SAN JOSÉ STATE UNIVERSITY Charles W. Davidson College of Engineering DEPARTMENT OF ELECTRICAL ENGINEERING EE 271 – Advanced Digital System Design and Synthesis

Fall 2016 Final Project Report Implementing a 64-bit Signed Binary Multiplier & Divider Circuit

Name	MIT VASANT MORABIA	SJSU ID	011469653
Email	mit.morabia@sjsu.edu	Phone	669-258-7346

Executive Summary (50 to 80 words)

Designing and implementation of digital circuits needs some very crucial decisions. Area and delay are always a trade-off. If we try to improve speed by reducing the clock frequency, the area might increase which also increases the power consumption. However, according to the design requirement, if low power consumption and smaller area is desired, speed will have to be compromised. Multipliers and dividers are the most important modules of mainly all the systems. This project designs a 32 bit signed multiplier and divider using a 32 bit RCA adder for additions and subtractions.

I. General Project Information

Table I.1: List of EDA Tools Used

EDA Tool Name	Company	You Used it for
VCS	Synopsys	Simulation & test
ModelSim	MentorGraphics	Simulation & test
Design Vision	Synopsys	Synthesis & optimization
NC Verilog	Cadence	Post Synthesis Simulation

Table I.2: List of Libraries Used

Library file	Used with	The library is at
name	(EDA tool	(directories on eecad systems)
	name)	
WCCOM	Synopsys Design Compiler	/apps/toshiba/sjsu/synopsys/tc20c/tc240c.db_WCCOM25
BCCOM	Synopsys Design Compiler	/apps/toshiba/sjsu/synopsys/tc20c/tc240c.db_BCCOM25
NOMIN	Synopsys Design Compiler	/apps/toshiba/sjsu/synopsys/tc20c/tc240c.db_NOMIN25

 Table I.3: List of Verilog Modules (both design and test modules)

A) Multiplication

Module Name	Ports	Short Description
MULTIPLIER	OPERA1, OPERA2,	32 BIT SEQUENTIAL
	START, MUORDI,	MULTIPLIER.
	CLOCK, RESULT,	
	VALID.	
ADD_RCA_1	SUM, COUT, A, B, CIN	32 BIT RIPPLE CARRY ADDER
ADD_RCA_16_1	SUM, COUT, A, B, CIN	16 BIT RIPPLE CARRY ADDER
ADD_RCA_4_1	SUM, COUT, A, B, CIN	4 BIT RIPPLE CARRY ADDER
ADD_FULL_1	SUM, COUT, A, B, CIN	FULL ADDER
ADD_HALF_1	SUM, COUT, A, B	HALF ADDER
TESTBENCH_MULTIPLY	OPERA1, OPERA2,	TESTBENCH MODULE FOR
	START, MUORDI,	MULTIPLIER
	CLOCK, RESULT,	
	VALID.	

B) Division

Module Name	Ports	Short Description
DIVISION	OPERA1, OPERA2,	32 BIT SEQUENTIAL DIVIDER
	START, MUORDI,	
	CLOCK, RESULT,	
	VALID.	
ADD_RCA_1	SUM, COUT, A, B,	32 BIT RIPPLE CARRY ADDER
	CIN	
ADD_RCA_16_1	SUM, COUT, A, B,	16 BIT RIPPLE CARRY ADDER
	CIN	
ADD_RCA_4_1	SUM, COUT, A, B,	4 BIT RIPPLE CARRY ADDER
	CIN	
ADD_FULL_1	SUM, COUT, A, B,	FULL ADDER
	CIN	
ADD_HALF_1	SUM, COUT, A, B	HALF ADDER
TESTBENCH_DIVISION	OPERA1, OPERA2,	TESTBENCH MODULE FOR
	START, MUORDI,	DIVISION
	CLOCK, RESULT,	
	VALID.	

II. Implementation Overview

Figure II.1: Block Diagram of 32-bit ALU unit

Discuss the structure and characteristics of the ALU unit (less than 100 words)

The ALU shown in the above diagram is a 32 bit signed multiplier and division. The product of Multiplicand (Opera 1) and Multiplier/ Dividend (Opera2) is stored in the Product (Result) of the circuit. After the operation is complete, the value in Result changes from Opera2 to the product of Opera1 and Opera2. The bit inversion and 2s complementing of inputs depends on the operation as well as its original sign. The control logic depends on the the input start and generates output valid to state whether the result is ready. The OPE flag in Control block decides the shifting and addition or subtraction of the signal with the result register. Also the muordi flag decides the operation (Multiply or Divide).

Figure II.2: State Transition Diagram of Sequential Multiplier

Figure II.3: State Transition Diagram of Sequential Divider

Discuss the timing characteristics of the multiplier and divider (less than 100 words)

Multiplier:

32 bit signed multiplier/ divider designed is to find the multiplication/ division result of two inputs given.

State S0 is the **Reset state** used to reset the result to Zeros i.e.—Reset State.

State S1 is the **Start state** used to initialize registers based on the inputs given. State S1 takes one cycle to be executed and depends on Start Input, which when transits from low to high and back to high for one clock, initializes in the next clock cycle.

State S2: is for multiplication process. It takes 32 clock cycles to carry out the operation.

State S3: is for Division process. It takes 33 clock cycles to carry out the operation.

State S4: Valid State: The result is 2s complemented depending on the inputs

64'h025A4938 28D73946

III. RTL-Level (Pre-synthesis) Simulations/Tests

32'h12123456

Short descriptions of testbench(es) that were used to test your modules during the project implementation process (less than 50 words)

For each table in this section, you need to show simulation waveforms that can demonstrate major coverage in testing of your implementation and to support your expected results listed in the tables. Try to justify yourself if what parts of the tests and the changes from one value to other value that are important and should be included here in the report. You should make some notes on the waveforms to show and explain your results and analyses.

	Tuble 11111 I our beleeted Test Butta for Whattipher Chedit				
Test	operal (hex)	opra2 (hex)	result (hex)		
Case					
1	-32'h00524524	64'h00000000_65653232	64'h FFDF6A33633976F8		
2	32'h52146325	-64'h00000000_74127412	64'h DAC8D86D_410A4366		
3	-32h7FFF_FFFF	-64'h00000000_65413654	64'h32A09B29_9ABEC9AC		

Table III.1 – Four Selected Test Data for Multiplier Circuit

64'h00000000 21542369

Figure III.1a: RTL simulation waveform that contains test case #1

As shown in Figure III. 1b and 1c, the start signal triggers the entire process. As the start signal goes high, valid signal goes low at the next positive edge of the clock, the result is loaded with the values in opera2. After 32 cycles, the valid goes high, which then converts the result in its 2s complement value if required.

Figure III.1b: RTL simulation waveform that contains test case #2

Figure III.1c: RTL simulation waveform that contains test case #3

Figure III.1d: RTL simulation waveform that contains test case #4

Table III.2 – Four Selected Test Data for Divider Circuit

Test	operal (hex)	opra2 (hex)	result (hex)
Case			
1	-32'h45454545	64'h12121212 12121212	64'hE4E4E4E4_BD37A655
2	32'h52146325	-64'h00000000 74127412	64'hDE01EF12 FFFFFFFF
3	-32'h7fffffff	-64'h00000000 65413654	64'hE5413655 00000000
4	32'h524524	64'h00000000 65653232	64'h002A1EE6 0000013B

Figure III.2a: RTL simulation waveform that contains test case #1

Figure III.2b: RTL simulation waveform that contains test case #2

Figure III.2c: RTL simulation waveform that contains test case #3

Figure III.2d: RTL simulation waveform that contains test case #4

As shown in figure III. 2a and 2b, when the start signal goes high, the next clock cycle, if the clock is still high, will load the values of opera2 in result, and carry out the operation. After 33 cycles, the valid signal goes high, which goes into the valid state, and if it needs to perform 2s complement, it will take 2 more clocks before displaying the output, however, if the result need not be 2s complemented, as shown in figure 2c and 2d, the value will maintain the value and display the value after the valid signal is high, till the next reset or start input.

IV. Synthesis and Optimizations

In each table below, show 6 selected trials that you have gone through in synthesizing and optimizing your implementations. You may try tens of trials, but you need to select 6 to show in the tables. Select the trials that can represent your synthesizing and optimizing efforts so that you can conclude that the last trial (trial #6) is the one you finally used as the most optimized circuit. Save the data from your (many) trials and use them to plot the "Area vs. Delay" curves in figures IV, which need many more data points.

Table IV.1: Synthesis Constraints and Results for Multiplier – WCC library used

Trial	Your design constraint	Results after synthesis
#	settings	(such as area, time slack, power, etc.)
	(such as area, clock,	
	delay, etc.)	
1	Area =2000, Clock =15	Area =3733.5, Time Slack =-4.94: violated, Data Arrival time =19.33, Power=2.7383
2	Area =4000, Clock =20	Area =3645.5, Time Slack =-0.01: violated, Data Arrival time =19.44, Power=1.9719
3	Area =2500, Clock =30	Area =3054.5, Time Slack =0.44, Data Arrival time =28.85, Power=1.3102
4	Area =3000, Clock =21	Area =3572, Time Slack =0.02, Data Arrival time =20.42, Power=1.908
5	Area =3500, Clock =22	Area =3458, Time Slack =0, Data Arrival time =21.44, Power=1.8465
6	Area =3000, Clock =25	Area =3157, Time Slack =0, Data Arrival time =24.4, Power=1.5992

Figure IV.1: Area vs. Delay Curve of Multiplier

Trial	Your design constraint settings	Results after synthesis
#	(such as area, clock, delay, etc.)	(such as area, time slack, power, etc.)
1	Area =0, Clock =20	Area =5387, Time Slack =-0.24: violated, Data Arrival time =19.68, Power=2.9153
2	Area =0, Clock =25	Area =4402.5, Time Slack =0, Data Arrival time =24.29, Power=2.1286
3	Area =3000, Clock =15	Area =5369, Time Slack =-5.41: violated, Data Arrival time =19.85, Power=3.877
4	Area =3000, Clock =40	Area =4199, Time Slack =9.81, Data Arrival time =29.47, Power=1.431
5	Area =4000, Clock =22	Area =4964.5, Time Slack =0, Data Arrival time =21.44, Power=2.4895
6	Area =3000, Clock =25	Area =4295, Time Slack =0, Data Arrival time

=24.4, Power=2.1713

Table IV.2: Synthesis Constraints and Results for Divider

Figure IV.2: Area vs. Delay Curve of Divider

The timing of the circuit increases if we try to decrease the area i.e. Area is inversely proportional to time (data arrival time), and also power consumed is directly proportional to Area. In the cases tried, an attempt to decrease the clock time, increased the area and power, and hence

by taking a proper tradeoff and not affecting the other constraints much, the values mentioned in the table are the best optimized values for this circuit.

Data: Area =3157, Time Slack =0, Data Arrival time =24.4, Power=1.5992 for Multiplier Data: Area =4295, Time Slack =0, Data Arrival time =24.4, Power=2.1713 $for\ Divider.$

However, both the circuits combined, since they share a lot of hardware, would be a more practical circuit. The Area required for a combined circuit after performing synthesis with the constraints used for the above mentioned cases, is, 5069 and data arrival time for 2.7789, for a combined circuit, which may sound feasible even if the need of both the circuits at a time is not high.

V. Gate-Level (Post-synthesis) Dynamic Simulations/Tests

For each table in this section, you need to show simulation waveforms that can demonstrate major coverage in testing of your implementation and to support your measured performance shown in the tables. The test data in these tables should be the same as test data in Section III tables, however for post-synthesis simulation, you need to select data points and adjust your timing scale of the displayed waveforms such that you are able to show the fluctuation of the immediate data through the circuits based on the values of the input operands and the correctness of the logic functions. You should make some notes on the waveforms to show and explain the timing delays that result in data fluctuations as you observed from the simulation result.

Table V.1 – Four Selected Test Data for Multiplier Circuit

Test	operal (hex)	opra2 (hex)	Time Delay (in time
Case	_ ` ` ′	<u>-</u>	unit)
1	-32'h00524524	64'h00000000 65653232	$60 \times 10 \text{ ps} = 600 \text{ ps}$
2	32'h52146325	-64'h00000000 74127412	$60 \times 10 \text{ ps} = 600 \text{ ps}$
3	-32h7FFF_FFFF	-64'h00000000 65413654	$60 \times 10 \text{ ps} = 600 \text{ ps}$
4	32'h12123456	64'h00000000 21542369	$60 \times 10 \text{ ps} = 600 \text{ ps}$

Figure V.1a: Gate-level simulation waveform that contains test case #1

Figure V.1b: Gate-level simulation waveform that contains test case #2

Figure V.1c: Gate-level simulation waveform that contains test case #3

Figure V.1d: Gate-level simulation waveform that contains test case #4

Fig. V. 1f

Delay Waveforms:

As shown in delay waveforms Fig V 1e and 1f, the delay between the positive edge trigger of the clock and the change of the result value is 60x10ps.

Also the valid signal goes high after the positive edge of the clock, due to which, it waits for one more positive edge of the clock, only after which it starts 2s complementing the result, which results in a total delay of extra 3 clock cycles.

Test	operal (hex)	opra2 (hex)	Time Delay (in time	
Case			unit)	
1	-32'h45454545	64'h12121212_12121212	$60 \times 10 \text{ ps} = 600 \text{ ps}$	
2	32'h52146325	-64'h00000000_74127412	$60 \times 10 \text{ ps} = 600 \text{ ps}$	
3	-32'h7fffffff	-64'h00000000_65413654	$60 \times 10 \text{ ps} = 600 \text{ ps}$	
4	32'h524524	64'h00000000 65653232	$60 \times 10 \text{ ps} = 600 \text{ ps}$	

Table V.2 – Four Selected Test Data for Divider Circuit

Figure V.2a: Gate-level simulation waveform that contains test case #1

Figure V.2b: Gate-level simulation waveform that contains test case #2

Figure V.2c: Gate-level simulation waveform that contains test case #3

Figure V.2d: Gate-level simulation waveform that contains test case #4

Multiplication : The multiplication of opera1 and opera2 always give a correct result for all the cases. It takes 34 clock cycles(1 for start, 32 clocks for the operation and 1 clock cycle extra for 2s complementing the result.) with an extra time delay of 600 ps.

Division : The division would take 35 clocks (1 for start, 33 clocks for operation and 1 clock extra for 2s complementing with a extra delay of 600 ps. The relevant graphs are attached. The delay between the clock risig edge and the valid set to 1 and the change of result to 2s complement takes 3 clock cycles.

VI. Conclusion

The multiplication of opera1 and opera2 always give a correct result for all the cases .However, for division process, the correctness of the output depends on the inputs provided. For both positive or negative inputs, the result would match the actual output; however, there are exceptions for different inputs. For example, in division, if opera 1 (divisor) is positive and opera2 (dividend) is negative, the result would be always negative, which would not cause any error. However, if opera1 is negative and opera2 is positive, the quotient would be negative and remainder would be positive which is not considered while 2s complementing the output. Also, if we have a quotient or a remainder larger than 32 bits, we wont be able to store the actual output received.

Eg: opera2 = 64'h545454545454 and opera1 = 32'h1; the result should be Quotient 545454545454 which is not a case which could be stored.

Appendix A

A.1 Contents from EDA Tool Configurations and Setup Files

```
set link_library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db_WCCOM25}
set target_library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db_WCCOM25}
set symbol_library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.workview.sdb}
set synthetic_library {dw_foundation.sldb standard.sldb}
set_min_library /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db_WCCOM25
min_version_/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db_BCCOM25
```

A.2 Commands and/or Scripts Used for Simulation and Synthesis

```
set link library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25}
set target library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25}
set symbol library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.workview.sdb}
set synthetic library {dw foundation.sldb standard.sldb}
                  /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db_WCCOM25
set min library
min version /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db BCCOM25
read verilog {multiplier.v}
current design multiplier
link
create clock clock -name clock -period 21.00
set propagated clock clock
set clock uncertainty .25 clock
set max area 3000
set fix hold clock
compile -map effort high
report cell
report net
update_timing
report timing -max paths 10
report area
report power
report timing >> m12 report timing.txt
report_area >> m12_report_area.txt
report power >> m12 report power.txt
write -hierarchy -format verilog -output m12 netlist.v
quit
Compile :
vcs +v2k testbench multiplier.v
Simulation:
./simv | tee sim report.txt
```

Pre-synthesis Waveform:
Gtkwave multiplier.vcd &

Synthesis:

Dc shell -xg -f synthesis.script | tee synreport.txt

Post Synthesis:

Noterilog -y /apps/Toshiba/sjsu/Verilog/tc240c +libext+.tsbvlibp +access+r multiplier_testbench.v multiplier.v

./simv |tee post syn.txt

input clock;

Appendix B

Completed Verilog Source Codes and Testbenches

(Use Courier New 10 font)

```
MULTIPLICATION DESIGN:
// Code your design here
`timescale 1ns/10ps
module multiplier (result, valid, opera1, opera2, muordi, clock, reset,
```

```
start);
//define inputs
input operal,
opera2,
muordi,
reset,
start;
```

```
wre clock;
// define output
output [63:0] result;
output valid;
// input size and type
wire [31:0] operal;
```

```
// output size and type reg [63:0] result; reg valid; //valid dummy;
```

wire [63:0] opera2;

reg ope flag;

```
//define extra wires and registers required
wire c_out, cout;
wire [63:0] res_store;
wire [63:0] st_op2;
wire [31:0] z1, op1_not_wire, op2_not_wire, op1_store_not, op2_store_not;
wire [63:0] res_store_not, res_not_wire;
reg [63:0] res_not;
wire c_inop1, c_inop2, c_inres;
```

```
reg [63:0] result1;
reg sign1,sign2, sign, idle;
reg [31:0] op1_store, op2_store;
wire [31:0] op1 store aswire;
```

reg [31:0] op1 not, op2 not;

s3 = 3'b011,

S4 = 3'b100, S5 = 3'b101;

//assign start = 1'b0;

```
assign op1 not wire = op1 not;
assign op2 not wire = op2 not;
assign c_in =1'b0;
assign st op2 = result;
assign op1 store aswire = op1 store not;
assign res not wire = res not;
initial begin
valid = 0;
end
// Multiplier instantiation
Add rca M1 (res store[63:32], , op1 store aswire[31:0], st op2[63:32], c in);
always@(posedge clock or posedge reset)
begin
    if (reset)
   begin
       cst = S0;
    end
    else
    begin
       if (start)
        begin
               cst = S1;
        end
        else
        begin
            cst = nst;
       end
    end
end
always @(posedge clock)
case (cst)
      // reset state
S0 :
       if (reset)
       begin
        valid = 0;
        //valid dummy= 0;
        res not = 64'h0;
//
          result1 = 64'h0;
result = 64'h0;
i = 40;
        nst = cst;
        end
S1:
         // start state
        if (muordi == 1'b0)
        begin
            sign = sign1^sign2;
            result [31:0] = op2 store not;
            //result [31] = 1'b0;
```

```
result [63:32] = 32'h0;
            ope flag = 1'b0;
            valid = 1'b0;
            //valid_dummy = 1'b0;
            res not = 64'h0;
            i = 0;
            nst = S2;
        end
        else
        begin
           /// Division logic
            nst = S3;
        end
S2:
        // Multiplication State
    if (i<32)
    begin
        nst = cst;
        i = i+1;
        if (i \ge 0)
        begin
            ope flag = result[0];
            if (ope flag == 1'b1)
            begin
               result [63:32] = res store[63:32];
               result = result>>1;
            end
            else
            begin
               result = result>>1;
            end
        end
    end
    else if (i==32)
    begin
       nst = S4;
       i = i+1;
        valid = 1'b1;
        nst = S4; /// valid state
        if (sign)
        begin
           res not = (~result);
        end
        else
        begin
          res_not = result;
        end
    end
S3 : if (muordi==1)
                    /// division state
begin
end
```

```
S4 : if (valid)
begin
// valid state
result = res store not;
nst = S5; //idle state
idle = 1;
end
S5 : if (idle)
begin
end // idle state
default: nst = S0;
endcase
// 2ss complement
/// instantiate for 2s complement
assign z1 = 32'h0;
notif1 A1(c inop1, c in, sign1);
bufif0 A2(c inop1, c in, sign1);
notif1 A3(c inop2, c in, sign2);
bufif0 A4(c inop2, c in, sign2);
notif1 A5(c_inres, c_in,sign);
bufif0 A6(c_inres, c_in,sign);
always@(opera1)
begin
sign1 = opera1[31];
if (sign1)
begin
op1 not = (~opera1);
end
else
begin
op1 not = opera1;
end
end
always @(opera2)
begin
sign2 = opera2[63];
if (sign2)
begin
op2_not = (~opera2[31:0]);
else
begin
op2 not = opera2[31:0];
end
end
endmodule
```

```
module Add rca(sum, c out, a, b, c in);
output [31:0] sum;
output c out;
input [31:0] a, b;
input c in;
wire c in8, c out;
Add rca 16 Z1 (sum[15:0], c in8, a[15:0], b[15:0], c in);
Add rca 16 Z2 (sum[31:16], c out, a[31:16], b[31:16], c in8);
endmodule
module Add rca 16 (sum, c out, a, b, c in);
output [15:0] sum;
output c out;
input [15:0] a, b;
input c in;
wire c in4, c in8, c in12, c out;
Add rca 4 M1 (sum[3:0], c in4, a[3:0], b[3:0], c in);
Add rca 4 M2 (sum[7:4], c in8, a[7:4], b[7:4], c in4);
Add rca 4 M3 (sum[11:8], c in12, a[11:8], b[11:8], c in8);
Add rca 4 M4 (sum[15:12], c_out, a[15:12], b[15:12], c_in12);
endmodule
module Add rca 4 (sum, c out, a, b, c in);
output [3: 0] sum;
output c out;
input [3: 0] a, b;
input c in;
wire c_in2, c_in3, c_in4;
Add_full M1 (sum[0], c_in2, a[0], b[0], c_in);
Add full M2 (sum[1], c_in3, a[1], b[1], c_in2);
Add full M3 (sum[2], c in4, a[2], b[2], c in3);
Add full M4 (sum[3], c out, a[3], b[3], c in4);
endmodule
module Add full (sum, c out, a, b, c in);
output sum, c out;
input a, b, c in;
wire w1, w2, w3;
Add half M1 (w1, w2, a, b);
Add half M2 (sum, w3, w1, c in);
or M3 (c out, w2, w3);
endmodule
module Add half (sum, c out, a, b);
output sum, c out;
input a, b;
xor M1 (sum, a, b);
and M2 (c out, a, b);
endmodule
```

******TESTBENCH *****

```
`timescale 1 ns/10 ps
`include "multiplier.v"
module multiplier tb();
reg [31:0] opera1;
reg [63:0] opera2;
reg start, clock, muordi, reset;
wire valid;
wire [63:0] result;
multiplier M1 (result, valid, opera1, opera2, muordi, clock, reset, start);
initial begin
$monitor ($time,,"opera1=%h, opera2=%h, start=%h, clock=%b, muordi=%b,
reset=%b, valid=%b, result=%b", opera1, opera2, start, clock, muordi, reset,
valid, result);
end
initial begin
// clock=0;
muordi = 0;
#20 start = 1;
#20 start =0;
#15 \text{ reset} = 1;
#15 reset = 0;
#40 \text{ operal} = -32'h524524;
opera2 = 64'h65326532;
 #40 \text{ start} = 1;
 #40 start =0;
 #2000 \text{ reset} = 1;
 #15 \text{ reset} = 0;
 opera1 = 32'h52146325;
 opera2 = -64'h74127412;
 #20 start = 1;
 #20 start =0;
 #1500 \text{ reset} = 1;
 #15 reset = 0;
 opera1 = -32'h7fffffff;
 opera2 = -64'h65413654;
 #20 \text{ start} = 1;
 #20 start =0;
 #1500 \text{ reset} = 1;
 #15 \text{ reset} = 0;
 opera1 = 32'h12123456;
```

```
opera2 = 64'h21542369;
 #20 start = 1;
 #20 start =0;
 #2000 $finish;
end
initial begin
//$display ("time\t opera1 opera2 start result valid");
//$monitor ("%g \t %h %h %h %h", $time, opera1, opera2, start, result,
valid);
$dumpfile("multiplier.vcd");
$dumpvars(0, multiplier tb);
end
//clock assigned
initial begin
clock = 0;
forever begin
#10 clock=~clock;
end
end
endmodule
```

```
DIVISION DESIGN :
// Code your design here
`timescale 1ns/10ps
module division(result, valid, opera1, opera2, muordi, clock, reset, start);
 input [31:0] operal;
 input [63:0] opera2;
 output [63:0] result;
output valid;
  input start, muordi, reset;
input clock;
 wire [31:0] opera1;
 wire [63:0] opera2;
 reg [63:0] result;
 reg[63:0] res store, // used in 32nd cycle to store the values of
result \dots extra reg.. should try and delete
op1 sub; // used for storing subtract value
 wire start, muordi, c in, reset, cout1, cout, c inop1s;
 reg [31:0] op1 store, op2 store; // stores the 2 complements of operal
  reg sign, sign1, sign2, ope flag; // flags for storing 2s complement
  req valid;
wire clock; // output specs
 integer i; // for counter
 wire [31:0] res sub, res add; // store the subtracted value and addition
  wire [63:0] st op2; // used since we cant use a reg in instantiation
 reg res msb, idle; // flag to check the result to be negative or positive
for algorithm
// values for 2s complement
wire [31:0] z1, op1_not_wire, op1_not_sub_wire, op1_store_not,
op1 sub store not;
wire [63:0] res store not, res not wire, op2 not wire, op2 store not;
reg [63:0] res not;
wire c inop1, c inop2, c inres;
reg [31:0] op1 not, op1 not sub;
req [63:0] op2 not;
assign op1 not wire = op1 not;
assign op2 not wire = op2 not;
assign op1 not sub wire = op1 not sub;
assign res_not_wire = res_not;
assign z1 = 32'h0;
//////// reset logic
  assign st op2 = result; //store the changed value of result for next
addition/ subtraction
  assign c in = 0; // assign cin
reg [2:0] cst, nst;
parameter S0 = 3'b000, //all state
         S1 = 3'b001,
```

```
S2 = 3'b010,
          S3 = 3'b011,
          S4 = 3'b100,
       S5 = 3'b101;
always@(posedge clock or posedge reset)
begin
      if (reset)
      begin
           cst <= S0;
      end
      else
      begin
            if (start)
            begin
                   cst <= S1;
            end
            else
            begin
                  cst <= nst;
            end
      end
end
always @(posedge clock)
case (cst)
S0 : // reset state
            if (reset)
            begin
            valid = 0;
            //valid_dummy= 0;
            //sign = 0;
            //sign1=0;
            //sign2 = 0;
            //op1 store =32'h0;
            //op2 store = 64'h0;
            //op1 not = 32'h0;
            //op2 not = 64'h0;
            //op1 not sub =32'h0;
            res not = 64'h0;
            result = 64'h0;
            i = 35;
            nst = cst;
            end
S1:
        // start state
            if (muordi == 1'b0)
            begin
                   sign = sign1^sign2;
                   result [31:0] = op2 store not;
                   //\text{result} [31] = 1'b\overline{0};
                   result [63:32] = 32'h0;
                   ope flag = 1'b0;
                   valid = 1'b0;
                   //valid dummy = 1'b0;
                   res not = 64'h0;
```

```
i = 0;
                   nst = S2;
            end
            else
            begin
                   /// Division logic
if (muordi==1'b1)
                  begin
                         sign = sign1^sign2;
                         ope flag = 1'b1;
                         result = op2 store not;
i = 0;
                         //valid_dummy = 1'b0;
                         valid = 1'b0;
                         nst = S3;
                   end
            end
S2: begin
/// Multiplication State COMMENTED FOR DIVISION STATE
      /*if (i<32)
      begin
            nst = cst;
            i = i+1;
            if (i \ge 0)
            begin
                   ope flag = result[0];
                   if (ope_flag == 1'b1)
                  begin
                         result [63:32] = res_store[63:32];
                         result = result>>1;
                   end
                   else
                  begin
                        result = result>>1;
                   end
            end
      end
      else if (i==32)
      begin
            //valid = 1'b1;
            nst = S4;
            i = i+1;
            valid = 1'b1;
            nst = S4; /// valid state
            if (sign)
            begin
                  res not = (~result);
            end
            else
            begin
                  res not = result;
            end
      end*/
```

end

```
S3 : if (muordi==1)
                             /// division state
begin
if (muordi == 1)
        begin
          if (i<32)
           begin
             nst = cst;
i = i+1;
              if (ope flag == 1'b1)
                begin
                  result [63:32] = res sub[31:0];
                  //res store = result;
                  res msb = result[63];
                  if (res msb == 1'b0)
                   begin
                      result[63:0] = result[63:0] <<1;
                     result[0] = 1'b1;
                      ope flag = 1'b1;
                    end
                  else if (res msb == 1'b1)
                   begin
                      result = result<<1;</pre>
                      result[0] = 1'b0;
                      ope_flag = 1'b0;
                    end
                end
              else if(ope flag == 1'b0)
                begin
                  result [63:32] = res add[31:0];
                  res msb = result[63];
                  if (res msb == 1'b0)
                   begin
                     result = result<<1;
                     result[0] = 1'b1;
                      ope flag = 1'b1;
                    end
                  else if (res msb == 1'b1)
                   begin
                     result = result<<1;
                      result[0] = 1'b0;
                      ope_flag = 1'b0;
                    end
                end
            end
          else if (i==32)
            begin
              i = i+1;
      nst = S4;
            valid = 1'b1;
```

```
if (ope flag == 1'b1)
                begin
                  result [63:32] = res sub[31:0];
                  res store = result[31:0];
                  res msb = result[63];
                        if
                             (res msb == 1'b0)
                    begin
                      result[31:0] = res store <<1;</pre>
                      result[0] = 1'b1;
                      ope flag = 1'b1;
                      result[63:32] = res sub[31:0];
                    end
                  else if (res_msb == 1'b1)
                    begin
                      result[31:0] = res store <<1;
                      result[0] = 1'b0;
                      ope flag = 1'b0;
                      result[63:32] = res sub[31:0];
                    end
                end
              else if(ope flag == 1'b0)
                begin
                  result [63:32] = res add[31:0]; //checking the code .
uncomment once done
                  res store = result[31:0];
                  res msb = result [63];
                  if (res msb == 1'b0)
                    begin
                      result[31:0] = res store <<1;</pre>
                      result[0] = 1'b1;
                      ope flag = 1'b1;
                      //result [63:32] = res add[31:0];
                    end
                  else if (res msb == 1'b1)
                    begin
                      result[31:0] = res store <<1;
                      result[0] = 1'b0; //CHANGED THE VALUE TO 1 FROM 0
MENTIONED IN THE CODE
                      ope flag = 1'b0;
                            //result [63:32] = res add[31:0];
                    end
                end
            end
        end
end
S4 : if (valid)
begin
// valid state
valid = 1'b1;
result = res store not;
nst = S5; //idle state
idle = 1;
end
```

```
S5 : if (idle)
begin
end // idle state
default: nst = S0;
endcase
  //// cases end
//// Division Instantiation
///Subtract instantiation
  Add rca 1 D1 (res sub[31:0], , op1 sub store not, st op2[63:32],c in) ;
///add instantiation
  Add rca 1 D2 (res add[31:0], ,op1 store not, st op2[63:32],c in);
//////2s complement
/// instantiate for 2s complement
Add rca 1 C1 (op1 store not, , op1 not wire, z1, c inop1);
Add_rca_1 C2 (op2_store_not[31:0],cout1, op2_not_wire[31:0], z1, c_inop2);
Add_rca_1 C3 (op2_store_not[63:32], , op2_not_wire[63:32], z1, cout1);
Add rca 1 C4 (res store not[31:0], cout, res not wire[31:0], z1, c inres);
Add rca 1 C5 (res store not[63:32], , res not wire[63:32], z1, cout);
/// for sub operal
Add rca 1 C6 (op1 sub store not, , op1 not sub wire, z1, c inop1s);
notif1 A1(c inop1, c in, sign1);
bufif0 A2(c inop1, c in, sign1);
notif1 A3(c_inop2, c_in,sign2);
bufif0 A4(c inop2, c in,sign2);
notif1 A5(c inres, c in, sign);
bufif0 A6(c inres, c in, sign);
//for sub value of operal
notif0 A7(c inop1s, c in, sign1);
bufif1 A8(c inop1s, c in, sign1);
/// for opera1 - 2s complement if negative
always@(opera1)
begin
sign1 = opera1[31];
if(sign1)
```

```
begin
op1 not = (\sim opera1);
op1_not_sub = opera1;
end
else
begin
op1 not = opera1;
op1 not sub = (~opera1);
end
end
//////// FOR result - 2s complement if negative /// 2s complement the
ouput if negative. based on valid bit
always@(posedge valid dummy)
begin
sign = sign1 ^ sign2;
valid = 1'b1;
end
*/
/// for opera 2 - 2s complement if negative
always @(opera2)
begin
sign2 = opera2[63];
if (sign2)
begin
op2_not = (~opera2);
end
else
begin
op2 not = opera2;
end
end
endmodule
module Add rca 1 (sum, c out, a, b, c in);
output [31:0] sum;
output c_out;
input [31:0] a, b;
input c_in;
wire c in8, c out;
Add_rca_16_1 Z1 (sum[15:0], c_in8, a[15:0], b[15:0], c_in);
Add_rca_16_1 Z2 (sum[31:16], c_out, a[31:16], b[31:16], c_in8);
endmodule
module Add rca 16 1 (sum, c out, a, b, c in);
output [15:0] sum;
output c out;
input [15:0] a, b;
input c in;
```

```
wire c in4, c in8, c in12, c out;
Add rca 4 1 M1 (sum[\overline{3}:0], c in4, a[3:0], b[3:0], c in);
Add_rca_4_1 M2 (sum[7:4], c_in8, a[7:4], b[7:4], c_in4);
Add rca 4 1 M3 (sum[11:8], c in12, a[11:8], b[11:8], c in8);
Add rca 4 1 M4 (sum[15:12], c out, a[15:12], b[15:12], c in12);
endmodule
module Add rca 4 1 (sum, c out, a, b, c in);
output [3: 0] sum;
output c_out;
input [3: 0] a, b;
input c in;
wire c in2, c in3, c in4;
Add_full_1 M1 (sum[0], c_in2, a[0], b[0], c_in);
Add full 1 M2 (sum[1], c in3, a[1], b[1], c in2);
Add full 1 M3 (sum[2], c in4, a[2], b[2], c in3);
Add full 1 M4 (sum[3], c out, a[3], b[3], c in4);
endmodule
module Add full 1 (sum, c out, a, b, c in);
output sum, c out;
input a, b, c in;
wire w1, w2, w3;
Add half 1 M1 (w1, w2, a, b);
Add half 1 M2 (sum, w3, w1, c in);
or M3 (c out, w2, w3);
endmodule
module Add half 1 (sum, c out, a, b);
output sum, c_out;
input a, b;
xor M1 (sum, a, b);
and M2 (c out, a, b);
endmodule
```

end

```
TESTBENCH: DIVISION
`timescale 1 ns/10 ps
`include "division.v"
module testbench division();
reg [31:0] opera1;
reg [63:0] opera2;
reg start, clock, muordi, reset;
wire valid;
wire [63:0] result;
division A1 (result, valid, opera1, opera2, muordi, clock, reset, start);
initial begin
$monitor ($time,,"opera1=%h, opera2=%h, start=%h, muordi=%b, reset=%b,
valid=%b, result=%h", opera1, opera2, start, muordi, reset, valid, result);
end
initial begin
// clock=0;
muordi = 1;
#20 start = 1;
#20 start =0;
#15 \text{ reset} = 1;
#15 \text{ reset} = 0;
#40 \text{ operal} = -32'h2;
opera2 = 64'h18;
#40 \text{ start} = 1;
#40 \text{ start} = 0;
#2000 \text{ reset} = 1;
 #15 \text{ reset} = 0;
#40 opera1 = 32'h52146325;
opera2 = -64'h74127412;
#40 \text{ start} = 1;
#20 start =0;
#1500 \text{ reset} = 1;
 #15 \text{ reset} = 0;
 #40 \text{ operal} = -32'h7fffffff;
opera2 = -64'h65413654;
#20 \text{ start} = 1;
#20 start = 0;
#1500 \text{ reset} = 1;
 #15 \text{ reset} = 0;
 #40 \text{ operal} = 32'h524524;
opera2 = 64'h65653232;
#20 \text{ start} = 1;
#20 start = 0;
#2000 $finish;
```

```
initial begin
$dumpfile("division.vcd");
$dumpvars(0, testbench_division);
end

//clock assigned
initial begin
clock =0;
forever begin
#10 clock=~clock;
end
end
endmodule
```

