Week 13 — Bring it all together

Loading and cleaning the data

Importing necessary libraries

```
In [1]: # pip install dask[complete]
        import pandas as pd
        import numpy as np
        import dask.dataframe as dd
        import seaborn as sns
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder
        import category encoders as ce
        from sklearn.preprocessing import MinMaxScaler, StandardScaler
        from datetime import datetime
        from sklearn.decomposition import PCA
        from sklearn.metrics.pairwise import cosine_similarity
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.feature_selection import SelectFromModel
        from sklearn.metrics import roc_auc_score, f1_score, confusion_matrix
        from sklearn.linear model import LogisticRegression
        from collections import defaultdict
        from joblib import Parallel, delayed
        from lime.lime tabular import LimeTabularExplainer
        import lime
        import lime.lime tabular
        import random
```

Since the dataset is too large to be loaded at once, we will be use the chunksize function in pandas to initially explore the dataset

```
In [2]:
    chunk_size = 100000
    chunks = pd.read_csv('train_ver2.csv', chunksize = chunk_size)
    first_chunk = next(chunks)

pd.set_option('display.max_columns', None)

first_chunk.head()
```

Out[2]:		fecha_dato	ncodpers	ind_empleado	pais_residencia	sexo	age	fecha_alta	ind_nuevo	antiguedac
	0	2015-01-28	1375586	N	ES	Н	35	2015-01- 12	0.0	(
	1	2015-01-28	1050611	N	ES	V	23	2012-08- 10	0.0	35
	2	2015-01-28	1050612	N	ES	V	23	2012-08- 10	0.0	35
	3	2015-01-28	1050613	N	ES	Н	22	2012-08- 10	0.0	35
	4	2015-01-28	1050614	N	ES	V	23	2012-08- 10	0.0	35
4										•

The above output allows us to identify how the columns are organized and some examples of the cells we will see in the dataset. With this, we can start working on the data types for each column

```
In [3]: col = ['fecha_dato']
         dates = pd.read_csv('train_ver2.csv', usecols=col)
         dates['fecha_dato'] = pd.to_datetime(dates['fecha_dato'], errors='coerce')
         old = dates.min()
         new = dates.max()
         print(f'First date = {old} \n Last date = {new}')
        First date = fecha_dato
                                   2015-01-28
        dtype: datetime64[ns]
         Last date = fecha_dato
                                   2016-05-28
        dtype: datetime64[ns]
In [4]: | monthly_count = dates.groupby([dates['fecha_dato'].dt.year, dates['fecha_dato'].dt.mor
        monthly_count
        fecha_dato fecha_dato
Out[4]:
                                   625457
                     1
                     2
                                   627394
                     3
                                   629209
                     4
                                   630367
                     5
                                   631957
                     6
                                   632110
                     7
                                   829817
                     8
                                   843201
                     9
                                   865440
                     10
                                   892251
                     11
                                   906109
                     12
                                   912021
        2016
                     1
                                   916269
                     2
                                   920904
                     3
                                   925076
                     4
                                   928274
                                   931453
        dtype: int64
```

Since the full dataset is over 2BG, we can't upload it in Jupyter, hence here we are exploring the dates range to determine where it will be our cuttoff. The data seems to be well distributed along the months so our cuttoff will be on June of 2016 and our final train dataset will have one year worth of records

Since the dataset is too large to ingest at once, we will use Dask dataframes to process the initial changes. Dask handles datasets larger than the available memory by partitioning the data and processing it in parallel across multiple processors or machines -it works like a pandas dataframe, but with parallel processing

We will export the data as objects so we don't get any dtypes errors for now

```
data = dd.read_csv('train_ver2.csv', assume_missing=True, dtype=object)
In [5]:
In [6]: data['fecha_dato'] = dd.to_datetime(data['fecha_dato'], errors='coerce')
         cutoff = pd.Timestamp('2015-06-01')
         filtered_data = data[data['fecha_dato'] >= cutoff]
         rename_col = {
             'fecha_dato': 'date',
             'ncodpers': 'customer_code',
             'ind_empleado': 'employee_index',
             'pais_residencia': 'country',
             'sexo': 'sex_H',
             'age': 'age',
             'fecha_alta': 'first_contract_date',
             'ind_nuevo': 'new_cust',
             'antiguedad': 'seniority_in_months',
             'indrel': 'primary_cust',
             'ult_fec_cli_1t': 'last_date_primary',
             'indrel_1mes': 'cust_type',
             'tiprel_1mes': 'cust_relationship',
             'indresi': 'residency_spain',
             'indext': 'birth_spain',
             'conyuemp': 'employee_spouse',
             'canal_entrada': 'join_channel',
             'indfall': 'deceased',
             'tipodom': 'address_type',
             'cod_prov': 'province_code',
             'nomprov': 'province_name',
             'ind_actividad_cliente': 'active_cust',
             'renta': 'income',
             'segmento': 'segment',
             'ind_ahor_fin_ult1': 'savings_acct',
             'ind aval fin ult1': 'guarantees',
             'ind_cco_fin_ult1': 'current_acct',
             'ind_cder_fin_ult1': 'derivada_acct',
             'ind_cno_fin_ult1': 'payroll_acct',
             'ind_ctju_fin_ult1': 'junior_acct',
             'ind_ctma_fin_ult1': 'mas_particular_acct',
             'ind_ctop_fin_ult1': 'particular_acct',
             'ind_ctpp_fin_ult1': 'particular_plus_acct',
             'ind_deco_fin_ult1': 'short_term_depo',
```

```
'ind_deme_fin_ult1': 'medium_term_depo',
    'ind_dela_fin_ult1': 'long_term_depo',
    'ind_ecue_fin_ult1': 'e_acct',
    'ind_fond_fin_ult1': 'funds',
    'ind_hip_fin_ult1': 'mortgage',
    'ind_plan_fin_ult1': 'pension',
    'ind_pres_fin_ult1': 'loans',
    'ind_reca_fin_ult1': 'taxes',
    'ind_tjcr_fin_ult1': 'credit_card',
    'ind_valo_fin_ult1': 'securities',
    'ind_viv_fin_ult1': 'home_acct',
    'ind_nomina_ult1': 'payroll_acct',
    'ind_nom_pens_ult1': 'pensions_2',
    'ind_recibo_ult1': 'direct_debt'
}

filtered_data = filtered_data.rename(columns=rename_col)
```

Here we are filtering out the early months of the dataset and changing to columns name from Spanish to English for best comprehension.

We then call compute(). Since dask uses a parallel processing, it performs what is called lazy operation, meaning that the changes are not applied to the whole dataset unless it is forced -by using compute(). We want to force it here so we can start seeing null values and other important characteristics of the dataset to strat the cleaning process, which is what we are doing on the next code by seeing what kind of values are on each column and how many null values each column has.

```
In [7]: filtered_data = filtered_data.drop(['province_code', 'address_type', 'employee_spouse'
```

After analyzing the previous output, we can see that the address_type column has only one value across the whole database, which is '1' (and null), so the column will be irrelevant to any future modeling. The column province_code has the same information as province_name, so we will drop the code one and keep the names. Lastly, the column employee_spouse has too many null values -over 10M, so we will drop it because it does not make sense to fill in those values since it is most of the database

```
In [8]: filtered_data = filtered_data.loc[filtered_data['sex_H'].notnull()]
    other = ['join_channel', 'province_name']
    filtered_data[other] = filtered_data[other].fillna('other')

filtered_data['sex_H'] = filtered_data['sex_H'].map({'H': 1, 'V': 0}).fillna(0)

columns_to_dummy = ['residency_spain', 'birth_spain', 'deceased']
for col in columns_to_dummy:
    filtered_data[col] = filtered_data[col].map({'S': 1, 'N': 0}).fillna(0)

trim = ['customer_code', 'age', 'new_cust', 'seniority_in_months', 'primary_cust']
for col in trim:
    filtered_data[col] = filtered_data[col].astype(str).str.strip()
```

```
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\dask_expr\_c
ollection.py:4192: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the `m
eta=` keyword, as described in the map or apply function that you are using.
  Before: .apply(func)
 After: .apply(func, meta=('sex H', 'float64'))
 warnings.warn(meta_warning(meta))
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\dask_expr\_c
ollection.py:4192: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the `m
eta=` keyword, as described in the map or apply function that you are using.
  Before: .apply(func)
 After: .apply(func, meta=('residency_spain', 'float64'))
 warnings.warn(meta_warning(meta))
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\dask expr\ c
ollection.py:4192: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the `m
eta=` keyword, as described in the map or apply function that you are using.
  Before: .apply(func)
 After: .apply(func, meta=('birth_spain', 'float64'))
 warnings.warn(meta_warning(meta))
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\dask expr\ c
ollection.py:4192: UserWarning:
You did not provide metadata, so Dask is running your function on a small dataset to
guess output types. It is possible that Dask will guess incorrectly.
To provide an explicit output types or to silence this message, please provide the `m
eta=` keyword, as described in the map or apply function that you are using.
  Before: .apply(func)
 After: .apply(func, meta=('deceased', 'float64'))
 warnings.warn(meta_warning(meta))
```

Above we are starting the cleaning process of the dataset. First we dropped the null values on the sex columns. We see the number 1861 repeating a lot across columns, so we will drop the null in sex and check if the other nulls will be drop. Since those nulls are across many columns, we concluded it would be best to drop them.

We filled null in columns join_channel and province_name with 'other' since they are string variables

We transformed the columns sex, residency_spain, birth_spain and deceased to dummy variables and filled na with 0

Lastly, we trimmed the cells on columns customer_code, age, new_cust, seniority_in_months, and primary_cust for cleanliness

For now we will fill the rest of na values with '0' so we can keep cleaning the data. Later we will go back to these values and determine if the best approach is to fill it with '0'

```
dtype_mapping = {
In [10]:
              'customer_code': 'int',
              'employee_index': 'str',
              'country': 'str',
              'sex_H': 'str',
              'age': 'int',
              'first_contract_date': 'datetime64[ns]',
              'new_cust': 'int',
              'seniority_in_months': 'int',
              'primary_cust': 'int',
              'last_date_primary': 'object',
              'cust_type': 'object',
              'cust_relationship': 'str',
              'residency_spain': 'str',
              'birth_spain': 'str',
              'join_channel': 'str',
              'deceased': 'str',
              'province_name': 'str',
              'active_cust': 'int',
              'income': 'float',
              'segment': 'object',
              'savings_acct': 'int',
              'guarantees': 'int',
              'current_acct': 'int',
              'derivada_acct': 'int',
              'payroll_acct': 'int',
              'junior_acct': 'int',
              'mas_particular_acct': 'int',
              'particular_acct': 'int',
              'particular_plus_acct': 'int',
              'short term depo': 'int',
              'medium_term_depo': 'int',
              'long_term_depo': 'int',
              'e_acct': 'int',
              'funds': 'int',
              'mortgage': 'int',
              'pension': 'int',
              'loans': 'int',
              'taxes': 'int',
              'credit_card': 'int',
              'securities': 'int',
              'home_acct': 'int',
              'payroll_acct': 'int',
              'pensions_2': 'int',
              'direct_debt': 'int'
          filtered_data = filtered_data.astype(dtype_mapping)
```

Now we will tranform the dtypes across the whole dataset and call compute() again to force all the above changes across the whole dataset

```
In [11]: train = filtered_data.compute()
In [12]: pd.set_option('display.max_columns', None)
    train['total_products'] = train[products].sum(axis=1)
```

NA values treatment

```
In [13]: train.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 10501007 entries, 27973 to 391600
         Data columns (total 46 columns):
          # Column
                                   Dtype
         --- -----
                                   ____
          0
              date
                                   datetime64[ns]
          1
              customer_code
                                   int32
              employee_index
                                   object
          3
              country
                                   object
          4
              sex_H
                                   object
              age
                                   int32
              first_contract_date
                                   datetime64[ns]
          7
                                   int32
              new_cust
                                   int32
              seniority_in_months
              primary_cust
                                   int32
          10 last_date_primary
                                   object
          11 cust_type
                                   object
          12 cust_relationship
                                   object
          13 residency_spain
                                   object
          14 birth_spain
                                   object
          15 join_channel
                                   object
          16 deceased
                                   object
          17 province_name
                                   object
          18 active cust
                                   int32
          19 income
                                   float64
          20 segment
                                   object
          21 savings_acct
                                   int32
          22 guarantees
                                   int32
          23 current_acct
                                   int32
          24 derivada_acct
                                   int32
          25 payroll_acct
                                   int32
          26 junior acct
                                   int32
          27 mas_particular_acct int32
          28 particular_acct
                                   int32
          29 particular_plus_acct int32
                                   int32
          30 short_term_depo
          31 medium term depo
                                   int32
          32 long_term_depo
                                   int32
          33 e_acct
                                   int32
          34 funds
                                   int32
          35 mortgage
                                   int32
          36 pension
                                   int32
          37 loans
                                   int32
          38 taxes
                                   int32
          39 credit_card
                                   int32
          40 securities
                                   int32
          41 home acct
                                   int32
          42 payroll_acct
                                   int32
          43 pensions_2
                                   int32
          44 direct_debt
                                   int32
          45 total products
                                   int64
         dtypes: datetime64[ns](2), float64(1), int32(30), int64(1), object(12)
```

memory usage: 2.5+ GB

Count Percentage Products Owned

	Count	Perc	entage	Prod	ucts Owned	
<pre>primary_cust</pre>						
1	10480153		99.8		15183312	
99	20854		0.2		1928	
	C	ount	Percen	tage	Products (Owned
last_date_pri	mary					
0	1048	0153	9	9.80	151	83312
2015-07-01		142		0.00		44
2015-07-02		63		0.00		17
2015-07-03		95		0.00		34
2015-07-06		138		0.00		38
2015-07-07		112		0.00		58
2015-07-08		65		0.00		27
2015-07-09		148		0.00		43
2015-07-10		117		0.00		59
2015-07-13		81		0.00		37
2015-07-14		72		0.00		26
2015-07-15		91		0.00		47
2015-07-16		57		0.00		20
2015-07-17		111		0.00		70
2015-07-20		110		0.00		46
2015-07-21		130		0.00		52
2015-07-22		102		0.00		55
2015-07-23		78		0.00		31
2015-07-24		97		0.00		52
2015-07-27		83		0.00		29
2015-07-28		115		0.00		54
2015-07-29		104		0.00		43
2015-07-30		96		0.00		34
2015-08-03		96		0.00		0
2015-08-04		69		0.00		0
2015-08-05		65		0.00		3
2015-08-06		41		0.00		1
2015-08-07		59		0.00		3
2015-08-10		82		0.00		3
2015-08-11		81		0.00		4
2015-08-12		62		0.00		3
2015-08-13		78		0.00		2
2015-08-14		51		0.00		2
2015-08-17		75		0.00		1
2015-08-18		59		0.00		6
2015-08-19		44		0.00		6
2015-08-20		59		0.00		5
2015-08-21		61		0.00		0
2015-08-24		61		0.00		2
2015-08-25		63		0.00		1
2015-08-26		68		0.00		5
2015-08-27		85		0.00		9
2015-08-28		83		0.00		3
2015-09-01		97		0.00		3
2015-09-02		71		0.00		6
2015-09-03		61		0.00		2
2015-09-04		83		0.00		11
2015-09-07		79		0.00		4
2015-09-08		107		0.00		11
2015-09-09		70		0.00		0
2015-09-10		65		0.00		3
2015-09-11		79		0.00		6
2015-09-14		114		0.00		6
2015-09-15		82		0.00		9

			weekis
2015-09-16	82	0.00	2
2015-09-17	90	0.00	9
2015-09-18	111	0.00	8
2015-09-21	57	0.00	5
2015-09-22	108	0.00	8
2015-09-23	84	0.00	3
2015-09-24	84	0.00	0
2015-09-25	73	0.00	4
2015-09-28	70	0.00	17
2015-09-29	66	0.00	7
2015-10-01	115	0.00	2
2015-10-02	94	0.00	5
2015-10-05	129	0.00	2
2015-10-06	88	0.00	0
2015-10-07 2015-10-08	112 87	0.00 0.00	10 6
2015-10-08	91	0.00	9
2015-10-13	102	0.00	7
2015-10-14	89	0.00	5
2015-10-14	113	0.00	4
2015-10-16	82	0.00	9
2015-10-19	110	0.00	2
2015-10-20	93	0.00	2
2015-10-21	77	0.00	3
2015-10-22	93	0.00	0
2015-10-23	90	0.00	1
2015-10-26	131	0.00	3
2015-10-27	108	0.00	11
2015-10-28	125	0.00	16
2015-10-29	83	0.00	5
2015-11-02	128	0.00	14
2015-11-03	84	0.00	3
2015-11-04	100	0.00	6
2015-11-05	66	0.00	0
2015-11-06	54	0.00	0
2015-11-09	96	0.00	1
2015-11-10	89	0.00	2
2015-11-11	93	0.00	2
2015-11-12	76	0.00	16
2015-11-13	90	0.00	3
2015-11-16	109	0.00	6
2015-11-17	80	0.00	5
2015-11-18	110	0.00	8
2015-11-19	85	0.00	4
2015-11-20	103	0.00	2
2015-11-23	94	0.00	2
2015-11-24 2015-11-25	109	0.00	9
2015-11-26	86 61	0.00 0.00	17 3
2015-11-27	91	0.00	11
2015-11-27	104	0.00	6
2015-12-02	79	0.00	2
2015-12-03	80	0.00	4
2015-12-04	68	0.00	5
2015-12-07	64	0.00	3
2015-12-09	90	0.00	1
2015-12-10	72	0.00	12
2015-12-11	88	0.00	3
2015-12-14	100	0.00	5
2015-12-15	76	0.00	3

			weekis
2015-12-16	158	0.00	7
2015-12-17	172	0.00	2
2015-12-18	139	0.00	9
2015-12-21	206	0.00	11
2015-12-22	71	0.00	1
2015-12-23	27	0.00	2
2015-12-24	763	0.01	6
2015-12-28	521	0.00	8
2015-12-29	99	0.00	8
2015-12-30	96	0.00	4
2016-01-04	34	0.00	0
2016-01-05	167	0.00	4
2016-01-07	108	0.00	2
2016-01-08	107	0.00	10
2016-01-11	90	0.00	0
2016-01-12	78	0.00	7
2016-01-13	122	0.00	12
2016-01-14	89	0.00	3
2016-01-15	105	0.00	6
2016-01-18	93	0.00	7
2016-01-19	169	0.00	6
2016-01-20	74	0.00	3
2016-01-21	96	0.00	6
2016-01-22	111	0.00	3
2016-01-25	94	0.00	2 7
2016-01-26	109	0.00	
2016-01-27 2016-01-28	112 99	0.00 0.00	9
2016-01-28	121	0.00	2
2016-02-02	96	0.00	5
2016-02-03	65	0.00	9
2016-02-04	74	0.00	10
2016-02-05	67	0.00	3
2016-02-08	107	0.00	4
2016-02-09	96	0.00	2
2016-02-10	79	0.00	10
2016-02-11	96	0.00	17
2016-02-12	93	0.00	18
2016-02-15	129	0.00	4
2016-02-16	91	0.00	4
2016-02-17	73	0.00	16
2016-02-18	64	0.00	4
2016-02-19	70	0.00	3
2016-02-22	100	0.00	4
2016-02-23	85	0.00	5
2016-02-24	88	0.00	11
2016-02-25	65	0.00	7
2016-02-26	101	0.00	8
2016-03-01	98	0.00	3
2016-03-02	84	0.00	0
2016-03-03	59	0.00	3
2016-03-04	89 55	0.00	5 5
2016-03-07	55 72	0.00	1
2016-03-08	72 00	0.00	
2016-03-09	99 82	0.00	3
2016-03-10 2016-03-11	82 84	0.00	10 5
2016-03-11	84 97	0.00 0.00	6
2016-03-14	96	0.00	13
2016-03-16	76	0.00	6
2010 03-10	, 0	0.00	0

