Instructions. Print out this assignment, fill in your answers in the space provided and upload your work to Gradescope. **Important**. You must write your answers on a printout of this pdf! Please do not upload additional pages or scratch work.

(4pts) 1. Given two statements A and B, we say that A is *stronger* than B if A \rightarrow B, while A is weaker than B if B \rightarrow A. We say A and B are equivalent if each implies the other; that is, A \rightarrow B \wedge B \rightarrow A. (We sometimes denote the latter by A \leftrightarrow B.)

Consider the following induction principle.

(A) Principle of Mathematical Induction. Let S(n) be a predicate whose domain is the set of natural numbers. Suppose there exists m such that S(m) holds and $\forall n \geq m$ if S(n) holds then so does S(n+1). Then S(n) holds for every natural number $n \geq m$. We state this principle formally as follows:

$$\exists m(S(m) \land \forall n(n \ge m \to (S(n) \to S(n+1)))) \to \forall n(n \ge m \to S(n)). \tag{1}$$

Consider the following induction principle which is closer to the one appearing on page 90 of our textbook.¹

- (B) Principle of Mathematical Induction. Let S(n) be a predicate whose domain is the set of natural numbers. Suppose S(0) holds and suppose that whenever S(n) holds then so does S(n+1). Then S(n) holds for every natural number n.
- (a) Express induction principle (B) as a logical formula (just like we did in (1) for (A)).

- (b) Is induction principle (A) stronger, weaker, or equivalent to induction principle (B)?
 - (A) is stronger than (B).
 - \bigcirc (B) is stronger than (A).
 - (A) and (B) are equivalent.

¹We modified it slightly to allow for the case n = 0.

(c) (Extra Credit.) For up to 3 bonus points, prove your answer to part (b) is correct.

(6pts) 2. Using induction, verify that each equation is true for every natural number $n \ge 0$.

(a)
$$0 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = n(n+1)(n+2)/3$$

(b) $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$

(6pts) 3. Use induction to verify the inequality.

(a)
$$2n+1 \le 2^n$$
, $n=3,4,...$

(b) $(1+x)^n \ge 1 + nx$, for $x \ge -1$ and n = 1, 2, ...

(6pts) 4. Show that any amount of postage greater than or equal to 12 cents can be achieved by using only 3-cent and 7-cent stamps.