This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

MAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: H03H 7/38	A1	(11) International Publication Number: WO 00/51232
(21) Intermediated Application Number DOWN		(43) International Publication Date: 31 August 2000 (31,08.00)
 (21) International Application Number: PCT/US (22) International Filing Date: 23 February 2000 (22) 		BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB
(30) Priority Data: 09/258,184 25 February 1999 (25.02.99)) t	KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ,
(71) Applicant: FORMFACTOR, INC. [US/US]; 5666 L Street, Livermore, CA 94550 (US).	a Ribe	UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPl patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventor: MILLER, Charles, A.; 48881 Semillo Fremont, CA 94539 (US).	n Driv	e,
(74) Agent: LARWOOD, David; Formfactor, Inc., 5666 L Street, Livermore, CA 94550 (US).	a Ribe	Published ra With international search report.

(54) Title: FILTER STRUCTURES FOR INTEGRATED CIRCUIT INTERFACES

(57) Abstract

A method of optimizing the frequency response of an interconnect system of the type which conveys high frequency signals between bond pads of separate integrated circuits (ICs) mounted on a printed circuit board (PCB) through inductive conductors, such as bond wires and package legs, and a trace on the surface of the PCB. To improve the interconnect system, capacitance is added to the trace and inductance is added to the conductors, with the added trace capacitance and conductor inductance being appropriately sized relative to one another and to various other interconnect system impedances to optimize the interconnect system impedance matching frequency response.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU	Albania Armenia Austria Australia	ES FI FR GA	Spain Finland France	LS LT LU	Lesotho Lithuania Luxembourg	SI SK SN	Slovenia Slovakia Senegal
AU AZ BA BB BE BF BG BJ BR CCF CG CH CI CM CU CZ DE DK EE	Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Bstonia	GA GB GB GH GN GR HU IE IL IS IT JP KE KG KP KR LC LI LK LR	Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Islay Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberla	LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE SG	Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden Singapore	ST TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
					0k		

FILTER STRUCTURES FOR INTEGRATED CIRCUIT INTERFACES

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates in general to systems for interconnecting integrated circuits mounted on a circuit board and in particular to an interconnect system that provides a filter and impedance matching function.

10 <u>Description of Related Art</u>

15

20

25

30

Each node of an integrated circuit (IC) that is to communicate with external circuits is linked to a bond pad on the surface of the IC chip. In a packaged IC a bond wire typically connects the bond pad to a conductive leg extending from the package surrounding the IC chip. When the IC is mounted on a printed circuit board (PCB), the package leg is soldered to a microstrip PCB trace on the surface of the PCB. When bond pads of one or more other ICs mounted on the PCB are linked to the PCB trace, the bond pads, bond wires, package legs, and the PCB trace form an interconnect system for conveying signals between nodes of two or more ICs.

In high frequency applications the interconnect system can attenuate and distort signals. The conventional approach to reducing the amount of signal distortion and attenuation caused by the interconnect system has been to minimize the series inductance and shunt capacitance of the interconnect system. Much of the inductance comes from the bond wire and the package leg, and such inductance can be minimized by keeping the bond wire and package leg as short as possible. The capacitance of the bond pads can be reduced to some extent by minimizing the surface area of the bond pads. The capacitance of PCB traces can be reduced by appropriately choosing physical characteristics of the board including the size of the PCB traces, their spacing from ground planes and dielectric nature of the insulating material forming the circuit board. conductors passing vertically through a circuit board to

interconnect PCB traces on various layers of the PCB, can be a source of capacitance at the PCB trace. Designers often avoid the use of vias in high frequency applications because vias can add substantial capacitance to the interconnect system. When vias are unavoidable, designers typically structure them so as minimize their capacitance. Minimizing the bond wire and package leg inductance and capacitances of the bond pad and PCB can help increase the bandwidth, flatten frequency response and reduce the signal distortion, but it is not possible to completely eliminate interconnect system inductance and capacitance. Thus some level of signal distortion and attenuation is inevitable when signal frequencies are sufficiently high.

10

35

What is needed is a way to substantially improve the frequency response of the interconnect system so as to reduce distortion and attenuation of high frequency signals.

