

Regressão

Advanced Institute for Artificial Intelligence

https://advancedinstitute.ai

Regressão: Definição

Regressão: O que é?

• Tenta prever valores numéricos diretamente a partir de atributos de um novo exemplo.

Exemplos

- Prever a temperatura de amanhã a partir das condições atmosféricas.
- Estimar o preço de uma casa a partir de seu tamanho.

Mais Formalmente.....

Definição do problema

- Prever uma variável quantitativa $Y \in \mathbb{R}$ (resposta)
- ullet A partir de variáveis preditoras $X_1,\ldots,X_n\in\mathbb{R}$
- **Objetivo:** Encontrar o modelo *h*:

$$Y = h(X_1, \dots, X_n)$$

Estratégia:

• Utilizar um conjunto de exemplos (dataset) onde a resposta correta é conhecida para "aprender" um modelo.

Aprendendo o Modelo

Idealmente, o algoritmo para aprender o modelo deve:

- Ser capaz de reconstruir o fenômeno modelado com maior precisão possível
- Requerer o mínimo possível de dados para o aprendizado
- Representar o modelo da maneira mais simples o possível (Navalha de Occam)

- Não há uma "resposta correta" para todos os problemas
- Existem muitos tipos de modelos (modelos lineares, árvores, redes neurais, etc.)

Volume de vendas em função da verba de publicidade em diferentes meios

O Conjunto de treinamento pode ser visualizado como uma tabela

$Tamanho\;em\;p\'e^2$	Preço (\$) em 1000's
2104	460
1416	232
1534	315
852	178

Table: Preço de habitação por tamanho em Portland (OR)

Regressão Linear Univariada

Regressão Linear

Caso: Apenas um atributo

Hipótese

• variável de resposta tem uma relação linear com os atributos.

$$Y = \theta_0 + \theta_1 + \epsilon$$

h é representado como uma reta:

$$h(\theta) = \theta_0 + \theta_1 x$$

Equação da Reta:

$$y = mx + n$$

- $\bullet \ m = {\rm coeficiente\ angular}$
- ullet n= coeficiente linear

$$y = mx + n$$

$$h(\theta) = \theta_0 + \theta_1 x$$

Objetivo: Achar melhor reta (θ) de acordo com os dados de treinamento

E o que seria a melhor reta?

ullet Encontrar a reta h que passe o mais próximo possível de todos os pontos

Resíduo

• Diferença entre o valor y real e a estimativa $\widehat{y} = h_{\theta}(x)$

$$\epsilon = y^i - \widehat{y}$$

• Uma maneira de calcular θ_0 e θ_1 é se basear na soma do quadrado dos resíduos (RSS - residual sum os squares)

$$J(\theta) = \sum_{i=1}^{n} \epsilon_i^2$$

• Uma maneira de calcular θ_0 e θ_1 é se basear na soma do quadrado dos resíduos (RSS - residual sum os squares)

$$J(\theta) = \sum_{i=1}^{n} \epsilon_i^2$$

$$J(\theta) = \sum_{i=1}^{n} (y^i - \widehat{y})^2$$

• Uma maneira de calcular θ_0 e θ_1 é se basear na soma do quadrado dos resíduos (RSS - residual sum os squares)

$$J(\theta) = \sum_{i=1}^{n} \epsilon_i^2$$

$$J(\theta) = \sum_{i=1}^{n} (y^i - \widehat{y})^2$$

$$J(\theta) = \sum_{i=1}^{n} (y^{i} - (\theta_{0} + \theta_{1}x^{i}))^{2}$$

 θ_0 e θ_1 devem ser escolhidos de modo a minimizar o RSS. Solução: Método dos mínimos quadrados (Least Squares)

$$\bar{x} = \frac{1}{n} \sum_{j} x^{j}$$
 $\bar{y} = \frac{1}{n} \sum_{j} y^{j}$

$$\theta_1 = \frac{\sum_{j} (x^j - \bar{x})(y^j - \bar{y})}{\sum_{j} (x^j - \bar{x})^2}$$
 $\theta_0 = \bar{y} - \theta_1 \bar{x}$

Como saber se o resultado foi bom?

Avaliação da Regressão

O próprio RSS pode ser utilizado

(a) Modelo 1: $RSS = 1.93 \times 10^{11}$

(b) Modelo 1: RSS = 3.28×10^{11}

Estatística R^2

ullet Mede a proporção da variabilidade de Y que pode ser explicada por X.

$$TSS = \sum_{j} (y^{j} - \bar{y})^{2} \qquad RSS = \sum_{j} (y^{j} - \hat{y})^{2}$$
$$R^{2} = \frac{TSS - RSS}{TSS}$$

(c) Modelo 1: $R^2 = 0.63$

(d) Modelo 1: $R^2 = 0.54$

Regressão Linear Multivariada

- Na maior parte dos problemas práticos, utilizar apenas um atributo não é o suficiente para estimar a resposta
- ullet Neste caso, a Regressão Linear deve estimar um Hiperplano como modelo h.

