Simulation of chemical reaction kinetics

Lars Schiller

E-10-Simulation GmbH

June 30, 2015

Problem description and mathematical model

Simulation of a oxyhydrogen reaction with the given initial conditions and chemical equations: \rightarrow $\dot{c} = f(c)$

$$\dot{\boldsymbol{c}} = f(\boldsymbol{c}) , \quad \boldsymbol{c}_0 = [100 \ 50 \ 0 \ 0 \ 0]^T$$

Choice and description of suited numerical solvers

- Since the problem is *stiff*, we have to choose an implicit multi-step method to obtain a large domain of stability (A-stable).
- Try Adams-Moulton-method and BDF-method with k = 1 steps and a step size h = 1e-2:

$$\sum_{j=0}^{k} a_j y_{n+j} = h \sum_{j=0}^{k} b_j f_{n+j}$$
 (1)

$$F(y_{n+1}) = y_n + \frac{h}{2} (f_n + f_{n+1}) - y_{n+1}$$

$$F(y_{n+1}) = y_n + hf_{n+1} - y_{n+1}$$

Implementation of the numerical solvers


```
% Classic Iteration Loop
while (n+k-1)*h < tend
  % Newton-method
  [...] % initializing
  Fi = F(y(n+k-1));
  while norm(Fi) > tol
    [...] % calculate JFi
    vi(i+1) = vi(i)-JFi\backslash Fi:
    Fi = F(vi(i+1)):
    i = i + 1:
  end
  y(n+k) = yi(i);
  n = n+1;
end
```

To calculate the Jacobian:

$$JF(y) = \begin{bmatrix} \frac{\delta F(y)}{\delta y_1} & \cdots & \frac{\delta F(y)}{\delta y_N} \end{bmatrix}$$

$$\frac{\delta F(y)}{\delta y_i} = \frac{F(y + \hat{h}e_i) - F(y)}{\hat{h}}$$

comparison and evaluation of the numerical solvers

method	tun eval	max NS	average NS	ct [sec]	err	
M-A	91016	7	1.0145	4.0205	0.0347	
BDF	80476	7	1.0068	5.7835	13.5788	
ode15s	988	-	-	0.4859	ref	