test of associations with a χ^2 -test of concept "control vension"

- As is always the case when comparing proportions is of interst, we assume that our response variable is binary:
 - $Y_{ij} = \begin{cases} 1 & \text{if unit } i \text{ in condition } j \text{ performs an action of interest} \\ 0 & \text{if unit } i \text{ in condition } j \text{ does not perform an action of interest} \end{cases}$

for $i = 1, 2, ..., n_j$ and j = 1, 2, ..., m.

- The "gatekeeper" test for proportions is tested using the **chi-squared test of independence** (also known as Pearson's χ^2 -test)
- The chi-squared test of independence is typically used as a test for 'no association' between two categorical variables that are summarized in a *contingency table*.
- We apply this methodology here to test the independence of the binary outcome (whether a unit performs the action of interest) and the particular condition they are in.
- To start, let's assume that m=2, and let's use the Optimizely experiment (previously discussed) as a reference.

	Condition			
		1	2	
Conversion	Yes	280	399	679
Conversion	No	8592	8243	16835
		8872	8642	17514

- If $\pi_1 = \pi_2 = \pi$ then we would expect the conversion rate in each condition to be the same.
- An estimate of the pooled conversion rate in this case is $\hat{\pi} = 679/17514 = 0.0388$

- Therefore we would expect $n_1\hat{\pi} = 8872 \times 0.0388 = 343.96$ conversions in condition 1 and $n_2\hat{\pi} = 8642 \times 0.0388 = 335.04$ conversions in condition 2.
- The chi-squared test formally evaluates if the difference between what was observed and what is expected under the null hypothesis is large enough to be considered *significantly* different.
- The general 2×2 contingency table for a scenario like this is shown below.

	Condition				
		1	2		
Conversion	Yes	$O_{1,1} O_{0,1}$	$O_{1,2}$	O_1	
	No	$O_{0,1}$	$O_{1,2} \\ O_{0,2}$	O_0	
		n_1	n_2	$n_1 + n_2$	

- So

$$\hat{\pi} = \frac{O_1}{n_1 + n_2}$$
 and $1 - \hat{\pi} = \frac{O_0}{n_1 + n_2}$

represent the overall proportions of units that did or did not convert

– Let $E_{1,j}$ and $E_{0,j}$ represent the expected number of conversions and non-conversions in condition j=1,2

$$E_{1,j} = n_j \hat{\pi}$$
 and $E_{0,j} = n_j (1 - \hat{\pi})$.

– The χ^2 test statistic compares the observed count in each cell to the corresponding expected count, and is defined as

$$T = \sum_{l=0}^{1} \sum_{j=1}^{2} \frac{(O_{l,j} - E_{l,j})^2}{E_{l,j}}.$$

- The p-value for this test is calculated by

p-value =
$$P(T > t)$$

where $T \sim \chi^2_{(1)}$ γ -1=1

- Returning to the Optimizely example, the *expected table* is

	Condition				
		1	2		
Conversion	Yes	343.96	335.04	679	
Conversion	No	8528.04	8306.96	16835	
		8872	8642	17514	

- And the resultant test statistic and p-value are:

- We've seen the chi-squared test is a test of 'no association' between the binary outcome (whether a unit performs the action of interest) and the particular condition they are in.
 - * But there is no requirement that there be only two conditions.
 - * Here we generalize the test to any number of experimental conditions.
- The information associated with this test can be summarized in a $2 \times m$ contingency table:

	Condition						
		1	2	• • •	m		
Conversion	Yes No	$O_{1,1}$	$O_{1,2}$	• • •	$O_{1,m}$	O_1	
	No	$O_{0,1}$	$O_{1,2} \\ O_{0,2}$	• • •	$O_{0,m}$	O_0	
		n_1	n_2		n_m	$N = \sum_{j=1}^{m} n_j$	

- We compare each of the observed frequencies $P_{l,j}$ with the corresponding expected frequency $E_{l,j}$ with the corresponding expected frequency $E_{l,j}$

- The χ^2 test statistic compares the observed count in each cell to the corresponding expected count, and is defined as

$$T = \sum_{l=0}^{1} \sum_{j=1}^{m} \frac{(O_{l,j} - E_{l,j})^2}{E_{l,j}}$$

The p-value associated with this test is calculated as p-value = $P(T \ge t)$ where $T \sim \chi^2_{(m-1)}$.

• Example: Nike SB Ads

- Suppose that Nike is running an ad campaign for Nike SB, their skateboarding division, and the campaign involves m=5 different video ads the are being shown in Facebook newsfeeds.
- A video ad is 'viewed' if it is watched for longer than 3 seconds, and interest lies in determining which ad is most popular and hence most profitable by comparing the viewing rates of the five different videos.
- Each of the 5 video ads is shown to $n_1 = 5014$, $n_2 = 4971$, $n_3 = 5030$, $n_4 = 5007$, and $n_5 = 4980$ users, and the results are summarized in the table below.

	Condition						
		1	2	3	4	5	
View	Yes	160	95	141	293	197	886
	No	4854	4876	4889	4714	4783	24116
		5014	4971	5030	5007	4980	25002

- The overall watch rate (and its complement) are:

– The expected cell frequencies are found by multiplying n_j by $\hat{\pi}$ and $(1-\hat{\pi}), j=1,2,3,4,5$

Condition								
		1	2	3	4	5		
View	Yes	177.68	176.16	178.25	177.43	176.48	886	
	No	4836.32	4794.84	4851.75	4829.57	4803.52	24116	
		5014	4971	5030	5007	4980	25002	

– The resultant test statistic and p-value are:

The Multiple Comparison Problem

• We have seen that "gatekeeper" tests of overall equality such as

$$H_0: \theta_1 = \theta_2 = \cdots = \theta_m$$
 versus $H_A: \theta_j \neq \theta_k$ for some $j \neq k$

are often rejected.

- We may follow this up with a series of pairwise comparisons to determine which condition(s) is (are) optimal.
 - We already know how to do this!
- HOWEVER, when doing multiple comparisons like this, we encounter the multiple comparison or multiple testing problem

- To frame this discussion, let's define some notation:
 - M: the number of hypothesis tests
 - $-M_0$: the number true null hypotheses
 - $-M_A$: the number false null hypotheses
 - -R: the number of null hypotheses we reject
 - -M-R: the number of null hypotheses we do not reject

- -S: the number of false null hypotheses that we correctly reject
- U: the number of true null hypotheses that we correctly do not reject

the number of false null hypotheses that we incorrectly do not reject

 \bullet The outcomes of these M decisions are nicely summarized in the following table:

ullet Ideally we would like V and T to be small

Optional Exercises:

• Calculations: 8

 \bullet Proofs: 3

 \bullet R Analysis: 7, 16(not g), 23 (i,j,k)

• Communication: 1(a)