### Лабораторная работа 3

**Цель работы:** Целью лабораторной работы является экспериментальное исследование характеристик эквивалентного источника напряжения, анализ поведения тока, напряжения и мощности в зависимости от сопротивления нагрузки, изучение особенностей параллельного соединения источников ЭДС, а также наблюдение и количественное описание процессов заряда и разряда конденсатора в RC-цепи.

## Задание 1. Эквивалентный источник и характеристика нагрузки



Рис. 1: Схема для измерения характеристик эквивалентного источника

Таблица 1: Результаты измерений и расчётов зависимости нагрузочного тока, напряжения и мощности от нагрузки  $R_H$  (табл. 3.1).

|               |      |       |       |           |           |       | ,         |       |
|---------------|------|-------|-------|-----------|-----------|-------|-----------|-------|
| $R_H, \Omega$ | 0    | 6,9   | 13,2  | 22        | 33        | 43    | 55        | 65    |
| $U_H$ , V     | 0    | 0,45  | 0,72  | 1,18      | 0,96      | 1,30  | 1,40      | 1,47  |
| $I_H$ , mA    | 85,3 | 66,2  | 54,5  | 35,1      | 44,2      | 29,8  | 25,3      | 22,5  |
| P, mW         | 0    | 29,79 | 39,24 | $41,\!42$ | $42,\!43$ | 38,74 | $35,\!42$ | 33,08 |



Рис. 2: Зависимость  $I_H = f(R_H)$ 



Рис. 3: Зависимость  $U_H = f(R_H)$ 



Рис. 4: Зависимость мощности  $P = f(R_H)$ 

# Задание 2. Параллельное соединение источников напряжения



Рис. 5: Схема параллельного соединения двух источников ЭДС

Таблица 2: Сравнение экспериментальных и расчётных величин при параллельном соединении

| ом оосдинении                                                                           |                                                    |           |            |              |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------------|-----------|------------|--------------|--|--|--|--|--|--|--|
| Опыт                                                                                    | Величина                                           | Измерено  | Рассчитано | $\delta$ , % |  |  |  |  |  |  |  |
| Эксп. 1, холостой ход $(E_1 = E_2 = 12 \ B)$                                            |                                                    |           |            |              |  |  |  |  |  |  |  |
|                                                                                         | $E_{\text{экв}}, B$                                | 11,80     | 12,00      | 1,67         |  |  |  |  |  |  |  |
|                                                                                         | $I_0$ , мА                                         | 0,018     | 0          | _            |  |  |  |  |  |  |  |
| Эксп. $\overline{1, \text{ нагрузка } (R_H = 100 \ \Omega, \ E_1 = E_2 = 15{,}16 \ B)}$ |                                                    |           |            |              |  |  |  |  |  |  |  |
|                                                                                         | $U_{12},  {\bf B}$                                 | $13,\!35$ | 13,70      | $2,\!55$     |  |  |  |  |  |  |  |
|                                                                                         | $I_H$ , м $A$                                      | 133,0     | 136,6      | 2,64         |  |  |  |  |  |  |  |
|                                                                                         | $I_1$ , MA                                         | 70,0      | 68,29      | 2,50         |  |  |  |  |  |  |  |
|                                                                                         | $I_2$ , мА                                         | 79,0      | 68,29      | 15,6         |  |  |  |  |  |  |  |
| Эксп. $\overline{2, \ xолостой \ xod \ (E_1 = 15,16 \ B, \ E_2 = 12 \ B)}$              |                                                    |           |            |              |  |  |  |  |  |  |  |
|                                                                                         | $E_{\scriptscriptstyle \mathfrak{PKB}},\mathrm{B}$ | 13,28     | 13,58      | 2,21         |  |  |  |  |  |  |  |
|                                                                                         | $I_0$ , мА                                         | 0,0056    | 0          | _            |  |  |  |  |  |  |  |
| Эксп. $2$ , нагрузка $(R_H = 100 \ \Omega)$                                             |                                                    |           |            |              |  |  |  |  |  |  |  |
|                                                                                         | $U_{12},  {\rm B}$                                 | 12,10     | 12,23      | 1,06         |  |  |  |  |  |  |  |
|                                                                                         | $I_H$ , м $A$                                      | 119,3     | 122,3      | 2,45         |  |  |  |  |  |  |  |
|                                                                                         | $I_1$ , mA                                         | 130,1     | 132,99     | 2,17         |  |  |  |  |  |  |  |
|                                                                                         | $I_2$ , мА                                         | 10,1      | 10,65      | $5,\!16$     |  |  |  |  |  |  |  |
|                                                                                         |                                                    |           |            |              |  |  |  |  |  |  |  |

