PRAYAS

FOR JEE 2022

TOPICS TO BE COVERED

Introduction

PERIODIC TABLE:

The arrangement of all the known elements according to their properties in such a way that the elements of similar properties are grouped together in tabular form is called periodic table.

DEVELOPMENT OF PERIODIC TABLE:

(a) LAVOISIER CLASSIFICATION:

- Lavoisier classified the elements simply in metals and non-metals.
- Metals are the one which have the tendency of losing the electrons.

$$M \longrightarrow M^{+} + e^{-}$$

Non-metals are the one which have the tendency of gaining the electrons.

Drawbacks or Limitations:

- (a) As the number of elements increased, this classification became insufficient for the study of elements.
- (b) There are few elements which have the properties of both metals as well as nonmetals and they are called metalloids. Lavoisier could not decide where to place the metalloids.

(B) PROUT'S HYPOTHESIS (Unitary theory):

He simply assumed that all the elements are made up of hydrogen, so can say that Atomic weight of element = $n \times (Atomic weight of one hydrogen atom)$

where n = number of hydrogen atom = 1, 2, 3,

Drawbacks or Limitations:

- (i) Every element cannot be formed by Hydrogen.
- (ii) Atomic weight of all elements were not found as the whole numbers.

Ex. Chlorine (atomic weight 35.5) and Strontium (atomic weight 87.6)

(C) DOBEREINER TRIAD RULE [1817]:

(i) He made groups of three elements having similar chemical properties called TRIAD.

Drawbacks or Limitations:

All the known elements could not be arranged as triads. It is not applicable for d and f-block elements.

Which of the following is not a dobereiner triad

Li, Na, K

Mg, Ca, Sr

Cl, Br, I

S, Se, Te

Sol. (B)

(D) NEWLAND'S OCTAVE. RULE [1865]

He arranged the elements in the increasing order of their atomic masses and observe that properties of every 8th element was similar to the 1st element (like in the case of musical vowels notation).

Drawbacks or Limitations:

- (a) This rule is valid only up to Ca, because after Ca due to presence of d-block elements there is difference of 18 elements instead of 8 element.
- (b) After the discovery of Inert gases and including them into the periodic table it becomes the 8th element from Alkali metal so this law had to be dropped out.

Na, K, Rb

F, Cl, Br

Be, Mg, Ca

B, AI, Ga

Sol. (C)

(E) LOTHER MEYER'S CURVE [1869]

 He plotted a curve between atomic weight and atomic volume of different elements.

Observations

- (a) Most electropositive elements i.e. alkali metals (Li, Na, K, Rb, Cs etc.) occupy the peak positions on the curve.
- ★ (b) Less electropositive i.e. alkaline earth metal (Be, Mg, Ca, Sr, Ba) occupy descending positions on the curve.
- (c) Metalloids (Si, As, Te, etc.) and transition metals occupy bottom part of curve.
- (d) Most electronegative i.e. halogens (F, Cl, Br, I) occupy the ascending positions on the curve.

(F) MENDELEEV'S PERIODIC TABLE [1869]:

	G	1		Ι	I	Π	I	I	V	'	V	1	/I	VII			VIII		0
P	S	A	В	Α	В	Α	В	Α	В	Α	В	A	В	Α	В				
I	1	Н																	He
п	2	Li		Be		В		С		N		O		F					Ne
ш	3	Na		Mg		Al	\bigvee_{\bullet}	Si		P		S		Cl					Ar
IV	4	K)		Ca		Á	(Sc)		Ti		V		Cr		Mn	Fe	(Co)	(Ni)	
i.	5		Cu		Zn	Ga	\subseteq	Ge		As		Se		Br					Kr
v	6	Rb		Sr			Y		Zr		Nb	6	Mo		(Tc)	Ru	Rh	Pd	
	7		Ag		Cd	In		Sn		Sb		(Te)		(I)					Xe
VI	8	Cs		Ba			La		Hf		Ta		W		Re	Os	Ir	Pt	
VI	9		Au		Hg	Tl		Pb		Bi		Po		At					Rn
VII	10	Fr		Ra			Ac												

Merits of Mendeleev's periodic table :

- (a) It was based on atomic weight.
- (b) 63 elements were known, noble gases were not discovered.
- (c) Horizontal rows were called <u>periods</u> and there were 7 periods in Mendeleev's Periodic table.
- (d) Vertical columns are called groups and there were 8 groups in Mendeleev's Periodic table.
- (e) Each group upto VII was divided into A & B.
- (f) Sub groups 'A' sub group element were called normal elements and 'B' sub group elements were called transition elements.
- (g) The VIII group was consisted of 9 elements in three rows (Transition metal group).
- (h) The elements belonging to same group exhibit similar properties.

Merits of Mendeleev's periodic table :

(a) Study of elements:

(b) Prediction of new elements:

(c) Correction of doubtful atomic weights:

Atomic weight = Valence \times Equivalent weight.

