#### Hackles

#### By Drake Emko & Jen Brodzik



http://hackles.org

Copyright © 2001 Drake Emko & Jen Brodzik

# Topic 4 Expressions and Variables

"Once a person has understood the way variables are used in programming, they have understood the quintessence of programming."

-Professor Edsger W. Dijkstra

Based on slides bu Marty Stepp and Stuart Reges from http://www.buildingjavaprograms.com/

Slides are courtesy of Mike Scott https://www.cs.utexas.edu/~scottm/cs312/ Used with permission



# Data and expressions

reading: 2.1

### The computer's view

- Internally, most computers store everything as 1's and 0's
  - Example:

```
h → 01101000

"hi" → 011010001101001

104 → 01101000
```

- How can the computer tell the difference between an h and 104?
- type: A category or set of data values.
  - Constrains the operations that can be performed on data
  - Many languages ask the programmer to specify types
  - Examples: integer, real number, string
- Binary Numbers

# Java's primitive types

- primitive types: 8 simple types for numbers, characters, etc.
  - Java also has object types, which we'll talk about later

| Name    | Description            |                             | Examples            |  |
|---------|------------------------|-----------------------------|---------------------|--|
| int     | integers               | (up to 2 <sup>31</sup> - 1) | 42, -3, 0, 926394   |  |
| double  | real numbers           | (up to 10 <sup>308</sup> )  | 3.1, -0.25, 9.4e3   |  |
| char    | single text characters |                             | 'a', 'X', '?', '\n' |  |
| boolean | logical values         |                             | true, false         |  |

Why does Java distinguish integers vs. real numbers?

## Integer or real number?

Which category is more appropriate?

| integer (int) | real number (double) |  |
|---------------|----------------------|--|
|               |                      |  |
|               |                      |  |
|               |                      |  |

- 1. Temperature in degrees Celsius
- 2. The population of lemmings
- 3. Your grade point average
- 4. A person's age in years
- 5. A person's weight in pounds
- 6. A person's height in meters

- 7. Number of miles traveled
- 8. Number of dry days in the past month
- 9. Your locker number
- 10. Number of seconds left in a game
- 11. The sum of a group of integers
- 12. The average of a group of integers
- credit: Kate Deibel, <a href="http://www.cs.washington.edu/homes/deibel/CATs/">http://www.cs.washington.edu/homes/deibel/CATs/</a>

### Clicker 1

What is best choice for data type?

| CHOICE | Number of days it rained in year | Sum of group of integers | Average of group of integers |
|--------|----------------------------------|--------------------------|------------------------------|
| Α      | int                              | int                      | double                       |
| В      | int                              | int                      | int                          |
| С      | double                           | int                      | int                          |
| D      | double                           | int                      | double                       |
| E      | int                              | double                   | double                       |

### Expressions

expression: A combination of values and / or operations that results (via computation) in a value.

```
• Examples: 1 + 4 * 5
(7 + 2) * 6 / 3
42
"Hello, world!"
```

- The simplest expression is a *literal value*.
- A complex expression uses operators and parentheses.

### Arithmetic operators

- operator: Combines multiple values or expressions.
  - + addition
  - subtraction (or negation)
  - \* multiplication
  - / division
  - % remainder (sometimes called modulus)
- As a program runs, its expressions are evaluated.

```
1 + 1 evaluates to 2
```

```
System.out.println(3 * 4); prints 12
```

How would we print the text 3 \* 4?

# Integer division with /

- When we divide integers, the quotient is also an integer.
- Euclidean division a.k.a. division with remaineder.

- More examples:
  - 32 / 5 **is** 6
  - -84 / 10 **is** 8
  - 156 / 100 **is** 1
  - Dividing by 0 causes an error when your program runs with integer division. Try floating point division by 0.

# Integer remainder with %

▶ The % operator computes the remainder from integer division.

