

COMP20008 Elements of Data Processing

Hierarchical clustering and dimension reduction

Plan today

- A brief feedback
- VAT algorithm
- Hierarchical clustering
 - Another alternative for k-means to extract clusters, visualise their relationships
- Dimension reduction
 - A technique for visualising high dimensional data (many features/columns)

Overview

Research directions in Data Wrangling: visualisations and transformations for crediible data. S. Kandel et al, Information Visualisation 10(4), 2011.

VAT Image - recap

How to reorder the dissimilarity matrix?

Objects

The VAT algorithm: Visual assessment for clustering tendency (Bezdek and Hathaway 2002)

Given an N*N disssimilarity matrix **D**

Let
$$K=\{1,...N\}$$
, $I=J=\{\}$

Pick the two least similar objects o_a and o_b from **D**

$$P(1)=a; I=\{a\}; J=K-\{a\}$$

For
$$r = 2,, N$$

Select (i,j): pair of most similar objects o_i and o_i from **D**

Such that $i \in I$, $j \in J$

$$P(r) = j; I = I \cup \{j\}; J=J - \{j\};$$

Obtain reordered dissimilarity matrix D* from permutation P

Dissimilarity matrix cont.

- VAT algorithm won't be effective in every situation
 - For complex shaped datasets (either significant overlap or irregular geometries between different clusters), the quality of the VAT image may significantly degrade.

VAT Example

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Tree of Life

(http://www.talkorigins.org/faqs/comdesc/phylo.html)

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - Compute the proximity matrix
 - Let each data point be a cluster
 - 3. Repeat
 - Merge the two closest clusters
 - Update the proximity matrix
 Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

• Start with clusters of individual points and a proximity matrix

Intermediate Situation

After some merging steps,
 we have some clusters

Proximity Matrix

Intermediate Situation

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

After Merging

• The question is "How do we update the proximity matrix?"

				P	roxi	mity	Mat	rix
				<u>C4</u>		?		
		C4		СЗ		?		
	C3		C2 U	C5	?	?	?	?
				<u>C1</u>		?		
upuc	ate the prox	annity matrix:			C1	C5	С3	C4

C2

How to Define Inter-Cluster Similarity

	p 1	p2	р3	p4	р5	<u>.</u> .
p1						
<u>p2</u>						
р3						
p4						
p5						

Proximity Matrix

- We define the similarity to be the minimum distance between the clusters. This is also known as single linkage.
 - Other choices also possible (e.g. max or average), but we won't cover these)

How to Define Inter-Cluster Similarity

MIN (Single Linkage)

	p1	p2	р3	p4	p 5	<u>L.</u>
p1						
p2						
р3						
p4						
p5						

Proximity Matrix

Cluster Similarity: MIN or Single Linkage

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	13	1 4	15
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Strength of MIN

Original Points

Two Clusters

Can handle non-elliptical shapes

Limitations of MIN

Original Points

Two Clusters

Sensitive to noise and outliers

Hierarchical Clustering: Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized

Dimension reduction

- Motivation and intuition
- Principal components analysis

Motivation: High dimensional data

- The curse of dimensionality: "Data analysis techniques which work well at lower dimensions, often perform poorly as the dimensionality of the analysed data increases"
- As dimensionality increases, data becomes increasingly sparse and all the distances between pairs of points begin to look the same. Impacts any algorithm that is based on distances between objects.
- For a number of data distributions, as the dimensions increase

$$\lim_{dim\to\infty} \frac{dist_{max} - dist_{min}}{dist_{min}} \to 0$$

 dist_{max} is the maximum distance in the dataset between a pair of objects and dist_{min} is the minimum distance in the dataset between a pair of objects

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data processing algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Dimensionality Reduction

- Input: A dataset with N features and K objects
- Output: A transformed dataset with n<<N features and K objects
 - n is often set to 2 or 3, so that the transformed dataset can be easily visualised
- E.g if n=2

Object id	Feature1	Feature2	FeatureN
1			
K			

Object id	NewFeatureA	NewFeatureB
1		
K		

Transforming from N dimensions to n<<N dimensions

- The transformation must preserve the characteristics of the data
 - In particular, preserve distances between pairs of points
- If a pair of objects is close before the transformation, they should still be close after the transformation
- If a pair of objects is far apart before the transformation, they should still be far apart after the transformation
- The set of nearest neighbors of an object before the transformation should ideally be the same after the transformation

- Suppose we are given a dataset with the following N features, describing individuals in this class. Which two features would you select to represent people, in such a way that "distances" between pairs of people are likely to be preserved in the reduced dataset?
- Input: N=7 features
 - Weighted average mark (WAM)
 - Age (years)
 - Height (cm)
 - Weight (kg)
 - Number of pets owned
 - Number of subjects passed so far
 - Amount of sleep last night (0=little, 1=medium, 2=a lot)
 - Output: Select 2 of the above features

Dimension reduction

- Basic method: To reduce dimensionality, can just select a subset of the original features.
 - Scatter plots for Iris dataset shown earlier 2D visualisations of a 3D dataset. 2 features were selected from the original 3.
- In general, when transforming a dataset from N to n<<N features
 - The output n features do not need to be a subset of the input N features. Rather, they can be new features whose values are constructed using some function applied to the input N features

Principal components analysis

- Find a new set of features that better captures the variability of the data
- First dimension chosen to capture as much of the variability as possible.
- The second dimension is orthogonal to the first and, and subject to that constraint, captures as much of the remaining variability as possible,
- The third dimension is orthogonal to the first and second, and subject to that constraint, captures as much of the remaining variability as possible.
- We will not be covering the mathematical details
 - Many tutorials available on the Web if you are interested.
 Nice application of linear algebra.

