NMB - Oefenzitting 5: QR-factorisatie en kleinste kwadratenproblemen

Simon Telen, Daan Camps

1 Oefeningen op papier

Opgave 1. Veronderstel dat P een $n \times n$ matrix is die als volgt inwerkt op een vector $x \in \mathbb{R}^n$ (n even):

$$Px = \frac{x + Fx}{2}.$$

Hier is F de $n \times n$ matrix zodat in Fx het eerste element van x gewisseld is met het tweede, het derde met het vierde, enz. Is de matrix P een projectiematrix? Zoja, is de projectie orthogonaal of schuin? Toon de matrix P en beschrijf het resultaat Px voor een willekeurige $x \in \mathbb{R}^n$.

Opgave 2. Gegeven de QR-factorisatie

$$QR = A = [a_1 \cdots a_n], a_i \in \mathbb{R}^m$$

Hoe zou je te werk gaan om de QR-factorisaties van \tilde{A} te berekenen in de volgende gevallen?

a) kolom k verwijderd

$$\tilde{A} = [a_1 \cdots a_{k-1} \ a_{k+1} \cdots a_n] \in \mathbb{R}^{m \times (n-1)}$$

b) een kolom $z \in \mathbb{R}^m$ toegevoegd

$$\tilde{A} = \begin{bmatrix} a_1 & \cdots & a_k & z & a_{k+1} & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}$$

c) een rij $w^T \in \mathbb{R}^n$ toegevoegd

$$\tilde{A} = \left[\begin{array}{c} w^T \\ A \end{array} \right] \in \mathbb{R}^{(m+1) \times n}$$

d) Een rang-1 verandering aan een boven driehoeksmatrix

$$\tilde{A} = R + uv^T$$
.

met $R \in \mathbb{R}^{m \times n}$ een boven driehoeksmatrix, $u \in \mathbb{R}^m$, en $v \in \mathbb{R}^n$.

2 Oefeningen op de computer

2.1 Householdertransformaties

Opgave 3. Maak de volgende matrix

$$X = rand(5,2); X(2:5,1) = X(2:5,1)*1.e-8$$

Pas de Householderspiegelingen

$$H_k = I - 2u_k u_k^T / (u_k^T u_k)$$
 $k = 1, 2$

toe met

$$u_1 = X(:,1) + ||X(:,1)||_2 e_1$$

 $u_2 = X(:,1) - ||X(:,1)||_2 e_1$

Bereken H_1X en H_2X . Wat zie je? En waarom?

Tip: het commando format short e kan handig zijn als je matrices van getallen met sterk verschillende grootte-orde moet bestuderen.

Opgave 4.

a) Schrijf een Matlab functie

Deze berekent een impliciete voorstelling van de QR factorisatie van $A \in \mathbb{R}^{m \times n}$, $m \geq n$. Hier is $L \in \mathbb{R}^{m \times n}$ een benedendriehoeksmatrix waarbij de kolommen de vectoren v van de opeenvolgende Householder transformaties bevatten en $R \in \mathbb{R}^{n \times n}$ een bovendriehoeksmatrix.

- b) Test je implementatie door ze, samen met de op Toledo gegeven functie applyQ, te gebruiken voor het oplossen van een stelsel Ax = b. Genereer hiervoor een willekeurige matrix $A \in \mathbb{R}^{n \times n}$ en oplossing $x \in \mathbb{R}^n$ en bereken b = Ax. De oplossing bekomen met je implementatie kan je dan vergelijken met de originele x. Varieer de grootte van A en het conditiegetal, observeer het gedrag.
- c) Gebruik de op Toledo gegeven functie form \mathbb{Q} om de orthogonale matrix expliciet te vormen en vergelijk de orthogonaliteit van Q met de orthogonale matrix bekomen met mgs voor een willekeurige matrix $A \in \mathbb{R}^{m \times n}$. Bestudeer de orthogonaliteit indien het conditiegetal van A toeneemt.

2.2 Kleinste kwadratenproblemen: normaalvergelijkingen versus QR-factorisatie

Opgave 5. Construeer een voorbeeld waarvoor de normaalvergelijkingen falen en Householder niet. Kies een $A \in \mathbb{R}^{3 \times 2}$ bovendriehoeks. Werk zoveel mogelijk op papier, dan maak je geen afrondingsfouten.