

CLAIMS

I claim:

1 1. A method for coding image data, the method comprising:
2 converting a block of image data into transform coefficients;
3 quantizing the transform coefficients such that all, some, or none of the
4 transform coefficients become zero;

5 constructing a single entity indicating which transform coefficients are non-zero;
6 and

7 coding the single entity as an integer using an arithmetic coder wherein the values
8 of the transform coefficients are coded in any fixed order.

1 2. The method for coding image data of claim 1, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using an adaptive
3 arithmetic coder.

1 3. The method for coding image data of claim 1, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using a semi-adaptive
3 arithmetic coder.

1 4. The method for coding image data of claim 1, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using a non-adaptive
3 arithmetic coder.

1 5. The method for coding image data of claim 1, wherein each transform coefficient
2 is coded according to its own context, based on the transform coefficient.

1 6. The method for coding image data of claim 2, wherein each transform
2 coefficient is coded according to its own context, based on the transform coefficient.

1 7. The method for coding image data of claim 1, wherein the single entity is a bit
2 vector.

1 8. An apparatus for coding an image, the apparatus comprising a computer device
2 with a processor operating a program comprising instructions for operating the
3 computer device to perform the following steps:
4 converting a block of image data into transform coefficients;
5 quantizing the transform coefficients such that all, some, or none of the
6 transform coefficients become zero;
7 constructing a single entity indicating which transform coefficients are non-zero;
8 and
9 coding the single entity as an integer using an arithmetic coder wherein the values
10 of the transform coefficients are coded in any fixed order.

1 9. The apparatus of claim 8, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using an adaptive arithmetic coder.

1 10. The apparatus of claim 7, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using a semi-adaptive arithmetic coder.

1 11. The apparatus of claim 8, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using a non-adaptive arithmetic coder.

1 12. The apparatus of claim 8, wherein the single entity is a bit vector.

1 13. A bitstream of data generated by a method of coding data, the method
2 comprising:

3 converting a block of image data into transform coefficients;

4 quantizing the transform coefficients such that all, some, or none of the
5 transform coefficients become zero;

6 constructing a single entity indicating which transform coefficients are non-zero;

7 and

8 coding the single entity as an integer using an arithmetic coder wherein the values
9 of the transform coefficients are coded in any fixed order.

1 14. The bitstream of claim 13, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using an adaptive arithmetic coder.

1 15. The apparatus of claim 13, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using a semi-adaptive arithmetic coder.

1 16. The apparatus of claim 13, wherein coding the single entity as an integer further
2 comprises coding the single entity as an integer using a non-adaptive arithmetic coder.

1 17. The apparatus of claim 13, wherein the single entity is a bit vector.

1 18. A computer-readable medium that stores instructions for controlling the
2 operation of a computer device to perform data coding according to a method
3 comprising the steps of:

4 converting a block of image data into transform coefficients;

5 quantizing the transform coefficients such that all, some, or none of the
6 transform coefficients become zero;

7 constructing a single entity indicating which transform coefficients are non-zero;
8 and

9 coding the single entity as an integer using an arithmetic coder wherein the values
10 of the transform coefficients are coded in any fixed order.

1 19. The computer-readable medium of claim 18, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using an adaptive
3 arithmetic coder.

1 20. The computer-readable medium of claim 18, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using a semi-adaptive
3 arithmetic coder.

1 21. The computer-readable medium of claim 18, wherein coding the single entity as
2 an integer further comprises coding the single entity as an integer using a non-adaptive
3 arithmetic coder.

- 1 22. The computer-readable medium of claim 18, wherein the single entity is a bit
2 vector.
- 1 23. A method of coding data not having a clearly defined relationship, the method
2 comprising:
3 converting the data into transform coefficients;
4 quantizing the transform coefficients such that all, some or none of the
5 transform coefficients become zero;
6 constructing a single entity from the quantized transform coefficients; and
7 coding the single entity using an arithmetic coder wherein the values of the
8 transform coefficients are coded in any fixed order.
- 1 24. The method of claim 23, wherein the single entity is a bit vector.
- 1 25. A method of decoding a bitstream, the bitstream being coded using a single entity
2 coded as an integer using an arithmetic coder, the method comprising:
3 decoding the single entity wherein the values of transform coefficients are
4 decoded in any fixed order;
5 deconstructing the single entity to determine which coefficients are non-zero;
6 dequantizing the transform coefficients to determine whether all, some or none
7 of the coefficients are zero; and
8 converting the dequantized transform coefficients into block image data.
- 1 26. The method of decoding a bitstream of claim 25, wherein the single entity is a bit
2 vector.
- 1 27. The method of decoding a bitstream of claim 25, wherein the single entity was
2 coded as an integer using an adaptive arithmetic coder.
- 1 28. The method of decoding a bitstream of claim 25, wherein the single entity was
2 coded as an integer using a semi-adaptive arithmetic coder.

- 1 29. The method of decoding a bitstream of claim 25, wherein the single entity was
- 2 coded as an integer using a non-adaptive arithmetic coder.

10066102.02202