Содержание

1	Глава 9. Теория меры		2	
	1.1	§1. Системы множеств	2	
	1.2	§2. Объем и мера	8	
	1.3	§3. Продолжение меры	13	
	1.4	§4. Мера Лебега	18	
	1.5	§5. Измеримые функции	25	
	1.6	§6. Последовательности функций	31	
2	Гла	ва 10. Интеграл Лебега	34	
	2.1	§1. Определение интеграла	34	
	2.2	§2. Суммируемые функции	39	
	2.3	§3. Предельный переход под знаком интеграла	46	
	2.4	§4. Произведение мер	49	

Глава 9. Теория меры 1

1.1 §1. Системы множеств

Definition 1.1. Объемлющее множество

X – объемлющее множество. Будем рассматривать $A \subset X$

Declaration 1.1. Обозначения

 $A \sqcup B$ – объединение множеств A и B и множества A и B не пересекаются

 $\bigsqcup A_k$ – объединение и $A_i \cap A_j = \varnothing$

Дизъюнктные множества = непересекающиеся множества

Definition 1.2. Разбиение множества

Множества E_{α} , $\alpha \in I$ – разбиение множества E, если $E = \bigsqcup E_{\alpha}$

Definition 1.3. Система подмножеств и ее свойства

 \mathcal{A} – система подмножеств X (т.е. $\mathcal{A} \subset 2^X$)

- 1. \mathcal{A} имеет свойство σ_0 , если $\forall A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- 2. \mathcal{A} имеет свойство δ_0 , если $\forall A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- 3. \mathcal{A} имеет свойство σ , если $\forall A_1, A_2 \ldots \in \mathcal{A} \Rightarrow \bigcup^{\infty} A_n \in \mathcal{A}$
- 4. \mathcal{A} имеет свойство δ , если $\forall A_1, A_2 \ldots \in \mathcal{A} \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 5. \mathcal{A} симметричная система, если $\forall A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$

2

Reminder 1.1.

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$

Proposition 1.1.

 $(\sigma_0) \Leftrightarrow (\delta_0)$ Если \mathcal{A} симметричная система, то $(\sigma) \Leftrightarrow (\delta)$

Definition 1.4. Алгебра

 \mathcal{A} – алгебра, если

- 1. $\emptyset \in \mathcal{A}$
- $2. \mathcal{A}$ симметричная система
- 3. Есть свойства (σ_0) и (δ_0)

Definition 1.5. σ -алгебра

 \mathcal{A} – σ -алгебра, если

- 1. $\varnothing \in \mathcal{A}$
- 2. A симметричная система
- 3. Есть свойства (σ) и (δ)

Theorem 1.1. Свойства

- 1. Если \mathcal{A} алгебра и $A_1 \dots A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k$ и $\bigcap_{k=1}^n A_k \in \mathcal{A}$
- 2. Если \mathcal{A} σ -алгебра, то \mathcal{A} алгебра
- 3. Если \mathcal{A} алгебра и $A,B\in\mathcal{A},$ то $\underbrace{A\setminus B}_{A\cap (X\setminus B)}\in\mathcal{A}$

Example 1.1.

- 1. $X = \mathbb{R}^n$
 - ${\cal A}$ все ограниченные множества и их дополнения. Это алгебра, но не σ -алгебра
- 2. $2^{X} \sigma$ -алгебра
- 3. Индуцированная $(\sigma$ -)алгебра
 - $Y \subset X$, $\mathcal{A} (\sigma$ -)алгебра подмножеств X
 - $\mathcal{B} := \{A \cap Y : A \in \mathcal{A}\} (\sigma$ -)алгебра подмножеств Y
- 4. $X \supset A, B$
 - \mathcal{A} алгебра подмножеств X
 - $\varnothing, X, A, B, A \cup B, A \cap B, A \setminus B, B \setminus A, X \setminus A, X \setminus B, A \triangle B, X \setminus (A \cap B), X \setminus (A \cup B),$
 - $X \setminus (A \triangle B), X \setminus (A \setminus B), X \setminus (B \setminus A)$
- 5. A_{α} $(\sigma$ -)алгебра подмножеств X
 - Тогда $\mathcal{B} = \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} (\sigma$ -)алгебра подмножеств X

Доказательство:

- (a) $\varnothing \in \mathcal{A}_{\alpha} \Rightarrow \varnothing \in \mathcal{B}$
- (b) $A \in \mathcal{B} \Rightarrow A \in \mathcal{A}_{\alpha} \forall \alpha \Rightarrow X \setminus A \in \mathcal{A}_{\alpha} \forall \alpha \Rightarrow X \setminus A \in \mathcal{B}$

Theorem 1.2.

Пусть \mathcal{E} – система подмножеств X

Тогда существует наименьшая по включению (σ -)алгебра \mathcal{A} , содержащая \mathcal{E}

3

Доказательство:

Пусть \mathcal{A}_{α} – всевозможные алгебры, содержащие \mathcal{E} (2^{X} подходит)

$$\mathcal{A} := \bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$$
 – алгебра и $\mathcal{A} \subset \mathcal{A}_{\alpha} \forall \alpha$

Definition 1.6. Борелевская оболочка

 ${\mathcal E}$ – система подмножеств X

Борелевская оболочка системы $\mathcal E$ — наименьшая по включению σ -алгебра, содержащая $\mathcal E$

Declaration 1.2. Обозначение

 $\mathcal{B}(\mathcal{E})$

Definition 1.7. Борелевская σ -алгебра

Борелевская σ -алгебра – это $\mathcal{B}(\mathcal{E})$, где \mathcal{E} – всевозможные открытые множества в \mathbb{R}^n

Declaration 1.3. Обозначение

 \mathcal{B}^n

Remark 1.1.

 $\mathcal{B}^n \neq 2^{\mathbb{R}^n}$

Definition 1.8. Кольцо

 ${\mathcal A}$ – семейство подмножеств X

 \mathcal{A} – кольцо, если

1. $\emptyset \in \mathcal{A}$

2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}, A \cup B \in \mathcal{A}$

3. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$

Remark 1.2.

 ${\mathcal A}$ – алгебра \Leftrightarrow ${\mathcal A}$ – кольцо и $X\in{\mathcal A}$

Definition 1.9.

 \mathcal{P} – семейство подмножеств X

 \mathcal{P} – полукольцо, если

1. $\varnothing \in \mathcal{P}$

2. $\forall A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$

3. $\forall A, B \in \mathcal{P} \; \exists Q_1 \dots Q_m \in \mathcal{P}, \text{ т.ч. } A \setminus B = \bigsqcup_{k=1}^m Q_k$

Example 1.2.

1. $X = \mathbb{R}; \ \mathcal{P} := \{(a,b] : a,b \in \mathbb{R}\}$ – полукольцо

2. $X = \mathbb{R}; \ \mathcal{P} := \{(a,b] : a,b \in \mathbb{Q}\}$ – полукольцо

4

Lemma 1.1.

$$\bigcup_{k=1}^n A_k = \coprod_{k=1}^n \underbrace{(A_k \setminus \bigcup_{j=1}^{k-1} A_j)}_{B_k}$$
 (для ∞ вместо n тоже верно)

Доказательство:

- $B_k \subset A_k \Rightarrow \supset$ верно
- ullet С возьмем $x\in\bigcup_{k=0}^\infty A_k$ \Rightarrow найдется наименьший индекс m, т.ч. $x\in A_m$ и $x\notin A_{m-1}\dots A_1$ \Rightarrow

$$\Rightarrow x \in B_m$$

• Дизъюнктность $k < m \Rightarrow B_k \cap B_m = \emptyset$

$$B_m = A_m \setminus \bigcup_{j=1}^{m-1} A_j \subset A_m \setminus A_k \subset A_m \setminus B_k$$
$$B_k \subset A_k$$

Theorem 1.3.

 \mathcal{P} – полукольцо. Тогда

1.
$$P, P_1 \dots P_n \in \mathcal{P} \Rightarrow \exists Q_1 \dots Q_m \in \mathcal{P}, \text{ т.ч. } P \setminus \bigcup_{k=1}^n P_k = \bigsqcup_{j=1}^m Q_j$$

2.
$$P_1, P_2 \ldots \in \mathcal{P} \Rightarrow \exists Q_{ij} \in \mathcal{P}, \text{ т.ч. } \bigcup_{k=1}^n P_k = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^{m_k} Q_{kj}, \text{ где } Q_{kj} \subset P_k \forall k, j$$

3. В п. 2 можно вместо n написать ∞

Доказательство:

1. Индукция. База n=1 – определение полукольца

Переход
$$n \to n+1$$

$$P \setminus \bigcup_{k=1}^{n+1} P_k = \underbrace{\left(P \setminus \bigcup_{k=1}^{n} P_k\right) \setminus P_{n+1}}_{\text{инд. предполож.}} \setminus P_{n+1} = \underbrace{\left(\bigsqcup_{j=1}^{m} Q_j\right) \setminus P_{n+1}}_{\text{где } Q_j \in \mathcal{P}} = \bigcup_{j=1}^{m} Q_j \setminus P_{n+1} = \bigsqcup_{j=1}^{m} \bigsqcup_{i=1}^{m_j} Q_{ji}$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} (P_k \setminus \bigcup_{j=1}^{k-1} P_j)$$

Definition 1.10.

 \mathcal{P} – полукольцо подмножеств X

 \mathcal{Q} – полукольцо подмножеств Y

 $\mathcal{P} \times \mathcal{Q} := \{A \times B : A \in \mathcal{P} \text{ и } B \in \mathcal{Q}\}$ – декартово произведение полуколец \mathcal{P} и \mathcal{Q}

5

Theorem 1.4.

Декартово произведение полуколец – полукольцо

Доказательство:

1. Пустые очев

2.
$$C \times D$$
 if $A \times B \in \mathcal{P} \times \mathcal{Q} \Rightarrow (A \times B) \cap (C \times D) = \underbrace{(A \cap C)}_{\in \mathcal{P}} \times \underbrace{(B \cap D)}_{\in \mathcal{Q}}$

3.
$$A \times B, C \times D \in \mathcal{P} \times \mathcal{Q} \stackrel{?}{\Rightarrow} (A \times B) \setminus (C \times D) = \bigsqcup_{k=1}^{m} \underbrace{P_{k}}_{\in \mathcal{P}} \times \underbrace{Q_{k}}_{\in \mathcal{Q}}$$

$$(A \times B) \setminus (C \times D) = \underbrace{(A \setminus C)}_{\stackrel{m}{\downarrow} P_{j}} \times \underbrace{B}_{\in \mathcal{Q}} \sqcup \underbrace{(A \cap C)}_{\in \mathcal{P}} \times \underbrace{(B \setminus D)}_{\stackrel{n}{\downarrow} Q_{i}}$$

Definition 1.11. Замкнутый и открытый параллелепипеды

 $a, b \in \mathbb{R}^n$

Замкнутый параллелепипед $[a, b] := [a_1, b_1] \times \ldots \times [a_n, b_n]$

Открытый параллеленинед $(a,b) := (a_1,b_1) \times \ldots \times (a_n,b_n)$

Definition 1.12. Ячейка

 $a, b \in \mathbb{R}^n$

Ячейка $(a, b] := (a_1, b_1] \times \ldots \times (a_n, b_n]$

Remark 1.3.

$$(a,b)\subset (a,b]\subset [a,b]$$

Proposition 1.2.

- 1. Непустая ячейка объединение возрастающей (по включению) последовательности замкнутых параллелепипедов
- 2. Непустая ячейка пересечение убывающей (по включению) последовательности открытых параллелепипедов

6

Доказательство:

1.
$$A_k := [a_1 - \frac{1}{k}, b_1] \times [a_2 - \frac{1}{k}, b_2] \times \ldots \times [a_n - \frac{1}{k}, b_n]$$

$$A_{k+1} \supset A_k \ \text{if} \ \bigcup_{k=1}^{\infty} A_k = (a, b]$$

$$A_{k+1} \supset A_k$$
 и $\bigcup_{k=1}^{\infty} A_k = (a, b]$
2. $B_k := (a_1, b_1 + \frac{1}{k}) \times (a_2, b_2 + \frac{1}{k}) \times \ldots \times (a_n, b_n + \frac{1}{k})$

$$B_{k+1} \subset B_k$$
 и $\bigcap_{k=1}^{\infty} B_k = (a, b]$

Declaration 1.4. Обозначения

$$\mathcal{P}^n := \{(a, b] : a, b \in \mathbb{R}^n\}$$

$$\mathcal{P}^n_{\mathbb{Q}} := \{(a, b] : a, b \in \mathbb{Q}^n\}$$

Proposition 1.3.

$$\mathcal{P}^n$$
 и $\mathcal{P}^n_{\mathbb{Q}}$ – полукольца

Доказательство:

$$\mathcal{P}^n = \underbrace{\mathcal{P}^1 \times \mathcal{P}^1 \times \ldots \times \mathcal{P}^1}_{\text{полукольца}}$$

Theorem 1.5.

G – непустое открытое множество в \mathbb{R}^m

Тогда G представимо в виде счетного дизъюнктного объединения ячеек с рациональными координатами вершин

Доказательство:

У АИ тут рисуночки, посмотрите запись!

Для $x \in G$ построим ячейку P_x с рациональными координатами вершин, т.ч. $P_x \in G$ и $x \in P_x$

$$\bigcup_{x \in G} P_x = G$$

Ячеек с рациональными координатами вершин счетное число. Значит если выкинуть повторы из объединения выше, то останется счетное объединение

$$G = \bigcup_{n=1}^{\infty} P_{x_n} = \coprod_{n=1}^{\infty} \coprod_{j=1}^{m_n} Q_{nj}$$
 – ячейки с рациональными координатами вершин

Theorem 1.6. Следствие

$$\mathcal{B}^m = \mathcal{B}(\mathcal{P}^m) = \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$$

Доказательство:

- 1. $\mathcal{B}^m \supset \mathcal{B}(\mathcal{P}^m)$. Достаточно доказать, что $\mathcal{B}^m \supset \mathcal{P}^m$ (a,b] счетное пересечение открытых параллелепипедов (т.к. открытых множеств) \Rightarrow (a,b] лежит в σ -алгебре, содержащей все открытые множества
- 2. $\mathcal{B}(\mathcal{P}^m)\supset\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$. Достаточно доказать, что $\mathcal{B}(\mathcal{P}^m)\supset\mathcal{P}^m_{\mathbb{Q}}$, но $\mathcal{B}(\mathcal{P}^m)\supset\mathcal{P}^m\supset\mathcal{P}^m_{\mathbb{Q}}$
- 3. $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \supset \mathcal{B}^m$. Достаточно доказать, что $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$ содержит все открытые множества. Это следует из теоремы 1.5.

7

1.2 §2. Объем и мера

Definition 1.13. Объем

 \mathcal{P} – полукольцо. $\mu:\mathcal{P} \to [0,+\infty]$ μ – объем, если

1.
$$\mu\varnothing=0$$

2. Если
$$A_1, \dots A_n$$
 и $\bigsqcup_{k=1}^n A_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n A_k) = \sum_{k=1}^n \mu A_k$

Definition 1.14. Mepa

 \mathcal{P} – полукольцо. $\mu: \mathcal{P} \to [0, +\infty]$ μ – мера, если

1.
$$\mu\varnothing=0$$

2. Если
$$A_1, A_2 \dots$$
 и $\bigsqcup_{k=1}^{\infty} A_k$, то $\mu(\bigsqcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu A_k$

Exercise 1.1.

Если $\mu\varnothing\neq +\infty$, то $\mu\varnothing=0$ из свойства 2

Example 1.3. Примеры объемов

1.
$$X = \mathbb{R}, \ \mathcal{P}^1$$
. Длина – объем. $\mu(a, b] = b - a$

2.
$$X=\mathbb{R},~\mathcal{P}^1.~g:\mathbb{R}\to\mathbb{R}$$
 – нестрого возрастающая функция $\nu_q(a,b]:=g(b)-g(a)$

3. Классический объем на
$$\mathcal{P}^m$$
 $\lambda_m(a,b]=(b_1-a_1)(b_2-a_2)\dots(b_m-a_m)$ – объем и даже мера (докажем позже)

8

4.
$$x_0 \in X$$
; $\mu A = \begin{cases} 0 & x_0 \notin A \\ 1 & x_0 \in A \end{cases}$

5.
$$X = \mathbb{R}^2$$
; \mathcal{P} – ограниченные множества и их дополнения $\mu A = \begin{cases} 0 & A$ – ограничена $1 & A$ дополнение ограничено – объем, но не мера

Theorem 1.7. Свойства объема

 \mathcal{P} – полукольцо, μ – объем на \mathcal{P} . Тогда

$$P, \tilde{P} \in \mathcal{P}$$
 и $P \subset \tilde{P} \Rightarrow \mu P \leq \mu \tilde{P}$

2. Усиленная монотонность
$$n$$

$$P_1, P_2 \dots P_n, \tilde{P} \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^n P_k \subset \tilde{P} \Rightarrow \sum_{k=1}^n \mu P_k \leq \mu \tilde{P}$

$$P_1, P_2 \dots P_n, \tilde{P} \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^n P_k \subset \tilde{P} \Rightarrow \sum_{k=1}^n \mu P_k \leq \mu \tilde{P}$
2'. $P_1, P_2 \dots, \tilde{P} \in \mathcal{P}$ и $\bigsqcup_{k=1}^\infty P \subset \tilde{P} \Rightarrow \sum_{k=1}^\infty \mu P_k \leq \mu \tilde{P}$

$$P_1 \dots P_n, P \in \mathcal{P}$$
 и $P \subset \bigcup_{k=1}^n P_k \Rightarrow \mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство:

2.
$$\tilde{P} \setminus \bigsqcup_{k=1}^{n} P_k = \bigsqcup_{j=1}^{m} Q_j$$
, где $Q_j \in \mathcal{P}$

$$\tilde{P} = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \Rightarrow \mu \tilde{P} = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

2'. Предельный переход в неравенстве

3.
$$P'_k := P_k \cap P \in \mathcal{P} \Rightarrow P = \bigcup_{k=1}^n P'_k = \bigcup_{k=1}^m \bigcup_{j=1}^{m_k} Q_{kj}$$
 (они из \mathcal{P}) $\Rightarrow \mu P = \sum_{k=1}^n \sum_{j=1}^{m_k} \mu Q_{kj}$ $P_k \supset P'_k \supset \bigcup_{j=1}^m Q_{kj} \Rightarrow \mu P_k \ge \sum_{j=1}^m \mu Q_{kj}$

Remark 1.4.

