Examen parcial de Física - CORRENT ALTERN 5 de Novembre de 2015

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En el procés de càrrega d'un condensador, en sèrie amb una resistència, la seva càrrega es descriu mitjançant l'equació $q(t) = 1.5 (1 - \exp(-2t)) \mu C$. Si la seva capacitat és de $C=5 \mu F$, és cert que
 - a) L'energia del condensador totalment carregat val 1.5 μ J.
 - b) A t=0 la intensitat que passa pel circuit val 1.5 μ A.
 - c) La constant de temps del circuit val 2 s.
 - d) La intensitat varia en el temps segons $i(t) = 3 \exp(-2t) \mu A$.
- **T2)** En un circuit RLC connectat a una font de tensió $V(t) = V_0 \cos(\omega t)$ el corrent està retardat 45º respecte al voltatge. Llavors, la resistència val
 - a) $R = 1/(\omega L) \omega C$.

b) $R = \omega C - 1/(\omega L)$.

c) $R = \omega L - 1/(\omega C)$.

- d) $R = 1/(\omega C) \omega L$.
- T3) En un circuit RLC i per frequències superiors a la de ressonància,
 - a) la intensitat està retardada respecte al voltatge.
 - b) la intensitat està en fase amb el voltatge.
 - c) la intensitat pot estar avançada o retardada respecte al voltatge.
 - d) la intensitat està avançada respecte al voltatge.
- **T4)** El circuit de la figura té una impedància Z i una freqüència de ressonància ω_R . Es cert que
 - a) la funció de transferència $|V_{\rm out}/V_{\rm min}|$ per $\omega=\omega_R$ és nul·la.
 - b) es tracta d'un filtre passabaixos.
 - c) la potència mitjana subministrada pel generador és proporcional a Z.
 - d) la funció de transferència $|V_{\rm out}/V_{\rm min}|$ per $\omega = \omega_R/2$ val 1/3.

- T5) La tecnologia 4G de telefonia mòbil permet aconseguir una velocitat de transmissió de dades v=1 Gbit/s quan la mobilitat és baixa. En aquest cas, l'ample de banda Δf_b (BW) que ho permet i la duració mínima del pols (τ) que es pot transmetre és
 - a) $\Delta f_b = 1$ GHz, $\tau = 1$ ns.
- b) $\Delta f_b = 2$ GHz, $\tau = 1$ ns.
- c) $\Delta f_b = 1$ GHz, $\tau = 0.5$ ns. d) $\Delta f_b = 2$ GHz, $\tau = 0.5$ ns.

Examen parcial de Física - CORRENT ALTERN 5 de Novembre de 2015

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** El circuit de la figura té una impedància Z i una freqüència de ressonància ω_R . És cert que
 - a) la potència mitjana subministrada pel generador és proporcional a Z.
 - b) la funció de transferència $|V_{\rm out}/V_{\rm min}|$ per $\omega=\omega_R$ és nul·la.
 - c) la funció de transferència $|V_{\rm out}/V_{\rm min}|$ per $\omega=\omega_R/2$ val 1/3.
 - d) es tracta d'un filtre passabaixos.

