EECS 769 Homework 2

Elise McEllhiney

Sept. 20, 2016

0.1 The Value of a Question

0.1.1 Find the decrease in uncertainty H(X) - H(X|Y)

$$H(X) - H(X|Y) = H(Y) - H(Y|X)$$

$$= H(Y) - 0$$

$$= H(Y)$$

$$= H(\alpha)$$
(1)

Apparently any set S with a given α is as good as any other.

0.2 Random Questions

0.2.1 Show I(X; Q, A) = H(A|Q). Interpret.

$$I(X; Q, A) = H(Q, A) - H(Q, A|X)$$

$$= H(Q) + H(A|Q) - H(Q|X) - H(A|Q, X)$$

$$\stackrel{(a)}{=} H(Q) + H(A|Q) - H(Q) - H(A|Q, X)$$

$$\stackrel{(b)}{=} H(Q) + H(A|Q) - H(Q)$$

$$= H(A|Q)$$
(2)

- (a) Since Q and X are independent H(Q|X) = H(Q)
- (b) We know A given (Q, X) so H(A|Q, X) = 0

Interpretation: The uncertainty in the Answer given the Question, H(A|Q), is the same as the uncertainty in X removed by (Q, A)

0.2.2 Now suppose that two i.i.d. questions Q_1, Q_2 r(q) are asked, eliciting answers A_1 and A_2 . Show that two questions are less valuable than twice a single question in the sense that $I(X; Q_1, A_1, Q_2, A_2) \leq 2I(X; Q_1, A_1)$.

$$I(X; Q_{1}, A_{1}, Q_{2}, A_{2}) = I(X; Q_{1}) + I(X; A_{1}|Q_{1}) + I(X; Q_{2}|Q_{1}, A_{1}) + I(X; A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$\stackrel{(a)}{=} I(X; A_{1}|Q_{1}) + I(X; Q_{2}|Q_{1}, A_{1}) + I(X; A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$= I(X; A_{1}|Q_{1}) + H(Q_{2}|A_{1}, Q_{1}) - H(Q_{2}|X, A_{1}, Q_{1}) + I(X; A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$\stackrel{(b)}{=} I(X; A_{1}|Q_{1}) + H(Q_{2}) - H(Q_{2}) + I(X; A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$= I(X; A_{1}|Q_{1}) + I(X; A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$\stackrel{(c)}{=} (X; A_{1}|Q_{1}) + H(A_{2}|Q_{1}, A_{1}, Q_{2})$$

$$\stackrel{(d)}{\leq} (X; A_{1}|Q_{1}) + H(A_{2}|Q_{2})$$

$$\stackrel{(e)}{=} I(X; A_{1}|Q_{1}) + I(X; A_{2}|Q_{2})$$

$$= 2I(X; A_{1}|Q_{1})$$

$$(3)$$

- (a) X and Q_1 are independent thus $I(X;Q_1)=0$
- (b) Q_2 is independent of Q_1 , A_1 , and X
- (c) Given X and Q_2 we can completely determine A_2 so $H(A_2|X,Q_1,A_1,Q_2)=0$
- (d) Entropy never increases with conditioning (e) Proven in 0.2.1

0.3 Entropy of a disjoint mixture

0.3.1 Find H(X) in terms of $H(X_1)$ and $H(X_2)$ and α

$$X = \begin{cases} X_1, & \text{with probability } \alpha \\ X_2, & \text{with probability } 1 - \alpha \end{cases}$$
$$f(X) = \begin{cases} 0, & \text{when } X = X_1 \\ 1, & \text{when } X = X_2 \end{cases}$$

$$H(X) = H(X|f(X))$$

$$= H(f(X) + H(X|f(X)))$$

$$= H(f(X)) + p(f(X) = 0)H(X|f(X) = 0) + p(f(X) = 1)H(X|f(X) = 1)$$

$$= H(\alpha) + \alpha H(X_1) + (1 - \alpha)H(X_2)$$
(4)

where $H(\alpha) = -\alpha log(\alpha) - (1 - \alpha)log(1 - \alpha)$

0.3.2 Maximize over α to show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$ and interpret using the notion that $2^{H(X)}$ is the effective alphabet size.

