

∃ README.md

Pivot Tables with Pandas - Lab

Introduction

In this lab, we'll learn how to make use of our newfound knowledge of pivot tables to work with real-world data.

Objectives

In this lab you will:

- Describe what is meant by long and wide format data
- Use multi-hierarchical indexing to access aggregated data
- Use pivot to create a more organized aggregated DataFrame
- Use stack and unstack to move between different level of multi-indexing

Getting Started

In the cell below:

- Import pandas and set the standard alias
- Import matplotlib.pyplot and set the standard alias
- Run the iPython magic command to display matplotlib graphs inline within the notebook

```
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

Load the data

The data for this activity is stored in a file called 'causes_of_death.tsv' which is a somewhat morbid dataset from the center for disease control. Note that the file extension .tsv indicates that this data is formatted slightly differently then the standard .csv, the difference being that it has 'tab separated values' instead of 'comma separated values'. As such, pass in the optional parameter delimiter='\t' into the pd.read csv() function.

```
df = pd.read_csv('causes_of_death.tsv', delimiter='\t')
```

Now, display the head of the DataFrame to ensure everything loaded correctly.

```
df.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

	Notes	State	State Code	Ten- Year Age Groups	Ten- Year Age Groups Code	Gender	Gender Code	Rac
0	NaN	Alabama	1	< 1 year	1	Female	F	Ameri Indian Alaska Native
1	NaN	Alabama	1	< 1 year	1	Female	F	Asian Pacific Island
2	NaN	Alabama	1	< 1 year	1	Female	F	Black of Africat Amerio
3	NaN	Alabama	1	< 1 year	1	Female	F	White
4	NaN	Alabama	1	< 1 year	1	Male	М	Asian Pacific Island

Our data is currently in *Wide* format. We can tidy this up by converting it to *Long* format by using groupby statements to aggregate our data into a much neater, more readable format.

Groupby aggregations

Complete the following groupby statements.

 \bullet Groupby State and Gender . Sum the values.

```
# Your code here
df.groupby(['State', 'Gender']).sum().head()
```

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

</style>

		Notes	State Code	Deaths
State	Gender			
Alabama	Female	0.0	40	430133
	Male	0.0	41	430647
Alaska	Female	0.0	80	27199
	Male	0.0	84	36135
Arizona	Female	0.0	180	396028

• Groupby State, Gender, and Race. Find the average values.

```
# Your code here
df.groupby(['State', 'Gender', 'Race']).mean().head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

			Notes	State Code	Deaths
State	Gender	Race			

			Notes	State Code	Deaths
State	Gender	Race			
Alabama	Female	American Indian or Alaska Native	NaN	1.0	70.875000
		Asian or Pacific Islander	NaN	1.0	95.500000
		Black or African American	NaN	1.0	9074.000000
	White		NaN	1.0	29890.636364
	Male	American Indian or Alaska Native	NaN	1.0	86.375000

• Groupby Gender and Race . Find the minimum values.

```
# Your code here
df.groupby(['Gender', 'Race']).min().head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

		Notes	State	State Code	Ten- Year Age Groups	Ten- Year Age Groups Code	Gender Code
Gender	Race						

		Notes	State	State Code	Ten- Year Age Groups	Ten- Year Age Groups Code	Gender Code
Gender	Race						
Female	American Indian or Alaska Native	NaN	Alabama	1	1-4 years	1	F
	Asian or Pacific Islander	NaN	Alabama	1	1-4 years	1	F
	Black or African American	NaN	Alabama	1	1-4 years	1	F
	White	NaN	Alabama	1	1-4 years	1	F
Male	American Indian or Alaska Native	NaN	Alabama	1	1-4 years	1	M

Create a bar chart of the total number of deaths by state:

- Sort your columns in order (ascending or descending are both acceptable).
- Also make sure to include a title, axes labels and have your graph be an appropriate size.

NOTE: In order to do this, slice the Deaths column after the .groupby() method, but before the .sum() method. You can even chain the .plot() method on after the .sum() method and do this all on one line, excluding the labeling of the graph!

```
# Your code here
df.groupby(['State'])['Deaths'].sum().sort_values().plot(kind='barh', figsize=(15,8)
plt.title('Total Deaths by State')
plt.xlabel("# of Deaths")
```


Inspecting our data

Let's go one step further and print the data type of each column.

In the cell below, use the .info() method of the DataFrame, and note the data type that each column is currently stored as.

Let's look at some samples from the Population column to see if the current encoding seems appropriate for the data it contains.

