# Computational Methods for Geological Engineers

Eldad Haber 12th January 2023

University of British Columbia

# **Learning Outcomes**

At the end of the course, participants will be able to:

- · Code mathematical and physical models in pytorch
- · Solve some ODE's
- · Find parameters within the simulation

# Approximate schedule

| Week       | Technical Programming                    | Analytical Skills      |
|------------|------------------------------------------|------------------------|
| Week 1     | intro to python                          | Intro to O/PDEs        |
| Week 2     | loops and vectorization                  | Separable ODEs         |
| Week 3     | functions and classes, Finite difference | Integrating factors    |
| Week 4-5   | Solving IVP's particle propagation       | Integrating factors    |
| Week 6-7   | Nonlinear equations                      | Second order equations |
| Week 8     | Implicit methods                         | Systems                |
| Week 9-10  | The discrete Laplacian                   | BVPs                   |
| Week 11-12 | Parameter estimation                     |                        |
| Week 13    | Catch-up                                 |                        |

· Programming Quiz: Jan 24

· Midterm Feb 28

# Motivation

#### Outline

- · Goals of this course
- Integrating math/physics/code
- Python
- Your commitment

# Scientific Computing

aka: Computational Science, Scientific Computation

- Simulations
- · Data fitting and analysis
- Optimization
- Visualization
- ...

Goal: Gain understanding through analysis of mathematical models implemented on computers.

# Steps in Computational Science

- · A story observation
- · Mathematical model
- · Discretization of the model
- Solving the model
- · Parameters fitting
- · Visualizing the result

# Example I: Newton's apple



- · Observation Apple is falling
- · Math model

$$\frac{d^2x}{dt^2} = -g$$

(but what is g?)

· Discretization

$$\frac{x(t_{i+1}) - 2x(t_i) + x(t_{i-1})}{\Delta t^2} = -g.$$

Solve

$$x(t_{i+1}) = -g\Delta t^2 + 2x(t_i) - x(t_{i-1})$$

- Measure and find an approximation to g
- Visualize

6

# Example I: Newton's apple

#### Data assimilation

What is g?

Observations (noisy)

$$t = [0, 1, 2, 3]$$
  $x = [0, 4.4, 21.0, 54.2]$ 

- · Can the mathematical model (reasonably) explain the data?
- What is the (best) value of g?

#### Example II: Ground water flow



- · Observation Water flow in the ground
- · Math model

$$\nabla \cdot \sigma \nabla p = q$$
  $\rho_t + \nabla \cdot (\sigma \nabla p) \rho = 0$ 

- · Discretization ... (you will know all about this)
- · Solve ... (you will know all about this)
- Visualize

8

Simplest example - Character recognition. We have digits ([0,...,9]) in an image and we want to get them explicitly.



Mathematical model - ???

Machine learning, try the following model known as Convolution Neural Network

$$y = w^{T} tanh(K \star x + b)$$

No physical basis so we hope it can do the trick ...

$$y = w^{T} tanh(K \star x + b)$$

- y vector of 10, with probabilities of the digits Example: [0, 0.65, 0, 0, 0, 0, 0, 0.35, 0, 0] imply 65% the number 1 and 35% the number 7
- · x the image
- · K, b and w parameters

Pattern recognition can be applied for many problems when the math is too complex or unknown

- · Climate prediction
- Weather
- Flow in complex systems
- · Much more ...

#### Goal of this course

- · Describe useful physical models
- · Learn how to simulate them on the computer
- · Learn how to integrate field data into physical models

# Integration of Physics/Math/Computing

This course has a new paradigm. We

- Describe the physics
- · Develop a mathematical model
- · Write code to simulate this model

We will cover most of the math you need but we will use

- · Vector calculus
- Differential equations
- · Linear algebra
- · Python programming with pytorch

# Computing

- The course will involve lots of programming and computing
- · Bring your laptop
- · Code will be handled through GitHub
- · Working in groups, encouraged!

#### Python

- We will be coding with Python and use VS code (primarily) and Jupyter Notebooks
- · Main packages we use: NumPy and Torch.
- Tutorials on Python and using NumPy and PyTorch can be found at

```
http://cs231n.github.io/python-numpy-tutorial/
https://pytorch.org/tutorials/
```

#### Python

#### We will be using two types of Python environments

- · A Python Integrated development environment (IDE)
  - · VS code
  - · Spyder
  - PyCharm
  - · Choose your own (your own support)
- Jupyter notebook https://jupyter.org/

# Grading

- Homework and programming assignments 30%
- · Midterms 30%
- Final Exam 40%

# Ordinary Differential Equations

# ODE's - Ordinary differential equations

$$\frac{d\mathbf{y}}{dt} = f(t, \mathbf{y}; p)$$

or more specifically

$$\frac{d}{dt}\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} f_1(y_1, \dots, y_n; p) \\ \vdots \\ f_n(y_1, \dots, y_n; p) \end{pmatrix}$$

Appear in many applications

- · Particle flow
- · Disease propagation
- · Fake news detection
- Geochemistry
- ٠ ..

#### ODE's - Classification

- · Linear first order
- · Linear higher order
- Nonlinear first order
- Nonlinear higher order
- · System, linear
- · System, nonlinear

# Separation of variables

We have a special case

$$\frac{dy}{dx} = f(x, y) = \frac{g(x)}{w(y)}$$

Then

$$w(y)dy = g(x)dx$$

$$\int^{y} w(y)dy = \int^{x} g(x)dx + C$$

Integrate and solve for y(x)

# Examples

### Exponential model

$$\frac{dy}{dx} = \lambda y$$

#### **Examples**

Logistic model

$$\frac{dy}{dx} = \lambda y \left(1 - \frac{y}{a}\right)$$
$$\frac{1}{y(1 - y/a)} = \frac{1}{y} + \frac{1}{a + y}$$