KAUST CEMSE151 - Linear Algebra

PROBLEM SET 1

To be returned by September 9, 2023, 5:00pm

August 31, 2023

The first 5 problems are taken from the book of Strang, Gilbert. Introduction to Linear Algebra. 4th ed. Wellesley, MA: Wellesley-Cambridge Press, February 2009. ISBN: 9780980232714.

- 1. If $\mathbf{v} \cdot \mathbf{w} < 0$, what does this say about the angle between \mathbf{v} and \mathbf{w} ? Draw a 3-D vector \mathbf{v} and show where to find all \mathbf{w} 's with $\mathbf{v} \cdot \mathbf{w} < 0$.
- 2. Can three vectors in the xy plane have $\mathbf{u} \cdot \mathbf{v} < 0$ and $\mathbf{v} \cdot \mathbf{w} < 0$ and $\mathbf{u} \cdot \mathbf{w} < 0$?
- 3. Find a (non-trivial) combination $x_1\mathbf{w}_1 + x_2\mathbf{w}_2 + x_3\mathbf{w}_3$ that gives the zero vector, for

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{w}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \qquad \mathbf{w}_3 = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}.$$

- 4. The very last words in Chapter 1.3 say that the 5 by 5 centered difference matrix is not invertible. Write down the 5 equations $C\mathbf{x} = \mathbf{b}$. Find a combination of left sides that gives zero. What combination of b_1 , b_2 , b_3 , b_4 , b_5 must be zero? Note that the 5 columns lie on a 4D hyperplane in 5D space.
- 5. With A = I, in which I is the 3×3 identity matrix (products of an arbitrary identity matrix I, either to the right or the left, result in the original arbitrary matrix), i.e.,

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

draw the planes in the row picture:

$$A\mathbf{x} = \begin{bmatrix} 2\\3\\4 \end{bmatrix}.$$

Verify that the three sides of the box meet at the solution (2,3,4). Draw the vectors in the column picture and find the linear combination of the columns of A that result in \mathbf{b} .

6. Determine AB and BA if possible:

a)

$$A = \begin{bmatrix} 1 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

b) $A = \begin{bmatrix} 2 & 1 \\ -1 & 3 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 2 & 1 & 0 \end{bmatrix}$

7. Let A be a square matrix. A^k is the product of A by itself k times:

$$A^k = \underbrace{A \dots A}_{k \text{ times}}$$

Give examples of 2×2 matrices with the following properties:

a) $A^2 = -I$, in which I is the 2×2 identity matrix, i.e.,

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix};$$

- b) $B^2 = 0, B \neq 0$;
- c) $CD = -DC, CD \neq 0$;
- d) EF = 0, with all components of both E and F nonzero.
- 8. True or false?
 - a) if the second and fifth columns of B are equal, then the second and fifth columns of AB are equal;
 - b) if the second and fifth rows of B are equal, then the second and fifth rows of AB are equal;
 - c) if the second and fifth rows of A are equal, then then second and fifth rows of AB are equal;
 - d) $(AB)^2 = A^2B^2$.