2016-03-17		66	0.00	9	5
2016-03-18		77	0.00		6
2016-03-21		74	0.00		9
2016-03-22		69	0.00		4
2016-03-23		46	0.00		1
2016-03-24		49	0.00		3
2016-03-28		83	0.00		8
2016-03-29		74	0.00		11
2016-03-29		74 79	0.00		4
2016-04-01		132			4
			0.00		
2016-04-04		86	0.00		2
2016-04-05		89	0.00		2
2016-04-06		71	0.00		2
2016-04-07		58	0.00		0
2016-04-08		87	0.00	9	7
2016-04-11		101	0.00	9	3
2016-04-12		96	0.00	9	6
2016-04-13		82	0.00	9	2
2016-04-14		57	0.00	9	3
2016-04-15		88	0.00	9	4
2016-04-18		78	0.00	9	7
2016-04-19		88	0.00)	2
2016-04-20		63	0.00	9	2
2016-04-21		76	0.00		3
2016-04-22		62	0.00		4
2016-04-25		77	0.00		1
2016-04-26		79	0.00		2
2016-04-27		74	0.00		0
2016-04-28		44	0.00		2
2016-05-02		128			12
			0.00		
2016-05-03		65	0.00		2
2016-05-04		83	0.00		5
2016-05-05		61	0.00		2
2016-05-06		99	0.00		4
2016-05-09		77	0.00		0
2016-05-10		78	0.00		9
2016-05-11		74	0.00		3
2016-05-12		73	0.00	9	6
2016-05-13		55	0.00	9	3
2016-05-16		89	0.00	9	4
2016-05-17		84	0.00	9	0
2016-05-18		92	0.00	9	11
2016-05-19		111	0.00)	1
2016-05-20		84	0.00)	6
2016-05-23		83	0.00		3
2016-05-24		124	0.00		13
2016-05-25		75	0.00		3
2016-05-26		128	0.00		5
2016-05-27		109	0.00		5
2016-05-30		98	0.00		3
2010-03-30	Count			ts Owned	,
docoscod	Count	Percenta	ge Product	LS Owned	
deceased	0171116	00	7/ 1	1515/052	
	0474146	99.		L5154952	
1	26861		26	30288	. 0 '
		Count	Percentage	e Products	owned
seniority_i	ıı_montns	20	2 22		470
-999999		28	0.00		173
0		134357	1.28		81977
1		132477	1.26		116322
2		128049	1.22	2	121988

			week13
3	128348	1.22	125068
4	120189	1.14	118461
5	125917	1.20	123711
6	114032	1.09	113076
7	112509	1.07	111993
8	107713	1.03	110579
9	105700	1.01	108015
10	121312	1.16	122779
11	95961	0.91	98046
12	149217	1.42	152003
13	110316	1.05	113314
14	115248	1.10	118015
15	110974	1.06	114746
16	113837	1.08	122250
17	112308	1.07	119066
18	107755	1.03	120180
19	99779	0.95	113503
20	98493	0.94	114129
21	115992	1.10	132966
			115446
22	103688	0.99	
23	109845	1.05	123607
24	114855	1.09	128260
25	100606	0.96	112778
26	105067	1.00	119014
27	98761	0.94	110583
28	97947	0.93	108623
29	94570	0.90	105597
30	91540	0.87	104116
31	87694	0.84	101541
32	83742	0.80	100037
33	95070	0.91	111565
34	88816	0.85	104911
35	90189	0.86	104846
36	103372	0.98	118865
37	92019	0.88	106671
38	95849	0.91	111690
39	90396	0.86	104765
40	94975	0.90	109068
41	92266	0.88	106534
42	85560	0.81	99886
43	93260	0.89	108551
44	90608	0.86	105577
45	95837	0.91	110918
46	90374	0.86	104599
47	83273	0.79	95488
48	87697	0.84	99366
49	81310	0.77	90667
50	81877	0.78	90542
51	75641	0.72	83595
52	80410	0.77	88300
53	78248	0.77	
			85370
54	67857	0.65	74965
55	57137	0.54	64327
56	42483	0.40	48686
57	30535	0.29	36846
58	23325	0.22	29897
59	18519	0.18	24882
60	18589	0.18	25053
61	20235	0.19	28479
62	22311	0.21	31582

		week13	
63	24035	0.23	35113
64	25026	0.24	37564
65	23366	0.22	35804
66	23877	0.23	37479
67	23289	0.22	37337
68	22430	0.21	38440
69	22089	0.21	37973
70	20651	0.20	36243
71	19851	0.19	35488
72	18972	0.18	35240
73	16070	0.15	31453
74	13331	0.13	27433
75	11721	0.11	24285
76	12367	0.12	24814
77	14122	0.13	26437
78	16120	0.15	28748
79	17066	0.16	29085
80	19928	0.19	33636
81	27153	0.26	42995
82	26567	0.25	39847
83	28216	0.27	40405
84	30605	0.29	42774
85	30923	0.29	42611
86	33366	0.32	44435
87	33912	0.32	43678
88	34946	0.33	42555
89	34669	0.33	41404
90	34391	0.33	40700
91	32990	0.31	37119
92	30092	0.29	32686
93	32329	0.31	34731
94	30613	0.29	32837
95	31754	0.30	34199
96	33503	0.32	36463
97	32987	0.31	36191
98	33943	0.32	37536
99	31364	0.30	36075
100	31312	0.30	36690
101	31940	0.30	37828
102	34352	0.33	41527
103	33307	0.32	41804
104	33722	0.32	43894
105	35477	0.34	47725
106	32983	0.31	44369
107	34338	0.33	46587
108	34511	0.33	47806
109	33252	0.32	46724
110	36763	0.35	52030
111	35059	0.33	49947
112	35845	0.34	51794
113	33510		50053
		0.32	
114	34692	0.33	52448
115	33684	0.32	51963
116	31886	0.30	49951
117	36185	0.34	57659
118	34030	0.32	55238
119	34252	0.33	56383
120	33865	0.32	56710
121	31267	0.30	53219
122	31519	0.30	54724
	J=J=J	0.50	J-7/47

123	31063	0.30	54828
124	32338	0.31	57399
125	32208	0.31	58029
126	32269	0.31	58805
127	32473	0.31	59557
	29976		
128		0.29	56365
129	29509	0.28	55015
130	28768	0.27	53983
131	27157	0.26	51241
132	28615	0.27	53606
133	28906	0.28	54328
134	31085	0.30	58177
135	28451	0.27	52765
136	30146	0.29	56736
137	29556	0.28	55062
138	29931	0.29	55915
139	30079	0.29	56607
140	29953	0.29	56680
141	30348	0.29	57298
142	30189	0.29	56765
143	29914	0.28	55922
144	30203	0.29	56514
145	28389	0.27	54244
146	29192	0.28	56880
147	27382	0.26	53382
148	27150	0.26	53796
149	25470	0.24	51473
150	26667	0.25	53886
151	27286	0.26	55566
152	26150	0.25	54770
153	27156	0.26	57283
154	25813	0.25	54536
155	24703	0.24	52207
156	29772	0.28	62329
157	28565	0.27	59058
158	29615	0.28	61403
159	33162	0.32	67825
160	35951	0.34	72419
161	37581	0.36	74462
162	42914	0.41	85902
163	43631	0.42 0.44	86304
164	46647		90975
165	52452	0.50	101572
166	51356	0.49	100128
167	46816	0.45	90710
168	50527	0.48	99020
169	50698	0.48	99628
170	50209	0.48	98689
171	47537	0.45	93851
172	48847	0.47	98613
173	43700	0.42	87924
174	42631	0.41	87811
175	38755	0.37	81405
176	35140	0.33	76629
177	35750	0.34	79771
178	34457	0.33	76997
179	32634	0.31	73477
180	33582	0.32	76695
181	28600	0.27	66528
		0.27	
182	28840	0.4/	68492

			weekis
183	25310	0.24	62131
184	26273	0.25	65260
185	25488	0.24	63722
186	24352	0.23	60973
187	23605	0.22	58832
188	22642	0.22	56207
189	22337	0.21	56357
190	20292	0.19	51181
191	19287	0.18	48781
192	19366	0.18	48895
193	19869	0.19	51452
194	20261	0.19	52468
195	18705	0.18	49615
196	17680	0.17	47779
197	16993	0.16	46622
198	17586	0.17	48122
199	18342	0.17	51064
200	17627	0.17	49049
201	18539	0.17	51508
202	17789	0.17	49215
203	16843	0.16	46210
204	16329	0.16	44543
205	16346	0.16	44697
206	17183	0.16	47186
207	16146	0.15	44498
208	17219	0.16	46870
209	16647	0.16	46004
210	15686	0.15	42298
211	16630	0.16	44712
212	15878	0.15	42485
213	15637	0.15	41310
214	15534	0.15	41376
215	15098	0.14	40048
216	14908	0.14	39225
217	14439	0.14	37596
218	13876	0.13	35589
219	12341	0.12	31643
220	12460	0.12	32061
221	11783	0.11	30059
222	10694	0.10	26716
223	10979	0.10	27441
224	10241	0.10	24997
225	10871	0.10	26060
226	9914	0.09	23724
227	9295	0.09	22195
228	9523	0.09	23029
229	9118	0.09	21646
230	8979	0.09	21126
231	9218	0.09	21590
232	8585	0.08	20016
233	7646	0.07	17678
234	7839	0.07	18501
235	7999	0.08	18630
236	7135	0.07	16643
237	8632	0.08	20004
238	8271	0.08	19242
239	7329	0.07	17083
240	7490	0.07	17878
241	7302	0.07	17696
242	6467	0.06	15687
	3.07		_5557

12/9/24, 12:55 AM

			week13
243	5919	0.06	14406
244	5553	0.05	13744
245	4618	0.04	11569
246	4170	0.04	10778
247 248	3516 2271	0.03 0.02	9130 6169
249	1777	0.02	5132
250	1512	0.02	4415
251	1071	0.01	3195
252	676	0.01	2204
253	416	0.00	1504
254	261	0.00	992
255	179	0.00	748
256	102	0.00	453
	Count	Percentage	Products Owned
province_name		J	
ALAVA	29200	0.28	40388
ALBACETE	87764	0.84	99725
ALICANTE	245070	2.33	309253
ALMERIA	47225	0.45	64018
ASTURIAS	204362	1.95	263752
AVILA	29799	0.28	37045
BADAJOZ	146712	1.40	161279
BALEARS, ILLES	99314	0.95	130005
BARCELONA	1003756	9.56	1232054
BIZKAIA	143195	1.36	194627
BURGOS	75113	0.72	94985
CACERES	97769	0.93	108450
CADIZ CANTABRIA	223411 120634	2.13	291240 172272
CASTELLON	80360	1.15 0.77	101618
CEUTA	5625	0.05	8560
CIUDAD REAL	91585	0.87	109976
CORDOBA	110061	1.05	136763
CORUÑA, A	327217	3.12	380436
CUENCA	43382	0.41	49994
GIPUZKOA	55402	0.53	76597
GIRONA	71236	0.68	78678
GRANADA	138206	1.32	171753
GUADALAJARA	51584	0.49	74208
HUELVA	91738	0.87	107627
HUESCA	31147	0.30	38012
JAEN	49857	0.47	69255
LEON	64259	0.61	85635
LERIDA	61791	0.59	62619
LUG0	64531	0.61	71615
MADRID MALAGA	3393023 278115	32.31 2.65	6253191 368903
MELILLA	7259	0.07	10959
MURCIA	305733	2.91	334259
NAVARRA	68567	0.65	84739
OURENSE	63638	0.61	71735
PALENCIA	37833	0.36	44971
PALMAS, LAS	181645	1.73	259049
PONTEVEDRA	213724	2.04	249444
RIOJA, LA	66041	0.63	81762
SALAMANCA	125293	1.19	147729
SANTA CRUZ DE TENERIFE	55740	0.53	83804
SEGOVIA	32669	0.31	45053
SEVILLA	459492	4.38	657771

SORIA	13848	0.13	18076
TARRAGONA	80871	0.77	95511
TERUEL	17237	0.16	20330
TOLEDO	141582	1.35	183010
VALENCIA	534921	5.09	685129
VALLADOLID	182831	1.74	230665
ZAMORA	38903	0.37	44246
ZARAGOZA	263268	2.51	327414
other	47469	0.45	65051

Analyzing columns: Last Date Primary and Primary Customer

```
In [16]: print(train['last_date_primary'].value_counts())
    print(train['primary_cust'].value_counts())
```