$$\frac{dH(X)}{d\alpha} = H(X_1) - H(X_2) + \log(\frac{1-\alpha}{\alpha})$$

Set the derivative to 0

$$0 = H(X_{1}) - H(X_{2}) + log(\frac{1-\alpha}{\alpha})$$

$$-H(X_{1}) + H(X_{2}) = log(\frac{1-\alpha}{\alpha})$$

$$2^{-H(X_{1})+H(X_{2})} = \frac{1-\alpha}{\alpha}$$

$$\alpha = \frac{1}{2^{-H(X_{1})+H(X_{2})} + 1}$$

$$\alpha = \frac{2^{H(X_{1})}}{2^{H(X_{1})} + 2^{H(X_{2})}}$$

$$H(X) = H(\alpha) + \alpha H(X_{1}) + (1-\alpha)H(X_{2})$$

$$\leq log(2^{H(X_{1})} + 2^{H(X_{2})})$$

$$\leq log(2^{H(X_{1})} + 2^{H(X_{2})})$$

$$2^{H(X)} \leq 2^{H(X_{1})} + 2^{H(X_{2})}$$
(5)

Interpretation: The effective alphabet size of X, a combination of X_1 and X_2 , is less than or equal to their effective alphabet sizes

0.3.3 Let X_1 and X_2 be uniformly distributed over their alphabets. What is the maximizing α and the associated H(X)

The maximizing α is worked out above.

$$H(X) = log(2^{H(X_1)} + 2^{H(X_2)})$$

The effective alphabet size of two disjoint uniformly distributed random variables is equal to the sum of their effective alphabet sizes

0.4 Bottleneck

0.4.1 Show that the dependence of X_1 and X_3 is limited by the bottleneck by proving that $I(X_1; X_3) \leq log(k)$

$$I(X_{1}; X_{3}) \stackrel{(a)}{\leq} I(X_{1}; X_{2})$$

$$= H(X_{2}) - H(X_{2}|X_{1})$$

$$\leq H(X_{2})$$

$$\leq log(k)$$
(6)

- (a) Since we are given that we are working with a Markov chain, we know that mutual information between X_1 and X_3 is less than the mutual information between X_1 and X_2
- **0.4.2** Evaluate $I(X_1; X_3)$ for k = 1, and conclude that no dependence can survive such a bottleneck

$$I(X_1; X_3) \le log(k)$$

$$\le log(1) = 0$$
(7)

Since entropy is always nonnegative we know that $I(X_1; X_3) = 0$ and thus for k = 1 we know that X_1 and X_3 must be independent

0.5 Relative entropy is not symmetric

0.5.1 Calculate H(p), H(q), D(p||q) and D(q||p)

$$H(p) = -\sum p(x)log(p(x)) = \frac{1}{2}log(2) + \frac{1}{4}log(4) + \frac{1}{4}log(4) = 1.5bits$$

$$H(q) = -\sum q(x)log(q(x)) = \frac{1}{3}log(3) + \frac{1}{3}log(3) + \frac{1}{3}log(3) = 1.585bits$$

$$D(p||q) = \sum p(x)log\frac{p(x)}{q(x)} = \frac{1}{2}log(\frac{3}{2}) + \frac{1}{4}log(\frac{3}{4}) + \frac{1}{4}log(\frac{3}{4}) = 0.085$$

$$D(q||p) = \sum q(x)log\frac{q(x)}{p(x)} = \frac{1}{3}log(\frac{2}{3}) + \frac{1}{3}log(\frac{4}{3}) + \frac{1}{3}log(\frac{4}{3}) = 0.082$$

