3.4. CARBOXYLIC ACIDS AND ITS DERIVATIVES

SYNOPSIS

Carboxylic acids are the compounds having -COOH as the functional group. They are classified as mono, di- and tricarboxylic acids as they contain one, two and three -COOH groups respectively. Aliphatic monocarboxylic acids are called fatty acids since their higher members were first produced by hydrolysis of fats. With the exception of C_3 and C_5 acids, the fatty acids usually present in oils and fats contain an even number of carbon atoms.

Monocarboxylic acids have the general formula R – COOH where R = H or any alkyl (i.e., $C_nH_{2n+1}COOH$; where n = 0, 1, 2.....etc, or aryl group.

NOMENCLATURE

- a) Common or trivial Name: The common names are derived from the Greek or Latin name of the sources from which they were first isolated.
- b) IUPAC names: The IUPAC name of the saturated monocarboxylic acid is alkanoic acid which is derived by replacing the terminal 'e' from the name of the corresponding alkane chain by the suffix 'oic acid'.

METHODS OF PREPARATION

- Oxidation of primary alcohols with acid or alkaline KMnO₄ or acidic K₂Cr₂O₇.
 R − CH₂OH + 2[O] K₂Cr₂O₇/H₂SO₄ R − COOH + H₂O
- ii) By oxidation of alkylbenzene, aromatic acids are produced

$$\begin{array}{c} \text{CH}_{3} & \text{COOH} & \text{CH}_{2}\text{CH}_{3} \\ \hline \\ \text{Toluene} & \text{Ethylbenzene} \\ \\ \text{H}_{3}\text{C} & \begin{array}{c} \text{KMnO}_{4}/\text{OH} \\ \text{(ii)}\text{H}^{+}/\text{H}_{2}\text{O} \\ \end{array} \\ \hline \\ \text{Benzoic acid} & \begin{array}{c} \text{KMnO}_{4}/\text{OH} \\ \text{(ii)}\text{H}^{-}/\text{H}_{2}\text{O} \\ \end{array} \\ \hline \\ \text{Ethylbenzene} \\ \\ \text{COOH} + 2\text{H}_{2}\text{O} \\ \hline \\ \text{Terephthalic acid} \\ \end{array}$$

iii) By acid or alkaline hydrolysis of nitriles

$$CH_3 - C \equiv N + 2H_2O + HCl \longrightarrow CH_3COOH + NH_4Cl$$

Ethenenitrile

$$C_6H_5 - C \equiv N + 2H_2O + HCl \longrightarrow C_6H_5COOH + NH_4Cl$$
Benzenenitrile
Benzoic acid

iv) By reaction of Grignard reagents with dry ice

$$RMgX + O = C = O \xrightarrow{Dryether} R - C - OMgX \xrightarrow{H^+/H_2O} R - C - OH$$

v) By hydrolysis of acid derivatives, i.e..

$$\begin{array}{c} RCOOR + H_2O \xrightarrow{H^*orOH} RCOOH + ROH \;\; ; \;\; \underset{Acid \, chloride}{RCOOC} RCOOH + H_2O \xrightarrow{H^*orOH} RCOOH + HCl \\ RCONH_2 + H_2O \xrightarrow{H^*orOH} RCOOH + NH_3 \\ \text{Acid amide} \end{array}$$

CARBOXYLIC ACIDS AND ITS DERIVATIVES

vi) Byhydrolysisof1,1,1-trihalides

$$C_6H_5CCl_3 + 3KOH \xrightarrow{-3KCl} C_6H_5C(OH)_3 \xrightarrow{-H_2O} C_6H_5COOH$$

Benzotrichloride

Unstable

Benzoicacid

vii) By oxidation of methyl ketones - Haloform reaction

$$CH_{3}CH_{2}CH_{2}COCH_{3} \xrightarrow{\quad (i) \ I_{2} \ / \text{NaOH} \atop (ii) \ H^{+} \ / H_{2}O} CH_{3}CH_{2}CH_{2}COOH + CHI_{3}$$

$$\xrightarrow{\text{Butanoic acid}}$$

viii) From olefins
$$CH_2 = CH_2 + CO + H_2O \xrightarrow{H_3PO_4, 573-673K} CH_3CH_2COOH$$

Ethylene (steam)

This acid-catalysed hydrocarboxylation of olefins is called Koch reaction.

ix) From sodium alkoxides and carbon monoxide

$$RO - Na + CO \xrightarrow{\Delta} RCOO^{-}Na \xrightarrow{H^{+}/H_{2}O} RCOOH$$

HCOOH is, however, prepared by the reaction of NaOH and CO.

$$CO + NaOH \xrightarrow{8-10 \text{ atm}} HCOONa \xrightarrow{HCl} HCOOH$$

CHEMICAL PROPERTIES

 Acidic strength: Carboxylic acids are much stronger acids than alcohols and phenols since the carboxylate ion after the removal of a proton is stabilized by two equivalent structures.

$$R - C = \begin{bmatrix} C & C & C \\ C & C & C \end{bmatrix}$$
Resonance hybrid

it is because of this reason that in carboxylate ions, the two C–O bond lengths are equal $(1.27A^0)$ in sodium formate). Carboxylic acids, on the other hand, have two carbon-oxygen bond length (in formic acid C = O is 1.23^0 long while C–OH bond is $1.36A^0$ long).

The acidic strength of carboxylic acids is measured either in terms of Ka (dissociation constant) or pKa (pKa = -logKa) values. Higher the Ka or lower the pKa value, stronger is the acid.

ii) Hell-Vohlard-Zelinsky (H.V.Z.) reaction: Carboxylic acids (except formic acid which does not contain an alkyl group) react with chlorine or bromine in presence of red phosphorus to give exclusively α-chloro and α-bromo acids. This reaction is called H.V.Z. Reaction.

$$\begin{array}{ccc} & \alpha & \\ \text{CH}_3 \text{ CH}_2 \text{ COOH} & \xrightarrow{\text{Br}_2, P} & \text{CH}_3 \text{CHBrCOOH} & \xrightarrow{\text{Br}_2, P} & \text{CH}_3 \text{CBr}_2 \text{COOH} \\ & & \text{Propionic acid} & & \\ \end{array}$$

iii) Electrophilic substitution reactions: The -COOH group is electron withdrawing and hence m-directing.

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

Some other important reactions of -COOH group are summarized below:

DISTINCTION BETWEEN FORMIC ACID AND ACETIC ACID

Formic acid behaves both as an aldehyde as well as an acid whereas acetic acid behaves only as an acid. The main points of difference are

(i) Formic acid reduces Tollen's reagent, Fehling's solution, acidified KMnO₄ solution and mercuric chloride.

$$\begin{split} & HCOO^- + 2[Ag(NH_3)_2]^+ + 3OH^- \longrightarrow 2Ag \downarrow + CO_3^{2-} + 2H_2O + 4NH_3 \\ & HCOO^- + 2[Cu(NH_3)_4]^{2+} + 5OH^- \longrightarrow Cu_2O \downarrow + CO_3^{2-} + 3H_2O + 8NH_3 \\ & 2KMnO_4 + 5HCOOH + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 5CO_2 + 8H_2O \\ & 2HgCl_2 \\ & Mercuric chloride + HCOOH \longrightarrow Hg_2Cl_2 \\ & Mercurous chloride \\ & (White ppt.) \end{split}$$
 (ii) With PCl_5 , formic acid first gives formyl chloride which being unstable and decomposes to give

CO + HCl while acetic acid gives acetyl chloride.

$$\begin{array}{c} \text{HCOOH} + \text{PC}l_5 & \xrightarrow{-\text{POC}l_3, -\text{HC}l} & \text{HCOC}l & \longrightarrow \text{HC}l + \text{CO}\\ \text{(Unstable)} & \\ \text{CH}_3\text{COOH} + \text{PC}l_5 & \longrightarrow \text{CH}_3\text{COC}l + \text{POC}l_3 + \text{HC}l \end{array}$$

CARBOXYLIC ACIDS AND ITS DERIVATIVES

(iii) Sod. Formate on heating gives sodium oxalate

- (iv) With conc. H_2SO_4 , HCOOH gives CO; HCOOH $\xrightarrow{H_2SO_4}$ CO + H_2O
- (v) When heated with soda-lime, sodium formate gives H2 while sodium acetate gives CH4.
- (vi) Dry distillation of calcium formate gives formaldehyde while that of calcium acetate gives acetone.

Manufacture of formic acid

$$NaOH + CO \xrightarrow{6-10atm} HCOONa \xrightarrow{Dil.HCl} HCOOH Formic acid$$

Manufacture of acetic acid

i)
$$HC \equiv CH + H_2O \xrightarrow{Dil.HgSO_4,H^+} CH_3CHO \xrightarrow{O_2,(CH_3COO)_2Mn} CH_3COOH$$
Aceticacid

iii)
$$CH_3CH_2OH \xrightarrow{Cu,573K} CH_3CHO \xrightarrow{O_2,(CH_3COO)_2Mn} CH_3COOH$$

Manufacture of benzoic acid

i)
$$2 \bigcirc + 3O_2 \xrightarrow{Co-Mn \text{ acetate}} 2 \bigcirc + 2H_2O$$

Touline $CH_3 \bigcirc COOH$

ii) $CH_3 \bigcirc CI_2(\text{excess}),\text{hv} \bigcirc CI_2(\text{excess}),$

DERIVATIVES OF CARBOXYLIC ACIDS

Acid halides (acyl halides), acid anhydrides, esters by acid amides which are obtained by replacement of **-OH** part of the COOH group of acids -X(halogen), -OCOR, OR and -NH₂ respectively are collectively called functional derivatives or simply derivatives of acids. These are

 ${f Reactivity:}$ All these derivatives on treatment with nucleophiles (${f H_2O}$, ${f NH_3}$, ${f ROH}$ etc) readily undergo nucleophilic substitution reactions. To differentiate these reactions from nucleophilic substitution reactions of alkyl halides, these are called acyl substitution reactions. The order of reactivity of these derivatives towards acyl substitution reactions decreases in the order.

