Problem A. Florencia y los laberintos

Time limit 2000 ms **Mem limit** 262144 kB

A Florencia le encantan los laberintos cuadriculados. Un laberinto cuadriculado de $n \times m$ es una grilla rectangular donde cada celda está vacía o es una muralla. Puedes moverte de una celda a otra si ambas están vacías y comparten un lado.

Florencia dibujó un laberinto cuadriculado donde todas las celdas vacías forman un área conectada, lo que significa que puedes llegar desde cualquier celda vacía a otra. A Florencia no le gusta cuando un laberinto tiene muy pocas murallas, así que quiere convertir k celdas vacías en murallas de forma que todas las celdas vacías restantes sigan formando un área conectada.

Entrada

La primera línea contiene tres enteros n, m y k ($1 \le n, m \le 500, 0 \le k < s$), donde n y m son la altura y ancho del laberinto, k es la cantidad de celdas vacías que hay que convertir en murallas y s representa la cantidad de celdas vacías en el laberinto original.

Cada una de las siguientes n líneas contiene m caracteres, describiendo el laberinto. Un . indica una celda vacía, mientras que un # indica una muralla.

Salida

Imprime n líneas conteniendo m caracteres cada una, describiendo el laberinto que cumple los requisitos de Florencia. Marca las celdas vacías que transformaste en murallas con una X , mientras que el resto deben ser iguales a las del laberinto original.

Está garantizado que existe una solución. Si existen múltiples, puedes imprimir cualquiera de ellas.

Ejemplo 1

Entrada	Salida
3 4 2 ##	#.X# X.#.
3 4 2 ## #.	#

Ejemplo 2

[2023-1] Tarea 2 Apr 11, 2023

Entrada	Salida
5 4 5 # #.#. .# #	#XXX #X#. X# #