

SEARCHING FOR BEST MINIMUM DISTANCE CODES UNDER A PAC CODE FRAMEWORK

Murad Abdullah^{1,2,*}, Student Member, IEEE and Wai Ho Mow¹, Senior Member, IEEE

mabdullah@connect.ust.hk

¹ Dept. of ECE, The Hong Kong University of Science and Technology (HKUST)

² HKUST (GZ), Guangzhou, China

Motivation

Recently, Arikan proposed polarization-adjusted convolutional (PAC) codes^[1]

- An extension of the capacity-achieving polar codes.
- (128,64) PAC code can perform close to Polyanskiy-Poor-Verdú (PPV) bound in the Gaussian channel in the low-tomoderate signal-to-noise (SNR) regime.

Maximizing minimum distance d_{min} of the code can lead to near optimal performance of the code in the moderate-to-high SNR regime. In this work, we revisit the best d_{min} code search problem under the PAC code framework.

Problem Statement

Two important parameters for the (N, K) PAC codes are:

- Rate profile \mathcal{A} : Contains the K indices of the bit-channels, $\binom{N}{K}$ possible \mathcal{A} .
- Convolutional Transform \vec{c} : Convolutional transform of the constraint length m, 2^{N-1} possible \vec{c} .

Finding \mathcal{A} and \vec{c} to maximize the d_{min} of the PAC code and minimizing $A_{d_{min}}$ (# no. of codewords of Hamming weight d_{min}).

Proposed Solution

The stated problem has two difficulties:

- Search space of the size $\binom{N}{K} 2^{N-1}$: Simulated annealing (SA) is used to efficiently explore part of the search space.
- d_{min} computation: Computing the d_{min} of the code is NP-hard in general except for the small (N, K) codes. Graphics processing unit (GPU) uses the inherent parallelism offered by this task to efficiently compute d_{min} for limited N & K.

Proposed Algorithm

Our search algorithm is outlined as follows:

- 1. Randomly generate \mathcal{A} and \vec{c} with the population size of 20 having 5 neighbors each.
- 2. Find the generator matrices of the codes depending upon \mathcal{A} and \vec{c} , and compute the d_{min} on GPU.
- 3. Keep all those \mathcal{A} and \vec{c} leading to improved d_{min} .
- 4. With probability $e^{-(\Delta E/T)}$, keep all those \mathcal{A} and \vec{c} for which d_{min} did not improve, where ΔE is the difference in the energies of the current solution and previous one and T is the temperature used in SA.

Searched Best- d_{min} Codes with Smaller $A_{d_{min}}$

From the truncated union bound of the frame error rate (FER) under

maximum-likelihood decoding (MLD), $P_e^{MLD} \approx A_{d_{min}} \mathcal{Q}\left(\sqrt{\frac{2d_{min}RE_b}{N_o}}\right)$ §.

Given the same d_{min} , the code with smaller value of $A_{d_{min}}$ should perform better.

- Newly found codes have significantly smaller values of $A_{d_{min}}$ as illustrated in Table 1.
- (64, 32 12) PAC code shows 0.29 dB gap from PPV bound at the FER of 10^{-4} , which improves over the best known gap by 0.36 dB as shown in Figure 1.

Table 1. Comparison of our newly found codes with best- d_{min} codes^[2].

Error coefficients $A_{d_{min}}$	
Best- d_{min} code ^[2]	Newly found PAC code
237	170
543	110
12878	720
	Best- d_{min} code ^[2] 237 543

Figure 1. Performance comparison of newly found codes with best- d_{min} codes over the binary input AWGN channel under the A* MLD^[3].

Efficiency of the Proposed Algorithm

• For the (64,32,12) code the search space is the order of the 10^{37} , while our algorithm found the best solution only by exploring the 10^7 possible solutions.

Table 2. Runtime comparison of the d_{min} computation.

(N, K, d_{min})	\mathbf{GPU}^{\dagger}	\mathbf{CPU}^{\ddagger}	
(64,32,12)	< 2 seconds	> 5 hours	
*Intel(R) Xeon(R) Gold 6242R @ 3.10 GHz.			

References

- [1] Arıkan, Erdal. "From sequential decoding to channel polarization and back again." arXiv preprint arXiv:1908.09594 (2019).
- [2] M. Grassl, "Bounds on the minimum distance of linear codes and quantum codes," Online available at http://www.codetables.de, 2007,
- [3] L. Ekroot and S. Dolinar, "A* decoding of block codes," IEEE Transactions on Communications, vol. 44, no. 9, pp. 1052-1056, Sept. 1996

Acknowledgements

The work was supported by the Hong Kong Research Grants Council under project no. GRF 16233816.