

e-mount

Roberto Willrich INE - CTC-UFSC

E-Mail: willrich@inf.ufsc.br

URL: http://www.inf.ufsc.br/~willrich

Storage

Introdução

Plano do Capítulo

- Objetivos das Redes de Computadores
- Definição de Redes de Computadores e protocolo de comunicação
- Classificação das Redes de Computadores
- Órgãos de padronização
- Sistemas abertos e proprietários
- Arquiteturas de Redes de Computadores
- Topologias de Redes de Computadores
- Tecnologias de Redes de Computadores
- Componentes essenciais de redes
- Segmentação de Redes

Redes Corporativas

- Compartilhamento de Recursos

- disponibilização de programas, equipamentos e dados ao alcance de todas as pessoas da rede
- impressora, disco, scanners, base de dados
 - independente da localização física do recurso e do usuário.
- úteis para usuários ou processos na rede

- Servidores de arquivos compartilhados

- Devido à economia proporcionada pelo uso dos computadores pessoais, os projetistas passaram desenvolver sistemas baseados em PCs, armazenando os dados em servidores de dados
 - Aparecimento do modelo cliente/servidor

Exemplo

Redes Corporativas

- Meio de comunicação
 - Possibilidade de trabalho cooperativo entre funcionários distantes entre si
 - Ganho de agilidade na troca de informações.

- Economia

- relação preço/desempenho dos pequenos computadores é muito melhor do que a dos computadores de grande porte
 - mainframes são dezenas de vezes mais rápidos do que os computadores pessoais, mas seu preço é milhares de vezes maior.

Redes Corporativas

Escalabilidade

 é a possibilidade de aumentar gradualmente o desempenho do sistema à medida que cresce o volume de carga, adicionando mais processadores.

Confiabilidade do sistema

- através de fontes alternativas de fornecimento
 - Ex: todos os arquivos podem ser copiados em duas ou três máquinas e, dessa forma, se um deles não estiver disponível, é possível recorrer a seu backup.

Redes para Pessoas

Acesso a informações

 acesso a informações remotas de interesse pessoal, como informações bancárias, notícias, compras on-line, pesquisas diversas em bibliotecas digitais, etc.

Comunicação pessoa a pessoa

• troca de mensagens via e-mail, chat, vídeoconferência, ensino a distância, newsgroups, etc.

Entretenimento

 vídeo e rádio sob demanda, jogos em tempo real com várias pessoas, navegação web.

Definição de Redes de Computadores

Uma Rede de Computadores é formada por um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, interligados por um sistema de comunicação.

Módulos Processadores

 Qualquer dispositivo capaz de se comunicar através do sistema de comunicação por troca de mensagem

Sistema de comunicação

- um arranjo topológico interligando os vários módulos processadores através de enlaces físicos (meios de transmissão)
- um conjunto de regras com o fim de organizar a comunicação (protocolos)

Definição de Protocolo

 Um protocolo humano e um protocolo de redes de computadores

Protocolo define o formato e a ordem das mensagens trocadas entre duas ou mais entidades comunicantes, bem como as ações realizadas na transmissão e/ou no recebimento de uma mensagem ou outro evento.

ch - INE/UFSC - 1/5/2006

Roberto Wi

- As redes de computadores podem ser classificadas de acordo com seu alcance geográfico:
 - Redes são ditas confinadas quando as distâncias entre os módulos processadores são menores que alguns poucos metros.
 - Redes Locais de Computadores são sistemas cujas distâncias entre os módulos processadores se enquadram na faixa de alguns poucos metros a alguns poucos quilômetros.
 - Sistemas cuja dispersão é maior do que alguns quilômetros são chamadas Redes Geograficamente Distribuídas.

- Redes locais (LANs, Local-Area Networks)
 - Surgiram dos ambientes de institutos de pesquisa e universidades
 - para viabilizar a troca e o compartilhamento de informações e dispositivos periféricos (recursos de hardware e software)
 - preservando a independência das várias estações de processamento e permitindo a integração em ambientes de trabalho cooperativo.
 - Cobre uma ou várias construções localizadas em um mesmo campus
 - é possível utilizar apenas cabos e sistemas de transmissão privados
 - Permite a interconexão de equipamentos de comunicação de dados numa pequena região que são distâncias entre 100m e 25Km
 - embora as limitações associadas às técnicas utilizadas em redes locais não imponham limites a essas distâncias
 - Outras características típicas
 - alta taxas de transmissão (de 0,1 a 100Mbps)
 - baixas taxas de erro (de 10-8 a 10-11)