0.5.2 Verify that in this case $D(p||q) \neq D(q||p)$

As we can see from the above equations $D(p||q) \neq D(q||p)$ since $0.85 \neq 0.082$

0.6 Conditional mutual information

0.6.1 Find the mutual information

Since we know that we must have an even number of ones, we know that the n^{th} digit is determined by the previous n-1 digits. Since we know that any sequence with an even number of digits is equally likely, we know that any n-1 or fewer of the digits are independent. For $k \le n-1$ we know that:

$$I(X_{k-1}; X_k | X_1, X_2, ..., X_{k-2}) = 0$$

However, if we know n-1 digits, the last digit is deterministic.

$$I(X_{n-1}; X_n | X_1, X_2, ..., X_{n-2}) = H(X_n | X_1, X_2, ..., X_{n-2}) - H(X_n | X_1, X_2, ..., X_{n-1}) = 1bit$$

0.7 Conditional mutual information vs unconditional mutual information

0.7.1 Give examples of joint random variables such that X, Y, and Z such that:

(a)
$$(I(X;Y|Z) < I(X;Y)$$

X is a uniform binary random variable where Y = X and Z = Y

$$I(X;Y) = H(X) - H(X|Y) = H(X) = 1$$
$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z) = 0$$

(b)
$$I(X;Y|Z) > I(X;Y)$$

X and Y are independent uniform binary random variables. Z = X + Y

$$I(X;Y) = H(X) - H(X|Y) = 0$$

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z) = H(X|Z) = 1/2$$

0.8 Entropy of initial conditions

0.8.1 Prove that $H(X_0|X_n)$ is non-decreasing with n for any Markov chain

The data processing inequality states that for any Markov chain, $I(X;Y) \geq I(X;Z)$

$$I(X_0; X_{n-1}) \ge I(X_0; X_n)$$

$$H(X_0) - H(X_0|X_{n-1} \ge H(X_0) - H(X_0|X_n)$$

Thus, $H(X_0|X_n)$ is non-decreasing as n increases for any Markov chain

0.9 A metric

$$\rho(x,y) \ge 0$$

$$\rho(x,y) = \rho(y,x)$$

$$\rho(x,y) = 0 iff x = y$$

$$\rho(x,y) + \rho(y,z) \ge \rho(x,z)$$

0.9.1 Show that $\rho(X,Y) = H(X|Y) + H(Y|X)$ satisfies the first, second and fourth properties above. If we say that X = Y if there is a one-to-one function mapping X to Y, then the third property is also satisfied, and $\rho(X,Y)$ is a metric

$$\rho(X,Y) = H(X|Y) + H(Y|X)$$

- 1) $\rho(X,Y) \geq 0$ since entropy is always nonnegative.
- 2) $\rho(X,Y) = \rho(Y,X)$ since H(X|Y) + H(Y|X) = H(Y|X) + H(X|Y)
- 3) We know that H(X|Y) = 0 iff X = g(Y) and that H(Y|X) = 0 iff Y = g(X). From this we know that $\rho(X,Y) = 0$ iff Y = g(X) and X = g(Y). Thus, we know that p(X,Y) = 0 iff there is a one-to-one mapping from X to Y
- $4)\rho(x,y) + \rho(y,z) \ge \rho(x,z)$ since:

$$H(X|Y) + H(Y|Z) \ge H(X|Y,Z) + H(Y|Z)$$

$$= H(X,Y|Z)$$

$$= H(X|Z) + H(Y|X,Z)$$

$$\ge H(X|Z)$$
(8)