In the cell below, display the population values for the first 5 rows in the DataFrame.

df.Population.iloc[:5]

0 35791 74432 1693393 347921

```
4 7366
Name: Population, dtype: object
```

Just to be extra sure, let's check the value counts to see how many times each unique value shows up in the dataset. We'll only look at the top 5.

In the cell below, print out the top 5 value_counts() of the population column of the DataFrame.

```
df.Population.value_counts()[:5]
```

Not Applicable	75
14810	2
113598	2
11680	2
6420	2

Name: Population, dtype: int64

Clearly, this data should be stored as a numeric type, not a categorical type.

Reformat the Population column as an integer

As it stands, not all values can be reformated as integers. Most of the cells in the Population column contain integer values, but the entire column is currently encoded in string format because some cells contain the string 'Not Applicable'.

We need to remove these rows before we can cast the Population column to an integer data type.

In the cell below:

- Slice the rows of df where the Population column is equal to 'Not Applicable'
- Use to_drop.index to drop the offending rows from df. Be sure to set the axis=0, and inplace=True
- Cast the Population column to an integer data type using the .astype() method, with the single parameter int64 passed in
- Print the Population column's dtype attribute to confirm it is now stored in int64 format

NOTE: .astype() returns a copy of the column, so make sure you set the Population column equal to what this method returns--don't just call it!

```
# Your code here
to_drop = df[df['Population'] == 'Not Applicable']
df.drop(to_drop.index, axis=0, inplace=True)
df['Population'] = df['Population'].astype('int64')
print(df['Population'].dtype)
int64
```

Complete the bar chart

Now that we've reformatted our data, let's create a bar chart of the mean Population by State .

```
# Your code here
df.groupby('State')['Population'].mean().plot(kind='barh', figsize=(15,8))
<matplotlib.axes._subplots.AxesSubplot at 0x120e7fa90>
```


Below we will investigate how we can combine the <code>.pivot()</code> method along with the <code>.groupby()</code> method to combine some cool **stacked bar charts**!

Use aggregate methods

In the cell below:

• Group df by 'State' and 'Gender', and then slice both 'Deaths' and 'Population' from it. Chain the .agg() method to return the mean, min, max, and standard deviation of these sliced columns.

NOTE: This only requires one line of code.

By now, you've probably caught on that the code required to do this follows this pattern: ([things to group by])[columns to slice].agg([aggregates to return])

Then, display the .head() of this new DataFrame.

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead tr th {
    text-align: left;
}
.dataframe thead tr:last-of-type th {
    text-align: right;
}
```

| | | | Deaths | | | | | |
|---------|--------|--------------|--------|--------|--------------|-----------|--|--|
| | | mean | min | max | std | mear | | |
| State | Gender | | | | | | | |
| Alabama | Female | 10753.325000 | 10 | 116297 | 24612.250487 | 1.078713 | | |
| | Male | 10765.850000 | 10 | 88930 | 20813.538537 | 1.014946 | | |
| Alaska | Female | 679.975000 | 13 | 4727 | 1154.870455 | 1.4404036 | | |
| | Male | 860.357143 | 12 | 5185 | 1411.777392 | 1.518884 | | |

| | | | Deaths | | | | | |
|---------|--------|-------------|------------------|--------|--------------|-------------|--|--|
| | | mean | mean min max std | | | | | |
| State | Gender | | | | | | | |
| Arizona | Female | 8998.386364 | 21 | 133923 | 26245.941003 | 1.246502€ | | |
| 4 | | | | | | > | | |

Note how Pandas denotes a multi-hierarchical index in the DataFrame above.

Let's inspect how a multi-hierarchical index is actually stored.

In the cell below, display the index attribute of this DataFrame.

grouped.index

```
MultiIndex(levels=[['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California',
'Colorado', 'Connecticut', 'Delaware', 'District of Columbia', 'Florida',
'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas',
'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'Michigan',
'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New
Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North
Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South
Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont', 'Virginia',
'Washington', 'West Virginia', 'Wisconsin', 'Wyoming'], ['Female', 'Male']],
           codes=[[0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19,
20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29,
30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39,
40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 49, 49,
50, 50], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]],
           names=['State', 'Gender'])
```

A two-dimensional array denotes the multiple levels, with each possible combination being a row in our grouped DataFrame.

Let's reset the index, and then see how it changes.

In the cell below, call the DataFrame's .reset_index() method. Then, display the .head() of the DataFrame.

