

Natürliche Zahlen

Definition

Mit IN bezeichnen wir die Menge der natürlichen Zahlen

$$\mathbb{N}:=\{1,2,3,\dots\}$$

und mit \mathbb{N}_0 die natürlichen Zahlen einschließlich der Null

$$\mathbb{N}_0 := \{0\} \cup \mathbb{N} = \{0, 1, 2, 3, \dots\}.$$

- oftmals wird auch die Null als natürliche Zahl angesehen
- die Existenz der natürlichen Zahlen (so wie wir sie kennen) kann aus den Zermelo-Fraenkel-Axiomen abgeleitet werden (Unendlichkeitsaxiom)
- lacktriangle in dieser VL werden wir $I\!N$ mit der Addition (+) und Multiplikation (\cdot) und den geltenden Rechenregeln erstmal als gegeben annehmen

Rechengesetze für natürliche Zahlen

Für alle Zahlen $a, b, c \in \mathbb{N}_0$ gelten:

Assoziativgesetze:

$$a + (b + c) = (a + b) + c$$
 und $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Kommutativgesetze:

$$a + b = b + a$$
 und $a \cdot b = b \cdot a$

Distributivgesetz:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

■ Existenz der neutralen Elemente:

$$a + 0 = a$$
 und $a \cdot 1 = a$

Vollständige Induktion

Beweisprinzip der vollständigen Induktion

Sei A(n) eine Aussageform. Die Aussage "für alle $n \in \mathbb{N}$ gilt A(n)" ist wahr, wenn folgende zwei Bedingungen erfüllt sind:

- $oxed{1} A(1)$ ist wahr Induktionsanfang
- 2 und für jedes $n \in \mathbb{N}$ gilt die Implikation $A(n) \Rightarrow A(n+1)$.

 Induktionsschritt

Bemerkungen

- vielseitiges Beweisprinzip, welches oft Anwendung findet
- andere Varianten der vollständigen Induktion betrachten wir später
- die im Induktionsschritt als wahr angenommene Aussage A(n) heißt Induktionsannahme/Induktionsvoraussetzung und die herzuleitende Aussage A(n+1) heißt Induktionsbehauptung
- in kondensierter Form kann man das Beweisprinzip selbst als folgende Aussage formulieren

$$A(1) \land (\forall n \in \mathbb{N} : A(n) \Rightarrow A(n+1)) \implies \forall n \in \mathbb{N} : A(n)$$

Beispiel: GAUSSsche Summenformel

Satz

Für alle $n \in \mathbb{N}$ gilt

$$\sum_{i=1}^n i = \frac{(n+1)n}{2}.$$

Beweis

Sei A(n) die Aussageform $\sum_{i=1}^{n} i = \frac{(n+1)n}{2}$. Wir zeigen mit vollständiger Induktion, dass für alle $n \in \mathbb{N}$ die Aussage A(n) gilt.

Induktionsanfang: Die Aussage A(1) lautet $\sum_{i=1}^{1} i = \frac{(1+1)\cdot 1}{2}$. Diese gilt, da

$$\sum_{i=1}^{1} i = 1 = \frac{(1+1)\cdot 1}{2} \,. \tag{\checkmark}$$

Induktionsschritt: Wir zeigen $A(n) \Rightarrow A(n+1)$ für alle $n \in \mathbb{N}$. Sei also $n \in \mathbb{N}$ beliebig und es gelte die Induktionsannahme A(n), d. h. $\sum_{i=1}^n i = \frac{(n+1)n}{2}$ gilt. Unter dieser Annahme leiten wir A(n+1) her, d. h. wir zeigen $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+1)}{2} = \frac{(n+2)(n+1)}{2}$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) \stackrel{A(n)}{=} \frac{(n+1)n}{2} + \frac{2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+2)(n+1)}{2}. \ (\checkmark)$$

Somit gilt A(n), also die im Satz behauptete Formel, für alle $n \in \mathbb{N}$.

