黎曼几何

孙天阳

2024年1月24日

目录

	目录	·	2
1	黎曼	··度量	3
	1	定义和例子	3
	2	Riemannian metric	3
		2.1 Existence of Riemannian metric	4
		2.2 黎曼度量张量 度量	5
		2.3 度量 → 黎曼度量张量	5
	3	商流形的黎曼度量	6
2	寻找	最短线	7
	1	最简单的例子	7
	2	弧长泛函与重新参数化	8
	3	弧长泛函与能量泛函	9
	4	能量泛函的固定端点且固定边界的一阶变分	10
	5	Christoffel 符号及测地线	11
	6	指数映射	13
	7	一致邻域	15
		7.1 totally normal neighborhood 的存在性	15
	8	Cut locus 1	16
	9	Hopf-Rinow Theorem	18
	10	Cut locus 2	20
	11	黎曼覆盖映射	21
	12	Existence of shortest curves in given homotopy class	22
	13	title	22
		13.1 前情回顾	22
	14	能量泛函的变分 II	25
		14.1 Gauss 引理	25
		14.2 第二变分公式	25
3	Lev	i-Civita 联络和黎曼曲率张量	26
	1	仿射联络 :	26
	2	张量场的协变导数 :	27

目录 2

	3	Levi-Civita 联络	
	4	能量泛函的第二变分公式与曲率张量	
	5	协变微分与 Ricci 恒等式	
	6	协变微分的局部表达式	35
	7	音乐同构	36
	8	算符	37
	9	Bianchi 恒等式	40
	10	Riemann 曲率张量	41
	11	截面曲率	42
	12	高斯绝妙定理	43
	13	Ricci 曲率	44
	14	数量曲率	45
	15	Bochner 公式	48
	16	测地曲率	49
	17	Gauss-Bonnet 公式	50
4	Tool	obi 场	51
4	Jacc 1	Jacobi 场	
	2	Morse 指标定理	
	3	Cartan-Hadamard 定理	
	3 4	空间形式	
	5	单连通空间形式的等距群	54 55
	Э		
			55
		$5.2 \mathbb{S}^n \dots \dots \dots \dots \dots \dots \dots \dots \dots $	
	0	$5.3 \mathbb{H}^n$	
	6	Killing-Hopf 定理	
	7	距离函数	57
5	比较	定理	58
	1	Sturm 比较定理	58
	2	Rauch 比较定理	59
	3	Hessian 比较定理	60
	4	Laplacian 比较定理	61
	5	体积比较定理	62
6	规范	· ·理论	63
-			0.4
7	1	污函与恋公	64

Chapter 1

黎曼度量

1 定义和例子

2 Riemannian metric

$$\gamma: (a,b) \to M$$

$$\int_{a}^{b} |\gamma'(t)| dt = length(\gamma)$$
Hilbert space \longrightarrow Rieman

Hilbert space → Riemannian geometry

Banach space → Finsler geometry

Just for the purpose of

$$\gamma'(t), (v, x)$$

$$\|\gamma'(t)\|^2 = g_{ij}v^iv^j = (v^1, \dots, v^d)\left(g_{ij}\right)\begin{pmatrix} v^1 \\ \vdots \\ v^d \end{pmatrix}$$
 bilinear form, (g_{ij}) positive definite, symmetric

matrix

$$(U,y) w^{i} \frac{\partial}{\partial y^{i}} = w^{i} \frac{\partial x^{j}}{\partial y^{i}} \frac{\partial}{\partial x^{j}}$$

$$h_{ij}(y(p)) = g_{kl}(x(p)) \frac{\partial x^{k}}{\partial y^{i}} \frac{\partial x^{l}}{\partial y^{j}}$$

 (g_{ij}) (0, 2) tensor! And we assume its coefficients are smooth on x(U)

定义 2.1. A Riemannian metric g on a smooth manifold M is a smooth (0,2)-tensor satisfying

$$g(X,Y) = g(Y,X), \quad g(X,X) \geqslant 0 \& g_p(X,X) = 0 \iff X(p) = 0$$

for any smooth tangent vector field X, Y.

A Riemannian manifold is a smooth manifold with a Riemannian metric.

例子 2.2. \mathbb{R}^n

- $(g_{ij}) = (\delta_{ij})$
- 球面几何 $(g_{ij}) = \frac{4}{(1 + \sum_{i=1}^{n} (x^i)^2)^2} (\delta_{ij})$
- 双曲几何 $(g_{ij}) = \frac{4}{(1 \sum_{i=1}^{n} (x^i)^2)^2} (\delta_{ij})$

2.1 Existence of Riemannian metric

定理 2.3. A smooth manifold has a Riemannian metric.

Extrinsic proof. Whitney embedding

 $f: M^n \to N^{n+k}$ smooth immersion (d f_p is injective)

Let (N, g_N) be a Riemannian metric

Pull-back metric f^*g_N on M

$$(f^*g_N)_p(X_p, Y_p) = g_N(\mathrm{d}f_p(X_p), \mathrm{d}f_p(Y_p))$$

Intrinsic proof. U_p coordinate neighborhood. $\{U_p, p \in M\}$ open cover.

paracompact \Longrightarrow WLOG,let $\{U_{\alpha}\}$ be a locally finite covering of M by coordinate neighborhood. Partition of unity $\{\varphi_{\alpha}\}$ subordinate to $\{U_{\alpha}\}$.

$$x: U_{\alpha} \to x(U_{\alpha}) \subset \mathbb{R}^{n}$$

$$g_{p}(X,Y) = \sum_{\alpha} \varphi_{\alpha}(p)(g_{\alpha})_{p}(X,Y).$$

定义 2.4. Let $(M, g_M), (N, g_N)$ be two Riemannian manifolds. $\varphi \colon M \to N$ is called an **isometry** if φ is a diffeomorphism and $\varphi^*g_N = g_M$.

2.2 黎曼度量张量 ↔ 度量

定义 2.5. A function $d: M \times M \to \mathbb{R}$ is called a metric if

- (i) $d(p,q) \ge 0$, and $d(p,q) = 0 \iff p = q$.
- (ii) d(p,q) = d(q,p).
- (iii) $d(p,q) \leq d(p,r) + d(r,q), \forall r \in M.$

Let (M, g) be a Riemannian manifold, for any $p, q \in M$, consider

 $C_{p,q} = \{ \gamma : [a,b] \to M \mid \gamma \text{ piecewise smooth regular curve with } \gamma(a) = p, \gamma(b) = q \}.$

Define $d(p,q) = \inf \{ Length(\gamma) \mid \gamma \in C_{p,q} \}.$

The following questions are immediate

- (1) Is $C_{p,q}$ empty?
- (2) Is $d(p,q) < +\infty$?
- (3) Is d a metric?
- (4) Can the infimum be attained?

Let $E_p = \{q \in M : p, q \text{ can be connected by a curve } \in C_{p,q}\}$. It is easy to show by connectedness argument that $E_p = M$. So $C_{p,q}$ could not be empty.

Take $\gamma \in C_{p,q}$, we can cover it by finite coordinate charts. So we just need to show any piecewise smooth curve contained in a coordinate chart has finite length.

$$Length(\gamma) = \int_{a}^{b} \sqrt{g_{ij} \frac{\partial x^{i} \circ \gamma}{\partial t}} \frac{\partial x^{j} \circ \gamma}{\partial t} dt$$

引理 2.6.

Next we show d(p,q) is a metric. It is obvious from definition that $d(p,q) \ge \text{and } d(p,q) = d(q,p)$. Because we consider piesewise smooth curve, triangle inequality is also easy. If $p \ne q$, we can find a coordinate chart U of p such that $q \notin U$.

2.3 度量 → 黎曼度量张量

https://mathoverflow.net/questions/45154/riemannian-metric-induced-by-a-metric

3 商流形的黎曼度量

1

Chapter 2

寻找最短线

1 最简单的例子

欧式几何

设 \mathbb{R}^2 上有两点 p,q, 我们知道连接 p,q 的最短线是直线, 让我们来回顾一下证明. 以 p 为原点建立极坐标系 (r,θ) , 在此坐标系下标准度量写为

$$g = \mathrm{d}r \otimes \mathrm{d}r + r^2 \mathrm{d}\theta \otimes \mathrm{d}\theta.$$

设 $\gamma: [a,b] \to M$ 连接 p,q, 即 $\gamma(a) = p, \gamma(b) = q$. 在极坐标系下

$$\gamma(t) = (r(t), \theta(t), \quad \gamma'(t) = r'(t) \frac{\partial}{\partial r} + \theta'(t) \frac{\partial}{\partial \theta}.$$

我们计算 γ 的长度

$$Length(\gamma) = \int_{a}^{b} \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

$$= \int_{a}^{b} \sqrt{r'(t)^{2} + r(t)^{2} \theta'(t)^{2}} dt$$

$$\geqslant \int_{a}^{b} |r'(t)| dt$$

$$\geqslant \left| \int_{a}^{b} r'(t) dt \right|$$

$$= |r(b) - r(a)|.$$

其中等号成立当且仅当 $\theta'(t) \equiv 0, \gamma(t)$ 单调.

