Lin Alg DM II. 6-7. gyakorlat: Bázistranszformáció, SAS-TAS

2024. március 21.

1 Elméleti összefoglaló

Proposition 1. Bázistranszformáció

Adott egy V vektortér annak $[\mathbf{b}] = \{\underline{b}_1, \underline{b}_2, \dots \underline{b}_n\}$ bázisával. Ekkor, ha szeretnénk áttérni egy másik, $[\mathbf{b}'] = \{\underline{b}'_1, \underline{b}'_2, \dots, \underline{b}'_n\}$ bázisra, azt a következő transzformációval tudjuk megtenni:

$$\underline{x}_{[\mathbf{b}']} = U^{-1}\underline{x}_{[\mathbf{b}]} \tag{1}$$

ahol

$$U = \begin{bmatrix} \underline{b}'_{1,[\mathbf{b}]} & \underline{b}'_{2,[\mathbf{b}]} & \dots & \underline{b}'_{n,[\mathbf{b}]} \end{bmatrix}. \tag{2}$$

Megjegyzés 1. A bázistranszformáció az adott vektornak a "régi" $[\mathbf{b}]$ bázisban felírt koordinátás alakjából ugyanennek a vektornak az "új" $[\mathbf{b}']$ bázisban felírt koordinátás alakját adja meg.

Megjegyzés 2. Az U mátrixban azon "új" [\mathbf{b}'] bázis elemeit rakjuk oszlopvektorként egymás mellé, amelyre szeretnénk áttérni, de figyelni kell, hogy a "régi" [\mathbf{b}] bázisban kell felírni [\mathbf{b}'] elemeit!

Megjegyzés 3. Az (1) összefüggés felírható a következő formában is:

$$\underline{x}_{[\mathbf{b}]} = U\underline{x}_{[\mathbf{b}']} \tag{3}$$

Vagyis az U segítségével az adott vektorunknak az "új" koordinátás alakjából a "régi" koordinátás alakját kapjuk meg. De ha az U inverzét használjuk, akkor a "régiből" az "újat", mint (1)-nél.

 $\mathbf{Megjegyzes}$ 4. A $[\mathbf{b}']$ -ről $[\mathbf{b}]$ -re való áttérés mátrixa a $[\mathbf{b}]$ -ről $[\mathbf{b}']$ -re való áttérés mátrixának az inverze.

Proposition 2. "TAS"

Adott egy $L:V\to W$ lineáris leképezés. Legyen a kiindulási tér bázisa $[\mathbf{a}]=\{\underline{a}_1,\underline{a}_2,\ldots,\underline{a}_n\}$, valamint a képtér bázisa $[\mathbf{b}]=\{\underline{b}_1,\underline{b}_2,\ldots,\underline{b}_k\}$, és legyen az L lineáris leképezés mátrixa ezen bázispárban A. Továbbá legyen a kiindulási tér egy másik bázisa $[\mathbf{a}']=\{\underline{a}'_1,\underline{a}'_2,\ldots,\underline{a}'_n\}$, valamint a képtér egy másik bázisa $[\mathbf{b}']=\{\underline{b}'_1,\underline{b}'_2,\ldots,\underline{b}'_k\}$. Ekkor az A mátrix ezen "másik" bázisokra vonatkoztatott A' megfelelőjét megkapjuk a következőképp:

$$A' = T^{-1}AS,$$

ahol S és T áttérési mátrixok, melyek az $\underline{x} = S \cdot \underline{x}'$ kiindulási térbeli, és az $\underline{y} = T \cdot \underline{y}'$ képtérbeli transzformációkat definiálják. (Itt a változóvektor eredeti bázisban felírt koordinátavektorát \underline{x} , az új bázisban felírtat \underline{x}' jelöli. Hasonlóan, a régi és az új bázisban felírt képvektorok y és y'.)

Megjegyzés 5. Levezetjük a fenti összefüggést. A hozzárendelési szabály az eredeti és az új bázispárban az alábbi:

$$\underline{y} = A\underline{x} , \quad \underline{y}' = A'\underline{x}'$$

Az összefüggést a régi és az új koordináták között megadják a bázistranszformációk mátrixai: $\underline{x} = S \cdot \underline{x}', \underline{y} = T \cdot \underline{y}'$. Ekkor:

$$\underline{y}' = T^{-1}\underline{y} = T^{-1}A\underline{x} = \underbrace{T^{-1}AS}_{A'}\underline{x}'.$$

Proposition 3. "SAS"

Adott egy $L:V\to V$ lineáris leképezés és annak A mátrixa. Legyen kiindulási és a képtérnek a bázisa $[\mathbf{a}]=\{\underline{a}_1,\underline{a}_2,\ldots,\underline{a}_n\}$. Továbbá legyen ugyanezen két térnek egy másik bázisa $[\mathbf{a}']=\{\underline{a}'_1,\underline{a}'_2,\ldots,\underline{a}'_n\}$. Ekkor az A mátrix ezen bázisokra vonatkoztatott A' megfelelőjét megkapjuk a következőképp:

$$A' = S^{-1}AS,$$

ahol ${\cal S}$ a bázistranszformáció mátrixa.

