(19)日本国特許庁 (JP) (12) 公開特許公報(A) (II)特許出願公開番号

特開平5-149787

(43)公開日 平成5年(1993)6月15日

(51)Int.Cl.5

識別配号

庁内整理番号

FΙ

技術表示箇所

G 0 1 J 3/12

8707-2G

審査請求 未請求 請求項の数1(全 3 頁)

(21)出願番号

特願平3-316631

(22)出顧日

平成3年(1991)11月29日

(71)出願人 000001993

株式会社島津製作所

京都府京都市中京区西ノ京桑原町1番地

(72)発明者 酒井 真澄

京都市中京区西ノ京桑原町1番地 株式会

社島津製作所三条工場内

(74)代理人 弁理士 野河 信太郎

(54)【発明の名称】 分光器

(57)【要約】

【目的】 1つの分光素子で、複数回分光することによ り、安価で、組立や調節が容易な、かつ、駆動機構のガ タによる波長の誤差が出にくい分光器を提供することを 目的とする。

【構成】 この発明は光路を含む平面を複数設定し、そ の平面ごとに分光器に必要な光学素子を配置する。但 し、分光素子は1素子とし、各平面で共通に使われる。 各平面では分光後の光束が次の平面の入射光となるよう 光学的に結合しており、その他の場所においては光学的 に相互に影響を与えないように連光板を設けた分光器で ある。

【特許請求の範囲】

【請求項1】 光源と、1個の分光素子と、その分光素 子の一端に連結した、波長を選択可能にする駆動機構 と、前記分光素子の周囲の空間を、その分光素子の表面 の一部を含む複数の空間に区画形成する遮光板と、各空 間ごとに光軸が平面となるように設けた、前記分光素子 の一部による1回の分光に必要な1組の光学素子と、同 じく各空間ごとに設けた、隣接した空間への分光光の転 送に必要な1組の光学素子とからなる分光器。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、例えば分光光度計に 利用される分光器に関する。

[0002]

【従来の技術】従来、光源から分光器により目的の波長 の光束を取り出す場合、その光束には迷光すなわち目的 とする波長以外の波長の光が含まれいている。分光器の 迷光が多いということは選択度が悪くなり、分光器の性 能が悪いことを意味する。分光光度計においてそのよう な迷光の多い分光器を搭載すると、吸光度の高い試料の 20 る。 測定で誤差が多いといった不都合が生ずる。分光器の迷 光を減らすために従来技術では、2個またはそれより多 くの分光素子を光路に直列に配置して分光器を構成して いる。

[0003]

【発明が解決しようとする課題】しかしながら、前記の 方法では高価な分光素子が複数個必要である。さらに個 々の分光素子が選択している波長が全て同一でなければ ならず、それらの分光素子の駆動機構が複雑かつ高価に なり、組立や調節が難しく、駆動機構のガタによる波長 30 の誤差が出やすい、といった問題がある。

[0004]

【課題を解決するための手段】本発明はこのような問題 に鑑みてなされたもので、1つの分光素子に分光後の光 束を再び入射させるように光学素子を配置して、分光器 を構成し、上述した問題を解決するものである。すなわ ち、この発明は、光源と、1個の分光素子と、その分光 素子の一端に連結した、波長を選択可能にする駆動機構 と、前記分光素子の周囲の空間を、その分光素子の表面 の一部を含む複数の空間に区画形成する遮光板と、各空 40 間ごとに光軸が平面となるように設けた、前記分光素子 の一部による1回の分光に必要な1組の光学素子と、同 じく各空間ごとに設けた、隣接した空間への分光光の転 送に必要な1組の光学素子とからなる分光器である。

【0005】この発明は光路を含む平面を複数設定し、 その平面ごとに分光器に必要な光学素子を配置する。但 し、分光素子は1素子とし、各平面に共通に使われる。 各平面は分光後の光束が次の平面の人射光となるよう光 学的に結合しており、その他の場所においては光学的に 相互に影響を与えないように仕切りを設けた分光器であ 50 する。第2入口スリット17から入射した分光は第2入

る。 [0006]