Appendix C Reports and Circuits from EDA Tools

(Use Courier New 10 font)

C.1 Contents of Selected Reports from RTL (Pre-synthesis) Simulations (VCS or NCVERILOG)

```
Multiplication
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version I-2014.03-2; Runtime version I-2014.03-2; Dec 12 05:24
2016
                 0 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=x,
30 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=1,
muordi=0, reset=x, valid=0, result=00000000xxxxxxxx
                 40 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0,
muordi=0, reset=x, valid=0, result=00000000xxxxxxxx
                 50 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0,
muordi=0, reset=x, valid=0, result=00000000Xxxxxxxx
                 55 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0,
muordi=0, reset=1, valid=0, result=00000000Xxxxxxxx
                 70 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0,
muordi=0, reset=0, valid=0, result=00000000Xxxxxxxx
                 90 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0,
muordi=0, reset=0, valid=0, result=00000000Xxxxxxxx
                110 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000000000xxxxxxx
                130 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000000000Xxxxxxx
                150 opera1=ffadbadc, opera2=000000065326532, start=1,
muordi=0, reset=0, valid=0, result=0000000065326532
                190 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000000032993299
                210 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00292292194c994c
                230 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=001491490ca64ca6
                250 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000a48a486532653
                270 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=002e46e443299329
                290 opera1=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=004046042194c994
                310 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0020230210ca64ca
                330 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0010118108653265
```

```
350 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00312b5284329932
                 370 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=001895a942194c99
                 390 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00356d66a10ca64c
                 410 operal=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=001ab6b350865326
                 430 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000d5b59a8432993
                 450 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=002fd03ed42194c9
                 470 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00410ab16a10ca64
                 490 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00208558b5086532
                 510 operal=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=001042ac5a843299
                 530 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=003143e82d42194c
                 550 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0018a1f416a10ca6
                 570 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000c50fa0b508653
                 590 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=002f4b0f05a84329
                 610 opera1=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0040c81982d42194
                 630 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0020640cc16a10ca
                 650 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=0010320660b50865
                 670 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00313b95305a8432
                 690 opera1=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00189dca982d4219
                 710 operal=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=003571774c16a10c
                 730 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=001ab8bba60b5086
                 750 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=000d5c5dd305a843
                 770 opera1=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=002fd0c0e982d421
                 790 opera1=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=0, result=00410af274c16a10
                 810 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=0, result=002085793a60b508
                 830 opera1=ffadbadc, opera2=0000000065326532, start=0,
muordi=0, reset=0, valid=1, result=002085793a60b508
                 850 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=0, valid=1, result=ffdf7a86c59f4af8
                2190 operal=ffadbadc, opera2=000000065326532, start=0,
muordi=0, reset=1, valid=0, result=000000000000000
```

```
2205 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
2225 opera1=52146325, opera2=ffffffff8bed8bee, start=1,
2230 opera1=52146325, opera2=ffffffff8bed8bee, start=1,
muordi=0, reset=0, valid=0, result=0000000074127412
               2245 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=0000000074127412
               2250 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=00000003a093a09
               2270 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=290a31929d049d04
               2290 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=148518c94e824e82
               2310 operal=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=0a428c64a7412741
               2330 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=2e2b77c4d3a093a0
               2350 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=1715bbe269d049d0
               2370 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=0b8addf134e824e8
               2390 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=05c56ef89a741274
               2410 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=02e2b77c4d3a093a
               2430 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=01715bbe269d049d
               2450 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=29c2df71934e824e
               2470 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=14e16fb8c9a74127
               2490 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=337ae96ee4d3a093
               2510 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=42c7a649f269d049
               2530 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=4a6e04b77934e824
               2550 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=2537025bbc9a7412
               2570 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=129b812dde4d3a09
               2590 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=3257f2296f269d04
               2610 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=192bf914b7934e82
               2630 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=0c95fc8a5bc9a741
               2650 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=2f552fd7ade4d3a0
               2670 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=17aa97ebd6f269d0
               2690 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=0bd54bf5eb7934e8
```

```
2710 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=05eaa5faf5bc9a74
                2730 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=02f552fd7ade4d3a
                2750 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=017aa97ebd6f269d
                2770 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=29c78651deb7934e
                2790 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=14e3c328ef5bc9a7
                2810 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=337c1326f7ade4d3
                2830 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=42c83b25fbd6f269
                2850 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=4a6e4f257deb7934
                2870 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=0, result=25372792bef5bc9a
                2890 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=1, result=25372792bef5bc9a
                2910 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=0, valid=1, result=dac8d86d410a4366
                3745 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=0, reset=1, valid=1, result=dac8d86d410a4366
                3750 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=0, reset=1, valid=0, result=000000000000000
                3760 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
3780 opera1=80000001, opera2=ffffffff9abec9ac, start=1,
muordi=0, reset=0, valid=0, result=000000000000000
                3790 opera1=80000001, opera2=ffffffff9abec9ac, start=1,
muordi=0, reset=0, valid=0, result=0000000065413654
                3800 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=0000000065413654
                3810 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=000000032a09b2a
                3830 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=000000019504d95
                3850 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=3fffffff8ca826ca
                3870 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=1fffffffc6541365
                3890 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=4ffffff632a09b2
                3910 operal=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=27ffffffb19504d9
                3930 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=53ffffff58ca826c
                3950 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=29ffffffac654136
                3970 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=14ffffffd632a09b
                3990 operal=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=4a7fffff6b19504d
```

```
4010 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=653fffff358ca826
               4030 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=329fffff9ac65413
               4050 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=594fffff4d632a09
               4070 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=6ca7ffff26b19504
               4090 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=3653ffff9358ca82
               4110 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=1b29ffffc9ac6541
               4130 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=4d94ffff64d632a0
               4150 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=26ca7fffb26b1950
               4170 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=13653fffd9358ca8
               4190 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=09b29fffec9ac654
               4210 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=04d94ffff64d632a
               4230 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=026ca7fffb26b195
               4250 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=413653ff7d9358ca
               4270 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=209b29ffbec9ac65
               4290 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=504d94ff5f64d632
               4310 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=2826ca7fafb26b19
               4330 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=5413653f57d9358c
               4350 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=2a09b29fabec9ac6
               4370 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=1504d94fd5f64d63
               4390 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=4a826ca76afb26b1
               4410 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=65413653357d9358
               4430 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=0, result=32a09b299abec9ac
               4450 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=0, valid=1, result=32a09b299abec9ac
               5300 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=0, reset=1, valid=1, result=32a09b299abec9ac
               5310 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
5315 opera1=12123456, opera2=0000000021542369, start=0,
5335 opera1=12123456, opera2=0000000021542369, start=1,
muordi=0, reset=0, valid=0, result=000000000000000
```

```
5350 opera1=12123456, opera2=000000021542369, start=1,
muordi=0, reset=0, valid=0, result=000000021542369
                5355 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0000000021542369
                5370 opera1=12123456, opera2=000000021542369, start=0,
muordi=0, reset=0, valid=0, result=09091a2b10aa11b4
                5390 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=04848d15885508da
                5410 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0242468ac42a846d
                5430 opera1=12123456, opera2=000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0a2a3d7062154236
                5450 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=05151eb8310aa11b
                5470 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0b93a9871885508d
                5490 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0ed2eeee8c42a846
                5510 opera1=12123456, opera2=000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0769777746215423
                5530 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0cbdd5e6a310aa11
                5550 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0f68051e51885508
                5570 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=07b4028f28c42a84
                5590 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=03da014794621542
                5610 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=01ed00a3ca310aa1
                5630 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=09ff9a7ce5188550
                5650 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=04ffcd3e728c42a8
                5670 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=027fe69f39462154
                5690 operal=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=013ff34f9ca310aa
                5710 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=009ff9a7ce518855
                5730 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=095916fee728c42a
                5750 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=04ac8b7f73946215
                5770 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0b5f5feab9ca310a
                5790 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=05afaff55ce51885
                5810 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0be0f225ae728c42
                5830 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=05f07912d7394621
                5850 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0c0156b46b9ca310
```

```
5870 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=0600ab5a35ce5188
               5890 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=030055ad1ae728c4
               5910 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=01802ad68d739462
               5930 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=00c0156b46b9ca31
               5950 operal=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=096924e0a35ce518
               5970 opera1=12123456, opera2=000000021542369, start=0,
muordi=0, reset=0, valid=0, result=04b4927051ae728c
               5990 operal=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=0, result=025a493828d73946
               6010 opera1=12123456, opera2=0000000021542369, start=0,
muordi=0, reset=0, valid=1, result=025a493828d73946
$finish called from file "testbench multiplier.v", line 59.
$finish at simulation time
                                        735500
          VCS Simulation Report
Time: 7355000 ps
CPU Time:
             0.170 seconds; Data structure size: 0.0Mb
Mon Dec 12 05:24:23 2016
```

Division Chronologic VCS simulator copyright 1991-2014 Contains Synopsys proprietary information. Compiler version I-2014.03-2; Runtime version I-2014.03-2; Dec 12 05:19 2016 0 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=x, muordi=1, reset=x, valid=x, result=xxxxxxxxxxxxxxxx 20 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=1, 40 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxxx, start=0, 70 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=0, 110 opera1=babababb, opera2=1212121212121212, start=0, 150 opera1=babababb, opera2=1212121212121212, start=1, 170 operal=babababb, opera2=1212121212121212, start=1, muordi=1, reset=0, valid=0, result=1212121212121212 190 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=1212121212121212 210 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=9999999a24242424 230 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=bdbdbbdbe48484848 250 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=0606060690909091 270 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=8181818321212122 290 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=8d8d8d9042424244 310 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=a5a5a5aa84848488 330 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=d5d5d5df09090910 350 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=3636364812121221 370 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=e1e1e20624242442 390 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=4e4e4e9648484885 410 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=121212a29090910b 430 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=99999abb21212216 450 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=bdbdc0004242442c 470 opera1=babababb, opera2=1212121212121212, start=0, muordi=1, reset=0, valid=0, result=06060a8a84848859

```
490 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=81818a8b090910b2
                 510 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=8d8d9fa012122164
                 530 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=a5a5c9ca242442c8
                 550 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=d5d61e1e48488590
                 570 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=3636c6c690910b21
                 590 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=e1e3030321221642
                 610 operal=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=4e50909042442c85
                630 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=121696968488590b
                 650 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=99a2a2a30910b216
                 670 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=bdcfcfd01221642c
                 690 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=062a2a2a2442c859
                710 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=81c9c9ca488590b2
                730 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=8e1e1e1e910b2164
                 750 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=a6c6c6c7221642c8
                770 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=d8181818442c8590
                790 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=3ababa88590b21
                 810 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=eaeaeaeb10b21642
                 830 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=6060606021642c85
                850 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=1, result=1b1b1b1b42c8590b
                890 operal=babababb, opera2=1212121212121212, start=0,
910 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=1, result=e4e4e4e4bd37a6f5
               2190 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=1, valid=1, result=e4e4e4e4bd37a6f5
               2205 operal=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=1, result=e4e4e4e4bd37a6f5
               2245 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=1, result=e4e4e4e4bd37a6f5
               2285 opera1=52146325, opera2=ffffffff8bed8bee, start=1,
muordi=1, reset=0, valid=1, result=e4e4e4e4bd37a6f5
               2305 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=1, result=e4e4e4e4bd37a6f5
               2310 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=0000000074127412
```

```
2350 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739b6e824e824
                2370 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739b7d049d048
                2390 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739b9a093a090
                2410 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739bd41274120
                2430 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739c4824e8240
                2450 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739d3049d0480
                2470 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd739f0093a0900
                2490 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd73a2a12741200
                2510 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd73a9e24e82400
                2530 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd73b8649d04800
                2550 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd73d5693a09000
                2570 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd740f727412000
                2590 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd748384e824000
                2610 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd756ba9d048000
                2630 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd773bf3a090000
                2650 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd7adc874120000
                2670 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd821dae8240000
                2690 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bd909ffd0480000
                2710 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bdada49a0900000
                2730 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bde7add41200000
                2750 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5be5bc0482400000
                2770 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5bf43e5304800000
                2790 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5c1142f009000000
                2810 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5c4b4c2a12000000
                2830 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5cbf5e9e24000000
                2850 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5da7838648000000
                2870 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=5f77cd5690000000
```

```
2890 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=631860f720000000
              2910 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=6a59883840000000
              2930 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=78dbd6ba80000000
              2950 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=95e073bf00000000
              2970 opera1=52146325, opera2=fffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=0, result=cfe9adc80000000
              2990 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=1, result=21fe10ed00000001
              3030 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=1, result=xxxxxxxxxxxxxxx
              3050 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=0, valid=1, result=de01ef12ffffffff
              3805 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
muordi=1, reset=1, valid=1, result=de01ef12ffffffff
              3810 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
3820 opera1=52146325, opera2=ffffffff8bed8bee, start=0,
3860 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
3880 opera1=80000001, opera2=fffffffff9abec9ac, start=1,
3900 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
3910 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000000065413654
              3950 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00000002ca826ca8
              3970 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000000039504d950
              3990 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000000052a09b2a0
              4010 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000000854136540
              4030 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000000ea826ca80
              4050 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000001b504d9500
              4070 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00000034a09b2a00
              4090 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000006741365400
              4110 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000000cc826ca800
              4130 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000019704d95000
              4150 operal=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000032c09b2a000
              4170 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000065613654000
```

```
4190 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00000caa26ca8000
               4210 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000019524d950000
               4230 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000032a29b2a0000
               4250 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000654336540000
               4270 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0000ca846ca80000
               4290 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00019506d9500000
               4310 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00032a0bb2a00000
               4330 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0006541565400000
               4350 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=000ca828ca800000
               4370 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0019504f95000000
               4390 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0032a09d2a000000
               4410 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0065413854000000
               4430 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=00ca826ea8000000
               4450 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=019504db50000000
               4470 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=032a09b4a0000000
               4490 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0654136740000000
               4510 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=0ca826cc80000000
               4530 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=19504d9700000000
               4550 operal=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=32a09b2c0000000
               4570 opera1=80000001, opera2=fffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=0, result=6541365600000000
               4590 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=1, result=e541365500000000
               4630 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
4650 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=0, valid=1, result=e541365500000000
               5400 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
muordi=1, reset=1, valid=1, result=e541365500000000
               5410 opera1=80000001, opera2=ffffffff9abec9ac, start=0,
5415 operal=80000001, opera2=ffffffff9abec9ac, start=0,
5455 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=000000000000000
```

```
5475 opera1=00524524, opera2=000000065653232, start=1,
5495 opera1=00524524, opera2=0000000065653232, start=0,
5510 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=000000065653232
               5550 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75b8caca6464
               5570 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75b99594c8c8
               5590 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75bb2b299190
               5610 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75be56532320
               5630 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75c4aca64640
               5650 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75d1594c8c80
               5670 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b75eab2991900
               5690 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b761d65323200
               5710 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b7682ca646400
               5730 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b774d94c8c800
               5750 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b78e329919000
               5770 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b7c0e53232000
               5790 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b8264a6464000
               5810 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5b8f114c8c8000
               5830 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5ba86a99190000
               5850 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5bdb1d32320000
               5870 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5c408264640000
               5890 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5d0b4cc8c80000
               5910 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff5ea0e191900000
               5930 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff61cc0b23200000
               5950 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff68225e46400000
               5970 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff74cf048c800000
               5990 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ff8e285119000000
               6010 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ffc0daea32000000
```

```
6030 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=0026401c64000001
               6050 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ffa7f5f0c8000002
               6070 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=fff4762990000004
               6090 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=008d769b20000009
               6110 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=007662ee40000013
               6130 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=00483b9480000027
               6150 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ffebece10000004e
               6170 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=007c640a0000009d
               6190 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=1, result=002a1ee60000013b
               6230 opera1=00524524, opera2=0000000065653232, start=0,
6250 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=1, result=002a1ee60000013b
$finish called from file "testbench division.v", line 49.
$finish at simulation time
          V C S
                Simulation Report
Time: 7495000 ps
CPU Time:
              0.210 seconds; Data structure size:
                                                        0.0Mb
Mon Dec 12 05:19:04 2016
```

C.2 Contents of Selected Reports from Netlist (Post-synthesis) Simulations (VCS or NCVERILOG)

MULTIPLICATION

```
Chronologic VCS simulator copyright 1991-2014
Contains Synopsys proprietary information.
Compiler version I-2014.03-2; Runtime version I-2014.03-2; Dec
12 05:43 2016
                 start=x, muordi=0, reset=x, valid=0, result=xxxxxxxxxxxxxxxxx
                20 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxx,
30 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxx,
start=1, muordi=0, reset=x, valid=0, result=00000000xxxxxxxx
                40 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxx,
start=0, muordi=0, reset=x, valid=0, result=00000000xxxxxxxx
                50 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxx,
start=0, muordi=0, reset=x, valid=0, result=00000000Xxxxxxxx
                55 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxxx,
start=0, muordi=0, reset=1, valid=0, result=00000000Xxxxxxxx
```

```
start=0, muordi=0, reset=0, valid=0, result=0000000000xxxxxxxx
                 90 opera1=xxxxxxxxx, opera2=xxxxxxxxxxxxxxxxxx,
start=0, muordi=0, reset=0, valid=0, result=00000000Xxxxxxxx
                110 operal=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000000000xxxxxxx
                130 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000000000Xxxxxxx
                150 opera1=ffadbadc, opera2=000000065326532,
start=1, muordi=0, reset=0, valid=0, result=0000000065326532
                190 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000000032993299
                210 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00292292194c994c
                 230 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=001491490ca64ca6
                250 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000a48a486532653
                270 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=002e46e443299329
                290 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=004046042194c994
                310 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0020230210ca64ca
                330 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0010118108653265
                350 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00312b5284329932
                 370 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=001895a942194c99
                390 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00356d66a10ca64c
                410 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=001ab6b350865326
                 430 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000d5b59a8432993
                450 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=002fd03ed42194c9
                 470 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00410ab16a10ca64
                490 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00208558b5086532
                510 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=001042ac5a843299
                530 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=003143e82d42194c
```

```
550 operal=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0018a1f416a10ca6
               570 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000c50fa0b508653
               590 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=002f4b0f05a84329
               610 operal=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0040c81982d42194
               630 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0020640cc16a10ca
                650 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=0010320660b50865
               670 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00313b95305a8432
                690 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00189dca982d4219
               710 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=003571774c16a10c
               730 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=001ab8bba60b5086
               750 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=000d5c5dd305a843
               770 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=002fd0c0e982d421
               790 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=00410af274c16a10
               810 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=0, result=002085793a60b508
               830 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=1, result=002085793a60b508
               850 opera1=ffadbadc, opera2=000000065326532,
start=0, muordi=0, reset=0, valid=1, result=ffdf7a86c59f4af8
              2190 operal=ffadbadc, opera2=000000065326532,
2205 opera1=52146325, opera2=ffffffff8bed8bee,
2225 opera1=52146325, opera2=ffffffff8bed8bee,
2230 opera1=52146325, opera2=ffffffff8bed8bee,
start=1, muordi=0, reset=0, valid=0, result=0000000074127412
               2245 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=0000000074127412
              2250 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=000000003a093a09
              2270 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=290a31929d049d04
```

```
2290 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=148518c94e824e82
                2310 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=0a428c64a7412741
                2330 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=2e2b77c4d3a093a0
                2350 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=1715bbe269d049d0
                2370 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=0b8addf134e824e8
                2390 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=05c56ef89a741274
                2410 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=02e2b77c4d3a093a
                2430 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=01715bbe269d049d
                2450 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=29c2df71934e824e
                2470 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=14e16fb8c9a74127
                2490 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=337ae96ee4d3a093
                2510 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=42c7a649f269d049
                2530 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=4a6e04b77934e824
                2550 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=2537025bbc9a7412
                2570 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=129b812dde4d3a09
                2590 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=3257f2296f269d04
                2610 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=192bf914b7934e82
                2630 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=0c95fc8a5bc9a741
                2650 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=2f552fd7ade4d3a0
                2670 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=17aa97ebd6f269d0
                2690 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=0bd54bf5eb7934e8
                2710 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=05eaa5faf5bc9a74
                2730 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=02f552fd7ade4d3a
```

```
2750 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=017aa97ebd6f269d
               2770 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=29c78651deb7934e
               2790 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=14e3c328ef5bc9a7
               2810 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=337c1326f7ade4d3
               2830 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=42c83b25fbd6f269
               2850 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=4a6e4f257deb7934
               2870 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=0, result=25372792bef5bc9a
               2890 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=1, result=25372792bef5bc9a
               2910 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=0, valid=1, result=dac8d86d410a4366
               3745 opera1=52146325, opera2=ffffffff8bed8bee,
start=0, muordi=0, reset=1, valid=1, result=dac8d86d410a4366
               3750 opera1=52146325, opera2=ffffffff8bed8bee,
3760 opera1=80000001, opera2=ffffffff9abec9ac,
3780 opera1=80000001, opera2=ffffffff9abec9ac,
3790 opera1=80000001, opera2=ffffffff9abec9ac,
start=1, muordi=0, reset=0, valid=0, result=0000000065413654
               3800 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=0000000065413654
               3810 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=000000032a09b2a
               3830 operal=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=000000019504d95
               3850 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=3fffffff8ca826ca
               3870 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=1fffffffc6541365
               3890 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=4ffffff632a09b2
               3910 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=27fffffffb19504d9
               3930 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=53ffffff58ca826c
               3950 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=29ffffffac654136
```

```
3970 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=14ffffffd632a09b
                3990 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=4a7fffff6b19504d
                4010 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=653fffff358ca826
                4030 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=329fffff9ac65413
                4050 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=594fffff4d632a09
                4070 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=6ca7ffff26b19504
                4090 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=3653ffff9358ca82
                4110 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=1b29ffffc9ac6541
                4130 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=4d94ffff64d632a0
                4150 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=26ca7fffb26b1950
                4170 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=13653fffd9358ca8
                4190 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=09b29fffec9ac654
                4210 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=04d94ffff64d632a
                4230 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=026ca7fffb26b195
                4250 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=413653ff7d9358ca
                4270 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=209b29ffbec9ac65
                4290 operal=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=504d94ff5f64d632
                4310 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=2826ca7fafb26b19
                4330 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=5413653f57d9358c
                4350 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=2a09b29fabec9ac6
                4370 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=1504d94fd5f64d63
                4390 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=4a826ca76afb26b1
                4410 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=65413653357d9358
```

```
4430 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=0, result=32a09b299abec9ac
               4450 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=0, valid=1, result=32a09b299abec9ac
               5300 opera1=80000001, opera2=ffffffff9abec9ac,
start=0, muordi=0, reset=1, valid=1, result=32a09b299abec9ac
               5310 opera1=80000001, opera2=ffffffff9abec9ac,
5315 opera1=12123456, opera2=0000000021542369,
5335 opera1=12123456, opera2=000000021542369,
5350 opera1=12123456, opera2=0000000021542369,
start=1, muordi=0, reset=0, valid=0, result=0000000021542369
               5355 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0000000021542369
               5370 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=09091a2b10aa11b4
               5390 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=04848d15885508da
               5410 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0242468ac42a846d
               5430 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0a2a3d7062154236
               5450 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=05151eb8310aa11b
               5470 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0b93a9871885508d
               5490 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0ed2eeee8c42a846
               5510 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0769777746215423
               5530 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0cbdd5e6a310aa11
               5550 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0f68051e51885508
               5570 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=07b4028f28c42a84
               5590 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=03da014794621542
               5610 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=01ed00a3ca310aa1
               5630 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=09ff9a7ce5188550
               5650 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=04ffcd3e728c42a8
```

```
5670 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=027fe69f39462154
                5690 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=013ff34f9ca310aa
                5710 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=009ff9a7ce518855
                5730 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=095916fee728c42a
                5750 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=04ac8b7f73946215
                5770 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0b5f5feab9ca310a
                5790 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=05afaff55ce51885
                5810 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0be0f225ae728c42
                5830 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=05f07912d7394621
                5850 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0c0156b46b9ca310
                5870 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=0600ab5a35ce5188
                5890 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=030055ad1ae728c4
                5910 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=01802ad68d739462
                5930 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=00c0156b46b9ca31
                5950 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=096924e0a35ce518
                5970 opera1=12123456, opera2=000000021542369,
start=0, muordi=0, reset=0, valid=0, result=04b4927051ae728c
                5990 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=0, result=025a493828d73946
                6010 opera1=12123456, opera2=0000000021542369,
start=0, muordi=0, reset=0, valid=1, result=025a493828d73946
$finish called from file "testbench multiplier.v", line 59.
$finish at simulation time
                                         735500
                 Simulation Report
           V C S
Time: 7355000 ps
CPU Time:
               0.180 seconds; Data structure size:
                                                          0.0Mb
Mon Dec 12 05:43:25 2016
```

DIVISION

```
ncverilog: 14.10-p001: (c) Copyright 1995-2014 Cadence Design Systems, Inc.
Recompiling... reason: file './testbench division.v' is newer than expected.
      expected: Mon Dec 12 02:40:10 2016
      actual: Mon Dec 12 03:11:31 2016
file: testbench division.v
     module worklib.testbench division:v
            errors: 0, warnings: 0
           Caching library 'tc240c' ..... Done
            Caching library 'worklib' ..... Done
      Elaborating the design hierarchy:
  Add rca 1 0 D1 ( .sum(res sub), .a(op1 sub store not), .b(result[63:32]),
ncelab: *W,CUVWSP (./d5 netlist.v,10347|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,1182): c out
 Add rca 1 7 D2
( .sum(res add), .a(op1 store not), .b(result[63:32]), .c in(
ncelab: *W,CUVWSP (./d5 netlist.v,10349|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,2377): c out
 Add rca 1 6 C1 ( .sum(op1 sto re not), .a({1'b0, n819, n821, n822,
n823, n824,
ncelab: *W,CUVWSP (./d5 netlist.v,10351|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,3575): c out
  Add rca 1 4 C3 ( .sum(op2 store not[63:32]), .a({1'b0,
op2 not wire[62:32]}),
ncelab: *W, CUVWSP (./d5 netlist.v,10363|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,6222): c out
 Add rca 1 2 C5 ( .sum(res store not[63:32]), .a(res not wire[63:32]), .b({
ncelab: *W,CUVWSP (./d5 netlist.v,10373|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,8854): c out
 Add rca 1 1 C6 ( .sum(op1 sub store not), .a({1'b1, n419, n421, n422, n423,
ncelab: *W,CUVWSP (./d5 netlist.v,10377|15): 1 output port was not connected:
ncelab: (./d5 netlist.v,10055): c out
  CFD1XL \nst reg[2] ( .D(n608), .CP(clock), .QN(n851) );
ncelab: *W,CUVWSP (./d5 netlist.v,10388|20): 1 output port was not connected:
ncelab: (/apps/toshiba/sjsu/verilog/tc240c/CFD1XL.tsbvlibp,7): Q
  CFD1XL \nst reg[1] ( .D(n574), .CP(clock), .QN(n852) );
ncelab: *W,CUVWSP (./d5 netlist.v,10389|20): 1 output port was not connected:
ncelab: (/apps/toshiba/sjsu/verilog/tc240c/CFD1XL.tsbvlibp,7): Q
      Building instance overlay tables: ...... Done
```

Generating native compiled code:

```
worklib.testbench division:v <0x7b5d4a61>
             streams: 10, words: 12025
    Building instance specific data structures.
    Loading native compiled code:
                            ..... Done
    Design hierarchy summary:
                      Instances Unique
        Modules:
                          3785 924
        UDPs:
                          170
         Primitives:
                          8941
                                 11
                         2798
         Timing outputs:
                          175
        Registers:
                                 15
         Scalar wires:
                         2991
                         288
        Expanded wires:
                                 14
        Vectored wires:
                          6
         Initial blocks:
                           4
                         18
         Pseudo assignments:
                                 18
                        1029
        Timing checks:
                                 351
         Simulation timescale: 10ps
    Writing initial simulation snapshot: worklib.testbench division:v
Loading snapshot worklib.testbench division:v ....... Done
ncsim> source /apps/cadence/INCISIV141/tools/inca/files/ncsimrc
ncsim> run
              0 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=x,
40 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=0,
70 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=0,
muordi=1, reset=0, valid=x, result=xxxxxxxxxxxxxxxx
             70 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=0,
71 opera1=xxxxxxxx, opera2=xxxxxxxxxxxxxxx, start=0,
110 opera1=babababb, opera2=1212121212121212, start=0,
150 operal=babababb, opera2=1212121212121212, start=1,
190 opera1=babababb, opera2=1212121212121212, start=0,
muordi=1, reset=0, valid=0, result=000000000000000
            191 opera1=babababb, opera2=1212121212121212, start=0,
****Content Deleted ****
            6071 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=fff4762990000004
            6090 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=7ff4762990000004
            6091 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=0084760900000000
            6091 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=008d769b20000009
            6111 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=0004628a00000001
```

```
6111 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=007662ee40000013
                6131 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=0040228400000003
                6131 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=00483b9480000027
                6150 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=80483b9480000027
                6151 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=8048288000000006
                6151 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=ffebece10000004e
                6170 opera1=00524524, opera2=000000065653232, start=0,
muordi=1, reset=0, valid=0, result=7febece10000004e
                6171 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=006864000000000c
                6171 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=0, result=007c640a0000009d
                6191 opera1=00524524, opera2=0000000065653232, start=0,
jmuordi=1, reset=0, valid=0, result=0028040200000019
                6191 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=1, result=002a1ee60000013b
                6231 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=1, result=000000000000000
                6251 opera1=00524524, opera2=0000000065653232, start=0,
muordi=1, reset=0, valid=1, result=002a1ee60000013b
Simulation complete via $finish(1) at time 7495 NS + 0
./testbench division.v:49 #2000 $finish;
ncsim> exit
```

C.3 Contents of Selected Reports from Synthesis (Design Compiler)

```
Initializing...
set link library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25}
/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25
set target library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25}
/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25
set symbol library {/apps/toshiba/sjsu/synopsys/tc240c/tc240c.workview.sdb}
/apps/toshiba/sjsu/synopsys/tc240c/tc240c.workview.sdb
set synthetic_library {dw_foundation.sldb standard.sldb}
dw foundation.sldb standard.sldb
set min library /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25 -
min version /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db BCCOM25
Loading db file '/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25'
Loading db file '/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db BCCOM25'
Warning: Function '=' leaked 1 allocations for 16 bytes. (EQN-21)
read verilog {division.v}
Loading db file '/apps/synopsys/SYNTH/libraries/syn/gtech.db'
Loading db file '/apps/synopsys/SYNTH/libraries/syn/standard.sldb'
  Loading link library 'tc240c'
 Loading link library 'gtech'
Loading verilog file
'/home/011469653@SJSUAD.SJSU.EDU/division/final/division.v'
Detecting input file type automatically (-rtl or -netlist).
Running DC verilog reader
Reading with Presto HDL Compiler (equivalent to -rtl option).
tc240c (library)/apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25
create clock clock -name clock -period 25.00
set propagated clock clock
Information: set input delay values are added to the propagated clock skew.
(TIM-113)
set clock uncertainty .25 clock
set max area 3000
set fix hold clock
compile -map effort high
Warning: The following synthetic libraries should be added to
      the list of link libraries:
      'dw foundation.sldb'. (UISN-26)
Information: Checking out the license 'DesignWare'. (SEC-104)
Information: Evaluating DesignWare library utilization. (UISN-27)
```

Statistics for case statements in always block at line 71 in file '/home/011469653@SJSUAD.SJSU.EDU/division/final/division.v' _____ | full/ parallel | Line _____ 72 | auto/auto | _____ Inferred memory devices in process in routine division line 52 in file '/home/011469653@SJSUAD.SJSU.EDU/division/final/division.v'. _____ | Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ______ cst reg | Flip-flop | 3 | Y | N | Y | N | N | N | ______ Inferred memory devices in process in routine division line 71 in file '/home/011469653@SJSUAD.SJSU.EDU/division/final/division.v'. _____ | Register Name | Type | Width | Bus | MB | AR | AS | SR | SS | ______ res not req | Flip-flop | 64 | Y | N | N | N | N | N | N | i req | Flip-flop | 32 | N | N | N | N | N | N | N | nst reg | Flip-flop | 3 | N | N | N | N | N | N | N | result_reg | Flip-flop | 64 | N | N | N | N | N | N | 1 N I res store reg | Flip-flop | 32 | N | N | N | N | N | N | N ope flag reg | Flip-flop | 1 | N | N | N | N | N | N | N | sign reg | Flip-flop | 1 | N | N | N | N | N | N | Ν .-----

Inferred tri-state devices in process

in routine division line 321 in file

^{&#}x27;/home/011469653@SJSUAD.SJSU.EDU/division/final/division.v'.