Megjegyzés 6. Ez az eset a "TAS" egy speciális esete, amikor a két transzformációs mátrix megegyezik: T = S.

Megjegyzés 7. A "SAS" leggyakoribb alkalmazása az, amikor a leképezés sajátvektorainak bázisára térünk át. Ekkor a leképezés mátrixa diagonális lesz, főátlójában a sajátértékekkel.

2 Feladatok: Bázistranszformáció, SAS, TAS

Feladat 1. Az \underline{x} vektor koordinátavektora az $\{\underline{i}, \underline{j}\}$ bázisban $\underline{x} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$. Mik lesznek ugyanezen \underline{x} vektornak a koordinátái, ha áttérünk a $\underline{c}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ és $\underline{c}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ bázisra?

Feladat 2. Adjuk meg azt a mátrixot, amely egy adott vektornak a $\underline{c}_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\underline{c}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ bázisban felírt koordinátás alakjából az $\{\underline{i}, j\}$ bázisban felírt koordinátás alakját adja meg!

Feladat 3. Adjuk meg azt a bázistranszformációs mátrixot, ami egy adott vektor $\{\underline{i},\underline{j}\}$ bázisban felírt koordinátás alakjából a $\underline{c}_1 = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\underline{c}_2 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ bázisban felírt koordinátás alakját adja meg!

Feladat 4. Adjuk meg azt a bázistranszformációt, amely a $\underline{c}_1 = \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix}$, $\underline{c}_2 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$, $\underline{c}_3 = \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}$ bázisban megadott

koordinátás alakból a $\underline{d}_1 = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, \ \underline{d}_2 = \begin{pmatrix} 4 \\ 1 \\ 5 \end{pmatrix}, \ \underline{d}_3 = \begin{pmatrix} 3 \\ -2 \\ -3 \end{pmatrix}$ bázisban felírt koordinátás alakot állítja elő!

Feladat 5. Adott az $L: \mathbb{R}^2 \to \mathbb{R}^3$ lineáris leképezés mátrixa, ha mind a kiindulási, mind a képtérben a kanonikus bázist használjuk:

$$A = \begin{bmatrix} 0 & -1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}.$$

Írjuk fel az L leképezés mátrixát, ha a kiindulási térben a bázis $[\mathbf{a}']$, melynek vektorai $\underline{a}'_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\underline{a}'_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, a képtérben pedig $[\mathbf{b}']$, melynek vektorai $\underline{b}'_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\underline{b}'_2 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\underline{b}'_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$!

Feladat 6. Legyen adott az $L: \mathbb{R}^3 \to \mathbb{R}^2$ leképezés, melynek mátrixa a kiindulási és a képtérben egyaránt a kanonikus bázist tekintve

$$A = \begin{bmatrix} 2 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}.$$

Adjuk meg azt a mátrixot, amely ugyanezt a leképezést írja le, azonban a kiindulási térben a $[\mathbf{c}] = \{\underline{c}_1, \underline{c}_2, \underline{c}_3\}$ bázist, a képtérben pedig a $[\mathbf{d}] = \{\underline{d}_1, \underline{d}_2\}$ bázist tekintve, ahol

$$\underline{c}_1 = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$
 , $\underline{c}_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\underline{c}_3 = \begin{pmatrix} 0 \\ 4 \\ -1 \end{pmatrix}$, $\underline{d}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\underline{d}_2 = \begin{pmatrix} -5 \\ -3 \end{pmatrix}$!

Feladat 7. Adott az $L : \mathbb{R}^2 \to \mathbb{R}^2$ lineáris leképezés, amelynek az $[\mathbf{a}] = \{\underline{i}, \underline{j}\}$ bázisban felírt mátrixa $A = \begin{bmatrix} 4 & 7 \\ 1 & -2 \end{bmatrix}$.

a) Mi lesz ugyanezen leképezés mátrixa, ha áttérünk az

$$[\mathbf{a}'] = \{\underline{i} + j, -\underline{i} + j\}$$

bázisra mind a kiindulási, mind a képtérben?

- b) Mi lesz ugyanezen leképezés mátrixa, ha áttérünk az A mátrix sajátvektorainak bázisára mind a kiindulási, mind a képtérben?
- c) Mi lesz az eredeti A mátrix 5. hatványa?