last_date_primary 0 10480153 2015-12-24 763 2015-12-21 206 2015-12-17 172 2016-01-19 169 2016-01-05 167 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-07-21 130 2016-04-01 132 2015-10-26 131 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-02 128 2015-10-08 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-09-14 114	last data maimanu	
2015-12-24 763 2015-12-21 206 2015-12-17 172 2016-01-19 169 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-21 130 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-09-14 114 2015-09-14 114 2015-09-15 112 2015-09-18 111 2015-09-18 111 2015-01-19 110 </td <td></td> <td>3152</td>		3152
2015-12-28 521 2015-12-17 172 2016-01-19 169 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-21 130 2015-07-21 130 2015-07-21 130 2015-07-21 130 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-09-14 114 2015-09-14 114 2015-09-14 114 2015-09-18 111 2015-07-07 112 2015-01-18 111 2015-01-19 110 </td <td></td> <td></td>		
2015-12-21 206 2015-12-17 172 2016-01-19 169 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-26 131 2015-0-26 131 2015-0-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 112 2015-07-13 112 2015-09-14 114 2015-09-15 111 2015-09-18 111 <td></td> <td></td>		
2015-12-17 172 2016-01-19 169 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-26 131 2015-07-21 130 2015-07-21 130 2016-02-15 129 2015-10-05 129 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-26 128 2015-10-05 129 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-28 125 2016-07-10 117 2015-07-10 117 2015-07-28 115 2015-09-14 114 2015-09-14 114 2015-09-15 113 2016-01-27 112 2015-09-18 111 2015-09-19 111 2015-01-19 110 </td <td></td> <td>_</td>		_
2016-01-19 169 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-06 138 2015-07-26 131 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-11-02 128 2015-11-02 128 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-02 128 2015-10-28 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-13 122 2016-07-10 117 2015-07-28 115 2015-07-28 115 2015-09-14 114 2015-09-18 111 </td <td></td> <td></td>		
2016-01-05 167 2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2015-07-06 138 2015-07-26 131 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-11-02 128 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-02 128 2015-10-05 129 2016-05-02 128 2015-10-28 125 2016-05-24 124 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 115 2015-09-14 114 2015-09-14 114 2015-09-18 111 2015-07-17 111 </td <td></td> <td></td>		
2015-12-16 158 2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-10-28 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-11 115 2015-09-14 114 2015-09-14 114 2015-09-15 113 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-11-18 10 <td></td> <td></td>		
2015-07-09 148 2015-07-01 142 2015-12-18 139 2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-10-28 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-09-14 114 2015-09-14 114 2015-09-14 114 2015-09-18 111 2015-09-18 111 2015-09-18 111 </td <td></td> <td></td>		
2015-07-01 142 2015-12-18 139 2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 112 2015-07-13 112 2015-09-14 114 2015-09-15 113 2015-09-17 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-01-18 109 </td <td></td> <td></td>		
2015-12-18 139 2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-11-02 128 2015-10-28 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 112 2015-07-13 112 2015-09-14 114 2015-09-15 113 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 </td <td></td> <td></td>		
2015-07-06 138 2016-04-01 132 2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-11-02 128 2015-10-28 125 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-07-28 121 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 113 2015-07-10 113 2015-07-10 113 2015-07-10 112 2015-07-10 112 2015-07-10 112 2015-07-17 112 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-10-19 110 </td <td></td> <td></td>		
2015-10-26 131 2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-10-28 125 2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-07-10 117 2015-07-10 115 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 113 2015-09-14 114 2015-09-14 114 2015-09-15 113 2016-01-27 112 2015-07-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-17 111 2015-01-18 10 2015-11-16 109 2015-11-24 109 <td>2015-07-06</td> <td>138</td>	2015-07-06	138
2015-07-21 130 2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-10 117 2015-10-01 115 2015-07-10 117 2015-10-01 115 2015-07-10 117 2015-10-01 115 2015-07-10 117 2015-07-18 115 2015-09-14 114 2015-07-27 112 2015-07-07 112 2015-07-07 112 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-11-18 10 2015-11-16 109 2015-11-24 109 <td>2016-04-01</td> <td>132</td>	2016-04-01	132
2016-02-15 129 2015-10-05 129 2016-05-02 128 2015-11-02 128 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 115 2015-07-13 112 2015-09-14 114 2015-09-15 113 2015-09-17 112 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-19 110 2015-10-19 110 2015-10-19 110 </td <td>2015-10-26</td> <td>131</td>	2015-10-26	131
2015-10-05 129 2016-05-02 128 2015-11-02 128 2015-10-28 125 2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-07-10 115 2015-07-10 115 2015-07-10 115 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-10 117 2015-07-12 113 2015-07-28 115 2015-09-14 114 2015-09-15 113 2016-01-27 112 2015-07-07 112 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-10-19 110 2015-10-19 110 2015-10-27 108 </td <td>2015-07-21</td> <td>130</td>	2015-07-21	130
2016-05-02 128 2015-11-02 128 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-02-01 121 2015-07-10 117 2015-07-28 115 2015-09-14 114 2015-09-14 114 2015-09-15 113 2016-01-27 112 2015-07-07 112 2015-07-07 112 2015-07-17 111 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-18 110 2015-01-18 110 2015-01-29 110 2015-11-18 110 2015-11-18 110 2015-10-19 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2015-01-27 108 2015-09-08 107 2015-09-08 107 2016-01-08 107 2016-01-08 107 </td <td>2016-02-15</td> <td>129</td>	2016-02-15	129
2015-11-02 128 2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-09-15 113 2015-07-07 112 2015-07-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-11-18 110 2015-11-18 110 2015-11-19 110 2015-11-24 109 2015-11-24 109 2015-11-24 109 2015-10-27 108 2015-09-08 107 2015-09-08 107 2015-09-08 107 2016-01-08 107 2015-07-29 104 2015-12-01 104 2015-10-13 102	2015-10-05	129
2016-05-26 128 2015-10-28 125 2016-05-24 124 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2015-07-07 112 2015-07-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-17 111 2015-11-18 110 2015-11-18 110 2015-11-18 109 2015-11-19 110 2015-11-24 109 2015-11-24 109 2016-01-25 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2015-09-08 107 2016-01-08 107 2015-07-29 104 2015-11-20 103 2015-10-13 102	2016-05-02	128
2015-10-28 125 2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-17 111 2015-07-20 110 2015-11-18 110 2015-11-19 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2016-01-25 109 2015-09-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2015-07-29 104 2015-11-20 103 2015-10-13 102 </td <td>2015-11-02</td> <td>128</td>	2015-11-02	128
2016-05-24 124 2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 110 2015-01-20 110 2015-01-20 110 2015-01-20 110 2015-11-24 109 2015-11-24 109 2015-10-27 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 </td <td></td> <td></td>		
2016-01-13 122 2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-18 111 2015-09-19 110 2015-11-18 110 2015-11-18 110 2015-11-19 110 2015-10-19 110 2015-10-19 100 2015-11-24 109 2015-11-24 109 2015-11-24 109 2015-01-27 108 2015-09-08 107 2015-09-08 107 2016-01-08 107 2016-01-08 107 2015-07-29 104 2015-11-20 103 2015-10-13 102 </td <td></td> <td></td>		
2016-02-01 121 2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-10-18 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2015-11-24 109 2015-11-24 109 2015-01-27 108 2016-01-26 109 2015-09-27 108 2015-09-08 107 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-11-20 103 2015-10-13 102		
2015-07-10 117 2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-11-18 110 2015-11-18 110 2015-11-16 109 2015-11-24 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2016-07-27 108 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-10-01 115 2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-01-18 110 2015-11-18 110 2015-11-16 109 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-11-20 103 2015-10-13 102		
2015-07-28 115 2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-11-18 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-09-14 114 2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2015-09-18 111 2015-09-18 111 2015-07-17 111 2015-01-22 111 2015-11-18 110 2015-11-18 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-07 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-11-20 103 2015-10-13 102		_
2015-10-15 113 2016-01-27 112 2015-07-07 112 2015-10-07 112 2016-05-19 111 2015-09-18 111 2015-07-17 111 2015-07-20 110 2015-11-18 110 2015-10-19 110 2015-11-24 109 2015-11-24 109 2016-01-26 109 2015-10-27 108 2015-09-21 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2016-01-27 112 2015-07-07 112 2015-10-07 112 2016-05-19 111 2015-09-18 111 2015-07-17 111 2015-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-21 108 2015-09-08 107 2016-01-07 108 2015-09-08 107 2016-01-07 108 2015-09-08 107 2016-01-07 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-07-07 112 2015-10-07 112 2016-05-19 111 2015-09-18 111 2015-07-17 111 2015-01-18 110 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-11-20 103 2015-10-13 102		
2015-10-07 112 2016-05-19 111 2015-09-18 111 2015-07-17 111 2016-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2016-05-19 111 2015-09-18 111 2015-07-17 111 2016-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-09-18 111 2015-07-17 111 2016-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-07-17 111 2016-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2016-01-22 111 2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-11-18 110 2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-07-20 110 2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 108 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-10-19 110 2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		110
2015-11-16 109 2015-11-24 109 2016-01-26 109 2016-05-27 109 2015-10-27 108 2015-09-22 108 2015-09-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2016-01-26 109 2016-05-27 109 2015-10-27 108 2016-01-07 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102	2015-11-16	
2016-05-27 109 2015-10-27 108 2016-01-07 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102	2015-11-24	109
2015-10-27 108 2016-01-07 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102	2016-01-26	109
2016-01-07 108 2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102	2016-05-27	109
2015-09-22 108 2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		108
2015-09-08 107 2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		108
2016-02-08 107 2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102	2015-09-22	108
2016-01-08 107 2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2016-01-15 105 2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-07-29 104 2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-12-01 104 2015-11-20 103 2015-10-13 102		
2015-11-20 103 2015-10-13 102		
2015-10-13 102		
76/13-6/1-57 10/		
2016-04-11 101		
2016-04-11 101 2016-02-26 101		
2016-02-22 100		
2015-11-04 100		

2015-12-14	100
2016-03-09	99
2016-05-06	99
2016-01-28	99
2015-12-29	99
2016-05-30	98
2016-03-01	98
2016-03-14	97
2015-07-24	97
2015-09-01	97
2015-11-09	96
2016-02-11	96
2016-01-21	96
2016-02-09	96
2016-03-15	96
2015-07-30	96
2016-04-12	96
2016-02-02	96
2015-12-30	96
2015-08-03	96
2015-07-03	95
2015-10-02	94
2015-11-23	94
2016-01-25	
	94
2016-02-12	93
2015-10-20	93
2015-11-11	93
2015-10-22	93
2016-01-18	93
2016-05-18	92
2016-02-16	91
2015-11-27	91
2015-07-15	91
2015-10-09	91
2015-09-17	90
2015-11-13	90
2016-01-11	90
2015-10-23	90
2015-12-09	90
2015-10-14	89
2015-11-10	89
2016-03-04	89
2016-01-14	89
2016-05-16	89
2016-04-05	89
2016-04-19	88
2016-04-15	88
2015-12-11	88
2016-02-24	88
2015-10-06	88
2016-04-08	87
2015-10-08	
	87
2015-11-25	86
2016-04-04	86
2016-02-23	85
2015-08-27	85
2015-11-19	85
2016-05-17	84
2015-09-23	84
2015-09-24	84

2016-03-02	0.4
	84
2016-03-11	84
2015-11-03	84
2016-05-20	84
2015-10-29	83
2016-03-28	83
2015-09-04	83
2015-08-28	83
2016-05-23	83
2016-05-04	83
2015-07-27	83
2015-09-16	82
2015-08-10	82
2016-03-10	82
2016-04-13	82
2015-09-15	82
2015-10-16	82
2015-08-11	81
2015-07-13	81
2015-11-17	80
2015-12-03	80
2015-09-11	79
2016-02-10	79
2016-03-30	79
2015-12-02	79
2015-09-07	79
2016-04-26	79
2016-04-18	78
2015-07-23	78
2016-01-12	78
2016-05-10	78
2015-08-13	78
2016-03-18	77
2015-10-21	77
2016-04-25	77
2016-05-09	77
2015-12-15	76
2016-04-21	76
2015-11-12	76
2016-03-16	76
2015-08-17	75
2016-05-25	75
2016-04-27	74
2016-03-21	74
2016-05-11	74
2016-03-29	74
2016-01-20	74
2016-02-04	74
2016-02-17	73
2016-05-12	73
2015-09-25	73
2015-07-14	72
2015-12-10	72
2016-03-08	72
2016-04-06	71
2015-12-22	71
2015-09-02	71
2015-09-28	70
2016-02-19	70
2015-09-09	70

```
2016-03-22
                    69
2015-08-04
                    69
2015-12-04
                    68
2015-08-26
                    68
                    67
2016-02-05
2015-09-29
                    66
2015-11-05
                    66
2016-03-17
                    66
2015-09-10
                    65
2016-05-03
                    65
2015-07-08
                    65
2016-02-25
                    65
2015-08-05
                    65
2016-02-03
                    65
2015-12-07
                    64
2016-02-18
                    64
2015-07-02
                    63
2016-04-20
                    63
2015-08-25
                    63
2016-04-22
                    62
2015-08-12
                    62
2015-08-24
2015-08-21
                    61
2015-11-26
                    61
2015-09-03
                    61
2016-05-05
                    61
2015-08-20
                    59
2015-08-07
                     59
2015-08-18
                    59
2016-03-03
                     59
2016-04-07
                     58
2015-07-16
                    57
2016-04-14
                     57
2015-09-21
                    57
2016-05-13
                    55
                     55
2016-03-07
2015-11-06
                    54
2015-08-14
                     51
2016-03-24
                    49
2016-03-23
                    46
2016-04-28
                    44
2015-08-19
                    44
2015-08-06
                    41
                     34
2016-01-04
2015-12-23
                     27
Name: count, dtype: int64
primary_cust
      10480153
1
99
         20854
Name: count, dtype: int64
non_primary = train[train['primary_cust'] == 99]
non_primary['total_products'].sum()
1928
```

0 dates on last_date_primary mean they are still primary customers

In [17]:

Out[17]:

We will drop the column primary customer and keep the last date as primary customer since we can have all the information from one column -customers that do not have a date are still

primary

We will keep the non-primary customers since they still own products of the bank

Analyzing column: Deceased

In [18]:	<pre>train.groupby('deceased')[products].sum()</pre>							
Out[18]:		savings_acct	guarantees	current_acct	derivada_acct	payroll_acct	payroll_acct	junior_acct
	deceased							
	0	958	214	6488365	3821	539367	539367	90875
	1	0	0	12798	12	59	59	0
4								•

Deceased clients have a few products, and they make up 0.2% of the database. Deceased clients are not going to buy any more products, so we will drop the rows of deceased clients and drop the column

Analyzing column: Seniority in Months

We will drop the rows with value -999999

Analyzing column: Province Name

We will drop the rows where province name = others

Analyzing column: Age

We will drop columns where age is 0 and over 100. We believe these clients are not going to be valuable on our model

Analyzing column: Income

```
In [19]: (train['income'] == 0).sum()
Out[19]: 2238903
```

Analyzing columns: Seniority in Months and First Contract Date

We had the impression these two columns were giving us the same information and we decided to check the correlation. Turns out it is highly correlated, so we'll keep the column seniority in months.

Before we delete the first contract date column, we want to extract any information we might need from it.

```
In [21]: month_count = train['first_contract_date'].dt.month.value_counts().sort_index()

month_count.plot(kind='bar', figsize=(10, 6), edgecolor='black')
plt.title('Number of Accounts Opened per Month')
plt.xlabel('Month')
plt.ylabel('Count in millions')
```

Out[21]: Text(0, 0.5, 'Count in millions')


```
In [22]: months = train['first_contract_date'].dt.month
   dummy = train.groupby(months)[products].sum()
   dummy = (dummy/dummy.sum()).T
   ax = dummy.plot(kind='bar', stacked=True, figsize=(10,4))
   plt.legend(loc='center left', title='Months', bbox_to_anchor=(1, .4))
   plt.title('Products Purchased by Month')
   plt.show()
```


When we plot contract dates by month to see if there is any seasonality, we can conclude that the last half of the year has significantly more new contracts than the first half. This can maybe be explained by raises, bonus, new people getting hired after summer, and other factors We don't see any patterns on product purchases for a specific month. Looks like the increase on purchases in the second half of the year is an overall increase

Splitting the dataset into train and validation

We will use the 80/20 ratio

```
train, temp = train_test_split(train, test_size=0.3, random_state=42)
In [23]:
         val_set, test_set = train_test_split(temp, test_size=0.5, random_state=42)
In [24]:
         map dtypes = {
              "date": "datetime64[ns]",
              "customer_code": "int32",
              "employee_index": "object",
              "country": "object",
              "sex H": "object",
              "age": "int32",
              "first_contract_date": "datetime64[ns]",
              "new_cust": "int32",
              "seniority_in_months": "int32",
              "primary_cust": "int32",
              "last_date_primary": "object",
              "cust_type": "object",
              "cust_relationship": "object",
              "residency_spain": "object",
              "birth_spain": "object",
              "join_channel": "object",
              "deceased": "object",
              "province_name": "object",
```

```
"active_cust": "int32",
    "income": "float64",
    "segment": "object",
    "savings_acct": "int32",
    "guarantees": "int32",
    "current_acct": "int32",
    "derivada_acct": "int32",
    "payroll_acct": "int32",
    "junior_acct": "int32",
    "mas_particular_acct": "int32",
    "particular_acct": "int32",
    "particular_plus_acct": "int32",
    "short_term_depo": "int32",
    "medium_term_depo": "int32",
    "long_term_depo": "int32",
    "e_acct": "int32",
    "funds": "int32",
    "mortgage": "int32",
    "pension": "int32",
    "loans": "int32",
    "taxes": "int32",
    "credit_card": "int32",
    "securities": "int32",
    "home_acct": "int32",
    "payroll_acct": "int32",
    "pensions_2": "int32",
    "direct_debt": "int32",
    "total_products": "int64"
}
test_set = test_set.astype(map_dtypes)
val_set = val_set.astype(map_dtypes)
```

EDA

```
In [25]: train.describe().round(2)
```

Out[25]: date customer code age first contract date new cust seniority in mor 7350704.00 7350704.00 7350704 7350704 7350704.00 7350704 count 2015-12-20 2009-04-12 76 850982.41 40.10 0.07 mean 15:48:38.383001088 06:48:44.553838080 2015-06-28 1995-01-16 min 15889.00 2.00 0.00 -999999 00:00:00 00:00:00 2004-07-06 2015-09-28 0.00 22 25% 464328.00 24.00 00:00:00 00:00:00 2015-12-28 2011-09-26 50% 943521.00 39.00 0.00 5(00:00:00 00:00:00 2016-03-28 2013-11-22 50.00 0.00 75% 1220509.00 133 00:00:00 00:00:00 2016-05-28 2016-05-31 1553687.00 164.00 1.00 256 max 00:00:00 00:00:00 0.26 std NaN 437214.98 17.23 NaN 138

From the descriptive statistics table we can see:

- There are more man than women in the dataset
- The average and median age in the dataset is 40 years old
- There is a good range of seniority in the dataset, ranging from 0 to 256 months, or 21.3 years
- Most of the clients in the dataset have their primary residency and birth place in Spain

Counting values, percentage and product bought for variables on columns employee_index, country, primary_customer, residency_spain, and deceased

```
In [26]: pd.set_option('display.max_rows', None)

count_col = ['employee_index', 'country', 'residency_spain', 'birth_spain', 'primary_col'

for col in count_col:
    count = train[col].value_counts()
    percentage = (count/count.sum()*100).round(2)
    products_bought = train.groupby(col)['total_products'].sum()
    summary = pd.DataFrame({'Count': count, 'Percentage':percentage, 'Products Owned':
    print(summary)
```

					wee	кіз
		Count	Perc	entage	Products	Owned
employee_	index					
Α .		1231		0.02		8614
В		1811		0.02		7018
F		1288		0.02		5008
N	7	346369		99.94	106	13093
	,				100	
S		5		0.00		50
	Count	Percen	tage	Produc	ts Owned	
country						
AD	55		0.00		150	
AE	121		0.00		278	
AL	7		0.00		7	
AO	32		0.00		101	
AR	2441		0.03		3467	
AT	221		0.00		413	
AU	224		0.00		421	
BA	16		0.00		6	
BE	750		0.01		1164	
BG	237		0.00		190	
BM	6				6	
			0.00			
BO BB	780		0.01		706	
BR	1131		0.02		1235	
BY	49		0.00		59	
BZ	8		0.00		8	
CA	230		0.00		361	
CD	6		0.00		6	
CF	8		0.00		8	
CG	14		0.00		24	
CH	1018		0.01		2279	
CI	27		0.00		54	
CL	502		0.01		642	
CM	45		0.00		84	
CN	268		0.00		418	
CO	1755		0.02		1697	
CR	79		0.00		123	
CU	377		0.01		328	
CZ	46		0.00		30	
DE	2287		0.03		3948	
DJ	9		0.00		0	
DK	118		0.00		147	
DO	202		0.00		210	
DZ	45		0.00		37	
EC	1084		0.01		880	
EE	23		0.00		18	
EG	39		0.00		79	
ES	7317736	9	9.55		10588843	
ET	17		0.00		20	
FI	172		0.00		215	
FR	2562		0.03		3582	
GA	21		0.00		62	
GB	2337		0.03		4210	
GE	2337 7		0.00		4210	
GH	7		0.00		0	
GI	7		0.00		14	
GM	8		0.00		0	
GN	21		0.00		21	
GQ	57		0.00		71	
GR	124		0.00		147	
GT	69		0.00		39	
GW	17		0.00		17	

