

BASARA SARASWATHI BHAVAN_MDP N-120

Section: Senior Date: 18-06-2020
Name of the student: Qualitative Analysis (Cations) I.D.No: Sec:

Reactions of metal ions with important reagents

Group Separation

Group – I: cations : Ag^+ , Pb^{+2} , Hg_2^{+2}

Group reagent : dil . HCl

Precipitated: as their chlorides: AgCl or PbCl2 or Hg2Cl2 (white ppt)

- ⇒ Ksp values of AgCl, PbCl₂ and Hg₂Cl₂ are low (Hg₂ Cl₂ < Agcl < PbCl₂) Hence low conc. Of Cl⁻ required for their precipitation.
 - ∴ dil. HCl is used.
- ⇒ Solubility of chlorides of Group I cations:

only $PbCl_2$ soluble in Hot water; AgCl soluble in NH_3 solution Hg_2Cl_2 insoluble in NH_3 solu. but changes to black ppt $[Hg (NH_2)Cl + Hg]$.

 \Rightarrow sometimes O.S on dilution forms white ppt which is due to presence of SbCl₃ BiCl₃ [SbCl₃ + H₂O \rightarrow SbOCl + HCl BiCl₃ + H₂O \rightarrow BiOCl + HCl

Chart for separation of group - I cations

I. Reaction of Pb⁺²

- 1. Solution (PbCl₂) + K_2 CrO₄ \longrightarrow yellow ppt (Pb CrO₄)
- 2. Solution (PbCl₂) + KI \longrightarrow yellow ppt (PbI₂) $\xrightarrow{\text{H}_2\text{O}}$ C.L solutions $\xrightarrow{\text{Cooling}}$ yellow crystal (PbI₂)
- 3. Solution (PbCl₂) + $H_2SO_4 \longrightarrow$ white ppt (PbSO₄) soluble in amm.acetate.

II. Reaction of Ag⁺

1. solution + conc. $HNO_3 \longrightarrow white ppt$

$$\left[\mathsf{Ag}\left(\mathsf{NH}_{3}\right)_{2}\right]^{4} + \mathsf{conc.HNO}_{3} \longrightarrow \underset{\mathsf{ppt}}{\mathsf{AgCl}} \downarrow \mathsf{NH}_{4} \mathsf{NO}_{3}$$

- 2. solution + KI \longrightarrow yellow ppt (AgI) (insoluble in excess of KI).
- 3. $\operatorname{solution}_{\left(\operatorname{Ag}^{+}\right)} + \operatorname{K}_{2}\operatorname{CrO}_{4} \longrightarrow \operatorname{Red} \operatorname{ppt}\left(\operatorname{Ag}_{2}\operatorname{CrO}_{4}\right)$

III. Reaction of Hg_2^{+2}

1. Solution (HgCl₂) + SnCl₂ \longrightarrow white ppt (Hg₂Cl₂) + SnCl₄ $\xrightarrow{\text{excess SnCl}_2}$ Hg (grey ppt)

2.

 $\underset{\mathsf{HgCl_2}}{\mathsf{solution}} + \mathsf{KI} \longrightarrow \mathsf{Red} \; \mathsf{ppt} \; \mathsf{HgI_2} \; \mathsf{soluble} \; \mathsf{in} \; \mathsf{excess}$

Group - II

Cation : IIA : Pb^{+2} , Cu^{+2} , Cd^{+2} , Hg^{+2} , Bi^{+3} } copper sub group II B : As^{+3} , As^{+5} , Sb^{+3} , Sb^{+5} , Sn^{+2} , Sn^{+4} } Arsenic sub group

Group reagent: dil HCl/ H₂S: precipitated as sulphides

IIA. PbS, CuS, HgS} black Bi_2S_5 CdS yellow.

