

Mathematics for Audio & Graphics

Prof. Lena Gieseke

WS17 - Lecture 09 08.01.19

Today

- Summary Vectors
- Matrices
 - Operations
 - The Identity Matrix
 - The Inverse Matrix
 - Determinants

"Points, vectors, matrices and normals are to computer graphics what the alphabet is to literature..."

[1]

- Points vs. directions
- Operations
- Magnitude
- Normalization
- The Dot Product
- Projections
- The Cross Product
- Scalar Triple Product

Points vs. Directions

- Points in space
 - Locations of objects
 - Vertices of a triangle mesh
 - Usually there is some understood origin location from which all other locations are stored as offsets

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

- Spatial directions
 - Orientation of the camera
 - An offset or a displacement
 - Velocity

$$\mathbf{a} = egin{bmatrix} x_a \ y_a \end{bmatrix}$$

https://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction

Addition

Subtraction

https://www.math10.com/en/geometry/vectors-operations/vectors-operations.html

Operations

Summary Vectors

Scalar Multiplication

The Magnitude

Summary Vectors

• The **length** of a vector is also called the *magnitude*

$$\|\mathbf{a}\| = \sqrt{\sum_{i=1}^n a_i^2}$$

$$\|\mathbf{a}\| = \sqrt{x_a^2 + y_a^2}$$

Normalization

Summary Vectors

- Normalization is the resizing of a vector to length 1 (unit size)
- Done through multiplication by

This is essential for many graphics operations

Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \phi$$

$$\mathbf{a} \cdot \mathbf{b} = x_a x_b + y_a y_b + z_a z_b$$

Dot Product

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \phi$$

$$\cos \phi = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

$$\mathbf{a} \cdot \mathbf{b} = x_a x_b + y_a y_b + z_a z_b$$

Dot Product

Projections

Summary Vectors

Parallel Comp

$$\operatorname{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2} \mathbf{b}$$

Perpendicular Component

$$perp_{\mathbf{b}}\mathbf{a} = \mathbf{a} - proj_{\mathbf{b}}\mathbf{a}$$
$$= \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\mathbf{b}$$

Cross Product

Summary Vectors

$$\mathbf{a} \times \mathbf{b} = (y_a z_b - z_a y_b, z_a x_b - x_a z_b, x_a y_b - y_a x_b).$$

• Given two 3D vectors \mathbf{a} and \mathbf{b} , the cross product $\mathbf{a} \times \mathbf{b}$ satisfies the equation

$$\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \alpha$$

where α is the planar angle between **a** and **b**.

ttps://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtra

Cross Product

Summary Vectors

 Returns a new vector that is perpendicular to both of the vectors being multiplied together

 One of its major uses in Computer Graphics is the calculation of a surface normal at a particular point given two distinct tangent vectors.

Scalar Triple Product

Scalar Triple Product

Vectors

 Defined as the dot product of one of the vectors with the cross product of the other two:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

 The (signed) volume of the parallelepiped (3D parallelogram; a sheared 3D box) defined by the three vectors given

base

Scalar Triple Product

Vectors

 Defined as the dot product of one of the vectors with the cross product of the other two:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

- The (signed) volume of the parallelepiped (3D parallelogram; a sheared 3D box) defined by the three vectors given
 - Parentheses may be omitted without causing ambiguity, since the dot product cannot be evaluated first. If it were, it would leave the cross product of a scalar and a vector, which is not defined.

base

Vectors | Scalar Triple Product

 The scalar triple product is invariant under a circular shift of its three operands (a, b, c):

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})$$

 Following from above and the commutative property of the dot product:

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Matrices

Matrices

- Variety of purposes
 - E.g. representation of spatial transforms
 - Moving from one coordinate space to another

[3]

Matrices

Matrices

An $n \times m$ matrix **M** is an array of numbers having n rows and m columns.

If n = m, then the matrix **M** is square.

Matrices

An $n \times m$ matrix **M** is an array of numbers having n rows and m columns.

If n = m, then the matrix **M** is square.

 M_{ij} (or as above c_{ij}) refers to the entry of **M** that resides at the i-th row of the j-th column.