Beispiel: Bernoullische Ungleichung

Satz

Sei $q \geqslant -1$ eine reelle Zahl. Für alle $n \in \mathbb{N}$ gilt

$$(1+q)^n \geqslant 1 + nq.$$

Beweis (durch vollständige Induktion für ein reelles $q \ge -1$)

Induktionsanfang: Für n = 1 gilt

$$(1+q)^1 = 1+q = 1+1\cdot q$$
. (\checkmark)

Induktionsschritt: Es gelte die Induktionsannahme $(1+q)^n \ge 1 + nq$ und wir zeigen damit $(1+q)^{n+1} \ge 1 + (n+1)q$. Tatsächlich gilt

$$(1+q)^{n+1} = (1+q)^n \cdot (1+q) \stackrel{\text{I.Annahme}}{\geqslant} (1+nq) \cdot (1+q)$$
$$= 1 + nq + q + nq^2 \geqslant 1 + nq + q = 1 + (n+1)q. \qquad (\checkmark)$$

Somit gilt also die im Satz behauptete Ungleichung für alle $n \in \mathbb{N}$.

Wo wurde $q \ge -1$ benötigt?

Erste Ungleichung im I.Schritt!

Beispiel: Teilbarkeit

Für ganze Zahlen a und b schreiben wir $a \mid b$, falls a ein Teiler von b ist, d. h. es gibt eine ganze Zahl z mit $a \cdot z = b$.

Satz

Für alle $n \in \mathbb{N}$ ist $n^3 - n$ durch 3 teilbar, d.h. $3 \mid (n^3 - n)$ für alle $n \in \mathbb{N}$.

Beweis

Sei A(n) die Aussageform $3 \mid (n^3 - n)$. Wir zeigen mit vollständiger Induktion, dass für alle $n \in \mathbb{N}$ die Aussage A(n) gilt.

Induktionsanfang: Die Aussage A(1) lautet $3 \mid (1^3 - 1)$, also $3 \mid 0$. Somit ist A(1) wahr, da die 3 Teiler der 0 ist.

Induktionsschritt: Für alle $n \in \mathbb{N}$ zeige A(n+1), d. h. $3 \mid ((n+1)^3 - (n+1))$, unter der Induktionsannahme A(n). Es gelte also $3 \mid (n^3 - n)$. Durch elementares Umformen erhalten wir

$$(n+1)^3 - (n+1) = (n^3 + 3n^2 + 3n + 1) - (n+1) = (n^3 - n) + 3(n^2 + n)$$
. (*)

Wegen der Induktionsannahme A(n) gilt $3 \mid (n^3 - n)$ und da $3(n^2 + n)$ durch 3 teilbar ist, folgt auch

$$3 \mid ((n^3-n)+3(n^2+n)) \quad \stackrel{(*)}{\Longleftrightarrow} \quad 3 \mid ((n+1)^3-(n+1)). \quad (\checkmark)$$

Somit gilt A(n) für alle $n \in \mathbb{N}$.

Beispiel: Geometrische Knobelei

Hof-Fliesen-Problem

Ein quadratischer Hof mit Seitenlängen 2ⁿ soll mit L-förmigen Fliesen ausgelegt werden. Dabei soll ein vorgegebenes Quadrat mit der Seitenlänge 1 im Hof frei bleiben, weil da eine Statue aufgestellt werden soll. Die L-förmigen Fliesen haben die Form von drei aneinander gesetzten Quadraten mit Seitenlänge eins.

Ist es möglich, den Hof wie oben beschrieben vollständig mit L-förmigen Fliesen so zu überdecken, dass die Fliesen sich nicht überlappen und nicht zerschnitten werden müssen?

Hof-Fliesen-Problem

kleine Beispiele

Wir betrachten zunächst die Fälle n=1 und n=2 und sehen, dass wir den Hof wie gewünscht fliesen können. Schon der Fall n=1 genügt für den Induktionsanfang.

