

FIG. 1

FIG. 2

FIG. 3

FIG. 4

EQUIVALENT
CIRCUIT

FIG. 5A

IN1	IN2	OUT
1	1	0
1	0	1
0	1	1
0	0	0

FIG. 5B

FIG. 6

FIG.7

FIG. 8

FIG. 9

FIG. 12

STEP1 SET INITIAL VALUE OF (C_0, C_1, \dots, C_9) TO (0000000000)

INPUT $(B_0, B_1, \dots, B_9) = (1010001111)$ IS

STEP2 $i=0 \sim 9$ \curvearrowleft TO $X \&$ ARITHMETIC CIRCUITRY AS INITIAL VALUE

STEP2 $i=1 \sim 9$ IF $\sigma_1 i=1$, PERFORM i CYCLES AND ADD B_0 TO B_9 TO C_0 TO C_9

END IF ADDITION FROM
 $i=0$ TO $i=9$ IS COMPLETED

STEP3 $(C_{10}, C_{11}, \dots, C_{19}) = (\sigma_{10}, \sigma_{11}, \dots, \sigma_{19}) X \& 457$

VALUE OF $(C_{10}, C_{11}, \dots, C_{19})$ IS LOADED TO
 $(D_{10}, D_{11}, \dots, D_{19})$
 $(D_0, D_1, \dots, D_9) = (\lambda_{10}, \lambda_{11}, \dots, \lambda_{19})$

FIG. 15

FIG. 16

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25