# Designer Genes C - Designer Genes C - Rickards Invitational Div. C - 12-05-2020



#### 2021 Rickards Designer Genes C Exam

Exam author: Amber Luo, Ward Melville High School

Hi everyone! Welcome to the Rickards Designer Genes C exam! I just have a few quick tips and information/instructions for you before you get started.

Information & Instructions:

- You get 50 minutes to take this test.
- The topics on this exam include Nationals topics.
- For fill-in-the-blank questions, capitalization does not affect your score, but incorrect spelling **does affect your score**. Most fill-in-the-blank questions will prompt you to avoid misunderstanding.
- Pay VERY close attention to instructions about how to format your answers, especially for questions involving X-linked genes or DNA sequences. Fill-in-the-blank does not award partial credit!
- You can contact me for questions through email: ambermath99@gmail.com or through Discord @Silverleaf1#5370 after the exam.

One more general tip: this test is pretty long, and it's meant to be difficult. Don't worry about leaving questions blank or skipping sections - it's a good idea to snatch the easy points (there are many!) and attempt the hard points later. Most importantly, this test is meant to be fun, so have fun!:3

### Chi Square Table:

### Percentage Points of the Chi-Square Distribution

| Degrees of Probability of a larger value of x <sup>2</sup> |        |        |        |        |        |       |       |       |       |
|------------------------------------------------------------|--------|--------|--------|--------|--------|-------|-------|-------|-------|
| Freedom                                                    | 0.99   | 0.95   | 0.90   | 0.75   | 0.50   | 0.25  | 0.10  | 0.05  | 0.01  |
| 1                                                          | 0.000  | 0.004  | 0.016  | 0.102  | 0.455  | 1.32  | 2.71  | 3.84  | 6.63  |
| 2                                                          | 0.020  | 0.103  | 0.211  | 0.575  | 1.386  | 2.77  | 4.61  | 5.99  | 9.21  |
| 3                                                          | 0.115  | 0.352  | 0.584  | 1.212  | 2.366  | 4.11  | 6.25  | 7.81  | 11.34 |
| 4                                                          | 0.297  | 0.711  | 1.064  | 1.923  | 3.357  | 5.39  | 7.78  | 9.49  | 13.28 |
| 5                                                          | 0.554  | 1.145  | 1.610  | 2.675  | 4.351  | 6.63  | 9.24  | 11.07 | 15.09 |
| 6                                                          | 0.872  | 1.635  | 2.204  | 3.455  | 5.348  | 7.84  | 10.64 | 12.59 | 16.81 |
| 7                                                          | 1.239  | 2.167  | 2.833  | 4.255  | 6.346  | 9.04  | 12.02 | 14.07 | 18.48 |
| 8                                                          | 1.647  | 2.733  | 3.490  | 5.071  | 7.344  | 10.22 | 13.36 | 15.51 | 20.09 |
| 9                                                          | 2.088  | 3.325  | 4.168  | 5.899  | 8.343  | 11.39 | 14.68 | 16.92 | 21.67 |
| 10                                                         | 2.558  | 3.940  | 4.865  | 6.737  | 9.342  | 12.55 | 15.99 | 18.31 | 23.21 |
| 11                                                         | 3.053  | 4.575  | 5.578  | 7.584  | 10.341 | 13.70 | 17.28 | 19.68 | 24.72 |
| 12                                                         | 3.571  | 5.226  | 6.304  | 8.438  | 11.340 | 14.85 | 18.55 | 21.03 | 26.22 |
| 13                                                         | 4.107  | 5.892  | 7.042  | 9.299  | 12.340 | 15.98 | 19.81 | 22.36 | 27.69 |
| 14                                                         | 4.660  | 6.571  | 7.790  | 10.165 | 13.339 | 17.12 | 21.06 | 23.68 | 29.14 |
| 15                                                         | 5.229  | 7.261  | 8.547  | 11.037 | 14.339 | 18.25 | 22.31 | 25.00 | 30.58 |
| 16                                                         | 5.812  | 7.962  | 9.312  | 11.912 | 15.338 | 19.37 | 23.54 | 26.30 | 32.00 |
| 17                                                         | 6.408  | 8.672  | 10.085 | 12.792 | 16.338 | 20.49 | 24.77 | 27.59 | 33.41 |
| 18                                                         | 7.015  | 9.390  | 10.865 | 13.675 | 17.338 | 21.60 | 25.99 | 28.87 | 34.80 |
| 19                                                         | 7.633  | 10.117 | 11.651 | 14.562 | 18.338 | 22.72 | 27.20 | 30.14 | 36.19 |
| 20                                                         | 8.260  | 10.851 | 12.443 | 15.452 | 19.337 | 23.83 | 28.41 | 31.41 | 37.57 |
| 22                                                         | 9.542  | 12.338 | 14.041 | 17.240 | 21.337 | 26.04 | 30.81 | 33.92 | 40.29 |
| 24                                                         | 10.856 | 13.848 | 15.659 | 19.037 | 23.337 | 28.24 | 33.20 | 36.42 | 42.98 |
| 26                                                         | 12.198 | 15.379 | 17.292 | 20.843 | 25.336 | 30.43 | 35.56 | 38.89 | 45.64 |
| 28                                                         | 13.565 | 16.928 | 18.939 | 22.657 | 27.336 | 32.62 | 37.92 | 41.34 | 48.28 |
| 30                                                         | 14.953 | 18.493 | 20.599 | 24.478 | 29.336 | 34.80 | 40.26 | 43.77 | 50.89 |
| 40                                                         | 22.164 | 26.509 | 29.051 | 33.660 | 39.335 | 45.62 | 51.80 | 55.76 | 63.69 |
| 50                                                         | 27.707 | 34.764 | 37.689 | 42.942 | 49.335 | 56.33 | 63.17 | 67.50 | 76.15 |
| 60                                                         | 37.485 | 43.188 | 46.459 | 52.294 | 59.335 | 66.98 | 74.40 | 79.08 | 88.38 |

Section 1: Eukaryotic Genetic Analysis

## IMPORTANT INSTRUCTIONS FOR THIS SECTION:

- All organisms are assumed to be diploid unless otherwise stated.
- Express epistatic alleles as e+ for non-epistatic allele and e for epistatic allele. Assume that epistatic alleles are recessive unless otherwise stated.
- Pay close attention to instructions about how to format your answer.
- This is probably the hardest section on the test, but many points are awarded here. If you are struggling, a good idea would be to visit the other sections and return here later.

