Index

Absorption, 42 Actinides, 243, 257–9 Albedos, 147 Alpha and Beta particles, 5, 10, 11 Americium, 258 Atom density, 73, 81, 110, 225 Atomic enrichment, 35 Atomic mass, 7, 15, 18, 20, 49, 50, 51, 92, 94 Avogadro's number, 19, 33 Axial buckling, 182 Axial distribution: cosine, 193 power, 207 Axial reflector, 181, 184 Bessel functions, 149, 171, 173, 184, 204, 269, 270 Billiard ball collision, 37, 41 Binding Energy, Curve of, 7 Boiling water reactors (BWRs), 88, 90, 91 Boltzmann constant, 39 Boron and gadolinium, 255 Boron poison, concentration of, 109 Boundary condition, 142, 144–7, 149–52, 159, 168, 169, 171, 182, 191, 192, 268 Breit-Wigner formula, 44, 45	Chain reaction, 12, 13, 15, 17, 18, 29, 57–9, 62, 69, 85, 87, 91, 115, 121, 124, 129, 133, 256 time-independent, 121 Charge, conservation of, 3 Circular fuel assembles, 86 Coal-fired power plant, 2 Composite coefficients, 227 Control Poisons, 186 Coolant channels, 81, 85, 98 Coolant temperature, 90, 93, 205–10, 212, 213, 223, 227–9, 233, 234 coefficients, 227 transients, 213 Coolant velocity, 209, 210 Core power distribution, 199 Core-averaged power density, 200, 202, 210 Cosmic rays, 18 Coulomb repulsion, 8, 9 Critical reactor, 160 Criticality, definition of, 120, 122 Cross section: calculation, 36 energy dependence, 40 measurements, 80 Crystal lattices, 80 Cylindrical fuel element, 85, 93, 100, 205, 206, 208, 279
Breit-Wigner formula, 44, 45 Burnable poisons, 91, 186, 245, 255, 256	100, 205, 206, 208, 279 Cylindrical geometry, 149, 173, 181, 202, 269, 280
CANDU reactors, 92–4 Calandria, 92 Carbon dioxide-cooled graphite- moderated systems, 92 Cartesian geometries, 149 Cesium, 246, 247, 258 decay of, 247	Dancoff correction, 105 Decay chains, 21 Definite integrals, 265 Delayed neutrons, kinetic effects of, 212 Derivatives and Integrals, 265 Deuterium, 5, 9, 41, 51, 80, 91, 92

Differential Equations, 267, 268	Fast reactors, 94
Diffusion:	fuel, 94
approximation, 142, 153, 276	lattices, 94
coefficient, 142, 183, 277	multiplication, 97
equation, time-independent, 167	temperature coefficients, 227
length, 154	Fertile isotopes, 16, 17
theory, 153	Fick's law, 140, 142, 155, 277
Divergence theorem, 187	Finite cylindrical core, 170, 200
Doppler, 45, 104, 110, 134, 221,	Finite multiplying systems, 119
223–5, 227, 228	First-order perturbation
importance of, 45	approximation, 188
,	Fissile material, 16–18, 47, 59, 60,
Eigenvalues and eigenfunctions,	63, 90, 252, 255
168	Fission:
Elastic collisions, 50, 51, 177	energy, 51, 73, 177
Electrical repulsion of the nuclei, 8	fragments, 9–11, 13, 14, 20, 245
Electromagnetic radiation, 4	neutrons, 12, 17, 38, 39, 40, 58,
Endothermic reactions, 3, 6, 7	61, 65, 67, 72, 75, 81, 100,
Energetics, 5	101, 106, 115, 118, 119, 123,
Energy averaged reaction rates, 73	130, 140, 141, 178
Energy degradation, 48	products, 9–11, 13–15, 18,
Energy from nuclear power, 1	20, 115, 123, 124, 126,
Energy release and dissipation, 10	127, 232, 243–5, 247, 252,
Energy self-shielding, 68	257–9
Energy transport, 199	radioactive products of, 243
core power distribution, 199–200	reactions, 1, 9, 78, 99, 118, 245
finite cylindrical core, 200–203	Fissionable nuclide concentrations,
uniform cylindrical core, 203–204	252
heat transport, 204	Flux:
heat source characterization,	averaged cross section, 96
204–205	depression, 69, 224
pressurized water reactor,	distribution, 75, 78, 79, 95,
209–211	139, 150, 167, 169, 172,
steady state temperatures,	174, 180, 182, 184–6, 188,
205–208	190, 193, 245
thermal transients, 211-12	flattening, 184
coolant temperature transients,	spectra, 75
213–15	Fossil fuel, 1, 2
fuel temperature transient,	Four factor formula, 99, 100, 107,
212–13	174, 222, 223, 243
Escape probability, 100, 102, 104,	Fuel assembly segments, 92
105, 108–10, 175, 224, 226	Fuel burnup, 244
Excess reactivity, 230	Fuel coolant:
Excitation energy, 37, 41, 42	interface, 209
Exothermic reactions, 3, 6, 7	moderator lattice structure, 85
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	Fuel depletion, 13, 91, 101, 186,
Fast and thermal reactor, 72	232, 243–5, 252, 253
Fast fission factor, 101	Fuel element heat transfer, 279,
Fast neutrons, 65	281–3
,	