			We
HK	25	0.00	80
HN	147	0.00	86
HR	31	0.00	13
HU	23	0.00	11
IE	201	0.00	293
IL	205	0.00	250
IN	97	0.00	134
IS	7	0.00	7
IT	1506	0.02	1861
JM	8	0.00	0
JP	133	0.00	238
KE	35	0.00	114
KH	9	0.00	18
KR	43	0.00	145
KW	10		10
KZ	11	0.00	11
	6	0.00	
LB LT	22	0.00	0 25
		0.00	
LU	62	0.00	124
LV	8	0.00	8
LY	9	0.00	9
MA	204	0.00	390
MD	44	0.00	35
MK	26	0.00	17
ML	9	0.00	9
MM	7	0.00	42
MR	26	0.00	35
MX	1271	0.02	1784
MZ	18	0.00	18
NG	104	0.00	94
NI	31	0.00	24
NL	384	0.01	763
NO	69	0.00	143
NZ	21	0.00	21
OM	11	0.00	72
PA	34	0.00	78
PE	451	0.01	484
PH	17	0.00	17
PK	43	0.00	43
PL	297	0.00	349
PR	45	0.00	95
PT	721	0.01	953
PY	725	0.01	500
QA	35	0.00	70
RO	1475	0.02	883
RS	21	0.00	21
RU	368	0.01	444
SA	41	0.00	45
SE	315	0.00	449
SG	61	0.00	141
SK	42	0.00	34
SL	9	0.00	9
SN	38	0.00	47
SV	56	0.00	50
TG	6	0.00	18
TH	50	0.00	49
TN	10	0.00	0
TR	34	0.00	121
TW	16	0.00	16
UA	236	0.00	174
UA	230	٥.٧٥	1/4

US	1829	0.0	2	28!	54	
UY	252	0.0	0	37	71	
VE	1148	0.0	2	159	99	
VN	18	0.0	0	3	39	
ZA	58	0.0	0	12	21	
ZW	8	0.0	0		0	
	Co	unt P	ercenta	age Produ	ucts Owne	d
residency_	spain					
0	32	967	0	.45	4493	6
1	7317	737	99.55		1058884	7
	Count	Perce	ntage	Products	Owned	
birth_spai	n					
0	6995757	9	95.17		10206257	
1	354947	4.83		427526		
	Count	Perc	entage	Products	s Owned	
primary_cu	st					
1	7336142		99.8	10	0632421	
99	14562		0.2		1362	

Most of the dataset is composed of clients from Spain and non-employees.

Even thought non-spanish and employees clients are the absolute minority in the database, it still can be an important factor for these specific clients when predicting which products they will buy

Analyzing column: Sex

```
In [27]: sex_plot = train['sex_H'].value_counts().plot(kind='bar')
    plt.title('Sex Distribution')
    plt.xticks(ticks=[0,1], labels=['Male', 'Female'], rotation=45)
    plt.bar_label(sex_plot.containers[0], fmt=int)
    plt.show()
```



```
In [28]: # Defining function to plot column data and see product purchasing behavior
def plot_grouped_data(df, group_col, products, colormap='rainbow', title='Grouped Data
    dummy = df.groupby(group_col)[products].sum()
    dummy = (dummy/dummy.sum()).T
    ax = dummy.plot(kind='bar', stacked=True, colormap=colormap, figsize=(10,4))
    ax.set_title(title)

if show_legend:
    plt.legend(loc='center left', title='Legend', bbox_to_anchor=(1, .4))
    else:
    plt.legend().set_visible(False)
```

In [29]: plot_grouped_data(train, 'sex_H', products, title='Purchasing behavior by sex', show_l
 plt.legend(labels=('Male', 'Female'),loc='center left', title='Legend', bbox_to_anchor
 plt.show()


```
In [30]: dummy = train[['sex_H']+products].groupby('sex_H').sum()
  dummy.plot(kind='bar',stacked=True, colormap='rainbow',figsize=(10,5))
  plt.legend(loc='center left', title='Legend Title', bbox_to_anchor=(1, .4))
  plt.title('Product purchases by sex')
  plt.show()
```


In [31]: dummy

savings acct guarantees current acct derivada acct payroll acct payroll acct junior acct ma Out[31]: sex H 497 102 2414549 2336 220587 220587 32881 156 29 2136189 370 157492 157492 30972

- We can see that the bank has more male customers and they have bought more products than female customers
- Male customers have bought most of the products, showing a skewed distribution in the total products bought
- All the products, except derivada account show a relative similar ratio to the amount of
 male anad female customers, showing that it there may not be a product preference when
 it comes to gender, and the difference comes from the number of customers

Analyzing column: Age

```
age_sex = train.groupby('sex_H')['age'].size()
In [32]:
In [33]: bin_edges = np.arange(0, 101, 10)
         labels = [f'{i}-{i+19}' for i in bin_edges[:-1]]
         # Create age groups
         train['age_group'] = pd.cut(train['age'], bins=bin_edges, right=False)
         age_sex_counts = train.groupby(['age_group', 'sex_H']).size().unstack(fill_value=0)
         plt.figure(figsize=(20,6))
         plt.subplot(1,2,1)
         #Age Distribution
         bin_edges = np.arange(0, 101, 10)
         values, bins, bars = plt.hist(train['age'], bins=bin_edges, edgecolor = 'black')
         plt.title('Age Distribution')
         plt.ylabel('Count in millions')
         plt.xlabel('Age')
         plt.xticks(bin_edges, fontsize=8)
         plt.bar_label(bars, fmt='{:,.0f}', fontsize=8)
         #Age distribution by sex
         plt.subplot(1,2,2)
         age_sex_counts.plot(kind='bar', stacked=False, edgecolor='black', ax=plt.gca())
         plt.title('Age distribution by sex')
         plt.show()
         C:\Users\MARIA\AppData\Local\Temp\ipykernel_10476\2932124040.py:6: FutureWarning: The
         default of observed=False is deprecated and will be changed to True in a future versi
         on of pandas. Pass observed=False to retain current behavior or observed=True to adop
         t the future default and silence this warning.
```

age_sex_counts = train.groupby(['age_group', 'sex_H']).size().unstack(fill_value=0)


```
In [34]:
    train['first_contract_age'] = train['age']-(train['seniority_in_months']/12).round()
    test_set['first_contract_age'] = test_set['age']-(test_set['seniority_in_months']/12).
    val_set['first_contract_age'] = val_set['age']-(val_set['seniority_in_months']/12).rou

    bin_edges = np.arange(0, 101, 10)

    plt.figure(figsize=(10,6))
    values, bins, bars = plt.hist(train['first_contract_age'], bins=bin_edges, edgecolor = plt.title('Age of First Contract')
    plt.ylabel('Count in millions')
    plt.ylabel('Count in millions')
    plt.xticks(bin_edges, fontsize=9)
    plt.bar_label(bars, fmt='{:,.0f}', fontsize=8)
    plt.show()
```



```
In [35]: dummy = train.groupby('age_group')[products].sum()
    dummy = (dummy/dummy.sum()).T
    ax = dummy.plot(kind='bar', stacked=True, figsize=(15,6))
    plt.legend(loc='center left', title='Legend Title', bbox_to_anchor=(1, .4))
```

```
plt.title('Age Distribution on Products Purchased')
for container in ax.containers:
    ax.bar_label(container, labels=[f'{v*100:.0f}%' for v in container.datavalues], la
plt.show()
```

C:\Users\MARIA\AppData\Local\Temp\ipykernel_10476\2298204075.py:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future versi on of pandas. Pass observed=False to retain current behavior or observed=True to adop t the future default and silence this warning. dummy = train.groupby('age_group')[products].sum() posx and posy should be finite values posx and posy should be finite values

posx and posy should be finite values posx and posy should be finite values

In [36]: dummy*100

Out[36]:

age_group	[0, 10)	[10, 20)	[20, 30)	[30, 40)	[40, 50)	[50, 60)	[60, 70)	[70,
savings_acct	0.000000	0.000000	0.000000	1.684533	61.255743	28.637060	7.350689	1.07
guarantees	0.000000	0.000000	0.000000	22.137405	68.702290	5.343511	3.816794	0.000
current_acct	0.000308	0.146629	45.165336	13.313117	18.856746	11.248619	5.710774	3.35!
derivada_acct	0.000000	0.000000	0.406504	9.164819	41.537324	25.979305	12.490761	7.132
payroll_acct	0.000794	0.013225	11.077608	23.507614	39.421375	20.851220	4.780080	0.256
payroll_acct	0.000794	0.013225	11.077608	23.507614	39.421375	20.851220	4.780080	0.256
junior_acct	18.365621	81.419824	0.203593	0.010963	0.000000	0.000000	0.000000	0.000
mas_particular_acct	0.000000	0.001529	5.898004	27.604557	33.360349	16.778041	8.792721	4.83!
particular_acct	0.000000	0.000116	1.631293	8.432069	36.683015	23.606139	12.407763	9.352
particular_plus_acct	0.000000	0.000000	1.314570	15.400392	42.404262	23.107702	9.815551	5.029
short_term_depo	0.000000	0.000000	3.218104	20.357106	33.738192	22.474826	11.439842	5.418
medium_term_depo	0.000000	0.000000	0.943306	10.433540	39.704621	26.965222	9.861839	6.03
long_term_depo	0.002441	0.029288	1.452898	9.213196	31.797103	26.340453	14.642302	9.95 ⁻
e_acct	0.000000	0.001221	6.468729	18.178315	35.056398	21.631768	10.439694	5.283
funds	0.000000	0.000000	1.396801	7.243026	30.585020	31.132458	15.803399	8.11!
mortgage	0.022965	0.000000	0.012758	5.368717	54.963001	31.592243	6.825721	1.130
pension	0.000000	0.000000	0.311899	4.785145	37.452124	38.743354	15.499604	2.820
loans	0.000000	0.000000	1.093898	17.993141	39.652318	26.637890	10.873936	2.986
taxes	0.002471	0.027452	3.292100	19.934608	42.919460	21.307506	7.710849	3.213
credit_card	0.000000	0.000000	2.412838	15.439503	42.880297	25.819034	9.300244	3.428
securities	0.000000	0.000000	1.630843	9.710487	39.101229	26.887401	12.601605	6.519
home_acct	0.000000	0.000000	0.058500	19.613120	61.311961	14.617215	2.847003	0.826
payroll_acct	0.000794	0.013225	11.077608	23.507614	39.421375	20.851220	4.780080	0.256
payroll_acct	0.000794	0.013225	11.077608	23.507614	39.421375	20.851220	4.780080	0.256
pensions_2	0.011391	0.047017	10.540258	21.745779	36.794565	19.852018	6.742556	2.868
direct_debt	0.000000	0.000452	11.839415	23.416433	36.291652	18.478117	6.313586	2.469
								•

- There are more male than female customers in all age groups, except 90-100
- There is a large number of young customers, in the 20-30 range and the second largest group of clients are on the 40-50 age range
- Most clients buy their first product when they are in the age group of 20-30
- There is a clear difference in the age group signed up for the junior account -predominantly with clients in the 10-20 age range

• There is a good amount of variety base on age group and products bough. Product dominance usually interchanges between age groups 40-50 and 50-60, followed by 30-40

Analyzing column: New Customers

```
In [37]: print(train['new_cust'].value_counts())
                  plot_grouped_data(train, 'new_cust', products, title='Purchasing behavior of new and of
                  plt.show()
                  new_cust
                           6802900
                             547804
                  Name: count, dtype: int64
                                                            Purchasing behavior of new and old customers
                  0.6
                                                                                                                                                                          Legend
                  0.4
                                                          junior_acct
                                                                                short_term_depo
                                                                                                 e_acct
                                                                                                      funds
                                                                                                                 pension
                                                                                                                            taxes
                                                                                                                                       securities
                                                               mas_particular_acct
                                                                     particular_acct
                                                                           particular_plus_acct
                                                                                                                                                             pensions_2
                                    current_acct
                                          derivada_acct
                                               payroll_acct
                                                     payroll_acct
                                                                                      medium_term_depo
                                                                                           long_term_depo
                                                                                                            nortgage
                                                                                                                                  redit_card
                                                                                                                                             home_acct
                                                                                                                                                  bayroll_acct
                                                                                                                                                        payroll_acct
                                                                                                                                                                   direct_debt
```

- New customers purchase mostly short term deposits and mas particular account
- Very few participation on other products, meaning that few products offered by the bank are actually attracting new customers

Analyzing column: Seniority in Months

```
In [38]: print(train['seniority_in_months'].value_counts().sort_index())
    plot_grouped_data(train, 'seniority_in_months', products, title='Purchasing behavior to plt.show()
```

seniority -999999	_in_months 14
0	94063
1	92587
2	89380
3	89877
4	83933
5	88095
6	79742
7	78786
8	75629
9	73743
10	84822
11	67135
12	104715
13	77327
14	80727
15	77936
16	79900
17	78522
18	75535
19	69870
20	69070
21	81152
22	72686
23	77104
24	80156
25	
	70212
26	73359
27	69215
28	68679
29	66298
30	64299
31	61612
32	58795
33	66440
34	61948
35	63292
36	72391
37	64670
38	66988
39	63180
40	66430
41	64465
42	59939
43	65549
44	63357
45	66941
46	63069
47	58018
48	61523
49	56901
50	57398
51	52852
52	56166
53	54687
54	47683
55	40071
56 57	29713 21359
7 /	/ I 45U

file:///C:/Users/MARIA/OneDrive/Masters/Boston College/Fall24/Applied Analytics Project/santander-product-recommendation/week13.html

F.O.	16200
58	16298
59	12974
60	13024
61	14370
62	15634
63	16812
64	17474
65	16416
66	16553
67	16312
68	15679
69	
	15458
70	14361
71	13742
72	13212
73	11240
74	9303
75	8189
76	8669
77	9933
78	11265
79	11970
80	13870
81	18977
82	18582
83	19809
84	21517
85	21625
86	23286
87	23674
88	24354
89	24172
90	24084
91	23053
92	21143
93	22655
	21445
94	
95	22179
96	23471
97	22999
98	23787
_	
99	21991
100	21904
101	22420
102	24174
103	23195
104	23606
105	24828
106	23070
107	24078
108	24044
109	23321
110	25800
111	24487
112	25124
113	23534
114	24155
115	23606
116	22390
117	25113

118	23720
119	24069
120	23909
121	21769
122	22079
123	21685
124	22688
125	22582
126	22472
127	22844
128	21057
129	20605
130 131	19988 18953
132	20129
133	20129
134	21927
135	19989
136	21220
137	20596
138	21017
139	21041
140	21007
141	21187
142	21096
143	20935
144	21174
145	19819
146	20552
147	19052
148	18944
149	17860
150	18580
151	19034
152	18312
153	19173
154	18096
155	17288
156	20706
157	20008
158	20639
159	23150
160	25172
161 162	26311 30184
163	30692
164	32592
165	36741
166	35882
167	32544
168	35368
169	35445
170	35167
171	33208
172	34128
173	30623
174	29756
175	27290
176	24663
177	24977
Debug / A	/D / 0

178	24083
179	22842
	_
180	23487
181	19984
182	20182
183	17718
184	18458
185	17902
186	17064
187	16536
-	
188	15895
189	15609
190	14152
191	13444
192	13609
193	13955
194	14173
195	13073
196	12389
197	11786
198	12205
199	12872
200	12390
201	13116
202	12436
203	11810
204	11515
205	11408
206	12025
207	11217
208	12166
209	11685
210	11076
211	11517
212	11182
213	10998
214	10945
215	10605
216	10471
217	10199
218	9634
219	
	8549
220	8699
221	8287
222	7526
223	7694
224	7180
225	7630
226	6903
227	6502
228	6709
229	6359
230	6273
231	6467
232	6017
233	5370
234	5515
235	5588
236	F000
	צממר
237	5009 6028

238		5767	
239		5140	
240		5250	
241		5131	
242		4548	
243		4186	
244		3855	
245		3247	
246		2956	
247		2454	
248		1645	
249		1237	
250		1048	
251		718	
252		477	
253		304	
254		186	
255		134	
256		66	
Jame•	count	dtvne.	int6

Name: count, dtype: int64

Cool colors indicate more recent clients and warm colors indicate higher seniority.