Dimensionality Reduction: PCA

 Goal is to find a projection that captures the largest amount of variation in data. Below – the 1-D direction capturing most of the variation in the data. Use this to transform from 2D to 1D.

PCA Example

- A good visualisation for PCA
 - http://setosa.io/ev/principal-component-analysis/

Iris dataset: Reduced from 3 to 2 dimensions using PCA

Contrast this against an earlier slide

Scatter plots for iris dataset

AFL Football Dataset: From http://afltables.com/afl/stats/

[Stats Main][AFL Main]

[2013 Stats][2015 Stats]

2014 Player Stats

[2014 Stats Summary]

[Adelaide][Brisbane Lions][Carlton][Collingwood][Essendon][Fremantle][Geelong][Gold Coast][Greater Western Sydney][Hawthorn]
[Melbourne][North Melbourne][Port Adelaide][Richmond][St Kilda][Sydney][West Coast][Western Bulldogs]

[All Teams]

Abbreviations key

										Adela	ide [G	ame k	y Gar	ne]													
<u>#</u>	<u>Player</u>	<u>GM</u>	<u>KI</u>	<u>MK</u>	<u>HB</u>	<u>DI</u>	DA	<u>GL</u>	<u>BH</u>	<u>HO</u>	<u>TK</u>	<u>RB</u>	<u>IF</u>	<u>CL</u>	<u>CG</u>	<u>FF</u>	<u>FA</u>	<u>BR</u>	<u>CP</u>	<u>UP</u>	<u>CM</u>	<u>MI</u>	<u>1%</u>	<u>BO</u>	<u>GA</u>	<u>%P</u>	<u>SU</u>
32	Dangerfield, Patrick	22	276	74	272	548	24.91	17	22	28	78	33	104	136	66	34	19	21	341	210	25	16	35	18	10	83.7	
9	Sloane, Rory	22	269	105	252	521	23.68	13	9	19	147	45	99	92	50	26	15	10	275	256	9	7	64	5	21	87.2	
5	Thompson, Scott	19	257	69	262	519	27.32	3	7	2	86	28	77	118	61	19	22	14	224	280	3	5	21	1	7	81.7	0/2
33	Smith, Brodie	22	287	108	209	496	22.55	11	8		35	109	76	18	45	9	6	4	142	319	7	2	56	46	7	87.0	
10	Jaensch, Matthew	22	297	126	166	463	21.05	7	5		54	89	54	7	34	19	10		106	325	16	1	57	34	3	81.3	
26	Douglas, Richard	19	266	52	147	413	21.74	11	8	4	91	21	96	91	38	22	17		182	228	2	6	36	13	11	86.4	
11	Wright, Matthew	20	224	89	150	374	18.70	14	8		68	22	47	39	27	30	6		141	227	4	12	26	6	17	80.0	1/2
24	Jacobs, Sam	22	193	90	165	358	16.27	7	3	763	46	20	40	69	33	11	15	6	150	189	19	4	63	1	10	87.9	0/1
14	Mackay, David	19	168	58	174	342	18.00	11	7		77	30	62	32	31	22	13		127	224	5	3	34	37	8	81.1	0/2
18	Betts, Eddie	22	167	53	123	290	13.18	51	22		74	8	37	30	39	19	16	4	149	136	3	29	21	8	29	87.7	
1	Podsiadly, James	21	189	119	101	290	13.81	26	14	2	37	17	52	2	63	14	25	4	132	165	41	35	60	1	16	90.1	
16	Brown, Luke	22	138	55	148	286	13.00	1	1		54	37	16	8	18	13	5		81	205	1	1	42	1	4	84.5	
2	Crouch, Brad	11	125	26	147	272	24.73	5	6	1	61	22	40	56	30	8	6		114	156	1	2	17	9	6	83.7	0/1
36	Martin, Brodie	17	155	65	109	264	15.53	8	15		45	30	38	23	40	13	11		97	174	7	12	34	11	4	69.2	2/1
12	Talia, Daniel	22	167	105	93	260	11.82		1		24	45	25		29	11	12		79	183	13		149	1	2	90.0	0/1
29	Laird, Rory	16	126	65	129	255	15.94	2	2		37	21	34	15	31	8	8		81	177	1	1	25	2	2	75.4	2/0
4	Jenkins, Josh	20	170	86	64	234	11.70	40	26	55	27	13	46	11	36	12	8	3	97	140	21	32	48	10	7	90.6	
13	Walker, Taylor	15	138	84	82	220	14.67	34	22		24		50		47	10	21	5	102	120	23	31	20		17	90.3	
3	Reilly, Brent	10	130	65	63	193	19.30				19	32	17	8	30	3	13		46	139	7		19	24	1	81.0	
17	Kerridge, Sam	14	72	33	84	156	11.14	10	1		52	10	23	26	25	3	14		54	97	2	9	9	4	5	83.7	0/1

AFL Football Dataset: PCA in 2D

Principal Components Analysis Code

- Code
 - PCA in sklearn.decomposition
 - Will practice in workshop

Acknowledgements

- Material partly adapted from
 - "Data Mining Concepts and Techniques", Han et al, 2nd edition 2006.
 - "Introduction to Data Mining", Tan et al 2005.