

Intro to Robotics with Raspberry Pi!

Section 2. Physical Computing – Sensors and Data

Outline

Sensing the Environment with Raspberry Pi

Types Of Sensors

Different Types of Sensors

Denbot Kit Sensors: Ultrasonic and Optical

Working w Ultrasonic Sensor

Principle of Operation

Reading HC-SR04 Data From Python

Working w Photoresistive Sensor

Principle of Operation

Reading LDR Data From Python

Types of Sensors

What is a Sensor?

 An object whose purpose is to detect changes in its environment and to provide a corresponding output.

Types of Sensors

Ultrasonic Flow Distance Resistive Capacitive **Digital Active Position** Analog **Passive** Inductive **Pressure** Photosens. **Temperature** Light Electrochem.

- By power/energy supply requirement
- By parameter measured
- By principle of operation
- By output signal type

Denbot Kit Sensors

• Distance (ultrasonic)

Speed (magnetic)

• Light (photosensitive, resistive)

Ultrasonic Sensor Operation

Ultrasonic Sensor Pinout

 To communicate with the Ultrasonic Sensor we need two power and two data signals.

Ultrasonic Sensor Principle Of Operation

Measuring Distance with Ultrasound

• Pin order on the HC-SR04 can change. Make a note of which pin (#5 or #6) is connected to **Echo** and **Trigger**.

Measuring Distance with Ultrasound

- As always, let's use **Python** on our Raspberry Pi's Operating System to get data from the ultrasonic sensor.
- Connect to your Raspberry Pi via SSH or VNC.
- From a Terminal window, navigate to the sensors directory.

cd ~/Makerden/sensors

Fire up an interactive Python session.

python

Measuring Distance with Ultrasound

 Let's use the <u>HCSR04 module</u> to generate a trigger signal and measure its time of flight!

```
>>> from HCSR04 import Ultrasonic
>>> sensor_obj = Ultrasonic(pin_echo=6, pin_trigger=5)

>>> t = sensor_obj.getPingTime()

>>> print("Time of flight is %f milliseconds") % (t*1000)
```

Write a script called time_of_flight.py where the 'ping time' is printed at
 1Hz. Place objects in front of sensor to try and see it change.

Photoresistive Sensor Operation

Light-Dependent Resistor (LDR)

• The 10K Ohm LDR located underneath the Line-Sensor board, and connected to a 10K Ohm (fixed) resistor as a voltage divider.

Measuring Brightness with Photoresistivity

 Let's use the <u>ADS1115 module</u> to read (digital) values between –32,768 and 32,767 corresponding to analog voltages output by the LDR!

```
>>> from ADS1115 import ADS115

>>> adc_obj = ADS1115()

>>> channel_0 = adc_obj.read_adc(0) #'LDR' sensor

>>> print("Channel 0 is reading %d") % (channel_0) #{-32,768~32,767}
```

Write a script called Idr_sensor.py where the 'channel value' is printed at
 1Hz. Cast shadows over sensor to try and see it change.

Photoreflective Sensor Operation

Measuring Brightness with Photoreflectivity

• Let's use the **ADS1115 module** to read (digital) values between -32,768 and 32,767 corresponding to analog voltages output by the QRE1113!

```
>>> from ADS1115 import ADS115
>>> adc_obj = ADS1115()

>>> channel_3 = adc_obj.read_adc(3) #'L' (left) sensor

>>> print("Channel 3 is reading %d") % (channel_3) #{-32,768~32,767}
```

 Write a script called light_sensor.py where the 'channel value' is printed at 1Hz. Cast shadows over sensor to try and see it change.