SUMMARY OF THE INVENTION

20 The present invention is an improvement conventional system for interconnected integrated circuits (ICs) mounted on a printed circuit board (PCB). conventional interconnect system employs (typically a bond wire and package leg) to connect a bond 25 pad on the surface of each IC to a PCB trace on the PCB so that the ICs can communicate with each other through the The inductance of the bond wires and package legs, the capacitances of the bond pads and PCB trace, the impedances of the IC devices connected to the pads, and 30 impedances of the PCB trace cause the interconnect system to distort, reflect and attenuate signals as they pass between the IC bond pads.

In accordance with the invention, the interconnect system is improved by adapting it to provide a filter function that is optimized for the nature of the signals passing between the ICs. The interconnect system is adapted to provide a filter function, for example by adding capacitance to the circuit board PCB trace and by

appropriately adjusting the bond wire inductance, the IC capacitance, and the additional circuit capacitance relative to one another. The component values are adjusted to optimize relevant characteristics of the interconnect system frequency response. For example when the ICs communicate using low frequency analog signals where it is most important to avoid distortion, "optimal" frequency response may have a narrow, maximally flat, pass band. Or, as another example, when the ICs communicate via high frequency digital signals, the optimal frequency response may have a maximally wide passband. By adding capacitance to the circuit board PCB trace, rather than trying to minimize it, and by adjusting that capacitance relative to impedances of other components of the interconnect system, substantial improvement in interconnect system frequency response can be obtained.

10

15

20

25

30

It is accordingly an object of the invention to provide a system for interconnecting integrated circuits mounted on a printed circuit board wherein the frequency response of the interconnect system is optimized for the nature of signals passing between the ICs.

The concluding portion of this specification particularly points out and distinctly claims the subject matter of the present invention. However those skilled in the art will best understand both the organization and method of operation of the invention, together with further advantages and objects thereof, by reading the remaining portions of the specification in view of the accompanying drawing(s) wherein like reference characters refer to like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified sectional elevation view of a portion of a prior art printed circuit board upon which is mounted a pair of integrated circuits;

FIG. 2 is an equivalent circuit diagram modeling the ICs of FIG. 1 and the prior art structure interconnecting them;

FIG. 3 illustrates the frequency response characteristics of the prior art interconnect system of FIGs. 1 and 2;

FIG. 4 is a simplified sectional elevation view of a portion of a printed circuit board upon which is mounted a pair of integrated circuits, wherein the integrated circuits are interconnected in accordance with the present invention;

FIG. 5 is an equivalent circuit diagram modeling the ICs of FIG. 4 and the structure interconnecting them; and

FIG. 6 illustrates the frequency response characteristics of the interconnect system of FIGS. 4 and 5.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Prior Art Interconnect System

10

15

The present invention is an improvement to a prior art interconnect system for conveying signals between integrated circuits mounted on a printed circuit board.

- FIG. 1 is a simplified sectional elevation view of the prior art interconnect system, including a printed circuit board (PCB) 10 upon which is mounted a pair of integrated circuits (ICs) 12 and 14. IC 12 includes an integrated circuit chip 16 contained within an IC package 18. pad 20 on the surface of chip 16 acts as an input/output (I/O) terminal for signals entering and/or departing chip A typical IC will include several bond pads, but for simplicity only one is shown in FIG. 1. A bond wire 22 links bond pad 20 to a conductive leg 24 extending outward 30 from package 18. Leg 24 is typically soldered onto a microstrip PCB trace 26 on the surface of PCB 10. wire 22 and leg 24 together form a path for conveying signals between bond pad 20 and PCB trace 26. When a bond pad 28 in IC 14 is connected to microstrip PCB trace 26 in
 - a similar manner through a bond wire 27 and a package leg 29, ICs 12 and 14 can transmit signals to one another via PCB trace 26. PCB board 10 also includes a conductive ground plane 30 and a conductive power plane 32 between

layers of dielectric material for delivering ground and power throughout PCB 10.

