CEE 260/MIE 273: Probability and Statistics in Civil Engineering Lecture 3a: Introduction: Random variables

Prof. Oke

UMass Amherst

College of Engineering

September 23, 2025

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Overview of Module 3

Appendix 00000 Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

Overview of Module 3

Overview

Lecture 3a: Introduction: Random Variables

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Overview of Module 3

Overview

• Lecture 3a: Introduction: Random Variables

• Lecture 3b: **Normal Distribution**

Appendix

Overview

- Lecture 3a: Introduction: Random Variables
- Lecture 3b: Normal Distribution § ...

• Lecture 3c: Lognormal and Exponential Distributions

Overview

- Lecture 3a: Introduction: Random Variables
- Lecture 3b: Normal Distribution [3]

Lecture 3c: Lognormal and Exponential Distributions

Overview

- Lecture 3a: Introduction: Random Variables
- Lecture 3b: Normal Distribution 5.0

Lecture 3c: Lognormal and Exponential Distributions

Lecture 3d: Binomial Distribution

Overview

- Lecture 3a: Introduction: Random Variables
- Lecture 3b: Normal Distribution San

Lecture 3c: Lognormal and Exponential Distributions

Lecture 3d: Binomial Distribution

Lecture 3e: Poisson Distribution

Overview

- Lecture 3a: Introduction: Random Variables
- Lecture 3b: Normal Distribution San

Lecture 3c: Lognormal and Exponential Distributions

Lecture 3d: Binomial Distribution

- Lecture 3e: Poisson Distribution
- Lecture 3f: Joint Distributions and further topics

- Introduction to random variables
- Probability distribution of r.v.
- 3 Discrete r.v.'s
- 4 Continuous r.v.'s
- Outlook
- 6 Appendix

Understand random variables

- Introduction to random variables
- Probability distribution of r.v.
- 3 Discrete r.v.'s
- 4 Continuous r.v.'s
- Outlook
- 6 Appendix

- Understand random variables
- Distinguish between discrete and continuous random variables

- Introduction to random variables
- 2 Probability distribution of r.v.
- 3 Discrete r.v.'s
- Continuous r.v.'s
- Outlook
- 6 Appendix

- Understand random variables
- Distinguish between discrete and continuous random variables
- Compute measures of centrality and dispersion, as well as sketch PMFs, PDFs and CDFs
- Introduction to random variables
- Probability distribution of r.v.
- 3 Discrete r.v.'s
- 4 Continuous r.v.'s
- Outlook
- 6 Appendix

- Understand random variables
- Distinguish between discrete and continuous random variables
- Compute measures of centrality and dispersion, as well as sketch PMFs, PDFs and CDFs
- Introduction to random variables
- Probability distribution of r.v.
- 3 Discrete r.v.'s
- 4 Continuous r.v.'s
- Outlook
- 6 Appendix

- Understand random variables
- Distinguish between discrete and continuous random variables
- Compute measures of centrality and dispersion, as well as sketch PMFs, PDFs and CDFs
- Introduction to random variables
- Probability distribution of r.v.
- 3 Discrete r.v.'s
- 4 Continuous r.v.'s
- Outlook
- 6 Appendix

Introduction to random variables

•0

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

Random variables

Introduction to random variables

Definitions

• A random variable (r.v.) represents the values of the outcomes in a sample space

Introduction to random variables

Definitions

 A random variable (r.v.) represents the values of the outcomes in a sample space (e.g. the outcome of die roll: $X = \{1, 2, 3, 4, 5, 6\}$

Definitions

- A random variable (r.v.) represents the values of the outcomes in a sample space (e.g. the outcome of die roll: $X = \{1, 2, 3, 4, 5, 6\}$
- A random variable is a function that uniquely maps events in a sample space to the set of real numbers.

A random variable X may be:

Definitions

- A random variable (r.v.) represents the values of the outcomes in a sample space (e.g. the outcome of die roll: $X = \{1, 2, 3, 4, 5, 6\}$
- A random variable is a function that uniquely maps events in a sample space to the set of real numbers.

