SUJET 2 CCP

Cet aimable devoir est composé de deux exercices et de deux problèmes indépendants.

EXERCICE I Dans cet exercice, il est inutile de reproduire tous les calculs sur la copie.

On considère la matrice $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- 1. Justifier, sans calcul, que la matrice A est diagonalisable puis déterminer une matrice D diagonale réelle et une matrice $P \in GL_3(\mathbb{R})$ telles que $A = PDP^{-1}$
- 2. Déterminer une matrice B de $\mathcal{M}_3(\mathbb{R})$, que l'on explicitera, vérifiant $B^2 = A$
- 3. Déterminer, pour tout entier naturel non nul n, les 9 coefficients de la matrice A^n en utilisant la matrice de passage P
- 4. Soit le polynôme $\pi_A = (X-1)(X-4)$. Calculer P(M). Déduire, a l'aide d'une division euclidienne de polynômes de diviseur π_A , la matrice A^n comme une combinaison linéaire des matrices A.

EXERCICE II

On considère l'espace vectoriel normé $\mathcal{M}_n(\mathbb{R})$ On note $\mathrm{GL}_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

- 1. L'ensemble $\mathrm{GL}_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- 2. Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$
- 3. Soit M un élément de $\mathcal{M}_n(\mathbb{R})$, justifier que l'existence d'un réel $\rho > 0$ tel que :

$$\forall \lambda \in]0, \rho[, M - \lambda I_n \in GL_n(\mathbb{R})]$$

Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est un ouvert dense de $\mathcal{M}_n(\mathbb{R})$

- 4. Application:
 - Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, démontrer que les matrices A.B et B.A ont le même polynôme caractéristique.
- 5. Démontrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Problème 1

Soit n un entier naturel non nul.

Par K on désigne un sous corps de C et par $\mathrm{SL}_n(K)$, l'ensemble des éléments de $\mathcal{M}_n(K)$ de déterminant 1.

Pour i = 1, ..., n et j = 1, ..., n on note $E_{i,j}$ l'élément de $\mathcal{M}_n(\mathbf{K})$ dont le coefficient de la i^{e} ligne et de j^{e} colonne vaut 1 et dont tous les autres coefficients sont nuls. Il est admis que $(E_{i,j})_{(i,j)\in\{1,...,n\}^2}$ est une base de $\mathcal{M}_n(\mathbf{K})$.

Pour tout élément λ non nul de \mathbf{K} et tout couple (i,j) d'éléments distincts de $\{1,\ldots,n\}$, on pose

$$T_{i,j}(\lambda) = I_n + \lambda E_{i,j},$$

matrice de transvection.

Pour tout élément M de $\mathcal{M}_n(\mathbf{K})$ et tout polynôme $P = a_0 X^0 + a_1 X^1 + ... a_p X^p$ élément de $\mathbf{K}[X]$, on note P(M) la matrice $a_0 M^0 + a_1 M^1 + ... a_p M^p$ et l'ensemble $\{Q(M), Q \in \mathbf{K}[X]\}$ sera noté $\mathbf{K}[M]$.

Partie I Commutant d'une matrice

Pour tout élément A de $\mathcal{M}_n(\mathbf{K})$ on appelle commutant de A et l'on note $\mathcal{C}(A)$ l'ensemble des éléments M de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A c'est-à-dire tels que AM = MA.

- 1. Soit A un élément de $\mathcal{M}_n(\mathbf{K})$, montrer que $\mathcal{C}(A)$ est une algèbre.
- 2. Soit P un élément de $GL_n(\mathbf{K})$ et A' la matrice

$$A' = PAP^{-1}$$

Exprimer le commutant de A' en fonction de celui de A.

- 3. (a) Soit B un élément de $\mathcal{M}_n(\mathbf{K})$ tel que AB = BA. Montrer le résultat du cours : tout espace propre de A est stable par B.
 - (b) Soient $\lambda_1, \lambda_2, ..., \lambda_r$ des éléments deux à deux distincts de \mathbf{K} et $(p_1, ..., p_r)$ un r-uplet d'entiers naturels non nuls tels que : $p_1 + ... + p_r = n$ et D l'élément de $\mathcal{M}_n(\mathbf{K})$ diagonal par blocs : $D = \operatorname{diag}(\lambda_1 I_{p_1}, ..., \lambda_r I_{p_r})$. Montrer que $\mathcal{C}(D)$ est l'ensemble des éléments de $\mathcal{M}_n(\mathbf{K})$, de la forme $\operatorname{diag}(M_1, ..., M_r)$, où pour $i = 1, ...r, M_i$ est élément de $\mathcal{M}_{p_i}(\mathbf{K})$.
- 4. Exemple: la matrice compagnon

Soient $(a_0, a_1, \dots, a_{n-1}) \in \mathbf{K}^n$ et la matrice C donnée par

$$C := \begin{pmatrix} 0 & 0 & \dots & 0 & a_0 \\ 1 & \ddots & & & a_1 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \dots & 0 & 1 & a_{n-1} \end{pmatrix}$$

dite matrice compagnon de $(a_0, a_1, \ldots, a_{n-1})$.