Matrices

As an example, suppose that \mathbf{F} is a 3×4 matrix

$$\mathbf{F} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \end{bmatrix}$$

The entries for which i = j are called the *main diagonal* entries of the matrix.

Matrices

A square matrix whose only nonzero entries appear on the main diagonal is called a *diagonal* matrix.

$$\mathbf{F} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix}$$

Matrices

The transpose of an $n \times m$ matrix M, denoted by \mathbf{M}^T , is an $m \times n$ matrix for which the (i, j) entry is equal to M_{ji} .

The transpose of the matrix **F**:

$$\mathbf{F} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} F_{11} & F_{12} & F_{13} & F_{14} \\ F_{21} & F_{22} & F_{23} & F_{24} \\ F_{31} & F_{32} & F_{33} & F_{34} \end{bmatrix} \qquad \mathbf{F}^{\mathrm{T}} = \begin{bmatrix} F_{11} & F_{21} & F_{31} \\ F_{12} & F_{22} & F_{32} \\ F_{13} & F_{23} & F_{33} \\ F_{14} & F_{24} & F_{34} \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Matrices

The *transpose* of an $n \times m$ matrix **M**, denoted by \mathbf{M}^T , is an $m \times n$ matrix for which the (i, j) entry is equal to M_{ii} .

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{x}^{T} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \quad (\mathbf{x}^{T})^{T} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

(You will often times see transposed Version of a Vector in Text, as it is easier to write.)

Scalar Multiplication

Matrices

As with vectors (which can be thought of as $n \times 1$ matrices), scalar multiplication is defined for matrices.

Given a scalar a and an $n \times m$ matrix M, the product aM is given by

$$a\mathbf{M} = \mathbf{M}a = \begin{bmatrix} aM_{11} & aM_{12} & \cdots & aM_{1m} \\ aM_{21} & aM_{22} & \cdots & aM_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ aM_{n1} & aM_{n2} & \cdots & aM_{nm} \end{bmatrix}$$

$$4 \begin{pmatrix} -1 & 0 & 2 \\ 3 & 2 & 1 \\ -2 & 3 & 0 \end{pmatrix} = \begin{pmatrix} -4 & 0 & 8 \\ 12 & 8 & 4 \\ -8 & 12 & 0 \end{pmatrix}$$

Given two $n \times m$ matrices **F** and **G**, the sum **F**+**G** is given by

$$\mathbf{F} + \mathbf{G} = \begin{bmatrix} F_{11} + G_{11} & F_{12} + G_{12} & \cdots & F_{1m} + G_{1m} \\ F_{21} + G_{21} & F_{22} + G_{22} & \cdots & F_{2m} + G_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ F_{n1} + G_{n1} & F_{n2} + G_{n2} & \cdots & F_{nm} + G_{nm} \end{bmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -1 & 2 & 4 \\ 4 & -5 & 3 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 3 & 0 & -1 \\ 1 & 2 & -4 \end{pmatrix}$$

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

$$= \begin{pmatrix} -1 + 3 & 2 + 0 & 4 + (-1) \\ 4 + 1 & -5 + 2 & 3 + (-4) \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 2 & 3 \\ 5 & -3 & -1 \end{pmatrix}$$

Given any two scalars a and b and any three $n \times m$ matrices \mathbf{F} , \mathbf{G} , and \mathbf{H} , the following properties hold.

Theorem 6

(a)
$$\mathbf{F} + \mathbf{G} = \mathbf{G} + \mathbf{F}$$

(b)
$$(F+G)+H=F+(G+H)$$

(c)
$$a(b\mathbf{F}) = (ab)\mathbf{F}$$

(d)
$$a(\mathbf{F} + \mathbf{G}) = a\mathbf{F} + a\mathbf{G}$$

(e)
$$(a+b)\mathbf{F} = a\mathbf{F} + b\mathbf{F}$$

Matrices

If **A** is an $n \times m$ matrix and **B** is an $m \times p$ matrix

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mp} \end{pmatrix}$$

the matrix product **AB** (denoted *without* multiplication signs or dots) is defined to be the $n \times p$ matrix

