

Приложения комплексных чисел к решению геометрических задач

Студент ПМИб-2301-52-00 Ступников Григорий Евгеньевич К.ф-м.н Пушкарев Игорь Александрович

ФГБОУ ВО «Вятский государственный университет»

31 августа 2022 г.

План доклада

- Введение
- Основы метода
- Задачи
 - Задача 1
 - Задача 2
 - Задача 3
 - Задача 4
 - Задача 5
 - Задача 6
- О программной реализации задач
- Заключение

Введение

Метод комплексных чисел – это расширение алгебраического метода, способ задания точки на плоскости не через одну, комплексную координату.

- Проблема состоит в том, что для данного метода отсутствуют вспомогательные программные материалы для внедрения в среду самостоятельного и школьного обучения.
- Целью данной работы является изучение метода комплексных чисел при решении геометрических задач, реализация программной верификации решения выбранных задач. Для достижения цели необходимо выполнить следующие задачи:
 - Изучить имеющиеся способы применения алгебры комплексных чисел при решении геометрических задач.
 - Выбрать задачи, на которых будет рассматриваться практическое применение метода.
 - Решение задач с применением метода комплексных чисел и без них
 - Сравнение решений задач.
 - Реализация программной верификации решения задач с применением метода.

Основы метода

Комплексное число z — число вида x+iy. У числа z можно выделить действительную x=Re(z) и мнимую y=Im(z) части. Каждое комплексное число представимо в виде точки на декартовой плоскости и наоборот. В таком случае точка обозначается как M(z), где z — комплексные координаты точки M.

Рис. 1: Изображение точки M(z) на плоскости

Задачи

Задача 1. Постановка задачи:

Точка D симметрична центру описанной около треугольника ABC окружности, относительно прямой AB. Доказать, что расстояние CD выражается формулой

$$CD^2 = R^2 + AC^2 + BC^2 - AB^2$$
 (1)

где R - радиус описанной окружности.

Рис. 2: Иллюстрация к задаче

Задача 1. Решение задачи:

 T .к d=a+b, то верно следующее:

$$CD^2 = 3R^2 + (a\bar{b} + \bar{a}b) - (a\bar{c} + \bar{a}c) - (b\bar{c} + \bar{b}c).$$

Этому же выражению равна правая часть доказываемого равенства:

$$R^2 + AC^2 + BC^2 - AB^2 = 3R^2 + (a\bar{b} + \bar{a}b) - (a\bar{c} + \bar{a}c) - (b\bar{c} + \bar{b}c)$$

Таким образом утверждение (1) верно, что и требовалось доказать.

31 августа 2022 г. 6 / 30

Задача 1. Вычислительная иллюстрация на частном случае:

Демонстрация работы программной реализации алгоритма:

[codetest] ./realease.app 1

Task #1

Enter coordinates of triangle's points:

A: 0 0

B: 4 0

C: 2 3.24

Computed coordinates:

A: 0 + 0i

B: 4 + 0i

C: 2 + 3.24i

D: 2 + -1i

0: 2 + 1i

Задача 2

Постановка задачи: Точка M — середина дуги AB окружности. Доказать, что для произвольной точки N этой окружности имеет место равенство

$$\left| AM^2 - MN^2 \right| = AN \cdot BN. \tag{2}$$

Решение задачи:

Находим:
$$AN \cdot BN = |a - n| \cdot |b - n| = |(a - n)(\bar{a} - n)| = |a\bar{a} - na - n\bar{a} + n^2| = |1 + n^2 - n(a + \bar{a})|.$$

Так как
$$AM^2=(a-1)(\bar{a}-1)$$
 и $MN^2=(n-1)(\bar{n}-1)$, то $\left|AM^2-MN^2\right|=|n+\bar{n}-(a+\bar{a})|$. Умножив это равенство на $|n|=1$, получим:

$$|AM^2 - MN^2| = |n^2 + 1 - n(a + \bar{a})| = AN \cdot BN.$$

Задача 2. Вычислительная иллюстрация на частном случае:

Демонстрация работы программной реализации алгоритма:

[codetest] ./realease.app 2

Task #2

Enter coordinates of a,b,n,t points (must conform $x^2+y^2 = 1$, t between a and b):

A: 0.5 0.866

B: 0.5 -0.866

 $N: -1 \ 0$

T: 0.707 0.707

Computed coordinates:

A: 0.5 + 0.87i

B: 0.5 + -0.87i

N: -1 + 0i

T: 0.71 + 0.71i

M: 1 + 0i

Задача 3. Постановка задачи:

Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон (Рис. 3). Таким образом, требуется доказать, что

$$AD^2 + BC^2 = AB^2 + CD^2 + BD^2 + AC^2$$
 (3)

Рис. 3: Иллюстрация к задаче

Задача 3. Решение задачи:

Зададим точку $A(a)=0+i\cdot 0$. Тогда верны следующие утверждения: $d=c+b, \ \overrightarrow{CB}=b-c$.

$$AB^{2} + BD^{2} + CD^{2} + AC^{2} = |b|^{2} + |c|^{2} + |b|^{2} + |c|^{2} = 2b\bar{b} + 2c\bar{c}$$
 (4)

$$AD^{2} + BC^{2} = |d|^{2} + |b - c|^{2} = d\bar{d} + (b - c)(\bar{b} - \bar{c}) = (c + b)(\bar{c} + \bar{c}) + b\bar{b}$$

$$(5)$$

$$-c\bar{b} + c\bar{c} = c\bar{c} + c\bar{b} + b\bar{c} + 2b\bar{b} + c\bar{c} - b\bar{c} - c\bar{b} = 2b\bar{b} + 2c\bar{c}$$

$$-cb+cc=cc+cb+bc+2bb+cc-bc-cb=2bb+2cc$$

Таким образом, выражения (4) и (5) равны друг другу, что и требовалось доказать.

Задача 3. Вычислительная иллюстрация на частном случае:

Демонстрация работы программной реализации алгоритма:

[codetest] ./realease.app 3

Task #3

Enter coordinates of triangle's points:

A: 1 0

B: 5 0

C: 2 3

Computed coordinates:

A: 1 + 0i

B: 5 + 0i

C: 2 + 3i

D: 6 + 3i

Задача 4. Постановка задачи:

Доказать, что если некоторая прямая пересекает прямые, содержащие стороны BC, CA, AB треугольника ABC, в точках A_1 , B_1 , C_1 соответственно, то середины отрезков AA_1 , BB_1 , CC_1 коллинеарны.

Задача 4. Решение задачи:

Условие коллинеарности троек точек $A, B_1, C; C, A_1, B; B, C_1, A;$ A_1, B_1, C_1 :

$$\begin{cases}
a(\bar{b}_1 - \bar{c}) + b_1(\bar{c} - \bar{a}) + c(\bar{a} - \bar{b}_1) = 0 \\
b(\bar{c}_1 - \bar{a}) + c_1(\bar{a} - \bar{b}) + a(\bar{b} - \bar{c}_1) = 0 \\
...
\end{cases} (6)$$

Предстоит показать, что

$$m(\bar{n}-\bar{p})+n(\bar{p}-\bar{m})+p(\bar{m}-\bar{n})=0,$$
 (7)

Так как $m=rac{1}{2}(a+a_1),\; n=rac{1}{2}(b+b_1),\; p=rac{1}{2}(c+c_1)$, то доказываемое равенство (7) эквивалентно такому:

$$a(\bar{b}_1 - \bar{c}) + a(\bar{b} - \bar{c}_1) + a_1(\bar{b}_1 - \bar{c}_1) + a_1(\bar{b} - \bar{c}) + b(\bar{c}_1 - \bar{a}) + \dots = 0.$$
(8)

Задача 4. Вычислительная иллюстрация на частном случае:


```
Демонстрация работы программной реализации алгоритма:
      [codetest] ./realease.app 4
      Task #4
      Enter coordinates of a,b,c,a1,b1 points:
       A: 0 0
```

B: 10 0

C: 8 10 A1: 9.5 2.5

B1: 4 5

Computed coordinates:

A: 0 + 0i

B: 10 + 0i

C: 8 + 10i

A1: 9.5 + 2.5iB1: 4 + 5i

C1: 15 + 0i

M: 4.75 + 1.25i

N: 7 + 2.5i

P: 11.5 + 5i

Задача 5. Постановка задачи:

Доказать, что если некоторая прямая пересекает прямые, содержащие стороны BC, CA, AB треугольника ABC, в точках A_1 , B_1 , C_1 соответственно, то середины отрезков AA_1 , BB_1 , CC_1 коллинеарны.

Задача 5. Решение задачи:

Обозначим диаметр окружности как PB; будем считать, что окружность единичная с центром в т.O.

