		· 								
AD-A148 102	CURRENT	ONTROL OF	. (U) F	IRMY E	NGINEE	R WATE	N REP	DRT 7	1/	2
UNCLASSIFIED	S R VEMUL	T STATION AKONDA SEP	VICKSBL 84 WES	JRG MS	HYDRA L-80-3	-9	F/G :	L0/3	NL	
	5 1 1									
						* *				
<u> </u>										

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-A148 102

FILE COPY

置

TECHNICAL REPORT HL-80-3

EROSION CONTROL OF SCOUR DURING CONSTRUCTION

Report 7

CURRENT — A WAVE-INDUCED

CURRENT MODEL

by

S. Rao Vemulakonda

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY
Waterways Experiment Station, Corps of Engineers
PO Box 631
Vicksburg, Mississippi 39180-0631

STIC ELECTE NOV 2 8 1984

September 1984
Report 7 of a Series

Approved For Public Release; Distribution Unlimited

Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000

Monitored by Hydraulics Laboratory
US Army Engineer Waterways Experiment Station
PO Box 631, Vicksburg, Mississippi 39180-0631

84 11 21 06 5

•

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
	ON NO. 3. RECIPIENT'S CATALOG NUMBER
Technical Report HL-80-3	
TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
EROSION CONTROL OF SCOUR DURING CONSTRUCTION	Report 7 of a series
Report 7, CURRENTA WAVE-INDUCED CURRENT MOI	
in mind the condition in the condition i	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
S. Rao Vemulakonda	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army Engineer Waterways Experiment Station	
Coastal Engineering Research Center	. .
PO Box 631, Vicksburg, Mississippi 39180-06	
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
DEPARTMENT OF THE ARMY	September 1984
US Army Corps of Engineers	13. NUMBER OF PAGES
Washington, DC 20314-1000 MONITORING AGENCY NAME & ADDRESS(If different from Controlling Control	104
	l l
US Army Engineer Waterways Experiment Station Hydraulics Laboratory	Unclassified
PO Box 631, Vicksburg, Mississippi 39180-063	154. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
Approved for public release; distribution unl	
. SUPPLEMENTARY NOTES	
Available from National Technical Information Springfield, Virginia 22161	Service, 5285 Port Royal Road,
. KEY WORDS (Continue on reverse side if necessary and identify by block	number)
Ocean surrentsMathematical models (LC)	
Scour (Hydraulic engineering) (LC)	
Shore protection (LC)	
Water waves (LC)	
A ABSTRACT (Continue on reverse side M rescensey and identity by block	
Often, large-scale engineering structure	es such as jetties or breakwaters
are constructed in the nearshore region to st	abilize navigation channels or
protect harbor entrances and beaches. During	construction, these structures

may alter waves and currents. Waves break on such structures and the resulting turbulence causes material to be tossed into suspension and be transported from the region by wave-induced and other currents. This results in erosion at the toe of the structure since natural influx of material may not exist to—

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

(Continued)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. ABSTRACT (Continued).

replace that removed from the region. In order to ensure structural stability, it is necessary to fill this area with nonerodible material. As a result, extra quantities of material may be required, and construction costs may be overrun. To minimize cost increases due to scour during construction, it is necessary to estimate the likelihood and amount of potential scour during construction. Since breaking waves and the currents induced by them play a vital role in transporting sediment away from coastal structures, thus resulting in scour, it is important to predict wave-induced currents, with and without structures.

The purpose of this study is to develop a generalized numerical model that will predict currents induced by breaking waves at locations with or without coastal structures. The model should be applicable to real-life bathymetries that are often arbitrary and irregular and must be computationally efficient and economical in view of the large numerical grids often required in engineering projects.

The numerical model called CVRRENT developed in this study employs the radiation stress approach of Longuet-Higgins and solves the vertically integrated equations of momentum and continuity using an alternating direction implicit scheme. It includes mixing and advection terms.

The model has been applied to a case of normally incident waves on a plane beach. Results for setup matched the experimental data of Bowen, Inman, and Simmons. For obliquely incident waves on a plane beach, model results for longshore currents were compared with the analytical solution of Longuet-Higgins, first neglecting the effect of setup and later including the effect of setup. Agreement was excellent. As the numerical grid was made finer, the numerical results tended to converge toward the analytical solution.

The numerical model was applied to a field situation corresponding to Oregon Inlet, North Carolina. The bathymetry was very irregular and complex owing to the presence of channels, shoals, etc. A variable grid was used, and the significant wave during a part of the Ash Wednesday storm of March 1962 was simulated. The numerical results obtained for this case appeared to be reasonable, and the computer costs were modest.

For user convenience, model input, output, and files are described and two sample applications are presented.

PREFACE

The study reported herein was authorized as a part of the Civil Works Research and Development Program by the Office, Chief of Engineers (OCE), US Army. This particular work unit, Erosion Control of Scour During Construction, is part of the Improvement of Operations and Maintenance Techniques (IOMT) Program. Mr. James L. Gottesman was the OCE Technical Monitor for the IOMT Program during preparation and publication of this report.

This study was conducted during the period 1 January 1981 through 31 March 1982 by personnel of the Hydraulics Laboratory of the US Army Engineer Waterways Experiment Station (WES) under the general supervision of Messrs. H. B. Simmons, Chief of the Hydraulics Laboratory; F. A. Herrmann, Jr., Assistant Chief of the Hydraulics Laboratory; R. A. Sager, Chief of the Estuaries Division and IOMT Program Manager; Dr. R. W. Whalin and Mr. C. E. Chatham, former and acting Chiefs of the Wave Dynamics Division, respectively; Mr. D. D. Davidson, Chief of the Wave Research Branch; and Dr. J. R. Houston, Research Hydraulic Engineer and Principal Investigator for the Erosion Control of Scour During Construction work unit. The Wave Dynamics Division was transferred to the Coastal Engineering Research Center (CERC) of WES on 1 July 1983 under the direction of Dr. R. W. Whalin, Chief of the Coastal Engineering Research Center. This report was prepared by Dr. S. Rao Vemulakonda, Research Hydraulic Engineer.

Commanders and Directors of WES during the conduct of this investigation and the preparation and publication of this report were COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Technical Director was Mr. F. R. Brown.

