### Procesos Estocásticos - Cadena de Markov

V. Arunachalam (Arun) varunachalam@unal.edu.co

Universidad Nacional de Colombia

2022

### ECUACIONES DE CHAPMAN-KOLMOGOROV

Supóngase que interesa determinar la probabilidad de alcanzar el estado j después de n transiciones dado que el proceso se hallaba en el estado i en tiempo 0, esto es, deseamos calcular  $P\left[X_n=j|X_0=i\right]$ . Es claro que si 0 < m < n entonces para todo par de estados  $i,j \in \mathbb{S}$  se satisface lo siguiente:

$$P[X_n = j \mid X_0 = i] = \sum_k P[X_n = j \mid X_m = k] P[X_m = k \mid X_0 = i]$$

0

$$P_{ij}^{(n)} = \sum_{k \in \mathbb{S}} P_{ik}^{(m)} P_{kj}^{(n-m)}$$

### **DEMONSTRACIÓN**

Realizamos en clase



Como una consecuencia importante de la ecuación de Chapman-Kolmogorov se tiene el siguiente resultado en forma matricial:

$$p_{ij}^{(n)}=(P^n)_{ij}$$



(Ruina del jugador) Supóngase que para simplicidad, la matriz de transición  $\mathbf{S} = \{0, 1, 2, 3, 4\}$ 

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.6 & 0 & 0.4 & 0 & 0 \\ 0 & 0.6 & 0 & 0.4 & 0 \\ 0 & 0 & 0.6 & 0 & 0.4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{P}^2 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.6 & 0.24 & 0 & 0.16 & 0 \\ 0.36 & 0 & 0.48 & 0 & 0.16 \\ 0 & 0.36 & 0 & 0.24 & 0.4 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{P}^{20} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0.87655 & 0.00032 & 0 & 0.00022 & 0.12291 \\ 0.69186 & 0 & 0.00065 & 0 & 0.30749 \\ 0.41842 & 0.00049 & 0 & 0.00032 & 0.58437 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{P} = \left( \begin{array}{ccccccccc} 0 & 0 & 2/5 & 3/5 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 0 & 0 & 2/3 & 1/3 \\ 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/4 & 3/4 & 0 & 0 & 0 & 0 \end{array} \right).$$

This Markov chain has period d = 3. One-step transitions between the states are possible in the order  $\mathbf{Z}_1 = \{0,1\} \to \mathbf{Z}_2 = \{2,3\} \to \mathbf{Z}_1 = \{4,5\} \to \mathbf{Z}_1$ . The three-step transition matrix  $\mathbf{P}^{(3)} = \mathbf{P}^3$  is

# CLASIFICACIÓN DE ESTADOS DE UNA CADENA DE MARKOV

El comportamiento de una cadena de Markov depende de si la cadena vuelve a su estado de partida con probabilidad uno o no. Para poder este análisis requerimos hacer una clasificación de los estados de la cadena.

# CLASIFICACIÓN DE ESTADOS DE UNA CADENA DE MARKOV

El comportamiento de una cadena de Markov depende de si la cadena vuelve a su estado de partida con probabilidad uno o no. Para poder este análisis requerimos hacer una clasificación de los estados de la cadena.

# Clasificación de estados de una Cadena de Markov

- A. Se dice que un estado j es alcanzable a partir del estado i ( $i \rightarrow j$ ) si es posible ir de i a j en un número finito de pasos (transiciones). Esto es, si  $p_{ij}^{(n)}$  denota la probabilidad de ir del estado i al estado j en n transiciones, entonces  $i \rightarrow j$ , si y sólo si, existe un  $n \geq 0$  tal que  $p_{ij}^{(n)} \geq 0$ .
- B. Se dice que el estado i está comunicado con el estado j y escribimos i  $\leftrightarrow$  j, si y sólo si, i  $\rightarrow$  j y j  $\rightarrow$  i
- c. Es fácil verificar que la relación estar comunicado es una relación de equivalencia y por consiguiente, las clases de equivalencia

$$C(i) := \{j : i \leftrightarrow j\}, \ i \in S$$

forman una partición de S.



