Machine Learning for All: Tree based models

Anastasiya Yarygina

Friday, February 15, 2019

Decision Tree Algorithms in Machine Learning

In this lecture we will cover the following topics:

- Decision trees: Using tree-logic to make predictions
 - ► Regression single-tree models
 - Random Forest
 - ▶ If we have time: Boosting
- Examples:
 - Boston Housing, Kaggle
 - ► California Housing Prices, Kaggle
- Extra practice: Classification tree models using Iris dataset

What is a Decision Tree?

Tree-logic uses series of steps to come to a conclusion. Each decision is a **node**, and the final prediction is a **leaf node**.

Decision Trees in ML

- ▶ **Decision Tree Algorithm** is a supervised learning algorithm that can be used for solving
 - regression and
 - continuous response variable
 - wage example from last week
 - classification problems
 - categorical or factor response variable
 - spam example from last week
- Classically, the name of this algorithm is Decision Tree
 - Some platforms like R use a modern term CART (Classification and Regression Trees)
- ► Objective: obtain **predictions**
 - of the reponse variable Y (dependent variable or output)
 - from the **input variables** X_1 , X_2 , ... X_n (features, predictors).

Predictions using Decision Trees

- Key Idea: Decision Tree splits the data into
 - two or more homogeneous data segments
 - **b** based on the **best splitter**, which is a variable taken from the inputs $X_1, X_2, \ldots X_n$.
- Every time we split the sample we make a decision. Each decision is a decision node, and the final prediction is a leaf node.
- Example: fit a tree that predicts for each property log price using as inputs longitude and latitude.

We can fit a tree that predicts for each property **log price** using as inputs **longitude** and **latitude**.

- ► The tree has 11 **decision nodes**, which are the nodes where the splitting of the data takes place.
 - ▶ Node 1: root node, split on latitude at 38.485
- ► And there are 12 leaf nodes
 - Leaf node 12: value 11.32
- ▶ The data space is partitioned in to 12 homogeneous regions.
- ► How do these **homogeneous regions** look like?

Overlay log price of properties on predicted partitions. Darker dots represent more expensive properties.

The tree model divided the **predictor space** (longitude and latitude in this case) into 12 **distinct** and **non-overlapping** rectangular **regions** $R_1, R_2, \ldots, R_j, \ldots R_{12}$.

If there are more than two inputs, the data space is split in some kind of hyper-rectangles.

For every observation that falls into a given region R_j , the model assigns its **predicted value**, which is the **mean of the response** Y (log price in this case) for all observations in region R_j .

The regions with the log average value 12.5 are LA and the Bay Area.

Decision Tree Algorithm

To get homogeneous segments, the model makes optimal splits.

Each optimal split is made:

- ightharpoonup at certain value of some predictor X_i ,
- so that the child set to the left of the split and the child set to the right of the split are as homogeneous in response Y as possible.

In regression trees **homogeneity** is measured by the **Sum of Squared Errors** (SSE):

$$sum(y - prediction_{left})^2 + sum(y - prediction_{right})^2$$

Each **optimal split minimizes the SSE** to the left and to the right of the split.

Decision Tree Algorithm

Decision trees are fit in a **top-down**, **greedy** approach, which is also known as a recursive binary splitting.

- ► Top-down: it starts at the top of the tree
- ➤ **Greedy**: at each step the best split is made at *that* particular step, we do not look ahead and pick the split that will lead to a better tree in some future step.

Each split improves the fit of the tree (think of R^2 and adding new variables in a regression model).

The algoritm stops when:

- improvement in the fit is below some predefined threshold (default 0.01)
- number of observations in leafs is below some predefined threshold (default 5)

Fit a single tree model

- to predict median value of properties using
- low income status as predictor.

Fit a tree to predict median value of properties using low income status as predictor.

The big tree size is: 26

Prunning

Tree models are very flexible and **tend to overfit**.

To avoid oferfitting trees are **prunned** by removing nodes and brunches from the bottom up.

At each step we remove the split that contributes least to improvement in the fit.

Pruning produces a set of candidate trees of different sizes.

What is the best tree size (what is the best number of nodes)?

We use **Cross Validation** to choose the best tree size.

The tree with the best size has the smallest SSE.

CV and choose the size that minimizes SSE

the size of the prunned tree is 7

Compare Tree Model fit and Linear Model fit

Aggregating Trees

- Single tree algorithms are effective in making reasonable predictions
- ► Singe tree models are weak learners
- How can we get a strong learner? Aggregate predictions from many weak learners
- ► To improve predictions we can:
 - fit many tree models from the same data
 - and average predictions across these models.

Aggregating Trees: Bagging

- ► This is exactly what **Bagging** (or Bootstrap aggregation) procedures do. The steps are the following:
 - ► Sample (Bootstrap) B subsets of the data
 - Fit a tree to each subset to get B fitted trees
 - Average predictions across trees

Aggregating Trees: Random Forest

Random Forest is a special case of Bagging. It provides an improvement over bagged trees by way of a small tweak:

- ▶ Random Forest builds *B* trees on subsets of the data.
- ▶ But, for each split it randomly choose a **sample of** m **predictors** of all available p predictors (default $m = \sqrt{p}$).

Random Forest tuning parameters are B and m.

Aggregating Trees: Why is Random Forest better than Bagging?