$$RCOCl > (RCO)_2O > RCOOR' > RCONH_2$$

In other words, the reactivity decreases as the basicity of the leaving groups increases i.e.,

Acid chlorides have the general formula, (RCO)₂O where R may be any alkyl or anyl group. The name of acid chloride are obtained replacing the terminal 'ic acid' from the common or IUPAC name of the parent acid by the suffix 'yl chloride'. The common (in parenthesis) and IUPAC names of some acid chlorides are:

METHODS OF PREPARATION

By the action of PCl₅, PCl₃ or SOCl₂ on an acid.

$$\begin{aligned} & \text{RCOOH} + \text{PC}l_5 & \longrightarrow & \text{RCOC}l + \text{POC}l_3 + \text{HC}l \\ & 3 \text{RCOOH} + \text{PC}l_3 & \longrightarrow & 3 \text{RCOC}l + \text{H}_3 \text{PO}_3 \\ & \text{RCOOH} + & \text{SOC}l_2 & \xrightarrow{\text{Pyridine}} & \text{RCOC}l + \text{SO}_2 = \text{HC}l \end{aligned}$$

ii) Action of PCl3 on sodium salt of an acid

$$\begin{array}{c} {\rm 3CH_3COONa + \, PC} \\ {\rm ISOd.acetate} \end{array} \xrightarrow{\rm Distill} {\rm 3CH_3COC} \\ l + {\rm Na_3PO_3} \\ {\rm Acetylchloride} \end{array}$$

$$2C_6H_5COONa + POCl_3 \xrightarrow{Distill} 3C_6H_5COCl + NaCl + NaPO_3$$
Sod.benzoate
Benzoyl chloride

Properties: The boiling points of acid chlorides are lower than those of their parent acids due to absence of H-bonding.

Some important chemical reactions of acid chlorides are summarized below:

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

CARBOXYLIC ACIDS AND ITS DERIVATIVES +1+1+ OBJECTIVE CHEMISTRY IIB

ACID ANHYDRIDES

Acid anhydrides have the general formula (RCO)₂O where R is any alkyl group. Acid anhydrides are named by replacing the word acid from common or IUPAC name of the parent carboxylic acid by the word 'anhydride'. In case of mixed anhydrides, the names of two parent acids are written in 'alphabetical order and the word anhydride is added only once. Some important anhydrides are

Methods of preparation:

i)
$$CH_3COOH + HCOOCH_3 \xrightarrow{P_2O_5,\Delta} CH_3CO.O.CO.CH_3 + H_2O$$
Acetic acid acetic anhydride

ii)
$$CH_3COOH + CH_3COCl \xrightarrow{Pyridine} CH_3CO.O.COCH_3 + HCl$$

iii)
$$CH_3COCl + CH_3COONa \xrightarrow{\Delta} CH_3CO.O.COCH_3 + NaCl$$

Properties: The boiling points of the acid anhydrides are higher than those of the acids from which they are derived mainly due to higher vander Waals forces of attraction due to larger size of the molecule. Some important chemical properties of acid anhydrides are summarized below.

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\$$

ESTERS

Esters are widely distributed in nature in plants, fruits and flowers. For example, the smell of bananas is due to isoamyl acetate. Their general formula is RCOOR' where R = H or any alkyl group and R' is any alkyl group but not hydrogen. Esters are named by writing the name of the alkyl or the aryl group before the common or IUPAC name of the parent acid with its terminal ic acid replaced by ate. The names of some esters are

$$\begin{array}{cccc} O & O & O & O \\ II & II & II & II \\ H-C-OCH_3 & C_6H_5-C-OC_2H_5 & CH_3-C-OC_6H_5 \\ & & & & & & & \\ Methyl methanoate \\ (Methyl formate) & & & & & & \\ Methyl formate) & & & & & & \\ \end{array}$$

Methods of preparation

i)
$$CH_3COOH + C_2H_5OH \xrightarrow{H^+} CH_3COOC_2H_5 + H_2O(Direct esterification)$$
 $C_6H_5COOH + CH_3OH \xrightarrow{H^+} C_6H_5COOCH_3 + H_2O$

Benzoic acid Methyl benzoate

ii)
$$CH_3COCl + C_2H_5OH \xrightarrow{Pyridine} CH_3COOC_2H_5 + HCl$$

 $(CH_3CO)_2O + C_2H_5OH \xrightarrow{H^+} CH_3COOC_2H_5 + CH_3COOH$
 $C_6H_5COCl + CH_3CH_2OH \xrightarrow{NaOH} C_6H_5COOCH_2CH_3 + HCl$

iii)
$$RCOOH + \overline{CH}_2 - \overset{+}{N} \equiv N \longrightarrow RCOOCH_3 + N_2$$

Diazomethane Methylester

iv)
$$2RCH_2CHO \xrightarrow{AI(OC_2H_5)_3} RCH_2COOCH_2R$$
 (Tischenko reaction)

Properties: Some important chemical properties of esters are summarized below:

ACID AMIDES

Acid amides are derivatives of acids in which -OH group of -COOH is replaced NH₂, NHR' or NR₂' and are classified as 1⁰, 2⁰ or 3⁰ according as the -OH group is replaced by NH₂, NHR' and NR₂' respectively.

Primary amides are name by replacing the suffix ic acid from the common name or oic acid from the IUPAC name of the parent acid by the suffix amide.

The IUPAC and common names (in parenthesis) of some amides are

Methods of preparation

By ammonolysis of acid derivatives

$$\begin{array}{ccc} \mathrm{RCOC}l + 2\mathrm{NH}_3 & \longrightarrow & \mathrm{RCONH}_2 + \mathrm{NH}_4\mathrm{C}l \\ (\mathrm{RCO})_2\mathrm{O} + 2\mathrm{NH}_3 & \longrightarrow & \mathrm{RCONH}_2 + \mathrm{RCOONH}_4 \\ \mathrm{RCOOR'} + \mathrm{NH}_3 & \longrightarrow & \mathrm{RCONH}_2 + \mathrm{R'OH} \end{array}$$

CARBOXYLIC ACIDS AND ITS DERIVATIVES +1+1+ OBJECTIVE CHEMISTRY IIB

ii) By thermal decomposition of ammonium salts

$$RCOONH_4 + 2NH_3 \xrightarrow{\Delta} RCONH_2 + H_2O$$
; $CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2 + H_2O$

iii) By partial hydrolysis of cyanides

$$R-C \equiv N+H_2O \xrightarrow{\text{conc.HC}I} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NaOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc.H}_2SO_4} CH_3-CONH_2}{\text{Acetonitrile}} \\ \stackrel{CONH_2O_2-NAOH}{\longrightarrow} R-CONH_2 \ ; \ \frac{CH_3C \equiv N+H_2O \xrightarrow{\text{Conc$$

Properties: Amides have high melting and boiling points (even higher than those of acids from which they are derived) due to strong intermolecular H-bonding. Lower amides are also soluble in water due to formation of H-bonds with water.

Some important chemical properties of amides are summarized below.

(Preparation methods of carboxylic acids, Physical & Chemical Properties)

LEVEL-I (MAIN)

Straight Objective Type Questions

1. Sodium bicarbocate reacts with salicylic acid to form:

- 2. Which one of the following on heating gives unsaturated acid:
 - α -Hydroxy acid
- 2) B-Hydroxy acid
- 3) y-Hyroxy acid
- 4) δ-Hydroxy acid

- 3. Which will form lactone on treatment with NaOH?
 - 1) α -Bromo acid
- β-Bromo acid
- 3) Y-Hydroxy acid
- 4) δ-Bromo acid
- 4. Which one of the following will go decarboxylation on heating?
 - 1) Succinic acid
- 2) Phthalic acid
- 3) Malonic acid
- 4) Adipic acid

192 ****

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

CARBOXYLIC ACIDS AND ITS DERIVATIVES OBJECTIVE CHEMISTRY IIB 5. Which acid can be oxidised be Fehling solution: 1) Malonic acid 2) Acetic acid 3) Oxalic acid 4) formic acid Reducing property of formic acid is due to the presence of : 11 II 3) -C-OH 1) - OH 2) -C-H 4) All of these Which of the following will not undergo Hell-Volhard Zellinsky (HVZ) reaction? 2) CH₃COOH 3) CH₃CH₂COOH 4) CH₃CHBrCOOH 8. CH2CH2CONH, is boiled with aqueous NaOH, then the reaction mixture is acidified with HCl. Products obtained are CH₃CH₂CH₂COONa + NH₃ 1) CH₃CH₂CH₂COO⁻ + NH₃ 3) CH₃CH₂CH₂COOH + NH₄Cl 4) CH₃CH₂CH₂COO⁻ + NH₄Cl $\xrightarrow{Ag_2O,\Delta}$ (X). Product (X) of above reaction is 10. In the reaction sequence: CH3-CH-COOH-OH 11. In the given reaction : [X] + Acetic anhydride → Aspirin. [X] will be: 1) Benzoic acid 2) o-methoxybenzoic acid 3) o-Hydroxybenzoic acid 4) p-Hydroxybenzoic acid CH₃ - C - COOH

- $\xrightarrow{\text{Fenton}}$ (B). (B) will be: 13. In the given reaction: CH3CHO -
 - 1) Acetic acid 2) Oxalic acid 3) Pyruvic acid
- 4) Citric acid

Numerical ValueType Questions

14. How many product will be formed, when below compound undergoes decarboxylation.

LEVEL-II (ADVANCED)

Straight Objective Type Questions

1. Following equilibrium is favoured in the forward side because of:

 $C(CH_3)_3 \xrightarrow{H_3O'} R OH + (CH_3)_3COH$

- a) CH₂)₃CO⁻ (alkoxide) a strong nucleophile is formed
- b) (CH₃)₃C[⊕] (carbocation) is formed