球面几何

 $\varphi \in (-\frac{\pi}{2}, \frac{\pi}{2}), \theta \in (0, 2\pi), \left\{ (\varphi, \theta) \mid \varphi \in (-\frac{\pi}{2}, \frac{\pi}{2}), \theta \in (0, 2\pi) \right\}$ $g = \mathrm{d}\varphi \otimes \mathrm{d}\varphi + \cos^2\varphi \mathrm{d}\theta \otimes \mathrm{d}\theta$ 以上例子依赖于预先知道了什么是最短线, 然后建立了相应的坐标卡, 能否把上述办法在一般的流形上推广.

2 弧长泛函与重新参数化

定义 2.1. 称光滑曲线 $\gamma: [a,b] \to M$ 是正则的如果 $||\gamma'(t)|| \neq 0, \forall t \in I$.

分段光滑(正则)曲线

定义 2.2. If $\gamma \colon I \to M$ is a smooth regular curve and if $p \colon I' \to I$ is a smooth map with non-zero derivative, then we say that $\gamma \circ p \colon I' \to M$ is a reparametrization of $\gamma \colon I \to M$.

It is easy to check that any reparametrization of a smooth regular curve is still a smooth regular curve and this defines an equivalent relationship on the space of all smooth regular curves to M.

We will use **parametrized curve** to refer to a smooth regular curve and **curve without parametrization** to refer to an equivalent class of smooth regular curves under reparametrization.

Let $\gamma \colon [a,b] \to M$ be a parametrized curve, we can define its length

$$L(\gamma) = \int_a^b \|\gamma'(t)\| dt := \int_a^b \sqrt{g(\gamma'(t), \gamma'(t))} dt.$$

It is easy to check that

引理 **2.3.** If $\gamma \circ p : I' \to M$ is a reparametrization of $\gamma : I \to M$, then $L(\gamma \circ p) = L(\gamma)$.

So we can actually define length for curves without parametrization.

弧长参数化

There is always a canonical representative element for any equivalent class of smooth regular curves under reparametrization.

命题 **2.4.** Suppose $\gamma: I \to M$ is a parametrized curve.

- (1) $p: I \to [0, L(\gamma)], t \mapsto \int_a^t \|\gamma'(s)\| ds$ is a smooth map with non-zero derivative.
- (2) Suppose $\gamma \sim \gamma'$, then $\gamma \circ p^{-1} = \gamma' \circ p'^{-1}$ as maps from $[0, L(\gamma)]$ to M.

We call $\gamma \circ p^{-1}$ the arclength reparametrization of γ .

命题 **2.5.** $\gamma: I \to M$ is parametrized with arclength iff $||\gamma'(t)|| \equiv 1$.

能量泛函

定义 2.6. 设 $\gamma:[a,b]\to M$ 是分段光滑正则曲线, 定义

$$E(\gamma) = \frac{1}{2} \int_{a}^{b} \langle \gamma'(t), \gamma'(t) \rangle dt$$

3 弧长泛函与能量泛函

引理 3.1.

$$L(\gamma)^2 \leqslant 2(b-a)E(\gamma).$$

等号成立当且仅当 $\|\gamma'(t)\|$ 是常值.

证明.

$$L(\gamma) = \int_a^b \|\gamma'(t)\| \overset{\text{Holder}}{\leqslant} \sqrt{\int_a^b 1^2 \mathrm{d}t} \sqrt{\int_a^b \|\gamma'(t)\|^2 \mathrm{d}t} = \sqrt{b-a} \sqrt{2E(r)}.$$

引理 3.2. 假设 γ 是连接 p,q 的光滑正则最短线

4 能量泛函的固定端点且固定边界的一阶变分

上节中我们提到, 假设正则曲线 γ 是连接 p,q 的分段 C^1 曲线中的最短线, 那么不妨设 γ 是弧长参数化的, 此时 γ 使得 E 在连接 p,q 的相同参数区间的曲线中取得最小值. 本节中, 我们计算 γ 作为使得 E 在连接 p,q 的相同参数区间的曲线中取得最小值的曲线需要满足的方程, 也就是要计算能量泛函 E 的固定端点且固定边界的一阶变分.

先考虑 p,q,γ 都落在一个坐标卡 (U,x) 中的情形, 设 γ 在 (U,x) 中的坐标表示为 x(t). 任给定义在 [a,b] 上的向量值函数 y(t) 满足 y(a)=y(b)=0, 则

$$x_{\varepsilon}(t) = x(t) + \varepsilon y(t)$$

是一族定义在 [a,b] 上, 且端点都为 p,q 的曲线, 且当 ε 充分小时 x_{ε} 落在 U 中. 记

$$S(\varepsilon) = 2E(x_{\varepsilon}) = \int_{a}^{b} g_{ij}(x(t) + \varepsilon y(t)) \frac{\mathrm{d}}{\mathrm{d}t} (x^{i}(t) + \varepsilon y^{i}(t)) \frac{\mathrm{d}}{\mathrm{d}t} (x^{j}(t) + \varepsilon y^{j}(t)) \mathrm{d}t.$$

假设 γ 是连接 p,q 的最短线, 则

$$0 = \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \bigg|_{\varepsilon=0} 2E(\gamma_{\varepsilon}) = \int_{a}^{b} g_{ij,k}(x) y^{k} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t + \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}y^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t + \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}y^{j}}{\mathrm{d}t} \mathrm{d}t$$

用分部积分处理后两项, 过程中利用到了 y(a) = y(b) = 0.

$$\int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}y^{j}}{\mathrm{d}t} \mathrm{d}t = -\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \right) y^{j} \mathrm{d}t = -\int_{a}^{b} g_{ij,k}(x) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} y^{j} \mathrm{d}t - \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t^{2}} y^{j} \mathrm{d}t$$

$$\int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}y^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \mathrm{d}t = -\int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \right) y^{i} \mathrm{d}t = -\int_{a}^{b} g_{ij,k}(x) \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} y^{i} \mathrm{d}t - \int_{a}^{b} g_{ij}(x) \frac{\mathrm{d}^{2}x^{j}}{\mathrm{d}t^{2}} y^{i} \mathrm{d}t$$
代国得

$$\int_{a}^{b} \left(g_{ij,k}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - g_{ik,j}(x) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} - g_{kj,i}(x) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} - 2g_{ik}(x) \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t^{2}} \right) y^{k} \mathrm{d}t = 0.$$

由 y(t) 的任意性, 我们得到对任意的 k, 有

$$g_{ij,k}(x)\frac{\mathrm{d}x^i}{\mathrm{d}t}\frac{\mathrm{d}x^j}{\mathrm{d}t} - g_{ik,j}(x)\frac{\mathrm{d}x^j}{\mathrm{d}t}\frac{\mathrm{d}x^i}{\mathrm{d}t} - g_{kj,i}(x)\frac{\mathrm{d}x^i}{\mathrm{d}t}\frac{\mathrm{d}x^j}{\mathrm{d}t} - 2g_{lk}(x)\frac{\mathrm{d}^2x^l}{\mathrm{d}t^2} = 0$$

整理指标得,对于任意的l,有

$$\frac{\mathrm{d}^2 x^l}{\mathrm{d}t^2} + \frac{1}{2} g^{kl} (g_{ik,j} + g_{kj,i} - g_{ij,k}) \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\mathrm{d}x^j}{\mathrm{d}t} = 0.$$

5 Christoffel 符号及测地线

定义 5.1. 设 (M,g) 是黎曼流形, (U,x) 是一个坐标卡, g 在 (U,x) 下的分量表示为 (g_{ii}) ,

$$\Gamma_{ij}^{k} = \frac{1}{2}g^{kl}(g_{jl,i} + g_{il,j} - g_{ij,l}),$$

称作第二类 Christoffel 符号.

