ES710 – Controle de Sistemas Mecânicos

10 – Projeto de controlador PID: Método Ziegler-Nichols

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Controle PID;
- 2) Método Ziegler-Nichols;
- Questionário;
- Referências;
- Exercícios.

Sistema mecatrônico

1. Controle PID

- 1.1. Controlador PID:
 - O controlador PID possui função de transferência:

$$K(s) = k_p + \frac{k_i}{s} + k_d s$$

$$K(s) = k_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$
(1)

- Ganho proporcional k_p : ajusta o tempo de resposta;
- Ganho integral k_i: ajusta o erro estacionário;
- Ganho integral k_d : ajusta a resposta transiente;
- Pergunta: como ajustar os ganhos do controlador PID?

1. Controle PID

1.2. Método empírico:

- Utilizado na maioria das aplicações industriais, depende da experiência do operador:
 - 1) Começar com um controlador P e aumentar o ganho para o fazer o sistema atingir o tempo de subida desejado;
 - 2) Incluir o ganho I e aumentar o seu valor até que o erro estacionário fique dentro da banda desejada;
 - 3) Se necessário, incluir o termo D para tornar o sistema estável/sub-amortecido e, em seguida, refinar os termos P e I;
- Pergunta: existe alguma forma menos aleatória de sintonizar o controlador PID?

2.1. Método Ziegler-Nichols:

- O método ZN é uma forma semi-empírica para ajustar os ganhos do PID;
- Diversos sistemas dinâmicos reais apresentam resposta ao degrau da forma:

$$\frac{Y(s)}{U(s)} = \frac{Ke^{-t_d s}}{\tau s + 1} \tag{2}$$

- *K*: ganho;
- t_d: tempo de atraso (delay);
- τ: constante de tempo do sistema.

- 2.1. Método Ziegler-Nichols:
 - Resposta ao degrau de um processo (curva-S):

2.1. Método Ziegler-Nichols:

Ganhos do controlador PID:

Table 10-1 Ziegler-Nichols Tuning Rule Based on Step Response of Plant (First Method)

Type of Controller	K_p	$T_i = \frac{k_p}{k_i}$	$T_d = \frac{k_d}{k_p}$
P	$\frac{ au}{L}$	_∞	0
PI	$0.9 \frac{\tau}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{\tau}{L}$	2L	0.5L

 Obs: verificar a reposta do sistema em malha fechada e refinar o projeto se necessário!

- 2.2. Método Ziegler-Nichols segundo método:
 - 1) Assumir inicialmente um controlador P ($T_i = \infty, T_d = 0$);
 - 2) Aumentar o ganho proporcional até o valor crítico $k_p = k_{cr}$ para o qual o sistema (em malha fechada) apresente oscilações com período P_{cr} ;

2.2. Método Ziegler-Nichols – segundo método:

• 3) Calcular os valores de T_i e T_d utilizando a tabela abaixo:

Table 10-2 Ziegler-Nichols Tuning Rule Based on Critical Gain K_{cr} and Critical Period P_{cr} (Second Method)

Type of Controller	K_p	T_i	T_d
P	$0.5K_{\mathrm{cr}}$	∞	0
PI	0.45K _{cr}	$\frac{1}{1.2} P_{\rm cr}$	0
PID	0.6K _{cr}	$0.5P_{ m cr}$	$0.125P_{\rm cr}$

 4) Verificar a resposta do sistema em malha fechada e refinar o projeto, se necessário.

2.3. Considerações finais:

- O método ZN é uma maneira prática de dimensionar os ganhos do controlador PID, minimizando o processo de tentativa-e-erro;
- Note que o ZN n\u00e3o permite dimensionar os ganhos em termos dos requisitos de projeto (tempo de subida, erro estacion\u00e1rio, etc.) → Existem m\u00e9todos anal\u00edticos mais precisos;
- Por outro lado, o ZN pode ser aplicado sem conhecer o modelo do sistema, basta analisar as curvas experimentais;
- Sobre o ganho crítico k_{cr}: note que o sistema pode entrar em ressonância ou sofrer danos físicos devido à amplitude da resposta → Você forçaria um braço robótico a operar no limite da instabilidade só para determinar k_{cr}?

