Chapter 5: Evaluating Hypotheses

CS 536: Machine Learning Littman (Wu, TA)

Two Definitions of Frror

The **true error** of hypothesis *h* with respect to target function *f* and distribution *D* is the probability that *h* will misclassify an instance drawn at random according to *D*:

$$error_D(h) = Pr_{x \sim D}[f(x) \neq h(x)]$$

= $E_{x \sim D}[\delta(f(x) \neq h(x)],$

where $\delta(\phi)$ is 1 if ϕ is true, 0 otherwise.

The **sample error** of *h* with respect to target function *f* and data sample *S* is the proportion of examples *h* misclassifies:

$$error_{S}(h) = 1/n \sum_{x \text{ in } S} \delta(f(x) \neq h(x))$$

= $E_{x \sim S}[\delta(f(x) \neq h(x)].$

Evaluating Hypotheses

[Read Ch. 5]

[Recommended exercises: 5.2, 5.3, 5.4]

- Sample error, true error
- Confidence intervals for observed hypothesis error
- Estimators
- Binomial distribution, Normal distribution, Central Limit Theorem
- Paired t tests
- Comparing learning methods

Estimation Problem

We have $error_S(h)$. We want to know $error_D(h)$.

How well does $error_S(h)$ estimate $error_D(h)$?

Problems Estimating Error

1. *Bias*: If *S* is training set, *error*_S(*h*) is optimistically biased

$$bias = E[error_S(h)] - error_D(h)$$

To ensure an unbiased (*bias* = 0) estimate, *h* and *S* must be chosen independently.

2. *Variance*: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$.

To put this another way,

$$E[error_S(h)] - error_S(h) \neq 0.$$

Example

Hypothesis *h* misclassifies 12 of the 40 examples in *S*

$$error_s(h) = 12/40 = 0.3.$$

What is $error_D(h)$?

How sure are you?

Estimators

Experiment:

- 1. choose sample *S* of size *n* according to distribution *D*
- 2. measure *error*_S(h)
- error_s(h) is a random variable (that is, the result of an experiment)
- error_S(h) is an unbiased estimator for error_D(h)
- Given observed $error_S(h)$, what can we conclude about $error_D(h)$?

Confidence Intervals

If

- *S* contains *n* examples, drawn independently of *h* and each other
- $n \ge 30$

Then,

 With approximately 95% probability, *error_D(h)* lies in interval

 $error_{S}(h) \pm 1.96 \sqrt{(error_{S}(h) (1 - error_{S}(h))/n)}$

Confidence Intervals

General form: If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

 With approximately N% probability, error_D(h) lies in interval

$$error_s(h) \pm z_N \sqrt{(error_s(h) (1 - error_s(h))/n)}$$

where

N% 50% 68% 80% 90% **95%** 98% 99% z_N 0.67 1.00 1.28 1.64 **1.96** 2.33 2.58

Binomial Probability Dist.

 $P(r) = n! / (r! (n-r)!) error_D(h)^r (1 - error_D(h))^{n-r}$ Probability P(r) of r heads in n coin flips, if p = Pr(heads)

- Expected, or mean value of X, E[X], is $E[X] \equiv \sum_{i=0}^{n} P(i) = np$.
- Variance of X, σ_X^2 or Var(X), is $Var(X) = E[(X E[X])]^2 = np(1-p)$.
- Standard deviation of X, σ_X , is $\sigma_X = \sqrt{E[(X E[X])]^2} = \sqrt{(np(1-p))}$.

Sample Error is a Random Var.

Rerun the experiment with different randomly drawn *S* (of size *n*)

Probability of observing *r* misclassified examples:

 $P(r) = n! / (r! (n-r)!) error_D(h)^r (1 - error_D(h))^{n-r}$

Normal Approximates Binomial

error_s(h) follows a Binomial distribution, with

- mean $\mu_{errorS(h)} = error_D(h)$
- standard deviation $\sigma_{errorS(h)}$

$$\sigma_{errorS(h)} = \sqrt{(error_D(h) (1 - error_D(h))/n)}$$

Approximate this by a *Normal* distribution with

- mean $\mu_{errorS(h)} = error_D(h)$
- standard deviation $\sigma_{errorS(h)}$

$$\sigma_{errorS(h)} \approx \sqrt{(error_S(h) (1 - error_S(h))/n)}$$

Normal Probability Dist.

 $p(x) = 1/\sqrt{(\pi\sigma^2)} \exp(-1/2 ((x-\mu)/\sigma)^2)$

The probability that X will fall into the interval (a, b) is given by $\int_{a}^{b} p(x) dx$.