Rede Campus UFSC

- Redes Metropolitanas (MAN, Metropolitan-Area Networks)
 - Redes metropolitanas cobrem uma cidade com distâncias abaixo de 200 Km
 - necessita a intervenção de operadoras públicas

- Redes de Longa Distância ou Redes Geograficamente Distribuídas (WANs, Wide-Area Networks)
 - Surgiram da necessidade de se compartilhar recursos especializados por uma maior comunidade de usuários geograficamente dispersos
 - Necessita a intervenção de operadoras públicas
 - Por terem um custo de comunicação bastante elevado (circuitos para satélites e enlaces de microondas)

- Redes de Longa Distância ou Redes Geograficamente Distribuídas (WANs, Wide-Area Networks)
 - Face a várias considerações em relação ao custo
 - É utilizado um arranjo topológico específico e diferente daqueles utilizados em redes locais
 - Caminhos alternativos devem ser oferecidos de forma a interligar os diversos módulos por questão de confiabilidade

Classificação por escala

Arquiteturas de Redes

Definição

- Arquitetura de uma rede é o conjunto de elementos em que ela se sustenta
 - tanto a nível de hardware como de software
 - tem a ver com elementos físicos e com elementos lógicos
- Arquitetura é que permite o estabelecimento de comunicação com outras redes ou equipamentos
- Arquiteturas mais difundidas
 - Internet
 - OSI (Open System Interconection)
 - SNA (Systems Network Architecture)

- Porque adotar padrões
 - possibilita a integração de computadores formando redes (*conectividade*)
 - leva a uma estrutura de sistemas que são chamados de Sistemas Abertos
 - aderem a padrões públicos de direito (de jure) ou de facto
 - garantindo a compatibilidade com outros sistemas projetados de acordo com os mesmo padrões

O que é interconexão de redes

Definição de interconexão

 uma coleção de redes individuais, conectadas por dispositivos de rede intermediários, que atua como uma única rede grande

Sistemas Abertos

Sistemas Abertos

- Independência de fornecedores
 - origem do produto é irrelevante: uma vez que o produto segue as normas determinantes da arquitetura e características operacionais
- Interoperabilidade
 - uso dos recursos computacionais da rede independerá do tipo de máquina e/ou sistema operacional
 - recursos disponíveis em uma determinada plataforma não mais estarão restritos aos usuários dessa plataforma e sim ao alcance dos usuários da rede como um todo

Portabilidade

- do ponto de vista da aplicação: pode ser executada em várias máquinas e sistemas operacionais
- do ponto de vista do usuário: não precisa reaprender

Sistemas Proprietários

Sistemas Proprietários

- produtos cuja arquitetura e funcionalidades não são de domínio público
- não obedecem a padrões que estejam ao alcance do público ou outras entidades
- sua adoção prende o cliente a um fornecedor

- ISO (International Organization for Standardization)
 - Organização (1946) de trabalho voluntário formada pelas organizações nacionais de padronização
 - ABNT Associação Brasileira de Normas Técnicas
 - ANSC American National Standards Committee
 - ...
 - Procedimentos de estabelecimento de padrões adotados pela ISO têm como objetivo alcançar o maior consenso possível
 - ISO é organizada em comitês técnicos (TC)
 - tratam de assuntos específicos

- IETF (Internet Engineering Task Force)
 - Comissão de padronização da Internet
 - Organizada em grupos dedicados ao desenvolvimento de padrões
 - Padrões são RFCs (Request For Comments)
 - Versões iniciais são Internet Drafts

- IEEE (Institute of Electrical and Electronics Engineers)
 - Organizada em grupos dedicados ao desenvolvimento de padrões
- EIA/TIA (Electronics Industries Association/Telecommunications Industries Associations)
 - órgão norte-americano que estabelece padrões para sistemas de comunicações
- ITU (International Telecommunication Union)
 - define padrões para comunicações analógicas e digitais
 - muito adotado pelas empresas
 - ITU-TS (Telecommunication Sector) trata os assuntos relacionados aos sistemas de telefonia e de transmissão de dados

- Modelo de interconexão entre redes baseada em 7 camadas
 - Cada nível ou camada é uma divisão do problema geral de comunicação em subproblemas específicos
 - camadas congregam padrões e técnicas pertinentes à solução do problema
 - Camada fornece serviços
 à camada superior
 suportada pelos serviços
 da camada inferior