On note $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$.

(a) Soit M un élément de $\mathcal{M}_n(\mathbf{K})$ Montrer qu'il existe un élément $(b_0, b_1, \dots, b_{n-1})$ de \mathbf{K}^n tel que :

$$ME_1 = \sum_{k=0}^{n-1} b_k C^k E_1.$$

- (b) En déduire $C(C) = \mathbf{K}[C]$.
- 5. (a) Soit M un élément de $\mathcal{M}_n(\mathbf{K})$ tel que tout élément X de $\mathcal{M}_{n,1}(\mathbf{K})$ non nul soit vecteur propre de M. Montrer que M est une matrice scalaire, (c'est-à-dire de la forme λI_n , où λ est un élément de \mathbf{K}).
 - (b) Soit A un élément de $\mathcal{M}_2(\mathbf{K})$ non scalaire. Montrer que $\mathcal{C}(A) = \mathbf{K}[A]$.

Partie II Étude de $\mathrm{SL}_n(\mathbf{K})$

- 1. Montrer que $SL_n(\mathbf{K})$ est un sous-groupe de $GL_n(\mathbf{K})$
- 2. Montrer que tout élément de $SL_2(\mathbf{K})$ est produit de matrices de transvections.
- 3. Soit M un élément de $\mathcal{M}_2(\mathbf{K})$. Montrer l'équivalence des trois propositions suivantes : i. $\operatorname{rg}(M-I_2)=1$ et $\chi_M=\det(XI_2-M)=(X-1)^2$.

- ii. Il existe λ élément de \mathbf{K}^* tel que M soit semblable à $T_{1,2}(\lambda)$.
- ii. M est semblable à $T_{1,2}(1)$.
- 4. Déterminer les éléments M d'ordre 2 du groupe $SL_2(\mathbf{K})$, c'est-à-dire tels que $M^2 = I_2$.
- 5. Déterminer les éléments de $GL_2(\mathbf{K})$ qui commutent avec tous les éléments de $SL_2(\mathbf{K})$.
- 6. Déterminer les éléments de $SL_2(\mathbf{K})$ qui commutent avec tous les éléments de $SL_2(\mathbf{K})$.

Problème 2

Ce problème est consacré à l'étude de suites complexes périodiques. Par définition, une suite complexe $U = (u_n)_{n \in \mathbb{N}}$ est périodique si et seulement s'il existe un entier naturel p, différent de 0, tel que, pour tout entier naturel n, l'égalité

$$u_{n+p} = u_n$$

a lieu. L'entier p est appelé période de la suite U. Soit \mathcal{P} l'ensemble de ces suites.

La première et la deuxième partie définissent les applications linéaires L, D, θ , S et les sous-espaces vectoriels \mathcal{P}_0 et \mathcal{P}_1 de l'espace vectoriel \mathcal{P} . Elles étudient les noyaux et les espaces images de ces applications. La troisième partie s'intéresse à leur continuité.

Désignons par \mathcal{B} l'ensemble des suites complexes $V = (v_n)_{n \in \mathbb{N}}$ bornées. Admettons que \mathcal{B} soit un espace vectoriel complexe et que l'application de \mathcal{B} dans \mathbb{R} , $V \mapsto ||V||_{\infty} = \sup_{n \geq 0} |v_n|$, soit une norme.

- 1. Premières propriétés de l'ensemble \mathcal{P} des suites complexes périodiques :
 - (a) Désignons par $\mathcal{T}(U)$ l'ensemble des périodes d'une suite complexe périodique U. Démontrer l'existence d'une plus petite période p_0 ; caractériser l'ensemble $\mathcal{T}(U)$. Déterminer les ensembles $\mathcal{T}(\Omega)$ et $\mathcal{T}(C)$ relatifs aux deux suites définies ci-dessous : $\Omega = (\omega_n)_{n \in \mathbb{N}}$, pour tout n, $\omega_n = 1$; $C = (c_n)_{n \in \mathbb{N}}$, pour tout n, $c_n = \Re(i^{n+1})$.
 - (b) Démontrer que l'ensemble \mathcal{P} des suites complexes périodiques est un sous-espace vectoriel de l'espace \mathcal{B} .
 - (c) Cet espace vectoriel \mathcal{P} est-il de dimension finie?

Étant donnés une suite U de \mathcal{P} et deux entiers naturels p et n, désignons par A(U,p,n) le nombre complexe défini par la relation : $A(U,p,n) = \frac{1}{p} \sum_{k=0}^{p-1} u_{n+k}$.

- 2. Décomposition de \mathcal{P} en somme directe.
 - (a) Démontrer que pour une suite U donnée de \mathcal{P} , le nombre complexe A(U, p, n) ne dépend ni de l'entier naturel n, ni de la période p de U (p appartient à $\mathcal{T}(U)$).

