

	INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPOR
Supp-Autui	$FN/AN\ Time: 3\ Hrs.$ Full Marks 75 No. of Students 09 Deptt CSE Sub No $CS41001$ Sub. Name Theory of Computation
Instruction	s: Answer Q1 and any 3 from the remaining 4.
1.	$[7 \times 6]$
.(a)	L is a language over $\{0,1\}$. When can you say that L is NP-complete?
	Let L_1 and L_2 be two language over $\{0,1\}$. It is known that L_2 is NP-complete. What are the steps to establish that L_1 is also NP-complete?
(c)	Let L_1 and L_2 be coNP languages. Does $L_1 \cap L_2$ belong to coNP ? Justify your answer.
(d)	Prove that, $L_H = \{ \langle M, x \rangle : \text{Turing machine } M \text{ halts on input } x \}$ is NP-hard but not NP-complete.
(e)	Give two definitions of the class coNP. Is there any coNP-complete problem?
	Give an example of a language L that belongs to $NP \cap coNP$. Justify that, if L is in $NP \cap coNP$, then the complement of L is also in $NP \cap coNP$.
(g)	What can you conclude about the polynomial hierarchy if $\Sigma_i^p = \Pi_i^p$?
	ame that 3SAT is NP-complete and prove that
	$CLIQUE = \{ \langle G, k \rangle : G \text{ is an undirected graph with a clique of size } k \}$
is als	50 NP-complete. [11]
	rmally describe the outline of the proof of the Cook-Levin theorem - SAT is NP - [11]
4. Prov	ve that
TQI	$BF = \{ \langle Q_1x_1 \cdots Q_nx_n\phi(x_1, \cdots, x_n) \rangle : \text{ where } Q_1x_1 \cdots Q_nx_n\phi(x_1, \cdots, x_n) \text{ is } true \}$
is P form	SPACE-complete. Note that Q_i is either '3' or ' \forall ', and $\phi(x_1, \dots, x_n)$ is a boolean nula. [11]
5. (a)	Define Σ_i^p , $i \geq 1$, using a polynomial time computable predicates and finite number of quantifiers, \forall/\exists . Define the polynomial hierarchy PH.
-	What is a complete problem of Σ_i^p , $i \geq 1$. Give an example (without proof) of a complete problem of Σ_i^p .
(c)	How do you characterise Σ_i^p , where $i \geq 2$, using non-deterministic oracle Turing machine?
(d)	Why does the polynomial hierarchy, PH, cannot have a complete problem? $[3+3+3+2]$