GRF-II Document d'étude

Nicholas Langevin 23 avril 2019

- Les produits dérivés
- Forwards et autres options
- Stratégies
- Forwards et Futures

1 Introduction aux produits dérivés

Produits dérivés Contrat entre 2 parties qui fixe les flux financiers futurs fondé sur ceux de l'actif sous-jacent *S*.

Étapes d'une transaction

- 1. l'acheteur et le vendeur se trouve (sur un marché quelquonque)
- 2. on définit les obligations de chaques parties (*i.e. actif à livrer, date d'échéance, prix, etc.*. Note : il y a souvent un intermédiaire (*clearing house*) qui intervient.
- 3. La transaction a lieu et les obligations sont remplies par chaque parties
- 4. Les registres de propriétés sont mis à jour.

Transaction gré-à-gré transaction sans intermédiaire ou à l'extérieur de la bourse. Plusieurs raisons peuvent justifier ce type de transaction :

- > Ce sont souvent de grosses transaction. On peut donc économiser sur les frais de transaction.
- > On peut combiner (sur une même transaction) plusieurs microtransaction et plusieurs types d'actifs.

Valeur notionelle définition exacte à valider

Origine des marchés de produits dérivés Après 1971, le président Nixon a vouli défaire le standard de l'or (qui a causé de l'hyperinflation dans plusieurs pays) pour plutôt laisser le libre-marché fixer la valeur des devise de chaque pays.

Rôle des marchés financiers Partage du risque et diversification des risques.

Utilité des produits dérivés

- > Gestion des risques
- > Spéculation
- > Réduction des frais de transaction
- > Arbitrage réglementaire

Bid-Ask Spread Correspond à la marge que le teneur de marché ($mar-ket\ maker$) conserve. En l'absence d'arbitrage, on aura Ask-Bid>0

Ask prix le plus haut que quelqu'un est prêt à payer pour le sous-jacentBid prix le plus bas que quelqu'un est prêt à payer pour le sous-jacent

Terminologie

market order ordre au marché : on achète et vend selon les prix Bid Ask actuels.

limit order Ordre limite : on achète le sous-jacent si Ask < k ou on vend le sous-jacent si Bid > k.

Stop Loss ordre de vente stop : on veut limiter sa perte si un sous-jacent perd énormément de valeur. Donc, on va vendre le sous-jacent si $Bid \le k$.

Long On se considère en position longue sur le sous-jacent si notre stratégie nous permet de bénéficier d'une hausse du sous-jacent.

Short On se considère en position longue sur le sous-jacent si notre stratégie nous permet de bénéficier d'une baisse du sous-jacent.

1. AV veut dire accumulated value.

Type de risques

Risque de défaut Risque de ne pas être payé. Ce risque peut être réduit avec un dépôt initial en garantie ou une marge de sécurité.

Risque de rareté Si il est difficile de trouver un acheteur et un vendeur pour le sous-jacent (pas beaucoup de transactions signifie beaucoup de négociations et de variation dans les prix)

2 Introduction aux Forwards et aux options

Pour chaque stratégie qu'on voit dans le cours, on peut calculer

Premium Il s'agit des cashflow à t = 0 (si positif, il s'agît d'un coût; si négatif, il s'agît d'une *compensation*).

Payoff Valeur à l'échéance t = T, i.e. les Cash-flow au temps t = T.

Profit = $Payoff - AV(Premium)^{1}$

Quelques définitions

 r_f taux d'intérêt sans risque. Parfois exprimé comme une force d'intérêt r continue.

S Sous-jacent (peut être une action, une devise, ...)

 S_0 valeur actuelle du sous-jacent S.

 S_T valeur du sous-jacent S au temps t = T.

 $F_{0,T}$ Prix *forward* du sous-jacent au temps T, qu'on définit comme

$$F_{0,T} = S_0 (1 + r_f)^T$$

 $F_{0,T}^P$ Prix d'un forward prépayé, i.e. on débourse $F_{0,T}^P$ à t=0 et on reçoit le sous-jacent à t=T, alors

$$F_{0,T}^P = F_{0,T}(1+r_f)^{-T}$$
 illustration graphique :

Achat ferme et emprunt On utilise parfois la lettre S pour désigner dans stratégie l'action de faire un achat ferme (i.e. acheter et se faire livrer le sous-jacent à t=0) et B pour désigner un dépôt/emprunt (qu'on exprime comme une obligation zéro-coupon).

