CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN TECHNIQUES

Dynamic Programming and Optimal Sub-Structure Property

- Example: 0/1 Knapsack: Dynamic Programming Algorithm

DYNAMIC PROGRAMMING

Steps:

- Characterize and define the solution in terms of a recurrence relation.
 - Verify whether optimal substructure property holds.
- Write down the steps for bottom-up computation of the recurrence relation.
- Inspect the list of intermediate results required and prune unnecessary items

EXAMPLE - 0/1 KNAPSACK - DEFINITION

o Given:

- A sack with max. capacity by weight: Wmax
- Set S of items j (in store) labeled with
 Weight w_i (<= Wmax) and Price p_i

• Assumption:

- An item is either taken (in full) or not
- All values (w_i, p_i, and Wmax) are positive integers

o Goal:

Fill the sack with maximum value (by price)

```
oi.e. Find T subset of S, such that
```

 $o\Sigma_{i \text{ in T}} p_i$ is maximum and $\Sigma_{i \text{ in T}} w_i \le Wmax$

EXAMPLE - 0/1 KNAPSACK - OPTIMAL SUBSTRUCTURE

- The problem structure of 0/1 Knapsack can be defined as follows:
 - Let P(k,w) be the maximum profit obtainable from a subset { 1, 2, ... k} weighing no more than w in total.
 - Then P(k,w) =
 - o P(k-1, w) if $W_k > W$
 - o max { P(k-1, w), $P(k-1, w-w_k) + p_k$ } otherwise

EXAMPLE - 0/1 KNAPSACK - BOTTOM UP

- o P(k,w) is
 - P(k-1, w) if $w_k > w$
 - max { P(k-1, w), $P(k-1, w-w_k) + p_k$ } otherwise
- P(0, w) = 0 for all w
- P(k, 0) = 0 for all k

↓ k <u>w</u>	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0							
2	0							
3	0							
4	0							
5	0							

EXAMPLE -0/1 KNAPSACK - BOTTOM-UP

- o P(k,w) is
 - P(k-1, w) if $w_k > w$
 - $\max \{ P(k-1, w), P(k-1, w-w_k) + p_k \}$ otherwise

Given weights { 3, 1, 5, ... } and prices { 14, 7, 10, ... }

Consider the subset { 3 }

↓k ₩	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	14	14	14	14	14
2	0							
3	0							

2/4/2016

EXAMPLE -0/1 KNAPSACK - BOTTOM-UP

- P(k,w) is
 - P(k-1, w) if $w_k > w$
 - $\max \{ P(k-1, w), P(k-1, w-w_k) + p_k \}$ otherwise

Given weights {3, 1, 5,... } and prices {14,7,10,... }

Consider the subset { 3, 1 }

		max(14, 0+7)							
↓ k w	0	1	2	3/	4	5	6	7	
0	0	0	0	0	9	0	0	0	
1	0	0	0	14	14	14	14	14	
2	0	7	7	14	21	21	21	21	
3	0								

2/4/2016 Sundar B

EXAMPLE -0/1 KNAPSACK - BOTTOM-UP

- o P(k,w) is
 - P(k-1, w) if $w_k > w$
 - max { P(k-1, w), $P(k-1, w-w_k) + p_k$ } otherwise

Given weights { 3, 1, 5, ... } and prices { 14, 7, 10, ... }

Consider the subset { 3, 1, 5} max(21, 14+10)

↓ k w	0	1	2	3	4	5	6	7	8	9	•••	V∕lmax
0	0	0	0	0	0	0	0	0	0	0		
1	0	0	0	14	14	14	14	14	14	14		
2	0	7	7	14	21	21	21	21	21	21/		
3	0	7	7	14	21	21	21	21	24	31		
•••												
N												

```
EXAMPLE - 0/1 KNAPSACK - DP SOLUTION
```

```
Known (Atomic) Solutions: P(0, w)=0 for all w and P(k, 0)=0 for all k
Recursive structure: P(k,w) =
      Profit(k,w)
// assume output array Pf[0..N][0..Wmax]
// assume array wt[1..N] of weights and p[1..N] of prices
   for (k=0; k<=N; k++) Pf[k,0] = 0;
    for (w=0; w<=Wmax; w++) Pf[0,w] = 0;
    for (k = 1; k \le N; k++)
      for (w=1; w<=Wmax; w++)
        Pf[k,w] = (wt[k] > w) ? Pf[k-1,w] :
                 max(Pf[k-1,w], Pf[k-1,w-wt[k]]+p[k]);
```