PROJECT 5: JOHNSON AND JOHNSON

Lung Cancer Trial Simulation

Team Members:

Samarth Kumar (210911) Gaurav Tomar (231080039) Sunita Kulariya (221106) Jiyanshu Dhaka (220481)

Task 1

IDENTIFY A MUTATION PREVALENT IN AT LEAST 2 CANCER TYPES

Methodology 1

- Counting Mutations by Cancer Type
 - Group data by **gene mutation** (**Hugo_Symbol**) and **cancer type**, then count occurrences.
- Identifying Cross-Cancer Mutations
 - Summarize mutations found in at least two different cancer types and rank them by total mutation count.
- Final Mutation Summary
 - Filter and sort results to highlight frequently occurring mutations across multiple cancer types.

Methodology 2

- Summing & Sorting Mutations
 - Compute the absolute sum of mutations for each gene and sort them in descending order.
- Identifying Patients with Mutations
 - Extract patient sample IDs for each gene with nonzero mutations.
- Mapping Cancer Types to Mutations
 - Retrieve cancer types associated with mutated genes using clinical sample data.

TASK2

MEDIAN SURVIVAL TIME

- a) The **Kaplan-Meier analysis** estimated the **median survival time** for **Non-Small Cell Lung Cancer (NSCLC) patients** to be **39.95 months**.
 - This indicates that 50% of NSCLC patients survived for approximately 40 months after diagnosis.
- b) The **hazard rate** (**HZ**) is calculated using the formula:
 - \circ HZ = $\ln(2)$ /Median Survival Time
 - HZ= $\ln(2)/39.95 \approx 0.01735$
 - This means that at any given month,
 an NSCLC patient has approximately
 a 1.735% chance of dying.

- c) Simulating Control and Treatment Group Survival Times
- Simulated control and treatment group survival times using an exponential distribution based on the estimated hazard rate (HZ).
- Conducted a **log-rank test** to compare survival distributions between the two groups for hypothesis Hazard Ratio < 1(Treatment improves survival)
- The test yielded a highly significant p-value (2e-16), confirming a statistically significant difference in survival distributions between the control and treatment groups.

Kaplan-Meier Survival Curve

SIMULATION FINDINGS:

- Estimated statistical power for detecting a hazard ratio of 0.7, resulting in 0.689.
- Computed the minimum sample size required to achieve 90% power, which was 183 participants.
- Plotted **Power vs. Sample Size** to illustrate the relationship between sample size and statistical power.
- Simulated the required sample sizes for detecting different hazard ratios (0.6 1.0)

Hazard Ratio (HR)	0.60	0.64	0.69	0.73	0.78	0.82	0.87	0.91
Sample Size Required	166	166	166	464	464	1291	1291	3593

Power vs Sample Size

TASK 3

RECRUITMENT AND DROPOUT DYNAMICS

Uniform Recruitment:

- A. Uniform recruitment of 20 new patients every month
- B. Time till death is joining time + event time
 - 1. Event Time is measured from time of joining of patient
- C. Time of Events are sampled using medium survival time.

Follow up Time:

- I. Set follow up time before running simulation
- II. If simulated even time exceeds follow up time: status = 0 (lived till end of trial), else set it to 1.

Uniform Dropout Rate:

- A. Uniform dropout rate of 1 patient every month
- B. Simulation: Randomly choose 1 patient that leaves every month, until the follow up time.
- C. Delete patients that have left and calculate for remaining patient.
 - 1. When calculating Power vs. Follow up time, number of patients changes!

Hazard Ratio (HR)	0.60	0.64	0.69	0.73	0.78	0.82	0.87	0.91	0.96	1.00
follow up time	33	33	39	50	6	6	6	6	6	6

TASK 4

INTERIM ANALYSIS

Methodology:

- I. Chose real response rates of both indications
- II. Assumed **binomial distribution** and sampled response data, i.e. fraction of patients that have responded till that time.
- III. Assumed a weak priori, U[0,1] for both indications
- IV. Calculated the probability that the response rate is greater than 50% based on the given data
 - Done by assuming an independent betabinomial framework and using its standard properties
- V. Calculated this for 9 possible combinations of the true response times of indication one and two.

X1-> X2 V	0.3	0.5	0.7
0.3	(0,0)	(1,0)	(1,0)
0.5	(0,1)	(1,1)	(1,1)
0.7	(0,1)	(1,1)	(1,1)

