6주 3강

임의접근 기억장치와 읽기 전용 기억장치

임의 접근 기억장치

- 반도체 기억장치 중 가장 일반적인 유형이 임의 접근 기억장치(RAM, Random Access Memory)다.
- 2 RAM은 반도체 기억장치이므로 크기가 작고 신뢰성이 높으며, 성능이 우수하고 소비 전력이 적다. 그래서 RAM은 대부분의 컴퓨터에서 주기억장치로 사용하고 있다.

RAM의 특징과 용도

RAM의 특징

- ●선택된 주소의 데이터를 언제든지 쉽게 쓰고, 읽을 수 있다
- RAM은 휘발성 기억장치로 전원 공급이 중지되면 저장된 데이터 모두가 삭제
- 저장된 모든 데이터에 접근하는데 소요되는 시간이 이전의 접근 순서와는 무관하게 항상 일정하다.

컴퓨터에서 주기억장치로 RAM을 사용하는 목적

 중앙처리장치와 보조기억장치의 처리속도의 차이를 극복하기 위해서 보조기억장치보다 처리속도가 빠른 RAM을 중간에 위치시켜 처리속도의 차이를 극복

RAM의 분류

기억 방식에 따른 분류

- 동적 RAM(DRAM, Dynamic RAM)
 - 저장하려고 하는 2진 정보를 충전기에 공급되는 전하의 형태로 보관
 - 전력 소비가 적고 단일 메모리 칩 내에 더 많은 정보를 저장할 수 있다.
 - 충전기의 방전 현상으로 인한 정보의 손실을 막기 위해서 재충전(refresh) 회로가 필요하다.
- 정적 RAM(SRAM, Static RAM)
 - 주로 2진 정보를 저장하는 내부 회로가 플립플롭으로 구성
 - 저장된 정보는 전원이 공급되는 동안에 그대로 보존된다.
 - 사용하기 쉽고 읽기와 쓰기 동작 사이클이 동적 RAM보다 짧다.

동적 RAM(DRAM)

- ●충전기 캐패시터(capacitor)에 전하(charge)를 저장하는 방식
- ●충전기에 전하가 존재하는 여부에 따라 2진수의 1과 0저장을 구분
- 캐패시터에 충전된 전하는 조금씩 방전되므로 기억된 정보를 잃게 된다.
 - 재충전(refresh)을 위한 제어회로를 탑재해야 한다.
 - 동적으로 저장 정보를 재생시키므로 동적(dynamic)이라 명명
- DRAM은 고밀도 집적에 유리하다. 또한 전력 소모가 적고, 가격이 낮아 대용량 기억장치에 많이 사용된다.
- DRAM의 기억소자(memory cell) 구조

• 행(row)입력과 열(column)입력은 여러 개의 캐패시터가 존재할 때 행 입력과 열 입력의 조합으로 정확한 저장 위치를 지정가능.

정적 RAM(SRAM)

- ●플립플롭 방식의 기억소자를 가진 임의 접근 기억장치
 - 전원 공급이 계속되는 한 저장된 내용을 계속 기억하고 DRAM과 다르게 복잡한 재생 클럭(refresh clock)이 필요 없다.
- SRAM의 구조는 플립플롭 기억소자로 구성되어 있어 집적 밀도가 높아서 가격이 비싸며, 소용량의 메모리에 사용한다.
 - SRAM은 DRAM보다 처리속도가 5배 정도 빨라서 캐시메모리에 주로 사용한다.
- ●SRAM의 기억소자(memory cell)구조

읽기 전용 기억장치(Read Only Memory)

- 저장된 명령이나 데이터를 단지 읽기만 할 수 있는 기억장치로 새롭게 데이터를 추가하거나 재 기록하는 쓰기 동작이 불가능
- 전원 공급이 중단되어도 저장된 데이터는 지워지지 않고 유지할 수 있기 때문에 비휘발성(non-volatile) 기억장치로 분류
- ●바이오스 프로그램
 - 컴퓨터시스템 시작 시 내장 메모리를 체크하거나 주변장치를 초기화 수행한다.
 - 전원을 끄더라도 그 내용이 지워지지 않는 ROM이 사용된다.
 - 시스템 동작에 사용되는 표, 변환, 명령어 프로그램등과 같이 반복적으로 쓰는 데이터를 주로 저장하는데 사용된다.

