热学总复习习题及作业

学生: 杨凤 教师: 马祥芸 June 25, 2024

Contents

1	课堂	果堂习题																																							
	1.1	图像计算																			 																	 			
	1.2	动力学问题	颉																		 																	 			
	1.3	移动分析																			 																	 			
	1.4	充气问题																			 																	 			
	1.5	图像问题																			 																	 			
2	作业	,																																							
	2.1	三连通器																			 						 											 			
	2.2	液泡																																				 			
	2.3	挤压问题																			 																				
	2.4	移动综合																			 																	 			
	2.5	图像分析																			 																	 			
	2.6	图像分析																			 																	 			
	2.7	放气问题																			 																	 			
	2.8	热三																			 																	 			
0	KK siz	±π↓r																																							
3		及解析																																							
	3.1	课堂习题	-	-						-			•			-	-	-	-	•			-	-	-			-	-	-	-		-	 -	•	-		 	-	-	
				-						-			•			-	-	-	-				-	-	-			-	-	-	-		-	 -	•	-		 	-	-	
		_		-						-			•			-	-	-	-				-	-	-			-	-	-	-	•	-	 -	•	-		 	-	-	
	3.2	3.1.5 . 课后作业																																							
	ა.∠																																								
		_																																							
						-				-	-		-			-	-	-	-	-			-	-	-		 -	-	-	-	-	-	•	 -		-	-	 	-	-	
		ა.∠.ა .														٠	٠	٠	٠	•	 	•	٠	•	٠	•		•	•	•	 •	•	•	 •		•		 	•	٠	
		3 2 6																																							

1 课堂习题

1.1 图像计算

- 14、如图所示为 0.3mol 的某种气体的压强和温度关系的 P
- T 图线. Po表示 1 个标准大气压,则在状态 B 时气体的体

积为()

- A. 5.6L
- B. 3.2L
- C. 1.2L
- D. 8.4L

1.2 动力学问题

1、在一端封闭的粗细均匀的玻璃管内,用水银柱封闭一部分空气,玻璃管开口向下,如图所示,当玻璃管自由下落时,空

气柱长度将()

- A. 增大
- B. 减小
- C. 不变
- D. 无法确定

1.3 移动分析

- 1、如图所示,两端开口的直玻璃管 A 和 B,竖直插入同一水银槽中,各用一段水银柱封闭着一定质量同温度的空气,空气柱长度 $H_1>H_2$,水银柱长度 $h_1>h_2$,今使封闭气柱降低相同的温度(大气压保持不变),则两管中气柱上方水银柱的移动情况是(
- A.均向下移动, B 管移动较多
- B. 均向下移动, A 管移动较多
- C.A 管向上移动, B 管向下移动
- D. 无法判断

1.4 充气问题

1 某自行车轮胎的容积为 V. 里面已有压强为 Po的空气,现在要使轮胎内的气压增大到 P, 设充气过程为等温过程,空气可看作理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同,压强也是 Po, 空气的体积为 ()。

$$\frac{p_0}{p}V$$
 $\frac{p}{p_0}V$

A. B.
$$\left(\frac{p}{p_0} - 1\right)V \qquad \left(\frac{p}{p_0} + 1\right)V$$
 C.
$$D.$$

1.5 图像问题

17. (2019 秋•上期中) 如图所示,一定质量的理想气体经过 abcda 过程,其中 abcd 为正方形,

ac 连线过坐标原点,下列说法正确的是 ()

A. a→b 过程, 吸收热量, 对外做功, 内能增大

B. b→c 过程, 吸收热量, 对外做功, 内能不变

C. a 状态压强 Pa, 温度 Ta, c 状态压强 Pc, 温度 Tc, 关系为 paTc = PcTa

D. c→d 过程, 气体压强不变, 体积减小, 单位时间撞在容器单位面积的分子数变多

E. d - a 过程, 气体压强变小, 体积变大, 单位时间撞在容器单位面积的分子数变多

2 作业

2.1 三连通器

2.2 液泡

- 3、一个气泡由湖面下 20 m 深处缓慢上升到湖面下 10 m 深
- 处,它的体积约变为原来体积的()
- A. 3倍
- B. 2倍
- C. 1.5倍
- D. 0.7倍