For example: 0 months will be purple, converging to blue green, orange and finally red will be 256 months

- Current account, juniour account, mas account and short term account have the newest clients of the bank
- Oldest customers have bought savings, particular_plus account, mortgage, loans and home accounts

Analyzing column: Customer Type

Correcting data type

```
train['cust_type'] = train['cust_type'].astype(str).str.strip()
In [39]:
         test_set['cust_type'] = test_set['cust_type'].astype(str).str.strip()
         val_set['cust_type'] = val_set['cust_type'].astype(str).str.strip()
         train['cust_type'].unique()
         array(['1', '1.0', '0', '3.0', '2', '3', 'P', '2.0', '4.0', '4'],
Out[39]:
               dtype=object)
         cust_type_map = {'0.0': '0', '1.0': '1', '2.0': '2', '3.0': '3', '4.0': '4'}
In [40]:
         train['cust_type'] = train['cust_type'].replace(cust_type_map)
         test_set['cust_type'] = test_set['cust_type'].replace(cust_type_map)
         val_set['cust_type'] = val_set['cust_type'].replace(cust_type_map)
         train['cust_type'] = train['cust_type'].astype(object)
         test_set['cust_type'] = test_set['cust_type'].astype(object)
         val_set['cust_type'] = val_set['cust_type'].astype(object)
         print(train['cust_type'].value_counts())
         print(train['cust_relationship'].value_counts())
         cust_type
             7260501
         1
                85390
         0
         3
                 3040
         2
                  917
                  627
                  229
         Name: count, dtype: int64
         cust_relationship
              4084146
         Ι
              3177272
         Α
         a
                85390
         Ρ
                 3269
                  623
         R
         Name: count, dtype: int64
         Same number of NA (0) for both relationship and customer type
In [41]: na_rel = train[train['cust_type'] == '0']
         na_rel[products].sum().sort_values(ascending=False)
```

```
current acct
                                  48358
Out[41]:
          mas_particular_acct
                                    962
                                    426
          direct_debt
          short_term_depo
                                    377
          junior_acct
                                    307
          pensions_2
                                    302
          payroll acct
                                    297
          payroll_acct
                                    297
          payroll_acct
                                    297
                                    297
          payroll_acct
          long_term_depo
                                    169
                                     49
          e_acct
          securities
                                      15
          taxes
                                      6
                                       5
          funds
          credit_card
                                       2
          pension
                                       1
          derivada_acct
                                       1
                                       0
          medium_term_depo
          guarantees
                                       0
          mortgage
                                       0
          loans
                                       0
                                      0
          home_acct
          particular_plus_acct
                                      0
          particular_acct
                                       0
          savings_acct
                                       0
          dtype: int64
         train['total_products'].groupby(train['cust_type']).sum()
In [42]:
          cust_type
Out[42]:
                  52168
              10578826
          1
          2
                    434
          3
                   1781
          4
                    163
          Ρ
                    411
          Name: total_products, dtype: int64
          dummy = train.groupby('cust_type')[products].sum()
In [43]:
          dummy = (dummy/dummy.sum()).T
          print((dummy*100).round(2))
```

```
3
                                                     Ρ
cust_type
                    0.00
                          100.00
                                 0.00
                                       0.00 0.00
                                                  0.00
savings_acct
                          100.00
guarantees
                    0.00
                                 0.00
                                       0.00
                                             0.00
                                                  0.00
current_acct
                    1.06
                           98.89
                                 0.00
                                       0.03
                                             0.00
                                                  0.01
                           99.96
                                 0.00
                                      0.00 0.00
derivada_acct
                    0.04
                                                  0.00
                           99.92 0.00
payroll_acct
                    0.08
                                      0.00 0.00
                                                  0.00
payroll acct
                    0.08
                           99.92 0.00
                                      0.00 0.00
                                                  0.00
junior_acct
                    0.48
                           99.51
                                 0.00
                                       0.00 0.00
                                                  0.00
                    1.47
                           97.96
                                 0.04
                                       0.42
                                             0.03
                                                  0.07
mas_particular_acct
particular_acct
                    0.00 100.00
                                 0.00 0.00 0.00
                                                  0.00
particular_plus_acct 0.00
                          100.00
                                 0.00 0.00 0.00
                                                  0.00
short_term_depo
                    3.91
                           95.11
                                 0.09
                                      0.67
                                             0.09
                                                  0.11
                    0.00 100.00 0.00 0.00 0.00
                                                  0.00
medium_term_depo
                    0.06
                           99.90 0.03 0.01 0.00
                                                  0.00
long_term_depo
e acct
                    0.01
                           99.99
                                 0.00 0.00 0.00
                                                  0.00
funds
                    0.00
                           99.99
                                 0.00 0.00 0.00
                                                  0.00
                    0.00 100.00 0.00 0.00 0.00
                                                  0.00
mortgage
                    0.00
                           99.97 0.02 0.00 0.00
pension
                                                  0.00
loans
                    0.00
                           99.99 0.01 0.00 0.00
                                                  0.00
                           99.99 0.00 0.01 0.00
taxes
                    0.00
                                                  0.00
                           99.99
                                 0.01 0.00 0.00
credit_card
                    0.00
                                                  0.00
securities
                    0.01
                           99.99
                                 0.00 0.00 0.00
                                                  0.00
home_acct
                    0.00 100.00
                                 0.00 0.00 0.00
                                                  0.00
payroll_acct
                    0.08
                           99.92 0.00 0.00 0.00
                                                  0.00
payroll acct
                    0.08
                           99.92 0.00 0.00 0.00
                                                  0.00
                           99.92 0.00 0.00 0.00 0.00
                    0.07
pensions_2
direct_debt
                    0.05
                           99.95 0.00 0.00 0.00 0.00
```

- Customers with type and relationship missing have bought mostly current account, mas particular account and short term deposit. These are likely new customers
- Customers with type 2, 3 and P have bought mostly mas particular account and short term deposit accounts

Analyzing column: Join Channel

```
In [44]: train['join_channel'].value_counts()
```

join_channel Out[44]: KHE 2095903 KAT 1709503 **KFC** 1655057 KHQ 413265 **KFA** 213305 KHK 137531 KHM128004 other 110709 KHN 79888 KHD 61353 KAS 45889 RED 41080 KAG 38692 KAY 36402 KAA 35588 KAB 33183 KAE 27195 KCC 25857 KHL 24952 KBZ 24655 **KFD** 24092 KAI 20258 KEY 18691 KAW 18073 KAR 17711 KAZ 17615 007 16861 KAF 15964 KCI 14619 013 13763 KAJ 13605 **KCH** 13494 KAH 13086 **KHF** 11475 KAQ 9796 KHC 9096 KAP 8306 KHO 6171 KAM 6106 KAD 5467 KEJ 5200 KGX 5179 **KFP** 5164 KGV 4788 **KFT** 4528 **KDR** 4437 KAL 4202 KB0 4072 KAC 4038 **KBH** 3920 **KFS** 3884 KFJ 3748 KA0 3715 KFG 3692 **KES** 3096 **KFF** 3026 KEW 2951

KCG

KFU

2815

2755

KCD	2742
KCB	2743
KEN	2635
KFN	2483
KGY	2249
KCL	2242
KBQ	2222
KFK	2173
KBF	2134
KFL	2085
KCD	1834
KCM	1773
KBU	1755
KED	1628
KFH	1512
KDU	1461
KDM	1379
KEZ	1269
KEL	1248
KDY	1169
KDS	1165
KDO	1060
KEG	1024
KBR	1008
KDX	989
KDC	877
KBG	865
KCA	832
KEH	800
KBB	726
KAN	704
KDT	693
KBW	673
KCN	635
KCU	629
KDQ	594
•	
KDP	587
KGW	581
KBV	510
KCK	509
KEI	505
KFI	499
KDE	490
KEA	487
KHP	484
KEO	470
KEV	445
KAK	420
KDW	419
KBS	414
KBY	394
KDF	383
KDD	330
KBL	330
KDZ	305
KEK	291
КВЈ	280
KBM	277
KDG	276
KCF	244
KDA	235

```
KDV
                       222
                       217
         KFM
                       210
         KFR
         KEB
                       201
                       191
         KEF
         KCE
                       164
         KFE
                       142
         KCV
                       139
         KEU
                       137
         KCS
                       134
         KBD
                       133
         KAU
                       128
         KCJ
                       118
         KEC
                       113
         004
                       110
         KDN
                       108
         KDH
                       102
                       101
         KCQ
                        98
         KEE
                        94
         KCR
         KCO
                        94
         KEQ
                        83
                        81
         KCP
         K00
                        80
                        70
         KBE
         KCT
                        67
         KFB
                        60
         KAV
                        53
         KBX
                        50
                        45
         KCX
         KBP
                        45
         KBN
                        44
         KFV
                        38
         KEM
                        33
         KHA
                        23
         KGC
                        15
                        15
         KGU
         KDI
                        11
                         7
         025
         KGN
                         7
         KDB
                         7
         KDL
                         6
         KHS
                         4
         KHR
                         1
         Name: count, dtype: int64
         channel = train['join_channel'].value_counts()[:8]
In [45]:
          others = train['join_channel'].value_counts()[8:]
          dummy = train.groupby('join_channel')[products].sum().sum(axis=1)
          dummy = dummy.sort_values(ascending=False)
          plt.figure(figsize=(15,8))
          plt.subplot(1,2,1)
          plt.pie(list(channel)+[others.sum()], labels=list(channel.index)+['Others'], autopct='
          plt.title('Customers who joined through different channels')
          plt.subplot(1,2,2)
          plt.pie(list(dummy.values[:8])+[dummy.values[8:].sum()], labels = list(dummy.index[:8]
          plt.title('Purchases made by customers who joined through different channels')
          plt.show()
```

Purchases made by customers who joined through different channels


```
In [46]: dummy = train.groupby('join_channel')[products].sum()
   dummy = dummy[dummy.index.isin(channel.keys())]
   dummy = (dummy/dummy.sum()).T
   dummy.plot(kind='bar',stacked=True, figsize=(10,4))
   plt.legend(loc='center left', title='Legend Title', bbox_to_anchor=(1, .4))
   plt.title('Purchasing behavior by chennel used to join')
   plt.show()
```


- The 8 top channels used to join the bank make up 88% of the total customers
- When we compare the number of purchases made by clients with to the channel they joined, 7 out of 8 channels are repeated on the number of clients who joined and number of purchases made, with the exception of "others" which were missing values
- Customers who joined through KAT have most purchases
- Customers who joined through KFC have more purchased than KAT on mas particular account and junior account

Analyzing column: Province Name

```
train['province_name'].value_counts().head(10)
In [47]:
         province_name
Out[47]:
         MADRID
                       2374509
         BARCELONA
                        703041
         VALENCIA
                        374474
         SEVILLA
                        321534
         CORUÑA, A
                        229212
         MURCIA
                        213652
         MALAGA
                        194405
         ZARAGOZA
                        184413
         ALICANTE
                        171465
         CADIZ
                        156627
         Name: count, dtype: int64
In [48]: top_province = train['province_name'].value_counts()[:10]
          province_others = train['province_name'].value_counts()[10:]
          dummy = train.groupby('province name')[products].sum().sum(axis=1)
          dummy = dummy.sort_values(ascending=False)
          plt.figure(figsize=(15,8))
          plt.subplot(1,2,1)
          plt.pie(list(dummy.values[:10])+[dummy.values[10:].sum()], labels = list(dummy.index[:
          plt.title('Clients Distribution by Province Name')
          plt.subplot(1,2,2)
          plt.pie(list(top_province)+[province_others.sum()], labels=list(top_province.index)+[
          plt.title('Purchases Made by Province Name')
          plt.show()
```

Clients Distribution by Province Name

Purchases Made by Province Name

MADRID

Others


```
In [49]: dummy = train.groupby('province_name')[products].sum()
   dummy = dummy[dummy.index.isin(top_province.keys())]
   dummy = (dummy/dummy.sum()).T
   dummy.plot(kind='bar',stacked=True, figsize=(10,4))
   plt.legend(loc='center left', title='Legend Title', bbox_to_anchor=(1, .4))
   plt.title('Purchasing Behavior by Province')
   plt.show()
```


- We can see most of the clients are from Madrid, Spain's capital, followed by other cities like Barcelona, Valencia and Sevilla
- The distribution of number products bought is quite similar to the number of clients from each city
- Guarantees account have only Madrid clients
- Clients from Barcelona buys mostly loans and savings account

Analyzing column: Active Customer

```
In [50]: print(train['active_cust'].value_counts())
    plot_grouped_data(train, 'active_cust', products, title='Purchasing Behavior Active/Ir
    plt.show()
    active_cust
    0    4171818
    1    3178886
    Name: count, dtype: int64
```


- There is a lot of inactive customers on the dataset, however all products have more active than inactive customers
- The three products with most inactive customers are savings, current and particular account

Analyzing column: Income

```
In [51]: (train['income'] == 0).sum()
Out[51]: 1566917
In [52]: train.groupby('province_name')['income'].describe().round()
```

Out[52]:

week13

count

mean

	count	mean	sta	mın	25%	50%	75%	max
province_name								
ALAVA	20457.0	131.0	4213.0	0.0	0.0	0.0	0.0	253563.0
ALBACETE	61597.0	70692.0	45598.0	0.0	43643.0	72158.0	97240.0	764582.0
ALICANTE	171465.0	64526.0	142980.0	0.0	0.0	51896.0	86986.0	17804048.0
ALMERIA	32964.0	65368.0	57020.0	0.0	27816.0	61371.0	89659.0	578349.0
ASTURIAS	142752.0	75717.0	86326.0	0.0	0.0	73111.0	103932.0	4950059.0
AVILA	20854.0	60446.0	71181.0	0.0	33132.0	59390.0	82089.0	2768593.0
BADAJOZ	102555.0	56180.0	48798.0	0.0	23238.0	52291.0	79828.0	1103543.0
BALEARS, ILLES	69624.0	94224.0	374586.0	0.0	0.0	63926.0	130273.0	15711716.0
BARCELONA	703041.0	137804.0	151217.0	0.0	67883.0	115102.0	173602.0	5752268.0
BIZKAIA	100358.0	108.0	3775.0	0.0	0.0	0.0	0.0	314612.0
BURGOS	52601.0	80844.0	61975.0	0.0	47858.0	79624.0	113205.0	1785512.0
CACERES	68476.0	58339.0	51377.0	0.0	23851.0	56271.0	83456.0	1309035.0
CADIZ	156627.0	76406.0	87801.0	0.0	28262.0	65821.0	100663.0	3648374.0
CANTABRIA	84616.0	86161.0	98716.0	0.0	0.0	75791.0	116158.0	2276562.0
CASTELLON	56091.0	55684.0	54241.0	0.0	0.0	53309.0	79119.0	668527.0
CEUTA	3972.0	134575.0	274004.0	0.0	0.0	94871.0	146605.0	4082464.0
CIUDAD REAL	64483.0	58405.0	47191.0	0.0	33792.0	56022.0	78055.0	952513.0
CORDOBA	76747.0	67244.0	66935.0	0.0	28706.0	57136.0	93708.0	1496216.0
CORUÑA, A	229212.0	81233.0	83420.0	0.0	0.0	75812.0	117519.0	2564976.0
CUENCA	30268.0	53501.0	42794.0	0.0	18973.0	52647.0	82947.0	408454.0
GIPUZKOA	38757.0	215.0	7519.0	0.0	0.0	0.0	0.0	387346.0
GIRONA	49837.0	109189.0	177798.0	0.0	25991.0	87371.0	139741.0	6209401.0
GRANADA	96880.0	74024.0	94424.0	0.0	30785.0	70502.0	100516.0	4750243.0
GUADALAJARA	36140.0	75195.0	53215.0	0.0	43403.0	80531.0	107672.0	780996.0
HUELVA	64318.0	62350.0	55401.0	0.0	35781.0	60678.0	84070.0	1998667.0
HUESCA	21879.0	65937.0	85482.0	0.0	0.0	61538.0	87741.0	1137835.0
JAEN	34919.0	61626.0	50328.0	0.0	31581.0	58351.0	84452.0	553668.0
LEON	45011.0	74643.0	74316.0	0.0	38392.0	69489.0	101896.0	1985134.0
LERIDA	43435.0	62368.0	74555.0	0.0	25640.0	54210.0	81420.0	3587378.0
LUGO	45155.0	50604.0	54113.0	0.0	0.0	50083.0	72527.0	1126464.0
MADRID	2374509.0	156846.0	321263.0	0.0	72767.0	125063.0	192981.0	28894396.0
MALAGA	194405.0	93902.0	214666.0	0.0	37794.0	78490.0	120392.0	13268621.0
MELILLA	5095.0	115516.0	171526.0	0.0	56451.0	105855.0	142519.0	1959779.0

std min

50%

75%

max

25%

	count	mean	std	min	25%	50%	75%	max
province_name								
MURCIA	213652.0	56037.0	56010.0	0.0	0.0	54829.0	79338.0	3587378.0
NAVARRA	47904.0	134.0	4501.0	0.0	0.0	0.0	0.0	386063.0
OURENSE	44335.0	56336.0	49925.0	0.0	0.0	60140.0	89073.0	686178.0
PALENCIA	26318.0	75120.0	60033.0	0.0	43643.0	79110.0	101424.0	833481.0
PALMAS, LAS	127163.0	73423.0	154835.0	0.0	0.0	63089.0	102447.0	15957372.0
PONTEVEDRA	149868.0	79717.0	85757.0	0.0	0.0	80610.0	110670.0	2570185.0
RIOJA, LA	45990.0	86168.0	55710.0	0.0	55381.0	81180.0	116361.0	473760.0
SALAMANCA	87769.0	83510.0	176843.0	0.0	38832.0	79315.0	107378.0	5431378.0
SANTA CRUZ DE TENERIFE	39041.0	71659.0	93011.0	0.0	0.0	64234.0	98719.0	3080266.0
SEGOVIA	23098.0	77486.0	65448.0	0.0	37791.0	76568.0	109413.0	850010.0
SEVILLA	321534.0	98582.0	157131.0	0.0	45688.0	81395.0	123000.0	11341152.0
SORIA	9606.0	65102.0	53356.0	0.0	0.0	68271.0	90195.0	423132.0
TARRAGONA	56705.0	71530.0	90800.0	0.0	0.0	62710.0	103124.0	2563288.0
TERUEL	12090.0	63734.0	61455.0	0.0	0.0	61625.0	92906.0	933320.0
TOLEDO	99449.0	64688.0	67848.0	0.0	32230.0	58816.0	86453.0	3988595.0
VALENCIA	374474.0	71623.0	147717.0	0.0	33919.0	62379.0	94880.0	25547252.0
VALLADOLID	127977.0	90180.0	63615.0	0.0	56373.0	86319.0	116795.0	2257086.0
ZAMORA	27245.0	61070.0	83727.0	0.0	0.0	61911.0	86200.0	1536265.0
ZARAGOZA	184413.0	93023.0	107493.0	0.0	49078.0	87634.0	123219.0	8516913.0
other	32973.0	777.0	15372.0	0.0	0.0	0.0	0.0	725642.0

- Median income of the customers of all the products is almost same
- We can see gross house hold income of Ceuta is the highest

```
In [53]:
    segmentation = train['segment'].value_counts()
    seg_products = train.groupby('segment')['total_products'].sum()
    seg_products = (seg_products/seg_products.sum())*100
    seg_products

plt.figure(figsize=(15,8))
    plt.subplot(1,2,1)
    plt.pie(segmentation, labels=segmentation.keys(), autopct='%1.2f%%')
    plt.title('Segmentation Distribution')
    plt.subplot(1,2,2)
    plt.pie(seg_products, labels=seg_products.index, autopct='%1.2f%%')
    plt.title('Purchasing Behavior by Segmentation')
    plt.show()
```


In [54]: print(train['segment'].value_counts())
 plot_grouped_data(train, 'segment', products, title='Purchasing Behavior by Segment',
 plt.show()
 segment

 02 - PARTICULARES
 4293981

 03 - UNIVERSITARIO
 2659297

 01 - TOP
 284472

 0
 112954

Name: count, dtype: int64

- Most customers are from segment #2 Particulares
- The count of clients on each segment is corrrelated with the products the customers of that segments have bought
- All the customers who have bought juniour account belong to segment 02

Count of All Products Sold

```
In [55]: ax = train[products].sum().plot(kind='bar', figsize=(15, 5), fontsize=12)
plt.title('Graph of count of all the products sold')
for container in ax.containers:
    ax.bar_label(container, fmt='{:,.0f}')
# plt.xticks(rotation = 45)
plt.show()
```


- Current account, particular, direct debit and e_account are the most popular accounts.
- Savings account, guarentees, derivada account, short and medium term deposits are the least popular accounts

Make Data Model Ready

```
In [56]: train = train.rename(columns={'sex_H': 'female'})
   val_set = val_set.rename(columns={'sex_H': 'female'})
   test_set = test_set.rename(columns={'sex_H': 'female'})
```

Data Processing

The first problem we identified was: Non-primary and deceased are only 0.2% of the dataset which imbalances the dataset and may not produce significant results, so we decided to drop them.

