1 Introduction

This assignment was done using C++ as the programming language, in the CLion IDE. Furthermore, the code from Numerical Recipes as well as some of the code provided by Ole Wennerberg Nielsen is used in the assignment - This will be marked using comments in the source code.

2 Exercise 1 (20 points)

Consider the linear equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ where the 10×6 dimensional coeffcient matrix A and the right hand side b are given in Ex1A.dat and Ex1b.dat.

i) (10 points) Find the Singular Value Decomposition (SVD) $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{T}$. State the diagonal elements in \mathbf{W} . Submit the used code.

In figure 2, matrix A and its SVD elements are seen.

A = U*W*T(V):								
A Matrix 10x6:								
-0.2244865	-0.8671804	0.5538675	0.4667952	-0.5046398	0.2918244			
0.4702761	0.5446024	0.783741	-0.8283025	0.8424086	1.886011			
-0.695119	-0.05810601	0.8960382	-0.6301382	0.1990554	0.8703464			
-0.6719778	-0.3098617	-0.9502969	-0.9089616	0.5931869	-0.1991461			
0.03471944	-0.2753386	0.07279159	0.07263496	-0.740794	-0.350045			
-0.4081582	0.5189241	0.6058397	0.7638458	0.1215657	-0.4633721			
0.9743217	0.8220987	0.5921483	0.279157	0.6694407	1.120376			
-0.1197952	0.6961101	-0.09070482	-0.5296146	-0.4478174	-0.7390419			
0.005971777	-0.140408	-0.620653	-0.04100433	0.9712523	0.3308694			
-0.8650693	0.3065554	0.8863607	0.7120464	0.5430889	-0.03167097			
U Matrix 1	.0x6:							
-0.03025452	0.3031402	0.2133251	-0.5367182	0.3083527	0.06697301			
0.7328128	-0.1567385	0.02954747	-0.1373583	-0.2073977	0.2305694			
0.3080013	0.05974315	0.567434	-0.2440015	-0.3136331	0.07401154			
-0.1035073	-0.582208	0.4320083	0.1798271	0.005015352	-0.1660911			
-0.1864684	0.1230006	-0.07733242	-0.2979609	-0.123999	0.09466832			
-0.04215443	0.44018	0.09944317	0.4239303	-0.05502176	0.6547462			
0.5161958	0.1373687	-0.4449636	0.1905457	0.09044809	-0.303095			
-0.1702634	-0.05338541	-0.09762262	0.2012482	-0.7107251	0.02982495			
0.1194595	-0.3253896	0.09108462	0.2868987	0.4737023	0.3970189			
0.101122	0.4522362	0.4618641	0.416623	0.08605733	-0.470376			
W Matrix 6								
3.287839								
0	2.332613							
0		1.819115						
0			1.673514					
0				1.448961				
0					9.776714e-16			
T(V) Matrix 6	x6:							
0.198969	0.2399872	0.3739251	-0.1415754	0.413119	0.7564962			
-0.09447506	0.1214687	0.6929888	0.6473554	-0.2617886	-0.09210855			
-0.870118	-0.3121299	0.215518	-0.1935954	0.2424076	0.05273592			
-0.1648424	0.6186285	-0.1634359	0.2313751	0.6141883	-0.3642152			
0.115731	-0.5649585	-0.2895974	0.6220158	0.4010038	0.1893513			
-0.3921912	0.3582556	-0.4721446	0.2880453	-0.4049773	0.4979375			

Figure 1: A and its' SVD elements

ii) (5 points) Use SVD to compute the solution \mathbf{x} to $\mathbf{A}\mathbf{x} = \mathbf{b}$. State the solution \mathbf{x} . Submit the used code.

Below, two solutions ${\bf x}$ to ${\bf A}{\bf x}={\bf b}$ are shown for the minimization of ${\bf A}{\bf x}$ - ${\bf b}$. For the SVD solution to be remotely usable, the residual error $\epsilon_{\rm residual}$ should be **significantly** smaller than the random fitting $\sqrt{\frac{m-n}{m}}$. The aforementioned is not the case in either solutions, in fact $\epsilon_{\rm residual}$ is larger than $\sqrt{\frac{m-n}{m}}$ in both solutions.

It is noticed that the results of $\mathbf{A} \cdot \mathbf{x}$ differ between the two solutions due to roundoff errors. Thus the comparision between $\epsilon_{\text{residual}}$ and $\sqrt{\frac{m-n}{m}}$ differs by a magnitude of 10^{-3} , which is insignificant given that both solutions are still unviable for the task of minimizing $\mathbf{A}\mathbf{x} \cdot \mathbf{b}$.

x Vector 6D: 9.814596e+13 -8.965358e+13			1.013457e+14			
A*x Vector 10D: -0.109375 -0.05625 -0.5859375 0.4604492		-0.1328125			-0.328125	
b Vector 10D: -0.5415778 -0.6439477 0.02603491 0.6539704		-0.8561312	0.5782175			
Random fitting 0.6324555 x Residual 0.7850958 x Commared to random fittino 0.1526483						
x2 Vector 6D: 9.814596e+13 -8.965358e+13			1.013457e+14			
A*x2 Vector 10D: -0.140625 -0.65625 -0.59375 0.4130859			0.203125			
b Vector 10D: -0.5415778 -0.6439477 0.02603491 0.6539704	0.1423662	-0.8561312	0.5782175		-0.766929	
Random fitting 0.6324555 X2 Residual 0.7761954 x2 Compared to random fitting 0.1437398						
Ax - Ax2 Vector 10D: 0.03125 0 0.0078125 0.04736328	0.03125	-0.01171875	-0.015625	0.0390625	0.015625	-0.015625
Difference in comparison: 0.008900452						