Access	ion For								
NTIS	GRA&I								
DTIC TAB									
Unannounced									
Justin	'icatio	n							
Avat	ibution labilit Avail (Spec	y Codes							

CONTENTS

																							Page
PREF/	ACE					•		•	•	•	•	•	•		•	•	•	•	•	•	•	•	1
		FACTORS,																•					3
PART	I:	INTRODU	CTION																				4
		ment of se of th																					4
PART	II:	THEORET	ICAL BA	CKGR	OUN	D																	6
	Revie Equat	w ions of	 Motion										• •	•									6 7
PART	III:	COMPUTA	TIONAL 1	TECH	NIQ	UES											•				•		15
	Doubl	cit Meth e-Sweep al and B	Techniq	ue					•		•							•				•	15 15 21
PART	IV:	VALIDAT	ION OF	MODE	L.												•						24
	Diffi A Par	for Ide culties ticular ry	Involve Field A	d in ppli	Ap cat	pli ion	cat	•	•		•	•			•	•	•	•			•	•	24 28 29 34
PART		•	NPUT .																•	·	•	•	35
	Gener Setti Input	al Descr ng Matri Data . Files .	iption x Dimen:	 sion	 s .			•					•	• •		:		:	•	•	•	•	35 35 36 41
PART	VI:	MODEL O	UTPUT									•	•				•						43
		al Descr t Files	•																•				43 44
PART	VII:	MODEL A	PPLICAT	ION																		•	47
	Orego		Longshotation			•			•		•	•	•		•	•							47 47 69
PART	VIII:	SUMMARY	AND CO	NCLU	SIO	NS				•			•		•	•							98
REFE	RENCES					•															•		99
ADDE	MITY A.	NOTATI	ON																			_	A1

CONVERSION FACTORS, US CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

US customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain							
feet	0.3048	metres							
feet per second	0.3048	metres per second							
feet-feet per second	0.0929	metres-metres per second							
feet per second per second	0.3048	metres per second per second							
pounds (mass) per square foot	4.882428	kilograms per square metre							
pounds per foot	1.488189	kilograms per metre							
<pre>pounds-second-second per foot per foot per foot</pre>	52.5540137	kilogram-second-second per metre per metre per metre per metre							

EROSION CONTROL OF SCOUR DURING CONSTRUCTION

CURRENT--A WAVE-INDUCED CURRENT MODEL

PART I: INTRODUCTION

Statement of the Problem

- 1. Often, large-scale engineering structures such as jetties and breakwaters are constructed in the nearshore region to stabilize navigation channels or protect harbor entrances and beaches. The structures are usually built of rock or precast concrete. During construction, the massive structures alter the waves and currents near their location. Waves break on the toe of the structure and the resulting turbulence causes material from the bottom to be suspended. The suspended material in turn is moved away from the region by wave-induced and other currents. This results in erosion developing at the toe of the structure since the lost material may not be replaced by natural processes. In order to ensure that the structure will be stable and perform its function as desired, it will be necessary to fill with nonerodible material any scour hole that may have developed due to erosion. As a result, extra quantities of material may be required and construction costs may be overrun. To minimize cost increases due to scour during construction, it is necessary to estimate beforehand the likelihood and amount of potential scour during construction. This is a very complicated problem and the solution to it will depend strongly on the particular field site and the coastal environment.
- 2. Since breaking waves and the currents induced by them play a vital role in transporting sediment away from coastal structures resulting in scour, it is important to predict wave-induced currents, with and without structures. In view of the environment and site-specific nature of the problem, a generalized numerical model is needed. Results from such a model can be used as input to a sediment transport model to predict erosion during construction.

Purpose of the Study

3. The purpose of this study is to develop a generalized numerical model

that can predict currents induced by breaking waves at locations with or without coastal structures. The model should be applicable to real-life bathymetries that are often arbitrary and irregular and should be computationally efficient and economical in view of the large numerical grids often required in engineering projects.

PART II: THEORETICAL BACKGROUND

Review

- 4. In recent years, there has been a growing interest in the numerical modeling of longshore currents and nearshore circulation caused by the action of breaking waves. Results of such simulation, besides being useful on their own, form an essential input to numerical and physical models for nearshore processes such as sediment transport. The design and construction of largescale engineering structures such as jetties require the determination of waveinduced currents not only near the open coast but also near inlets; in addition, the effects of the proposed or existing structures on these currents are required. Several publications on longshore currents and nearshore circulation have appeared in the literature during the past two decades. Some of these relate to experimental or field studies and others to analytic solutions and numerical models. Among the latter, mention must be made of Bowen (1969), Longuet-Higgins (1970), Thornton (1970), Noda (1974), Jonsson, Skovgaard, and Jacobsen (1974), Birkemeier and Dalrymple (1975), Liu and Mei (1976), Liu and Lennon (1978), Liu and Dalrymple (1978), Ebersole and Dalrymple (1980), and Vreugdenhil (1980). Several of these studies and models either consider only simple and idealized situations, for example, plane beaches and periodic bathymetries, or neglect terms of the governing equations involving unsteadiness, advection, and/or lateral mixing. Often, a linear friction is assumed. For practical engineering application, a generalized numerical model is needed that can handle real-life bathymetries. The model should be flexible in that one should be able to change easily the formulation of terms such as mixing and friction as improved understanding of these processes is gained in the future. It should be computationally efficient and economical for large numerical grids. This report describes one such numerical model for waveinduced currents developed at the US Army Engineer Waterways Experiment Station (WES). The model called "CURRENT" has been applied successfully to the determination of longshore currents near open coasts and wave-induced currents near inlets. It can handle impermeable nonovertopping structures.
- 5. In terms of its analytic formulation the present model uses, to a large extent, the approach of Ebersole (1980), and Ebersole and Dalrymple (1980). Whereas their numerical model used an explicit method of solution,

the present model uses a highly efficient alternating direction, implicit, finite difference scheme. In view of the similarity between the equations for wave-induced currents and long waves, the present model was created by modifying an existing, well-tested WES shallow-water wave numerical model known as WIFM (WES Implicit Flooding Model) (Butler 1980). The velocity version of WIFM used here has nonlinear advective terms. The friction and mixing terms used in WIFM were modified to conform to the formulations normally used for wave-induced currents. Radiation stress terms were added to the model, since these are usually the "driving" terms for wave-induced currents. Certain capabilities of WIFM such as flooding/drying and wind-induced current calculation were not utilized in the model for wave-induced currents.

