Национальный исследовательский ядерный университет «МИФИ» (Московский Инженерно–Физический Институт) Кафедра №42 «Криптология и кибербезопасность»

Отчёт

по результатам выполнения Лабораторной работы №3 «Память и кэш»

Дисциплина: Практические Аспекты Разработки

Высокопроизводительного Программного Обеспечения

(ΠΑΡΒΠΟ)

Студент: Гареев Рустам Рашитович

Группа: Б22-505

Преподаватель: Куприяшин Михаил Андреевич

Дата: 2.04.2025

Оглавление

Технологический стек	3
Ответы на вопросы	
Характеристики оперативной памяти	

Технологический стек

memory 8GiB Системная память

processor 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz

siblings 8

cpu cores 4

bridge 11th Gen Core Processor Host Bridge/DRAM Registers

display TigerLake-LP GT2 [Iris Xe Graphics]

gcc version 13.3.0

OC Ubuntu 24.04.2 LTS

IDE Visual Studio Code 1.98.2

Ответы на вопросы

1. Определите размеры кэшей L1, L2, L3 для Вашего процессора. Проверьте, является ли L2 общим или отдельным для каждого ядра;

Caches (sum of all):

L1d: 192 KiB (4 instances)

L1i: 128 KiB (4 instances)

L2: 5 MiB (4 instances)

L3: 8 MiB (1 instance)

Из вывода видно, что в системе есть 4 экземпляра кэша уровня L2, т. е. для каждого ядра свой кэш.

2. Выясните, как записываются тайминги оперативной памяти и что означает каждый компонент этой записи?

Тайминги оперативной записи записываются в виде набора чисел, разделенного дефисами: x-x-x. Каждое число в этой записи соответствует определённой задержке в работе памяти.

Первое число — CAS Latency(задержка между командой на чтение/запись данных и началом их выполнения). Второе число — RAS to CAS Delay(определяет задержку между между активацией строки в памяти и доступом к столбцу). Третье число — RAS Precharge(время, необходимое для закрытия текущей строки после чтения/записи данных и подготовки к активации новой строки). Четвёртое число — RAS Active Time(минимально время, в течение которого строка должна оставаться активной после команды активации и о команды предварительной зарядки).

3. Выясните, что такое DDR;

DDR(Double Data Rate) — новый тип оперативной памяти, который удвоил скорость передачи данных по сравнению со своим предшественником — SDRAM. Это достигается тем, что данные теперь пердаются как по фронту, так и по спаду тактового сигнала, что позволят увеличить скорость передачи данных без увеличения тактовой частоты схемы.

4. Выясните, что такое DIMM;

DIMM(Dual In-line Memory Module) — это форм-фактор(размер) моделей оперативной памяти(ОП) DRAM, который пришел а смену устаревшему SIMM.

5. Зная тактовую частоту своего процессора и размеры регистров, оцените, какая пропускная способность памяти требуется, чтобы полностью загрузить одно процессорное ядро? Все процессорные ядра?

Пропускная способность = (Размер кэша) × (Частота процессора).

Пропускная способность L1 Cache(48KB):

Пропускная способность L2 Cache(1.25 MB):

Пропускная способность L3 Cache(8MB):

Таким образом, для того чтобы загрузить одно процессорное ядро достаточно иметь пропускную способность памяти, равную 117 964.8 GB/s. Для загрузки же всего процессора пропускная способность должны быть 4*117 964.8 = 471 859.2 GB/s

Характеристики оперативной памяти

Пропускная способность L1 Cache(48KB): 420 GB/s

Пропускная способность L2 Cache(1.25 MB): 105 GB/s

Пропускная способность L3 Cache(8MB): 53.5 GB/s

Мы видим, что реальная пропускная способность кэшей (L1, L2, L3) значительно ниже теоретически рассчитанных значений. Это связано с множеством факторов, таких как ограничения на производительность шины данных, архитектурные особенности кэширования, ограничения на контроллер памяти и прочие аппаратные ограничения.

Рисунок 1 — Работа программы memset86+

Тайминг ОП: 32-34-34-79

Memory: 7.8 GB — 29.5 GB/s

Speed: 3733 MT/s

Type: LPDDR4

$$T(CL) = \frac{32}{3733 MT/s} = 8.7 ns$$

$$T(RAS \text{ to CAS Delay}) = \frac{34}{3733 \, MT/s} = 9.1 \, ns$$

T(RAS Precharge Time) =
$$\frac{34}{3733 \, MT/s}$$
 = 9.1 ns

T(Active to Precharge Delay) =
$$\frac{79}{3733 \, MT/s}$$
 = 21.2 ns

Рисунок 2 — Вывод программы СРU-Z

В результате эксперимента было установлено, что время выполнения операций чтения данных из файла растёт с увеличением величины k. При значениях k, соответствующих примерно половине размера L1, время доступа минимально, что указывает на эффективное использование быстродействующего кэша первого уровня. По мере увеличения k и выхода за пределы L1, а затем L2 и L3, наблюдается заметное замедление работы программы, поскольку доступ к данным вынужден осуществляться из более медленной памяти. Это подтверждает теоретические ожидания о том, что эффективность кэширования существенно влияет на быстродействие системы при работе с большими объёмами данных.

Рисунок 3 — Сравнительная столбчатая диаграмма времени чтения файла из памяти в зависимости от размера пространства для чтения(байт)

Заключение

В ходе лабораторной работы «Память и кэш» были исследованы теоретические и экспериментальные аспекты работы различных уровней памяти в современной вычислительной системе.

Теоретические расчёты пропускной способности кэшей, основанные на их размерах и частоте процессора, существенно превосходят реальные показатели, измеренные с помощью специализированных инструментов, что обусловлено архитектурными особенностями и накладными расходами на передачу данных.

Тайминги оперативной памяти, определённые как 32-34-34-79 при работе на 3733 MT/s, соответствуют характеристикам современных LPDDR4-модулей.

Экспериментальная программа, читающая 8-байтовые блоки из большого файла по произвольным адресам в диапазоне от фиксированного смещения а до (a+k), показала, что при небольшом k, когда данные умещаются в кэше L1, время доступа минимально, а с ростом k, выходящим за пределы кэшей L1, L2 и L3, наблюдается существенное замедление, обусловленное обращением к более медленной памяти.

Эти результаты подчёркивают, что эффективность кэширования напрямую влияет на производительность системы, а оптимальный баланс между объёмом и быстродействием памяти является критически важным для высокопроизводительных вычислений.