Cálculo de Programas Trabalho Prático MiEI+LCC — 2020/21

Departamento de Informática Universidade do Minho

Junho de 2021

Grupo nr.	47
a91695	Tiago dos Santos Silva Peixoto Carriço
a91637	Henrique Pinto Pires Lopes de Faria
a91635	Miguel Ângelo Alves de Freitas
a91697	Luís Filipe Fernandes Vilas

1 Preâmbulo

Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [1], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro. O ficheiro cp2021t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2021t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2021t.zip e executando:

```
$ lhs2TeX cp2021t.lhs > cp2021t.tex
$ pdflatex cp2021t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em <u>LATEX</u> e que deve desde já instalar executando

```
$ cabal install lhs2tex --lib
```

Por outro lado, o mesmo ficheiro cp2021t . 1hs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp2021t.lhs
```

¹O suffixo 'lhs' quer dizer *literate Haskell*.

Abra o ficheiro cp2021t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de 3 (ou 4) alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo D com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex),

```
$ bibtex cp2021t.aux
$ makeindex cp2021t.idx
```

e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck, que ajuda a validar programas em Haskell e a biblioteca Gloss para geração de gráficos 2D:

```
$ cabal install QuickCheck gloss --lib
```

Para testar uma propriedade QuickCheck prop, basta invocá-la com o comando:

```
> quickCheck prop
+++ OK, passed 100 tests.
```

Pode-se ainda controlar o número de casos de teste e sua complexidade, como o seguinte exemplo mostra:

```
> quickCheckWith stdArgs { maxSuccess = 200, maxSize = 10 } prop
+++ OK, passed 200 tests.
```

Qualquer programador tem, na vida real, de ler e analisar (muito!) código escrito por outros. No anexo C disponibiliza-se algum código Haskell relativo aos problemas que se seguem. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

3.1 Stack

O Stack é um programa útil para criar, gerir e manter projetos em Haskell. Um projeto criado com o Stack possui uma estrutura de pastas muito específica:

- Os módulos auxiliares encontram-se na pasta *src*.
- O módulos principal encontra-se na pasta app.
- A lista de depêndencias externas encontra-se no ficheiro package.yaml.

Pode aceder ao GHCi utilizando o comando:

```
stack ghci
```

Garanta que se encontra na pasta mais externa **do projeto**. A primeira vez que correr este comando as depêndencias externas serão instaladas automaticamente.

Para gerar o PDF, garanta que se encontra na diretoria *app*.

Problema 1

Os tipos de dados algébricos estudados ao longo desta disciplina oferecem uma grande capacidade expressiva ao programador. Graças à sua flexibilidade, torna-se trivial implementar DSLs e até mesmo linguagens de programação.

Paralelamente, um tópico bastante estudado no âmbito de Deep Learning é a derivação automática de expressões matemáticas, por exemplo, de derivadas. Duas técnicas que podem ser utilizadas para o cálculo de derivadas são:

- Symbolic differentiation
- Automatic differentiation

Symbolic differentiation consiste na aplicação sucessiva de transformações (leia-se: funções) que sejam congruentes com as regras de derivação. O resultado final será a expressão da derivada.

O leitor atento poderá notar um problema desta técnica: a expressão inicial pode crescer de forma descontrolada, levando a um cálculo pouco eficiente. *Automatic differentiation* tenta resolver este problema, calculando **o valor** da derivada da expressão em todos os passos. Para tal, é necessário calcular o valor da expressão **e** o valor da sua derivada.

Vamos de seguida definir uma linguagem de expressões matemáticas simples e implementar as duas técnicas de derivação automática. Para isso, seja dado o seguinte tipo de dados,

```
 \begin{aligned} \mathbf{data} \ & ExpAr \ a = X \\ & \mid N \ a \\ & \mid Bin \ BinOp \ (ExpAr \ a) \ (ExpAr \ a) \\ & \mid Un \ UnOp \ (ExpAr \ a) \\ & \mathbf{deriving} \ (Eq, Show) \end{aligned}
```

onde BinOp e UnOp representam operações binárias e unárias, respectivamente:

```
\begin{aligned} \mathbf{data} \; BinOp &= Sum \\ \mid Product \\ \mathbf{deriving} \; (Eq, Show) \\ \mathbf{data} \; UnOp &= Negate \\ \mid E \\ \mathbf{deriving} \; (Eq, Show) \end{aligned}
```

O construtor E simboliza o exponencial de base e.

Assim, cada expressão pode ser uma variável, um número, uma operação binária aplicada às devidas expressões, ou uma operação unária aplicada a uma expressão. Por exemplo,

```
Bin\ Sum\ X\ (N\ 10)
```

designa x + 10 na notação matemática habitual.

1. A definição das funções inExpAr e baseExpAr para este tipo é a seguinte:

```
\begin{split} in ExpAr &= [\underline{X}, num\_ops] \text{ where} \\ num\_ops &= [N, ops] \\ ops &= [bin, \widehat{U}n] \\ bin &(op, (a, b)) = Bin \ op \ a \ b \\ base ExpAr \ f \ g \ h \ j \ k \ l \ z = f + (g + (h \times (j \times k) + l \times z)) \end{split}
```

Defina as funções *outExpAr* e *recExpAr*, e teste as propriedades que se seguem.

Propriedade [QuickCheck] 1 inExpAr e outExpAr são testemunhas de um isomorfismo, isto é, inExpAr outExpAr = id e $outExpAr \cdot idExpAr = id$:

```
prop\_in\_out\_idExpAr :: (Eq\ a) \Rightarrow ExpAr\ a \rightarrow Bool

prop\_in\_out\_idExpAr = inExpAr \cdot outExpAr \equiv id

prop\_out\_in\_idExpAr :: (Eq\ a) \Rightarrow OutExpAr\ a \rightarrow Bool

prop\_out\_in\_idExpAr = outExpAr \cdot inExpAr \equiv id
```

2. Dada uma expressão aritmética e um escalar para substituir o X, a função

```
eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

calcula o resultado da expressão. Na página 12 esta função está expressa como um catamorfismo. Defina o respectivo gene e, de seguida, teste as propriedades:

Propriedade [QuickCheck] 2 A função eval_exp respeita os elementos neutros das operações.