FIG. 2 is an equivalent circuit diagram modeling PCB 10, ICs 12 and 14 of FIG. 1 and the various structures interconnecting them. IC 12 is modeled as an ideal signal source 40 transmitting a signal through a resistance R. The capacitance to ground at bond pad 20, including the capacitance of the driver and any electrostatic discharge (ESD) protection device connected to bond pad 20, modeled as a single capacitor C1. Bond wire 22 and the package leg 24 form a transmission line that is primarily inductive at higher signal frequencies. Bond wire 22 and package leg 24 are therefore modeled as a single inductor IC 14 is modeled as an ideal signal receiver 42 having input impedance R, connected to bond pad 28. The capacitance at bond pad 28, including the capacitance of any driver, ESD or other device connected to pad 28 is modeled as a The inductances of bond wire 27 and 29 are Trace 26 is modeled as a modeled as a single inductor L2. microstrip transmission line having a series characteristic impedance Z0.

10

15

20

25

30

The circuit formed by capacitors C1, C2, inductors L1 and L2, resistors R1 and R2, and impedance Z0 has a reactive impedance that can substantially attenuate and distort signals passing between driver 40 and receiver 42. The conventional approach to reducing the amount of signal distortion and attenuation in high frequency applications has been to minimize bond wire inductances L1 and L2 and capacitances C1 and C2. Inductances L1 and L2 are minimized by keeping bond wires 20, 27 and package legs 24, 29 as small as possible. Capacitances C1 and C2 are minimized by keeping bond pads 20 and 28 as small as possible.

Table I below lists impedance values of the various interconnect system components of the prior art equivalent circuit of FIG. 2 that are typical in high frequency applications.

TABLE I

ELEMENT	IMPEDANCE
L1 L2 C1 C2 Z0 R,	1nH 1nH 2pF 2pF 50 Ohms 50 Ohms 50 Ohms

3 FIG. illustrates the frequency response characteristics of the prior art interconnect system of FIGs. 1 and 2 when components are set to the values indicated in Table I. The desired frequency response characteristics for an interconnect system depends on its application. For example, when the interconnect system is to convey an analog signal with little distortion or noise, 10 it is usually desirable that the passband be only as wide as needed to pass the highest frequency signal expected, that the passband be as flat as possible to avoid signal distortion, and that all areas of the stopband have maximal attenuation so as to block high frequency noise. we want to use the interconnect system of FIG. 2 to convey 15 an analog signal having components up to 3GHz. note that the passband (approximately 2GHz) is not wide enough for the application. We also note that the passband is not particularly flat between 1 and 2 GHz. 20 interconnect system will severely attenuate signal frequency components above 2GHz and will distort signals having frequency components above 1GHz. We also note that the stopband has large peaks at several frequencies above 2GHz and may therefore fail to sufficiently attenuate noise 25 at those frequencies.

Improved Interconnect System

30

FIG. 4 illustrates a PCB 50 implementing an improved interconnect system in accordance with the present invention for interconnecting a bond pad 52 in one IC 54 to a bond pad 56 in another IC 58. Bond wires 60 and 62 connect pads 52 and 56 to package legs 64 and 66 which are

in turn soldered to a PCB trace 68 on the upper surface of PCB 50. A conductive via 70 passes through PCB 50 and contacts PCB trace 68 near the point of contact between leg 64 and PCB trace 68. Similarly a via 72 passes through PCB 50 and contacts PCB trace 68 near its point of contact with leg 66.

FIG. 5 is an equivalent circuit diagram of interconnect system of FIG. 4 in accordance with the invention. A driver 70 within IC 54 is connected to pad 52 through impedance R, and a receiver having input impedance R, within IC 58 connected to pad 56. Bond wire 60 and package leg 64 are modeled as inductance L1 while bond wire and package leg 66 are modeled as inductance L2. capacitances of pads 52 and 56 appear in FIG. 5 capacitors C1 and C2 and the impedance of PCB trace 68 appears as its characteristic impedance ZO. Since vias 60 and 72 are primarily capacitive, their capacitances appear in FIG. 5 as capacitors $C1_{via}$ and $C2_{via}$.

