Chapter 33 Sommes et projecteurs

Exercice 1 (33.0)

Soient E un \mathbb{K} -espace vectoriel, A, B deux sous-espaces vectoriels de E, C un supplémentaire de $A \cap B$ dans B

Montrer $A + B = A \oplus C$.

Exercice 2 (33.0)

Soient E un espace vectoriel et A, B, C trois sous-espace vectoriel tels que

$$A \cap B = A \cap C \tag{1}$$

$$A + B = A + C \tag{2}$$

$$B \subset C$$
. (3)

Montrer que B = C.

Exercice 3 (33.0)

Soit $u, w \in \mathbb{R}^2$ les vecteurs

$$u = \begin{pmatrix} -1\\2 \end{pmatrix}, \quad w = \begin{pmatrix} -3\\5 \end{pmatrix}.$$

En utilisant la définition de somme directe, montrer que \mathbb{R}^2 = Vect { u } \oplus Vect { w }.

Exercice 4 (33.0)

Vérifier si les espaces suivants sont supplémentaires dans $E = \mathbb{R}^3$

$$F = \{ (x, y, z) \in \mathbb{R}^3 \mid 3x - y + z = 0 \}$$
 et $G = \{ (t, -t, t) \mid t \in \mathbb{R} \}.$

Exercice 5 (33.0)

Dans l'espace vectoriel $E = \mathbb{R}_3[X]$, on considère les sous-espaces vectoriels

$$F_1 = \{ P \in E \mid P(0) = P(1) = 0 \}$$
 $F_2 = \mathbb{R}_1[X]$

Montrer que $E = F_1 \oplus F_2$.

Exercice 6 (33.0)

Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

- **1.** Montrer que $V = \{ f \in E \mid f(2) = f(3) \}$ est un sous-espace vectoriel de E.
- **2.** Montrer que $W = \text{Vect } \{ \text{ Id}_{\mathbb{R}} \}$ est un supplémentaire de V dans E.

Exercice 7 (33.0)

Dans l'espace $\mathcal{F}(\mathbb{R}, \mathbb{R})$, on note \mathcal{P} l'ensemble des fonctions paires et \mathcal{I} l'ensemble des fonctions impaires.

- **1.** Montrer que \mathcal{P} et \mathcal{I} sont deux sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- **2.** Montrer que l'intersection $\mathcal{P} \cap \mathcal{I}$ est réduite à la fonction nulle.
- 3. Montrer que toute fonction peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire.
- **4.** En déduire $\mathcal{P} \oplus \mathcal{I} = \mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 8 (33.0)

Dans \mathbb{R}^4 , on considère les sous-espaces vectoriels

$$F = \left\{ (x, y, z, t) \in \mathbb{R}^4 \mid x + y - z + 2t = 0 \right\}$$
 $G = \text{Vect}(e) \text{ où } e = (1, 1, 1, 1).$

- Montrer que F et G sont supplémentaires.
- Soit p la projection sur F parallèlement à G, déterminer p(u) pour tout u de \mathbb{R}^4 .

Exercice 9 (33.0)

Dans l'espace vectoriel \mathbb{R}^3 , on considère les sous-espaces vectoriels

$$E_1 = \text{Vect} \{ (1,0,0), (1,1,1) \}$$
 et $E_2 = \text{Vect} \{ (1,2,0) \}.$

Déterminer l'expression analytique de la symétrie par rapport à E_1 parallèlement à E_2 .

Exercice 10 (33.0)

Soit E, F, G trois espaces vectoriels sur un corps \mathbb{K} , $u \in \mathbf{L}(E, F)$ et $v \in \mathbf{L}(F, G)$.

- **1.** Montrer que $\operatorname{Im}(v \circ u) \subset \operatorname{Im}(v)$ et que $\ker(u) \subset \ker(v \circ u)$.
- **2.** Montrer que $v \circ u = 0 \iff \operatorname{Im} u \subset \ker v$.
- **3.** Montrer que $\ker(v \circ u) = \ker u \iff \ker v \cap \operatorname{Im} u = \{0\}.$
- **4.** Montrer que $\text{Im}(v \circ u) = \text{Im } v \iff \ker v + \text{Im } u = F$.

