Formulario di Campi Elettromagnetici

Lorenzo Rossi Anno Accademico 2019/2020

Email: lorenzo14.rossi@mail.polimi.it

 $GitHub:\ https://github.com/lorossi$

Quest'opera è distribuita con Licenza Creative Commons Attribuzione

Non commerciale 4.0 Internazionale $\textcircled{\textcircled{6}}\textcircled{\textcircled{6}}$

Versione aggiornata al 25/06/2020

Indice

1 Riguardo al formulario

Quest'opera è distribuita con Licenza Creative Commons - Attribuzione Non commerciale 4.0 Internazionale $\textcircled{\bullet}(\textcircled{\bullet})$

Questo formulario verrà espanso (ed, eventualmente, corretto) periodicamente fino a fine corso (o finché non verrà ritenuto completo).

Link repository di GitHub: https://github.com/lorossi/formulario-campi-elettromagnetici L'ultima versione può essere scaricata direttamente cliccando da questo link premendo poi su "Download".

2 Richiami di base

2.1 Trigonometria

- Teorema di Carnot $a^2 = b^2 + c^2 2bc\cos(\alpha)$ con α angolo compreso tra $b \in c$
- Formule di duplicazione

- Seno
$$\sin(2x) = 2\sin(x)\cos(x)$$
, $\sin^2(x) = \frac{1 - \cos(2x)}{2}$

- Coseno
$$\cos(2x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1$$
, $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

• Formule di addizione

- Seno
$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

– Coseno
$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

- Tangente
$$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$$

• Formule di Werner

$$-\sin(\alpha)\sin(\beta) = \frac{1}{2}\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right]$$

$$-\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha+\beta) + \cos(\alpha-\beta)\right]$$

$$-\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha+\beta) + \sin(\alpha-\beta)\right]$$

• Formule di bisezione

– Seno
$$\sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos(x)}{2}}$$

- Coseno
$$\cos\left(\frac{x}{2}\right) = \sqrt{\frac{1+\cos(x)}{2}}$$

- Tangente
$$\tan\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} = \frac{1 - \cos(x)}{\sin(x)} = \frac{\sin(x)}{1 + \cos(x)}$$

1

- Approssimazioni
 - Ipotesi: $\theta \to 0$
 - Seno $\sin(\theta) \approx \theta$

– Coseno
$$\cos(\theta) \approx 1 - \frac{\theta^2}{2}$$

- Tangente
$$tan(\theta) \approx \theta$$

2.2 Numeri complessi

• Radice quadrata di numeri complessi $z \in \mathbb{C}$, $z = \alpha + j\beta = re^{j\theta} \to \sqrt{z} = \sqrt[n]{z} \left(\cos\frac{\theta + 2k\pi}{n} + j\sin\frac{\theta + 2k\pi}{n}\right)$ con $k \in \{0, 1, \dots, n-1\}$

• Parte reale di un numero complesso $x \in \mathbb{C}$, $Re[x] = \frac{x + x^*}{2}$

• Inverso della parte reale: siano $z = \alpha + j\beta, \ y = \frac{1}{z} \to \text{Re}(y) \neq \frac{1}{\alpha}, \ \text{Re}(y) = \frac{\alpha}{\alpha^2 + \beta^2}$

2.3 Decibel e Neper

• Decibel

- Adimensionali

* Corrente, tensione, campo, ...
$$x_{dB} = 20 \log \left(\frac{x}{x_0}\right)$$

* Potenza, densità di potenza, ...
$$x_{dB} = 10 \log \left(\frac{x}{x_0}\right)$$

 $\ast \ x_0$ è un valore di riferimento

- Potenza

*
$$1dBw = 10\log\left(\frac{P}{1w}\right)$$

* $1dBm = 10\log\left(\frac{P}{1mw}\right)$

- Tensione

$$* 1dBv = 20\log\left(\frac{P}{1v}\right)$$

*
$$1dB\mu v = 20\log\left(\frac{P}{1\mu v}\right)$$

- Rumore

$$* P_S - P_C = 10log\left(\frac{S}{C}\right)$$

* S segnale di rumore, C onda portante (carrier), P_S e P_C) le loro rispettive potenze

• Neper: si usa il logaritmo naturale (ln) al posto del logaritmo in base 10 (log).

• Conversione

- Neper
$$\rightarrow$$
 Decibel $\alpha_{db} = \alpha_{Np} \cdot 8.686$

- Decibel
$$\rightarrow$$
 Neper $\alpha_{Np} = \frac{\alpha_{Db}}{8.686}$

2.4 Teoremi fondamentali

- Teorema di Stokes (rotore)
 - Si applica a campi vettoriali su una linea chiusa orientabile ed orientata in modo coerente alla normale della superficie tramite regola della mano destra

$$-\oint_{s} \vec{F} \cdot d\vec{l} = \iint_{\Omega} \nabla \cdot \vec{F} d\Omega$$

- Teorema di Gauss (divergenza)
 - Si applica ad un campo vettoriale su una superficie chiusa semplice ed orientata con bordo regolare Ω

$$-\iiint_{V} \nabla \cdot \vec{F} d\Omega = \iint_{\Omega} \vec{F} \cdot d\vec{S} = \iint_{\Omega} \left(\vec{F} \cdot \vec{n} \right) dS$$

2.5 Sistemi di coordinate

- Coordinate cartesiane
 - Elemento di spostamento infinitesimo $dl = dx\vec{u_x} + dy\vec{u_y} + dz\vec{u_z}$
 - Elemento di volume dV = dxdydz
- Coordinate cilindriche
 - Elemento di spostamento infinitesimo $dl = d\rho \vec{u_\rho} + \rho d\phi \vec{u_\phi} + dz \vec{u_z}$
 - Elemento di volume $dV = \rho d\rho d\phi d_z$
- \bullet Coordinate polari
 - Elemento di spostamento infinitesimo $dl = dr \vec{u_r} + R d\theta \vec{u_\theta} + R \sin\theta d\phi \vec{u_\phi}$
 - Elemento di volume $dV = R^2 \sin \theta d\theta d\phi dR$