R OH formed is stabilised by resonance d) (a weak acid) is formed

2. A compound [X] discharges bromine water in CCl4. The compound neither gives a any colour with FeCl3 nor effervescences with aq. NaHCO3 solution. However, its hydrolysate with conc. KOH followed by acidification gives another compound Y which gives colour with FeCl3 solution as well as effervescences of CO2 with NaHCO3 solution. Compounds X and Y respectively are

CH=CHCOOCH₃ CH=CHCOOH COOH COOH COOH HO

- 3. Hydrolysis of an ester gives a carboxylic acid which on Kolbe's electrolysis yields ethane. The ester is b) methyl ethanoate c) methyl methanoate d) methyl propanoate a) ethyl methanoate
- 4. Intermediates formed during reaction of R-C-NH₂ with Br₂ and KOH are:
 - a) RCONHBr and RNCO

b) RNHCOBr and RNCO

c) RNHBr and RcONHBr

- d) RCONBr,
- Which of the following acids on heating loses a molecule of to form an α,β unsaturated acid?
 - a) CH3CHOHCOOH

b) HOCH2COOH

c) CH2CHOHCH2COOH

- d) HOCH2CH2CH2COOH
- 6. Which of the following would be expected to be the most highly ionized in water?
 - a) CICH, CH, CH, COOH

b) CH3CCl2CH2COOH

c) CH₃CH₂CCl₂COOH

d) CH3CH2CHCICOOH

7. $Ph_3C - C - OH \xrightarrow{ConcH_2SO_4} (A)$. A is:

O

a) $Ph_3C - C - OMe$ b) $Ph_3C - OMe$ c) $Ph_3C - OMe$

CARBOXYLIC ACIDS AND ITS DERIVATIVES OBJECTIVE CHEMISTRY IIB COOH $\xrightarrow{200^{0}\text{C}}$ [X], [X] will be: In the given reaction: a) Phenyl salicylate d) Benzoic acid b) Aspirin c) Phenol Which optically active compound on reduction with LiAlH₄ will give optically inactive compound? a) CH₃ - CH- COOH d) CH₃ - CH - CH₂ - COOH c) CH₃ - CH₂ - CH - COOH CH₂OH COOH \xrightarrow{HBr} [X]. [X] will be: 10. In the given reaction: COOH COOH COOH COBr 11. In the given reaction: a) HOOC-CH₂-CH₂-CH - CH₃ c) HO-CH2-CH2-CH2-COOH 12. In which reaction product is hydrocarbon? a) RCOOK $\xrightarrow{\text{Electrolysis}}$ b) RCOOAg $\xrightarrow{\text{I}_2/\Delta}$ c) CH₃-CH₃ $\xrightarrow{\text{CI}_2/\text{hv}}$ d) CH₃ - $\xrightarrow{\text{C}}$ - Cl $\xrightarrow{\text{C}_2\text{H}_5\text{OH}}$ $\xrightarrow{\text{C}}$ 13. In the reaction sequence : CH_3 – $C \equiv C-H \xrightarrow{CH_3MgBr}$ $CH_4 + (A) \xrightarrow{(i) CO_2} (B)$. (B) will be: b) CH₃-C≡C-MgBr c) CH₃-C≡C-COOH d) CH₃-CH=CH-COOH a) $CH_3-C \equiv C-CH_3$ 14. Rochelle salt is dimetal salt of : a) Tartaric acid b) Citric acid c) Oxalic acid d) Salicylic acid More than One correct answer Type Questions 15. HOOC $\xrightarrow{\text{CCI}_4} \text{HOOC} - \xrightarrow{\text{CH}} - \xrightarrow{\text{CH}} - \text{COOH} \quad (Y)$

ELITE SERIES for Sti Chaitanya Sr. ICON Students

CARBOXYLIC ACIDS AND ITS DERIVATIVES **** OBJECTIVE CHEMISTRY IIB The correct statement with respect to above reactions are a) The reaction is stereospecific b) (X) is erythro and (Y) is threo isomer c) (X) is threo and (Y) is erythro isomer d) each gives mixture of (X) and (Y) Which of the following compounds will give acetic acid with KMnO₄/H[⊕]/D: b) CH_3 -CH=CH- CH_3 c) CH_3 -C \equiv C- CH_3 a) CH₃-CHO 17 Consider the following reaction: $CH_3 - C - OH + CH_3 - OH \xrightarrow{H^{\oplus}} CH_3 - C - O - CH_3 + HOH$ True about the above reaction is: a) Product is having smell like fruits b) Nucleophilic addition followed by elimination reaction c) follows acid catalysed acyl-oxygen cleavage mechanism d) it is irriversible reaction 18. Which one of the following compounds will give HVZ reaction? COOH COOH COOH 19. In the given reaction: R b) CH₃OH/H[⊕] a) CH₂N₂ c) MeCOOH Linked Comprehension Type Questions Passage-I: An organic compound (A) has the moecular formula C3H6O3, it undergoes acetylation and evolves CO, on treatment with NaHCO, solution. On treatment with HI. (A) gave another product (B), C3H6O2, which can be obtained by the hydrolysis of propane nitrile. (A) on heating eliminates water to give (C), C3H4O2, which adds Br2 and evolves CO2 with aq. NaHCO3. 20. What is the organic compound (A) CH3-CH-COOH CH₂ - CH₂COOH d) CH₃CH₂COOH c) a or b 21. What is the organic compound (B) a) $CH_2 = CH - COOH$ b) CH_3CH_2COOH 22. What is the organic compound (C) CH3-CH-COOH CH2 - CH2COOH c) CH2 = CH - COOH d) CH2CH2COOH Matrix Matching Type Questions Column-II 23. Column-I

(organic compounds oxidised by HIO4)

- A) CH₃COCHO
- B) 1,2-cyclohexane dione
- C) PhCH (OH) CHO
- D) CH₃CH₂CH (OH) COCH₃

(products of HIO4 oxidation)

- p) PhCH = O + HCOOH
- q) CH3CH2CHO + HOOCCH3
- r) HOOC (CH₂)₄COOH
- s) CH₃COOH + HCOOH

196 ***

OBJECTIVE CHEMISTRY IIB CARBOXYLIC ACIDS AND ITS DERIVATIVES 24. Column-I Column-II A) Methanoic acid p) Lactone on heating B) Ethanoic acid q) Unsaturated acid on heating C) 2-Hydroxy propanoic acid r) Cyclic anhydride on heating D) Ethane dioic acid s) Gives red colour with FeCl3 E) Butane-1,4-dioic acid t) Gives white ppt with CaCl, u) Gives iodoform on heating with I, and alkali F) 3-Hydroxy butanoic acid G) 4-Hydroxy butanoic acid v) Reduces Tollen's reagent EXERCISE-II (Preparation methods of Physical & Chemical Properties of acid derivatives) LEVEL-I (MAIN) Straight Objective Type Questions 1. The compound which forms the strongest hydrogen bond is 1) CH, CH, OH 2) C₆H₅OH 3) C₂H₅NH₂ 4) CH₃COOH 2. The order of increasing boiling points of iii) CH3CONH3 and i) CH, COCI ii) (CH,CO,)O iv) CH, COOH is 1) (i) > (iv) > (ii) > (iii) 2) (ii) < (i) < (ii) < (iv) 3) (iv) > (i) > (ii) > (iii) 4) (i) < (iv) < (ii) < (iii) 3. Which of the following is hydrolysed to give secondary amine: 3) Nitro paraffins 4) Acid amide 1) Alkyl cyanide 4. The reactivity of acyl compounds is in the order : 1) acid chloride > amide > anhydride > ester 2) acid chloride > anhydride > ester > amide 3) ester > acid chloride > anhydride > amide 4) ester > anhydride > acid chloride > amide 5. Acetamide is amphoteric in character because it can react with 1) conc. HCl 2) HgO 3) conc. HCl and HgO 4) NaOH 6. Acetamide and ethyl acetate can be desinguished by reacting with 1) Aqueous HCl and heat 2) Aqueous NaOH and heat acidified KMnO₄ 4) Bromine water 7. Arrange following compounds in decreasing order of reactivity for hydrolysis reaction: I) C6H5COCI 1) II > IV > I > III2) II > IV > III > I3) I > II > III > IV4) IV > III > II > I8. Sodium benzoate on heating with sodalime gives: 2) Benzophenone 4) Calcium benzoate 1) Benzene 3) Methane 9. Which compound will liberate CO2 from NaHCO3 solution: 1) CH₃CO NH₂ 4) CH₂N+H₂Cl-2) CH₃NH₂ 3) (CH₃)₄N+OH-ELITE SERIES for Sri Chaitanya Sr. ICON Students

