

National University of Computer & Emerging Sciences, Karachi Fall-2021 Department of Computer Science

Final Exam: Part (A) 29 December 2021, 09:00 AM – 12:00 AI

29 December 2021, 09:00 AM – 12:00 AM							
Course Code: CS2009	Course Name: Design and Analysis of Algorithm						
Instructor Name / Names: Dr. Muhammad Atif Tahir, Dr. Fahad Sherwani, Dr. Farrukh Saleem, Waheed Ahmed, Waqas Sheikh, Sohail Afzal							
Student Roll No:		Section:					
Instructions:							
 Must be submitted within 30 m Part(B) No extra sheets are allowed for question paper. 	•	•	•				
Time: 30 minutes				Max Ma	rks: 10		
Question # 1			[0.5*6 =	3 marks]			
Answer the following questions. You must explain in only 3-4 lines.							
(a) List the following functions according to their order of growth from the lowest to the highest.							
$(n-2)!$, $5\log(n+100)$	$(2^{10}, 2^{2n}, 0)$	$001n^4 + 3n^3 + 1,$	$\ln^2 n$,	$\sqrt[3]{n}$,	3^n .		
(b) Explain why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.							
(c) Define recurrence relations and enlist methods to solve them.							
(d) In which conditions dynamic	e programing do	es not work. Give su	iitable exan	nple.			

(e) Describe Big theta in mathematical notation.

(f) Suppose there is a maximization problem, where the approximate solution has the cost of 25 And optimal solution has the cost of 30. Find the approximation ratio.

Question # 2 [0.5*8 = 4 marks]

Write the complexity and the corresponding design strategy (Divide and Conquer/ Dynamic Programming / Greedy) of the given algorithms

ALGORITHMS	Worst Case	Design Strategy
Quick Sort		
Radix Sort		
Max-Heapify operation		
Add Vertex in Adjacency Metric		
Rod-Cutting (Dynamic programming)		
Dijkstra's (using Array)		
Prims		
Maximum Sub-array Sum		

Question #3 [1*3 = 3 marks]

For each of the following questions indicate whether it is true or false and justify using some examples by assuming a function.

(a) For all positive
$$f(n)$$
; $\omega(f(n)) + O(f(n)) = \Theta(f(n))$

(b) For all positive
$$f(n)$$
;
$$f(n) + o(f(n)) = \Theta(f(n))$$

(c) For all positive if
$$f(n) = O(g(n))$$
 and $f(n) = f(n)$, $g(n)$, and $h(n)$:
$$\Omega(h(n)) \text{ then } g(n) + h(n) = \Omega(f(n))$$