17.12.2018

Visualization of trajectories of ellipsoid-shaped particles

Diploma Thesis

Franziska Krüger

Introduction

Visualization of simulation data by group of Prof. Fröhlich

- Analysis of movement patterns of particle data
- Trajectory showing particle position at every time step at once

Content

- 1. Introduction
- 2. Related Work
- 3. Conception
- 4. Implementation
- 5. Evaluation
- 6. Conclusion

2. Related Work

Trajectory Visualization Techniques

Line

- Lighting infinitesimally thin cylindrical tubes [MPSS05]
- Depth-dependent halos [EBRI09]
- Ambient occlusion [EH\$13]

Trajectory Visualization Techniques

Ribbon

- Stream ribbons [USM96]
- Combination with glyphs [WAPW06]

Trajectory Visualization Techniques

Tube

- Generalized Cylinders [AB76] [SVL91] [GM03]
- Stylized line primitives with color, width and texture for attribute encoding [SGS05]
- Hyperstreamlines [DH93]
- Blending of stream balls [BHR+94]
- Billboarding [SKH+05]

Visualization Goal

- Conveying particle properties:
 - Position
 - Time
 - Orientation (pose)
 - Linear velocity
 - Angular velocity

Trajectory with particle at every 40th time step

- Requirements of group of Prof. Fröhlich:
 - Filter based on traveled distance in specific direction
 - Overview of data set like random walks

Line

- Color
 - Time steps
 - Transition from yellow (start) to blue (end)

Line

Ribbon

- Ribbon width:
 - based on largest principal axis of ellipsoid
 - Orientation indication
- Ocolor:
 - time steps as for lines
- Darker ticks at every 10. time step
 - Orientation indication
 - Velocity indication
- 3D Ribbon with lighting

Tube

- Displaying all ellipsoid positions of trajectory at once
- o Color:
 - Time steps
- Glyphs need to be moved to tube surface

Glyphs for velocity

Linear velocity

- Line in movement direction
- Color: movement direction (velocity vector as RGBvector) or value of velocity
- Length: value of velocity

Angular velocity

- Line as rotation axis
- Color: direction of axis or value of velocity
- Length: value of velocity
- Allows for relative comparison

Linear velocity with movement direction as color

Angular velocity with value of velocity as color

Ellipsoids at Time Steps

- Displaying all ellipsoid at certain time steps
- Adding texture to ellipsoids for determining rotation of particle

Comparison

- Lines have the least available attributes for visualization
- Ribbons in combination with ellipsoids at certain time steps best choice

lines

ribbons

tubes

Filter

 Temporal and spatial filter to view only subset of data set

Temporal Filter

Time interval selection

Spatial Filter

- Length filter
- Region of interest

Region of interest

Application

cgv-framework with OpenGL Core Profile

Input Data

• Trajectory data containing particles axes, positions, orientations and time

Post-Processing

- Computation of necessary variables like angular and linear velocity or normals
- Interpolation of equidistant points (in time)
- Splitting or continuing trajectories

Renderer

- Indexed rendering for lines and ribbons
- Instanced rendering for tubes and ellipsoids at certain time steps

GPU-Implementation for 3D ribbon

 Using geometry shader with lines as input and triangle strips as output

Input line

End points of each axis

Ribbon surface

Dark Ticks on Ribbon

- Procedurally generated using shader
 - Time information and step count for vertex shader
 - Sigmoid-shaped thresholds in fragment shader

5. Evaluation

Evaluation

- Performance Measurement
 - GPU computation time and memory usage
- Parameter Study of Ribbon Visualization
 - Height
 - Material parameter
- 3. Application on Simulation Data Set
 - Overview of data set

5. Evaluation

Performance Measurement

Visualization	Primitives	RAM	GPU Memory	GPU-time
Line	14 980 001 lines	1.8 GB	0.5 GB	1.15 ms
Ribbon 2D	29 960 000 triangles	$2.5~\mathrm{GB}$	$1.0~\mathrm{GB}$	$1.41~\mathrm{ms}$
Ribbon 3D	$119\ 840\ 000\ \mathrm{triangles}$	$9.6~\mathrm{GB}$	$5.0~\mathrm{GB}$	$32.95~\mathrm{ms}$
Ribbon 3D GPU	119 919 987 triangles	$2.4~\mathrm{GB}$	$1.2~\mathrm{GB}$	$7.87~\mathrm{ms}$
Tube	$2\ 308\ 460\ 003\ \mathrm{triangles}$	$2.5~\mathrm{GB}$	$0.7~\mathrm{GB}$	$54.50~\mathrm{ms}$
Velocity every Step	14 990 002 lines	2.2 GB	0.4 GB	1.89 ms
Ellipsoids at End	5 980 003 triangle	1.1 GB	0.0 GB	$0.92~\mathrm{ms}$

 Evaluation results of a random generated data set with 10,000 trajectories and 1,500 time steps