Equations of Motion

6. The hydrodynamic equations used in the model for wave-induced currents may be derived from the Navier-Stokes equations (for details, see Phillips (1969) and Ebersole (1980)). It is assumed in the derivation that the fluid is homogeneous and incompressible, and the vertical accelerations are negligible so that the pressure distribution is hydrostatic. By vertically integrating the three-dimensional form of the equations and applying appropriate boundary conditions, the depth-averaged two-dimensional form of the equations of motion and continuity are obtained. These equations are derived by time-averaging over a time interval corresponding to the period of the waves. Referring to a Cartesian coordinate scheme (Figure 1), these are:

Momentum

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + g \frac{\partial \tilde{\eta}}{\partial x} + \frac{1}{\rho d} \tau_{bx} + \frac{1}{\rho d} \left(\frac{\partial S_{xx}}{\partial x} + \frac{\partial S_{xy}}{\partial y} \right) - \frac{1}{\rho} \frac{\partial \tau_{xy}}{\partial y} = 0$$
 (1)

$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + g \frac{\partial \bar{\eta}}{\partial y} + \frac{1}{\rho d} \tau_{by} + \frac{1}{\rho d} \left(\frac{\partial S}{\partial x} + \frac{\partial S}{\partial y} \right) - \frac{1}{\rho} \frac{\partial \tau_{xy}}{\partial x} = 0$$
 (2)

Continuity

$$\frac{\partial \ddot{\eta}}{\partial t} + \frac{\partial}{\partial x} (Ud) + \frac{\partial}{\partial y} (Vd) = 0$$
 (3)

Figure 1. Definition sketch for an irregular beach

 $\bar{\eta}$ = displacement of the mean free surface with respect to the still-water level, ft

g = acceleration due to gravity, ft/sec²

 ρ = mass density of seawater, lb-sec²/ft⁴

 $d = \bar{\eta} - h = total$ water depth, ft

h = bed elevation with still-water level taken as zero
 (note h is negative for water cells and positive
 for land cells), ft

 $\tau_{\rm bx}$ and $\tau_{\rm by}$ = bottom friction stresses in the x- and y-directions, respectively, $1{\rm b/ft}^2$

 S_{xx} , S_{xy} , and S_{yy} = radiation stresses which arise because of the excess momentum flux due to waves (refer to Longuet-Higgins and Stewart (1964) for their significance), 1b/ft

 τ_{xy} = lateral shear stress due to turbulent mixing, $\frac{1}{1}$

Note that the condition $\bar{\eta}>0$ is known as "setup" and $\bar{\eta}<0$ is called "setdown."

Bottom friction

7. At present, the numerical model uses a linear formulation for friction (Longuet-Higgins 1970). Thus

$$\tau_{bx} = \rho c < |u_{orb}| > U$$
 (4)

$$\tau_{by} = \rho c < |u_{orb}| > V$$
 (5)

where c is a drag coefficient (of the order of 0.01) and $< |u_{orb}| >$ is the time average, over one wave period, of the absolute value of the wave orbital velocity at the bottom. From linear wave theory,

$$\langle |u_{orb}| \rangle = \frac{2H}{T \sinh k |h|}$$
 (6)

^{*} A table of factors for converting US customary units of measurement to metric (SI) units is presented on page 3.

H = local wave height, ft

T = wave period, sec

 $k = local wave number, 2\pi/L, 1/ft$

|h| = local still-water depth, ft

Equations 4 and 5 are based on the assumption that the velocity components U and V of the current are small compared with the wave orbital velocity, $\langle |u_{orb}| \rangle$. In the future, the numerical model can be easily adapted to other formulations for friction such as nonlinear friction.

Radiation stresses

8. As mentioned previously, the radiation stresses are of major importance since they furnish the main forces for creating wave-induced currents. Referring to Longuet-Higgins (1970), for monochromatic waves, they are defined in terms of the local wave climate as follows:

$$S_{xx} = E\left[\left(2n - \frac{1}{2}\right)\cos^2\theta + \left(n - \frac{1}{2}\right)\sin^2\theta\right]$$
 (7)

$$S_{xy} = E n \cos \theta \sin \theta \tag{8}$$

$$S_{yy} = E\left[\left(2n - \frac{1}{2}\right)\sin^2\theta + \left(n - \frac{1}{2}\right)\cos^2\theta\right]$$
 (9)

where

$$E = \frac{1}{8} \rho g H^2 \tag{10}$$

and

$$n = \frac{1}{2} \left(1 + \frac{2k |h|}{\sinh 2k |h|} \right) \tag{11}$$

Note that n is the ratio of wave group celerity to phase celerity, θ is the local wave direction defined as shown in Figure 1, and E is the wave energy density, lb/ft. For the numerical model described herein, the values of H , k , and θ are obtained by using a considerably modified form of the wave climate program developed by Noda et al. (1974). This particular program has the advantage that H , k , and θ can be computed at the centers of the cells of a rectangular numerical grid and wave breaking and decay are accounted for by a breaking index model for wave heights in the surf zone.

Lateral shear

9. In the numerical model, the coordinate scheme is chosen such that x is positive in the offshore direction and y is approximately in the alongshore direction. An eddy viscosity formulation is chosen for the lateral shear. The eddy viscosity is assumed to be anisotropic. Denoting ε_{x} and ε_{y} as the eddy viscosities in x- and y-directions, respectively, in general, ε_{x} is assumed to be a function of x and y and ε_{y} a constant. Accordingly,

$$\tau_{xy} = \rho \left(\epsilon_y \frac{\partial U}{\partial y} + \epsilon_x \frac{\partial V}{\partial x} \right) \tag{12}$$

For plane beach applications with lateral mixing, the eddy viscosity $\varepsilon_{\rm x}$ was assumed to vary within the surf zone in the manner suggested by Longuet-Higgins (1970):

$$\varepsilon_{x} = N_{LH} x \sqrt{g|h|} \tag{13}$$

where

 N_{LH} = an empirical coefficient that varies in the range 0.0 to 0.016 x = distance from the shoreline

For locations offshore of the breaker line, $\epsilon_{\rm X}$ was kept constant and equal to its value at the breaker line. For field applications, the eddy viscosity $\epsilon_{\rm X}$ was chosen according to the following relation given by Jonsson, Skovgaard, and Jacobsen (1974):

$$\varepsilon_{x} = \frac{H^{2}gT}{4\pi^{2}|h|} \cos^{2} \theta \tag{14}$$

This represents twice the value used by Thornton (1970). It was believed that for field situations, Equation 14 represented the eddy viscosities more realistically than the relation (Equation 13) for plane beaches. The value of $\epsilon_{\rm y}$ was, in general, taken to be equal to the value of $\epsilon_{\rm x}$ at the deepest part (usually near the offshore boundary) of the numerical grid. The numerical model is flexible enough to permit other formulations for eddy viscosity in the future, as our understanding improves.

Variable grid

10. One major advantage of WIFM and therefore CURRENT is that the size of the grid cells may be varied smoothly in both horizontal directions. Thus

the grid may be made finer in regions of greater interest such as the surf zone, inlets, etc., and coarser in regions of less importance. For this purpose, a piecewise reversible transformation is used. The mapping for each coordinate direction is independent of the other. For mapping from the real or physical space (x, y) to the computational space (α_1, α_2) , a mapping function of the form

$$x = a_1 + b_1 \alpha_1^{c_1}$$
 (15)

is used. A similar mapping function is employed for the y-direction. Here \mathbf{a}_1 , \mathbf{b}_1 , and \mathbf{c}_1 are coefficients whose values change from region to region. The mapping transforms the variable grid in real space to a uniform grid in computational space. The transformation is such that all derivatives are centered in α -space. During the mapping process, both the variable and its derivative must match at the common boundary between two regions. The mapping is actually accomplished by an iterative procedure, using an interactive program called MAPIT developed at WES. Figure 2 shows an example of the variable grid.