命题 5.2.

$$\Gamma^k_{ij} = \Gamma^k_{ji}.$$

命题 5.3.

$$g_{ij,k} = g_{lj}\Gamma_{ki}^l + g_{il}\Gamma_{kj}^l$$

证明.

$$RHS = \frac{1}{2}g_{lj}g^{lp}(g_{kp,i} + g_{pi,k} - g_{ki,p}) + \frac{1}{2}g_{il}g^{lp}(g_{kp,j} + g_{pj,k} - g_{kj,p})$$
$$= \frac{1}{2}(g_{kj,i} + g_{ji,k} - g_{ki,j}) + \frac{1}{2}(g_{ki,j} + g_{ij,k} - g_{kj,i}) = g_{ij,k}$$

命题 **5.4.** $\widetilde{\Gamma}_{ij}^k = \Gamma_{\alpha\eta}^{\gamma} \frac{\partial x^{\alpha}}{\partial \widetilde{x}^i} \frac{\partial x^{\eta}}{\partial \widetilde{x}^j} \frac{\partial \widetilde{x}^k}{\partial x^{\gamma}} + \frac{\partial \widetilde{x}^k}{\partial x^{\gamma}} \frac{\partial^2 x^{\gamma}}{\partial \widetilde{x}^i \partial \widetilde{x}^j}$

命题 5.5.

$$\frac{\mathrm{d}^2 x^k}{\mathrm{d}t^2} + \Gamma^k_{ij} \frac{\mathrm{d}x^i}{\mathrm{d}t} \frac{\mathrm{d}x^j}{\mathrm{d}t} = 0$$

是定义在流形上的方程, 称为测地线方程, 方程的解称为测地线,

注意到测地线方程是一个二阶非线性常微分方程, 因此我们只能得到解的局部存在唯一性, 定理 5.6. 对 M 上的任意一点 p 和任意一个切向量 $v \in T_pM$, 存在 $\varepsilon > 0$ 和唯一一条测地线

$$\gamma \colon (-\varepsilon, \varepsilon) \longrightarrow M$$

使得 $\gamma(0) = p$ 且 $\gamma'(0) = v$.

定理 5.7. 对 M 上的任意一点 p. 存在开集 $V \subset M$ 和 $\delta > 0$ 和

$$\mathcal{U}_{V,\delta} = \{(q, v) \mid q \in V, v \in T_q M, ||v|| < \delta\}$$

和 $\varepsilon > 0$ 和一个光滑映射

$$\gamma \colon (-\varepsilon, \varepsilon) \times \mathcal{U}_{V,\delta} \longrightarrow M$$

使得对任意的 $(q,v) \in \mathcal{U}_{V,\delta}$, 曲线

$$\gamma_{(q,v)}: (-\varepsilon,\varepsilon) \longrightarrow M, \quad t \longmapsto \gamma(t,q,v)$$

是满足 $\gamma(0, q, v) = q, r'(0, q, v) = v$ 的测地线.

命题 5.8. 测地线的切向量长度为常值.

证明.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(g_{ij}(x(t)) \frac{\mathrm{d}x^{i}(t)}{\mathrm{d}t} \frac{\mathrm{d}x^{j}(t)}{\mathrm{d}t} \right) = g_{ij,k} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + g_{ij} \frac{\mathrm{d}^{2}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + g_{ij} \frac{\mathrm{d}^{2}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}^{2}x^{j}}{\mathrm{d}t} \\
= g_{ij,k} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + g_{ij} \left(-\Gamma_{kl}^{i} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \right) \frac{\mathrm{d}x^{j}}{\mathrm{d}t} + g_{ij} \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \left(-\Gamma_{kl}^{j} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} \frac{\mathrm{d}x^{l}}{\mathrm{d}t} \right) \\
= \left(g_{ij,k} - g_{lj} \Gamma_{ki}^{l} - g_{il} \Gamma_{kj}^{l} \right) \frac{\mathrm{d}x^{i}}{\mathrm{d}t} \frac{\mathrm{d}x^{j}}{\mathrm{d}t} \frac{\mathrm{d}x^{k}}{\mathrm{d}t} = 0$$

引理 **5.9** (Homogeneity of geodesic). If the geodesic $\gamma(t,q,v)$ is defined on $t\in(-\varepsilon,\varepsilon)$, then the geodesic $\gamma(t,q,\lambda v),\lambda\in\mathbb{R}^+$ is defined on the interval $t\in(-\frac{\varepsilon}{\lambda},\frac{\varepsilon}{\lambda})$ and

$$\gamma(t, q, \lambda v) = \gamma(\lambda t, q, v).$$

6 指数映射

要根据一点附近的测地线的性质,来确定一个坐标系,使得测地线在这个坐标映射下投到欧氏区域后是直线.

其实拿切空间来做坐标区域应该是个挺自然的想法,毕竟切空间是该处的一阶线性近似

$$\exp_p: T_pM \longrightarrow M$$

$$v \longmapsto \gamma(1, p, v)$$

• 选取 1 能够使测地线走的长度等于 $||v||_q$.

指数映射的定义域

3月4日52分30秒

 $V_p:=\{v\in T_pM\mid \text{the geodesic }\gamma(t,p,v)\text{ is defined on }[0,1]\}.$

为了 \exp_n 成为坐标映射, 我们希望 V_p 至少包含以 O 为心的一个开球!

3月4日55分45秒

命题 6.1.

- (1) V_p is star-shaped aroud $O \in T_pM$, i.e. $\forall v \in V_p, \forall \lambda \in [0,1]$, then $\lambda v \in V_p$.
- (2) $\forall p, \exists \varepsilon = \varepsilon(p), \text{ s.t. } \gamma(t, p, v) \text{ is defined on } [0, 1] \text{ once } ||v|| < \varepsilon.$
 - 3月4日1小时1分0秒,反函数定理
 - 3月4日1小时5分2秒

命题 6.2. $\operatorname{d}\exp_p = \operatorname{Id}_{T_pM}$.

由逆映射定理,存在 p 点的一个邻域 U 使得 $\exp_p^{-1}: U \to T_pM$ 是微分同胚. 距离 \exp_p^{-1} 成为坐标映射只差 T_pM 到 \mathbb{R}^n 的一个同构,任取 T_pM 的一组基即可.

命题 **6.3.** $\Gamma_{ii}^k(p) = 0$.

命题 **6.4.** 选取 T_pM 的一组基 $\{v_1, \dots, v_n\}$. 断言 g 在坐标映射 $\exp_p^{-1}: U \to T_pM \cong \mathbb{R}^n$ 下的分量 在 O 处的取值 $g_{ij}(O) = g(v_i, v_j)$.

定义 6.5. 选取 T_pM 的一组标准正交基,此时的 (\exp_p^{-1}, U) 称为 p 的一个法坐标.

3月4日1小时17分45秒

证明.
$$0 = \frac{\mathrm{d}^2 x^i}{\mathrm{d}t^2} + \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t}$$

极坐标

A curve
$$c(t) = (r(t), \varphi^1(t), \dots, \varphi^{n-1}(t))$$

$$c'(t) = \left(\frac{\mathrm{d}r}{\mathrm{d}t}, \frac{\mathrm{d}\varphi^1}{\mathrm{d}t}, \dots, \frac{\mathrm{d}\varphi^{n-1}}{\mathrm{d}t}\right) =: (v^1, v^2, \dots, v^n)$$

$$\|c'(t)\| = g_{ij}(c(t))v^iv^j = \left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 + \sum_{i,j=1}^{n-1} g_{\varphi^i\varphi^j} \frac{\mathrm{d}\varphi^i}{\mathrm{d}t} \frac{\mathrm{d}\varphi^j}{\mathrm{d}t}$$

3月8日第二段11分20秒

推论 6.6. For any $p \in M, \exists \rho > 0$ s.t. $\forall q$ with $d(p,q) = \rho$, there exists a unique shortest curve $\in C_{p,q}$.

证明. $\exists \ \rho > 0$ s.t. $B(p, 2\rho)$ lies in a Riemannian polar coordinate neighborhood.

For any curve $c \in C_{p,q}$

$$c:[0,T]\to M, c(0)=p, c(T)=q$$

推论 6.7. 最短线是光滑的.

7 一致邻域

- 3月8日25分20秒
- 3月8日28分56秒

定义 7.1. totally normal neighborhood.

 $\forall p \in M$, if $W \ni p$, W is a normal neighborhood of every point $q \in W$, then W is cassled a **totally normal neighborhood**.

7.1 totally normal neighborhood 的存在性

3月8日第二段35分4秒

引理 7.2.

$$d \exp(p, 0_p) : T_{p,0_p}(TM) \longrightarrow T_{p,p}(M \times M)$$

is non sigular.

3月8日第二段1小时3分54秒

定理 7.3. For any $p \in M$, \exists a neighborhood W of p, and a $\delta > 0$ such that $\forall q \in W$, \exp_q is a diffeomorphism on $B(0_q, \delta) \subset T_qM$ and

3月8日第二段1小时14分7秒

推论 7.4.

8 Cut locus 1

3月8日第二段1小时25分32秒,总结

测地线的最大存在区间的端点是开的

3月8日第二段1小时28分5秒

给定 $p \in M, v \in T_pM$,有测地线 $\gamma(t, p, v) = \exp_p tv$.