```
prop\_sum\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idr \ \mathbf{where}
   sum\_idr = eval\_exp \ a \ (Bin \ Sum \ exp \ (N \ 0))
prop\_sum\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idl \ \mathbf{where}
   sum\_idl = eval\_exp \ a \ (Bin \ Sum \ (N \ 0) \ exp)
prop\_product\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idr \ \mathbf{where}
   prod\_idr = eval\_exp \ a \ (Bin \ Product \ exp \ (N \ 1))
prop\_product\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idl \ \mathbf{where}
   prod\_idl = eval\_exp \ a \ (Bin \ Product \ (N \ 1) \ exp)
prop_{-e_{-}id} :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop_{-}e_{-}id \ a = eval_{-}exp \ a \ (Un \ E \ (N \ 1)) \equiv expd \ 1
prop\_negate\_id :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop\_negate\_id\ a = eval\_exp\ a\ (Un\ Negate\ (N\ 0)) \equiv 0
```

Propriedade [QuickCheck] 3 Negar duas vezes uma expressão tem o mesmo valor que não fazer nada.

```
prop\_double\_negate :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool

prop\_double\_negate \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (Un \ Negate \ exp))
```

3. É possível otimizar o cálculo do valor de uma expressão aritmética tirando proveito dos elementos absorventes de cada operação. Implemente os genes da função

```
optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

que se encontra na página 12 expressa como um hilomorfismo² e teste as propriedades:

Propriedade [QuickCheck] 4 A função optimize_eval respeita a semântica da função eval.

```
prop\_optimize\_respects\_semantics :: (Floating\ a, Real\ a) \Rightarrow a \rightarrow ExpAr\ a \rightarrow Bool\ prop\_optimize\_respects\_semantics\ a\ exp\ =\ eval\_exp\ a\ exp\ \stackrel{?}{=}\ optmize\_eval\ a\ exp
```

- 4. Para calcular a derivada de uma expressão, é necessário aplicar transformações à expressão original que respeitem as regras das derivadas:³
 - Regra da soma:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

²Qual é a vantagem de implementar a função *optimize_eval* utilizando um hilomorfismo em vez de utilizar um catamorfismo com um gene "inteligente"?

³Apesar da adição e multiplicação gozarem da propriedade comutativa, há que ter em atenção a ordem das operações por causa dos testes.

• Regra do produto:

$$\frac{d}{dx}(f(x)g(x)) = f(x) \cdot \frac{d}{dx}(g(x)) + \frac{d}{dx}(f(x)) \cdot g(x)$$

Defina o gene do catamorfismo que ocorre na função

```
sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a
```

que, dada uma expressão aritmética, calcula a sua derivada. Testes a fazer, de seguida:

Propriedade [QuickCheck] 5 A função sd respeita as regras de derivação.

```
prop\_const\_rule :: (Real\ a, Floating\ a) \Rightarrow a \rightarrow Bool prop\_var\_rule :: Bool prop\_var\_rule :: Bool prop\_sum\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow ExpAr\ a \rightarrow Bool prop\_sum\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow ExpAr\ a \rightarrow Bool prop\_sum\_rule \ exp1 \ exp2 = sd\ (Bin\ Sum\ exp1\ exp2) \equiv sum\_rule\ \mathbf{where} sum\_rule = Bin\ Sum\ (sd\ exp1)\ (sd\ exp2) prop\_product\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow ExpAr\ a \rightarrow Bool prop\_product\_rule \ exp1 \ exp2 = sd\ (Bin\ Product\ exp1\ exp2) \equiv prod\_rule\ \mathbf{where} prod\_rule = Bin\ Sum\ (Bin\ Product\ exp1\ (sd\ exp2))\ (Bin\ Product\ (sd\ exp1)\ exp2) prop\_e\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_e\_rule \ exp = sd\ (Un\ E\ exp) \equiv Bin\ Product\ (Un\ E\ exp)\ (sd\ exp) prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (Real\ a, Floating\ a) \Rightarrow ExpAr\ a \rightarrow Bool prop\_negate\_rule :: (
```

5. Como foi visto, *Symbolic differentiation* não é a técnica mais eficaz para o cálculo do valor da derivada de uma expressão. *Automatic differentiation* resolve este problema cálculando o valor da derivada em vez de manipular a expressão original.

Defina o gene do catamorfismo que ocorre na função

```
ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a
```

que, dada uma expressão aritmética e um ponto, calcula o valor da sua derivada nesse ponto, sem transformar manipular a expressão original. Testes a fazer, de seguida:

Propriedade [QuickCheck] 6 Calcular o valor da derivada num ponto r via ad é equivalente a calcular a derivada da expressão e avalia-la no ponto r.

```
prop\_congruent :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_congruent \ a \ exp = ad \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (sd \ exp)
```

Problema 2

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.⁴

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X=1+X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema

$$fib \ 0 = 1$$

 $fib \ (n+1) = f \ n$

⁴Lei (3.94) em [2], página 98.

```
f 0 = 1
f (n+1) = fib n + f n
```

Obter-se-á de imediato

```
fib' = \pi_1 \cdot \text{for loop init where}

loop\ (fib, f) = (f, fib + f)

init = (1, 1)
```

usando as regras seguintes:

- O corpo do ciclo *loop* terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.⁵
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em *init* coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios do segundo grau $ax^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas⁶, de $f = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

```
f \ 0 = c

f \ (n+1) = f \ n+k \ n

k \ 0 = a+b

k \ (n+1) = k \ n+2 \ a
```

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

```
f' a b c = \pi_1 \cdot \text{for loop init where}

loop (f, k) = (f + k, k + 2 * a)

init = (c, a + b)
```

O que se pede então, nesta pergunta? Dada a fórmula que dá o n-ésimo número de Catalan,

$$C_n = \frac{(2n)!}{(n+1)!(n!)} \tag{1}$$

derivar uma implementação de C_n que não calcule factoriais nenhuns. Isto é, derivar um ciclo-for

```
cat = \cdots for loop\ init\ \mathbf{where}\ \cdots
```

que implemente esta função.

