

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLIS	HED U	INDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/43696
C07H 21/04, C07K 14/705, C12N 15/09, 15/63, C12Q 1/68	A1	(43) International Publication Date: 2 September 1999 (02.09.99)
(21) International Application Number: PCT/US		BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
(22) International Filing Date: 22 February 1999 (9) GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TI, TM, TR, TT, UA, UG, UZ, VN, YU, ZW,	

US

US

US

(71) Applicant: AXYS PHARMACEUTICALS, INC. [US/US]; 180 Kimball Way, South San Francisco, CA 94080 (US).

25 February 1998 (25.02.98) 7 August 1998 (07.08.98)

19 January 1999 (19.01.99)

(72) Inventors: MILLER, Andrew, P.; 2131 Old Stone Mill Drive, Cranbury, NJ 08512 (US). CURRAN, Mark, Edward; 685 Poinsettia Park North, Encinitas, CA 92024 (US). HU, Ping; 3980 Via Holgura, San Diego, CA 92130 (US). RUTTER, Marc; 4559 Campus Avenue #1, San Diego, CA 92116 (US). WANG, Jian-Ying; 7478 Park Village Road, San Diego, CA 92129 (US).

(74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).

SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HUMAN POTASSIUM CHANNEL GENES

(57) Abstract

(30) Priority Data:

60/076,687

60/095.836

60/116,448

Methods for isolating K+Hnov genes are provided. The K+Hnov nucleic acid compositions find use in identifying homologous or related proteins and the DNA sequences encoding such proteins; in producing compositions that modulate the expression or function of the protein; and in studying associated physiological pathways. In addition, modulation of the gene activity in vivo is used for prophylactic and therapeutic purposes, such as identification of cell type based on expression, and the like.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL AM AT AU AZ BA BB BF BG BJ BR CF CG CH CI CM CN CU CZ DE DK EE	Albania Armenia Austria Austria Austriaia Australia Azerbaijan Bosnia and Herzegovina Barbados Belgium Burkina Faso Bulgaria Benin Brazil Belarus Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon China Cuba Czech Republic Germany Denmark Estonia	ES FI FR GA GB GC GN GR HU IS IT JP KE KG KP LC LI LK LR	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka Liberia	LS LT LU LV MC MD MG MK ML MN MN MN NE NL NO NZ PL PT RO RU SD SE SG	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sudan Sweden Singapore	SI SK SN SZ TD TG TJ TM TR TT UA UG US VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Yiet Nam Yugoslavia Zimbabwe
---	--	--	---	--	---	---	--

HUMAN POTASSIUM CHANNEL GENES

INTRODUCTION

Background

5

10

15

20

25

30

lon channels are multi-subunit, membrane bound proteins critical for maintenance of cellular homeostasis in nearly all cell types. Channels are involved in a myriad of processes including modulation of action potentials, regulation of cardiac myocyte excitability, heart rate, vascular tone, neuronal signaling, activation and proliferation of T-cells, and insulin secretion from pancreatic islet cells. In humans, ion channels comprise extended gene families with hundreds, or perhaps thousands, of both closely related and highly divergent family members. The majority of known channels regulate the passage of sodium (Na⁺), chloride (Cl⁻), calcium (Ca⁺⁺) and potassium (K⁺) ions across the cellular membrane.

Given their importance in maintaining normal cellular physiology, it is not surprising that ion channels have been shown to play a role in heritable human disease. Indeed, ion channel defects are involved in predisposition to epilepsy, cardiac arrhythmia (long QT syndrome), hypertension (Bartter's syndrome), cystic fibrosis, (defects in the CFTR chloride channel), several skeletal muscle disorders (hyperkalemic periodic paralysis, paramyotonia congenita, episodic ataxia) and congenital neural deafness (Jervell-Lange-Nielson syndrome), amongst others.

The potassium channel gene family is believed to be the largest and most diverse ion channel family. K⁺ channels have critical roles in multiple cell types andpathways, and are the focus of significant investigation. Four human conditions, episodic ataxia with myokymia, long QT syndrome, epilepsy and Bartter's syndrome have been shown to be caused by defective K⁺ ion channels. As the K⁺ channel family is very diverse, and given that these proteins are critical components of virtually all cells, it is likely that abnormal K⁺ channels will be involved in the etiology of additional renal, cardiovascular and central nervous system disorders of interest to the medical and pharmaceutical community.

The K⁺ channel superfamily can be broadly classified into groups, based upon the number of transmembrane domain (TMD) segments in the mature

10

20

25

30

protein. The minK (IsK) gene contains a single TMD, and although not a channel by itself, minK associates with different K⁺ channel subunits, such as KvLQT1 and HERG to modify the activity of these channels. The inward rectifying K+ channels (GIRK, IRK, CIR, ROMK) contain 2 TMD domains and a highly conserved pore domain. Twik-1 is a member of the newly emerging 4TMD K+ channel subset. Twik-like channels (leak channels) are involved in maintaining the steady-state K* potentials across membranes and therefore the resting potential of the cell near the equilibrium potential for potassium (Duprat et al. (1997) EMBO J 16(17):5464-5471). These proteins are particularly intriguing targets for therapeutic regulation. The 6TMD, or Shaker-like channels, presently comprise the largest subset of known K⁺ channels. The slopoke (slo) related channels, or Ca** regulated channels apparently have either 10 TMD, or 6 TMD with 4 additional hydrophobic domains.

Four transmembrane domain, tandem pore domain K+ channels (4T/2P channels) represent a new family of potassium selective ion channels involved in 15 the control of background membrane conductances. In mammals, five channels fitting the 4T/2P architecture have been described: TWIK, TREK, TASK-1, TASK-2 and TRAAK. The 4T/2P channels all have distinct characteristics, but are all thought to be involved in maintaining the steady-state K* potentials across membranes and therefore the resting potential of the cell near the equilibrium potential for potassium (Duprat et al. (1997) EMBO J 16(17):5464-5471). These proteins are particularly intriguing targets for therapeutic regulation. Within this group, TWIK-1, TREK-1 and TASK-1 and TASK-2 are widely distributed in many different tissues, while TRAAK is present exclusively in brain, spinal cord and The 4T/2P channels have different physiologic properties; TREK-1 retina. channels, are outwardly rectifying (Fink et al. (1996) EMBO J 15(24):6854-62), while TWIK-1 channels, are inwardly rectifying (Lesage et al. (1996) EMBO J 15(5):1004-11. TASK channels are regulated by changes in PH while TRAAK channels are stimulated by arachidonic acid (Reyes et al. (1998) JBC 273(47):30863-30869).

The degree of sequence homology between different K* channel genes is substantial. At the amino acid level, there is about 40% similarity between

10

15

20

25

30

different human genes, with distinct regions having higher homology, specifically the pore domain. It has been estimated that the K+ channel gene family contains approximately 10²-10³ individual genes. Despite the large number of potential genes, an analysis of public sequence databases and the scientific literature demonstrates that only a small number, approximately 20-30, have been identified. This analysis suggests that many of these important genes remain to be identified.

Potassium channels are involved in multiple different processes and are important regulators of homeostasis in nearly all cell types. Their relevance to basic cellular physiology and role in many human diseases suggests that pharmacological agents could be designed to specific channel subtypes and these compounds then applied to a large market (Bulman, D.E. (1997) Hum Mol Genet 6:1679-1685; Ackerman, M.J. and Clapham D.E. (1997) NEJM 336:1575-1586, Curran, M.E. (1998) Current Opinion in Biotechnology 9:565-572). The variety of therapeutic agents that modulate K+ channel activity reflects the diversity of physiological roles and importance of K+ channels in cellular function. A difficulty encountered in therapeutic use of therapeutic agents that modify K+ channel activity is that the presently available compounds tend to be non-specific and elicit both positive and negative responses, thereby reducing clinical efficacy. To facilitate development of specific compounds it is desirable to have further characterize novel K+ channels for use in *in vitro* and *in vivo* assays.

Relevant Literature

A large body of literature exists in the general area of potassium channels. A review of the literature may be found in the series of books, "The Ion Channel Factsbook", volumes 1-4, by Edward C. Conley and William J. Brammar, Academic Press. An overview is provided of: extracellular ligand-gated ion channels (ISBN: 0121844501), intracellular ligand-gated channels (ISBN: 012184451X), Inward rectifier and intercellular channels (ISBN: 0121844528), and voltage gated channels (ISBN: 0121844536). Hille, B. (1992) "Ionic Channels of Excitable Membranes", 2nd Ed. Sunderland MA:Sinauer Associates, also reviews potassium channels.

10

15

20

25

30

Jan and Jan (1997) Annu. Rev. Neurosci. 20:91-123 review cloned potassium channels from eukaryotes and prokaryotes. Ackerman and Clapham (1997) N. Engl. J. Med. 336:1575-1586 discuss the basic science of ion channels in connection with clinical disease. Bulman (1997) Hum. Mol. Genet. 6:1679-1685 describe some phenotypic variation in ion channel disorders.

Stephan *et al.* (1994) Neurology 44:1915-1920 describe a pedigree segregating a myotonia with muscular hypertrophy and hyperirritability as an autosomal dominant trait (rippling muscle disease, Ricker *et al.* (1989) Arch. Neurol. 46405-408). Electromyography demonstrated that mechanical stimulation provoked electrically silent contractions. The responsible gene was localized to the distal end of the long arm of chromosome 1, in a 12-cM region near D1S235.

Type II pseudohypoaldosteronism is the designation used for a syndrome of chronic mineralocorticoid-resistant hyperkalemia with hypertension. The primary abnormality in type II PHA is thought to be a specific defect of the renal secretory mechanism for potassium, which limits the kaliuretic response to, but not the sodium and chloride reabsorptive effect of, mineralocorticoid. By analysis of linkage in families with autosomal dominant transmission, Mansfield *et al.* (1997) Nature Genet. 16:202-205 demonstrated locus heterogeneity of the trait, with linkage of the PHA2 gene to 1q31-q42 and 17p11-q21.

Sequences of four transmembrane, two pore potassium channels have been previously described. Reyes et al. (1998) J Biol Chem 273(47):30863-30869 discloses a pH sensitive channel. As with the related TASK-1 and TRAAK channels, the outward rectification is lost at high external K+ concentration. The TRAAK channel is described by Fink et al. (1998) EMBO J 17(12):3297-308. A cardiac two-pore channel is described in Kim et al. (1998) Circ Res 82(4):513-8. An open rectifier potassium channel with two pore domains in tandem and having a postsynaptic density protein binding sequence at the C terminal was cloned by Leonoudakis et al. (1998) J Neurosci 18(3):868-77.

The electrophysiological properties of Task channels are of interest, (Duprat et al. (1997) EMBO J 16:5464-71). TASK currents are K+-selective, instantaneous and non-inactivating. They show an outward rectification when external [K+] is low, which is not observed for high [K+]out, suggesting a lack of

15

20

25

30

intrinsic voltage sensitivity. The absence of activation and inactivation kinetics as well as voltage independence are characteristic of conductances referred to as leak or background conductances. TASK is very sensitive to variations of extracellular pH in a narrow physiological range, a property probably essential for its physiological function, and suggests that small pH variations may serve a communication role in the nervous system.

SUMMARY OF THE INVENTION

Isolated nucleotide compositions and sequences are provided for K+Hnov genes. The K+Hnov nucleic acid compositions find use in identifying homologous or related genes; in producing compositions that modulate the expression or function of its encoded proteins; for gene therapy; mapping functional regions of the proteins; and in studying associated physiological pathways. In addition, modulation of the gene activity *in vivo* is used for prophylactic and therapeutic purposes, such as treatment of potassium channel defects, identification of cell type based on expression, and the like.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Nucleic acid compositions encoding *K+Hnov* polypeptides are provided. They are used in identifying homologous or related genes; in producing compositions that modulate the expression or function of the encoded proteins; for gene therapy; mapping functional regions of the proteins; and in studying associated physiological pathways. The *K+Hnov* gene products are members of the potassium channel gene family, and have high degrees of homology to known potassium channels. The encoded polypeptides may be alpha subunits, which form the functional channel, or accessory subunits that act to modulate the channel activity.

CHARACTERIZATION OF K+HNOV

The sequence data predict that the provided *K+Hnov* genes encode potassium channels. Table 1 summarizes the DNA sequences, corresponding SEQ ID NOs, chromosomal locations, and polymorphisms. The provided

10

15

20

25

30

sequences may encode a predicted K*channel, e.g. voltage gated, inward rectifier, etc.; or a modulatory subunit.

Electrophysiologic characterization of ion channels is an important part of understanding channel function. Full length ion channel cDNAs may be combined with proper vectors to form expression constructs of each individual channel. Functional analyses of expressed channels can be performed in heterologous systems, or by expression in mammalian cell lines. For expression analyses in heterologous systems such as *Xenopus* oocytes, synthetic mRNA is made through *in vitro* transcription of each channel construct. mRNA is then injected, singly or in combination with interacting channel subunit mRNAs, into prepared oocytes and the cells allowed to express the channel for several days. Oocytes expressing the channel of interest are then analyzed by whole cell voltage clamp and patch clamp techniques.

To determine the properties of each channel when expressed in mammalian cells expression vectors specific to this type of analyses may be constructed and the resultant construct used to transform the target cells (for example human embryonic kidney (HEK) cells). Both stable and transiently expressing lines may be studied using whole cell voltage clamp and patch clamp techniques. Data obtained from EP studies includes, but is not limited to: current profiles elicited by depolarization and hyperpolarization, current-voltage (I-V) relationships, voltage dependence of activation, biophysical kinetics of channel activation, deactivation, and inactivation, reversal potential, ion selectivity, gating properties and sensitivity to channel antagonists and agonists.

Heterologous or mammalian cell lines expressing the novel channels can be used to characterize small molecules and drugs which interact with the channel. The same experiments can be used to assay for novel compounds which interact with the expressed channels.

In many cases the functional ion channel formed by K+Hnov polypeptides will be heteromultimers. Heteromultimers are known to form between different voltage gated, outward rectifying potassium channel α subunits, generally comprising four subunits, and frequently associated with auxiliary, β subunits. Typically such α subunits share a six-transmembrane domain structure (S1-S6),

10

15

with one highly positively charged domain (S4) and a pore region situated between S5 and S6. Examples of such subunits are K+Hnov4, K+Hnov9, and K+Hnov12. Channels are also formed by mutimerization of subunits of the two transmembrane and one pore architecture. It is predicted that two subunits of K+Hnov49 or K+Hnov59 will be required to form a functional channel.

Heteromultimers of greatest interest are those that form between subunits expressed in the same tissues, and are a combination of subunits from the same species. In addition, the formation of multimers between the subject polypeptides and subunits that form functional channels are of particular interest. The resulting channel may have decreased or increased conductance relative to a homomultimer, and may be altered in response to beta subunits or other modulatory molecules.

Known voltage gated K+ channel α subunits include Kv1.1-1.8 (Gutman *et al.* (1993) Sem. Neurosci. 5:101-106); Kv2.1-2.2; Kv3.1-3.4; Kv4.1-4.3; Kv5.1; Kv6.1; Kv7.1; Kv8.1; Kv9.1-9.2. The subunits capable of forming ion inducing channels include all of those in the Kv1 through Kv4; and Kv7 families. The Kv5.1, Kv6.1, Kv8.1 and Kv9.1-9.2 subunits may be electrically silent, but functional in modifying the properties in heteromultimers.

TABLE 1

Name	cDNA SEQ	Protein SEQ	Polymorphisms	Chromosome Position	Channel Type
K+Hnov1	SEQ ID NO:1	SEQ ID NO:2	Alternative poly(A) tail: 1236, 2395	2q37	ATP-sensitive inward rectifying
K+Hnov4	SEQ ID NO:3	SEQ ID NO:4	A312C	unknown	Voltage
			T335C		Vollage galed K+ channel
	٠.		A377G		
			T344C		
			A401G		
			CA410-411GG (Ala/Thr)		
K+Hnov6	SEQ ID NO:5	SEQ ID NO:6		2003	
K+Hnov9	SEQ ID NO:7	SEO ID NO.8	Alternative solutary and	ches	Delayed rectifying K+ channel
K+Hnov12	0.00.01.020		Authorities (A) (A) (A): 2304	8q23	Voltage gated K+ channel
71 4011111111111111111111111111111111111	SEG ID NO:9	SEQ ID NO:10	C321T (Pro/Leu)	Xp21	Voltage gated K+ channel
			A375G (Glu/Gly)		
			C407T (Leu/Phe)		
K+Hnov15	SEQ ID NO:11	SEQ ID NO:12	Alternative poly(A) tail: 1427	13q14	modulatory subunit
			A689G (Gly/Arg)		
K+Hnov27	SEQ ID NO:13	SEQ ID NO:14	T365A (Ile/Asn)	1841	
K+Hnov2	SEQ ID NO:15	SEO ID NO.16		71 ho	modulatory subunit
			Y/N	W/A	4 transmembrane domain, 2 pore
					uomain K+ channel

4T/2P channel	chr19	N/A	SEQ ID NO:83	SEQ ID NO:82	K*Hnov59
disease 1 (RMD1), and type II pseudohypoaldosteronism		position 2186			
4T/2P channel; linked to the disease loci for rippling muscle	1941	(ATCT), repeats in the 3' UTR sequence, starting at	SEQ ID NO:81	SEQ ID NO:80	K*Hnov49
beta-subunit.	22p13	N/A	SEQ ID NO:30	SEQ ID NO:28-29	K+Hnov44
Homology to K+ channel protein of C. elegans	8q11	G1162A; T1460A; T2496A	SEQ ID NO:27	SEQ ID NO:26	K+Hnov42
Modulatory subunit	3q29	4 alternative 5' splices	SEQ ID NO:25	SEQ ID NO:21-24	K+Hnov28
6 transmembrane domain, voltage gated K+ channel	12q14	C3168T	SEQ ID NO:20	SEQ ID NO:19	K+Hnov 14
transmembrane dominas, voltage gated, delayed rectifier K+ channel		7			
Human ortholog of murine gene, 6	N/A	N/A	SEQ ID NO:18	SEQ ID NO:17	K+Hnov 11

10

15

20

25

30

K+HNOV NUCLEIC ACID COMPOSITIONS

As used herein, the term "K+Hnov" is generically used to refer to any one of the provided genetic sequences listed in Table 1. Where a specific K+Hnov sequence is intended, the numerical designation, e.g. K49 or K59, will be added. Nucleic acids encoding K+Hnov potassium channels may be cDNA or genomic DNA or a fragment thereof. The term "K+Hnov gene" shall be intended to mean the open reading frame encoding any of the provided K+Hnov polypeptides, introns, as well as adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, removed by nuclear RNA splicing, to create a continuous open reading frame encoding a K+Hnov protein.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include the 3' and 5' untranslated regions found in the mature mRNA. It may further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for developmental regulation in tissues where *K+Hnov* genes are expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter regions are useful for determining natural variations in expression, particularly those that may be associated with disease.

Alternatively, mutations may be introduced into the promoter regions to determine the effect of altering expression in experimentally defined systems. Methods for the identification of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell et al. (1995) Mol Med 1: 194-205; Mortlock et al. (1996) Genome Res. 6: 327-33; and Joulin and Richard-Foy (1995) Eur J Biochem 232: 620-626.

The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of *K+Hnov* expression, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans* acting factors that regulate or mediate *K+Hnov* expression. Such transcription or translational control regions may be operably linked to a *K+Hnov* gene in order to promote expression of wild type or altered *K+Hnov* or other proteins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

The nucleic acid compositions of the subject invention may encode all or a part of the subject polypeptides. Double or single stranded fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide. For use in amplification reactions, such as PCR, a pair of

5

10

15

20

25

30

10

15

20

25

30

primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.

The K+Hnov genes are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a K+Hnov sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature and does not require elaboration here. DNA or mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, e.g. nitrocellulose, nylon, etc., and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, in situ hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of K+Hnov gene expression in the sample.

The sequence of a K+Hnov gene, including flanking promoter regions and coding regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, etc.

10

15

20

25

30

The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, *i.e.* will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions or deletions. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, *e.g.* with the FLAG system, HA, *etc.* For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et al.*, *Biotechniques* 14:22 (1993); Barany, *Gene* 37:111-23 (1985); Colicelli *et al.*, *Mol Gen Genet* 199:537-9 (1985); and Prentki *et al.*, *Gene* 29:303-13 (1984). Methods for site specific mutagenesis can be found in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, CSH Press 1989, pp. 15.3-15.108; Weiner *et al.*, *Gene* 126:35-41 (1993); Sayers *et al.*, *Biotechniques* 13:592-6 (1992); Jones and Winistorfer, *Biotechniques* 12:528-30 (1992); Barton *et al.*, *Nucleic Acids Res* 18:7349-55 (1990); Marotti and Tomich, *Gene Anal Tech* 6:67-70 (1989); and Zhu, *Anal Biochem* 177:120-4 (1989). Such mutated genes may be used to study structure-function relationships of *K+Hnov*, or to alter properties of the protein that affect its function or regulation.

Homologs and orthologs of K+Hnov genes are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6XSSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1XSSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and

15

20

25

30

0.1XSSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided K+Hnov sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided K+Hnov sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes may be any species, e.g. primate species, particularly human; rodents, such as rats and mice, canines, felines, bovines, ovines, equines, yeast, nematodes, etc.

Between mammalian species, e.g. human and mouse, homologs have substantial sequence similarity, i.e. at least 75% sequence identity between nucleotide sequences, in some cases 80 or 90% sequence identity, and may be as high as 95% sequence identity between closely related species. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al. (1990), J. Mol. Biol. 215:403-10. In general, variants of the invention have a sequence identity greater than at least about 65%, preferably at least about 75%, more preferably at least about 85%, and may be greater than at least about 90% or more as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular). Exemplary search parameters for use with the MPSRCH program in order to identify sequences of a desired sequence identity are as follows: gap open penalty: 12; and gap extension penalty: 1.

K+HNOV POLYPEPTIDES

The subject nucleic acid sequences may be employed for producing all or portions of K+Hnov polypeptides. For expression, an expression cassette may be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region

WO 99/43696 PCT/US99/03826

is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions may be native to a *K+Hnov* gene, or may be derived from exogenous sources.

The peptide may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli, B. subtilis, S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, e.g. COS 7 cells, may be used as the expression host cells. In some situations, it is desirable to express the *K+Hnov* gene in eukaryotic cells, where the *K+Hnov* protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Peptides that are subsets of the complete *K+Hnov* sequence may be used to identify and investigate parts of the protein important for function, or to raise antibodies directed against these regions.

Fragments of interest include the transmembrane and pore domains, the signal sequences, regions of interaction between subunits, etc. Such domains will usually include at least about 20 amino acids of the provided sequence, more usually at least about 50 amino acids, and may include 100 amino acids or more, up to the complete domain. Binding contacts may be comprised of non-contiguous sequences, which are brought into proximity by the tertiary structure of the protein. The sequence of such fragments may be modified through manipulation of the coding sequence, as described above. Truncations may be performed at the carboxy or amino terminus of the fragment, e.g. to determine the minimum sequence required for biological activity.

With the availability of the protein or fragments thereof in large amounts, by employing an expression host, the protein may be isolated and purified in accordance with conventional ways. A lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique. The

5

10

15

20

25

30

10

15

20

25

30

purified protein will generally be at least about 80% pure, preferably at least about 90% pure, and may be up to and including 100% pure. Pure is intended to mean free of other proteins, as well as cellular debris.

The expressed K+Hnov polypeptides are useful for the production of antibodies, where short fragments provide for antibodies specific for the particular polypeptide, and larger fragments or the entire protein allow for the production of antibodies over the surface of the polypeptide. Antibodies may be raised to the wild-type or variant forms of K+Hnov. Antibodies may be raised to isolated peptides corresponding to specific domains, e.g. the pore domain and the transmembrane domain, or to the native protein.

Antibodies are prepared in accordance with conventional ways, where the expressed polypeptide or protein is used as an immunogen, by itself or conjugated to known immunogenic carriers, e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like. Various adjuvants may be employed, with a series of injections, as appropriate. For monoclonal antibodies, after one or more booster injections, the spleen is isolated, the lymphocytes immortalized by cell fusion, and then screened for high affinity antibody binding. The immortalized cells, i.e. hybridomas, producing the desired antibodies may then be expanded. For further description, see Monoclonal Antibodies: A Laboratory Manual, Harlow and Lane eds., Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, 1988. If desired, the mRNA encoding the heavy and light chains may be isolated and mutagenized by cloning in E. coli, and the heavy and light chains mixed to further enhance the affinity of the antibody. Alternatives to in vivo immunization as a method of raising antibodies include binding to phage "display" libraries, usually in conjunction with in vitro affinity maturation.

K+HNOV GENOTYPING

The subject nucleic acid and/or polypeptide compositions may be used to genotyping and other analysis for the presence of polymorphisms in the sequence, or variation in the expression of the subject genes. Genotyping may be performed to determine whether a particular polymorphisms is associated with

a disease state or genetic predisposition to a disease state, particularly diseases associated with defects in excitatory properties of cells, e.g. cardiac, muscle, renal and neural cells. Disease of interest include rippling muscle disease, and type II psuedohypoaldosteronism.

Clinical disorders associated with K+ channel defects include long-QT syndrome; a congenital disorder affecting 1 in 10,000-15,000. Affected individuals have a prolonged QT interval in the electrocardiogram due to a delayed repolarization of the ventricle. Genetic linkage analyses identified two loci for long QT syndrome, LQT1, in 11p15.5 and LQT2, in 7q35-36. Positional cloning techniques identified the novel K+ channel KvLQT1 on chromosome 11 while candidate gene analysis identified causative mutations in the HERG K+ channel for LQT2.

The weaver mouse exhibits several abnormal neurological symptoms, including severe ataxia, loss of granule cell neurons in the cerebellum and dopaminergic cells in the substantia nigra, as well as seizures and male infertility. A G-protein-coupled K+ channel having a mutation in the conserved pore domain has been determined to cause the disease. The pancreatic-islet \(\mathcal{B}\)-cell ATP-sensitive K+ channel (KATP) is composed of two subunits, the sulfonylurea receptor (SUR) and the inward rectifier K+ channel Kir6.2. Mutations in both SUR and Kir6.2 have been identified in patients with persistent hyperinsulinemic hypoglycemia of infancy, which is caused by unregulated secretion of insulin.

Genotyping may also be performed for pharmacogenetic analysis to assess the association between an individual's genotype and that individual's ability to react to a therapeutic agent. Differences in target sensitivity can lead to toxicity or therapeutic failure. Relationships between polymorphisms in channel expression or specificity can be used to optimize therapeutic dose administration.

Genetic polymorphisms are identified in the K+Hnov gene (examples are listed in table 1), e.g. the repeat variation in the 3' UTR of K49. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered reactivity and adverse side effects in response to drugs that act on K+ channels.

5

10

15

20

25

30

15

20

25

30

K+Hnov genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample, scrapings from cheek, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in K+Hnov, particularly those that affect the activity, responsiveness or expression of K+Hnov. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of K+Hnov expression, or alterations in K+Hnov specificity and/or activity.

The effect of a polymorphism in K+Hnov gene sequence on the response to a particular agent may be determined by *in vitro* or *in vivo* assays. Such assays may include monitoring during clinical trials, testing on genetically defined cell lines, etc. The response of an individual to the agent can then be predicted by determining the K+Hnov genotype with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, guidelines for drug administration can be generally tailored to a particular ethnic group.

Biochemical studies may be performed to determine whether a sequence polymorphism in a *K+Hnov* coding region or control regions is associated with disease, for example the association of K+Hnov 9 with idiopathic generalized epilepsy. Disease associated polymorphisms may include deletion or truncation of the gene, mutations that alter expression level, that affect the electrical activity of the channel, *etc.*

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) Science 239:487, and a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2–14.33. Amplification may be used

10

15

20

25

30

to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley *et al.* (1990) N.A.R. 18:2887-2890; and Delahunty *et al.* (1996) Am. J. Hum. Genet.58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'- dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7- hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6- carboxyrhodamine (TAMRA), radioactive labels, e.g. 32P, 35S, 3H; etc. The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilised on a solid support, as described in U.S. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the

10

15

20 .

25

30

products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking a polymorphic position in a K*Hnov sequence; coding sequences for different K*Hnov channels, panels of ion channels comprising one or more of the provided K* channels; etc. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For examples of arrays, see Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De Risi et al. (1996) Nature Genetics 14:457-460.

Screening for polymorphisms in K+Hnov may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in K+Hnov proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded K+Hnov protein as a potassium channel may be determined by comparison with the wild-type protein.

Antibodies specific for a K+Hnov may be used in staining or in immunoassays. Samples, as used herein, include biological fluids such as semen, blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid and the like; organ or tissue culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

Diagnosis may be performed by a number of methods to determine the absence or presence or altered amounts of normal or abnormal K+Hnov polypeptides in patient cells. For example, detection may utilize staining of cells

or histological sections, performed in accordance with conventional methods. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the secondary antibody conjugated to a flourescent compound, e.g. flourescein, rhodamine, Texas red, etc. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc.

15

20

25

30

10

5

MODULATION OF GENE EXPRESSION

The K+Hnov genes, gene fragments, or the encoded protein or protein fragments are useful in gene therapy to treat disorders associated with K+Hnov defects. Expression vectors may be used to introduce the K+Hnov gene into a cell. Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about one day, more usually for a period of at least about several days to several weeks.

The gene or K+Hnov protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as

10

15

20

25

described by Furth et al. (1992) Anal Biochem 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang et al. (1992) Nature 356:152-154), where gold microprojectiles are coated with the K+Hnov or DNA, then bombarded into skin cells.

Antisense molecules can be used to down-regulate expression of K+Hnov in cells. The anti-sense reagent may be antisense oligonucleotides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences.

Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996) Nature Biotechnology 14:840-844).

A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of

30

10

15

20

25

30

the target gene in an *in vitro* or animal model. A combination of sequences may also be used, where several regions of the mRNA sequence are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993) supra. and Milligan et al., supra.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, phosphorothioate, 3'-CH2-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and affinity. The α-anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'deoxycytidine for deoxycytidine. 5- propynyl-2'-deoxyuridine and 5-propynyl-2'deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized in vitro and administered to the patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application

10

15

20

25 .