2.3 挤压问题

1、如图所示,两端封闭、粗细均匀、竖直放置的玻璃管内,有一长为 h 的水银柱,将管内气体分为两部分,已知 $I_2 = 2I_1$. 若使两部分气体同时升高相同的温度,管内水银柱将如何运动?(设原来温度相同)

2.4 移动综合

- 2、如图所示,一定质量的空气被水银封闭在静置于竖直平面的 U 形玻璃管内,右管上端开口且足够长,右管内水银面比左管内水银面高 h,下列能使 h 变大的是()
- A. 环境温度升高
- B. 大气压强升高
- C. 沿管壁向右管内加水银
- D. U形玻璃管自由下落

2.5 图像分析

- 19. (2019•海南) 一定量的理想气体从状态 M 出发,经状态 N、P、Q 回到状态 M,完成一个循环。从 M 到 N、从 P 到 Q 是等温过程;从 N 到 P、从 Q 到 M 是等容过程;其体积 温度图象(V T 图)如图所示。下列说法正确的是(
- A. 从 M 到 N 是吸热过程
- B. 从 N 到 P 是吸热过程
- C. 从 P 到 Q 气体对外界做功
- D. 从 Q 到 M 是气体对外界做功
- E. 从Q到M气体的内能减少

2.6 图像分析

- 20. (2018•新课标皿) 如图,一定量的理想气体从状态 a 变化到状态 b,其过程如 p V 图中从 a 到 b 的直线所示。在此过程中()
- A. 气体温度一直降低
- B. 气体内能一直增加
- C. 气体一直对外做功
- D. 气体一直从外界吸热
- E. 气体吸收的热量一直全部用于对外做功

2.7 放气问题

3、如图所示是我国南海舰队潜艇,它水下速度为 20 节,最大下潜深度为 300m. 某次在南海执行任务时位于水面下h=150m 处,艇上有一个容积 $V_1=2m^3$ 的贮气钢筒,筒内贮有压缩空气,其压强 $P_1=200$ atm,每次将筒内一部分空气压入水箱 (水箱有排水孔与海水相连),排出海水 $^{\perp}V=0.9m^3$,当贮气钢筒中的压强降低到 $P_2=20$ atm 时,需重新充气.设潜艇保持水面下深度不变,在排水过程中气体的温度不变,水面上空气压强 $P_0=1$ atm,取海水密度 $p=1\times10^3$ kg/m³,p=10m/s²,p=1m/s² p=1m/s² p=1m/s

2.8 热三

- 13. 如图甲所示,导热性能良好的圆柱形汽缸放在水平地面上,开口向上,用横截面积为S的活塞封闭一定质量的理想气体,活塞到汽缸底部的距离为h,此时环境温度为T。(热力学温度)。已知大气压强恒为 p_0 ,活塞的质量为 $m = \frac{p_0S}{g}$ 现将一质量也为m的重物轻放在活塞上,同时缓慢升高环境温度,活塞静止后到汽缸底部的距离为 $\frac{3}{4}h$ (如图乙所示),该过程气体从外界吸收的热量为Q。重力加速度为g,不计活塞与汽缸之间的摩擦,求:
- (i)最终气体的热力学温度 T
- (ii)上述过程中气体内能的变化量 ΔU

3 答案及解析

3.1 课堂习题

3.1.1

- 正解: D
- 总结: 首先应该向左平移 y 轴, 使得横坐标换算成开尔文温度. 新的坐标系下, 斜线 OA 满足 $P = {}^C_V T$ 斜率为定值, 因此为等容过程.