Propriedade [QuickCheck] 7 A função proposta coincidem com a definição dada:

$$prop_cat = (\geqslant 0) \Rightarrow (catdef \equiv cat)$$

Sugestão: Começar por estudar muito bem o processo de cálculo dado no anexo B para o problema (semelhante) da função exponencial.

Problema 3

As curvas de Bézier, designação dada em honra ao engenheiro Pierre Bézier, são curvas ubíquas na área de computação gráfica, animação e modelação. Uma curva de Bézier é uma curva paramétrica, definida por um conjunto $\{P_0,...,P_N\}$ de pontos de controlo, onde N é a ordem da curva.

O algoritmo de *De Casteljau* é um método recursivo capaz de calcular curvas de Bézier num ponto. Apesar de ser mais lento do que outras abordagens, este algoritmo é numericamente mais estável, trocando velocidade por correção.

 $^{^5}$ Podem obviamente usar-se outros símbolos, mas numa primeira leitura dá jeito usarem-se tais nomes.

⁶Secção 3.17 de [2] e tópico Recursividade mútua nos vídeos das aulas teóricas.

Figura 1: Exemplos de curvas de Bézier retirados da Wikipedia.

De forma sucinta, o valor de uma curva de Bézier de um só ponto $\{P_0\}$ (ordem 0) é o próprio ponto P_0 . O valor de uma curva de Bézier de ordem N é calculado através da interpolação linear da curva de Bézier dos primeiros N-1 pontos e da curva de Bézier dos últimos N-1 pontos.

A interpolação linear entre 2 números, no intervalo [0, 1], é dada pela seguinte função:

```
\begin{array}{l} linear1d :: \mathbb{Q} \to \mathbb{Q} \to OverTime \ \mathbb{Q} \\ linear1d \ a \ b = formula \ a \ b \ \mathbf{where} \\ formula :: \mathbb{Q} \to \mathbb{Q} \to Float \to \mathbb{Q} \\ formula \ x \ y \ t = ((1.0 :: \mathbb{Q}) - (to_{\mathbb{Q}} \ t)) * x + (to_{\mathbb{Q}} \ t) * y \end{array}
```

A interpolação linear entre 2 pontos de dimensão N é calculada através da interpolação linear de cada dimensão.

O tipo de dados NPoint representa um ponto com N dimensões.

```
type NPoint = [\mathbb{Q}]
```

Por exemplo, um ponto de 2 dimensões e um ponto de 3 dimensões podem ser representados, respetivamente, por:

```
p2d = [1.2, 3.4]

p3d = [0.2, 10.3, 2.4]
```

O tipo de dados *OverTime a* representa um termo do tipo *a* num dado instante (dado por um *Float*).

```
type OverTime\ a = Float \rightarrow a
```

O anexo C tem definida a função

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
```

que calcula a interpolação linear entre 2 pontos, e a função

```
deCasteljau :: [\mathit{NPoint}] \rightarrow \mathit{OverTime}\ \mathit{NPoint}
```

que implementa o algoritmo respectivo.

1. Implemente *calcLine* como um catamorfismo de listas, testando a sua definição com a propriedade:

Propriedade [QuickCheck] 8 Definição alternativa.

```
prop\_calcLine\_def :: NPoint \rightarrow NPoint \rightarrow Float \rightarrow Bool

prop\_calcLine\_def \ p \ q \ d = calcLine \ p \ q \ d \equiv zipWithM \ linear1d \ p \ q \ d
```

2. Implemente a função de Casteljau como um hilomorfismo, testando agora a propriedade:

Propriedade [QuickCheck] 9 Curvas de Bézier são simétricas.

```
\begin{array}{l} prop\_bezier\_sym :: [[\mathbb{Q}]] \to Gen \ Bool \\ prop\_bezier\_sym \ l = all \ (<\Delta) \cdot calc\_difs \cdot bezs \ \langle \$ \rangle \ elements \ ps \ \mathbf{where} \\ calc\_difs = (\lambda(x,y) \to zipWith \ (\lambda w \ v \to \mathbf{if} \ w \geqslant v \ \mathbf{then} \ w - v \ \mathbf{else} \ v - w) \ x \ y) \\ bezs \ t = (deCasteljau \ l \ t, deCasteljau \ (reverse \ l) \ (from_{\mathbb{Q}} \ (1 - (to_{\mathbb{Q}} \ t)))) \\ \Delta = 1e-2 \end{array}
```

3. Corra a função runBezier e aprecie o seu trabalho⁷ clicando na janela que é aberta (que contém, a verde, um ponto inicila) com o botão esquerdo do rato para adicionar mais pontos. A tecla Delete apaga o ponto mais recente.

Problema 4

Seja dada a fórmula que calcula a média de uma lista não vazia x,

$$avg \ x = \frac{1}{k} \sum_{i=1}^{k} x_i \tag{2}$$

onde k = length x. Isto é, para sabermos a média de uma lista precisamos de dois catamorfismos: o que faz o somatório e o que calcula o comprimento a lista. Contudo, é facil de ver que

$$avg~[a]=a$$

$$avg(a:x)=\frac{1}{k+1}(a+\sum_{i=1}^k x_i)=\frac{a+k(avg~x)}{k+1}~\text{para}~k=length~x$$

Logo avg está em recursividade mútua com length e o par de funções pode ser expresso por um único catamorfismo, significando que a lista apenas é percorrida uma vez.

- 1. Recorra à lei de recursividade mútua para derivar a função $avg_aux = ([b, q])$ tal que $avg_aux = \langle avg, length \rangle$ em listas não vazias.
- 2. Generalize o raciocínio anterior para o cálculo da média de todos os elementos de uma LTree recorrendo a uma única travessia da árvore (i.e. catamorfismo).

Verifique as suas funções testando a propriedade seguinte:

Propriedade [QuickCheck] 10 A média de uma lista não vazia e de uma LTree com os mesmos elementos coincide, a menos de um erro de 0.1 milésimas:

```
prop\_avg = nonempty \Rightarrow diff \leq 0.000001 where diff\ l = avg\ l - (avgLTree \cdot genLTree)\ l genLTree = [(lsplit)] nonempty = (>[])
```

Problema 5

(NB: Esta questão é opcional e funciona como valorização apenas para os alunos que desejarem fazê-la.)

Existem muitas linguagens funcionais para além do Haskell, que é a linguagem usada neste trabalho prático. Uma delas é o F# da Microsoft. Na directoria fsharp encontram-se os módulos Cp, Nat e LTree codificados em F#. O que se pede é a biblioteca BTree escrita na mesma linguagem.

Modo de execução: o código que tiverem produzido nesta pergunta deve ser colocado entre o \begin{verbatim} e o \end{verbatim} da correspondente parte do anexo D. Para além disso, os grupos podem demonstrar o código na oral.

⁷A representação em Gloss é uma adaptação de um projeto de Harold Cooper.

Anexos

A Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Como primeiro exemplo, estudar o texto fonte deste trabalho para obter o efeito:⁸

$$id = \langle f, g \rangle$$

$$\equiv \qquad \{ \text{ universal property } \}$$

$$\begin{cases} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{cases}$$

$$\equiv \qquad \{ \text{ identity } \}$$

$$\begin{cases} \pi_1 = f \\ \pi_2 = g \end{cases}$$

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \mathbb{I}_g \mathbb{N} \downarrow & & \downarrow id + \mathbb{I}_g \mathbb{N} \\ B \longleftarrow & g & 1 + B \end{array}$$

B Programação dinâmica por recursividade múltipla

Neste anexo dão-se os detalhes da resolução do Exercício 3.30 dos apontamentos da disciplina⁹, onde se pretende implementar um ciclo que implemente o cálculo da aproximação até i=n da função exponencial $exp\ x=e^x$, via série de Taylor:

$$exp x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (3)

Seja $e \ x \ n = \sum_{i=0}^n \frac{x^i}{i!}$ a função que dá essa aproximação. É fácil de ver que $e \ x \ 0 = 1$ e que $e \ x \ (n+1) = e \ x \ n + \frac{x^{n+1}}{(n+1)!}$. Se definirmos $h \ x \ n = \frac{x^{n+1}}{(n+1)!}$ teremos $e \ x \ e \ h \ x$ em recursividade mútua. Se repetirmos o processo para $h \ x \ n$ etc obteremos no total três funções nessa mesma situação:

$$e \ x \ 0 = 1$$
 $e \ x \ (n+1) = h \ x \ n + e \ x \ n$
 $h \ x \ 0 = x$
 $h \ x \ (n+1) = x \ / \ (s \ n) * h \ x \ n$
 $s \ 0 = 2$
 $s \ (n+1) = 1 + s \ n$

Segundo a regra de algibeira descrita na página 3.1 deste enunciado, ter-se-á, de imediato:

$$e'$$
 $x = prj$ · for loop init where
init = $(1, x, 2)$
loop $(e, h, s) = (h + e, x / s * h, 1 + s)$
 prj $(e, h, s) = e$

⁸Exemplos tirados de [2].

⁹Cf. [2], página 102.

C Código fornecido

Problema 1

```
expd :: Floating \ a \Rightarrow a \rightarrow a

expd = Prelude.exp

\mathbf{type} \ OutExpAr \ a = () + (a + ((BinOp, (ExpAr \ a, ExpAr \ a)) + (UnOp, ExpAr \ a)))
```

Problema 2

Definição da série de Catalan usando factoriais (1):

```
catdef n = (2 * n)! \div ((n + 1)! * n!)
```

Oráculo para inspecção dos primeiros 26 números de Catalan¹⁰:

```
\begin{array}{l} oracle = [\\ 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,\\ 35357670,129644790,477638700,1767263190,6564120420,24466267020,\\ 91482563640,343059613650,1289904147324,4861946401452\\ ] \end{array}
```

Problema 3

Algoritmo:

```
\begin{array}{l} deCasteljau :: [NPoint] \rightarrow OverTime \ NPoint \\ deCasteljau \ [] = nil \\ deCasteljau \ [p] = \underline{p} \\ deCasteljau \ l = \lambda pt \rightarrow (calcLine \ (p \ pt) \ (q \ pt)) \ pt \ \mathbf{where} \\ p = deCasteljau \ (init \ l) \\ q = deCasteljau \ (tail \ l) \end{array}
```

Função auxiliar:

```
\begin{array}{l} calcLine:: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine\ [] = \underline{nil} \\ calcLine\ (p:x) = \overline{g}\ p\ (calcLine\ x)\ \mathbf{where} \\ g:: (\mathbb{Q}, NPoint \rightarrow OverTime\ NPoint) \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ g\ (d,f)\ l = \mathbf{case}\ l\ \mathbf{of} \\ [] \rightarrow nil \\ (x:xs) \rightarrow \lambda z \rightarrow concat\ \$\ (sequenceA\ [singl\cdot linear1d\ d\ x,f\ xs])\ z \end{array}
```

2D:

```
\begin{array}{l} bezier2d :: [NPoint] \rightarrow OverTime \ (Float, Float) \\ bezier2d \ [] = \underline{(0,0)} \\ bezier2d \ l = \lambda z \rightarrow (from_{\mathbb{Q}} \times from_{\mathbb{Q}}) \cdot (\lambda[x,y] \rightarrow (x,y)) \ \$ \ ((deCasteljau \ l) \ z) \end{array}
```

Modelo:

```
 \begin{aligned} \mathbf{data} \ World &= World \ \{ \ points :: [ \ NPoint ] \\ , \ time :: Float \\ \} \\ initW :: World \\ initW &= World \ [] \ 0 \end{aligned}
```

¹⁰Fonte: Wikipedia.