Die anderen Fälle sind symmetrisch zu einem der dargestellten Fälle.

Hof-Fliesen-Problem

Lösung mit Induktion

Lösung vom Hof-Fliesen-Problem

Für alle $n \in \mathbb{N}$ gibt es ein Lösung für das Hof-Fliesen-Problem eines quadratischen Hofes mit Seitenlänge 2^n und beliebig vorgegebenem freien Quadrat mit Seitenlänge 1.

Beweis: Sei A(n) die Aussage "jeder quadratische Hof mit Seitenlänge 2^n und beliebig vorgegebenem freien Quadrat mit Seitenlänge 1 kann mit L-förmigen Fliesen ausgelegt werden".

Induktionsanfang: Die Aussage A(1) gilt, da wie im Beispiel gesehen, das Entfernen eines Einheitsquadrats aus einem Quadrat mit Seitenlänge 2 genau eine L-Fliese ergibt. (\checkmark)

Induktionsschritt: Sei $n \in \mathbb{N}$ beliebig und es gelte A(n). Sei ein quadratischer Hof mit Seitenlänge 2^{n+1} und einem vorgegebenem freien Quadrat gegeben.

Zerlege den Hof in vier quadratische Höfe mit Seitenlänge 2ⁿ, wobei genau einer das vorgegebene freie Quadrat enthält. Die Induktionsannahme liefert eine Fliesenüberdeckung für diesen Hof.

In die "Mitte" können wir eine L-förmige Fliese F so legen, dass jeweils genau ein Quadrat der restlichen 3 Höfe belegt wird und so liefert die Induktionsannahme jeweils für jeden dieser 3 Höfe eine Fliesenüberdeckung, sodass jeweils das durch F belegte Quadrat frei bleibt. (siehe Bild nächste Folie)

Diese 4 Überdeckungen zusammen bilden eine Lösung für den ursprünglichen Hof.

Hof-Fliesen-Problem – Zerlegung für den Induktionsschritt

Zerlegung des Hofes mit Seitenlänge 2^{n+1} in 4 Höfe mit Seitenlänge 2^n und Lage der mittigen Fliese F:

Hof-Fliesen-Problem

Rekursiver Algorithmus

Der induktive Beweis liefert ein rekursives Verfahren zum fliesen eines so gegebenen Hofes:

- Wenn der Hof die Seitenlänge 2 hat, so bleibt neben dem markierten Quadrat genau Platz für eine L-förmige Fliese.
- Wenn der Hof für ein n > 1 die Seitenlänge 2^n hat, so unterteile den Hof in vier Höfe mit Seitenlänge 2^{n-1} und lege eine Fliese F so in die Mitte, dass sie genau die drei Höfe der Seitenlänge 2^{n-1} trifft, die nicht das markierte Quadrat enthalten.
- Führe den Algorithmus für die vier Höfe mit Seitenlänge 2^{n-1} durch, wobei das ursprünglich markierte Quadrat und die drei Quadrate, die von der ersten Fliese F überdeckt werden, markiert werden.

Bemerkung

Umgekehrt lassen sich die Laufzeit und Korrektheit eines rekursiven Algorithmus oft gut mit vollständiger Induktion analysieren.

Varianten der vollständigen Induktion

Vollständige Induktion

(Standardvariante)

Sei A(n) eine Aussageform. Die Aussage "für alle $n \in \mathbb{N}$ gilt A(n)" ist wahr, wenn folgende zwei Bedingungen erfüllt sind:

- 1 A(1) ist wahr
- **2** und für jedes $n \in \mathbb{N}$ gilt die Implikation $A(n) \Rightarrow A(n+1)$.

Vollständige Induktion mit beliebigem Startwert

Sei A(n) eine Aussageform und sei n_0 eine ganze Zahl. Die Aussage "für alle ganzzahligen $n \ge n_0$ gilt A(n)" ist wahr, wenn:

- 1 $A(n_0)$ wahr ist
- 2 und für jedes ganzzahlige $n \ge n_0$ die Implikation $A(n) \Rightarrow A(n+1)$ gilt.

