MME LECONTEL ...CNRS
M LE MOUEL ...SNCF

M LE TRUNG LE TRUNG BAO

M LEMEEIFP

MME MAJOUMINISTERE DE L'EQUIPEMENT, DES TRANSPORTS ET DU LOGEMENT - DRAST

M MEDEVI ELLEINRETS
M MOUNINCEMAGREF

M MURETCEA

M PAOLILABORATOIRE CENTRAL DE LA PREFECTURE DE POLICE
M PARISETUNIVERSITE BLAISE PASCAL - CLERMONT FERRAND

M PETIT ...CEA

MME PIEDALLU .INRA

M PIHET ...IPSN

M POULAIN .LABERCA

M QUENARD .ONERA

M QUÊNE ...IGN

MME ROCQUEFELTE .INSERM

M SEGAUDMINISTERE DE LA DEFENSE - DGA DSP

MME SOUYRIMINISTERE DE LA RECHERCHE - DIRECTION DE LA RECHERCHE

 M
 SUREAU
 .BRGM

 M
 TA
 .DANONE

 M
 TRONC
 .GAZ DE France

 M
 TUFFERY
 .AFSSA

 M
 URIEN
 .CEMAGREF

SOMMAIRE Page 2 2.1 2.2 Enjeux économiques et financiers164 2.3 3 3.1 3.2 Mise en œuvre de l'approche qualité168

RÉSUMÉ

Ce fascicule de documentation vise à contribuer au progrès et à l'amélioration continue des pratiques scientifiques par le développement de démarches qualité en recherche. Exclusivement centré sur les aspects organisationnels de l'activité de recherche, il propose une approche méthodologique très flexible que les acteurs de la recherche (chercheurs avertis ou non en qualité, responsables fonctionnels ou opérationnels, membres de l'administration, décideurs nationaux, européens ou internationaux, etc.) pourront adapter à leur propre contexte. Résolument pédagogique, il permet à tous les acteurs de la recherche de clarifier les enjeux et les approches possibles de la qualité en recherche.

Ces principes peuvent paraître trop généraux à ceux qui souhaitent, dès à présent, introduire un véritable management de la qualité en recherche afin d'assurer la reconnaissance de leurs travaux au niveau international par des instances en charge de la qualité. D'autres, au contraire, pourront considérer que les dispositifs d'évaluation et de reconnaissance actuellement en place (en particulier par les pairs) répondent encore largement aux besoins de la recherche, même s'il est toujours possible de progresser.

Les recommandations du présent fascicule de documentation représentent une position consensuelle française sur le développement des démarches qualité en recherche à mettre en œuvre concrètement sur le terrain, au niveau local, national, européen ou international. Elles sont donc, à ce stade, de portée générale pour permettre à chaque organisme de se les approprier et de les adapter à l'état de sa réflexion, de son avancement et de sa politique qualité. Les chercheurs peuvent y trouver des propositions proches de leur culture qui, par nature, remet toujours en question ses conclusions et aspire à l'excellence. Les autres membres contribuant de plus loin à la recherche y trouveront un cadre renforcé de cohérence où leurs actions d'amélioration convergent vers une dynamique globale et valorisante pour tous. Le document comprend deux chapitres principaux présentant le «pourquoi» et le «comment» des démarches qualité en recherche.

Le chapitre «pourquoi» présente les enjeux généraux de la qualité en recherche. Les enjeux scientifiques sont induits par l'évolution des technologies de l'information qui rend les échanges plus rapides et l'enregistrement des connaissances plus puissant. Une maîtrise renouvelée de garantie de validité des connaissances, de capitalisation des savoirs et de plus grande créativité devient indispensable pour conserver la confiance dans la pratique scientifique. Les enjeux économiques et financiers portent sur l'optimisation des ressources allouées par les commanditaires et la capacité à en rendre compte. Les enjeux sociétaux et environnementaux portent sur la perception que le public peut avoir des implications et résultats de la recherche. Son intérêt croissant pour son avenir immédiat et celui des générations futures induit une demande croissante d'anticipation des risques et de mise en œuvre d'une démarche de précaution.

Le chapitre «comment» propose de construire un cadre de cohérence permettant à chaque acteur de la recherche de réfléchir sur ses «manières de faire professionnelles» et de choisir lui-même les dispositifs appropriés pour les améliorer. Trois principes fondent l'approche qualité proposée: pragmatisme, pédagogie et intégration dans le contexte global de l'entité de recherche. Les actions d'amélioration sont identifiées en déclinant ces principes sur les trois «temps forts» ou phases principales d'une activité de recherche: définition de l'objectif initial, réalisation de la recherche et valorisation des résultats. Les acteurs de la recherche sont invités à identifier eux-mêmes, en prenant en compte les intérêts de l'ensemble des parties prenantes, les critères qualité les plus pertinents, les dispositions générales adaptées et les solutions

concrètes à mettre en place sur le «terrain». Des exemples pour chacune des trois phases sont proposés pour illustrer cette méthodologie. Le sens des démarches qualité réalisées à des niveaux intermédiaires est précisé dans un contexte plus large qui intéresse l'ensemble de l'entité de recherche et de ses parties prenantes. Des suggestions sur une démarche globale de progrès sont proposées pour garantir et pérenniser, sur le long terme, le succès des hommes et des organisations en recherche.

En conclusion, la qualité est avant tout un outil au service de la recherche. L'approche proposée consiste donc à «co-produire» la qualité, les savoirs et savoir-faire associés, par l'ensemble des parties prenantes dans le cadre d'un processus progressif et continu d'apprentissage. Dans tous les cas, il convient que cette démarche soit proportionnée aux enjeux scientifiques, voire financiers, parfois médiatiques ou politiques de l'action de recherche envisagée.

INTRODUCTION

a recherche scientifique rassemble des acteurs qui conduisent des activités de nature variées combinant des phases d'expérimentation et d'observation critiques, des phases de développement théorique et des phases de modélisation dont l'enchaînement n'est, le plus souvent, ni linéaire ni déterministe. Les résultats de cette recherche se traduisent en connaissances et savoirs nouveaux qui, d'une manière générale, notamment dans le domaine de la recherche fondamentale, sont considérés comme un bien commun de l'humanité, facteur de progrès économique et social, légitimant, à terme, une large diffusion. Toutefois, cette position de principe nécessite une attention d'autant plus soutenue que les retombées des résultats de la recherche sur la société sont souvent difficiles à prévoir.

Par ailleurs, ces résultats proviennent souvent de l'exploitation d'observations ou de données inattendues et de ce fait, les processus qui mènent de l'intention initiale aux résultats ne peuvent pas toujours être entièrement définis ni décrits a priori. Compte tenu de ces spécificités, la qualité en recherche ne saurait être définie, gérée et assurée avec les mêmes principes que ceux appliqués aux activités en série des mesures et des essais ou à une production à caractère répétitif.

La nécessité d'une réflexion sur la démarche qualité en recherche a peu à peu pénétré les milieux scientifiques et conduit le ministère en charge de la recherche à constituer, dès 1996, un groupe de travail représentatif des organismes, institutions et entreprises concernés.

Ce groupe a rédigé en 1997 un «Guide Expérimental pour la Qualité en Recherche» proposant aux acteurs de la recherche une démarche souple qui leur laissait l'initiative des actions pertinentes à mener pour améliorer la maîtrise des processus de recherche et en assurer leur transparence.

Confrontées à l'impact social et économique des avancées scientifiques, et dans un contexte de compétition croissante, les parties prenantes de la recherche sont de plus en plus concernées par la mise en place d'une démarche visant à assurer la maîtrise de la qualité des processus de recherche et leur amélioration continue.

