Kochrezept für NP-Vollständigkeitsbeweise

Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen

11. Januar 2010

Kochrezept für NP-Vollständigkeitsbeweise

- Um Nachzuweisen, dass SAT NP-hart ist, haben wir in einer "Master-Reduktion" alle Probleme aus NP auf SAT reduziert.
- Die NP-Vollständigkeit von SAT können wir jetzt verwenden, um nachzuweisen, dass weitere Probleme NP-hart sind.

Lemma

 $L^* NP$ -hart, $L^* \leq_p L \Rightarrow L NP$ -hart.

Beweis: Gemäß Voraussetzung gilt $\forall L' \in \mathsf{NP} : L' \leq_p L^*$ und $L^* \leq_p L$. Aufgrund der Transitivität der polynomiellen Reduktion folgt somit $\forall L' \in \mathsf{NP} : L' \leq_p L$.

NP-Vollständigkeit von 3SAT

Eine Formel in k-KNF besteht nur aus Klauseln mit jeweils k Literalen, sogenannten k-Klauseln.

Problem (3SAT)

Eingabe: Aussagenlogische Formel ϕ in 3-KNF Frage: Gibt es eine erfüllende Belegung für ϕ ?

- 3SAT ist ein Spezialfall von SAT und deshalb wie SAT in NP.
- Um zu zeigen, dass 3SAT ebenfalls NP-vollständig ist, müssen wir also nur noch die NP-Härte von 3SAT nachweisen.
- Dazu zeigen wir SAT ≤_p 3SAT.

$SAT \leq_p 3SAT$

Lemma

 $SAT \leq_{p} 3SAT$.

Beweis:

- Gegeben sei eine Formel ϕ in KNF.
- Wir transformieren ϕ in eine *erfüllbarkeitsäquivalente* Formel ϕ' in 3KNF, d.h.

$$\phi$$
 ist erfüllbar $\Leftrightarrow \phi'$ ist erfüllbar .

- Aus einer 1- bzw 2-Klausel können wir leicht eine äquivalente
 3-Klausel machen, indem wir ein Literal wiederholen.
- Was machen wir aber mit k-Klauseln für k > 3?

$SAT \leq_p 3SAT$

• Sei k > 4 und C eine k-Klausel der Form

$$C = \ell_1 \vee \ell_2 \vee \ell_3 \cdots \vee \ell_k .$$

 In einer Klauseltransformation ersetzen wir C durch die Teilformel

$$C' = (\ell_1 \vee \cdots \vee \ell_{k-2} \vee h) \wedge (\bar{h} \vee \ell_{k-1} \vee \ell_k) ,$$

wobei h eine zusätzlich eingeführte Hilfsvariable bezeichnet.

Nachweis der Erfüllbarkeitsäquivalenz

Nachweis der Erfüllbarkeitsäquivalenz:

 ϕ' sei aus ϕ entstanden durch Ersetzen von C durch C'.

zz: ϕ erfüllbar $\Rightarrow \phi'$ erfüllbar

- Sei B eine erfüllende Belegung für ϕ .
- B weist mindestens einem Literal aus C hat den Wert 1 zu.
- Wir unterscheiden zwei Fälle:
 - 1) Falls $\ell_1 \vee \cdots \vee \ell_{k-2}$ erfüllt ist, so ist ϕ' erfüllt, wenn wir h=0 setzen.
 - 2) Falls $\ell_{k-1} \vee \ell_k$ erfüllt ist, so ist ϕ' erfüllt, wenn wir h=1 setzen.
- Also ist ϕ' in beiden Fällen erfüllbar.

Nachweis der Erfüllbarkeitsäquivalenz

zz: ϕ' erfüllbar $\Rightarrow \phi$ erfüllbar

- Sei B nun eine erfüllende Belegung für ϕ' .
- Wir unterscheiden wiederum zwei Fälle:
 - Falls B der Variable h den Wert 0 zuweist, so muss B einem der Literale $\ell_1, \ldots, \ell_{k-2}$ den Wert 1 zugewiesen haben.
 - Falls B der Variable h den Wert 0 zuweist, so muss B einem der beiden Literale ℓ_3 oder ℓ_4 den Wert 1 zugewiesen haben.
- In beiden Fällen erfüllt B somit auch ϕ .