Figure 2: A and its' elements

3 Exercise 2 (20 points)

In this exercise, the task is to derive the time of collision between two objects. Object A is as sphere with radius r=1 residing at the origin. Object B is a shape changing ellipsoidal object, which at time t is centered at $(x_e(t); y_e(t); z_e(t))$. We can describe the surface of object B (hereafter called S_B) as the set of points (x; y; z) satisfying

$$a(t) [x - x_e(t)]^2 + b(t) [y - y_e(t)]^2 + c(t) [z - z_e(t)]^2 = 1$$

where a(t), b(t), c(t) are all positive. The point on object B that is closest to the center of object A (the origin) is then clearly given as

$$\min_{x,y,z \in S_B} \left\{ x^2 + y^2 + x^2 \right\}$$

which is a constrained optimization problem where the solution must satisfy the first order conditions

$$x - \lambda a(t) [x - x_e(t)] = 0$$

$$y - \lambda b(t) [y - y_e(t)] = 0$$

$$z - \lambda c(t) [z - z_e(t)] = 0$$

$$a(t) [x - x_e(t)]^2 + b(t) [y - y_e(t)]^2 + c(t) [z - z_e(t)]^2 - 1 = 0$$
(1)

where λ is a so called Lagrange Multiplier. We have now given

$$a(t) = 1.1(1 + t^{2})$$

$$b(t) = 2.1(1 + 2t^{2})$$

$$c(t) = 0.8(1 + 3t^{2})$$

$$x_{e}(t) = 2.3\exp(-t)$$

$$y_{e}(t) = 4.8\exp(-t)$$

$$z_{e}(t) = 0.7\exp(-t)$$

i) (6 points) At time t=1.2, find a solution $(x;y;z;\lambda)$ satisfying the first order conditions in Eq.(1). Use Newtons method starting with $(x;y;z;\lambda)=(0;0;0;0)$ and with a required tolerance of 10^-8 . State your result for x;y;z and compute and state the distance to the origin $d=\sqrt{x^2+y^2+z^2}$. Submit the used code. As a check that you programmed everything correct, d should be approximately $d\approx 1.22$. As d>1, the two objects are not penetrating each other.

Figure 3: Roots for t = 1.2

ii) (6 points) At time t=1.4, find a solution $(x;y;z;\lambda)$ satisfying the first order conditions in Eq.(1). Use Newtons method starting with $(x;y;z;\lambda)=(0;0;0;0)$ and with a required tolerance of 10^-8 . State your result for x;y;z and compute and state the distance to the origin $d=\sqrt{x^2+y^2+z^2}$. Submit the used code. As we now have d<1, the two objects penetrate.

Figure 4: Roots for t = 1.4

4 Exercise 5a (15 points) (Only Diploma Engineering Students)

Consider the integral

$$\int_{a}^{b} \cos(x^{3}) \exp(-x) dx$$

i) (5 points) For N=2, state an analytical expression for the approximation of the integral as obtained by the Trapezoidal method.

Figure 5: Visualisation of the trapezoidal method from the slides of lecture 8 in Numerical Methods. The trapezoidal method is defined as being

$$\int_{a}^{b} f(x)dx = h \cdot \left[\frac{1}{2} f_0 + f_1 + f_2 + \dots + f_{N-2} + \frac{1}{2} f_{N-1} \right]$$

where

$$h = \frac{b - a}{N}$$

Given N = 2, the trapezoidal method will look at follows

$$\int_{a}^{b} f(x)dx = h \cdot \left[\frac{1}{2} f_0 + f_1 + \frac{1}{2} f_{N-1} \right]$$

where

$$h = \frac{b - a}{2}$$

We now consider the case a=1,b=3. We wish to approximate the integral using the Trapezoidal method. For this, we as usual split the integration interval into N equidistant subintervals. You may without proof assume that the order is 2 as expected.

ii) (10 points) With $N=2,4,8,\ldots$ use the Trapezoidal method to approximate the integral. Terminate the subdivisions when you reach a proven accuracy of better than 10^{-5} . State your results for each N, preferably in a table similar to those used during the course. Submit the used code.

Below is a table showing the results of using the trapezoidal method with $N=2,4,8,\ldots$ to the point of the accuracy reaching more than 10^{-5} . It is seen that the goal is reached after six iterations.

i		A(hi)	A(hi - 1) - A(hi)	Rich - alpha^k	Rich-error	F-Calculations
1		0.1842214				2
2		0.1150375	0.06918388		0.02306129	4
3		0.04245041	0.07258708		0.02419569	8
4	15	0.03846676	0.003983652		0.001327884	16
5	31	0.03772984	0.0007369203		0.0002456401	32
6	63	0.03766943	6.040678e-05		2.013559e-05	64
7	127	0.0376591	1.033829e-05	4	3.446095e-06	128

Figure 6: Approximated areas using trapezoidal method with up until an accuracy of better than 10^{-5} .