Logistic Regression-1

Why do we need Logistic Regression?

• Useful for binary classification

What are the assumptions of Logistic regression?

Data should be linearly separable

What is the goal of this algorithm?

• To find a hyperplane π which accurately separates the data

How to perform prediction through logistic regression?

- Given labels -> $y_i \in \{0, 1\}$
- Compute a linear function of x -> $z_i = w^t x_i + w_0 \in \{-\infty, \infty\}$
- Compute Sigmoid(z_i) -> $\sigma(z_i) = \frac{1}{1+e^{-z_i}}$
- Predicted label -> $\hat{y}_i = 1 if \sigma(z_i) > threshold else 0$

What are the properties of Sigmoid function?

- Range -> (0, 1)
- Smooth and differentiable at all points

What is the derivative of a logistic regression model?

$$\sigma'(z) = \sigma(z) \times [1 - \sigma(z)]$$

What is the significance of the sigmoid function?

• $\sigma(z_i)$ is the probability of x_i belonging to class 1

Which loss function is used for Logistic Regression?

• Log loss -> Combination of:

$$\begin{array}{l} \circ & -\log(\hat{y_i}) \text{ when } y_i = 1 \\ \\ \circ & -\log(1-\hat{y_i}) \text{ when } y_i = 0. \\ \\ & Log \ Loss = & -y_i \log(\hat{y_i}) - (1-y_i) \log(1-\hat{y_i}) \end{array}$$

Total loss becomes:

$$TotalLoss = Log Loss + \lambda \sum_{j=1}^{d} w_j^2$$

How does log loss help train the logistic regression model?

- $-\log(\hat{y_i})$ -> High when $\hat{y_i} = 0$ and very low when $\hat{y_i} = 1$.
- $-\log(1-\hat{y_i})$ ->High when $\hat{y_i} = 1$ and very low when $\hat{y_i} = 0$.

Thus both of these components help penalize the model most when making wrong predictions.

Also if
$$y_i \in \{-1, 1\}$$
, then $Log Loss = \sum_{i=1}^n log(1 + e^{-y_i z_i})$

But why can't we use Mean Square Error as in Linear regression?

- Non-convex curve: contains a lot of local minima
- Difficult for Gradient Descent to reach global minima

What does the derivative of Log Loss look like?

$$\frac{\partial Log \ Loss}{\partial w} = \frac{\partial (-y \log(\hat{y}) - (1-y) \log(1-\hat{y}))}{\partial w}, \ \hat{y} = \sigma(z) \ and \ z = w^t x + w_0$$

Intermediate steps: reference blog

On solving:

$$\frac{\partial Log \ Loss}{\partial w} = -y \frac{\partial z}{\partial w} + y \times \hat{y} \frac{\partial z}{\partial w} + \hat{y} \frac{\partial z}{\partial w} - y \times \hat{y} \frac{\partial z}{\partial w}$$

$$\frac{\partial Log \ Loss}{\partial w} = -y \frac{\partial z}{\partial w} + \hat{y} \frac{\partial z}{\partial w}$$
Also since
$$\frac{\partial z}{\partial w} = x ; \frac{\partial Log \ Loss}{\partial w} = (\hat{y} - y) x$$

Can we use R2 score to evaluate Logistic Regression?

Ans: No. R2 tells us how close we are far/close we are to actual result

Which metric can we use instead? \rightarrow accuracy

Goal: Check how many correct values are predicted. → satisfied by **accuracy**

Accuracy = no. of correct predictions

Total number of predictions