Analiza 2a

Luka Horjak (lukahorjak@student.uni-lj.si)

24. november 2021

Kazalo Luka Horjak

Kazalo

Uvod		3	
1	Fun	kcije več spremenljivk	4
	1.1	Prostor \mathbb{R}^n	4
	1.2	Zaporedja v \mathbb{R}^n	5
	1.3	Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m	6
	1.4	Preslikave iz \mathbb{R}^n v \mathbb{R}^m	7
	1.5	Parcialni odvodi in diferenciabilnost	8
	1.6	Višji parcialni odvodi	11
	1.7	Diferenciabilnost preslikav iz \mathbb{R}^n v \mathbb{R}^m	12
	1.8	Izrek o implicitni funkciji	14
	1.9	Taylorjeva formula	19
	1.10		20
	1.11	Vezani ekstremi	22
2	Inte	grali s parametri	23
	2.1	Eulerjeva gama	23
	2.2	Zveznost in odvedljivost integralov s parametri	24
	2.3	Posplošeni integrali s parametrom	
	2.4	Riemannov integral	
	2.5	Prostornina	39
\mathbf{St}	varno	o kazalo	14

Uvod Luka Horjak

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Analiza 2a v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Miran Černe.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

Funkcije več spremenljivk 1

1.1 Prostor \mathbb{R}^n

Definicija 1.1.1. Prostor \mathbb{R}^n je kartezični produkt $\underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_n$. Na njem definiramo $\begin{cases} \begin{cases} \begin{cas$ seštevanje in množenje s skalarjem po komponentah. S tema operacijama je $(\mathbb{R},+,\cdot)$ vektorski prostor nad R. Posebej definiramo še skalarni produkt

$$x \cdot y = \sum_{i=1}^{n} x_i y_i,$$

ki nam da normo $||x|| = \sqrt{x \cdot x}$ in metriko d(x,y) = ||x-y||. (\mathbb{R}^n,d) je tako metrični prostor.

Definicija 1.1.2. Naj bosta $a, b \in \mathbb{R}^n$ vektorja, za katera je $a_i \leq b_i$ za vse $i \in \{1, \dots, n\}$. $Zaprt\ kvader$, ki ga določata a in b, je množica

$$[a,b] = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i \le x_i \le b_i\}.$$

Podobno definiramo odprt kvader kot

$$(a,b) = \{x \in \mathbb{R}^n \mid \forall i \in \{1,\ldots,n\} : a_i < x_i < b_i\}.$$

Opomba 1.1.2.1. Odprte množice v normah $||x||_{\infty}$ in $||x||_{2}$ so iste.

Izrek 1.1.3. Množica $K \subseteq \mathbb{R}^n$ je kompaktna natanko tedaj, ko je zaprta in omejena.

¹ Za dokaz glej izrek 7.5.6 v zapiskih predmeta Analiza 1 prvega letnika.

1.2 Zaporedja v \mathbb{R}^n

Trditev 1.2.1. Zaporedje $\{a_m\}$ v \mathbb{R}^n konvergira natanko tedaj, ko za vse $1 \leq j \leq n$ konvegira zaporedje koordinat $\{a_j^m\}$. Tedaj velja

$$\lim_{m \to \infty} a_m = \left(\lim_{m \to \infty} a_1^m, \dots, \lim_{m \to \infty} a_n^m\right).$$

Dokaz. Predpostavimo, da zaporedje konvergira k točki a. Za vsak $\varepsilon > 0$ tako obstaja tak $m_0 \in \mathbb{N}$, da je $d(a_m, a) < \varepsilon$ za vse $m \ge m_0$. Sledi, da je

$$\sqrt{\sum_{i=1}^{n} \left(a_i^m - a_i\right)^2} < \varepsilon,$$

zato je $\left|a_j^m - a_j\right| < \varepsilon$.

Če konvergirajo zaporedja koordinat, pa za vsak $\varepsilon>0$ obstaja tak $m_j\in\mathbb{N}$, da je $\left|a_j^m-a_j\right|<\frac{\varepsilon}{\sqrt{n}}$ za vse $m\geq m_j$. Naj bo $m_0=\max\{m_1,\ldots,m_n\}$. Potem za vsak $m\geq m_0$ velja

$$d(a^m, a) = \sqrt{\sum_{i=1}^n (a_i^m - a_i)^2} < \sqrt{n \cdot \frac{\varepsilon^2}{n}} = \varepsilon.$$

6. oktober 2021

1.3 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.3.1. Naj bo $D\subseteq\mathbb{R}^n$ in $f\colon D\to\mathbb{R}^m$ preslikava. Pravimo, da je f zvezna v točki $a\in D$, če za vsak $\varepsilon>0$ obstaja tak $\delta>0$, da za vsak $x\in D$, za katerega je $\|x-a\|<\delta$, velja

$$||f(x) - f(a)|| < \varepsilon.$$

Pravimo, da je f zvezna na D, če je zvezna v vsaki točki $a \in D$.

Definicija 1.3.2. Preslikava f je enakomerno zvezna na D, če za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da za vsaka $x, y \in D$, za katera je $||x - y|| < \delta$, velja

$$||f(x) - f(y)|| < \varepsilon.$$

Opomba 1.3.2.1. Če je m=1, pravimo, da je f funkcija n spremenljivk na D. Pišemo $f(x)=f(x_1,\ldots,x_n)$.

Izrek 1.3.3. Naj bo $D \subseteq \mathbb{R}^n$ in $f, g \colon D \to \mathbb{R}$ funkciji, zvezni v točki a. Tedaj so v točki a zvezne tudi funkcije f + g, f - g in λf za $\lambda \in \mathbb{R}$ in $f \cdot g$. Če je $g(x) \neq 0$ na D, je tudi $\frac{f}{g}$ zvezna v a.

Dokaz. The proof is obvious and need not be mentioned.

Opomba 1.3.3.1. Seveda so vse konstantne in koordinatne funkcije zvezne (projekcije). Sledi, da so vse racionalne funkcije zvezne, kjer so definirane.

Opomba 1.3.3.2. Kompozitum zveznih preslikav je zvezen.

Izrek 1.3.4. Naj bo $D \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ funkcija, zvezna v notranji točki $a \in D$. Tedaj je v točki a funkcija f zvezna kot funkcija vsake spremenljivke posebej.²

Dokaz. The proof is obvious and need not be mentioned.

Opomba 1.3.4.1. Obratno ne velja. Protiprimer je funkcija

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x = y = 0. \end{cases}$$

² To pomeni, da je funkcija $f_i(t) = f(a_1, \dots, t, \dots, a_n)$ zvezna.

1.4 Preslikave iz \mathbb{R}^n v \mathbb{R}^m

Trditev 1.4.1. Naj bo $D\subseteq\mathbb{R}^n$ in $f\colon D\to\mathbb{R}^m.$ Označimo

$$f(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_n),\ldots,f_m(x_1,\ldots,x_n)).$$

Preslikava f je zvezna v $a \in D$ natanko tedaj, ko so vse funkcije f_1, \ldots, f_m zvezne v a.

Dokaz. Če je f zvezna v a, za vsak $\varepsilon > 0$ obstaja tak $\delta > 0$, da iz $||x - a|| < \delta$ sledi $||f(x) - f(a)|| < \varepsilon$. Sledi, da je $|f_j(x) - f_j(a)| < \varepsilon$.

Sedaj predpostavimo, da so vse koordinatne funkcije zvezne. Naj bo $\varepsilon > 0$. Za vsak j obstaja tak δ_j , da iz $||x - a|| < \delta_j$ sledi $|f_j(x) - f_j(a)| < \frac{\varepsilon}{\sqrt{m}}$. Naj bo $\delta = \min \{\delta_1, \dots, \delta_m\}$. Potem za vse $||x - a|| < \delta$ velja

$$||f(x) - f(a)|| = \sqrt{\sum_{i=1}^{n} (f_i(x) - f_i(a))^2} < \sqrt{m \cdot \frac{\varepsilon^2}{m}} = \varepsilon.$$

Posledica 1.4.1.1. Vsaka linearna preslikava je zvezna.

Trditev 1.4.2. Naj bo $A\colon\mathbb{R}^n\to\mathbb{R}^m$ linearna preslikava. Potem obstaja tak $M\in\mathbb{R},$ da je

$$\frac{\|Ax\|}{\|x\|} \le M$$

za vse $x \in \mathbb{R}^n$ in obstaja supremum

$$\sup_{x \neq 0} \frac{\|Ax\|}{\|x\|} = \sup_{\|x\|=1} \|Ax\| = \|A\|.$$

Dokaz. Naj bo $A=[a_{i,j}]$ in $C=\max_{i,j}|a_{i,j}|.$ Za vsako komponentno funkcijo A_i je po Cauchyjevi neenakosti

$$|A_i(x)| \le C \cdot \sum_{i=1}^n |x_i| \le C\sqrt{n} \cdot ||x||.$$

Sledi, da je

$$||Ax|| = \sqrt{\sum_{i=1}^{m} L_i(x)^2} \le C\sqrt{nm} \cdot ||x||.$$

1.5 Parcialni odvodi in diferenciabilnost

Definicija 1.5.1. Naj boanotranja točka množice $D\subseteq\mathbb{R}^n$ in $f\colon D\to\mathbb{R}$ funkcija. Če obstaja limita

$$\lim_{h\to 0} \frac{f(a_1,\ldots,a_{i-1},a_i+h,\ldots)-f(a)}{h},$$

to limito imenujemo $parcialni\ odvod$ funkcije fpo spremenljivki x_i v točkia in ga označimo z

$$\frac{\partial f}{\partial x_i}(a) = f_{x_i}(a) = (D_i f)(a).$$

Definicija 1.5.2. Naj bo $D \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ preslikava, a pa notranja točka množice D. Pravimo, da je f diferenciabilna v točki a, če obstaja taka linearna preslikava $L: \mathbb{R}^n \to \mathbb{R}$, da je

$$f(a+h) = f(a) + L(h) + o(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Opomba 1.5.2.1. Pri n=1 je ta definicija ekvivalentna odvedljivosti f v točki a.

Trditev 1.5.3. Če tak L obstaja, je enolično določen.

Dokaz. Predpostavimo, da sta L_1 in L_2 linearni funkciji, za kateri je

$$f(a+h) = f(a) + L_1(h) + o_1(h) = f(a) + L_2(h) + o_2(h),$$

pri čemer velja

$$\lim_{h \to 0} \frac{|o_1(h)|}{\|h\|} = \lim_{h \to 0} \frac{|o_2(h)|}{\|h\|} = 0.$$

Potem velja

$$(L_1 - L_2)(h) = (o_2(h) - o_1(h)) = o(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Sledi, da je

$$\lim_{h \to 0} \frac{(L_1 - L_2)(h)}{\|h\|} = 0.$$

Ker pa je

$$\frac{(L_1-L_2)(0,\ldots,h,\ldots)}{|h|}=\ell_i,$$

kjer je ℓ_i koeficient pred *i*-to spremenljivko v L_1-L_2 , sledi, da je $L_1-L_2=0$.

Opomba 1.5.3.1. Preslikavi L pravimo diferencial funkcije f v točki a in ga označimo z $L = d_a f$. Funkcija $h \mapsto f(a) + d_a f(h)$ je najboljša afina aproksimacija funkcije $h \mapsto f(a+h)$ v okolici točke a.

Izrek 1.5.4. Če je f v notranji točki $a \in D$ diferenciabilna, je v a zvezna in parcialno odvedljiva glede na vse spremenljivke, diferencial f v točki a pa je enak

$$(d_a f)(h) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) h_i.$$

Dokaz. Naj bo L diferencial f v točki a. Sledi, da je

$$f(a+h) = f(a) + L(h) + o(h)$$
 in $\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0$.