IIB. As₂S₃ (yellow), As₂S₅ (yellow)

Sb₂S₃ Sb₂S₅ (Orange) Sns (brown) SnS₂ (yellow)

separation of IIA(copper sub group) IIB (Arsenic sub group)

- \Rightarrow All the sulphides of II_B except Sn(II) sulphide are soluble in colour less ammonium sulphide.
- : ammonium poly sulphide is needed for separation. (which acts partly as an oxidizing agent)

 $\ensuremath{\text{II}_{\text{B}}}$ sulphides dissolves in YAS due to following soluble complexes.

$$As_{2}S_{3} + (NH_{4})_{2} S_{2} \longrightarrow (NH_{4})_{3} \begin{bmatrix} -^{V} & S_{4} \end{bmatrix}$$

$$Sb_{2} S_{3} + (NH_{4})_{2} S_{2} \longrightarrow (NH_{4})_{3} \begin{bmatrix} ^{V} & S_{4} \end{bmatrix}$$

$$SnS + (NH_{4})_{2} S_{2} \longrightarrow (NH_{4})_{2} \begin{bmatrix} ^{IV} & S_{3} \end{bmatrix}$$

- ⇒ solubility of salts copper sub group cations :
- ⇒ chlorides, sulphates, nitrates soluble except PbSO₄
- ⇒ Hydroxides, carbonates are insoluble
- ⇒ Solubility of sulphides; IIA
- \Rightarrow i) All are soluble in aquaregia \Rightarrow ii) CdS, CuS, PbS, Bi₂ S₃ soluble in 50% of HNO₃
- \Rightarrow $\,$ iii) HgS soluble in aq. regia and Na₂S $\,$ \Rightarrow $\,$ iv) CuS dissolves in KCN \Rightarrow K₃ $[Cu(CN)_4]$
- \Rightarrow v) CdS insoluble in KCN \Rightarrow distinction of CdS.
- 1. Why dil.HCl/H₂S (group reagent)

KSP value of II group sulphides is very low

 \therefore Low conc. of S^{-2} is required for their precipitation

$$HCl \longrightarrow H^+ + Cl^-$$

$$H_2S \rightleftharpoons 2H^+ + S^{-2}$$

Due to common ion effect the conc. Of sulphide (\downarrow) the conc. of S^{-2} is just sufficient to ppt only 2^{nd} group cation. KSP value order :

- 2. With out di.HCl if H₂S is passed, 2nd group and some other group cation are precipitated.
- 3. If conc. HCl is used, to acidity O.S ionization of $H_2S\left(\downarrow\right)$ to such an extent even 2^{nd} group cations are not precipitated. To get the ppt. Proper acidity must be maintained. $[0.25N-0.5N\ HCl]$
- 4. Some times yellow on white ppt appear by passing H_2S even though no cation of 2^{nd} group is present. Which in due to oxidation of H_2S by oxidizing anions like NO_3^- , NO_2^- , SO_3^{-2} .
 - ... Before passing H₂S O.S is boiled with dil.HCl to eliminate these oxidizing anions.

Chart for separation of group – II cations

- I. Reactions of Bi⁺³
- i) NaOH: solu(BiCl₃) + NaOH \rightarrow white ppt Bi(OH)₃ insoluble for excess regent.

$$\begin{array}{c}
\text{solu} + \text{KI}_{\text{solu}} \longrightarrow \text{BiI}_{3} + \text{KC1}_{\text{Black ppt C.L.solu}} \\
& \text{excess KI}
\end{array}$$
orange solu K [BiI₄]

ii)

- iii) solu + NaOH + sod. Stanrite \longrightarrow Black ppt BiCl₃ + Na₂SnO₂ $\xrightarrow{\text{NaOH}}$ $\xrightarrow{\text{Bi}}_{\text{Black} \text{(ppt)}}$ + Na₂[Sn(OH)₆]
- II. Reactions of Cu⁺² [reaction with KCN, KI, NH₄OH and NaOH are already given]
- i) solution $(Cu^{+2}) + K_4 [Fe(CN)_6] \longrightarrow Cu_2 [Fe(CN)_6]$ (R.B) ppt

$$SCN + Cu_{(solu)}^{+2} \longrightarrow Cu_{(SCN)_2}^{(Black ppt)}$$

$$decomposes$$

$$slowly$$

ii)

(Cu SCN) white ppt + (SCN)₂ thiocyanogen

II Reactions Cd⁺²: reaction with KCN, KI, NH₄OH, NaOH already disscussed.

$$i) \qquad solu\left(cd^{_{+2}}\right) + KCN \xrightarrow{\quad\quad} Cd\left(CN\right)_2 \downarrow \xrightarrow{\quad\quad excess\quad\quad} K_2 \Big[Cd\left(CN\right)_4 \Big] \xrightarrow{\quad\quad H_2S\quad\quad} CdS \ yellow \ ppt \\ \underset{solu}{\quad\quad \ } solu$$

Group III

Cations : Al $^{+3}$, Fe $^{+3}$, (Fe $^{+2}$), Cr $^{+3}$

Group reagent: NH₄Cl / NH₄OH.