Vollständige Induktion mit mehreren Vorgängern (und bel. Startwert)

Sei A(n) eine Aussageform und sei n_0 eine ganze Zahl. Die Aussage "für alle ganzzahligen $n \ge n_0$ gilt A(n)" ist wahr, wenn:

- **1** $A(n_0)$ ist wahr
- 2 und für jedes ganzzahlige $n \ge n_0$ gilt $(A(n_0) \land \cdots \land A(n)) \Rightarrow A(n+1)$.

Beispiele: Induktion mit anderem Startwert

Satz

Für alle natürlichen Zahlen $n \ge 3$ gilt $2n + 1 < 2^n$.

■ Aussage ist tatsächlich falsch für ganzzahlige n < 3.

Beweis (durch vollständige Induktion mit Startwert $n_0 = 3$)

Induktionsanfang: Für $n = n_0$ gilt

$$2 \cdot 3 + 1 = 7 < 8 = 2^3. \tag{\checkmark}$$

Induktionsschritt: Es gelte die Induktionsannahme $2n + 1 < 2^n$ für $n \ge n_0$ und wir zeigen damit $2(n+1) + 1 < 2^{n+1}$. Tatsächlich gilt

$$2(n+1)+1=2n+1+2$$
 | I.Annahme 2^n+2 | $2^n+2^{n>1}=2^{n+1}$. (\checkmark)

Somit gilt also die behauptete Ungleichung für ganzzahlige $n \ge n_0 = 3$.

Geometrische Reihe

Satz (Geometrische Summenformel)

Sei $q \neq 1$ eine reelle Zahl und $n \in \mathbb{N}_0$. Dann gilt

$$\sum_{i=0}^n q^i = \frac{1 - q^{n+1}}{1 - q} \, .$$

Beweis (durch vollständige Induktion mit Startwert $n_0 = 0$ für ein $q \in \mathbb{R} \setminus \{1\}$) Induktionsanfang: Für n = 0 gilt (mit der Konvention $0^0 = 1$ falls q = 0)

$$\sum_{i=0}^{0} q^{i} = q^{0} = 1 = \frac{1-q}{1-q} = \frac{1-q^{0+1}}{1-q}.$$

Induktionsschritt: Es gelte die Induktionsannahme für ein beliebiges $n \ge 0$ und wir zeigen die Induktionsbehauptung für n + 1. Tatsächlich gilt

$$\sum_{i=0}^{n+1} q^{i} = q^{n+1} + \sum_{i=0}^{n} q^{i} \stackrel{\text{l.A.}}{=} q^{n+1} + \frac{1-q^{n+1}}{1-q} = \frac{q^{n+1}-q^{n+2}+1-q^{n+1}}{1-q} = \frac{1-q^{n+2}}{1-q}. \quad (\checkmark)$$

Somit gilt also die behauptete Gleichung für alle $n \in \mathbb{N}_0$.

Rekursiv definierte Folgen

Definition (Folgen)

Eine Folge reeller Zahlen ist eine Abbildung $\mathbb{N} \to \mathbb{R}$, die jeder natürlichen Zahl $n \in \mathbb{N}$ eine reelle Zahl $a_n \in \mathbb{R}$ zuordnet. Dafür schreibt man

$$(a_n)_{n\in\mathbb{N}}$$
 und (a_1, a_2, \dots)

und die a_n heißen auch Folgenglieder.

Eine solche Folge $(a_n)_{n\in\mathbb{N}}$ ist rekursiv definiert, wenn für ein $k\in\mathbb{N}$ die ersten k Folgenglieder a_1,\ldots,a_k festgelegt werden und es eine Funktion $g\colon\mathbb{R}^k\to\mathbb{R}$ gibt, sodass für $n\geqslant k$ gilt $a_{n+1}=g(a_{n-k+1},\ldots,a_n)$.