Velja

$$L(h) = \sum_{i=1}^{n} \ell_i h_i,$$

zato je L zvezna v 0. Tako je

$$\lim_{h \to 0} f(a+h) = f(a) + \lim_{h \to 0} L(h) + \lim_{h \to 0} o(h) = f(a).$$

Naj bo sedaj $h=(0,\ldots,h_i,\ldots,0)$. Velja $||h||=|h_i|$, zato je

$$\frac{f(a+h) - f(a)}{h_i} = \frac{L(h)}{h_i} + \frac{o(h)}{h_i} = \ell_i + \frac{o(h)}{h_i}.$$

V limiti je to enako ℓ_i , zato ima f parcialni odvod. Očitno velja tudi navedena enakost. \square

Opomba 1.5.4.1. Obratno ne velja. Protiprimer je funkcija

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & x^2+y^2 \neq 0\\ 0, & x=y=0. \end{cases}$$

Opomba 1.5.4.2. Diferencial $d_a f$ lahko identificiramo z vektorjem

$$\left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right),$$

ki ga imenujemo gradient in označimo z grad f. Velja $(d_a f)(h) = (\operatorname{grad} f)(a) \cdot h$.

Izrek 1.5.5. Naj bo f v okolici a parcialno odvedljiva glede na vse spremenljivke in naj bodo parcialni odvodi zvezni v a. Potem je f v a diferenciabilna.

Dokaz. Naj bo $h \in \mathbb{R}^n$ vektor z dovolj majhno normo, da je točka a + h v konveksni³ okolici točke a, kjer veljajo zgornje predpostavke.⁴ Po Lagrangevem izreku je

$$I = f(a+h) - f(a)$$

$$= \sum_{i=1}^{n} (f(a_1, \dots, a_i + h_i, \dots, a_n + h_n) - f(a_1, \dots, a_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n))$$

$$= \sum_{i=1}^{n} f_{x_i}(a_1, \dots, a'_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n) \cdot h_i,$$

³ Če okolica ni konveksna, lahko pri uporabi Lagrangevega izreka »pademo ven« iz nje.

⁴ Na predavanjih je bil predstavljen dokaz za n=2, to pa je njegova splošna oblika.

kjer je a_i' med a_i in a_i+h_i za vse i. Ker so parcialni odvodi zvezni, za

$$\eta_i(h) = f_{x_i}(a_1, \dots, a'_i, a_{i+1} + h_{i+1}, \dots, a_n + h_n) - f_{x_i}(a)$$

velja

$$\lim_{h\to 0} \eta_i(h) = 0.$$

Naj bo

$$o(h) = \sum_{i=1}^{n} \eta_i(h) \cdot h_i.$$

Dobimo

$$f(a+h) = f(a) + \sum_{i=1}^{n} f_{x_i}(a) \cdot h_i + o(h).$$

Za dokaz obstoja diferenciala je tako dovolj dokazati, da je

$$\lim_{h \to 0} \frac{|o(h)|}{\|h\|} = 0.$$

Velja pa

$$\frac{|o(h)|}{\|h\|} \le \sum_{i=1}^{n} \frac{|h_i|}{\|h\|} \cdot |\eta_i(h)| \le \sum_{i=1}^{n} |\eta_i(h)|,$$

kar je v limiti enako 0.

Posledica 1.5.5.1. Vse elementarne funkcije so diferenciabilne, kjer so definirane.

1.6 Višji parcialni odvodi

Izrek 1.6.1. Naj bosta parcialna odvoda $\frac{\partial f}{\partial x_i}$ in $\frac{\partial f}{\partial x_j}$ v okolici a zvezna in naj na tej okolici obstajata

 $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)$ ter $\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)$,

ki sta zvezna v a. Tedaj velja

$$\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right) (a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a).$$

Dokaz. Dovolj je dokazati izrek za n=2, saj so preostale spremenljivke pri parcialnem odvajanju konstantne. Naj na f, definirani v okolici (a,b), obstajata odvoda f_x , f_y , ki sta na tej okolici zvezna, in parcialna odvoda $(f_x)_y$ ter $(f_y)_x$, ki sta zvezna v (a,b). Naj bo (h,k) po normi dovolj majhen. Označimo

$$\varphi(x) = f(x, b + k) - f(x, b).$$

Potem je

$$J = f(a+h, b+k) - f(a, b+k) - f(a+h, b) + f(a, b) = \varphi(a+h) - \varphi(a),$$

kar je po Lagrangeu enako

$$\varphi'(a') \cdot h = (f_x(a', b+h) - f_x(a', b)) \cdot h$$

za nek a' med a in h. S ponovno uporabo Lagrangevega izreka dobimo, da je

$$J = (f_x)_y(a', b') \cdot hk$$

za nek b' med b in b+h. Simetrično dobimo, da je

$$J = (f_y)_x(a'', b'') \cdot hk$$

za $a'' \mod a$ in a + h ter $b'' \mod b$ in b + k. Sledi, da je

$$(f_x)_y(a',b') = (f_y)_x(a'',b'').$$

Sedaj preprosto vzamemo limito $(h, k) \to (0, 0)$ in upoštevamo zveznost.

Opomba 1.6.1.1. Pravimo, da parcialni odvodi komutirajo in pišemo $\frac{\partial^2 f}{\partial x_i \partial x_j}$.

Definicija 1.6.2. Naj bo D odprta podmnožica \mathbb{R}^n . Vektorski prostor vseh k-krat zvezno parcialno odvedljivih funkcij na D označimo s $\mathcal{C}^k(D)$. Prostor gladkih funkcij na D je

$$\mathcal{C}^{\infty}(D) = \bigcap_{k=1}^{\infty} \mathcal{C}^k(D).$$

1.7 Diferenciabilnost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Definicija 1.7.1. Naj bo $D \subseteq \mathbb{R}^n$ z notranjo točko a in $F: D \to \mathbb{R}^m$ preslikava, definirana v okolici točke a. Pravimo, da je F diferenciabilna v točki a, če obstaja taka linearna preslikava $A: \mathbb{R}^n \to \mathbb{R}^m$, da je

$$F(a+h) = F(a) + A(h) + o(h),$$

kjer je

$$\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0.$$

Opomba 1.7.1.1. Podobno kot pri funkcijah je tak A, če obstaja, enolično določen in mu pravimo diferencial F v točki a, kar označimo z d_aF ali (DF)(a).

Izrek 1.7.2. Preslikava F je diferenciabilna v a natanko tedaj, ko so njene koordinatne funkcije diferenciabilne v a. Tedaj velja⁵

$$(DF)(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Dokaz. Naj bo F diferenciabilna v a. Obstaja matrika A, za katero je

$$F(a+h) = F(a) + A(h) + o(h)$$
 in $\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0$.

Sledi

$$f_j(a+h) = f_j(a) + \left(\sum_{i=1}^n A_{j,i}h_i\right) + o_j(h).$$

Ker je drugi člen na desni strani linearna funkcija v h in

$$\lim_{h \to 0} \frac{|o_j(h)|}{\|h\|} = 0,$$

je f_i diferenciabilna v a.

Predpostavimo sedaj, da so f_1, \ldots, f_m diferenciabilne. Sledi, da obstajajo taki $A_{i,j}$, da je

$$f_j(a+h) = f_j(a) + \left(\sum_{i=1}^n A_{j,i}h_i\right) + o_j(h),$$

kjer je

$$\lim_{h \to 0} \frac{|o_j(h)|}{\|h\|} = 0.$$

Sedaj ni težko videti, da za $A = [A_{j,i}]$ in $o = (o_1, \dots, o_m)$ velja

$$F(a+h) = F(a) + A(h) + o(h)$$
 in $\lim_{h \to 0} \frac{\|o(h)\|}{\|h\|} = 0$.

Sledi, da je F res diferenciabilna v a, parcialni odvodi pa so elementi matrike A.

⁵ Tej matriki pravimo *Jacobijeva matrika*.

Posledica 1.7.2.1. Če so vsi parcialni odvodi funkcij f_1, \ldots, f_m zvezni v a, je F diferenciabilna v a.

Izrek 1.7.3. Naj bosta $D \subseteq \mathbb{R}^n$ in $\Omega \subseteq \mathbb{R}^m$ ter $a \in D$ in $b \in \Omega$ notranji. Naj bo $F \colon D \to \Omega$ diferenciabilna v a z F(a) = b in naj bo $G \colon \Omega \to \mathbb{R}^k$ diferenciabilna v b. Potem je za $\Phi = G \circ F$ diferenciabilna v a in velja

$$(D\Phi)(a) = (DG)(b)(DF)(a) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_k}{\partial x_1} & \cdots & \frac{\partial g_k}{\partial x_m} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

Dokaz. Velja

$$F(a+h) = F(a) + (DF)(a) \cdot h + o_F(h), \text{ kjer je } \lim_{h \to 0} \frac{\|o_F(h)\|}{\|h\|} = 0,$$

in

$$G(b+k) = G(b) + (DG)(b) \cdot h + o_G(h), \text{ kjer je } \lim_{h \to 0} \frac{\|o_G(h)\|}{\|h\|} = 0.$$

Sledi

$$\Phi(a+h) = G(F(a+h))
= G(b+(DF)(a) \cdot h + o_F(h))
= \Phi(a) + (DG)(b) \cdot ((DF)(a) \cdot h + o_F(h)) + o_G((DF)(a) \cdot h + o_F(h))
= \Phi(a) + (DG)(b)(DF)(a) \cdot h + (DG)(b) \cdot o_F(h) + o_G((DF)(a) \cdot h + o_F(h))$$

Dovolj je tako dokazati, da je

$$\lim_{h \to 0} \frac{\|(DG)(b) \cdot o_F(h) + o_G((DF)(a) \cdot h + o_F(h))\|}{\|h\|} = 0.$$

Velja

$$\lim_{h \to 0} \frac{\|(DG)(b) \cdot o_F(h)\|}{\|h\|} = 0,$$

saj obstaja tak M, da je $\|(DG)(b)v\| \le M \cdot \|v\|$ in $\|(DF)(a)v\| \le M \cdot \|v\|$. Naj bo $\varepsilon > 0$. Potem obstaja tak $\delta > 0$, da za vse k, za katere je $\|k\| < \delta$, velja

$$||o_G(k)|| \le \varepsilon \cdot ||h||$$
.

Ker je

$$\lim_{h \to 0} ||(DF)(a) \cdot h + o_F(h)|| = 0,$$

je za $||h|| < \delta_1$ zgornji izraz manjši od δ . Sledi, da je za dovolj majhne h

$$||o_G((DF)(a)\cdot h + o_F(h))|| \le \varepsilon \cdot ||(DF)(a)\cdot h + o_F(h)||.$$

Dobimo, da je

$$\frac{\|o_G((DF)(a)\cdot h + o_F(a)\|}{\|h\|} \le \varepsilon \cdot \frac{\|(DF)(a)\cdot h + o_F(h)\|}{\|h\|} \le \varepsilon \cdot \left(M + \frac{\|o_F(h)\|}{\|h\|}\right),$$

torej je limita res enaka 0.

1.8 Izrek o implicitni funkciji

Izrek 1.8.1 (O implicitni funkciji). Naj bo $D \subseteq \mathbb{R}^2$ odprta množica in $f \in \mathcal{C}^1(D)$. Naj bo $(a,b) \in D$ taka točka, da velja:

- i) f(a,b) = 0
- ii) $f_y(a,b) \neq 0$

Tedaj obstajata okolica točke $a\ I=(a-\delta,a+\delta)$ in okolica točke $b\ J=(b-\varepsilon,b+\varepsilon)$, kjer je $I\times J\subseteq D$, za kateri za vse $x\in I$ obstaja enoličen $y\in J$, za katerega je f(x,y)=0. Obstaja enolična funkcija $\varphi\colon I\to J$, za katero velja

- i) $\varphi(a) = b$
- ii) $\forall x \in I : f(x, \varphi(x)) = 0$
- iii) $\varphi \in \mathcal{C}^1(I)$ in

$$\varphi'(x) = -\frac{f_x(x, \varphi(x))}{f_y(x, \varphi(x))}.$$

Dokaz. Brez škode za splošnost naj bo $f_y(a,b) > 0$. Sledi, da obstajata taka $\delta_1 > 0$ in $\varepsilon > 0$, da je

$$\overline{(a-\delta_1,a+\delta_1)}\times\overline{(b-\varepsilon,b+\varepsilon)}\subseteq D,$$

in je $f_y(x,y) > 0$ na tej okolici. Sledi, da je $y \mapsto f(a,y)$ na tem intervalu strogo naraščajoča. Sledi, da obstaja tak $0 < \delta \le \delta_1$, za katerega za vse $x \in (a - \delta, a + \delta)$ velja

$$f(x, b + \varepsilon) > 0$$
 in $f(x, b - \varepsilon) < 0$.

