Divisability

" (m [n) "

Definition: for m, n & Z, we say m devides n, IF JK&Z such that n = Km

Examples:

1) Claim: Ya & Z , 1/a

Proof: Let a & Z

Then $a = \underbrace{a \cdot 1}_{\in \mathbb{Z}}$

(Claim: Ya EZ, -1 a

Proof: Let a & Z

Then a = (-a)(-1)

3 Claim: 010

Proof: 0=1.0

Warning: "alb" is NOT the same as "b"

lt is OK to write old but NOT OK to write &

(4) Claim: VaeZ, if ola then a=0

П

Proof: Let $a \in \mathbb{Z}$ and assume old Then $\exists K \in \mathbb{Z}$ such that $a = K \cdot O = O$ Proposition: Transitivity of Divisability (TO)
Va,b,c ∈ Z IF alb and blc then ac Proof: Let a,b,c & Z and assume that alb and blc Then $\exists K \in \mathbb{Z}$ such that b = Ka and $\exists l = \mathbb{Z}$ such that c = lbSince, C= lb C=l(ka) C=(lk)a 6) Claim 1: ∀a,b,c∈Z, If alb and alc then a loc Proof: Let $a,b,c \in \mathbb{Z}$ and assume all and Then $\exists K, l \in \mathbb{Z}$ such that b = Ka and c = laSo, bc = Ka (la) bc = (Kla) a Claim 2: The Converse, Vajb, c & If albe then alb and alc Disproof: Take a=2, b=3, C=4 Then a bc (because 2/12) but atb

Proposition: Divisibility of Integer Combinations

Ya,b,c \(\in \mathbb{Z} \) If alb and alc then (\forall \infty, y \in \mathbb{Z} \)

Proof: Let a,b,c \(\in \mathbb{Z} \) and assume alb and alc

Then \(\forall \in \mathbb{J} \), \(\in \mathbb{Z} \) such that \(b = \mathbb{K} \) and \(c = \mathbb{J} \)

Let \(\in \mathbb{J} \) \(\in \mathbb{J} \) \(\in \mathbb{Z} \) \(\in \mathbb{J} \) \(\in \

Proof: Let $a,b,c \in \mathbb{Z}$, assume a|bx+cy $\forall x,y \in \mathbb{Z}$

In praticular, If x=1 and y=0, then $a|b\cdot 1+c\cdot 0 \Leftrightarrow a|b$

and similarly, 1F = 0 and y=1, then $a|b\cdot 0 + c\cdot 1 \Leftrightarrow a|c$

The following modification is false

 $\forall a,b,c,x,y \in \mathbb{Z}$, If a bx+cy, then all and alc

Disproof: Take a=2, x=y=0, b=3, c=2

Then albx+cy but atb

Proof by Contropositive Since an implication is logically equivilant to its contropositive, to prove the implication we can instead prove the contropositive A > B contropositive ¬B > ¬A

Examples:

O Claim:
$$\forall x \in \mathbb{Z}$$
 If $x^2 - 6x + 8$ is odd
then x is odd

=
$$\forall x \in \mathbb{Z}$$
, |f NOT (x is odd) then
NOT ($x^2 - 6x + 8$)

=
$$\forall x \in \mathbb{Z}$$
, If x is even then x^2-6x+8 is even

Proof: Let $x \in \mathbb{Z}$ and assume that x is even

So
$$x^2-6x+8 = (2k)^2-6(2k)+8$$

= $4k^2-12k+8$
= $2(2k^2-6k+4)$

So
$$x^2 - 6x + 8$$
 is even

(2) Claim: $\forall x \in \mathbb{R}$ If $x^2 - x - 2 > 0$ then x > 2 or x < -1= $\forall x \in \mathbb{R}$, If $x \in 2$ and $x \ge -1$ then $x^2 - x - 2 \le 0$ Proof: Let $x \in \mathbb{R}$ assume $-1 \le x \le 2$ Then $x^2 - x + 2 = (x-2)(x+1)$ Now $-1 \le x \Leftrightarrow x+1 \ge 0$ and $x \le 2 \Leftrightarrow x-2 \le 0$ 5. $x^2 - 2c + 2 = (x-2)(x+1) \le 0$ Alternative Proof: We can prove the statment $\forall x \in \mathbb{R}$, if $x^e - x - 2 > 0$ then x > 2 or x < -1Let $x \in \mathbb{R}$ and assume $x^2 - x - 2 > 0$ consider two cases: $1f^2 \times 2$ or $if \times 2$ In the first case we're done! In the second case we must prove that x <-1 So let's assume $x^2-x-2>0$ and $x \leq 2$ Then $x^2-x-2 = (x-2)(x+1)$ <0 ≤ 0 must be <0= x+1<0 = x<-1 Observation: The previous proof Used the equivalence A ⇒ B VC = (A N ¬B) ⇒ C This is sometimes called "proof by elimination"