- transferência de bits num meio
- modos de representação dos bits
- conexões elétricas e mecânicas
- modos de transmissão: single, half, ou full-duplex

- esquemas de delimitação dos quadros
- controle de erros e perdas de transmissão
- controle de fluxo da informação transferida: para não sobrecarregar receptor

- comunicação entre subredes interconexão
- roteamento de mensagens

- transporte confiável de mensagens
- comunicação fim-a-fim
- multiplexação de conexões
- •controle de fluxo fim-a-fim

- estabelecimento de sessões de diálogo entre dois usuários do serviço de sessão
- sincronização do diálogo: marcas de sincronização que permitem a retomada do diálogo no caso de falha
- definição do conceito de atividade: permite distinguir partes de um diálogo. Em uma sessão pode existir um diálogo por vez

- codificação da informação: ASCII, EBCDIC, ...
- compressão dos dados
- segurança da informação: criptografia

- Diversos serviços:
 - Terminal Virtual
 - Transferência de Arquivos
 - etc...

Arquitetura SNA (Systems Network Architecture)

Modelo anterior ao OSI

- originário da IBM para estabelecer comunicação entre seus diferentes modelos de comunicação
- modelo baseado em cinco camadas ou níveis
 - Enlace de dados, Caminho, Transmissão, Fluxo de Dados, Gerenciamento de Funções

Topologias de Redes

Topologia

- especifica a disposição geométrica da rede
- topologias comuns são: barramento, anel e estrela

Topologias de Redes

Topologia Física

 Decorre do modo como a rede se apresenta instalada no espaço a ser coberto

Topologia Lógica

- Decorre do modo como as estações vão se comunicar entre si
 - fazendo o fluxo de mensagem

Forma

- computadores se ligam a um cabo único e comum
- quando uma estação lança um sinal na rede
 - ele percorre em ambas as direções atingindo a todos os nós
- rede é construída de forma que quando o sinal atinge uma das extremidades, ele é destruído

- utiliza cabo coaxial, que deverá possuir um terminador resistivo de 50 ohms em cada ponta
- tamanho máximo do trecho da rede está limitado ao limite do cabo
 - 185 metros no caso do cabo coaxial fino
 - limite pode ser aumentado através de repetidor
 - amplificador de sinais

- Na transmissão de um pacote de dados todas as estações recebem esse pacote
- No pacote, além dos dados, há um campo de identificação de endereço de destino (número)
 - somente a placa de rede da estação de destino captura o pacote de dados do cabo, pois está a ela endereçada
 - endereço é definido pelo fabricante
 - quase impossível ter duas placas com o mesmo endereço em uma rede

- Como todas as estações compartilham um mesmo cabo
 - somente uma transação pode ser efetuada por vez
 - não há como mais de um nó transmitir dados por vez
- Deve haver um controle de acesso
 - CSMA/CD Carrier Sense Multiple Access with Collision Detection
 - Token Bus

Método de Acesso CSMA/CD

- Quando uma estação deseja transmitir: ela verifica se a rede está livre
 - Se não, aguarda um tempo aleatório e tenta transmitir novamente
 - Se sim, transmite o dado
- Quando mais de uma estação percebe o meio livre e transmite
 - há uma colisão de dados
 - placa de rede escuta a rede durante a transmissão para detectar colisões
 - Ocorrendo a colisão a placa de rede espera um período aleatório de tempo antes de tentar transmitir o dado novamente
- Tem comportamento n\u00e3o determin\u00edstico
 - não permite o controle de tempo de acesso e da largura de banda
 - em redes carregadas gera variação de atrasos consideráveis

- Método de Acesso CSMA/CD
 - No caso de redes com vários equipamentos
 - aumenta probabilidade de colisões
 - podendo provocar o deadlock
 - Redes devem ser segmentadas (visto mais adiante)

- Método de Acesso Token-Bus
 - Uma mensagem (token) circula entre as estações
 - Quem tiver o token pode transmitir

Vantagens da topologia

- Usa a menor quantidade possível de cabos
- Layout dos cabos é extremamente simples
- É fácil instalar e modificar
- É fácil de estender, aumentando a quantidade de estações