Call(K,T)

Contrat qui permet au détenteur de se procurer S au prix K à l'échéance T. position longue dans le sous-jacent

Put(K,T)

Contrat qui *permet* au détenteur de vendre S au prix K à l'échéance T. **position courte dans le sous-jacent**

Forward synthétique

On peut créer un Forward synthétique 2 de façon (en combinant d'autres transactions) :

Forward = Stock - BondForward = Call(K, T) - Put(K, T)

Ces deux égalités définissent la Put-Call Parity vu un peu plus loin.

3 Stratégie de couverture

Floor

On achète S en se protégant contre une baisse trop importante du sous-jacent (**position longue**)

$$Premium = S_0 + P(K, T) > 0$$

$$Payoff = \begin{cases} K, S_T \le K \\ S_T, S_T > K \end{cases}$$

Payoff
Profit

Floor = Stock + Put(K, T)

Cap

On vend à découvert S en se protégant contre une hausse trop importante du sous-jacent (car il faudra éventuellement le racheter!). **Position courte**.

$$Cap = Call(K, T) - Stock$$

$$Premium = C(K, T) - S_0 < 0$$

$$Payoff \begin{cases} -S_T & , S_T \le K \\ -K & , S_T > K \end{cases}$$

Bull Spread

Combinaison de 2 Call (ou 2 Put) pour spéculer sur un marché haussier. Avec $K_1 < K_2$, on a

Avec option d'achat

 $BullSpread(Call) = Call(K_1, T) - Call(K_2, T)$

$$Premium = C(K_{1}, T) - Call(K_{2}, T) > 0$$

$$Payoff = \begin{cases} 0 & , S_{T} \leq K_{1} \\ S_{T} - K_{1} & , k_{1} < S_{T} \leq K_{2} \\ K_{2} - K_{1} & , S_{T} > K_{2} \end{cases}$$

Avec option de vente

 $BullSpread(Put) = Put(K_1, T) - Put(K_2, T)$ $Premium = P(K_1, T) - P(K_2, T) < 0$ $Payoff = \begin{cases} K_1 - K_2 & , S_T \le K_1 \\ K_2 - S_T & , K_1 < S_T \le K_2 \\ 0 & , S_T > K_2 \end{cases}$

Bear Spread

Combinaison de 2 Call ou 2 Put pour spéculer sur un marché baissier.

Avec option d'achat

$$\begin{split} Bear(Call) &= -Bull(Call) \\ &= Call(K_2, T) - Call(K_1, T) \\ Premium &= C(K_2, T) - C(K_1, T) < 0 \\ Profit &= \begin{cases} 0 & , S_T \leq K_1 \\ K_1 - S_T & , K_1 < S_T \leq K_2 \\ -(K_2 - K_1) & , S_T > K_2 \end{cases} \end{split}$$

Avec option de vente

Bear(Put) = -Bull(Put) $= Put(K_2, T) - Put(K_1, T)$ $Premium = P(K_2, T) - P(K_1, T) > 0$ $Profit = \begin{cases} K_2 - K_1 & , S_T \le K_1 \\ K_2 - S_T & , K_1 < S_T \le K_2 \\ 0 & , S_T > K_2 \end{cases}$

Ratio Spread

Cette stratégie est une combinaison un peu sur mesure (on ne peut pas nécessairement dire si elle est longue ou courte). On achète n options d'achat à un prix d'exercice K_1 et on en vend m à un prix d'exercice K_2 . 2

$$\begin{aligned} RatioSpread &= nCall(K_1,T) - mCall(K_2,T) \\ Premium &= nC(K_1,T) - mC(K_2,T) \\ Payoff &= \dots \end{aligned}$$

Box Spread

Cette stratégie réplique l'achat d'une obligation zéro-coupon, en impliquant 2 option d'achat et 2 options de vente.

