Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3215	К работе допущен	
Студент	Федоров Е.В.	Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.10 Исследование вынужденных крутильных колебаний с регулируемым затуханием с помощью маятника Поля

1 Цель работы

1. Изучение характеристик свободных и вынужденных колебаний на примере маятника Поля

2 Задачи

- 1. Опредление периода колебаний маятника.
- 2. Исследование свободных затухающих колебаний.
- 3. Исследование вынужденных колебаний

3 Объект исследования

Объект исследования - маятник поля.

4 Метод экспериментального исследования

Многократное измерение промежутка времени при разных значениях силы тока

5 Рабочие формулы и исходные данные

- 1. Циклическая частота маятника $\omega = \frac{2\pi}{T}$
- 2. Логарифмический декремент затухания $\lambda = \ln \left(\frac{A_n}{A_{n+1}} \right)$
- 3. Добротность $Q = \frac{\omega_0}{2\beta} = \frac{\omega_0}{\Delta\omega}$
- 4. Амплитудно-частотная характеристика: $a(\omega) = \frac{\omega_0^2 \theta_0}{\sqrt{(\omega_0^2 \omega^2)^2 + 4\beta^2 \omega^2}}$

6 Измерительные приборы

$N_{ar{o}}\Pi/\Pi$	Наименование	Тип прибора	Погрешность
1	Угловая шкала	_	0.1 деления
2	Цифровой секундомер	Цифровой	0.005 с

Таблица 1: Измерительные приборы

7 Схема установки

Рис. 1: Схема установки

8 Результаты прямых измерений и их обработки

#	t, c	$t_{\rm cp},{ m c}$	T, c
1	17.55		
2	17.65	17.6567	1.7657
3	17.77		

Таблица 2: Измерение периода T свободных колебаний маятника, t – время N=10 полных колебаний

•
$$t_{\rm cp} = \frac{1}{3} \sum_{i=1}^{3} t_i \approx 17.6567 \text{ c};$$

•
$$T = t_{\rm cp}/N \approx 17.6567/10 \approx 1.7657$$
 c;

•
$$\omega_0 = 2\pi/T \approx \frac{2\pi}{1.7657} \approx 3.5585 \text{ c}^{-1};$$

I_T , мА		t, T	T								λ	β, c^-1	Q		
	k	0	1	2	3	4	5	6	7	8	9	10			
0	A_k , дел	19	18.2	18.1	17.8	17.6	17.4	17.2	16.8	16.6	16.4	16	0.0152	0.0086	32.8561
	$\ln(A_0/A_k)$	0	0.0430	0.0485	0.0652	0.0765	0.0880	0.0995	0.1231	0.1350	0.1472	0.1719			
200	A_k , дел	19	17.6	16.4	14.6	13.8	12.8	11.4	10.2	9.4	8.4	7.6	0.0920	0.0521	5.4358
	$\ln(A_0/A_k)$	0	0.0765	0.1472	0.2634	0.3198	0.3950	0.5108	0.6221	0.7037	0.8162	0.9163			
400	A_k , дел	19	14.6	11.4	8.4	6.4	5.2	3.4	2.4	1.8	1.2	0.9	0.3084	0.1746	1.6215
	$\ln(A_0/A_k)$	0	0.2634	0.5108	0.8162	1.0881	1.2958	1.7207	2.0690	2.3567	2.7621	3.4553			

Таблица 3: Зависимость амплитуды A колебаний маятника от номера колебания k при свободных колебаниях с разным затуханием

9 Расчет результатов косвенных измерений

U, B	7.5	8.0	8.5	9.0
N	5	5	5	5
t, c	16.35	14.87	13.32	12.36
T, c	3.27	2.974	2.664	2.472
$\omega, \frac{\mathrm{рад}}{\mathrm{c}}$	1.92	2.11	2.36	2.54

Таблица 4: Зависимость частоты возбуждения вынужденных колебаний от напряжения на моторе

Для U = 7.5:

