# Week

## Question #1

What groupings in the K-map the right?

|         | G<br>Ol | G. D | Д· Э | Д· D |
|---------|---------|------|------|------|
| ∌.<br>B | 1       | 1    | ×    | ₽    |
| A·B     | ×       | 0    | ×    | Н    |
| A·B     | Н       | ×    | ×    | ⊢    |
| Ā·B     | 1       | ×    | 0    | ×    |

represent? What logic equations do these groupings

What groupings in the K-map the right?

|     | G · D | G · D | G.D | G. D |
|-----|-------|-------|-----|------|
| ₽ï  | П     | М     | ×   | Н    |
| Α·Β | ×     | 0     | ×   | Н    |
| A·B | ⊢     | ×     | ×   | Ъ    |
| Ā·B | ⊢     | ×     | 0   | ×    |

What logic equations do these groupings represent?

## Question #2

Find the groupings in the following K-Map

|     | OI<br>OI | G. D | G.D | G · D        |
|-----|----------|------|-----|--------------|
| ă·B | Ц        | 0    | ×   | ightharpoons |
| Ā·B | ×        | 0    | ×   | Ы            |
| Α·B | Н        | ×    | Н   | Ы            |
| Α·B | 1        | ×    | ×   | ×            |

Produce a logical equation for these groupings:

Find the groupings in the following K-Map

| 8 8<br>8<br>8 | × ⊢ ĠI | 0 0 ûl | × × Ö | р<br>П р<br>П р<br>П р |
|---------------|--------|--------|-------|------------------------|
| A·B           | Н      | ×      | Н     | ₽                      |
| A·B           | H      | ×      | ×     | $\bowtie$              |

Produce a logical equation for these groupings:

## Question #2: alternative

Find the groupings in the following K-Map

|         | OI<br>ÖI | GI<br>OI | C ·D | G<br>G   |
|---------|----------|----------|------|----------|
| ∌.<br>B | Ъ        | 0        | ×    | Н        |
| Ā·B     | ×        | 0        | ×    | H        |
| A·B     | Н        | ×        | Н    | H        |
| Α·B     | Н        | ×        | ×    | $\times$ |

Produce a logical equation for these groupings:

### Unsigned binary addition



### Unsigned binary addition



How do you write the number 78 as an 8-bit binary number?

b) What is 11001010 In decimal?

#### 202

We will revisit this!

# Negative Binary Numbers

- two's complement also known as signed
- All bits are data bits.
- Most significant bit (MSB) has negative value.
- Example:

Represent -18 as a 6-bit signed number:

|   | bit value:            |
|---|-----------------------|
| Н | <b>-2</b> 5           |
| 0 | 24                    |
| Н | <b>2</b> <sup>3</sup> |
| Н | <b>2</b> <sup>2</sup> |
| Н | 21                    |
| 0 | <b>2</b> °            |

Most significant bit (MSB) is worth -32

### Key Idea

- By design:
- X + 2's-complement(X) = 0
- Always!
- Therefore:
- 2's complement of X is -X
- same number of bits. Tradeoff with signed 2's complement: can represent fewer positive numbers with

# Signed Subtraction example



a) What is the two's complement of 01101101?

10010011

b) What is 11001010 In decimal?

Unsigned

202

2

Signed (2's complement) -54

0

## Question #5

- Compute in 8 bits:
- 75-120

98 – 35

Compute in 8 bits:

75-120= -45 = 1101 0011

$$98 - 35$$

## Question #5

Compute in 8 bits:

$$98 = 0110 0010$$
  
 $35 = 0010 0011$ 

Compute in 8 bits:

$$-35 = 1101 \ 1101$$