- T2) La tecnologia 4G de telefonia mòbil permet aconseguir una velocitat de transmissió de dades v=1 Gbit/s quan la mobilitat és baixa. En aquest cas, l'ample de banda Δf_b (BW) que ho permet i la duració mínima del pols (τ) que es pot transmetre és
 - a) $\Delta f_b = 2$ GHz, $\tau = 1$ ns.
- b) $\Delta f_b = 2 \text{ GHz}, \ \tau = 0.5 \text{ ns}.$
- c) $\Delta f_b = 1$ GHz, $\tau = 1$ ns.
- d) $\Delta f_b = 1$ GHz, $\tau = 0.5$ ns.
- T3) En un circuit RLC i per freqüències superiors a la de ressonància,
 - a) la intensitat està en fase amb el voltatge.
 - b) la intensitat està avançada respecte al voltatge.
 - c) la intensitat està retardada respecte al voltatge.
 - d) la intensitat pot estar avançada o retardada respecte al voltatge.
- T4) En el procés de càrrega d'un condensador, en sèrie amb una resistència, la seva càrrega es descriu mitjançant l'equació $q(t) = 1.5 (1 \exp(-2t)) \mu C$. Si la seva capacitat és de $C = 5 \mu F$, és cert que
 - a) L'energia del condensador totalment carregat val 1.5 μJ .
 - b) La intensitat varia en el temps segons $i(t) = 3 \exp(-2t) \mu A$.
 - c) A t=0 la intensitat que passa pel circuit val 1.5 μ A.
 - d) La constant de temps del circuit val 2 s.
- **T5)** En un circuit RLC connectat a una font de tensió $V(t) = V_0 \cos(\omega t)$ el corrent està retardat 45^0 respecte al voltatge. Llavors, la resistència val
 - a) $R = 1/(\omega L) \omega C$.

b) $R = \omega L - 1/(\omega C)$.

c) $R = 1/(\omega C) - \omega L$.

d) $R = \omega C - 1/(\omega L)$.

Examen parcial de Física - CORRENT ALTERN 5 de Novembre de 2015

Problema: 50% de l'examen

En el circuit de la figura, el potencial aplicat és $V_{BC}(t) = V_0 \cos(\omega t)$, amb $\omega = 100 \,\pi$ rad/s i $V_0 = 220 \,\sqrt{2}$ V. Sabem que la diferència de potencial en borns de la resistència de 75 Ω és $V_R(t) = 110 \cos(\omega t + \pi/3)$ V i que $\bar{Z}_1 = 200 - j \,800 \,\Omega$.

- a) Trobeu \bar{V}_{AC} i $V_{AC}(t)$.
- b) Si escrivim l'expressió de la intensitat que circula per la branca BA com $I_{BA}(t) = I_0 \cos(\omega t + \alpha)$, trobeu quant valen I_0 i α .
- c) Determineu \bar{I}_1 i la potència mitjana dissipada a la impedància Z_1 .

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	d	С
T2)	c	b
T3)	a	c
T4)	d	b
T5)	d	b

Resolució del Model A

- **T1)** L'única resposta correcta és la que dóna la intensitat en funció del temps, $i(t) = dq(t)/dt = 3 \exp(-2t)\mu A$.
- **T2)** Segons l'enunciat, $I(t) = I_0 \cos(\omega t \pi/4)$. Per tant, la impedància serà $(V_0/I_0) \exp(j\pi/4)$ i $\tan(\pi/4) = (\omega L 1/(\omega C))/R = 1$. Per tant, la resistència és igual a la reactància del circuit.
- T3) En ressonància $X_L X_C = (\omega_0 L 1/(\omega_0 C)) = 0$. Per $\omega > \omega_0$, X_L augmenta i X_C disminueix i per tant $X_L X_C$ augmenta, i també la fase de la impedància. Aquesta fase prendrà valors positius, de manera que el voltatge estarà avançat respecte a la intensitat, i, per tant, la intensitat estarà retardada respecte al voltatge.
- **T4)** La funció de transferència és $V_{\rm out}/V_{\rm in}=L\omega/|L\omega-1/(C\omega)|=\omega^2/|\omega^2-\omega_R^2|$. Comprovem que per $\omega=\omega_R/2$ ens queda $V_{\rm out}/V_{\rm in}=(1/4)/(3/4)=1/3$.
- **T5)** Sabem que la velocitat de transmissió v és igual a la meitat de l'ample de banda, de forma que $\Delta f_b = 2v = 2$ GHz. D'altra banda la durada dels pols serà $\tau = 1/\Delta f_b = 1/(2 \cdot 10^9) = 0.5 \cdot 10^{-9} s = 0.5$ ns.

