Exercise 9.3

Q1. Find the mid point of the line segment joining each of the following pairs of points.

a)
$$A(9,2), B(7,2)$$

If R(x, y) is the desired midpoint then,

$$x = \frac{x_1 + x_2}{2} = \frac{9+7}{2} = \frac{16}{2} = 8$$

$$y = \frac{y_1 + y_2}{2} = \frac{2+2}{2} = \frac{4}{2} = 2$$

$$\therefore R(x, y) = R(8, 2)$$

b)
$$A(2,6), B(3,-6)$$

If R(x, y) is the desired midpoint then,

$$x = \frac{x_1 + x_2}{2} = \frac{2+3}{2} = \frac{5}{2}$$

$$y = \frac{y_1 + y_2}{2} = \frac{6-6}{2} = \frac{0}{2} = 0$$

$$R(x, y) = R\left(\frac{5}{2}, 0\right)$$

$$c) \qquad A(-8, 1), B(6, 1)$$

If R(x, y) is the desired midpoint then

$$x = \frac{x_1 + x_2}{2} = \frac{-8 + 6}{2} = \frac{-2}{2} = -1$$

$$y = \frac{y_1 + y_2}{2} = \frac{1 + 1}{2} = \frac{2}{2} = 1$$

$$\therefore R(x, y) = R(-1, 1)$$

d)
$$A(-4,9), B(-4,-3)$$

If R(x, y) is the desired mid point then,

$$x = \frac{x_1 + x_2}{2} = \frac{-4 - 4}{2} = \frac{-8}{2} = -4$$

$$y = \frac{y_1 + y_2}{2} = \frac{9 - 3}{2} = \frac{6}{2} = 3$$

$$R(x, y) = R(-4, 3)$$

e)
$$A(3,-11), B(3,-4)$$

If R(x, y) is the desired midpoint then,

$$x = \frac{x_1 + x_2}{2} = \frac{3+3}{2} = \frac{6}{2} = 3$$

$$y = \frac{y_1 + y_2}{2} = \frac{-11-4}{2} = \frac{-15}{2} = -7.5$$

$$R(x, y) = R(3, -7.5)$$

f)
$$A(0,0), B(0,-5)$$

If R(x, y) is the desired midpoint then,

$$x = \frac{x_1 + x_2}{2} = \frac{0+0}{2} = 0$$
$$y = \frac{y_1 + y_2}{2} = \frac{0-5}{2} = \frac{-5}{2} = -2.5$$

$$\therefore R(x,y) = R(0,-2.5)$$

Q2. The end point P of a line segment PQ (-3,6) and its mid point is (5,8). Find the co-ordinates of the end point Q.

Sol:
$$(-3,6)$$

If R(x, y) is mid point then,

$$x = \frac{x_1 + x_2}{2} \implies 5 = \frac{-3 + x_2}{2}$$

$$\Rightarrow 10 = -3 + x_2$$

$$x_2 = 10 + 3 = 13$$
and
$$y = \frac{y_1 + y_2}{2} \implies 8 = \frac{6 + y_2}{2}$$

$$\Rightarrow 16 = 6 + y_2$$

$$y_2 = 10$$

 \therefore Coordinates of the end point Q(13,10)

Q3. Prove that midpoint of the hypotenuse of a right triangle is equidistant from its three vertices P(-2,5), Q(1,3) and R(-1,0)

SOL.
$$|PQ|^2 = (1+2)^2 + (3-5)^2 = 9+4=13$$

 $|QR|^2 = (-1-1)^2 + (0-3)^2 = 4+9=13$
 $|PR|^2 = (-1+2)^2 + (0-5)^2 = 1+25=26$
As $|PQ|^2 + |QR|^2 = |PR|^2$

Hence PR is the hypotenuse

If M(x, y) is desired midpoint then,

$$x = \frac{-1 + (-2)}{2} = \frac{-1 - 2}{2} = \frac{-3}{2}$$
$$y = \frac{5 + 0}{2} = \frac{5}{2}$$

$$\therefore M(x,y) = M\left(\frac{-3}{2},\frac{5}{2}\right)$$

Now
$$|PM| = \sqrt{\left(\frac{-3}{2} + 2\right)^2 + \left(\frac{5}{2} - 5\right)^2}$$

= $\sqrt{\left(\frac{-3 + 4}{2}\right)^2 + \left(\frac{5}{2} - 10\right)^2}$
= $\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{-5}{2}\right)^2}$

$$= \sqrt{\frac{1}{4} + \frac{25}{4}}$$

$$= \sqrt{\frac{26}{4}}$$

$$|RM| = \sqrt{\left(-\frac{3}{2} + 1\right)^2 + \left(\frac{5}{2} - 0\right)^2}$$

$$= \sqrt{\left(\frac{-3 + 2}{2}\right)^2 + \left(\frac{5 - 0}{2}\right)^2}$$

$$= \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{5}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{25}{4}}$$

$$= \sqrt{\frac{1 + 25}{4}} = \sqrt{\frac{26}{4}}$$

$$|QM| = \sqrt{\left(-\frac{3}{2} - 1\right)^2 + \left(\frac{5}{2} - 3\right)^2}$$

$$= \sqrt{\left(\frac{-3 - 2}{2}\right)^2 + \left(\frac{5 - 6}{2}\right)^2}$$

$$= \sqrt{\left(\frac{-5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2} = \sqrt{\frac{25}{4} + \frac{1}{4}} = = \sqrt{\frac{26}{4}}$$

As |PM| = |RM| = |QM|

.. M is equidistant from P, Q and R.

