Copy the figure on the chalkboard and find its image by $R_k \circ R_i$. Then copy the figure again and find its image by $R_i \circ R_k$.

9.

- 11. Prove Theorem 14-6. (Hint: Let S and T be isometries. Consider a \overline{PO} under $S \circ T$.)
- 12. Explain how the Corollary follows from Theorem 14-8.

Written Exercises

1. If $f(x) = x^2$ and g(x) = 2x - 7, evaluate the following.

a. $(g \circ f)(2)$

b. $(g \circ f)(x)$

c. $(f \circ g)(2)$

d. $(f \circ g)(x)$

2. Repeat Exercise 1 if f(x) = 3x + 1 and g(x) = x - 9.

3. If $h: x \to \frac{x+1}{2}$ and $k: x \to x^3$, complete the following.

a. $k \circ h: 3 \rightarrow \frac{?}{?}$ **b.** $k \circ h: 5 \rightarrow \frac{?}{?}$ **c.** $k \circ h: x \rightarrow \frac{?}{?}$ **d.** $h \circ k: 3 \rightarrow \frac{?}{?}$ **f.** $h \circ k: x \rightarrow \frac{?}{?}$

4. Repeat Exercise 3 if $h:x \to x^2 - 1$ and $k:x \to 2x + 7$.

Copy each figure and find its image under $R_k \circ R_j$. Then copy the figure again and find its image under $R_i \circ R_k$.

5.

Copy each figure twice and show the image of the red flag under each of the composites given.

7. a. $H_B \circ H_A$

b. $H_A \circ H_B$

8. a. $R_j \circ H_C$ **b.** $H_C \circ R_j$

9. a. $H_E \circ D_{E, \frac{1}{2}}$

b. $D_{E,\frac{1}{2}} \circ H_{E}$

