Машинное обучение • Основные алгоритмы

### Сегодня



- Основные задачи в машинном обучении
- разбезрем основные алгоритмы
- ответим на вопрос "какой признак самый важный?"
- визуализируем построенное алгоритмы

### Типы задач



#### Классическое Обучение



# Обучение с Учителем. Регрессия и классификация





### Примеры регрессии и классификации



- Примеры задач регрессии:
- 1. Прогнозирование продаж на следующий месяц.
- 2. Оценка стоимости недвижимости.
- 3. Прогнозирование доходов компании.
- Примеры задач классификации:
- 1. Определение, будет ли клиент покупать продукт.
- 2. Классификация писем как спам или не спам.
- 3. Определение кредитоспособности клиента.

### Линейная регрессия



**Задача**: оценить стоимость квартиры по одному признаку (например, площади). Дана таблица с обучающей выборкой:

| Площадь, м2 | Цена, млн |
|-------------|-----------|
| 50          | 12        |
| 33          | 8         |
| •••         | •••       |
| 76          | 120       |

### Линейная регрессия



Решаем уравнение:

$$y = x_1 w_1 + w_0$$

где  $x_1$  - значение площади, w - "вес" признака,  $w_0$  - свободный параметр.

Если помимо площади есть еще признаки, то уравнение просто увеличивается:

$$y=x_1w_1+x_2w_2+\cdots+x_nw_n+w_0$$

или короче:

$$y=\sum_{i=1}^n x_iw_i+w_0$$

### Линейная регрессия: решение



- методом градиентного спуска (так обычно и происходит)
  - будем минимизировать среднеквадратическую ошибку:

$$L = rac{1}{K} \sum_{i=1}^K (y_i - \hat{y}_i)^2 
ightarrow \min$$

$$L = rac{1}{K} \sum_{i=1}^K (y_i - (x_1 \cdot w_1 + x_2 \cdot w_2 + \ldots + x_n \cdot w_n))^2 
ightarrow \min$$

y - настоящее значение,  $\hat{y}$  - предсказанное моделью значение, K - число объектов в обучающей выборке,  $w_1, w_2, \dots, w_n$  - веса признаков, это и есть наши дифферинцируемые парамаметры, частные производные по ним будут составлять наш градиент.

## Линейная регрессия: Визуализация





### Логистическая регрессия



• Решает задачу классификации, не смотря на название!



### Логистическая регрессия



Модель остается линейной:

$$z=\sum_{i=1}^n x_i w_i + w_0$$

но полученный z подставляем в *логистическую* функцию:

$$y = \frac{1}{1 + e^{-z}}$$

выход y будет лежать в диапазоне от 0 до 1:  $y \in [0,1]$ 

это значение мы будем интерпретировать как *вероятность* того, что объект относится к классу **1** 

### Логистическая регрессия: визуализация



### Decision boundary using Logistic Regression (Test)



## Регуляризация линейных моделей



- Часто модель может переобучиться на какие-либо выбросы в данных.
- Чтобы этого избежать, можно использовать регуляризацию: регуляризация помогает уменьшить сложность модели и предотвратить переобучение, добавляя штраф за величину коэффициентов в функцию ошибки.
- Три самых распространенных метода регуляризации моделей:
  - і. L1-регуляризация / LASSO
  - іі. L2-регуляризация / Ridge
  - iii. ElasticNET

lpha - коэффициент регуляризации

## Регуляризация линейных моделей



1. L1-регуляризация / LASSO: добавляем в функцию ошибки сумму модулей весов:

$$L(y,\hat{y}) = rac{1}{K} \sum_{i=1}^K (y - \hat{y})^2 + lpha \sum_{j=1}^n |w_j|^2$$

2. L2-регуляризация / Ridge: добавляем в функцию ошибки сумму квадратов весов:

$$L(y,\hat{y}) = rac{1}{K} \sum_{i=1}^K (y - \hat{y})^2 + lpha \sum_{j=1}^n w_j^2$$

3. ElasticNET: добавляем в функцию ошибки сумму квадратов и сумму модулей весов:

$$L(y,\hat{y}) = rac{1}{K} \sum_{i=1}^K (y - \hat{y})^2 + lpha \sum_{j=1}^n w_j^2 + eta \sum_{j=1}^n |w_j|$$

# Регуляризация линейных моделей





# Метод ближайших соседей / KNN





## Метод ближайших соседей / KNN



- классификация:
  - $\circ$  берем k соседей и смотрим, какой класс встречается чаще
- регрессия:
  - берем и вычисляем среднее (можно средневзвешенное) значение для нового объекта

#### Расстояние



• Что значит ближайшие?

