DS-306 Data Warehousing and Business Intelligence

Topic 4: Logical DW Design

Dr. Khurram Shahzad

Two possibilities of keys

- There are two possibilities of defining the keys of dimension levels
 - Generating Surrogate keys
 - Keeping DB key as DW key

Implications of rules

- In all rules, surrogate keys can be generated for each dimension level
- Reasons: Provide independence from keys of the underlying sources
- That is, underlying keys can change across time
- Also, Surrogate keys are integers that increases efficiency compared to strings

Conceptual to Logical

Relational Implementation

 Set of rules are applied to translate conceptual model (MultiDim model) to relational model

Rule 1

- A level L, provided that it is not related to a fact with one-to-one relationship, is mapped to table T_L that contains all attributes of the level
- A surrogate key may be added
 - Depending upon the type of changes
- Or, the identifier of the level will be the key of the table

Rule 2

- A fact F is mapped to a table T_F that includes as attributes all measures of the fact
- Further, a surrogate key may be added to the table

Rule 3

- A relationship between either a fact F and a dimension level L, or between dimension level L_P and L_C (parent child) can be mapped in three different ways
 - One-to-one relation
 - One-to-many relation
 - Many-to-many

Rule 3a

■ Rule 3a: If the relationship is one-to-one, the table corresponding to the fact T_F or to the child T_C is extended with all the attributes of dimension level or the parent level

Rule 3b

- Rule 3b: If the relationship is one-to-many, the table corresponding to the fact T_F or to the child level T_C is extended with the surrogate key of the table corresponding to the dimension level T_L or the parent level
- That is, a foreign key in the fact or child table pointing to the other table

Rule 3c

- Rule 3c: If the relationship is many-to-many, a new table T_B (bridge table) is created that contains as attributes the surrogate keys to the corresponding to the fact T_F and the dimension level T_L, or the parent T_P and child level T_C
- The key of the table is the combination of both surrogate keys

Many-to-Many Relationship

 Many-to-many relationship parent-child relationship between Employee and territory is mapped to the table territories containing two foreign keys

Time Dimension

- DW is historical DB. So, time dimension is present in every DW
- Time information is included both as foreign keys in a fact table
- Contains aggregation level in which facts can be aggregated across time
- This information is defined from DATE

Logical representation of hierarchies

Recall, Dimensional Hierarchies

- Types of dimensional hierarchies
 - Balanced Hierarchies
 - Unbalanced Hierarchies
 - Generalized Hierarchies
 - Alternative Hierarchies
 - Parallel Hierarchies
 - Nonstrict Hierarchies

Balanced Hierarchies

Recall,

- A balanced hierarchy has only one path where all the levels are mandatory
- All the branches have the same length
- Levels of dimension hierarchies are represented indepdentently
- Are linked by parent-child relationships

Balanced Hierarchies

Balanced Hierarchy (instance level)

Balanced Hierarchies: Logical

- Example snowflake structure on left
- Flat table on right (denormalized table), if star is required
 - May contain several levels

Unbalanced Hierarchies: Conceptual

Unbalanced Hierarchies: Logical

- Problem: Measures are associated with ATMs
 - Measures will aggregate only for those agencies that have ATMs
- Solution: Transform unbalanced hierarchy to balanced using placeholders

Generalized Hierarchies: Logical

Generalized Hierarchies: Logical

Alternative Hierarchy: Logical

Parallel Dependent hierarchies

Parallel Nonstrict hierarchies

Multiple granularities for the sales fact

Multiple granularities for the sales fact

Many-to-Many Dimensions

Many-to-Many Dimensions

Lab Case Study

Lab Case Study