Pour une suite U donnée de \mathcal{P} , soit L(U) la valeur commune de ces nombres complexes A(U, p, n); désignons par L la forme linéaire : $U \mapsto L(U)$.

- (a) Calculer $L(\Omega)$ et L(C); Ω et C sont les suites définies à la question I- 1 ° a.
- (b) Soit \mathcal{P}_0 le noyau de la forme linéaire L. Soit \mathcal{P}_1 le sous-espace vectoriel engendré par la suite Ω définie à la question \mathbf{I} $\mathbf{1}$ ° \mathbf{a} ; démontrer que l'espace vectoriel \mathcal{P} est égal à la somme directe des deux sous-espaces vectoriels \mathcal{P}_0 et \mathcal{P}_1 : $\mathcal{P} = \mathcal{P}_0 \oplus \mathcal{P}_1$.
- 3. Étude d'un endomorphisme D_0 de \mathcal{P}_0 .

À tout élément $U = (u_n)_{n \in \mathbb{N}}$ de \mathcal{P} , associons la suite $U' = (u'_n)_{n \in \mathbb{N}}$, définie par la relation :

pour tout entier naturel $n, u'_n = u_{n+1} - u_n$.

- (a) Démontrer que, pour tout U de \mathcal{P} , la suite U' appartient à \mathcal{P} . Soit D l'application : $U \mapsto U'$; établir que D est un endomorphisme de \mathcal{P} . Déterminer les images $D(\Omega)$ et D(C) des suites définies à la question **I-1** ° **a**. Quels sont les noyau et espace image de l'endomorphisme D?
- (b) Démontrer que le sous-espace vectoriel \mathcal{P}_0 est stable par D et que la restriction de D à \mathcal{P}_0 est un automorphisme, qui est noté D_0 .
- (c) Déterminer toutes les valeurs propres de cet automorphisme D_0 de \mathcal{P}_0 ; préciser des éléments de \mathcal{P}_0 qui sont des vecteurs propres associés à ces valeurs propres.
- 4. Étude d'une application linéaire de \mathcal{P}_0 dans \mathcal{P} .

À tout élément $U=(u_n)_{n\in\mathbb{N}}$ de \mathcal{P} , associons la suite $U^*=(u_n^*)_{n\in\mathbb{N}}$, définie par la relation :

pour tout entier naturel
$$n$$
, $u_n^* = \sum_{k=0}^n u_k$.

- (a) Démontrer que l'application $\theta: U \mapsto U^*$ est une application linéaire de \mathcal{P}_0 dans \mathcal{P} .
- (b) Déterminer le noyau et l'espace image de cette application linéaire θ .

MP* KERICHEN 2020-2021

Correction du DS n°3 Sujet 2

Problème 1

Partie I Commutant d'une matrice

- 1. Clairement $I_n \in \mathcal{C}(A)$.
 - Soient M et N des éléments de $\mathcal{C}(A)$. MNA = MAN = AMN. Donc $MN \in \mathcal{C}(A)$. Donc $\mathcal{C}(A)$ est stable par multiplication.
 - Soient λ et μ des éléments de \mathbf{K} .

$$(\lambda M + \mu N)A = \lambda MA + \mu NA = \lambda AM + \mu AN = A(\lambda M + \mu N).$$

Donc $\lambda M + \mu N \in \mathcal{C}(A)$. Donc $\mathcal{C}(A)$ est stable par combinaison linéaire De ces trois points il vient : $\underline{\mathcal{C}}(A)$ est une sous-algèbre de $\mathcal{M}_n(\mathbf{K})$.

2. Soit $M \in \mathcal{C}(A')$. Alors $MPAP^{-1} = PAP^{-1}M$ et donc $P^{-1}MPA = PAP^{-1}MP$. Donc $P^{-1}MP \in \mathcal{C}(A)$ et donc : $\mathcal{C}(A') \subset P\mathcal{C}(A)P^{-1}$. Mais par symétrie des roles $\mathcal{C}(A) \subset P^{-1}\mathcal{C}(A')P$ c'est-à-dire $P\mathcal{C}(A)P^{-1} \subset \mathcal{C}(A')$. Donc finalement :

$$C(A') = PC(A)P^{-1}$$

Remarque: on peut raisonner aussi sur l'endomorphisme associé à A.

- 3. (a) voir cours!
 - (b) •

On note $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$. Soit $M = \operatorname{diag}(M_1, ..., M_r)$, avec pour i = 1, ...r, M_i est élément de $\mathcal{M}_{p_i}(\mathbf{K})$. Alors par produit par blocs puisque les homothéties commutent avec toutes les matrices : MD = DM.

• Réciproquement sout $M \in \mathcal{C}(D)$.

