Modern Analysis

Homework 2 Ari Feiglin

2.1 Exercise

Let $X = S^1 \times I$, show that $A = S^1 \times \left\{\frac{1}{2}\right\}$ is a deformation retract.

Define $r: X \longrightarrow A$ by r(x,t) = (x,1/2). This is continuous (the composition of $(x,t) \mapsto x$ and $x \mapsto (x,1/2)$) and r(x,1/2) = (x,1/2) for all $(x,1/2) \in A$ so it is a retraction. Now we must show that $\iota \circ r \stackrel{A}{\sim} \operatorname{id}_X$, so we need to define a homotopy $H: X \times I \longrightarrow X$ such that H((x,t),0) = r(x,t) = (x,1/2), H((x,t),1) = (x,t) and H((x,1/2),s) = (x,1/2). So let us define $H((x,t),s) := (x,\frac{1}{2}-s(\frac{1}{2}-t))$. This is continuous and indeed we have

$$H((x,t),0) = \left(x,\frac{1}{2}\right), \qquad H((x,t),1) = (x,t), \qquad H\left(\left(x,\frac{1}{2}\right),s\right) = \left(x,\frac{1}{2}\right)$$

meaning r is a deformation retract, as required.

2.2 Exercise

Let X be a contractible space and Y an arbitrary topological space.

- (1) show that all morphisms $Y \longrightarrow X$ are null-homotopic, and all are homotopic to one another.
- (2) show that all morphisms $X \longrightarrow Y$ are null-homotopic, and if Y is path connected they are all homotopic to one another.
- (1) Since X is contractible, the identity map is homotopic to some constant map, suppose $\mathrm{id}_X \sim p$. Now let $f\colon Y \longrightarrow X$, we claim that $f \sim p$ (here $y \mapsto p$ is a map $Y \longrightarrow X$, above it is $X \longrightarrow X$). Suppose $H\colon X\times I \longrightarrow X$ is a homotopy from id_X to p, so H(x,0)=x and H(x,1)=p. Then define $K\colon Y\times I \longrightarrow X$ by K(y,t)=H(f(y),t) which is continuous as the composition of continuous functions. And

$$K(y,0) = H(f(y),0) = f(y),$$
 $K(y,1) = H(f(y),1) = p$

so K is a homotopy from f to p, meaning all maps $Y \longrightarrow X$ are homotopic to the constant map $y \mapsto p$, meaning they are all homotopic to one another and null-homotopic.

(2) Let $f: X \longrightarrow Y$ and H be a homotopy from id_X to p as above, then define $K: X \times I \longrightarrow Y$ by $K = f \circ H$ which is continuous and

$$K(x,0) = f \circ H(x,0) = f(x),$$
 $K(x,1) = f \circ H(x,1) = f(p)$

So f is homotopic to the constant map $x \mapsto f(p)$, and is therefore null-homotopic.

If Y is path connected, then every two constant maps $x \mapsto p$ and $x \mapsto q$ (which are morphisms $X \longrightarrow Y$) are homotopic. This is since if γ is a path from p to q, define $H(x,t) = \gamma(t)$. So $H(x,0) = \gamma(0) = p$ and $H(x,1) = \gamma(1) = q$, so $p \sim q$ as required. And since all maps $X \longrightarrow Y$ are homotopic to a constant map, which are all homotopic, all maps $X \longrightarrow Y$ are homotopic.

2.3 Exercise

- (1) Show that a contractible space is path connected.
- (2) X is called **simply connected** if it is path connected and every morphism $S^1 \longrightarrow X$ is null-homotopic. Show that a contractible space is simply connected.

- (1) First we claim that X is contractible if and only if $\mathrm{id}_X \sim p$ for all $p \in X$. The right-to-left direction is trivial. Now suppose $\mathrm{id}_X \sim p$ and $q \in X$, then we claim $p \sim q$ and so $\mathrm{id}_X \sim q$ as required. Let $H: X \times I \longrightarrow X$ be a homotopy from id_X to p, then define K(x,t) = H(q,t) which is continuous. Then K(x,0) = H(q,0) = q and K(x,1) = H(q,1) = p, so K is a homotopy from p to q as required. Now let $p, q \in X$, then there exists a homotopy $H: X \times I \longrightarrow X$ between them. Define $\gamma(t) = H(x_0,t)$ for any $x_0 \in X$. This is continuous and $\gamma(0) = H(x_0,0) = p$ and $\gamma(1) = H(x_0,1) = q$ so p and q are path connected.
- (2) By 2(1), every morphism $Y \longrightarrow X$ is null-homotopic, and so in particular every morphism $S^1 \longrightarrow X$.

2.4 Exercise

Show that a retract of a contractible space is contractible.

Let X be contractible, $r: X \longrightarrow A$ a retraction. Take $a \in A$, then by the previous question $\mathrm{id}_X \sim a$, so let $H: X \times I \longrightarrow X$ be a homotopy from id_X to a. Define $K: A \times I \longrightarrow A$ by $K = r \circ H$, then

$$K(x,0) = r \circ H(x,0) = r(x) = x \text{ (since } x \in A \text{ so } r(x) = x), \qquad K(x,1) = r \circ H(x,1) = r(a) = a$$

and so $id_A \sim a$, meaning A is contractible as well.

2.5 Exercise

Show that a space is contractible if and only if it is homotopically equivalent to a space with a single point.

Suppose X is contractible, and let $a \in X$, we claim $X \simeq \{a\}$. Since X is contractible, by above we have $\operatorname{id}_X \sim a$ and so there exists a homotopy $H: X \times I \longrightarrow X$ from id_X to a. Define $f: X \longrightarrow \{a\}$ and $g: \{a\} \longrightarrow X$ by f(x) = a and g(a) = a. Then $f \circ g = \operatorname{id}_{\{a\}}$ and $g \circ f = a \sim \operatorname{id}_X$, so f is a homotopic equivalence between X and $\{a\}$ as required.

Now suppose $X \simeq \{a\}$, so there exists homotopic equivalences $f: X \longrightarrow \{a\}$ and $g: \{a\} \longrightarrow X$. Necessarily f(x) = a, and so $g \circ f = a$. But since we are given that these are homotopic equivalences, $g \circ f \sim \mathrm{id}_X$, so $\mathrm{id}_X \sim a$, meaning X is contractible.

2.6 Exercise

Let $f, g: (X, a) \longrightarrow (Y, b)$ two morphisms homotopic relative to $\{a\}$. Show that $f_* = g_*$.

Recall that $f_*([\gamma]) = [f \circ \gamma]$, so we must show that $f \circ \gamma \stackrel{\partial I}{\sim} g \circ \gamma$ for every $\gamma \in \Gamma_{aa}$. Since $f \stackrel{\{a\}}{\sim} g$, there exists a homotopy relative to $\{a\}$: H(x,0) = f(x), H(x,1) = g(x), and H(a,t) = f(a) = g(a). So define $K: I \times I \longrightarrow Y$ by $K(t,s) = H(\gamma(t),s)$. Then

$$K(t,0) = H(\gamma(t),0) = f \circ \gamma(t), \qquad K(t,1) = H(\gamma(t),1) = g \circ \gamma(t),$$

$$K(0,s) = H(\gamma(0),s) = H(a,s) = f(a) = f \circ \gamma(0), \qquad K(1,s) = H(a,s) = f \circ \gamma(1)$$

So K is a homotopy relative to $\partial I = \{0,1\}$ between $f \circ \gamma$ and $g \circ \gamma$ as required.