

Statistik II

Einheit 8: ANOVA mit Messwiederholung

26.06.2025 | Prof. Dr. Stephan Goerigk

Kurzvorstellung

- Viele wiss. Untersuchungen verwenden Messwiederholungen
- Gründe:
 - Untersuchung zeitlicher Veränderung eines Merkmals (z.B. Lernen, Gesundung)
 - o Statistische Vorteile beim Studiendesign (z.B. mehr Teststärke)
- Wichtig: Dieselben Personen werden mehrfach erfasst
- Daten sind abhängig voneinander (Verletzung Unabhängigkeitsvoraussetzung bei ANOVA)
- Graphische Darstellung i.d.R. mittels Line-Graph
 - \circ Punkte = Mittelwert zu Zeitpunkt t_i (wie Balkendiagramm)
 - o Linie symbolisiert Messwiederholungen

Logik ANOVA mit Messwiederholung

- Prüft, ob sich die Ausprägung eines Merkmals zu \geq 2 Messzeitpunkten unterscheidet
- Erweiterung des abhängigen t-Tests
- Simultaner Vergleich beliebig vieler Zeitpunkte mittels Omnibustest
 - \circ Vermeidung von α -Fehlerkumulierung
 - Vermeidung von verringerter Teststärke
- Prinzip wie bei einfaktorieller ANOVA ohne Messwiederholung, jedoch mit leicht abgewandelten Formeln, um Abhängigkeit der Messungen zu entsprechen

Hypothesen bei Messwiederholungsdesigns

Vorteil der ANOVA mit Messwiederholung:

- Logik des **Omnibustests** bei messwiederholten Daten
- Es werden die Mittelwerte aller Zeitpunkte auf einmal miteinander verglichen.
- H_0 abh. t-Tests:
 - $\circ \; \mu_{t1} = \mu_{t2}$
 - \circ $\mu_{t1} = \mu_{t3}$
 - \circ $\mu_{t2}=\mu_{t3}$
- ullet H_0 ANOVA mit Messwiederholung:

$$\circ \ \mu_{t1} = \mu_{t2} = \mu_{t3}$$

Prinzip der Varianzanalyse mit Messwiederholung

Zerlegung der Gesamtvarianz:

Wir müssen uns wiederum fragen, weshalb Messungen unterschiedlich (mit Varianz) ausfallen

Nach wie vor gibt es 2 denkbare Ursachen für die Gesamtvarianz:

- 1. systematische Einflüsse (experimentelle Manipulation)
- 2. unsystematische Einflüsse (nicht erklärbare Restvarianz aka. Residualvarianz)

Spezialfall Messwiederholung:

- Aufgrund der wiederholten Messungen beziehen sich beide Varianzquellen auf Unterschiede innerhalb der Personen
- ullet Zusätzliche Varianzquelle: Unterschiede **zwischen den Personen** (Personenvarianz σ_{Vpn}^2 z.B. Persönlichkeit, Motivation)

$$\sigma_{gesamt}^2 = \sigma_{Vpn}^2 + \sigma_{Zeit}^2 + \sigma_{Res}^2$$

Prinzip der Varianzanalyse mit Messwiederholung

Zerlegung der Gesamtvarianz:

Prinzip der Varianzanalyse mit Messwiederholung

Bestandteile der Residualvarianz:

- Residualvarianz besteht im Falle von Messwiederholungen aus 2 Komponenten:
 - Wechselwirkung aus Personenfaktor und den Stufen des Messwiederholungsfaktors (Zeit)
 - o restliche unsystematische Einflüsse
- Beide Komponenten auf Stichprobenebene nicht voneinander abgrenzbar
- \rightarrow Personenfaktor kann nicht systematisch von Forscher:innen variiert werden (hätten dann wieder Zwischengruppendesign statt reine Messwiederholung)

Anwendungsbespiel händisch (kleiner Datensatz)

- ullet Datensatz für N=5 Patient:innen nach Schlaganfall
- Forschungsfrage: Kann kognitives Training Merkfähigkeit verbessern?
- Es wurden folgende Variablen gemessen:
 - \circ Gedächtnisleistung (AV; 0-50 Punkte) \to nach jeder Trainingseinheit gemessen
- "Indirekte" Variable im Datensatz
 - Zeitpunkt (UV, 3 Messungen)
- → Numerische Frage: Anstieg mit zunehmenden Trainingseinheiten?