10

15

The interconnect system of 5 is topologically similar 20 to the prior art system of FIG. 2 except for the addition of the shunt capacitors $C1_{via}$ and $C2_{via}$ at opposite ends of impedance Z0. Although vias 70 and 72 can be conveniently used to connect PCB trace 72 to traces on other layers of PCB 50, the primary function of vias 70 and 72 is to add 25 relatively large shunt capacitances C1_{v1x} and C2_{v1x} to PCB trace 68. Thus in accordance with the invention, vias 70 and 72 (or any other suitable source of capacitance) are added to PCB trace 68 regardless of whether the vias are used to connect PCB trace 68 to traces on other layers of PCB 50. 30

According to conventional practice interconnect system frequency response is optimized by minimizing shunt capacitance at the trace 68, mainly by avoiding connection of capacitive elements such as vias to the trace, and by minimizing series inductances L1 and L2, mainly by keeping conductors 60, 62, 64 and 66 as short as possible. However in accordance with the invention, system frequency response is actually improved by adding capacitances C1_{VIA} and C2_{VIA} to

trace 68 and/or by increasing inductances L1 and L2 above their minimum levels, provided that the values of L1, L2, $C1_{vi\lambda}$, and $C2_{vi\lambda}$ are appropriately adjusted relative other components values C1, C2, R1, R2 and Z0 of the interconnect system,

The capacitance $\mathrm{C1}_{via}$ and $\mathrm{C2}_{via}$ of each via 70 and 72 arises primarily from capacitive coupling between the via and the ground and power planes 88 and 90 of PCB 58 and can be controlled by altering the distance between the vias and planes 88 and 90. In particular we can increase (or decrease) capacitance $\mathrm{C1}_{via}$ of via 70 by decreasing (or increasing) the size of the holes 92 in planes 88 and 90 through which via 70 passes. The capacitance $\mathrm{C1}_{via}$ of via 72 can be adjusted in a similar manner. The magnitudes of L1 and L2 can be increased by increasing the lengths of bond wires 60 and 62, increasing the lengths of package legs 64 and 66, or by adding inductive elements in series with bond wires 60 and 62.

Table II compares values of interconnect system 20 components of the prior art equivalent circuit of FIG. 2 to values of interconnect system components of the improved interconnect system of FIG. 5 when adjusted in accordance with the invention:

TABLE II

ELEMENT	VALUE (PRIOR ART)	VALUE (IMPROVED)
L1 L2 C1 C2 C1 _{VIA} C2 _{VIA} Z0 R,	1nH 1nH 2pF 2pF N/A N/A 50 Ohms	3nH 3nH 2pF 2pF 1.4pF 1.4pF 50 Ohms
R ₂	50 Ohms	50 Ohms

25

30

15

Component values for ZO, R1 and R2, C1 and C2 are characteristics of the ICs and are assumed for illustrative purposes to have similar values for both prior art and improved interconnect systems. However the improved interconnect system includes the additional capacitances C1_w,

and $C2_{vr}$. Inductances L1 and L2 are also increased from 1 nH in the prior art interconnect system of FIG. 2 to 3 nH in the improved interconnect system of FIG. 5.

6 illustrates the frequency response of interconnect system of FIG. 5 in accordance with invention when its various component are set to the values indicated by the "improved" column of Table II. particular case illustrated in FIG. 6 the value of L1, L2, $C1_{v_{IA}}$, and $C2_{v_{IA}}$ were chosen to maximize passband power for the given values of R1, R2, C1, C2 and Z0. We maximize passband 10 power when we maximize the average amount of signal power that may be conveyed by the various signal frequencies in the interconnect system passband (0-3GHz). This means that for the given values of other components of FIG. 5, L1, L2, $C1_{via}$ and C2_{via} are sized to maximize the total area under the frequency response curve in the passband between 0 and 3GHz. One way to determine appropriate values of L1, L2, C1_{vir} and C2_{via} is to use a conventional circuit simulator to simulate the circuit of FIG. 5 which produces a plot of frequency response similar to FIG. 6. The values of L1, L2, C1_{v1} and C2_{via} that maximize passband power can be determined by iteratively adjusting their values and monitoring frequency response.