Questionário

• Questionário:

- 1) Explique o efeito dos ganhos proporcional, integral e derivativo na resposta transiente e estacionária de um sistema em malha fechada;
- 2) Por que o sistema começa a oscilar com o aumento do ganho proporcional? Quando $k=k_{cr}$, o sistema se torna estável ou instável?
- 3) Para quais aplicações é aceitável utilizar o ajuste do PID por chute ou pelo método ZN? Cite exemplos.

Referências

Referências:

- G. F. Franklin *et al.*, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.

- Ex. 10.1) Utilizando o método ZN, projete um controle PID para o manipulador robótico de 1 grau de liberdade (junta rotacional). Compare a resposta ao degrau do sistema em malha aberta e malha fechada.
 - Parâmetros do sistema (SI):

•
$$J = 0.2$$
;

- B = 0.15;
- K = 0.1.

- Ex. 10.1)
 - Função de transferência (sistema tipo 0):

$$G(s) = \frac{\theta(s)}{T(s)} = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n s + {\omega_n}^2} = \frac{0.5}{s^2 + 0.75s + 0.5}$$

- O sistema possui um par de polos $s = -0.375 \pm j0.599 \Rightarrow$ estável (SPE);
- Constante de erro estático: $K_p = \lim_{s \to 0} sG(s) = 1$;
- Erro estacionário ao degrau: $e_{SS} = \frac{1}{1+K_p} = 0.5$.

- **Ex. 10.1)**
 - Resposta ao degrau: malha aberta
 - Tempo de subida:

$$t_r = 3.53 \text{ s};$$

- Sobressinal: $M_p = 14\%$;
- Sistema sub-amortecido:

$$\xi = 0.53$$

- **Ex. 10.1)**
 - Projeto do PID:
 - Atraso: L = 0.494 s;
 - Subida:

$$\tau = 3.219 - L = 2.725 \text{ s};$$

•
$$k_p = \frac{1.2\tau}{L} = 6.6194;$$

- $T_i = 2L = 0.988$;
- $T_d = 0.247$.

- **Ex. 10.1)**
 - Resposta do sistema malha fechada com controlador:
 - Prós:
 - Reduz tempo de subida;
 - Erro estacionário ao degrau nulo;
 - Contras:
 - Aumento do pss;
 - Aumento do tempo de estabilização.

Ex. 10.2) Utilizando o método ZN baseado no ganho crítico, projete um controle PID para a planta G(s). Compare a resposta ao degrau do sistema em malha aberta e malha fechada.

$$G(s) = \frac{1}{s(s+1)(s+5)}$$

- **Ex. 10.2**)
 - Resposta ao degrau malha aberta:
 - O sistema possui dois polos negativos e um polo em zero;
 - O sistema é instável.

- **Ex.** 10.2)
 - Função de transferência malha fechada com ganho K:

$$H(s) = \frac{KG(s)}{1 + KG(s)}$$

Polinômio característico:

$$s^3 + 6s^2 + 5s + K = 0$$

• Pelo critério de Routh-Hurwitz, o ganho crítico é $K = K_{cr} = 30$.

- Ex. 10.2)
 - Resposta ao degrau malha fechada com ganho K_{cr} :
 - Para o ganho crítico, as oscilações são sustentadas com período P_{cr} = 2.8 s;
 - Parâmetros do controlador:

$$-k_p = 18;$$

$$-k_i = 12.86;$$

$$- k_d = 6.3.$$

- Ex. 10.2)
 - Resposta ao degrau malha fechada com controlador:
 - · Sistema estável;
 - Erro estacionário nulo;
 - Tempo de subida de 0.84 s;
 - Sobressinal de ~62%;
 - O desempenho do sistema é aceitável?