	Register Nam	ne	Туре	1	Width	M	1B
	A1	==== Tr =====	i-State Buffe:	-=== r ====	===== 1 ======	==== N	1
In	in routi	ne div	levices in prodision line 323	3 in		U/d:	ivi:
 	Register Nam	ne 	Туре	1	Width	M	1B
 ==	A3 =========	Tr	ri-State Buffe:	r ====	1 =====	N	1
In	in routi	ne div	levices in prod ision line 325 11469653@SJSUA	in	_	U/d:	ivi:
	Register Nam	ne 	Туре		===== Width 	==== M	== ИВ
	A5	=== Tr	i-State Buffe	-= : r	_ 1	====	1
==	in routi '/	ne div home/01	levices in prodision line 329 11469653@SJSUA) in D.SJ ====	JSU.ED	====	-===
==	in routi	ne div home/01 ne	ision line 329 11469653@SJSUA) in D.SJ ===== '	JSU.ED ===== Width =====	M	==== 1B ====
== : == 	in routi '/ ===================================	ne div home/01 ====== ne Tr ====== state d ne div	ision line 329 11469653@SJSUA Type	D.SJ ==== ' ' cess	JSU.ED ====== Width ====== 1 ======	==== M ==== N	==== MB N
== == In	in routi '/ ===================================	ne div home/01 ====== Tr ====== state d ne div home/01	ision line 329 11469653@SJSUA Type Type Ti-State Buffer Elevices in prodision line 322	D.SJ Cess Pin D.SJ D.SJ	JSU.ED ====== Width ====== 1 ======	==== M ==== N	==== /B N ==== ivi:
== == In	in routi '/ ===================================	ne div home/01 ne Tr state d ne div home/01 ne	ision line 329 11469653@SJSUA Type Ti-State Buffer Elevices in procession line 322 11469653@SJSUA	Din D.SJ ==== r cess r D.SJ	JSU.ED Width 1 file JSU.ED	M	ivi:
== == In == 	in routi '/ ==================================	ne div home/01 ne Tr state d ne div home/01 ne Tr state d ne div	ision line 329 11469653@SJSUA Type Type Si-State Buffer State Buffer State Buffer State Buffer State Buffer State Buffer State Buffer Type	e in D.SJ cess cess cess cess cess cess cess ces	file Width file SU.ED width file file file	U/d:	:==== MB I I ==== MB E==== N
==	in routi '/ ==================================	ne div home/01 ne Tr state d ne div home/01 ne Tr state d ne div home/01 ne	ision line 329 11469653@SJSUA Type i-State Buffer levices in procision line 322 11469653@SJSUA Type i-State Buffer i-State Buffer iesion line 324	ess dess dess dess dess dess dess dess	file Width file SU.ED width file file file	U/d:	ivi: ivi: ivi:

]	======= Register Na	====== ame 	Туре	==: :	===== Width		==== MB	== -					
	A8	Tr:	i-State Buffer		1		N						
In:	in rout	ine divi	evices in proc sion line 326 1469653@SJSUAI	ir	n file	U/	div	isi	on/f	ina	l/di	visio	on
]	Register Na	ame	Туре		Width		MB	 -					
	 A6	Tr:	i-State Buffer		1		N						

REPORT - MULTIPLICATION

Report : timing

-path full
-delay max
-max_paths 1
Design : multiplier

Version: C-2009.06-SP5

Operating Conditions: WCCOM25 Library: tc240c

Wire Load Model Mode: top

Startpoint: res_not_reg[0]

(rising edge-triggered flip-flop clocked by clock)

Endpoint: result reg[63]

(rising edge-triggered flip-flop clocked by clock)

Path Group: clock Path Type: max

Point	Incr	Path
clock clock (rise edge)	0.00	0.00
clock network delay (propagated)	0.00	0.00
res not reg[0]/CP (CFD1QX4)	0.00	0.00 r
res not reg[0]/Q (CFD1QX4)	0.42	0.42 f
C3/a[0] (Add rca 2)	0.00	0.42 f
C3/Z1/a[0] (Add rca 16 4)	0.00	0.42 f
C3/Z1/M1/a[0] (Add_rca_4_16)	0.00	0.42 f
C3/Z1/M1/M1/a (Add_full_64)	0.00	0.42 f
C3/Z1/M1/M1/M1/a (Add_half_128)	0.00	0.42 f
C3/Z1/M1/M1/M1/U1/Z (CIVX3)	0.06	0.48 r
C3/Z1/M1/M1/M1/U5/Z (CND2IX2)	0.08	0.56 f
C3/Z1/M1/M1/U6/Z (CND2X2)	0.07	0.63 r
C3/Z1/M1/M1/M1/sum (Add_half_128)	0.00	0.63 r
C3/Z1/M1/M1/M2/a (Add_half_127)	0.00	0.63 r
C3/Z1/M1/M1/M2/U1/Z (CNR2IX2)	0.21	0.84 r
C3/Z1/M1/M1/M2/c_out (Add_half_127)	0.00	0.84 r
C3/Z1/M1/M1/U1/Z (COR2X1)	0.16	1.00 r
C3/Z1/M1/M1/c_out (Add_full_64)	0.00	1.00 r
C3/Z1/M1/M2/c_in (Add_full_63)	0.00	1.00 r
C3/Z1/M1/M2/M2/b (Add_half_125)	0.00	1.00 r
C3/Z1/M1/M2/M2/U2/Z (CAN2X1)	0.18	1.18 r
C3/Z1/M1/M2/M2/c_out (Add_half_125)	0.00	1.18 r
C3/Z1/M1/M2/U1/Z (CIVX1)	0.08	1.27 f
C3/Z1/M1/M2/U3/Z (CND2X2)	0.07	1.34 r
C3/Z1/M1/M2/c_out (Add_full_63)	0.00	1.34 r
C3/Z1/M1/M3/c_in (Add_full_62)	0.00	1.34 r
C3/Z1/M1/M3/M2/b (Add_half_123)	0.00	1.34 r
C3/Z1/M1/M3/M2/U4/Z (CIVX2)	0.07	1.41 f
C3/Z1/M1/M3/M2/U5/Z (CNR2IX2)	0.10	1.51 r
C3/Z1/M1/M3/M2/c_out (Add_half_123)	0.00	1.51 r
C3/Z1/M1/M3/U1/Z (CIVX1)	0.10	1.60 f

C3/Z1/M1/M3/c out (Add full 62) 0.00 1.67 r C3/Z1/M1/M4/c_in (Add full 61) 0.00 1.67 r C3/Z1/M1/M4/M2/b (Add half_121) 0.00 1.67 r C3/Z1/M1/M4/M2/J3/Z (CIVX2) 0.07 1.74 f C3/Z1/M1/M4/M2/J3/Z (CIVX2) 0.10 1.84 r C3/Z1/M1/M4/M2/J3/Z (CIVX2) 0.00 1.84 r C3/Z1/M1/M4/M2/J3/Z (CIVX1) 0.10 1.94 f C3/Z1/M1/M4/M2/J3/Z (CIVX1) 0.10 1.94 f C3/Z1/M1/M4/J3/Z (CNDZX2) 0.07 2.01 r C3/Z1/M1/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/M1/M4/U3/Z (CNDZX2) 0.00 2.01 r C3/Z1/M1/M4/O3/Z (CNDZX2) 0.00 2.01 r C3/Z1/M1/C_out (Add_rca_4_16) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add full_60) 0.00 2.01 r C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/U5/Z (CNDZX2) 0.00 2.11 r C3/Z1/M2/M1/M2/U5/Z (CNDZX2) 0.00 2.18 r C3/Z1/M2/M1/M2/C_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/M2/C_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/M2/C_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M1/M2/C_OUT (Add_full_50) 0.00 2.34 r C3/Z1/M2/M1/C_out (Add_full_50) 0.00 2.34 r C3/Z1/M2/M1/C_out (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/M2/C_in (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/M2/C_in (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/M2/C_in (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/M2/U4/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/M2/M2/U4/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/M2/M2/U4/Z (CNZX2) 0.07 2.34 r C3/Z1/M2/M2/M2/U4/Z (CNZX2) 0.07 2.31 r C3/Z1/M2/M2/M2/U4/Z (CNZX2) 0.07 2.51 r C3/Z1/M2/M2/M2/U4/Z (CNZX2) 0.07 2.57 r C3/Z1/M2/M3/M2/C_out (Add_full_50) 0.00 2.67 r C3/Z1/M2/M3/M2/C_out (Add_full_51) 0.00 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNZX2) 0.07 2.55 r C3/Z1/M2/M3/M2/U4/Z (CNZX2) 0.07 2.55 r C3/Z1/M2/M3/M2/U4/Z (CNZX2) 0.07 2.55 r C3/Z1/M2/M3/M2/U4/Z (CNZX2) 0.07 3.08 f C3/Z1/M2/M4/C0_ut (Add_full_50) 0.00 3.34 r C3/Z1/M2/M4/C0_ut (Add_full_50) 0.00 3.34 r C3/Z1/M3/M1/M2/C0_ut (Add_full_50) 0.00 3.34 r C3/Z1/M3/M1/M2/C0_ut (Add_ful	C3/Z1/M1/M3/U2/Z (CND2X2)	0.07	1.67 r
C3/21/M1/M4/M2/D (Add_half_121) 0.00 1.67 r C3/21/M1/M4/M2/U3/Z (CIVX2) 0.07 1.74 f C3/21/M1/M4/M2/U3/Z (CIVX2) 0.10 1.84 r C3/21/M1/M4/M2/C_out (Add_half_121) 0.00 1.84 r C3/21/M1/M4/U3/Z (CND2X2) 0.07 2.01 r C3/21/M1/M4/U3/Z (CND2X2) 0.07 2.01 r C3/21/M1/M4/U3/Z (CND2X2) 0.07 2.01 r C3/21/M1/M4/U3/Z (CND2X2) 0.00 2.01 r C3/21/M1/C_out (Add_full_61) 0.00 2.01 r C3/21/M1/C_out (Add_rca_4_16) 0.00 2.01 r C3/21/M2/C_in (Add_rca_4_15) 0.00 2.01 r C3/21/M2/M1/Q_in (Add_full_60) 0.00 2.01 r C3/21/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/21/M2/M1/M2/U4/Z (CIVX2) 0.10 2.18 r C3/21/M2/M1/M2/U4/Z (CIVX2) 0.07 2.34 r C3/21/M2/M1/M2/C (CIVX1) 0.10 2.27 f C3/21/M2/M1/U2/Z (CND2X2) 0.07 2.34 r C3/21/M2/M1/U2/Z (CND2X2) 0.07 2.34 r C3/21/M2/M1/C_out (Add_full_59) 0.00 2.34 r C3/21/M2/M2/M2/C in (Add_full_59) 0.00 2.34 r C3/21/M2/M2/M2/W2/C in (Add_full_59) 0.00 2.34 r C3/21/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.41 f C3/21/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.41 f C3/21/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.41 f C3/21/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.67 r C3/21/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.67 r C3/21/M2/M2/M2/W2/C out (Add_half_117) 0.00 2.51 r C3/21/M2/M2/W2/C_out (Add_half_115) 0.00 2.67 r C3/21/M2/M2/W2/C_out (Add_half_159) 0.00 2.67 r C3/21/M2/M3/M2/C out (Add_half_159) 0.00 3.01 r C3/21/M2/M3/M3/C (CIVX2) 0.07 3.34 r C3/21/M3/M3/C out (Add_half_159) 0.00 3.34 r C3/21/M3/M1/C2/C (CIVX1) 0.00 3.34 r C3/21/	C3/Z1/M1/M3/c_out (Add_full_62)	0.00	1.67 r
C3/Z1/MI/M4/MZ/U3/Z (CIVX2) 0.07 1.74 f C3/Z1/MI/M4/MZ/U4/Z (CNRZIX2) 0.10 1.84 r C3/Z1/MI/M4/MJ/Z (CUNZ1X2) 0.10 1.84 r C3/Z1/MI/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/MI/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/MI/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/MI/M4/O_out (Add_full_61) 0.00 2.01 r C3/Z1/MZ/c_in (Add_rca_4_15) 0.00 2.01 r C3/Z1/MZ/win (Add_rca_4_15) 0.00 2.01 r C3/Z1/MZ/win (Add_rca_4_15) 0.00 2.01 r C3/Z1/MZ/Mi/c_in (Add_full_60) 0.00 2.01 r C3/Z1/MZ/MI/c_in (Add_full_60) 0.00 2.01 r C3/Z1/MZ/MI/WZ/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/MZ/MI/MZ/U4/Z (CNZ2) 0.10 2.18 r C3/Z1/MZ/MI/MZ/U5/Z (CNRZIX2) 0.10 2.18 r C3/Z1/MZ/MI/MZ/U5/Z (CNDZX2) 0.07 2.34 r C3/Z1/MZ/MI/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/MZ/MI/U1/Z (CNDZX2) 0.07 2.34 r C3/Z1/MZ/MI/U1/Z (CNDZX2) 0.07 2.34 r C3/Z1/MZ/MI/U1/Z (CNDZX2) 0.07 2.34 r C3/Z1/MZ/MZ/WZ/b (Add_half_117) 0.00 2.34 r C3/Z1/MZ/MZ/WZ/b (Add_half_117) 0.00 2.34 r C3/Z1/MZ/MZ/WZ/b (Add_half_117) 0.00 2.34 r C3/Z1/MZ/MZ/MZ/D (CIVX2) 0.07 2.41 f C3/Z1/MZ/MZ/MZ/C CUX (Add_half_117) 0.00 2.34 r C3/Z1/MZ/MZ/MZ/C CUX (Add_half_117) 0.00 2.51 r C3/Z1/MZ/MZ/MZ/C cout (Add_half_117) 0.00 2.51 r C3/Z1/MZ/MZ/MZ/C cout (Add_half_117) 0.00 2.51 r C3/Z1/MZ/MZ/MJ/C (CNDZX2) 0.07 2.67 r C3/Z1/MZ/MJ/MJ/C in (Add_full_59) 0.00 2.67 r C3/Z1/MZ/MJ/MJ/C in (Add_full_59) 0.00 2.67 r C3/Z1/MZ/MJ/MJ/C cout (Add_half_115) 0.00 2.67 r C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 2.75 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 2.75 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 2.75 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.01 r C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.08 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.34 r C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.34 r C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.34 r C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MZ/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MJ/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MJ/MJ/MJ/C (CNDZX2) 0.07 3.42 f C3/Z1/MJ/MJ/MJ/C (CNDZX2	C3/Z1/M1/M4/c_in (Add_full_61)	0.00	1.67 r
C3/Z1/M1/M4/MZ/U4/Z (CNRZIXZ) 0.10 1.84 r C3/Z1/M1/M4/W1/z (CIVX1) 0.10 1.94 f C3/Z1/M1/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/M1/M4/C_out (Add_full_61) 0.00 2.01 r C3/Z1/M1/M4/c_out (Add_full_61) 0.00 2.01 r C3/Z1/M1/C_out (Add_rca_4_15) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add_rca_4_15) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add_full_60) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add_full_60) 0.00 2.01 r C3/Z1/M2/M1/M2/D5/Z (CNZY2) 0.07 2.08 f C3/Z1/M2/M1/M2/U5/Z (CIVXZ) 0.07 2.08 f C3/Z1/M2/M1/M2/C_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/M2/C_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/M2/C_OUT (Add_full_60) 0.00 2.18 r C3/Z1/M2/M1/M2/C_OUT (Add_full_50) 0.00 2.34 r C3/Z1/M2/M1/C_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M1/U2/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/M2/C_out (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/C_out (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/C_out (Add_full_50) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVXZ) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CIVXZ) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CNDZX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CNDZX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CNDZX2) 0.07 2.67 r C3/Z1/M2/M2/M2/C_out (Add_full_50) 0.00 2.51 r C3/Z1/M2/M2/U3/Z (CNDZX2) 0.07 2.67 r C3/Z1/M2/M3/M2/C_out (Add_full_50) 0.00 3.01 r C3/Z1/M2/M3/M2/C_out (Add_full_50) 0.00 3.01 r C3/Z1/M2/M3/M2/C_out (Add_full_50) 0.00 3.01 r C3/Z1/M2/M4/M2/C_OUT (Add_full_50) 0.00 3.01 r C3/Z	<u> </u>		
C3/21/M1/M4/U1/Z (CIVX1) 0.00 1.94 f C3/21/M1/M4/U1/Z (CIVX1) 0.07 2.01 r C3/21/M1/M4/U3/Z (CND2X2) 0.07 2.01 r C3/21/M1/M4/U3/Z (CND2X2) 0.00 2.01 r C3/21/M1/C out (Add_full_61) 0.00 2.01 r C3/21/M2/C in (Add_rca_4_15) 0.00 2.01 r C3/21/M2/M1/C in (Add_full_60) 0.00 2.01 r C3/21/M2/M1/M2/b (Add_half_119) 0.00 2.01 r C3/21/M2/M1/M2/b (Add_half_119) 0.00 2.01 r C3/21/M2/M1/M2/U5/Z (CNR2IX2) 0.07 2.08 f C3/21/M2/M1/M2/C out (Add_half_119) 0.00 2.18 r C3/21/M2/M1/M2/C (CND2X2) 0.10 2.18 r C3/21/M2/M1/U1/Z (CND2X2) 0.07 2.34 r C3/21/M2/M1/U2/Z (CND2X2) 0.07 2.34 r C3/21/M2/M1/C out (Add_full_60) 0.00 2.34 r C3/21/M2/M1/C out (Add_full_59) 0.00 2.34 r C3/21/M2/M2/C in (Add_full_59) 0.00 2.34 r C3/21/M2/M2/M2/U3/Z (CNX2IX2) 0.10 2.34 r C3/21/M2/M2/M2/U3/Z (CIVX2) 0.07 2.34 r C3/21/M2/M2/M2/U3/Z (CIVX2) 0.07 2.34 r C3/21/M2/M2/M2/U3/Z (CIVX2) 0.10 2.51 r C3/21/M2/M2/M2/U3/Z (CNX2IX2) 0.10 2.51 r C3/21/M2/M2/M2/U3/Z (CNX2IX2) 0.10 2.51 r C3/21/M2/M2/U3/Z (CNX2IX2) 0.10 2.51 r C3/21/M2/M2/U3/Z (CNX2IX2) 0.07 2.67 r C3/21/M2/M2/U3/Z (CNX2IX2) 0.07 2.67 r C3/21/M2/M2/U3/Z (CNX2IX2) 0.07 2.67 r C3/21/M2/M3/M2/U3/Z (CXX2I) 0.07 2.67 r C3/21/M2/M3/M2/U3/Z (CXX2IX2) 0.07 2.75 f C3/21/M2/M3/M2/U3/Z (CXX2IX2) 0.07 3.08 f C3/21/M2/M3/M3/C out (Add_full_58) 0.00 3.01 r C3/21/M2/M3/M3/C out (Add_full_57) 0.00 3.01 r C3/21/M2/M3/M3/C out (Add_full_57) 0.00 3.01 r C3/21/M2/M4/W2/U3/Z (CXX2IX2) 0.07 3.34 r C3/21/M2/M4/W2/U3/Z (CXX2IX2) 0.07 3.34 r C3/21/M3/M1/W2/C out (Add_full_56) 0.00 3.34 r C3/21/M3/M1/W2/C out (Add_full_56) 0.00 3.34 r C3/21/M3/M1/W2/C out (Add_full_56) 0.00 3.34 r C3			
C3/Z1/MI/M4/U3/Z (CNDZX2) C3/Z1/MI/M4/U3/Z (CNDZX2) 0.07 2.01 r C3/Z1/MI/M4/Cout (Add full 61) 0.00 2.01 r C3/Z1/MI/Cout (Add rca 4 16) 0.00 2.01 r C3/Z1/M2/c in (Add rca 4 15) 0.00 2.01 r C3/Z1/M2/mi/c in (Add full 60) 0.00 2.01 r C3/Z1/M2/Mi/c in (Add full 60) 0.00 2.01 r C3/Z1/M2/MI/Zb (Add half 119) 0.00 2.01 r C3/Z1/M2/MI/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/MI/M2/U4/Z (CIVX2) 0.10 C3/Z1/M2/MI/M2/Cout (Add half 119) 0.00 2.18 r C3/Z1/M2/MI/M2/C (CIVX1) 0.10 2.27 f C3/Z1/M2/MI/U2/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/MI/Cout (Add full 60) 0.00 2.34 r C3/Z1/M2/MI/Cout (Add full 59) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.51 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.67 r C3/Z1/M2/M2/M2/Cout (Add half 117) 0.00 2.51 r C3/Z1/M2/M2/Cout (Add full 59) 0.00 2.67 r C3/Z1/M2/M3/Cout (Add full 59) 0.00 2.67 r C3/Z1/M2/M3/Cout (Add full 58) 0.00 2.67 r C3/Z1/M2/M3/M2/Cout (Add full 58) 0.00 3.01 r C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CINDZX2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CINDZX2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CINDZX2) 0.07 3.08 f C3/Z1/M2/M4/M2/Cout (Add full 58) 0.00 3.01 r C3/Z1/M2/M4/M2/Cout (Add full 58) 0.00 3.02 r C3/Z1/M3/M1/W2/C (O			
C3/21/M1/M4/c_out (Add_full_61) 0.00 2.01 r C3/21/M1/c_out (Add_rca_4_16) 0.00 2.01 r C3/21/M2/c_in (Add_rca_4_15) 0.00 2.01 r C3/21/M2/mi/c_in (Add_full_60) 0.00 2.01 r C3/21/M2/Mi/c_in (Add_full_60) 0.00 2.01 r C3/21/M2/Mi/M2/b (Add_half_119) 0.00 2.01 r C3/21/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/21/M2/M1/M2/U4/Z (CNZ2) 0.10 2.18 r C3/21/M2/M1/M2/U4/Z (CNZ2) 0.10 2.18 r C3/21/M2/M1/M2/U4/Z (CNZ2) 0.10 2.18 r C3/21/M2/M1/M2/U4/Z (CNZ2) 0.07 2.34 r C3/21/M2/M1/U1/Z (CNZ2) 0.07 2.34 r C3/21/M2/M1/U1/Z (CNZ2) 0.07 2.34 r C3/21/M2/M1/C_out (Add_full_60) 0.00 2.34 r C3/21/M2/M2/C_in (Add_full_59) 0.00 2.34 r C3/21/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/21/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/21/M2/M2/M2/U4/Z (CNZ2X2) 0.07 2.41 f C3/21/M2/M2/M2/U4/Z (CNZ1X2) 0.10 2.51 r C3/21/M2/M2/M2/U4/Z (CNZ1X2) 0.10 2.51 r C3/21/M2/M2/M2/O_out (Add_half_117) 0.10 2.51 r C3/21/M2/M2/O_out (Add_full_59) 0.00 2.67 r C3/21/M2/M3/M2/U3/Z (CIVX2) 0.07 2.67 r C3/21/M2/M3/M2/U3/Z (CIVX2) 0.07 2.67 r C3/21/M2/M3/M2/O_out (Add_half_115) 0.00 2.67 r C3/21/M2/M3/M2/O_OUT (Add_half_115) 0.00 2.67 r C3/21/M2/M3/M2/O_OUT (Add_half_115) 0.00 2.67 r C3/21/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/21/M2/M3/M2/O_OUT (Add_half_115) 0.00 3.01 r C3/21/M2/M3/M2/C_OUT (Add_half_113) 0.00 3.01 r C3/21/M2/M4/M2/U3/Z (CND2X2) 0.07 3.08 f C3/21/M2/M4/M2/U3/Z (CND2X2) 0.07 3.09 f C3/21/M2/M4/M2/U3/Z (CND2X2) 0.07 3.09 f C3/21/M2/M4/M2/U3/Z (CND2X2) 0.07 3.09 f C3/21/M2/M4/M2/U3/Z (CND2X2) 0.07 3.08 f C3/21/M3/M1/W2/C out (Add_half_111) 0.00 3.34 r C3/21/M3/M1/W2/C out (Add_half_111) 0.00 3.34 r C3/21/M3/M1/U2/Z (CNZ1X2) 0.07 3.68 r C3/21/M3/M1/U2/Z			
C3/Z1/M1/M4/C_out (Add_rca_4_16)			
C3/Z1/M2/C_in (Add_rca_4_15) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add_rca_4_15) 0.00 2.01 r C3/Z1/M2/M1/C_in (Add_full_60) 0.00 2.01 r C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/U5/Z (CNRZ1X2) 0.10 2.18 r C3/Z1/M2/M1/M2/U5/Z (CNRZ1X2) 0.10 2.18 r C3/Z1/M2/M1/M2/U5/Z (CNRZ1X2) 0.10 2.18 r C3/Z1/M2/M1/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U2/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/M1/C_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M2/M2/D (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/D (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/D (CNRZ1X2) 0.07 2.41 f C3/Z1/M2/M2/M2/D (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.51 r C3/Z1/M2/M2/U1/Z (CIVX1) 0.10 2.51 r C3/Z1/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U1/Z (CIVX1) 0.10 2.67 r C3/Z1/M2/M3/C_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 3.01 r C3/Z1/M2/M3/M2/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U1/Z (CIVX1) 0.00 3.01 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/U2/D (CIVX1) 0.00 3.34 r C3/Z1/M2/M4/M2/D (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/M2/D (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/U2/D (CIVX1) 0.00 3.34 r C3/Z1/M2/M4/U2/D (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/U2/C out (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/M2/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1			
C3/Z1/M2/C_in (Add_Full_60) 0.00 2.01 r C3/Z1/M2/M1/c_in (Add_Full_60) 0.00 2.01 r C3/Z1/M2/M1/M2/b (Add_half_119) 0.00 2.01 r C3/Z1/M2/M1/M2/U5/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/Co_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U2/Z (CND2X2) 0.07 2.34 r C3/Z1/M2/M1/C_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M1/C_out (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/Db (Add_half_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/W2/Db (Add_half_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/W2/Dc (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/W2/C_out (Add_half_full_5) 0.00 2.51 r C3/Z1/M2/M2/M2/W2/C_out (Add_half_full_59) 0.00 2.51 r C3/Z1/M2/M2/W2/C_out (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/U4/Z (CIVX2) 0.07 2.67 r C3/Z1/M2/M3/M2/U4/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/C_out (Add_full_58) 0.00 2.			
C3/Z1/M2/M1/C_in (Add_full_60) 0.00 2.01 r C3/Z1/M2/M1/M2/b (Add_half_119) 0.00 2.01 r C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.10 2.18 r C3/Z1/M2/M1/M2/U5/Z (CNR2IX2) 0.10 2.18 r C3/Z1/M2/M1/M2/C_out (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U1/Z (CNDZXZ) 0.07 2.34 r C3/Z1/M2/M1/C_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M2/C_in (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U4/Z (CNRZIXZ) 0.10 2.51 r C3/Z1/M2/M2/M2/U4/Z (CNRZIXZ) 0.10 2.51 r C3/Z1/M2/M2/M2/U4/Z (CNRZIXZ) 0.10 2.51 r C3/Z1/M2/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U3/Z (CNDZXZ) 0.07 2.67 r C3/Z1/M2/M2/C_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C_in (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C_in (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.10 2.55 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.10 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.07 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.07 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.00 2.67 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.10 2.85 r C3/Z1/M2/M3/M2/U4/Z (CNRZIXZ) 0.10 2.85 r C3/Z1/M2/M3/M2/C_out (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/U1/Z (CTVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CNDZXZ) 0.07 3.01 r C3/Z1/M2/M3/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M3/C_out (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/U5/Z (CNRZIXZ) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNRZIXZ) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNRZIXZ) 0.10 3.34 r C3/Z1/M2/M4/M2/U5/C (CNRZIXZ) 0.07 3.04 r C3/Z1/M2/M4/M2/U5/C (CNRZIXZ) 0.07 3.04 r C3/Z1/M2/M4/M2/U5/C (CNRZIXZ) 0.07 3.04 r C3/Z1/M3/M1/M2/U5/C (CNRZIXZ) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CNZZ) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.36 r C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.68 r C3/Z1/M3/M1/M2/U3/Z (CNZZIX) 0.00 3.68 r C3/Z1/M3/M1/M2/C_out (Add_full_56)			
C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/U5/Z (CNR2IX2) 0.10 2.18 r C3/Z1/M2/M1/M2/U5/Z (CNR2IX2) 0.10 2.18 r C3/Z1/M2/M1/M2/U5/Z (CNDZX2) 0.10 2.18 r C3/Z1/M2/M1/U1/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U2/Z (CNDZX2) 0.07 2.34 r C3/Z1/M2/M1/U2/Z (CNDZX2) 0.00 2.34 r C3/Z1/M2/M1/C out (Add full 60) 0.00 2.34 r C3/Z1/M2/M2/M2/b (Add full 59) 0.00 2.34 r C3/Z1/M2/M2/M2/M2/b (Add half 117) 0.00 2.34 r C3/Z1/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/W2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.10 2.51 r C3/Z1/M2/M2/M2/U2/Z (CNEZIX2) 0.10 2.51 r C3/Z1/M2/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U1/Z (CIVX1) 0.00 2.67 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.67 r C3/Z1/M2/M2/M2/U3/Z (CNDZX2) 0.07 2.67 r C3/Z1/M2/M3/M2/b (Add full 59) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add full 58) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add half 115) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add half 115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U3/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/M2/C out (Add full 58) 0.00 3.01 r C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/M2/C out (Add full 58) 0.00 3.01 r C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.95 f C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.96 f C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.95 g C3/Z1/M2/M3/W3/C out (Add full 58) 0.00 3.01 r C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.10 3.01 r C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.10 3.08 f C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.10 3.08 f C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.07 3.04 r C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.07 3.04 r C3/Z1/M2/M4/M2/U5/C (CNEZIX2) 0.00 3.34 r C3/Z1/M3/M1/M2/C out (Add full 56) 0.00 3.34 r C3/Z1/M3/M1/M2/D (Add full 56) 0.00 3.68 r C3/Z1/M3/M1/M2/C (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/M2/C (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/Cout (Add full 56) 0.00 3.68 r C3/Z1/M3/M1/Cout			
C3/Z1/M2/M1/M2/U4/Z (CIVX2) 0.07 2.08 f C3/Z1/M2/M1/M2/C_OUT (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/M2/C_OUT (Add_half_119) 0.00 2.18 r C3/Z1/M2/M1/U2/Z (CIVX1) 0.10 2.27 f C3/Z1/M2/M1/U2/Z (CIVZ2) 0.07 2.34 r C3/Z1/M2/M1/C_OUT (Add_full_60) 0.00 2.34 r C3/Z1/M2/M2/M2/D (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/D (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/M2/D (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.51 r C3/Z1/M2/M2/M2/M2/U4/Z (CIVX2) 0.10 2.51 r C3/Z1/M2/M2/M2/U4/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U3/Z (CIVX1) 0.00 2.67 r C3/Z1/M2/M2/U3/Z (CIVX2) 0.07 2.67 r C3/Z1/M2/M2/U3/Z (CIVX2) 0.07 2.67 r C3/Z1/M2/M2/U3/Z (CIVX2) 0.00 2.67 r C3/Z1/M2/M2/U3/Z (CIVX2) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C_OUT (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M2/C_OUT (Add_full_58) 0.00 3.01 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M3/M2/C_OUT (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.34 r C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.34 r C3/Z1/M2/M4/M2/C (CIVX1) 0.10 3.34 r C3/Z1/M2/M4/M2/C (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/D (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/C (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/C (CIVX2) 0.07 3.68 r C3/Z1/M3/M1/M2/U2/C (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/M2/U2/C (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/C_OUT (Add_half_115) 0.00 3.68 r C3/Z1/M3/M1/C_OUT (Add_half_115) 0.00 3.68 r C3/Z1			
C3/Z1/M2/M1/M2/C_out (Add half_119)			
C3/Z1/M2/M1/M2/c_out (Add_half_119)		0.10	
C3/Z1/M2/M1/U1/Z (CIVX1)		0.00	
C3/Z1/M2/M1/U2/Z (CND2X2) 0.07 2.34 r C3/Z1/M2/M1/c_out (Add_full_60) 0.00 2.34 r C3/Z1/M2/M2/e_in (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U4/Z (CNR2IX2) 0.10 2.51 r C3/Z1/M2/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/M2/U1/Z (CIVX1) 0.10 2.67 r C3/Z1/M2/M2/M2/c_out (Add_half_117) 0.00 2.67 r C3/Z1/M2/M2/M2/c_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M2/C out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M2/C (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CIVX2) 0.07 3.01 r C3/Z1/M2/M3/M2/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/M2/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/M2/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/M2/C_out (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.68 r C3/Z1/M3/M1/M2/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/M2/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r			
C3/Z1/M2/M2/C_in (Add_full_59) 0.00 2.34 r C3/Z1/M2/M2/M2/b (Add_half_117) 0.00 2.34 r C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U4/Z (CNR2IX2) 0.10 2.51 r C3/Z1/M2/M2/M2/U1/Z (CIVX1) 0.00 2.51 r C3/Z1/M2/M2/M2/U3/Z (CND2X2) 0.07 2.67 r C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.61 f C3/Z1/M2/M2/C_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/c_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/C_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U4/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C_out (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M3/C_out (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/C_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNPZIX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNPZIX2) 0.10 3.28 f C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.14 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r C3/Z1/M3/M1/W2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M2/M2/M2/M2/Z (GIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/M2/V2/C (CIVX2) 0.10 2.51 r C3/Z1/M2/M2/M2/M2/C_out (Add_half_117) 0.00 2.51 r C3/Z1/M2/M2/M2/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.67 r C3/Z1/M2/M2/C_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CIVZ2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M3/C_out (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/b (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_full_57) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4 15) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/b (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.68 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r C3/Z1/M3/M1/U2/E (CIVX1) 0.00 3.68 r	C3/Z1/M2/M1/c out (Add full 60)	0.00	2.34 r
C3/Z1/M2/M2/M2/U3/Z (CIVX2) 0.07 2.41 f C3/Z1/M2/M2/M2/U4/Z (CNRZ1X2) 0.10 2.51 r C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.51 r C3/Z1/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U3/Z (CND2X2) 0.07 2.67 r C3/Z1/M2/M2/c_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/D (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/D (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/C (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/C (CND2X2) 0.07 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.68 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 5.00 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r	C3/Z1/M2/M2/c_in (Add_full_59)	0.00	2.34 r
C3/Z1/M2/M2/M2/U4/Z (CNR2IX2) 0.10 2.51 r C3/Z1/M2/M2/M2/C_out (Add_half_117) 0.00 2.51 r C3/Z1/M2/M2/W2/C_Out (Add_half_117) 0.10 2.61 f C3/Z1/M2/M2/W2/C_out (Add_full_59) 0.07 2.67 r C3/Z1/M2/M3/C_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U3/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/C_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M2/C_Out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M2/C_Out (Add_full_58) 0.00 2.85 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/C_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/C_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.68 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.00 3.68 r	C3/Z1/M2/M2/M2/b (Add_half_117)	0.00	
C3/Z1/M2/M2/U1/Z (CIVX1) 0.10 2.61 f C3/Z1/M2/M2/U3/Z (CND2X2) 0.07 2.67 r C3/Z1/M2/M2/c_out (Add_full_59) 0.00 2.67 r C3/Z1/M2/M3/C_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M3/C_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/U3/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/C_out (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/C_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U5/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/C_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/M2/U3/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r		0.07	
C3/Z1/M2/M2/U1/Z (CIVX1)	•		
C3/Z1/M2/M2/C_out (Add_full_59)			
C3/Z1/M2/M3/C_in (Add_full_59)			
C3/Z1/M2/M3/c_in (Add_full_58) 0.00 2.67 r C3/Z1/M2/M3/M2/b (Add_half_115) 0.00 2.67 r C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/C_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/M1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/C_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/W1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/W2/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_rca_4 15) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r			
C3/Z1/M2/M3/M2/b (Add_half_115)			
C3/Z1/M2/M3/M2/U3/Z (CIVX2) 0.07 2.75 f C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/c_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/c_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U5/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/C_in (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_oin (Add_full_55) 0.00 3.68 r			
C3/Z1/M2/M3/M2/U4/Z (CNR2IX2) 0.10 2.85 r C3/Z1/M2/M3/M2/c_out (Add_half_115) 0.00 2.85 r C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/c_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/U5/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M3/C_in (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.10 3.51 r C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_115) 0.00 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M1/C_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/D2/b (Add_half_109) 0.00 3.68 r	<u> </u>		
C3/Z1/M2/M3/M2/c_out (Add_half_115)			
C3/Z1/M2/M3/U1/Z (CIVX1) 0.10 2.94 f C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/c_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r			
C3/Z1/M2/M3/U3/Z (CND2X2) 0.07 3.01 r C3/Z1/M2/M3/c_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/C_out (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r			
C3/Z1/M2/M3/c_out (Add_full_58) 0.00 3.01 r C3/Z1/M2/M4/c_in (Add_full_57) 0.00 3.01 r C3/Z1/M2/M4/M2/b (Add_half_113) 0.00 3.01 r C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/C_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/C_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/C_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/C_oin (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/C_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/C_in (Add_full_55) 0.00 3.68 r		0.07	3.01 r
C3/Z1/M2/M4/M2/b (Add_half_113)	C3/Z1/M2/M3/c out (Add full 58)	0.00	3.01 r
C3/Z1/M2/M4/M2/U4/Z (CIVX2) 0.07 3.08 f C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/c_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M1/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r	$C3/Z1/M2/M4/c_in (Add_full_57)$		3.01 r
C3/Z1/M2/M4/M2/U5/Z (CNR2IX2) 0.10 3.18 r C3/Z1/M2/M4/M2/c_out (Add_half_113) 0.00 3.18 r C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/c_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/M2/C_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r	·	0.00	
C3/Z1/M2/M4/M2/c_out (Add_half_113)			
C3/Z1/M2/M4/U1/Z (CIVX1) 0.10 3.28 f C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/c_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.00 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M2/M4/U3/Z (CND2X2) 0.07 3.34 r C3/Z1/M2/M4/c_out (Add_full_57) 0.00 3.34 r C3/Z1/M2/c_out (Add_rca_4_15) 0.00 3.34 r C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.68 r C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M2/M4/c_out (Add_full_57)			
C3/Z1/M2/c_out (Add_rca_4_15)			
C3/Z1/M3/c_in (Add_rca_4_14) 0.00 3.34 r C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/c_in (Add_full_56) 0.00 3.34 r C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/M2/b (Add_half_111) 0.00 3.34 r C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/M2/U3/Z (CIVX2) 0.07 3.42 f C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/M2/U4/Z (CNR2IX2) 0.10 3.51 r C3/Z1/M3/M1/M2/c_out (Add_half_111) 0.00 3.51 r C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/M2/c_out (Add_half_111)			
C3/Z1/M3/M1/U2/Z (CIVX1) 0.10 3.61 f C3/Z1/M3/M1/U1/Z (CND2X2) 0.07 3.68 r C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/M1/c_out (Add_full_56) 0.00 3.68 r C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r		0.10	
C3/Z1/M3/M2/c_in (Add_full_55) 0.00 3.68 r C3/Z1/M3/M2/b (Add_half_109) 0.00 3.68 r			3.68 r
C3/Z1/M3/M2/M2/b (Add_half_109) 0.00 3.68 r			
C3/Z1/M3/MZ/MZ/U3/Z (CIVX2) 0.07 3.75 f			
	C3/Z1/M3/M2/M2/U3/Z (CIVX2)	0.07	3.75 f