Fuel enrichment, 87, 88, 93, 95, 96, 226, 246, 247, 248, 252, 255, 257, 258 102, 108, 168, 180, 181, 184, 200, 255 decay rate, 246 fissionable, 11, 47, 115, 129, 172 Fuel rod radius, 110 Fuel temperatures, 206, 223, 228 hydrogen, 5, 9 coefficient, 212, 223, 228 plutonium and uranium, 255 see also Coolant temperature radium, 18 Fuel thermal conductivity, 206 Isotopic: Fusion reactions, 7–9 concentrations, 252 distribution, 153 Gamma rays, 3–6, 9–11, 14–16, 37, Kinetic: Gas-cooled fast reactors (GCFRs), energy, 6, 8–11, 29, 37–9, 41, 42, 94, 178 46, 57, 63, 116, 228 Geometric buckling, 162, 169 theory, 39, 70 Graphite-moderated reactors, 90, 92 equations, 124-7, 134, 168, 233 Half-life, 4, 14, 17–23, 123, 124, 127, Laplace transforms, 133 129–32, 245, 246–8, 250, 253, Lattice cell: compositions, 174 258, 259 Heat source characterization, 204 pitch, 139 Lattice structure, 81, 85, 88, 204 Heat transport, 204 Heavy water reactors (PHWRs), Leakage: 91, 92 effects, 117, 222 Helium, 5, 62 probability, 180, 222 coolant, 93 Light water reactors (LWRs), 88, Helmholtz equation, 169, 176 Hexagonal fuel assemblies, 87 Linear heat rate, 86, 88, 205, 206, Hexagonal lattice cells, 94 208-10, 279 Liquid coolants, 93, 186, 212, 214 High temperature gas-cooled reactor (HTGR), 93, 212 Liquid cooled reactors, 110, 208, "hot zero power", 231 213, 226, 227 Hydrogen-2 see Deuterium Lumped boron, 257 Hyperbolic: functions, 266 Macroscopic cross section, 29–31, sine, 152 33, 34, 36, 37, 61, 62, 64, 75, 81, 96, 108, 133 Infinite medium multiplication, 81, Maxwell-Boltzmann distribution, 117, 118, 177, 191 39, 45, 58, 71, 73, 79, 80, 134, Inhour equation, 128 224 Integrating factor technique, 121, Mean free path, 32 132, 212, 246, 248, 254 Microscopic cross section, 31, 33–6, Interface conditions, 148 38, 73, 97, 108, 109, 222 Iodine-131, 20, 21, 246 Migration length, 178 Iodine-135, 247 Moderator, 61–3, 65, 67–9, 72, 73, Isothermal temperature coefficient, 81, 85, 87, 88, 90-4, 98-110, 139, 168, 177, 179, 204, 209, Isotopes, 3, 5, 9, 13, 16, 17, 21, 33, 212, 221, 223, 225–7 35, 36, 42, 47, 52, 75, 123, 129, temperature coefficient, 225

