Learning Deep Structure-Preserving Image-Text Embeddings 같은 Embedding Space에 Image와 Text 나타내기

Abstract

- Paper: https://arxiv.org/abs/1511.06078
- Github: https://github.com/lwwang/Two_branch_network
- Linear projection + nonlinear activation function으로 구성된 two-branch neural network를 이용해 image와 text의 join embedding을 학습하는 방법 제안
- "structure preservation"을 위한 Loss Function 사용
- Image-to-text, text-to-image retrieval의 accuracy 향상

Instruction

컴퓨터 비전 연구의 동향(2016년 기준)

- 과거: 이미지를 category별로 분류하기
- 현재: 이미지에 대한 설명 생성하기

문제

- 시각 데이터와 텍스트 데이터 간의 similarity를 어떻게 개산할 것인가?
- 텍스트와 이미지를 한 공간에 임베딩하는 방법이 필요하다

목표

• 텍스트와 이미지를 한 공간에 임베딩한다.

Related Work

Canonical Correlation Analysis (CCA, 정준상관분석) 기반

- CCA: 두 변수 집단의 연관성(association)을 각 변수집단에 속한 변수들의 선형결합의 상관계수를 이용하여 설명
- CCA를 이용하여 correlation이 최대가 되는 <u>linear</u> projection을 찾는다

Ranking loss 이용

- Ranking loss: retrieval 등에서 ranking을 잘못 맞출수록 증가하는 loss
- Ranking loss가 감소하는 방식으로 <u>linear</u> transformation을 학습한다

딥러닝 이용

• Boltzmann machine, Autoencoder, LSTM, RNN을 이용하여 <u>non-linear</u> mapping을 하려는 시도가 있었다.

Method (모델 구조)

- X: 이미지 feature vector
- Y: 텍스트 Feature vector
- Feature vector는 pre-trained된 값 사용
- W_1, W_2, V_1, V_2 : Matrix. Dense layer 하나로 봐도 무방.
- L2 normalization: 임베딩에 nonlinearity를 주기 위해

Method

Bi-directional ranking constraints

- 같은 category의 이미지 벡터 와 텍스트 벡터 간의 거리가 가까워야 한다.
- (x: 이미지, y: 텍스트)

$$d(x_i, y_j) + m < d(x_i, y_k) \quad \forall y_j \in Y_i^+, \forall y_k \in Y_i^-. \tag{1}$$
$$d(x_{j'}, y_{i'}) + m < d(x_{k'}, y_{i'}) \quad \forall x_{j'} \in X_{i'}^+, \forall x_{k'} \in X_{i'}^-, \tag{2}$$

Structure-preserving constraints

- 같은 category의 이미지 벡터 간의 거리, 텍스트 벡터 간의 거리가 가까워야 한다.
- 논문에서 새롭게 제안한 방식

$$d(x_{i}, x_{j}) + m < d(x_{i}, x_{k}) \quad \forall x_{j} \in N(x_{i}), \forall x_{k} \notin N(x_{i}),$$

$$(3)$$

$$d(y_{i'}, y_{j'}) + m < d(y_{i'}, y_{k'}) \quad \forall y_{j'} \in N(y_{i'}), \forall y_{k'} \notin N(y_{i'}),$$

$$(4)$$

Method (Loss Function)

Figure 2. Illustration of the proposed structure-preserving constraints for joint embedding learning (see text). Rectangles represent images and circles represent sentences. Same color indicates matching images and sentences.

$$L(X,Y) = \sum_{i,j,k} \max[0, m + d(x_i, y_j) - d(x_i, y_k)]$$

$$+ \lambda_1 \sum_{i',j',k'} \max[0, m + d(x_{j'}, y_{i'}) - d(x_{k'}, y_{i'})]$$

$$+ \lambda_2 \sum_{i,j,k} \max[0, m + d(x_i, x_j) - d(x_i, x_k)]$$

$$+ \lambda_3 \sum_{i',j',k'} \max[0, m + d(y_{i'}, y_{j'}) - d(y_{i'}, y_{k'})],$$
(5)

