第二章 糖化学

本章内容

糖类的概述

单糖寡糖多糖糖的分析和分离

第一节 概述

- * 分布最广泛,数量最多
 - * 植物
 - * 动物
 - * 微生物

- 重要性
 - 能源
 - 结构材料
 - 细胞识别

- * 糖类saccharide物质的定义
 - * 一类多羟基醛或者多羟基酮,以及能够水解生成多羟基醛或者多羟基酮的有机物及其相关衍生物
- * 碳水化合物carbohydrate
 - * 甲醛(CH_2O)、乙酸($C_2H_4O_2$)、乳酸($C_3H_6O_3$)
 - * 脱氧核糖(C₅H₁₀O₄)

糖的分类

* 单糖

(monosaccharide)

* 寡糖

(oligosaccharide)

* 多糖

(polysaccharide)

- > 核糖、脱氧核糖
- » 葡萄糖、果糖
- » 蔗糖、麦芽糖、乳糖

» 淀粉、糖原、纤维素

* 结合糖、糖的衍生物

第二节 单糖

单糖的分类

* 醛糖和酮糖

	醛糖	酮糖		
丙糖	甘油醛	二羟丙酮		
丁糖	赤藓糖	赤藓酮糖		
戊糖	核糖ribose	木酮糖		
	脱氧核糖 deoxyribose	核酮糖		
己糖	半乳糖	果糖fructose		
	甘露糖	山梨糖		
	葡萄糖glucose			
庚糖		景天庚酮糖		
辛糖		辛酮糖		

手性碳原子

一、单糖的结构、构型和构象

* 德国化学家菲舍尔(Fischer, 1852~1919)确定了葡萄糖和许多糖分子的立体结构并合成了这些糖,获得1902年诺贝尔化学奖。

1、旋光性与链式结构

* 现象

*解释

① 在普通光线里,光波可以在一切可能的平面上振动,如图 A 所示。 若使普通光线通过尼科尔棱镜,则透过棱镜的光线只在一个平面上振动,如图 B 所示。这种光就叫做平面偏振光,简称偏振光。与偏振光振动平面相垂直的平面,叫数偏振面。

A~ 普通光

B-平面偏振光

图 3 光的振动面

* 旋光度

* 左旋: (一);右旋: (+)

名 称	熔点/C	$[\alpha]_D^{20}(H_2O)$	名 称	熔点/C	$[\alpha]_D^{20}(H_2O)$
D-甘油醛	N. INC. P.	+9.4°	β-D-吡喃葡糖	148~150	+ 18.7°→ + 52.6°
D-赤藓糖		-9.3°	α-D-吡喃甘露糖	133	+29.3°→+14.5°
D-赤藓酮糖		11°	β-D-吡喃甘露糖	132	-17°→+14.5°
D-核糖	88~92	- 10 7°	α-D-吡喃半乳糖	167	+ 150°→ + 80.2°
2-脱氧-D-核糖	89~90	- 59°	β-D-吡喃半乳糖	143~145	+ 52.8°→80.2°
D-核酮糖		- 16 3°	D-果糖	119~122	- 92°
D- 木糖	156~158	+ 18.8°	L-山梨糖	171~173	-43.1°
D-木酮糖		- 26°	L-岩藻糖	150~153	- 75°
L-阿拉伯糖	160~163	+ 104.5°	L-鼠李糖	94(1H ₂ O)	+8.2°
α-D-吡喃葡糖	146(无水)	+112.2°→+52.6°	D-景天庚酮糖	101(1H ₂ O)	+ 2.5°
	83(1H ₂ O)		D-甘露庚酮糖	151~152	+ 29.7°

^{*} 除异头物外均指互变异构体平衡时的比旋值,异头物的比旋列出起始值→平衡值。

- * 比旋光度(旋光率)
 - * D为钠光灯(波长为589nm,称为D线),C为溶质的浓度(g/mL),L为旋光管的长度(dm,分米)

$$[\alpha_D^t] = \frac{\alpha_D^t}{c \times L}$$

练习题

* 某麦芽糖溶液的旋光度为+23°, 比色管长度为10cm,已知麦芽糖的比旋光度为+138°, 求麦芽糖溶液的浓度。

如何规定手性异构体的构型?

什么是构型configuration?