30

WO 9523225, and Beigelman et al. (1995) <u>Nucl. Acids Res</u> 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, *e.g.* terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin *et al.* (1995) <u>Appl Biochem Biotechnol</u> 54:43-56.

GENETICALLY ALTERED CELL OR ANIMAL MODELS FOR K+HNOV FUNCTION

The subject nucleic acids can be used to generate transgenic animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the normal *K+Hnov* locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

The modified cells or animals are useful in the study of K+Hnov function and regulation. For example, a series of small deletions and/or substitutions may be made in the K+Hnov gene to determine the role of different transmembrane domains in forming multimeric structures, ion channels, etc. Of interest are the use of K+Hnov to construct transgenic animal models for epilepsy and other neurological defects, where expression of K+Hnov is specifically reduced or absent. Specific constructs of interest include anti-sense K+Hnov, which will block K+Hnov expression, expression of dominant negative K+Hnov mutations, etc. One may also provide for expression of the K+Hnov gene or variants thereof in cells or tissues where it is not normally expressed or at abnormal times of development.

DNA constructs for homologous recombination will comprise at least a portion of the *K+Hnov* gene with the desired genetic modification, and will include regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are

10

15

20

25

known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990) Methods in Enzymology 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, etc., e.g. to determine the effect of a candidate drug on Ras or related gene activation, oncogenesis, etc.

15

20

25

30

TESTING OF K+HNOV FUNCTION and RESPONSES

Potassium channels such as K+Hnov polypeptides are involved in multiple biologically important processes. Pharmacological agents designed to affect only specific channel subtypes are of particular interest. Presently available compounds tend to be non-specific and elicit both positive and negative responses, thereby reducing clinical efficacy.

The subject polypeptides may be used in in vitro and in vivo models to test the specificity of novel compounds, and of analogs and derivatives of compounds known to act on potassium channels. Numerous pharmacological agents have profound affects on K+ channel activity. As examples, Sotalol (BETAPACE) is a 10 class III antiarrhythmic drug that prolongs cardiac action potentials by inhibiting delayed rectifier K+ channels. Sulfonylurea drugs, such as Glipizide (GLUCOTROL) and Tolazamide (TOLAMIDE) function as antidiabetic drugs by blocking ATP-sensitive K+ channels present in pancreatic islet cells, thereby regulating insulin secretion. Diazoxide (HYPERSTAT IV) is an antihypertensive drug that activates ATP-sensitive K+ channels, resulting in the relaxation of vascular smooth muscle. There are several other examples of drugs that have antidiabetic, antihypertensive, or antiarrhythmic activities. A number of drugs that activate K+ channels that have been proposed as coronary vasodilators for the treatment of both vasospastic and chronic stable angina.

The availability of multiple K+ channel subunits allows in vitro reconstruction of functional channels, which may comprise different alpha and beta subunits. The individual components may be modified by sequence deletion, substitution, etc. to determine the functional role of specific domains.

Drug screening may be performed using an in vitro model, a genetically altered cell or animal, or purified K+Hnov protein, either as monomers, homomultimers or hetermultimers. One can identify ligands or substrates that bind to, modulate or mimic the action of K+Hnov. Drug screening identifies agents that provide a replacement for K+Hnov function in abnormal cells. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including

10

15

20

25

30

monitoring cellular excitation and conductance, labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, and the like. The purified protein may also be used for determination of three-dimensional crystal structure, which can be used for modeling intermolecular interactions.

The term "agent" as used herein describes any molecule, *e.g.* protein or pharmaceutical, with the capability of altering or mimicking the physiological function of *K+Hnov* polypeptide. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, *i.e.* at zero concentration or below the level of detection.

Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic of randomized compounds biomolecules, including expression and oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical Known means, and may be used to produce combinatorial libraries.

10

15

20

25

30

pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to

Where the screening assay is a binding assay, one or more of the molecules may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescers, chemiluminescers, enzymes, specific binding molecules, particles, e.g. magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule that

provides for detection, in accordance with known procedures.

A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc. may be used. The mixture of components are added in any order that provides for the requisite binding. Incubations are performed at any suitable temperature, typically between 4 and 40°C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening. Typically between 0.1 and 1 hours will be sufficient.

The compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host in a variety of ways, orally, topically, parenterally e.g. subcutaneously, intraperitoneally, by viral infection, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt.%. The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up

10

15

20

25

30

compositions containing the therapeutically-active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the cell" includes reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

It must be noted that as used herein and in the appended claims, the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a complex" includes a plurality of such complexes and reference to "the formulation" includes reference to one or more formulations and equivalents thereof known to those skilled in the art, and so forth.

All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the methods and methodologies that are described in the publications which might be used in connection with the presently described invention. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an

admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

15 Methods

5

10

20

Two different types of sequence searches were performed. The first centered on the most highly conserved region of the K+ channel family, the pore domain. The pore is composed of 15-17 amino acids and can be divided into subfamilies based on the number of transmembrane segments present in the channel. Eleven variant peptide sequences corresponding to the pore domain were used in TBLASTN searches against the EST division of Genbank. Significant matches were identified, and classified into 2 categories: identical to known human K+ channels and related to known K+ channels. The pore sequences are shown in Table 2.

TABLE ?

SEQ ID NO	Genbank #	
49	L02751	TGGTGGGCTGTGGTGACCATGACAACTGTGGGCTATGGGGACATG
50	M60451	TGGTGGGCAGTGGTCACCATGACCACTGTGGGCTACGGGGACATG
51	L02752	TGGTGGGCAGTCGTCCATGACAACTGTAGGCTATGGAGACATG
52	M55515	TGGTGGGCAGTGGTAACCATGACAACAGTGGGTTACGGCGATATG
53	211585	TGGTGGGCTGTGGTCACCATGACGACCCTGGGCTATGGAGACATG
54	U40990	TGGTGGGGGGTGGTCACACCACCATCGGCTATGGGGACAAG
55	126643	TGGTGGGCAGTGGTCACCATGACCACGGTTGGCTATGGGGACATG
88	M96747	TGGTGGGCCGTGGTCACCATGACGACCCTGGGCTATGGAGACATG
57	M64676	TGGTGGGCTGTGGTCACCATGACGACACTGGGCTACGGAGACATG
58	M55514	TGGTGGGCTGTGGCCATGACACTGTGGGCTATGGGGACATG
29	X83582	TTCCTGTTCTCCATTGAGACCGAAACAACCATTGGGTATGGCTTCCG
90	S78684	TTTTTATTCTCAATAGAGACAGAAACCACCATTGGTTATGGCTACCG
19	U22413	TTCCTCTTCTCCATTGAGACCCAGACCATAGGCTATGGTTTCAG
62	U24058	TTCCTGTTCTCGGTGGAGGCGCAGACGACCATCGGCTATGGGTTCCG
63	US2155	TTCCTCTTCTCCCTTGAATCCCAAACCACCATTGGCTATGGCTTCCG
2	D87291	TTTCTCTTTTCCCTGGAATCCCAGACAACCATTGGCTATGGAGTCCG
65	D50582	TTCCTTTTCTCCATTGAGGTCCAAGTGACTATTGGCTTTGGGGGGCG
88	D50315	TTTCTCTCTCCATTGAAGTTCAAGTTACCATTGGGTTTGGAGGGAG
87	U04270	GCGCTCTACTTCACCTTCAGCAGCCTCACCAGTGTGGGCTTCGGCAAC

The unique pore peptides sequences are shown in Table 3.

TABLE 3

	INDEE
SEQ ID NO	Amino acid sequence
68	WWAVVSMTTVGYGDM
69	WWAVVTMTTLGYGDM
70	WWGVVTVTTIGYGDK
71	WWAVVTMTTVGYGDM
72	FLFSIEVQVTIGFGG
73	FLFSLESQTTIGYGV
74	FLFSIETETTIGYGY
75	FLFSIETQTTIGYGF
76	FLFSVETQTTIGYGF
77	FLFSLESQTTIGYGF
78	FLFSIETETTIGYGF
79	ALYFTFSSLTSVGFGN

The second set of experiments was based on a complex, reiterative process. Annotated protein and DNA sequences were obtained from GenBank for all known K+ channels from all species. The TBLASTN and BLASTN programs were used to identify homologous ESTs, which were then analyzed using the BLASTX and BLASTN algorithms to identify ESTs which were related to K+ channels yet not identical to any known human K+ channel gene.

Novel human K+ channels were defined as those that had clear homology to known K+ channels from any species and were not present as identities or near identities to any human-derived sequences in any division of Genbank.

15 Isolation of full length cDNA sequence. EST clones were picked from the IMAGE consortium cDNA library and end-sequenced with vector primers. Gap closure was achieved either by primer walking or transposon sequencing. GeneTrapper (Life

10

15

20

Technologies) was used to isolate larger cDNA clones according to the provided protocol. RACE was used to extend the sequences as necessary using standard protocols.

Sequences were assembled in Sequencher (Gene Codes). The presence of open reading frames was assessed as well as potential start codons. Potential polymorphisms were detected as sequence variants between multiple independent clones. Sequence homologies were detected using the BLAST algorithms.

The completed gene sequences and predicted amino acid sequences are provided as SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21-24, 26 and 28-29. Polymorphisms, chromosome locations and family assignments are shown in Table 1.

ESTs that had top human hits with >95% identity over 100 amino acids were discarded. This was based upon the inventors' experience that these sequences were usually identical to the starting probe sequences, with the differences due to sequence error. The remaining BLASTN and BLASTX outputs for each EST were examined manually, i.e., ESTs were removed from the analysis if the inventors determined that the variation from the known related probe sequence was a result of poor database sequence. Poor database sequence was usually identified as a number of 'N' nucleotides in the database sequence for a BLASTN search and as a base deletion or insertion in the database sequence, resulting in a peptide frameshift, for a BLASTX output. ESTs for which the highest scoring match was to non-related sequences were also discarded at this stage. The EST sequences that correspond to each clone are shown in Table 4.

Table 4

Genbank Accession#	K+Hnov	clone ID	Trace	IMAGE Plate Coordinates	Read 5'/3'
N39619	K+Hnov2	277113	yy51h05.s1	611p10	3'
N46767	K+Hnov2	277113	yy51h05.r1	611p10	5'
R19352	K+Hnov11	33144	yg24f12.r1	155024	5'
R44628	K+Hnov11	33144	yg24f12.s1	155024	3'

R35526	K+Hnov14	37299	yg64e08.r1	165015	5 '
R73353	K+Hnov14	157854	yl10e04.r1	251g07	5 [']
AA397616	K+Hnov14	728558	zt79c08,r1	1787j15	5'
AA286692	K+Hnov28	700757	zs48h03.r1	1715d6	<u> </u>
AA150494	K+Hnov42	491748	zl08e07.s1	1170013	3'
AA156697	K+Hnov42	491748	zi08e07.r1	1170013	5'
AA191752	K+Hnov42	626699	zp82d06.r1	1522f12	5'
AA216446	K+Hnov42	626699	zp82d06.s1	1522f12	3'
AA430591	K+Hnov42	773611	zw51f10.r1	1904020	5'
AA236930	K+Hnov44	683888	zs01a05.s1	1671e9	3'
AA236968	K+Hnov44	683888	zs01a05.r1	1671e9	5'

EXAMPLE 2: CHROMOSOMAL LOCALIZATION

Two primers were designed in the 3'-untranslated regions of each gene sequence to amplify a product across the Stanford G3 radiation hybrid map, or the Whitehead GB4 panel. The PCR data were submitted for automatic two-point analysis. Mapping data were correlated with cytoband information and comparisons with the OMIM human gene map data base were made. The following primers were made:

K+Hnov1 on GB4

10 (SEQ ID NO:31) F: 5' TATCCACATCAATGGACAAAGC 3' (SEQ ID NO:32) R: 5' TGCATAACTGGCTGGGTGTA 3' Results: 1.71 cR from D2S331, Cytogenetic location of 2q37

K+Hnov2 on G3

15 F: 5' GTCAGGTGACCGAGTTCA 3' R: 5' GCTCCATCTCCAGATTCTTC 3'

Results: 0

0.0 cR from SHGC-1320, Cytogenetic location of 11q12

K+Hnov6 on GB4

20 (SEQ ID NO:33) F: 5' TGACATCACTGGATGAACTTGA 3' (SEQ ID NO:34) R: 5' TGCCTGCAAAGTTTGAACAT 3' Results: 5.23 cR from WI-5509, Cytogenetic location of 2p23

K+Hnov9 on GB4

25 (SEQ ID NO:35) F: 5' TGACATCACTGGATGAACTTGA 3' (SEQ ID NO:36) R: 5' TGCCTGCAAAGTTTGAACAT 3'

Results:

1.21 cR from AFM200VC7, Cytogenetic location of 8q23

K+Hnov11 on GB4

(SEQ ID NO:37) F: 5' ACCTGGTGGTATGGAAGCAT 3'

5 (SEQ ID NO:38) R: 5' TTTCTCCTGGCCTCTACCC 3'

Results:

2.43 cR from WI-6756, Cytogenetic location of 8q23

K+Hnov12 on G3

(SEQ ID NO:39) F: 5' TCCCTCTTGGGTGACCTTC 3'

10 (SEQ ID NO:40) R: 5' ATCTTTGTCAGCCACCAGCT 3'

Results:

7.45 cR from SHGC-32925, Cytogenetic location of Xp21

K+Hnov14 on GB4

(SEQ ID NO:41) F: 5' AGGTGTGCTGCCATCTGCTGTTCG3'

15 (SEQ ID NO:42) R: 5' AGCCTATCCTCTGAGAGTCAGG

Results:

7.69 cR from WI-7107, Cytogenetic location of 12q14

K+Hnov28 on GB4

(SEQ ID NO:43) F: 5' AAGCAGAGTACTCATGATGCC 3'

20 (SEQ ID NO:44) R: 5' TCTGGTAGACAGTACAGTGG 3'

Results:

35.38 cR from WI-9695, Cytogenetic location of 3q29

K+Hnov42 on G3

(SEQ ID NO:45) F: 5' CATTTGGCTGGTCCAAGATG 3'

25 (SEQ ID NO:46) R: 5' AGTCATTGGTAGGGAGGTAC 3'

Results:

7.45 cR from SHGC-32925, Cytogenetic location of Xp21

K+Hnov44 on G3

(SEQ ID NO:47) F: 5' CATGCTTCTACAGTCCAGCC 3'

30 (SEQ ID NO:48) R: 5' GGTCCTCAGTTGCAGAAATC 3'

Results:

7.45 cR from SHGC-32925, Cytogenetic location of Xp21

Map positions for K+Hnov15 and K+Hnov27 were obtained from public databases. K+Hnov2 and K+Hnov4 have not been mapped.

35

40

EXAMPLE 3: EXPRESSION ANALYSIS

RT-PCR was utilized to characterize the expression pattern of the novel ion channels. This approach used RNA from 30 different tissues to generate first strand cDNA. Total RNA was purchased (Clontech, Invitrogen) and used to synthesize first strand cDNA using M-MLV reverse transcriptase and the supplied buffer (Gibco-BRL). The 20 µl reaction contained 5 µg total RNA, 100 ng of random primers, 10 mM DTT.

10

15

0.5 mM each dNTP, and an RNAse inhibitor (Gibco-BRL). Identical reactions were set up without reverse transcriptase to control for DNA contamination in the RNA samples. The synthesis reaction proceeded for 1 hour at 37°C followed by 10 minutes at 95°C. These cDNAs, along with control cDNA synthesis reactions without reverse transcriptase, were diluted 1:5 and 2 μl of each sample were arrayed into 96-well trays, dried, and resuspended in PCR buffer prior to PCR amplification. The cDNAs were tested with primers with defined expression patterns to verify the presence of amplifiable cDNA from each tissue. Gene-specific primers were used to amplify the cDNAs in 20 μl PCR reactions with standard conditions, 2.5 mM MgCl₂, Taq Gold, and an appropriate annealing temperature.

This approach provides for relatively high-throughput analysis of gene expression in a large set of tissues in a cost-efficient manner and provides qualitative analysis of gene expression only. Modifications can be employed, such as the use of internal control primers, limited cycling parameters, and dilution series to convert this to a quantitative experiment.

Uterus	•	٠		•		•	٠	•	•	•	•	T	•
Trachea	٠	•	\cdot	•	•	•	$\overline{\cdot}$	•	٠	•	•	1	•
Thymus	•	٠	$\overline{\cdot}$	•	٠	•	•	•	•	·	٠		•
Testis	٠	٠	\cdot	٠	٠		٠	•	•	•	•		•
Stomach	٠	٠	\cdot	٠	٠	٠	•	\cdot	٠	٠	٠		٠
Splean	٠		•	٠	٠		٠		·	٠	٠		·
Smail Intestine	٠	٠	٠	٠	•	+	·	٠	٠	٠	•		•
Skin		•		٠			٠	•		•			٠
Skeletal Muscle	٠	•	٠	٠			•	٠	·	٠	٠		•
Salivary Gland	+	٠	٠	+	+	+	•	٠	٠	٠	+	١	٠
Rectum		٠		٠	•		•	•		٠			•
Prostate	٠	•	+	+		+		٠	٠	+	٠		·
Placenta	+	+	٠	+	•	٠	•	٠	٠	+	٠		٠
Pancreas	٠	·	•	+	•	٠	$ \cdot $	·	٠	٠	٠		٠
Mammary Gland	٠	٠	٠	+	•	+	١٠	٠	+	+	+		٠
Lung	٠	•	•	+	·	+	•	٠	•	+	٠		٠
Liver	٠	+	•	+	•	•	٠	٠	+	+	٠		٠
Kidney	٠	*	•	•	٠	*	·	+	+	•	*		+
HeLa Corr	+	+	•	•	•	٠	·	+	+	+	•		•
Heart	+	٠	•	•	·	•	ŀ	·	•	+	٠		*
Fetal Liver	•	٠	ŀ	•	Ŀ	٠	Ŀ	٠	•	•	٠		٠
Fetal Brain	Ŀ	Ŀ	٠	Ŀ	Ŀ	•	ŀ	ŀ	٠	٠	٠		٠
Esoprag :	•	Ŀ		·			Ŀ	ŀ		÷	٠		٠
Colon	٠	ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	ŀ	·	*	٠		٠
Cervix	·	•					Ŀ	•		·			•
Cerebellum	*	٠	٠	•	·	٠	Ŀ	ŀ	ŀ	÷	٠		٠
Brain	*	ŀ	٠	Ŀ	·	ŀ	Ŀ	Ŀ	•	٠	٠		٠
Bladder	*	٠	ŀ	ŀ	Ŀ	ŀ	ŀ	ŀ	Ŀ	•	•		٠
Adrenal Gland	٠		١.	+	+		+	+	+	+	+		٠
Adipose	٠	1		Γ			•	ŀ		•	·		Ŀ
Anchor name		Γ				1	F			Γ	Γ		
	K+Hnov1	K+Hnov2	K+Hnov4	K+Hnov6	K+Hnov9	K+Hnov11	K+Hnov12	K+Hnov14	K+Hnov15	K+Hnov27	K+Hnov28	K+Hnov42	K+Hnov44

Table 3

A "+" indicates expression in the tissue, a "-" indicates no expression, and blank square indicates no data for that sample.

K+Hnov49 on Whitehead GB4 RH mapping panel:

Primer 1 (SEQ ID NO:5): 5' - CATAGCCATAGGTGAGGACT - 3'

Primer 2: (SEQ ID N:6) 5' - GAGAGGAAAACAGTCTGGGC - 3'

5 Results: Cytogenetic location 1q41, 4.6cR from framework marker D1S217

K+Hnov59 on Whitehead GB4 RH mapping panel

Primer 1 (SEQ ID NO:7): 5' - GGACATCGAACTAAGACCTG - 3'

Primer 2 (SEQ ID NO:8): 5' - TCCCATGCCATTCAGATCTG - 3'

10 Results: Cytogenetic location 19q13.2, 8.34cr from framework marker D19S425

EXPRESSION ANALYSIS OF K+HNOV49

A probe was created from a fragment corresponding to nucleotides 50 to 1284 of SEQ ID NO:83 (K+Hnov49) and purified DNA fragment was labeled with [32P]dCTP (Amersham) by the random primer method. Adult human Multiple Tissue Northern (MTMTM) Blots (Clontech) were hybridized with the [32P]-labeled fragment in ExpressHybTM solution (Clontech) for four hours, washed to a final stringency of 0.1xSSC, 0.1% SDS at 65°C and subjected to autoradiography for 24 hours.

Analysis revealed that K+Hnov49 is expressed as an approximately 4.2kb mRNA. Expression levels of K+Hnov49 are high in brain and liver and low in kidney tissues. No mRNA was detectable on these Northern blots for heart, skeletal muscle, colon, thymus, spleen, small intestine, placenta, lung or peripheral blood leukocytes indicating either a very low level of expression or that it is not expressed in these tissues. Expression analysis was also carried out by RT-PCR across an extended series of tissues. The results of these analyses are shown in Table 4. Primer pairs used for amplification of K+Hnov49 and 59 are the same as those used for RH mapping as indicated above.

15

20

Table 4

	Adipose	Adrenal Gland	Bladder	Brain	Cerebellum	Cervix	Colon	Esophagus	Fetal Brain	Fetal Liver	Heart	He La Cell	Kidney	Liver	Lung	Mammary Gland	Pancreas	Placenta	Prostate	Rectum	Salivary Gland	Skeletal Muscle	Skin	Small Intestine	Spleen	Stomach	'l'estas	Thymus	Trachea	Uterus
#49	+	+	+	+	+	+	-	+	+	-	+	+	+	_	+	+	_	_	+	-	+	+	-	+	-	+	+	+	_	_
#59	_	_	-	-	-	+	_	+	-	+	+	_	_	+	+	+	+	_	+	+	+	_	_	+	+	+	+	+	+	+

WHAT IS CLAIMED IS:

- 1. An isolated nucleic acid encoding a mammalian K+Hnov protein.
- 2. An isolated nucleic acid according to Claim 1, wherein said K+Hnov protein has the amino acid sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 or 83.
 - 3. An isolated nucleic acid according to Claim 1, wherein said K+Hnov protein has an amino acid sequence that is substantially identical to the amino acid sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 or 83.
- 4. An isolated nucleic acid according to Claim 1 wherein the nucleotide sequence of said nucleic acid is SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,
 15 22, 23, 24, 26, 28, 29, 80 or 82.
 - 5. An isolated nucleic acid that hybridizes under stringent conditions to a nucleic acid sequence of claim 4.
- 6. An expression cassette comprising a transcriptional initiation region functional in an expression host, a nucleic acid having a sequence of the isolated nucleic acid according to Claim 1 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.
 - 7. A cell comprising an expression cassette according to Claim 6 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of introduction of said expression cassette into said host cell, and the cellular progeny of said host cell.

8. A method for producing mammalian K+Hnov protein, said method comprising:

growing a cell according to Claim 7, whereby said mammalian K+Hnov protein is expressed; and

isolating said K+Hnov protein free of other proteins.

- 9. A purified polypeptide composition comprising at least 50 weight % of the protein present as a K+Hnov protein or a fragment thereof.
- 10. A monoclonal antibody binding specifically to a K+Hnov protein.
 - 11. A non-human transgenic animal model for K+Hnov gene function wherein said transgenic animal comprises an introduced alteration in a K+Hnov gene.

15

- 12. The animal model of claim 11, wherein said animal is heterozygous for said introduced alteration.
- 13. The animal model of claim 12, wherein said animal is homozygous 20 for said introduced alteration.
 - 14. The animal model of claim 12, wherein said introduced alteration is a knockout of endogenous K+Hnov gene expression.

SEQUENCE LISTING

<110> Miller, Andrew Curran, Mark Buckler, Alan

<120> Novel Human Potassium Channels

<130> SEQ-15PCT

<150> 60/076,687

<151> 1998-02-25

<150> 60/095,836

<151> 1998-08-07

<150> 60/116,448

<151> 1999-01-19

<160> 87

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 2932

<212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (103)...(1180)

<223> K+Hnov1

<400> 1

att taa	aaaa aggc	tta tga	tctg ccca	atca gcaa	aa a aa g	aggc aact	agac gaga	t ct a at	gtaa acag	attt	ag	atg	acc gac Asp	agc			60 114
aat Asn 5	tgc Cys	aaa Lys	gtt Val	att Ile	gct Ala 10	cct Pro	ctc Leu	cta Leu	agt Ser	caa Gln 15	Arg	tac Tyr	cgg Arg	agg Arg	atg Met 20	:	162
gtc Val	acc Thr	aag Lys	gat Asp	ggc Gly 25	cac His	agc Ser	aca Thr	ctt Leu	caa Gln 30	atg Met	gat Asp	ggc Gly	gct Ala	caa Gln 35	aga Arg	:	210
ggt Gly	ctt Leu	gca Ala	tat Tyr 40	ctt Leu	cga Arg	gat Asp	gct Ala	tgg Trp 45	gga Gly	atc Ile	cta Leu	atg Met	gac Asp 50	atg Met	cgc Arg	2	258
tgg Trp	cgt Arg	tgg Trp 55	atg Met	atg Met	ttg Leu	gtc Val	ttt Phe 60	tct Ser	gct Ala	tct Ser	ttt Phe	gtt Val 65	gtc Val	cac His	tgg Trp	3	306
ctt Leu	gtc Val 70	ttt Phe	gca Ala	gtg Val	ctc Leu	tgg Trp 75	tat Tyr	gtt Val	ctg Leu	gct Ala	gag Glu 80	atg Met	aat Asn	ggt Gly	gat Asp	3	354

ctg Leu 85	gaa Glu	cta Leu	gat Asp	cat His	gat Asp 90	gcc Ala	cca Pro	cct Pro	gaa Glu	aac Asn 95	cac His	act Thr	atc Ile	tgt Cys	gtc Val 100		402
aag Lys	tat Tyr	atc Ile	acc Thr	agt Ser 105	ttc Phe	aca Thr	gct Ala	gca Ala	ttc Phe 110	tcc Ser	ttc Phe	tcc Ser	ctg Leu	gag Glu 115	aca Thr		450
caa Gln	ctc Leu	aca Thr	att Ile 120	ggt Gly	tat Tyr	ggt Gly	acc Thr	atg Met 125	ttc Phe	ccc Pro	agt Ser	ggt Gly	gac Asp 130	tgt Cys	cca Pro		498
agt Ser	gca Ala	atc Ile 135	gcc Ala	tta Leu	ctt Leu	gcc Ala	ata Ile 140	caa Gln	atg Met	ctc Leu	cta Leu	ggc Gly 145	ctc Leu	atg Met	cta Leu		546
gag Glu	gct Ala 150	ttt Phe	atc Ile	aca Thr	ggt Gly	gct Ala 155	ttt Phe	gtg Val	gcg Ala	aag Lys	att Ile 160	gcc Ala	cgg Arg	cca Pro	aaa Lys		594
Asn 165	Arg	Ala	Phe	Ser	att Ile 170	Arg	Phe	Thr	Asp	Thr 175	Ala	Val	Val	Ala	180		642
Met	Asp	Gly	Lys	Pro 185	aat Asn	Leu	Ile	Phe	Gln 190	Val	Ala	Asn	Tnr	Arg 195	Pro		690
Ser	Pro	Leu	Thr 200	Ser	gtc Val	Arg	Val	Ser 205	Ala	Val	Leu	Tyr	210	GIU	Arg		738
Glu	Asn	Gly 215	Lys	Leu	tac Tyr	Gln	Thr 220	Ser	Val	Asp	Pne	H1S 225	Leu	Asp	GIY		786
Ile	Ser 230	Ser	Asp	Glu	tgt Cys	Pro 235	Phe	Phe	Ile	Phe	Pro 240	Leu	Thr	Tyr	Tyr		834
His 245	Ser	Ile	Thr	Pro	250	Ser	Pro	Leu	Ala	Thr 255	Leu	Leu	GIN	HIS	260		882
Asn	Pro	Ser	His	Phe 265	Glu	Leu	Val	Val	Phe 270	Leu	Ser	Ala	Met	275		· .	930
Gly	Thr	Gl	280	Ile	: Cys	Gln	Arg	285	Thr	Ser	Tyr	Leu	290	ser	gaa Glu		978
Ile	Met	Let 295	ı His	His	Cys	Phe	300	Ser	Leu	Leu	Thr	305	GTA	Ser	aaa Lys		1026
Gly	Gli 310	Ty:	c Glr	ı Ile	e Lys	315	: Glu	ı Asr	n Phe	: Asr	320)	. val	PIC	gaa Glu		1074
ttt	cca	a act	c cct	ctg	gtt	tct	aaa	a ago	c cca	aac	agg	g act	gac	ct <u>c</u>	g gat		1122


```
Phe Pro Thr Pro Leu Val Ser Lys Ser Pro Asn Arg Thr Asp Leu Asp
                                           335
   atc cac atc aat gga caa agc att gac aat ttt cag atc tct gaa aca
   Ile His Ile Asn Gly Gln Ser Ile Asp Asn Phe Gln Ile Ser Glu Thr
                                                                      1170
   gga ctg aca g aataagactt atccattttt taatgtatta aatacaccca
                                                                      1220
   gccagttatg cagctacttt ttctttactg tatctcatgt tttctttttt caatgctaat
   tatagetete tacateaegg taateatgee tatgeetaca taagaatgge tgagetaaca
  atacacattc tggaaacata acactctaca ttacaaagtt tgttacctgc tgaaatcaat
                                                                     1280
  gtaactcaac ttgacagaca cttatacaga aatgttgctg gtgaatttat aagaatgtgg
                                                                     1340
  tatgatacta gtaatgaagg caaaatggac agtgaagttt aacacaactg aactctaaga
                                                                     1400
  aaatcaacca ttaatctctc attttcatct gcaaattgaa gcaacagttt agtttcaaac
                                                                     1460
  ctageteest gggtggaatg acgaetteac tataettagt gaatateett taagagetgg
                                                                     1520
  gatttttttc aagacaacaa agatcattca tttggttctt tatactatga aacttgagta
                                                                     1580
  agtattacct ccttaatttt taacaactaa gaacaaaaat taacgagaaa aacaacaaag
                                                                     1640
  tacagattta tacataaacc taaaagcatt tgaacatgac acccgaacac atacatatat
                                                                     1700
 gttcacttat ttgtggcaga aggtgatcag ataagctcca gcccaaatgg aacctgtggg
                                                                    1760
 1820
 tcaaacggtg attcatctaa atgacttcta gcaacctaag taaaaacatt cccctctat
                                                                    1880
 gtatgattca tttgatcata taaaacatca tgatggctct aattcataaa tacaaaaata
                                                                    1940
 tatttaagto tttatagata taaagottta ottagatata aottgagtga gtagggaaaa
                                                                    2000
 aaatctacag tagataaagc aaaagataat taggcaacaa agcattttca aactcaaatt
                                                                    2060
 cctgtttcca acttcaaata gtttttcta taaacacaaa atcagtgttt attcaccagt
                                                                    2120
 aggaggttgg actagatgaa ctctattatt tctttctaaa tctaatagtc tataaaaatt
                                                                    2180
 atgtttcctc tgtttttat tttatctatg ctaaaatgag ccctttccct tatgtccagt
                                                                    2240
 ttaagatgat catttgcatg attttcattt caataaaaa aagagaaact gtccttaaaa
                                                                   2300
 caaaacaaaa accaaaaaag tcaccctatc aggtttcaaa cagatttgtg gctgttcttt
                                                                   2360
totgaaattt coottattoa ggtttotgtg ggaaaaatga aagattaaco ttooccactg
                                                                   2420
gtgatgacct aggcaggaat catctcttga aataaatact agctgagtaa aggcaagcag
                                                                   2480
gtgtgaagag cagggctcag cagcaagtca catttttcta ctatttgacc aaaaggaaaa
gaaaataaag aagaactetg gagtggteta agaetgataa tageagaaga atateaagaa
                                                                   2600
cacagaaact taattattgt gaacttttgc tgtttgaaaa tcttagacat tcattcttaa
                                                                   2660
gtagaaatca gaccaacaga ttttcccaac ccaagactat tgtaacacat aaagacagca
                                                                   2720
agaattetta tttetataat aaattaacaa gatteaeeta aeetttgaaa ataaagtagt
                                                                   2780
attgaagact taaaaaaaaa aaaaaaaaaa aa
                                                                   2840
                                                                   2900
                                                                  2932
     <210> 2
     <211> 359
     <212> PRT
```