| Backpack Brothers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. (2.00 pts)  Neull Mayta was going through his brother's backpack and found two packets of seeds. One was labeled "Recessive Mutation A" and the other "Recessive Mutation B"; when he planted the seeds, both sprouted into plants with bright blue leaves. When Neull crossed plants within packets (e.g. a plant from packet A with another plant from packet A), the phenotype remained unchanged. Then, he had the brilliant idea to cross a plant from packet A with a plant from packet B, expecting to obtain the recessive phenotype. Instead, he obtained a wild type plant with green leaves.  Let the two genes controlling leaf color be called gene A and gene B, where a+ & b+ represent wild type alleles and a & b represent recessive mutated alleles.  What is the genotype of a plant from packet A (first blank)? Packet B (second blank)? |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2. (3.00 pts)  Neull Mayta decides to cross two plants from the F1 generation together. What is the expected phenotypic ratio of green plants to blue plants? Express your answer as x:y. For example, if the calculated phenotypic ratio is 3 green plants to 1 blue plant, enter 3:1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. (1.00 pts) What is this phenomenon called?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4. (1.00 pts)  Neull has a bad feeling that he didn't search his brother's backpack thoroughly enough (he's really invasive). He searches his brother's backpack again, and sure enough, there's a third unlabeled packet of seeds. When he crosses them with each other, he observes that they always produce white stems. A little scared, he decides to cross these strange plants with plants from the F1 generation and gets a phenotypic ratio of 3 green plants: 5 blue plants. Why didn't he get any plants with white stems?                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5. (5.00 pts) What are the two possible genotypes of the seeds from the unlabeled plant packet? Hint: You should include three loci in your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6. (2.00 pts) Which of the following scenarios is most similar to the one that Neull is facing with seed packets A and B with regards to the expression of the wild type phenotype?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ○ A) An elevator has an up and a down button.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| <ul> <li>B) Two people are working on a task; only one person needs to complete it for the task to be completed.</li> <li>C) In the game Among Us, the radiator requires two people pressing on it simultaneously in order for the task to be completed.</li> <li>D) In the science competition called Science Olympiad, even if one partner does all the work and another does no work, a medal is won.</li> </ul>                                                                                                                                                    |                                                                 |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Jennie the Superstar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |  |  |  |
| 7. (1.00 pts)  Jennie Kim is investigating the SUPERSTAR gene. The ultimate product of this gene gives people the ability to both solution. Jennie knows that the SUPERSTAR gene is constitutively expressed in all people, including those who can't sing or recan't sing. SUPERSTAR depends on the actions of enzymes W, X, and Y to synthesize the final gene product. The in your reference; Jennie is missing several crucial pieces of information.  Neither $\stackrel{1}{\rightarrow}$ $A$ $\stackrel{2}{\rightarrow}$ $B$ $\stackrel{3}{\rightarrow}$ $B$ $O$ | rap, those who can sing but can't rap, and those who can rap bu |  |  |  |
| A and B represent the phenotype can sing but can't rap and can rap but can't sing; Jennie doesn't know which ph                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nenotype corresponds to which letter.                           |  |  |  |
| 1, 2, and 3 represent enzymes W, X, and Y, in some order; Jennie doesn't know what order the enzymes act in the                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pathway.                                                        |  |  |  |
| Clearly, Jennie needs your help. She conducted a large-scale observational study with people of known genotypes at                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd obtained the following data:                                 |  |  |  |
| WwXXYY and wwXXYY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200 neither<br>200 both                                         |  |  |  |
| WwXxYy and wwXxyy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200 neither 50 rap only 75 sing only 75 both                    |  |  |  |
| What is A? (Choices: can sing but can't rap OR can rap but can't sing).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |
| 8. (4.00 pts)  What is the order of the enzymes W, X, and Y? Fill in the first blank with the enzyme corresponding to 1, the second enzyme corresponding to 3.                                                                                                                                                                                                                                                                                                                                                                                                         | with the enzyme corresponding to 2, and the third with the      |  |  |  |
| enzyme corresponding to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |
| 9. (6.00 pts) [TB] Rose can sing but she can't rap, and J-Hope can rap and sing. Although we don't promote shipping K-Pop idols, that this is a perfect world and there is no statistical variation; all ratios are exactly as they should be. Of the children:                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |
| 2 can't sing or rap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |
| 0 can rap but can't sing  3 can sing but can't rap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                 |  |  |  |
| 3 can sing and rap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |  |  |  |
| w+, x+, and y+ represent wild type alleles while w, x, and y represent recessive nonfunctional alleles. In the first blank                                                                                                                                                                                                                                                                                                                                                                                                                                             | k, provide Rose's genotype and in the second blank, J-Hope's.   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                 |  |  |  |

| 10. (3.00 pts)  All done! Jennie kicks back and relaxes then notices something strange. There appear to be five or so of the 4200 people that have the genotype W_X_Y_ (where _ denotes a wild type or recessive allele) but can't sing or rap proficiently. Provide three reasons for why this might be.                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dr. Aluk's Fruit Flies                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11. (2.00 pts)  The var gene is fruit flies is responsible for non-variegated (var+) or variegated (var) eye color, and the shr gene is responsible for normal wings (shr+) or shriveled wings (shr). Assume that var and shr are unlinked. Dr. Aluk crosses a fly that is heterozygous for both alleles with a fly that is homozygous recessive for both alleles. What is the expected phenotypic ratio? Your answer should be in the form A:B:C:D, where: |
| A = var+ shr+                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B = var shr+                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C = var+ shr                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D = var shr                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Make sure your ratio is fully reduced whole numbers.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12. (3.00 pts)  Dr. Aluk is a little skeptical about her intern's claim that the genes are unlinked. She decides to cross a lot of flies and gets the following results:                                                                                                                                                                                                                                                                                    |
| 418 non-variegated eyes and normal wings                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 94 variegated eyes and normal wings                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 103 non-variegated eyes and shriveled wings                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 385 variegated eyes and shriveled wings                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 500 Vallegated Cyes and Shirvered Wings                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Conduct a chi-squared test with 3 degrees of freedom. What is the chi-squared value (blank 1, round to the nearest <b>whole number</b> ), and do you accept or reject the null hypothesis (blank 2, accept or reject)?                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13. (2.00 pts) Unfortunately, things are never this easy when it comes to genetics. Dr. Aluk finds out that the genes are actually spaced 20 cM apart on the same chromosome. What is the expecte phenotypic ratio now?                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44 (3.00 mtm)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14. (3.00 pts)  Conduct the chi-squared test with your new null hypothesis. What is your chi-squared value (first blank; two decimal places) and do you accept or reject your null hypothesis (secon blank; accept or reject)?                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| <b>15. (2.00 pts)</b> Dr. Aluk crosse  | s a var+ var shr shr fly and a var+ var shr+ shr fly. What is the probability of obtaining the phenotype var shr? Express your answer as a fully simplifie                        | d fraction. |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                        |                                                                                                                                                                                   |             |
|                                        | Charizard Crossing                                                                                                                                                                |             |
| <b>16. (2.00 pts)</b><br>Mr. Tam has a | farm of Charizards, which differ in three loci: wing shape, horn length, and fear of Stealth Rock.                                                                                |             |
| Wing shape: t                          | + (rounded), t (triangular)                                                                                                                                                       |             |
| Horn length: s                         | + (long), s (short)                                                                                                                                                               |             |
| Fear of Stealtl                        | n Rock: f+ (no fear), f (fear)                                                                                                                                                    |             |
|                                        | that the three loci are located on the same chromosome and are linked, but he doesn't know what order they're in. He crosses two Charizards and obe Charizards are very fertile): | otains 1000 |
| Round wing,                            | ong horn, fear of Stealth Rock (t+ s+ f)                                                                                                                                          | 368         |
| Triangular wir                         | ng, short horn, no fear of Stealth Rock (t s f+)                                                                                                                                  | 395         |
| Round wing,                            | short horn, no fear of Stealth Rock (t+ s f+)                                                                                                                                     | 64          |
| Triangular wir                         | ng, long horn, fear of Stealth Rock (t s+ f)                                                                                                                                      | 61          |
| Triangular wir                         | ng, long horn, no fear of Stealth Rock (t s+ f+)                                                                                                                                  | 54          |
| Round wing,                            | short horn, fear of Stealth Rock (t+ s f)                                                                                                                                         | 46          |
| Round wing,                            | ong horn, no fear of Stealth Rock (t+ s+ f+)                                                                                                                                      | 5           |
| Triangular wir                         | ng, short horn, fear of Stealth Rock (t s f)                                                                                                                                      | 7           |
| What is the ord                        | er of the genes on the chromosome?                                                                                                                                                |             |
| O A) tsf                               |                                                                                                                                                                                   |             |
| O B) fts                               |                                                                                                                                                                                   |             |
| O C) tfs                               |                                                                                                                                                                                   |             |
| 17. (6.00 pts)                         | Calculate the distance between the genes in centimorgans, rounded to <b>one decimal place</b> . Present your answer as [gene] [distance] [gene] [distance] For example:           | ce] [gene]. |
|                                        | t 13 s 19 f                                                                                                                                                                       |             |
|                                        | The order of the genes around the center does not matter; t s f and f s t will be graded the same.                                                                                |             |
|                                        |                                                                                                                                                                                   |             |
|                                        |                                                                                                                                                                                   |             |
|                                        |                                                                                                                                                                                   |             |
|                                        |                                                                                                                                                                                   |             |

#### 18 (3.00 nts)

Mr. Tam has recently been watching Star Wars x Pokemon crossovers, and he realized that he wanted to look for double crossovers in his Charizard crosses too! What is the expected number of double crossovers between these loci that Mr. Tam will observe in his 1000 Charizards, using the map distances you calculated in the previous problem? Round to one decimal place.

