Patent Claims

1. Hexylcarboxanilides of the formula (I)

5 in which

10

15

20

25

30

L represents
$$R^2$$
 R^2 R^3 R^3 R^4 R^4

where the bond marked with * is attached to the amide, whereas the bond marked with # is attached to the alkyl side chain,

represents hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $(C_1-C_8-alkyl)$ carbonyl, $(C_1-C_8-alkoxy)$ carbonyl, $(C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-cycloalkyl)$ carbonyl; $(C_1-C_6-haloalkyl)$ carbonyl, $(C_1-C_6-haloalkoxy)$ carbonyl, $(halo-C_1-C_4-alkoxy-C_1-C_4-alkyl)$ carbonyl, $(C_3-C_8-halocycloalkyl)$ carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or $-C(=O)C(=O)R^4$, $-CONR^5R^6$ or $-CH_2NR^7R^8$,

- R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,
- R³ represents halogen, C₁-C₈-alkyl or C₁-C₈-haloalkyl,

R⁴ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

- R⁵ and R⁶ independently of one another each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁵ and R⁶ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of

5

10

15

20

25

30

or

halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁹,

- R⁷ and R⁸ independently of one another represent hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁷ and R⁸ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁹,
- R⁹ represents hydrogen or C₁-C₆-alkyl,

A represents the radical of the formula (A1)

$$R^{10}$$
 R^{11}
 R^{12}
(A1) in which

R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl-C₁-C₄-alkyl,

R¹¹ represents hydrogen, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, C₁-C₄-alkylthio, C₁-C₄-haloalkyl or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms, and

R¹² represents hydrogen, C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₂-C₆-alkenyl, C₃-C₆-cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl having in each case 1 to 5 halogen atoms, or represents phenyl,

A represents the radical of the formula (A2)

$$R^{14}$$
 R^{15} (A2) in which

 R^{13} and R^{14} independently of one another represent hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having in each case 1 to 5 halogen atoms and

 R^{15} represents halogen, cyano or C_1 - C_4 -alkyl, or C_1 - C_4 -haloalkyl or C_1 - C_4 -haloalkoxy having in each case 1 to 5 halogen atoms,

or

A represents the radical of the formula (A3)

$$R^{16}$$
 R^{18} (A3) in which

 R^{16} and R^{17} independently of one another represent hydrogen, halogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms and

R¹⁸ represents hydrogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having up to 5 halogen atoms,

or

5

10

15

25

A represents the radical of the formula (A4)

$$R^{20}$$
 N R^{19} (A4) in which

R¹⁹ represents halogen, hydroxy, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms and

R²⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms, C₁-C₄-alkylsulphinyl or C₁-C₄-alkylsulphonyl,

or A

represents the radical of the formula (A5)

$$CH_3$$
 (A5),

20 or

A represents the radical of the formula (A6)

R²¹ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A7)

$$(A7)$$
 in which

R²² represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A8)

$$\mathbb{R}^{23}$$
 (A8) in which

R²³ and R²⁴ independently of one another represent hydrogen, halogen, amino, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms and

R²⁵ represents hydrogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

5

10

15

20

25

A represents the radical of the formula (A9).

 R^{26} and R^{27} independently of one another represent hydrogen, halogen, amino, nitro, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms and

R²⁸ represents halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A10)

$$\mathbb{R}^{29}$$
 (A10) in which

R²⁹ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)-amino, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms and

R³⁰ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

A represents the radical of the formula (A11)

$$R^{31}$$
 R^{32} (A11) in which

R³¹ represents hydrogen, halogen, amino, C₁-C₄-alkylamino, di-(C₁-C₄-alkyl)-amino, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms and

R³² represents halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

30 or

A represents the radical of the formula (A12)

$$R^{33}$$
 (A12) in which

R³³ represents hydrogen or C₁-C₄-alkyl and

R³⁴ represents halogen or C₁-C₄-alkyl,

or

A represents the radical of the formula (A13)

$$(A13)$$
 in which

R³⁵ represents C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A14)

$$N$$
 (A14) in which

10

5

R³⁶ represents hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents the radical of the formula (A15)

15

20

R³⁷ represents halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

A represents the radical of the formula (A16)

$$R^{40}$$
 R^{39}
 R^{39}
 R^{41}
 R^{39}
(A16) in which

25

R³⁸ represents hydrogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl having 1 to 5 halogen atoms, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C₁-C₄-alkyl, C₁-C₄-alkylsulphonyl, di(C₁-C₄-alkyl)aminosulphonyl, C₁-C₆-alkylcarbonyl or in each case optionally substituted phenylsulphonyl or benzoyl,

R³⁹ represents hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴⁰ represents hydrogen, halogen, cyano, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

R⁴¹ represents hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

5

10

15

20

25

30

A represents the radical of the formula (A17)

$$\mathbb{R}^{42}$$

(A17) in which

R⁴² represents C₁-C₄-alkyl.

