UVOD U METROLOGIJU

Merenje je nastalo kao rezultat potrebe za kvantitativnim karakterisanjem prirodnih pojava, a direktno je rezultat opažanja i potrebe za poredjenjema.

U anglosaksonskoj literaturi preovladjuje mišljenje da je do kvalitativne promene na relaciji POSMATRANJE – MERENJE došlo u 17. veku kada je Frensis Bekon (engleski filozof) rekao da se "bez mogućnosti ostvarenja kvantitativnih merenja, nauka neće razvijati".

Šta je Merenje?

MERENJE je skup eksperimentalnih postupaka koji imaju za cilj odredjivanje jedne veličine, ili

MERENJE je proces poredjenja vrednosti nepoznate veličine sa veličinom koja je uzeta za jedinicu mere.

Šta je Metrologija?

Nauka koja se bavi:

- metodama merenja pre svega fizičkih veličina,
- realizacijom i održavanjem etalona fizičkih veličina,
- razvojem i izradom mernih sredstava, i
- obradom i analizom izmerenih rezultata.

Metrologiju možemo podeliti na:

- 1. zakonsku metrologiju (regulativu),
- 2. industrijsku metrologiju, i
- 3. naučnu metrologiju.

Zakonska metrologija

Oblast koju reguliše država zakonima i propisima. Zakonska metrologija obezbedjuje: merno jedinstvo u zemlji, razvoj metrologije u skladu sa tehnološkim razvojem zemlje, povećanje kvaliteta roba i usluga, zaštitu potrošača u kupoprodajnim odnosima, i kontrolisanu zaštitu čovekove životne i radne sredine.

Industrijska metrologija

Oblast koja omogućuje da se industrijski i drugi proizvodi izradjuju u skladu sa medjunarodnim i regionalnim standardima.

Industrijska metrologija → standardizacija (CE, TÜV, ..), garantovanje kvaliteta (ISO).

Kvalitet proizvoda predstavlja skup osobina kojim se ostvaruje kvalitet rada i življenja → ocenjivanje kvaliteta je merenje karakteristika veličina.

Naučna metrologija

Oblast koja objedinjuje razvojni i naučno istraživački rad u oblasti metrologije, i koja uključuje merenje najveće tačnosti i preciznosti u metrološkim laboratorijama.

DEFINICIJE

Fizička veličina je osobina pojave, tela ili supstance koja može da se razlikuje kvalitativno i odredi kvantitativno.

Osnovna fizička veličina je dogovorena kao nezavisna od bilo koje druge veličine.

Izvedena fizička veličina se može definisati kao funkcija osnovnih veličina tog sistema.

DEFINICIJE

Merna jedinica je odredjena veličina, usvojena dogovorom, koja se koristi za kvantitativno izražavanje veličina iste dimenzije.

Oznaka merne jedinice je dogovoreni simbol kojim se označava merna jedinica.

Vrednost veličine je veličina izražena brojnom vrednošću i odgovarajućom jedinicom.

OSNOVNA VELIČINA	OSNOVNA MERNA JEDINICA	
	NAZIV	OZNAKA
VREME	SEKUND	S
DUŽINA	METAR	m
MASA	KILOGRAM	kg
ELEKTRIČNA STRUJA	AMPER	A
TEMPERATURA	KELVIN	K
SVETLOSNA JAČINA	KANDELA	Cd
KOLIČINA MATERIJE	MOL	mol
KOLIČINA MATERIJE	MOL	mol

Osnovne jedinice

Metar je dužina putanje koju u vakuumu predje svetlost za vreme od 1/299792458 sekunde. (1983)

Kilogram je jednak masi medjunarodnog prototipa kilograma. (1889)

Sekund je trajanje od 91192631770 perioda zračenja koje odgovara prelazu izmedju dva hiperfina nivoa osnovnog stanja atoma cezijuma 133. (1967)

Osnovne jedinice

Amper je jačina stalne struje koja, kad se održava u dva paralelna pravolinijska provodnika neograničene dužine, zanemarljivo malog poprečnog preseka koji se nalaze u vakuumu na medjudobnom rastojanju od 1 metar, proizvodi silu koja je jednaka 2·10-7 njutna po metru dužine. (1948)

Kelvin je 1/273.16 termodinamičke temperature trojne tačke vode. (1967)

Osnovne jedinice

Kandela je svetlosna jačina izvora koji u odredjenom pravcu, emituje monohromatsko zračenje frekvencije 0.540 mikrometara čija je energetska jačina u tom pravcu 1/683 vata po steradijanu. (1979)

Mol je količina materije sistema koja sadrži onoliko elementarnih jediniki koliko ima atoma u 0.012 kilograma ugljenika C_{12} . (1971)

Važan element merenja je PLANIRANJE:

- 1. Koje fizičke veličine treba da budu izmerene?
- 2. U kojim opsezima je potrebno meriti fizičke veličine od interesa?
- 3. U koliko mernih tačaka je potrebno meriti pojedine fizičke veličine, posmatrajući svaki merni opseg i svaku mernu tačku posebno?
- 4. Da li se potrebna merna oprema može komercijalno nabaviti, ili je potrebno da neki deo opreme ili pribora bude posebno izradjen za ovaj zadatak?
- 5. Koje su bezbednosne mere neophodne, ako je prisutna opasnost u toku merenja?
- 6. Da li su predvidjena merna sredstva kalibrisana od strane ovlašćene metrološke laboratorije?
- 7. Koji su finansijski izvori na raspologanju, i da li se troškovnik uklapa u budžet?