Note: This question is graded for consistency with your previous answer; therefore, even if you get the previous question wrong, you can still get this one right if you calculate correctly using **your calculated values**.

| 19. (2.00 pts) Mr. Tam thinks he's been scammed and that he should have more double crossovers. Calculate the interference, I, and interpret it. Round to two decimal places. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I = 1 - observed number of double crossovers/expected number of double crossovers.                                                                                            |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| Section 2: Prokaryotic Genetic Analysis                                                                                                                                       |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| 20. (1.00 pts) What are the three ways in which bacteria can accept foreign DNA? Present them in alphabetical order.                                                          |
| (····· p···)                                                                                                                                                                  |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| 21. (1.00 pts) Which plasmid allows bacteria to exchange genetic information?                                                                                                 |
|                                                                                                                                                                               |
| O A) A plasmid                                                                                                                                                                |
| O B) C plasmid                                                                                                                                                                |
| ○ C) F plasmid                                                                                                                                                                |
|                                                                                                                                                                               |
| O) K plasmid                                                                                                                                                                  |
| ○ E) R plasmid                                                                                                                                                                |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| 22. (2.00 pts) Which of the following are differences between eukaryotic and prokaryotic cells?                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| (Mark ALL correct answers)  A) Eukaryotic cells have linear chromosomes while prokaryotic cells have circular chromosomes.                                                    |
|                                                                                                                                                                               |
| B) Eukaryotic cells have longer Okazaki fragments than prokaryotic cells.                                                                                                     |
| C) Eukaryotic cells have polycistronic genes while prokaryotic cells don't.                                                                                                   |
| D) Eukaryotic cells have introns while prokaryotic cells don't.                                                                                                               |
| Prokaryotic cells have Shine-Dalgarno sequences while eukaryotic cells don't.                                                                                                 |
| 2) Trokaryota construve crime-balgaria sequences wille cakaryota constant.                                                                                                    |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| 23. (2.00 pts) Eukaryotic cells produce telomerase to lengthen the ends of their chromosomes, which shorten over time. Do prokaryotes produce this enzyme? Why not?           |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
|                                                                                                                                                                               |
| 24. (2.00 pts) Place the following steps concerning genetic recombination in bacteria in order:                                                                               |

|                                        | A: Bacteria is treated with CaCl2.                                                                                                                                                                                                                                                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | B: cDNA is created from mRNA using reverse transcriptase and restriction enzyme sites are added on either side.                                                                                                                                                                           |
|                                        | C: Bacteria is shocked with heat.                                                                                                                                                                                                                                                         |
|                                        | D: cDNA and bacterial plasmid are treated with the same restriction enzyme.                                                                                                                                                                                                               |
|                                        | E: Bacterial colonies are screened to select for recombination.                                                                                                                                                                                                                           |
|                                        | F: cDNA is introduced into the bacterium.                                                                                                                                                                                                                                                 |
|                                        | G: cDNA is ligated into plasmid.                                                                                                                                                                                                                                                          |
| ○ A) B, D, F                           | F, A, C, G, E                                                                                                                                                                                                                                                                             |
| ○ B) A, C, E                           |                                                                                                                                                                                                                                                                                           |
| O C) B, G, I                           |                                                                                                                                                                                                                                                                                           |
| O D) B, G,                             |                                                                                                                                                                                                                                                                                           |
| O E) B, D, A                           | A, C, F, G, E                                                                                                                                                                                                                                                                             |
|                                        |                                                                                                                                                                                                                                                                                           |
| _                                      | Tatum conducted a famous experiment in which they mixed a met+ bio+ thr- leu- thi- E. coli strain with a met- bio- thr+ leu+ thi+ strain and plated them together on a                                                                                                                    |
| minimal mediu                          | m lacking amino acids, biotin, and thiamine. They observed 10 bacterial colonies. Why is this surprising?                                                                                                                                                                                 |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        | ed on this experiment by showing that the two strains of bacteria had to make physical contact in order to transfer genetic material. Given this information, what bacteria urring? When this process occurs, the two bacteria exchange genetic material through a tube called a [blank]. |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
|                                        |                                                                                                                                                                                                                                                                                           |
| 27. (1.00 pts)                         | Carolyn sequenced a prokaryotic plasmid and found the order of genes to be:                                                                                                                                                                                                               |
|                                        | A E B oriT F C D                                                                                                                                                                                                                                                                          |
|                                        | During conjugation, which gene will be transferred first?                                                                                                                                                                                                                                 |
| ( A) B                                 |                                                                                                                                                                                                                                                                                           |
| ○ A) B                                 |                                                                                                                                                                                                                                                                                           |
| ○ B) F                                 |                                                                                                                                                                                                                                                                                           |
| O C) C                                 |                                                                                                                                                                                                                                                                                           |
| O D) E                                 |                                                                                                                                                                                                                                                                                           |
| O E) D                                 |                                                                                                                                                                                                                                                                                           |
| O F) Not en                            | ough information                                                                                                                                                                                                                                                                          |
|                                        |                                                                                                                                                                                                                                                                                           |
| 28. (2.00 pts)                         | Which of the following transfers of DNA are possible?                                                                                                                                                                                                                                     |
|                                        |                                                                                                                                                                                                                                                                                           |
| (Mark <b>ALL</b> correction A) F+ to I |                                                                                                                                                                                                                                                                                           |
| □ B) F- to F                           |                                                                                                                                                                                                                                                                                           |
|                                        | ·+                                                                                                                                                                                                                                                                                        |
| □ C) Hfr to                            |                                                                                                                                                                                                                                                                                           |

| □ D) F- to F                       |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------|
| □ E) F' to F                       | -                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| 29. (1.00 pts)                     | Of these transfers of DNA, which two have the potential to                                                                                                                                                                                                   | transfer genomic DNA fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m one bacterial cell to the o                                | ther to form recombinant o                              | chromosomes?                                        |
| (Mark <b>ALL</b> correc            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| ☐ B) F- to F                       | ·+                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| C) Hfr to                          | F-                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| □ D) F- to F                       | -                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| □ E) F' to F                       | -                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              | Colony Conundrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| indicates that t<br>mixes the bact | stigating horizontal gene transfer in E. coli. She has one Hfr the bacteria can synthesize the indicated amino acid while - teria together and interrupts them at certain time intervals with and records the percentage of surviving colonies. She want ta: | indicates that the bacteria on the control of the c | cannot, and requires this am<br>rupts them, she plates the b | ino acid in its medium to s<br>acteria on medium with a | survive and reproduce. She single amino acid as the |
| Minutes befo                       | re interruption                                                                                                                                                                                                                                              | his only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lelu only                                                    | thr only                                                | val only                                            |
| 5                                  |                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                            | 100                                                     | 30                                                  |
| 10                                 |                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                            | 100                                                     | 82                                                  |
| 15                                 |                                                                                                                                                                                                                                                              | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                           | 100                                                     | 98                                                  |
| 20                                 |                                                                                                                                                                                                                                                              | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                                           | 100                                                     | 100                                                 |
|                                    | epresents the percentage of surviving colonies when plated is Sydney interrupting (one word)?                                                                                                                                                                | with medium containing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ly a certain amino acid.                                     |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| 31. (2.00 pts)                     | [TB] Which of the following are possible orders of the gen                                                                                                                                                                                                   | es on the plasmid?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                         |                                                     |
| (Mark <b>ALL</b> correc            | •                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| ☐ B) oriT va                       | al his leu thr                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| ☐ C) oriT th                       | r his leu val                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| ☐ D) oriT le                       | u his val thr                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
| Section 3: DNA                     | A Process - Replication, Transcription, and Translation                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |
|                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |                                                         |                                                     |