Exercice 11 (33.0)

Soient E un espace vectoriel de dimension n sur \mathbb{K} , f un endomorphisme de E, P et Q deux éléments de $\mathbb{K}[X]$.

Si
$$P = a_0 + a_1 X + \dots + a_n X^n$$
, on note $P(f)$ l'endomorphisme

$$a_0 \operatorname{Id}_E + a_1 f + \dots + a_n f^n$$
.

- **1.** Montrer que $(P \cdot Q)(f) = P(f) \circ Q(f)$.
- 2. Montrer que si P divise Q, alors

$$\ker P(f) \subset \ker Q(f)$$
 et $\operatorname{Im} Q(f) \subset \operatorname{Im} P(f)$.

3. Montrer que si *D* est le PGCD de *P* et *Q*, alors

$$\ker D(f) = \ker P(f) \cap \ker P(f)$$
 et $\operatorname{Im} D(f) = \operatorname{Im} P(f) + \operatorname{Im} Q(f)$.

Exercice 12 (33.0)

On note $E = C^1([0,1], \mathbb{R})$ le \mathbb{R} -espace vectoriel des applications de classe C^1 sur [0,1] et à valeurs réelles,

$$F = \left\{ \begin{array}{l} f \in E \ \middle| \ \int_0^1 f = 0, f(0) = 0, f'(1) = 0 \end{array} \right\} \quad \text{et} \quad G = \operatorname{Vect} \left(e_0, e_1, e_2 \right) \text{ avec } e_k \ : \quad [0, 1] \quad \rightarrow \quad \mathbb{R} \\ x \quad \mapsto \quad x^k \end{array}.$$

- **1.** Montrer que F et G sont deux sous-espaces vectoriels de E.
- **2.** Montrer que $E = F \oplus G$.

Exercice 13 (33.0)

Soit

**

**

**

$$p: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto \left(\frac{4x+2y}{5}, \frac{2x+y}{5}\right)$$

- **1.** Montrer que *p* est un projecteur de \mathbb{R}^2 .
- 2. Déterminer les éléments caractéristiques de p.
- 3. Déterminer l'expression de la symétrie par rapport à Im p suivant la direction ker p.

Exercice 14 (33.0)

Soit dans $E = \mathbb{R}^3$ un vecteur $v = (v_1, v_2, v_3)$ tel que $v_1 + v_2 + v_3 = 1$.

Montrer que l'application ϕ qui à un vecteur $x = (x_1, x_2, x_3)$ associe le vecteur

$$x - (x_1 + x_2 + x_3)v$$

est un projecteur.

Préciser son image et son noyau.

Exercice 15 (33.0)

Soit
$$n \ge 2$$
 et soit s : $\mathbb{R}_n[X] \to \mathbb{R}_n[X]$
 $P \mapsto P - P''(0)X^2 - 2P(0)$.

- **1.** Montrer que *s* est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Montrer que s est une symétrie dont on donnera les éléments caractéristiques.

Exercice 16 (33.0)

Soit p un projecteur de E.

Montrer que si le scalaire λ est distinct de 0 et 1, alors $p - \lambda$ Id_E est un automorphisme, et expliciter son inverse.

Exercice 17 (33.0)

Soient p et q deux projecteurs de E.

- 1. Montrer que p + q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Dans ce cas, montrer

$$\ker(p+q) = \ker p \cap \ker q$$
 et $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.

Exercice 18 (33.0)

Soit f un endomorphisme d'un K-espace vectoriel E. On pose $f^2 = f \circ f$.

- **1.** Montrer que Im $f \cap \ker f = f(\ker f^2)$.
- **2.** Montrer que ker $f = \ker f^2$ si et seulement si Im $f \cap \ker f = \{0\}$.
- 3. Montrer que Im $f = \text{Im } f^2$ si et seulement si Im $f + \ker f = E$.
- **4.** En déduire une condition nécessaire et suffisante pour que le noyau et l'image de f soient des sousespaces vectoriels supplémentaires de E.

Exercice 19 (33.0)

Soit E un espace vectoriel sur \mathbb{R} et $f \in L(E)$ tel que $f^3 = \mathrm{Id}_E$.

