第一章 逻辑代数基础

- ❖ 1.1 基本概念、公式和定理
 - > 1.1.1 基本和常用逻辑运算
 - > 1.1.2 公式和定理
- ❖ 1.2 逻辑函数的化简方法
 - > 1.2.1 逻辑函数的公式化简法
 - > 1.2.2 逻辑函数的图形化简法
 - > 1.2.3 具有约束项的逻辑函数的化简
- ❖ 1.3 逻辑函数的表示方法及其相互之间的转换
 - > 1.3.1 几种表示逻辑函数的方法
 - > 1.3.2 几种表示方法之间的转换

基本概念

一、逻辑代数(布尔代数、开关代数)

逻辑: 事物因果关系的规律

逻辑函数:逻辑自变量和逻辑结果的关系

$$Z = f(A, B, C \cdots)$$

逻辑变量取值: 0、1 分别代表两种对立的状态

一种状态	高电平	真	是	有	• • •	1	0
另一状态	低电平	假	非	无	•••	0	1

二、二进制代码

编码: 用二进制数表示文字、符号等信息的过程。

二进制代码: 编码后的二进制数。

二一十进制代码:用二进制代码表示十个数字符号 0~9,又称为 BCD 码(Binary Coded Decimal)。

其它代码: ISO 码, ASCII (美国信息交换标准代码)

十进	几种常见的 BCD 代码				
制数	8421 码	余3码	2421(A)码	5211 码	余3循环码
0	0000	0011	0000	0000	0010
1	0001	0100	0001	0001	0110
2	0010	0101	0010	0100	0111
3	0011	0110	0011	0101	0101
4	0100	0111	0100	0111	0100
5	0101	1000	1011	1000	1100
6	0110	1001	1100	1001	1101
7	0111	1010	1101	1100	1111
8	1000	1011	1110	1101	1110
9	1001	1100	1111	1111	1010
权	8421		2421	5211	

1.1 逻辑代数基本概念、公式和定理

- 1.1.1 基本和常用逻辑运算
- 一、三种基本逻辑运算
- 1. 基本逻辑关系举例
 - (1) 电路图:

功能表

\boldsymbol{A}	B	Y
断	断	灭
断	合	灭
合	断	灭
合	合	亮

\boldsymbol{A}	B	Y
断	断	灭
断	合	亮
合	断	亮
合	合	亮

功能表

\boldsymbol{A}	Y
断	亮
合	灭

	R	
电源	开关4	次 Y Y
	非逻辑关系	

(2) 真值表:

把n个变量的2ⁿ种取值组合与相应函数Y值列于表中,这个表称为真值表。

功能表

\boldsymbol{A}	B	Y
断	断	灭
断	合	灭
合	断	灭
合	合	亮

与逻辑关系

真值表

\boldsymbol{A}	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

(Truth table)

功能表

\boldsymbol{A}	B	Y
断	断	灭
断	合	亮
合	断	亮
合	合	亮

或逻辑关系

真值表

A B	Y
0 0	0
0 1	1
1 0	1
1 1	1

功能表

\boldsymbol{A}	Y
断	亮
合	灭

非逻辑关系

真值表

\boldsymbol{A}	Y
0	1
1	0

(3) 三种基本逻辑关系:

与逻辑: 当决定一事件的所有条件都具备时,事件才发生的逻辑关系。

• 或逻辑: 决定一事件结果的诸条件中,只要有一个或一个以上具备时,事件就会发生的逻辑关系。

• 非逻辑: 只要条件具备,事件便不会发生;条件不具备,事件一定发生的逻辑关系。

2. 基本逻辑运算

(1) 与运算:

真值表

\boldsymbol{A}	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

逻辑函数式

$$Y = A \cdot B = AB$$

逻辑符号

(2) 或运算:

真值 表

\boldsymbol{A}	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

逻辑函数式 Y = A + B

$$Y = A + B$$

逻辑符号

$$A \longrightarrow \ge 1 \longrightarrow Y$$
 或门 (OR gate)

(3) 非运算:

真值

A	Y
0	1
1	0

逻辑函数式 Y = A

$$Y = \overline{A}$$

逻辑符号

$$A$$
 — 1 — Y 非门 (NOT gate)

二、逻辑变量与逻辑函数及常用复合逻辑运算

1. 逻辑变量与逻辑函数

逻辑变量:在逻辑代数中,用英文字母表示的变量称为逻辑变量。在二值逻辑中,变量的取值不是1就是0。

原变量和反变量:字母上面无反号的称为原变量,有反号的叫做反变量。

逻辑函数:如果输入逻辑变量 A、B、C···的取值确定之后,输出逻辑变量 Y的值也被唯一确定,则称 Y是 A、B、C···的逻辑函数。并记作 Y = F(A, B, C···

2. 几种常用复合逻辑运算

(1) 与非运算 (NAND) $Y_1 = \overline{AB}$

$$A \longrightarrow \&$$
 $B \longrightarrow Y$

 Y_1 、 Y_2 的真值表

(2) 或非运算 (NOR)

$$Y_2 = \overline{A + B}$$

\boldsymbol{A}	B	Y_1	Y_2			
0	0	1	1			
0	1	1	0			
1	0	1	0			
1	1	0	0			

(3) 与或非运算 $A \longrightarrow B \ge 1$ $A \longrightarrow Y_3 = \overline{AB + CD}$ $C \longrightarrow Y_3$ (真值表略)

$$(4)$$
 异或运算 $A \longrightarrow =1$ Y_4 (Exclusive—OR) $B \longrightarrow =1$

$$Y_4 = A \oplus B = A\overline{B} + \overline{AB}$$

A	В	Y_4
0	0	0
0	1	1
1	0	1
1	1	0

(5) 同或运算 (异或非)

