Flink超神文档

Flink超神文档 Flink初次见面 什么是Flink? 什么是Unbounded streams? 什么是Bounded streams? 什么是stateful computations? Flink使用用户 Flink的特点和优势 Flink安装&部署 Flink基本架构 Standalone集群安装&测试 集群角色划分 安装步骤 提交lob到standalone集群 Standalone HA集群安装&测试 集群角色划分 安装步骤 Flink on Yarn 运行流程 Flink on Yarn两种运行模式 配置两种运行模式 yarn seesion模式配置 Run a Flink job on YARN模式配置 Flink on YARN HA集群安装&测试 安装步骤 HA集群测试 yarn-session模式测试 Run a Flink job on YARN模式测试 Flink API详解&实操 Flink API介绍 Dataflows数据流图 配置开发环境 WordCount流批计算程序 WordCount Dataflows 算子链 Flink任务调度规则 Flink并行度设置方式 Dataflows DataSource数据源 File Source **Collection Source Socket Source** Kafka Source **Custom Source DataStream Transformations** Мар FlatMap Filter KeyBy Reduce Aggregations Union Connect

CoMap, CoFlatMap

Flink初次见面

什么是Flink?

Apache Flink is a framework and distributed processing engine for **stateful computations** over **unbounded** and **bounded** data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale

Flink的世界观是数据流

对 Flink 而言,其所要处理的主要场景就是流数据,批数据只是流数据的一个极限特例而已,所以 Flink 也是一款真正的流批统一的计算引擎

什么是Unbounded streams?

无界流 有定义流的开始,但没有定义流的结束。它们会无休止地产生数据。无界流的数据必须持续处理,即数据被摄取后需要立刻处理。我们不能等到所有数据都到达再处理,因为输入是无限的,在任何时候输入都不会完成。处理无界数据通常要求以特定顺序摄取事件,例如事件发生的顺序,以便能够推断结果的完整性

什么是Bounded streams?

有界流 有定义流的开始,也有定义流的结束。有界流可以在摄取所有数据后再进行计算。有界流所有数据可以被排序,所以并不需要有序摄取。有界流处理通常被称为批处理

一图秒懂: 无界流与有界流

什么是stateful computations?

有状态的计算:每次进行数据计算的时候基于之前数据的计算结果(状态)做计算,并且每次计算结果都会保存到存储介质中,计算关联上下文context

基于有状态的计算不需要将历史数据重新计算,提高了计算效率

无状态的计算:每次进行数据计算只是考虑当前数据,不会使用之前数据的计算结果

Flink使用用户

自 2019 年 1 月起,阿里巴巴逐步将内部维护的 Blink 回馈给 Flink 开源社区,目前贡献代码数量已超过 100 万行。国内包括腾讯、百度、字节跳动等公司,国外包括 Uber、Netflix 等公司都是 Flink 的使用者

Flink的特点和优势

- 1、同时支持高吞吐、低延迟、高性能
- 2、支持事件时间 (Event Time) 概念,结合Watermark处理乱序数据
- 3、支持有状态计算,并且支持多种状态 内存、文件、RocksDB
- 4、支持高度灵活的窗口 (Window) 操作 time、count、session
- 5、基于轻量级分布式快照(CheckPoint)实现的容错 保证exactly-once语义
- 6、基于JVM实现独立的内存管理
- 7、Save Points (保存点)

Flink安装&部署

Flink基本架构

Flink系统架构中包含了两个角色,分别是JobManager和TaskManager,是一个典型的Master-Slave架构。JobManager相当于是Master,TaskManager相当于是Slave

(Master / YARN Application Master)

JobManager (JVM进程) 作用

JobManager负责整个集群的资源管理与任务管理,在一个集群中只能由一个正在工作(active)的 JobManager,如果HA集群,那么其他JobManager一定是standby状态

(1) 资源调度

- 集群启动,TaskManager会将当前节点的资源信息注册给JobManager,所有TaskManager全部注册完毕,集群启动成功,此时JobManager就掌握整个集群的资源情况
- client提交Application给JobManager, JobManager会根据集群中的资源情况,为当前的 Application分配TaskSlot资源

(2) 任务调度

- 根据各个TaskManager节点上的资源分发task到TaskSlot中运行
- Job执行过程中,JobManager会根据设置的触发策略触发checkpoint,通知TaskManager开始checkpoint
- 任务执行完毕,JobManager会将Job执行的信息反馈给client,并且释放TaskManager资源