- **1.** Montrer que $\operatorname{Im}(f \operatorname{Id}_E) \subset \ker(f^2 + f + \operatorname{Id}_E)$.
- **2.** Montrer que $E = \ker (f \operatorname{Id}_E) \oplus \operatorname{Im} (f \operatorname{Id}_E)$.
- 3. En déduire que $E = \ker (f \operatorname{Id}_E) \oplus \ker (f^2 + f + \operatorname{Id}_E)$.

Exercice 20 (33.0)

Soient E un \mathbb{K} -espace vectoriel et $f \in \mathbf{L}(E)$. On suppose que

$$f^2 - 5f + 6 \operatorname{Id}_F = 0$$
 (ici $f^2 = f \circ f$).

Montrer

$$\ker (f - 2 \operatorname{Id}_E) \oplus \ker (f - 3 \operatorname{Id}_E) = E.$$

Exercice 21 (33.0)

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathbf{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'est-à-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \ker u^{k+1} = \ker u^k.$$

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \left\{ \ 0_E \ \right\}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

5. Démontrer que, p étant un entier strictement positif, on a

$$\operatorname{Im} u^p = \operatorname{Im} u^{p+1} \iff E = \ker u^p + \operatorname{Im} u^p = \left\{ 0_E \right\}.$$

6. On suppose les deux suites $(\ker u^k)_{k\in\mathbb{N}}$ et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ stationnaires. Soit p le plus petit entier strictement positif tel que $\ker u^p = \ker u^{p+1}$. Soit q le plus petit entier strictement positif tel que $\operatorname{Im} u^q = \operatorname{Im} u^{q+1}$.

Montrer que dans ces condition l'on a p = q et

$$E = \ker u^p \oplus \operatorname{Im} u^p$$
.

Exercice 22 (33.0) *X MP*

Soit *E* un espace vectoriel.

- 1. Soit u un endomorphisme de E tel que ker $u = \operatorname{Im} u$ et S un supplémentaire de $\operatorname{Im} u$: $E = S \oplus \operatorname{Im} u$.
 - (a) Montrer que, pour tout $x \in E$, il existe un unique couple $(y, z) \in S^2$ tel que x = y + u(z). On pose z = v(x) et y = w(x).
 - (b) Montrer que v est linéaire et calculer $u \circ v + v \circ u$.
 - (c) Montrer que w est linéaire et calculer $u \circ w + w \circ u$.
- **2.** Soit $u \in \mathbf{L}(E)$ tel que $u^2 = 0$. On suppose qu'il existe v dans $\mathbf{L}(E)$ tel que $u \circ v + v \circ u = \mathrm{Id}_E$. A-t-on nécessairement ker $u = \mathrm{Im}\,u$?
- 3. Soit $u \in \mathbf{L}(E)$ tel que $u^2 = 0$ et $u \neq 0$. On suppose qu'il existe $w \in \mathbf{L}(E)$ tel que $u \circ w + w \circ u = u$. A-t-on nécessairement ker $u = \operatorname{Im} u$?

Exercice 23 (33.0)

Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on considère le sous-espace vectoriel

$$F = \{ f \in E \mid f(1) = f(2) = 0 \}.$$

1. Soit

$$\phi: \begin{array}{ccc} \phi: & E & \to & \mathbb{R}^2 \\ & f & \mapsto & (f(1), f(2)) \end{array}.$$

Montrer que $\phi \in \mathbf{L}(E, \mathbb{R}^2)$. Comment interpréter F? ϕ est-elle surjective?

2. Trouver un sous-espace vectoriel G de E sur lequel ϕ induit un isomorphisme entre G et \mathbb{R}^2 .

Exercice 24 (33.0)

Soient E un espace vectoriel sur un corps \mathbb{K} et F, G deux sous-espace vectoriel de E. On note

$$\mathcal{H} = \{ f \in \mathbf{L}(E) \mid \ker f = F \text{ et } \operatorname{Im} f = G \};$$

et on suppose $E = F \oplus G$.

- **1.** Montrer que $f \in \mathcal{H}$ induit sur G un automorphisme.
- **2.** Montrer que (\mathcal{H}, \circ) est un groupe.