Momentum, conservation of, 41,	Fast cross section averages, /5–8
49, 53	Resonance cross section
Movable control poison, 230,	averages, 78–9
232, 244	Thermal cross section
Multigroup methods, 75	averages, 79–81
Multiplying systems behavior, 120	infinite medium multiplication,
	81–2
Negative feedback impacts, 134	neutron energy spectra, 63–5
Neptunium, 253, 258	Fast and thermal reactor spec-
Neutrinos, 4, 5, 9–11	
	tra, 72–3
Neutron:	Fast neutrons, 65–6
balance equations, 116	Neutron slowing down, 66–70
beam, 32	Thermal neutrons, 70–1
capture, 47, 104, 109, 243, 253,	neutron moderators, 61–3
255–7	nuclear fuel properties, 58-61
chain reactions, 29, 57, 115	Neutron distributions in reactors:
see also Chain reaction	control poisons, 186
colliding/collisions, 61, 97	control rod bank insertion, 190–4
cross sections, 29	control rods, partially inserted,
cycle in thermal reactors, 100	188–90
density, 74	reactivity worth, 186-8
diffusion, 139, 140, 142, 149, 157,	neutron leakage, 174
174	leakage and design, 179-80
properties, derivation of, 273,	migration length, 178-9
275–9	two group approximation, 174–8
distributions, 57, 167	reflected reactors, 180-5
energy, 29, 48, 49, 51, 53, 58, 64,	time-independent diffusion
74, 95, 97, 98, 100, 115, 174,	equation, 167–8
225, 273	uniform reactors, 169
emitting fission products, 123,	finite cylindrical core, 170–2
126, 127	reactor power, 172–4
flux, 63, 64, 73, 101, 107, 151,	Neutron interactions:
153, 193, 221, 222, 224	cross section energy dependence,
leakage, 58, 115, 119, 174, 175,	40–1
179, 227	compound nucleus formation,
lifetime, 12, 116, 117, 120, 122,	41–2
124, 127, 129, 212, 236, 243	fissionable materials, 47–8
moderators see Moderator	resonance cross sections, 42–6
multiplication, 12, 57, 211	threshold cross sections, 46–7
nonleakage probability, 58, 167,	neutron cross sections, 29–30
180	calculation, 36
poison, 87, 91, 180, 186, 200, 230,	microscopic and macroscopic,
244, 245	30–2
spectrum, 48, 61, 62, 95, 106, 174,	~ ~ —
	nuclide densities, 33–4
226, 227	reaction types, 36–8
Neutron distributions in energy,	uncollided flux, 32–3
57–8	uranium, enriched, 35–6
energy-averaged reaction rates,	neutron energy range, 38–40
73–5	neutron scattering, 48

elastic scattering, 49–50 inelastic scattering, 52–3	Nuclear fuel properties, 58 Nuclear proliferation, problems of, 60
slowing down decrement, 50–2	Nuclear reaction fundamentals, 2
Neutron kinetics:	Nucleons, conservation of, 3
equations, 125	Nuclide densities, 33
delayed, 123	ruenue densities, so
Neutrons, spatial diffusion of, 139–40	On-line refueling machines, 92
boundary conditions, 145-6	Partial currents, 278
interface conditions, 148–9	Partially inserted control rod, 188
reflected boundaries, 147	Plane geometry, 143
surface sources and albedos,	Plank's constant, 6
147–8	Plutonium, 17, 47, 58–60, 78, 223,
vacuum boundaries, 146–7	252–5, 258, 259
diffusion approximation validity,	Poison specifications, 232
153–7	Power:
multiplying systems, 157	coefficient, 229
critical reactor, 160–2	defects, 230
subcritical assemblies, 157–60	density, 88, 93, 180, 194, 199,
neutron diffusion equation, 140	200, 202, 203, 205, 209–11,
diffusion approximation, 142–3	250, 252, 257
spatial neutron balance, 140–2	peaking factor, 200
nonmultiplying systems, 143–5, 149–53	reactors, transient behavior of,
Neutronic and thermal effects,	Power reactor core, 85
209, 215	core composition, 85–8
Neutronics design, 211	Fast reactors, 94
Noble gases, 258	Graphite-moderated reactors,
Nonescape probability, 115, 227	92–3
Nonleakage probability, 101, 119,	Heavy water reactors, 91–2
120, 139, 161, 162, 177, 180,	Light water reactors, 88–91
222, 243	RBMK reactors, 93-4
Nonrelativistic particle, 6	fast reactor lattices, 94-7
Notation, 5	thermal reactor lattices, 98-9
Nuclear reactions, 1–3	Four factor formula, 99-107
binding energy, curve of, 7–8	Pressurized water reactor
energetics, 5–7	example, 108–10
fissile and fertile materials, 16–18	Power reactor core, behaviour:
fission reactions, 9–10	fission product and actinide
energy release and dissipation,	inventories, 257–9
10–11	fission product buildup and
fission products, 13–16	decay, 245–6
neutron multiplication, 12–13	samarium poisoning, 250–2
fusion reactions, 8–9	xenon positioning, 247–50
notation, 5	fuel depletion, 252
radioactive decay, 18-20	burnable poisons, 255–7
decay chains, 21–3	fissionable nuclide
saturation activity, 20–1	concentrations, 252–5
reaction equations, 3–4	reactivity control, 243–5

