Prof little's formulae

Po is the probability that the system is in state 0

P1 " " state 1

P2 " " " " state 2

State	Rate in = Rate out					
	$\mathcal{A}, P_1 = \lambda, P_2$					
1	12. P. + M. P. = M. P. + X. P.					
2	$\lambda_{1}P_{1} + M_{3}P_{3} = M_{2}P_{2} + \lambda_{2}P_{2}$					
m3/1	-) - , 1 × - els/					
	9696					
n						

λ= arrival rate y= service rate

State of
$$M_1P_1 = \lambda_0 P_0$$

 $\Rightarrow M_1P_1 - \lambda_0 P_0 = 0$

Thus, $P_{i} = \frac{\lambda_{o}P_{o}}{4}$

tate 1

$$\lambda_0 P_0 + M_1 P_2 = M_1 P_1 + \lambda_1 P_1$$
 $\Rightarrow M_2 P_2 - \lambda_1 P_1 = M_1 P_2 - \lambda_2 P_3$
 $\Rightarrow M_2 P_2 - \lambda_1 P_1 = 0$
 $\Rightarrow M_2 P_2 = \lambda_1 P_1 = 0$

Thus,

Thus,

$$\frac{1}{2} = \lambda_1 P_1$$
Thus,

 $\frac{1}{2} = \frac{\lambda_1}{4} P_2$
 $\frac{1}{2} = \frac{\lambda_1}{4} P_2$
 $\frac{1}{2} = \frac{\lambda_1}{4} P_2$
 $\frac{1}{2} = \frac{\lambda_1}{4} P_2$

state 3

I has,
$$P_{3} = \frac{\lambda_{2}P_{2}\lambda_{3}}{M_{3}}$$

$$= \frac{\lambda_{1}}{\lambda_{2}} \frac{\lambda_{1}}{\lambda_{1}} \frac{\lambda_{0}}{\lambda_{1}} P_{0}$$

TOPIC NAME:		DAY: _			
	The state of the s	TIME:	DATE:	1	1

Now, if we observe these values that we are getting for the different state probabilities, we will get:

$$P_{0} = \begin{pmatrix} \lambda_{n-1} & \lambda_{n-2} & \lambda_{n-3} & \dots & \lambda_{3} & \lambda_{2} & \lambda_{1} & \lambda_{0} \\ M_{n} & M_{n-1} & M_{n-2} & \dots & M_{4} & M_{3} & M_{2} & M_{1} \end{pmatrix} P_{0}$$

In general, we can write

$$\frac{P_n = \left(\frac{\lambda}{4}\right)^n P_n}{P_n = P^n P_n} \quad \text{where } P = \frac{\lambda}{4}$$

We know the sum of all probabilities = 1

$$P_{n} = 1$$

TOPIG NAME: DAY: DATE: / /
TOPIGNAME: Should always be with a service rate should be higher than the arrival should be represented by the customer, or the queue will be crowded. P. = 1 - 1 P. = 1 - 1 This is the derived value This is the derived value This is the derived value

TOPIG NAME: _____ TIME: DATE: / /

differentiating—the above lequation, we get,

$$\Rightarrow (1-e).e \cdot \frac{1}{(1-e)^2}$$

$$\frac{1}{M-\lambda}$$

$$=\frac{\lambda}{M+\lambda}$$

$$\frac{1}{1000} = \frac{\lambda}{1000}$$

$$\left(\frac{1}{9-1}\right)\frac{b}{9b}\cdot \frac{9}{5}\left(\frac{3}{5}-1\right)$$

	TOPIC NAME :	TIME: DATE: //
cus't the	eted no.of mus in Lq = Ls - 1 quening	country Ls
sy	fem (La is the value exc	Inding the customer
	getting service)	
	$\frac{1}{4-\lambda} = \frac{\lambda}{4-\lambda} = \frac{\lambda}{2}$	\lambda
	$= \frac{i\lambda - u\lambda}{}$	
	ч(ч-х)	
ĺ	Similarly, expected 40.0 cu	stomers time spent:
	(1) by a customer in the sy	Istem (i) by a customer
	Ws = Ls	in-the queuing system
	= \frac{\lambda/4-1}{4-1}	$W_q = \frac{L_q}{\lambda}$
	$\frac{\lambda}{\omega_s} = \frac{1}{\omega - \lambda}$	$=\frac{\lambda^2}{\mathcal{A}(\mathcal{M}-\lambda)}\cdot\frac{1}{\lambda}$
		wa = 1/4(ν-λ)