MATH 2043

All-in-one Summary

CHEN, Yixiang

1 Completeness of Ordered Field

- Ordered Field: A field *K* together with order.
- Completeness of \mathbb{R} : There exists a unique ordered field satisfying LUB, i.e. \mathbb{R} is the unique complete ordered field.

Let R be any ordered field.

- **Supremum**: For any $S \subset R$, $\lambda = \sup S$ if
 - λ is an upper bound: For every *s* ∈ *S*, *s* ≤ λ .
 - λ is the smallest: If μ is another upper bound, $\lambda \leq \mu$. Equivalently, for every $\varepsilon > 0$, there exists $s \in S$, such that $\lambda \varepsilon < s \leq \lambda$.
- Least Upper Bound Property: *R* has least upper bound property if every nonempty bounded above subset of *R* has a least upper bound in *R*.
- Archimedean Property: $\mathbb{N} \subset R$ is bounded.
 - For every x ∈ R, there exists $n ∈ \mathbb{N}$, such that n > x.
 - For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$, such that $\frac{1}{n} < \frac{1}{N} < \varepsilon$, for every n > N.
 - $\lim_{n\to\infty} \frac{1}{n} = 0.$
- LUB⇒AP.
- $S \subset R$ is nonempty and bounded above.
 - If λ is an upper bound and there exists (x_n) in S such that $\lim_{n\to\infty} x_n = \lambda$, then $\lambda = \sup S$.
 - The opposite direction holds if *R* satisfies AP.
- LUB⇔MCT.
- MCT⇒AP.
- **Dedekind Cut**: $\underline{A} \subset \mathbb{Q}$ is a cut If

- $\underline{A} \neq \mathbb{Q}$ and $\underline{A} \neq \emptyset$.
- If $x \in \underline{A}$, $y \in \mathbb{Q}$ and y < x, then $y \in \underline{A}$.
- \underline{A} has no maximum: For every $x \in \underline{A}$, there exists $z \in \underline{A}$, such that x < z.
- The collection of all cuts \mathbb{R} satisfies LUB.
- If K is another complete ordered field, then there exists an ordered field isomorphism $\varphi : \underline{\mathbb{R}} \to K$, such that
 - φ is bijective.
 - If a < b, then $\varphi(a) < \varphi(b)$.
 - $\varphi(a+b) = \varphi(a) + \varphi(b).$
 - $\varphi(ab) = \varphi(a)\varphi(b).$

2 Limit Superior and Limit Inferior

From now on, we work with \mathbb{R} .

- Limit Set: LIM (x_n) := set of all limits of convergent subsequences in $\hat{\mathbb{R}}$.
 - *L* ∈ LIM(x_n) iff for every ε > 0, there exist infinitely many x_n with $|x_n L| < \varepsilon$.
- **Limit Superior**: $\limsup_{n\to\infty}(x_n) := \sup \text{LIM}(x_n)$.
- Let (x_n) be bounded and $L \in \mathbb{R}$.
 - If $L > \limsup_{n \to \infty} x_n$, then there exist finitely many $x_n > L$.
 - If $L < \limsup_{n \to \infty} x_n$, then there exist infinitely many $x_n > L$.
- $\limsup_{n\to\infty} x_n \in LIM(x_n)$.
- (x_n) converges iff $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$.
- $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} M_n$, where $M_n = \sup\{x_n, x_{n+1}, x_{n+2}, \ldots\}$.
- Ratio Test:
 - If $\limsup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1, \sum_{n=1}^{\infty} a_n$ converges absolutely.
 - If $\liminf_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, $\sum_{n=1}^{\infty} a_n$ diverges.
- Root Test:
 - If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1$, $\sum_{n=1}^{\infty} a_n$ converges absolutely.
 - If $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$, $\sum_{n=1}^{\infty} a_n$ diverges.
- Root Test⇒Ratio Test.

3 Topology on \mathbb{R}

- Open Set: $S \subset \mathbb{R}$ is open if for every $x \in S$, there exists $\varepsilon > 0$, such that $(x \varepsilon, x + \varepsilon) \subset S$.
- Closed Set: S is closed if $S^{\mathbb{C}}$ is open.
 - **-** S ⊂ \mathbb{R} is closed iff if (x_n) in S converges to L ∈ \mathbb{R} , then L ∈ S.
 - If nonempty S ⊂ \mathbb{R} is closed and bounded, then $\sup S = \max S$.
 - Union of open sets is open.
 - Intersection of closed sets is closed.
 - Finite intersection of open sets is open.
 - Finite union of closed sets is closed.
- Continuity: f(x) is continuous at x = a iff
 - f(a) is defined and $\lim_{x\to a} f(x) = f(a)$.

