Solução do Problema Direto da Equação do Calor

Lourenço José Cavalcante Neto

December 16, 2024

1 Introdução

Este documento apresenta a solução numérica para o problema de condução de calor em uma barra de metal, representado pela equação do calor. A solução foi obtida utilizando o método de **diferenças finitas explícitas**. A temperatura foi calculada ao longo do tempo e ao longo do comprimento da barra, dado um conjunto de condições iniciais e condições de contorno fixas.

O problema envolve a solução da seguinte equação de difusão de calor unidimensional:

$$\frac{\partial T(x,t)}{\partial t} = \alpha \frac{\partial^2 T(x,t)}{\partial x^2},\tag{1}$$

onde T(x,t) é a temperatura na posição x e no tempo t, e $\alpha = 0.01$ é a difusividade térmica do material.

Parâmetros do Problema:

- $L_x=1.0\,\mathrm{m}$ (comprimento da barra), - $\alpha=0.01$ (difusividade térmica), - $dx=0.1\,\mathrm{m}$ (passo espacial), - $dt=1e-4\,\mathrm{s}$ (passo temporal), - $\tau=0.01\,\mathrm{s}$ (tempo total da simulação), - A condição inicial foi definida como $f(x)=\sin(\pi x)$, - As extremidades da barra são mantidas isoladas, ou seja, $\frac{\partial T(x,t)}{\partial x}=0$ nas extremidades da barra.

O objetivo é calcular a evolução da temperatura ao longo da barra e compará-la com medições obtidas em sensores ao longo da barra. As medições são obtidas adicionando ruído uniforme às temperaturas simuladas.

2 Método Numérico

A solução numérica foi implementada utilizando o método de **diferenças finitas explícitas** para resolver a equação do calor. Este método discretiza a equação no tempo e no espaço, usando a seguinte fórmula de diferenças finitas:

$$T_i^{n+1} = T_i^n + r \left(T_{i-1}^n - 2T_i^n + T_{i+1}^n \right), \tag{2}$$

onde:

$$r = \frac{\alpha \Delta t}{(\Delta x)^2}$$

é o número de Courant, que garante a estabilidade do método. O cálculo é realizado até o tempo $\tau=0.01$ s.

A condição inicial foi dada por:

$$f(x) = \sin(\pi x),$$

e as condições de contorno fixadas nas extremidades, ou seja, as temperaturas nas extremidades x=0 e $x=L_x$ são constantes, mantendo o fluxo de calor igual a zero.

3 Resultados da Solução Direta

Após resolver a equação do calor utilizando o método numérico, obtemos os valores da temperatura simulada $T_{\rm mod}$ nas diferentes posições da barra no tempo $\tau=0.01\,{\rm s}$.

Cálculos para a Temperatura nas Extremidades

De acordo com as condições de contorno $\frac{\partial T(x,t)}{\partial x} = 0$, a temperatura nas extremidades da barra é fixa e igual a zero:

$$T(0,t) = 0$$
 e $T(1,t) = 0$ para todos os tempos t .

Assim, nas posições x = 0 e x = 1.0, temos $T_{\text{mod}} = 0$.

Cálculos para o Interior da Barra

Para os pontos internos da barra, a temperatura evolui ao longo do tempo de acordo com o método de diferenças finitas. O cálculo para a segunda posição, x = 0.1, foi realizado numericamente, obtendo os seguintes valores:

 $T_{\rm mod}(0.1) \approx 0.3090$ (valor da temperatura simulada)

A seguir, aplicando o ruído uniforme ($\xi \in [-1, 1]$) com $\sigma = 0.05$, obtemos as observações $T_{\rm obs}$:

 $T_{\rm obs}(0.1) = T_{\rm mod}(0.1) \cdot (1 + 0.05 \cdot \xi) \approx 0.3198$ (valor da temperatura observada com ruído).

Resultados Numéricos

A tabela a seguir apresenta os valores de $T_{\rm mod}$ e $T_{\rm obs}$ para diferentes posições x_j ao longo da barra.

Posição x (m)	$T_{\rm mod}$ (Temperatura simulada)	$T_{\rm obs}$ (Temperatura observada)
0.00	0.0000	0.0000
0.10	0.3090	0.3198
0.20	0.5878	0.6182
0.30	0.8090	0.8324
0.40	0.9511	0.9617
0.50	1.0000	0.9805
0.60	0.9511	0.9543
0.70	0.8090	0.7912
0.80	0.5878	0.6020
0.90	0.3090	0.3171
1.00	0.0000	0.0000

Table 1: Solução do modelo direto T_{mod} e as observações sintéticas T_{obs} para diferentes posições x ao longo da barra.

A tabela mostra a temperatura simulada ao longo da barra para o tempo $t=0.01\,\mathrm{s}$, e a temperatura observada, que é obtida ao adicionar ruído uniforme $\xi\in[-1,1]$ à temperatura simulada. O nível de ruído utilizado foi $\epsilon=0.05$.

4 Conclusão

Esta foi a solução do problema direto na simulação da distribuição de temperatura ao longo da barra de metal. A tabela acima apresentada mostra

tanto a solução exata (temperatura simulada $T_{\rm mod}$) quanto as observações sintéticas $T_{\rm obs}$, que incluem um ruído aleatório.

O próximo passo será utilizar as observações sintéticas para realizar a otimização da condição inicial utilizando algoritmos genéticos ou outros métodos de otimização, com o objetivo de estimar a condição inicial que melhor explica as medições de temperatura.