WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

TIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

DE

(51) Internationale Patentklassifikation 6: B01J 31/22, 31/18, C07F 15/00, C08G A1

- (11) Internationale Veröffentlichungsnummer: WO 99/51344
- (43) Internationales Veröffentlichungsdatum:

14. Oktober 1999 (14.10.99)

(21) Internationales Aktenzeichen:

PCT/EP99/01785

MC, NL, PT, SE).

(81) Bestimmungsstaaten: IL, JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

(22) Internationales Anmeldedatum:

18. März 1999 (18.03.99)

Veröffentlicht

Mit internationalem Recherchenbericht.

(30) Prioritätsdaten:

198 15 275.2

6. April 1998 (06.04.98)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG [DE/DE]; D-65926 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): HERRMANN, Wolfgang, Anton [DE/DE]; Gartenstrasse 69c, D-85354 Freising (DE). SCHATTENMANN, Wolfgang [DE/DE]; Havelstrasse 15, D-81677 München (DE). WESKAMP, Thomas [DE/DE]; Ungererstrasse 108, D-80805 München (DE).

- (54) Title: ALKYLIDENE COMPLEXES OF RUTHENIUM WITH N-HETEROCYCLIC CARBENE LIGANDS AND THEIR USE AS HIGHLY ACTIVE, SELECTIVE CATALYSTS FOR OLEFIN METATHESIS
- (54) Bezeichnung: ALKYLIDENKOMPLEXE DES RUTHENIUMS MIT N-HETEROZYKLISCHEN CARBENLIGANDEN; VERWEN-DUNG ALS HOCHAKTIVE, SELEKTIVE KATALYSATOREN FÜR DIE OLEFIN-METATHESE

(57) Abstract

The invention relates to a complex compound of ruthenium of general structural formula (I), wherein X¹ and X² are the same or different and represent an anionic ligand, R1 and R² are the same or different independently of each other but can also have a cycle and R1 and R2 represent hydrogen and/or a hydrocarbon group wherein the ligand L1 is an

$$\begin{array}{c|c}
X^{2} & \downarrow & \\
X^{1} > Ru = C < R^{2} \\
\downarrow & \downarrow \\
L^{2}
\end{array}$$
(1)

N-heterocyclic carbene and wherein the ligand L2 is a neutral electron donor, especially an N-heterocyclic carbene or an amine, imine, phosphane, phosphite, stibine, arsine, a carbonyl compound, a carboxyl compound, nitrile, alcohol, ether, thiol or thioether, R1, R2, R3 and R4 representing hydrogen and/or hydrocarbon groups. The invention also relates to a method for producing acyclic olefins with two or more carbon atoms and/or cyclic olefins with four or more carbon atoms from acyclic olefins with two or more carbon atoms and/or from cyclic olefins with four or more carbon atoms by means of an olefin-metathesis reaction in the presence of at least one catalyst, a complex compound being used as the catalyst and R'1, R'2, R'3 and R'4 representing hydrogen and/or hydrocarbon groups.

(57) Zusammenfassung

Die Erfindung betrifft eine Komplexverbindung des Rutheniums der allgemeinen Strukturformel (I), in der X¹ und X² gleich oder verschieden voneinander einen anionischen Liganden bedeuten; in der R1 und R2 gleich oder unabhängig voneinander verschieden sind, aber auch einen Cyclus aufweisen können; in der R1 und R2 für Wasserstoff oder/und für eine Kohlenwasserstoffgruppe stehen; in der der Ligand L1 ein N-heterozyklisches Carben ist und in der der Ligand L2 ein neutraler Elektronendonor ist, insbesondere ein N-heterozyklisches Carben oder ein Amin, Imin, Phosphan, Phosphit, Stibin, Arsin, Carbonylverbindung, Carboxylverbindung, Nitril, Alkohol, Ether, Thiol oder Thioether, wobei R1, R2, R3 und R4 für Wasserstoff oder/und für Kohlenwasserstoffgruppen stehen. Die Erfindung betrifft ferner ein Verfahren zur Herstellung von acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und von cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen aus acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und aus cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen durch Olefin-Metathese-Reaktion in Gegenwart mindestens eines Katalysators, wobei eine Komplexverbindung als Katalysator eingesetzt wird und wobei R'1, R'2, R'3 und R'4 für Wasserstoff oder/und Kohlenwasserstoffgruppenstehen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Pinnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Prankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	ĹV	Lettland	SZ	Swasiland
ΑZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GR	Georgien	MD	Republik Moldan	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IB	Iriand	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	ls knd	MW	Malawi	US	Vereinigte Staaten vor
CA	Kanada	ΙT	Italien	MX	Mexiko	-	Amerika
CF	Zentralafrikanische Republik	JР	Japan	NE	Niger	UZ.	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI ·	Côte d'Ivoire	KР	Demokratische Volksrepublik	NZ	Neusceland	z₩	Zimbabwe
CM	Kamerun		Korea	PL	Polen	~**	COMPONE WG
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation .		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR .	Liberia	SG	Singapur		

Beschreibung

5

10

15

20

25

30

ALKYLIDENKOMPLEXE DES RUTHENIUMS MIT N-HETEROZYKLISCHEN CARBENLIGANDEN; VERWENDUNG ALS HOCHAKTIVE, SELEKTIVE KATALYSATOREN FÜR DIE OLEFIN-METATHESE

Die Erfindung betrifft Alkylidenkomplexverbindungen des Rutheniums mit
N-heterozyklischen Carbenliganden und ein Verfahren zur Herstellung von Olefinen
durch Olefin-Metathese aus acyclischen Olefinen mit zwei oder mehr
Kohlenstoffatomen oder/und aus cyclischen Olefinen mit vier oder mehr

Kohlenstoffatomen, wobei mindestens eine dieser Alkylidenkomplexverbindungen

als Katalysator eingesetzt wird.

Übergangsmetallkatalysierte C-C-Verknüpfungen gehören zu den wichtigsten Reaktionen der organischen Synthesechemie. In diesem Zusammenhang stellt die Olefin-Metathese einen wesentlichen Bestandteil dar, da mittels dieser Reaktion nebenproduktfrei Olefine synthetisiert werden können. Die Olefin-Metathese besitzt dabei nicht nur hohes Potential auf dem Sektor der präparativen, organischen Synthese (RCM, Ethenolyse, Metathese acyclischer Olefine), sondern auch in der Polymerchemie (ROMP, ADMET, Alkinpolymerisation). Seit ihrer Entdeckung in den 50er Jahren konnten mehrere großtechnische Prozesse realisiert werden. Dennoch avancierte die Olefin-Metathese erst in jüngster Zeit durch die Entdeckung neuer Katalysatoren zu einer breit anwendbaren Synthesemethode (J. C. Mol in: B. Cornils, W. A. Herrmann: Applied Homogeneous Catalysis with Organometallic Compounds, VCH, Welnheim, 1996, S.318-332; M. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124-2144; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056).

Zahlreiche, grundlegende Arbeiten haben wesentlich zum Verständnis dieser übergangsmetallkatalysierten Reaktion beigetragen, bei der ein Austausch von Alkylideneinheiten zwischen Olefinen erfolgt. Der allgemein akzeptierte Mechanismus beinhaltet Metallalkylidenkomplexe als aktive Spezien. Diese reagieren mit Olefinen zu Metallacyclobutanintermediaten, die unter Cycloreversion wieder Olefine und Alkylidenkomplexe generieren. Die Isolierung von

1 .

metatheseaktiven Alkyliden- und Metallacyclobutankomplexen untermauert diese mechanistischen Vorstellungen.

Zahlreiche Beispiele finden sich vor allem in der Komplexchemie des Molybdäns und Wolframs. Speziell durch Arbeiten von Schrock wurden wohldefinierte Alkylidenkomplexe erhalten, die in ihrer Reaktivität kontrollierbar sind (J. S. Murdzek, R. R. Schrock, Organometallics 1987, 6, 1373-1374). Die Einführung einer chiralen Ligandsphäre an diesen Komplexen ermöglichte die Synthese von Polymeren mit hoher Taktizität (K. M. Totland, T. J. Boyd, G. C. Lavoie, W. M. Davis, R. R. Schrock, Macromolecules 1996, 29, 6114-6125). Chirale Komplexe gleichen Strukturtyps wurden auch in der Ringschluß-Metathese mit Erfolg eingesetzt (O. Fujimura, F. J. d. I. Mata, R. H. Grubbs, Organometallics 1996, 15, 1865-1871). Nachteilig stellt sich jedoch die hohe Empfindlichkeit gegenüber funktionellen Gruppen, Luft und Wasser heraus.