In addition to that, since we will be working only with primary customers, the column last_date_primary is not helpful anymore, so we will drop it as well.

```
In [57]: #Dropping rows with primary_cust == 99
    train = train[train['primary_cust'] != 99]
    test_set = test_set[test_set['primary_cust'] != 99]
    val_set = val_set[val_set['primary_cust'] != 99]
    print((train['primary_cust'] == 99).value_counts())
```

```
primary_cust
False 7336142
Name: count, dtype: int64
```

Deceased clients have a few products, but they are not going to buy any more products -which is not valuable to our ultimate goal of predicting which products clients will buy, so we will drop the rows of deceased clients and drop the column

```
In [58]: #Dropping rows with deceased == 1
         # train = train[train['deceased'] == 0]
         # test_set = test_set[test_set['deceased'] == 0]
         # val_set = val_set[val_set['deceased'] == 0]
         print((train['deceased'] == 1).value_counts())
         print((test_set['deceased'] == 1).value_counts())
         print((val_set['deceased'] == 1).value_counts())
         deceased
         False
                  7336142
         Name: count, dtype: int64
         deceased
         False
                  1571978
         Name: count, dtype: int64
         deceased
         False
                  1572033
         Name: count, dtype: int64
```

We will drop columns where age is 0 and over 100. We believe these clients are not going to be valuable on our model

We will drop the rows on column seniority_in_months with values -999999 and null values under province_name (that were previously filled up with 'other') since those variables cause some noise on the data

```
In [61]: train = train[train['seniority_in_months'] != -9999999]
    train = train[train['province_name'] != 'other']

test_set = test_set[test_set['seniority_in_months'] != -9999999]
    test_set = test_set[test_set['province_name'] != 'other']
```

```
val_set = val_set['seniority_in_months'] != -9999999]
val_set = val_set[val_set['province_name'] != 'other']
```

We had the impression the columns seniority in months and first contract date were giving us the same information and we decided to check the correlation. Turns out it is highly correlated, so we'll keep the column seniority in months.

```
In [62]: correlation = train[['seniority_in_months', 'first_contract_date']].corr()
    correlation
```

Out[62]: seniority_in_months first_contract_date

seniority_in_months	1.000000	-0.965954
first_contract_date	-0.965954	1.000000

Dropping primary_customer, last_date_primary, deceased and first_contract_date columns since after cleaning the dataset, they do not provide any additional information

True 1523888 Name: count, dtype: int64

There is a lot of missing values for the income variable. We checked if it makes sense for us to fill those missing incomes with the median income per province, however we still got too many null values, so we will drop the income = 0 rows

```
In [65]: train = train[train['income'] != 0]
    test_set = test_set[test_set['income'] != 0]
    val_set = val_set[val_set['income'] != 0]

    print(train.shape)
    print(test_set.shape)
    print(val_set.shape)

    (5772084, 44)
    (1236744, 43)
    (1236546, 43)

In [66]: train.isnull().sum()
```

```
date
Out[66]:
                                     0
         customer_code
         employee_index
                                     0
                                     0
         country
         female
                                     0
                                     0
         age
         new cust
                                     0
         seniority_in_months
                                     0
                                     0
         cust_type
                                     0
         cust_relationship
         residency_spain
                                     0
         birth_spain
                                     0
                                     0
         join_channel
                                     0
         province_name
         active cust
                                     0
                                     0
         income
         segment
                                     0
                                     0
         savings_acct
         guarantees
                                     0
         current acct
                                     0
         derivada_acct
                                     0
         payroll_acct
                                     0
                                     0
         junior_acct
                                     0
         mas_particular_acct
         particular_acct
                                     0
                                     0
         particular_plus_acct
         short_term_depo
                                     0
                                     0
         medium_term_depo
         long_term_depo
                                     0
         e acct
                                     0
         funds
                                     0
         mortgage
                                     0
                                     0
         pension
                                     0
         loans
         taxes
                                     0
                                     0
         credit_card
         securities
                                     0
         home acct
                                     0
         payroll_acct
                                     0
         pensions_2
                                     0
                                     0
         direct_debt
         total_products
                                     0
         age_group
                                  1426
         first_contract_age
                                     0
         dtype: int64
In [67]: # Checking unique variables for cust_type
          print(train['cust_type'].unique())
          print(train['cust_type'].isna().sum())
         ['1' '0' '2' '3' 'P' '4']
        # Fixing cust_type variables so they are consistent across rows
In [68]:
         train['cust_type'] = train['cust_type'].astype(str).str.strip()
          cust_type_map = {'0.0': '0', '1.0': '1', '2.0': '2', '3.0': '3', '4.0': '4'}
          train['cust_type'] = train['cust_type'].replace(cust_type_map)
          test_set['cust_type'] = test_set['cust_type'].astype(str).str.strip()
          test_set['cust_type'] = test_set['cust_type'].replace(cust_type_map)
```

```
val_set['cust_type'] = val_set['cust_type'].astype(str).str.strip()
          val_set['cust_type'] = val_set['cust_type'].replace(cust_type_map)
          train['cust_type'] = train['cust_type'].astype(object)
          test_set['cust_type'] = test_set['cust_type'].astype(object)
          val_set['cust_type'] = val_set['cust_type'].astype(object)
          print(train['cust_type'].value_counts())
          print(train['cust_relationship'].value_counts())
          cust_type
                5748876
          1
                  22238
          0
          3
                    642
          2
                    165
          Ρ
                    122
                     41
          Name: count, dtype: int64
          cust_relationship
          Ι
                3202187
                2546854
          Α
          0
                  22238
          Ρ
                    683
          R
                    122
          Name: count, dtype: int64
          train.describe().round(2)
In [69]:
          #Check for 0s, outliers - that are too different from the 4th quartile
Out[69]:
                                                                new_cust seniority_in_months active_cust
                              date customer code
                                                         age
          count
                           5772084
                                        5772084.00 5772084.00 5772084.00
                                                                                  5772084.00
                                                                                             5772084.00
                                                                                                          5
                        2015-12-16
                                         811258.77
                                                        40.77
                                                                    0.03
                                                                                       83.32
                                                                                                    0.44
          mean
                  16:01:43.477912832
                        2015-06-28
                                                                    0.00
                                                                                        0.00
                                                                                                   0.00
            min
                                         15889.00
                                                         2.00
                           00:00:00
                        2015-09-28
            25%
                                         435897.50
                                                        25.00
                                                                    0.00
                                                                                       26.00
                                                                                                    0.00
                           00:00:00
                        2015-12-28
            50%
                                                                    0.00
                                                                                       54.00
                                                                                                   0.00
                                         907045.00
                                                        40.00
                           00:00:00
                        2016-03-28
            75%
                                        1180245.00
                                                        51.00
                                                                    0.00
                                                                                      140.00
                                                                                                    1.00
                           00:00:00
                        2016-05-28
                                        1454620.00
                                                       100.00
                                                                    1.00
                                                                                      256.00
                                                                                                    1.00
                                                                                                         28
            max
                           00:00:00
                                         424061.32
                                                        17.18
                                                                    0.18
                                                                                       66.35
                                                                                                   0.50
             std
                              NaN
```

Plotting outliers

```
In [70]: # Create a variable with numerical columns to plot them easier
numeric_col = train.select_dtypes(include=['int', 'float']).columns.tolist()
```

```
numeric col = [col for col in numeric col if col not in products]
          numeric col
         ['customer_code',
Out[70]:
           'age',
          'new_cust',
           'seniority_in_months',
           'active_cust',
          'income',
           'total products',
           'first_contract_age']
In [71]: # dummy = pd.DataFrame(columns=['age', 'seniority_in_months', 'income', 'product'])
         # for col in products:
               df = pd.DataFrame({
                    'age': train.age[train[col] == 1],
          #
                    'seniority_in_months': train.seniority_in_months[train[col] == 1],
         #
                    'income': np.log1p(train.income[train[col] == 1]),
          #
          #
                    'product': col
               })
         # dummy = pd.concat([dummy, df], ignore_index=True)
In [72]: # plt.figure(figsize=(15, 18))
         # # Plot for Age
         # plt.subplot(3, 1, 1)
         # sns.boxplot(data=dummy, x='product', y='age', palette='rainbow')
         # plt.title('Distribution of Age by Product')
         # plt.xticks(rotation=90)
         # # Plot for Seniority in Months
         # plt.subplot(3, 1, 2)
         # sns.boxplot(data=dummy, x='product', y='seniority_in_months', palette='rainbow')
          # plt.title('Distribution of Seniority in Months by Product')
         # plt.xticks(rotation=90)
         # # Plot for Income
         # plt.subplot(3, 1, 3)
         # sns.boxplot(data=dummy, x='product', y='income', palette='rainbow')
         # plt.title('Distribution of Log Income by Product')
         # plt.xticks(rotation=90)
          # plt.tight_layout()
         # plt.show()
In [73]: plt.hist(np.log(train['income']), bins=20, edgecolor='black')
         plt.title('Income (log) Distribution')
         Text(0.5, 1.0, 'Income (log) Distribution')
Out[73]:
```



```
In [74]: plt.hist(train['age'], bins=20, edgecolor='black')
    plt.title('Age Distribution')
```

Out[74]: Text(0.5, 1.0, 'Age Distribution')

Transform categorical variables with label encoder to plot correlation. This will not be a final transformation, it is just to detect correlation

There are two correlations that draw attention to us. The first one is active_cust and cust_relationship, which is 0.81. The second one is payroll_acct and payroll_acct.1 which is 1. They will both be dropped, the payroll_acct.1 gives us the same information as the payroll_acct and we believe that having such a high correlation between active_cust and cust_relationship would hinder our model

Dealing with the categorical values

Since most of the data is from clients that comes from Spain, we will combine non-spanish clients into an "others" group so we will have only two variables: ES and others. After that we will transform the column in a dummy variable for Spain.

```
In [77]: train['country'] = np.where(train['country'] == 'ES', 1, 0)
  test_set['country'] = np.where(test_set['country'] == 'ES', 1, 0)
  val_set['country'] = np.where(val_set['country'] == 'ES', 1, 0)
```

We will transform the segment column using get_dummies to create two different binary columns for the variables

```
In [78]: segment_dummy = pd.get_dummies(train['segment'],drop_first=True)
    train = pd.concat([train, segment_dummy], axis=1)

segment_dummy_test = pd.get_dummies(test_set['segment'],drop_first=True)
    test_set = pd.concat([test_set, segment_dummy_test], axis=1)

segment_dummy_val = pd.get_dummies(val_set['segment'],drop_first=True)
    val_set = pd.concat([val_set, segment_dummy_val], axis=1)
```

Since total_products is a continuous variable representing how many products each customer has purchased, we will use it as a target for encoding the categorical variables join_channel and province_name, since those have many different variables. We chose target encoding because we would have a dimensionality problem if we chose to transform each variable in a dummy column, and we did not want to use label encoder since it is not an ordinal variable

```
target_encoder = ce.TargetEncoder(cols=['join_channel', 'province_name', 'employee_ind
In [79]:
         train[['join_channel_encoded', 'province_name_encoded', 'employee_index_encoded']] = t
              train[['join_channel', 'province_name', 'employee_index']], train['total_products'
         # Apply the same transformation to the test and validation set (use transform, not fit
         test_set[['join_channel_encoded', 'province_name_encoded', 'employee_index_encoded']]
              test_set[['join_channel', 'province_name', 'employee_index']])
         val_set[['join_channel_encoded', 'province_name_encoded', 'employee_index_encoded']] =
              val_set[['join_channel', 'province_name', 'employee_index']])
         # You can now inspect the transformed columns in test and val_set
         print(test_set[['join_channel', 'province_name', 'join_channel_encoded', 'province_name')
         print(val_set[['join_channel', 'province_name', 'join_channel_encoded', 'province_name')
          print(train[['join_channel', 'province_name', 'join_channel_encoded', 'province_name_e
                 join_channel province_name join_channel_encoded \
         70935
                          KAT
                                  TARRAGONA
                                                          2.131292
         90608
                                  CORUÑA, A
                                                          0.909825
                          KHE
         286157
                          KHK
                                     MALAGA
                                                          1.268794
         361018
                          KHQ
                                     BURGOS
                                                          0.868212
         13108
                                  CASTELLON
                                                          0.909825
                          KHE
                                         employee_index_encoded
                  province_name_encoded
         70935
                               1.257727
                                                        1.519747
         90608
                               1.189736
                                                        1.519747
         286157
                               1.358065
                                                        1.519747
         361018
                               1.302032
                                                        1.519747
         13108
                               1.302684
                                                        1.519747
                 join_channel province_name join_channel_encoded
         218355
                                                          2.191395
                          KAF
                                    SEVILLA
         255866
                          KAT
                                     MADRID
                                                          2.131292
         117532
                          KHE
                                   ZARAGOZA
                                                          0.909825
         280037
                          KAT
                                     MADRID
                                                          2.131292
         19770
                          KFC
                                                          1.705759
                                   VALENCIA
                  province_name_encoded
                                         employee_index_encoded
         218355
                               1.491526
                                                        1.519747
         255866
                               1.922745
                                                        1.519747
         117532
                               1.273754
                                                        1.519747
         280037
                               1.922745
                                                        1.519747
         19770
                               1.319347
                                                        1.519747
                 join_channel province_name join_channel_encoded
         207640
                                                          0.909825
                          KHE
                                     MADRID
         116039
                          KHE
                                  BARCELONA
                                                          0.909825
         300836
                          KFC
                                  BARCELONA
                                                          1.705759
         361717
                          KFC
                                  VALENCIA
                                                          1.705759
         102962
                          KHE
                                  BARCELONA
                                                          0.909825
                  province_name_encoded
                                         employee_index_encoded
         207640
                               1.922745
                                                        1.519747
         116039
                               1.268091
                                                        1.519747
         300836
                               1.268091
                                                        1.519747
         361717
                               1.319347
                                                        1.519747
         102962
                               1.268091
                                                        1.519747
In [80]: train['cust_type'] = train['cust_type'].replace({"P": 5})
         train['cust_type'] = train['cust_type'].astype(int)
```

```
test_set['cust_type'] = test_set['cust_type'].replace({"P": 5})
test_set['cust_type'] = test_set['cust_type'].astype(int)

val_set['cust_type'] = val_set['cust_type'].replace({"P": 5})
val_set['cust_type'] = val_set['cust_type'].astype(int)
```