- Identificação e isolamento de falhas é muito difícil
 - caso o cabo se desconecte em algum ponto a rede "sai do ar"
 - pois o cabo perderá a sua correta impedância, impedindo que comunicações sejam efetuadas
 - cabo coaxial é vítima de problemas constantes de maucontato
 - basta que um dos conectores do cabo se solte para que todos os micros deixem de se comunicar com a rede

- Baixa segurança
 - hackers podem alterar endereço de placas e "escutar" a rede
- Fornece baixa velocidade de transmissão
 - Quanto mais estações forem conectadas ao cabo, mais lenta será a rede
 - haverá um maior número de colisões

- Dificuldade de ampliação
 - quando queremos aumentar o tamanho do cabo necessariamente devemos parar a rede
 - já que este procedimento envolve a remoção do terminador resistivo

Anel

Nesta topologia

- nós vão-se ligando uns aos outros formando um anel
 - cabo não tem início nem fim
- cada estação funciona como repetidor
 - reforçando os sinais entre uma estação e outra
- dados percorrem o anel em sentido único
- padrão mais conhecido é o Token Ring (IEEE 802.5) da IBM

Anel

Vantagens

- Baixo consumo de cabo
- regeneração do sinal em cada nó permite cobrir maiores áreas

Anel

- Falha de qualquer nó acarreta a falha da rede inteira
- Diagnóstico de falhas é difícil
- Reconfiguração da rede, quer para acrescentar, quer para retirar nós é mais complicada

- Nesta topologia
 - Existe um dispositivo central
 - comumente um concentrador (hub) ou switch
 - todo o tráfego da rede passa por este centro

• Hub

- Topologia fisicamente será em estrela, porém logicamente ela continua sendo uma rede de topologia de barramento
 - hub é um periférico que repete para todas as suas portas os pacotes que chegam
 - se a estação 1 enviar um pacote de dados para a estação 2, todas as demais estações recebem esse mesmo pacote
 - continua havendo problemas de colisão e disputa para ver qual estação utilizará o meio físico.

Switch

- Rede será fisicamente e logicamente em estrela
- Periférico com a capacidade de analisar o cabeçalho de endereçamento dos pacotes de dados
 - enviando os dados diretamente ao destino
 - sem replicá-lo desnecessariamente para todas as suas portas
- A rede torne-se mais segura e muito mais rápida
 - praticamente elimina problemas de colisão
 - duas ou mais transmissões podem ser efetuadas simultaneamente
 - desde que tenham origem e destinos diferentes

Vantagens

- Mais confiável
 - apenas a estação conectada pelo cabo pára
- Facilidade de manutenção
- Facilidade de identificação de problemas
- Facilidade de ampliação
 - poder-se aumentar o tamanho da rede sem a necessidade de pará-la

- Necessidade de maior quantidade de cabos
- Paralisação total no caso de falha no equipamento do centro

Que topologia usar?

• Em redes pequenas e médias

- Barramento (usando hubs) para redes pequenas
 - Permite o aumento da rede sem sua interrupção
- "Melhor" topologia é a estrela usando switches
 - switch é um periférico extremamente caro e talvez esse projeto não seja financeiramente viável por não haver custo/benefício para a empresa

Redes de grande porte

 podemos utilizar redes mistas, onde utilizamos diversos tipos de solução misturadas

Tecnologias de Rede

Roberto Willrich

INE - CTC-UFSC

E-Mail: willrich@inf.ufsc.br

URL: http://www.inf.ufsc.br/~willrich

Ethernet

- Ethernet 10Mbps baseada em CSMA/CD
 - Rede onipresente
- Levantamento da IDC (International Data Corporation)
 - Mais de 85% de todas as redes instaladas até o fim de 1997 eram Ethernet
 - Representa mais de 118 milhões de PCs, estações de trabalho e servidores conectados
- Compatibilidade
 - Todos os sistemas operacionais e aplicações populares são compatíveis com Ethernet

Ethernet a rede onipresente

Fatores que contribuíram

- Confiabilidade
 - É uma característica crítica para o sucesso de uma empresa
 - tecnologia de escolha deve ser de fácil instalação e suporte
 - Ethernet tem se tornado muito confiável

Disponibilidade de Ferramentas de gestão e diagnóstico

- Ferramentas de gerenciamento possíveis graças a adoção de padrões de gerenciamento (SNMP)
 - Permite a um administrador ver o estado de todos os computadores e elementos de rede
- Ferramentas de diagnóstico suportam vários níveis funcionais, desde uma simples luz de indicação de ligação a analisadores de rede sofisticados

