中国科学技术大学

2015-2016学年第二学期期末考试试卷 (A卷)

考试科目随机过程	!(B)	得分	
学生所在系	学号		
(考证	、 时间:2016年6月24日,只	丁用计算器)	
一、 (25分) 判断选择题.			
(1) 设 $\{N(t), t \ge 0\}$ 是一个强度为 λ	A > 0的Poisson过程,		
a. $\{N(t), t \ge 0\}$ 一定是平稳过	程;		()
b. 给定 $N(t) = n > 0$, 则第 n 个	事件的到达时间服从区间		()
c. $\{M(t), t \ge 0\}$ 是另一个强度	为 $\gamma > 0$ 的Poisson过程,则	$J\{N(t)+M(t),t\geq 0\}$ 是一	个强度为 $\lambda + \gamma$
的Poisson 过程;			()
(2) 假设一个马氏链的所有状态都	是常返的,i和j是两个状态	\mathbb{R} 且 $i o j$,则	
a. $j \to i$;			()
b. $P_{ij} > 0$ 或 $P_{ji} > 0$;			()
c. $\sum_{i=1}^{\infty} P_{jj}^{(i)} < \infty;$			()
(3) 下列关于 τ 的函数 $R(\tau)$ 是否可能		协方差函数	()
a. $R(\tau) = e^{- \tau } (\tau^2 + 2 \tau - 1)$;		()
b. $R(\tau) = \begin{cases} 1/ \tau , & \tau \neq 0 \\ 1, & \tau = 0 \end{cases}$;			()
(()
c. $R(\tau) = \tau e^{-\tau^2/2}$;			()
(4) 设 $\{X_n, n \in N\}$ 是一个马氏锐	\mathcal{E} ,状态空间为 \mathcal{S} . 下面说	法是否正确.	
a. $P_{ij}^{(n)} \ge f_{ij}^n$, $\sharp + i, j \in \mathcal{S}$, $n \in N$;		()
b. 如果状态 i, j 是互达的,	则存在 n 使得 $P_{ij}^{(n)} > 0$,	$P_{ji}^{(n)} > 0;$	()
c. 如果转移矩阵的所有行机	目同,则所有状态是属于构	相同的类;	()
d. 如果 $f_{ij} < 1, f_{ji} < 1,$ 则	i, j 不是互达的;		()
(5) 设有四个位置 1, 2, 3, 4 在圆居	月上逆时针排列,一粒子?	生这四个位置上随机游动,	粒子从任何一个
位置,以概率 2/3 逆时针游动]到相邻位置,以概率 1/	3 顺时针游动到相邻位置,	以 $X(n) = j$ 表
示时刻 n 处在位置 j $(j=1,2,$	$3,4$). $\mathbb{M} P(X(n+3)=3)$	3, X(n+1) = 1 X(n) = 2	· =
(6) 设 X_1, X_2, \ldots, X_n 相互独立,	$\coprod X_i \sim Exp(\lambda_i), i = 1,.$	$\dots, n,$ 则概率 $P(X_i = \min$	$\{X_1,\ldots,X_n\})=$

- 二、 (15分) 经过高速公路收费站的某物流公司的运货车辆数 $N(t)(t \ge 0)$ 为一强度为100的泊松过程。 设该公司的运货车分为大、中、小三个类型,三类车的数量比例为2:3:5,又设经过收费站的每辆车属 于哪一类是相互独立的。现分别以 $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 代表到t时刻为止经过收费站的大、中、小三类 车的数目,
- (1) 问 $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 分别是什么过程?
- (2) 试证明对固定的t > 0, $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 相互独立;
- (3) 若经过收费站时,大、中、小三类车每辆需缴费80元,50元和30元,试求到时刻t为止该公司运货车所缴纳的总费用X(t)的期望和方差。
- 三、(15分) 设 $\{X_n, n \ge 0\}$ 是一个马氏链,其一步转移概率如下图所示.
- (1) 写出该链的等价类,且讨论所有状态的周期,常返性和正常返性;
- (2) 对所有的n > 0,计算状态1经n步首达状态3的概率 $f_{13}^{(n)}$;
- (3) 计算从状态 6 出发首次到达状态 5 需要的平均步数。

Figure 1: 第三题

四、(15分) 对于某河流每年汛期流量的观测值可用一个三状态的马氏链 $\{X_n, n \geq 0\}$ 来表示,其中状态 -1表示"干旱","0"表示正常,"1"表示洪涝。试根据下列25年连续观察数据:

$$-1, 0, 0, 1, 0, -1, -1, -1, 0, 0, -1, 0, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1, 1, 1, 1$$

- (1) 确定该马氏链的一步转移概率矩阵 P (用转移频率估计转移概率);
- (2) 证明该马氏链是不可约遍历的;
- (3) 试分别求出洪涝与干旱发生的平均间隔(年).

五、(15分)考虑一个随机过程

$$X(t) = U\cos(\omega t) + V\sin(\omega t), -\infty < t < \infty,$$

其中 ω 是常数,U和V是随机变量.

- (1) 证明 如果X(t) 是宽平稳过程,那么 E[U] = E[V] = 0;
- (2) 证明 X(t) 是宽平稳过程当且仅当

$$E[UV] = 0, \ E[U^2] = E[V^2] < \infty.$$

六、 (15分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为 0,谱密度函数为

$$S(\omega) = \frac{\omega^2 + 5}{\omega^4 + 9\omega^2 + 14}, \ -\infty < \omega < \infty.$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t)是否有均值遍历性? 为什么?

(完)