SINGMISE AND

BA820 – Mohannad Elhamod

Intro to Clustering

Cluster Analysis

What is Cluster Analysis?

- Placing objects in groups such that:
 - the objects in a group are similar (or related) to one another.
 - They are different from (or unrelated to) the objects in other groups.
- We need a (metric/measure/objective function) to measure the (distance/similarity) of the (objects/clusters).

Clusters are in the eye of the beholder

How many clusters?

Six Clusters

Two Clusters

Four Clusters

Clusters come in all shapes and sizes

Hierarchical Clustering

C datacamp

X

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits.

- Key Idea: Successively merge closest clusters
- Basic algorithm
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Steps 1 and 2

 Start with clusters of individual points and a proximity matrix

Proximity Matrix

Intermediate Situation

After some merging steps, we have some clusters

Step 4

We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

C5

Proximity Matrix

17

Step 5

The question is "How do we update the proximity matrix?"

Proximity Matrix

How to Define Inter-Cluster Distance

- MIN (Single Link)
- MAX (Complete Linkage)
- Group Average
 - Ward's Method uses squared error
- Distance Between Centroids

- MIN (Single Link)
 - Sensitive to noise.

- MAX (Complete Linkage)
 - Less susceptible to noise.
 - Breaks larger clusters.

- Group Average
 - Middle ground between MIN and MAX.
 - If square distance is used, it is called Ward method.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum\limits_{\substack{p_{i} \in Cluster_{j} \\ p_{j} \in Cluster_{j}}} proximity(p_{i}, p_{j})}{|Cluster_{i}| \times |Cluster_{i}|}$$

Distance Between Centroids

Hierarchical Clustering

Can handle non-elliptical shapes

Six Clusters

- Visualization + dendograms (easy to find answer when changing number of clusters)
- Hierarchical has a high time complexity (polynomial O(n³)).

Demo time!

Partitional Clustering: K-means

K-means Clustering

CLUSTER ANALYSIS IN PYTHON

K-means Clustering

- Number of clusters, K, must be specified in advance.
- Each cluster is associated with a centroid (center point).
- Each point is assigned to the cluster with the closest centroid.
- The basic algorithm is very simple
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

Example of K-means Clustering

K-means Objective Function

- Euclidean Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center.
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- This is also called distortion or inertia.
- x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- SSE improves in each iteration of K-means until it reaches a local or global minima.

K-means Playground

• This playground helps understand the mechanism of k-means. Use it to better visualize how the distribution of data affects the clustering.

Effect of Random Initialization

Effect of Random Initialization

2.5 2.5 1.5 0.5 0--2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Sub-optimal Clustering

Limitations of K-means

- K-means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-globular shapes
- K-means is faster than hierarchical clustering.
- K-means is susceptible to suboptimal initialization.
- What do <u>boundaries</u> between clusters look like?
- K-means has problems when the data contains outliers.
 - One possible solution is to remove outliers before clustering

Limitations of K-means: Differing Sizes

Original Points

K-means (3 Clusters)

Limitations of K-means: Differing Density

Deciding the number of clusters

Inertia: Sum of squared distances of samples to their respective closest cluster centers.

towardsdatascience.com

Measuring Clustering Quality

Method 1: via Labels (Cheating...)

- Testing clustering using supervised learning.
- Calculate the error between ideal labelling and assigned cluster label.

Method 2: via Correlation

- Compute the correlation between the two matrices
- High magnitude of correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for hierarchical clustering.
- Similarity can be calculated in many ways.
 - Here, we use $s = \frac{Max d}{Max}$ or $s = \frac{1}{1+d}$ where Max is the maximum possible distance and d is the distance measure.

Method 2: via Correlation

Correlation of ideal similarity and proximity matrices for the K-means clustering

Proximity matrix

10
20
30
40
60
70
80
100Similarity

Points

well-clustered data set

Corr = 0.9235

Method 2: via Correlation

Correlation of ideal similarity and proximity matrices for the K-means clustering

poorly-clustered data set

Corr = 0.5810