TaskManager (JVM进程) 作用

- 负责当前节点上的任务运行及当前节点上的资源管理, TaskManager资源通过TaskSlot进行了划分,每个TaskSlot代表的是一份固定资源。例如,具有三个 slots 的 TaskManager 会将其管理的内存资源分成三等份给每个 slot。划分资源意味着 subtask 之间不会竞争内存资源,但是也意味着它们只拥有固定的资源。注意这里并没有 CPU 隔离,当前 slots 之间只是划分任务的内存资源
- 负责TaskManager之间的数据交换

client客户端

Standalone集群安装&测试

Standalone是独立部署模式,它不依赖其他平台,不依赖任何的资源调度框架

Standalone集群是由JobManager、TaskManager两个JVM进程组成

集群角色划分

node01	node02	node03	node04
JobManager	TaskManager	TaskManager	TaskManager

安装步骤

1. 官网下载Flink安装包

Apache Flink® 1.10.0 is our latest stable release.现在最稳定的是1.10.0,不建议采用这个版本,刚从1.9升级到1.10,会存在一些bug,不建议采用小版本号为0的安装包,所以我们建议使用1.9.2版本

下载链接: https://mirrors.tuna.tsinghua.edu.cn/apache/flink/flink-1.9.2/flink-1.9.2-bin-scala 2. 11.tgz

- 2. 安装包上传到node01节点
- 3. 解压、修改配置文件

解压: tar -zxf flink-1.9.2-bin-scala_2.11.tgz

修改flink-conf.yaml配置文件

jobmanager.rpc.address: node01 JobManager地址

jobmanager.heap.size: 1024m JobManager所能使用的堆内存大小taskmanager.heap.size: 1024m TaskManager所能使用的堆内存大小

taskmanager.numberOfTaskSlots: 2 TaskManager管理的TaskSlot个数,依据当前物理机的核心数来配置,一般预留出一部分核心(25%)给系统及其他进程使用,一个slot对应一个core。如果

core支持超线程,那么slot个数*2

rest.port: 8081 指定WebUI的访问端口

修改slaves配置文件

node02

node03

node04

4. 同步安装包到其他的节点

同步到node02 scp -r flink-1.9.2 node02: pwd

同步到node03 scp -r flink-1.9.2 node03: pwd

同步到node04 scp -r flink-1.9.2 node04: pwd

5. node01配置环境变量

```
vim ~/.bashrc
export FLINK_HOME=/opt/software/flink/flink-1.9.2
export PATH=$PATH:$FLINK_HOME/bin
source ~/.bashrc
```

6. 启动standalone集群

启动集群: start-cluster.sh 关闭集群: stop-cluster.sh

7. 查看Flink Web UI页面

http://node01:8081/ 可通过rest.port参数自定义端口

提交Job到standalone集群

常用提交任务的方式有两种, 分别是命令提交和Web页面提交

1. 命令提交:

flink run -c com.msb.stream.WordCount StudyFlink-1.0-SNAPSHOT.jar

- -c 指定主类
- -d 独立运行、后台运行
- -p 指定并行度

2. **Web页面提交:**

在Web中指定Jar包的位置、主类路径、并行数等

web.submit.enable: true一定是true, 否则不支持Web提交Application

3. 启动scala-shell测试

start-scala-shell.sh remote <hostname> <portnumber>

Standalone HA集群安装&测试

JobManager协调每个flink任务部署,它负责调度和资源管理

默认情况下,每个flink集群只有一个JobManager,这将导致一个单点故障(SPOF single-point-of-failure):如果JobManager挂了,则不能提交新的任务,并且运行中的程序也会失败。

使用JobManager HA,集群可以从JobManager故障中恢复,从而避免SPOF

Standalone模式(独立模式)下JobManager的高可用性的基本思想是,任何时候都有一个 Active JobManager ,并且多个Standby JobManagers 。 Standby JobManagers可以在Master JobManager 挂掉的情况下接管集群成为Master JobManager。 这样保证了没有单点故障,一旦某一个Standby JobManager接管集群,程序就可以继续运行。 Standby JobManager和Active JobManager实例之间没有明确区别。 每个JobManager可以成为Active或Standby节点

如何单独启动JobManager jobmanager.sh

如何单独启动TaskManager taskmanager.sh

集群角色划分

	node01	node02	node03	node04
JobManager	√	\checkmark	×	×
TaskManager	×	\checkmark	V	V

安装步骤

1. 修改配置文件conf/flink-conf.yaml

high-availability: zookeeper

high-availability.storageDir: hdfs://node01:9000/flink/ha/ 保存JobManager恢复

所需要的所有元数据信息

high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181

zookeeper地址

2. 修改配置文件conf/masters

node01:8081 node02:8081

3. 同步文件到各个节点

4. 下载支持Hadoop插件并且拷贝到各个节点的安装包的lib目录下

下载地址: <a href="https://repo.maven.apache.org/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/2.6.5-10.0/flink-shaded-hadoop-2-uber-2.6.5-10.0/

• HA集群测试

http://node01:8081/

http://node02:8081/

两个页面一模一样 存在bug

Flink on Yarn

Flink on Yarn是依托Yarn资源管理器,现在很多分布式任务都可以支持基于Yarn运行,这是在企业中使用最多的方式。Why?