$$\mathbf{AB} = \begin{pmatrix} (\mathbf{AB})_{11} & (\mathbf{AB})_{12} & \cdots & (\mathbf{AB})_{1p} \\ (\mathbf{AB})_{21} & (\mathbf{AB})_{22} & \cdots & (\mathbf{AB})_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ (\mathbf{AB})_{n1} & (\mathbf{AB})_{n2} & \cdots & (\mathbf{AB})_{np} \end{pmatrix}$$

where each i, j entry is given by multiplying the entries \mathbf{A}_{ik} (across row i of \mathbf{A}) by the entries \mathbf{B}_{kj} (down column j of \mathbf{B}), for k = 1, 2, ..., m, and summing the results over k:

$$(\mathbf{AB})_{ij} = \sum_{k=1}^m A_{ik} B_{kj}$$
.

Matrices

For matrix multiplication, rows of the first matrix are multiplied with columns of the second matrix:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$c_{11} = (a_{11} & a_{12} & a_{13}) \begin{pmatrix} b_{11} \\ b_{21} \\ b_{31} \end{pmatrix} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

http://www.mathematrix.de/matrixmultiplikation/

Matrices

If F is an $n \times m$ matrix and **G** is an $m \times p$ matrix, then the product **FG** is an $n \times p$ matrix whose (i, j) entry is given by

$$(\mathbf{FG})_{ij} = \sum_{k=1}^m F_{ik} G_{kj}$$

Another way of looking at this is that the (i, j) entry of **FG** is equal to the dot product of the i-th row of **F** and the j-th column of **G**.

Matrices

- Taking a product of two matrices is only possible if the number of columns of the left matrix is the same as the number of rows of the right matrix.
- Hence, Matrix multiplication is not commutative in most instances:

$$FG \neq GF$$

Matrices

Thus the product AB is defined only if the number of columns in A is equal to the number of rows in B, in this case m.

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mp} \end{pmatrix}$$

$$n \times m = n \times p$$
 = $n \times p$

Properties

Matrices | Multiplication

Given any scalar a, an $n \times m$ matrix **F**, an $m \times p$ matrix **G**, and a p \times q matrix **H**, the following properties hold.

Theorem 7

(a)
$$(a\mathbf{F})\mathbf{G} = a(\mathbf{F}\mathbf{G})$$

(b)
$$(\mathbf{F}\mathbf{G})\mathbf{H} = \mathbf{F}(\mathbf{G}\mathbf{H})$$

(c) $(\mathbf{F}\mathbf{G})^{\mathrm{T}} = \mathbf{G}^{\mathrm{T}}\mathbf{F}^{\mathrm{T}}$

(c)
$$(\mathbf{F}\mathbf{G})^{\mathrm{T}} = \mathbf{G}^{\mathrm{T}}\mathbf{F}^{\mathrm{T}}$$

Identity Matrix

Matrices

There is an $n \times n$ matrix called the *identity* matrix, denoted by I_n , for which

$$MI_n = I_nM = M$$

for any $n \times n$ matrix **M**. The identity matrix has the form

$$\mathbf{I}_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrices

An $n \times n$ matrix **M** is *invertible* if there exists a matrix, which we denote by \mathbf{M}^{-1} , such that

$$MM^{-1} = M^{-1}M = I$$
.

The matrix \mathbf{M}^{-1} is called the *inverse* of \mathbf{M} .

Matrices

An $n \times n$ matrix **M** is *invertible* if there exists a matrix, which we denote by \mathbf{M}^{-1} , such that

$$MM^{-1} = M^{-1}M = I.$$

The matrix \mathbf{M}^{-1} is called the *inverse* of \mathbf{M} .

Example: the inverse of a number $aa^{-1} = \frac{a}{a} = 1$

Matrices

An $n \times n$ matrix **M** is *invertible* if there exists a matrix, which we denote by \mathbf{M}^{-1} , such that

$$MM^{-1} = M^{-1}M = I.$$

The matrix \mathbf{M}^{-1} is called the *inverse* of \mathbf{M} .

$$A \cdot A^{-1} = egin{pmatrix} 2 & 5 \ 1 & 3 \end{pmatrix} \cdot egin{pmatrix} 3 & -5 \ -1 & 2 \end{pmatrix} = egin{pmatrix} 6 - 5 & -10 + 10 \ 3 - 3 & -5 + 6 \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix} = I$$

Matrices

An $n \times n$ matrix **M** is *invertible* if there exists a matrix, which we denote by \mathbf{M}^{-1} , such that

$$MM^{-1} = M^{-1}M = I.$$

The matrix \mathbf{M}^{-1} is called the *inverse* of \mathbf{M} .