Ker je $y\mapsto f(x,y)$ strogo naraščajoča in zvezna, ima na $(b-\varepsilon,b+\varepsilon)$ natanko eno ničlo.

Preostane nam dokaz, da je φ odvedljiva. Naj bosta $x, x + \Delta x \in I$ in označimo $y = \varphi(x)$, $y + \Delta y = \varphi(x + \Delta x)$. Z uporabo Lagrangevega izreka dobimo

$$0 = f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y) + f(x, y + \Delta y) - f(x, y)$$

= $f_x(x', y + \Delta y)\Delta x + f_y(x, y')\Delta y$,

kjer je x' med x in $x + \Delta x$ ter y' med y in $y + \Delta y$. Dobimo

$$\Delta y = -\frac{f_x(x', y + \Delta y)}{f_y(x, y')} \Delta x.$$

Obstajata taka M in m, da je $|f_x(x,y)| \leq M$ za vse $(x,y) \in I \times J$ in $f_y(\widetilde{x},\widetilde{y}) \geq m > 0$, saj sta parcialna odvoda zvezna, $I \times J$ pa kompakt. Tako dobimo

$$\Delta y \le \frac{M}{m} \cdot \Delta x,$$

zato je φ zvezna. Velja pa

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} -\frac{f_x(x', y + \Delta y)}{f_y(x, y')} = -\frac{f_x(x, \varphi(x))}{f_y(x, \varphi(x))}.$$

Opomba 1.8.1.1. Če je $f \in \mathcal{C}^k$, je tudi $\varphi \in \mathcal{C}^k$.

Definicija 1.8.2. Naj bosta $D, \Omega \subseteq \mathbb{R}^n$ odprti. Preslikava $F: D \to \Omega$ je difeomorfizem, če je

- i) F bijekcija,
- ii) $F \in \mathcal{C}^1(D)$,
- iii) $F^{-1} \in \mathcal{C}^1(\Omega)$.

Trditev 1.8.3. Če je $F: D \to \Omega$ difeomorfizem, je (DF)(x) obrnljiva za vse x in velja

$$(DF^{-1})(F(x)) = (DF)^{-1}(x).$$

Dokaz. Velja $F^{-1}\circ F=\mathrm{id},$ kar nam z odvajanjem da

$$(DF^{-1})(F(x)) \cdot (DF)(x) = I.$$

Posledica 1.8.3.1. Naj bo $F: D \to \Omega$. Če je F difeomorfizem, je $\det(DF)(x) \neq 0$ na D.

Definicija 1.8.4. Naj bo $F: \mathbb{R}^{n+m} \to \mathbb{R}^m$ in $F \in \mathcal{C}^1$. Če je preslikava $x \mapsto F(x,y)$ za fiksen $y \in \mathbb{R}^m$ odvedljiva, označimo

$$\frac{\partial F}{\partial x}(x,y) = (D_x F)(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}.$$

Podobno označimo odvod po y.

Izrek 1.8.5 (O implicitni preslikavi). Naj bo $D \subseteq \mathbb{R}^n \times \mathbb{R}^m$ odprta in $(a, b) \in D$. Naj bo $F: D \to \mathbb{R}^m$ in $F \in \mathcal{C}^1(D)$. Če velja

- i) F(a, b) = 0 in
- ii) $\det \frac{\partial F}{\partial y}(a,b) \neq 0$,

potem obstajata taki okolici U točke a in V točke b, pri čemer je $U \times V \subseteq D$, in obstaja enolično določena preslikava $\varphi \colon U \to V$, za katero velja $\varphi \in \mathcal{C}^1(U)$ in

- i) $\varphi(a) = b$
- ii) $\forall (x,y) \in U \times V : F(x,y) = 0 \iff y = \varphi(x)$
- iii) $(D\varphi)(x) = -(D_yF)^{-1}(x,y)(D_xF)(x,y)$

Dokaz. Oglejmo si preslikavo $\Phi \colon D \to \mathbb{R}^n \times \mathbb{R}^m$, za katero je

$$\Phi(x, y) = (x, F(x, y)).$$

Velja $\Phi(a,b) = (a,0)$ in

$$(D\Phi)(a,b) = \begin{bmatrix} I_{\mathbb{R}^n} & 0\\ (D_x F)(a,b) & (D_y F)(a,b) \end{bmatrix},$$

zato je $\det(D\Phi)(a,b) = \det(D_yF)(a,b) \neq 0$. Po izreku 1.8.8 sledi, da obstaja inverzna preslikava na okolici (a,0), ki slika po predpisu $\Phi^{-1}: (x,w) \mapsto (x,G(x,w))$. Sedaj lahko preprosto vzamemo $\varphi \equiv G(x,0)$ na dovolj majhni okolici a.

Opomba 1.8.5.1. Če je $F \in \mathcal{C}^k(D)$, je $\varphi \in \mathcal{C}^k(U)$.

Lema 1.8.6. Naj bo $f: D \to \mathbb{R}$, $f \in \mathcal{C}^1$. Naj bosta $a, b \in D$ taki točki, da celotna daljica (1-t)a+tb leži v D. Potem obstaja tak ξ s te daljice, da velja

$$f(b) - f(a) = (Df)(\xi) \cdot (b - a).$$

 $Dokaz. \ \varphi \colon t \mapsto f((1-t)a+tb)$ zadošča Lagrangevem izreku. Sledi, da obstaja tak $\tau,$ da je

$$f(b) - f(a) = \varphi(1) - \varphi(0) = \varphi'(\tau) = (Df)((1 - \tau)a + \tau b) \cdot (b - a).$$

Posledica 1.8.6.1. Če obstaja tak M, da za vse x in j velja

$$\left| \frac{\partial f}{\partial x_i}(x) \right| \le M,$$

velja

$$|f(b) - f(a)| \le M\sqrt{n} \cdot |b - a|$$
.

Dokaz. Po Cauchyju je

$$|f(b) - f(a)| = |(Df)(\xi) \cdot (b - a)| \le |(Df)(\xi)| \cdot |b - a| \le M\sqrt{n} \cdot |b - a|$$
.

Posledica 1.8.6.2. Naj bo $f: D \to \mathbb{R}^m$, $f \in \mathcal{C}^1$ in $f = (f_1, \dots, f_m)$. Denimo, da obstaja tak M, da za vse x, i in j velja

$$\left| \frac{\partial f_i}{\partial x_i}(x) \right| \le M.$$

Tedaj je

$$||f(b) - f(a)|| \le M\sqrt{m \cdot n} \cdot ||b - a||.$$

Dokaz. Po posledici 1.8.6.1 velja

$$||f(b) - f(a)|| = \sqrt{\sum_{i=1}^{m} (f_i(b) - f_i(a))^2} \le M\sqrt{m \cdot n} \cdot ||b - a||.$$

Lema 1.8.7. Naj bo $H: D \to \mathbb{R}^n$ in $H \in \mathcal{C}^1(D)$, kjer je $D \subseteq \mathbb{R}^n$ odprta. Če je H(0) = 0 in (DH)(0) = 0, obstaja tak r > 0, da za vse $x_1, x_2 \in \overline{\mathcal{K}(0,r)}$ velja

$$||H(x_1) - H(x_2)|| \le \frac{1}{2} ||x_1 - x_2||.$$

Dokaz.Ker je $H\in\mathcal{C}^1(D),$ obstaja takr>0,da na $\overline{\mathcal{K}(0,r)}$ velja

$$\left| \frac{\partial h_i}{\partial x_j}(x) \right| \le \frac{1}{2n}.$$

Po posledici 1.8.6.2 dobimo, da je

$$||H(x_1) - H(x_2)|| \le \frac{1}{2n} \cdot n \cdot ||x_1 - x_2|| = \frac{1}{2} ||x_1 - x_2||.$$

Izrek 1.8.8 (O inverzni preslikavi). Naj bo $D \subseteq \mathbb{R}^n$ odprta, $F: D \to \mathbb{R}^n$, $F \in \mathcal{C}^1(D)$ in $\det(DF)(a) \neq 0$. Tedaj obstajata okolica $U \subseteq D$ točke a in okolica $V \subseteq \mathbb{R}^n$ točke b = F(a), za kateri je $F: U \to V$ difeomorfizem.

Dokaz. Brez škode za splošnost naj bo 0 = a = F(a) in (DF)(0) = I in označimo F(x) = x + H(x). Sledi, da je

$$\lim_{x \to 0} \frac{\|H(x)\|}{\|x\|} = 0.$$

Po lemi 1.8.7 obstaja tak r > 0, da na $\overline{\mathcal{K}(0,r)}$ velja

$$||F(x_1) - F(x_2)|| = ||x_1 - x_2 + H(x_1) - H(x_2)|| \ge \frac{1}{2} ||x_1 - x_2||,$$

zato je F na tej okolici injektivna, njen inverz pa je zvezen.

Trdimo, da je $\mathcal{V} = \overline{\mathcal{K}\left(0, \frac{r}{2}\right)} \subseteq F(\overline{\mathcal{K}(0, r)})$. Za $y \in \mathcal{V}$ tako iščemo $x \in \overline{\mathcal{K}(0, r)}$, za katerega je $x = -H(x) + y = T_y(x)$. Iščemo torej fiksno točko preslikave T_y , ki slika iz $\overline{\mathcal{K}(0, r)}$ v $\overline{\mathcal{K}(0, r)}$, saj je

$$||T_y(x)|| = ||-H(x) + y|| \le r.$$

Sledi, da je T_y skrčitev za $q=\frac{1}{2}$, saj je H skrčitev z istim koeficientom. Tak x torej obstaja po Banachovem skrčitvenem načelu.

Naj bo $\mathcal{U} = F^{-1}(\mathcal{V}) \cap \mathcal{K}(0,r)$. Vidimo, da je $F : \mathcal{U} \to \mathcal{V}$ bijekcija z zveznim inverzom G. Preostane le še dokaz, da je G diferenciabilna z diferencialom

$$(DG)(y) = (DF)^{-1}(G(y)).$$

Naj bo $y \in \mathcal{V}$ in $k \in \mathbb{R}^n$ dovolj majhen. Označimo G(y) = x in G(y+k) = x+h. Sledi, da je y = F(x) in

$$y + k = F(x + h) = F(x) + (DF)(x) \cdot h + o_F(h).$$

Iz leme 1.8.7 sledi, da je $||k|| \ge \frac{1}{2} ||h||$. Sedaj si oglejmo

$$\lim_{k \to 0} \frac{\|G(y+k) - G(y) - (DF)^{-1}(x) \cdot h\|}{\|k\|} = \lim_{k \to 0} \frac{\|h - (DF)^{-1}(x)((DF)(x) \cdot h + o_F(h))\|}{\|k\|}$$

$$= \lim_{k \to 0} \frac{\|h\|}{\|k\|} \cdot \frac{\|(DF)^{-1}(x)o_F(h)\|}{\|h\|}$$

$$\leq \lim_{k \to 0} 2M \cdot \frac{\|o_F(h)\|}{\|h\|},$$

kjer je M supremum iz trditve 1.4.2 za $(DF)^{-1}(x)$. Ko k limitira proti 0, tudi h limitira proti 0, s tem pa je izrek dokazan.

Opomba 1.8.8.1. Če je $F \in C^k(D)$, je $F^{-1} \in C^k(V)$.

Opomba 1.8.8.2. Naj bo $D \subseteq \mathbb{R}^n$ odprta, $F: D \to \mathbb{R}^n$, $F \in \mathcal{C}^1(D)$ in $\det(DF)(x) \neq 0$ za vse $x \in D$. Potem je F lokalni difeomorfizem.

