

## **Notas dos slides**

#### **APRESENTAÇÃO**

O presente conjunto de slides pertence à coleção produzida para a disciplina Introdução ao Processamento Paralelo e Distribuído ofertada aos cursos de bacharelado em Ciência da Computação e em Engenharia da Computação pelo Centro de Desenvolvimento Tecnológico da Universidade Federal de Pelotas.

Os slides disponibilizados complementam as videoaulas produzidas e tratam de pontos específicos da disciplina. Embora tenham sido produzidos para ser assistidos de forma independente, a sequência informada reflete o encadeamento dos assuntos no desenvolvimento do conteúdo programático previsto para a disciplina.









# Notas da videoaula

#### DESCRIÇÃO

Nesta videoaula é apresentada uma revisão de conceitos associados à arquitetura de computadores, apontando classificações de arquiteturas de computadores e caracterizando níveis de extração de paralelismo.

#### **OBJETIVOS**

Nesta videoaula o aluno conhecerá as arquiteturas de computadores exploradas no processamento paralelo e distribuído e saberá identificar os diferentes níveis de paralelismo expostos.



**David Chipperfield** 



### **Arquiteturas Paralelas** e Distribuídas

As arquiteturas paralelas e distribuídas são onipresentes:

- Os servidores nos datacenters dos grandes provedores de serviços de nuvem
- No seu desktop/laptop
- No seu celular
- E mesmo no seu smartwatch



## Arquitetura de Von Neumann

Modelo básico das arquiteturas de computadores

Diferentes níveis de paralelismo na arquitetura são obtidos decompondo e/ou multiplicando estes componentes ou ainda introduzindo elementos de otimização na sua operação.



## Arquitetura de Von Neumann

Questão 1

Oual é o modelo de programação nas arquiteturas Questão 2 É possível

melhorar a qualidade dos programas caso as características das arquiteturas sejam conhecidas?

Questão 3

Qual é o gargalo da arquitetura de reduzir o impacto Von Neumann?

Questão 4

Como é possível no desempenho de programas do gargalo de Von Neumann?





## Arquitetura de Von Neumann

#### Questão 1

Oual é o modelo de programação nas arquiteturas Von Neumann?

#### Questão 2

É possível melhorar a qualidade dos programas caso as características das arquiteturas sejam conhecidas?

#### Questão 3

Qual é o gargalo da arquitetura de reduzir o impacto Von Neumann?

Como é possível no desempenho de programas do gargalo de Von Neumann?

# Classificações

Existem duas classificações populares:

- Quanto aos fluxos de execução e de dados na arquitetura
- Quanto à estrutura de organização dos componentes
- Quanto à granularidade



Classificação Quanto aos **Fluxos** 

- Conhecida classificação de Michael J. Flynn:
  - Uma sequência de instruções na memória, descrevendo um programa, consiste no fluxo de instruções
  - As operações executadas sobre os dados na CPU constituem o fluxo de dados



Conhecida classificação de Michael J. Flynn:

Uma sequência de instruções na memória, descrevendo um programa, consiste no **fluxo de instruções** 

 As operações executadas sobre os dados na CPU constituem o fluxo de dados





Classificação Quanto aos Fluxos







# Classificação Quanto aos Fluxos

Classificação Quanto aos Fluxos

# Classificação Quanto à **Estrutura**

Determinado pelo grau de acoplamento:

Espaço de endereçamento único e uma única instância do sistema operacional: fortemente acoplado

Espaço de endereçamento distribuído e diferentes instâncias do sistema operacional: fracamente acoplado





# Classificação Quanto à **Estrutura**

Determinado pelo grau de acoplamento:

#### Fortemente acoplado: Multiprocessador

Uma instância única do sistema operacional gere todos os recursos da arquitetura e um espaço de endereçamento compartilhado garante o substrato de comunicação

#### Fracamente acoplado: Multicomputador

Cada nó da arquitetura é um computador completo, possuindo uma instância própria do sistema operacional, havendo uma estrutura de interconexão de rede permitindo a comunicação

# MIMD

Multiprocessador Multicomputador



# Classificação Quanto à Estrutura



Qualquer processador multicore das máquinas atuais; os servidores de alto desempenho possuem processadores organizados em estruturas que refletem esta arquitetura.

# Classificação Quanto à Estrutura MIMD Multiprocessador P1 P2 P3 Pm



Qualquer processador multicore das máquinas atuais. É uma arquitetura dotada de uma memória centralizada, na qual, o tempo de latência para acesso de um determinado endereço de memória é fixo, independente da CPU que realiza o acesso.