id	t0	t1	t2	P(m)
1	9	19	22	16.67
2	10	17	18	15
3	13	15	19	15.67
4	10	17	21	16
5	10	15	19	14.67
A(i)	10.4	16.6	19.8	15.6

- A_i Mittelwert pro Zeitpunkt
- ullet P_m Mittelwert der Person über Zeitpunkte hinweg

Prinzip der Varianzanalyse mit Messwiederholung

Varianzschätzungen:

- Die Varianzschätzungen der ANOVA mit Messwiederholung gehen von einer Interaktion der Messwiederholung mit unspezifischen Personencharakteristika aus
- Die Formeln ähneln daher eher denen der mehrfaktoriellen ANOVA mit Interaktionseffekt
- Auch hier wird von "erwarteten Werten" ausgegangen

Prinzip der Varianzanalyse mit Messwiederholung

Schätzung der Residualvarianz:

- Erfolgt über die Abweichung der gemessenen Werte von den, allein auf Grund von
 - 1. den Mittelwerten zu jedem Zeitpunkt
 - 2. den aufgrund der Personenmittelwerte zu **erwartenden** Werten $(x_{im(erwartet)})$
- Entspricht Vorgehen für Varianz der Interaktion zwischen 2 Faktoren
- Erwartete Werte setzen sich zusammen aus:
 - \circ Gesamtmittelwert $(ar{G})$
 - \circ Einfluss des Messwiederholungsfaktors $(ar{A}_i)$
 - \circ Einfluss des Personenfaktors $(ar{P_m})$

$$x_{im(erwartet)} = ar{G} + (ar{A}_i - ar{G}) + (ar{P}_m - ar{G}) = ar{A}_i + ar{P}_m - ar{G}$$

 $x_{im(erwartet)} =$ Erwarteter Wert der Person m in der Messwiedeholung i des Messwiederholungsfaktors A.

Prinzip der Varianzanalyse mit Messwiederholung

Schätzung der Residualvarianz:

- Die geschätzte Residualvarianz $(\hat{\sigma}_{Res}^2)$ berechnet sich aus den quadrierten Abweichungen $(QS_{A \times Vpn})$ der beobachteten von den erwarteten Messwerten
- Sie wird somit aus der Varianz der Wechselwirkung zwischen Messwiederholungsfaktor und Personenfaktor geschätzt

$$\hat{\sigma}_{A imes Vpn}^2 = rac{Q S_{A imes Vpn}}{d f_{A imes Vpn}} = rac{\sum\limits_{i=1}^p \sum\limits_{m=1}^N [x_{im} - (ar{A}_i + ar{P}_m - ar{G})]^2}{(p-1) \cdot (n-1)}$$

mit:

- p = Gesamtzahl der Stufen des Messwiederholungsfaktors (Laufindex i)
- n = Gesamtzahl der Personen (Laufindex <math>m)

Prinzip der Varianzanalyse mit Messwiederholung

Schätzung der Residualvarianz:

Berechnung der Residualvarianz im Beispiel:

$$\hat{\sigma}_{A \text{ x } Vpn}^2 = rac{[9 - (10.4 + 16.67 - 15.6)]^2 + \ldots [19 - (19.8 + 14.67 - 15.6)]^2}{(3 - 1) \cdot (5 - 1)} = rac{23.6}{8} = 2.95$$

mit

•
$$df_{A \times Vpn} = (3-1) \cdot (5-1) = 8$$

Prinzip der Varianzanalyse mit Messwiederholung

Schätzung der Personenvarianz:

- Erfolgt über die sogenannte Varianz zwischen Versuchspersonen
- ullet Besteht aus den Unterschieden zwischen den über alle Zeitpunkte gemittelten Werten P_m
- Exakter Wert für Berechnung der Varianzanalyse mit Messwiederholung irrelevant
- \rightarrow Wir verzichten an dieser Stelle auf die Formel

Prinzip der Varianzanalyse mit Messwiederholung

Systematische Varianz:

- Setzt sich aus den Unterschieden zwischen Mittelwerten der Messzeitpunkten zusammen (Zeiteffekt)
- Lässt sich nicht isoliert, sondern nur in Kombination mit Residualvarianz schätzen (wie bei ANOVA ohne Messwiederholung)

Geschätzt wird die Varianz des Haupteffekts A:

$$\hat{\sigma}_A^2 = rac{QS_A}{df_A} = rac{n \cdot \sum\limits_{i=1}^p (ar{A}_i - ar{G})^2}{p-1}$$

Prinzip der Varianzanalyse mit Messwiederholung

Systematische Varianz:

Berechnung der systematischen Varianz im Beispiel:

$$\hat{\sigma}_A^2 = rac{5 \cdot [(10.4 - 15.6)^2 + (16.6 - 15.6)^2 + (19.8 - 15.6)^2]}{3 - 1} = rac{228.4}{2} = 114.2$$

mit

•
$$df_A = 3 - 1 = 2$$

Prinzip der Varianzanalyse mit Messwiederholung

Signifikanzprüfung:

- Püfung, ob sich die Messzeitpunkte signifikant unterscheiden
- F-Bruch (emp. F-Wert) wird gebildet aus geschätzter systematischer Varianz für Messwiederholungsfaktor (A) und der geschätzten Residualvarianz

$$F_{A(df_A,df_{Res})} = rac{\hat{\sigma}_A^2}{\hat{\sigma}_{Res}^2} = rac{\hat{\sigma}_A^2}{\hat{\sigma}_{A ext{ x }Vpn}^2}$$

mit

•
$$df_{\Delta} = p-1$$

$$egin{aligned} ullet \ df_A &= p-1 \ ullet \ df_{A imes Vpn} &= (p-1) \cdot (n-1) \end{aligned}$$

Prinzip der Varianzanalyse mit Messwiederholung

Signifikanzprüfung:

Berechnung des F-Bruchs im Beispiel:

$$F_{A(2,8)} = rac{114.2}{2.95} = 38.71$$

$$F_{krit(2,8)}=4.46$$
 (F-Tabelle)

$$F_{A(2,8)} > F_{krit(2,8)} o$$
 Der Test ist signifikant.

ightarrow Es besteht ein signifikanter Unterschied zwischen den Mittelwerten der wiederholten Messungen.

ightarrow Anders gesagt: Es erfolgt eine signifikante Veränderung über die Zeit.

Nenner-		Zähler-		
df	Fläche	1	2	3
1	0,75	5,83	7,50	8,20
	0,90	39,9	49,5	53,6
	0,95	161	200	216
2	0,75	2,57	3,00	3,15
	0,90	8,53	9,00	9,16
	0,95	18,5	19,0	19,2
	0,99	98,5	99,0	99,2
3	0,75	2,02	2,28	2,36
	0,90	5,54	5,46	5,39
	0,95	10,1	9,55	9,28
	0,99	34,1	30,8	29,5
4	0,75	1,81	2,00	2,05
	0,90	4,54	4,32	4,19
	0,95	7,71	6,94	6,59
	0,99	21,2	18,0	16,7
5	0,75	1,69	1,85	1,88
	0,90	4,06	3,78	3,62
	0,95	6,61	5,79	5,41
	0,99	16,3	13,3	12,1
6	0,75	1,62	1,76	1,78
	0,90	3,78	3,46	3,29
	0,95	5,99	5,14	4,76
	0,99	13,7	10,9	9,78
7	0,75	1,57	1,70	1,72
	0,90	3,59	3,26	3,07
	0,95	5,59	4,74	4,35
	0,99	12,2	9,55	8,45
8	0,75	1,54	1,66	1,67
	0,90	3,46	3,11	2,92
	0,95	5,32	4,46	4,07
	0,99	11,3	8,65	7,59

Anwendungsbespiel R (größerer Datensatz)

- ullet Datensatz für N=15 Patient:innen nach Schlaganfall
- Forschungsfrage: Kann kognitives Training Merkfähigkeit verbessern?
- Es wurden folgende Variablen gemessen:
 - \circ Gedächtnisleistung (AV; 0-50 Punkte) \to nach jeder Trainingseinheit gemessen
- "Indirekte" Variable im Datensatz
 - Zeitpunkt (UV, 3 Messungen)
- ightarrow Numerische Frage: Anstieg mit zunehmenden Trainingseinheiten?

id	t0	t1	t2
1	9	19	22
2	10	17	18
3	13	15	19
4	10	17	21
5	10	15	19
6	13	17	20
7	11	17	20
8	7	11	13
9	9	14	15
10	9	14	15
11	12	15	16
12	11	19	21
13	11	17	16
14	10	14	20
15	9	18	22

Anwendungsbespiel R (größerer Datensatz)

Wide vs. Long-Format:

• Datensätze können entweder im Wide- oder Long-Format vorliegen, wobei jede Formatierung ihre eigenen Vor- und Nachteile aufweist.