Dans ce contexte, le ministère en charge de la recherche a mandaté AFNOR, en juin 2000, pour constituer une Commission «Qualité en recherche» qui a reçu la mission de poursuivre la réflexion engagée et de produire un fascicule de documentation. La commission a défini les principes fondamentaux de la démarche et produit, dans un premier temps, ce fascicule de portée générale à destination des différents acteurs de la

recherche. Dans un second temps, des documents applicatifs adaptés à diverses situations concrètes faciliteront la mise en œuvre sur le «terrain» de l'approche proposée. Ecrit dans le respect de la diversité de toutes les disciplines, cultures, formations, organisations et initiatives déjà conçues et réalisées, ce premier fascicule de documentation a aussi vocation à présenter la position française dans le domaine.

1. DOMAINE D'APPLICATION

e présent fascicule de documentation a pour objet de formuler des recommandations pour mettre en place une démarche qualité cohérente dans les activités de recherche ainsi que dans le fonctionnement des entités dans lesquelles elles sont menées. Il concerne toutes les formes de recherche, de la recherche fondamentale à la recherche appliquée, quelle que soit la nature de l'entité dans laquelle elle est conduite (organisme, institution, entreprise, etc.). En revanche, le développement (au sens industriel du terme) n'est pas spécifiquement concerné.

Ce document vise à susciter la réflexion des acteurs de la recherche sur leurs pratiques professionnelles allant de la veille scientifique jusqu'à la sauvegarde des données, la diffusion et l'exploitation des résultats. Les rédacteurs de ce document souhaitent que chacun puisse y trouver des indications utiles pour aborder la démarche qualité ou poursuivre son expérience dans son domaine propre de recherche.

Ce fascicule ne fournit pas de dispositifs d'évaluation de la recherche (résultats, personnels et entités), qui peuvent être variés selon les organismes, institutions ou entreprises mais donnent nécessairement un rôle important voire central à une expertise scientifique par les pairs. Il suggère toutefois que la qualité en recherche peut s'appuyer sur de tels dispositifs et, le cas échéant, les rendre plus pertinents.

Le présent document n'est pas destiné à être utilisé dans un cadre réglementaire, contractuel, de certification ou d'accréditation.

2. POURQUOI LA QUALITÉ EN RECHERCHE?

Introduction dans les laboratoires tant publics que privés d'une démarche qualité en recherche adaptée répond à des enjeux à la fois scientifiques, économiques, éthiques et sociétaux, du fait des conséquences humaines, sociales et environnementales, désormais majeures, de la recherche scientifique.

2.1 ENJEUX SCIENTIFIQUES

Les nécessités internes aux dynamiques scientifiques contemporaines et les besoins qu'éprouvent les chercheurs eux-mêmes d'organiser plus efficacement encore leurs activités en vue d'une plus grande créativité justifient la mise en place d'une démarche qualité. En effet, la recherche consistant à produire et à traiter de l'information et des connaissances, il est essentiel pour tous ses acteurs de maîtriser les moyens d'inscription, de reproduction et de diffusion (voir note) et de pouvoir juger, en particulier, de leur fiabilité et de leur validité. L'optimisation de l'organisation de la recherche pour réduire les constats de non-qualité (par exemple, la qualification tardive des données) et la capacité à faire face à la lourdeur et au coût croissant de l'organisation du travail ainsi qu'à la rareté des ressources (financières, humaines, équipements, temps, etc.) deviennent également des enjeux importants. Bien entendu, la communauté scientifique met déjà en œuvre des dispositifs favorisant la circulation et la maîtrise de !'information diffusée (revues et comités de lecture, réseaux informels de collègues, expertises, etc.).

NOTE Le terme «activités de recherche» entend la préparation, l'organisation, la réalisation des travaux et les inévitables ajustements nécessaires en cours de route ainsi que l'utilisation des résultats, les notions d'analyse du risque étant intégrées.

NOTE Le terme «acteur de la recherche» comprend tout individu ou groupe étant partie prenante ou déployant une action en relation avec un processus de recherche.

Il s'agit, tout d'abord, des chercheurs eux-mêmes, des ingénieurs, des techniciens, administrateurs et gestionnaires activement impliqués dans les activités de recherche

Il s'agit également de tout acteur se constituant partie prenante du processus de recherche, tels que des commanditaires, des bénéficiaires ou des groupes d'utilisateurs (par exemple, une association de consommateurs).

La liste des acteurs de la recherche varie pour chaque processus de recherche et au cours de celui-ci. Il est donc nécessaire qu'elle soit précisée par les acteurs eux-mêmes et adaptée au cours du processus.

EXEMPLE Certains programmes de recherche, développés au sein d'un même laboratoire sur de longues périodes (15 ans environ), sont réalisés essentiellement par des doctorants, qui restent dans l'équipe pour une durée limitée (typiquement, de 1 à 4 ans).

Les projets ainsi conduits peuvent être poursuivis par d'autres étudiants après leur départ et il importe donc que l'information produite, rassemblée et gérée, puisse être transmise de manière fiable.

Le rapport de thèse et les publications ne suffisent pas à contenir cette information, partiellement tacite (par exemple, les motifs ayant présidé au choix d'un type de modélisation ou à l'abandon d'une voie de recherche).

De même, la recherche scientifique produit de plus en plus de documents numériques (textes, graphiques, sons, bases de données, modèles 3D, simulations, etc.) dont la reproduction et la modification sont particulièrement aisées.

Il en résulte une multiplication des documents et des versions qui posent de sérieux problèmes de gestion, d'archivage, de stockage, de coordination entre les acteurs de la recherche, de traçabilité, etc.

Cependant, ces dispositifs peuvent présenter des faiblesses ou des biais et, surtout, ils ne peuvent donner toutes les assurances nécessaires quant aux sources des méthodes utilisées et des résultats produits.

2.2 ENJEUX ÉCONOMIQUES ET FINANCIERS

Les considérations économiques et financières sont devenues particulièrement importantes en recherche. En effet, l'optimisation de l'efficience des moyens humains, techniques et financiers se pose, à tous les niveaux, aux entreprises, aux tutelles et aux divers responsables pour maintenir les ressources nécessaires à une recherche compétitive au niveau national, européen et international. De plus, dans de nombreux cas, les commanditaires publics ou privés veulent disposer de connaissances scientifiques fiables, avant de s'engager dans une phase de développement, pour mieux en maîtriser les risques. Leur demande de qualité manifeste le souhait que les chercheurs fournissent des garanties sur leur production scientifique et sur leur capacité à gérer au mieux les ressources allouées.

2.3 ENJEUX SOCIÉTAUX ET ENVIRONNEMENTAUX

Les produits de la science (connaissances, objets nouveaux et personnes dotées de compétences) jouent un rôle croissant dans la société moderne. En effet, les découvertes scientifiques ont profondément affecté les conditions de vie de l'homme, sa vision du monde (voire même son système de valeurs) ainsi que l'organisation de la société. Même si la contribution de la recherche au développement économique et humain des sociétés reste reconnue, son apport paraît désormais plus ambigu, voire controversé, que par le passé. La science se trouve régulièrement interpellée et mise en cause car elle introduit de nouvelles incertitudes, vécues par une large fraction de la société comme une source de risques souvent inacceptable. Dès lors, les chercheurs sont invités à réfléchir aux risques éventuels associés à la dissémination «sans précaution» des informations qu'ils ont produites et/ou à expliquer la part d'incertitude attachée aux résultats fournis.

2.4 ENJEUX POUR L'ORGANISME DE RECHERCHE ET SES CHERCHEURS

Les parties prenantes de la recherche demandent à avoir confiance dans les connaissances scientifiques produites ainsi que dans les pratiques des chercheurs et des entités de recherche. Cette confiance est de moins en moins accordée a priori sur la seule base de la réputation des personnalités scientifiques ou des entités de recherche. La société exige maintenant une relative transparence de l'activité de recherche et une maîtrise des processus mis en œuvre (allant de la pertinence des orientations de recherche à la fiabilité des connaissances produites). Cette exigence centrale se pose sous deux aspects au moins:

- L'éligibilité d'une entité de recherche pour la conduite d'un programme commandité et financé par un tiers (l'État, la Commission Européenne, par exemple). Dans un monde où les entités de recherche sont de plus en plus en concurrence, le commanditaire a des exigences croissantes et réclame des garanties sur le produit qui lui est fourni pour l'investissement financier qu'il consent. Cette reconnaissance des entités de recherche, si importante dans le fonctionnement de la communauté scientifique, pourrait, à l'avenir, être fondée sur des critères complémentaires au seul jugement actuel des pairs.
- La responsabilité des entités de recherche vis-à-vis des connaissances produites, dont il convient qu'elles répondent selon des critères bien établis en spécifiant les incertitudes et le domaine de validité. En cas de défaillance des résultats publiés, la respon-

sabilité des entités pourrait être mise en cause à l'avenir, dès lors, d'une part, que ces résultats s'avèreraient erronés du fait d'une flagrante mauvaise pratique scientifique et, d'autre part, que leur utilisation conduirait, d'une manière ou d'une autre, à un impact inacceptable sur les personnes, sur certains biens communs ou sur l'environnement.