 $[K_{SP} \text{ of Fe(OH)}_2 \text{ is high } :. \text{ Fe}^{+2} \text{ not ppt by this group reagent}]$

Few drops of conc. HNO₃ is added to oxidised Fe⁺² to Fe⁺³ if excess of con. HNO₃ is added (3rd group cation are absent) Mn⁺² oxidised to Mn⁺³ (Brown)

Participated as : hydroxides $Fe(OH)_3$ (R.B) : Cr $(OH)_3$ (Green) $Al(OH)_3$ (white).

 \Rightarrow KSP of these hydroxide is low, Hence low cone of OH^- is required for their precipitation.

$$NH_4C1 \longrightarrow NH_4^+ + Cl^- , \, NH_4OH \Longrightarrow NH_4^+ + OH^-$$

- \Rightarrow In presence of NH₄Cl ionization of NH₄OH (\downarrow) the OH⁻ produced is jus sufficient to precipitate only 3rd group cations.
- \Rightarrow Without NH₄Cl if NH₄OH is added 3rd and 4th group cation are precipitated.
- ⇒ Excess of NH₄Cl is avoided, otherwise Al⁺³ and Cr⁺³ are not precipitated.
- \Rightarrow Solution should not be heated before adding NH₄OH (Cr forms coloured soluble comple $\left[\text{Cr}\left(\text{NH}_{3}\right)_{6}\right]^{\!\!\!+\!\!\!3}$ (pink).

Solubility of hydroxides:

- i) Fe(OH)3 insoluble in NaOH
- ii) Al(OH)₃ ppt dissolves in NaOH. $\left[\text{Al}(\text{OH})_3 \downarrow \text{OH}^- \rightleftharpoons \text{Al}(\text{OH})_4 \right]$ equilibrium shifted

of L.H.S and ppt occurs in presence

- i) NH₄Cl ii) slightly acidification [if excess acid ppt Al(OH)₃ redissolves).
- iii) $Cr(OH)_3$ dissolves in excess of NaOH.

$$\operatorname{Cr}(\operatorname{OH})_3 \downarrow + \operatorname{OH}^- \rightleftharpoons \left[\operatorname{Cr}(\operatorname{OH})_4\right]^-$$

- i) Boiling solu.
- ii) Slight acidification eq. state shifted to LHS and precipitation re occurs.
- \Rightarrow Cr (iii) is oxidized to CrO₄⁻² chromate then identified.

 $Cr(OH)_3 \xrightarrow{oxidation} CrO_4^{-2}$ chromate yellow solu.

i) NaOH 10%. $\rm H_2O_2$ (or) ii) NaOH .solid sodium perborate (or) iii) $\rm Br_2$ water in

alkaline solu (or) iv) $S_2O_8^{-2}$ in acidic medium.

Chart for separation of group III cations

I. Reaction of Fe⁺³ & Fe⁺² (Reaction with NH₄OH, NaOH, KCN already discussed)

Reagent	(Reaction with NH ₄ OH, NaOH, KCI $\mathbf{Fe^{+3}}$	Fe ⁺²
i) NH ₄ Cl / NH ₄ OH	Raidish brown ppt Fe(OH) ₃	NO ppt
ii) H ₂ S(gas) in acidic solu	$Fe^{+3} \xrightarrow{H_2S/H^+} Fe + \int_{\text{milky white ppt}}^{\text{(II)}} + 2H$	NO ppt Ksp of FeS is large S^{-2} is not sufficient for precipitation. But partal ppt. Occurs in presence of CH ₃ COONa.
iii) (NH ₄) ₂ S	$Fe^{+3} \xrightarrow{(NH_4)_2S} FeS_{Black\ ppt} + S \downarrow$	$Fe^{+2} + NH_4)_2S \rightarrow FeS \downarrow_{Black ppt}$
iv) H ₂ S / alkali	Black ppt of Fe ₂ S ₃	
v) K ₄ [Fe(CN) ₆]	Intense blue ppt Fe ₄ [Fe(CN) ₆] ₃ dissolves in H ₂ C ₂ O ₄	K ₂ Fe[Fe(CN) ₆] white ppt in absence of air
vi) K ₃ [Fe(CN) ₆]	Fe[Fe(CN) ₆] Brown coloration	$Fe^{+2} + K_3 [Fe(CN)_6] \rightarrow$ $Fe_4[Fe(CN)_6]$ dark blue ppt
NH4SCN	Deep-red colouration $\left[\text{Fe(SCN)}_{3} \right] \text{ or } \left[\text{Fe(SCN)}_{4} \right]^{-}$	No colouration (Distinction from Fe ⁺³).

