Control Input	Micro of extrem	Next State		
M 5, 50 1	THE TO OF THE	X2(t+1)	X1(++1)	Xo(++1)
000	Flip X2 and X0 only	Xz	×ı	X.
001	Shift right	0	X2 —	×ı
010	Flip all bits and Shibtlebt	X,	Xo	0
, ,	Rotate lebt	X ₁	×o	X2
· ·	No change (hald)	X2	×ı	Xo
•	Load parallel data	D2	D,	Do
	<u>,</u>	0	0	0
111	set registate all 1	1	1	1
011	Rotate lebt No change (hald) Load parallel data Clear Register to O	X ₁ X ₂ D ₂	×, D,	Xo Do

Design using SXI MUX and D thip-blops

National University of Computer and Emerging Sciences

CLO # 2: Construct optimized combinational circuit design

Solution

Q2: Implement the following function F(A, B, C, D) using an 8x1 MUX with D, B, and A connected to the select bits S2, S1 and S0 respectively. You can only use NOT gates other than the MUX. $F(A, B, C, D) = \sum m(0,1,4,6,7,10,12,14,15)$ [15 marks]

	Re arranging the table		
ABEDIF	DBAICIF -		
00001	100001 F=C		
000111	000100 F=C		
00100	F100111		
0100 1	F 0 1 0 0 1 F=1		
01010	F20 10 11		
0110	130 1 1 1 F=1		
011111	10001 F=C		
10010	Fy 0010		
1010 1	r-10100 F=0		
10110	15 1 0 110		
1100 1	T 1 000 F=C		
11010	I6 1 1011		
1110 11	r-1 1 100 F=C		
111111	I7 1 1 1 1		
	52 8, 50		

National University of Computer and Emerging Sciences

CLO # 3: Analyze and Design Sequential Circuit

Q3. Consider a PR flip-flop implemented using a D flip-flop, as described by the given characteristic table. [5+5+5 marks]

Characteristic Table

P	R	Q(t)
0	0	0
0	1	Q(t)
1	0	Q(t)'
1	1	Q(t) ⊕ R

b. Derive the simplified logic equation for the input D..

Q(t+1) Equation of D = PQ + PRQWhen K-Map:

D(6+1) = PQ+PRQ & Q(6+1)

Complete the expanded **Characteristic Table**

Р	R	Q(t)	Q(t+1)
0	0	0	6
0	0	1	\circ
0	1	0	0
0	1	1	
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

c. Give the excitation table for PR flip-flop.

Excitation Table			
Q(t)	Q(t+1)	P	R
0	0	0	0
0	0	٥	
0	1	ì	0
0	1	1	1
1	0	0	0
1	0	ı	0
1	0 1 0	1	1
1	1	0	1

Compact form of Excitation

Table

Q(t)	Q(t+1)	Р	R	
0	0	0	×	
0	1		×	or
1	0	×	0	1 X
1	1	0)	

Q.4-a A Solution

Q.4-b	Solution	9M.	K-Mabs
Infuty Present State X Y A B	Nent outful State AB Z	Flip flop Injuty DA JB KB	
00 00	00 0		$D_A = \overline{X} \underline{Y} + X A$
00 11			JB AB 00 01 11 10 XY X
01 11	00 0	0 0 X 0 X I I I X	01
10 10	00 0	0 0 X 0	$J_{B} = XA$ $K_{B} AB$ $V_{A} AB$
11 01		1 1 X O	- XY 00 X X X X X X X X X X X X X X X X X
The values of their vertects v	PATB4KB are excitation	e obtained from on table,	$K_B = X \overline{A}$

Q5. The adder/subtractor in the circuit given below performs the addition $(A_3A_2A_1A_0 + B_3B_2B_1B_0)$ if the control signal CI is 0 or the subtraction $(A_3A_2A_1A_0 - B_3B_2B_1B_0)$ if CI is 1. CI is coming from the output of the multiplexer. Fill in the given table for the result $R_3R_2R_1R_0$. [15 marks]

