

LKS32MC08X with built-in 6N driver Datasheet

© 2020, 版权归凌鸥创芯所有 机密文件, 未经许可不得扩散

1 概述

1.1 功能简述

LKS32MC084D/086/088K 是 32 位内核的面向电机控制应用的专用处理器,同时集成了三相全桥自举式栅极驱动模块,可直接驱动 6 个 N 型 MOSFET。

性能

- ➤ 96MHz 32 位 Cortex-M0 内核
- ▶ 集成自主指令集电机控制专用 DSP
- ▶ 超低功耗休眠模式,低功耗休眠电流 10uA
- ▶ 三相全桥自举式栅极驱动模块
- ▶ 工业级工作温度范围
- ▶ 超强抗静电和群脉冲能力

● 存储器

- ▶ 64/32kB Flash, 带加密功能
- > 8kB RAM

● 工作范围

- ➤ 双电源供电, MCU 部分采用 2.2V~5.5V 电源供电, 内部集成 1 个 LDO, 为数字部分电路供电。驱动模块电源供电请根据芯片型号参考栅极驱动模块电气参数
- ▶ 工作温度: -40~105℃

● 时钟

- ▶ 内置 4MHz 高精度 RC 时钟, -40~105°C范围内精度在±1%之内
- ▶ 内置低速 32KHz 低速时钟, 供低功耗模式使用
- ▶ 可外挂 4MHz 外部晶振
- ▶ 内部 PLL 可提供最高 96MHz 时钟

● 外设模块

- ▶ 两路 UART
- ▶ 一路 SPI, 支持主从模式
- ▶ 一路 IIC,支持主从模式
- ▶ 一路 CAN (084D 不带 CAN),建议使用外部晶振作为参考时钟
- ▶ 2 个通用 16 位 Timer, 支持捕捉和边沿对齐 PWM 功能

- ▶ 2 个通用 32 位 Timer,支持捕捉和边沿对齐 PWM 功能;支持正交编码输入,CW/CCW 输入,脉冲+符号输入
- ▶ 电机控制专用 PWM 模块,支持 8 路 PWM 输出,独立死区控制
- ▶ Hall 信号专用接口,支持测速、去抖功能
- ▶ 硬件看门狗
- ▶ 最多 4 组 16bit GPIO。P0.0/P0.1/P1.0/P1.1 4 个 GPIO 可以作为系统的唤醒源。P0.15 ~ P0.0 共 16 个 GPIO 可以用作外部中断源输入。

● 模拟模块

- ▶ 集成 1 路 12bit SAR ADC, 同步双采样, 3Msps 采样及转换速率, 最多支持 13 通道
- ▶ 集成 4 路运算放大器,可设置为差分 PGA 模式
- ▶ 集成两路比较器,可设置滞回模式
- ▶ 集成 12bit DAC 数模转换器
- ▶ 内置±2°C温度传感器
- ▶ 内置 1.2V 0.5%精度电压基准源
- ▶ 内置 1 路低功耗 LDO 和电源监测电路
- ▶ 集成高精度、低温飘高频 RC 时钟
- ▶ 集成晶体起振电路

1.2 性能优势

- ▶ 高可靠性、高集成度、最终产品体积小、节约 BOM 成本;
- ▶ 内部集成 4 路高速运放和两路比较器,可满足单电阻/双电阻/三电阻电流采样拓扑架构的不同需求;
- ▶ 内部高速运放集成高压保护电路,可以允许高电压共模信号直接输入芯片,可以用最简单的电路拓扑实现 MOSFET 电阻直接电流采样模式;
- ▶ 应用专利技术使 ADC 和高速运放达到最佳配合,可处理更宽的电流动态范围,同时兼顾高速小电流和低速大电流的采样精度;
- ▶ 整体控制电路简洁高效, 抗干扰能力强, 稳定可靠;
- ▶ 集成三相全桥自举式栅极驱动模块;

适用于有感 BLDC/无感 BLDC/有感 FOC/无感 FOC 及步进电机、永磁同步、异步电机等控制系统。

1.3 命名规则

	<u>LKS32 MC 080 R 8 T 8 XXX</u>
Device series	
LKS32	= 32bit MCU
Product type	
MC	= Motor Control Applications
AT	= Automobile Applications
Device sub fa	mily
083/085/088	= 2.2~5.5V,1 ADC,4 PGA,DSP
084D/086 087(A)	= 2.2~5.5V,1 ADC,4 PGA,DSP,6N Driver = 2.2~5.5V,1 ADC,2 PGA
087C	= 2.2~5.5V,1 ADC,2 PGA, CAN
087D/087E	
089	= 2.2~5.5V,1 ADC,2 PGA
Pin count	
L	= 16 pins
Н	= 20 pins
M	= 24 pins
K	= 32 pins
F C	= 40 pins
N	= 48 pins = 52 pins
R	= 64 pins
V	=100 pins
Z Z	=144 pins
Code size	
4	= 16Kbyte Flash Memory
6	= 32Kbyte Flash Memory
8	= 64Kbyte Flash Memory
В	=128Kbyte Flash Memory
С	=256Kbyte Flash Memory
D	=384Kbyte Flash Memory
E	=512Kbyte Flash Memory
Package	
P	= TSSOP
T	= TQFP/LQFP
Q	= QFN
S	= SSOP
Н	= BGA
Temperature	_
6	= -40~85°
8	= -40~105°
9	= -40~125°
Options	
TR	= Tape and reel packing

图 1-1 凌鸥创芯器件命名规则

= Engineering Samples

1.4 系统资源框图

000 P3_14 000 P 0_ 15 P3_0 P3_15 Global Analog Bus Global Digital Bus 8kB SRAM 64kB flash System Bus Sleep Timer Watch Dog MCU Interrupt controller SWD12bit ADC Dual-Sample CMP (x2) PGA (x4) 12bit DAC REF Temp sensor **Analog Resources Digital Resources** SPI Master/Slave UART Tx/Rx (x2) I/O Multiplexer IIC Master/Slave 3-Phase Gate driver **Peripheral Resources** 4MHz Oscillator 96MHz PLL LDO15 POR/BOR External RST Xtal Oscillator 32kHz Oscillator Power & Reset System **Clock Resources**

LKS32MC086N8Q8 Resource Diagram

图 1-2 LKS32MC086N8Q8 系统框图

LKS32MC084DF6Q8系统资源详情参考选型表。

1.5 矢量正弦控制系统

图 1-3 LKS32MC086N8Q8 矢量正弦控制系统简化原理图

2 器件选型表

表 2-1 LKS08x 系列器件选型表

-														H 1170								
	主频 (MHz)	Flash (kB)	RAM (kB)	ADC 通道数	DAC	比较器	比较器通道数	OPA	HALL	SPI	IIC	UART	CAN	Temp. Sensor	PLL	QEP	Gate driver	预呕电流 (A)	预驱电源(V)	棚浮耐压 (V)	其他	Package
LKS32MC080R8T8	96	64	8	13	12BITx1	2	9	4	3 路	1	1	2	Yes	Yes	Yes	Yes						LQFP64
LKS32MC081C8T8	96	64	8	12	12BITx1	2	9	4	3路	1	1	2		Yes	Yes							TQFP48
LKS32MC082K8Q8	96	64	8	8	12BITx1	2	6	3	3路	1	1	2		Yes	Yes							QFN32
LKS32MC083C8T8	96	64	8	12	12BITx1	2	9	4	3路	1	1	2	Yes	Yes	Yes	Yes						TQFP48
LKS32MC084DF6Q8	96	32	8	11	12BITx1	2	7	4	3路	1	1	2		Yes	Yes		6N	+1.2/-1.5	4.5~20*1	200		QFN40
LKS32AT085C8Q9	96	64	8	12	12BITx1	2	9	4	3路	1	1	2	Yes	Yes	Yes	Yes						QFN48
LKS32AT086N8Q9	96	64	8	11	12BITx1	2	9	4	3路	1	1	2	Yes	Yes	Yes	Yes	6N	+1.2/-1.5	4.5~20	200		QFN52
LKS32MC086N8Q8	96	64	8	11	12BITx1	2	9	4	3路	1	1	2	Yes	Yes	Yes	Yes	6N	+1.2/-1.5	4.5~20	200		QFN52
LKS32MC087M6S8	96	32	8	5	12BITx1	2	6	2	3路			1		Yes	Yes							SSOP24
LKS32MC087AM6S8	96	32	8	5	12BITx1	2	6	2	3路			1		Yes	Yes							SSOP24
LKS32MC087CM8S8	96	64	8	5	12BITx1	2	6	2	3路			1	Yes	Yes	Yes							SSOP24
LKS32MC087DM6S8	96	32	8	5	12BITx1	2	6	2	3路			1		Yes	Yes		3P3N	+0.05/-0.3	7~28		5V LDO*2	SSOP24
LKS32MC087EM6S8	96	32	8	5	12BITx1	2	7	2	3 路			1		Yes	Yes		3P3N	+0.05/-0.3	7~28		5V LDO	SSOP24
LKS32MC088C6T8	96	32	8	12	12BITx1	2	9	4	3路	1	1	2		Yes	Yes							TQFP48
LKS32MC088KU8Q8	96	64	8	8	12BITx1	2	7	3	3 路	1	1	2	Yes	Yes	Yes	Yes	6N	+1.2/-1.5	4.5~20	600	5V LDO	QFN43L
LKS32AT089XLN8Q9	96	64	8	11	12BITx1	2	9	4	3路	1	1	2	Yes	Yes	Yes	Yes	6N	+1.2/-1.5	4.5~20	200	5V LDO	QFN52

^{*1:} 部分型号由于集成多种预驱,分为多种版本,预驱供电电压范围不同,具体参考电气性能参数。

^{*2:} 部分型号集成 5V LDO, 当芯片使用 7.5~28V VCC 供电时,内部 LDO 可产生 5V 电源给 MCU 供电,或供电至片外,具体以管脚说明为准。

3 管脚分布

3.1 管脚分布图及管脚说明

3.1.1 特别说明

下列引脚图中红色 PIN 脚内置上拉至 AVDD 的电阻: RSTN 引脚内置 100kΩ 上拉电阻,固定开启上拉 SWDIO/SWCLK 内置 10kΩ 上拉电阻,固定开启上拉 其余红色 PIN 脚内置 10kΩ 上拉电阻,可软件控制开启关闭上拉

UARTx_TX(RX): UART 的 TX 和 RX 支持互换。当 GPIO 第二功能选择为 UART, 且 GPIO_PIE 即输入使能时,可以作为 UART_RX 使用;当 GPIO_POE 使能时,可以作为 UART_TX 使用。一般同一 GPIO 不同时使能输入和输出,否则输入 PDI 会接收到 PDO 发出的数据。