	ARBOXYLIC ACIDS A	AND ITS DERIVATIVES	S ••••• OBJE	ECTIVE CHEMISTRY IIB			
10.	Acetamide reacts with	NaOBr in alkaline med	ium to form :				
	1) NH ₃	2) CH ₃ NH ₂	3) CH ₃ CN	4) $C_2H_5NH_2$			
11.	Among the following 1) RNCO	which one does not act 2) RNC	as an intermediate in H	ofmann rearrangement ? 4) RCON			
12.	Acetic anhydride reacts		5) RCONIIDI	4) RCON			
	1) CH ₃ Cl+H ₃ PO ₃		3) CH ₃ COOC ₂ H ₅ + PC	l ₃ 4) CH ₃ COCH ₃ + POCl ₃			
13.	Self condensation of two 1) acetoacetic ester	o moles of ethyl acetate in 2) Acetic acid	n presence of sodium etho 3) Ethyl propionate	oxide after acidification yields 4) ethyl butyrate			
14.		hydrogenation in the pre I 2) ROH and R'CO ₂ H		nd copper chromate gives 4) RCH ₂ OR'			
15.	An alkyl cyanide from	s an amide when it is tr	eated with				
	1) H ₂ O + HCl	2) NaOH + H ₂ O	$3)$ $H_2O_2 + NaOH$	4) $H_2SO_4 + H_2O$			
6.	Alkaline hydrolysis of	urea with dilute sodiun	hydroxide gives				
	 Biuret and ammoni Nitrogen and sodiu 		Ammonia and sodi Ammonia and cyan				
17.	C ₆ H ₅ COOCH ₃ LiAll	$H_4 \rightarrow X$ Will be					
	1) C ₆ H ₅ COOH + CH ₃ O	Н	2) C ₆ H ₅ CH ₂ OH + CH	OH			
	3) C ₆ H ₅ CHO + CH ₃ CO		4) All of the above				
18.	A colourless liquid, at acid and ammonia gas 1) Propanoic acid	. The liquid is	s with soda-lime to form 3) Propanamide	sodium salt of a carboxylic 4) Methyl ethanoate			
19				i) mongi omanomo			
19.	Benzoyl chloride is pr	repared from benzoic aci	d by	H 100 (100 (100 (100 (100 (100 (100 (100			
19.		repared from benzoic aci 2) SO ₂ Cl ₂	d by 3) SOCl ₂	4) Cl ₂ , H ₂ O			
	Benzoyl chloride is pr 1) Cl ₂ , hv	repared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value	d by 3) SOCl ₂ Type Questions	4) Cl ₂ , H ₂ O			
	Benzoyl chloride is pr 1) Cl ₂ , hv	repared from benzoic aci 2) SO ₂ Cl ₂	d by 3) SOCl ₂ Type Questions	4) Cl ₂ , H ₂ O			
	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles	repared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent cons COOEt is:	d by 3) SOCl ₂ Type Questions	4) Cl ₂ , H ₂ O			
	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO	repared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent cons COOEt is: LEVEL-II (A	3) SOCl ₂ 2 Type Questions sumed per mole of the co	4) Cl ₂ , H ₂ O			
20.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consecutions COOEt is: LEVEL-II (A	3) SOCI ₂ 2 Type Questions sumed per mole of the co	4) Cl ₂ , H ₂ O			
20.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO	repared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent cons COOEt is: LEVEL-II (A	and by 3) SOCl ₂ Type Questions Sumed per mole of the control ADVANCED) The Type Questions A formed	4) Cl ₂ , H ₂ O ompound			
20.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO O C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consecutions COOEt is: LEVEL-II (A	3) SOCI ₂ Type Questions sumed per mole of the co	4) Cl ₂ , H ₂ O ompound			
220.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate c) further react with C d) a & b are correct	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consecutions: COOEt is: LEVEL-II (A Straight Objectiv 2CH ₃ MgBr A. Product A CH ₃ MgBr/H ₂ O+ to give t-	3) SOCl ₂ Type Questions sumed per mole of the conditions ADVANCED) The Type Questions Tormed Torme	4) Cl ₂ , H ₂ O ompound			
220.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate c) further react with C d) a & b are correct	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consecutions: COOEt is: LEVEL-II (A Straight Objectiv 2CH ₃ MgBr A. Product A	3) SOCl ₂ Type Questions sumed per mole of the conditions ADVANCED) The Type Questions Tormed Torme	4) Cl ₂ , H ₂ O ompound H ₃ MgBr/H ₂ O+ to give acetone			
220.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate c) further react with Cd) a & b are correct The compound that given	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consector is: LEVEL-II (A Straight Objectiv 2CH ₃ MgBr A. Product A CH ₃ MgBr/H ₂ O+ to give to- ves a lactone on heating	and by 3) SOCl ₂ Type Questions Sumed per mole of the control ADVANCED) Type Questions Formed b) further react with CF butyl alcohol is	4) Cl_2 , H_2O ompound $\text{H}_3\text{MgBr/H}_2\text{O}^+$ to give acetone c acid			
1.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate c) further react with Cd) a & b are correct The compound that given a) pentaedioic acid c) 4-aminopentanoic a	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent const COOEt is: LEVEL-II (A Straight Objectiv 2CH ₃ MgBr A. Product A CH ₃ MgBr/H ₂ O ⁺ to give t- ves a lactone on heating	3) SOCl ₂ 2 Type Questions Sumed per mole of the control ADVANCED) e Type Questions formed b) further react with CF butyl alcohol is b) 4-hydroxypentanoid	4) Cl_2 , H_2O ompound $\text{H}_3\text{MgBr/H}_2\text{O}^+$ to give acetone c acid			
1.	Benzoyl chloride is pr 1) Cl ₂ , hv The number of moles HO C ₂ H ₅ O - C - OC ₂ H ₅ - a) is ethyl acetate c) further react with Cd) a & b are correct The compound that given a) pentaedioic acid column	Prepared from benzoic aci 2) SO ₂ Cl ₂ Numerical Value of grignard reagent consector is: LEVEL-II (A Straight Objectiv 2CH ₃ MgBr A. Product A CH ₃ MgBr/H ₂ O+ to give to- ves a lactone on heating	and by 3) SOCl ₂ Type Questions Sumed per mole of the control ADVANCED) The Type Questions Tormed b) further react with CH butyl alcohol is b) 4-hydroxypentanoid d) 2-hydroxypentanoid	4) Cl ₂ , H ₂ O ompound H ₃ MgBr/H ₂ O+ to give acetone c acid c acid			

ОВ	JECTIVE CHEMISTRY	/ IIB	CARBOXYLIC ACIDS	AND ITS DERIVATIVES
4.			ied out in the presence o	
	a) HOH	b) CH ₃ OH	c) Pyridine	d) NaOH
5.	Hofmann degradation i a) Imide		c) Acid anhydride	d) None of these
6	STORES NO ACCESSOR		BaSO ₄ /CaCO ₃ produces:	
u.	a) Benzyl chloride	b) Benzoic acid	c) Benzaldehyde	d) All of these
7.	N-Ethyl pthalimide on	hydrolysis gives:		
	a) Methyl alcohol	b) Ethyl amine	c) Dimethyl amine	d) Diethyl amine
8.	Cyanides exists in:			
	a) Tautomeric form	b) Geometrical form	c) In both form	d) None
9.	Hydrolysis of alkyl iso	cyanide yields:		
	a) Primary amine	b) Tert. amine	c) Alcohol	d) Aldehyde
10.	Which of the following	compound gives the sm	ell of mustard oil?	
	a) Alkyl isocyanate	b) Alkyl isothiocyanate	c) Alkyl isocyanide	d) Alkyl isonitrile
11.	When propionamide rea	acts with Br ₂ in the prese	ence of alkali the product	is:
	a) CH ₃ CH ₂ CH ₂ NH ₂	b) CH ₃ CH ₂ NH ₂	c) C ₃ H ₇ CN	d) C ₂ H ₅ CN
12.	A reaction of ethyl ami	ne & acetic anhydride le	eads to the formation of:	
	a) CH ₃ NHCOCH ₃	b) C ₂ H ₅ CONHCH ₃	c) CH ₃ CONHC ₂ H ₅	d) CH ₃ -CH=NOC ₂ H ₅
13.	Acetic anhydride and a	mmonia gives the produ	ict:	
	a) CH ₃ CONH ₂	b) CH ₃ CONHCH ₃	c) CH ₃ CN	d) CH ₃ COONH ₄
14.	Reagent which can cha	nge CH3COOH to CH3C	COCI	(#) (SE)
	a) HCl	b) AlCl ₃	c) PCl ₅	d) all of these
15.	CH ₃ CO ₂ C ₂ H ₅ on reaction of acid gives (B). Com		in ethanol gives, which	on heating in the presence
	a) CH ₃ COCH ₂ COOH	b) CH ₃ COCH ₃	c) $H_2C = C$ $C=O$	d) $H_2C = C \begin{cases} OC_2H_5 \\ C=O \end{cases}$
16	The reagent used to co	nvert RCOOH to RCH,C	4	\OC ₂ H ₅
	a) NaBH ₄	The state of the s	c) Zn/Hg–HCl	d) LiAlH,
	u) 11ub11 ₄	o, mariconor	c) Ziii IIg IIci	d) En 1114
17.	CH ₃ CH ₂ COOH Red P	$\rightarrow X \xrightarrow{NH_3(alc)} Y$. Y in	the above reaction is	
	a) Lactic acid	b) Ethylamine	c) Propylamine	d) Alanine
18.	An aromatic compound	(X) of molecular formula	a C ₇ H ₇ NO liberates ammo	onia on heating with alkali.
	When (X) is treated wi	th bromine and alkali, the	e product will be	
	a) Benzonitrile	b) Benzamide	c) Aniline	d) benzoic acid
19	Amides may be conver	ted into amines by a read	ction named after:	
	a) Kekule	b) Perkin	c) Hofmann	d) Claisen
20.	The treatment of an est	er with LiAlH ₄ followed	by acid hydrolysis produ	ices :
	a) Two aldehyde		b) One carboxylic acid	and one alcohol
	c) Two alcohols		d) Two acids	

CARBOXYLIC ACIDS AND ITS DERIVATIVES **** OBJECTIVE CHEMISTRY IIB

More than One correct answer Type Questions

- 21. Which of the following reagent(s) can be used to dehydrate amides to cyanides?
 - a) Conc. H2SO4
- b) KHSO₄
- c) P₂O₅
- d) SOCl2
- 22. Which of the following reagent(s) can be used to convert amide into a primary amine with one carbon atom less than amide?
 - a) Br, + NaOH
- b) Ca(OCl)₂
- c) NaOBr
- d) FeSO,

- 23. Which of the following reaction(s) yield amide?
 - a) $R C \equiv N + H_2O \xrightarrow{Conc.} H_2SO_4$
- b) $2R C \equiv N + 2H_2O_2 \xrightarrow{NaOH \atop H_2O}$
- c) $R C \equiv N + H_2O \xrightarrow{\text{Dil.HCl}}$
- d) $R C \equiv N + H_2O \xrightarrow{Dil.NaOH}$
- 24. Which of the following reaction(s) yield substituted amides?
 - a) Hofmann reaction

b) Schmidt reaction

c) Ritter reaction

d) Beckmann rearrangement

Linked Comprehension Type Questions

Passage-I:

The reaction between ethyl magnesium bromide (1mole) and carbonyl chloride produced (X), $C_3H_5OCl.$ When (X) was treated with strong ammonia produced another compound (Y), C_3H_7NO , which was free from chlorine. Compound (Y) reacted with bromine and caustic soda produced a basic compound (Z), C_2H_7N (a mono acid base), which produced a bad smell on heating with chloroform and KOH solution to gave (W), C3H5N, which on hydrolysis produced basic compound (Z) and formic acid (the only monocarboxylic acid having reducing character). Compound (Z) reacted with HNO2(NaNO2 + HCl) to give ethanol (a p-alcohol).