A random variable X may be:

- Discrete
- Continuous

Introduction to random variables

Central values

Mean

Central values

- Mean
- Median

Central values

- Mean
- Median
- Mode

Central values

- Mean
- Median
- Mode

Central values

Introduction to random variables

- Mean
- Median
- Mode

Measures of dispersion

Variance

Central values

- Mean
- Median
- Mode

Measures of dispersion

- Variance
- Standard deviation

Central values

Introduction to random variables

- Mean
- Median
- Mode

Measures of dispersion

- Variance
- Standard deviation
- Coefficient of variation (COV)

Appendix 00000

A probability distribution governs the values of a random variable.

Appendix

A probability distribution governs the values of a random variable. It can be described by the following functions:

A probability distribution governs the values of a random variable. It can be described by the following functions:

· probability mass function, PMF

A probability distribution governs the values of a random variable. It can be described by the following functions:

· probability mass function, PMF

A probability distribution governs the values of a random variable. It can be described by the following functions:

probability mass function, PMF discrete random variable

Appendix

Probability distribution

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF

Appendix

Probability distribution

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF continuous random variable

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF continuous random variable
- cumulative distribution function, CDF

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF continuous random variable
- cumulative distribution function, CDF

A probability distribution governs the values of a random variable. It can be described by the following functions:

- probability mass function, PMF discrete random variable
- probability density function, PDF continuous random variable
- cumulative distribution function, CDF discrete/continuous random variable

000000

The PMF is given by

The PMF is given by

$$p_X(x_i) \equiv P(X = x_i) \quad \forall x$$
 (1)

The PMF is given by

$$p_X(x_i) \equiv P(X = x_i) \quad \forall x$$
 (1)

CDF of discrete random variable

The PMF is given by

$$p_X(x_i) \equiv P(X = x_i) \quad \forall x$$
 (1)

CDF of discrete random variable

$$F_X(x) = \sum_{x_i \le x} P(X = x_i)$$
$$= \sum_{x_i \le x} p_X(x_i)$$

The PMF is given by

$$p_X(x_i) \equiv P(X = x_i) \quad \forall x$$
 (1)

CDF of discrete random variable

$$F_X(x) = \sum_{x_i \le x} P(X = x_i)$$
$$= \sum_{x_i \le x} p_X(x_i)$$

The probability masses in a PMF sum up to 1.

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

CDF of continuous random variable

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

CDF of continuous random variable

$$F_X(x) = P(X \le x)$$

= $\int_{-\infty}^{x} f_X(\tau) d\tau$

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

CDF of continuous random variable

$$F_X(x) = P(X \le x)$$

= $\int_{-\infty}^{x} f_X(\tau) d\tau$

Thus:

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{3}$$

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

CDF of continuous random variable

$$F_X(x) = P(X \le x)$$

= $\int_{-\infty}^x f_X(\tau) d\tau$

Thus:

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{3}$$

The PDF is denoted $f_X(x)$ such that the probability of X in the interval (a, b] is:

$$P(a < X \le b) = \int_a^b f_X(x) dx \quad (2)$$

CDF of continuous random variable

$$F_X(x) = P(X \le x)$$

= $\int_{-\infty}^x f_X(\tau) d\tau$

Thus:

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{3}$$

The total area under a PDF is 1.

¹Note that the symbol ∀ means "for all"

The CDF (F_X) of a random variable X is given by

 F_X

 $^{^{1}}$ Note that the symbol \forall means "for all"

$$F_X \equiv$$

 $^{^{1}}$ Note that the symbol \forall means "for all"

$$F_X \equiv P(X \leq x)$$

$$F_X \equiv P(X \le x)$$
 for all x (4)

The CDF (F_X) of a random variable X is given by

$$F_X \equiv P(X \le x)$$
 for all x (4)

The CDF (F_X) of a random variable X is given by

$$F_X \equiv P(X \le x)$$
 for all x (4)

The CDF (F_X) of a random variable X is given by

$$F_X \equiv P(X \le x)$$
 for all x (4)

- $\mathbf{1}$ $F_X(-\infty) = 0$ and $F_X(\infty) = 1$
- 2 $F_X(x) \ge 0 \quad \forall x \text{ and is nondecreasing with } x^{1}$

The CDF (F_X) of a random variable X is given by

$$F_X \equiv P(X \le x)$$
 for all x (4)

- $\mathbf{1}$ $F_X(-\infty) = 0$ and $F_X(\infty) = 1$
- 2 $F_X(x) \ge 0 \quad \forall x \text{ and is nondecreasing with } x^{1}$
- 3 $F_X(x)$ is continuous to the right with x.

