BUNDESREPUBLIK: DEUTSCHLAND

EP 99/04050

REC'D 1 0 AUG 1999
WIPO PCT

Bescheinigung

Die Graffinity Pharmaceutical Design GmbH in Jena/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Einrichtung für eine nahezu gleichzeitige Synthese einer Vielzahl von Proben"

am 23. Juni 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole B 01 J, G 01 N und C 07 B der Internationalen Patentklassifikation erhalten.

München, den 1. Juli 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Brand

Aktenzeichen: 198 27 754.7

A 9161 06:90

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Patentanwaltsbüro Pfeiffer & Partner, Helmholtzweg 4, 07743 Jena; Allemagne Telefax: +49 (0)3641 823111 / Telefon: +49 (0)3641 302909

Telefaxnr. / Telefax No. / Nº de télécopie	089 2195 2221
Ihr Zeichen / Your ref. / Vos réf.	
Unser Zeichen / Our sign / Nous réf.	P1028
Telefax Nachricht an: / Telefax message to: / Télécopie pour:	
Seitenzahl incl. dieser/ No. of pages incl. this one/ Nombre de pages, y compris la présente:	15

An das Deutsche Patentamt

80297 München

23. Juni 1998

e keine leserlichen Kopien aller Seiten erhalten haben, unterrichten Sie uns bitte per Telefax oder Telefon. do not receive legible copies of all pages, please notify us by facsimile or telephone.

- Si vous ne recevez pas une copie lisible de toutes les pages, veuillez nous en avertir par télécopie ou téléphone.

Vertraulichkeit

Dieses Telefax ist nur für die oben genannte Person bestimmt und kann vertrauliche Informationen enthalten. Wenn Sie nicht der bestimmungsgemäße Empfänger sind, beachten Sie bitte, daß jede Veröffentlichung, Vervielfältigung, Verteilung oder der Gebrauch jeglicher Information, die in diesem Telefax enthalten ist, streng verboten ist. Wenn Sie das Telefax versehentlich erhalten haben, unterrichten Sie uns bitte unmittelbar per Telefax oder Telefon und senden das erhaltene Telefax an uns per Post zurück. Wir danken Ihnen im voraus.

Confidentiality Notice

This facsimile is intended only for the person indicated above and may contain confidential information. If you are not the intended recipient, please note that any disclosure, copying, distribution or use of any information contained in this facsimile is strictly prohibited. If you have received this facsimile in error, please immediately notify us by facsimile or telephone and mail the original of facsimile as received to us. Thank you in advance.

Confidentialité

Cette télécopie est destineé uniquement à la personne mentionnée ci-dessus et peut contenir des informations confidentielles. Si vous n'êtes pas le destinataire normal vous êtes prié de noter que toute divulgation, copie, diffusion ou tout usage de toute information contenue dans cette télécopie est strictement interdit et engageriat votre responsabilité. Si vous avez reçu cette télécopie par erreur, veuillez avoir l'obligeance de nous en avertir immédiatement par télécopie ou téléphone et de nous renvoyer par retour du courrier l'original de la télécopie reçue. Nous vous en remercions par avance.

Neue Patentanmeldung

Titel:

Einrichtung für eine nahezu gleichzeitige Synthese einer Vielzahl von

Proben

Anmelder:

Graffinity Pharmaceutical Design GmbH

Wildenbruchstr. 15, D-07745 Jena

. P1028

- 2 - 23.06.98

P1028 Patentanwaltsbüro Pfeiffer & Partner, Helmholtzweg 4, 07743 Jena

Einrichtung für eine nahezu gleichzeitige Synthese einer Vielzahl von Proben

Beschreibung

Die Erfindung betrifft eine Einrichtung für eine nahezu gleichzeitige Synthese einer Vielzahl von Proben, welche insbesondere im automatisierten Laborbetrieb im Bereich der kombinatorischen Chemie zum Einsatz gelangt.