$$\begin{split} BoxSpread &= Bull(Call) + Bear(Put) \\ &= Call(K_1,T) - Call(K_2,T) \\ &+ Put(K_2,T) - Put(K_1,T) \\ Premium &= C(K_1,T) - C(K_2,T) \\ &+ P(K_2,T) - P(K_1,T) > 0 \\ Payoff &= K_2 - K_1 \ , \forall S_T \end{split}$$

Collar

La prime initiale du Collar peut être soit positive ou négative (dépendant du strike price).

$$Collar = Put(K_1, T) - Call(K_2, T)$$

$$Premium = P(K_1, T) - C(K_2, T)$$

$$Payoff = \begin{cases} K_1 - S_T & , S_T \le K_1 \\ 0 & , K_1 < S_T \le K_2 \\ K_2 - S_T & , S_T > K_2 \end{cases}$$

Stock Covered by Collar

- > On effectue la même stratégie qu'un Collar, en ayant initialement le sous-jacent *S*. **Position longue dans le sous-jacent**.
- ightarrow Cette stratégie reproduit les flux monétaires d'un Bull Spread, alors
- $2. \ \ On peut faire cette stratégie avec des options de vente aussi.$

$$\begin{aligned} BullSpread &= Collar + Stock \\ &= Put(K_1, T) - Call(K_2, T) + Stock \\ Premium &= P(K_1, T) - C(K_2, T) + S_0 > 0 \end{aligned}$$

$$Payoff = \begin{cases} K_1 &, S_T \leq K_1 \\ S_T &, K_1 < S_T \leq K_2 \\ K_2 &, S_T > K_2 \end{cases}$$

Straddle

Stratégie pour spéculer sur la volatilité du sous-jacent S autour du point K.

$$Straddle = Put(K, T) + Call(K, T)$$

 $Premium = P(K, T) + C(K, T) > 0$

Strangle

Même genre de stratégie que le strangle, on spécule sur la volatilité du sous-jacent à l'extérieur de l'intervalle $[K_1, K_2]$:

$$Strangle = Put(K_1,T) + Call(K_2,T)$$

$$Premium = P(K_1, T) + C(K_2, T) > 0$$

$$Payoff = \begin{cases} K_1 - S_T & , S_T \leq K_1 \\ 0 & , K_1 < S_T \leq K_2 \\ S_T - K_2 & , S_T > K_2 \end{cases}$$

Butterfly Spread (BFS)

On combine un $Straddle(K_2)$ et un $Strangle(K_1, K_3)$ pour spéculer sur la non-volatilité du sous-jacent autour de K_2 , mais en limitant nos pertes à

$$K_1 - K_2: \\ Butterfly = Strangle - Straddle(K_2) \\ = Put(K_1, T) - Put(K_2, T) \\ - Call(K_2, T) + Call(K_3, T) \\ Premium = P(K_1, T) - P(K_2, T) \\ - C(K_2, T) + C(K_3, T) < 0 \\ \\ Payoff = \begin{cases} K_1 - K_2 & , S_T \leq K_1 \\ S_T - K_2 & , K_1 < S_T \leq K_2 \\ K_2 - S_T & , K_2 < S_T \leq K_3 \\ K_2 - K_3 & , S_T > K_3 \end{cases}$$

Note De façon générale (plusieurs combinaisons sont possibles), on a $BFS = Bull(K_1, K_2) + Bear(K_2, K_3)$

Asymetric Butterfly Spread

- > Comme le Ratio Spread, il est possible de faire une stratégie sur mesure en achetant n Bull Spread et en achetant m Bear Spread en respectant les 3 prix d'exercices $K_1 < K_2 < K_3$.
- \rightarrow Si on désire avoir un BFS qui a un profit nul pour $S_T < K_1$ et $S_T > K_3$, alors on trouve n et m tel que $\frac{n}{m} = \frac{K_3 - K_2}{K_2 - K_1}$

$$\frac{n}{m} = \frac{K_3 - K_2}{K_2 - K_1}$$

Forwards et Futures

Forward avec dividendes

Définition de base

$$C(K, T) - P(K, T) = S_0 - K(1 + r_f)^T$$

Action qui verse des dividendes

$$C(K,T) - P(K,T) = S - PV(Div) - K(1+r_f)^T$$

= $S_0 e^{-\delta T} - K e^{-rT}$

où δ est un taux de versement des dividendes continu.

