A Review of the Complex Logarithm

Li Yueheng, s2306706

The University of Edinburgh

13th February 2022

Outline

Definition and basic properties

2 Branches of the logarithm and branch cuts

3 Holomorphicity gained and continuity lost

Definition of the complex logarithm

Definition (1.7.1 on p.16, Gratwick)

For $z \in \mathbb{C} - \{0\}$, define its *logarithm* by

$$log(z) := \{ w \in \mathbb{C} : exp(w) = z \}$$

Definition of the complex logarithm

Definition (1.7.1 on p.16, Gratwick)

For $z \in \mathbb{C} - \{0\}$, define its *logarithm* by

$$log(z) := \{ w \in \mathbb{C} : exp(w) = z \}$$

Remark

The complex logarithm is a multivalued function. We call any element of the set log(z) a logarithm of z.

Proposition (1.7.3 on p.16, Gratwick)

Let $z, w \in \mathbb{C} - \{0\}$, and $z = re^{i\theta}$ in exponential form. Then

Proposition (1.7.3 on p.16, Gratwick)

Let $z, w \in \mathbb{C} - \{0\}$, and $z = re^{i\theta}$ in exponential form. Then

- $\log(zw) = \log(z) + \log(w)$ (Law of multiplication)

Proposition (1.7.3 on p.16, Gratwick)

Let $z, w \in \mathbb{C} - \{0\}$, and $z = re^{i\theta}$ in exponential form. Then

Proposition (1.7.3 on p.16, Gratwick)

Let $z, w \in \mathbb{C} - \{0\}$, and $z = re^{i\theta}$ in exponential form. Then

- $\log(zw) = \log(z) + \log(w)$ (Law of multiplication)

Remark

These statements should be understood as equalities between sets.

Sketch of proof

1. Let w = a + ib and solve the equation

$$exp(w) = exp(a + ib) = re^{i\theta} = z$$

to find all $w \in log(z)$.

Sketch of proof

1. Let w = a + ib and solve the equation

$$exp(w) = exp(a+ib) = re^{i\theta} = z$$

to find all $w \in log(z)$.

2. The law of multiplication follows directly from our depiction of the logarithm.

Sketch of proof

1. Let w = a + ib and solve the equation

$$exp(w) = exp(a+ib) = re^{i\theta} = z$$

to find all $w \in log(z)$.

- 2. The law of multiplication follows directly from our depiction of the logarithm.
- 3. Notice that $log(1) = \{i2\pi k : k \in \mathbb{Z}\}$ and use the law of multiplication.

Brunches of the logarithm

Definition (1.7.9 on p.17, Gratwick)

A *brunch* of the logarithm is defined as a function $Log_{\phi}:\mathbb{C}-\{0\}
ightarrow \mathbb{C}$,

$$Log_{\phi}(z) := \ln|z| + iArg_{\phi}(z)$$

where $Arg_{\phi}(z) \in arg(z) \cap (\phi, \phi + 2\pi]$ is a properly defined real number.

Brunches of the logarithm

Definition (1.7.9 on p.17, Gratwick)

A *brunch* of the logarithm is defined as a function $Log_{\phi}:\mathbb{C}-\{0\} o\mathbb{C}$,

$$Log_{\phi}(z) := \ln|z| + iArg_{\phi}(z)$$

where $Arg_{\phi}(z) \in arg(z) \cap (\phi, \phi + 2\pi]$ is a properly defined real number.

Example

The principal brunch of the logarithm is the function $Log:\mathbb{C}-\{0\}\to\mathbb{C}$ defined as

$$Log(z) := Log_{-\pi}(z) = \ln|z| + iArg(z)$$

Brunch cuts and the cut plane

Definition (1.7.7 on p.17, Gratwick)

A brunch cut L is a subset removed from the complex plane $\mathbb C$ so that a holomorphic branch of a multivalued function may be defined on $D=\mathbb C-L$, the cut plane.

Brunch cuts and the cut plane

Definition (1.7.7 on p.17, Gratwick)

A brunch cut L is a subset removed from the complex plane $\mathbb C$ so that a holomorphic branch of a multivalued function may be defined on $D=\mathbb C-L$, the cut plane.