Not every matrix has an inverse, and those that do not are called *singular*.

Matrices

- There are numerous approaches to compute the inverse of a matrix.
 - Gauss-Jordan elimination
 - Newton's method
 - Cayley–Hamilton method
 - Eigendecomposition
 - Cholesky decomposition
 - Analytic solution
 - Blockwise inversion
 - By Neumann series
 - P-adic approximation

Why Do We Care?

Matrices | Inverse Matrix

- Because there is no matrix division!
 - But multiplying by an Inverse achieves the same thing
- How do I share 10 apples with 2 people?
 - Multiply 10 with the inverse (reciprocal) of 2
 - $10 \times 0.5 = 5$

Why Do We Care?

Matrices | Inverse Matrix

Say we want to find Matrix X, and we know Matrix A and B:

$$XA = B$$

- It would be nice to divide both sides by A (to get X=B/A), but remember we can't divide.
- But what if we multiply both sides by A⁻¹?

$$XA A^{-1} = BA^{-1}$$

• And we know that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$, so:

$$XI = BA^{-1}$$

• We can remove I (for the same reason we can remove "1" from 1x = ab for numbers):

$$X = BA^{-1}$$

• And we have our answer (assuming we can calculate A^{-1})

Properties

Matrices | Inverse

Theorem 8

A matrix possessing a row or column consisting entirely of zeros is not invertible.

Theorem 9

A matrix M is invertible if and only if M^T is invertible.

Theorem 10

If **F** and **G** are $n \times n$ invertible matrices, then the product **FG** is invertible, and $(\mathbf{FG})^{-1} = \mathbf{G}^{-1}\mathbf{F}^{-1}$.

Matrices

- The determinant of a square matrix is a scalar quantity derived from the entries of the matrix.
- The determinant of a matrix M is denoted det(M), det M, or |M|
- Determinants occur throughout mathematics and have many useful properties in linear algebra
 - The scaling factor of the transformation described by a matrix
 - Indicates if a linear system represented in matrix form is solvable

Matrices

 When evaluating the determinant of a matrix, brackets are replaced with vertical bars:

$$\det \mathbf{M} = \begin{vmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{vmatrix}$$

Matrices

Formula for the determinant of a 2×2 matrix:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Matrices

Formula for the determinant of a 2×2 matrix:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$B = \begin{bmatrix} 4 & 6 \\ 3 & 8 \end{bmatrix} \quad |B| = 4 \times 8 - 6 \times 3 = 32 - 18 = 14$$

Geometric Interpretation

Matrices | Determinantes | 2 x 2

 For 2D vectors **n** and **m**, the determinant |nm| is the area of the parallelogram formed by **n** and **m**:

$$\begin{vmatrix}
\mathbf{n} \rightarrow \begin{vmatrix} a & b \\
\mathbf{m} \rightarrow \begin{vmatrix} c & d \end{vmatrix} = ad - bc$$

- This is a signed area
 - If positive then n and m are right-handed, if negative they are left-handed.
 - |nm| = -|mn|

Matrices

Formula for the determinant of a 3×3 matrix:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31})$$
$$+ a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

Matrices

 To memorize the equation, write two copies of the matrix M side by side and multiply entries along the diagonals and back-diagonals, adding the diagonal terms and subtracting the back- diagonal terms:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

 $= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{31} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$

Geometric Interpretation

Matrices | Determinantes | 3 x 3

• For 3D vectors $\mathbf{r_1}$, $\mathbf{r_2}$ and $\mathbf{r_3}$ the determinant $|\mathbf{r_1} \ \mathbf{r_2} \ \mathbf{r_3}|$ is the signed volume of the parallelepiped formed by $\mathbf{r_1}$, $\mathbf{r_2}$ and $\mathbf{r_3}$:

Geometric Interpretation

Matrices | Determinantes

- To generalize:
 - The determinant takes *n n*-dimensional vectors and combines them to get a signed *n*-dimensional volume of the *n*-dimensional parallelepiped defined by the vectors.