SPI_DI(DO): SPI 的 DI 和 DO 支持互换, 当 GPIO 第二功能选择为 SPI, 且 GPIO_PIE 即输入使能时,可以作为 SPI_DI 使用; 当 GPIO_POE 即输出使能时,可以作为 SPI_DO 使用。一般同一 GPIO 不同时使能输入和输出,否则输入 PDI 会接收到 PDO 发出的数据。

3.1.2 LKS32MC084DF6Q8

图 3-1 LKS32MC084DF6Q8 管脚分布图

表 3-1 LKS32MC084DF6Q8 管脚说明

编号	表 3-1 LKS32MCU	类型	功能说明			
细亏 0	石が	地	芯片地,建议多个 GND 引脚在 PCB 上统一接地			
1	SWDIO/P2.15/P0.0	输入/输出	SWD 数据/P2.15/P0.0,内置可软件开启的 10k 上拉电阻。DAC 输出、P2.15 和 P0.0 的输出功能不可同时使用。且如使用 DAC 输出、P2.15 或 P0.0 的输出功能时,软件上需留有方式能在需使用 SWD 调试或下载时关闭 DAC 输出、P2.15 或 P0.0 的输出功能			
2	RSTN/P0.2	输入/输出	RSTN/P0.2,默认作为 RSTN 使用,外部接一个 10nF~100nF 的电容到地即可,内部已有 100k 上拉电阻。建议 PCB 上在 RSTN 和 AVDD 之间放一个 10k~20k 的上拉电阻,外部有上拉电阻的情况,RSTN 的电容固定为 100nF。			
3	AVDD	电源	芯片电源输入,电压范围 2.2~5.5V。片外去耦电容 建议≥1uF,并尽量靠近 AVDD 引脚			
4	SCL/TIM2_CH0/ADC_CH7/P0.3	输入/输出	IIC 时钟/Timer2 通道 0/ADC 通道 7/P0.3			
5	SDA/TIM2_CH1/ADC_CH8/P0.4	输入/输出	IIC 数据/Timer2 通道 1/ADC 通道 8/P0.4			
6	UART1_TX(RX)/TIM1_CH0 /P0.6	输入/输出	UART1_TX(RX)/Timer1 通道 0 /P0.6, 内置可软件开 启的 10k 上拉电阻			
7	UART1_TX(RX)/TIM1_CH1 /P0.7/ TIM2_CH0/P2.11/ TIM2_CH1 /P2.12	输入/输出	UART1_TX(RX)/Timer1 通道 1/P0.7/Timer2 通道 0/P2.11/ Timer2 通道 1/P2.12, 内置可软件开启的 10k 上拉电阻, P0.7/P2.11/P2.12 是 3 个独立 IO 连 到一个引脚, 因此 3 个 IO 的输出功能不可同时使用。			
8	HALL_INO/TIM3_CH0/ADC_CH15/CMP0_IP1/P0.11	输入/输出	Hall 传感器 A 相输入/Timer3 通道 0/ADC 通道 15/ 比较器 0 同相端输入通道 1/P0.11			
9	HALL_IN1/TIM3_CH1/ ADC_CH16/CMP0_IP2/P0.12	输入/输出	Hall 传感器 B 相输入/Timer3 通道 1/ ADC 通道 16/ 比较器 0 同相端输入通道 2/P0.12			
10	HALL_IN2/ ADC_CH17/CMP0_IP3/P0.13	输入/输出	Hall 传感器 C 相输入/ ADC 通道 17/比较器 0 同相端输入通道 3/P0.13			
11	CMP0_OUT/MCPWM_BKIN1/SPI_CLK/TIM0_CH1/ADC_TRIG0/SIF/ADC_CH10/CMP0_IP4/P0.14	输入/输出	比较器 0 输出/电机 PWM 终止信号 1/SPI 时钟 /Timer0 通道 1/ADC 触发信号 0/一线通/ADC 通道 10/比较器 0 同相端输入通道 4/P0.14			
12	MCPWM_CH0P/UART0_TX(RX)/SPI_DI(D0)/TIM0_CH0 /ADC_TRIG1/CMP0_IN/P0.15	输入/输出	电机 PWM 通道 0 高边/UART0_TX(RX)/ SPI_DI(DO)/ Timer0 通道 0/ADC 触发信号 1/比较器 0 反相端输 入/P0.15			
13	MCPWM_CH0N/UART0_TX(RX)/SPI_DI(D0)/P1.0	输入/输出	电机 PWM 通道 0 低边/UARTO_TX(RX)/ SPI_DI(DO)/ P1.0,内置可软件开启的 10k 上拉电阻			
14	OPA0_IP/P3.5	输入/输出	运放 0 同相端输入/P3.5			
15	OPA0_IN/P3.7	输入/输出	运放 0 反相端输入/P3.7			
16	ADC_CH11/OPAx_OUT/LDO15/P2.7	输入/输出	ADC 通道 11/0PAx 输出/LD015 输出/P2.7,内置可软件开启的 10k 上拉电阻			
17	GND	地	芯片地,建议多个 GND 引脚在 PCB 上统一接地			

编号	名称	类型	功能说明
			输出功能控制,即需配置 GPIO_FBA98[3:0],同时
			P1.15 需设置为输出态,即需配置 GPIO1_POE[15]。
			LO3 输出与 P1.9 信号为同相关系,即 P1.9 输出为'1'
			时,L03 输出'1'
			低侧栅极驱动信号输出 2, 由 MCU P1.7 口的 PWM
			输出功能控制,即需配置 GPI01_F7654[15:12],同
19	LO2	输出	时 P1.12 需设置为输出态,即需配置 GPIO1_POE[12]。
			LO2 输出与 P1.7 信号为同相关系,即 P1.7 输出为'1'
			时,LO2 输出'1'
			低侧栅极驱动信号输出 1,由 MCU P1.5 口的 PWM
			输出功能控制,即需配置 GPIO1_F7654[7:4],同时
20	L01	输出	P3.13 需设置为输出态,即需配置 GPIO3_POE[13]。
			LO1 输出与 P1.5 信号为同相关系,即 P1.5 输出为'1'
			时,L01 输出'1'
21	VS1	输入/输出	高侧浮动偏置电压 1
			高侧栅极驱动信号输出 1,由 MCU P1.4 口输出信号
22	H01	输出	控制,HO1输出与P1.4 信号为同相关系,即输入为'1'
			时,H01 输出'1'
23	VB1	输入/输出	高侧浮动输入电源电压 1
24	VS2	输入/输出	高侧浮动偏置电压 2
			高侧栅极驱动信号输出 2,由 MCU P1.6 口输出信号
25	HO2	输出	控制,HO2输出与P1.6 信号为同相关系,即输入为'1'
			时,H02 输出'1'
26	VB2	输入/输出	高侧浮动输入电源电压 2
27	vcc	电源	全桥驱动模块供电电源, 4.5~20V
28	VS3	输入/输出	高侧浮动偏置电压 3
			高侧栅极驱动信号输出 3,由 MCU P1.8 口输出信号
29	Н03	输出	控制, HO3 输出与 P1.8 信号为同相关系, 即输入为'1'
			时,H03 输出'1'
30	VB3	输入/输出	高侧浮动输入电源电压 3
31	OPA2_IP/P3.10	输入/输出	运放 2 同相端输入/P3.10
32	OPA2_IN/P3.11	输入/输出	运放 2 反相端输入/P3.11
			SPI_DI(DO)/IIC 时钟/ADC 通道 12/比较器 0 正端输
33	SPI_DI(DO)/SCL/ADC_CH12/CMP0_IP0/P2.9	输入/输出	入通道 0/P2.9
		4A 1 44A .1.	SPI_DI(DO)/IIC 数据/P2.10,内置可软件开启的 10k
34	SPI_DI(D0)/SDA/P2.10	输入/输出	上拉电阻
35	OPA3_IN/P3.14	输入/输出	运放 3 反相端输入/P3.14
36	OPA3_IP/P3.15	输入/输出	运放 3 同相端输入/P3.15
2.5	CHAPA OVER MADRIM DIVING 1971 CO 1971 CO 1	to) (to 1)	比较器 1 输出/电机 PWM 终止信号 0/SPI 片选信号/
37	CMP1_OUT/MCPWM_BKIN0/SPI_CS/REF/P2.3	输入/输出	电压参考信号/P2.3
	WALL ING ALCOHOL CHOOL COLOR		Hall 传感器 A 相输入/电机 PWM 通道 2 高边
38	HALL_INO/MCPWM_CH2P/UART1_TX(RX)/TIM1_CH0/	输入/输出	/UART1_TX(RX)/Timer1 通道 0/ADC 触发信号 3/比
	ADC_TRIG3/ CMP1_IP1/P2.4		较器 1 同相端输入通道 1/P2.4,内置可软件开启的
	ı.	1	L

编号	名称	类型	功能说明				
			10k 上拉电阻				
			Hall 传感器 B 相输入/电机 PWM 通道 2 低边				
	HALL_IN1/MCPWM_CH2N/UART1_TX(RX)/TIM1_CH1/		/UART1_TX(RX)/Timer1 通道 1/ADC 触发信号 0/比				
39	ADC_TRIGO/CMP1_IP2/P2.5/TIM3_CH0/P2.6/TIM3_CH	输入/输出	较器 1 同相端输入通道 2/P2.5/Timer3 通道				
	1/P2.13		0/P2.6/Timer3 通道 1/P2.13,内置可软件开启的 10k				
			上拉电阻				
40	SWCLK	输入	SWD 时钟,内置固定上拉的 10k 电阻				