Pressurized water reactor, 88, 108, 209	Infinite medium multiplying systems, 117–19
Prompt coefficient, 228	Infinite medium nonmultiply-
Prompt jump approximation, 131	ing systems, 116–17
	prologue to reactor dynamics,
Quasi-static model, 233, 235	133–4
, ,	step reactivity changes, 126-7
Radial and axial peaking factors,	Prompt jump approximation,
202, 204	131–3
Radial flux distribution, 182	Reactor period, 127–31
Radial peaking factor, 202, 208	Reflected boundaries, 147
Radial reflector, 180, 181, 184	Reflector:
Radioactive decay, 4, 5, 9, 10, 15,	diminishing effect, 185
16, 18, 37, 116, 245, 248, 252	savings, 184
Radioactivity, measure of, 19	Resonance:
Radioiodine, 258	absorption, 68, 73, 79, 226
Radioisotopes, 11	cross sections, 42, 78
see also Isotopes	escape probability, 102-105, 108,
Radionuclides, 20	109, 175, 223, 224, 226
decay of, 5	self-shielding, 224
Radiostrontium, 11	Rod bank, 91, 131, 186, 190, 191,
Radiotoxicity, 259	193, 203, 231, 236, 238, 244
Ramp rate, 235	Rod drop, 132
RBMK reactors, 93, 94, 110	Rod oscillator, 133
Reaction equations, 3	,
Reactivity:	Samarium, 243, 245, 250–2
coefficients, 221, 228	concentration, 251
control, 243	poisoning, 250
feedback, 221, 222	Saturation activity, 20
formulation, 126	Scalar flux, 64, 273
worth, 186	Scattering:
Reactor:	anisotropic, 277
dynamics, 133, 233	collisions, 12, 29, 37, 48, 57, 63,
lattices, 81, 90, 92, 98, 108, 139,	65, 66, 148, 180
154, 180, 199	cross section, 37, 41, 44–6, 50, 52,
multiplication, 87, 91, 97, 167,	61, 62, 68, 69, 80, 90, 177, 178
204, 222	elastic, 37, 40, 41, 44, 48–53,
period, 127	61–4, 67, 68, 72, 94, 177
power, 172	inelastic, 52
transients, 232	isotopic, 142, 146, 155, 275, 277
Reactor kinetics, 115	neutron, 39, 48, 226
delayed neutron kinetics, 123-4	Semi-infinite medium, 144, 148
Kinetics equations, 124–5	Shutdown margin, 230
Reactivity formulation, 126	Slowing down decrement, 50
multiplying systems behavior,	Sodium-cooled fast reactor (SFRs),
120–2	72, 94, 178
neutron balance equations, 116	Solid-moderated reactors, 110
Finite multiplying systems,	Source jerk, 131, 133
119–20	see also Rod bank

Spatial diffusion, 139
Spatial neutron balance, 140
Spectral hardening, 71, 226
Spherical Geometry, 149
Startup accident, 238
Steady state temperatures, 205
Steam generators, 90, 92
Step reactivity changes, 126
Strontium, 20, 21, 258
Subcritical assemblies, 157
Surface heat flux, 205, 208, 209
Surface sources, 147
see also Albedos

Tellurium-135, 247 Temperature drop across, 280 Thermal cross section averages, 79 Thermal diffusion, 174–8 Thermal disadvantage factor, 107 Thermal energies, 51, 61, 73, 100, 102, 117, 174, 178, 224 Thermal expansion, volumetric coefficient of, 225 Thermal fission, 101, 174 Thermal hydraulic considerations, 194, 200 Thermal neutrons, 40, 42, 58, 65, 70, 99, 100, 106, 174, 177, 245 flux, 107 leakage, 175 measurments, 39 range, 61, 70, 99 spectrum, 71, 106, 177, 226 Thermal reactor lattices, 78, 98 Thermal time constant, 212, 213, 234, 237, 243, 282 Thermal transients, 211 Thermal utilization, 101, 106, 108, 109, 226 Thermodynamic analysis, 209 Thermonuclear reaction, 8, 9

Thorium, 13, 17, 47 Threshold cross sections, 46 Transient analysis, 234 Transport equation, 273, 274 Transuranic nuclei, 245 Two group theory, 174

Uncollided flux, 32, 33, 153, 155, 156 Uniform cylindrical core, 203 Uniform source, 144 Uranium, 1, 2, 9, 11, 15–17, 35, 36, 42, 44, 45–7, 49, 51, 52, 58–62, 65, 73, 78, 81, 90–3, 105, 129, 130, 228, 249, 252, 253, 255, cross sections, feature of the, 44 fueled reactor, 130, 249, 252 nuclear fission of, 1 Uranium-235, 9, 11, 15–17, 35, 58, 59, 129, 252, 255 depletion of, 255 Uranium-238, 16, 17, 35, 42, 44, 46, 47, 49, 51, 58, 60, 61, 105, 228, 252, 253, 259

Vacuum boundaries, 146

Waste disposal, 258 Water-cooled reactors, 72, 90, 93, 105, 254 Wigner-way formula, 15

Xenon, 243, 245, 247–51 poisoning, 247, 250, 251

Zero flux boundary condition, 147, 176 Zero power: kinetics, 133 temperature, 232 Zirconium, 90, 92, 93