10

15

20

5

Probenpartikel ("Perlen", "Beads") werden seit Jahrzehnten für die Separation und Synthese im labortechnischen Bereich eingesetzt. Meistens handelt es sich dabei um Glas- oder Polymerkügelchen, welche Durchmesser von 0.01 mm bis 1 mm, typischerweise um die 0.1 mm, besitzen und trocken oder vorgequollen als loses Schüttgut in einen Behälter gefüllt und dann mit Flüssigkeit umspült werden, wobei zwischen der Festphasenoberfläche der Partikel und der sie umgebenden Flüssigkeit ein Adsorptions- oder Reaktionsprozeß abläuft. Verfahren der Säulenchromatographie (z.B. Gelfiltration), der Säulenextraktion, der Immundiagnostik, der Biomolekülreinigung (z.B. DNA-Reinigung) sowie der homogenen und heterogenen Synthese (von Oligonukleotiden, Peptiden oder kombinatorischen Substanzbibliotheken) nutzen diese Technik aus.

25

30

35

Neben der Automatisierung und Miniaturisierung von Labortechniken ist deren Parallelisierung von großem Interesse, um einen höheren Probendurchsatz zu erzielen und damit langwierige Verfahren zu beschleunigen. Zu diesem Zweck werden Proben oft in einem Raster angeordnet, so daß die Identität (Herkunft, Beschaffenheit) der Probe mit einer Flächenkoordinate verknüpft werden kann. Diese Koordinaten sind besonders für automatisierte Systeme zur Probenbearbeitung leicht zu erfassen. Für flüssige Proben sind daher sogenannte Mikrotiterplatten entwickelt worden, welche Kavitäten in rechtwinkligen Anordnungen von 8 x 12 (96 Proben), 16 x 24 (384) oder 32 x 48 (1536) tragen. Die Abmessungen der Kavitäten dieser Probenträger richten sich dabei nach den mit handelsüblichen Geräten (Pipetten) verläßlich dosierbaren

10

30

1 Million Partikel.

Volumina und unterliegen mit dem Fortschreiten der Dosiertechnologie einer kontinuierlichen Miniaturisierung, was durch die beliebige Aliquotierbarkeit (Aufteilung einer Mutterprobe in verschiedene Tochterproben) von Flüssigkeiten vereinfacht wird.

Im Rahmen der Arbeiten zur Miniaturisierung von Laborverfahren wird nach Möglichkeiten gesucht, Probenpartikel, analog zur Anordnung von flüssigen Proben, in einem zweidimensionalen Raster zu verteilen. Da die Miniaturisierung der Flüssigkeitsdosierung bereits weit fortgeschritten ist, wird somit der einzelne Partikel zur kleinsten Einheit. Weiterhin besteht die Anforderung, die hohen Stückzahlen, welche bei der Arbeit mit Partikeln üblich sind, zu bewältigen. 1 g Polymerharz enthält ca.

In der Patentanmeldung DE 198 19 302.5 wurde bereits eine Trägerplatte für die geordnete Aufnahme einer Vielzahl von Probenpartikeln beschrieben. Dabei sind genannte Perlen einzeln in eine Vielzahl separierter und geordnet angebrachter Kavitiäten verbracht. Die Tiefe der Kavitäten so gestaltet, daß die Perlen vorzugsweise zu 50 – 80 % ihrer Höhe in den Kavitäten aufgenommen werden und sie zum Rest ihrer Höhe überragen.

Die Miniaturisierung genannter Trägerplatten geht einher mit der Miniaturisierung der entsprechenden Befülltechnologien und stößt bei herkömmlichen automatisierten Pipettiervorrichtungen an geometrische oder zeitliche Grenzen, da jeder einzelne Probenpartikel mit Flüssigkeit zu versorgen ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung für die nahezu gleichzeitige Synthese einer Vielzahl von Proben, die gebunden an Mikroperlen, welche in Kavitäten einer Trägerplatte vorliegen, anzugeben.

Die Aufgabe wird durch die Merkmale des ersten Patentanspruchs gelöst.

Vorteilhafte Ausgestaltungen sind von den nachgeordneten Ansprüchen erfaßt.

