Segunda Clase

Tema

Expresión Resumida de los datos - Medidas de Posición y de Dispersión

Introducción

En esta segunda clase vamos a incorporar algunos indicadores y herramientas que nos permiten una mejor comprensión de los datos obtenidos, con el fin de presentar la información procesada de una forma más sintética y de mayor claridad comprensiva para nuestro demandante, de la investigación claro.

En el siguiente cuadro mostramos una síntesis esquemática de las medidas de posición que vamos a ver, luego haremos lo propio con las medidas de dispersión.

Modo (Mo)

Es el valor de la variable que observa la frecuencia más alta

Formas de cálculo. Como en el resto de las medidas a presentar hay dos posibilidades, a) Frecuencias Simples, b) Frecuencias Agrupadas (intervalos)

a) Frecuencias Simples

Tabla 1: Nivel de estudios terminados

NET	Casos	
Primarios	30	
Secundarios	50	
Terciarios	20	
Total	100	

En este Ejemplo el modo pertenece a los alumnos secundarios con 50 casos

b) Frecuencias Agrupadas

Tabla 2: Edades

Grupo de Edad	Casos
16 a 36 años (Y)	48
37 a 55 años (X)	28
56 a 74 años (Z)	18
75 o más años	6
Total	100

En las series agrupadas el primer paso consiste en encontrar el intervalo con la mayor frecuencia, que para el caso es el grupo de edad comprendido entre los 16 años y los 36 años

Una vez identificado el intervalo que contiene el valor modal se realiza una interpolación a su interior, con la siguiente formula

Reemplazando

$$Mo = 16 + 20 * ((28/(0+28))$$

$$Mo = 16 + 20 = 30$$

$$Mo = 30$$

Li=límite inferior de la categoría modal i=Amplitud de la categoría FAant=Frecuencia absoluta de la categoría anterior FApost=Frecuencia absoluta de la categoría posterior

Mediana (Me)

Se define como el valor de la variable que supera a no más de la mitad de datos y es superado, a su vez, por no más de la mitad de los casos

Formas de Cálculo

Para este caso vamos a tomar como ejemplo uno de los subgrupos de la tabla de ingresos, y vamos a considerar dos posibilidades: a) Una cantidad impar de datos y b) una cantidad par de datos. Estos representan las dos posibilidades que se dan en los casos de tablas ordenadas por frecuencia simple.

Tabla 3: Subgrupo Ingresos

Nro Reg	Ingresos	Nro Reg	Ingresos	
1	15.000	1	15.000	
2	20.000	2	20.000	
3	50.010	3	50.010	
4	56.000	4	56.000	
5	26.000	5	26.000	
6	30.000	6	30.000	
7	25.000	7	25.000	
8	40.000	8	40.000	
9	31.000	9	31.000	
	•	10	28.000	

a) Frecuencias Simples: Cantidad de Observaciones Impar

Nro Reg	Ingresos
1	15.000
2	20.000
7	25.000
5	26.000
6	30.000
9	31.000
8	40.000
3	50.010
4	56.000

El primer paso consiste en ordenar de menor a mayor la variable bajo análisis y luego ubicar el caso que esta al medio de la serie

En este caso la mediana corresponde al valor que esta al medio de la distribución es decir el valor de 30.000 pesos que corresponde al registro que hemos denominado 6 (en ese lugar podría estar el nombre de la persona entrevistada, al que le asignamos un número de registro al momento de la carga de datos).

b) Frecuencias Simples: cantidad de observaciones par

La mediana se encuentra entre 28000 y 30000, es decir Me = (28000+30000)/2= 29000.

c) Frecuencias Agrupadas: caso de agrupadas pero no por intervalos

Tabla 4: Imagen del Dirigente X

Imagen	Casos
Muy mala	10
Mala	40
Regular	15
Buena	30
Muy Buena	5
Total	100

Imagen	FA	FAA
Muy Buena	5	5
Muy mala	10	15
Regular	15	30
Buena	30	60
Mala	40	100
Total	100	

Ordenamos la serie de menor a mayor, calculamos la FAA. Luego para ubicar el valor que esta al medio, dividimos las cantidad total de casos (n) por 2 (la mitad), esto corresponde al valor de 50 (100/2).

