Solution to Assignment 5

5.8: (a) Let $K_n = \sup_{\omega \in \Omega} |X(\omega) - X_n(\omega)|$. Note that X is a bounded variable as the X_n are uniformly bounded and converge uniformly to X. So all of the variables are integrable and by monotonicity and the modular inequality we have

$$|EX_n - EX| = |E[X_n - X]| \le E|X_n - X| \le K_n \to 0.$$

5.9: By Fubini's theorem,

$$\int (F(x+a) - F(x)) dx = \iint 1_{(x,x+a]}(u) F(du) dx$$
$$= \iint 1_{(x,x+a]}(u) dx F(du) = \int a F(du) = a.$$

5.13: Since $X_n(\omega) = 0$ for $n > 1/\omega$, we have $X_n \to 0$. Also, $EX_n = 1/\log n \to 0$. But

$$\sup_{n} X_{n}(\omega) = \frac{n}{\log n}, \quad \text{achieved when} \quad n \in [1/\omega - 1, 1/\omega),$$

and so

$$E\left[\sup_{n} X_{n}\right] = \sum_{n>1} \frac{1}{(n+1)\log n} = \infty.$$

(Note that $\int_e^M (x \log x)^{-1} dx = \log \log M \to \infty$ as $M \to \infty$.)

5.15: (a) As $n \to \infty$,

$$\frac{n}{X}1_{[X>n]} \to 0,$$

so the results follow by dominated convergence because

$$\left| \frac{n}{X} 1_{[X > n]} \right| \le 1.$$

5.19: (a) Since $\int f(x,y) \mu_1(dx) = 0$ and $\int f(x,y) \mu_2(dy) = 1$, we have

$$\iint f(x,y) \,\mu_2(dy) \,\mu_1(dx) = 1 \quad \text{and} \quad \iint f(x,y) \,\mu_1(dx) \,\mu_2(dy) = 0.$$

(b) No, μ_2 is not σ -finite. If $\mu_2(B_n) = \#B_n < \infty$, then $\bigcup_n B_n$ will be countable and cannot be the whole interval (0,1).

5.32: (a) Since
$$EX = 0$$
 and $EXY = EX^3 = 0$, $Cov(X, Y) = EXY - (EX)(EY) = 0$. (b) $EX = EY = 0$, and so $Cov(X, Y) = EXY = E(U^2 - V^2)$

$$Cov(X, Y) = EXY = E(U^2 - V^2)$$

= $EU^2 - EV^2 = Var(U) - Var(V) = 0$.

(c) By part (b), X and Y are uncorrelated. But they are not independent. For instance,

$$P(X = 12, Y = 0) = \frac{1}{36} \neq \frac{1}{216} = P(X = 12)P(Y = 0).$$