Tutorial 1

Learning multi-grained aspect target sequence for Chinese sentiment analysis

H Peng, Y Ma, Y Li, E Cambria Knowledge-Based Systems (2018)

Ideas

- Task: Aspect term sentiment classification
- Problems
 - Eg.: The red apple released in California was not that interesting.
 - Eg.: The room size is small, but the view is excellent.
- Opportunities in Chinese
 - Compositionality

Solutions

- Adaptive word embeddings
 - Attention mechanism
- Aspect target sequence modelling
 - Sequence modelling-LSTM
- Multi-grained learning
 - Fusion of granularities


```
8 #Sentence embedding vectors
9 inputs = tf.placeholder(tf.float32,shape=(None, 35,300))
10 #Sentence sequential info learning
11 lstm1 = LSTM(output dim=75, return sequences=True,W regularizer=12(0.01))(inputs)
12 #Aspect mask
13 aspect id = Input(dtype=np.float32,batch shape=[inputs_shape[0],inputs_shape[1],3])
14 #Aspect words embedding
15 x_batch_dot = K.batch_dot(inputs,aspect_id, axes=[1, 1])
16 #Adaptive embedding learning
17 def aspect_layer(seq):
      vec=x_batch_dot[:,:,seq]
      vec2= K.repeat(vec, 35)
      atten inputs=tf.concat(2,[lstm1,vec2])
      atten_inputs=tf.cast(atten_inputs,tf.float32)
      gi= Dense(1, bias=True, activation='tanh')(atten inputs)
      ai= Dense(1,bias=False,activation='softmax')(gi)
      atten output = K.batch dot(atten inputs,ai, axes=[1, 1])
      atten output=K.squeeze(atten output,2)
      return atten output
27
28 # aspect from 1 to 3
29 atten output1=aspect layer(0)
30 atten output2=aspect layer(1)
31 atten_output3=aspect_layer(2)
32 # construct input sequence for target sequence learning
33 lstm input= tf.concat(1,[tf.expand dims(atten output1, 1),tf.expand dims(atten output2, 1)])
34 lstm_input1=tf.concat(1,[lstm_input,tf.expand_dims(atten_output3, 1)])
35 #Aspect target sequence learning
36 var0= LSTM(output dim=100, activation='tanh',return_sequences=False,W_regularizer=12(0.01), inner_activation='sigmoid')(lstm_input1)
37 #Dropout
38 var1= <u>Dropout(0.5)(</u>var0)
39 #Softmax layer
40 predictions= Dense(3, bias=False, activation='softmax')(var1)
41 #Sentiment labels
42 labels = <u>tf</u>.placeholder(<u>tf</u>.float32, shape=(None,3))
44 loss = tf.reduce_mean(categorical_crossentropy(labels, predictions))
45 #Optimizer
46 train step = tf.train.AdagradOptimizer(learning rate=0.01).minimize(loss)
47 #Evaluation metric
48 acc_value = accuracy(labels, predictions)
```

Q1

	Term	Docs1	Docs2	Docs3
	Angels Fools	1	0	0
	Angels rush	1	0	1
	Angels fear	0	0	1
	Fools rush	1	0	0
	Fear fools	0	1	0
	Fear to	0	1	1
	Where angels	1	0	1
	To tread	1	0	0
a) Which	Fear in	0	1	1
query	Rush in	1	0	1

1. fools rusn in

- 2. where angels rush in
- 3. angels fear to tread
- b) Which are , if any, the document retrieved?

Q2

term	doc1	doc2	doc3
angels	#36, 174, 252, 651\$		#15, 123, 412\$
fools	#1, 17, 74, 222\$	#8, 78, 108, 458\$	
fear		#13, 43, 113, 433\$	#18, 328, 528\$
in	#3, 37, 76, 444, 851\$	#10, 20, 110, 470, 500\$	#5, 17, 25, 195\$
rush	#2, 66, 194, 321, 702\$		#4, 16, 404\$
to	#47, 86, 234, 999\$	#14, 24, 774, 944\$	#19, 319, 599, 709\$
tread	#57, 94, 333\$		
where	#67, 124, 393, 1001\$	#11, 41, 101, 421, 431\$;	#14, 36, 736\$