Resolució del Problema

a) La impedància de la branca composta per $R(75\,\Omega)$ i $C(20\mu F)$ és

$$\overline{Z}_2 = R - \frac{j}{C \ \omega} = (75 - j \ 159.155)\Omega = 175.941 \ e^{(-j \ 1.13042)} \ \Omega = 175.941 \ \underline{/64.7684^{\circ}} \ \Omega$$

La intensitat d'aquesta branca I_2 l'escriurem com el fasor

$$\overline{I}_2 = \frac{\overline{V}_R}{R} = \frac{110}{75} e^{j \pi/3} A$$

Per al potencial V_{AC} tenim que

$$\overline{V}_{AC} = \overline{I}_2 \, \overline{Z}_2 = 258.047 \, e^{-j \, 0.0832} \, V = 258.047 \, / -4.768^{\circ} \, V$$

i per tant

$$V_{AC}(t) = 258.047 \cos(\omega t - 0.0832) V$$

b) La intensitat que circula per la branca BA la podem trobar a partir de $\overline{I}_{BA} = \frac{\overline{V}_{BA}}{\overline{Z}_{BA}}$. La impedància \overline{Z}_{BA} de la branca composta per $C(150\mu F)$ i $R(25\,\Omega)$ i és

$$\overline{Z}_{BA} = R - \frac{j}{C \ \omega} = (25 - j \ 21.221) \ \Omega$$

El potencial $\overline{V}_{BA}=\overline{V}_{BC}-\overline{V}_{AC}$ el trobem a partir de la diferència fasorial: $\overline{V}_{BC}=311.13\,e^{j\,0}\,V$, i $\overline{V}_{AC}=258.047\,e^{-j\,0.0832}V$. Operant obtenim $\overline{V}_{BA}=(53.973+j\,21.451)\,V$ i d'aquí trobem

$$\overline{I}_{BA} = \frac{\overline{V}_{BA}}{\overline{Z}_{BA}} = \frac{(53.973 + j \, 21.451)}{(25 - j \, 21.221)} = 1.771 \, e^{(j \, 1.082)} \, A = 1.771 \, \underline{/62.0^{\circ}} \, A$$

a partir d'on podem escriure $I_{BA}(t) = 1.771 \cos(\omega t + 1.082) A$.

Així doncs $I_0 = 1.771 A$ i $\alpha = 1.082$ rad.

Alternativament, podem trobar $\overline{Z}_e = \overline{Z}_{BA} + \frac{\overline{Z}_1\overline{Z}_2}{\overline{Z}_1 + \overline{Z}_2} = 82.444 - j$ 154.798 Ω i d'aquí calculem $\overline{I}_{BA} = \frac{\overline{V}_{BC}}{\overline{Z}_e}$ amb el mateix resultat.

c) La intensitat I_1 la podem trobar de $\overline{I}_1 = \overline{I}_{BA} - \overline{I}_2$. Operant, trobem

$$\overline{I}_1 = \overline{I}_{BA} - \overline{I}_2 = 1.771 e^{(j \cdot 1.082)} - \frac{110}{75} e^{j \cdot \pi/3} = 0.3096 e^{(j \cdot 1.248)} A = 0.3096 \underline{/71.516^{\circ}} A$$

Alternativament, podem trobar

$$\overline{I}_1 = \frac{\overline{V}_{AC}}{\overline{Z}_1} = \frac{258.047 \, e^{-j \, 0.0832}}{(200 - j \, 800)} = 0.312 \, e^{(j \, 1.243)} \, A$$

que proporciona pràcticament el mateix valor de I_1 trobat anteriorment (incidentalment, les dades del problema permeten calcular \overline{Z}_1 directament, resultant $\overline{Z}_1 = (197.6 - j\,809.626)\,\Omega$ en comptes de la dada arrodonida $\overline{Z}_1 = (200 - j\,800)\,\Omega$).

Finalment, la potència consumida per \overline{Z}_1 serà $(I_{ef}=0.312/\sqrt{2} \text{ A}, R_1=200 \Omega)$

$$P_m = I_{ef}^2 R_1 = 9.587 W$$