3.1.3 LKS32MC086N8Q8

图 3-2 LKS32MC086N8Q8 管脚分布图

表 3-2 LKS32MC086N8Q8 管脚说明

编号	衣 3-2 LK332MCC	• , ,	功能说明				
	名称	类型	,,,,_,,,				
0	GND	地	芯片地引脚,建议多个 GND 引脚在 PCB 上统一接地				
1	ADC_CH4/DAC_OUT/P0.0	输入/输出	ADC 通道 4/DAC 输出/P0.0, 内置可软件开启的 10k				
			上拉电阻				
			RSTN/P0.2,默认作为 RSTN 使用,外部接一个				
_			10nF~100nF 的电容到地即可,内部已有 100k 上拉				
2	RSTN/P0.2	输入/输出	电阻。建议 PCB 上在 RSTN 和 AVDD 之间放一个				
			10k~20k的上拉电阻,外部有上拉电阻的情况,RSTN				
			的电容固定为 100nF。				
3	AVDD	电源	芯片电源输入,电压范围 2.2~5.5V。片外去耦电容				
			建议≥1uF,并尽量靠近 AVDD 引脚				
4	SCL/TIM2_CH0/ADC_CH7/P0.3	输入/输出	IIC 时钟/Timer2 通道 0/ADC 通道 7/P0.3				
5	SDA/TIM2_CH1/ADC_CH8/P0.4	输入/输出	IIC 数据/Timer2 通道 1/ADC 通道 8/P0.4				
6	ADC_CH9/P0.5	输入/输出	ADC 通道 9/P0.5				
7	UART1_TX(RX)/TIM1_CH0/CAN_RX/P0.6	输入/输出	UART1_TX(RX)/Timer1 通道 0/CAN 接收/P0.6, 内				
,	OAKTI_TX(KX)/TIMI_CITO/CAN_KX/T0.0		置可软件开启的 10k 上拉电阻				
8	UART1_TX(RX)/TIM1_CH1/CAN_TX/P0.7	输入/输出	UART1_TX(RX)/Timer1 通道 1/CAN 发送/P0.7,内				
O	UARTI_IX(RX)/IIMI_CIII/CAN_IX/FU./		置可软件开启的 10k 上拉电阻				
9	MCPWM_CH1P/TIM2_CH0/P2.11	输入/输出	电机 PWM 通道 1 高边/Timer2 通道 0/P2.11				
10	MCDIANA CUIAN (TIMO CUIA IAD C TIDO CO IDO AO	<i>t</i> 会) <i>/t</i> 会山	电机 PWM 通道 1 低边/Timer2 通道 1/ADC 触发信				
10	MCPWM_CH1N/TIM2_CH1/ADC_TRIG2/P2.12	输入/输出	号 2/P2.12				
11	VALVA INVO (TIMA) CIVIO IARG CIVIAT (CIVIDO IDA (DO 44	to 1 //o.i.i	Hall 传感器 A 相输入/Timer3 通道 0/ADC 通道 15/				
11	HALL_INO/TIM3_CH0/ADC_CH15/CMP0_IP1/P0.11	输入/输出	比较器 0 同相端输入通道 1/P0.11				
	HALL_IN1/TIM3_CH1/	46.1.46.11	Hall 传感器 B 相输入/Timer3 通道 1/ ADC 通道 16/				
12	ADC_CH16/CMP0_IP2/CAN_RX/P0.12	输入/输出	比较器 0 同相端输入通道 2/CAN 接收/P0.12				
		46.1.46.11	Hall 传感器 C 相输入/ ADC 通道 17/比较器 0 同相端				
13	HALL_IN2/ ADC_CH17/CMP0_IP3/CAN_TX/P0.13	输入/输出	输入通道 3/CAN 发送/P0.13				
			比较器 0 输出/电机 PWM 终止信号 1/SPI 时钟				
14	CMP0_OUT/MCPWM_BKIN1/SPI_CLK/TIM0_CH1/	输入/输出	/Timer0 通道 1/ADC 触发信号 0/一线通/ADC 通道				
	ADC_TRIGO/SIF/ADC_CH10/CMP0_IP4/P0.14		10/比较器 0 同相端输入通道 4/P0.14				
			电机 PWM 通道 0 高边/UARTO_TX(RX)/ SPI_DI(DO)/				
15	MCPWM_CH0P/UART0_TX(RX)/SPI_DI(D0)/TIM0_CH0	输入/输出	 Timer0 通道 0/ADC 触发信号 1/比较器 0 反相端输				
	/ADC_TRIG1/CMP0_IN/P0.15		入/P0.15				
			电机 PWM 通道 0 低边/UART0_TX(RX)/ SPI_DI(DO)/				
16	MCPWM_CH0N/UART0_TX(RX)/SPI_DI(D0)/P1.0	输入/输出	P1.0, 内置可软件开启的 10k 上拉电阻				
17	OPA0_IP/P3.5	输入/输出	运放 0 同相端输入/P3.5				
18	OPAO_IN/P3.7	输入/输出	运放 0 反相端输入/P3.7				
	•		ADC 通道 11/OPAx 输出/LDO15 输出/P2.7,内置可				
19	ADC_CH11/OPAx_OUT/LDO15/P2.7	输入/输出	软件开启的 10k 上拉电阻				
20	OPA1_IP/P3.0	输入/输出	运放 1 同相端输入/P3.0				
21	OPA1_IN/P3.1	输入/输出	运放 1 反相端输入/P3.1				
22	VCC	电源	全桥驱动模块供电电源, 10~20V				
22	VUU	电你	土切孙沃尔庆电电你,10~200				

编号	名称	类型	功能说明
23	L01	输出	低侧栅极驱动信号输出 1, 由 MCU P1.5 口的 PWM 输出功能控制,即需配置 GPIO1_F7654[7:4],同时 P3.13 需设置为输出态,即需配置 GPIO3_POE[13]。 对于 LKS32MC086N8Q8 LO1 输出与 P1.5 信号为反相关系,即输入为'0'时, LO1 输出'1' 对于 LKS32MC086AN8Q8 LO1 输出与 P1.5 信号为同相关系,即输入为'0'时, LO1 输出与 P1.5 信号为同相关系,即输入为'0'时,
24	L02	输出	低侧栅极驱动信号输出 2, 由 MCU P1.7 口的 PWM 输出功能控制,即需配置 GPI01_F7654[15:12],同时 P1.12 需设置为输出态,即需配置 GPI01_POE[12]。对于 LKS32MC086N8Q8 LO2 输出与 P1.7 信号为反相关系,即输入为'0'时,LO2 输出'1' 对于 LKS32MC086AN8Q8 LO2 输出与 P1.7 信号为同相关系,即输入为'0'时,LO2 输出与 P1.7 信号为同相关系,即输入为'0'时,LO2 输出'0'
25	L03	输出	低侧栅极驱动信号输出 3, 由 MCU P1.9 口的 PWM 输出功能控制,即需配置 GPIO_FBA98[3:0],同时 P1.15 需设置为输出态,即需配置 GPIO1_POE[15]。对于 LKS32MC086N8Q8 LO3 输出与 P1.9 信号为反相关系,即输入为'0'时, LO3 输出'1' 对于 LKS32MC086AN8Q8 LO3 输出与 P1.9 信号为同相关系,即输入为'0'时, LO3 输出与 P1.9 信号为同相关系,即输入为'0'时, LO3 输出'0'
26	VS1	输入/输出	高侧浮动偏置电压 1
27	HO1	输出	高侧栅极驱动信号输出 1,由 MCU P1.4 口输出信号控制,HO1输出与 P1.4 信号为同相关系,即输入为'1'时,HO1输出'1'
28	VB1	输入/输出	高侧浮动输入电源电压 1
29	VS2	输入/输出	高侧浮动偏置电压 2
30	HO2	输出	高侧栅极驱动信号输出 2,由 MCU P1.6 口输出信号 控制,H02 输出与 P1.6 信号为同相关系,即输入为'1' 时,H02 输出'1'
31	VB2	输入/输出	高侧浮动输入电源电压 2
32	VS3	输入/输出	高侧浮动偏置电压 3
33	НО3	输出	高侧栅极驱动信号输出 3,由 MCU P1.8 口输出信号控制,H03 输出与 P1.8 信号为同相关系,即输入为'1'时,H03 输出'1'
34	VB3	输入/输出	高侧浮动输入电源电压 3
35	NC	NC	无连接
	1	l	<u> </u>

编号	名称	类型	功能说明
36	ADC_CH13/MCPWM_CH3P/UART0_TX(RX)/SCL/TIM0_ CH0/ADC_TRIG2/P1.10	输入/输出	电机 PWM 通道 3 高边/UARTO_TX(RX)/IIC 时钟 /Timer0 通道 0/ADC 触发信号 2/P1.10, 内置可软件 开启的 10k 上拉电阻
37	MCPWM_CH3N/UARTO_TX(RX)/SDA/TIMO_CH1/ ADC_TRIG3/SIF/P1.11	输入/输出	电机 PWM 通道 3 低边/UARTO_TX(RX)/IIC 数据 /Timer0 通道 1/ADC 触发信号 3/P1.11, 内置可软件 开启的 10k 上拉电阻
38	OPA2_IP/P3.10	输入/输出	运放 2 同相端输入/P3.10
39	OPA2_IN/P3.11	输入/输出	运放 2 反相端输入/P3.11
40	SPI_DI(DO)/SCL/ADC_CH12/CMP0_IP0/P2.9	输入/输出	SPI_DI(DO)/IIC 时钟/ADC 通道 12/比较器 0 同相端 输入通道 0/P2.9
41	SPI_DI(DO)/SDA/P2.10	输入/输出	SPI_DI(DO)/IIC 数据/P2.10,内置可软件开启的 10k 上拉电阻
42	OPA3_IN/P3.14	输入/输出	运放 3 反相端输入/P3.14
43	OPA3_IP/P3.15	输入/输出	运放 3 同相端输入/P3.15
44	SPI_CLK/ADC_CH14/CMP1_IP0/P2.1	输入/输出	SPI 时钟/ADC 通道 14/比较器 1 同相端输入通道 0/P2.1,内置可软件开启的 10k 上拉电阻
45	CMP1_IN/P2.2	输入/输出	比较器 1 反相端输入/P2.2
46	CMP1_OUT/MCPWM_BKIN0/SPI_CS/REF/P2.3	输入/输出	比较器 1 输出/电机 PWM 终止信号 0/SPI 片选信号/ 电压参考信号/P2.3
47	HALL_IN0/MCPWM_CH2P/UART1_TX(RX)/TIM1_CH0/ ADC_TRIG3/ CMP1_IP1/CAN_RX/P2.4	输入/输出	Hall 传感器 A 相输入/电机 PWM 通道 2 高边 /UART1_TX(RX)/Timer1 通道 0/ADC 触发信号 3/比 较器 1 同相端输入通道 1/CAN 接收/P2.4, 内置可软件开启的 10k 上拉电阻
48	HALL_IN1/MCPWM_CH2N/UART1_TX(RX)/TIM1_CH1/ ADC_TRIG0 /CMP1_IP2/CAN_TX/P2.5	输入/输出	Hall 传感器 B 相输入/电机 PWM 通道 2 低边 /UART1_TX(RX)/Timer1 通道 1/ADC 触发信号 0/比 较器 1 同相端输入通道 2/CAN 发送/P2.5, 内置可软件开启的 10k 上拉电阻
49	HALL_IN2/MCPWM_CH3P/TIM3_CH0/ ADC_TRIG1/CMP1_IP3/P2.6	输入/输出	Hall 传感器 C 相输入/电机 PWM 通道 3 高边 /Timer3 通道 0/ADC 触发信号 1/比较器 1 同相端输入通道 3/P2.6,内置可软件开启的 10k 上拉电阻
50	SWCLK	输入	SWD 时钟,内置固定上拉的 10k 电阻
51	SWDIO/SCL/P2.14	输入/输出	SWD 数据/ IIC 时钟/P2.14,内置固定上拉的 10k 电阻。
52	SDA/P2.15	输入/输出	IIC 数据/P2.15