## Clasificación de estados de una Cadena de Markov

- A. Se dice que un estado j es alcanzable a partir del estado i ( $i \rightarrow j$ ) si es posible ir de i a j en un número finito de pasos (transiciones). Esto es, si  $p_{ij}^{(n)}$  denota la probabilidad de ir del estado i al estado j en n transiciones, entonces  $i \rightarrow j$ , si y sólo si, existe un  $n \geq 0$  tal que  $p_{ij}^{(n)} \geq 0$ .
- B. Se dice que el estado i está comunicado con el estado j y escribimos i  $\leftrightarrow$  j, si y sólo si, i  $\rightarrow$  j y j  $\rightarrow$  i
- c. Es fácil verificar que la relación estar comunicado es una relación de equivalencia y por consiguiente, las clases de equivalencia

$$C(i) := \{j : i \leftrightarrow j\}, \ i \in S$$

forman una partición de S.



## Clasificación de estados de una Cadena de Markov

- A. Se dice que un estado j es alcanzable a partir del estado i ( $i \rightarrow j$ ) si es posible ir de i a j en un número finito de pasos (transiciones). Esto es, si  $p_{ij}^{(n)}$  denota la probabilidad de ir del estado i al estado j en n transiciones, entonces  $i \rightarrow j$ , si y sólo si, existe un  $n \geq 0$  tal que  $p_{ii}^{(n)} \geq 0$ .
- B. Se dice que el estado i está comunicado con el estado j y escribimos i  $\leftrightarrow$  j, si y sólo si, i  $\rightarrow$  j y j  $\rightarrow$  i
- c. Es fácil verificar que la relación estar comunicado es una relación de equivalencia y por consiguiente, las clases de equivalencia

$$C(i) := \{j : i \leftrightarrow j\}, i \in S$$

forman una partición de S.



En el ejemplo de la ruina del jugador se tiene que el conjunto de estados queda particionada en tres clases:

$$C(0) = \{0\}, C(1) = \{1, 2, \dots, a-1\}, C(a) = \{a\}$$

Obsérvese que en este caso  $1 \rightarrow 0$  pero  $0 \notin C(1)$ .

Una cadena de Markov se dice irreducible si posee una única clase de equivalencia, es decir, si todos los estados están comunicados entre si.

#### EXAMPLE

Sea  $(X_n)_{n\in\mathbb{N}}$  una cadena de Markov con espacio de estados  $S=\{1,2,3\}$ , distribución inicial  $\pi=(1,0,0)$  y matriz de transición

$$\left(\begin{array}{ccc} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 1 & 0 & 0 \end{array}\right)$$

Se tiene que C(1) = C(2) = C(3), esto es, la cadena es irreducible.

Una cadena de Markov se dice irreducible si posee una única clase de equivalencia, es decir, si todos los estados están comunicados entre si.

#### **EXAMPLE**

Sea  $(X_n)_{n\in\mathbb{N}}$  una cadena de Markov con espacio de estados  $S=\{1,2,3\}$ , distribución inicial  $\pi=(1,0,0)$  y matriz de transición

$$\left(\begin{array}{ccc}
0 & \frac{3}{4} & \frac{1}{4} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0
\end{array}\right)$$

Se tiene que C(1) = C(2) = C(3), esto es, la cadena es irreducible.

Un estado  $i \in S$  se dice absorbente si  $p_{ii}(1) = 1$ . Esto es, i es un estado absorbente si él es el único miembro de C(i) y ningún estado  $j \neq i$  es alcanzable a partir de i.

#### EXAMPLE

En el ejemplo de la ruina del jugador se tiene que los estados 0 y *a* son estados absorbentes.

Un estado  $i \in S$  se dice absorbente si  $p_{ii}(1) = 1$ . Esto es, i es un estado absorbente si él es el único miembro de C(i) y ningún estado  $j \neq i$  es alcanzable a partir de i.

#### **EXAMPLE**

En el ejemplo de la ruina del jugador se tiene que los estados 0 y a son estados absorbentes.

- Consideremos una cadena de Markov  $(X_n)_n$  que parte del estado i y sean  $\tau_{ij}$  las variables aleatorias definidas como sigue  $\tau_{ij} := \min \{n : X_n = j\} = tiempo mínimo que requiere la cadena para que partiendo de <math>i$  llegue a j.Si  $\{n : X_n = j\} = \emptyset$ , entonces definimos  $\tau_{ij}$  igual a infinito.
- A la variable aleatoria  $\tau_{ii}$  se le llama **tiempo de recurrencia** del estado i, esto es,  $\tau_{ii}$  es el número de transiciones requeridas para retornar al estado i luego de que la cadena ha salido de dicho estado