- (1) 基于Yarn的运行模式可以充分使用集群资源,Spark on Yarn、MapReduce on Yarn、Flink on Yarn等 多套计算框架都可以基于Yarn运行,充分利用集群资源
- (2) 基于Yarn的运行模式降低维护成本

运行流程

1. 每当创建一个新flink的yarn session的时候,客户端会首先检查要请求的资源(containers和 memory)是否可用。然后,将包含flink相关的jar包盒配置上传到HDFS

- 2. 客户端会向ResourceManager申请一个yarn container 用以启动ApplicationMaster。由于客户端已经将配置和jar文件上传到HDFS,ApplicationMaster将会下载这些jar和配置,然后启动成功
- 3. JobManager和AM运行于同一个container
- 4. AM开始申请启动Flink TaskManager的containers,这些container会从HDFS上下载jar文件和已修改的配置文件。一旦这些步骤完成,flink就可以接受任务了

Flink on Yarn两种运行模式

解脱了JobManager的压力 RM做资源管理 JobManager只负责任务管理

- yarn seesion(Start a long-running Flink cluster on YARN)这种方式是在yarn中先启动Flink集群,然后再提交作业,这个Flink集群一直停留再yarn中,一直占据了yarn集群的资源(只是JobManager会一直占用,没有Job运行TaskManager并不会运行),不管有没有任务运行。这种方式能够降低任务的启动时间
- Run a Flink job on YARN 每次提交一个Flink任务的时候,先去yarn中申请资源启动JobManager 和TaskManager,然后在当前集群中运行,任务执行完毕,集群关闭。任务之间互相独立,互不 影响,可以最大化的使用集群资源,但是每个任务的启动时间变长了

配置两种运行模式

yarn seesion模式配置

- Flink on Yarn依赖Yarn集群和HDFS集群, 启动Yarn、HDFS集群 start-all.sh
- 下载支持Hadoop插件并且拷贝到各个节点的安装包的lib目录下

下载地址: <a href="https://repo.maven.apache.org/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/2.6.5-10.0/flink-shaded-hadoop-2-uber-2.6.5-10.0/flink-shaded-hadoop-2-uber-2.6.5-10.0/jar

• 在yarn中启动Flink集群

```
启动: yarn-session.sh -n 3 -s 3 -nm flink-session -d -q 关闭: yarn application -kill applicationId

yarn-session选项:
-n,--container <arg>: 在yarn中启动container的个数,实质就是TaskManager的个数 -s,--slots <arg>: 每个TaskManager管理的Slot个数 -nm,--name <arg>:给当前的yarn-session(Flink集群)起一个名字 -d,--detached:后台独立模式启动,守护进程 -tm,--taskManagerMemory <arg>: TaskManager的内存大小 单位: MB -jm,--jobManagerMemory <arg>: JobManager的内存大小 单位: MB -q,--query: 显示yarn集群可用资源(内存、core)
```


• 提交Flink Job到yarn-session集群中运行

```
flink run -c com.msb.stream.WordCount -yid application_1586794520478_0007 ~/StudyFlink-1.0-SNAPSHOT.jar

yid: 指定yarn-session的ApplicationID
不使用yid也可以,因为在启动yarn-session的时候,在tmp临时目录下已经产生了一个隐藏小文件
[root@node01 bin]# vim /tmp/.yarn-properties-root
#Generated YARN properties file
#Mon Apr 13 23:39:43 CST 2020
parallelism=9
dynamicPropertiesString=
applicationID=application_1586791887356_0001
```

Run a Flink job on YARN模式配置

```
flink run -m yarn-cluster -yn 3 -ys 3 -ynm flink-job -c com.msb.stream.WordCount ~/StudyFlink-1.0-SNAPSHOT.jar

-yn,--container <arg> 表示分配容器的数量,也就是TaskManager的数量。
-d,--detached: 设置在后台运行。
-yjm,--jobManagerMemory<arg>:设置JobManager的内存,单位是MB。
-ytm, --taskManagerMemory<arg>:设置每个TaskManager的内存,单位是MB。
-ynm,--name:给当前Flink application在Yarn上指定名称。
-yq,--query: 显示yarn中可用的资源(内存、cpu核数)
-yqu,--queue<arg> :指定yarn资源队列
-ys,--slots<arg> :每个TaskManager使用的Slot数量。
```

Flink on YARN HA集群安装&测试

无论以什么样的模式提交Application到Yarn中运行,都会启动一个yarn-session(Flink 集群),依然是由 JobManager和TaskManager组成,那么JobManager节点如果宕机,那么整个Flink集群就不会正常运转,所以接下来搭建Flink on YARN HA集群

安装步骤

● 修改Hadoop安装包下的yarn-site.xml文件

• 修改Flink安装包下的flin-conf.yaml文件

```
high-availability: zookeeper
high-availability.storageDir: hdfs://node01:9000/flink/ha/
high-availability.zookeeper.quorum: node01:2181,node02:2181,node03:2181
```