C3/Z1/M3/M2/M2/U4/Z (CNR2IX2)	0.10	3.85 r
C3/Z1/M3/M2/M2/c out (Add half 109)	0.00	3.85 r
C3/Z1/M3/M2/U1/Z (CIVX1)	0.10	3.95 f
C3/Z1/M3/M2/U3/Z (CND2X2)	0.07	
C3/Z1/M3/M2/c out (Add full 55)	0.00	
C3/Z1/M3/M2/C_Out (Add_Iull_33) C3/Z1/M3/M3/c in (Add full 54)	0.00	
C3/Z1/M3/M3/M2/b (Add half 107)		4.01 r
C3/Z1/M3/M3/M2/D (Add_Hall_107) C3/Z1/M3/M3/M2/U3/Z (CIVX2)	0.00 0.07	4.01 f
C3/Z1/M3/M3/M2/U4/Z (CNR2IX2)	0.10	4.08 I 4.18 r
C3/Z1/M3/M3/M2/c out (Add half 107)		4.18 r
C3/Z1/M3/M3/M2/C_OUT (Add_Hall_10/) C3/Z1/M3/M3/U2/Z (CIVX1)	0.10	4.10 f
C3/Z1/M3/M3/U2/Z (C1VX1) C3/Z1/M3/M3/U1/Z (CND2X2)	0.06	4.20 I 4.34 r
C3/Z1/M3/M3/C out (Add full 54)	0.00	
C3/Z1/M3/M4/c in (Add full 53)	0.00	
C3/Z1/M3/M4/M2/b (Add half 105)		4.34 r
C3/Z1/M3/M4/M2/U3/Z (CAN2X1)		4.52 r
C3/Z1/M3/M4/M2/c out (Add half 105)	0.00	4.52 r
C3/Z1/M3/M4/M2/C_OUT (Add_MAII_103) C3/Z1/M3/M4/U2/Z (CIVX1)	0.08	1 61 f
C3/Z1/M3/M4/U2/Z (CTVXT) C3/Z1/M3/M4/U1/Z (CND2X2)	0.06	4.67 r
C3/Z1/M3/M4/c out (Add full 53)	0.00	4.67 r
C3/Z1/M3/M4/C_out (Add_rda1_d1133) C3/Z1/M3/c out (Add rca 4 14)	0.00	4.07 I
C3/Z1/M3/C_Out (Add_Ica_4_14) C3/Z1/M4/c in (Add rca 4 13)	0.00	
C3/Z1/M4/C_IN (Add_ICa_4_I3) C3/Z1/M4/M1/c in (Add full 52)	0.00	
C3/Z1/M4/M1/M2/b (Add half 103)	0.00	
C3/Z1/M4/M1/M2/D (Add_na11_103) C3/Z1/M4/M1/M2/U3/Z (CAN2X1)	0.18	4.85 r
C3/Z1/M4/M1/M2/c out (Add half 103)		4.85 r
C3/Z1/M4/M1/M2/C_0dt (Add_nd11_103) C3/Z1/M4/M1/U1/Z (CIVX1)	0.08	4.94 f
C3/Z1/M4/M1/U3/Z (CND2X2)	0.07	5.00 r
C3/Z1/M4/M1/c out (Add full 52)	0.00	5.00 r
C3/Z1/M4/M2/c in (Add full 51)	0.00	5.00 r
C3/Z1/M4/M2/M2/b (Add half 101)	0.00	5.00 r
C3/Z1/M4/M2/M2/U4/Z (CIVX2)	0.07	
C3/Z1/M4/M2/M2/U5/Z (CNR2IX2)	0.10	
C3/Z1/M4/M2/M2/c out (Add half 101)	0.00	5.18 r
C3/Z1/M4/M2/U2/Z (CIVX1)	0.10	5.27 f
C3/Z1/M4/M2/U1/Z (CND2X2)	0.06	5.33 r
C3/Z1/M4/M2/c out (Add full 51)	0.00	5.33 r 5.33 r
C3/Z1/M4/M3/c in (Add full 50)	0.00	5.33 r
C3/Z1/M4/M3/M2/b (Add half 99)	0.00	5.33 r
C3/Z1/M4/M3/M2/U3/Z (CAN2X1)	0.18	5.51 r
C3/Z1/M4/M3/M2/c_out (Add_half_99)	0.00	5.51 r
C3/Z1/M4/M3/U1/Z (CIVX1)	0.08	5.60 f
C3/Z1/M4/M3/U3/Z (CND2X2)	0.07	5.67 r
C3/Z1/M4/M3/c_out (Add_full_50)	0.00	5.67 r
C3/Z1/M4/M4/c_in (Add_full_49)	0.00	5.67 r
C3/Z1/M4/M4/M2/b (Add_half_97)	0.00	5.67 r
C3/Z1/M4/M4/M2/U3/Z (CIVX2)	0.07	5.74 f
C3/Z1/M4/M4/M2/U4/Z (CNR2IX2)	0.10	5.84 r
C3/Z1/M4/M4/M2/c_out (Add_half_97)	0.00	5.84 r
C3/Z1/M4/M4/U2/Z (CIVX1)	0.10	5.93 f
C3/Z1/M4/M4/U1/Z (CND2X2)	0.07	6.00 r
C3/Z1/M4/M4/c_out (Add_full_49)	0.00	6.00 r
C3/Z1/M4/c_out (Add_rca_4_13)	0.00	6.00 r
C3/Z1/c_out (Add_rca_16_4)	0.00	6.00 r
C3/Z2/c_in (Add_rca_16_3) C3/Z2/M1/c in (Add rca 4 12)	0.00	6.00 r 6.00 r
C3/Z2/M1/C_IN (Add_ICa_4_I2) C3/Z2/M1/M1/c in (Add full 48)	0.00	6.00 r
03/ 22/ HI/ HI/ C_III (Add_IdII_40)	0.00	0.00 L

C3/Z2/M1/M1/M2/b (Add half 95)	0.00	6.00 r
C3/Z2/M1/M1/M2/D (Add_Hall_93) C3/Z2/M1/M1/M2/U3/Z (CIVX2)		
	0.07 0.10	6.07 f
C3/Z2/M1/M1/M2/U4/Z (CNR2IX2)		6.17 r
C3/Z2/M1/M1/M2/c_out (Add_half_95)		
C3/Z2/M1/M1/U1/Z (CIVX1)	0.10	
C3/Z2/M1/M1/U3/Z (CND2X2)	0.07	
C3/Z2/M1/M1/c_out (Add_full_48)	0.00	6.34 r
C3/Z2/M1/M2/c_in (Add_full_47)	0.00	6.34 r
C3/Z2/M1/M2/M2/b (Add_half_93)	0.00	6.34 r
C3/Z2/M1/M2/M2/U4/Z (CIVX2)	0.07	6.41 f
C3/Z2/M1/M2/M2/U5/Z (CNR2IX2)	0.10	6.51 r
C3/Z2/M1/M2/M2/c_out (Add_half_93)	0.00	6.51 r
C3/Z2/M1/M2/U2/Z (CIVX1)	0.10	6.60 f
C3/Z2/M1/M2/U1/Z (CND2X2)	0.06	6.67 r
C3/Z2/M1/M2/c out (Add full 47)	0.00	6.67 r
C3/Z2/M1/M3/c in (Add full 46)	0.00	6.67 r
C3/Z2/M1/M3/M2/b (Add half 91)	0.00	6.67 r
C3/Z2/M1/M3/M2/U3/Z (CAN2X1)	0.18	6.85 r
C3/Z2/M1/M3/M2/c out (Add half 91)		6.85 r
C3/Z2/M1/M3/U1/Z (CIVX1)	0.08	6.93 f
C3/Z2/M1/M3/U3/Z (CND2X2)	0.07	
C3/Z2/M1/M3/c out (Add full 46)	0.00	
	0.00	
C3/Z2/M1/M4/M2/b (Add half 89)	0.00	7.00 r
C3/Z2/M1/M4/M2/U3/Z (CIVX2)	0.07	7.07 f
C3/Z2/M1/M4/M2/U4/Z (CNR2IX2)	0.10	7.17 r
C3/Z2/M1/M4/M2/c out (Add half 89)		7.17 r
C3/Z2/M1/M4/U2/Z (CIVX1)	0.10	7.27 f
C3/Z2/M1/M4/U1/Z (CND2X2)	0.06	7.27 r
C3/Z2/M1/M4/c out (Add full 45)	0.00	7.33 r
C3/Z2/M1/c out (Add rca 4 12)	0.00	7.33 r
C3/Z2/M2/c in (Add rca 4 11)	0.00	
C3/Z2/M2/M1/c in (Add full 44)	0.00	
C3/Z2/M2/M1/M2/b (Add half 87)	0.00	7.33 r
C3/Z2/M2/M1/M2/U3/Z (CAN2X1)	0.18	7.53 r
C3/Z2/M2/M1/M2/c out (Add half 87)	0.00	7.51 r
C3/Z2/M2/M1/M2/C_OUC (Add_Maii_O/) C3/Z2/M2/M1/U1/Z (CIVX1)	0.08	7.51 f
C3/Z2/M2/M1/U3/Z (CND2X2)	0.03	7.55 I
C3/Z2/M2/M1/c out (Add full 44)	0.00	
C3/Z2/M2/M1/C_out (Add_Iu11_44) C3/Z2/M2/M2/c in (Add full 43)	0.00	7.66 r
C3/Z2/M2/M2/C_IN (Add_IUII_43) C3/Z2/M2/M2/M2/b (Add half 85)	0.00	7.66 r
C3/Z2/M2/M2/M2/D (Add_Hall_63) C3/Z2/M2/M2/M2/U3/Z (CIVX2)	0.07	7.00 f
C3/Z2/M2/M2/M2/O3/Z (CIVX2) C3/Z2/M2/M2/M2/U4/Z (CNR2IX2)	0.10	7.73 I 7.83 r
C3/Z2/M2/M2/M2/O4/Z (CNR21X2) C3/Z2/M2/M2/M2/c out (Add half 85)	0.00	7.83 r
C3/Z2/M2/M2/M2/C_OUT (Add_Hall_63) C3/Z2/M2/M2/U2/Z (CIVX1)	0.10	7.83 f
C3/Z2/M2/M2/U1/Z (CND2X2) C3/Z2/M2/M2/c out (Add full 43)	0.06	7.99 r
C3/Z2/M2/M2/C_out (Add_IuII_43) C3/Z2/M2/M3/c in (Add full 42)	0.00	7.99 r
	0.00	7.99 r
C3/Z2/M2/M3/M2/b (Add_half_83)	0.00	7.99 r
C3/Z2/M2/M3/M2/U3/Z (CAN2X1)	0.18	8.17 r
C3/Z2/M2/M3/M2/c_out (Add_half_83)	0.00	8.17 r
C3/Z2/M2/M3/U2/Z (CIVX1)	0.08	8.26 f
C3/Z2/M2/M3/U1/Z (CND2X2) C3/Z2/M2/M3/c out (Add full 42)	0.06	8.32 r 8.32 r
C3/Z2/M2/M3/C_out (Add_IuII_42) C3/Z2/M2/M4/c in (Add full 41)	0.00	8.32 r 8.32 r
	0.00	
C3/Z2/M2/M4/M2/b (Add_half_81)	0.00	8.32 r
C3/Z2/M2/M4/M2/U3/Z (CAN2X1)	0.18	8.50 r

C3/Z2/M2/M4/M2/c out (Add half 81)	0.00	8.50 r
C3/Z2/M2/M4/U2/Z (CIVX1)	0.08	8.59 f
C3/Z2/M2/M4/U1/Z (CND2X2)	0.06	8.65 r
C3/Z2/M2/M4/c out (Add full 41)	0.00	8.65 r
C3/Z2/M2/c out (Add rca 4 11)	0.00	8.65 r
C3/Z2/M3/c in (Add rca 4 10)	0.00	8.65 r
C3/Z2/M3/M1/c in (Add full 40)	0.00	8.65 r
C3/Z2/M3/M1/C_IN (Add_IUII_40) C3/Z2/M3/M1/M2/b (Add half 79)		
	0.00	8.65 r
C3/Z2/M3/M1/M2/U3/Z (CAN2X1)	0.18	8.83 r
C3/Z2/M3/M1/M2/c_out (Add_half_79)		8.83 r
C3/Z2/M3/M1/U1/Z (CIVX1)	0.08	8.91 f
C3/Z2/M3/M1/U3/Z (CND2X2)	0.07	8.98 r
C3/Z2/M3/M1/c_out (Add_full_40)	0.00	8.98 r
C3/Z2/M3/M2/c_in (Add_full_39)	0.00	8.98 r
C3/Z2/M3/M2/M2/b (Add_half_77)	0.00	8.98 r
C3/Z2/M3/M2/M2/U4/Z (CIVX2)	0.07	9.05 f
C3/Z2/M3/M2/M2/U5/Z (CNR2IX2)	0.10	9.15 r
C3/Z2/M3/M2/M2/c_out (Add_half_77)		9.15 r
C3/Z2/M3/M2/U1/Z (CIVX1)	0.10	9.25 f
C3/Z2/M3/M2/U3/Z (CND2X2)	0.07	9.32 r
C3/Z2/M3/M2/c_out (Add_full_39)	0.00	9.32 r
C3/Z2/M3/M3/c_in (Add_full_38)	0.00	9.32 r
C3/Z2/M3/M3/M2/b (Add_half_75)	0.00	9.32 r
C3/Z2/M3/M3/M2/U3/Z (CIVX2)	0.07	9.39 f
C3/Z2/M3/M3/M2/U4/Z (CNR2IX2)	0.10	9.49 r
C3/Z2/M3/M3/M2/c_out (Add_half_75)	0.00	9.49 r
C3/Z2/M3/M3/U1/Z (CIVX1)	0.10	9.58 f
C3/Z2/M3/M3/U3/Z (CND2X2)	0.07	9.65 r
C3/Z2/M3/M3/c_out (Add_full_38)	0.00	9.65 r
C3/Z2/M3/M4/c_in (Add_full_37)	0.00	9.65 r
C3/Z2/M3/M4/M2/b (Add_half_73)	0.00	9.65 r
C3/Z2/M3/M4/M2/U4/Z (CIVX2)	0.07	9.72 f
C3/Z2/M3/M4/M2/U5/Z (CNR2IX2)	0.10	9.82 r
C3/Z2/M3/M4/M2/c_out (Add_half_73)		9.82 r
C3/Z2/M3/M4/U1/Z (CIVX1)	0.10	9.92 f
C3/Z2/M3/M4/U3/Z (CND2X2)	0.07	9.99 r
C3/Z2/M3/M4/c_out (Add_full_37)	0.00	9.99 r
C3/Z2/M3/c_out (Add_rca_4_10)	0.00	9.99 r
C3/Z2/M4/c_in (Add_rca_4_9)	0.00	9.99 r
$C3/Z2/M4/M1/c_in (Add_full_36)$	0.00	9.99 r
C3/Z2/M4/M1/M2/b (Add_half_71)	0.00	9.99 r
C3/Z2/M4/M1/M2/U4/Z (CIVX2)	0.07	10.06 f
C3/Z2/M4/M1/M2/U5/Z (CNR2IX2)	0.10	10.16 r
C3/Z2/M4/M1/M2/c_out (Add_half_71)	0.00	10.16 r
C3/Z2/M4/M1/U1/Z (CIVX1)	0.10	10.25 f
C3/Z2/M4/M1/U3/Z (CND2X2)	0.07	10.32 r
C3/Z2/M4/M1/c_out (Add_full_36)	0.00	10.32 r
C3/Z2/M4/M2/c_in (Add_full_35)	0.00	10.32 r
C3/Z2/M4/M2/M2/b (Add half 69)	0.00	10.32 r
C3/Z2/M4/M2/M2/U3/Z (CIVX2)	0.07	10.39 f
C3/Z2/M4/M2/M2/U4/Z (CNR2IX2)	0.10	10.49 r
C3/Z2/M4/M2/M2/c_out (Add_half_69)	0.00	10.49 r
C3/Z2/M4/M2/U2/Z (CIVX1)	0.10	10.59 f
C3/Z2/M4/M2/U1/Z (CND2X2)	0.06	10.65 r
C3/Z2/M4/M2/c_out (Add_full_35)	0.00	10.65 r
C3/Z2/M4/M3/c_in (Add_full_34)	0.00	10.65 r
C3/Z2/M4/M3/M2/b (Add_half_67)	0.00	10.65 r

C3/Z2/M4/M3/M2/U3/Z (CAN2X1) C3/Z2/M4/M3/U1/Z (CIVX1) C3/Z2/M4/M3/U1/Z (CIVX1) C3/Z2/M4/M3/U3/Z (CND2X2) C3/Z2/M4/M3/C_out (Add_full_34) C3/Z2/M4/M3/C_out (Add_full_34) C3/Z2/M4/M4/C_in (Add_full_33) C3/Z2/M4/M4/M2/D (Add_half_65) C3/Z2/M4/M4/M2/U3/Z (CIVX2) C3/Z2/M4/M4/M2/U3/Z (CIVX2) C3/Z2/M4/M4/M2/C_out (Add_half_65) C3/Z2/M4/M4/U2/Z (CIVX1) C3/Z2/M4/M4/U2/Z (CIVX1) C3/Z2/M4/M4/U1/Z (CND2X2) C3/Z2/M4/M4/C_out (Add_full_33) C3/Z2/M4/C_out (Add_full_33) C3/Z2/M4/C_out (Add_rca_4_9) C3/Z2/C_out (Add_rca_16_3) C3/Z2/C_out (Add_rca_16_3) C3/C2/M1/C_in (Add_rca_16_2) C4/Z1/M1/C_in (Add_rca_16_2) C4/Z1/M1/M1/C_in (Add_full_32) C4/Z1/M1/M1/M2/D5/Z (CIVX2) C4/Z1/M1/M1/M2/U5/Z (CND2IX2) C4/Z1/M1/M1/M2/U5/Z (CIVX2) C4/Z1/M1/M1/M2/U5/Z (CIVX2) C4/Z1/M1/M1/U2/Z (CND2X2) C4/Z1/M1/M1/U2/Z (CND2X2) C4/Z1/M1/M1/C_out (Add_full_31) C4/Z1/M1/M2/U2/Z (CND2X2) C4/Z1/M1/M2/U2/Z (CND2X2) C4/Z1/M1/M2/U2/Z (CND2X2) C4/Z1/M1/M2/U2/Z (CIVX1) C4/Z1/M1/M2/U2/Z (CIVX1) C4/Z1/M1/M2/U2/Z (CIVX1) C4/Z1/M1/M2/U2/Z (CIVX1) C4/Z1/M1/M2/U2/Z (CIVX1) C4/Z1/M1/M3/C_in (Add_full_31) C4/Z1/M1/M2/C_out (Add_full_31) C4/Z1/M1/M2/C_out (Add_full_30) C4/Z1/M1/M3/M2/C out (Add_full_29) C4/Z1/M1/M3/M2/C out (Add_full_29) C4/Z1/M1/M4/M2/C out (Add_full_28) C4/Z1/M1/M4/W2/C (CIVX1) C4/Z1/M1/M4/W2/C (CIVX1) C4/Z1/M1/M4/W2/C (CIVX1)	0.18 0.00 0.08 0.07 0.00 0.00 0.00 0.00 0.0	10.83 r 10.83 r 10.83 r 10.92 f 10.98 r 10.98 r 10.98 r 11.06 f 11.15 r 11.15 f 11.32 r 11.32
C4/Z1/M2/M1/c_in (Add_full_28) C4/Z1/M2/M1/M2/b (Add_half_55) C4/Z1/M2/M1/M2/U3/Z (CAN2X1) C4/Z1/M2/M1/M2/c_out (Add_half_55) C4/Z1/M2/M1/U1/Z (CIVX1) C4/Z1/M2/M1/U3/Z (CND2X2)	0.00	12.59 r 12.59 r
C4/Z1/M2/M1/c_out (Add_full_28)	0.00	12.93 r

C4/Z1/M2/M2/c in (Add full 27)	0.00	12.93 r
C4/Z1/M2/M2/M2/b (Add half 53)	0.00	12.93 r
C4/Z1/M2/M2/M2/U4/Z (CND2X2)	0.09	13.02 f
C4/Z1/M2/M2/M2/U5/Z (CIVX2)	0.06	13.02 r
C4/Z1/M2/M2/M2/c_out (Add_half_53)	0.00	13.08 r
C4/Z1/M2/M2/U1/Z (CIVX2)	0.06	13.14 f
C4/Z1/M2/M2/U3/Z (CND2X2)	0.07	13.22 r
C4/Z1/M2/M2/c_out (Add_full_27)	0.00	13.22 r
C4/Z1/M2/M3/c_in (Add_full_26)	0.00	13.22 r
C4/Z1/M2/M3/M2/b (Add_half_51)	0.00	13.22 r
C4/Z1/M2/M3/M2/U4/Z (CND2X2)	0.09	13.31 f
C4/Z1/M2/M3/M2/U5/Z (CIVX2)	0.06	13.37 r
C4/Z1/M2/M3/M2/c out (Add half 51)	0.00	13.37 r
C4/Z1/M2/M3/U1/Z (CIVX2)	0.06	13.43 f
C4/Z1/M2/M3/U3/Z (CND2X2)	0.07	13.51 r
C4/Z1/M2/M3/c out (Add full 26)	0.00	13.51 r
C4/Z1/M2/M4/c in (Add full 25)	0.00	13.51 r
C4/Z1/M2/M4/M2/b (Add half 49)	0.00	13.51 r
C4/Z1/M2/M4/M2/U4/Z (CND2X2)	0.09	13.60 f
C4/Z1/M2/M4/M2/U5/Z (CIVX2)	0.06	13.66 r
C4/Z1/M2/M4/M2/c out (Add half 49)	0.00	13.66 r
C4/Z1/M2/M4/U1/Z (CIVX2)	0.06	13.72 f
C4/Z1/M2/M4/U3/Z (CND2X2)	0.07	13.80 r
C4/Z1/M2/M4/c_out (Add_full_25)	0.00	13.80 r
C4/Z1/M2/c_out (Add_rca_4_7)	0.00	13.80 r
C4/Z1/M3/c_in (Add_rca_4_6)	0.00	13.80 r
C4/Z1/M3/M1/c_in (Add_full_24)	0.00	13.80 r
C4/Z1/M3/M1/M2/b (Add_half_47)	0.00	13.80 r
C4/Z1/M3/M1/M2/U4/Z (CND2X2)	0.09	13.89 f
C4/Z1/M3/M1/M2/U5/Z (CIVX2)	0.06	13.95 r
C4/Z1/M3/M1/M2/c_out (Add_half_47)	0.00	13.95 r
C4/Z1/M3/M1/U1/Z (CIVX2)	0.06	14.01 f
C4/Z1/M3/M1/U3/Z (CND2X2)	0.06	14.07 r
C4/Z1/M3/M1/c out (Add full 24)	0.00	14.07 r
C4/Z1/M3/M2/c in (Add full 23)	0.00	14.07 r
C4/Z1/M3/M2/M2/b (Add half 45)	0.00	14.07 r
C4/Z1/M3/M2/M2/U2/Z (CAN2X1)	0.18	14.25 r
C4/Z1/M3/M2/M2/c out (Add half 45)	0.00	14.25 r
C4/Z1/M3/M2/U2/Z (CIVX1)	0.08	14.34 f
C4/Z1/M3/M2/U1/Z (CND2X2)	0.06	14.40 r
C4/Z1/M3/M2/c out (Add full 23)	0.00	
C4/Z1/M3/M3/c_in (Add_full_22)	0.00	
C4/Z1/M3/M3/M2/b (Add half 43)	0.00	14.40 r
C4/Z1/M3/M3/M2/U3/Z (CAN2X1)	0.18	14.58 r
C4/Z1/M3/M3/M2/c out (Add half 43)	0.00	14.58 r
C4/Z1/M3/M3/M2/C_OUT (Add_Hall_43) C4/Z1/M3/M3/U1/Z (CIVX1)	0.08	14.55 f
C4/Z1/M3/M3/U3/Z (CND2X2)	0.08	14.74 r
C4/Z1/M3/M3/c_out (Add_full_22)	0.00	14.74 r
C4/Z1/M3/M4/c_in (Add_full_21)	0.00	14.74 r
C4/Z1/M3/M4/M2/b (Add_half_41)	0.00	14.74 r
C4/Z1/M3/M4/M2/U4/Z (CND2X2)	0.09	14.83 f
C4/Z1/M3/M4/M2/U5/Z (CIVX2)	0.06	14.89 r
C4/Z1/M3/M4/M2/c_out (Add_half_41)	0.00	14.89 r
C4/Z1/M3/M4/U1/Z (CIVX2)	0.06	14.96 f
C4/Z1/M3/M4/U3/Z (CND2X2)	0.07	15.03 r
C4/Z1/M3/M4/c_out (Add_full_21)	0.00	15.03 r
C4/Z1/M3/c_out (Add_rca_4_6)	0.00	15.03 r