25. Compound 'X' is:

$$Cl O$$

 $Cl OH$
 $Cl CH_3 - CH - C - OH$ d) none of these

26. The compound 'Y' is:

a)
$$CH_3CH_2-C-NH_2$$
 b) $CH_3-CH-C-OH$ c) $H_2N.CH_2CH_2-C-OH$ d) none of these

- 27. Compound 'Z' is:
 - a) CH₃CH₂NH₂
- b) CH₃.NHCH₃ c) both (a) and (b) d) none of these

- 28. Compound 'W' is:
 - a) $C_2H_5C \equiv N$
- b) $C_2H_5N = C$ c) both (a) and (b)
- d) none of these

Passage-II:

When two moles of ethanal are refluxed with aluminium ehtoxide a compound (A), $C_4H_8O_7$, is formed. Two moles of (A) on refluxing in the presence of sodium ethoxide (C_2H_5ONa) a compound (B), $C_6H_{10}O_3$ is produced. Compound(B) exhibits keto-enol tautomerism, and on boiling with dilute aq. KOH followed by acidification produced (C) C4H6O3, Which forms an oxime with H2NOH and liberates CO2 from NaHCO3 solution.(C) on decarboxylation gives (D), C3H6O, which on warming with iodine and NaOH solution producted a yellow precipitate and an acid (E), C2H4O2 (E) on reaction with ethanol in the presence fo conc. H_2SO_4 produced compound(A).

- 29. The result of condensation of ethanol gave (A), which is:
 - a) HCOOCH2CH2CH3

b) HCOOCH(CH₃)₂

c) CH₃COOC₂H₅

- d) CH3CH2COOCH3
- 30. The reaction forming (A) is known as:
 - a) Schmidt reaction

b) Wurtz reaction

c) Tischenko reaction

- d) Cannizzaro reaction
- 31. The compound (B) of molecular formula $C_6H_{10}O_3$ is:
 - a) ethyl propionate

b) ethyl acetoacetate

c) methyl ethyl ester

- d) a hydroxy acid
- 32. The hydrolysis and acidification product of (B) is (C). It is:

a)
$$CH_3 - C - CH_2COOH$$

- d) none of these
- 33. The ecarboxylation product of (C) is:
 - a) CH₃CH₂CHO
- b) CH₃ -CH CH₂
- c) CH3COCH3
- d) none of these

- 34. Compound(E) is:
 - a) formic acid

b) acetic acid

c) propionic acid

d) none of these

Matrix Matching Type Questions

35. Column-I

Column-II

(Reagents reacting with PhCH₂COOH)

All activities and a second resident

(Product formed)

A) CH₃MgBr

p) PhCH₂COCl

B) PCl₅

q) PhCH₂COOCH₃

- C) NH₃, followed by heating
- r) CH₄
- D) CH₃OH in the presence of conc. H₂SO₄
- s) PhCH2CONH2

36. Column-I

Column-II

A) RCN reduction

p) 1° Amine

B) RCN $\xrightarrow{(i)CH_3MgBr}$ $\xrightarrow{(ii) H_2O}$

q) Alcohol

C) RNC hydrolysis

r) Ketone

D) RNH₂ $\xrightarrow{\text{HNO}_2}$

s) Acid

CARBOXYLIC AC	CIDS AND	ITS DEF	RIVATIVE	s ·····	****	OBJECT	IVE CHE	MISTRY IIB
		KEY SI	HEET (L	ECTUR	E SHEET) •:•—		
			EXEF	RCISE-I				
LEVEL-I	1) 2	2) 2	3) 4	4) 3	5) 4	6) 2	7) 1	8) 3
	9) 3	10) 4	11)3	12) 3	13) 3	14) 1		
LEVEL-II	1) b	2) b	3) b	4) a	5) c	6) c	7) b	8) a
	9) c	10) b	11) a	12) a	13) c	14) a	15) ab	16) abcd
	17) ab	18) bc	19) ab	20) c	21) b	22) c		
	23) A-s	; B-r; C-p	; D-q	24) A- \	/; B-s; C-ι	ı; D-s; E-	r; F-q; G-p)
			EXER	CISE-II)			
LEVEL-I	1) 4	2) 4	3) 2	4) 2	5) 3	6) 2	7) 1	8) 1
	9) 4	10) 2	11) 2	12) 2	13) 1	14) 1	15) 3	16) 2
100	17) 2	18) 2	19) 3	20) 4				
LEVEL-II	1) c	2) b	3) a	4) c	5) a	6) c	7) b	8) a
dia -	9) a	10) b	11) b	12) c	13) a	14) c	15) c	16) d
	17) d	18) b	19) c	20) c	21) cd	22) ac	23) ab	24) d
	25) b	26) a	27) a	28) b	29) c	30) c	31) b	32) a
	33) c	34) b	35) A-r ,	B-p, C-s	s, D-q	36) A-p	, B-r, C-p,	s; D-q

(Preparation methods of carboxylic acids, Physical & Chemical Properties)

LEVEL-I (MAIN)

Straight Objective Type Questions

- The molecular weight of benzoic acid in benzene as determined by depression in freezing point method corresponds to
 - 1) Ionization of benzoic acid
- 2) Dimerization of benzoic acid
- 3) Trimerization of bezoic acid
- 4) Solution of benzoic acid

- 2. Glacial acetic acid is
 - 1) Pure acetic acid at 100°C

- 2) Pure acetic acid at 0°C
- 3) Acetic acid mixed with methanol
- 4) Pure acetic acid at 16.6°C
- 3. Which of the following acids has the smallest dissociation constant?
 - 1) CH₃CHFCOOH
- 2) FCH2CH2COOH
- 3) BrCH2CH2COOH
- 4) CH₃CHBrCOOH

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

ОВ	JECTIVE CHEMISTR	Y IIB ••••••	·i·i· CAR	BOXYLIC	ACIDS A	AND ITS DERIVATI	VES
4.	Identify the correct ord (a) CH ₃ CH ₂ CH ₂ CH ₂ O 1) a > b > c		nts of the fo	ollowing co	mpounds	4) c > b > a	
5.	In the anion, the two cit? 1) The anion is obtaine 2) Electronic orbitals of 3) The C = O bond is 4) The anion has two	ed by removal of of carbon atom ar weaker than the C	a proton fro e hybridized C – O bond	m the acid			n for
6.	Phenols is a weaker ac 1) Phenoxide ion is bette 2) Acetate ion is bette 3) Phenol is less solub 4) Both phenoxide ion	etter stabilized by r stabilized by res le in water than a	resonance than				
7.	Rewrite the following i) Benzoic acid 1) (i) < (ii) < (iii)	ii) p-Methoxybe 2) (iii) < (ii) <(i	enzoic aicd	The state of the s	Chlorobenz	toic acid 4) (iii) < (ii) < (i)	
8.	Increasing pKa of o, n 1) p < m < o	n and p-nitrobenz 2) o < m < p		o < p < m		4) m < p < o	
9.	Phenol can be distingu 1) Blue litmus test 3) With FeCl ₃ solution		2)	Sodium bis	•	st	
10.	Formic acid can be dis 1) NaHCO ₃ 3) 2, 4-Dinitrophenyll		2) 1	y reaction of Dil. Acidification Na metal		4 solution	
11.	Which of the following of con. H ₂ SO ₄ ? 1) CH ₃ CH ₂ CH ₂ CH ₂ OH 3) CH ₃ CHOHCH ₂ CH ₃		2)(cH ₃) ₂ CHC	H ₂ OH	acid in presence of a	trace
12.	Which of the following (i) methanoic acid (iii) propanoic acid 1) (i) > (ii) > (iii) > (iv) 3) (i) > (iv) > (iii) > (ii))	(ii) (iv) 2) (ethanoic a butanoic a i) > (iv) > (iv) > (i) > (ncid ncid (iii) > (ii)	of	
13.	The pK, of acetylsalic	ylic acid (aspirin)	is 3.5. The	pH of gastr	ric juice in	human stomach is	about

- The pK_a of acetylsalicylic acid (aspirin) is 3.5. The pH of gastric juice in human stomach is about
 2-3 and pH in the small intestine is about 8. Asprin will be
 - 1) Unionized in the small intestine and in the stomach
 - 2) Completely ionized in the stomach and almost unionized in the small intestine
 - 3) Ionised the stomach and almost unionized in the small intestine
 - 4) Ionized in the small intestine and almost unionized in the stomach.