15

20

10

5

In jüngster Zeit haben sich phosphanhaltige Komplexsysteme des Rutheniums etabliert (R. H. Grubbs, S. T. Nguyen, L. K. Johnson, M. A. Hillmyer, G. C. Fu, WO 96/04289, 1994; P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew. Chem., 1995, 107, 2179-2181; Angew. Chem. Int. Ed. Engl. 1995, 34, 2039-2041). Aufgrund des elektronenreichen, "weichen" Charakters später Übergangsmetalle besitzen diese Komplexe eine hohe Toleranz gegenüber harten, funktionellen Gruppen. Dies wird beispielsweise durch ihren Einsatz in der Naturstoffchemie (RCM von Dienen) demonstriert (Z. Yang, Y. He, D. Vourloumis, H. Vallberg, K. C. Nicolaou, Angew. Chem. 1997, 109, 170-172; Angew. Chem., Int. Ed. Engl. 1997, 36, 166-168; D. Meng, P. Bertinato, A. Balog, D. S. Su, T. Kamenecka, E. J. Sorensen, S. J. Danishefsky, J. Am. Chem. Soc. 1997, 119, 2733-2734; D. Schinzer, A. Limberg, A. Bauer, O. M. Böhm, M. Cordes, Angew. Chem. 1997, 109, 543-544; Angew. Chem., Int. Ed. Engl. 1997, 36, 523-524; A. Fürstner, K. Langemann, J. Am. Chem. Soc. 1997, 119, 9130-9136).

30

25

Die Variationsbreite der verwendeten Phosphanliganden ist jedoch aufgrund sterischer und elektronischer Faktoren sehr begrenzt. Lediglich stark basische,

sterisch anspruchsvolle Alkylphosphane wie Tricyclohexyl-, Triisopropyl- und Tricyclopentylphosphan eignen sich für die Metathese acyclischer Olefine und wenig gespannter Ringsysteme. Demnach sind diese Katalysatoren nicht in ihrer Reaktivität einstellbar. Auch chirale Komplexe dieses Strukturtyps konnten nicht realisiert werden.

Aus diesen Gründen bestand die Aufgabe, maßgeschneiderte Metathesekatalysatoren zu entwickeln, die sich neben hoher Toleranz gegenüber funktionellen Gruppen durch eine variable Ligandensphäre auszeichnen und die eine Feineinstellung des Katalysators für spezielle Eigenschaften unterschiedlicher Olefine ermöglichen.

Die Aufgabe wird erfindungsgemäß gelöst durch eine Komplexverbindung des Rutheniums der allgemeinen Strukturformel I,

$$X^{2} > \begin{cases} L^{1} \\ Ru = C < R^{2} \\ L^{2} \end{cases}$$

15

25

5

10

in der X¹ und X² gleich oder verschieden voneinander einen anionischen Liganden bedeuten,

in der R¹ und R² gleich oder unabhängig voneinander verschieden sind, aber auch einen Cyclus aufweisen können,

in der R¹ und R² für Wasserstoff oder/und für eine Kohlenwasserstoffgruppe stehen, wobei die Kohlenwasserstoffgruppen gleich oder unabhängig voneinander verschieden aus geradkettigen, verzweigten, cyclischen oder/und nicht cyclischen Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen, Alkenylresten mit 1 bis 50 Kohlenstoffatomen, Alkinylresten mit 1 bis 50

Kohlenstoffatomen, Arylresten mit 1 bis 30 Kohlenstoffatomen und Silylresten bestehen,

wobei in den Kohlenwasserstoff- oder/und Silylgruppen die Wasserstoffatome teilweise oder gänzlich durch eine Alkyl-, Aryl-, Alkenyl-, Alkinyl-, Metallocenyl-,

Halogen-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppe einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt sein können, in der der Ligand L¹ ein N-heterozyklisches Carben der allgemeinen Formeln II - V ist und in der der Ligand L² ein neutraler Elektronendonor ist, insbesondere ein N-heterozyklisches Carben der allgemeinen Formeln II - V oder ein Amin, Imin, Phosphan, Phosphit, Stibin, Arsin, Carbonylverbindung, Carboxylverbindung, Nitril, Alkohol, Ether, Thiol oder Thioether.

5

10

15

20

25

wobei R^1 , R^2 , R^3 und R^4 in den Formeln II, III, IV und V gleich oder verschieden für Wasserstoff oder/und für Kohlenwasserstoffgruppen stehen.

wobei die Kohlenwasserstoffgruppen aus gleichen oder verschiedenen, cyclischen, nicht cyclischen, geradkettigen oder/und verzweigten Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen, Alkenylresten mit 1 bis 50 Kohlenstoffatomen und Arylresten mit 1 bis 30 Kohlenstoffatomen bestehen, bei denen gegebenenfalls mindestens ein Wasserstoff durch funktionelle Gruppen ersetzt sein kann, und wobei gegebenenfalls R³ und R⁴ für Halogen-, Nitro-, Nitroso-, Alkoxy-, Aryloxy-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden stehen kann.

Vorzugsweise weisen die Alkylreste, Alkenylreste bzw. Alkinylreste in den Formeln i bis V 1 bis 20 Kohlenstoffatome, besonders bevorzugt 1 bis 12 Kohlenstoffatome, auf.

Die erfindungsgemäßen Komplexverbindungen sind hochaktive Katalysatoren für die Olefin-Metathese. Sie sind besonders kostengünstig. Die Olefin-Metathese mit den erfindungsgemäßen Katalysatoren zeichnet sich neben einer hohen Toleranz gegenüber unterschiedlichsten funktionellen Gruppen auch durch ihre Variationsvielfalt in der Ligandensphäre aus. Durch Variation der präparativ einfach zugänglichen N-heterozyklischen Carbenliganden können Aktivität und Selektivität gezielt gesteuert, und darüber hinaus kann Chiralität auf einfache Art und Weise eingeführt werden.

5

25

- Vorzugsweise sind die anionischen Liganden X¹ und X² der erfindungsgemäßen Komplexverbindung gleich oder verschieden Halogenid, Pseudohalogenid, Tetraphenylborat, perhalogeniertes Tetraphenylborat, Tetrahalogenoborat, Hexahalogenophosphat, Hexahalogenoantimonat, Trihalogenomethansulfonat, Alkoxid, Carboxylat, Tetrahalogenoaluminat, Tertracarbonyl-Cobaltat, Hexahalogenoferrat(III), Tetrahalogenoferrat(III) oder/und Tetrahalogenopalladat(III), wobei Halogenid, Pseudohalogenid, Tetraphenylborat, perfluoriertes Tetraphenylborat, Tetrafluoroborat, Hexafluorophosphat, Hexafluoroantimonat, Trifluormethansulfonat, Alkoxid, Carboxylat, Tetrachloroaluminat, Tertracarbonyl-Cobaltat, Hexafluoroferrat(III), Tetrachloroferrat(III) oder/und Tetrachloropalladat(III) bevorzugt sind und wobei unter den Pseudohalogeniden Cyanid, Rhodanid, Cyanat, Isocyanat, Thiocyanat und Isothiocyanat bevorzugt sind.
 - In den allgemeinen Formeln II, III, IV und V kann der Wasserstoff in den Kohlenwasserstoffgruppen R¹, R², R³ und R⁴ teilweise oder gänzlich durch Halogen-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt sein. In diesen Formeln kann R³ und R⁴ ein anneliertes Ringsystem darstellen.
 - Die Liganden L¹ und L² der Komplexverbindung der allgemeinen Strukturformel I

können einen Chelatliganden der allgemeinen Formel VI

VI

ausbilden, wobei die mit Y bezeichneten Brückenglieder aus cyclischen, nicht cyclischen, geradkettigen oder/und verzweigten Resten aus der Gruppe von Alkylenresten mit 1 bis 50 Kohlenstoffatomen, Alkenylenresten mit 1 bis 50 Kohlenstoffatomen, Arylenresten mit 1 bis 30 Kohlenstoffatomen, Metallocenylen-, Borylen- und Silylenresten bestehen können, bei denen gegebenenfalls mindestens ein Wasserstoff durch Alkyl-, Aryl-, Alkenyl-, Alkinyl-, Metallocenyl-, Halogen-, Nitro-, Nitroso-, Hydroxo-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppen, bevorzugt durch Alkyl-, Aryl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden substituiert sein kann.

15

10

5

Die Liganden der allgemeinen Formeln II, III, IV, V oder/und VI können zentrale, axiale oder/und planare Chiralität aufweisen.

20

In der allgemeinen Strukturformel I der Komplexverbindung stehen R¹ bis R² bevorzugt für Wasserstoff, substituierte oder/und nichtsubstituierte Alkyl-, Alkenyl-oder/und Arylreste, X¹ und X² bevorzugt für Halogenid-, Alkoxid- oder/und Carboxylationen sind und L¹ und L² bevorzugt für ein N-heterozyklisches Carben der allgemeinen Formel II.

