(Pseudo)random Data

Entropy, CSPRNG

Marek Sýs, <u>syso@mail.muni.cz</u>
Faculty of Informatics, Masaryk University

RNG types

- True RNG (TRNG)
 - collects random events:
 - hardware noise, physical phenomena
 - behaviour of system/user
 - Pros: independent values, aperiodic sequence
 - Cons: often slow, often small density of entropy
- Pseudorandom RNG (PRNG)
 - software imitates randomness
 - Pros: fast
 - CSPRNG uniform, practically independent
 - Cons: deterministic, periodic, fixed entropy

Combined TRNG + (CS)PRNG

- TRNG (entropy source)
- Entropy Pool (optional)
 - collects entropy
 - entropy is increased fresh entropy mixed into pool
- CSPRNG
 - seeded by pool or TRNG directly

PRNG

Source: https://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

Security of PRNG

- Seed and internal state must be protected
 - must be large enough not allowing brute force
 - seed determines whole sequence
 - state $state_i$ determine next values $r_i, r_{i+1}, r_{i+2}, ...$
 - inappropriate f_{trans} also previous values $r_1, r_2, ..., r_{i-1}$

Insecure PRNGs

Feedback 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1

- LFSR of n-bits
 - Output bit linear function state bits
 - Berlekamp Massey alg. can compute IS from 2n output bits
- Standard random function:
 - Linear congruential generator (LCG)
 - return whole or half of IS
- $RC4 P(2^{nd} \text{ byte } = 0) = 1/128 \text{ (not } 1/256)$
- Mersenne twister IS from 624 values
- Anything not labeled as CSPRNG...

LCG

gcc random(), java.util.Random, ...

$$state_{i+1} = a.state_i + c \mod m$$

Source	modulus m	multiplier a	increment c	output bits of seed in rand() or Random(L)
ZX81, ZX Spectrum [18]	2 ¹⁶ + 1	75	0	$(x_n - 1) / 2^{16}$
Numerical Recipes ranqd1, Chapter 7.1, §An Even Quicker Generator, Eq. 7.1.6 parameters from Knuth and H. W. Lewis	2 ³²	1664525	1013904223	
Borland C/C++	2 ³¹	22695477	1	bits 3016 in <i>rand()</i> , 300 in <i>lrand()</i>
glibc (used by GCC) ^[19]	2 ³¹	1103515245	12345	bits 300

- significant part of $state_i$ returned as random value r_i
- linear state update func. states can be backtracked!

Randomness and entropy

- What is random, data or RNG? Is 4 random?
 - randomness of data determined by RNG
- Entropy is measure of randomness
 - expressed in bits
 - better randomness ⇒ larger entropy
- Entropy represents:
 - uncertainty of produced values and
 - average amount of information values carry and
 - attack complexity on key / security of system.
 - see other <u>definitions</u> by NIST

Entropy computation

- Assumption: RNG produces independent values.
- Defined for RNG output represented by random variable X.
- (Shannon) entropy: $\mathcal{H}(X) = -\sum_{i=1}^{n} p_i(X = x_i) \log p_i(X = x_i)$
- Property: same entropy when modeled RNG differently
 - single bits $p_0 = 0.3, p_1 = 0.7 \implies \mathcal{H}(X) = 0.88$
 - 2-bit blocks: $p_{00}=0.09, p_{01}=p_{10}=0.21, p_{11}=0.49 \implies \mathcal{H}(X)=2*0.88$
- For impossible events:

$$p_i(x_i) = 0 \implies p_i(x_i) \log p_i(x_i) = 0$$

Entropy estimate - example

- Source (https://qrng.anu.edu.au/RainBin.php):
- Estimates for sequence of 80 bits:

- Model (1bit): 40x 0, 40x 1 entropy $\mathcal{H}(X)=1$
- Model (2bit): 12x'01', 6x'10', 11x'00', 11x'11' $\mathcal{H}(X) = 1.95$
- Estimates for two 960-bit seqs for 1-6 bit model:
 - 0.9999, 0.9992, 0.9993, 0.9910, 0.9704, 0.9470
 - 0.9998, 0.9974, 0.9913, 0.9849, 0.9734, 0.9485

Entropy pool - mixing entropy

- Operations: replacement : XOR : Hash:
 - replacement can decrease the entropy!
 - XOR cannot decrease entropy
 - but may not increase if part already full!
 - hashing increases (up to hash size) and spreads entropy

