Pismeni ispit iz Energetske elektrotehnike 15.06.2005.

Prezime i ime:	A BODOVI B BODOVI UKUPNO
Matični broj:	

A1. Dvofazni namot 2-polnog električnog stroja prema slici sadrži dva potpuno jednaka namota prostorno razmaknuta za 120^{0} protjecana strujama $i_{A} = 10\sin \omega t$ [A] i $i_{B} = 10\sin \left(\omega t - \frac{2\pi}{3}\right)$ [A]. Koliki je omjer amplituda direktnog i inverznog okretnog protjecanja? Pretpostavite da je prostorna raspodjela protjecanja sinusna.

- A2. Na trofaznu krutu mrežu napona 10000 V, 50 Hz priključena je simetrična trofazna peć snage 1200 kW spojena u zvijezdu. Skicirajte shemu spoja te izračunajte:
 - a) Koliki je maksimalni napon na koji smijemo priključiti peć u spoju trokut da ju strujno ne preopteretimo?
 - b) Kolikom bi ukupnom snagom peć opterećivala mrežu pri maksimalno dozvoljenom naponu u spoju trokut?
 - c) Kolikom bi snagom peć opterećivala mrežu ako u dovodu od mreže do priključka jedne faze peći spojene u trokut pregori osigurač?

- a) $U_{l\Delta} = 5773.5 \text{ V}$
- b) $P_{\Delta} = P_Y = 1200 \,\text{kW}$
- c) $P_{\Lambda} = 600 \,\text{kW}$
- A3. Jezgra A i jezgra B su napravljene od mekog magnetskog materijala, imaju jednaki namot i magnetski krug s jedinom razlikom u veličini zračnog raspora. Raspor jezgre A iznosi 1 mm, a raspor jezgre B iznosi 1,3 mm. Jezgre su priključene na izmjenični napon 400 V, 50 Hz. Kolika struja teče namotom jezgre B ako namotom jezgre A teče struja 10 A? Pad magnetskog napona na željezu se zanemaruje (μ_{Fe}>>), kao i "proširenje" silnica magnetskog polja po dužini zračnog raspora. Otpori namota se mogu zanemariti. Odgovore treba obrazložiti!

$$I_B = 13 \text{ A}$$

- A4. Na slici je prikazana momentna karakteristika trofaznog kaveznog asinkronog motora za nazivni napon 400 V, 50 Hz uz broj polova 2p=4. U isti dijagram skicirajte karakteristiku momenta i izračunajte sinkronu brzinu vrtnje:
 - a) za slučaj da se i napon i frekvencija smanje na 50% nazivnih iznosa, tj. 200V, 25Hz,
 - b) za slučaj da se frekvencija poveća na dvostruku vrijednost, tj. na 100 Hz, a napon ostane nepromijenjen, tj. 400V. Ako je prekretni moment M_{pr} na nazivnim vrijednostima napona i frekvencije jednak 100 Nm, koliki će on biti u Nm u slučajevima a) i b)?

a)
$$n_s = 750 \,\text{r/min}$$
, $M_{pr} = 100 \,\text{Nm}$

b)
$$n_s = 3000 \,\text{r/min}$$
, $M_{pr} = 25 \,\text{Nm}$

- A5. Na slici je shema istosmjernog pretvarača (čopera) priključenog na radno trošilo. Napon istosmjernog izvora iznosi 400 V. Frekvencija uklapanja sklopke S iznosi 1 kHz.
 - a) Skicirajte valni oblik napona na trošilu (označite iznose napona i vremena na ordinati i apscisi),
 - b) Izračunajte koliko traje interval u kojem je sklopka uključena da bi efektivna vrijednost napona na trošilu iznosila 350 V.

b)
$$t_{y} = 0.7656 \,\mathrm{ms}$$

B1. Cilindar s klipom upotrebljava se za kompresiju plina mase 0,9 kg od volumena 0,396 m³ na volumen 0,255 m³ pri konstantnom tlaku od 95,76 kPa. Za vrijeme trajanja procesa došlo je do smanjenja unutrašnje energije za 8135 J. Izračunati količinu i predznak topline koja je dovedena ili odvedena plinu za vrijeme kompresije.

$$Q = -21.6 \text{ kJ}$$

B2. Nad zrakom volumena 0,2 m³ na 40^{0} C i 400 kPa u krutom izoliranom spremniku miješanjem se obavi 200 kJ rada. Koliko iznosi promjena entropije zraka? ($c_p = 1004$ J/kgK, R = 287 J/kg·K)

$$\Delta S = 443 \text{ J/K}$$

B3. Rashladni uređaj hladi prostor na -5^{0} C prenošenjem topline na 20^{0} C. Izračunati koliko treba najmanje povećati potrebni mehanički rad za hlađenje prostora na -25^{0} C.

$$W_{-25 \, {}^{\circ}\!C} / W_{-5 \, {}^{\circ}\!C} = 1,94$$

B4. Odrediti prosječnu snagu i potrebno vrijeme za proizvodnju 100 milijuna kWh električne energije u hidroelektrani s prosječnim iskoristivim padom od 30 m, stupnjem djelovanja od 85% i protokom od 50 m³/s.

$$P=12.5 MW$$
; $t=8.10^3 h$

B5. Dnevni dijagram opterećenja EES-a ima $P_{min} = P_k = 500$ MW i $P_{max} = 1200$ MW. Vrijeme trajanja minimalnog opterećenja je $T_{Pmin} = 7$ h, a faktor opterećenja iznosi $m_d = 0,75$. Potrebno je precizno nacrtati dijagram trajanja opterećenja aproksimiran s tri pravca. Uzeti da je $\alpha = \beta$.

$$\alpha = \beta = 0.81$$