25

30

Die Synthese der Komplexe erfolgt üblicherweise durch Ligandsubstitution entsprechender Phosphankomplexe. Diese können entsprechend Reaktionsgleichung (1) selektiv zweifach oder entsprechend Reaktionsgleichung (2) einfach substituiert werden. Im Fall der einfachen Substitution kann das zweite Phosphan selektiv durch einen anderen Elektronendonor, z. B. Pyridin, Phosphan, N-Heterozyklencarben, Phosphit, Stibin, Arsin substituiert werden entsprechend Reaktionsgleichung (3).

Insbesondere gelingt auf diesem Weg die erstmalige Darstellung von chiralen, metatheseaktiven Katalysatoren auf Rutheniumbasis (Komplexbeispiele 2 und 3).

Die erfindungsgemäßen Komplexverbindungen erweisen sich als äußerst effiziente Katalysatoren in der Olefin-Metathese. Die ausgezeichnete Metatheseaktivität wird durch mehrere Beispiele verschiedener metathetischer Reaktionen in den Beispielen demonstriert.

5

10

15

Deshalb umfaßt diese Erfindung auch die Verfahren aller Olefin-Metathese-Reaktionen wie Ringöffnende Metathesepolymerisation (ROMP), Metathese acyclischer Olefine, Ethenolyse, Ringschlußmetathese (RCM), acyclische Dien-Metathese-Polymerisation (ADMET) und Depolymerisation olefinischer Polymere. Die hohe Stabilität und Toleranz der erfindungsgemäßen Komplexverbindungen gegenüber funktionellen Gruppen, insbesondere Gruppen von Alkoholen, Aminen, Thiolen, Ketonen, Aldehyden, Carbonsäuren, Estern, Amiden, Ethern, Silanen, Sulfiden und Halogenen erlaubt die Anwesenheit derartiger funktioneller Gruppen während der Metathesereaktion.

Die Aufgabe wird ferner durch ein Verfahren zur Herstellung von acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und von cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen jeweils entsprechend der allgemeinen Formel

$$C = C R^{13}$$

$$R^{12}$$

$$VII$$

VII

10

15

20

aus acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und aus 5. cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen jeweils entsprechend der allgemeinen Formel VII durch Olefin-Metathese-Reaktion in Gegenwart mindestens eines Katalysators gelöst, das dadurch gekennzeichnet ist, daß ein Katalysator nach einem der Ansprüche 1 bis 7 eingesetzt wird und daß R'1, R'2, R'3 und R'4 in der allgemeinen Formel VII für Wasserstoff oder/und Kohlenwasserstoffgruppen stehen, wobei die Kohlenwasserstoffgruppe aus gleich oder unabhängig voneinander verschieden geradkettigen, verzweigten, cyclischen oder/und nicht cyclischen Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen. Alkenylresten mit 1 bis 50 Kohlenstoffatomen, Alkinylresten mit 1 bis 50 Kohlenstoffatomen, Arylresten mit 1 bis 30 Kohlenstoffatomen, Metallocenyloder/und Silylresten besteht, bei denen gegebenenfalls mindestens ein Wasserstoff durch eine funktionelle Gruppe ersetzt sein kann, wobei gegebenenfalls R'1, R'2, R'3 und R'4 für Halogen-, Nitro-, Nitroso-, Hxdroxv-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden stehen.

Vorzugsweise sind in den eingesetzten Olefinen eine oder mehrere Doppelbindungen enthalten. Insbesondere bilden R'1, R'2, R'3 und R'4 in den **25** . herzustellenden Olefinen der allgemeinen Formel VII paarweise, einfach oder mehrfach, gleich oder unabhängig voneinander verschieden einen Cyclus aus.

Vorzugsweise ist in den herzustellenden Olefinen der allgemeinen Formel VII der Wasserstoff in den Kohlenwasserstoffgruppen R¹¹, R¹², R¹³ und R¹⁴ teilweise oder gänzlich durch Halogen-, Silyl-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt.

Bei dem erfindungsgemäßen Verfahren kann der Prozeß mit oder ohne Lösungsmittel, jedoch vorzugsweise mit organischen Lösungsmitteln, durchgeführt werden. Vorzugsweise kann das erfindungsgemäße Verfahren unter Zusatz einer Brönstedt-Säure, vorzugsweise von HCI, HBr, HI, HBF₄, HPF₆ oder/und Trifluoressigsäure, oder/und unter Zusatz einer Lewis-Säure, vorzugsweise von BF₃, AICI₃ oder/und ZnI₂, durchgeführt werden.

Damit wird es erstmals überraschenderweise möglich, die verschiedensten Olefine individuell auf unterschiedliche Eigenschaften aufgrund geringer Variation der Katalysebedingungen oder/und der Katalysatoren maßzuschneidern, da das erfindungsgemäße Verfahren zur Herstellung von Olefinen eine unerwartet hohe Toleranz gegenüber funktionellen Gruppen aufweist.

20 Beispiele:

5

10

15

25

30

Die folgenden Beispiele belegen die Erfindung, schränken sie aber nicht in ihrer Breite ein.

1) Herstellung der erfindungsgemäßen Komplexverbindung

Allgemeine Arbeitsvorschrift:

1 mmol (PPh₃)₂Cl₂Ru(=CHPh) wurden in 20 ml Toluol gelöst und mit einer Lösung von 2.2 equiv des entsprechenden Imidazolin-2-ylidens in 5 ml Toluol versetzt. Die Reaktionslösung wurde 45 min bei Raumtemperatur RT gerührt, anschließend auf ca. 2 ml eingeengt, und das Rohprodukt wurde mit 25 ml Pentan ausgefällt. Das Rohprodukt wurde mehrmals in 2 ml Toluol aufgenommen und mit 25 ml Pentan

ausgefällt. Der Rückstand wurde mit Toluol extrahiert, die Lösung zur Trockene eingeengt, mit Pentan zweimal gewaschen und mehrere Stunden im Hochvakuum getrocknet.

Zur Charakterisierung werden größtenteils die Daten von Tieftemperatur-NMR-Spektren angegeben, da die Spektren bei Raumtemperatur aufgrund dynamischer Effekte teilweise nicht die gesamte Information enthalten.

Nach der angegebenen allgemeinen Arbeitsvorschrift werden folgende Verbindungen dargestellt:

1a) Benzyliden-dichloro-bis(1,3-diisopropylimidazolin-2-yliden)-ruthenium - Komplexverbindung 1:

Ausbeute: 487 mg (0.86 mmol = 86 % der Theorie)

Elementaranalyse EA für C₂₅H₃₈Cl₂N₄Ru (566.58):

10

20

25

gefunden C 53.21 H 6.83 N 9.94; berechnet C 53.00 H 6.76 N 9.89.

¹H-NMR (CD₂Cl₂/ 200 K): δ 20.33 (1H, s, Ru=CH), 8.25 (2H, d, ${}^{3}J_{HH}$ = 7.6 Hz, o-H von C₆H₅), 7.63 (1H, t, ${}^{3}J_{HH}$ = 7.6 Hz, p-H von C₆H₅), 7.34 (2H, t, m-H von C₆H₅, ${}^{3}J_{HH}$ = 7.6 Hz), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 3.73 (2H, spt, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 1.64 (12H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 0.75 (6H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂). NCHMe₂), 1.11 (6H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 0.75 (6H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂). 13°C-NMR (CD₂Cl₂/ 200 K): δ 295.6 (Ru=CH), 183.5 (NCN), 151.6 (*ipso*-C von C₆H₅), 129.5, 128.6 und 128.1 (o-C, m-C und p-C von C₆H₅), 118.1 und 117.2 (NCH), 52.1 und 50.1 (NCHMe₂), 24.5, 23.8, 23.8 und 22.4 (NCHMe₂).

1b) Benzyliden-dichloro-bis(1,3-di-((R)-1'-phenylethyl)imidazolin-2-yliden)-ruthenium - Komplexverbindung <u>2</u>:

Ausbeute: 676 mg (0.83 mmol = 83 % d. Th.)

30 **EA** für C₄₅H₄₆Cl₂N₄Ru (814.86): gef. C 66.48 H 5.90 N 6.73; ber. C 66.33 H 5.69 N 6.88.

¹H-NMR (CD₂Cl₂/ 200 K): δ 20.26 (1H, s, Ru=CH), 8.13 (2H, br, o-H C₆H₅), 7.78 - 6.67 (29H, davon 2m-H und 1p-H von C₆H₅, 20H von NCHMePh, 2H von NCHMePh und 4H von NCH), 4.91 (2H, m, NCHMePh), 1.84 (3H, d, 3 J_{HH} = 6.6 Hz, NCHMePh), 1.81 (3H, d, 3 J_{HH} = 6.6 Hz, NCHMePh), 1.21 (3H, d, 3 J_{HH} = 6.6 Hz, NCHMePh).