3. COMMENT DÉVELOPPER LA QUALITÉ EN RECHERCHE?

3.1 GÉNÉRALITÉS

L'examen attentif «sur le terrain» des activités de recherche, dans leur diversité, ainsi que des pratiques professionnelles et des particularités culturelles de ce milieu montre qu'il est difficile de s'inscrire dans une simple démarche de conformité et d'appliquer les normes qualité existantes. En particulier, l'obligation, permanente et intrinsèque en recherche, de gérer l'inattendu, l'incertain et le risque de ne pas aboutir doit être au cœur de la démarche spécifique proposée aux acteurs de la recherche si l'on vise une bonne acceptabilité par la communauté scientifique et, in fine, l'efficacité. Dans ce cadre, il convient d'allier une très grande flexibilité, parfaitement exploitable sur le terrain, à la compatibilité avec les normes existantes.

La qualité, outil au service de la recherche et non «méta-discipline», ne peut raisonnablement prétendre fixer une méthodologie générale se substituant à celle qui se construit progressivement au sein même de chacune des disciplines scientifiques au cours de son évolution. La qualité peut, en revanche, offrir un cadre de cohérence facilitant la réflexion de chacun sur ses «manières de faire professionnelles» afin de les améliorer de façon continue. Il convient que chacun puisse s'approprier l'approche proposée, c'est-à-dire la faire sienne, la redéfinir en fonction de ses contraintes spécifiques et la décliner en tenant compte de son propre contexte local.

3.2 SENS DE LA DÉMARCHE QUALITÉ

La mise en place d'une démarche qualité au sein des entités de recherche atteste la volonté de garantir, autant que raisonnablement possible, de bonnes pratiques scientifiques. Cette démarche qualité vise à valoriser les entités de recherche en :

- fournissant des garanties réclamées par les commanditaires, le public et la communauté scientifique,
- formant et valorisant les acteurs de la recherche à une culture renouvelée de rigueur et de responsabilité,
- assurant la connaissance des limites de validité et donc d'exploitation du résultat,
- progressant continûment dans les pratiques quotidiennes

3.3 PRINCIPES DE BASE DE L'APPROCHE PROPOSÉE

Trois principes fondent la cohérence et la robustesse de l'approche qualité proposée : pragmatisme, pédagogie et intégration

3.3.1 Premier principe: Pragmatisme

Les situations de recherche rencontrées dans la pratique sont caractérisées par une très grand diversité selon les disciplines, le caractère plus ou moins fondamental ou appliqué de la recherche, la nature et les exigences des partenaires impliqués, la culture et l'histoire de l'organisme, de l'institut ou de l'entreprise.

1. Voir Bibliographie.

Les conclusions des travaux qui ont étudié les mécanismes de production des savoirs scientifiques montrent clairement l'impossibilité de définir un processus unique et universel de la recherche. Ceci résulte du fait que la démarche de recherche est rarement déterministe et linéaire, laissant ainsi la plus grande place au talent et à la créativité du chercheur. C'est pourquoi, l'application du «principe de pragmatisme» amène à rechercher, avant toute chose, les approches propres et adaptées à la culture, au contexte et à la spécificité de la communauté scientifique, et validées par elle.

La méthodologie générale peut être décrite en trois temps :

- Dans un premier temps, il s'agit de se poser les «bonnes questions» afin d'identifier les critères qualité à prendre en considération pour évaluer le succès ou le niveau de réussite de la démarche de recherche, depuis l'intention initiale qui définit l'objectif de la recherche jusqu'aux connaissances et informations nouvelles et originales qui en constituent les résultats, en passant par la réalisation de la recherche.
- Dans un deuxième temps, des dispositions à caractère général sont recherchées, et définies dans leur faisabilité pour satisfaire les critères retenus. Celles-ci peuvent être différentes selon les caractéristiques particulières des processus de la recherche et de l'entité qui les conduit. Le poids de ces dispositions devrait être fonction de la pertinence du critère, du type, des enjeux et de l'impact de la recherche engagée. Des priorités peuvent aussi être établies en fonction des ressources, budgets et délais induits par chacune des dispositions retenues.
- Dans un troisième temps, les solutions concrètes correspondant à ces dispositions sont déterminées et mises en œuvre sur le terrain. Leurs effets sont mesurés périodiquement afin de déterminer si les critères de réussite escomptés sont ou seront atteints. Le principe de pragmatisme conduit alors à intégrer dans les pratiques courantes les dispositions qui apportent un progrès. Les résultats des autres pourront être analysés afin d'en déduire des enseignements utiles.

Plusieurs dispositions peuvent concourir à satisfaire un même critère et plusieurs critères peuvent se satisfaire en tout ou partie d'une même disposition.

Selon les cas, notamment suivant les nécessités d'organisation de l'entité de recherche, critères, dispositions et solutions concrètes peuvent être définis par des acteurs identiques ou non, se situant par exemple à des niveaux hiérarchiques ou fonctionnels différents.

NOTE Des exemples sont donnés au paragraphe 3.4.

3.3.2 Deuxième principe : Pédagogie

L'approche proposée se veut pédagogique et cherche donc à rendre progressivement naturelle la mise en place d'une démarche qualité dans toutes les activités de recherche. Pour être pragmatique et préparer l'avenir, il convient en tout premier lieu d'intéresser et de valoriser les jeunes chercheurs pour leur donner envie de s'investir dans les approches d'amélioration continue, tout en ayant l'accord du responsable de laboratoire sur la démarche envisagée et les gains à en espérer. Il convient que le message soit donc simple, cohérent et attractif.

Dans ce contexte, trois points paraissent incontournables et indispensables pour réussir le démarrage et le développement à long terme d'une démarche qualité:

- l'évaluation : elle est associée à la «volonté» de décrire et de mesurer ses pratiques professionnelles. L'auto-évaluation est réalisée de manière interne et volontaire, elle consiste à se donner son propre référentiel, minimal ou plus ambitieux, pour réaliser correctement l'activité de recherche.
- l'amélioration continue : elle identifie la «méthode» et permet d'engager des actions pour parvenir à des progrès lorsque des problèmes ou des écarts sont constatés entre

les pratiques quotidiennes réelles et celles prévues dans les référentiels d'évaluation ou d'auto-évaluation.

• le système d'information : il est en quelque sorte la «mémoire» de l'organisation et son exploitation devrait être conçue de manière à ce que les savoirs et savoir-faire soient accessibles à tout acteur de la recherche dès qu'il a des besoins d'information. La réussite d'un tel système apparaît quand il est auto-alimenté par les acteurs euxmêmes et que ceux-ci y trouvent alors naturellement un gain en retour.

Ces points sont des leviers fondamentaux représentant une base minimale pour tout cursus pédagogique associé au développement d'une démarche qualité en recherche.

Le succès de toute démarche qualité en recherche est associé à l'existence simultanée de ces trois points. Les appliquer est une condition nécessaire mais pas forcément suffisante. En effet, si un seul d'entre eux vient à manquer, la démarche qualité est inopérante, mais s'ils existent tous, il est encore nécessaire de prévoir les ressources et les compétences utiles pour atteindre les objectifs de l'entité en matière de qualité en recherche. Ces trois «piliers» de toute démarche qualité sont donc les garants méthodologiques que les ressources allouées pourront être utilisées avec pertinence et cohérence.