- Expected, or mean value of X, $E[X] = \mu$.
- Variance of X is $Var(X) = \sigma^2$
- Standard deviation of X, $\sigma_X = \sigma$ Normal distribution with mean 0, standard deviation 1

Confidence, More Correctly

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then,

• With approximately 95% probability, *error_s(h)* lies in interval

 $error_D(h) \pm 1.96 \sqrt{(error_D(h) (1 - error_D(h))/n)}$

equivalently, $error_D(h)$ lies in interval

 $error_S(h) \pm 1.96 \sqrt{(error_D(h) (1 - error_D(h))/n)},$

which is approximately

 $error_S(h) \pm 1.96 \sqrt{(error_S(h) (1 - error_S(h))/n)}$

Normal Probability Dist.

80% of area (probability) lies in $\mu \pm 1.28\sigma$. N% of area (probability) lies in $\mu \pm z_N \sigma$.

N%: 50% 68% 80% 90% 95% 98% 99% z_N: 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Central Limit Theorem

Consider a set of independent, identically distributed random variables $Y_1, ..., Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean,

$$\overline{Y} = 1/n \sum_{i=1}^{n} Y_i$$

Central Limit Theorem. As $n \rightarrow \infty$, the distribution governing \overline{Y} approaches a Normal distribution, with mean μ and variance σ^2/n .

Calculating Conf. Intervals

- 1. Pick parameter p to estimate
- $error_D(h)$.
- 2. Choose an estimator
- $error_{S}(h)$.
- 3. Determine probability distribution that governs estimator
- $error_s(h)$ governed by Binomial distribution, approximated by Normal when $n \ge 30$.
- 4. Find interval (*L*, *U*) such that N% of probability mass falls in the interval
- Use table of z_N values

Paired *t* Test

Can be used to compare h_A , h_B as follows.

- 1. Partition data into k disjoint test sets T_1 , T_2 , ..., T_k of equal size, where this size is at least 30.
- 2. For *i* from 1 to *k*, do $\delta_i \leftarrow error_{Ti}(h_A) error_{Ti}(h_B)$
- 3. Return the value $\overline{\delta}$, where

$$\overline{\delta} = 1/k \ \Sigma_{i=1}^k \delta_i$$

Difference Between Hypotheses

1. Pick parameter to estimate

$$d = error_D(h_1) - error_D(h_2)$$

2. Choose an estimator

$$\hat{d} = error_{S1}(h_1) - error_{S2}(h_2)$$

3. Determine probability distribution that governs estimator

$$\sigma_d^{\wedge} \approx \sqrt{[(error_{S1}(h_1) (1 - error_{S1}(h_1))/n_1) + (error_{S2}(h_2) (1 - error_{S2}(h_2))/n_2)]}$$

4. Find interval (*L*, *U*) such that N% of probability mass falls in the interval

Confidence

N% confidence interval estimate for *d*:

$$\overline{\delta} \pm t_{N,k-1} \, \mathsf{s}_{\overline{\delta}}$$
$$\mathsf{s}_{\delta} = \sqrt{[1/(k(k-1)) \, \Sigma_{j=1}^{k} \, (\delta_{j} - \overline{\delta})^{2}]}$$

Note δ_i approximately Normally distributed.

Use Student's t distribution.

Comparing Learning Algorithms

Want to compare learning algorithms L_A and L_B

What we'd like to estimate:

$$E_{S\subset D}[error_D(L_A(S)) - error_D(L_B(S))]$$

where *L*(*S*) is the hypothesis output by learner *L* using training set *S*.

That is, the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution D.

Using Fixed Data to Compare

- 1. Partition data D_0 into k (10?) disjoint test sets $T_1, T_2, ..., T_k$ of equal size, where this size is at least 30.
- 2. For i from 1 to k, do use T_i for the test set, and the remaining data for training set S_i
- $S_i \leftarrow \{D_0 T_i\}$
- $\delta_i \leftarrow error_{T_i}(L_A(S_i)) error_{T_i}(L_B(S_i))$
- 3. Return the value $\overline{\delta}$, where

$$\overline{\delta} = 1/k \ \Sigma_{i=1}^k \delta_i$$
.

An Estimator

But, given limited data D_0 , what is a good estimator?

- could partition D_0 into training set S_0 and testing set T_0 , and measure $error_{T_0}(L_A(S_0)) error_{T_0}(L_B(S_0))$
- even better, repeat this many times and average the results (next slide)

Statistical Correctness

Notice we'd like to use the paired t test on δ to obtain a confidence interval

But it's not really correct, because the training sets in this algorithm are not independent (they overlap!)

More correct to view algorithm as producing an estimate of

$$E_{S \subset D_0}[error_D(L_A(S)) - error_D(L_B(S))]$$

instead of

$$E_{S\subset D}[error_D(L_A(S)) - error_D(L_B(S))],$$

but even this approximation is better than no comparison!