¹³C-NMR (CD₂Cl₂/ 200 K): δ 294.7 (Ru=CH), 186.0 und 185.6 (NCN), 151.2 (*ipso*-C von C₆H₅), 141.2, 140.3, 140.1 und 139.9 (ipso-C von NCHMe*Ph*), 133.1 - 125.9 (ο-C, m-C, p-C von C₆H₅ und NCHMe*Ph*), 120.5, 119.9, 119.2 und 118.8 (NCH), 57.6, 57.4, 56.7 und 56.1 (NCHMePh), 22.2, 20.6, 20.4 und 20.3 (NCH*Me*Ph).

10

5

1c) Benzyliden-dichloro-bis(1,3-di-((R)-1'-naphtylethyl)imidazolin-2-yliden)-ruthenium-Komplexverbindung <u>3</u>:

Ausbeute: 792 mg (0.78 mmol = 78 % d. Th.)

EA für C₆₁H₅₄Cl₂N₄Ru (1015.1): gef. C 72.34 H 5.46 N 5.45;

ber. C 72.18 H 5.36 N 5.52.

15

20

25

30

¹H-NMR (CD₂Cl₂/ 260 K): δ 20.90 (1H, s, Ru=CH), 8.99 (2H, br, o-H von C₆H₅), 8.2 - 5.6 (39H, davon 2m-H und 1p-H von C₆H₅, 28H von NCHMeNaph, 4H von NCH und 4H von NCHMeNaph), 2.5 - 0.8 (12H, m, NCHmeNaph).

¹³C-NMR (CD₂Cl₂/ 260 K): δ 299.9 (Ru=CH), 187.2 und 184.7 (NCN), 152.0 (*ipso*-C von C₆H₅), 136.0 - 124.0 (*o*-C, *m*-C, *p*-C von C₆H₅ und NCHMe*Naph*), 121.7, 121.0, 119.9 und 118.9 (NCH), 56.7, 56.1, 55.0 und 54.7 (NCHMeNaph), 24.7, 24.3, 21.0 und 20.0 (NCH*Me*Naph).

Für die folgenden Komplexe sind geringfügige Abweichungen von der allgemeinen Arbeitsvorschrift notwendig:

1d) (4-Chlorbenzyliden)-dichloro-bis(1,3-diisopropylimidazolin-2-yliden)-ruthenium - Komplexverbindung <u>4</u>:

Als Edukt wurde 1 mmol (PPh₃)₂Cl₂Ru[=CH(p-C₆H₄Cl)] eingesetzt. Die weitere Vorgehensweise entsprach der allgemeinen Arbeitsvorschrift.

Ausbeute: 535 mg (0.89 mmol = 89 % d. Th.)

EA für C₂₄H₃₈Cl₃N₄Ru (601.03): gef. C 48.13 H 6.33 N 9.24;

ber. C 47.96 H 6.37 N 9.32.

¹H-NMR (CD₂Cl₂/ 200 K): δ 20.33 (1H, s, Ru=CH), 8.25 (2H, d, ${}^{3}J_{HH}$ = 7.6 Hz, o-H von C₆H₄Cl), 7.63 (1H, t, ${}^{3}J_{HH}$ = 7.6 Hz, m-H von C₆H₄Cl), 7.15 (2H, br, NCH), 7.03 (2H, br, NCH), 5.97 (2H, spt, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 3.73 (2H, spt, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 1.64 (12H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 1.11 (6H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂), 0.75 (6H, d, ${}^{3}J_{HH}$ = 6.4 Hz, NCHMe₂).

¹³C-NMR (CD₂Cl₂/ 200 K): δ 295.6 (Ru=CH), 183.5 (NCN), 151.6 (*ipso*-C von C₆H₄Cl), 134.3 (ρ -C von C₆H₄Cl), 128.6 und 128.1 (σ -C und σ -C von C₆H₄Cl), 118.1 und 117.2 (NCH), 52.1 und 50.1 (NCHMe₂), 24.5, 23.8, 23.8 und 22.4 (NCHMe₂).

10

15

5

1e) Benzyliden-dichloro-bis(1,3-dicyclohexylimidazolin-2-yliden)-ruthenium - Komplexverbindung $\underline{5}$:

1 mmol (PPh₃)₂Cl₂Ru(=CHPh) wurden in 25 ml Toluol gelöst und mit einer Lösung von 2.2 equiv. 1,3-Dicyclohexylimidazolin-2-yliden in 5 ml Toluol versetzt. Die Reaktionslösung wurde 45 min bei RT gerührt und anschließend vom Lösungsmittel befreit. Anders als bei der allgemeinen Arbeitsvorschrift wurde das Rohprodukt durch Flashchromatographie gereinigt.

Ausbeute: 305 mg (0.42 mmol = 42 % d. Th.)

EA für C₃₇H₅₄Cl₂N₄Ru (726.84): gef. C 61.23 H 7.56 N 7.87;

ber. C 61.14 H 7.49 N 7.71.

20

25

¹H-NMR (CD₂Cl₂/ 298 K): δ 20.45 (1H, s, Ru=CH), 8.31 (2H, d, $^3J_{HH}$ = 7.6 Hz, o-H-von C₆H₅), 7.63 (1H, t, $^3J_{HH}$ = 7.6 Hz, p-H- von C₆H₅), 7.34 (2H, t, $^3J_{HH}$ = 7.6 Hz, m-H- von C₆H₅), 7.14 (2H, br, NCH), 7.00 (2H, br, NCH), 6.06 (2H, br, CH von NC₆H₁₁), 3.82 (2H, br, CH von NC₆H₁₁), 1.64 (12H, br, CH₂ von NC₆H₁₁).

¹³C-NMR (CD₂Cl₂/ 298 K): δ 299.4 (Ru=CH), 182.9 (NCN), 152.0 (*ipso*-C von C₆H₅), 131.1, 129.8 und 129.1 (*o*-C, *m*-C und *p*-C von C₆H₅), 118.3 und 117.8 (br, NCH), 59.6 und 57.5 (br, CH von NC₆H₁₁), 35.7, 26.9 und 25.6 (br, CH₂ von NC₆H₁₁).

1f) Benzyliden-dichloro-(1,3-di-*tert.*-butylimidazolin-2-yliden)-(triphenyl-phosphin)-ruthenium - Komplexverbindung <u>6</u>:

1 mmol (PPh₃)₂Cl₂Ru(=CHPh) wurden in 20 ml Toluol gelöst und mit einer Lösung von 1.1 equiv. 1,3-Di-*tert*.-butylimidazolin-2-yliden in 5 ml Toluol versetzt. Die Reaktionslösung wurde 30 min bei RT gerührt, anschließend auf ca. 2 ml eingeengt, und das Rohprodukt wurde mit 25 ml Pentan ausgefällt. Die weitere Aufarbeitung erfolgte gemäß der allgemeinen Arbeitsvorschrift.

Ausbeute: 493 mg (0.70 mmol = 70% d. Th.)

5

10

15

20

25

EA für C₃₆H₄₁Cl₂N₂P₁Ru (704.69): gef. C 61.12 H 5.55 N 3.62 P 4.59 ber. C 61.36 H 5.86 N 3.98 P 4.38.

¹H-NMR (CD₂Cl₂/ 200 K): δ 20.70 (1H, s, Ru=CH), 8.03 (2H, d, 3 J_{HH} = 7.6 Hz, o-H von C₆H₅), 7.50 - 6.95 (20H, davon 2m-H und 1p-H von C₆H₅, 15H von PPh₃ und 2H von NCH), 1.86 (9H, s, NCMe₃), 1.45 (9H, s, NCMe₃).

¹³C-NMR (CD₂Cl₂/ 200 K): δ 307.4 (br, Ru=CH), 178.3 (d, J_{PC} = 86 Hz, NCN), 151.5 (d, J_{PC} = 4.5 Hz, *ipso*-C von C₆H₅), 135.0 (m, *o*-C von PPh₃), 131.9 (m, *ipso*-C von PPh₃), 130.2 (s, *p*-C von PPh₃), 129.5, 128.6 und 128.1 (s, *o*-C, *m*-C und *p*-C von C₆H₅), 128.0 (m, *m*-C von PPh₃), 117.7 und 117.6 (NCH), 58.7 und 58.5 (NCMe₃), 30.0 und 29.5 (NCMe₃).

³¹P-NMR (CD₂Cl₂/ 200 K): δ 40.7 (s, PPh₃).