Sesqui

Demerits of Mendeleev's periodic table :

(a) Position of hydrogen:

(b) Position of isotopes:

(c) Anomalous pairs of elements:

Pt Au

VIE IB

(e) Unlike elements were placed in same group :

(f) It was not clear that 'lanthanides and Actinides' are related with IIIA groups or IIIB group.

MODERN PERIODIC TABLE (MODIFIED MENDELEEV PERIODIC TABLE):

- Modern periodic table is based on atomic number.
- (ii) Moseley did an experiment in which he bombarded high speed electron on different metal surface and obtained X-rays.

He found out that $\sqrt{v} \propto Z$ where

v = frequency of X-rays

Z = atomic number.

Extended or Long Form of the Periodic Table

LONG FORM / PRESENT FORM OF MODERN PERIODIC TABLE :

(It is also called as 'Bohr, Bury, Rang and Werner Periodic Table)

- (i) It is based on the Bohr-Bury electronic configuration concept and atomic number.
- (ii) This model is proposed by Rang & Werner
- (iii) 7 periods and 18 groups
- (iv) According to I. U. P. A. C. 18 vertical columns are named as 1st to 18th group.
- (v) Modern periodic law :

The physical & chemical properties of elements are the periodic function of their atomic number.

Description of Periods:

Period No.	Period Sub shell	No. of Elements	Element	Name of Period
1	1s	2	₁ H − ₂ He	Shortest
2	2s, 2p	8	₃ Li – ₁₀ Ne	Short
3	3s, 3p	8	₁₁ Na – ₁₈ Ar	Short
4	4s, 3d, 4p	18	₁₉ K – ₃₆ Kr	Long
5	5s, 4d, 5p	18	₃₇ Rb – ₅₄ Xe	Long
6	6s, 4f, 5d, 6p	32	₅₅ Cs – ₈₆ Rn	Longest
7	7s, 5f, 6d, 7p	26	₈₇ Fr – ₁₁₂ Uub	Longest

$$\frac{\text{fon odd}}{\frac{(n+1)^2}{4}} \times \frac{e}{2}$$

s-Block

- (a) The last electron enters in s-orbital, are called s-block elements.
- (b) s-orbital can accommodate a maximum of two electrons.
- (c) General electronic configuration is ns¹⁻² n = (1 to 7)
- (d) IA group elements are known as alkali metals because they react with water to form alkali.
- (e) IIA group elements are known as alkaline earth metals because their oxides react with water to form alkali and these are found in the soil or earth crust.
- (f) Radioactive elements Fr₈₇ and Ra₈₈
- (g) Gaseous elements H and He
- (h) Liquid elements- Cs & Fr.

(i) Notorious element

(j) Lightest element H

(k) Liquid element of radioactive nature Fr

(I) Elements kept in kerosene

IA group element

Total number of elements in s-block:

11

12

14 -

Sol. (D)

- (a) Last electron gets filled up in the p-orbital, called p-block elements.
- (b) General electronic configuration ns², np¹⁻⁶ (where n = 2 to 6)
- (c) p-subshell can accommodate a maximum of six electrons.
- (d) Therefore, p-block elements are divided into six groups which are IIIA, IVA, VA, VIA, VIIA and zero group.
- (e) The zero group elements having general electronic configuration ns² np⁶ are inert, because their octets are complete.

(13)	N N IVA (14)	VA (15)	VIA (16)	VIIA (17)	0 (18) 2 He 4.0026 Helium
5 B 10.811 Boron	6 C 12.011 Carbon	7 N 14.007 Nitrogen	8 O 15.999 Oxygen	9 F 18.998 Fluorine	Ne 20.180 Argon
13 Al 26.982 Aluminiu	Si 28.086 Silicon	15 P 30.974 Phosphorus	16 S 32.066 Sulphur	17 Cl 35.453 Chlorine	18 Ar 39.948 Argon
31 Ga 69.723 Gallium	Ge 72.61 Germanium	33 As 74.922 Arsenic	34 Se 78.96 Selenium	35 Br 79.904 Bromine	36 Kr 83.80 Krypton
49 In 114.82 Indium	50 Sn 118.71 Tin	Sb 121.76 antimony	52 Te 127.60 Tellurium	53 I 126.90 Iodine	54 Xe 131.29 Xenon
81 TI 204.38 Thallium	82 Pb 207.2 Lead	83 Bi 208.98 Bismuth	Po 208.98 Polonium	85 At 210 Astatine	86 Rn 222 Radon

- (e) Gaseous elements: N, O, He, Ne, Ar, Kr, Xe, Rn
- (f) Liquid elements: Ga, Br
- (g) Radio active: Po, At, Rn
- (h) Metalloid: Si, Ge, As, Sb, Se, Te
- (i) Oxidation state: equal or less than 2 to group number
- (j) Boron family : Icosagens

Carbon family: Crystallogens

Nitrogen family: Pnictogens

Oxygen family: Chalcogens

Halogen family: Halogens

Noble gas family: Aerogenes

(k) Best electricity conductor among non metals : graphite

$$Man OS = +8$$

$$Xe$$

$$U, DS, T \rightarrow +7$$

7 N 19 K POTASSIUM

39 YTTRIUM

7 NITROGEN

92 URANIUM