C4/Z1/M4/c in (Add rca 4 5)	0.00	15.03 r
C4/Z1/M4/M1/c in (Add full 20)	0.00	15.03 r
C4/Z1/M4/M1/M2/b (Add half 39)	0.00	15.03 r
C4/Z1/M4/M1/M2/U4/Z (CND2X2)	0.09	15.12 f
C4/Z1/M4/M1/M2/U5/Z (CIVX2)	0.06	15.18 r
C4/Z1/M4/M1/M2/c out (Add half 39)	0.00	15.18 r
C4/Z1/M4/M1/U1/Z (CIVX2)	0.06	15.25 f
C4/Z1/M4/M1/U3/Z (CND2X2)	0.07	15.32 r
C4/Z1/M4/M1/c_out (Add_full_20)	0.00	15.32 r
C4/Z1/M4/M2/c_in (Add_full_19)	0.00	15.32 r
C4/Z1/M4/M2/M2/b (Add_half_37)	0.00	15.32 r
C4/Z1/M4/M2/M2/U4/Z (CND2XZ)	0.09	15.41 f
C4/Z1/M4/M2/M2/U5/Z (CIVX2)	0.06	15.47 r
C4/Z1/M4/M2/M2/c_out (Add_half_37)	0.00	15.47 r
C4/Z1/M4/M2/U1/Z (CIVX2)	0.06	15.54 f
C4/Z1/M4/M2/U3/Z (CND2X2)	0.07	15.61 r
C4/Z1/M4/M2/c_out (Add_full_19)	0.00	15.61 r
C4/Z1/M4/M3/c_in (Add_full_18)	0.00	15.61 r
C4/Z1/M4/M3/M2/b (Add_half_35)	0.00	15.61 r
C4/Z1/M4/M3/M2/U4/Z (CND2X2)	0.09	15.70 f
C4/Z1/M4/M3/M2/U5/Z (CIVX2)	0.06	15.76 r
C4/Z1/M4/M3/M2/c out (Add half 35)	0.00	15.76 r
C4/Z1/M4/M3/U1/Z (CIVX2)	0.06	15.83 f
C4/Z1/M4/M3/U3/Z (CND2X2)	0.06	15.89 r
C4/Z1/M4/M3/c out (Add full 18)	0.00	15.89 r
C4/Z1/M4/M4/c_in (Add_full_17)	0.00	15.89 r
C4/Z1/M4/M4/M2/b (Add half 33)	0.00	15.89 r
C4/Z1/M4/M4/M2/U2/Z (CAN2X1)	0.18	16.07 r
C4/Z1/M4/M4/M2/c out (Add half 33)	0.00	16.07 r
C4/Z1/M4/M4/U2/Z (CIVX1)	0.08	16.16 f
C4/Z1/M4/M4/U1/Z (CND2X2)	0.06	16.22 r
C4/Z1/M4/M4/c out (Add full 17)	0.00	16.22 r
C4/Z1/M4/c out (Add rca 4 5)	0.00	16.22 r
C4/Z1/c out (Add rca 16 2)	0.00	16.22 r
C4/Z2/c in (Add rca 16 1)	0.00	16.22 r
C4/Z2/M1/c in (Add rca 4 4)	0.00	
C4/Z2/M1/M1/c in (Add full 16)	0.00	16.22 r 16.22 r 16.22 r
C4/Z2/M1/M1/M2/b (Add half 31)	0.00	16.22 r
C4/Z2/M1/M1/M2/U3/Z (CAN2X1)	0.18	16.40 r
C4/Z2/M1/M1/M2/c out (Add half 31)	0.00	16.40 r
C4/Z2/M1/M1/U2/Z (CIVX1)	0.08	16.48 f
C4/Z2/M1/M1/U1/Z (CND2X2)	0.06	16.55 r
C4/Z2/M1/M1/c out (Add full 16)	0.00	
C4/Z2/M1/M1/C_out (Add_lull_10) C4/Z2/M1/M2/c in (Add full 15)		16.55 r
	0.00	16.55 r
C4/Z2/M1/M2/M2/b (Add_half_29)	0.00	16.55 r
C4/Z2/M1/M2/M2/U3/Z (CAN2X1)	0.18	16.73 r
C4/Z2/M1/M2/M2/c_out (Add_half_29)	0.00	16.73 r
C4/Z2/M1/M2/U1/Z (CIVX1)	0.08	16.81 f
C4/Z2/M1/M2/U3/Z (CND2X2)	0.08	16.89 r
C4/Z2/M1/M2/c_out (Add_full_15)	0.00	16.89 r
C4/Z2/M1/M3/c_in (Add_full_14)	0.00	16.89 r
C4/Z2/M1/M3/M2/b (Add_half_27)	0.00	16.89 r
C4/Z2/M1/M3/M2/U4/Z (CND2X2)	0.09	16.98 f
C4/Z2/M1/M3/M2/U5/Z (CIVX2)	0.06	17.04 r
C4/Z2/M1/M3/M2/c_out (Add_half_27)	0.00	17.04 r
C4/Z2/M1/M3/U1/Z (CIVX2)	0.06	17.10 f
C4/Z2/M1/M3/U3/Z (CND2X2)	0.06	17.16 r

C4/Z2/M1/M3/c out (Add full 14)	0.00	17.16 r
C4/Z2/M1/M4/c in (Add full 13)	0.00	17.16 r
C4/Z2/M1/M4/M2/b (Add half 25)	0.00	17.16 r
C4/Z2/M1/M4/M2/U2/Z (CAN2X1)	0.18	17.35 r
C4/Z2/M1/M4/M2/c out (Add half 25)	0.00	17.35 r
C4/Z2/M1/M4/U1/Z (CIVX1)	0.08	17.43 f
C4/Z2/M1/M4/U3/Z (CND2X2)	0.08	17.43 r
	0.00	17.51 r
C4/Z2/M1/M4/c_out (Add_full_13)	0.00	
C4/Z2/M1/c_out (Add_rca_4_4)		17.51 r
C4/Z2/M2/c_in (Add_rca_4_3)	0.00	17.51 r
C4/Z2/M2/M1/c_in (Add_full_12)	0.00	17.51 r
C4/Z2/M2/M1/M2/b (Add_half_23)	0.00	17.51 r
C4/Z2/M2/M1/M2/U4/Z (CND2X2)	0.09	17.60 f
C4/Z2/M2/M1/M2/U5/Z (CIVX2)	0.06	17.66 r
C4/Z2/M2/M1/M2/c_out (Add_half_23)	0.00	17.66 r
C4/Z2/M2/M1/U1/Z (CIVX2)	0.06	17.72 f
C4/Z2/M2/M1/U3/Z (CND2X2)	0.06	17.79 r
C4/Z2/M2/M1/c_out (Add_full_12)	0.00	17.79 r
C4/Z2/M2/M2/c_in (Add_full_11)	0.00	17.79 r
C4/Z2/M2/M2/M2/b (Add_half_21)	0.00	17.79 r
C4/Z2/M2/M2/M2/U1/Z (CAN2X1)	0.18	17.97 r
C4/Z2/M2/M2/M2/c_out (Add_half_21)	0.00	17.97 r
C4/Z2/M2/M2/U2/Z (CIVX1)	0.08	18.06 f
C4/Z2/M2/M2/U1/Z (CND2X2)	0.06	18.12 r
C4/Z2/M2/M2/c_out (Add_full_11)	0.00	18.12 r
C4/Z2/M2/M3/c_in (Add_full_10)	0.00	18.12 r
C4/Z2/M2/M3/M2/b (Add_half_19)	0.00	18.12 r
C4/Z2/M2/M3/M2/U3/Z (CAN2X1)	0.18	18.30 r
C4/Z2/M2/M3/M2/c_out (Add_half_19)	0.00	18.30 r
C4/Z2/M2/M3/U2/Z (CIVX1)	0.08	18.38 f
C4/Z2/M2/M3/U1/Z (CND2X2)	0.06	18.45 r
C4/Z2/M2/M3/c_out (Add_full_10)	0.00	18.45 r
C4/Z2/M2/M4/c_in (Add_full_9)	0.00	18.45 r
C4/Z2/M2/M4/M2/b (Add_half_17)	0.00	18.45 r
C4/Z2/M2/M4/M2/U3/Z (CAN2X1)	0.18	18.63 r
C4/Z2/M2/M4/M2/c_out (Add_half_17)	0.00	18.63 r
C4/Z2/M2/M4/U1/Z (CIVX1)	0.08	18.71 f
C4/Z2/M2/M4/U3/Z (CND2X2)	0.08	18.79 r
$C4/Z2/M2/M4/c_out (Add_full_9)$	0.00	18.79 r
C4/Z2/M2/c_out (Add_rca_4_3)	0.00	18.79 r
C4/Z2/M3/c_in (Add_rca_4_2)	0.00	18.79 r
C4/Z2/M3/M1/c_in (Add_full_8)	0.00	18.79 r
C4/Z2/M3/M1/M2/b (Add half 15)	0.00	18.79 r
C4/Z2/M3/M1/M2/U4/Z (CND2X2)	0.09	18.88 f
C4/Z2/M3/M1/M2/U5/Z (CIVX2)	0.06	18.94 r
C4/Z2/M3/M1/M2/c out (Add half 15)	0.00	18.94 r
C4/Z2/M3/M1/U1/Z (CIVX2)	0.06	19.00 f
C4/Z2/M3/M1/U3/Z (CND2X2)	0.07	19.08 r
C4/Z2/M3/M1/c out (Add full 8)	0.00	19.08 r
C4/Z2/M3/M2/c in (Add full 7)	0.00	19.08 r
C4/Z2/M3/M2/M2/b (Add half 13)	0.00	19.08 r
C4/Z2/M3/M2/M2/U4/Z (CND2X2)	0.09	19.17 f
C4/Z2/M3/M2/M2/U5/Z (CIVX2)	0.06	19.23 r
C4/Z2/M3/M2/M2/c out (Add half 13)	0.00	19.23 r
C4/Z2/M3/M2/U2/Z (CIVX2)	0.06	19.29 f
C4/Z2/M3/M2/U1/Z (CND2X2)	0.06	19.35 r
C4/Z2/M3/M2/c_out (Add_full_7)	0.00	19.35 r

C4/Z2/M3/M3/C_in (Add_full_6) C4/Z2/M3/M3/M2/b (Add_half_11) C4/Z2/M3/M3/M2/U1/Z (CAN2X1) C4/Z2/M3/M3/M2/C_out (Add_half_11) C4/Z2/M3/M3/U2/Z (CTVX1) C4/Z2/M3/M3/U1/Z (CDZX2) C4/Z2/M3/M3/U1/Z (CDZX2) C4/Z2/M3/M3/C_out (Add_full_6) C4/Z2/M3/M4/C_in (Add_full_5) C4/Z2/M3/M4/M2/b (Add_half_9) C4/Z2/M3/M4/M2/C_out (Add_half_9) C4/Z2/M3/M4/U1/Z (CND2X2) C4/Z2/M3/M4/U1/Z (CND2X2) C4/Z2/M3/M4/U3/Z (CND2X2) C4/Z2/M3/M4/C_out (Add_full_5) C4/Z2/M3/M4/C_out (Add_full_5) C4/Z2/M3/M4/C_out (Add_full_5) C4/Z2/M3/M4/C_in (Add_rca_4_2) C4/Z2/M4/M1/C_in (Add_rca_4_1) C4/Z2/M4/M1/M2/b (Add_half_7) C4/Z2/M4/M1/M2/b (Add_half_7) C4/Z2/M4/M1/M2/c_out (Add_full_4) C4/Z2/M4/M1/M2/C out (Add_full_3) C4/Z2/M4/M1/C_out (Add_full_3) C4/Z2/M4/M1/C_out (Add_full_3) C4/Z2/M4/M2/C_in (Add_full_3) C4/Z2/M4/M2/M2/C_out (Add_half_5) C4/Z2/M4/M2/M2/C_out (Add_half_5) C4/Z2/M4/M2/M2/C_out (Add_half_5) C4/Z2/M4/M2/M2/C_out (Add_half_5) C4/Z2/M4/M2/M2/C_out (Add_half_5) C4/Z2/M4/M2/M2/C_out (Add_half_3) C4/Z2/M4/M3/C_in (Add_full_3) C4/Z2/M4/M3/C_in (Add_full_3) C4/Z2/M4/M3/C_out (Add_half_3) C4/Z2/M4/M3/C_out (Add_half_3) C4/Z2/M4/M3/M2/C_out (Add_half_3) C4/Z2/M4/M3/M2/C_out (Add_half_3) C4/Z2/M4/M3/M2/C_out (Add_half_3) C4/Z2/M4/M3/M2/C_Out (Add_half_1) C4/Z2/M4/M4/M2/Sum (Add_rca_4_1) C4/Z2/M4/M4/Sum (Add_rca_16_1) C4/Z2/M4/M1/M2/Sum (Add_rca_16_1) C4/Z2/M4/M3/C_DAC_CDZX2) data arr	0.00 0.00 0.18 0.00 0.08 0.06 0.00 0.00 0.00 0.00 0.0	19.35 r 19.35 r 19.35 r 19.54 r 19.54 r 19.62 f 19.68 r 19.68 r 19.68 r 19.68 r 19.68 r 19.68 r 19.20 r 20.02 r 20.02 r 20.02 r 20.02 r 20.02 r 20.20 r 20.20 r 20.35 r 20.35 r 20.35 r 20.35 r 20.35 r 20.35 r 20.62 f 20.69 r
clock clock (rise edge)	22.00	22.00
<pre>clock network delay (propagated) clock uncertainty result_reg[63]/CP (CFD3QX2) library setup time data required time</pre>	0.00 -0.25 0.00 -0.31	22.00 22.00 21.75 21.75 r 21.44 21.44
data required time		21.44

```
data arrival time
                                           -21.44
  _____
  slack (MET)
                                             0.00
Report : area
Design : multiplier
Version: C-2009.06-SP5
Date : Sat Dec 10 20:03:53 2016
*********
Library(s) Used:
   tc240c (File: /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25)
Number of ports:
                         165
                        973
Number of nets:
Number of cells:
                        708
Number of references:
                         53
Noncombinational area: 2833.500000
Net Interconnect area: undefined
                      undefined (No wire load specified)
Total cell area: 3458.000000
                       undefined
Total area:
*********
Report : power
     -analysis effort low
Design : multiplier
Version: C-2009.06-SP5
Date : Sat Dec 10 20:03:53 2016
*********
Library(s) Used:
   tc240c (File: /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25)
Operating Conditions: WCCOM25 Library: tc240c
Wire Load Model Mode: top
Global Operating Voltage = 2.3
Power-specific unit information :
   Voltage Units = 1V
   Capacitance Units = 1.000000ff
   Time Units = 1ns
   Dynamic Power Units = 1uW (derived from V,C,T units)
   Leakage Power Units = Unitless
```

Cell Internal Power = 1.6279 mW (88%)
Net Switching Power = 218.6020 uW (12%)
----Total Dynamic Power = 1.8465 mW (100%)

Cell Leakage Power = 0.0000

1

REPORT - DIVISION

Beginning Pass 1 Mapping _____ Processing 'Add_half_1_0' Processing 'Add_full_1_0' Processing 'Add_rca_4_1_0' Processing 'Add rca 16 1 0' Processing 'Add rca 1 0' Processing 'division'

Report : timing -path full -delay max -max paths 1 Design : division

Version: C-2009.06-SP5

Date : Sat Dec 10 17:41:18 2016

Operating Conditions: WCCOM25 Library: tc240c

Wire Load Model Mode: top

Startpoint: sign_reg (rising edge-triggered flip-flop clocked by clock)

Endpoint: result reg[63]

(rising edge-triggered flip-flop clocked by clock)

Path Group: clock Path Type: max

Point	Incr	Path
clock clock (rise edge)	0.00	0.00
clock network delay (propagated)	0.00	0.00
sign reg/CP (CFD1X1)	0.00	0.00 r
sign_reg/Q (CFD1X1)	0.44	0.44 r
A5/Z (CTSX2)	0.27	0.71 f
C4/c_in (Add_rca_1_3)	0.00	0.71 f
C4/Z1/c_in (Add_rca_16_1_6)	0.00	0.71 f
C4/Z1/M1/c_in (Add_rca_4_1_24)	0.00	0.71 f
C4/Z1/M1/M1/c_in (Add_full_1_96)	0.00	0.71 f
C4/Z1/M1/M1/M2/b (Add_half_1_191)	0.00	0.71 f
C4/Z1/M1/M1/M2/U3/Z (CIVX2)	0.05	
C4/Z1/M1/M1/M2/U2/Z (CNR2IX1)	0.06	
C4/Z1/M1/M1/M2/c_out (Add_half_1_191)	0.00	0.83 f
C4/Z1/M1/M1/U2/Z (CND2IX1)	0.19	
C4/Z1/M1/M1/c_out (Add_full_1_96)	0.00	1.01 f
C4/Z1/M1/M2/c_in (Add_full_1_95)	0.00	
C4/Z1/M1/M2/M2/b (Add_half_1_189)	0.00	1.01 f
C4/Z1/M1/M2/M2/U2/Z (CAN2X1)	0.16	1.17 f
C4/Z1/M1/M2/M2/c_out (Add_half_1_189)	0.00	1.17 f
C4/Z1/M1/M2/U2/Z (CND2IX1)	0.18	
C4/Z1/M1/M2/c_out (Add_full_1_95)	0.00	
C4/Z1/M1/M3/c_in (Add_full_1_94)	0.00	
C4/Z1/M1/M3/M2/b (Add_half_1_187)	0.00	1.36 f

C4/Z1/M1/M3/M2/U2/Z (CAN2X1)	0.16	1.52 f
C4/Z1/M1/M3/M2/c out (Add half 1 187)	0.00	1.52 f
C4/Z1/M1/M3/U2/Z (CND2IX1)	0.19	
C4/Z1/M1/M3/c out (Add full 1 94)	0.00	1.70 f
C4/Z1/M1/M4/c in (Add full 1 93)	0.00	1.70 f
C4/Z1/M1/M4/M2/b (Add half 1 185)	0.00	1.70 f
C4/Z1/M1/M4/M2/U2/Z (CAN2X1)	0.18	1.88 f
C4/Z1/M1/M4/M2/c out (Add half 1 185)	0.00	1.88 f
C4/Z1/M1/M4/M2/C_OUC (Add_Mail_1_103) C4/Z1/M1/M4/U2/Z (CND2IX1)	0.18	2.06 f
C4/Z1/M1/M4/c_out (Add_full_1_93)	0.00	2.06 f
C4/Z1/M1/c_out (Add_rca_4_1_24)	0.00	2.06 f
C4/Z1/M2/c_in (Add_rca_4_1_23)	0.00	
C4/Z1/M2/M1/c_in (Add_full_1_92)	0.00	
C4/Z1/M2/M1/M2/b (Add_half_1_183)	0.00	2.06 f
C4/Z1/M2/M1/M2/U1/Z (CAN2X1)	0.16	2.22 f
C4/Z1/M2/M1/M2/c_out (Add_half_1_183)	0.00	2.22 f
C4/Z1/M2/M1/U1/Z (COR2X1)	0.24	2.46 f
C4/Z1/M2/M1/c_out (Add_full_1_92)	0.00	2.46 f
C4/Z1/M2/M2/c_in (Add_full_1_91)	0.00	2.46 f
C4/Z1/M2/M2/M2/b (Add half 1 181)	0.00	2.46 f
C4/Z1/M2/M2/M2/U2/Z (CAN2X1)	0.16	2.63 f
C4/Z1/M2/M2/M2/c out (Add half 1 181)	0.00	2.63 f
C4/Z1/M2/M2/U2/Z (CND2IX1)	0.18	2.81 f
C4/Z1/M2/M2/c out (Add full 1 91)	0.00	
C4/Z1/M2/M3/c in (Add full 1 90)	0.00	2.81 f
C4/Z1/M2/M3/M2/b (Add half 1 179)	0.00	2.81 f
C4/Z1/M2/M3/M2/U1/Z (CAN2X1)	0.16	2.97 f
C4/Z1/M2/M3/M2/c out (Add half 1 179)	0.00	2.97 f
C4/Z1/M2/M3/U2/Z (CND2IX1)	0.18	
C4/Z1/M2/M3/c out (Add full 1 90)	0.00	
C4/Z1/M2/M4/c in (Add full 1 89)	0.00	3.15 f
C4/Z1/M2/M4/M2/b (Add half 1 177)	0.00	3.15 f
C4/Z1/M2/M4/M2/U2/Z (CAN2X1)	0.16	3.31 f
C4/Z1/M2/M4/M2/c out (Add half 1 177)	0.00	3.31 f
C4/Z1/M2/M4/M2/C_OUC (Add_Mail_1_1//) C4/Z1/M2/M4/U2/Z (CND2IX1)	0.19	3.50 f
C4/Z1/M2/M4/C out (Add full 1 89)	0.00	3.50 f
C4/Z1/M2/C out (Add_Id11_1_09) C4/Z1/M2/c out (Add rca 4 1 23)	0.00	3.50 f
C4/Z1/M3/c_in (Add_rca_4_1_22)	0.00	3.50 f
C4/Z1/M3/M1/c_in (Add_full_1_88)	0.00	
C4/Z1/M3/M1/M2/b (Add_half_1_175)	0.00	3.50 f
C4/Z1/M3/M1/M2/U2/Z (CAN2X1)	0.17	3.67 f
C4/Z1/M3/M1/M2/c_out (Add_half_1_175)	0.00	3.67 f
C4/Z1/M3/M1/U1/Z (COR2X1)	0.24	3.91 f
C4/Z1/M3/M1/c_out (Add_full_1_88)	0.00	3.91 f
C4/Z1/M3/M2/c_in (Add_full_1_87)	0.00	3.91 f
C4/Z1/M3/M2/M2/b (Add_half_1_173)	0.00	3.91 f
C4/Z1/M3/M2/M2/U1/Z (CAN2X1)	0.16	4.08 f
C4/Z1/M3/M2/M2/c_out (Add_half_1_173)	0.00	4.08 f
C4/Z1/M3/M2/U2/Z (CND2IX1)	0.19	4.26 f
C4/Z1/M3/M2/c_out (Add_full_1_87)	0.00	4.26 f
C4/Z1/M3/M3/c_in (Add_full_1_86)	0.00	4.26 f
C4/Z1/M3/M3/M2/b (Add_half_1_171)	0.00	4.26 f
C4/Z1/M3/M3/M2/U1/Z (CAN2X1)	0.18	4.44 f
C4/Z1/M3/M3/M2/c_out (Add_half_1_171)	0.00	4.44 f
C4/Z1/M3/M3/U2/Z (CND2IX1)	0.19	4.62 f
C4/Z1/M3/M3/c_out (Add_full_1_86)	0.00	4.62 f
C4/Z1/M3/M4/c in (Add full 185)	0.00	4.62 f

C4/Z1/M3/M4/M2/b (Add half 1 169)	0.00	4.62 f
C4/Z1/M3/M4/M2/U1/Z (CAN2X1)	0.18	4.80 f
C4/Z1/M3/M4/M2/c out (Add half 1 169)	0.00	4.80 f
C4/Z1/M3/M4/U2/Z (CND2IX1)	0.18	
C4/Z1/M3/M4/c out (Add full 1 85)	0.00	
C4/Z1/M3/c out (Add rca 4 1 22)	0.00	4.98 f
C4/Z1/M4/c_in (Add_rca_4_1_21)	0.00	
C4/Z1/M4/M1/c_in (Add_full_1_84)	0.00	4.98 f
C4/Z1/M4/M1/M2/b (Add_half_1_167)	0.00	4.98 f
C4/Z1/M4/M1/M2/U1/Z (CAN2X1)	0.16	5.14 f
C4/Z1/M4/M1/M2/c_out (Add_half_1_167)	0.00	5.14 f
C4/Z1/M4/M1/U1/Z (COR2X1)	0.24	5.38 f
C4/Z1/M4/M1/c_out (Add_full_1_84)	0.00	5.38 f
C4/Z1/M4/M2/c_in (Add_full_1_83)	0.00	5.38 f
C4/Z1/M4/M2/M2/b (Add half 1 165)	0.00	5.38 f
C4/Z1/M4/M2/M2/U2/Z (CAN2X1)	0.17	5.56 f
C4/Z1/M4/M2/M2/c out (Add half 1 165)	0.00	5.56 f
C4/Z1/M4/M2/U1/Z (COR2X1)	0.24	5.80 f
C4/Z1/M4/M2/c out (Add full 1 83)	0.00	5.80 f
C4/Z1/M4/M3/c in (Add full 1 82)	0.00	5.80 f
C4/Z1/M4/M3/M2/b (Add half 1 163)		5.80 f
C4/Z1/M4/M3/M2/U1/Z (CAN2X1)		5.96 f
C4/Z1/M4/M3/M2/c out (Add half 1 163)		5.96 f
C4/Z1/M4/M3/M2/C_OUC (Add_Hall_1_103) C4/Z1/M4/M3/U1/Z (COR2X1)	0.24	
C4/Z1/M4/M3/c_out (Add_full_1_82)	0.00	
C4/Z1/M4/M4/c_in (Add_full_1_81)	0.00	6.19 f
C4/Z1/M4/M4/M2/b (Add_half_1_161)	0.00	6.19 f
C4/Z1/M4/M4/M2/U3/Z (CAN2X1)	0.16	6.35 f
C4/Z1/M4/M4/M2/c_out (Add_half_1_161)		
C4/Z1/M4/M4/U1/Z (COR2X1)	0.24	6.60 f
C4/Z1/M4/M4/c_out (Add_full_1_81)		6.60 f
C4/Z1/M4/c_out (Add_rca_4_1_21)	0.00	6.60 f
C4/Z1/c_out (Add_rca_16_1_6)	0.00	6.60 f
C4/Z2/c_in (Add_rca_16_1_5)	0.00	
C4/Z2/M1/c in (Add rca 4 1 20)	0.00	6.60 f
C4/Z2/M1/M1/c in (Add full 1 80)	0.00 0.00 0.18	6.60 f
C4/Z2/M1/M1/M2/b (Add half 1 159)	0.00	6.60 f
C4/Z2/M1/M1/M2/U1/Z (CAN2X1)	0.18	6.77 f
C4/Z2/M1/M1/M2/c out (Add half 1 159)		6.77 f
C4/Z2/M1/M1/U2/Z (CND2IX1)	0.18	6.96 f
C4/Z2/M1/M1/c out (Add full 1 80)	0.00	6.96 f
C4/Z2/M1/M2/c in (Add full 1 79)	0.00	6.96 f
C4/Z2/M1/M2/M2/b (Add half 1 157)	0.00	6.96 f
C4/Z2/M1/M2/M2/U1/Z (CAN2X1)	0.16	7.12 f
C4/Z2/M1/M2/M2/c out (Add half 1 157)	0.00	7.12 f
C4/Z2/M1/M2/W2/Z (CND2IX1)	0.19	7.30 f
C4/Z2/M1/M2/c_out (Add_full_1_79)	0.00	7.30 f
C4/Z2/M1/M3/c_in (Add_full_1_78)	0.00	7.30 f
C4/Z2/M1/M3/M2/b (Add_half_1_155)	0.00	7.30 f
C4/Z2/M1/M3/M2/U1/Z (CAN2X1)	0.18	7.48 f
C4/Z2/M1/M3/M2/c_out (Add_half_1_155)	0.00	7.48 f
C4/Z2/M1/M3/U2/Z (CND2IX1)	0.18	7.66 f
C4/Z2/M1/M3/c_out (Add_full_1_78)	0.00	7.66 f
C4/Z2/M1/M4/c_in (Add_full_1_77)	0.00	7.66 f
C4/Z2/M1/M4/M2/b (Add_half_1_153)	0.00	7.66 f
C4/Z2/M1/M4/M2/U1/Z (CAN2X1)	0.16	7.82 f
C4/Z2/M1/M4/M2/c_out (Add_half_1_153)	0.00	7.82 f

C4/Z2/M1/M4/U2/Z (CND2IX1)	0.19	8.01 f
C4/Z2/M1/M4/c out (Add full 1 77)	0.00	8.01 f
C4/Z2/M1/c out (Add rca 4 1 20)	0.00	8.01 f
C4/Z2/M2/c in (Add rca 4 1 19)	0.00	
C4/Z2/M2/M1/c in (Add full 1 76)	0.00	
C4/Z2/M2/M1/M2/b (Add half 1 151)	0.00	
C4/Z2/M2/M1/M2/U1/Z (CAN2X1)	0.18	
C4/Z2/M2/M1/M2/c out (Add half 1 151)		8.18 f
C4/Z2/M2/M1/U2/Z (CND2IX1)	0.18	8.37 f
C4/Z2/M2/M1/c out (Add full 1 76)	0.00	8.37 f
C4/Z2/M2/M1/C_out (Add_Id11_1_/0) C4/Z2/M2/M2/c in (Add full 1 75)	0.00	8.37 f
C4/Z2/M2/M2/C_IN (Add_IdII_I_73) C4/Z2/M2/M2/M2/b (Add half 1 149)	0.00	8.37 f
		8.53 f
C4/Z2/M2/M2/M2/U1/Z (CAN2X1)		
C4/Z2/M2/M2/M2/c_out (Add_half_1_149)		8.53 f
C4/Z2/M2/M2/U1/Z (COR2X1)		8.76 f
C4/Z2/M2/M2/c_out (Add_full_1_75)		8.76 f
C4/Z2/M2/M3/c_in (Add_full_1_74)	0.00	8.76 f
C4/Z2/M2/M3/M2/b (Add_half_1_147)	0.00	8.76 f
C4/Z2/M2/M3/M2/U2/Z (CAN2X1)	0.16	8.91 f 8.91 f
C4/Z2/M2/M3/M2/c_out (Add_half_1_147)	0.00	8.91 I
C4/Z2/M2/M3/U1/Z (COR2X1)		9.16 f
C4/Z2/M2/M3/c_out (Add_full_1_74)	0.00	9.16 f
C4/Z2/M2/M4/c_in (Add_full_1_73)	0.00	9.16 f
C4/Z2/M2/M4/M2/b (Add_half_1_145)	0.00	9.16 f
C4/Z2/M2/M4/M2/U1/Z (CAN2X1)	0.17	9.33 f
C4/Z2/M2/M4/M2/c_out (Add_half_1_145)	0.00	9.33 f
C4/Z2/M2/M4/U1/Z (COR2X1)	0.24	9.57 f
C4/Z2/M2/M4/c out (Add full 1 73)	0.00	9.57 f
C4/Z2/M2/c out (Add rca 4 1 19)	0.00	9.57 f
$C4/Z2/M3/c$ in (Add rca $\frac{1}{4}$ $\frac{1}{1}$ $\frac{1}{1}$ 8)	0.00	9.57 f
$C4/Z2/M3/M1/c$ in $(\overline{A}dd \overline{full} 1 72)$	0.00	9.57 f
C4/Z2/M3/M1/M2/b (Add half 1 143)	0.00	9.57 f
C4/Z2/M3/M1/M2/U1/Z (CAN2X1)		9.73 f
C4/Z2/M3/M1/M2/c out (Add half 1 143)		9.73 f
C4/Z2/M3/M1/U1/Z (COR2X1)		9.97 f
C4/Z2/M3/M1/c out (Add full 1 72)	0.00	9.97 f
C4/Z2/M3/M2/c in (Add full 1 71)	0.00	9.97 f 9.97 f
C4/Z2/M3/M2/M2/b (Add half 1 141)	0.00	9.97 f
C4/Z2/M3/M2/M2/U1/Z (CAN2X1)		10.13 f
C4/Z2/M3/M2/M2/c out (Add half 1 141)	0.00	10.13 f
C4/Z2/M3/M2/U2/Z (CND2IX1)	0.18	
C4/Z2/M3/M2/c out (Add full 1 71)	0.00	
C4/Z2/M3/M3/c in (Add full 1 70)	0.00	10.32 f
C4/Z2/M3/M3/C_IN (Add_IdII_I_70) C4/Z2/M3/M3/M2/b (Add half 1 139)	0.00	10.32 f
C4/Z2/M3/M3/M2/JJ (Add_Hall_1_1_139) C4/Z2/M3/M3/M2/U1/Z (CAN2X1)	0.16	10.48 f
C4/Z2/M3/M3/M2/c out (Add half 1 139)	0.00	
C4/Z2/M3/M3/M2/C_OUT (Add_Hall_1_139) C4/Z2/M3/M3/U1/Z (COR2X1)		10.48 f
	0.24	10.72 f
C4/Z2/M3/M3/c_out (Add_full_1_70) C4/Z2/M3/M4/c in (Add full 1 69)	0.00	10.72 f
C4/Z2/M3/M4/C_IN (Add_IUII_I_09) C4/Z2/M3/M4/M2/b (Add half 1 137)		10.72 f
<u> </u>	0.00	10.72 f
C4/Z2/M3/M4/M2/U1/Z (CAN2X1)	0.17	10.89 f
C4/Z2/M3/M4/M2/c_out (Add_half_1_137)	0.00	10.89 f
C4/Z2/M3/M4/U1/Z (COR2X1)	0.24	11.13 f
C4/Z2/M3/M4/c_out (Add_full_1_69)	0.00	11.13 f
C4/Z2/M3/c_out (Add_rca_4_1_18)	0.00	11.13 f
C4/Z2/M4/c_in (Add_rca_4_1_17)	0.00	11.13 f
C4/Z2/M4/M1/c_in (Add_full_1_68)	0.00	11.13 f