Es decir hasta la categoría regular se ubican 30 casos, si la mediana está en el valor 50, significa que no puede estar allí, ahora hasta la categoría buena se ubican 60 casos de los 100 entrevistados, lo que significa que allí está el valor de la mediana.

d) Frecuencias Agrupadas por intervalos

Ingresos	FA
15.000 – 29.000	50
29.000 - 43.000	40
43.000 – 57.000	10
Total	100

En el caso de que las frecuencias estén agrupadas por intervalo, primero identificamos la categoría donde se encuentra la mediana y luego y luego obtenemos el valor de la misma mediante interpolación, con la formula siguiente:

Li = Límite inferior del intervalo que contiene a la mediana i = Amplitud del intervalo n = cantidad total de casos FAAfant = frecuencia absoluta acumulada anterior a la que contiene a la mediana FAp = frecuencia absoluta propia que

Media (\overline{X})

Es el valor promedio del conjunto de datos que observa la variable. Su cálculo solo tiene sentido en el caso de variables cuantitativas

a) Frecuencias Simples

Nro. Reg	Xi	Ingresos
1	X1	15.000
2	X2	20.000
3	X3	50.010
4	X4	56.000
5	X5	26.000
6	X6 30.000	
7	X7	25.000
8	X8	40.000
9	X9	31.000
10	X10	28.000
	Total	321.010

El valor promedio se calcula como la suma de todos los valores y se divide por cantidad de casos, es decir

 \overline{X} = 321.010 / 10 = 32.101.

contiene a la mediana

En formulas es

 \overline{X} = (X1

+X2+X3+X4+X5+X6+X7+X8+X9+X10) / n

 $\overline{X} = \sum Xi / n$, para i que va de 1 a 10

 \overline{X} = 32.101

b) Frecuencias Agrupadas pero no en intervalos

Para este caso vamos a recurrir a un ejemplo externo a la SP1, dado que no incluimos una variable númerica que pudieramos clasificar de este modo. Supongamos obtenemos el numero de materias aprobadas de los Alumnos de IA al cabo del primer Año y obtenemos la siguiente tabla

Numero de		
Materias	Cantidad de	X * FA
Aprobadas	casos (FA)	A FA
(X)		
0	5	0
1	6	6
2	6	12
3	3	9
4	8	32
5	8	40
6	10	60
7	3	21
8	4	32
Total	53	212

c) Frecuencias Agrupadas por intervalos

Intervalo (X)	FA	MC (Xi)	FA * MC
15.000 a 25.250	5	20.125	60.375
25.250 a 35.500	4	30.750	121.500
35.500 a 45.750	1	40.625	40.625
47.750 a 56.000	2	50.875	101.750
Total	10		324.250

Se resuelve de la misma forma que en el caso anterior, solo que como valor de las Xi, se toma lo que vamos a llamar Marca de Clase (MC) que no es otra cosa que el valor promedio entre los dos valores extremos del intervalo. Por lo que el cálculo ahora será: X = (5*20.125 + 4*30.750 +1*40.625 + 2*50.875)/10 =324.250 / 10 = 32.425En formulas X = (X1*FA1 + X2*FA2 + X3*FA3 +X4*FA4) / n $X = (\sum Xi*FAi) / n$ para i que va de 1 a 4

Medidas de Dispersion

Otras

Varianza

Desviación Estándar

Coeficiente de Variación

Recorrido

Amplitud Intercuartilica Coeficiente de incertidumbre

Varianza (V)

Es un indicador del grado de dispersión de los valores de la variable respecto a su media.