Sommes en dimension finie

Exercice 25 (33.0)

Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E tels que $E = F \oplus G$. Soit $(w_i)_{i \in I}$ une famille de vecteurs de E. On décompose chaque vecteur w_i suivant la somme précédente ; cela donne pour tout i,

$$w_i = u_i + v_i,$$

égalité dans laquelle u_i appartient à F et v_i appartient à G.

On suppose la famille $(u_i)_{i \in I}$ libre. Prouver qu'il en est de même de la famille $(w_i)_{i \in I}$.

Exercice 26 (33.0)

Soit

$$X = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad Y = \operatorname{Vect} \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -1 \end{pmatrix} \right\}.$$

La somme X + Y est-elle directe ? Déterminer une base de X + Y.

Exercice 27 (33.0)

Dans \mathbb{R}^4 , on pose F = Vect(u, v, w) et G = Vect(x, y) avec

$$u = (0, 1, -1, 0)$$
 $v = (1, 0, 1, 0)$ $w = (1, 1, 1, 1)$ $x = (0, 0, 1, 0)$ et $y = (1, 1, 0, -1)$.

Quelles sont les dimensions de F, G, F + G et $F \cap G$?

Exercice 28 (33.0)

Soient F et G deux sous-espaces vectoriels de dimensions 3 de \mathbb{R}^5 . Montrer que $F \cap G \neq \{0\}$.

Exercice 29 (33.0) Centrale PSI

Soient E un espace vectoriel de dimension $n \ge 1$ et S l'ensemble des sous-espaces vectoriels de E.

- **1.** Soient F et F' dans $S \setminus \{E\}$. Montrer que $F \cup F' \neq E$.
- **2.** Soient H et H' deux hyperplans de E. Montrer qu'il existe $D \in S$ tel que $H \oplus D = H' \oplus D = E$.
- **3.** Soit $d: S \to \mathbb{N}$ vérifiant

$$d(E) = n$$
 et $\forall F, F' \in S, F \cap F' = \{0\} \implies d(F + F') = d(F) + d(F')$.

Montrer que $\forall F \in \mathcal{S}, d(F) = \dim(F)$.

Exercice 30 (33.0)

Soient

$$r = (1,0,0,1),$$
 $s = (-1,1,0,0),$ $t = (0,0,1,1),$ $u = (2,0,1,0),$ et $v = (2,-1,2,3).$

On pose F = Vect(r, s), G = Vect(t, u) et H = Vect(t, v).

- **1.** Montrer que $\mathbb{R}^4 = F \oplus G$.
- **2.** Donner une base de F + H et de $F \cap H$.

Exercice 31 (33.0)

**

Soit $E = \mathbb{R}_3[X]$. On note

$$F = \left\{ P \in E \mid P(-1) = 0 \text{ et } \int_{-1}^{1} P(t) dt = 0 \right\} \text{ et } G = \text{Vect} \left\{ 1 - X - X^{2}, 1 + X + X^{3} \right\}.$$

On ne demande pas de vérifier que F et G sont deux sous-espaces vectoriels de E.

- 1. Déterminer une base de F et une base de G. En déduire les dimensions de F et G.
- **2.** Montrer que $E = F \oplus G$.
- 3. Donner l'expression de la projection π sur F parallèlement à G.

Exercice 32 (33.0)

Soit \mathcal{P} le sous-espace vectoriel de \mathbb{R}^3 défini par $\mathcal{P} = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0 \}$ et $\mathcal{D} = \text{Vect } (1, 2, 0)$.

- **1.** Montrer que $\mathbb{R}^3 = \mathcal{D} \oplus \mathcal{P}$.
- **2.** Donner l'expression de la projection p sur \mathcal{P} parallèlement \mathcal{D} .

Exercice 33 (33.0)

Soient $n \in \mathbb{N}$, $n \ge 3$. On considère $F = \{ P \in \mathbb{R}_n[X] \mid P(1) = P(2) = 0 \}$.

- 1. Justifier que F est un sous-espace vectoriel de $\mathbb{R}_n[X]$ et préciser sa dimension.
- **2.** Soit $G = \text{Vect}(X, X^2)$. Justifier que F et G sont supplémentaires dans $\mathbb{R}_n[X]$.
- 3. Soit π la projection sur F parallèlement à G, déterminer $\pi(P)$ pour tout P de $\mathbb{R}_n[X]$.