MATH 1

Homework X

Michael Nameika

Section 4.12 Problems

6. Let X and Y be Banach spaces and $T: X \to Y$ an injective bounded linear operator Show that $T^{-1}: \mathfrak{R}(T) \to X$ is bounded if and only if \mathfrak{R} is closed in Y.

Proof: To begin, since T is injective, we have that $T^{-1}:\mathfrak{R}(T)\to X$ exists. Now, recall that $\mathfrak{R}(T)$ is a vector space since T is a linear operator. First suppose that $\mathfrak{R}(T)$ is closed. Then since $\mathfrak{R}(T)$ is a subspace of Y and is closed, $\mathfrak{R}(T)$ is a Banach space. Then since T is surjective onto $\mathfrak{R}(T)$, by the bounded inverse theorem, T^{-1} is bounded.

Now suppose that T^{-1} is bounded. We wish to show that $\Re(T)$ is closed. Let $\{y_n\}$ be a Cauchy sequence in $\Re(T)$. That is, for any $\varepsilon > 0$, there exists an index N such that whenever n > m > N, we have

$$||y_n - y_m|| < \frac{\varepsilon}{||T^{-1}||}$$

but since each $y_n \in \mathfrak{R}(T)$, there exists an associated $x_n \in X$ such that $x_n = T^{-1}y_n$. Now notice for n > m > N,

$$||x_n - x_m|| = ||T^{-1}y_n - T^{-1}y_m||$$

$$= ||T^{-1}(y_n - y_m)||$$

$$\leq ||T^{-1}|| ||y_n - y_m||$$

$$< ||T^{-1}|| \frac{\varepsilon}{||T^{-1}||}$$

$$= \varepsilon$$

$$\implies ||x_n - x_m|| < \varepsilon$$

so that $\{x_n\}$ is Cauchy in X. Since X is a Banach space, $x_n \to x$ for some $x \in X$. But then since $\mathfrak{D}(T) = X$, Tx = y for some $y \in \mathfrak{R}(T)$. Now, since T is bounded, T is continuous, so that $Tx_n \to Tx \implies y_n \to y$. Since $\{y_n\}$ was an arbitrary Cauchy sequence, we have that $\mathfrak{R}(T)$ is closed.

8. (Equivalent Norms) Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on a vector space X such that $X_1 = (X, \|\cdot\|_1)$ and $X_2 = (X, \|\cdot\|_2)$ are complete. If $\|x_n\|_1 \to 0$ always implies $\|x_n\|_2 \to 0$, show that convergence in X_1 implies convergence in X_2 and conversely, and there are positive numbers a and b such that for all $x \in X$,

$$a||x||_1 \le ||x||_2 \le b||x||_1$$
.

Proof: First suppose that $\{x_n\}$ is a sequence that converges to some $x \in X_1$. Then by assumption,

$$||x_n - x||_1 \to 0$$
 as $n \to \infty$
 $\implies ||x_n - x||_2 \to 0$ as $n \to \infty$.

Thus convergence in X_1 implies convergence in X_2 . Now suppose $\{x_n\}$ is a sequence converging to $x \in X_2$. Define the linear operator $T: X_1 \to X_2$ by

$$Tx = x$$

that is, we are sending $x \in X_1$ to its associated element in X_2 . Notice that T is bounded since

$$||Tx|| = ||x||.$$

MATH 2

Hence ||T|| = 1. Notice that T is surjective by definition. Since X_1 and X_2 are complete spaces, by the bounded inverse theorem, we have that T^{-1} is bounded. Now notice $\{x_n\}$ and x as elements of X_1 , we have $x_n = T^{-1}x_n$, $x = T^{-1}x$ and so

$$||x_n - x||_1 = ||T^{-1}x_n - T^{-1}x||_2$$

 $\leq ||T^{-1}|| ||x_n - x||_2 \to 0 \text{ as } n \to \infty$

so that convergence in X_2 implies convergence in X_1 . Notice from above, we have

$$\frac{1}{\|T^{-1}\|} \|x\|_1 \le \|x\|_2 \le \|T\| \|x\|_1.$$

Section 4.13 Problems

8. Let X and Y be normed spaces and let $T: X \to Y$ be a closed linear operator. (a) Show that the image A of a compact subset $C \subset X$ is closed in Y. (b) Show that the inverse image B of a compact subset $K \subset Y$ is closed in X.

Proof: (a) Let $\{a_n\}$ be a sequence in A that converges to some $a \in Y$. We wish to show that $a \in A$. Since $a_n \in A$ and A = T(C), there exists, for each $n, c_n \in C$ such that $Tc_n = a_n$. And since C is compact, it is sequentially compact, so $\{c_n\}$ admits a convergent subsequence, $c_{n_k} \to c \in C$. Now, since T is closed, and $c_{n_k} \to c$, $Tc_{n_k} = a_{n_k} \to a$, we have that a = Tc, so that $a \in A$. Hence A is closed.

(b) Let $\{x_n\}$ be a sequence in B such that $x_n \to x \in X$. We wish to show that $x \in B$. By definition of preimage, there exists, for each $n, k_n \in K$ such that $T^{-1}k_n = x_n$. Thus, since K is compact, K is sequentially compact, so $\{k_n\}$ admits a convergent subsequence, say $k_{n_\ell} \to k \in K$. But since $k \in K$, there exists some $k \in K$ such that $k \in K$ but this says that $k \in K$ is closed, $k \in K$ but this says that $k \in K$ but this

Assigned Exercise X.1

Let X and Y be normed spaces and let $T: X \to Y$ be a closed linear operator. Suppose that for every convergent sequence (x_n) in X, the sequence $(y_n = Tx_n)$ admits a convergent subsequence (y_{n_k}) . Prove that T is bounded.

Proof: Let $M \subseteq Y$ be a closed subset of Y, and let $A = T^{-1}(M)$, the preimage of M under T. Let x be a limit point of M. Then there exists a sequence $\{x_n\}$ in A such that $x \to x \in X$. We must show $x \in A$. But by hypothesis, we have that $\{y_n = Tx_n\}$ admits a convergent subsequence, $\{y_{n_k}\}$ converging to some y. Since M is closed, we have that $y \in M$. And since T is a closed linear operator, we have that $x_{n_k} \to x' \in A$ where Tx' = y. But since $x_n \to x$ and $x_{n_k} \to x'$, we have x' = x by uniqueness. Thus, $x \in A$ as desired. Hence, A is closed in X, and by problem 1.3 #14, we have that T is continuous and is therefore bounded.