### 32. (1.00 pts)

In Meselson and Stahl's experiment, all cell DNA was initially labeled with <sup>15</sup>N, a heavy isotope of nitrogen. These cells were transferred to a <sup>14</sup>N medium and grown for several generations, then ultracentrifuged and density bands were observed. For example, in the 0th generation, one band was observed near the bottom of the density gradient because all DNA was labeled with heavy isotopes. After the first DNA replication, one intermediate band of DNA is observed. Which model(s) of DNA replication is this consistent with?

| (Mark ALL correct answers)  A) Dispersive                                                                                                                               |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| ☐ B) Conservative                                                                                                                                                       |                                                                       |
| □ C) Semiconservative                                                                                                                                                   |                                                                       |
|                                                                                                                                                                         |                                                                       |
| 00.000.00                                                                                                                                                               |                                                                       |
| 33. (2.00 pts) According to the semiconservative model of DNA replication, which of the following bands should be observed in of DNA)?                                  | the third generation (after three rounds of DNA replication; 8 strand |
| Pick one answer.                                                                                                                                                        |                                                                       |
| (Mark ALL correct answers)  A) One light band and one intermediate band, light band 3x thiccer                                                                          |                                                                       |
| ☐ B) One light band and one intermediate band of same thiccness                                                                                                         |                                                                       |
| <ul><li>C) One intermediate band</li><li>D) One light band and one intermediate band, light band 2x thiccer</li></ul>                                                   |                                                                       |
| ☐ E) One heavy band and one light band, light band 2x thiccer                                                                                                           |                                                                       |
|                                                                                                                                                                         |                                                                       |
| 34. (1.00 pts)  During DNA replication, DNA polymerase can only add nucleotides to the [blank] end of a DNA strand because it [blank] bond between the two nucleotides. | requires a [blank; write out the functional group] group to form a    |
|                                                                                                                                                                         |                                                                       |
|                                                                                                                                                                         |                                                                       |
|                                                                                                                                                                         |                                                                       |
| <b>35. (1.00 pts)</b> Match the enzymes to their functions:                                                                                                             |                                                                       |
| 1: Helicase                                                                                                                                                             |                                                                       |
| 2: Topoisomerase                                                                                                                                                        |                                                                       |
| 3: DNA ligase                                                                                                                                                           |                                                                       |
| 4: DNA primase                                                                                                                                                          |                                                                       |
| A: Creates transient breaks in DNA to relieve tension from supercoiling                                                                                                 |                                                                       |
| B: Catalyzes formation of phosphodiester bonds between Okazaki fragments                                                                                                |                                                                       |
| C: Breaks hydrogen bonds between nucleotide bases and unwinds the DNA double strand                                                                                     |                                                                       |
| D: Lays down short RNA sequences for DNA polymerase to extend                                                                                                           |                                                                       |
| O A) 1: A                                                                                                                                                               |                                                                       |
| 2: B                                                                                                                                                                    |                                                                       |
| 3: D                                                                                                                                                                    |                                                                       |
| 4: C                                                                                                                                                                    |                                                                       |
| ○ B) 1: C                                                                                                                                                               |                                                                       |
| 2: A                                                                                                                                                                    |                                                                       |
| 3: B                                                                                                                                                                    |                                                                       |
| 4: D                                                                                                                                                                    |                                                                       |
| ○ C) 1: C                                                                                                                                                               |                                                                       |
| 2: A                                                                                                                                                                    |                                                                       |
|                                                                                                                                                                         |                                                                       |
| 3: D                                                                                                                                                                    |                                                                       |
| 4: B                                                                                                                                                                    |                                                                       |

| O D) 1: A                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2: C                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3: B                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4: D                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>36. (2.00 pts)</b> Which of the following are true about DNA Polymerase I? It:                                                                                                                                                                                                                                                                                                                                         |
| (Mark ALL correct answers)  □ A) Removes RNA primers                                                                                                                                                                                                                                                                                                                                                                      |
| ☐ B) Extends the leading strand of DNA                                                                                                                                                                                                                                                                                                                                                                                    |
| ☐ C) Has 5'-3' polymerase activity                                                                                                                                                                                                                                                                                                                                                                                        |
| □ D) Has 3'-5' exonuclease activity                                                                                                                                                                                                                                                                                                                                                                                       |
| ☐ E) Has 5'-3' exonuclease activity                                                                                                                                                                                                                                                                                                                                                                                       |
| ☐ F) Has 3'-5' polymerase activity                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 37. (1.00 pts)  DNA polymerase III synthesizes [towards or away] from the replication fork on the leading strand and [towards or away] from the replication fork on the lagging strand.                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 38. (2.00 pts)  Explain how DNA replication on the lagging strand works. Include the following terms in your answer: 5', 3', replication fork, DNA primase, Okazaki fragment, DNA Polymerase I, DN ligase                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>39. (2.00 pts)</b> Which of the following are true about telomerase? Telomerase:                                                                                                                                                                                                                                                                                                                                       |
| (Mark ALL correct answers)  A) Uses a RNA template to synthesize DNA                                                                                                                                                                                                                                                                                                                                                      |
| □ B) Extends centromeres                                                                                                                                                                                                                                                                                                                                                                                                  |
| ☐ C) Is expressed in all cells                                                                                                                                                                                                                                                                                                                                                                                            |
| D) Acts on the lagging strand                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| E) Extends the 3' strand of DNA                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40. (4.00 pts)  [TB] Suppose the repeat sequence of telomeres is 5'-TTAGGC-3'. The complementary region between the RNA template of telomerase and the DNA strand is 5 bases and the first five bases of the RNA template are: 3'-GAAUC-5'. If you know that the RNA template of telomerase is 12 bases long, provide the entire RNA template for telomerase, indicating 3' at 5' directionality. Express your answer as: |
| A'-NNNNNNNNNNN-B'                                                                                                                                                                                                                                                                                                                                                                                                         |
| where N is any nucleotide letter and A and B are 5 and 3 in some order.                                                                                                                                                                                                                                                                                                                                                   |
| Hint: The sequence of telomeres <b>repeats</b> ; the RNA template must be complementary! You just need to find the starting point on the DNA strand using the information about the first five bases.                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 41. (0.50 pts) I lied about the sequence of telomeres in the last question. What is the actual sequence of telomeres in humans? Indicate directionality.                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                    |
| Transcription                                                                                                                                                                      |
|                                                                                                                                                                                    |
| 42. (1.50 pts) Prokaryotes require a bacterial transcription factor called a [blank] that binds with RNA polymerase to form the RNA polymerase [blank] to begin DNA transcription. |
|                                                                                                                                                                                    |
|                                                                                                                                                                                    |
| 43. (1.50 pts) Which of the following are true about the TATA box? It:                                                                                                             |
| (Mark ALL correct answers)  A) Defines the direction of transcription                                                                                                              |
| ☐ B) Indicates the DNA strand to be read                                                                                                                                           |
| C) Is present in the promoter of all genes                                                                                                                                         |
| D) Has a bacterial homolog called the Pribnow box                                                                                                                                  |
| □ E) Is also known as the Goldberg-Hogness Box                                                                                                                                     |
|                                                                                                                                                                                    |
| 44. (0.50 pts) Which transcription factor recognizes the TATA box?                                                                                                                 |
| O A) TFIIB                                                                                                                                                                         |
| O B) TFIID                                                                                                                                                                         |
| O C) TFIIF                                                                                                                                                                         |
| O D) TFIIE                                                                                                                                                                         |
| ○ E) TFIIH                                                                                                                                                                         |
|                                                                                                                                                                                    |
| 45 (0.50 pts). Which PNA polymorous transcribes all protein coding source in cultary stee?                                                                                         |
| 45. (0.50 pts) Which RNA polymerase transcribes all protein-coding genes in eukaryotes?                                                                                            |
| O A) I                                                                                                                                                                             |
| ○ B) II                                                                                                                                                                            |
| ○ C) III                                                                                                                                                                           |
|                                                                                                                                                                                    |
| 46. (0.50 pts) Which RNA polymerase transcribes 5.8S, 18S, and 28S rRNA genes?                                                                                                     |
|                                                                                                                                                                                    |
| ○ A) I                                                                                                                                                                             |
| ○ B) II                                                                                                                                                                            |
| ○ C) III                                                                                                                                                                           |
|                                                                                                                                                                                    |
| 47. (0.50 pts) Which RNA polymerase transcribes miRNA and siRNA?                                                                                                                   |
|                                                                                                                                                                                    |

