ЗАДАЧИ К СЕМИНАРАМ ПО ФУНКЦИОНАЛЬНОМУ АНАЛИЗУ

Семинар № 1 (алгебры и σ -алгебры)

- 1. Является ли система множеств
- a) $\{\emptyset, \{1, 2, 3, 4\}, \{1, 2\}, \{3\}, \{4\}\} \subset 2^{\{1, 2, 3, 4\}};$
- 6) $\{(0,1/2],(0,3/4]\}\subset 2^{(0,1]};$
- B) $\{(a_k, b_k] \mid a_k, b_k \in \mathbb{R}, \ a_k < b_k\} \subset 2^{\mathbb{R}}$

алгеброй? Постройте минимальную алгебру, порождённую этой системой множеств. Будет ли она σ -алгеброй?

- **2.** Докажите, что борелевскую σ -алгебру $\mathcal{B}(\mathbb{R})$ можно эквивалентным образом определить как минимальную σ -алгебру, порождённую
 - а) открытыми множествами;
 - б) замкнутыми множествами;
 - в) полуинтервалами;
 - г) интервалами;
 - д) отрезками;
 - е) множествами вида $(\infty, r], r \in \mathbb{Q}.$
- **3.** Докажите, что $\mathcal{B}(\mathbb{R}^2)$ можно эквивалентным образом определить как минимальную σ -алгебру, порождённую
 - а) открытыми множествами на плоскости;
 - б) замкнутыми множествами на плоскости;
 - в) множествами вида $(-\infty, b] \times (-\infty, d], b, d \in \mathbb{Q};$
 - г) замкнутыми прямоугольниками;
 - д) открытыми прямоугольниками;
 - e) $\mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R})$.
 - 4. Покажите, что образ алгебры может не быть алгеброй.
 - **5.** Докажите, что прообраз алгебры является алгеброй, прообраз σ -алгебры σ -алгеброй.
- **6.** Докажите, что алгебра является σ -алгеброй тогда и только тогда, когда она содержит пределы любых монотонных последовательностей своих элементов (является монотонным классом).
- 7. Докажите, что количество элементов в конечной алгебре может составлять только 2^n , где $n \in \mathbb{N}$.
 - 8. Докажите, что не существует σ -алгебр, количество элементов которых счётно.

Семинар № 2 (мера)

- **1.** Мера Лебега-Стилтьеса задаётся неубывающей непрерывной справа функцией $F \colon \mathbb{R} \to \mathbb{R}$. Докажите, что
 - а) $\mu_F(\{a\}) = F(a) F(a-)$, где F(a-) левый предел функции F в точке a.
 - 6) $\mu_F((a,b)) = F(b-) F(a)$,
 - B) $\mu_F([a,b]) = F(b) F(a-).$
 - 2. Пусть мера Лебега-Стилтьеса порождается функцией

$$F(x) = \begin{cases} 0, & x < -4; \\ -\sqrt{|x|} + 3, & -4 \le x < 0; \\ 3, & 0 \le x < 2; \\ 5, & x \geqslant 2. \end{cases}$$

Найдите $\mu_F(\{-4\})$, $\mu_F(\{-3\})$, $\mu_F((-3;-2])$, $\mu_F((-3;-2))$, $\mu_F(\mathbb{R})$, $\mu_F(\mathbb{Q})$, $\mu_F(\mathbb{R}\setminus\mathbb{Q})$, $\mu_F((-\infty,1])$.

- 3. Докажите, что точка, отрезок, прямая имеют нулевую меру Лебега на плоскости.
- 4. Докажите, что канторово множество является континуальным нигде не плотным компактным множеством нулевой меры Лебега.
- Найдите лебегову меру чисел из отрезка [0; 1], в десятичной записи которых отсутствует цифра 1.
- **6.** Найдите $\mu_c(\{2/3\}), \mu_c(C), \mu_{c^2}(C), \mu_{c\circ c}(C), \mu_c((-3;3/18)), \mu_c(\mathbb{Q}), \mu_c(\mathbb{R} \setminus \mathbb{Q}),$ где C канторово множество, c — канторова лестница.

Семинар № 3 (Измеримые функции. Различные виды сходимости последовательностей измеримых функций.)