- 1. Если μ объем на алгебре $\mathcal{A}, A \subset B; \ A, B \in \mathcal{A}$ и $\mu A < +\infty$, то $\mu(B \setminus A) = \mu B \mu A$ Доказательство: Т.к. $B = A \sqcup (B \setminus A)$
- 2. Объем на полукольце можно продолжить на кольцо, состоящего из всевозможных объединений элементов полукольца

Theorem 1.8.

$$\mathcal P$$
 и $\mathcal Q$ — полукольца подмножеств X и Y . μ и ν — объемы на $\mathcal P$ и $\mathcal Q$ λ $\underbrace{(P \times Q)}_{P \in \mathcal P; \ Q \in \mathcal Q}$ $($ считаем, что $0 \cdot + \infty = + \infty \cdot 0 = 0)$ Тогда λ — объем на $\mathcal P \times \mathcal Q$

Theorem 1.9. Следствие

Классический объем λ_m – объем

Доказательство:

Example 1.4. Примеры мер

- 1. λ_m мера (потом докажем)
- 2. $g:\mathbb{R} \to \mathbb{R}$ нестрого возрастающая и непрерывная справа во всех точках $\nu_{q}(a,b] := g(b) - g(a)$ - Mepa
- 3. $x_0 \in X$; $\mu A = \begin{cases} 1 & x_0 \in A \\ 0 & x_0 \notin A \end{cases}$ мера на 2^X
- 4. Считающая мера = количество элементов в множестве
- 5. $X; \ \frac{t_1,t_2\ldots\in X}{w_1,w_2\ldots\geq 0}; \ \mu A:=\sum_{k:t_k\in A}w_k$ мера на 2^X

Счетная аддитивность: $A = \bigsqcup_{k=1}^{\infty} A_k \stackrel{?}{\Rightarrow} \mu A = \sum_{k=1}^{\infty} \mu A_k$ В множестве A_k гирьки $w_{k_1}, w_{k_2} \dots$

$$\mu A_k = \sum\limits_{j=1}^\infty w_{k_j}$$
 и $\mu A = \sum w_{k_j}$

Надо понять, что $\sum\limits_{k=1}^{\infty}\sum\limits_{i=1}^{\infty}w_{k_{j}}=\sum w_{k_{j}}$

$$\leq: \underbrace{\sum_{k=1}^K \sum_{j=1}^\infty w_{k_j}}_{\sum_{j=1}^\infty \sum_{k=1}^K w_{k_j}} \leq R \Rightarrow L \leq R$$

 \geq : Берем частичную сумму S для R. Надо доказать, что $S \leq L$ $K = \max k$ в этой частичной сумме $J = \max j$ в этой частичной сумме $\Rightarrow S \leq \sum_{k=1}^K \sum_{j=1}^J w_{k_j} \leq L$

Theorem 1.10.

 $\mu:\mathcal{P} \to [0,+\infty]$ – объем на полукольце $\mathcal{P}.$ Тогда

$$\mu$$
 – мера \Leftrightarrow (счетная полуаддитивность)
 $(P, P_k \in \mathcal{P}) \ \forall P \subset \bigcup_{k=1}^{\infty} P_k \Rightarrow \mu P \leq \sum_{k=1}^{\infty} \mu P_k$

Доказательство:

$$\Leftarrow$$
: $P = \bigsqcup_{k=1}^{\infty} P_k \xrightarrow[\text{сч. полуадд.}]{} \mu P \leq \sum_{k=1}^{\infty} \mu P_k$

$$P = \bigsqcup_{k=1}^{\infty} P_k \xrightarrow[\text{усил. монот.}]{} \mu P \geq \sum_{k=1}^{\infty} \mu P_k$$

$$k=1$$
 \Rightarrow : $P_k' := P \cap P_k \Rightarrow P = \bigcup_{k=1}^{\infty} P_k' = \bigsqcup_{k=1}^{\infty} \bigsqcup_{j=1}^{m_k} Q_{k_j}$, где $Q_{k_j} \subset P_k' \subset P_k \xrightarrow{\mu \text{ - Mepa}} \mu P = \sum_{k=1}^{\infty} \sum_{j=1}^{m_k} \mu Q_{k_j}$

$$\bigsqcup_{j=1}^{m_k} Q_{k_j} \subset P_k \xrightarrow[\text{усил. монот.}]{m_k} \mu P_k \ge \sum_{j=1}^{m_k} \mu Q_{k_j}$$

Theorem 1.11. Следствие

 μ — мера на σ -алгебре. Тогда счетное объединение множеств нулевой меры — множество нулевой меры

Доказательство:

$$\mu A = 0; \ A := \bigcup_{k=1}^{\infty} A_k \Rightarrow \mu A \le \sum_{k=1}^{\infty} \mu A_k = 0 \Rightarrow \mu A = 0$$

Theorem 1.12. Непрерывность меры снизу

 μ – объем на σ -алгебре \mathcal{A} . Тогда равносильны

1. μ – мера

2.
$$A_1 \subset A_2 \subset A_3 \subset \dots$$
; $A_k \in \mathcal{A}$. Тогда $\mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu A_k$

Доказательство:

$$1\Rightarrow 2:\ A_0\neq\varnothing$$
 и $B_k:=A_k\setminus A_{k-1};\ A:=\bigcup_{k=1}^\infty A_k$ Тогда $A=\bigcup_{k=1}^\infty B_k\Rightarrow \mu A=\sum_{k=1}^\infty \mu B_k=\lim_{n\to\infty} \sum_{k=1}^n \mu B_k=\lim_{n\to\infty} \mu A_n$

$$2 \Rightarrow 1$$
: Пусть $A = \bigsqcup_{k=1}^{\infty} C_k$; $A_n := \bigsqcup_{k=1}^n C_k \Rightarrow A_1 \subset A_2 \subset \ldots \Rightarrow \mu A = \lim_{n \to \infty} \mu A_n = \lim_{n \to \infty} \mu \left(\bigsqcup_{k=1}^n C_k\right) = \lim_{n \to \infty} \sum_{k=1}^n \mu C_k = \sum_{k=1}^\infty \mu C_k$

Theorem 1.13. Непрерывность меры сверху

 μ – объем на σ -алгебре $\mathcal A$ и $\mu X<+\infty$. Следующие условия равносильны

- 1. μ мера
- 2. Непрерывность меры сверху

$$A_1 \supset A_2 \supset A_3 \supset \dots; \ A_k \in \mathcal{A} \Rightarrow \mu(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu A_k$$

3. Непрерывность меры сверху на пустом множестве

$$A_1 \supset A_2 \supset A_3 \supset \dots; \ A_k \in \mathcal{A} \ \text{u} \bigcap_{k=1}^{\infty} A_k = 0 \Rightarrow \lim_{k \to \infty} \mu A_k = 0$$

Доказательство:

$$1\Rightarrow 2: B_k:=A_1\setminus A_k; \ B_1\subset B_2\subset B_3\subset\dots$$

$$\bigcup_{k=1}^\infty B_k=A_1\setminus \bigcap_{k=1}^\infty A_k. \ \text{По предыдущей теореме} \ \ \underline{\mu(\bigcup_{k=1}^\infty B_k)} = \lim_{k\to\infty} \mu B_k=\mu A_1-\lim_{k\to\infty} \mu A_k$$

$$\underline{\mu A_1-\mu(\bigcap^\infty A_k)}$$

 $2 \Rightarrow 3$: Очев, 3. – частный случай 2.

$$3 \Rightarrow 1: A = \bigsqcup_{k=1}^{\infty} C_k; A_n := \bigsqcup_{k=n+1}^{\infty} C_k; \bigcap_{n=1}^{\infty} A_n = \emptyset$$
 и $A_1 \supset A_2 \supset A_3 \supset \ldots \Rightarrow \lim \mu A_n = 0$

$$A = \bigsqcup_{k=1}^{n} C_k \sqcup A_n \Rightarrow \mu A = \underbrace{\sum_{k=1}^{n} \mu C_k}_{\rightarrow \sum_{k=1}^{n} \mu C_k} + \underbrace{\mu A_n}_{\rightarrow 0}$$

Theorem 1.14. Следствие

 μ – мера на σ -алгебре $\mathcal A$ и $A_1\supset A_2\supset A_3\supset\dots$ и $\mu A_m<+\infty$ для некоторого m Тогда $\mu(\bigcap_{k=1}^\infty A_k)=\lim \mu A_k$

Доказательство:

Пишем $A_m \setminus A_k$ вместо $A_1 \setminus A_k$

Remark 1.5.

Условие
$$\mu X<+\infty$$
 важно. $A_n:=[n,+\infty)$ и $\lambda_1 A_n=+\infty;$ $\bigcap_{n=1}^\infty [n,+\infty)=\varnothing$

Exercise 1.2.

Придумать объем, не являющийся мерой, который обладает свойством из следствия

§3. Продолжение меры 1.3

Definition 1.15. Субмера

 $\nu: 2^X \to [0, +\infty]$ – субмера, если

- 1. $\nu\varnothing=0$
- 2. Монотонность: $A \subset B \Rightarrow \nu A \leq \nu B$
- 3. Счетная полуаддитивность: $A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \nu A \leq \sum_{n=1}^{\infty} \nu A_n$

Remark 1.6.

2. – частный случай 3.

Definition 1.16. Полная мера

 μ – мера на \mathcal{A} . μ – полная мера, если

 $A \in \mathcal{A}$, т.ч. $\mu A = 0 \Rightarrow \forall B \subset A \ B \in \mathcal{A}$ (и тогда $\mu B = 0$)

Definition 1.17.

 ν – субмера. $E \subset X$

E – ν -измеримое множество, если $\forall A \subset X \Rightarrow \nu A = \nu(A \cap E) + \nu(A \setminus E)$

Remark 1.7.

- 1. Достаточно требовать ≥, т.к. ≤ из полуаддитивности
- 2. $E_1, E_2 \dots E_n \nu$ -измеримые и $E = \bigsqcup_{k=1}^n E_k \Rightarrow \nu(A \cap E) = \sum_{k=1}^n \nu(A \cap E_k)$

$$E_1, E_2 \dots E_n - \nu$$
-измеримые и $E = \bigsqcup_{k=1} E_k \Rightarrow \nu(A \cap E) = \sum_{k=1} \nu(A)$ Индукция по $n. \ n \to n+1$
$$\nu(A \cap \bigsqcup_{k=1}^{n+1} E_k) = \nu\left((A \cap \bigsqcup_{k=1}^{n+1} E_k) \cap E_{n+1}\right) + \nu\left((A \cap \bigsqcup_{k=1}^{n+1} E_k) \setminus E_{n+1}\right)$$

Theorem 1.15. Теорема Каратеодори

 ν – субмера. Тогда

- 1. ν -измеримые множества образуют σ -алгебру
- 2. Сужение ν на эту σ -алгебру полная мера

Доказательство:

 ${\cal A}$ – семейство всех u-измеримых множеств

1. Маленькими шагами :)

Шаг 1. Если $\nu E = 0$, то E будет ν -измеримым

$$\nu\underbrace{(A\cap E)}_{\subset E} + \nu\underbrace{(A\setminus E)}_{\subset A} \le \nu E + \nu A = 0 + \nu A = \nu A$$

13

Шаг 2.
$$\mathcal{A}$$
 – симметричная, т.к. если $E \in \mathcal{A}$, то $X \setminus E \in \mathcal{A}$ $A \cap (X \setminus E) = A \setminus E; \ A \setminus (X \setminus E) = A \cap E$

Шаг 3. Если
$$E$$
 и $F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$
$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \nu(A \cap E) + \nu((A \setminus E) \cap F) + \nu\underbrace{((A \setminus E) \setminus F)}_{A \setminus (E \cup F)} \ge$$

$$\geq \nu(A \cap (E \cup F)) + \nu(A \setminus (E \cup F))$$

Шаг 4. \mathcal{A} – алгебра

Шаг 5.
$$E = \bigsqcup_{n=1}^{\infty} E_n$$
 и $E_n \in \mathcal{A} \stackrel{?}{\Rightarrow} E \in \mathcal{A}$

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) \ge \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus E) = \underbrace{\sum_{k=1}^{n} \nu(A \cap E_k)}_{\rightarrow \sum_{k=1}^{\infty}} + \nu(A \setminus E)$$

$$E) \Rightarrow \nu A \ge \sum_{k=1}^{\infty} \nu(A \cap E_k) + \nu(A \setminus E) \ge \nu(\bigcup_{k=1}^{\infty} (A \cap E_k)) + \nu(A \setminus E)$$

Шаг 6.
$$E = \bigcup_{k=1}^{\infty} E_k$$

Переделаем в дизъюнктное объединение

Т.е. \mathcal{A} – σ -алгебра

2. $\nu \mid_{\mathcal{A}}$ – мера, т.к. это объем и счетная полуаддитивная

$$\nu(A \cap \bigsqcup_{k=1}^n E_k) = \sum_{k=1}^n \nu(A \cap E_k); \ A = X \Rightarrow$$
 объем

 $\nu\mid_{\mathcal{A}}$ – полная мера. Если $\nu B=0$ и $A\subset B$, то $\nu A=0$ и тогда $A\in\mathcal{A}$ по шагу 1

Definition 1.18. Внешняя мера

 μ – мера на полукольце \mathcal{P} . Внешняя мера, порожденная μ называется

$$\mu^*A := \inf\{\sum_{k=1}^{\infty} \mu A_k : A \subset \bigcup_{k=1}^{\infty} A_k, A_k \in \mathcal{P}\}\$$

Если такого покрытия для A нет, то $\mu^*A = +\infty$

Remark 1.8.

1. Можем рассматривать только покрытия дизъюнктными множествами

$$igcup_{k=1}^\infty A_k = igl|_{k=1}^\infty igl|_{j=1}^{m_k} Q_{k_j}$$
 и $igr|_{j=1}^{m_k} Q_{k_j} \subset A_k$

2. Если μ – мера на σ -алгебре, то $\mu^*A = \inf\{\mu B : B \supset A$ и $B \in \mathcal{A}\}$

Theorem 1.16.

 μ^* – субмера, совпадающая с μ на ${\mathcal P}$

Доказательство:

Шаг 1. Если $A \in \mathcal{P}$, то $\mu A = \mu^* A$

$$\geq$$
Берем покрытие $A,\varnothing,\varnothing,\ldots\,\mu^*A=\inf\leq \mu A$

$$\leq A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \mu A \leq \sum_{n=1}^{\infty} \mu A_n$$
 (счетная полуаддитивность меры) $\Rightarrow \mu A \leq \inf = \mu^* A$

Шаг 2. μ^* – субмера

Надо проверить, если $A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \mu^* A \leq \sum_{n=1}^{\infty} \mu^* A_n$

Если справа есть $+\infty$, то все очев. Считаем, что $\mu^*A_n<+\infty$

Возьмем покрытие $A_n\subset\bigcup_{k=1}^\infty C_{nk}$, т.ч. $C_{nk}\in\mathcal{P}$ и $\sum_{k=1}^\infty \mu C_{nk}<\mu^*A_n+\frac{\varepsilon}{2^n}\Rightarrow A\subset\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty C_{nk}$

$$\mu^* A \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu C_{nk} < \sum_{n=1}^{\infty} \mu^* (A_n + \frac{\varepsilon}{2^n}) = \varepsilon + \sum_{n=1}^{\infty} \mu^* A_n$$

Definition 1.19. Стандартное продолжение меры

 μ_0 – мера на полукольце ${\cal P}$

 μ_0^* – внешняя мера, построенная по μ_0 – субмера

 μ – сужение субмеры μ_0^* на μ_0^* -измеримые множества

 μ называется стандартным продолжением μ_0

Declaration 1.5.

Будем писать μ -измеримые, вместо μ_0^* -измеримые

Theorem 1.17.

Это действительно продолжение. Т.е. множества из \mathcal{P} будут μ -измеримы

Доказательство:

Шаг 1. Если
$$E$$
 и $A \in \mathcal{P}$, то $\mu_0^* A \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$ $\mu_0^* A = \mu_0 A$ и $\mu_0^* (A \cap E) = \mu_0 (A \cap E)$

$$\mu_0 A = \mu_0 A$$
 и $\mu_0 (A + E) = \mu_0 (A + E)$

$$A \setminus E = \coprod_{k=1}^m Q_k, \text{ где } Q_k \in \mathcal{P} \Rightarrow A = (A \cap E) \sqcup \coprod_{k=1}^m Q_k \Rightarrow \mu_0 A = \mu_0 (A \cap E) + \underbrace{\sum_{k=1}^m \mu_0^* Q_k}_{\geq \mu_0^* (A \setminus E)} \geq \underbrace{\mu_0^* (A \setminus E)}_{\geq \mu_0^* (A \setminus E)}$$

$$\geq \mu_0^*(A \cap E) + \mu_0^*(A \setminus E)$$

Шаг 2. Если $E \in \mathcal{P}$, а $A \notin \mathcal{P}$

Если $\mu_0^*A=+\infty$, то неравенство очевидно. Считаем, что $\mu_0^*A<+\infty$

Возьмем покрытие $A \subset \bigcup_{n=1}^{\infty} P_n$, т.ч. $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^* A + \varepsilon \ (P_n \in \mathcal{P})$ $\mu_0 P_k \geq \mu_0^* (P_k \cap E) + \mu_0^* (P_k \setminus E)$

$$\mu_0 P_k \ge \mu_0^*(P_k \cap E) + \mu_0^*(P_k \setminus E)$$

$$\mu_0 P_k \ge \mu_0^*(P_k \cap E) + \mu_0^*(P_k \setminus E)$$

$$\varepsilon + \mu_0^* A > \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^*(P_k \cap E) + \sum_{k=1}^{\infty} \mu_0^*(P_k \setminus E) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right)$$

$$\geq \mu_0^*(A \cap E) + \mu_0^*(A \setminus E)$$

Definition 1.20. σ -конечная мера

Мера
$$\mu$$
 – σ -конечная, если $X=\bigcup\limits_{n=1}^{\infty}X_n$, т.ч. $\mu X_n<+\infty$

Remark 1.9.

- 1. Меру и ее стандартное продолжение будем обозначать одинаково
- 2. μ задана на σ -алгебре $\mu A = \inf \{ \sum_{k=1}^{\infty} \mu P_k : P_k \in \mathcal{P}, \bigcup_{k=1}^{\infty} P_k \supset A \}$
- 3. Применение стандартного продолжения к стандартному продолжению меры не дает ничего нового
- 4. Можно ли продолжить меру на более широкий класс множеств? Обычно да, но нет однозначности продолжения
- 5. Можно ли по-другому продолжить меру на σ -алгебру μ -измеримых множеств? Если μ_0 σ -конечная мера, то нет!
- 6. Обязательно ли полная мера задана на σ -алгебре μ -измеримых множеств? Если $\mu_0 \sigma$ -конечная, то да

Exercise 1.3.