CARBOXYLIC ACIDS AND ITS DERIVATIVES 14. The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is 1) A > B > C > D 2) A > C > B > D3) B > A > D > C 4) B > D > C > A Arrange these esters in decreasing order of ease of esterfication with CH₃OH/H[⊕]: (II) CH₃ - CH - CH₂ - COOH CH3-CH-COOH CH₃ (IV) (CH₃-CH₂)₃C-COOH (III) CH3 - C - COOH CH₃ a) II > I > III > IVb) I > II > III > IVc) III >IV > II > I d) IV > III > II > INumerical Value Type Questions The number of possible isomeric hydroxy acids with the molecular formula C₄H₈O₃. LEVEL-II (ADVANCED) Straight Objective Type Questions Which of the following compounds gives carbondioxide with NaHCO₃? b) Hexanol a) Acetic acid c) Phenol d) Acetylene 2. When propanoic acid is treated with aqueous sodium bicarbonate, carbon dioxide is liberated. The carbon of the CO2 comes from : b) Carboxylic group c) Methylene group d) Bicarbonate a) Methyl group Which of the following will liberate CO2 on reaction with NaHCO3 b) CH₃COOH 4. Which one of the following reacts with Grignard reagent to form an addition product which can be hydrolysed to a carboxylic acid? c) SO, a) O, b) CO, d) None 5. A halogen compound 'A' on hydrolysis with dilute alkali followed by acidification gives acetic acid. The compound x is a) CICH2CH2Cl b) CH₃CHCl₂ c) CICH2CHCl2 d) CH3CCl3 6. Acetic acid exists as dimmer in due to a) Condensation reaction b) Hydrogen bonding c) Presence of a carboxyl group d) Presence of hydrogen at α -carbon. 7. The Hell-volthard Zelinsky reaction is used for preparing a/an b) y -Haloacid a) B-Haloacid c) Acid halide d) α -Haloacid 8. The compound which does not form an alkane when subjected to electrolysis is

a) Sodium acetate

b) Sodium formate

c) Sodium propanoate d) Sodium butanoate

ELITE SERIES for **Sri Chaitanya** Sr. ICON Students

- 9. Which one of the following reagents does not react with acetic acid to form acetyl chloride?
 - a) CHCl3
- b) SOCl,

- 10. The acid which does not form an anhydride when treated with P2O5 is
 - a) formic acid
- b) acetic acid
- c) propionic acid
- d) Benzoic acid
- 11. Synthesis of an ester involves the reaction of alcohols with
 - a) A ketone
- b) An amide
- c) CH₂MgBr
- d) RCOCI

- 12. The major product of nitration of benzoic acid is
 - a) 3-Nitrobenzoic acid

b) 4-Nitrobenzoic acid

c) 2-Nitrobenzoic acid

- d) 2, 4-Dimitrobenzoic acid
- 13. Reaction of ethyl formate with excess of CH3MgI followed by hydrolysis gives
 - a) n-Propyl alcohol
- b) Ethanal
- c) Propanal
- d) Isopropyl alcohol
- 14. In presence of acid, hydrolysis of methyl cyanide gives
 - a) Acetic acid
- b) Methylamine
- c) Methyl alcohol
- d) Formic acid
- 15. Benzoic acid on treatment with hydrazoic acid in the presence of concentrated sulphuric acid gives:
 - a) Benzamide
- b) Sodium benzoate
- c) Aniline
- d) C₆H₅CON₃
- 16. Which one of the following compounds gives carboxylic acid with HNO₂?

More than One correct answer Type Questions

- 17. Decarboxylation will take place on heating
 - a) methyl malonic acid

- b) succinic acid
- c) 2,2-dimethyl acetoacetic acid
- d) in all cases

Which of the following statements are correct?

- a) First step is protonation reaction which is reversible
- b) Second step is RDS
- c) Second step is Nur addition reaction
- d) Product of reaction is ester
- 19. Consider the following statements regarding the following reaction:

$$C_6H_5CHO \xrightarrow{(CH_3COO)_2O} \xrightarrow{(H_2O)} C_6H_5 - CH = CH - COOH + CH_3COOH$$

- a) Acetate ion acts as base in this reaction
- b) The anhydride having atleast one a-hydrogen, provides an enolate for the reaction
- c) The acetate deprotonates the anhydride to form the nucleophile needed for the reaction
- d) EtONa can also be use as base

C	ARBOXYLIC ACIDS A	ND ITS DERIVATIVES	OB.	JECTIVE CHEMISTRY IIB
20.	Acetic acid can be used	d for the preparation of :		
	a) Ethane	b) Methane	c) Acetone	d) ethanol
21.	Which one of the followa) MeCOOH	wing acids will form ace b) MeCOOMe	tyl chloride with PCl ₅ ? c) MeCOOCOMe	d) Me-CONH ₂
22.	Sodium salt of which of a) C ₆ H ₅ COOH	one of the monobasic aci	c) Me ₃ C-COOH	s not give hydrocarbon: d)COOH-CH=CH-COOH
23.	* -	wing acids undergoes de		
	a) Pyruvic acid	b) 3-butenoic acid	c) Formic acid	d) Salicylic acid
24.	Acetic anhydride is use	ed as:		
	a) Solvent	b) Dehydrating agent	c) Acetylating agent	d) Anticeptic
25.	Which of the following	gives silver mirror test?	2	
	a) HCOOH	b) CH ₃ COCHOHCH ₃	c) Tartaric acid	d) Glucose
		Linked Comprehens	ion Type Questions	
Pas	sage-1:			
			얼마 이 아이는 이 바다 그녀의 그 아이를 잃었다고 아이는 이를 잃었다. 얼마 없는 그렇게 다 먹었다.	heated with KHSO ₄ gives a
		: [1] (B. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	이 목가 보니 아이나 아이는 것이 없는데 모든데 하나 있다.) has the molecular formula), which on heating gives a
	cyclic diester.	ton gives unother mono	busic acta (C), C3116C	y, which on healing gives a
26.	What is the compound	(A)?		
	CH(OH)COOH	CH ₂ COOH		
	a) CH(OH)COOH	b) CH(OH) ₂ COOH	c) CH ₃ CH ₂ COOH	d) CH ₃ – CH(OH) – COOH
27.	What is the compound	(B)?		
	CH(OH)COOH	CH ₂ COOH		
	a) CH(OH)COOH	b) CH(OH) ₂ COOH	c) CH ₃ COCOOH	d) CH ₃ CH ₂ COOH
28.	What is the compound	(C)?	all oth good	
	a) CH ₃ CH ₂ COOH		CH(OH)COOH	
	A 1 4 5 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CH(OH)COOH	
	c) CH ₃ CH ₂ CH ₂ COOH		d) CH ₃ – CH(OH) – 0	COOH
		•‡• EXERC	CISE-II	
	(Preparation met	hods of Physical & Cl	hemical Properties o	f acid derivatives)
		(LEVEL-I	(MAIN)	
		Straight Objective	e Type Questions	
1	Rate of the reaction R	$1 - C < < \frac{O}{Z} + Nu^{-} \rightarrow R -$	O T Is fas	stest when 7 is :
	rate of the reaction.	Z	Nu Nu	nest when 22 is .
	1) Cl	2) NH ₂	3) OC ₂ H ₅	4) OCOCH ₃
20	6 • ‡• ‡•	•••••• ELITE	SERIES for Sri Cha	itanya Sr. ICON Students

- Self condensation of two moles of ethyl acetate in presence of sodium ethoxide yields :
 - 1) methyl acetoacetate 2) ethyl propionate
 - 3) ethyl butyrate
- 4) acetoacetic ester

CO₂Et

 $\xrightarrow{EtO^{\otimes}} \xrightarrow{H_3O^{\otimes}} \xrightarrow{Zn(Hg)} XD. \text{ Product } (X) \text{ of above reaction is:}$

$$1)$$
 N

'C' form white precipitate compound 'C' is:

- In the reaction: $C_6H_5-H\xrightarrow{[X]} C_6H_5-\overset{\|}{C}-CH_2-C_6H_5$; [X] will be: 1) C₆H₅CH₂COCl 2) (C₆H₅ - CH₂CO)₂O 3) Both (1) and (2) 4) C₆H₅ - CHCl₂

- 7. In the given reaction: $C_6H_5 C N \stackrel{||}{\sim} CH_3 \xrightarrow{\text{LiAIH}_4}$; [X] will be:
 - 1) C₆H₅-CH₂OH

CARBOXYLIC ACIDS AND ITS DERIVATIVES **** OBJECTIVE CHEMISTRY IIB 8. In the given reaction: $CH_3 - CH - COOH \xrightarrow{(i)NH_3} [X]$; Product [X] will be: 1) α -Amino acid 2) α -Aminoamide 3) B-Amino acid 4) B-Aminoamide \rightarrow [A] . [A] and [B] respectively be: In the given reaction: 1) CH₂OH - CH₂ - CH₂ - CH - CH₂OH and and $CH_2OH - CH_2 - CH_2 - CH - CH_2OH$ 4) Both are $CH_2OH - CH_2 - CH_2 - CH - CH_2OH$ 3) Both are 10. In the given reaction : $CH_3 - COOH \xrightarrow{(i) NH_3} [X]$; [X] will be: 1) CH₂ COOH 2) COOH-CH2-CH2-COOH 11. In the given reaction sequence: O II $\begin{array}{c} O \\ | \\ CH_2 - C - NH - C_2H_5 \\ | \\ CH_2 - C - NH - C_2H_5 \\ | \\ CH_2 - C \\ | \\ \end{array} \\ \begin{array}{c} CH_2 - C \\ | \\ CH_2 - C \\ | \\ \end{array} \\ \begin{array}{c} CH_2 - C \\ | \\ CH_2 - C \\ | \\ \end{array} \\ \begin{array}{c} CH_2 - COOH \\ | \\ CH_2 - COOH \\ | \\ CH_2 - COOH \\ \end{array} \\ \begin{array}{c} CH_2 - COOH \\ | \\ CH_2 - COOH \\ | \\ CH_2 - COOH \\ \end{array} \\ \begin{array}{c} CH_2 - COOH \\ | \\ CH_2 -$ 12. $Y \leftarrow \underbrace{\text{(i) NH}_{3,\Delta}}_{\text{(ii) KOD},Bf_2\Delta} \bigcirc \longrightarrow COOH \xrightarrow{\text{(i) ND}_{3},\Delta}_{\text{(ii) KOH},Bf_2\Delta} X$, What are X and Y: 3) both Numerical Value Type Questions

