Adapting Language Model for Zero-Shot Learning by Meta-Tuning on Dataset and Prompt Collections

Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, and Dan Klein {ruiqi-zhong, kristylee, zhengzhang1216, klein}@berkeley.edu

Traditional Setup

```
Training
```

```
I love this movie \Rightarrow 1
The action part is great \Rightarrow 1
Total waste of time \Rightarrow 0
Really boring \Rightarrow 0
```

Testing

```
Highly recommended \rightarrow 1
```


Traditional Setup

Zero-Shot Setup

Training

The action part is great \rightarrow 1

Total waste of time \rightarrow 0

Really boring \rightarrow 0

Any training task except sentiment classification.

Testing

Highly recommended \rightarrow 1

[Input] [Task Description] → [Answer]

Based on task description, perform a new task that was unseen at training time

Language Model Training

```
Berkeley NLP is a group of ____ \rightarrow faculty and graduate my own happiness was ____ \rightarrow entirely identified with this object behind three concentric ____ \rightarrow walls and enjoyed nearly ... rethinking both the theoretical and ____ \rightarrow empirical paradigms ...
```

• • •

Language Model Training

```
Berkeley NLP is a group of ____ \rightarrow faculty and graduate my own happiness was ____ \rightarrow entirely identified with this object behind three concentric ____ \rightarrow walls and enjoyed nearly ... rethinking both the theoretical and ____ \rightarrow empirical paradigms ...
```

Zero-Shot Testing

Language Model Training

```
Berkeley NLP is a group of ____ \rightarrow faculty and graduate my own happiness was ____ \rightarrow entirely identified with this object behind three concentric ____ \rightarrow walls and enjoyed nearly ... rethinking both the theoretical and ____ \rightarrow empirical paradigms ...
```

Bridge the Misalignment with Clever "Prompting"

Zero-Shot Testing

Highly recommended. Is this a positive review? \longrightarrow yes

Machine Learning 101

"Directly optimize the target objective (e.g. zero-shot learning)"

Meta-Tuning

Zero-Shot Training

Zero-Shot Testing

Meta-Tuning

Zero-Shot Training

Learn to perform a task based on task descriptions;

Zero-ShotTesting

Meta-Tuning

Zero-Shot Training

The market is fluctuating. Is this sports news? ____ \rightarrow no

Olympics started yesterday. Is this sports news? ____ \rightarrow yes

Utilitarian means XXX. Does it contain a definition? ____ \rightarrow yes

I were hungry. Is it grammatical? ____ \rightarrow no

Manually unified datasets from 43 different sources. ~200 unique labels and hand-wrote 440 task descriptions.

Zero-Shot Testing

Abstract View

Abstract View

```
Fine-tune on Task A, B, C
```

```
[Input A1] [Task Description A] \rightarrow [Answer A1] [Input A2] [Task Description A] \rightarrow [Answer A2] [Input B1] [Task Description B] \rightarrow [Answer B1] [Input B2] [Task Description B] \rightarrow [Answer B2] [Input C1] [Task Description C] \rightarrow [Answer C1]
```

. . .

```
Test on Task D, E
```

```
[Input D1] [Task Description D] \rightarrow [Answer D1] [Input D2] [Task Description D] \rightarrow [Answer D2] [Input E1] [Task Description E] \rightarrow [Answer E1]
```

• • •

Abstract View

```
Fine-tune on Task A, B, C
```

```
[Input A1] [Task Description A] \rightarrow [Answer A1] [Input A2] [Task Description A] \rightarrow [Answer A2] [Input B1] [Task Description B] \rightarrow [Answer B1] [Input B2] [Task Description B] \rightarrow [Answer B2] [Input C1] [Task Description C] \rightarrow [Answer C1]
```

. . .

Different enough to be counted as "zero-shot"

```
Test on Task D, E
```

```
[Input D1] [Task Description D] \rightarrow [Answer D1] [Input D2] [Task Description D] \rightarrow [Answer D2] [Input E1] [Task Description E] \rightarrow [Answer E1]
```

• • •

Cross Validation Split

Movie Review Classification Hotel Review Classification Airline Review Classification

Review

Good vs. Bad

Question Paraphrase Detection

Answer Type Classification

Question Categorization

Stance Classification
Liberal/Conservative Classification

Social Media

Societal

Hate Speech Detection
Offensive Speech Detection

Social Media

Societal

Emotion

Aligned Objective —> Better

Cross Validation Average AUC ROC

T5 Large Meta-tuned	73.8%
---------------------	-------

T5 Large **UnifiedQA** 70.5%

T5 Medium Meta-tuned 67.5%

Aligned Objective —> Better

T5 Large Meta-tuned 73.8%

Cross Validation
Average AUC ROC

T5 Large UnifiedQA 70.5%

T5 Medium Meta-tuned 67.5%

ICML 2021 Zhao et. al GPT-3 (175B parameter) after calibration 80% accuracy on SST-2

Aligned Objective —> Better

T5 Large Meta-tuned 73.8%

Cross Validation
Average AUC ROC

T5 Large **UnifiedQA** 70.5%

T5 Medium Meta-tuned 67.5%

ICML 2021 Zhao et. al GPT-3 (175B parameter) after calibration 80% accuracy on SST-2

Ours
RoBERTa-Large (500x smaller)
without calibration
88% accuracy on SST-2

Larger -> Better

T5 Large Meta-tuned 73.8%

Cross Validation
Average AUC ROC

T5 Large UnifiedQA 70.5%

T5 Medium Meta-tuned 67.5%

ICML 2021 Zhao et. al GPT-3 (175B parameter) after calibration 80% accuracy on SST-2

Ours
RoBERTa-Large (500x smaller)
without calibration
88% accuracy on SST-2

We only experimented with small models (700M)

- We only experimented with small models (700M)
- FLAN (Google, 137B) outperforms GPT-3 (173B)

- We only experimented with small models (700M)
- FLAN (Google, 137B) outperforms GPT-3 (173B)
- ► T0 (13B) outperforms **GPT-3 (173B)**

Thank you!

Paper: https://arxiv.org/abs/2104.04670

Code: https://github.com/ruiqi-zhong/Meta-tuning