HA集群测试

两种模式都可以测试,因为不管哪种模式都会启动yarn-session

yarn-session模式测试

• 启动yarn-session

```
yarn-session.sh -n 3 -s 3 -nm flink-session -d
```

• 通过yarn web ui 找到ApplicationMaster,发现此时的JobManager是在node02启动,现在kill掉 JobManager进程 kill -9 进程号

• 再次查看 发现JobManager切换到node03

io.tmp.dirs	/var/msb/hadoop/cluster/nm-local-dir/usercache/root/appcache/application_1586794520478_0002
jobmanager.execution.failover-strategy	region
jobmanager.heap.size	1024m
jobmanager.rpc.address	node03
jobmanager.rpc.port	60599
parallelism.default	1
rest.address	node03

• 查看node03日志

```
- Assertion with access rate plat for [9] on Assert Assertion for [1] with [30% top://linkholder_50012]] ceased by: [yes not ConnectEncy top: 100-04-06 221 20 75 to MANF John rests Individually representation for [1] with [30% top://linkholder_50012]]] ceased by: [yes not ConnectEncy top: 100-04-06 221 20 75 to MANF John rests Individually representation for [30] with a rests Individually representation for [30] with a rests Individually representation for [30] with a rest Individually representation for [30] with a rest
```

2020-04-08 22:21:36,044 INFO org.apache.flink.yarn.YarnResourceManager - ResourceManager

akka.tcp://flink@node03:60599/user/resourcemanager was granted leadership with fencing token 94c94c3d68ed799374303fad7447418b

取消job 开始Run a Flink job on YARN模式测试

flink list

flink canel id

Run a Flink job on YARN模式测试

提交job

flink run -m yarn-cluster -yn 3 -ys 3 -ynm flink-job -c com.msb.stream.WordCount ~/StudyFlink-1.0-SNAPSHOT.jar

- 停掉JobManager 观察
- 测试完毕,取消job

yarn application -kill applicationId

Flink API详解&实操

Flink API介绍

Flink提供了不同的抽象级别以开发流式或者批处理应用程序

SQL

High-level Language

Table API

Declarative DSL

DataStream / DataSet API

Core APIs

Stateful Stream Processing

Low-level building block (streams, state, [event] time)

- Stateful Stream Processing 最低级的抽象接口是状态化的数据流接口(stateful streaming)。这个接口是通过 ProcessFunction 集成到 DataStream API 中的。该接口允许用户自由的处理来自一个或多个流中的事件,并使用一致的容错状态。另外,用户也可以通过注册 event time 和 processing time 处理回调函数的方法来实现复杂的计算
- **DataStream/DataSet API** DataStream / DataSet API 是 Flink 提供的核心 API , DataSet 处理 有界的数据集, DataStream 处理有界或者无界的数据流。用户可以通过各种方法(map / flatmap / window / keyby / sum / max / min / avg / join 等)将数据进行转换 / 计算
- Table API Table API 提供了例如 select、project、join、group-by、aggregate 等操作,使用起来却更加简洁,可以在表与 DataStream/DataSet 之间无缝切换,也允许程序将 Table API 与 DataStream 以及 DataSet 混合使用
- **SQL** Flink 提供的最高层级的抽象是 SQL。这一层抽象在语法与表达能力上与 Table API 类似。 SQL 抽象与 Table API 交互密切,同时 SQL 查询可以直接在 Table API 定义的表上执行

Dataflows数据流图

在Flink的世界观中,一切都是数据流,所以对于批计算来说,那只是流计算的一个特例而已 Flink Dataflows是由三部分组成,分别是: source、transformation、sink结束

source数据源会源源不断的产生数据,transformation将产生的数据进行各种业务逻辑的数据处理,最终由sink输出到外部(console、kafka、redis、DB.....)

基于Flink开发的程序都能够映射成一个Dataflows

当source数据源的数量比较大或计算逻辑相对比较复杂的情况下,需要提高并行度来处理数据,采用并 行数据流

通过设置不同算子的并行度 source并行度设置为2 map也是2.... 代表会启动多个并行的线程来处理数据

配置开发环境

每个 Flink 应用都需要依赖一组 Flink 类库。Flink 应用至少需要依赖 Flink APIs。许多应用还会额外依赖连接器类库(比如 Kafka、Cassandra 等)。 当用户运行 Flink 应用时(无论是在 IDEA 环境下进行测试,还是部署在分布式环境下),运行时类库都必须可用

开发工具: IntelliJ IDEA

配置开发Maven依赖:

注意点:

- 如果要将程序打包提交到集群运行,打包的时候不需要包含这些依赖,因为集群环境已经包含了这些依赖,此时依赖的作用域应该设置为provided provided
- Flink 应用在 Intellij IDEA 中运行,这些 Flink 核心依赖的作用域需要设置为 compile 而不是 provided。 否则 Intellij 不会添加这些依赖到 classpath,会导致应用运行时抛出
 NoClassDefFountError 异常