- (b) "where angels rush in"
- (c) "angels fear to tread"

Biword Index

- Index every consecutive pair of terms in the text as a phrase
- Es. Friends, Romans, Countrymen would generate the biwords:
 - 1. friends romans
 - 2. romans countrymen
- Longer phrase queries can be broken into the Boolean query on biwords:
- Es. stanford university palo alto
- stanford university AND university palo AND palo alto

Positional index

- Extract inverted index entries for each distinct term: to, be, or, not.
- Merge their doc:position lists to enumerate all positions with "to be or not to be".
 - l to:
 - 2:1,17,74,222,551; *4*:8,16,190,429,433; *7*:13.23.191: ...
 - be:
 - 1:17,19; *4*:17,191,291,430,434; *5*:14,19,101; ...
- Same general method for proximity searches

Group discussion

A1.a

- "fools rush in" => fools rush AND rush in
- "where angels rush in" => where angels AND angels rush AND rush in
- "angels fear to tread" => angels fear AND fear to AND to tread

A1.b

- "fools rush in" = doc1
- "where angels rush in" = doc1, doc3
- "angels fear to tread" = null

"fools rush in" => doc1

Fools #1, 17, 74, 222\$ **rush** #2, 66, 194, 321, 702\$ **in** #3, 37, 76, 444, 851\$

"where angels rush in" => doc3

Where #14, 36, 736\$ angels #15, 123, 412\$ rush #4, 16, 404\$ in #5, 17, 25, 195\$

Doc1; No positional merge available

Where #67, 124, 393, 1001\$ angels #36, 174, 252, 651\$ rush #2, 66, 194, 321, 702\$ in #3, 37, 76, 444, 851\$

Q3

Consider the table of term frequencies for 3 documents denoted Doc1, Doc2, Doc3 below. Compute the tf-idf weights for the terms car, auto, insurance, best, for each document, using the idf values from the table below.

term	Doc 1	Doc 2	Doc3	idf
car	27	10	24	1.65
auto	3	33	0	2.08
insuran ce	0	33	29	1.62
best	14	0	17	1.5

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\mathbf{w}_{t,d} = (1 + \log tf_{t,d}) \times \log_{10}(N / df_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document

Group discussion

$$\mathbf{w}_{t,d} = (1 + \log_{10} \mathsf{tf}_{t,d}) \times \log_{10} (N/\mathsf{df}_t)$$

tf	Doc 1	Doc 2	Doc3	idf
car	27	10	24	1.65
auto	3	33	0	2.08
insuran ce	0	33	29	1.62
1+log	Doc	Doc	Doc3	1.5
tf	1	2		
car	2.43	2	2.38	
			2.38	
car	2.43	2		

w	Doc 1	Doc 2	Doc3
car	4.01	3.3	3.93
auto	3.08	5.24	0
insuran ce	0	4.08	3.99
best	3.23	0	3.35

Q4

Refer to the tf and idf values for four terms and three documents from Q3. Compute the two top scoring documents on the query *best car insurance* for each of the following weighing schemes: (i) nnn.atc; (ii) ntc.atc. add.add

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$				

tf-idf example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term	Document			Query					Pro d		
	tf- raw	tf-wt	wt	norm alize	tf-raw	tf-wt	df	idf	wt	norma lize	
auto	1	1	1	0.52	0	0	5000	2.3	0	0	0
best	0	0	0	0	1	1	50000	1.3	1.3	0.34	0
car	1	1	1	0.52	1	1	10000	2.0	2.0	0.52	0.27
insurance	2	1.3	1.3	0.68	1	1	1000	3.0	3.0	0.78	0.53

Doc length
$$= \sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score = $0 + 0 + 0.27 + 0.53 = 0.8$