MAPPING FUNCTIONS

$$x = a_1 + b_1 \alpha_1^{c_1}$$

 $y = a_2 + b_2 \alpha_2^{c_2}$

Figure 2. An example of variable grid

11. By using the mapping function in the x- and y-directions, the equations of motion in computational space may be written as:

Momentum

$$U_{t} + \frac{1}{\mu_{1}} UU_{\alpha_{1}} + \frac{1}{\mu_{2}} VU_{\alpha_{2}} + \frac{g}{\mu_{1}} \bar{\eta}_{\alpha_{1}} + \frac{1}{\rho d} \tau_{bx} + \frac{1}{\rho d} \left[\frac{1}{\mu_{1}} (s_{xx})_{\alpha_{1}} + \frac{1}{\mu_{2}} (s_{xy})_{\alpha_{2}} \right]$$

$$- \varepsilon_{x} \frac{1}{\mu_{2}} \frac{1}{\mu_{1}} V_{\alpha_{2}\alpha_{1}} - \varepsilon_{y} \frac{1}{\mu_{2}} \left[\frac{1}{\mu_{2}} U_{\alpha_{2}\alpha_{2}} + \left(\frac{1}{\mu_{2}} \right)_{\alpha_{2}} U_{\alpha_{2}} \right] - \frac{1}{\mu_{1}\mu_{2}} (\varepsilon_{x})_{\alpha_{2}} V_{\alpha_{1}} = 0 \quad (16)$$

$$V_{t} + \frac{1}{\mu_{1}} UV_{\alpha_{1}} + \frac{1}{\mu_{2}} VV_{\alpha_{2}} + \frac{g}{\mu_{2}} \bar{\eta}_{\alpha_{2}} + \frac{1}{\rho d} \tau_{by} + \frac{1}{\rho d} \left[\frac{1}{\mu_{1}} (s_{xy})_{\alpha_{1}} + \frac{1}{\mu_{2}} (s_{yy})_{\alpha_{2}} \right]$$

$$- \varepsilon_{x} \frac{1}{\mu_{1}} \left[\frac{1}{\mu_{1}} V_{\alpha_{1}\alpha_{1}} + \left(\frac{1}{\mu_{1}} \right)_{\alpha_{1}} V_{\alpha_{1}} \right] - \varepsilon_{y} \frac{1}{\mu_{1}} \frac{1}{\mu_{2}} U_{\alpha_{1}\alpha_{2}} - \frac{1}{\mu_{1}^{2}} (\varepsilon_{x})_{\alpha_{1}} V_{\alpha_{1}} = 0$$
(17)

Continuity

$$\bar{\eta}_t + \frac{1}{\mu_1} \left(Vd \right)_{\alpha_1} + \frac{1}{\mu_2} \left(Vd \right)_{\alpha_2} = 0$$
 (18)

where the subscripts $\ t$, $\ \alpha_1$, and $\ \alpha_2$ indicate partial derivatives with respect to time, $\ \alpha_1$ and $\ \alpha_2$, respectively, and

$$\mu_1 = \frac{\partial x}{\partial \alpha_1} = b_1 c_1 \alpha_1^{c_1 - 1} \tag{19}$$

and

$$\mu_2 = \frac{\partial y}{\partial \alpha_2} = b_2 c_2 \alpha_2^{c_2 - 1} \tag{20}$$

Variables μ_1 and μ_2 are expansion coefficients connected with the stretching of the uniform computational grid to the variable grid in real space. Note that in obtaining Equations 16 and 17, the assumptions made in paragraph 9 were used.

12. The nonlinear advective terms in the equations of motion often pose stability problems. These terms are handled in the present model by using the Stabilizing Correction (SC) scheme. This scheme will be described in a later

section. The eddy viscosity terms also can cause difficulties during the numerical computation. The finite difference scheme selected and the formulation for eddy viscosity adopted in the model will minimize such difficulties and stability problems. However, the user must exercise caution and judgment in selecting appropriate time- and space-steps, and eddy viscosity coefficients for the phenomena being simulated.

PART III: COMPUTATIONAL TECHNIQUES

Implicit Method

13. In order to solve the problem under consideration on a digital computer, the differential equations (Equations 16-18) have to be expressed in a finite difference form. In the present case, an alternating direction, implicit, finite difference scheme is employed. In view of the presence of the nonlinear advective terms, a particular implicit scheme known as the SC scheme is used. The basic idea of the scheme is as follows. The time level is indicated by a superscript k . The scheme involves variables at three time levels. The values of the variable at time levels k-l and k are known from previous computations or prescribed initial conditions. To advance the solution from time level k to the new time level k+l, we introduce an intermediate time-level solution denoted by the superscript * . We operate on Equations 16-18 in a two-step procedure. In the first step, we sweep the rectangular grid in the $x(\alpha_1)$ direction, advancing the solution from time level k to * . Next, we sweep the grid in the $y(\alpha_2)$ direction, advancing the solution from time level * to k+1. The two sweeps together constitute a full time-step, Δt .

Double-Sweep Technique

14. Before going into the details of the double sweep technique, the notation used for individual cells of the rectangular grid will be defined.

Let Δx and Δy denote the cell dimensions in real space in the x- and y-directions, respectively. These dimensions may vary from cell to cell. Let the corresponding dimensions in computational space be $\Delta \alpha_1$ and $\Delta \alpha_2$. These dimensions are the same for all the cells in the grid. Let m and n denote indices corresponding to the center of an arbitrary cell (Figure 3). All the variables

Figure 3. Cell notation

except the velocities U and V are defined at the cell centers. Velocities U and V are defined at cell faces m+1/2 and n+1/2, respectively. In the x-sweep, the x-momentum equation is centered about the cell face m+1/2 and the continuity equation is centered about the center of the cell and the two equations are solved, using in the process the result $U^*=U^{k+1}$. At the end of this sweep, $\bar{\eta}^*$ and U^{k+1} are known. Next, we sweep the grid in the y-direction. In this sweep, the y-momentum equation is centered about the cell face n+1/2 and the continuity equation about the cell center. Upon solving the two equations, $\bar{\eta}^{k+1}$ and V^{k+1} for each cell are obtained. Thus the two sweeps together complete the solution for $\bar{\eta}^{k+1}$, U^{k+1} , and V^{k+1} .