Or [Fe SCN] ⁺²	

II. Reactions of Al+3

with $NH_4)_2S$ solution. i)

$$Al^{+3} + S^{-2} + H_2O \longrightarrow Al(OH)_3 \downarrow +H_2S$$

CH₃COONa solution. ii)

$$Al^{+3} + CH_3COO^- + H_2O \xrightarrow{\Delta} Al(OH)_2 CH_3COO \downarrow \text{(basic alu min ium acetate)}$$

(Na₂HPO₄) disodium hydrogen phosphate iii)

$$Al^{+3} + Na_2HPo_4 \longrightarrow AlPO_4 \downarrow +H^+ + Na^+$$
(white ppt)

III Reaction of Cr after oxidation to Cro₄⁻²

i) BaCl₂ test:

$$Cro_{4(solu)}^{-2} + CH_3COOH + BaCl_2 \longrightarrow BaCrO_4 \downarrow$$
(vellow ppt)

ii)

$$\begin{array}{c} \text{Chromium pentoxide or chromiumperoxide test.} \\ \text{Cro}_{4}^{-2} + \text{dil.H}_{2}\text{SO}_{4} \xrightarrow[\text{anylacohol}]{\text{or anylacohol}} + \text{some H}_{2}\text{O}_{2} \xrightarrow{\text{}} \text{Blue colouration} \\ \end{array}$$

Which is extracted in to organic phase by gently shaking. Blue colouration is due to CrO₅.

$$Cro_4^{-2} + dil.H_2SO_4 + H_2O_2 \xrightarrow{\text{ether} \atop \text{amylalcohol}} CrO_5$$

In aq. Solution blue colour fades rapidly due to decomposition of CrO₅ to Cr⁺³ + O₂ Reactions of Cr+3

With Na₂CO₃ solution i)

$$Cr^{+3} + CO_3^{-2} + H_2O \longrightarrow Cr(OH)_3 + CO_2$$

 NH_4)₂S solution: ii)

$$Cr^{+3} + NH_4)_2S + H_2O \longrightarrow Cr(OH)_3 + H_2S \uparrow NH_4^+$$

Note [similar to Al₂S₃; Cr₂S₃ undergoes hydrolysis and form hydroxide].

Cr with Na₂CO₃ andKNO₃. iii)

When
$$Cr^{(III)}$$
 salt + Na_2CO_3 + $KNO_3 \xrightarrow{\text{Heated on } \text{pt. foil}}$ green mass.

$$Cr^{III} + Na_{2}CO_{3} + KNO_{3} \xrightarrow{} Na_{2}CrO_{4} + KNO_{3} + Na^{+} + 10_{2}$$
(green mass)

IV Group

Mn⁺², Zn⁺², Co⁺², Ni⁺² Cations:

- Group regent: NH₄Cl / NH₄OH / H₂S \Rightarrow
- Precipitated as : Sulphides $\underset{(light pink)}{MnS}$, $\underset{(white)}{ZnS}$ Cos $\underset{Black}{NiS}$] \Rightarrow

Ksp values of these sulphides is higher than the 2nd group sluphide. ∴ higher concentration of $[S^{-2}]$ is required for their precipitation. Ionisation of H_2S (\uparrow) in slightly alkaline medium. The conc of S-2 is sufficient to precipitate IV group cations.

Note: the cations are not precipitated in neutral or acidic medium.

Solubility of sulphides: Ksp values

- ZnS, MnS are soluble in mineral acids. i)
- CoS, NiS, insoluble in only mineral acids but dissolves in mineral acids in ii) presence of oxidizing agent. i) KclO3 ii) PbO2 iii) NaOCl
- CoS, NiS soluble in aquaregia and Hot conc. HNO₃ iii)

for identification O_0^{+2} if (II) used the solution for identification of N_0^{+2}

Reaction of $\mathsf{Co}^{\scriptscriptstyle{+2}}$: (Reaction with KCN, NaOH, NH₄OH already given)