Normalization/Standartization of data

We will normalize data for age and seniority in months since it is not normally distributed We will standardize income since its log is normally distributed

```
# Normalize using MinMaxScaler on training data
In [81]:
         cols_to_normalize = ['age', 'seniority_in_months']
         min_max_scaler = MinMaxScaler(feature_range=(0, 1))
         train[cols_to_normalize] = min_max_scaler.fit_transform(train[cols_to_normalize])
         # Apply the fitted MinMaxScaler to test and validation sets
         test_set[cols_to_normalize] = min_max_scaler.transform(test_set[cols_to_normalize])
         val set[cols to normalize] = min max scaler.transform(val set[cols to normalize])
         # Standardize using StandardScaler on training data
         cols_to_standardize = ['income']
         standard scaler = StandardScaler()
         train[cols to standardize] = standard scaler.fit transform(train[cols to standardize])
         # Apply the fitted StandardScaler to test and validation sets
         test_set[cols_to_standardize] = standard_scaler.transform(test_set[cols_to_standardize
         val_set[cols_to_standardize] = standard_scaler.transform(val_set[cols_to_standardize])
         # Output results to verify
         print("Training data (normalized):\n", train[cols_to_normalize].head())
         print("Training data (standardized):\n", train[cols_to_standardize].head())
         print("Test data (normalized):\n", test_set[cols_to_normalize].head())
         print("Test data (standardized):\n", test_set[cols_to_standardize].head())
         print("Validation data (normalized):\n", val_set[cols_to_normalize].head())
         print("Validation data (standardized):\n", val set[cols to standardize].head())
```

```
Training data (normalized):
             age seniority_in_months
                            0.070312
207640 0.234694
116039 0.234694
                            0.140625
300836 0.306122
                            0.300781
361717 0.489796
                            0.644531
102962 0.224490
                            0.210938
Training data (standardized):
           income
207640 2.498775
116039 -0.208421
300836 -0.292548
361717 -0.209325
102962 0.419622
Test data (normalized):
             age seniority_in_months
70935
       0.734694
                           0.785156
90608 0.214286
                            0.113281
286157 0.244898
                            0.011719
361018 0.183673
                            0.023438
13108 0.234694
                            0.156250
Test data (standardized):
          income
70935 -0.374282
90608 -0.171172
286157 -0.358730
361018 -0.094848
13108 -0.354137
Validation data (normalized):
             age seniority_in_months
218355 0.418367
                            0.527344
255866 0.377551
                            0.484375
117532 0.234694
                            0.199219
280037 0.755102
                            0.902344
19770
       0.540816
                            0.363281
Validation data (standardized):
          income
218355 -0.364616
255866 -0.004342
117532 -0.309610
280037 0.423733
19770 0.083943
```

Feature Engineering

```
In [82]: # Convert all boolean columns (True/False) to integers (1/0)
    train = train.map(lambda x: int(x) if isinstance(x, bool) else x)

In [83]: test_set = test_set.map(lambda x: int(x) if isinstance(x, bool) else x)

In [84]: val_set = val_set.map(lambda x: int(x) if isinstance(x, bool) else x)

In [85]: # Display the first few rows to check the changes
    print(train.head())
    print(test_set.head())
    print(val_set.head())
```

```
date customer code employee index country female
207640 2016-04-28
                         1334092
                                               Ν
                                                        1
                                                               0 0.234694
116039 2015-07-28
                         1024586
                                               Ν
                                                        1
                                                               0 0.234694
300836 2016-04-28
                          856204
                                               Ν
                                                               0 0.306122
361717 2015-08-28
                          295807
                                                               0 0.489796
                                               Ν
                                                        1
102962 2016-03-28
                          942624
                                                               1 0.224490
        new_cust seniority_in_months cust_type cust_relationship
207640
                             0.070312
                                                1
                                                                   Ι
               0
                                                1
116039
                             0.140625
                                                                  Α
300836
               0
                             0.300781
                                                1
                                                                  Т
361717
               0
                             0.644531
                                                1
                                                                  Α
                             0.210938
                                                1
                                                                   Ι
102962
       residency_spain birth_spain join_channel province_name active_cust
207640
                     1
                                 0
                                             KHE
                                                        MADRID
116039
                     1
                                 0
                                             KHE
                                                     BARCELONA
                                                                           1
300836
                                             KFC
                                                                           0
                     1
                                 0
                                                     BARCELONA
361717
                     1
                                  0
                                             KFC
                                                      VALENCIA
                                                                           1
                                             KHE
102962
                                                     BARCELONA
                             segment savings_acct guarantees current_acct
207640 2.498775 03 - UNIVERSITARIO
                                                  0
116039 -0.208421 03 - UNIVERSITARIO
                                                  0
                                                              0
                                                                             1
300836 -0.292548
                  02 - PARTICULARES
                                                  0
                                                              0
                                                                             1
361717 -0.209325
                   02 - PARTICULARES
                                                              0
                                                                             1
                                                  0
102962 0.419622 03 - UNIVERSITARIO
        derivada acct
                       payroll_acct junior_acct mas_particular_acct
207640
                                  0
                                                0
116039
                    0
                                  0
                                                0
                                                                      0
300836
                    0
                                  0
                                                0
                                                                      0
                                                0
361717
                    0
                                  0
                                                                      0
102962
                                  0
        particular_acct particular_plus_acct
                                                short term depo
207640
                      0
116039
                      0
                                             0
                                                              0
                                             0
300836
                      0
                                                              0
361717
                      0
                                             0
102962
        medium_term_depo
                          long_term_depo e_acct funds
                                                          mortgage
                                                0
207640
                       0
                                        0
116039
                       0
                                        0
                                                0
                                                       0
                                                                  0
                                                                           0
                       0
                                        0
                                                0
                                                                           0
300836
                                                       0
361717
                       0
                                        0
                                                0
                                                       0
                                                                  0
102962
        loans
               taxes credit_card securities home_acct
                                                           payroll_acct
207640
                                0
                                             0
                                                        0
116039
            0
                   0
                                0
                                             0
                                                        0
                                                                       0
300836
                   0
                                0
                                             0
                                                                       0
361717
            0
                   0
                                0
                                             0
                                                        0
                                                                       0
102962
        pensions_2 direct_debt total_products age_group first_contract_age \
                                               1 [20, 30)
                 0
                              0
207640
                                                                           23.0
                              0
116039
                                               1 [20, 30)
                                                                           22.0
300836
                 0
                              0
                                               1 [30, 40)
                                                                           26.0
```

```
361717
                                              1 [50, 60)
                                                                         36.0
102962
                                              0 [20, 30)
                 0
                              0
                                                                         20.0
        01 - TOP 02 - PARTICULARES 03 - UNIVERSITARIO join channel encoded
                                                                     0.909825
207640
                                  0
                                                      1
116039
               0
                                  0
                                                      1
                                                                     0.909825
300836
               0
                                  1
                                                      0
                                                                     1.705759
361717
               0
                                  1
                                                      0
                                                                     1.705759
102962
               0
                                                      1
                                                                     0.909825
        province_name_encoded employee_index_encoded
207640
                     1.922745
                                             1.519747
116039
                     1.268091
                                             1.519747
300836
                     1.268091
                                             1.519747
361717
                     1.319347
                                             1.519747
102962
                     1.268091
                                             1.519747
             date customer_code employee_index country female
70935 2015-06-28
                          49335
                                              Ν
                                                       1
                                                              1 0.734694
90608 2016-02-28
                         1174349
                                              Ν
                                                       1
                                                              0 0.214286
286157 2015-07-28
                         1393286
                                                       1
                                                              0 0.244898
                                              Ν
361018 2016-03-28
                         1454346
                                                       1
                                                              0 0.183673
                                              Ν
13108 2016-02-28
                         1074431
                                              Ν
                                                              0 0.234694
        new_cust seniority_in_months cust_type cust_relationship \
70935
                             0.785156
                                               1
                                               1
                                                                 Т
90608
               0
                             0.113281
286157
               1
                             0.011719
                                               1
                                                                 Α
361018
               0
                             0.023438
                                               1
                                                                 Α
13108
                             0.156250
       residency_spain birth_spain join_channel province_name active_cust \
70935
                     1
                                 0
                                            KAT
                                                    TARRAGONA
90608
                     1
                                 0
                                            KHE
                                                    CORUÑA, A
                                                                         0
286157
                     1
                                 0
                                            KHK
                                                       MALAGA
                                                                         1
361018
                                 0
                                            KHO
                                                       BURGOS
13108
                                            KHE
                                                    CASTELLON
                             segment savings acct guarantees current acct
          income
70935 -0.374282 02 - PARTICULARES
                                                 0
                                                             0
90608 -0.171172 03 - UNIVERSITARIO
                                                 0
                                                             0
                                                                           1
286157 -0.358730 03 - UNIVERSITARIO
                                                 0
                                                             0
                                                                           1
361018 -0.094848 03 - UNIVERSITARIO
                                                 0
                                                                           1
13108 -0.354137 03 - UNIVERSITARIO
        derivada acct
                       payroll_acct junior_acct mas_particular_acct \
70935
                    0
                                  0
                                               0
90608
                    0
                                  0
                                               0
                                                                    0
286157
                    0
                                  0
                                               0
                                                                    0
                                               0
                    0
                                  0
                                                                    0
361018
13108
        particular_acct particular_plus_acct short_term_depo \
70935
                                            0
90608
                      0
                                                             0
286157
                      0
                                            0
                                                             0
361018
                      0
                                            0
                      0
13108
                                            0
        medium term depo
                          long_term_depo e_acct
                                                 funds
                                                         mortgage
70935
```

```
90608
                        0
286157
                        0
                                         0
                                                  0
                                                          0
                                                                              0
                                                                     0
361018
                        0
                                         0
                                                  0
                                                          0
                                                                     0
                                                                              0
13108
                        0
                                         0
                                                  0
                                                          0
                                                                              0
                       credit card
                                     securities
                                                  home acct
                                                              payroll acct
        loans
                taxes
70935
            0
                    0
                                  0
                                               0
                                                           0
90608
            0
                    0
                                  0
                                               0
                                                           0
                                                                          0
286157
            0
                    0
                                  0
                                               0
                                                           0
                                                                          0
                                  0
                                               0
                                                           0
                                                                          0
            0
                    0
361018
13108
            0
                    0
                                  0
                                               0
                                                           0
                                                                          0
                     direct_debt
                                  total_products
                                                    first_contract_age
        pensions_2
70935
                  0
                                                 2
                                                                   57.0
90608
                  0
                                0
                                                 1
                                                                   21.0
                                                                                 0
                  0
                                0
                                                 1
                                                                   26.0
                                                                                 0
286157
361018
                  0
                                0
                                                 1
                                                                   20.0
                                                                                 0
                                0
                                                                   22.0
                                                                                 0
13108
                  0
        02 - PARTICULARES
                            03 - UNIVERSITARIO
                                                  join channel encoded
70935
                                               0
                                                               2.131292
                         1
90608
                         0
                                               1
                                                               0.909825
                         0
                                               1
286157
                                                               1.268794
361018
                         0
                                               1
                                                               0.868212
                         0
                                               1
13108
                                                               0.909825
        province_name_encoded
                                 employee_index_encoded
70935
                      1.257727
                                                1.519747
90608
                      1.189736
                                                1.519747
286157
                      1.358065
                                                1.519747
361018
                      1.302032
                                                1.519747
13108
                      1.302684
                                                1.519747
              date
                   customer code employee index
                                                    country female
                                                                           age
218355 2015-12-28
                           487783
                                                           1
                                                 Ν
                                                                  1
                                                                     0.418367
255866 2016-01-28
                           556611
                                                 Ν
                                                           1
                                                                  0
                                                                     0.377551
117532 2015-11-28
                           929949
                                                 Ν
                                                           1
                                                                     0.234694
280037 2015-10-28
                            44208
                                                 Ν
                                                           1
                                                                     0.755102
19770 2015-10-28
                           745042
                                                 Ν
                                                           1
                                                                     0.540816
        new cust
                   seniority_in_months cust_type cust_relationship
218355
                0
                                                  1
                               0.527344
                                                                      Α
                0
                                                  1
255866
                               0.484375
                                                                     Α
117532
                0
                               0.199219
                                                  1
                                                                     Ι
                0
                                                  1
280037
                               0.902344
                                                                      Α
19770
                               0.363281
                                                  1
                                                                     Α
       residency_spain birth_spain join_channel province_name
                                                                   active cust
218355
                                   0
                                               KAF
                                                          SEVILLA
                      1
255866
                      1
                                   0
                                                                              1
                                               KAT
                                                           MADRID
117532
                      1
                                   0
                                               KHE
                                                         ZARAGOZA
                                                                              0
280037
                      1
                                   0
                                               KAT
                                                           MADRID
                                                                              1
19770
                                   0
                                               KFC
                                                         VALENCIA
                                                                              1
          income
                               segment
                                        savings_acct
                                                        guarantees
                                                                     current acct
218355 -0.364616
                    02 - PARTICULARES
                                                    0
                                                                 0
                                                                                0
255866 -0.004342
                    02 - PARTICULARES
                                                    0
                                                                 0
                                                                                1
                   03 - UNIVERSITARIO
                                                                 0
117532 -0.309610
                                                    0
                                                                                1
                    02 - PARTICULARES
                                                    0
                                                                 0
                                                                                0
280037 0.423733
19770
        0.083943
                    02 - PARTICULARES
                                                                                1
```

```
mas_particular_acct
                   derivada acct
                                   payroll_acct
                                                  junior_acct
                                                             0
          218355
                               0
                                                                                    0
          255866
                               0
                                               0
                                                             0
                                                                                    0
          117532
                                0
                                               0
                                                             0
                                                                                    0
                                               0
                                                             0
                                                                                    0
          280037
                               0
          19770
                                0
                                               0
                                                             0
                                                                                    0
                   particular_acct
                                     particular_plus_acct
                                                             short_term_depo
          218355
                                  0
          255866
                                                          1
                                                                            0
          117532
                                  0
                                                          0
                                                                            0
          280037
                                  0
                                                          0
                                                                            0
                                  0
                                                          0
                                                                            0
          19770
                   medium term depo
                                      long term depo
                                                      e acct
                                                                funds
                                                                        mortgage
          218355
                                   0
                                                    0
                                                             0
                                                                     0
                                                                               1
                                                                                         0
          255866
                                   0
                                                    1
                                                             0
                                                                     0
                                                                               0
                                                                                         0
          117532
                                   0
                                                    0
                                                             0
                                                                     0
                                                                               0
                                                                                         0
                                                    0
          280037
                                   0
                                                             1
                                                                     0
                                                                               0
                                                                                         0
                                                    0
                                                             0
                                                                     0
                                                                                         0
          19770
                                   0
                   loans
                          taxes
                                  credit_card
                                                securities
                                                             home_acct
                                                                         payroll acct
                       0
          218355
                               0
                                            0
                                                          0
                                                                     0
          255866
                       0
                               0
                                            0
                                                          1
                                                                     0
                                                                                     0
                                                          0
          117532
                       0
                               0
                                            0
                                                                     0
                                                                                     0
          280037
                       0
                               0
                                            0
                                                          1
                                                                     0
                                                                                     0
                                             0
                                                                      0
                                                                                     0
          19770
                               0
                                                          1
                   pensions_2 direct_debt
                                             total_products first_contract_age
                                                                                    01 - TOP
          218355
                            0
                                          0
                                                            1
                                                                                            0
          255866
                            0
                                          0
                                                            4
                                                                              29.0
                                                                                            0
          117532
                            0
                                          0
                                                            1
                                                                              21.0
                                                                                            0
                            1
                                          1
                                                                                            0
          280037
                                                            4
                                                                              57.0
          19770
                            0
                                                            2
                                                                              47.0
                                                                                            0
                   02 - PARTICULARES 03 - UNIVERSITARIO
                                                            join_channel_encoded
          218355
                                                          0
                                                                          2.191395
                                    1
          255866
                                    1
                                                          0
                                                                          2.131292
          117532
                                    0
                                                          1
                                                                          0.909825
          280037
                                    1
                                                          0
                                                                          2.131292
                                                          0
          19770
                                    1
                                                                          1.705759
                   province_name_encoded
                                           employee_index_encoded
          218355
                                 1.491526
                                                           1.519747
          255866
                                 1.922745
                                                           1.519747
          117532
                                 1.273754
                                                           1.519747
                                                           1.519747
          280037
                                 1.922745
          19770
                                 1.319347
                                                           1.519747
          train = train.rename(columns={'country': 'country_spain'})
In [86]:
          test_set = test_set.rename(columns={'country': 'country_spain'})
          val_set = val_set.rename(columns={'country': 'country_spain'})
          print(train.shape)
In [87]:
          print(train.columns)
          print(test_set.shape)
          print(test_set.columns)
          print(val_set.shape)
          print(val_set.columns)
```

```
(5772084, 50)
Index(['date', 'customer_code', 'employee_index', 'country_spain', 'female',
       'age', 'new_cust', 'seniority_in_months', 'cust_type',
       'cust_relationship', 'residency_spain', 'birth_spain', 'join_channel',
       'province_name', 'active_cust', 'income', 'segment', 'savings_acct',
       'guarantees', 'current_acct', 'derivada_acct', 'payroll_acct',
       'junior acct', 'mas particular acct', 'particular acct',
       'particular_plus_acct', 'short_term_depo', 'medium_term_depo',
       'long_term_depo', 'e_acct', 'funds', 'mortgage', 'pension', 'loans',
       'taxes', 'credit_card', 'securities', 'home_acct', 'payroll_acct',
       'pensions_2', 'direct_debt', 'total_products', 'age_group',
       'first_contract_age', '01 - TOP', '02 - PARTICULARES',
       '03 - UNIVERSITARIO', 'join_channel_encoded', 'province_name_encoded',
       'employee_index_encoded'],
      dtype='object')
(1236744, 49)
Index(['date', 'customer_code', 'employee_index', 'country_spain', 'female',
       'age', 'new_cust', 'seniority_in_months', 'cust_type',
       'cust_relationship', 'residency_spain', 'birth_spain', 'join_channel',
       'province name', 'active cust', 'income', 'segment', 'savings acct',
       'guarantees', 'current_acct', 'derivada_acct', 'payroll_acct',
       'junior_acct', 'mas_particular_acct', 'particular_acct',
       'particular_plus_acct', 'short_term_depo', 'medium_term_depo',
       'long_term_depo', 'e_acct', 'funds', 'mortgage', 'pension', 'loans',
       'taxes', 'credit_card', 'securities', 'home_acct', 'payroll_acct',
       'pensions_2', 'direct_debt', 'total_products', 'first_contract_age',
       '01 - TOP', '02 - PARTICULARES', '03 - UNIVERSITARIO',
       'join_channel_encoded', 'province_name_encoded',
       'employee_index_encoded'],
      dtype='object')
(1236546, 49)
Index(['date', 'customer_code', 'employee_index', 'country_spain', 'female',
       'age', 'new_cust', 'seniority_in_months', 'cust_type',
       'cust_relationship', 'residency_spain', 'birth_spain', 'join_channel',
       'province_name', 'active_cust', 'income', 'segment', 'savings_acct',
       'guarantees', 'current_acct', 'derivada_acct', 'payroll_acct',
       'junior_acct', 'mas_particular_acct', 'particular_acct',
       'particular_plus_acct', 'short_term_depo', 'medium_term_depo',
       'long_term_depo', 'e_acct', 'funds', 'mortgage', 'pension', 'loans',
       'taxes', 'credit_card', 'securities', 'home_acct', 'payroll_acct',
       'pensions_2', 'direct_debt', 'total_products', 'first_contract_age',
       '01 - TOP', '02 - PARTICULARES', '03 - UNIVERSITARIO',
       'join channel encoded', 'province name encoded',
       'employee_index_encoded'],
      dtype='object')
```

New variables

Income to Age Ratio: This metric helps identify customers who might have high disposable income.

```
In []: # 2. Income to Age Ratio
    train['income_to_age'] = train['income'] / (train['age'] + 1e-5) # Avoid division by
    train['income_to_age']

val_set['income_to_age'] = val_set['income'] / (val_set['age'] + 1e-5) # Avoid division
val_set['income_to_age']
```

```
test_set['income_to_age'] = test_set['income'] / (test_set['age'] + 1e-5) # Avoid div
test_set['income_to_age']
```

Modeling approach

```
In [ ]: # train.head()
In [ ]: # val_set.head()
In [ ]: # test_set.head()
Changing columns name and dropping columns so both datasets are the same
```

```
In [ ]: drop = ['join_channel', 'province_name', 'employee_index', 'segment', 'total_products'
    train = train.drop(columns=drop + ['age_group'])
    val_set = val_set.drop(columns=drop)
    test_set = test_set.drop(columns=drop)
```

Reading into the data

Setting products we want to predict

Transformation #1

Change #1: Instead of dropping these duplicates on customer column and use only the last instance we will keep those duplicates since it could capture some patterns such as if a client buys product x first, it will likely buy y product next.