| O A) !                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| ○ C) III                                                                                                                                            |
|                                                                                                                                                     |
| 48. (0.50 pts) Which RNA polymerase transcribes tRNA?                                                                                               |
| ○ A) I                                                                                                                                              |
| ○ B) II<br>○ C) III                                                                                                                                 |
|                                                                                                                                                     |
| <b>49. (0.50 pts)</b> Which eukaryotic RNA polymerase is most similar to bacterial RNA polymerase?                                                  |
| O A) I                                                                                                                                              |
| ○ B) II                                                                                                                                             |
|                                                                                                                                                     |
| 50. (1.00 pts) In prokaryotes, transcription and termination occur simultaneously. Why is this not possible in eukaryotes?                          |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
| 51. (0.50 pts) RNA polymerase II requires a helicase to help unwind DNA.                                                                            |
| ○ True ○ False                                                                                                                                      |
|                                                                                                                                                     |
| <b>52. (2.00 pts)</b> RNA Polymerase II requires which of the following to begin transcription:                                                     |
| (Mark ALL correct answers)  ☐ A) General transcription factors                                                                                      |
| ☐ B) Specific transcription factors                                                                                                                 |
| ☐ C) Chromatin remodeling complexes                                                                                                                 |
| □ D) Mediator                                                                                                                                       |
|                                                                                                                                                     |
| 53. (1.00 pts) In eukaryotes, the [blank] signal, with sequence [blank; indicate directionality], catalyzes the formation of the poly-[blank] tail. |
| To indicate directionality, your answer should be in the form:                                                                                      |
| A'-NNNN-B'                                                                                                                                          |
|                                                                                                                                                     |
|                                                                                                                                                     |
| The RNA polymerase has finished transcribing the length of DNA, and the following diagram shows the remaining steps to be taken.                    |



| 54. (0.50 pts) A (one number with a punctuation mark and one word):                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| <b>55. (0.50 pts)</b> B (singular):                                                                                                                                              |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| <b>56. (0.50 pts)</b> C (singular):                                                                                                                                              |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| <b>57. (0.50 pts)</b> D (two words):                                                                                                                                             |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 58. (0.50 pts) E (one number with a punctuation mark and one acronym):                                                                                                           |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| <b>59. (0.50 pts)</b> F (one number with a punctuation mark and one acronym):                                                                                                    |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 60. (1.00 pts)  What is it called when the red sections of RNA are removed and the green sections can be rearranged to form several different mRNA transcripts? Enter two words. |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| C4 (4.00 mts)                                                                                                                                                                    |

Structure A is a modified [adenine, cytosine, guanine, or thymine] nucleotide methylated on position [blank; write out the number] and is connected to mRNA via a 5' to [blank]

triphosphate linkage.

| 62. (2.00 pts) Which of the following are functions of structure E?                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Mark ALL correct answers)  A) Binding site for miRNA                                                                                                                                                                                                                                                                                                                              |
| □ B) Silencer regions that bind repressor proteins                                                                                                                                                                                                                                                                                                                                 |
| C) Repository for pseudogenes                                                                                                                                                                                                                                                                                                                                                      |
| □ D) Alternative polyadenylation                                                                                                                                                                                                                                                                                                                                                   |
| 63. (3.00 pts)  Rebecca and Neal wanted to insert a human gene into a bacterium, so using their robust Designer Genes knowledge, they took the entire human gene, promoter and all, and inserte it into the bacterial plasmid. However, when they cultured the bacteria, no colonies produced the gene product! What a disaster! Name 3 reasons why no gene product is being made. |
|                                                                                                                                                                                                                                                                                                                                                                                    |
| Translation Time!                                                                                                                                                                                                                                                                                                                                                                  |
| 64. (1.00 pts) Which choice correctly identifies where the ribosome binds?                                                                                                                                                                                                                                                                                                         |
| A) Eukaryote: Shine-Dalgarno sequence. Prokaryotes: TATA box                                                                                                                                                                                                                                                                                                                       |
| O B) Eukaryote: TATA box. Prokaryotes: Shine-Dalgarno sequence                                                                                                                                                                                                                                                                                                                     |
| C) Eukaryote: 5' cap. Prokaryotes: Shine-Dalgarno sequence                                                                                                                                                                                                                                                                                                                         |
| O D) Eukaryote: 5' cap. Prokaryotes: TATA box                                                                                                                                                                                                                                                                                                                                      |
| E) Eukaryote: 3' tail. Prokaryotes: Shine-Dalgarno sequence                                                                                                                                                                                                                                                                                                                        |
| 65. (0.50 pts) Which enzyme catalyzes the bond between tRNA and the amino acid?                                                                                                                                                                                                                                                                                                    |
| O A) Peptidyl transferase                                                                                                                                                                                                                                                                                                                                                          |
| O B) Aminoacyl tRNA synthetase                                                                                                                                                                                                                                                                                                                                                     |
| ○ C) Aminoacyl tRNA-ase                                                                                                                                                                                                                                                                                                                                                            |
| O D) Aminoacyl transferase                                                                                                                                                                                                                                                                                                                                                         |
| 66. (1.00 pts)  Provide the name of the three ribosomal sites, in the chronological order that a tRNA passes through them. 3 words, 3 words, 2 words. Watch your spelling and punctuation!                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                    |
| 67. (3.00 pts)  Explain the process of RNA translation, starting with a met-tRNAi in the P site and empty A and E sites. Include the following terms in your answer: anticodon, GTP, release factor, polypeptide.                                                                                                                                                                  |

