Download from finelybook www.finelybook.com

Figure 5-12 shows the decision function that corresponds to the model on the right of Figure 5-4: it is a two-dimensional plane since this dataset has two features (petal width and petal length). The decision boundary is the set of points where the decision function is equal to 0: it is the intersection of two planes, which is a straight line (represented by the thick solid line).³

Figure 5-12. Decision function for the iris dataset

The dashed lines represent the points where the decision function is equal to 1 or -1: they are parallel and at equal distance to the decision boundary, forming a margin around it. Training a linear SVM classifier means finding the value of \mathbf{w} and b that make this margin as wide as possible while avoiding margin violations (hard margin) or limiting them (soft margin).

Training Objective

Consider the slope of the decision function: it is equal to the norm of the weight vector, $\| \mathbf{w} \|$. If we divide this slope by 2, the points where the decision function is equal to ± 1 are going to be twice as far away from the decision boundary. In other words, dividing the slope by 2 will multiply the margin by 2. Perhaps this is easier to visualize in 2D in Figure 5-13. The smaller the weight vector \mathbf{w} , the larger the margin.

³ More generally, when there are n features, the decision function is an n-dimensional hyperplane, and the decision boundary is an (n-1)-dimensional hyperplane.

Figure 5-13. A smaller weight vector results in a larger margin

So we want to minimize $\|\mathbf{w}\|$ to get a large margin. However, if we also want to avoid any margin violation (hard margin), then we need the decision function to be greater than 1 for all positive training instances, and lower than -1 for negative training instances. If we define $t^{(i)} = -1$ for negative instances (if $y^{(i)} = 0$) and $t^{(i)} = 1$ for positive instances (if $y^{(i)} = 1$), then we can express this constraint as $t^{(i)}(\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b) \ge 1$ for all instances.

We can therefore express the hard margin linear SVM classifier objective as the *constrained optimization* problem in Equation 5-3.

Equation 5-3. Hard margin linear SVM classifier objective

minimize
$$\frac{1}{2} \mathbf{w}^T \cdot \mathbf{w}$$

subject to $t^{(i)} (\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b) \ge 1$ for $i = 1, 2, \dots, m$

We are minimizing $\frac{1}{2}\mathbf{w}^T \cdot \mathbf{w}$, which is equal to $\frac{1}{2} \| \mathbf{w} \|^2$, rather than minimizing $\| \mathbf{w} \|$. This is because it will give the same result (since the values of \mathbf{w} and b that minimize a value also minimize half of its square), but $\frac{1}{2} \| \mathbf{w} \|^2$ has a nice and simple derivative (it is just \mathbf{w}) while $\| \mathbf{w} \|$ is not differentiable at $\mathbf{w} = \mathbf{0}$. Optimization algorithms work much better on differentiable functions.

To get the soft margin objective, we need to introduce a *slack variable* $\zeta^{(i)} \geq 0$ for each instance: $\zeta^{(i)}$ measures how much the ith instance is allowed to violate the margin. We now have two conflicting objectives: making the slack variables as small as possible to reduce the margin violations, and making $\frac{1}{2}\mathbf{w}^T \cdot \mathbf{w}$ as small as possible to increase the margin. This is where the C hyperparameter comes in: it allows us to define the trade-

⁴ Zeta (ζ) is the 8th letter of the Greek alphabet.

Download from finelybook www.finelybook.com off between these two objectives. This gives us the constrained optimization problem in Equation 5-4.

Equation 5-4. Soft margin linear SVM classifier objective

$$\begin{aligned} & \underset{\mathbf{w},b,\zeta}{\text{minimize}} & & \frac{1}{2}\mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^m \zeta^{(i)} \\ & \text{subject to} & & t^{(i)} \Big(\mathbf{w}^T \cdot \mathbf{x}^{(i)} + b\Big) \geq 1 - \zeta^{(i)} & \text{and} & & \zeta^{(i)} \geq 0 & \text{for } i = 1,2,\cdots,m \end{aligned}$$

Quadratic Programming

The hard margin and soft margin problems are both convex quadratic optimization problems with linear constraints. Such problems are known as Quadratic Programming (QP) problems. Many off-the-shelf solvers are available to solve QP problems using a variety of techniques that are outside the scope of this book.⁵ The general problem formulation is given by Equation 5-5.

Equation 5-5. Quadratic Programming problem

$$\begin{array}{lll} \text{Minimize} & \frac{1}{2}\mathbf{p}^T\cdot\mathbf{H}\cdot\mathbf{p} & + & \mathbf{f}^T\cdot\mathbf{p} \\ \text{subject to} & \mathbf{A}\cdot\mathbf{p} \leq \mathbf{b} \\ & \begin{bmatrix} \mathbf{p} & \text{is an } n_p\text{-dimensional vector } (n_p = \text{number of parameters}), \\ \mathbf{H} & \text{is an } n_p \times n_p \text{ matrix,} \\ \mathbf{f} & \text{is an } n_p\text{-dimensional vector,} \\ \mathbf{A} & \text{is an } n_c \times n_p \text{ matrix } (n_c = \text{number of constraints}), \\ \mathbf{b} & \text{is an } n_c\text{-dimensional vector.} \\ \end{array}$$

Note that the expression $\mathbf{A} \cdot \mathbf{p} \leq \mathbf{b}$ actually defines n_c constraints: $\mathbf{p}^T \cdot \mathbf{a}^{(i)} \leq b^{(i)}$ for i = 11, 2, ..., n_c , where $\mathbf{a}^{(i)}$ is the vector containing the elements of the ith row of \mathbf{A} and $b^{(i)}$ is the ith element of **b**.

You can easily verify that if you set the QP parameters in the following way, you get the hard margin linear SVM classifier objective:

• $n_p = n + 1$, where *n* is the number of features (the +1 is for the bias term).

⁵ To learn more about Quadratic Programming, you can start by reading Stephen Boyd and Lieven Vandenberghe, Convex Optimization (Cambridge, UK: Cambridge University Press, 2004) or watch Richard Brown's series of video lectures.