 $\operatorname{sp}(D) = \{\lambda_1 I_{p_1}, ..., \lambda_r I_{p_r}\}$ et comme les $\lambda_i, i = 1, ..., r$ sont deux à deux distincts,

$$\mathbf{E}_{\lambda_1} = \text{vect}(E_1,...,E_{p_1}), \mathbf{E}_{\lambda_2} = \text{vect}(E_{p_1+1},...,E_{p_1+p_2}),..., \mathbf{E}_{\lambda_{n-p_r}} = \text{vect}(E_{n-p_r+1},...,E_n).$$

Donc d'après (a), $\operatorname{vect}(E_1, ... E_{p_1})$, $\operatorname{vect}(E_{p_1+1}, ... E_{p_1+p_2})$, ..., $\operatorname{vect}(E_{n-p_r+1}, ... E_n)$ sont stables par M, donc M est de la forme $M = \operatorname{diag}(M_1, ..., M_r)$, avec pour i = 1, ..., r, M_i un élément de $\mathcal{M}_{p_i}(\mathbf{K})$.

D'où le résultat.

- 4. Exemple: la matrice compagnon
 - (a) L'examen des colonnes de M nous apprend : $E_1 = E_2, CE_2 = E_3, CE_{n-1} = E_n$; donc $(C_iE_1)_{i=0,...n-1}$ est la base canonique de $\mathcal{M}_{n,1}(\mathbf{R})$ et donc en notant $(b_0, b_1, ..., b_{n-1})$ les coordonnées de ME_1 dans la base canonique :

$$ME_1 = \sum_{k=0}^{n-1} b_k C^k E_1.$$

- (b) Que $\mathbf{K}[C] \subset \mathcal{C}(C)$ est évident ¹
 - Soit M un élément de $\mathcal{C}(C)$. D'après (a) on dispose de n éléments de \mathbf{K} , $(b_0, b_1, \ldots, b_{n-1})$ tels que $ME_1 = \sum_{k=0}^{n-1} b_k C^k E_1$. Comme les matrices M et C commutent, toute puissance de C commute avec M, par une banale récurrence, si bien que pour i = 1, 2, ...n

$$ME_i = MC^{i-1}E_1 = C^{i-1}ME_1 = \sum_{k=0}^{n-1} b_k C^{i-1}C^k E_1 = \sum_{k=0}^{n-1} b_k C^k C^{i-1}E_1 = \sum_{k=0}^{n-1} b_k C^k E_i.$$

Donc M et $\sum_{k=0}^{n-1} b_k C^k$ coïncident sur la base canonique de $\mathcal{M}_{n,1}(\mathbf{K})$ donc sont égales et donc $M \in \mathbf{K}[X]$

De ces deux points on conclut : C(C) = K[C].

5. (a) Pour tout élément X non nul de $\mathcal{M}_{n,1}(\mathbf{K})$ il existe un élément de \mathbf{K} , nécessairement unique, noté λ_X tel que $MX = \lambda_X X$.

Soient X_0 et Y des élements de $\mathcal{M}_{n,1}(\mathbf{K})$, non nuls.

• Premier $cas:(X_0,Y)$ libre.

$$\lambda_{X_0+Y}X_0 + \lambda_{X_0+Y}Y = \lambda_{X_0+Y}(X_0+Y) = M(X_0+Y) = MX_0 + MY = \lambda_{X_0}X_0 + \lambda_{Y}Y$$
et la liberté de (X_0,Y) aidant : $\lambda_{X_0} = \lambda_{X_0+Y} = \lambda_{Y}$.

• $Second\ cas:(X_0,Y)$ liée.

Comme X_0 est non nul, on dispose d'un élément α de \mathbf{K} tel que $Y = \alpha X_0$

$$\lambda_Y Y = MY + \alpha M X_0 = \alpha \lambda_{X_0} X_0 = \lambda_{X_0} Y$$

et comme Y est non nul, $\lambda_{X_0} = \lambda_Y$.

Donc Y étant quelconque $M = \lambda_{X_0} I_n$

Variante: Soit $i\in\{2,...,n\}$ (on ignore le cas trivial où n=1).

$$\lambda_{E_1+E_i}E_1 + \lambda_{E_1+E_i}E_i = \lambda_{E_1+E_i}(E_1+E_i) = M(E_1+E_i) = ME_1 + ME_2 = \lambda_{E_1}E_1 + \lambda_{E_i}E_i.$$

Par indépendance de E_1 et E_i , vecteurs de la base canonique :

$$\lambda_{E_1} = \lambda_{E_1 + E_i} = \lambda_{E_i}.$$

Donc l'endomorphisme de $\mathcal{M}_{n,1}(\mathbf{K})$ canoniquement associé à M coïncide avec celui associé à $\lambda_{E_1}I_n$ sur la <u>base</u> canonique, donc

$$M = \lambda_{E_1} I_n.$$

^{1.} Du reste on verra en cours que $\mathbf{K}[C]$ est une algèbre commutative.