```
tick :: Float \rightarrow World \rightarrow World
      tick \ dt \ world = world \ \{ \ time = (time \ world) + dt \}
      actions :: Event \rightarrow World \rightarrow World
      actions (EventKey (MouseButton LeftButton) Down \_ p) world =
         world \{ points = (points \ world) + [(\lambda(x, y) \rightarrow \mathsf{map} \ to_{\mathbb{Q}} \ [x, y]) \ p] \}
       actions (EventKey (SpecialKey KeyDelete) Down _ _) world =
         world \{ points = cond (\equiv []) id init (points world) \}
      actions \_world = world
      scaleTime :: World \rightarrow Float
      scaleTime\ w = (1 + cos\ (time\ w))/2
      bezier2dAtTime :: World \rightarrow (Float, Float)
      bezier2dAtTime\ w = (bezier2dAt\ w)\ (scaleTime\ w)
      bezier2dAt :: World \rightarrow OverTime (Float, Float)
      bezier2dAt \ w = bezier2d \ (points \ w)
      thicCirc :: Picture
      thicCirc = ThickCircle \ 4 \ 10
      ps :: [Float]
      ps = \mathsf{map}\ from_{\mathbb{Q}}\ ps'\ \mathbf{where}
         ps' :: [\mathbb{Q}]
         ps' = [0, 0.01..1] -- interval
Gloss:
      picture :: World \rightarrow Picture
      picture\ world = Pictures
         [animateBezier (scaleTime world) (points world)
         , Color\ white \cdot Line \cdot {\sf map}\ (bezier2dAt\ world)\ \$\ ps
         , Color blue · Pictures \ [Translate (from_{\mathbb{Q}} \ x) \ (from_{\mathbb{Q}} \ y) \ thicCirc \ | \ [x,y] \leftarrow points \ world]
         , Color green $ Translate cx cy thicCirc
          where
         (cx, cy) = bezier2dAtTime\ world
Animação:
       animateBezier :: Float \rightarrow [NPoint] \rightarrow Picture
       animateBezier \_[] = Blank
       animateBezier \ \_ \ [\_] = Blank
       animateBezier \ t \ l = Pictures
         [animateBezier\ t\ (init\ l)]
         , animateBezier t (tail l)
         , Color red \cdot Line \$ [a, b]
         , Color orange $ Translate ax ay thicCirc
         , Color orange $ Translate bx by thicCirc
          where
         a@(ax, ay) = bezier2d (init l) t
         b@(bx, by) = bezier2d (tail l) t
Propriedades e main:
      runBezier :: IO ()
      runBezier = play (InWindow "Bézier" (600,600) (0,0))
         black 50 initW picture actions tick
      runBezierSym :: IO ()
      runBezierSym = quickCheckWith (stdArgs \{ maxSize = 20, maxSuccess = 200 \}) prop\_bezier\_sym
    Compilação e execução dentro do interpretador:<sup>11</sup>
      main = runBezier
      run = do \{ system "ghc cp2021t"; system "./cp2021t" \}
```

¹¹Pode ser útil em testes envolvendo Gloss. Nesse caso, o teste em causa deve fazer parte de uma função *main*.

QuickCheck

Código para geração de testes:

```
instance Arbitrary\ UnOp\ where arbitrary\ =\ elements\ [Negate,E] instance Arbitrary\ BinOp\ where arbitrary\ =\ elements\ [Sum,Product] instance (Arbitrary\ a)\ \Rightarrow\ Arbitrary\ (ExpAr\ a)\ where arbitrary\ =\ do\ binop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp2\ \leftarrow\ arbitrary\ a\ \rightarrow\ arbitrar
```

Outras funções auxiliares

Lógicas:

```
 \begin{aligned} &\inf \mathbf{x} \mathbf{r} \ 0 \Rightarrow \\ (\Rightarrow) & :: (\mathit{Testable prop}) \Rightarrow (a \to \mathit{Bool}) \to (a \to \mathit{prop}) \to a \to \mathit{Property} \\ p \Rightarrow f = \lambda a \to p \ a \Rightarrow f \ a \\ &\inf \mathbf{x} \mathbf{r} \ 0 \Leftrightarrow \\ (\Leftrightarrow) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to a \to \mathit{Property} \\ p \Leftrightarrow f = \lambda a \to (p \ a \Rightarrow \mathit{property} \ (f \ a)) \ .\&\&. \ (f \ a \Rightarrow \mathit{property} \ (p \ a)) \\ &\inf \mathbf{x} \mathbf{r} \ 4 \equiv \\ (\equiv) & :: \mathit{Eq} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \equiv g = \lambda a \to f \ a \equiv g \ a \\ &\inf \mathbf{x} \mathbf{r} \ 4 \leqslant \\ (\leqslant) & :: \mathit{Ord} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \leqslant g = \lambda a \to f \ a \leqslant g \ a \\ &\inf \mathbf{x} \ 4 \land \\ (\land) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \\ f \land g = \lambda a \to ((f \ a) \land (g \ a)) \end{aligned}
```

D Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto, disgramas e/ou outras funções auxiliares que sejam necessárias.

Valoriza-se a escrita de pouco código que corresponda a soluções simples e elegantes.

Problema 1

São dadas:

```
\begin{array}{l} {\it cataExpAr} \ g = g \cdot {\it recExpAr} \ ({\it cataExpAr} \ g) \cdot {\it outExpAr} \\ {\it anaExpAr} \ g = inExpAr \cdot {\it recExpAr} \ ({\it anaExpAr} \ g) \cdot g \\ {\it hyloExpAr} \ h \ g = {\it cataExpAr} \ h \cdot {\it anaExpAr} \ g \end{array}
```

```
\begin{array}{l} eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a \\ eval\_exp \ a = cataExpAr \ (g\_eval\_exp \ a) \\ optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a \\ optmize\_eval \ a = hyloExpAr \ (gopt \ a) \ clean \\ sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a \\ sd = \pi_2 \cdot cataExpAr \ sd\_gen \\ ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a \\ ad \ v = \pi_2 \cdot cataExpAr \ (ad\_gen \ v) \end{array}
```

Definir:

A solução para outExpAr pode ser obtida através da igualdade $outExpAr \cdot inExpAr = id$:

```
outExpAr \cdot inExpAr = id
                      \{ Def-inExpAr \}
    \equiv
            outExpAr \cdot [X, num\_ops] = id
                      { Universal-+; Def-num_ops; Fusão-+ }
              \left\{ \begin{array}{l} \textit{outExpAr} \cdot \underline{X} = i_1 \\ \textit{outExpAr} \cdot [\textit{N}, \textit{ops}] = i_2 \end{array} \right. 
                     { Universal-+; Def-ops; Fusão-+ }
              \left\{ \begin{array}{l} \textit{outExpAr} \cdot \underline{X} = i_1 \\ \textit{outExpAr} \cdot \overline{N} = i_2 \cdot i_1 \\ \textit{outExpAr} \cdot \left[ \textit{bin}, \widehat{Un} \right] = i_2 \cdot i_2 \end{array} \right. 
                     { Universal-+; Fusão-+ }
              \begin{cases} outExpAr \cdot \underline{X} = i_1 \\ outExpAr \cdot \overline{N} = i_2 \cdot i_1 \\ outExpAr \cdot bin = i_2 \cdot i_2 \cdot i_1 \\ outExpAr \cdot \widehat{Un} = i_2 \cdot i_2 \cdot i_2 \end{cases} 
                     { Introdução de variáveis }
                  outExpAr X = i_1 ()
                   \begin{aligned} & outExpAr \; (N \; x) = i_2 \; (i_1 \; x) \\ & outExpAr \; (bin \; (op, (a, b))) = i_2 \; (i_2 \; (i_1 \; (op, (a, b)))) \\ & outExpAr \; (\widehat{Un} \; (x, y)) = i_2 \; (i_2 \; (i_2 \; (x, y))) \end{aligned} 
    \equiv
                      { Def-bin; Def-\hat{\cdot} }
outExpAr X = i_1 ()
outExpAr(N x) = i_2(i_1 x)
outExpAr\ (Bin\ op\ a\ b) = i_2\ (i_2\ (i_1\ (op,(a,b))))
outExpAr\ (Un\ x\ y) = i_2\ (i_2\ (i_2\ (x,y)))
recExpArf = id + (id + ((id \times (f \times f)) + (id \times f)))
g_{-}eval_{-}exp \ a = [\underline{a}, num_{-}ops]  where
    num\_ops = [id, ops]
    ops = [bina, \widehat{unar}]
    bina (Sum, par) = (+) par
    bina\ (Product, par) = \widehat{(*)}\ par
    unar\ Negate = negate
    unar\ E = expd
clean (Bin Product (N 0) b) = i_2 (i_1 0)
```

```
clean (Bin Product a (N 0)) = i_2 (i_1 0)
clean (Bin Product (N 1) b) = clean b
clean (Bin \ Product \ a \ (N \ 1)) = clean \ a
clean (Bin Sum (N 0) b) = clean b
clean (Bin Sum \ a \ (N \ 0)) = clean \ a
clean (Un Negate (Un Negate a)) = clean a
clean (Un\ E\ (N\ 0)) = i_2\ (i_1\ 1)
clean \ a = outExpAr \ a
gopt \ a = g_eval_exp \ a
sd\_gen :: Floating \ a \Rightarrow
  () + (a + ((BinOp, ((ExpAr\ a, ExpAr\ a), (ExpAr\ a, ExpAr\ a))) + (UnOp, (ExpAr\ a, ExpAr\ a))))
   \rightarrow (ExpAr\ a, ExpAr\ a)
sd\_gen = [(X, N \ 1), q] where
  q = [constante, ops]
  constante = \langle N \cdot id, N \cdot 0 \rangle
  ops = [binar, unar]
  unar(E,(x1,dx1)) = (Un E x1, Bin Product(Un E x1) dx1)
  unar\ (Negate, (x1, dx1)) = (Un\ Negate\ x1, Un\ Negate\ dx1)
  binar(Sum, ((x1, dx1), (x2, dx2))) = (Bin Sum x1 x2, Bin Sum dx1 dx2)
  binar x = (esq x, dir x)
  esq(Product,((x1,dx1),(x2,dx2))) = Bin Product x1 x2
  dir(Product,((x1,dx1),(x2,dx2))) = Bin Sum(Bin Product x1 dx2)(Bin Product dx1 x2)
ad\_gen\ v = [b, q] where
  b(v) = (v, 1)
  q = [constante, ops]
  constante x = (x, 0)
  ops = [binar, unar]
  binar(Sum,((x1,dx1),(x2,dx2))) = (x1 + x2, dx1 + dx2)
  binar (Product, ((x1, dx1), (x2, dx2))) = (x1 * x2, (x1 * dx2) + (dx1 * x2))
  unar\ (Negate, (x1, dx1)) = (-x1, -dx1)
  unar(E,(x1,dx1)) = (expd x1, dx1 * expd x1)
```

Problema 2

Definir

```
\begin{aligned} loop &= b \times d \text{ where} \\ succ2 &= (2+) \\ b &= \langle \mathsf{succ} \cdot \pi_1, mul \cdot (\mathsf{succ} \times id) \rangle \\ d &= \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, \mathsf{succ} \rangle \times id) \rangle \\ inic &= ((0,1), (0,1)) \\ prj \ ((s1, facN), (s2, fac2N)) &= fac2N \div (facN * (s1+1) * facN) \end{aligned} por forma a que cat = prj \cdot \text{for } loop \ inic \end{aligned}
```

seja a função pretendida. **NB**: usar divisão inteira. Apresentar de seguida a justificação da solução encontrada.

Justificação:

O valor de n! pode ser obtido pelas funções:

$$\begin{cases} facN \ 0 = 1 \\ facN \ (n+1) = s1 \ (n+1) * facN \ n \\ s1 \ 0 = 0 \\ s1 \ (n+1) = 1 + s1 \ n \end{cases}$$