<213> H. sapiens

<400> 2

 Met
 Asp
 Ser
 Asn
 Cys
 Lys
 Val
 Ile
 Ala
 Pro
 Leu
 Leu
 Ser
 Gln
 Arg

 Tyr
 Arg
 Arg
 Met
 Val
 Thr
 Lys
 Asp
 Gly
 His
 Ser
 Thr
 Leu
 Gln
 Met
 Asp

 Gly
 Ala
 Gln
 Arg
 Gly
 Leu
 Ala
 Tyr
 Leu
 Arg
 Asp
 Ala
 Trp
 Gly
 Ileu
 Arg
 Trp
 Met
 Met
 Leu
 Val
 Phe
 Ser
 Ala
 Ser
 Phe

 Met
 Asp
 Met
 Arg
 Trp
 Met
 Met
 Leu
 Val
 Phe
 Ser
 Ala
 Ser
 Phe

 Val
 Val
 His
 Arg
 Val
 Leu
 Ala
 Val
 Leu
 Ala
 Pro
 Fro
 Glu
 Asn
 His

 Met
 Asn
 Gly
 Asp
 Leu
 Ala
 Pro
 Pro
 Ala
 Pro
 Pro
 Glu
 Asn
 His
 Ala

Ser	Leu	Glu 115	Thr	Gln	Leu	Thr	Ile 120	Gly	Tyr	Gly	Thr	Met 125	Phe	Pro	Ser	
Gly	Asp 130		Pro	Ser	Ala	Ile 135		Leu	Leu	Ala	Ile 140		Met	Leu	Leu	
-		Met	Leu	Glu	Ala		Ile	Thr	Gly			Val	Ala	Lys		
145	_		_	_	150		51	0	- 1 -	155	D1	m)	3	m>	160	
				165	Arg		-		170					175	•	
Val	Val	Ala	His 180	Met	Asp	Gly	Lys	Pro 185	Asn	Leu	Ile	Phe	Gln 190	Val	Ala	
Asn	Thr	Arg 195	Pro	Ser	Pro	Leu	Thr 200	Ser	Val	Arg	Val	Ser 205	Ala	Val	Leu	
Tyr	Gln 210		Arg	Glu	Asn	Gly 215		Leu	Tyr	Gln	Thr 220		Val	Asp	Phe	
Hic		Asp	Glv	Tle	Ser		Asp	Glu	Cvs	Pro		Phe	Ile	Phe	Pro	
225	204		,		230		F		-1-	235					240	
	Thr	Tyr	Tyr	His 245	Ser	Ile	Thr	Pro	Ser 250		Pro	Leu	Ala	Thr 255	Leu	
Leu	Gln	His			Pro	Ser	His	Phe 265		Leu	Val	Val			Ser	
Ala	Met		260 Glu	Gly	Thr	Gly			Cys	Gln	Arg		270 Thr	Ser	Tyr	
_		275	a 1	71 -	14-4	•	280	*** -		Dh -		285	T	T	mh sa	
	290				Met	295			_		300					
_	Gly	Ser	Lys	Gly	Glu	Tyr	Gln	Ile	Lys		Glu	Asn	Phe	Asp		
305		D	03	nh e	310	mb	D	7	17-1	315	*	C = ==	D=0	7	320	
				325	Pro				330		_			335		
Thr	Asp	Leu	Asp 340	Ile	His	Ile	Asn	Gly 345	Glņ	Ser	Ile	Asp	Asn 350	Phe	Gln	;
Ile	Ser	Glu 355	Thr	Gly	Leu	Thr								•		
	<2	210>	3													
	<2	211>	1927	7												
		212>														
	<2	213>	н. s	sapı	ens											
	<2	220>														
	<2	221>	CDS													
	<2	222>	(105	5)	. (190	(80										
	<2	223>	K+H1	10V4												
	< 4	±00>	3													
ggag				ettet	t at	gate	caget	t cgg	gtgtg	gtgt	ctc	ctec	tac o	cgcgg	ggcgca	60
															g ggc	116
													t Ala	a Lys	s Gly	
												1				
gag	aca	tca	gag	aaσ	atc	atc	atc	aac	gta	gac	qqc	acq	cga	cat	gag	164
					Ile											
5				-	10					15	-		_		20	
									_		_					212
					ctg Leu											212
IUL	TAL	wrA	26T	TIIL	n-u	nr 9	TILL	neu	-10	GTA	TIIL	AL 9	Leu		E	

ctg gcc gac ccc gac ggc ggg ggc cgg ccc gag acc gat ggc ggt Leu Ala Asp Pro Asp Gly Gly Gly Arg Pro Glu Thr Asp Gly Gly

45

gtg ggt agc agc ggc agc ggc ggc ggg ggc tgc gag ttc ttc ttc Val Gly Ser Ser Gly Ser Ser Gly Gly Gly Cys Glu Phe Phe 55 60 65	308
gac agg cac ccg ggc gtc ttc gcc tac gtg ctc aac tac tac cgc acc Asp Arg His Pro Gly Val Phe Ala Tyr Val Leu Asn Tyr Tyr Arg Thr 70 75 80	356
ggc aag ctg cac tgc ccc gca gac gtg tgc ggg ccg ctc ttc gag gag Gly Lys Leu His Cys Pro Ala Asp Val Cys Gly Pro Leu Phe Glu Glu 85 90 95 100	404
gag ctg gcc ttc tgg ggc atc gac gag acc gac gtg gag ccc tgc tgc Glu Leu Ala Phe Trp Gly Ile Asp Glu Thr Asp Val Glu Pro Cys Cys 105 110 115	452
tgg atg acc tac cgg cag cac cgc gac gcc gag gag gcg ctg gac atc Trp Met Thr Tyr Arg Gln His Arg Asp Ala Glu Glu Ala Leu Asp Ile 120 125 130	500
ttc gag acc ccc gac ctc att ggc ggc gac ccc ggc gac gac gag gac Phe Glu Thr Pro Asp Leu Ile Gly Gly Asp Pro Gly Asp Asp Glu Asp 135 140 145	548
ctg gcg gcc aag agg ctg ggc atc gag gac gcg gcg ggg ctc ggg ggc Leu Ala Ala Lys Arg Leu Gly Ile Glu Asp Ala Ala Gly Leu Gly Gly 150 155 160	596
CCC gac ggc aaa tct ggc cgc tgg agg agg ctg cag ccc cgc atg tgg_ Pro Asp Gly Lys Ser Gly Arg Trp Arg Arg Leu Gln Pro Arg Met Trp 165 170 175 180	644
gcc ctc ttc gaa gac ccc tac tcg tcc aga gcc gcc agg ttt att gct Ala Leu Phe Glu Asp Pro Tyr Ser Ser Arg Ala Ala Arg Phe Ile Ala 185 190 195	692
ttt gct tct tta ttc ttc atc ctg gtt tca att aca act ttt tgc ctg Phe Ala Ser Leu Phe Phe Ile Leu Val Ser Ile Thr Thr Phe Cys Leu 200 205 210	740
gaa aca cat gaa gct ttc aat att gtt aaa aac aag aca gaa cca gtc Glu Thr His Glu Ala Phe Asn Ile Val Lys Asn Lys Thr Glu Pro Val 215 220 225	788
atc aat ggc aca agt gtt gtt cta cag tat gaa att gaa acg gat cct Ile Asn Gly Thr Ser Val Val Leu Gln Tyr Glu Ile Glu Thr Asp Pro 230 235 240	836
gcc ttg acg tat gta gaa gga gtg tgt gtg gtg tgg ttt act ttt gaa Ala Leu Thr Tyr Val Glu Gly Val Cys Val Val Trp Phe Thr Phe Glu 250 255 260	884
Phe Leu Val Arg Ile Val Phe Ser Pro Asn Lys Leu Glu Phe Ile Lys 265 270 275	932
aat ctc ttg aat atc att gac ttt gtg gcc atc cta cct ttc tac tta Asn Leu Leu Asn Ile Ile Asp Phe Val Ala Ile Leu Pro Phe Tyr Leu 280 285 290	980
gag gtg gga ctc agt ggg ctg tca tcc aaa gct gct aaa gat gtg ctt	1028

Glu		Gly 295	Leu	Ser	Gly	Leu	Ser 300	Ser	Lys	Ala	Ala	Lys 305	Asp	Val	Leu	
ggc Gly	ttc Phe 310	ctc Leu	agg Arg	gtg Val	gta Val	agg Arg 315	ttt Phe	gtg Val	agg Arg	atc Ile	ctg Leu 320	aga Arg	att Ile	ttc Phe	aag Lys	1076
ctc Leu 325	acc Thr	cgc Arg	cat His	ttt Phe	gta Val 330	ggt Gly	ctg Leu	agg Arg	gtg Val	ctt Leu 335	gga Gly	cat His	act Thr	ctt Leu	cga Arg 340	1124
gct Ala	agt Ser	act Thr	aat Asn	gaa Glu 345	ttt Phe	ttg Leu	ctg Leu	ctg Leu	ata Ile 350	att Ile	ttc Phe	ctg Leu	gct Ala	cta Leu 355	gga Gly	1172
gtt Val	ttg Leu	ata Ile	ttt Phe 360	gct Ala	acc Thr	atg Met	atc Ile	tac Tyr 365	tat Tyr	gcc Ala	gag Glu	aga Arg	gtg Val 370	gga Gly	gct Ala	1220
caa Gln	cct Pro	aac Asn 375	gac Asp	cct Pro	tca Ser	gct Ala	agt Ser 380	gag Glu	cac His	aca Thr	cag Gln	ttc Phe 385	aaa Lys	aac Asn	att Ile	1268
ccc Pro	att Ile 390	Gly ggg	ttc Phe	tgg Trp	tgg Trp	gct Ala 395	gta Val	gtg Val	acc Thr	atg Met	act Thr 400	acc Thr	ctg Leu	ggt Gly	tat Tyr	1316
999 Gly 405	gat Asp	atg Met	tac Tyr	ccc Pro	caa Gln 410	aca Thr	tgg Trp	tca Ser	ggc	atg Met 415	ctg Leu	gtg Val	gga Gly	gcc Ala	ctg Leu 420	1364
tgt Cys	gct Ala	ctg Leu	gct Ala	gga Gly 425	gtg Val	ctg Leu	aca Thr	ata Ile	gcc Ala 430	atg Met	cca Pro	gtg Val	cct	gtc Val 435	att Ile	1412
gtc Val	aat Asn	aat Asn	ttt Phe 440	gga Gly	atg Met	tac Tyr	tac Tyr	tcc Ser 445	Leu	gca Ala	atg Met	gca Ala	aag Lys 450	GID	aaa Lys	1460
ctt Leu	cca Pro	agg Arg 455	Lys	aga Arg	aag Lys	aag Lys	cac His	Ile	cct Pro	cct Pro	gct Ala	cct Pro 465	GIn	gca Ala	agc Ser	1508
tca Ser	cct Pro 470	Thr	ttt Phe	tgc Cys	aag Lys	aca Thr	Glu	tta Leu	aat Asn	atg Met	gcc Ala 480	Cys	aat Asn	agt Ser	aca Thr	1556
cag Gln 485	Ser	gac Asp	aca Thr	tgt Cys	ctg Leu 490	ιGly	aaa Lys	gac S Asp	aat Asn	cga Arg 495	Leu	ctg Lev	gaa Glu	cat His	aac Asn 500	1604
aga Arg	tca Ser	gtg Val	tta Leu	tca Ser 505	Gly	gac Asp	gac Asp	e agt o Ser	aca Thr	G13	agt / Ser	gag Glu	g ccg	p cca Pro 515	a cta o Leu o	1652
tca Ser	ccc Pro	cca Pro	gaa Glu 520	a Arg	g cto g Lei	c ccc	ato	aga Arg 529	g Arc	tct Ser	agt Sei	aco Thi	aga Arg 530	g As	aaa b Lys	1700
			220	•												

tgt gct tct gat gga ggg atc agg aaa gga tat gaa aaa tcc cga agc Cys Ala Ser Asp Gly Gly Ile Arg Lys Gly Tyr Glu Lys Ser Arg Ser 1796 555 tta aac aac ata gcg ggc ttg gca ggc aat gct ctg agg ctc tct cca Leu Asn Asn Ile Ala Gly Leu Ala Gly Asn Ala Leu Arg Leu Ser Pro 1844 gta aca tea eec tac aac tet eet tgt eet etg agg ege tet ega tet Val Thr Ser Pro Tyr Asn Ser Pro Cys Pro Leu Arg Arg Ser Arg Ser 1892 590 ccc atc cca tct atc t tgtaaaccaa accctcgtg Pro Ile Pro Ser Ile 1927

<210> 4 <211> 601 <212> PRT <213> H. sapiens

<400> 4

Met Ala Lys Gly Glu Ala Ser Glu Lys Ile Ile Ile Asn Val Gly Gly Thr Arg His Glu Thr Tyr Arg Ser Thr Leu Arg Thr Leu Pro Gly Thr 10 Arg Leu Ala Trp Leu Ala Asp Pro Asp Gly Gly Gly Arg Pro Glu Thr Asp Gly Gly Gly Val Gly Ser Ser Gly Ser Ser Gly Gly Gly Cys Glu Phe Phe Phe Asp Arg His Pro Gly Val Phe Ala Tyr Val Leu Asn Tyr Tyr Arg Thr Gly Lys Leu His Cys Pro Ala Asp Val Cys Gly Pro Leu Phe Glu Glu Glu Leu Ala Phe Trp Gly Ile Asp Glu Thr Asp Val 105 Glu Pro Cys Cys Trp Met Thr Tyr Arg Gln His Arg Asp Ala Glu Glu Ala Leu Asp Ile Phe Glu Thr Pro Asp Leu Ile Gly Gly Asp Pro Gly 135 Asp Asp Glu Asp Leu Ala Ala Lys Arg Leu Gly Ile Glu Asp Ala Ala Gly Leu Gly Gly Pro Asp Gly Lys Ser Gly Arg Trp Arg Arg Leu Gln Pro Arg Met Trp Ala Leu Phe Glu Asp Pro Tyr Ser Ser Arg Ala Ala 170 185 Arg Phe Ile Ala Phe Ala Ser Leu Phe Phe Ile Leu Val Ser Ile Thr 200 Thr Phe Cys Leu Glu Thr His Glu Ala Phe Asn Ile Val Lys Asn Lys 215 Thr Glu Pro Val Ile Asn Gly Thr Ser Val Val Leu Gln Tyr Glu Ile Glu Thr Asp Pro Ala Leu Thr Tyr Val Glu Gly Val Cys Val Val Trp Phe Thr Phe Glu Phe Leu Val Arg Ile Val Phe Ser Pro Asn Lys Leu 265 Glu Phe Ile Lys Asn Leu Leu Asn Ile Ile Asp Phe Val Ala Ile Leu 280


```
Pro Phe Tyr Leu Glu Val Gly Leu Ser Gly Leu Ser Ser Lys Ala Ala
                        295
                                            300
Lys Asp Val Leu Gly Phe Leu Arg Val Val Arg Phe Val Arg Ile Leu
                    310
                                        315
Arg Ile Phe Lys Leu Thr Arg His Phe Val Gly Leu Arg Val Leu Gly
                325
                                    330
His Thr Leu Arg Ala Ser Thr Asn Glu Phe Leu Leu Leu Ile Ile Phe
            340
                                345
Leu Ala Leu Gly Val Leu Ile Phe Ala Thr Met Ile Tyr Tyr Ala Glu
                            360
Arg Val Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr Gln
                                            380
                        375
Phe Lys Asn Ile Pro Ile Gly Phe Trp Trp Ala Val Val Thr Met Thr
                    390
                                        395
Thr Leu Gly Tyr Gly Asp Met Tyr Pro Gln Thr Trp Ser Gly Met Leu
                                    410
                405
Val Gly Ala Leu Cys Ala Leu Ala Gly Val Leu Thr Ile Ala Met Pro
            420
                                425
Val Pro Val Ile Val Asn Asn Phe Gly Met Tyr Tyr Ser Leu Ala Met
                            440
                                                445
Ala Lys Gln Lys Leu Pro Arg Lys Arg Lys Lys His Ile Pro Pro Ala
                        455
                                            460
Pro Gln Ala Ser Ser Pro Thr Phe Cys Lys Thr Glu Leu Asn Met Ala
                    470
                                        475
Cys Asn Ser Thr Gln Ser Asp Thr Cys Leu Gly Lys Asp Asn Arg Leu
                485
Leu Glu His Asn Arg Ser Val Leu Ser Gly Asp Asp Ser Thr Gly Ser
Glu Pro Pro Leu Ser Pro Pro Glu Arg Leu Pro Ile Arg Arg Ser Ser
                                                525
                            520
Thr Arg Asp Lys Asn Arg Arg Gly Glu Thr Cys Phe Leu Leu Thr Thr
                        535
Gly Asp Tyr Thr Cys Ala Ser Asp Gly Gly Ile Arg Lys Gly Tyr Glu
                                        555
Lys Ser Arg Ser Leu Asn Asn Ile Ala Gly Leu Ala Gly Asn Ala Leu
                565
                                    570
Arg Leu Ser Pro Val Thr Ser Pro Tyr Asn Ser Pro Cys Pro Leu Arg
                                585
           580
Arg Ser Arg Ser Pro Ile Pro Ser Ile
        595
      <210> 5
```

<211> 2293

<212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (330) ... (1800)

<223> K+Hnov6

<400> 5

gggaagagcg aacccagggc cettgetete gtgcageget gegeeetggg tggggaegge gtgaggettg cagegeaggt gagagtgatt ttecagtgat tgetttggee tgtacaacea 120 180 gagaacagga ttcttccctt ctttttggcc accaaatgcc tatgtgcacc acacattcca gtgtgctgag aagggcagag cttcttggat gatgatggac gtcccaccgg gcaggatgaa ggcagagcgt gtggcatctc cacctcaagg gtgcagcctg atcttcctct tctcccttgc cagccagcac tetgeettet gtatecace atg gtg ttt ggt gag ttt tte cat Met Val Phe Gly Glu Phe Phe His

60

240

300

cgc cct gga caa gac gag gaa ctt gtc aac ctg aat gtg ggg ggc ttt Arg Pro Gly Gln Asp Glu Glu Leu Val Asn Leu Asn Val Gly Gly Phe 10 15 20	401
aag cag tet gtt gac caa age ace ete etg egg ttt eet eac ace aga Lys Gln Ser Val Asp Gln Ser Thr Leu Leu Arg Phe Pro His Thr Arg 25 30 35 40	449
ctg ggg aag ctg ctt act tgc cat tct gaa gag gcc att ctg gag ctg Leu Gly Lys Leu Leu Thr Cys His Ser Glu Glu Ala Ile Leu Glu Leu 45 50 55	497
tgt gat gat tac agt gtg gcc gat aag gaa tac tac ttt gat cgg aat Cys Asp Asp Tyr Ser Val Ala Asp Lys Glu Tyr Tyr Phe Asp Arg Asn 60 65 70	545
ccc tcc ttg ttc aga tat gtt ttg aat ttt tat tac acg ggg aag ctg Pro Ser Leu Phe Arg Tyr Val Leu Asn Phe Tyr Tyr Thr Gly Lys Leu 75 80 85	593
cat gtc atg gag gag ctg tgc gta ttc tca ttc tgc cag gag atc gag His Val Met Glu Glu Leu Cys Val Phe Ser Phe Cys Gln Glu Ile Glu 90 95 100	641
tac tgg ggc atc aac gag ctc ttc att gat tct tgc tgc agc aat cgc Tyr Trp Gly Ile Asn Glu Leu Phe Ile Asp Ser Cys Cys Ser Asn Arg 105 110 115	689
tac cag gaa cgc aag gag gaa aac cac gag aag gac tgg gac cag aaa Tyr Gln Glu Arg Lys Glu Glu Asn His Glu Lys Asp Trp Asp Gln Lys 125 130 135	737
age cat gat gtg agt ace gac tee teg ttt gaa gag teg tet etg ttt Ser His Asp Val Ser Thr Asp Ser Ser Phe Glu Glu Ser Ser Leu Phe 140 145 150	785
gag aaa gag ctg gag aag ttt gac aca ctg cga ttt ggt cag ctc cgg Glu Lys Glu Leu Glu Lys Phe Asp Thr Leu Arg Phe Gly Gln Leu Arg 155 160 165	833
aag aaa atc tgg att aga atg gag aat cca gcg tac tgc ctg tcc gct Lys Lys Ile Trp Ile Arg Met Glu Asn Pro Ala Tyr Cys Leu Ser Ala 170 175 180	881
aag ctt atc gct atc tcc tcc ttg agc gtg gtg ctg gcc tcc atc gtg Lys Leu Ile Ala Ile Ser Ser Leu Ser Val Val Leu Ala Ser Ile Val 185 190 195 200	929
gcc atg tgc gtt cac agc atg tcg gag ttc cag aat gag gat gga gaa Ala Met Cys Val His Ser Met Ser Glu Phe Gln Asn Glu Asp Gly Glu 205 210 215	977
yal gat gat ccg gtg ctg gaa gga gtg gag atc gcg tgc att gcc tgg Val Asp Asp Pro Val Leu Glu Gly Val Glu Ile Ala Cys Ile Ala Trp 220 225 230	1025
Phe Thr Gly Glu Leu Ala Val Arg Leu Ala Ala Ala Pro Cys Gln Lys 235 240 245	1073
aaa tto tgg aaa aac oot otg aac ato att gao ttt gto tot att att	1121

Lys	Phe 250	Trp	Lys	Asn	Pro	Leu 255	Asn	Ile	Ile	Asp	Phe 260	Val	Ser	Ile	Ile	
		tat Tyr	_	_	_	_	_	_		_		_		-		1169
		gag Glu														1217
		cga Arg														1265
	~~	gcc Ala 315		_	_		_			_	_			_		1313
		ctc Leu														1361
		aaa Lys	_	_				_			_				_	1409
Trp	Trp	tgg Trp	Ala	Thr 365	Ile	Ser	Met	Thr	Thr 370	Val	Gly	Tyr	Gly	Asp 375	Thr	1457
His	Pro	gtc Val	Thr 380	Leu	Ala	Gly	Lys	Leu 385	Ile	Āla	Ser	Thr	Cys 390	Ile	Ile	1505
		atc Ile 395														1553
		aag Lys				_		_	_		-		_			1601
		gat Asp														1649
	_	ata Ile		_	_		_		_							1697
		ggc Gly														1745
	_	gac Asp 475			_		-					_			_	1793
aca Thr		a aa	tgaç	cggg	ggt	gttt	gtg	cctg	tttc	tc t	tato	cttt	:c cc	aaca	ttag	1850

gttaacacag ctttataaac ctcagtgggt tcgttaaaat catttaattc tcagggtgta cctttcagcc atagttggac attcattgct gaattctgaa atgatagaat tgtctttatt tttctctgtg aggtcaatta aatgccttgt tctgaaattt attttttaca agagagagtt gtgatagagt ttggaatata agataaatgg tattgggtgg ggtttgtggc tacagcttat gcatcattct gtgtttgtca tttactcaca ttgagctaac tttaaattac tgacaagtag aatcaaaggt gcagctgact gagacgacat gcatgtaaga tccacaaaat gagacaatgc atgtaaatcc atgctcatgt tctaaacatg gaaactagga gcctaataaa cttcctaatt 2210 2270 cagaaaaaa aaaaaaaaa aaa 2293

<210> 6 <211> 490 <212> PRT <213> H. sapiens

<400> 6

Met Val Phe Gly Glu Phe Phe His Arg Pro Gly Gln Asp Glu Glu Leu 10 Val Asn Leu Asn Val Gly Gly Phe Lys Gln Ser Val Asp Gln Ser Thr Leu Leu Arg Phe Pro His Thr Arg Leu Gly Lys Leu Leu Thr Cys His Ser Glu Glu Ala Ile Leu Glu Leu Cys Asp Asp Tyr Ser Val Ala Asp 60 Lys Glu Tyr Tyr Phe Asp Arg Asn Pro Ser Leu Phe Arg Tyr Val Leu 70 Asn Phe Tyr Tyr Thr Gly Lys Leu His Val Met Glu Glu Leu Cys Val 90 Phe Ser Phe Cys Gln Glu Ile Glu Tyr Trp Gly Ile Asn Glu Leu Phe 100 105 110 Ile Asp Ser Cys Cys Ser Asn Arg Tyr Gln Glu Arg Lys Glu Glu Asn 120 His Glu Lys Asp Trp Asp Gln Lys Ser His Asp Val Ser Thr Asp Ser 135 Ser Phe Glu Glu Ser Ser Leu Phe Glu Lys Glu Leu Glu Lys Phe Asp 150 Thr Leu Arg Phe Gly Gln Leu Arg Lys Lys Ile Trp Ile Arg Met Glu 165 170 Asn Pro Ala Tyr Cys Leu Ser Ala Lys Leu Ile Ala Ile Ser Ser Leu 180 185 Ser Val Val Leu Ala Ser Ile Val Ala Met Cys Val His Ser Met Ser 200 Glu Phe Gln Asn Glu Asp Gly Glu Val Asp Asp Pro Val Leu Glu Gly 215 220 Val Glu Ile Ala Cys Ile Ala Trp Phe Thr Gly Glu Leu Ala Val Arg 230 235 Leu Ala Ala Pro Cys Gln Lys Lys Phe Trp Lys Asn Pro Leu Asn 245 250 Ile Ile Asp Phe Val Ser Ile Ile Pro Phe Tyr Ala Thr Leu Ala Val 260 265 Asp Thr Lys Glu Glu Glu Ser Glu Asp Ile Glu Asn Met Gly Lys Val 275 280 Val Gln Ile Leu Arg Leu Met Arg Ile Phe Arg Ile Leu Lys Leu Ala 295 Arg His Ser Val Gly Leu Arg Ser Leu Gly Ala Thr Leu Arg His Ser 310 Tyr His Glu Val Gly Leu Leu Leu Phe Leu Ser Val Gly Ile Ser 325 330 Ile Phe Ser Val Leu Ile Tyr Ser Val Glu Lys Asp Asp His Thr Ser 340 345

Ser Leu Thr Ser Ile Pro Ile Cys Trp Trp Trp Ala Thr Ile Ser Met 360 Thr Thr Val Gly Tyr Gly Asp Thr His Pro Val Thr Leu Ala Gly Lys 380 375 Leu Ile Ala Ser Thr Cys Ile Ile Cys Gly Ile Leu Val Val Ala Leu 395 390 Pro Ile Thr Ile Ile Phe Asn Lys Phe Ser Lys Tyr Tyr Gln Lys Gln 405 410 Lys Asp Ile Asp Val Asp Gln Cys Ser Glu Asp Ala Pro Glu Lys Cys 425 430 His Glu Leu Pro Tyr Phe Asn Ile Arg Asp Ile Tyr Ala Gln Arg Met 440 His Ala Phe Ile Thr Ser Leu Ser Ser Val Gly Ile Val Val Ser Asp 455 Pro Asp Ser Thr Asp Ala Ser Ser Ile Glu Asp Asn Glu Asp Ile Cys 470 Asn Thr Thr Ser Leu Glu Asn Cys Thr Ala 485

<210> 7

<211> 3080

<212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (480) ... (1977)

