DEPARTMENT OF COMPUTER & INFORMATION SYSTEMS ENGINEERING BACHELORS IN COMPUTER SYSTEMS ENGINEERING

Course Code: CS-324 Course Title: Machine Learning

Open Ended Lab

TE Batch 2021, Spring Semester 2024

Grading Rubric

TERM PROJECT Group

Members:

Student No.	Name	Roll No.	
S1	RASIB HASAN	CS-21071	
S2	MAAZ BIN MANSOOR	CS-21094	

CRITERIA AND SCALES					Marks Obtained	
					S2	
Criterion1: Data Collection				S1	02	
0	1	2	3			
The student has not chosen a suitable dataset for predictive modeling.	The student has chosen a dataset, but it may not be suitable for predictive modeling, or it lacks enough features.	The student has chosen a suitable dataset for predictive modeling, and it has enough features to work with.	The student has chosen an excellent dataset for predictive modeling, which has rich features and is well-suited for the task.			
Criterion 2: Data Prepro	cessing					
0	1	2	3			
The student has not performed data cleaning, handling missing values, or encoding categorical variables	The student has performed basic data cleaning and handled missing values, but has not encoded categorical variables.	The student has performed data cleaning, handled missing values, and encoded categorical variables.	The student has performed thorough data cleaning, handled missing values effectively, and encoded categorical variables efficiently.			
Criterion 3: Exploratory	Data Analysis (EDA)					
0	1	2	3			
The student has not performed exploratory data analysis (EDA) or provided minimal analysis with no meaningful insights.	The student has performed basic exploratory data analysis, but the analysis lacks depth, and insights are limited	The student has performed thorough exploratory data analysis, identifying important variables, correlations, and providing meaningful insights.	The student has performed exceptional exploratory data analysis, providing comprehensive insights, and utilizing a variety of visualization techniques effectively.			

Criterion 4: Feature Eng	ineering			
0	1	2	3	
The student has not	The student has performed	The student has	The student has	
performed feature	basic feature engineering,	performed feature	performed advanced	
engineering.	but has not created new	engineering, creating new	feature engineering,	
	features or	features and	creating meaningful new	
	scaled/normalized existing	scaling/normalizing	features and effectively	
	features.	existing features if	scaling/normalizing	
		required.	existing features.	
Criterion 5: Model Building				
0	1	2	3	
The student has not built	The student has built	The student has built	The student has built	
any predictive models.	models using machine	models using multiple	models using multiple	
	learning algorithms, but the	machine learning	machine learning	
	implementation lacks	algorithms, implementing	algorithms, implemented	
	depth, and multiple	them using Python	them both using Python	
	algorithms were not used.	packages, and evaluated	packages and without	
		their performance.	Python packages, and	
			thoroughly evaluated their	
			performance.	
Criterion 6: Model Evalu			I	
0	1	2	3	
The student has not	The student has evaluated	The student has	The student has	
evaluated model	model performance but has	evaluated model	thoroughly evaluated	
performance or has done	not used different	performance using	model performance using	
so inadequately.	techniques or compared the	different techniques,	various techniques,	
	performance of different	compared the	performed a detailed	
	models.	performance of different	comparison of different	
		models, and selected the	models, and selected the	
		best-performing model.	best-performing model	
			based on comprehensive	
			evaluation metrics.	
Criterion 7: Conclusion				
0	1	2	3	
The student has not	The student has provided a	The student has provided	The student has provided	
provided a conclusion or	basic conclusion with some	a detailed conclusion with	an exceptional conclusion	
has provided a	insights but has not discussed model	meaningful insights,	with comprehensive	
conclusion with minimal		discussed model	insights, thorough	
insights.	limitations or suggested	limitations, and suggested	discussion of model	
	improvements.	improvements.	limitations, and insightful	
	improvements.		suggestions for	
Cuitanian O. Danaut			improvements.	
Criterion 8: Report	1	2	2	
The submitted report is	The report is partially	2	The report is exceptionally	
The submitted report is	The report is partially	The report is complete	The report is exceptionally	
unfit to be graded.	acceptable.	and concise.	written.	
			Total Marks:	

PROJECT: PSL Match Outcome Prediction

INTRODUCTION

We always find win predictors in the t20 matches broadcasted in 2nd innings to predict the win percentages of the respective teams, thus, to get an intuition that how it is being performed and to apply the learned machine learning techniques and those apart from the course were experimented throughout this end-to-end machine learning project.