Wide-Format:

- Daten in einer breiten Tabelle dargestellt
- Jede Variable hat eine eigene Spalte
- Übersichtliche Sicht auf die Daten, insbesondere wenn es viele Variablen gibt

Wichtig: Jede Person hat eine Zeile. Gibt es Messwiederholungen (hier t1, t2 und t3 der Gedächtnisleistung), erhält jede Messung seine eigene Spalte.

id	t0	t1	t2
1	9	19	22
2	10	17	18
3	13	15	19
4	10	17	21
5	10	15	19
6	13	17	20
7	11	17	20
8	7	11	13
9	9	14	15
10	9	14	15
11	12	15	16
12	11	19	21
13	11	17	16
14	10	14	20
15	9	18	22

Anwendungsbespiel R (größerer Datensatz)

Wide vs. Long-Format:

Long-Format (aus Platzgründen nur für Personen 1-5 dargestellt):

- Daten sind in einer schmaleren Tabelle darzustellen, in der mehrere Variablen in einer Spalte zusammengefasst werden
- Jede Beobachtung erstreckt sich über mehrere Zeilen, wodurch eine längere Tabelle entsteht
- Long-Format eignet sich besonders für Messwiederholungen

Wichtig:

- Jede Zeile muss mittels einer ID Variable eindeutig den Personen zugeordnet werden
- Eine weitere Variable (bei Messwiederholungen z.B. Zeit) muss angegeben werden, weshalb es mehrere Werte pro Fall gibt

id	Time	Score
1	t0	9
2	t0	10
	t0	13
4	t0	10
	t0	10
1	t1	19
	t1	17
3	t1	15
	t1	17
5	t1	15
	t2	22
2	t2	18
3	t2	19
4	t2	21
5	t2	19

Anwendungsbespiel R (größerer Datensatz)

Wide und Long-Format lassen sich automatisch ineinander überführen:

```
df_wide
     id t0 t1 t2
      1 9 19 22
      2 10 17 18
      3 13 15 19
      4 10 17 21
      5 10 15 19
      6 13 17 20
      7 11 17 20
      8 7 11 13
      9 9 14 15
## 10 10 9 14 15
## 11 11 12 15 16
## 12 12 11 19 21
## 13 13 11 17 16
## 14 14 10 14 20
## 15 15 9 18 22
```

15 5 t2

Anwendungsbespiel R (größerer Datensatz)

```
library(afex)
model = aov_ez(dv = "Score", within = c("Time"), id = "id", data = df_long)
summary(model)
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
              Sum Sq num Df Error SS den Df F value
                                                                Pr(>F)
                         1 141.111
## (Intercept) 9975.6
                                       14 989.701 0.00000000000002165 ***
               528.8
                         2 74.489
                                      28 99.395 0.0000000000019120 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Mauchly Tests for Sphericity
##
       Test statistic p-value
              0.72821 0.12725
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
   for Departure from Sphericity
                     Pr(>F[GG])
        GG eps
## Time 0.78629 0.00000000005163 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
          HF eps
                           Pr(>F[HF])
## Time 0.8685946 0.000000000005964162
```


Anwendungsbespiel R (größerer Datensatz)

```
library(emmeans)
model = aov_ez(dv = "Score", within = c("Time"), id = "id", data = df_long)
emmeans(model, pairwise ~ Time)
## $emmeans
  Time emmean
                SE df lower.CL upper.CL
         10.3 0.419 14
                         9.37
   t0
                                 11.2
   †1
      15.9 0.565 14
                       14.72
                                17.1
   t2
        18.5 0.729 14
                      16.90
                                 20.0
## Confidence level used: 0.95
## $contrasts
   contrast estimate
                     SE df t.ratio p.value
   t0 - t2
           -8.20 0.725 14 -11.309 <.0001
   t1 - t2
           -2.53 0.456 14 -5.551 0.0002
## P value adjustment: tukey method for comparing a family of 3 estimates
```


Voraussetzungen der ANOVA mit Messwiederholung

Es gelten folgende Voraussetzungen:

- 1. Die abhängige Variable ist intervallskaliert
 - messtheoretisch abgesichert (muss man wissen)
- 2. Das untersuchte Merkmal ist in der Population normalverteilt
- 3. Varianzhomogenität (Varianzen sind innerhalb der verglichenen Gruppen ungefähr gleich)
- 4. NEU: Annahme homogener Korrelationen, bzw. Zirkularität (aka Sphärizität)

Folgende Voraussetzung gilt nicht:

(4.) Messwerte in allen Bedingungen sind unabhängig voneinander

Voraussetzungen der ANOVA mit Messwiederholung

Annahme homogener Korrelationen:

- Zur Erinnerung: Daten sind explizit nicht unabhängig
- Voraussetzung über die Art der Abhängigkeit der Daten
- ullet Alle Korrelationen zwischen den Stufen des Messwiederholungsfaktors (A) müssen homogen sein

ACHTUNG: Muss erst ab >2 Messzeitpunkten getestet werden! (nur 1 Korrelation)

- Korrelationen können mittels Korrelationsmatrix abgelesen werden
- Auf den ersten Blick scheint es Unterschiede zu geben... $(r=0.29~{
 m vs.}~r=0.78)$

Voraussetzungen der ANOVA mit Messwiederholung

Annahme homogener Korrelationen:

Verletzung der Annahme:

- Bei Verletzung, kann der Zeiteffekt überschätzt werden
- Es würden ggf. signifikante Ergebnisse gefunden, wo kein Effekt existiert

ABER:

- Annahme homogener Korrelationen sehr strenge Voraussetzung
- Studien zeigen, dass auch etwas liberalere Annahme ausreicht: Homogenität der Varianzen zwischen den Faktorstufen (Sphärizität)
- Sphärizität wird stattdessen geprüft

Voraussetzungen der ANOVA mit Messwiederholung

Überprüfung der Sphärizität - Mauchly-Test:

- Annahme: Homogenität der Varianzen zwischen den Faktorstufen
- ullet Signifikanter Mauchly-Test o Varianzen inhomogen o keine Sphärizität

Durchführung des Mauchly-Tests in R:

```
library(performance)
check_sphericity(model)
## OK: Data seems to be spherical (p > 0.127).
```


Voraussetzungen der ANOVA mit Messwiederholung

Verletzung der Sphärizität - Korrekturverfahren

- Es gibt Korrekturverfahren, die den F-Test für die Sphärizitätsverletzung korrigieren
 - Greenhouse-Geisser Korrektur
 - Huynh-Feldt Korrektur
- Die Auswahl des Korrekturverfahrens richtet sich nach dem Wert ε (Epsilon)
- Untergrenze für Epsilon ist $\varepsilon=rac{1}{p-1}$
- ullet Kleineres Epsilon o stärkere Verletzung der Sphärizitätsannahme

Entscheidungsregel nach Box:

- $\varepsilon < 0.75
 ightarrow$ Greenhouse-Geisser Korrektur (strenger)
- $arepsilon \geq 0.75
 ightarrow$ Huynh-Feldt Korrektur (liberaler)

Verletzung der Sphärizität - Korrekturverfahren

```
model = aov_ez(dv = "Score", within = c("Time"), id = "id", data = df_long)
summary(model)
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
              Sum Sg num Df Error SS den Df F value
                                                                Pr(>F)
## (Intercept) 9975.6
                         1 141.111
                                        14 989.701 0.00000000000002165 ***
               528.8
                          2 74.489
                                        28 99.395 0.0000000000019120 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
## Mauchly Tests for Sphericity
       Test statistic p-value
## Time
              0.72821 0.12725
##
## Greenhouse-Geisser and Huynh-Feldt Corrections
   for Departure from Sphericity
                     Pr(>F[GG])
## Time 0.78629 0.00000000005163 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
          HF eps
                           Pr(>F[HF])
## Time 0.8685946 0.000000000005964162
```

- Beide Korrekturen können aus Output abgelesen werden
- \bullet Entscheidend für Auswahl des Korrekturverfahrens ist das GG ε

Effektstärke

$$egin{align} f_{s(abh"angig)}^2 &= rac{F \cdot df_A}{df_{A imes Vpn}} \ & \ f_{s(abh"angig)}^2 &= rac{F \cdot df_A}{df_{A imes Vpn}} \ & \ \eta_p^2 &= rac{QS_A}{QS_A + QS_{A imes Vpn}} = rac{f_s^2}{1 + f_s^2} \ \end{array}$$

- ullet η_p^2 gibt Anteil der Varianz an, der durch Messwiederholung auf Stichprobenebene aufgeklärt wird
- Der Vergleich von Effektstärke über Studien hinweg kann problematisch sein, wenn Korrelationen zwischen Messungen variieren.