<223> K+Hnov9

<400> 7 60 gtetetecte tteetectee teegeeceae atetecetee tteetecett ecceaaceee 120 tecacecace aagtagegag teatteaate tgtacacete etgggetggg aategeaatt 180 gcgaagttgg gaggcggggt gacaacgttt gggaagggcc agggcgaccg gcagtgtgca 240 cagggactgt gtcgggcttg gacctcacct gatcctctct cttagcgcga cccttcctct 300 getecetgte teetettet gecaettgtg egetgettee gegeacteec ggetecetag cggcaggagg aggaaggcgc acagcgggtg gagagggtgc gccaaggaga ggtaacccct 360 tegggagece ggggaatece ggeegecace aggggeegtg ceaeegecet egegggaeca 420 479 aagetteegg egtgteecea aetttgtgge geeeteagge egeggegaet gggttagag 527 atg cct tcc agc ggc aga gcg ctg ctg gac tcg ccg ctg gac agc ggc Met Pro Ser Ser Gly Arg Ala Leu Leu Asp Ser Pro Leu Asp Ser Gly 10 575 tee etg ace tee etg gae tet agt gte tte tge age gag ggt gaa ggg Ser Leu Thr Ser Leu Asp Ser Ser Val Phe Cys Ser Glu Gly Glu Gly 25 20 623 gag ccc ttg gcg ctc ggg gac tgc ttc acg gtc aac gtg ggc ggc agc Glu Pro Leu Ala Leu Gly Asp Cys Phe Thr Val Asn Val Gly Gly Ser 671 cgc ttc gtg ctc tcg cag cag gcg ctg tcc tgc ttc ccg cac acg cgc Arg Phe Val Leu Ser Gln Gln Ala Leu Ser Cys Phe Pro His Thr Arg 55 719 ctt ggc aag ctg gcc gtg gtg gct tec tac cgc cgc ccc ggg gcc Leu Gly Lys Leu Ala Val Val Val Ala Ser Tyr Arg Arg Pro Gly Ala 70 767 ctg gcc gcc gtg ccc agc cct ctg gag ctt tgc gac gat gcc aac ccc Leu Ala Ala Val Pro Ser Pro Leu Glu Leu Cys Asp Asp Ala Asn Pro

OLD THE STATE OF T	
gtg gac aac gag tac ttc ttc gac cgc agc tcg cag gcg ttc cga tat Val Asp Asn Glu Tyr Phe Phe Asp Arg Ser Ser Gln Ala Phe Arg Tyr 100 105 110	815
gtc ctg cac tac tac cgc acc ggc cgc ctg cat gtc atg gag cag ctg Val Leu His Tyr Tyr Arg Thr Gly Arg Leu His Val Met Glu Gln Leu 115 120 125	863
tgc gcg ctc tcc ttc ctg cag gag atc cag tac tgg ggc atc gat gag Cys Ala Leu Ser Phe Leu Gln Glu Ile Gln Tyr Trp Gly Ile Asp Glu 130 135 140	911
ctc agc atc gat tcc tgc tgc agg gac aga tac ttc aga agg aaa gag Leu Ser Ile Asp Ser Cys Cys Arg Asp Arg Tyr Phe Arg Arg Lys Glu 150 155	959
ctg agt gaa act tta gac ttc aag aag gac aca gaa gac cag gaa agt Leu Ser Glu Thr Leu Asp Phe Lys Lys Asp Thr Glu Asp Gln Glu Ser 165 170	1007
Caa cat gag agt gaa cag gac ttc tcc caa gga cct tgt ccc act gtt Gln His Glu Ser Glu Gln Asp Phe Ser Gln Gly Pro Cys Pro Thr Val 180 185 190	1055
cgc cag aag ctc tgg aat atc ctg gag aaa cct gga tct tcc aca gct Arg Gln Lys Leu Trp Asn Ile Leu Glu Lys Pro Gly Ser Ser Thr Ala 195 200 205	1103
gcc cgt atc ttt ggc gtc atc tcc att atc ttc gtg gtg gtg tcc atc Ala Arg Ile Phe Gly Val Ile Ser Ile Ile Phe Val Val Val Ser Ile 210 215 220	1151
att aac atg gcc ctg atg tca gct gag tta agc tgg ctg gac ctg cag Ile Asn Met Ala Leu Met Ser Ala Glu Leu Ser Trp Leu Asp Leu Gln 230 240	1199
ctg ctg gaa atc ctg gag tat gtg tgc att agc tgg ttc acc ggg gag Leu Leu Glu Ile Leu Glu Tyr Val Cys Ile Ser Trp Phe Thr Gly Glu 245 250 255	1247
ttt gtc ctc cgc ttc ctg tgt gtg cgg gac agg tgt cgc ttc cta aga Phe Val Leu Arg Phe Leu Cys Val Arg Asp Arg Cys Arg Phe Leu Arg 260 265 270	1295
aag gtg cca aac atc ata gac ctc ctt gcc atc ttg ccc ttc tac atc Lys Val Pro Asn Ile Ile Asp Leu Leu Ala Ile Leu Pro Phe Tyr Ile 275 280 285	1343
act ctt ctg gta gag agc cta agt ggg agc cag acc acg cag gag ctg Thr Leu Leu Val Glu Ser Leu Ser Gly Ser Gln Thr Thr Gln Glu Leu 290 295 300	1391
gag aac gtg ggg cgc att gtc cag gtg ttg agg ctg ctc agg gct ctg Glu Asn Val Gly Arg Ile Val Gln Val Leu Arg Leu Leu Arg Ala Leu 305 310 315 320	1439
Arg Met Leu Leu Tag aga cat too aca gga tta cgc tog oth	1487

3080

<210> 8 <211> 499 <212> PRT <213> H. sapiens

<400> 8

Met Pro Ser Ser Gly Arg Ala Leu Leu Asp Ser Pro Leu Asp Ser Gly Ser Leu Thr Ser Leu Asp Ser Ser Val Phe Cys Ser Glu Gly Glu Gly 20 Glu Pro Leu Ala Leu Gly Asp Cys Phe Thr Val Asn Val Gly Gly Ser Arg Phe Val Leu Ser Gln Gln Ala Leu Ser Cys Phe Pro His Thr Arg Leu Gly Lys Leu Ala Val Val Ala Ser Tyr Arg Arg Pro Gly Ala 70 Leu Ala Ala Val Pro Ser Pro Leu Glu Leu Cys Asp Asp Ala Asn Pro 90 Val Asp Asn Glu Tyr Phe Phe Asp Arg Ser Ser Gln Ala Phe Arg Tyr 105 Val Leu His Tyr Tyr Arg Thr Gly Arg Leu His Val Met Glu Gln Leu 120 Cys Ala Leu Ser Phe Leu Gln Glu Ile Gln Tyr Trp Gly Ile Asp Glu 135 140 Leu Ser Ile Asp Ser Cys Cys Arg Asp Arg Tyr Phe Arg Arg Lys Glu 150 155 Leu Ser Glu Thr Leu Asp Phe Lys Lys Asp Thr Glu Asp Gln Glu Ser 165 170 Gln His Glu Ser Glu Gln Asp Phe Ser Gln Gly Pro Cys Pro Thr Val 185 Arg Gln Lys Leu Trp Asn Ile Leu Glu Lys Pro Gly Ser Ser Thr Ala 200 Ala Arg Ile Phe Gly Val Ile Ser Ile Ile Phe Val Val Val Ser Ile 215 Ile Asn Met Ala Leu Met Ser Ala Glu Leu Ser Trp Leu Asp Leu Gln 230 235 Leu Leu Glu Ile Leu Glu Tyr Val Cys Ile Ser Trp Phe Thr Gly Glu 245 250 Phe Val Leu Arg Phe Leu Cys Val Arg Asp Arg Cys Arg Phe Leu Arg 265 Lys Val Pro Asn Ile Ile Asp Leu Leu Ala Ile Leu Pro Phe Tyr Ile 280 Thr Leu Leu Val Glu Ser Leu Ser Gly Ser Gln Thr Thr Gln Glu Leu 295 300 Glu Asn Val Gly Arg Ile Val Gln Val Leu Arg Leu Leu Arg Ala Leu 310 315 Arg Met Leu Lys Leu Gly Arg His Ser Thr Gly Leu Arg Ser Leu Gly 325 330 Met Thr Ile Thr Gln Cys Tyr Glu Glu Val Gly Leu Leu Leu Phe 345 Leu Ser Val Gly Ile Ser Ile Phe Ser Thr Val Glu Tyr Phe Ala Glu 360 Gln Ser Ile Pro Asp Thr Thr Phe Thr Ser Val Pro Cys Ala Trp Trp 375 380 Trp Ala Thr Thr Ser Met Thr Thr Val Gly Tyr Gly Asp Ile Arg Pro 390 395 Asp Thr Thr Gly Lys Ile Val Ala Phe Met Cys Ile Leu Ser Gly 405 410 Ile Leu Val Leu Ala Leu Pro Ile Ala Ile Ile Asn Asp Arg Phe Ser

			420					425					430			
Ala	Cys	Tyr 435	Phe	Thr	Leu	Lys	Leu 440	Lys	Glu	Ala	Ala	Val 445	Arg	Gln	Arg	
Glu	Ala 450	Leu	Lys	Lys	Leu	Thr 455	Lys	Asn	Ile	Ala	Thr 460	Asp	Ser	Tyr	Ile	
Ser 465	Val	Asn	Leu	Arg	Asp 470	Val	Tyr	Ala	Arg	Ser 475	Ile	Met	Glu	Met	Leu 480	
	Ļeu	Lys	Gly	Arg 485		Arg	Ala	Ser	Thr 490	Arg	Ser	Ser	Gly	Gly 495	Asp	
Asp	Phe	Trp														
	<2 <2	210> 211> 212> 213>	3424 DNA		ens											
	<2	20>														
	<2	221> 222> 223>	(257		(21 <u>9</u>	95)										
aggt ctts ccca	tete tete geet accat	gta a cct c ccc t	gtco atgt taga ggag	cccc acacc gacac gacac gat	ec ag ec co ge co eg ge	gacto eagtt acatt	ectto tect ctco	tgt taa gc ct ly Le	atcto tttgg aacgo tg go	ettt ggtg ecac ec ac	agtt gcto ccto cg to	ctto caago cacta gg ct	ect of the state o	etgg etec et t	ectect gttect caagec cetggg ct get ne Ala	60 120 180 240 290
cgg Arg	gca Ala	gca Ala 15	gca Ala	gtg Val	ggc	tgg Trp	ctg Leu 20	ccc Pro	ccg Pro	gcc Ala	cag Gln	caa Gln 25	ccc Pro	ctg Leu	ccc Pro	34
ccg Pro	gca Ala 30	ccg Pro	gly aaa	gtg Val	aag Lys	gca Ala 35	tct Ser	cga Arg	gga Gly	gat Asp	grg Xaa 40	gtt Val	ctg Leu	gtg Val	gtg Val	38
aac Asn 45	gtg Val	agc Ser	gga Gly	cgg Arg	cgc Arg 50	ttt Phe	gag Glu	act Thr	tgg Trp	aag Lys 55	aat Asn	acg Thr	ctg Leu	gac Asp	cgc Arg 60	43
tac Tyr	cca Pro	gac Asp	acc Thr	ttg Leu 65	ctg Leu	ggc Gly	agc Ser	tcg Ser	gag Glu 70	aag Lys	gaa Glu	ttc Phe	ttc Phe	tac Tyr 75	gat Asp	48
gct Ala	gac Asp	tca Ser	ggc 80	gag Glu	tac Tyr	ttc Phe	ttc Phe	gat Asp 85	cgc Arg	gac Asp	cct Pro	gac Asp	atg Met 90	ttc Phe	cgc Arg	53:
cat His	gtg Val	ctg Leu 95	aac Asn	ttc Phe	tac Tyr	cga Arg	acg Thr 100	Gly aaa	cgg Arg	ctg Leu	cat His	tgc Cys 105	cca Pro	cgg Arg	cag Gln	58
gag Glu	tgc Cys 110	atc Ile	cag Gln	gcc Ala	ttc Phe	gac Asp 115	gaa Glu	gag Glu	ctg Leu	gct Ala	ttc Phe 120	tac Tyr	ggc Gly	ctg Leu	gtt Val	62
ccc Pro	gag Glu	cta Leu	gtc Val	ggt Gly	gac Asp	tgc Cys	tgc Cys	ctt Leu	gaa Glu	gag Glu	tat Tyr	cgg Arg	gac Asp	cga Arg	aag Lys	67

125	130	135	7.40	
		at gag gag gca gag sp Glu Glu Ala Glu 50	Gln Ala	724
160	a gcc ctg cca gca ggc ag Ala Leu Pro Ala Gly Se 165	uer Leu Arg Gin 170	cgg ctc Arg Leu	772
175	gag aat cca cac acg ag Glu Asn Pro His Thr Se 180	185	Val Phe	820
190	ggc ttc ttc atc gcc gt Gly Phe Phe Ile Ala Va 195	200	Asn Val	868
203	cca tgc cgc ggc tct gca Pro Cys Arg Gly Ser Ala 210	215	Arg Glu	916
	gaa cgc ttc cca cag gcc Glu Arg Phe Pro Gln Ala 225 230	File Pile Cys Met 1	Asp Thr	964
240	ata ttc aca ggt gaa tac Ile Phe Thr Gly Glu Tyr 245	250	he Ala	1012
255	gc cgc ttc ctg cgg agt ys Arg Phe Leu Arg Ser 260	265	le Asp	1060
270	tg ccc tac tac att ggg eu Pro Tyr Tyr Ile Gly 275	280 Ly	s Asn	1108
465		295	l Phe	1156
30	c tcc agg cac tca cag on the Ser Arg His Ser Gln (21 Deu Arg Ile Le	u Gly 5	1204
320	c tgt gcc tct gag ctg g r Cys Ala Ser Glu Leu G 325	Ty Phe Leu Leu Phe	Ser	1252
335	e atc atc ttt gcc act g e Ile Ile Phe Ala Thr V 340	345	Glu	1300
350	acc aac ttt aca agc at Thr Asn Phe Thr Ser II 355	360 Ala Ala Phe	Trp	1348
tat acc att gtc acc Tyr Thr Ile Val Thr 365	atg acc acg ctt ggc ta Met Thr Thr Leu Gly Ty 370 37	- Gry Asp Met Val	ccc Pro 380	1396

agc Ser	acc Thr	att Ile	gct Ala	ggc Gly 385	aag Lys	att Ile	ttc Phe	ggg ggg	tcc Ser 390	atc Ile	tgc Cys	tca Ser	ctc Leu	agt Ser 395	ggc Gly	1	1444
gtc Val	ttg Leu	gtc Val	att Ile 400	gcc Ala	ctg Leu	cct Pro	gtg Val	cca Pro 405	gtc Val	att Ile	gtg Val	tcc Ser	aac Asn 410	ttt Phe	agc Ser		1492
cgc Arg	atc Ile	tac Tyr 415	cac His	cag Gln	aac Asn	cag Gln	cgg Arg 420	gct Ala	gac Asp	aag Lys	cgc Arg	cga Arg 425	gca Ala	cag Gln	cag Gln	1	1540
aag Lys	gtg Val 430	cgc Arg	ttg Leu	gca Ala	agg Arg	atc Ile 435	cga Arg	ttg Leu	gca Ala	aag Lys	agt Ser 440	ggt Gly	acc Thr	acc Thr	aat Asn	3	1588
gcc Ala 445	ttc Phe	ctg Leu	cag Gln	tac Tyr	aag Lys 450	cag Gln	aat Asn	Gly 999	ggc Gly	ctt Leu 455	gag Glu	gac Asp	agc Ser	Gly	agt Ser 460	:	1636
ggc	gag Glu	gaa Glu	cag Gln	gct Ala 465	ctt Leu	tgt Cys	gtc Val	agg Arg	aac Asn 470	cgt Arg	tct Ser	gcc Ala	ttt Phe	gaa Glu 475	cag Gln	:	1684
caa Gln	cat His	cac His	cac His 480	ttg Leu	ctg Leu	cac His	tgt Cys	cta Leu 485	gag Glu	aag Lys	aca Thr	acg Thr	tgc Cys 490	cat His	gag Glu	:	1732
ttc Phe	aca Thr	gat Asp 495	gag Glu	ctc Leu	acc Thr	ttc Phe	agt Ser 500	gaa Glu	gcc Ala	ctg Leu	gga Gly	gcc Ala 505	gtc Val	tcg Ser	ecg Pro		1780
ggt Gly	ggc Gly 510	cgc Arg	acc Thr	agc Ser	cgt Arg	agc Ser 515	acc Thr	tct Ser	gtg Val	tct Ser	tcc Ser 520	cag Gln	cca Pro	gtg Val	gga Gly	:	1828
ccc Pro 525	gga Gly	agc Ser	ctg Leu	ctg Leu	tct Ser 530	tct Ser	tgc Cys	tgc Cys	cct Pro	cgc Arg 535	agg Arg	gcc Ala	aag Lys	cgc Arg	cgc Arg 540	;	1876
gcc Ala	atc Ile	cgc Arg	ctt Leu	gcc Ala 545	aac Asn	tcc Ser	act Thr	gcc Ala	tca Ser 550	gtc Val	agc Ser	cgt Arg	ggc Gly	agc Ser 555	atg Met	:	1924
cag Gln	gag Glu	ctg Leu	gac Asp 560	atg Met	ctg Leu	gca Ala	Gly	ctg Leu 565	cgc Arg	agg Arg	agc Ser	cat His	gcc Ala 570	cct Pro	cag Gln	:	1972
agc Ser	cgc Arg	tcc Ser 575	agc Ser	ctc Leu	aat Asn	gcc Ala	aag Lys 580	ccc Pro	cat His	gac Asp	agc Ser	ctt Leu 585	gac Asp	ctg Leu	aac Asn	;	2020
tgc Cys	gac Asp 590	agc Ser	cgg Arg	gac Asp	ttc Phe	gtg Val 595	gct Ala	gcc Ala	att Ile	atc Ile	agc Ser 600	atc Ile	cct Pro	acc Thr	cct Pro		2068
cct Pro 605	Ala	aac Asn	acc Thr	cca Pro	gat Asp 610	gag Glu	agc Ser	caa Gln	cct Pro	tcc Ser 615	tcc Ser	cct Pro	ggc	ggc Gly	ggt Gly 620		2116

ggc agg gcc ggc agc acc ctc agg aac tcc agc ctg ggt acc cct tgc Gly Arg Ala Gly Ser Thr Leu Arg Asn Ser Ser Leu Gly Thr Pro Cys 625 630 635	2164
ctc ttc ccc gag act gtc aag atc tca tcc c tgtgaggggt aggcctgctg Leu Phe Pro Glu Thr Val Lys Ile Ser Ser 640 645	2215
attcagaggg tectetteat tittgggaac cececeact gagagggca ggettgggca cecettetge cececeact gagaactatg gtccacatag gtccacatag gtccacatag getgaagca getgaagcac tgggaagta gccaggaaat tggggated ceteceace tgggactggc cecactetec ggetetcaga tgaaggcaaa gettgaagca tggaggtte ceteceace tggetggga tccacatete gacttcaga gettggaatg cetacacete gatetggat cetacacetet gatetggat cetacacaca gettggaatg cetacacaca gettggaatg cetacacaca gettggaatg cecacacacacacacacacacacacacacacacacacac	2275 2335 2395 2455 2515 2575 2635 2695 2755 2815 2875 2935 2995 3055 3115 3175 3235 3295 3355 3415 3424
<210> 10	

<210> 10

<211> 646

<212> PRT

<213> H. sapiens

<220>

<221> VARIANT

<222> (1)...(646)

<223> Xaa = Any Amino Acid

<400> 10

Met Ala Ala Gly Leu Ala Thr Trp Leu Pro Phe Ala Arg Ala Ala Val Gly Trp Leu Pro Pro Ala Gln Gln Pro Leu Pro Pro Ala Pro Gly 25 Val Lys Ala Ser Arg Gly Asp Xaa Val Leu Val Val Asn Val Ser Gly 40 Arg Arg Phe Glu Thr Trp Lys Asn Thr Leu Asp Arg Tyr Pro Asp Thr Leu Leu Gly Ser Ser Glu Lys Glu Phe Phe Tyr Asp Ala Asp Ser Gly 75 Glu Tyr Phe Phe Asp Arg Asp Pro Asp Met Phe Arg His Val Leu Asn 90 Phe Tyr Arg Thr Gly Arg Leu His Cys Pro Arg Gln Glu Cys Ile Gln 100 105 Ala Phe Asp Glu Glu Leu Ala Phe Tyr Gly Leu Val Pro Glu Leu Val Gly Asp Cys Cys Leu Glu Glu Tyr Arg Asp Arg Lys Lys Glu Asn Ala 135 Glu Arg Leu Ala Glu Asp Glu Glu Ala Glu Gln Ala Gly Asp Gly Pro 160

Ala Leu Pro Ala Gly Ser Ser Leu Arg Gln Arg Leu Trp Arg Ala Phe 170 Glu Asn Pro His Thr Ser Thr Ala Ala Leu Val Phe Tyr Tyr Val Thr 185 180 Gly Phe Phe Ile Ala Val Ser Val Ile Ala Asn Val Val Glu Thr Ile 200 Pro Cys Arg Gly Ser Ala Arg Arg Ser Ser Arg Glu Gln Pro Cys Gly 215 Glu Arg Phe Pro Gln Ala Phe Phe Cys Met Asp Thr Ala Cys Val Leu 235 230 Ile Phe Thr Gly Glu Tyr Leu Leu Arg Leu Phe Ala Ala Pro Ser Arg 245 250 Cys Arg Phe Leu Arg Ser Val Met Ser Leu Ile Asp Val Val Ala Ile 260 265 Leu Pro Tyr Tyr Ile Gly Leu Leu Val Pro Lys Asn Asp Asp Val Ser 275 280 Gly Ala Phe Val Thr Leu Arg Val Phe Arg Val Phe Arg Ile Phe Lys 295 Phe Ser Arg His Ser Gln Gly Leu Arg Ile Leu Gly Tyr Thr Leu Lys 310 315 Ser Cys Ala Ser Glu Leu Gly Phe Leu Leu Phe Ser Leu Thr Met Ala 325 330 Ile Ile Ile Phe Ala Thr Val Met Phe Tyr Ala Glu Lys Gly Thr Asn 345 340 Lys Thr Asn Phe Thr Ser Ile Pro Ala Ala Phe Trp Tyr Thr Ile Val 360 355 Thr Met Thr Thr Leu Gly Tyr Gly Asp Met Val Pro Ser Thr Ile Ala 375 380 Gly Lys Ile Phe Gly Ser Ile Cys Ser Leu Ser Gly Val Leu Val Ile 395 390 Ala Leu Pro Val Pro Val Ile Val Ser Asn Phe Ser Arg Ile Tyr His 405 410 Gln Asn Gln Arg Ala Asp Lys Arg Arg Ala Gln Gln Lys Val Arg Leu 425 420 Ala Arg Ile Arg Leu Ala Lys Ser Gly Thr Thr Asn Ala Phe Leu Gln 440 Tyr Lys Gln Asn Gly Gly Leu Glu Asp Ser Gly Ser Gly Glu Glu 455 Ala Leu Cys Val Arg Asn Arg Ser Ala Phe Glu Gln Gln His His His 475 470 Leu Leu His Cys Leu Glu Lys Thr Thr Cys His Glu Phe Thr Asp Glu 490 Leu Thr Phe Ser Glu Ala Leu Gly Ala Val Ser Pro Gly Gly Arg Thr 505 Ser Arg Ser Thr Ser Val Ser Ser Gln Pro Val Gly Pro Gly Ser Leu 520 Leu Ser Ser Cys Cys Pro Arg Arg Ala Lys Arg Arg Ala Ile Arg Leu 540 535 Ala Asn Ser Thr Ala Ser Val Ser Arg Gly Ser Met Gln Glu Leu Asp 550 555 Met Leu Ala Gly Leu Arg Arg Ser His Ala Pro Gln Ser Arg Ser Ser 570 Leu Asn Ala Lys Pro His Asp Ser Leu Asp Leu Asn Cys Asp Ser Arg 585 580 Asp Phe Val Ala Ala Ile Ile Ser Ile Pro Thr Pro Pro Ala Asn Thr 600 Pro Asp Glu Ser Gln Pro Ser Ser Pro Gly Gly Gly Arg Ala Gly 615 620 Ser Thr Leu Arg Asn Ser Ser Leu Gly Thr Pro Cys Leu Phe Pro Glu 635 Thr Val Lys Ile Ser Ser

<210> 11 <211> 1862 <212> DNA <213> H. sapiens <220> <221> CDS <222> (383)...(1157) <223> K+Hnov15 <400> 11 cagctgaatg tggaggcctt taagagaact tccagctcct gtaaaaaccc agaccagagg actactgacc aacatttcag getgateete cagacetega agttactete ettactetee tgactettaa ttacateaca eetgtgtega caetetetgg gaaaagaetg aagaaataat 120 cttttcaaga agcagaaagc tcctgcatac ataggctgat acgccaccta ctgcaaaacc gagetgacag egeaggegat getgecageg tttccattcc atcaccagge tggggetgaa taaaggegtg ettgtgtggt agtgtetett tttaaaaaat etcaaageea agaagaacaa gctgaaatag catcttcaaa aa atg gag cgt aaa ata aac aga aga gaa aaa Met Glu Arg Lys Ile Asn Arg Arg Glu Lys gaa aag gag tat gaa ggg aaa cac aac agc ctg gaa gat act gat caa Glu Lys Glu Tyr Glu Gly Lys His Asn Ser Leu Glu Asp Thr Asp Gln 460 gga aag aac tgc aaa tcc aca ctg atg acc ctc aac gtt ggt gga tat Gly Lys Asn Cys Lys Ser Thr Leu Met Thr Leu Asn Val Gly Gly Tyr 508 35 tta tac att act caa aaa caa aca ctg acc aag tac cca gac act ttc Leu Tyr Ile Thr Gln Lys Gln Thr Leu Thr Lys Tyr Pro Asp Thr Phe 556 ctt gaa ggt ata gta aat gga aaa atc ctc tgc ccg ttt gat gct gat Leu Glu Gly Ile Val Asn Gly Lys Ile Leu Cys Pro Phe Asp Ala Asp 604 ggt cat tat ttc ata gac agg gat ggt ctc ctc ttc agg cat gtc cta Gly His Tyr Phe Ile Asp Arg Asp Gly Leu Leu Phe Arg His Val Leu 652 aac ttc cta cga aat gga gaa ctt cta ttg ccc gaa ggg ttt cga gaa Asn Phe Leu Arg Asn Gly Glu Leu Leu Pro Glu Gly Phe Arg Glu 700 aat caa ctt ctt gca caa gaa gca gaa ttc ttt cag ctc aag gga ctg Asn Gln Leu Leu Ala Gln Glu Ala Glu Phe Phe Gln Leu Lys Gly Leu 748 gca gag gaa gtg aaa too agg tgg gag aaa gaa cag ota aca ooo aga Ala Glu Glu Val Lys Ser Arg Trp Glu Lys Glu Gln Leu Thr Pro Arg 796 gag act act ttc ttg gaa ata aca gat aac cac gat cgt tca caa gga Glu Thr Thr Phe Leu Glu Ile Thr Asp Asn His Asp Arg Ser Gln Gly 844 tta aga atc ttc tgt aat gct cct gat ttc ata tca aaa ata aag tct Leu Arg Ile Phe Cys Asn Ala Pro Asp Phe Ile Ser Lys Ile Lys Ser 892

155	160	165	170
	•	agg ctg gat gga ttt Arg Leu Asp Gly Phe 180	
	Asn Ile Ile (caa ttt aaa tac ttc Gln Phe Lys Tyr Phe 195	-
	-	aag gaa gac aac acc Lys Glu Asp Asn Thr 215	
3 Q		gct atc atg atg gct Ala Ile Met Met Ala 230	
		gat tgt tcc aaa ggg Asp Cys Ser Lys Gly 245	-
cac agc gat gca ctt His Ser Asp Ala Leu 255		a agtaattacc tgtgtca	cga 1177
acaaaggcaa caagcatg	ca gccagcaagc	ttcggaaaac cacagcat	ca aagacatccc 1237
aaataacatg cccagcta	gc tctgtactac	agagecetge tactaate	aa ttactgtgag 1297
		tgtccttcct ctggggtg	-
-		ccttctatat actgtaaa	
		ctttcaattc agattgtc	
	_	tcatttaagt aaatggta tactatggca aaaatcta	
		agatgtgcag atctaact	
		attaaagcta ttgatttg	
		tgtgtttcat attagact	
		cttgatgaca ataaaaag	ta aataaaagca 1837
ctgctacctt caaaaaaa	aa aaaaa		1862

<210> 12

<211> 258

<212> PRT

<213> H. sapiens

<400> 12

 Met
 Glu
 Arg
 Lys
 Ile
 Asn
 Arg
 Alu
 Lys
 Glu
 Lys
 Glu
 Tyr
 Glu
 Gly
 Ile
 Ile</th

Arg Trp Glu Lys Glu Gln Leu Thr Pro Arg Glu Thr Thr Phe Leu Glu Ile Thr Asp Asn His Asp Arg Ser Gln Gly Leu Arg Ile Phe Cys Asn Ala Pro Asp Phe Ile Ser Lys Ile Lys Ser Arg Ile Val Leu Val Ser Lys Ser Arg Leu Asp Gly Phe Pro Glu Glu Phe Ser Ile Ser Ser Asn 170 185 Ile Ile Gln Phe Lys Tyr Phe Ile Lys Ser Glu Asn Gly Thr Arg Leu Val Leu Lys Glu Asp Asn Thr Phe Val Cys Thr Leu Glu Thr Leu Lys 215 Phe Glu Ala Ile Met Met Ala Leu Lys Cys Gly Phe Arg Leu Leu Thr Ser Leu Asp Cys Ser Lys Gly Ser Ile Val His Ser Asp Ala Leu His 250 Phe Ile

<210> 13 <211> 1877 <212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (322)...(1090)