3.3.3 Troisième principe : Intégration

La construction progressive d'un cadre de cohérence implique qu'au delà des équipes de recherche elles-mêmes l'ensemble des services, départements ou directions internes d'une entité de recherche, ainsi que les fournisseurs extérieurs, soient concernés par la démarche qualité et d'amélioration continue. Cette vision d'interdépendance entre les chercheurs et les autres parties nécessaires au bon déroulement de la recherche est très importante pour concevoir une démarche cohérente et robuste. En effet, il ne servirait à rien de fixer des objectifs ambitieux d'amélioration pour les seuls chercheurs, si le reste de l'organisme ou de l'entreprise impliqué dans le processus de recherche ne contribue pas au même effort.

Très souvent les acteurs «lointains» ou indirects de la recherche sont peu sensibilisés ou n'ont pas une idée précise de l'impact réel de leurs propres activités sur le bon déroulement et la qualité des résultats d'une recherche. C'est pourquoi une approche pédagogique devrait être entreprise auprès d'eux afin de les aider à identifier en quoi leurs activités quotidiennes peuvent influer sur les performances finales en recherche.

Cette sensibilisation, voire cette formation, peut utiliser les principes de pragmatisme et de pédagogie proposés précédemment. L'identification et la formalisation des processus existants pouvant influer sur la qualité en recherche est la première étape, incontournable, à toute pérennisation des améliorations mises en œuvre à un niveau déterminé au sein de l'entité. Leur capitalisation et leur diffusion par un système d'information approprié au sein de l'entité permettra d'initier et de valoriser d'autres actions d'amélioration à d'autres niveaux, jusqu'à l'implication généralisée de tous les acteurs de la recherche. Un tel environnement «apprenant» permet de garantir l'obtention progressive du cadre de cohérence général par lequel se développent les démarches qualité au sein, et à l'extérieur, de l'entité de recherche.

En résumé, cette approche diffusante, pragmatique et pédagogique peut être une façon efficace de mettre en œuvre, sur le moyen terme, une démarche qualité en recherche dans une vision globale et intégrée du management de l'entité. Celle-ci peut être soumise à des contraintes diverses (financières, administratives, réglementaires et légales, etc.) qu'il est aussi nécessaire de maîtriser de manière à contribuer à l'optimi-

NOTE Les établissements d'enseignement supérieur, ayant des Ecoles Doctorales, pourraient utiliser les cursus d'enseignement délivrés aux jeunes chercheurs pour les initier en théorie et en pratique aux concepts, outils et méthodes de l'amélioration continue des processus et de la recherche permanente de l'excellence dans les pratiques scientifiques.

En plus du bénéfice direct pour le jeune chercheur en terme d'efficacité et de qualité dans ses travaux, le laboratoire d'accueil voit également sa notoriété augmenter par la valeur de ses acteurs et la confiance que les tutelles ou financeurs lui accordent.

Embauché en entreprise, le jeune chercheur y trouve souvent un environnement de management qualité déjà connu dans lequel il pourra déployer de nouvelles synergies et collaborations avec les acteurs scientifiques ayant le même niveau d'exigence qualité dans leurs pratiques.

sation générale de l'organisation. L'intégration de tous les efforts d'amélioration des pratiques quotidiennes des acteurs de la recherche dans un cadre de cohérence compris par tous, commun et partagé, est la garantie du succès pour l'entité de recherche

3.4 MISE EN ŒUVRE DE L'APPROCHE QUALITÉ

Le déroulement d'une activité de recherche implique généralement un ensemble de processus qui peuvent être regroupés en trois «temps forts», ou phases:

- Définition de l'objectif initial
- Réalisation de la recherche
- Valorisation des résultats

L'approche qualité consiste alors à identifier, pour chacun de ces temps forts, les critères qualité les plus pertinents et les dispositifs adaptés et proportionnés à mettre en place dans un cadre de cohérence déterminé par les trois principes exposés précédemment: pragmatisme, pédagogie et intégration (figure 1).

Figure 1 - Représentation de l'approche qualité proposée en recherche

Si les trois phases proposées ici peuvent, bien sûr, être adoptées telles quelles par les entités et acteurs de la recherche, le principe de pragmatisme de l'approche proposée voudrait cependant qu'ils reprennent eux-mêmes la réflexion en fonction de leurs propres caractéristiques (organisation, culture et formation des personnels impliqués) et de la nature des activités de recherches qu'ils conduisent.

Il est important, pour les acteurs de la recherche, de bien positionner les différentes activités de recherche afin d'en identifier les spécificités selon leur nature, les enjeux associés et le contexte, notamment organisationnel et décisionnel. Il est en général utile de distinguer les projets de recherche de ceux dont l'objectif principal est la réalisation d'un objet technique (instrumentation, etc.) ou d'un dispositif expérimental, plus proches des projets classiques conduits en milieu industriel. De même, les actions à caractère pérenne, sur une thématique stratégique pour l'entité de recherche, ont pour

vocation principale d'assurer le maintien et le développement de la compétence des équipes ainsi que la capitalisation des connaissances, savoirs et savoir-faire accumulés par ailleurs, notamment dans le cadre des projets.

Cette approche permet d'éviter que les activités de recherche ne se voient appliquer un «modèle unique» de conduite de la recherche, non pertinent et ne prenant pas en compte leur diversité. L'obligation de moyens ou de résultats associée à ces activités de recherche constitue également un indicateur intéressant de distinction, comme le sont aussi la pérennité des actions et la flexibilité nécessaire pour leur gestion. Voir l'annexe B sur des exemples d'activités de recherche.

Dans les paragraphes qui suivent, chacun de ces trois temps forts est repris, et agrémenté d'exemples, pour illus-trer la mise en œuvre de l'approche proposée (identification des critères, détermination des dispositions générales et spécification des solutions concrètes).

3.4.1 Définition de l'objectif initial

Cette phase essentielle fait intervenir toutes les parties prenantes dès le début d'une activité de recherche, en particulier dans le cas des projets qui nécessitent une gestion «très suivie». Selon les cas, l'objectif d'une recherche peut être déterminé par les chercheurs eux-mêmes, un commanditaire ou par un processus de concertation dans lequel interviennent divers acteurs. Le point clé est de s'assurer qu'un dispositif adéquat existe pour construire le consensus des acteurs sur l'objectif à atteindre et sur les critères d'évaluation du succès de l'activité. Ce dispositif peut se dérouler selon un processus déterminé et une procédure formalisée mais il peut aussi être très flexible et informel. Il est toutefois important qu'il soit connu de tous a priori afin que les décisions prises soient légitimes et transparentes.

Dans ce contexte, il convient que les chercheurs et leurs collaborateurs se posent au moins trois questions importantes pour spécifier les besoins concrets auxquels le dispositif qualité peut aider à répondre:

- Quelles sont les parties prenantes de la recherche engagée (clients identifiables, commanditaires, utilisateurs, la société, etc.) qui, le cas échéant, porteront un jugement sur le travail effectué et les résultats produits avec leurs propres regards, intérêts, critères, etc. ?
- Quels sont leurs rôles et leurs responsabilités respectives ?
- Comment prendre en compte, de manière réaliste, efficace et utile, leurs légitimes préoccupations? À cet égard, trois critères de base apparaissent importants pour construire la démarche et choisir les dispositions les plus appropriées:
- a. La pertinence, ou la nouveauté et l'originalité de cet objectif qui peuvent être évaluées en relation avec «l'état de l'art». Ceci implique un travail de veille et de recherche documentaire qui, selon les cas, peut être plus ou moins formalisé, mais dont !'efficacité devra être appréciée afin d'en déduire éventuellement des actions d'amélioration. Les meilleures pratiques de veille font l'objet de formations auprès des acteurs de la recherche et pourront être capitalisées dans le système d'information de l'entité afin de les rendre accessibles à tous.