20

FIG. 6 shows that the bandwidth of 25 interconnect system is approximately 3 GHz, substantially larger than the 2 GHz bandwidth of the prior art system, as illustrated in FIG. 3. Note also that the passband is relatively flatter in FIG. 6, that the stopband falls off more quickly in FIG. 6 than in FIG. 3, and that the stopband 30 of FIG. 6 has fewer spikes. It is clear that the frequency response illustrated in FIG. 6 would be an improvement over the frequency response of FIG. 3 in an application where a 3 GHz passband is required. Thus in this case the passband power characteristic of the frequency response of the interconnect system is optimized not by providing only minimal capacitance at the PCB trace and minimal series inductance L1 and L2 as practiced in the prior art, but by

providing appropriately adjusted additional capacitance C1_{via} and C2_{via} at the PCB trace and by appropriately increasing L1 and L2 above their minimum levels.

5 Butterworth and Chebyshev Filters

20

30

35

It should be understood that the frequency response of an interconnect system has many characteristics and that its "optimal" frequency response is application-dependent. appropriate value ťo which the additional capacitances Clv1 and C2v1 and inductances L1 and L2 should be adjusted depends on which frequency response and impedance characteristics are most important for the particular application. In the example of FIG. 6, $C1_{vra}$, $C2_{vra}$, L1 and L2 were chosen to maximize the passband power. However other L1 and L2 values of Cl_{via}, C2_{via}, can optimize other characteristics of the interconnect system. For example when the interconnect system is to convey a lower frequency analog signal with minimal distortion, and where band width is not so important, it may be desirable that the frequency response of the interconnect system have a "maximally flat" passband, having the least possible amount of ripple.

It is beneficial to think of the equivalent circuit of the interconnect system, as illustrated in FIG. 5, as a multiple pole filter. By appropriately adjusting Cl_{MA} , C2_{VIA} , L1 and L2 relative to C1, C2 and the other components of the interconnect system, the interconnect system can be made to behave, for example, like a well-known, multi-pole "Butterworth" filter which provides a maximally flat frequency response.

In other applications, optimal frequency response will be a tradeoff between the bandwidth, allowable passband ripple, and stopband attenuation. Accordingly the values of C1_{via} , C2_{via} , L1 and L2 can be selected so that the interconnect system behaves as a form of the well-known, multiple-pole Chebyshev filter. The design of multi-pole Butterworth and Chebyshev filters, including appropriate choices for component values so as to optimize one or more combinations

PCT/US00/04858 WO 00/51232

of characteristics of filter's frequency response, well-known to those skilled in the art. See for example, pages 59-68 of the book Introduction to Radio Frequency Design by W. H. Hayward, published 1982 by Prentice-Hall, 5 Inc., and incorporated herein by reference.

Adjusting Other Components

It is possible to further optimize the frequency response of the interconnect system of FIG. 5 when we also 10 have the freedom to adjust values of other components R1, R2, Z0, C1 and C2. However in practice the values of R_1 , R_2 and ZO are typically standardized by IC and PCB manufacturers to 50 ohms in high frequency applications. Capacitances C1 and C2 can be adjusted, but only by IC manufacturers, and they typically try to minimize C1 and C2. Via capacitances $C1_{v_{1A}}$ and C2,,, or other sources of shunt capacitance that may be connected to the trace, and series inductances L1 and L2 may therefore be the only components of the interconnect system of FIG. 5 that are conveniently adjustable in the manner described above. However it should be understood that, where possible, any or all component values of the interconnect system of FIG. 5 can be adjusted in order to optimize its frequency response and that when we have more latitude in adjusting component values, we can attain a higher level of optimization of frequency response.

Impedance Matching

20

Driver output impedance R1, receiver input impedance R2 and trace impedance ZO are typically set to similar values (e.g., 50 Ohms) to prevent signal reflections which degrade system frequency response. However in accordance with the invention, it is not necessary that R1 = R2 = Z, because we can compensate for impedance mismatching by appropriately adjusting L1, L2, $C2_{via}$ and $C2_{ia}$. For example pages 59-68 of the above-mentioned book Introduction to Radio Frequency <u>Design</u> illustrate how to adjust other filter component values

to obtain Butterworth and Chebyshev filter frequency response behavior even when R1, R2 and Z0 are dissimilar.