- T = t/N = 16.35/5 = 3.27 c
- $\omega = 2\pi/T = 2\pi/3.27 \approx 1.92$

U	ω	ω/ω_0	T	0	200	400
0.0	$\omega = 0$		$a(\omega = 0) = \theta = 0.8$			
7.0	1.7069	0.4797	0.9090	0.8	0.8	0.6
7.1	1.7491	0.4915	0.9228	0.9	0.8	0.6
7.2	1.7912	0.5034	0.9374	1	0.8	0.65
7.3	1.8333	0.5152	0.9527	1	0.8	0.65
7.4	1.8755	0.5270	0.9690	1	0.8	0.75
7.5	1.9176	0.5389	0.9862	1	0.8	0.8
7.6	1.9597	0.5507	1.0045	1.1	0.9	0.8
7.7	2.0019	0.5626	1.0238	1	0.9	0.8
7.8	2.0440	0.5744	1.0443	1	0.8	0.8
7.9	2.0861	0.5862	1.0662	1	0.9	0.9
8.0	2.1283	0.5981	1.0894	1	0.9	0.9
8.1	2.1704	0.6099	1.1142	1	0.9	0.9
8.2	2.2125	0.6218	1.1406	1.1	1	0.95

8.3	2.2547	0.6336	1.1689	1.2	1.1	0.95
8.4	2.2968	0.6454	1.1992	1	1	0.95
8.5	2.3389	0.6573	1.2317	1.2	1	1.1
8.6	2.3811	0.6691	1.2667	1.1	1	1.1
8.7	2.4232	0.6810	1.3044	1	1.1	1.2
8.8	2.4654	0.6928	1.3451	1.2	1.4	1.2
8.9	2.5075	0.7046	1.3891	1.4	1.3	1.2
9.0	2.5496	0.7165	1.4371	1.4	1.4	1.2
a_{\max}				1.4	1.4	1.2
Q'				32.8561	5.4358	1.6215
Q''				111.8	33.890	10.167

Таблица 5: Зависимость амплитуды вынужденных колебаний от частоты возбуждения

10 Расчет погрешности измерений

- Случайная погрешность $\Delta_{\bar{t}} = t_{\alpha,N} \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \bar{t})^2} = 0.1857$ с
- Абсолютная погрешность $\Delta_t = \sqrt{\Delta_{\bar{t}}^2 + (2/3\Delta_{\text{их}})^2} = 0.1973$ с
- Абсолютная погрешность периода колебаний $\Delta_T = \sqrt{\left(\frac{\partial T}{\partial t}\Delta_t\right)^2} = \Delta_t/10 = 0.01973$ с, относительная погрешность периода колебаний $\varepsilon_T = \Delta_T/T \cdot 100\% = 0.0398\%$
- Абсолютная погрешность циклической частоты: $\Delta_{\omega} = \sqrt{\left(\frac{\partial \omega}{\partial T} \Delta_{T}\right)^{2}} = \frac{2\pi}{T^{2}} \Delta_{T} = 0.0397 \, \mathrm{pag/c},$ относительная погрешность циклической частоты $\varepsilon_{\omega} = \Delta_{\omega}/\omega \cdot 100\% = 1.1174\%$

11 Графики

Рис. 2: График зависимости A(t) для разных I_{T}

Рис. 3: График зависимости $\ln(A_0/A_k)$ для разных I_{T}

Рис. 4: Градуировочный график $\omega(U)$

Рис. 5: Графики амплитудно-частотной характеристики

Рис. 6: График сравнения теор. и эксп. АЧХ для $I_T=200~\mathrm{mA}$

12 Окончательные результаты

• Период и циклическая частота свободных колебаний маятника:

$$T = 1.7657 \pm 0.01973 \,\mathrm{c}$$
 $\omega_0 = 3.5585 \pm 0.0397 \,\frac{\mathrm{рад}}{\mathrm{c}}$

- Графики A(t) зависимости амплитуды колебаний от времени для разных токов электромагнитного тормоза представлены на рис. 2.
- Графики $f(t) = \ln(A_0/A_k)$ представлены на рис. 3. Значения параметров λ, β, Q представлены в табл. 3.
- Градуировочный график $\omega(U)$ представлен на рис. 4.
- Графики АЧХ для трех коэффициентов затухания представлены на рисунке 5.
- Сравнение теоретической и экспериментальной АЧХ для $I_T = 200$ мА представлены на рис. 6. Видно, что на области снятых измерений графики сильно напоминают друг друга.
- Сравнение значений добротности, найденных по затуханию колебаний и по АЧХ представлены в табл. 5.

13 Вывод и анализ результатов работы

При выполнении данной лабораторной работы были изучены вынужденные колебания и колебания с вязким трением. Из-за высокого коэффициента затухания колебаний на $U \in {7, \dots, 9}$ амплитуда не успевает дойти до своего максимума. Поэтому для нахождения Q по AЧX были использованы теоретические графики, что и объясняет сильное расхождение теоретических данных с экспериментальными.