Домашнее задание по алгебре №9.

Михайлов Никита Маратович, ПМИ-167.

Задание 1.

Постройте явно поле \mathbb{F}_8 и составьте для него таблицы сложения и умножения.

Решение. Заметим, что $8=2^3$. Следовательно, нам подойдет поле $\mathbb{Z}_2[x]/(x^3+x^2+1)$, т.к. x^3+x^2+1 – неприводим над \mathbb{Z}_2 . Элементами поля будут многочлены вида ax^2+bx+x , $a,b,c\in\mathbb{Z}_2$. Построим таблицу сложения:

+	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
1	1	0	x+1	x	$x^2 + 1$	$x^2 + x + 1$	x^2	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	x^2	$x^2 + x + 1$	
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^2 + 1$	$x^2 + x$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	x	1	x+1
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	0	x+1	1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	x+1	0	x
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	1	x	0

А теперь умножения:

×	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	$x^2 + 1$	1	x^2	x+1
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	x+1	$x^2 + x + 1$	x	x^2
x^2	0	x^2	$x^2 + 1$	1	$x^2 + x + 1$	x	x+1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	1	$x^2 + x + 1$	x	x+1	x^2	$x^2 + 1$
$x^2 + 1$	0	$x^2 + 1$	$x^2 + x + 1$	x	x+1	x^2	$x^2 + x$	1
$x^2 + x + 1$	0	$x^2 + x + 1$	x+1	x^2	$x^2 + x$	$x^2 + 1$	1	x

Задание 2.

Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+1)$. Перечислите в этой реализации все элементы данного поля, являющиеся порождающими циклической группы \mathbb{F}_9^{\times} .

Решение. Решим в лоб. Построим таблицу умножения:

×	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	x	x+1	x+2	2x	2x+1	2x+2
2	0	2	1	2x	2x+2	2x+1	x	x+2	x+1
x	0	x	2x	2	x+2	2x+2	1	x+1	2x+1
x+1	0	x+1	2x+2	x+2	2x	1	2x+1	2	x
x+2	0	x+2	2x+1	2x+2	1	x	x+1	2x	2
2x	0	2x	x	1	2x+1	1+x	2	2x+2	x+2
2x+1	0	2x+1	x+2	x+1	2	2x	2x+2	x	1
2x+2	0	2x+2	x+1	2x+1	x	2	x+2	1	2x

Выпишем элементы, порядок которых равен 8: x+1, x+2, 2x+1, 2x+2 – эти элементы и будут порождающими.

Задание 3.

Проверьте, что многочлены x^2+1 и y^2-y-1 неприводимы над \mathbb{Z}_3 , и установите явно изоморфизм между полями $\mathbb{Z}_3[x]/(x^2+1)$ и $\mathbb{Z}_3[y]/(y^2-y-1)$.

Решение. Так как поле конечно и достаточно маленькое. Давайте просто попробуем подобрать корни для

 $x^2+1=0$. Числа 0, 1, 2 — не подходят. Заметим, что $y^2-x-1=y^2+2x+2=(y+1)^2+1$ — аналогичная ситуация. Корней нет.

Построим таблицу умножения и сделаем там, чтобы элементы одного порядке переходили друг в друга с выполнением линейности (коэфициенты перед x и y одинаковые, чтобы сохранить линейность):

×	0	1	2	y	y+1	y+2	2y	2y + 1	2y + 2
0	0	0	0	0	0	0	0	0	0
1	0	1	2	y	y+1	y+2	2y	2y + 1	2y + 2
2	0	2	1	2y	2y + 2	2y + 1	y	y+2	y+1
y	0	y	2y	y+1	2y + 1	1	2y+2	2	y+2
y+1	0	y+1	2y+2	2y+1	2	y	y+2	2y	1
y+2	0	y+2	2y+1	1	y	2y + 2	2	y+1	2y
2y	0	2y	y	2y+2	y+2	2	y+1	1	2y + 1
2y+1	0	2y + 1	y+2	2	2y	y+1	1	2y+2	y
2y+2	0	2y + 2	y+1	y+2	1	2y	2x+1	y	2

- 1. $\varphi(0) = 0$
- 2. $\varphi(1) = 1$
- 3. $\varphi(2) = 2$
- 4. $\varphi(x) = y + 1$
- 5. $\varphi(x+1) = y+2$
- 6. $\varphi(x+2) = y$
- 7. $\varphi(2x) = 2y + 2$
- 8. $\varphi(2x+1) = 2y$
- 9. $\varphi(2x+2) = 2y+1$

Задание 4.

Пусть p – простое число, $q=p^n$ и $\alpha \in \mathbb{F}_q$. Докажите, что если многочлен $x^p-x-\alpha \in \mathbb{F}_q[x]$ имеет корень, то он разлагается на линейные множители.

Решение.