Biostat 202B Homework 2

Due April 18, 2024 @ 11:59PM

AUTHOR

Hanbei Xiong 605257780

Question 1

Let X_1, \ldots, X_n be iid random variables with mean μ and variance σ^2 . Derive the asymptotic distribution of the appropriately normalized sample variance $S_n^2 = \sum_{i=1}^n (X_i - \bar{X})^2/n$ in terms of the kurtosis of the distribution of the X_i 's, $\gamma = E(X_1 - \mu)^4/\sigma^4$. Carefully and clearly justify each step.

Hint: Start by showing that $nS_n^2 = \sum_{i=1}^n (X_i - \bar{X})^2 = \sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2$.

Answer:

$$nS_n^2 = \sum_{i=1}^n (X_i - \bar{X})^2$$

$$= \sum_{i=1}^n ((X_i - \mu) - (\bar{X} - \mu))^2$$

$$= \sum_{i=1}^n ((X_i - \mu)^2 - 2(X_i - \mu)(\bar{X} - \mu) + (\bar{X} - \mu)^2)$$

$$= \sum_{i=1}^n (X_i - \mu)^2 - 2(\bar{X} - \mu) \sum_{i=1}^n (X_i - \mu) + n(\bar{X} - \mu)^2$$

$$= \sum_{i=1}^n (X_i - \mu)^2 - 2n(\bar{X} - \mu)^2 + n(\bar{X} - \mu)^2$$

$$= \sum_{i=1}^n (X_i - \mu)^2 - n(\bar{X} - \mu)^2$$

Hence,
$$S_n^2=rac{1}{n}\sum_{i=1}^n(X_i-\mu)^2-(ar{X}-\mu)^2$$

Let
$$Y_i = (X_i - \mu)^2$$
 , then $E(Y_i) = \mu_y = \sigma^2$

$$Var(Y_i) = E(X_i - \mu)^4 - \{E(X_i - \mu)^2\}^2 = E(X_i - \mu_x)^4 - \sigma^4$$

Since
$$\gamma = rac{E(X_i - \mu_x)^4}{\sigma^4}$$

$$Var(Y_i) = \sigma^4(\gamma - 1)$$

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n Y_i - (\bar{X} - \mu)^2 = \bar{Y} - (\bar{X} - \mu)^2$$

Consider

$$\sqrt{n}(S_n^2 - \sigma_x^2) = \sqrt{n}\{\bar{Y} - (\bar{X} - \mu)^2 - \sigma_x^2\} = \sqrt{n}\{\bar{Y} - (\bar{X} - \mu)^2 - \mu_y\} = \sqrt{n}(\bar{Y} - \mu_y) - \sqrt{n}(\bar{X} - \mu)^2$$

By CLT,
$$\sqrt{n}(ar{Y}-\mu_y)\stackrel{D}{
ightarrow}\sigma_y Z\sim N(0,\sigma_y^2)$$

By CLT,
$$\sqrt{n}(ar{X}-\mu)\stackrel{D}{
ightarrow} N(0,\sigma^2)$$

By slutsky,
$$ar{X} - \mu = rac{1}{\sqrt{n}} \sqrt{n} (ar{X} - \mu) \stackrel{P}{
ightarrow} 0$$

By C.M.T,
$$\sqrt{n}(S_n^2-\sigma_x^2)\stackrel{D}{
ightarrow} N(0,\sigma^4(\gamma-1))$$

Question 2

Let Y_n be a sequence of random variables that satisfies $\sqrt{n}(Y_n - \theta) \to N(0, \sigma^2)$ in distribution. Show that this implies $Y_n \to \mu$ in probability.

Answer:

Since
$$rac{1}{\sqrt{n}} o 0$$
 as $n o \infty$, we have

$$Y_n - heta o 0$$
 as $n o \infty$.

 $Y_n o heta$ in probability. (Note: There is a typo in the question)

Question 3

Let X_1, \ldots, X_n be a random sample from Bernoulli(p). Derive a 95% asymptotic CI for p (based on $\hat{p} = \bar{X}$). Justify your steps completely and carefully.