Sounds Vaguely Familiar? 👬

Matrices | Determinantes

Remember scalar triple product

• It can also be understood as the determinant of the 3×3 matrix (thus also its inverse) having the three vectors either as its rows or its columns.

Sounds Vaguely Familiar? 👬

Matrices | Determinantes

 The scalar triple product is the same as the determinant of the 3×3 matrix:

$$\mathbf{a}\cdot(\mathbf{b} imes\mathbf{c})=\detegin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix}=\det\left(\mathbf{a},\mathbf{b},\mathbf{c}
ight).$$

Matrices | Determinantes

If we set a to unit vectors parallel to the x, y, and z axes (often written as i,j, and k

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} = \det (\mathbf{a}, \mathbf{b}, \mathbf{c}).$$

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
$$\mathbf{j} = \langle 0, 1, 0 \rangle$$
$$\mathbf{k} = \langle 0, 0, 1 \rangle$$

Matrices | Determinantes

 Then, we can compute the cross product by evaluating the pseudodeterminant

$$egin{aligned} \mathbf{u} imes \mathbf{v} &= egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ u_1 & u_2 & u_3 \ v_1 & v_2 & v_3 \ \end{array} \ &= egin{array}{cccc} u_2 & u_3 \ v_2 & v_3 \ \end{array} egin{array}{ccccc} \mathbf{i} - egin{array}{ccccc} u_1 & u_3 \ v_1 & v_3 \ \end{array} egin{array}{ccccccc} \mathbf{j} + egin{array}{ccccc} u_1 & u_2 \ v_1 & v_2 \ \end{array} egin{array}{cccccc} \mathbf{k} \end{array}$$

Properties

Matrices | Determinantes

Theorem 11

For any two $n \times n$ matrices **F** and **G**, det **FG** = det **F** det **G**.

Properties

Matrices | Determinantes

Theorem 12

An $n \times n$ matrix **M** is invertible if and only if det **M** $\neq 0$.

Inverses

Matrices | Determinantes

The inverse of a matrix can be computed by

$$\mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{bmatrix}$$

$$\mathbf{B}^{-1} = \frac{1}{\det \mathbf{B}} \begin{bmatrix} B_{22}B_{33} - B_{23}B_{32} & B_{13}B_{32} - B_{12}B_{33} & B_{12}B_{23} - B_{13}B_{22} \\ B_{23}B_{31} - B_{21}B_{33} & B_{11}B_{33} - B_{13}B_{31} & B_{13}B_{21} - B_{11}B_{23} \\ B_{21}B_{32} - B_{22}B_{31} & B_{12}B_{31} - B_{11}B_{32} & B_{11}B_{22} - B_{12}B_{21} \end{bmatrix}$$

Adjoint Matrix

Matrices | Determinantes

$$\begin{bmatrix} B_{22}B_{33} - B_{23}B_{32} & B_{13}B_{32} - B_{12}B_{33} & B_{12}B_{23} - B_{13}B_{22} \\ B_{23}B_{31} - B_{21}B_{33} & B_{11}B_{33} - B_{13}B_{31} & B_{13}B_{21} - B_{11}B_{23} \\ B_{21}B_{32} - B_{22}B_{31} & B_{12}B_{31} - B_{11}B_{32} & B_{11}B_{22} - B_{12}B_{21} \end{bmatrix}$$

- This is the transpose of the matrix where elements of **B** are replaced by their respective cofactors multiplied by the leading constant (1 or -1). This matrix is called the *adjoint* of **B**.
- The adjoint is the transpose of the cofactor matrix of B.

Transformations

Linear Transformations

 A linear transformation uses a 2 × 2 matrix to change, or transform, a 2D vector:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{bmatrix}$$

 This simple formula achieves a variety of useful transformations, depending on the entries of the matrix.

Linear Transformations

 A linear transformation uses a 2 × 2 matrix to change, or transform, a 2D vector:

 This simple formula achieves a variety of useful transformations, depending on the entries of the matrix.

