SISTEMAS DE CONTROL EN ROBÓTICA

Notas de Clase

Mauricio Arias Correa

Medellín, 2020

Atribución - No comercial - Sin derivar

Esta obra puede ser descargada y compartida con otras personas, siempre y cuando se den los créditos respectivos al autor. La obra no puede ser intervenida, no pueden generarse obras derivadas ni obtener beneficios comerciales.

Transformada Z Introducción

Transformada Z

Definición

Existe una relación entre la transformada de Laplace (para sistemas continuos en el tiempo) y la transformada Z, para sistemas discretos.

Partimos de la transformada de Laplace de una función x(t):

$$X(S) = F(S) = \int_0^\infty x(t)e^{-St} dt \qquad (1)$$

Cualquier función continua x(t), matemáticamente para $t \ge 0$, mediante:

representa el periodo de muestreo

puede expresarse

A partir de cuando se inicia el muestreo.
$$x^*(t) = \sum_{k=0}^{\infty} x(kT) \delta(t - kT)$$

K representa la cantidad de muestras

Desarrollando la sumatoria:

$$x^{*}(t) = x(0)\delta(t) + x(T)\delta(t-T) + x(2T)\delta(t-2T) + \cdots$$
 (3)

K=1; T

Aplicamos la transformada de Laplace

$$X^*(S) = x(0) + x(T)e^{-TS} + x(2T)e^{-2TS} + \cdots$$
 (4)

$$X^{*}(S) = x(0) + x(T)e^{-TS} + x(2T)e^{-2TS} + \cdots$$

$$X^{*}(S) = \sum_{k=0}^{\infty} x(kT)e^{-kTS}$$
(5)

Introduciendo una nueva variable:

$$X^*(S) = \sum_{k=0}^{\infty} x(kT)e^{-kTS}$$

$$z = e^{TS}$$

$$z = e^{TS}$$
 o $S = $\frac{1}{T} \ln(z)$$

La ecuación (5), se puede re-escribir como:

$$X^*(S)|_{S=\frac{1}{T}\ln(z)} = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
 (6)

Ahora hacemos:

$$X^*(S)|_{S=\frac{1}{T}\ln(z)} = X(z)$$
 (7)

Con lo cual se obtiene:

$$X(z) = \Im[x(t)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
 (8)

La ecuación (8), se define como la transformada Z de la función continua x(t).

$$X(z) = \Im[x(k)] = \sum_{k=0}^{\infty} x(k)z^{-k}$$

t=0

Transformada Z de la Función Escalón Unitario

La función escalón unitario se define como: $x(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$

Por definición:

$$X(z) = \Im[x(t)] = \sum_{k=0}^{\infty} x(kT)z^{-k}$$
; Pero: $\chi(kT) = 1$

$$X(z) = \sum_{k=0}^{\infty} z^{-k} = 1 + z^{-1} + z^{-2} + z^{-3} + \cdots$$
 -Qué serie e -Cómo se expresa?

-Qué serie es? expresa?

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

Transformada Z de la Función Rampa

La función rampa se define como:

define como:
$$x(t) = \begin{cases} At & t \ge 0 \\ 0 & t < 0 \end{cases}$$

En este caso: x(kT) = AkT Para: k = 0,1,2...

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} AkTz^{-k} = AT \sum_{k=0}^{\infty} kz^{-k}$$

$$X(z) = AT(z^{-1} + 2z^{-2} + 3z^{-3} + \cdots) = ATz^{-1}(1 + 2z^{-1} + 3z^{-2} + \cdots)$$

$$X(z) = \frac{ATz^{-1}}{(1-z^{-1})^2} = \frac{ATz}{(z-1)^2}$$

Actividad 1.

Obtenga la Transformada Z para la Función Exponencial.

Tenga en cuenta que la función exponencial, se define como:

$$x(t) = \begin{cases} e^{-at} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

Transformada Z de la Función Exponencial

La función exponencial se define como:
$$x(t) = \begin{cases} e^{-at} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$X(z) = \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} e^{-akT} z^{-k}$$

$$X(z) = 1 + e^{-aT}z^{-1} + e^{-2aT}z^{-2} + e^{-3aT}z^{-3} + \cdots$$

$$X(z) = \frac{1}{1 - e^{-aT}z^{-1}} = \frac{z}{z - e^{-aT}}$$

Tabla de Transformada Z (para algunas funciones prácticas)

Nºº	f(t)	f(kT)	F(S)	$m{F}(m{z})$ Transformada $m{z}$	
	F. Continua	F. Discreta	T. de Laplace		
1	$\delta(t)$	$\delta(kT)$	1	1	
2	u(t)	u(kT)	$\frac{1}{S}$	$\frac{z}{z-1}$	
3	t	kT	$\frac{1}{S^2}$	$\frac{Tz}{(z-1)^2}$	
4	t ²	$(kT)^2$	$\frac{2}{S^3}$	$\frac{T^2z(z+1)}{(z-1)^3}$	
5	t^3	$(kT)^3$	$\frac{6}{S^4}$	$\frac{T^3z(z^2+4z+1)}{(z-1)^4}$	