(1) Potassium nitrite solution;

aq.solu (
$$Co^{+2}$$
) + pot. Nitrite solu $\xrightarrow{CH_3COOH}$ yellow ppt

$$CoCl_2 + KNO_2 \longrightarrow Co(No_2)_2 + 2KCl$$
(aq.solu)

$$CH_3COOH + KNO_2 \longrightarrow CH_3COOK + HNO_2$$

$$\overset{\text{II}}{\text{Co}} \big(\text{NO}_2 \big)_2 + \overset{\text{H.NO}_2}{\text{(O.A)}} + \overset{\text{KNO}_2}{\text{KNO}_2} - \longrightarrow \left[\overset{\text{III}}{\text{CO}} \big(\text{NO}_2 \big)_6 \right]^{\!-\!3}$$

(Ni^{+2} cant produce ppt with KNO_2)

(2) Ammonium thio cyanate test ((Vogel reaction) neutral orcidic+ Crystal of \longrightarrow Blue colour solu. CO NH₄SCN

$$C \overset{\text{II}}{\text{o}} + SCN^{-} \longrightarrow \left[Co\left(SCN\right)_{4}\right]^{-2}$$

Tetra thio cyanato cobaltate (II) ion.

'Td' : Sp^3 : n = 3, M = 3.87

- Reactions of Ni⁺² : Dissolved Ni(II) salts are green owing to the $\left[\text{Ni}\left(\text{H}_2\text{O}\right)_6\right]^{+2}$ 2.
- ⇒ Reaction with NaOH, NaCN NH4OH & KI already discussed NH₄OH already given

$$i) \qquad Ni_{(solu)}^{+2} + dmg \xrightarrow{NH_3(solu)} \left[Ni (dmg)_2 \right]_{Red \ ppt}$$

$$(Ni^{+2}: dsp^2: square planar n = 0 \mu = 0 diamagnetic)$$

$$Fe^{+2} + dmg \longrightarrow Red colouration$$

$$Co^{+2} + dmg \longrightarrow Brown colouration$$

$$Bi^{+3} + dmg \longrightarrow yellow ppt$$

- Reaction of Mn⁺² (3).
- Solution (Mn⁺²) + NaBiO₃ $\xrightarrow{\text{dil. HNO}_3}$ solution of purple colour. i)

$$\begin{bmatrix} Mn^{+2} + NaBiO_3 + H^+ \rightarrow MnO_4^- + Bi^{+3} + Na^+ + H_2O \end{bmatrix} (Or)$$

$$Mn^{+2} + PbO_2 + conc.HNO_3 \longrightarrow MnO_4^- + pb^{+2} + H_2O$$
(O.A)

ii)
$$Mn^{+2} + CN^{-} \longrightarrow \left[Mn(CN)_{6}\right]^{-4}$$
 unstable oxidized to $\left[Mn(CN)_{6}\right]^{-3}$

Note :Complexes of Mn⁺² with NH₃ and H₂O $\left[Mn(NH_3)_6\right]^{+2}$ and $\left[Mn(H_2O)_6\right]^{+2}$ are highly stable resist attack of oxidizing and reducing agents.

- **(4)**. Reactions of Zn⁺²
- i) with K₄[Fe(CN)₆]

$$Zn^{+2} + K_{4} \Big[Fe(CN)_{6} \Big] \longrightarrow K_{2} Zn_{3} \Big[Fe(CN)_{6} \Big]_{2}$$

$$\xrightarrow{\text{white ppt}}$$

$$\underline{Ammonium \ tetrathicyanato \ mercurate \ (II)-copper \ sulphate \ test}$$

$$solu \Big(Zn^{+2} \Big) + NH_{4} \Big)_{2} \Big[Hg(SCN)_{4} \Big] \longrightarrow Zn \Big[Hg(SCN)_{4} \Big]$$

ii)

$$solu (Zn^{+2}) + NH_4)_2 [Hg (SCN)_4] \longrightarrow Zn [Hg (SCN)_4]$$
violet ppt

Above reaction is carried out in present of CuSO₄ give Black purple ppt.

$$\operatorname{Zn^{+2}} + \operatorname{NH_4}_4 = \operatorname{Hg}(\operatorname{SCN}_4 - \operatorname{LuSO_4}_4) + \operatorname{Cu[Hg(SCN)_4]}_{\operatorname{Black purple ppt)}}$$

Group V

Cations: Ca+2 Sr+2 Ba+2

Group reagent: NH₄Cl NH₄OH (NH₄]₂ CO₃.