Ethernet a rede onipresente

Fatores que contribuíram

Extensibilidade

- Padrão Fast Ethernet (1995), estabeleceu Ethernet como uma tecnologia extensível
 - Ampliada com o desenvolvimento da Gigabit Ethernet (1998)
- As escalas Ethernet vão de 10, 100 e 1000 Mbps

- Baixo custo

Preço por porta Ethernet está reduzindo a cada dia

Ethernet

• Topologia em Barramento

• Topologia em Estrela

Fast Ethernet (100BASE-T)

- Fast Ethernet (100BASE-T)
 - Tornou-se líder dentre as tecnologias de LANs alta velocidades
 - Construída a partir da Ethernet 10BASE-T:
 - Fornece uma evolução razoável de velocidade: 100 Mbps
 - Adota método de acesso CSMA/CD
- Largura de Banda
 - Máxima faixa de utilização varia de 50% a 90%
 - dependendo da configuração a tamanhos dos quadros
- Método de Acesso CSMA/CD
 - Tem comportamento n\u00e3o determinista
 - não permite o controle de acesso e da largura de banda
 - Em redes carregadas gera variação de atrasos consideráveis

Giga Ethernet

Gigabit Ethernet

- É uma extensão dos padrões IEEE 802.3 Ethernet 10 e 100 Mbps
 - oferecendo um largura de banda de 1000 Mbps

Uma evolução natural da Ethernet

- Oferece um caminho de atualização (upgrade) natural para as atuais instalações Ethernet
 - emprega o mesmo protocolo CSMA/CD, o mesmo formato de quadro e mesmo tamanho de quadro da Ethernet e Fast Ethernet
 - investimentos feito nas redes já instaladas não serão perdidos
 - redes instaladas podem ser estendidas para velocidades gigabit com um custo razoável

- Pode operar a 4 ou 16 Mbps
- Todas as estações são conectadas em um anel lógico
- Mensagem especial, chamada de ficha, circula no anel se todas as estações estão em estado de espera

Topologia

Funcionamento

- Quando uma estação deseja transmitir um quadro
 - ela deve aguardar a chegada da ficha
 - remove ficha do anel antes da transmissão do quadro

- Funcionamento
 - Estação retendo a ficha transmite um quadro
 - Quando o receptor obtém o quadro
 - seta um flag no quadro confirmando a recepção e libera o quadro para trás no anel

Funcionamento

- Quando o receptor obtém o quadro
 - seta um flag no quadro confirmando a recepção e libera o quadro para trás no anel

Funcionamento

 Originador detectando que o quadro foi recebido (ou não) libera uma nova ficha para permitir que outros sistemas tenham acesso ao anel.

Tem comportamento previsível

- Garante que todo sistema tenha oportunidade de transmitir
- Fichas e os quadros de dados circulam de maneira temporalmente determinista
- Cada estação tem um acesso igual à ficha, nenhum sistema tem prioridade sobre outro.

FDDI (Fiber Distributed Data Interface)

- Uma extensão do padrão Token Ring
 - Padrão de rede local operando a 100 Mbps a fibra ótica e passagem de token
 - Especifica uma topologia em anel duplos (até 200Km), com cada anel operando a uma taxa de 100 Mbps
 - anel duplo aumenta a confiabilidade

ATM (Asynchronous Transfer Mode)

- Termo modo de transferência
 - refere-se a mecanismo de multiplexação e comutação
 - Baseada no conceito de pacotes de tamanho fixo e reduzido (célula – 53 bytes)
 - Multiplexação: modo de compartilhamento do meio de transmissão por várias conexões distintas
 - Comutação: modo de envio de células da origem ao destino
- Tecnologia adotada pela B-ISDN (Broadband-Integrated Services Digital Network)
 - Rede B-ISDN suporta um grande número de serviços
 - serviços de voz e outros (dados, imagens, vídeos, etc.)
 - Taxa máxima de transferência depende do meio físico adotado (varia de 2 Mbps a mais de 2,48 Gbps)

Elementos básicos ATM

- Uma rede ATM é hierárquica
 - Terminais (sistemas finais) são conectados a comutadores diretamente através de pontos de acesso
 - Comutador é constituído por várias portas que se associam às linhas físicas da rede

