FMEA Analysis Report motor_driver

Failure Mode and Effects Analysis for Electronic Circuit Board

Report Date: 2025-08-06

Prepared by: Circuit-Synth FMEA Analyzer

Standard: AIAG-VDA FMEA / IPC-A-610

Classification: Quality Assurance Document

Executive Summary

This FMEA analysis evaluates the motor_driver circuit design to identify potential failure modes and assess associated risks. The analysis examined 11 components across 0 subsystems.

Key Findings

Metric	Value	Status
Total Failure Modes Analyzed	28	✓ Good
Critical Risk Modes (RPN ≥ 300)	2	■ Attention
High Risk Modes (125 ≤ RPN < 300)	16	■ Attention
Average RPN Score	184.1	■ Attention

System Overview

Circuit analysis of motor_driver.json

Subsystems

FMEA Analysis Table

ID	Component	Failure Mode	Effect	S	0	D	RPN	Risk
1	J1 - Screw_Terminal_	Solder joint failure	Complete loss of connection, s	9 7		7	441	Critical
2	J2 - Screw_Terminal_	Solder joint failure	Complete loss of connection, s	9 7		7	441	Critical
3	C1 - C	ESR increase	Power supply instability, heat	6 6		7	252	High
4	C2 - CP	ESR increase	Power supply instability, heat	6 6		7	252	High
5	C1 - C	Capacitance degradation	Increased ripple, filtering in	5	7	7	245	High
6	C2 - CP	Capacitance degradation	Increased ripple, filtering in	5	7	7	245	High
7	D1 - 1N4148	Junction failure	Component malfunction	8	4	6	192	High
8	D2 - 1N4148	Junction failure	Component malfunction	8	4	6	192	High
9	D3 - 1N4148	Junction failure	Component malfunction	8	4	6	192	High
10	D4 - 1N4148	Junction failure	Component malfunction	8	4	6	192	High
11	J1 - Screw_Terminal_	Contact oxidation	Intermittent connection, data	5	6	6	180	High
12	J2 - Screw_Terminal_	Contact oxidation	Intermittent connection, data	5	6	6	180	High
13	D1 - 1N4148	Reverse leakage	Component malfunction	5	5	7	175	High
14	D2 - 1N4148	Reverse leakage	Component malfunction	5	5	7	175	High
15	D3 - 1N4148	Reverse leakage	Component malfunction	5	5	7	175	High
16	D4 - 1N4148	Reverse leakage	Component malfunction	5	5	7	175	High
17	J1 - Screw_Terminal_	Mechanical damage	Connection loss, physical dama	a 7	5	4	140	High
18	J2 - Screw_Terminal_	Mechanical damage	Connection loss, physical dama	1 7	5	4	140	High
19	D1 - 1N4148	Short circuit	Component malfunction	8	3	5	120	Medium
20	D2 - 1N4148	Short circuit	Component malfunction	8	3	5	120	Medium
21	D3 - 1N4148	Short circuit	Component malfunction	8	3	5	120	Medium
22	D4 - 1N4148	Short circuit	Component malfunction	8	3	5	120	Medium
23	C1 - C	Short circuit	Power rail short, system damaç	j 8	3	5	120	Medium
24	C2 - CP	Short circuit	Power rail short, system damaç	1 8	3	5	120	Medium
25	J1 - Screw_Terminal_	Pin misalignment	Component malfunction	6	4	5	120	Medium
26	J2 - Screw_Terminal_	Pin misalignment	Component malfunction	6	4	5	120	Medium
27	C1 - C	Open circuit	Component malfunction	7	3	5	105	Medium
28	C2 - CP	Open circuit	Component malfunction	7	3	5	105	Medium

Risk Assessment Matrix

Risk Level	RPN Range	Count	Action Required
Critical	≥ 300	2	Immediate action required
High	125-299	16	Action required before production
Medium	50-124	10	Monitor and improve if feasible
Low	< 50	0	Acceptable risk level

Recommendations

Priority Actions

- J1 Screw_Terminal_01x02 Solder joint failure: CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
- **J2 Screw_Terminal_01x02** Solder joint failure: CRITICAL: Add mechanical support, use thicker copper pours, implement strain relief
- C1 C ESR increase: Important: Review design and implement appropriate mitigation
- C2 CP ESR increase: Important: Review design and implement appropriate mitigation
- C1 C Capacitance degradation: Use higher-grade capacitors, derate voltage, add redundancy

General Recommendations

- Implement design review process with focus on high-RPN items
- Establish component derating guidelines (50-80% of maximum ratings)
- · Add test points for critical signals to improve detection capability
- Implement thermal analysis and management for power components
- Establish incoming inspection procedures for critical components
- Document lessons learned and update FMEA regularly