

Química Nivel Medio Prueba 2

Viernes 14 de mayo de 2021 (mañana)

1	hora	15	minutos

1011010	ac con	vocator	ia uci a	iumio
				1 1

Instrucciones para los alumnos

- Escriba su número de convocatoria en las casillas de arriba.
- · No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Escriba sus respuestas en las casillas provistas a tal efecto.
- · En esta prueba es necesario usar una calculadora.
- · Se necesita una copia sin anotaciones del cuadernillo de datos de Química para esta prueba.
- · La puntuación máxima para esta prueba de examen es [50 puntos].

2221-6129 © International Baccalaureate Organization 2021

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

[2]

Conteste todas las preguntas. Escriba sus respuestas en las casillas provistas a tal efecto.

 La piedra caliza se puede convertir en varios productos comerciales útiles por medio del ciclo de la caliza. La piedra caliza contiene elevados porcentajes de carbonato de calcio, CaCO₃.

(a) El carbonato de calcio se calienta para producir óxido de calcio, CaO.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Calcule el volumen de dióxido de carbono producido a PTN cuando se descomponen 555 g de carbonato de calcio. Use las secciones 2 y 6 del cuadernillo de datos.

(Pregunta 1: continuación)

(b) Se dan los datos termodinámicos para la descomposición del carbonato de calcio.

Sustancia	ΔH _f / kJ mol ⁻¹
CaCO ₃ (s)	-1207
CaO(s)	-635
CO ₂ (g)	-393,5

Calcule la variación de entalpía de la reacción, ΔH , en kJ, para la descomposición del carbonato de calcio.

[2]

	9		•	•	•	•	8		٠	٠		٠	8	٠	•	•					8	3	ě	•	3		٠	•	3	*		•			*	•		4			*				4			*		•	•	4	i) i		*	G :		•	•	•		
	9	3	• 10	•		8			•	٠	٠	٠	0	٠	٠	•			٠			*	•	9	٠	•		•	•	٠			•		٠	•		•	٠	٠	٢	•	,	•	•	٠	٠	ř			ä				÷		•					
	9			٠		٠	ě		•	٠	٠	٠	÷	ć	8		* :		٠	1		3	•	ij.	•		٠		3	*	•		٠.	٠	*	•		٠	٠	٠	٠		9 9	,	•			ř		•	ä			 ï	Ŧ							
, ,				٠			Ŷ	ì	٠	٠		٠	ř	Ť			•	 17	٠		¥	*	*	9	•	•	٠	٠	•	٠				ř	Ť		•	4	T					- %	4	•	•		 		5.				*	•		•	•	7/		

(c) (i) Se muestra el perfil de energía potencial para una reacción. Dibuje aproximadamente una línea de puntos rotulada como "Catalizada" para indicar el efecto de un catalizador.

[1]

(1.10	guilla 1. C	ontinuacion)	
	(ii)	Resuma por qué un catalizador tiene tal efecto.	[1
	* * * * * * *		
[L]		The Teb (course) and objective and appropriate the course of the course	
	(d) Las	egunda etapa del ciclo de la caliza produce hidróxido de calcio, Ca(OH) ₂ .	
	(i)	Escriba la ecuación para la reacción del ${\rm Ca(OH)_2(aq)}$ con ácido clorhídrico, HCl (aq).	[1]
	150,402 K 4 K 14 A	***************************************	
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	***************************************	
II	(ii)	Determine el volumen, en dm³, de una solución de hidróxido de calcio 0,015 mol dm⁻³, necesario para neutralizar 35,0 cm³ de HCl (aq) 0,025 mol dm⁻³.	[2]
	4 30000 6 4 4 4		

	n xxxxxxxxx Rainininini	nen area eta a protes in tila eta a eta en	
	(iii)	La solución saturada de hidróxido de calcio se usa para analizar dióxido de carbono. Calcule el pH de una solución de hidróxido de calcio $2,33 \times 10^{-2}$ mol dm ⁻³ , una base fuerte.	[2]

	****	***************************************	

	0,000,000,000		

(Pregunta 1: continuación)

(e) El hidróxido de calcio reacciona con dióxido de carbono para formar nuevamente carbonato de calcio.

$$\mathrm{Ca}(\mathrm{OH})_{\scriptscriptstyle 2}(\mathrm{aq}) + \mathrm{CO}_{\scriptscriptstyle 2}(\mathrm{g}) \rightarrow \mathrm{CaCO}_{\scriptscriptstyle 3}(\mathrm{s}) + \mathrm{H}_{\scriptscriptstyle 2}\mathrm{O}\left(\mathrm{l}\right)$$

(i) Determine la masa, en g, de CaCO₃(s) producida por reacción de 2,41 dm³ de Ca(OH)₂(aq) 2,33 × 10⁻² mol dm⁻³ con 0,750 dm³ de CO₂(g) a PTN.

