MRS Spring Meeting Honolulu, HI May 8, 2022

BATTERY LIFE PREDICTION WITH NEURAL NETWORKS

NOAH PAULSON

Assistant Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

LOGAN WARD

Assistant Computational Scientist Data Science and Learning Division Argonne National Laboratory

NEURAL NETWORKS ARE VERY VERSATILE

Source: Google Blog

Source: OpenAl

Source: https://thispersondoesnotexist.com/

Source: Schütt et al. JCTC. (2019)

GOALS FOR TODAY

Get familiar enough to start using neural networks

Goal 1: Describe the three key components of neural networks

Goal 2: Train a neural network with TensorFlow

Goal 3: Understand why CNN are useful for sensor data

Goal 4: Train a CNN for battery life prediction

CONCEPT OF NEURAL NETWORKS: ARCHITECTURE + LOSS FUNCTION + SOLVER

AN OLD FRIEND: SIMPLE LINEAR REGRESSION

... but let's make it sound modern

Model Architecture

$$f(x; m, b) = mx + b$$

Training Data: Inputs (x_i) and outputs (y_i)

Goal: Determine m and b that minimize

Loss Function

$$\sum_{i} (f(x_i; m, b) - y_i)^2$$

by computing

Solver

$$m = \operatorname{Cov}[x, y] / Var[x]$$
$$b = \overline{y} - m\overline{x}$$

SIMPLE LOGISTIC REGRESSION

A version of Linear Regression suitable for classification

Model Architecture

$$f(x; m, b) = \frac{1}{1+e^{-(mx+b)}}$$

Training Data: Inputs (x_i) and outputs (y_i)

Goal: Determine m and b that minimize

Loss Function

$$L(m,b) \sum_{i} y_{i} \ln(f(x_{i})) + (1-y_{i}) \ln(1-f(x_{i}))$$
"log loss"*

by computing
Solver

$$x_0 = (1,0)$$

$$x_{n+1} = x_n + \gamma \nabla L(m,b)$$

Architecture + Loss + Optimizer = ML Algorithm For Regression *and* Classification "gradient decent"*

LINEAR MODELS ARE NOT SUFFICIENT

Otherwise, this would be a very short lecture

Why Not? Model complexity is limited

10

NEURAL NETWORKS ARE COMPOSABLE, NON-LINEAR MODELS

TODAY'S FOCUS: NEURAL NETWORKS

Build on a small building block: "The Perceptron"

MANY PERCEPTRONS = NEURAL NETWORK

Stack enough, and you get *very* complex functions

Many small operations+ performed on many dataMassive Parallelism

HOW DO I TRAIN A NEURAL NETWORK?

Remember when I said "gradient decent"

Key Terminology:

Architecture: How inputs/outputs are linked, adjustable weights

Loss Function: Generates error between "current" and "desired" outputs

Optimizer: Algorithm for finding parameters that minimize a function

These are the three ingredients forming all* neural networks

NETWORKS ARE COMPOSED OF LAYERS

Tensors in, different tensors out

LOSS FUNCTIONS: NOT JUST "LOG LOSS"

Express how "wrong" your network is as a differentiable function

Figure: Towards Data Science

Regression:

Mean Absolute Error: $L = \sum_i |\hat{y}_i - y_i|$ Mean Squared Error: $L = \sum_i (\hat{y}_i - y_i)^2$

Classification:

Accuracy: Not differentiable!

Log Loss: $L = \sum_{i} \sum_{c} (y_i = c) \log P(y_i = c)$

Only counts for the correct class

Bigger penalty if more wrong

HOW DO I TRAIN A NETWORK?

Short Answer: Gradually make the weights better

Simple procedure:

- 1. Compute output
- 2. Compute "loss"
- 3. Compute how each weight affects loss (Uses "back propagation")
- 4. Adjust weights to lower loss (More complicated than you might think)
- 5. Repeat with new weights

THERE IS A RICH VARIETY IN NEURAL NETWORKS

Optimizers, layers, and loss functions

Activation: Applies function to an input

Batch Normalization: Make batch mean 0, std. 1

Convolution: Apply spatial/temporal filters

... Dense, Dropout, Embedding,

Loss Functions

Log-loss: Classification, same loss function as logistic regression

Mean Absolute Error: Regression, small penalty for outliers

Mean Squared Error: Regression, <u>large penalty</u> for outliers

... KL divergence, accuracy ...

Optimizers

Many different techniques:

Momentum: Keep moving in direction of last step

Decay: Gradually lower step size

Clipping: Prevent too large of gradient changes

THERE IS A RICH VARIETY IN NEURAL NETWORKS

Optimizers, layers, and loss functions

Activation: Applies function to an input

Batch Normalization: Make batch mean 0, std. 1

Convolution: Apply spatial/temporal filters

Many different techniques:

Momentum: Keep moving in direction of last step

Decay: Gradually lower step size

Clipping: Prevent too large of gradient changes

DNN EXERCISE: KEY SKILLS

Learning how to make and train a model effectively with Keras

Open the <u>first exercise!</u>

NOT ALL DATA ARE VECTORS

And that's OK!

NOT ALL DATA ARE VECTORS

And that's OK!

Networks

IMAGE CLASSIFICATION AND CONVOLUTIONS

Better classification by translation symmetry

Example: Classify Horizontal vs Vertical lines

Initial Approach: Just flatten the images. They are now vectors.

How do we know which are which? Adjacent blue blocks

Problem! Fully connected NNs don't care about order

Solution: Make new features that deal with order

CONVOLUTIONS, PADDING, AND POOLING

Borrow from computer vision, graphics

1. Pad Image

3. Maximum of Image ("Pooling")

Vertical Edge Filter:

Classification is easy

with filters!

CONVOLUTIONS, PADDING, AND POOLING

Borrow from computer vision, graphics

CASE STUDY: BATTERY LIFE PREDICTION

Let's go through the <u>case study</u>

TAKE-HOME MESSAGES

1. Neural Networks have three main components

- 1. Architecture: How the "perceptrons" are arranged
- 2. Loss Function: Measures difference between "actual" and "expected"
- 3. Optimizer: How network weights are adjusted to lower loss

2. TensorFlow+Keras makes deep learning easy

- Compose layers to form network architectures
- Use callbacks to prevent overfitting
- Control batch size to improve efficiency

3. Special data requires special networks

- General concept: Exploit symmetries / domain knowledge
- Special Example: Convolutions exploit translation symmetry and that "nearby" pixels/inputs are related

EMAIL ME AT NPAULSON@ANL.GOV IF YOU HAVE QUESTIONS!