<223> K+Hnov27

<400> 13 caccacegee eccageegee etegetgggg aacaettaca teeteeccaa agacageeag gtcgggcccg acgtgaaatc cgaggctgcg cccaagcgcg ccctgtacga gtctgtgttc 60 gggtcggggg aaatctgcgg ccccacttcc cccaaaagac tttgtatccg cccctcggag 120 cctgtggatg cggtggtggt ggtttccgtg aaacacgacc ccctgcctct tcttccagaa 180 gccaatgggc acagaagcac caatteteec acaatagttt cacetgetat tgttteecee 240 acccaggaca gtcggcccaa t atg tca aga cct ctg atc act aga tcc cct 300 Met Ser Arg Pro Leu Ile Thr Arg Ser Pro 351 gca tet eca etg awe aac caa gge ate eet act eca gea caa ete aca Ala Ser Pro Leu Xaa Asn Gln Gly Ile Pro Thr Pro Ala Gln Leu Thr 399 aaa too aat gog cot gto cac att gat gtg ggc ggc cac atg tac acc Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly His Met Tyr Thr 447 age age etg gee acc etc acc aaa tac eet gaa tec aga atc gga aga Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Glu Ser Arg Ile Gly Arg 495 ctt ttt gat ggt aca gag ccc att gtt ttg gac agt ctc aaa cag cac Leu Phe Asp Gly Thr Glu Pro Ile Val Leu Asp Ser Leu Lys Gln His 543 tat ttc att gac aga gat gga cag atg ttc aga tat atc ttg aat ttt Tyr Phe Ile Asp Arg Asp Gly Gln Met Phe Arg Tyr Ile Leu Asn Phe 591

cta cga aca tcc aaa ctc ctc att cct gat gat ttc aag gac tac act

95	100	105	
ttg tta tat gaa gag gc Leu Leu Tyr Glu Glu Al 110	a aaa tat ttt cag ctt a Lys Tyr Phe Gln Leu 115	cag ccc atg ttg ttg Gln Pro Met Leu Leu 120	687
gag atg gaa aga tgg aa Glu Met Glu Arg Trp Ly 125			735
ccc tgt gag tgc ctc gt Pro Cys Glu Cys Leu Va 140	c gtg cgt gtg gcc cca l Val Arg Val Ala Pro 145	gac ctc gga gaa agg Asp Leu Gly Glu Arg 150	783
atc acg cta agc ggt ga Ile Thr Leu Ser Gly As 155 16	p Lys Ser Leu Ile Glu	Glu Val Phe Pro Glu	831
atc ggc gac gtg atg tg Ile Gly Asp Val Met Cy 175	t aac tct gtc aat gca s Asn Ser Val Asn Ala 180	n ggc tgg aat cac gac n Gly Trp Asn His Asp 185	879
tcg acg cac gtc atc ag Ser Thr His Val Ile Ar 190			927
tca gtc cag gtc ctc ga Ser Val Gln Val Leu Gl 205			975
ggc tcc tgt ggg gga gg Gly Ser Cys Gly Gly Gl 220	a gta gac tcg tcc cag y Val Asp Ser Ser Glr 225	g ttc agc gaa tac gtc n Phe Ser Glu Tyr Val 230	1023
ctt cgg cgg gaa ctg ag Leu Arg Arg Glu Leu Ar 235 24	g Arg Thr Pro Arg Val	Pro Ser Val Ile Arg	1071
ata aag caa gag cct ct Ile Lys Gln Glu Pro Le 255		tctt atgcaaaaag	1120
gaaaacacac acaaccaata	actcaaacaa aaaagggaca	tttatgtgca gttgggacag	1180 1240
acctotatto atatogoaac	aaatigaata daayacacat aattggaata gtgatatcct	ttatatccaa tagagaccac caaggtgtaa aaaatatata	1300
aatatatata tatatgtcaa	aaggtaggaa atgcaaaaaa	gaaaaaaaa aaaggtgaca	1360
geegeagttg gtgetgtgat	ggccgtgaag tgtcctgggc	c ctcccgaggc ctctgacaaa	1420 1480
		tttccattgc caacaacagc ttttttaaaa aaacaaaca	1540
aacaaaacac cttgaatcaa	gtttgtttgt atatqqaqqt	tccacgtctt tctttaggca	1600
gggaccaggc aggacttcag	aaaaaccctc atgagcacat	tgcaaagatg ttagacatga	1660
aattttaaat gtagtttgta	cagaagtcac acttttttgt	ccacctcaca gatgtgaact	1720
ttactttgtt ttaaaactga	tcagttttgc caaggggcca	gaattattcc ttgttagaat	1780
tgctccagtt caagtctgct caataaactc tgtttaaaaa		a attttataat gtattaaata	1840 1877
-		÷	

<210> 14 <211> 256 <212> PRT <213> H. sapiens

<220> <221> VARIANT <222> (1)...(256) <223> Xaa = Any Amino Acid <400> 14 Met Ser Arg Pro Leu Ile Thr Arg Ser Pro Ala Ser Pro Leu Xaa Asn Gln Gly Ile Pro Thr Pro Ala Gln Leu Thr Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly His Met Tyr Thr Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Glu Ser Arg Ile Gly Arg Leu Phe Asp Gly Thr Glu Pro Ile Val Leu Asp Ser Leu Lys Gln His Tyr Phe Ile Asp Arg Asp Gly Gln Met Phe Arg Tyr Ile Leu Asn Phe Leu Arg Thr Ser Lys Leu Leu Ile Pro Asp Asp Phe Lys Asp Tyr Thr Leu Leu Tyr Glu Glu Ala Lys Tyr Phe Gln Leu Gln Pro Met Leu Leu Glu Met Glu Arg Trp Lys Gln Asp Arg Glu Thr Gly Arg Phe Ser Arg Pro Cys Glu Cys Leu Val Val Arg Val Ala Pro Asp Leu Gly Glu Arg Ile Thr Leu Ser Gly Asp Lys Ser Leu Ile Glu Glu Val Phe Pro Glu Ile Gly Asp Val Met Cys Asn Ser Val Asn Ala Gly Trp Asn His Asp Ser Thr His Val Ile Arg Phe_Pro Leu Asn Gly Tyr Cys His Leu Asn Ser Val Gln Val Leu Glu Arg Leu Gln Gln Arg Gly Phe Glu Ile Val Gly Ser Cys Gly Gly Gly Val Asp Ser Ser Gln Phe Ser Glu Tyr Val Leu Arg Arg Glu Leu Arg Arg Thr Pro Arg Val Pro Ser Val Ile Arg Ile Lys Gln Glu Pro Leu <210> 15 <211> 923 <212> DNA <213> H. sapiens <220> <221> CDS <222> (165)...(756) <223> K+Hnov2 <400> 15 gcgtggtggc aggtgcctgt agccccagct acttgggagg ctgaggcagg agaatagctt gaacceggge ggegaaggtt gagtgageeg agattgeace aetgeactee ageetgggeg 60 acagagegag actecatete aaaaaaaaga gtagttatgg eeac atg gee eea eta 120 176 Met Ala Pro Leu tcg cca ggc gga aag gcc ttc tgc atg gtc tat gca gcc ctg ggg ctg Ser Pro Gly Gly Lys Ala Phe Cys Met Val Tyr Ala Ala Leu Gly Leu 224 15 cca gcc tcc tta gct ctc gtg gcc acc ctg cgc cat tgc ctg cct

<212> PRT

<213> H. sapiens

<400> 16

Met Ala Pro Leu Ser Pro Gly Gly Lys Ala Phe Cys Met Val Tyr Ala 1 5 10 10 15 15 Ala Leu Gly Leu Pro Ala Ser Leu Ala Leu Val Ala Thr Leu Arg His 20 25 30 Cys Leu Leu Pro Val Leu Ser Arg Pro Arg Ala Trp Val Ala Val His

Trp	Glr	35 n Leu	ı Ser	Pro	Ala	Arg	40 Ala	Ala	Len	I 7.011	· 61~	45			Leu	
Gl _y 65	Leu	ı Leu	\Val	Ala	Ser	55 Ser	Phe	Val	Leu	Leu	60 Pro	Ala	Leu	. Ala	Leu	
Trp	Gly	/ Leu	Gln	Gly 85	Asp	Cys	Ser	Leu	Leu	Gly	Ala	Val	Tyr	Phe	80 Cvs	
Phe	Ser	Ser	Leu 100	Ser	Thr	Ile	Gly	Leu	Glu	Asp	Leu	Leu	Pro	95 Gly	Ara	
GTA	Arg	Ser 115	Leu	His	Pro	Val	Ile 120	Tyr	His	Leu	Gly	Gln 125	Leu	Ala	Leu	
Thr	130 Phe	Tyr Ser	Glu	Leu	Leu	Gly 135	Leu	Leu	Ala	Met	Leu 140	Leu	Ala	Val	Glu	
145 Pro	Ser	Ser Gly	Pro	Val	150 Thr	Ala	Val Glu	Arg	Ala	Met 155	Gly	Lys	Phe	Phe	Arg 160	
Asp	Glu	Leu	Ala	165 Leu	Ser	Thr	Leu	Pro	170 Pro	Gly Ala	Gly Ala	Pro	Leu	Gly 175	Gln	
Gln	Ala	Pro .	Ala	Сув				185					190	ser	GIÀ	
		10> : 11> :														
	<2	12> I 13> I	ONA	apier	ıs											
		20> 21> C	יסתי					·								
100	<22	22> (23> K	(274)	(V11	1705) .										
gcacg	cgca	00> 1 a ag	cacc	cacc	gag	3000	a									
gcacg caccc ttcag ccccg	cacc	C aad	qacc	cacc	add	2000			a	aa Ci	CCEC	3ccc	c ago	ccca	gece	:
cccca	caca	3 909	JCac	3gcg	ctct	cgc	ga d	gct	gttc	c to	cact	tcca	a aat	-3 <i>a</i> 35	3999	

<400> 17	
gcacgegeaa agegeecace gagacecetg gggtggaget tgtgttaata gaaacatace cacececage ettteetggg aggggateag acceeteaaa etettgeece ageecagee eeeegeeagg gegeaeggeg etetegeega egetgtteee teegetteea ggtgtagege eeeegeeggg egegggegee eggegeetee age atg ace gge cag age etg tgg Met Thr Gly Gln Ser Leu Trp	60 120 180 240 294
gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20	342
ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35	390
gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55	438
ctg gag ctc tgc gat gac tac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70	486
gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc Asp Arg Asn Pro Glu Leu Phe Pro Tyr Val Leu His Phe Tyr His Thr 75 80 85	534

ggc Gly	aag Lys	ctt Leu 90	cac His	gtc Val	atg Met	gct Ala	gag Glu 95	cta Leu	tgt Cys	gtc Val	ttc Phe	tcc Ser 100	ttc Phe	agc Ser	cag Gln		582
gag Glu	atc Ile 105	gag Glu	tac Tyr	tgg Trp	ggc Gly	atc Ile 110	aac Asn	gag Glu	ttc Phe	ttc Phe	att Ile 115	gac Asp	tcc Ser	tgc Cys	tgc Cys		630
agc Ser 120	tac Tyr	agc Ser	tac Tyr	cat His	ggc Gly 125	cgc Arg	aaa Lys	gta Val	gag Glu	ccc Pro 130	gag Glu	cag Gln	gag Glu	aag Lys	tgg Trp 135	-	678
gac Asp	gag Glu	cag Gln	agt Ser	gac Asp 140	cag Gln	gag Glu	agc Ser	acc Thr	acg Thr 145	tct Ser	tcc Ser	ttc Phe	gat Asp	gag Glu 150	atc Ile		726
ctt Leu	gcc Ala	ttc Phe	tac Tyr 155	aac Asn	gac Asp	gcc Ala	tcc Ser	aag Lys 160	ttc Phe	gat Asp	gjå aaa	cag Gln	ccc Pro 165	ctc Leu	ggc Gly		774
								gcg Ala									822
gtg Val	ctg Leu 185	agc Ser	agg Arg	gtc Val	ttc Phe	agc Ser 190	atc Ile	ctg Leu	tcc Ser	atc Ile	ctg Leu 195	gtg Val	gtg Val	atg Met	gly ggg		870
tcc Ser 200	atc Ile	atc Ile	acc Thr	atg Met	tgc Cys 205	ctc Leu	aat Asn	agc Ser	ctg Leu	ccc Pro 210	gat Asp	ttc Phe	caa Gln	atc Ile	cct Pro 215	141	918
gac Asp	agc Ser	cag Gln	ggc Gly	aac Asn 220	cct Pro	ggc Gly	gag Glu	gac Asp	cct Pro 225	agg Arg	ttc Phe	gaa Glu	atc Ile	gtg Val 230	gag Glu		966
cac His	ttt Phe	ggc Gly	att Ile 235	gcc Ala	tgg Trp	ttc Phe	aca Thr	ttt Phe 240	gag Glu	ctg Leu	gtg Val	gcc Ala	agg Arg 245	ttt Phe	gct Ala		1014
gtg Val	gcc Ala	cct Pro 250	gac Asp	ttc Phe	ctc Leu	aag Lys	ttc Phe 255	ttc Phe	aag Lys	aat Asn	gcc Ala	cta Leu 260	aac Asn	ctt Leu	att Ile		1062
gac Asp	ctc Leu 265	Met	tcc Ser	atc Ile	gtc Val	ccc Pro 270	ttt Phe	tac Tyr	atc Ile	act Thr	ctg Leu 275	Val	gtg Val	aac Asn	ctg Leu		1110
gtg Val 280	gtg Val	gag Glu	agc Ser	aca Thr	cct Pro 285	act Thr	tta Leu	gcc Ala	aac Asn	ttg Leu 290	Gly	agg Arg	gtg Val	gcc Ala	cag Gln 295		1158
gtc Val	ctg Leu	agg Arg	ctg Leu	atg Met 300	Arg	atc Ile	ttc Phe	cgc Arg	atc Ile 305	tta Leu	aag Lys	ctg Leu	gcc Ala	agg Arg 310	cac His		1206
tcc Ser	act Thr	ggc Gly	ctc Leu 315	cgc Arg	tcc Ser	ctg Leu	gjà aaa	gcc Ala 320	act Thr	ttg Leu	aaa Lys	tac Tyr	agc Ser 325	tac Tyr	aaa Lys		1254
gaa	gta	ggg	ctg	ctc	ttg	ctc	tac	ctc	taa	gtg	999	att	tcc	atc	ttc		1302

Glu Val Gly Leu Leu Leu Tyr Leu Ser Val Gly Ile Ser Ile Phe 330 335 340	
tcc gtg gtg gcc tac acc att gaa aag gag gag aac gag ggc ctg gcc Ser Val Val Ala Tyr Thr Ile Glu Lys Glu Glu Asn Glu Gly Leu Ala 350 355	1350
acc atc cct gcc tgc tgg tgg tgg gct acc gtc agt atg acc aca gtg Thr Ile Pro Ala Cys Trp Trp Trp Ala Thr Val Ser Met Thr Thr Val 360 370 375	1398
ggg tac ggg gat gtg gtc cca ggg acc acg gca gga aag ctg act gcc Gly Tyr Gly Asp Val Val Pro Gly Thr Thr Ala Gly Lys Leu Thr Ala 380 385 390	1446
Ser Ala Cys Ile Leu Ala Gly Ile Leu Val Val Leu Pro Ile Thr 400 405	1494
ttg atc ttc aat aag ttc tcc cac ttt tac cgg cgc caa aag caa ctt Leu Ile Phe Asn Lys Phe Ser His Phe Tyr Arg Arg Gln Lys Gln Leu 410 415 420	1542
gag agt gcc atg cgc agc tgt gac ttt gga gat gga atg aag gag gtc Glu Ser Ala Met Arg Ser Cys Asp Phe Gly Asp Gly Met Lys Glu Val 435	1590
Pro Ser Val Asn Leu Arg Asp Tyr Tyr Ala Hig Lya Yal	
Pro Ser Val Asn Leu Arg Asn Time To Cat aaa gtt aaa too ott	1638
445 450 450 A55	2030
atg gca agg ctg agg and	
atg gca agc ctg acg aac atg agc agg agc tca cca agt gaa ctc agt Met Ala Ser Leu Thr Asn Met Ser Arg Ser Ser Pro Ser Glu Leu Ser 460 465 470	1686
tta aat gat too ota ogt t agooggaga aatta	
tta aat gat tcc cta cgt t agccgggagg acttgtcacc ctccacccca Leu Asn Asp Ser Leu Arg 475	1735
cattgctgag ctgcctcttg tgcctctggc acagcccagg caccttatgg ttatggtgta	
aggagtatgc ccagcccttg tgcctctggc acagcccagg caccttatgg ttatggtgta cagtttttag aatcgttttt agagggtggt gtgtctgaca ggatatatat	1795
Cagillitad astrottili " " " " " " " " " " " " " " " " "	1855
acgulate actuactor of the state	1915
atgaaatgac actcactggt ctttgcatcg tgggcataaa atgttcacct ttttccaga ccagtactg tctatgagtt gtcgtgctcc tgtttctag gtgcttgtgg	1975
	2035
caaaaagccc ccacaagtcg tccagtagaa atgcatctat gaggtcagca aggatatgat	2095
gagattttgc tcacagtcat gtgaaaacaa aatctcagct ctttatccat tgctttcact	2155
tagttttagt accaaaacaa agagaatgca aagttaagca gacttgaccat tgctttcact ctaagttgtt tttataaatg atctgtagtt ccqtggcttg catcagtct	2215
ctaagttgtt tttataaatg atctgtagtt ccgtggcttg catgggtgca ccaatcatct ttagaacgat gtacactgat gttcatctca tagatgtcac tottagatg	2275
ttagaacgat gtacactgat gttcatctca taaatgtcac tctttagaga atgttactta gttaaacatg cagtgaagat cgaattttt tcccaagaac agatgtactta	2335
gttaaacatg cagtgaagat cgaattttt tcccaagaac agatgtgtta gggagagggg	2395
cttcagctaa atagtccaaa ccctagggtg cttaaagcca agttagtgca ggctgagccc cttggttcac agtcaagcct ccttgtttcc tagggtgact gtagagcca	2455
cttggttcac agtcaagcct ccttgtttcc tagggtgact gtagagaaat gtatttccgg atgaggttc tgatctaggc catttgacca aactttgctg tgtagagaaat gtatttccgg	2515
Curyadata tttatttt	2575 2635
addayddgtt factgttgta Lari	2695
cagtadctta atacttttat 55554459 ttgttdddtt dctadcaadd	2755
ccaagcadaa tttagtcaga taatta	2815
gracing contract and a second attendance	2875
additional Cotton of the cotto	2935
aaaatataga cgtgcacgat ggtggtgtgg cttacccagg atggaaacac tgcagttett acttgcatte ccactgcett tcatgggggg tgactgggta gaggaaacac tgcagttett	2995
acttgcattc ccactgcctt tcatgggggg tgactggta gaggccagga gaaaggaaag	3055

agttgtaaaa taaaaaactg ctagttcata aaaaaaaaa aaaaaaa

3102

<210> 18 <211> 477 <212> PRT <213> H. sapiens

<400> 18

Met Thr Gly Gln Ser Leu Trp Asp Val Ser Glu Ala Asn Val Glu Asp 10 Gly Glu Ile Arg Ile Asn Val Gly Gly Phe Lys Arg Arg Leu Arg Ser 25 His Thr Leu Leu Arg Phe Pro Glu Thr Arg Leu Gly Arg Leu Leu Leu 40 Cys His Ser Arg Glu Ala Ile Leu Glu Leu Cys Asp Asp Tyr Asp Asp 55 Val Gln Arg Glu Phe Tyr Phe Asp Arg Asn Pro Glu Leu Phe Pro Tyr 70 75 Val Leu His Phe Tyr His Thr Gly Lys Leu His Val Met Ala Glu Leu 85 90 Cys Val Phe Ser Phe Ser Gln Glu Ile Glu Tyr Trp Gly Ile Asn Glu 100 105 Phe Phe Ile Asp Ser Cys Cys Ser Tyr Ser Tyr His Gly Arg Lys Val 115 120 125 Glu Pro Glu Gln Glu Lys Trp Asp Glu Gln Ser Asp Gln Glu Ser Thr 135 140 Thr Ser Ser Phe Asp Glu Ile Leu Ala Phe Tyr Asn Asp Ala Ser Lys 150 155 Phe Asp Gly Gln Pro Leu Gly Asn Phe Arg Arg Gln Leu Trp Leu Ala 165 170 Leu Asp Asn Pro Gly Tyr Ser Val Leu Ser Arg Val Phe Ser Ile Leu 180 185 Ser Ile Leu Val Val Met Gly Ser Ile Ile Thr Met Cys Leu Asn Ser 200 Leu Pro Asp Phe Gln Ile Pro Asp Ser Gln Gly Asn Pro Gly Glu Asp 215 220 Pro Arg Phe Glu Ile Val Glu His Phe Gly Ile Ala Trp Phe Thr Phe 225 230 235 Glu Leu Val Ala Arg Phe Ala Val Ala Pro Asp Phe Leu Lys Phe Phe 245 250 Lys Asn Ala Leu Asn Leu Ile Asp Leu Met Ser Ile Val Pro Phe Tyr 265 Ile Thr Leu Val Val Asn Leu Val Val Glu Ser Thr Pro Thr Leu Ala 275 280 Asn Leu Gly Arg Val Ala Gln Val Leu Arg Leu Met Arg Ile Phe Arg 295 300 Ile Leu Lys Leu Ala Arg His Ser Thr Gly Leu Arg Ser Leu Gly Ala 310 315 Thr Leu Lys Tyr Ser Tyr Lys Glu Val Gly Leu Leu Leu Tyr Leu 330 Ser Val Gly Ile Ser Ile Phe Ser Val Val Ala Tyr Thr Ile Glu Lys Glu Glu Asn Glu Gly Leu Ala Thr Ile Pro Ala Cys Trp Trp Trp Ala 360 Thr Val Ser Met Thr Thr Val Gly Tyr Gly Asp Val Val Pro Gly Thr Thr Ala Gly Lys Leu Thr Ala Ser Ala Cys Ile Leu Ala Gly Ile Leu 390 395 Val Val Leu Pro Ile Thr Leu Ile Phe Asn Lys Phe Ser His Phe 410 Tyr Arg Arg Gln Lys Gln Leu Glu Ser Ala Met Arg Ser Cys Asp Phe

_	_			20				4	25					130		
G	ly A	sp G	Sly M	let L	ys G	lu V	al P	ro s	er v	al 1	sn :	Leu 1	arg i	r as	yr Tyr	
		-					4	40								
Α.	10 n 4	50	yys v	al L	ys s	er L	eu M 55	et A	la s	er I	eu '	Thr 1	an 1	1et S	er Arg	
S			ro s	er G	lu I.	en S	oo er t.	A11 7	~~ A	0		460 Leu <i>1</i>				
4	55			•	<u>-</u>	70	CT T	eu A	SII A			Leu A	ırg			
										4	75					
		<21	0> 1	9			•							,		
			1> 0													
			2 > D													
		<21	3> H	. sa	pien	S										
		<22	0>													
			1> C	DS												
				249).	(:	3495)										
		<22	3 > K-	+Hnov	714	•										
			0> 19													
99	gete	gtag	g cag	ggat	ttg	tggg	cggc	ga g	ggcg	gcgaç	g g	geeg	cgcq	cat	gctccgg	a 60
															ccgagct ccgcggg cc ttc	240
•		_ M	let F	ro A	la M	let A	ra G	ge e lv r	en L	eu 2	rcg (ccg (ag a	ac a	hr Phe	290
			1				-3 - 5	-, 2		eu r	ua.	10	in A	asn T	hr Phe	
CES	g ga	c ac	c at	c gc	t ac	g cg	c tt	c ga	c gg	c ac	g ca	ac ag	rt aa	c tt	c gtg	338
19		р тп	ız İI	e Al	α III	T MI	g Ph	e As	p Gl	y Th	r Hi	is Se	r As	n Ph	c gtg e Val —	-
					2	0 .				2	5				30	
cto	a a a	c aa	c ac	c acr	t aa	c aa	7 00								t gat	
Let	ı Gl	y As	n Al	a Se	r Gl	y Gl	/ Ala	Lei	u Pro	o Va	ggt lv=	C ta	c tg	c tc	t gat r Asp	386
				3.5	5				4	0	_	. <u>.</u> 13	r cy	S Se:		
990	: EEC	c tg	t ga	c cto	aco	g gg(tto	tec	cgg	g gc	t ga	g gt	c at	g cag	g cgg	434
GIY	FILE	- Cy	s As] 50	9 100	ı Thi	r Gl	7 Phe	e ser	Arg	J Ala	a Gl	u Va	l Me	t Gli	g cgg 1 Arg	
			31	,				55	5				6	0		
ggc	tgt	gc	c tgo	tec	: ttc	ctt	tat	aaa	T CC=						gtc	
Gly	Cys	Ala	a Cys	Ser	Phe	Leu	Tvr	Glv	, cca	yac Ast	ac Th	c ag	ga	gcto	gtc Val	482
		65	5				70	1			, 111	7:		ı ret	ı vaı	
cgc	caa	Cac	ato	: cgc	aag	r gcc	ctg	gac	gag	cac	aa	g gag	, tto	aaq	gct	530
arg	80		1 TTE	Arg	rys	MIA	Leu	Asp	Glu	His	Ly	s Glı	ı Phe	Lys	gct Ala	
						85					9	0		•		
gag	ctg	ato	ctq	tac	caa	аас	age	aaa	c+a					ctc		
Glu	Leu	Ile	Leu	Tyr	Arg	Lys	Ser	Glv	Len	Pro	Dh	c rgg	tgt	ctc	ctg Leu	578
95				-	100	•		1		105	File	= 111	Cys	Leu	Leu 110	
										_						
gat	gtg	ata	CCC	ata	aag	aat	gag	aaa	999	gag	gto	qct	cto	ttc	cta	626
Asp	vaı	TTE	Pro	116	Lys	Asn	Glu	Lys	Gly	Glu	Val	Ala	Leu	ttc Phe	Leu	0.20
				115					120					125		
qtc	tet	cac	aan	gac	ato	2~~	~									
Val	Ser	His	Lvs	Asn	Tle	Ser	gaa	acc	aag	aac	cga	ggg	ggc	ccc	gac	674
			130			201	GIU	135	гÃЗ	ASN	Arg	Gly		Pro	Asp	
													140			
aga	tgg	aaa	gag	aca	ggt	ggt	ggc	cgq	cgc	саа	tar	ggc	CC~	gca	cca	700
Arg	Trp	Lys	Glu	Thr	Gly	Gly	Gly	Arg	Arg	Arg	Tyr	Glv	Ara	Ala	Ara	722
									31	_	•	- 2	3		5	