We will create copies of the original train and test datasets so we don't change the original one.

```
In [ ]: # train_2 = train.copy()
# test_2 = test_set.copy()
```

Pre-processing

Transformation #2

For tranformation #2 we will add the date column as one of the features. For that, we will calculate the time since purchase using the month we are trying to predict on June 2016. For this transformation to make sense, we will also keep the first transformation, since the time line of purchase matters now, we will keep the duplicate clients' purchases instead of only keeping the last one

```
In [ ]: train['date'] = pd.to_datetime(train['date'], format='%Y-%m-%d')
        train['date'] = train['date'].dt.to_period('M').dt.to_timestamp()
        # Setting our prediction date, June 28, 2016, as the reference date
        reference_date = pd.to_datetime("2016-06-28")
        # Calculate time since purchase
        train['months_since_purchase'] = (reference_date.year - train['date'].dt.year) * 12 +
                                            (reference date.month - train['date'].dt.month)
        # print(train[['date', 'months_since_purchase']])
In [ ]: # Adding feature on test dateased
        test_set['date'] = pd.to_datetime(test_set['date'], format='%Y-%m-%d')
        test_set['date'] = test_set['date'].dt.to_period('M').dt.to_timestamp()
        test set['months since purchase'] = (reference date.year - test set['date'].dt.year)
                                       (reference_date.month - test_set['date'].dt.month)
        # print(test_set[['date', 'months_since_purchase']])
In [ ]: X_train = train.drop(['customer_code', 'date'] + products, axis=1)
        y_train = train[products]
        X_test = test_set.drop(['customer_code', 'date'] + products, axis=1)
        y_test = test_set[products]
```

Training

```
In [ ]: # Defining the best training parameter
params = {'C': 10, 'solver': 'liblinear', 'max_iter': 300}
```

Database with second transformation

```
In []: # Initialize dictionary for storing metrics
metrics = defaultdict(lambda: defaultdict(dict))

# Train and evaluate the model on the 'train_2' dataset
for product in products:
    clf = LogisticRegression(**params)

# Train data and labels for each product
    y_train_product = y_train[product].values
    y_test_product = y_test[product].values

# Train the model
    clf.fit(X_train, y_train_product)
```

```
# Predictions
y_train_pred = clf.predict(X_train)
y_test_pred = clf.predict(X_test)
y_train_pred_proba = clf.predict_proba(X_train)[:, 1]
y_test_pred_proba = clf.predict_proba(X_test)[:, 1]

# Calculate metrics
metrics['train']['train'][product] = {
    'ROC AUC': roc_auc_score(y_train_product, y_train_pred_proba),
    'F1 Score': f1_score(y_train_product, y_train_pred),
    'Confusion Matrix': confusion_matrix(y_train_product, y_train_pred)
}

metrics['train']['test'][product] = {
    'ROC AUC': roc_auc_score(y_test_product, y_test_pred_proba),
    'F1 Score': f1_score(y_test_product, y_test_pred),
    'Confusion Matrix': confusion_matrix(y_test_product, y_test_pred)
}
```

```
In [ ]: # Summarize the average metrics across all products
        summary_data = []
        for dataset in ['train', 'test']:
            avg_roc_auc = np.mean([metrics['train'][dataset][p]['ROC AUC'] for p in products])
            avg_f1 = np.mean([metrics['train'][dataset][p]['F1 Score'] for p in products])
            summary_data.append(['train', dataset, avg_roc_auc, avg_f1])
        # Create summary DataFrame
        summary_df = pd.DataFrame(summary_data, columns=['Dataset', 'Type', 'Avg ROC AUC', 'Avg
        print("\nEvaluated Model on Dataset: train 2")
        print(summary_df.to_string(index=False))
        Evaluated Model on Dataset: train 2
        Dataset Type Avg ROC AUC Avg F1 Score
        train_2 train
                          0.876659
                                        0.084174
        train_2 test
                          0.874053
                                        0.185602
```

Feature Importance Analysis

```
In []: # Dictionary to store feature importances
    feature_importances = {}

# Iterate over each product
    for product in products:
        clf = LogisticRegression(**params)
        clf.fit(X_train, y_train[product].values)

        feature_importances[product] = clf.coef_[0]

importances_df = pd.DataFrame(feature_importances, index=X_train.columns)
    importances_df['Mean_Importance'] = importances_df.mean(axis=1)
        sorted_importances = importances_df.sort_values(by='Mean_Importance', ascending=False)
In []: sorted_importances
```

	savings_acct	guarantees	current_acct	derivada_acct	payroll_acct	junior_ac
active_cust	0.830705	4.264000	1.414410	2.427595	6.842190	3.03010
seniority_in_months	4.603687	3.920184	0.148217	1.993498	0.956385	5.37899
join_channel_encoded	0.909934	-0.647531	-1.445911	0.368749	1.030798	2.54202
province_name_encoded	-0.805320	6.485177	-0.823748	-0.552544	0.626762	0.89281
employee_index_encoded	0.250569	0.528488	0.143572	0.657579	0.122628	0.48636
months_since_purchase	0.022000	0.026316	0.024692	0.010854	0.002302	0.03050
income_to_age	0.000004	-0.000041	-0.000020	0.000002	-0.000012	-0.00007
income	0.029702	0.014780	-0.000532	0.003247	-0.060334	-0.01263
birth_spain	0.615684	-3.797005	-0.192945	-0.808166	0.135772	-0.09866
female	-0.581870	-0.833165	0.029119	-1.419952	0.013041	0.00647
cust_type	-3.278677	-5.275618	0.531083	-0.524133	0.487662	-0.87524
new_cust	-2.920691	-3.626413	-0.168880	-1.249166	-0.418773	-0.66440
country_spain	-1.702266	-5.265817	0.772075	-2.432985	-3.752419	0.37180
residency_spain	-1.702266	-5.265817	0.772075	-2.432985	-3.752419	0.37180
age	-2.054414	-4.500836	-0.370727	1.399406	-2.178210	-69.70432

```
In []: plt.figure(figsize=(10, 6))
    sorted_importances['Mean_Importance'].plot(kind='bar', color='teal')
    plt.title('Overall Feature Importance Across All Products')
    plt.ylabel('Importance (Average Coefficient)')
    plt.xlabel('Feature')
    plt.xticks(rotation=45, ha='right')
    plt.show()
```


LIME example on variable 'savings_acct'

Here we are trying to get deeper and understand which variables affect the variable 'savings_acct' the most. For the purpose of this exercise we will just run the code on 'savings_acct'

```
example_product = 'savings_acct'
In [ ]:
        #Standardizing features for LIME
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train)
        X_test_scaled = scaler.transform(X_test)
        clf = LogisticRegression(**params)
        clf.fit(X_train_scaled, y_train[example_product].values)
        # Initializing LIME Tabular Explainer
        explainer = LimeTabularExplainer(
            training_data=X_train_scaled,
            training_labels=y_train[example_product],
            feature_names=X_train.columns,
            class_names=['No', 'Yes'],
            mode='classification'
        )
        # Choosing an instance to explain
```

12/9/24, 12:55 AM

```
week13
instance idx = 0
instance = X_test_scaled[instance_idx]
# Generating explanation
exp = explainer.explain_instance(
    data_row=instance,
    predict_fn=clf.predict_proba # Probability prediction function
exp.show_in_notebook(show_table=True) # For Jupyter Notebook
# exp.save_to_file('lime_explanation.html') # Save to HTML file
                                                No
                                                                           Yes
  Prediction probabilities
                                                                seniority in months >...
                                 1.00
             No
                                                                0.00
                                                                cust\_type \le 0.05
             Yes 0.00
                                                                new cust \leq= -0.18
                                                                0.00
                                              birth spain \leq= -0.21
                                                                0.34 < join channel en...
                                                      age > 0.60
                                                                 -0.89 < active cust <=...
                                                                province_name_encod...
                                                                female \leq -0.91
                                         employee index encod..
                                      Feature
                                                  Value
```

```
birth spain
                     -0.21
                     1.95
```

Select 5 predictions at random, explain how the model generated those predictions (which features matter more than others), which features need to change and by how much to move the output in a significant way (e.g., to flip the prediction from one class to another)

```
In [ ]:
        # Randomly selecting 5 samples
        random_indices = random.sample(range(X_test.shape[0]), 5)
        selected_samples = X_test.iloc[random_indices]
        selected_labels = y_test[product].iloc[random_indices]
```

```
# LIME explainer
explainer = lime.lime tabular.LimeTabularExplainer(
    X_train.values,
    feature names=X train.columns,
    class_names=[f"Not {product}", product],
    verbose=True,
    mode="classification"
)
# Explain each sample
for i, idx in enumerate(random_indices):
    print(f"\nExplaining Prediction {i+1} (Row {idx}):")
    sample = X_test.iloc[idx].values
    # Probability for the sample
    prediction = clf.predict_proba([sample])[0]
    predicted class = np.argmax(prediction)
    print(f"Predicted Class: {predicted_class} (Probability: {prediction[predicted_class]
    # Generate explanation
    exp = explainer.explain_instance(sample, clf.predict_proba, num_features=10)
    exp.show_in_notebook(show_table=True)
    # Print explanation in text format
    explanation = exp.as list()
    print("Feature Contributions:")
    for feature, contribution in explanation:
        print(f"{feature}: {contribution:.4f}")
    # Identify feature changes to flip prediction
    important_feature, contribution = explanation[0]
    print(f"\nTo flip the prediction, try adjusting '{important_feature}' by a signifi
# Visualize the explanation for one of the samples
exp.show_in_notebook(show_table=True)
Explaining Prediction 1 (Row 950916):
Predicted Class: 1 (Probability: 0.87)
Intercept -0.039240922130545156
Prediction_local [0.15935189]
Right: 0.8716594547837396
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
```

12/9/24, 12:55 AM

week13

Prediction probabilities

Not direct_debt 0.13 direct_debt 0.87

Not direct debt

direct debt

Feature Value

Feature Contributions:

0.00 < active_cust <= 1.00: 0.1687

cust_type <= 1.00: 0.0320 new_cust <= 0.00: 0.0229 age > 0.50: -0.0219

birth_spain <= 0.00: -0.0151

female <= 0.00: 0.0084

1.18 < province_name_encoded <= 1.28: -0.0037</pre>

income <= -0.28: 0.0034

0.21 < seniority_in_months <= 0.54: 0.0023 -0.82 < income to age <= -0.35: 0.0016

To flip the prediction, try adjusting '0.00 < active_cust <= 1.00' by a significant a mount.

Explaining Prediction 2 (Row 3239): Predicted Class: 0 (Probability: 0.96)

Intercept 0.21402389014112455 Prediction_local [0.03316361] Right: 0.037688068101520936

s fitted with feature names warnings.warn(c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa s fitted with feature names warnings.warn(Not direct debt direct debt Prediction probabilities active_cust <= 0.00 Not direct debt 0.96 employee_index_enco... direct_debt 0.04 1.56 < join channel en... new cust ≤ 0.00 0.02 birth spain ≤ 0.00 1.28 < province name ... female ≤ 0.00 0.39 < age <= 0.50income > 0.09cust type ≤ 1.00 Feature Value 0.00 employee index encoded 1.41 birth spain 0.00 0.50 age

c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa

```
Feature Contributions:
active_cust <= 0.00: -0.1708
employee_index_encoded <= 1.41: -0.0710</pre>
1.56 < join_channel_encoded <= 1.94: 0.0472
new_cust <= 0.00: 0.0232
birth_spain <= 0.00: -0.0136
1.28 < province name encoded <= 1.75: 0.0093
female <= 0.00: 0.0069
0.39 < age <= 0.50: -0.0056
income > 0.09: -0.0043
cust_type <= 1.00: -0.0021
To flip the prediction, try adjusting 'active_cust <= 0.00' by a significant amount.
Explaining Prediction 3 (Row 458596):
Predicted Class: 0 (Probability: 0.99)
Intercept 0.30015283526118897
Prediction_local [-0.02265368]
Right: 0.014329623063726801
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
```

week13 Not direct debt direct debt Prediction probabilities active cust ≤ 0.00 Not direct debt 0.99 employee index enco.. direct debt 0.01 join channel encoded .. 0.05 cust type ≤ 1.00 new cust ≤ 0.00 0.02 birth spain ≤ 0.00 age ≤ 0.23 province name enco.. female ≤ 0.00 0.10 < seniority in m.0.00 Feature Value active cust 0.00 1.41 employee index encoded 0.89 join_channel_encoded cust_type 1.00 0.00 birth_spain 0.20 1.18 province name encoded Feature Contributions: active_cust <= 0.00: -0.1668 employee index encoded <= 1.41: -0.0780 join_channel_encoded <= 0.89: -0.0475</pre> cust_type <= 1.00: -0.0443 new_cust <= 0.00: 0.0195 birth_spain <= 0.00: -0.0178 age <= 0.23: 0.0173 province_name_encoded <= 1.18: -0.0074</pre> female <= 0.00: 0.0067 0.10 < seniority in months <= 0.21: -0.0044 To flip the prediction, try adjusting 'active_cust <= 0.00' by a significant amount. Explaining Prediction 4 (Row 1115023): $\verb|c:\USers\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base|$ e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa

s fitted with feature names

warnings.warn(

Predicted Class: 1 (Probability: 0.95)

Intercept -0.03681746983404906 Prediction_local [0.22245744] Right: 0.9472943668943028 c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa s fitted with feature names warnings.warn(Not direct debt direct debt Prediction probabilities 0.00 < active_cust <=... Not direct_debt 0.05 0.17 1.56 < join_channel_en... direct_debt 0.95 0.05 new cust ≤ 0.00 0.03 birth spain ≤ 0.00 1.28 < province name ... female ≤ 0.00 0.23 < age <= 0.39employee index enco. seniority in months .. income to age > 0.23Feature Value 0.00 birth spain employee index encoded 1.41

seniority in months

```
Feature Contributions:
0.00 < active_cust <= 1.00: 0.1695
1.56 < join_channel_encoded <= 1.94: 0.0546
new cust <= 0.00: 0.0291
birth_spain <= 0.00: -0.0150
1.28 < province_name_encoded <= 1.75: 0.0127</pre>
female <= 0.00: 0.0079
0.23 < age <= 0.39: 0.0071
employee_index_encoded <= 1.41: -0.0055</pre>
seniority_in_months <= 0.10: -0.0045
income_to_age > 0.23: 0.0035
To flip the prediction, try adjusting '0.00 < active_cust <= 1.00' by a significant a
mount.
Explaining Prediction 5 (Row 557414):
Predicted Class: 0 (Probability: 0.99)
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
Intercept 0.1629545436552834
Prediction_local [-0.02360619]
Right: 0.014531659456663631
c:\Users\MARIA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\bas
e.py:464: UserWarning: X does not have valid feature names, but LogisticRegression wa
s fitted with feature names
 warnings.warn(
```

week13 Not direct debt direct debt active cust ≤ 0.00 join_channel_encoded .. new cust ≤ 0.00 0.02 birth spain ≤ 0.00 age ≤ 0.23 0.02 female ≤ 0.00 cust type ≤ 1.00 0.10 < seniority_in_m.. 1.18 < province name .. 0.00 -0.28 < income <= -0.14

0.00

Feature Value active_cust 0.00 join_channel_encoded 0.89 new_cust 0.00 birth_spain 0.00 age 0.23 female 0.00 cust_type 1.00 seniority_in_months 0.21 province_name_encoded 1.28

Feature Contributions:
active_cust <= 0.00: -0.1665
join_channel_encoded <= 0.89: -0.0483
new_cust <= 0.00: 0.0249
birth_spain <= 0.00: -0.0164
age <= 0.23: 0.0161
female <= 0.00: 0.0079
cust_type <= 1.00: 0.0074
0.10 < seniority_in_months <= 0.21: -0.0063
1.18 < province_name_encoded <= 1.28: -0.0042
-0.28 < income <= -0.14: -0.0012

To flip the prediction, try adjusting 'active_cust <= 0.00' by a significant amount.

birth_spain

seniority_in_months

province name encoded

0.00

0.21