or

- for every $\varepsilon > 0$, there exists $\delta > 0$, such that $|f(x) f(a)| < \varepsilon$ if $|x a| < \delta$.
- f(x) is continuous on $\mathbb R$ iff for every open $U \subset \mathbb R$, $f^{-1}(U)$ is open.
- Continuity on $D \subset \mathbb{R}$: f(x) is continuous on $D \subset \mathbb{R}$ if for every $\varepsilon > 0$, there exists $\delta_x > 0$, such that if $|x y| < \delta_x$, then $|f(x) f(y)| < \varepsilon$.
- Uniform Continuity on $D \subset \mathbb{R}$: f(x) is uniformly continuous on $D \subset \mathbb{R}$ if for every $\varepsilon > 0$, there exists $\delta > 0$, such that for every $x, y \in D$, if $|x y| < \delta$, then $|f(x) f(y)| < \varepsilon$.
- If f is continuous on compact set D, then f is uniformly continuous on D.
- Lipschitz Continuity on $D \subset \mathbb{R}$: f(x) is Lipschitz continuous on $D \subset \mathbb{R}$ if there exists $\alpha > 0$, such that $|f(x) f(y)| \le \alpha |x y|$, for every $x, y \in D$.
- Lipschitz Continuity \$\Rightarrow\$Uniform Continuity.
- If $f: \mathbb{R} \to \mathbb{R}$ is differentiable and $|f'(x)| \le M$ for some M, then f is uniformly continuous.
- Compact Set: $X \subset \mathbb{R}$ is compact if any open cover has a finite subcover, i.e. for every collection of open sets $\bigcup_{\alpha} U_{\alpha}$, such that $X \subset \bigcup_{\alpha} U_{\alpha}$, there exists $U_{\alpha_1}, \ldots, U_{\alpha_N}$, such that $X \subset \bigcup_{i=1}^N U_{\alpha_i}$.
- Heine-Borel Theorem: $X \subset \mathbb{R}$ is compact iff X is closed and bounded.
- HBT⇔AC.

4 Metric Spaces

- Metric Space: (X,d) is a metric space if $d: X \times X \to \mathbb{R}$ such that
 - $d(x,y) \ge 0$, for every $x,y \in X$ and d(x,y) = 0 iff x = y.
 - d(x,y) = d(y,x), for every $x, y \in X$.
 - $d(x,y) \le d(x,z) + d(z,y)$, for every $x,y,z \in X$.
- Limit in Metric Space: A sequence (x_n) in X converges to some $L \in X$ iff for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$, such that for every n > N, $d(x_n, L) < \varepsilon$.
- Normed Vector Space: $(V, \|\cdot\|)$ is a normed vector space if $\|\cdot\| : V \to \mathbb{R}$ such that
 - $\|\mathbf{x}\| \ge 0$, for every $\mathbf{x} \in V$ and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = \mathbf{0}$.
 - $||c\mathbf{x}|| = |c| ||\mathbf{x}||$, for every $c \in \mathbb{R}$ and $\mathbf{x} \in V$.
 - $\|\mathbf{x} + \mathbf{y}\|$ ≤ $\|\mathbf{x}\| + \|\mathbf{y}\|$, for every $\mathbf{x}, \mathbf{y} \in V$.
- A normed vector space is a metric space with $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$.
- (\mathbf{x}_n) in \mathbb{R}^N converges to some \mathbf{x} in $\|\cdot\|_2$ iff (x_n^i) converges to $x^i \in \mathbb{R}$, for every i, where x_n^i is the i-th component of \mathbf{x}_n .
- Bolzano-Weierstrass Theorem in \mathbb{R}^N : If $||\mathbf{x}_n|| \le B$ for some $B \in \mathbb{R}$ for every $n \in \mathbb{N}$, then there exists subsequence (\mathbf{x}_{n_k}) converging to some \mathbf{x} .
- Complete Space (Banach Space): $(V, \|\cdot\|)$ is complete if every Cauchy sequence in V converges in V.

5 Topology on Metric Spaces

With respect to metric d or norm $\|\cdot\|$ in X,

- **Open Ball**: $B_d(x,r) = \{y \in X : d(x,y) < r\}.$
- Closed Ball: $\overline{B}(x,r) = \{y \in X : d(x,y) \le r\}.$
- **Sphere**: $S(x,r) = \{y \in X : d(x,y) = r\}.$

Let $E \subset X$.

- Interior Point: p ∈ E is an interior point if there exists ε > 0, such that B(p, ε) ⊂ E. The set of all interior points of E is denoted by E°.
- Open Set: E is open in X if every $p \in E$ is an interior point.
- E° is open.
- Closed Set: E is closed in X iff $E^{\mathbb{C}}$ is open.