Definicija 1.8.9. Naj bo $D \subseteq \mathbb{R}^n$ odprta in $F: D \to \mathbb{R}^m$, $F \in \mathcal{C}^1$. Rang preslikave F v točki $a \in D$ je $r = \operatorname{rang} DF(a)$. če je rang konstanten na D, pravimo, da je preslikava F ranga r na D.

Opomba 1.8.9.1. Pravimo, da je F maksimalnega ranga, če je $r = \min\{m, n\}$.

Posledica 1.8.9.2. Naj bo $D \subseteq \mathbb{R}^n$ odprta, $F: D \to \mathbb{R}^m$, $F \in \mathcal{C}^1$ in m < n. Naj bo F v $a \in D$ maksimalnega ranga in F(a) = 0. Tedaj obstajajo indeksi

$$i_1, \ldots, i_{n-m}, \quad j_1, \ldots, j_m \quad \text{in} \quad \forall k, l \colon i_k \neq j_l$$

in take \mathcal{C}^1 funkcije $\varphi_1, \ldots, \varphi_m$, definirane v okolici $(a_{i_1}, \ldots, a_{i_{n-m}})$, da je v neki okolici \mathcal{U} točke a enačba F(X) = 0 ekvivalentna sistemu

$$\forall k \colon x_{j_k} = \varphi_k(x_{i_1}, \dots, x_{i_{n-m}}).$$

Dokaz.Z ustrezno permutacijo koordinat se trditev reducira na izrek o implicitni preslikavi. $\hfill\Box$

Posledica 1.8.9.3. Naj bo $D \subseteq \mathbb{R}^n$ odprta, $F: D \to \mathbb{R}^m$, $F \in \mathcal{C}^1$ in $m \le n$. Naj bo $F \vee a \in D$ maksimalnega ranga. Potem obstaja taka okolica \mathcal{V} točke $b = F(a) \vee \mathbb{R}^m$ in okolica \mathcal{U} točke $a \vee D$, da je $F: \mathcal{U} \to \mathcal{V}$ surjektivna.

Dokaz. Za n=m je to posledica izreka o inverzni preslikavi. Za m< n si oglejmo preslikavo $\Phi(x,y)=F(x)-y$. Velja $\Phi(a,b)=0$ in

$$(D\Phi)(x,y) = \begin{bmatrix} (DF)(x) & -I \end{bmatrix}.$$

Brez škode za splošnost naj bo zadnjih m stolpcev (DF)(a) linearno neodvisnih. Po izreku o implicitni preslikavi lahko enačbo

$$F(x) - y = 0$$

razrešimo na x_{n-m+1}, \ldots, x_n kot funkcije x_1, \ldots, x_{n-m} in y_1, \ldots, y_m v okolici (a, b).

⁶ Izrek 7.4.2 v zapiskih predmeta Analiza 1 prvega letnika.

1.9 Taylorjeva formula

Izrek 1.9.1. Naj bo $f \in \mathcal{C}^{k+1}(D)$, kjer je $D \subseteq \mathbb{R}^n$ odprta. Naj bosta $a \in D$ in $h \in \mathbb{R}^n$ taki točki, da celotna daljica a + th za $t \in [0,1]$ leži v D. Potem obstaja tak $\theta \in (0,1)$, da je

$$f(a+h) = \sum_{i=0}^{k} \frac{(D_h^i f)(a)}{i!} + R_k,$$

kjer je

$$R_n = \frac{(D_h^{k+1} f)(a+\theta h)}{(k+1)!} \quad \text{in} \quad D_h = \sum_{i=1}^n \frac{\partial}{\partial x_i} h_i.$$

Dokaz. Naj bo $\varphi(t)=f(a+th).$ Po Taylorju za φ velja

$$\varphi(1) = \sum_{i=0}^{k} \frac{\varphi^{(i)}(0)}{i!} \cdot (1-0)^{i} + \frac{\varphi^{(k+1)}(\theta)}{(k+1)!} \cdot (1-0)^{k+1}.$$

Ker velja

$$\varphi^{(i)}(t) = (D_h^i f)(a + th),$$

je izrek dokazan.

Opomba 1.9.1.1. Če je $f \in \mathcal{C}^{\infty}(D)$, lahko tvorimo Taylorjevo vrsto

$$f(a+h) = \sum_{i=0}^{\infty} \frac{(D_h^i f)(a)}{i!}.$$

Če ta vrsta konvergira kf(a+h) za nek a in vse dovolj majhne h, pravimo, da je f realno analitična funkcija.

Posledica 1.9.1.2. Naj bo $f \in \mathcal{C}^{k+1}(D)$, kjer je $D \subseteq \mathbb{R}^n$ odprta. Naj bosta $a \in D$ in $h \in \mathbb{R}^n$ taki točki, da celotna daljica a + th za $t \in [0, 1]$ leži v D. Tedaj velja⁷

$$f(a+h) = \sum_{i=0}^{k} \frac{(D_h^i f)(a)}{i!} + o(\|h\|^k)$$
$$= \sum_{i=0}^{k} \frac{(D_h^i f)(a)}{i!} + O(\|h\|^{k+1})$$

Dokaz. Velja

$$R_n = \frac{(D_h^{k+1} f)(a + \theta h)}{(k+1)!}.$$

Ker je $f \in \mathcal{C}^{k+1}(D)$, so odvodi f zvezni na D, zato so na $\overline{\mathcal{K}(0,r)} \subseteq D$ omejeni. Sedaj lahko preprosto razpišemo $(D_h^{k+1}f)$ in uporabimo $|h_i| \leq ||h||$.

⁷ Velja $O(\|h\|^{k+1}) \le M \cdot \|h\|^{k+1}$ za vse $\|h\| < \delta$.

28. oktober 202

1.10 Ekstremi

Definicija 1.10.1. Naj bo $D \subseteq \mathbb{R}^n$ in $f: D \to \mathbb{R}$ funkcija.

i) f ima v $a \in D$ lokalni maksimum, če obstaja tak r > 0, da je

$$\forall x \in D \cap \mathcal{K}(0,r) \colon f(a) > f(x).$$

ii) f ima v $a \in D$ globalni maksimum, če velja

$$\forall x \in D \colon f(a) \ge f(x).$$

Simetrično definiramo lokalni in globalni minimum ter lokalni in globalni ekstrem.

Opomba 1.10.1.1. Če je D kompakt in f zvezna, ima f globalna ekstrema.

Definicija 1.10.2. Naj bo $f: D \to \mathbb{R}$ funkcija, $a \in D$ notranja točka in naj bo f v a diferenciabilna. Če je (Df)(a) = 0, je a stacionarna točka za f.

Trditev 1.10.3. Naj bo $D \subseteq \mathbb{R}^n$, $f: D \to \mathbb{R}$, $a \in D$ notranja in f diferenciabilna v a. Če ima f lokalni ekstrem v a, je a stacionarna točka za f.

Dokaz. Funkcije $\varphi_i(t) = f(a_1, \dots, t, \dots, a_n)$ imajo lokalni ekstrem v a_i , zato so vsi parcialni odvodi pri a enaki 0.

Definicija 1.10.4. Naj bo $f \in \mathcal{C}^2(D)$. Hessejeva matrika funkcije f je matrika

$$H_f(x) = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right].$$

Opomba 1.10.4.1. V stacionarni točki a je Taylorjev razvoj funkcije f enak

$$f(a+h) = f(a) + \frac{1}{2} \langle H_f(a+\theta h)h, h \rangle.$$

Trditev 1.10.5. Naj bo $f \in \mathcal{C}^2(D)$, kjer je $D \subseteq \mathbb{R}^n$ odprta, in $a \in D$.

- i) Če ima f v a lokalni minimum, je $H_f(a) \ge 0.8$
- ii) Če ima f v a lokalni maksimum, je $H_f(a) \leq 0$.

Dokaz. Naj ima f v a lokalni minimum. Sledi, da je (DF)(a) = 0. Za $h \in \mathbb{R}^n$ opazujemo preslikavo $\varphi(t) = f(a+th)$. Dobimo, da je $\varphi'(t) = 0$ in $\varphi''(t) \geq 0$, zato je

$$0 < \varphi''(t) = \langle H_f(a+th)h, h \rangle.$$

Izrek 1.10.6. Naj bo $D \subseteq \mathbb{R}^n$ odprta, $f \in \mathcal{C}^2(D)$ in $a \in D$ stacionarna točka f.

- i) Če je $H_f(a) > 0$, ima f v a strogi lokalni minimum.
- ii) Če je $H_f(a) < 0$, ima f v a strogi lokalni maksimum.

 $⁸ H_f(a)$ je pozitivno semidefinitna, glej definicijo 7.8.1 v zapiskih predmeta Algebra 1 prvega letnika.

iii) Če ima $H_f(a)$ pozitivne in negativne lastne vrednosti, f v a nima lokalnega ekstrema.

Dokaz. Tretja točka sledi direktno iz trditve 1.10.5.

Naj bo $H_f(a) > 0$ in h dovolj majhen. Potem je

$$f(a+h) - f(a) = \frac{1}{2} \langle H_f(a+\theta h)h, h \rangle$$
$$= \frac{1}{2} \|h\|^2 (\langle H_f(a)v, v \rangle + \langle E(h)v, v \rangle)$$

za $v = \frac{h}{\|h\|}$ in $E(h) = H_f(a + \theta h) - H_f(a)$. Ker je $\{v \in \mathbb{R}^n \mid \|v\| = 1\}$ kompaktna, obstaja tak m > 0, da je $\langle H_f(a)v, v \rangle \geq m$. Ker je $f \in \mathcal{C}^2(D)$, je H_f zvezna, zato za dovolj majhne h velja $|\langle E(h)v, v \rangle| \leq \frac{m}{2}$ in

$$f(a+h) - f(a) \ge \frac{1}{2} \|h\|^2 \cdot \frac{m}{2}.$$

Posledica 1.10.6.1. Naj bo $D \subseteq \mathbb{R}^2$ odprta, $f \in \mathcal{C}^2(D)$ in $a \in D$ stacionarna točka f.

- i) Če je det $H_f(a) > 0$, ima $f \vee a$ lokalni ekstrem.
 - a) Če je $f_{xx}(a) > 0$, ima $f \vee a$ lokalni minimum.
 - b) Če je $f_{xx}(a) < 0$, ima $f \vee a$ lokalni maksimum.
- ii) Če je det $H_f(a) < 0$, f v a nima lokalnega ekstrema.

Dokaz. The proof is obvious and need not be mentioned.

1.11 Vezani ekstremi

Izrek 1.11.1. Naj bo m < n in $D \subseteq \mathbb{R}^n$ odprta. Naj bo $G: D \to \mathbb{R}^m$ \mathcal{C}^1 preslikava na D ranga m in $G = (g_1, \ldots, g_m)$. Naj bo $M = G^{-1}(\{0\}) \neq \emptyset$ in $f \in \mathcal{C}^1(D)$. Če ima f v $p \in M$ lokalni ekstrem kot funkcija $f: M \to \mathbb{R}$, obstajajo take konstante $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$, da je

$$(Df)(p) = \sum_{i=1}^{m} \lambda_i(Dg_i)(p).$$

Dokaz. Naj bo $\Phi(x)=(f(x),G(x))$. Velja $\Phi(p)=(f(p),0)$. Če je rang $(D\Phi)(p)=m+1$, je $(D\Phi)(p)$ maksimalnega ranga, zato je Φ iz okolice p v okolico (f(p),0) surjektivna, zato so v zalogi vrednosti tako točke oblike $(f(p)+\varepsilon,0)$ kot $(f(p)-\varepsilon,0)$, zato f v p nima lokalnega ekstrema. Sledi, da je

$$\operatorname{rang}(D\Phi)(p) = \operatorname{rang}(DG)(p),$$

zato je (Df)(p) linearna kombinacija $(Dg_i)(p)$.

Opomba 1.11.1.1 (Lagrangeva metoda). Številom λ_i pravimo *Lagrangevi multiplikatorji*. Za vsak ekstrem f na M obstaja tak λ , da za

$$F(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i g_i(x)$$

velja $(DF)(x,\lambda) = 0$. Dobimo sistem

$$\frac{\partial f}{\partial x_j} - \sum_{i=1}^m \lambda_i \frac{\partial g_i(x)}{\partial x_j} = 0$$
 in $g_i(x) = 0$.