#### What is the result?

```
45 % 6
2 % 2
8 % 20
11 % 0
```

- ▶ Applications of % operator:
  - Obtain last digit of a number: 230857 % 10 is 7
  - Obtain last 4 digits: 658236489 % 10000 is 6489
  - See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

### Clicker 2

What does each expression evaluate to?

| CHOICE | 13 % 5 | 5 % 13 | 30 % 5 |
|--------|--------|--------|--------|
| Α      | 3      | 3      | 0      |
| В      | 3      | 5      | 0      |
| С      | 2      | 5      | 5      |
| D      | 2      | 13     | 6      |
| E      | 2.4    | 13     | 6      |

### Clicker 3

What does the following expression evaluate to?

```
1017 % 100 + 12 % 100
```

- A. 10
- B. 17
- C. 12
- D. 22
- E. 29

### Remember PEMDAS?

- precedence: Order in which operators are evaluated.
  - Generally operators evaluate left-to-right.

```
1 - 2 - 3 is (1 - 2) - 3 which is -4
```

But \* / % have a higher level of precedence than + −

- Parentheses can force a certain order of evaluation:

```
(1 + 3) * 4 is 16
```

Spacing does not affect order of evaluation

### Precedence examples





## Precedence questions

What values result from the following expressions?

```
9 / 5
695 % 20
7 + 6 * 5
7 * 6 + 5
248 % 100 / 5
6 * 3 - 9 / 4
(5 - 7) * 4
6 + (18 % (17 - 12))
```

### Practice!!

- BlueJ includes a Code Pad
  - View -> Show Code Pad
- read eval print loop
  - Alternative is JShell
- Useful to try various expressions

```
27 % 13
1 (int)
5 / 2
2 (int)
3.0 + 5 / 2
5.0 (double)
```

### Real numbers (type double)

- ► Examples: 6.022, -42.0, 2.143e17
  - Placing .0 or . after an integer makes it a double.
- ▶ The operators + \* / % () all still work with double.
  - / produces an exact answer: 15.0 / 2.0 is 7.5
  - Precedence is the same: () before \* / % before
  - -% works with doubles too: 1.25 % 0.75 is 0.5

### Real number example



### Precision in real numbers

The computer internally represents real numbers in an imprecise way.

**Example:** 

```
System.out.println(0.1 + 0.2);
```

- The output is 0.30000000000000004!

## Mixing types

When int and double are mixed, the result is a double.

```
-4.2 * 3 is 12.6
```

The conversion is per-operator, affecting only its operands.

3 / 2 is 1 above, not 1.5.



### String concatenation

string concatenation: Using + between a string and another value to make a longer string.

```
"hello" + 42 is "hello42"

1 + "abc" + 2 is "labc2"

"abc" + 1 + 2 is "abc12"

1 + 2 + "abc" is "3abc"

"abc" + 9 * 3 is "abc27"

"1" + 1 is "11"

4 - 1 + "abc" is "3abc"
```

Use + to print a string and an expression's value together.

```
System.out.println("Grade: " + (95.1 + 71.9) / 2);
```

• Output: Grade: 83.5

#### Clicker 4

What does the following expression evaluate to?

$$1.25 + 7 / 4 + "CS" + 3 + 4$$

- A. "3.0CS34"
- B. "2.25CS7"
- C. "2CS7"
- D. "2.25CS34"
- E. Something other than A D

# Variables

reading: 2.2

### Receipt example

What's bad about the following code?

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        System.out.println("Subtotal:");
        System.out.println(38 + 40 + 30);
        System.out.println("Tax:");
        System.out.println((38 + 40 + 30) * .08);
        System.out.println("Tip:");
        System.out.println((38 + 40 + 30) * .15);
        System.out.println("Total:");
        System.out.println(\frac{38 + 40 + 30}{40 + 40})
                             (38 + 40 + 30) * .08 +
                             (38 + 40 + 30) * .15);
```

- The subtotal expression (38 + 40 + 30) is repeated
- So many println statements

### Variables

variable: A piece of the computer's memory that is given a name and type, and can store a value.

 Like preset stations on a car stereo, or cell phone speed dial:



- Steps for using a variable:
  - Declare it state its name and type
  - Initialize it store a value into it
  - Use it print it or use it as part of an expression<sub>25</sub>

### Declaration

- variable declaration: Sets aside memory for storing a value.
  - Variables must be declared before they can be used.
- Syntax:

<type> <name>;

- int x;

- double myGPA;

X

myGPA

# Assignment

- **assignment**: Stores a value in a variable.
  - The value is the result of an expression;
  - the variable stores its result.

#### Syntax:

```
<name> = <expression>;
```

```
х 3
```

```
int x;
x = 3; // or int x = 3;
```

```
myGPA 3.25
```

### Declaration/initialization

A variable can be declared/initialized in one statement.

Syntax:

```
<type> <name> = <expression>;
```

x 14

```
int x = (11 % 3) + 12;
```

myGPA 3.95

double myGPA = 3.95;

# Using variables

Once given a value, a variable can be used in expressions:

```
int x = 3;

System.out.println("x is " + \mathbf{x});  // \mathbf{x} is 3

System.out.println(5 * \mathbf{x} - 1);  // 14
```

You can assign a value more than once:

```
int x = 3;
System.out.println(x + " here");  // 3 here

x = 4 + 7;
System.out.println("now x is " + x); // now x is 11

x = 11
```

# Assignment vs. algebra

- Assignment uses = , but it is not an algebraic equation.
  - means, "store the value at right in variable at left"
     x = 3; means, "x becomes 3" or "x should now store 3"
- ▶ ERROR: 3 = 1 + 2; is an illegal statement, because 3 is not a variable.
- What happens here?

```
int x = 3;

x = x + 2; // ???
```



### Clicker 5

What is the output of the following Java code? int x = 3; int y = x; // y stores 3 x = 5; // x now stores 5 y = y + x; System.out.println(x + " " + y); A: "5 8" B: 5 10 C: 10 10 D: 5 + 10 E: 5 8

# Swapping the Contents of Two Variables

Output of this code?

```
int x = 12;
int y = 32;
x = y;
y = x;
System.out.println(x + " " + y);
```

### Output of this code?

```
int x = 12;
int y = 32;
int t = x;
x = y;
y = t;
System.out.println(x + " " + y + " " + t);
```

# Assignment and types

A variable can only store a value of its own type.

```
int x = 2.5; // ERROR: incompatible types
```

- An int value can be stored in a double variable.
  - The value is converted into the equivalent real number.

```
double myGPA = 4;
```





double avg = 
$$11 / 2$$
;

Why does avg store 5.0 and not 5.5?

# Compiler errors

A variable can't be used until it is assigned a value.

```
int x;
System.out.println(x);// ERROR: x has no value
```

You may not declare the same variable twice (in the same block of code. methods for now.)

```
int x;
int x;
    // ERROR: x already exists

int x = 3;
int x = 5;    // ERROR: x already exists
```

How can this code be fixed?

## Printing a variable's value

Use + to print a string and a variable's value on one line.

#### Output:

```
Your grade was 83.2
There are 65 students in the course.
```

### **Example Problem - BMI**

- Body Mass Index or BMI is a quick calculation based on height and mass (weight) used by medical professionals to broadly categorize people.
- Formula:

$$BMI = \frac{mass_{kg}}{height_m^2} = \frac{mass_{lb}}{height_{in}^2} \times 703$$

- Quick tool to get a rough estimate if someone is underweight, normal weight, overweight, or obese
- Write a program to calculate BMI for a given height and mass.

36

# Example Problem 2Day of Week

- For the Gregorian Calendar
- Given month, day, and year, calculate day of week
- months, 1 = January, 2 = February, ... 12 = December y = year (14 month) / 12
- x = y + y / 4 y / 100 + y / 400
- m = month + 12 \* ((14 month) / 12) 2
- d = (day + x + (31 \* m) / 12) % 7
- 0 = Sunday, 1 = Monday, 2 = Tuesday

### Receipt question

Improve the receipt program using variables.

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        System.out.println("Subtotal:");
        System.out.println(38 + 40 + 30);
        System.out.println("Tax:");
        System.out.println((38 + 40 + 30) * .08);
        System.out.println("Tip:");
        System.out.println((38 + 40 + 30) * .15);
        System.out.println("Total:");
        System.out.println(38 + 40 + 30 +
                            (38 + 40 + 30) * .15 +
                            (38 + 40 + 30) * .08);
```

### Receipt answer

```
public class Receipt {
    public static void main(String[] args) {
        // Calculate total owed, assuming 8% tax / 15% tip
        int subtotal = 38 + 40 + 30;
        double tax = subtotal \star .08;
        double tip = subtotal * .15;
        double total = subtotal + tax + tip;
        System.out.println("Subtotal: " + subtotal);
        System.out.println("Tax: " + tax);
        System.out.println("Tip: " + tip);
        System.out.println("Total: " + total);
```