Method (Sampling)

- Loss function 특성상 Mini-batch를 돌릴 때 data를 잘 골라야 함
 - Target instance
 - Positive match
 - Negative match
- Positive Pair 선택(텍스트-이미지 쌍이 맞는 쌍)
- 각각의 Positive Pair마다 상위 K개의 Negative pair 선택
 - 논문에선 K = 50

Experiments

- Image feature: VGG19의 feature layer
- Sentence Feature: 300차원 Word2Vec을 기반으로 한 Fisher Vector Representation
- Flickr30k, MSCOCO 데이터셋을 이용해 image-sentence retrieval 테스트 진행
 - 기존 모델(CCA 등)에 비해 성능 향상이 있었음
- Flickr30k 데이터셋을 이용해 Phrase Localization 테스트 진행
 - 100개의 EdgeBox region 추출 후 이 모델을 이용
 - 기존 모델(CCA 기반)에 비해 성능 향상이 있었음

Methods on Flickr30K	Image-to-sentence			Sentence-to-image		
	R@1	R@5	R@10	R@1	R@5	R@10
Deep CCA [33]	27.9	56.9	68.2	26.8	52.9	66.9
mCNN(ensemble) [29]	33.6	64.1	74.9	26.2	56.3	69.6
m-RNN-vgg [31]	35.4	63.8	73.7	22.8	50.7	63.1
Mean vector [26]	24.8	52.5	64.3	20.5	46.3	59.3
CCA (FV HGLMM) [26]	34.4	61.0	72.3	24.4	52.1	65.6
CCA (FV GMM+HGLMM) [26]	35.0	62.0	73.8	25.0	52.7	66.0
CCA (FV HGLMM) [37]	36.5	62.2	73.3	24.7	53.4	66.8
Linear + one-directional	33.5	61.7	73.6	21.0	47.4	60.5
Linear + bi-directional	34.6	64.3	74.9	24.2	52.0	64.2
Linear + bi-directional + structure	35.2	66.8	76.2	25.6	54.8	66.5
Nonlinear + one-directional	37.5	65.6	76.9	22.4	50.9	63.3
Nonlinear + bi-directional	39.3	68.0	78.3	28.1	59.2	71.2
Nonlinear + bi-directional + structure	40.3	68.9	79.9	29.7	60.1	72.1
Nonlinear + bi-directional	33.5	60.2	71.9	22.8	52.5	65.0
Nonlinear + bi-directional + structure	35.7	62.9	74.4	25.1	53.9	66.5
Nonlinear + bi-directional	38.7	66.6	76.9	27.6	57.0	69.0
Nonlinear + bi-directional + structure	40.1	67.6	78.2	28.1	58.5	69.8
	Deep CCA [33] mCNN(ensemble) [29] m-RNN-vgg [31] Mean vector [26] CCA (FV HGLMM) [26] CCA (FV HGLMM) [37] Linear + one-directional Linear + bi-directional Linear + bi-directional + structure Nonlinear + bi-directional Nonlinear + bi-directional + structure	R@1	R@1 R@5	R@1 R@5 R@10	R@1 R@5 R@10 R@1	R@1 R@5 R@10 R@1 R@5 Deep CCA [33] 27.9 56.9 68.2 26.8 52.9 mCNN(ensemble) [29] 33.6 64.1 74.9 26.2 56.3 m-RNN-vgg [31] 35.4 63.8 73.7 22.8 50.7 Mean vector [26] 24.8 52.5 64.3 20.5 46.3 CCA (FV HGLMM) [26] 34.4 61.0 72.3 24.4 52.1 CCA (FV GMM+HGLMM) [26] 35.0 62.0 73.8 25.0 52.7 CCA (FV HGLMM) [37] 36.5 62.2 73.3 24.7 53.4 Linear + one-directional 33.5 61.7 73.6 21.0 47.4 Linear + bi-directional 34.6 64.3 74.9 24.2 52.0 Linear + bi-directional 37.5 65.6 76.9 22.4 50.9 Nonlinear + bi-directional 39.3 68.0 78.3 28.1 59.2 Nonlinear + bi-directional 33.5 60.2 71.9 22.8 52.5 Nonlinear + bi-directional 33.5 60.2 71.9 22.8 52.5 Nonlinear + bi-directional 38.7 66.6 76.9 27.6 57.0 Nonlinear + bi-directional 38.7 66.6 76.9 27.6 57.0

