

Machine Learning

Application example: Photo OCR

Problem description and pipeline

OCR pipe Gre

The Photo OCR problem 原方为资源为以强和的流流

公教

Photo OCR pipeline

1. Text detection

了对制了像,我放弃绿色感

→ 2. Character segmentation

THEISLESTO TESTONE TANKS A FINETISE

Photo OCR pipeline 原内如外域

Machine Learning

Application example: Photo OCR

Sliding windows

形物高岭菜品

刘阳城北京北部门和

Bedestrian detection

5人长兔比美似

Protet 完和,但比例类似

Supervised learning for pedestrian detection

x= pixels in <u>82x36</u> image patches स्मिन्सिक्ट

Positive examples (y=1)

Negative examples (y=0)

Andrew Ng

心脏部分探视,对外类的原,对外类

Step-size /stride 对加姆/安斯特 一般为十四800-

游戏窗水小鸡奶炒奶吃厂的家

抗倒慢

(多个风味的)公类品类)

Positive examples (y=1)

Negative examples $(\underline{y} = 0)$

了有了一个黑球 多个人的有效 人物的我一次的概率

年为1月的一个国际的1个港和高0 年332多的1日的1701年一

[David Wu]

Andrew Ng

37年前国治别党的 老奶的有性。第二高 (这多起第一高)、别别的 (他的能烈的在美国政务的)

Photo OCR pipeline

> 1. Text detection

→ 2. Character segmentation

→ 3. Character classification

Machine Learning

Application example: Photo OCR

Getting lots of data: Artificial data synthesis

人工数据公司得到野教服)

< 法一种的国际数据 CD (2)

Character recognition

Artificial data synthesis for photo OCR

Abcdefg
Abcdefg
Abcdefg
Abcdefg
Abcdefg
Abcdefg

Real data

[Adam Coates and Tao Wang]

唐龙海军主政的第一篇 Andin 李翔军 (高级疾,等市派的,旅游、

Artificial data synthesis for photo OCR

Real data

Synthetic data

Synthesizing data by introducing distortions

[Adam Coates and Tao Wang]

Synthesizing data by introducing distortions: Speech recognition

Original audio: <

200 强烈湖湖水雪河 到新沙湖大泉和湖路M.

Audio on bad cellphone connection

Noisy background: Crowd

Noisy background: Machinery

[www.pdsounds.org]

Synthesizing data by introducing distortions

→ Distortion introduced should be representation of the type of noise/distortions in the test set. 公本境域が表現

Aúdio: Background noise, bad cellphone connection

-> Usually does not help to add purely random/meaningless noise to your data. 到本語知識は能動的

 \rightarrow $x_i = \text{intensity (brightness) of pixel } i$

 $\rightarrow x_i \leftarrow x_i + \text{random noise}$

[Adam Coates and Tao Wang]

Discussion on getting more data

给制了的地战部份依据高流 这样心成践群年村德义

Discussion on getting more data

- 1. Make sure you have a low bias classifier before expending the effort. (Plot learning curves). E.g. keep increasing the number of features/number of hidden units in neural network until you have a low bias classifier.
- 2. "How much work would it be to get 10x as much data as we currently have?"
 - Artificial data synthesis
 - Collect/label it yourself
 - "Crowd source" (E.g. Amazon Mechanical Turk)

Machine Learning

Application example: Photo OCR

Ceiling analysis: What part of the pipeline to work on next

上路场折

Estimating the errors due to each component (ceiling analysis)

What part of the pipeline should you spend the most time

Another ceiling analysis example Face recognition from images (Artificial example) 别知识城(古背) **Preprocess** Camera (remove background) image Eyes segmentation Logistic regression **Face detection** Nose segmentation ► Label Mouth segmentation Andrew Ng

Another ceiling analysis example

Summary: Main topics

Supervised Learning

 $(x^{(i)}, y^{(i)})$

Linear regression, logistic regression, neural networks, SVMs

Unsupervised Learning
 K-means, PCA, Anomaly detection

- special applications/special topics

 Recommender systems, large scale machine learning.
 - Advice on building a machine learning system
 - Bias/variance, regularization; deciding what to work on next: evaluation of learning algorithms, learning curves, error analysis, ceiling analysis.

Fi-Sure. Tion / missispe / missi