假设 [0,b] 是 γ 的最大存在区间. 记 $q=\gamma(b,p,v), w=\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=b}\gamma(t,p,v).$

存在经过 q, 以 w 为初始切向量的测地线 $\tilde{\gamma}$, $\tilde{\gamma}$ 在某区间 $(-\varepsilon,\varepsilon)$ 上有定义.

断言 $\gamma|_{(b-\varepsilon,b]}$ 的反转与 $\tilde{\gamma}|_{(-\varepsilon,0]}$ 的反转都是以 q 为起点,以 -w 为初始切向量的测地线.

这是由链式法则与测地线方程的特点保证的.

由存在唯一性知 γ 与 $\tilde{\gamma}$ 在公共定义域上重合. 这与 [0,b] 是 γ 的最大存在区间矛盾.

测地线是最短线的最大区间相对测地线的最大存在区间是闭的

3月8日第二段1小时31分7秒

由最短线也是连接其上任意两点的最短线,知测地线是最短线的点是个区间.

$$A = \{t > 0 \mid d(p, \gamma(t)) = t ||v||_q \}$$
 是闭的.

Either A = (0, b) or A = (0, a] for some 0 < a < b.

定义 8.1.

- 如果 A = (0, a], 则称 $\gamma(a)$ 是 p 沿测地线 γ 的割点.
- 如果 A = (0, b), 则称 p 沿测地线 γ 没有割点.
- 称割点的全体为 p 的割迹,记作 C(p).

•
$$\not \in \mathcal{X}$$
 $\tau \colon \{v \in T_pM \mid \|v\|_g = 1\} \to \mathbb{R}, \tau(v) = \begin{cases} a & \text{if } \exp_p(av) \text{ is a cut point of } p \\ b & \text{if } p \text{ has no cut point along } t \mapsto \exp_p(tv) \end{cases}$

定义 8.2.

• Define a map $\tau: S_p \to \mathbb{R} \cup \{\infty\}$

$$\forall v \in S_p, \tau(v) = \begin{cases} a & \text{if } \exp_p(av) \text{is a cut point ofp} \\ \infty & \text{ifphas no cut point alongt} \mapsto \exp_p(tv) \end{cases}$$

$$E(p) = \{ tv \mid v \in S_p, 0 \le t < \tau(v) \}$$

$$\tilde{C}(p) = \{ tv \mid v \in S_p, t = \tau(v) \}$$

$$C(p) = \{ cut \ points \ ofp \} = \exp_p(\tilde{C}(p))$$

[0,b) is the maximal interval on which $t\mapsto \exp_n tv$ is defined.

命题 8.3. $\forall p, q \in M, \exists two shortest curve connecting p and q,$

推论 8.4. $\exp_p: E(p) \to \exp_p(E(P)) \subset M$ is injective.

证明. Suppose
$$\exists V, W \in E(p)$$
 s.t. $\exp_p(V) = \exp_p(W) = q$.

$$t \mapsto \exp_p\left(t\frac{v}{\|v\|}\right)$$
$$t \mapsto \exp_p\left(t\frac{w}{\|w\|}\right)$$
Contradiction.

推论 8.5. $\exp_p(E(P)) \cap C(p) = \varnothing$.

证明. Suppose $\exists \ v \in \tilde{C}(p), W \in E(p)$ s.t. $\exp_p V = \exp_p W = q$ Contradiction.

Question: $\exp_p(E(p)) \cup C(p) = M$?

$$\mathbb{R}^2 \setminus \{0\}$$

 $\forall q \in \exp_p(E_p) \cup C(p) = M?$

9 Hopf-Rinow Theorem

3月11日27分14秒

任给 $p_0, q \in M, d(p_0, q) = r_0$. 我们想要找 p_0, q 之间的最短线.

我们知道局部上总是可以做的,问题是 p_0,q 可能离得很远.

思路是一步一步走.

选取以 p_0 为中心的一个 normal ball $B(p_0, \rho_0)$, 若 $q \in B(p_0, \rho_0)$, 结束.

若 $q \notin B(p_0, \rho_0)$, 假设 p_0, q 之间存在最短线 γ , 易知

- $\gamma \cap \partial B(p_0, \rho_0) = \{pt\} =: \{p_1\}.$
- $d(p_0,q) = \min_{p \in \partial B(p_0,\rho_0)} d(p,q).$

从 p_1 出发,我们可以找一个 normal ball $B(p_1, \rho_1)$, 并重复上述操作.

问题是: (1) p_0 到 p_2 的分段曲线是最短的吗? (2) 最终能达到 q 吗?

- $d(p_1,q) = r_0 \rho_0$
 - 假如 $d(p_1,q) < r_0 \rho_0$, 那么可以找到一条连接 p_0,q 的长度小于 r_0 的曲线,矛盾.
 - 假如 $d(p_1,q) > r_0 \rho_0$. 任选连接 p_0,q 的曲线 γ , $Length(\gamma) \geqslant \rho_0 + d(p_1,q)$. 取下确界,得 $r_0 \geqslant \rho_0 + d(p_1,q) > r_0$,矛盾.
- $d(p_0, p_2) = \rho_0 + \rho_1$
 - $-d(p_0, p_2) \leqslant d(p_0, p_1) + d(p_0, p_2) = \rho_0 + \rho_1.$
 - $-d(p_0, p_2) \geqslant d(p_0, q) d(p_2, q) = r (r \rho_0 \rho_1) = \rho_0 + \rho_1.$

因此,走了n步之后, p_0 和 p_n 之间的连线仍是最短的.

3月11日55分24秒名场面:方向决定道路,道路决定命运.

容易举出一些例子使得(2)不成立,为此我们附加一些额外的条件.

3月11日59分19秒

定义 9.1.

- injective radius at $p \in M$: $i(p) = \sup \{ \rho > 0 \mid \exp_p \mid_{B(O,\rho)} \text{ is a diffeomorphism} \}$.
- injective radius of $M: i(M) = \inf_{p \in M} i(p)$.

 $M \text{ compact} \Longrightarrow i(M) > 0.$

3月11日1小时4分52秒

Given $p \in M$,

- 1. Assumption I: $B_p(r)$ is compact \iff All closed bounded subsets of M is compact).
- 2. Assumption II: (M, g) is a complete metric space.
- 3. Assumption III: $\exp_p(p)$ is defined on the whole space T_pM .

这三个条件都可以保证 (2). 下面用 Assupttion III 推 (2).

3月21日1小时11分43秒

证明. $p, V \in T_pM$ $c(t) = \exp_n tV$

$$Aim:c(r) = \exp_n(rV) = q$$

Consider the set $I := \{t \in [0, r] \mid d(c(t), q) = r - t\}$

1 小时 24 分 33 秒

事实上,上面几种假定是等价的,这就是 Hopf-Rinow 定理.

3月15日2分31秒

定理 9.2 (Hopf-Rinow,1931). Let (M,g) be a Riemannian manifold, TFAE

- (1) (M, d_a) is a complete metric space.
- (2) All closed bounded subsets of M is compact.
- (3) $\exists p \in M$, \exp_p is defined on the whole T_pM .
- (4) $\forall p \in M$, \exp_p is defined on the whole T_pM .

Moreover, each of the statements (1) - (4) implies

(5) $\forall p, q \in M$ can be joined by a shortest curve.

注记. 原始论文: Ueber den Begriff der vollständigen differentialgeometrischen Fläche. 证明.

• $(3) \Longrightarrow (2)$

Claim: $\forall r > 0, \overline{B(p,r)}$ is compact.

For any bounded closed subset K, $\exists r_k$ such that $K \subset \overline{B(p, r_k)}$.

 $\text{FACT:}\overline{B(p,r)} = \exp_p(\overline{B(Op,r)})$

$$\begin{split} &-\exp_p(\overline{B(O_p,r)})\subset \overline{B(p,r)}\\ &\forall\; v\in \overline{B(O_p,r)}, d(p,\exp_pV)\leqslant r \Longrightarrow \exp_pV\in \overline{B(p,r)} \end{split}$$

- $\ \forall q \in \overline{B(p,r)},$
- $(2) \Longrightarrow (1)$
- $(1) \Longrightarrow (4)$

Suppose $\exists p \in M$ and $v \in T_pM$ such that the geodesic $t \mapsto \exp_p tv$ is defined on the maximal interval $[a, b), b < \infty$.

For any $\{t_n\} \subset [a,b)$ such that $t_n \to b$, $d(\exp_p t_n v, \exp_p t_m v) \leq ||v||_g |t_n - t_m|$ and then $\{\exp_p t_n v\}$ is a Cauchy sequence.

 $\exists p_0 \in M, \lim_{n \to +\infty} \exp_p t_n v = p_0, \text{i.e. } \forall \delta > 0, \exists N \text{ such that } \exp_p t_n v \in B(p_0, \delta), \forall n \geqslant N.$

引理 9.3. 内容...

