一些重特大突发事件往往会造成道路阻断、损坏、封闭等意想不到的情况,对 人们的日常生活会造成一定的影响。为了保证人们的正常生活,将应急物资及时准 确地配送到位尤为重要。

以下给出图,其中实线代表各地点之间的路线情况。若目前所有应急物资集中在第12个地点,若要紧急运送物资到地点1,求所要最短路径权值为多少?

网络图问题

	1	2	3	4	5	6	7	8	9	10	11	12
1					54		55				26	
2			56		18							
3		56			44							
4						28						
5	54	18	44			51	34	56	48			
6				28	51				27	42		
7	55				34			36				38
8					56		36		29			33
9					48	27		29		61		29
10						42			61			
11	26											24
12							38	33	29		24	

该问题为图最短路径对于图问题,有多种方法来解决。

一、首先有传统的转化为线性问题,使用 lingo 求解,

设 \mathbf{x} (\mathbf{i},\mathbf{j}) 0-1 变量,表示是否从 \mathbf{i} 点走 \mathbf{j} 点, \mathbf{w} (\mathbf{i},\mathbf{j}) 为从 \mathbf{i} 点走到 \mathbf{j} 点的路径权值。

则模型为:

网络图模型

二、使用 dijsktra 算法或 A*算法等传统寻路算法

此处使用 dijsktra,该算法本质思想为贪心求解,即设定两个集合,一个为最短路集,一个为未经搜索集,最短路集从起点出发,每次寻找到达该最短路集的最短路的点加入最短路集,最终得到结果。

问
题
来
源

改编自 2022 年电工杯 B 题: 5G 网络环境下应急物资配送问题

源					
姓名	刘欣豪	学号	2020112921	班级	交通四班