[2]

 	. ,				::0		•		•	*	3	(1)	•	•	6.3				•			•	ě	į	٠	•	•	8	•	•		٠		٠			79		•0		0. 10	*	•	*	* *		000			8		* 1	* 9	6.158	50
 			9 1		•	÷	× 3	. ,	,	29	(9)	900	٠									ě	ě	•	٠	•	8 9			•		٠	٠	÷	×		: ::	•	•							•			×	×	×	* :	•	No.	*
	* :	×	×	e e	. X	÷	*			٠		œ		×					S. 1*					٠	٠	٤.		٠	ě	3				Ŷ			a			¥1.			•		*			×	٠	*	×	, :	*00	90 T P	e
 		. 74		vers		·				9		٠	٤	,		. 3	. 1	 000					.*	٠	٠	·	. ,		į			•		8	3				r			•	:			v. i			٠	٠	9	a :		(;)	×
 			•			×	. :			:00	100	*	•	٠			•	 000	. ,	 			٠		٠				×	ě	, ,		8	8	•	1	•	٠		ij			i,							ī	×		000	6	¥.

(ii) En el experimento e(i), se recogieron 2,85 g de CaCO₃. Calcule el rendimiento porcentual de CaCO₃.

(Si no obtuvo respuesta en e(i), use 4,00 g, pero este no es el valor correcto.) [1]

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

(f) Resuma cómo **un** compuesto de calcio del ciclo de la caliza puede reducir el problema causado por la deposición ácida.

[1]

2.	Las tabla	propie perio	edades de los elementos se pueden predecir a partir de su posición en la ódica.	
	(a)	(i)	Explique por qué el radio atómico del Si es menor que el del Al.	[2]
	* * * *	*******		
		(ii)	Explique la disminución del radio del Na al Na ⁺ .	[2]
	:			
	* * * *	iarei		
	* * *	e a conce e		
	* * *			
	(b)	(i)	Indique las configuraciones electrónicas condensadas del Cr y el Cr³+.	[2]
	Cr ³⁺	:		
			3333311133333811133338111333381111333381111333811113388111338811133881113	
		(ii)	Describa el enlace metálico y cómo contribuye a la conductividad eléctrica.	[3]
				4.17

	(#C # #			

Véase al dorso

(Pregunta 2: continuación)

(c)	Deduzca la estructura de Lewis (representación de electrones mediante puntos)
8 2	y la geometría molecular del dicloruro de azufre, SCl ₂ .

[2]

Especie	SCI2
Estructura de Lewis	
Geometría molecular	

	(d)		S	ug	lie	ra	1,	da	an	d	0	ra	Z	on	e	S,	16	as	٧	Ol	a	tili	da	ac	le	S	re	la	TI	va	IS	a	eı	5	5	۽ ا	2)	/ 6	91	Н	2).												[3]
			13	•		÷		÷			ě		,	* 7	٠	٠		8	ř	, ,	ě	•		÷			×		٠	٠	6 8	٠	*	9 (9	٠	٠	•	(8	٠		٠	٠		Ť		Ť	٠		٠	•		٠		
				٠		÷		,		٠	ě		•	•)		٠					ě	٠					×			٠						٠		9				•		*		. ,	•		,	ř				
ñ								3								٠		8 8							8 9		×		٠	,					,	٠			į					·				1 1						
						ź.		3						a 3					÷									2 3			v 4					•											×							
		•		•	•	8		*		•		5 8	٠			•		9.9	8		8	•	• •		8.8		•		•	•	•		•	* *		•		8 8		• •	*		•		8.3				•		6.8	*	8	
	* * *	٠	8.9		•	8		×		٠	٠					٠	•	*	9		3	(*)		i e			٠		٠	٠			٠			٠		•	ě		(•	٠	8 9	•	*		٠	6		٠	•	
		•		2.3		÷		3		٠	٠		8			9	• •		9		*	9 }		٠		•	٠		9				ě			٠		: 10	ě		3					·	÷		٠	• /		ě		
				11 I 34 34		ž.		÷					ě	£ :	3			٠	÷			3 8		٠			8						8		3	× 3			8					٠	8 8		ě			•	6.8	ě	•	

(Pregunta 2: continuación)

(e) Considere la siguiente reacción de equilibrio:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Indique y explique cómo se vería afectado el equilibrio por el aumento de volumen del recipiente de reacción a temperatura constante.

[3]

 		•	*	۲	•	٠	٠	è			ž	9 3		•	£			٠	•	٠	ė		3.0	* 1	 ٠		•				į.	 •	* 1		•	*:	 *	٠				•	*
 							r		1	•	Ť	•		ě	ŝ	•	 9				ě	٠.	•						٠	٠	÷	÷	ž 8		٠	•					•	e i	
 							·.	÷			Ŧ	•		×	ě		 è			·						i i		.)		٠	ř.	 ž	9			÷		*					
 		٠		٠				÷						•	¥								*			ζ.						·		 ٠	٠		 į	÷			٠		
 			6.0	÷	•		•				,	٠																		٠					٠	÷	 ÷	ř		4			
 		٠						·			•																			٠					٠			,	. ,		٠	,	ŀ

[3]

- 3. Las reacciones de oxidación y reducción pueden tener varios usos comerciales.
 - (a) Un alumno decide construir una pila voltaica que consiste en un electrodo de aluminio, Al (s), un electrodo de estaño, Sn (s), y soluciones de nitrato de aluminio, Al(NO₃)₃ (aq) y nitrato de estaño(II), Sn(NO₃)₂ (aq).