- Limit Point: p∈ X is a limit point iff for every ε > 0, there exists q∈ E with q≠ p, such that q∈ B(p, ε). The set of all limit points of E is denote by E'.
- **Isolated Point**: If $p \in E$ is not a limit point, then it is an isolated point.
- **Perfect Set**: *E* is perfect if it is closed and has no isolated points.
- E is closed iff every limit point of E is in E, or equivalently every converging sequence in E has limit in E.
- Boundness: E is bounded if there exists M > 0, such that d(p,q) < M, for every $p, q \in E$.
- The properties of intersection and union of open and closed sets follow from the topology on R.
- **Closure**: The closure of *E* is defined by $\overline{E} = E \cup E'$.
- $\overline{X \setminus E} = X \setminus E^{\circ}$.
- \overline{E} is closed and is the smallest closed set containing E.
- E is closed iff $E = \overline{E}$.
- Dense Set: E is dense in $X \Leftrightarrow \overline{E} = X \Leftrightarrow E^{\complement}$ has empty interior \Leftrightarrow for every $p \in X$, either $p \in E$ or $p \in E' \Leftrightarrow$ for every $p \in X$ and every $\varepsilon > 0$, there exists $q \in E$, such that $q \in B(p, \varepsilon)$.
- **Boundary**: The boundary of *E* is defined by ∂E , which is the set of all $x \in X$, such that for every $\varepsilon > 0$, $B(x.\varepsilon)$ contains some point in *E* and some point not in *E*.
 - \overline{E} = E ∪ ∂E .
 - $E^{\circ} = E \setminus \partial E = \overline{E} \setminus \partial E$.
 - ∂E is closed.
- Compact Set: $K \subset X$ is compact if every open cover of K has finite subcover.
- Sequentially Compact Set: $K \subset X$ is sequentially compact if every sequence in K has a converging subsequence with limit in K, or equivalently every infinite subset contains a limit point.
- Compact \Leftrightarrow Sequentially compact.
- Lebesgue Number Theorem: Let K be a sequentially compact set in K covered by $\bigcup_{\alpha} U_{\alpha}$. Then, there exists $\delta > 0$, such that for every $x \in K$, $B(x, \delta) \subset U_{\alpha}$ for some α .
- Complete Set: $K \subset X$ is complete if every Cauchy sequence in K converges in K.
 - If *K* is complete then *K* is closed.
- Totally Bounded Set: $K \subset X$ is totally bounded if for every $\varepsilon > 0$, there exists some finite cover by open balls of radius ε .
 - If *K* is totally bounded then *K* is bounded.

- Heine-Borel Theorem in a metric space: K is compact \Leftrightarrow K is sequentially compact \Leftrightarrow K is complete and totally bounded.
 - In $(\mathbb{R}^n, \|\cdot\|_2)$, K is compact iff K is closed and bounded, K is complete iff K is closed, and K is totally bounded iff K is bounded.
- Let $Y \subset X$ with induced metrix $d|_Y$. $K \subset X$ is compact in X iff $K \subset Y$ is compact in Y.
- Continuity: $f: X \to Y$ is continuous at $a \in X$ iff for every $\varepsilon > 0$, there exists $\delta > 0$, such that if $d_X(x,a) < \delta$, then $d_Y(f(x),f(a)) < \varepsilon$.
- f is continuous on $X \Leftrightarrow$ for every open $U \subset Y$, $f^{-1}(U)$ is open in X. \Leftrightarrow for every closed $V \subset Y$, $f^{-1}(V)$ is closed in X.
- f is continuous on $X \Leftrightarrow \overline{f^{-1}(E)} \subset f^{-1}(\overline{E})$, for every $E \subset Y \Leftrightarrow f(\overline{D}) \subset \overline{f(D)}$, for every $D \subset X$.
- All norms are continuous.
- If f is continuous and K is compact, then f(K) is compact.
- Extreme Value Theorem: Let $f: K \to \mathbb{R}$ be continuous, where K is compact. Then, f attains maximum and minimum on K, i.e. there exists $x_{max} \in K$, such that $f(x_{max}) = \sup_{x \in K} f(x)$.
- Continuity > Uniform Continuity.
- Equivalent Norms: Two norms $\|\cdot\|, \|\cdot\|'$ on V are equivalent iff there exists c > 0, such that $\frac{1}{c} \|\mathbf{x}\| \le \|\mathbf{x}\|' \le c \|\mathbf{x}\|$, for every $\mathbf{x} \in V$.
 - $\mathbf{x}_n \to \mathbf{x}$ in $\|\cdot\| \iff \mathbf{x}_n \to \mathbf{x}$ in $\|\cdot\|'$.
 - If $\|\cdot\|$, $\|\cdot\|'$ are equivalent, then the collection of open sets in $(V, \|\cdot\|)$, $(V, \|\cdot\|')$ is the same.
 - If $f: (V, \|\cdot\|)$ → X is continuous, then $f: (V, \|cdot\|')$ → X is continuous.
- Equivalence of norms in \mathbb{R}^n : Any norm $\|\cdot\|_*$ in \mathbb{R}^n is equiavalent to $\|\cdot\|_2$.
 - $-\|\cdot\|_*$ is continuous with respect to $\|\cdot\|_2$.
- **Disconnected Set**: $S \subset X$ is disconnected if there exists $A, B \subset X$, such that $S = A \sqcup B, A, B \neq \emptyset$ and $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. If S is not disconnected, then S is connected.
 - S ⊂ \mathbb{R} \iff If $x, y \in S$ and x < y, then $[x, y] \subset S$.
- Let $f:(X,d_X)\to (Y,d_Y)$ be continuous. Then if $S\subset X$ is connected, $f(S)\subset Y$ is connected.
 - Intermediate Value Theorem.
- If *S* is connected, then \overline{S} is connected.
- Path Connectedness: $S \subset X$ is path-connected if for every $x, y \in S$, there exists continuous path $\gamma \colon [0,1] \to S$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