(b) Comme A est non scalaire, (a) affirme l'existence de $X_1 \in \mathcal{M}_{2,1}(\mathbf{K})$ non nul tel que $(X1, MX_1)$ soit libre donc une base de $\mathcal{M}_{2,1}(\mathbf{K})$. L'endomorphisme de $\mathcal{M}_{2,1}(\mathbf{K})$ canoniquement associé à M a dans cette base une matrice C_2 de la forme

$$C_2 = \begin{pmatrix} 0 & \alpha \\ 1 & \beta \end{pmatrix},$$

avec α , β des éléments de \mathbf{K} .

$$M = PC_2P^{-1},$$

où P est la matrice de passage de la base canonique à (X_1, MX_1) . Donc, d'après 2., $\mathcal{C}(A) = P\mathcal{C}(C_2)P^{-1}$ et d'après 4. (b) :

$$\mathcal{C}(A) = P\mathbf{K}[C_2]P^{-1}.$$

Par ailleurs pour tout entier $i \geq 1$, $PC_2^iP^{-1} = A^i$ et donc pour tout élément Q de $\mathbf{K}[X]: PQ(C_2)P^{-1} = Q(A)$, si bien que $P\mathbf{K}[C_2]P^{-1} = \mathbf{K}[M]$. Donc :

$$C(A) = \mathbf{K}[A]$$

Partie II Étude de $SL_n(\mathbf{K})$

1. $SL_n(\mathbf{K})$ est un sous-groupe de $GL_n(\mathbf{K})$, comme noyau du morphisme de groupes

$$(\operatorname{GL}_{\mathbf{n}}(\mathbf{K}), \circ) \to (\mathbf{K}^*, \times); M \mapsto \det(M).$$

2. Soit M un élément de $SL_n(\mathbf{K})$.

Notations:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (C_1 \ C_2) = \begin{pmatrix} L_1 \\ L_2 \end{pmatrix}.$$

Premier cas : $b \neq 0$

On effectue la transformation $C_1 \leftarrow C_1 + \frac{1-a}{b}C_2$ de sorte que l'on obtienne la matrice

$$\begin{pmatrix} 1 & b \\ c & d \end{pmatrix}$$

SECOND CAS: b = 0

Alors $a \neq 0$, puisque M est inversible, et l'on effectue la transformation $C_2 \leftarrow C_2 + C_1$, on est alors rammené au précédent cas, que nous considérerons seul dans la suite.

On effectue alors les transformations $C_2 \leftarrow C_2 - bC_1$ et $L_2 \leftarrow L_2 - cL_1$, on obtient une matrice de la forme

$$\begin{pmatrix} 1 & 0 \\ 0 & d' \end{pmatrix} ;$$

Chacune des opérations effectuées correspond à une multiplication à droite ou à gauche par des matrices de transvections, qui sont de déterminant 1 et qui donc consevent le déterminant, si bien que d'=1.

Conclusion : On a trouvé T matrice de transvection et T' matrice de transvection ou produit de deux telles matrices, suivant que l'on soit dans le premier ou second cas, telles que $TMT' = I_n$, soit $M = T^{-1}T'^{-1}$.

Or l'inverse d'une matrice de transvection est la matrice de transvection de même indice et de paramètre opposé, donc M est produit de matrices de transvection.

- 3. Trivialement iii. implique ii.
 - La relation de similitude conserve rang et et le polynôme caractéristique, si bien que ii. implique i.
 - Supposons i.

M admet 1 comme seule valeur propre. M n'est pas diagonalisable car sinon elle serait semblable à I_2 et le rang de $(M - I_2)$ serait celui de $I_2 - I_2$ c'est-à-dire 0. Soit V_1 un vecteur prore de M et V_2 un vecteur non colinéaire à V_1 . $M(V_2)$ se décompose dans la base (V_1, V_2) en

$$MV_2 = \alpha V_1 + \beta V_2.$$

La matrice M' de l'endomorphisme de $\mathcal{M}_{2,1}(\mathbf{K})$ canoniquement associé à M à pour matrice dans (E_1, E_2) ,

$$\begin{pmatrix} 1 & \alpha \\ 0 & \beta \end{pmatrix}$$
.

Comme 1 est la seule valeur propre de M (donc de M'), $\beta = 1$, mais alors α ne saurait être nulle puisque $\operatorname{rg}(M - I_n) = \operatorname{rg}(M' - I_n) = 1$. On peut alors considérer $(\alpha V_1, V_2)$ qui est une base de $\mathcal{M}_{2,1}(\mathbf{K})$, La matrice M'' de l'endomorphisme de $\mathcal{M}_{2,1}(\mathbf{K})$ canoniquement associé à M dans cette base est : $T_{1,2}(1)$. Donc M est semblable à $T_{1,2}(1)$: iii.

D'où l'équivalence de i., ii. et iii.

4. Si M est d'ordre 2, alors l'endomorphisme de $\mathcal{M}_{2,1}(\mathbf{K})$ est une symétrie dont la matrice dans une base adaptée à la décomposition de $\mathcal{M}_{2,1}(\mathbf{K})$ en la somme directe de $\operatorname{Ker}(M-I_2)$ et $\operatorname{Ker}(M+I_2)$ est

$$I_2$$
, ou $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ou $-I_2$.

