

Gestión de la Calidad del Proyecto

Son los procesos para incorporar la política de calidad de la organización en cuanto respecto de la planificación, gestión y control de los requisitos de calidad del proyecto y el producto, para satisfacer los objetivos de los interesados

La gestión de la calidad del proyecto

Son tres procesos en la metodología del PMI:

- 8.1 Planificar la Calidad
- 8.2 Gestionar la Calidad
- 8.3 Controlar la Calidad

Fig 8-2. Principales interrelaciones del proceso de gestión de la calidad del proyecto

compolar 4 corregil

3

Cuál de los dos tiene mas calidad?

Calidad:

 "Es el grado en el que las características de un producto cumple con los requisitos."

cantidad de características Grado:

· Categoría dado a productos que tienen el mismo uso, pero con diferentes requerimientos de calidad.

El director del proyecto y su equipo deben determinar con los interesados los niveles requeridos de calidad y grado del producto esperado y entregarlos como resultado del trabajo del proyecto.

Cómo se refleja la calidad en el proyecto?

En el producto	En los procesos de elaboración
En la	En la
metodología	administración

Planificar la gestión de la calidad 6. Alcance

Debes identificar los requisitos y/o
 estándares de calidad para el proyecto y
 sus entregables, como vas a lograrlos, y a
 demostrar el cumplimiento de los mismos.

9

Panamericana

Panamericana

La calidad en los proyecto ágiles

La calidad comienza desde la recopilación de los requisitos y expectativas del cliente

Planificación Agile de la calidad

9.1 Create User Stories

Documenting the requirements and desired end-user functionality, in short, & simple statements

9.2 Estimate User Stories

Estimate the effort required to develop the functionality described in each User

9.3 Commit User Stories

Commitments to deliver User Stories approved by the Product Owner for a

9.4 Identify Tasks

Braking committed User Stories into specific tasks and compiling them into a Task List, as part of the Sprint Planning Meeting

9.5 Estimate Tasks

Estimating the effort required to accomplish each task in the Task List.

9.6 Create Sprint Backlog

Creation of a list of tasks to be completed in the Sprint

5.5.1 Quality Planning Planning quality in the Project, including product characteristics, specifications and

assurance testing,

7.4.1 Risk Identification

Identifying any potential risk associated to the project

7.4.2 Risk Assessment

Understanding the probability and potential impact if it occurs.

7.4.3 Risk Prioritization

Prioritizing risks through the use of a probability-impact matrix, or the expected monetary value.

7.4.4 Risk Mitigation

Developing Risk Response plans capable of mitigating the probability of occurrence, or the impact of the risks.

Procesos Fundamentales Procesos Auxiliares

Calidad en Agile Project Management

Realizar revisiones de calidad en cada iteración para mantener la satisfacción del cliente a lo largo de todo el proyecto, buscando la mejora continua.

Planifica la calidad

Reúnete con tu equipo y expertos y comienza el proceso!

13

Revisa la política de calidad de tu empresa

Son las intenciones de la gerencia de la empresa sobre el apego a la calidad, expresadas en una frase

Phillip Crosby: Cuatro principios

- Estándar: Cero defectos
- Calidad = Apego a requerimientos
- Se basa en la prevención
- Se mide en el costo del retrabajo

Joseph Moses Juran:

- Calidad es la adecuación para el uso, satisfaciendo las necesidades del cliente
- Se da por diseño.
- · Cumple con las especificaciones.

Filosofías de Calidad

Walter Shewart:

- Creador de la Mejora Continua:
 Planificar Hacer Revisar Actuar.
- Busca continuamente formas para mejorar la calidad.

W. Edwards Deming

- Seguidor de Shewart: Mejora continua
- · Iniciador del Control Total de la Calidad
- La calidad debe administrarse y ser un proceso continuo.
 - Es un problema gerencial: Los procesos y políticas son el problema.
 - · Los trabajadores tienen poco control.