Доказать замечание 1.9.3.

Подсказка: нужно доказать, что $\mu_0^* = \mu^*$

Theorem 1.18.

 ${\cal P}$ – полукольцо, μ – стандартное продолжение с полукольца

 μ^* – внешняя мера. A – множество, т.ч. $\mu^*A < +\infty$. Тогда существует $B_{nk} \in \mathcal{P}$, т.ч.

$$C_n := \bigcup_{k=1}^{\infty} B_{nk}, \ C := \bigcap_{n=1}^{\infty} C_n, \ C \supset A$$
 и $\mu C = \mu^* A$

Доказательство:

$$\mu^*A=\inf\{\sum_{k=1}^\infty \mu P_k: P_k\in\mathcal{P}$$
 и $\bigcup_{k=1}^\infty P_k\supset A\}$

Пусть
$$B_{nk} \in \mathcal{P}$$
, т.ч. $\sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}$ и $\bigcup_{k=1}^{\infty} B_{nk} \supset A$

$$A \subset C_n = \bigcup_{k=1}^{\infty} B_{nk} \Rightarrow \mu C_n \le \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}$$

$$A \subset C = \bigcap_{n=1}^{\infty} C_n \subset C_n; \ \mu C \le \mu C_n < \mu^* A + \frac{1}{n} \Rightarrow \mu C \le \mu^* A$$

$$C \supset A \Rightarrow \mu^* A \le \mu^* C = \mu C$$

Theorem 1.19. Следствие

 \mathcal{P} — полукольцо, μ — стандартное продолжение с \mathcal{P} , A — μ -измеримое множество. $\mu A < +\infty$. Тогда существует $B \in \mathcal{B}(\mathcal{P})$ и e — μ -измеримое, т.ч. $A = B \sqcup e$ и $\mu e = 0$

Доказательство:

По теореме существует $C \in \mathcal{B}(\mathcal{P})$, т.ч. $A \subset C$ и $\mu A = \mu C$

$$e_1 := C \setminus A; \ \mu e_1 = \mu C - \mu A = 0$$

По теореме найдется $e_2 \in \mathcal{B}(\mathcal{P})$, т.ч. $e_1 \subset e_2$ и $\mu e_2 = \mu e_1 = 0 \Rightarrow A \supset C \setminus e_2$

$$\mu(\underbrace{C\setminus e_2}_B) = \mu C = \mu A$$

$$e := A \setminus B \Rightarrow \mu e = \mu A - \mu B = 0$$

Theorem 1.20. Единственность продолжения

 \mathcal{P} – полукольцо, μ – стандартное продолжение с полукольца, \mathcal{A} – σ -алгебра, на которой задана μ . ν – мера на \mathcal{A} , т.ч. $\mu P = \nu P \ \forall P \in \mathcal{P}$ Если мера $\mu - \sigma$ -конечна, то $\mu A = \nu A \ \forall A \in \mathcal{A}$

$\overline{\text{Reminder } 1.2. \ \sigma}$ -конечность

$$\mu$$
 – σ -конечна, если $X=\coprod_{n=1}^{\infty}X_n$, т.ч. $\mu X_n<+\infty$

Доказательство:

Шаг 1.
$$\mu A \ge \nu A \ \forall A \in \mathcal{A}$$

$$\mu A=\inf\{\underbrace{\sum_{k=1}^{\infty}\mu P_k}_{\geq \nu A}:A\subset\bigcup_{k=1}^{\infty}P_k$$
 и $P_k\in\mathcal{P}\}.$ По усиленной монотонности меры ν

$$\nu A \le \sum_{k=1}^{\infty} \nu P_k = \sum_{k=1}^{\infty} \mu P_k \Rightarrow \mu A \ge \nu A$$

Шаг 2. Если
$$E \in \mathcal{A}$$
 и $\mu P < +\infty$, то $\mu(P \cap E) = \nu(P \cap E) \ \forall P \in \mathcal{P}$

$$\mu P = \underbrace{\mu(P \cap E)}_{\geq \nu(P \cap E)} + \underbrace{\mu(P \setminus E)}_{\geq \nu(P \setminus E)} \geq \nu(P \cap E) + \nu(P \setminus E) = \nu P \Rightarrow \mu(P \cap E) = \nu(P \cap E)$$

Шаг 3.
$$\mu A = \nu A \ \forall A \in \mathcal{A}$$

$$\mu$$
 – σ -конечная $\Rightarrow X = \coprod_{n=1}^{\infty} P_n$, т.ч. $P_n \in \mathcal{P}$ и $\mu P_n < +\infty$

Тогда
$$A = \coprod_{n=1}^{\infty} (A \cap P_n)$$

Тогда
$$A = \bigsqcup_{n=1}^{\infty} (A \cap P_n)$$

 $\mu A = \sum_{n=1}^{\infty} \mu(A \cap P_n) = \sum_{n=1}^{\infty} \nu(A \cap P_n) = \nu A$

§4. Мера Лебега

Theorem 1.21.

 λ_m (классический объем в \mathbb{R}^m) – σ -конечная мера

Доказательство: (на записи рисуночки!)

Достаточно проверить счетную полуаддитивность λ_m , т.е. если $(a,b]\subset \bigcup_{n=0}^{\infty}(a_n,b_n]$, то

$$\lambda_m(a,b] \le \sum_{n=1}^{\infty} \lambda_m(a_n,b_n]$$

Возьмем $a' \in (a,b]$, т.ч. $\lambda_m(a',b] > \lambda_m(a,b] - \varepsilon \Rightarrow [a',b] \subset (a,b]$

Возьмем b'_n , т.ч. $(a_n,b_n]\subset (a_n,b'_n)$ и $\lambda_m(a_n,b'_n]<\lambda_m(a_n,b_n]+rac{arepsilon}{2^n}$

$$\underbrace{[a',b]}_{\text{замкн. паралл. - компакт}}\subset (a,b]\subset \bigcup_{n=1}^{\infty}(a_n,b_n]\subset \bigcup_{n=1}^{\infty}\underbrace{(a_n,b'_n)}_{\text{откр. паралл. - откр. мн-ва}}$$

Выберем конечное подпокрытие $(a',b] \subset [a',b] \subset \bigcup_{n=1}^{N} (a_n,b'_n) \subset \bigcup_{n=1}^{N} (a_n,b'_n)$

По конечной полуаддитивности объема:

$$\lambda_m(a,b]-arepsilon<\lambda_m(a',b]\leq \sum\limits_{n=1}^N\lambda_m(a_n,b'_n]<\sum\limits_{n=1}^N(\lambda_m(a_n,b_n]+rac{arepsilon}{2^n}) и устремляем $arepsilon$ к $0$$$

Definition 1.21. Мера Лебега

Мера Лебега – стандартное продолжение классического объема

Declaration 1.6. Обозначение

 \mathcal{L}^m – σ -алгебра, на которую продолжили Лебеговская σ -алгебра

Remark 1.10.

- 1. Если $A\in\mathcal{L}^m$, то $\lambda_mA=\inf\{\sum\limits_{k=1}^\infty\lambda_mP_k:A\subset\bigcup\limits_{k=1}^\infty P_k$ и P_k ячейки $\{\sum\limits_{k=1}^\infty\lambda_mP_k:A\subset\bigcup\limits_{k=1}^\infty P_k\}$ и $\{\sum\limits_{k=1}^\infty\lambda_mP_k\}$ 2. Можно брать ячейки из $\mathcal{P}^m_\mathbb{Q}$

Theorem 1.22. Свойства меры Лебега

- 1. Открытые множества измеримы и меры непустого открытого > 0
- 2. Замкнутые множества измеримы
- 3. Мера одноточечного множества равна 0
- 4. Мера ограниченного измеримого множества конечна
- 5. Всякое измеримое множество счетное объединение множеств конечной меры Картинка! $\mathbb{R}^m=\coprod_{k=1}^\infty P_k,\ P_k$ – единичные ячейки. $A=\coprod_{k=1}^\infty (P_k\cap A)$ и $\lambda_m(P_k\cap A)\leq$
- 6. Пусть $E \subset \mathbb{R}^m : \forall \varepsilon > 0$ найдутся $A_{\varepsilon}, B_{\varepsilon} \in \mathcal{L}^m$, т.ч. $A_{\varepsilon} \subset E \subset B_{\varepsilon}$ и $\lambda_m(B_{\varepsilon} \setminus A_{\varepsilon}) < \varepsilon$. Тогда $E \in \mathcal{L}^m$

Remark 1.11.

Это свойство любой полной меры

- 7. Пусть $e \subset \mathbb{R}^m$, т.ч. $\forall \varepsilon > 0$ найдется $B_{\varepsilon} \in \mathcal{L}^m$, т.ч. $e \subset B_{\varepsilon}$ и $\lambda_m B_{\varepsilon} < \varepsilon$ Тогда $E \in \mathcal{L}^m$ и $\lambda_m e = 0$
- 8. Счетное объединение множеств нулевой меры множество нулевой меры
- 9. Счетное множество имеет нулевую меру
- 10. Множество нулевой меры не имеет внутренних точек
- 11. $\lambda_m e=0$ и $\varepsilon>0$. Тогда найдутся кубические ячейки Q_k , т.ч. $e\subset\bigcup\limits_{k=0}^\infty Q_k$ и $\sum_{k=1}^{\infty} \lambda_m Q_k < \varepsilon$
- 12. Пусть $m \geq 2$. $H_k(c) = \{x \in \mathbb{R}^m : x_k = c\}$. Тогда $\lambda_m(H_k(c)) = 0$
- 13. Пусть m > 2. Множество, содержащееся в нбчс объединении гиперплоскостей $H_k(c)$, имеет меру 0
- 14. $\lambda_m(a,b] = \lambda_m(a,b) = \lambda_m[a,b]$

Доказательство:

- 1. Открытые множества лежат в $\mathcal{B}(\mathcal{P}^m)$. Картинка на записи! $\lambda_m \delta > \lambda_m$ (ячейка) > 0
- 3. Картинка! λ_m (точка) $< \lambda_m$ (ячейка) $= \varepsilon^m$
- 4. Картинка! A ограничено. $\lambda_m A \leq \lambda_m(\text{шар}) \leq \lambda_m(\text{ячейка}) < +\infty$
- 6. $A_{\frac{1}{n}} \subset E \subset B_{\frac{1}{n}}; \ \lambda_m(B_{\frac{1}{n}} \setminus A_{\frac{1}{n}}) < \frac{1}{n}$ $A := \bigcup_{n=1}^{\infty} A_{\frac{1}{n}} \in \mathcal{L}^m \text{ M } B := \bigcap_{n=1}^{\infty} B_{\frac{1}{n}} \in \mathcal{L}^m$ $B\setminus A\subset B_{\frac{1}{n}}\setminus A_{\frac{1}{n}};\ \lambda_m(B\setminus A)\leq \lambda_m(B_{\frac{1}{n}}\setminus A_{\frac{1}{n}})<\frac{1}{n}\Rightarrow \lambda_m(B\setminus A)=0$ Тогда т.к. $E\setminus A\subset B\setminus A\Rightarrow E\setminus A\in \mathcal{L}^m$ Тогда $E=\underbrace{A}_{\in\mathcal{L}^m}\cup\underbrace{\left(E\setminus A\right)}_{\in\mathcal{L}^m}$ 7. $A_{\varepsilon}=\varnothing$ в свойстве 6
- 10. От противного. Если a внутренняя точка A. Рисунок! $\Rightarrow \lambda_m A \geq \lambda_m$ (ячейка) > 0
- 11. $0 = \lambda_m e = \inf\{\sum_{k=1}^{\infty} \lambda_m P_k : e \subset \bigcup_{k=1}^{\infty} P_k \text{ if } P_k \in \mathcal{P}_{\mathbb{Q}}^m\}$

Возьмем такие $P_k \in \mathcal{P}_{\mathbb{Q}}^m$, что $e \subset \bigcup_{k=1}^{\infty} P_k$ и $\sum_{k=1}^{\infty} \lambda_m P_k < \varepsilon$

Рассмотрим P_k , у нее все стороны имеют рациональную длину. $d=\frac{1}{\text{НОК знаменателей}}$ \Rightarrow каждая сторона кратна $d\Rightarrow$ нарежем P_k на кубики со стороной \dot{d}

12.
$$A_n := (-n, n]^m \cap H_k(c) \Rightarrow H_k(c) = \bigcup_{n=1}^{\infty} A_n$$
 Достаточно доказать, что $\lambda_n A_n = 0$. $A_n \subset (-n, n] \times \ldots \times (-n, n] \times (c - \varepsilon, c] \times (-n, n] \times \ldots$ λ_m (ячейка) $= (2n)^{m-1} \cdot \varepsilon$

Remark 1.12.

1. Существуют несчетные множество нулевой меры

При $m \geq 2$ подойдет $H_1(0)$

При
$$m \ge 2$$
 подойдет $H_1(0)$ При $m = 1$ подойдет Канторово множество:
$$1 = \lambda(0,1] = \lambda K + \underbrace{\frac{1}{3} + 2 \cdot \frac{1}{9} + 4 \cdot \frac{1}{27} + \ldots + 2^n \cdot \frac{1}{3^{n+1}}}_{\frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1} \Rightarrow \lambda K = 0$$

(0,1] запишем в троичной системе счисления. Запрещаем запись ... 000

T.K. 0,2000...=0,1222...

(] – числа, у которых первая цифра после запятой – 1

 $\tilde{\ }$ и ($\]$ — числа, у которых вторая цифра после запятой — 1

И так далее

K – числа из (0,1], у которых в троичной записи нет 1. Биекция между K и (0,1]:

 $0\mapsto 0;\ 2\mapsto 1;$ троичная \mapsto двоичная

2. Существуют неизмеримые множества (т.е. $\mathcal{L}^m \neq 2^{\mathbb{R}^m}$)

Theorem 1.23. Регулярность меры Лебега

$$E \in \mathcal{L}^m$$
. Тогда существует G – открытое, $G \supset E$, т.ч. $\lambda_m(G \setminus E) < \varepsilon$

Доказательство:

$$\lambda_m E < +\infty. \quad \lambda_m E = \inf\{\sum_{k=1}^\infty \lambda_n P_k : P_k$$
 – ячейки и $E \subset \bigcup_{k=1}^\infty P_k\}$

Возьмем такие ячейки, что $\sum\limits_{k=1}^{\infty}\lambda_mP_k<\lambda_mE+\varepsilon$ и $E\subset\bigcup\limits_{k=1}^{\infty}P_k$ Возьмем $(a_k,b_k)\supset P_k$, т.ч. $\lambda_m(a_k,b_k)<\lambda_mP_k+\frac{\varepsilon}{2k}$

$$E\subset G:=igcup_{k=1}^\infty(a_k,b_k)$$
 – открытое

$$\lambda_m G \le \sum_{k=1}^{\infty} \lambda_m (a_k, b_k) \le \sum_{k=1}^{\infty} (\lambda_m P_k + \frac{\varepsilon}{2^k}) = \varepsilon + \sum_{k=1}^{\infty} \lambda_m P_k < 2\varepsilon + \lambda_m E$$

$$\lambda_m(G \setminus E) = \lambda_m G - \lambda_m E < 2\varepsilon$$

$$\lambda_m E = +\infty. \quad E = \bigcup_{n=1}^{\infty} E_n, \text{ t.y. } \lambda_m E_n < +\infty$$

n=1 По предыдущему случаю $\exists G_n$ – открытое, $G_n \supset E_n$ и $\lambda_m(G_n \setminus E_n) < \frac{\varepsilon}{2^n}$

$$G := \bigcup_{n=1}^{\infty} G_n$$
 – открытое

$$G \setminus E \subset \bigcup_{n=1}^{\infty} G_n \setminus E_n \Rightarrow \lambda_m(G \setminus E) \leq \sum_{n=1}^{\infty} \lambda_m(G_n \setminus E_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

Theorem 1.24. Следствие 1

 $\varepsilon > 0, \ E \in \mathcal{L}^m$. Тогда существует замкнутое F, т.ч. $F \subset E$ и $\lambda_m(E \setminus F) < \varepsilon$

Доказательство:

По теореме найдется G – открытое, т.ч. $G \supset \mathbb{R}^m \setminus E$ и $\lambda_m(G \setminus (\mathbb{R}^m \setminus E)) < \varepsilon \Rightarrow F := \mathbb{R}^m \setminus G$ – замкнутое, $F \subset E$ и $E \setminus F = G \setminus (\mathbb{R}^m \setminus E)$

Theorem 1.25. Следствие 2

 $E \in \mathcal{L}^m$. Тогда

 $\lambda_m E = \inf\{\lambda_m G: G$ – открытое и $E \subset G\}$

 $\lambda_m E = \sup\{\lambda_m F : F$ – замкнутое и $E \supset F\}$

 $\lambda_m E = \sup \{\lambda_m K : K$ – компакт и $K \subset E\}$

Доказательство:

1. Из теоремы $\Rightarrow \exists G \supset E$ – открытое, т.ч. $\lambda_m(G \setminus E) < \varepsilon \Rightarrow \lambda_m G < \lambda_m E + \varepsilon$

2. Если $\lambda_m E < +\infty$, то по следствию 1 $\exists F \subset E$ – замкнутое, т.ч. $\lambda_m (E \setminus F) < \varepsilon \Rightarrow \lambda_m F > \lambda_m E - \varepsilon$

Если $\lambda_m E = +\infty \ldots \Rightarrow \lambda_m F = +\infty$

3. Выберем замкнутое $F\subset E$, т.ч. $\lambda_m F>\lambda_m E-\varepsilon$

$$K_n := \underbrace{[-n,n]^m}_{\text{компакт}} \cap F$$

 $K_1 \subset K_2 \subset \dots$ и $\bigcup_{n=1}^{\infty} K_n = F \xrightarrow{\text{непр. меры снизу}} \lambda_m K_n \to \lambda_m F > \lambda_m E - \varepsilon \Rightarrow$ найдется K_n , т.ч. $\lambda_m K_n > \lambda_m F - \varepsilon$

В случае с $\lambda_m E = +\infty$ доказательство меняется несильно

Theorem 1.26. Следствие 3

 $E\in\mathcal{L}^m$. Тогда существуют компакты $K_1\subset K_2\subset\dots$ и e нулевой меры, т.ч. $E=e\sqcup\bigcup_{n=1}^\infty K_n$

Доказательство:

$$\lambda_m E < +\infty$$
. Возьмем $K_n \subset E$ – компакт, т.ч. $\lambda_m K_n > \lambda_m E - \frac{1}{n}$

$$\bigcup_{n=1}^{\infty} K_n \subset E \text{ if } E \setminus \bigcup_{n=1}^{\infty} K_n \subset E \setminus K_n \Rightarrow \lambda_m e < \lambda_m(E \setminus K) = \lambda_m E - \lambda_m K_n < \frac{1}{n} \Rightarrow \lambda_m e = 0$$

Как сделать вложенность? $K_1, K_1 \cup K_2, K_1 \cup K_2 \cup K_3, \dots$

$$\lambda_m E = +\infty$$
. $E = \coprod_{n=1}^{\infty} E_n$; $\lambda_m E_n < +\infty$. Тогда $\exists K_{n1}, K_{n2} \ldots$ – компакты и $\lambda_m e_n = 0$,

т.ч.
$$E_n = e_n \sqcup \bigcup_{k=1}^{\infty} K_{nk} \Rightarrow E = \bigcup_{n=1}^{\infty} e_n \sqcup \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} K_{nk}$$

Theorem 1.27. Инвариантность меры Лебега относительно сдвига

 $E \subset \mathbb{R}^m$ — измеримое относительно меры Лебега, $v \in \mathbb{R}^m$ Тогда E + v – измеримо и $\lambda E = \lambda (E + v)$

Доказательство:

$$\mu E := \lambda (E + v)$$

 μ и λ совпадают на ячейках $\Rightarrow \mu^*$ и λ^* совпадают \Rightarrow совпадают измеримые множества для μ^* и $\lambda^* \Rightarrow E$ и E + v одновременно измеримые (или нет) и их меры равны

Theorem 1.28.