Mais comme det(M) = 1, m est donc semblable donc égale à I_2 ou $-I_2$. Réciproquement ces matrices sont d'ordre 2.

L'ensemble des éléments M d'ordre 2 du groupe $\mathrm{SL}_2(\mathbf{K})$ est $\boxed{I_2 \text{ et } -I_2}$.

5. Soit M une un élément de $GL_2(\mathbf{K})$ qui commute avec tous les éléments de $SL_2(\mathbf{K})$, (il y en a, par exemple I_2). En particulier M commute avec $T_{1,2}(1)$ de sorte que si M s'écrit : $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, alors :

$$T_{1,2}(1)M = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} = \begin{pmatrix} a & b+a \\ c & d+c \end{pmatrix} = MT_{2,1}(1)$$

Donc c = 0 et a = d. Mais M commute avec $T_{2,1}(1)$, c'est-à-dire que ${}^{t}M$ commute avec $T_{1,2}(1)$ et donc b = 0.

Donc finalement M est scalaire (non nulle). Réciproquement tout matrice scalaire commute avec les éléments de $SL_2(\mathbf{K})$ (et même de $\mathcal{M}_n(\mathbf{K})$).

L'ensemble des éléments de $GL_2(\mathbf{K})$ qui commutent avec tous les éléments de $SL_2(\mathbf{K})$ est $\{\lambda I_2, \lambda \in \mathbf{K}^*\}$

6. Les éléments de $SL_2(\mathbf{K})$ qui commutent avec tous les éléments de $SL_2(\mathbf{K})$ sont, d'après (a), les matrices scalaires éléments de $SL_2(\mathbf{K})$, c'est-à-dire :

$$I_2 \text{ et } -I_2$$
.

Problème 2

Première partie.

- 1. Premières propriétés de l'ensemble $\mathcal P$ des suites complexes périodiques :
 - (a) $\mathcal{T}(U)$ est une partie de \mathbf{N}^* non vide elle admet donc un plus petit élément p_0 élément de \mathbf{N}^* .
 - On a alors évidement par récurrence : $p_0 \mathbf{N}^* \subset \mathcal{T}(U)$.
 - Réciproquement soit $p \in \mathcal{T}(U)$. Par division euclidienne il existe q et k éléments de \mathbb{N} tels que $p = qp_0 + k$ et $r < p_0$. Comme $p \in \mathcal{T}(U)$ et $qp_0 \in \mathcal{T}(U)$ d'après le premier point, on a pour tout $n \in \mathbb{N}$: $u_{n+r} = u_n$. comme $r < p_0$, r n'est pas une période donc est nul. Donc $p = qp_0$ et $q \neq 0$. Donc $\mathcal{T}(U) \in p_0 \mathbb{N}^*$

Au total $\mathcal{T}(U) = p_0 \mathbf{N}^*$

$$\mathcal{T}(\Omega) = \mathbf{N}^*$$
 $(\mathfrak{R}(i^{n+1}))_{n \in \mathbf{N}} = (0, -1, 0, 1, 0, -1, 0, 1, 0, \dots, 0, -1, 0, 1, \dots) \text{ donc } \mathcal{T}(C) = 4\mathbf{N}^*$

- (b) \mathcal{P} est une partide de l'espace vectoriel de \mathcal{B} . Montrons que s'en est un sous-espace vectoriel.
 - \bullet \mathcal{P} est non vide ayant pour élément la suite nulle.
 - Soient $U = (u_n)_{n \in \mathbb{N}}$, $V = (vu_n)_{n \in \mathbb{N}}$ des éléments de \mathcal{P} λ et μ des complexes. Soit p une période de U, q de V. Alors puisque $qp \in p\mathbb{N} \cap q\mathbb{N}$, pour tout $n \in \mathbb{N}$,

$$\lambda u_{n+pq} + \mu v_{n+pq} = \lambda u_n + \mu v_n$$

Donc $\lambda U + \mu V \in \mathcal{P}$

Donc \mathcal{P} est un sous-espace vectoriel de \mathcal{B} .

(c) Pour tout élément i de \mathbf{N} on note $E^{(i)} = (e_n^{(i)})_{n \in \mathbf{N}}$ l'élément de \mathcal{P} , i+1- périodique,

$$E^{(i)} = (\underbrace{0, 0, \dots, 0, 1}_{i+1}, 0, 0, \dots, 0, 1 \dots).$$

Soit $\sum_{i\in\mathbb{N}} \lambda_i E^{(i)}$ une combinaison linéaire nulle de la famille $(E^{(i)})_{i\in\mathbb{N}}$. L'ensemble $\{i\in I|\lambda_i\neq 0\}$ est par définition fini, supposons le non vide, et posons alors $i_0=\min\{i\in I|\lambda_i\neq 0\}$.

$$0 = \sum_{i \in \mathbf{N}} \lambda_i e_{i_0+1}^{(i)} = \lambda_{i_0} 1 + \sum_{i \ge i_0+1} \lambda_i \underbrace{e_{i_0+1}^{(i)}}_{=0} = \lambda_{i_0}.$$

Ce qui est absurde. donc $(\lambda_i)_{i\in\mathbb{N}}$ est nulle et donc $(E^{(i)})_{i\in\mathbb{N}}$ est libre.