10 Cut locus 2

3月15日39分24秒

定理 10.1. Let (M,g) be a complete Riemannian manifold, then

$$M = \exp_p(E(p)) \sqcup c(p).$$

定理 10.2. Let (M,g) be a complete Riemannian manifold. Let $\gamma \colon [a,b] \to M$ be a normal geodesic with $p = \gamma(0)$, v

证明. Choose a sequence of parameters

$$a_1 > a_2 > a_3 > \cdots$$
, $\lim_{i \to +\infty} a_i = a$.

By completeness, $\exists v_i \in T_pM, ||v_i|| = 1$ such that

$$\gamma_i(t) = \exp_p t v_i, t \in [0, b_i]$$

is a shortest curve form p to $\gamma(a_i)$, where $b_i = d(p, \gamma(a_i))$.

Notice that $v_i \neq v$.

$$\lim_{i o +\infty} p_i =$$

11 黎曼覆盖映射

12 Existence of shortest curves in given homotopy class

• isometry: 微分同胚, 度量等于拉回

•

3月15日1小时26分15秒

定理 12.1. Let (M,g) be compact.

Then every homotopy class of closed curves in M contains a curve which is shortest in its homotopy class and a geodesic.

引理 **12.2.** Let (M,g) be compact, $\exists \rho_0 > 0$ such that for any $\gamma_0, \gamma_1 \colon S^1 \to M$ be closed curves with $d(\gamma_0(t), \gamma_1(t)) \leqslant \rho_0, \forall t \in S_1$ we have γ_0 and γ_1 are homotopic.

引理 12.3. A shortest curve in a homotopy class is geodesic.

证明. Let $(\gamma)n_{n\in\mathbb{N}}$ is a minimizing sequence for length in the homotopy class.

All are parametrized proportional to arc length.

We can find $0 = t_0 < t_1 < \cdots < t_n < t_{n+1} = 2\pi$ with the property that

$$Length(\gamma_n\mid_{t_i,t_{i+1}}) \leqslant \frac{\rho_0}{2}$$

13 title

13.1 前情回顾

Riemannian Covering map

 $\pi: (M, \pi^*g) \to (M, g)$ smooth map

locally Riemannian isometry

isometry $\varphi \colon (M, g_M) \to (N, g_N)$ is called an isometry if φ is diffeomorphism and $g_M = \varphi^* g_N$ locally isometry $\varphi \colon (M, g_M) \to (N, g_N)$ smooth map, $\forall p \in M \exists U \in p$ such that $\varphi\big|_U \colon U \to \varphi(U)$ is an isometry 问题: 对 $\varphi(U)$ 有没有要求

locally Riemannian isometry $\varphi:(M,g_M)\to (N,g_N)$ smooth map, $\forall~p\in M, \mathrm{d}\varphi_p:T_pM\to T_{\varphi(p)}N$ is a linear isometry.

命题 13.1. Let $\varphi: (M, g_M) \to (N, g_N)$ be a locally Riemannian isometry.

- (1) φ maps geodesics to geodesics.
- (2) For any $\tilde{p}, \tilde{v} \in T_{\tilde{p}}M$, we have

$$\varphi \circ (\exp_{\tilde{p}} \tilde{v}) = \exp_{\varphi(\tilde{p})} (d\varphi_{(\tilde{p})}(\tilde{v})).$$

$$T_{\tilde{p}}M \xrightarrow{d\varphi(\tilde{p})} T_{\varphi(\tilde{p})N} \downarrow \qquad \downarrow$$

$$M \xrightarrow{\varphi} N$$

(3) φ is distance non-increasing.

$$\forall \ \tilde{p}, \tilde{q}, d_N(\varphi(\tilde{p}), \varphi(\tilde{q})) \leqslant d_M(\tilde{p}, \tilde{q})$$

(4) φ is bijective, then it is distance preserving.

定理 13.2. (M, g_M) complete Riemannian manifold, $p, q \in M$. Every homotopy class of paths from p to q contains a shortest curve.

证明. Assume that (M, g_M) complete $\Longrightarrow (\tilde{M}, \pi^*g)$ is complete.

命题 13.3. Let $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ is a Riemannian covering map, then (M, g) complete iff (\tilde{M}, \tilde{g}) complete.

证明.

ete
$$\Longrightarrow (\tilde{M}, \tilde{g})$$
complete $\forall \tilde{p} \in \tilde{M}, \tilde{v} \in T_{\tilde{p}\tilde{M}}, t \mapsto \exp_{\tilde{p}} t\tilde{v}$

$$p = \pi(\tilde{p}), v = d\pi(\tilde{p})(\tilde{v})$$

geodesic $t \mapsto \exp_{p} tv$ is defined on $[0, \infty)$

path liftying, $\exists \tilde{\gamma}$ a path in \tilde{M} such that $\tilde{\gamma(0)} = \tilde{p}, \pi \circ \tilde{\gamma} = \gamma$

$$\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}t}\big|_{t=0} = \tilde{v}$$

ete $\Longrightarrow (M, g)$ complete $\forall p \in M, \forall v \in T_p M, t \mapsto \exp_p tv$

命题 13.4. Let $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ is a local Riemannian isometry. Suppose (\tilde{M}, \tilde{g}) complete. Then (M, g) is complete and π is a Riemannian covering map.

证明. (1) π is surjective.

$$\forall \tilde{p} \in \tilde{M}, p = \pi(\tilde{p}) \in M$$

 $\forall q \in M, \exists$ a shortest geodesic γ from p to q.

Let $\tilde{\gamma}$ be the lifting of γ starting at $\tilde{p} = \tilde{\gamma}(0)$

$$\pi \circ \tilde{\gamma} = \gamma, q = \gamma(t_0), \pi \circ \tilde{\gamma}(t_0) = \gamma(t_0) = q$$

(2) evenly covered

$$p \in U, \pi^{-1}(U) = \bigsqcup_{\alpha \in \Lambda} \tilde{U}_{\alpha}$$

 $\pi \colon \tilde{U}_{\alpha} \to U$ diffeomorphism

Normall ball $B(p, \varepsilon)$

$$\tilde{U}_{\alpha} = B(\tilde{p}_{\alpha}, \varepsilon)$$
 metric ball

(a)
$$\tilde{U}_{\alpha} \cap \tilde{U}_{\beta} = \varnothing, \forall \alpha \neq \beta$$

 $d(\tilde{p}_{\alpha}, \tilde{p}_{\beta}) \geqslant 2\varepsilon$

(b)
$$\pi^{-1}(U) = \bigcup_{\alpha \in \Lambda} \tilde{U}_{\alpha}$$

• $\forall \tilde{q} \in \tilde{U}_{\alpha}$ for some $\alpha \in \Lambda$ \exists a geodesic $\tilde{\gamma}$ of length $< \varepsilon$ from

$$\frac{\mathrm{d}^2 x^i(t)}{\mathrm{d}t^2} + \Gamma^i_{jk}(x(t)) \frac{\mathrm{d}x^j}{\mathrm{d}t} \frac{\mathrm{d}x^k}{\mathrm{d}t} = 0, i = 1, \dots, n$$

14 能量泛函的变分 II

$$\frac{\mathrm{d}E}{\mathrm{d}s} = \frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial s} \left\langle \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \left\langle \nabla_{\frac{\partial}{\partial s}} \frac{\partial F}{\partial t}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \left\langle \nabla_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$= \int_{a}^{b} \frac{\partial}{\partial t} \left\langle \frac{\partial F}{\partial s}, \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t - \int_{a}^{b} \left\langle \frac{\partial F}{\partial s}, \nabla_{\frac{\partial}{\partial t}} \frac{\partial F}{\partial t} \right\rangle \mathrm{d}t$$

$$E'(0) = \langle V, T \rangle \Big|_{a}^{b} - \int_{a}^{b} \langle V, \nabla_{T} T \rangle \mathrm{d}t$$

3月29日1小时35分41秒

14.1 Gauss 引理

3月29日1小时36分33秒

14.2 第二变分公式

3月29日1小时51分30秒

 $\frac{\partial F}{\partial t}$ 视作沿曲线 $F(t,\cdot)$ 的向量场 $\frac{\partial F}{\partial t}$ 视作沿F的向量场

Chapter 3

Levi-Civita 联络和黎曼曲率张量

关于向量丛上的联络、拉回丛上的拉回联络、联络的曲率形式的知识, 可参考微分流形笔记.

1 仿射联络

张量场的协变导数 2

本节我们从切丛上的一个联络出发, 定义张量丛上的一个联络.

