7		tationary nucleus of a radioactive isotope X decays by emitting an α -particle to produce a leus of neptunium-237 and 5.5 MeV of energy. The decay is represented by
		$X \rightarrow {}^{237}_{93}\text{Np} + \alpha + 5.5\text{MeV}.$
	(a)	Calculate the number of protons and the number of neutrons in a nucleus of X.
		number of protons =
		number of neutrons =[2]
	(b)	Explain why the energy transferred to the α -particle as kinetic energy is less than the 5.5 MeV of energy released in the decay process.
	(c)	A sample of X is used to produce a beam of α -particles in a vacuum. The number of α -particles passing a fixed point in the beam in a time of 30 s is 6.9 × 10 ¹¹ .
		(i) Calculate the average current produced by the beam of α -particles.
		current = A [2]
		(ii) Determine the total power, in W, that is produced by the decay of 6.9×10^{11} nuclei of X in a time of 30 s.