Equation	Data	Stat	Formula
38	$\mathcal{N}(0,1)$	mean	$\left(\frac{2^q\Gamma\left(\frac{q+1}{2}\right)p}{\sqrt{\pi}}\right)^{1/q}$
38	$\mathcal{N}(0,1)$	variance	$\frac{4^q p}{q^2 \left(\frac{2^q \Gamma\left(\frac{1}{2}q+\frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1-\frac{1}{q}\right)}} \left[\frac{\Gamma\left(q+\frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^2\left(\frac{1}{2}q+\frac{1}{2}\right)}{\pi}\right]$
48	$\mathcal{U}(0,1)$	mean	$\left(\frac{2p}{(q+2)(q+1)}\right)^{1/q}$
48	$\mathcal{U}(0,1)$	variance	$\frac{p}{q^2 \left(\frac{2p}{(q+2)(q+1)}\right)^2 \left(1 - \frac{1}{q}\right)} \left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^2 \right]$
93	$\mathcal{N}(0,1)$	mean	$\frac{\mu_{D_{ij}^{(q)}}}{2\mu_{\alpha}^{(1)}(m)}$ where $\mu_{D_{ij}^{(q)}}$ and $\mu_{\alpha}^{(1)}(m)$ are given by Eqs. 39 and 88, respectively.
93	$\mathcal{N}(0,1)$	variance	$\frac{6{\log(m)}\sigma_{D_{ij}^{(q)}}^2}{\pi^2+24\left[\mu_{\alpha}^{(1)}(m)\right]^2{\log(m)}}$ where $\sigma_{D_{ij}^{(q)}}^2$ and $\mu_{\alpha}^{(1)}(m)$ are given by Eqs. 39 and 88, respectively.
101	$\mathcal{U}(0,1)$	mean	$\frac{\binom{(m+1)\mu_{D^{(q)}_{ij}}}{m-1}}{\text{where }\mu_{D^{(q)}_{ij}}\text{ is given by Eq. 49}$
101	$\mathcal{U}(0,1)$	variance	$\frac{\left[\frac{(m+2)(m+1)^2\sigma_{D_{ij}^{(q)}}^2}{m^3-m+2}\right]}{m^3-m+2}$ where $\sigma_{D_{ij}^{(q)}}^2$ is given by Eq. 49