15. Even though the SC scheme has been described so far in terms of the (x, y) coordinate system for convenience, in reality we have to apply the technique to the equations of motion in the computational (α_1, α_2) space. After the application of the technique, the following finite difference equations result. For the rest of PART III, we will drop the bar over η for convenience. For the $\alpha_1(x)$ -sweep (taken along a grid cell column parallel to the α_1 -axis), we have

$$\begin{split} \frac{1}{2\Delta t} & (\mathbf{U}^{k+1} - \mathbf{U}^{k-1}) + \frac{\mathbf{U}^{k}}{2\mu_{1}\Delta\alpha_{1}} \, \delta_{2\alpha_{1}}(\mathbf{U}^{k}) + \frac{\bar{\mathbf{V}}^{k}}{2\mu_{2}\Delta\alpha_{2}} \, \delta_{2\alpha_{2}}(\mathbf{U}^{k}) \\ & + \frac{8}{2\mu_{1}\Delta\alpha_{1}} \, \delta\alpha_{1}(\eta^{*} + \eta^{k-1}) + \frac{\mathbf{c} \cdot \left| \overline{\mathbf{u}_{orb}} \right| > \mathbf{U}^{k+1}}{\bar{\mathbf{d}}} + \frac{1}{\rho\bar{\mathbf{d}}} \left[\frac{1}{\mu_{1}\Delta\alpha_{1}} \, \delta_{\alpha_{1}} \left(\mathbf{S}_{xx}^{k} \right) \right. \\ & + \frac{1}{2\mu_{2}\Delta\alpha_{2}} \, \delta_{2\alpha_{2}} \left(\bar{\mathbf{S}}_{xy}^{k} \right) \right] - \bar{\epsilon}_{x} \, \frac{1}{\mu_{2}} \, \frac{1}{\mu_{1}} \, \frac{1}{\Delta\alpha_{2}\Delta\alpha_{1}} \, \delta_{\alpha_{2}\alpha_{1}}(\mathbf{V}^{k}) - \bar{\epsilon}_{y} \left[\frac{1}{(\mu_{2}\Delta\alpha_{2})^{2}} \, \delta_{\alpha_{2}\alpha_{2}}(\mathbf{U}^{k}) \right. \\ & + \frac{1}{2\mu_{2}(\Delta\alpha_{2})^{2}} \, \delta_{\alpha_{2}} \left(\frac{1}{\mu_{2}} \right) \delta_{2\alpha_{2}}(\mathbf{U}^{k}) \right] - \frac{1}{2\mu_{1}\mu_{2}} \, \frac{1}{\Delta\alpha_{2}\Delta\alpha_{1}} \, \delta_{2\alpha_{2}}(\bar{\epsilon}_{x}) \delta_{\alpha_{1}}(\bar{\mathbf{V}}^{k}) = 0 \\ & \qquad \qquad \text{at} \quad (n, m+1/2) \\ & \frac{1}{2\Delta t} \, (\eta^{*} - \eta^{k-1}) + \frac{1}{2\mu_{1}\Delta\alpha_{1}} \, \delta_{\alpha_{1}} \left(\mathbf{U}^{k+1} \, \bar{\mathbf{d}}^{k} + \mathbf{U}^{k-1} \, \bar{\mathbf{d}}^{k} \right) \\ & + \frac{1}{\mu_{2}\Delta\alpha_{2}} \, \delta_{\alpha_{2}} \left(\mathbf{V}^{k-1} \, \bar{\mathbf{d}}^{k} \right) = 0 \quad \text{at} \quad (n, m) \end{split}$$

In the above equations, a single bar represents a two-point average and a double bar a four-point average. The difference operator δ_{α} is defined as

$$\delta_{\alpha_{i}}(z) = z_{\alpha_{i+1/2}} - z_{\alpha_{i-1/2}}$$
 (23)

for any variable Z . The definition may be extended to the operators $\delta_{2\alpha}^{}_{i}$ and $\delta_{\alpha}^{}_{i}^{}_{\alpha}^{}_{i}$.

16. Equations 21 and 22 may be rearranged so that the unknown quantities are to the left and the known quantities are to the right, as follows:

$$-a_{m}\eta_{n,m}^{*} + a_{m+1/2}U_{n,m+1/2}^{k+1} + a_{m+1}\eta_{n,m+1}^{*} = B_{m+1/2}$$
 (24)

$$-a_{m-1/2}U_{n,m-1/2}^{k+1} + \eta *_{n,m} + a_{m+1/2}U_{n,m+1/2}^{k+1} = A_{m}$$
 (25)

where

$$a_{m} = a_{m+1} = \frac{g\Delta t}{(\mu_{1})_{m+1/2}\Delta\alpha_{1}}$$
 (26)

$$\bar{a}_{m+1/2} = 1 + \frac{2\Delta t c < |\bar{u}_{orb}| > n, m+1/2}{\bar{d}_{n,m+1/2}^{k}}$$
 (27)

$$\begin{split} B_{m+1/2} &= U^{k-1} + \Delta t \left\{ -\frac{U^{k}}{\mu_{1}\Delta\alpha_{1}} \, \delta_{2\alpha_{1}}(U^{k}) - \frac{\bar{v}^{k}}{\mu_{2}\Delta\alpha_{2}} \, \delta_{2\alpha_{2}}(U^{k}) - \frac{g}{\mu_{1}\Delta\alpha_{1}} \, \delta_{\alpha_{1}}(\eta^{k-1}) \right. \\ &- \frac{2}{\rho \bar{d}} \left[\frac{1}{\mu_{1}\Delta\alpha_{1}} \, \delta_{\alpha_{1}} \left(s_{xx}^{k} \right) + \frac{1}{2\mu_{2}\Delta\alpha_{2}} \, \delta_{2\alpha_{2}} \left(\bar{s}_{xy}^{k} \right) \right] + 2\bar{\epsilon}_{x} \, \frac{1}{\mu_{2}\mu_{1}} \, \frac{1}{\Delta\alpha_{2}\Delta\alpha_{1}} \, \delta_{\alpha_{2}\alpha_{1}}(V^{k}) \\ &+ 2\bar{\epsilon}_{y} \left[\frac{1}{\left(\mu_{2}\Delta\alpha_{2} \right)^{2}} \, \delta_{\alpha_{2}\alpha_{2}}(U^{k}) + \frac{1}{2\mu_{2}\left(\Delta\alpha_{2} \right)^{2}} \, \delta_{\alpha_{2}} \left(\frac{1}{\mu_{2}} \right) \delta_{2\alpha_{2}}(U^{k}) \right] \\ &+ \frac{1}{\mu_{1}\mu_{2}} \, \frac{1}{\Delta\alpha_{2}\Delta\alpha_{1}} \, \delta_{2\alpha_{2}}(\bar{\epsilon}_{x}) \delta_{\alpha_{1}}(\bar{v}^{k}) \\ &+ at \quad (n, m+1/2) \end{split}$$