		145					150					155				
tcc Ser	aaa Lys 160	ggc Gly	ttc Phe	aat Asn	gcc Ala	aac Asn 165	cgg Arg	cgg Arg	cgg Arg	agc Ser	cgg Arg 170	gcc Ala	gtg Val	ctc Leu	tac Tyr	770
cac His 175	ctg Leu	tcc Ser	gly ggg	cac His	ctg Leu 180	cag Gln	aag Lys	cag Gln	ccc Pro	aag Lys 185	ggc Gly	aag Lys	cac His	aag Lys	ctc Leu 190	818
aat Asn	aag Lys	Gly ggg	gtg Val	ttt Phe 195	gja aaa	gag Glu	aaa Lys	cca Pro	aac Asn 200	ttg Leu	cct Pro	gag Glu	tac Tyr	aaa Lys 205	gta Val	866
gcc Ala	gcc Ala	atc Ile	cgg Arg 210	aag Lys	tcg Ser	ccc Pro	ttc Phe	atc Ile 215	ctg Leu	ttg Leu	cac His	tgt Cys	ggg Gly 220	gca Ala	ctg Leu	914
aga Arg	gcc Ala	acc Thr 225	tgg Trp	gat Asp	ggc	ttc Phe	atc Ile 230	ctg Leu	ctc Leu	gcc Ala	aca Thr	ctc Leu 235	tat Tyr	gtg Val	gct Ala	962
gtc Val	act Thr 240	gtg Val	ccc Pro	tac Tyr	agc Ser	gtg Val 245	tgt Cys	gtg Val	agc Ser	aca Thr	gca Ala 250	cgg Arg	gag Glu	ccc Pro	agt Ser	1010
gcc Ala 255	gcc Ala	cgc Arg	ggc Gly	ccg Pro	ccc Pro 260	agc Ser	gtc Val	tgt Cys	gac Asp	ctg Leu 265	Ala	gtg Val	gag Glu	gtc Val	ctc Leu 270	1058
ttc Phe	atc Ile	ctt Leu	gac Asp	att Ile 275	gtg Val	ctg Leu	aat Asn	ttc Phe	cgt Arg 280	acc Thr	aca Thr	ttc Phe	gtg Val	tcc Ser 285	aag Lys	1106
tcg Ser	ggc Gly	cag Gln	gtg Val 290	gtg Val	ttt Phe	gcc Ala	cca Pro	aag Lys 295	tcc Ser	att Ile	tgc Cys	ctc Leu	cac His 300	tac Tyr	gtc Val	1154
acc Thr	acc Thr	tgg Trp 305	ttc Phe	ctg Leu	ctg Leu	gat Asp	gtc Val 310	atc Ile	gca Ala	gcg Ala	ctg Leu	ccc Pro 315	ttt Phe	gac Asp	ctg Leu	1202
cta Leu	cat His 320	gcc Ala	ttc Phe	aag Lys	gtc Val	aac Asn 325	gtg Val	tac Tyr	ttc Phe	Gly 939	gcc Ala 330	cat His	ctg Leu	ctg Leu	aag Lys	1250
acg Thr 335	gtg Val	cgc Arg	ctg Leu	ctg Leu	cgc Arg 340	ctg Leu	ctg Leu	cgc Arg	ctg Leu	ctt Leu 345	Pro	cgg Arg	ctg Leu	gac Asp	cgg Arg 350	1298
tac Tyr	tcg Ser	cag Gln	tac Tyr	agc Ser 355	gcc Ala	gtg Val	gtg Val	ctg Leu	aca Thr 360	ctg Leu	ctc Leu	atg Met	gcc Ala	gtg Val 365	ttc Phe	1346
gcc Ala	ctg Leu	ctc Leu	gcg Ala 370	His	tgg Trp	gtc Val	gcc Ala	tgc Cys 375	gtc Val	tgg Trp	ttt Phe	tac Tyr	att Ile 380	Gly	cag Gln	1394
cgg	gag Glu	atc Ile 385	Glu	agc Ser	agc Ser	gaa Glu	tcc Ser 390	Glu	ctg Leu	cct	gag Glu	att Ile 395	ggc Gly	tgg Trp	ctg Leu	1442

cag gag ctg gcc cgc cga ctg gag act ccc tac tac ctg gtg ggc cgg Gln Glu Leu Ala Arg Arg Leu Glu Thr Pro Tyr Tyr Leu Val Gly Arg 400 405 410	1490
agg cca gct gga ggg aac agc tcc ggc cag agt gac aac tgc agc agc Arg Pro Ala Gly Gly Asn Ser Ser Gly Gln Ser Asp Asn Cys Ser Ser 415 420 425	1538
agc agc gag gcc aac ggg acg ggg ctg gag ctg ctg ggc ggc ccg tcg Ser Ser Glu Ala Asn Gly Thr Gly Leu Glu Leu Leu Gly Gly Pro Ser 435 440 445	1586
ctg cgc agc gcc tac atc acc tcc ctc tac ttc gca ctc agc agc ctc Leu Arg Ser Ala Tyr Ile Thr Ser Leu Tyr Phe Ala Leu Ser Ser Leu 450 455 460	1634
acc agc gtg ggc ttc ggc aac gtg tcc gcc aac acg gac acc gag aag Thr Ser Val Gly Phe Gly Asn Val Ser Ala Asn Thr Asp Thr Glu Lys 465 470 475	1682
atc ttc tcc atc tgc acc atg ctc atc ggc gcc ctg atg cac gcg gtg Ile Phe Ser Ile Cys Thr Met Leu Ile Gly Ala Leu Met His Ala Val 480 480 490	1730
gtg ttt ggg aac gtg acg gcc atc atc cag cgc atg tac gcc cgc cgc Val Phe Gly Asn Val Thr Ala Ile Ile Gln Arg Met Tyr Ala Arg Arg 500 505 510	1778
ttt ctg tac cac agc cgc acg cgc gac cag cgc gac tac atc cgc atc Phe Leu Tyr His Ser Arg Thr Arg Asp Gln Arg Asp Tyr Ile Arg Ile 515 520 525	1826
cac cgt atc ccc aag ccc ctc aag cag cgc atg ctg gag tac ttc cag His Arg Ile Pro Lys Pro Leu Lys Gln Arg Met Leu Glu Tyr Phe Gln 530 535 540	1874
gcc acc tgg gcg gtg aac aat ggc atc gac acc acc gag ctg ctg cag Ala Thr Trp Ala Val Asn Asn Gly Ile Asp Thr Thr Glu Leu Leu Gln 545 550 555	1922
age etc ect gae gag etg ege gea gae atc gee atg eac etg eac aag Ser Leu Pro Asp Glu Leu Arg Ala Asp Ile Ala Met His Leu His Lys 560 565 570	1970
gag gtc ctg cag ctg cca ctg ttt gag gcg gcc agc cgc ggc tgc ctg Glu Val Leu Gln Leu Pro Leu Phe Glu Ala Ala Ser Arg Gly Cys Leu 575 580 585 590	2018
cgg gca ctg tct ctg gcc ctg cgg ccc gcc ttc tgc acg ccg ggc gag Arg Ala Leu Ser Leu Ala Leu Arg Pro Ala Phe Cys Thr Pro Gly Glu 595 600 605	2066
tac ctc atc cac caa ggc gat gcc ctg cag gcc ctc tac ttt gtc tgc Tyr Leu Ile His Gln Gly Asp Ala Leu Gln Ala Leu Tyr Phe Val Cys 610 615 620	2114
tct ggc tcc atg gag gtg ctc aag ggt ggc acc gtg ctc gcc atc cta Ser Gly Ser Met Glu Val Leu Lys Gly Gly Thr Val Leu Ala Ile Leu 625 630 635	2162

Pro Pro Arg Ala Leu Glu Gly Leu Arg Leu Pro Pro Met Pro Trp Asn

gtg ccc cca gat ctg agc ccc agg gta gta gat ggc att gaa gac ggc
Val Pro Pro Asp Leu Ser Pro Arg Val Val Asp Gly Ile Glu Asp Gly
815

tgt ggc tcg gac cag ccc aag ttc tct ttc cgc gtg ggc cag tct ggc
Cys Gly Ser Asp Gln Pro Lys Phe Ser Phe Arg Val Gly Gln Ser Gly
835

ccg gaa tgt agc agc agc ccc tcc cct gga cca gag agc ggc ctg ctc
Pro Glu Cys Ser Ser Ser Pro Ser Pro Gly Pro Glu Ser Gly Leu Leu
850

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

2738

act gtt ccc cat ggg ccc agc gag gca agg aac aca gac aca ctg gac
Thr Val Pro His Gly Pro Ser Glu Ala Arg Asn Thr Asp Thr Leu Asp
865 870 875

aag ctt cgg cag gcg gtg aca gag ctg tca gag cag gtg ctg cag atg 2930

Lys	880	Arg	Gln	Ala	a Val	Thr 885	Glu	Leu	Ser	Glu	Gln 890	Val	Leu	Gln	Met	
895		gga Gly	200	G11	900	Leu	Arg	GIN	Ala	905	Gln	Leu	Val	Leu	Ala 910	2978
		agg Arg	014	915	110	Суѕ	PIO	Arg	920	Ser	Gly	Glu	Gly	Pro 925	Cys	3026
		agc Ser	930	561	GIY	Leu	Leu	935	Pro	Leu	Cys	Val	Asp 940	Thr	Gly	3074
		tcc Ser 945	-7-	Cys	Leu	GIN.	950	Pro	Ala	Gly	Ser	Val 955	Leu	Ser	Gly	3122
	960	ccc Pro			My	965	GIĄ	Pro	Pro	Pro	Leu 970	Met	Ala	Pro .	Arg	3170
975		ggt Gly	110	F10	980	ser	GIN	ser	Ser	Pro 985	Trp	Pro .	Arg	Ala '	Thr 990	3218
gct Ala	,	11p		995	IIIE	ser .	Asp :	Ser (Glu 000	Pro	Pro 1	Ala :	Ser (Gly <i>I</i> 005	\sp_	3266
Ctc (-,,,	10	010		ser .	mr i	Pro <i>A</i>	11a S	ser :	Pro 1	Pro I	Pro S	Ser (Slu G	lu	3314
Gly 1	10	025	.111	ту	PIO P	10 10	30	ro V	/al s	Ser (In A	Ala G 035	lu A	la T	hr	3362
	40	, c	- Lu F	10 1	10	45	ary s	er G	sty G	10 10	eu A 50	la L	eu P	ro T	rp	3410
gac c Asp P 055				10	60	ec v	ar r	eu I	1e G	65 65	ys H	is G	ly s	er G	ly .	3458
aca g Thr V	tc c al G	ag t	gg a rp Ti 10	III G	ag g	aa g lu G	aa g lu G	gc a ly T	hr G	ly v	tc t al	gag	tacc	agc		3505
cctaga aggcag tggaag aggcct ggcctg ccaaat	gcaa tete gagga	a gga c tcg a caa	aggad ggcct aggaa	ectg get	gete	ectga etga ectga	act o	etcas ecces	ggcc gaga gtct	cg ci	tggct taggo tctgo	tcagg ctgga cagga	g gca tcc tgg	aggga ectgg	ggc gcc	3565 3625 3685 3745 3805 3857

<210> 20 <211> 1082 <212> PRT

<213> H. sapiens

<400> 20 Met Pro Ala Met Arg Gly Leu Leu Ala Pro Gln Asn Thr Phe Leu Asp Thr Ile Ala Thr Arg Phe Asp Gly Thr His Ser Asn Phe Val Leu Gly Asn Ala Ser Gly Gly Ala Leu Pro Val Val Tyr Cys Ser Asp Gly Phe Cys Asp Leu Thr Gly Phe Ser Arg Ala Glu Val Met Gln Arg Gly Cys Ala Cys Ser Phe Leu Tyr Gly Pro Asp Thr Ser Glu Leu Val Arg Gln 75 70 Gln Ile Arg Lys Ala Leu Asp Glu His Lys Glu Phe Lys Ala Glu Leu 90 Ile Leu Tyr Arg Lys Ser Gly Leu Pro Phe Trp Cys Leu Leu Asp Val 105 Ile Pro Ile Lys Asn Glu Lys Gly Glu Val Ala Leu Phe Leu Val Ser 120 His Lys Asp Ile Ser Glu Thr Lys Asn Arg Gly Gly Pro Asp Arg Trp 135 140 Lys Glu Thr Gly Gly Gly Arg Arg Tyr Gly Arg Ala Arg Ser Lys 155 150 Gly Phe Asn Ala Asn Arg Arg Ser Arg Ala Val Leu Tyr His Leu 170 165 Ser Gly Hìs Leu Gln Lys Gln Pro Lys Gly Lys His Lys Leu Asn Lys 185 Gly Val Phe Gly Glu Lys Pro Asn Leu Pro Glu Tyr Lys Val Ala Ala 205 200 Ile Arg Lys Ser Pro Phe Ile Leu Leu His Cys Gly Ala Leu Arg Ala 220 215 Thr Trp Asp Gly Phe Ile Leu Leu Ala Thr Leu Tyr Val Ala Val Thr 230 Val Pro Tyr Ser Val Cys Val Ser Thr Ala Arg Glu Pro Ser Ala Ala 250 245 Arg Gly Pro Pro Ser Val Cys Asp Leu Ala Val Glu Val Leu Phe Ile 265 Leu Asp Ile Val Leu Asn Phe Arg Thr Thr Phe Val Ser Lys Ser Gly 280 Gln Val Val Phe Ala Pro Lys Ser Ile Cys Leu His Tyr Val Thr Thr 295 Trp Phe Leu Leu Asp Val Ile Ala Ala Leu Pro Phe Asp Leu Leu His 315 310 Ala Phe Lys Val Asn Val Tyr Phe Gly Ala His Leu Leu Lys Thr Val 330 325 Arg Leu Leu Arg Leu Leu Arg Leu Leu Pro Arg Leu Asp Arg Tyr Ser 345 Gln Tyr Ser Ala Val Val Leu Thr Leu Leu Met Ala Val Phe Ala Leu 360 Leu Ala His Trp Val Ala Cys Val Trp Phe Tyr Ile Gly Gln Arg Glu 375 Ile Glu Ser Ser Glu Ser Glu Leu Pro Glu Ile Gly Trp Leu Gln Glu 390 Leu Ala Arg Arg Leu Glu Thr Pro Tyr Tyr Leu Val Gly Arg Arg Pro 410 405 Ala Gly Gly Asn Ser Ser Gly Gln Ser Asp Asn Cys Ser Ser Ser 425 Glu Ala Asn Gly Thr Gly Leu Glu Leu Gly Gly Pro Ser Leu Arg 445 440 Ser Ala Tyr Ile Thr Ser Leu Tyr Phe Ala Leu Ser Ser Leu Thr Ser 455

Val Gly Phe Gly Asn Val Ser Ala Asn Thr Asp Thr Glu Lys Ile Phe 470 475 Ser Ile Cys Thr Met Leu Ile Gly Ala Leu Met His Ala Val Val Phe 490 Gly Asn Val Thr Ala Ile Ile Gln Arg Met Tyr Ala Arg Arg Phe Leu 505 Tyr His Ser Arg Thr Arg Asp Gln Arg Asp Tyr Ile Arg Ile His Arg 520 Ile Pro Lys Pro Leu Lys Gln Arg Met Leu Glu Tyr Phe Gln Ala Thr 535 Trp Ala Val Asn Asn Gly Ile Asp Thr Thr Glu Leu Leu Gln Ser Leu 540 550 555 Pro Asp Glu Leu Arg Ala Asp Ile Ala Met His Leu His Lys Glu Val 565 570 Leu Gln Leu Pro Leu Phe Glu Ala Ala Ser Arg Gly Cys Leu Arg Ala 585 Leu Ser Leu Ala Leu Arg Pro Ala Phe Cys Thr Pro Gly Glu Tyr Leu 600 Ile His Gln Gly Asp Ala Leu Gln Ala Leu Tyr Phe Val Cys Ser Gly 605 615 Ser Met Glu Val Leu Lys Gly Gly Thr Val Leu Ala Ile Leu Gly Lys 630 635 Gly Asp Leu Ile Gly Cys Glu Leu Pro Arg Arg Glu Gln Val Val Lys 645 650 Ala Asn Ala Asp Val Lys Gly Leu Thr Tyr Cys Val Leu Gln Cys Leu 665 Gln Leu Ala Gly Leu His Asp Ser Leu Ala Leu Tyr Pro Glu Phe Ala 680 Pro Arg Phe Ser Arg Gly Leu Arg Gly Glu Leu Ser Tyr Asn Leu Gly 685 695 Ala Gly Gly Gly Ser Ala Glu Val Asp Thr Ser Ser Leu Ser Gly Asp 710 Asn Thr Leu Met Ser Thr Leu Glu Glu Lys Glu Thr Asp Gly Glu Gln 715 725 730 Gly Pro Thr Val Ser Pro Ala Pro Ala Asp Glu Pro Ser Ser Pro Leu 745 Leu Ser Pro Gly Cys Thr Ser Ser Ser Ser Ala Ala Lys Leu Leu Ser 760 Pro Arg Arg Thr Ala Pro Arg Pro Arg Leu Gly Gly Arg Gly Arg Pro 775 780 Gly Arg Ala Gly Ala Leu Lys Ala Glu Ala Gly Pro Ser Ala Pro Pro 790 Arg Ala Leu Glu Gly Leu Arg Leu Pro Pro Met Pro Trp Asn Val Pro 805 810 Pro Asp Leu Ser Pro Arg Val Val Asp Gly Ile Glu Asp Gly Cys Gly 825 Ser Asp Gln Pro Lys Phe Ser Phe Arg Val Gly Gln Ser Gly Pro Glu 840 Cys Ser Ser Pro Ser Pro Gly Pro Glu Ser Gly Leu Leu Thr Val 855 Pro His Gly Pro Ser Glu Ala Arg Asn Thr Asp Thr Leu Asp Lys Leu 860 870 875 Arg Gln Ala Val Thr Glu Leu Ser Glu Gln Val Leu Gln Met Arg Glu 885 890 Gly Leu Gln Ser Leu Arg Gln Ala Val Gln Leu Val Leu Ala Pro His 905 Arg Glu Gly Pro Cys Pro Arg Ala Ser Gly Glu Gly Pro Cys Pro Ala 920 Ser Thr Ser Gly Leu Leu Gln Pro Leu Cys Val Asp Thr Gly Ala Ser 935 Ser Tyr Cys Leu Gln Pro Pro Ala Gly Ser Val Leu Ser Gly Thr Trp 940

945 950 Pro His Pro Arg Pro Gly Pro Pro Pro Leu Met Ala Pro Arg Pro Trp 965 970 975 Gly Pro Pro Ala Ser Gln Ser Ser Pro Trp Pro Arg Ala Thr Ala Phe 985 Trp Thr Ser Thr Ser Asp Ser Glu Pro Pro Ala Ser Gly Asp Leu Cys 1000 1005 Ser Glu Pro Ser Thr Pro Ala Ser Pro Pro Pro Ser Glu Glu Gly Ala 1015 1020 Arg Thr Gly Pro Ala Glu Pro Val Ser Gln Ala Glu Ala Thr Ser Thr 1030 1035 Gly Glu Pro Pro Pro Gly Ser Gly Gly Leu Ala Leu Pro Trp Asp Pro 1050 His Ser Leu Glu Met Val Leu Ile Gly Cys His Gly Ser Gly Thr Val 1060 1065 Gln Trp Thr Gln Glu Glu Gly Thr Gly Val 1075 1080 <210> 21 <211> 1800 <212> DNA <213> H. sapiens <220> <221> CDS <222> (346)...(1057) <223> K+Hnov28, splice 1 <400> 21 atttgaatga ctgggttact tectagaete tteeteette tettaagtae agtatagtte 60 tttctctgaa aatcttcagt ctcttagttc cagatgggtt ctctatggta ggaatacagg 120 acatgtagaa ggccctaggg gaatgctttc ttccccagat ctttgccctg tagtaggttt 180 cagetgagea aggaegagta gtttttetgg tgtttggeet eetetgttgg gtggaaaaag 240 actttcttct ctattttcct agttatatat gctatcatat gtctgttttt ctcctcttga 300 agtttccctg aaacctgggc tcttgaagac gcatcactgg agcag atg gat aat gga 357 Met Asp Asn Gly gac tgg ggc tat atg atg act gac cca gtc aca tta aat gta ggt gga 405 Asp Trp Gly Tyr Met Met Thr Asp Pro Val Thr Leu Asn Val Gly Gly 10 15 453 cac ttg tat aca acg tct ctc acc aca ttg acg cgt tac ccg gat tcc His Leu Tyr Thr Thr Ser Leu Thr Thr Leu Thr Arg Tyr Pro Asp Ser atg ctt gga gct atg ttt ggg ggg gac ttc ccc aca gct cga gac cct 501 Met Leu Gly Ala Met Phe Gly Gly Asp Phe Pro Thr Ala Arg Asp Pro caa ggc aat tac ttt att gat cga gat gga cct ctt ttc cga tat gtc 549 Gln Gly Asn Tyr Phe Ile Asp Arg Asp Gly Pro Leu Phe Arg Tyr Val 597 ctc aac ttc tta aga act tca gaa ttg acc tta ccg ttg gat ttt aag Leu Asn Phe Leu Arg Thr Ser Glu Leu Thr Leu Pro Leu Asp Phe Lys gaa ttt gat ctg ctt cgg aaa gaa gca gat ttt tac cag att gag ccc 645 Glu Phe Asp Leu Leu Arg Lys Glu Ala Asp Phe Tyr Gln Ile Glu Pro 85 90 95

Leu	Ile	Gln	Cys	Leu 105	Asn	gat Asp	ect Pro	aag Lys	CCt Pro 110	ttg Leu	tat Tyr	ccc Pro	atg Met	gat Asp 115	act Thr	693
ttt Phe	gaa Glu	gaa Glu	gtt Val 120	gtg Val	gag Glu	ctg Leu	tct Ser	agt Ser 125	act Thr	cgg Arg	aag Lys	ctt Leu	tct Ser 130	aag Lys	tac Tyr	741
tcc Ser	aac Asn	cca Pro 135	gtg Val	gct Ala	gtc Val	atc Ile	ata Ile 140	acg Thr	caa Gln	cta Leu	acc Thr	atc Ile 145	acc Thr	act Thr	aag Lys	789
gtc Val	cat His 150	tcc Ser	tta Leu	cta Leu	gaa Glu	ggc Gly 155	atc Ile	tca Ser	aat Asn	tat Tyr	ttt Phe 160	acc Thr	aag Lys	tgg Trp	aat Asn	837
aag Lys 165	cac His	atg Met	atg Met	gac Asp	acc Thr 170	aga Arg	gac Asp	tgc Cys	cag Gln	gtt Val 175	tcc Ser	ttt Phe	act Thr	ttt Phe	gga Gly 180	885
ccc Pro	tgt Cys	gat Asp	tat Tyr	cac His 185	cag Gln	gaa Glu	gtt Val	tct Ser	ctt Leu 190	agg Arg	gtc Val	cac His	ctg Leu	atg Met 195	gaa Glu	933
tac Tyr	att Ile	aca Thr	aaa Lys 200	caa Gln	ggt Gly	ttc Phe	Thr	atc Ile 205	cgc Arg	aac Asn	acc Thr	Arg	gtg Val 210	cat His	cac His	981
atg Met	Ser	gag Glu 215	cgg Arg	gcc Ala	aat Asn	GIU.	aac Asn 220	aca Thr	gtg Val	gag Glu	His	aac Asn 225	tgg Trp	act Thr	ttc Phe	1029
tgt Cys	agg Arg 230	cta Leu .	gcc Ala	cgg Arg	rys ,	aca g Thr 2	gac Asp	gac Asp	t ga	tctc	cgac	cct	gcca	cag		1077
gttc	ctgg	aa a	gact	ctcc	a gga	aaat	ggaa	gat	actq	att 1	tttt	tttt	ta aa	atca	cagtg	1137
Lyay	atat	יו בי		CCCC	t aaa	atagi	ttqt	att	tatt	tora a	agac:	aataa	ac ca	accad	raadd	1197
aagt	cccg.	Ly C	LLLG	gcaga	a cto	CCEC	cato	ttt	tatte	ccc t	ttcc	cocto	72 A1	rator	catet	1257
tata	ateta	ac co	ettas	cago	a cac	-+++		ata	aaaa	gaa g	gtct	gaaaa	at ca	atta	tggta aaaat	1317
ggtc	ccta	ac to	caact	agaa	a gad	ctaaa	aaat	acas	agtg	get a	aaaal	gati	EE Ct	gata	aaaat actca	1377
Lyac	geeti	c ga	agaaa	aaat	c aaa	aacat	cat	qtac	raato	ac c	rtagt	ttcc			+===	1437 1497
caay	Layte	at to	Jcaat	atta	a aac	qaaa	aact	atta	ccaat	ca t	-tta:	2224				1557
acty		L ac	cagtt	atga	a caa	actat	ttc	tttc	ctato	rca t	atas	aatca	2 00	1220	100t	1617
acce	geage	o at	-yya:	iatgi	CEC	jacta	agaa	atat	ttat	at t	caat	toto	ra at	- 2 ~ 2 :	nasta	1677
	-9 -95	jı aç	jaaaa	ICTTE	a ctc	cttta	tac	ctac	itaca	agt a	taat	teec	a ac	ttat:	ctat	1737
ctaco aaa	3~0	ac		avac	. aac	-caat	.adā	aaat	.gaaa	ıca t	gaaa	aaaa	ıa aa	ıaaaa	aaaa	1797 1800
		_														1000
	<21	.0> 2	2													•

<211> 1836

<212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (382)...(1093) <223> K+Hnov28 splice 2

<400> 22	
qaqqaatqtt atgattttgt gactatttgt gacagctttt taatattagg tcacttttaa	60 120
acctataget tetetetet agaccaeatg gttgggaaag gagaaagaga aaatgattae ttgtagagaa aaatecattt etgeagtggt atggttaagg ataatetaae cataateaca	180
ttatccttgt atgcctggct acttgtgctg gcctgtatgt gaatgttaac cccaaagact	240
cetttagatg tegetgaact agttactata aaaagtattt egettteaaa eteceacatt	300
tcaagaagag caaaactcaa tacaaggcaa ttttgaagtt tccctgaaac ctgggctctt	360 411
gaagacgcat cactggagca g atg gat aat gga gac tgg ggc tat atg atg Met Asp Asn Gly Asp Trp Gly Tyr Met Met	7
1 5 10	
act gac cca gtc aca tta aat gta ggt gga cac ttg tat aca acg tct	459
Thr Asp Pro Val Thr Leu Asn Val Gly Gly His Leu Tyr Thr Thr Ser	
ctc acc aca ttg acg cgt tac ccg gat tcc atg ctt gga gct atg ttt	507
Leu Thr Thr Leu Thr Arg Tyr Pro Asp Ser Met Leu Gly Ala Met Phe	
30 35 40	
ggg ggg gac ttc ccc aca gct cga gac cct caa ggc aat tac ttt att	555
Gly Gly Asp Phe Pro Thr Ala Arg Asp Pro Gln Gly Asn Tyr Phe Ile	
45 50 55	
gat ega gat gga eet ett tte ega tat gte ete aae tte tta aga aet	603
Asp Arg Asp Gly Pro Leu Phe Arg Tyr Val Leu Asn Phe Leu Arg Thr	
60 65 70	
the sea the sea the sea the sea the sea the sea sea sea sea sea sea sea sea sea se	651
tca gaa ttg acc tta ccg ttg gat ttt aag gaa ttt gat ctg ctt cgg Ser Glu Leu Thr Leu Pro Leu Asp Phe Lys Glu Phe Asp Leu Leu Arg	031
75 80 85 90	•
	600
aaa gaa gca gat ttt tac cag att gag ccc ttg att cag tgt ctc aat	699
Lys Glu Ala Asp Phe Tyr Gln Ile Glu Pro Leu Ile Gln Cys Leu Asn 95 100 105	
gat cct aag cct ttg tat ccc atg gat act ttt gaa gaa gtt gtg gag	747
Asp Pro Lys Pro Leu Tyr Pro Met Asp Thr Phe Glu Glu Val Val Glu 110 115 120	
110 115 120	
ctg tot agt act cgg aag oft tot aag tac too aac coa gtg got gto	795
Leu Ser Ser Thr Arg Lys Leu Ser Lys Tyr Ser Asn Pro Val Ala Val	
125 130 135	
atc ata acg caa cta acc atc acc act aag gtc cat tcc tta cta gaa	843
Ile Ile Thr Gln Leu Thr Ile Thr Thr Lys Val His Ser Leu Leu Glu	-
140 145 150	
ggc atc tca aat tat ttt acc aag tgg aat aag cac atg atg gac acc	891
Gly Ile Ser Asn Tyr Phe Thr Lys Trp Asn Lys His Met Met Asp Thr	
155 160 165 170	
	939
aga gac tgc cag gtt tcc ttt act ttt gga ccc tgt gat tat cac cag Arg Asp Cys Gln Val Ser Phe Thr Phe Gly Pro Cys Asp Tyr His Gln	333
175 180 185	
gaa gtt tct ctt agg gtc cac ctg atg gaa tac att aca aaa caa ggt	987
Glu Val Ser Leu Arg Val His Leu Met Glu Tyr Ile Thr Lys Gln Gly	
190 195 200	
ttc acg atc cgc aac acc cgg gtg cat cac atg agt gag cgg gcc aat	1035
Phe Thr Ile Arg Asn Thr Arg Val His His Met Ser Glu Arg Ala Asn	
40	

		205					210					215				
gaa Glu	aac Asn 220	aca Thr	gtg Val	gag Glu	cac His	aac Asn 225	tgg Trp	act Thr	ttc Phe	tgt Cys	agg Arg 230	cta Leu	gcc Ala	cgg Arg	aag Lys	1083
aca Thr 235	gac Asp	gac Asp	t ga	atcto	ccgac	cct	gcca	ıcag	gtto	ctgg	jaa a	agact	ctc	ca		1133

ggaaatggaa gatactgatt ttttttttta aatcacagtg tgagatattt tttttctttt aaatagttgt atttatttga aggcagtgag gaccagaagg aagttttgtg ctttggcaga ctcctccatg ttttgttccc ttccccctga gtatgcatgt gcctgttcag agtctccaga 1253 tacctttttt ataaaaagaa gtctgaaaat cattatggta tataatctac ccttaacaga 1313 gettttetta ttacagtget aaaatgattt etgataaaat ggteeetaac teaactagaa ggctaaaaat acaagaatga aagaataagc agagtactca tgatgccttt gagaaaaatc aaaacatcat gtagggtgac ctagtttcca aaccaataaa taagtagtat tgtaatatta 1493 aaggaaaact gttccaatca tttaaaagta cttattaagt actgcttttt acagttatga 1553 caactgtttc tttctatgca tataaatcaa ggaaccaaat atctgtagcc atggaaatgt 1613 ctgactagaa atatttatat tgaattctga atacaaaatg tccctgtggt agaaaactta 1673 ctctttatgc ctggtgcagt ataattccca agtgtactgt ctaccagaaa aaaaaaacaa 1733 1793 1836

<210> 23 <211> 1751

<212> DNA

<213> H. sapiens

<220>

<221> CDS

<222> (297)...(1008)