MERNA SREDSTVA

Merno sredstvo je aparat sa normiranim karakteristikama koje reprodukuju ili memorišu (čuvaju) jednu ili više mernih jedinica.

Merna sredstva se dele na:

- ·materijalizovane mere,
- •merne instrumente, i
- •merne pretvarače.

Materijalizovane mere su sredstva koja se koriste za reprodukovanje mernih jedinica – etaloni

Primeri: etalonski otpornik od $R = 1 \Omega$, Vestonov naponski element od U = 1.018 V, dekada otpora, i slično.

Karakteristike materijalizovanih mera su: robustnost kontrukcije, jednostavnost manipulacije i stabilnost u radu.

Za materijalizovane mere treba znati: nazivnu vrednost, stabilnost mere i referentne uslove merenja.

Merni instrumenti su aparati koji samostalno ili u sklopu sa drugim aparatima služe za merenje.

Merni instrumenti mogu biti pokazni (npr. ampermetar, vatmetar, termometar), ili registrujući ("grafije", memorije). Instrument može da prikazuje trenutnu vredost, kumultivnu (integrisanu) veličinu, i njen izvod (detektori "pika"), itd.

Prikazivanje ili memorisanje može biti analogno ili digitalno.

Merni pretvarači su aparati koji pretvaraju jedne fizičke veličine u druge, a namenjeni su merenju.

Merni uređaji – merni instrumenti i merni pretvarači

UPOTREBNE KARAKTERISTIKE MERNIH SREDSTAVA

Normalni uslovi odredjuju granice merene veličine i uticajnih veličina unutar kojih se može primeniti merni uredjaj.

Granični uslovi su ekstremni uslovi koje uređaj može da izdrži bez degradacije uređaja.

Referentni uslovi su tačno zadati uslovi u kojima se mora obaviti merenje – baždarenje.

MERNI OPSEG I RASPON

Merni opseg je skup vrednosti merne veličine za koje je greška merenja unutar dozvoljenih granica (npr. voltmetar koji meri od 0 do 100 V, ampermetar koji meri od 0 do 10 mA).

STATIČKE KARAKTERISTIKE

- 1. TAČNOST
- 2. PRECIZNOST
- 3. REZOLUCIJA
- 4. LINEARNOST
- 5. OSETLJIVOST

- 6. POKRETLJIVOST
- 7. STABILNOST
- 8. PONOVLJIVOST
- 9. HISTEREZIS

- 1) Tačnost je stepen slaganja pokazivanja mernog uređaja sa stvarnom vrednošću merene veličine. Određuje se testiranjem uređaja sa etalonima, pri tačno definisanim uslovima, velik broj puta. Tačnost je definisana najvećom ostvarenom greškom.
- 2) Preciznost ponovljivost je sposobnost da uređaj pokazuje vrednosti koje su medjusobno bliske ili iste. Način koji na najbolji način pokazuje preciznost je standardna devijacija. Standardna devijacija je statistička mera ponovljivosti merenja i definiše se kao

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{N} (x_i - x_i)^2}$$

Važno je razlikovati preciznost od tačnosti:

TAČNO i PRECIZNO

NETAČNO i PRECIZNO TAČNO i NEPRECIZNO NETAČNO i NEPRECIZNO 3) Razlaganje - rezolucija mernog uređaja je sposobnost razlikovanja bliskih vrednosti. Ako se radi o uređaju sa analognom indikacijom onda je najmanji podeok moć razlaganja, a ako se radi o digitalnom očitavanju, tada je jedinica poslednje cifre karakteristika razlaganja.

Potrebno je uvek definisati razlaganje u odnosu na opseg merenja, npr. 1 μV u odnosu na U=1.35 V. Često se taj odnos definiše kao odnos najmanje mere i opsega instrumenta, odnosno skretanja pune skale u procentima. Kada se radi o digitalnom instrumentu tada je od interesa jedinica poslednje cifre u odnosu na broj cifara.

4) Linearnost je mera odstupanja statičke karakteristike mernog uređaja od idealne prave.

Statička karakteristika je kriva koja prikazuje vezu između merene veličine i pokazivanja uređaja u ustaljenom stanju.

Kvalitetni uredjaji moraju da budu linearni, i kod njih ne sme da zavisi izlazni signal od opsega u kome se meri.