Scaling Linear Transformations

- The most basic transform is a scale along the coordinate axes.
 - This transform can change length and possibly direction:

$$\operatorname{scale}(s_x, s_y) = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

$$\begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

[2

Scaling Linear Transformations

scale(0.5, 1.5) =
$$\begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$$

$$\begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 0.5 \times 4 + 0 \times 4 \\ 0 \times 4 + 1.5 \times 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

Shearing Linear Transformations

The horizontal and vertical shear matrices are:

$$\operatorname{shear-x}(s) = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}, \quad \operatorname{shear-y}(s) = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix}$$

 An x-shear matrix moves points to the right in proportion to their ycoordinate:

$$shear-x(1) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Rotation

Linear Transformations

• Suppose we want to rotate a vector \mathbf{a} by an angle ϕ counterclockwise to get vector \mathbf{b} .

Rotation

Linear Transformations

• If **a** makes an angle α with the **x**-axis, and its length is $r = \sqrt{x_a^2 + y_a^2}$, then

$$x_a = r \cos \alpha$$
$$y_a = r \sin \alpha$$

Linear Transformations

• If **a** makes an angle α with the **x**-axis, and its length is $r = \sqrt{x_a^2 + y_a^2}$, then

$$x_a = r \cos \alpha$$
$$y_a = r \sin \alpha$$

[2

Linear Transformations

• If **a** makes an angle α with the **x**-axis, and its length is $r = \sqrt{x_a^2 + y_a^2}$, then

$$x_a = r \cos \alpha$$

$$y_a = r \sin \alpha$$

Linear Transformations

- As $\bf b$ is a rotation of $\bf a$, it also has length r
- It is rotated an angle ϕ from **a**, hence **b** makes an angle $(\alpha + \phi)$ with the x-axis

$$x_b = r\cos(\alpha + \phi)$$

$$y_b = r\sin(\alpha + \phi)$$

Linear Transformations

- As \mathbf{b} is a rotation of \mathbf{a} , it also has length r
- It is rotated an angle ϕ from **a**, hence **b** makes an angle $(\alpha + \phi)$ with the x-axis

$$x_b = r\cos(\alpha + \phi)$$
$$y_b = r\sin(\alpha + \phi)$$

Using the trigonometric addition identities:

$$cos(\beta + \alpha) = cos(\beta) \cdot cos(\alpha) - sin(\beta) \cdot sin(\alpha)$$

 $sin(\beta + \alpha) = sin(\beta) \cdot cos(\alpha) + cos(\beta) \cdot sin(\alpha)$

$$x_b = r\cos(\alpha + \phi) = r\cos\alpha\cos\phi - r\sin\alpha\sin\phi,$$

$$y_b = r\sin(\alpha + \phi) = r\sin\alpha\cos\phi + r\cos\alpha\sin\phi.$$

[2]

Linear Transformations

ullet Substituting $x_a = r\coslpha$ and $y_a = r\sinlpha$ gives

$$x_b = x_a \cos \phi - y_a \sin \phi,$$

$$y_b = x_a \sin \phi + y_a \cos \phi.$$

• In matrix form, the transformation that takes **a** to **b** is then

$$rotate(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$$

Linear Transformations

• A matrix that rotates vectors by $\pi/4$ radians (45 degrees) is

$$\begin{bmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix}$$

$$\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix} = \begin{bmatrix} 0.707 \times 0.707 - 0.707 \times 0.707 \\ 0.707 \times 0.707 + 0.707 \times 0.707 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \times 0.707 - 1 \times 0.707 \\ 0 \times 0.707 + 1 \times 0.707 \end{bmatrix} = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

[2]

Linear Transformations

- These formulae define the rotation around the origin!
 - A positive angle rotates counter-clockwise, a negative one clockwise
- These formulae assume that the x axis points right and the y axis points up
 - Different coordinate systems work with the same principle, but the coordinate assignments need to be adjusted

[2

Reflection

Linear Transformations

 To reflect a vector across either of the coordinate axes, a scale with one negative scale factor is used:

$$\text{reflect-y} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \text{reflect-x} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

[2]