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months.

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

Let the outcomes be O (operational) and N(nonoperational)

- Let the outcomes be O (operational) and N(nonoperational)
- There are $2 \times 2 \times 2 = 8$ possibilities:

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - **1** OON

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - **1** OON
 - **2** 000

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - **1** OON
 - **2** 000
 - 3 ONO

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - 00N
 - 000
 - 3 ONO
 - ONN

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - **1** OON
 - 000
 - 3 ONO
 - ONN
 - **5** NOO

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- Let the outcomes be O (operational) and N (nonoperational)
- There are 2 × 2 × 2 = 8 possibilities:
 - **1** OON
 - 000
 - 3 ONO
 - A ONN
 - 4 ONN
 - 5 NOO
 - O NON

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- Let the outcomes be O (operational) and N(nonoperational)
- There are $2 \times 2 \times 2 = 8$ possibilities:
 - OON
 - **2** 000
 - ONO
 - ONN
 - NOO
 - NON

 - NNO

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- Let the outcomes be O (operational) and N(nonoperational)
- There are $2 \times 2 \times 2 = 8$ possibilities:
 - OON
 - **2** 000
 - ONO
 - ONN
 - NOO
 - NON
 - NNO
 - NNN

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- Let the outcomes be O (operational) and N(nonoperational)
- There are $2 \times 2 \times 2 = 8$ possibilities:
 - OON
 - **2** 000
 - ONO
 - ONN
 - NOO
 - NON
 - NNO
 - NNN

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- **1** OON
- **2** 000
- 3 ONO
- ONN
- 6 NOO
- 6 NON
- 7 NNO
 - NNN

Figure: PMF

Each of 3 bulldozers equally likely to operational or nonoperational after 6 months. Plot the PMF and CDF of the random variable X which represents the operating condition of the bulldozers after 6 months.

- OON
- 000
- ONO
- ONN
- NOO
- NON
- NNO
- - NNN

Figure: PMF

Figure: CDF

Further derivations

Continuous case:

$$P(a < X \le b) = \int_{-\infty}^{b} f_X(x) dx - \int_{-\infty}^{a} f_X(x) dx$$
 (5)

Further derivations

Continuous case:

$$P(a < X \le b) = \int_{-\infty}^{b} f_X(x) dx - \int_{-\infty}^{a} f_X(x) dx$$
 (5)

Discrete case:

$$P(a < X \le b) = \sum_{x_i \le b} p_X(x_i) - \sum_{x_i \le a} p_X(x_i)$$
 (6)

Further derivations

Continuous case:

$$P(a < X \le b) = \int_{-\infty}^{b} f_X(x) dx - \int_{-\infty}^{a} f_X(x) dx$$
 (5)

Discrete case:

$$P(a < X \le b) = \sum_{x_i \le b} p_X(x_i) - \sum_{x_i \le a} p_X(x_i)$$
 (6)

Second Property Second Prop

$$P(a < X \le b) = F_X(b) - F_X(a) \tag{7}$$

Probability distribution of r.v.

Discrete r.v.'s Continuous r.v.'s Outlook

Mean and variance

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Mean and variance

Mean

Weighted average or expected value

Mean

Weighted average or expected value

$$\mathbb{E}(X) = \sum_{i} x_{i} p_{X}(x_{i}) \text{ discrete case}$$

Discrete r.v.'s

•000

Mean

Weighted average or expected value

$$\mathbb{E}(X) = \sum_{i} x_{i} p_{X}(x_{i}) \quad \text{discrete case}$$
 (8)

Variance

Mean

Weighted average or expected value

$$\mathbb{E}(X) = \sum_{i} x_i p_X(x_i) \quad \text{discrete case}$$
 (8)

Variance

In the discrete case:

Mean

Weighted average or expected value

$$\mathbb{E}(X) = \sum_{i} x_{i} p_{X}(x_{i}) \quad \text{discrete case}$$
 (8)

Variance

In the discrete case:

$$\mathbb{V}(X) = \sum_{i} (x_i - \mu_X)^2 p_X(x_i)$$
 (9)

Mean

Weighted average or expected value

$$\mathbb{E}(X) = \sum_{i} x_{i} p_{X}(x_{i}) \quad \text{discrete case}$$
 (8)

Variance

In the discrete case:

$$\mathbb{V}(X) = \sum_{i} (x_i - \mu_X)^2 p_X(x_i)$$
 (9)

Expanding results in:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mu_X^2 \tag{10}$$

Measures of dispersion (cont.)