2.6 Operatori differenziali

- Gradiente
 - -campo scalare \rightarrow campo vettoriale

$$-\nabla F(x,y,z) = \frac{\partial F}{\partial x}\vec{u_x} + \frac{\partial F}{\partial y}\vec{u_y} + \frac{\partial F}{\partial z}\vec{u_z}$$

- Divergenza
 - campo vettoriale \rightarrow campo scalare

$$-\nabla \cdot \vec{F}(x, y, z) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_x}{\partial z}$$

- Rotore
 - campo vettoriale \rightarrow campo vettoriale

$$-\nabla \times \vec{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) \vec{u_x} + \left(\frac{\partial F_c}{\partial z} - \frac{\partial F_z}{\partial x}\right) \vec{u_y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \vec{u_z}$$

3

2.7 Equazioni di Maxwell nel vuoto

- 1. Legge di Gauss elettrica $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$
- 2. Legge di Gauss magnetica $\nabla \cdot \vec{B} = 0$
- 3. Legge di Faraday $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
- 4. Legge di Ampere-Maxwell $\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$

3 Metodo delle cariche immagine

Il vantaggio di questo metodo è la semplicità della sua applicazione rispetto alla più analiticamente dispendiosa sovrapposizione degli effetti. Per calcolare il campo elettrico di una carica (o più) in un punto del piano, in presenza di un conduttore, si dovrà

- Chiudere la superficie piana del conduttore all'infinito includendo il semispazio comprendente la carica sorgente. Sulla superficie che racchiude questa regione di spazio, il potenziale sarà nullo.
- 2. Si considera una o più cariche simmetriche (rispetto al conduttore) alla carica in esame.
- 3. Si calcola il potenziale in un generico punto P.
- 4. Si impongono le condizioni al contorno. (ad es. il potenziale sarà nullo sulla superficie del conduttore)
- 5. Si calcola il campo elettrico applicando il teorema di Gauss.

Grazie al teorema dell'unicità della soluzione, è possibile affermare che la soluzione al problema elettrostatico sarà valida all'interno della superficie di spazio considerata.

3.1 Caso particolare: sfera conduttrice e carica a distanza

Ipotesi: la sfera ha raggio R, la carica è disposta a distanza d ed ha valore q.

Prima di tutto bisogna introdurre, all'interno della sfera, una carica $Q' = -\frac{R}{d} \cdot q$ a distanza

 $D = \frac{R^2}{d}$ dal centro della circonferenza. Questo passo è sufficiente se la sfera ha potenziale mantenuto costante.

Se così non fosse, si distinguono 2 diversi scenari:

- 1. Sfera mantenuta a potenziale fisso V_0 :
 - ullet Bisogna considerare, al centro della sfera, una nuova carica Q' che faccia assumere tale potenziale alla stessa.
 - Il valore della nuova carica sarà quindi $Q'=4\pi\epsilon RV_0$
- 2. Sfera isolata con carica iniziale Q_0 :
 - Bisogna considerare una carica ulteriore (rispetto al caso della sfera mantenuta a potenziale fisso V_0) Q_0 al centro della sfera che neutralizzi il valore di Q'.
 - Il la sfera assumerà un valore di tensione $V = \frac{Q_0 Q'}{4\pi\epsilon R}$

Nel caso si voglia calcolare la densità superficiale di carica sulla sfera, la formula per ricavarla è:

$$\sigma(R,\theta) = \frac{q}{4\pi R} \cdot \frac{R^2 - d^2}{(R^2 + d^2 - 2dR\cos\theta)^{3/2}}$$

Con R raggio della sfera e θ angolo formato tra l'asse orizzontale e il segmento che congiunge il centro della sfera alla sua superficie.

IMPORTANTE il Riva-Gentili, nell'appendice A (pag. 193) calcola in modo errato i valori di Q'' e di V negli scenari sopra indicati. Al denominatore, R ha esponente 2 anziché 1.

4 Elettrostatica

- Legge di Coulomb $\vec{F} = \frac{Qq}{4\pi\epsilon_0 R^2} \vec{a_r} = \frac{Qq}{4\pi\epsilon_0} \cdot \frac{(\vec{R_q} \vec{R_p})}{|\vec{R_q} \vec{R_p}|^3}$
- Legge di Gauss $\nabla \cdot \vec{D} = \rho_{\Omega} \leftrightarrow \nabla \cdot \vec{E} = \frac{\rho_{\Omega}}{\epsilon}$

4.1 Campo Elettrico

- Campo \vec{E} in presenza di cariche puntiformi $\vec{E} = \frac{Q}{4\pi\epsilon_0} \cdot \frac{(\vec{R_q} \vec{R_p})}{|\vec{R_q} \vec{R_p}|^3} = \frac{Q}{4\pi\epsilon_0} \cdot \frac{1}{R^2} \vec{a_r}$
- Densità di flusso elettrico $\vec{D}=\epsilon_0\vec{E},\, \vec{E}=\frac{Q}{4\pi}\cdot\frac{(\vec{R_q}-\vec{R_p})}{|\vec{R_q}-\vec{R_p}|^3}=\frac{Q}{4\pi}\cdot\frac{1}{R^2}\vec{a_r}$
- Densità superficiale di carica $\sigma = D_n = \epsilon E_n 6 t$
- Momento di dipolo elettrico $\vec{p} = Q\vec{d}$
- Potenziale elettrostatico $dV = -\vec{E} \cdot d\vec{l} \Rightarrow V = -\int \vec{E} \cdot d\vec{l}$
- Relazioni tra \vec{D} ed \vec{e} $\nabla \cdot (\epsilon_0 \vec{E} + \vec{P}) = \rho_{\Omega}, \ \vec{D} = \epsilon_0 \vec{E} + \vec{P}$
- All'interno di mezzi lineari $\vec{P}=\epsilon_0\chi\vec{E}$ con χ detta suscettività elettrica, $\chi\geq 0$
- Relazione tra ϵ e χ $\epsilon = (1 + \chi_e)\epsilon_0 = \epsilon_0\epsilon_r \rightarrow \epsilon_r = 1 + \chi_e \rightarrow \vec{D} = \epsilon \vec{E} = \epsilon_0\epsilon_r \vec{E} = \epsilon_0(1 + \chi_e)\vec{E} = \epsilon_0\vec{E} + \vec{P}$
- Relazione tra $\vec{P},\,\vec{D},\!\vec{E}$ nei mezzi isotropi $\vec{P}\|\vec{D}\|\vec{E}$
- Energia del sistema $W_e = \frac{1}{2} \sum_{i=1}^n Q_i V_i = \frac{1}{2} \int\limits_{\Omega} \rho_{\Omega} V d\Omega = \frac{1}{2} \int\limits_{s} \vec{D} \cdot \vec{E} d\Omega = \frac{1}{2} \int\limits_{s} \epsilon |\vec{E}|^2 d\Omega$
- \bullet Densità di energia $w_e = \frac{1}{2} \vec{D} \cdot \vec{E} = \frac{1}{2} \epsilon |\vec{E}|^2$