```
# First, reset the index. Notice the subtle difference; State and Gender are now col
grouped = grouped.reset_index()
grouped.head()
```

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead tr th {
    text-align: left;
}
```

</style>

	State	Gender		Deaths				
			mean	min	max	std	ı	
0	Alabama	Female	10753.325000	10	116297	24612.250487	1.078	
1	Alabama	Male	10765.850000	10	88930	20813.538537	1.014	
2	Alaska	Female	679.975000	13	4727	1154.870455	1.440	
3	Alaska	Male	860.357143	12	5185	1411.777392	1.518	
4	Arizona	Female	8998.386364	21	133923	26245.941003	1.246	
4		1				1	>	

Note how the way index is displayed has changed. The index columns that made up the multi-hierarchical index before are now stored as columns of data, with each row given a more traditional numerical index.

Let's confirm this by reexamining the index attribute of grouped in the cell below.

```
grouped.index
```

```
RangeIndex(start=0, stop=102, step=1)
```

However, look again at the displayed DataFrame -- specifically, the columns. Resetting the index has caused the DataFrame to use a multi-indexed structure for the columns.

In the cell below, examine the columns attribute of grouped to confirm this.

Column levels

Since we're working with multi-hierarchical indices, we can examine the indices available at each level.

In the cell below, use the <code>.get_level_values()</code> method contained within the DataFrame's columns attribute to get the values for the outermost layer of the index.

Now, get the level values for the inner layer of the index.

```
grouped.columns.get_level_values(1)

Index(['', '', 'mean', 'min', 'max', 'std', 'mean', 'min', 'max', 'std'],
dtype='object')
```

Flattening the DataFrame

We can also *flatten* the DataFrame from a multi-hierarchical index to a more traditional one-dimensional index. We do this by creating each unique combination possible of every level of the multi-hierarchical index. Since this is a complex task, you do not need to write it -- but take some time to examine the code in the cell below and see if you can understand how it works!

Now that we've flattened the DataFrame, let's inspect a couple rows to see what it looks like.

In the cell below, inspect the .head() of the grouped DataFrame.

```
grouped.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

State	Gender	Deaths_mean	Deaths_min	Deaths_max	Deaths_

	State	Gender	Deaths_mean	Deaths_min	Deaths_max	Deaths_
0	Alabama	Female	10753.325000	10	116297	24612.250
1	Alabama	Male	10765.850000	10	88930	20813.538
2	Alaska	Female	679.975000	13	4727	1154.8704
3	Alaska	Male	860.357143	12	5185	1411.7773
4	Arizona	Female	8998.386364	21	133923	26245.94 ⁻
4						>

Using pivots

Now, we'll gain some practice using the DataFrame's built-in .pivot() method.

In the cell below, call the DataFrame's .pivot() method with the following parameters:

```
index = 'State'columns = 'Gender'values = 'Deaths_mean'
```

Then, display the .head() of our new pivot DataFrame to see what it looks like.

```
# Now it's time to pivot!
pivot = grouped.pivot(index='State', columns='Gender', values='Deaths_mean')
pivot.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

Gender	Female	Male
State		

Gender	Female	Male	
State			
Alabama	10753.325000	10765.850000	
Alaska 679.975000		860.357143	
Arizona	8998.386364	10036.204545	
Arkansas	6621.615385	6301.690476	
California	48312.840909	49555.522727	

Great! We've just created a pivot table.

Let's reset the index and see how it changes our pivot table.

In the cell below, reset the index of the pivot object as we did previously. Then, display the .head() of the object to see if we can detect any changes.

```
# Again, notice the subtle difference of resetting the index:
pivot = pivot.reset_index()
pivot.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

Gender	State	Female	Male
0	Alabama	10753.325000	10765.850000
1	Alaska	679.975000	860.357143
2	Arizona	8998.386364	10036.204545
3	Arkansas	6621.615385	6301.690476

Gender	State	Female	Male
4	California	48312.840909	49555.522727

Visualizing Data With Pivot Tables

Now, we'll make use of our newly created pivot table to quickly create some visualizations of our data.

In the cell below, call pivot.plot() with the following parameters:

```
• kind = 'barh'
```

```
• figsize = (15,8)
```

```
# Now let's make a sweet bar chart!!
pivot.plot(kind='barh', figsize=(15,8))
```

<matplotlib.axes._subplots.AxesSubplot at 0x10f6bd4a8>

Notice the Y-axis is currently just a list of numbers. That's because when we reset the index, it defaulted to assigning integers as the index for the DataFrame. Let's set the index back to 'State', and then recreate the visualization.

In the cell below:

• Use the pivot object's .set_index() method and set the index to 'State'. Then, chain this with a .plot() call to recreate the visualization using the code we used in the cell above.

All the code in this cell should be done in a single line. Just call the methods -- do not rebind pivot to be equal to this line of code.