Answer:

By WLLN,
$$ar{X} \stackrel{P}{
ightarrow} p$$

$$E(X) = p$$
 and $Var(X) = p(1-p)$

By CLT,

$$rac{\sqrt{n}(ar{X}-p)}{\sqrt{p(1-p)}}\stackrel{D}{
ightarrow} N(0,1)$$

Since
$$rac{p(1-p)}{\sqrt{ar{X}(1-ar{X})}} \stackrel{P}{ o} 1$$

$$rac{\sqrt{n}(ar{X}-p)}{\sqrt{ar{X}(1-ar{X})}}\stackrel{D}{
ightarrow} N(0,1)$$

$$P(|rac{\sqrt{n}(ar{X}-p)}{\sqrt{ar{X}(1-ar{X})}}| \leq 1.96) = 0.95$$

$$P(-1.96 \le rac{\sqrt{ar{n}(ar{X}-p)}}{\sqrt{ar{X}(1-ar{X})}} \le 1.96) = 0.95$$

$$P(\frac{-1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}} \leq ar{X} - p \leq \frac{1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}}) = 0.95$$

$$P(ar{X} - rac{1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}} \le p \le ar{X} + rac{1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}}) = 0.95$$

Hence, 95% asymptotic CI for p is
$$(ar{X}-rac{1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}},ar{X}+rac{1.96\sqrt{ar{X}(1-ar{X})}}{\sqrt{n}})$$

Question 4

Consider a clinical trial comparing a clinical outcome for two independent groups of patients, say treatment and control group. The treatment group yields X_1, X_2, \ldots, X_n samples with mean μ_x and variance σ^2 . The control group, yields Y_1, Y_2, \ldots, Y_m samples, with mean μ_y and the variance σ^2 (same as the variance in the treatment group). Using the appropriate theorems characterize the limiting distribution of

$$\frac{(\bar{X}_n - \bar{Y}_n) - (\mu_x - \mu_y)}{\sqrt{S_x^2/n + S_y^2/m}}$$

as n and m go to infinity.¹

Answer:

Let N=n+m, γ is Kurtosis of X

By WLLN and C.M.T,

$$\sqrt{N}\sqrt{rac{S_X^2}{n}+rac{S_Y^2}{m}}=\sqrt{rac{S_X^2}{n/N}+rac{S_Y^2}{m/N}}\stackrel{P}{
ightarrow}\sqrt{rac{\sigma_X^2}{\gamma}+rac{\sigma_Y^2}{1-\gamma}}$$

$$\sqrt{N}\{\bar{X}-\bar{Y}-(\mu_X-\mu_Y)\}=\sqrt{rac{N}{n}}\sqrt{n}(\bar{X}-\mu_X)-\sqrt{rac{N}{m}}\sqrt{m}(\bar{Y}-\mu_Y)$$

Then,

¹You may assume $\frac{n}{m} \to \gamma \in (0,1)$.

$$egin{aligned} M(t) &= E(e^{t\sqrt{rac{N}{n}}\sqrt{n}(ar{X}-\mu_X)-t\sqrt{rac{N}{m}}\sqrt{m}(ar{Y}-\mu_Y)}) \ &= E\{e^{t\sqrt{rac{N}{n}}\sigma_Xrac{\sqrt{n}(ar{X}-\mu_X)}{\sigma_X}}\}E\{e^{t\sqrt{rac{N}{m}}\sigma_Yrac{\sqrt{m}(ar{Y}-\mu_Y)}{\sigma_Y}}\} \ &= M_Z(t\sqrt{rac{1}{\gamma}}\sigma_X)M_Z(t\sqrt{rac{1}{1-\gamma}}\sigma_Y) \ &= e^{rac{t^2}{2}(rac{\sigma_X^2}{\gamma}+rac{\sigma_Y^2}{1-\gamma})},orall t \end{aligned}$$

Hence,

$$\sqrt{N}\{ar{X}-ar{Y}-(\mu_X-\mu_Y)\}\overset{D}{
ightarrow}N(0,rac{\sigma_X^2}{\gamma}+rac{\sigma_Y^2}{1-\gamma})$$

By combining the above results,

$$rac{ar{X} - ar{Y} - (\mu_X - \mu_Y)}{\sqrt{rac{S_X^2}{n} + rac{S_Y^2}{m}}} \stackrel{D}{
ightarrow} Z \sim N(0,1)$$

Question 5

Suppose X_1, \ldots, X_n are iid from a Poisson distribution with parameter θ .

- **a.** Find the limiting distribution of $\sqrt{n}(\bar{X} \theta)$.
- **b.** State the limiting distribution of $\sqrt{n}(g(\bar{X}) g(\theta))$, assuming that g(u) is sufficiently smooth.