4.1.1 Interfaccia tra due mezzi

- conduttori (componente tangenziale) $E_{1t} = E_{2t}$, $\vec{a_n} \times (\vec{E_2} \vec{E_1}) = 0$, $\frac{\vec{D_{1t}}}{\vec{D_{2t}}} = \frac{\epsilon_1}{\epsilon_2}$
- conduttori (componente normale) $D_{2n} D_{1n} = \rho_s, \vec{a_n} \cdot (\vec{D_2} \vec{D_1}) = \rho_s, \epsilon_{2n} E_{2n} \epsilon_{1n} E_{1n} = \rho_s$
- dielettrici (componente tangenziale) $E_{2t} = E_{1t}, D_{2t} = \frac{\epsilon_2}{\epsilon_1} D_{1t}$
- dielettrici (componente normale) $D_{2n} = D_{1n}, E_{2n} = \frac{\epsilon_1}{\epsilon_2} E_{1n}$
- conduttore e dielettrico (componente tangenziale) $E_{2t} = 0, D_{2t} = 0$
- conduttore e dielettrico (componente normale) $D_{2n} = \rho_s$, $E_{2n} = \frac{\rho_s}{\epsilon_2}$

4.2 Capacità elettrica

 \bullet Condensatore a facce piane parallele $C = \frac{Q}{V} = \frac{\epsilon_0 \epsilon_r A}{d}$

• Formula generale
$$C = \frac{Q}{V} = \frac{\oint\limits_{S} \vec{D} \cdot \vec{dS}}{-\int\limits_{P_{1}}^{P_{2}} \vec{E} \cdot \vec{dl}}$$

• Energia immagazzinata in un condensatore $W_e = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$

4.3 Corrente elettrica / Legge di Ohm

- \bullet Velocità di deriva $\vec{v_d} = \mu_q \vec{E},\, \vec{v_d} \| \vec{E}$
- \bullet Densità di corrente $\vec{J}=qN\vec{v_d}=qN\mu_q\vec{E}=\sigma\vec{E}$ con σ detta conducibilità del mezzo
- \bullet In un conduttore ideale, si ha $\mu \rightarrow \infty,\, \sigma \rightarrow \infty$

5 Magnetostatica

$$\bullet$$
 Legge di Ampere $\oint\limits_c \vec{H} \cdot \vec{dl} = \int\limits_s \vec{J} \cdot \vec{ds} \leftrightarrow \nabla \times \vec{H} = \vec{J}$

5.1 Campo Magnetico

- Legge di Biot Savart (differenziale) $d\vec{F}_{12} = \frac{\mu_0}{4\pi} \frac{I_1 d\vec{l}_1 \times [I_2 d\vec{l}_2 \times \vec{a_{12}}]}{R^2}$
- Legge di Biot Savart (integrale) $\vec{F_{12}} = \frac{\mu_0 I_1 I_2}{4\pi} \oint_{c_1} \oint_{c_2} \frac{d\vec{l}_1 \times [d\vec{l}_2 \times a\vec{l}_{12}]}{R^2} = \frac{\mu_0 I_1 I_2}{4\pi} \oint_{c_1} \oint_{c_2} \frac{a\vec{l}_2 \cdot [d\vec{l} \cdot d\vec{2}]}{R^2},$ $\vec{F_{12}} = -\vec{F_{21}}$
- Densità di flusso magnetico (differenziale) $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I_2 d\vec{l}_2 \times a_{12}^2}{R^2}$
- Densità di flusso magnetico (integrale) $\vec{B} = \oint_{c_2} \frac{\mu_0}{4\pi} \frac{I_2 d\vec{l}_2 \times \vec{a}_{12}}{R^2} = \oint_{c_2} \frac{\mu_0}{4\pi} \frac{\vec{J} \cdot (d\vec{l}_1 \cdot d\vec{l}_2)}{R^2}$
- Campo magnetico $\vec{H} = \frac{\vec{B}}{\mu_0}$
- Autoinduttanza magnetica $L_{11}=\frac{\Phi 11}{I_1}=\frac{\displaystyle\int_{S_1} \vec{B_1}\cdot d\vec{d_1}}{I_1}$ con $\vec{B_1}=\frac{\mu I_1}{4\pi}\oint\limits_{c1} \frac{\vec{dl}\cdot \vec{ar}}{R^2},\;\Phi_{m,11}=0$

$$\frac{\mu I_1}{4\pi} \int_{s_1} (\oint_{c_1} \frac{\vec{dl} \cdot \vec{a_r}}{R^2}) ds$$

$$\Rightarrow L_{11} = \frac{\mu}{4\pi} \int_{s_1} \left(\oint_{c_1} \frac{\vec{dl} \times \vec{a_r}}{R^2} \right) \cdot \vec{ds}$$

- Mutua induttanza $L_{21}=\frac{\mu}{4\pi}\int\limits_{s_2}\left(\int\limits_{c_1}\frac{\vec{dl}\times\vec{a_r}}{R^2}\right)\cdot\vec{ds}$
- Energia del sistema $W_m = \frac{1}{2}L_{11}I_1^2$
- \bullet Densità di energia $w_m = \frac{1}{2} \vec{B} \cdot \vec{H} = \frac{1}{2} \mu H^2$

