Numerical approximations of harmonic 1-forms on real loci of Calabi-Yau manifolds

Daniel Platt (Imperial College London) Loughborough University, 20 March 2024

Abstract: For applications in differential geometry and string theory one would like to construct Calabi-Yau manifolds of complex dimension three with the following property: it should contain a real submanifold of real dimension three that admits a harmonic nowhere vanishing 1-form. Many examples are expected to exist, but none have been proven to exist. The problem is that there is no explicit formula for the Calabi-Yau metric which makes it hard to write down the "harmonic" equation, let alone solve it. In the talk I will present numerical approximations of the Calabi-Yau metric, and numerical approximations of harmonic 1-forms, obtained by neural networks. This suggests some conjectural examples of harmonic, nowhere vanishing 1-forms. I will also show some proven non-examples, and explain the main long-term motivation for this numerical work, which is to numerically verifiably prove that there exists a genuine solution to the harmonic equation near the approximate solutions. This is work in progress, joint with Michael Douglas and Yidi Qi.

Background I: Calabi-Yau manifolds

Calabi conjecture (Yau's theorem): If (Y, g, J, ω) Kähler, complex dim n with:

$$\Omega \in \Omega^{n,0}(Y)$$
 parallel and nowhere 0 s.t.

then ex.
$$\phi \in C^{\infty}(Y)$$
 s.t. $\omega_{CY} = \omega + i\partial \overline{\partial} \phi$ has $\omega_{CY}^{n} = \Omega \wedge \overline{\Omega}$ (\Rightarrow induced metric g_{CY} is Ricci-flat)

Example: Fermat quintic

$$Y := \{z = [z_0 : \cdots : z_4] \in \mathbb{CP}^4 : z_0^5 + \cdots + z_4^5 = 0\}$$

has
$$\Omega \in \Omega^{n,0}(Y) \Rightarrow g_{CY}$$
 exists

Background I: Calabi-Yau manifolds

Calabi conjecture (Yau's theorem): If (Y, g, J, ω) Kähler, complex dim n with:

$$\Omega \in \Omega^{n,0}(Y)$$
 parallel and nowhere 0 s.t.

then ex.
$$\phi \in C^{\infty}(Y)$$
 s.t. $\omega_{CY} = \omega + i\partial \overline{\partial} \phi$ has $\omega_{CY}^{n} = \Omega \wedge \overline{\Omega}$ (\Rightarrow induced metric g_{CY} is Ricci-flat)

Example: Fermat quintic

$$Y := \{z = [z_0 : \cdots : z_4] \in \mathbb{CP}^4 : z_0^5 + \cdots + z_4^5 = 0\}$$

has
$$\Omega \in \Omega^{n,0}(Y) \Rightarrow g_{CY}$$
 exists

- Let Y be Calabi-Yau 3-fold with Calabi-Yau metric g_{CY}
- $\sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0 : \cdots : z_4]) = [\overline{z_0} : \cdots : \overline{z_4}]$
- \triangleright $S^1 \times Y$ has dimension 7 and holonomy SU(3). Problem: want holonomy G_2
- Define $\hat{\sigma}: S^1 \times V \to S^1 \times V$ as $(x, y) \mapsto (-x, \sigma(y))$

Theorem ([Joyce and Karigiannis, 2017])

If there exists $\lambda \in \Omega^1(L)$ harmonic w.r.t. $g_{CY}|_L$ that is nowhere 0, then there exists a resolution $N^7 \to (S^1 \times Y)/\langle \widehat{\sigma} \rangle$ with holonomy equal to G_2 .

- ► Goal: check if such a 1-form exists
- ► First Betti number → harmonic 1-forms. Nowhere 0? Must know the metricl.

- ► Let Y be Calabi-Yau 3-fold with Calabi-Yau metric g_{CY}
- $\triangleright \sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0:\cdots:z_4])=[\overline{z_0}:\cdots:\overline{z_4}]$

- First Betti number \rightarrow harmonic 1-forms. Nowhere 0? Must know the netries, = 220

- ► Let Y be Calabi-Yau 3-fold with Calabi-Yau metric g_{CY}
- $\triangleright \sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0:\cdots:z_4])=[\overline{z_0}:\cdots:\overline{z_4}]$
- $ightharpoonup S^1 imes Y$ has dimension 7 and holonomy SU(3). Problem: want holonomy G_2
- ▶ Define $\hat{\sigma}: S^1 \times Y \to S^1 \times Y$ as $(x, y) \mapsto (-x, \sigma(y))$

- First Betti number → harmonic 1-forms. Nowhere 0? Must kgow the metriel, = 200

- Let Y be Calabi-Yau 3-fold with Calabi-Yau metric gcy
- $\triangleright \sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0:\cdots:z_4])=[\overline{z_0}:\cdots:\overline{z_4}]$
- $ightharpoonup S^1 \times Y$ has dimension 7 and holonomy SU(3). Problem: want holonomy G_2
- ▶ Define $\hat{\sigma}: S^1 \times Y \to S^1 \times Y$ as $(x, y) \mapsto (-x, \sigma(y))$

Theorem ([Joyce and Karigiannis, 2017])

If there exists $\lambda \in \Omega^1(L)$ harmonic w.r.t. $g_{CY}|_L$ that is nowhere 0, then there exists a resolution $N^7 \to (S^1 \times Y)/\langle \widehat{\sigma} \rangle$ with holonomy equal to G_2 .

