第四章 中值定理及导数的应用

一、单项选择题

1. 若 $f(x)$ 在 (a,b) 日	为单调增加,则必有().	
(A) $f'(x) < 0$;	(B) $f'(x) > 0$	(C) $f'(x) \ge 0$;	(D) A, B, C 都不对.
 函数 y = f(x)满户 它的图形是(). 	足条件: f (0)=1,f'(0)	$0=0$,当 $x\neq 0$ 时, $f'(x)$	$)>0, f''(x)$ $\begin{cases} <0, & x<0\\ >0, & x>0 \end{cases}$
3. 设 $f(x) = \frac{\ln x}{x}$, 则 (A) $0 < a < b$;	J使不等式 $\frac{\ln a}{a} > \frac{\ln b}{b}$ (B) $e < a < b$;	- 成立的条件是 () (C) 0 < b < a;	(D) e < b < a.
·	·ln <i>x</i> 的极值,结论正码 (B) 有极大值 1;		(D) 有极小值 e-1.
5. 关于函数 $y = 2x + 2x$	—ln(4 <i>x</i>) ² 的极值, 结记 2;	论正确的是(). (B) 有极小值 2−4 ln (D) 有极小值 ½.	2;
• •	(-∞,1)是凸的;		
(A) 向上凸的;	生点 $\left(\frac{1}{e^4},\frac{1}{e^2}\right)$ 近邻是,右侧近邻向上凹;	(B) 向上凹的;	l,右侧的邻向上凸;
8. 曲线 <i>y</i> = e ^{-x²} 的技(A) 没有拐点;	另点情况是 (). (B) 有一个拐点;	(C) 有两个拐点;	(D) 有三个拐点.

10 设 f(x) 右百至 n + 1 阶导粉 剛 f(x)	$-\sum_{k=0}^{n} f^{(k)}(0)_{x^{k}+D_{k}}(x)$ 式由垃圾朗口刑会
项 $R_n(x) = ($) (设 $0 < \theta < 1$)	$= \sum_{k=1}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + R_{n}(x)$ 式中拉格朗日型余
(A) $\frac{f^{(n)}(\theta x)}{n!}x^n;$	(B) $\frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1};$

(A)
$$\frac{f^{(n+1)}(x)}{n!}x^n$$
; (B) $\frac{f^{(n+1)!}(x)}{(n+1)!}x^{n+1}$; (C) $\frac{f^{(n+1)}(x)}{(n+1)!}(\theta x)^{n+1}$; (D) $\frac{f^{(n+1)}(\theta)}{(n+1)!}x^{n+1}$.

19. 已知函数
$$f(x) = x^3 + ax^2 + bx$$
 在点 $x = 1$ 处取得极值 -2 ,则().

(A)
$$a = -3$$
, $b = 0$ 且点 $x = 1$ 为函数 $f(x)$ 的极小值;

(B)
$$a = 0$$
, $b = -3$ 且点 $x = 1$ 为函数 $f(x)$ 的极小值;

(C)
$$a = -3$$
, $b = 0$ 且点 $x = 1$ 为函数 $f(x)$ 的极大值;

(D)
$$a = 0$$
, $b = -3$ 且点 $x = 1$ 为函数 $f(x)$ 的极大值.

20. 函数
$$f(x) = \frac{\sqrt{x-1}}{x(x-1)(x-2)}$$
 的所有渐近线有 () 条 (A) 4; (B) 3; (C) 2; (D) 1.

二、填空题

- **1.** 曲线 $y = 1 \sqrt[3]{x 2}$ 的拐点是 .
- **2.** 设函数 f(x) 在 (a,b) 内可导且满足 $f'(x) \equiv 0$,则在 (a,b) 内 $f(x) = ______.$
- **3.** 设函数 f(x) 在 x = 0 处具有二阶导数,且 f(0) = 0, f'(0) = 1, f''(0) = 3,则极限 $\lim_{x \to 0} \frac{f(x) x}{x^2} = \underline{\qquad}.$

4.
$$\lim_{x\to 0} \frac{\ln \cos ax}{\ln \cos bx}$$
 的值等于_____, $(b \neq 0)$..

5. 设
$$a > 0$$
, 则 $\lim_{x \to +\infty} \frac{\ln x}{e^{ax}}$ 的值等于_____.

6.
$$f(x) = x^3$$
 在 [0,1] 上满足拉格朗日中值定理的 $\xi =$.

7. 函数 $f(x) = 1 - \sqrt[3]{x^2}$ 在 [-1, 1] 上不具有罗尔定理的结论, 其原因是由于 f(x) 不满足罗尔定理的一个条件_______.

8.
$$\lim_{x\to 0} \frac{3x - \sin 3x}{x^3}$$
 的值等于 .

9.
$$\lim_{x \to +\infty} \frac{e^x}{x^a} = \underline{\qquad} (a > 0).$$

10.
$$\lim_{x\to\pi} \frac{e^{\pi} - e^{x}}{\sin 3x - \sin x}$$
 的值等于_____.

11.
$$\lim_{x\to 0} \frac{e^{3x}-1-x}{2x}$$
 的值等于_____.

12.
$$\lim_{x\to 0} \frac{e^{x^2} - \cos x}{x^2}$$
 的值等于_____.

