Open Review Session

Roberta De Vito

Asymmetry of a distribution

Boxplots

Boxplots interpretation

Mean Median and Mode

Questions

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Questions

Can you write down the order of the mode, mean and median?

What is a QQ plot?

- 1. Let $\varepsilon_{(1)}, \ldots, \varepsilon_{(n)}$ be the ordered residuals with $\varepsilon_{(1)} \leq \varepsilon_{(2)} \leq \ldots \leq \varepsilon_{(n)}$.
- 2. Assume the ε are standardized by subtracting mean and dividing by standard error. This ensures that they have mean zero and variance one. Then, the distribution to compare to is a $\mathcal{N}(0,1)$.
- 3. If the ε -s come from a $\mathcal{N}(0,1)$ distribution, we expect $\varepsilon_{(k)}$ to be approximately equal to the $\frac{k}{n}$ -th quantile of the $\mathcal{N}(0,1)$.
- 4. A qq-plot plots the observed quantiles vs the theoretical quantiles. If points fall on a straight line, indication of the sample coming from a normal distribution.

QQ plot in practice

Question I QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question I QQplot

Question II QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question II QQplot

Question III QQplot

Do you think that this distribution is

- 1. Positive skew
- 2. Symmetric
- 3. Negative skew

Question III QQplot

Linear regression model

The linear regression

$$y_i = f(x_i) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$$

$$f(x_i) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

Matrix form:
$$Y = X\beta + \epsilon$$

Model Assumption

- 1. $E[Y_i|X_i] = \beta_0 + \beta_1 X_i$
- 2. $\epsilon \sim N(0, \sigma^2)$
- 3. Error term is independent of (uncorrelated with) covariate(s)

$$Corr(X, \epsilon) = 0$$

4. Variance of error term is same, regardless of value of x (homoscedasticity)

$$Var(\epsilon) = \sigma^2$$

Example: Pollution data set

ID	code for the identification of the sample
OVR65	% of 1960 SMSA population aged 65 or older
EDUC	Median school years completed by those over 22
HOUS	% of housing units with all facilities
DENS	Population per sq. mile in urbanized areas, 1960
NONW	% non-white population in urbanized areas, 1960
WWDRK	% employed in white collar occupations
POOR	% of families with income $<$ 3000
HC	Relative hydrocarbon pollution potential
NOX	Same for nitric oxides
S02	Same for sulphur dioxide
HUMID	Annual average % relative humidity at 1pm
MORT	Total age-adjusted mortality rate per 100,000
PREC	Average annual precipitation in inches

How do we find regression line that fits best?

Example: Pollution data set

ID	code for the identification of the sample
OVR65	% of 1960 SMSA population aged 65 or older
EDUC	Median school years completed by those over 22
HOUS	% of housing units with all facilities
DENS	Population per sq. mile in urbanized areas, 1960
NONW	% non-white population in urbanized areas, 1960
WWDRK	% employed in white collar occupations
POOR	% of families with income < 3000
HC	Relative hydrocarbon pollution potential
NOX	Same for nitric oxides
S02	Same for sulphur dioxide
HUMID	Annual average % relative humidity at 1pm
MORT	Total age-adjusted mortality rate per 100,000
PREC	Average annual precipitation in inches

The Im function in R: what are we looking?

```
Call:
lm(formula = mort \sim nonw + so2 + educ + nonw)
Residuals:
   Min 10 Median 30 Max
-94.201 -19.410 1.294 16.537 92.986
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1156.06487 71.68018 16.128 < 2e-16 ***
       3.70485 0.58615 6.321 4.55e-08 ***
nonw
       0.25699 0.08298 3.097 0.003054 **
so2
educ -24.92413 6.28208 -3.967 0.000209 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 39.02 on 56 degrees of freedom
Multiple R-squared: 0.6266, Adjusted R-squared: 0.6066
F-statistic: 31.33 on 3 and 56 DF, p-value: 5.063e-12
```

Inference

- ► $H_0: \beta_1 = 0$
- ▶ 95% confidence intervals

- $ightharpoonup R^2$
- ► F-statistics: Does the model fit better than a model with only an intercept?

Diagnostics and Assumption Checking

- 1. is the linear relationship a good assumption?
- 2. is the error term variance constant?
- 3. are the error term normally distributed?
- 4. are there any outliers?
- 5. do we repeat some information?

1. Non-linearity of the data

Residual plot of fitted values vs. residuals should

- have no discernible pattern
- be scattered evenly around 0

2. Non-constant Variance of Error Terms: Heteroscedasticity

- Patterns might indicate wrong form of model variable
- ▶ Funnel shape in the residual plot: transform *Y*

3. Normal distribution

4. Outliers

Outliers for Y

4. Outliers

Outliers for X (High Leverage)

5. Collinearity

- ► Collinearity refers to when the predictors are highly correlated.
- Repetition of information
- ▶ Leads to increased standard errors of the regression coefficients \rightarrow fail to reject $H_0: \beta_i = 0$
- take a look at the correlation of two covaiates.