- Goal: check if such a 1-form exists
- First Betti number \rightarrow harmonic 1-forms. Nowhere 0? Must kgow the netriel, = 220

- Let Y be Calabi-Yau 3-fold with Calabi-Yau metric g_{CY}
- $\sigma: Y \to Y$ anti-holomorphic involution, $L := fix(\sigma)$ example: quintic with real coefficients in \mathbb{CP}^4 and $\sigma([z_0 : \cdots : z_4]) = [\overline{z_0} : \cdots : \overline{z_4}]$
- $ightharpoonup S^1 imes Y$ has dimension 7 and holonomy SU(3). Problem: want holonomy G_2
- ▶ Define $\hat{\sigma}: S^1 \times Y \to S^1 \times Y$ as $(x, y) \mapsto (-x, \sigma(y))$

Theorem ([Joyce and Karigiannis, 2017])

If there exists $\lambda \in \Omega^1(L)$ harmonic w.r.t. $g_{CY}|_L$ that is nowhere 0, then there exists a resolution $N^7 \to (S^1 \times Y)/\langle \widehat{\sigma} \rangle$ with holonomy equal to G_2 .

- ► Goal: check if such a 1-form exists
- ► First Betti number → harmonic 1-forms. Nowhere 0? Must know the metric!

- $\qquad Y:=\{z=[z_0:\cdots:z_4]\in\mathbb{CP}^4:z_0^5+\cdots+z_4^5=0\}$

$$\mathbb{RP}^{3} \stackrel{\sim}{\to} L = \text{fix}(\sigma) = \{x = [x_{0} : \dots : x_{4}] \in \mathbb{RP}^{4} : x_{0}^{5} + \dots + x_{4}^{5} = 0\}$$
$$[x_{0} : \dots : x_{4}] \mapsto \left[x_{0} : \dots : x_{4} : -\sqrt[5]{x_{0}^{5} + \dots + x_{4}^{5}}\right]$$

 $ho b^1(\mathbb{RP}^3) = 0 \Rightarrow$ no harmonic 1-form on L

- $Y := \{z = [z_0 : \cdots : z_4] \in \mathbb{CP}^4 : z_0^5 + \cdots + z_4^5 = 0\}$

$$\mathbb{RP}^{3} \stackrel{\sim}{\to} L = \text{fix}(\sigma) = \{x = [x_{0} : \dots : x_{4}] \in \mathbb{RP}^{4} : x_{0}^{5} + \dots + x_{4}^{5} = 0\}$$
$$[x_{0} : \dots : x_{4}] \mapsto \left[x_{0} : \dots : x_{4} : -\sqrt[5]{x_{0}^{5} + \dots + x_{4}^{5}}\right]$$

 $ho b^1(\mathbb{RP}^3) = 0 \Rightarrow$ no harmonic 1-form on L

- $Y := \{z = [z_0 : \cdots : z_4] \in \mathbb{CP}^4 : z_0^5 + \cdots + z_4^5 = 0\}$

$$\mathbb{RP}^{3} \xrightarrow{\sim} L = fix(\sigma) = \{x = [x_{0} : \dots : x_{4}] \in \mathbb{RP}^{4} : x_{0}^{5} + \dots + x_{4}^{5} = 0\}$$
$$[x_{0} : \dots : x_{4}] \mapsto \left[x_{0} : \dots : x_{4} : -\sqrt[5]{x_{0}^{5} + \dots + x_{4}^{5}}\right]$$

 $ho b^1(\mathbb{RP}^3) = 0 \Rightarrow$ no harmonic 1-form on L

- $\qquad Y:=\{z=[z_0:\cdots:z_4]\in \mathbb{CP}^4: z_0^5+\cdots+z_4^5=0\}$

$$\mathbb{RP}^{3} \xrightarrow{\simeq} L = \text{fix}(\sigma) = \{x = [x_{0} : \dots : x_{4}] \in \mathbb{RP}^{4} : x_{0}^{5} + \dots + x_{4}^{5} = 0\}$$
$$[x_{0} : \dots : x_{4}] \mapsto \left[x_{0} : \dots : x_{4} : -\sqrt[5]{x_{0}^{5} + \dots + x_{4}^{5}}\right]$$