Group discussion

Doc3

Find document vectors: (i) nnn (ii) ntc

10*1*1= 24*1*1=

Doc2

Doc1

27*1*1=

nnn

car

	21	10		Z 4		
auto	3*1*1=3	33*1*1= 33	= (0*1*1=0		
incuran	∩*1*1 – ∩	22*1*1-		70*1*1 —		
ntc	Doc1		Do	c2		Doc3
car	(27*1.65=44 = 0.90	.55)/49.6	(10 = 0.1	0*1.65=16.5 L9	5)/88.55	(24*1.65=39.6)/66.5= 0.60
auto	(3*2.08=6.24)/49.6= 0.13		5=	(33*2.08=68.64)/88.5 5= 0.78		0*2.08=0
insuranc e	0*1.62=0		(33 5= 0.6		16)/88.5	(29*1.62=46.98)/66.5= 0.71
best	(14*1.5=21)/ 0.42	49.6=	0*1	1.5=0		(17*1.5=25.5)/66.5= 0.38

max(tf)=1

length=2.76

Find the vector for query best car insurance: (i,ii) atc

	tf	a		t		at	atc
car	1	0.5+0 1	.5*1/1=	1.65		1.65	0.60
auto	0	0		0		0	0
insurance	1	0.5+0 1	.5*1/1=	1.62		1.62	0.59
hest	1	0.5 + 0	5*1/1=	15		1 5	0.54
nnn.atc	Doc1		Doc2		Do	с3	
car	27*0.6	=16.2	10*0.6=	6	24 ^x	0.6=14.4	
auto	0		0		0		
insuranc e	0*0.59	=0	33*0.59 47	=19.	29 ³	°0.59=17.1	
best	14*0.5 6	4=7.5	0		17 ³	°0.54=9.18	3
SUM	23.75 ((3 rd)	25.47 (2	nd)	40.	69 (1 st)	

(ii) ntc.atc

ntc	Doc1	Doc2	Doc3	atc
car	0.90	0.19	0.60	0.60
auto	0.13	0.79	0	0
insurance	0	0.61	0.71	0.59
best	0.42	0	0.38	0.54

ntc.atc	Doc1	Doc2	Doc3
car	0.90*0.6=0.54	0.19*0.6=0.11	0.60*0.6=0.36
auto	0	0	0
insurance	0	0.61*0.59=0.3 6	0.71*0.59=0.42
best	0.42*0.54=0.2 3	0	0.38*0.54=0.21
SUM	0.77 (2 nd)	0.47(3 rd)	0.99 (1 st)

Q5

	Antony and Cleopatr a	Julius Caesar	The Tempest
Antony	157	73	0
Brutus	28	157	0
Caesar	232	227	0
Calpurni a	0	10	0
Cleopatr a	23	0	37
Morey	0	10	1 5

a) Compute the cosine similarity and the Euclidian distance between the documents and the fuery: "caesar mercy brutus" based on the term-document count matrix above.

b) How does the Euclidian distance change if we normalize the vectors?

NB: Compute the vector space using tf-idf formula M^f/Ω_t^2)

Euclidean distance

Recall

Euclidean distance: the distance between points (x₁,y₁) and (x₂,y₂) is given by:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Unfortunately, this distance is biased by the length of the vectors. So is not able to detect the correct terms distribution

Cosine similarity illustrated

Recall

Group discussion

Compute the vector space

	Antony and Cleopatr a	Julius Caesar	The Tempest	Query
Antony	0.56	0.50	0	0
Brutus	0.43	0.56	0	0.18
Caesar	0.59	0.59	0	0.18
Calpurni a	0	0.95	0	0
Cleopatr	0.42	0	0.45	0
Mercy	0	0.35	0.38	0.18
Worser	0.23	0	0.18	0

$$ED = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$cos_sim(q, d) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}$$

	Antony and Cleopatra	Julius Caesar	The Tempest
Cosine similarity	0.57	0.62	0.35
Euclidian distance	0.90	1.22	0.58

Normalized values						
	Antony and Cleopatr a	Julius Caesar	The Tempest	Query		
Antony	0.251	0.169	0	0		
Brutus	0.193	0.19	0	0.33		
Caesar	0.265	0.2	0	0.33		
Calpurni a	0	0.322	0	0		
Cleopatr	0.188	0	0.446	0		
Mercy	0	0.119	0.376	0.33		
Worser	0.103	0	0.178	0		
Euclidia n distance normaliz	0.49	0.47	0.67			

Tutorial 2

Context-Dependent Sentiment Analysis in User-Generated Videos

Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A., & Morency, L. P. (2017). In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 873-883).