C4/22/M4/MI/M2/U1/C (CAN2XI) 0.16 11.29 f C4/22/M4/MI/M2/U1/C (CAN2XI) 0.16 11.29 f C4/22/M4/MI/M2/C out (Add half 1 135) 0.00 11.29 f C4/22/M4/MI/C out (Add half 1 135) 0.00 11.29 f C4/22/M4/MI/C (CAN2XI) 0.10 11.54 f C4/22/M4/M2/C (CAN2XI) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1			
C4/22/M4/M1/M2/c out (Add half 1 135)	C4/Z2/M4/M1/M2/b (Add half 1 135)	0.00	11.13 f
C4/22/M4/M1/M2/c out (Add half 1 135)		0.16	11.29 f
C4/22/M4/M1/Cout (Add Full 1 68) C4/22/M4/M2/Coin (Add Full 1 68) C4/22/M4/M2/Coin (Add Full 1 68) C4/22/M4/M2/M2/b (Add half 1 133) C4/22/M4/M2/M2/b (Add half 1 133) C4/22/M4/M2/M2/Cout (Add half 1 133) C4/22/M4/M2/M2/Cout (Add half 1 133) C4/22/M4/M2/Cout (Add full 1 67) C4/22/M4/M3/Coin (Add full 1 68) C4/22/M4/M4/Coin (Add full 1 68) C4/22/M4/M4/Coin (Add full 1 68) C4/22/M4/M4/M2/Coin (Add full 1 68) C5/21/M1/M1/Coin (Add full 1 68) C5/21/M1/M1/M2/Coin (Add full 1 68) C5/21/M1/M1/M2/Coin (Add full 1 68) C5/21/M1/M1/M2/Coin (Add full 1 68) C5/21/M1/M2/Coin (Add full 1 68) C5/21/M1/M2/Coin (Add full 1 68) C5/21/M1/M3/M2/Coin (Add full 1 68) C5/21/M1/M4/M2/Coin (Add full 1		0.00	11.29 f
C4/22/M4/M2/C in (Add full 1 68) C4/22/M4/M2/C in (Add full 1 67) C4/22/M4/M2/C in (Add full 1 67) C4/22/M4/M2/M2/C (Add half 1 133) 0.00 11.54 f C4/22/M4/M2/M2/C (CAN2XI) 0.18 11.71 f C4/22/M4/M2/M2/C out (Add half 1 133) 0.00 11.91 f C4/22/M4/M2/C (CND2IXI) 0.18 11.89 f C4/22/M4/M2/C (CND2IXI) 0.18 11.89 f C4/22/M4/M3/C in (Add full 1 66) 0.00 11.89 f C4/22/M4/M3/C in (Add full 1 66) 0.00 11.89 f C4/22/M4/M3/C (Add half 1 131) 0.00 11.89 f C4/22/M4/M3/C (CON2IXI) 0.16 12.05 f C4/22/M4/M3/M2/C out (Add half 1 131) 0.00 12.05 f C4/22/M4/M3/M2/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M3/W2/C (CON2IXI) 0.18 12.23 f C4/22/M4/M3/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M3/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M3/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M3/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M4/C in (Add full 1 66) 0.00 12.23 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.23 f C4/22/M4/M4/M2/C (CAN2XI) 0.16 12.39 f C4/22/M4/M4/M2/C (CAN2XI) 0.16 12.39 f C4/22/M4/M4/M2/C out (Add half 1 129) 0.00 12.23 f C4/22/M4/M4/M2/C out (Add half 1 129) 0.00 12.39 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.63 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.63 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.63 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.63 f C4/22/M4/M4/C out (Add full 1 66) 0.00 12.63 f C5/21/M1/C in (Add rea 16 1 9) 0.00 12.63 f C5/21/M1/M1/C in (Add full 1 66) 0.00 12.63 f C5/21/M1/M1/M2/C (CAN2XI) 0.10 12.63 f C5/21/M1/M1/M2/C (CAN2XI) 0.11 12.80 f C5/21/M1/M2/M2/C out (Add half 1 127) 0.00 12.63 f C5/21/M1/M2/M2/C out (Add half 1 128) 0.00 13.05 f C5/21/M1/M2/M2/C out (Add half 1 128) 0.00 13.05 f C5/21/M1/M2/M2/C out (Add half 1 128) 0.00 13.05 f C5/21/M1/M2/M2/C out (Add half 1 128) 0.00 13.95 f C5/21/M1/M2/M2/C out (Add half 1 128) 0.00 13.95 f C5/21/M1/M3/M2/C out (Add half 1 121) 0.00 13.95 f C5/21/M1/M3/M2/C out (Add half 1 121) 0.00 13.95 f C5/21/M1/M4/C out (Add half 1 121) 0.00 13.95 f C5/21/M1/M4/C out (
C4722/M4/M2/C2 in (Add Full 1 67) C4722/M4/M2/M2/C (Add half 1 133) C4722/M4/M2/M2/C (CND2IXI) C4722/M4/M2/M2/C out (Add half 1 133) C4722/M4/M2/C out (Add Full 1 67) C4722/M4/M2/C out (Add Full 1 67) C4722/M4/M3/C in (Add full 1 67) C4722/M4/M3/M2/C in (Add half 1 131) C4722/M4/M3/M2/C in (Add half 1 131) C4722/M4/M3/M2/C in (Add half 1 131) C4722/M4/M3/C in (Add full 1 66) C4722/M4/M3/C in (Add half 1 169) C4722/M4/M4/C in (Add half 1 129) C4722/M4/M4/M2/C (CAN2XI) C4722/M4/M4/M2/C (CAN2XI) C4722/M4/M4/M2/C in (Add half 1 129) C4722/M4/M4/M2/C (CAN2XI) C4722/M4/M4/M2/C in (Add half 1 129) C4722/M4/M4/M2/C out (Add rull 1 65) C4722/M4/M4/M2/C out (Add rull 1 65) C4722/M4/M4/M2/C out (Add rull 1 65) C4722/M4/M4/C out (Add rull 1 66) C5721/M1/M1/C in (Add rca 1 17) O.00 12.63 f C4722/M4/M4/C out (Add rull 1 68) C5721/M1/M1/C in (Add rca 1 16) C5721/M1/M1/C in (Add rca 1 16) C5721/M1/M1/M2/C in (Add rca 1 16) C5721/M1/M1/M2/C in (Add rca 1 16) C5721/M1/M1/M2/C in (Add rull 1 64) C5721/M1/M1/M2/C in (Add rull 1 64) C5721/M1/M1/M2/C out (Add half 1 125) C5721/M1/M3/M2/C out (Add half 1 123) C5721/M1/M3/M2/C out (Add half 1 121) C5721/M1/M4/C out (Add h			
C4/22/M4/M2/M2/D2/D (Add_half_1_133)			
C4/Z2/M4/M2/M2/C out (Add half 1 133)			
C4/Z2/M4/M2/M2/C_out (Add_half_1_133)			
C4/22/M4/M2/Cout (Add full 1 67) 0.00 11.89 f C4/22/M4/M3/Cin (Add full 1 67) 0.00 11.89 f C4/22/M4/M3/Cin (Add full 1 67) 0.00 11.89 f C4/22/M4/M3/M2/D (Add half 1 131) 0.00 11.89 f C4/22/M4/M3/M2/D (Add half 1 131) 0.00 11.89 f C4/22/M4/M3/M2/D (C0X2XI) 0.16 12.05 f C4/22/M4/M3/M2/Cout (Add half 1 131) 0.00 12.05 f C4/22/M4/M3/M2/Cout (Add half 1 131) 0.00 12.05 f C4/22/M4/M3/Cout (Add full 1 66) 0.01 12.23 f C4/22/M4/M3/Cout (Add full 1 66) 0.00 12.23 f C4/22/M4/M3/Cout (Add full 1 165) 0.00 12.23 f C4/22/M4/M4/Cout (Add full 1 165) 0.00 12.23 f C4/22/M4/M4/M2/Cout (Add half 1 129) 0.00 12.39 f C4/22/M4/M4/Cout (Add half 1 129) 0.00 12.39 f C4/22/M4/M4/Cout (Add full 1 65) 0.00 12.39 f C4/22/M4/M4/Cout (Add full 1 65) 0.00 12.39 f C4/22/M4/M4/Cout (Add rea 1 6 1 6) 0.00 12.63 f C4/22/M4/M4/Cout (Add rea 1 6 1 6) 0.00 12.63 f C4/22/M4/M4/Cout (Add rea 1 6 1 6) 0.00 12.63 f C4/22/M4/M4/Cout (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Add rea 1 6 1 6) 0.00 12.63 f C5/2 in (Minl/Cout (Add half 1 127) 0.00 12.63 f C5/2 in (Minl/Cout (Add half 1 127) 0.00 12.63 f C5/21/M1/M1/M2/D (Add half 1 127) 0.00 12.63 f C5/21/M1/M1/M2/D (COR2XI) 0.17 12.80 f C5/21/M1/M1/M2/D (Add half 1 127) 0.00 12.63 f C5/21/M1/M1/M2/D (Add half 1 127) 0.00 12.63 f C5/21/M1/M1/M2/D (Add half 1 127) 0.00 12.63 f C5/21/M1/M2/Cout (Add full 1 64) 0.00 13.05 f C5/21/M1/M2/Cout (Add full 1 64) 0.00 13.05 f C5/21/M1/M2/Cout (Add full 1 64) 0.00 13.05 f C5/21/M1/M2/Cout (Add full 1 63) 0.00 13.05 f C5/21/M1/M2/Cout (Add full 1 62) 0.00 13.95 f C5/21/M1/M4/Cout (Add full 1 62) 0.00 13.95 f C5/21/M1/M4/Cout (Add rea 4 1 15) 0.00 14.12 f C5		0.10	11 71 f
C4/22/M4/M3/M2/b (Add_half_1_131)		0.00	11 89 f
C4/22/M4/M3/M2/b (Add_half_1_131)		0.10	11.09 I
C4/22/M4/M3/MZ/b (Add half 1 131)		0.00	11.09 I
C4/Z2/M4/M3/M2/C_out (Add_half_1_131)			
C4/Z2/M4/M3/U2/Z (CNDZIXI) C4/Z2/M4/M3/U2/Z (CNDZIXI) 0.18 12.23 f C4/Z2/M4/M3/C_out (Add_full_1_66) 0.00 12.23 f C4/Z2/M4/M4/D (Add_full_1_55) 0.00 12.23 f C4/Z2/M4/M4/MZ/D (Add_half_1_129) 0.00 12.23 f C4/Z2/M4/M4/MZ/D (CARXXI) 0.16 12.39 f C4/Z2/M4/M4/MZ/C out (Add_half_1_129) 0.00 12.39 f C4/Z2/M4/M4/MZ/C out (Add_half_1_129) 0.00 12.39 f C4/Z2/M4/M4/MZ/C cout (Add_half_1_129) 0.00 12.39 f C4/Z2/M4/M4/UZ/Z (CORXXI) 0.24 12.63 f C4/Z2/M4/M4/UZ/C (CORXXI) 0.00 12.63 f C4/Z2/M4/M4/UZ/C out (Add_rca_1_5) 0.00 12.63 f C4/Z2/M4/C_out (Add_rca_1_3) 0.00 12.63 f C4/Z2/M4/C_out (Add_rca_1_3) 0.00 12.63 f C5/Z1/M1/M1/C_in (Add_rca_1_16) 0.00 12.63 f C5/Z1/M1/M1/C_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/C_in (Add_full_1_164) 0.00 12.63 f C5/Z1/M1/M1/MZ/UJ/Z (CANXXI) 0.17 12.80 f C5/Z1/M1/M1/MZ/Out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/MZ/C_out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/C_out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/C_OUT (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M2/C_OUT (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M2/C_OUT (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M2/C_OUT (Add_half_1_127) 0.00 13.05 f C5/Z1/M1/M2/C_OUT (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/C_OUT (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/C_OUT (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/C_OUT (Add_half_1_123) 0.00 13.95 f C5/Z1/M1/M3/C_OUT (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M3/C_OUT (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M3/C_OUT (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/C_in (Add_full_1_61) 0.00 13.95 f C5/Z1/M1/M4/C_in (Add_full_1_61) 0.00 13.95 f C5/Z1/M1/M4/C_in (Add_full_1_61) 0.00 13.95 f C5/Z1/			
C4/Z2/M4/M3/C_out (Add_full_1_66)			
C4/22/M4/M3/c out (Add full 1 66) 0.00 12.23 f C4/22/M4/M4/c_in (Add_full 1 65) 0.00 12.23 f C4/22/M4/M4/D (Add_half 1 129) 0.00 12.23 f C4/22/M4/M4/M2/U2/Z (CAN2XI) 0.16 12.39 f C4/22/M4/M4/M2/c_out (Add_half 1 129) 0.00 12.39 f C4/22/M4/M4/M2/c_out (Add_half 1 129) 0.00 12.39 f C4/22/M4/M4/C_out (Add full 1 65) 0.00 12.63 f C4/22/M4/M4/c_out (Add_full 1 65) 0.00 12.63 f C4/22/M4/dyc_out (Add_rca 4 1 17) 0.00 12.63 f C4/22/out (Add_rca 16 1 5) 0.00 12.63 f C4/22/c_out (Add_rca 16 1 5) 0.00 12.63 f C4/22/c_out (Add_rca 1 2) 0.00 12.63 f C5/c_in (Add_rca 1 2) 0.00 12.63 f C5/zI/c_in (Add_rca 1 1 6 1 6) 0.00 12.63 f C5/zI/m1/c_in (Add_rca 4 1 16) 0.00 12.63 f C5/zI/m1/m1/c_in (Add_rca 4 1 16) 0.00 12.63 f C5/zI/m1/m1/m2/b (Add_half 1 127) 0.00 12.63 f C5/zI/m1/m1/m2/b (Add_half 1 127) 0.00 12.63 f C5/zI/m1/m1/m2/c_out (Add_half 1 127) 0.00 12.63 f C5/zI/m1/m1/m2/c_out (Add_half 1 127) 0.00 12.63 f C5/zI/m1/m1/m2/c_out (Add_half 1 127) 0.00 12.80 f C5/zI/m1/m1/c_out (Add_full 1 63) 0.00 13.05 f C5/zI/m1/m2/c_out (Add_half 1 125) 0.00 13.05 f C5/zI/m1/m2/c_out (Add_half 1 126) 0.00 13.39 f C5/zI/m1/m3/c_out (Add_half 1 123) 0.00 13.39 f C5/zI/m1/m3/m2/c_out (Add_half 1 123) 0.00 13.39 f C5/zI/m1/m3/c_out (Add_half 1 123) 0.00 13.39 f C5/zI/m1/m3/c_out (Add_half 1 123) 0.00 13.39 f C5/zI/m1/m3/c_out (Add_half 1 121) 0.00 13.99 f C5/zI/m1/m3/c_out (Add_half 1 121) 0.00 13.99 f C5/zI/m1/m4/c_in (Add_rca 4 1 16) 0.00 14.12 f C5/zI/m1/m4/c_in (Add_rca 4 1 16) 0.00 14.12 f C5/zI/m1/m4/c_i			
C4/22/M4/M4/C_in (Add_full_1_65) C4/22/M4/M4/M2/b (Add_half_1_129) C4/22/M4/M4/M2/U2/2 (CAN2XI) 0.00 12.23 f C4/22/M4/M4/M2/C_out (Add_half_1_129) 0.00 12.39 f C4/22/M4/M4/U1/z (COR2XI) 0.24 12.63 f C4/22/M4/M4/U1/z (COR2XI) 0.00 12.63 f C4/22/M4/M4/C_out (Add_full_65) 0.00 12.63 f C4/22/M4/M4/C_out (Add_rca_4_1_17) 0.00 12.63 f C4/22/C_out (Add_rca_16_1_5) 0.00 12.63 f C4/22/C_out (Add_rca_16_1_5) 0.00 12.63 f C5/c_in (Add_rca_1_3) 0.00 12.63 f C5/21/c_in (Add_rca_16_1_4) 0.00 12.63 f C5/21/M1/C_in (Add_rca_16_1_4) 0.00 12.63 f C5/21/M1/C_in (Add_rca_16_1_4) 0.00 12.63 f C5/21/M1/M1/C_in (Add_full_1_64) 0.00 12.63 f C5/21/M1/M1/M2/U1/2 (CAN2XI) 0.00 12.63 f C5/21/M1/M1/M2/C_out (Add_half_1_127) 0.00 12.63 f C5/21/M1/M1/C_out (Add_full_1_64) 0.00 13.05 f C5/21/M1/M2/C_out (Add_full_1_64) 0.00 13.05 f C5/21/M1/M2/C_out (Add_half_1_125) 0.00 13.05 f C5/21/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.05 f C5/21/M1/M2/M2/C_out (Add_half_1_125) 0.00 13.39 f C5/21/M1/M2/C_out (Add_full_1_63) 0.00 13.39 f C5/21/M1/M3/C_out (Add_full_1_63) 0.00 13.39 f C5/21/M1/M3/C_out (Add_full_1_63) 0.00 13.39 f C5/21/M1/M3/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/21/M1/M3/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/21/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/21/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/21/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/21/M1/M3/M2/c_out (Add_full_1_61) 0.00 13.79 f C5/21/M1/M4/M2/c_out (Add_full_1_61) 0.00 13.79 f C5/21/M1/M4/M2/c_out (Add_full_1_61) 0.00 14.12 f C5/21/M1/M4/M2/c_out (Add_full_1_61) 0.00 14.12 f C5/21/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/21/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/21/M1/M1/c_in (Add_rca_4_1_16)			
C4/Z2/M4/M4/M2/U2/Z (CAN2XI) 0.16 12.33 f C4/Z2/M4/M4/M2/U2/Z (CAN2XI) 0.16 12.33 f C4/Z2/M4/M4/M2/U2/Z (CAN2XI) 0.00 12.33 f C4/Z2/M4/M4/M2/C2_out (Add_half_1_129) 0.00 12.33 f C4/Z2/M4/M4/C_out (Add full_1_65) 0.00 12.63 f C4/Z2/M4/K2_out (Add_full_1_65) 0.00 12.63 f C4/Z2/M4/C_out (Add_rca_4_1_17) 0.00 12.63 f C4/Z2/c_out (Add_rca_1_3) 0.00 12.63 f C4/C_out (Add_rca_1_3) 0.00 12.63 f C5/C_in (Add_rca_1_2) 0.00 12.63 f C5/Z1/c_in (Add_rca_1_2) 0.00 12.63 f C5/Z1/mi/C_in (Add_rca_1_4) 0.00 12.63 f C5/Z1/M1/C_in (Add_rca_1_4) 0.00 12.63 f C5/Z1/M1/C_in (Add_rca_1_16) 0.00 12.63 f C5/Z1/M1/M1/C_in (Add_rca_1_12) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/C_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M1/C_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/D2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/C_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/C_out (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/O2/Z (CND2X1) 0.17 13.39 f C5/Z1/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/M2/c_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/C_out (Add_full_1_61) 0.00 14.12 f		0.00	12.23 I
C4/Z2/M4/M2/M2/C2/Z (CAN2XI) 0.16 12.39 f C4/Z2/M4/M4/M1/Z (COR2XI) 0.24 12.63 f C4/Z2/M4/M4/U1/Z (COR2XI) 0.24 12.63 f C4/Z2/M4/M2/C_out (Add_rca_4 l_17) 0.00 12.63 f C4/Z2/M4/C_out (Add_rca_16_15) 0.00 12.63 f C4/Z2/C_out (Add_rca_16_15) 0.00 12.63 f C4/C_out (Add_rca_16_15) 0.00 12.63 f C5/C_in (Add_rca_16_2) 0.00 12.63 f C5/Z1/C_in (Add_rca_16_14) 0.00 12.63 f C5/Z1/M1/C_in (Add_rca_41_16) 0.00 12.63 f C5/Z1/M1/M1/M2/C_in (Add_full_164) 0.00 12.63 f C5/Z1/M1/M1/M1/C_in (Add_full_127) 0.00 12.63 f C5/Z1/M1/M1/M1/M2/C_out (Add_half_127) 0.00 12.80 f C5/Z1/M1/M1/M1/C_out (Add_full_164) 0.00 12.80 f C5/Z1/M1/M1/M1/C_out (Add_full_164) 0.00 13.05 f C5/Z1/M1/M2/M2/C_in (Add_full_153) 0.00 13.05 f C5/Z1/M1/M2/M2/C_in (Add_full_164) 0.00 13.05 f C5/Z1/M1/M2/M2/C_in (Add_full_163) 0.00 13.05 f		0.00	12.23 I
C4/Z2/M4/M4/M2/C out (Add half 1 129) 0.00 12.39 f C4/Z2/M4/M4/U1/Z (COR2X1) 0.24 12.63 f C4/Z2/M4/M4/c out (Add full 1 65) 0.00 12.63 f C4/Z2/M4/C out (Add rca 16 1 5) 0.00 12.63 f C4/Z2/C out (Add rca 16 1 5) 0.00 12.63 f C5/c in (Add rca 1 6 1 5) 0.00 12.63 f C5/c in (Add rca 1 6 1 4) 0.00 12.63 f C5/Z1/C in (Add rca 1 6 1 4) 0.00 12.63 f C5/Z1/M1/C in (Add rca 4 1 16) 0.00 12.63 f C5/Z1/M1/M1/E in (Add full 1 64) 0.00 12.63 f C5/Z1/M1/M1/M2/D (Add half 1 127) 0.00 12.63 f C5/Z1/M1/M1/M2/C out (Add half 1 127) 0.00 12.63 f C5/Z1/M1/M1/M2/C out (Add full 1 63) 0.00 12.80 f C5/Z1/M1/M1/M2/C in (Add full 1 63) 0.00 13.05 f C5/Z1/M1/M2/M2/D (COR2X1) 0.00 13.05 f C5/Z1/M1/M2/M2/D (Out (Add half 1 125) 0.00 13.05 f C5/Z1/M1/M2/M2/C out (Add full 1 63) 0.00 13.39 f C5/Z1/M1/M3/M2/C out (Add full 1 62) 0.00 <td></td> <td>0.00</td> <td>12.23 1</td>		0.00	12.23 1
C4/Z2/M4/M4/c_out (Add_full_1_65) 0.24 12.63 f C4/Z2/M4/M4/c_out (Add_full_1_65) 0.00 12.63 f C4/Z2/M4/c_out (Add_rca_16_1_5) 0.00 12.63 f C4/Z2/c_out (Add_rca_16_1_5) 0.00 12.63 f C4/c_out (Add_rca_1_3) 0.00 12.63 f C5/c_in (Add_rca_1_2) 0.00 12.63 f C5/Z1/m1/c_in (Add_rca_4-1_16) 0.00 12.63 f C5/Z1/M1/M1/c_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/m2/b (Add_half_1127) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_1127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_full_164) 0.00 12.80 f C5/Z1/M1/M1/M2/c_out (Add_full_164) 0.00 12.80 f C5/Z1/M1/M1/M2/c_out (Add_full_164) 0.00 12.80 f C5/Z1/M1/M2/M2/c_in (Add_full_163) 0.00 13.05 f C5/Z1/M1/M2/M2/c_in (Add_full_163) 0.00 13.05 f C5/Z1/M1/M2/M2/c_out (Add_half_1125) 0.00 13.05 f C5/Z1/M1/M2/M2/c_out (Add_half_125) 0.00 13.22 f C5/Z1/M1/M3/m2/c_out (Add_full_163) </td <td></td> <td>0.16</td> <td>12.39 I</td>		0.16	12.39 I
C4/Z2/M4/M4/c_out (Add_full_1_65) 0.00 12.63 f C4/Z2/M4/c_out (Add_rca_4_1_17) 0.00 12.63 f C4/z2/c_out (Add_rca_16_1-5) 0.00 12.63 f C4/c_out (Add_rca_16_1-3) 0.00 12.63 f C5/c_in (Add_rca_12) 0.00 12.63 f C5/Z1/M1/c_in (Add_rca_16_1-4) 0.00 12.63 f C5/Z1/M1/M1/c_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/c_in (Add_full_1_164) 0.00 12.63 f C5/Z1/M1/M1/W2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/U7/Z (CAN2X1) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/M2/c_out (Add_full_1 64) 0.00 12.80 f C5/Z1/M1/M1/C_out (Add_full_1 64) 0.00 12.80 f C5/Z1/M1/M1/C_out (Add_full_1 64) 0.00 12.80 f C5/Z1/M1/M2/M2/c_out (Add_full_1 64) 0.00 13.05 f C5/Z1/M1/M2/M2/C_out (Add_full_1 64) 0.00 13.05 f C5/Z1/M1/M2/M2/D/C_out (Add_full_1 163) 0.00 13.05 f C5/Z1/M1/M2/M2/W2/U/Z (CAN2X1) 0.18 13.22 f C5/Z1/M1/M2/C_out (Add_full_1 62)		0.00	12.39 1
C4/Z2/M4/c_out (Add_rea_4_1_17) 0.00 12.63 f C4/Z2/c_out (Add_rea_16_1_5) 0.00 12.63 f C4/c_out (Add_rea_1_3) 0.00 12.63 f C5/c_in (Add_rea_1_2) 0.00 12.63 f C5/Z1/Min (Add_rea_16_1_4) 0.00 12.63 f C5/Z1/M1/Mi/c_in (Add_full_164) 0.00 12.63 f C5/Z1/M1/Mi/M2/b (Add_full_164) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_127) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_127) 0.00 12.63 f C5/Z1/M1/M1/c_out (Add_full_164) 0.00 12.63 f C5/Z1/M1/M2/c_out (Add_full_163) 0.00 13.05 f C5/Z1/M1/M2/c_out (Add_half_1125) 0.00 13.05 f C5/Z1/M1/M2/C_out (Add_full_163) 0.00 13.39 f C5/Z1/M1/M3/c_out (Add_ful			
C4/Z2/c_out (Add_rca_16_1_5) 0.00 12.63 f C4/c_out (Add_rca_1_2) 0.00 12.63 f C5/c_in (Add_rca_16_1_4) 0.00 12.63 f C5/Z1/M1/c_in (Add_rca_16_1_4) 0.00 12.63 f C5/Z1/M1/M1/c_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/U1/Z (CAN2X1) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/c_out (Add_full_1_64) 0.17 12.80 f C5/Z1/M1/M1/C_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/W2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/W2/U1/Z (CAN2X1) 0.18 13.22 f C5/Z1/M1/M2/W2/C (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/W2/C (CND2IX1) 0.17 13.39 f C5/Z1/M1/M3/M2/b (Add_full_			
C4/c_out (Add_rca_1_3)			
C5/c_in (Add_rca_1_2) 0.00 12.63 f C5/Z1/c_in (Add_rca_16_1_4) 0.00 12.63 f C5/Z1/MI/c_in (Add_rca_4_1_16) 0.00 12.63 f C5/Z1/MI/MI/C_in (Add_full_1_64) 0.00 12.63 f C5/Z1/MI/MI/M2/D1/Z (CAN2XI) 0.00 12.63 f C5/Z1/MI/MI/M2/U1/Z (CAN2XI) 0.17 12.80 f C5/Z1/MI/MI/M2/C_out (Add_half_1_127) 0.00 12.63 f C5/Z1/MI/MI/M2/C_out (Add_full_1_64) 0.00 13.05 f C5/Z1/MI/MI/C_out (Add_full_1_63) 0.00 13.05 f C5/Z1/MI/M2/M2/D (Add_half_1_125) 0.00 13.05 f C5/Z1/MI/M2/M2/U1/Z (CAN2XI) 0.18 13.22 f C5/Z1/MI/M2/M2/U1/Z (CAN2XI) 0.18 13.22 f C5/Z1/M1/M2/M2/Out (Add_half_1_125) 0.00 13.32 f C5/Z1/M1/M2/C_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/C_out (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/c out (Add_full_1_62) 0.00			
C5/Z1/c_in (Add_rca_16_1_4) 0.00 12.63 f C5/Z1/MI/c_in (Add_rca_4 1_16) 0.00 12.63 f C5/Z1/MI/MI/c_in (Add_full_1_64) 0.00 12.63 f C5/Z1/MI/MI/MZ/b (Add_half_1_127) 0.00 12.63 f C5/Z1/MI/MI/MZ/U1/Z (CAN2XI) 0.17 12.80 f C5/Z1/MI/MI/MZ/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/MI/MI/MI/Z (COR2XI) 0.24 13.05 f C5/Z1/MI/MI/C_out (Add_full_1_64) 0.00 13.05 f C5/Z1/MI/M2/C_in (Add_full_1_63) 0.00 13.05 f C5/Z1/MI/M2/MZ/b (Add_half_1_125) 0.00 13.05 f C5/Z1/MI/M2/MZ/C_out (Add_half_1_125) 0.00 13.22 f C5/Z1/MI/M2/M2/C_out (Add_half_1_125) 0.00 13.22 f C5/Z1/MI/M2/U2/Z (CND2IXI) 0.17 13.39 f C5/Z1/MI/M3/C_out (Add_full_1_63) 0.00 13.39 f C5/Z1/MI/M3/M2/U2/Z (CND2IXI) 0.17 13.39 f C5/Z1/MI/M3/M2/U2/Z (CND2IXI) 0.16 13.55 f C5/Z1/MI/M3/M2/U2/Z (CAN2XI) 0.00 13.79 f C5/Z1/MI/M3/M2/C_out (Add_half_1_123) 0.00 13.79 f C5/Z1/MI/M3/M2/C_out (Add_half_1_121)		0.00	12.03 1
C5/Z1/M1/M1/Zc_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/U1/Z (CAN2X1) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/U1/Z (COR2X1) 0.24 13.05 f C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/C_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add		0.00	12.03 I
C5/Z1/M1/M1/Zc_in (Add_full_1_64) 0.00 12.63 f C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/U1/Z (CAN2X1) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/U1/Z (COR2X1) 0.24 13.05 f C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/C_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add		0.00	12.03 1
C5/Z1/M1/M1/M2/b (Add_half_1_127) 0.00 12.63 f C5/Z1/M1/M1/M2/U1/z (CADZXI) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/U1/z (COR2X1) 0.24 13.05 f C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/c_in (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_62) 0.00 13.79 f C5		0.00	12.63 I
C5/Z1/M1/M1/M2/U1/Z (CAN2XI) 0.17 12.80 f C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/U1/Z (CCR2XI) 0.24 13.05 f C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/U1/Z (CAN2XI) 0.18 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IXI) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.79 f C5/Z1/M1/M3/C_in (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/C_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/C_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.16 13.95 f C5/Z1/M1/M4/M2/C_out (Add_full_1_			
C5/Z1/M1/M1/M2/c_out (Add_half_1_127) 0.00 12.80 f C5/Z1/M1/M1/U1/Z (COR2X1) 0.24 13.05 f C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/U1/Z (CAN2X1) 0.18 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/C_out (Add_half_1_123) 0.00 13.79 f C5/Z1/M1/M3/C_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/C_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/C_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/C_out (Add_full_1_61) 0.00 13.95 f C5/Z1/M1/M4/W2/C_out (Add_rca_4			
C5/Z1/M1/M1/U1/Z (COR2X1)			
C5/Z1/M1/M1/c_out (Add_full_1_64) 0.00 13.05 f C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/U1/Z (CAN2X1) 0.18 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/C_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/C_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/C_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/C_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/C_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M1/c_			
C5/Z1/M1/M2/c_in (Add_full_1_63) 0.00 13.05 f C5/Z1/M1/M2/M2/b (Add_half_1_125) 0.00 13.05 f C5/Z1/M1/M2/M2/U1/Z (CAN2X1) 0.18 13.22 f C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.79 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/M2/C_out (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/C_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) <td></td> <td></td> <td></td>			
C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f		0.00	13.05 1
C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f		0.00	13.05 1
C5/Z1/M1/M2/M2/c_out (Add_half_1_125) 0.00 13.22 f C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f		0.00	13.05 1
C5/Z1/M1/M2/U2/Z (CND2IX1) 0.17 13.39 f C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/C_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M3/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/C_out (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/C_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/C_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/M4/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M2/c_out (Add_full_1_63) 0.00 13.39 f C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/C_out (Add_rca_4_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/c_in (Add_full_1_62) 0.00 13.39 f C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/M2/b (Add_half_1_123) 0.00 13.39 f C5/Z1/M1/M3/M2/U2/Z (CAN2X1) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/M2/U2/Z (CAN2XI) 0.16 13.55 f C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/M2/c_out (Add_half_1_123) 0.00 13.55 f C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/U1/Z (COR2X1) 0.24 13.79 f C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M3/c_out (Add_full_1_62) 0.00 13.79 f C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/c_in (Add_full_1_61) 0.00 13.79 f C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/M2/b (Add_half_1_121) 0.00 13.79 f C5/Z1/M1/M4/M2/U1/Z (CAN2X1) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/M2/U1/Z (CAN2XI) 0.16 13.95 f C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/M2/c_out (Add_half_1_121) 0.00 13.95 f C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/U2/Z (CND2IX1) 0.17 14.12 f C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/M4/c_out (Add_full_1_61) 0.00 14.12 f C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M1/c_out (Add_rca_4_1_16) 0.00 14.12 f C5/Z1/M2/c_in (Add_rca_4_1_15) 0.00 14.12 f C5/Z1/M2/M1/c_in (Add_full_1_60) 0.00 14.12 f			
C5/Z1/M2/c_in (Add_rca_4_1_15)			
$C5/Z1/M2/M1/c_in (Add_full_1_60)$ 0.00 14.12 f			
0.00 14.12 1			
	CO/DI/MZ/MI/MZ/D (AUU_HATI_I_HIS)	0.00	⊥4.1∠ I