- Consideremos una cadena de Markov  $(X_n)_n$  que parte del estado i y sean  $\tau_{ij}$  las variables aleatorias definidas como sigue  $\tau_{ij} := \min \{n : X_n = j\} = tiempo mínimo que requiere la cadena para que partiendo de <math>i$  llegue a j.Si  $\{n : X_n = j\} = \emptyset$ , entonces definimos  $\tau_{ij}$  igual a infinito.
- A la variable aleatoria  $\tau_{ii}$  se le llama **tiempo de recurrencia** del estado i, esto es,  $\tau_{ii}$  es el número de transiciones requeridas para retornar al estado i luego de que la cadena ha salido de dicho estado.

La función densidad de probabilidad asociada a  $\tau_{ij}$  es

$$f_{ij}^{(n)} = P[\tau_{ij} = n \mid X_0 = i], \ n \ge 1$$

esto es,  $f_{ij}^{(n)}$  es la probabilidad de que partiendo de i la cadena visite, por primera vez, el estado j en el tiempo n. Así, por ejemplo,

$$f_{ij}^{(1)} = P[\tau_{ij} = 1] = P[X_{n+1} = j | X_n = i] = p_{ij}$$
  
 $f_{ij}^{(2)} = P[X_{n+2} = j | X_n = i, X_{n+1} \neq j]$ 

Se define para todo  $i, j \in S$ 

$$f_{ij}^{(0)} := 0$$

Sea

$$f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}$$

Esto es,  $f_{ij}$  es la probabilidad de que, partiendo de i, la cadena alcance el estado i por lo menos una vez.

Un estado  $i \in S$  se llama recurrente si  $f_{ij} = 1$ . Un estado i que no sea recurrente se llama transitorio.

En otras palabras, un estado j es recurrente si y sólo si, después de que la cadena sale del estado j, su eventual retorno al estado j ocurre con probabilidad 1.

Sea  $(X_n)_n$  una cadena de Markov con conjunto de estados  $S = \{0, 1, 2, 3\}$  y matriz de transición

$$\mathbf{P} = \left(\begin{array}{cccc} 0.8 & 0 & 0.2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0.3 & 0.4 & 0 & 0.3 \end{array}\right)$$

Se tiene que  $C(0)=\{0,2\}$ ,  $C(1)=\{1\}$ ,  $C(3)=\{3\}$ . Los estados 0 y 2 son recurrentes y los estados 1 y 3 son transitorios.

Sea  $(X_n)_n$  una cadena de Markov con conjunto de estados  $S = \{1, 2, 3, 4, 5\}$  y matriz de transición

$$\mathbf{P} = \begin{pmatrix} 0.5 & 0 & 0 & 0.5 & 0 \\ 0 & 0.6 & 0 & 0 & 0.4 \\ 0.3 & 0 & 0.7 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

Se tiene que  $C(1)=\{1,3,4\}$  ,  $C(2)=\{2,5\}$  . Todos los estados son recurrentes.

Al valor esperado  $M_{ij}$  de la variable aleatoria  $\tau_{ij}$  se le llama tiempo medio de la primera transición del estado i al estado j. Esto es,

$$M_{ij} = \mathrm{E}\left[\tau_{ij}\right] = \sum_{n=1}^{\infty} n f_{ij}(n)$$

A  $M_{ii}$  se le denomina tiempo medio de recurrencia.

#### DEFINITION

Un estado recurrente  $i \in S$  se llama recurrente positivo si  $M_{ii} < \infty$  y recurrente nulo si  $M_{ii} = \infty$ .

Al valor esperado  $M_{ij}$  de la variable aleatoria  $\tau_{ij}$  se le llama tiempo medio de la primera transición del estado i al estado j. Esto es,

$$M_{ij} = \mathrm{E}\left[\tau_{ij}\right] = \sum_{n=1}^{\infty} n f_{ij}(n)$$

A  $M_{ii}$  se le denomina tiempo medio de recurrencia.

#### DEFINITION

Un estado recurrente  $i \in S$  se llama recurrente positivo si  $M_{ii} < \infty$  y recurrente nulo si  $M_{ii} = \infty$ .

Sea  $i \in S$  fijo. El período de i está definido como sigue:

$$d(i) := MCD \{ n \ge 1 \mid p_{ii}(n) > 0 \}$$

Si  $p_{ii}(n) = 0$  para todo  $n \ge 1$ , entonces definimos d(i) = 0.