$SAT \leq_p 3SAT$

- Durch Anwendung der Klauseltransformation entstehen aus einer k-Klausel eine (k-1)-Klausel und eine 3-Klausel.
- Nach k-3 Iterationen sind aus einer k Klausel somit k-2 viele 3-Klauseln entstanden.
- Diese Transformation wird solange auf die eingegebene Formel ϕ angewandt, bis die Formel nur noch 3-Klauseln enthält.
- Wenn n die Anzahl der Literale in ϕ ist, so werden insgesamt höchstens n-3 Klauseltransformationen benötigt.
- Die Laufzeit ist somit polynomiell beschränkt.

Korollar

3SAT ist NP-vollständig.

$SAT \leq_{p} 3SAT$

Beispiel für die Klauseltransformation:

Aus der 5 Klausel

$$x_1 \lor \bar{x}_2 \lor x_3 \lor x_4 \lor \bar{x}_5$$

wird in einem ersten Transformationsschritt die Teilformel

$$(x_1 \vee \bar{x}_2 \vee x_3 \vee h_1) \wedge (\bar{h}_1 \vee x_4 \vee \bar{x}_5)$$
,

also eine 4- und eine 3-Klausel. Auf die 4-Klausel wird die Transformation erneut angewandt. Wir erhalten die Teilformel

$$(x_1 \vee \bar{x}_2 \vee h_2) \ \wedge \ (\bar{h}_2 \vee x_3 \vee h_1) \ \wedge \ (\bar{h}_1 \vee x_4 \vee \bar{x}_5) \ ,$$

die nur noch 3-Klauseln enthält.

NP-Vollständigkeit von CLIQUE

Wie erinnern uns an das Cliquenproblem.

Problem (CLIQUE)

Eingabe: *Graph* $G = (V, E), k \in \{1, ..., |V|\}$

Frage: Gibt es eine k-Clique?

Satz

CLIQUE ist NP-vollständig.

Da wir schon wissen, dass das Cliquenproblem in NP ist, müssen wir zum Nachweis der NP-Vollständigkeit nur noch die NP-Härte nachweisen.

Dazu zeigen wir 3SAT \leq_p CLIQUE.

Wir beschreiben eine polynomiell berechenbare Funktion f, die eine 3-KNF-Formel ϕ in einen Graphen G=(V,E) und eine Zahl $k\in\mathbb{N}$ transformiert, so dass gilt:

 ϕ ist erfüllbar \Leftrightarrow G hat eine k-Clique .

Beschreibung der Funktion *f*:

- Seien C_1, \ldots, C_m die Klauseln von ϕ .
- Seien $\ell_{i,1}, \ldots, \ell_{i,3}$ die Literale in Klausel C_i .
- Identifiziere Literale und Knoten, d.h. setze

$$V = \{\ell_{i,j} \mid 1 \le i \le m, 1 \le j \le 3\}$$
.

- Jedes Knotenpaar wird durch eine Kante verbunden, mit folgenden *Ausnahmen*:
 - 1) die assoziierten Literale gehören zur selben Klausel oder
 - 2) eines der beiden Literale ist die Negierung des anderen Literals.
- Setze k = m.

Beispiel:
$$\phi = (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \land (x_2 \lor \bar{x}_3 \lor x_4) \land (x_3 \lor x_2 \lor \bar{x}_1)$$

Erfüllende Belegung: $x_1 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 1$.

Korrektheit der Transformation:

zz: ϕ erfüllbar \Rightarrow G hat m-Clique

Jede erfüllende Belegung erfüllt in jeder Klausel mindestens ein Literal. Pro Klausel wähle eines dieser erfüllten Literale beliebig aus. Sei U die Menge dieser Literale. Wir behaupten, U ist eine m-Clique.

Begründung:

- Per Definition ist |U| = m.
- Seien ℓ und ℓ' zwei unterschiedliche Literale aus U.
- Ausnahme 1 trifft auf ℓ und ℓ' nicht zu, da sie aus verschiedenen Klauseln sind.
- Ausnahme 2 trifft auf ℓ und ℓ' nicht zu, da sie gleichzeitig erfüllt sind.
- Also gibt es eine Kante zwischen ℓ und ℓ' .

zz: G hat m-Clique $\Rightarrow \phi$ erfüllbar

- Sei *U* eine *m*-Clique in *G*.
- Aufgrund von Ausnahmeregel 1 gehören die Literale in U zu verschiedenen Klauseln.
- U enthält somit genau ein Literal pro Klausel in ϕ .
- Diese Literale können alle gleichzeitig erfüllt werden, da sie sich wegen Ausnahmeregel 2 nicht widesprechen.
- Also ist ϕ erfüllbar.

Die Laufzeit von *f* ist offensichtlich polynomiell beschränkt.