3. Random Variables and Probability Distributions - Well-defined: expectation

Lai Hui Shan m5281022

Let X be a random variable with density

$$f_X(x) = Cx^{-lpha}, \quad x \in (0,\infty),$$

where $\alpha > 0$ and C is a normalizing constant to ensure the total probability integrates to 1 over $(0, \infty)$.

Existence of the Expected Value $\mathbb{E}(X)$

The expectation $\mathbb{E}(X)$ is given by

$$\mathbb{E}(X) = \int_0^\infty x \cdot f_X(x) \, dx = \int_0^\infty x \cdot C x^{-lpha} \, dx = C \int_0^\infty x^{1-lpha} \, dx.$$

The integral $\int_0^\infty x^{1-\alpha}\,dx$ converges or diverges depending on the value of α . We analyze this integral over two regions: near x=0 and as $x\to\infty$.

1. Behavior as x o 0

For convergence near x=0, we require that the exponent $1-\alpha$ does not make the integral diverge. The integral

$$\int_0^1 x^{1-\alpha} \, dx$$

converges if $1 - \alpha > -1$, which simplifies to

$$lpha < 2$$
.

2. Behavior as $x \to \infty$

For convergence as $x \to \infty$, we consider

$$\int_1^\infty x^{1-lpha}\,dx.$$

This integral converges if $1 - \alpha < -1$, which simplifies to

$$\alpha > 2$$
.

Conclusion on $\mathbb{E}(X)$

To satisfy both conditions for convergence, the expected value $\mathbb{E}(X)$ is defined if and only if

If $\alpha \leq 2$, the integral defining $\mathbb{E}(X)$ diverges, and thus the expected value does not exist. In summary:

- If $\alpha > 2$: The expected value $\mathbb{E}(X)$ exists.
- If $\alpha \leq 2$: The expected value $\mathbb{E}(X)$ does not exist due to divergence in the integral.