<223> K+Hnov28 splice 3

<400> 23

ccatgtttct t ggttgatttg g aactgtttgt t gtatctgagc a ctcatctata t	taaatgctt	ttgaattgta gtcttaaggc	gaactgacta gataaaaata tggctctcca	aggcagttca aattcacatt	gtagctggga ggcatcatta	60 120 180 240 299

gat aat gga gac tgg ggc tat atg atg act gac cca gtc aca tta aat
Asp Asn Gly Asp Trp Gly Tyr Met Met Thr Asp Pro Val Thr Leu Asn
5 10 15

gta ggt gga cac ttg tat aca acg tct ctc acc aca ttg acg cgt tac
Val Gly His Leu Tyr Thr Thr Ser Leu Thr Thr Leu Thr Arg Tyr
20
25
30

ccg gat tcc atg ctt gga gct atg ttt ggg ggg gac ttc ccc aca gct
Pro Asp Ser Met Leu Gly Ala Met Phe Gly Gly Asp Phe Pro Thr Ala
35 40 45

cga gac cct caa ggc aat tac ttt att gat cga gat gga cct ctt ttc 491
Arg Asp Pro Gln Gly Asn Tyr Phe Ile Asp Arg Asp Gly Pro Leu Phe
50 55 60 65

cga tat gtc ctc aac ttc tta aga act tca gaa ttg acc tta ccg ttg 539
Arg Tyr Val Leu Asn Phe Leu Arg Thr Ser Glu Leu Thr Leu Pro Leu
70 75 80

gat ttt a Asp Phe I	aag gaa t Lys Glu 1 85	ttt gat o Phe Asp l	ctg ctt Leu Leu	cgg Arg :	aaa (Lys (gaa Glu	gca Ala	gat Asp	ttt Phe 95	tac Tyr	cag Gln	587
att gag o	ccc ttg a Pro Leu : 100	att cag 1 Ile Gln (tgt ctc Cys Leu 105	aat (Asn .	gat Asp	cct Pro	aag Lys	cct Pro 110	ttg Leu	tat Tyr	ccc Pro	635
atg gat a Met Asp 7	act ttt q Thr Phe (Glu Glu '	gtt gtg Val Val 120	gag Glu	ctg Leu	Ser	agt Ser 125	act Thr	cgg Arg	aag Lys	ctt Leu	683
tct aag t Ser Lys 1 130	tac tcc a Tyr Ser i	aac cca q Asn Pro 1 135	gtg gct Val Ala	gtc Val	Ile	ata Ile 140	acg Thr	caa Gln	cta Leu	acc Thr	atc Ile 145	731
acc act a	Lys Val	cat tcc : His Ser : 150	tta cta Leu Leu	Glu	ggc Gly 155	atc Ile	tca Ser	aat Asn	tat Tyr	ttt Phe 160	acc Thr	779
aag tgg a Lys Trp 1	aat aag Asn Lys 1 165	cac atg a	atg gac Met Asp	acc Thr 170	aga Arg	gac Asp	tgc Cys	cag Gln	gtt Val 175	tcc Ser	ttt Phe	827
act ttt g	gga ccc Gly Pro 180	tgt gat Cys Asp	tat cac Tyr His 185	cag Gln	gaa Glu	gtt Val	tct Ser	ctt Leu 190	agg Arg	gtc Val	cac His	875
ctg atg g Leu Met (195	gaa tac Glu Tyr	Ile Thr	aaa caa Lys Gln 200	ggt Gly	ttc, Phe	acg Thr	atc Ile 205	cgc Arg	aac Asn	acc Thr	cgg Arg	923
gtg cat of Val His I 210	cac atg His Met	agt gag Ser Glu 215	cgg gcc Arg Ala	aat Asn	Glu	aac Asn 220	aca Thr	gtg Val	gag Glu	cac His	aac Asn 225	971
tgg act f	Phe Cys	agg cta Arg Leu 230	gcc cgg Ala Arg	aag Lys	aca Thr 235	gac Asp	gac Asp	t ga	atct(ccga		1018
cctgccac aatcacag gaccagaa gtatgcat cattatgg ctgataaa agagtact aaccaata cttattaa ggaaccaa atacaaaa agtgtact	tg tgaga gg aagtt gt gcctg ta tataa at ggtcc ca tgatg aa taagt gt actgc at tccct gt ctacc	tattt tt ttgtg ct ttcag ag tctac cc ctaac tc ccttt ga agtat tg ttttt ac ttagcc at	tttctt ttggcag tctccag ttaacag aactaga gaaaaat taatatt agttatg ggaaatg	t aaa a ctc a gct a ggc a aaa a caa a ctc a ctc a ctc	tagt cttc tttc taaa acat gaaa ctgt	tgt atg ttt tta aat cat act ttc igaa	atti tttt ataa ttaa gtaa gtta tttt atat ctg	catti cgtto aaaag agaal agagto ccaal ctato ttato	ga ; ga ; gat ; gac ;	aggea ttcc gtctc aaaa aagaa ctag ttta tataa tgaa ataa	agtgag ccctga gaaaat tgattt ataagc tttcca aaagta aatcaa ttctga	1078 1138 1198 1258 1318 1378 1438 1498 1558 1618 1678 1738

<211> 1542

<212> DNA

<213> H. sapiens

<220>

<221> CDS <222> (88)...(799) <223> K+Hnov28, splice 4

<pre><400> 24 cgggcatctc ccggcccggc cgcagcagcc gccgccgccg cgcatttccc tgaaacctgg gctcttgaag acgcatcact ggagcag atg gat aat gga gac tgg ggc tat atg</pre>	114
atg act gac cca gtc aca tta aat gta ggt gga cac ttg tat aca acg Met Thr Asp Pro Val Thr Leu Asn Val Gly Gly His Leu Tyr Thr Thr 10 15 20 25	162
tct ctc acc aca ttg acg cgt tac ccg gat tcc atg ctt gga gct atg Ser Leu Thr Thr Leu Thr Arg Tyr Pro Asp Ser Met Leu Gly Ala Met 30 35 40	210
ttt ggg ggg gac ttc ccc aca gct cga gac cct caa ggc aat tac ttt Phe Gly Gly Asp Phe Pro Thr Ala Arg Asp Pro Gln Gly Asn Tyr Phe 45 50 55	258
att gat cga gat gga cct ctt ttc cga tat gtc ctc aac ttc tta aga Ile Asp Arg Asp Gly Pro Leu Phe Arg Tyr Val Leu Asn Phe Leu Arg 60 65 70	306
act tca gaa ttg acc tta ccg ttg gat ttt aag gaa ttt gat ctg ctt Thr Ser Glu Leu Thr Leu Pro Leu Asp Phe Lys Glu Phe Asp Leu Leu 75 80 85	354
cgg aaa gaa gca gat ttt tac cag att gag ccc ttg att cag tgt ctc Arg Lys Glu Ala Asp Phe Tyr Gln Ile Glu Pro Leu Ile Gln Cys Leu 90 95 100 105	402
aat gat cct aag cct ttg tat ccc atg gat act ttt gaa gaa gtt gtg Asn Asp Pro Lys Pro Leu Tyr Pro Met Asp Thr Phe Glu Glu Val Val 110 115 120	450
gag ctg tct agt act cgg aag ctt tct aag tac tcc aac cca gtg gct Glu Leu Ser Ser Thr Arg Lys Leu Ser Lys Tyr Ser Asn Pro Val Ala 125 130 135	498
gtc atc ata acg caa cta acc atc acc act aag gtc cat tcc tta cta Val Ile Ile Thr Gln Leu Thr Ile Thr Thr Lys Val His Ser Leu Leu 140 145 150	546
gaa ggc atc tca aat tat ttt acc aag tgg aat aag cac atg atg gac Glu Gly Ile Ser Asn Tyr Phe Thr Lys Trp Asn Lys His Met Met Asp 155 160 165	.594
acc aga gac tgc cag gtt tcc ttt act ttt gga ccc tgt gat tat cac Thr Arg Asp Cys Gln Val Ser Phe Thr Phe Gly Pro Cys Asp Tyr His 170 175 180 185	642
cag gaa gtt tct ctt agg gtc cac ctg atg gaa tac att aca aaa caa Gln Glu Val Ser Leu Arg Val His Leu Met Glu Tyr Ile Thr Lys Gln 190 195 200	690
ggt ttc acg atc cgc aac acc cgg gtg cat cac atg agt gag cgg gcc Gly Phe Thr Ile Arg Asn Thr Arg Val His His Met Ser Glu Arg Ala 205 210 215	738

	hr Val Glu His A		Cys Arg Leu Ala Arg 230	786
aag aca gac g	ac t gatctccgac	cctgccacag gtt	cctggaa agactctcca	839
Lys Thr Asp A	sp			
235			• •	
		,		
ggaaatggaa ga	tactgatt tttttt	tta aatcacagtg	tgagatattt tttttcttt	
aaatagttgt at	ttatttga aggcagt	gag gaccagaagg	aagttttgtg ctttggcag	ga 959
ctcctccatg tt	ttgtteec tteecec	tga gtatgcatgt	gcctgttcag agtctccag	ga 1019
tacctttttt at	aaaaagaa gtctgaa	aat cattatggta	tataatctac ccttaacag	ga 1079
			ggtccctaac tcaactaga	
			tgatgccttt gagaaaaat	
			taagtagtat tgtaatatt	
			actgettttt acagttate	
			atctgtagcc atggaaatg	
			tecetgtggt agaaaacti	
	_	_	ctaccagaaa aaaaaaaca	
~	atgaaata tgaaaaa		-	1542
	_			

<210> 25 <211> 237 <212> PRT <213> H. sapiens

<400> 25

Met Asp Asn Gly Asp Trp Gly Tyr Met Met Thr Asp Pro Val Thr Leu 10 Asn Val Gly Gly His Leu Tyr Thr Thr Ser Leu Thr Thr Leu Thr Arg 25 Tyr Pro Asp Ser Met Leu Gly Ala Met Phe Gly Gly Asp Phe Pro Thr 40 Ala Arg Asp Pro Gln Gly Asn Tyr Phe Ile Asp Arg Asp Gly Pro Leu Phe Arg Tyr Val Leu Asn Phe Leu Arg Thr Ser Glu Leu Thr Leu Pro Leu Asp Phe Lys Glu Phe Asp Leu Leu Arg Lys Glu Ala Asp Phe Tyr 90 Gln Ile Glu Pro Leu Ile Gln Cys Leu Asn Asp Pro Lys Pro Leu Tyr 105 Pro Met Asp Thr Phe Glu Glu Val Val Glu Leu Ser Ser Thr Arg Lys 120 115 Leu Ser Lys Tyr Ser Asn Pro Val Ala Val Ile Ile Thr Gln Leu Thr 135 Ile Thr Thr Lys Val His Ser Leu Leu Glu Gly Ile Ser Asn Tyr Phe 150 155 Thr Lys Trp Asn Lys His Met Met Asp Thr Arg Asp Cys Gln Val Ser 165 170 Phe Thr Phe Gly Pro Cys Asp Tyr His Gln Glu Val Ser Leu Arg Val 180 185 His Leu Met Glu Tyr Ile Thr Lys Gln Gly Phe Thr Ile Arg Asn Thr 200 Arg Val His His Met Ser Glu Arg Ala Asn Glu Asn Thr Val Glu His 215 Asn Trp Thr Phe Cys Arg Leu Ala Arg Lys Thr Asp Asp 230

<210> 26 <211> 3204

	"

<212> DNA <213> H. sapiens <220> <221> CDS <222> (182)...(1349) <223> K+Hnov42 <400> 26

agt aaa ctc ggc ata aaa gcc acc agt gtg tat aat ggg aaa ggt gga 325 Ser Lys Leu Gly Ile Lys Ala Thr Ser Val Tyr Asn Gly Lys Gly Gly 35 40 45

ctg att gat gat att gct ttg atc agg gat gat gat gtt ttg ttt gtt
Leu Ile Asp Asp Ile Ala Leu Ile Arg Asp Asp Val Leu Phe Val
50 60

tgt gaa gga gag cca ttt att gat cct cag aca gat tct aag cct cct

Cys Glu Gly Glu Pro Phe Ile Asp Pro Gln Thr Asp Ser Lys Pro Pro

70 75 80

gag gga ttg tta gga ttc cac aca gac tgg ctg aca tta aat gtt gga
Glu Gly Leu Leu Gly Phe His Thr Asp Trp Leu Thr Leu Asn Val Gly
85
90
95

ggg cgg tac ttt aca act aca cgg agc act tta gtg aat aaa gaa cct
Gly Arg Tyr Phe Thr Thr Arg Ser Thr Leu Val Asn Lys Glu Pro
100 105 110

gac agt atg ctg gcc cac atg ttt aag gac aaa ggt gtc tgg gga aat
Asp Ser Met Leu Ala His Met Phe Lys Asp Lys Gly Val Trp Gly Asn
115
120
125

aag caa gat cat aga gga gct ttc tta att gac cga agt cct gag tac 613 Lys Gln Asp His Arg Gly Ala Phe Leu Ile Asp Arg Ser Pro Glu Tyr 130 135 140

ttc gaa ccc att ttg aac tac ttg cgt cat gga cag ctc att gta aat
Phe Glu Pro Ile Leu Asn Tyr Leu Arg His Gly Gln Leu Ile Val Asn
145 150 155 160

gat ggc att aat tta ttg ggt gtg tta gaa gaa gca aga ttt ttt ggt
Asp Gly Ile Asn Leu Leu Gly Val Leu Glu Glu Ala Arg Phe Phe Gly
165 170 175

att gac tca ttg att gaa cac cta gaa gtg gca ata aag aat tct caa 757 Ile Asp Ser Leu Ile Glu His Leu Glu Val Ala Ile Lys Asn Ser Gln 180 185 190

cca ccg gag gat cat tca cca ata tcc cga aag gaa ttt gtc cga ttt 805

Pro	Pro	Glu 195	Asp	His	Ser	Pro	Ile 200	Ser	Arg	Lys	Glu	Phe 205	Val	Arg	Phe		
ttg Leu	cta Leu 210	gca Ala	act Thr	cca Pro	acc Thr	aag Lys 215	tca Ser	gaa Glu	ctg Leu	cga Arg	tgc Cys 220	cag Gln	ggt Gly	ttg Leu	aac Asn		853
											cga Arg						901
											cat His						949
											tca Ser						997
											aat Asn					:	1045
											ggt Gly 300					;	1093
											gaa Glu						1141
											aat Asn					:	1189
	-			_		-		_	_		act Thr	_				=	L237
											aac Asn					3	L285
aac Asn	gtg Val 370	aag Lys	gga Gly	gct Ala	ata Ile	ttt Phe 375	gaa Glu	gag Glu	atg Met	ctg Leu	aca Thr 380	cca Pro	cta Leu	cac His	atg Met	1	L333
tca Ser 385					t ga	gaat	ttta	999	gctg	gag	gaag	atgt	aa a	agat	gaaaa	a 3	L 3 89
aagg aaaa gtag acca ggtt attg aagg accg	aaat aact ggaa ggca tgag aatt ttgt tatg	tt t ga c ac t ta g ac t tc a tc a	aaaa tttt agat tatc catt agat ggtt atgg	aaaa ttto attg tatt tgag gcag tata tgag	a ca c at c tg a ta g at a at a at	ttta attc cctt tttg ttta ggat agct agac	gagg tgat ttga cttt attt attt ttag	att ttt atg taa atg aaa tga taa	atgo taac gggt atag gaaa ttgt tgcc gact	aga agg gca gca taa tcc	tttt aaag gggg tgat caac aact cctc	gagt cact ttta gtgg atat ttat ttta ggtt	gg to a a ga a a a to a to a to a to a t	gcat ttaa ggtt tacc atta acct tttt	actgt aaggg tagat ttatt atctt taggaa gtcac ataat gattg		1449 1569 1629 1689 1749 1809 1869 1929
5-00			~55~	~~3~		2-~3						ے وے۔		-a-L	3~~~	,	


```
agacagagtg gaaagaaaga catcattgta catcactgtc attccaaagg tacagtgtaa
                                                                     2049
ctctggatgg aggaataact tacctatcac tacaacactt acaaatgaga atttctcaga
                                                                     2109
atttcattct aggcaagttc cactcaacac cagatcaagc aattctatct atttacacta
                                                                     2169
ttagectagt ttteteatae agteateaea ageataggaa gataetteaa aaceaaaaaa
                                                                     2229
accaaggtgc atcattaata ttcatttaat tcaaatacca aatagtttac atagggccag
                                                                     2289
cttagaaata gatactaaat ccagagctac tgcaatcaaa gcttatatga gtgaatatgg
                                                                     2349
tagagttgcc tgctaaaagg caatgtaata taattgcagc tagaacccta cagtggggaa
                                                                     2409
tgaggaattt taaacacaca tttgattaca gccaccaaaa aaatagacgt aaaaataaag
gcatttggct ggtccaagat gtaattttca atcagtcagc acctgtgatt cttttactta
tttttttgtg gtttttttt tttaaacaaa ttttagccca attttcttga gtcattctct
ctctgcagca gcagaggaag ggcctgtacc tccctaccaa tgacttggtg tccttatttt
ctaccccaag agcagggata ttagctgtgt ccaaatgggt tctgaattct acagactcat
caacatgagg caaggaatca ttgaaaacca cctgtgtctc ctttgggaga atgacatatc
tttagtattt acgtagctta ttcttctata tctacatatg caaagctttc cttaacagta
                                                                    2829
aagggtacat atgcatagtg ggaggagatc agacctttac aagtgaagga aagcaacttc
agaaatgaat tattttcttt gctttattat ttttaccaag acagagaagt attgtattga
                                                                    2949
gagataatct attttcataa tcaatatgtg cctaaattat atttaaatca tttcactctg
                                                                    3009
tactatattt tcaggaatta cagaatgtgg tattcattca cttaaaggta cctctgtaga
                                                                    3069
aataacctaa aactgcagaa ggatctgaaa gatctaaaca tggtgtgctt agaaactgca
                                                                    3129
gattttagat ctaatgtata ctgcattaat aaatgatata aagtgtttgt tgaaaaaaaa
                                                                    3189
aaaaaaaaa aaaaa
                                                                    3204
```

<211> 389

<212> PRT

<213> H. sapiens

<400> 27

Met Arg Arg Val Thr Leu Phe Leu Asn Gly Ser Pro Lys Asn Gly Lys_ 10 Val Val Ala Val Tyr Gly Thr Leu Ser Asp Leu Leu Ser Val Ala Ser 25 Ser Lys Leu Gly Ile Lys Ala Thr Ser Val Tyr Asn Gly Lys Gly Gly Leu Ile Asp Asp Ile Ala Leu Ile Arg Asp Asp Val Leu Phe Val 60 Cys Glu Gly Glu Pro Phe Ile Asp Pro Gln Thr Asp Ser Lys Pro Pro 70 Glu Gly Leu Leu Gly Phe His Thr Asp Trp Leu Thr Leu Asn Val Gly 90 Gly Arg Tyr Phe Thr Thr Arg Ser Thr Leu Val Asn Lys Glu Pro 105 Asp Ser Met Leu Ala His Met Phe Lys Asp Lys Gly Val Trp Gly Asn 120 Lys Gln Asp His Arg Gly Ala Phe Leu Ile Asp Arg Ser Pro Glu Tyr 135 140 Phe Glu Pro Ile Leu Asn Tyr Leu Arg His Gly Gln Leu Ile Val Asn 150 155 Asp Gly Ile Asn Leu Leu Gly Val Leu Glu Glu Ala Arg Phe Phe Gly 165 170 Ile Asp Ser Leu Ile Glu His Leu Glu Val Ala Ile Lys Asn Ser Gln 185 Pro Pro Glu Asp His Ser Pro Ile Ser Arg Lys Glu Phe Val Arg Phe 200 Leu Leu Ala Thr Pro Thr Lys Ser Glu Leu Arg Cys Gln Gly Leu Asn 215 220 Phe Ser Gly Ala Asp Leu Ser Arg Leu Asp Leu Arg Tyr Ile Asn Phe 230 235 Lys Met Ala Asn Leu Ser Arg Cys Asn Leu Ala His Ala Asn Leu Cys 250 Cys Ala Asn Leu Glu Arg Ala Asp Leu Ser Gly Ser Val Leu Asp Cys

			260					265					270			
Ala	Asn	Leu 275	Gln	Gly	Val	Lys	Met 280	Leu	Cys	Ser	Asn	Ala 285	Glu	Gly	Ala	
Ser	Leu 290	Lys	Leu	Cys	Asn	Phe 295	Glu	Asp	Pro	Ser	Gly 300	Leu	Lys	Ala	Asn	
Leu	Glu	Gly	Ala	Asn	Leu	Lys	Gly	Val	Asp	Met	Glu	Gly	Ser	Gln	Met	
305		_			310	<u>-</u>			_	315			•		320	
Thr	Gly	Ile	Asn	Leu 325	Arg	Val	Ala	Thr	Leu 330		Asn	Ala	Lys	Leu 335	Lys	
Asn	Cys	Asn	Leu 340	Arg	Gly	Ala	Thr	Leu 345	Ala	Gly	Thr	Asp	Leu 350	Glu	Asn	
Cys	Asp	Leu 355	Ser	Gly	Cys	Asp	Leu 360	Gln	Glu	Ala	Asn	Leu 365	Arg	Gly	Ser	
Asn	Val 370	Lys	Gly	Ala	Ile	Phe 375	Glu	Glu	Met	Leu	Thr 380	Pro	Leu	His	Met	
Ser 385	Gln	Ser	Val	Arg												
		210>		_										-		
		212>	1246	•												
			H. s	sapie	ens											
		220> 221>	സഭ													
			(432	2)	(109	92)					,					
			K+Hr	-			= 1									
	-4	100>	28					٠								
caga				rate	et to	ettaa	atcat	cta	gaag	etga	cca	etec	rcc t	ttac	caggag	60
															ggggc	120
															cgtgg	180
															agccat	240
															tcagg	300
															agacag	360
acta	acagt	ga t	ggag	acco	ca ct	agat	gtgo	aca	agag	gct	gcca	atcca	agt g	gctgg	gagagg	420
acco	age	gt	ato	cto	999	ttt	gc	ato	atg	. gg	tto	t tca	gto	cta	atg	470
•	, -		Met	Lei	Gly	Phe	Ala	a Met	Met	Gly	y Phe	e Sei	va.	l Le	ı Met	
			1				5					10				
														agc		518
Phe	Phe	Leu	Leu	Gly	Thr	Thr	Ile	Leu	Lys	Pro	Phe	Met	Leu	Ser	Ile	
	15					20					25					
cag	aga	gaa	gaa	tcg	acc	tgc	act	gcc	atc	cac	aca	gat	atc	atg	gac -	566
Gln	Arg	Glu	Glu	Ser	Thr	Cys	Thr	Ala	Ile	His	Thr	Asp	Ile	Met	Asp	
30					35					40	*				45	
gac	tgg	ctg	gac	tgt	gcc	ttc	acc	tgt	ggt	gtg	cac	tgc	cac	ggt	cag	614
														Gly		
•	•		-	50		•		•	55					60		
aaa	aaq	tac	ccq	tat	ctt	cag	gtg	ttt	gtg	aac	ctc	agc	cat	cca	ggt	662
Glv	Lvs	Tvr	Pro	Cvs	Leu	Gln	Val	Phe	Val	Asn	Leu	Ser	His	Pro	Gly	
3	- y -	- 4 -	65	4 -				70					75		-	
														aat		710
Gln	Lys		Leu	Leu	His	Tyr		Glu	Glu	Ala	Val		Ile	Asn	Pro	
		80					85					90				
aac	tac	ttt	tac	aca	cct	aag	tac	cac	caa	gat	aga	aat	gat	tta	ctc	758

Lys Cys Phe Tyr Thr Pro Lys Cys His Gln Asp Arg Asn Asp Leu Leu 95 100 105	
aac agt gct ctg gac ata aaa gaa ttc ttc gat cac aaa aat gga act	
110 115 120 125	806
Pro Phe Ser Cys Phe Tyr Ser Pro Ala Ser Gln Ser Glu Asp Val Ile	854
140	
ctt ata aaa aag tat gac caa atg gct atc ttc cac tgt tta ttt tgg Leu Ile Lys Lys Tyr Asp Gln Met Ala Ile Phe His Cys Leu Phe Trp 145 150 155	902
cct tca ctg act ctg cta ggt ggt gcc ctg att gtt ggc atg gtg aga Pro Ser Leu Thr Leu Leu Gly Gly Ala Leu Ile Val Gly Met Val Arg 160 165 170	950
tta aca caa cac ctg tcg tta ata ta	
tta aca caa cac ctg tcc tta ctg tgt gaa aaa tat agc act gta gtc Leu Thr Gln His Leu Ser Leu Leu Cys Glu Lys Tyr Ser Thr Val Val 175 180 185	998
aga gat gag gta ggt gga aaa gta cct tat ata gaa cag cat cag ttc	
190 195 200 205	1046
aaa ctg tgc att atg agg agg agc aaa gga aga gca gag aaa tct t Lys Leu Cys Ile Met Arg Arg Ser Lya Clarks	
210 215 Arg Ala Glu Lys Ser 220	1092
aagacggtgg ccaaattaaa gtgctggcct tcagatgtct gtgatttctg caactgagga	
cctaattatg cctgtctgca aactaataat gtaaaaggta ataattaaag tatcatattt tcatgtggga aaaaaaaaaa	1152 1212
<210> 29	1246
<211> 1111	
<212> DNA	
<213> H. sapiens	
<220>	
<221> CDS	
<222> (297) (957)	
<223> K+Hnov44, splice 2	
<400> 29	
aaaaaccatg acttgtggca ccagaagaga gccggggact tcaatccaag aaagcagaga	60
agataccaaa gaaggaccga gaagggcaaa gcaaagaaga ctgtaccatg tcctaagctg	60 120
tgccaatgac agcettect gcctagagag accugageg aggggetett ttetetecae	180
acccactaga tgtgcacaag aggctgccat ccagtgctgg agaggaccga gccgtg atg	240
Met	299
1	
ctg ggg ttt gcc atg atg ggc ttc tca gtc cta atg ttc ttc ttg ctc Leu Gly Phe Ala Met Met Gly Phe Ser Val Leu Met Phe Phe Leu Leu 5 10 15	347
gga aca acc att cta aag cct ttt atg ctc agc att cag aga gaa gaa Gly Thr Thr Ile Leu Lys Pro Phe Met Leu Ser Ile Gln Arg Glu Glu 20 25 30	395

	(

		_		_		cac His 40		_		_	_	_		_	•	443
						gtg Val										491
_		-				aac Asn		-				_		_		539
				-		gct Ala	-	_				_	_			587
		_	_			gat Asp	_		_	_			_	-	-	635
						gat Asp 120										683
		_		_	_	caa Gln		_	_	_						731
	-		-	_		ttc Phe		_			_				act Thr	779
						att Ile										827
						aaa Lys										875
						ata Ile 200										923
						aga Arg					t aa	agaco	ggtgg	a		967
ccts	gtct	gca a	acta	aataa		aaaa									ittatg gtggga	

<211> 220

<212> PRT

<213> H. sapiens

10

20

Leu	Gly	Thr	Thr	Ile	Leu	Lys	Pro	Phe	Met	Leu	Ser	· Ile	Gln	Ara	Glu		
			20					25					20				
		33					40			Ile		AE					
	50					55				His	60						
			•		70					His 75					~ ~		
				03					90	Ilė				QE	Phe	. *	
			100					105		Asp			710	Ser			
		T T 2					120			Asn		125	Pro				
	100					135				Asp	7 4 0	Ile					
Lys 145	Tyr	Asp	Gln	Met	Ala	Ile	Phe	His	Cys	Leu	Phe	Trp	Pro	Ser	Leu		
					TOO					155 Met					7 60		
				T02					770								
			T 0 0					185		Thr			100				
Vai	GLY	195	гàг	vaı	Pro	Tyr	Ile 200	Glu	Gln	His	Gln	Phe 205	Lys	Leu	Cys		
Ile	Met 210	Arg	Arg	Ser	Lys	Gly 215	Arg	Ala	Glu	Lys	Ser 220	205					
	<2	10>	31														
		11>															
	<2	12> :	DNA	-													
	<2	13>	Arti	fici	al S	eque	nce										
	<2	20>															
	<2	23> (cons	ensu	s se	quen	ces										
	<40	00> :	31														
tatco				acaa	a gc												22
	<21	LO> 3	32														22
		11> 2															
		l2> I															
	<21	L3> <i>P</i>	Artif	icia	al Se	quer	ıce										
	<40)Ó> 3	2														
tgcat	aact	g go	tggg	tgta	a												20
	<21	.0> 3	3														*
		1> 2															
		2> D															
	<21	.3> A	rtif	icia	l Se	quen	ce										
		0> 3	_														
tgaca	tcac	t gg	atga	actt	ga												22
		0 > 3															
		1> 2	_														
		2> Di 3> A:		icia	l Se	guen.	ce										
						. 											
tgcctg		0> 34 a qti	_	acat													
		5-1	546														20

	<210> 35					
	<211> 22					
	<212> DNA					
	<213> Artificial	Sequence				
	<400> 35					
tgaca	tcact ggatgaactt	ga			•	 22
	<210> 36					
	<211> 20					
	<212> DNA					
	<213> Artificial	Sequence				
	<400> 36					
tgcct	gcaaa gtttgaacat			•		20
	<210> 37					
	<211> 20					
	<212> DNA					
	<213> Artificial	Sequence				
	<400> 37					
acctg	gtggt atggaagcat					20
	<210> 38					
	<211> 19					
	<212> DNA					
	<213> Artificial	Sequence	÷ .			*
	<400> 38					
tttct	cetgg cetetacee					19
	<210> 39					
	<211> 19					
	<212> DNA	_				
	<213> Artificial	Sequence				
	<400> 39					
tccct	cttgg gtgaccttc					19
	<210> 40					
	<211> 20					
	<212> DNA					
	<213> Artificial	sequence				
	<400> 40	•				~ ~
atctti	gtca gccaccagct					20
	<210> 41					
	<211> 24					
	<212> DNA	_				
	<213> Artificial	Sequence				
	<400> 41					
aggtgt	getg ceatetgetg	ttcg				24
	<210> 42					
	<211> 24					
	<212> DNA	_				
	<213> Artificial	Sequence				

<400> 42	
agcctatcct ctctgagagt cagg	
	24
<210> 43	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<400> 43	
aagcagagta ctcatgatgc c	
	21
<210> 44	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
•	
<400> 44	
tctggtagac agtacagtgg	
	20
<210> 45	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<400> 45	
catttggctg gtccaagatg	20
.010	20
<210> 46	
<211> 20 <212> DNA	
<213> Artificial Sequence	
<400> 46	
agtcattggt agggaggtac	
- Secretary aggregation of the secretary and the	20
<210> 47	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
poducine	
<400> 47	
catgetteta cagtecagee	
	20
<210> 48	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<u>-</u>	•
<400> 48	
ggtcctcagt tgcagaaatc	20
	. 20
<210> 49	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<400> 49	
tggtgggctg tggtgaccat gacaactgtg ggctatgggg acatg	45
	43
<210> 50	

		4

	<211>	45	
	<212>		
		Artificial Sequence	
	<400>	50	
		tggtcaccat gaccactgtg ggctacgggg acatg	45
-55-55			_
	<210>	51	
		45	
	<212>		
		Artificial Sequence	
,	~213/	Attitude bequence	
	<400>	51	
		tegtetecat gacaactgta ggetatggag acatg	45
-99-99	gcag t	cegececae gacaacegea ggccaeggag acaeg	
	<210>	52	
	<211>		
	<211>		
•	<213>	Artificial Sequence	
	-400-	EQ.	
	<400>		4 E
rggrgg	gcag t	tggtaaccat gacaacagtg ggttacggcg atatg	45
	010	F2	
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	400		
	<400>		. 4 =
tggtgg	gctg t	eggtcaccat gacgaccctg ggctatggag acatg	45
	<210>		
	<211>		
	<212>		
•	<213>	Artificial Sequence	
	400		
	<400>		45
tggtgg	gggg t	eggtcacagt caccaccatc ggctatgggg acaag	40
	<210>		
	<211>		
	<212>		
•	<213>	Artificial Sequence	
	<400>		4 =
tggtgg	gcag t	eggtcaccat gaccacggtt ggctatgggg acatg	45
	<210>		
	<211>		
	<212>		
•	<213>	Artificial Sequence	
	<400>		
tggtgg	gccg t	ggtcaccat gacgaccctg ggctatggag acatg	45
	<210>		
•	<211>	45	
	<212>		
•	<213>	Artificial Sequence	
	<400>	57	