Q4. O (0, 0), A(3, 0) and B(3, 5) are three points in the plane, find M_1 and M_2 as midpoints of the line segments \overline{AB} and \overline{OB} respectively. Find $|M_1, M_2|$.

Sol: Let O (0,0), A(3,0), B(3,5) are three points in the plane. M_1 is the mid point of \overline{OB} and M_2 is the mid-point of \overline{AB}

$$M(x,y) = M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= M_1\left(\frac{0+3}{2}, \frac{0+5}{2}\right)$$

$$=\mathbf{M}_{1}\left(\frac{3}{2},\frac{5}{2}\right)$$

 M_2 is midpoint of \overline{AB} therefore

$$\mathbf{M}_{2}\left(\frac{3+3}{2}, \frac{0+5}{2}\right) = \mathbf{M}_{2}\left(\frac{6}{2}, \frac{5}{2}\right)$$
$$= \mathbf{M}_{2}\left(3, \frac{5}{2}\right)$$

Now $\left(\frac{3}{2}, \frac{5}{2}\right)$ and $\left(3, \frac{5}{2}\right)$ are midpoints

we find | M₁ M₂ |

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Then
$$|\mathbf{M}_1 \mathbf{M}_2| = \sqrt{(3 - \frac{3}{2})^2 + (\frac{5}{2} - \frac{5}{2})}$$

$$=\sqrt{\left(\frac{6-3}{2}\right)+0}$$

$$=\sqrt{\left(\frac{3}{2}\right)^2+0}=\frac{3}{2}$$

Q5. Show that the diagonals of the parallelogram having vertices

$$A(1,2), B(4,2), C(-1,-3), D(-4,-3)$$

bisect each other.

Sol: If M_1 is desired midpoint of diagonal DB.

$$x = \frac{x_1 + x_2}{2} = \frac{4 - 4}{2} = 0$$
$$y = \frac{y_1 + y_2}{2} = \frac{2 - 3}{2} = \frac{-1}{2}$$

$$M_1(x,y) = \left(0,-\frac{1}{2}\right)$$

If M_2 is desired midpoint of diagonal AC

$$x = \frac{x_1 + x_2}{2} = \frac{1 - 1}{2} = 0$$
$$y = \frac{y_1 + y_2}{2} = \frac{2 - 3}{2} = \frac{-1}{2}$$
$$M_2(x, y) = \left(0, -\frac{1}{2}\right)$$

- :. As midpoints of the diagonals coincide hence diagonal bisect each other.
- Q6. The vertices of a triangle are P(4,6), Q(-2,-4) and R(-8, 2) show that the length of line segment joining the mid points of line segment PR,

QR is
$$\frac{1}{2}$$
 PQ.

Sol. If M_1 is desired midpoint of line segment PR.

$$x = \frac{x_1 + x_2}{2} = \frac{4 - 8}{2} = \frac{-4}{2} = -2$$
$$y = \frac{y_1 + y_2}{2} = \frac{6 + 2}{2} = \frac{8}{2} = 4$$

$$M_{\perp}(x,y) = M_{\perp}(-2,4)$$

If M_2 is desired midpoint of line segment QR.

$$x = \frac{x_1 + x_2}{2} = \frac{-2 - 8}{2} = \frac{-10}{2} = -5$$

$$y = \frac{y_1 + y_2}{2} = \frac{-4 + 2}{2} = \frac{-2}{2} = -1$$

$$M_2(x, y) = M_2(-5, -1)$$

$$|M_1 M_2| = \sqrt{(-5 + 2)^2 + (-1 - 4)^2}$$

$$= \sqrt{(-3)^2 + (-5)^2}$$

$$= \sqrt{9 + 25} = \sqrt{34}$$

$$|PQ| = \sqrt{(-2 - 4)^2 + (-4 - 6)^2}$$

$$= \sqrt{(-6)^2 + (-10)^2}$$

$$= \sqrt{36 + 100} = \sqrt{136} = \sqrt{34 \times 4}$$

$$= 2\sqrt{34}$$
As $2|M_1 M_2| = |PQ|$
Hence $|M_1 M_2| = \frac{1}{2}|PQ|$