 $b^1(\mathbb{RP}^3) = 0 \Rightarrow$ no harmonic 1-form on L

- ▶ Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = \left(x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3\right)$ smoothing of ordinary double point (1:0:0:0:0)

Has
$$Z(f_+) \cong \mathbb{RP}^3$$
, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$

- 2. $v := (x_0^2 + \dots + x_4^2)$ and $g = v \cdot f_-$ has $Z_{\mathbb{R}}(g) = Z_{\mathbb{R}}(f_-) \subset \mathbb{RP}^4$ so $\sigma : \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1 \left(\operatorname{fix}(\sigma)|_{Z(g)} \right) = 1$
- 3. Take smoothing $g_{\epsilon}:=g+\epsilon \xi$, where ξ generic poly
- 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over $S^1 \Rightarrow [\text{Tischler}, 1970]$ no closed nowhere zero 1-form \Rightarrow any harmonic 1-form has zeros (even number of zeros by Poincaré–Hopf theorem and $\chi(Z_{\mathbb{R}}(g_{\epsilon})) = 0$)

- ► [Tian and Yau, 1990] Calabi-Yau metrics on $Z(f_-) \setminus \text{sing}(g)$ and $Z(v) \setminus \text{sing}(g)$
- ▶ [Sun and Zhang, 2019] glue these to metric on smoothing $Z(g_{\epsilon})$
- ► More non-examples from other cubics. Examples from other Fanos?

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$

- More non-examples from other cubics. Examples from other Fanos?

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v := (x_0^2 + \cdots + x_4^2)$ and $g = v \cdot f$ has $Z_{\mathbb{R}}(g) = Z_{\mathbb{R}}(f) \subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$

- ► More non-examples from other cubics. Examples from other Fanos?

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v := (x_0^2 + \cdots + x_4^2)$ and $g = v \cdot f$ has $Z_{\mathbb{R}}(g) = Z_{\mathbb{R}}(f) \subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly

- ► More non-examples from other cubics. Examples from other Fanos?

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [Jaco, 1980] Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1

- ► More non-examples from other cubics. Examples from other Fanos?

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1 ⇒ [Tischler, 1970] no closed nowhere zero 1-form ⇒ any harmonic 1-form has zeros

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1 ⇒ [Tischler, 1970] no closed nowhere zero 1-form ⇒ any harmonic 1-form has zeros

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\operatorname{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1 ⇒ [Tischler, 1970] no closed nowhere zero 1-form ⇒ any harmonic 1-form has zeros (even number of zeros by Poincaré–Hopf theorem and $\chi(Z_{\mathbb{R}}(g_{\epsilon}))=0)$

- ▶ [Tian and Yau, 1990] Calabi-Yau metrics on $Z(f_-) \setminus \text{sing}(g)$ and $Z(v) \setminus \text{sing}(g)$
- ▶ More non-examples from other cubics. Examples from other Fanos?, (३) (३) (३)

- ightharpoonup Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = (x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3)$ smoothing of ordinary double point (1:0:0:0:0) Has $Z(f_+) \cong \mathbb{RP}^3$, $Z(f_-) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v:=(x_0^2+\cdots+x_4^2)$ and $g=v\cdot f$ has $Z_{\mathbb{R}}(g)=Z_{\mathbb{R}}(f)\subset \mathbb{RP}^4$ so $\sigma: \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1(\text{fix}(\sigma)|_{Z(\sigma)}) = 1$
 - 3. Take smoothing $g_{\epsilon} := g + \epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over S^1 ⇒ [Tischler, 1970] no closed nowhere zero 1-form ⇒ any harmonic 1-form has zeros (even number of zeros by Poincaré–Hopf theorem and $\chi(Z_{\mathbb{R}}(g_{\epsilon}))=0)$

- ► [Tian and Yau, 1990] Calabi-Yau metrics on $Z(f_-) \setminus \text{sing}(g)$ and $Z(v) \setminus \text{sing}(g)$
- ▶ [Sun and Zhang, 2019] glue these to metric on smoothing $Z(g_{\epsilon})$

