

Chemistry for Medicine

Name: MODEL ANSWERS ID Number: _____

Time: 1½ hours

Useful constants: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

1 amu = $1.6605 \times 10^{-24} \text{ g}$

1 atm = 760 torr = 760 mmHg

Vapour pressure of H₂O(l) at 23 °C = 21.0 torr

$R = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

1 H 1.008													2 He 4.003				
3 Li 6.941	4 Be 9.012																
11 Na 22.99	12 Mg 24.31																
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La* 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226	89 Ac† (227)															

QUESTION	SCORE	MAXIMUM MARKS
1		39
2		41
TOTAL		80

QUESTION 1

12

(a) Write the name of each of the following substances:Phosphorus triiodidePalladium(II) acetateNickel(II) tellurideBarium hypobromiteDeuteriumBromous acidWater vapourTitanium(IV) carbideIron(III) fluoride monohydrateCaesium superoxideAmmonium vanadium(III) sulfate undecahydrateTin(II) arsenide

(b) Write a formula or symbol for each of the following substances:

11

Magnesium permanganate hydrate

Cadmium cyanide

Aluminum hydrogen phosphate

Chromium(III) chlorate

Aqueous ammonia

Ozone

Cobalt(II) carbonate

Superoxide ion

Silver chromate

Antimony

Indium(III) nitrate pentahydrate

(c) Write an equation for each of the following chemical and physical processes and give a name for the process.

16

Example:

Sodium loses an electron when it reacts

Name: Oxidation half reaction

(i) Zinc metal reacts with acetic acid in aqueous solution

Name: Redox reaction

(ii) The reaction of the hydronium ion with ammonia in aqueous solution

Name: Acid-base reaction

(iii) Mixing a weak monoprotic acid with water

Name: Weak acid dissociation/ionization in water

(iv) Burning one mole of solid benzoic acid ($\text{C}_6\text{H}_5\text{COOH}$) in oxygen

Name: Combustion / Redox reaction

(v) When drops of an aqueous solution of mercury(I) ions are added to a solution of ammonium bromide, a solid product is formed.

Name: Precipitation reaction

(vi) When aqueous hydrogen peroxide is heated, water and molecular oxygen are produced.

Name:

Thermal decomposition

(vii) Strong UV light breaks the bond in a molecule of chlorine

Name: Photodissociation

(viii) At room temperature, liquid nitrogen converts to a gas

Name: Vaporisation/evaporation

QUESTION 2

(a) Consider the reaction of chromium with S_8 to form chromium(III) sulfide.

8

If 2.00 g chromium reacts with 2.00 g S_8 , what mass of the excess reactant remains unreacted?

$$\begin{aligned} n &= \frac{2.00 \text{ g}}{52.00 \text{ g/mol}} \\ &= 0.0385 \text{ mol} \end{aligned}$$
$$\begin{aligned} &\frac{2.00 \text{ g}}{256.5(6) \text{ g/mol}} \\ &= 7.80 \times 10^{-3} \text{ mol} \end{aligned}$$

Choosing limiting reactant:

$$\begin{array}{c} \text{Cr} \\ \hline 16 \text{ mol} \end{array} \quad \begin{array}{c} \text{S}_8 \\ \hline 3 \text{ mol} \end{array}$$

$$0.0385 \text{ mol} \quad \times \quad \therefore x_{\text{S}_8} = \frac{3 \text{ mol}}{16 \text{ mol}} \times 0.0385 \text{ mol}$$

$$= 7.22 \times 10^{-3} \text{ mol} \quad (\text{required})$$

$\therefore 7.80 \times 10^{-3} \text{ mol S}_8$ is too much

$\therefore \text{S}_8 = \text{excess reactant}$

Cr = limiting reactant

Mass of S_8 reacted

$$= 7.22 \times 10^{-3} \text{ mol} \times 256.5(6) \text{ g/mol} = 1.85 \text{ g}$$

Mass of S_8 unreacted

$$\begin{aligned} &= \frac{2.00 \text{ g}}{-1.85 \text{ g}} \\ &= \underline{0.15 \text{ g}} \end{aligned}$$

(b) Draw a simple diagram that shows classification of pure substances.

6

(c) Write a symbol for each of the following:

5

(i) An atom with mass $= 3.1044 \times 10^{-22}$ g and 112 neutrons.

$$3.1044 \times 10^{-22} \text{ g} \times \frac{\text{amu}}{1.6605 \times 10^{-24} \text{ g}} = 186.96 \text{ amu}$$

Isotopic mass = 186.96 amu

Mass number = 187

No. of neutrons = 112

\therefore No. of protons = $187 - 112 = 75$

\therefore Symbol is ${}^{187}_{75}\text{Re}$

(ii) An atom with charge = -2 and 36 electrons.