ieval results. The numbers in (a) come from published papers, and the numbers in (b-d) are results of c tures. Note that the Deep CCA results in [33] were obtained with AlexNet [27]. The results of our behigher than those of [33] for image-to-sentence retrieval and 1% higher for sentence-to-image retrieval.

Methods	R@1	R@5	R@10	mAP(all)			
CCA baseline	40.11	61.52	67.17	41.96			
Our method without negative mining							
(a) $\lambda_1 = 2, \ \lambda_2 = 0, \ \lambda_3 = 0$	35.83	60.51	66.70	40.50			
(b) $\lambda_1 = 2$, $\lambda_2 = 0$, $\lambda_3 = 0.1$	36.59	60.44	66.92	40.85			
(c) $\lambda_1 = 2$, $\lambda_2 = 0.1$, $\lambda_3 = 0$	36.74	60.35	66.73	41.22			
(d) $\lambda_1 = 2$, $\lambda_2 = 0.1$, $\lambda_3 = 0.1$	36.72	61.14	67.21	41.13			
Fine-tuned with negative mining							
Fine-tuning (a) for 5 epochs	41.77	63.01	68.27	46.55			
Fine-tuning (b) for 5 epochs	43.77	64.22	68.84	47.38			
Fine-tuning (c) for 5 epochs	42.88	63.41	68.47	46.78			
Fine-tuning (d) for 5 epochs	43.89	64.46	68.66	47.72			

results on Flickr30K Entities using Fast-RCNN features. We use 100 EdgeBox 6.91.

	Methods on MSCOCO 1000 testing set	Image-to-sentence			Sentence-to-image		
		R@1	R@5	R@10	R@1	R@5	R@10
(a) State of the art	Mean vector [26]	33.2	61.8	75.1	24.2	56.4	72.4
	CCA (FV HGLMM) [26]	37.7	66.6	79.1	24.9	58.8	76.5
	CCA (FV GMM+HGLMM) [26]	39.4	67.9	80.9	25.1	59.8	76.6
	DVSA [22]	38.4	69.9	80.5	27.4	60.2	74.8
	m-RNN-vgg [31]	41.0	73.0	83.5	29.0	42.2	77.0
	mCNN(ensemble) [29]	42.8	73.1	84.1	32.6	68.6	82.8
(b) Fisher Vector	Nonlinear+bi-directional	47.5	77.6	88.3	36.8	72.2	85.6
	Nonlinear+bi-directional+structure	50.1	79.7	89.2	39.6	75.2	86.9
(c) Mean Vector	Nonlinear+bi-directional	39.6	74.0	84.8	32.0	67.3	81.6
	Nonlinear+bi-directional+structure	40.7	74.2	85.3	33.5	68.7	83.2
(d) tf-idf	Nonlinear+bi-directional	45.3	77.6	86.8	35.4	70.2	83.4
	Nonlinear+bi-directional+structure	46.7	77.9	87.7	36.2	72.3	84.7

Table 2. Bidirectional retrieval results on MSCOCO 1000-image test set.

Experiments

Conclusion

Two-branch network를 이용하여 Text와 Image 임베딩을 같은 space에 나타낼 수 있다.

Bi-directional ranking에다 structure-preserving을 추가한 loss 함수를 추가하여, 같은 category에 속하는 Text/Image끼리 더 잘 뭉치게 되었다.

Flick30K, MSCOCO 기반으로 한 retrieval 결과는 상당한 향상이 있었다.

References

- https://arxiv.org/abs/1511.06078
- http://stat.snu.ac.kr/time/download/7.%EC%A0%95%EC%A4%80%EB%B6%84%EC%84%9D.pdf