- ▶ Another quintic in \mathbb{CP}^4 :
 - 1. [Krasnov, 2009] $f_{\pm} = \left(x_0(x_1^2 + x_2^2 + x_3^2 x_4^2) (x_1^3 + x_2^3 + x_3^3 \frac{1}{2}x_4^3) \pm \epsilon x_0^3\right)$ smoothing of ordinary double point (1:0:0:0:0:0) Has $Z(f_{+}) \cong \mathbb{RP}^3$, $Z(f_{-}) \cong \mathbb{RP}^3 \# S^1 \times S^2$
 - 2. $v := (x_0^2 + \dots + x_4^2)$ and $g = v \cdot f_-$ has $Z_{\mathbb{R}}(g) = Z_{\mathbb{R}}(f_-) \subset \mathbb{RP}^4$ so $\sigma : \mathbb{CP}^4 \to \mathbb{CP}^4$, $x \mapsto \overline{x}$ has $b^1\left(\operatorname{fix}(\sigma)|_{Z(g)}\right) = 1$
 - 3. Take smoothing $g_{\epsilon}:=g+\epsilon \xi$, where ξ generic poly
 - 4. But: ex. incompressible $S^2 \Rightarrow [\text{Jaco}, 1980] \ Z_{\mathbb{R}}(g_{\epsilon}) \cong Z_{\mathbb{R}}(g)$ is no fibration over $S^1 \Rightarrow [\text{Tischler}, 1970]$ no closed nowhere zero 1-form \Rightarrow any harmonic 1-form has zeros (even number of zeros by Poincaré–Hopf theorem and $\chi(Z_{\mathbb{R}}(g_{\epsilon})) = 0$)

- ▶ [Tian and Yau, 1990] Calabi-Yau metrics on $Z(f_-) \setminus \text{sing}(g)$ and $Z(v) \setminus \text{sing}(g)$
- ▶ [Sun and Zhang, 2019] glue these to metric on smoothing $Z(g_{\epsilon})$
- More non-examples from other cubics. Examples from other Fanos?

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_5 and q_5 of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q nave SO(2)-symmetry: $[x_0:x_1:x_2:x_3:x_4:x_5] \mapsto [x_0:\cos(t)x_1-\sin(t)x_2:\sin(t)x_1+\cos(t)x_2:x_3:x_4:x_5]$ Generic smoothings c_0 and c_0 of c and c_0
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 - \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_x and a_c of c and a_c
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry:

$$[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 - \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$$

Generic smoothings c_0 and q_c of c and q

3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- ► Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- ► Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- ► Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

- Construction of quadric intersect quartic in CP⁵, also Calabi-Yau
 - 1. Circle $c_{aff} = x_1^2 + x_2^2 1$, quartic $q_{aff} = x_3^4 + x_4^4 + x_5^4 1$ Projectivise: $c = -x_0^2 + x_1^2 + x_2^2$ and $q = -x_0^4 + x_3^4 + x_4^4 + x_5^4$
 - 2. c and q have SO(2)-symmetry: $[x_0: x_1: x_2: x_3: x_4: x_5] \mapsto [x_0: \cos(t)x_1 \sin(t)x_2: \sin(t)x_1 + \cos(t)x_2: x_3: x_4: x_5]$ Generic smoothings c_{δ} and q_{ϵ} of c and q
 - 3. $\mathbb{RP}^5 \supset Z_{\mathbb{R}}(c, q_{\epsilon}) \cong S^1 \times S^2$ smooth, $Z(c, q_{\epsilon}) \subset \mathbb{CP}^5$ singular $\operatorname{sing}(Z(c, q_{\epsilon})) = \operatorname{sing}(c) \cap Z(q_{\epsilon})$

Numerical Calabi-Yau metrics

- Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$

- Kähler potential: $K = \log \sum h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.

	$\left rac{vol_h}{vol_\Omega} - 1 ight $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n = 3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
		4 D D D A D D A D D D D D D D D D D D D

Numerical Calabi-Yau metrics

- ► Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ▶ h positive definite Hermitian form on $H^0(L^{\otimes k})$ \leadsto some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.
 - If $\frac{\text{vol}_h}{\text{vol}_0} = 1$, then Ricci-flat
- ▶ [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\operatorname{vol}_{h}}{\operatorname{vol}_{\Omega}} 1 \right)$

		$\left \frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} - 1 \right $	Comment
[Do	onaldson, 2009]	10^{-2}	n=2, needs symmetries
[He	eadrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[La	rfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
Do	ouglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
			<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical Calabi-Yau metrics

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- ▶ Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \overline{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.
- ► [Donaldson, 2009]: choose h cleverly to minimise $\int_{V} \left(\frac{\text{vol}_h}{\text{vol}_0} 1 \right)^2$

	$\left rac{vol_h}{vol_\Omega} - 1 ight $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n = 3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
		◆ロト ◆問 ▶ ◆ ヨ ト ◆ ヨ ・ か ♀ ・ か ♀ ・ か ♀ ・ ()

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ► h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$. If $\frac{\operatorname{vol}_h}{\operatorname{vol}_h} = 1$, then Ricci-flat
- ▶ [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\operatorname{vol}_{h}}{\operatorname{vol}_{\Omega}} 1 \right)$

	$\left rac{vol_h}{vol_\Omega} - 1 ight $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ▶ h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.