a) Frecuencia Simple

Nro.	Xi	Ingrese			
Reg	ΛI	Ingreso	₹ - Xi	$(\overline{X} - Xi)^2$	
1	X1	15.000	-17.101	292.444.201	
2	X2	20.000	-12.101	146.434.201	
3	Х3	50.010	17.909	320.732.281	
4	X4	56.000	23.899	571.162.201	
5	X5	26.000	-6.101	37.222.201	
6	X6	30.000	-2.101	4.414.201	
7	X7	25.000	-7.101	50.424.201	
8	X8	40.000	7.899	62.394.201	
9	X9	31.000	-1.101	1.212.201	
10	X10	28.000	-4.101	16.818.201	
Total		321.010	0	1.503.258.090	
\overline{x}		32.101		150.325.809	
		Media		Varianza	

Para calcular la varianza se calcula primero la diferencia entre la media y cada valor de la variable (desvíos), luego se eleva al cuadrado cada una de esas diferencias y se procede a la suma total de estas últimas. Al resultado se lo divide por la cantidad total de casos. En formula es : $(\overline{X}-X1)^2 + \overline{X}$ $(X^2)^2 + (X^2 - X^3)^2 + (X^2 - X^4)^2 + (X$ $X5)^2 + (X-X6)^2 + (X-X7)^2 + (X-X8)^2 + (X-X9)^2 + (X-X10)^2) / n$ $V(X) = (\sum (X - Xi)^2) / n para i$

que va de 1 a 10

b) Frecuencias Agrupadas. Numero de Materias Aprobadas

X	FA	X*FA	x - X	$(X-\overline{X})^2$	$(X - \overline{X})^2 *_{FA}$
0	5	0	-4	16	80
1	6	6	-3	9	54
2	6	12	-2	4	24
3	3	9	-1	1	3
4	8	32	0	0	0
5	8	40	1	1	8
6	10	60	2	4	40
7	3	21	3	9	27
8	4	32	4	16	64
Total	53	212		60	300
Media	4				

Paso 1: Diferencia entre el valor de la variable y su media (columna 4)

Paso 2: Elevar al cuadrado esas diferencias (columna 5)

Paso 3: Multiplicar lo obtenido en el paso anterior por su frecuencia absoluta (columna 6)

Paso 4: Sumar el resultado de la columna anterior

Paso 5: Dividir lo anterior por la cantidad de casos

En formula $V(X) = \sum_{n} (x - \mu)^2 * FA$

V(X) = 300 / 53 = 5.67

c) Frecuencias agrupadas por intervalos

Li	Ls	FA	MC	МС-µ	(MC-µ)2	(MC-μ)2*FA
155,5	160,5	2	158	-16,7	278,89	557,78
160,5	165,5	4	163	-11,7	136,89	547,56
165,5	170,5	9	168	-6,7	44,89	404,01
170,5	175,5	11	173	-1,7	2,89	31,79
175,5	180,5	11	178	3,3	10,89	119,79
180,5	185,5	8	183	8,3	68,89	551,12
185,5	190,5	3	188	13,3	176,89	530,67
190,5	195,5	1	193	18,3	334,89	334,89
		49				3077,61
Media	174,7	Var (X) = 3077.61 / 49 = 62,80				

Paso 1: Para el cálculo de la varianza primero se obtiene la marca de clase de cada intervalo (MC), que va a ser el valor representativo de X Columna 4)

Paso 2: Se calcula la diferencia entre cada valor de X (Marca de Clase) y la media de la distribución (columna 5)

Paso 3: Se eleva al cuadrado lo obtenido en la columna anterior (columna 6)

Paso 4: Se multiplica lo obtenido en la columna anterior por la FA (columna 7)

Paso 5: Se suman los valores de la columna anterior y se los divide por la cantidad de casos

En formulas

 $Var(X) = (\sum (Xi - \mu)^2 *FA) / n$