【作用】本発明では、第1光軸平面で分光素子と第1出 口スリットとにより選択された波長の光束を、転送用の 鏡群(一組の光学素子)により第2光軸平面に入射さ せ、同一分光素子で再び分光し、第2出口スリットから 出射する。これを複数回繰り返した後に最終的な分光光 として取り出される。この分光光は光軸平面の数に等し い数の分光素子を通過した光束と同程度の迷光を含むだ 10 けであり、迷光の割合は非常に少ない。この方法では高 価な分光素子が1個で済み、分光素子の駆動機構も1組 だけなので簡単なものになる。

[0007]

【実施例】以下、図1に示す実施例に基づきこの発明を 詳述する。なお、これによってこの発明が限定されるも のではない。図1はこの発明の一実施例を示す分光器の 概略図である。図1において、分光器1は分光素子とし て平面型の回折格子2を1個だけ有している。したがっ て、回折格子2を回動可能にする駆動機構3も1個であ

【0008】分光器1の内部は遮光板4により、2空間 に仕切られていて、それぞれに、複数の光学素子(図1 に示す7~18)により、第1光軸平面5と第2光軸平 面6を形成している。すなわち、第1光軸平面5は第1 入口側球面鏡7、第1出口側球面鏡8、第1出口側平面 鏡9、第1転送用平面鏡10、第1入口スリット15及 び第1出口スリット16などの光学素子からなってい る。

【0009】第2光軸平面6は、第2受光用平面鏡1 1、第2入口側平面鏡12、第2入口側球面鏡13、第 2出口側球面鏡14、第2入口スリット17、及び第2 出口スリット18などの光学素子からなっている。 な お、19は入射した光束を示し、20は出射した分光を 示している。以下、この分光器の作用を述べる。

【0010】第1光軸平面1では、第1人口スリット1 5から入射した光束は第1人口側球面鏡7で反射し平行 光となり、回折格子2に入射する。回折格子2で回折さ れた分光は、つぎに第1出口側球面鏡8で反射し、第1 出口スリット16上に集光する。駆動装置3は第1出口 スリット16を目的とする波長の光束が通過するように 回折格子2を回動し、保持する。第1出口スリット16 を出射した分光にはシングルモノクロメータ、すなわ ち、回折格子1個からなる分光器と同じ割合の迷光が含 まれている。したがって、この分光を第1出口側平面鏡 9で受けて、第1転送用平面鏡10に送り、そこから第 2光軸平面6へ転送する。

【0011】第2光軸平面6では、第1光軸平面5から 転送された分光を第2受光用平面鏡11で受けて、第2 入口側平面鏡12に送り、第2入口スリット17へ導入

4

3

口側球面鏡13で反射し、同一の回折格子2へ再度入射する。そして再度回折された分光は第2出口側球面鏡14を介して第2出口スリット18から出射する。第2光軸平面6は第1光軸平面1で発生する迷光の影響を受けないように進光板4で仕切られている。

【0012】以上により得られた分光には、ダブルモノ 4 クロメーター、すなわち回折格子2個からなる分光器、 5 と同じ割合の迷光しか含まれていないので、迷光の割合 6 はかなり小さい。この分光を迷光の少ない単色光を必要 7 とする装置に入射させればよい。なお、上述の説明では 10 8 簡単化のために光軸平面を2個として説明してあるが、 9 光軸平面を更に増やしたものも実現可能であり、光軸平 1 面の多いほど迷光は少なくなる。 1

[0013]

【発明の効果】この方法では高価な分光素子が1個で済むので分光器が安価となる。さらに分光素子の駆動機構が1組だけなので、安価で、組立や調整が容易となり、駆動機構のガタによる波長の誤差が出にくい、といった利点がある。そのほか従来技術による方法に比べて、面積が小さくなり、省スペースに効果がある。

【図面の簡単な説明】

【図1】この発明の一実施例を示す分光器の概略構成図

である。

【符号の説明】

- 1 分光器
- 2 回折格子(分光素子)
- 3 駆動機構
- 4 連光板(仕切り)
- 5 第1光軸平面
- 6 第2光軸平面
- 7 第1入口側球面鏡
-) 8 第1出口側球面鏡
- 9 第1出口側平面鏡
- 10 第1 転送用平面鏡
- 11 第2受光用平面鏡
- 12 第2入口側平面鏡
- 12 3/2/(=|031|=|34
- 13 第2入口側球面鏡
- 14 第2出口側球面鏡
- 15 第1入口スリット
- 16 第1出口スリット
- 17 第2入口スリット
- 20 18 第2出口スリット
 - 19 入射光束
 - 20 出射光束

【図1】

