In [13]: #Import Libraries
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns
%matplotlib inline

Using Titanic Dataset from Kaggle

In [2]: train = pd.read_csv('titanic_train.csv')

In [3]: train.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cal
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	Nal
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C8!
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	Nal
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C1:
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	Nal

Checking Missing Data

```
In [4]: train.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 12 columns):
        PassengerId
                       891 non-null int64
                       891 non-null int64
        Survived
        Pclass
                       891 non-null int64
                      891 non-null object
        Name
        Sex
                       891 non-null object
        Age
                       714 non-null float64
                      891 non-null int64
        SibSp
                      891 non-null int64
        Parch
        Ticket
                      891 non-null object
        Fare
                       891 non-null float64
                       204 non-null object
        Cabin
                       889 non-null object
        Embarked
        dtypes: float64(2), int64(5), object(5)
        memory usage: 83.6+ KB
In [6]: train.isna().sum()
Out[6]: PassengerId
        Survived
                         0
        Pclass
                         0
        Name
                         0
        Sex
                         0
        Age
                       177
        SibSp
                        0
        Parch
                         0
        Ticket
                         0
                         0
        Fare
        Cabin
                       687
        Embarked
                         2
        dtype: int64
In [7]: #Percent of data which is not available
        train.isnull().sum()/len(train) * 100
Out[7]: PassengerId
                        0.000000
                        0.000000
        Survived
                        0.000000
        Pclass
        Name
                        0.000000
        Sex
                        0.000000
                       19.865320
        Age
        SibSp
                       0.000000
        Parch
                       0.000000
        Ticket
                       0.000000
                        0.000000
        Fare
        Cabin
                       77.104377
                        0.224467
        Embarked
        dtype: float64
```

Cabin has more than 70% data missing. So, we can remove it

```
In [8]: train = train.drop('Cabin',axis=1)
```

In [10]: train.describe()

Out[10]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [14]: plt.figure(figsize=(12, 7))
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f152230bb70>

We can see the wealthier passengers in the higher classes tend to be older, which makes sense. We'll use these average age values to impute based on Pclass for Age.

In [16]: train['Age'] = train[['Age', 'Pclass']].apply(impute_age,axis=1)

In [17]: train.head()

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Em
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S

```
In [18]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries. 0 to 890
         Data columns (total 11 columns):
         PassengerId
                        891 non-null int64
         Survived
                         891 non-null int64
         Pclass
                         891 non-null int64
         Name
                        891 non-null object
         Sex
                         891 non-null object
         Age
                        891 non-null float64
                        891 non-null int64
         SibSp
                        891 non-null int64
         Parch
         Ticket
                        891 non-null object
         Fare
                         891 non-null float64
                        889 non-null object
         Embarked
         dtypes: float64(2), int64(5), object(4)
         memory usage: 76.6+ KB
In [19]: train.dropna(inplace=True)
In [20]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 889 entries, 0 to 890
         Data columns (total 11 columns):
         PassengerId
                         889 non-null int64
                         889 non-null int64
         Survived
         Pclass
                         889 non-null int64
         Name
                        889 non-null object
         Sex
                        889 non-null object
                        889 non-null float64
         Age
         SibSp
                        889 non-null int64
         Parch
                         889 non-null int64
                         889 non-null object
         Ticket
                         889 non-null float64
         Fare
         Embarked
                         889 non-null object
         dtypes: float64(2), int64(5), object(4)
         memory usage: 83.3+ KB
In [21]:
         sex = pd.get dummies(train['Sex'],drop first=True)
         embark = pd.get_dummies(train['Embarked'],drop_first=True)
In [22]: | train.drop(['Sex', 'Embarked', 'Name', 'Ticket'],axis=1,inplace=True)
In [23]: train = pd.concat([train,sex,embark],axis=1)
In [24]: train.head()
Out[24]:
            Passengerld Survived Pclass Age SibSp
                                                       Fare male Q
                                               Parch
                                                                   S
          0 1
                       0
                               3
                                     22.0
                                               0
                                                     7.2500
                                                                 0
                                                                   1
          1
            2
                                                                   0
                               1
                                     38.0
                                         1
                                               n
                                                     71.2833
                                                            0
                                                                 0
                       1
          2
            3
                       1
                               3
                                     26.0
                                         0
                                               0
                                                     7.9250
                                                                 0
                                                                   1
          3
            4
                       1
                                                                   1
                                     35.0
                                               0
                                                     53.1000
                                                            0
                                                                 0
                               1
                                         1
          4
            5
                       0
                               3
                                               0
                                                                 0
                                                                   1
                                     35.0 0
                                                     8.0500
```

In [25]: from sklearn.model_selection import train_test_split

```
In [26]:
      X_train, X_test, y_train, y_test = train_test_split(train.drop('Survived
      ',axis=1),
                                       train['Survived'], t
      est size=0.30)
In [27]: from sklearn.linear model import LogisticRegression
In [28]: logmodel = LogisticRegression()
      logmodel.fit(X_train,y_train)
Out[28]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=Tr
            intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
            penalty='l2', random state=None, solver='liblinear', to
      l=0.0001,
            verbose=0, warm start=False)
In [29]: predictions = logmodel.predict(X test)
      print(predictions)
      pd.DataFrame(predictions).to csv('prediction.csv')
      [0\ 0\ 1\ 1\ 0\ 1\ 0\ 0\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1
      1
      0
      0
      0
      1
      0 0 0 0 1 0 0 01
```