Time and Motion Part 1: Representing Time Variation

John Keyser

Patterns of Time-Series Data

- Several types of typical patterns seen
 - Trend of Change
 - Variability
 - Covariation
 - Rate of Change
 - Cycles
- Often, simple line graphs are best for displaying data

- What is the overall nature of change?
 - Can assist by plotting a trend line, fitting a curve, or showing a moving average

- What is the overall nature of change?
 - Can assist by plotting a trend line, fitting a curve, or showing a moving average

- What is the overall nature of change?
 - Can assist by plotting a trend line, fitting a curve, or showing a moving average

- What is the overall nature of change?
 - Can assist by plotting a trend line, fitting a curve, or showing a moving average

- What is the overall nature of change?
 - For multiple items, visualizing relative amounts can be better than absolute

- What is the overall nature of change?
 - For multiple items, visualizing relative amounts can be better than absolute

Variability

- How do values go up/down through time?
 - Clearly showing max/min/mean can be useful

Variability

- How do values go up/down through time?
 - Clearly showing variation vs. a base is useful

Taken from: https://waterdatafortexas.org/reservoirs/individual/travis

Covariation

How does one value change relative to another

- Show percentage change in intervals instead of absolute change
 - Logarithmic scales: slopes are equal for equal

- Show percentage change in intervals instead of absolute change
 - Logarithmic scales: slopes are equal for equal percentage change

- Show percentage change in intervals instead of absolute change
 - -Showing % change vs. a starting point

- Show percentage change in intervals instead of absolute change
- Careful! Choices made can influence impression made if people aren't careful
 - Starting point for % change can make a big difference
 - Logarithmic scale needs to be clearly labeled and used by people who understand it

Cycles

- Show data that tends to follow regular repeating pattern over time
 - Can plot with different line for each cycle

Cycles

- Show data that tends to follow regular repeating pattern over time
 - Also specific cycle plots

Cycle Plot of Sales Data for Product A

Taken from: https://www.infragistics.com/community/blogs/b/tim_brock/posts/charts-and-cycles-of-time-part-2

- Careful when using lines
 - Implies that there is smooth variation from sample to sample, which might not be true
 - Dots can be better

- Careful when using lines
 - Implies that there is smooth variation from sample to sample, which might not be true
 - Dots can be better

- Careful when using lines
 - Implies that there is smooth variation from sample to sample, which might not be true
 - Dots can be better

- Aggregation level can tell very different stories
 - Year vs month vs day vs hour
- Choosing right level for the concept you are wanting to demonstrate is important
- Can also allow for user to select if interactive

- Adding lines to group data of similar types can help provide context
 - Visually separate regions, see cycles, etc.
 - e.g. adding lines to show beginning of year, or quarter
 - e.g. adding shading to show weekdays

- Aspect ratios
 - In general, can change perception of data
- Ideal seems to be slopes of about 45 degrees

- Aspect ratios
 - In general, can change perception of data
- Ideal seems to be slopes of about 45 degrees

- Aspect ratios
 - In general, can change perception of data

Ideal seems to be slopes of about 45 degrees

 For leading/lagging indicators, can shift the time axes and offset the values so the alignment is more obvious

Shift = 2, Correlation= .90

Data 1 is compared to a Data2 that has been shifted ahead by 2 months.

- If too many lines to draw on one graph, can stack graphs one above another so that all can be seen
 - Time axis still aligns among all of them

 For visualizations involving money, often should account for inflation

More Time Series Charts

- Other types of charts can be used to draw time series
 - Including specialized techniques that have been developed

Heat Map

- Heat map for cyclic time series
- Cycle on one axis, time on other

Taken from: https://graphics.wsj.com/how-we-sleep/

Horizon Graph

- Used to visualize many time series simultaneously
- Conceptual Process:
 - Draw graph of data
 - Fill positive blue, negative red (or vice versa)
 - Flip negative value so everything is above line
 - Divide vertical into bins of increasing saturation
 - Highest parts are most saturated
 - Draw each bin on same line
 - Most saturated in front

Horizon Graph Steps

Taken from:

https://www.researchgate.net/figure/Horizon-Plot-with-some-of-the-most-notable-features-extracted-from-the-ACC-and-BAR fig7 301683665

Horizon Graph

Horizon Graph

- Can display several time series at once
- Has been shown that people can learn to use these to compare large amounts of data well