0.9.2 Verify that $\rho(X,Y)$ can also be expressed as

$$\rho(X,Y) = H(X) + H(Y) - 2I(X;Y)
= H(X,Y) - I(X;Y)
= 2H(X,Y) - H(X) - H(Y)$$
(9)

$$H(X|Y) = H(X) - I(X;Y)$$

$$H(Y|X) = H(Y) - I(X;Y)$$

Therefore

$$\rho(X,Y) = H(X) - I(X;Y) + H(Y) - I(X;Y) = H(X) + H(Y) - 2I(X;Y)$$
$$H(X,Y) = H(X) + H(Y) - I(X,Y)$$

Thus, combining the previous two equations, we get:

$$\rho(X,Y) = H(X,Y) - I(X,Y)$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Combining the previous two equations we get:

$$\rho(X,Y) = 2H(X,Y) - H(X) - H(Y)$$

0.10 Run length coding

0.10.1 Show all equalities and inequalities, and give simple bounds on all differences

We know that $H(R) \leq H(X)$ since we know that the run lengths, R, are a function of $X_1, X_2, ..., X_n$ Knowing both the run lengths and any X_i in the sequence, we can determine the entire sequence $X_1, X_2, ..., X_n$

$$H(X_{1}, X_{2}, ..., X_{n}) = H(X_{i}, R)$$

$$= H(R) + H(X_{i}|R)$$

$$\leq H(R) + H(X_{i})$$

$$\leq H(R) + log(2)$$

$$= H(R) + 1$$
(10)

0.11 Pure randomness and bent coins

0.11.1 Give reasons for the following inequalities

$$nH(p) \stackrel{(a)}{=} H(X_1, ..., X_n)$$

$$\stackrel{(b)}{\geq} H(Z_1, Z_2, ..., Z_K, K)$$

$$\stackrel{(c)}{=} H(K) + H(Z_1, ..., Z_K | K)$$

$$\stackrel{(d)}{=} H(K) + E(K)$$

$$\stackrel{(e)}{\geq} EK$$

$$(11)$$

- (a) $X_i = 1$ with the probability p. Also, we know that $X_1, X_2, ..., X_n$ are independent and identically distributed. Thus, we can conclude that $nH(p) = H(X_1, X_2, ..., X_n)$. In other words, the entropy of a sequence is the product of the entropies of the random variables
- (b) We know that $(Z_1, Z_2, ..., Z_K) = f(X_1, X_2, ..., X_n)$. Since we know that the entropy of a random variable is always greater than or equal to the entropy of a function of that random variable, we know that: $H(X_1, X_2, ..., X_n) \ge H(Z_1, Z_2, ..., Z_K)$. Since K is a function of $Z_1, Z_2, ..., Z_K$ we know that $H(K|Z_1, Z_2, ..., Z_K) = 0$. Thus:

$$H(Z_1, Z_2, ..., Z_K, K) = H(Z_1, Z_2, ..., Z_K) + H(K|Z_1, Z_2, ..., Z_K) = H(Z_1, Z_2, ..., Z_K)$$

- (c)Chain rule
- (d)Since $Z_1, Z_2, ..., Z_K$ are random bits with $H(Z_i) = 1bit$.
- (e)Entropy is non-negative

Thus no more than nH(p) fair coin tosses can be derived from $(X_1,...,X_n)$, on the average.

0.11.2 Exhibit a good map f on sequences of length 4

Since it is an unfair coin and we don't know p there are not very many ways to simulate a sequence of fair coin-flips. However, even without knowing p we know that the flips are i.i.d. so we know that a series of 4 flips having a given number of heads occurring is equally likely.

$0000 \to \text{NULL}$						
$0001 \rightarrow 00$	$0010 \rightarrow 01$	$0100 \rightarrow 10$	$1000 \rightarrow 11$			
$0011 \rightarrow 00$	$0101 \rightarrow 01$	$0110 \rightarrow 10$	$1010 \rightarrow 11$	$1001 \rightarrow 0$	$1100 \rightarrow 1$	
$0111 \rightarrow 00$	$1011 \rightarrow 01$	$1101 \rightarrow 10$	$0111 \rightarrow 11$			
$1111 \to \text{NULL}$						