| 68. (0.50 pts)                                                                                                                                                                            | The small subunit of ribosomes binds before the large subunit.                                                                   |                                  |                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------|
| O True O F                                                                                                                                                                                | False                                                                                                                            |                                  |                                                                       |
| 69. (0.50 pts)<br>Ribosomes are r                                                                                                                                                         | made of proteins and rRNA. [rRNA or proteins] catalyze reaction                                                                  | ns in the ribosome, and molecule | es of this kind that possess catalytic activity are known as [blank]. |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
|                                                                                                                                                                                           | subunits bind to the mRNA and begin translation, they scan for t<br>G codons to begin translation. What is this phenomenon known |                                  | metimes, the first AUG codon is ignored and ribosomes skip to         |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
| 71. (3.00 pts) Suppose a protein exists in two forms: secreted form and retained-in-the-cytoplasm form. Explain how the previous process could enable this protein to exist in two forms. |                                                                                                                                  |                                  |                                                                       |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
| 72. (1.00 pts)                                                                                                                                                                            | An mRNA that encodes several functionally distinct proteins is                                                                   | [blank]. These mRNA are only fo  | ound in [prokaryotes or eukaryotes].                                  |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
| 73. (2.00 pts)                                                                                                                                                                            | An pre-mRNA is 2541 base pairs long.                                                                                             |                                  |                                                                       |
|                                                                                                                                                                                           | 5' UTR                                                                                                                           | 300 bp                           |                                                                       |
|                                                                                                                                                                                           | Signal sequence                                                                                                                  | 15 bp                            |                                                                       |
|                                                                                                                                                                                           | Intron 1                                                                                                                         | 420 bp                           |                                                                       |
|                                                                                                                                                                                           | Exon 1                                                                                                                           | 90 bp                            |                                                                       |
|                                                                                                                                                                                           | Intron 2                                                                                                                         | 840 bp                           |                                                                       |
|                                                                                                                                                                                           | Exon 2                                                                                                                           | 66 bp                            |                                                                       |
|                                                                                                                                                                                           | 3' UTR                                                                                                                           | 810                              |                                                                       |
|                                                                                                                                                                                           | How many amino acids are in the polypeptide before it complet                                                                    |                                  |                                                                       |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |
|                                                                                                                                                                                           |                                                                                                                                  |                                  |                                                                       |

| 74. (2.00 pts) [TB] How many amino acids are in the secreted protein, assuming the quaternary structure is the same as the tertiary structure?                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| Rames Jickards sequenced the RSO gene:                                                                                                                                                                    |
| 5'-CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3' 3'-GATAATACGTGATGGCTACTTCTGAGGTCATCACCTAACTTTGA-5'                                                                                                     |
| Start codons are bolded and stop codons are underlined (you're welcome).                                                                                                                                  |
| Note: A piece of paper might be helpful for these questions. Hopefully you already have one out.                                                                                                          |
|                                                                                                                                                                                                           |
| <b>75. (0.50 pts)</b> Identify the template strand. Is it the strand on the top or the bottom (one word)?                                                                                                 |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| <b>76. (1.00 pts)</b> Write out the sequence of the 5' UTR <b>on the mRNA</b> , indicating directionality.                                                                                                |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| 77. (1.00 pts) Write out the sequence of the 3' UTR on the mRNA when the mRNA is sequenced using the first start codon, indicating directionality.                                                        |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| 78. (1.50 pts) What is the amino acid sequence of the polypeptide? Use three letter abbreviations, and link each amino acid to the next with a Do not write the stop codon.  For example: Leu-Thr-Cys-Met |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| 79. (1.00 pts) What is the region of DNA between the start codon and stop codon known as (three words)?                                                                                                   |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| 80. (1.00 pts) What characteristic of these regions makes them useful for the detection of new protein-coding genes?                                                                                      |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
|                                                                                                                                                                                                           |
| The RSO gene has been provided again to make your life easier.                                                                                                                                            |

|                                                                                      | TATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3' ATACGTGATGGCTACTTCTGAGGTCATCACCTAACTTTGA-5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81. (1.50 pts)                                                                       | Suppose the ribosome skipped the first start codon and started with the second one. What is the sequence of amino acids now?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | Section 4: DNA Mutation & Repair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 82. (1.00 pts)                                                                       | A mutation occurred at site 1:  5' -CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3'  5' -CTATTATGCACTAGCCGATGAAGACTCCAGTAGTGGATTGAAACT-3'  Which of the following describe the mutation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (Mark ALL correct A) Frames B) Nonsen C) Missens D) Silent E) Insertion F) Inversion | hift se se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 83. (1.00 pts)                                                                       | A mutation occurred at site 2:  5'-CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3'  5'-CTATTATGCACTACCGATGAAGGAAACTCCAGTAGTGGATTGAAACT-3'  Which of the following describe this mutation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Mark ALL correct A) Insertion B) Inversion C) Nonsen D) Frames E) Missens F) Silent | n on on one of the control of the co |
| 84. (1.00 pts)                                                                       | Two mutations occurred, one at site 3 and one at site 6.  5'-CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3'  5'-CTATTATACACTACCGATGAAGACTCCAGTATTGGATTGAAACT-3'  Will this result in a longer or shorter polypeptide than the original?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O A) Longer                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| O B) Shorter                                                                              |                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85. (1.00 pts)                                                                            | A mutation occurred at site 5:  5'-CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3' 5'-CTATTATGCACTACCGATGAAGACCCAGTAGTGGATTGAAACT-3'  Using the first start codon, which of the following describes this mutation? |
| (Mark ALL correct : A) Transver B) Transitio C) Missens D) Nonsens E) Silent              | rsion on e                                                                                                                                                                                                         |
| 86. (1.00 pts)                                                                            | Suppose the same mutation occurred at site 5, but the second start codon was used. Which of the following describes this mutation?                                                                                 |
| (Mark ALL correct: A) Point B) Insertion C) Missens D) Nonsens E) Silent                  | e                                                                                                                                                                                                                  |
| 87. (1.50 pts)                                                                            | Oh, poop!  5'-CTATTATGCACTACCGATGAAGACTCCAGTAGTGGATTGAAACT-3' 3'-GATAATACGTGATGGCTACTTCTGAGGTCATCACCTAACT  What is this called (two words) and how is it repaired (three words)?                                   |
|                                                                                           |                                                                                                                                                                                                                    |
| 88. (0.50 pts)                                                                            | What is the most likely cause of this (two words)?                                                                                                                                                                 |
|                                                                                           |                                                                                                                                                                                                                    |
| 89. (2.00 pts)                                                                            | Which of the following enzymes function in this mode of repair?                                                                                                                                                    |
| (Mark ALL correct at A) DNA Pol B) DNA Pol C) UV endo D) DNA liga E) DNA prii F) Glycosyl | lymerase III lymerase I princlease ase                                                                                                                                                                             |