C5/Z1/M2/M1/M2/U2/Z (CAN2X1)	0.16	14.28 f
C5/Z1/M2/M1/M2/c out (Add half 1 119)	0.00	14.28 f 14.28 f
C5/Z1/M2/M1/U1/Z (COR2X1)	0.24	14.52 f
C5/Z1/M2/M1/c out (Add full 1 60)	0.00	14.52 f
C5/Z1/M2/M2/c in (Add full 1 59)	0.00	14.52 f
C5/Z1/M2/M2/M2/b (Add half 1 117)		14.52 f
C5/Z1/M2/M2/M2/U1/Z (CAN2X1)		14.70 f
C5/Z1/M2/M2/M2/c out (Add half 1 117)		14.70 f
C5/Z1/M2/M2/U2/Z (CND2IX1)	0.19	14.89 f
C5/Z1/M2/M2/c out (Add full 1 59)	0.19	14 89 f
C5/Z1/M2/M3/c in (Add full 1 58)	0.00	14.89 f 14.89 f
C5/Z1/M2/M3/M2/b (Add half 1 115)	0.00	14.89 f
C5/Z1/M2/M3/M2/U1/Z (CAN2X1)		15.06 f
C5/Z1/M2/M3/M2/c out (Add half 1 115)		15.06 f
C5/Z1/M2/M3/W2/Z (CND2IX1)		15.23 f
C5/Z1/M2/M3/c_out (Add_full_1_58)		15.23 f
C5/Z1/M2/M4/c_in (Add_full_1_57)	0.00	15.23 f
C5/Z1/M2/M4/M2/b (Add_half_1_113)	0.00	15.23 f
C5/Z1/M2/M4/M2/U2/Z (CAN2X1)	0.16	15.39 f 15.39 f
C5/Z1/M2/M4/M2/c_out (Add_half_1_113)	0.00	15.39 f
C5/Z1/M2/M4/U1/Z (COR2X1)		15.63 f
C5/Z1/M2/M4/c_out (Add_full_1_57)		15.63 f
C5/Z1/M2/c_out (Add_rca_4_1_15)		15.63 f
C5/Z1/M3/c_in (Add_rca_4_1_14)		15.63 f
C5/Z1/M3/M1/c_in (Add_full_1_56)		15.63 f
C5/Z1/M3/M1/M2/b (Add_half_1_111)	0.00	15.63 f
C5/Z1/M3/M1/M2/U1/Z (CAN2X1)	0.16	15.79 f
C5/Z1/M3/M1/M2/c_out (Add_half_1_111)	0.00	15.79 f 16.03 f
C5/Z1/M3/M1/U1/Z (COR2X1)	0.24	16.03 f
C5/Z1/M3/M1/c_out (Add_full_1_56)		16.03 f
C5/Z1/M3/M2/c_in (Add_full_1_55)		16.03 f
C5/Z1/M3/M2/M2/b (Add_half_1_109)		16.03 f
C5/Z1/M3/M2/M2/U1/Z (CAN2X1)		16.21 f
C5/Z1/M3/M2/M2/c_out (Add_half_1_109)		16.21 f
C5/Z1/M3/M2/U1/Z (COR2X1)	0.24	16.45 f
C5/Z1/M3/M2/c_out (Add_full_1_55)	0.00	16.45 f
C5/Z1/M3/M3/c_in (Add_full_1_54)	0.00	16.45 f 16.45 f 16.45 f
C5/Z1/M3/M3/M2/b (Add_half_1_107)		
C5/Z1/M3/M3/M2/U1/Z (CAN2X1)		16.63 f
C5/Z1/M3/M3/M2/c_out (Add_half_1_107)	0.00	16.63 f
C5/Z1/M3/M3/U2/Z (CND2IX1)	0.17	
C5/Z1/M3/M3/c_out (Add_full_1_54)	0.00	
C5/Z1/M3/M4/c_in (Add_full_1_53)	0.00	16.80 f
C5/Z1/M3/M4/M2/b (Add_half_1_105)	0.00	16.80 f
C5/Z1/M3/M4/M2/U2/Z (CAN2X1)	0.16	16.95 f
C5/Z1/M3/M4/M2/c_out (Add_half_1_105)	0.00	16.95 f
C5/Z1/M3/M4/U1/Z (COR2X1)	0.24	17.19 f
C5/Z1/M3/M4/c_out (Add_full_1_53)	0.00	17.19 f
C5/Z1/M3/c_out (Add_rca_4_1_14)	0.00	17.19 f
C5/Z1/M4/c_in (Add_rca_4_1_13)	0.00	17.19 f
C5/Z1/M4/M1/c_in (Add_full_1_52)	0.00	17.19 f
C5/Z1/M4/M1/M2/b (Add_half_1_103)	0.00	17.19 f
C5/Z1/M4/M1/M2/U1/Z (CAN2X1)	0.16	17.35 f
C5/Z1/M4/M1/M2/c_out (Add_half_1_103)	0.00	17.35 f
C5/Z1/M4/M1/U1/Z (COR2X1)	0.24	17.59 f
C5/Z1/M4/M1/c_out (Add_full_1_52)	0.00	17.59 f
C5/Z1/M4/M2/c_in (Add_full_1_51)	0.00	17.59 f

C5/Z1/M4/M2/M2/D (Add half 1 101)			
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M2/M2/b (Add half 1 101)	0.00	17.59 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	GE / R1 / M4 / M2 / M2 / H11 / R / G2 M2 W1	0 10	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C3/Z1/M4/MZ/MZ/O1/Z (CANZA1)	0.10	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M2/M2/c out (Add half 1 101)	0.00	17.76 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/71/M4/M2/U2/7 (CND2TX1)	0.19	17.94 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	GE / GE / ME / ME / GE / GE / GE / GE /	0.13	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M2/c_out (Add_full_1_51)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M3/c in (Add full 1 50)	0.00	17.94 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	GE / G1 / M4 / M2 / M2 / h / A d d h a 1 £ 1 00)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M3/MZ/D (Add_nall_1_99)	0.00	17.94 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M3/M2/U2/Z (CAN2X1)	0.18	18.12 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/71/M4/M3/M2/c out (Add half 1 99)	0 00	18 12 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	CO/EI/MA/MO/MO/CO (Add Hall	0.00	10.12 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M3/U2/Z (CND2IX1)	0.19	18.30 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M3/c out (Add full 1 50)	0.00	18.30 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/71/M4/M4/G in /Add full 1 40)	0 00	10 20 £
C5/Z2/M1/M4/c_in (Add_full_1_45)	CS/ZI/M4/M4/C_III (Add_IUII_I_49)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M4/M2/b (Add half 1 97)	0.00	18.30 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/71/M4/M4/M2/U1/7 (CAN2XT)	0.18	18.48 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	OF / 1 / MA	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M4/M2/C_out (Add_nalf_1_9/)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/M4/U2/Z (CND2IX1)	0.19	18.66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/71/M4/M4/c out (Add full 1 49)	0 00	18 66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	CO/21/M4/M4/C_Out (Aud_IuII_I_4)	0.00	10.00 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/M4/c_out (Add_rca_4_1_13)	0.00	18.66 İ
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z1/c out (Add rca 16 1 4)	0.00	18.66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/a in /7dd man 16 1 2)	0 00	10 66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C3/22/C_III (Add_ICa_I0_I_3)	0.00	10.00 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/c in (Add rca 4 1 12)	0.00	18.66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M1/c in (Add full 1 48)	0 00	18 66 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	05/12/11/11/0-11 (100 1 1 1 1 1 1 1 0 5)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/MI/MI/M2/b (Add_nali_i_95)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M1/M2/U1/Z (CAN2X1)	0.17	18.84 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M1/M2/c out (Add balf 1 95)	0 00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/ H2/ M1/ M2/ C_OUC (Add_Hall_1_55)	0.00	10.07 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/MI/MI/UI/Z (COR2XI)	0.23	19.07 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M1/c out (Add full 1 48)	0.00	19.07 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M2/c in /Add full 1 47)	0 00	10 07 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	CS/ZZ/MI/MZ/C_III (Add_IdII_I_4/)	0.00	19.07 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M2/M2/b (Add_half_1_93)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M2/M2/U2/Z (CAN2X1)	0.16	19.23 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/F2/M1/M2/M2/A out /Add balf 1 02)	0 00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C3/Z2/M1/M2/M2/C_Out (Add_Hall_1_93)	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M2/U2/Z (CND2IX1)	0.18	19.41 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M2/c out (Add full 1 47)	0 00	19 41 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	05/E2/M1/M2/================================	0.00	
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/MI/M3/C_IN (Add_IUII_I_46)	0.00	19.41 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M3/M2/b (Add half 1 91)	0.00	19.41 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M3/M2/II2/7 (CAN2X1)	0 16	19 57 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	CE / FO / M1 / M2 / M2 / A - A - A - A - A - A - A - A - A - A	0.10	10 57 5
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/MI/M3/M2/C_OUL (Add_naII_I_9I)	0.00	19.5/ 1
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/Z2/M1/M3/U2/Z (CND2IX1)	0.19	19.75 f
C5/Z2/M1/M4/c_in (Add_full_1_45)	C5/72/M1/M3/c out (Add full 1 46)	0 00	
C5/Z2/M1/M4/M2/b (Add_half_1_89) 0.00 19.75 f C5/Z2/M1/M4/M2/U1/Z (CAN2X1) 0.18 19.93 f C5/Z2/M1/M4/M2/c_out (Add_half_1_89) 0.00 19.93 f C5/Z2/M1/M4/U2/Z (CND2IX1) 0.18 20.11 f C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/D (CAN2X1) 0.18 20.63 f	C5/E2/M1/M5/C_Ode (Mdd_1d11_1_40)	0.00	
C5/Z2/M1/M4/M2/U1/Z (CAN2X1) 0.18 19.93 f C5/Z2/M1/M4/M2/c_out (Add_half_1_89) 0.00 19.93 f C5/Z2/M1/M4/U2/Z (CND2IX1) 0.18 20.11 f C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f		0.00	19.75 I
C5/Z2/M1/M4/M2/c_out (Add_half_1_89) 0.00 19.93 f C5/Z2/M1/M4/U2/Z (CND2IX1) 0.18 20.11 f C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.00 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M1/M4/M2/b (Add half 1 89)	0.00	19.75 f
C5/Z2/M1/M4/M2/c_out (Add_half_1_89) 0.00 19.93 f C5/Z2/M1/M4/U2/Z (CND2IX1) 0.18 20.11 f C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.00 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/72/M1/M4/M2/H1/7 (CAN2XI)	0 18	19 93 f
C5/Z2/M1/M4/U2/Z (CND2IXI) 0.18 20.11 f C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f		0.00	19.93 f
C5/Z2/M1/M4/c_out (Add_full_1_45) 0.00 20.11 f C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M1/M4/U2/Z (CND2IX1)	0.18	20.11 f
C5/Z2/M1/c_out (Add_rca_4_1_12) 0.00 20.11 f C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/c_in (Add_rca_4_1_11) 0.00 20.11 f C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f		0.00	20.11 f
C5/Z2/M2/M1/c_in (Add_full_1_44) 0.00 20.11 f C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M2/c in (Add rca 4 1 11)	0.00	20.11 f
C5/Z2/M2/M1/M2/b (Add_half_1_87) 0.00 20.11 f C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/M1/M2/U1/Z (CAN2X1) 0.16 20.27 f C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M2/M1/M2/b (Add_half_1_87)	0.00	20.11 f
C5/Z2/M2/M1/M2/c_out (Add_half_1_87) 0.00 20.27 f C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M2/M1/M2/U1/Z (CAN2X1)	0.16	20.27 f
C5/Z2/M2/M1/U2/Z (CND2IX1) 0.19 20.46 f C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/M1/c_out (Add_full_1_44) 0.00 20.46 f C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M2/M1/U2/Z (CND2IX1)	0.19	20.46 f
C5/Z2/M2/M2/c_in (Add_full_1_43) 0.00 20.46 f C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f	C5/Z2/M2/M1/c out (Add full 1 44)	0 - 00	20.46 f
C5/Z2/M2/M2/M2/b (Add_half_1_85) 0.00 20.46 f C5/Z2/M2/M2/U1/Z (CAN2X1) 0.18 20.63 f			
$C5/Z2/M2/M2/M2/U1/Z$ $(\overline{CAN2X1})$ 0.18 20.63 f			
		0.00	20.46 f
	C5/Z2/M2/M2/M2/U1/Z (CAN2X1)	0.18	20.63 f
0.00 0.00 0.00 U.00 1			
	03/ 42/ M2/ M2/ M2/ C_Out (Add_Nat1_1_03)	0.00	20.03 I