- If $S \subset X$ is path-connected, then it is connected.
- Nowhere Dense Set: $A \subset X$ is nowhere dense if \overline{A} has empty interior or equivalently A^{\complement} contains an open dense subset.
 - Note that if S is dense, then $\overline{S} = X$, i.e. for every $p \in X$ and every $\varepsilon > 0$, $B(p, \varepsilon) \cap S \neq \emptyset$, or equivalently, S^{\complement} has empty interior.
- First Category Set: $A \subset X$ is first category if it is a countable union of nowhere dense subsets. Otherwise, it is second category.
- Baire's Category Theorem: If X is complete metric space, then
 - countable intersection of open dense set is dense.
 - first category set has empty interior.
 - complement of first category set is dense.
- Weak BCT(dense \Rightarrow nonempty): If X is complete metric space (nonempty),
 - countable intersection of open dense is nonempty.
 - X is second category.
 - If X is countable union of closed set, then at least one of the closed set has nonempty interior.
- The set of discontinuity of a function $f: \mathbb{R} \to \mathbb{R}$ is a countable union of closed set.
 - $\mathbb{R} \setminus \mathbb{Q}$ cannot be the set of discontinuity of a function $f : \mathbb{R} \to \mathbb{R}$.

6 Multivariable Calculus

Let $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$. Let $\mathbf{a} \in \mathbb{R}^n$.

- Continuity: **F** is continuous at **a** if for every $\varepsilon > 0$, there exists $\delta > 0$, such that for every $\|\mathbf{x} \mathbf{a}\| < \delta$, $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{a})\| < \varepsilon$.
- **Differentiability** ($\mathbb{R}^n \to \mathbb{R}$): $F : \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{a} \in \mathbb{R}^n$, if there exists a linear approximation $L(\mathbf{x})$ at \mathbf{a} , such that $F(\mathbf{x}) = F(\mathbf{a}) + L(\mathbf{x} \mathbf{a}) + o(\|\mathbf{x} \mathbf{a}\|)$.
 - If *F* is differentiable at **a**, then $\frac{\partial F}{\partial x_i}(\mathbf{a})$ exists for every $1 \le i \le n$ and $L(\mathbf{x} \mathbf{a}) = \sum_{i=1}^n \frac{\partial F}{\partial x_i}(\mathbf{a})(x_i a_i) = \nabla F_{\mathbf{a}} \cdot (\mathbf{x} \mathbf{a})$.
 - The converse is not true, e.g. $f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ is not differentiable at (0,0).
- **Differentiability** $(\mathbb{R}^n \to \mathbb{R}^m)$: $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{a} if each component F^i is differentiable at \mathbf{a} , i.e. $\mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{a}) + D\mathbf{F_a} \cdot (\mathbf{x} \mathbf{a}) + o(\|\mathbf{x} \mathbf{a}\|)$, where $D\mathbf{F_a}$ is the $m \times n$ Jacobian matrix $\left(\frac{\partial F^i}{\partial x_j}\right)$.