| 90. (0.50 pts) In this mode of repair, the DNA backbone is cut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30. (0.30 pts) In this mode of repair, the DNA backbone is cut.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ○ True ○ False                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 91. (1.00 pts) This type of mutation can be repaired in an even more energy-saving manner. What is this method called (one word)?                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92. (1.00 pts) Which enzymes function in this mode of repair?                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (Mark ALL correct answers)  A) DNA polymerase III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ B) DNA polymerase I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C) Photolyase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| □ D) Glycosylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| □ E) DNA ligase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ☐ F) AP endonuclease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 93. (0.50 pts) Ummm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5'-CTATT <b>ATG</b> CACTACCG <b>ATG</b> AAGACTCCAGTAGTGGATTGAAACT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3'-GATAATACGTGATGGCTACTTCTGAGGTCATUACCTAACTTTGA-5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A(n) [blank] group was removed from the cytosine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A(II) [Stating group was removed from the systemic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 94. (0.50 pts) This is repaired by [blank: three words]                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 94. (0.50 pts) This is repaired by [blank; three words].                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 94. (0.50 pts) This is repaired by [blank; three words].                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 94. (0.50 pts) This is repaired by [blank; three words].                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 94. (0.50 pts) This is repaired by [blank; three words].                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 94. (0.50 pts) This is repaired by [blank; three words].  95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].                                                                                                                                                                                                                                                                                                                                           |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?                                                                                                                                                                                                                                                                       |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?  (Mark ALL correct answers)                                                                                                                                                                                                                                           |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?  (Mark ALL correct answers)  A) HDR requires a homologous template  B) HDR usually occurs during DNA replication, but it can happen in meiosis too, in which case it can create crossovers                                                                            |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?  (Mark ALL correct answers)  A) HDR requires a homologous template                                                                                                                                                                                                    |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?  (Mark ALL correct answers)  A) HDR requires a homologous template  B) HDR usually occurs during DNA replication, but it can happen in meiosis too, in which case it can create crossovers  C) NHEJ is more accurate than HDR  D) NHEJ requires a homologous template |
| 95. (2.00 pts) In this form of repair, the uracil nucleotide is excised by [blank, two words], leaving a(n) [blank, one word] site that is recognized and cleaved by [blank, two words].  96. (2.00 pts) Which of the following are true about NHEJ and HDR?  (Mark ALL correct answers)  A) HDR requires a homologous template  B) HDR usually occurs during DNA replication, but it can happen in meiosis too, in which case it can create crossovers  C) NHEJ is more accurate than HDR                                         |

Section 5: Pedigrees and Karyotypes

#### INSTRUCTIONS:

- To enter an X-linked genotype, write the X next to the letter denoting the disease and put a space between the two alleles. For example, a carrier of an X linked disease should be typed as: Xa+ Xa, where a varies depending on the letter assigned to the gene.
- Do NOT use AA, Aa, and aa to denote autosomal genotypes in fill-in-the-blank problems! These questions not case sensitive. Use a+ to denote wild type and a to denote mutated.
- If the wording of any questions is confusing, please don't hesitate to ask the event supervisor.
- 97. (2.00 pts) Katoshi Gleenus has the rare disease that makes her want to do Ornithology for Science Olympiad (ew!). Let's call this disease Orniphilia (o).

Her more fortunate husband, David, has the disease that makes him want to do Machines for Science Olympiad. Let's call this disease Machinophilia (m).

One of Katoshi and David's children, Jonathan, has the disease that him want to do Anatomy for Science Olympiad (yes!). Let's call this disease Anatomiphilia (a).

Here's a pedigree of her family:



What mode(s) of inheritance could machinophilia exhibit?

| Mork ALL    | correct anguara  |   |
|-------------|------------------|---|
| (IVIAIK ALL | correct answers) | ۱ |

- ☐ A) Autosomal recessive
- □ B) Autosomal dominant
- C) X-linked recessive
- □ D) X-linked dominant
- □ E) Mitochondrial

| 98. | (2.00 pts) | Which mode(s | ) of inheritance c | ould anatomipl | nilia exhibit? |
|-----|------------|--------------|--------------------|----------------|----------------|
|     |            |              |                    |                |                |

(Mark **ALL** correct answers)

- ☐ A) Autosomal recessive
- □ B) Autosomal dominant
- C) X-linked recessive
- □ D) X-linked dominant
- ☐ E) Mitochondrial

### **99.** (1.00 pts) Which mode of inheritance does orniphilia most likely exhibit?

O A) Autosomal recessive

| O B) Autosomal dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| O C) X-linked recessive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O D) X-linked dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ○ E) Mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ornightia Mackinophilia Anatomightia  Anatom |
| Angi Jonethan III-III III-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100. (2.00 pts) [TB] Given that Ivan is not a carrier of machinophilia, what is the genotype of I-II with regards to machinophilia?  Note: Given this information about Ivan, you should be able to eliminate all inheritance patterns of machinophilia but one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101. (1.00 pts)  I-II has a child with someone who is a machinophiliac. What is the probability of having a heterozygous machinophiliac child? Express your answer as a fully simplified fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 102. (2.00 pts)  David is not a carrier for anatomiphilia. What does this tell us about Katoshi's genotype? Note: Given this information about David, you should be able to eliminate all inheritance patterns of anatomiphilia but one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Refer to the instructions at the beginning of this section to enter your answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Katoshi's genotype for anatomiphilia must be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 103. (1.00 pts) Knowing this information about Katoshi's genotype, what do we know about Kaitlyn's genotype for anatomiphilia? It must be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



### 104. (1.00 pts)

Jonathan divorces Anqi and marries a machinophiliac who is not an anatomiphiliac or orniphiliac. What is the probability that their child is an orniphiliac and a machinophiliac only?

#### 105. (5.00 pts)

Machinophiliac and anatomiphiliac but not orniphiliac daughter? Assume Jonathan's new wife is a carrier for anatomiphilia and has an equal probability of being homozygous or heterozygous for machinophilia. Remember, she is **not** an orniphiliac. Express your answer as a fully simplified fraction.

# 106. (2.00 pts) Identify the disease:



107. (1.00 pts) This disease is characterized by the [blank] chromosome.

108. (2.00 pts) Identify the disease:



| 109 (0.50 nts) | What is the sex of the individual (male or female) | ? |
|----------------|----------------------------------------------------|---|

## 110. (0.50 pts) What disease is this?



- O A) Patau
- O B) Klinefelter
- O C) Down
- O D) Turner

# 111. (2.00 pts) Which of the following could cause this disease?

(Mark ALL correct answers)

- ☐ A) Nondisjunction in meiosis I of female
- ☐ B) Nondisjunction in meiosis II of female
- C) Nondisjunction in meiosis I of male

112. (2.00 pts) If the two X chromosomes have the exact same genetic sequence, which of the following could have occurred?

(Mark ALL correct answers)

- ☐ A) Nondisjunction in meiosis I of female
- □ B) Nondisjunction in meiosis II of female
- C) Nondisjunction in meiosis I of male

| □ D) Nondisjunction in meiosis II of male                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113. (0.50 pts) How many Barr bodies will someone with the genotype XXXXXXY have? Type out the number in letters.                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Section 6: Genetic Technologies                                                                                                                                                                                                                                                                                                                                                                                                         |
| 114. (0.50 pts) If you recall the pedigree, Kaitlyn's husband was unnamed! This is because Kaitlyn had a bout of amnesia and forgot the name of her husband. To make matters worse, when she posted an advertisement searching for her husband, three men (Bob, Sunny, and Day) responded! Lucky for her, she has two children (Katoshi and Aarush) and she plans to use RFLP to find out who her husband is. What does RFLP stand for? |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 115. (0.50 pts) Here are the results of her RFLP gel electrophoresis:  K A B S D                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| K: Kaitlyn A: Aarush B: Bob S: Sunny D: Day DNA is [positively, negatively, neutrally] charged, so the far end of the gel has a [positively, negatively, neutrally] charged electrode.                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>116. (2.00 pts)</b> Who is the father?                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul><li>A) Bob</li><li>B) Sunny</li><li>C) Day</li></ul>                                                                                                                                                                                                                                                                                                                                                                                |

| 117. (1.00 pts) Name two other genetic techniques she could have used to find out who the father was.                                                                                                                                                                                                                                                                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 118. (1.00 pts) Sophia isolated a gene from a eukaryotic chromosome and digested it with four restriction enzymes.  marker HindIII EcoRI BamHI                                                                                                                                                                                                                        |  |  |  |  |
| 600bp — — — —                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 500bp                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 400bp                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 300bp                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 100bp — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| How many base pairs is the gene? Don't include units in your answer.                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 119. (1.00 pts) How many BamHI sites are there on this gene? Write out the number.                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 120. (1.00 pts) How many HindIII sites?                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 121. (1.00 pts)  Jean wants to insert a gene into this plasmid and select colonies using blue-white screening. After digesting the plasmid and gene with the same restriction enzyme, Jean introduces the gene into the bacterial cell. Now, she wants to select for the colonies that accepted plasmids containing foreign DNA. What substrate does she need to add? |  |  |  |  |
| O A) A-gal                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| O B) B-gal                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| O C) Y-gal                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| ○ D) X-gal ○ E) Z-gal                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 122. (1.00 pts) Before addinggal, Jean adds ampicillin to the bacterial colonies. Why does she do this?                                                                                                                                                                                                                                                               |  |  |  |  |