Componentes Essenciais das Redes

Placas de Rede

- Todos os computadores de uma rede necessitam de placa de rede
 - para serem conectados um aos outros

Repetidores

- Implementados no nível físico
 - Permitem amplificar e retransmitir os sinais elétricos representando os bits de dados entre dois segmentos de cabo

Repetidores

- Permite ampliação da rede local
 - Exemplo:
 - padrão Ethernet especifica que um sinal pode percorrer um cabo com uma distância máxima de 500 metros (10Base5) ou 200m (10Base2)
 - usando quatro repetidores para interconectar 5
 segmentos de cabo, pode-se cobrir uma distância de 2500 metros
 - esta extensão é limitada à distância máxima definida pelo padrão IEEE 802.3:
 - 3000 metros, com um o retardo cumulativo total de 950 nanosegundos

Repetidores

Vantagens:

- interligar diferentes tipos de meios físico, tais como cabos coaxiais, de fibra ótica e par trançado;
- estender o alcance geográfico da rede até o máximo permitido pelo protocolo de controle de acesso aos meios físicos.

Desvantagens:

- Pode-se acabar obtendo uma rede local muito sobrecarregada
 - comportando um número muito grande de nós
- Um problema em um segmento da rede local pode interromper os demais segmentos
- Repetidores n\u00e3o podem ser usados para interconectar diferentes tecnologias de rede

Hubs

Características

- ficam em racks, centralizando a saída do cabeamento para as diversas estações em uma topologia física em estrela
- Hubs são encontrados com 5, 8, 16, 20 e 36 portas
- Podem ter tipos de portas diferentes
 - par trançado, coaxial, fibra ótica
- Pode-se empilhar hubs "stackable"
 - aumentando o número de portas
 - possui uma saída que permite o empilhamento
- Pode ser gerenciável ou não

Redes Gerenciáveis

- Caracterizada pelo uso de hubs inteligentes ou gerenciáveis
 - permite que um agente resida em cada hub e colete informações que são passadas a uma estação de gerência
- Na estação de gerência são analisados os dados recebidos:
 - prioridades, eventos dignos de nota, etc.
- Resultado é colocado à disposição do Gerente de Rede
 - sob a forma de gráficos de desempenho, estatísticas, relatórios de erros, avisos sonoros e visuais sobre falhas, etc
 - Gerente de Rede pode executar ações preventivas, corretivas, de segurança, de otimização, planejar os aumentos ou remanejamentos, etc

Redes Gerenciáveis

- Arquitetura de gerenciamento SNMP (Simple Network Management Protocol)
 - trata-se de um conjunto de especificações de gerência
 - um padrão de mercado
 - Agentes SNMP
 - residentes nos dispositivos gerenciados comunicam-se com o equipamento onde se situa a estação de gerenciamento (NMS
 - = Network Management Station)
 - passando as informações que coletam e que formam a Base de Informações Administrativas da Rede (MIB = Management Information Base)

Dispositivos de interconexão

Interconexão

 refere-se ligar LANs individuais para formar uma rede única

Dispositivos de Interconexão

- Pontes
- Switches
- Roteadores

- Permite interconectar duas a quatro sub-redes que apresentam compatibilidade em relação à camada de Enlace
 - Exemplo: uma ponte pode ser o dispositivo de interconexão de sub-redes CSMA/CD

Objetivo

- Filtra pacotes entre LANs fazendo uma decisão simples de retransmitir ou não retransmitir cada pacote que ele recebe vindo de uma rede
- Filtragem é baseada no endereço destino do pacote
 - se o destino do pacote é uma estação no mesmo segmento ele não retransmite
 - se o destino está em outra LAN, ele é enviado a uma porta diferente da ponte e retransmitido para outro segmento

Equipamento bidirecional

 Elas são responsáveis do encaminhamento de todos os pacotes emitidos ao nível das duas redes

Finalidades

- Aumentar o desempenho de uma LAN isolando o tráfico da rede aos segmentos de rede
 - Uso de várias sub-redes reduz o número de usuários por subrede
 - usuário obtém uma maior parte compartilhada da largura de banda
- Estender o domínio geográfico da rede
 - Limitações em termos de cobertura geográfica imposta pela tecnologia de redes locais pode ser suprimida juntando subredes

