IC Design Contest Local Binary Patterns

王偉丞 E94071217

國立成功大學工程科學系

gray_addr:

reset 後, gray_addr 設為 0, 之後開始加 128 或減 255, 一直做下去。

gray_addr 波形圖

存取 gray_data 之方式:

宣告 g0~g7 及 gc 之暫存器,存取九宮格內之 gray_data。當九宮格之暫存器存滿時就會開始左移。

lbp_data:

此訊號會跟著時脈正緣做改變,將 $gc \rightarrow g0 \sim g7$ 做比較,算出 lbp_data ,但是隨著時脈做變動,一定會有錯誤之 lbp_data ,所以需要控制 lbp_valid 來確保 Host 接收到對的資料。

lbp_addr:

最一開始要讓 $g0\sim g7$ 、gc 暫存器都存取好資料並比較出 lbp_data 後才能開始改變 lbp_addr 的值,所以我設置了一個 $ctrl_lbp_data$ 訊號,當此訊號拉高時,lbp addr 才能改變。

改變的方式為過3個 cycle 就加一(用 count 控制),但這樣會有邊界值, 所以也需要 lbp_valid 確保 Host 接收到對的資料。

1bp_valid:

為了要取到對的 lbp_data, 所以當 count%3==0 時, lbp_valid 才能拉高。 然後要避免取到邊界的 lbp_addr, 所以 lbp_addr%128==0 或 127 時, lbp_valid 要設為 low。

橘線部分為負緣時 Host 端接收到正確之 lbp_addr 及 lbp_data。

finish:

當 lbp addr==16254 且 lbp valid 為 high 時, finish 拉高。

模擬結果

RTL Simulation:

```
Output pixel: 0 ~
                          3000 are correct!
Output pixel: 0 ~
                          4000 are correct!
Output pixel: 0 ~
                          5000 are correct!
Output pixel: 0 ~
                          6000 are correct!
Output pixel: 0 ~
                          7000 are correct!
Output pixel: 0 ~
                          8000 are correct!
Output pixel: 0 ~
                          9000 are correct!
Output pixel: 0 ~
                         10000 are correct!
Output pixel: 0 ~
                         11000 are correct!
Output pixel: 0 ~
                         12000 are correct!
Output pixel: 0 ~
                         13000 are correct!
Output pixel: 0 ~
                         14000 are correct!
Output pixel: 0 ~
                         15000 are correct!
Output pixel: 0 ~
                         16000 are correct!
Output pixel: 0 ~
                         16383 are correct!
Congratulations! All data have been generated successfully!
       -----PASS-----
Simulation complete via $finish(1) at time 604900 NS + 0 ./testfixture.v:128 #(`CYCLE/2); $finish;
```

Gate level 合成:

Des/Clust/Port	Wire Load Model	Library	
LBP	tsmc13_wl10	slow	
Point		Incr	Path
clock clk (rise eclock network delcount_reg[2]/CK (I COUNT_reg[2]/C) (DI U396/Y (ANDZX1) U387/Y (MXIZX1) U386/Y (MXIZX1) U388/Y (OAIZBBIX1 U388/Y (OAIZBBIX1 U388/Y (NXIZX1) U270/Y (NORZX1) U371/Y (CLKBUFX3) U272/Y (NORZX1)	oy (ideal) DFFRX1) =FRX1)	0.00 0.50 0.00 1.04 0.44 0.59 0.42 0.61 0.43 0.60 0.42	4.03 r 4.64 r 5.06 f 5.51 f 6.34 r
U373/Y (CLKBUFX3) g3_reg[0]/E (EDFFX1) data arrival time		0.86 0.00	7.19 r 7.19 r 7.19
clock clk (rise e clock network del clock uncertainty g3_reg[0]/CK (EDFI library setup tim data required tim	ay (ideal) FX1) e	10.00 0.50 -0.10 0.00 -0.65	
data required time data arrival time			9.75 -7.19
slack (MET)			2.56

timing path area

Gate level Simulation:

```
Output pixel: 0 ~
                          3000 are correct!
Output pixel: 0 ~
                          4000 are correct!
Output pixel: 0 ~
                          5000 are correct!
Output pixel: 0 ~
                          6000 are correct!
Output pixel: 0 ~
                          7000 are correct!
Output pixel: 0 ~
                          8000 are correct!
Output pixel: 0 ~
                          9000 are correct!
Output pixel: 0 ~
                         10000 are correct!
Output pixel: 0 ~
                         11000 are correct!
Output pixel: 0 ~
                         12000 are correct!
Output pixel: 0 ~
                         13000 are correct!
Output pixel: 0 ~
                         14000 are correct!
Output pixel: 0 \sim
                         15000 are correct!
Output pixel: 0 ~
                         16000 are correct!
                         16383 are correct!
Congratulations! All data have been generated successfully!
 -----PASS-----
Simulation complete via $finish(1) at time 604887500 PS + 0
./testfixture.v:128 #(`CYCLE/2); $finish;
ncsim> exit
```

 $604887.5 \text{ ns} * 7023.84 = 4.24*10^9 < 1.2*10^{10}$