$$a_{m\pm 1/2} = \frac{\Delta t}{\left(\mu_1\right)_m \Delta \alpha_1} \bar{d}_{n,m\pm 1/2}^k$$
 (29)

$$A_{m} = \eta^{k-1} - \frac{\Delta t}{\mu_{1} \Delta \alpha_{1}} \delta_{\alpha_{1}} (U^{k-1} \bar{d}^{k}) - \frac{2\Delta t}{\mu_{2} \Delta \alpha_{2}} \delta_{\alpha_{2}} (V^{k-1} \bar{d}^{k}) \quad \text{at} \quad (n,m)$$
 (30)

$$\bar{\bar{v}}_{n,m+1/2}^{k} = \frac{1}{4} \left(v_{n-1/2,m}^{k} + v_{n+1/2,m}^{k} + v_{n-1/2,m+1}^{k} + v_{n+1/2,m+1}^{k} \right)$$
(31)

17. Consider the set of cells for which the index $\,n\,$ is constant and equal to $\,N\,$. Suppose at the upper boundary cell (m = M), the velocity $U_{N,M+1/2}$ is always known. Similarly suppose at the lower boundary cell (m = L) the water level $\,\eta_{N,L}^{}\,$ is always known. Then the set of equations for all the cells may be written in the following matrix form if we drop the common subscript $\,N\,$:

where

$$\hat{B}_{m+1/2} = B_{M+1/2} + a_{M} \eta_{M}^{*}$$

$$\hat{A}_{L} = A_{L} - a_{L+1/2} U_{L+1/2}$$

18. Since the first matrix on the left-hand side of Equation 32 is tridiagonal, the above matrix equation can be solved by recursion. In general, the recursion relations may be written as

$$\eta_{m}^{\pm} = -P_{m} U_{m+1/2}^{k+1} + Q_{m}$$
 (33)

$$U_{m-1/2}^{k+1} = -R_{m-1}\eta_m^* + S_{m-1}$$
 (34)

$$P_{m} = \frac{a_{m+1/2}}{T1} \qquad Q_{m} = \frac{A_{m} + a_{m-1/2}S_{m-1}}{T1}$$

$$R_{m} = \frac{a_{m+1}}{T2} \qquad S_{m} = \frac{B_{m+1/2} + a_{m}Q_{m}}{T2}$$

$$T1 = 1 + a_{m-1/2}R_{m-1}$$

$$T2 = \bar{a}_{m+1/2} + a_{m}P_{m}$$
(35)

19. Since in the FORTRAN computer language, fractional indices are not possible, a new integer index system is adopted in the program. Thus all the variables defined at the center and the faces m+1/2 and n+1/2 of a cell (n,m) will be designated by the integer indices (N,M). The only exceptions are the expansion coefficients μ_1 and μ_2 which are defined at cell centers and faces. For these, the following index system is adopted. For example, μ_1 at the center of cell (n,m) is designated by the index 2M-1, whereas μ_1 at the face m+1/2 is denoted by the index 2M, and similarly for μ_2 . Using this new notation, the expanded form of the recursion coefficients for the $\alpha_1(x)$ -sweep may be written as follows:

$$P_{M} = \frac{\Delta t \ \bar{d}_{N,M}^{k}}{\left(\mu_{1}\right)_{2M-1} \Delta \alpha_{1}^{T1}}$$
(36)

$$Q_{M} = \frac{A_{M} + \frac{\Delta t \ \bar{d}_{N,M-1}^{k}}{(\mu_{1})_{2M-1} \Delta \alpha_{1}} s_{M-1}}{T_{1}}$$
(37)

$$R_{M} = \frac{g\Delta t}{\left(\mu_{1}\right)_{2M}^{\Delta\alpha_{1}T2}}$$
 (38)

$$S_{M} = \frac{B_{M} + \frac{g\Delta t}{\left(\mu_{1}\right)_{2M} \Delta \alpha_{1}} Q_{M}}{T2}$$
(39)

$$T1 = 1 + \frac{\Delta t \ \bar{d}_{N,M-1}^{k}}{\binom{\mu_1}{2M-1}} R_{M-1}$$
 (40)

$$T2 = 1 + \frac{2\Delta t \cdot c < |\overline{u_{orb}}| >^{k}}{\overline{d}_{N,M}^{k}} + \frac{g\Delta t}{(\mu_{1})_{2M}^{\Delta\alpha_{1}}} P_{M}$$
 (41)

Using the same notation, the solution (Equations 33 and 34) may be written as

$$\eta_{N,M}^{*} = -P_{M}U_{N,M}^{k+1} + Q_{M}$$
 (42)

$$U_{N,M-1}^{k+1} = -R_{M-1} \eta_{N,M}^{*} + S_{M-1}$$
 (43)

For any given N , the recursion coefficients P , Q , R , and S are computed, using Equations 36-41, in succession between the boundaries in the direction of increasing $\alpha_1(x)$. The values of these coefficients at the boundaries depend on the types of boundary conditions encountered. Once all the coefficients for a given N have been determined, the values of η^{\star} and U^{k+1} for all the cells in the column are computed, using Equations 41 and 42, in the direction of decreasing $\alpha_1(x)$. We next go to the next higher value of N , and so on until the whole grid is swept in the $\alpha_1(x)$ -direction.

20. The development of the finite difference equations and the recursion relations for the $\alpha_2(y)$ -sweep is similar to that for the $\alpha_1(x)$ -sweep. In this case, using the same notation as before, the recursion coefficients may be written as

$$P_{N} = \frac{\Delta t \ \bar{d}_{N,M}^{k}}{\left(\mu_{2}\right)_{2N-1}^{\Delta \alpha_{2}T1}}$$
(44)

$$Q_{N} = \frac{A_{N} + \frac{\Delta t \ \bar{d}_{N-1,M}^{k}}{(\mu_{2})_{2N-1} \Delta \alpha_{2}} S_{N-1}}{T1}$$
(45)

$$R_{N} = \frac{g\Delta t}{\left(\mu_{2}\right)_{2N}^{\Delta\alpha_{2}T2}} \tag{46}$$

$$S_{N} = \frac{B_{N} + \frac{g\Delta t}{\left(\mu_{2}\right)_{2N}^{\Delta\alpha_{2}}} Q_{N}}{T^{2}}$$
(47)

$$T1 = 1 + \frac{\Delta t \ \bar{d}_{N-1,M}^{k}}{(\mu_2)_{2N-1}^{\Delta \alpha_2}} R_{N-1}$$
 (48)

$$T2 = \frac{1 + 2\Delta t \quad c < \left| \overline{u_{orb}} \right| > k}{\overline{d}_{N,M}^{k}} + \frac{g\Delta t}{\left(\mu_{2} \right)_{2N}^{\Delta \alpha_{2}}} P_{N}$$
 (49)

The corresponding solution may be expressed as

$$\eta_{N,M}^{k+1} = -P_N V_{N,M}^{k+1} + Q_N$$
 (50)

$$V_{N-1,M}^{k+1} = -R_{N-1} \eta_{N,M}^{k+1} + S_{N-1}$$
 (51)

Initial and Boundary Conditions

21. In order to solve the problem under consideration, appropriate initial and boundary conditions must be specified. For the examples reported here, an initial condition of rest was chosen so that η , U, and V are zero at the start of the calculations. To avoid shock, the radiation stress gradients were gradually built up to their full values over a number of timesteps. The numerical computation was stopped when a steady state was deemed to have been reached.

