Multiagent Behaviors in Neural Network

Jimmy Lin **Barry Feigenbaum**

Prof. Risto Miikkulainen

Department of Computer Science The University of Texas At Austin

November 3, 2014

- 1 Overview of Multiagent System
- 2 Detailed Research Literature
- 3 Discussions
- 4 Our Research Project
- 6 Appendix

What we currently have?

- Committee Machine
- Reinforcement Learning
- Neuro-evolution
- High-level Behaviors

Motivation

- Most of works so far has focused exclusively on single agents we can
 extend reinforcement learning straightforwardly to multiple agents if
 they are all independent.
- Intuitive idea: Multiple agents together will outperform any single agent due to the fact that they have more resources and a better chance of receiving rewards.
- Today, we will touch a really broad area

"Multiagent System" (M.A.S.).

Introduction

What is multiple agent system?

- Unfortunately, it is not formally defined by M.A.S. community.
- Employment of multiple agents (10 to thousands).
- Intelligent mechanisms to address interactions between agents.

When is it proposed?

- a relatively new sub-field of computer science
- has only been studied since about 1980
- only gained widespread recognition since about the mid-1990s

The agents in a multi-agent system have several important characteristics:

- Autonomy: the agents are at least partially independent, self-aware, autonomous.
- Local views: no agent has a full global view of the system, or the system is too complex for an agent to make practical use of such knowledge.
- Decentralization: there is no designated controlling agent (or the system is effectively reduced to a monolithic system).

Applications/Simulations

- Pacman
- Crowd Simulation / Crowd Collision Avoidance
- ClearPath: Highly Parallel Collision Avoidance for Multi-agent Simulation
- MATISSE: A Multi-Agent based Traffic Simulation System

Independent v.s. Cooperative Agents

Tang Ming (1993) [1] studied the performance of cooperative agents, using independent agents as a benchmark. Here are the discoveries:

- Additional sensation from another agent is beneficial if it can be used efficiently.
- Sharing learned policies or episodes among agents speeds up learning at the cost of communication.
- For joint tasks, agents engaging in partnership can significantly outperform independent agents although they may learn slowly in the beginning.

Active Research Areas

Currently active research areas of M.A.S. are advanced Multiagent Behaviors, as follows:

- Communication
- Cooperation and Coordination
- Negotiation
- Distributed Problem Solving
- Multi-agent Learning
- Fault Tolerance

Cooperation and Coordination

• Barry, here u go.

Discussions

- Motivations
- Mechanisms
- Suggestions

- N. Michael. An introduction to multiagent systems. John Wiley & Sons. 2009.
- 🕒 S. Yoav, and K. L. Brown. Multiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge University Press, 2008.
- N, Gerhard, ed. Multiagent systems: a modern approach to distributed artificial intelligence. MIT press, 1999.

Further Readings: Courses and Labs

- Stanford CS224M: Multi Agent Systems (Spring 2013-14). HERE
- MIT CPSC689: Special Topics in Multi-Agent Systems (Spring 2006). HERE
- Stanford Multiagent Research Group. HERE
- CMU Advanced Agent-Robotics Technology Lab. HERE
- MIT Robust Open Multi-Agent Systems (ROMA) Research Group. HERE

[1] Tan, Ming. "Multi-agent reinforcement learning: Independent vs. cooperative agents." Proceedings of the Tenth International Conference on Machine Learning. Vol. 337. 1993.