(a) Answer:

Since $X_i \sim Poisson(\theta)$,

BY WLLN,

$$rac{\sqrt{n}(ar{X}- heta)}{\sqrt{ heta}} \stackrel{D}{
ightarrow} N(0,1)$$

$$\sqrt{n}\{\bar{X}-\theta\}\stackrel{D}{
ightarrow}N(0,\theta)$$

(b) Answer:

By delta method,

$$\sqrt{n}\{g(\bar{X})-g(\theta)\} \stackrel{D}{\rightarrow} N(0,\theta^2(g'(\theta))^2)$$

Question 6

Let X_n be a consistent estimator of θ , with Normal limiting distribution and variance depending only on θ , s.t.

$$\sqrt{n}(X_n - \theta) \stackrel{d}{\to} N\{0, \sigma^2(\theta)\}.$$

This situation occurs in a number sampling models and defines a couple of drawbacks. Namely, $\sigma(\theta)$ is not constant, inducing additional variability in the limit, and the accuracy of the normal approximation may vary depending on the unknown parameter θ .

These problems can be solved by a variance stabilizing transformation $g(X_n)$, where the main task is to find a function g(t) differentiable at $t = \theta$, s.t. $[g'(\theta)]^2 \sigma^2(\theta) = 1$.

- (a) Find a variance stabilizing transformation for X_1, X_1, \ldots, X_n iid Exponential $(1/\theta)$.
- (b) Find a variance stabilizing transformation for X_1, X_1, \ldots, X_n iid Poisson (θ) .
- (c) Find a variance stabilizing transformation for X_1, X_1, \ldots, X_n iid Bernoulli(θ).
- (d) Use the result in part b to construct an approximate 95% CI for θ .

(a) Answer:

To ensure $[g'(heta)]^2\sigma^2(heta)=1$, we need $g'(heta)=rac{1}{\sqrt{\sigma^2}}$

Since $X_1, X_2, \ldots, X_n \overset{\text{i.i.d.}}{\sim} Exponential(\frac{1}{\theta})$

Then, $\sigma^2=\theta^2$

$$g'(heta) = rac{1}{\sqrt{ heta^2}} = rac{1}{ heta}$$

$$g(\theta) = \ln(\theta)$$

Hence, $g(X_n) = \ln(X_n)$ is the variance stabilizing transformation.

(b) Answer:

Similarly, we need $g'(heta) = rac{1}{\sqrt{\sigma^2}}$

Since $X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} Poisson(\theta)$

Then, $\sigma^2=\theta$

$$g'(\theta) = \frac{1}{\sqrt{\theta}}$$

$$g(\theta) = 2\sqrt{\theta}$$

Hence, $g(X_n)=2\sqrt{X_n}$ is the variance stabilizing transformation.

(c) Answer:

Similarly, we need $g'(\theta) = \frac{1}{\sqrt{\sigma^2}}$

Since
$$X_1, X_2, \dots, X_n \overset{\text{i.i.d.}}{\sim} Bernoulli(\theta)$$

Then,
$$\sigma^2 = \theta(1-\theta)$$

$$g'(heta) = rac{1}{\sqrt{ heta(1- heta)}}$$

$$g(\theta) = \arcsin(2\theta - 1)$$

Hence, $g(X_n) = rcsin(2X_n-1)$ is the variance stabilizing transformation.

(d) Answer:

$$\sqrt{n}(X_n- heta)\stackrel{D}{
ightarrow} N(0,\sigma^2)$$

After transformation, we have

$$\sqrt{n}(2\sqrt{X_n}-2\sqrt{ heta})\stackrel{D}{
ightarrow} N(0,1)$$

$$P(-1.96 \le \sqrt{n}(2\sqrt{X_n} - 2\sqrt{\theta}) \le 1.96) = 0.95$$

$$P(\frac{-1.96}{\sqrt{n}} \le 2\sqrt{X_n} - 2\sqrt{\theta} \le \frac{1.96}{\sqrt{n}}) = 0.95$$

$$P(\frac{-1.96}{2\sqrt{n}} \le \sqrt{X_n} - \sqrt{\theta} \le \frac{1.96}{2\sqrt{n}}) = 0.95$$

$$P(\sqrt{X_n} - \frac{1.96}{2\sqrt{n}} \le \sqrt{\theta} \le \sqrt{X_n} + \frac{1.96}{2\sqrt{n}}) = 0.95$$

$$P((\sqrt{X_n} - \frac{1.96}{2\sqrt{n}})^2 \le \theta \le (\sqrt{X_n} + \frac{1.96}{2\sqrt{n}})^2) = 0.95$$