P1028

Die Erfindung soll nachstehend anhand schematischer Ausführungsbeispiele näher erläutert werden. Es zeigen:

Fig. 1 den grundsätzlichen Aufbau einer erfindungsgemäßen Einrichtung in perspektivischer Ansicht, sowie einer vergrößerten Detaildarstellung,

Fig. 2a eine seitliche Ansicht einer Einrichtung nach Fig. 1,

Fig. 2b eine Draufsicht auf eine Einrichtung nach Fig. 1,

Fig. 3 eine Draufsicht auf eine Einrichtung nach Fig. 1 mit der Lage einer erfindungsgemäßen Abdeckung in zwei Syntheseschritten und

Fig. 4 eine Ausbildungsmöglichkeit einer Abdeckung mit mehreren Funktionsabschnitten in Draufsicht.

15

20

25

30

35

10

5

Ohne die Erfindung darauf zu beschränken, wird in Figur 1 von einer Trägerplatte 1 ausgegangen, bei der jeweils in einzelnen Kavitäten 11 Mikroperlen 12 derart vorgesehen sind, daß diese die Kavität überragen. Bei Verwendung von Mikroperlen mit einem Durchmesser von $100 \mu m$ ragen diese im einsortierten Zustand zwischen 20 bis 50 μm aus der Oberfläche der Trägerplatte 1 heraus. Im Beispiel gehören jeweils 9 solcher Mikroperlen zu einem Probenaufnahmebereich, wobei alle Probenaufnahmebereiche zueinander in Zeilen und Spalten ausgerichtet sind (vgl. Fig. 3). Oberhalb der perlengefüllten Trägerplatte 1 ist eine abnehmbare Abdeckung 2 vorgesehen, die als wesentlichste Elemente Stege 21 trägt, welche in ihrer Stegbreite und -länge so ausgebildet sind, daß sie bei Auflage auf die Trägerplatte 1 alle Probenaufnahmebereiche einer Zeile oder Spalte erfassen. Dabei ist, durch das in definierter Weise vorgebbare Überragen der Mikroperlen 12, ein Kapillarspalt 3 vorgebbarer Höhe und durch die Vorgabe der Breite der Stege 21 definierter Breite geschaffen. Bei einer anderen Anordnung der Mikroperlen, bspw. mehrere Mikroperlen zurückgesetzt in einer gemeinsamen Kavität, kann ein solcher Kapillarspalt auch dadurch gebildet sein, daß die Trägerplatte 1 im Bereich der Auflage der Stege 21 und/oder die Stege 21 selbst mit Abstandshaltern definierter Höhe versehen sind.

10

15

20

30

35

Zur seitlichen Festlegung der derart gebildeten Kapillarspalte 3 sind die Stege 21 durch größere Ausnehmungen 22 voneinander beabstandet, die so bemessen sind, daß in ihnen keine Kapillarkräfte mehr wirken.

Die Höhe des Kapillarspaltes 3, bei dem noch Kapillarkräfte zum Transport von Flüssigkeiten wirken, hängt von der Oberflächenspannung der Materialien für die Trägerplatte 1 und der Stege 21 und der zum Einsatz gelangenden Flüssigkeit ab. Bei Verwendung von Materialien wie Glas und Metall, zwischen denen ein Spalt gebildet ist, und Wasser als Flüssigkeit, wirken die Kapillarkräfte bis zu Spalthöhen von 500 μm. Eine gezielte Hydrophilisierung des Glases und/oder der Metalloberfläche läßt, bei Verwendung von Wasser, einen Flüssigkeitsstrom durch Kapillarkräfte auch bei größeren Abständen zu. Je nach der zum Einsatz gelangenden Syntheseflüssigkeit können die Stege 21 im Bereich ihrer Auflage auf der Trägerplatte mit einer hydrophilen oder hydrophoben Oberfläche versehen sein, wobei zumindest die Seitwandungen der die Stege begrenzenden Ausnehmungen 22 mit einer jeweils entgegengesetzt wirkenden Oberflächenbelegung versehen sein sollen.