1g) Benzyliden-dichloro-(1,3-di-cyclohexyl-imidazolin-2-yliden)-(tricyclohexylphosphin)-ruthenium

$$Cy - N - Cy$$

$$CI - Ru = CH-Ph$$

$$CI - PCy_3$$

1 mmol RuCl₂(PCy₃)₂(CHPh) in 100 mL THF werden bei −78 °C tropfenweise mit einer Lösung von 1.2 mmol Dicyclohexylimidazolin-2-yliden versetzt. Es wird im Laufe von 5 h langsam auf Raumtemperatur erwärmt und anschließend das

Lösungsmittel entfernt. Man extrahiert das Rohprodukt mit einem Gemisch aus 2mL Toluol und 25 mL Pentan und fällt das Produkt bei – 78 °C aus dieser Lösung aus. Ausbeute: 0.80 mmol (80 % d. Th.)

EA für $C_{40}H_{83}Cl_2N_2PRu$: ber. C 61.99, H 8.20, N 3.62; gef. C 61.11; H 8.29; N 3.59.
¹H NMR (CD₂Cl₂ / 25 °C): δ = 20.30 (1H, d, ${}^3J_{PH}$ = 7.4 Hz, Ru=CH), 8.33 (2H, d, ${}^3J_{HH}$ = 7.4 Hz, o-H of C_8H_5), 7.62 (1H, t, ${}^3J_{HH}$ = 7.4 Hz, p-H of C_8H_5), 7.33 (2H, t, ${}^3J_{HH}$ = 7.4 Hz, m-H of C_8H_5), 7.11 (1H, s, NCH), 6.92 (1H, s, NCH), 5.97 (1H, m, CH of NC₈H₁₁), 3.36 (1H, m, CH of NC₈H₁₁), 2.42 (3H, m, CH of PCy₃), 1.90-0.89 (50H, all m, CH₂ of NC₈H₁₁ and PCy₃).

¹³C NMR (CD₂Cl₂ / 25 °C): δ = 298.7 (Ru=CH), 181.2 (d, J_{PC} = 88 Hz, NCN), 152.5 (*ipso*-C of C₈H₅), 130.8, 129.8, and 129.2 (o-C, *m*-C, and *p*-C of C₈H₅), 118.9 and 118.0 (NCH), 59.5 and 57.7 (CH of NC₈H₁₁) 33.2 (d, J_{PC} = 17 Hz, *ipso*-C of PCy₃), 29.9 (s, *m*-C of PCy₃), 26.8 (d, J_{PC} = 3.7 Hz, o-C of PCy₃), 25.4 (s, *p*-C of PCy₃) 34.9, 33.3, 33.1, 28.2, 28.1, and 25.7 (CH₂ of NC₈H₁₁).

³¹P NMR (CD₂Cl₂ / 25 °C): δ = 28.2.

5

15

20

25

1h) Benzyliden-dichloro-(1,3-di-((*R*)-1'-phenylethyl)imidazolin-2-yliden)-(tricyclohexylphosphin)-ruthenium

1 mmol RuCl₂(PCy₃)₂(CHPh) in 100 mL THF werden bei –78 °C tropfenweise mit einer Lösung von 1.2 mmol Di-(R)-1'-phenylethylimidazolin-2-yliden versetzt. Es wird im Laufe von 5 h langsam auf Raumtemperatur erwärmt und anschließend das Lösungsmittel entfernt. Man extrahiert das Rohprodukt mit einem Gemisch aus 2mL Toluol und 25 mL Pentan und fällt das Produkt bei – 78 °C aus dieser Lösung aus. Ausbeute: 0.74 mmol (74 % d. Th.)

EA für $C_{44}H_{59}Cl_2N_2PRu$: calcd C 64.53, H 7.27, N 3.42; found C 64.58, H 7.34, N 3.44.

¹H NMR (CD₂Cl₂/ 25 °C): δ = 20.19 (1H, d, ³J_{PH} = 4.5 Hz, Ru=CH), 7.74 - 7.00 (15H, all m, CH of C₈H₅), 6.83 (1H, m, NCHMePh), 6.73 (1H, s, NCH), 6.70 (1H, s, NCH), 2.52 (1H, m, NCHMePh), 2.44 (3H, m, CH of PCy₃), 2.11 (3H, d, ³J_{HH} = 6.8 Hz, NCHMePh), 1.82-1.12 (30H, all m, CH₂ of PCy₃)1.35 (3H, d, ³J_{HH} = 6.8 Hz, NCHMePh).

¹³C NMR (CD₂Cl₂ / 25 °C): δ = 292.7 (Ru=CH), 183.4 (d, J_{PC} = 78 Hz, NCN), 151.8 (*ipso*-C of C₈H₅), 140.1 and 139.5 (*ipso*-C of NCHMe*Ph*), 129.5, 128.5, 128.3, 127.9, 127.5, 127.4, 127.2, 126.6, and 126.1 (*o*-C, *m*-C, and *p*-C of C₈H₅) 119.8 and 118.4 (NCH), 57.4 and 56.2 (NCHMePh), 31.3(d, J_{PC} = 17 Hz, *ipso*-C of PCy₃), 29.0 (s, *m*-C of PCy₃), 28.9 (s, *m*-C of PCy₃), 27.2 (d, J_{PC} = 3.7 Hz, *o*-C of PCy₃), 27.0 (d, J_{PC} = 3.7 Hz, *o*-C of PCy₃), 25.8 (s, *p*-C of PCy₃) 21.7 and 20.3 (NCHMePh). ³¹P NMR (CD₂Cl₂ / 25 °C): δ = 38.1.

1i) Benzyliden-dichloro-(1,3-di-((*R*)-1'-naphthylethyl)imidazolin-2-yliden)-(tricyclohexylphosphin)-ruthenium

5

10

15

20

25

1 mmol RuCl₂(PCy₃)₂(CHPh) in 100 mL THF werden bei –78 °C tropfenweise mit einer Lösung von 1.2 mmol Di-(*R*)-1'-naphthylethylimidazolin-2-yliden versetzt. Es wird im Laufe von 5 h langsam auf Raumtemperatur erwärmt und anschließend das Lösungsmittel entfernt. Man extrahiert das Rohprodukt mit einem Gemisch aus 2mL Toluol und 25 mL Pentan und fällt das Produkt bei – 78 °C aus dieser Lösung aus. Ausbeute: 0.72 mmol (72 % d. Th.)

EA für $C_{52}H_{63}Cl_2N_2PRu$: calcd C 67.95, H 6.91, N 3.05; found C 68.09, H 7.02, N 3.04.

¹H NMR (CD₂Cl₂/ 25 °C): δ = 20.33 (1H, d, ³J_{HH} = 5.4 Hz, Ru=CH), 8.88 (2H, d, ³J_{HH} = 8.0 Hz, ο-H of C₆H₅) 7.94 - 6.96 (17H, all m, CH of C₆H₅), 6.70 (1H, s, NCH), 6.61 (1H, s, NCH), 5.83 (1H, m, NCHMeNaph), 2.59 (1H, m, NCHMeNaph), 2.49 (3H, m,

CH of PCy₃), 2.44 (3H, d, ${}^3J_{HH}$ = 6.8 Hz, NCHMeNaph), 1.95-1.01 (30H, all m, CH₂ of PCy₃)1.54 (3H, d, ${}^3J_{HH}$ = 6.8 Hz, NCHMeNaph).

¹³C NMR (CD₂Cl₂ / 25 °C): δ = 298.4 (Ru=CH), 184.0 (d, J_{PC} = 87 Hz, NCN), 152.3 (*ipso*-C of C₈H₅), 138.3 and 137.6 (*ipso*-C of NCHMeNaph), 134.3 – 122.9 (o-C, m-C, and p-C of C₈H₅, CHMeNaph) 120.6 and 119.5 (NCH), 56.4 and 55.7 (NCHMeNaph), 32.5(d, J_{PC} = 17 Hz, *ipso*-C of PCy₃), 30.1 (s, m-C of PCy₃), 30.0 (s, m-C of PCy₃), 28.1 (pseudo-t, J_{PC} = 7.4 Hz, o-C of PCy₃), 26.8 (s, p-C of PCy₃) 24.0 and 22.7 (NCH*Me*Naph).

³¹P NMR (CD₂Cl₂ / 25 °C): δ = 31.8.

2) Anwendung der erfindungsgemäßen Komplexverbindung bei der Olefin-Metathese

Die im folgenden aufgeführten Beispiele demonstrieren das Potential der erfindungsgemäßen Komplexverbindungen in der Olefin-Metathese. Der Vorteil dieser erfindungsgemäßen Komplexverbindungen verglichen mit phosphanhaltigen Komplexen liegt in der gezielten und kostengünstigen Variation der Reste R an den Stickstoffatomen der N-heterozyklischen Carbenliganden. Durch diese Maßschneiderung der erfindungsgemäßen Katalysatoren bezogen auf individuelle Eigenschaften der zu metathesierenden Olefine können Aktivität wie Selektivität der Reaktion gesteuert werden.