- If $F: \mathbb{R}^n \to \mathbb{R}$, $DF_{\mathbf{a}} = \nabla F_{\mathbf{a}} = \left(\frac{\partial F}{\partial x_i}\right)_{1 \times n}$.
- \mathscr{C}^1 : **F** is \mathscr{C}^1 on an open set $U \subset \mathbb{R}^n$ if all partial derivatives $\frac{\partial F^i}{\partial x_j}$ exist and are continuous on U.
 - If **F** is \mathcal{C}^1 on U, then **F** is differentiable on U.
- Chain Rule: If $G : \mathbb{R}^k \to \mathbb{R}^n$ is differentiable at \mathbf{a} and $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $G(\mathbf{a})$, then $\mathbf{F} \circ G : \mathbb{R}^k \to \mathbb{R}^m$ is differentiable at \mathbf{a} with $D(\mathbf{F} \circ \mathbf{G})_{\mathbf{a}} = D\mathbf{F}_{G(\mathbf{a})}D\mathbf{G}_{\mathbf{a}}$.
 - $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable at \mathbf{a} and its inverse function $\mathbf{F}^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ exists and is differentiable at $\mathbf{F}(\mathbf{a})$, then $(D\mathbf{F}_{\mathbf{a}})^{-1} = D\left(\mathbf{F}^{-1}\right)_{\mathbf{F}(\mathbf{a})}$.
- Inverse Function Theorem: If $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ is \mathscr{C}^1 and $D\mathbf{F_a}$ is invertible, then there exists an open $U \subset \mathbb{R}^n$ such that $\tilde{\mathbf{F}} := \mathbf{F}|_U : U \to \mathbf{F}(U)$ is invertible and $\tilde{\mathbf{F}}^{-1}$ is \mathscr{C}^1 .
- Banach Contraction Mapping Theorem: Let X be a complete metric space and $F: X \to X$. If there exists $\alpha \in [0,1)$ such that $d(F(x),F(y)) \le \alpha d(x,y)$ for every $x,y \in X$, then there exists a unique fixed point $x_* \in X$.
- Vector-Valued Mean Value Theorem: Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^m$ be \mathscr{C}^1 and $V \subset \mathbb{R}^n$ be a convex subset. If $\|D\mathbf{F}\| \le M$ is bounded by some M > 0 on V, then $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| \le M \|\mathbf{x} \mathbf{y}\|$ for every $\mathbf{x}, \mathbf{y} \in V$.
- Implicit Function Theorem: Let $\mathbf{F}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$ be \mathscr{C}^1 and $\mathbf{F}(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}$. If $D_{\mathbf{y}}\mathbf{F}_{(\mathbf{x}_0, \mathbf{y}_0)}$ is invertible, then there exists an open $U \subset \mathbb{R}^n$ with $\mathbf{x}_0 \in U$ and exists a unique $\mathbf{G}: U \to \mathbb{R}^m$ such that
 - $\mathbf{G}(\mathbf{x}_0) = \mathbf{y}_0,$
 - $\mathbf{F}(\mathbf{x}, \mathbf{G}(\mathbf{x})) = \mathbf{0},$

and **G** is \mathscr{C}^1 near \mathbf{x}_0 with $D\mathbf{G} = -(D_{\mathbf{v}}\mathbf{F})^{-1}D_{\mathbf{v}}\mathbf{F}$.

- Higher Order Differentiability: $F : \mathbb{R}^N \to \mathbb{R}$ is k-th order differentiable at $\mathbf{a} \in \mathbb{R}^N$ if there exists a degree k polynomial $P_k(\mathbf{x})$ such that $F(\mathbf{x}) = P_k(\mathbf{x}) + o\left(\|\mathbf{x} \mathbf{a}\|^k\right)$.
 - If $\frac{\partial F}{\partial x_i}$ exists near **a** and $\frac{\partial F}{\partial x_i}$ is differentiable at **a**, then F is 2^{nd} order differentiable at **a**.
 - If F is \mathscr{C}^2 on $U \subset \mathbb{R}^N$, it is 2^{nd} order differentiable.
 - If $F : \mathbb{R}^N \to \mathbb{R}$ has (k-1)-th partial derivatives near \mathbf{a} and differentiable at \mathbf{a} , then F is k-th order differentiable at \mathbf{a} .
 - If F is \mathcal{C}^k , then F is k-th differentiable.
- Mixed Partial Theorem: Let $f : \mathbb{R}^N \to \mathbb{R}$ be differentiable at **a**. If f_x, f_y exist near **a** and are differentiable at **a**, then $f_{xy}(\mathbf{a}) = f_{yx}(\mathbf{a})$. If f is \mathscr{C}^2 , then the conclusion also holds.
- Hessian Matrix: Let $F: \mathbb{R}^N \to \mathbb{R}$ be \mathscr{C}^2 . $\mathbf{H}_F = \left(\frac{\partial^2 F}{\partial x_i \partial x_j}\right)_{i,j=1}^N$.
- Second Order Derivative Test: Assume that $F : \mathbb{R}^N \to \mathbb{R} \in \mathcal{C}^2$. If F has a critical point at \mathbf{a} , i.e. $\nabla F_{\mathbf{a}} = \mathbf{0}$, then \mathbf{a} is a

- local min if \mathbf{H}_F is positive definite at \mathbf{a} ,
- local max if \mathbf{H}_F is negative definite at \mathbf{a} ,
- saddle point if \mathbf{H}_F is indefinite at \mathbf{a} .

7 Riemann Integration

Let $f : \mathbb{R} \to \mathbb{R}$ be defined on [a,b].