- 构型是指一个有机分子中各个原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。
- <u>当物质由一种构型转变为另一种构型时,需</u> 要共价键的断裂和重新形成。

构型与旋光方向的关系

* D- L-

* + -

名 称	熔点/C	$[\alpha]_D^{20}(H_2O)$	名 称	熔点/℃	$[\alpha]_D^{20}(H_2O)$
D-甘油醛	A TO MAY POLICE THE	+9.4°	β-D-吡喃葡糖	148~150	+ 18.7°→ + 52.6°
D-赤藓糖	minter the control of	-9.3°	α-D-吡喃甘露糖	133	+29.3°→+14.5°
D-赤藓酮糖	Brid Pitch	-11°	β-D-吡喃甘露糖	132	-17°→+14.5°
D-核糖	88~92	-19.7°	α-D-吡喃半乳糖	167	+ 150°→ + 80.2°
2-脱氧-D-核糖	89~90	- 59°	β-D-吡喃半乳糖	143~145	+ 52.8°→80.2°
D-核酮糖		-16.3°	D-果糖	119~122	-92°
D-木糖	156~158	+ 18.8°	L-山梨糖	171~173	-43.1°
D-木酮糖		- 26°	L-岩藻糖	150~153	- 75°
L-阿拉伯糖	160~163	+ 104.5°	L-鼠李糖	94(1H ₂ O)	+ 8.2°
α-D-吡喃葡糖	146(无水)	+ 112.2°→ + 52.6°	D-景天庚酮糖	101(1H ₂ O)	+2.5°
	83(1H ₂ O)		D-甘露庚酮糖	151~152	+29.7°

^{*} 除异头物外均指互变异构体平衡时的比旋值,异头物的比旋列出起始值→平衡值。

旋光异构体的个数

辨析: 同分异构体、旋光异构体

辨析: 差向异构体 epimers

- 含有多个手性碳原子的化合物,仅仅在一个手性碳原子上构型不同,而在其他手性碳原子上构型完全相同的,互称为差向异构体。
 - D-葡萄糖与 D-甘露糖为 C-2差向异构。
 - D-葡萄糖与 D-半乳糖为 C-4差向异构。

选择题

- * 下列单糖中哪个是酮糖? ()
- *A核糖 B木糖 C葡萄糖 D果糖

选择题

* 一个具有开链结构的己酮糖,其旋光 异构体的数目是

```
* A \ 32
```

* B \ 16

* C, 8

* D、4

填空题

*最常见的戊醛糖是___,己酮糖是___。

判断题

- * 当物质由一种构型转变为另一种构型时, 无需共价键的断裂和重新形成。
- * 所有单糖都具有旋光性。
- * L-构型的糖,其旋光性为左旋; D-构型的糖, 其旋光性为右旋。

2、变旋与环状结构

* 变旋现象

* 室温下从乙醇中结晶得到的D-葡萄糖比旋光度为+112.2°,从吡啶中结晶得到的比旋光度为+18.7°,将任何一种溶于水时,出现比旋光度发生变化的现象,最后恒定于+52.5°

如何解释?

分子内半缩醛反应

Haworth透视式

- * 1926年Haworth 提出透视式表达糖 的环状结构。
- * 半缩醛羟基与异头物(anomers)

* 如果氧环上的碳原子按顺时针方向排列,右侧的羟基写在环下,左侧的羟基写在环上。在D-型糖中,半缩醛羟基在平面之下的为α型,在中面之上的为β型。在L-型糖中,半缩醛羟基在平面之下的为β型,在平面之上的为α型。

五元环和六元环

小结

- *单糖在水溶液中易形成分子内的半缩醛或半缩酮。对于六碳醛糖来说,C₁上的醛基和C₅上的羟基可反应形成六元吡喃环状结构,C₁上的醛基也可与C₄上的羟基反应形成五元呋喃环状结构。
- * 成环反应使C1上生成一个半缩醛羟基,导致新的异构体产生——异头物。

D-葡萄糖在水溶液中有几种构型存在形式?

* 主要存在形式

果糖的环状结构

β-D-吡喃果糖

半缩酮羟基

β-D-呋喃果糖

作业题

* 已知α-D-甘露糖的比旋光度为-21°,β-D-甘露糖的比旋光度为-92°,将配置的D-甘露糖溶液放置一段时间后,测得溶液比 旋光度为-70.7°,求此溶液中α-D-甘露糖的百分含量(忽略极少量的开链结构和呋喃结构的存在)。

待续!