ON SPACES OF RIEMANN SURFACES WITH NODES1

BY LIPMAN BERS

Communicated by Samuel Eilenberg, May 13, 1974

This is a summary of results, to be published in full elsewhere, which strengthen and refine the statements made in a previous announcement [1].

A compact Riemann surface with nodes of (arithmetic) genus p>1 is a connected complex space S, on which there are $k=k(S)\geqslant 0$ points P_1,\cdots,P_k , called nodes, such that (i) every node P_j has a neighborhood isomorphic to the analytic set $\{z_1z_2=0,|z_1|<1,|z_2|<1\}$, with P_j corresponding to (0,0); (ii) the set $S\setminus\{P_1,\cdots,P_k\}$ has $r\geqslant 1$ components Σ_1,\cdots,Σ_r , called parts of S, each Σ_i is a Riemann surface of some genus p_i , compact except for n_i punctures, with $3p_i-3+n_i\geqslant 0$, and $n_1+\cdots+n_r=2k$; and (iii) we have

$$p = (p_1 - 1) + \cdots + (p_r - 1) + k + 1.$$

Condition (ii) implies that every part carries a *Poincaré metric*, and condition (iii) is equivalent to the requirement that the total Poincaré area of S be $4\pi(p-1)$.

From now on p is kept fixed and the letter S, with or without subscripts or superscripts, always denotes a surface with properties (i)—(iii). If k(S) = 0, S is called nonsingular; if k(S) = 3p - 3, S is called terminal.

A continuous surjection $f: S' \to S$ is called a *deformation* if for every node $P \in S$, $f^{-1}(P)$ is either a node or a Jordan curve avoiding all nodes and, for every part Σ of S, $f^{-1}|\Sigma$ is an orientation preserving homeomorphism. Two deformations, $f: S' \to S$ and $g: S'' \to S$ are called *equivalent* if there are homeomorphisms $\varphi: S' \to S''$ and $\psi: S \to S$, homotopic to an isomorphism and to the identity, respectively, such that $g \circ \varphi = \psi \circ f$. The *deformation space* D(S) consists of all equivalence classes [f] of deformations onto S. To every node $P \in S$ belongs a *distinguished subset* consisting

AMS (MOS) subject classifications (1970). Primary 32G15; Secondary 30A46, 30A58, 14H15.

¹Work partially supported by the NSF.

of all $[f] \in D(S)$ with $f^{-1}(P)$ a node of $f^{-1}(S)$.

We define a Hausdorff topology on D(S) as follows. If c is a closed curve on a part of S, denote by |c| the length of the unique geodesic freely homotopic to S. Let C be a finite set of closed curves on parts of S, ϵ a positive number, and $\omega \colon S' \to S$ a deformation. We say that ω is (C, ϵ) small if for every Jordan curve c' on a part of S' such that $\omega(c')$ is a node, $|c'| < \epsilon$, and for every $c \in C$, $||\omega^{-1}(c)| - |c|| < \epsilon$. A set $A \subseteq D(S)$ is called open if, for every $[f] \in A$, there is a finite set C of closed curves on parts of $f^{-1}(S)$, and a number $\epsilon > 0$, such that whenever $\omega \colon S' \to f^{-1}(S)$ is (C, ϵ) small, $[f \circ \omega] \in A$.

THEOREM 1. D(S) is a cell. There is an (essentially canonical) homeomorphism of D(S) onto C^{3p-3} which takes each distinguished subset onto a coordinate hyperplane.

A deformation $h: S \longrightarrow S_0$ induces a mapping $h_*: D(S) \longrightarrow D(S_0)$, called an *allowable mapping*, which takes each $[f] \in D(S)$ into $[h \circ f]$.

THEOREM 2. Let S and S_0 have the same genus, and let $k(S_0) = k(S) + l$. If l = 0, an allowable mapping $D(S) \longrightarrow D(S_0)$ is a homeomorphic bijection. If l > 0, an allowable mapping $D(S) \longrightarrow D(S_0)$ is a universal covering of the complement of l distinguished subsets.

The proofs of Theorems 1 and 2 use the so-called Fenchel-Nielsen coordinates (cf. [1, p. 51]). An inequality for Fenchel-Nielsen coordinates stated in [1] as Theorem XV (and previously conjectured by Mumford) implies

THEOREM 3. Let S_1, \dots, S_m be all not isomorphic terminal surfaces of genus p. There are compact sets $K_j \subset D(S_j)$, $j = 1, \dots, m$, such that every S is of the form $S = f^{-1}(S_j)$, $[f] \in K_j$, for some j.