```
# Where's the states?! Notice the y-axis is just a list of numbers.
# This is populated by the DataFrame's index.
# When we used the .reset_index() method, we created a new numbered index to name ea
# Let's fix that by making state the index again.
pivot.set_index('State').plot(kind='barh', figsize=(15,8))
```

<matplotlib.axes. subplots.AxesSubplot at 0x1216805f8>

Now that we've created a visualization with the states as the y-axis, let's print out the head of the pivot object again.

```
# Also notice that if we call the DataFrame pivot again, state is not it's index.
# The above method returned a DataFrame with State as index and we plotted it,
# but it did not update the DataFrame itself.
pivot.head(2)
```

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

```
.dataframe tbody tr th {
    vertical-align: top;
}
.dataframe thead th {
    text-align: right;
}
```

</style>

Gender State		Female	Male
0	Alabama	10753.325	10765.850000
1	Alaska	679.975	860.357143

Note that the index has not changed. That's because the code we wrote when we set the index to the 'State' column returns a copy of the DataFrame object with the index set to 'State' -- by default, it does not mutate original pivot object.

If we want to do that, we'll need to capture the new object returned by updating the contents of the pivot variable.

In the cell below, set the index of <code>pivot</code> to 'State'. Then, recreate the bar plot using this new object.

```
# If we wanted to more permanently change the index we would set it first and then p
pivot = pivot.set_index('State')
pivot.plot(kind='barh', figsize=(15,8))
```

<matplotlib.axes._subplots.AxesSubplot at 0x121672f28>

Again, let's check the .head() of the DataFrame to confirm that the index structure has changed.

```
pivot.head(2)

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

Gender	Female	Male	
State			
Alabama	10753.325	10765.850000	
Alaska	679.975	860.357143	

Finally, let's stack these bar charts to see how that looks.

In the cell below, recreate the visualization we did in the cell above, but this time, also pass in stacked=True as a parameter.

```
# Lastly, let's stack each of these bars for each state.
# Notice we don't have to worry about index here, because we've already set it above
pivot.plot(kind='barh', figsize=(15,8), stacked=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x121ccf4a8>

Stacking and Unstacking DataFrames

Now, let's get some practice stacking and unstacking DataFrames.

Stacking

In the cell below, let's display the head of grouped to remind ourselves of the format we left it in.

```
grouped.head()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
  }

.dataframe thead th {
```

```
text-align: right;
}
```

</style>

	State	Gender	Deaths_mean	Deaths_min	Deaths_max	Deaths_
0	Alabama	Female	10753.325000	10	116297	24612.250
1	Alabama	Male	10765.850000	10	88930	20813.53
2	Alaska	Female	679.975000	13	4727	1154.870
3	Alaska	Male	860.357143	12	5185	1411.777
4	Arizona	Female	8998.386364	21	133923	26245.94
4				'	')

As we can see above, grouped is currently in a flattened format, with no hierarchical structure to it's indices.

In the cell below, call the grouped DataFrame's .stack() method.

grouped.stack()

0	State	Alabama
	Gender	Female
	Deaths_mean	10753.3
	Deaths_min	10
	Deaths_max	116297
	Deaths_std	24612.3
	Population_mean	1.07871e+06
	Population_min	2087
	Population_max	4334752
	Population_std	1.40031e+06
1	State	Alabama
	Gender	M-1-
	Gender.	Male
	Deaths_mean	10765.9
	Deaths_mean	10765.9
	Deaths_mean Deaths_min	10765.9
	Deaths_mean Deaths_min Deaths_max	10765.9 10 88930
	Deaths_mean Deaths_min Deaths_max Deaths_std	10765.9 10 88930 20813.5
	Deaths_mean Deaths_min Deaths_max Deaths_std Population_mean	10765.9 10 88930 20813.5 1.01495e+06
	Deaths_mean Deaths_min Deaths_max Deaths_std Population_mean Population_min	10765.9 10 88930 20813.5 1.01495e+06 1129
2	Deaths_mean Deaths_min Deaths_max Deaths_std Population_mean Population_min Population_max	10765.9 10 88930 20813.5 1.01495e+06 1129 4284775
2	Deaths_mean Deaths_min Deaths_max Deaths_std Population_mean Population_min Population_max Population_std	10765.9 10 88930 20813.5 1.01495e+06 1129 4284775 1.39783e+06

FIVI		leant-co
	Deaths_mean	679.975
	Deaths_min	13
	Deaths_max	4727
	Deaths_std	1154.87
	Population_mean	144040
	Population_min	1224
	Population_max	682855
	Population_std	201579
		• • •
99	State	Wisconsin
	Gender	Male
	Deaths_mean	9573.45
	Deaths_min	13
	Deaths_max	113692
	Deaths_std	25681.4
	Population_mean	1.13532e+06
	Population_min	1286
	Population_max	6860107
	Population_std	2.08907e+06
100	State	Wyoming
	Gender	Female
	Deaths_mean	1161.03
	Deaths_min	10
	Deaths_max	13140
	Deaths_std	2937.94
	Population_mean	146757
	Population_min	336
	Population_max	672620
	Population_std	235238
101	State	Wyoming
	Gender	Male
	Deaths_mean	1149.51
	Deaths_min	10
	Deaths_max	10113
	Deaths_std	2569.28
	Population_mean	139224
	Population_min	244
	Population_max	694760
	Population_std	241360

Length: 1020, dtype: object

As we can see, the <code>.stack()</code> method has stacked our DataFrame from a flattened format into one with a multi-hierarchical index! This is an easy, quick way to aggregate our data.

Unstacking

Now, we'll explore unstacking with the pivot DataFrame, which is already stacked into a pivot table.

In the cell below, set unstack pivot using the object's .unstack() method. Then, display the object to see how it has changed.