- Notation:
 - $P: a = x_0 < x_1 < \ldots < x_n = b$
 - $U(P,f) = \sum_{i=1}^{n} \sup_{[x_{i-1},x_i]} f(x) (x_i x_{i-1})$
 - $-L(P,f) = \sum_{i=1}^{n} \inf_{[x_{i-1},x_i]} f(x) (x_i x_{i-1})$
 - $S(P^*, f) = \sum_{i=1}^{n} f(x_i^*) (x_i x_{i-1})$
- Equivalence of Riemann Integral and Darboux Integral: Assume that f is bounded on [a,b]. The following are equivalent:
 - **Darboux Integral**: For every $\varepsilon > 0$, there exists P, such that $U(P, f) L(P, f) < \varepsilon$.
 - **Riemann Integral**: There exists $I ∈ \mathbb{R}$, such that for every ε > 0, there exists δ > 0, such that for every ||P|| < δ, $I ε < L(P, f) ≤ S(P^*, f) ≤ U(P, f) < I + ε$, i.e. $|S(P^*, f) I| < ε$.
- Oscillation: The oscillation of a bounded f on D is defined by $\omega_D(f) := \sup_{x,y \in D} |f(x) f(y)| = \sup_{x \in D} f(x) \inf_{x \in D} f(x)$.
 - $\omega(P,f) := \sum_{i=1}^{n} \omega_{[x_{i-1},x_i]}(f)(x_i x_{i-1})$. Hence, we can rewrite the Riemann and Darboux Integral:
 - For every $\varepsilon > 0$, there exists P, such that $\omega(P, f) < \varepsilon$.
 - For every $\varepsilon > 0$, there exists $\delta > 0$, such that for every $||P|| < \delta$, $\omega(P, f) < \varepsilon$.

$$\omega_f(x) = \inf_{\delta > 0} \omega_{(x-\delta,x+\delta)}(f).$$

- Properties of Riemann Integrable Functions:
 - Riemann integrable functions are bounded.
 - If f is continuous on [a,b], then f is uniformly continuous on [a,b], and hence $f \in \mathcal{R}[a,b]$.
 - If f is bounded and has finitely many discontinuities, then $f \in \mathcal{R}[a,b]$.
 - Mean Value Theorem for Integrals: If $f \in \mathcal{R}[a,b]$ is continuous on [a,b], then there exists $c \in [a,b]$, such that $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.
- Lebesgue Integrability Criterion: f is Riemann integrable on [a,b] if and only if f is bounded and \mathcal{S}_f has Lebesgue measure zero, where \mathcal{S}_f is the set of discontinuities of f on [a,b].

- If f is Riemann integrable on [a,b] and g is continuous on f[a,b] and is bounded, then $g \circ f \in \mathscr{R}[a,b]$.
- If f is Riemann integrable on [a,b] and g differs from f at finitely many points on [a,b], then $g \in \mathcal{R}[a,b]$.
- Lebesgue Measure Zero: $S \subset \mathbb{R}$ has Lebesgue measure zero if for every $\varepsilon > 0$, there exists a countable collection of (α_n, β_n) , such that $S \subset \bigcup_{n=1}^{\infty} (\alpha_n, \beta_n)$ and $\sum_{n=1}^{\infty} (\beta_n \alpha_n) \leq \varepsilon$.
 - a.e.: If a property is true everywhere except at a set of measure zero, then the property is true almost everywhere.
- Properties of Lebesgue Measure Zero:
 - A countable set has measure zero.
 - If B has measure 0 and $A \subset B$, then A has measure zero.
 - If A_k has measure zero, then $\bigcup_{k=1}^{\infty} A_k$ has measure zero.
 - The Cantor set is uncountable but has measure zero.
 - For every $S \subset \mathbb{R}$, if S contains an open interval, then S does not have measure zero.
- Thomae's Function:

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q} \text{ in the reduced form} \\ 0, & \text{otherwise.} \end{cases}$$

f is discontinuous at \mathbb{Q} only and f is bounded. Hence, f is Riemann integrable on [0,1].

• Dirichlet Function: $\mathbf{1}_{\mathbb{Q}}(x)$ is discontinuous everywhere and hence is not Riemann integrable on any [a,b].

8 Uniform Convergence

Let $(f_n): D \to \mathbb{R}$ be a sequence of functions on any nonempty set D.

- Uniform Convergence: f_n uniformly converges to f on D if for every $\varepsilon > 0$, there exists N > 0, such that for every n > N, $|f_n(x) f(x)| < \varepsilon$ for every $x \in D$, i.e. $\lim_{n \to \infty} \sup_{x \in D} |f_n(x) f(x)| = 0$. $\sum_{n=1}^{\infty} f_n(x)$ uniformly converges on D to $F(x) = \sum_{n=1}^{\infty} f_n(x)$ as $N \to \infty$.
- Cauchy's Criterion: f_n converges to f on D if and only if f_n is a Cauchy sequence under $\|\cdot\|_{\infty}$, i.e. for every $\varepsilon > 0$, there exists N > 0, such that for every m, n > N, $|f_n(x) f_m(x)| < \varepsilon$, for every $x \in D$.

 $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on D if and only if for every $\varepsilon > 0$, there exists N > 0, such that for every n > N, $\left|\sum_{k=n+1}^{n+p} f_k(x)\right| < \varepsilon$, for every $p \in \mathbb{N}$ and every $x \in D$.