Greška linearnosti se odredjuje maksimalnim odstupanjem od optimalne prave. Greška linearnosti se definiše kao

$$G_i = \frac{\max / y_i - (a x_i + b)}{y_{\text{max}}} * 100$$

U poslednjoj jednačini je y_i izmerena i-ta vrednost za x_i ulaz, y_{max} najveća vrednost izlaza koja može da se izmeri uredjajem, a a i b nagib i odsečak optimalne prave.

Optimalna prava (linearna regresija) se dobija izračunavanjem parametara (nagib *a* i odsečak *b*) koristeći metod najmanje kvadratne greške (least square method - LSM):

$$\min \sum_{i=1}^{N} \varepsilon_i = \min \sum_{i=1}^{N} [y_i - (a_{x_i} + b)]^2$$

5. Osetljivost mernog sistema

Osetljivost mernog sistema ili uredjaja se dobija iz: $K = \frac{\Delta y}{\Delta x}$

Osetljivost može da bude konstantna (linearni sistem) ili da zavisi od veličine merne veličine. U drugom slučaju osetljivost sistema je promenljiva (desni dijagram). Npr., ako sistem ima prenosne "kvadratne" karakteristike, onda je oseljivost kriva linearno promenljiva, tj. kriva prvog reda.

6) Pokretljivost mernog sistema. Pokretljivost mernog sistema je odredjena pragom, odnosno veličinom promene ulaznog signala koja će dovesti do inicijalnog pomeraja. Može se odrediti na osnovu razlaganja za najmanji merni opseg. Za digitalni uređaj, na primer, koji meri napon sa četiri cifre imamo

100mV*1/10000 = 0.01mV

7) Stabilnost. Stabilnost mernog uređaja se definiše u odnosu na razne promene, ali se pre svega odnosi na promene u vremenu.

Govorimo o dugotrajnim greškama stabilnosti, npr. $2x10^{-8}$ godišnje, a i kratkotrajnim greškama, npr, $1x10^{-10}$ na 10 sekundi.

8) Histerezis

Histerezis je pojava koja dovodi do neponovljivog pokazivanja uređaja u zavisnosti od načina promena ulazne veličine pri merenju. Može da dovede do toga da pri povećanju ulazne veličine imamo veća pokazivanja u odnosu na pokazivaja koja dobijamo kada se smanjuje ulazna veličina ili da pri povećanju ulazne veličine imamo manja pokazivanja u odnosu na pokazivaja koja dobijamo kada se smanjuje ulazna veličina (kao što je to prikazano na slici). Mera histerezisa je maksimalna razlika izlaznih vrednosti koje se dobijaju za istu ulaznu vrednost.

$$G_H = \frac{y_g - y_d}{y_{\text{max}}} * 100$$

$$G_H = \frac{y_g - y_d}{y_{\text{max}}} * 100$$

DINAMIČKE KARAKTERISTIKE MERNIH UREĐAJA

Model uređaja, tj. matematički izraz koji povezuje ulaz i izlaz se može aproksimirati linearnom kombinacijom izvoda ulaznog i izlaznog signala:

$$\sum_{i=0}^n a_i \frac{d^i \mathcal{Y}}{dt^i} = \sum_{j=0}^m b_j \frac{d^j \mathcal{X}}{dt^j}, \quad n \ge m$$

Red n odredjuje red funkcije prenosa merenja.

Za n = 0 dobijamo nulti red tj.

$$y = \frac{b_0}{a_0}x$$

i koeficijent b₀/a₀ se naziva statička osetljivost.

y je izlaz, tj. prikazana veličina, a x je ulaz, tj. merena veličina

Ako je red n=1, dobijamo funkciju prenosa prvog reda, i ona daje

 $\left| \frac{a_1}{a_0} \frac{dy}{dt} + y = \frac{b_0}{a_0} x \right|$

Ista jednačina se može napisati i u obliku

$$K = b_o / a_o, \tau = a_1 / a_o$$

$$\tau y' + y = K x$$

$$y = K X h(t)(1 - e^{-t/\tau}), za x = X h(t)$$

y je izlaz, tj. prikazana veličina, a x je ulaz, tj. merena veličina

$$y = K X h(t)(1 - e^{-t/\tau}), za x = X h(t)$$

Za vrednost n=2, posmatramo sistem drugog reda (vrlo čest slučaj pri merenjima), i imamo (sistem drugog reda se može modelirati kao električno kolo prikazano na slici).

y je izlaz, tj.
prikazana veličina, a
x je ulaz, tj. merena
veličina

$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = b_0 x$$

$$a_{2} \frac{d^{2} y}{dt^{2}} + a_{1} \frac{dy}{dt} + a_{0} y = b_{0} x$$

$$|\omega_n|^2 = a_o / a_2, \zeta = a_1 / 2a_o a_2$$

$$y'' + 2\zeta \omega_n y' + \omega_n^2 y = K \omega_n^2 x$$

Frekvencijska karakteristika sistema