3.1.4 LKS32MC088KU8Q8

图 3-3 LKS32MC088KU8Q8 管脚分布图

表 3-3 LKS32MC088KU8Q8 管脚说明

编号	名称	类型	功能说明			
0	GND	地	芯片地引脚,建议多个 GND 引脚在 PCB 上统一接地			
1	SWCLK	输入	SWD 时钟,内置固定上拉的 10k 电阻			
2	CW/DIO /CDA /D2 1F /D0 0	输入/输出	SWD 数据/IIC 数据/P2.15/P0.0,内置固定上拉的 10k			
	SWDIO/SDA/P2.15/P0.0	捌八/制凸	电阻。			
			RSTN/P0.2, 默认作为 RSTN 使用,外部接一个			
	RSTN/P0.2		10nF~100nF 的电容到地即可,内部已有 100k 上拉			
3		输入/输出	电阻。建议 PCB 上在 RSTN 和 AVDD 之间放一个			
			10k~20k的上拉电阻,外部有上拉电阻的情况,RSTN			
			的电容固定为 100nF。			
4	AVDD	电源	LDO 5V 电源输出,片外去耦电容建议≥1uF,并尽量			
4	AVDD	电你	靠近 AVDD 引脚。			
			5V LDO 输入电源,输入电源范围 7~20V,最大输出			
5	VCCLDO	输入电源	电流能力 80mA。片外去耦电容建议>0.33uF,并尽			
			量靠近 VCCLDO 引脚。			
6	P3.2	输入/输出	P3.2			

编号	名称	类型	功能说明
7	P3.3	输入/输出	P3.3
8	P3.4	输入/输出	P3.4
9	SCL/TIM2_CH0/ADC_CH7/P0.3	输入/输出	IIC 时钟/Timer2 通道 0/ADC 通道 7/P0.3
10	SDA/TIM2_CH1/ADC_CH8/P0.4	输入/输出	IIC 数据/Timer2 通道 1/ADC 通道 8/P0.4
		输入/输出	UART1_TX(RX)/Timer1 通道 0/CAN 接收/P0.6,内
11	UART1_TX(RX)/TIM1_CH0/CAN_RX/P0.6		置可软件开启的 10k 上拉电阻
			UART1_TX(RX)/Timer1 通道 1/CAN 发送/P0.7,内
40	UART1_TX(RX)/TIM1_CH1/CAN_TX/P0.7	tA) (tA II)	置可软件开启的 10k 上拉电阻
12	MCPWM_CH1N/TIM2_CH1/ADC_TRIG2/P2.12	输入/输出	电机 PWM 通道 1 低边/Timer2 通道 1/ADC 触发信
			号 2/P2.12
12	HALL INO /TIM2 CHO /ADC CH15 /CMD0 ID1 /D0 11	t≙) /t≙ili	Hall 传感器 A 相输入/Timer3 通道 0/ADC 通道 15/
13	HALL_IN0/TIM3_CH0/ADC_CH15/CMP0_IP1/P0.11	输入/输出	比较器 0 同相端输入通道 1/P0.11
14	HALL_IN1/TIM3_CH1/	输入/输出	Hall 传感器 B 相输入/Timer3 通道 1/ ADC 通道 16/
14	ADC_CH16/CMP0_IP2/CAN_RX/P0.12	棚八八棚山	比较器 0 同相端输入通道 2/CAN 接收/P0.12
15	HALL_IN2/ ADC_CH17/CMP0_IP3/CAN_TX/P0.13	输入/输出	Hall 传感器 C 相输入/ ADC 通道 17/比较器 0 同相端
13	HALL_IN2/ ADC_CH1//CMF0_IF5/CAN_IX/F0.15	捌八√/ 捌 山	输入通道 3/CAN 发送/P0.13
	CMP0_OUT/MCPWM_BKIN1/SPI_CLK/TIM0_CH1/	输入/输出	比较器 0 输出/电机 PWM 终止信号 1/SPI 时钟
16	ADC_TRIGO/SIF/ADC_CH10/CMP0_IP4/P0.14		/Timer0 通道 1/ADC 触发信号 0/一线通/ADC 通道
	ADC_INIGO/SIF/ADC_CITTO/CMF0_IF4/F0.14		10/比较器 0 同相端输入通道 4/P0.14
	MCDWM CHAD /HADTO TV(DV) /CDL DI(DO) /TIMO CHO	输入/输出	电机 PWM 通道 0 高边/UART0_TX(RX)/ SPI_DI(DO)/
17	MCPWM_CH0P/UART0_TX(RX)/SPI_DI(D0)/TIM0_CH0 /ADC_TRIG1/CMP0_IN/P0.15		Timer0 通道 0/ADC 触发信号 1/比较器 0 反相端输
	/ADC_INIGI/GMF0_IN/F0.13		入/P0.15
18	MCPWM_CH0N/UART0_TX(RX)/SPI_DI(D0)/P1.0	输入/输出	电机 PWM 通道 0 低边/UART0_TX(RX)/ SPI_DI(DO)/
10	MCF WM_CHON/ OAKTO_TA(KA)/3F1_DI(DO)/F1.0	捌八√/ 捌 山	P1.0,内置可软件开启的 10k 上拉电阻
19	OPA0_IP/P3.5	输入/输出	运放 0 同相端输入/P3.5
20	OPAO_IN/P3.7	输入/输出	运放 0 反相端输入/P3.7
21	ADC_CH11/OPAx_OUT/LDO15/P2.7	输入/输出	ADC 通道 11/OPAx 输出/LDO15 输出/P2.7,内置可
21	ADC_CITT/OTAX_OUT/EDOTS/12.7	1007 17 100 111	软件开启的 10k 上拉电阻
			低侧栅极驱动信号输出 1, 由 MCU P1.7 口的 PWM
			输出功能控制,即需配置 GPIO1_F7654[15:12],同
22	L01	输出	时 P1.12 需设置为输出态,即需配置 GPIO1_POE[12]。
			LO2 输出与 P1.7 信号为同相关系,即 P1.7 输出为'1'
			时, LO2 输出'1'
23	VCC	电源	全桥驱动模块供电电源, 10~20V
			低侧栅极驱动信号输出 0,由 MCU P1.5 口的 PWM
			输出功能控制,即需配置 GPIO1_F7654[7:4],同时
24	L00	输出	P3.13 需设置为输出态,即需配置 GPIO3_POE[13]。
			LO1 输出与 P1.5 信号为同相关系,即 P1.5 输出为'1'
			时, L01 输出'1'
25	VS0	输入/输出	高侧浮动偏置电压 0
			高侧栅极驱动信号输出 0,由 MCU P1.4 口输出信号
26	ноо	输出	控制,H00输出与P1.4 信号为同相关系,即输入为'1'
			时, H00 输出'1'

P1.6 口输出信号 E系,即输入为'1'			
系,即输入为'1'			
21.8 口输出信号			
系,即输入为'1'			
P1.9 口的 PWM			
A98[3:0],同时			
PIO1_POE[15]。			
『P1.9 输出为'1'			
比较器 0 同相端			
软件开启的 10k			
)/SPI 片选信号/			
I 通道 2 高边			
的 触发信号 3/比			
'P2.4, 内置可软			
1 通道 2 低边			
注触发信号 0/比			
P2.5, 内置可软			
I 通道 3 高边			
校器 1 同相端输			
入通道 3/P2.6, 内置可软件开启的 10k 上拉电阻			

3.2 管脚复用功能说明

LKS32MC086(A)/084D/088K 引脚复用功能相同,下表以LKS32MC086N8Q8 为例。

表 3-3 LKS32MC086N8Q8 引脚功能选择

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
POIL	Arı	Arz	AFS	Ar4	АГЭ	Aro	Ar/	Аго	Ar9	AFIU	AFII	
P0.0												ADC_CH4, DAC_OUT
P0.1												ADC_CH6
P0.2												
P0.3						SCL		TIM2_CH0				ADC_CH7
P0.4						SDA		TIM2_CH1				ADC_CH8
P0.5												ADC_CH9
P0.6				UART1_TX(RX)			TIM1_CH0			CAN_RX		
P0.7				UART1_TX(RX)			TIM1_CH1			CAN_TX		
P0.8												
P0.9						SCL		TIM2_CH0				
P0.10						SDA		TIM2_CH1				
P0.11		HALL_IN0						TIM3_CH0				ADC_CH15/CMP0_IP1
P0.12		HALL_IN1						TIM3_CH1		CAN_RX		ADC_CH16/CMP0_IP2
P0.13		HALL_IN2								CAN_TX		ADC_CH17/CMP0_IP3
P0.14	CMP0_OUT		MCPWM_BKIN1		SPI_CLK		TIM0_CH1		ADC_TRIG0		SIF	ADC_CH10/CMP0_IP4
P0.15	_	_	MCPWM_CH0P	UARTO_TX(RX)	SPI_DI(DO)		TIM0_CH0		ADC_TRIG1			CMP0_IN

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P1.0			MCPWM_CH0N	UARTO_TX(RX)	SPI_DI(DO)							
P1.1					SPI_CS							
P1.2								TIM3_CH0				
P1.3								TIM3_CH1				ADC_CH5
P1.4	LRC		MCPWM_CH0P									
P1.5	HRC		MCPWM_CH0N									
P1.6			MCPWM_CH1P									
P1.7			MCPWM_CH1N									
P1.8			MCPWM_CH2P									
P1.9			MCPWM_CH2N									
P1.10			MCPWM_CH3P	UARTO_TX(RX)		SCL	TIM0_CH0		ADC_TRIG2			ADC_CH13
P1.11			MCPWM_CH3N	UARTO_TX(RX)		SDA	TIM0_CH1		ADC_TRIG3		SIF	
P1.12			MCPWM_CH1N									
P1.13					SPI_CLK		TIM0_CH0					
P1.14					SPI_DI(DO)		TIM0_CH1					
P1.15			MCPWM_CH2N		SPI_DI(DO)			TIM2_CH0				

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P2.0					SPI_CS			TIM2_CH1				
P2.1					SPI_CLK							ADC_CH14/ CMP1_IP0
P2.2												CMP1_IN
P2.3	CMP1_OUT		MCPWM_BKIN0		SPI_CS							REF
P2.4		HALL_IN0	MCPWM_CH2P	UART1_TX(RX)			TIM1_CH0		ADC_TRIG3	CAN_RX		CMP1_IP1
P2.5		HALL_IN1	MCPWM_CH2N	UART1_TX(RX)			TIM1_CH1		ADC_TRIG0	CAN_TX		CMP1_IP2
P2.6		HALL_IN2	MCPWM_CH3P					TIM3_CH0	ADC_TRIG1		SIF	CMP1_IP3
P2.7												ADC_CH11/ OPAx_OUT/ LDO15
P2.8				UART1_TX(RX)				TIM3_CH0				OSC_IN
P2.9					SPI_DI(DO)	SCL						ADC_CH12/ CMP0_IP0
P2.10					SPI_DI(DO)	SDA						
P2.11			MCPWM_CH1P					TIM2_CH0				
P2.12			MCPWM_CH1N					TIM2_CH1	ADC_TRIG2			
P2.13			MCPWM_CH3N					TIM3_CH1				
P2.14						SCL						
P2.15						SDA						