- Comparison Test: Let $(u_n), (v_n): D \to \mathbb{R}$ be two sequences of functions on any nonempty set D. If $|u_n(x)| \le v_n(x)$ for every $x \in D$ and every $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} v_n(x)$ converges uniformly on D, then $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on D.
- Weierstrass M-Test: If $|f_n(x)| \le M_n$, for every $x \in D$ and every $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on D.
- Dirichlet Test: Let $(u_n), (v_n): D \to \mathbb{R}$ be two sequences of functions on any nonempty set D. If
 - $u_n(x) \ge u_{n+1}(x)$, for every $n \in \mathbb{N}$ and every $x \in D$,
 - $u_n(x)$ converges to 0 uniformly on D.
 - $\left|\sum_{n=1}^{N} v_n(x)\right|$ ≤ B, for every $x \in D$ and every $N \in \mathbb{N}$.
- Abel Test: Let $(u_n), (v_n): D \to \mathbb{R}$ be two sequences of functions on any nonempty set D. If
 - $u_n(x)$ ≥ $u_{n+1}(x)$, for every $n \in \mathbb{N}$ and every $x \in D$,
 - $|u_n(x)|$ ≤ B, for every $x \in D$ and for every $n \in \mathbb{N}$,
 - $\sum_{n=1}^{\infty} v_n(x)$ converges uniformly on D,

then $\sum_{n=1}^{\infty} u_n(x)v_n(x)$ converges uniformly on D.

• Uniform Convergence Theorem: Let $(f_n): D \to X$, where X is a metric space. If f_n converges to f uniformly on D and f_n is continuous at $c \in D$ for every $n \in \mathbb{N}$, then f is continuous at c, i.e.

$$\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x) = f(c).$$

If f_n is continuous at x = c and $s(x) = \sum_{n=1}^{\infty} f_n(x)$ converges uniformly on D, then s(x) is continuous at x = c

Let $(f_n): [a,b] \to \mathbb{R}$ be a sequence of real-valued functions.

- Interchange of Limit and Integration: Assume that $f_n \in \mathcal{R}[a,b]$ converges to f uniformly on [a,b]. Let $g_n(x) = \int_a^x f_n(x) dt$, for every $x \in [a,b]$. Then,
 - $f \in \mathscr{R}[a,b],$
 - g_n converges to some g uniformly on [a,b] and $g(x) = \int_a^x f(t) dt$.

If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [a,b], then it is Riemann integrable on [a,b] and can be integrated term by term.

- Interchange of Limit and Differentiation: Let f_n be differentiable on (a,b) for every $n \in \mathbb{N}$. If
 - $f_n(x_0)$ converges for some point $x_0 \in (a,b)$,
 - there exists g such that f'_n converges uniformly to g on (a,b),

then

- there exists f such that f_n converges to f uniformly on (a,b),
- f'(x) = g(x), for every $x \in (a,b)$.

If

- f_n is differentiable on (a,b),
- $\sum_{n=1}^{\infty} f_n(x_0)$ converges for some $x_0 \in (a,b)$,
- there exists $g(x) = \sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on (a,b),

then

- $f(x) = \sum_{n=1}^{\infty} f_n(x)$ converges uniformly on (a,b),
- $f'(x) = \sum_{n=1}^{\infty} f'_n(x).$
- Uniform Convergence of Power Series: Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be a power series. The radius of convergence is given by

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

 $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for |x| < R and diverges for |x| > R.

If $\sum_{n=0}^{\infty} a_n x^n$ converges for |x| < R, then it converges uniformly on $[-r, r] \subset (-R, R)$.

- Hence, $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is continuous on (-R,R).
- We can integrate and differentiate f term-by-term on (-R,R).
- f is smooth on (-R,R).
- Abel's Limit Theorem: If $f(x) = \sum_{n=0}^{\infty} a_n(x_n)$ converges for $x \in (-r, r]$, then f(x) is left-continuous at x = r.

9 Arzelà-Ascoli Theorem

Let $(f_n): X \to \mathbb{R}$ be a sequence of real-valued functions on a metric space (X, d).

- Pointwise Boundness: f_n is pointwise bounded on X if for every $x \in X$, there exists $B_x > 0$, such that $|f_n(x)| \le B_x$ for every $n \in \mathbb{N}$.
- Uniform Boundness: f_n is uniformly bounded on X if there exists B > 0, such that for every $x \in X$ and every $n \in \mathbb{N}$, $|f_n(x)| \le B$.
- Equicontinuity: f_n is equicontinuous at $x \in X$ if for every $\varepsilon > 0$, there exists $\delta_x > 0$ such that for every y such that $d(x,y) < \delta$ and every $n \in \mathbb{N}$, $|f_n(x) f_n(y)| < \varepsilon$.
- Uniform Equicontinuity: f_n is uniformly equicontinuous on X if for every $\varepsilon > 0$ there exists $\delta > 0$, such that for every $x, y \in X$ and every $n \in \mathbb{N}$, if $d(x, y) < \delta$, then $|f_n(x) f_n(y)| < \varepsilon$.

