תרגיל 10־ טורים א'

חדו"א: סדרות וטורים

1

$$\sum_{n=1}^{\infty} a_n$$
 נתון טור

- . כפי שנוסחה בכיתה, $\sum_{n=1}^{\infty} a_n$ העוכנסות התכנסות הגדרת את כתבו .1
- .2 מתכנס היים ב $\sum_{n=1}^{\infty}(a_n+b_n)$ טור מתכנס נוסף. הראו מתכנס ונניח כי $\sum_{n=1}^{\infty}b_n$ טור מתכנס, ונניח כי $\sum_{n=1}^{\infty}a_n$
 - . מתכנס ב $\sum_{n=1}^\infty c \cdot a_n$ מתכנס בי הראו כי הראו $c \in \mathbb{R}$ מתכנס מתכנס. $\sum_{n=1}^\infty a_n$

2

$$b_n=a_n$$
 מתקיים $n>n_0$ כך שלכל $n_0\in\mathbb{N}$ מתכנס וכי קיים $\sum_{n=1}^\infty a_n$ נניח כי הטור $\sum_{n=1}^\infty a_n$ נניח כי הטור $\sum_{n=1}^\infty b_n$ מתכנס וכי קיים אוכיחו לפי הגדרת התכנסות הטור כי $\sum_{n=1}^\infty b_n$ מתכנס גם הוא.

3

נסמן
$$N\in\mathbb{N}$$
 לכל $n\in\mathbb{N}$ לכל לכל $a_n,b_n\geq 0$ בהם לבהם , $\sum_{n=1}^\infty a_n,\,\sum_{n=1}^\infty b_n$ נסמן

$$S_N^{\mathfrak{a}} = \mathfrak{a}_1 + \mathfrak{a}_2 + \ldots + \mathfrak{a}_N \quad , \quad S_N^{\mathfrak{b}} = \mathfrak{b}_1 + \mathfrak{b}_2 + \ldots + \mathfrak{b}_N$$

. את הסכום החלקי ה־Nיי של ה $\sum_{n=1}^\infty a_n$ ו־ $\sum_{n=1}^\infty a_n$ בהתאמה

- . עולות ומונוטוניות אי־שליליות ה $\left\{S_{N}^{a}\right\}_{N=1}^{\infty},\ \left\{S_{N}^{b}\right\}_{n=1}^{\infty}$ הסדרות כי הסדרות גו
- $N\in\mathbb{N}$ לכל $S_N^{\mathfrak{a}}\leq S_N^{\mathfrak{b}}$ הראו כי הראו לכל מכל $\mathfrak{a}_{\mathfrak{n}}\leq \mathfrak{b}_{\mathfrak{n}}$ לכל .2
- . מתכנס, אז גם $\sum_{n=1}^\infty a_n$ מתכנס, אז גם $\sum_{n=1}^\infty b_n$ ובנוסף $n\in\mathbb{N}$ לכל מתכנס. $a_n\leq b_n$ מתכנס.
- . אי־שליליים $\sum_{n=1}^{\infty}a_n,\;\sum_{n=1}^{\infty}b_n$ אי־שליליים כי איברי אם לא מניחים שגוייה אם אוייה אם 4.

. אינו מתכנס
$$\sum_{n=1}^\infty a_n$$
 אינו אינו אינו האכנס האינו אינו אינו אינו אינו ב $\sum_{n=1}^\infty b_n$ כך ש־ $\sum_{n=1}^\infty b_n$ מעצאו דוגמה לטורים אינו $\sum_{n=1}^\infty a_n$ כך ש־ $\sum_{n=1}^\infty b_n$ מתכנס וכך ש־

גם הוא טור $\sum_{n=1}^\infty \sqrt{a_n b_n}$ גם ומתכנסים אי־שליליים טורים $\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$ גם הוא טור גערס. הסיקו מסעיף 3 ומתרגיל 1 כי אם $\sum_{n=1}^\infty a_n, \sum_{n=1}^\infty b_n$ גם הוא טור מתכנס (רפז: אי־שוויון הפפוצעיס).

4

בדקו אלו מהטורים הבאים מתכנסים.

גיי לרשום את הטור כטור טלסקופי).
$$\sum_{n=2}^{\infty} \frac{1}{4n^2-1} = (2n-1)(2n+1)$$
 בנוסחה (1 $2n+1$) באת הטור כטור טלסקופי).

$$\sum_{n=1}^{\infty} n \ln \left(1 + \frac{1}{n} \right) .2$$

$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{4^n} \ 3$$