Port	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AFE
P3.0												OPA1_IP
P3.1												OPA1_IN
P3.2												
P3.3												
P3.4												
P3.5												OPA0_IP
P3.6												
P3.7												OPA0_IN
P3.8												
P3.9				UART1_TX(RX)				TIM3_CH1				OSC_OUT
P3.10												OPA2_IP
P3.11												OPA2_IN
P3.12												
P3.13			MCPWM_CH0N									
P3.14												OPA3_IN
P3.15												OPA3_IP

4 封装尺寸

4.1 LKS32MC084DF6Q8

QFN40 Profile Quad Flat Package:

图 4-1 LKS32MC084DF6Q8 封装图示

表 4-1 LKS32MC084DF6Q8 封装尺寸

* CONTROLLING DIMENSION : MM

SYMBOL	MIL	LIMETE	R		INCH		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00	0.02	0.05	0.000	0.0008	0.002	
A2	0.50	0.55	0.60	0.020	0.022	0.024	
А3	C).20 R	EF.	C	.008	REF.	
b	0.15	0.20	0.25	0.006	0.008	0.010	
D	4.90	5.00	5.10	0.193	0.197	0.201	
D2	3.60	3.70	3.80	0.142	0.146	0.150	
Ε	4.90	5.00	5.10	0.193	0.197	0.201	
E2	3.60	3.70	3.80	0.142	0.146	0.150	
L	0.30	0.40	0.50	0.012	0.016	0.020	
е	C).40 b:	sc	0.016 bsc			
R	0.075			0.003	l		
TOL	ERANC	ES OF	FORM	AND	POSITION	NC	
aaa		0.10		0.004			
bbb		0.07			0.003	5	
ccc	0.10			0.004			
ddd	0.05			0.002			
eee	0.08			0.003			
fff		0.10			0.004	-	

4.2 LKS32MC086N8Q8

QFN52 Profile Quad Flat Package:

图 4-2 LKS32MC086N8Q8 封装图示

表 4-2 LKS32MC086N8Q8 封装尺寸

CVMDOL		MILLIMETER	
SYMBOL	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	0.00	0.02	0.05
A3		0.20REF	
b	0.15	0.20	0.25
D	5.90	6.00	6.10
Е	5.90	6.00	6.10
D2	4.40	4.50	4.60
E2	4.40	4.50	4.60
e	0.30	0.40	0.45
Н		0.35REF	
K	0.25	-	-
L	0.35	0.40	0.45
R	0.075	-	-
c1	-	0.17	-
c2	-	0.17	-

4.3 LKS32MC088KU8Q8

QFN44 Profile Quad Flat Package:

图 4-3 LKS32MC088KU8Q8 封装图示

表 4-3 LKS32MC088KU8Q8 封装尺寸

CVMDOI		MILLIMETER				
SYMBOL	MIN	NOM	MAX			
A	0.70	0.75	0.80			
A1	0.00	-	0.05			
A2		0.203REF				
b	0.18	0.23	0.28			
b1	0.15	0.20	0.25			
D	7.90	8.00	8.10			
Е	7.90	8.00	8.10			
e		0.50BSC				
e1		2.00BSC				
D1	4.60	4.70	4.80			
E1	4.60	4.70	4.80			
L	0.30	0.40	0.50			
L1	0.45	0.50	0.55			
K		0.90BSC				
K1	2.40BSC					
K2	1.25BSC					
Н		0.50BSC				

5 电气性能参数

LKS32MC086(A)/084D 芯片内部集成 6N Driver, 其中 MCU 部分电气参数如下列表格所示,以 LKS32MC086N8Q8 为例。

表 5-1 LKS32MC086N8Q8 电气极限参数

参数	最小	最大	单位	说明
MCU 电源电压(AVDD)	-0.3	+6.0	V	
预驱电源电压(VCC)	-0.3	+25.0	V	
工作温度	-40	+105	°C	
存储温度	-40	+125	°C	
结温	-	150	°C	
引脚温度(焊接 10 秒)	-	300	°C	

表 5-2 LKS32MC086N8Q8 建议工况参数

参数	最小	典型	最大	单位	说明
MCU 电源电压(AVDD)	2.2	5	5.5	V	
模拟工作电压(AVDD _A)	3.3	5	5.5	V	ADC 选择 2.4V 内部基准源
快加工下电压(AVDDA)	2.8	5	5.5	V	ADC 选择 1.2V 内部基准源
预驱电源电压(VCC)	4.5		20	V	6N 预驱供电

运算放大器可以在 2.2V 下工作, 但输出幅度受限。

表 5-3 LKS32MC086N8Q8 ESD 性能参数

项目	最小	最大	单位
ESD测试 (HBM)	-6000	6000	V

根据《MIL-STD-883J Method 3015.9》,在 25° C,55%相对湿度环境下,在被测芯片的所有 IO 引脚施加进行静电放电 3 次,每次间隔 1s。测试结果显示芯片抗静电放电等级达到 Class $3A \geq 4000V$,<8000V。

表 5-4 LKS32MC086N8Q8 Latch-up 性能参数

项目	最小	最大	单位
Latch-up电流 (85°C)	-200	200	mA

根据《JEDEC STANDARD NO.78E NOVEMBER 2016》,对所有电源 IO 施加过压 8V,在每个信号 IO 上注入 200mA 电流。测试结果显示芯片抗拴锁等级为 200mA。

表 5-5 LKS32MC086N8Q8 IO 极限参数

	* *	• " "	* -	
参数	描述	最小	最大	单位
V_{IN}	GPIO信号输入电压范围	-0.3	6.0	V
I _{INJ_PAD}	单个GPIO最大注入电流	-11.2	11.2	mA
I _{INJ_SUM}	所有GPIO最大注入电流	-50	50	mA

表 5-6 LKS32MC086N8Q8 IO DC 参数

参数	描述	AVDD	条件	最小	最大	单位
少奴	加火	AVDD	- ホロ	4人1,		— <u> </u>

LKS32MC08X with built-in 6N driver Datasheet

V_{IH}	数字IO输入高电压	5V		0.7*AVDD		17
		3.3V	-	2.0		V
V_{IL}	数字IO输入低电压	5V	-		0.3*AVDD	V
		3.3V			0.8	
V_{HYS}	施密特迟滞范围	5V	_	0.1*AVDD		V
		3.3V	-	U.I AVDD		
I_{IH}	数字IO输入高电压,电流消耗	5V			1	uA
		3.3V	-		1	
I _{IL}	数字IO输入低电压,电流消耗	5V		-1		uA
		3.3V	-			
V _{он}	数字IO输出高电压		最大驱动电流	AVDD-0.8		V
			11.2mA			
V _{OL}	数字IO输出低电压		最大驱动电流		0.5	V
			11.2mA			
R _{pup}	上拉电阻大小*			8	12	kΩ
R _{io-ana}	IO与内部模拟电路间连接电阻			100	200	Ω
C _{IN}	数字IO输入电容	5V			10	pF
		3.3V	-		10	

^{*}仅部分 IO 内置上拉,详见引脚说明章节

6 模拟性能参数

LKS32MC086/084D/088K 芯片内部集成 6N Driver,模拟性能参数如下表所示,以LKS32MC086N8Q8为例。

表 6-1 LKS32MC086N8Q8 模拟性能参数

参数	最小	典型	是 最大	单位	说明			
模数转换器(ADC)								
7/64 NE	3.3	5	5.5	V	ADC 选择 2.4V 内部基准源			
工作电源	2.8	5	5.5	V	ADC 选择 1.2V 内部基准源			
输出码率		3		MHz	f _{adc} /16			
光八松) /	-REF		+REF	V	Gain=1 时; REF=2.4V			
差分输入信号范围	-3.6		+3.6	V	Gain=2/3 时; REF=2.4V			
单端输入信号范围	-0.3		AVDD+0.3	V	受限于 IO 口输入电压限制			
直流失调(offset)		5	10	mV	可校正			
有效位数(ENOB)	10.5	11		bit				
INL		2	3	LSB				
DNL		1	2	LSB				
SNR	63	66		dB				
输入电阻	100k			Ohm				
输入电容		10pF		F				
			基准电压(RE	F)				
工作电源	2.2	5	5.5	V				
输出偏差	-9		9	mV				
电源抑制比		70		dB				
温度系数		20		ppm/°C				
输出电压		1.2		V				
		娄	枚模转换器(D	AC)				
工作电源	2.2	5	5.5	V				
负载电阻	5k			Ohm				
负载电容			50p	F	输出 BUFFER 开启			
输出电压范围	0.05		AVDD-0.1	V				
转换速度			1M	Hz				
DNL		1	2	LSB				
INL		2	4	LSB				
OFFSET		5	10	mV				
SNR	57	60	66	dB				
运算放大器(OPA)								
工作电源	2.8	5	5.5	V				
带宽		10M	20M	Hz				
负载电阻	20k			Ohm				
负载电容			5p	F				
输入共模范围	0		AVDD	V				

参数	最小	典型	最大	单位	说明			
输出信号范围	0.1		AVDD-0.1	V	最小负载电阻下			
共模电平(Vcm)	1.65	1.9	2.2	V	测量条件:常温。 运放摆幅=2×min(AVDD-Vcm, Vcm)。建议使用 OPA 单端输出 的应用上电后进行 Vcm 测量并 进行软件减除校正。更多分析请 参考官网应用笔记《ANN009-运 放差分和单端工作模式区别》			
OFFSET		10	15	mV				
共模抑制(CMRR)		80		dB				
电源抑制(PSRR)		80		dB				
负载电流			500	uA				
摆率(Slew rate)		5		V/us				
相位裕度		60		度				
比较器(CMP)								
工作电源	2.2	5	5.5	V				
输入信号范围	0		AVDD	V				
OFFSET		5	10	mV				
传输延时		0.15u		S	默认功耗			
1女棚延門		0.6u		S	低功耗			
回差(Hysteresis)		20		mV	HYS='0'			
四左(Hysteresis)		0		mV	HYS='1'			

模拟寄存器表说明:

地址 0x40000040~0x40000050 是各个模块的校正寄存器,这些寄存器在出厂之前都会填上各自的校正值。一般情况下用户不要去配置或改变这些值。如果需要对模拟参数进行微调,需要读取原校正值,并以此为基础进行微调。

地址 0x40000020~0x4000003c 是开放给用户的寄存器,其中空白部分的寄存器必须全部配置为 0 (芯片上电后会被复位为 0)。其他寄存器根据应用场合需要进行配置。

7 电源管理系统

AVDD 引脚电源系统

电源管理系统由 LDO15 模块、电源检测模块(PVD)、上电/掉电复位模块(POR)组成。 AVDD 由 2.2V~5.5V 电源供电,芯片内部集成一路 LDO15 给内部所有数字电路、PLL 模块供电。 LDO 上电后自动开启,无需软件配置,但 LDO 输出电压可通过软件实现微调。

LDO15 的输出电压可通过设置寄存器 LDO15TRIM<2:0>来调节,具体寄存器所对应值见模拟寄存器表说明。LDO15 在芯片出厂前已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调 LDO 的输出电压,需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