En el diagrama se representa el flujo de electrones.

Rotule cada línea del diagrama usando la sección 25 del cuadernillo de datos.

(b))	j	Es	SC	ri	ba	а	la	1	е	С	u	а	С	Ó	n	1	08	aı	ra	а	la	а	r	е	а	С	C	ic	1Ċ	1	q	u	ĺ	m	nic	Cá	а	to	ot	а	1	е	S	p	е	ra	10	а	е	n	(а).															[1
				8 9		٠	٠	8			9		•		٠	÷		÷	9	į	,				ě	÷	8	9	ä	é														÷												• 6						*		•			æ			
	×	8.8		. (٠	٠	0	ř	•	×		÷	٠	٠	٠	8	ě	•	•		9	(s)		ě	ě	ę	ě	*	ě		٠		÷	,														•				•		•	*:		: ::	 *	:*;	3.5		œ		•			×		
	٠		٠			٠	٠	٠	8	*	•		9	٠	٠	٠	•		٠	<u> </u>	٠	1		•	ē.	0	ě	ř	÷		•			e					÷	÷	*	. •		*		×		::	* 1	ŧS.		. *		٠		* 13	c 3			,			(0)		٠	×	*	*		

- 4. La química orgánica se puede usar para sintetizar una variedad de productos.
 - (a) A partir del 2-buteno se pueden sintetizar varios compuestos. Dibuje la estructura del producto final de cada una de las siguientes reacciones químicas.

[2]

(b) Determine la variación de entalpía, ΔH , para la combustión del 2-buteno, usando la sección 11 del cuadernillo de datos.

[3]

$$CH_3CH=CHCH_3(g)+6O_2(g)\rightarrow 4CO_2(g)+4H_2O(g)$$

(c) Escriba la ecuación y nombre el producto orgánico de la reacción entre etanol y ácido metanoico.

[2]

Ecuación:

Nombre del producto:

Véase al dorso

(Pregunta 4: continuación)

(d) La oxidación del etanol con dicromato de potasio, K₂Cr₂O₇, puede formar dos productos orgánicos diferentes. Determine los nombres de los productos orgánicos y los métodos usados para aislarlos.

-12-

[2]

- (e) El análisis por combustión de un compuesto orgánico desconocido indicó que solo contenía carbono, hidrógeno y oxígeno.
 - (i) Deduzca dos características de esta molécula que se pueden obtener del espectro de masas. Use la sección 28 del cuadernillo de datos.

[2]

,	m/z	. 5	58																																																	
			œ:			6.)				•	: ×	,				- 19	: (4)					39	٠	•	ě:				÷							٠					٠	ě	. ,						•		٠	
					. •		•	*	× 9	- 20		٠	×	*			*	æ	×						×			*	:			÷	¥				¥	•	1	•		ř		÷	ě	•		8	•		٠	
,	m/z	. 4	13	:																																																
	***	. •			O#00			×				: *:	*	× :				***		€ ;	×			w is			 		•			*	•	* 1						9	٠	•			*		٠	*5				
			::		200		. 1	•		- 19	•	0.00		€ 1	,		÷	4 :	w.c.)	e •		×	* :		æ:	0.0		v	×	ŭ.	e o	¥.	¥	* 1				£ \$		÷				÷	·				ě			

(Pregunta 4: continuación)

(ii) Identifique el enlace responsable de la absorción a **A** en el espectro infrarrojo. Use la sección 26 del cuadernillo de datos.

[1]

(Pregunta 4: continuación)

(iii) Deduzca la identidad del compuesto desconocido usando la información previa, el espectro de RMN de ¹H y la sección 27 del cuadernillo de datos.

[2]

Espectro de RMN de ¹H

Información deducida de la RMN de ¹ H:		

9 3000 K K K K K K K K K K K K K K K K K	***********	0.00 (0.00 (0.00 (0.00))
Compuesto:		
*************************	*********************	463000 B B
	***********************	* 00000 K *

References:

- National Institute of Standards and Technology, US Department of Commerce, 2014. NIST Chemistry webBook, SRD 69. 4.(e)(i) [online] Available at: http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Mask=280#Mass-Spec">http://webbook.nist.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Mask=280#Mass-Spec [Accessed 24 April 2019].
- National Institute of Standards and Technology, US Department of Commerce, 2018. NIST Chemistry webBook, SRD 69. 4.(e)(ii) [online] Available at: http://webbook.nisft.gov/cgi/cbook.cgi?ID=C67641&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC> [Accessed 24 April 2019].
- eBiochemicals. [online] Available at: http://www.ebiochemicals.com/Wiki/QcEB000029459_HNMR_1.html 4.(e)(iii) [Accessed 24 April 2019]. REFERENCE REDACTED.

No escriba en esta página.

Las respuestas que se escriban en esta página no serán corregidas.

16FP16