| 400 (0.00 =4=)       | long adds and Cours advances blocked attention to white 16 and any in block which after 6 the fall with a result of the result of the fall with a result of the fall with a result of the fall with a result of the result of |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 123. (2.00 pts)      | Jean addsgal. Some colonies are blue and others are white. If a colony is blue, which of the following may have occurred?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| (Mark ALL correct    | answers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                      | cteria took up the plasmid, but the gene was inserted in the wrong spot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ☐ B) The bac         | cteria took up the plasmid, and the gene was inserted correctly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| C) The back          | cteria took up the plasmid, but the gene was not inserted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| □ D) The bad         | cteria did not take up the plasmid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 124 (1 50 nts)       | Rames wants to amplify the RSO gene so he can bathe in its glory. Place the following steps of PCR in order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 124. (1.00 pts)      | A: DNA is cooled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                      | B: DNA is heated to separate the strands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                      | C: Primers anneal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                      | D: Taq polymerase and dNTPs are added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                      | E: DNA is heated to allow for elongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                      | E. Divitis heated to allow to clongation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ○ A) B, C, A         | , D, E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| О в) В, А, С         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| O C) D, B, A         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| O D) D, B, C         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| O E) D, B, A         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 125. (3.00 pts)      | 5 CIATIATOCACTACCOATOAAOACTCCAGTAATGGATTGAAACT 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                      | 3'-GATAATACGTGATGGCTACTTCTGAGGTCATUACCTAACTTTGA-5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                      | Which pair of primers can Rames use to amplify the DNA using PCR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| O 51.0TA             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ○ A) 5'-CTAT         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                      | AATACG-5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| ○ B) 3'-GATA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                      | AAGTTA-5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| O C) 3'-GATA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                      | 5'-CTATTATGC-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| OD) 5'-CTATTATCAC-3' |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 5'-AG1               | TTCAAT-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 126. (1.00 pts)      | Which of the following are required for Sanger sequencing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| (Mark ALL correct    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ☐ A) DNA po          | лушегазе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| ☐ B) ddNTP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

| C) | NTP        |
|----|------------|
| D) | dNTP       |
| E) | Primers    |
| F) | DNA ligase |

#### 127. (4.00 pts)

Sahana and Kate want to sequence the gene that's responsible for anatomiphilia. They know the first six bases of the coding strand, so they use that for the primer, whose sequence is 5'-AGGCAT-3'. They conduct Sanger sequencing and run the fragments on a gel.



What is the TEMPLATE strand of the gene? Include the sequence used for the primer and indicate directionality, starting with the 3' end.

# 128. (2.00 pts)

Hannah and Sammi are investigating gene expression in breast cancer for their sophomore InSTAR project. They collect DNA samples and want to conduct a microarray analysis. Put the following steps in order.

- A: Use reverse transcriptase on mRNA
- B: Fluorescently label cDNA
- C: Place DNA oligomers in wells on glass bead
- D: Wash with SDS and SSC
- E: Apply light to excite fluorescent tags
- F: Add cDNA to microarray and allow to hybridize
- $\bigcirc$  A) C, D, A, B, F, E
- O B) C, A, B, F, E, D
- O C) C, A, B, F, D, E
- O D) C, A, F, B, D, E
- O E) C, A, F, B, E, D

129. (3.00 pts) Here are several genes that Hannah and Sammi observed. They conventionally labeled the cDNA of the cancer patients (red for cancer, green for no cancer).

| Gene A | Green  |
|--------|--------|
| Gene B | Yellow |
| Gene C | Red    |

| Which of the following could gene C be?                                                                                                                                                                                                                                                       |     |     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--|--|--|
| (Mark ALL correct answers) A) Mitogen (enhances cell division) B) p53 C) Ras (GTPase that enhances progression of the cell cycle) D) Apoptosis inhibitor E) CKI (cyclin-dependent kinase inhibitor) F) Telomerase                                                                             |     |     |  |  |  |
| 130. (2.00 pts) Would you be surprised if gene A turned out to be p53? Why or why not?                                                                                                                                                                                                        |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
| Section 7: Population genetics and phylogeny                                                                                                                                                                                                                                                  |     |     |  |  |  |
| 131. (1.00 pts)  Alex is observing a large population of people at Hardy-Weinberg equilibrium. The <i>Blackpink</i> (bp) gene makes somebody a fan of Blackpink (Blink). Somebody who is heterozygous for the bp gene (bp+ bp) somewhat likes Blackpink. Here are the counts that he obtains: |     |     |  |  |  |
| Blink (bp+ bp+)                                                                                                                                                                                                                                                                               |     | 360 |  |  |  |
| Somewhat likes Blackpink (bp+ bp)                                                                                                                                                                                                                                                             |     |     |  |  |  |
| Does not like Blackpink (bp bp)                                                                                                                                                                                                                                                               |     |     |  |  |  |
| What is the allelic frequency of bp+? bp? Express your answer as a decimal WITHOUT a leading zero.                                                                                                                                                                                            |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
| 132. (2.00 pts) After three generations (just pretend like this is possible please), Alex observes the following phenotypes:                                                                                                                                                                  |     |     |  |  |  |
| Blink                                                                                                                                                                                                                                                                                         | 680 |     |  |  |  |
| Somewhat likes Blackpink                                                                                                                                                                                                                                                                      | 300 |     |  |  |  |
| Does not like Blackpink                                                                                                                                                                                                                                                                       | 20  |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
| Conduct a chi-squared test with two degrees of freedom. Express your answer to two decimal places and do you accept or reject your hypothesis?                                                                                                                                                |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |
| 133. (1.00 pts) Last question set - let's end with some Pokemon!                                                                                                                                                                                                                              |     |     |  |  |  |
|                                                                                                                                                                                                                                                                                               |     |     |  |  |  |



| <b>134. (1.00 pts)</b> Which of the following forms a sister clade? |  |
|---------------------------------------------------------------------|--|
| O A) Ornithischia and sauropoda                                     |  |
| ○ B) Squamata and Testudines                                        |  |
| O C) Sauropoda and theropoda                                        |  |
| Oppose D) Pterosauria, ornithischia, and theropodia                 |  |
|                                                                     |  |
| 135. (2.00 pts) Which of the following are paraphyletic?            |  |
| (Mark ALL correct answers)                                          |  |
| A) Sauropoda and theropoda                                          |  |
| B) Ornithischia and sauropoda                                       |  |
| C) Crocodylia, pterosauria, ornithischia, and theropoda             |  |
| □ D) Pterosauria and theropoda                                      |  |
|                                                                     |  |
| 136. (1.00 pts) Which species is/are the outgroup?                  |  |

Phew, you made it! Congratulations. Please let me know what you thought of the test and email any questions/complaints to ambermath99@gmail.com or contact me through Discord @Silverleaf1#5370.

(Mark ALL correct answers) ☐ A) Crocodylia □ B) Testudines C) Squamata □ D) Sauropoda ☐ E) Theropoda

© 2020 - powered by Scilympiad (https://scilympiad.com)

Support (/rickards/Support) | Contact (/rickards/Home/Contact)