2. november 2021

2 Integrali s parametri

2.1 Eulerjeva gama

Definicija 2.1.1. Eulerjeva funkcija gama je funkcija

$$\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} \ dx.$$

Trditev 2.1.2. Velja $\Gamma(s+1) = s \cdot \Gamma(s)$.

Dokaz. Z integriranjem po delih dobimo

$$\Gamma(s+1) = \int_0^\infty x^s e^{-x} \, dx = -x^s e^{-x} \Big|_0^\infty + s \cdot \int_0^\infty x^{s-1} e^{-x} \, dx = s \cdot \Gamma(s). \quad \Box$$

Posledica 2.1.2.1. Velja $\Gamma(n+1) = n!$.

Definicija 2.1.3. Eulerjeva funkcija beta je funkcija

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx.$$

2.2 Zveznost in odvedljivost integralov s parametri

Definicija 2.2.1. Množica $Y \subseteq \mathbb{R}^n$ je lokalno kompaktna, če za vse $y \in Y$ obstaja tak r > 0, da je $Y \cap \overline{\mathcal{K}(y,r)}$ kompaktna.

Opomba 2.2.1.1. Zaprte in odprte množica so lokalno kompaktne.

Opomba 2.2.1.2. Zvezne funkcije na lokalno kompaktnih množicah so lokalno omejene in enakomerno zvezne.

Izrek 2.2.2. Naj bo I = [a, b] in $Y \subseteq \mathbb{R}^n$ lokalno kompaktna. Naj bo $f : I \times Y : \mathbb{R}$ zvezna. Potem je funkcija $F : I \times I \times Y \to \mathbb{R}$, podana s predpisom

$$F(u, v, y) = \int_{u}^{v} f(x, y) \ dx,$$

zvezna.

Dokaz. Ker je Y lokalno kompaktna, obstaja tak r > 0, da je $A = Y \cap \overline{\mathcal{K}(y_0, r)}$ kompaktna, zato je $I \times A$ kompaktna in je f na tej množici enakomerno zvezna. Naj bo $\varepsilon > 0$. Sledi, da obstaja tak δ , da za vse $y_1, y_2 \in A$, za katere velja $||y_1 - y_2|| < \delta$, velja

$$|f(x,y_1) - f(x,y_2)| < \frac{\varepsilon}{3 \cdot (b-a)}.$$

Ker je $I\times A$ kompaktna, je f na $I\times A$ omejena z M. Sedaj za $|u-u_0|$, $|v-v_0|<\frac{\varepsilon}{3(b-a)}$ dobimo

$$|F(u, v, y) - F(u_0, v_0, y_0)|$$

$$= \left| \int_u^v f(x, y) \, dx - \int_{u_0}^{v_0} f(x, y_0) \, dx \right|$$

$$\leq \left| \int_u^{u_0} f(x, y) \, dx \right| + \left| \int_v^{v_0} f(x, y) \, dx \right| + \left| \int_{v_0}^{u_0} \left(f(x, y) - f(x, y_0) \right) \, dx \right|$$

$$\leq M \cdot |u - u_0| + M \cdot |v - v_0| + \frac{\varepsilon}{3(b - a)} \cdot (b - a) < \varepsilon.$$

Posledica 2.2.2.1. Naj bo $Y \subseteq \mathbb{R}^n$ lokalno kompaktna in $f: [a, b] \times Y \to \mathbb{R}$ zvezna. Potem je

$$F(y) = \int_a^b f(x, y) \ dx$$

zvezna na Y.

Izrek 2.2.3. Naj bodo a < b in c < d realna in $D = [a, b] \times (c, d)$. Naj bo $f: D \to \mathbb{R}$ zvezna in v vsaki točki $(x, y) \in D$ parcialno odvedljiva po y z zveznim parcialnim odvodom. Tedaj je

$$F(y) = \int_{a}^{b} f(x, y) \ dx$$

zvezno odvedljiva in velja

$$F'(y) = \int_a^b f_y(x, y) \ dx.$$

Dokaz. Naj bo $y \in (c,d)$ in $[y-r,y+r] \subseteq (c,d).$ Naj bo $h \neq 0, \, |h| < r$ in $\varepsilon > 0.$ Potem je po Lagrangevem izreku

$$\left| \frac{F(y+h) - F(y)}{h} - \int_{a}^{b} f_{y}(x,y) \, dx \right| = \left| \frac{1}{h} \int_{a}^{b} \left(f(x,y+h) - f(x,y) \right) \, dx - \int_{a}^{b} f_{y}(x,y) \, dx \right|$$
$$= \left| \int_{a}^{b} \left(f(x,y^{*}) - f_{y}(x,y) \right) \, dx \right|,$$

kjer y^* leži med y in y+h. Ker je f_y na $[a,b]\times[y-r,y+r]$ enakomerno zvezna, obstaja tak $\delta>0$, da za $|h|<\delta$ velja

$$|f_y(x, y^*) - f_y(x, y)| < \frac{\varepsilon}{b - a},$$

zato je

$$\left| \int_a^b \left(f(x, y^*) - f_y(x, y) \right) \, dx \right| < \varepsilon.$$

Posledica 2.2.3.1. Naj bosta $\alpha,\beta\colon (c,d)\to [a,b]$ zvezno odvedljivi. Tedaj je

$$F(y) = \int_{\alpha(y)}^{\beta(y)} f(x, y) \ dx$$

zvezno odvedljiva na (c, d) z odvodom

$$F'(y) = \int_{\alpha(y)}^{\beta(y)} f_y(x, y) \, dx + \beta(y) f(\beta(y), y) - \alpha(y) f(\alpha(y), y).$$

Dokaz. Naj bo

$$\Phi(u, v, y) = \int_{u}^{v} f(x, y) \ dx.$$

Velja

$$\frac{\partial \Phi}{\partial v} = f(v, y), \quad \frac{\partial \Phi}{\partial u} = -f(u, y) \quad \text{in} \quad \frac{\partial \Phi}{\partial y} = \int_u^v f_y(x, y) \, dx.$$

Z odvajanjem zveze $F(y) = \Phi(\alpha(y), \beta(y), y)$ dobimo iskano enakost.

Posledica 2.2.3.2. Naj bo $D \subseteq \mathbb{R}^n$ odprta in $f: [a, b] \times D \to \mathbb{R}$ zvezna. Naj za vsak $(x, y) \in [a, b] \times D$ obstajajo zvezni parcialni odvodi $f_{y_i}(x, y)$. Tedaj je

$$F(y) = \int_{a}^{b} f(x, y) \ dx$$

 $\mathcal{C}^1(D)$ z odvodi

$$F_{y_j}(y) = \int_a^b f_{y_j}(x, y) \ dx.$$

Izrek 2.2.4 (Fubini). Naj bo $f: [a,b] \times [c,d] \to \mathbb{R}$ zvezna. Potem je

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, y) \ dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \ dy \right) dx.$$

Dokaz. Naj bo

$$\Phi(y) = \int_{c}^{y} \left(\int_{a}^{b} f(x, t) \ dx \right) dt$$

in

$$\Psi(y) = \int_a^b \left(\int_c^y f(x,t) \ dt \right) dx.$$

Dokazujemo, da je $\Phi \equiv \Psi.$ Označimo

$$g(x,y) = \int_{c}^{y} f(x,t) dt.$$

Očitno je $\Phi(c) = \Psi(c) = 0$, zato je dovolj dokazati $\Phi' \equiv \Psi'$. Velja

$$\Phi'(y) = \int_a^b f(x,y) \ dx,$$

po izreku 2.2.3 pa dobimo še

$$\Psi'(y) = \frac{d}{dy} \left(\int_a^b g(x, y) \ dx \right) = \int_a^b \frac{\partial g}{\partial y}(x, y) \ dx = \int_a^b f(x, y) \ dx.$$

2.3 Posplošeni integrali s parametrom

Definicija 2.3.1. Integral

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira enakomerno na Y, če za vsak $\varepsilon > 0$ obstaja tak b_0 , da za vse $b > b_0$ in $y \in Y$ velja

 $\left| \int_{b}^{\infty} f(x, y) \, dx \right| < \varepsilon.$

Opomba 2.3.1.1. Ekvivalentno integrali

$$F_b(y) = \int_a^b f(x, y) \ dx$$

konvergirajo enakomerno na Y proti F.

Trditev 2.3.2. Naj bo $f:[a,\infty)\times Y\to\mathbb{R}$ funkcija, ki je za vsak $y\in Y$ zvezna kot funkcija x. Predpostavimo, da obstaja taka zvezna funkcija $\varphi:[a,\infty)\to[0,\infty)$, da velja:

- i) $\forall (x,y) \in [a,\infty) \times Y \colon |f(x,y)| \le \varphi(x)$ in
- ii) $\int_{a}^{\infty} \varphi(x) dx < \infty$ obstaja.

Tedaj

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira enakomerno na Y.

Dokaz. Velja

$$\left| \int_{b}^{\infty} f(x, y) \, dx \right| \le \int_{b}^{\infty} |f(x, y)| \, dx \le \int_{b}^{\infty} \varphi(x) \, dx.$$

Opomba 2.3.2.1. Zveznost in odvedljivost sta lokalni lastnosti, zato je pogosto dovolj zahtevati lokalno enakomerno konvergenco: za Y, ki so lokalno kompaktne, je to ekvivalentno:

- i) za vse $y \in Y$ obstaja tak r > 0, da na $\mathcal{K}(y, r)$ integral konvergira enakomerno ali
- ii) na kompaktnih podmnožicah Y imamo enakomerno konvergenco.

Izrek 2.3.3. Naj bo $Y\subseteq\mathbb{R}^n$ lokalno kompaktna in $f\colon [a,\infty)\times Y\to\mathbb{R}$ zvezna. Če integral

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira lokalno enakomerno na Y, je F zvezna na Y.

Dokaz. Označimo

$$F_b(y) = \int_a^b f(x, y) dx.$$

Te funkcije so zvezne na Y in konvergirajo lokalno enakomerno na Y k F. Sledi, da je F lokalno zvezna, zato je zvezna.

Posledica 2.3.3.1. Γ je zvezna.