(Exclusive—NOR)

$$Y_{5} = \overline{A \oplus B}$$

$$= \overline{AB} + AB$$

$$= A \odot B$$

$$A \longrightarrow B$$

$$= 1$$

$$B \longrightarrow Y_{5}$$

$$= Y_{5}$$

A	В	Y_5
0	0	1
0	1	0
1	0	0
1	1	1

三、基本和常用逻辑运算的逻辑符号

国标符号

曾用符号

美国符号

$$B \longrightarrow A \longrightarrow A \longrightarrow A$$

$$R = -Y$$

$$A \longrightarrow + \longrightarrow Y$$

$$A \longrightarrow Y$$

$$A - \boxed{1} \bigcirc Y = \overline{A}$$

$$A - \bigcirc Y$$

$$A-\bigvee$$
 Y

国标符号

曾用符号

美国符号

$$B$$
—— Y

$$A = \bigcirc Y$$

$$B$$
 $+$ P Y

$$A \longrightarrow Y$$

$$A \rightarrow P$$

1.1.2 公式和定理

一、常量之间的关系(常量:0和1)

与:
$$0 \cdot 0 = 0$$
 或: $1 + 1 = 1$ 非: $\overline{0} = 1$
 $0 \cdot 1 = 0$ $1 + 0 = 1$ $\overline{1} = 0$
 $1 \cdot 1 = 1$ $0 + 0 = 0$

二、变量和常量的关系(变量: A、B、C...)

与:
$$A \cdot 1 = A$$
 或: $A + 0 = A$ 非: $A \cdot A = 0$

$$A \cdot 0 = 0 \qquad A + 1 = 1 \qquad A + \overline{A} = 1$$

三、与普通代数相似的定理

=A+BC=左式

交換律
$$A \cdot B = B \cdot A$$
 $A + B = B + A$ 结合律 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ $(A + B) + C = A + (B + C)$ 分配律 $A(B + C) = AB + AC$ $A + BC = (A + B)(A + C)$ [例 1. 1. 1] 证明公式 $A + BC = (A + B)(A + C)$ [解] 方法一: 公式法 右式 = $(A + B)(A + C) = A \cdot A + A \cdot C + A \cdot B + B \cdot C$ $= A + AC + AB + BC = A(1 + C + B) + BC$

[例 1.1.1] 证明公式 A + BC = (A + B)(A + C)

[解] 方法二: 真值表法(将变量的各种取值代入等式两边,进行计算并填入表中)

\boldsymbol{A}	B	C	$B \cdot C$	A + BC	A + B	A+C	(A+B)(A+C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

相等

四、逻辑代数的一些特殊定理

$$A \cdot A = A$$

同一律
$$A \cdot A = A$$
 $A + A = A$

$$A \cdot B = A + B$$

德·摩根定理
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$
 $\overline{A + B} = \overline{A \cdot B}$

还原律
$$\overline{A} = A$$

$$\overline{\overline{A}} = A$$

[例 1.1.2] 证明: 德 • 摩根定理

\boldsymbol{A}	В	$A \cdot B$	$\overline{A \cdot B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$	A + B	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	0	1	1	1	1	0	1	1
0	1	0	1	1	0	1	1	0	0
1	0	0	1	0	1	1	1	0	0
1	1	1	0	0	0	0	1	0	0

相等

五、关于等式的两个重要规则

1. 代入规则: 等式中某一变量都代之以一个逻 辑函数,则等式仍然成立。

例如,已知
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 (用函数 $A+C$ 代替 A)
则 $\overline{(A+C)+B} = \overline{A+C} \cdot \overline{B} = \overline{A} \cdot \overline{C} \cdot \overline{B}$

2. 反演规则:

将 Y 式中 "."换成 "+","+"换成 "." "0"换成"1","1"换成"0" 原变量换成反变量,反变量换成原变量

注意: { 运算顺序: 括号→乘→加 不属于单个变量上的反号应保留不变

反演规则的应用: 求逻辑函数的反函数

将 Y 式中 "."换成 "+","+"换成 "." "0"换成"1"、"1"换成"0" 原变量换成反变量,反变量换成原变量

例如: 已知 $Y_1 = A(B+C) + CD$

运算顺序: 括号→与→或

 $\overline{Y}_{1} = (\overline{A} + \overline{BC})(\overline{C} + D)$ 不属于单个变量上 则

的反号应保留不变

已知
$$Y_2 = \overline{AB} + C + D + C$$

则
$$\overline{Y_2} = \overline{(\overline{A} + B) \cdot \overline{C} \cdot \overline{D} \cdot \overline{C}}$$

六、若干常用公式

(1)
$$AB + A\overline{B} = A(B + \overline{B}) = A$$

(2)
$$A + AB = A(1+B) = A$$
 $\xrightarrow{\text{filtr}} A + A() = A$

(3)
$$A + \overline{AB} = (A + A)(A + B) = A + B$$

$$(4) AB + \overline{AC} + BC = AB + \overline{AC}$$

(5)
$$A\overline{B} + \overline{AB} = \overline{A} \overline{B} + AB$$

公式 (4) 证明:
$$AB + \overline{AC} + BC = AB + \overline{AC}$$

$$AB + \overline{AC} + BCD = AB + \overline{AC}$$

公式 (5) 证明:
$$A\overline{B} + \overline{AB} = \overline{A} \overline{B} + AB$$

$$=\overline{A}\cdot A + \overline{A}\overline{B} + AB + B\cdot \overline{B} = \overline{A}\overline{B} + AB$$

即
$$\overline{A \oplus B} = A \odot B$$
 同理可证 $\overline{A \odot B} = A \oplus B$