A COMPUTATIONAL APPROACH FOR PERSISTENT RELATIVE HOMOLOGY

Applied Topology Beyond Persistence Diagrams

IMM 2024

Christian Lentz & Xintan Xia

Macalester College, St. Paul, MN

QUOTIENT SPACES

Definition

Let X be a topological space with $A \subseteq X$. We define the **Quotient Space** to be

$$X/A = (X \setminus A) \sqcup *$$

Where * is a single point

Example (The Infinite Bouquet)

• What does the homology of a quotient space tell us?

5

RELATIVE HOMOLOGY

- Let K and K_0 be simplicial complexes such that $K_0 \subset K$
- **Relative Homology** is the homology of the quotient space K/K_0 .

Definition

We define a **Relative n-Cycle** to be any *n*-chain $\alpha \in C_n(K)$ such that $\partial_n(\alpha) \in C_{n-1}(K_0)$.

Definition

We define a **Relative n-Boundary** to be any relative *n*-cycle $\alpha = \partial_{n+1}(\beta) + \gamma$ for some $\beta \in C_{n+1}(K)$ and $\gamma \in C_n(K_0)$.

6

PERSISTENT RELATIVE HOMOLOGY

• Goal: Track the relative homology through a pair of filtered spaces, K and K_0 , such that $K_0 \subseteq K$ at each time step:

Note: The filtration on K_0 does not necessary follow that of K.

COMPUTATIONAL APPROACH FOR PRH

- Our work extends recently presented computational techniques for PH to a method for PRH.
- Here we will cover:
 - Modifying U-Match decomposition ¹ for PRH
 - Matching bases
 - Implementation and the Open Applied Topology (OAT) project

¹Hang, Haibin, et al. "U-match factorization: sparse homological algebra, lazy cycle representatives, and dualities in persistent (co) homology." arXiv preprint arXiv:2108.08831 (2021).

U-MATCH DECOMPOSITION

U-MATCH DECOMPOSITION

- A tuple of matrices (T, M, D, S) which satisfy the following three conditions:
 - *TM* = *DS*
 - M is a matching matrix
 - T and S are both upper triangular and invertible

U-MATCH DECOMPOSITION

- A tuple of matrices (T, M, D, S) which satisfy the following three conditions:
 - TM = DS
 - M is a matching matrix
 - T and S are both upper triangular and invertible
- Assume D is the **block boundary matrix** of a chain complex, so D is square and $D^2 = 0$.

$$D = \begin{pmatrix} 0 & \partial_1 & & & \\ & 0 & \partial_2 & & & \\ & & \ddots & \ddots & \\ & & & 0 & \partial_N \\ & & & & 0 \end{pmatrix}$$

• Reduce D bottom to top and left to right. T^{-1} records row operations, and S records column operations.

$$\begin{pmatrix} D & I_n \\ I_m & 0 \end{pmatrix} \mapsto \begin{pmatrix} M & T \\ S & 0 \end{pmatrix}$$

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of **nonzero rows** and **columns** of the matching matrix M.

Theorem 1 [Hang, Haibin, et al.]

The set of indices r_{\bullet} and c_{\bullet} are disjoint. Hence, $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

 Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_• and c_• denote, respectively, the set of indices of nonzero rows and columns of the matching matrix M.

Theorem 1 [Hang, Haibin, et al.]

The set of indices r_{\bullet} and c_{\bullet} are disjoint. Hence, $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

Outline of proof.

- $TM = DS \Rightarrow S^{-1}TM = S^{-1}DS$.
- $(S^{-1}DS)^2 = S^{-1}D^2S = 0$
- $(S^{-1}TM)^2 = 0$ implies that indices of nonzero rows and columns of $S^{-1}TM$ are disjoint.

THE MATRIX J

Construct a matrix, J, from the matrix S with the substitution

$$COL_{r_i}(S) \mapsto COL_{c_i}(TM)$$

- Nice properties of *J*:
 - The columns that we remove from and insert into S to form J are members of Im(D). (1)
 - J is invertibe and upper-triangular. (2)
 - $i \in \overline{c_{\bullet}} \Rightarrow COL_i(DJ) = 0$ (3)
- This construction is helpful in showing how U-Match can be used for PH.

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of nonzero rows and columns of the matching matrix M.

Theorem 2 [Hang, Haibin, et al.]

Columns of S indexed by the set $\overline{c_{\bullet}}$ contain a basis for Ker(D), which are the cycles.

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of nonzero rows and columns of the matching matrix M.

Theorem 2 [Hang, Haibin, et al.]

Columns of S indexed by the set $\overline{c_{\bullet}}$ contain a basis for Ker(D), which are the cycles.

Outline of Proof:

- Construct the matrix J from S.
- Recall: i ∈ \(\overline{c_\upha}\) ⇒ COL_i(DJ) = 0 (3), implying that D × COL_i(J) = 0 for each i ∈ \(\overline{c_\upha}\). In other words, each of these columns has no boundary.

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of nonzero rows and columns of the matching matrix M.

Theorem 3 [Hang, Haibin, et al.]

Columns of T indexed by the set r_{\bullet} give a basis for Im(D), which are the boundaries.

• Let TM = DS be a U-match decomposition, where D is the block boundary matrix of a chain complex. Let r_{\bullet} and c_{\bullet} denote, respectively, the set of indices of nonzero rows and columns of the matching matrix M.

Theorem 3 [Hang, Haibin, et al.]

Columns of T indexed by the set r_{\bullet} give a basis for Im(D), which are the boundaries.

Outline of Proof:

- $TM = DS \Rightarrow Im(TM) = Im(DS)$
- But Im(DS) = Im(D) since S is invertible. So Im(TM) = Im(D).
- M is row equivalent to the identity, so Im(T) = Im(D).