Пусть μ задана на \mathcal{L}^m . Если

- 1. μ инвариантна относительно сдвигов
- 2. μ конечна на ячейках (= μ конечна на ограниченных измеримых множествах) то существует $k \in [0, +\infty)$, т.ч. $\mu = k \cdot \lambda$

Доказательство:

$$Q := (0,1]^m; \ k := \mu Q$$

$$k=1$$
: Тогда $\mu Q=1$

$$Q_n:=(0,\frac{1}{n}]^m$$
. Из n^m копий Q_n можно собрать $Q\Rightarrow n^m\mu Q_n=\mu Q=\lambda Q=n^m\lambda Q_n\Rightarrow \mu Q_n=\lambda Q_n$

Рассмотрим ячейку из $\mathcal{P}^m_{\mathbb{Q}}$. Все длины сторон у нее рациональные

 $n=\mathrm{HOK}$ всех знаменателей длин сторон. Эта ячейка собирается из сдвигов $Q_n \Rightarrow$ $\Rightarrow \mu = \lambda$ на $\mathcal{P}^m_{\mathbb{Q}} \xrightarrow[\mathrm{eguhctb. npodonm.}]{} \mu = \lambda$

$$k > 0$$
: $\tilde{\mu} := \frac{1}{k}\mu \Rightarrow \tilde{\mu}Q = 1 \Rightarrow \tilde{\mu} = \lambda \Rightarrow \mu = k\lambda$

$$k = 0: \quad \mu Q = 0$$

 \mathbb{R}^m – счетное объединение сдвигов $Q\Rightarrow \mu\mathbb{R}^m=0\Rightarrow \mu\equiv 0$

Theorem 1.29.

 $G \subset \mathbb{R}^m$ – открытое. $\Phi: G \to \mathbb{R}^m$ – непрерывно дифференцируема. Тогда

- 1. Если $e \subset G$, т.ч. $\lambda e = 0$, то $\lambda(\Phi(e)) = 0$
- 2. Если $E \subset G$, т.ч. E измеримое, то $\Phi(E)$ измеримое

Доказательство:

1. \bullet Случай $e \subset P \subset \operatorname{Cl} P \subset G$, где P – ячейка $\operatorname{Cl} P$ – компакт, $\Phi'(x)$ – непрерывна на $\operatorname{Cl} P$ $||\Phi'(x)||$ непрерывна на $\operatorname{Cl} P \Rightarrow ||\Phi'(x)|| \leq M \ \forall x \in \operatorname{Cl} P \Rightarrow ||\Phi(x) - \Phi(y)|| \leq M||x - y||$ $\lambda e=0\Rightarrow e$ можно покрыть кубическими ячейками Q_n так, что $\sum_{n=1}^{\infty}\lambda Q_n<arepsilon;$

$$(e\subset\bigcup_{n=1}^\infty Q_n)\Rightarrow \Phi(e)\subset\bigcup_{n=1}^\infty \Phi(Q_n)\subset\bigcup_{n=1}^\infty \tilde{Q_n}$$
 Пусть a_n – длина ребра Q_n

Если x и $y \in Q_n$, то $||x-y|| < \sqrt{m}a_n \Rightarrow ||\Phi(x) - \Phi(y)|| < \sqrt{m}Ma_n \Rightarrow \Phi(y)$ лежит в шаре радиуса $\sqrt{m}Ma_n$ с центром в $\Phi(x) \Rightarrow \Phi(y)$ лежит в кубической ячейке Q_n со стороной $2\sqrt{m}Ma_n$ (с центром в $\Phi(x)$)

22

$$\sum_{n=1}^{\infty} \lambda \tilde{Q_n} = \sum_{n=1}^{\infty} (2\sqrt{m}Ma_n)^m = (2\sqrt{m}M)^m \sum_{n=1}^{\infty} (a_n)^m = (2\sqrt{m}M)^m \sum_{n=1}^{\infty} \lambda Q_n < \varepsilon \cdot (2\sqrt{m}M)^m \Rightarrow$$

$$\Rightarrow \lambda \Phi(e) = 0$$

• Случай произвольный

Случаи произвольный Представим
$$G$$
 в виде $\bigsqcup_{j=1}^\infty P_j$, где P_j – ячейки и $\operatorname{Cl} P_j \subset G$ $e_j := e \cap P_j; \ \lambda e_j = 0$ и e_j подходит под предыдущий случай $\Rightarrow \lambda \Phi(e_j) = 0$, но $\Phi(e) = \bigcup_{j=1}^\infty \Phi(e_j) \Rightarrow \lambda \Phi(e) = 0$

2.
$$E$$
 – измеримое \Rightarrow E = e \sqcup $\bigcup_{n=1}^{\infty} K_n$, где λe = 0 и K_n – компакты \Rightarrow \Rightarrow $\Phi(E)$ = $\bigoplus_{\text{мера 0, т.е. измеримы}} \bigoplus_{n=1}^{\infty} \bigoplus_{\text{компакты, т.е. измеримы}} \Phi(K_n)$

Theorem 1.30.

Мера Лебега инвариантна относительно движения

Доказательство:

Движение – композиция сдвигов и поворотов. Надо понять, что λ не меняется при повороте U – поворот вокруг 0. Если E – измеримо, то U(E) – измеримо $\mu E := \lambda(U(E))$. μ задана на \mathcal{L}^m

Проверим, что μ инвариантна относительно сдвигов

$$\mu(E+v) = \lambda(U(E+v)) = \lambda(U(E) + U(v)) = \lambda(U(E)) = \mu E$$

 μ конечна на ограниченных измеримых множествах $\Rightarrow \mu = k\lambda$

Но U переводит в себя единичный шарик с центром в $0 \Rightarrow k = 1$

$$B$$
 – единичный шар. $\underbrace{\mu B}_{k\lambda B} = \lambda(\underbrace{U(B)}_B) = \lambda B$

Theorem 1.31. Об изменении меры Лебега при линейной отображении

$$T:\mathbb{R}^m o\mathbb{R}^m;\ E$$
 — измеримое. Тогда $T(E)$ — измеримое и $\lambda(T(E))=|\det T|\cdot\lambda E$

Доказательство:

 $\mu E := \lambda(T(E))$ – инвариантна относительно сдвигов

 μ – конечна на ограниченных измеримых множествах $\Rightarrow \mu = k\lambda$

Нужно найти k. Возьмем Q – единичный куб. Q был куб, натянутым на вектора. T повернул эти вектора, получили T(Q) – косоугольный параллелепипед и $|\det T|$ – его объем

Remark 1.13.

 λ и объем на параллелепипеде из алгебры – одно и то же (рисунок на записи)

Example 1.5. Неизмеримое множество для λ_1

$$[0,1]; x \sim y$$
, если $x - y \in \mathbb{Q}$

В каждом классе эквивалентности возьмем по одному представителю

А – получившееся множество

Предположим, что A – измеримо. Тогда у него есть конечная мера

•
$$\lambda A=0$$
:
$$\bigsqcup_{r\in\mathbb{Q}}(A+r)\supset[0,1]$$

$$(A+r_1)\cap(A+r_2)\neq\varnothing\Rightarrow x+r_1=y+r_2,$$
 где $x,y\in A\Rightarrow x\sim y\Rightarrow x=y\Rightarrow$

$$\Rightarrow\underbrace{\lambda_1[0,1]}_{1}\leq\sum_{r\in\mathbb{Q}}\underbrace{\lambda(A+r)}_{\lambda A=0}=0.$$
 Противоречие

•
$$\lambda A>0$$
:
$$\bigsqcup_{r\in\mathbb{Q}\cap[0,1]}(A+r)\subset[0,2]\Rightarrow\underbrace{\lambda[0,2]}_2\geq\sum_{r\in\mathbb{Q}\cap[0,1]}\underbrace{\lambda(A+r)}_{\lambda A}=+\infty.$$
 Противоречие

§5. Измеримые функции 1.5

Notation 1.1.

Теперь все меры заданы на σ -алгебрах

Измеримые множества – множества из σ -алгебры, где задана мера

Definition 1.22. Лебеговы множества

 $f:E\to\overline{\mathbb{R}}$. Лебеговы множества для функции f

$$E\{f \le a\} := f^{-1}[-\infty, a] = \{x \in E : f(x) \le a\}$$

$$E\{f < a\} := f^{-1}[-\infty, a] = \{x \in E : f(x) < a\}$$

$$E\{f \ge a\} := f^{-1}[a, +\infty] = \{x \in E : f(x) \ge a\}$$

$$E\{f > a\} := f^{-1}(a, +\infty] = \{x \in E : f(x) > a\}$$

Theorem 1.32.

Пусть E — измеримое множество. Тогда равносильно следующее:

- 1. $E\{f \leq a\}$ измеримы $\forall a \in \mathbb{R}$
- 2. $E\{f < a\}$ измеримы $\forall a \in \mathbb{R}$
- 3. $E\{f \geq a\}$ измеримы $\forall a \in \mathbb{R}$
- 4. $E\{f>a\}$ измеримы $\forall a \in \mathbb{R}$

Доказательство:

$$1 \Leftrightarrow 4$$
: $E\{f > a\} = E \setminus E\{f \le a\}$

$$2 \Leftrightarrow 3$$
: $E\{f < a\} = E \setminus E\{f \ge a\}$

$$1 \Rightarrow 2$$
: $E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a - \frac{1}{n}\}$

$$2 \Leftrightarrow 3: \quad E\{f < a\} = E \setminus E\{f \ge a\}$$

$$1 \Rightarrow 2: \quad E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a - \frac{1}{n}\}$$

$$3 \Rightarrow 4: \quad E\{f > a\} = \bigcup_{n=1}^{\infty} E\{f \ge a + \frac{1}{n}\}$$

Definition 1.23. Измеримая функция

 $f:E o\overline{\mathbb{R}}$ – измерима, если измеримы все ее Лебеговы множества

Remark 1.14.

$$f: E \to \overline{\mathbb{R}}$$

f – измерима $\Leftrightarrow E$ – измеримо и $\forall a \in \mathbb{R}$ измеримы все лебеговы множества одного типа

Доказательство:

←: Теорема

$$\Rightarrow: \ E = E\{f < a\} \cup E\{f \ge a\}$$

$\overline{\text{Example } 1.6.}$

- 1. Константа
- 2. A, E измеримые; $f(x) = \begin{cases} 1, & x \in A \cap E \\ 0, & x \in E \setminus A \end{cases}$
- 3. $f \in C(\mathbb{R}^m)$. Тогда f измерима относительно λ_m Доказательство: $\mathbb{R}^m\{f < a\} = f^{-1}\underbrace{(-\infty,a)}$ – открыто \Rightarrow измеримо

Theorem 1.33. Свойства измеримых функций

 $f:E o\overline{\mathbb{R}}$ – измеримая

- 1. E измеримо
- 2. $E\{f=-\infty\}=\bigcap_{n=1}^{\infty}E\{f<-n\}$ и $E\{f=+\infty\}=\bigcap_{n=1}^{\infty}E\{f>n\}$ измеримы
- 3. Прообразы любого промежутка измеримы $E\{a < f < b\}, E\{a \le f \le b\}, \dots$ $E\{f < b\} \setminus E\{f < a\}$
- 4. $E\{f=c\}$ измеримы
- 5. Прообразы любого открытого множества измеримы Доказательство:

$$G \subset \mathbb{R}$$
 – открытое $\Rightarrow G = \bigsqcup_{k=1}^{\infty} (a_k, b_k] \Rightarrow f^{-1}(G) = \bigsqcup_{k=1}^{\infty} f^{-1}(a_k, b_k]$

6. -f и |f| – измеримы

Доказательство:

$$E\{-f < a\} = E\{f > -a\}$$

$$E\{|f| < a\} = \begin{cases} \varnothing & a \le 0 \\ E\{-a < f < a\} & a > 0 \end{cases}$$

7. $f, g: E \to \overline{\mathbb{R}}$ – измеримы

Тогда $\max\{f,g\}$ и $\min\{f,g\}$ – измеримы

 $(\max\{f,g\}$ – такая $h:E\to\overline{\mathbb{R}}$, что $h(x)=\max\{f(x),g(x)\}$)

Доказательство:

$$E\{max\{f,g\} < a\} = E\{f < a\} \cap E\{g < a\}$$

- 8. $f_+ := \max\{f,0\}$ и $f_- := \max\{-f,0\}$ измеримы
- 9. $E = \bigcup_{n=1}^{\infty} E_n$, E_n измеримы, $f: E \to \overline{\mathbb{R}}$. Если $f \mid_{E_n}$ измеримо, то f измерима Доказательство:

$$E\{f < a\} = \bigcup_{n=1}^{\infty} E_n\{f < a\}$$

 $E\{f< a\}=\bigcup_{n=1}^\infty E_n\{f< a\}$ 10. $f:E\to\overline{\mathbb{R}}$ – измеримая, тогда $f=g\mid_E$, где $g:X\to\overline{\mathbb{R}}$ – измеримая Доказательство:

$$g(x) := \begin{cases} f(x) & x \in E \\ 0 & x \notin E \end{cases}$$

Theorem 1.34.

 $f_1, f_2, \ldots : E \to \overline{\mathbb{R}}$ – последовательность измеримых функций. Тогда

- 1. $\sup f_n$, $\inf f_n$ измеримы $\sup f_n$ такая функция h, что $h(x) = \sup_{n \in \mathbb{N}} \{f_n(x)\}$)
- 2. $\underline{\lim} f_n$ и $\overline{\lim} f_n$ измеримы
- 3. Если существует $\lim f_n$, то он измерим

Доказательство:

1.
$$h := \sup\{f_n\}$$

$$E\{h \le a\} = \bigcap_{n=1}^{\infty} E\{f_n \le a\}$$
Если $x \in E\{h \le a\}$, то $\sup_{n \in \mathbb{N}} f_n(x) \le a \Leftrightarrow f_n(x) \le a \ \forall n$

$$E\{\inf f_n \ge a\} = \bigcap_{n=1}^{\infty} E\{f_n \ge a\}$$
2. $\underline{\lim}_{n \in \mathbb{N}} f_n(x) = \sup_{n \in \mathbb{N}} \underbrace{\inf_{k \ge n} f_k(x)}_{\text{измеримо}}$

$$\overline{\lim}_{n \in \mathbb{N}} f_n(x) = \inf_{n \in \mathbb{N}} \sup_{k \ge n} f_k(x)$$

3. Если lim существует, то он совпадает с $\overline{\text{lim}}$ и с $\underline{\text{lim}}$

Theorem 1.35.

$$f:E o H\subset\mathbb{R}^m;\ f_1,f_2,\ldots,f_m$$
 – измеримы $\varphi:H o\mathbb{R}$, т.ч. $\varphi\in C(H)$ Тогда $F(x):=\varphi(f_1(x),f_2(x),\ldots,f_m(x))$ – измерима

Доказательство:

$$E\{F < a\} = F^{-1}(-\infty,a) = f^{-1}(\varphi^{-1}(-\infty,a))$$

 $\varphi^{-1}(-\infty,a)$ – прообраз открытого множества – открытое в H множество, т.е. это пересечение некоторого открытого $G\subset\mathbb{R}^m$ с H

$$\varphi^{-1}(-\infty,a)=G\cap H,$$
 r.e. $E\{F< a\}=f^{-1}(G\cap H)=f^{-1}(G)$

Т.е. надо для открытого G понять, что $f^{-1}(G)$ – измеримо

$$G=igsqcup_{k=1}^\infty\underbrace{(a_k,b_k]}_{\mathrm{ячейки \ B}\ \mathbb{R}^m}$$
 , т.е. надо понять, что $f^{-1}(c,d]$ – измеримо

$$(c,d] = (c_1,d_1] \times (c_2,d_2] \times \ldots \times (c_m,d_m]$$

$$f^{-1}(c,d) = \{x \in E : c_1 < f_1(x) \le d_1, \dots, c_m < f_m(x) \le d_m\} = \bigcap_{k=1}^{\infty} E\{c_k < f_k \le d_k\}$$

Notation 1.2. Операции с $\pm \infty$

- 1. $\pm \infty + a = \pm \infty \ \forall a \in \mathbb{R}$
- 2. $\pm \infty \cdot a = \pm \infty \ \forall a > 0$ $\pm \infty \cdot a = \mp \infty \ \forall a < 0$
- 3. $\pm \infty \cdot 0 = 0$
- 4. $+\infty (+\infty) = (-\infty) (-\infty) = +\infty + (-\infty) = 0$
- $5. \ \frac{a}{\pm \infty} = 0 \ \forall a \in \overline{\mathbb{R}}$
- 6. Деление на 0 не определено

Theorem 1.36.

