MATH 554 Homework 9

Problem 1 Prove that if (E, d) is a complete metric space and F is a closed subset of E, then (F, d) is also a complete metric space.

Let $\langle p_n \rangle$ be a Cauchy sequence in F. Since $F \subseteq E$, $\langle p_n \rangle$ is Cauchy in E. Since E is complete, $\langle p_n \rangle$ converges to some point p in E. Since F is closed, it contains the limits of all its sequences, so $p \in F$. Thus, $\langle p_n \rangle$ converges in F, so (F,d) is a complete metric space.

Problem 2 Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in \mathbb{R}^3 with its usual metric. Let $p_n = (x_n, y_n, z_n)$.

(a) Show that each of the sequences $\langle x_n \rangle_{n=1}^{\infty}$, $\langle y_n \rangle_{n=1}^{\infty}$, and $\langle z_n \rangle_{n=1}^{\infty}$ are also Cauchy sequences and explain why this implies the limits

$$x := \lim_{n \to \infty} x_n, y := \lim_{n \to \infty} y_n, z := \lim_{n \to \infty} z_n$$

exist.

(b) Let p = (x, y, z) and show

$$\lim_{n\to\infty} p_n = p.$$

- (c) Conclude that \mathbb{R}^3 is a complete metric space.
- (a) Let $\varepsilon > 0$. Since $\langle p_n \rangle$ is Cauchy, there exists an N such that for all m, n > N, we have $||p_m p_n|| < \varepsilon$. Let m, n > N. Then, we have

$$|x_{m}-x_{n}|^{2} \leq |x_{m}-x_{n}|^{2} + |y_{m}-y_{n}|^{2} + |z_{m}-z_{n}|^{2} = ||p_{m}-p_{n}||^{2} \implies |x_{m}-x_{n}| \leq ||p_{m}-p_{n}|| < \varepsilon,$$

$$|y_{m}-y_{n}|^{2} \leq |x_{m}-x_{n}|^{2} + |y_{m}-y_{n}|^{2} + |z_{m}-z_{n}|^{2} = ||p_{m}-p_{n}||^{2} \implies |y_{m}-y_{n}| \leq ||p_{m}-p_{n}|| < \varepsilon,$$

$$|z_{m}-z_{n}|^{2} \leq |x_{m}-x_{n}|^{2} + |y_{m}-y_{n}|^{2} + |z_{m}-z_{n}|^{2} = ||p_{m}-p_{n}||^{2} \implies |z_{m}-z_{n}| \leq ||p_{m}-p_{n}|| < \varepsilon.$$

So by definition, $\langle x_n \rangle$, $\langle y_n \rangle$, and $\langle z_n \rangle$ are Cauchy sequences in \mathbb{R} . We have shown that in \mathbb{R} , all Cauchy sequences converge, so these three sequences all converge.

(b) Let $\varepsilon > 0$. Since these three sequences all converge, by definition there exist N_1, N_2, N_3 such that for all $n > N := \max\{N_1, N_2, N_3\}$, we have

$$|x_n - x|, |y_n - y|, |z_n - z| < \frac{\varepsilon}{\sqrt{3}}.$$

Let n > N. Then, from the choice of N we can write

$$||p_n - p|| = \sqrt{|x_n - x|^2 + |y_n - y|^2 + |z_n - z|^2}$$

$$< \sqrt{\frac{\varepsilon^2}{3} + \frac{\varepsilon^2}{3} + \frac{\varepsilon^2}{3}}$$

$$= \sqrt{\varepsilon^2} = \varepsilon,$$

so $\langle p_n \rangle$ converges to p.

(c) Since $\langle p_n \rangle$ was an arbitrary Cauchy sequence in \mathbb{R}^3 and we have shown it must converge, by definition \mathbb{R}^3 is complete.

Problem 3 Let $\langle p_n \rangle_{n=1}^{\infty}$ be a Cauchy sequence in the metric space E. Prove that the sequence is bounded.

