Homework 1

1. Let c_0 be the vector space of sequences limiting to 0 with the $\|\cdot\|_{l^{\infty}}$ -norm. Prove that c_0 is a closed subspace of l^{∞} (and hence is a Banach space). Prove that $l^1 \cong c_0^*$ in the following sense. For every $f = (f_n) \in l^1$ define

$$F_f(x) = \sum_{n=1}^{\infty} x_n f_n, \quad x = (x_n) \in c_0.$$

Prove that $F_f \in c_0^*$, $||F_f||_* = ||f||_{l^1}$, and for every $\phi \in c_0^*$ there exists $f \in l^1$ such that $\phi = F_f$.

Proof (a) Let $f^1, f^2, \ldots \in c_0 \subset \ell^{\infty}$, with $f^i \xrightarrow{i} f$ in the ℓ^{∞} norm. Let $\varepsilon > 0$. Then $\exists M$ such that if i > M, then $\sup_n |f_n^i - f_n| < \varepsilon$.

Now fix i > M. Since $f^i \in c_0$, then $f_n^i \xrightarrow{n} 0$, so $\exists N$ such that if n > N, then $|f_n^i| < \varepsilon$. Thus $\forall n > N$,

$$|f_n| \le |f_n - f_n^i| + |f_n^i| < \varepsilon + \varepsilon$$
$$= 2\varepsilon,$$

and we conclude that $f_n \xrightarrow{n} 0$, and $f \in c_0$.

(b) (i) Note that F_f is obviously linear. For all $f \in \ell^1$, F_f is bounded since $||F_f||_* = \sup_{||x|| \le 1} |F_f(x)|$ and for all x with $||x||_{c_0} \le 1$,

$$\left| \sum_{n} x_n f_n \right| \le \sum_{n} |x_n f_n|$$

$$\le \sum_{n} |f_n| \quad \text{since sup } |x_n| = 1$$

thus $||F_f||_* \le ||f||_{\ell^1}$ which is finite since $f \in \ell^1$.

Thus F_f is a bounded linear functional $c_0 \to \mathbb{R}$, so $F_f \in c_0^*$.

(ii) We have shown already that $||F_f||_* \leq ||f||_{\ell^1}$, so to prove that $||F_f||_* = ||f||_{\ell^1}$, it remains to prove the other direction.

Let $f \in \ell^1$. For each $f_n \in \mathbb{C}$, let $u_n = z_n e_n$, where $e_n = (0, 0, \dots, 0, 1, 0, \dots)$ and z_n is the complex number such that $f_n z_n = |f_n|$ (note that $|z_n| = 1$). Then $v_j = \sum_{n=1}^j u_n$ has norm 1 for all j, and $F_f(v_j) \nearrow ||f||$ as $j \to \infty$. Thus $||F_f||$ cannot be less than ||f||, so $||F_f||_* \ge ||f||_{\ell^1}$.

(iii) Let $\varphi \in c_0^*$. Let f be the sequence defined by $f_n = \varphi(e_n)$ for all n. CLAIM: $\sum_n |f_n| < \infty$. To see this, suppose for contradiction that $\sum_n |f_n| = \infty$. We know that $\left\| \sum_{n=1}^N e_n \right\|_{c_0} = 1$ for every $N \in \mathbb{N}$, so

$$\left\{ \sum_{n=1}^{N} e_n : N \in \mathbb{N} \right\} \subset \left\{ x \in c_0 : ||x|| \le 1 \right\}. \tag{*}$$

Thus

$$\infty = \sum_{n=1}^{\infty} |f_n|$$

$$= \sup_{N} \sum_{n=1}^{N} |f_n \cdot 1|$$

$$= \sup_{N} \sum_{n=1}^{N} |\varphi(e_n)|$$

$$\leq \sup_{N} \left| \varphi\left(\sum_{n=1}^{N} e_n\right) \right|$$
by Δ ineq. and linearity
$$\leq \sup_{\|x\|=1} |\varphi(x)|$$

$$= \|\varphi\|_*$$

$$< \infty.$$

Thus we have shown by contradiction that $\sum_{n} |f_n| < \infty$.

2. Let X be a Banach space with $E \subset X^*$. Suppose for every $x \in X$ the set $\{\varphi(x)\}_{\varphi \in E} \subset \mathbb{R}$ is bounded. Prove that E is strongly bounded in X^* . Explain why your proof collapses if X is not complete.

Proof This follows immediately from the Uniform Boundedness Principle below, which requires X to be Banach.

Theorem. (Uniform Boundedness Principle) Let X be a Banach space and let Y be a normed linear space. Let $\mathcal F$ be a collection of bounded linear operators from X to Y. If for every $x \in X$ we have that $\sup_{T \in \mathcal F} ||T(x)||_Y < \infty$ then $\sup_{T \in \mathcal F} ||T||_* < \infty$.

3. (a) Let X be a Banach space and (φ_j) be a sequence in X^* . Suppose that $\langle \varphi_j, x \rangle$ converges for any $x \in X$. Prove that there exists $\varphi \in X^*$ such that $\varphi_j \xrightarrow{w^*} \varphi$. (In fancy terminology " X^* is always w^* sequentially complete".)