EXEMPLE :

Critère	Disposition à considérer	Solutions concrètes
Pertinence/Nouveauté/ Originalité	Évaluation de l'objectif par rapport à «l'état de l'art»	Veille, bibliographie, contacts personnels

NOTE La notion de «relation clientfournisseur», qui est au centre de l'approche normative classique, étant trop restrictive dans le cas de la recherche, le présent fascicule de documentation privilégie les notions de «parties prenantes» ou d' «acteurs de la recherche».

Ce choix se justifie notamment par le fait que le «client» de la recherche peut être très diversifié ou multiple, interne ou externe, clairement identifié mais aussi parfois difficile à définir et sans existence formelle reconnue.

Si le «client» éventuel est important, il convient en outre que l'entité de recherche se préoccupe aussi, notamment pour les organismes publics, des commanditaires au sens large (qui ne sont pas nécessairement stricto sensu des «clients»), des bénéficiaires, des utilisateurs ou usagers et, d'une manière plus générale, des attentes de la société autant qu'elles puissent être explicitées.

Ainsi, la notion de «clientfournisseur» peut apparaître trop limitée à une relation marchande binaire qui n'est pas toujours un reflet pertinent de la situation à laquelle l'entité de recherche est en réalité confrontée.

Toutes ces remarques sont particulièrement justifiées en recherche fondamentale où les chercheurs sont eux-mêmes, au moins dans un premier temps, les principaux bénéficiaires et utilisateurs des résultats de la recherche au sein d'une communauté scientifique internationale fonctionnant très largement en réseaux.

b. L'opportunité de cet objectif qui pourrait être appréciée en tenant compte des missions, de la stratégie et des programmes de l'organisme, de l'institution ou de !'entreprise ainsi que de la conjoncture du moment. Le processus d'analyse de l'adéquation entre la conjoncture et la stratégie de l'entité devra être identifié et évalué dans son efficacité, par exemple en estimant les apports des objectifs considérés comme opportuns et en les comparant aux développements externes à l'entité.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Opportunité	Évaluation de l'objectif par rapport aux directions	Analyse d'adéquation conjoncture et stratégie
	stratégiques et	
	aux besoins identifiés	

c. la faisabilité de la recherche envisagée peut faire l'objet d'une analyse de risque notamment au regard des compétences et des moyens disponibles ou mobilisables (techniques, financiers, etc.). La solution concrète passe alors par une planification d'avant-projet qui repose sur des méthodologies bien connues et qui peuvent être apprises, diffusées, capitalisées et évaluées assez facilement.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Faisabilité	Évaluation des ressources à mobiliser Analyse de risque	Planification d'avant-projet

Compte tenu de ces trois critères, pris comme exemples, il convient alors de mettre en place un dispositif de validation de l'objectif, assorti d'un minimum de formalisation, même si celle-ci reste très légère lorsqu'une procédure spécifique n'est pas nécessaire (existence d'un comité ad hoc par exemple). Ce dispositif de validation de l'objectif initial exploite les éléments associés aux critères pour en retirer une décision de validation, positive ou négative, de l'objectif. Les critères d'efficacité d'un tel dispositif de validation pourraient être les délais de réponse et la pertinence a posteriori des décisions prises. Une telle évaluation, réalisée à une périodicité adéquate, permet à l'entité de recherche de maîtriser et d'améliorer, au plus amont, sa chaîne de production scientifique.

3.4.2 Réalisation de la recherche

Les processus impliqués dans cette phase sont au cœur de la recherche pour ce qui concerne l'action au quotidien des personnels de l'entité de recherche, au niveau de !'équipe ou dû laboratoire. Selon les cas, la mise en œuvre des actions de recherche qui ont été décidées pour atteindre l'objectif initial validé peut impliquer un dispositif plus ou moins structuré voire, parfois, des exigences contraignantes. Le principe de base proposé est d'assurer, dans tous les cas, une bonne maîtrise des éléments constitutifs de l'activité de recherche. Cependant, il est impératif d'admettre qu'une recherche réellement originale comporte une part irréductible de risque de ne pas aboutir, d'incertitude et d'imprévu (même si la faisabilité a été correctement évaluée) : une «découverte» réellement significative ne peut généralement pas être programmée. À cet égard, il convient de distinguer nettement la recherche et la simple conduite d'essais et de tests. Dans ce contexte, les questions suivantes peuvent apporter un éclairage utile sur le processus de la recherche:

- Le processus mis en œuvre pour conduire la recherche est-il crucial et peuHl être décrit de manière réaliste et utile?
- Comment peut-on en maîtriser les différentes étapes, les jalons et quels sont les dispositifs de suivi à mettre en place pour s'assurer de la conformité du déroulement de la recherche au processus attendu (si ce dernier peut être décrit a priori) ?
- Comment peut-on maîtriser les ressources mises en œuvre pour la réalisation de la recherche et quels sont les dispositifs à mettre en place pour s'assurer que l'on optimisera le «retour d'expérience» (notamment si le processus ne peut être valablement décrit qu'a posteriori) ?

Comme exemple, les critères considérés comme importants dans une conduite de recherche pourraient être les suivants:

a. L'objectif est, autant que possible, communiqué activement à tous les niveaux concernés et impliqués, poursuivi avec persévérance et maîtrisé avec des résultats intermédiaires quantifiés et enregistrés. Le cas échéant, une inflexion et/ou une révision de l'objectif initial peut être considérée en concertation avec l'ensemble des parties prenantes de la recherche. Comme exemple, considérons que l'approche qualité appliquée ici induit à choisir comme prioritaire, parmi de nombreux autres critères, la capacité à répondre de ses recherches («transparence»). Le principe de pragmatisme conduit alors aux solutions concrètes suivantes dont les apports et l'efficacité sont périodiquement revus.

EXEMPLE .

Critère	Disposition à considérer	Solutions concrètes
Transparence	Assurer la traçabilité des travaux et des résultats	Cahiers de laboratoire, rapports d'étapes, etc.

Une pédagogie adaptée permettra ensuite de diffuser le pourquoi et le comment des solutions à mettre en œuvre. Les acteurs de la recherche concernés pourront alors mieux s'approprier les objectifs ultimes recherchés et exploiter leur créativité et leur expérience professionnelle pour rendre les solutions totalement opérationnelles.

Les meilleures pratiques, validées par l'expérience et les résultats, devraient ensuite être capitalisées grâce au système d'information, qui en donne l'accès à tout acteur dès qu'il en a le besoin.

b. Le temps alloué à l'activité de recherche est, autant que possible, respecté. Lorsque cela est possible, déroulement lui-même de la recherche est maîtrisé en référence aux prévisions initiales et, notamment, aux jalons identifiés. Ci-dessous, un exemple de critère conduisant à des solutions concrètes est donné. Comme précédemment, pédagogie et capitalisation des meilleures pratiques sont ensuite développées.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Délais des étapes	Assurer la tenue des délais	Revues périodiques, actions corrective et préventives

Le respect des délais est un critère qui peut avoir une forte sensibilité suivant la rigueur de nombreux acteurs de la recherche, aussi bien ceux proches de l'activité de recherche (jeunes chercheurs, doctorants, techniciens) que ceux plus lointains qui y contribuent de manière indirecte, comme les fournisseurs extérieurs ou les services internes qu'ils soient de gestion, de support logistique d'informatique ou tout autre. Un simple courrier ou échantillon qui n'arrive pas ou une autorisation de déplacement qui tarde, peut influer par exemple sur le respect du délai final.