Other Sources of Adjustable PCB Capacitance

5

10

15

20

25

In the interconnect system of FIG. 4, the necessary additional PCB capacitance is obtained by providing appropriately dimensioned vias 70 and 72. This is a convenient and inexpensive way of providing such capacitance because most PCB manufactures have the capability of adding appropriately sized vias to a PCB. Use of vias to provide this capacitance has the added benefit of allowing signals to travel to PCB traces such as PCB traces (not shown in FIG. 4) on other PCB layers, thereby adding to the flexibility with which a designer can lay out a high frequency PCB. be understood, however, that while the necessary capacitance can be conveniently obtained by using vias 70 and 72, such additional capacitance can also be provided by other means, for example by connecting appropriately sized discrete capacitors between PCB trace 68 and ground plane 88.

While the forgoing specification has described preferred embodiment(s) of the present invention, one skilled in the art may make many modifications to the preferred embodiment without departing from the invention in its broader aspects. example, while in the preferred embodiment the interconnect system employs bond wires 22 and 27 and package legs 24 and 29 to connect nodes of ICs 12 and 14 to PCB trace 26, other types of inductive conductors, such as for example spring wires, could be employed to connect nodes of an integrated circuit to a PCB trace. Also, the interconnect system of the present invention may be employed interconnect circuits other than integrated circuits. appended claims therefore are intended to cover all such modifications as fall within the true scope and spirit of the invention.

Claims

What is claimed is:

A method for substantially optimizing a frequency response characteristic of an interconnect system including a conductor for connecting an node of a circuit to an external node, the method comprising the step of

adding shunt capacitance to said interconnect system, said shunt capacitance being sized to substantially optimize said frequency response characteristic.

10

2. The method in accordance with claim 1 wherein the step of adding shunt capacitance to said interconnect system comprises the step of connecting a capacitive element to said conductor.

15

- 3. The method in accordance with claim 1 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness and maximal passband power.
- 4. The method in accordance with claim 1 wherein said shunt capacitance is sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter
- 5. The method in accordance with claim 1 wherein said shunt capacitance is sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
 - 6. The method in accordance with claim 1 further comprising the step of
- adding series inductance to said conductor, said series inductance and said shunt capacitance being sized to substantially optimize said frequency response characteristic.
- 7. A method for substantially optimizing a characteristic of a frequency response of an interconnect system including a conductor for connecting a node of a

circuit to an external node, the method comprising the step of adjusting inductance of said conductor to substantially optimize said frequency response characteristic.

- 5 8. The method in accordance with claim 7 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness and maximal passband power.
- 9. The method in accordance with claim 7 wherein said inductance is adjusted so that said interconnect system acts substantially as a multiple-pole Butterworth filter.
- 10. The method in accordance with claim 7 wherein said inductance is adjusted so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
- 11. A method for substantially optimizing a characteristic of a frequency response of an interconnect system connecting a node of an integrated circuit to a printed circuit board (PCB) trace, wherein the interconnect system comprises a bond pad connected to said node and a conductor linking said bond pad to said PCB trace, the method comprising the step of adding shunt capacitance to said PCB trace, said capacitance being sized to substantially optimize said frequency response characteristic.
- 12. The method in accordance with claim 11 wherein the step of adding shunt capacitance to said PCB trace comprises the step of connecting a capacitive element to said PCB trace.
- 13. The method in accordance with claim 11 wherein said capacitive element comprises a via connected to said PCB 35 trace.

14. The method in accordance with claim 11 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness and maximal passband power.

- 5 15. The method in accordance with claim 11 wherein said capacitance added to said PCB trace is sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter.
- 16. The method in accordance with claim 11 wherein said capacitance added to said PCB trace is sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
- 17. The method in accordance with claim 11 further comprising the step of adding series inductance to said conductor, said series inductance and said shunt capacitance being sized to substantially optimize said frequency response characteristic.