POR 模块监测 LD015 的电压,在 LD015 电压低于 1.1V 时(例如上电之初,或者掉电之时), 为数字电路提供复位信号以避免数字电路工作产生异常。

PVD 模块对 5V 输入电源进行检测,如低于某一设定阈值,则产生报警(中断)信号以提醒 MCU。中断提醒阈值可通过寄存器 PVDSEL<1:0>设置为不同的电压。PVD 模块可通过设置 PD_PDT='1'关闭。具体寄存器所对应值见模拟寄存器表说明。

VCC 引脚电源系统

VCC 引脚供电范围是 4.5~20V, 为芯片内驱动模块提供供电, 欠压位典型值为 4V。

8 时钟系统

时钟系统包括内部 32KHz RC 时钟、内部 4MHz RC 时钟、外部 4MHz 晶体起振电路、PLL 电路组成。

32K RC 时钟作为 MCU 系统慢时钟使用,作为诸如滤波模块或者低功耗状态下的 MCU 时钟使用。4MHz RC 时钟作为 MCU 主时钟使用,配合 PLL 可提供最高到 96MHz 的时钟。外部 4MHz 晶体起振电路作为备份时钟使用。

32k 和 4M RC 时钟均带有出厂校正,可在常温下实现 32K RC 时钟±5%的精度,4M RC 时钟±1%的精度。其中 4M RC 时钟还开放有用户校正寄存器,可进一步将精度校正到±0.5%范围。32K RC 时钟在-40~105℃范围内的精度为±20%, 4M RC 时钟在该温度范围的精度为±1%。

32K RC 时钟频率可通过寄存器 RCLTRIM<3:0>进行设置,4M RC 时钟频率可通过寄存器 RCHTRIM<5:0>进行设置,具体寄存器所对应值见模拟寄存器表说明。

芯片出厂前时钟已经过校正,一般情况下,用户不需要额外配置这些寄存器。如需微调频率,需要读取原配置值,在此基础加上微调量对应的配置值填入寄存器。

4M RC 时钟通过设置 RCHPD ='0'打开(默认打开,设'1'关闭), RC 时钟需要 Bandgap 电压基准源模块提供基准电压和电流,因此开启 RC 时钟需要先开启 BGP 模块。芯片上电的默认状态下,4M RC 时钟和 BGP 模块都是开启的。32K RC 时钟是始终开启的,不能关闭。

PLL 对 4M RC 时钟进行倍频,以提供给 MCU、ADC 等模块更高速的时钟。MCU 和 PWM 模块的最高时钟为 96MHz, ADC 模块典型工作时钟为 48MHz,通过寄存器 ADCLKSEL<1:0>可设置为不同的 ADC 工作频率。

PLL 通过设置 PLLPDN='1'打开(默认关闭,设 1 打开),开启 PLL 模块之前,同样也需要开启 BGP(Bandgap)模块。开启 PLL 之后,PLL 需要 6us 的稳定时间来输出稳定时钟。芯片上电的默认状态下,RCH 时钟和 BGP 模块都是开启的,但 PLL 默认是关闭的,需要软件来开启。

晶体起振电路内置了放大器,需在 IO OSC_IN/OSC_OUT 之间接入一个晶体,且 OSC_IN/OSC_OUT 上各放一个 15pF 的电容到地,并设置 XTALPDN='1'即可起振。

9 基准电压源

该基准源为 ADC、DAC、RC 时钟、PLL、温度传感器、运算放大器、比较器和 FLASH 提供基准 电压和电流,使用上述任何一个模块之前,都需要开启 BGP 基准电压源。

芯片上电的默认状态下,BGP模块是开启的。基准源通过设置BGPPD='0'打开,从关闭到开启, BGP 需要约 2us 达到稳定。BGP 输出电压约 1.2V, 精度为±0.8%

基准源可通过设置 REF_AD_EN='1',将基准电压送至 IO P2.3 进行测量。

10 ADC 模块

芯片内部集成 1 路同步双采样的 SAR 结构 ADC, 芯片上电的默认状态下, ADC 模块是关闭的。 ADC 开启前,需要先开启 BGP 和 4M RC 时钟和 PLL 模块,并选择 ADC 工作频率。默认配置下 ADC 工作时钟是 48M,对应 3MHz 的转换数据率。

同步双采样电路可在同一时刻对两路输入信号进行采样,采样完成之后 ADC 按先后顺序将这两路信号进行转换,并写入相应的数据寄存器中。

ADC 完成一次转换需要 16 个 ADC 时钟周期,其中 13 个为转换周期,3 个为采样周期。即 $f_{conv} = f_{odc}/16$ 。在 ADC 时钟设为 48M 时,转换速率是 3MHz。

ADC 在降频应用时,可通过寄存器 CURRIT<1:0>降低 ADC 的功耗水平。

ADC 可工作在如下模式:单次单通道触发、连续单通道、单次 1~20 通道扫描、连续 1~20 通道扫描。每路 ADC 都有 20 组独立寄存器对应每一个通道。

ADC 触发事件可以来自外部的定时器信号 T0、T1、T2、T3 发生到预设次数,或者为软件触发。 20 个通道里最后一个通道用来测量 ADC 自身的 offset,将其保存在通道寄存器中,其他通道的 ADC 值都已自动减去该 offset。在芯片上电之初,应由 MCU 发起 offset 校正信号,校正控制模块将

ADC 通道设置为通道 1,并将值储存在通道寄存器中。如果客户对 offset 要求较高,可定期(例如一小时/一天)在 ADC 空闲时将 offset 校正一次。

在 GAIN_REF=0 时,基准电压源为 2.4V。ADC 带有两种增益模式,通过 GAIN_SHAx 进行设置,对应 1 倍和 2/3 倍增益。1 倍增益对应±2.4V 的输入信号, 2/3 倍增益对应±3.6V 的输入信号幅度。在测量运放的输出信号时,根据运放可能输出的最大信号来选择具体的 ADC 增益。

11 运算放大器

4 路输入输出 rail-to-rail 运算放大器 (084D 为 3 路),内置反馈电阻 R2/R1,外部引脚需串联一个电阻 R0。反馈电阻 R2:R1 的阻值可通过寄存器 RES_OPA0<1:0>设置,以实现不同的放大倍数。具体寄存器所对应值见模拟寄存器表说明。

最终的放大倍数为 R2/(R1+R0), 其中 R0 是外部电阻的阻值,

对于 MOS 管电阻直接采样的应用,建议接>20kΩ 的外部电阻,以减小 MOS 管关断时,往芯片引脚里流入的电流。

对于小电阻采样的应用,建议接 100Ω 的外部电阻。

放大器可通过设置 OPAOUT_EN<2:0>选择将 4 路放大器中的某一路输出信号通过 BUFFER 送至 P2.7 IO 口进行测量和应用(对应关系见 datasheet 芯片管脚说明)。因为有 BUFFER 存在,在运放正常工作模式下也可以选择送一路运放输出信号出来。

芯片上电的默认状态下,放大器模块是关闭的。放大器可通过设置 OPAxPDN ='1'打开,开启放大器之前,需要先开启 BGP 模块。

运放输入同相和反相端内置钳位二极管,电机相线通过一匹配电阻后直接接入输入端,从而简化了 MOSFET 电流采样的外置电路。

12 比较器

内置 2 路输入 rail-to-rail 比较器,比较器比较速度可编程、迟滞电压可编程、信号源可编程。 比较器的比较延时可通过寄存器 IT_CMP 设置为 0.15uS/0.6uS。 迟滞电压通过 CMP_HYS 设置为 $20mV/0mV_{\circ}$

比较器同相和反相两个输入端的信号来源都可通过寄存器 CMP_SELP<2:0>和 CMP_SELN<1:0> 编程,详见寄存器模拟说明。

芯片上电的默认状态下,比较器模块是关闭的。比较器通过设置 CMPxPDN ='1'打开, 开启比较 器之前,需要先开启 BGP 模块。

13 温度传感器

芯片内置精度为±2℃的温度传感器。芯片出厂前会经温度校正,校正值保存在 flash info 区。 芯片上电的默认状态下,温度传感器模块是关闭的。开启传感器之前,需要先开启 BGP 模块。 温度传感器通过设置 TMPPDN='1'打开, 开启到稳定需要约 2us, 因此需在 ADC 测量传感器之 前 2us 打开。

14 DAC 模块

芯片内置一路 12bit DAC,输出信号的最大量程可通过寄存器 DAC_GAIN<1:0>设置为 1.2V/3V/4.85V。

12bit DAC 可通过配置寄存器 DACOUT_EN=1,将 DAC 输出送至 IO 口 P0.0,可驱动>5kΩ的负 载电阻和 50pF 的负载电容。

DAC 最大输出码率为 1MHz。

芯片上电的默认状态下, DAC 模块是关闭的。DAC 可通过设置 DAC12BPDN =1 打开, 开启 DAC 模块之前,需要先开启 BGP 模块。

15 处理器核心

- ➤ 32 位 Cortex-M0+DSP 双核处理器
- ▶ 2线 SWD 调试管脚
- ▶ 最高工作频率 96MHz

16 存储资源

16.1 Flash

- ▶ 内置 flash 包括 32kB/64kB 主存储区, 1kB NVR 信息存储区
- ▶ 可反复擦除写入不低于2万次
- ▶ 室温 25℃数据保持长达 100 年
- ▶ 单字节编程时间最长 7.5us, Sector 擦除时间最长 5ms
- ▶ Sector 大小 512 字节,可按 Sector 擦除写入,支持运行时编程,擦写一个 Sector 的同时 读取访问另一个 Sector
- ▶ Flash 数据防窃取(最后一个 word 须写入非 0xFFFFFFF 的任意值)

16.2 **SRAM**

▶ 内置 8kB SRAM

17 电机驱动专用 MCPWM

- ➤ MCPWM 最高工作时钟频率 96MHz
- ▶ 支持最大 4 通道相位可调的互补 PWM 输出
- ▶ 每个通道死区宽度可独立配置
- 支持边沿对齐 PWM 模式
- ▶ 支持软件控制 IO 模式
- ▶ 支持 IO 极性控制功能
- 内部短路保护,避免因为配置错误导致短路
- ▶ 外部短路保护,根据对外部信号的监控快速关断
- ▶ 内部产生 ADC 采样中断
- 采用加载寄存器预存定时器配置参数
- ▶ 可配置加载寄存器加载时刻和周期

18 Timer

- ▶ 4路通用定时器,2路 16bit 位宽计时器,2路 32bit 位宽计时器。
- ▶ 4路支持捕获模式,用于测量外部信号宽度
- ▶ 4 路支持比较模式,用于产生边沿对齐 PWM/定时中断

