Zadanie 1.

Załóżmy, że X_1,X_2,X_3 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym. Niech $S=X_1+X_2+X_3$. Obliczyć

$$p = Pr(X_1 > S/2 \text{ lub } X_2 > S/2 \text{ lub } X_3 > S/2).$$

- (A) p = 3/4
- (B) p = 2/3
- (C) p = 1/2
- (D) p = 2/e
- (E) p = e/4

Zadanie 2.

Na okręgu o promieniu 1 wybieramy losowo i niezależnie 2 punkty. Obliczyć wartość oczekiwaną odległości między nimi (odległość mierzymy *wzdłuż cięciwy*).

- (A) $\pi^2/10$
- (B) $\pi / 2$
- (C) 4/3
- (D) $4/\pi$
- (E) 1

•

Zadanie 3.

Niech Y_1,Y_2,Y_3,Y_4 będą niezależnymi zmiennymi losowymi, przy czym Y_k ma rozkład normalny $N(k\mu,\sigma^2)$, dla k=1,2,3,4. Rozważamy estymatory nieznanego parametru μ postaci

$$\hat{\mu} = a_1 Y_1 + a_2 Y_2 + a_3 Y_3 + a_4 Y_4.$$

Znaleźć *najmniejszą wariancję* estymatora powyższej postaci, przy założeniu, że jest to estymator *nieobciążony*.

(A)
$$(\sigma^2 + \mu^2)/30$$

(B)
$$\sigma^2/30$$

(C)
$$\sigma^2/4$$

(D)
$$\sigma^2 / 25$$

(E) Nie istnieje estymator, który dla wszystkich wartości parametrów μ i σ^2 ma najmniejszą wariancję, wśród estymatorów nieobciążonych rozważanej postaci.

Zadanie 4.

Rozważamy kolektywny model ryzyk. Zakładamy, że

$$S = S_N = \sum_{i=1}^N X_i,$$

gdzie N oraz $X_1,X_2,...$ są niezależnymi zmiennymi losowymi, przy czym N ma rozkład Poissona z wartością oczekiwaną λ , zaś rozkład każdej ze zmiennych X_n podaje następująca tabelka:

х	1	2
$\Pr(X_n = x)$	2/3	1/3

Oblicz warunkową wartość oczekiwaną $E(N \mid S = 3)$.

- (A) 2 + 1/2
- (B) $6 \cdot \frac{\lambda + 3}{2\lambda + 9}$
- (C) $\frac{4\lambda + 27}{2\lambda + 9}$
- (D) 2+1/3
- (E) 2 + 2/3

Zadanie 5.

Niech $X_1,...,X_{10},...,X_{20}$ będzie próbką losową z rozkładu normalnego $N(\mu,\sigma^2)$, z nieznanymi parametrami μ i σ^2 . Niech

$$\overline{X}_{10} = \frac{1}{10} \sum_{i=1}^{10} X_i, \quad \overline{X}_{20} = \frac{1}{20} \sum_{i=1}^{20} X_i,$$

$$S^2 = S_{10}^2 = \frac{1}{9} \sum_{i=1}^{10} (X_i - \overline{X}_{10})^2.$$

Należy skonstruować przedział $[\overline{X}_{10}-aS,\overline{X}_{10}+aS]$ taki, że

$$\Pr(\overline{X}_{20} \in [\overline{X}_{10} - aS, \overline{X}_{10} + aS]) = 0.95.$$

Wybierz odpowiednią liczbę a.

(A)
$$a = 2.0930 / \sqrt{20}$$

(B)
$$a = 2.2622 / \sqrt{20}$$

(C)
$$a = 2.2622 / \sqrt{10}$$

(D)
$$a = 2.0930 / \sqrt{20/3}$$

(E)
$$a = 2.2622 / \sqrt{20/3}$$

Zadanie 6.

Załóżmy, że X_0 oraz $W_1,W_2,...,W_{10}$ są niezależnymi zmiennymi losowymi, przy tym każda ze zmiennych $W_1,W_2,...,W_{10}$ ma jednakowy rozkład normalny N(5,1). Niech

$$X_{n+1} = \frac{1}{2} X_n + W_{n+1}$$
, dla $n = 0,1,...,9$.