C5/Z2/M2/M2/Q2/Z (CNDZIXI) C5/Z2/M2/M3/C2 in (Add full 1 43) 0.00 20.82 f C5/Z2/M2/M3/M2/D (add half 1 83) 0.00 20.82 f C5/Z2/M2/M3/M2/D (add half 1 83) 0.00 20.82 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.18 21.00 f C5/Z2/M2/M3/M2/C (CNDZIXI) 0.18 21.17 f C5/Z2/M2/M3/M2/C (CNDZIXI) 0.18 21.17 f C5/Z2/M2/M3/M2/C out (Add half 1 83) 0.00 21.17 f C5/Z2/M2/M3/M2/C out (Add half 1 81) 0.00 21.17 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.16 21.17 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.16 21.17 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.16 21.33 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.16 21.33 f C5/Z2/M2/M3/M2/C out (Add half 1 81) 0.00 21.17 f C5/Z2/M2/M3/M2/C out (Add half 1 81) 0.00 21.17 f C5/Z2/M2/M3/M2/D (CNDZIXI) 0.16 21.33 f C5/Z2/M2/M3/C out (Add ral 1 1 141) 0.00 21.51 f C5/Z2/M2/M3/C out (Add ral 1 1 141) 0.00 21.51 f C5/Z2/M2/M3/C out (Add ral 1 1 10) 0.00 21.51 f C5/Z2/M3/M1/C out (Add full 1 40) 0.00 21.51 f C5/Z2/M3/M1/M2/D (Add half 1 79) 0.00 21.51 f C5/Z2/M3/M1/M2/C (CNDZIXI) 0.19 21.85 f C5/Z2/M3/M1/M2/C (CNDZIXI) 0.19 21.85 f C5/Z2/M3/M1/M2/C (CNDZIXI) 0.19 21.85 f C5/Z2/M3/M2/C (CNDZIXI) 0.19 22.21 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 21.85 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 21.85 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 22.23 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 22.23 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 22.23 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 22.21 f C5/Z2/M3/M3/C out (Add half 1 77) 0.00 22.23 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.27 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.27 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.27 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.29 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.29 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.29 f C5/Z2/M3/M3/C out (Add half 1 73) 0.00 22.29 f C5/Z2/M3/M3/C out (Add half 1			
C5/Z2/MZ/M3/C1 (Add full 1 42) 0.00 20.82 f C5/Z2/MZ/M3/MZ/b (Add full 1 42) 0.00 20.82 f C5/Z2/MZ/M3/MZ/b (Add full 1 83) 0.00 20.82 f C5/Z2/MZ/M3/MZ/b (Add full 1 83) 0.00 20.82 f C5/Z2/MZ/M3/MZ/c_out (Add half 1 83) 0.00 21.00 f C5/Z2/MZ/M3/MZ/c_out (Add full 1 42) 0.00 21.17 f C5/Z2/MZ/M3/c_out (Add full 1 42) 0.00 21.17 f C5/Z2/MZ/M3/c_out (Add full 1 41) 0.00 21.17 f C5/Z2/MZ/M3/c_out (Add half 1 81) 0.00 21.17 f C5/Z2/MZ/M3/c_out (Add half 1 81) 0.00 21.17 f C5/Z2/MZ/M4/MZ/b (Add half 1 81) 0.00 21.17 f C5/Z2/MZ/M4/MZ/b (CANXXI) 0.16 21.33 f C5/Z2/MZ/M4/MZ/c_out (Add half 1 81) 0.00 21.33 f C5/Z2/MZ/M4/MZ/c_out (Add half 1 81) 0.00 21.33 f C5/Z2/MZ/M4/MZ/c_out (Add full 1 41) 0.00 21.31 f C5/Z2/MZ/M4/C2/c_Out (Add full 1 41) 0.00 21.51 f C5/Z2/MZ/M4/C2/c_out (Add full 1 40) 0.00 21.51 f C5/Z2/MZ/M4/C2/c_out (Add full 1 40) 0.00 21.51 f C5/Z2/MZ/M4/C2 (Add full 1 40) 0.00 21.51 f C5/Z2/MZ/MM/MZ/b (Add full 1 40) 0.00 21.51 f C5/Z2/M3/MI/MZ/D4/C (CANXXI) 0.10 0.00 21.51 f C5/Z2/M3/MI/MZ/D4/C (CANXXI) 0.10 0.20 21.51 f C5/Z2/M3/MI/MZ/D4/C (CANXXI) 0.10 0.00 21.85 f C5/Z2/M3/MI/C_out (Add half 1 79) 0.00 21.66 f C5/Z2/M3/MI/C_out (Add half 1 77) 0.00 21.85 f C5/Z2/M3/MZ/C_C (CANXXI) 0.10 0.00 21.85 f C5/Z2/M3/MZ/C_C (CANXXI) 0.10 0.00 21.85 f C5/Z2/M3/MZ/D2/C (CANXXI) 0.10 0.00 21.85 f C5/Z2/M3/M3/C_Out (Add half 1 77) 0.00 21.85 f C5/Z2/M3/M3/C_Out (Add half 1 77) 0.00 22.21 f C5/Z2/M3/M3/C_Out (Add half 1 77) 0.00 22.25 f C5/Z2/M3/M3/C_Out (Add half 1 77) 0.00 22.25 f C5/Z2/M3/M4/M2/C (CANXXI) 0.10 0.00 22.57 f C5/Z2/M3/M4/M2/C (CANXXI) 0.10 0.00 22.57 f C5/Z2/M3/M4/M2/C (CANXXI) 0.00 22.57	C5/Z2/M2/M2/U2/Z (CND2IX1)	0.19	20.82 f
CS/Z2/M2/M3/G-in (Add Full I 28) 0.00 20.82 f CS/Z2/M2/M3/M2/b (Add half 183) 0.00 20.82 f CS/Z2/M2/M3/M2/U2/Z (CAN2XI) 0.18 21.00 f CS/Z2/M2/M3/M2/e out (Add half 183) 0.00 21.00 f CS/Z2/M2/M3/C out (Add full 142) 0.00 21.17 f CS/Z2/M2/M4/c in (Add full 141) 0.00 21.17 f CS/Z2/M2/M4/M2/b (Add half 181) 0.00 21.17 f CS/Z2/M2/M4/M2/J3/Z (CAN2XI) 0.16 21.33 f CS/Z2/M2/M4/M2/C-out (Add half 181) 0.00 21.37 f CS/Z2/M2/M4/M2/C-out (Add full 141) 0.00 21.51 f CS/Z2/M2/M4/C-out (Add full 141) 0.00 21.51 f CS/Z2/M3/M3/c in (Add full 140) 0.00 21.51 f CS/Z2/M3/M3/c in (Add full 140) 0.00 21.51 f CS/Z2/M3/M1/M2/b (Add half 179) 0.00 21.51 f CS/Z2/M3/M1/M2/b (Add half 179) 0.00 21.51 f CS/Z2/M3/M1/M2/b (Add half 179) 0.00 21.51 f CS/Z2/M3/M1/W2/b (Add half 139) 0.00 21.55 f CS/Z2/M3/M2/C-out (Add full 139) 0.00	C5/72/M2/M2/c out (Add full 1 43)	0 00	20 82 f
CS/72/M2/M3/M2/U2/Z (CADZXI) 0.00 20.82 ft CS/72/M3/M3/M2/U2/Z (CADZXI) 0.18 21.00 ft CS/72/M3/M3/U2/Z (CADZXI) 0.18 21.00 ft CS/72/M3/M3/Cout (Add half 1 81) 0.00 21.00 ft CS/72/M3/M3/Cout (Add full 1 41) 0.00 21.77 ft CS/72/M3/M4/Cout (Add fall 1 81) 0.00 21.77 ft CS/72/M2/M4/M3/Cout (Add half 1 81) 0.00 21.77 ft CS/72/M3/M4/M2/Cout (Add half 1 81) 0.00 21.75 ft CS/72/M3/M4/M2/Cout (Add half 1 81) 0.00 21.51 ft CS/72/M3/M4/M2/Cout (Add full 1 41) 0.00 21.51 ft CS/72/M3/M4/Cout (Add full 1 41) 0.00 21.51 ft CS/72/M3/M2/Cout (Add frea 4 1 11) 0.00 21.51 ft CS/72/M3/M1/Cout (Add full 1 40) 0.00 21.51 ft CS/72/M3/M1/M2/Cout (Add balf 1 79) 0.00 21.51 ft CS/72/M3/M1/M2/Cout (Add balf 1 79) 0.00 21.66 ft CS/72/M3/M1/W2/Cout (Add balf 1 79) 0.00 21.66 ft CS/72/M3/M1/W2/Cout (Add balf 1 79) 0.00 21.66 ft CS/72/M3/M1/W2/Cout (Ad			
C5/72/M2/M3/M2/c out (Add half 1 83) 0.00 21.00 f C5/72/M3/M3/Co out (Add half 1 83) 0.00 21.00 f C5/72/M3/M3/Co out (Add full 1 41) 0.00 21.07 f C5/72/M3/M3/Co out (Add full 1 41) 0.00 21.17 f C5/72/M3/M4/Ci (Add full 1 41) 0.00 21.17 f C5/72/M3/M4/M2/J3/C (CAN2XI) 0.16 21.33 f C5/72/M3/M4/M2/Co out (Add half 1 81) 0.00 21.33 f C5/72/M2/M4/M2/Co out (Add full 1 41) 0.00 21.51 f C5/72/M3/M4/Co out (Add full 1 41) 0.00 21.51 f C5/72/M3/M1/Co out (Add rea 4 1 11) 0.00 21.51 f C5/72/M3/M1/Co in (Add rea 4 1 10) 0.00 21.51 f C5/72/M3/M1/M2/b (Add half 1 79) 0.00 21.51 f C5/72/M3/M1/Co ut (Add full 1 30) 0.00 21.51 f C5/72/M3/M1/Co ut (Add full 1			
C5/72/M2/M3/W2/c (CNDZIXI) 0.18 21.00 f C5/72/M3/U2/Z (CNDZIXI) 0.18 21.17 f C5/72/M2/M3/C out (Add full 1 42) 0.00 21.17 f C5/72/M2/M3/C in (Add full 1 41) 0.00 21.17 f C5/22/M2/M4/M2/D (Add half 1 81) 0.00 21.17 f C5/22/M2/M4/M2/C (CNAUXI) 0.16 21.33 f C5/72/M2/M4/M2/C out (Add half 1 81) 0.00 21.51 f C5/72/M2/M4/M2/C out (Add full 1 41) 0.00 21.51 f C5/72/M2/M4/C out (Add frea 4 1 11) 0.00 21.51 f C5/72/M3/M3/C in (Add rea 4 1 10) 0.00 21.51 f C5/72/M3/M1/C in (Add rea 4 1 10) 0.00 21.51 f C5/72/M3/M1/C in (Add full 1 40) 0.00 21.51 f C5/72/M3/M1/W2/C cout (Add half 1 79) 0.00 21.51 f C5/72/M3/M1/W2/C cout (Add half 1 79) 0.00 21.51 f C5/72/M3/M1/W2/Z (CNDZIXI) 0.19 21.85 f C5/72/M3/M1/W2/Z (CNDZIXI) 0.19 21.85 f C5/72/M3/M2/C in (Add full 1 39) 0.00 21.85 f C5/72/M3/M2/W2/C in (Add half 1 77) 0.00 <td>C5/Z2/M2/M3/M2/b (Add_half_1_83)</td> <td>0.00</td> <td>20.82 f</td>	C5/Z2/M2/M3/M2/b (Add_half_1_83)	0.00	20.82 f
C5/72/M2/M3/W2/c (CNDZIXI) 0.18 21.00 f C5/72/M3/U2/Z (CNDZIXI) 0.18 21.17 f C5/72/M2/M3/C out (Add full 1 42) 0.00 21.17 f C5/72/M2/M3/C in (Add full 1 41) 0.00 21.17 f C5/22/M2/M4/M2/D (Add half 1 81) 0.00 21.17 f C5/22/M2/M4/M2/C (CNAUXI) 0.16 21.33 f C5/72/M2/M4/M2/C out (Add half 1 81) 0.00 21.51 f C5/72/M2/M4/M2/C out (Add full 1 41) 0.00 21.51 f C5/72/M2/M4/C out (Add frea 4 1 11) 0.00 21.51 f C5/72/M3/M3/C in (Add rea 4 1 10) 0.00 21.51 f C5/72/M3/M1/C in (Add rea 4 1 10) 0.00 21.51 f C5/72/M3/M1/C in (Add full 1 40) 0.00 21.51 f C5/72/M3/M1/W2/C cout (Add half 1 79) 0.00 21.51 f C5/72/M3/M1/W2/C cout (Add half 1 79) 0.00 21.51 f C5/72/M3/M1/W2/Z (CNDZIXI) 0.19 21.85 f C5/72/M3/M1/W2/Z (CNDZIXI) 0.19 21.85 f C5/72/M3/M2/C in (Add full 1 39) 0.00 21.85 f C5/72/M3/M2/W2/C in (Add half 1 77) 0.00 <td>C5/Z2/M2/M3/M2/U2/Z (CAN2X1)</td> <td>0.18</td> <td>21.00 f</td>	C5/Z2/M2/M3/M2/U2/Z (CAN2X1)	0.18	21.00 f
C5/22/M3/M3/C out (Add full 1 42)			
CS7/22/M2/M3/C out (Add full 1 42) CS7/22/M2/M4/C in (Add Full 1 41) CS7/22/M2/M4/C out (Add full 1 41) CS7/22/M2/M4/M2/b (Add half 1 81) CS7/22/M2/M4/M2/C out (Add half 1 81) CS7/22/M2/M4/M2/C out (Add half 1 81) CS7/22/M2/M4/M2/C out (Add full 1 81) CS7/22/M2/M4/M2/C out (Add full 1 91) CS7/22/M2/M4/C out (Add full 1 91) CS7/22/M3/C in (Add rca 4 1 11) CS7/22/M3/C in (Add rca 4 1 11) CS7/22/M3/M1/C in (Add Full 1 40) CS7/22/M3/M1/C in (Add Full 1 91) CS7/22/M3/M2/C in (Add full 1 39) CS7/22/M3/M2/M2/C in (Add full 1 39) CS7/22/M3/M2/M2/C in (Add full 1 39) CS7/22/M3/M2/M2/C out (Add half 1 77) CS7/22/M3/M2/M2/C out (Add half 1 77) CS7/22/M3/M2/M2/C out (Add full 1 39) CS7/22/M3/M2/M2/C out (Add full 1 39) CS7/22/M3/M2/M2/C out (Add full 1 39) CS7/22/M3/M2/M2/C out (Add full 1 38) CS7/22/M3/M3/M2/C (CND2IX1) CS7/22/M3/M4/M2/C out (Add full 1 38) CS7/22/M3/M4/M2/C out (Add full 1 37) CS7/22/M3/M4/M2/C out (Add full 1 36) CS7/22/M4/M1/C out (Add full 1 36) CS7/22/M4/M1/C out (Add full 1 36) CS7/22/M4/M1/C out (Add full 1 36) CS7/22/M4/M2/M2/C out (Add full 1 36) CS7/22/M		0.00	21.00 1
C5722/M2/M4/M2/b (Add_half_181) 0.00 21.17 f C5722/M2/M4/M2/b (Add_half_181) 0.00 21.17 f C5722/M2/M4/M2/Cout (Add_half_181) 0.00 21.33 f C5722/M2/M4/M2/Cout (Add_half_181) 0.00 21.33 f C5722/M2/M4/Cout (Add_rad_111) 0.00 21.31 f C5722/M2/M4/Cout (Add_rad_4111) 0.00 21.51 f C5722/M3/Cout (Add_rad_4110) 0.00 21.51 f C5722/M3/M1/Cout (Add_fall_140) 0.00 21.51 f C5722/M3/M1/M2/Cout (Add_half_179) 0.00 21.51 f C5722/M3/M1/M2/U4/Z (CAN2XI) 0.16 21.66 f C5722/M3/M1/M2/Cout (Add_half_179) 0.00 21.85 f C5722/M3/M1/M2/Cout (Add_half_179) 0.00 21.85 f C5722/M3/M1/Cout (Add_full_139) 0.00 21.85 f C5722/M3/M2/M2/Cal/Cout (Add_half_177) 0.00 21.85 f C5722/M3/M2/M2/Cal/Cout (Add_half_177) 0.00 21.85 f C5722/M3/M2/M2/Cout (Add_half_139) 0.00 22.03 f C5722/M3/M2/Cout (Add_half_175) 0.00 22.03 f C5722/M3/M2/Cout (Add_half_177)		0.18	21.1/ I
C57/22/M2/M4/M2/C_out (Add_half_1_81)	C5/Z2/M2/M3/c out (Add full 1 42)	0.00	21.17 f
C57/22/M2/M4/M2/C_out (Add_half_1_81)	C5/72/M2/M4/c in (Add full 1 41)	0.00	21.17 f
C57/22/M2/M4/M2/C_out (Add_half_1_81)		0.00	21 17 £
C57.2Z/M2/M4/UZ/C (CND2IXI) C57.2Z/M2/M4/UZ/C (CND2IXI) C57.2Z/M2/M4/C_out (Add_full_1_41) 0.00 21.51 f C57.2Z/M2/C_out (Add_rca_4_1_11) 0.00 21.51 f C57.2Z/M3/C in (Add_rca_4_1_10) 0.00 21.51 f C57.2Z/M3/Mi/c_in (Add_rca_4_1_10) 0.00 21.51 f C57.2Z/M3/Mi/c_in (Add_full_1_40) 0.00 21.51 f C57.2Z/M3/Mi/M2/D (Add_half_1_79) 0.00 21.51 f C57.2Z/M3/Mi/M2/D (Add_half_1_79) 0.00 21.51 f C57.2Z/M3/Mi/M2/C_out (Add_half_1_79) 0.00 21.51 f C57.2Z/M3/Mi/M2/C_out (Add_half_1_79) 0.00 21.65 f C57.2Z/M3/Mi/M2/C_out (Add_half_1_79) 0.00 21.65 f C57.2Z/M3/Mi/C_out (Add_full_1_30) 0.00 21.85 f C57.2Z/M3/M2/C_out (Add_full_1_39) 0.00 21.85 f C57.2Z/M3/M2/M2/C (CND2IXI) 0.18 22.03 f C57.2Z/M3/M2/M2/C_Out (Add_half_1_77) 0.00 22.03 f C57.2Z/M3/M2/M2/C_Out (Add_half_1_77) 0.00 22.03 f C57.2Z/M3/M2/M2/C_out (Add_half_1_77) 0.00 22.03 f C57.2Z/M3/M2/C_Out (Add_half_1_75) 0.18 22.03 f C57.2Z/M3/M3/C_Out (Add_half_1_75) 0.00 22.21 f C57.2Z/M3/M3/M2/U2/Z (CND2IXI) 0.18 22.39 f C57.2Z/M3/M4/W2/U2/Z (CND2IXI) 0.18 22.39 f C57.2Z/M3/M4/W2/U2/Z (CND2IXI) 0.19 C57.2Z/M3/M4/M2/U2/Z (CND2IXI) 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.0		0.00	21.1/ 1
C5/Z2/M2/M4/C2/T (CNDZIXI) 0.17 21.51 f C5/Z2/M2/C out (Add roa 4 1 11) 0.00 21.51 f C5/Z2/M3/C in (Add roa 4 1 10) 0.00 21.51 f C5/Z2/M3/MI/C in (Add Full 1 40) 0.00 21.51 f C5/Z2/M3/MI/M2/C in (Add Full 1 79) 0.00 21.51 f C5/Z2/M3/MI/M2/U4/Z (CANZXI) 0.16 21.66 f C5/Z2/M3/MI/M2/C out (Add half 1 79) 0.00 21.65 f C5/Z2/M3/MI/U2/Z (CNDZIXI) 0.19 21.85 f C5/Z2/M3/MI/C out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add falf 1 77) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add falf 1 77) 0.00 21.85 f C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.18 22.03 f C5/Z2/M3/M2/M2/V2/C (CNDZIXI) 0.18 22.03 f C5/Z2/M3/M2/M2/V2/C (CNDZIXI) 0.18 22.03 f C5/Z2/M3/M2/M2/C out (Add full 1 39) 0.00 22.21 f C5/Z2/M3/M2/M2/C out (Add full 1 39) 0.00 22.21 f C5/Z2/M3/M3/M2/C in (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M3/C out (Add full 1 38) 0.00 <td>C5/Z2/M2/M4/M2/U3/Z (CAN2X1)</td> <td>0.16</td> <td>21.33 f</td>	C5/Z2/M2/M4/M2/U3/Z (CAN2X1)	0.16	21.33 f
C5/Z2/M2/M4/C2/T (CNDZIXI) 0.17 21.51 f C5/Z2/M2/C out (Add roa 4 1 11) 0.00 21.51 f C5/Z2/M3/C in (Add roa 4 1 10) 0.00 21.51 f C5/Z2/M3/MI/C in (Add Full 1 40) 0.00 21.51 f C5/Z2/M3/MI/M2/C in (Add Full 1 79) 0.00 21.51 f C5/Z2/M3/MI/M2/U4/Z (CANZXI) 0.16 21.66 f C5/Z2/M3/MI/M2/C out (Add half 1 79) 0.00 21.65 f C5/Z2/M3/MI/U2/Z (CNDZIXI) 0.19 21.85 f C5/Z2/M3/MI/C out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add falf 1 77) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add falf 1 77) 0.00 21.85 f C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.18 22.03 f C5/Z2/M3/M2/M2/V2/C (CNDZIXI) 0.18 22.03 f C5/Z2/M3/M2/M2/V2/C (CNDZIXI) 0.18 22.03 f C5/Z2/M3/M2/M2/C out (Add full 1 39) 0.00 22.21 f C5/Z2/M3/M2/M2/C out (Add full 1 39) 0.00 22.21 f C5/Z2/M3/M3/M2/C in (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M3/C out (Add full 1 38) 0.00 <td>C5/Z2/M2/M4/M2/c out (Add half 1 81)</td> <td>0.00</td> <td>21.33 f</td>	C5/Z2/M2/M4/M2/c out (Add half 1 81)	0.00	21.33 f
C572Z/M2/C_out (Add_rca_4_11) 0.00 21.51 f C572Z/M3/c_in (Add_rca_4_11) 0.00 21.51 f C572Z/M3/c_in (Add_rca_4_110) 0.00 21.51 f C572Z/M3/M1/M2/b (in (Add_full_140) 0.00 21.51 f C572Z/M3/M1/M2/b (Add_half_1-79) 0.00 21.51 f C572Z/M3/M1/M2/c_out (Add_half_1-79) 0.00 21.66 f C572Z/M3/M1/W2/c_out (Add_half_1-79) 0.00 21.66 f C572Z/M3/M1/W2/c_out (Add_full_140) 0.00 21.85 f C572Z/M3/M2/c_oin (Add_full_139) 0.00 21.85 f C572Z/M3/M2/M2/b (Add_half_1-77) 0.00 21.85 f C572Z/M3/M2/M2/D2/Z (CANZXI) 0.18 22.03 f C572Z/M3/M2/W2/D2/Z (CNDZIXI) 0.18 22.03 f C572Z/M3/M2/W2/Z (CNDZIXI) 0.19 22.21 f C572Z/M3/M3/M2/D (add_full_138) 0.00 22.21 f C572Z/M3/M3/M2/D (add_full_138) 0.00 22.21 f C572Z/M3/M3/M2/D (add_full_138) 0.00 22.21 f C572Z/M3/M3/M2/D (add_full_137) 0.18 22.39 f C572Z/M3/M3/M2/D (add_full_138) 0.00		0 17	21 51 f
C5/22/M2/C_OuT (Add rca 4 1 10) 0.00 21.51 f C5/22/M3/M_cin (Add rca 4 10) 0.00 21.51 f C5/22/M3/MI/cin (Add full 140) 0.00 21.51 f C5/22/M3/MI/M2/U4/Z (CAN2XI) 0.00 21.51 f C5/22/M3/MI/M2/U4/Z (CAN2XI) 0.16 21.66 f C5/22/M3/MI/M2/C_OUT (Add half 179) 0.00 21.65 f C5/22/M3/MI/C_OUT (Add full 1 40) 0.00 21.85 f C5/22/M3/M2/C_in (Add full 1 77) 0.00 21.85 f C5/22/M3/M2/M2/C in (Add half 177) 0.00 21.85 f C5/22/M3/M2/M2/C cout (Add half 177) 0.00 22.03 f C5/22/M3/M2/D/Q/Z (CNDZIXI) 0.18 22.03 f C5/22/M3/M2/D/Q/Z (CNDZIXI) 0.19 22.21 f C5/22/M3/M2/D/Q/Z (CNDZIXI) 0.00 22.21 f C5/22/M3/M3/M2/C out (Add full 1 38) 0.00 22.21 f C5/22/M3/M3/M2/D (Add full 1 38) 0.00 22.3 f C5/22/M3/M3/W2/C (CNDZIXI)<			
C5/Z2/M3/MI/c_in (Add_full_1_40) 0.00 21.51 f C5/Z2/M3/MI/Mz/in (Add_full_1_40) 0.00 21.51 f C5/Z2/M3/MI/MZ/U4/Z (CANZXI) 0.06 21.51 f C5/Z2/M3/MI/MZ/U4/Z (CANZXI) 0.16 21.66 f C5/Z2/M3/MI/WZ/C (CNDZIXI) 0.19 21.85 f C5/Z2/M3/MI/U2/Z (CNDZIXI) 0.19 21.85 f C5/Z2/M3/MMZ/C_in (Add_full_1_39) 0.00 21.85 f C5/Z2/M3/MZ/MZ/C_in (Add_full_1_39) 0.00 21.85 f C5/Z2/M3/MZ/MZ/CUZ/Z (CANZXI) 0.18 22.03 f C5/Z2/M3/MZ/MZ/C_out (Add half_1-77) 0.00 22.03 f C5/Z2/M3/MZ/MZ/C_out (Add full_1 39) 0.00 22.21 f C5/Z2/M3/MZ/C_out (Add full_1 39) 0.00 22.21 f C5/Z2/M3/MZ/C_out (Add full_1 38) 0.00 22.21 f C5/Z2/M3/M3/MZ/D/C out (Add full_1 38) 0.00 22.21 f C5/Z2/M3/M3/MZ/D/C out (Add half_1-75) 0.00 22.57 f C5/Z2/M3/M3/MZ/C_out (Add half_1 38) 0.00 22.57 f C5/Z2/M3/M3/M2/C_out (Add full_1 38) 0.00 22.57 f C5/Z2/M3/M3/M2/C_out (Add full_1 38) <td></td> <td></td> <td></td>			
C5/22/M3/M1/M2/b (Add_Full_1_40) 0.00 21.51 f C5/22/M3/M1/M2/b (Add_half_1-79) 0.00 21.51 f C5/22/M3/M1/M2/c (CAN2X1) 0.16 21.66 f C5/22/M3/M1/U2/Z (CND2IX1) 0.19 21.66 f C5/22/M3/M1/U2/Z (CND2IX1) 0.19 21.85 f C5/22/M3/M1/c out (Add_full_1_39) 0.00 21.85 f C5/22/M3/M2/b (Add_half_1-77) 0.00 21.85 f C5/22/M3/M2/M2/b (Add_half_1-77) 0.00 21.85 f C5/22/M3/M2/M2/c out (Add_half_1-77) 0.00 22.03 f C5/22/M3/M2/CD/C (CND2IX1) 0.18 22.03 f C5/22/M3/M2/Cout (Add_full_1_39) 0.00 22.21 f C5/22/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/22/M3/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/22/M3/M3/M2/C_out (Add_half_1-75) 0.00 22.23 f C5/22/M3/M3/M2/C_out (Add_half_1-75) 0.00 22.37 f C5/22/M3/M3/M2/C_out (Add_full_1_38) 0.00 22.57 f C5/22/M3/M3/W2/C_out (Add_full_1_38) 0.00 22.57 f C5/22/M3/M4/M2/C_out (Add_full_1_37) <td< td=""><td>C5/Z2/M2/c_out (Add_rca_4_1_11)</td><td>0.00</td><td>21.51 f</td></td<>	C5/Z2/M2/c_out (Add_rca_4_1_11)	0.00	21.51 f
C5/22/M3/M1/M2/b (Add_Full_1_40) 0.00 21.51 f C5/22/M3/M1/M2/b (Add_half_1-79) 0.00 21.51 f C5/22/M3/M1/M2/c (CAN2X1) 0.16 21.66 f C5/22/M3/M1/U2/Z (CND2IX1) 0.19 21.66 f C5/22/M3/M1/U2/Z (CND2IX1) 0.19 21.85 f C5/22/M3/M1/c out (Add_full_1_39) 0.00 21.85 f C5/22/M3/M2/b (Add_half_1-77) 0.00 21.85 f C5/22/M3/M2/M2/b (Add_half_1-77) 0.00 21.85 f C5/22/M3/M2/M2/c out (Add_half_1-77) 0.00 22.03 f C5/22/M3/M2/CD/C (CND2IX1) 0.18 22.03 f C5/22/M3/M2/Cout (Add_full_1_39) 0.00 22.21 f C5/22/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/22/M3/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/22/M3/M3/M2/C_out (Add_half_1-75) 0.00 22.23 f C5/22/M3/M3/M2/C_out (Add_half_1-75) 0.00 22.37 f C5/22/M3/M3/M2/C_out (Add_full_1_38) 0.00 22.57 f C5/22/M3/M3/W2/C_out (Add_full_1_38) 0.00 22.57 f C5/22/M3/M4/M2/C_out (Add_full_1_37) <td< td=""><td>$C5/Z2/M3/c$ in (Add rca $\frac{1}{4}$ $\frac{1}{1}$ $\frac{1}{1}$0)</td><td>0.00</td><td>21.51 f</td></td<>	$C5/Z2/M3/c$ in (Add rca $\frac{1}{4}$ $\frac{1}{1}$ $\frac{1}{1}$ 0)	0.00	21.51 f
C5/Z2/M3/M1/U2/z (CND2IX1) 0.00 21.66 f C5/Z2/M3/M1/U2/z (CND2IX1) 0.19 21.85 f C5/Z2/M3/M1/c_out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M3/C_out (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/D (Add half 1-75) 0.00 22.21 f C5/Z2/M3/M3/M2/D (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/M2/C (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/W2/C (CNDZIXI) 0.18 22.57		0 00	21 51 f
C5/Z2/M3/M1/U2/z (CND2IX1) 0.00 21.66 f C5/Z2/M3/M1/U2/z (CND2IX1) 0.19 21.85 f C5/Z2/M3/M1/c_out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M3/C_out (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/D (Add half 1-75) 0.00 22.21 f C5/Z2/M3/M3/M2/D (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/M2/C (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/W2/C (CNDZIXI) 0.18 22.57		0.00	21.51 1
C5/Z2/M3/M1/U2/z (CND2IX1) 0.00 21.66 f C5/Z2/M3/M1/U2/z (CND2IX1) 0.19 21.85 f C5/Z2/M3/M1/c_out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M3/C_out (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/D (Add half 1-75) 0.00 22.21 f C5/Z2/M3/M3/M2/D (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/M2/C (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/W2/C (CNDZIXI) 0.18 22.57		0.00	21.51 I
C5/Z2/M3/M1/U2/z (CND2IX1) 0.00 21.66 f C5/Z2/M3/M1/U2/z (CND2IX1) 0.19 21.85 f C5/Z2/M3/M1/c_out (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/b (Add full 1 39) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 21.85 f C5/Z2/M3/M2/M2/D2/z (CAN2XI) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M3/C_out (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/D (Add half 1-75) 0.00 22.21 f C5/Z2/M3/M3/M2/D (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/M2/C (CNDZIXI) 0.18 22.39 f C5/Z2/M3/M3/W2/C (CNDZIXI) 0.18 22.57	C5/Z2/M3/M1/M2/U4/Z (CAN2X1)	0.16	21.66 f
C5/22/M3/M1/U2/Z CND2IXI 0.19 21.85 f C5/22/M3/M3/M2/c 10 (Add_full_1_40) 0.00 21.85 f C5/22/M3/M2/c 10 (Add_full_1_39) 0.00 21.85 f C5/22/M3/M2/M2/D (Add_half_1-77) 0.00 21.85 f C5/22/M3/M2/M2/C (CAN2XI) 0.18 22.03 f C5/22/M3/M2/M2/Cout (Add_half_1-77) 0.00 22.03 f C5/22/M3/M2/C2 out (Add_full_1_39) 0.00 22.21 f C5/22/M3/M3/C_in (Add_full_1_38) 0.00 22.21 f C5/22/M3/M3/M2/C out (Add_half_1-75) 0.00 22.21 f C5/22/M3/M3/M2/C out (Add_half_1-75) 0.00 22.21 f C5/22/M3/M3/M2/C out (Add_half_1-75) 0.00 22.39 f C5/22/M3/M3/M2/C out (Add_half_1-75) 0.00 22.39 f C5/22/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/22/M3/M3/C_in (Add_full_1-37) 0.00 22.57 f C5/22/M3/M4/W2/b (Add_half_1-73) 0.00 22.57 f C5/22/M3/M4/W2/b (Add_half_1-73) 0.00 22.57 f C5/22/M3/M4/W2/c out (Add_full_37) 0.00 <t< td=""><td>C5/Z2/M3/M1/M2/c out (Add half 1 79)</td><td>0.00</td><td>21.66 f</td></t<>	C5/Z2/M3/M1/M2/c out (Add half 1 79)	0.00	21.66 f
C5/Z2/M3/M1/c_out (Add_full_1_39) 0.00 21.85 f C5/Z2/M3/M2/c_in (Add_full_1_39) 0.00 21.85 f C5/Z2/M3/M2/MZ/b (Add_half_1_77) 0.00 21.85 f C5/Z2/M3/M2/MZ/b (CANZXI) 0.18 22.03 f C5/Z2/M3/M2/M2/c_out (Add_half_1_77) 0.00 22.03 f C5/Z2/M3/M2/Cc_OUT (ADD_IXI) 0.19 22.21 f C5/Z2/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/c_Out (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_175) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_175) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_175) 0.00 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_175) 0.00 22.39 f C5/Z2/M3/M3/M2/c_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M3/M2/c_out (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CANZXI) 0.18 22.57 f C5/Z2/M3/M4/M2/U2/Z (CANZXI) 0.16 22.73 f C5/Z2/M3/M4/M2/c_out (Add_half_1-73) 0.00 22.57 f C5/Z2/M3/M4/M2/c_out (Add_half_1-73) 0.00 22.90 f C5/Z2/M3/M4/M2/c_out (Ad			
C5/Z2/M3/M2/C_in (Add_full_1_39) 0.00 21.85 f C5/Z2/M3/M2/W2/b (Add_half_177) 0.00 21.85 f C5/Z2/M3/M2/W2/U2/Z (CANZXI) 0.18 22.03 f C5/Z2/M3/M2/W2/C_out (Add_half_1-77) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M3/C_out (Add_full_1 39) 0.00 22.21 f C5/Z2/M3/M3/C_oin (Add_full_1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CANZXI) 0.18 22.39 f C5/Z2/M3/M3/M2/U2/Z (CANZXI) 0.18 22.39 f C5/Z2/M3/M3/M2/U2/Z (CND2IXI) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1 38) 0.00 22.57 f C5/Z2/M3/M3/C_out (Add_full_1 37) 0.00 22.57 f C5/Z2/M3/M3/C_in (Add_full_1 37) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1 37) 0.00 22.57 f C5/Z2/M3/M4/M2/C_out (Add_half_1-73) 0.00 22.73 f C5/Z2/M3/M4/M2/C_out (Add_half_1-73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1 36) 0.00 22.90 f C5/Z2/M4/M1/M2/C_out (Add_half_171) 0.0			
C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.00 21.85 f C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.18 22.03 f C5/Z2/M3/M2/M2/C2 out (Add half 1 77) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CNDZIXI) 0.19 22.21 f C5/Z2/M3/M2/c out (Add full 1 39) 0.00 22.21 f C5/Z2/M3/M3/c in (Add full 1 38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add half 1 75) 0.00 22.21 f C5/Z2/M3/M3/M2/c out (Add half 1 75) 0.18 22.39 f C5/Z2/M3/M3/M2/c out (Add half 1 75) 0.00 22.57 f C5/Z2/M3/M3/M2/c out (Add full 1 38) 0.00 22.57 f C5/Z2/M3/M3/C out (Add full 1 37) 0.18 22.57 f C5/Z2/M3/M3/C out (Add full 1 37) 0.00 22.57 f C5/Z2/M3/M4/C in (Add full 1 37) 0.00 22.57 f C5/Z2/M3/M4/M2/D2/Z (CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/M2/D2/Z (CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/M2/Cout (Add half 1 37) 0.00 22.73 f C5/Z2/M3/M4/M2/C out (Add full 1 37) 0.00 22.90 f C5/Z2/M4/M1/c in (Add full 1 36)			
C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.18 22.03 f C5/Z2/M3/M2/M2/c_out (Add half_1_77) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/c_out (Add full_1_38) 0.00 22.21 f C5/Z2/M3/M3/C_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/M2/C_out (Add half_1_75) 0.00 22.39 f C5/Z2/M3/M3/M2/C_out (Add full_1_38) 0.00 22.57 f C5/Z2/M3/M3/C_in (Add_full_1_37) 0.18 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/C_out (Add full_1_37) 0.16 22.73 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/C_out (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/D (Add_half_1_35)	C5/Z2/M3/M2/c in (Add full 1 39)	0.00	21.85 f
C5/Z2/M3/M2/M2/U2/Z (CAN2XI) 0.18 22.03 f C5/Z2/M3/M2/M2/c_out (Add half_1_77) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CND2IXI) 0.19 22.21 f C5/Z2/M3/M2/c_out (Add full_1_38) 0.00 22.21 f C5/Z2/M3/M3/C_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/M2/C_out (Add half_1_75) 0.00 22.39 f C5/Z2/M3/M3/M2/C_out (Add full_1_38) 0.00 22.57 f C5/Z2/M3/M3/C_in (Add_full_1_37) 0.18 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/C_out (Add full_1_37) 0.16 22.73 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/C_out (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/D (Add_half_1_35)	C5/Z2/M3/M2/M2/b (Add half 1 77)	0.00	21.85 f
C5/Z2/M3/M2/M2/c_out (Add_half_1_77) 0.00 22.03 f C5/Z2/M3/M2/U2/Z (CNDZIXI) 0.19 22.21 f C5/Z2/M3/M2/c_out (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/c in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CANZXI) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/M2/c_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M3/M2/c_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/W2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.16 22.73 f C5/Z2/M3/M4/M2/c_out (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/c_out (Add_full_1_37) 0.16 22.73 f C5/Z2/M3/M4/M2/c_out (Add_full_1_37) 0.00 22.73 f C5/Z2/M3/M4/M2/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/M4/M2/C_out (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/D (Add_			
CS/Z2/M3/M3/c_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2X1) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CND2IX1) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/U2/Z (CND2IX1) 0.16 22.73 f C5/Z2/M3/M4/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_35) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_full_1_35)	·	0.10	22.03 1
CS/Z2/M3/M3/c_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2X1) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CND2IX1) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/U2/Z (CND2IX1) 0.16 22.73 f C5/Z2/M3/M4/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_35) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_full_1_35)		0.00	22.03 I
CS/Z2/M3/M3/c_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2X1) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CND2IX1) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/U2/Z (CND2IX1) 0.16 22.73 f C5/Z2/M3/M4/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_35) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_full_1_35)	C5/Z2/M3/M2/U2/Z (CND2IX1)	0.19	22.21 f
CS/Z2/M3/M3/c_in (Add_full_1_38) 0.00 22.21 f C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2X1) 0.18 22.39 f C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CND2IX1) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/U2/Z (CND2IX1) 0.16 22.73 f C5/Z2/M3/M4/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_35) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_full_1_35)	C5/Z2/M3/M2/c out (Add full 1 39)	0.00	22.21 f
C5/Z2/M3/M3/M2/b (Add_half_1_75) 0.00 22.21 f C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/W2/C_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/C_(CND2IXI) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/D2 (CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/W2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/M4/C_in (Add_frea_4_1_9) 0.00 22.90 f C5/Z2/M4/M/M1/C_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2XI) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_		0 00	22 21 f
C5/Z2/M3/M3/M2/U2/Z (CAN2XI) 0.18 22.39 f C5/Z2/M3/M3/M2/C_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CND2IXI) 0.18 22.57 f C5/Z2/M3/M3/C_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/C_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/C_CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/W2/Z (CND2IXI) 0.16 22.73 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_half_1_73) 0.00 22.90 f C5/Z2/M3/M4/C_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/C_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2XI) 0.16 23.06 f C5/Z2/M4/M1/M2/C_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/M2/D_OUT (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/C_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/D_OUT (Add_full_1_35) 0.00<			
C5/Z2/M3/M3/M2/c_out (Add_half_1_75) 0.00 22.39 f C5/Z2/M3/M3/U2/Z (CNDZIX1) 0.18 22.57 f C5/Z2/M3/M3/c_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/c_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/C_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/c_out (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/c_out (Add_full_1_36) 0.16 23.06 f C5/Z2/M4/M1/C_out (Add_full_1_35) 0.18 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_f			
C5/Z2/M3/M3/U2/Z (CND2IXI) 0.18 22.57 f C5/Z2/M3/M3/c out (Add full 1 38) 0.00 22.57 f C5/Z2/M3/M4/c in (Add full 1 37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add half 1 73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/M2/C_out (Add half 1 73) 0.00 22.73 f C5/Z2/M3/M4/W2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add full 1 37) 0.00 22.90 f C5/Z2/M3/M4/c_out (Add rca 4 1 9) 0.00 22.90 f C5/Z2/M4/M1/c in (Add full 1 36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add half 1 71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2XI) 0.16 23.06 f C5/Z2/M4/M1/M2/C out (Add half 1 71) 0.00 23.06 f C5/Z2/M4/M1/M2/C (CND2IXI) 0.18 23.25 f C5/Z2/M4/M1/C_out (Add full 1 35) 0.00 23.25 f C5/Z2/M4/M2/D2/D (Add half 1 69) 0.00 23.25 f C5/Z2/M4/M2/M2/D2/Z (CND2IXI) 0.16 23.41 f C5/Z2/M4/M2/M2/D2/Z (CND2IXI) 0.18 23.59 f C5/Z2/M4/M2/C_out (Add full 1 35) 0.00 </td <td></td> <td></td> <td></td>			
C5/Z2/M3/M3/c_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/c_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/C_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/C_out (Add_half_1_71) 0.16 23.06 f C5/Z2/M4/M1/M2/C_out (Add_half_1_71) 0.16 23.06 f C5/Z2/M4/M1/W2/C_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/C_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/W2/C_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.18 23.59 f C5/Z2/M4/M2/W2/C_out (Add_full_1_35)	C5/Z2/M3/M3/M2/c out (Add half 1 75)	0.00	22.39 f
C5/Z2/M3/M3/c_out (Add_full_1_38) 0.00 22.57 f C5/Z2/M3/M4/c_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/C_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/C_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/C_out (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/C_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/C_out (Add_half_1_71) 0.16 23.06 f C5/Z2/M4/M1/M2/C_out (Add_half_1_71) 0.16 23.06 f C5/Z2/M4/M1/W2/C_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/C_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/W2/C_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.18 23.59 f C5/Z2/M4/M2/W2/C_out (Add_full_1_35)	C5/Z2/M3/M3/U2/Z (CND2IX1)	0.18	22.57 f
C5/Z2/M3/M4/c_in (Add_full_1_37) 0.00 22.57 f C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2X1) 0.16 22.73 f C5/Z2/M3/M4/M2/c_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/M2/c_out (Add_full_1_35) 0.18 23.59 f C5/Z2/M4/M2/C_out (Add_full_1_34)<			
C5/Z2/M3/M4/M2/b (Add_half_1_73) 0.00 22.57 f C5/Z2/M3/M4/M2/U2/Z (CAN2XI) 0.16 22.73 f C5/Z2/M3/M4/M2/c_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IXI) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/MI/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/MI/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/M2/C		0.00	22.57 1
C5/Z2/M3/M4/M2/U2/Z (CAN2XI) C5/Z2/M3/M4/M2/U2/Z (CAN2XI) C5/Z2/M3/M4/M2/C_out (Add_half_1_73) C5/Z2/M3/M4/W2/Z (CND2IXI) C5/Z2/M3/M4/U2/Z (CND2IXI) C5/Z2/M3/M4/U2/Z (CND2IXI) C5/Z2/M3/C_out (Add_full_1_37) C5/Z2/M3/C_out (Add_rca_4_1_10) C5/Z2/M4/C_in (Add_rca_4_1_10) C5/Z2/M4/M1/C_in (Add_half_1_36) C5/Z2/M4/M1/M2/D (Add_half_1_71) C5/Z2/M4/M1/M2/D (Add_half_1_71) C5/Z2/M4/M1/M2/Z (CAN2XI) C5/Z2/M4/M1/W2/Z (CND2IXI) C5/Z2/M4/M1/U2/Z (CND2IXI) C5/Z2/M4/M1/C_out (Add_full_1_36) C5/Z2/M4/M1/C_out (Add_full_1_36) C5/Z2/M4/M1/C_out (Add_full_1_36) C5/Z2/M4/M1/C_out (Add_full_1_36) C5/Z2/M4/M2/C_in (Add_full_1_36) C5/Z2/M4/M2/C_out (Add_half_1_69) C5/Z2/M4/M2/D2/Z (CAN2XI) C5/Z2/M4/M2/M2/C_out (Add_half_1_69) C5/Z2/M4/M3/C_in (Add_full_1_34) O.00 C3.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) O.00 C3.59 f		0.00	22.57 I
C5/Z2/M3/M4/M2/c_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/C_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/W2/c_out (Add_full_1_35) 0.16 23.41 f C5/Z2/M4/M2/C_out (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1		0.00	22.57 f
C5/Z2/M3/M4/M2/c_out (Add_half_1_73) 0.00 22.73 f C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/C_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/W2/c_out (Add_full_1_35) 0.16 23.41 f C5/Z2/M4/M2/C_out (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1	C5/Z2/M3/M4/M2/U2/Z (CAN2X1)	0.16	22.73 f
C5/Z2/M3/M4/U2/Z (CND2IX1) 0.17 22.90 f C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/D2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/M2/C_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/M2/C_out (Add_half_1_69) 0.00 23.59 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/C_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/m2/b (Add_half_1_67) 0.00 23.59 f		0 00	22 73 f
C5/Z2/M3/M4/c_out (Add_full_1_37) 0.00 22.90 f C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/M2/c_out (Add_full_1_35) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M3/c_out (Add_rca_4_1_10) 0.00 22.90 f C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/V2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/C_out (Add_full_1_35) 0.18 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/c_in (Add_rca_4_1_9) 0.00 22.90 f C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/W2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b (Add_half_1_67) 0.00 23.59 f		0.00	
C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b (Add_half_1_67) 0.00 23.59 f	C5/Z2/M3/c out (Add rca 4 1 10)	0.00	22.90 f
C5/Z2/M4/M1/c_in (Add_full_1_36) 0.00 22.90 f C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b (Add_half_1_67) 0.00 23.59 f	$C5/Z2/M4/c$ in (Add rca $\frac{1}{4}$ $\frac{1}{1}$ $\frac{9}{1}$)	0.00	22.90 f
C5/Z2/M4/M1/M2/b (Add_half_1_71) 0.00 22.90 f C5/Z2/M4/M1/M2/U3/Z (CAN2X1) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M1/M2/U3/Z (CAN2XI) 0.16 23.06 f C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b(Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M1/M2/c_out (Add_half_1_71) 0.00 23.06 f C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f	C5/Z2/M4/M1/M2/U3/Z (CAN2X1)	0.16	23.06 f
C5/Z2/M4/M1/U2/Z (CND2IX1) 0.18 23.25 f C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f	C5/Z2/M4/M1/M2/c out (Add half 1 71)	0.00	23.06 f
C5/Z2/M4/M1/c_out (Add_full_1_36) 0.00 23.25 f C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M2/c_in (Add_full_1_35) 0.00 23.25 f C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M2/M2/b (Add_half_1_69) 0.00 23.25 f C5/Z2/M4/M2/M2/U2/Z (CAN2X1) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M2/M2/U2/Z (CAN2XI) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IXI) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f		0.00	23.25 f
C5/Z2/M4/M2/M2/U2/Z (CAN2XI) 0.16 23.41 f C5/Z2/M4/M2/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IXI) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f	C5/Z2/M4/M2/M2/b (Add half 1 69)	0.00	23.25 f
C5/Z2/M4/M2/c_out (Add_half_1_69) 0.00 23.41 f C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M2/U2/Z (CND2IX1) 0.18 23.59 f C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M2/c_out (Add_full_1_35) 0.00 23.59 f C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f			
C5/Z2/M4/M3/c_in (Add_full_1_34) 0.00 23.59 f C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f	C5/Z2/M4/M2/c_out (Add full 1 35)	0.00	23.59 f
C5/Z2/M4/M3/M2/b (Add_half_1_67) 0.00 23.59 f		0.00	23.59 f
$C_{3}/\Delta_{2}/M_{4}/M_{3}/M_{2}/U_{2}/\Delta$ (CANZXI) U.10 23./5 I			
	CO/AZ/M4/M3/MZ/UZ/Z (CANZXI)	0.16	23./5 I

C5/Z2/M4/M3/M2/c_out (Add_half_1_67)	0.00	23.75 f
C5/Z2/M4/M3/U1/Z (CND2IX1)	0.19	
C5/Z2/M4/M3/c_out (Add_full_1_34)		23.94 f
C5/Z2/M4/M4/c_in (Add_full_1_33)		23.94 f
C5/Z2/M4/M4/M2/b (Add_half_1_65)		23.94 f
C5/Z2/M4/M4/M2/U2/Z (CND2X1)		24.02 r
C5/Z2/M4/M4/M2/U5/Z (CND2X1)		24.13 f
C5/Z2/M4/M4/M2/sum (Add_half_1_65)	0.00	
C5/Z2/M4/M4/sum (Add_full_1_33)	0.00	24.13 f
C5/Z2/M4/sum[3] (Add_rca_4_1_9)	0.00	24.13 f
C5/Z2/sum[15] (Add_rca_16_1_3)	0.00	24.13 f
C5/sum[31] (Add_rca_1_2)		24.13 f
U739/Z (CND2IX1)	0.07	24.20 r
U759/Z (CND2X1)	0.09	24.29 f
result_reg[63]/D (CFD1QXL)	0.00	24.29 f
data arrival time		24.29
clock clock (rise edge)	25.00	25.00
clock network delay (propagated)	0.00	25.00
clock uncertainty	-0.25	24.75
result reg[63]/CP (CFD1QXL)	0.00	24.75 r
library setup time		24.29
data required time		24.29
data required time		24.29
data arrival time		-24.29
slack (MET)		0.00

Report : area Design : division Version: C-2009.06-SP5

Date : Sat Dec 10 17:41:18 2016

Library(s) Used:

tc240c (File: /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25)

Number of ports: 165
Number of nets: 1319
Number of cells: 928
Number of references: 58

Combinational area: 3774.500000
Noncombinational area: 628.000000
Net Interconnect area: undefined (No wire load specified)

Total cell area: 4402.500000 Total area: undefined

Report : power

```
-analysis effort low
Design : division
Version: C-2009.06-SP5
Date : Sat Dec 10 17:41:18 2016
*********
Library(s) Used:
   tc240c (File: /apps/toshiba/sjsu/synopsys/tc240c/tc240c.db WCCOM25)
Operating Conditions: WCCOM25 Library: tc240c
Wire Load Model Mode: top
Global Operating Voltage = 2.3
Power-specific unit information :
   Voltage Units = 1V
   Capacitance Units = 1.000000ff
   Time Units = 1ns
   Dynamic Power Units = 1uW (derived from V,C,T units)
   Leakage Power Units = Unitless
 Cell Internal Power = 1.7617 mW (83%)
 Net Switching Power = 366.9811 uW (17%)
Total Dynamic Power = 2.1286 mW (100%)
Cell Leakage Power = 0.0000
1
```

C.4 Selected Screenshot Circuits from Synthesis (Design Compiler)

Circuit for Multiplication

Circuit for Division

32 Bit Adder

16 Bit RCA Adder

4 Bit RCA Adder

Full Adder