- 22. The numerical model permits different types of boundary conditions; among these are the following:
 - a. "No flow" (wall). This type of boundary condition is used at closed boundaries such as the still-water line on beach and at impermeable structures. The normal velocity is set to zero in this case.
 - <u>b.</u> <u>Discharge.</u> This type of condition is used by WIFM at open boundaries. The variation of discharge with time is prescribed along boundary cells. For the wave-induced current model, this condition is never used since the discharge is an unknown even at the boundaries.
 - c. Elevation (tide). This type of condition is used by WIFM at open boundaries. The variation of the surface elevation with time is prescribed along boundary cells. For the wave-induced current model, this condition is never used except possibly at the offshore boundary since the setup is an unknown quantity. Even at the offshore boundary, a radiation boundary condition was found to be preferable.
 - d. Uniform flux. In this type of open boundary condition, the flux at a boundary cell is made equal to that at the next interior cell. Thus the condition assumes $\partial(Ud)/\partial x = 0$ or $\partial(Vd)/\partial y = 0$ at the boundary. This type of condition is used for the lateral boundaries since it is a passive condition.
 - e. Radiation. This open boundary condition requires that any transients developed initially inside the numerical grid should propagate out of the grid as gravity waves. It is of the form $\partial \eta/\partial t + C(\partial \eta/\partial x) = 0$ where C is the phase speed of a surface disturbance $\eta(x,t)$. It is often used by the wave-induced current at the offshore boundary and is found preferable to a wall or constant elevation condition there. Both of the latter conditions are highly reflective and as a result the transients tend to bounce back and forth between the offshore and nearshore boundaries and take a long time to damp out. On the other hand, the radiation condition seems to work quite well and allows the transients to propagate out of the grid which permits the setdown at the offshore boundary to assume an appropriate value.
- 23. The boundary conditions frequently used in the wave-induced current model are illustrated in Figure 4.
- 24. At present, the model allows for subgrid barriers such as jetties, provided they are impermeable and nonovertopping. The program essentially sets to zero the velocity component normal to the appropriate cell face.

Figure 4. Boundary conditions used in numerical model CURRENT

PART IV: VALIDATION OF MODEL

Tests for Idealized Conditions

- 25. To develop confidence in the validity of the model and the accuracy of its results, several tests were run on the model and comparisons were made between model results and available laboratory data and analytic solutions. All of these tests were for plane beaches, for which the coordinate scheme is chosen such that the y-axis coincides with the still-water line in beach and the x-coordinate is measured from the still-water line (Figure 5). Note that for plane beaches, there is no variation in the alongshore (y) direction. Plane beach: normal incidence
- 26. The model was run for a case of normal incidence on a plane smooth laboratory beach, reported by Bowen, Inman, and Simmons (1968). The conditions were as follows: T = 1.14 sec, deepwater wave height $H_0 = 6.45$ cm, and beach slope s = 1:12. To run this case on the model, a variable rectangular grid with overall dimensions of approximately 40 m by 30 cm (the laboratory channel was 40 m long) was used with $\Delta\alpha_1 = \Delta\alpha_2 = 10$ cm and $\Delta t = 0.05$ sec. The grid was 3 cells wide in the alongshore direction and 50 cells long in the offshore direction. In this example, walls were used for the lateral boundaries as well as the offshore boundary to correspond to the laboratory situation. Since for normal incidence, the velocities U and V would be zero everywhere corresponding to the steady state, advection, eddy viscosity, and friction terms were turned off in the model. The solution allowed for the effect of setup on the wave heights in the surf zone. As the solution proceeded, since $\vec{\eta}$ changed, the wave heights for cells in the surf zone were computed afresh for each timestep by using $H = \gamma(|h| + \bar{\eta})$, where γ is a breaking index and the radiation stresses were changed accordingly. As suggested by Bowen, Inman, and Simmons (1968), a γ of 1.15 was used. A buildup time of 10 Δ t was used at the start. A comparison of the steady-state setup values from the model (after 150 Δ t) with those observed by Bowen, Inman, and Simmons (1968) is shown in Figure 6. As shown, there is excellent agreement in the offshore region. In the surf zone, the numerical model predicts higher setups than those observed. This is not surprising since the model does not allow flooding and runup. It is to be noted that the slope of the mean waterline in the surf zone is approximately the same in both cases.

Figure 5. Definition sketch for a plane beach: cross section and plan

Figure 6. Comparison of numerical solution for setup with experimental data

Plane beach: oblique incidence

27. For this case, a plane beach of constant bottom slope s = 1:30 was selected. A monochromatic wave with the following deepwater characteristics was chosen: T = 12 sec, H_0 = 10 ft, and angle of incidence in deep water, θ_∞ = 20 deg. A drag coefficient c of 0.01 and a breaking index γ of 0.82 were used in the model. A uniform grid with $\Delta x = \Delta y = 60$ ft was used for most of the runs. It was 6 cells wide in the alongshore direction and 100 cells long in the offshore direction. Uniform flux and radiation boundary conditions were used for the lateral and offshore boundaries, respectively. The buildup time varied from 15 to 50 Δt , depending on the time-step Δt used.

28. First the model was run without allowing for the effect of setup on wave heights and radiation stresses. Mixing and advection were ignored. A time-step of 0.5 sec was used. The steady-state velocity distribution obtained (after 800 Δ t) is compared with the triangular distribution of Longuet-Higgins (1970) in Figure 7. There is good agreement. Note that for positive θ , V will be negative for our coordinate scheme. Later a finer grid (Δ x = Δ y = 30 ft) with a Δ t of 0.25 sec was used. As shown in Figure 7, as the grid is made finer, the numerical solution tends to approach the analytic solution.

