Loss Functions for Classification

ID	Actual	Predicted probabilities
ID6	1	0.94
ID1	1	0.90
ID7	1	0.78
ID8	0	0.56
ID2	0	0.51
ID3	1	0.47
ID4	1	0.32
ID5	0	0.10

Analytics Vidhya

It is the negative average of the log of corrected predicted probabilities

ID	Actual	Predicted probabilities	Corrected Probabilities	
ID6	1	0.94	0.94	
ID1	1	0.90	0.90	Vtics
ID7	1	0.78	0.78	va
ID8	0	0.56	0.44	, –
ID2	0	0.51	0.49	
ID3	1	0.47	0.47	
ID4	1	0.32	0.32	
ID5	0	0.10	0.90	

It is the negative average of the log of corrected predicted probabilities

ID	Actual	Predicted probabilities	Corrected Probabilities	Log
ID6	1	0.94	0.94	-0.0268721464
ID1	1	0.90	0.90	-0.0457574906
ID7	1	0.78	0.78	-0.1079053973
ID8	0	0.56	0.44	-0.3565473235
ID2	0	0.51	0.49	-0.30980392
ID3	1	0.47	0.47	-0.3279021421
ID4	1	0.32	0.32	-0.4948500217
ID5	0	0.10	0.90	-0.0457574906

It is the negative average of the log of corrected predicted probabilities

-
$$\frac{1}{N} \sum_{i=1}^{N} (\log(p_i))$$
 Analytics Vidhya

ID	Actual	Predicted probabilities	Corrected Probabilities	Log
ID6	1	0.94	0.94	-0.0268721464
ID1	1	0.90	0.90	-0.0457574906
ID7	1	0.78	0.78	-0.1079053973
ID8	0	0.56	0.44	-0.3565473235
ID2	0	0.51	0.49	-0.30980392
ID3	1	0.47	0.47	-0.3279021421
ID4	1	0.32	0.32	-0.4948500217
ID5	0	0.10	0.90	-0.0457574906

Log Loss = 0.2144

Log loss =
$$\frac{1}{N} \sum_{i=1}^{N} -(y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

Log loss =
$$\frac{1}{N} \sum_{i=1}^{N} -(y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

p_i is probability of 1

• 1-p_i is probability of 0

Log loss =
$$\frac{1}{N} \sum_{i=1}^{N} - (y_i * \log(p_i) + (1-y_i) * \log(1-p_i))$$

p_i is probability of 1

• 1-p_i is probability of 0

Log loss =
$$\frac{1}{N} \sum_{i=1}^{N} -(y_i * \log(p_i) + (1-y_i) * \log(1-p_i))$$

p_i is probability of 1

• 1-p; is probability of 0

Log loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

Log loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

Log loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_{i1} * log(p_{i1}) + y_{i2} * log(p_{i2}))$$

Log loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_i * log(p_i) + (1-y_i) * log(1-p_i))$$

Log loss =
$$-\frac{1}{N} \sum_{i=1}^{N} (y_{i1} * log(p_{i1}) + y_{i2} * log(p_{i2}))$$

When the actual class is 1:

$$y_{i1} = 1, y_{i2} = 0$$

When the actual class is 0:

$$\circ$$
 $y_{i1} = 0, y_{i2} = 1$

• pi1 and pi2 : probability of first and second class

Categorical Cross Entropy

$$logloss = -rac{1}{N}\sum_{i}^{N}\sum_{j}^{M}y_{ij}\log(p_{ij})$$

- N is the number of rows
 - M is the number of classes

Thank You