Si d(i) > 1 entonces se dice que i es un estado periódico con período  $\gamma = d(i)$ .

Si d(i) = 1 entonces se dice que el estado i es **aperiódico**.

En el ejemplo de la ruina del jugador se tiene que:

$$d(0) = MCD\{n \ge 1 \mid p_{00}(n) > 0\} = 1 = \{n \ge 1 \mid p_{aa}(n) > 0\} = d(a)$$

$$d(i) = MCD\{n \ge 1 \mid p_{ii}(n) > 0\} = 2 \text{ para todo } i \ne 0, a$$

Esto es los estados 0 y a son estados aperiódicos y los demás estados son periódicos con periódo 2.

Sea  $(X_n)_{n\in\mathbb{N}}$  una cadena de Markov con conjunto de estados  $S=\{0,1,2,3,4\}$  y matriz de transición

$$P = \left(\begin{array}{cccc} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{2}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$$

$$C(0) = C(1) = \{0, 1\}$$
  
 $C(2) = C(3) = \{2, 3\}$   
 $C(4) = \{4\}$ 

У

$$d(0) = d(1) = 2$$
  
 $d(2) = d(3) = 1$   
 $d(4) = 0$ 

Un conjunto no vacio de estados se dice cerrado si no existen estados fuera del conjunto que sean alcanzables a partir de los estados del conjunto.

#### DEFINITION

Una clase comunicante cerrada es recurrente positiva si ella es finita.

Una clase comunicante cerrada infinita puede ser recurrente positiva, recurrente nula o no recurrente.

Un conjunto no vacio de estados se dice cerrado si no existen estados fuera del conjunto que sean alcanzables a partir de los estados del conjunto.

#### **DEFINITION**

Una clase comunicante cerrada es recurrente positiva si ella es finita.

Una clase comunicante cerrada infinita puede ser recurrente positiva, recurrente nula o no recurrente.

El conjunto de estados de una cadena de Markov puede ser particionado como sigue:

#### **DEFINITION**

Un proceso de Markov que tiene y sólo una clase comunicante se llama irreducible.

#### DEFINITION

Se dice que un proceso irreducible es ergódico si es recurrente positivo y aperiódico.

El conjunto de estados de una cadena de Markov puede ser particionado como sigue:

#### **DEFINITION**

Un proceso de Markov que tiene y sólo una clase comunicante se llama irreducible.

#### **DEFINITION**

Se dice que un proceso irreducible es ergódico si es recurrente positivo y aperiódico.

Sea  $(X_n)_{n\in\mathbb{N}}$  una cadena de Markov con conjunto de estados  $S=\{0,1,2,3\}$  y matriz de transición

$$P = \left(\begin{array}{cccc} 0.8 & 0 & 0.2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0.3 & 0.4 & 0 & 0.3 \end{array}\right)$$

En este caso se tiene que  $C(0) = \{0,2\}$ ,  $C(1) = \{1\}$  y  $C(3) = \{3\}$ . Los estados 0 y 2 son recurrentes y los estados 1 y 3 son transitorios.

En este caso se tiene que  $C(0) = \{0, 1\}, \ C(2) = \{2, 3\}$  y  $C(4) = \{4\}$ . Los estados 0, 1, 2, 3 son recurrentes y el estado 4 es transitorio.

| 1 | T 1/6 | 1/6 | 1/6 | 0   | 1/6 | 0   | 1/6 | 1/6 ] |
|---|-------|-----|-----|-----|-----|-----|-----|-------|
| 2 | 0     | 0   | 0   | 0   | 0   | 1   | 0   | 0     |
| 3 | 1/6   | 0   | 1/6 | 1/6 | 1/6 | 0   | 1/6 | 1/6   |
| 4 | 0     | 0   | 0   | 1   | 0   | 0   | 0   | 0     |
| 5 | 1/8   | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | 1/8   |
| 6 | 0     | 1   | 0   | 0   | 0   | 0   | 0   | 0     |
| 7 | 1/7   | 1/7 | 1/7 | 1/7 | 1/7 | 0   | 1/7 | 1/7   |
| 8 | 0     | 0   | 0   | 1   | 0   | 0   | 0   | 0     |

Para este ejemplo se tiene que el estado 4 es absorbente, los estados 2 y 6 forman una clase periódica, los estados 1, 3, 5, 7 y 8 son transitorios. El proceso completo no es ergódico.