Der durch die im Beispiel durch die überstehenden Mikroperlen 12 gebildete Kapillarspalt eröffnet die Möglichkeit, gezielt Flüssigkeiten entlang des Spaltes fließen zu lassen. Dabei ist im Beispiel für die Abdeckung 2 eine strukturierte Deckplatte eingesetzt, die parallele Ausnehmungen 22 aufweist. Die Ausnehmungen 22 bewirken eine Trennung von zwei zueinander parallel verlaufenden Kapillarspalten.

Die Befüllung der Kapillarspalte kann erfolgen, indem an die Stirnfläche der Abdeckung, jeweils an den Anfang eines Spalts, Flüssigkeit pipettiert wird, wie es in Fig. 1 anhand eines Spaltes mittels eines dosierbaren Flüssigkeitsspenders 4 schematisch angedeutet ist.

Um jeden Kapillarspalt mit einer anderen Flüssigkeit zu befüllen, erfordert dies ein sehr sorgfältiges Pipettieren der Flüssigkeiten, um das Vermischen zweier Flüssigkeiten zu verhindern. Um eine gleichzeitige und gleichmäßig dosierte Befüllung aller Kapillarspalte 3 zu gewährleisten, ist es vorteilhafter, die Flüssigkeitszufuhr über Bohrungen 13 in der Trägerplatte 1 oder Bohrungen 25 in der Abdeckung 2, die jeweils einer Zeile und Spalte der in einer Reihe befindlichen Kavitäten vorgelagert ist, vorzunehmen. Über mit diesen Bohrungen verbundene

10

15

20

25

30

35

- 6 - ... 23.06.98

schlauchartige Anschlüsse 5 oder Adapterstücke erfolgt eine Verbindung zu im weiteren nicht näher dargestellten und jeweils einer Zeile oder Spalte zugeordneten Flüssigkeitsreservoirs, z.B. einer Spritzenpumpe, wobei vorteilhaft vorgesehen ist, alle Flüssigkeitreservoirs gemeinsam mit einem einheitlichen definierten Druck zu beaufschlagen. Über solche Anbindungen können nun wohldosiert Flüssigkeiten in die Kapillarspalte eingeführt werden. Die Pumprate der Spritzenpumpe muß dabei sehr genau an die Fließgeschwindigkeit der Flüssigkeit, getrieben durch die Kapillarkräfte, angepaßt sein, was im Einzelfall experimentell ermittelbar ist, um ein Übersprechen der Flüssigkeit von einem Kapillarspalt zum benachbarten zu vermeiden.

Wie bereits angedeutet, ist es ebenfalls möglich, die Befüllung der Kapillarspalte über die Deckplatte 2 zu realisieren. Dann sind in der Deckplatte, mittig zu den Stegen 21, die Bohrungen für die Anbindung von Schläuche herzustellen. Eine solche Ausführung erlaubt es ebenso, anstatt von Schlauchanbindungen einen Adapter für eine Mikrotiterplatte vorzusehen, und die Befüllung der Kapillarspalte durch Ausnutzung von hydrostatischen Druckunterschieden zu realisieren.

Ein Vorteil bei Verwendung von Spritzenpumpen, verknüpft mit Schlauchanbindungen stellt die Abgeschlossenheit des Systems dar, so daß Verdunstungen vermieden werden. Dieses geschlossene System ist auch dann von Vorteil, wenn Chemikalien verwendet werden, die nicht mit Luft in Berührung kommen dürfen.

Mit den beschriebenen Varianten, kann eine Befüllung von beliebig vielen Zeilen mit Flüssigkeiten erfolgen. Derzeitig, in Anpassung an vorhandene Mikrotiterplatten, sind mit der beschriebenen Einrichtung 96 Zeilen gleichzeitig befüllbar. Der Anzahl an Zeilen sind dabei jedoch keine Grenzen gesetzt, und mit zunehmendem Einsatz von mikrotechnischen Bearbeitungsverfahren lassen sich weit mehr als 100 Zeilen realisieren.