MATCHED BASES

- U-Match allows us to compute **matched bases** for cycles and boundaries. This means a set of basis vectors for Im(D) is a subset of a set of basis vectors for Ker(D).
- How?
 - By construction, columns of J contain a basis for both Im(D) and Ker(D).
 - $COL_{\overline{c_{\bullet}}}(J) = Ker(D)$
 - $COL_{r_{\bullet}}(J) = Im(D)$
 - Recall that **Theorem 1** implies that $r_{\bullet} \subseteq \overline{c_{\bullet}}$.

U-MATCH FOR PRH

OVERVIEW

A (very high-level) overview:

- 1. Construct a boundary matrix, D.
- 2. Permute rows of D.
- 3. Perform a U-Match on D to get, TM = DS.
- 4. Permute columns of T and S.
- 5. Perform another U-Match.

COMPUTING RELATIVE BASES

- Compute (unmatched) bases for relative cycles and relative boundaries with a modified U-Match:
 - 1. Construct a boundary matrix, D, for a filtered simplicial complex K.
 - 2. Permute rows of D (top to bottom) to respect filtration of some subspace K_0 .
 - 3. Perform U-Match Decomposition of D to get TM = DS.

COMPUTING RELATIVE BASES

- Compute (unmatched) bases for relative cycles and relative boundaries with a modified U-Match:
 - 1. Construct a boundary matrix, D, for a filtered simplicial complex K.
 - 2. Permute rows of D (top to bottom) to respect filtration of some subspace K_0 .
 - 3. Perform U-Match Decomposition of D to get TM = DS.
- Why step 2?
 - Allows for simpler extraction of homological generators.
 - In the relative homology, we consider an *n*-chain to belong to one of the cosets $c + C_n(K_0)$ where $c \in C_n(K)$. Reordering the rows of D ensures our reduction records these *relative chains*.

EXTRACTING RELATIVE BASES

• Suppose a filtered quotient space K/K_0 , where the total number of simplices in K_0 is i. Given the modified U-Match process, we have the following two results:

Theorem 4 [Henselman-Petrusek, L, X, Ziegelmeier]

Define the set $I = \{c \in COL_{\overline{r_{\bullet}}}(S) : D(c) \in K_0, D(S) \neq 0\}$. Then $COL_I(S) \cup COL_{\overline{c_{\bullet}}}(S)$ gives a basis for $\overline{Ker}(D)$, which are the relative cycles.

Theorem 5 [Henselman-Petrusek, L, X, Ziegelmeier]

Let I be the set of indices corresponding to the first i columns of T. The subset of the columns of T given by $COL_{r_{\bullet}}(T) \cup COL_{I}(T)$ give a basis for $\overline{Im}(D)$, which are the relative boundaries.

ONE MORE U-MATCH THEOREM

Suppose that:

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- F_{\bullet} is a filtration on a vector space \mathbb{K}^m such that $F_i\mathbb{K}^m$ describes the span of the first i columns of A.
- Similarly, define G_{\bullet} to be a filtration on the columns of B.
- If the columns of B do not span the columns of A, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

ONE MORE U-MATCH THEOREM

Suppose that:

- A is a square, invertible matrix of size $m \times m$.
- B is a (not necessarily square) matrix of size $m \times n$.
- F_{\bullet} is a filtration on a vector space \mathbb{K}^m such that $F_i\mathbb{K}^m$ describes the span of the first i columns of A.
- Similarly, define G_● to be a filtration on the columns of B.
- If the columns of B do not span the columns of A, let $G_{n+1} = \mathbb{K}^m$ to ensure G_{\bullet} terminates.

Theorem 6 [Henselman-Petrusek, L, X, Ziegelmeier]

Assume the above conditions hold. It follows that, given the U-Match $TM = (A^{-1}B)S$, then the columns of AT contain a basis for each F_i and G_j for $i, j \in \{1, ..., m\}$.

MATCHING BASES

- Given Theorem 6, we can match bases for the relative cycles and boundaries.
- Suppose a U-Match TM = DS where T and S, respectively, contain bases for relative boundaries and cycles of the filtered quotient space K/K_0 . To match the bases:
 - Permute columns of T and S (left to right) according to the birth of their boundary with respect to the subspace filtration.
 - Let A = T and B = S.
 - Perform the U-Match $TM = (A^{-1}B)S$.
- Suppose $dim(\overline{Ker}(D)) = i$ and $dim(\overline{Im}(D)) = j$.
- By Theorem 6:

Theorem 7 [Henselman-Petrusek, L, X, Ziegelmeier]

The first j columns of AT contain a basis for $\overline{Im}(D)$, and the first i columns of ATM contain a basis for $\overline{Ker}(D)$.

Open Applied Topology (OAT)

Fast, user-friendly homological algebra

Sparse Matrices

Factorization
Multiplication
Inversion
Addition
Back-substitution

Homology

Persistence Zigzag Generators Optimization Duality

Topological Spaces

Simplicial Cubical Filtered CW Hypergraph

Languages

Python Rust Jupyter Highlights
Documentation
Accessibility
Modularity

FUTURE WORK & IMPLEMENTATION

- PRH implementation will use order operator structures to:
 - Determine, if given two simplices, which was born first in full-space (or subspace) filtration; for reordering rows of the boundary matrix.
 - Determine, if given a chain, if or when it was born as a relative cycle/boundary; for reordering columns of T and S to get A and B.
- Many next steps to explore!

ACKNOWLEDGEMENTS

- Advised by Lori Ziegelmeier (Macalester College)
- Contributions from Greg Henselman-Petrusek (PNNL)
- Support from the NSF (grant no. DMS-1854703)