5.1.1 Campo Magnetico nei materiali

- \bullet Momento di dipolo magnetico $\vec{m} = A \cdot I \cdot \vec{a_n}$
- Densità di momento magnetico
 - Mezzo qualsiasi $\vec{M} = \lim_{\Delta\Omega \to 0} \frac{\sum_i \vec{m_i}}{\Delta\Omega}$

– Se il mezzo è lineare $\vec{M}=\chi_m\vec{H}$

 $-\chi_m$ è detta suscettività magnetica

• Permeabilità del mezzo $\mu = \mu_0 \mu_r = \mu_0 (1 + \chi_m)$

• Relazione tra \vec{H} e \vec{M} : $\vec{B} = \mu \vec{H} = \mu_0 \mu_r \vec{H} = \mu_0 (1 + \chi_m) \vec{H} = \mu_0 (\vec{H} + \vec{M})$

5.1.2 Interfaccia tra due mezzi

• Componente tangenziale $H_{2t} - H_{1t} = J_{sn}, \frac{J_{2t}}{\sigma_2} = \frac{J_{1t}}{\sigma_1}$

• Componente normale $H_{2n} = \frac{\mu_1}{\mu_2} H_{1n}$, $B_{2n} = B_{1n}$, $\vec{a_n} \cdot \left(\vec{B_2} - \vec{B_1} \right) = 0$, $\rho_s = \left(\epsilon_2 - \epsilon_1 \frac{\sigma_2}{\sigma_1} \right) E_{2n}$

 \bullet Densità superficiale di carica $\rho_s = \left(\epsilon_1 - \epsilon_2 \frac{\sigma_1}{\sigma_2}\right) E_{1n}$

5.2 Resistenza elettrica / Legge di Joule

• Resistenza $R = \frac{V}{I} = \frac{-\int_{p_1}^{p_2} \vec{E} \cdot d\vec{l}}{\oint_s \vec{J} \cdot d\vec{s}} = \frac{1}{\sigma} \frac{\int_{p_1}^{p_2} \vec{E} \cdot d\vec{l}}{\oint_s \vec{E} \cdot d\vec{s}}$

• Relazione tra resitenza e capacità $R\cdot C=\frac{\epsilon}{\sigma}\leftrightarrow \frac{G}{C}=\frac{\sigma}{\epsilon}$

• Legge di Joule (differenziale) $\frac{\partial P}{\partial \Omega} = \vec{E} \cdot \vec{J}$ detta anche potenza specifica

• Legge di Joule (integrale) $P = \int\limits_{\Omega} \vec{E} \cdot \vec{J} \, d\Omega$

6 Regime dinamico

- Legge di Faraday $\oint\limits_c \vec{E} \cdot \vec{dl} = -\int\limits_s \frac{\partial \vec{B}}{\partial t} \cdot \vec{ds}$ se la superficie non cambia nel tempo
- Circuitazione di \vec{H} e corrente di spostamento $\oint_c \vec{H} \cdot \vec{dl} = \int_s \vec{J} \cdot \vec{ds} + \frac{d}{dt} \int_s \vec{D} \cdot \vec{ds}$
- Legge di conservazione della carica $\oint\limits_s \vec{J} \cdot \vec{ds} = -\frac{d}{dt} \int\limits_\Omega \rho_\Omega \, d\Omega$

6.1 Teorema di Poyinting

- \bullet Vettore di Poynting $\vec{S} = \vec{E} \times \vec{H}$
- Vettore di Poyting (dominio dei fasori) $\vec{S} = \frac{1}{2} \vec{E} \times \vec{H}^*$
- Teorema di Poynting $P_{diss} = \oint_{\Sigma} \vec{S} \cdot d\Sigma$
- Vettore di Poynting associato ad un onda piana $\vec{S_{ist}} = \frac{A^2}{\eta_0} \cos^2(\omega t) \vec{a_z}, \vec{S_{ave}} = \frac{A^2}{2\eta_0} \vec{a_z}$
- Vettore di Poynting associato ad un onda piana (dominio dei fasori) $\vec{S_{ist}} = \frac{1}{2} Re[\vec{E} \times \vec{H}^*]$

7 Onde Piane

- Equazione di Helmoltz (onda piana uniforme senza perdite) $\frac{\partial^2 E(z,t)}{\partial t^2} \mu \epsilon \frac{\partial^2 E(z,t)}{\partial z^2} = 0$
- Equazione di Helmoltz (dominio dei fasori) $\nabla^2 \vec{E} = \gamma^2 \vec{E}$
- Lunghezza d'onda nel vuoto $\lambda = \frac{2\pi}{\omega} = \frac{c}{f}$
- Lunghezza d'onda nel mezzo $\lambda = \frac{c}{f} \frac{1}{\sqrt{\mu \epsilon}}$
- Costante di propagazione $\gamma = \sqrt{j\omega\mu(\sigma+j\omega\epsilon)} = \alpha+j\beta$ dove:
 - $-\alpha = costante di attenuazione > 0$
 - $-\beta = \text{costante di fase} = \frac{2\pi}{\lambda}$
- Velocità della luce (velocità di propagazione delle onde) $c=\frac{1}{\sqrt{\mu\epsilon}}\cong 3\cdot 10^8$
- \bullet Impedenza intrinseca del mezzo $\eta = \frac{E^+}{H^+}$
- \bullet Impedenza d'onda $Z=\frac{E^+-E^-}{H^+-H^-}$

- Indice di rifrazione $n = \frac{c}{v} = \sqrt{\epsilon_r \mu_r}$
- Densità di potenza trasportata $|S| = \frac{1}{2} \frac{|\vec{E}|^2}{\eta} = \frac{1}{2} |\vec{H}|^2 \eta$