Figur 2a zeigt eine Ausführung der Einrichtung nach Fig. 1 in einer vorderen seitlichen Ansicht, dabei ist die Trägerplatte 1 mit Bohrungen 13 versehen, von denen in Fig. 2a lediglich fünf dargestellt sind, an die sich schlauchartige Anschlüsse 5 anschließen, die zu nicht dargestellten

10

Flüssigkeitsreservoirs 4 führen. Die Trägerplatte 1 ist ihrerseits von einem Verschiebetisch V aufgenommen, der eine laterale Verschiebung parallel zur Blattnormalen ermöglicht. Die Trägerplatte 1 und die Abdeckung 2 sind weiterhin zueinander vermittels einer Führung 6 verbunden. Eine solche Ausbildung ermöglicht die Aufnahme einer weiter ausgestalteten Abdeckung 2, wie sie in Fig. 2b in Draufsicht näher dargestellt ist. Neben der bisher beschriebenen transparenten Abdeckung 2, mit den ihr gegebenen Stegen 21, beinhaltet die Abdeckung 2 weiterhin einen porösen Abschnitt 23, welchem ein planarer Abschnitt 24 nachgeordnet ist, der in seiner Ausdehnung so bemessen ist, daß er die gesamte Trägerplatte 1 unter Bildung eines alle Probenbereiche erfassenden Kapillarspaltes abzudecken vermag, wenn dieser Abdeckungsbereich über die Trägerplatte 1 verschoben ist. Die vollständige Ausbildung einer derartigen Abdeckung allein ist in Fig. 4 dargestellt, wobei dort alternativ die Bohrungen 25 dem ersten Teil der Abdeckung 2 zugeordnet sind.

Zur eigentlichen Synthese der gewünschten Proben wird mit der beschriebenen Einrichtung wie folgt verfahren: Die mit Mikroperlen 12, die bei geeigneter Porosität bspw. ein Probenflüssigkeitsvolumen von 0,25 nl aufzunehmen vermögen, gefüllte Trägerplatte 1 der Größe 250 · 250 mm² wird mit der Abdeckung 2 mit den Ausnehmungen 22 in Kontakt gebracht. Über eine nicht näher dargestellte Justiervorrichtung werden Trägerplatte 1 und die Abdeckung 2 zueinander ausgerichtet, so daß jeweils ein hervorstehender Steg 21 auf einer Reihe mit perlengefüllten Reaktionskammern aufliegt. Die Stege 21 verbinden bspw. eine Zeile mit 96 Probenfeldern, die 864 Mikroperlen 12 tragen. Die Trägerplatte besitzt Beispiel im außerdem zweimal Durchgangsbohrungen 13, die in der Verlängerung der Zeilen und Spalten der Perlenarrays liegen. An diese Bohrungen sind an der Rückseite der Trägerplatte die beschriebenen Schläuche 5 befestigt. Die 192 Schläuche führen zu den mit Chemikalien gefüllten Flüssigkeitreservoirs, bspw. Spritzen. Die Spritzen werden mit einem Spritzenantrieb gleichzeitig mit Druck beaufschlagt, und die Flüssigkeiten werden über die Schläuche 5 zu der Trägerplatte 1 transportiert. Je ein Kapillarspalt 3 wird mit jeweils einer Chemikalie befüllt. Dies wird erreicht, indem das Ende eines jeden Steges genau über einer Bohrung

15

20

. 30

35

P1028

10

15

20

25

30

35

sitzt, aus der die Flüssigkeit in den Kapillarspalt dringt. Die Pumprate, gesteuert durch die Spritzenantriebe muß mit der Fließgeschwindigkeit der Flüssigkeit korrelieren, die durch die Kapillarkräfte getrieben wird. Bei Verwendung eines etwa 30 µm hohen, 1000 µm breiten Kapillarspaltes mit einer Länge von 250 mm dauert ein Befüllvorgang ca. 3 min.