添加打包插件:

```
<build>
  <plugins>
  <plugin>
```

```
<groupId>org.apache.maven.plugins
            <artifactId>maven-shade-plugin</artifactId>
            <version>3.1.1</version>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>shade</goal>
                    </goals>
                    <configuration>
                        <artifactSet>
                            <excludes>
<exclude>com.google.code.findbugs:jsr305</exclude>
                                <exclude>org.slf4j:*</exclude>
                                <exclude>log4j:*</exclude>
                            </excludes>
                        </artifactSet>
                        <filters>
                            <filter>
                                <!--不要拷贝 META-INF 目录下的签名,
                                否则会引起 SecurityExceptions 。 -->
                                <artifact>*:*</artifact>
                                <excludes>
                                    <exclude>META-INF/*.SF</exclude>
                                    <exclude>META-INF/*.DSA</exclude>
                                    <exclude>META-INF/*.RSA</exclude>
                                </excludes>
                            </filter>
                        </filters>
                        <transformers>
                            <transformer</pre>
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransfor
mer">
                                <mainClass>my.programs.main.clazz</mainClass>
                            </transformer>
                        </transformers>
                    </configuration>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>
```

WordCount流批计算程序

批计算:统计HDFS文件单词出现的次数

读取HDFS数据需要添加Hadoop依赖

```
<dependency>
    <groupId>org.apache.hadoop</groupId>
    <artifactId>hadoop-client</artifactId>
    <version>2.6.5</version>
</dependency>
```

```
val env = ExecutionEnvironment.getExecutionEnvironment
  val initDS: DataSet[String] =
env.readTextFile("hdfs://node01:9000/flink/data/wc")
  val restDS: AggregateDataSet[(String, Int)] = initDS.flatMap(_.split("
")).map((_,1)).groupBy(0).sum(1)
  restDS.print()
```

流计算:统计数据流中,单词出现的次数

```
//准备环境
     * createLocalEnvironment 创建一个本地执行的环境 local
    * createLocalEnvironmentWithWebUI 创建一个本地执行的环境 同时还开启Web UI的查看
端口 8081
     * getExecutionEnvironment 根据你执行的环境创建上下文,比如local cluster
   val env = StreamExecutionEnvironment.getExecutionEnvironment
   env.setParallelism(1)
   /**
     * DataStream: 一组相同类型的元素 组成的数据流
     */
   val initStream:DataStream[String] = env.socketTextStream("node01",8888)
   val wordStream = initStream.flatMap(_.split(" "))
   val pairStream = wordStream.map((_,1))
   val keyByStream = pairStream.keyBy(0)
   val restStream = keyByStream.sum(1)
   restStream.print()
   /**
     * 6> (msb,1)
     * 1> (,,1)
     * 3> (hello,1)
     * 3> (hello,2)
     * 6> (msb,2)
     * 默认就是有状态的计算
     * 6> 代表是哪一个线程处理的
     * 相同的数据一定是由某一个thread处理
   //启动Flink 任务
   env.execute("first flink job")
```

WordCount Dataflows 算子链

为了更高效地分布式执行,Flink会尽可能地将operator的subtask链接(chain)在一起形成task。每个task在一个线程中执行。将operators链接成task是非常有效的优化:它能减少线程之间的切换,减少消息的序列化/反序列化,减少数据在缓冲区的交换,减少了延迟的同时提高整体的吞吐量

Flink任务调度规则

- 不同Task下的subtask分到同一个TaskSlot,提高数据传输效率
- 相同Task下的subtask不会分到同一个TaskSlot,充分利用集群资源

Flink并行度设置方式

1. 在算子上设置

```
val wordStream = initStream.flatMap(_.split(" ")).setParallelism(2)
```

2. 在上下文环境中设置

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
```

3. client提交Job时设置

```
flink run -c com.msb.stream.WordCount -p 3 StudyFlink-1.0-SNAPSHOT.jar
```

4. 在flink-conf.yaml配置文件中设置

```
parallelism.default: 1
```

这四种设置并行度的方式,优先级依次递减

Dataflows DataSource数据源

Flink内嵌支持的数据源非常多,比如HDFS、Socket、Kafka、Collections Flink也提供了addSource方式,可以自定义数据源,本小节将讲解Flink所有内嵌数据源及自定义数据源的原理及API

File Source

• 通过读取本地、HDFS文件创建一个数据源

如果读取的是HDFS上的文件,那么需要导入Hadoop依赖

```
<dependency>
     <groupId>org.apache.hadoop</groupId>
     <artifactId>hadoop-client</artifactId>
          <version>2.6.5</version>
</dependency>
```

代码:

