Stability of Certainty and Opinion on Influence Networks

Ariel Webster

Background

- 1. Networks Change
- 2. Opinion Change

Opinion Change

- Weight of Influence
- Degree of Change
 - 1. Conformity
 - 2. Compromise
 - 3. Stubbornness

Initialization

- Assignment
- Cascade

Certainty Model

Stability

- Number
- Opinion
- Certainty

Stability of Number

 $\mathsf{O}(\mathsf{n})$

Pure Opinion Model

Stability

- Number
- Opinion
- Certainty

Stability

- Number
- Opinion
- Certainty

Period Stability

Majority Rules Model

Frischknecht, Keller, and Wattenhofer Model

A Transistor

A transistor of size k can change $O(k^2)$ nodes in $O(k^2)$ timesteps.

When there are k transistors the graph will stabilize in $\Omega(n^{\frac{3}{2}})$ timesteps.

Transistor

Future Work

- Periodic stability
- Increase certainty
- More than two experts

Questions?