Consider $\varepsilon = 1$. Since $\langle p_n \rangle$ is Cauchy, there exists an N such that for all m, n > N, $d(p_m, p_n) < 1$. Let $K := \lceil N+1 \rceil$. Consider

$$M := \max\{1, d(p_1, p_K), d(p_2, p_K), \dots, d(p_{|N|}, p_K)\},\$$

which is well defined because the set is finite. Then, we claim $B(p_K, M)$ contains $\langle p_n \rangle$. To see this, let $n \in \mathbb{N}$. If n > N, then $d(p_n, p_K) < 1 \le M$ by our choice of N, K, and M, so $p_n \in \overline{B}(p_K, M)$. If $n \le N$, then $d(p_n, p_K) \leq M$ by our choice of M, so $p_n \in \overline{B}(p_K, M)$ in this case as well.

Problem 4 Let $f: E \to E$ be a contraction and let $\lim_{n \to \infty} p_n = p$ in E. Show $\lim_{n \to \infty} f(p_n) = f(p)$.

Since f is a contraction, there exists $\rho \in [0,1)$ such that $d(f(x),f(y)) \leq \rho d(x,y)$ for all $x,y \in E$.

Case 1: $\rho = 0$. Then the distance between all points is 0, so the limit holds because E has only one point.

Case 2: $0 < \rho < 1$. Let $\varepsilon > 0$. Since $\langle p_n \rangle$ converges to p, there exists an N such that for all n > N, $d(p_n, p) < \frac{\varepsilon}{a}$. Then, for all n > N, we have

$$d(f(p_n), f(p)) \le \rho d(p_n, p) < \rho\left(\frac{\varepsilon}{\rho}\right) = \varepsilon.$$

So the limit holds by definition.

Problem 5 (Banach Fixed Point Theorem) Let E be a complete metric space and $f: E \to E$ a contraction. Prove that there is a unique point $p_* \in E$ with $f(p_*) = p_*$ along the following lines. To start choose any point $p_0 \in E$ and define a sequence $\langle p_n \rangle_{n=1}^{\infty}$ by

$$p_1 = f(p_0), p_2 = f(p_1), p_3 = f(p_2), \dots, p_{n+1} = f(p_n), \dots$$

(a) Show for $k \geq 1$ that

$$d(p_k, p_{k+1}) \le \rho^k d(p_0, p_1).$$

(b) If m < n show

$$d(p_m, p_n) \le \frac{\rho^m - \rho^n}{1 - \rho} d(p_0, p_1) \le \frac{\rho^m}{1 - \rho} d(p_0, p_1).$$

(c) Show if N is a natural number and $m, n \geq N$, then

$$d(p_m, p_n) \le \frac{\rho^N}{1 - \rho} d(p_0, p_1).$$

(d) We have shown that if $0 \le \rho < 1$, then $\lim_{N \to \infty} = 0$. It follows that

$$\lim_{N \to \infty} \frac{\rho^N}{1 - \rho} d(p_0, p_1) = 0.$$

Use this to show $\langle p_n \rangle_{n=1}^{\infty}$ is a Cauchy sequence.

(e) As E is complete, this implies $\langle p_n \rangle_{n=1}^{\infty}$ is convergent. Let $p_* := \lim_{n \to \infty} p_n$. Use $p_{n+1} = f(p_n)$ and problem 4 to show $f(p_*) = p_*$. This shows the existence of a fixed point for f.

- (f) Show the fixed point is unique.
- (a) Since f is a contraction, there exists $\rho \in [0,1)$ such that for all $x,y \in E$, $d(f(x),f(y)) \leq \rho d(x,y)$. We will induct on k to show the desired inequality.

Base Case: Let k=1. Then, we can use our choice of ρ to write

$$d(p_k, p_{k+1}) = d(p_1, p_2) = d(f(p_0), f(p_1)) \le \rho d(p_0, p_1) = \rho^k d(p_0, p_1).$$

Induction Step: Let $k \in \mathbb{N}$, k > 1. Assume that we have $d(p_{k-1}, p_k) \leq \rho^{k-1} d(p_0, p_1)$. Then, we have

$$d(p_k, p_{k+1}) = d(f(p_{k-1}), f(p_k))$$

$$\leq \rho d(p_{k-1}, p_k) \qquad \text{(by choice of } \rho\text{)}$$

$$\leq \rho \rho^{k-1} d(p_0, p_1) \qquad \text{(induction hypothesis)}$$

$$= \rho^k d(p_0, p_1).$$

So the inequality holds for all $k \geq 1$.