Remark

Half-lines are an important class of branch cuts, so we introduce the following notation: For $z_0 \in \mathbb{C}$ and $\phi \in \mathbb{R}$, define

$$L_{z_0,\phi} = \{z \in \mathbb{C} : z = z_0 + re^{i\phi}, r \ge 0\}$$

and define its cut plane $D_{z_0,\phi}:=\mathbb{C}-L_{z_0,\phi}.$ In particular, $D_\phi:=D_{0,\phi}.$

Theorem (1.7.10 on p.18, Gratwick)

A brunch of the logarithm Log_{ϕ} is holomorphic on the cut plane D_{ϕ} , and $Log'_{\phi}(z)=1/z$ in D_{ϕ} .

Theorem (1.7.10 on p.18, Gratwick)

A brunch of the logarithm ${\rm Log}_\phi$ is holomorphic on the cut plane D_ϕ , and ${\rm Log}_\phi'(z)=1/z$ in D_ϕ .

Proof.

A sketch:

• 1.Verify that $Log_{\phi}(z) = \ln(|z|) + iArg_{\phi}(z)$ has continuously differentiable real and imaginary parts on D_{ϕ} .

Theorem (1.7.10 on p.18, Gratwick)

A brunch of the logarithm ${\rm Log}_\phi$ is holomorphic on the cut plane D_ϕ , and ${\rm Log}_\phi'(z)=1/z$ in D_ϕ .

Proof.

A sketch:

- **1**. Verify that $Log_{\phi}(z) = \ln(|z|) + iArg_{\phi}(z)$ has continuously differentiable real and imaginary parts on D_{ϕ} .
- 2 2.Check that the Cauchy-Riemann equations are satisfied on D_{ϕ} . These two steps combined show that Log_{ϕ} is holomorphic on D_{ϕ} .

Theorem (1.7.10 on p.18, Gratwick)

A brunch of the logarithm ${\rm Log}_\phi$ is holomorphic on the cut plane D_ϕ , and ${\rm Log}_\phi'(z)=1/z$ in D_ϕ .

Proof.

A sketch:

- **1**. Verify that $Log_{\phi}(z) = \ln(|z|) + iArg_{\phi}(z)$ has continuously differentiable real and imaginary parts on D_{ϕ} .
- 2 2.Check that the Cauchy-Riemann equations are satisfied on D_{ϕ} . These two steps combined show that Log_{ϕ} is holomorphic on D_{ϕ} .
- 3. Differentiate $z = exp(Log_{\phi}(z))$ using the chain rule to compute the derivative of Log_{ϕ} on D_{ϕ} .

Continuity lost

Since $Arg_{\phi}(z)$ takes a jump when z crosses $L_{0,\phi}$, it isn't continuous there, and hence isn't $Log_{\phi}(z) = \ln(|z|) + iArg_{\phi}(z)$.

Continuity lost

Since $Arg_{\phi}(z)$ takes a jump when z crosses $L_{0,\phi}$, it isn't continuous there, and hence isn't $Log_{\phi}(z) = \ln(|z|) + iArg_{\phi}(z)$.

Example

Notice that

$$Arg_0(1) = 2\pi$$

while

$$Arg_0(e^{i\varepsilon}) = \varepsilon$$

Thus $2\pi = Arg_0(1) = Arg_0(\lim_{\varepsilon \to 0} e^{i\varepsilon}) \neq \lim_{\varepsilon \to 0} Arg_0(e^{i\varepsilon}) = 0$

1 The complex logarithm is a multivalued function.

- The complex logarithm is a multivalued function.
- The complex logarithm "inherits" some properties of the real one, but just formally!

- 1 The complex logarithm is a multivalued function.
- The complex logarithm "inherits" some properties of the real one, but just formally!
- Sy cutting the complex plane, we may define branches of the logarithm, which are functions.

- The complex logarithm is a multivalued function.
- The complex logarithm "inherits" some properties of the real one, but just formally!
- Sy cutting the complex plane, we may define branches of the logarithm, which are functions.
- On Branches lose continuity on the branch cuts, but gain holomorphicity elsewhere.

- The complex logarithm is a multivalued function.
- The complex logarithm "inherits" some properties of the real one, but just formally!
- Sy cutting the complex plane, we may define branches of the logarithm, which are functions.
- On Branches lose continuity on the branch cuts, but gain holomorphicity elsewhere.

References

1.Gratwick, R. (2022). Honours Complex Variables Lecture Notes 2021–2022. Accessed February 13th, 2022.