PING: Probabilistic Inference for Nucleosome Positioning with MNase-based or Sonicated Short-read Data.

Xuekui Zhang*and Raphael Gottardo†

August 13, 2012

This vignette presents a workflow to use PING on paired-end sequencing data.

Contents

1	Licensing and citing							
2	Introduction							
3	PING analysis steps							
4	Data Input and Formatting							
5	PING analysis 5.1 Genome segmentation	3 4						
6	Post-processing PING results	4						

^{*}ubcxzhang@gmail.com

 $^{^{\}dagger} rgottard@fhcrc.org$

1 Licensing and citing

Under the Artistic License 2.0, you are free to use and redistribute this software.

If you use this package for a publication, we would ask you to cite the following:

Xuekui Zhang, Gordon Robertson, Sangsoon Woo, Brad G. Hoffman, and Raphael Gottardo. (2012). Probabilistic Inference for Nucleosome Positioning with MNase-based or Sonicated Short-read Data. PLoS ONE 7(2): e32095.

2 Introduction

For an introduction to the biological background and PING method, please refer to the PING user guide.

3 PING analysis steps

A typical PING analysis consists of the following steps:

- 1. Extract reads and chromosomes from bam files.
- 2. Segment the genome into candidate regions that have sufficient aligned reads via 'segmentPING'
- 3. Estimate nucleosome positions and other parameters with PING
- 4. Post-process PING predictions to correct certain predictions

As with any R package, you should first load it with the following command:

> library(PING)

4 Data Input and Formatting

In order to use the PE version of PING, the input has to be slightly different. Instead of a GRanges object, the new segmentation method use a list of reads and a chromosome.

We provide a dataset for the chromosome I of yeast.

```
> data(yeast_chrI)
```

> head(reads\$P)

```
qname pos.+ pos.-
   6:13194:12920
                      9
   14:15977:3164
                          214
3 117:4743:11663
                      9
                          214
4 24:12054:10535
                     11
                          214
5 11:10786:12847
                     41
                          179
  53:15735:7927
                     41
                          193
```

> chrs

[1] "chrI"

5 PING analysis

5.1 Genome segmentation

PING is used the same way for paired-end and single-end sequencing data. The function segmentPING will decide which segmentation method should be used based on the data type. Paired-end reads should be passed as a list with at least the three elements P, yFm, and yRm. With P being the paired-end reads, yFm and yRm being the reads where one end is missing. When dealing with paired-end data, four new arguments have to be passed to the function: a chromosome chr and three parameters used in candidate region selection: islandDepth, min_cut and max_cut.

In order to improve the computational efficiency of the PING package, if you have access to multiple cores we recommend that you do parallel computations via the parallel package. In what follows, we assume that parallel is installed on your machine. If it is not, you could omit the first line, and calculations will occur on a single CPU. By default the command is not run. Note that the segmentPING and PING functions will automatically detect whether you have initialized a cluster and will use it if you have.

> library(parallel)

Performing segmentation for paired-end reads islandDepth= 5islandDepth= 6islandDepth= 7islandDepth= 8islandDepth= 9islandDepth= 10

It returns a segReadsListPE object.

5.2 Parameter estimation

The only difference when using PING for paired-end data is the argument PE that has to be set to TRUE.

```
> paraP <- setParaPriorPING(xi = 150, rho = 1.2, alpha = 12, beta = 20000, 
+ lambda = -6.4e-05, dMu = 200)
> ping <- PING(segPE, paraPrior = paraP, PE = TRUE)
```

The returned object is of class pingList and can be post-processed.

6 Post-processing PING results

Here again, we set the argument PE to TRUE, and use postPING normally.

```
> {
+
     sigmaB2 = 3600
     rho2 = 15
     alpha2 = 98
     beta2 = 2e + 05
+ }
> PS = postPING(ping, segPE, paraPrior = paraP, rho2 = rho2, alpha2 = alpha2,
      beta2 = beta2, sigmaB2 = sigmaB2, PE = TRUE)
The 5 Regions with following IDs are reprocessed for singularity problem:
(208,414]177 (208,414]180 (208,414]192 (208,414]201 (208,414]207
         384
                                                408
                      387
                                   399
                                                             414
The 62 Regions with following IDs are reprocessed for atypical delta:
[1] 51 175 21 390 46 63
The 3 Peaks with following IDs are reprocessed for atypical sigma:
     2 102 251
The 929 regions with following IDs are reprocessed for Boundary problems:
   3 4 6 8 9 10
```

The result output PS is a dataframe that contains estimated parameters of each nucleosome, users can use write table command to export the selected columns of the result.

> head(PS)

)	l se	sigmaSqR	sigmaSqF	delta	mu	W	D chr	ID	
	3.440431	1500.750	2525.083	191.3817	1270.848	0.2042955	2 chrI	2151 12	22
)	3.461760	2641.707	1624.778	218.1655	13698.663	0.1645027	8 chrI	2441 38	22
ļ	3.954364	1660.142	1979.346	205.8027	147906.099	0.1847783	5 chrI	3231 305	23
·)	3.364485	1085.523	1185.758	193.7497	136799.683	0.2755595	4 chrI	2881 284	22
	3.518761	1289.626	1339.635	186.3182	14270.464	0.1162624	8 chrI	2491 38	22
ŀ	5.059184	1558.195	1038.934	188.4610	181511.399	0.1036260	4 chrI	1421 354	24
rank	seR	seF	maxRange	minRange	scoreR	scoreF	score		
1	3.997939	3.951147	2307	672	122441.62	113083.03	5524.7	2151 235	22
2	4.578116	4.244206	14788	13112	110743.38	119322.09	0065.5	2441 230	22
3	4.785048	4.916332	148499	147090	100604.90	103724.43	4329.3	3231 204	23
4	4.163645	3.995425	137314	136235	92026.19	111523.26	3549.5	2881 203	22
5	4.223326	4.341040	14788	13112	91246.31	98265.25	9511.6	2491 189	22
6	5.779565	5.797899	182514	180938	93802.28	95405.74	9208.0	1421 189	24