Measures of dispersion (cont.)

Measures of dispersion (cont.)

Standard deviation

The standard deviation is convenient as it has the same unit as the random variable:

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

○○○○○

○

Outlook

○

Outlook

Measures of dispersion (cont.)

Standard deviation

The standard deviation is convenient as it has the same unit as the random variable:

$$\sigma_X =$$

Measures of dispersion (cont.)

Standard deviation

The standard deviation is convenient as it has the same unit as the random variable:

$$\sigma_X = \sqrt{\mathbb{V}(X)} \tag{11}$$

Standard deviation

The standard deviation is convenient as it has the same unit as the random variable:

$$\sigma_X = \sqrt{\mathbb{V}(X)} \tag{11}$$

Coefficient of variation

The COV gives the deviation relative to the mean. It is unitless.

Measures of dispersion (cont.)

Standard deviation

The standard deviation is convenient as it has the same unit as the random variable:

$$\sigma_X = \sqrt{\mathbb{V}(X)} \tag{11}$$

Coefficient of variation

The COV gives the deviation relative to the mean. It is unitless.

$$\delta_X = \frac{\sigma_X}{\mu_X} \tag{12}$$

Example 2: Bulldozers revisited

ndom variables Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix 000000 000000 0 000000

Example 2: Bulldozers revisited

You are given the PMF (probability mass function) of the operating condition X of bulldozers after 6 months.

Example 2: Bulldozers revisited

You are given the PMF (probability mass function) of the operating condition X of bulldozers after 6 months.

Example 2: Bulldozers revisited

You are given the PMF (probability mass function) of the operating condition X of bulldozers after 6 months.

Find the mean, variance, standard deviation and coefficient of variation of X.

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook 000000 000000 0

Example 2: Bulldozers revisited (cont.)

Appendix

Example 2: Bulldozers revisited (cont.)

(a) Mean:
$$\mu_X = \mathbb{E}(X) = 0 \left(\frac{1}{8}\right) + 1 \left(\frac{3}{8}\right) + 2 \left(\frac{3}{8}\right) + 3 \left(\frac{1}{8}\right) = 1.5.$$

- (a) Mean: $\mu_X = \mathbb{E}(X) = 0 \left(\frac{1}{8}\right) + 1 \left(\frac{3}{8}\right) + 2 \left(\frac{3}{8}\right) + 3 \left(\frac{1}{8}\right) = 1.5.$
- (b) Variance: $\mathbb{V}(X) = [0^2 \left(\frac{1}{8}\right) + 1^2 \left(\frac{3}{8}\right) + 2^2 \left(\frac{3}{8}\right) + 3^2 \left(\frac{1}{8}\right)] (1.5)^2 = 0.75$

Discrete r.v.'s

- (a) Mean: $\mu_X = \mathbb{E}(X) = 0 \left(\frac{1}{8}\right) + 1 \left(\frac{3}{8}\right) + 2 \left(\frac{3}{8}\right) + 3 \left(\frac{1}{8}\right) = 1.5.$
- (b) Variance: $\mathbb{V}(X) = [0^2 \left(\frac{1}{8}\right) + 1^2 \left(\frac{3}{8}\right) + 2^2 \left(\frac{3}{8}\right) + 3^2 \left(\frac{1}{8}\right)] (1.5)^2 = 0.75$
- (c) Standard deviation: $\sigma_X = \sqrt{0.75} = 0.866$

Discrete r.v.'s

- (a) Mean: $\mu_X = \mathbb{E}(X) = 0 \left(\frac{1}{6}\right) + 1 \left(\frac{3}{6}\right) + 2 \left(\frac{3}{6}\right) + 3 \left(\frac{1}{6}\right) = 1.5.$
- (b) Variance: $\mathbb{V}(X) = [0^2 \left(\frac{1}{8}\right) + 1^2 \left(\frac{3}{8}\right) + 2^2 \left(\frac{3}{8}\right) + 3^2 \left(\frac{1}{8}\right)] (1.5)^2 = 0.75$
- (c) Standard deviation: $\sigma_X = \sqrt{0.75} = 0.866$
- (d) Coefficient of variation: $\delta_X = \frac{0.866}{1.50} = 0.577$

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s

Mean and variance

16 / 28

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Mean and variance

These include the mean, median and mode.