O espaço de endereçamento é compartilhado entre as CPUs, no entanto os módulos de memórias estão organizados de forma que as distâncias, e, por consequência, os tempos de latência, às CPUs é diferente.

23







Classificação Quanto à Estrutura

Distributed Shared Memory Access **MIMD** Interconexão Gerência de Memória Compartilhada MemC MemC Multicomputador MemL MemL MemL MemL P1 P2 P3 Pm

DSM

Esquema, mantido em hardware ou software, em que utiliza um mecanismo semelhante à paginação de memória.

Classificação Quanto à
Estrutura

NoRMA
Non Remote Memory Access

MIMD

Multicomputador

NoRMA
Non Remote Memory Access

Mem
N1
Interconexão

Computadores completos e autônomos cooperam entre si via uma uma rede de

enderecamento.

comunicação, não existindo nenhum compartilhamento de memória ou espaço de





# Classificação Quanto à Granularidade

Indica a carga de processamento definida pela unidade de cálculo:

- Menor a carga de processamento, menor a granularidade
- Maior a carga de processamento, maior a granularidade



# Classificação Quanto à Granularidade

- Ao nível de instrução
- Ao nível de fluxo de execução
- Ao nível de processo
- Ao nível de aplicação



# Classificação Quanto à Granularidade

- Ao nível de instrução
  - Pipeline
  - Vetorial
  - Superescalar
  - Execução especulativa
- Ao nível de fluxo de execução
- Ao nível de processo
- Ao nível de aplicação



# Classificação Quanto à Granularidade

- Ao nível de <u>instrução</u>

- Ao nível de aplicação



Ao nível de fluxo de execução Simultaneous Multithreading (SMT) Multicore Multiprocessador Ao nível de processo

# Classificação Quanto à Granularidade

- Ao nível de instrução
- Ao nível de <u>fluxo de execução</u>
- Ao nível de <u>processo</u>
  - Clusters/Bewolf/Aglomerados
  - Constelações
  - Massive Parallel Processors (MPP)
  - Grid Computing
- Ao nível de aplicação



# Classificação Quanto à Granularidade

- Ao nível de <u>instrução</u>
- Ao nível de <u>fluxo de execução</u>
- Ao nível de <u>processo</u>
- Ao nível de aplicação
  - Computação em rede
  - Cloud Computing



37



# Onde estão estes computadores?

Podemos encontrar alguns em:



O Top500 apresenta uma lista dos 500 computadores de uso geral mais potentes do mundo. O benchmark LINPACK é utilizado para verificar o poder computacional das máquinas e a adesão a esta lista é voluntária (ou seja, nem todas as máquinas estão de fato nesta lista). A lista Top500 é atualizada duas vezes por ano, em junho e novembro, desde 1993.



# Onde estão estes computadores?

Participação do Brasil na última lista

| Rank | System                                                                                                                                                                                           | Cores  | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power<br>(kW) |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|--------------------|---------------|
| 193  | Santos Dumont (SDumont) - Bull Sequana X1000, Xeon<br>Gold 6252 24C 2.16Hz, Mellanox InfiniBand EDR, NVIDIA<br>Testa V100 SXM2 , Atos<br>Laboratório Nacional de Computação Científica<br>Brazit | 33,856 | 1,849.0           | 2,727.0            |               |
| 195  | Fênix - SYS-1029G0-TRT, Xeon Gold 5122 4C 3.6GHz,<br>Infiniband EDR, NVIDIA Testa V100 , Atos<br>Petróleo Brasileiro S.A<br>Brazil                                                               | 48,384 | 1,836.0           | 4,297.4            | 287           |
| 347  | Ogbon Cimatec/Petrobras - Bull Sequana X1000, Xeon<br>Gold 6240 18C 2,6GHz, Mellanox InfiniBand EDR, NVIDIA<br>Tesla V100 SXM2, Atos<br>SENAI CIMATEC<br>Brazil                                  | 27,768 | 1,605.0           | 2,323.3            |               |

# E meu possante? Como estaria nesta?

Execute dois benchmarks para avaliar o desempenho de seu computador:

INPACK

http://www.panticz.de/Linpack

NPB

https://www.nas.nasa.gov/publications/npb.html

Baixe estes dois benchmarks em seu computador, execute, anote e compartilhe suas impressões com os colegas neste <u>formulário</u> (exige login na sua conta @inf).

Opte pelas versões Pthreads neste momento!



# Glossário

**Benchmark**: Programa, ou conjunto de programas, desenvolvido para avaliar aspectos de desempenho de um sistema computacional,





45