If $\frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} = 1$, then Ricci-flat

▶ [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\operatorname{vol}_{h}}{\operatorname{vol}_{\Omega}} - 1 \right)$

	$\left rac{vol_h}{vol_\Omega} - 1 ight $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n = 3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
		<ロ > ← □ > ← □ > ← 亘 > ← 亘 → りへで

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ▶ h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.
 - If $\frac{\text{vol}_h}{\text{vol}_0} = 1$, then Ricci-flat
- ▶ [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\operatorname{vol}_{h}}{\operatorname{vol}_{\Omega}} 1 \right)^{r}$

	$\left rac{vol_h}{vol_\Omega} - 1 \right $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
		<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- ▶ Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ▶ h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.
 - If $\frac{\text{vol}_h}{\text{vol}_0} = 1$, then Ricci-flat
- ► [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\text{vol}_h}{\text{vol}_{\Omega}} 1 \right)^2$

	$\left rac{vol_h}{vol_\Omega} - 1 \right $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
		<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ Holomorphic volume form locally $\Omega = dz^1 \wedge dz^2 \wedge dz^3 \rightsquigarrow vol_{\Omega} := \Omega \wedge \overline{\Omega} \in \Omega^6(Y)$
- Ample line bundle $L \to Y$ and $k \in \mathbb{N}$ such that $L^{\otimes k}$ very ample Example: $Y \subset \mathbb{CP}^4$ quintic, $(O(1)|_Y)^{\otimes k}$
- ▶ $s_1, ..., s_N \in H^0(L^{\otimes k})$ basis of holomorphic sections ⇒ embedding $s = (s_1, ..., s_N) : Y \to \mathbb{CP}^{N-1}$
- ▶ h positive definite Hermitian form on $H^0(L^{\otimes k}) \rightsquigarrow$ some Fubini-Study metric Kähler potential: $K = \log \sum_{i,j} h_{i,j} s^i \bar{s}^j$. Volume form: $\omega_h^3 = \operatorname{vol}_h \in \Omega^6(Y)$.

If $\frac{\text{vol}_h}{\text{vol}_0} = 1$, then Ricci-flat

► [Donaldson, 2009]: choose h cleverly to minimise $\int_{Y} \left(\frac{\operatorname{vol}_{h}}{\operatorname{vol}_{\Omega}} - 1 \right)^{2}$

	$\left \left rac{vol_h}{vol_\Omega} - 1 ight \right $	Comment
[Donaldson, 2009]	10^{-2}	n=2, needs symmetries
[Headrick and Nassar, 2013]	10^{-14}	n=3, needs symmetries
[Larfors et al., 2022]	10^{-2}	$n=3$, not C^0 , complete intersections+torics
[Douglas et al., 2022]+ours	10^{-4}	n = 3, quintics+complete intersections
-		40.40.45.45.45.45.40.00

Example: quintic $X := Z(f) \subset \mathbb{CP}^4$, $L := \text{fix}(\sigma) \subset X$

- $\xi_1,\ldots,\xi_{10}\in\Omega^1(\mathbb{RP}^4)$ closed 1-forms s.t. $T_{\times}^*\mathbb{RP}^4=(\xi_1(x),\ldots,\xi_{10}(x))\ \forall x$
- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ le

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{\mathcal{L}}(x) \in \Omega^1(\mathcal{L})$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2} = 1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- ightharpoonup Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- Ansatz for p_i : $A_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, $sq : \mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x$
- Approximate metric $\frac{i}{2}\partial\bar{\partial}K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ le

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2} = 1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- Ansatz for p_i : $A_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, $sq: \mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- **Equivalent:** neural network with activation function $x \mapsto x$
- Approximate metric $\frac{1}{2}\partial\partial K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- $\searrow \xi_1, \ldots, \xi_{10} \in \Omega^1(\mathbb{RP}^4)$ closed 1-forms s.t. $T_x^* \mathbb{RP}^4 = (\xi_1(x), \ldots, \xi_{10}(x)) \ \forall x$
- ho_1, \ldots, ρ_N polys, ρ_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2} = 1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- ightharpoonup Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- Ansatz for p_i : $A_i: \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, $sq: \mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{1}{2}\partial\partial K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- ho_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j |_{\mathcal{L}}(x) \in \Omega^1(\mathcal{L})$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_\alpha||_{L^2} = 1} \int_{x_1, \ldots, x_{100000}} |d\lambda_\alpha| + |d^*\lambda_\alpha|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- Ansatz for $p_i \colon A_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, $sq : \mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{1}{2}\partial\partial K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- ho_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, ..., x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2} = 1} \int_{x_1, ..., x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- ightharpoonup Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- Ansatz for p_i : A_i : $\mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, sq: $\mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{1}{2}\partial\partial K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2}=1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o\infty$
- Ansatz for $p_i \colon A_i : \mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, $sq : \mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- **Equivalent:** neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{i}{2}\partial\bar{\partial}K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2}=1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o\infty$
- ▶ Ansatz for p_i : A_i : $\mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, sq: $\mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- **Equivalent:** neural network with activation function $x \mapsto x^x$
- Approximate metric $\frac{i}{2}\partial\overline{\partial}K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2}=1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o \infty$
- ▶ Ansatz for p_i : A_i : $\mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, sq: $\mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{i}{2}\partial \overline{\partial} K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$ \Rightarrow minimise with tensorflow