2. Hexylcarboxanilides of the formula (I) according to Claim 1 in which

L represents
$$\stackrel{}{ \downarrow_2}^{2} \stackrel{}{ }_3$$
 $\stackrel{}{ \downarrow_3}^{8}$ $\stackrel{}{ \downarrow_4}^{8}$ $\stackrel{}{ \downarrow_4}^{8}$,

where the bond marked with * is attached to the amide, whereas the bond marked with # is attached to the alkyl side chain,

represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C₁-C₆-alkyl)carbonyl, (C₁-C₄-alkoxy)carbonyl, (C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-cycloalkyl)carbonyl; (C₁-C₄-haloalkyl)carbonyl, (C₁-C₄-haloalkoxy)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁴, -CONR⁵R⁶ or -CH₂NR⁷R⁸,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R³ represents fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl, C₁-C₆-haloalkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms,

R⁴ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁵ and R⁶ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case having 1 to 9 fluorine, chlorine and/or bromine atoms,

5

10

15

20

25

30

or

- R⁵ and R⁶ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally monoto tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁹,
- R⁷ and R⁸ independently of one another each represent hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁷ and R⁸ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR⁹,
- R⁹ represents hydrogen or C₁-C₄-alkyl,

A represents the radical of the formula (A1)

$$R^{10}$$
 R^{11}
(A1) in which

- R¹⁰ represents hydrogen, hydroxyl, formyl, cyano, fluorine, chlorine, bromine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy having in each 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,
- R¹¹ represents hydrogen, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and
- R¹² represents hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

A represents the radical of the formula (A2)

$$R^{14}$$
 R^{15}
(A2) in which

R¹³ and R¹⁴ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and

R¹⁵ represents fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A3)

$$R^{17}$$
 (A3) in which

and/or bromine atoms and

10 R¹⁶ and R¹⁷ independently of one another represent hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine

R¹⁸ represents hydrogen, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

15 or

A represents the radical of the formula (A4)

$$R^{20}$$
 N R^{19} (A4) in which

R¹⁹ represents fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms and

R²⁰ represents hydrogen, fluorine, chlorine, bromine, iodine, cyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂-alkylsulphinyl or C₁-C₂-alkylsulphonyl,

or

A represents the radical of the formula (A5)

$$O$$
CH₃ (A5),

or

A represents the radical of the formula (A6)

. .

20

25

30

R²¹ represents methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A7)

(A7) in which

R²² represents methyl, ethyl, trifluoromethyl, difluoromethyl, difluorochloromethyl or trichloromethyl,

or

A represents the radical of the formula (A8)

(A8) in which

10

15

R²³ and R²⁴ independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and

R²⁵ represents hydrogen, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A9)

(A9) in which

20

25

R²⁶ and R²⁷ independently of one another represent hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and

R²⁸ represents fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A10)

(A10) in which

R²⁹ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and

R³⁰ represents fluorine, chlorine, bromine, hydroxyl, methyl, ethyl, methoxy, ethoxy, cyclopropyl, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

5

10

15

20

A represents the radical of the formula (A11)

$$R^{31}$$
 (A11) in which

R³¹ represents hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, cyano, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms and

R³² represents fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A12)

$$\mathbb{R}^{33}$$
 (A12) in which

R³³ represents hydrogen, methyl or ethyl and

R³⁴ represents fluorine, chlorine, bromine, methyl or ethyl,

or

A represents the radical of the formula (A13)

$$\bigcap_{\mathsf{R}^{35}}$$
 (A13) in which

R³⁵ represents methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A14)

$$(A14)$$
 in which

25

R³⁶ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A15)

R³⁷ represents fluorine, chlorine, bromine, iodine, hydroxyl, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms,

5 or

10

15

20

A represents the radical of the formula (A16)

$$R^{40}$$
 R^{39}
 R^{41}
 R^{38}
(A16) in which

R³⁸ represents hydrogen, methyl, ethyl, C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂-alkoxy-C₁-C₂-alkyl, hydroxymethyl, hydroxyethyl, methylsulphonyl or dimethylaminosulphonyl,

R³⁹ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁰ represents hydrogen, fluorine, chlorine, bromine, cyano, methyl, ethyl, isopropyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴¹ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents the radical of the formula (A17)

R⁴² represents methyl, ethyl, n-propyl or isopropyl.