```
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
//在算子转换的时候,会将数据转换成Flink内置的数据类型,所以需要将隐式转换导入进来,才能自动进行
类型转换
import org.apache.flink.streaming.api.scala._

object FileSource {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val textStream = env.readTextFile("hdfs://node01:9000/flink/data/wc")
    textStream.flatMap(_.split(" ")).map((_,1)).keyBy(0).sum(1).print()
    //读完就停止
    env.execute()
  }
}
```

 每隔10s中读取HDFS指定目录下的新增文件内容,并且进行WordCount
 业务场景:在企业中一般都会做实时的ETL,当Flume采集来新的数据,那么基于Flink实时做ETL 入仓

```
import org.apache.flink.api.java.io.TextInputFormat
import org.apache.flink.core.fs.Path
import org.apache.flink.streaming.api.functions.source.FileProcessingMode
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
//在算子转换的时候,会将数据转换成Flink内置的数据类型,所以需要将隐式转换导入进来,才能自动进行
import org.apache.flink.streaming.api.scala._
object FileSource {
  def main(args: Array[String]): Unit = {
   val env = StreamExecutionEnvironment.getExecutionEnvironment
   //读取hdfs文件
   val filePath = "hdfs://node01:9000/flink/data/"
   val textInputFormat = new TextInputFormat(new Path(filePath))
   //每隔10s中读取 hdfs上新增文件内容
   val textStream =
env.readFile(textInputFormat,filePath,FileProcessingMode.PROCESS_CONTINUOUSLY,10
)
//
    val textStream = env.readTextFile("hdfs://node01:9000/flink/data/wc")
   textStream.flatMap(_.split(" ")).map((_,1)).keyBy(0).sum(1).print()
   //读完就停止
   env.execute()
 }
}
```

readTextFile底层调用的就是readFile方法,readFile是一个更加底层的方式,使用起来会更加的灵活

Collection Source

基于本地集合的数据源,一般用于测试场景,没有太大意义

```
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.scala._

object CollectionSource {
    def main(args: Array[String]): Unit = {
        val env = StreamExecutionEnvironment.getExecutionEnvironment
        val stream = env.fromCollection(List("hello flink msb", "hello msb msb"))
        stream.flatMap(_.split(" ")).map((_,1)).keyBy(0).sum(1).print()
        env.execute()
    }
}
```

Socket Source

接受Socket Server中的数据,已经讲过

```
val initStream:DataStream[String] = env.socketTextStream("node01",8888)
```

Kafka Source

Flink接受Kafka中的数据,首先先配置flink与kafka的连接器依赖

官网地址: https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/connectors/kafka.html
maven依赖

```
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-kafka_2.11</artifactId>
  <version>1.9.2</version>
</dependency>
```

代码:

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
    val prop = new Properties()
    prop.setProperty("bootstrap.servers","node01:9092,node02:9092,node03:9092")
    prop.setProperty("group.id","flink-kafka-id001")
    prop.setProperty("key.deserializer",classOf[StringDeserializer].getName)
    prop.setProperty("value.deserializer",classOf[StringDeserializer].getName)
     * earliest:从头开始消费,旧数据会频繁消费
      * latest:从最近的数据开始消费,不再消费旧数据
      */
    prop.setProperty("auto.offset.reset","latest")
    val kafkaStream = env.addSource(new FlinkKafkaConsumer[(String, String)]
("flink-kafka", new KafkaDeserializationSchema[(String, String)] {
      override def isEndOfStream(t: (String, String)): Boolean = false
      override def deserialize(consumerRecord: ConsumerRecord[Array[Byte],
Array[Byte]]): (String, String) = {
       val key = new String(consumerRecord.key(), "UTF-8")
       val value = new String(consumerRecord.value(), "UTF-8")
        (key, value)
      }
      //指定返回数据类型
      override def getProducedType: TypeInformation[(String, String)] =
       createTuple2TypeInformation(createTypeInformation[String],
createTypeInformation[String])
    }, prop))
    kafkaStream.print()
    env.execute()
```

Custom Source

Sources are where your program reads its input from. You can attach a source to your program by using <code>StreamExecutionEnvironment.addSource(sourceFunction)</code>. Flink comes with a number of pre-implemented source functions, but you can always write your own custom sources by implementing the <code>SourceFunction</code> for non-parallel sources, or by implementing the <code>ParallelSourceFunction</code> interface or extending the <code>RichParallelSourceFunction</code> for parallel sources.

• 基于SourceFunction接口实现单并行度数据源

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
//source的并行度为1 单并行度source源
val stream = env.addSource(new SourceFunction[String] {
    var flag = true
    override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
        val random = new Random()
        while (flag) {
            ctx.collect("hello" + random.nextInt(1000))
            Thread.sleep(200)
        }
    }
    //停止产生数据
    override def cancel(): Unit = flag = false
})
stream.print()
env.execute()
```

基于ParallelSourceFunction接口实现多并行度数据源

```
public interface ParallelSourceFunction<OUT> extends SourceFunction<OUT> {}
```

