Lower bound for sorting

Gou Guanglei(苟光磊) ggl@cqut.edu.cn

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

E.g., insertion sort, merge sort, quicksort, heapsort.

The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.

Decision-tree example

Sort $\langle a_1, a_2, ..., a_n \rangle$

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le ... \le a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decision-tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof.

- 1) The tree must contain $\geq n!$ leaves, since there are n! possible permutations. (because every permutation appears at least once)
- 2) A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.
- 3) $n! \le l \le 2^h$
- 4) $h \ge \lg(n!)$ (since the lg function is monotonically increasing)
- 5) $\lg(n!) = \Theta(n \lg n)$
- 6) $h = \Omega(n \lg n)$.

Lower bound for decision-tree sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

How about randomized algorithms?

- At least one tree for each n.
- Proof still works because every tree works!
- So, randomized quicksort is asymptotically optimal in expectation.