	PCT/US99/03

tggtgggctg tggtcaccat gacgacactg ggctacggag acatg		45
<210> 58	•	
<211> 45		
<212> DNA		
<213> Artificial Sequence		
bequence		
<400> 58		
tggtgggctg tggtgaccat gacaactgtg ggctatgggg acatg		4 =
		45
<210> 59		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<400> 59		
ttcctgttct ccattgagac cgaaacaacc attgggtatg gcttccg		47
<210> 60		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<400> 60		
tttttattct caatagagac agaaaccacc attggttatg gctaccg		47
<210> 61		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
arcificial sequence		
<400> 61		
tteetettet ecattgagae ecagacaace ataggetatg gttteag		4.55
		47
<210> 62		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<400> 62		
tteetgttet eggtggagae geagaegaee ateggetatg ggtteeg		47
<210> 63		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
	•	
<400> 63		
tectettet ecettgaate ecaaaceace attggetatg getteeg		47
<210> 64		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
and a sequence		
<400> 64		
ttetetttt eeetggaate eeagacaace attggetatg gagteeg		4.7
		47
<210> 65		
<211> 47		
<212> DNA		

	<213>	Artificial Sequence	
	.400-		
ttcc	<400>	ccattgaggt ccaagtgact attggctttg gggggcg	4
		ccattgaggt todagtgatt attggttting gggggg	-
	<210>	66	
	<211>	47	
	<212>	DNA	
	<213>	Artificial Sequence	
	<400>	66 ccattgaagt tcaagttacc attgggtttg gagggag	4
	iccitict (ccarryaage reaagerace arryggerry gagggag	-
	<210>	67	
	<211>	50	
	<212>	DNA	
	<213>	Artificial Sequence	
	<400>		5
gcgc	etetaet i	teacetteag cageeteace agtgtggget teggeaacgt	٠,
	<210>	68	
	<211>		
	<212>	PRT	
	<213>	Artificial Sequence	
	<220>		
	<223>	consensus sequences	
	<400>	68	
Tro		Val Val Ser Met Thr Thr Val Gly Tyr Gly Asp Met	
1		5 10 15	
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<400>	69	
Trp		Val Val Thr Met Thr Thr Leu Gly Tyr Gly Asp Met	
1	_	5 10 15	
	<210>		
	<211>		
	<212>	Artificial Sequence	
•	(213)	Arcilicial bequence	
	<400>	70	
Trp		Val Val Thr Val Thr Thr Ile Gly Tyr Gly Asp Lys	
1		5 10 15	
	<210>		
	<211>		
	<212>		
	<213>	Artificial Sequence	
	<400>	71	
Tro		Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp Met	
1		5 10 15	


```
<211> 15
        <212> PRT
        <213> Artificial Sequence
        <400> 72
  Phe Leu Phe Ser Ile Glu Val Gln Val Thr Ile Gly Phe Gly Gly
       <210> 73
        <211> 15
        <212> PRT
        <213> Artificial Sequence
        <400> 73
 Phe Leu Phe Ser Leu Glu Ser Gln Thr Thr Ile Gly Tyr Gly Val
  1
       <210> 74
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <400> 74
 Phe Leu Phe Ser Ile Glu Thr Glu Thr Thr Ile Gly Tyr Gly Tyr
                 5
       <210> 75
       <211> 15
       <212> PRT
       <213> Artificial Sequence
       <400> 75
 Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe
                                     10
       <210> 76
       <211> 15
       <212> PRT
       <213> Artificial Sequence
      <400> 76
Phe Leu Phe Ser Val Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe
      <210> 77
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <400> 77
Phe Leu Phe Ser Leu Glu Ser Gln Thr Thr Ile Gly Tyr Gly Phe
 1
      <210> 78
      <211> 15
      <212> PRT
      <213> Artificial Sequence
      <400> 78
Phe Leu Phe Ser Ile Glu Thr Glu Thr Thr Ile Gly Tyr Gly Phe
                                    10
```


	<2	210>	79													
	<2	211>	16													
	<2	212>	PRT													
	<2	213>	Arti	fici	ial S	Seque	ence									
	< 4	L00>	79													
Ala 1	Leu			Thr 5	Phe	Ser	Ser	Leu	Thr 10	Ser	Val	Gly	Phe	Gly 15	Asn	
_																
	<2	210>	80													
		211>		L												
		212>														
		213>		enie	ne											
				Jupic									•			
		220>	ana													
		221>			/= 0.0											
	<2	222>	(110))	(128	35)										
		100>														
-	_	_	_				_			_		_			ggcggg	60
ggc	cacgt	ca ç	geggg	gcca	ac co	caggg	geteg	g cgg	gggt	ccg	gtgg	gtg			gg agg	118
															rg Arg	
													1	Ĺ		
	gcg															166
Gly	Ala	Leu	Leu	Ala	Gly	Ala	Leu	Ala	Ala	Tyr		Ala	Tyr	Leu	Val	
	5					10					15					
												*1				
	ggc															214
Leu	Gly	Ala	Leu	Leu	Val	Ala	Arg	Leu	Glu	Gly	Pro	His	Glu	Ala	Arg	
20					25					30					35	
ctc	cga	gcc	gag	ctg	gag	acg	ctg	cgg	gcg	cag	ctg	ctt	cag	cgc	agc	262
	Arg															
	_			40				_	45					50		
cca	tgt	ata	qct	qcc	ccc	qcc	ctg	gac	gcc	ttc	gtg	gag	cga	gtg	ctg	310
	Cys															
	475		55					60					65			
								-								
aca	gcc	aaa	caa	cta	aaa	caa	atc	ata	ctt	act	aac	act	t.ca	aaa	tee	358
	Ala															
ALG	AIG	70	AT 9	Deu	CLY	9	75	***				80		0_1		
		70					,,					00				
~~~	aac		+ ca	asc.	CCC	acc	taa	asc	ttc	acc	tot	act	ctc	ttc	tte	406
212	Asn	712	Com	gac Nan	Dro	אום	TY	3co	Dhe	712	202	λla	Len	Dhe	Phe	
ATA		ALA	ser	Asp	PIO		тър	ASP	Pile	ALA		ATA	пеп	FILE	FIIC	
	85					90					95					
													~~~		ata	454
	agc															434
	Ser	Thr	Leu	He		Thr	Val	GIĀ	Tyr		Tyr	Tnr	Thr	PLO		
100					105					110					115	
															_	
act	gat	gcg	ggc	aag	gcc	ttc	tcc	atc	gcc	ttt	gcg	ctc	ctg	ggc	gtg	502
Thr	Asp	Ala	Gly	Lys	Ala	Phe	Ser	Ile	Ala	Phe	Ala	Leu	Leu		Val	
-				120					125					130		
	acc															550
Pro	Thr	Thr	Met	Leu	Leu	Leu	Thr	Ala	Ser	Ala	Gln	Arg	Leu	Ser	Leu	
			135					140					145			

	150		Jo neu 1	.55	Leu Se	r Met Arg 160		Trp
16	5	J	170	rp mrs	reg val	l Ala Leu 175	ı ttg ggg ı Leu Gly	Val
180		18	15	al PIO	190	l Ile Phe		Leu 195
		200	e neu A	sp Ala	Pne Tyr 205	Phe Cys	ttt atc Phe Ile 210	Ser
	21	5	u oly A	220	val Pro	Gly Glu	gcc cct q Ala Pro q 225	Gly
••	230	, 20	23	5 var	ren val	Thr Val 240	tac ctc t Tyr Leu I	Phe
245			250	u vai	Leu Gin	Thr Phe 255	cgc cac g Arg His V	/al
260		265	i iii Gi	u Leu 1	270	Leu Pro		ys 75
		280	wah GI	u Asp A	85	Val Asp :	atc ctg g Ile Leu G 290	ly
	295	JOE MIS	GIN GIN	300	er Ala	Ser Ser F	cac acc ga His Thr As 305	ap
-	310	9	ne Dec	315	in Pro 1	Leu Pro G 3	ggc ttg gg Sly Leu Gl 20	ly
	ggc ctg Gly Leu 325	gga ctg Gly Leu	agg ggt Arg Gly 330	Pro G.	gc gac c Ly Asp C	cag agc t Sln Ser T 335	gg ctg ta rp Leu Ty	nc 1126 Pr
agg aat q Arg Asn 1 340	gtc cac Val His	gag cac Glu His	agc agg Ser Arg 345	tga to * Se	et tga g er * G	ly Leu A	cc gtc ca la Val Hi 50	c 1174 s
•	Ser Phe	gtt tcc Val Ser	cag cat Gln His 360	ctg go Leu Al	t ggg a a Gly M	et * A	gg gca gca rg Ala Ala	a 1222 a
ctc cct g Leu Pro V	tc ccc . Val Pro 1	atg tcc Met Ser	egg gct Arg Ala 375	cca ct Pro Le	g ggc ao u Gly Ti	cc aac at hr Asn Il 380	a acc tto le Thr Lei	g 1270 1
ttc tct g	tc ctt 1	tet etea	cctct t	tacact	gtg teta	ctctggc t	ctctggcat	1325

Phe Ser Val Leu Ser 385

tetegetgee tetgtette cetettgetg tetetgttte teattetett teatgtteeg 1385 totgtgtoto toaattaaco actogtoaac tgotgattot actgggotgt gggotoagac 1445 ctcatttcag gcaccagatt ggtcgctaca ccctggacaa gtgactgccc gtctctgagc 1505 cttgatttcc tcagctgcca aatgggaaga atagaagaat ttgcccctaa acccctcctg 1565 tgtgctggcc ctgtgctaga cagtgctgga gacatagttg ggggtggaga actgccctta 1625 tggagcttgc agtccagtga ggtggacaga cctgtcccca gacagtgatg gcccaaaatg 1685 gtcaggactt taatggagga ggtgaggtgt tgaaagcaca ggcagagtgg tcagggctga 1745 agteggagaa geatagggae taggeecaat eeageetgga aagteaggga ggaetteeta 1805 gaggaaggga catcgaacta agacctgaac tatgagaaat aggcaggaag aagttgtacc 1865 tgactcattt ttctcaggtg tctccaggga gcaggaccca tggagggacc cctqqtqtaq 1925 gcctgggcga tagactcttc ctcagcagcc tggcaggcag gaaacagaca taggacccca 1985 gcccagatct gaatggcatg ggaggtgctg cccttaacca tgacaccatt gtaagagctg 2045 tecacatttg tatgttgtge cetggaatea geetggttga geteaaatee caacttagee 2105 acgtotggcc tgtgtccttg ggcagtcaca ctacctctct gattttgttt ccttatctgt 2165 aaaatggtga tcatcataat acaacttcaa aaggatttca ggctgagtgt ggtggctcac 2225 gcctatacac ccagcacttt ggaaggctga ggaaggagga tcgcttgagg ccaggagttt 2285 gagactagec taggeaacac agtgaggeet tateteaaca acaaccacaa aatetaaaaa 2345 ttagctgggt gtggtggtgc atgcctgtga tcctggctac ttcagaggct gaggtggaag 2405 gatcacttga ggccaggagt ttgaggctgc agtgagttat gatggcactg ctgcactcca 2465 gcctgcggga cagagtgaga ccctgtctga aagaaagaga gaaagaaaga aagaaagaga 2525

<210> 81

<211> 388

<212> PRT

<213> H. sapiens

<400> 81

Met Arg Arg Gly Ala Leu Leu Ala Gly Ala Leu Ala Ala Tyr Ala Ala 10 Tyr Leu Val Leu Gly Ala Leu Leu Val Ala Arg Leu Glu Gly Pro His 25 Glu Ala Arg Leu Arg Ala Glu Leu Glu Thr Leu Arg Ala Gln Leu Leu Gln Arg Ser Pro Cys Val Ala Ala Pro Ala Leu Asp Ala Phe Val Glu 55 Arg Val Leu Ala Ala Gly Arg Leu Gly Arg Val Val Leu Ala Asn Ala 75 Ser Gly Ser Ala Asn Ala Ser Asp Pro Ala Trp Asp Phe Ala Ser Ala 90 Leu Phe Phe Ala Ser Thr Leu Ile Thr Thr Val Gly Tyr Gly Tyr Thr 105 110 Thr Pro Leu Thr Asp Ala Gly Lys Ala Phe Ser Ile Ala Phe Ala Leu 120 Leu Gly Val Pro Thr Thr Met Leu Leu Leu Thr Ala Ser Ala Gln Arg 135 140 Leu Ser Leu Leu Thr His Val Pro Leu Ser Trp Leu Ser Met Arg 150 155 Trp Gly Trp Asp Pro Arg Arg Ala Ala Cys Trp His Leu Val Ala Leu 165 170 175 Leu Gly Val Val Val Thr Val Cys Phe Leu Val Pro Ala Val Ile Phe 180 185 190 Ala His Leu Glu Glu Ala Trp Ser Phe Leu Asp Ala Phe Tyr Phe Cys 200 205 Phe Ile Ser Leu Ser Thr Ile Gly Leu Gly Asp Tyr Val Pro Gly Glu 215 220 Ala Pro Gly Gln Pro Tyr Arg Ala Leu Tyr Lys Val Leu Val Thr Val 235

															Phe
									Thr	Glu					Pro
													Arg		
			Pro									Ser			
			Tyr												
			Pro	J & J					חכב						
			Asn 340											Val	
			Phe				4611					~	Ala		
			Met	Ser	Arg	Ala 375	Pro	Leu	Gly	Thr	Asn 380	Ile	Thr	Leu	Phe
Ser 385	Val	Leu	Ser								300				
	<2	10>	82												
	-2	11-	2200												

<211> 3300 <212> DNA <213> H. sapiens

<220> <221> CDS <222> (50)...(1285)

<400> 82

<400> 82	
aaatgeetge eegtgeaget eggagegege ageeegtete tgaataaga atg geg gea Met Ala Ala 1	58
cct gac ttg ctg gat cct aaa tct gcc gct cag aac tcc aaa ccg agg Pro Asp Leu Leu Asp Pro Lys Ser Ala Ala Gln Asn Ser Lys Pro Arg 5 10 15	106
ctc tcg ttt tcc acg aaa ccc aca gtg ctt gct tcc cgg gtg gag agt Leu Ser Phe Ser Thr Lys Pro Thr Val Leu Ala Ser Arg Val Glu Ser 20 25 30 35	154
gac acg acc att aat gtt atg aaa tgg aag acg gtc tcc acg ata ttc Asp Thr Thr Ile Asn Val Met Lys Trp Lys Thr Val Ser Thr Ile Phe 40 45 50	202
ctg gtg gtt gtc ctc tat ctg atc atc gga gcc acc gtg ttc aaa gca Leu Val Val Val Leu Tyr Leu Ile Ile Gly Ala Thr Val Phe Lys Ala 55 60 65	250
ttg gag cag cct cat gag att tca cag agg acc acc att gtg atc cag Leu Glu Gln Pro His Glu Ile Ser Gln Arg Thr Thr Ile Val Ile Gln 70 75 80	298
aag caa aca ttc ata tcc caa cat tcc tgt gtc aat tcg acg gag ctg Lys Gln Thr Phe Ile Ser Gln His Ser Cys Val Asn Ser Thr Glu Leu 85 90 95	346
gat gaa ctc att cag caa ata gtg gca gca ata aat gca ggg att ata Asp Glu Leu Ile Gln Gln Ile Val Ala Ala Ile Asn Ala Gly Ile Ile	394

100					105					110					115		
ccg Pro	tta Leu	gga Gly	aac Asn	acc Thr 120	tcc Ser	aat Asn	caa Gln	atc Ile	agt Ser 125	cac His	tgg Trp	gat Asp	ttg Leu	gga Gly 130	agt Ser		442
tcc Ser	ttc Phe	ttc Phe	ttt Phe 135	gct Ala	Gly	act Thr	gtt Val	att Ile 140	aca Thr	acc	ata Ile	gga Gly	ttt Phe 145	gga Gly	aac Asn		490
			cgc Arg														538
tta Leu	ctg Leu 165	gga Gly	att Ile	ccc Pro	ctc Leu	ttt Phe 170	ggt Gly	ttt Phe	ctc Leu	ttg Leu	gct Ala 175	gga Gly	gtt Val	gga Gly	gat Asp		586
cag Gln 180	cta Leu	ggc Gly	acc Thr	ata Ile	ttt Phe 185	gga Gly	aaa Lys	gga Gly	att Ile	gcc Ala 190	aaa Lys	gtg Val	gaa Glu	gat Asp	acg Thr 195		634
			tgg Trp														682
			ata Ile 215				-	_	Leu			_	_				730
			aaa Lys														778
			atc Ile														826
			gat Asp														874
ttc Phe	tgg Trp	atc Ile	ctt Leu	gta Val 280	Gly ggg	ctt Leu	gct Ala	tac Tyr	ttt Phe 285	gct Ala	gct Ala	gtc Val	ctg Leu	agc Ser 290	atg Met		922
att Ile	gga Gly	gat Asp	tgg Trp 295	ctc Leu	cga Arg	gtg Val	ata Ile	tct Ser 300	aaa Lys	aag Lys	aca Thr	aaa Lys	gaa Glu 305	gag Glu	gtg Val		970
			aga Arg													1	018
			gaa Glu													1	066
ttc Phe 340	cag Gln	cgg Arg	gcc Ala	acc Thr	tcc Ser 345	atc Ile	aag Lys	cgg Arg	aag Lys	ctc Leu 350	tcg Ser	gca Ala	gaa Glu	ctg Leu	gct Ala 355	1	114

•	
gga aac cac aat cag gag ctg act cct tgt agg agg acc ctg tca gtg Gly Asn His Asn Gln Glu Leu Thr Pro Cys Arg Arg Thr Leu Ser Val 360 365 370	1162
aac cac ctg acc agc gag agg gat gtc ttg cct ccc tta ctg aag act Asn His Leu Thr Ser Glu Arg Asp Val Leu Pro Pro Leu Leu Lys Thr 375 380 385	1210
gag agt atc tat ctg aat ggt ttg acg cca cac tgt gct ggt gaa gag Glu Ser Ile Tyr Leu Asn Gly Leu Thr Pro His Cys Ala Gly Glu Glu 390 395 400	1258
att gct gtg att gag aac atc aaa tag ccctctctt aaataacctt Ile Ala Val Ile Glu Asn Ile Lys * 405 410	1305
aggeatagee ataggtgagg acttetetat getettatg actgttgetg gtageatttt	1365
Transfer Cargagerea addededaac aaaafadata caccastast	1425
	1485
	1545
geotectic clottledet aatgigedat aaggeeteag aatgaatgag aattatie	1605
Jacobacca cagerridad ddareadric fraactitta agggretataa taata	1665
oughtungga coattlated atdacaacaa ffffffffff ctaaaaaaaaaaaaaaa	1725
	1785
TOTAL AUGUSTUS AUGUSTUS LCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1845
The state of the s	1905
ctgaagtgat gatgcccgaa gatgaaatag atgccaaatt agatggacat tgaagcaaca	1965
ctcagcgttg cctagcgtta aaggcactgc agagaaatga ggtgcagagg tggccctct	2025
gagtatttat ttgactcagg taccagtggt acatatatac agtgtaatta tgaccagget	2085
ggtaaaattg gctgctcgca aacaatcccc tttttcctg gcagtattg gaatttatca	2145
tttattaata actatacatt tttaaaggca gaagaagaaa atctatctat catctatcta tctatctatc tatctatc	2205
gaagaaaact gttaaaaatg gatattattg gaggggattt aaaacagtgg gtgtgaatta	2265
tcattctgat ggaaagaaaa tagcaaaaca atgtgttaca agtatttgct aataaacagt	2325
atactgccag cttctaattg ctttttgatg tatgaaaggc ttatataatt ttcttttcgt	2385
tgggtgactt ttgccagatg agaggaggtg gcacagtggt gagtgcaggg cacagtccta	2445
	2505
significantly galling at ddaaaaat dradaffaca ddosfaaffa shara shar	2565
	2625
The second of the second control of the second seco	2685
Soldangar conganded ticaquadat qcaccccqta aattqctago ottogthi-	2745
- detection tayarciget gracatrota tatatatata attitaaaa toonganaa	2805
addition of the state of the st	2865
gagagaga calgadiaad tagaattaga attagagatat tagaaaataa accees	2925 2985
ceedadayaa gedaataaac taatagacge ttatttteea aaatttaaat ttaaa-ta-	3045
and June 1 condition to the contract of the co	3105
	3165
guecoyaada uutatatagt agaatacacc atatataaac tataaattat allaanaa	3225
	3285
aaaaaaaaa aaaaa	3300

<211> 411

<212> PRT

<213> H. sapiens

<400> 83

Met Ala Ala Pro Asp Leu Leu Asp Pro Lys Ser Ala Ala Gln Asn Ser 1 5 10 15 Lys Pro Arg Leu Ser Phe Ser Thr Lys Pro Thr Val Leu Ala Ser Arg

20 25 Val Glu Ser Asp Thr Thr Ile Asn Val Met Lys Trp Lys Thr Val Ser 40 Thr Ile Phe Leu Val Val Leu Tyr Leu Ile Ile Gly Ala Thr Val 55 Phe Lys Ala Leu Glu Gln Pro His Glu Ile Ser Gln Arg Thr Thr Ile 75 Val Ile Gln Lys Gln Thr Phe Ile Ser Gln His Ser Cys Val Asn Ser Thr Glu Leu Asp Glu Leu Ile Gln Gln Ile Val Ala Ala Ile Asn Ala 105 Gly Ile Ile Pro Leu Gly Asn Thr Ser Asn Gln Ile Ser His Trp Asp 120 Leu Gly Ser Ser Phe Phe Phe Ala Gly Thr Val Ile Thr Thr Ile Gly 135 Phe Gly Asn Ile Ser Pro Arg Thr Glu Gly Gly Lys Ile Phe Cys Ile 150 155 Ile Tyr Ala Leu Leu Gly Ile Pro Leu Phe Gly Phe Leu Leu Ala Gly 165 170 Val Gly Asp Gln Leu Gly Thr Ile Phe Gly Lys Gly Ile Ala Lys Val 180 185 Glu Asp Thr Phe Ile Lys Trp Asn Val Ser Gln Thr Lys Ile Arg Ile 200 Ile Ser Thr Ile Ile Phe Ile Leu Phe Gly Cys Val Leu Phe Val Ala 215 220 Leu Pro Ala Ile Ile Phe Lys His Ile Glu Gly Trp Ser Ala Leu Asp 230 235 Ala Ile Tyr Phe Val Val Ile Thr Leu Thr Thr Ile Gly Phe Gly Asp 250 245 255 Tyr Val Ala Gly Gly Ser Asp Ile Glu Tyr Leu Asp Phe Tyr Lys Pro 260 265 270 Val Val Trp Phe Trp Ile Leu Val Gly Leu Ala Tyr Phe Ala Ala Val 280 Leu Ser Met Ile Gly Asp Trp Leu Arg Val Ile Ser Lys Lys Thr Lys 295 300 Glu Glu Val Gly Glu Phe Arg Ala His Ala Ala Glu Trp Thr Ala Asn 310 315 Val Thr Ala Glu Phe Lys Glu Thr Arg Arg Leu Ser Val Glu Ile 325 330 Tyr Asp Lys Phe Gln Arg Ala Thr Ser Ile Lys Arg Lys Leu Ser Ala 345 Glu Leu Ala Gly Asn His Asn Gln Glu Leu Thr Pro Cys Arg Arg Thr 360 Leu Ser Val Asn His Leu Thr Ser Glu Arg Asp Val Leu Pro Pro Leu 375 Leu Lys Thr Glu Ser Ile Tyr Leu Asn Gly Leu Thr Pro His Cys Ala 390 395 Gly Glu Glu Ile Ala Val Ile Glu Asn Ile Lys 405

<210> 84

<211> 20

<212> DNA

<213> H. sapiens

<400> 84 catagccata ggtgaggact

<210> 85

<211> 20

<212> DNA

		•
		_

<213> H. sapiens	
<400> 85	
gagaggaaaa cagtctgggc	20
<210> 86	
<211> 20	V .
<212> DNA	
<213> H. sapiens	
<400> 86	
ggacatcgaa ctaagacctg	20
<210> 87	
<211> 20	
<212> DNA	
<213> H. sapiens	
<400> 87	
toccatgoca ttcagatotg	20

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03826

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): C07H 21/04; C07K 14/705; C12N 15/09, 15/63; US CL: 636/23.1, 24.3; 435/7.2, 69.1, 320.1; 530/350 According to International Patent Classification (IPC) or to be	•	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system follo	wed by classification symbols)	
U.S. : 636/23.1, 24.3; 435/7.2, 69.1, 320.1; 530/350		* .
Documentation searched other than minimum documentation to	the extent that such documents are included	in the fields searched
Electronic data base consulted during the international search	(name of data base and, where practicable,	search terms used)
Picase See Extra Sheet.	·	
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
X,P PARTISETI, M. et al. Cloning as Human Inward Rectifying Potass Expressed in Small Intestine. FEBS L 176, see entire document.	sium Channel Predominantly	1-9
Further documents are listed in the continuation of Box	C. See patent family annex.	
Special categories of cited documents:	*T* later document published after the inter-	
"A" decument defining the general state of the art which is not considered	data and not in conflict with the confid	ation but cited to understand
to be of particular relevance "B" serlier document published on or after the international filing date	"X" document of particular relevance; the	
"L" document which may throw doubts on priority claim(s) or which is	considered novel or cannot be considere when the document is taken alone	
cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the	
O" document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive a combined with one or more other such o being obvious to a person skilled in the	documents, such combination
P ^a document published prior to the international filing date but later than the priority date claimed	*&* document member of the same patent f	am ily
Date of the actual completion of the international search 28 MAY 1999	Date of mailing of the international scare 0 7 JUL 1993	ch report
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer NIRMAL S. BASI	Ter
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196	ſ

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03826

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, MEDLINE, JAPIO, BIOSIS, SCISEARCH, WPIDS, GENEMBL, NGENSEQ 34, EST, A-GENESEQ 32, PIR 58, SWISS-PROT 35, SPTREMBL 16.
search terms: potassium channel, K+hnov

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:2, the nucleic acid having the sequence of SEQ ID NO:1, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:2 and K+Hnov protein of SEQ ID NO:2.

Group II, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:4, the nucleic acid having the sequence of SEQ ID NO:3, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:4 and K+Hnov protein of SEQ ID NO:4.

Group III, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:6, the nucleic acid having the sequence of SEQ ID NO:5, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:6 and K+Hnov protein of SEQ ID NO:6.

Group IV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:8, the nucleic acid having the sequence of SEQ ID NO:7, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:8 and K+Hnov protein of SEQ ID NO:8.

Group V, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:10, the nucleic acid having the sequence of SEQ ID NO:9, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:10 and K+Hnov protein of SEQ ID NO:10.

Group VI, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:12, the nucleic acid having the sequence of SEQ ID NO:11, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:12 and K+Hnov protein of SEQ ID NO:12.

Group VII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:14, the nucleic acid having the sequence of SEQ ID NO:13, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:14 and K+Hnov protein of SEQ ID NO:14.

Group VIII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:16, the nucleic acid having the sequence of SEQ ID NO:15, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:16.

Group IX, claim(s)1-9, drawn to aucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:18, the aucleic acid having the sequence of SEQ ID NO:17, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:18 and K+Hnov protein of SEQ ID NO:18.

Group X, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:20, the nucleic acid having the sequence of SEQ ID NO:19, nucleic acids hybridizing to said nucleic acids, expression cassetts comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:20 and K+Hnov protein of SEQ ID NO:20.

Group XI, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:25, the nucleic acid having the sequence of SEQ ID NO:21-25, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:25 and K+Hnov protein of SEQ ID NO:25.

Group XII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:27, the nucleic acid having the sequence of SEQ ID NO:26, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing

Form PCT/ISA/210 (extra sheet)(July 1992)*

International application No. PCT/US99/03826

K+Hnov protein of SEQ ID NO:27 and K+Hnov protein of SEQ ID NO:27.

Group XIII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:30, the nucleic acid having the sequence of SEQ ID NO:28-29, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:30 and K+Hnov protein of SEQ ID NO:30.

Group XIV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:81, the nucleic acid having the sequence of SEQ ID NO:80, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:81 and K+Hnov protein of SEQ ID NO:81.

Group XV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:83, the nucleic acid having the sequence of SEQ ID NO:82, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:83 and K+Hnov protein of SEQ ID NO:83.

Group XVI, claim(s)10, drawn to monoclonal antibody that binds to K+Hnov.

Group XVII, claim(s)11-14, drawn to non-human transgenic animal model for K+Hnov.

The inventions listed as Groups I-XVII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I is directed to nucleic acid (SEQ ID NO:1) encoding the K+Hnov protein of SEQ ID NO:2, nucleic acids hybridizing to said nucleic acid, expression cassette comprising said nucleic acid, cell comprising said cassette, method of producing the K+Hnov of SEQ ID NO:2 and the protein of SEQ ID NO:2. The special technical feature is the disclosed nucleic acid of SEQ ID NO:1 encoding the K+Hnov protein of SEQ ID NO:2. The nucleic acids, proteins, antibody and transgenic animal model of Groups II-XVII do not share the special technical feature of Group I wherein the products of said Groups are structurally and functionally different. As shown in Table 1, pages 8-9, the H+Nov proteins of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 and 83 are all structurally and functionally different, the nucleic acids encoding said proteins having different chromosome positions.

Form PCT/ISA/210 (extra sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/03826

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
O Para Object No.
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
<u>.</u>
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite paymen of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covernonly those claims for which fees were paid, specifically claims Nos.:
4. X No required additional scarch fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-9, SEQ ID NO:1 and 2
Remark on Protest The additional search fees were accompanied by the applicant's protest.
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*