```
public abstract class RichParallelSourceFunction<OUT> extends
AbstractRichFunction
    implements ParallelSourceFunction<OUT> {
    private static final long serialVersionUID = 1L;
}
```

实现ParallelSourceFunction接口=继承RichParallelSourceFunction

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
val sourceStream = env.addSource(new ParallelSourceFunction[String] {
  var flag = true

  override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
    val random = new Random()
    while (flag) {
        ctx.collect("hello" + random.nextInt(1000))
        Thread.sleep(500)
     }
  }
  override def cancel(): Unit = {
      flag = false
  }
}).setParallelism(2)
```


DataStream Transformations

Transformations算子可以将一个或者多个算子转换成一个新的数据流,使用Transformations算子组 合可以进行复杂的业务处理

Map

DataStream → DataStream

遍历数据流中的每一个元素,产生一个新的元素

FlatMap

DataStream → DataStream

遍历数据流中的每一个元素,产生N个元素 N=0,1,2,.....

Filter

DataStream → DataStream

过滤算子,根据数据流的元素计算出一个boolean类型的值,true代表保留,false代表过滤掉

KeyBy

DataStream → KeyedStream

根据数据流中指定的字段来分区,相同指定字段值的数据一定是在同一个分区中,内部分区使用的是 HashPartitioner

指定分区字段的方式有三种:

1、根据索引号指定

```
2、通过匿名函数来指定
3、通过实现KeySelector接口 指定分区字段
   val env = StreamExecutionEnvironment.getExecutionEnvironment
   val stream = env.generateSequence(1, 100)
   stream
     .map(x \Rightarrow (x \% 3, 1))
     //根据索引号来指定分区字段
            .keyBy(0)
     //通过传入匿名函数 指定分区字段
            .keyBy(x=>x._1)
     //通过实现KeySelector接口 指定分区字段
     .keyBy(new KeySelector[(Long, Int), Long] {
     override def getKey(value: (Long, Int)): Long = value._1
   })
```

```
.sum(1)
.print()
env.execute()
```

Reduce

KeyedStream → DataStream

注意,reduce是基于分区后的流对象进行聚合,也就是说,DataStream类型的对象无法调用reduce方法

```
.reduce((v1,v2) => (v1._1,v1._2 + v2._2))
```

demo01: 读取kafka数据,实时统计各个卡口下的车流量

• 实现kafka生产者,读取卡口数据并且往kafka中生产数据

```
val prop = new Properties()
   prop.setProperty("bootstrap.servers", "node01:9092,node02:9092,node03:9092")
   prop.setProperty("key.serializer", classOf[StringSerializer].getName)
   prop.setProperty("value.serializer", classOf[StringSerializer].getName)
   val producer = new KafkaProducer[String, String](prop)
   val iterator = Source.fromFile("data/carFlow_all_column_test.txt", "UTF-
8").getLines()
   for (i <- 1 to 100) {
     for (line <- iterator) {</pre>
       //将需要的字段值 生产到kafka集群 car_id monitor_id event-time speed
       //车牌号 卡口号 车辆通过时间 通过速度
       val splits = line.split(",")
       val monitorID = splits(0).replace("'","")
       val car_id = splits(2).replace("'","")
       val eventTime = splits(4).replace("'","")
       val speed = splits(6).replace("'","")
       if (!"00000000".equals(car_id)) {
         val event = new StringBuilder
         event.append(monitorID + "\t").append(car_id+"\t").append(eventTime +
"\t").append(speed)
         producer.send(new ProducerRecord[String, String]("flink-kafka",
event.toString()))
       }
       Thread.sleep(500)
     }
   }
```

• 实现代码

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
val props = new Properties()
props.setProperty("bootstrap.servers","node01:9092,node02:9092,node03:9092")
props.setProperty("key.deserializer",classOf[StringDeserializer].getName)
props.setProperty("value.deserializer",classOf[StringDeserializer].getName)
props.setProperty("group.id","flink001")
props.getProperty("auto.offset.reset","latest")
```

```
val stream = env.addSource(new FlinkKafkaConsumer[String]("flink-kafka", new
SimpleStringSchema(),props))
stream.map(data => {
   val splits = data.split("\t")
   val carFlow = CarFlow(splits(0),splits(1),splits(2),splits(3).toDouble)
   (carFlow,1)
}).keyBy(_._1.monitorId)
   .sum(1)
   .print()
env.execute()
```

Aggregations

KeyedStream → DataStream

Aggregations代表的是一类聚合算子,具体算子如下:

```
keyedStream.sum(0)
keyedStream.sum("key")
keyedStream.min(0)
keyedStream.min("key")
keyedStream.max(0)
keyedStream.max("key")
keyedStream.minBy(0)
keyedStream.minBy(0)
keyedStream.minBy("key")
keyedStream.maxBy(0)
keyedStream.maxBy("key")
```

demo02: 实时统计各个卡口最先通过的汽车的信息