7.1 Polarizzazione

- Sia $\vec{E}(x,y,z.t)$ un campo elettrico con componenti in sole x e z. Allora, sul piano trasverso (z=0) si ottiene:
 - $-\vec{E}(z,t) = E_x \cos(\omega t) \vec{a_x} + E_Y \cos(\omega t + \phi_0) \vec{a_y}$
 - Si distinguono due casi particolari:

1.
$$\phi_0 = 0$$
, E_x , E_y qualsiasi. Allora: $\xi = \arctan\left(\frac{E_y}{E_x}\right)$, $|\vec{E}(0,t)|^2 = (E_x^2 + E_y^2)\cos(\omega t)$
Polarizzazione lineare

2. $\phi_0 = \pm \frac{\pi}{2}$, $E_x = E_y = E$. Allora: $\xi(t) = \mp \omega t$, $|\vec{E}|^2 = E^2$ Polarizzazione circolare

7.2 Incidenza delle onde

Leggi di Snell:

- Angolo di rifrazione $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$
- Riflessione interna totale $\theta_{\text{crit}} = \arcsin\left(\frac{n_2}{n_1}\right)$
- Angolo di incidenza = angolo di riflessione

7.2.1 Incidenza normale su discontinuità piana

Mezzi ideali e senza perdite, onda elettromagnetica con componenti in x e y nella sezione z = cost

- Coefficiente di riflessione $\Gamma = \Gamma(0) \exp(2j\beta z)$, dove $\Gamma(0) = \frac{n_2 n_1}{n_2 + n_1}$, $|\Gamma(0)| \leq 1$
- Coefficiente di trasmissione $T=T(0)\exp(2j\beta z)$, dove $T(0)=\frac{2n_2}{n_2+n_1}=1+\Gamma(0),\ |T(0)|\leq 2$
- Onda riflessa $E_1^-(0) = E_1^+(0) \cdot \Gamma(0)$
- Onda trasmessa $E_2^+(0) = E_1^+(0) \cdot T(0)$
- Impedenza d'onda $Z(z) = \eta_1 \left(\frac{1 + \Gamma(z)}{1 \Gamma(z)} \right)$

7.2.2 Incidenza non normale

Ipotesi: onda su piano xz destrorso (asse x verticale, asse z orizzontale). Può essere scomposta in componente TE e TM (per sovrapposizione lineare).

- \bullet L'angolo di incidenza sarà $\theta = \arctan\left(\frac{\beta_z}{\beta_x}\right)$
- L'angolo di riflessione sarà calcolabile tramite legge di snell)

• Componente TE

- Ha componente y

– Impedenza
$$\eta_n^{TE} = \frac{\eta}{\cos(\theta_n)}$$

– Coefficiente di riflessione
$$\Gamma = \frac{\eta_2^{TE} - \eta_1^{TE}}{\eta_2^{TE} + \eta_1^{TE}}$$

• Componente TM

- Ha componenti xz

– Impedenza
$$\eta_n^{TM} = \eta \cdot cos(\theta_n)$$

– Coefficiente di riflessione
$$\Gamma = -\frac{\eta_2^{TE} - \eta_1^{TE}}{\eta_2^{TE} + \eta_1^{TE}}$$

• Angolo di incidenza
$$\theta = \arctan\left(\frac{\beta_z}{\beta_x}\right)$$

 \bullet La costante di propagazione $\gamma \to$ va proiettata nelle direzioni xe y tramite sin e cos

7.2.3 Trasmissione totale

• Indice di rifrazione $\Gamma = 0 \leftrightarrow Z_L = Z_{in}$

$$\bullet$$
 Angolo di Brewster $\theta_P=\arcsin\left(\sqrt{\frac{\epsilon_2}{\epsilon_1+\epsilon_2}}\right)=\arctan\frac{n_2}{n_1}$

7.3 Mezzi attraversati dalle onde

7.3.1 Mezzo senza perdite

•
$$\sigma = 0 \Rightarrow \gamma = j\omega\sqrt{\mu\epsilon} \Rightarrow \alpha = 0, \beta = \omega\sqrt{\mu\epsilon}$$

•
$$\eta = \sqrt{\frac{\mu}{\epsilon}} = 377 \,\Omega$$

•
$$v = \frac{1}{\sqrt{\mu\epsilon}} = c \cong 3 \times 10^8 \, m/s$$

•
$$\lambda = \frac{v}{f}$$

• Impedenza intrinseca del vuoto (dominio dei fasori)
$$\frac{\vec{E^+}}{\vec{H^+}} = \frac{j\omega\mu}{\gamma} = \eta, \ \frac{\vec{E^-}}{\vec{H^-}} = -\frac{j\omega\mu}{\gamma} = -\eta$$

7.3.2 Buon conduttore

•
$$\sigma >> \omega \epsilon \Rightarrow \gamma = \sqrt{-\omega^2 \mu \epsilon}$$

•
$$\eta = \frac{1+j}{sart2} \sqrt{\frac{\pi f \mu}{\sigma}} \Rightarrow \alpha \cong \beta \cong \sqrt{\frac{\omega \mu \sigma}{2}}$$

•
$$v \cong \frac{\omega}{\beta} \cong \sqrt{\frac{2\omega}{\mu\sigma}}$$

•
$$\lambda = 2\pi\delta = \frac{v}{f}$$

• Spessore pelle
$$\delta = \frac{1}{\alpha} = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

- \bullet Costante dielettrica $\epsilon=\epsilon^{'}+j\epsilon^{''}$
- \bullet Costante di permeabilità magnetica $\mu=\mu^{'}+j\mu^{''}$

8 Linee di trasmissione

8.1 Linee TEM

 \bullet Equazione 1 $\frac{\partial V(z,t)}{\partial z}=-\frac{\partial I(z,t)}{\partial z}\cdot L$ conL=induttanza per unità di lunghezza

 \bullet Equazione 2 $\frac{\partial I(z,t)}{\partial z}=-\frac{\partial V(z,t)}{\partial z}\cdot C$ con C= capacità per unità di lunghezza

• Uguaglianze $\frac{G}{C} = \frac{\sigma}{\epsilon}, L_0 C_0 = \mu_0 \epsilon_0$

