nla hw02

cs

October 8, 2025

1 Question 1

1.1 (i)

Let $0 < \epsilon \le 1$, and

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix}.$$

We compute the condition numbers in 1, 2, and ∞ -norms. So:

$$\mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/\epsilon \end{bmatrix}.$$

The 1-norm is max column sum:

$$||\mathbf{A}||_1 = \max\{1, \epsilon\} = 1$$

 $||\mathbf{A}^{-1}||_1 = \max\{1, 1/\epsilon\} = 1/\epsilon$

while the 2-norm is the square root of the eigenvalue of $\mathbf{A}^T\mathbf{A}$ with the largest magnitude:

$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & \epsilon^2 \end{bmatrix}$$
$$||\mathbf{A}||_2 = 1$$
$$(\mathbf{A}^{-1})^T \mathbf{A}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/\epsilon^2 \end{bmatrix}$$
$$||\mathbf{A}^{-1}||_2 = 1/\epsilon.$$

Finally the ∞ -norm is the max row sum:

$$||\mathbf{A}||_{\infty} = 1$$
$$||\mathbf{A}^{-1}||_{\infty} = 1/\epsilon.$$

We are then able to compute the condition numbers:

$$\kappa_1(\mathbf{A}) = ||\mathbf{A}||_1 ||\mathbf{A}^{-1}||_1 = 1/\epsilon$$

$$\kappa_2(\mathbf{A}) = ||\mathbf{A}||_2 ||\mathbf{A}^{-1}||_2 = 1/\epsilon$$

$$\kappa_{\infty}(\mathbf{A}) = ||\mathbf{A}||_{\infty} ||\mathbf{A}^{-1}||_{\infty} = 1/\epsilon.$$

1.2 (ii)

The condition numbers go to infinity as $\epsilon \to 0$. This is in compliance with the definition of condition numbers, since when $\epsilon \to 0$:

 $\mathbf{A} \to \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

where matrix **A** becomes not invertible, and all $\kappa_p(\mathbf{A}) = \infty$.

2 Question 2

2.1 (i)

Let **I** be the $n \times n$ identity matrix. Show that:

$$||\mathbf{I}||_p = 1$$

for all p-norms.

By definition, we have that:

$$||\mathbf{I}||_{p} = \max_{\mathbf{x} \neq \mathbf{0}} \left\{ \frac{||\mathbf{I}\mathbf{x}||_{p}}{||\mathbf{x}||_{p}} \right\}$$
$$= \max_{\mathbf{x} \neq \mathbf{0}} \left\{ \frac{||\mathbf{x}||_{p}}{||\mathbf{x}||_{p}} \right\}$$
$$= 1$$

and this applies for any p.

2.2 (ii)

We show that if **A** is a $n \times n$ invertible matrix, then it's conditional number must be greater or equal to one:

$$\kappa_p(\mathbf{A}) \ge 1$$

where this is true for any p-norm.

By definition, we want to show that:

$$||\mathbf{A}||_p||\mathbf{A}^{-1}||_p \ge 1$$

where by the definition of the matrix *p*-norm $\mathbf{y} \neq \mathbf{0}$:

$$||\mathbf{A}||_p = \max_{\mathbf{x} \neq \mathbf{0}} \left\{ \frac{||\mathbf{A}\mathbf{x}||_p}{||\mathbf{x}||_p} \right\}$$

$$||\mathbf{A}^{-1}||_p = \max_{\mathbf{y} \neq \mathbf{0}} \left\{ \frac{||\mathbf{A}^{-1}\mathbf{y}||_p}{||\mathbf{y}||_p} \right\}$$

and so we can bound the left hand side of our goal by:

$$||\mathbf{A}||_p||\mathbf{A}^{-1}||_p \geq \frac{||\mathbf{A}\mathbf{x}||_p}{||\mathbf{x}||_p} \frac{||\mathbf{A}^{-1}\mathbf{y}||_p}{||\mathbf{y}||_p}$$

for any non-zero \mathbf{x} and \mathbf{y} . But because matrix \mathbf{A} is invertible, it actually defines a bijective linear map between \mathbf{x} and \mathbf{y} if we define relation $\mathbf{A}\mathbf{x} = \mathbf{y}$, which allows us to conveniently write:

$$||\mathbf{A}||_p||\mathbf{A}^{-1}||_p \ge \frac{||\mathbf{A}\mathbf{x}||_p}{||\mathbf{x}||_p} \frac{||\mathbf{A}^{-1}\mathbf{y}||_p}{||\mathbf{y}||_p} = \frac{||\mathbf{y}||_p}{||\mathbf{A}^{-1}\mathbf{y}||_p} \frac{||\mathbf{A}^{-1}\mathbf{y}||_p}{||\mathbf{y}||_p}$$
$$= 1.$$