Review

February 20, 2023

1 Foundations (Section 2.1 - 2.4)

1. Ordinary differential Equations (ODEs)

ODEs are differential equations with respect to one variable.

2. Initial conditions

Suppose $E \subset \mathbb{R}^n$, $(x_0, \mu_0) \in E$. For any closed ball $B \subset E$, $\exists a > 0, \delta > 0$, there is an initial condition $(t_0, y_0, \mu_0) \in [-a, a] \times B(x_0, \delta) \times B(x_0, \delta)$.

3. Initial value problems (IVP)

An IVP consists of a differential equation together with an initial condition $(t_0, x_0) \in R \times E$, such that:

$$\dot{x} = f(x)$$

$$x(t_0) = x_0$$

We say that x(t) is a solution of this IVP on the interval I that satisfies:

 $t_0 \in I$

 $x(t_0) = x_0$

x(t) is a solution of this IVP on I

- 4. Continuity and the derivative for function $f: \mathbb{R}^n \to \mathbb{R}^n$
- a. Definition of a continuous function

Suppose $f: E \to R^n$, $x \in E$. We say that f is continuous at x if the following condition holds: $\forall \epsilon > 0$, $\exists \delta > 0$ if $y \in E$ and $|x - y| < \delta$, then:

$$|f(x) - f(y)| < \epsilon$$

Furthermore, f is continuous on E if f is continuous at each point of E

b. Differential function

Suppose $E \in \mathbb{R}^n$, $f: E \to \mathbb{R}^n$ is continuous. We say f is differential at x_0 if there is an linear transformation $Df(x_0)$ such that:

$$\lim_{|h| \to 0} = \frac{||f(x_0 + h) - f(x_0) - Df(x_0)h||}{||h||} = 0$$

In this case, $Df(x_0)$ is the derivative of f at x_0 . Furthermore, if f is differentiable at each point of E, then f is differentiable on E.

The derivative Df is given by $n \times n$ Jacobian matrix

$$Df = \left[\frac{\partial f_j}{\partial x_j}\right]$$

1

5.
$$C^0(E), C^1(E)$$

a.
$$C^0(E)$$

For any open set $E \subset \mathbb{R}^n$, we let:

$$C(E) = \{ f : E \to \mathbb{R}^n, \text{f is continuous on E} \}$$

b.
$$C^{1}(E)$$

For any open set $E \subset \mathbb{R}^n$, we let:

$$C^1(E) = \{ f : E \to \mathbb{R}^n, \text{f is differentiable on E }, \frac{\partial f_i}{\partial x_j} \text{are continuous} \}$$

6. Locally Lipschitz

Suppose $E \subset \mathbb{R}^n$, $f \in C^1(E)$. For any closed ball $B \subset E$, there exits $K \geq 0$, $\forall x, y \in B$, we have:

$$|f(x) - f(y)| \le K|x - y|$$

7. Peano Theorem

Suppose $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}^n$ is continuous. For any initial condition $(t_0, x_0) \in \mathbb{R} \times E$, the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = x_0$$

has at least one solution x(t) on the interval I containing t_0 .

8. Fundamental Theorem of Existence and Uniqueness

Suppose $E \subset \mathbb{R}^n$, $f \in C^1(E)$. For any initial condition $(t_0, x_0) \in \mathbb{R}^n \times E$, there exits a > 0, the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = x_0$$

has a unique solution x(t) on the interval of the form $[t_0 - a, t_0 + a]$.

9. Integral Equations

Suppose $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}^n$ is continuous. Consider IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = x_0$$

has a solution x(t) on the interval containing t_0 if and only if it satisfies:

$$x(t) = x_0 + \int_0^t f(x(s))ds$$

10. Successive approximations:

Apply the formula

$$u_{k+1} = x_0 + \int_0^t f(u_k(s))ds$$

to solve the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = x_0$$

11. Dependence on initial conditions and parameters:

a. Dependence on initial conditions:

Suppose $E \subset \mathbb{R}^n$, $f \in C^1(E)$, $x_0 \in E$. Then $\exists a > 0, \epsilon > 0$. $\forall y \in B(x_0, \epsilon)$, the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = y$$

has a unique solution
$$u(t, y)$$
 on the interval containing t_0 .

 $u(t,y) \in C^1(G)$ where $G = [-a,a] \times B(x_0,\epsilon)$.

 $\forall y \in B, u(t,y)$ has twice continuously differentiable in t.

b. Dependence on parameters:

Suppose $E \subset \mathbb{R}^{n+m}$, $f \in C^1(E)$, $(x_0, \mu_0) \in E$. Then $\exists a > 0, \epsilon > 0$, $\forall y \in B(x_0, \epsilon)$ and $\forall \mu \in B(\mu_0, \epsilon)$, the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = y$$

has a unique solution $u(t,y,\mu)$ and $u(t,y,\mu) \in C^1(G)$ where $G = [-a,a] \times B(x_0,\epsilon) \times B(\mu_0,\epsilon)$

12. Gronwall's Inequality:

Suppose g(t) is continuous, $g(t) \ge 0 \ \forall t \in [0, a]$. It satisfies:

$$g(t) \leq C + K \int_0^t g(s)ds$$

We have:

$$g(t) \le Ce^{Kt}$$

Proof:

Define $G(t) = C + K \int_0^t g(s) ds$

 $G(t) \ge g(t)$ and $G(t) > 0 \ \forall t \in [0, a].$

By FTC, we have:

$$G'(t) = Kq(t)$$

Then,

$$\frac{d}{dt}(\ln G(t)) = \frac{G'(t)}{G(t)} = \frac{Kg(t)}{G(t)} \le \frac{KG(t)}{G(t)} = K$$

Integrate both sides from 0 to t, we have:

$$\ln G(t) - \ln G(0) \le Kt$$

then,
$$\ln G(t) \le \ln G(0) + Kt$$

 $\Rightarrow g(t) \le G(t) \le Ce^{Kt}$

13. Maximal interval of existence

a. Definition:

An IVP has a maximal interval of existence if there exits a solution x(t) this IVP on the interval J such that if y(t) is another solution on the interval I, $I \subset J$, and $x(t) = y(t), \forall t \in I$.

b. Theorem:

Suppose $E \subset \mathbb{R}^n$, $f \in C^1(E)$, $x_0 \in E$. The IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = y$$

has a maximal interval of existence $J,\,J$ is open.

14. Escape from the compact set

Suppose $E \subset \mathbb{R}^n$, $f \in C^1(E)$, $x_0 \in E$. Let (α, β) is the maximal interval of existence of the IVP:

$$\dot{x} = f(x)$$

$$x(t_0) = y$$

If $\beta < \infty$, there is any compact set $K \subset E$, $\forall t \in (\alpha, \beta)$, $x(t) \notin K$.

Corollary 1: If $\beta < \infty$, limit when $t \to \beta$ – exits, $x(t) \in K$ (compact set), then the limit point $x_1 \in \partial E$.

Corollary 2: K is compact, for all $t \in (\alpha, \beta), x(t) \in K$, then $\beta = \infty$

2 Linear systems (Sections 1.1 - 1.5)

1. Linear system of equations

Let A be a nn matrix, $x_0 \in R^n$:

$$\dot{x} = Ax$$

$$x(0) = x_0$$

Since f(x) = Ax is linear, then the IVP is called a linear system of equations.

2. Fundamentals Theorem for Linear Systems

Let A be a $n \times n$ matrix, $x_0 \in \mathbb{R}^n$:

$$\dot{x} = Ax$$

$$x(0) = x_0$$

has a unique solution $x(t) = e^{At}x_0, \forall t \in R$