Evaluation of Machine Learning Algorithms for Anomaly Detection

Nebrase Elmrabit - Department of Cyber Security Glasgow Caledonian University, UK

Huiyu Zhou and Feixiang Zhou - School of Informatics University of Leicester, UK

Fengyin Li - School of Information Science Qufu Normal University, China

Outlines

- Introduction
- Background
- Methodology
- Experiments
- Experimental Results
- Discussion
- Conclusion

Introduction

- The challenge of anomaly detection in the context of cyber-security:-
 - Motivation, Opportunity and Capability
 - Attacks
- Signature-based approaches
 - Zero-day attacks
 - Encrypted traffic
- Artificial Intelligence (AI) technologies
 - Predicting the anomaly behaviours of malicious attacks
 - Classify data collected into
 - Maintaining a low false alarm rate

Background

- Applications of ML Algorithms.
 - Problem-solving approach
 - Multidisciplinary
- ML in cyber-security field.
 - Prediction, prevention, detection, response, and monitoring.
- The current implementation challenges.
 - Accuracy
 - Cost
 - Policies etc.

https://www.learncomputerscienceonline.com/what-is-machine-learning/

Methodology

Experiments

- Experimental Environment
 - High performance computing facility at the University of Leicester
 - Python-3.6.8
 - Scikit-learn-0.21.3 ML library
 - Keras-2.3.04 neural-network library and Tensor-Flow-1.9.05
 - Sigmoid and SoftMax functions
 - Pandas6 and NumPy7 library packages

Experiments

- Data Pre-processing
 - Convert and integrate all the files from the same dataset to one single CSV file.
 - Delete any infinite, none, and symbol values.
 - Feature scaling by normalising all the features.
 - Label normalisation or scaling.
- Performance Metrics
 - Accuracy
 - Precision
 - True Positive Rate (TPR), also known as Recall
 - False Positive Rate (FPR)
 - F1-Score
 - Receiver Operating Characteristic (ROC) curve
 - Confusion Matrix

Experimental Results Binary Classification

Methods	Accuracy	Precision	Recall	F-score		
UNSW-NB15						
LR	0.753	0.858	0.735	0.792		
GNB	0.716	0.693	0.997	0.818		
KNN	0.829	0.851	0.887	0.869		
DT	0.885	0.914	0.906	0.910		
AdaB	0.839	0.817	0.965	0.884		
RF	0.877	0.844	0.991	0.912		
CNN	0.856	0.825	0.983	0.897		
CNN-LSTM	0.835	0.804	0.980	0.889		
LSTM	0.767	0.893	0.721	0.798		
GRU	0.777	0.857	0.782	0.818		
SimpleRNN	0.807	0.775	0.984	0.867		
DNN	0.827	0.793	0.987	0.879		
CICIDS-2017						
LR	0.883	0.737	0.634	0.682		
GNB	0.550	0.298	0.946	0.453		
KNN	0.996	0.987	0.994	0.990		
DT	0.998	0.995	0.996	0.996		
AdaB	0.962	0.898	0.910	0.904		
RF	0.999	0.997	0.997	0.997		
CNN	0.996	0.991	0.989	0.990		
CNN-LSTM	0.993	0.989	0.992	0.991		
LSTM	0.994	0.967	0.961	0.964		
GRU	0.994	0.981	0.989	0.989		
SimpleRNN	0.983	0.965	0.951	0.958		
DNN	0.991	0.976	0.987	0.981		
ICS cyber-attack datasets						
LR	0.710	0.710	1.000	0.830		
GNB	0.709	0.710	0.999	0.830		
KNN	0.849	0.882	0.909	0.895		
DT	0.864	0.905	0.903	0.904		
AdaB	0.720	0.732	0.956	0.829		
RF	0.928	0.929	0.972	0.950		
CNN	0.715	0.715	0.999	0.834		
CNN-LSTM	0.715	0.715	1.000	0.833		
LSTM	0.715	0.715	1.000	0.833		
GRU	0.715	0.715	1.000	0.834		
SimpleRNN	0.715	0.715	0.999	0.834		
DNN	0.716	0.716	1.000	0.834		

Multi-class Classification

Methods	Accuracy	Precision	Recall	F-score		
UNSW-NB15						
LR	0.561	0.497	0.561	0.428		
GNB	0.085	0.587	0.085	0.130		
KNN	0.652	0.638	0.652	0.638		
DT	0.735	0.715	0.735	0.718		
AdaB	0.631	0.553	0.631	0.557		
RF	0.736	0.726	0.736	0.695		
CNN	0.684	0.672	0.684	0.627		
CNN-LSTM	0.680	0.619	0.680	0.615		
LSTM	0.661	0.601	0.661	0.598		
GRU	0.665	0.600	0.661	0.608		
SimpleRNN	0.662	0.585	0.662	0.587		
DNN	0.663	0.664	0.663	0.608		
CICIDS-2017						
LR	0.915	0.914	0.915	0.910		
GNB	0.430	0.846	0.430	0.522		
KNN	0.996	0.996	0.996	0.996		
DT	0.998	0.998	0.998	0.998		
AdaB	0.818	0.769	0.818	0.760		
RF	0.999	0.999	0.999	0.999		
CNN	0.997	0.996	0.997	0.996		
CNN-LSTM	0.994	0.993	0.994	0.994		
LSTM	0.991	0.990	0.991	0.989		
GRU	0.993	0.993	0.993	0.991		
SimpleRNN	0.994	0.993	0.994	0.993		
DNN	0.998	0.998	0.998	0.998		
ICS cyber-attack datasets						
LR	0.068	0.036	0.068	0.017		
GNB	0.107	0.164	0.107	0.062		
KNN	0.877	0.878	0.877	0.877		
DT	0.924	0.924	0.924	0.924		
AdaB	0.185	0.070	0.185	0.090		
RF	0.920	0.920	0.920	0.920		
CNN	0.061	0.004	0.061	0.007		
CNN-LSTM	0.061	0.004	0.062	0.007		
LSTM	0.369	0.307	0.369	0.319		
GRU	0.321	0.240	0.321	0.262		
SimpleRNN	0.244	0.189	0.244	0.198		
DNN	0.379	0.332	0.379	0.308		

Discussion

(a) Deep Learning - UNSW

(c) Deep Learning – CICIDS

(b) Classic ML – UNSW

(d) Classic ML- CICIDS

(a) Deep Learning – UNSW

(c) Deep Learning - CICIDS

(b) Classic ML - UNSW

(d) Classic ML- CICIDS

Binary Classification ROC Curves

Multi Classification ROC Curves

Discussion

RF Confusion Matrix Result for CICIDS-2017 Dataset.

RF Confusion Matrix Result for UNSW-NB15 Dataset.

Conclusion

- Evaluated the performance of the twelve ML algorithms.
- Recommend the best-fit algorithms
- Identified the lowest performance algorithms.
- Next step

Thanks

Nebrase Elmrabit

Department of Cyber Security

Glasgow Caledonian University

Glasgow, UK

nebrase.elmrabit@gcu.ac.uk

Feixiang Zhou

School of Informatics

University of Leicester

Leicester, UK

fz64@leicester.ac.uk

Fengyin Li School of Information Science Qufu Normal University Rizhao 276826, China Ifyin318@126.com Huiyu Zhou

School of Informatics

University of Leicester

Leicester, UK

hz143@leicester.ac.uk