Regression Methods on Prostate Cancer Data

Shreyas Srinivasan

Dataset

The Auto dataset is available in the ISLR package. The dataset contains 392 observations with 9 attributes for each observation. The attributes are briefly described below:

- 1. mpg miles per gallon
- 2. cylinders Number of cylinders between 4 and 8
- 3. displacement Engine displacement (cu. inches)
- 4. horsepower Engine horsepower
- 5. weight Vehicle weight (lbs.)
- 6. acceleration Time to accelerate from 0 to 60 mph (sec.)
- 7. year Model year (modulo 100)
- 8. origin Origin of car (1. American, 2. European, 3. Japanese)
- 9. name Vehicle name

Our goal is to build a model that can predict mpg. We want to be able to predict the mileage of a vehicle from other attributes.

```
#exploratory analysis
chart.Correlation(Auto[, -9])
```


From the graph above, we see that a bunch of predictors are highly correlated with each other. For example, weight and displacement have a correlation coefficient of 0.93. This suggests that 1 (or more) predictors may not be useful in predicting mpg. When we look at the relationship between the response (mpg) and other variables, acceleration does not show a strong relationship with mpg. Every other variable has a correlation coefficient > 0.50 with mpg.

We will consider the following regression methods:

- (a) Standard Least Squares
- (b) Best-subset selection
- (c) Ridge regression
- (d) Lasso regularization
- (e) Principal Component Regression (PCR)

(f) Partial Least Squares (PLS)

After we fit the 6 different models, we will compare model metrics and look at which model performed the best on this dataset.

Fitting Different Models

- (a) Standard Least Squares We fit the data using the usual least-squares method. From a previous analysis, we know that we require quadratic terms for horsepower, displacement, and weight.
- (b) Best-subset selection On using best-subset selection, we see that once the number of variables is more than 3, the increase in \mathbb{R}^2 is not significant. We will then go ahead and fit the model with 3 vairables. This model has the year variable, and two terms of the weight variable.

```
#plot to see how many variables to pick
best.sub.adjr2 = summary(best.sub)$adjr2
plot(best.sub.adjr2, pch = 19, type = "b", xlab = "Model number", ylab = "Adjuster R squared", col = 1)
```


- (c) Ridge regression On imposing the ridge penalty, we expect that the predictors will be shrunken significantly. We will compare them with the usual least square predictors at the end.
- (d) Lasso regularization On imposing the lasso penalty, we know that variable selection kicks in. Once again, we will compare coefficients in the end to see which variables have been selected.
- (e) Principal Component Regression (PCR) When we fit the model using PCR, we see that using the first 9 components yields the lowest error rate (computed from cross-validation).

```
#Look at the MSEP plot
validationplot(pcr.fit, val.type = "MSEP")
```


(f) Partial Least Squares (PLS) When we fit the model using PLS, we see that using the first 7 components yields the lowest error rate (computed from cross-validation).

number of components

```
#Look at the MSEP plot
validationplot(pls.fit, val.type = "MSEP")
```


Comparision

Finally, we take a look at the coefficients from the 6 methods we used in (a)-(f). We also list the test error rates - computed through cross-validation - to see which method performs the best. All the MSE's (Test Error) were calculated using 10-fold cross-validation.

Term	LS	Best Subset	Ridge	Lasso	PCR	PLS
Intercept	-35.814	-39.536	-28.111	-35.294		
cylinders	0.347		-0.079	0.192	0.693	0.734
poly(displacement, 2)1	-5.217		-17.974		-0.665	-0.661
poly(displacement, 2)2	9.672		10.185	8.535	0.606	0.453
poly(horsepower, 2)1	-43.683		-37.837	-40.883	-2.777	-2.459
poly(horsepower, 2)2	18.315		18.423	17.476	1.063	1.074
poly(weight, 2)1	-71.146	-109.779	-48.931	-73.207	-2.900	-3.157
poly(weight, 2)2	15.645	32.047	13.333	16.432	0.659	0.739
acceleration	-0.163		-0.132	-0.136	-0.700	-0.621
year	0.783	0.828	0.706	0.781	2.819	2.854
as.factor(origin)2	1.137		0.788	1.137	0.383	0.443
as.factor(origin)3	1.217		1.246	1.219	0.495	0.536
Test Error	8.720	9.300	8.896	8.808	8.741	8.677

The best-subset method gave us the simplest model, but this came at a cost. It also has the highest MSE. We see that the model from PLS gave us the lowest MSE at 8.677. I would recommend the model from (f)

which was fitted using PLS since it has the lowest error rate among all 6 methods that we fitted.