Idea

- Utterance context influences sentiment
 - eg.: Movie review of 'Green Hornet':
 - "The Green Hornet did something similar"
 - "It engages the audience more",
 - "they took a new spin on it",
 - "and I just loved it"

Solutions

- Model the order of utterance appearance
 - Contextual LSTM
- Fusion of modalities
 - Hierarchical Framework


```
8 def multimodal(unimodal activations):
      print "starting multimodal"
10
      #Fusion (appending) of features
      train data = np.concatenate((unimodal activations['text train'], unimodal activations['audio train'], unimodal activations['video train']), axis=2)
      test_data = np.concatenate((unimodal activations['text_test'], unimodal activations['qudio test'], unimodal activations['video test']), axis=2)
      train mask=unimodal activations['train mask']
      test mask=unimodal activations['test mask']
      train_label=unimodal_activations['train_label']
      test label=unimodal activations['test label']
20
       #Multimodal model
21
      input data = <u>Input</u>(shape=(train data.shape[1],train data.shape[2]))
      masked = Masking(mask_value =0)(input_data)
24
      lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)
      inter = Dropout(0.9)(lstm)
      inter1 = <u>TimeDistributed(Dense(500</u>, activation='relu'))(inter)
      inter = Dropout(0.9)(inter1)
      output = TimeDistributed(Dense(2,activation='softmax'))(inter)
29
      model = Model(input data, output)
      aux = Model(input_data, inter1)
      model.compile(optimizer='adadelta', loss='categorical crossentropy', sample weight mode='temporal')
      early_stopping = EarlyStopping(monitor='val_loss', patience=10)
      model.fit(train data, train label,
                       epochs=200,
                       batch size=10,
                       sample_weight=train_mask,
                       shuffle=True,
                       callbacks=[early stopping],
                       validation split=0.2)
```


Consider the following 10 class conditioned word probabilities (c_0 =non-spam, c_1 =spam):

Word	l w _i	brand	huge	hottest	incredible	million	new	offers	pay	save	family
p(w _i	$c_0)$	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.02	0.03	0.40
p(w _i	c ₁)	0.98	0.92	0.91	0.99	0.98	0.99	0.93	0.99	0.99	0.02

For each of the 3 email snippets below, ignoring case, punctuations, and words beyond the 10 known vocabulary words, compute the class conditioned document probabilities for each of the 3 documents (6 in total: $P(d_1|c_0)$, $P(d_2|c_0)$, $P(d_3|c_0)$, $P(d_1|c_1)$, $P(d_2|c_1)$, $P(d_3|c_1)$) using the Naïve Bayes model.

Recall

Naive Bayes Classifier

$$d = \langle x_1, x_2, \dots, x_n \rangle$$

$$C_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid X_1, X_2, ..., X_n)$$
 The probability of a document d being in class c .

Dependence

= argmax
$$P(X_1, X_2, ..., X_n | C_j) P(C_j)$$
 Bayes' Rule

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(X_{1} | c_{j}) P(X_{2} | c_{j}) \dots P(X_{n} | c_{j}) P(c_{j})$$
Conditional

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N} \qquad \hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, \frac{Assumption_1}{C = c_j) + 1}}{N(C = c_j) + k}$$

Q1: documents

Word w _i	brand	huge	hottest	incredible	million	new	offers	pay	save	family
$p(w_i c_0)$	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.02	0.03	0.40
$p(w_i c_1)$	0.98	0.92	0.91	0.99	0.98	0.99	0.93	0.99	0.99	0.02

- d1: OEM software throw packing case, leave CD, use electronic manuals. **Pay** for software only and **save** 75-90%! Find **incredible** discounts! See our special **offers**!
- d2: Our **Hottest** pick this year! **Brand new** issue Cana Petroleum! VERY tightly held, in a booming business sector, with a **huge** publicity campaign starting up, Cana Petroleum (CNPM) is set to bring all our readers **huge** gains. We advise you to get in on this one and ride it to the top!
- d3: Dear friend, How is your **family**? hope all of you are fine, if so splendid. Yaw Osafo-Maafo is my name and former Ghanaian minister of finance. Although I was sacked by President John Kufuor on 28 April 2006 for the fact I signed 29 **million** book publication contract with Macmillan Education without reference to the Public Procurement Board and without Parliamentary approval.