(b) Assume m < n. We can write

$$d(p_m, p_n) \leq \sum_{k=m}^{n-1} d(p_k, p_{k+1})$$
 (triangle inequality)

$$\leq \sum_{k=m}^{n-1} \rho^k d(p_0, p_1)$$
 (bound from (a))

$$= d(p_0, p_1) \sum_{k=m}^{n-1} \rho^k$$
 (pulling out constant)

$$= d(p_0, p_1) \frac{\rho^m - \rho^{n-1+1}}{1 - \rho}$$
 (evaluating geometric sum)

$$= \frac{\rho^m - \rho^n}{1 - \rho} d(p_0, p_1)$$
 (rearranging)

$$= \frac{\rho^m}{1 - \rho} d(p_0, p_1) - \frac{\rho^n}{1 - \rho} d(p_0, p_1)$$
 (splitting fraction)

$$\leq \frac{\rho^m}{1 - \rho} d(p_0, p_1).$$
 (no longer subtracting non-negative term)

(c) Let $N \in \mathbb{N}$ and $m, n \geq N$. Without loss of generality, assume m < n. (If m = n, then $d(p_m, p_n) = 0$, so the inequality trivially holds). Because $\rho < 1$, we can write $\rho^m \leq \rho^N$ because $m \geq N$. So we can use (b) to write

$$d(p_m, p_n) \le \frac{\rho^m}{1 - \rho} d(p_0, p_1) \le \frac{\rho^N}{1 - \rho} d(p_0, p_1).$$

(d) Let ε . Since $\lim_{N\to\infty}\frac{\rho^N}{1-\rho}d(p_0,p_1)=0$, there exists an M such that for all n>M, we have

$$\left| \frac{\rho^N}{1-\rho} d(p_0, p_1) \right| < \varepsilon.$$

Let m, n > M. Then, from part (c), we can write

$$d(p_m, p_n) \le \frac{\rho^N}{1 - \rho} d(p_0, p_1) \le \left| \frac{\rho^N}{1 - \rho} d(p_0, p_1) \right| < \varepsilon.$$

So $\langle p_n \rangle$ is Cauchy by definition.

(e) Since $\langle p_n \rangle$ is Cauchy and E is complete, $p_* := \lim_{n \to \infty} p_n$ exists. From problem 4, we have

$$\lim_{n \to \infty} f(p_n) = f(p_*).$$

But since $p_{n+1} = f(p_n)$ for all $n \ge 1$, we have $\langle f(p_n) \rangle_{n=1}^{\infty}$ is the same as $\langle p_n \rangle_{n=2}^{\infty}$. Since the sequences have the same end behavior, we can use problem 4 to write

$$f(p_*) = \lim_{n \to \infty} f(p_n)$$
 (problem 4)
 $= \lim_{n \to \infty} p_n$ (same end behavior)
 $= p_*$. (as defined)

Therefore, we have found a fixed point $p_* \in E$ such that $f(p_*) = p_*$

(f) Suppose there exist two fixed points $p_*, p_{**} \in E$. Then, $f(p_*) = p_*$ and $f(p_{**}) = p_{**}$. We claim $d(p_*, p_{**}) = 0$. If not, then because f is a contraction we would have

$$d(f(p_*), f(p_{**})) \le \rho d(p_*, p_{**}) = \rho d(f(p_*), f(p_{**})),$$

which would imply $\rho = 1$, a contradiction since we must have $0 \le \rho < 1$. Since $d(p_*, p_{**}) = 0$, we have $p_* = p_{**}$ by the metric space axioms. Therefore, our fixed point is unique.

Problem 6 Let $a \ge 1$ and define $f: [0, \infty) \to [0, \infty)$ by $f(x) = \sqrt{a+x}$.

(a) Show for $x, y \in [0, \infty)$ that

$$|f(x) - f(y)| = \frac{|x - y|}{\sqrt{a + x} + \sqrt{a + y}} \le \frac{|x - y|}{2\sqrt{a}} \le \frac{1}{2}|x - y|$$

and therefore f is a contraction. The space $[0,\infty)$ is a complete metric space as it is a closed subset of the complete space \mathbb{R} .