```
{ Igualdade Extensional }
                                                \begin{cases} facN \cdot \mathsf{succ} &= mul \cdot (\mathsf{succ} \ \times id) \cdot \langle s1, facN \rangle \\ s1 \cdot zero &= zero \\ s1 \cdot \mathsf{succ} &= \mathsf{succ} \cdot \pi_1 \cdot \langle s1, facN \rangle \end{cases}
                                             \left\{ \begin{array}{l} \mathit{facN} \cdot \mathbf{in} = [\mathit{one}, \mathit{mul} \cdot (\mathit{succ} \times \mathit{id}) \cdot \langle \mathit{s1}, \mathit{facN} \rangle] \\ \mathit{s1} \cdot \mathbf{in} = [\mathit{zero}, \mathit{succ} \cdot \pi_1 \cdot \langle \mathit{s1}, \mathit{facN} \rangle] \end{array} \right.
                                                            { Absorção-+ }
                                             \left\{ \begin{array}{l} \mathit{facN} \cdot \mathbf{in} = [\mathit{one}, \mathit{mul} \cdot (\mathsf{succ} \, \times \mathit{id})] \cdot (\mathit{id} + \langle \mathit{s1}, \mathit{facN} \rangle) \\ \mathit{s1} \cdot \mathbf{in} = [\mathit{zero}, \mathsf{succ} \, \cdot \pi_1] \cdot (\mathit{id} + \langle \mathit{s1}, \mathit{facN} \rangle) \end{array} \right.
                                                             { Fokkinga }
                                            \langle s1, facN \rangle = (\langle [zero, succ \cdot \pi_1 \cdot \langle s1, facN \rangle], [one, mul \cdot (succ \times id) \cdot \langle s1, facN \rangle] \rangle)
                                                              { Lei da Troca }
                                            \langle s1, facN \rangle = ( [\langle zero, one \rangle, \langle succ \cdot \pi_1, mul \cdot (succ \times id) \rangle ] )
Este mesmo processo pode ser usado para obter (2n)!:
            (Usaremos uma auxiliar succ2 = (2+))
                                      \langle s2, fac2N \rangle = \langle [\langle zero, one \rangle, \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, succ \rangle \times id) \rangle] \rangle
Temos então:
                                              \{ \langle s1, facN \rangle = ( [\langle zero, one \rangle, \langle succ \cdot \pi_1, mul \cdot (succ \times id) \rangle ] ) \}
                                              \left\{\begin{array}{l} \langle s2, fac2N \rangle = ( [\langle zero, one \rangle, \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, \mathsf{succ} \, \rangle \times id) \rangle ] [ \rangle \right. \\ \end{array} \right.
                                               \left\{ \begin{array}{l} \langle \langle s1, facN \rangle, \langle s2, fac2N \rangle \rangle = \langle (\![[a,b]]\!], (\![[a,d]]\!] \rangle \\ a = \langle zero, one \rangle \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, \operatorname{succ} \rangle \times id) \rangle \end{array} \right.
                                                            { Banana-split }
                                             \left\{ \begin{array}{l} \langle \langle s1, facN \rangle, \langle s2, fac2N \rangle \rangle = (([a,b] \times [a,d]) \cdot \langle F \; \pi_1, F \; \pi_2 \rangle) \\ a = \langle zero, one \rangle \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, \operatorname{succ} \rangle \times id) \rangle \end{array} \right. 
                                                   { Absorção-x }
                                              \left\{ \begin{array}{l} \langle \langle s1, facN \rangle, \langle s2, fac2N \rangle \rangle = ( |\langle [a,b] \cdot F \ \pi_1, [a,d] \cdot F \ \pi_2 \rangle |) \\ a = \langle zero, one \rangle \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle succ2 \cdot \pi_1, mul \cdot (mul \cdot \langle succ2, \operatorname{succ} \rangle \times id) \rangle \end{array} \right. 
                                                             { Definição do functor de números naturais }
                                                     \langle\langle s1, facN\rangle, \langle s2, fac2N\rangle\rangle = (\![\langle [a,b]\cdot (id+\pi_1), [a,d]\cdot (id+\pi_2)\rangle)\!]
                                              \begin{cases} a = \langle zero, one \rangle \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle \operatorname{succ2} \cdot \pi_1, mul \cdot (mul \cdot \langle \operatorname{succ2}, \operatorname{succ} \rangle \times id) \rangle \end{cases}
                                                            { Absorção-+ }
                                                   \begin{split} &\langle\langle s1,facN\rangle,\langle s2,fac2N\rangle\rangle = (\![\langle [a,b\cdot\pi_1],[a,d\cdot\pi_2]\rangle)\!]\\ &a=\langle zero,one\rangle\\ &b=\langle \mathrm{succ}\cdot\pi_1,mul\cdot(\mathrm{succ}\times id)\rangle\\ &d=\langle succ2\cdot\pi_1,mul\cdot(mul\cdot\langle succ2,\mathrm{succ}\,\rangle\times id)\rangle \end{split}
```

```
 \equiv \qquad \{ \text{ Lei da Troca } \}   \left\{ \begin{array}{l} \langle \langle s1, facN \rangle, \langle s2, fac2N \rangle \rangle = ( [\langle a, a \rangle, \langle b \cdot \pi_1, d \cdot \pi_2 \rangle ] [ \rangle \\ a = \langle zero, one \rangle \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle \operatorname{succ2} \cdot \pi_1, mul \cdot (mul \cdot \langle \operatorname{succ2}, \operatorname{succ} \rangle \times id) \rangle \end{array} \right.   \equiv \qquad \{ \text{ Def-for } \}   \left\{ \begin{array}{l} \langle \langle s1, facN \rangle, \langle s2, fac2N \rangle \rangle = \operatorname{for} \langle b \cdot \pi_1, d \cdot \pi_2 \rangle \left( (0, 1), (0, 1) \right) \\ b = \langle \operatorname{succ} \cdot \pi_1, mul \cdot (\operatorname{succ} \times id) \rangle \\ d = \langle \operatorname{succ2} \cdot \pi_1, mul \cdot (\operatorname{mul} \cdot \langle \operatorname{succ2}, \operatorname{succ} \rangle \times id) \rangle \end{array} \right.
```

Daqui, podemos retirar que $loop = \langle b \cdot \pi_1, d \cdot \pi_2 \rangle = b \times d$ e inic = ((0,1), (0,1)).

Problema 3

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
calcLine\ l\ l2\ d = (\pi_1 \cdot (cataList\ (g\ d)) \cdot zip\ l)\ l2\ where
  g \ d = [b \ d, q]
  b\ d\ () = ([\,],d)
  q((a, b), (l, d)) = (linear1d \ a \ b \ d : l, d)
deCasteljau :: [NPoint] \rightarrow OverTime\ NPoint
deCasteljau\ l\ t = (hyloAlgForm\ t\ alg\ coalg)\ l\ {\bf where}
   coalg [x] = i_2((x, x), [])
  coalg [] = i_1 ()
  coalg (x : y : []) = i_2 ((x, y), [])
  coalg (x:y:t) = i_2((x,y), y:t)
  alg \ t = [nil, algAux \ t]
  algAux \ t \ ((x,y),r) = calcLine \ x \ y \ t : r
hyloAlqForm\ t\ alg\ coalg = (auxCasteljau\ t) \cdot hyloList\ (alg\ t)\ coalg\ {\bf where}
   auxCasteljau\ a\ [x] = x
  auxCasteljau\ a\ l = (hyloAlgForm\ a\ alg\ coalg)\ l
```