```
pivot = pivot.unstack()
pivot
```

Gender	State	
Female	Alabama	10753.325000
	Alaska	679.975000
	Arizona	8998.386364
	Arkansas	6621.615385
	California	48312.840909
	Colorado	6460.162791
	Connecticut	7144.641026
	Delaware	2000.029412
	District of Columbia	1497.580645
	Florida	36019.071429
	Georgia	15372.317073
	Hawaii	2182.944444
	Idaho	2874.323529
	Illinois	23432.926829
	Indiana	13425.717949
	Iowa	6419.707317
	Kansas	5492.309524
	Kentucky	10426.083333
	Louisiana	9076.585366
	Maine	3471.823529
	Maryland	9894.780488
	Massachusetts	13356.846154
	Michigan	18421.659091
	Minnesota	8168.204545
	Mississippi	6342.634146
	Missouri	12493.170732
	Montana	2341.393939
	Nebraska	3667.794872
	Nevada	3729.166667
	New Hampshire	3293.344828
		• • •
Male	Massachusetts	11368.341463
	Michigan	17940.431818
	Minnesota	7792.795455
	Mississippi	6487.317073
	Missouri	11810.119048

Montana	2081.102564
Nebraska	3290.682927
Nevada	4489.261905
New Hampshire	2800.303030
New Jersey	15085.317073
New Mexico	3549.428571
New York	29864.477273
North Carolina	15750.409091
North Dakota	1587.411765
Ohio	23551.951220
Oklahoma	7468.909091
Oregon	6528.977273
Pennsylvania	27187.463415
Rhode Island	2239.243243
South Carolina	9078.292683
South Dakota	1800.500000
Tennessee	13333.050000
Texas	34347.636364
Utah	3081.511628
Vermont	1785.846154
Virginia	12585.833333
Washington	9877.431818
West Virginia	6211.612903
Wisconsin	9573.454545
Wyoming	1149.514286

Length: 102, dtype: float64

Note that it has unstacked the multi-hierarchical structure of the pivot DataFrame by one level. Let's call it one more time and display the results!

In the cell below, set pivot equal to pivot.unstack() again, and then print the pivot object to see how things have changed.

```
pivot = pivot.unstack()
pivot

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
   .dataframe tbody tr th {
       vertical-align: top;
   }

   .dataframe thead th {
       text-align: right;
   }
```

</style>

State	Alabama	Alaska	Arizona	Arkansas	California
Gender					
Female	10753.325	679.975000	8998.386364	6621.615385	48312.840909
Male	10765.850	860.357143	10036.204545	6301.690476	49555.522727
4					•

2 rows × 51 columns

After calling unstack a second time, we can see that pivot has a flattened structure since it has been completely unstacked!

Summary

In this lab, we learned how to:

- Use .groupby() to stack and slice data conditionally
- Use aggregate methods in combination with groupby statements
- Create pivot tables with pandas
- Leverage pivot tables and groupby statements to create quick visualizations
- stack and unstack DataFrames

Releases

No releases published

Packages

No packages published

Contributors 5

Languages

Jupyter Notebook 100.0%