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

○○○○○ ○○○○○ ○○○○○○

Mean and variance

These include the mean, median and mode.

Mean: weighted average or expected value

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

Mean and variance

These include the mean, median and mode.

Mean: weighted average or expected value

These include the mean, median and mode.

• Mean: weighted average or expected value

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{continuous case}$$
 (13)

Variance

These include the mean, median and mode.

• Mean: weighted average or expected value

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{continuous case}$$
 (13)

Variance

In the continuous case:

These include the mean, median and mode.

• Mean: weighted average or expected value

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{continuous case}$$
 (13)

Variance

In the continuous case:

$$\mathbb{V}(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx \tag{14}$$

These include the mean, median and mode.

Mean: weighted average or expected value

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx \quad \text{continuous case}$$
 (13)

Variance

In the continuous case:

$$\mathbb{V}(X) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx \tag{14}$$

Expanding both equations results in:

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mu_X^2 \tag{15}$$

oduction to random variables Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

Example 3: Loaded beam

Example 3: Loaded beam

Consider the beam under a 100-kg load. If the load is equally likely to be placed anywhere along the 10m span of the beam,

Example 3: Loaded beam

Figure E25a Beam AB. Consider the beam under a 100-kg load. If the load is equally likely to be placed anywhere along the 10m span of the beam,then the PDF of the load position X is uniformly distributed in $0 < x \le 10$, i.e.:

Example 3: Loaded beam

Figure E25a Beam AB. Consider the beam under a 100-kg load. If the load is

equally likely to be placed anywhere along the 10m span of the beam, then the PDF of the load position X is uniformly distributed in $0 < x \le 10$, i.e.:

$$f_X(c) = \begin{cases} c & 0 < x \le 10 \end{cases}$$

Example 3: Loaded beam

Figure E25a Beam AB. Consider the beam under a 100-kg load. If the load is equally likely to be placed anywhere along the 10m span of the beam, then the PDF of the load position X is uniformly distributed in $0 < x \le 10$, i.e.:

$$f_X(c) = \begin{cases} c & 0 < x \le 10\\ 0 & \text{otherwise} \end{cases}$$
 (16)

Example 3: Loaded beam

Consider the beam under a 100-kg load. If the load is Figure E2.5a Beam AB. equally likely to be placed anywhere along the 10m span of the beam, then the PDF of the load position X is uniformly distributed in 0 < x < 10, i.e.:

$$f_X(c) = \begin{cases} c & 0 < x \le 10\\ 0 & \text{otherwise} \end{cases}$$
 (16)

- Plot the PDF of X.
- Solve the integral for the CDF and plot.
- (c) Find P(2 < X < 5).

es Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix

Example 3: Loaded beam (cont.)

(a) The area under the PDF must be 1. Thus, c must be $\frac{1}{10}$.

Appendix

The area under the PDF must be 1. Thus, c must be $\frac{1}{10}$.

Example 3: Loaded beam (cont.)

Appendix

$$F_X =$$

$$F_X = \int_0^x c dx$$

$$F_X = \int_0^x c dx = cx$$

$$F_X = \int_0^x c dx = cx = \frac{x}{10}$$

$$F_X = \int_0^x c dx = cx = \frac{x}{10}$$
 $0 < x \le 10$

$$F_X = \int_0^x c dx = cx = \frac{x}{10}$$
 $0 < x \le 10$

Figure E3.2b CDF of X.

Example 3: Loaded beam (cont.)

Appendix

(c) To compute $P(2 < X \le 5)$, we use the CDF:

Appendix

(c) To compute $P(2 < X \le 5)$, we use the CDF:

$$P(2 < X \le 5) = F_X(5) - F_X(2)$$

(c) To compute $P(2 < X \le 5)$, we use the CDF:

$$P(2 < X \le 5) = F_X(5) - F_X(2)$$

= $\frac{5-2}{10}$ =

(c) To compute $P(2 < X \le 5)$, we use the CDF:

$$P(2 < X \le 5) = F_X(5) - F_X(2)$$

= $\frac{5-2}{10} = 0.3$

ntroduction to random variables Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix
00 00000 00000 0 000000 0 000000