Q1: Naïve Bayes model

$$p(d_j \mid c_k) \mu \prod_{i=1}^t p(w_i \mid c_k)^{f(w_i, d_j)}$$

where $f(w_i, d_j) = frequency of word w_i in document d_i$

Word w _i	brand	huge	hottest	incredible	million	new	offers	pay	save	family
$p(w_i c_0)$	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.02	0.03	0.40
$p(w_i c_1)$	0.98	0.92	0.91	0.99	0.98	0.99	0.93	0.99	0.99	0.02

Hint

-

d2: Our **Hottest** pick this year! **Brand new** issue Cana Petroleum! VERY tightly held, in a booming business sector, with a **huge** publicity campaign starting up, Cana Petroleum (CNPM) is set to bring all our readers **huge** gains. We advise you to get in on this one and ride it to the top! $\mu(d_j \mid C_k) \mu \prod_{i=1}^{l} \mu(W_i \mid C_k)^{f(W_i, d_j)}$

 $p(d_2|c_0) = p(hottest|c_0)*p(brand|c_0)*p(new|c_0)*p(huge|c_0)^2$

Word w _i	brand	huge	hottest	incredible	million	new	offers	pay	save	family
$p(w_i c_0)$	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.02	0.03	0.40
$p(w_i c_1)$	0.98	0.92	0.91	0.99	0.98	0.99	0.93	0.99	0.99	0.02

Group discussion

A1

$$p(d_1 | c_0) \mu \ 0.05^1 \times 0.20^1 \times 0.02^1 \times 0.03^1 = 6 \times 10^{-6}$$

$$p(d \mid q) \mu \ 0.99 \times 0.93 \times 0.99 \times 0.99 \approx 9.02 \times 10^{-1}$$

$$p(d_2 \mid c_0) \mu \ 0.10 \times 0.20^2 \times 0.30 \times 0.10 = 1.2 \times 10^{-4}$$

$$p(d_2 \mid q) \mu \ 0.98 \times 0.92^2 \times 0.91 \times 0.99 \approx 7.47 \times 10^{-1}$$

$$p(d_3 \mid c_0) \mu 0.05 \times 0.40 = 2 \times 10^{-2}$$

$$p(d_3 | c_1) \mu 0.98 \times 0.02 = 1.96 \times 10^{-2}$$

Compute the posterior probabilities of each document in Question 1, given c_0 and c_1 , (6 in total: $P(c_0|d_1)$, $P(c_1|d_1)$, $P(c_0|d_2)$, $P(c_1|d_2)$, $P(c_0|d_3)$, $P(c_1|d_3)$) assuming that 80% of all email received are spam, i.e., prior class probability $P(c_1)=0.8$ (from which you can derive $P(c_0)=1-P(c_1)$), and finally decide whether each document $P(c_1) = 0.8$ ($P(c_1) = 0.8$) $P(c_2) = 0.8$

Word w _i	brand	huge	hottest	incredible	million	new	offers	pay	save	family
$p(w_i c_0)$	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.02	0.03	0.40
$p(w_i c_1)$	0.98	0.92	0.91	0.99	0.98	0.99	0.93	0.99	0.99	0.02

Group discussion

$$P(c_0) = 1 - P(c_1) = 0.2$$

A2

- $P(c_0|d_1) \approx P(d_1|c_0)xP(c_0) = 6x10^{-6}x0.2 = 1.2x10^{-6}$
- $P(c_1|d_1) \approx P(d_1|c_1)xP(c_1)=0.902x0.8=0.72$
- $P(c_0|d_2) \approx P(d_2|c_0)xP(c_0)=1.2x10^{-4}x0.2=2.4x10^{-5}$
- $P(c_1|d_2) \approx P(d_2|c_1) \times P(c_1) = 0.747 \times 0.8 = 0.6$
- $P(c_0|d_3) \approx P(d_3|c_0)xP(c_0)=0.02x0.2=0.004$
- $P(c_1|d_3) \approx P(d_3|c_1)xP(c_1)=0.0196x0.8=0.016$

Build a Naïve Bayes classifier using words as features for the training set in Table 2 and use the classifier to classify the test set in the table.

	docID	words in document	in $c = China$?
training set	1	Taipei Taiwan	yes
	2	Macao Taiwan Shanghai	yes
	3	Japan Sapporo	no
	4	Sapporo Osaka Taiwan	no
test set	5	Taiwan Taiwan Sapporo	?