The project involves data collection, Exploratory Data Analysis (EDA), and training three machine learning algorithms: Logistic Regression, Random Forest, and Naïve bayes. The models are then evaluated based on performance metrics to determine their accuracy and effectiveness.

METHODOLOGY

Data Collection

The dataset used for this project is sourced from PSL (Pakistan Super League) match data, which includes details such as the year, match number, teams involved, innings, over, ball, runs, wickets, and match outcomes. This data is suitable for predictive modeling due to its rich features that can influence match outcomes.

Data Preprocessing

Data preprocessing steps included:

Data Cleaning :

Handling missing values, especially in the wicket and wicket_text columns.

• Data Transformation:

Creating new features like total_runs and wickets to capture cumulative statistics within an innings

Exploratory Data Analysis (EDA)

Model Description: EDA was conducted to understand the distribution of variables and identify correlations.

Key insights were:

- o Distribution of fours and sixes throughout years.
- Correlation between each variables.
- o Visualization of match outcomes based on different teams and innings.
- Distribution of types of wickets

Visualizations used include bar plots and pie plots to explore these patterns

Feature Engineering

Feature engineering steps included creating new features and selecting relevant ones for modeling. Important features considered were:

- - balls left
- - runs left
- is_four
- is_six

Used corr heatmap to choose best features for model training

Model Building

Multiple machine learning models were constructed to predict match outcomes, utilizing both Python packages custom implementations. These models include:

- 1. Random Forest Classifier
- 2. Naive Bayes
- 3. Logistic Regression

The models were developed both with the aid of Python packages like scikit-learn and through custom-built implementations to ensure flexibility and robustness in the prediction system.

Model Evaluation

The models were evaluated using accuracy, confusion matrix, and classification report. The performance comparison showed:

Random Forest Classifier:

Accuracy:

0.8052511887533595

Confusion Matrix:

[[1541 518] [424 2354]]

0

1

Classification Report:

0.82

precision recall f1-score support 0.78 0.75 0.77 2059

0.83

2778

accuracy 0.81 4837 macro avg 0.80 0.80 0.80 4837 weighted avg 0.80 0.81 0.80 4837

0.85

Logistic Regression:

Accuracy:

0.7868513541451313

Confusion Matrix:

[[1503 556] [475 2303]]

Classification Report:

precision recall f1-score support

0 0.76 0.73 0.74 2059 1 0.81 0.83 0.82 2778

accuracy 0.79 4837 macro avg 0.78 0.78 0.78 4837 weighted avg 0.79 0.79 0.79 4837

Naive Bayes:

Accuracy:

0.7066363448418441

Confusion Matrix:

[[948 1111] [308 2470]]

Classification Report:

precision recall f1-score support

0 0.75 0.46 0.57 2059 1 0.69 0.89 0.78 2778

accuracy 0.71 4837 macro avg 0.72 0.67 0.67 4837 weighted avg 0.72 0.71 0.69 48

Conclusion

Random Forest is the Best Model Based on the evaluation metrics for the three models (Random Forest, logistic regression, and Naive Bayes), it is evident that the Random Forest (RF) model performs the best on the cricket training data. Here's why:

Highest Accuracy: Random Forest: 80.53% Logistic Regression Classifier: 78.54% Naive Bayes: 70.66% The Random Forest model achieves the highest accuracy, indicating that it correctly predicts the outcomes more often than the other models.

Confusion Matrix Analysis: The Random Forest model has the highest number of correct predictions for both classes (1541 true positives and 2354 true negatives), with fewer misclassifications compared to logreg and Naive Bayes.

Techniques Used By Random Forest: The combination of ensemble learning, bagging, feature randomness, variance reduction, handling of missing data and outliers, feature importance, and its non-parametric nature makes Random Forest a powerful and effective model. These techniques collectively contribute to its superior performance compared to Logistic Regression Classifier and Naive Bayes on the cricket training data.

Limitations

- Limited dataset size and scope might affect the model's generalizability.
- Models may overfit due to the limited number of matches in PSL history.

Future Improvements

- Gathering more extensive datasets from different cricket leagues.
- Incorporating additional features such as player statistics and weather conditions.

Suggestions for Improvement

- Gathering more extensive datasets from different cricket leagues.
- Incorporating additional features such as player statistics and weather conditions.

Bonus: User-Friendly Interface

A user-friendly interface is developed using Streamlit to allow users to input match details and get predictions in real-time.