- 1. Докажите, что кусочно монотонная функция, заданная на прямой, измерима.
- **2.** Пусть A, B измеримые множества на прямой. Докажите измеримость функций

$$f(t) = I_A(t)\cos(t) + I_B(t)\sin(t^2), \quad g(t) = I_A(t)\cos(I_B(t)t)$$

где I_A — индикаторная функция можества A. Будет ли данная функция измеримой, если B неизмеримое множество?

3. Пусть f_n — последовательность измеримых функций со значениями в $\mathbb R$. Докажите измеримость множеств

$$\{x \mid \exists \lim f_n(x)\},$$

$$\{x \mid \exists \lim f_n(x), \mid \lim f_n(x)| < +\infty\}$$

4. Найдите поточечный предел и непрерывный предел почти всюду последовательностей функций

$$x_n(t) = t^n, t \in [0, 1], \quad x_n(t) = d(t^n),$$

где d — функция Дирихле.

5. (*) Рассмотрим толстое канторово множество. Процедура его построения отличается от построения обычного канторова множества только тем, что на k-м шаге исключаются отрезки длины $1/a^k$, a>3. (Для канторова множества a=3.) Покажите, что индикаторная функция этого множества является поточечным пределом интегрируемых по Риману функций. При этом построенную функцию невозможно изменить на множестве нулевой меры Лебега так, чтобы функция стала интегрируемой по Риману.

Семинары № 4-5 (Интеграл Лебега)

- 1. Найдите интегралы Лебега

а)
$$\int_{[-1;1]} t \, d\chi(t);$$
6) $\int_{[-1;1]} (t-a) \, d\chi(t-b);$
В) $\int_{[0;1]} c(t) \, dt;$
г) $\int_{C} c(t) \, dt;$
д) $\int_{[0;1]} t \, dc(t);$

e)
$$\int_{[0,1]} \chi(x-1/2) \, dc(t)$$
;

$$\begin{array}{l} \mathrm{e}) \int\limits_{[0;1]} \chi(x-1/2) \, dc(t); \\ \mathrm{ж}) \int\limits_{[0;1]} \chi(x-1/5) \, dc(t); \\ \mathrm{3}) \int\limits_{[0;1]} c(t) \, dc(t); \\ \mathrm{и}) \int\limits_{[0;+\infty)} \frac{1}{[2t]!} \, dt; \end{array}$$

3)
$$\int_{[0,1]} c(t) \, dc(t);$$

$$\mathbf{u}) \int_{[0;+\infty)}^{[0,1]} \frac{1}{[2t]!} \, dt$$

к)
$$\int_{[0;10)} t^2 dg(t)$$
, где $g(t) =$
$$\begin{cases} t, & 0 \leqslant t < 1; \\ t+3, & 1 \leqslant t < 4; \\ 7, & 4 \leqslant t < 6; \\ t^2, & t \geqslant 6, \end{cases}$$

где c — канторова лестница, C — канторово множество, χ — функция Хевисайда.

- 2. Найдите пределы
- a) $\lim_{n\to\infty} \int_{[0;1]} t^n dc(t);$
- 6) $\lim_{n \to \infty} \int_{[0;1]}^{[0;1]} t^n d\chi(t-a);$ B) $\lim_{n \to \infty} \int_{[0;1]}^{} c^n(t) dt;$
- $\Gamma) \lim_{n \to \infty} \int_{[0;1]}^{[0;1]} c(t^n) dt;$
- д) $\lim_{n \to \infty} \int_{[0;1]} \frac{n \sin \frac{t}{n}}{t} dt;$ e) $\lim_{n \to \infty} \int_{[0;1]} c(t) d(t^n);$
- ж) $\lim_{n\to\infty} \int_{[-2;2]} e^{-\frac{t^2}{n}} dt;$ з) $\lim_{n\to\infty} \int_{[0;1]} t \, dc(t^n).$
- 3. (*) Докажите, что сходимость по мере Лебега функций, определённых на отрезке [0,1], эквивалентна сходимости в пространстве измеримых функций с метрикой

$$\rho(x,y) = \int_{[0,1]} \frac{|x(t) - y(t)|}{1 + |x(t) - y(t)|} dt.$$

4. (*) Докажите, что никакая подпоследовательность последовательности функций $f_n(t) =$ $=\sin nt, t\in [-\pi,\pi]$ не сходится почти всюду по мере Лебега.