13. The number of possible isomeric dicarboxylic acids of molecular formula $C_6H_{10}O_4$.

OBJECTIVE CHEMISTRY IIB * ****

CARBOXYLIC ACIDS AND ITS DERIVATIVES

LEVEL-II (ADVANCED)

Straight Objective Type Questions

- 1. When propionic acid is treated with Br, in the presence of red phosphorus, the product obtained is
 - a) CH₃CH₅COBr
- b) CH2CHBrCOOH
- c) BrCH2BrCOOH
- d) BrCH, CH, COOH
- 2. Acetic anhydride is employed for the detection and estimation of
 - a) -OH group
- b) -COOH group
- c) -CHO group
- d) -CONH, group
- 3. The reaction is called RCOOR' + R"OH $\xrightarrow{H^+ \text{ or OH}^-}$ RCOOR" + R'OH
- b) Trans-esterification c) Saponification
- d) Hydrolysis
- 4. Carbonation of methylmagnesium bromide gives an organic compound. This compound is also obtained by
 - a) Hydrolysis of acetonitrile by a mineral acid
 - b) Oxidation of methyl alcohol
 - c) Hydrolysis of methyl isocyanide with a mineral acid
 - d) Hydrolysis of methyl formate with dilute mineral acid
- 5. $C_2H_5O C OC_2H_5 \xrightarrow{2CH_3MgBr} A$. Product A formed
 - a) is ethyl acetate
 - b) further react with CH3MgBr/H2O+ to give acetone
 - c) further react with CH3MgBr/H2O+ to give t-butyl alcohol
 - d) a & b are correct
- CH_3 OAc $\xrightarrow{\Delta}$ Which of the following product cannot be obtained by this reaction.

- d) MeCOONa + HOCH2CH2NH2
- 8. Guess the product $CH_3CH_2CONH_2 \xrightarrow{PCI_5}$?
 - a) CH₃CH₂-CN
- b) CH₃CH₂COCl c) CH₃CCl₂CONH₂ d) CH₃CH₂CONHCl

CARBOXYLIC ACIDS AND ITS DERIVATIVES $\stackrel{N_3H/Conc.\ H_2SO_4}{\longrightarrow} CH_3 - \stackrel{!}{C} - NH_2$ is called : The given reaction CH3 - C - COOH C3H7 a) Schmidt reaction b) Cirtius reaction c) Hofmann rearrangement d) Lossen rearrangement 10. The given reaction is : $C_6H_5 - CHO + C_6H_5CHO =$ b) Tischenko reaction c) Perkin reaction a) Claissen reaction 11. Number of cross products in the given reaction: $CH_3COOC_2H_5 + C_6H_5-CH_2-COOC_2H_5$ a) One b) Three c) Two d) four OH COOH $\xrightarrow{PCI_3}$ [X]. [X] will be: 12. In the given reaction: COOH

- 14. $C_6H_5 NH$ $C=S \xrightarrow{Conc. HCl/HgO} A+B$. The unknown compounds A and B in the above reaction are:
 - a) Phenyl mercaptan and aniline
- b) Thiophenol and aniline hydrochloride
- c) $C_6H_5 N = C = S$ and $C_6H_5 \stackrel{\oplus}{N}H_3\overline{C}I$
- d) $C_6H_5CH_5SH$ and $C_6H_5NH_3\overline{C}I$
- 15. Major end product of the following sequence of reaction is:

$$CH_{3}CH_{2}CH_{2}CONH_{2} \xrightarrow{Ca(OH)_{2},Cl_{2}} X \xrightarrow{HNO_{2}} Z$$

- a) CH₃CH₂CH₂NH₂
- b) CH₃CH₂CH₂OH
- c) CH₃CHCH₃

OH

d) CH₃CH₂COOH

210 ****

CARBOXYLIC ACIDS AND ITS DERIVATIVES

16. In the given reaction sequence:

$$CH_3\text{-}CH_2\text{-}OH \xrightarrow{\text{ (i) } KMnO_4/\overset{\Theta}{O}H/\Delta} (A) \xrightarrow{\text{ (ii) } SOCl_2} (B) \xrightarrow{Bf_2/KOH} (C) \ . \ (C) \ will \ be :$$

- a) Methylamine
- b) Eltylamine
- c) Propylamine
- d) Acetamide

More than One correct answer Type Questions

- 17. Urea may be identified by which of the following test
 - a) with CHCl3/KOH, it gives very offensive odour
 - b) with HNO₂, it evolves H₂ & CO₂
 - c) with NaOH and a drop of CuSO4, it gives violet colour
 - d) with NaOH on heating, it gives smell of NH3 gas

18. In the given reaction,
$$(A)$$
 (A) $(C-CH_2)$, (A) will be:

- c) C₆H₅CHCl₂
- d) none of these

19. What products are obtained by heating the following?

Linked Comprehension Type Questions

Passage-I:

Ethanoyl chloride reacts with diazomethane (CH_2N_2) to form a compound (A), $C_3H_4N_2O$, with the liberation of one mole of HCl. (A) on treatment with silver oxide rearragens to compound (B), C_3H_4O , with the release of one mole of nitrogen gas. Compound (B) adds one mole of water to form (C), $C_3H_6O_2$, which evolves CO_2 from bicarbonate (HCO₃) and on decarboxylation yields ethane. Compound (C) on treatment with PBr₅ and Br₂ and red phosphorous yields(D), C₃H₄OBr₂, which reacts with cold water to form (E), C3H5O3Br.(E) is hydrolyzed by AgOH to give (F), C3H6O3 which contains both -OH and -COOH. (F) when heated alone gave one mole of a cyclic dester.

- 20. Which of the following is compound (A) (C₃H₄N₂O)?
 - a) CH₃COCHN₂ c) both (a) and (b) d) none of these
- 21. Compound (B), C3H4O, is:
 - a) CH₃CH₂CHO
- b) CH3COCH3
- c) $CH_3CH = C = O$
- d) none of these
- 22. The formation of (B) from (A) in presence of silver oxide is known as:
 - a) Wolff rearrangement

- b) Curtius rearrangement
- c) Beckmann rearrangement
- d) none of these

- 23. Compound (C) is:
 - a) HCOOCH, CH,
- b) CH₃COOCH₃
- c) CH₃CH₂COOH
- d) none of these

ELITE SERIES for Sri Chaitanya Sr. ICON Students

CARBOXYLIC ACIDS AND ITS DERIVATIVES **** OBJECTIVE CHEMISTRY IIB

24. Compound (D) is:

- a) CH₃ CH.COBr
- b) BrCH₂CH₂COBr c) BrCH.CH₂CHO
- d) none of these

25. Compound (E) is:

- a) CH₃ CH.COOH
- b) BrCH2CH2COOH c) HOCH2CH2COBr d) none of these

26. The compound (F) is:

- a) HOCH2CH2OH
- b) CH₃-CH.COOH c) both (a) and (b) d) none of these

ÓН

27. The formula of cyclic diester is:

Matrix Matching Type Questions

28. Column-I

Column-II

A) $PhCONH_2 \rightarrow PhCH_2OH$

p) B₂H₆ AcOH H₂O

B)
$$O \rightarrow CH_2OH-(CH_2)_2-CHOH-C_6H_5$$
 q) LiAlH₄

- C) $C_6H_5CH=CH-COOH \rightarrow C_6H_5-CH=CH_2OH$ r) H_2Pd BaSO₄

- D) CH₃COCl → CH₃-CHO
- s) None

29. Column-I

Column-II

A)
$$C_6H_5 - C - OC_2H_5 + H_3C - C - O - C_2H_5 \rightarrow p$$
) Anhydrous $ZnCl_2$
O

C)
$$C_6H_6+(H_3C-C=O)_2O \rightarrow C_6H_5-C-CH_3$$
 r) Red P

O

O

O

 $C_6H_6+(H_3C-C=O)_2O \rightarrow C_6H_5-C-CH_3$ r) Red P

 $C_6H_6+(H_3C-C=O)_2O \rightarrow C_6H_5-C-CH_3$ r) Red P

OBJECTIVE CHEMISTRY IIB				CARBOXYLIC ACIDS AND ITS DERIVATIVES				
** KEY SHEE				RACTIC	E SHEE	T) •••		
EXERCISE-I								
LEVEL-I	1) 2	2) 4	3) 3	4) 2	5) 4	6) 2	7) 3	8) 3
	9) 3	10) 3	11) 4	12) 1	13) 4	14) 3	15) 1	16) 8
LEVEL-II	1) a	2) d	3) b	4) b	5) d	6) b	7) d	8) b
	9) a	10) a	11) d	12) a	13) d	14) a	15) c	16) b
	17) ac	18) abo	d 19) abc	20) abo	cd 21) ab	c 22) bc	23) abo	d
	24) abc	25) abo	d26) a	27) c	28) d			
			EXER	CISE-II				
LEVEL-I	1) 1	2) 4	3) 2	4) 2	5) 3	6) 3	7) 4	8) 1
	9) 1	10) 1	11) 2	12) 1	13) 9			
LEVEL-II	1) b	2) a	3) b	4) a	5) c	6) d	7) b	8) a
A	9) a	10) b	11) c	12) b	13) d	14) c	15) c	16) a
	17) ad	18) ab	19) a	20) a	21) c	22) a	23) c	24) a
	25) a	26) b	27) b	28) A- 9	s; B-q; C-	s; D-r		
	29) A-q ;	B-r; C-p	o; D-s					
	• !•	DDITIO	NAL PRA	CTICE	EXERC	ISE		
			LEVEL-	I (MAIN	1)			
		Straigh	t Objectiv	е Туре	Question	s		
Amides car Cannizz		nto 1 ⁰ an Williams				mamide 4) Wurtz	
	s treated separate							methyl amine?
1) PCl ₅		NaOH +	_	_	da lime) Hot cond	
 Alkaline hy neutraliz 	drolysis of an exation 2)	ester is ca		3) pol	lymerisatio	on 4) saponific	cation
4. Reaction be	etween ketene a	nd RCO	OH gives:	151	88		750	
1) an ester	2)	an anhy	dride	3) a k	etone	4) an aldeh	yde
5. CH ₃ - C -	$CH_3 \xrightarrow{H_2SO_5} X$	t, the pro	duct X is:					
1) ester	2)	anhydric	ie	3) aci	d	4) amide	
6. Which of the	he following co	mpounds	on treatme	ent with	acid yield	s ethanoic	acid?	
1) CH ₃ CO ₂	MgX 2)	CH ₃ C ≡	N	3) CH	COOCO	CH ₃ 4) all three	
ELITE SERIES	for Sri Chait a	nya Sr.	ICON Stu	dents •	•••			213
				100				

