

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUCAÇÃO PLANO DE ENSINO

Nome do Componente Curricular em português:	Código:
Introdução à Otimização	BCC342
Nome do Componente Curricular em inglês:	
Introduction to Optimization	
Nome e sigla do departamento:	Unidade acadêmica:
Departamento de Computação - DECOM	ICEB

Nome do docente:

Gustavo Peixoto Silva

Carga horária semestral	Carga horária semanal	Carga horária semanal
60 horas	teórica	prática
	4 horas/aula	0 horas/aula

Data de aprovação na assembleia departamental: 18/10/2024

Ementa

Programação Linear e Inteira: formulação, modelagem, algoritmo Simplex, planos de corte, uso de pacotes de software, métodos de enumeração implícita.

Programação não linear: conceitos básicos e condições de otimalidade, modelos e aplicações Heurísticas: conceitos básicos, estruturas de vizinhança, heurísticas clássicas de construção e refinamento. Metaheurísticas com uma única solução e populacionais.

Conteúdo programático:

Otimização: Introdução

Modelagem em Programação Linear e Inteira

Forma-padrão de um Problema de Programação Linear (PPL)

Solução gráfica de um PPL

Fundamentação teórica do método SIMPLEX: introdução, caracterização do conjunto de soluções viáveis e vértice do politopo

O algoritmo SIMPLEX: geração de soluções básicas viáveis, método das duas fases,

interpretação geométrica

Planos de corte

Enumeração implícita

Uso de pacotes de Programação Linear e Inteira

Otimização Inteira em Redes

Programação não linear: introdução, caracterização, conceitos básicos

Condições de otimalidade Modelos e aplicações

Heurísticas: conceitos básicos

Heurísticas construtivas

Heurísticas clássicas de refinamento Metaheurísticas com uma única solução

Metaheurísticas populacionais

Objetivos:

Dar ao aluno uma visão geral da otimização e dos métodos clássicos para a solução de

problemas de otimização linear, além de uma introdução às metaheurísticas de otimização. Habilitar o aluno a desenvolver modelos computacionais que resolvem problemas de programação linear utilizando uma das principaies linguagens de programação matemática.

Metodologia:

Aulas expositivas e atividades em sala com o desenvolvimento de modelos de otimização e a implementação computacional dos mesmos. Apresentação/seminário sobre temas abordados.

Recursos necessários: o aluno precisará ter acesso à internet e a um computador desktop ou notebook. O aluno deverá instalar o pacote GUSEK em

http://gusek.sourceforge.net/gusek.html, disponível gratuitamente na rede de computadores.

Atividades avaliativas:

Duas provas realizadas de **forma escrita**, valendo 10 pontos com peso de 30% cada uma.

Trabalho realizado em grupo, valendo 10 pontos, com peso de 20%.

Exercícios realizados em aula valendo, no total, 10 pontos, com peso de 20%.

Cálculo da média final:

Média final = 0.3(P1 + P2) + 0.2(Trabalho + Média dos exercícios)

Exame Especial, realizado de forma escrita, seguindo a resolução CEPE 2880.

Cronogi	Cronograma:					
Aula	Data	Conteúdo				
1. PROBLEMA DE PROGRAMAÇÃO LINEAR						
1	12/11	Introdução ao curso				
2	14/11	Modelagem em Programação Linear e Inteira				
3	19/11	Forma-padrão de um Problema de Programação Linear (PPL)				
4	21/11	Resolução Gráfica de um PPL - EXERCÍCIO 1				
5	26/11	O algoritmo SIMPLEX				
6	28/11	Análise de pós- otimização				
7	03/12	Problemas de mistura - EXERCÍCIO 2				
8	05/12	Produção Multiperíodos				
9	10/12	Implementação				
10	12/12	Aula de Exercícios - EXERCÍCIO 3				
11	17/12	Prova 1 - Modelagem e resolução de PPL				
2. PRC	OGRAM	IAÇÃO INTEIRA				
12	21/01	Problema de Custo fixo				
13	23/01	Problema de Corte e Estoque				
14	28/01	Problema da Mochila e Cobertura				
15	30/01	Branch and bound - EXERCÍCIO 4				
16	04/02	Implementação Gusek – Custo fixo				
17	06/02	Plano de Cortes e Programação de Máquinas				
18	11/02	Roteamento de veículos - EXERCÍCIO 5				
	11/02 Último dia para enviar os artigos para o Trabalho					
3. OTIMIZAÇÃO EM REDES						

19	13/02	Problemas de Transporte			
20	18/02	Problemas de Transporte desbalanceado e Transbordo			
21	20/02	Problemas de Fluxo com Custo Mínimo – EXERCÍCIO 6			
22	25/02	Implementação de modelos de Fluxo em Redes			
4. MET	4. METAHEURÍSTICAS				
23	27/02	Prova 2 - Modelagem e método de resolução de PPI			
24	11/03	Metaheurísticas: Solução inicial			
25	13/03	Heurísticas de busca local			
26	18/03	Metaheurísticas com uma única solução			
27	20/03	Metaheurísticas Populacionais - EXERCÍCIO 7			
28	25/03	Aula de implementação			
29	27/03	Aula de implementação			
30	01/04	Apresentação dos Trabalhos			
31	03/04	Apresentação dos Trabalhos			
32	08/04	Exame Final			

Bibliografia básica:

- GOLDBARG, Marco Cesar; LUNA, Henrique Pacca L. Otimização combinatória e programação linear: modelos e algoritmos. Rio de Janeiro: Campus, 2000. https://www.researchgate.net/publication/303784875 Otimização Combinatoria e Programação Linear
- BARBOSA, Marco Antonio, Zanardi, Ricardo Alexandre. Iniciação à pesquisa operacional no ambiente de gestão. Editora Intersaberes, ISBN: 9788544302194 https://plataforma.bvirtual.com.br/Leitor/Publicacao/179913/pdf/0
- TAHA, Hamdy A. Pesquisa operacional. 8. ed. São Paulo: Editora: Editora Pearson, 2007. ISBN: 9788576051503

https://plataforma.bvirtual.com.br/Leitor/Publicacao/689/pdf/0

Bibliografia complementar:

- ALVES, Antônio César Baleeiro, MENEZES, Marco Antonio Figueiredo. Introdução à pesquisa operacional Goiânia: Ed. da UCG, 2010.311 p. ISBN 978-85-7103-565-2
 https://www.researchgate.net/publication/305729897 INTRODUCAO A PESQUISA OP ERACIONAL/link/579e003508ae80bf6ea6d632/download
- BRASIL, Reyoland M. L. R., da SILVA, Marcelo A. Otimização de Projetos de Engenharia. Editora Blucher, ISBN: 9788521213567. https://plataforma.bvirtual.com.br/Leitor/Publicacao/177416/pdf/0
- WINSTON, Wayne L. Operations research: applications and algorithms. 4th ed. Belmont: Thomson Brooks: Cole 2004. ISBN: 9780534380588. https://b-ok.lat/book/720591/eebbe9
- BAZARAA, M. S.; SHERALI, Hanif D.; SHETTY, C. M. Nonlinear programming: theory and algorithms. 3rd ed. Hoboken, N.J.: Wiley-Interscience, 2006. https://labs.xjtudlc.com/labs/wldmt1/books/Optimization/Nonlinear%20programming%20Theory%20and%20Algorithms.pdf
- GONZALEZ, Teofilo F. Handbook of approximation algorithms and metaheuristics. New York: Chapman & Hall/CRC, 2007.
- Arenales, M. **Pesquisa Operacional**. Grupo GEN, 2015. 9788595155770. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788595155770/