Близкие по метрике Минковского:

$$ho(x,y) = \left(\sum_{i=0}^d |x_i-y_i|^p
ight)^{1/p}$$

- $oldsymbol{\cdot}$  при p=2 это евклидово расстояние
- $\cdot$  при p=1 Манхэттенская метрика
- $\cdot$  при  $p=\infty$  метрика Чебышева (наибольшее из всех расстояний)

## KNN: гиперпараметры



- число соседей / радиус
- метрика
- способ вычисления весов объектов

### **Decision Tree**



• Классификация: игра состоится?

| Day | Weather | Temperature | Humidity | Wind   | Play? |
|-----|---------|-------------|----------|--------|-------|
| 1   | Sunny   | Hot         | High     | Weak   | No    |
| 2   | Cloudy  | Hot         | High     | Weak   | Yes   |
| 3   | Sunny   | Mild        | Normal   | Strong | Yes   |
| 4   | Cloudy  | Mild        | High     | Strong | Yes   |
| 5   | Rainy   | Mild        | High     | Strong | No    |
| 6   | Rainy   | Cool        | Normal   | Strong | No    |
| 7   | Rainy   | Mild        | High     | Weak   | Yes   |
| 8   | Sunny   | Hot         | High     | Strong | No    |
| 9   | Cloudy  | Hot         | Normal   | Weak   | Yes   |
| 10  | Rainy   | Mild        | High     | Strong | No    |

## Какой признак самый информативный?



Тот, при использовании которого для классификации, мы получаем наиболее "чистые" подмножества объектов выборки:

- Признак Windy имеет два значения: Weak и Strong
  - ∘ Для Windy=Weak: Play=Yes Зобъекта, Play=No 1объект
  - ∘ Для Windy=Strong: Play=Yes 2 объекта, Play=No 4 объекта
- Признак Humidity имеет два значения: High и Normal:
  - ∘ Для Humidity=Normal: Play=Yes 2 объекта, Play=No 1 объект
  - ∘ Для Humidity=High: Play=Yes Зобъекта, Play=No 4 объект

## Оценки гомогенности для разбиений





Как измерить гомогенность выборки в полученных разбиениях?

• Коэффициент Джини / Gini impurity:

$$G=1-\Sigma_i p_i^2$$

• Энтропия разбиения:

$$H = -\Sigma p_i \log_2 p_i$$

 $p_i$  – частота объектов класса i в разбиении

# Исходное множество



| Разбиение    | Entropy                                       |
|--------------|-----------------------------------------------|
| Исходное     | $-(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1$        |
| Windy=Weak   | $-(0.25\log_2 0.25 + 0.75\log_2 0.75) = 0.81$ |
| Windy=Strong | $-(0.33\log_2 0.33 + 0.66\log_2 0.66) = 0.92$ |

### **Information gain**



$$IG = S_0 - \sum_{i=1}^q rac{N_i}{N} S_i,$$

- q число листьев (обычно 2),
- $N_i$  число объектов, попавших в i-ое разбиение,
- ullet N общее число в родительской веришне объектов,
- $S_0$  impurity metric (gini или entropy) для исходного разбиения,
- $S_i$  *impurity metric* для i-го разбиения.

Для разбиения, построоенного по признаку Windy:

$$IG = 1 - 0.4 \times 0.81 - 0.6 \times 0.92 = 0.12$$

## Важность признаков • Feature importances



Суммарный (а в sklearn и нормированный) показатель уменьшения гетерогенности выборки используется для оценки важности признаков: если признак выбирался часто и сильно уменьшал энтропию или коэффициент Джини, то он является информативным.



### Параметры решающих деревьев



- Критерий ветвления: criterion: gini, entropy
- Максимальная глубина: max\_depth
- Минимальное число объектов в листе: min\_samples\_leaf
- Минимальное значение уменьшения гетерогенности для осуществления деления: min\_impurity\_decrease

sklearn.tree: https://scikit-learn.org/stable/modules/tree.html

# Модели машинного обучения



| Модель                     | Регрессия                          | Классификация                       |
|----------------------------|------------------------------------|-------------------------------------|
| Линейные модели            | LinearRegression()                 | LogisticRegression()                |
| Метод ближайших<br>соседей | KNeighborsRegressor()              | <pre>KNeighborsClassifier()</pre>   |
| Деревья решений            | <pre>DecisionTreeRegressor()</pre> | <pre>DecisionTreeClassifier()</pre> |

#### Итоги



#### Линейные модели

- Простые и интерпретируемые
- Склонны к недообучению на сложных данных
- Примеры: LinearRegression(), LogisticRegression()

#### Метод ближайших соседей

- Легко объясним и интуитивно понятен
- Может быть медленным на больших данных
- Примеры: KNeighborsRegressor(), KNeighborsClassifier()

#### Итоги



#### Деревья решений

- Мощный алгоритм, склонен к переобучению
- Для уменьшения переобучения можно использовать методы регуляризации
- Может выступать в качестве составного блока для более сложных концепций
- У обученного дерева есть атрибут: model.feature\_importances\_