Parameter Study for Ribbon Visualization

• Different heights:

Height 0

Height 0.1

Height 0.25

Parameter Study for Ribbon Visualization

Different material: specular parameter

No specularity

White with shininess 2

White with shininess 64

Parameter Study for Ribbon Visualization

• Different material: ambient parameter

Application on Simulation Data Set

Overview of all trajectories of each data set

Application on Simulation Data Set

Number of trajectories for each length category

Data Set	very short	short	medium	long	total
Ellipsoid	649	5,375	5,607	3,089	14,720
Sphere	10,245	1,700	987	1,788	14,720
Oblate	190	2,062	4,705	7,763	14,720
Prolate	348	$4,\!359$	6,965	3,048	14,720

Very short

short

medium

long

Prolate data set

5. Evaluation

Application on Simulation Data Set

- Some more results:
 - Single trajectory
 - Region of interest filtering long trajectories starting at same time

Region of interest

6. Conclusion

Conclusion

- Ribbon visualization in combination with ellipsoids at time steps conveys most important particle properties
- Interactive data exploration

Future Work

- Line for degenerated ribbon
- Global lighting
- Focus-in-Context filter

Ribbon Visualization with Ellipsoids at Time Steps

Literature

- [AB76] G. J. Agin and T. O. Binford. Computer description of curved objects. IEEE Transactions on Computers, C-25(4):439–449, April 1976.
- [AMST11] Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, and Christian Tominski.
 Visualization of Time-Oriented Data. Springer Publishing Company, Incorporated, 1st edition, 2011.
- [BHR+94] M. Brill, H. Hagen, H. C. Rodrian, W. Djatschin, and S. V. Klimenko. Streamball techniques for flow visualization. In Visualization, 1994., Visualization '94, Proceedings., IEEE Conference on, pages 225–231, CP25, Oct 1994.
- [DH93] T. Delmarcelle and L. Hesselink. Visualizing second-order tensor fields with hyperstreamlines. IEEE Computer Graphics and Applications, 13(4):25–33, July 1993.
- [EBRI09] M. H. Everts, H. Bekker, J. B. T. M. Roerdink, and T. Isenberg. Depth-dependent halos: Illustrativerenderingofdenselinedata. IEEE Transactions on Visualization and Computer Graphics, 15(6):1299–1306, Nov 2009.
- [EH\$13] S. Eichelbaum, M. Hlawitschka, and G. Scheuermann. Lineao improved threedimensional line rendering. IEEE Transactions on Visualization and Computer Graphics, 19(3):433–445, March 2013.
- [FW12] Roland Fraedrich and R\u00fcdiger Westermann. Motion visualization in large particle simulations. In Visualization and Data Analysis, volume 8294 of SPIE Proceedings, page 82940Q. SPIE, 2012.
- [GM03] L. Grisoni and D. Marchal. High performance generalized cylinders visualization. In 2003 Shape Modeling International., pages 257–263, May 2003

Literature

- [MLP+10] Tony McLoughlin, Robert S. Laramee, Ronald Peikert, Frits H. Post, and Min Chen. Over Two Decades of Integration-Based, Geometric Flow Visualization. Computer Graphics Forum, 2010.
- [MPSS05] O. Mallo, R. Peikert, C. Sigg, and F. Sadlo. Illuminated lines revisited. In VIS 05. IEEE Visualization, 2005., pages 19–26, Oct 2005.
- [PWPC18] C. Perin, T. Wun, R. Pusch, and S. Carpendale. Assessing the graphical perception of time and speed on 2d+time trajectories. IEEE Transactions on Visualization and Computer Graphics, PP(99):1–1, 2018.
- [SGS05] C. Stoll, S. Gumhold, and H. P. Seidel. Visualization with stylized line primitives. In VIS 05. IEEE Visualization, 2005., pages 695–702, Oct 2005.
- [SKH+05] Marc Schirski, Torsten Kuhlen, Martin Hopp, Philipp Adomeit, Stefan Pischinger, and Christian Bischof. Virtual tubelets—efficiently visualizing large amounts of particle trajectories. Computers & Graphics, 29(1):17 – 27, 2005.
- [SVL91] W. J. Schroeder, C. R. Volpe, and W. E. Lorensen. The stream polygon-a technique for 3d vector field visualization. In Visualization, 1991. Visualization '91, Proceedings., IEEE Conference on, pages 126–132, 417, Oct 1991
- [USM96] Shyh-Kuang Ueng, C. Sikorski, and Kwan-Liu Ma. Efficient streamline, streamribbon, and streamtube constructions on unstructured grids. IEEE Transactions on Visualization and Computer Graphics, 2(2):100–110, Jun 1996.
- [WAPW06] C. Ware, R. Arsenault, M. Plumlee, and D. Wiley. Visualizing the underwater behavior of humpback whales. IEEE Computer Graphics and Applications, 26(4):14–18, July 2006.