Die Trägerplatte 1 befindet sich auf dem Verschiebetisch V, der eine Bewegung parallel zu den Stegen 21 ermöglicht. Die Abdeckung soll im Beispiel hingegen während der gesamten Synthese fest arretiert sein. Im Anschluß an den ersten Syntheseschritt wird die Trägerplatte 1 unterhalb der Abdeckung 2 entlang der Stege 21 verschoben. Dabei werden die Mikroperlen an dem porösen Abschnitt 23 der Abdeckung 2 vorbeigeführt. Die Porengröße des porösen Abschnitts muß dabei deutlich geringer sein, als der Durchmesser der Mikroperlen. Das poröse Gebiet saugt die Synthesechemikalien auf und diese werden von dort mittels einer unter Unterdruck abreitenden und nicht näher dargestellten Vorrichtung ableitet und die Mikroperlen 12 auf diese Weise getrocknet. Die Trägerplatte 1 wird vollständig unter der porösen Zone vorbeigeführt, bis die gesamte Trägerplatte sich im hinteren Bereich der Abdeckung, der eine ebene Oberfläche gegeben ist, befindet. In diesem Bereich 24 erfolgt eine Drehung der Trägerplatte 1 um 90°, die für den zweiten Syntheseschritt notwendig ist. Dabei wird auch hier die Trägerplatte 1 mittels eines Drehtischs bewegt, während die Abdeckung fest eingespannt bleibt. Nach der Drehung der Trägerplatte 1 erfolgt ein Spülen der Mikrosyntheseperlen. Die Spüllösung wird ebenfalls durch Kapillarkräfte zu den Perlen transportiert. Ein erneutes Trocknen der Perlen erfolgt durch ein Überstreichen des porösen Abschnitts 23 der Abdeckung, wie oben beschrieben. Danach befindet sich die Abdeckung 2 wieder in einer Syntheseposition. Der zweite Syntheseschritt läuft nun in der gleichen Art und Weise ab, die Trägerplatte 1 liegt jedoch um 90° gedreht unter der Deckplatte, und ein weiterer Kopplungsschritt erfolgt. Weitere Kopplungsschritte sind in beliebiger Anzahl möglich. Nach der beschriebenen zweistufigen Synthese sind somit, ausgehend von 96 Zeilen und 96 Spalten, 9216 verschiedene Kombinationen von zweimal 96 Substanzen entstanden. Weitere Syntheseschritte, jeweils nach einer Drehung der Platten zueinander, sind in beliebiger Anzahl möglich. Zwei

15

20

25

30

der beschriebenen Synthesepositionen sind in Figur 3 am Beispiel von sechzehn Zeilen (1 bis 16) und sechzehn Spalten (A bis Q) beispielhaft dargestellt.

Für die Abdeckung 2 hat sich als besonders vorteilhaft die Verwendung von Borofloatglas erwiesen. Um den Flüssigkeitsstrom, der sich in genannten Kapillarkanälen ausbildet visuell überwachen zu können, sollte in jedem Fall ein transparentes Material für die Abdeckung 2 gewählt werden. Das Glas zeichnet sich zudem durch eine hohe Ebenheit aus, ein wichtiges Kriterium für die Realisierung gleichmäßig dicker Kapillarspalte über eine Länge von 250 mm. In die Abdeckung sind in einem ersten Bereich, unter der Voraussetzung von 96 Zeile bzw. Spalten, 97 Ausnehmungen 22 mit einem Abstand von 2,25 mm mittels Diamantwerkzeugen eingearbeitet. Die Tiefe und Breite Ausnehmung ist so dimensioniert, daß die Ausnehmung 22 selbst nicht mehr als Kapillare wirkt. In der beschriebenen Ausführung sind dafür eine Breite von 1000 μm und eine Tiefe von 1500 μm gewählt, somit bleiben zwischen zwei Ausnehmungen Stege 21 mit einer Breite von 1,25 mm stehen. Die Verwendung anderer Materialien für die Abdeckung liegt im Rahmen der Erfindung.