Linear Transformations

• The effects of transforming a vector by two matrices in sequence (e.g. scale **S**, rotation **R**) can be done multiplying the two transformation matrices to a single matrix of the same size:

$$M = RS$$

[2

Linear Transformations

 The effects of transforming a vector by two matrices in sequence (e.g. scale S, rotation R) can be done multiplying the two transformation matrices to a single matrix of the same size:

$$\mathbf{M} = \mathbf{RS}$$

- It is very important to remember that these transforms are applied from the right side first.
 - The matrix M = RS first applies S and then R

Audio-Visual Maths 1 - WS 17/18

Linear Transformations

• The effects of transforming a vector by two matrices in sequence (e.g. scale **S**, rotation **R**) can be done multiplying the two transformation matrices to a single matrix of the same size:

$$M = RS$$

- It is very important to remember that **these transforms are** applied from the right side first.
 - The matrix M = RS first applies S and then R
- Matrix multiplication is not commutative. So the order of transforms does matter!

[2]

Linear Transformations

$$\begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} = \begin{bmatrix} 0.707 & -0.353 \\ 0.707 & 0.353 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} = \begin{bmatrix} 0.707 & -0.707 \\ 0.353 & 0.353 \end{bmatrix}$$

Linear Transformations

Transformations so far work similarly in 3D

$$scale(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

$$shear-x(d_y, d_z) = \begin{bmatrix} 1 & d_y & d_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

shear-x
$$(d_y, d_z) = \begin{bmatrix} 1 & d_y & d_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Rotation is considerably more complicated in 3D than in 2D, because there are more possible axes of rotation.
- For now we simply want to rotate about one specific axis
 - This will only change the other two coordinates and we can use the
 2D rotation matrix with no operation on the rotation axis:

$$\operatorname{rotate-x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \qquad \operatorname{rotate-y}(\phi) = \begin{bmatrix} \cos\phi & 0 & \sin\phi \\ 0 & 1 & 0 \\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \qquad \operatorname{rotate-z}(\phi) = \begin{bmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

[2]

3D Rotation With An Arbitrary Axis

Linear Transformations

- Rotating around one arbitrary axis can be shown to work the following:
- Given a unit vector $\mathbf{u} = (u_x, u_y, u_z)$, the matrix for a rotation by an angle of θ about an axis in the direction of \mathbf{u} is

$$R = egin{bmatrix} \cos heta + u_x^2 \left(1 - \cos heta
ight) & u_x u_y \left(1 - \cos heta
ight) - u_z \sin heta & u_x u_z \left(1 - \cos heta
ight) + u_y \sin heta \ u_y u_x \left(1 - \cos heta
ight) + u_z \sin heta & \cos heta + u_y^2 \left(1 - \cos heta
ight) & u_y u_z \left(1 - \cos heta
ight) - u_x \sin heta \ u_z u_x \left(1 - \cos heta
ight) - u_y \sin heta & u_z u_y \left(1 - \cos heta
ight) + u_x \sin heta & \cos heta + u_z^2 \left(1 - \cos heta
ight) \ \end{bmatrix}$$

[https://en.wikipedia.org/wiki/Rotation_matrix]

• So far all transforms have the form $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{21} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

$$\begin{array}{rcl}
 x' & = & m_{11}x & + & m_{12}y, \\
 y' & = & m_{21}x & + & m_{22}y.
 \end{array}$$

• With this the origin (0, 0) always remains fixed (under a *linear* transformation for scale and rotate).

 To move, or translate, an object by shifting all its points the same amount, we need a transform of the form,

$$\begin{array}{rcl}
x' & = & x & + & x_t, \\
y' & = & y & + & y_t.
\end{array}$$

• There is no way to do that by multiplying (x, y) by a 2 × 2 matrix.

$$\begin{array}{rcl}
x' & = & x & + & x_t, \\
y' & = & y & + & y_t.
\end{array}$$

- We could associate a separate translation vector with each transformation matrix, letting the matrix take care of scaling and rotation and the vector take care of translation.
 - This is perfectly feasible, but the bookkeeping is awkward and the rule for composing two transformations is not as simple and clean as with linear transformations.