### Расчёты величин:

• 
$$R_{\text{BH}1} = R_{\text{BH}2} = 22~\Omega \Rightarrow R_{\text{B 9KB}} = 11~\Omega$$

- Эксперимент 1, холостой ход:  $E_{\text{экв}} = 12 \text{ B}, I_0 = 0 \text{ мA}$
- Эксперимент 1, нагрузка:

$$-I_H = \frac{15,16}{111} = 136,6 \text{ мA}$$
 
$$-U_{12} = 15,16 - 136,6 \cdot 0,011 = 13,70 \text{ B}$$
 
$$-I_1 = I_2 = \frac{15,16-13,70}{22} = 68,29 \text{ мA}$$

- Эксперимент 2, нагрузка:

$$-I_H=rac{13,58}{111}=122,3$$
 мА 
$$-U_{12}=13,58-122,3\cdot0,011=12,23~\mathrm{B}$$
 
$$-I_1=rac{15,16-12,23}{22}=132,99~\mathrm{мA}$$
 
$$-I_2=rac{12-12,23}{22}pprox-10,45~\mathrm{мA}$$
 (по модулю 10,65 мА в таблице)

#### Расчёты погрешностей:

• Эксперимент 1, холостой ход:

$$-\delta(E_{\text{экв}}) = \frac{|11,80-12,00|}{12,00} \cdot 100\% = 1,67\%$$
  
 $-\delta(I_0)$ : не определено (деление на 0)

• Эксперимент 1, нагрузка:

$$-\delta(U_{12}) = \frac{|13,35-13,70|}{13,70} \cdot 100\% = 2,55\%$$

$$-\delta(I_H) = \frac{|133-136,6|}{136,6} \cdot 100\% = 2,64\%$$

$$-\delta(I_1) = \frac{|70-68,29|}{68,29} \cdot 100\% = 2,50\%$$

$$-\delta(I_2) = \frac{|79-68,29|}{68,29} \cdot 100\% = 15,6\%$$

• Эксперимент 2, холостой ход:

$$-\delta(E_{\text{экв}}) = \frac{|13,28-13,58|}{13,58} \cdot 100\% = 2,21\%$$
  
 $-\delta(I_0)$ : не определено (деление на 0)

• Эксперимент 2, нагрузка:

$$-\delta(U_{12}) = \frac{|12,10-12,23|}{12,23} \cdot 100\% = 1,06\%$$

$$-\delta(I_H) = \frac{|119,3-122,3|}{122,3} \cdot 100\% = 2,45\%$$

$$-\delta(I_1) = \frac{|130,1-132,99|}{132,99} \cdot 100\% = 2,17\%$$

$$-\delta(I_2) = \frac{|10,1-10,65|}{10.65} \cdot 100\% = 5,16\%$$

# Задание 3. Процессы заряда и разряда конденсатора



Рис. 6: Схема для исследования процессов заряда и разряда конденсатора (рис. 3.12)



Рис. 7: Осциллограммы напряжения и тока в цепи RC (рис. 3.13)

### Экспериментальное определение параметров:

- Постоянная времени  $\tau = 1,1$  мс (по графику).
- Мгновенное значение  $u_C$  через t = 0.5 мс:  $u_C(0.5) = 5.8$  В.

#### Расчётные значения:

- $R=1~{\rm k}\Omega=1000~\Omega,~C=\frac{\tau}{R}=\frac{1,1\cdot 10^{-3}}{1000}=1,1\cdot 10^{-6}~\Phi=1,1~\mu\Phi$
- $u_C(t) = Ue^{-t/\tau} = 10 \cdot e^{-0.5/1.1} \approx 6.5 \text{ B}$

**Вывод:** В результате лабораторной работы установлено, что характеристики источника зависят от сопротивления нагрузки, распределение токов при параллельном соединении источников определяется их внутренними сопротивлениями, а процессы заряда и разряда конденсатора подчиняются экспоненциальному закону, причём экспериментальные данные хорошо согласуются с теоретическими расчётами.