Regressão Linear com Múltiplas Variáveis

Hipótese

$$Y = h_{\theta}(X) = \theta_0 + \theta_1 X_1 + \dots + \theta_n X_n$$

Tamanho em pé 2	número de quartos	Preço (\$) em 1000's
2104	3	460
1416	3	232
1534	3	315
852	2	178

- ullet Assim como no caso univariado, valores de heta devem ser escolhidos baseados no conjunto de treinamento
- O método dos mínimos quadrados também funciona para o caso multivariado
- Outra possibilidade de realizar o aprendizado é através do método de Descida do Gradiente (Gradient Descent)

Descida do Gradiente

• Partindo da função de custo de Erro Quadrático Médio

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{n} (y^i - h_{\theta}(\boldsymbol{x}^i))^2$$

 \bullet Definir parâmetros θ que minimizem J

Algoritmo Gradiente Descendente

- Iniciar θ aleatoriamente
- **9** Modificar valores de θ (seguindo o gradiente), para reduzir J até que um valor mínimo seja atingido.

Como computar a atualização?

• Repetir até a convergência, para cada parâmetro θ :

$$\theta_i := \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

 \bullet α é a taxa de aprendizado, que controla o "salto" na atualização dos parâmetros

$$\theta_i := \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

$$i = 0 : \frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_i h_{\theta}(\mathbf{x}^i) - y^i$$

$$i = 1 : \frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_i (h_{\theta}(\mathbf{x}^i) - y^i) x_1^i$$

Aplicando Descida do Gradiente

Figure: Repetindo 1 vez o treinamento. $RSS = 4.2 \times 10^{12}$, $R^2 = -5.76$

Figure: Repetindo **2** vezes o treinamento. $RSS = 2.9 \times 10^{11}$, $R^2 = -0.79$

Figure: Repetindo **7** vezes o treinamento. $RSS=1.9\times 10^{11}$, $R^2=0.55$

Vantagens

- Aprendizado eficiente
- Modelo simples de se visualizar e compreender

Desvantagens

• Muitos problemas reais não são lineares

Regressão por K Vizinhos mais Próximos

Regressão KNN (K-Nearest Neighbours)

Hipótese

ullet Y pode ser estimada se baseando nos k exemplos mais próximos na base de treinamento.

$$h_K(\boldsymbol{x}) = \sum_{j \in \mathcal{N}_K} w_j(\boldsymbol{x}, \boldsymbol{x}^j) y^j$$

• Onde K é o número de vizinhos, \mathcal{N}_K é o conjunto de amostras presentes na K-vizinhança e w_j é o peso de x em relação a x^j

• Assumindo que todas as amostras têm o mesmo peso:

$$h_K(\boldsymbol{x}) = \frac{1}{K} \sum_{j \in \mathcal{N}_K} y^j$$

• Não é necessário um processo de treinamento

Imagine que queremos prever o preço de uma casa com tamanho $=4200\,$

Se K=3, devemos encontrar os 3 exemplos mais próximos do valor desejado

O valor previsto é definido como a média destes valores

$$Y = \frac{1}{3}(699900 + 573900 + 549000) = 607600$$

Parâmetros Necessários para KNN

- \bullet $K \rightarrow \text{número de vizinhos}$
- Uma métrica de distância para encontrar os vizinhos "mais próximos"
- Uma forma de definir o peso para cada exemplo

Exemplos de modelos aprendidos com KNN

Figure: K = 3

Figure: K = 10

Vantagens

- O modelo aprendido não precisa ser linear
- Não há fase de treinamento
- Poucos parâmetros a serem definidos

Desvantagens

- Processo de inferência muito custoso
- Sensitividade a ruído e escala

Árvore de Regressão

Árvore de Regressão

- Aprende uma estrutura de árvore que "divide" o conjunto de treinamento de acordo com os valores dos atributos
- Resulta em um modelo fácil de **visualizar** e **interpretar**, muito utilizado em domínios em que uma solução "caixa-preta" é inaceitável

Como aprender a árvore?

Repetir iterativamente até que um critério de parada seja atingido:

- Encontrar o melhor valor para particionar cada atributo
- Selecionar a melhor partição entre as definidas no passo anterior
- Particionar os dados de treinamento conforme escolhido no passo anterior

Particionando a Árvore

A Predição para uma amostra é definida como uma média do valor y de todos os exemplos no conjunto de treinamento que caem naquela mesma partição.

Vantagens

- Pouco afetada pela escala dos atributos
- Intuitiva e fácil de se compreender

Desvantagens

- Pequenas alterações nos dados podem resultar em grandes alterações na árvore resultante
- Valores preditos na regressão não são muito precisos
- Processo de treinamento relativamente custoso