Painel / Meus cursos / SC26EL / 11-Alocação de Polos / Questionário sobre Alocação de Polos

Iniciado em	quinta, 22 abr 2021, 08:35
Estado	Finalizada
Concluída em	sábado, 24 abr 2021, 15:40
Tempo	2 dias 7 horas
empregado	
Notas	2,0/2,0
Avaliar	10,0 de um máximo de 10,0(100 %)

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Observe que esse sistema é instavel, uma vez que seus polos são $s_{1,2}=\pm 2$. Para estabilizar o sistema, utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2}=-2$.

A matriz de controlabilidade tem a forma $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$. Assim, os elementos da matriz M são:

$$m_{11} = \boxed{0}$$
 \checkmark , $m_{12} = \boxed{1}$ \checkmark , $m_{21} = \boxed{1}$ \checkmark , $m_{22} = \boxed{0}$ \checkmark .

O posto da matriz de controlabilidade é: 2

Portanto, o sistema é: Controlável

O polinômio característico desejado para o sistema é: $\phi(s) = \boxed{1}$ \checkmark $s^2 + \boxed{4}$ \checkmark $s + \boxed{4}$.

A matriz $\phi(A)$ tem a forma $\phi(A) = \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix}$. Assim, os elementos da matriz $\phi(A)$ são:

$$\phi_{11}= \boxed{8}$$
 , $\phi_{12}= \boxed{4}$, $\phi_{21}= \boxed{16}$, $\phi_{22}= \boxed{8}$

O vetor de ganhos do controlador é: $K = \begin{bmatrix} 8 & \checkmark & 4 & \checkmark \end{bmatrix}$.

O sistema em malha fechada é representado por:

$$\dot{x} = A_{MF}x + B_{MF}u,$$

 $y = C_{MF}x.$

Considere as estruturas das matrizes abaixo:

$$A_{MF} = egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
 . Assim, os elementos da matriz A_{MF} são:

$$a_{11}= \boxed{0}$$
 , $a_{12}= \boxed{1}$, $a_{21}= \boxed{-4}$, $a_{22}= \boxed{-4}$.

 $B_{MF} = \left[egin{array}{ccc} b_{11} & b_{21} \end{array}
ight]^T$. Assim, os elementos da matriz B_{MF} são:

$$b_{11}= \boxed{egin{array}{c} 0 \end{array}}$$
 ,

 $b_{21} = \boxed{0}$

 $\mathit{C}_{\mathit{MF}} = [\,\mathit{c}_{11} \quad \mathit{c}_{12}\,]$. Assim, os elementos da matriz C_{MF} são:

Considere o sistema abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -8 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 4 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Utilize a técnica de realimentação de estados e projete o vetor de ganhos K de forma que os polos do sistema, em malha fechada, sejam $s_{1,2}=-2$ e $s_3=-20$.

Os polos do sistema são: $s_{1,2} = \begin{bmatrix} -1 \\ \checkmark \end{bmatrix} \pm \begin{bmatrix} 1.732 \\ \checkmark \end{bmatrix} + \begin{bmatrix} -2 \\ \checkmark \end{bmatrix}$

A matriz de controlabilidade tem a forma $M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$. Assim, os elementos da matriz M são:

$$m_{11} = \begin{bmatrix} 0 & \checkmark & m_{12} = \begin{bmatrix} 0 & \checkmark & m_{13} = \begin{bmatrix} 1 & \checkmark & m_{21} = \begin{bmatrix} 0 & \checkmark & m_{22} = \begin{bmatrix} 1 & \checkmark & m_{23} = \begin{bmatrix} -4 & \checkmark & m_{31} = \begin{bmatrix} 1 & \checkmark & m_{32} = \begin{bmatrix} -4 & \checkmark & m_{33} = \begin{bmatrix} 8 & 4 & 4 & 4 & M_{13} & M_{13}$$

O posto da matriz de controlabilidade é: 3

Portanto, o sistema é: Controlável ✓ .

O polinômio característico desejado para o sistema é: $\phi(s) = \boxed{1}$ \checkmark $s^3 + \boxed{24}$ \checkmark $s^2 + \boxed{84}$ \checkmark $s + \boxed{80}$

A matriz $\phi(A)$ tem a forma $\phi(A) = \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$. Assim, os elementos da matriz $\phi(A)$ são:

$$\phi_{11} = \boxed{72}$$
 , $\phi_{12} = \boxed{76}$, $\phi_{13} = \boxed{20}$, $\phi_{21} = \boxed{-160}$, $\phi_{22} = \boxed{-88}$, $\phi_{23} = \boxed{-4}$, $\phi_{31} = \boxed{32}$, $\phi_{32} = \boxed{-128}$, $\phi_{33} = \boxed{-72}$.

O vetor de ganhos do controlador é: $K = \begin{bmatrix} 72 & \checkmark & 76 & \checkmark & 20 & \checkmark \end{bmatrix}$

O sistema em malha fechada é representado por:

$$\dot{x} = A_{MF}x + B_{MF}u,$$

$$y = C_{MF}x.$$

Considere as estruturas das matrizes abaixo:

$$A_{MF} = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 . Assim, os elementos da matriz A_{MF} são:

$$a_{11} = \begin{bmatrix} 0 & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

 $B_{MF} = \left[egin{array}{ccc} b_{11} & b_{21} & b_{31} \end{array}
ight]^T$. Assim, os elementos da matriz B_{MF} são:

$$egin{aligned} m{b_{11}} &= egin{aligned} 0 & & m{\checkmark} \ m{b_{21}} &= egin{aligned} 0 & & m{\checkmark} \ m{b_{31}} &= egin{aligned} 0 & & m{\checkmark} \end{aligned}$$

 $C_{MF} = \left[egin{array}{ccc} c_{11} & c_{12} & c_{13} \end{array}
ight]$. Assim, os elementos da matriz C_{MF} são:

$$c_{11} = \boxed{4}$$
 , $c_{12} = \boxed{0}$, $c_{13} = \boxed{0}$.

■ Script Python

Seguir para...

Aula 12 - Projeto de Controladores em Espaço de Estados - Parte 1 -