定理 2.1. 设 M 是光滑流形, ∇ 是其上的仿射联络, 那么存在唯一的映射

$$\nabla \colon \Gamma(TM) \times \Gamma\left(\bigotimes^{r,s} TM\right) \to \Gamma\left(\bigotimes^{r,s} TM\right)$$

满足

(1)
$$\nabla_{fX+fY}A = f\nabla_X A + g\nabla_Y A$$

(2)
$$\nabla_X (A_1 + A_2) = \nabla_X A_1 + \nabla_X A_2$$

(3)
$$\nabla_X(fA) = (Xf)A + f\nabla_X A$$

(4) 当
$$A \in C^{\infty}(M)$$
 或 $\Gamma(TM)$ 时, ∇ 与给定的仿射联络一致.

(5)
$$\nabla_X(A_1 \otimes A_2) = (\nabla_X A_1) \otimes A_2 + A_1 \otimes \nabla_X A_2$$

$$(6) \ C(\nabla_X A) = \nabla_X (CA), \ \not\exists \ \ C \colon \Gamma(\bigotimes^{r,s} TM) \to \Gamma(\bigotimes^{r-1,s-1} TM)$$

证明.
$$A \in \Gamma(\bigotimes^{\tau,s} TM)$$

$$A = A_{j_1 j_2 \cdots j_r}^{i_1 i_2 \cdots i_r} Y_{i_1} \otimes Y_{i_2} \otimes \cdots \otimes Y_{i_r} \otimes \omega^{j_1} \otimes \cdots \otimes \omega^{j_s}$$

$$\nabla_X A = \sum_i \nabla_X$$

$$\nabla_X A = \sum \nabla_X$$

$$= \sum X(A_{j_1\dots j_s}^{i_1\dots i_r})Y_{i_1}$$

唯一的问题是如何对微分 1 形式求导

$$\omega \in \Omega^1(M) = \Gamma(T^*M)$$

 $\nabla_X \omega$?

$$\forall Y \in \Gamma(TM), \omega(Y) \in C^{\infty}(TM)$$

$$X(\omega(Y)) = \nabla_X(\omega(Y)) = \nabla_X(C(\omega \otimes Y)) = C(\nabla_X(\omega \otimes Y))$$

$$C(\nabla_X \omega \otimes Y + \omega \otimes \nabla_X Y)$$

$$\nabla_X(\omega)Y + \omega(\nabla_XY)$$

$$(\nabla_X \omega) = X(\omega(Y)) - \omega(\nabla_X Y)$$

 \implies uniqueness

注记. (1) is a consequence of the other assumptions.

不是那么令人惊讶。这是说在这里是多余的。而不是在仿射联络的最初定义中也是多余的 $\forall X, Y, Z \in \Gamma(TM)$

$$f, g \in C^{\infty}(TM), \omega \in \Gamma(T^*M)$$

证明.
$$(fX + gY)\omega(Z) = \nabla_{fX+gY}\omega(Z) + \omega(\nabla_{fX+gY})Z$$

= $fX(\omega(Z)) + gY(\omega(Z))$

推论 2.2.
$$\forall A \in \Gamma(\bigotimes^{r,s}TM), \omega_{\alpha} \in \Gamma(T^*M), \alpha = 1, 2, \cdots, r, Y_j \in \Gamma(TM), j = 1, \cdots, s$$

We have $(\nabla_X A)(\omega_1, \cdots, \omega_s; Y_1, \cdots, Y_s)$

$$= A(\omega_1, \cdots, \omega_r, Y_1, \cdots, Y_s)$$
locality
$$\nabla_X A(p) \text{ only depends on } X \text{ at } p \text{ and } Y \text{ in } U \ni p.$$

$$(M, \nabla)$$

$$\varphi \colon V \to W \text{ isomorphism}$$

$$\varphi^* \colon W^* \to V^* \text{ isomorphism }, \alpha \mapsto \varphi^*(\alpha)$$

$$\forall v \in V, \varphi^*(\alpha)(v) := \alpha(\varphi(v))$$

$$P_{c,0,t} \colon T_{c(0)}M \to T_{c(t)}M$$

$$\longrightarrow \tilde{P}_{c,0,t} \colon \sum_{r,s} T_{c(0)}M \to \sum_{r,s} T_{c(t)}M$$

$$v_1 \otimes \cdots \otimes v_r \otimes \omega^1 \otimes \cdots \otimes \omega^r \mapsto P_{c,0,t}(v_1) \otimes \cdots \otimes D$$
Define $\nabla_{X(p)}A := \lim_{h \to 0} \frac{\tilde{P}}{-}$

定义 2.3. 称张量场 A 为平行的如果 $\nabla_X A = 0$, $\forall X \in \Gamma(TM)$.

设曲线 c(t) 在坐标卡 (U,x) 中表达为 $(c^1(t),\cdots,c^n(t))$. 计算切向量 c'(t) 关于自身的协变导数.

$$\begin{split} \frac{Dc'(t)}{\mathrm{d}t} &= \frac{D}{\mathrm{d}t} \left(\frac{\mathrm{d}c^i(t)}{\mathrm{d}t} \frac{\partial}{\partial x^i} \right) = \frac{\mathrm{d}^2c^i(t)}{\mathrm{d}t^2} \frac{\partial}{\partial x^i} + \frac{\mathrm{d}c^i(t)}{\mathrm{d}t} \frac{\mathrm{d}c^j(t)}{\mathrm{d}t} \nabla_{\partial_j} \frac{\partial}{\partial x^i} \\ &= \left(\frac{\mathrm{d}^2c^k(t)}{\mathrm{d}t^2} + \frac{\mathrm{d}c^i(t)}{\mathrm{d}t} \frac{\mathrm{d}c^i(t)}{\mathrm{d}t} f^k_{ij} \right) \frac{\partial}{\partial x^k} \end{split}$$

其中

$$\nabla_{\partial_j} \frac{\partial}{\partial x^i} = f_{ij}^k \frac{\partial}{\partial x^k}.$$

如果把 f_{ij}^k 取为 Γ_{ij}^k , 那么 $\frac{Dc'(t)}{\mathrm{d}t} = 0$ 等价于测地线方程.

注记. 联络就是由 n^3 个函数 f_{ij}^k 给定的. 但显然不是说随便给我 n^3 个函数我都决定联络. 但给你 Γ_{ij}^k 是可以决定联络的. 在这个联络下, 测地线方程就等价于 $\frac{Dc'(t)}{dt}=0$.

事实上, Γ_{ij}^k 决定的联络也不是唯一的使得测地线方程等价于 $\frac{Dc'(t)}{\mathrm{d}t}=0$ 的联络, Γ_{ij}^k 决定的联络自身还有一些特殊性,

- (1) $\Gamma_{ij}^k = \Gamma_{ii}^k$
- $(2) g_{ij,l} = g_{ij}\Gamma^k_{il} + g_{kj}\Gamma^k_{il}$

这两个式子, 在我们学过联络之后, 可以翻译为

- (1) Γ_{ij}^k 决定的联络是无挠的.
- (2) g 关于 Γ_{ij}^k 决定的联络是平行的.

满足这两条性质的联络是唯一的.

3 Levi-Civita 联络

定义 3.1. 称仿射联络 ∇ 是 (M,g) 上的 Levi-Civita 联络如果 $\nabla_X Y - \nabla_Y X = [X,Y]$ 且 $\nabla g = 0$.

命题 3.2. ∇ 是无挠的 \iff $\Gamma_{ij}^k = \Gamma_{ji}^k$.

证明. 容易看出 $\Gamma_{ij}^k = \Gamma_{ii}^k \iff \nabla_{\partial_i}\partial_j = \nabla_{\partial_j}\partial_i$. 那么

$$\nabla_X Y = \nabla_{X^i \partial_i} (Y^j \partial_j)$$

$$= X^i \frac{\partial Y_j}{\partial x^i} \frac{\partial}{\partial x^j} + X^i Y^j \nabla_{\partial_i} \partial_j$$

$$= \nabla_Y X + [X, Y].$$

$$\frac{\partial}{\partial t}R_{ijkl} = \Delta R_{ijkl} + 2(B_{ijkl} - B_{ijlk} - B_{iljk} + B_{ikjl})$$
$$-g^{pq}R_{pjkl}R_{qi} + R_{ipkl}R_{qj} + R_{ijpl}R_{qk} + R_{ijkp}R_{ql}$$

命题 3.3. ∇ 是度量相容的 \iff $g_{ij,l} = g_{ik}\Gamma^k_{jl} + g_{kj}\Gamma^k_{jl}$.

证明,

定理 3.4 (黎曼几何基本定理). 任意黎曼流形 (M,g) 上存在唯一的 Levi-Civita 联络.

局部坐标下的证明. 假定存在性. 轮换一下就能说明
$$\Gamma_{ij}^k = \frac{1}{2}g^{kl}(g_{il,j} + g_{jl,i} - g_{ij,l})$$
.