Allgemeiner kann als Indexmenge statt \mathbb{N} auch \mathbb{N}_0 oder Mengen $\{n_0 \in \mathbb{Z} : n \ge n_0\}$ ganzer Zahlen größer-gleich einem bestimmten n_0 genommen werden.

Beispiele

- Sei $(a_n)_{n\in\mathbb{N}}$ definiert durch $a_1:=1$ und $a_{n+1}:=2a_n+1$ für alle $n\in\mathbb{N}$. $(k=1,\ g(x)=2x+1)$
- FIBONACCI-Folge: $f_0 := 0$, $f_1 := 1$ und $f_{n+1} := f_{n-1} + f_n$ für alle $n \ge 1$ (k = 2, g(x, y) = x + y)

Abstecher: Rekursive Algorithmen

```
a_{n+1} = 2a_n + 1 in C
int a(int n) {
  if (n>1) {
    /* a(n) = 2a(n-1) + 1 */
    return 2*a(n-1) + 1;
  else {
    /* a(1)=1 */
    return 1;
```

```
Fibonacc
int f(i
  switc
  case
    ret
  case
    ret
  defau
    ret
```

Bemerkung

- rekursive Definition läßt sich einfach implementieren
- für rekursive Folgen mit $k \ge 2$ oft ineffektiv \rightarrow Mehrfachberechnungen
- **Bsp.:** f_{90} mit 1,4 GHz Intel i5 Prozessor:

→ Mehrfachberechnungen rekursiv über 300 Jahre direkt unter 2 Millisekunden

Rekursion vs. Induktion

 $a_1 = 1$, $a_2 = 3$, $a_3 = 7$, $a_4 = 15$, $a_5 = 31, \ldots, a_{10} = 1023$

Satz

Die Folge $(a_n)_{n\in\mathbb{N}}$ sei definiert durch $a_1:=1$ und $a_{n+1}:=2a_n+1$. Dann gilt für alle $n\in\mathbb{N}$

$$a_n = 2^n - 1$$
.

Beweis (durch vollständige Induktion)

Induktionsanfang: Für n = 1 gilt offensichtlich

$$a_1 := 1 = 2^1 - 1$$
. (\checkmark)

Induktionsschritt: Es gelte die Induktionsannahme für ein beliebiges $n \in \mathbb{N}$ und wir zeigen die Induktionsbehauptung für n+1. Tatsächlich gilt

$$a_{n+1} := 2a_n + 1 \stackrel{\text{I.Annahme}}{=} 2(2^n - 1) + 1 = 2^{n+1} - 1.$$
 (\checkmark)

Somit gilt also die behauptete Gleichung für alle $n \in \mathbb{N}$.

FIBONACCI-Zahlen

 \bullet $f_0 = 0$, $f_1 = 1$, $f_2 = 1$, $f_3 = 2$, $f_4 = 3$, $f_5 = 5$ $f_6 = 8$, $f_7 = 13$, $f_8 = 21$

Satz (DE MOIVRE-BINET-Formel)

Sei $(f_n)_{n\in\mathbb{N}_0}$ die Folge der FIBONACCI-Zahlen definiert durch $f_0:=0$, $f_1:=1$ und $f_{n+1}:=f_{n-1}+f_n$. Dann gilt für alle $n\in\mathbb{N}$ mit $\varphi:=\frac{1+\sqrt{5}}{2}$ und $\psi:=\frac{1-\sqrt{5}}{2}$

$$f_n = \frac{1}{\sqrt{5}} \left(\varphi^n - \psi^n \right) .$$

- Echt jetzt? Wie kommt man darauf?
- lacktriangle die reelle Zahl φ heißt auch goldener Schnitt

→ Lineare Algebra

Beobachtung

Die Konstanten φ und ψ erfüllen die Gleichung $1 + \frac{1}{x} = x$.

