Brief instructions for md ar1

Måns Söderbom, University of Gothenburg September 2009

Blundell and Bond (2000) consider a panel data model of the following type:

$$y(it) = b*x(it) + e(it)$$

where

$$e(it) = rho*e(i,t-1) + v(it)$$

This can be re-written as

$$y(it) = b^*x(it) - rho^*b^*x(i,t-1) + rho^*y(i,t-1) + v(it)$$

or

(*)
$$y(it) = a1*x(it) + a2*x(i,t-1) + a3*y(i,t-1) + v(it)$$

The model generalizes in a straightforward way to a more general case with K x-variables.

Suppose you estimate equation (*) using some suitable linear estimator, e.g. OLS, 2SLS, Within or GMM. My STATA program md_ar1, can then be used to impose, and test the validity of, the common factor restrictions ex post, based on a minimum distance procedure.

Please note that the program is not as neat and tidy as it should: in particular, the user **MUST** make sure inputs in the freely estimated model are entered in the right order - namely x1(t) x1(t-1) x2(t) x2(t-1) ... y(t-1) controls. If you don't do it like this you will get **garbage**. Note also that the program will only work for an AR1 series.

Here is an illustration of how the program works:

First I load the file used by Blundell-Bond, 2002.

```
. use usbal89.dta, clear
```

I then estimate the production function freely using OLS (the md_ar1 routine will work for any underlying estimator):

```
. xi: reg y n l.n k l.k l.y i.year, robust cluster(id)
i.year __Iyear_1982-1989 (naturally coded; _Iyear_1982 omitted)
Linear regression
                                         Number of obs = 3563
                                         F( 11, 508) =75113.93
                                         Prob > F = 0.0000
R-squared = 0.9949
                                                 = .1426
                                         Root MSE
                          (Std. Err. adjusted for 509 clusters in id)
______
                     Robust.
              Coef. Std. Err.
                              t P>|t|
       у
                                          [95% Conf. Interval]
n |
      --. | .4789653 .0288963 16.58 0.000
L1. | -.4233997 .0305806 -13.85 0.000
                                          .4221944 .5357362
                                          -.4834797 -.3633198
```

k						
	.2348098	.0352859	6.65	0.000	.1654854	.3041341
L1.	2120621	.0347141	-6.11	0.000	280263	1438613
У						
L1.	.9216418	.0105283	87.54	0.000	.9009575	.9423261
_Iyear_1983	0356445	.0097659	-3.65	0.000	0548311	0164579
_Iyear_1984	.0304689	.0078524	3.88	0.000	.0150416	.0458962
_Iyear_1985	0229294	.0076409	-3.00	0.003	0379412	0079177
_Iyear_1986	0008055	.0091111	-0.09	0.930	0187056	.0170947
_Iyear_1987	.0411118	.0082566	4.98	0.000	.0248906	.0573331
_Iyear_1988	.0422808	.0077698	5.44	0.000	.0270159	.0575457
_Iyear_1989	(dropped)					
_cons	.2822485	.0342594	8.24	0.000	.2149409	.3495561

Note the <u>order</u> of inputs and the lagged dependent variable.

Now I can obtain the minimum distance estimates:

```
. md_ar1, nx(2) beta(e(b)) cov(e(V))
```

The syntax of md_ar1 is very simple: nx(.) indicates the number of inputs (2 in this case, capital & labour) beta(.) indicates the name of the parameter vector and cov(.) the name of the covariance matrix.

Results:

all[3,4]

	Coef	Std	t-value	Prob
n	.53815661	.02505872	21.475826	0
k	.26639143	.03181457	8.3732532	0
L.y	.9636204	.00638379	150.94804	0

Prob[COMFAC]: 0.00000

This replicates the results in the IFS working paper version of "GMM estimation with persistent panel data...", Blundell-Bond, 2002.

I suggest you try to replicate the other results in the Blundell-Bond paper, before using the program in your own analysis.