15

15

Filosofías de Calidad

Kaoru Ishikawa:

- Diseña, produce y mantén un producto que sea el más económico, el más útil y siempre satisfactorio para el consumidor.
- Creó las 7 herramientas básicas de calidad.
 - Diagrama causa efecto.
 - Diagrama de flujo.
 - Hojas de verificación.
 - Histogramas.
 - Diagramas de Pareto.
 - Diagramas de control.
 - Diagramas de dispersión.

16

Panamericana

Filosofías de Calidad

Seis Sigma

- Creada por Bill Smith, en Motorola en los 90's
- Estrategia basada en mediciones al proceso/producto.
- Establece el control estadístico de los procesos.
- El estándar es 3.4 defectos por cada millón de unidades.

- · Se apoya en la mejora continua.
- · Mejora en la calidad de la gente primero

17

17

Revisa el acta del proyecto

- 1. Resumen general.
- 2. Justificación.
- 3. Objetivos (SMART).
- 4. Costo total estimado.
- Beneficios esperados.
- 6. Descripción del producto
- 7. Hitos del proyecto.
- 8. Factores críticos.
- 9. Declaración del alcance.

- 10. Entregables del proyecto.
- 11. Exclusiones.
- 12. Suposiciones (asunciones).
- 13. Restricciones.
- 14. Equipo del Proyecto.
- 15. Recursos Necesarios.
- 16. Estándares y normativas.
- 17. Criterios de evaluación.
- 18. Aprobaciones.

Revisa los supuestos del proyecto

- (Consideradas como base de planificación).
 - El cliente va a aprobar el alcance en un plazo no mayor a 2 semanas.
 - No vamos a tener problemas de flujo de presupuesto
 - Los equipos de medición con los que contamos son capaces para lo que necesita revisarse.
 - No van a cambiarnos los requisitos de calidad.
 - No van a cambiarnos las prioridades y asignaciones del equipo durante la ejecución del proyecto

19

19

Revisa tu matriz de interesados

 Qué va a suceder si las expectativas o requisitos de los interesados no se cumplen?

Interesado	Arranque	Desarrollo	Entrega				
Accionistas	Que la empresa recupere sus gastos	Consolidar el prestigio como empresa de gran capacidad profesional y de probada solvencia moral	Cumplir como empresa socialmente responsable				
Patrocinador	Tener el trabajo bien planeado antes de comenzar	Recuperar gastos	Consolidar un equipo humano de primer nivel				
Gte Proyecto	Tener un equipo con capacidad y mucho compromiso	Lograr cumplir con los tiempos, calidad y costo	Tener un cierre completo a tiempo				
	Tener un plan de proyecto elaborado y solido para el desarrollo	Cumplir con las expectativas del cliente Apoyo de la organización en la toma de decisiones y asignacion de recursos	Tener un documento final completo a tiempo				
Usuarios	Tener el producto del proyecto	Exagerado orden administrativo	No desfasarse en fecha de				
	lo antes posible	Decisiones aprobadas a tiempo	entrega				

Agile se basa en historias de usuario

- Documentan en forma simple los requisitos y deseos de funcionalidad del usuario final.
- Los requisitos son declaraciones cortas y simples, fáciles de comprender.
- En conjunto definen el alcance inicial del Proyecto.

21

Revisa la línea base del alcance

- Enunciado del alcance
- EDT/WBS
- Paquetes de trabajo
- Diccionario de la **EDT**
- Paquetes de planificación (Cuentas de control)

Gráfico 5-14. Ejemplo de una EDT/WBS basada en los Entregables Principales

Revisa los riesgos

Un proyecto que falla en calidad es por que:

- No cumplimos con los requisitos del producto.
- Fallamos en el proceso la de elaboración del producto
- Tuvimos omisiones en PM
- Administramos mal el Proyecto

¿Cómo podemos reducir las probabilidades de fallas en calidad?