NOTE Les processus, représentation symbolique sur laquelle l'homme peut agir, sont au cœur à la fois des normes actuelles et du métier de la recherche. Il convient donc d'aborder plus en détail cette notion pour la mettre en perspective dans le contexte de la qualité. De manière schématique, deux situations peuvent se présenter en recherche :

- 1. La description a priori du processus de recherche est possible et utile, en terme d'efficacité et de motivation des personnels, d'une manière concrète et surtout réaliste, de son lancement à sa fin. Dans ce cas, la démarche qualité mise en place se concentrera sur des dispositifs visant à accompagner et suivre ce processus en identifiant ses diffé-rentes phases, sa planification, ses jalons, ses revues régulières et les actions nécessaires.
- 2. La description a priori du processus de recherche n'est pas possible ni réaliste ou utile du fait de la nature même de l'activité de recherche (domaines très exploratoires, mathématiques, physique théorique, etc.). En revanche, il est touiours possible, réaliste, et le plus souvent très utile, de spécifier a posteriori le cheminement intellectuel. technique et scientifique que l'équipe de recherche a effectivement parcouru lorsqu'elle a atteint son but ou choisi de faire une pose pour réfléchir à son action. Dans ce cas, la démarche qualité mise en place privilégiera les dispositifs d'apprentissage des savoirs et des savoir-faire, de retour d'expérience et de capitalisation des connaissances.

Le principe d'intégration est alors une réponse efficace pour faire prendre conscience progressivement à tous les acteurs de la recherche de l'impact réel que leurs activités ont sur celles des autres. Les instances de décision au plus haut niveau de l'entité de recherche peuvent prendre la responsabilité d'une démarche d'intégration des développements qualité afin d'en garantir la meilleure performance.

c. Les ressources mobilisées et moyens mis en œuvre sont, autant que possible, maîtrisés notamment aux plans technique et méthodologique, et la créativité est favorisée à tous les niveaux. Des exemples de critères conduisant à des solutions concrètes sont donnés ci-après. Comme précédemment, pédagogie, capitalisation des meilleures pratiques et intégration des démarches qualité peuvent ensuite être développées pour en garantir la performance.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Créativité	Favoriser et respecter les	Lieux de débats,
	espaces de liberté	échanges, dialogues,
	à tous les niveaux	
Ressources techniques	Assurer la meilleure	Tenue d'un inventaire,
	exploitation des ressources	maîtrise de la maintenance,
	techniques	maîtrise de la calibration,

d. Le risque de ne pas aboutir est, autant que possible, minimisé. Ce critère est souvent délaissé car il est à l'opposé de la créativité et de l'enthousiasme naturels du chercheur. Il est pourtant intrinsèque à l'activité de recherche, qui peut très bien conduire à des résultats non attendus, mais parfois plus intéressants. Le risque de ne pas aboutir dans un projet de recherche devient alors secondaire par rapport au risque de ne pas trouver de nouvelles connaissances. Quel que soit le résultat scientifique, celui-ci ne peut être obtenu que dans la continuité des efforts de recherche. Il s'agit alors d'éviter les ruptures d'objectif, de délais ou de ressources en prévoyant des alternatives aux problèmes majeurs qui pourraient raisonnablement se produire.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Risque de ne pas aboutir	Prévoir des alternatives aux problèmes majeurs qui pourraient apparaître	Liste des problèmes, estimation de leur occurrence et de leur effets sur la recherche Identification des solutions alternatives Élaboration d'un plan d'action pour les cas prioritaires

Il convient d'assurer une réévaluation régulière de ces différents points (objectif, temps, ressources et moyens, risque de ne pas aboutir) avec un processus adéquat impliquant l'ensemble des parties prenantes. En particulier, de nouveaux objectifs (secondaires) peuvent apparaître en cours de développement et se révéler beaucoup plus intéressants et/ou importants que l'objectif initial, y compris pour les commanditaires de la

recherche qu'il convient d'informer. Le dispositif de réévaluation régulière peut rester très léger et informel lorsqu'une procédure spécifique n'est pas nécessaire. (comité ad hoc, réunions périodiques de revue avec le commanditaire par exemple). Il est possible également de procéder à des évaluations approfondies des processus et du système qualité, en tant que de besoin. Dans ce cas, il convient de faire intervenir des personnes compétentes «<jugement professionnel par les pairs») pour auditer, sur le fond, le dispositif de conduite de la recherche mis en œuvre sans se limiter à un examen purement formelle plus souvent inutile.

3.4.3 Valorisation des résultats

La valorisation des résultats obtenus par l'entité de recherche est une phase essentielle, non seulement du fait de l'investissement intellectuel et financier qui a été consenti mais aussi parce qu'elle fonde la reconnaissance que les acteurs de la recherche peuvent attendre de leur action.

Dans ce contexte, pour cerner le «produit» de la recherche, les chercheurs et leurs collaborateurs pourraient par exemple se poser les questions suivantes :

- Quels sont les résultats attendus de la recherche pour les différentes parties prenantes?
- Quels enseignements peut-on tirer des voies de recherche abandonnées et des résultats inattendus? y a-t-il un consensus sur les critères d'évaluation du succès de l'activité de recherche?
- Comment valoriser au mieux les résultats de la recherche pour optimiser la satisfaction des différentes parties prenantes?

La valorisation des résultats de la recherche comprend au moins les deux aspects suivants:

a. La validation des résultats avant leur diffusion à l'extérieur de l'entité de recherche. En particulier, il convient de valider la signification des résultats, l'utilisation envisagée des connaissances et les incertitudes qui leur sont attachées.

EXEMPLE:

Critère	Disposition à considérer	Solutions concrètes
Validation des résultats	Réunir un groupe avec les compétences adéquates	Comité ad hoc Réseau d'experts,
	Réaliser les tests adéquats	Analyses statistiques

- **b.** Le transfert des résultats, après validation, à toutes les parties prenantes. Selon les cas, la diffusion peut être plus ou moins étendue (un certain niveau de confidentialité peut notamment être requis) et prendre des formes variées (publications dans les journaux scientifiques, congrès, colloques, expertise, brevet, etc.).
- c. Il convient d'être attentif à éviter toute publication prématurée s'il est envisagé de protéger juridiquement la pro-priété industrielle des travaux. De même une charte peut être proposée à tous les acteurs de la recherche avant le début des travaux afin de préciser leurs droits et leurs devoirs.

NOTE Le «produit» de la recherche, tant fondamentale qu'appliquée, est constitué d'un ensemble, souvent complexe, d'éléments qui ne peuvent pas toujours être définis et spécifiés à l'avance avec une grande précision.

Cet ensemble est notamment constitué d'informations et de connaissances nouvelles, d'argumentaires sur les limites de ces connaissances et leur domaine de validité ainsi que de questions nouvelles clairement explicitées.

Les résultats qui ne correspondent pas à l'objectif initial ainsi que les voies de recherche abandonnées, peuvent cependant avoir un fort impact et une grande valeur, y compris pour le commanditaire qui peut trouver intérêt à accompagner les évolutions de la recherche.

Une véritable découverte est, par définition, imprévisible. Il serait bien surprenant que ses caractéristiques précises, en tant que «produit» de la recherche, figurent dans le cahier des charges initiales.

De plus, le résultat d'une recherche peut fort bien aboutir à mieux formuler la question initiale (voire à conclure qu'elle est dénuée de sens) ou encore à rebondir vers une recherche plus fondamentale comme étape qualifiée indispensable à la poursuite de cette recherche.

Une autre spécificité importante du «produit» de la recherche est le caractère public à terme des connaissances produites ce qui implique que les règles de diffusion et de protection de l'information soient clairement définies en amont de la recherche elle-même et soient applicables sans contraintes injustifiées vis-à-vis du chercheur pour qui la publication est à la fois un principe, voire une raison d'être, et fréquemment un critère d'évaluation.

Critère	Disposition à considérer	Solutions concrètes
Exploitation industrielle rapide des résultats	Transfert de technologie	Propriété intellectuelle, brevets, contrats industriels
Maximiser l'impact scientifique des résultats	Cibler le public concerné et les meilleurs vecteurs de communication	Journaux à large facteur d'impact, distribution de tirés à part, rédaction d'ouvrages, diffusion sur Internet,

Un dispositif adéquat peut être mis en place afin de décider de la validation et de la valorisation les plus appropriées à chaque cas. Ce dispositif peut rester très léger et informel lorsqu'une procédure spécifique n'est pas nécessaire (comité ad hoc, par exemple). Une évaluation périodique de l'efficacité de ce dispositif devrait être réalisée afin d'en garantir les apports et la performance.