Proof We can of course define a functional $\varphi(x) = \lim_{j} \langle \varphi_j, x \rangle$ and note that it is linear, but we need to show that this φ is bounded. Since the sequence $\langle \varphi_j, x \rangle$ is convergent and thus bounded, then by problem 2 the set $\{\varphi_j\}_j$ is bounded in X^* , call this bound M. Thus for all x with $||x|| \leq 1$,

$$|\langle \varphi, x \rangle| = |\lim_{j} \langle \varphi_{j}, x \rangle|$$
$$= \lim_{j} |\langle \varphi_{j}, x \rangle|$$
$$\leq M$$

and we're done.

(b) Formulate the analogous statement for the w-convergence for a sequence $(x_n) \in X$. Try to extend your proof to this situation. when does the proof collapse?

Question Let X be a Banach space and (x_n) be a sequence in X. Suppose that $\langle \varphi, x_n \rangle$ converges for any $\varphi \in X^*$. Does there exist $x \in X$ such that $x_n \xrightarrow{w} x$?

Answer: We can follow the strategy from (a) and define a functional $\hat{x} \in X^{**}$ so that $\langle \varphi, x_n \rangle \to \langle \varphi, \hat{x} \rangle$, but we are only guaranteed that a corresponding $x \in X$ exists exactly when X is reflexive.

4. Let X be Banach. Prove that a sequence (φ_j) in X^* converges w* if and only if it is strongly bounded and there exists a dense set E with $\overline{E} = X$, such that the number sequence $\langle \varphi_j, u \rangle$ converges for all $u \in E$.

Proof The forward direction is straightforward; the sequence is strongly bounded by problem 2, and X is of course dense in itself and has the desired property.

For the converse direction, suppose $\sup_j ||\varphi_j|| = C$ and E exists as above. It suffices to show that $\langle \varphi_j, x \rangle$ also converges if $x \in E^{\complement}$, since problem 3 completes the proof. Let $x \in X$. Since $x \in \overline{E}$ there exists a sequence $(u_n) \in E$ which converges to x.

$$\lim_{j} \langle \varphi_{j}, x \rangle = \lim_{j} \left\langle \varphi_{j}, \lim_{n} u_{n} \right\rangle$$
$$= \lim_{j} \lim_{n} \left\langle \varphi_{j}, u_{n} \right\rangle$$
$$= \lim_{n} \lim_{j} \left\langle \varphi_{j}, u_{n} \right\rangle$$

CLAIM: The sequence $\left(\lim_{j} \langle \varphi_j, u_n \rangle\right)_{n=1}^{\infty}$ is a real Cauchy sequence, and thus converges.

PROOF OF CLAIM: Let $\varepsilon > 0$. Since $u_n \to x$, then it is also a Cauchy sequence, so there exists N > 0 such that $\forall n, m > N$,

$$|u_n - u_m| < \varepsilon$$

$$\implies \forall j \ |\varphi_j(u_n) - \varphi_j(u_m)| = |\varphi_j(u_n - u_m)| \le ||\varphi_j|| \varepsilon$$

$$\implies \left| \lim_j \varphi_j(u_n) - \lim_j \varphi_j(u_m) \right| \le C\varepsilon$$

so $\lim_{n} \lim_{j} \langle \varphi_{j}, u_{n} \rangle = \lim_{j} \langle \varphi_{j}, x \rangle$ converges for all $x \in X$, and we can define $\varphi(x) = \lim_{j} \langle \varphi_{j}, x \rangle$. Problem 3 assures us that $\varphi \in X^{*}$, and we are done.

- **5.** Let I = [0,1]. Let $C^1(I)$ denote the space of continuously differentiable functions,[†] and let $d\phi_n = \cos(\pi nx) d\lambda^1(x)$.
 - (a) Prove that

$$\int_{I} g \, d\phi_n \xrightarrow{n} 0 \qquad \forall g \in C^1(I).$$

(b) Prove that $d\phi_n \xrightarrow{w*} 0$ as measures in $C(I)^*$.

Proof (a) Using integration by parts, we find that

$$\int_{I} g(x) \cos(\pi nx) dx = g(x) \frac{1}{\pi n} \sin(\pi nx) - \int_{I} g'(x) \frac{1}{\pi n} \sin(\pi nx) dx$$
$$= \frac{1}{\pi n} \left[g(x) \sin(\pi nx) - \int_{I} g'(x) \sin(\pi nx) dx \right],$$

and in the limit as $n \to \infty$, everything goes to 0.

(b) For arbitrary $f \in C(I)$, f' may not so exist, so we can't use integration by parts. However, by the Weierstrauss Approximation Theorem, for every $\varepsilon > 0$, there exists a polynomial g such that $\sup_{I} |f - g| \le \varepsilon$. Thus,

$$\int f d\phi_n = \int f d\phi_n - \int g d\phi_n + \int g d\phi_n$$
$$= \int (f - g) d\phi_n + \int g d\phi_n,$$

and this integral is bounded above and below by

$$\int (\pm \varepsilon + g) \, d\phi_n$$

respectively, which integrands are themselves polynomials, so they vanish in the limit. Therefore $\lim_{n\to\infty} \int f \,d\phi_n = 0$ by the squeeze theorem.

[†]That is, $g, g' \in C(I)$. For example, a polynomial.