• Impedenza $Z=\sqrt{\frac{L}{C}}$

• Velocità di fase nel conduttore $v=\frac{1}{\sqrt{LC}}$

8.1.1 Potenza ed energia in una linea

• Potenza disponibile $P_D = \frac{|V_g|^2}{8R_g} = P_D$

 \bullet Potenza sul carico $P_L=P_D(1-|\Gamma_L|^2)=\frac{|V_g|^2}{8R_g}P_D(1-|\Gamma_L|^2)$

 \bullet Potenza sul carico (in funzione della tensione) $P_L = \frac{1}{2} |V|^2 \operatorname{Re}(Y)$

 \bullet Potenza sul carico (in funzione della corrente) $P_L=\frac{1}{2}|I|^2\operatorname{Re}(Z)$

 \bullet Densità di energia trasmessa $S_{tra} = S_{inc} \left(1 - |\Gamma|^2 \right)$

8.1.2 Corrente e tensione in una linea non attenuativa

• Tensione $|V_L| = |V^+(0)| |1 + \Gamma_L|$

• Corrente $|I_L| = |I^+(0)| |1 - \Gamma_L|$

 \bullet Nel caso di un corto circuito - $come\ negli\ stub\ c.c.$:

– Tensione $|V(d)|=|2V(0)|\sin(\beta d)|$ - il suo massimo si troverà a $\frac{\lambda}{4}$ dal c.c.

– Corrente $|I(d)| = \frac{|V_g|}{Z_C} |\cos(\beta d)|$

8.1.3 Cavo coassiale

Ipotesi: a = raggio interno, b = raggio esterno

- Capacità $C = \frac{2\pi\epsilon}{\ln\left(\frac{b}{a}\right)}$ con $\epsilon = \epsilon_0\epsilon_r$
- Induttanza $L = \frac{\mu_0}{2\pi} \ln \left(\frac{b}{a}\right)$
- Attenuazione conduttore $\alpha_c = \frac{R}{2Z_C} \frac{Np}{m}$
- Attenuazione dielettrico $\alpha_d = \frac{GZ_C}{2} = \frac{\pi}{\lambda} \frac{\epsilon^n}{\epsilon'} \frac{Np}{m}$
- Impedenza $Z_C = \sqrt{\frac{L}{C}} = \frac{\eta}{2\pi} \ln\left(\frac{b}{a}\right) = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln\left(\frac{b}{a}\right)$
- Resistenza superficiale $R_s = \sqrt{\frac{\pi f \mu}{\sigma}} = \sqrt{\frac{\omega \mu}{2\sigma}} = \frac{1}{\sigma \delta}$
- Resistenza per unità di lunghezza $R = \frac{R_s}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$
- Conduttanza per unità di lunghezza $G=C\frac{\omega\epsilon"}{\epsilon'}=\frac{2\pi\omega\epsilon"}{\ln\left(\frac{b}{a}\right)}$

15

8.1.4 Linea a striscia

- Capacità $C = \epsilon_0 \epsilon_r \frac{w}{h}$
- Induttanza $L = \mu_0 \frac{h}{w}$
- Ammettenza per unità di lunghezza $g = \sigma_d \frac{\text{Area}}{h}$
- Attenuazione dovuta al dielettrico $\alpha_d = \frac{g}{2Y_c}$

8.2 Linee quasi TEM

• Costante dielettrica efficace $\epsilon_{eff} = \frac{LC}{\mu_0}$

8.3 Linee TE in guida rettangolare

Sia a il lato della guida che giace sull'asse x e sia b il lato della guida che giace sull'asse y. Allora le ampiezze e le frequenze di taglio dei modi TM_{mn} sono:

Modo	Lunghezza di taglio	Frequenza di taglio
TE_{10}	$\lambda_c = 2a$	$f_c = \frac{c}{2a}$
TE_{01}	$\lambda_c = 2b$	$f_c = \frac{c}{2b}$
TE_{20}	$\lambda_c = a$	$f_c = \frac{c}{a}$
TE_{02}	$\lambda_c = b$	$f_c = \frac{c}{b}$

• Pulsazione di taglio
$$\omega_c = \frac{1}{\sqrt{\omega \epsilon}} \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{m\pi}{b}\right)^2} \text{ con } a, b \text{ interi}$$

• Impedenza modale
$$Z_{te} = \frac{\eta}{\sqrt{1 - \left(\frac{\omega_c}{\omega}\right)}} = \frac{\eta}{\sqrt{1 - \left(\frac{f_c}{f}\right)}}$$

• Frequenza di taglio
$$f_c = \frac{1}{2a\sqrt{\mu\epsilon}}$$

• Velocità di gruppo
$$v_g = v \sqrt{1 - \left(\frac{\omega_c^2}{\omega}\right)}$$

• Lunghezza d'onda di gruppo
$$\lambda_g = \frac{\lambda}{\sqrt{1-\left(\frac{\omega_c^{\,2}}{\omega}\right)}}$$

• Potenza trasportata
$$P = \frac{|E_0|^2 ab}{4 \cdot Z_{te}}$$

9 Adattamento di impedenza

L'obiettivo dell'adattamento di impedenza è portare la massima potenza disponibile sul carico $P_L = P_D$ annullando quindi il coefficiente di riflessione ($\Gamma = 0$).

9.1 Strutture adattanti

Esistono 3 tipologie di strutture adattanti:

- \bullet Trasformatore $\frac{\lambda}{4}$ solo per carichi **reali**
- Stub semplice per carichi reali o complessi
- Stub doppio per carichi reali o complessi

9.1.1 Trasformatore lambda-quarti

Funziona esclusivamente con carichi reali. È costituito da un pezzo di conduttore lungo un quarto della lunghezza d'onda λ . Impedenza del trasformatore: $Z_x = \sqrt{Z_{in} \cdot Z_L}$ con Z_{in} impedenza di ingresso e Z_L impedenza di carico.