De plus, on a
$$F_{0,T} = F_{0,T}^{P} (1 + r_f)^{T}$$

$$= (S_0 - \text{PV}(div))(1 + r_f)^{T}$$

$$= S_0 - \sum_{i=1}^{T} d_i (1 + r_f)^{T-i}$$

$$= S_0 e^{(r-\delta)T}$$

Forward synthétique avec dividendes On suppose le réinvestissement des dividendes.

Forward_{avec div.} =
$$e^{-\delta T} Stock - (e^{-\delta T} \cdot S_0) Bond$$

 $Premium = e^{-\delta T} S_0 - e^{-\delta T} S_0 = 0$
 $Payoff = S_T - S_0 e^{(r-\delta)T}$

Cash-and-carry Stratégie qui consiste à créer un Forward synthétique et vendre un Forward (profit nul).

Calcul avec prime de risque et nuance

> Certains sous-jacent ont une composante de risque nonnégligeable. Or, on ne peut pas dire que $F_{0,T} = E[S_T]$. Toutefois, $F_{0,T} = \mathbb{E}[S_T]e^{-(\alpha - r)\hat{T}}$

où α est la prime de risque qu'on enlève pour obtenir le prix du Forward, tel que

$$\alpha = \underbrace{r} + \underbrace{(\alpha - r)}_{\text{Taux sans risque}} + \underbrace{(\alpha - r)}_{\text{Prime de risque}}$$

Forward de devise

Put-Call parity avec les devises

DD Devise locale

DÉ Device étrangère

 x_0 Taux de change $\frac{DD}{DE}$ actuel (t = 0)

 r_D Taux sans risque <u>local</u>

 $r_{\rm \acute{E}}$ Taux sans risque étranger

Le prix Forward prépayé pour une unité de DÉ à t=0 (payé en DD) est

$$F_{0,T}^P = x_0 (1 + r_{\rm E})^{-T}$$

Et le prix Forward (à t = T) pour une unité de DÉ est $F_{0,T} = F_{0,T}^P (1 + r_D)^T$

$$= x_0 \left(\frac{1+r_D}{1+r_{\text{E}}}\right)^T$$
$$= x_0 e^{(r_D-r_{\text{E}})T}$$

Forward synthétique de devise

- > Emprunt de $x_0(1+r_{\rm f})^{-T}$ DD au taux r_D
- > Convertir les DD en DÉ
- > Dépôt de $(1 + r_{\rm f})^{-T}$ DÉ (au taux $r_{\rm f}$) de 0 à T.

Le payoff sera $x_t - x_0 \left(\frac{1+r_D}{1+r_A}\right)^T$.

Future

Essentiellement la même chose qu'un Forward, à quelques différences

- > Surveillé et contrôlé par des instances officielles (aucun Over-the-
- > S'applique sur certains types d'actifs définis seulement;
- > liquise et efficient
- > nécessite un dépôt initial des 2 parties (le risque de défaut est mi-
- > Transaction continues (règlement avec l'intermédiaire de façon quotidienne)
- Variation extrêmes dans les prix de Future sont limités (possibilité du circuit Breaker)

Fonctionnement

- 1. L'intermédaire demande un dépôt initial (initial margin), souvent un % de la valeur notionnelle.
- 2. Ce dépôt est accumulé à un taux de rendement i fixé par l'intermé-
- 3. À chaque période de règlement, on calcule la marge en fonction du prix du Future :

Marge_T = Marge_t · $(1+i)^{T-t}$ + Variation totale_[t,T]

4. Si Marge_t < Maintenance margin³, on doit **ajouter des fonds à la** marge pour revenir à la marge initiale. avec t < T

9 **Put-Call Parity**

Call-Put = Stock-Bond

Put-Call Parity avec devises

 $Call(x_0, K, T)$: Option d'achat qui permet d'acheter 1 unité de DÉ pour K unité de DD à l'échéance t = T.

 $Put(x_0, K, T)$: Option de vente qui permet d'acheter 1 unité de DÉ pour K unité de DD à l'échéance t = T.