T=273k 时过 P_0 , 此时气体体积为 22.4L, 因此 $V_A=22.4L$, 横线 $A\to B$ 为等压过程, 计算温度只比即可求得 V_B

3.1.2

- 正解: B
- 总结: 动力学问题主要在于分析好初末态,同时列受力分析方程. 初态 $PS + mg = P_0S$,末态自由落体加速度为 g $P'S + mg P_0S = ma = mg \Longrightarrow P' = P_0$ 液柱上方压强增大,因此液柱上方体积减小

3.1.3

- 正解: B
- 总结:

此题不能使用等体过程的 $\frac{\triangle P}{\triangle T}$ 进行分析 两试管各自独立,区别于等体两气挤压问题 (作用对象为同一个液柱) 但两试管均连通大气 $P_0+h_1=P_A$ $P_0+h_2=P_B$ 因此可视作等压过程,同有过原点的直线 $V=\frac{1}{P}T \Longrightarrow \frac{V}{T}=\frac{\triangle V}{\triangle T}$ $V_A=\frac{\triangle V_A}{\triangle T}$ $V_A>V_B$ (两者均为负数,液柱下移) $\Longrightarrow \triangle V_A>\triangle V_B$

3.1.4

- 正解: C
- 总结:

由于是限容问题,本质上是求:
$$\triangle n \Longleftrightarrow \triangle V$$

$$P_0V = n_1RT$$

$$PV = n_2RT \implies (P - P_0)V = (n_2 - n_1)RT$$

$$P_0\triangle V = \triangle nRT = (n_2 - n_1)RT \implies \triangle V = (\frac{P}{P_0} - 1)V$$
 或者使用一个方程要求:原状态 + 打入气 = 末状态
$$P_0V + P_0V_0 = PV \implies \triangle V = (\frac{P}{P_0} - 1)V$$

3.1.5

- 正解: ACD
- 总结: DE 选项的判断体积越小,那么显然单位体积内的分子数上升,碰撞容器壁的概率会上升

3.2 课后作业

3.2.1

- \mathbb{E} \mathbb{H} : $P_B = P_A + \rho g(h_3 h_1)$
- 总结: 前两管: $P_B + \rho g h_1 = P_C$, 后两管 $P_C + \rho g h_3 = P_0$

3.2.2

- 正解: C
- 总结: 外界大气压的作用应该被计算进去

3.2.3

- 正解: 向上移动
- 总结: 三个状态参量中,真正使得液柱移动的物理量是 P,在查理定律中 $\frac{P}{T}=\frac{C}{V}$ 升温瞬间可视为**等体**过程,因此函数为过原点的直线可得 $\frac{P}{T}=\frac{\triangle P}{\triangle T}$

$$\triangle P_1 = \frac{P_1}{T_1} \triangle T = \frac{C}{V_1} \triangle T$$

$$V_2 = 2V_1 \implies \triangle P_1 > \triangle P_2$$

3.2.4

- 正解: ACD
- 总结:
- (A) 通常当多个变量发生变化,优先假设 V 不变,因此瞬态满足 $\frac{P}{T}=\frac{\triangle P}{\triangle T}=C$ $P=P_0+h$ 方程右边暂时不变,环境温度上升 $\triangle T>0\Longrightarrow \triangle P>0$,压强 P 增大 虽然体积 V 减小导致 h 又下降,但稳态总有 P 变大,因此需要 h 变大,A 正确
- (B) P_0 上升,P 上升,等温条件下 V 下降,因此试管左边的体积下降导致 h 变小
- (C) 可以从两个角度思考, 只要持续往里加水银, 必然会使得液面高 h 上升 另一个角度, 瞬态时 h 变大,P 变大,V 减小, 末态方程 $P^{'}=P_0+h^{'}$ 结果上必然有 $P^{'}>P$, 因此 h 变大
- (D) 自由落体需要列动力学方程, $P_0S + mg P'S = mg \Longrightarrow P' = P_0$ 压强变小, 体积变大,h 上升

3.2.5

• 正解: BCE

3.2.6

- 正解: BCD
- 总结: E 选项注意能量的转化角度, 热量一部分转化为对外做功一部分作为内能储存

3.2.7

• 正解: 25次

• 总结: 主要在于排出气体的压强与水压 + 大气压平衡, 是恒压为 $1\,atm+P_{\hbar}$, 其中 $P_{\Lambda}=15\,atm$

3.2.8

• 正解: $(1)\frac{9}{8}T$ $(2)Q + \frac{3}{4}P_0Sh$

• 总结: 做功计算是准静态过程, 此过程中所有的力视为不变

受力分析包括: 物块与活塞重力, 大气压力