Die oben beschriebene Ausbildung der Abdeckung 2 ist im Sinne der Handhabung und der Stabilität der Einrichtung die vorteilhafteste. Es liegt jedoch ebenfalls im Rahmen der Erfindung, die vorgesehenen Stege durch eine parallele Anordnung von Streifen zu realisieren. Hierfür werden in Breite und Länge entsprechend dimensionierte einzelne Glasstreifen eingesetzt. Die Höhe der Streifen kann dabei beliebig gewählt sein und richtet sich nach der erwünschten Stabilität der Einrichtung. Die einzelnen Streifen werden im Abstand Probenaufnahmebereiche parallel angeordnet und an ihren Enden durch Aufkleben auf einen Trägerstreifen oder eine Trägerplatte zueinander fixiert.

10

25

30

<u>Patentansprüche</u>

- 1. Einrichtung für eine nahezu gleichzeitige Synthese einer Vielzahl von Proben, beinhaltend eine plane Trägerplatte (1) mit einer Vielzahl von Kavitäten (11), welche in einem wiederholenden Raster regelmäßig angeordnet sind und welche Mikroperlen (12) aufnehmen, dadurch gekennzeichnet, daß eine abnehmbare Abdeckung (2) vorgesehen ist, die mit Stegen (21) versehen ist, welche jeweils mindestens eine einer Reihe zugehörige Kavitäten (11) derart überdecken, daß zwischen den Mikroperlen (12) und den Stegen (21) ein Kapillarspalt (3) und zwischen benachbarten Stegen (21) jeweils eine größere Ausnehmung (22) verbleibt und den Kapillarspalten (3) jeweils ein dosierbarer Flüssigkeitsspender (4) zugeordnet ist.
- 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Abdeckung (2) gebildet ist durch eine transparente Platte, in die parallele Vertiefungen zur Bildung der größeren Ausnehmungen (22) eingebracht sind.
- 3. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Kapillarspalte (3) gebildet sind durch eine Beabstandung von aus den Kavitäten (11) herausragenden Mikroperlen (12).
 - 4 Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Kapillarspalte (3) gebildet sind durch Abstandshalter auf der Trägerplatte (1) und/oder auf den Stegen (21).
 - 5. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (21) im Bereich ihrer Auflage auf der Trägerplatte (1) mit einer hydrophilen oder hydrophoben Oberfläche versehen sind, wobei zumindest die Seitwandungen der die Stege (21) begrenzenden Ausnehmungen (22) mit einer jeweils entgegengesetzt wirkenden Oberflächenbelegung versehen sind.

10

15

20

- 6. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerplatte (1) und die Abdeckung (2) zueinander in einer lateral verschiebbaren und um 90° drehbaren Verbindung vermittels einer Führung (6) gehaltert sind.
- 7. Einrichtung nach Anspruch 1 und 6, dadurch gekennzeichnet, daß der Abdeckung (2), den Stegen (21) nachgeordnet, ein oder mehrere poröse Abschnitte (23) und ein weiterer, die gesamte Trägerplatte (1) erfassender planarer Abschnitt (24) zugeordnet sind.
- 8. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die spaltbezogene Flüssigkeitszufuhr über Bohrungen (13), die jeweils einer Reihe von Kavitäten vorgelagert sind, in der Trägerplatte (1) erfolgt.
- 9. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die spaltbezogene Flüssigkeitszufuhr über Bohrungen (25), die jeweils einer Reihe von Kavitäten vorgelagert sind, in der Abdeckung (2) erfolgt.
- 10. Einrichtung nach Anspruch 1 und 8 oder 9, dadurch gekennzeichnet, daß genannte Bohrungen (13 oder 25) mit schlauchartigen Anschlüssen (5) oder Adapterstücken versehen sind, die jeweils mit einem, mit einem definierten Druck beaufschlagbaren Flüssigkeitreservoir (4) in Verbindung stehen.

R.-G. Pfeiffer -Patentanwalt-

Es folgen vier Blatt Zeichnungen

Fig. 3