- Instead, we can use a clever trick to get a single matrix multiplication to do both operations together.
 The idea is simple:
 - Represent the point (x, y) by a 3D vector $[x \ y \ 1]^T$ and use 3 × 3 matrices of the form

$$\begin{bmatrix} m_{11} & m_{12} & x_t \\ m_{21} & m_{22} & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Adding an extra dimension is called homogeneous coordinates.
- This kind of coordinates are commonly used in graphics.

Homogeneous Coordinates

Affine Transformations

$$\begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The following are all the same point

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 3x \\ 3y \\ 3 \end{bmatrix} \longleftrightarrow \begin{bmatrix} \frac{x}{2} \\ \frac{y}{2} \\ \frac{1}{2} \end{bmatrix}$$

"Dehomogenisation"

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$

translate
$$(x, y) = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

 Now, a single matrix can implement a linear transformation followed by a translation.

 Now, a single matrix can implement a linear transformation followed by a translation.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & x_t \\ m_{21} & m_{22} & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

This kind of transformation is called an affine transformation.

Example

- With being able to translate we can now rotate around any point!
 - Translate point to the origin
 - Rotate
 - Translate point back to original position

Example

- Rotation (in 2D) around point $\mathbf{c} = (c_x, c_y)$ with angle ϕ
- Steps: $\mathbf{T}(-\mathbf{c}) \to \mathbf{R}_{\mathbf{z}} \phi \to \mathbf{T}(\mathbf{c})$

$$\begin{pmatrix} 1 & 0 & c_y \\ 0 & 1 & c_x \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -c_y \\ 0 & 1 & -c_x \\ 0 & 0 & 1 \end{pmatrix}$$

Example

- Rotation (in 2D) around point $\mathbf{c} = (c_x, c_y)$ with angle ϕ
- Steps: $\mathbf{T}(-\mathbf{c}) \to \mathbf{R}_{\mathbf{z}} \phi \to \mathbf{T}(\mathbf{c})$

$$\begin{pmatrix} 1 & 0 & c_y \\ 0 & 1 & c_x \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos\phi & -\sin\phi & 0 \\ \sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -c_y \\ 0 & 1 & -c_x \\ 0 & 0 & 1 \end{pmatrix}$$

 If a vector represents a direction, it should not change through translation

For this we simply set the third coordinate to zero:

$$\begin{bmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

• If there is a scaling/rotation transformation in the upper-left 2×2 entries of the matrix, it will apply to the vector, but the translation still multiplies with the zero and is ignored.

 The extra (third) coordinate will be either 1 or 0 depending on whether we are encoding a position or a direction. Now we can distinguish between locations and other vectors.

 $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$

is a location and

 $\begin{vmatrix} 3 \\ 2 \\ 0 \end{vmatrix}$

is a direction or displacement

 The extra (third) coordinate will be either 1 or 0 depending on whether we are encoding a position or a direction. Now we can distinguish between locations and other vectors.

is a location and

is a direction or displacement

Affine Transformation

In 3D a fourth coordinate is added accordingly:

$$\begin{bmatrix} 1 & 0 & 0 & x_t \\ 0 & 1 & 0 & y_t \\ 0 & 0 & 1 & z_t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x + x_t \\ y + y_t \\ z + z_t \\ 1 \end{bmatrix}$$

Properties

- Lines are projected onto lines
- Parallel lines remain parallel
- Ratio of distances remain
- Not angle-preserving
- Examples: rotation, translation, scaling, shearing

Transforming Normal Vectors

 Normals do not transform the same way as its underlying surface.

Transforming Normal Vectors

- Normals do not transform the same way as its underlying surface.
 - A surface normal vector n that is transformed by
 M may not be normal to the transformed surface

• Example:

Transforming Normal Vectors

• The matrix **N** which correctly transforms normal vectors so they remain normal is the transpose of the inverse matrix.

$$\mathbf{N} = (\mathbf{M}^{-1})^{\mathrm{T}}$$

Literature

- 1. https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/points-vectors-and-normals
- 2. Shirley, P. and Marschner, S. 2012. Fundamentals of computer graphics. CRC, Boca Raton [u.a.].
- 3. https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/geometry/matrices