STAT2001 Tutorial 8 Solutions

Problem 1

(a) Some values of (x,y) are shown in the following figure:

We see that p(0,0) = 1/9, p(2,0) = 1/9, p(1,1) = 2/9, etc.

Table of p(x,y):

			У		p(x)	p(x 0)
		0	1	2	\downarrow	\downarrow
	0	1/9	2/9	1/9	4/9	1/4
X	1	2/9	2/9		4/9	1/2
	2	1/9			1/9	1/4
p(y)	\rightarrow	4/9	4/9	1/9		

(*Check*: 1/9 + 2/9 + 1/9 + 2/9 + 2/9 + 1/9 = 1.)

NB: X and Y have a *multinomial distribution* with parameters 2, 1/3 and 1/3. We may write $(X,Y) \sim \text{Multi}(2,1/3,1/3)$, and

$$p(x,y) = \frac{2!}{x!y!(2-x-y)!} \left(\frac{1}{3}\right)^x \left(\frac{1}{3}\right)^y \left(1-\frac{1}{3}-\frac{1}{3}\right)^{2-x-y},$$

where $x, y \in \{0,1,2\}$ subject to $x + y \le 2$.

Thus, for example,

$$p(1,0) = \frac{2!}{1!0!(2-1-0)!} \left(\frac{1}{3}\right)^{1} \left(\frac{1}{3}\right)^{0} \left(1 - \frac{1}{3} - \frac{1}{3}\right)^{2-1-0} = 2\left(\frac{1}{3}\right) \left(\frac{1}{3}\right) = \frac{2}{9}.$$

See Section 5.9 in text.

(b)
$$p(x) = \begin{cases} 4/9, & x = 0,1\\ 1/9, & x = 2 \end{cases}$$

(Thus $X \sim \text{Bin}(2,1/3)$). This makes sense because Firm I has a 1/3 chance of getting each of the two contracts.)

$$p(y) = \begin{cases} 4/9, & y = 0,1\\ 1/9, & y = 2 \end{cases}$$

(The fact that *X* and *Y* have the same distribution makes sense by virtue of the symmetry in the problem.)

(c)
$$p(x|0) = \begin{cases} 1/4, & x = 0,1\\ 1/2, & x = 2 \end{cases}$$

(Thus $(X \mid Y = 0) \sim \text{Bin}(2,1/2)$). This makes sense: If Firm II doesn't get a contract, then Firm I has a 50% chance of getting each of the two contracts.)

(d)
$$P(X \ge 1 | Y = 0) = p_{X|Y}(1 | 0) + p_{X|Y}(2 | 0)$$

= 1/2+1/4
= 3/4.

(e)
$$\mu_X = 2(1/3) = 2/3 = \mu_Y$$
.
(This is because $X, Y \sim \text{Bin}(2, 1/3)$. Note that $X \not\perp Y$.)

$$\sigma_{\rm v}^2 = 2(1/3)(1-1/3) = 4/9 = \sigma_{\rm v}^2$$
.

$$E(XY) = \sum_{x,y} xyp(x,y) = 0 + \dots + 0 + 1 \times 1 \times p(1,1) = \frac{2}{9}.$$

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y = 2/9 - (2/3)^2 = -2/9$$
.

$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{-2/9}{\sqrt{4/9}\sqrt{4/9}} = -\frac{1}{2}.$$

(Thus *X* and *Y* are negatively correlated. This makes sense because if Firm I gets a 'large' number of contracts, then Firm II can only get a 'small' number of them, and vice versa.)

Problem 2

(a) The region where f(x,y) > 0 is shown shaded in the following figure.

So
$$1 = \iint f(x, y) dx dy = k \int_{x=0}^{2} x \left(\int_{y=0}^{x/2} dy \right) dx = k \int_{x=0}^{2} x \frac{x}{2} dx = \frac{4}{3}k \Rightarrow k = \frac{3}{4}.$$

(The following is a 3-dimensional figure of f(x,y).

The volume under the density surface equals 1.)

(b)
$$P(X > 3Y) = \iint_{x>3y} f(x, y) dx dy = \frac{3}{4} \int_{x=0}^{2} x \left(\int_{y=0}^{x/3} dy \right) dx = \frac{3}{4} \int_{x=0}^{2} x \frac{x}{3} dx = \frac{2}{3}.$$

(c)
$$f(x) = \int f(x, y) dy = \frac{3}{4} x \int_{0}^{x/2} dy = \frac{3}{8} x^2, 0 < x < 2.$$

(Check:
$$\int f(x)dx = \int_{0}^{2} \frac{3}{8}x^{2}dx = 1.$$
)

$$f(y) = \int f(x, y)dx = \frac{3}{4} \int_{2y}^{2} x dx = \frac{3}{2} (1 - y^2), 0 < y < 1.$$

(Check:
$$\int f(y)dy = \int_{0}^{1} \frac{3}{2}(1-y^{2})dy = 1.$$
)

(d)
$$f(y|x) = \frac{f(x,y)}{f(x)} = \frac{3x/4}{3x^2/8} = \frac{2}{x}, 0 < y < \frac{x}{2}.$$

So
$$(Y | X = x) \sim U(0, x/2)$$
.

(e)
$$(Y | X = 1) \sim U(0, 1/2)$$
.

So
$$P(Y > 1/8 \mid X = 1) = 3/4$$
.