2a) Ringöffnende Metathese-Polymerisation (ROMP):Als Beispiele dienen Norbornen, Cycloocten und funktionalisierteNorbornenderivate.

$$\begin{array}{c|c}
 & X^2 \\
 & X^1 > Ru = C < R^2 \\
 & L^2
\end{array}$$
ROMP

25

10

15

Typischer Reaktionsansatz für die Polymerisation von Cycloocten (bzw. Norbornen): In eine Lösung von 3.6 mg (6.3 μmol) 1 in 0.5 ml Methylenchlorid wurden 410 μl (3.13 mmol) Cycloocten gegeben. Nach ca. 10 min hatte sich ein hochviskoses Gel gebildet, das nicht mehr gerührt werden konnte. Es wurde 1 ml Methylenchlorid zugesetzt. Diese Prozedur wurde immer dann wiederholt, wenn keine Rührerleistung mehr vorhanden war (insgesamt 3 ml Methylenchlorid). Nach 1 h wurden 5 ml Methylenchlorid zugegeben, dem geringe Mengen von tert-Butylether und 2,6-Di-tert-butyl-4-methylphenol zugesetzt wurden. Nach weiteren 10 min wurde die Lösung in einen hohen Überschuß von Methanol langsam eingetropft, filtriert und im Hochvakuum über mehrere Stunden getrocknet.

Ausbeute: 291 mg (2.64 mmol = 84.3 % d. Th.)

Tabelle 1. Polymerisation von Norbornen und Cycloocten

Beispiel	Komplex	Monomer	Verhältnis [Monomer] / [Kat.]	Reaktions- zeit t	Ausbeute
2.1a	<u>1</u>	Norbornen	100 : 1	1 min	91 %
2.1b	<u>5</u>	Norbornen	100 : 1	1 min	92 %
2.1c	<u>1</u>	Cycloocten	500 : 1	1 h	84 %
2.1d	<u>1</u>	Cycloocten	500 : 1	2 h	97 %
2.1e	<u>5</u>	Cycloocten	500 : 1	1 h	87 %

Typischer Reaktionsansatz für die Polymerisation von funktionalisierten Norbornenderivaten:

Die Formel VIII veranschauficht das Grundgerüst der in Tabelle 2 eingesetzten Norbornenderivate.

VIII

5

Zu einer Lösung von 3.6 mg (6.3 μ mol) $\underline{1}$ in 0.2 ml Methylenchlorid wurden 0.3 ml einer Lösung von 432 mg (3.13 mmol) 5-Carbonsäure-2-norbornen (Formel VIII mit R = CO₂H) in Methylenchlorid gegeben. Nach ca. 10 min hatte sich ein hochviskoses Gel gebildet, das nicht mehr gerührt werden konnte. Es wurden weitere 0.5 ml Methylenchlorid zugesetzt. Diese Prozedur wurde immer dann wiederholt, wenn keine Rührerleistung mehr vorhanden war. Nach 1 h wurden 5 ml Methylenchlorid zugegeben, dem geringe Mengen von tert-Butylether und 2,6-Ditert-butyl-4-methylphenol zugesetzt waren. Nach weiteren 10 min wurde die Lösung in einen hohen Überschuß von Methanol langsam eingetropft, filtriert und im Hochvakuum über mehrere Stunden getrocknet.

Ausbeute: 423 mg (3.06 mmol = 98.1 % d. Th.)

5

10

15

20

Die Reaktionen bei 50 °C erfolgten in analoger Weise in Dichlorethan statt in Methylenchlorid.

Tabelle 2. Polymerisation funktionalisierter Norbornenderivate

Beispiel	Komplex	Rest R in Formel VIII	T [°C]	Reaktions- zeit t	Ausbeute
2.1f	1	O₂CCH₃	25	30 min	99 %
2.1g	1	CH₂OH	25	2 h	15 %
2.1h	<u>1</u>	CH₂OH	50	2 h	18 %
2.1i	1	CHO	25	2 h	36 %
2.1k	<u>1</u>	CHO	50	2 h	52 %
2.11	<u>1</u>	COCH ₃	25	2 h	42 %
2.1m	<u>1</u>	COCH ₃	50	2 h	67 %
2.1n	<u>1</u>	CO₂H	25	2 h	98 %

Die Polymerisation von Norbornen erfolgte dabei in Sekundenfrist. Bei der Cyclooctenpolymerisation wurden innerhalb einer Stunde nahezu quantitative Umsätze erhalten (Tabelle 1). Unterschiede bezüglich der Aktivität sind durch Einsatz verschiedener Komplexe unter verdünnten Bedingungen nachweisbar und

5

10

15

zeigen die Abhängigkeit der Aktivität vom Substitutionsmuster der eingesetzten Carbenliganden. Die hohe Stabilität und Toleranz gegenüber funktionellen Gruppen wird durch die Polymerisation funktionalisierter Norbornenderivate mit Ester, Alkohol, Aldehyd, Keton oder/und Carbonsäure demonstriert (Tabelle 2). Dabei konnten Monomere der allgemeinen Formel VIII mit R = CH₂OH, CHO und CO₂H erstmals polymerisiert werden.

2.2) Ringschluß-Metathese (RCM) von 1,7-Octadien:

$$\begin{array}{c|c}
X^{2} & \downarrow^{1} \\
X^{1} & \downarrow^{2} \\
\downarrow^{2} & \downarrow^{2}
\end{array}$$

$$\begin{array}{c|c}
RCM \\
(5)
\end{array}$$

Typischer Reaktionsansatz für RCM von 1,7-Octadien:

Eine Lösung von 3.6 mg (6.3 μmol) <u>1</u> in 2 ml Dichlorethan wurde mit 46 μl (0.31 mmol) 1,7-Octadien versetzt, und der Reaktionsansatz wurde in ein 60 °C warmes Ölbad gegeben. Nach 1 h wurde das Reaktionsgemisch GC/MS-analytisch untersucht.

Tabelle 3. RCM von 1,7-Octadien (Octadien / Katalysator = 50:1)

Beispiel	Komplex	Lösungsmittel	T [°C]	Reaktions- zeit t	Ausbeute
2.2a	<u>1</u>	Methylenchlorid	25	5.5 h	51 %
2.2b	<u>1</u>	Methylenchlorid	25	24 h	70 %
2.2c	<u>1</u>	Dichlorethan	60	1 h	99 %
2.2d	<u>2</u>	Dichlorethan	60	1 h	99 %
2.2e	<u>3</u>	Dichlorethan	60	1 h	99 %
2.2f	<u>5</u>	Dichlorethan	60	1 h	99 %

Das Potential in der Ringschluß-Metathese wurde durch die Reaktion von 1,7-Octadien zu Cyclohexen unter Freisetzung von Ethylen veranschaulicht (Tabelle 3). Mit 1 wurde nach 5.5 h eine Ausbeute von 51 % erzielt, bei 60 °C wurden mit allen eingesetzten erfindungsgemäßen Komplexverbindungen sogar quantitative Umsätze erzielt.

2.3) Metathese acyclischer Olefine

A) Metathese von 1-Octen:

$$\begin{array}{c|c}
X^{2} & \downarrow \\
X^{1} & \downarrow \\
\downarrow & \downarrow \\
1-\text{Octen}
\end{array}$$
7-Tetradecen

(6)

Typischer Reaktionsansatz der Metathese von 1-Octen:

Eine Lösung von 3.6 mg (6.3 μmol) 1 in 2 ml Dichlorethan wurde mit 49 μl (0.31 mmol) 1-Octen versetzt, und der Reaktionsansatz wurde in ein 60 °C heißes Ölbad gegeben. Nach 3 h wurde das Reaktionsgemisch GC/MS-analytisch untersucht.

Tabelle 4. Homo-Metathese von 1-Octen (Octen / Katalysator = 50:1)

Beispiel	Komplex	T [°C]	Reaktions- zeit t	Umsatz von 1-Octen	Selektivität a
2.3a	2	60	1 h	31 %	98 %
2.3b	<u>2</u>	60	2 h	58 %	97 %
2.3c	<u>1</u> .	60	1 h	83 %	73 %
2.3d	1	60	3 h	97 %	63 %

^a Die Selektivität gibt den Anteil an 7-Tetradecen gegenüber anderen metathetischen Produkten an

5

10

B) Metathese von Methyloleat:

5 Typischer Reaktionsansatz für die Metathese von Methyloleat:

Eine Lösung von 3.6 mg (6.3 μmol) <u>1</u> in 0.5 ml Dichlorethan wurde mit 1.06 ml (3.13 mmol) Methyloleat versetzt, und der Reaktionsansatz wurde für 15 h in ein 60 °C warmes Ölbad gegeben. Die GC/MS-Analyse ergab das in der Reaktionsgleichung (7) gezeigte Gleichgewicht von Metatheseprodukten.

