

COMP S264F Discrete Mathematics Course Guide

Instructor: Dr. LEE Lap Kei, Keith

lklee@ouhk.edu.hk, 2768 6024 (office phone)

Tutor: Mr. FUNG Yin Chun, YC

ycfung@study.ouhk.edu.hk

Lecture: Tue 14:00 - 16:00, Online via Zoom

Fri 11:00 – 12:00, Main Campus (MC) C0518

Tutorial: Fri 12:00 – 13:00, Main Campus (MC) C0518

Textbook

Rosen, K. (2018). Discrete Mathematics and Its Applications (8th ed.). McGraw-Hill Education.

Assessment Scheme

- 1. Continuous Assessment (30%):
 - Online Exercises (10%):
 - They will be given **during** the lectures and/or tutorials.
 - Mid-term Test (10%):
 - November 24, 2020 (Tue) 14:00 16:00 (after the study break)
 - Assignment (10%):
 - To help you better prepare the examination.
 - Submission deadline: December 22, 2020 (Tue, tentative)
- 2. Examination (70%)

Course Content (*subject to change)

Topics	
1	Logic : propositions, logical operators, truth tables, logical equivalence, De Morgan's laws, predicates, universal & existential quantifiers
2	Methods of proof : inference rules, direct proof, proof by contraposition, proof by cases, proof by contradiction, mathematical induction (MI)
3	Set theory : set notations, set operators, power sets, Cartesian products, Venn diagrams, set equalities, subset relations
4	Functions : domain, image, range of functions; one-to-one (injective), onto (surjective), bijective functions; inverse functions; composite functions; function plotting; common functions: floor, ceiling, exponential, logarithmic, modulus; cardinality of infinite sets (countable / uncountable)
5	Basics of counting: sum rule, product rule, principle of inclusion-exclusion, pigeonhole principle
6	Combinatorics : permutations, permutations with repetition, combinations, combinations with repetition, lower bounds for discrete problems, combinatorial proofs
7	Discrete probability : experiments, outcomes, sample spaces, events, complement, union, intersection, event probabilistic, probabilistic methods for proving existence of particular outcomes
8	Conditional probability and random variables : conditional probabilities, independent events, sample space with not equally likely outcomes, expected values of random variables, sum rule, product rule

^{*} You are required to attend **all** the lectures and tutorials. Tuesday's classes will be in online mode only, while the Friday's classes will be in mixed mode (face-to-face and online via Zoom).

^{*} To pass the course, you must get at least 40 marks for both the continuous assessment and exam.