离散数学概述

魏恒峰

hfwei@nju.edu.cn

2021年03月04日

"离散数学"在哪里?

"离散数学"在哪里?

离散数学是个大杂烩,啥都学点儿,啥你很常好

分班教学 (与计算机系赵建华老师)

授课内容与作业可能有出入,不影响考试与成绩分配

平时作业 vs. 期中测试 vs. 期末测试

3 : 3 : 4

4 : 3 : 3

弹性制

每周四晚上发布作业 下周四 23:55 前提交作业

每次作业按 10 分计算

迟交:周四前向助教登记,可延长两天,总分8分

(作业助教: 裴一凡、戴若石、肖江)

"教学立方"课程邀请码: PLD8QKTZ

"教学立方"课程邀请码: PLD8QKTZ

https://github.com/courses-at-nju-by-hfwei/discrete-math-problem-sets

约法三章

7/50

非必要, 不点名

8/50

非必要, 不迟到

非必要,不迟到

尽量吃早餐, 但不可以在教室吃早餐

相必要,不抄袭;一经发现,后果严重

相必要,不抄袭;一经发现,后果严重

当次作业计 0 分; 总评扣 10 分

教材不重要, 听讲更重要

其它参考书随课程进度安排

https:

//github.com/courses-at-nju-by-hfwei/discrete-math-lectures

离散数学

离散数学

研究离散对象的结构、性质、操作等的数学分支 (大杂烩)

四大主题:逻辑、集合论、图论、抽象代数(群论)

支流遍布: 组合与计数、数论、(离散) 概率

关于离散数学, 学长纷纷表示:

我太难了

啥用没有

真得有那么难吗?

真得有那么难吗?

确实蛮难的:知识点多而分散、概念抽象

真得没啥用吗?

真得没啥用吗?

太基础,用了但不自觉(逻辑)

浅尝辄止,想用但用不上(群论)

将离散数学看作一门语言,一套工具

培养形式化描述问题的能力

培养做严格证明的能力

 $\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$

$$\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$$

$$\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q}$$

$$\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$$

$$\sqrt{2}\in\mathbb{R}\setminus\mathbb{Q}$$

$$\sqrt{2}^{\sqrt{2}}$$

$$\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$$

$$\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$$

$$\sqrt{2}^{\sqrt{2}}$$

$$(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$$

$$\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$$

$$\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$$

$$\sqrt{2}^{\sqrt{2}}$$

$$(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$$

Q: 这是构造性证明吗?

$$\exists a, b \in \mathbb{R} \setminus \mathbb{Q} : a^b \in \mathbb{Q}.$$

$$\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$$

$$\sqrt{2}^{\sqrt{2}}$$

$$(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$$

Q: 这是构造性证明吗? 这是反证法吗?

Tiling Puzzle

Suppose n is a positive integer. An equilateral triangle is cut into 4^n congruent equilateral triangles, and one corner is removed.

Show that the remaining area can be covered by tiles below

Base Case:

Induction Hypothesis:

Induction Step: ... by induction hypothesis ...

At any party with at least 6 people, there are 3 people who are all either mutual acquaintances or mutual strangers.

At any party with at least 6 people, there are 3 people who are all either mutual acquaintances or mutual strangers.

In Terms of Graph Theory.

(Is there a monochromatic triangle in any 2-coloring of K_6 ?)

Is there a monochromatic triangle in any 2-coloring of K_6 ?

Is there a monochromatic triangle in any 2-coloring of K_5 ?

Is there a monochromatic triangle in any 2-coloring of K_5 ?

Ramsey theory

How **big** must the **structure** be to ensure that it has a given interesting **property**?

Ramsey theory

How **big** must the **structure** be to ensure that it has a given interesting **property**?

Bridg-It Game (David Gale, 1958)

 $5 \times 6 \ vs. \ 6 \times 5$

 $5 \times 6 \ vs. \ 6 \times 5$

Let's Play with it!

Let's Analyze it!

Will Bridg-It end in a tie?

Will Bridg-It end in a tie?

No! By **contradiction**.

Does Player 2 have a winning strategy?

Does Player 2 have a winning strategy?

No! By the strategy stealing argument.

Does Player 1 have a winning strategy?

Does Player 1 have a winning strategy?

Yes! It uses spanning trees in graph theory.

Klotski Puzzle (华容道)

Klotski Puzzle (华容道; 中国版本)

15 Puzzle (数字华容道)

15	2	1	12
8	5	6	11
4	9	10	7
3	14	13	

Is it solvable?

How to solve it?

How to solve it?

It uses permutation groups in group theory.

The Stable Marriage Problem (SMP)

Given n men and n women, where each person has a preference list, to establish a stable marriage.

$Men \{x, y, z, w\}$	Women $\{a, b, c, d\}$
x: a > b > c > d	a: z > x > y > w
y: a > c > b > d	b: y > w > x > z
z:c>d>a>b	c: w > x > y > z
w: c > b > a > d	d: x > y > z > w

The Stable Marriage Problem (SMP)

Given n men and n women, where each person has a preference list, to establish a stable marriage.

Men
$$\{x, y, z, w\}$$
 Women $\{a, b, c, d\}$
 $x: a > b > c > d$ $a: z > x > y > w$
 $y: a > c > b > d$ $b: y > w > x > z$
 $z: c > d > a > b$ $c: w > x > y > z$
 $w: c > b > a > d$ $d: x > y > z > w$

 $\{xb, yc, zd, wa\}$

(x,a) is an unstable pair

42 / 50

 $\{xa, yb, zd, wc\}$

Men
$$\{x, y, z, w\}$$
 Women $\{a, b, c, d\}$
 $x: a > b > c > d$ $a: z > x > y > w$
 $y: a > c > b > d$ $b: y > w > x > z$
 $z: c > d > a > b$ $c: w > x > y > z$
 $w: c > b > a > d$ $d: x > y > z > w$

Theorem (The Gale-Shapley Algorithm (1962)) It is always possible to solve SMP.

Self-contained (自包含; 自给自足)

Syntax vs. Semantics (语法与语义对立统一)

三个公理系统:逻辑、集合论、图论、抽象代数(群论)

- (1) To draw a straight line from any point to any point.
- (2) To extend a finite straight line continuously in a straight line.
- (3) To describe a circle with any center and radius.
- (4) That all right angles are equal to one another.
- (5) The parallel postulate.

46 / 50

Axiomatic System for a Four-point Geometry

Undefined terms: point, line, is on

Axioms:

- (1) There are exactly four points.
- (2) It is impossible for three points to be on the same line.
- (3) For every pair of distinct points x and y, there is a unique line l such that x is on l and y is on l.
- (4) Given a line l and a point x that is not on l, there is a unique line m such that x is on m and no point on l is also on m.

Axiomatic System for a Four-point Geometry

Undefined terms: point, line, is on

Axioms:

- (1) There are exactly four points.
- (2) It is impossible for three points to be on the same line.
- (3) For every pair of distinct points x and y, there is a unique line l such that x is on l and y is on l.
- (4) Given a line l and a point x that is not on l, there is a unique line m such that x is on m and no point on l is also on m.

Theorem

There are at least two distinct lines.

Syntax vs. Semantics

Syntax vs. Semantics

point : \cdot line : \bigcirc is on : \bigcirc

什么样的推理是正确的?

Thank You!

Office 926 hfwei@nju.edu.cn

50 / 50