6	e^{-at}	e^{-akT}	$\frac{1}{S+a}$	$\frac{z}{z - e^{-aT}}$
7	te ^{-at}	kTe ^{-akT}	$\frac{1}{(S+a)^2}$	$\frac{Te^{-aT}z}{(z-e^{-aT})^2}$
8	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{2}{(S+a)^3}$	$\frac{T^2 e^{-aT} z (z + e^{-aT})}{(z - e^{-aT})^3}$
9	sin(bt)	sin(bkT)	$\frac{b}{S^2 + b^2}$	$\frac{zsin(bT)}{z^2 - 2zcos(bT) + 1}$
10	cos(bt)	cos(bkT)	$\frac{S}{S^2 + b^2}$	$\frac{z^2 - zcos(bT)}{z^2 - 2zcos(bT) + 1}$
11	$e^{-at}sin(bt)$	$e^{-akT}sin(bkT)$	$\frac{b}{(S+a)^2+b^2}$	$\frac{ze^{-aT}sinbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
12	$e^{-at}cos(bt)$	$e^{-akT}cos(bkT)$	$\frac{S+a}{(S+a)^2+b^2}$	$\frac{z^2 - ze^{-aT}cosbT}{z^2 - 2ze^{-aT}cosbT + e^{-2aT}}$
13	$1 - e^{-at}$	$1 - e^{-akT}$	$\frac{a}{S(S+a)}$	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$

14	$1 - (1 + at)e^{-at}$	$1 - (1 + akT)e^{-akT}$	$\frac{a^2}{S(S+a)^2}$	$\frac{z}{z-1} - \frac{z}{z - e^{-aT}} - \frac{aTe^{-aT}z}{(z - e^{-aT})^2}$
15	$e^{-at} - e^{-bt}$	$e^{-akT} - e^{-bkT}$	$\frac{b-a}{(S+a)(S+b)}$	$\frac{(e^{-aT} - e^{-bT})z}{(z - e^{-aT})(z - e^{-bT})}$
16	$be^{-bt} - ae^{-at}$	$be^{-bkT} - ae^{-akT}$	$\frac{(b-a)S}{(S+a)(S+b)}$	$\frac{[(b-a)z - (be^{-aT} - ae^{-bT})]z}{(z - e^{-aT})(z - e^{-bT})}$
17	$(1-at)e^{-aT}$	$(1 - akT)e^{-akT}$	$\frac{S}{(S+a)^2}$	$\frac{[z - (1 + aT)e^{-aT}]z}{(z - e^{-aT})^2}$
18	$at - 1 + e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{a^2}{S^2(S+a)}$	$\frac{[(aT - 1 + e^{-aT})z + (1 - e^{-aT} - aTe^{-aT})]}{(z - 1)^2(z - e^{-aT})}$
19		a^k		$\frac{z}{z-a}$
20		$a^{k-1} k \ge 1$		$\frac{1}{z-a}$
21		ka^{k-1}		$\frac{z}{(z-a)^2}$

22	k^2a^{k-1}			$\frac{z(z+a)}{(z-a)^3}$
23	k^3a^{k-1}			$\frac{z(z^2 + 4az + a^2)}{(z - a)^4}$
24	$(-a)^k$			$\frac{z}{z+a}$
25	$a^k cos(k\pi)$			$\frac{z}{z+a}$
26	$k(k-1)a^{k-2}$			$\frac{2z}{(z-a)^3}$
27	$k(k-1)\cdots(k-m+2)$			$\frac{z(m-1)!}{(z-1)^m}$
28	$A = \frac{1}{S(S+a)(S+b)}$ $A = \frac{b(1 - e^{-aT}) - a(1 - e^{-bT})}{ab(b-a)}$	$\frac{(Az+B)z}{(z-1)(z-e^{-aT})(z-e^{-bT})}$ $B = \frac{ae^{-aT}(1-e^{-bT}) - be^{-bT}(1-e^{-aT})}{ab(b-a)}$		
29	<i>D</i>	$\frac{a^2 + b}{[(S+a)^2]}$		$\frac{(Az+B)z}{(z-1)(z^2-2ze^{-aT}cosbT+e^{-2aT})}$
	$A = 1 - e^{-aT} cosbT - \frac{a}{b}e^{-aT} sin$	ıbT	$B = e^{-}$	$\frac{1}{b}e^{-aT}sinbT - e^{-aT}cosbT$

Actividad 2.

Obtenga la Transformada Z de la función:

$$X(S) = \frac{4}{S(S+4)}$$

Referencias

[1] Ogata, K. (1995). *Discrete-time control systems* (Vol. 2, pp. 446-480). Englewood Cliffs, NJ: Prentice Hall.

[2] Landau, I. D., & Zito, G. (2007). *Digital control systems: design, identification and implementation*. Springer Science & Business Media.