Bayes probability

- \square Prior probability $P(c_k)$
 - Probability of expecting class c_k before taking in account any evidence
- Likelihood: $P(doc_j|c_k) = \prod_{i=1}^n P(x_i|c_k)$
 - True only because we make the "naive" conditional independence assumptions
- Description Posterior probabilit $\mathcal{P}(c_k|doc_j) \propto P(c_k)P(doc_j|c_k)$

Naive Bayes: Learning

$$P(c_K) = rac{N(c_k)}{N} {
ightharpoonup Number of documents belonging to class } rac{c_k}{N}$$
 Total number of documents

$$P(x_i|c_K) = egin{array}{c} Number of occurrence of term x_i in docs of class c_k \ \hline N(x_i,c_k) + 1 \ \hline N(X,c_k) + |Vocabulary| \ \hline Number of terms appearing in docs of class c_k \ \hline Number of te$$

MAP classifier

- MAP is maximum a posteriori
 - Detect the class that maximize our posteriori probability

$$\underset{c_k}{\operatorname{argmax}} P(c_k|doc_j) \propto \underset{c_k}{\operatorname{argmax}} P(c_k) \prod_{i=1}^n P(x_i|c_k)$$

We just try all the class c_k

Group discussion

A3

- Prior probability:
 - $p(China)=2/4, p(\sim China)=2/4$

	docID	words in document	in $c = China$?
training set	1	Taipei Taiwan	yes
	2	Macao Taiwan Shanghai	yes
	3	Japan Sapporo	no
	4	Sapporo Osaka Taiwan	no
test set	5	Taiwan Taiwan Sapporo	?

A3 (learning)

Doc Id	Terms					
1	Taipei	Taiwan				
2	Macao	Taiwan	Shanghai			
3	Japan	Sapı	poro			
4	Sapporo	Osaka Taiwan				

Vocabulary = {Taipei, Taiwan, Macao, Shanghai, Japan, Sapporo, Osaka}

|Vocabulary| = 7

Doc class	#Terms
Yes	5
No	5

A3 (learning)

$$P(Taipei|yes)=(1+1)/(5+7)=2/12$$

$$P(Taipei|no)=(0+1)/(5+7)=1/12$$

$$P(Taiwan|yes)=(2+1)/(5+7)=3/12$$

$$P(Taiwan|no)=(1+1)/(5+7)=2/12$$

$$P(Sapporo|yes) = (0+1)/(5+7) = 1/12$$

$$P(Sapporo|no)=(2+1)/(5+7)=3/12$$

$$P(x_i|c_k) = \frac{N(x_i, c_k) + 1}{N(X, c_k) + |Vocabilary|}$$

A3 (classifying)

Doc Id	Terms				
5	Taiwan	Taiwan	Sapporo		

$$P(c_k|d_5) \propto P(c_k) \prod_{i=1}^n P(x_i|c_k)$$

P(yes|d₅) =
$$\frac{2}{4} \times \left(\frac{3}{12}\right)^{2} \times \frac{1}{12} \approx 2.60 \times 10^{-3}$$

P(no|d₅) =
$$\frac{2}{4} \times \left(\frac{2}{12}\right)^{2} \times \frac{3}{12} \approx 3.47 \times 10^{-3}$$

Answer: d₅ belongs to the class 'no

Each of two Web search engines A and B generates a large number of pages uniformly at random from their indexes. 30% of A's pages are present in B's index, while 50% of B's pages are present in A's index. What is the ratio between the number of pages in A's index and the number of pages in B's?

Relative Size from Overlap Given two engines A and B

Recall

Sample URLs randomly from A

Check if contained in B and vice versa

$$A \cap B = (1/2) * Size A$$
 $A \cap B = (1/6) * Size B$

$$(1/2) * Size A = (1/6) * Size B$$

$$\therefore Size A / Size B = (1/6) / (1/2) = 1/3$$

Each test involves: (i) Sampling (ii) Checking

Group discussion

A4

- $30\% \times A = 50\% \times B$
- \Box A/B = 5/3