4. PERSPECTIVES

Lévolution progressive des concepts dans le domaine de la qualité conduit à ne plus seulement considérer l'activité de recherche en terme simple de projet. Il s'agit en fait d'une activité délicate et complexe, associant homme et technologie, opérationnel et fonctionnel, individu et collectivité, rationnel et irrationnel dans le contexte global de l'entité de recherche.

La performance d'une activité de recherche pourrait aujourd'hui être considérée, avant tout, dans les dimensions principales suivantes :

- 1. Management de l'entité: coupler le pilotage, l'organisation, l'environnement et la communication; définir la raison d'être et les enjeux pour l'entité; analyser ses forces et faiblesses futures au regard des besoins nouveaux et des conséquences sociétales des résultats attendus; anticiper et établir des scénarios c'est-à-dire une stratégie; agir pour disposer des ressources nécessaires; mesurer périodiquement le bon avancement de l'activité. À titre d'exemple, un organigramme clair a autant d'importance pour donner confiance dans la qualité d'organisation d'une activité de recherche, que les références individuelles des participants.
- 2. Valorisation et reconnaissance des hommes: motiver, entraîner et faire comprendre les enjeux, objectifs et actions concrètes de l'activité de recherche. Valoriser les bons résultats (scientifiques et organisationnels), étudier les acquis et les améliorations possibles pour réduire des écarts inattendus. Positiver systématiquement les analyses et les conclusions afin que les acteurs à tout niveau se sentent reconnus, compris, accompagnés et valorisés. C'est ainsi qu'ils pourront donner naturellement le meilleur d'eux-mêmes. Puisque l'acte de recherche découle avant tout d'un fonctionnement collectif, la cellule de base est l'équipe constituée d'individus formés et informés dont la valorisation (collective et individuelle) fait aussi partie du management qualité. Il convient alors de rappeler que la formation continue, les séminaires et colloques, sont essentiels pour améliorer constamment la qualité de la recherche (apprentissage) et que le principe de «la bonne personne à la bonne place» est aussi une base d'organisation efficace.
- 3. Maîtrise des risques : évaluer les risques et conséquences de ne pas aboutir, agir pour prévoir des suites ou des alternatives; évaluer la validité (et ses limites) du résultat

DOCUMENT STRICTEMENT RÉSERVÉ À L'USAGE PERSONNEL DES PARTICIPANTS AUX RÉFLEXIVES[®] - 2004

Normalisation française - FDX 50-550

de la recherche, agir pour être en mesure d'en rendre compte; évaluer la performance de la valorisation, agir pour l'optimiser continûment; évaluer l'évolution de la concurrence scientifique, agir pour se positionner de manière originale et pertinente; évaluer le risque de dérive causé par les critères de mesure, qu'ils soient économiques ou autres, sur l'objectif final, agir pour le minimiser.

Cette vision globale de la qualité, véritable démarche de progrès, peut se traduire par un domaine d'application plus vaste que les seules activités de recherche et par un management ouvert et intégré. Par exemple, les actions de portée générale qui peuvent être menées au sein de l'entité pour contribuer à une démarche de progrès sont :

- la diffusion de la qualité dans la culture commune des équipes, services, départements et directions,
- la définition d'une vision et la mise en œuvre d'une stratégie commune,
- la valorisation et la reconnaissance de l'implication de tous dans la démarche,
- le management par les faits, leur mesure et l'identification des processus y ayant contribué,
- l'analyse de ses propres raisons d'être, méthodes et pratiques quotidiennes pour en rechercher les améliorations,
- la volonté permanente de l'excellence par apprentissage, comparaison et itérations d'améliorations,
- la prise en compte de l'évolution des besoins de la société, de l'environnement et des générations futures,...

Enfin, pour développer de manière opérationnelle la démarche de progrès, deux phases majeures peuvent être conduites chronologiquement: d'abord une planification stratégique qui positionne clairement les enjeux et les résultats recherchés puis le déploiement des politiques, priorité et objectifs de l'entité de recherche et des plans d'action qui en découlent. Si la seconde phase est habituelle dans la démarche scientifique, la première peut permettre, dans un scénario cyclique à plusieurs années, d'adapter périodiquement l'entité de recherche aux évolutions des besoins et réalités de la société, dans une véritable dynamique qui accompagne et génère le progrès.

BIBLIOGRAPHIE

OUVRAGES

- [1] Sociologie des sciences, D. Vinck, Armand Colin, coll. U, Paris, 1995.
- [2] Le dispositif français de normalisation. Évaluation et perspectives. Commissariat Général au Plan. Rapport au Gouvernement, La documentation française, Paris, 1998.
- [3] Dictionnaire de la Qualité, R. Foch, Éd Sapienta, 1998, ISBN 2-911761-05-7.
- [4] Management de la Qualité, Jean-Marie Gogue, Éd Economica Gestion Poche, 1993, ISBN 2-7178-2545-2.
- [5] La Qualité, L. Cruchant, Éd PUF collection Que Sais-je, 1993, ISBN 2-13-046662-1.
- [6] La Qualité au quotidien, Jean Fau, Éd Polytechnica, 1992, ISBN 2-84054-006-.
- [7] Le manager à l'écoute du sociologue, Pierre Morin & Eric Delavallée, Éd. d'organisation, 2000, ISBN 2-708124471.

NORMES

- [8] NF EN ISO 9000 : Système de management de la qualité Principes essentiels et vocabulaire, déc. 2000.
- [9] NF EN ISO 9001 : Système de management de la qualité Exigences, déc. 2000.
- [10] NF EN ISO 9004 : Système de management de la qualité Lignes directrices pour l'amélioration des performances, déc. 2000.
- [11] NF EN ISO 10006 : Management de la qualité Lignes directrices pour la qualité en management de projet, sept. 1998.
- [12] NF EN ISO/CEI 17025 : Prescriptions générales concernant la compétence des laboratoires d'étalonnages et d'essais, mai 2000.

RÉGLEMENTATION

[13] Directive 1999/11/CE de la Commission Européenne du 8 mars 1999 portant adaptation au progrès technique des principes de bonnes pratiques de laboratoire visés dans la directive 87/18/CEE du Conseil concernant le rapprochement des dispositions législatives, réglementaires et administratives relatives à l'application des principes de bonnes pratiques de laboratoire et au contrôle de leur application pour les essais sur les substance chimiques (texte présentant de l'intérêt pour l'EEE), JOCE 23 mars 1999, L 77/8.

LIENS SUR INTERNET

- [14] **OCDE**: l'OCDE est souvent l'initiateur de réflexions sur les Bonnes Pratiques de Laboratoires (BPL) qui sont ensuite déclinées au niveau européen: http://www.oecd.org//ehs/ehsmono/.
- [15] **Europe**: le site de la Commission Européenne sur les Bonnes Pratiques de Laboratoire: http://europa.eu.int/comm/enterprise/chemicals/glp/glp.htm.
- [16] Guide expérimental pour la qualité en recherche, 1997 : http://www.recherche.gouv.fr.

