

II tempo oggi in Piacenza Martedì, 03 Dicembre 2019	
	23:00
	Sun
Temperatura effettiva	3°C
Temperatura percepita	1°C
Precipitazioni	0 mm
Umidità	89 %
Pressione atmosferica	1028 hPa

The relative humidity φ=89% Atmospheric pressure P=102.8 KPa Effective temperature T= 3°C= 276 K

From the psychrometric chart, We can find the absolute humidity ω =0.004 The web-bulb temperature T_{wb} = 2°C

 ω =0.622P_v/P_a=0.622P_v/(P-P_v)=0.004 P=102.8 kPa So, P_v= 0.657 kPa

 $φ=89\%= m_v/m_g$ if the volume of Aula A= 800 m³ $m_v=PV/R_{sp}T=0.657*800/(0.4615*276)=4.126$ so, $m_g=m_v/0.89=4.636$

Task2:

Internal gains:

Sensible cooling load: Q_{igs} = 136+2.2 A_{cf} +22 N_{oc} = 136+ 2.2*200+ 22*2= 620 W Latent cooling load: Q_{igl} = 20+0.22 A_{cf} +12 N_{oc} = 20+ 0.22*200+ 12*2= 88 W

Infiltration:

 A_{ul} =1.4 cm²/m² A_{es} = A_{wall} + A_{roof} = 200+ 144= 344 m² So, A_{l} = A_{es} * A_{ul} = 344* 1.4= 481.6 cm²

In Brindisi,

 Δ T_{cooling}=31.1-24= 7.1 °C = 7.1 K Δ T_{heating}=20-(-4.1)= 24.1 °C = 24.1 K DR=7.1 °C

We know that:

IDF_{cooling}=0.033 L/s*cm² IDF_{heating}= 0.073 L/s*cm²

So,
$$Q_{icooling}$$
= A_L * IDF_{cooling}= 481.6*0.033=15.89 L/s $Q_{iheating}$ = A_L * IDF_{heating}= 481.6*0.073=35.16 L/s

The minimum whole building ventilation rate is:

 $Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05*200 + 3.5(1+1) = 17L/s$

So, $Q_{i\text{-vcooling}}$ = $Q_{i\text{cooling}}$ + Q_{v} =15.89+17= 32.89 L/s $Q_{i\text{-vheating}}$ = $Q_{i\text{heating}}$ + Q_{v} =35.16+17= 52.16 L/s

We know that: $C_{sensible}$ =1.23, C_{latent} =3010, Δ ω $_{cooling}$ =0.0039 So, Q_{inf-v} $_{cooling}$ sensible= $C_{sensible}Q_{i-vcooling}$ Δ $T_{cooling}$ =1.23*32.89*7.1=287.22 W Q_{inf-v} $_{cooling}$ latent= C_{latent} $Q_{i-vcooling}$ Δ ω $_{cooling}$ =3010*32.89*0.0039=386.10 W Q_{inf-v} $_{heating}$ sensible= $C_{sensible}Q_{i-vheating}$ Δ $T_{heating}$ =1.23*52.16*24.1=1546.18 W