Problem set 8 Please turn in the problem set. You can place it on the desk. COSC 2 Lecture

COSC 290 Discrete Structures

Lecture 11: Proofs and codes, continued...

Prof. Michael Hay Friday, Sep. 22, 2017 Colgate University

Plan for today

- 1. Hamming codes
- 2. Problem Set Ouestions

Hamming codes

Hamming code

Claim: Hamming code has a minimum distance of 3.

Recall that the minimum distance of code $\mathcal C$ is the smallest Hamming distance between two distinct codewords in $\mathcal C$.

$$\min \{ \Delta(x,y) : x,y \in C \text{ and } x \neq y \}$$

Claim

The claim we want to prove is

$$\forall m \in \{0,1\}^k : \forall m' \in \{0,1\}^k :$$

 $\Delta(m,m') > 0 \implies \Delta(encode(m), encode(m')) \ge 3$

(where encode is the function that generates a Hamming codeword c for message m).

Poll: What to show?

We want to support claim that the Hamming code C has a minimum distance of at least 3. Which of the following statements provides sufficient support for our claim? Note: we use encode to mean the function that generates a Hamming codeword c for message m.

- A) There exists two codewords $c\in\mathcal{C}$ and $c'\in\mathcal{C}$ such that $c\neq c'$ and $\Delta(c,c')\geq 3$.
- B) There exists two messages $m \in \{0,1\}^k$ and $m' \in \{0,1\}^k$, such that $m \neq m'$ and $\Delta(encode(m), encode(m')) > 3$.
- C) For any two codewords $c\in\mathcal{C}$ and $c'\in\mathcal{C}$, if $c\neq c'$, then $\Delta(c,c')>3$.
- D) For any two messages $m \in \{0,1\}^k$ and $m' \in \{0,1\}^k$, if $m \neq m'$, then then $\Delta(encode(m), encode(m')) > 3$.
- F) None of above / More than one

Claim, with slight notation change

The claim we want to prove is

$$\forall m \in \{0,1\}^k : \forall m' \in \{0,1\}^k :$$

 $\Delta(m,m') > 0 \implies \Delta(c,c') \ge 3$

(where c denotes the Hamming codeword for m and c' denotes Hamming code word for m').

.

Proof by cases

$$\forall \langle m,m'\rangle \in \left(\left\{0,1\right\}^k \times \left\{0,1\right\}^k\right) : \Delta(m,m') > 0 \implies \Delta(c,c') \geq 3$$

- (m, m') pairs such that $\Delta(m, m') > 3$
- $\langle m, m' \rangle$ pairs such that $\Delta(m, m') = 2$
- $\langle m, m' \rangle$ pairs such that $\Delta(m, m') = 1$
- (m, m') pairs such that $\Delta(m, m') = 0$ (trivial case)

Important: when proving by cases, make sure your cases cover all possibilities!

For each case, we need to show $\Delta(m, m') > 0 \implies \Delta(c, c') > 3$.

Shown on board

Problem Set Questions

Poll: What to show for second case?

We are considering the case where $\Delta(m,m')=2$. Recall that we are using c:=encode(m) and c':=encode(m'). What do we want to show?

- A) $\Delta(c,c')=3$
- B) $\Delta(c,c') \geq 3$
- C) That c and c' differ in at least one parity bit.
- D) That c and c' differ in at least two parity bits.
- E) None / More than one

Problem 4.13

Claim: If the minimum distance of a code C is 2t, then C can detect ?? errors (and correct ?? errors).

Claim: If the minimum distance of a code C is 2t, then C can detect 2t-1 errors (and correct t-1 errors).

Proof:

- Error detection: essentially identical to proof on Wednesday (or in book on p. 4,08). Why?
 Because proof does not depend in any way on minimum distance being odd.
- Error correction: proof depends on number of errors being strictly less than half minimum distance.

Problem 4.12

Claim: If the minimum distance of a code C is 2t + 1, then C cannot detect 2t + 1 errors and cannot correct t + 1 errors.

Let's break this into two smaller claims:

- Claim (a): If the minimum distance of a code C is 2t + 1, then C cannot detect 2t + 1 errors.
- Claim (b): If the minimum distance of a code C is 2t + 1, then C cannot correct t + 1 errors.

10

11

C cannot detect errors

Let q be " $\mathcal C$ cannot detect 2t+1 errors."

Exercise (and slight digression): formalize q as a proposition in predicate logic...

- · Your proposition should define c as any codeword.
- Your proposition should define c' as any (possibly corrupted) codeword.
- You can use predicate hasError(c') which is True if error detection believes c' contains an error, and False otherwise.
- First, express " $\mathcal C$ can detect 2t + 1 errors" and then just negate the whole expression.

Problem 4.12, part (a)

Claim (a): If the minimum distance of a code $\mathcal C$ is 2t+1, then $\mathcal C$ cannot detect 2t+1 errors.

Let p be "the minimum distance of code $\mathcal C$ is 2t+1."

Let q be "C cannot detect 2t + 1 errors."

Claim (a) expressed logically: $p \implies q$.

Proof approach: direct proof, "assume the antecedent" (p. 246): assume p is true, show q must be true. But what exactly does q

Expressing q in logic

Let q be " $\mathcal C$ cannot detect 2t+1 errors."

q can be expressed logically as

$$\neg (\forall c \in \mathcal{C} : \forall c' \in \{0, 1\}^n : (0 < \Delta(c, c') \le 2t + 1) \implies hasError(c'))$$

$$\equiv \exists c \in \mathcal{C} : \exists c' \in \{0, 1\}^n : (0 < \Delta(c, c') \le 2t + 1) \land \neg hasError(c')$$

Side note

Your proofs do not necessarily need to express everything in formal logic. The point of this exercise is show that a sound proof argument should follow the rules of logic (even though you may express your proof in a natural language).

10

13

Proof by construction

Recap:

- p = "C has minimum distance 2t + 1."
- q = "C cannot detect 2t + 1 errors"
- Claim: p ⇒ q
- · Proof: direct proof (by assuming the antecedent)
 - · Given: p is true · Want to show: q must be true.
- · Approach:
 - · We just showed that q is logically equivalent to the claim that there exists $c \in C$ and $c' \in \{0,1\}^n$ such that $0 < \Delta(c,c') \le 2t+1$ and hasError(c') returns False.
 - · Now, we proceed with a "proof by construction" (p. 433). We find a pair c and c' and then show the pair satisfies above condition.

Shown on hoard

Proof of (b)

For (b), similar set up except q is "C cannot correct t+1 errors."

By the same reasoning we used with (a), ...

- Given: C has minimum distance 2t + 1
- Want to show: there exists c ∈ C and c' ∈ { 0,1}ⁿ such that $0 < \Delta(c,c') \le t+1$ and error correction will fail (it will "correct" c' to some codeword other than c).

Shown on board