# **Basic Probability and Statistics**

- ullet The **probability** of an **event** e has a number of epistemological interpretations
- Assuming we have **data**, we can count the number of times e occurs in the dataset to estimate the probability of e, P(e).

$$P(e) = rac{ ext{count}(e)}{ ext{count}( ext{all events})}.$$

 If we put all events in a bag, shake it up, and choose one at random (called sampling), how likely are we to get e?



- Suppose we flip a fair coin
- ullet What is the probability of heads, P(e=H)?



- Suppose we flip a fair coin
- ullet What is the probability of heads, P(e=H)?
- ullet We have "all" of two possibilities,  $e \in \{H,T\}$ .



- Suppose we flip a fair coin
- What is the probability of heads, P(e=H)?
- ullet We have "all" of two possibilities,  $e \in \{H,T\}$ .
- $P(e=H) = rac{count(H)}{count(H) + count(T)}$



• Suppose we have a fair 6-sided die.

$$\frac{count(s)}{count(1)+count(2)+count(3)+\cdots+count(6)} = \frac{1}{1+1+1+1+1+1} = \frac{1}{6}$$



- ullet What about a die with on ly three numbers  $\{1,2,3\}$ , each of which appears twice?
- What's the probability of getting "1"?



- ullet What about a die with only three numbers  $\{1,2,3\}$ , each of which appears twice?
- What's the probability of getting "1"?

$$P(e=1) = rac{count(1)}{count(1) + count(2) + count(3)}$$



- ullet What about a die with on ly three numbers  $\{1,2,3\}$ , each of which appears twice?
- What's the probability of getting "1"?

$$P(e=1) = rac{count(1)}{count(1) + count(2) + count(3)} = rac{2}{2+2+2} = rac{1}{3}.$$



- The set of all probabilities for an event *e* is called a **probability distribution**
- Each die roll is an independent event (Bernoulli trial).



• Which is greater, P(HHHHHH) or P(HHTHHH)?



- Which is greater, P(HHHHHH) or P(HHTHHH)?
- Since the events are independent, they're equal

#### **Probability Axioms**

- 1. Probabilities of events must be no less than 0.  $P(e) \geq 0$  for all e.
- 2. The sum of all probabilities in a distribution must sum to 1. That is,

$$P(e_1) + P(e_2) + \ldots + P(e_n) = 1$$
. Or, more succinctly,

$$\sum_{e \in E} P(e) = 1.$$

3. The probability that one or both of two independent events  $e_1$  and  $e_2$  will occur is the sum of their respective probabilities.

$$P(e_1 ext{ or } e_2) = P(e_1 \cup e_2) = P(e_1) + P(e_2) ext{ when } e_1 \cap e_2 = \emptyset$$

# **Probability Disjunction**

Probability space of two independent events, A and B



#### **Joint Probability**

The probability that two independent events  $e_1$  and  $e_2$  both occur is given by their product.

$$P(e_1 \wedge e_2) = P(e_1 \cap e_2) = P(e_1)P(e_2) ext{ when } e_1 \cap e_2 = \emptyset$$

- Intuitively, think of every probability as a scaling factor.
- You can think of a probability as the fraction of the probability space occupied by an event  $e_1$ .
  - $\circ$   $P(e_1 \wedge e_2)$  is the fraction of of  $e_1$ 's probability space wherein  $e_2$  also occurs.
  - $\circ$  So, if  $P(e_1)=rac{1}{2}$  and  $P(e_2)=rac{1}{3}$ , then  $P(e_2,e_2)$  is a third of a half of the probability space or  $rac{1}{3} imesrac{1}{2}$ .

# **Joint Probability**



- A **conditional probability** is the probability that one event occurs given that we take another for granted.
- The probability of  $e_2$  given  $e_1$  is  $P(e_2 \mid e_1)$ .
- This is the probability that  $e_2$  will occur given that we take for granted that  $e_1$  occurs.

If  $e_1$  and  $e_2$  are independent, then

$$P(e_1)(e_2|e_1) = P(e_2,e_1) = P(e_2 \cap e_1) = P(e_1)P(e_2) = P(e_1 \cap e_2) = P(e_1)P(e_2).$$

If  $e_1$  and  $e_2$  are independent, then

$$P(e_1)P(e_2|e_1) = P(e_2,e_1) = P(e_2 \cap e_1) = P(e_1)P(e_2) = P(e_1 \cap e_2) = P(e_1)P(e_2).$$

But what if they're not independent?

In general,

$$P(B|A) = rac{P(A\cap B)}{P(A)}$$

when  $P(A) \neq 0$ .

$$P(B|A) = rac{P(A \cap B)}{P(A)}$$

Suppose we have some probabilities of properties of toys:

$$P(\text{round}) = 0.3$$
 and  $P(\text{blue}, \text{round}) = 0.2$ .

Then, P(blue|round) is the fraction of the round toys that are also blue.

$$P( ext{blue}| ext{round}) = rac{P( ext{blue}, ext{round})}{P( ext{round})} = rac{0.2}{0.3} = 0.667$$

Answers question: If we know that the toy is round, how likely is it to be blue? Interpretation: Denominator is the probability space of round toys; numerator giving us the fraction of that space containing blue toys.

- Ultimately, a probability function is a *mathematical function* called a **probability distribution**.
- Input a value or values and get a probability

$$P(x) = p$$

- Some are discrete; others are continuous.
- All possible inputs must sum to 1.

- Like any other function, probability functions can be graphed.
- There are several common distributions.

Continuous Uniform Distribution



Discrete Uniform Distribution



Normal/Gaussian Distribution



#### **Conditional Probability Distributions**

- Still a probability distribution, as always.
- All inputs must still sum to 1.
- How do we find cumulative probability for continuous vs. discrete distributions?

# Joint/Multvariate Probability Distributions



• Given a discrete joint probability distribution function

$$P(X,Y)$$
,

how would we find

$$P(X)$$
?

Given a discrete joint probability distribution function P(X,Y), how would we find P(X)?

- "Marginalize out" the Y.
  - $\circ$  Sum up all y's.
- Discrete Case:  $p(x) = \sum_{y \in Y} P(x,y)$

Given a discrete joint probability distribution function P(X,Y), how would we find P(X)?

- "Marginalize out" the Y (sum over all all  $y\in Y$ ).
- Fix the *X*.
- ullet Discrete Case:  $p(x) = \sum_{y \in Y} P(x,y)$
- ullet Continuous Case:  $p(x)=\int p(x,y)dy$

Given a discrete joint probability distribution function P(X,Y), how would we find P(X)?

• "Marginalize out" (fix) the Y.