```
val stream = env.addSource(new FlinkKafkaConsumer[String]("flink-kafka", new
SimpleStringSchema(),props))
    stream.map(data => {
        val splits = data.split("\t")
        val carFlow = CarFlow(splits(0),splits(1),splits(2),splits(3).toDouble)
        val eventTime = carFlow.eventTime
        val format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
        val date = format.parse(eventTime)
        (carFlow,date.getTime)
        }).keyBy(_._1.monitorId)
        .min(1)
        .map(_._1)
        .print()
        env.execute()
```

Union

DataStream* → DataStream

Union of two or more data streams creating a new stream containing all the elements from all the streams

合并两个或者更多的数据流产生一个新的数据流,这个新的数据流中包含了所合并的数据流的元素

注意: 需要保证数据流中元素类型一致

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
  val ds1 = env.fromCollection(List(("a",1),("b",2),("c",3)))
  val ds2 = env.fromCollection(List(("d",4),("e",5),("f",6)))
  val ds3 = env.fromCollection(List(("g",7),("h",8)))

// val ds3 = env.fromCollection(List((1,1),(2,2)))
  val unionStream = ds1.union(ds2,ds3)
  unionStream.print()
  env.execute()
```

Connect

DataStream, DataStream → ConnectedStreams

合并两个数据流并且保留两个数据流的数据类型,能够共享两个流的状态

```
val ds1 = env.socketTextStream("node01", 8888)
val ds2 = env.socketTextStream("node01", 9999)
val wcStream1 = ds1.flatMap(_.split(" ")).map((_, 1)).keyBy(0).sum(1)
val wcStream2 = ds2.flatMap(_.split(" ")).map((_, 1)).keyBy(0).sum(1)
val restStream: ConnectedStreams[(String, Int), (String, Int)] =
wcStream2.connect(wcStream1)
```

CoMap, CoFlatMap

ConnectedStreams → DataStream

CoMap, CoFlatMap并不是具体算子名字,而是一类操作名称

凡是基于ConnectedStreams数据流做map遍历,这类操作叫做CoMap

凡是基于ConnectedStreams数据流做flatMap遍历,这类操作叫做CoFlatMap

CoMap第一种实现方式:

```
restStream.map(new CoMapFunction[(String,Int),(String,Int),(String,Int)] {
    //对第一个数据流做计算
    override def map1(value: (String, Int)): (String, Int) = {
        (value._1+":first",value._2+100)
    }
    //对第二个数据流做计算
    override def map2(value: (String, Int)): (String, Int) = {
        (value._1+":second",value._2*100)
    }
}).print()
```

CoMap第二种实现方式:

CoFlatMap第一种实现方式:

CoFlatMap第二种实现方式:

```
ds1.connect(ds2).flatMap(
    //对第一个数据流做计算
    x=>{
        x.split(" ")
    }
    //对第二个数据流做计算
    ,y=>{
        y.split(" ")
    }).print()
```

CoFlatMap第三种实现方式:

```
ds1.connect(ds2).flatMap(new CoFlatMapFunction[String,String,(String,Int)] {
   //对第一个数据流做计算
   override def flatMap1(value: String, out: Collector[(String, Int)]): Unit =
{
       val words = value.split(" ")
       words.foreach(x=>{
         out.collect((x,1))
       })
     }
   //对第二个数据流做计算
   override def flatMap2(value: String, out: Collector[(String, Int)]): Unit =
{
       val words = value.split(" ")
       words.foreach(x=>{
         out.collect((x,1))
       })
   }).print()
```

demo03:现有一个配置文件存储车牌号与车主的真实姓名,通过数据流中的车牌号实时匹配出对应的车主姓名(注意:配置文件可能实时改变)

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
  env.setParallelism(1)
  val filePath = "data/carId2Name"
```

```
val carId2NameStream = env.readFile(new TextInputFormat(new
Path(filePath)), filePath, FileProcessingMode. PROCESS_CONTINUOUSLY, 10)
    val dataStream = env.socketTextStream("node01",8888)
    dataStream.connect(carId2NameStream).map(new
CoMapFunction[String,String,String] {
      private val hashMap = new mutable.HashMap[String,String]()
     override def map1(value: String): String = {
        hashMap.getOrElse(value,"not found name")
      }
     override def map2(value: String): String = {
        val splits = value.split(" ")
        hashMap.put(splits(0),splits(1))
        value + "加载完毕..."
      }
   }).print()
    env.execute()
此demo仅限深度理解connect算子和CoMap操作,后期还需使用广播流优化
```

Split

DataStream → SplitStream

根据条件将一个流分成两个或者更多的流

```
val env = StreamExecutionEnvironment.getExecutionEnvironment
  val stream = env.generateSequence(1,100)
  val splitStream = stream.split(
    d => {
        d % 2 match {
            case 0 => List("even")
            case 1 => List("odd")
        }
     }
    )
    splitStream.select("even").print()
    env.execute()
```

Select

SplitStream → DataStream

从SplitStream中选择一个或者多个数据流

```
splitStream.select("even").print()
```