Donc la dimension de \mathcal{P} est infinie.

- 2. Décomposition de \mathcal{P} en somme directe.
 - (a) Soient $n \in \mathbb{N}$ et p une période de U.

$$A(U, p, n+1) = \frac{1}{p} \sum_{j=n+1}^{n+p+1-1} u_j = \frac{1}{p} \left(-u_n + \sum_{j=n}^{n+p-1} u_j + u_{n+p} \right) = \sum_{j=n}^{n+p-1} u_j = A(U, p, n+1),$$

par p-périodicité. Donc A(U,p,n) est indépendant de n.

Soit p_0 la plus petite période de U, d'après I.1.a., il existe $k \in \mathbf{N}^*$ tel que $p = kp_0$ et donc

$$A(U,p,n) = \frac{1}{p} \sum_{i=0}^{k-1} \left(\sum_{j=0}^{p_0-1} u_{j+ip_0} \right) = \frac{1}{p} \sum_{i=0}^{k-1} \left(\sum_{j=0}^{p_0-1} u_j \right) = \frac{k}{kp_0} \sum_{j=0}^{p_0-1} u_j = A(U,p_0,0).$$

Finalement $\underline{A(U,p,n)}$ est indépendant de p et n .

(a)
$$L(\Omega) = 1$$
 et $C(C) = \frac{1}{a}(0 - 1 + 0 + 1) = 0$

- (b) \mathcal{P}_0 et \mathcal{P}_1 sont des sous-espaces vectoriels de \mathcal{P} de plus :
 - $\mathcal{P}_0 \cap \mathcal{P}_1$ est réduit à $\{(0)_{n \in \mathbb{N}}\}$, puisque $L(\lambda\Omega) = \lambda L(\Omega) = \lambda$, pour tout complexe λ .
 - Soit U élément de \mathcal{P} .

$$U = (U - L(U)\Omega) + L(U)\Omega.$$

$$L(U)\Omega \in \mathcal{P}_1$$
 et $U - L(U)\Omega \in \mathcal{P}_0$, car $L(U - L(U)\Omega) = L(U) - L(U)L(\Omega) = L(U) - L(U)1 = 0$

Donc de ces deux points, il vient : $\mathcal{P} = \mathcal{P}_0 \oplus \mathcal{P}_1$

3. Étude d'un endomorphisme D_0 de \mathcal{P}_0 .

pour tout entier naturel $n, u'_n = u_{n+1} - u_n$.

(a) Soit U élément de \mathcal{P} . Soit p une période de U. Pour tout $n \in \mathbb{N}$,

$$u'_{n+n} = u_{n+p+1} - u_{n+p} = u_{n+1} - u_n = u'_n.$$

Donc $U' \in \mathcal{P}$

D est clairement linéaire, c'est un endomorphisme de \mathcal{P} .

$$D(\Omega) = (0)_{n \in \mathbb{N}} \text{ et } D(C) = (-1, \overline{1, 1 - 1, -1, 1, 1 - 1, \dots, -1, 1, 1 - 1, \dots})$$

 $D(U) = (0)_{n \in \mathbb{N}}$ si et seulement si $u_{n+1} = u_n$ pour tout $n \in \mathbb{N}$. Donc

$$\operatorname{Ker}(D) = \mathcal{P}_1$$

• Soient $U \in \mathcal{P}$ et p une période de U. Alors on a vu que p est période de D(U), de plus $L(D(U)) = \frac{1}{p} \sum_{n=0}^{p-1} (u_{n+1} - u_n) = u_p - u_0 = 0$. donc

$$\operatorname{Im}(U) \subset \operatorname{Ker}(L)$$
.

• Soit V élément de $\operatorname{Ker}(L)$. Notons p une de ses périodes. Posons $u_0 := 0$ et pour tout entier $n \geq 1$, $u_n := \sum_{k=0}^{n-1} v_k$. Pour tout $n \in \mathbb{N}$, $u_{n+p} = u_n + \sum_{k=0}^{p-1} v_{n+k} = u_n + pL(V) = u_n$, donc $U \in \mathcal{P}$ et de plus $u_{n+1} - u_n = v_n$, donc D(U) = V. Finalement :

$$Ker(L) \subset Im(D)$$
.