- 1. Произведение и сумма измеримых функций измеримы
- 2. φ непрерывна, f измерима, $\varphi \circ f$ измерима
- 3. $p>0,\, f$ измерима и $\geq 0 \Rightarrow f^p$ измерима (считаем, что $(+\infty)^p=+\infty)$
- 4. Если f измерима, то $\frac{1}{f}$ измерима на $E\{f \neq 0\}$

Доказательство:

1. $f, g: E \to \overline{\mathbb{R}}$ – измеримые

$$E\{f=+\infty\}, E\{f=-\infty\}$$
 и $E\{f\in\mathbb{R}\}$ и аналогично для g

На
$$E\{f\in\mathbb{R}\}\cap E\{g\in\mathbb{R}\}: f+g$$
 – измерима

$$\varphi(x,y) = x + y; \ f + g = \varphi(f,g)$$

На остальных пересечениях f + g – постоянна

2. Частный случай теоремы

3.
$$\{f^p \le a\} = \begin{cases} \emptyset & a \le 0 \\ E\{f \le a^{\frac{1}{p}}\} & a > 0 \end{cases}$$

4.
$$\tilde{E} := E\{f \neq 0\}$$

2. Частный случай теоремы
$$3. \ \{f^p \le a\} = \begin{cases} \varnothing & a \le 0 \\ E\{f \le a^{\frac{1}{p}}\} & a > 0 \end{cases}$$

$$4. \ \tilde{E} := E\{f \ne 0\}$$

$$\tilde{E}\{\frac{1}{f} \le a\} = \begin{cases} E\{\frac{1}{a} \le f < 0\} & a < 0 \\ E\{f \le 0\} \cup E\{\frac{1}{a} \le f\} & a > 0 \end{cases}$$

Theorem 1.37. Следствия

- 1. Произведение конечного числа измеримых измеримая
- 2. Натуральная степень измеримых измеримая
- 3. Линейная комбинация измеримых измеримая

Theorem 1.38.

 $E \subset \mathbb{R}^m$ – измеримо относительно меры Лебега

 $f \in C(E)$. Тогда f — измерима относительно меры Лебега

Доказательство:

 $E\{f < a\} = f^{-1}(-\infty, a)$ – открыто в E, т.е. $E \cap G$ для некоторого $G \subset \mathbb{R}^m$ – открытое

28

Definition 1.24. Простая функция

 $f: E \to \mathbb{R}$ – измеримая

f – простая, если она принимает конечное число значений

Definition 1.25. Допустимое разбиение

$$E = \coprod_{k=1}^n A_n$$
, т.ч. $f\mid_{A_k}$ – константа и A_k – измеримые $\forall k$

Theorem 1.39. Свойства

- 1. Если $E=\bigsqcup_{k=1}^n A_k,\ A_k$ измеримы $\forall k,\ f\mid_{A_k}$ константы, то f простая
- 2. Для любой пары простых функций есть общее допустимое разбиение Доказательство:

$$E = \coprod_{k=1}^m A_k$$
 – допустимое разбиение для f

$$E = \coprod_{j=1}^{n-1} B_j$$
 – допустимое разбиение для g

$$\bigsqcup_{k=1}^m\bigsqcup_{j=1}^n A_k\cap B_j$$
 – допустимое разбиение для f и g

- 3. Сумма, разность и произведение простых функций простая функция
- 4. Линейная комбинация простых функций простая функция
- 5. max и min конечного числа простых функций простая функция Доказательство:

Для двух функций – общее допустимое разбиение

Theorem 1.40. Теорема о приближении измеримых функций

 $F:E o\overline{\mathbb{R}}$ – неотрицательная измеримая

Тогда существует последовательность $\varphi_1 \leq \varphi_2 \leq \varphi_3 \leq \dots$ простых функций $\varphi_n : E \to \mathbb{R}$, т.ч. $f = \lim \varphi_n$ (поточечный предел)

Если f ограниченная, то можно выбрать φ_n так, что $\varphi_n \rightrightarrows f$ на E

Доказательство:

$$[0,+\infty]$$
 нарежем на множества $\Delta_k^{(n)} \coloneqq [\frac{k}{n},\frac{k+1}{n})$ и $\Delta_{n^2}^{(n)} \coloneqq [n,+\infty]$ при $k=0,1,\dots,n^2-1$

$$[0,+\infty] = \bigsqcup_{k=0}^{n^2} \Delta_k^{(n)}$$

Возьмем $A_k^{(n)} := f^{-1}(\Delta_k^{(n)})$ – измеримые множества $\Rightarrow E = \bigsqcup_{k=0}^{n^2} A_k^{(n)}$. Положим φ_n на $A_k^{(n)}$

равной $\frac{k}{n}$. Тогда $\varphi \leq f$. Покажем, что $\lim \varphi_n(x) = f(x)$

• Случай
$$f(x)=+\infty$$
 Тогда $f(x)\in \Delta_{n^2}^{(n)}\Rightarrow \varphi_n(x)=n\to +\infty=f(x)$ • Случай $f(x)<+\infty$

При больших
$$n$$
 $f(x) < n \Rightarrow f(x) \in \Delta_k^{(n)}$ при $k < n^2 \Rightarrow x \in A_k^{(n)}$ $\varphi_n(x) \le f(x) < \varphi_n(x) + \frac{1}{n} \Rightarrow |\varphi_n(x) - f(x)| < \frac{1}{n} \Rightarrow \lim \varphi_n(x) = f(x)$

Монотонной будет последовательность $\varphi_1, \varphi_2, \varphi_4, \varphi_8, \dots, \varphi_{2^n}, \dots$

$$\Delta_k^{(2^n)} = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right); \ \Delta_{2k}^{(2^{n+1})} = \left[\underbrace{\frac{2k}{2^{n+1}}}, \frac{2k+1}{2^{n+1}}\right); \ \Delta_{2k+1}^{(2^{n+1})} = \left[\underbrace{\frac{2k+1}{2^{n+1}}}, \frac{2k+2}{2^{n+1}}\right)$$

Если f ограничена, то $0 \le f \le M$ и при n > M $f(x) \in \Delta_k^{(n)}$ при $k < n^2 \Rightarrow |f(x) - \varphi_n(x)| < \frac{1}{n} \Rightarrow \varphi_n \rightrightarrows f$ на E

1.6 §6. Последовательности функций

Reminder 1.3.

- 1. Поточечная сходимость. $f_n, f: E \to \overline{\mathbb{R}}$ f_n сходится к f поточечно, если $\lim f_n(x) = f(x) \ \forall x \in E$
- 2. Равномерная сходимость. $f_n, f: E \to \mathbb{R}$ $f_n \rightrightarrows f$ на E, если $\forall \varepsilon > 0 \ \exists N: \forall n \geq N \ \forall x \in E \Rightarrow |f_n(x) f(x)| < \varepsilon$ (можно написать, что $\sup_{x \in E} |f_n(x) f(x)| \xrightarrow[n \to \infty]{} 0$)

Remark 1.15.

Знаем, что из равномерной сходимости следует поточечная

Declaration 1.7.

 $\mathcal{L}(E,\mu)$ – множество функций $f:E \to \overline{\mathbb{R}}$, измеримых и $\mu E\{f=\pm\infty\}=0$

Definition 1.26. Сходимость почти везде

 $f_n, f: E \to \mathbb{R}$ – измеримые f_n сходится к f почти везде на E, если существует $e \subset E$, т.ч. $\lim f_n(x) = f(x) \ \forall x \in E \setminus e$ и $\mu e = 0$

Definition 1.27. Сходимость по мере

 $f_n, f \in \mathcal{L}(E, \mu)$ f_n сходится по мере к f $(f_n \xrightarrow{\mu} f)$ если $\forall \varepsilon > 0$ $\mu E\{|f_n - f| > \varepsilon\} \xrightarrow[n \to \infty]{} 0$

Remark 1.16.

Равномерная сходимость \Rightarrow поточечная сходимость \Rightarrow сходимость почти везде Равномерная сходимость \Rightarrow сходимость по мере

Proposition 1.4.

- 1. Если $f_n \to f$ и $f_n \to g$ почти везде, то $\mu E\{f \neq g\} = 0$
- 2. Если $f_n \xrightarrow{\mu} f$ и $f_n \xrightarrow{\mu} g$, то $\mu E\{f \neq g\} = 0$

Доказательство:

1.
$$\begin{cases} e_1 \subset E \ \mu e_1 = 0 \ \text{и на } E \setminus e_1 \ f_n(x) \to f(x) \\ e_2 \subset E \ \mu e_2 = 0 \ \text{и на } E \setminus e_2 \ f_n(x) \to g(x) \end{cases} \Rightarrow \text{на } E \setminus (e_1 \cup e_2)$$

$$f_n(x) \to f(x) \ \text{и } f_n(x) \to g(x) \Rightarrow f(x) = g(x) \ \text{на } E \setminus (e_1 \cup e_2) \Rightarrow E\{f \neq g\} \subset e_1 \cup e_2$$
2.
$$E\{f \neq g\} = \bigcup_{m=1}^{\infty} E\{|f - g| > \frac{1}{m}\}. \text{ Надо доказать, что } \mu E\{|f - g| > \frac{1}{m}\} = 0$$

$$E\{|f - g| > \frac{1}{m}\} \subset E\{|f - f_n| > \frac{1}{2m}\} \cup E\{|g - f_n| > \frac{1}{2m}\} \Rightarrow$$

$$\Rightarrow \mu E\{|f - g| > \frac{1}{m}\} \leq \underbrace{\mu E\{|f - f_n| > \frac{1}{2m}\}}_{\to 0} + \underbrace{\mu E\{|g - f_n| > \frac{1}{2m}\}}_{\to 0} \Rightarrow \mu E\{|f - g| > \frac{1}{m}\} = 0$$

Theorem 1.41. Теорема Лебега

Пусть $\mu E < +\infty$. Тогда если f_n сходится к f почти везде, то $f_n \xrightarrow{\mu} f$

Доказательство:

Возьмем множество, где нет сходимости $f_n(x) \to f(x)$ и переопределим функции так, что сходимость появится

Шаг 1.
$$f \equiv 0$$
 $f_1 \geq f_2 \geq f_3 \geq \dots$ и $\lim f_n(x) = 0$
 $E_n := E\{|f_n - f| > \varepsilon\} = E\{f_n > \varepsilon\}$ из монотонности $f_n \Rightarrow E_1 \supset E_2 \supset \dots$
 $\bigcap_{n=1}^{\infty} E_n = \emptyset$, т.к. $f_n(x) \to 0$; при больших $n f_n(x) < \varepsilon$ и $x_n \notin E_n$

По непрерывности меры сверху
$$\lim \mu E_n = 0 \Rightarrow f_n \xrightarrow{\mu} 0$$

Шаг 2. Общий случай.
$$\lim |f_n(x) - f(x)| = 0 \Rightarrow \underbrace{\overline{\lim}|f_n(x) - f(x)| = 0}_{\lim \sup_{k \ge n} |f_k(x) - f(x)| = :\lim g_n(x)}$$

Тогда
$$\lim g_n(x) = 0$$
 и $g_1 \ge g_2 \ge g_3 \ge \dots$ $\xrightarrow{\lim \sup_{k \ge n} |f_k(x)| = \lim g_n(x)} g_n \xrightarrow{\mu} 0$, т.е. $\underbrace{\mu E\{g_n > \varepsilon\}}_{\ge \mu E\{|f_n - f| > \varepsilon\}} \to 0$

$$E\{g_n > \varepsilon\} \supset E\{|f_n - f| > \varepsilon\}$$

Reminder 1.4.

$$\mathbb{1}_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Remark 1.17.

- 1. Без условия $\mu E < +\infty$ неверно $\mu = \lambda_1, \ E = [0, +\infty), \ f_n = \mathbb{1}_{[n, +\infty)}, \ f_n \to 0$ поточечно $\lambda_1 E\{f_n > \varepsilon\} = \lambda_1 [n, +\infty) = +\infty$
- 2. Обратное утверждение неверно

$$\mu = \lambda_1, E = (0, 1]$$

$$\underline{\mathbb{1}}_{(0,1]}, \ \underline{\mathbb{1}}_{(0,\frac{1}{2}]}, \ \underline{\mathbb{1}}_{(\frac{1}{2},1]}, \underline{\mathbb{1}}_{(0,\frac{1}{3}]}, \ \underline{\mathbb{1}}_{(\frac{1}{3},\frac{2}{3}]}, \ \underline{\mathbb{1}}_{(\frac{2}{3},1]}, \underline{\mathbb{1}}_{(0,\frac{1}{4}]}, \ \ldots$$

По мере последовательность стремится $\kappa \equiv 0$

Но в последовательности $f_n(x)$ сколь угодно далеко есть как нули, так и единицы

Theorem 1.42. Теорема Рисса

 $f_n, f \in \mathcal{L}(E,\mu)$ и $f_n \xrightarrow{\mu} f$. Тогда существует подпоследовательность f_{n_k} , т.ч. $f_{n_k} \to f$ почти везде

Доказательство:

$$\mu E\{|f_n - f| > \varepsilon\} \xrightarrow[n \to \infty]{} 0$$

Подставим $\varepsilon = \frac{1}{k}$. Найдется такое $n_{k-1} < n_k$, что $\mu \underbrace{E\{|f_{n_k} - f| > \frac{1}{k}\}}_{=:A_k} < \frac{1}{2^k}$

$$B_m := \bigcup_{k=m}^{\infty} A_k, \ \mu B_m \le \sum_{k=m}^{\infty} \mu A_k < \sum_{k=m}^{\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}}$$

$$B_1 \supset B_2 \supset B_3 \supset \dots; \ B := \bigcap_{m=1}^{\infty} B_m; \ \mu B \le \mu B_m < \frac{1}{2^{m-1}} \Rightarrow \mu B = 0$$

Покажем, что если $x \in E \setminus B$, то $f_{n_k}(x) \to f(x)$

$$x \in E \setminus B \Rightarrow x \notin B \Rightarrow x \notin B_m \Rightarrow x \notin A_k$$
 при $k \ge m \Rightarrow x \in E\{f_{n_k} - f \le \frac{1}{k}\}$ при $k \ge m \Rightarrow |f_{n_k}(x) - f(x)| \le \frac{1}{k}$ при $k \ge m \Rightarrow |f_{n_k}(x) - f(x)| \xrightarrow[k \to \infty]{} 0$

Theorem 1.43. Следствие

 $f_n \leq g$ во всех точках и $f_n \stackrel{\mu}{\to} f$. Тогда $f \leq g$ аз исключением множества нулевой меры

Доказательство:

Выбираем подпоследовательность $g \ge f_{n_k} \to f$ поточечно за исключением множества нулевой меры $\Rightarrow f(x) \le g(x)$ для тех x, где есть сходимость

Theorem 1.44. Теорема Егорова

 $f_n,f\in\mathcal{L}(E,\mu)$ и $f_n\to f$ почти везде, $\varepsilon>0.$ Тогда найдется $e\subset E,$ т.ч. $\mu e<\varepsilon$ и $f_n\rightrightarrows f$ на $E\setminus e$

Theorem 1.45. Теорема Фреше

 $f:\mathbb{R}^m \to \mathbb{R}$ измеримая. Тогда существует $f_n \in C(\mathbb{R}^m)$, т.ч. $f_n \to f$ почти везде (относительно λ_m)

Theorem 1.46. Теорема Лузина

 $f:E o\mathbb{R},\ E\subset\mathbb{R}^m$ измеримая, $\varepsilon>0$. Тогда найдется $e\subset E$, т.ч. $\lambda_m e<\varepsilon$ и $f\mid_{E\backslash e}$ непрерывно

Exercise 1.4.

Вывести Лузина из Егорова и Фреше

Глава 10. Интеграл Лебега 2

§1. Определение интеграла

Lemma 2.1.

 $f\geq 0$ простая. $X=\coprod_{j=1}^m A_j=\coprod_{k=1}^n B_k$ – допустимые разбиения. E – измеримое множество. a_j и b_k соответствующие значения

Тогда
$$\sum_{j=1}^m a_j \mu(E \cap A_j) = \sum_{k=1}^n b_k \mu(E \cap B_k)$$

Доказательство:

$$E \cap A_j = \bigsqcup_{k=1}^n E \cap A_j \cap B_k; \ \mu(E \cap A_j) = \sum_{k=1}^n \mu(E \cap A_j \cap B_k)$$

$$\sum_{j=1}^{m} a_j \mu(E \cap A_j) = \sum_{j=1}^{m} \sum_{k=1}^{n} \underbrace{a_j \mu(A_j \cap B_k \cap E)}_{b_k \mu(A_j \cap B_k \cap E)} = \sum_{k=1}^{n} \sum_{j=1}^{m} b_k \mu(A_j \cap B_k \cap E) = \sum_{k=1}^{n} b_k \mu(B_k \cap E)$$

Если $A_j \cap B_k \neq \emptyset$, то $a_j = b_k$

Definition 2.1. Интеграл Лебега от простой функции

$$\int_E f d\mu = \int_E f(x) d\mu(x) := \sum_{j=1}^m a_j \mu(E \cap A_j)$$
, где $X = \bigsqcup_{j=1}^m A_j$ – допустимое разбиение, a_j значение f на A_j

Theorem 2.1. Свойства

1.
$$c \ge 0 \Rightarrow \int_{E} cf d\mu = c \int_{E} f d\mu$$

2. $c \ge 0$, $\int_{E} c d\mu = c\mu E$

2.
$$c \ge 0$$
, $\int_{\Gamma} c d\mu = c\mu E$

3.
$$\int_{E} (f+g)d\mu = \int_{E} fd\mu + \int_{E} gd\mu$$
, f и $g \ge 0$ простые

4. Если
$$0 \le f \le g$$
 – простые, то $\int_E f d\mu \le \int_E g d\mu$

Доказательство:

Берем общее допустимое разбиение $\bigsqcup A_j,\ a_j$ – значение f на $A_j,\ b_j$ – значение g на A_j $\int_{E} f d\mu = \sum_{i} a_{i} \mu(E \cap A_{i})$ $\int^{L} g d\mu = \sum b_{j} \mu(E \cap A_{j})$

Definition 2.2. Интеграл Лебега от неотрицательной измеримой функции

$$\smallint_E f d\mu := \sup\{\smallint_E \varphi d\mu : 0 \leq \varphi \leq f \text{ и } \varphi - \text{простая}\}$$

Remark 2.1.

