ASTR 565

Computer Problem 2.1: Polytropes

Laurel Farris

06 October 2015

1 Introduction

Polytropes are gaseous spheres in hydrostatic equilibrium whose pressure and density at any point along the radius are related by:

$$P = K\rho^{(n+1)/n} \tag{1}$$

where K is a constant and n is the polytropic index. The structure of a polytrope can be modeled using the $Lane-Emden\ equation$:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n \tag{2}$$

where ξ is a dimensionless quantity that represents distance from the center of the sphere. This relationship is a simplification following from the combination of hydrostatic equilibrium and equation (1). [1]

2 Methods

Exact solutions only exist for n=0, 1, and 5, so solutions for other values must be approximated using numerical techniques. Since the *Lane-Emden equation* is a second-order differential equation, the best approach was to first express it as two first-order differential equations. Replacing ξ with x and θ with y, we have:

$$y' = z \tag{3}$$

and

$$z' = -\left(\frac{2}{x}\right)z - y^n\tag{4}$$

where z is a new variable equal to dy/dx.

To approximate $y(\theta)$ as a function of $x(\xi)$, the Runge-Kutta method[2] was used to the fourth-order. Given boundary conditions at the center: $x_0 = 0$ and $y_0 = 1$, and at the surface: $y_1 = 0$, y was

approximated by stepping from the center(0) to the surface(1) using the following equations:

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf(x_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{1})$$

$$k_{3} = hf(x_{n} + \frac{1}{2}h, y_{n} + \frac{1}{2}k_{2})$$

$$k_{4} = hf(x_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}k_{1} + \frac{1}{3}k_{2} + \frac{1}{3}k_{3} + \frac{1}{6}k_{4} + O(h^{5})$$

The first four correspond to the "fourth order" part of the approximation and were calculated for every step h through x to generate the next value for y (with the exception of $O(h^5)$ in the last equation, which is a margin of error that was not included here). This process was repeated until y reached the surface boundary condition. Similar equations were used to approximate z (dy/dx), replacing k with l.

3 Results

Returning to the original symbols, the values for ξ_1 (ξ at the surface) and other parameters for a polytropic index of n = 4.5 are listed in table 1.

Table 1: Values for polytropic index n = 4.5

\overline{n}	ξ_1	$ ho_c/ ho$	N_n	W_n	Θ_n	$\rho_c[gcm^{-3}]$	$P_c[dyne\ cm^{-2}]$	$T_c[K]$
4.5	31.841	6187.500	0.658	4917.415	3.329	8718.704	5.535e19	4.742e7

The resulting approximation for θ is plotted in figure 1, along with θ^n , θ^{n+1} , and q. $\theta^n = \rho/\rho_c$, where ρ_c is the density at the center of the star. Therefore, θ^n for any value of n is always equal to 1 at the center, and 0 at the surface, where the density is assumed to fall to 0, as shown in figure 1. This was how the boundary conditions were determined for the *Runge-Kutta* method. The mass distribution is represented by q, which can be expressed as:

$$q = \frac{m}{M} = \left(\xi^2 \frac{d\theta}{d\xi}\right) \left(\xi_1^2 \frac{d\theta}{d\xi_1}\right)^{-1} \tag{5}$$

and increases from 0 to 1 in figure 1.

Figure 1: This plot shows θ (red), θ^n (green), θ^{n+1} (blue), and q (purple) as functions of ξ .

References

- [1] Donald D. Clayton. Principles of Stellar Evolution and Nucleosynthesis. McGraw-Hill, Inc., 1968.
- [2] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. *Numerical Recipes: The Art of Scientific Computing*. Cambridge University Press, 3rd edition, 2007.