不用坐标的证明. Suppose existence.

Given $X, Y \in \Gamma(TM)$, we can determine $\nabla_X Y$ by determine $\langle \nabla_X Y, Z \rangle$ for any $Z \in \Gamma(TM)$.

$$\begin{split} \langle \nabla_X Y, Z \rangle &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, \nabla_X Z \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, \nabla_Z X + [X, Z] \rangle \\ &= X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - \langle Y, \nabla_Z X \rangle \\ &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle \nabla_Z Y, X \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle \nabla_Y Z + [Z, Y], X \rangle \\ &= X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + \langle \nabla_Y Z, X \rangle \\ &\stackrel{(2)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + Y \, \langle Z, X \rangle - \langle Z, \nabla_Y X \rangle \\ &\stackrel{(1)}{=} X \, \langle Y, Z \rangle - \langle Y, [X, Z] \rangle - Z \, \langle Y, X \rangle + \langle X, [Z, Y] \rangle + Y \, \langle Z, X \rangle - \langle Z, \nabla_X Y + [Y, X] \rangle \\ 2 \, \langle \nabla_X Y, Z \rangle = X \, \langle Y, Z \rangle + Y \, \langle Z, X \rangle - Z \, \langle X, Y \rangle - \langle X, [Y, Z] \rangle + \langle Y, [Z, X] \rangle + \langle Z, [X, Y] \rangle \end{split}$$

引理 **3.5.** 设 (M,g) 是黎曼流形, ∇ 是其上与 g 相容的联络. 设 $c:(a,b)\to M$ 是光滑曲线, $\frac{\mathrm{D}}{\mathrm{d}t}$ 是 ∇ 诱导的沿曲线的协变导数. 设 V(t),W(t) 是沿 c 的光滑曲线,那么

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle V(t), W(t) \right\rangle = \left\langle \frac{DV}{\mathrm{d}t}(t), W(t) \right\rangle + \left\langle V(t), \frac{DW}{\mathrm{d}t}(t) \right\rangle.$$

证明. 设在坐标邻域
$$(U,x)$$
 中 $V(t)=V^i(t)\frac{\partial}{\partial x^i}\bigg|_{c(t)}, W(t)=W^j(t)\frac{\partial}{\partial x^j}\bigg|_{c(t)},$ 那么

$$\begin{split} \mathrm{LHS} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(V^{i}(t) W^{j}(t) \left\langle \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \frac{\mathrm{d}}{\mathrm{d}t} \left\langle \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \frac{\mathrm{d}}{\mathrm{d}t} g \left(\frac{\partial}{\partial x^{i}} \Big|_{c(t)}, \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) c'(t) g \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}, W(t) \right\rangle + \left\langle V(t), \frac{\mathrm{d}W^{j}}{\mathrm{d}t}(t) \frac{\partial}{\partial x^{j}} \Big|_{c(t)} \right\rangle + V^{i}(t) W^{j}(t) \nabla_{c'(t)} g \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}} \right) \\ &= \left\langle \frac{\mathrm{d}V^{i}}{\mathrm{d}t}, W \right\rangle + \left\langle V, \frac{DW}{\mathrm{d}t} \right\rangle \end{split}$$

注记.

命题 **3.6.** 设 (M,g) 是黎曼流形,∇ 是其上的仿射联络. 那么 ∇ 与 g 相容当且仅当任意平行移动 是等距同构.

证明.
$$c: [a,b] \to M$$
 curve $\mathcal{P}_{c,a,t}: T_{c(a)}M \to T_{c(t)}M$

•

• 任意 $X, Y, Z \in \Gamma(TM), \forall p \in M$

命题 3.7. 设 ∇ 是 M 上的无挠联络. 设 $s\colon \mathbb{R}^2 \to M \in C^\infty$, V 是沿 s 的光滑向量场. 那么

$$\widetilde{\nabla}_{\frac{\partial}{\partial x}} s_* \frac{\partial}{\partial y} = \widetilde{\nabla}_{\frac{\partial}{\partial y}} s_* \frac{\partial}{\partial x}.$$

证明. 直接在局部坐标下计算.

4 能量泛函的第二变分公式与曲率张量

5 协变微分与 Ricci 恒等式

4月1日1小时23分16秒

6 协变微分的局部表达式

设 $A \in M$ 上的 (r,s) 型张量, 在局部坐标卡 (U,x) 内,

$$A = A^{i_1 \cdots i_r}_{j_1 \cdots j_s} \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes \mathrm{d} x^{j_1} \otimes \cdots \otimes \mathrm{d} x^{j_s}.$$

我们来计算 (r,s+1) 型张量 ∇A , 设

$$\nabla A = B_{j_1 \cdots j_s k}^{i_1 \cdots i_r} \frac{\partial}{\partial x^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial x^{i_r}} \otimes \mathrm{d} x^{j_1} \otimes \cdots \otimes \mathrm{d} x^{j_s} \otimes \mathrm{d} x^k.$$

那么

$$\begin{split} B_{j_1\cdots j_sk}^{i_1\cdots i_r} &= (\nabla_{\partial_k}A)\left(\mathrm{d}x^{i_1},\cdots,\mathrm{d}x^{i_r},\partial_{j_1},\cdots,\partial_{j_s}\right) = \partial_k\left(A(\mathrm{d}x^{i_1},\cdots,\mathrm{d}x^{i_r},\partial_{j_1},\cdots,\partial_{j_s})\right) \\ &- \sum A(\mathrm{d}x^{i_1},\cdots,\nabla_{\partial_k}\mathrm{d}x^{i_h},\cdots,\mathrm{d}x^{i_r},\partial_{j_1},\cdots,\partial_{j_s}) - \sum A(\mathrm{d}x^{i_1},\cdots,\mathrm{d}x^{i_r},\partial_{j_1},\cdots,\nabla_{\partial_k}\partial_{j_h},\cdots,\partial_{j_s}) \\ &= \partial_k A_{j_1\cdots j_s}^{i_1\cdots i_r} + A_{j_1\cdots j_s}^{i_1\cdots i_{h-1}li_{h+1}\cdots i_r}\Gamma_{kl}^{i_h} - A_{j_1\cdots j_{h-1}lj_{h+1}\cdots j_s}^{i_h}\Gamma_{kj_h}^{l} \end{split}$$

7 音乐同构

$$b: T_pM \longrightarrow T_p^*M, \quad X \longmapsto bX, \quad bX(Y) = g(X,Y).$$

$$\sharp \colon T_p^*M \longrightarrow T_pM, \quad \omega \longmapsto \sharp \omega, \quad g(\sharp \omega, Y) = \omega(Y).$$

8 算符

函数的梯度

函数的梯度就是函数的外微分在算符同构下的像. 在局部坐标系下,

$$\operatorname{grad} f = \sharp \operatorname{d} f = \sharp \left(\frac{\partial f}{\partial x^i} \operatorname{d} x^i \right) = \frac{\partial f}{\partial x^i} g^{ij} \frac{\partial}{\partial x^j}$$

向量场的散度

在欧式空间中,向量场的散度即为每个分量在各自的方向上求导再求和. 在流形上的一种推广方式是,首先指定流形上的一种求导方式,即一个仿射联络 ∇ ,然后考虑

$$\nabla X = X_{:j}^i \partial_i \otimes \mathrm{d} x^j,$$

然后定义 $\operatorname{div} X = \sum X_{;i}^i$. 因为这个量是 ∇X 作为线性变换时的迹, 因此是不依赖于基的选取的, 也就是不依赖于局部坐标的选取, 从而是良定的. 注意

$$X_{:i}^{i} = \partial_{i}X^{i} + X^{h}\Gamma_{hi}^{i}$$

因此实际上我们是对 $\sum \partial_i X^i$ 进行了一些修正得到了一个良定的量.

命题 8.1. 设 ∇ 是 M 上的 Levi-Civita 联络, 那么

$$\operatorname{div} X = \frac{1}{\sqrt{G}} \partial_i \left(\sqrt{G} X^i \right), \quad G = \det(g_{ij}).$$

证明.

函数的 Hessian

Laplace-Beltrami 算子

9 Bianchi 恒等式

- 第一 Bianchi 恒等式的 global 版本、证明和局部版本
- 第二 Bianchi 恒等式的 global 版本、证明和局部版本

命题 9.1. 设 M 是光滑流形, ∇ 是其上无挠的仿射联络,R 是相应的的曲率张量. 那么对于任意 $X,Y,Z,W\in\Gamma(TM)$,我们有

- (1) (第一 Bianchi 恒等式) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0.
- (2) (第二 Bianchi 恒等式) $(\nabla_X R)(Y,Z)W$

10 Riemann 曲率张量

11 截面曲率

12 高斯绝妙定理

13 Ricci 曲率

14 数量曲率

例子 14.1. 考虑复平面上的黎曼度量

$$g = \frac{4}{(1+x^2+y^2)^2} (dx \otimes dx + dy \otimes dy) = \frac{4}{(1+|z|^2)^2} |dz|^2,$$

计算它的 Gauss 曲率.

