Automates, Langages et compilation

Contrôle Continu L3 – 30mn Tous documents (papier) autorisés

2023-2024

Nom:		
Prénom:		

Inscrire lisiblement vos noms et prénoms, puis répondre en cochant pour chaque question la bonne réponse dans le tableau. Les automates \mathcal{A}_1 , \mathcal{A}_2 et \mathcal{A}_3 et la grammaire \mathcal{G}_1 sont donnés au dos de la feuille.

No	Question	Oui	Non
1.	abc est un sous-mot de baaacbbacccc		
2.	Le langage $(a+b)^*cb(cc^*+b)$ est un langage sur l'alphabet $\{a,b,c,d,e\}$		
3.	Soit $\mathcal L$ un langage rationnel, il existe un automate fini qui reconnait $\mathcal L$		
4.	Soit \mathcal{L} un langage rationnel, il existe un et un seul automate fini		
	déterministe qui reconnait $\mathcal L$		
5.	Soit $\mathcal L$ un langage rationnel, il existe un automate à pile qui reconnait $\mathcal L$		
6.	Soit $\mathcal L$ un langage algébrique, il existe un automate à pile qui reconnait $\mathcal L$		
7.	Soit $\mathcal L$ un langage algébrique, il existe un automate à pile		
	déterministe qui reconnait $\mathcal L$		
8.	Soit $\mathcal L$ un langage algébrique, il existe un automate fini non déterministe		
	qui reconnait \mathcal{L}		
9.	$\{a^nb^m \in \{a,b\}^* \mid n \in \mathbb{N}, m \in \mathbb{N}\}$ est rationnel		
10.	$\{a^nb^m\in\{a,b\}^*\mid n\in\mathbb{N}, m\in\mathbb{N}\}$ est algébrique		
11.	A_1 est-il déterministe?		
12.	La grammaire \mathcal{G}_1 est-elle algébrique?		
13.	La grammaire \mathcal{G}_1 est-elle ambigüe ?		
14.	Le langage engendré par \mathcal{G}_1 est-il algébrique ?		
15.	Le langage engendré par \mathcal{G}_1 est-il rationnel?		
16.	A_2 est-il déterministe?		
17.	A_2 est-il minimal?		
18.	Le mot $aabacdd$ est-il reconnu par A_3 par état final?		
19.	Le mot aac est-il reconnu par état final?		
20.	Le mot aac est-il reconnu par pile vide?		

Soit \mathcal{A}_1 l'automate :

Soit \mathcal{G}_1 la grammaire qui génère un langage sur $\Sigma = \{a,b,c\}$

$$\begin{array}{ccc} S & \rightarrow & acS + aT + \varepsilon \\ T & \rightarrow & caT \mid c \end{array}$$

Soit \mathcal{A}_2 l'automate :

Soit \mathcal{A}_3 l'automate à pile $(\Sigma,Z,\bot,Q,q_0,\{q_1\},\delta)$ avec $\Sigma=\{a,b,c,d\},Z=\Sigma\cup\{\bot\}$

