Muestreo Estadístico: Diseño muestral de Poisson

García Prado, Sergio sergio@garciparedes.me

25 de septiembre de 2017

1. Definición

El muestreo probabilístico de *Poisson* se caracteriza por ser un diseño muestral con probabilidades desiguales. Es decir, si π_k es la probabilidad de añadir al individuo $k \in \{1, ..., N\}$ en la muestra, en este caso no se cumple que $\forall i, j \ \pi_i = \pi_j, \ i \neq j$. De esta manera, la estimación de los estadísticos se hace más complicada, sin embargo se añade un mayor grado de versatilidad al muestreo.

$$p(s) = \prod_{k \in s} \pi_k \prod_{k \in U \setminus s} (1 - \pi_k) \tag{1}$$

Si se define la variable $I_k \sim B(\pi_k)$, $k \in \{1, ..., N\}$, es decir, como una distribución de Bernoulli de parámetro π_k , entonces la probabilidad de seleccionar la muestra s de entre todo el conjunto de posibles muestras S de una población U se define tal y como se indica en la ecuación (1). En este diseño muestral se cumple la propiedad de que $\pi_{kl} = \pi_k \pi_l$ $k \neq l$.

Este diseño muestral se puede llevar a cabo de manera sencilla, generando n valores aleatorios a partir de una distribución uniforme en el intervalo [0,1], de tal manera que ϵ_k sea el k-ésimo valor aleatorio. Entonces se añade el elemento k a la muestra s si se cumple que $\epsilon_k < \pi_k$ y se deja fuera en caso contrario.

Nótese por tanto, que este diseño muestral no tiene un un tamaño de muestra fijo, sin embargo es posible estimarlo: El tamaño n_s de la muestra obtenida tendrá una esperanza de $E[n_s] = \sum_U \pi_k$ y una varianza $Var[n_s] = \sum_U \pi_k (1 - \pi_k)$. Sea y_k una variable de estudio, entonces se cumple que:

Referencias

[TG18] Jesús Alberto Tapia García. Muestreo Estadístico 1, 2017/18.

 $^{^*\}mathrm{URL}$: https://github.com/garciparedes/statistical-sampling-poisson-design