Izrek 2.3.4 (Fubini). Naj bo $f: [a, \infty) \times [c, d] \to \mathbb{R}$ zvezna in

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira enakomerno na [c, d]. Tedaj velja

$$\int_{c}^{d} (F(y)) \ dy = \int_{a}^{\infty} \left(\int_{c}^{d} f(x, y) \ dy \right) dx.$$

Dokaz. Vemo, da

$$\lim_{b \to \infty} F_b(y) = F(y)$$

konvergira enakomerno na [c,d]. Po izreku 2.2.4 sledi, da je

$$\int_{c}^{d} F(y) dy = \lim_{b \to \infty} \int_{c}^{d} F_{b}(y) dy$$

$$= \lim_{b \to \infty} \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx$$

$$= \int_{a}^{\infty} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$

Izrek 2.3.5 (Fubini). Naj bo $f\colon [a,\infty)\times [c,\infty)\to [0,\infty)$ zvezna. Predpostavimo, da integral

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira enakomerno na $[c, \infty)$ in integral

$$G(x) = \int_{0}^{\infty} f(x, y) \ dy$$

konvergira enakomerno na $[a, \infty)$. Če je

$$\int_{c}^{\infty} F(y) \ dy < \infty,$$

je tudi

$$\int_{a}^{\infty} G(x) \ dx < \infty,$$

in velja

$$\int_{c}^{\infty} F(y) \ dy = \int_{a}^{\infty} G(x) \ dx.$$

Dokaz. Velja

$$\int_{a}^{b} G(x) dx = \int_{a}^{b} \left(\int_{c}^{\infty} f(x, y) dy \right) dx$$

$$= \int_{c}^{\infty} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

$$\leq \int_{c}^{\infty} F(y) dy < \infty.$$

Izrek 2.3.6 (Fubini). Naj bo $f\colon [a,\infty)\times [c,\infty)\to \mathbb{R}$ zvezna. Predpostavimo, da je

$$y \mapsto \int_{a}^{\infty} |f(x,y)| dx$$

lokalno enakomerno konvergenten na $[c, \infty)$ in

$$x \mapsto \int_{c}^{\infty} |f(x,y)| dy$$

lokalno enakomerno konvergenten na $[a, \infty)$. Naj bo

$$\int_{c}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \ dx \right) dy < \infty.$$

Tedaj je

$$\int_{c}^{\infty} \left(\int_{a}^{\infty} f(x, y) \ dx \right) dy = \int_{a}^{\infty} \left(\int_{c}^{\infty} f(x, y) \ dy \right) dx.$$

Dokaz. Ker je

$$\left| \int_b^\infty f(x,y) \ dx \right| \le \int_b^\infty |f(x,y)| \ dx,$$

tudi

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

konvergira lokalno enakomerno na $[c, \infty)$ in

$$G(y) = \int_{c}^{\infty} f(x, y) \ dy$$

konvergira lokalno enakomerno na $[a, \infty)$. Sledi, da je

$$\lim_{b \to \infty} \int_a^b G(x) \ dx = \lim_{b \to \infty} \int_c^\infty F_b(y) \ dy.$$

Velja

$$\left| \int_{d}^{\infty} F_{b}(y) \, dy \right| \leq \int_{d}^{\infty} |F_{b}(y)| \, dy$$

$$= \int_{d}^{\infty} \left| \int_{a}^{b} f(x, y) \, dx \right| \, dy$$

$$\leq \int_{d}^{\infty} \left(\int_{a}^{b} |f(x, y)| \, dx \right) dy$$

$$\leq \int_{d}^{\infty} \left(\int_{a}^{\infty} |f(x, y)| \, dx \right) dy.$$

Za vse $\varepsilon > 0$ lahko najdemo tak d, da je

$$\left| \int_{d}^{\infty} F(y) \ dy \right| \le \int_{d}^{\infty} \left(\int_{a}^{\infty} |f(x,y)| \ dx \right) dy < \frac{\varepsilon}{3}.$$

Sledi, da je

$$\left| \int_{c}^{\infty} F_{b}(y) \, dy - \int_{c}^{\infty} F(y) \, dy \right|$$

$$\leq \left| \int_{d}^{\infty} F_{b}(y) \, dy \right| + \left| \int_{d}^{\infty} F(y) \, dy \right| + \left| \int_{c}^{d} F_{b}(y) \, dy - \int_{c}^{d} F(y) \, dy \right|$$

$$< \varepsilon.$$

Izrek 2.3.7. Naj bo $f:[a,\infty)\times(c,d)\to\mathbb{R}$ zvezna in v vsaki točki parcialno odvedljiva glede na y z odvodom f_y , ki je prav tako zvezen na $[a,\infty)\times(c,d)$. Naj

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

obstaja za vse $y \in (c, d)$. Naj

$$y \mapsto \int_{a}^{\infty} f_y(x,y) \ dx$$

konvergira lokalno enakomerno na (c,d). Potem je $F \in \mathcal{C}^1((c,d))$ in velja

$$F'(y) = \int_{a}^{\infty} f_y(x, y) \ dx.$$

Dokaz. Označimo

$$G(y) = \int_{a}^{\infty} f_y(x, y) \ dx$$

in naj bo $y_0 \in (c,d)$. Definiramo funkcijo

$$\Phi(y) = \int_{y_0}^y G(t) \ dt.$$

Ker je G zvezna, je $\Phi \in \mathcal{C}^1((c,d))$. Sledi, da je

$$\Phi(y) = \int_{y_0}^{y} \left(\int_a^{\infty} f_y(x, t) \, dx \right) dt$$

$$= \int_a^{\infty} \left(\int_{y_0}^{y} f_y(x, t) \, dt \right) dx$$

$$= \int_a^{\infty} (f(x, y) - f(x, y_0)) \, dx = F(y) - F(y_0).$$

Posledica 2.3.7.1. Naj bo $D \subseteq \mathbb{R}^n$ odprta in $f: [a, \infty) \times D \to \mathbb{R}$. Naj obstajajo zvezni parcialni odvodi f_{y_i} za vse i. Naj

$$F(y) = \int_{a}^{\infty} f(x, y) \ dx$$

obstaja za vse $y \in D$ in naj bodo

$$G_i = \int_a^\infty f_{y_i}(x, y) \ dx$$

lokalno enakomerno konvergentni za vse i. Tedaj je $F \in \mathcal{C}^1(D)$ in velja

$$\frac{\partial F}{\partial y_i}(y) = \int_a^\infty f_{y_i}(x, y) \ dx.$$

Izrek 2.3.8. Velja

$$\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2}.$$

Dokaz. Poglejmo

$$F(a) = \int_0^\infty e^{-ax} \frac{\sin x}{x} \, dx.$$

F konvergira enakomerno na $[c, \infty)$, saj je

$$\left| e^{-ax} \frac{\sin x}{x} \right| \le e^{-ax} \le e^{-cx}.$$

Naj bo $0 \le \alpha < \beta$, $f(x) = \sin x$ in $g(x) = \frac{e^{-ax}}{x}$. Po izreku 5.2.25 iz zapiskov Analize 1 obstaja tak γ , da je

$$\int_{\alpha}^{\beta} \frac{e^{-ax}}{x} \sin x \ dx = \frac{e^{-a\alpha}}{\alpha} \int_{\alpha}^{\gamma} \sin x \ dx = \frac{e^{-a\alpha}}{\alpha} \left(-\cos x \right) \Big|_{\alpha}^{\gamma}.$$

Sledi, da je

$$\left| \int_{\alpha}^{\beta} \frac{e^{-ax}}{x} \sin x \, dx \right| \le \frac{2}{\alpha},$$

zato F konvergira enakomerno na $[0,\infty)$ in je zvezna. Sledi

$$\int_0^\infty \frac{\sin x}{x} \, dx = F(0) = \lim_{a \to 0} F(a).$$

Kandidat za odvod F je

$$-\int_0^\infty e^{-ax}\sin x\ dx,$$

ta integral pa je lokalno enakomerno konvergenten na $(0,\infty),$ saj za $0 < c \leq a$ velja

$$\left| e^{-a} \sin x \right| \le e^{-cx}.$$

Sledi, da je F res odvedljiva z zgornjim odvodom, ki ga lahko integriramo po delih in dobimo

$$F'(a) = -\frac{1}{a^2 + 1}$$
.

Sledi, da je

$$F(a) = -\arctan(a) + C$$

in

$$0 \le |F(a)| \le \int_0^\infty e^{-ax} dx = \frac{1}{a},$$

zato je

$$\lim_{a \to \infty} F(a) = 0$$

in
$$C = \frac{\pi}{2} = F(0)$$
.

Posledica 2.3.8.1. Velja

$$\frac{2}{\pi} \int_0^\infty \frac{\sin(ax)}{x} \, dx = \operatorname{sgn}(a).$$

Trditev 2.3.9. Za $k \in \mathbb{N}$ velja

$$\Gamma^{(k)}(s) = \int_0^\infty x^{s-1} (\ln x)^k e^{-x} dx.$$

Dokaz. Velja, da je Γ zvezna in na $(0,\infty)$ konvergira enakomerno. Velja pa, da

$$\int_0^1 x^{s-1} (\ln x)^k e^{-x} \ dx$$

konvergira lokalno enakomerno na $(0, \infty)$,

$$\int_{1}^{\infty} x^{s-1} (\ln x)^k e^{-x} dx$$

pa lokalno enakomerno na \mathbb{R} .

Posledica 2.3.9.1. Γ je gladka.

Posledica 2.3.9.2. Γ je konveksna.

Posledica 2.3.9.3. $\ln \Gamma$ je konveksna.

Dokaz. Velja

$$\Gamma\left(\frac{s_1 + s_2}{2}\right) = \int_0^\infty \left(x^{\frac{s_1 - 1}{2}} e^{\frac{x}{2}}\right) \cdot \left(x^{\frac{s_1 - 1}{2}} e^{\frac{x}{2}}\right) dx.$$

Po Cauchyju⁹ sledi

$$\Gamma\left(\frac{s_1+s_2}{2}\right) \le \sqrt{\Gamma(s_1)} \cdot \sqrt{\Gamma(s_2)}.$$

Opomba 2.3.9.4. Funkcija Γ je enolično določena z naslednjimi lastnostmi:

- i) $\Gamma(1) = 1$,
- ii) $\Gamma(s+1) = s \cdot \Gamma(s)$,
- iii) $\Gamma > 0$,
- iv) $\Gamma \in \mathcal{C}^1(\mathbb{R}^+)$ in
- v) $\ln \Gamma$ je konveksna.

Trditev 2.3.10. Velja

$$\int_0^{\frac{\pi}{2}} \sin^{\alpha}(t) \cos^{\beta}(t) dt = \frac{1}{2} \cdot B\left(\frac{\alpha+1}{2}, \frac{\beta+1}{2}\right).$$

Dokaz. Naredimo substitucijo $x = \sin^2 t$.

Trditev 2.3.11. Velja

$$B(p,q) = \int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} dt.$$

Dokaz. Naredimo substitucijo $t = \frac{x}{1-x}$.

Izrek 2.3.12. Velja

$$B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}.$$

⁹ Vzamemo skalarni produkt $\langle f, g \rangle = \left| \int_0^\infty f(x)g(x) \ dx \right|.$

Dokaz. Velja

$$B(p,q) \cdot \Gamma(p+q) = \left(\int_0^\infty \frac{t^{p-1}}{(1+t)^{p+q}} \, dt \right) \cdot \left(\int_0^\infty x^{p+q-1} e^{-x} \, dx \right)$$
$$= \int_0^\infty \left(\int_0^\infty x^{p+q-1} e^{-x} \, dx \right) \frac{t^{p-1}}{(1+t)^{p+q}} \, dt$$
$$= \int_0^\infty \left(\int_0^\infty \left(\frac{x}{1+t} \right)^{p+q-1} \frac{t^{p-1} e^{-x}}{1+t} \, dx \right) dt$$

Sedaj naredimo substitucijo x = (1 + t)u. Sledi, da je zgornji izraz enak

$$= \int_0^\infty \left(\int_0^\infty u^{p+q-1} t^{p-1} e^{-u} e^{-tu} \, dx \right) dt$$

S Fubinijevim izrekom dobimo

$$= \int_0^\infty \left(\int_0^\infty u^{p+q-1} t^{p-1} e^{-u} e^{-tu} dt \right) dx$$

= $\int_0^\infty u^{s-1} e^{-u} \left(\int_0^\infty (ut)^{p-1} e^{-ut} u dt \right) du$

Sedaj naredimo še substitucijo ut = v

$$= \int_0^\infty u^{q-1} e^{-u} \Gamma(p) \ du$$

= $\Gamma(p) \cdot \Gamma(q)$.