Новое определение на простых функция дает тот же результат, что был Если f – простая, то $\varphi = f$ можно взять

 $0 \leq \varphi \leq f$ (простая) $\int\limits_E \varphi d\mu \leq \int\limits_E f d\mu$

Theorem 2.2. Свойства

- 1. Если $\mu E=0,$ то $\int\limits_{E}fd\mu=0$
- 2. Если $0 \le f \le g$ измеримые, то $\int_E f d\mu \le \int_E g d\mu$

Доказательство:

Т.к. если φ подходит для f, т.е. $0 \le \varphi \le f$, то она подходит и для $g \Rightarrow \sup$ для g берется по большему множеству

3. $f \ge 0$ измеримая, $\int_E f d\mu = \int_X \mathbb{1}_E f d\mu$

Доказательство:

Если $0 \le \varphi \le f$ на E, то φ можно продолжить нулем на X и $0 \le \varphi \le \mathbb{1}_E f$

4. $f \geq 0$ измеримая, $A \subset B \Rightarrow \int\limits_A f d\mu \leq \int\limits_B f d\mu$

Доказательство:

$$\int_{A} f d\mu = \int_{X} \mathbb{1}_{A} f d\mu \le \int_{X} \mathbb{1}_{B} f d\mu = \int_{B} f d\mu$$

Theorem 2.3. Теорема Леви (Беппо Леви)

 $0 \leq f_1 \leq f_2 \leq f_3 \leq \dots$ измеримые и f_n поточечно сходится к f Тогда $\lim\int\limits_E f_n d\mu = \int\limits_E f d\mu$

Доказательство:

 $f_n \leq f_{n+1} \Rightarrow \int\limits_E f_n d\mu \leq \int\limits_E f_{n+1} d\mu \Rightarrow$ существует $\lim\int\limits_E f_n d\mu =: L \in [0,+\infty]$

$$f_n \le f \Rightarrow \int_E f_n d\mu \le \int_E f d\mu \Rightarrow L \le \int_E f d\mu$$

Нужно доказать обратное неравенство $L \geq \int\limits_E f d\mu = \sup\{\int\limits_E \varphi d\mu : 0 \leq \varphi \leq f, \ \varphi$ – простая $\}$

Возьмем $0 \le \varphi \le f, \ \varphi$ – простая и докажем неравенство $L \ge \int\limits_E \varphi d\mu$

Возьмем $\Theta \in (0,1)$ и докажем неравенство $L \geq \Theta \int\limits_E \varphi d\mu = \int\limits_E \Theta \varphi d\mu$

 $\lim f_n(x) = f(x) \ge \varphi(x)$

 $E_n := E\{f_n \ge \Theta\varphi\} \Rightarrow E_n \subset E_{n+1}$

 $\bigcup_{n=1}^{\infty} E_n = E$, берем $x \in E$. Если $\varphi(x) = 0$, то $x \in E_n \ \forall n$

Если $\varphi(x)>0$, то $\Theta\varphi(x)<\varphi(x)\leq f(x)=\lim f_n(x)\Rightarrow$ для больших n $f_n(x)>\Theta\varphi(x)\Rightarrow x\in E_n$ при больших n

Берем допустимое разбиение для φ . A_j – множества, a_j – значения

$$\underbrace{\int\limits_{E} f_n d\mu}_{E} \ge \int\limits_{E_n} f_n d\mu \ge \int\limits_{E_n} \Theta \varphi d\mu = \Theta \sum_{j=1}^m a_j \underbrace{\mu(A_j \cap E_n)}_{n \to \infty} \xrightarrow[n \to \infty]{} \Theta \sum_{j=1}^m a_j \mu(A_j \cap E) = \Theta \int\limits_{E} \varphi d\mu \Rightarrow \underbrace{L} \ge \Theta \int\limits_{E} \varphi d\mu$$

Theorem 2.4. Продолжение свойств

5. Аддитивность интеграла. $f,g \ge 0$ измеримые $\Rightarrow \int_E (f+g)d\mu = \int_E f d\mu + \int_E g d\mu$

Доказательство:

Возьмем последовательность простых $0 \le \varphi_1 \le \varphi_2 \le \ldots$, т.ч. $\varphi_n \to f$ поточечно и $0 \leq \psi_1 \leq \psi_2 \leq \ldots$, т.ч. $\psi_n \to g$ поточечно

$$0 \leq \varphi_1 + \psi_1 \leq \varphi_2 + \psi_2 \leq \dots \text{ if } \varphi_n + \psi_n \to f + g$$

$$\underbrace{\int_{E} (\varphi_n + \psi_n) d\mu}_{\to \int_{E} (f+g) d\mu} = \underbrace{\int_{E} \varphi_n d\mu}_{\to \int_{E} f d\mu} + \underbrace{\int_{E} \psi_n d\mu}_{\to \int_{E} g d\mu}$$

- 6. Однородность интеграла. $c \geq 0, f \geq 0$ измеримая $\Rightarrow \int_E cf d\mu = c \int_E f d\mu$ 7. Аддитивность интеграла по множеству $E = A \sqcup B$. $f \geq 0$ измеримая $\Rightarrow \int_A f d\mu = \int_A f d\mu + \int_B f d\mu$ Доказательство:

$$\mathbb{1}_A f + \mathbb{1}_B f = \mathbb{1}_{A \sqcup B} f \Rightarrow \int\limits_X \mathbb{1}_{A \sqcup B} f d\mu = \int\limits_X \mathbb{1}_A f d\mu + \int\limits_X \mathbb{1}_B f d\mu$$
 8. Если $f>0$ измеримая и $\mu E>0$, то $\int\limits_E f d\mu>0$

Доказательство:

$$E_n:=E\{f>\frac{1}{n}\},\ E_1\subset E_2\subset\dots$$
 и $\bigcup_{n=1}^\infty E_n=E\Rightarrow\lim\mu E_n=\mu E>0\Rightarrow$ Найдется $n,$ для которого $\mu E_n>0$ $\int\limits_E fd\mu\geq\int\limits_{E_n}fd\mu\geq\int\limits_{E_n}\frac{1}{n}d\mu=\frac{1}{n}\mu E_n>0$

Example 2.1.

$$T = \{t_1, t_2, \ldots\}; \ w_1, w_2, \ldots \geq 0$$
 $\mu A := \sum_{j: t_j \in A} w_j.$ Поймем, что $\int_E f d\mu = \sum_{j: t_j \in E} f(t_j) w_j$
Пусть f простая, $f = \sum_{j=1}^m a_j \mathbb{1}_{A_j}$

$$\int_{E} f d\mu = \sum_{j=1}^{m} a_{j} \mu(A_{j} \cap E) = \sum_{j=1}^{m} a_{j} \sum_{i:t_{i} \in A_{j} \cap E} w_{i} = \sum_{j=1}^{m} \sum_{i:t_{i} \in A_{j}} \underbrace{a_{j}}_{f(t_{i})} w_{i} = \sum_{i:t_{i} \in E} f(t_{i}) w_{i}$$

$$\geq: \mathbb{1}_{\{t_1,t_2,\dots,t_n\}} f \leq f \Rightarrow \int_{E} \mathbb{1}_{\{t_1,t_2,\dots,t_n\}} f d\mu \leq \int_{E} f d\mu$$

$$= \sum_{i \leq n: t_i \in E} f(t_i) w_i \to \sum_{i: t_i \in E} f(t_i) w_i$$

$$\leq$$
: Если $\varphi \leq f$ – простая, то $\varphi(t_i) \leq f(t_i) \Rightarrow \underbrace{\sum_{i:t_i \in E} \varphi(t_i) w_i}_{\int_E \varphi d\mu} \leq \sum_{i:t_i \in E} f(t_i) w_i$

Definition 2.3.

$$f:E o\overline{\mathbb{R}}$$
 измеримая. $\int\limits_E fd\mu:=\int\limits_E f_+d\mu-\int\limits_E f_-d\mu,$ где $f_\pm:=\max\{\pm f,0\}$ Интеграл определен, если хотя бы один из $\int\limits_E f_\pm d\mu<+\infty$

Definition 2.4.

P(x) верно почти везде на E, если найдется такое $e \subset E$ и $\mu e = 0$, т.ч. P(x) верно $\forall x \in E \setminus e$

Remark 2.2.

Если каждое из свойств P_1, P_2, \dots выполняется почти везде на E, то они все одновременно выполняются почти везде на E

Theorem 2.5. Неравенство Чебышева

$$f\geq 0$$
измеримая; $p,t>0.$ Тогда $\mu E\{f\geq t\}\leq \frac{1}{t^p}\int\limits_E f^p d\mu$

$$\int\limits_E f^p d\mu \geq \int\limits_{E\{f \geq t\}} f^p d\mu \geq \int\limits_{E\{f \geq t\}} t^p d\mu = t^p \mu E\{f \geq t\}$$

Theorem 2.6. Свойства интегралов связанные с понятием почти везде

1. Если $\int\limits_{E}|f|d\mu<+\infty,$ то f почти везде конечна на E

 $\mu E\{|f| = +\infty\} \le \mu E\{|f| \ge t\} \le \frac{1}{t} \int_{E} |f| d\mu \xrightarrow[t \to \infty]{} 0$

2. Если $\int\limits_{E}|f|d\mu=0$, то f=0 почти везде на E

Доказательство:

Доказательство. $\mu E\{|f| \geq \frac{1}{n}\} \leq n \int_{E} |f| d\mu = 0 \Rightarrow \mu E\{|f| > 0\} = \mu(\bigcup_{n=1}^{\infty} E\{|f| \geq \frac{1}{n}\}) = 0$ 3. Если f – измерима, $A \subset B$ и $\mu(B \setminus A) = 0$, то $\int_{A}^{\infty} f d\mu$ и $\int_{B}^{\infty} f d\mu$ существуют или нет одновременно; а если существуют, то равны Доказательство:

 $\int_{B} f_{\pm} d\mu = \int_{B \setminus A} f_{\pm} d\mu + \int_{A} f_{\pm} d\mu = \int_{A} f_{\pm} d\mu$

4. Если f и g измеримы и f=g почти везде на E, то $\int_E f d\mu$ и $\int_E g d\mu$ существуют или нет одновременно; а если существуют, то равны

Пусть
$$f=g$$
 на $E\setminus e$ и $\mu e=0$
$$\int\limits_{E\setminus e}f_{\pm}d\mu=\int\limits_{E\setminus e}g_{\pm}d\mu\Rightarrow\int\limits_{E}f_{\pm}d\mu=\int\limits_{E}g_{\pm}d\mu$$

2.2§2. Суммируемые функции

Definition 2.5. Суммируемая функция

 $f:E o\overline{\mathbb{R}}$ измеримая. Если $\int_{\overline{}}f_{\pm}d\mu<+\infty$, то f суммируемая на E функция

Theorem 2.7. Свойства

- 1. $f:E \to \overline{\mathbb{R}}$ измеримая. Тогда f суммируема на $E \Leftrightarrow \int\limits_{\mathbb{R}} |f| d\mu < +\infty$
- 2. Если f суммируема на E, то f почти везде конечна на E
- 3. Если $A \subset B$ и f суммируема на B, то f суммируема на A
- 4. Ограниченная измеримая функция суммируема на множестве конечной меры
- 5. Если f и g суммируемы на E и $f \leq g$ на E, то $\int\limits_E f d\mu \leq \int\limits_E g d\mu$
- 6. Аддитивность интеграла. Если f и g суммируема на E, то f+g суммируема на E и $\int_E (f+g)d\mu = \int_E f d\mu + \int_E g d\mu$
- 7. Однородность интеграла. Если f суммируема на $E, \alpha \in \mathbb{R}$, то αf суммируема на E и $\int_E \alpha f d\mu = \alpha \int_E f d\mu$
- 8. Линейность интеграла. Если f и g суммируемы; $\alpha, \beta \in \mathbb{R}$, то $\alpha f + \beta g$ суммируема и $\int_E (\alpha f + \beta g) d\mu = \alpha \int_E f d\mu + \beta \int_E g d\mu$ 9. Аддитивность интеграла по множеству

$$E := igcup_{k=1}^n E_k$$
 – измеримые, $f: E o \overline{\mathbb{R}}$ измеримая

Тогда
$$f$$
 суммируема на $E\Leftrightarrow f$ суммируема на E_k $\forall k$ А если $E=\bigsqcup_{k=1}^n E_k$, то в случае суммируемости $\int\limits_E f d\mu =\sum\limits_{k=1}^n \int\limits_{E_k} f d\mu$

10. Интеграл по сумме мер

 μ_1 и μ_2 заданы на σ -алгебре $\mathcal{A}, \, \mu := \mu_1 + \mu_2, \, f$ – измерима относительно \mathcal{A} . Тогда

- (a) Если $f \ge 0$, то $\int_E f d\mu = \int_E f d\mu_1 + \int_E f d\mu_2$
- (b) Суммируемость f относительно $\mu \Leftrightarrow f$ суммируема относительно $\mu_1 + \mu_2$ и в случае суммируемости $\int\limits_E f d\mu = \int\limits_E f d\mu_1 + \int\limits_E f d\mu_2$

$$\begin{array}{ll} 1. \;\; \Rightarrow : \;\; |f| = f_+ + f_- \Rightarrow \int\limits_E |f| d\mu = \int\limits_E f_+ d\mu + \int\limits_E f_- d\mu \\ \Leftrightarrow : \;\; 0 \le f_\pm \le |f| \Rightarrow 0 \le \int\limits_E f_\pm d\mu \le \int\limits_E |f| d\mu < +\infty \end{array}$$

3.
$$\int\limits_A |f| d\mu \leq \int\limits_B |f| d\mu < +\infty$$

5.
$$f \leq g \Rightarrow f_{+} \leq g_{+}$$
 и $f_{-} \geq g_{-} \Rightarrow \int_{E} f_{+} d\mu \leq \int_{E} g_{+} d\mu$ и $\int_{E} f_{-} d\mu \geq \int_{E} g_{-} d\mu$ и вычитаем

6.
$$|f+g| \le |f| + |g| \Rightarrow \int_E |f+g| d\mu \le \int_E |f| d\mu + \int_E |g| d\mu \Rightarrow f+g$$
 – суммируема

$$h := f + g; \ h_{+} - h_{-} = f_{+} - f_{-} + g_{+} - g_{-} \Rightarrow h_{+} + f_{-} + g_{-} = h_{-} + f_{+} + g_{+}$$

$$\int_{E} (h_{+} + f_{-} + g_{-}) d\mu = \int_{E} h_{+} d\mu + \int_{E} f_{-} d\mu + \int_{E} g_{-} d\mu$$

$$\int_{E} (h_{-} + f_{+} + g_{+}) d\mu = \int_{E} h_{-} d\mu + \int_{E} f_{+} d\mu + \int_{E} g_{+} d\mu$$

7.
$$|\alpha f| = |\alpha||f| \Rightarrow |\alpha| \int_{E} |f| d\mu < +\infty$$

$$\alpha > 0$$
: $\int_{\Gamma} \alpha f d\mu = \alpha \int_{\Gamma} f d\mu$, $(\alpha f)_{\pm} = \alpha f_{\pm}$ и вычитаем

$$\alpha > 0$$
: $\int_E \alpha f d\mu = \alpha \int_E f d\mu$, $(\alpha f)_{\pm} = \alpha f_{\pm}$ и вычитаем $\alpha = -1$: $\int_E (-f) d\mu = -\int_E f d\mu$, $(-f)_{\pm} = f_{\mp}$ и вычитаем

9.
$$|f\mathbb{1}_{E}| \leq |f\mathbb{1}_{E_{1}}| + \dots + |f\mathbb{1}_{E_{n}}|$$

$$\int_{x} \mathbb{1}_{E_{x}} |f| d\mu \leq \int_{x} \mathbb{1}_{E} |f| d\mu \leq \int_{x} \mathbb{1}_{E_{1}} |f| d\mu + \dots + \int_{x} \mathbb{1}_{E_{n}} |f| d\mu$$

$$\int_{E_{k}} \leq \int_{E} |f| d\mu \leq \int_{E_{1}} |f| d\mu + \dots + \int_{E_{n}} |f| d\mu$$

Если
$$E=\coprod_{k=1}^n E_k$$
, то $\mathbb{1}_E=\mathbb{1}_{E_1}+\ldots+\mathbb{1}_{E_n}\Rightarrow\int\mathbb{1}_E=f\mathbb{1}_{E_1}+\ldots+\int f\mathbb{1}_{E_n}$

(a) Пусть $f = \mathbb{1}_A$. $\int_E f d\mu = \int_E \mathbb{1}_A d\mu = \mu(E \cap A) = \mu_1(E \cap A) + \mu_2(E \cap A) = \int_E \mathbb{1}_A d\mu_1 + \int_E \mathbb{1}_A d\mu_2$ 10. Пусть $f \geq 0$ простая. Это линейная комбинация характеристических \Rightarrow верно по линейности

Пусть
$$f \geq 0$$
. Возьмем последовательность $0 \leq \varphi_1 \leq \varphi_2 \leq \dots$ простые, $\varphi_n \to f$
$$\int\limits_E \varphi_n d\mu = \int\limits_E \varphi_n d\mu_1 + \int\limits_E \varphi_n d\mu_2 \xrightarrow{\frac{J_{\text{еви}}}{E}} \int\limits_E f d\mu = \int\limits_E f d\mu_1 + \int\limits_E f d\mu_2$$
 (b)
$$\int\limits_E |f| d\mu = \int\limits_E |f| d\mu_1 + \int\limits_E |f| d\mu_2 \Rightarrow \text{равносильность в суммировании}$$

(b)
$$\int_{E}^{E} |f| d\mu = \int_{E}^{E} |f| d\mu_1 + \int_{E}^{E} |f| d\mu_2 \Rightarrow$$
 равносильность в суммировании $\int_{E}^{E} f_{\pm} d\mu = \int_{E}^{E} f_{\pm} d\mu_1 + \int_{E}^{E} f_{\pm} d\mu_2$ и вычитаем

Definition 2.6.

$$f:E o\mathbb{C},\ \mathrm{Re}\, F$$
 и $\mathrm{Im}\, f$ – измеримые. $\int\limits_E fd\mu:=\int\limits_E \mathrm{Re}\, fd\mu+i\int\limits_E \mathrm{Im}\, fd\mu,$ если справа оба слагаемых конечны

Remark 2.3.

Если
$$\int\limits_{E}|f|d\mu<+\infty,$$
 то все \int конечны

Доказательство:

$$|\operatorname{Re} f| \ \mathsf{u} \ |\operatorname{Im} f| \leq |f| \leq |\operatorname{Re} f| + |\operatorname{Im} f|$$

Definition 2.7.

$$f:E\to\mathbb{C}$$
 суммируема, если $\mathrm{Re}\,f$ и $\mathrm{Im}\,f$ измеримы и $\int\limits_E|f|d\mu<+\infty$

Remark 2.4.