Stichprobenumfangsplanung

Anova mit Messwiederholung

Berichten der Ergebnisse nach APA

Paniksymptome gemessen durch PAS (Panik- und Agoraphobie-Skala) Im Rahmen einer Expositionstherapie mit drei Messzeitpunkten

```
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
               Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 27434.8 1 348.85 19 1494.23 < 2.2e-16 ***
## Messzeitpunkt 5236.2 2 857.10 38 116.08 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Mauchly Tests for Sphericity
              Test statistic p-value
## Messzeitpunkt 0.9565 0.67017
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
               GG eps Pr(>F[GG])
## Messzeitpunkt 0.95832 2.682e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                HF eps Pr(>F[HF])
## Messzeitpunkt 1.063395 6.536641e-17
## # Effect Size for ANOVA (Type III)
##
## Parameter | Eta2 (partial) | 95% CI
## Messzeitpunkt | 0.86 | [0.79, 1.00]
## - One-sided CIs: upper bound fixed at [1.00].
```

Statistischer Bericht: (In Ihrer Klausur)

Wenn Sie in Ihrer Klausur den Output einer rmANOVA berichten sollen, könnte dies so aussehen:

Im Rahmen einer Expositionstherapie wurde die Entwicklung von Paniksymptomen über drei Messzeitpunkte hinweg mittels einer Varianzanalyse mit Messwiederholung untersucht. Der Faktor Zeit zeigte einen signifikanten Einfluss auf die Symtomschwere F(2,38) = 116.08, p < .001, η_p^2 = 0.86. Damit konnten 86 % der Varianz durch den Messwiederholungsfaktor aufgeklärt werden - dies entspricht einem starken Effekt. Der Mauchly-Test war nicht signifikant (p = .670), was auf eine erfüllte Sphärizitätsannahme hinweist.

Anova mit Messwiederholung

Berichten der Ergebnisse nach APA

Paniksymptome gemessen durch PAS (Panik- und Agoraphobie-Skala) Im Rahmen einer Expositionstherapie mit drei Messzeitpunkten

```
## Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
             Sum Sq num Df Error SS den Df F value Pr(>F)
## (Intercept) 27434.8 1 348.85 19 1494.23 < 2.2e-16 ***
## Messzeitpunkt 5236.2 2 857.10 38 116.08 < 2.2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Mauchly Tests for Sphericity
           Test statistic p-value
## Messzeitpunkt 0.9565 0.67017
## Greenhouse-Geisser and Huynh-Feldt Corrections
## for Departure from Sphericity
             GG eps Pr(>F[GG])
## Messzeitpunkt 0.95832 2.682e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                HF eps Pr(>F[HF])
## Messzeitpunkt 1.063395 6.536641e-17
## # Effect Size for ANOVA (Type III)
##
## Parameter | Eta2 (partial) | 95% CI
## Messzeitpunkt | 0.86 | [0.79, 1.00]
## - One-sided CIs: upper bound fixed at [1.00].
```

Inhaltlich bedeutet dies:

Es traten signifikante Unterschiede in der Ausprägung der Paniksymptome zwischen mindestens zwei Messzeitpunkten auf.

Anova mit Messwiederholung

Post-hoc Vergleich

Paniksymptome gemessen durch PAS (Panik- und Agoraphobie-Skala)
Im Rahmen einer Expositionstherapie mit drei Messzeitpunkten

Ergebnisse des Post-hoc Tests

Ein Post-hoc Test mit Tukey-Korrektur zeigte signifikante Mittelwertsunterschiede zwischen allen drei Messzeitpunkten. Der Unterschied zwischen t0 und t1 betrug 6.10 Punkte, t(19) = 4.07, p = .002; zwischen t1 und t2 lag der Unterschied bei 16.1 Punkten, t(19) = 11.80, p < .001. Dies deutet darauf hin, dass die Symptomverbesserung vor allem in der späteren Phase der Therapie stattfand

Take-aways

- ANOVA mit Messwiederholung erlaubt Vergleich **abhängiger Daten** mit ≥ 2 Messungen.
- Es wird geprüft, ob eine Veränderung über die Zeit (Zeiteffekt) vorliegt.
- Wird ebenfalls über Varianzzerlegung und Prüfung mittels F-Test durchgeführt.
- ANOVA mit Messwiederholung kann zusätzlich zur Effektvarianz auch Personenvarianz aufklären (höhere Teststärke).
- Als zusätzliche Voraussetzung wird die **Spärizität** geprüft.
- Bei Verletzungen der Spärizitätsannahme können **Korrekturverfahren** angewendet werden, die Überschätzung des Effekts verhindern.
- Wenn Spärizität erfüllt ist, können Post-Hoc Vergleiche mittels **Tukey-Test** geprüft werden.