Solutions to Homework 1

A. Sets

- 1. Evaluate the following claims:
 - (a) $\emptyset \in \{\emptyset\}$: True!
 - (b) $\emptyset \subset \{\emptyset\}$: Also True! First, $\emptyset \subseteq \{\emptyset\}$ since everything in \emptyset is in $\{\emptyset\}$. Second, $\{\emptyset\} \nsubseteq \emptyset$.
- 2. $A \cup Z = A$ whenever $Z \subseteq A$.
- 3. $A \cap Z = A$ whenever $A \subseteq Z$.
- 4. Venn diagrams (where there is a dark magenta, take that to be the final set):

B. Relations and functions

- 1. (a) The at-least-as-old-as relation is not an equivalence relation since it isn't symmetric. E.g., I'm (probably) as old as you, but you're not (probably) as old as me.
 - (b) The same-age-as relation is an equivalence relation. It's reflexive since everyone's the same age as themself. It's symmetric since if x is the same age as y, y is the same age as y. And it's transitive since if x and y have the same age, and so do y and z, we can conclude that x and z have the same age.
- 2. (a) If $f(x) = x \times 5$, $f^{-1}(x) = \frac{x}{5}$.
 - (b) The inverse of the identity function is the identity function.
 - (c) f^{-1} fails to be a function whenever $f(x_1) = f(x_2)$, for distinct choices of x_1 and x_2 .
 - (d) $f^{-1}(f(x)) = x$
- 3. (a) $(f \circ g)(x)$ = the father of (the mother of x) = x's maternal grandfather.
 - (b) $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$

C. Problem 4

Gricean reasoning doesn't apply to sentences of the form $\neg(p \lor q)$ in the same way it applies to sentences of the form $p \lor q$. In the latter case, the existence of a **strictly stronger** utterance $p \land q$ that the speaker could have uttered leads (by the Maxim of Quantity) to the conclusion that the speaker doesn't believe $p \land q$. The reason this fails for $\neg(p \lor q)$ is that $\neg(p \land q)$ **isn't** strictly stronger; in fact, it's strictly weaker.

By the way, this reasoning would lead you to expect that when a speaker utters something of the form $\neg(p \land q)$, she must believe that the stronger possible utterance $\neg(p \lor q)$ is false — in other words, she believes $p \lor q$. This seems to be correct: "Emma didn't read P&P and GE" does seem to implicate that she read at least one of them.