Example 4: Useful life of machines

$$f_T(t) = \lambda e^{-\lambda t} \qquad t \ge 0$$

$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
 $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$f_{\mathcal{T}}(t) = \lambda e^{-\lambda t} \quad t \ge 0$$

 $F_{\mathcal{T}}(t) = 1 - e^{-\lambda t} \quad t \ge 0$

$$f_{\mathcal{T}}(t) = \lambda e^{-\lambda t} \quad t \ge 0$$

 $F_{\mathcal{T}}(t) = 1 - e^{-\lambda t} \quad t \ge 0$

The useful life T of welding machines is a random variable with an exponential distribution. The PDF and CDF are:

$$f_{\mathcal{T}}(t) = \lambda e^{-\lambda t} \quad t \ge 0$$

 $F_{\mathcal{T}}(t) = 1 - e^{-\lambda t} \quad t \ge 0$

CEE 260/MIE 273 3a: Random Variables

- (a) Find the mean of this distribution
- (b) Find the median
- (c) Show that the variance is $\frac{1}{\lambda^2}$

PDF:

Introduction to random variables

$$PDF: f_T(t) = \lambda e^{-\lambda t} \qquad t \ge 0$$

Appendix

Appendix

Example 4: Useful life of machines

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF:

Appendix

Example 4: Useful life of machines

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

(a) The mean is given by $\mu_T = \mathbb{E}(T) = \int_0^\infty t \lambda e^{-\lambda t} dt$.

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$\mu_{T} = \int_{0}^{\infty} t \lambda e^{-\lambda t} dt$$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$\mu_T = \int_0^\infty t \lambda e^{-\lambda t} dt$$
$$= \lambda \int_0^\infty \lambda e^{-\lambda t} dt$$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$\mu_{T} = \int_{0}^{\infty} t \lambda e^{-\lambda t} dt$$

$$= \lambda \int_{0}^{\infty} \lambda e^{-\lambda t} dt$$

$$= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) \right]_{0}^{\infty} - \left[-\frac{1}{\lambda} e^{-\lambda t} dt \right]$$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$\mu_{T} = \int_{0}^{\infty} t\lambda e^{-\lambda t} dt$$

$$= \lambda \int_{0}^{\infty} \lambda e^{-\lambda t} dt$$

$$= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) \right]_{0}^{\infty} - \left[-\frac{1}{\lambda} e^{-\lambda t} dt \right]$$

$$= \lambda \left(0 + \frac{1}{\lambda} \frac{-e^{-\lambda t}}{\lambda} \Big|_{0}^{\infty} \right)$$

PDF:
$$f_T(t) = \lambda e^{-\lambda t}$$
 $t \ge 0$
CDF: $F_T(t) = 1 - e^{-\lambda t}$ $t \ge 0$

$$\mu_{T} = \int_{0}^{\infty} t\lambda e^{-\lambda t} dt$$

$$= \lambda \int_{0}^{\infty} \lambda e^{-\lambda t} dt$$

$$= \lambda \left[t \left(-\frac{1}{\lambda} e^{-\lambda t} \right) \right]_{0}^{\infty} - \left[-\frac{1}{\lambda} e^{-\lambda t} dt \right]$$

$$= \lambda \left(0 + \frac{1}{\lambda} \frac{-e^{-\lambda t}}{\lambda} \Big|_{0}^{\infty} \right) = \frac{\lambda}{\lambda^{2}} = \frac{1}{\lambda}$$

bability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Recap

Random variables

Reading

- Open Intro Statistics Section 3.4 (Random variables)
- Open Intro Statistics Section 3.5 (Continuous distributions)

ability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Recap

- Random variables
- Probability mass/density function (PMF/PDF) and cumulative distribution function (CDF)

Reading

- Open Intro Statistics Section 3.4 (Random variables)
- Open Intro Statistics Section 3.5 (Continuous distributions)

bility distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Recap

- Random variables
- Probability mass/density function (PMF/PDF) and cumulative distribution function (CDF)
- Measures of centrality

Reading

- Open Intro Statistics Section 3.4 (Random variables)
- Open Intro Statistics Section 3.5 (Continuous distributions)

ility distribution of r.v. Discrete r.v.'s Continuous r.v 00 0000 000000

Recap

- Random variables
- Probability mass/density function (PMF/PDF) and cumulative distribution function (CDF)
- Measures of centrality
- Measures of dispersion