Finalidades

- Estender o número máximo de usuários que uma rede pode suportar
 - Limitações do número máximo de usuários imposta por uma tecnologia de rede única é estendida unindo sub-redes separadas
- Aumentar a confiabilidade
 - Em uma única rede local, um nó defeituoso que continua transmitindo um fluxo contínuo de lixo irá danificar a rede local
 - As pontes podem ser inseridas em posições críticas, para evitar que um único nó com problemas possa fazer cair todo o sistema
 - a ponte pode ser programada para discernir entre aquilo que encaminha e o que não deixa seguir em frente

 Atualmente pontes entre diferentes tecnologias foram padronizadas

Switch

Objetivo

 dispositivo usado para ligar várias LANs e provendo uma filtragem de pacotes entre elas

Características

- Dispositivo com várias portas
 - ligadas a um destino ou uma LAN
- Como uma ponte multiporta rápida
 - pacotes são filtrados baseados nos endereços destinos

Switch

- Periférico com a capacidade de analisar o cabeçalho de endereçamento dos pacotes de dados
 - enviando os dados diretamente ao destino
 - sem replicá-lo desnecessariamente para todas as suas portas
- A rede torne-se mais segura e muito mais rápida
 - praticamente elimina problemas de colisão
 - duas ou mais transmissões podem ser efetuadas simultaneamente
 - desde que tenham origem e destinos diferentes

- Roteadores (routers)
 - Implementados no nível rede (camada 3 do OSI)
 - conduz os pacotes de dados do nó fonte ao nó destino atravessando vários nós intermediários

Objetivo principal

- Rotear pacotes de suas origens aos seus destinos via o caminho mais eficiente
- Escolha deste caminho é feita com base na execução de um algoritmo de roteamento
 - Protocolos de roteamento mais utilizados nas redes TCP/IP:
 - RIP (Routing Information Protocol)
 - » mais antigo e está sendo reposto pelo OSPF
 - OSPF (Open Shortest Path First)
 - Protocolo de roteamento ISO é o IS-IS (*Intermediate-System-to-Intermediate-System*)

- Roteadores são mais complexos que as pontes
 - Roteadores permitem interligar mais de duas sub-redes
 - Funções desempenhas:
 - Suportar várias funções semelhantes as das pontes
 - Entender e rotear múltiplos protocolos
 - Prover funcionalidades de gerenciamento de rede (SNMP)
 - Manipular diferenças nas sub-redes tais como formatos de endereço, diferentes tamanhos de pacotes, e diferentes níveis de qualidade (confiabilidade, recobrimento de erros, etc.)

Equipamento

- Um computador pode ser tornado em um roteador instalando uma ou mais placas de interface de rede adicionais e software que implementa o protocolo de roteamento
- Mais comum é usar dispositivos roteadores dedicados
 - por razões de desempenho.

Segmentação e Gerência de Redes

Segmentação da rede

 diz respeito à capacidade de se compartimentalizar o tráfego por domínios de competência

Uma rede não-segmentada (rede plana)

- rede não é secionada por domínios de competência
- é composta apenas das estações de trabalho e concentradores tipo hubs (possivelmente cascateados)
- estrutura somente indicada para redes com um número muito limitado de estações

Rede Plana

Tráfico é maior entre máquinas de um domínio

- Mensurações têm indicado que mais de 80% do tráfego é intradomínio de competência
 - apenas menos de 20% do tráfego é inter-domínio
- não-segmentação da rede por domínio de competência faz com que o tráfego gerado nas atividades pertinentes aos domínios específicos concorram entre si

Outro problema das redes planas

- apresenta um grande desperdício de banda de passagem
 - se é uma Ethernet 10 BaseT a banda de passagem de 10 Mbps é compartilhada por todos os nós da rede
- número de nós elevado em rede não-segmentada acarreta uma banda de passagem média baixa para cada nó
 - pode inviabilizar qualquer aplicação não-trivial
 - problemático para servidores

Redes segmentadas

Outras vantagens da segmentação

- Segurança
 - switch, pontes e roteadores permitem introduzir recursos de segurança, como firewalls
- Expansabilidade
 - necessidade de expansão pode ser executada sem receio de diminuir a largura de banda média disponível
- Interconectividade
 - outras redes locais podem ser facilmente conectadas ao ambiente já existente
- Estabelecimento de redes dedicadas para servidores e estações de alto desempenho

- Desvantagens da segmentação
 - se o tráfico inter-domínio for alto
 - switch, pontes e roteadores podem se converter em um gargalo
 - aumento do custo da instalação