Alors, on peut réécrire l'équation Put-Call Parity : $Call(x_0, K, T) - Put(x_0, K, T) = x_0(1 + r_{fi})^{-T} - K(1 + r_D)^{-T}$

Parité généralisée et option d'échange

 $Call(S_t, Q_t, T - t)$: Option d'achat qui permet d'acheter le sous-jacent Sau prix du sous-jacent Q au temps t = T.

 $Put(S_t, Q_t, T - t)$: Option de vente qui permet de vendre le sous-jacent S au prix du sous-jacent Q au temps t = T.

On peut généraliser l'équation Put-Call Parity : $C(S_t, Q_t, T - t) - P(S_t, Q_t, T - t) = F_{t, T}^{P}(S) - F_{t, T}^{P}(Q)$

Options sur devise

$$\begin{split} Call_{DD}(x_0,K,T) &= K \cdot Put_{DD}\left(\frac{1}{x_0},\frac{1}{K},T\right) \\ &= K \cdot x_0 \cdot Put_{D\acute{\mathbb{E}}}\left(\frac{1}{x_0},\frac{1}{K},T\right) \end{split}$$

Comparaison de différentes options

Option américaine vs européenne

$$C_{amer}(K, T) \ge C_{euro}(K, T)$$

 $P_{amer}(K, T) \ge P_{euro}(K, T)$

Option d'achat américaine Bien qu'on puisse exercer l'option américaine au moment qu'on veut, il peut être optimal d'exercer avant l'échéance seulement si

ou si
$$PV(div) > K\left(1 - (1 + r_f)^{-(T-t)}\right)$$

$$PV(div) > P(K, T - t) + K\left(1 - (1 + r_f)^{-(T-t)}\right)$$

- 3. Cette marge est souvent exprimée en % de la marge initiale.
- 4. i.e. $K_t = K(1 + r_f)^T$.

Option de vente américaine Le moment optimal pour exercer le Put serait tout juste après la date ex-dividende.

Date d'expiration Pour $T_1 < T_2$, $C(K, T_1) \leq C(K, T_2)$ $P(K, T_1) \le P(K, T_2)$

Prix d'exercice Les différentes conditions énumérées ci-bas doivent être respectées:

 $C(K,T) \ge S_0 - K$ $P(K,T) \ge K - S_0$ $C(K_1, T) > C(K_2, T)$ $P(K_1, T) < P(K_2, T)$ $\frac{C(K_1,T) - C(K_2,T) \le K_2 - K_1}{\frac{C(K_1,T) - C(K_2,T)}{K_2 - K_1}} \ge \frac{C(K_2,T) - C(K_3,T)}{K_3 - K_2}$

Si le prix d'exercice est Constant en valeur actualisée 4 , alors, avec t < T $C(K_t, t) \leq C(K_T, T)$

 $P(K_t, t) \le P(K_T, T)$

Introduction au modèle binomial d'évaluation des options

Probabilité neutre au risque

- $\rightarrow U = uS$ est la valeur supérieure que peut prendre le sous-jacent S
- $\rightarrow D = dS$ est la valeur inférieure que peut prendre le sous-jacent S
- > p est la probabilité (Bernouilli) que le sous-jacent prenne la valeur U.
- $\rightarrow \theta_u$ et θ_d sont les payoff de l'option (Call ou Put) aux branches up et down respectivement après h périodes.
- $\rightarrow r$ et δ sont respectivement la force d'intérêt sans risque et le taux de dividende continu.

Alors, la probabilité neutre au risque est

$$p* = \frac{e^{(r-\delta)h} - d}{u - d}$$

Portefeuille réplicatif d'une option

On peut reproduire une option (Call ou Put) avec la stratégie suivante :

où B et ΔS changent de signe selon si c'est un Call ou un Put. On peut obtenir la prime initiale (Premium) et les composantes du portefeuille réplicatif avec

 $\Delta = e^{-\delta h} \left(\frac{\theta_u - \theta_d}{U - D} \right) = e^{-\delta h} \left(\frac{\theta_u - \theta_d}{S(u - d)} \right)$ $B = e^{-rh} \left(\frac{U \cdot \theta_d - D \cdot \theta_u}{U - D} \right) = e^{-rh} \left(\frac{u\theta_d - d\theta_u}{u - d} \right)$ où θ_u et θ_d sont les *payoff* pour la branche up et la branche down respec-

tivement.