Charge = -2 \therefore no. of e^- for neutral atom = 34

\therefore Symbol = ${}_{34}^{34}\text{Se}^{2-}$ or Se^{2-}

(d) Derive a mathematical expression that shows the relationship between the molar mass and density of a gas.

3

$$PV = nRT$$

$$PV = \left(\frac{m}{M}\right)RT$$

$$PM = \left(\frac{m}{V}\right)RT$$

$$PM = dRT$$

$$M = \frac{dRT}{P} \quad \text{or} \quad d = \frac{PM}{RT}$$

(6)

- (e) A flask with a volume of 750. mL contains a mixture of the gases $\text{NX}_3(g)$ and argon at 27.85 °C. The mass of $\text{NX}_3(g)$ in the flask is 0.3664 g. The total pressure exerted by the mixture of the gases is 646 mmHg.

If the mole fraction of argon is 0.800, identify the gas $\text{NX}_3(g)$.

$$\text{Volume of flask} = 750. \times 10^{-3} \text{ L}$$

$$T = 27.85 + 273.15 = 301.00 \text{ K}$$

$$P_T = \frac{646 \text{ mmHg}}{760 \text{ mmHg/atm}} = 0.850 \text{ atm}$$

$$P_T V = n_T RT$$

$$\therefore n_T = \frac{P_T V}{RT} = \frac{0.850 \text{ atm} \times 750. \times 10^{-3} \text{ L}}{0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} \times 301.00 \text{ K}} \\ = 0.0258 \text{ mol}$$

$$\text{Mole fraction of Ar} = 0.800$$

$$\therefore x_{\text{NX}_3} = 1.000 - 0.800 = 0.200 = \frac{n_{\text{NX}_3}}{0.0258 \text{ mol}}$$

$$\therefore n_{\text{NX}_3} = 0.200 \times 0.0258 \text{ mol} \\ = 5.16 \times 10^{-3} \text{ mol}$$

$$m_{\text{NX}_3} = 0.3664 \text{ g}$$

$$\therefore M_{\text{NX}_3} = \frac{m}{n} = \frac{0.3664 \text{ g}}{5.16 \times 10^{-3} \text{ mol}} = 71.0 \text{ g/mol}$$

(7)

$$\therefore 14.01 + 3X = 71.0$$

$$3X = 56.9(9)$$

$$X = 19.0$$

$$\therefore \text{atomic mass of } X = 19.0 \text{ amu}$$

$\therefore X$ is F

(8)

$$\therefore \text{NX}_3 = \text{NF}_3$$

(f) When $\text{KClO}_3(s)$ is heated, $\text{KCl}(s)$ and $\text{O}_2(g)$ are produced.

10

An impure sample of $\text{KClO}_3(s)$ weighing 2.76 g is heated in a room at 23 °C and 743.0 torr. 767 cm³ of oxygen gas is collected over water at 23 °C. Determine the percentage composition of $\text{KClO}_3(s)$ by mass in the impure sample.

$$P_T = P_{\text{H}_2\text{O}} + P_{\text{O}_2}$$

$$743.0 \text{ torr} = 21.0 \text{ torr} + P_{\text{O}_2}$$

$$\begin{aligned} \therefore P_{\text{O}_2} &= 743.0 \text{ torr} - 21.0 \text{ torr} \\ &= 722.0 \text{ torr} \\ &= 0.9500 \text{ atm} \end{aligned}$$

$$T = 23 + 273.15 = 296 \text{ K}$$

$$n_{\text{O}_2} = \frac{PV}{RT} = \frac{0.9500 \text{ atm} \times 767 \times 10^{-3} \text{ L}}{0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} \times 296 \text{ K}}$$

$$= 0.0300 \text{ mol}$$

$$\therefore x = n_{\text{KClO}_3} = \frac{2 \text{ mol}}{3 \text{ mol}} \times 0.0300 \text{ mol} = 0.0200 \text{ mol}$$

$$\therefore \text{mass of } \text{KClO}_3 = nM = 0.0200 \text{ mol} \times 122.55 \text{ g/mol}$$

$$= 2.45 \text{ g}$$

$$\therefore \% \text{ KClO}_3 = \frac{2.45 \text{ g}}{2.76 \text{ g}} \times 100\% = 88.8\%$$