Все свойства с равенствами сохраняются

Комплексная линейность тоже есть

$$\begin{split} & \int\limits_{E} (\alpha + i\beta) f d\mu = \int\limits_{E} \alpha f d\mu + \int\limits_{E} i\beta f d\mu = \alpha \int\limits_{E} f d\mu + \beta \int\limits_{E} if d\mu \\ & \int\limits_{E} if d\mu \stackrel{?}{=} i \int\limits_{E} f d\mu \\ & \int\limits_{E} (if) d\mu = \int\limits_{E} \operatorname{Re}(if) d\mu + i \int\limits_{E} \operatorname{Im}(if) d\mu = \int\limits_{E} - \operatorname{Im} f d\mu + i \int\limits_{E} \operatorname{Re} f d\mu = i \int\limits_{E} f d\mu \end{split}$$

Proposition 2.1.

$$|\int\limits_E f d\mu| \leq \int\limits_E |f| d\mu,$$
где $f:E \to \mathbb{C}$ суммируема

Доказательство:

$$\begin{split} |\int\limits_E f d\mu| &= e^{i\alpha} \int\limits_E f d\mu = \int\limits_E e^{i\alpha} f d\mu = \int\limits_E \operatorname{Re}(e^{i\alpha} f) d\mu + i \int\limits_E \operatorname{Im}(e^{i\alpha} f) d\mu = \int\limits_E \operatorname{Re}(e^{i\alpha} f) d\mu \leq \int\limits_E \underbrace{|e^{i\alpha} f|}_{|f|} d\mu \\ e^{-i\alpha} &= \frac{\int\limits_E f d\mu}{|\int f d\mu|} \end{split}$$

$$f\geq 0$$
 измеримая, $E=igsqcup_{n=1}^\infty E_n$ – измеримые. Тогда $\int\limits_E f d\mu = \sum\limits_{n=1}^\infty \int\limits_{E_n} f d\mu$

$$\begin{split} S_n &:= \sum_{k=1}^n \int\limits_{E_k} f d\mu = \int\limits_{\bigsqcup\limits_{k=1}^n E_k} f d\mu = \int\limits_{E} (\mathbb{1}_{E_1} + \ldots + \mathbb{1}_{E_n}) f d\mu \xrightarrow{\operatorname{Леви}} \mathbb{1}_{E_1} + \ldots + \mathbb{1}_{E_n} \nearrow \mathbb{1}_{E} \Rightarrow \\ &\Rightarrow (\mathbb{1}_{E_1} + \ldots + \mathbb{1}_{E_n}) f \nearrow \mathbb{1}_{E} f \xrightarrow{\operatorname{Леви}} \int\limits_{E} \mathbb{1}_{E} f d\mu = \int\limits_{E} f d\mu \end{split}$$

Theorem 2.9. Следствия

- 1. $f \geq 0$ измеримая. $f: X \to \overline{\mathbb{R}}$. Тогда $\nu A := \int\limits_A f d\mu$ мера
- 2. f суммируема на $E= \bigsqcup_{k=1}^{\infty} E_k$. Тогда $\int_E f d\mu = \sum_{k=1}^{\infty} \int_{E_k} f d\mu$ Доказательство:

$$\int_{E} f_{\pm} d\mu = \sum_{k=1}^{\infty} \int_{E_{k}} f_{\pm} d\mu$$

3. f – суммируема и $E_1 \subset E_2 \subset \dots$ и $E := \bigcup_{n=1}^{\infty} E_n$ (или $E_1 \supset E_2 \supset \dots$ и $E := \bigcap_{n=1}^{\infty} E_n$) Тогда $\int\limits_E f d\mu = \lim_{n \to \infty} \int\limits_{E_n} f d\mu$

Доказательство:

 $u_{\pm}A := \int f_{\pm}d\mu$ – конечные меры $\Rightarrow \underbrace{\nu_{\pm}E_n}_{f_{\pm}d\mu} = \lim_{n \to \infty} \nu_{\pm}E_n = \lim_{n \to \infty} \int_{E_n} f_{\pm}d\mu$ и вычитаем

4. f — суммируема на E и $\varepsilon > 0$. Тогда существует $A \subset E$, т.ч. $\mu A < +\infty$ и $\int\limits_{E \backslash A} |f| d\mu < \varepsilon$

Доказательство:

$$E_n := E\{|f| \geq \frac{1}{n}\}, \ E_1 \subset E_2 \subset \dots \text{ и } \bigcup_{n=1}^{\infty} E_n = E\{|f| > 0\} = E \setminus E\{f = 0\}$$

$$\int_E |f| d\mu = \int_{E \setminus E\{f = 0\}} |f| d\mu = \lim_{n \to \infty} \int_{E_n} |f| d\mu$$
 Возьмем такое n , что $\int_{E_n} |f| d\mu > \int_E |f| d\mu - \varepsilon \Rightarrow \int_{E \setminus E_n} |f| d\mu < \varepsilon$
$$A := E_n, \ \mu A = \mu E\{|f| \geq \frac{1}{n}\} \leq n \int_E |f| d\mu < +\infty$$

Theorem 2.10. Абсолютная непрерывность интеграла

$$f$$
 – суммируема на $E.$ Тогда $\forall \varepsilon>0\ \exists \delta>0\ \forall e\subset E\ \mu e<\delta\Rightarrow \int\limits_e|f|d\mu<\varepsilon$

Доказательство:

$$+\infty > \int\limits_E |f| d\mu = \sup\{\int\limits_E \varphi d\mu : 0 \le \varphi \le |f|, \ \varphi$$
 — простая $\}$

Выберем такую простую $|f| \ge \varphi \ge 0$, что $\int\limits_E \varphi d\mu > \int\limits_E |\varphi| d\mu - \varepsilon \Rightarrow \varepsilon > \int\limits_E (|f| - \varphi) d\mu$

 φ — простая \Rightarrow ограниченная $\Rightarrow \varphi \leq M$

Возьмем $\delta:=\frac{\varepsilon}{M}$. Если $\mu e<\delta$, то $\int\limits_e \varphi d\mu \leq \int\limits_e M d\mu = M\mu e<\varepsilon$

$$\int\limits_{e} \underbrace{(|f|-\varphi)}_{\geq 0} d\mu \leq \int\limits_{E} (|f|-\varphi) d\mu < \varepsilon$$

$$\int\limits_{e}|f|d\mu=\int\limits_{\underset{<\varepsilon}{e}}\varphi d\mu+\int\limits_{\underset{<\varepsilon}{e}}(|f|-\varphi)d\mu<2\varepsilon$$

Theorem 2.11. Следствие

$$f$$
 – суммируема на $E,\,e_n\subset E$ и $\mu e_n\to 0\Rightarrow \int\limits_{e_n}fd\mu\to 0$

Доказательство:

$$|\int\limits_{e_n} f d\mu| \le \int\limits_{e_n} |f| d\mu \to 0$$

Definition 2.8.

 ν – мера на той же σ -алгебре, что и μ

Если существует такая $\omega \geq 0$ измеримая, что $\forall E$ – измеримого $\nu E = \int\limits_E \omega d\mu$

 ω – плотность меры ν относительно меры μ

Theorem 2.12.

$$f,g$$
 – суммируема на X и $\int\limits_A f d\mu = \int\limits_A g d\mu \ \forall A$ – измеримого. Тогда $f=g$ почти везде

Доказательство:

$$A := X\{f \ge g\}; \ B := X\{f < g\}$$

$$\int\limits_X |f-g| d\mu = \int\limits_A + \int\limits_B = \underbrace{\int\limits_A (f-g) d\mu}_0 + \underbrace{\int\limits_B (-f+g) d\mu}_0 = 0 \Rightarrow f-g = 0 \text{ почти везде}$$

Theorem 2.13. Следствие

Пусть ω_1 и ω_2 – плотности ν относительно μ . Если ν – σ -конечная мера, то $\omega_1=\omega_2$ почти везде

Доказательство:

Шаг 1.
$$\nu X<+\infty\Rightarrow\omega_1$$
 и ω_2 – суммируемы. $\int\limits_X\omega_1d\mu$ и $\int\limits_X\omega_2d\mu<+\infty$, т.к. $\int\limits_A\omega_1d\mu=\nu A=\int\limits_A\omega_2d\mu\Rightarrow\omega_1=\omega_2$ почти везде

Шаг 2.
$$X=\bigcup_{n=1}^\infty X_n,\, \nu X_n<+\infty\Rightarrow \omega_1=\omega_2$$
 почти везде на X_n $\forall n\Rightarrow\omega_1=\omega_2$ почти везде на X

Theorem 2.14.

 $\omega \geq 0$ – полность меры ν относительно меры $\mu.$ Тогда

- 1. Если $f \geq 0$ измеримая, то $\int\limits_E f d\nu = \int\limits_E f \omega d\mu$
- 2. f суммируема относительно $\nu \Leftarrow f\omega$ суммируема относительно μ и в этом случае $\int\limits_E f d\nu = \int\limits_E f\omega d\mu$

Доказательство:

1.

Шаг 2. По линейности верно для простых

Шаг 3. $f \ge 0$ измерима. Берем последовательность простых $0 \le \varphi_1 \le \varphi_2 \le \dots$ и $\varphi_n \to f$

2.
$$f$$
 – суммираема относительно $\nu\Leftrightarrow \int\limits_X |f|d\nu<+\infty\Leftrightarrow \omega f$ – суммируема относительно μ

$$\int_{E} f_{\pm} d\nu = \int_{E} \underbrace{\omega f_{\pm}}_{(\omega f)_{\pm}} d\mu$$

Definition 2.9.

 μ и ν – меры на одной σ -алгебре

Мера $\nu \prec \mu$ (абсолютно непрерывная) означает, что если $\mu E = 0$, то $\nu E = 0$

Remark 2.5.

Если ν имеет плотность относительно μ , то $\nu \prec \mu$

Доказательство:

$$u E = \int\limits_E \omega d\mu = 0,$$
 если $\mu E = 0$

Theorem 2.15. Теорема Радона-Никодима

 μ и ν меры на одной σ -алгебре. $\mu - \sigma$ -конечная мера. Тогда $\nu \prec \mu \Leftrightarrow \nu$ имеет плотность относительно μ

Exercise 2.1. Неравенство Юнга

Доказать, что $u,v\geq 0\Rightarrow \frac{u^p}{p}+\frac{v^q}{q}\geq uv$

Theorem 2.16. Неравенство Гельдера

$$p,q>1$$
 и $\frac{1}{p}+\frac{1}{q}=1$. Тогда $\int\limits_E|fg|d\mu\leq (\int\limits_E|f|^pd\mu)^{\frac{1}{p}}(\int\limits_E|g|^qd\mu)^{\frac{1}{q}}$

$$A:=(\int\limits_E|f|^pd\mu)^{rac{1}{p}}$$
 и $B:=(\int\limits_E|g|^qd\mu)^{rac{1}{q}}$

$$A:=(\int\limits_E|f|^pd\mu)^{\frac{1}{p}}$$
 и $B:=(\int\limits_E|g|^qd\mu)^{\frac{1}{q}}$ $A,B=0$: $\int\limits_E|f|^pd\mu=0\Rightarrow f=0$ почти везде $\Rightarrow fg=0$ почти везде $\Rightarrow \int\limits_E|fg|d\mu=0$

$$A,B=+\infty$$
: Очевидно т.к. $AB=+\infty$

$$A,B=+\infty$$
: Очевидно т.к. $AB=+\infty$ $A,B\in\mathbb{R}^+$: $\frac{1}{p}(\frac{f(x)}{A})^p+\frac{1}{q}(\frac{g(x)}{B})^q\geq \frac{|f(x)g(x)|}{AB}$ — неравенство Юнга. Проинтегрируем

$$\underbrace{\frac{1}{p}\underbrace{\frac{1}{A^p}\int\limits_{E}|f|^pd\mu}_{1} + \frac{1}{q}\underbrace{\frac{1}{B^q}\int\limits_{E}|g|^qd\mu}_{1} \geq \int\limits_{E}|fg|d\mu\frac{1}{AB}}_{1} \Rightarrow \frac{1}{AB}\int\limits_{E}|fg|d\mu \leq 1 \Rightarrow \int\limits_{E}|fg|d\mu \leq AB$$

Theorem 2.17. Неравенство Минковского

$$p\geq 1.$$
 Тогда $(\int\limits_E|f|^pd\mu)^{\frac{1}{p}}+(\int\limits_E|g|^pd\mu)^{\frac{1}{p}}\geq (\int\limits_E|f+g|^pd\mu)^{\frac{1}{p}}$

долаваниестоснос.
$$|f+g|\leq |f|+|g|\Rightarrow \text{достаточно проверить, что } f,g\geq 0$$

$$(\int\limits_{E} f^p d\mu)^{\frac{1}{p}}+(\int\limits_{E} g^p d\mu)^{\frac{1}{p}}\geq (\int\limits_{E} (f+g)^p d\mu)^{\frac{1}{p}}. \text{ Для } p=1 \text{ очевидно}$$

$$\underbrace{=:A}_{=:A} \underbrace{=:B}_{=:C} \text{ Считаем, что } p>1, \text{ а также, что } A \text{ и } B<+\infty$$

$$f+g\leq 2\max\{f,g\}\Rightarrow (f+g)^p\leq 2^p\max\{f^p,g^p\}\leq 2^p(f^p+g^p)$$

$$C^p=\int\limits_{E} (f+g)^p d\mu\leq 2^p(\int\limits_{E} f^p d\mu+\int\limits_{E} g^p d\mu)=2^p(A^p+B^p)\Rightarrow C<+\infty$$
 Можно считать, что $C>0$
$$(f+p)^g=f(f+g)^{p-1}+g(f+g)^{p-1}$$

$$\int\limits_{E} f(f+g)^{p-1} d\mu\leq (\int\limits_{E} f^p d\mu)^{\frac{1}{p}}(\int\limits_{E} ((f+g)^{p-1})^q d\mu)^{\frac{1}{q}}=A(\int\limits_{E} (f+g)^p d\mu)^{\frac{1}{q}}=AC^{\frac{p}{q}} \text{ (при } q=\frac{p}{p-1})$$

$$\int\limits_{E} g(f+g)^{p-1} d\mu\leq BC^{\frac{p}{q}}$$

$$\int\limits_{E} (f+g)^p d\mu\leq AC^{\frac{p}{q}}+BC^{\frac{p}{q}} \text{ и делим на } C^{\frac{p}{q}}\Rightarrow C\leq A+B$$

2.3 §3. Предельный переход под знаком интеграла

Theorem 2.18. Следствия из Леви

1. Если $f_n \geq 0$ измеримые, то $\int\limits_E \sum\limits_{n=1}^\infty f_n d\mu = \sum\limits_{n=1}^\infty \int\limits_E f_n d\mu$

2. Если $\sum_{n=1}^{\infty} \int_{E} |f_n| d\mu < +\infty$, то $\sum_{n=1}^{\infty} f_n$ сходится почти везде на E

Доказательство:

1.
$$S_n := \sum_{k=1}^n f_k$$
; $0 \le S_1 \le S_2 \le \dots \xrightarrow{\text{Леви}} \lim_{E} \int_{k=1}^n f_k d\mu = \int_{E} \sum_{k=1}^\infty f_k d\mu$

$$\lim_{k=1}^n \int_{E} f_k d\mu = \sum_{k=1}^\infty \int_{E} f_k d\mu$$

2.
$$\sum_{k=1}^{\infty} \int_{E} |f_{k}| d\mu = \int_{E} \sum_{k=1}^{\infty} |f_{k}| d\mu \Rightarrow S$$
 – почти везде конечно $\Rightarrow \sum_{k=1}^{\infty} |f_{k}|$ – сходится почти везде $\Rightarrow \sum_{k=1}^{\infty} f_{k}$ сходится почти везде

Lemma 2.2. Лемма Фату

$$f_n \ge 0$$
 измеримые $\Rightarrow \int_E \underline{\lim} f_n d\mu \le \underline{\lim} \int_E f_n d\mu$

Доказательство:

$$\underline{\lim} f_n = \lim \inf_{\underline{k \ge n}} f_k \Rightarrow f_n \ge g_n \Rightarrow \int_E f_n d\mu \ge \int_E g_n d\mu \Rightarrow \underline{\lim} \int_E f_n d\mu \ge \underline{\lim} \int_E g_n d\mu$$

$$0 \le g_1 \le g_2 \le \dots \xrightarrow{\text{Леви}} \lim \int\limits_E g_n d\mu = \int\limits_E \lim g_n d\mu = \int\limits_E \underline{\lim} f_n d\mu$$

Exercise 2.2.

Придумать пример, когда будет строгий знак

Theorem 2.19. Усиленный вариант теоремы Леви

$$f_n \geq 0$$
 измеримые, $f = \lim f_n$ и $f_n \leq f$ почти везде Тогда $\lim \int\limits_E f_n d\mu = \int\limits_E f d\mu$

$$\int\limits_E f d\mu = \int\limits_E \underline{\lim} f_n d\mu \overset{\Phi_{\text{ату}}}{\leq} \underline{\lim} \int\limits_E f_n d\mu \leq \overline{\lim} \int\limits_E f_n d\mu \leq \int\limits_E f d\mu, \text{ так как}$$

$$f_n \leq f \Rightarrow \int\limits_E f_n d\mu \leq \int\limits_E f d\mu \Rightarrow \overline{\lim} \int\limits_E f_n d\mu \leq \int\limits_E f d\mu$$

Theorem 2.20. Теорема Лебега о предельном переходе (о мажорируемой сходимости)

 $f_n: E \to \overline{\mathbb{R}}$ измеримые, $f = \lim f_n$ почти везде, $|f_n| \le F$ почти везде и F – суммируема на E

Тогда $\lim_{E} \int_{E} f_n d\mu = \int_{E} f d\mu$. Более того $\int_{E} |f_n - f| d\mu \xrightarrow[n \to \infty]{} 0$

Доказательство:

 $h_n := 2F - |f_n - f| \le 2F, h_n \to 2F$ почти везде

 $|f_n| \le F$ почти везде $\Rightarrow |f| \le F$ почти везде $\Rightarrow |f_n - f| \le |f_n| + |f| \le 2F$ почти везде $\Rightarrow h_n \ge 0$ почти везде

Тогда по усиленной теореме Леви $\lim_{F} h_n d\mu = \int_{F} 2F d\mu$

$$\underbrace{\int_{E} h_n d\mu}_{A} = \int_{E} 2F d\mu - \int_{E} |f_n - f| d\mu \Rightarrow \underbrace{\int_{E} |f_n - f| d\mu}_{\geq |\int_{E} f_n d\mu - \int_{E} f d\mu|} 0$$

Remark 2.6.

