B. CopyCopyCopyCopyCopy

difficulty: 800
time limit per test: 1 second
memory limit per test\; 256 megabytes
input: standard input
output: standard output

Ehab has an array a of length n. He has just enough free time to make a new array consisting of n copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?

A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements. The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.

Input

The first line contains an integer t — the number of test cases you need to solve. The description of the test cases follows.

The first line of each test case contains an integer n $(1 \le n \le 10^5)$ — the number of elements in the array a.

The second line contains n space-separated integers a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$ — the elements of the array a.

The sum of n across the test cases doesn't exceed 10^5 .

Output

For each test case, output the length of the longest increasing subsequence of a if you concatenate it to itself n times.

Example

```
input
2
3
3 2 1
6
3 1 4 1 5 9
output
3
5
```

Note

In the first sample, the new array is [3,2,1,3,2,1,3,2,1]. The longest increasing subsequence is marked in bold.

In the second sample, the longest increasing subsequence will be [1,3,4,5,9].

1325B CopyCopyCopyCopy greedy, implementation https://codeforces.com/contest/1325/problem/B github.com/andy489