10

15

20

25

Die Metathese von terminalen und innenständigen Olefinen wurde durch die Homo-Metathese von 1-Octen und Methyloleat nachgewiesen. Bei der Metathese von Methyloleat als nativem Rohstoff kann das thermodynamische Gleichgewicht innerhalb von 15 h mit Katalysator 1 bei einem Olefin: Katalysator-Verhältnis von 500: 1 nahezu erreicht werden. Bei der Metathese von 1-Octen wurde 7-Tetradecen nicht in allen Fällen als einziges Reaktionsprodukt erhalten. Eine NMR-spektroskopisch nachgewiesene Isomerisierung von 1-Octen zu 2-Octen und anschließende Olefin-Metathese ist für diesen Sachverhalt verantwortlich. Durch Homo- und Cross-Metathese von 1-Octen und 2-Octen wurde neben 7-Tetradecen auch als häufigstes Nebenprodukt 6-Tridecen und in geringen Mengen 6-Dodecen, 1-Hepten und 2-Nonen erhalten. Die Produktverteilung ist stark abhängig vom eingesetzten Katalysator. Im Fall von 2 wurde nahezu selektiv 7-Tetradecen erhalten; dagegen lieferte der aktivere Komplex 1 bei hohem Umsatz 7-Tetradecen nur mit einer Selektivität von 63 %. Als Nebenprodukt wurde im wesentlichen 6-Tridecen aus der Cross-Metathese von 1-Octen mit 2-Octen erhalten.

Ringöffnende Metathese Polymerisation (ROMP) von 1,5-Cyclooctadien

ROMP von 1,5-Cyclooctadien. NMR-Vergleich eines Ruthenium-Dicarben-Komplexes mit einem Ruthenium-Carben-Phosphan-Komplex. (T = 25 °C; 1.70 µmol Katalysator in 0.55 mL CD₂Cl₂; [1,5-Cyclooctadien] / [Katalysator] = 250:1).

Verbindung A

5

Verbindung B

Gleiches gilt für ROMP von Cycloocten:

ROMP von Cycloocten. NMR-Kinetik eines Ruthenium-Dicarben-Komplexes mit einem Ruthenium-Carben-Phosphan-Komplex. (*T* = 25 °C; 2.50 μmol Katalysator in 0.50 mL CD₂Cl₂; [Cycloocten] / [Katalysator] = 250:1).

Verbindung A

$$\begin{array}{c|c} & & & \\ \hline Cy & & & \\ \hline Cl & & & \\ Cl & & & \\ \hline RCy_3 & & \\ \end{array}$$

Verbindung B

Patentansprüche:

10

15

20

25

1. Komplexverbindung des Rutheniums der allgemeinen Strukturformel I.

$$X^{2} > \begin{cases} L^{1} \\ | \\ Ru = C \end{cases} \begin{cases} R^{2} \\ L^{2} \end{cases}$$

in der X¹ und X² gleich oder verschieden voneinander einen anionischen Liganden bedeuten,

in der R¹ und R² gleich oder unabhängig voneinander verschieden sind, aber auch einen Cyclus aufweisen können,

in der R¹ und R² für Wasserstoff oder/und für eine Kohlenwasserstoffgruppe stehen, wobei die Kohlenwasserstoffgruppen gleich oder unabhängig voneinander verschieden aus geradkettigen, verzweigten, cyclischen oder/und nicht cyclischen Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen, Alkenylresten mit 1 bis 50 Kohlenstoffatomen, Alkinylresten mit 1 bis 50 Kohlenstoffatomen, Arylresten mit 1 bis 30 Kohlenstoffatomen und Silylresten bestehen,

wobei in den Kohlenwasserstoff- oder/und Silylgruppen die Wasserstoffatome teilweise oder gänzlich durch eine Alkyl-, Aryl-, Alkenyl-, Alkinyl-, Metallocenyl-, Halogen-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppe einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt sein können,

in der der Ligand L¹ ein N-heterozyklisches Carben der allgemeinen Formeln II - V ist und in der der Ligand L² ein neutraler Elektronendonor ist, insbesondere ein N-heterozyklisches Carben der allgemeinen Formeln II - V oder ein Amin, Imin, Phosphan, Phosphit, Stibin, Arsin, Carbonylverbindung, Carboxylverbindung, Nitril,

Alkohol, Ether, Thiol oder Thioether,

5

10

wobei R¹, R², R³ und R⁴ in den Formeln II, III, IV und V gleich oder verschieden für Wasserstoff oder/und für Kohlenwasserstoffgruppen stehen, wobei die Kohlenwasserstoffgruppen aus gleichen oder verschiedenen, cyclischen, nicht cyclischen, geradkettigen oder/und verzweigten Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen, Alkenylresten mit 1 bis 50 Kohlenstoffatomen und Arylresten mit 1 bis 30 Kohlenstoffatomen bestehen, bei denen gegebenenfalls mindestens ein Wasserstoff durch funktionelle Gruppen ersetzt sein kann, und wobei gegebenenfalls R³ und R⁴ für Halogen-, Nitro-, Nitroso-, Alkoxy-, Aryloxy-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden stehen kann.

Komplexverbindung nach Anspruch 1 dadurch gekennzeichnet, daß die 15 2. anionischen Liganden X¹ und X² gleich oder verschieden Halogenid, Pseudohalogenid, Tetraphenylborat, perhalogeniertes Tetraphenylborat, Tetrahalogenoborat, Hexahalogenophosphat, Hexahalogenoantimonat, Trihalogenomethansulfonat, Alkoxid, Carboxylat, Tetrahalogenoaluminat, Tertracarbonyl-Cobaltat, Hexahalogenoferrat(III), Tetrahalogenoferrat(III) oder/und 20 Tetrahalogenopalladat(II) sind. wobei Halogenid, Pseudohalogenid, Tetraphenylborat, perfluoriertes Tetraphenylborat, Tetrafluoroborat, Hexafluorophosphat, Hexafluoroantimonat, Trifluormethansulfonat, Alkoxid, Carboxylat, Tetrachloroaluminat, Tertracarbonyl-Cobaltat, Hexafluoroferrat(III), Tetrachloroferrat(III) oder/und Tetrachloropalladat(II) 25 bevorzugt sind und wobei unter den Pseudohalogeniden Cyanid, Rhodanid, Cyanat, Isocyanat, Thiocyanat und Isothiocyanat bevorzugt sind.

3. Komplexverbindung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß in den allgemeinen Formeln II, III, IV und V der Wasserstoff in den Kohlenwasserstoffgruppen R¹, R², R³ und R⁴ teilweise oder gänzlich durch Halogen-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt ist.

- 4. Komplexverbindung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß in den allgemeinen Formeln II, III, IV und V R³ und R⁴ ein anneliertes Ringsystem darstellt.
- 5. Komplexverbindung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß L¹ und L² einen Chelatliganden der allgemeinen Formel VI

L¹---Y---L²

5

10

15

20

25

30

VI

ausbilden, wobei die mit Y bezeichneten Brückenglieder aus cyclischen, nicht cyclischen, geradkettigen oder/und verzweigten Resten aus der Gruppe von Alkylenresten mit 1 bis 50 Kohlenstoffatomen, Alkenylenresten mit 1 bis 50 Kohlenstoffatomen, Arylenresten mit 1 bis 30 Kohlenstoffatomen, Metallocenylen-, Borylen- und Silylenresten mit 1 bis 30 Kohlenstoffatomen, Metallocenylen-, Borylen- und Silylenresten bestehen, bei denen gegebenenfalls mindestens ein Wasserstoff durch Alkyl-, Aryl-, Alkenyl-, Alkinyl-, Metallocenyl-, Halogen-, Nitro-, Nitroso-, Hydroxo-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio- oder/und Sulfonylgruppen, bevorzugt durch Alkyl-, Aryl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden substituiert ist.

6. Komplexverbindung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Liganden der allgemeinen Formeln II, III, IV, V oder/und VI zentrale, axiale oder/und planare Chiralität aufweisen.

7. Komplexverbindung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß in der allgemeinen Strukturformel I R¹ bis R² für Wasserstoff, substituierte oder/und nichtsubstituierte Alkyl-, Alkenyl- oder/und Arylreste stehen, daß X¹ und X² Halogenid-, Alkoxid- oder/und Carboxylationen sind oder/und daß L¹ und L² für ein N-heterozyklisches Carben der allgemeinen Formel II stehen.