Precipitated as: Carbonates CaCO₃: Sr CO₃, BaCO₃ (white)

Solubility of salts of V group. cation

CO₃⁻², SO₄⁻², PO₄⁻³, C₂O₄⁻² are insoluble NO₃ and Cl⁻ are soluble

Role of NH₄Cl is to 1) prevent the ppt of hydroxides by lowering the ionsiation of NH₄OH.

Lower the ionization of NH₄)₂CO₃ other wise Mg⁺² (VI gp) is precipitated solubility of carbonates : All are soluble in CH₃COOH.

Solubility of chromates: Ba(CrO₄)₂ insoluble Ca, Sr chromate (are soluble)

Solubility of sulphates: BaSO₄, CaSO₄ insoluble CaSO₄ dissolves in NH₄)₂ SO₄ due to formation of NH₄)₂ [Ca (SO₄)₂]

NH₄)₂ CO₃ has to be used in neutral or slightly alkaline medium (in acidic medium NH₄)₂ CO₃ decomposes) NH₄OH / NH₄Cl maintains slightly alkaline.

Group VI

Cations : Mg⁺², K⁺, Na⁺

Test/s for Mg^{+2} ;

Slightly alkaline i) $Na_2HPO_4 + Mg^{+2} \xrightarrow{NH_4Cl \ NH_4OH} Mg \ NH_4PO_4$ white crystalline ppt

Role of NH₄Cl /NH₄OH: prevents ppt of Mg(OH)₂ by maintaining slightly alkaline

Alkaline

ii)
$$Mg^{+2} + NH_4OH \Longrightarrow Mg(OH)_2 + NH_4^+$$

Ppt readily dissolves in NH₄ salt solution

Neutral

iii)
$$Mg^+ + Na_2HPO_4 \longrightarrow MgHPO_4$$
 (white ppt)

Zero group (NH₄) ammonium

- i) ammonium salts on reaction with base gives NH₃ gas. [NH₄ salt + OH⁻ \rightarrow NH₃]
- Nesseler's reagent alkaline solution of K₂[Hg I₄] ii)

 $K_2Hg I_4 + NH_4^+ + OH^- \longrightarrow HgOHg(NH_2)I^+I^-$ (Iodide of miellons base). Brown ppt or solution depending on cone. Of NH₄

Action of heat - Some salts change their colour when heated

or mean point parts origing their coroar which meaned			
Substance	Colour in Cold	Colour in Hot	
HgO	Red	Black	
HgS	Scarlet	Black	
ZnO	White	Yellow	
CuCl ₂	Blue	Brown	
CuSO ₄	Blue	White	
HgI_2	Crimson	Yellow	

NaCl, KI, Pb(NO₃)₂ and Ba(NO₃)₂ Decrepitate (Cracking sound)

Alums, borates and phosphate swell up on heating. $HgCl_2$, Hg_2Cl_2 , Sb_2O_3 , $AlCl_3$ and NH_4X – are white and sublime on heating. As_2O_3 , HgI_2 yellow and sublime on heating.

Gas evolved on heating

Gas evoluved	Identified by	Possible compound
СО	Burns with blue flame	Oxalate $(COO)_2Ca \rightarrow CaO + CO + CO_2$
CO_2	Turns lime water milky	Carbonate (except carbonate of alkali metals)
NH ₃	White fumes with HCl	Ammonium salts $(NH_4)_2SO_4 \rightarrow NH_4HSO_4+NH_3$
SO_2	Smell of burning Sulphur turns K ₂ Cr ₂ O ₇ Soln green	Sulphites $CaSO_3 \rightarrow CaO + SO_2$
H_2S	Smell of rotten egg	Sulphides $Na_2S + 2H_2O \rightarrow 2NaOH + H_2S$
Br ₂	Reddish brown	Bromide $2CdBr_2 + O_2 \rightarrow 2CdO + 2Br_2$
I_2	Violet vapours	Iodide $2ZnI_2 + O_2 \rightarrow 2ZnO + I_2$
NO_2	Reddish brown	Nitrate (except alkali metals)

Flame test – Salt 1–2 drops of Conc HCl Heat in a non lumnious (oxidising) Bunsen flame using platinum wire.

Note: Conc. HCl is used to convert non-volatile metal salt into volatile metal chloride.