Семинар № 6 (полнота и сепарабельность нормированных пространств)

- 1. Докажите, что счётное объединение счётных множество счётно.
- 2. Докажите, что декартово произведение конечного числа счётных множеств счётно.
- 3. Докажите, что декартово произведение счётного числа конечных множеств несчётно.
- **4.** Докажите, что пространство \mathbb{R}_{n}^{n} , $p \in [1, +\infty]$ является полным и сепарабельным.
- **5.** Докажите, что пространства $l_p,\,L_p[0,1],\,p\in[1,+\infty),\,C[a,b]$ являются полными и сепарабельными, а пространства $l_{\infty}, L_{\infty}[0,1]$ полные, но не сепарабельные.

Семинар № 7 (принцип сжимающих отображений)

1. Пусть f — дифференцируемая функция на отрезке $[a,b], f([a,b]) \subset [a,b],$

$$\max_{a \le t \le b} |f'(t)| < 1.$$

Докажите, что уравнение f(t) = t имеет единственное решение.

2. Докажите существование и единственность решения уравнения

$$t = \frac{1 + \sin t}{2}.$$

3. Докажите, что последовательность

$$2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}}, 2 + \frac{1}{2 + \frac{1}{2}}, \dots$$

имеет предел, и найдите его.

4. Докажите, что линейное отображение $A \colon \mathbb{R}^n_2 \to \mathbb{R}^n_2$ с матрицей $||a_{ij}||, i, j = \overline{1,n}$ является сжимающим, если

$$\sum_{i,j=1}^{n} a_{ij}^2 < 1.$$

5. Докажите, что линейное отображение $A\colon \mathbb{R}^n_\infty \to \mathbb{R}^n_\infty$ с матрицей $\|a_{ij}\|, i,j=\overline{1,n}$ является сжимающим, если

$$\max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}| < 1.$$

6. Докажите существование и единственность в пространстве C[0,1] решения уравнения

$$0 = \begin{cases} 2x(t) - x(3t), & 0 \le t \le \frac{1}{3}; \\ x(t) - f(t), & \frac{1}{3} < t \le \frac{2}{3}; \\ x(3t - 2) + 1 - 2x(t), & \frac{2}{3} < t \le 1, \end{cases}$$

где f(t) — прямая, проходящая через точки $(\frac{1}{3}, \frac{1}{2}x(1)), (\frac{2}{3}, \frac{1}{2}x(0) + \frac{1}{2}).$

7. При каких λ для решения уравнения

$$x(t) = \lambda \int_{0}^{1} t^{2} sx(s) ds + t$$

в пространстве C[0,1] применим принцип сжимающих отображений?

Семинар № 8 (Линейные функционалы. Норма.)

- 1. Доказав линейность и ограниченность, найдите нормы функционалов:
- a) $f: C[-1;1] \to \mathbb{R}, f(x) = \frac{1}{3}(x(-1) + x(1));$
- 6) $f: C[-1;1] \to \mathbb{R}, f(x) = 2x(1) x(0);$

B)
$$f: C[-1;1] \to \mathbb{R}, f(x) = \int_{0}^{1} x(t) dt;$$

$$\Gamma$$
) $f: C[-1;1] \to \mathbb{R}, f(x) = \int_{-1}^{1} x(t) dt - x(0);$

д)
$$f \colon C[-1;1] \to \mathbb{R}, f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} x(t) dt;$$

e)
$$f: C[-1;1] \to \mathbb{R}, f(x) = \int_{-1}^{0} tx(t) dt;$$

ж)
$$f: C^1[0;1] \to \mathbb{R}, f(x) = \int_0^1 tx(t) dt;$$

3)
$$f: C[-1;1] \to \mathbb{R}, f(x) = \int_{-1}^{0} x(-t) dt - \int_{0}^{1} x(t^2) dt;$$

и)
$$f \colon C[-1;1] \to \mathbb{R}, \ f(x) = \int_{-1}^{1} (x(t^3) - x(t)) \ dt;$$

к)
$$f: l_p \to \mathbb{R}, f(x) = x_1, p \in [1, \infty];$$

л)
$$f: l_p \to \mathbb{R}, f(x) = x_1 + x_2, p \in [1, \infty];$$

м)
$$f: c \to \mathbb{R}, f(x) = \lim_{n \to \infty} x_n$$
, где c — пространство сходящихся последовательностей;

н)
$$f: c_0 \to \mathbb{R}, f(x) = \sum_{k=1}^{\infty} 2^{-k+1} x_k$$
, где c_0 — пространство сходящихся к нулю последовательностей.