Jeśli wiadomo, że zmienne losowe X_0 i X_{10} mają rozkład normalny o jednakowych parametrach, to jest nim rozkład

- (A) N(0,4/3)
- (B) N(5,1)
- (C) N(10,4/3)
- (D) N(10,1)
- (E) N(5,4/3)

 Uwaga : Symbol $\mathit{N}(\mu, v)$ oznacza rozkład normalny o $\mathit{wariancji}\ v$.

Zadanie 7.

Rzucamy 10 razy monetą. Niech K_5 oznacza liczbę orłów w pierwszych 5 rzutach, zaś K_{10} liczbę orłów we wszystkich 10 rzutach. Obliczyć

$$E Var[K_5|K_{10}].$$

- (A) 0.75
- (B) 0.625
- (C) 1.5
- (D) 1.125
- (E) 0.5

Zadanie 8.

Załóżmy, że dysponujemy pojedynczą obserwacją X z rozkładu normalnego $N(\mu,\sigma^2)$. Rozważmy zadanie testowania hipotezy

$$H_0: \mu = 0 \quad i \quad \sigma^2 = 1$$

przeciw alternatywie

$$H_1: \mu = 1 \quad i \quad \sigma^2 = 4.$$

Najmocniejszy test na poziomie istotności α jest postaci

Odrzuć
$$H_0$$
, $gdy X \notin (-2,b)$.

Podaj b i poziom istotności α .

(A)
$$b = 2$$
, $\alpha = 0.05$

(B)
$$b = 1$$
, $\alpha = 0.18$

(C)
$$b = 0$$
, $\alpha = 0.91$

(D)
$$b = \infty$$
, $\alpha = 0.02$

(E)
$$b = 4/3$$
, $\alpha = 0.11$

Zadanie 9.

Załóżmy, że $Y_1,...,Y_n,...$ są niezależnymi zmiennymi losowymi o jednakowym rozkładzie:

$$Pr(Y_n = 0) = Pr(Y_n = 1) = \dots = Pr(Y_n = 9) = \frac{1}{10}.$$

Niech $X_0 = 0$, oraz niech:

dla n = 1, 2, ...

$$X_{n} = \begin{cases} \max(X_{n-1}, Y_{n}), & gdy \quad Y_{n} > 0; \\ 0, & gdy \quad Y_{n} = 0. \end{cases}$$

Podać granicę $\lim_{n\to\infty} \Pr(X_n \ge 3)$.

- (A) 6/9
- (B) 7/9
- (C) 7/10
- (D) 7/8
- (E) granica nie istnieje

Wskazówka: Oblicz $Pr(X_n \ge 3|X_{n-1} < 3)$ i $Pr(X_n < 3|X_{n-1} \ge 3)$.

Zadanie 10.

Załóżmy, że A i B są zdarzeniami losowymi takimi, że $\Pr(A-B)>0$, $\Pr(B-A)>0$ oraz $\Pr(A\cap B)>0$. Jeśli dla pewnego zdarzenia C zachodzi nierówność

$$\Pr(C|A \cup B) > \Pr(C|A),$$

to z tego wynika, że:

(A)
$$\Pr(C|A \cup B) < \Pr(C|B)$$

(B)
$$Pr(C|A \cap B) > Pr(C|A)$$

(C)
$$Pr(C|B-A) > Pr(C|A)$$

(D)
$$Pr(C|B) > Pr(C)$$

(E)
$$\Pr(C|B-A) > \Pr(C|A-B)$$

Egzamin dla Aktuariuszy z 9 grudnia 2000 r.

Prawdopodobieństwo i Statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko K L U C Z	ODPOWIEDZI
Dacal	

Zadanie nr	Odpowiedź	Punktacja*
1	A	
2	D	
3	В	
4	В	
5	В	
6	C	
7	В	
8	Е	
9	D	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.