Código de test de las IRQ en el P1

```
formato aritméticas:
       ADD RD, RS, RT
formato lw, sw, beq:
       LW RT, INM(RS)
       SW RT, INM(RS)
       BEQ RS, RT
Contenido Memoria Datos: [256, 1, 8, Nint (0 al empezar), 0, 0, 0, 0, 0...]
Pseudo-código
       const int sp init = 256;
       const int one = 1;
       const int eight = 8;
       volatile static int Nint =0;
       void main(){
               register int R1;
               Print(sp_init); // Escribe un entero en el registro de salida
               while(1) {R1=2*R1;}}
       void RTI (void) __irq { //_irq indica que es una excepción y que hay que
```

Print(Nint);} // Escribe un entero en el registro de salida

void Abort (void) __abort{//_abort indica que es una excepción y que hay

void UNDEF (void) __undef {//_undef indica que es una excepción y que hay

Valores finales

r1=1,2,4,8,16.... Mem(C)= 0,1,2,3,4.....

while(1){};}

while(1){};}

Reset	@0x0	10210003	beq R1, R1, INI;	Se salta siempre a la @16 donde empieza el programa (@0x8)	
IRO	@0x4	1021003E	beg R1, R1, RTI;	Se salta siempre a la @64*4	
DAbort	@0x8	1021005D	beq R1, R1, RT_Abort;	, 1	
UNDEF	@0xC	1021006C	beq R1, R1, RT_UNDEF;		
INI:	@0×10	081F0000	LW R31, 0(R0)	R31=Mem(0)=256; $R31$ es el puntero de pila (SP)	
		08010004	LW R1, 4(R0)	R1=Mem(4)=1;	
		83E00000	WRO R31	IO_output <= R1	
Main		04210800	ADD R1, R1, R1	R1=2*R1	
		1021FFFE	beq R1, R1, main	Bucle infinito. Solo se sale si hay una IRQ	
RTI:	@0x100	0FE10000	SW R1, 0(R31)	Guardamos el contenido de R1 en pila	
		0FE20004	SW R2, 4(R31)	Guardamos el contenido de R2 en pila	
		08010008	LW R1, 8(R0)	RI=Mem(8)=8;	
		07E1F800	ADD r31, R1, R31	R31=R31 +8; Incrementamos el SP	
		0802000C	LW R2, C(R0)	R2=Mem(C) En esta posición de memoria contabilizamos el número de int (Nint)	

// que generar el prólogo y epílogo adecuado

// que generar el prólogo y epílogo adecuado

// que generar el prólogo y epílogo adecuado

		08010004	LW R1, 4(R0)	R1=Mem(4)=1;
		04221000	ADD R2, R1, R2	R2 = Nint + +
		80400000	WRO R2	$IO_output <= R2$
		0C02000C	SW R2, C(R0)	Mem(C) = Nint++
		08010008	LW R1, 8(R0)	R1=Mem(8)=8;
		07E1F801	SUB r31, R31,R1	SP=SP-8
		0BE10000	LW R1, 0(R31)	Restauramos el contenido de R1 de pila
		0BE20004	LW R2, 4(R31)	Restauramos el contenido de R2 de pila
		20000000	rte	Se vuelve a la instrucción que se interrumpió
RT_Abort	@0x180	1000FFFF	beq R0, R0, RT_Abort	
RT_UNDEF	bucleU	1000FFFF	beq R0, R0, RT_UNDEF	