Element	colour of the flame	
Sodium	Golden yellow	
Potassium	Lilac	
Calcium	Brick red	
Strontium	Crimson	
Barium	Apple green	
Copper	Bluish green	

Borax bead test – Borax is heated on a loop of Pt. wire when colourless glassy bead of sodium metaborate anhydride is formed.

 $Na_2 B_4 O_7$, $10H_2 O Na_2 B_4 O_7 2NaBO_2 + B_2 O_3$

Coloured salts are then heated on the glassy bead when coloured metaborate is formed in the oxidising flame

 $CuO + B_2O_3 \rightarrow Cu(BO_2)_2(Blue)$

In reducing flame we have

 $2Cu (BO_2)_2 + C \rightarrow 2CuBO_2 + B_2O_3 + CO$

Hence different colour appears in different flames

		Colour of bead in		
Metal	Oxidizing flame		Reducing	flame
	Hot	Cold	Hot	Cold
Copper	Green	Blue	Colourless	Brown red
Iron	Brown yellow	Pale yellow	Bottle green	Bottle green
Chromium	Green	Green	Green	Green
Cobalt	Blue	Blue	Blue	Blue
Manganese	Violet	Amethyst Red	Grey	Grey
Nickel	Violet	Brown	Grey	Grey

Note:

Metals udergoing change in oxidiation state eg Fe $^{2+}$ and Fe $^{3+}$ and Cu $^+$ and Cu $^{2+}$ form two metaborates

$$Fe_2 (SO_4)_3 + 2B_2O_3 \rightarrow 2Fe(BO_2)_3 + 3SO_3$$

Yellow (oxidising flame)

$$2\text{Fe}(BO_2)_3 + C \rightarrow 2\text{Fe}(BO_2)_2 + B_2O_3 + CO$$

Green

(reducing flame)

Microcosmic bead test – It is similar to borax bead test. Here microcosmic salt Na(NH₄) HPO₄ is used in place of borax which forms a colourless,transparent bead on a loop of Pt. wire of sodium meta phosphate on heating

$$Na (NH_4)HPO_4 \rightarrow NaPO_3 + NH_3 + H_2O$$

The metallic oxides then combine with sodium metaphosphate to form coloured ortho phosphates eg

NaPO₃ + Co→NaCoPO₄.

Cobalt orthophosphate (blue)

Colours of beads are similar to those obtained in borax bead test.

Charcoal Cavity Test:

This test is based on the fact that metallic carbonates when heated in a charcoal cavity decompose to give corresponding oxides. The oxides appear as coloured incrustation or residue in the cavity . In certain cases, the oxides formed partially undergo reduction to the metallic state producing metallic beads or scales.

Example:

(i)
$$ZnSO_4 + Na_2CO_3 \rightarrow ZnCO_3 + Na_2SO_4$$

 $ZnCO_3 \rightarrow ZnO$ (Yellow when hot, white when cold) + CO_2

(ii)
$$CuSO_4 + Na_2CO_3 \rightarrow CuCO_3 + Na_2SO_4$$

 $CuCO_3 \rightarrow CuO + CO_2$ -
 $CuO + C \rightarrow Cu$ (Reddish scales) + CO

Observati	Inference	
Incrustation or Residue	Metallic bead	
Yellow when hot, white when cold	None	Zn ²⁺
Brown when hot, yellow when cold	Grey bead which marks the paper	Pb ²⁺
No characteristic residue	Red beads or scales	Cu ²⁺
White residue which glows on heating	None	Ba ²⁺ ,Ca ²⁺ , Mg ²⁺
Black	None	Nothing definite-generally coloured salt

(i) Cobalt Nitrate Test:

In case the residue is white in colour after charcoal cavity test, add a drop of cobalt nitrate in the charcoal cavity. A drop of water is added and the mass is heated in an oxidising flame using blow pipe. It is cooled and one or two drops of cobalt nitrate solution is added and then again heated in the oxidising flame. Different metal salts give different coloured mass as given in the table. To illustrate:

$${\rm ZnSO_4 + Na_2\,CO_3} {\rightarrow} {\rm ZnCO_3 + Na_2\,SO_4} \; ; \\ {\rm ZnCO_3} {\rightarrow} {\rm ZnO} + {\rm CO_2}$$

2Co
$$(NO_3)_2 \rightarrow 2CoO + 4 NO_2 + O_2$$
; ZnO + CoO \rightarrow ZnO.CoO(or CoZnO₂) (Rinmann's green)