Unit 3 - leckure 8: Introduction to Feedforward Neural Networks

Objectives:

- Recognize different layers in a Feedparcond neural net work and the number of units in each lay
- White doven common activation functions such as the hyperbolic trongert function tout, and the rectified linear function (ReLu)
- Compute the output of a simple neural network possibly with Hidden layers given the weights and activation functions.
- Determine whether data after transformation by some layers is linearly separable, draw decision boundaries given by the weight vectors and use them to help understand the behavior of the network.

Meural Metwork Uniko:

remal networks are models in which the feature representation is bearned jointly with the classifier to improve classification performance.

Introduction to Deep Neural Net Knowks:

Why Deep learning?

- 1. Lots of Data
- 2. Computational Personnes (6Ph)
- 3. Large models are cosier to thain
- 4. flexible neval "lego pieces"

A Deep (feed forward) neural Network refers to a neural netrucork that contains not only the input and output layers, but also hidden layers in between. For example, below is a Leep feed forward neural Netrocork of 2 hidden layers, with each hidden layer consisting of Sunits:

Hidden layer Models:

One Hidden layer model:

Meural signal transformation:

Introducing Redundancy will make the optimization problem that we have to solve easier.

Hidden units achindren chasen at random

let's consider a simple 2 - dim classification kast:

$$\chi^{(1)} = (-1, -1) \longrightarrow y^{(1)} = 1$$

$$\chi^{(2)} = (-1, -1) \longrightarrow y^{(2)} = -1$$

$$\chi^{(3)} = (-1, 1) \longrightarrow y^{(3)} = -1$$

$$\chi^{(4)} = (1, 1) \longrightarrow y^{(4)} = 1$$

For simplicity, we are only interested in binony chassification. (y can be 1 or -1)

linea Separability AFter first layer:

$$x_1 \xrightarrow{W_{14}} \xrightarrow{W_{12}} \xrightarrow{W_{12}} \xrightarrow{W_{22}} \xrightarrow{W_{23}} \xrightarrow{W_{24}} \xrightarrow{W_{24}}$$

$$\int_{1}^{(i)} = \int \left(W_{0i} + \left(W_{11} \mathcal{N}_{1}^{(i)} + W_{21} \mathcal{N}_{2}^{(i)} \right) \right) \\
\int_{2}^{(i)} = \int \left(W_{0i} + \left(W_{12} \mathcal{N}_{1}^{(i)} + W_{22} \mathcal{N}_{2}^{(i)} \right) \right) \\$$

Which of weights would the set D'be linearly separable?

$$W_{12} = W_{22} = -2$$
 $W_{21} = W_{22} = 1$

$$=\begin{bmatrix} -2 \\ -2 \end{bmatrix} \quad w_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\int_{1}^{(1)} = \int \left(1 + \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} -1 & -1 \end{bmatrix} \right) = \int \left(-3\right) = (2)(-3) - 3 = -9$$

$$\int_{2}^{(0)} \int_{1}^{1} \left(1 + \begin{bmatrix} -2 \\ -2 \end{bmatrix} (-1 - 1) \right) = \int_{1}^{1} (5) = (3)(5) - 3 = 7$$

Non-linea Achivation Functions:

$$w_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad w_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \quad w_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\int_{1}^{\infty} = \frac{1}{2} \left(1 + \left[\frac{1}{2}\right] \left[\frac{1}{2} - \frac{1}{2}\right] = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{$$

$$=$$
 $(1.1)(3.0)(9.3)(1.1)$

It's libreally separable

$$\frac{\int (2) = h \cosh(2)}{\int (1) = h \cosh(1)} = \frac{e^{2} - e^{-2}}{e^{2} + e^{-2}}$$

$$\int_{1}^{1} (1) = h \cosh(1) = 0.76$$

$$\int_{2}^{1} (1) = h \cosh(1) = 0.76$$

It's linearly separable