1. Let C be a category. Prove that C(-,c) is a functor.

For each object d in C, there is an object C(d, c), the set of all morphisms between from d to c in C, in **Set**.

For each morphism $f: x \to y$ in \mathcal{C} , there is a morphism

$$f^*: \mathcal{C}(y,c) \to \mathcal{C}(x,c); g \mapsto fg$$
 in Set.

For any composable pair $f:x\to y$ and $g:y\to z$ in category $\mathcal{C},$ the composition is $fg:x\to z.$

Let
$$h \in \mathcal{C}(z,c)$$
.

Note that the morphism $(fg)^*$ in **Set** from $\mathcal{C}(z,c)$ to $\mathcal{C}(x,c)$ maps h to $fgh \in \mathcal{C}(x,c)$. Also, the morphism g^*f^* in **Set**, from $\mathcal{C}(z,c)$, through $\mathcal{C}(y,c)$, to $\mathcal{C}(x,c)$, maps h to $gh \in \mathcal{C}(y,c)$ then to $fgh \in \mathcal{C}(x,c)$. So $(fg)^* = g^*f^*$.

For any object x in \mathcal{C} with the morphism $k: x \to c$, $\mathcal{C}(-,c)$ maps the identity morphism 1_x to $1_x^*: \mathcal{C}(x,c) \to \mathcal{C}(x,c)$; $k \mapsto 1_x k = k$. So 1_x^* is the identity morphism of $\mathcal{C}(x,c)$.

So, C(-,c) is a contravariant functor. \square

- 2. Given functors $F: \mathcal{D} \to \mathcal{C}$ and $G: \mathcal{E} \to \mathcal{C}$, there is a category, called the comma category $F \downarrow G$.
 - (a) Prove : $F \downarrow G \rightarrow \mathcal{E}$ is a functor.

For each object (d, e, f) in $F \downarrow G$, there is a object e in \mathcal{E} .

For each morphism (h, k) in $F \downarrow G$, there is a morphism k in \mathcal{E} .

For any composable morphism (h, k) and (h', k') in $F \downarrow G$,

$$[(h,k)(h',k')]^{cod} = (hh',kk')^{cod} = kk' = (h,k)^{cod} \ (h',k')^{cod}.$$

For any identity morphism $(1_d, 1_e)$, $(1_d, 1_e)^{cod} = 1_e$, which is the identity morphism of object e in \mathcal{E} .

So : $F \downarrow G \rightarrow \mathcal{E}$ is a functor.

(b) Construct a canonical natural transformation $\alpha: \text{dom} F \implies \text{cod} G$.

For each object (d, e, f) in $F \downarrow G$, define the component $\alpha_{(d, e, f)} := f$. We WTS α forms a natural transformation.

For any object (d, e, f) in $F \downarrow G$, (d, e, f) dom F = [(d, e, f) dom] F = dF. Similarly, (d, e, f) cod G = [(d, e, f) cod] G = eG. Since both dF and eG are objects of C, we can define the component of α at (d, e, f) to be just the arrow $f: dF \rightarrow eG$.

For any morphism $(h,k):(d,e,f)\to (d',e',f')$, note that $\alpha_{(d,e,f)}(h,k)^{\mathrm{cod}G}=f[(h,k)^{\mathrm{cod}}]^G=fk^G$. Also, $(h,k)^{\mathrm{dom}F}\alpha_{(d',e',f')}=[(h,k)^{\mathrm{dom}}]^Ff'=h^Ff'$. Finally, since $fk^G=h^Ff'$ by the commutativity of morphisms in $F\downarrow G$, we have $\alpha_{(d,e,f)}(h,k)^{\mathrm{cod}G}=(h,k)^{\mathrm{dom}F}\alpha_{(d',e',f')}$.

So α forms a natural transformation. \square