20

- 18. The method in accordance with claim 17 wherein the step of adding series inductance to said conductor comprises increasing a length of said conductor.
- 19. The method in accordance with claim 18 wherein said shunt capacitance and series inductance are sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter
- 30 20. The method in accordance with claim 18 wherein said shunt capacitance and series inductance are sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
- 35 21. A method for substantially optimizing a characteristic of a frequency response of an interconnect system connecting a node of an integrated circuit to a

printed circuit board (PCB) trace, wherein the interconnect system comprises a bond pad connected to said node and a conductor linking said bond pad to said PCB trace, the method comprising the step of adding series inductance to said conductor, said series inductance being sized substantially optimize said frequency response characteristic.

- 22. The method in accordance with claim 21 wherein the step of adding series inductance to said conductor comprises increasing a length of said conductor.
- 23. The method in accordance with claim 21 wherein said series inductance is sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter
 - 24. The method in accordance with claim 21 wherein said series inductance is sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.

20

30

25. A method for optimizing a characteristic of a frequency response of an interconnect system interconnecting a driver on a first integrated circuit (IC) to a receiver on a second IC, wherein the interconnect system comprises a printed circuit board (PCB) trace, a first bond pad implemented on said first IC and connected to said driver, a first conductor linking said first bond pad to said PCB trace, a second bond pad implemented on said second IC and connected to said receiver, and a second conductor linking said second bond pad to said PCB trace, the method comprising the steps of

attaching a first capacitive element to said PCB trace near a first point of contact between said first conductor and said PCB trace; and

attaching said second capacitive element to said PCB trace near a second point of contact between said second conductor and said PCB trace.

wherein capacitances of said first and second capacitive elements are sized to substantially optimize said frequency response characteristic.

- 5 26. The method in accordance with claim 25 wherein said first and second capacitive elements comprise vias.
- 27. The method in accordance with claim 25 wherein said first and second capacitive element comprise discrete 10 capacitors.
 - 28. The method in accordance with claim 25 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness, and maximal passband power.
 - 29. The method in accordance with claim 25 wherein said capacitances of said first and second capacitive elements are sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter.

15

20

25

- 30. The method in accordance with claim 25 wherein said capacitances of said first and second capacitive elements are sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
- 31. The method in accordance with claim 25 further comprising the step of

adjusting inductances of said first and second conductors to substantially optimize said frequency response characteristic.

32. The method in accordance with claim 31 wherein the step of adjusting inductances of said first and second conductors comprises adjusting lengths of said first and second conductors.

33. The method in accordance with claim 31 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness, and maximal passband power.

- 5 34. The method in accordance with claim 31 wherein said capacitances of said first and second capacitive elements are sized so that said interconnect system acts substantially as a multiple-pole Butterworth filter.
- 35. The method in accordance with claim 31 wherein said capacitances of said first and second capacitive elements are sized so that said interconnect system acts substantially as a multiple-pole Chebyshev filter.
- 15 36. A method for optimizing a characteristic of a frequency response of an interconnect system interconnecting a driver on a first integrated circuit (IC) to a receiver on a second IC, wherein the interconnect system comprises a printed circuit board (PCB) trace, a first bond pad implemented on said first IC and connected to said driver, a 20 first conductor linking said first bond pad to said PCB trace, a second bond pad implemented on said second IC and connected to said receiver, and a second conductor linking said second bond pad to said PCB trace, the method comprising the step of adjusting inductances of said first and second conductors to substantially optimize said frequency response characteristic.
- 37. The method in accordance with claim 36 wherein the step of adjusting inductances of said first and second conductors comprises adjusting lengths of said first and second conductors.
- 38. An interconnect system for interconnecting a node of an integrated circuit to a printed circuit board (PCB) trace, the interconnect system comprising:
 - a bond pad connected to said node;

a conductor having inductance linking said bond pad to said PCB trace; and

- a capacitive element having capacitance connected to said trace,
- wherein the capacitance of said capacitive element and the inductance of said conductor are substantially greater than minimum realizable values and are adjusted to substantially optimize a frequency response characteristic of said interconnect system.