ROM의 구성

- 주소 입력을 통한 데이터를 읽을 위치를 결정하게 하는 주소 디코더가 존재하고 이것은 기억장치의 배열과 연결되어 있다.
- 2 ROM의 구성에 대한 블록도
 - N개의 입력선은 디코더에 의해서 2^N개의 주소가 존재, 이것은 2^N개의 워드가 존재하는 것과 동일한 의미
 - ●기억장치 배열에서 워드의 길이는 M비트이고 출력 비트가 된다.

Mask ROM과 PROM(Programmable ROM)

Mask ROM

- ROM 제작사 측에서 저장 데이터에 맞게 회로를 구성해서 만들어 놓았기 때문에 내용 변경이 불가능
- Mask ROM에 데이터를 집어넣기 위해서는 반드시 반도체 회사에 주문해 특별히 만들어야 하며, Mask ROM은 한번의 기록으로 더 이상 데이터를 변경할 수 없기 때문에 일반적으로 컴퓨터의 주 메모리로 사용하는 것은 불가능하다.

PROM(Programmable ROM)

- ●사용자가 특별한 장비인 PROM writer를 사용하여 필요한 논리 기능을 직접 기록할 수 있다.
- ●최초의 PROM은 1회에 한해서 새로운 내용으로 변경할 수 있는 ROM이다.
- ●그렇지만 한번 기록한 내용을 변경하거나 삭제할 수 없다

EPROM(Erasable PROM)

- ●필요할 때마다 기억된 내용을 지우고 다른 새로운 내용을 기록할 수 있다.
- ●레이저를 이용한 ROM writer를 사용하면 새로운 데이터의 쓰기가 가능
- ●데이터를 입력하는 쓰기 동작은 PROM과 동일하고, 상단의 창에 자외선을 쏘이면 내용이 삭제되므로 새롭게 데이터를 다시 쓸 수 있다.
- ●데이터 삭제하는 방법에 따른 구분
 - UVEPROM(Ultra Violate Erasable PROM)
 - 칩 중앙부에 동그란 유리창이 놓여있고 이 창을 통해 일정시간 자외선을 쏘여주면 내부에 기록되어 있는 데이터가 삭제된다.
 - EEPROM(Electrically Erasable PROM)
 - 전기적으로만 지울 수 있는 PROM으로 칩의 한 핀에 전기적 신호를 가해줌으로써 내부 데이터가 지워지게 된다.
 - 전기 신호를 사용하므로 훨씬 편리한 점이 많지만, 가격이 월등히 비싸며, 쓰기/지우기 속도가 느린 단점이 있다.

플래시 메모리(Flash Memory)

- EEPROM의 한 종류지만 블록단위로 데이터를 입력하는 것이 다른점.
- 읽기와 쓰기 동작이 자유로운 편이어서 RAM과 ROM의 중간적인 위치
- ●작은 카드 크기의 보조기억장치로 만들어서 하드디스크 대신 사용, 접근 속도가 하드디스크보다 훨씬 고속일 뿐만 아니라 반도체 기억장치이기 때문에 외부충격에 매우 강한 장점을 갖는다.

- ●데이터를 읽는 과정은 일반 RAM과 비슷하게 설계 할 수 있지만 데이터를 쓰는 시간이 상당히 오래 걸리며, RAM처럼 쉽게 설계
- RAM은 데이터를 읽고 쓸 수 있는 횟수에 거의 제한이 없어서 칩의 수명이 다하는 동안까지 사용할 수 있다.
- 반면 플래시 메모리는 십만에서 백만 번 이상의 쓰기를 한 후에는 데이터를 더 이상 쓸 수가 없다.

다음 시간

7주. 캐시기억장치