8. Verfahren zur Herstellung von acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und von cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen jeweils entsprechend der allgemeinen Formel VII

$$C = C R^{13}$$

$$R^{12}$$

$$VII$$

10

20

5

aus acyclischen Olefinen mit zwei oder mehr Kohlenstoffatomen oder/und aus cyclischen Olefinen mit vier oder mehr Kohlenstoffatomen jeweils entsprechend der allgemeinen Formel VII durch Olefin-Metathese-Reaktion in Gegenwart mindestens eines Katalysators, dadurch gekennzeichnet, daß

ein Katalysator nach einem der Ansprüche 1 bis 7 eingesetzt wird und daß R'1, R'2, R'3 und R'4 in der allgemeinen Formel VII für Wasserstoff oder/und Kohlenwasserstoffgruppen stehen,

wobei die Kohlenwasserstoffgruppe aus gleich oder unabhängig voneinander verschieden geradkettigen, verzweigten, cyclischen oder/und nicht cyclischen Resten aus der Gruppe von Alkylresten mit 1 bis 50 Kohlenstoffatomen, Alkenylresten mit 1 bis 50 Kohlenstoffatomen, Alkinylresten mit 1 bis 50 Kohlenstoffatomen, Arylresten mit 1 bis 30 Kohlenstoffatomen, Metallocenyloder/und Silylresten besteht, bei denen gegebenenfalls mindestens ein Wasserstoff durch eine funktionelle Gruppe ersetzt sein kann,

wobei gegebenenfalls R'1, R'2, R'3 und R'4 für Halogen-, Nitro-, Nitroso-, Hxdroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden stehen.

9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß in den eingesetzten Olefinen eine oder mehrere Doppelbindungen enthalten sind.

5

10

- 10. Verfahren gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, daß R'¹, R'², R'³ und R'⁴ in den herzustellenden Olefinen der allgemeinen Formel VII paarweise, einfach oder mehrfach, gleich oder unabhängig voneinander verschieden einen Cyclus ausbilden.
- 11. Verfahren gemäß einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß in den herzustellenden Olefinen der allgemeinen Formel VII der Wasserstoff in den Kohlenwasserstoffgruppen R'1, R'2, R'3 und R'4 teilweise oder gänzlich durch Halogen-, Silyl-, Nitro-, Nitroso-, Hydroxy-, Alkoxy-, Aryloxy-, Amino-, Amido-, Carboxyl-, Carbonyl-, Thio-, Sulfonyl- oder/und Metallocenylgruppen einfach oder mehrfach, gleich oder unabhängig voneinander verschieden ersetzt ist.
 - 12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß der Prozeß mit oder ohne Lösungsmittel, jedoch vorzugsweise mit organischen Lösungsmitteln, durchgeführt wird.
- 13. Verfahren nach einem der Ansprüche 8 bis 12 dadurch gekennzeichnet, daß das Verfahren unter Zusatz einer Brönstedt-Säure, vorzugsweise von HCl, HBr, HI, HBF₄, HPF₆ oder/und Trifluoressigsäure, durchgeführt wird.
- 14. Verfahren nach einem der Ansprüche 8 bis 12 dadurch gekennzeichnet, daß das Verfahren unter Zusatz einer Lewis-Säure, vorzugsweise von BF₃, AlCl₃ oder/und Znl₂, durchgeführt wird.

INTERNATIONAL SEARCH REPORT

ational Application No PCT/EP 99/01785

		FC1/EP. 99/01/85
IPC 6	BIFICATION OF SUBJECT MATTER B01J31/22 B01J31/18 C07F15	/00 C08G61/08
According	to International Patent Classification (IPC) or to both national classif	ication and IPC
	SEARCHED	
1PC 6	ocumentation searched (classification system followed by classification sy	
	ation searched other than minimum documentation to the extent that	
Electronic	data base consulted during the international search (name of data i	ese and, where practical, search terms used)
•		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages Relevant to claim No.
Α	WO 97 06185 A (CALIFORNIA INST C 20 February 1997	F TECHN)
Α	EP 0 721 953 A (HOECHST AG) 17 J	uly 1996
P,X	T. WESKAMP ET AL.: "A Novel Cla Ruthenium Catalysts for Olefin m ANGEW. CHEM. INT. ED., vol. 37, no. 18, 1998, pages 249 XP002103755 see figure 2	etathesis"
	•	
Furth	ner documents are listed in the continuation of box C.	Patent family members are listed in annex.
"A" docume conside "E" earlier of filling de "L" docume which is citation "O" docume other n	nt which may throw doubts on priority claim(s) or so cited to establish the publication date of another nor other special reason (as specified) ont referring to an oral disclosure, use, exhibition or	"T" later document published after the international filing date or priority date and not in conflict with the application but cated to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken atone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person sidlled in the art. "&" document member of the same patent family
	actual completion of the international search	Date of mailing of the international search report
_	5 May 1999	10/06/1999
Name and m	nating address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawijk	Authorized officer
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Schwaller, J-M

INTERNATIONAL SEARCH REPORT

Information on patent family members

PCT/EP 99/01785

Patent document cited in search report	nt .	Publication date	Patent family member(s)		Publication date
WO 9706185	Α	20-02-1997	US	5831108 A	03-11-1998
			AU	6688396 A	05-03-1997
			CN	1198752 A	11-11-1998
			EP	0842200 A	20-05-1998
EP 0721953	Α	17-07-1996	DE	4447066 A	04-07-1996
			ΑU	699504 B	03-12-1998
			ΑU	4070395 A	04-07-1996
			BR	9505988 A	23-12-1997
			CA	2165925 A	30-06-1996
			CN	1138045 A	18-12-1996
			FI	956232 A	30-06-1996
			JP	2777880 B	23-07-1998
			JP	8231571 A	10-09-1996
			PL	312030 A	08-07-1996
			US	5728839 A	17-03-1998
			ZA	9510928 A	26-09-1996

INTERNATIONALER RECHERCHENBERICHT

1 :ationales Aktenzeichen PCT/FP 99/01785

A KI AGG	METREPHINA DER ANNELDUNGSCHOTTER	101/21 99/01/05
ÎPK 6	AFIZIERUNG DES ANMELDUNGSGEGENSTANDES B01J31/22 B01J31/18 C07F15,	/00 C08G61/08
Nach der ir	nternationalen Patentklassilikation (IPK) oder nach der nationalen K	lassifikation und der IPK
	RCHIERTE GEBIETE	
IPK 6	nter Mindestprüfstoff (Klassifikationssystem und Klassifikationssym B01J C07F C08G	
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen,	
	er Internationalen Recherche konsultierte elektronische Datenbank	(Name der Datenbank und evtl. verwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Ange	be der in Betracht kommenden Teile Betr. Anspruch Nr.
A	WO 97 06185 A (CALIFORNIA INST C 20. Februar 1997	F TECHN)
Α	EP 0 721 953 A (HOECHST AG) 17.	Juli 1996
P,X	T. WESKAMP ET AL.: "A Novel Cla Ruthenium Catalysts for Olefin m ANGEW. CHEM. INT. ED., Bd. 37, Nr. 18, 1998, Seiten 249 XP002103755 siehe Abbildung 2	etathesis"
Weitz entre	ere Veröffentlichungen eind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie
"A" Veröffer aber ni "E" åtteres i Anmele "L" Veröffer schein anders soll od ausgef "O" Veröffer eine Bir P" Veröffer dem be	unn) nitichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht tilichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	*T" Spätere Veröffertilichung, die nach dem Internationalen Anmeidedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeidung nicht kollidiert, sondern nur zum Verständnis des der Erindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichung nie eren Kategorie in Veröffentlichung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist "å" Veröffentlichung, die Mittglied derselben Patentfamille ist
Datum des A	bschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
<u> </u>	5. Mai 1999	10/06/1999
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Schwaller, J-M

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlic....ngen, die zur seiben Patentiamilie gehören

PCT/EP 99/01785

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9706185	Α	20-02-1997	US	5831108 A	03-11-1998
·			AU	6688396 A	05-03-1997
			CN	1198752 A	11-11-1998
			EP	0842200 A	20-05-1998
EP 0721953	A	17-07 - 1996	DE	4447066 A	04-07-1996
			AU	699504 B	03-12-1998
			AU	4070395 A	04-07-1996
			BR	9505988 A	23-12-1997
			CA	2165925 A	30-06-1996
			CN	1138045 A	18-12-1996
* · ·			FI	956232 A	30-06-1996
			JP	2777880 B	23-07-1998
			JP	8231571 A	10-09-1996
			PL	312030 A	08-07-1996
			US	5728839 A	17-03-1998
•			ZA	9510928 A	26-09-1996