Posledica 2.3.12.1. Velja

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$$

Posledica 2.3.12.2. Velja

$$\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = 1.$$

Trditev 2.3.13. Velja

$$\lim_{s \to \infty} \frac{\Gamma(s+1)}{s^s e^{-s} \sqrt{2\pi s}} = 1.$$

Dokaz. Razpišimo

$$\Gamma(s+1) = \int_0^\infty x^s e^{-x} dx.$$

Odvod funkcije $x\mapsto x^se^{-x}$ je enak $x^{s-1}e^{-x}(s-x)$. S substitucijo x=(1+u)s dobimo

$$\Gamma(s+1) = \int_{-1}^{\infty} (1+u)^s s^s e^{-s} e^{-su} du = \left(s^s e^{-s} \sqrt{s} \right) \sqrt{s} \cdot \int_{-1}^{\infty} \left((1+u) e^{-u} \right)^s du.$$

Sledi, da je

$$\frac{\Gamma(s+1)}{s^s e^{-s} \sqrt{s}} = \sqrt{s} \cdot \int_{-1}^{\infty} \left((1+u)e^{-u} \right)^s du.$$

Naj bo

$$\varphi(u) = \frac{\ln((1+u)e^{-u}) + \frac{u^2}{2}}{u^3}$$

Potem s substitucijo $v=u\sqrt{s}$ dobimo

$$\sqrt{s} \cdot \int_{-1}^{\infty} \left((1+u)e^{-u} \right)^s du = \sqrt{s} \cdot \int_{-1}^{\infty} e^{-\frac{su^2}{2}} \cdot e^{su^3 \varphi(u)} \ du = \int_{-\sqrt{s}}^{\infty} e^{-\frac{v^2}{2}} e^{\frac{v^3}{\sqrt{s}} \cdot \varphi\left(\frac{v}{\sqrt{s}}\right)} \ dv.$$

Ocenimo lahko

$$\sqrt{s} \int_{1}^{\infty} \left((1+u)e^{-u} \right) du \le \sqrt{s} 2^{s-1} e^{-(s-1)} M.$$

Sledi, da ta integral konvergira k 0, zato je dovolj izračunati

$$\lim_{s \to \infty} \sqrt{s} \int_{-1}^{1} \left((1+u)e^{-u} \right) du = \lim_{s \to \infty} \sqrt{s} \int_{-1}^{1} e^{-\frac{su^2}{2}} \cdot e^{su^3\varphi(u)} \ du = \lim_{s \to \infty} \int_{-\sqrt{s}}^{\sqrt{s}} e^{-\frac{v^2}{2}} e^{\frac{v^3}{\sqrt{s}} \cdot \varphi\left(\frac{v}{\sqrt{s}}\right)} \ dv.$$

Označimo $s=r^{10}$. Velja, da je

$$\int_{-r^5}^{-r} e^{-\frac{v^2}{2}} e^{\frac{v^3}{r^5} \cdot \varphi\left(\frac{v}{r^5}\right)} dv \le e^{-\frac{r^2}{2}} e^{-\frac{1}{r^2} \varphi\left(-\frac{1}{r^4}\right)} r^5,$$

kar limitira proti 0. Podobno ocenimo integral na mejah od r do r^5 . Opazimo še

$$e^{-\frac{M}{r^2}} \int_{-r}^{r} e^{-\frac{v^2}{2}} dv \le \int_{-r}^{r} e^{-\frac{v^2}{2}} e^{\frac{v^3}{r^5} \cdot \varphi\left(\frac{v}{r^5}\right)} dv \le e^{\frac{M}{r^2}} \int_{-r}^{r} e^{-\frac{v^2}{2}} dv,$$

zato integral limitira proti $\sqrt{2\pi}$.

2.4 Riemannov integral

Definicija 2.4.1. Delitev kvadra je razdelitev na kvadre

$$\prod_{j=1}^{n} \left[x_{l_j-1}^j, x_{l_j}^j \right],$$

kjer je za vsaj j

$$a_j = x_0^j < x_1^j < \dots < x_{m_j}^j = b_j.$$

Definicija 2.4.2. Delitev D' je *finejša*, če vsebuje vse delilne točke D.

Definicija 2.4.3. Naj bo K kvader in $f: K \to \mathbb{R}^n$ omejena funkcija. Označimo $m(k) = \inf_k f$ in $M(k) = \sup_k f$. Naj bo D delitev K s kvadri K_1, \ldots, K_N . Spodnja Darbouxjeva vsota je

$$s(f, D) = s(D) = \sum_{i=1}^{N} m(K_i) \cdot V(K_i),$$

zgornja Darbouxjeva vsota pa

$$S(f, D) = S(D) = \sum_{i=1}^{N} M(K_i) \cdot V(K_i).$$

Trditev 2.4.4. Naj bo D' finejša od D. Potem je

$$s(D) \le s(D') \le S(D') \le S(D).$$

Dokaz. Indukcija.

Trditev 2.4.5. Naj bosta D_1 in D_2 delitvi K. Potem je

$$s(D_1) \leq S(D_2)$$
.

Dokaz. Vzamemo delitev, ki je finejša od obeh.

Posledica 2.4.5.1. Obstajata

$$S = \inf S(D)$$
 in $s = \sup s(D)$.

Definicija 2.4.6. Omejena funkcija $f \colon K \to \mathbb{R}$ je na K integrabilna po Darbouxxju, če velja

$$I_D = s = S$$
.

Označimo

$$I_D = \int_K f(x) \ dx = \int_K f(x) \ dV(x) = \int_K \cdots \int_K f(x_1, \dots, x_n) \ dx_n \cdots dx_1.$$

Definicija 2.4.7. Naj bo *D* delitev kvadra in

$$\xi = \{\xi_j \in k_j \mid k_j \text{ je kvader v } D\}.$$

Riemannovo vsoto definiramo kot

$$R(f, D, \xi) = \sum_{j=1}^{n} f(\xi_j) \cdot V(k_j).$$

17. november 2021

Definicija 2.4.8. Funkcija f je na K Riemannovo integrabilna, če obstaja limita njenih Riemannovih vsot

$$I_R = \lim_{\delta \to 0} R(f, D, \xi),$$

kjer je δ največja stranica kvadrov v delitvi.

Izrek 2.4.9. Naj bo $f: K \to \mathbb{R}$ omejena. Naslednje trditve so ekvivalentne:

- i) f je integrabilna po Darbouxju
- ii) f je integrabilna po Riemannu
- iii) za vse $\varepsilon > 0$ obstaja taka delitev D, da je $S(D) s(D) < \varepsilon$.

Če integrala obstajata, sta enaka.

Dokaz. Tretja točka je očitno ekvivalentna prvi. Sedaj redpostavimo, da je f Riemannovo integrabilna z integralom I_R . Naj bo $\varepsilon > 0$. Potem obstaja tak $\delta > 0$, da za vse delitve, za katere so vsi intervali krajši od δ , in izbore točk velja

$$|R(f,D,\xi)-I_R|<\frac{\varepsilon}{3}.$$

Sedaj točke v ξ izbiramo tako, da se približujemo supremumu na vsakem kvadru. Sledi, da je v limiti

$$|S(D) - I_R| \le \frac{\varepsilon}{3}.$$

Podobno dobimo

$$|s(D) - I_R| \le \frac{\varepsilon}{3},$$

zato je

$$S(D) - s(D) < \frac{\varepsilon}{2}$$

Sledi, da je f integrabilna po Darbouxu z enakim integralom.

Predpostavimo še, da je f integrabilna po Darbouxju.

Lema. Naj bo D_0 delitev K in $\varepsilon > 0$. Potem obstaja tak $\delta > 0$, da za vsako delitev D, ki ima vse robove krajše od δ , velja, da je vsota prostornin tistih kvadrov delitve D, ki niso vsebovani v kakšen kvadru v D_0 , manjša od ε .

Dokaz. Vzamemo

$$\delta = \frac{\varepsilon}{V(K) \cdot \sum \frac{N_i - 1}{b_i - a_i}}.$$

Naj bo $\varepsilon > 0$ in $|f| \leq M$. Obstaja taka delitev D_0 , da je

$$I_D - \frac{\varepsilon}{2} < s(D_0) \le I_D \le S(D_0) < I_D + \frac{\varepsilon}{2}.$$

Sedaj uporabimo zgornjo lemo za $\frac{\varepsilon}{2M}$. Naj bo D delitev s kvadri K_1, \ldots, K_N , ki imajo vse stranice manjše od δ , kjer so K_1, \ldots, K_m tisti, ki niso vsebovani v nobenem kvadru D_0 . Sledi, da je

$$\left| \sum_{i=1}^{m} f(\xi_i) \cdot V(K_i) \right| \le \left| \sum_{i=1}^{m} f(\xi_i) \right| \cdot V(K_i) < M \frac{\varepsilon}{2M} = \frac{\varepsilon}{2}.$$

V vseh ostalih kvadrih lahko f omejimo s supremumom in infimumom kvadrov delitve D_0 . Sledi, da je

$$s(D_0) \le \sum_{i=m+1}^{N} f(\xi_i) \cdot V(K_i) \le S(D_0).$$

S trikotniško neenakostjo dobimo

$$|R(f, D, \xi) - I_D| \le \left| \sum_{i=1}^m f(\xi_i) \cdot V(K_i) \right| + \left| \sum_{i=m+1}^N f(\xi_i) \cdot V(K_i) - I_D \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad \Box$$

Izrek 2.4.10. Naj bo $f: K \to \mathbb{R}$ zvezna. Potem je f integrabilna.

Dokaz.~Kje kompaktna, zato je fenakomerno zvezna na K.~ Naj bo $\varepsilon>0.~$ Potem obstaja tak $\delta>0,$ da velja

$$\max\{|x_i - y_i| \mid i \le n\} < \delta \implies |f(x) - f(y)| \le \frac{\varepsilon}{V(K)}.$$

Za delitev D z robovi, ki so krajši od δ , tako dobimo

$$S(D) - s(D) = \sum_{i=1}^{N} (M(K_i) - m(K_i)) \cdot V(K_i)$$

$$= \sum_{i=1}^{N} (f(x_i) - f(y_i)) \cdot V(K_i)$$

$$< \frac{\varepsilon}{V(K)} \cdot V(K) = \varepsilon.$$

Trditev 2.4.11. Veljajo naslednje lastnosti:

- i) Integrabilne funkcije tvorijo vektorski prostor nad \mathbb{R} , integral pa je linearen funkcional.
- ii) Če sta $f \leq g$ integrabilni, je $\int\limits_K f(x) \ dx \leq \int\limits_K g(x) \ dx.$
- iii) |f| je integrabilna in velja $\left| \int_K f(x) \ dx \right| \leq \int_K |f(x)| \ dx.$

Dokaz. The proof is obvious and need not be mentioned.

Izrek 2.4.12 (Fubini). Naj bosta $A \subseteq \mathbb{R}^n$ in $B \subseteq \mathbb{R}^m$ kvadra in $f: A \times B \to \mathbb{R}$ integrabilna. Denimo, da je za vse $x \in A$ funkcija $f^x: y \mapsto f(x,y)$ integrabilna na B. Tedaj je na A integrabilna funkcija $x \mapsto \int_B f(x,y) \, dy$ in velja

$$\iint\limits_{A\times B} f(x,y) \ dx \ dy = \int\limits_{A} \left(\int\limits_{B} f(x,y) \ dy \right) dx.$$

Dokaz. Naj bo D_A delitev množice A na kvadre A_1,\ldots,A_N in D_B delitev množice B na kvadre B_1,\ldots,B_M . Potem je $K_{i,j}=A_i\times B_j$ delitev $A\times B$. Naj bo

$$m_{i,j} = \inf_{K_{i,j}} f$$
 in $M_{i,j} = \sup_{K_{i,j}} f$

Sledi, da je

$$m_{i,j} \le \inf_{B_j} f^x(y) \le \sup_{B_j} f^x(y) \le M_{i,j}.$$

Tako dobimo

$$\sum_{j=1}^{M} m_{i,j} \cdot V(B_j) \le s(f^x, D_B) \le S(f^x, D_B) \le \sum_{j=1}^{M} M_{i,j} \cdot V(B_j)$$

Naj bo $g(x) = \int_B f^x(y) dy$. Sledi, da je

$$\sum_{j=1}^{M} m_{i,j} \cdot V(B_j) \le \inf_{A_i} g(x) \le \sup_{A_i} g(x) \le \sum_{j=1}^{M} M_{i,j} \cdot V(B_j).$$

Sledi, da je

$$s(f, D_A \times D_B) \le s(g, D_A) \le s(f, D_A \times D_B).$$

Sledi, da je g integrabilna na A, integral pa je enak integralu f na $A \times B$.