Семинар № 9 (формулы Рисса)

1. Доказать линейность и неограниченность функционалов:

a)
$$f: L_1[0;1] \to \mathbb{R}, f(x) = \int x(t^2) dt$$

a)
$$f: L_1[0;1] \to \mathbb{R}, f(x) = \int_{[0,1]} x(t^2) dt;$$

6) $f: L_2[-1;1] \to \mathbb{R}, f(x) = \int_{[0,1]} x(t^2) dt.$

2. Не используя формулы Рисса, найдите нормы функционалов:

a)
$$f: L_p[0,1] \to \mathbb{R}, f(x) = \int_{\mathbb{R}} x(t) dt, p \in [1,\infty]$$

6)
$$f: L_1[0,1] \to \mathbb{R}, f(x) = \int_{[0,1]} x(\sqrt{t}) dt$$

a)
$$f: L_p[0,1] \to \mathbb{R}, f(x) = \int_{[0,1]} x(t) dt, p \in [1,\infty];$$

6) $f: L_1[0,1] \to \mathbb{R}, f(x) = \int_{[0,1]} x(\sqrt{t}) dt;$
B) $f: L_2[-1,1] \to \mathbb{R}, f(x) = \int_{[-1,1]} tx(t) dt.$

3. Проверьте полученные результаты (для функционалов в задаче 2 и в задаче 1 предыдущего семинара) с помощью формул Рисса.

4. При каких α функционал

$$f: L_p[0,1] \to \mathbb{R}, \ f(x) = \int_{[0,1]} t^{\alpha} x(t) \, dt, \ p \in [1,\infty],$$

является ограниченным? Найдите его норму.

5. Найдите нормы функционалов

a)
$$f: L_2[0; \pi] \to \mathbb{R}, \ f(x) = \int \sin t \, x(t) \, dt$$

a)
$$f: L_2[0; \pi] \to \mathbb{R}, f(x) = \int_{[0,\pi]} \sin t \, x(t) \, dt;$$

6) $f: L_p[-1; 1] \to \mathbb{R}, f(x) = \int_{[0,1]} e^{\alpha t} x(t) \, dt, p \in [1, \infty].$

Семинар № 10 (евклидовы и гильбертовы пространства)

- **1.** Докажите, что в пространствах $C[0,1], l_p, L_p[0,1], p \neq 2$, нельзя ввести скалярное произведение, согласованное с нормой.
- **2.** По системе функций $1, t, t^2$ в пространствах $L_2[-1, 1], L_2[0, 1]$ постройте ортонормированную систему, выписав явные выражения для первых трёх элементов.
- **3.** В пространствах $L_2[-1,1],\ L_2[0,1]$ найдите проекции $x(t)=\sin t,\ y(t)=\cos t$ на подпространство многочленов степени не выше второй.
 - **4.** В пространстве $L_2[0,1]$ найдите расстояние от $x(t)=t^2$ до подпространства

$$\left\{ x \in L_2[0,1] \mid \int_{[0,1]} x(t) \, dt = 0 \right\}.$$

5. Решите задачу оптимального управления:

$$\int_{[0,1]} u^2(t) dt \to \inf_{u \in A},$$

где

$$A = \left\{ u \in L_2[0,1] \mid \int_{[0,1]} u(t) dt = 1 \right\}.$$

Семинар № 11 (сильная и слабая сходимости в банаховых пространствах)

- **1.** Найдите сильный и слабый пределы (если они существуют) последовательности $x_n(t) = t^n$ в пространствах $L_p[0,1], p \in (1,\infty), C[0,1], C[0,\alpha], \alpha \in (0,1).$
- **2.** Найдите в пространстве l_2 сильный и слабый пределы (если они существуют) последова-

