

A Spherical Hidden Markov Model for Semantics-Rich Human Mobility Modeling

Wanzheng Zhu (WZ)*, Chao Zhang*, Shuochao Yao, Xiaobin Gao, Jiawei Han

University of Illinois, at Urbana-Champaign wz6@illinois.edu

Human Mobility Modeling – Problem Description

Input

Human Trace Data: Twitter

Fri Aug 01 00:00:30 CDT 2014

33.982552, -118.309053

Text

absolutely loved guardian galaxyI absolutely loved Guardians of the Galaxy

Output

Mobility Modeling

Pattern Discovery

- **Understanding Human Movement**
- Next Location Prediction
- Traffic Scheduling
- **Urban Planning**
- **Activity Recommendation**

What & When are people's activities at different regions? **How & Why** do people move from one region to another?

Human Mobility Modeling – Related Works

Pattern-based Methods

Discovering specific mobility patterns that occur frequently

- Frequent Sequential Patterns
- Co-location Patterns
- Periodic Patterns

Model-based Methods

Statistical models – fitting data into the model.

- Hidden Markov Models
- Continuous-time Random-walk Models
- Periodicity Underlying Human Movement

Most previous works do NOT consider **TEXT** information!

Previous State-of-the-art work: GMove (Zhang et al. 2016a)

Model Description (HMM + VMF)

The vMF Distribution

Intuition:

- Word embeddings are on the surface of a unit hypersphere
- The Von Mises-Fisher (vMF) distribution is well suited for unit-length directional data with different concentration levels.

Interesting States

Dataset: ~30K Tweets in LA, from Aug/01/2014 to Nov/30/2014

Interesting Patterns:

- A: LA Airport/Flights → Restaurants in LA
- B: Beach Activities → Leisure Activities
- C: Food → Concert/ Show

The vMF Distribution – Parameter Inference

How to update the HMM parameters?

M-step of the EM algorithm:

$$\theta \coloneqq argmax_{\theta} \sum_{i} \sum_{z_{i}} Q_{i}(z_{i}) \log p(m_{i}, z_{i} | \theta)$$

Very complicated math expression

$$f_p(x;\mu,\kappa) = \frac{\kappa^{p/2-1}}{(2\pi)^{p/2} I_{p/2-1}(\kappa)} exp(\kappa \mu^T x)$$

Modified Bessel Function:
$$I_{p/2-1} = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+p/2)} \left(\frac{x}{2}\right)^{2m+p/2-1}$$

Theoretical Contribution of the vMF distribution

There is **no closed form solution** for updating κ in the M-step.

Existence: There exists one unique κ to maximize the M-step.

By the intermediate value theorem

Feasibility: *Newton's method* is guaranteed to converge to the optimal κ .

- By its *concavity* property
- Quadratic convergence rate

Simulation: Synthetic data

Results – Next Location Prediction

Dataset: ~30k *Tweets* in LA, from Aug/01/2014 to Nov/30/2014

Dataset: ~42k Tweets in NYC, from Aug/01/2014 to Nov/30/2014

Accuracy Improvement: ~3.2%

Contributions and Conclusion

Theory

Existence

HMM + VMF

EM + VMF

Feasibility

Thank you!

A Spherical Hidden Markov Model for Semantics-Rich Human Mobility Modeling

Wanzheng Zhu (WZ)

wz6@illinois.edu

Code & Data & Paper & Presentation:

https://github.com/WanzhengZhu/SHMM