(b) Define a sequence $x_0 = a$ and $x_{n+1} = f(x_n)$. The Banach Fixed Point Theorem tells us this converges to the unique fixed point of f. Find this fixed point. Note this limit can be interpreted as giving meaning to

$$\sqrt{a + \sqrt{a + \sqrt{a + \sqrt{a + \dots}}}}$$

(a) Let $x, y \in [0, \infty)$. We can write

$$|f(x) - f(y)| = |\sqrt{a + x} - \sqrt{a + y}|$$

$$= \left| \frac{(\sqrt{a + x} - \sqrt{a + y})(\sqrt{a + x} + \sqrt{a + y})}{\sqrt{a + x} + \sqrt{a + y}} \right|$$
 (multiplying by conjugate)
$$= \left| \frac{(a + x) - (a + y)}{\sqrt{a + x} + \sqrt{a + y}} \right|$$
 (difference of squares)
$$= \left| \frac{1}{\sqrt{a + x} + \sqrt{a + y}} \right| |x - y|$$

$$\leq \left| \frac{1}{\sqrt{1 + 0} + \sqrt{1 + 0}} \right| |x - y|$$
 (because $a \geq 1$ and $x, y \geq 0$)

$$=\frac{1}{2}\left| x-y\right| .$$

Since $0 \le \frac{1}{2} < 1$, f is a contraction. Since $[0, \infty)$ is closed and thus complete in \mathbb{R} , there exist a fixed point by problem 5.

(b) Let a_* be the fixed point of f. By definition, we have $a_* = f(a_*) = \sqrt{a + a_*}$. So we can write

$$a_*^2 = a + a_* \implies a_*^2 - a_* - a = 0,$$

and solve for a_* using the quadratic formula. Since the square root is non-negative, the positive solution

$$a_* = \frac{-(-1) + \sqrt{(-1)^2 - 4(1)(-a)}}{2(1)} = \frac{\sqrt{4a+1} + 1}{2}$$

is the limit of the sequence.

Problem 7 We will compute numerically a root of the equation $x^3 - 5x - 1 = 0$. We can rewrite this as $\frac{x^3-1}{5}=x$, so we are looking for a fixed point of f given by

$$f(x) = \frac{x^3 - 1}{5}.$$

Let E = [-1, 1]. This is a closed subset of \mathbb{R} and therefore is a complete metric space.

(a) If $|x| \leq 1$ show

$$|f(x)| \le \frac{2}{5}$$

and therefore f maps E into E.

(b) Show if $x, y \in E$ (that is $|x|, |y| \le 1$) then

$$\left| f(x) - f(y) \right| \le \frac{3}{5} \left| x - y \right|$$

and therefore f is a contraction on E = [-1, 1].

(a) We observe that $(-1)^3 - 5(-1) - 1 = 1 + 5 - 1 = 3$ and $(1)^3 - 5(1) - 1 = 1 - 5 - 1 = -5$, so by the intermediate value theorem there is a root of the equation in [-1,1]. Thus, it would be convenient to show f(x) is a contraction on [-1,1], because we can then use the fixed point theorem to find a root. Let $x \in [-1, 1]$. Then $|x| \le 1$. So we can write

$$|f(x)| = \left| \frac{x^3 - 1}{5} \right|$$

$$= \frac{1}{5} |x^3 + (-1)|$$

$$\leq \frac{1}{5} (|x|^3 + |-1|)$$
 (triangle inequality)
$$\leq \frac{1}{5} (|1|^3 + 1)$$
 ($|x| \leq 1$)
$$= \frac{2}{5}.$$

So $|f(x)| \leq \frac{2}{5}$ on E, and therefore f maps E into E.

(b) We can write

$$|f(x) - f(y)| = \left| \frac{x^3 - 1}{5} - \frac{y^3 - 1}{5} \right|$$

$$= \left| \frac{x^3 - y^3}{5} \right|$$

$$= \left| \frac{(x - y)(x^2 + xy + y^2)}{5} \right|$$

$$= \frac{1}{5}|x - y||x^2 + xy + y^2|$$

$$\leq \frac{1}{5}|x - y|(|x|^2 + |x||y| + |y|^2) \qquad \text{(triangle inequality)}$$

$$\leq \frac{1}{5}|x - y|(|1|^2 + |1||1| + |1|^2)$$

$$= \frac{3}{5}|x - y|.$$

Therefore, since $0 \le \frac{3}{5} < 1$, f is a contraction on [-1,1]. Therefore, we have from the Banach fixed point theorem that there is a unique fixed point where $x = \frac{x^3 - 1}{5}$, which implies x is a root of the equation in [-1,1]. We can then use the sequence defined in problem 5 to calculate the fixed point to an arbitrary level of accuracy, as shown in the given table.