Unsolvability IPC Track

Christian Muise ¹ Nir Lipovetzky ²

¹Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology, USA cjmuise@mit.edu

²Department of Computing and Information Systems, University of Melbourne, Australia nir.lipovetzky@unimelb.edu.au

• Running an IPC is hard (now we know!)

- Running an IPC is hard (now we know!)
- Unsolvability is (thankfully still) hard

- Running an IPC is hard (now we know!)
- Unsolvability is (thankfully still) hard
- Kudos to those who made it easier:
 - Florian Pommerening & Jendrik Seipp (& the Basel cluster admins) for lab and server support / consultation
 - Malte Helmert for involved FD diagnosis
 - ICAPS for sponsoring the awards
 - All who submitted planners and domains (to be mentioned below) – many who put up with very long email threads!

Unsolvability IPC Track

Motivation

Satisficing is too easy To promote techniques that are dedicated at detecting if a planning problem is unsolvable.

Applications

- System verification / diagnosis
- Planning with avoidable deadends
- Identifying human error in encodings
- Components in cellular automata proofs

Details

Scoring

- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn't happen once!

Details

Scoring

- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn't happen once!

Ideal Benchmark Properties

- Mix of solvable and unsolvable instances
- 2 No syntactic distinction between them
- At least some solvable problems are hard

Details

Scoring

- Primary focus was coverage on unsolvable instances
- Solver disqualified on a domain for an incorrect result

Didn't happen once!

Ideal Benchmark Properties

- Mix of solvable and unsolvable instances
- 2 No syntactic distinction between them
- 3 At least some solvable problems are hard

Benchmarks

Sourced from deadend states of classical problems, width-based classical encodings, oversubscribed problems, new domains, etc.

Submissions

Domains (15)

- 3 from existing set
- 12 newly submitted (or modified) domains

Planners (11+1)

- 14 teams expressed interest
- 11 teams submitted
- 4 labs represented

Reused Unsolvable Domains

- bottleneck: Move around a grid; never revisit a spot
- pegsol: Classic game hop a peg, remove the hopped
- sliding-tiles: Classic game slide tiles to open space.
 Reversing two tiles causes the problem to be unsolvable

Over-subscribed Set

Thanks Marcel Steinmetz, Hootan Nakhost, Jörg Hoffmann, Martin Mueller

Idea Constrains the problem via a set of tunable parameters. Most importantly for the contest, "constrainedness" < 1 makes the problem unsolvable (i.e., 0.999 is very nearly solvable)

Input Domains nomystery, tpp, rovers

Bagged Problems

Thanks Patricia Riddle and Mike Barley

Idea Reformulates the problem using

a bagged representation

Input Domains transport, gripper, barman

Documents, Diving, and Diagnostics

- **document-transfer** (*Thanks to Jordan Douglas*): Need to deliver documents, but can also use them to fuel the travel.
- diving (Thanks to Charles Gretton, Nathan Robinson, CM):
 Need to photograph certain locations, but air tanks are a precious resource that aren't always there.
- **diagnosis** (*Thanks to Patrik Haslum*): Encodings of diagnosis problems for control of power plans / autonomous helicopters.

Baffling Board Games

- tetris (Thanks to Mauro Vallati): Moving tetris pieces around until the board is cleared.
- pegsol-row5 (Thanks to Florian Pommerening and Malte Helmert): Must get 5 rows up on a board, but the task is mathematically impossible.
- chessboard-pebbling (Thanks to Florian Pommerening):
 Must clear the bottom corner of an infinite chessboard.

Planners (1/3)

- ReachLunch (Tomas Balyo, Martin Suda)
 6min DFS phase, followed by Property Directed Reachability
- iProverPlan (Konstantin Korovin, Martin Suda)
 Theorem prover for a lifted (1st-order) SAT-as-planning encoding
- SymPA (Alvaro Torralba, Jörg Hoffmann) Symbolic search using PDBs and perimeters
 - irr variant removes irrelevant operators found with M&S
- M+S (Alvaro Torralba, Jörg Hoffmann)
 M&S with linear merges and perfect shrinking (optionally irr)

Planners (2/3)

- SimDominance (Alvaro Torralba, Jörg Hoffmann)
 M&S with multiple merge strategies. A* with h¹ / dominance pruning
- DECS (Daniel Gnad, Jörg Hoffmann)
 Decoupled search with an X-shape topology using A* and h^{max}
- Django (Daniel Gnad, Jörg Hoffmann)
 Performs incremental red-black search using A* and h^{max}.
- CLone (Marcel Steinmetz, Jörg Hoffmann)
 DFS using Critical-Path Driven Clause Learning

Planners (3/3)

Aidos (Martin Wehrle, Jendrik Seipp,
 Florian Pommerening, Yusra Alkhazraji)
 Portfolio using stubborn sets and combination of (1) DE PDBs (2) LP with potentials (3) projected "depletable resources"

- v1 distributes time according to experiments; v2 distributes uniformly; and v3 distributes to maximize coverage / time
- h⁺⁺ (*Patrik Haslum*)
 Incrementally improves lower bounds until h⁺ is unsolvable
- **DE-PDB** (Florian Pommerening, Jendrik Seipp) $\frac{1}{2}$ time spent on building DE PDB and $\frac{1}{2}$ spent on DFS with pruning
- blind
 Eager blind search using the latest FD

Results (out of 340 problems)

Runner Up

Winner

Results (out of 340 problems)

Runner Up - SymPA

irr 239 Alvaro Torralba base 227 Jörg Hoffmann

Winner

Results (out of 340 problems)

Runner Up – SymPA

irr 239 Alvaro Torralba base 227 Jörg Hoffmann

Winner - Aidos

v1 262 Martin Wehrle v2 259 Jendrik Seipp

v3 250 Florian Pommerening

Yusra Alkhazraji

Results

Results

Results

Unknown Known Results

Domain Team	SymPA (irr)	SimDominance	SymPA	CLone	DECS
document-transfer	5	1	0	0	0
diagnosis	2	3	3	2	2
TOTAL:	7	4	3	2	2

Table: Unknowns solved (Part 1)

Domain Team	Aidos3	Aidos2	Aidos1	Django	M+S (irr)
document-transfer	0	0	0	0	1
diagnosis	1	1	1	1	0
TOTAL:	1	1	1	1	1

Table: Unknowns solved (Part 2)

Next Steps

To be released on unsolve-ipc.eng.unimelb.edu.au

- Git repo of solvers / domains / eval setup / etc
- DataJoy project of all the statistics / analysis
- Planner descriptions (extended abstracts)

Next Steps

To be released on unsolve-ipc.eng.unimelb.edu.au

- Git repo of solvers / domains / eval setup / etc
- DataJoy project of all the statistics / analysis
- Planner descriptions (extended abstracts)

Unsolve-IPC-2018

Any takers?

Thanks again to all who participated, submitted domains, provided server support, played devil's advocate¹, encouraged the endeavour, etc.

¹if LAMA doesn't solve in 30min; return "unsolvable"