If S is nonsingular, D(S) can be identified with the Teichmüller space T_p of closed Riemann surfaces of genus p. For every S, each point in D(S), not belonging to a distinguished subset, has a neighborhood which can be naturally identified with a neighborhood in T_p . Thus an open dense set in D(S) is a complex manifold. It follows that D(S) has the structure of a ringed space.

THEOREM 4. D(S) is a complex manifold which can be realized as a bounded domain in \mathbb{C}^{3p-3} . The distinguished subsets of D(S) are nonsingular analytic hypersurfaces which meet transversally.

The proof utilizes the Kleinian groups constructed in [1, pp. 46–47]. The spaces $X_{\alpha}(S)$ used there are finite ramified coverings of D(S). The following statement is almost obvious.

THEOREM 5. Allowable mappings are holomorphic.

Let $\Gamma(S)$ be the group of allowable self-mappings of D(S) induced by all topological orientation preserving self-mappings of S, and let $\Gamma_0(S)$ be the subgroup induced by the automorphisms (conformal self-mappings) of S. Note that if $\gamma([f]) = [g]$ for some $\gamma \in \Gamma(S)$, then $f^{-1}(S)$ is isomorphic to $g^{-1}(S)$. The converse statement is, in general, false.

THEOREM 6. The group $\Gamma(S)$ is discrete, the subgroup $\Gamma_0(S)$ is finite and is the stabilizer of $[id] \in D(S)$ in $\Gamma(S)$.

Let M_p denote the *moduli space* (Riemann space) for genus p, that is, the set of all isomorphism classes [S] of Riemann surfaces with nodes, of genus p. We define a Hausdorff topology in M_p by calling a set $B \subseteq M_p$ open if, for every $[S] \in B$, there is a finite set C of closed curves on parts of S, and an $\epsilon > 0$, such that $[S'] \in B$ whenever there is a (C, ϵ) small deformation $S' \longrightarrow S$. The moduli space of nonsingular Riemann surfaces of genus p is known to be a complex space, and is an open dense subset of M_p . Hence M_p has the structure of a ringed space.

There is a canonical mapping $D(S) \to M_p$ which sends $[f] \in D(S)$ into $[f^{-1}(S)]$.

Theorem 7. The canonical mapping $D(S) \to M_p$ is holomorphic. Furthermore, [id] $\in D(S)$ has a neighborhood N, stable under $\Gamma_0(S)$, such that $N/\Gamma_0(S)$ is isomorphic to a neighborhood of [S] in M_p .

Theorems 3 and 7 imply the known (cf. [2])

COROLLARY (MAYER-MUMFORD). M_p is a compact normal complex space (and a V-manifold).

A regular q-differential on S is defined by assigning a holomorphic form F_{Σ} of type (q,0) to each part Σ of S; the F_{Σ} should be either regular at the punctures, or have there poles of order not exceeding q, the "residues" at two punctures joined in a node being equal (if q is even) or opposite (if q is odd). The number $\delta(p,q)$ of linearly independent regular q-differentials is p if q=1, (2q-1)(p-1) if q>1. If we choose $\delta=\delta(p,q)$ linearly independent q-differentials, their "values" at every point of

S, including a node, are the homogeneous coordinates of a point in $P_{\delta-1}$. In this way one obtains a holomorphic mapping $S \longrightarrow P_{\delta-1}$, the so-called *q-canonical mapping*. This is an embedding for q > 2 and, in some cases, also for q = 2 and q = 1.

THEOREM 8. For every S and every $q \ge 1$, there is an analytic hypersurface $\sigma \subset D(S)$, with $[id] \notin \sigma$, and a holomorphic mapping Φ of $D(S)\setminus \sigma$ into the Chow variety of curves of degree 2q(p-1) in $P_{\delta(p,q)-1}$ such that, for $[f] \in D(S)\setminus \sigma$, $\Phi([f])$ is the Chow point of a q-canonical image of $f^{-1}(S)$.

The proof uses the Poincaré series described in [1, pp. 48-49]. If S is nonsingular, one knows, from other considerations, that the result is true with $\sigma = \emptyset$. For singular S, I could thus far obtain that $\sigma = \emptyset$ only for q = 1.

REFERENCES

- 1. L. Bers, Spaces of degenerating Riemann surfaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, no. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 43-55.
- 2. D. Mumford, The structure of the moduli spaces of curves and Abelian varieties, Proc. Internat. Congress Math. (Nice, 1970), Gauthier-Villars, Paris, 1971, pp. 457-465.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027