Reading

- Open Intro Statistics Section 3.4 (Random variables)
- Open Intro Statistics Section 3.5 (Continuous distributions)

Outlook

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outloo

Skewness

Appendix ●0000 ability distribution of r.v. Discrete r.v.'s

Skewness

The skewness or symmetry of a distribution is measured by the third central moment:

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^3 = \sum_{i} (x_i - \mu_X)^3 p_X(x_i)$$
 (17)

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^3 = \sum_{i} (x_i - \mu_X)^3 p_X(x_i)$$
 (17)

In the continuous case:

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^3 = \sum_{i} (x_i - \mu_X)^3 p_X(x_i)$$
 (17)

In the continuous case:

$$\mathbb{E}(X - \mu_X)^3 = \int_{-\infty}^{\infty} (x - \mu_X)^3 f_X(x) dx \tag{18}$$

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^3 = \sum_{i} (x_i - \mu_X)^3 p_X(x_i)$$
 (17)

In the continuous case:

$$\mathbb{E}(X - \mu_X)^3 = \int_{-\infty}^{\infty} (x - \mu_X)^3 f_X(x) dx \tag{18}$$

For convenience, the skewness coefficient is also used (unitless):

The skewness or symmetry of a distribution is measured by the third central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^3 = \sum_{i} (x_i - \mu_X)^3 p_X(x_i)$$
 (17)

In the continuous case:

$$\mathbb{E}(X - \mu_X)^3 = \int_{-\infty}^{\infty} (x - \mu_X)^3 f_X(x) dx \tag{18}$$

For convenience, the skewness coefficient is also used (unitless):

$$\theta = \frac{\mathbb{E}(X - \mu_X)^3}{\sigma^3} \tag{19}$$

Appendix

Skewness (cont.)

Positive skewness is characterized by a long right tail (right-skewed)

- Positive skewness is characterized by a long right tail (right-skewed)
- Negative skewness is characterized by a long left tail (left-skewed)

- Positive skewness is characterized by a long right tail (right-skewed)
- Negative skewness is characterized by a long left tail (left-skewed)

- Positive skewness is characterized by a long right tail (right-skewed)
- Negative skewness is characterized by a long left tail (left-skewed)

n variables Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook Appendix
000000 000000 0000000 0000000

Kurtosis

26 / 28

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Kurtosis

This is the measure of peakedness in a distribution.

Appendix 00●00 bility distribution of r.v. Discrete r.v.'s Contin

Kurtosis

This is the measure of peakedness in a distribution. It is the fourth central moment:

Appendix 00●00 bility distribution of r.v. Discrete r.v.'s Cont

Kurtosis

This is the measure of peakedness in a distribution. It is the fourth central moment:

In the discrete case:

Kurtosis

This is the measure of peakedness in a distribution. It is the fourth central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^4 = \sum_i (x_i - \mu_X)^4 p_X(x_i)$$
 (20)

Kurtosis

This is the measure of peakedness in a distribution. It is the fourth central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^4 = \sum_i (x_i - \mu_X)^4 p_X(x_i)$$
 (20)

In the continuous case:

Kurtosis

This is the measure of peakedness in a distribution. It is the fourth central moment:

In the discrete case:

$$\mathbb{E}(X - \mu_X)^4 = \sum_{i} (x_i - \mu_X)^4 p_X(x_i)$$
 (20)

In the continuous case:

$$\mathbb{E}(X - \mu_X)^4 = \int_{-\infty}^{\infty} (x - \mu_X)^4 f_X(x) dx \tag{21}$$

Probability distribution of r.v. Discrete r.v.'s Continuous r.v.'s Outlook

Skewness vs. kurtosis

Appendix

Probability distribution of r.v. 000000

Skewness vs. kurtosis

Source: Bonyar, A (2015) "Application of localization factor for the detection of tin oxidation with AFM" DOI: 10.1109/SIITME.2015.7342289

Generalized expectation

The mathematical expectation can be defined for a function g of random variable X:

$$E[g(X)] = \sum_{i} g(x_i) p_X(x_i) \text{ discrete case}$$
 (22)

Generalized expectation

The mathematical expectation can be defined for a function g of random variable X:

$$E[g(X)] = \sum_{i} g(x_i) p_X(x_i) \text{ discrete case}$$
 (22)

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx \quad \text{continuous case}$$
 (23)