Beweis: Für $x \neq 0$ gilt

$$1 + \frac{1}{x} = x \quad \Longleftrightarrow \quad x + 1 = x^2$$

und p-q-Formel liefert $x_{1/2} = \frac{1}{2} \pm \frac{\sqrt{5}}{2}$.

$$f_n = \frac{1}{\sqrt{5}} \left(\varphi^n - \psi^n \right)$$

Beweis (durch vollständige Induktion mit zwei Vorgängern)

Induktionsanfang: Für n = 0 gilt

$$\frac{1}{\sqrt{5}} \left(\varphi^0 - \psi^0 \right) = \frac{1}{\sqrt{5}} (1 - 1) = 0 =: f_0$$

und für n = 1 haben wir

$$\frac{1}{\sqrt{5}} (\varphi - \psi) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} \right) = \frac{1}{\sqrt{5}} (\sqrt{5}) = 1 =: f_1. \quad (\checkmark)$$

Induktionsschritt: Es gelte die Induktionsannahme für n-1 und für n und wir zeigen die Induktionsbehauptung für n+1. Es gilt

$$f_{n+1} := f_{n-1} + f_n \stackrel{\text{l.A.}}{=} \frac{\varphi^{n-1} - \psi^{n-1}}{\sqrt{5}} + \frac{\varphi^n - \psi^n}{\sqrt{5}} = \frac{\varphi^n}{\sqrt{5}} \left(\frac{1}{\varphi} + 1 \right) - \frac{\psi^n}{\sqrt{5}} \left(1 + \frac{1}{\psi} \right).$$

Wegen der Beobachtung wissen wir $\frac{1}{\varphi}+1=\varphi$ und $1+\frac{1}{\psi}=\psi$ und somit folgt

$$f_{n+1} = \frac{\varphi^n}{\sqrt{5}} \left(\frac{1}{\varphi} + 1 \right) - \frac{\psi^n}{\sqrt{5}} \left(1 + \frac{1}{\psi} \right) = \frac{1}{\sqrt{5}} \left(\varphi^{n+1} - \psi^{n+1} \right) . \tag{\checkmark}$$

Somit gilt also die behauptete Formel für alle $n \in \mathbb{N}_0$.

Vollständige Induktion

Bemerkungen

- Beweis der DE MOIVRE-BINET-Formel für f_n benötigt Induktionsanfang für beide Anfangswerte n=0 und n=1, da der Induktionsschritt für n+1 (unabhängig von n) auf beiden vorherigen Aussagen für n und n-1 beruht. Der Fall n=1 ist somit **nicht** im Induktionsschritt abgedeckt, da wir nicht auf eine Aussage für n=-1 zurückgreifen können.
- Üblicherweise benötigen Aussagen über rekursive Folgen mit $k \in \mathbb{N}$ einen Induktionsanfang für die ersten k Fälle.

Fragen

- Warum gilt denn eigentlich das Prinzip der vollständigen Induktion?
- Kann man beweisen, dass ein Beweisprinzip gilt?
- für die Beantwortung der Fragen brauchen wir klarere Vorstellungen von den natürlichen Zahlen \rightarrow Axiomatisierung

PEANO-Axiome

Definition (Natürliche Zahlen IN)

Die Menge der natürlichen Zahlen \mathbb{N} erfüllt die folgenden Axiome mit der Nachfolgerfolgerfunktion $N(\cdot)$:

- $1 \quad 1 \in \mathbb{N}$
- 2 $N(n) \in \mathbb{N}$ für alle $n \in \mathbb{N}$
- 3 $N(n) \neq 1$ für alle $n \in \mathbb{N}$
- 4 Funktion *N* ist injektiv
- **5** Sei *M* eine beliebige Menge mit
 - $1 \in M$ und $N(n) \in M$ für alle $n \in M$, dann gilt $\mathbb{N} \subseteq M$.

