

Questions and Reflections

- Besides of the capillary test, are there some other ways to measure the viscosity?
- What other moduli exist for solid and liquids?
- Are those moduli dependent from each other?
- If they are dependent, how can a given modulus be calculated from another one?

Melt flow indexer

- One of the most used equipment in the polymer industry
- A quality control tool
- Measures "flowability"
 - Melt flow rate: # grams/10 minutes
- According to Standards:
 - ISO 1133 and ASTM D1238

Brookfield Viscometer

- For each "spindle" velocity, gives the modulus viscosity, based on the torque.
- The viscosity is typically reported in:
 - Centipoise or mPa.s

Other rheological tests:

Constant shear rate (viscous modulus)

Constant stress (creep and recovery compliance)

Constant strain (relaxation modulus)

VISCOUS MODULUS

Viscous modulus: the material's response to a constant shear rate

MODULUS = STRESS SHEAR RATE

Viscous modulus

$$\eta = \sigma / \mathring{\gamma}$$

$$\gamma = dv_{\theta}/dz$$

σ in Pa and shear rate in 1/s

η in Pa.s

Viscosity versus time for 4 different HDPE resins when a sudden shear rate of 0.01 1/s is imposed in a parallel plate rheometer

Viscosity versus time (Capillary rheometer)

Shear viscosity versus shear rate for a polyproylene resin

Shear viscosity vs. shear rate (steady state shear viscosity vs. constant shear rate) for a set of reactor grade polypropylene resins

CONSTANT STRESS RHEOMETRY

Constant stress rheometry: creep and recovery compliance

MODULUS = **STRAIN**/**STRESS**

Compliance modulus

$$J = \gamma / \sigma$$

$$\gamma = (L-Lo)/Lo$$

σ in Pa

then

J in 1/Pa

Constant stress rheology:

But, once the stress ceases the material...

Recoils and the extent of recoil with respect to the extent of deformation under constant stress is called the the recovery compliance

Constant stress rheology: creep and recovery compliance

Where:

J is the compliance: Strain / Stress

Jr (0) is the compliance at the time at which the stress ceases (t_c)

Jr is the compliance at any time after the stress ceases.

Jr(0)-Jr is the recoverable compliance at a given time $(t-t_c)$

Je^o is the steady state recoverable compliance Jr(0) -Jr $(t_{infinite})$ (at $t >> t_c$).

Jg instantaneous or glassy compliance.

Creep compliance vs. time

(strain under constant stress vs time)

for a set of reactor grade polypropylene resins

Recovery compliance vs. time (strain under constant stress vs time) for a set of reactor grade polypropylene resins

Creep and recovery compliance data for the RGPP resins

applied constant stress: 300 Pa

resin	time	strain	$J_{\text{max}} x 10^{-5} \text{ at } 300 \text{ s}$	shear rate	eta	$J_e^{o} x 10^{-4} at 300 s$
par0	316	4.05	1351	1.24E-02	24200	4.95
pbr0	316	16.98	5660	5.34E-02	5620	3.89
pcr0	316	19.95	6650	6.28E-02	4780	3.86
pdr0	316	35.70	11900	1.11E-01	2710	3.51
pcont	316	30.63	10210	9.55E-02	3140	4.41

RELAXATION MODULUS

Relaxation modulus: the material's response to a sudden strain

MODULUS = **STRESS / STRAIN**

Relaxation modulus

$$G = \sigma / \gamma$$

$$\gamma = (L-Lo)/Lo$$

σ in Pa

then

G in Pa

Typical Relaxation Moduli

Typical Relaxation Moduli

Derechos Reservados 2015 Tecnológico de Monterrey

Prohibida la reproducción total o parcial de esta obra sin expresa autorización del Tecnológico de Monterrey.