Example: quintic
$$X := Z(f) \subset \mathbb{CP}^4$$
, $L := \text{fix}(\sigma) \subset X$

- p_1, \ldots, p_N polys, p_i degree d_i ; for $\alpha = (\alpha_{1,1}, \ldots, \alpha_{10,N}) \in \mathbb{R}^{10N}$ let

$$\lambda_{\alpha}(x) = \sum_{\substack{i=1,\ldots,N\\j=1,\ldots,10}} \alpha_{i,j} \frac{p_i(x)}{|x|^{d_i}} \xi_j|_{L}(x) \in \Omega^1(L)$$

For
$$x_1, \ldots, x_{100000} \in X$$
 find $\min_{\alpha \text{ s.t. } ||\lambda_{\alpha}||_{L^2}=1} \int_{x_1, \ldots, x_{100000}} |d\lambda_{\alpha}| + |d^*\lambda_{\alpha}|$

- lacktriangle Stone-Weierstrass \Rightarrow best approximations converge to harmonic form as $N o\infty$
- ▶ Ansatz for p_i : A_i : $\mathbb{R}^{n_i} \to \mathbb{R}^{n_{i+1}}$ linear, sq: $\mathbb{R}^k \to \mathbb{R}^k$ square each coordinate

$$p(x_0,\ldots,x_4)=A_k\circ\cdots\circ\operatorname{sq}\circ A_2\circ\operatorname{sq}\circ A_1(x_0,\ldots,x_4)$$

- Equivalent: neural network with activation function $x \mapsto x^2$
- Approximate metric $\frac{i}{2}\partial \overline{\partial} K$ smooth+explicit \Rightarrow explicitly compute $(|d\lambda_{\alpha}|(x_i) + |d^*\lambda_{\alpha}|(x_i))/\sqrt{|\lambda(x_1)|^2 + \cdots + |\lambda(x_{100000})|^2}$
 - ⇒ minimise with tensorflow

Experimental results: 1-forms and their zeros

- 1. **Fermat:** non-example 1; no harmonic 1-form.
- 2. Random Quintic: non-example 2; harmonic 1-form must have zeros
- 3. **CICY1:** conjectural example 3; large perturbation $\epsilon = \frac{1}{4}$, harmonic 1-form may have zeros
- 4. **CICY2:** conjectural example 3; small perturbation $\epsilon = \frac{1}{100}$, conjecture no zeros

- $ightharpoonup g = v \cdot f_{-}$ singular quintic from before, $\xi = 0.84x_0^5 + \dots$ random quintic
- Find $\epsilon>0$ such that $g_\epsilon:=g+\epsilon\xi$ has $Z_\mathbb{R}(g_\epsilon)$ diffeo to $Z_\mathbb{R}(g)$
 - $ightharpoonup U\subset \mathbb{RP}^4$ nbhd of $Z_{\mathbb{R}}(g)$
 - $ightharpoonup k := \min_{U} |Dg| > 0, M := \min_{\mathbb{RP}^4 \setminus U} |g| > 0$
 - ightharpoonup if $||\epsilon_0\xi||_{C^0} < M$ and $||D\epsilon_0\xi||_{C^0} < k$, then $Z_{\mathbb{R}}(g_{\epsilon})$ smooth for all $0 < \epsilon < \epsilon_0$
 - ightharpoonup \Rightarrow $Z_{\mathbb{R}}(g_{\epsilon})$ diffeo for all $0<\epsilon<\epsilon_0$ (for us $\epsilon_0=0.00195503$)

Average of $|\operatorname{vol}_h/\operatorname{vol}_\Omega-1|$ while iteratively improving vol_h

 $|\operatorname{vol}_h/\operatorname{vol}_\Omega(x) - 1|$ over $\max\{v(x)/||x||^2, f_-(x) | | |x||^3\}$