Posledica 2.4.12.1. Naj bo $f: A \times B \to \mathbb{R}$ zvezna. Tedaj je

$$\iint\limits_{A\times B} f(x,y) \ dx \ dy = \int\limits_{A} \left(\int\limits_{B} f(x,y) \ dy \right) dx.$$

2.5 Prostornina

Definicija 2.5.1. Naj bo $A \subseteq \mathbb{R}^n$ množica, omejena s kvadrom K, in $f: A \to \mathbb{R}$ omejena. Naj bo

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A. \end{cases}$$

Pravimo, da je f integrabilna na A, če obstaja integral

$$\int_{A} f(x) \ dx = \int_{K} \widetilde{f}(x) \ dx.$$

Definicija 2.5.2. Karakteristična funkcija množice A je funkcija

$$\chi_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A. \end{cases}$$

Definicija 2.5.3. Omejena množica $A \subseteq \mathbb{R}^n$ ima *Jordanovo prostornino*, če je 1 integrabilna na A. Tedaj označimo

$$V(A) = \int_A 1 \ dx.$$

Opomba 2.5.3.1. Za $a, b \in \mathbb{R}^n$ velja

$$V([a,b]) = V([a,b]) = V((a,b]) = V((a,b)).$$

Trditev 2.5.4. Naj bo $B \subseteq \mathbb{R}^n$ omejena. Množica B ima prostornino 0 natanko tedaj, ko za vse $\varepsilon > 0$ obstajajo taki kvadri Q_1, \ldots, Q_N , da velja

$$B \subseteq \bigcup_{i=1}^{n} Q_i$$
 in $\sum_{i=1}^{n} V(Q_i) < \varepsilon$.

Dokaz. Če ima B prostornino 0, preprosto vzamemo tiste kvadre iz dovolj fine delitve v Darbouxjevi vsoti, ki vsebujejo kakšno točko iz B.

Naj bo C unija kvadrov Q_i . Sledi, da je

$$\inf_{D} S(\chi_{B}, D) \le \inf_{D} S(\chi_{C}, D) \le V(C) < \varepsilon.$$

Trditev 2.5.5. Naj bodo B_1, \ldots, B_M množice s prostornino 0. Tedaj ima njihova unija prostornino 0.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 2.5.6. Naj bo $K \subseteq \mathbb{R}^n$ kvader in $f: K \to \mathbb{R}$ integrabilna. Tedaj ima njen graf prostornino 0 v \mathbb{R}^{n+1} .

Dokaz. Naj bo $\varepsilon > 0$. Potem obstaja taka delitev D kvadra K, da je $S(D) - s(D) < \varepsilon$. Sedaj preprosto izberemo pokritje

$$K_i \times [m(K_i), M(K_J)],$$

kjer so K_i kvadri delitve D.

Trditev 2.5.7. Omejena množica $A \subseteq \mathbb{R}^n$ ima prostornino natanko tedaj, ko je

$$V(\partial A) = 0.$$

Dokaz. Velja, da je

$$S(\chi_A, D) - s(\chi_A, D) \le S(\chi_{\partial A}, D) - s(\chi_{\partial A}, D),$$

zato je $V(\partial A) = 0$ zadosten pogoj.

Naj obstaja V(A) in naj bo $\varepsilon > 0$. Sledi, da obstaja delitev D, za katero je

$$S(\chi_A, D) - s(\chi_A, D) < \frac{\varepsilon}{6^n}.$$

Sedaj lahko vzamemo tako finejšo delitev, da je razmerje med najdaljšim in najkrajšim robom kvadrov manjše od 2. Sledi, da za vsaka dva kvadra K_1 in K_2 delitve D' velja

$$V(K_1) \le 2^n V(K_2).$$

Naj bo K_0 kvader delitve D, ki leži v notranjosti K. Vidimo, da ima okolico, sestavljeno iz 3^n sosednjih kvadrov.

Zdaj vzamemo tak K_0 , da je $K_0 \cap \partial A \neq \emptyset$. S \widetilde{K}_0 označimo unijo njegovih 3^n sosednjih kvadrov. Sledi, da \widetilde{K}_0 seka tako A kot A^c , zato vsaj eden izmed teh 3^n kvadrov seka tako A kot A^c – označimo ga z K'_0 . Sledi, da je

$$S(\chi_{\partial A}, D) = \sum_{K_0 \cap \partial A \neq \emptyset} V(K_0) \le 2^n \cdot \sum_{K_0 \cap \partial A \neq \emptyset} V(K_0') \le 2^n \cdot 3^n \sum_{\substack{K' \cap A \neq \emptyset \\ K' \cap A^c \neq \emptyset}} V(K') < 6^n \cdot \frac{\varepsilon}{6^n} = \varepsilon. \quad \Box$$

Trditev 2.5.8. Naj ima $A \subseteq K$ prostornino, kjer je K kvader. Tedaj ima A^{c} prostornino in velja

$$V(A^{\mathsf{c}}) = V(K) - V(A).$$

Dokaz. $1 - \chi_A$ je integrabilna na K.

Trditev 2.5.9. Naj bo $A \subseteq K$ množica s prostornino 0 in $f: K \to \mathbb{R}$ omejena in taka, da za vse $x \in K \setminus A$ velja f(x) = 0. Potem je f integrabilna na K in je

$$\int\limits_K f(x) \ dx = 0.$$

Dokaz. Naj bo $\varepsilon > 0$ in M tak, da za vse $x \in K$ velja $|f(x)| \leq M$. Ker je V(A) = 0, obstajajo kvadri Q_1, \ldots, Q_N s skupno prostornino največ $\frac{\varepsilon}{2M}$, ki pokrijejo A. Brez škode za splošnost je A v notranjosti njihove unije. Sedaj poglejmo delitev D kvadra K, ki jo dobimo s projekcijo vseh oglišč na vsako koordinatno os. Dobimo, da je

$$S(f, D) = \sum_{\exists i : K_j \subseteq Q_i} M(K_j) \cdot V(K_j)$$

$$= \sum_{\exists i : K_j \subseteq Q_i} M(K_j) \cdot V(K_j)$$

$$\leq M \cdot \sum_{i=1}^{N} V(Q_i)$$

$$< \frac{\varepsilon}{2}.$$

Podobno je

$$s(f,D) > -\frac{\varepsilon}{2}.$$

Posledica 2.5.9.1. Naj bosta $f, g: K \to \mathbb{R}$ omejeni in f integrabilna na K. Če je

$$V(\{x \in K \mid f(x) \neq g(x)\}) = 0,$$

je g integrabilna in velja

$$\int\limits_K f(x) \ dx = \int\limits_K g(x) \ dx.$$

Definicija 2.5.10. Naj bo $A \subseteq \mathbb{R}^n$. Pravimo, da ima A mero 0, če za vsak $\varepsilon > 0$ obstaja števno mnogo kvadrov Q_1, Q_2, \ldots , da je

$$A \subseteq \bigcup_{i=1}^{\infty} Q_i$$
 in $\sum_{i=1}^{\infty} V(Q_i) < \varepsilon$.

Opomba 2.5.10.1. Ekvivalentno lahko za Q_i vzamemo odprte kvadre.

Opomba 2.5.10.2. Množica z ničelno prostornino ima mero 0.

Trditev 2.5.11. Števna unija množic z mero 0 ima mero 0.

Dokaz. Prostornino pokritja vsake množice omejimo z $\frac{\varepsilon}{2^i}.$

Posledica 2.5.11.1. Vsaka števna množica ima mero 0.

Posledica 2.5.11.2. Naj bo $f: \mathbb{R}^n \to \mathbb{R}$ zvezna. Tedaj ima njen graf mero 0.

Dokaz. Velja

$$G(f) = \bigcup_{j=1}^{\infty} G\left(f|_{[-j,j]^n}\right),\,$$

ker pa je f integrabilna, imajo te množice prostornino 0.

Trditev 2.5.12. Naj bo $A \subseteq \mathbb{R}^n$ kompaktna. Tedaj je V(A) = 0 natanko tedaj, ko ima A mero 0.

Dokaz. Naj ima A mero 0 in $\varepsilon > 0$. Tedaj obstajajo taki kvadri Q_1, Q_2, \ldots , da je

$$A \subseteq \bigcup_{i=1}^{\infty} \operatorname{Int}(Q_i)$$
 in $\sum_{i=1}^{\infty} V(Q_i) < \varepsilon$.

Ker je A kompaktna, obstaja končno podpokrijte.

Definicija 2.5.13. Če lastnost L(x) ne velja samo za x iz množice z mero 0, pravimo, da L velja $skoraj \ povsod$.

Opomba 2.5.13.1. Če ima A mero 0, A nima notranjosti.

Izrek 2.5.14 (Lebesque). Naj bo K kvader in $f: K \to \mathbb{R}$ omejena. Potem je f integrabilna natanko tedaj, ko je na K zvezna skoraj povsod.

Opomba 2.5.14.1. Trditev 2.5.7 je posledica Lebesqueovega izreka. V(A) namreč obstaja natanko tedaj, ko je χ_A zvezna skoraj povsod, χ_A pa ni zvezna natanko na robu A, ki je kompaktna.

Lema 2.5.15. Naj bo $f: K \to [0, \infty)$ integrabilna. Denimo, da je

$$\int\limits_K f(x) \ dx = 0.$$

Tedaj za vsak c > 0 velja

$$V(\{x \in K \mid f(x) \ge c\}) = 0.$$

Dokaz. Naj bo $C = \{x \in K \mid f(x) \ge c\}$ in $S(f, D) < c \cdot \varepsilon$. Tedaj velja

$$c \sum_{K_i \cap C \neq \emptyset} V(K_i) \le \sum_{K_i \cap C \neq \emptyset} M(K_i) \cdot V(K_i) \le \sum_{i=1}^n M(K_i) \cdot V(K_i) < c \cdot \varepsilon.$$

Posledica 2.5.15.1. Naj bo $f: K \to [0, \infty)$ integrabilna. Če je

$$\int\limits_K f(x) \ dx = 0,$$

je f(x) = 0 skoraj povsod.

Dokaz. Velja

$$\{x \in K \mid f(x) \neq 0\} = \bigcup_{i=1}^{\infty} \left\{ x \in K \mid f(x) \ge \frac{1}{i} \right\}.$$

Posledica 2.5.15.2. Naj bosta $f, g: K \to \mathbb{R}$ integrabilni in naj za vse x velja $f(x) \leq g(x)$. Če velja

$$\int_{K} f(x) \ dx = \int_{K} g(x) \ dx,$$

je f = q skoraj povsod.

Trditev 2.5.16. Naj bo $A \subseteq \mathbb{R}^n$ omejena in $f: A \to \mathbb{R}$ integrabilna. Če ima A mero 0, je

$$\int\limits_A f(x) \ dx = 0.$$

Dokaz. Naj bo

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A \end{cases}$$

in D delitev K. Za vsak kvader K_i delitve D velja $K_i \cap A^c \neq 0$. Sledi, da je $M(K_i) \geq 0$ in $M(K_i) \leq 0$, zato je

$$\inf_{D} S(\tilde{f}, D) \ge 0 \ge \sup_{D} s(\tilde{f}, D).$$

Trditev 2.5.17. Naj bo A omejena množica s prostornino in $f: A \to \mathbb{R}$ omejena. Potem je f integrabilna na A natanko tedaj, ko je f zvezna skoraj povsod na A.

Dokaz. Naj bo K kvader, ki vsebuje A, in

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A. \end{cases}$$

f je integrabilna na A natanko tedaj, ko je \widetilde{f} integrabilna na K, kar pa je ekvivalentno temu, da je \widetilde{f} zvezna skoraj povsod na K.

Če je f zvezna skoraj povsod na A, je \widetilde{f} zvezna skoraj povsod na K, saj so vse točke nezveznosti vsebovane v zaprtju A, njen rob pa ima mero 0. Če pa je f integrabilna na A, je \widetilde{f} zvezna skoraj povsod na K, zato je zvezna skoraj povsod tudi na A.

Trditev 2.5.18. Naj bo $A \subseteq \mathbb{R}^n$ omejena. Integrabilne funkcije na A tvorijo vektorski prostor nad \mathbb{R} , integral pa je linearen funkcional. Če je $f(x) \leq g(x)$ na A, kjer sta f in g integrabilni, velja

$$\int\limits_A f(x) \ dx \le \int\limits_A g(x) \ dx.$$

Dokaz. The proof is obvious and need not be mentioned.

Stvarno kazalo

Zvezna, 6

Riemannova vsota, 35

 \mathbf{R}