INT102 Algorithmic Foundations And Problem Solving Graph Theory

Dr Yushi Li Department of Intelligent Science

Learning outcomes

- ✓ Able to tell what is an undirected graph and what is a directed graph
- ✓ Know how to represent an undirected graph using matrix and list
- ✓ Understand what Euler path / circuit and able to determine whether such path / circuit exists in an undirected graph
- ✓ Able to apply BFS and DFS to traverse a graph
- Know how to represent a graph using matrix and list
- > Able to tell what a tree is

Directed graph ...

Directed graph

Given a directed graph G, a vertex a is said to be connected to a vertex b if there is a path from a to b.

E.g., G represents the routes provided by a certain airline. That means, a vertex represents a city and an edge represents a flight from a city to another city. Then we may ask question like: Can we fly from one city to another?

Reminder: A directed graph G=(V,E) consists of a set of vertices V and a set of edges E. Each edge is an ordered pair of vertices.

E = { (a,b), (b,d), (b,e), (c,b), (c,e), (d,e) }

N.B. (a,b) is in E, but (b,a) is NOT

In/Out degree (in directed graphs)

The <u>in-degree</u> of a vertex v is the number of edges leading to the vertex v.

The <u>out-degree</u> of a vertex v is the number of edges *leading away* from the vertex v.

	in-deg(v)	out-deg(v)
a	0	1
b	2	2
C	0	2
d	1	1
e	3	0

sum: 6 Always equal?

Representation (of directed graphs) Similar to undirected graph, a directed graph can be represented by adjacency matrix, adjacency list, incidence matrix or incidence list.

Adjacency matrix / list

Adjacency matrix M for a directed graph with n vertices:

- M is an nxn matrix
- -M(i, j) = 1 if (i, j) is an edge

Adjacency list:

 each vertex u has a list of vertices pointed to by an edge leading away from u

Incidence matrix / list

Incidence matrix M for a <u>directed</u> graph with n vertices and m edges is an mxn matrix

- -M(i, j) = 1 if edge i is leading away from vertex j
- -M(i, j)=-1 if edge i is leading to vertex j

Incidence list: each edge has a list of two vertices (leading away is 1st and leading to is 2nd)

Exercise Give the adjacency matrix and incidence matrix of the following graph

labels of edge are edge number

Learning outcomes

- ✓ Able to tell what is an undirected graph and what is a directed graph
 - ✓ Know how to represent a graph using matrix and list
- ✓ Understand what Euler path / circuit and able to determine whether such path / circuit exists in an undirected graph
- ✓ Able to apply BFS and DFS to traverse a graph
- >Able to tell what a tree is

Tree ...

An undirected graph G=(V,E) is a tree if G is connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

- 1. There is exactly one path between any two vertices in G
- 2. G is connected and removal of one edge disconnects G
- 3. G is acyclic and adding one edge creates a cycle
- 4. G is connected and m=n-1 (where |V|=n, |E|=m)

An undirected graph G=(V,E) is a tree if G is connected and acyclic (i.e., contains no cycles)

Other equivalent statements:

- 1. There is exactly one path between any two vertices in G (coz G is connected and acyclic)
- 2. G is connected and removal of one edge disconnects G (removal of an edge {u,v} disconnects at least u and v because of [1])
- 3. G is acyclic and adding one edge creates a cycle (adding an edge {u,v} creates one more path between u and v, a cycle is formed)
- 4. G is connected and m=n-1 (where |V|=n, |E|=m)

Lemma: P(n): If a tree T has n vertices and m edges, then m=n-1.

optional, self-study

Proof: By induction on the number of vertices.

Basic step: A tree with single vertex does not have an edge.

Induction step: $P(n-1) \Rightarrow P(n)$ for n > 1?

Remove an edge from the tree T. By [2], T becomes disconnected. Two connected components T_1 and T_2 are obtained, neither contains a cycle (the cycle is also present in T otherwise).

Therefore, both T_1 and T_2 are trees. Let n_1 and n_2 be the number of vertices in T_1 and T_2 . $[n_1+n_2=n]$

By the induction hypothesis, T_1 and T_2 contains n_1 -1 and n_2 -1 edges.

Hence, T contains $(n_1-1) + (n_2-1) + 1 = n-1$ edges.

Rooted trees

Tree with hierarchical structure, e.g., directory structure of file system

- > Topmost vertex is called the <u>root</u>.
- > A vertex **u** may have some **children** directly below it, **u** is called the **parent** of its children.
- Degree of a vertex is the no. of children it has. (N.B. it is different from the degree in an unrooted tree.)
- > Degree of a tree is the max. degree of all vertices.
- > A vertex with no child (degree-0) is called a <u>leaf</u>. All others are called internal vertices.

Terminologies


```
deg-0:
deg-1:
deg-2:
deg-3:
```

What is the degree of this tree?

- > We can define a tree recursively
 - A single vertex is a tree.
 - If T_1 , T_2 , ..., T_k are **disjoint** trees with roots r_1 , r_2 , ..., r_k , the graph obtained by attaching a *new vertex* r to each of r_1 , r_2 , ..., r_k with a single edge forms a tree T with root r.
 - $-T_1, T_2, ..., T_k$ are called <u>subtrees</u> of T.

which are the roots

of the subtrees?

Binary tree

- >a tree of degree at most TWO
- > the two subtrees are called left subtree and right subtree (may be empty)

Binary tree

>a tree of degree at most TWO

> the two subtrees are called left subtree and right subtree (may be empty)

left subtree right subtree

There are three common ways to traverse a binary tree:

- preorder traversal vertex, left subtree, right subtree
- <u>inorder</u> traversal left subtree, vertex, right subtree
- postorder traversal left subtree, right subtree, vertex

Traversing a binary tree

preorder traversal

- vertex, left subtree, right subtree

Traversing a binary tree

inorder traversal

- left subtree, vertex, right subtree

Traversing a binary tree

postorder traversal

- left subtree, right subtree, vertex

Example

Give the order of traversal of preorder, inorder, and postorder traversal of the tree b a e h k m

preorder:
inorder:
postorder:

Learning outcomes

- ✓ Able to tell what is an undirected graph and what is a directed graph
 - √ Know how to represent a graph using matrix and list
- ✓ Understand what Euler path / circuit and able to determine whether such path / circuit exists in an undirected graph
- ✓ Able to apply BFS and DFS to traverse a
 graph
- ✓ Able to tell what a tree is