19 Hall 传感器接口

- ▶ 内置最大 1024 级滤波
- ➤ 三路 Hall 信号输入
- ▶ 24位计数器,提供溢出和捕获中断

20 DSP

- 电机控制算法专用 DSP, 自主指令集, 三级流水
- ▶ 最高工作频率 96MHz
- > 32/16 位除法器 10 周期计算完成
- ▶ 32 位硬件开方 8 周期计算完成
- ▶ Q15 格式 Cordic 三角函数模块, sin/cos/artanc 8 周期计算完成
- ▶ DSP 配备独立的程序区和数据区,可自主执行 DSP 程序,亦可由 MCU 调用进行某项计算
- ▶ 支持中断暂停,与 MCU 进行数据交互

21 通用外设

- ▶ 两路 UART, 全双工工作,支持 7/8 位数据位、1/2 停止位、奇/偶/无校验模式,带 1 字 节发送缓存、1字节接收缓存,支持 Multi-drop Slave/Master 模式,波特率支持 300~115200
- ▶ 一路 SPI, 支持主从模式
- ➤ 一路 IIC,支持主从模式
- ▶ 一路 CAN (084D 不带 CAN)
- ▶ 硬件看门狗,使用 RC 时钟驱动,独立于系统高速时钟,写入保护, 2/4/8/64 秒复位间 隔

22 栅极驱动模块

22.1 栅极驱动模块电路参数

芯片内部栅极驱动模块共有 5 种不同的参数规格,根据栅极驱动电路参数不同,栅极驱动模块分为 5 个型号,分别为 G1~G5。对照表如 22-1。

芯片型号	Date Code	栅极驱动模块型号		
	YYWWXD	G1		
LKS32MC084DF6Q8	YYWWXA	G2		
	YYWWXB	G3		
	YYWWXA	G1		
I IZC22MC006NOOO	YYWWXD	G4		
LKS32MC086N8Q8	YYWWXC	G2		
	YYWWXB	G3		
LKS32MC088KU8Q8	YYWWX	G5		

表 22-1 芯片型号-栅极驱动电路对照表

22.1.1 栅极驱动模块 G1/栅极驱动模块 G4

参数 最小 典型 最大 単位 说明 极限参数 电源电压 VCC V 相对于地 +25.0 -0.3 浮动电压 VB -0.3 +300 V 浮动偏置 VS **VB-25** VB+0.3 V 高侧输出电压 HO_{1,2,3} V VS-0.3 VB+0.3 低侧输出电压 LO_{1.2.3} VCC+0.3 V -0.3 或+15V,取决于和 逻辑输入 HIN/LIN_{1.2.3} -0.3 VCC+0.3 V VCC+0.3 谁更低 开关电压摆率 dVs/dt 50 V/ns 封装功耗耗散 Pd W 室温 25° 1.6 结对环境热阻 RthJA 83 °C /W 结温 TJ °C 150 存储温度 Ts -55 °C 150 焊接温度 300 °C 焊接 10s 建议工况 电源电压 VCC +4.5 +20 V 相对于地 浮动电压 VB_{1,2,3} VS+4.5 VS+20 V 浮动偏置 VS_{1,2,3} V 260

表 22-2 栅极驱动模块 G1/栅极驱动模块 G4 参数

[&]quot;YYWWX"为 data code 及芯片版本号,见芯片丝印的第三行。"YYWWX"为生产日期, "*"为可选项,通常是 A、B、C、D...或空白,代表芯片栅极驱动模块的型号。

高侧输出电压 HO _{1,2,3}	VS		VB	V	
低侧输出电压 LO _{1,2,3}	0		VCC	V	
逻辑输入 HIN/LIN _{1,2,3}	0		5	V	
工作温度 T _A	-40		125	°C	
		栅极驱动器	异电气参数		
VCC 欠压触发电压	2.9	4.2	5.5		
VCC 静态电流	210	330	450	., Λ	Vin =0V or 5V
VBS 静态电流	25	45	65	uA	Vin =0V or 5V
高侧偏置电源漏电流			10	uA	VB =VS =260V
LO/HO 输出高电压短路	1200	1500			VO = 0V, VIN = VIH
脉冲拉电流	1200	1500		mA	PW 10 us
LO/HO 输出低电压短路	1200	1500	_	IIIA	VO = 15V, VIN = VIL
脉冲灌电流	1200	1300			PW 10 us
导通延时Ton		220	260		VS = 0V
关断延时Toff		110	140		VS = 0V
导通上升时间Tr		37	_		С 1Г
关断下升时间 T_f		30		ns	C _L =1nF
死区时间D _T		100			
延时匹配度MT	_	_	50		

22.1.2 栅极驱动模块 G2

表 22-3 栅极驱动模块 G2 参数

参数	最小	典型	最大	单位	说明		
极限参数							
电源电压 VCC	-0.3		+25.0	V	相对于地		
浮动电压 VB _{1,2,3}	-0.3		+250	V			
浮动偏置 VS _{1,2,3}	VB-25		VB+0.3	V			
高侧输出电压 HO _{1,2,3}	VS-0.3		VB+0.3	V			
低侧输出电压 LO _{1,2,3}	-0.3		VCC+0.3	V			
逻辑输入 HIN/LIN _{1,2,3}	-0.3		VCC+0.3	V			
开关电压摆率 dVs/dt			50	V/ns			
结温 TJ	-40		150	°C			
存储温度 Ts	-55		150	°C			
焊接温度			300	°C	焊接 10s		
	建	议工况					
电源电压 VCC	+7		+20.0	V	相对于地		
浮动电压 VB _{1,2,3}	VS+8		VS+20	V			
浮动偏置 VS _{1,2,3}	-5		200	V			
高侧输出电压 HO _{1,2,3}	VS		VB	V			
低侧输出电压 LO _{1,2,3}	0		VCC	V			

逻辑输入 HIN/LIN _{1,2,3}	0		VCC	V	
工作温度 TA	-40		125	°C	
	栅极驱	动器电气参	参数		
VCC 静态电流 I _{QCC}		50	100	uA	HIN=LIN=0V
VB 静态电流 I _{QBS}		20	40	uA	HIN=LIN=0V
浮动电压漏电流 I _{LK}			10	uA	VB=VS=220V
VCC 欠压保护释放电压	4.0	4.7	6.7	V	
VBS 欠压保护释放电压	3.9	5.6	6.9	V	
VCC 欠压保护电压	3.6	4.4	6.4	V	
VBS 欠压保护电压	3.5	5.0	6.2	V	
VCC 欠压保护迟滞电压	0.25	0.3	0.8	V	
VBS 欠压保护迟滞电压	0.25	0.6	0.8	V	
高输入阈值 V _{IH}	2.8			V	
低输入阈值 V _{IL}			0.8	V	
输入偏置电流 Isource		32	120	uA	HIN=LIN=5V
输入偏置电流 I _{sink}			1	uA	HIN=LIN=0V
高电平输出电压, V _{BIAS} -V ₀			1	V	I ₀ =20mA
低电平输出电压, Vo			1	V	I ₀ =20mA
高电平输出短路脉冲电流 Io+	650	1000		mA	$V_{CC}/V_{BS}=15V$
低电平输出短路脉冲电流 Io-	650	1000		mA	V _{CC} /V _{BS} =15V
输出上升时间 T _r		15	30	ns	C _L =1nF
输出下降时间 T _f		12	30	ns	CL-TIII'
导通延迟时间 Ton		270	500	ns	
关断延迟时间 Toff		80	150	ns	
死区 D _T	100	200	400	ns	
延时匹配度 M _T			80	ns	T _{on} & T _{off} for (HS-LS)

22.1.3 栅极驱动模块 G3

栅极驱动模块 G3 内部集成自举二极管。

表 22-4 栅极驱动模块 G3 参数

参数	最小	典型	最大	单位	说明				
极限参数									
电源电压 VCC	-0.3		+25.0	V	相对于地				
浮动电压 VB _{1,2,3}	-0.3		+250	V					
浮动偏置 VS _{1,2,3}	VB-25		VB+0.3	V					
高侧输出电压 HO _{1,2,3}	VS-0.3		VB+0.3	V					
低侧输出电压 LO _{1,2,3}	-0.3		VCC+0.3	V					
逻辑输入 HIN/LIN _{1,2,3}	-0.3		VCC+0.3	V					

开关电压摆率 dVs/dt			50	V/ns	
结温 TJ	-40		150	°C	
存储温度 Ts	-55		150	°C	
焊接温度			300	°C	焊接 10s
//		建议			711 42
电源电压 VCC	+7		+20.0	V	相对于地
浮动电压 VB _{1,2,3}	VS+10		VS+20	V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
浮动偏置 VS _{1,2,3}	-5		200	V	
高侧输出电压 HO _{1,2,3}	VS _{1,2,3}		VB _{1,2,3}	V	
低侧输出电压 LO _{1,2,3}	0		VCC	V	
逻辑输入 HIN/LIN _{1,2,3}	0		5	V	
工作温度 T _A	-40		125	°C	
		栅极驱动器	异电气参数	ı	I
VCC 静态电流 Iqcc1	210	330	450	uA	HIN=LIN=0/5V, ENB=0
VCC 静态电流 I _{QCC2}		46	80	uA	HIN=LIN=0/5V, ENB=5
VB 静态电流 I _{QBS}	25	45	65	uA	HIN=LIN=0V
浮动电压漏电流 ILK			10	uA	VB=VS=200V, VCC=0V
驱动电流 Io+		1		A	
驱动电流 I ₀₋		1.2		A	
VCC 欠压上上升沿触发 电压	2.9	4.2	5.5	V	
VCC 欠压上下降沿触发 电压	2.5	3.8	5.1	V	
VCC 欠压锁定回滞		0.4		V	
VBS 欠压上上升沿触发 电压	2.5	3.8	4.5	V	
VBS 欠压上下降沿触发 电压	2.2	3.5	4.5	V	
VBS 欠压锁定回滞		0.3		V	
高输入阈值 V _{IH}	2.5			V	
低输入阈值 V _{IL}			0.8	V	
输出上升时间 T _r		27		ns	0.4.
输出下降时间 T _f		20		ns	- C _L =1nF
导通延迟时间 Ton		600	700	ns	
美断延迟时间 Toff		280	400	ns	
死区 D _T	220	280	330	ns	
延时匹配度 M _T			60	ns	