Annexe A (informative) HISTORIQUE DE LA QUALITÉ

Au-delà de toute définition, il importe surtout de comprendre l'intention profonde de la démarche Qualité dont les conceptions ont d'ailleurs fortement évolué avec le temps. Schématiquement, quatre étapes principales peuvent être distinguées dans le développement de cette notion, chacune d'entre elles gardant toujours sa valeur dans son domaine d'application spécifique:

- Le Contrôle Qualité (années 50-60) qui correspondait à la volonté des industriels d'assurer le minimum de rejets dans leur production. Cet aspect de la qualité s'est prolongé jusqu'à nos jours. Initialement affecté en bout de chaîne, le contrôle qualité s'est progressivement intégré en amont, à tous les maillons de la chaîne de production. Des gains importants de qualité (au sens de la conformité aux spécifications des produits) ont ainsi été obtenus, notamment dans l'industrie. La soumission des articles scientifiques, avant publication, à des revues exigeantes (examen par les pairs, etc.) est pour les chercheurs une forme typique de contrôle Qualité final.
- L'Assurance de la Qualité (années 70-80) vise à donner confiance au client dans le fait que la qualité attendue est effectivement obtenue. Il s'agit essentiellement d'une démarche d'anticipation pour la maîtrise des risques fondée sur l'analyse et la rationalisation des processus en jeu, la détermination des points critiques et sources possibles de problèmes et de mise en place d'actions préventives. Les normes ISO 9000 et les certifications associées ont joué un rôle déterminant dans l'extension de l'assurance qualité dans de nombreuses entreprises du monde entier. Mal utilisées dans certains cas, les normes ont pu conduire à des dérives «paperassières» et à une lourdeur qui ont fortement entamé son crédit dans le monde de la recherche mais que ce guide souhaite précisément éviter.
- La Qualité Totale (années 80- 90) introduit une conception globale de la qualité dans laquelle le rôle des hommes est essentiel. Cette démarche, qui se veut à l'opposé du Taylorisme, cherche à impliquer tous les acteurs pour qu'ils participent, de leur propre initiative, à une amélioration continue des résultats dans l'intérêt bien compris de l'entreprise et de ses parties prenantes (clients, fournisseurs, société). Cette approche récente, encore en développement, semble la mieux adaptée pour la recherche, notamment parce qu'elle conduit à prendre en compte, non seulement les entités de base de la recherche (laboratoires), mais aussi les unités de soutien et l'ensemble de l'organisation.
- Le Management de la Qualité (années 2000). Dans cette approche systémique, la qualité résulte du bon fonctionnement d'un système de management de la qualité cohérent et intégré dans le système global de management de l'organisme. À travers la définition des orientations, des ressources, leur déploiement, la planification, la prévention, la maîtrise, l'amélioration, le système de management de la qualité vise l'obtention de résultats chez les clients et l'adaptation permanente aux changements. L'organisme est envisagé comme un ensemble de processus en boucle qui est tiré vers l'amélioration continue. Les nouvelles normes ISO 9000 version 2000 s'inscrivent dans cette approche.

Ces normes sont conçues pour être utilisées par tous types d'organismes. En recherche cependant, il n'est pas toujours aisé d'identifier clairement le client et ses besoins, ni de décrire et donc de maîtriser les processus conduisant aux résultats.

Cela justifie pleinement que le domaine de la recherche se dote d'approches qualité, certes compatibles avec celles des normes ISO 9000 version 2000, mais qui peuvent répondre à la diversité des activités et des cultures en recherche.

Annexe B (informative) EXEMPLES D'ACTIVITÉS DE RECHERCHE

e but essentiel d'une réflexion sur le positionnement des activités de recherche est de faire en sorte que le dispositif qualité soit adapté et dimensionné de façon à répondre aux besoins réels des parties prenantes de la recherche et à des exigences justifiées. L'adaptabilité et l'applicabilité sont en effet deux principes fondamentaux de la démarche qualité en recherche préconisée dans ce fascicule de documentation. Il est nécessaire que le dispositif adopté par l'entité de recherche prenne en particulier en compte la nature de l'activité de recherche, les enjeux associés et le contexte organisationnel et global dans lequel elle se déroule.

Dans tous les cas, il convient que les acteurs de la recherche prennent en compte les éléments suivants pour la conduite de l'activité de recherche et des supports associés:

- L'objectif (ou les résultats attendus) ;
- Le délai d'obtention ou de réalisation (échéance) ;
- Les ressources (humaines, techniques et financières) mises en œuvre;
- Les risques de ne pas réussir inhérents à toute recherche.

Selon leur capacité à maîtriser simultanément ou non ces quatre éléments et à en assurer la cohérence, en fonction de la nature réelle de la recherche entreprise et des enjeux associés, les acteurs de la recherche adaptent le dispositif qualité (critères, dispositions, solutions concrètes) aux besoins réels des parties prenantes.

Les quatre familles d'activités, illustrées sur la figure B.2, sont fréquemment rencontrées :

Éléments constitutifs d'une activité de recherche

Les actions thématiques

Elles correspondent aux activités pérennes mises en œuvre par l'entité pour maintenir et développer la compétence de ses équipes, et leur permettre d'engager des actions exploratoires et innovantes à un stade où la maîtrise des connaissances préalables et des méthodes n'est pas suffisante pour mettre en place un projet. Ces actions peuvent inclure des activités de veille, d'anticipation, de formation continue (du type «écoles d'été» par exemple). Souvent sous-estimé, ce type d'actions est néanmoins stratégique car il permet aux équipes de conserver, sur le moyen et le long terme, un positionnement scientifique et technique adéquat dans des logiques disciplinaires ou de champ d'application. Dans certains secteurs, les actions thématiques peuvent constituer la modalité normale de conduite d'une activité de recherche impliquant une grande soup-

lesse de gestion (finalité non figée a priori). Les actions thématiques sont le «lieu» privilégié où peuvent s'effectuer la capitalisation des connaissances, savoirs et savoir-faire accumulés par ailleurs (notamment dans les projets de recherche et les projets de réalisation) mais aussi le maintien ou le développement des métiers qu'implique toute stratégie à long terme d'une entité de recherche. Dans une organisation mobilisant la gestion par projets, l'existence d'actions thématiques est essentielle. Celles-ci fondent la capacité des équipes à répondre de manière pertinente et attractive à un appel d'offre et permettent, si nécessaire, de réactiver des compétences dans des champs donnés. Ce type d'activité de recherche est clairement soumis à une obligation de moyens, qui constitue le fondement de la responsabilité de l'entité de recherche et une base de réflexion pour définir les critères qualité.

Les projets de recherche

Ils peuvent être mis en place lorsqu'il s'agit principalement d'acquérir des connaissances nouvelles. Ce type d'activité de recherche présente des incertitudes parfois irréductibles de sorte que les éléments définissant habituellement un projet (objectif, délais, moyens, risques) ne sont pas toujours simultanément maîtrisables. Le dispositif qualité approprié à la conduite d'un projet de recherche repose sur des critères qualité que les acteurs, en concertation avec la hiérarchie mais également les commanditaires extérieurs, identifient et satisfont eux-mêmes en mettant en place les dispositions générales et les solutions concrètes idoines. Ce type d'activité de recherche est généralement soumis à une obligation de moyens, qui constitue le fondement de la responsabilité de l'entité de recherche et une base de réflexion pour définir les critères qualité.

Les projets de réalisation

Ils peuvent être d'instrumentation, d'application, de développement, etc. et sont mis en place lorsqu'il s'agit de concevoir, de réaliser, de finaliser un outil, un système, un modèle, un dispositif technique ou instrumental visant à répondre, sur la base d'un cahier des charges, aux besoins exprimés par un commanditaire interne ou externe. Le recueil de données dans le domaine socio-économique peut également relever de ce type d'action. Ces projets diffèrent des projets de recherche essentiellement par l'imposition de délais relativement figés et la définition précise des produits attendus. Ils correspondent à la notion classique de projet industriel entraînant, le plus souvent, la maîtrise simultanée des éléments constitutifs de l'activité (objectif, délais, moyens, risques). Ils sont clairement soumis à une obligation de résultats, qui constitue le fondement de la responsabilité du responsable du projet et de l'entité de recherche impliquée et une base de réflexion pour définir les critères qualité.

Les acteurs de la recherche peuvent s'appuyer sur des référentiels déjà existants. Les activités fonctionnelles et de support

Elles recouvrent les activités associées à la conduite d'une activité de recherche (par exemple, la gestion financière, l'administration, le service juridique, etc.). Selon les organisations, les supports techniques de la recherche (services informatiques, services d'analyses, d'électronique ateliers de mécanique,...) peuvent relever d'une relation du type «commanditaire/acteur» dans laquelle les chercheurs, ingénieurs et techniciens sont les clients. Ces activités peuvent faire l'objet d'une démarche qualité classique (par exemple ISO 9001:2000).

NOTES PERSONNELLES