Introduction to Cryptography RSA Encryption

- (1) Use Python to write a function which:
 - (a) accepts two prime integers p and q, an encryption exponent e, a numerical integer message, and a boolean variable as arguments;
 - (b) checks that e is a valid encryption exponent;
 - (c) displays all information which will be made public;
 - (d) displays all information which will be kept private;
 - (e) displays the encrypted message if the boolean variable is TRUE or displays the decrypted message if the boolean variable is FALSE.
- (2) Suppose p = 41 and q = 67 for an RSA encryption scheme. Find n. Find $\phi(n)$. Of the numbers 7, 9, 15, 35, 49, 91, which are valid encryption exponents?
- (3) Suppose p = 43, q = 67, and e = 5, compute the decryption exponent d. Decrypt the following message.

2755 920 623 28 410 2874

(4) You intercept a ciphertext message

2292807516720144034331713382356

which was encrypted using RSA with modulus

$$n = 5967296933762411848589059030457$$

and encryption exponent e=449. Decrypt the message. Why doesn't this prove that RSA lacks security? How could the person setting up the RSA system make it much harder to crack?

- (5) RSA is usually used only for small messages or sending a key to be used for encrypting a longer message. Explain why RSA cannot be used for large messages.
- (6) Let p and q be distinct primes where q < p, and let n = pq. Recall that $\phi(n) = \phi(pq) = (p-1)(q-1)$. In addition to the publicly available n, suppose an attacker also knows the value of $\phi(n)$.
 - (a) Show that $p + q = n \phi(n) + 1$
 - (b) Show that $p q = \sqrt{(p+q)^2 4n}$.
 - (c) Use the previous results to write p and q only in terms of n and $\phi(n)$. This shows that knowledge of $\phi(n)$ and n is equivalent to knowledge of both p and q.
- (7) In RSA, the decryption step relies on Euler's theorem, specifically $m^{\phi(n)} \equiv 1 \mod n$ where m and n are relatively prime. For a randomly chosen integer message m < n find the probability that gcd(m,n) > 1. Use this to explain why, in practice, we do not need to check that the message and modulus are relatively prime.