23

ve lus leges para no corregir al final

· Estándares:

El cumplimiento o no, lo establece la empresa

Certificaciones, Políticas, Especificaciones (ISO 21500)

Regulaciones:

Estás obligad@ a cumplirlas Normativas / Legislaciones

24

24

Revisa el diagrama de red del proyecto

26

Realiza diseño específico

- Para algún factor como:
 - · Confiabilidad
 - Despliegue
 - Ensamble
 - Fabricación
 - Costo
 - Servicio
- Desaarolla guías técnicas que se pueden aplicar durante el diseño de un producto para optimizar algún aspecto del diseño.
- Pueden controlar o mejorar las características finales del producto, reducir costos, mejorar la calidad, el rendimiento, o la satisfacción del cliente.

27

27

Programa auditorías, pruebas e inspecciones

Son revisiones para determinar si las actividades del proyecto y los resultados se apegan al plan.

Auditorías Programadas:

- Sirven para mantener estabilidad en los procesos
- Facilitan la revisión
- Pero pueden "maquillar" los resultados.

· Aleatorias:

- Te permiten identificar diferencias y anomalías.
- Vas a perder mas tiempo en la revisión, pero te da una fotografía real de lo que sucede.

Prepara un AMEF

- AMEF (Análisis del Modo y Efecto de la Falla)
- Te permite identificar el nivel de prioridad de atender problemas relacionados a la calidad

Proc.	Modo potencial de Falla	Efecto potencial de la falla	S E V	Causa / mecan. potencial de la falla	P R O B	Controles actuales	D E T	N P R	Accion recomendada	S E V	P R O B	D E T	NPR despues de implem accion recom
Desarrollo cronogra ma		Programacion erronea		Cambios frecuentes en programación	6	Ninguno	10	540	Guardar archivo modificado con nombre nuevo y comparar con versión anterior	9	6	5	270

NPR: Numero de Prioridad del Riesgo

29

29

30

Define si usas control estadístico de procesos

Ej: Gráficas de Promedios y Rangos (X - R)

31

31

Control estadístico de procesos

Indice de Capacidad Potencial (Cp) y Real (Cpk)

 Es la relación del ancho de la especificación sobre el ancho de la distribución del proceso.

- Debido a que la especificación esta definida, y es fija, la única variable que puede influir sobre el índice de capacidad, es la distribución del proceso.
- Cuando se tiene mas variación, la dispersión de la distribución es mayor, por lo que el Cp se reduce, indicando una baja capacidad de proceso.

Panamericana

Determinación de Índices de Capacidad

Ср

Mide la capacidad potencial de una máquina o proceso. El Cp es la relación entre el ancho de banda disponible entre el ancho de la distribución.

Mide la capacidad del proceso respecto del ancho de la especificación.

La cochera es 20% mas ancha que el carro.

Los 22 cm entre la puerta y el muro son insuficientes para bajarte.

33

33

Panamericana

Determinación de Índices de Capacidad

Cpk = Ancho disponible al muro
Ancho del Hummer

Cpk1 = Ancho disponible al muro izq.
Ancho del Hummer

Cpk1 = 1.18 mt = 1.091.08 mt

Cpk

Cp2 = <u>Ancho disponible al muro der.</u> Ancho del Hummer

Cpk2 = $\frac{1.42 \text{ mt}}{1.08 \text{ mt}}$ = 1.31

El Cpk en este caso es el menor: 1.09 Los 34 cm entre el muro y la puerta siguen siendo insuficientes.

