Homework - Chapter 5

Name:	·
1.	Multiprogrammed computers depend on the cpu burst – io burst cycle. Explain why. Write a C function, no matter how trivial, that does not behave this way:
2.	The job of the CPU scheduler is to pick the next process to run. Truly, it is not possible to make a perfect scheduler. Explain why.
3.	Preemptive scheduler depend on to get control back from the currently running user program. Why can't the OS just take control back on its own?

4. The text described two types of context switches – voluntary and involuntary. What triggers these different types?

5. Consider the following processes and then answer the following questions using *First-Come, First Served* scheduling:

Process	Arrival Time	Burst Time
P1	0	1.5
P2	1	0.5
P3	3	2.5
P4	4	1.5

- a. Show the Gantt chart for these four processes (see text for example):
- b. Compute the average CPU utilization:
- c. Compute the average *turn-around time*:
- d. Compute the average wait-time:

6. Consider the following processes and then answer the following questions using *Shortest-Job First* scheduling:

Process	Burst Time
P1	1.5
P2	0.5
P3	3.5
P4	4.5

- a. Show the Gantt chart for these four processes (see text for example):
- b. Compute the average CPU utilization:
- c. Compute the average turn-around time:
- d. Compute the average wait-time:

7. Considering you answer in question 2, suppose we have a job that has the following *actual* bursts. Using the *exponential average*, find an *alpha* value that minimizes the RMSQE between *predicted* and the *actual* burst:

 $T_1 = 0.5, 1.5, 2.0, 1.5, 4, 2.5, 4, 2.5, 3.5$

a. Show your results for computing alpha:

b. Next, using your alpha value from part a, make predictions and compute the RMSQE for a job with following burst-times. Clearly state whether your accuracy was better or worse.

 $T_2 = 1.5, 2.5, 3.5, 4.5, 5.5, 3.5, 1.5, 2.5, 3.5$

8.	Why do most OSes today use multi-level scheduling?