Bagging: all p predictors -> similar trees

Random Forest: **selection of** m < P predictors \rightarrow **different trees**

Practice: Regression Trees using California Housing data

Objectives:

- ► Fit Single tree model and Random Forest model
- ► Fit linear model
- ➤ Compare predictive capacity using Out of Sample (OOS) Mean Root Squared Error (MRSE), which is a sqrt(SSE).

We fit models on **training partition** and we evaluate their predictive capacity on **testing partition**.

Fit Single Tree model using rpart package

size of big tree: 134

RMSE Single Tree Model: 0.2937906

Fit Random Forest model using randomForest package

Ideally, fit many models with different tuning parameters. Choose the one with the best OOS RMSE.

RMSE on test for RF m=3 ntree=50: 0.2472154

Variable Importance RF

Fit Linear model and compare OOS RMSE

Linear model OOS predictive capacity:

```
## RMSE on test for linear model: 0.3485098
```

▶ Now, let's compare OOS predictive capacity of all models

```
## rmse_rpart rmse_rf3 rmse_lm
## [1,] 0.2937906 0.2472154 0.3485098
```

- Which model does the best job?
- Recall: we want models to have low RMSE

Takeawyas

- Decision Trees are simple machine learning algorithms and they are easy to visualize.
- ► Trees are useful to solve regression and classification problems.
- However, single tree models tend to overfit.
- Ensembling methods such as Random Forest are good for improving predictive capacity of trees. They work growing many trees and combining predictions of the resulting ensemble of trees.
- Random Forest is among the sate-of-the art methods for supervised learning. However, it is computationally intensive and its results are difficult to interpret.

More on Ensembling methods: Boosting

Boosting builds many decision trees, but unlike Bagging or Random Forest, Boosting trees are grown **sequentially**. The steps are the following:

- ► Fit the model **tree#1** on the original data and save the residuals
- ► Fit the model **tree#2** on the residuals
- ▶ Update the initial model: tree#3 = tree#1 + tree#2
- Update the residuals
- ► Fit a new model **tree#4** on the residuals
- ▶ Repeat the process for a specified number of iterations

Updated trees are **shrunk** by the **shrinkage parameter** λ which controls the rate at which algorithm learns (default = 0.001 to 0.01).

Other tuning parameters: d the number of splits in each tree and B the number of trees to grow.

Practice: Fit Boosting model using gbm¹ package

Ideally, fit many models with different tuning parameters. Choose the one with the best OOS RMSE.

```
## RMSE on test for Boosting 4; 1000; 2: 0.2402014
## Variable Importance Boosting
```

##		var	rel.inf
##	medianIncome	${\tt medianIncome}$	45.594766
##	longitude	longitude	17.294545
##	latitude	latitude	17.137733
##	population	population	5.435569
##	totalBedrooms	totalBedrooms	4.283103
##	totalRooms	totalRooms	3.733635
##	households	households	3.392255
##	housingMedianAge	housingMedianAge	3.128394

¹GBM: Gradient Boost Machine

Compare OOS RMSE

► Let's compare predictive capacity of Single tree model, Random Forest, Boosting and Linear model:

```
## rmse_rpart rmse_rf3 rmse_gbm3 rmse_lm
## [1,] 0.2937906 0.2472154 0.2402014 0.3485098
```

- ▶ Which model does the best job?
- Recall: we want models to have low RMSE

Extra: Classification problema using iris dataset

What happens if our problem is a classification problem?

iris dataset: sepal and petal length and width, 150 plants, 3 species - Setosa, Versicolor, Virginica.

Exmpale: iris dataset

Fit a model that predicts species using as inputs sepal and petal width.

Prediction is the most common category

Exmpale: iris dataset

Partitions are defined by the classification tree. The first node classifies plants with petal width < 0.8 as setosa. Next, all plants with petal width > 1.75 are virginica.

Extra practice: Classification Trees using iris dataset

Objectives:

- ► Fit Single Tree, Random Forest, Boosting models
- ► Fit multinomial model
- Compare predictive capacity using OOS Accuracy

Fit models on **training partition** and evaluate their predictive capacity on **testing partition**.

Fit Single Tree model

► Classification table Single Tree model

##	rpartfitpred			
##		setosa	${\tt versicolor}$	virginica
##	setosa	30	0	0
##	versicolor	0	20	1
##	virginica	0	1	23

Fit RF model

► Classification table RF

##]	rfritpre	ed	
##		setosa	${\tt versicolor}$	virginica
##	setosa	30	0	0
##	versicolor	0	20	1
##	virginica	0	1	23

Fit Boosting model

Classification table Boosting model

```
## gbmfitpredcat
## 1 2 3
## setosa 30 0 0
## versicolor 0 19 2
## virginica 0 1 23
```

Fit Multinomial model

Classification table Multinomial model

##	${ t mnfitpred}$			
##		setosa	${\tt versicolor}$	virginica
##	setosa	30	0	0
##	versicolor	0	20	1
##	virginica	0	0	24

Compare OOS Accuracy

▶ Now, compare OOS predictive capacity of all models

```
## rpart_acc rf_acc gbm_acc mn_acc
## [1,] 0.9733333 0.9733333 0.96 0.9866667
```

- ▶ Which model does the best job?
- Recall: we want models to have high accuracy