9.1.2 Trasformatore lambda-quarti con neutralizzazione

Risolve il problema dell'impossibilità dei trasformatori lambda-quarti di adattare carichi complessi. È composto da un tratto di neutralizzazione lungo l_n e da un trasformatore lambda-quarti di impedenza Z_x . Il tratto di neutralizzazione sarà necessario a trasformare in impedenza puramente reale il carico. Il trasformatore lambda-quarti adatterà l'impedenza al valore caratteristico. Operativamente, si dovrà:

- 1. Normalizzare l'impedenza del carico Z_L all'impedenza caratteristica Z_C ottendendo $\overline{Z_L}$
- 2. Tracciare la circonferenza con centro in 1 e passante per $\overline{Z_L}$
- 3. Partendo da $\overline{Z_L}$, ruotare in senso orario sulla circonferenza appena tracciata fino ad intersecare l'asse reale nel punto A
- 4. Il valore di l_n , normalizzato alla lunghezza d'onda λ , sarà letto come differenza tra il prolungamento del punto A sulla scala esterna della carta di Smith e medesimo prolungamento di $\overline{Z_L}$
- 5. Denormalizzare $\overline{Z_L}$ per ottenere Z_L
- 6. Il valore dell'impedenza del trasformatore sarà data da $Z_x = \sqrt{Z_{in} \cdot Z_L}$

9.1.3 Stub semplice

Detto anche stub singolo, è realizzato con un tratto di linea di trasmissione in c.c. o in c.a di lunghezza l_s , opportunamente collegato in serie o in parallelo alla linea ad un tratto di distanza d_s dal carico. Esistono due tipi di stub semplice:

- 1. Stub parallelo si lavora con le ammettenze $\overline{Y_L} = \frac{Y_L}{Y_C} = \frac{Z_C}{Z_L}$
- 2. Stub serie si lavora con le impedenze $\overline{Z_L} = \frac{Z_L}{Z_C}$

Si può cercare l_s in modo che dia origine ad un corto circuito o a un circuito aperto, mentre d_s potrà assumere un solo valore.

- 1. Il circuito aperto si troverà a destra dell'asse reale della carta di Smith
- 2. Il corto circuito si troverà a sinistra dell'asse reale della carta di Smith

La differenza tra stub in *circuito aperto* e in *corto circuito* sarà pari a mezzo giro sulla carta di Smith $(l = \frac{\lambda}{4})$.

Operativamente, per gli stub *serie* si dovrà:

- 1. Normalizzare l'impedenza del carico Z_L all'impedenza caratteristica Z_C (o impedenza di ingresso) ottendendo $\overline{Z_L}$
- 2. Segnare sulla carta di Smith il valore di $\overline{Z_L}$
- 3. Tracciare la circonferenza a modulo costante pari a $\overline{Z_L}$
- 4. Partendo da $\overline{Z_L}$, ruotare in senso orario sulla circonferenza appena tracciata fino ad intersecare la circonferenza di raggio $\frac{R_g}{Z_C}$ nel generico punto A
- 5. Il valore di d_s , normalizzato alla lunghezza d'onda λ , sarà letto come differenza tra il prolungamento del punto A sulla scala esterna della carta di Smith e medesimo prolungamento di $\overline{Z_L}$
- 6. Partendo da A si procede ruotando fino a Z=0 (per uno stub c.c.) o $Z=\inf$ (per uno stub c.a.) nel generico punto B
- 7. Analogamente a quanto trovato per d_s , la lunghezza dello stub sarà pari alla differenza tra il prolungamento del punto B e medesimo prolungamento di A

Il procedimento sarà analogo per gli stub *parallelo* ma si dovrà lavorare con le ammettenze al posto delle impedenze.

9.1.4 Stub doppio

È una struttura adattante formata da due stub semplici di lunghezza l_1 e l_2 posti a distanza d_s (fissata) tra di loro. I due stub possono essere sia collegati in serie che in parallelo

- 1. La lunghezza del primo stub (il più vicino al carico) è ricercata in modo da eguagliare la parte reale dell'impedenza carico a quella della linea
- 2. La lunghezza del secondo stub è ricercata in modo da annullare la parte immaginaria dell'impedenza di carico

Operativamente, per gli stub parallelo si dovrà

- 1. Normalizzare l'ammettenza del carico Y_L all'impedenza caratteristica Y_C (o impedenza di ingresso) ottendendo $\overline{Y_L}$
- 2. Segnare sulla carta di Smith il valore di $\overline{Y_L}$
- 3. Tracciare la circonferenza a parte reale costante pari a $\text{Re}(\overline{Y_L})$ "circonferenza di partenza"
- 4. Rutotare la circonferenza di raggio $\frac{R_g}{Z_C}$ in senso antiorario di un angolo pari a d_s attorno al suo centro "circonferenza di arrivo"

- 5. Si trovano quindi 2 intersezioni tra la due circonferenze ed è necessario sceglierne uno "punto di partenza" A
- 6. Tracciare la circonferenza con centro in 1 e passante per A e ruotare di una lunghezza pari a d_s fino ad arrivare al "punto di arrivo" B
- 7. Calcolare le ammettenze dei due stub $Y_{S1}=A-\overline{Y_L}$ e $Y_{S2}=-\operatorname{Im}(B)$
- 8. Le lunghezze dei due stub saranno quelle che portano i loro rispettivi valori di ammettenza tale da avere un c.c. $Y = \inf$ o un c.a. Y = 0, dipendentemente dalla struttura che si sta cercando di realizzare

Il procedimento sarà analogo per gli stub *serie* ma si dovrà lavorare con le impedenze al posto delle ammettenze. **Nota:** generalmente d_s è un dato del problema.

