3. Übung Maß- und Wahrscheinlichkeitstheorie 1 SS2019

- 1. Es sei
 - (a) $\Omega = \mathbb{N}, \mathfrak{A} = \{A \subseteq \Omega : |A| < \infty \lor |A^C| < \infty\}, \ \mu_n(A) = \frac{1}{n}|A \cap \{1, \dots, n\}|.$
 - (b) $\Omega = \mathbb{N}, \mathfrak{A} = 2^{\mathfrak{N}}, \, \mu_n(A) = |A|/n.$

Zeigen Sie dass jeweils μ_n Maße auf \mathfrak{A} sind und dass für jedes $A \in \mathfrak{A}$ der Grenzwert $\mu(A) = \lim_n \mu_n(A)$ existiert, aber μ kein Maß ist.

- 2. \mathfrak{A} sei eine Sigmaalgebra, μ ein endlicher Inhalt auf \mathfrak{A} und $C \subseteq \Omega$, $C \notin \mathfrak{A}$. Zeigen Sie, dass μ zu einem Inhalt auf $\mathfrak{A}_{\sigma}(\mathfrak{A} \cup \{C\})$ fortgesetzt werden kann (setzen Sie $\mu(A \cap C) = \sup\{\mu(B) : B \subseteq A \cap C, B \in \mathfrak{A}\}$).
- 3. μ sei ein endliches Maß auf dem Sigmaring \Re .
 - (a) Zeigen Sie, dass μ beschränkt ist.
 - (b) Zeigen Sie, dass μ zu einem endlichen Maß auf der erzeugten Sigmaalgebra fortgesetzt werden kann (man muss dazu nur $\mu(\Omega)$ festlegen).
- 4. Die Mengen A, B, C in einem Wahrscheinlichkeitsraum erfüllen

$$\mu(A) = 0.7, \mu(B) = 0.6, \mu(C) = 0.5,$$

$$\mu(A \cap B) = 0.4, \mu(A \cap C) = 0.3, \mu(A \cap C) = 0.2, \mu(A \cap B \cap C) = 0.1.$$

Bestimmen Sie $\mu(A \cup B)$ und $\mu(A \cup B \cup C)$.

- 5. Drücken Sie $\mu(A\triangle B)$ und $\mu(A\triangle B\triangle C)$ mithilfe der Maße der Durchschnitte aus (á la Additionstheorem). Wie wird die allgemeine Formel (für n) Mengen aussehen?
- 6. $\mathfrak R$ sei ein Sigmaring über der Menge $\Omega,\,\mu$ ein Maß auf $\mathfrak R.$ Zeigen Sie, dass durch

$$\tilde{\mu}(A) = \sup \{ \mu(B) : B \in \mathfrak{R}, B \subset A \}$$

ein Maß auf $\mathfrak{A}(\mathfrak{R})$ (der von \mathfrak{R} erzeugten Sigmaalgebra) definiert wird.

- 7. Wir haben gesehen, dass das Urbild $f^{-1}(\mathfrak{C})$ wieder ein Ring (eine Algebra, ein Sigmaring, eine Sigmaalgebra) ist, wenn \mathfrak{C} ein Ring (eine Algebra, ein Sigmaring, eine Sigmaalgebra) ist. Es bleiben noch die Fragen
 - (a) Ist das Urbild eines monotonen Systems ein monotones System?
 - (b) Ist das Urbild eines Dynkinsystems ein Dynkinsystem?
 - (c) Ist das Urbild eines Semirings ein Semiring?