1. Суммируемость F по делу

$$E:=[0,1],\ \mu=\lambda_1,\ f_n=n\mathbb{1}_{(0,\frac{1}{n}]} o 0$$
 поточечно
$$\int\limits_{[0,1]}f_nd\lambda_1=1\not\to 0$$

2. Вместо $f_n \to f$ почти везде можно написать сходимость по мере

Theorem 2.21.

$$f \in C[a,b]$$
. Тогда $\int\limits_{[a,b]} f d\lambda_1 = \int\limits_a^b f(x) dx$

Доказательство:

Рассмотрим дробление отрезка $[a, b] : a = x_0 < x_1 < \ldots < x_n = b$

$$S^* := \sum_{k=1}^{n} (x_k - x_{k-1}) \max_{t \in [x_{k-1}, x_k]} f(t) \xrightarrow[|\tau| \to 0]{b} \int_{a}^{b} f(x) dx =: I$$

$$S_* := \sum_{k=1}^n (x_k - x_{k-1}) \min_{t \in [x_{k-1}, x_k]} f(t) \xrightarrow[|\tau| \to 0]{} I$$

$$g^*(x) = \max_{t \in [x_{k-1}, x_k]} f(t)$$
 при $x_{k-1} \le x < x_k \Rightarrow \int_{[a,b]} g^* d\lambda_1 = S^*$

$$g_*(x) = \min_{t \in [x_{k-1}, x_k]} f(t)$$
 при $x_{k-1} \le x < x_k \Rightarrow \int\limits_{[a,b]} g_* d\lambda_1 = S_*$

$$g_*(x) \le f(x) \le g^*(x) \Rightarrow \int_{\underbrace{[a,b]}} g_*(x) d\lambda_1 \le \int_{[a,b]} f d\lambda_1 \le \int_{\underbrace{[a,b]}} g^* d\lambda_1 \Rightarrow I = \int_{[a,b]} f d\lambda_1$$

Theorem 2.22.

$$f:[a,b] o \mathbb{R}$$
 интегрируема по Риману $\Rightarrow \int\limits_{[a,b]} f d\lambda_1 = \int\limits_a^b f(x) dx$

Theorem 2.23. Критерий Лебега интегрируемости по Риману

 $f:[a,b] \to \mathbb{R}$ ограниченная. Тогда

fинтегрируема по Риману на $[a,b]\Leftrightarrow$ множество точек разрыва fимеет нулевую меру Лебега

2.4 §4. Произведение мер

Definition 2.10.

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – пространства с σ -конечными мерами $\mathcal{P} := \{ A \times B : \mu A < +\infty \text{ и } \nu B < +\infty \}$ Множества из \mathcal{P} назовем измеримыми прямоугольниками $m_0(A \times B) := \mu A \cdot \nu B$

Theorem 2.24.

 \mathcal{P} – полукольцо, m_0 – мера на \mathcal{P} и m_0 – σ -конечна

Доказательство:

Доказательство.
$$\{A \in \mathcal{A} : \mu A < +\infty\} \text{ и } \{B \in \mathcal{B} : \nu B < +\infty\} - \text{полукольца}$$

$$\mathcal{P} - \text{ их декартово произведение} \Rightarrow \text{полукольцо}$$

$$A \times B = \bigsqcup_{n=1}^{\infty} A_n \times B_n; \ \mathbb{1}_{A \times B}(x,y) = \sum_{n=1}^{\infty} \mathbb{1}_{A_n \times B_n}(x,y)$$

$$\underbrace{\int_{X} \mathbb{1}_{A(X) \cdot \mathbb{1}_B(y)} d\mu(x)}_{\mathbb{1}_A(x) \cdot \mathbb{1}_B(y)} = \int_{X} \sum_{n=1}^{\infty} \mathbb{1}_{A_n \times B_n}(x,y) d\mu(x) = \sum_{n=1}^{\infty} \int_{X} \mathbb{1}_{A_n \times B_n}(x,y) d\mu(x) = \sum_{n=1}^{\infty} \mu A_n \cdot \mathbb{1}_{B_n}(y)$$

$$\underbrace{\int_{X} \mathbb{1}_{A(X) \cdot \mathbb{1}_B(y)} d\mu(x)}_{Y} = \underbrace{\int_{X} \sum_{n=1}^{\infty} \mathbb{1}_{A_n \times B_n}(x,y) d\mu(x)}_{Y} = \sum_{n=1}^{\infty} \mu A_n \cdot \mathbb{1}_{B_n}(y) d\nu = \sum_{n=1}^{\infty} \mu A_n \cdot \mathbb{1}_{$$

$$\underbrace{\int\limits_{Y} \mu A \cdot \mathbb{1}_{B}(y) d\nu}_{\mu A \cdot \nu B = m_{0}(A \times B)} = \int\limits_{Y} \sum_{n=1}^{\infty} \mu A_{n} \cdot \mathbb{1}_{B_{n}}(y) d\nu = \sum_{n=1}^{\infty} \mu A_{n} \cdot \int\limits_{Y} \mathbb{1}_{B_{n}} d\nu = \int\limits_{n=1}^{\infty} \mu A_{n} \cdot \nu B_{n} = \sum_{n=1}^{\infty} m_{0}(A_{n} \times B_{n}) \Rightarrow$$

Definition 2.11. Произведение мер

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) – пространства с σ -конечными мерами Произведением мер $\mu \times \nu$ – стандартное продолжение m_0 σ -алгебра, на которую продолжили обозначим $\mathcal{A}\otimes\mathcal{B}$ $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$

Theorem 2.25. Свойства

1. Декартово произведение измеримых множеств – измеримо Доказательство:

$$A = \bigcup A_n, \ \mu A_n < +\infty$$
 и $B = \bigcup B_n, \ \nu B_n < +\infty \Rightarrow A \times B = \bigcup_{k,n=1}^{\infty} A_k \times B_n$ и $\mu_0(\underbrace{A_k \times B_n}) < +\infty$

2. Если $\mu e = 0$, то $(\mu \times \nu)(e \times Y) = 0$ Доказательство: $Y = \bigcup Y_n, \ \nu Y_n < +\infty \Rightarrow (\mu \times \nu)(e \times Y_n) = \mu e \cdot \nu Y_n = 0$

Definition 2.12. Сечение

$$C\subset X\times Y$$

$$x \in X$$
. Сечение $C_x := \{ y \in Y : (x, y) \in C \}$

$$y \in Y$$
. Сечение $C^y := \{x \in X : (x, y) \in C\}$

Theorem 2.26. Свойства

1.
$$(\bigcup C_n)_x = \bigcup (C_n)_x$$

2.
$$(\bigcap C_n)_x = \bigcap (C_n)_x$$

Definition 2.13.

E – измеримое множество и f определена почти везде на E

f измерима в широком смысле, если найдется $e\subset E$, т.ч. $\mu e=0$ и $f\mid_{E\backslash e}$ измерима

Definition 2.14.

 ${\cal E}$ – семейство подмножеств Z

 \mathcal{E} – монотонный класс, если $\forall E_n \in \mathcal{E} : E_1 \subset E_2 \subset \ldots \Rightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{E}$

Аналогично $\forall E_n \in \mathcal{E} : E_1 \supset E_2 \supset \ldots \Rightarrow \bigcap_{n=1}^{\infty} E_n \in \mathcal{E}$

Theorem 2.27.

Если \mathcal{E} – монотонный класс и $\mathcal{E} \supset \mathcal{A}$ – алгебра $\Rightarrow \mathcal{E} \supset \mathcal{B}(\mathcal{A})$

Theorem 2.28. Принцип Кавальери

 (X,\mathcal{A},μ) и (Y,\mathcal{B},ν) – пространства с σ -конечными мерами, ν – полная мера

 $m := \mu \times \nu, \ C \in \mathcal{A} \otimes \mathcal{B}$. Тогда

1. $C_x \in \mathcal{B}$ при почти всех $x \in X$

2. $\varphi(x) := \nu C_x$ измерима в широком смысле

 $3. \ mC = \int_X \varphi d\mu$

Доказательство:

 \mathcal{P} – полукольцо измеримых прямоугольников

Шаг 1. μ и ν – конечные меры, $C \in \mathcal{B}(\mathcal{P})$. Проверим 1 и 2

 \mathcal{E} – система подмножеств $X \times Y$, т.ч. $E_x \in \mathcal{B} \ \forall x \in X$ и $\varphi(x) \coloneqq \nu C_x$ – измеримая функция

(a)
$$A \in \mathcal{A}, B \in \mathcal{B} \Rightarrow A \times B \in \mathcal{E}. \ (A \times B)_X = \begin{cases} \varnothing & x \notin A \\ B & X \in A \end{cases}$$

 $\varphi(x) = \nu(A \times B)_x = \nu B \cdot \mathbb{1}_A$ – измеримая функция

(b) \mathcal{E} – симметричная система. $E \in \mathcal{E} \stackrel{?}{\Rightarrow} X \times Y \setminus E \in \mathcal{E}$

$$(X \times Y \setminus E)_x = Y \setminus E_x \in \mathcal{B}$$

 $x\mapsto \nu(X\times Y\setminus E)_x=\nu(Y\setminus E_x)=\nu Y-\nu E_x=\nu Y-\varphi(x)$ – измеримая функция

(c)
$$E_n \in \mathcal{E}$$
 и $E_1 \supset E_2 \subset \dots \stackrel{?}{\Rightarrow} \bigcup_{n=1}^{\infty} E_n \in \mathcal{E}$
$$(E_1)_x \subset (E_2)_x \subset \dots$$
 и $(\bigcup_{n=1}^{\infty} E_n)_x = \bigcup_{n=1}^{\infty} (E_n)_x \in \mathcal{B}$
$$\nu(\bigcup E_n)_x = \lim_{n \to \infty} \nu(E_n)_x - \text{измерима, т.к. предел измерим}$$

- (d) $E_n \in \mathcal{E}$ и $E_1 \supset E_2 \supset \ldots \Rightarrow \bigcap E_n \in \mathcal{E}$, т.к. \mathcal{E} симметричная система
- (e) \mathcal{E} монотонный класс
- (f) Если $E \cap F = \emptyset$ и $E, F \in \mathcal{E} \stackrel{?}{\Rightarrow} E \sqcup F \in \mathcal{E}$ $(E \sqcup F)_x = E_x \sqcup F_x$ – измеримое $\nu(E \sqcup F)_x = \nu E_x + \nu F_x$ – сумма измеримых функций
- (g) а + f \Rightarrow $\mathcal E$ содержит кольцо, составленное из конечных объединений элементов $\mathcal P$
- (h) $g + b \Rightarrow \mathcal{E}$ содержит алгебру, натянутую на \mathcal{P}
- (i) По теореме о монотонном классе $E \supset \mathcal{B}(\mathcal{P})$
- μ и ν конечные меры. $C \in \mathcal{B}(\mathcal{P})$. Проверим 3

$$arphi \geq 0$$
 измерима $\Rightarrow ilde{m}E := \int\limits_X
u E_x d\mu$, где $E \in \mathcal{B}(\mathcal{P})$
 $ilde{m}$ – мера на $\mathcal{B}(\mathcal{P})$. $E = igsqcup _{n=1}^\infty E_n \Rightarrow E_x = igsqcup _{n=1}^\infty (E_n)_x \Rightarrow
u E_x = \sum\limits_{n=1}^\infty
u (E_n)_x$
 $ilde{m}E = \int\limits_X \sum\limits_{n=1}^\infty
u (E_n)_x d\mu = \sum\limits_{n=1}^\infty \int\limits_X
u (E_n)_x d\mu = \sum\limits_{n=1}^\infty ilde{m}E_n$

На полукольце \tilde{m} и m совпада

 $ilde{m}(A \times B) = \int \nu B \cdot \mathbb{1}_A(x) d\mu(x) = \nu B \cdot \mu A = m(A \times B) \Rightarrow \tilde{m} = m$ по единственности продолжения $\overset{\check{X}}{}$

 μ и ν конечные меры, $C \in \mathcal{A} \otimes \mathcal{B}$ и mC = 0. Проверим 1, 2 и 3 Шаг 3. Тогда существует $\tilde{C} \in \mathcal{B}(\mathcal{P})$, т.ч. $C \subset \tilde{C}$ и $m\tilde{C} = 0$ $\underbrace{m\tilde{C}}_{x}=\int\limits_{x}\nu\tilde{C}_{x}d\mu\Rightarrow\nu\tilde{C}_{x}=0$ при почти всех x, но $C_{x}\subset\tilde{C}_{x}\Rightarrow$ $\Rightarrow \nu C_x = 0$ при почти всех x и в частности C_x измерима при почти всех x. Это 1

Второй пункт очевидный

Третий: $mC=0=\int\limits_X \nu C_x d\mu$, т.к. $\nu C_x=0$ почти везде

Шаг 4. μ и ν – конечные меры, $C \in \mathcal{A} \otimes \mathcal{B}$. Проверим 1, 2 и 3 Найдется $\tilde{C}\in\mathcal{B}(\mathcal{P})$ и $e\in\mathcal{A}\otimes\mathcal{B}$, т.ч. me=0 и $C=\tilde{C}\sqcup e$ $C_x = \underbrace{\tilde{C}_x}_{\in \mathcal{B}} \sqcup \underbrace{e_x}_{\text{при п.в. } x}$

 $u C_x = \nu \tilde{C}_x + 0$ почти везде $mC = m \tilde{C} = \int\limits_{X} \nu \tilde{C}_x d\mu = \int\limits_{X} \nu C_x d\mu$

Шаг 5. μ и ν – σ -конечные меры. $X=\bigsqcup_{k=1}^{\infty}X_k;\ Y=\bigsqcup_{n=1}^{\infty}Y_n;\ \mu X_k<+\infty$ и $\nu Y_n<+\infty$ $C\in\mathcal{A}\otimes\mathcal{B}\Rightarrow C=\bigsqcup_{k,n}C_{kn},$ где $C_{kn}=C\cap X_k\times Y_n$

 $(C_{kn})_x \in \mathcal{B}$ при почти всех $x, x \mapsto \nu(C_{kn})_x$ измерима в широком смысле и $mC_{kn} = \int \nu(C_{kn})_x d\mu$

$$u C_x = \sum_{n=1}^{\infty} \nu(C_{kn})_x$$
 при $x \in X_k$

Definition 2.15. График функции

 $f: E \to \overline{\mathbb{R}}$. График функции $\Gamma_f := \{(x,y): x \in E, y \in \mathbb{R}, y = f(x)\}$

Remark 2.7.

 $\Gamma_f \subset E \times \mathbb{R}$

Definition 2.16. Подграфик функции

 $f: E \to \overline{\mathbb{R}}, f \geq 0$. Подграфик функции $\mathcal{P}_f := \{(x,y): x \in E, y \in \mathbb{R}, 0 \leq y \leq f(x)\}$

Remark 2.8.

 $P_f \subset E \times \mathbb{R}$

Lemma 2.3.

 μ – σ -конечная мера, f – измерима, $m = \mu \times \lambda_1$. Тогда $m\Gamma_f = 0$

Доказательство:

 $\mu E < +\infty$: Хотим проверить, что $m\Gamma_f(E) = 0$

Возьмем $\varepsilon > 0$. Рассмотрим $E_n := E\{n\varepsilon \le f < (n+1)\varepsilon\}$

$$\Gamma_F(E) \subset \bigcup E_n \times [n\varepsilon, (n+1)\varepsilon]$$

$$\Gamma_F(E) \subset \bigcup_{n \in \mathbb{Z}} E_n \times [n\varepsilon, (n+1)\varepsilon]$$

$$m(\bigcup_{n \in \mathbb{Z}} E_n \times [n\varepsilon, (n+1)\varepsilon]) \leq \sum_{n \in \mathbb{Z}} m(E_n \times [\varepsilon n, \varepsilon(n+1)]) = \sum_{n \in \mathbb{Z}} \mu E_n \cdot \varepsilon = \mu E\varepsilon \Rightarrow m\Gamma_f(E) = 0$$

$$\mu E=+\infty$$
: $E=\bigcup_{n=1}^{\infty}A_n$, т.ч. $\mu A_n<+\infty\Rightarrow\Gamma_f(E)=\bigcup_{n=1}^{\infty}\Gamma_f(A_n)$

Lemma 2.4.

 $f \geq 0$ измеримая в широком смысле $\Rightarrow \mathcal{P}_f$ измерим относительно $m = \mu \times \lambda_1$

- Шаг 1. Если f простая функция; A_1,\ldots,A_n допустимое разбиение; a_1,\ldots,a_n значения $\mathcal{P}_f = \coprod_{k=1}^{n} A_k imes [0,a_k]$ – измеримо относительно m
- Шаг 2. $f \ge 0$ измеримая. Берем $0 \le \varphi_1 \le \varphi_2 \le \dots$ последовательность простых, т.ч. $\varphi_n \to f$ $\varphi_n \leq f; \; \mathcal{P}_{\varphi_n} \subset \mathcal{P}_f \; \text{и} \; \mathcal{P}_{\varphi_1} \subset \mathcal{P}_{\varphi_2} \subset \dots$

$$\mathcal{P}_f \setminus \Gamma_f \subset \bigcup_{n=1}^? \mathcal{P}_{\varphi_n} \subset \mathcal{P}_f$$

Если
$$f(x) = +\infty$$
, то $\varphi_n(x) \to +\infty$. $(\bigcup_{n=1}^{\infty} \mathcal{P}_{\varphi_n})_x = [0, +\infty)$

Если
$$f(x) < +\infty$$
, то $\varphi_n(x) \to f(x)$. $(\bigcup_{n=1}^{\infty} \mathcal{P}_{\varphi_n})_x = [0, f(x))$ или $[0, f(x)]$

$$\bigcup_{n=1}^{\infty} \mathcal{P}_{\varphi_n} \subset \mathcal{P}_f \subset \Gamma_f \cup \bigcup_{n=1}^{\infty} \mathcal{P}_{\varphi_n}$$

Theorem 2.29. Теорема о мере подграфика

 (X, \mathcal{A}, μ) – пространство с σ -конечной мерой, $m = \mu \times \lambda_1, f \ge 0 : E \to \overline{\mathbb{R}}, E$ – измеримое f измерима в широком смысле $\Leftrightarrow \mathcal{P}_f(E)$ – измерима I измерима E I и в этом случае $m\mathcal{P}_f(E)=\int\limits_E f d\mu$

Доказательство:

⇒: Лемма

$$\Leftarrow$$
: Подставим $\mathcal{P}_f(E)$ в принцип Кавальери. $\nu=\lambda_1$

$$x \in E, \ (\mathcal{P}_f(E))_x = \begin{cases} [0, +\infty) & f(x) = +\infty \\ [0, f(x)] & f(x) < +\infty \end{cases}$$

 $\lambda_1(\mathcal{P}_f(E))_x = f(x) \Rightarrow f$ измерима в широком смысле

$$\lambda_1(\mathcal{P}_f(E))_x = f(x) \Rightarrow f$$
 измерима в широком смысле $m\mathcal{P}_f(E) = \int\limits_X \lambda_1(\mathcal{P}_f(E))_x d\mu = \int\limits_E f d\mu$