C	ARBOXYLIC ACIDS A	ND ITS DERIVATIVES		OBJE	CTIVE CHEMISTRY IIB		
7.	Which of the following	g intermediates is formed	d in Hofmani	n bromamide	reaction?		
	1) RCONHBr	2) [RCONBr] ^Θ K [⊕]	3) RNCO		4) all of these		
3.	Which of the followin	g compounds will not gi	ve Hofmann	bromamide	reaction?		
		2) CH ₃ NHCOCH ₃	3) CH ₃ - C	C = O NH ₂	4) $\left(\text{CH}_3 \right)_2 \text{CHCONH}_2$		
9.	Acetamide on heating			5100			
	1) acetyl chloride	2) acetic anhydride	3) methyl (cyanide	4) N-chloro acetamide		
0.		g compounds would read	t with bromi	ne and conc	entrated alkali?		
	il II	ji ⊖⊕			O II		
	1) CH ₃ C – NHCH ₃	2) $CH_3 - C - ONH_3$	3) C ₆ H ₅ CO	NH ₂	4) CH ₃ - C - NHOH		
		LEVE	EL-II				
		LECTURE SHEE	T (ADVAN	CED)			
١.	Which of the following	g esters cannot undergo	Claisen self	condensation	1?		
	a) CH ₃ CH ₂ CH ₂ CH ₂ CC	$OOC_2H_5b) C_6H_5COOC_2H_5$	H_5 c) C_6H_5 CH	H ₂ COOC ₂ H ₅	d) $C_6H_{11}CH_2COOC_2H_5$		
2.	CH ₃ CONH ₂ is dehydr	ated by P ₂ O ₅ to give:					
	a) CH ₃ NH ₂	b) CH ₃ CN	c) CH ₃ CHC)	d) $CH_3CH_3 + CO + NH_3$		
	The reaction, ArCHO-	NH ₃ Nickel per oxide −20 ⁰ C give	es:				
	a) ArCH ₂ NH ₂	b) ArCONH ₂	c) ArCOOH	ł	d) ArNHCH ₃		
١.	The reaction $CH_2 = CI$	$H - CHO + NH_3 - \frac{Nickel per}{-20^9}$	roxide → gives:				
	a) CH ₂ = CHCH ₂ CON			CH – CH ₂ NH	2		
	c) $CH_2 = CH - CH_2CC$	ЮН	d) all of the	e above			
5.	The reaction $C_3O_2 + 2$	$C_2H_5OH \rightarrow \text{ gives:}$					
	.COOC.H.	CH ₂ - COOC ₂ H ₄		C ₂ H ₅			
	a) CH ₂ COOC H	b) $\begin{array}{c} CH_2 - COOC_2H_4 \\ CH_2 - COOC_2H_4 \end{array}$	c) CH ₂)C II	d) none of these		
			(ж ₂ н ₅			
),	CH ₂ CO reacts with C ₄		a) CH CH	CH COOH	4) OH OH OH OHO		
,	7. Z	b) CH ₃ COOC ₂ H ₅	c) CH ₃ CH ₂	CH ₂ COOH	d) CH ₃ CH ₂ CH ₂ CHO		
7.	a) an ester	OOH to ethylene gives: b) an anhydride	c) an aldeh	ıyde	d) a ketone		
3.		8		-			
	Which is the end product of following reaction? $R - C - Cl + CH_2N_2 \rightarrow R - C - CHN_2 \xrightarrow{H_2O} X:$						
	0	O Ag ₂ O					
	a) an ester	b) a carboxylic acid			d) an amide		
).		owing reactions gives me			- A		
	a) $2HCOOH \xrightarrow{P_2O_5} \Delta$	1973	H+(CH ₃ CO	$)_2O \xrightarrow{a} \rightarrow$			
	c) HCOONa + HCOCl	100 to 10	d) none of				
214	4 • • • • • • • • • • • • • • • • • • •	+i+i+ ELITE	SERIES for	Sri Chaita	nya Sr. ICON Students		

OBJECTIVE CHEMISTRY IIB +1+1+ CARBOXYLIC ACIDS AND ITS DERIVATIVES 10. The reaction a) t-butyl ethanoate b) t-butanoic anhydride c) methyl t-butanoate d) none of these 11. The product 'A' in the following reaction is: $R - C \equiv N + 2H_2O_2 \xrightarrow{OH} A + O_2 + H_2O_3 \xrightarrow{OH} A + O_4 + O_4 + O_5 + O_5$ a) $R-C-NH_2$ $\xrightarrow{P_2O_5} A \xrightarrow{Dil.H_2SO_4} B$. The name of compound B is: a) p-bromo aniline b) p-bromo benzonitrile c) p-bromo phenol d) p-bromo benzoic acid 13. The correct order of increasing boiling points of the following compounds is: CH3COCI CH3COOCH3 CH3CONH2 CH3COOCOCH3 (I) (II)(III)(IV) a) I < II < III < IVb) II < III < IV < Ic) II < IV < III < Id) II < III < I < IV14. CH₃CONH₃is treated separately with the following reagents. Which of these would give methyl amine? a) Na + C2H5OH b) Na + liquid NH₃ c) Br2KOH d) Soda lime PRACTICE SHEET (ADVANCED) More than One correct answer Type Questions 1. One can distinguish between HCOOH and CH3COOH with: a) FeCl3 b) H,SO, c) Tollen's reagent d) Fehling's solution 2. Which of the following decarboxylate readily in the temperature range 100-150°C? a) CH2 = CH.CH2COOH b) O2NCH2COOH c) NC-CH2COOH d) CH3COCH2COOH H₂O¹⁸ → Product, The product(s) is/are: 3. In the given reaction 18 $- COOAg + X_2 \xrightarrow{\Delta}$ In the given reaction;

b) Br,

ELITE SERIES for Sti Chaitanya Sr. ICON Students

a) Cl,

CARBOXYLIC ACIDS AND ITS DERIVATIVES +1+1+ OBJECTIVE CHEMISTRY IIB

5. Which of the following reactants on reaction with CO in sulphuric acid solution gives the following product?

6. Which of the following would be most and least readily hydrolysed with NaOH?

Passage:

Ethanoic acid on treatment with thionyl chloride gives acetyl chloride which on treatment with KCN followed by hydrolysis produced compound (A), $C_3H_4O_3$. Compound (A) evolves CO_2 from $NaHCO_3$ solution as well forms oxime and hydrazone, respectively. (A) also reduces ammonical $AgNO_3$ to ethanoic acid with liberation of CO_2 . Compound (A)mild reduction gives (B), $C_3H_6O_3$ which contained an asymetric carbon atom and gives the reactions of alcoholic OH group and -COOH group. Two moles of (B) on heating produced a cyclic diester. Compound (A) when treated with warm dil. H_2SO_4 produced ethanol and with conc. H_2SO_4 produced ethanoic acid.

7. The reaction product (A) is:

- a) CH₃CH₂COOH b) (
 - b) CH, COCOOH
- c) HCOOCH, CH3
- d) CH3COOCH3

8. Compound contain the functional groups:

- a) >C = O and $-COOHb) -COOC_2H_5$
- c) -CO-O-CO
- d) none of these

9. Compound(B) is:

- a) CH₃ CH(OH)COOH b) HOCH₂CH₂COOH c) both (a) and (b)
- d) none of these

- 10. (B) on heating yields a cyclic diester hence it is a/an:
 - a) α hydroxy acid
- b) β hydroxy acid
 c) γ hydroxy acid
- d) none of these

Matrix Matching/Integer Type Questions 11. Column-II Column-II

A)
$$C - CH_3 \longrightarrow H_2SO_4 \longrightarrow Br$$
 $N - OH \longrightarrow O_2N$
 O_2N
 O_2N
 O_2N
 O_2N

p) Arndt-Eistert synthesis

B) ArC = NOH $\xrightarrow{PCl_5}$ Ar.CONHAr

q) Beckmann rearrangement

C)
$$Cl$$
 OH $Cl_2 \xrightarrow{PCl_3} Cl$ OH OH

- r) Claisen condensation
- D) $CH_3COCHN_2 \xrightarrow{NH_3 \atop Ag_2O \atop Catalyst} CH_3CH_2CONH_2 + N_2$
- s) HVZ reaction

12. Column-I

Column-II

A)
$$OH + CH_3OH \xrightarrow{H^*}$$
 ?

B)
$$CI \xrightarrow{CH_3OH} ?$$

$$C) \qquad OH \stackrel{H^*}{\longleftarrow} ?$$

$$D) \longrightarrow 0 \longrightarrow 0$$

KEY SHEET (ADDITIONAL PRACTICE EXERCISE)

LEVEL-I (MAIN)

- 1)3 2) 2 3) 4 4) 2
- 5) 1 6) 4 7) 4
- 8) 2 9)3

(LEVEL-II)

LECTURE SHEET (ADVANCED)

- 5) a 6) b 1) b 2) b 3) b 4) a 8) a
 - 7) a
- 9) d 10) a

10) 3

11) a 12) d 13) b 14) c

PRACTICE SHEET (ADVANCED)

- 1) acd 2) ad 3) ab 4) ab 5) abc 6) ab 7) b 8) a 9) a 10) a
- 11) A-q; B-q; C-s; D-p 12) A-q; B-q; C-p; D-p