9.2 Linea attenuativa

Per calcolare l'impedenza ad una certa distanza l dal carico di una linea attenuativa, bisogna

- 1. Assicurarsi che il valore di α sia espresso in $\frac{N_p}{m}$
- 2. Normalizzare l'impedenza del carico Z_L all'impedenza caratteristica Z_C (o impedenza di ingresso) ottendendo $\overline{Z_L}$
- 3. Tracciare la circonferenza con centro in 1 e passante per $\overline{Z_L}$
- 4. Partendo da $\overline{Z_L}$, ruotare in senso orario sulla circonferenza appena tracciata fino a percorrere una lunghezza normalizzata alla lunghezza d'onda pari alla lunghezza della linea
- 5. Tracciare un segmento che congiunga il centro della carta di Smith con il punto appena trovato
- 6. Calcolare il modulo del coefficiente di riflessione Γ in corrispondenza del carico e riportarlo in corrispondenza del generatore moltiplicandolo per un fattore $e^{-2\alpha l}$
- 7. Misurare sulla scala lineare più esterna della carta di Smith (con la dicitura TRASM. COEFF.) una lunghezza l_{α} pari al valore appena trovato
- 8. L'impedenza attenuata dalla linea (normalizzata) $\overline{Z_{L_{att}}}$ sarà trovata sul segmento prima tracciato, a distanza l_{α} dal centro
- 9. Denormalizzare il valore appena trovato per calcolare il valore effettivo di $Z_{{\cal L}_{att}}$
- 10. Calcolare il nuovo coefficiente di riflessione Γ tra impedenza del generatore Z_g e impedenza attenuata del carico $Z_{L_{att}}$

9.3 Potenza in una linea adattata

- Potenza al carico $P_L = P_D = \frac{|V_g|^2}{8R_g}$
- La potenza disponibile è uguale in qualsiasi punto della linea

9.4 Tensione in uno stub c.c

La tensione avrà un massimo per $l=\frac{\lambda}{4}$ e sarà nulla in l=0 (considerando un asse parallelo a l e nullo nel punto di c.c.).

Il massimo varrà $V_{max} = \frac{|V(l_s)|}{\sin(\beta l_s)}$

9.5 Note sulla Carta di Smith

- Ruotare in senso orario corrisponde ad una direzione verso il carico (allontanandosi quindi dal generatore)
- La carta di Smith può essere usata indifferentemente con impedenze e ammettenze
- Ogni tacca sulla circonferenza esterna corrisponde a $\frac{1}{500} = 0.002$ di lambda
- 1 giro completo della carta corrisponde a 0.5λ . Altri valori tipici:

Lunghezza	Frazione	Rotazione
0.125λ	$\frac{\lambda}{8}$	90°
$0.1\overline{6}\lambda$	$\frac{\lambda}{6}$	120°
0.25λ	$\frac{\lambda}{4}$	180°
$0.\overline{3}\lambda$	$\frac{\lambda}{3}$	240°
0.5λ	$\frac{\lambda}{2}$	360°

10 Antenne

• Direttività $D = \frac{4\pi}{\int f(\theta, \phi) d\Omega} = \frac{S_{max}}{S_{iso}}$

• Relazione universale $\frac{G}{A_e} = \frac{4\pi}{\lambda^2}$

• Tensione a vuoto $V_0 = l_e \cdot E_{inc} \cdot \sqrt{f_r(\theta, \phi)}$

 \bullet Potenza ricevuta $P_R = P_D = S_{inc} \cdot A_e \cdot f(\theta,\phi)$

10.1 Dipolo Hertziano

• Lunghezza efficace $l_e = l$

• Area efficace $A_e = \frac{3}{8} \frac{\lambda^2}{\pi}$

• Funzione di direttività $f(\theta, \phi) = \sin^2(\theta)$

• Tensione a vuoto $V_0 = l_e \cdot E_{inc}$

• Resistenza di radiazione $R_R = \frac{2}{3}\pi\eta_0 \left(\frac{l}{\lambda}\right)^2$

 \bullet Densità di potenza $S = \frac{P_t D}{4\pi R^2} f(\theta,\phi)$

• Potenza trasmessa $P_T = \frac{\pi}{3} \eta \left| I \right|^2 \left(\frac{l}{\lambda} \right)^2$

• Campi irradiati (campi lontani)

- Ipotesi θ colatitudine, R distanza tra punto considerato e centro del dipolo

– Campo elettrico $E_{\theta} = \frac{j\omega\mu Il}{4\pi R}e^{-j\beta R}\sin\theta$

– Campo magnetico $H_{\theta} = \frac{j\omega j\mu Il}{4\pi R\eta} e^{-j\beta R} \sin \theta$

 $- \frac{E_{\theta}}{H_{\theta}} = \eta$

-I campi sono diretti come $\overline{u_\theta}$

10.2 Spira magnetica

Ipotesi: incidenza perpendicolare, adattamento di polarizzazione

- Lunghezza efficace $l_e = l_m \frac{Z_{in}}{\eta_0}$
- Funzione di direttività $f(\theta, \phi) = 1$
- Tensione a vuoto $V_0 = j\omega\mu \frac{E_{inc}}{\eta_0}S$
- \bullet Densità di potenza $S = \frac{P_t D}{4\pi R^2} f(\theta,\phi)$
- Resistenza di radiazione $R_R = \eta_0 \frac{8\pi^3}{3} \left(\frac{5}{\lambda^2}\right)^2$

10.3 Nastro di corrente

Ipotesi: $l_g = \text{lunghezza fisica}$

- \bullet Lunghezza magnetica $l_m=l_g$
- Induttanza $L = \mu_0 \frac{S}{l_g}$

10.4 Solenoide

Ipotesi: $l_g =$ lunghezza fisica, N spire su l_g

- Lunghezza magnetica $l_m = \frac{l_g}{N}$
- Induttanza $L = \mu_0 N^2 \frac{S^2}{l_o}$

10.5 Confronto tra spira e solenoide

in TX	Spira	Solenoide
campo elettrico	E_0	$N \cdot E_0$
campo magnetico	H_0	$N \cdot H_0$
densità di potenza	$S_0 = \frac{ E_0 ^2}{2\eta_0}$	$S_0 = \frac{ E ^2}{2\eta_0} = N^2 S_0$
P_T	P_0	$N^2 \cdot P_0$
R_R	R_{R0}	$N^2 \cdot R_{R0}$

in RX	Spira	Solenoide
tensione a vuoto	V_0	$N \cdot V_0$
potenza disponibile	P_{D0}	P_{D0}

22