Premium = $\Delta S_0 + B$

Paramètre u, d et σ

$$u = e^{(r-\delta)h + \sigma\sqrt{h}}$$
$$d = e^{(r-\delta)h - \sigma\sqrt{h}}$$

Rendements composés continûment

$$r_{t,t+h} = \ln\left(\frac{S_{t+h}}{S_t}\right)$$

Calcul du prix de l'option

Dans le modèle d'arbre binomial, on peut calculer le prix d'une option C(K,h) comme

$$C(K, h) = (p^*\theta_u + (1 - p^*)\theta_d)e^{-rh}$$

On peut trouver la volatilité annuelle telle que

$$\sigma = \frac{\ln\left(u/d\right)}{2\sqrt{h}}$$

Sinon, on peut l'estimer somme la variance non-biaisée des rendements historiques :

$$\hat{\sigma} = \frac{\sum_{t=1}^{n} (r_{t,t+1} - \bar{r})^{2}}{(n-1)\sqrt{h}}$$

$$\text{avec } \bar{r} = \frac{1}{n} \sum_{t=1}^{n} r_{t}.$$

Construction d'un arbre binomial

- 1. On construit l'arbre de gauche à droite. À chaque noeud, on calcule le prix de l'action et le *payoff* selon le type d'action.
- 2. On calcule le prix de l'option et les composantes du portefeuille réplicatif à chaque noeud en fonction des branches *u* et *d* de droite à gauche.
- 3. Si l'option est de type américaine, il faut vérifier à chaque noeud si il est plus avantageux d'exécuter l'option ou d'attendre (i.e. si le prix de l'option est plus élevé, on attend)

Options sur devise

Ce sont exactement les même formules, à l'exception qu'on précise le taux sans risque r_f pour le taux sans risque de la devise domestique r_{DD} et le taux de dividende δ devient le taux sans risque de la domestique étrangère $r_{D\acute{\rm E}}$.

11 Formule de Black-Scholes

$$C(S_0, K, r, \sigma, T, \delta) = S_0 e^{-\delta T} N(d_1) - K e^{-rT} N(d_2)$$

avec

$$d_1 = \frac{\ln\left(\frac{S_0}{K}\right) + \left(r - \delta + \frac{\sigma^2}{2}\right)}{\sigma\sqrt{T}} \quad \text{et } d_2 = d_1 - \sigma\sqrt{T}$$

De façon équivalente ⁵, on a la formule pour l'option de vente :

$$P(S_0, K, r, \sigma, T, \delta) = Ke^{-rT}N(-d_2) - S_0e^{-\delta T}N(-d_1)$$

N() est la fonction de répartition de la N(0,1).

Black Scholes pour Forward prépayés

$$\begin{split} C(S,K,r,\sigma,T,\delta) &= F_{0,T}^P(S)N(d_1) - F_{0,T}^P(K)N(d_2) \\ P(S,K,r,\sigma,T,\delta) &= F_{0,T}^P(K)N(-d_2) - F_{0,T}^P(S)N(-d_1) \end{split}$$

Black Scholes pour options avec actions versant des dividendes

Dividendes discrets proportionnels Soit ϕ un taux de dividende (une proportion de l'action) versé à intervalle régulier. On connaît d'avance le nombre n de dividendes qui seront versés d'ici l'échéance T. Alors,

$$C(S, K, r, \sigma, T, \phi) = S(1 - \phi)^{n} N(d_1) - Ke^{-rT} N(d_2)$$

Dividendes discrets fixes On suppose que les dividendes d_t sont verrés à des moments connus d'avance. Alors,

$$C(S, K, r, \sigma, T, d_t) = \left(S - \sum_{0 \le t \le T} d_t e^{-rt}\right) N(d_1) - Ke^{-rT} N(d_2)$$

18 Loi lognormale

Soit $X \sim N(\mu, \sigma)$, alors $Y = e^X \sim LN(\mu, \sigma)$.

^{5.} On utilise la Put-Call Parity