

자연어 처리 및 딥러닝을 이용한 고객 컴플레인 주제 분류

AIB 07기 임현민

Contents

- 1 주제 선정/데이터 소개
- 2 이전 프로젝트 보완점
- 3 EDA 및 텍스트 전처리
- 4 모델
- 5 결과 및 한계점

고객 컴플레인에 대해 주제를 자동 분류할 수 있을까?

미국 금융 서비스에 대한 지역별 **컴플레인** 데이터

✔ 데이터 수집 방법:

- CFPB (미국 소비자 금융 보호국) 웹사이트에서 CSV 파일 다운로드

✔ 데이터 정보:

- 2021/01/01 ~ 2021/12/31
- 캘리포니아
- 총 25,126개 텍스트 데이터

가설

고객 컴플레인 데이터에 대해 자연어 처리 및 딥러닝을 이용하여 주제를 분류할 수 있다. (정확도 90%)

이전 프로젝트 대비 보완점

Project Pipeline

텍스트 길이 분포

- 텍스트 길이 최대값: 29174
- 텍스트 길이 최소값: 9
- 텍스트 길이 중간값: 660
- 텍스트 길이 평균: 1018
- 텍스트 길이 표준편차: 1297

텍스트 내 단어 개수 분포

- 텍스트 길이 최대값: **5271**
- 텍스트 길이 최소값: 2
- 텍스트 길이 중간값: **119**
- 텍스트 길이 평균: 183
- 텍스트 길이 표준편차: 232

Word Cloud

- XXXX
 - -> 개인정보
- credit, account 등
 - -> 금융관련
- Bank, Reported Identity
 - -> 대소문자 혼용

••

••

Im a loyal and happy Comenity customer,
Ive read Comenity has made adjustments
for people affected by Covid and I hope
that Comenity can remove the XX/XX/XXXX,
late payments off BOTH my accounts,
given that Im a XXXX XXXX. \n\nAccounts
information: Account information number
1: Account name: COMENITY BANK/EXPRESS
Account number: XXXX Balance: {\$83.00}

• • •

텍스트 특징 확인

99%	77%	39%
대문자	연속된 X문자	\n 문자
96%	69%	7%
마침표 (,)	쉼표 (,)	물음표 (?)

Project Pipeline

Word Cloud 비교

전처리 전

전처리 후 (cp l) 전처리 후 (cp 2)

빈도높은 단어 TOP 20 비교(Squarify)

전처리 후 (cp 1)

전처리 후 (cp 2)

타겟 레이블 분포

레이블 인코딩

0	예금 계좌		
1	카드		
2	신용 리포트, 신용 복구서비스		
3	채권 추심		
4	송금, 가상화폐/통화서비스		
5	주택저당대출		
6	개인 대출		
7	학자금 대출		
8	차량 대출, 임대		

모델 비교

SimpleRNN	단어의 입력 순서를 중요하게 반영하며 학습한다.
LSTM	문장의 길이가 길어지더라도, 앞 단어를 더 오래 기억할 수 있다.
CNN	문장의 지역 정보를 보존하고 반영하며 학습한다.
CNN + LSTM	문장의 지역 정보를 반영하며 특징을 추출하는 CNN과 감지 능력이 탁월한 LSTM을 결합한 모델.
Transformer	RNN이 없는 인코더-디코더 구조를 갖고, 병렬연산이 가능하기때문에 학습이 빠르고 성능이 좋다.

모델 성능 비교

Simple RNN	LSTM	CNN	CNN + LSTM	Transformer
0.7197	0.8137	0.8396	0.8134	0.8276

결과

<u>테스트 데이터 평가</u>

Cpl Cp2 80% -> 84%

(기준모델 71%)

한계점 및 추후 발전 과제

● BERT 모델에 대한 스터디 진행후, 모델 구축하여 기존 모델들과 비교