IN THE CLAIMS:

Please cancel claim 1 without prejudice or disclaimer, amend claims 4-8, and add new claims 10-15, as follows:

- 1. (Cancelled).
- 2. (Original) An etching method for plasma-etching an SiO₂ film layer covering an SiN_x film layer formed at a workpiece placed inside an air-tight processing chamber by raising to plasma a processing gas induced into said processing chamber, comprising
 - a first step in which said SiO₂ film layer is etched by using a mixed gas containing at least C₄F₈ and CO as said processing gas; and a second step in which a switch is made to a mixed gas containing at least C₄F₈ and CH₂F₂ to be used as said processing gas to etch said SiO₂ film layer immediately before said SiN_x film layer becomes exposed.
- 3. (Original) An etching method for plasma-etching an SiO₂ film layer covering an SiN_x film layer formed at a workpiece placed inside an air-tight processing chamber by raising to plasma a processing gas induced into said processing chamber, comprising
 - a first step in which said SiO_2 film layer is etched by using a mixed gas containing at least C_4F_8 and CO as said processing gas; and a second step in which a switch is made to a mixed gas containing at least C_4F_8 and CH_2F_2 to be used as said processing gas to etch said SiO_2 film layer immediately after said SiN_x film layer becomes exposed.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLIP

1300 I Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com

- 4. (Currently Amended) An etching method according to any of claims 1, 2 and 3 claim 2 or 3, wherein; the flow rate ratio (CH_2F_2 / C_4F_8) of C_4F_8 and CH_2F_2 in said mixed gas containing at least C_4F_8 and CH_2F_2 is set essentially within a range of $0.4 \sim 1.0$.
- (Currently Amended) An etching method according to any of claims 1, 2 and 3 claim 2 or 3, wherein; the partial pressure corresponding to C₄F₈ relative to the entire pressure of said mixed gas copputationing containing at least C₄F₈ and CH₂F₂ is set essentially within a range of 0.4 (mTorr) ~ 0.8 (mTorr).
- 6. (Currently Amended) An etching method according to any of claims 1, 2 and 3 claim 2 or 3, wherein; the density of plasma excited inside said processing chamber is set essentially within a range of 1.5 X 10¹⁰ (number of ions / cm³) ~ 1.2 X 10¹¹ (number of ions / cm³).
- 7. (Currently Amended) An etching method according to any of claims 1, 2 and 3 claim 2 or 3, wherein;

said workpiece is placed on a mounting surface of a susceptor provided inside said processing chamber; and

the temperature of said susceptor is set essentially within a range of 20 °C ~ the heat resistance temperature of a photoresist layer constituting a mask pattern for said SiO₂ film layer.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER

1300 l Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com

- 8. (Currently Amended) An etching method according to any of claims 1, 2 and 3
 claim 2 or 3, wherein; said mixed gas containing at least C₄F₈ and CH₂F₂ further
 contains an inert gas.
- (Original) An etching method according to claim 2 or 3, wherein said mixed gas containing at least C₄F₈ and CO further contains an inert gas.
- 10. (New) An etching method for plasma-etching of an SiO₂ film layer covering an SiN_x film layer formed at a workpiece placed inside an air-tight processing chamber, the method comprising:

introducing a processing gas of a mixed gas containing at least C_4F_8 and CH_2F_2 into said processing chamber; raising the processing gas to a plasma; and etching the SiO_2 film layer selectively to the SiN_x film layer.

- 11. (New) An etching method according to claim 10, wherein the flow rate ratio of CH_2F_2 to C_4F_8 in said mixed gas containing at least C_4F_8 and CH_2F_2 ranges from 0.4 to 1.0.
- 12. (New) An etching method according to claim 10, wherein the partial pressure corresponding to C₄F₈ relative to the entire pressure of said mixed gas containing

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER !!! r

1300 I Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com at least C_4F_8 and CH_2F_2 is set essentially within a range of 0.4 mTorr ~ 0.8 mTorr.

- 13. (New) An etching method according to claim 10, wherein the density of plasma excited inside said processing chamber is set essentially within a range of 1.5 X $10^{10} \sim 1.2 \times 10^{11}$ ions / cm³.
- 14. (New) An etching method according to claim 10, wherein: said workpiece is placed on a mounting surface of a susceptor provided inside said processing chamber; and

the temperature of said susceptor is set essentially within a range of 20 °C ~ the heat resistance temperature of a photoresist layer constituting a mask pattern for said SiO₂ film layer.

15. (New) An etching method according to claim 10, wherein said mixed gas containing at least C₄F₈ and CH₂F₂ further comprises an inert gas.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER:112

1300 I Street, NW Washington, DC 20005 202,408,4000 Fax 202,408,4400 www.finnegan.com