 - a) $x^{(n)} = (\frac{1}{n}, \frac{1}{n+1}, \frac{1}{n+2}, \ldots);$ b) $x^{(n)} = (\underbrace{0, \ldots, 0}, 1, \frac{1}{2}, \frac{1}{3}, \ldots);$
 - B) $x^{(n)} = (1, \frac{1}{2^{n-1}+1}, \frac{1}{2 \cdot 2^{n-1}+1}, \frac{1}{3 \cdot 2^{n-1}+1}, \ldots);$ $r) x^{(n)} = (1, \frac{2}{2^2}, \frac{3}{3^2}, \ldots, \frac{n}{n^2}, \frac{n}{(n+1)^2}, \frac{n}{(n+2)^2}, \ldots);$

 - д) $x^{(n)} = \left(\sum_{k=1}^{n} \frac{1}{k}, \sum_{k=n+1}^{2n} \frac{1}{k}, \sum_{k=2n+1}^{3n} \frac{1}{k}, \ldots\right);$
- **3.** Найдите в пространстве $L_2[0,1]$ сильный и слабый пределы (если они существуют) последовательности $x_n(t) = \sqrt[n]{nt}$.
- **4.** Найдите в пространстве $L_2[0,\pi]$ сильный и слабый пределы (если они существуют) последовательности $x_n(t) = |\sin(nt)|^n$.
- **5.** Найдите в пространстве C[0,1] сильный и слабый пределы (если они существуют) последовательности $x_n(t) = nte^{-nt^2}$.
- **6.** Найдите в пространстве C[0,2] сильный и слабый пределы (если они существуют) последовательности

$$x_n(t) = \begin{cases} 1 - n \left| t - \frac{1}{n} \right|, & \text{если } t \in \left[0; \frac{2}{n}\right]; \\ 0, & \text{если } t \notin \left[0; \frac{2}{n}\right]. \end{cases}$$

Семинар № 12 (Норма оператора. Сопряжённый оператор.)

- 1. Найдите нормы операторов и постройте сопряжённые операторы:
- a) $L: l_p \to l_p, p \in (1, \infty), Lx = (x_2, x_3, x_4, \ldots);$
- 6) $R: l_p \to l_p, p \in (1, \infty), Rx = (0, x_1, x_2, x_3, \ldots);$
- B) $C: l_p \to l_p, p \in (1, \infty), Cx = (x_2, x_1, x_4, x_3, \ldots);$
- r) $EVEN: l_p \to l_p, p \in (1, \infty), EVENx = (x_2, x_4, x_6, x_8, \ldots);$
- д) $ODD: l_p \to l_p, p \in (1, \infty), ODDx = (x_1, x_3, x_5, x_7, \ldots);$
- e) A = CL;
- ж) $Z: l_p \to l_p, p \in (1, \infty), Zx = (x_1, x_1, x_2, x_2, x_3, \ldots);$
- 3) $A: l_2 \to l_2, Ax = (x_1 + x_2, x_3 + x_4, \ldots).$
- **2.** Постройте сопряжённые операторы к оператору $A: L_2[0,1] \to L_2[0,1]$:
- a) $Ax(t) = \int x(\tau) d\tau$;
- 6) Ax(t) = tx(t);
- B) $Ax(t) = \int_{[0,1]} tx(\tau) d\tau$;
- $\Gamma) Ax(t) = \int_{[0,1]} \tau x(\tau) d\tau.$

Семинар № 13 (последовательности операторов)

- **1.** Проверьте существование сильного, слабого и равномерного пределов последовательностей операторов:
 - a) $\{L^n\};$
 - б) $\{R^n\};$
 - B) $\{C^n\};$
 - Γ) $\{(C \circ L)^n\}$;
 - д) $\{(C \circ R)^n\};$
 - e) $\{Z^n\}$

(обозначения операторов введены в задаче 1 предыдущего семинара). Если они существуют, то найдите эти пределы.