- 3. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which L represents L-1.
- 4. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which L represents L-2.
 - 5. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which R¹ represents hydrogen, formyl or -C(=O)C(=O)R⁴, where R⁴ is as defined in Claim 1 or 2.
- Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which A represents A1.
 - 7. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which R³ represents halogen.

- 8. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which R³ represents C₁-C₈-alkyl.
- 9. Hexylcarboxanilides of the formula (I) according to Claim 1 or 2 in which R³ represents C₁-5 C8-haloalkyl.
 - 10. Process for preparing the compounds of the formula (I) according to Claim 1, characterized in that
 - carboxylic acid derivatives of the formula (II) a)

$$A \xrightarrow{X^1} X^1$$

10

in which

À is as defined in Claim 1 and

 X^{l} represents halogen or hydroxyl

are reacted with an aniline derivative of the formula (III)

$$\begin{array}{c|c}
HN & L & R^3 & CH_3 \\
R^1 & CH_3 & CH_3
\end{array}$$

15

in which L, R¹ and R³ are as defined in Claim 1,

if appropriate in the presence of a catalyst, if appropriate in the presence of a condensing agent, if appropriate in the presence of an acid binder and if appropriate in the presence of a diluent,

20

or

b) hexylcarboxanilides of the formula (I-a)

in which L, A and R³ are as defined in Claim 1

are reacted with halides of the formula (IV)

$$R^{1-A} - X^2$$
 (IV

25

in which

 R^{1-A}

 X^2 represents chlorine, bromine or iodine,

represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, 30 C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonylC₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

(C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁴, -CONR⁵R⁶ or -CH₂NR⁷R⁸,

where R⁴, R⁵, R⁶, R⁷ and R⁸ are as defined in Claim 1 in the presence of a base and in the presence of a diluent.

10

5

- 11. Compositions for controlling unwanted microorganisms, characterized in that they comprise at least one hexylcarboxanilide of the formula (I) according to Claim 1, in addition to extenders and/or surfactants.
- 15 12. Use of hexylcarboxanilides of the formula (I) according to Claim 1 for controlling unwanted microorganisms.
 - 13. Method for controlling unwanted microorganisms, characterized in that hexylcarboxanilides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their habitats.
 - 14. Process for preparing compositions for controlling unwanted microorganisms, characterized in that hexylcarboxanilides of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.

25

35

20

15. Aniline derivatives of the formula (III-b)

$$\begin{array}{c|c}
HN & R^2 \\
R^{1-B} & CH_3 \\
H_3C & CH_3
\end{array}$$
(III-b)

in which

or

- a) R^{1-B} represents hydrogen and
- 30 R^{3-B} represents halogen, C₃-C₈-alkyl, C₁-C₈-haloalkyl,

b) R^{1-B} represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-

 C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, (C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl; halo-(C_1 - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 -alkoxy)carbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; (C_1 - C_8 -alkyl)carbonyl, (C_1 - C_8 -alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -cycloalkyl)carbonyl; (C_1 - C_6 -haloalkyl)carbonyl, (C_1 - C_6 -haloalkoxy)carbonyl, (halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 -halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O) R^4 , - $CONR^5R^6$ or - $CH_2NR^7R^8$, and

R^{3-B} represents hydrogen, halogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl,

10 and $R^2, R^4, R^5, R^6, R^7 \text{ and } R^8 \text{ are each as defined in Claim 1.}$

16. 3-Dichloromethyl-1H-pyrazole-4-carboxylic acid derivatives of the formula (II-a)

$$X^1$$
 (II-a)

in which

25

5

R¹² is as defined in Claim 1,

X¹ represents halogen or hydroxyl.

17. Process for preparing 3-dichloromethyl-1H-pyrazole-4-carboxylic acid derivatives of the formula (II-a) according to Claim 16, characterized in that

3-formyl-1H-pyrazole-4-carboxylic acids of the formula (XI)

$$H \xrightarrow{O} OH$$

$$N \\ N \\ N \\ R^{12}$$

$$(XI)$$

in which R¹² is as defined in Claim 1 are reacted with a chlorinating agent in the presence of a diluent.

18. 3-Dichloromethyl-1H-pyrazole-4-carboxylic acid esters of the formula (XII)

in which

R¹² is as defined in Claim 1,

 R^{44} represents C_1 - C_4 -alkyl.

- 19. Process for preparing 3-dichloromethyl-1H-pyrazole-4-carboxylic acid esters of the formula (XII) according to Claim 18, characterized in that
 - 3-formyl-1H-pyrazole-4-carboxylic acid esters of the formula (X)

in which

R¹² is as defined in Claim 1,

R⁴⁴ represents C₁-C₄-alkyl

are reacted with a chlorinating agent in the presence of a diluent.