- In general, if $|f'_n(x)| \le M$, for every $n \in \mathbb{N}$ and every $x \in X$, then f_n is uniformly equicontinuous on X.
- If $K \subset X$ is compact and $(f_n) : K \to \mathbb{R}$ is equicontinuous at any $x \in K$, then (f_n) is pointwise bounded if and only if it is uniformly bounded.
- Assume that K is compact and $(f_n): K \to \mathbb{R}$ is uniformly equicontinuous on K. If f_n converges pointwise on a dense subset $E \subset K$, then f_n converges uniformly on K.
- Let X be a countable set and $(f_n): X \to \mathbb{R}$ be pointwise bounded. Then, (f_n) has a subsequence that pointwise converges.
- Arzelà-Ascoli Theorem: Let $K \subset X$ be a compact set and $(f_n) : K \to \mathbb{R}$. If
 - (f_n) is pointwise bounded (or uniformly bounded),
 - (f_n) is uniformly equicontinuous (or pointwise equicontinuous),

then (f_n) has a uniformly convergent subsequence.

10 Stone-Weierstrass Theorem

• Weierstrass Approximation Theorem: If $f:[a,b] \to \mathbb{C}$ is continuous, then there exists a sequence of polynomials (P_n) , such that $P_n \to f$ on [a,b].

If $f: [a,b] \to \mathbb{R}$, (P_n) can be taken to be real.

- Algebra: A set $\mathscr A$ of real or complex functions on a metric space X is an algebra if for every $f,g\in\mathscr A$ and every $c\in\mathbb R$ or $\mathbb C$,
 - $f+g \in \mathcal{A}$,
 - $-cf \in \mathcal{A}$
 - $f \cdot g \in \mathscr{A}$.
- Separating points and Vanishing at no points: Assume that $\mathscr A$ is an algebra on a metric space X.
 - \mathscr{A} separates points on X if for every $x_1, x_2 \in X$ such that $x_1 \neq x_2$, there exists $f \in \mathscr{A}$, such that $f(x_1) \neq f(x_2)$.
 - \mathscr{A} vanishes at no points of X if for every $x \in X$, there exists $f \in \mathscr{A}$ such that $f(x) \neq 0$.
- Interpolation: If $\mathscr A$ separates points and vanishes at no point of X, then for every $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and every $c_1, c_2 \in \mathbb R$ or $\mathbb C$, there exists $f \in \mathscr A$, such that $f(x_1) = c_1$ and $f(x_2) = c_2$.

Assume that $\mathscr{A} \subset \mathscr{C}(X,\mathbb{R})$ is an algebra.

- Uniform Closure:
 - \mathscr{A} is uniformly closed if it is closed in $\mathscr{C}(X,\mathbb{R})$ under metric space topology, i.e. if $f_n \in \mathscr{A}$ and f_n converges to some f uniformly, then $f \in \mathscr{A}$.

- The uniform closure of $\overline{\mathscr{A}}$ of \mathscr{A} is its closure in $\mathscr{C}(X,\mathbb{R})$ under metric space topology, i.e. it consists of all the uniform limit from \mathscr{A} .

If $\mathscr{A} \subset \mathscr{C}(X,\mathbb{R})$ is an algebra, then $\overline{\mathscr{A}}$ is a uniformly closed algebra.

- Stone-Weierstrass Theorem in \mathbb{R} : Let X be a compact metric space. Let $\mathscr{A} \subset \mathscr{C}(X,\mathbb{R})$ be an algebra, such that
 - \mathscr{A} separates points on X,
 - \mathscr{A} vanishes at no points of X.

Then, \mathscr{A} is dense in $\mathscr{C}(X,\mathbb{R})$,

- i.e. $\overline{\mathscr{A}} = \mathscr{C}(X, \mathbb{R})$,
- i.e. any $f \in \mathscr{C}(X, \mathbb{R})$ can be uniformly approximated by functions in \mathscr{A} .
- i.e. for every $f \in \mathcal{C}(X,\mathbb{R})$, there exists $f_n \in \mathcal{A}$ such that f_n converges uniformly to f on X.

If $X \subset \mathbb{R}^n$ is compact and $\mathscr{A} = \operatorname{Poly}(X)$, then $\overline{\mathscr{A}} = \mathscr{C}(X, \mathbb{R})$, i.e. every continuous function can be uniformly approximated by polynomials on X.

Assume that $\mathscr{A} \subset \mathscr{C}(X,\mathbb{C})$ is an algebra.

- **Self-Adjoint**: \mathscr{A} is self-adjoint if for every $f \in \mathscr{A}$, $\overline{f} \in \mathscr{A}$. $\overline{f}(x) = \overline{f(x)}$, for every $x \in X$.
- Stone-Weierstrass Theorem in \mathbb{C} : Let X be a compact metric space. Let $\mathscr{A} \subset \mathscr{C}(X,\mathbb{C})$ be an algebra, such that
 - \mathscr{A} separates points on X,
 - \mathscr{A} vanishes at no points of X,
 - *A* is self-adjoint.

Then, \mathscr{A} is dense in $\mathscr{C}(X,\mathbb{C})$.