Исходя из свойств комплексных чисел, верно следующее:

$$AD \perp CB \Leftrightarrow (d-a)(\bar{b}-\bar{c})+(\bar{d}-\bar{a})(b-c)=0$$

Из условий задачи:

$$\begin{cases} (a-b)(\bar{a}-\bar{b}) + (c-d)(\bar{c}-\bar{d}) = (p-b)(\bar{p}-\bar{b}) \\ (a-c)(\bar{a}-\bar{c}) + (b-d)(\bar{b}-\bar{d}) = (p-b)(\bar{p}-\bar{b}) \end{cases}$$
(9)

Почленно вычтя второе уравнение системы (9) из первого, получаем:

$$\begin{split} a\bar{a} - a\bar{b} - b\bar{a} + b\bar{b} + c\bar{c} - c\bar{d} - d\bar{c} + d\bar{d} - a\bar{a} + a\bar{c} + c\bar{a} - c\bar{c} - b\bar{b} + b\bar{d} + \\ + d\bar{b} - d\bar{d} &= 0 \Leftrightarrow (d-a)(\bar{b} - \bar{c}) + (\bar{d} - \bar{a})(b-c) = 0 \Leftrightarrow AD \perp CB \end{split}$$

Таким образом, утверждение $AD \perp CB$ доказано.

Задача 5. Вычислительная иллюстрация на частном случае:

Демонстрация работы программной реализации алгоритма:

[codetest] ./realease.app 5

Task #5

Enter coordinates of a,b,c,d points (must be points of quadrilateral):

A: 0 -1

B: 2 -1

C: 0 1

D: 2 1

Computed coordinates:

A: 0 + -1i

B: 2 + -1i

C: 0 + 1i

D: 2 + 1i

0: 1 + 0i

Задача 6. Постановка задачи:

Доказать, что если некоторая прямая пересекает прямые, содержащие стороны BC, CA, AB треугольника ABC, в точках A_1 , B_1 , C_1 соответственно, то середины отрезков AA_1 , BB_1 , CC_1 коллинеарны.

Задача 6. Решение задачи:

Если средние линии четырёхугольника равны, то на основании свойств комплексных чисел, при $AD \neq 0, CB \neq 0$, получаем следующее:

$$\left|\frac{1}{2}(c+d) - \frac{1}{2}(a+b)\right| = \left|\frac{1}{2}(a+c) - \frac{1}{2}(b+d)\right| \Leftrightarrow \dots \Leftrightarrow$$

$$(a-d)(\bar{c}-\bar{b})+(c-b)(\bar{a}-\bar{d})=0$$

Тогда $2\overrightarrow{ADCB}=0\Leftrightarrow |AD|\,|CB|\cos\angle COD\Leftrightarrow\angle COD=90^\circ$, что и требовалось доказать.

Если диагонали четырёхугольника перпендикулярны, то $\angle COD = 90^{\circ} \Leftrightarrow |AD| |CB| \cos \angle COD = 0 \Leftrightarrow \overrightarrow{ADCB} = 0 \dots$ Дальнейшие рассуждения выполняются в порядке, обратном доказательству в случае, когда средние линии четырёхугольника равны.

Задача 6. Вычислительная иллюстрация на частном случае:


```
Демонстрация работы программной реализации алгоритма:
      [codetest] ./realease.app 6
      Task #6
      Enter coordinates of a,b,c,d points (must be
       points of quadrilateral):
       A: 1 0
```

B: 3 0

C: 12 D: 3 2

Computed coordinates:

A: 1 + 0i

B: 3 + 0i

C: 1 + 2i

D: 3 + 2i

0: 2 + 1i

P1: 1 + 1i

P2: 3 + 1i

T1: 2 + 0i

T2: 2 + 2i

27 / 30

О программной реализации задач

Решение всех задач написано на языке C++ в виде части программы для решения задач из данной работы. Программа (содержащая решение всех задач) поддерживает следующие функции (кроме решения задач):

- запуск нескольких задач из командной строки
- вывод информации в виде, пригодном для обработки сторонними программами.

Кроме того, для тестирования программы написана программа тестирования и тесты к ней.

Заключение

В ходе выполнения работы изложены основы метода комплексных чисел, было проиллюстрировано его применение при решении 6 задач. Каждая задача имеет вычислительную иллюстрацию, реализованную в виде части программы на С++. Сама программа как целое — консольное приложение, поддерживающая следующие функции: множественный выбор заданий, вывод текста в разном формате (в режиме отладки для считывания данных сторонними приложениями, а также в человеко-читаемом).

Метод имеет большие перспективы для применения в области решения геометрических задач, особенно тех, в которых широко применяются единичные окружности, потому как в алгебре комплексных чисел геометрические объекты, лежащие или принадлежащие таким окружностям выражаются более простыми уравнениями, чем их канонические действительнозначные аналоги. Таким образом, все поставленные задачи были успешно выполнены, цель достигнута.

Спасибо за внимание!