Семинар № 14 (спектр оператора)

- 1. Найдите спектры операторов из задачи 1 семинара № 12.
- 2. Найдите спектры операторов:
- a) $A: C[0,1] \to C[0,1], Ax(t) = x(0) + tx(1);$
- 6) $A: C[-1,1] \to C[-1,1], Ax(t) = x(t) + x(-t).$

Семинар № 15 (обобщённые функции)

- 1. Найдите производные обобщённых функций:
- a) |t|'';
- б) $|\sin t|''$;
- в) $(\sin t + t + 3\chi(t))'''$, где χ функция Хевисайда.
- 2. Найдите предел последовательности обобщённых функций:

a)
$$f_n(t) = \begin{cases} 2n, & t \in [-1/n, 1/n]; \\ 0, & t \notin [-1/n, 1/n]; \end{cases}$$

б)
$$f_n(t) = \begin{cases} \frac{1}{2n}, & t \in [-n, n]; \\ 0, & t \notin [-n, n]; \end{cases}$$

в) $f_n(t) = \frac{n}{(nt)^2 + 1};$
г) $f_n(t) = \frac{n}{t^2 + n^2};$
д) $f_n(t) = \frac{n\sin(t/n)}{t};$
е) $f_n(t) = \frac{\sin nt}{nt}.$

$$B) f_n(t) = \frac{n}{(nt)^2 + 1};$$

$$\Gamma) f_n(t) = \frac{n}{t^2 + n^2};$$

д)
$$f_n(t) = \frac{n\sin(t/n)}{t}$$
;

e)
$$f_n(t) = \frac{\sin nt}{nt}$$

Семинар \mathbb{N} 16¹ (Примеры метрических пространств. Открытые и замкнутые множества.)

1. Докажите, что функция, определённая на произвольном множестве X по правилу

$$\rho(x,y) = \begin{cases} 0, & x = y; \\ 1, & x \neq y, \end{cases}$$

является метрикой. Докажите, что все точки метрического пространства (X, ρ) являются изолированными. Постройте открытые и замкнутые шары в пространстве (X, ρ) .

- **2.** Пусть ρ метрика на X. Докажите, что функции на $X \times X$, определённые соотношени-

 - a) $\rho_1(x,y) = \frac{\rho(x,y)}{1+\rho(x,y)};$ b) $\rho_2(x,y) = \ln(1+\rho(x,y));$
 - B) $\rho_3(x,y) = \min\{1, \rho(x,y)\};$
- г) $\rho_4(x,y)=\varphi(\rho(x,y))$, где φ строго возрастающая вогнутая функция такая, что $\varphi(0)=0$, также являются метриками.
 - **3.** Докажите, что на множестве $\mathbb{C}^{\mathbb{N}}$ можно задать метрику по правилу

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{|x_k - y_k|}{2^k (1 + |x_k - y_k|)}.$$

- **4.** В пространстве l_2 приведите пример бесконечного набора непересекающихся шаров одного радиуса, вписанных в шар конечного радиуса.
- 5. Приведите пример метрического пространства, в котором в шар меньшего радиуса можно вписать шар большего радиуса.
 - 6. Приведите примеры, когда
 - a) int $B_R(x) = O_R(x)$,
 - б) $\overline{O}_R(x) \neq B_R(x)$.

Семинар № 17 (компактные множества в метрических пространствах)

- **1.** Докажите, что множество компактно в \mathbb{R}_p^2 , $p \in [1, +\infty]$, тогда и только тогда, когда оно замкнуто и ограничено.
- **2.** Приведите пример замкнутого и ограниченного множества в l_2 , не являющегося компак-TOM.
 - **3.** Докажите, что множество $A = \{x_n(t) = t^n\}$ не является предкомпактным в C[0,1].

 $^{^{1}}$ Материалы семинаров № 16 и № 17 являются факультативными. По усмотрению преподавателя данные семинары могут быть заменены на дополнительные семинары по предыдущим темам или контрольные работы.

- **4.** Докажите, что множество $A = \{x_n(t) = t^n\}$ является предкомпактным, но не компактным в $C[0,\alpha], \alpha \in (0,1)$.
 - **5.** Пусть M ограниченное множество в C[0,1]. Докажите, что множество

$$\left\{ y(t) = \int_{0}^{t} x(\tau) d\tau \mid x \in M \right\}$$

предкомпактно в C[0,1].

6. Докажите, что множество

$$E = \left\{ x \in l_2 \mid |x_n| \leqslant \frac{1}{2^n} \right\}$$

компактно в l_2 .

7. Докажите, что для непересекающихся компактных множеств в произвольном метрическом пространстве

$$\rho(A, B) = \inf_{x \in A, y \in B} \rho(x, y) > 0.$$

Семинар № 18 (обзорный)