- $ightharpoonup g = v \cdot f_{-}$ singular quintic from before, $\xi = 0.84x_0^5 + \dots$ random quintic
- ▶ Find $\epsilon > 0$ such that $g_{\epsilon} := g + \epsilon \xi$ has $Z_{\mathbb{R}}(g_{\epsilon})$ diffeo to $Z_{\mathbb{R}}(g)$
 - $ightharpoonup U \subset \mathbb{RP}^4$ nbhd of $Z_{\mathbb{R}}(g)$
 - $ightharpoonup k := \min_{U} |Dg| > 0, M := \min_{\mathbb{RP}^4 \setminus U} |g| > 0$
 - lacktriangle if $||\epsilon_0\xi||_{C^0} < M$ and $||D\epsilon_0\xi||_{C^0} < k$, then $Z_{\mathbb{R}}(g_{\epsilon})$ smooth for all $0 < \epsilon < \epsilon_0$
 - ightharpoonup \Rightarrow $Z_{\mathbb{R}}(g_{\epsilon})$ diffeo for all $0 < \epsilon < \epsilon_0$ (for us $\epsilon_0 = 0.00195503$)

Average of $|\operatorname{vol}_h/\operatorname{vol}_\Omega-1|$ while iteratively improving vol_h

 $|\operatorname{vol}_h/\operatorname{vol}_\Omega(x) - 1|$ over $\max\{v(x)/||x||^2, f_-(x) | | |x||^3\}$

- $ightharpoonup g = v \cdot f_{-}$ singular quintic from before, $\xi = 0.84x_0^5 + \dots$ random quintic
- ▶ Find $\epsilon > 0$ such that $g_{\epsilon} := g + \epsilon \xi$ has $Z_{\mathbb{R}}(g_{\epsilon})$ diffeo to $Z_{\mathbb{R}}(g)$
 - $ightharpoonup U\subset \mathbb{RP}^4$ nbhd of $Z_{\mathbb{R}}(g)$
 - $k := \min_{U} |Dg| > 0, M := \min_{\mathbb{RP}^4 \setminus U} |g| > 0$
 - $lackbox{ if } \|\epsilon_0\xi\|_{C^0} < M \text{ and } \|D\epsilon_0\xi\|_{C^0} < k, \text{ then } Z_{\mathbb{R}}(g_{\epsilon}) \text{ smooth for all } 0 < \epsilon < \epsilon_0$
 - ightharpoonup \Rightarrow $Z_{\mathbb{R}}(g_{\epsilon})$ diffeo for all $0<\epsilon<\epsilon_0$ (for us $\epsilon_0=0.00195503$)

Average of $|\operatorname{vol}_h/\operatorname{vol}_\Omega - 1|$ while iteratively improving vol_h

$$|\operatorname{vol}_h/\operatorname{vol}_\Omega(x)-1|$$
 over $\max\{v(x)/||x||^2,f_-(x)\not=||x||^3\}$

Neck formation

 $\begin{array}{l} \max_{v \in T_{||v||_{FS}=1}||v||_{h}} \ \text{over} \\ \max \{v(x)/\left||x|\right|^{2}, f_{-}(x)/\left||x|\right|^{3}\} \end{array}$

1-form has even number of zeros

k-medoid clustering loss of 500 points with smallest $|\omega|(x)$ over number of clusters (heuristic: "elbow" k=4 is optimal number of clusters

Experimental results on quadric ∩ quartic

↓ Loss over distance from singularity

Epochs

Experimental results on quadric ∩ quartic

↑ Metric stretching over distance from singularity

Experimental results on quadric ∩ quartic

$$c=-x_0^2+x_1^2+x_2^2$$
 and $q=-x_0^4+x_3^4+x_4^4+x_5^4$
Set $x_0=1$ and $x_3=x_4=0 \ \curvearrowright \{(x_1,x_2) \in \mathbb{R}^2: x_1^2+x_2^2=1\} \times \{\pm 1\}$
1-form restricted to this

Bonus motivation

Proposition

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|\left|\frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} - 1\right|\right|_{L_1^p} < \delta \ \Rightarrow \ \left|\left|g_{approx} - g_{CY}\right|\right|_{L_1^p} < \epsilon.$$

Proposition

For all $\mu > 0$ there exists $\epsilon > 0$ such that the following is true: for $\lambda \in \Omega^1(L^3)$ such that $\Delta_{approx}\lambda = 0$ and $||\lambda||_{L^2} = 1$ and $\min |\lambda| > 1$

 $\widetilde{\lambda} \in [\lambda]$ be the unique Δ_{CY} -harmonic 1-form. Then

$$||g_{approx} - g_{CY}||_{L_1^p} < \epsilon \ \Rightarrow \ |\widetilde{\lambda} - \lambda|(x) < \frac{\mu}{2} \ \Rightarrow \ |\widetilde{\lambda}|(x) > \frac{\mu}{2} \ \text{for all } x \in L.$$