13.
$$\lim_{x\to 0} \frac{x-\ln(1+x)}{x^2}$$
 的值等于 .

14.
$$\lim_{x\to\pi} \frac{\tan nx}{\tan mx}$$
 (其中 m , n 为正整数) 的值等于 .

15.
$$\lim_{x\to 0} \frac{x}{e^x - e^{-x}}$$
 的值等于_____.

16.
$$\lim_{x \to +\infty} \frac{x^k}{e^x}$$
 (其中 $k > 0$) 的值等于_____.

17.
$$\lim_{x \to +\infty} (\ln x)^{1/x} = \underline{\hspace{1cm}}$$
.

18.
$$\lim_{h \to 0} \frac{\ln(x+h) + \ln(x-h) - 2\ln x}{h^2} =$$

19. 曲线
$$y = \frac{x^2}{2x+1}$$
 的斜渐近线为 ______.

20. 曲线
$$y = \frac{e^x}{x+1}$$
 有______ 个拐点.

三、计算题

- **1.** 判定函数 $f(x) = x + \cos x (0 \le x \le 2\pi)$ 的单调性.
- **2.** 求函数 $y = (x+1)^4 + e^x$ 的图形的抛点及凹凸区间.

3. 求极限
$$\lim_{x \to \frac{\pi}{4}} \frac{\cos 2x}{e^{\sin 4x} - e^{\sin 8x}}.$$

4. 设
$$f(x)$$
 有一阶导数, $f(0) = f'(0) = 1$, 求 $\lim_{x \to 0} \frac{f(\sin x) - 1}{\ln f(x)}$

5. 求极限
$$\lim_{x\to 0} \frac{\ln|\sin ax|}{\ln|\sin bx|}$$
 (a,b 都是不为 0 的常数).

- **6.** 试决定曲线 $y = ax^3 + bx^2 + cx + d$ 中的 a, b, c, d, 使得 x = -2 处曲线有水平 切线, (1,-10) 为拐点, 且点 (-2,44) 在曲线上.
- **7.** 求函数 $y = x^5 5x^4 + 5x^3 + 1$ 在 [-1,2] 上的最大值, 最小值.

四、综合与应用题

- **1.** 用长度为 $l \times (l > 0)$ 的篱笆在直的河岸边围成三面是篱笆一面是河的矩形场地, 求矩形场地的最大面积.
- 2. 要做一个圆锥形漏斗, 其母线长 20 cm, 要使其体积最大, 问其高应为多少?
- **3.** 设有一块边长为 *a* 的正方形铁皮, 从四个角截去同样的小方块, 做成一个无盖的方盒子, 问小方块的边长为多少才使盒子的容积最大?
- **4.** 设某产品的销售量 Q 与价格 P 之间有关系式为 $Q = \frac{1-P}{P}$
- (1) 求需求弹性;
- (2) 售价为 0.5 时的需求弹性. 并给出经济解释.
- 5. 某厂生产某种商品,其年销售量为 100 万件,每批生产需增加准备费 1000 元,而每件的库存费为 0.05 元. 如果年销售是均匀的,且上批销售完后,立即再生产下一批(此时商品库存量为批量的一半),问分几批生产,能使生产准备费及库存费之和最小?
- **6.** 某商品的价格 P 与需求量 Q 的关系为 $P = 10 \frac{Q}{5}$,
- (1) 求需求量为 20 及 30 时的总收益 R、平均收益 \overline{R} 及边际收益 R';
- (2) Q 为多少时总收益最大?
- **7.** 设 $f(x) = x^3 + ax^2 + bx$ 在 x = 1 处有极值 -2, 试确定系数 a, b, 并求出 y = f(x) 的所有极值点及拐点.
- **8.** 在半径为 R 的球内, 求体积最大的内接圆柱体的高.
- **9.** 由三块同一宽度的板做成一个梯形的排水槽 (无上盖), 问侧面与底的倾角 α 为 多大时, 才使水槽的横断面积最大?
- **10.** 将半径为 r 的圆铁片, 剪去一个扇形, 问其中心角 α 为多大时, 才能使余下部分围成的圆锥形容器的容积最大?

五、证明题

- **1.** 设 f(x) 在 [1,e] 上连续, 在 (1,e) 内可导, 且 f(1) = 0, f(e) = 1, 证明方程 xf'(x) = 1 在 (1,e) 内至少有一实根.
- **2.** 设 f(x) 在 [a,b] 上可导, 证明存在 $\xi \in (a,b)$, 使

$$\left| \frac{1}{b-a} \middle| f(a) \right| f(b) = \xi^2 \left[3f(\xi) + \xi f'(\xi) \right].$$

3. 设 f(x) 在 [1,2] 上连续, 在 (1, 2) 内可导, 且 f(2) = 0, 证明至少存在一点 $\xi \in (1,2)$, 使

$$f'(\xi) = -\frac{f(\xi)}{\xi \ln(\xi)}.$$

- **4.** 设 b > a > 0, 证明: $\ln \frac{b}{a} > \frac{2(b-a)}{a+b}$.
- **5.** 证明当 $x \neq 0$ 时, 有不等式 $e^x > 1 + x$.