1 ist eine natürliche Zahl

jede Zahl *n* hat einen Nachfolger

1 ist kein Nachfolger

Nachfolgerfunktion ist injektiv

dann gilt $\mathbb{N}\subseteq M$. vollständige Induktion gilt (Induktionsaxiom)

Bemerkungen

- für N(n) schreiben wir einfach n+1, d. h. n+1 := N(n)
- Addition wird dann rekursiv definiert: n + N(m) := N(n + m)
- ebenso die Multiplikation: $n \cdot 1 := n$ und $n \cdot N(m) := n \cdot m + n$
- \Rightarrow diese Definitionen erlauben die Rechengesetze für + und \cdot auf ${
 m I\! N}$ zu beweisen
 - Mengen M wie in Axiom 5 heißen induktive Mengen und das Axiom besagt, dass \mathbb{N} die "kleinste" induktive Menge ist

Implementierung der natürlichen Zahlen als Mengen

Wir erinnern uns am folgenden Axiom der Mengenlehre:

Unendlichkeitsaxiom: Es gibt eine Menge N, die die leere Menge als Element enthält und für jede Menge A, die ein Element von N ist, auch den **Nachfolger** $A^+ := A \cup \{A\}$ in N als Element enthält.

$$(\exists x) \Big((\varnothing \in x) \land \big(\forall y \in x \big) \big(\big(y \cup \{y\} \big) \in x \big) \Big) \Big)$$

Wir implementieren \mathbb{N}_0 als die kleinste solche Menge.

Bemerkungen

■ Etwas konkreter haben wir die natürlichen Zahlen so implementiert:

$$0 := \emptyset, 1 := \{0\}, 2 := \{0,1\}, 3 := \{0,1,2\}, 4 := \{0,1,2,3\}, \dots$$

 \blacksquare Jede natürliche Zahl *n* wird also als die Menge von echt kleineren Elementen von \mathbb{N}_0 implementiert.

Ordnung der natürlichen Zahlen

■ Nachfolgerfunktion definiert Ordnung (<, \leq) auf \mathbb{N} : n < N(m), falls

$$m = n$$
 oder $N(n) < N(m)$

und $n \leq m$, falls n < m oder n = m.

■ das kleinste Element (min M) einer Teilmenge $M \subseteq \mathbb{N}$ ist das Element $m \in M$ mit $m \leq m'$ für alle $m' \in M$.

Satz

Jede nichtleere Teilmenge der natürlichen Zahlen hat ein kleinstes Element.

Beweis (Widerspruchsbeweis)

Sei $\emptyset \neq M \subseteq \mathbb{N}$ ohne ein kleinstes Element und betrachte das Komplement

$$\overline{M} = \mathbb{N} \setminus M$$
.

Mit vollständiger Induktion werden wir $\overline{M}=\mathbb{N}$ zeigen, was zum Widerspruch $M=\varnothing$ führt.

$\overline{M} = \mathbb{N}$

Mit vollständiger Induktion (mit mehreren Vorgängern) zeigen wir $n \in \overline{M}$ für jedes $n \in \mathbb{N}$.

Induktionsanfang: Die 1 ist das kleinste Element von \mathbb{N} , da die Definitionen sofort $1 < N(1) < N(N(1)) < \dots$ nach sich ziehen. Da wir annehmen dass M kein (eigenes) kleinstes Element hat, gilt also $1 \notin M$ und somit

$$1 \in \overline{M}$$
. (\checkmark)

Induktionsschritt: Für ein beliebiges $n \in \mathbb{N}$ gelte die Induktionsannahme für $1, \ldots, n$, d.h. $\{1, \ldots, n\} \subseteq \overline{M}$. Wir zeigen die Induktionsbehauptung $(n+1) \in \overline{M}$.

Falls $(n+1) \in M$, dann wäre n+1 das kleinste Element von M, wegen der Induktionsannahme, also gilt $(n+1) \notin M$ und somit

$$(n+1)\in \overline{M}$$
. (\checkmark)

Somit erhalten wir tatsächlich den Widerspruch $\overline{M} = \mathbb{N}$.