10

- 39. The interconnect system in accordance with claim 38 wherein said capacitive element comprises a via connected to said PCB trace.
- 40. The interconnect system in accordance with claim 38 wherein said inductance is adjusted by increasing a length of said conductor substantially beyond a minimum practical length needed to interconnect said node and said PCB trace.
- 41. An interconnect system for interconnecting a first circuit implemented in a first integrated circuit (IC) and having output resistance and output capacitance to a second circuit implemented in a second IC and having input resistance and input capacitance, the interconnect system comprising:
 - a printed circuit board (PCB) trace having a characteristic impedance,
 - a first bond pad implemented on said first IC and connected to said first circuit,
- a first conductor linking said first bond pad to said PCB trace.
 - a second bond pad implemented on said second IC and connected to said second circuit,
- a second conductor linking said second bond pad to said 35 PCB trace,
 - a first capacitor attached to said PCB trace, and
 - a second capacitor element attached to said PCB trace,

wherein capacitances of said first and second capacitors and inductances of said first and second conductors are sized relative to said output and input resistances, to said first and second capacitances, to said characteristic impedance, and to said input and output capacitances so as to substantially optimize a characteristic of a frequency response of said interconnect system.

42. The interconnect system in accordance with claim 41

wherein said first capacitor is attached to said PCB trace near a first point of contact between said first conductor and said PCB trace, and

wherein said second capacitor is attached to said PCB trace near a second point of contact between said second conductor and said PCB trace.

- 43. The interconnect system in accordance with claim 41 wherein said first and second capacitors comprise vias.
- 44. The interconnect system in accordance with claim 41 wherein said frequency response characteristic is one of maximal passband width, maximal passband flatness and maximal passband power.
- 45. The interconnect system in accordance with claim 41 wherein said capacitances of said first and second capacitors and inductances of said first and second conductors are sized so that said interconnect system operates substantially as a multiple- pole Butterworth filter

30

35

15

46. The interconnect system in accordance with claim 41 wherein said capacitances of said first and second capacitors and inductances of said first and second conductors are sized so that said interconnect system operates substantially as a multiple- pole Chebyshev filter.

47. The interconnect system in accordance with claim 41 wherein the characteristic impedance of said trace substantially matches said input and output resistances.

- 5 48. The interconnect system in accordance with claim 41 wherein said characteristic impedance of said trace does not substantially match at least one of said input and output resistances.
- 49. The interconnect system in accordance with claim 41 wherein said input and output resistances are substantially dissimilar.

PCT/US00/04858 - ·

INTERNATIONAL SEARCH REPORT

inte. onel Application No
PCT/US 00/04858

A. CLASSE IPC 7	FICATION OF BUBLECT MATTER H03H7/38						
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS	SEARCHED						
Minimum do IPC 7	cumentation searched (classification system followed by classification HO1P HO1L HO3H	n symbols)					
Documentat	tion searched other than minimum documentation to the extent that su	ich documents are Inclu	ded in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)							
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.				
X	US 5 424 693 A (LIN CHAO-HUI) 13 June 1995 (1995-06-13)	•	1,2				
Α	the whole document		3,7,11, 12,21, 25,27, 36,38, 41,47				
Funt	her documents are listed in the continuation of box C.	X Patent family	nembers are listed in annex.				
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but		"T" later document published after the intermational filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention." "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report					
	4 May 2000	08/06/2	000				
reagno esta t	European Patent Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (431–70) 340–2040, Tx. 31 651 epo nl, Fax: (431–70) 340–3016	Authorized officer Copp1et	ers, C				

INTERNATIONAL SEARCH REPORT

information on patent family members

trita. onal Application No PCT/US 00/04858

					101703	00/04636	
Pa cited	tent document In search report		Publication date	Patent famil member(s)	у	Publication date	
US	5424693	A	13-06-1995	NONE			
							•
	•						·
				,			
							•
	•						
			•				
							-
				-		• 4	
					•		

Form PCT/IBA/210 (patent family ennex) (July 1992)