2014-02-26.sagews

February 26, 2014

Contents

L	Lecture on Feb 26, 2014	
	1.1	Continued fractions (last day)
		Statistics of Partial Convergents
	1.3	Gauss-Kuzmin

1 Lecture on Feb 26, 2014

1.1 Continued fractions (last day)

- quadratic irrationals
- statistics of partial convergents

1.2 Statistics of Partial Convergents

Given a real number $\alpha \in \mathbf{R}$, we can consider its decimal expansion, which is a sequence of numbers 0,1,2,,9, which has a distribution.

```
@interact
def f(alpha=pi, bits=(53,10000), bins=50):
   v = stats.TimeSeries([int(k) for k in str(N(alpha,bits)) if k not in \
        ['.', '-']])
   v.plot_histogram(bins=bins).show(figsize=[8,3], axes=False, frame=\
        True, gridlines=True)
```

Unsolved Problem: Prove that the digits of π (or e or $\sqrt{2}$) are equidistributed, i.e., that in the limit the bars above area all the same height.

See http://en.wikipedia.org/wiki/Normal_number for more about this conjecture.

An issue with the above is that it depends on the choice of a base, in this case base 10, so it isnt so natural. Theres also sequence of numbers associated to any real number α , namely its continued fraction. This doesn't depend on any arbitrary choice of base, and gives us another distribution. Whats it like?

```
@interact
def f(alpha=pi, bits=(53,10000), bins=100, max=50):
    c = continued_fraction_list(N(alpha,bits))
```

```
v = stats.TimeSeries(c)
print "Clipped:"
v.clip_remove(max=max).plot_histogram(bins=bins).show(figsize=[8,3], \
    axes=False, frame=True, gridlines=True)
print "\nUnclipped:"
v.plot_histogram(bins=bins).show(figsize=[8,3], axes=False, frame=\
    True, gridlines=True)
print "\ncontfrac=", c
```

1.3 Gauss-Kuzmin

Gauss figured out this distribution for a random real number: see http://en.wikipedia.org/wiki/Gauss% E2%80%93Kuzmin_distribution

Not every transcendental number has this distribution, e.g., e doesnt!

Unsolved Problem: Does the continued fraction expansion of π obey the Gauss-Kuzmin distribution?

For more about this problem, see http://en.wikipedia.org/wiki/Khinchin%27s_constant