The Relationship between languages

$$egin{align*} All\ Languages(L\subseteq\Sigma^*)\ (eg.\ Halting\ problem) & \supseteq \ Decidable/Computable\ Languages & \supseteq \ NP(All\ problems\ that\ are\ efficiently\ verifiable) \ (eg.\ Ham.\ Cycle) \ \end{array}$$

2

 $P(All\ problems\ that\ are\ efficiently\ solvable, i.\ e.\ solvable\ in\ n^{O(1)}\ time)$ $(eg.\ Max\ Flow)$

 \supset

 $Regular\ Languages$

- **Regular Languages**: Problems that are solvable without memory, i.e. problems that are solvable by **finite automatons**.
- **Upper bound**: Given L, prove L is decidable in time T(n).
- **Lower bound**: Given L, prove L is not decidable in time T(n).

Finite Automaton

eg. Decide if w|2.

$$L = \{w \in \{0,1\}^* | w = w_1 w_2 \dots w_n, w_n = 0\}$$

eg. Decide if w|3.

$$L = \{w \in \{0,1\}^* | w = w_1 w_2 \dots w_n, w_n + 2 \cdot w_{n-1} + \dots + 2^{n-1} \cdot w_1 = 0 (mod\ 3)\}$$

Def 2.1 A finite automaton is a 5-tuple (Q,Σ,δ,q_0,F) , where

- 1. Q is a finite set called the states.
- 2. Σ is the alphabet.

3. $\delta:Q imes\Sigma o Q$ is the transition function.

4. $q_0 \in Q$ is the starting state.

5. $F \subseteq Q$ is the set of accept states.

Def 2.2 Let $M=(Q,\Sigma,\delta,q_0,F)$ be a finite automaton. Let $w=w_1w_2\dots w_n$ be a string, where each $w_i\in\Sigma$. Then M accepts w if there is a sequence of states $r_0,r_1,\dots,r_n\in Q$, s.t.

1.
$$r_0 = q_0$$

2.
$$\delta(r_i, w_{i+1}) = r_{i+1}, \ for \ i = 0, 1, \dots, n-1$$

3.
$$r_n \in F$$

$\it Def\,2.3$ If L is the set of strings that M accepts, we say L is the language of M, and write $\it L(M)=L$. We say M recognizes/decides/accepts L.

• If M accepts no strings, it recognizes one language, namely, the empty language.

eg.
$$L = \{w \in \{0,1\}^* | w = w_1 \dots w_n, w_1 \neq w_n\}$$

eg. $L = \{w \in \{0,1\}^* | the number of 1s is a multiple of 3\}$

Def 2.4 $L\subseteq \Sigma^*$ is a regular language if there is a finite automaton that accepts L. Let $A,B\subseteq \Sigma^*$. Define:

- (Union) $A \cup B = \{x \in \Sigma^* | x \in A \ or \ x \in B\}$
- (Concatenation) $AB = \{xy | x \in A, y \in B\}$
- (Star) $A^*=\{x_1x_2\dots x_k|k\geq 0,x_1,\dots,x_k\in A\}$

eg.

If

$$\Sigma = \{0, 1\}, A = \{\epsilon, 0, 00, \dots\}, B = \{\epsilon, 1, 11, \dots\}$$

Then

$$AB = \{0^{i}1^{j}|i, j \geq 0\}, \ A^{*} = A, \ B^{*} = B, \ (AB)^{*} = \Sigma^{*}$$

Thm 2.5 If A_1, A_2 are regular languages, so is $A_1 \cup A_2$.

Proof: Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ accepts A_1 , and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ accepts A_2 . Construct M to accept $A_1\cup A_2$, where $M=(Q,\Sigma,\delta,q,F)$:

1.
$$Q=Q_1 imes Q_2=\{(r_1,r_2)|r_1\in Q_1,r_2\in Q_2\}$$

- 2. $\delta:Q imes\Sigma o Q$ is defined as for each $(r_1,r_2)\in Q$, and each $a\in\Sigma$, let $\delta((r_1,r_2))=(\delta_1(r_1),\delta_2(r_2))$
- 3. $q_0 = (q_1, q_2)$
- 4. $F = \{(r_1, r_2) | r_1 \in F_1 \ or \ r_2 \in F_2\}$

Thm 2.6 If A_1, A_2 are regular languages, so is A_1A_2 .

- DFA: Deterministic Finite Automaton
- NFA: Nondeterministic Finite Automaton

eg. Design an NFA that accepts the set of strings containing a 0 in the third position from the end.

eg. $L = \{0^k | k \text{ is a multiple of 2 or 3}\}$

$\mathit{Def}\, \mathit{2.7}\, \mathsf{An}\, \mathsf{NFA}\, \mathsf{is}\, \mathsf{a}\, \mathsf{5\text{-}tuple}(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states.
- 2. Σ is the alphabet.
- 3. $\delta:Q imes(\Sigma\cup\{\epsilon\}) o P(Q)$ is the transition function.
- 4. $q_0 \in Q$ is the start state.
- 5. $F \subseteq Q$ is the set of accept states.

Def 2.8 Let $N=(Q,\Sigma,\delta,q_0,F)$ be an NFA, and let $w\in\Sigma^*$. Say N accepts w if we can write $w=y_1y_2\dots y_n$, where $y_i\in\Sigma\cup\{\epsilon\}$, and there exist $r_0,r_1,\dots,r_m\in Q$, s.t.

- 1. $r_0 = q_0$
- 2. $r_{i+1} \in \delta(r_i, y_{i+1}) \ for \ i = 0, 1, \dots, m-1$
- 3. $r_m \in F$

Thm 2.9 Every NFA has an equivalent DFA.