22.1.4 栅极驱动模块 G5

LKS32MC088KU8Q8 使用栅极驱动 G5。

表 22-4 栅极驱动模块 G5 参数

参数	最小	典型	最大	单位	说明
		限参数	-10,7	1 1	95 74
电源电压 VCC	-0.3		+25.0	V	相对于地
浮动电压 VB _{1,2,3}	-0.3		+625	V	, , , , , , , , , , , , , , , , , , ,
浮动偏置 VS _{1,2,3}	VB-25		VB+0.3	V	
高侧输出电压 HO _{1,2,3}	VS-0.3		VB+0.3	V	
低侧输出电压 LO _{1,2,3}	-0.3		VCC+0.3	V	
逻辑输入 HIN/LIN _{1,2,3}	-0.3		VCC+0.3	V	
开关电压摆率 dVs/dt			50	V/ns	
结温 TJ	-40		150	°C	
存储温度 Ts	-55		150	°C	
热阻 θJA			200	°C/W	与环境的连接处
	建	议工况			
电源电压 VCC	+10		+20.0	V	相对于地
浮动电压 VB _{1,2,3}	VS+10		VS+20	V	
浮动偏置 VS _{1,2,3}	-5		600	V	
高侧输出电压 HO _{1,2,3}	VS		VB	V	
低侧输出电压 LO _{1,2,3}	0		VCC	V	
逻辑输入 HIN/LIN _{1,2,3}	0		VCC	V	
	栅极驱动	动器电气	参数		
VCC 静态电流 I _{QCC}		50	150	uA	HIN=LIN=0V
VB 静态电流 I _{QBS}		35	80	uA	HIN=LIN=0V
浮动电压漏电流 I _{LK}			10	uA	VHO=VB=VS=620V
VCC 欠压上升阈值	8	8.5	9.8	V	
VBS 欠压上升阈值		8.7	10	V	
VCC 欠压下降阈值	7.2	7.6	8.8	V	
VBS 欠压下降阈值	6.5	7.8		V	
VCC 欠压迟滞电压	0.6	0.9	1.2	V	
VBS 欠压迟滞电压		0.9		V	
高输入阈值 V _{IH}	2.4			V	
低输入阈值 V _{IL}			0.6	V	
输入偏置电流 Isource		32	100	uA	HIN=LIN=5V
输入偏置电流 I _{sink}			1	uA	HIN=LIN=0V
高电平输出电压, V _{OH}			1	V	I ₀ =20mA
低电平输出电压, Vol			1	V	I ₀ =20mA
高电平输出短路脉冲电流 I ₀₊	300	450		mA	VO=0V, VIN=5V,Pulse

					Width < 10uS
					VO=15V,
低电平输出短路脉冲电流 Io-	650	1000		mA	VIN=0V,Pulse
					Width < 10uS
输出上升时间 T _r		15	30	ns	C -1mE
输出下降时间 T _f		12	30	ns	C _L =1nF
导通延迟时间 Ton	100	250	450	ns	VS=0V
美断延迟时间 Toff	80	160	300	ns	VS=0V or 600V
死区 D _T	40	100	250	ns	
延时匹配度 M _T			80	ns	T _{on} & T _{off} for
					(HS-LS)

22.2 推荐应用图

图 22-1 栅极驱动模块 G1/G2/G4/G5 典型应用图 栅极驱动模块 G1/G2/G4/G5 端口 VBx 和 VCC 间必须外置自举二极管。

图 22-2 栅极驱动模块 G3 典型应用图

栅极驱动模块 G3 内置了自举二极管,因此原理图上省略了自举二极管。若出于电路兼容考虑,也可以保留自举二极管。

图中只保留了栅极驱动模块管脚, x=1,2,3, 分别对应 3 组 MOS 栅极驱动输出。

栅极驱动输入	G1/2/3/4	G5	备注
LIN0		P1.5	须设置 P3.13 输出使能
HIN0		P1.4	
LIN1	P1.5	P1.7	须设置 P3.13 输出使能
HIN1	P1.4	P1.6	
LIN2	P1.7	P1.9	须设置 P1.12 输出使能
HIN2	P1.6	P1.8	
LIN3	P1.9	_	须设置 P1.15 输出使能
HIN3	P1.8		

表 22-5 栅极驱动 LIN/HIN 与 MCU 引脚对应关系表

栅极驱动模块输入输出极性对应关系如下:

表 22-6 栅极驱动模块 G1/G2/G3/G5 极性真值表

{HIN, LIN}	НО	LO	
00	0	0	上下管关断
01	0	1	下管导通
10	1	0	上管导通
11	0	0	上下管同时导通, 硬件短路保护

图 22-3 栅极驱动模块 G1/G2/G3/G5 极性示意图

表 22-7 栅极驱动模块 G4 极性真值表

{HIN, <u>LIN</u> }	НО	LO	
00	0	1	下管导通
01	0	0	上下管关断
10	0	0	上下管同时导通, 硬件短路保护
11	1	0	上管导通

图 22-4 栅极驱动电路 4 极性示意图

即栅极驱动模块 G4 的 LIN 极性与栅极驱动电路 G1/G2/G3/G5 相反。特别地,使用栅极驱动模块 G1/G4 时,建议开启 MCU 欠压检测,并设置阈值为 4.5V。

23 特殊 IO 复用

LKS08x 特殊 IO 复用注意事项

SWD 协议包含两根信号线: SWDCLK 和 SWDIO。SWDCLK 是时钟信号,在 SWD 模式下一直为输入。SWDIO 是数据信号,在 SWD 模式下为双向 IO,默认是输入状态。

LKS08x 部分型号 SWD 引脚同时有 GPIO 功能。通常为 P0.0、P2.15。注意事项如下:

- ➤ 默认状态不开启 SWD 引脚的 GPIO 功能,需要软件开启。即芯片硬复位结束后,初始状态是 SWD 用途,SWD 引脚在芯片内部有上拉(芯片内部上拉电阻约为 10K),应用对初始电平有要求的,需注意。
- ▶ 如开启 GPIO 功能后,如果 GPIO 功能与 SWD 功能冲突,比如设置 GPIO 为输出,则可能导致 KEIL 等工具无法通过 SWD 协议访问芯片,此时 Debug 和擦除下载功能均失效。因此建议:
- 其一,软件开启 GPIO 复用前留有一定延时,建议 1s 以上,保证凌鸥离线下载器能在芯片上电后软件延时期间完成芯片擦除动作。延时越大,一次性擦除成功的概率越大。
- 其二,软件设置有 GPIO 复用退出机制,例如某个其它 IO 电平发生变化(一般为输入)或串行通讯,表明需要用 SWD,软件接收到指令后关闭 SWD 引脚的 GPIO 功能。此时,可以恢复 KEIL的功能。

在 SSOP24 封装和 QFN40 封装中, SWDIO 同 P0.0、P2.15 直接 bonding 在一起,可以直接使能对应 GPIO。建议复用 SWDIO 时 SWDCLK 需保持不变(恒为 1 或者恒为 0)。

在 LKS087E 封装中, SWDCLK 同 P2.6 直接 bonding 在一起,可以直接使能对应 GPIO。若同时复用 SWDIO 和 SWDCLK, SWDCLK 复用的注意事项如下:

- ➤ 默认状态不开启 SWD 引脚的 GPIO 功能,需要软件开启。即芯片硬复位结束后,初始状态是 SWD 用途,SWD 引脚在芯片内部有上拉(芯片内部上拉电阻约为 10K),应用对初始电平有要求的,需注意。
- ▶ 如开启 GPIO 功能后,如果 GPIO 功能与 SWD 功能冲突,比如设置 GPIO 为输出,则可能导致 KEIL 等工具无法通过 SWD 协议访问芯片,此时 Debug 和擦除下载功能均失效。因此建议:
- 其一,软件开启 GPIO 复用前留有一定延时,建议 1s 以上,保证凌鸥离线下载器能在芯片上电后软件延时期间完成芯片擦除动作。延时越大,一次性擦除成功的概率越大。
- 其二,软件设置有 GPIO 复用退出机制,例如某个其它 IO 电平发生变化(一般为输入)或串行通讯,表明需要用 SWD,软件接收到指令后关闭 SWD 引脚的 GPIO 功能。此时,可以恢复 KEIL的功能。
- ➤ SWDCLK 和 SWDIO 引脚都作为 GPIO 使用时不应同时动作。即 SWDCLK 复用开启,且变化的时候,SWDIO 能保持为 0 电平(类似时分复用)。

若此时,仅复用了 SWDCLK, 没有复用 SWDIO, 注意事项同上。

RSTN 信号,默认是用于 LKS08x 芯片的外部复位脚。

LKS08x 可实现 RSTN 复用为其它 IO 的功能,复用的 IO 是 P0.2。注意事项如下:

▶ 默认状态是不开启复用,需要软件开启复用。即芯片初始状态是 RSTN 用途, RSTN 在芯片内部

LKS32MC08X with built-in 6N driver Datasheet

有上拉(芯片内部上拉电阻约为 100K),应用对初始电平有要求的,需注意。

- ▶ 默认状态是 RSTN, 只有 RSTN 正常释放后才能开始程序的执行, 应用需要保证 RSTN 有足够保 护,例如外围电路带上拉,若能加电容更佳。
- ▶ 开启复用后,RSTN用途失效,若需产生芯片硬复位,源头只能是掉电/看门狗。
- ▶ RSTN 的复用,不影响 KEIL 的使用。

SYS_RST_CFG 寄存器的 BIT[5], 为 RSTN 和 P0.2 的复用控制开关。

24 订购包装信息

型号	封装形式	每盘/管数量	内盒数量	外箱数量
LKS32MC084DF6Q8	QFN40	490/盘	4900PCS	29400PCS
LKS32MC086N8Q8	QFN52	490/盘	4900PCS	29400PCS
LKS32MC088KU8Q8	QFN44	260/盘	2600PCS	15600PCS

25 版本历史

表 25-1 文档版本历史

时间	版本号	说明
2023.01.13	1.7	增加订购包装信息
2022.12.12	1.69	修改 LKS32086XLN8Q8 引脚定义
2022.11.30	1.68	修订栅极驱动模块 G1 参数
2022.11.19	1.67	修订栅极驱动模块描述方式,参数无变化
2022.11.15	1.66	修改特殊 IO 复用注意事项
2022.11.08	1.65	增加 088K 极性描述
2022.11.07	1.64	增加 IO 与内部模拟电路间连接电阻阻值
2022.10.28	1.63	增加共模电压特性
2022.10.13	1.62	修订 088K 管脚分布图
2022.08.04	1.61	增加 088K 型号
2021.12.30	1.6	修订预驱部分描述
2021.04.13	1.5	添加器件选型表
2020.09.23	1.4	添加特殊 IO 复用章节
2020.03.19	1.2	添加栅极驱动模块
2020.03.18	1.1	修改 084D 引脚定义
2020.03.10	1.0	初始版本

免责声明

LKS 和 LKO 为凌鸥创芯注册商标。

南京凌鸥创芯电子有限公司(以下简称: "Linko") 尽力确保本文档内容的准确和可靠,但是保留随 时更改、更正、增强、修改产品和/或 文档的权利, 恕不另行通知。用户可在下单前获取最新相关 信息。

客户应针对应用需求选择合适的 Linko 产品,详细设计、验证和测试您的应用,以确保满足相应标 准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。

Linko 在此确认未以明示或暗示方式授予 Linko 或第三方的任何知识产权许可。

Linko 产品的转售,若其条款与此处规定不同,Linko 对此类产品的任何保修承诺无效。

禁止用于军事用途或生命监护、维持系统。

如有更早期版本文档,一切信息以此文档为准。