34

Optimización

Cambiamos de carro para mejorar las condiciones en la cochera

El Mini Cooper es 44 cm mas esbelto que el Hummer

35

35

Índice de Capacidad potencial y real (Cp y Cpk)

- Igual que la variación de tu carro al estacionarte, los procesos también se mueven de posición, y de "ancho".
- Debido a esto, el índice de capacidad del proceso se puede calcular de la siguiente manera:

www.gpspro.com.mx

36

36

Panamericana

Índice de Capacidad potencial y real (Cp y Cpk)

Limite Sup de Especif. = 390 grados F Limite Inf. de Especif. = 350 grados F Limite Sup. de Control = 387 Limite Inf. de Control = 349

Promedios de las muestras

				376	
378	367	380	370	372	$\bar{\bar{X}} = 369.4$
369	369	377	369	365	$\sigma = 6.3$
367	366				

Promedio – Limite mas cercano de especificación Cpk = 3 sigma

Cpk1 =	<u>Promedio – Limi</u>	te Inf. de Especi 3 sigma	<u>ificación</u>	Cpk 2 =		<u>ecificación – Promedio</u> sigma
Cpk1 =	369.4 - 350 3 (6.3)	Cpk2 =	390 - 369.4 3 (6.3)	<u>4</u> ыс		LSC
Cpk1 =	19.4 18.9	Cpk 2 =	20.6 18.9	LIE		LSE
Cpk1 =	1.02	Cpk2 =	1.08			
			37	-3	σ χ :	Βσ

www.gpspro.com.mx

37

Valida tus equipos de medición

Al planificar la calidad...

 Como vas a realizar las mediciones?

38

Características de la medición

- Precisión: Consistencia con la que se obtienen las lecturas y tienen poca dispersión.
- Exactitud: Es la medida con la que el valor medido se aproxima al verdadero.

No Preciso / No Exacto

Preciso / No Exacto

Preciso / Exacto

Referencia: Estudio de Repetibilidad y Reproducibilidad (Gage R&R)

39

39

Precisión y Exactitud

Limite: 110 KM/H

Radar: 120 KM/H

Velocímetro: 110 KM/H

Real: 123 KM/H

El instrumento que vas a utilizar debe ser adecuado, validado, y calibrado regularmente.

40

40

Analiza el costo vs el beneficio de la calidad

Costos:

- Cumplir estándares: ISO, certificaciones....
- Evaluaciones:
 Pruebas, análisis de laboratorio
- Prevenciones:
 Capacitación, revisiones de diseño, etc.
- Fallas: Internas o externas (clientes), re-trabajos, desperdicios, garantías, etc.

Beneficios:

- Imagen ante el cliente
- Evitar gastos futuros por fallas e incumplimientos.
- Posibilidad de negocios futuros.
- Mejores proyectos.
- · Crecimiento.

41

41

Toma las decisiones de que implementar

Analiza las Alternativas

Toma en cuenta las opciones que tienes respecto del tiempo, costos y recursos para tomar la mejor decisión para la calidad del proyecto, y del producto

Finalmente: Desarrolla el plan de calidad del proyecto

- Política de calidad.
- Métricas.
 - Parámetros y/o especificaciones para el producto, proceso, proyecto.
 - Peso
 - Dimensiones
 - Volumen
 - Aspecto
 - Etc
 - Pruebas

- · Inspecciones y auditorías
- Herramientas
 - Listas de verificación
 - Formatos / Plantillas
- Métodos de medición
- Programas de auditoría.
- Responsables.
- Procedimiento para situaciones fuera de control.

43

43

Resumen

Revisa:

- La política de calidad de tu empresa
- El acta de constitución del proyecto
- Los supuestos del proyecto
- La matriz de interesados
- Línea de base del alcance
- Los riesgos del proyecto
- Que estándares y normativas aplican
- · Realiza benchmarking
- Revisa el diagrama de red
- Realiza diseño específico
- Programa auditorías, pruebas
- Prepara un AMEF
- Usa las 7 herramientas
- Define si metes control estadístico
- Valida tus equipos de medición
- Analiza el costo vs el beneficio
- · Analiza las alternativas

45

Material preparado por: Ing. Roberto A. Cadena L., PMP, MCI

Cel 333 667 7444 rcadena@up.edu.mx