Problema 4

Solução para listas não vazias:

```
avg = \pi_1 \cdot avg\_aux avg\_aux = cataList \ [b, q] \ \mathbf{where} b \ () = (0, 0) q \ (x, (a, b)) = ((x + a * b) / (b + 1), b + 1)
```

Solução para árvores de tipo LTree:

```
avgLTree = \pi_1 \cdot (|gene|) where gene = [b, q] b = \langle id, \underline{1} \rangle q fs = (top fs / bottom fs, bottom fs) top (f1, f2) = (\widehat{*}) f1 + (\widehat{*}) f2 bottom = (\widehat{+}) \cdot (\pi_2 \times \pi_2)
```

Problema 5

Inserir em baixo o código F# desenvolvido, entre \begin {verbatim} e \end{verbatim}: module BTree open Cp // (1) Datatype Definition -----type BTree<'a> = Empty | Node of 'a * (BTree<'a> * BTree<'a>) let inBTree x = either (konst Empty) Node xlet outBTree x = match x with | Empty -> i1 () $| Node (a, (b1, b2)) \rightarrow i2 (a, (b1, b2))$ // (2) Ana + cata + hylo -----let baseBTree g f x = (id -|- (g >< (f >< f))) x let recBTree f x = (baseBTree id f) x // Isto é, id -|- (id < (f >< f)) let rec cataBTree a x = (a << (recBTree (cataBTree a)) << outBTree) xlet rec anaBTree a x = (inBTree << (recBTree (anaBTree a)) << a) xlet hyloBTree a c x = (cataBTree a << anaBTree c) x// (3) Map -----// instance Functor BTree // where fmap f = cataBTree (inBTree . baseBTree f id) let fmap f x = (cataBTree (inBTree << baseBTree f id)) x// (4) Examples ------// (4.1) Inversion (mirror) ----let invBTree x = cataBTree (inBTree << (id -|- (id >< swap))) x// (4.2) Counting ----let countBTree x = cataBTree (either zero (succ << uncurry (+) << p2)) x// (4.3) Serialization -----let inord x = let join (x,(1,r)) = 1 @ [x] @ rin either nil join x let inordt x = (cataBTree inord) xlet preord x = let join (x, (1,r)) = [x] @ 1 @ rin either nil join x

```
let preordt x = (cataBTree preord) x
let postordt x =
   let join (x,(1,r)) = 1 @ r @ [x]
   in (cataBTree (either nil join)) x
// (4.4) Quicksort -----
let rec part p x =
   match x with
   | [] -> ([],[])
   | (h::t) ->
      let (s,1) = part p t
      in if p h then (h::s,l) else (s,h::l)
let qsep x =
   match x with
   | [] -> i1 ()
   | (h::t) ->
      let y = part ((<) h) t
      in i2 (h,y)
let qSort x = (hyloBTree inord qsep) x
let cons a t = a::t
let union x y = x @ y
let traces x =
   let tunion (a,(1,r)) = (List.map (cons a) 1) @ (List.map (cons a) r)
   in cataBTree (either (konst [[]]) tunion) x
// (4.6) Towers of Hanoi ------
let present x = inord x
let strategy x =
   match x with
   | (d,0) -> i1 ()
   | (d,n) -> i2 ((n-1,d),((not d,n-1),(not d,n-1)))
let hanoi x = (hyloBTree present strategy) x
// (5) Depth and balancing (using mutual recursion) -----
let balDepth x =
   let h (a,((b1,b2),(d1,d2))) = (b1 && b2 && abs(d1-d2) <=1,1+max d1 d2)
      let f ((b1,d1),(b2,d2)) = ((b1,b2),(d1,d2))
          let g x = (either (konst (true, 1)) (h << (id >< f))) x
          in cataBTree g x
let balBTree x = (p1 \ll balDepth) x
let depthBTree x = (p2 \ll balDepth) x
```

// Fim do module BTree

Índice

```
\text{ET}_{E}X, 1
    bibtex, 2
    lhs2TeX, 1
    makeindex, 2
Cálculo de Programas, 1, 2, 5
    Material Pedagógico, 1
       BTree.hs, 8
       Cp.hs, 8
       LTree.hs, 8, 14
       Nat.hs, 8
Combinador "pointfree"
    cata, 8, 9
    either, 3, 8, 13, 14
Curvas de Bézier, 6, 7
Deep Learning), 3
DSL (linguaguem específica para domínio), 3
F#, 8, 14
Função
    \pi_1, 6, 9, 14
    \pi_2, 9, 13
    for, 6, 9, 14
    length, 8
    map, 11, 12
    uncurry, 3, 13, 14
Functor, 5, 11
Haskell, 1, 2, 8
    Gloss, 2, 11
    interpretador
       GĤCi, 2
    Literate Haskell, 1
    QuickCheck, 2
    Stack, 2
Números de Catalan, 6, 10
Números naturais (IN), 5, 6, 9
Programação
    dinâmica, 5
    literária, 1
Racionais, 7, 8, 10–12
U.Minho
    Departamento de Informática, 1
```

Referências

- [1] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [2] J.N. Oliveira. *Program Design by Calculation*, 2018. Draft of textbook in preparation. viii+297 pages. Informatics Department, University of Minho.