解. 记

 $f = \frac{4}{(1+x^2+y^2)^2}$

则

$$K = -\frac{\Delta \log f}{2f}.$$

$$\Delta \log f = -2\Delta \log(1 + x^2 + y^2)$$

$$\frac{\partial}{\partial x} \log(1 + x^2 + y^2) = \frac{2x}{1 + x^2 + y^2}$$

$$\frac{\partial^2}{\partial x^2} \log(1 + x^2 + y^2) = \frac{2(1 + x^2 + y^2) - 2x \cdot 2x}{(1 + x^2 + y^2)^2} = \frac{2 - 2x^2 + 2y^2}{(1 + x^2 + y^2)^2}$$

$$\Delta \log(1 + x^2 + y^2) = \frac{4}{(1 + x^2 + y^2)^2}$$

$$K = -\frac{1}{2} \frac{(1 + x^2 + y^2)^2}{4} \cdot (-2) \cdot \frac{4}{(1 + x^2 + y^2)^2} = 1$$

例子 14.2. g 的定义同上, 考虑映射 $F(z)=z^n$, 计算 F^*g 在 \mathbb{C}^* 上的 Gauss 曲率.

解. 设 $\zeta = z^n$, 则 $d\zeta = nz^{n-1}dz$

$$F^*g = \frac{4}{(1+|z|^{2n})^2} \cdot n^2 \cdot |z|^{2n-2} |\mathrm{d}z|^2 = n^2 \frac{4}{(1+(x^2+y^2)^n)^2} (x^2+y^2)^{n-1} (\mathrm{d}x \otimes \mathrm{d}x + \mathrm{d}y \otimes \mathrm{d}y)$$

记

$$f = n^{2} \frac{4}{(1 + (x^{2} + y^{2})^{n})^{2}} (x^{2} + y^{2})^{n-1}$$

则

$$K = -\frac{\Delta \log f}{2f}.$$

$$\log f = -2\log(1+(x^2+y^2)^n) + (n-1)\log(x^2+y^2) + \text{const}$$

我们在 \mathbb{C}^* 上计算 $\Delta \log f$, 此时 $\Delta \log(x^2 + y^2) = 0$.

$$\frac{\partial}{\partial x}\log(1+(x^2+y^2)^n) = \frac{n(x^2+y^2)^{n-1}\cdot 2x}{1+(x^2+y^2)^n}$$

$$\begin{split} \frac{\partial^2}{\partial x^2} \log(1+(x^2+y^2)^n) &= \frac{(n(n-1)(x^2+y^2)^{n-2}4x^2+2n(x^2+y^2)^{n-1})(1+(x^2+y^2)^n)-n^2(x^2+y^2)^{2n-2}\cdot 4x^2}{(1+(x^2+y^2)^n)^2} \\ &= \frac{n(n-1)(x^2+y^2)^{n-2}4x^2+2n(x^2+y^2)^{n-1}}{(1+(x^2+y^2)^n)^2} \\ &+ \frac{n(n-1)(x^2+y^2)^{2n-2}4x^2+2n(x^2+y^2)^{2n-1}-n^2(x^2+y^2)^{2n-2}\cdot 4x^2}{(1+(x^2+y^2)^n)^2} \\ \Delta \log(1+(x^2+y^2)^n) &= \frac{4n(n-1)(x^2+y^2)^{n-1}+4n(x^2+y^2)^{n-1}}{(1+(x^2+y^2)^n)^2} \\ &+ \frac{4n(n-1)(x^2+y^2)^{2n-1}+4n(x^2+y^2)^{2n-1}-4n^2(x^2+y^2)^{2n-1}}{(1+(x^2+y^2)^n)^2} \\ &= \frac{4n^2(x^2+y^2)^{n-1}}{(1+(x^2+y^2)^n)^2} \\ K &= -\frac{1}{2}\frac{1}{n^2}\frac{(1+(x^2+y^2)^n)^2}{4}\frac{1}{(x^2+y^2)^{n-1}}(-2)\frac{4n^2(x^2+y^2)^{n-1}}{(1+(x^2+y^2)^n)^2} = 1 \end{split}$$

注记. 让我们分析一下 F^*g 在原点附近的行为.

$$\log f = -2\log(1 + (x^2 + y^2)^n) + (n-1)\log(x^2 + y^2) + \text{const}$$

所以 F^*g 在原点处有一个 $2\pi n$ 的锥角度.

15 Bochner 公式

16 测地曲率

17 Gauss-Bonnet 公式

定理 17.1. 设 M 是紧的二维黎曼流形, 其边界 ∂M 光滑, 则

$$\int_{M} K dA + \int_{\partial M} k_g ds = 2\pi \chi(M).$$

Chapter 4

Jacobi 场

1 Jacobi 场

定义 1.1. 设 γ : $[a,b] \to M$ 是一条测地线. 对于 $t_0,t_1 \in [a,b]$,如果存在沿 γ 的不恒为零的 Jacobi 场 U(t),满足 $U(t_0) = U(t_1) = 0$,则称 t_0,t_1 是沿 γ 的共轭值. 将所有这样的 Jacobi 场与恒为零的向量场所构成的线性空间的维数称作 t_0 和 t_1 作为共轭值的重数. 称 $\gamma(t_0)$ 和 $\gamma(t_1)$ 为沿 γ 的共轭点.

2 Morse 指标定理

3 Cartan-Hadamard 定理

4 空间形式

定义 4.1. 称常截面曲率的完备黎曼流形为空间型.

引理 4.2. 内容...

定理 4.3. 设 (M_i^n,g_i) 是单连通、截面曲率为 c 的空间型. 设 $p_i\in M_i$, $\left\{e_i^1,\cdots,e_i^n\right\}$ 是 $T_{p_i}M_i$ 的标准正交基,那么存在唯一的保距映射 $\varphi\colon M_1\to M_2$ 使得 $\varphi(p_1)=p_2, \varphi_{*,p}(e_1^j)=e_2^j$.

5 单连通空间形式的等距群

5.1 \mathbb{R}^n

命题 **5.1.** $Iso(\mathbb{R}^n) \cong T(n) \rtimes O(n)$.

证明. 假设 $f \in Iso(\mathbb{R}^n)$ 满足 f(0) = 0, 否则考虑 $\tilde{f} = f - f(0)$.

(1) f 保持内积. 因为 f 保持距离, 所以对任意 $x,y \in \mathbb{R}^n$, 有

$$||f(x) - f(y)||^2 = ||x - y||^2 \Longrightarrow \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

- (2) f 是线性的.
 - $\bullet \ \, \|f(ax)-af(x)\|^2=\|f(ax)\|^2+\|af(x)\|^2-2\left\langle f(ax),af(x)\right\rangle=\|ax\|^2+\|ax\|^2-2\|ax\|^2=0.$
 - $||f(x+y) f(x) f(y)||^2 \xrightarrow{\mathbb{R}^{\frac{n}{2}}} \cdots \xrightarrow{\mathbb{R}^{\frac{n}{2}}} ||x+y-x-y||^2 = 0.$
- (3) $f \in O(n)$.

注记. 证明了稍稍强一点的事: 等距 ⇒ 双射.

5.2 \mathbb{S}^n

命题 **5.2.** $Iso(\mathbb{S}^n) \cong O(n+1)$.

证明. https://math.stackexchange.com/questions/130193/isometries-of-mathbbsn

5.3 \mathbb{H}^n

6 Killing-Hopf 定理

7 距离函数

Chapter 5

比较定理

1 Sturm 比较定理

2 Rauch 比较定理

3 Hessian 比较定理

4 Laplacian 比较定理

5 体积比较定理

Chapter 6

规范理论

Chapter 7

1 泛函与变分

定义 1.1. 设 $c:[a,b]\to M$ 是一条光滑曲线. c 的一个(单参数)变分是指一个光滑映射

$$F: [a, b] \times (-\varepsilon, \varepsilon) \to M, \quad (t, s) \mapsto F(t, s)$$

满足 F(t,0)=c(t). 记 $\frac{\partial F}{\partial t}=\mathrm{d}F\left(\frac{\partial}{\partial t}\right), \frac{\partial F}{\partial s}=\mathrm{d}F\left(\frac{\partial}{\partial s}\right)$ (注意该记法与将 $\mathrm{d}c\left(\frac{\mathrm{d}}{\mathrm{d}t}\right)$ 记作 c'(t) 的习惯相同). 称沿 c 的向量场 $V(t):=\frac{\partial F}{\partial s}(t,0)$ 为变分场.