实验八 电路过渡过程的研究

实验报告

姓名: _____缪谨蔚_____

学号: <u>2017012002</u>

班级: ______ 自 75

日期: 2020年4月29日

1 实验目的

- (1) 研究 RC 微分电路和积分电路的过渡过程;
- (2) 研究 RLC 二阶电路的过渡过程。

2 实验说明

(1) 微分电路:

由上图电路可列出:

$$u_o = Ri = RC \frac{du_C}{dt}$$

电路的时间常数 $\tau=RC$ 很小、 $u_c\gg u_o$ 时,输入电压 u_i 与电容 u_c 电压近似相等: $u_i\approx u_c$

代入上式:

$$u_o \approx RC \frac{du_i}{dt}$$

当 τ 很小时,输出电压 u_o 近似与输入电压 u_i 对时间的导数成正比,称微分电路。将电路接至直流电压,电路参数不同时过渡过程有不同的特点:

当 $R>2\sqrt{\frac{L}{c}}$ 时,过渡过程中的电压、电流具有非周期的特点。

当 $R < 2\sqrt{\frac{L}{c}}$ 时, 过渡过程中的电压、电流具有"衰减振荡"的特点;

此时衰减系数 $\delta = \frac{R}{2L}$;

 $\omega_0 = \frac{1}{\sqrt{LC}}$ 是在R = 0情况下的振荡角频率,即无阻尼振荡电路的固有角频率。

 $R \neq 0$ 时,放电电路的固有振荡角频率 $\omega = \sqrt{\omega_0^2 - \delta^2}$,若 $\delta = \omega_0$ 时过程就变为非振荡的性质了。

(2) 积分电路:

交换R与C的位置可得:

$$u_i \approx RC \frac{du_o}{dt}$$

转化得:

$$u_o \approx \frac{1}{RC} \int u_i dt$$

当 τ 很大时,输出电压 u_o 近似与输入电压 u_i 对时间的积分成正比,称积分电路。将电路接至直流电压,电路参数不同时过渡过程有不同的特点:

当
$$R < \frac{1}{2}\sqrt{\frac{L}{c}}$$
时,响应是非振荡性质的;

当
$$R > \frac{1}{2} \sqrt{\frac{L}{c}}$$
时,响应将形成衰减振荡,这时电路的衰减系数 $\delta = \frac{1}{2RC}$ 。

3 实验任务

3.1 预习任务

$$\begin{array}{c|cccc}
i & C \\
+ & + & u_C & - \\
u_i & & R & u_0 \\
- & & - & - \\
\hline
- & & - & - \\
\end{array}$$

(1) 由已知:

$$\tau = RC$$
$$C = \frac{\tau}{R}$$

依次代入 $\tau = 0.02T$, 0.1T, T, 10T, 得到电容值分别为:

 $C=2nF,10nF,0.1\mu F,1\mu F$

画出 $\tau = 0.02T$ 及 $\tau = 10T$ 两种情况下稳态时输出电压的波形(红 u_i ,紫 u_o)。

• $\tau = 0.02T \ \text{H}$

• $\tau = 0.02T$ 时

(2)

同(1)理,依次代入 $\tau = 5T$, 0.1T,得到电容值分别为:

$$C = 0.5 \mu F, 10 nF$$

画出 $\tau = 5T$ 情况下稳态时输出电压的波形(红 u_i , 紫 u_o)。

• $\tau = 5T$ 时

(3)

画出 $R=1k\Omega$ 及 $R=6k\Omega$ 两种情况下 u_c 的波形(红 u_i ,紫 u_c)。

• $R = 1k\Omega$ 时

• $R = 6k\Omega$ 时