- Find: g_{approx} with $\left| \left| \frac{\operatorname{vol}_h}{\operatorname{vol}_0} 1 \right| \right|_{L^p} < \delta$, λ with $\Delta_{approx}\lambda = 0$ and $\min_{\lambda} |\lambda| > \mu$
- ightharpoonup \Rightarrow there exists nowhere vanishing g_{CY} -harmonic 1-form on L_{\Box}

Bonus motivation

Proposition

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|\left|\frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} - 1\right|\right|_{L^p_1} < \delta \ \Rightarrow \ \left|\left|g_{approx} - g_{CY}\right|\right|_{L^p_1} < \epsilon.$$

Proposition

For all $\mu > 0$ there exists $\epsilon > 0$ such that the following is true:

for
$$\lambda \in \Omega^1(L^3)$$
 such that $\Delta_{approx}\lambda = 0$ and $||\lambda||_{L^2,g_{approx}} = 1$ and $\min_L |\lambda| > \mu$ let

 $\widetilde{\lambda} \in [\lambda]$ be the unique Δ_{CY} -harmonic 1-form. Then:

$$||g_{approx} - g_{CY}||_{L_1^p} < \epsilon \implies |\widetilde{\lambda} - \lambda|(x) < \frac{\mu}{2} \implies |\widetilde{\lambda}|(x) > \frac{\mu}{2} \text{ for all } x \in L.$$

Find:
$$g_{approx}$$
 with $\left| \left| \frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} - 1 \right| \right|_{L_1^p} < \delta$, λ with $\Delta_{approx}\lambda = 0$ and $\min_L |\lambda| > \mu$

ightharpoonup \Rightarrow there exists nowhere vanishing g_{CY} -harmonic 1-form on L_{\Box}

Bonus motivation

Proposition

For all $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|\left|\frac{\mathsf{vol}_h}{\mathsf{vol}_\Omega} - 1\right|\right|_{L^p_1} < \delta \ \Rightarrow \ \left|\left|g_{approx} - g_{CY}\right|\right|_{L^p_1} < \epsilon.$$

Proposition

For all $\mu > 0$ there exists $\epsilon > 0$ such that the following is true:

for
$$\lambda \in \Omega^1(L^3)$$
 such that $\Delta_{approx}\lambda = 0$ and $||\lambda||_{L^2,g_{approx}} = 1$ and $\min_L |\lambda| > \mu$ let

 $\widetilde{\lambda} \in [\lambda]$ be the unique Δ_{CY} -harmonic 1-form. Then:

$$||g_{approx} - g_{CY}||_{L_1^p} < \epsilon \implies |\widetilde{\lambda} - \lambda|(x) < \frac{\mu}{2} \implies |\widetilde{\lambda}|(x) > \frac{\mu}{2} \text{ for all } x \in L.$$

- Find: g_{approx} with $\left| \left| \frac{\operatorname{vol}_h}{\operatorname{vol}_\Omega} 1 \right| \right|_{L^p_i} < \delta$, λ with $\Delta_{approx} \lambda = 0$ and $\min_L |\lambda| > \mu$
- ightharpoonup \Rightarrow there exists nowhere vanishing g_{CY} -harmonic 1-form on $L_{constant}$

Thank you for the attention!

References I

- Donaldson, S. K. (2009).

 Some numerical results in complex differential geometry.

 Pure Appl. Math. Q., 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1):571–618.
- Douglas, M., Lakshminarasimhan, S., and Qi, Y. (2022).

 Numerical calabi-yau metrics from holomorphic networks.

 In *Mathematical and Scientific Machine Learning*, pages 223–252. PMLR.
- Headrick, M. and Nassar, A. (2013).
 Energy functionals for calabi-yau metrics.
 In *Journal of Physics: Conference Series*, volume 462, page 012019. IOP Publishing.
- Jaco, W. H. (1980).

 Lectures on three-manifold topology.

 Number 43. American Mathematical Soc.

References II

Joyce, D. and Karigiannis, S. (2017).

A new construction of compact G_2 -manifolds by gluing families of Eguchi-Hanson spaces.

ArXiv e-prints.

Krasnov, V. A. (2009).

On the topological classification of real three-dimensional cubics.

Mat. Zametki, 85(6):886-893.

Larfors, M., Lukas, A., Ruehle, F., and Schneider, R. (2022).

Numerical metrics for complete intersection and kreuzer–skarke calabi–yau manifolds.

Machine Learning: Science and Technology, 3(3):035014.

Sun, S. and Zhang, R. (2019). Complex structure degenerations and collapsing of calabi-yau metrics. arXiv preprint arXiv:1906.03368.

References III

Tian, G. and Yau, S.-T. (1990).

Complete kähler manifolds with zero ricci curvature. i.

Journal of the American Mathematical Society, 3(3):579–609.

Tischler, D. (1970).
On fibering certain foliated manifolds overs1.

Topology, 9(2):153–154.