On a prouvé : $\boxed{\operatorname{Im}(D) = \operatorname{Ker}(L) = \mathcal{P}_0}$

- (b) \bullet $D(\mathcal{P}_0) \subset \text{Im}(D) = \mathcal{P}_0$. Donc \mathcal{P}_0 est stable par D. Notons D_0 l'endomorphisme induit par D sur \mathcal{P}_0 .
 - $\operatorname{Ker}(D_0) = \mathcal{P}_0 \cap \operatorname{Ker}(D) = \mathcal{P}_0 \cap \mathcal{P}_1 = (0)_{n \in \mathbb{N}}$ (cf. I.2.c.). Donc D_0 est injectif.
 - Soit $V \in \mathcal{P}_0$. D'après I.3.a., il existe $U \in \mathcal{P}$ tel que D(U) = V. D'après I.2.c., il existe $U' \in \mathcal{P}_0$ et $U'' \in \mathcal{P}_0$ tels que : U = U' + U''. Donc $D(U') = D(U) D(U'') = D(U) + (0)_{n \in \mathbb{N}} = V$. Donc $V \in \operatorname{Im}(D_0)$. Donc D_0 est surjectif.

Au total : D_0 est un automorphisme.

(c) Soient λ une valeur propre de D et U un vecteur propre associé. Pour tout $n \in \mathbb{N}$, $u_{n+1} = (\lambda + 1)u_n$ et donc $u_n = (1 + \lambda)^n u_0$. La non nulité de U exige que $u_0 \neq 0$. U est périodique donc il existe $p \in \mathbb{N}^*$ tel que $(1 + \lambda)^p = 1$, c'est-à-dire tel qu'il existe $k \in \{0, 1, \dots, p-1\}$ tel que $\lambda = \exp\left(\frac{2ik\pi}{p}\right) - 1$. L(U) = 0 donc $(1 + \lambda) \neq 1$, donc $k \neq 0$.

Réciproquement, soient $p \in \mathbf{N}^*$, $k \in \{1, \dots, p-1\}$ et $c \in \mathbf{C}^*$. Posons $\lambda = \exp\left(\frac{2ik\pi}{p}\right) - 1$ et $U = (c(1+\lambda)^n)_{n \in \mathbf{N}}$. U est p-périodique et $L(U) = \frac{c}{p}(1+(1+\lambda)+\dots,(1+\lambda)^{p-1}) = \frac{c}{p}\frac{1-(1+\lambda)^p}{1-(1+\lambda)} = 0$. Donc $U \in \mathcal{P}_0$. De plus, pour tout $n \in \mathbf{N}$, $u_{n+1}-u_n = u_n((1+\lambda)-1) = \lambda u_n$. Donc λ est une valeur propre de D dont U est un vecteur propre associé.

Conclusion:
$$sp(D_0) = \left\{ -1 + \exp\left(\frac{2ik\pi}{p}\right) | p \in \mathbf{N}^*, k \in \{1, \dots, p-1\} \right\} et pour tout$$

$$\lambda \in sp(D_0), \mathbf{E}_{\lambda} = \mathcal{C}^1 \cdot \left((\lambda + 1)^n\right)_{n \in \mathbf{N}} .$$

- 4. Étude d'une application linéaire de \mathcal{P}_0 dans \mathcal{P} .
 - (a) Soient $U \in \mathcal{P}_0$, et $p \in \mathcal{T}(U)$, pour tout $n \in \mathbb{N}$,

$$u_{n+p}^* = \sum_{k=0}^{n+p} u_k = \sum_{k=0}^n u_k + \sum_{k=n+1}^{n+p} u_k = u_n^* + pA(U, p, n+1) = u_n^*.$$

Donc $U^* \in \mathcal{P}$. La linéarité étant évidente, on obtient $\theta \in \mathcal{L}(\mathcal{P}_0, \mathcal{P})$

- (b) Soit $U \in \text{Ker}(\theta)$. On a $u_0 = u_0^*$ et, pour $n \ge 1$, $u_n = u_n^* u_{n-1}^*$ donc $U = (0)_{n \in \mathbb{N}}$. Le noyau de θ est réduit à la suite nulle.
 - Image de θ
 - Soit $V \in \text{Im}(\theta)$, il existe $U \in \mathcal{P}_0$ tel que $V = \theta(U)$. Soit alors p une période de U, alors V est p-périodique (cf. 1.4.a.) et $v_{p-1} = \sum_{k=0}^{p-1} u_k = pA(U, p, 0) = 0$. Réciproquement soient $V \in \mathcal{P}$ et p une période de V tels que $v_{p-1} = 0$.
 - Réciproquement soient $V \in \mathcal{P}$ et p une période de V tels que $v_{p-1} = 0$. Posons $u_0 = v_0$ et, pour tout entier $n \geq 1$, $u_n = v_n - v_{n-1}$. Pour tout entier $n \geq 1$ $u_{n+p} = v_{n+p} - v_{n+p-1} = v_n - v_{n-1} = u_n$ et $u_p = v_p - v_{p-1} = v_p = v_0 = u_0$ donc $U \in \mathcal{P}$. De plus $\sum_{k=0}^{p-1} u_k = v_{p-1} = 0$, donc $U \in \mathcal{P}_0$. Enfin, on a clairement $\theta(U) = V$. Donc $V \in \text{Im}(\theta)$.

Donc $\operatorname{Im}(\theta)$ est l'ensemble des éléments V de \mathcal{P} qui admettent une période p telle que v_{p-1}