29. The effect of setup was taken into account next. A time-step of

Figure 7. Plane beach: solution for longshore current neglecting the effect of setup

1.5 sec was used for this case. The velocity distribution from the model is compared with the corresponding analytic solution in Figure 8. There is good agreement. Note that the numerical solution goes to zero at the still-water line because a wall was assumed there. On the other hand, the Longuet-Higgins (1970) solution goes to zero at the setup line. To plot his solution, the distance from the still-water line to the setup line was estimated by using a relation provided by Dalrymple, Eubanks, and Birkemeier (1977).

30. The effect of lateral mixing was studied next, without taking the effect of setup into account. A time-step of 5.0 sec was used for these runs. The mixing parameter P of Longuet-Higgins (1970) was varied between 0.01 and 0.4. Note that P is defined as

$$P = \frac{\pi}{\gamma} \frac{sN_{LH}}{c}$$
 (52)

Figure 8. Plane beach: solution for longshore current considering the effect of setup

Figure 9 shows the effect of P on the numerical solution. As expected, the magnitude of the peak decreases, the peak moves closer to the shoreline, and the velocities offshore of the breaker line increase as P increases.

Difficulties Involved in Application to Field Situations

31. While it is relatively easy to apply a numerical current model to idealized cases, one must face several difficulties in applying the model to field situations. Among these is the highly irregular nature of the bathymetry, especially near inlets where channels and shoals exist. The topography must be smoothed to a certain extent in order for the wave climate and wave-induced current models to work properly; yet, one must be careful not to completely change the basic features of the topography. The shoreline as well as the breaker line may be irregular and may be oblique to the grid axes. There

Figure 9. Plane beach: effect of mixing parameter P on the numerical solution

may be more than one breaker line. There are problems connected with discretization of the shoreline and breaker line(s). Selection of appropriate values for empirical coefficients such as friction and eddy viscosity coefficients and breaking index is not easy. There are problems in connection with the wave climate model also, especially if wave-current interactions are to be taken into account.

A Particular Field Application

32. In order to demonstrate the applicability of the numerical model to field situations, the case of Oregon Inlet, North Carolina, was selected. Oregon Inlet is a tidal inlet in a barrier island system. Behind the inlet toward the mainland is Pamlico Sound. Most of the problems mentioned in the previous paragraph had to be addressed and solved satisfactorily in this

application. For purposes of the numerical simulation, a rectangular region approximately 62,400 ft long in the alongshore direction and 29,400 ft wide in the offshore direction was considered. It included a portion of Pamlico Sound. The variable grid used for the simulation is shown in Figure 10. The grid was

Figure 10. Numerical grid used for Oregon Inlet, North Carolina, simulation

77 cells long in the alongshore direction and 54 cells wide in the offshore direction. It may be noted that the minimum cell widths in the alongshore and offshore directions were 400 and 100 ft, respectively. These widths were used near the inlet and surf zone, respectively. Note that $\Delta\alpha_1 = \Delta\alpha_2 = 100$ ft. The topography used in the simulation corresponding to this grid is shown in Figure 11. The elevations are shown in feet and the datum is mean low water (mlw). Several points must be mentioned about this three-dimensional perspective plot. First, the vertical dimensions are highly exaggerated compared with the horizontal; secondly, the elevations are plotted in the computational space and not the physical space—so the horizontal dimensions are distorted. The topography was somewhat modified compared with the actual topography, with respect to the depths near the offshore boundary and the land elevations on the islands. In spite of these factors, Figure 11 helps one to visualize the irregular nature of the bathymetry. Also, the locations of the channels and shoals in the region of the inlet are shown clearly in the figure.

33. A monochromatic wave with a height of 11.39 ft, period of 8.0 sec, and $\theta = 51.1$ deg in 60-ft depth of water was selected for the simulation (the depth of water at the offshore boundary of the numerical grid was 60 ft). This wave corresponded to the significant wave during a part of the Ash Wednesday storm of March 1962 at the inlet. In this case, besides using "no flow" conditions at the shoreline, a radiation boundary condition offshore, and uniform flux boundary condition was used over a part of the inland side of the sound, while the rest of the sound was closed off. A time-step Δt of 18.0 sec and a drag coefficient c of 0.01 were used in the numerical model. The breaking index y was chosen according to the breaking criterion employed by Noda (1974):

$$\frac{H_b}{L_b} = 0.12 \tanh\left(\frac{2\pi d_b}{L_b}\right)$$
 (53)

where L corresponds to the wavelength and the subscript b indicates values at breaking. A buildup time of 15 Δt was used at the start. The eddy viscosity $\epsilon_{_{\mbox{\scriptsize X}}}$ was chosen according to Equation 14 and the eddy viscosity $\epsilon_{_{\mbox{\scriptsize Y}}}$ was set equal to the value of $\epsilon_{_{\mbox{\scriptsize X}}}$ at the offshore boundary. For the case under consideration, the complete equations (Equations 1, 2, and 3) were solved. An approximate steady state was reached after 67 Δt . Figures 12 and 13 represent

Figure 11. Topography used for Oregon Inlet, North Carolina, simulation

Figure 12. Water-surface elevation plot for Oregon Inlet, North Carolina, simulation

このはない。 本語の一方の方式の内容を見られているとうとは、見ているならからの、見ないと

Figure 13. Velocity vector plot for Oregon Inlet, North Carolina, simulation

the corresponding mean water levels and velocity vectors plotted on the grid in the computational space. The velocity vectors are plotted for every other cell in each coordinate direction. To avoid confusion, the plotting of velocities with magnitudes less than 0.1 ft/sec is suppressed.

- 34. Referring to Figures 11, 12, and 13, let us first consider the two portions of the beach away from the inlet. The shorelines in these regions are approximately straight and the contours are approximately straight and parallel. As we approach the shoreline from offshore, there is a small setdown followed by a setup. The velocities are mainly alongshore and the velocity distribution is similar to that for a plane beach except that it exhibits two peaks at some locations.
- 35. The situation is more complicated in the region of the inlet (the central part of the grid). Here the breaker line is farther offshore. The

depth in the main channel decreases first and increases later as we go toward the inlet. Because of these factors, the water sets up around the inlet and tends to create a flow into the inlet through the various channels, as one would naturally expect. A part of the main alongshore flow goes around the channels and shoals to the other side.

- 36. Near the shoals, the patterns of mean water level and velocity are irregular. This is because the waves refract around the shoals and break, creating locally setups and currents that do not necessarily conform to the general patterns. As the waves go toward the islands, they re-form because the depth increases.
- 37. Figures 12 and 13 do not reflect the influence of tides and freshwater flows through the inlet. In nature, these phenomena tend to modify the patterns shown in these figures.

Summary

38. The various tests for idealized situations and the successful comparisons to analytic solutions and experimental data indicate that the numerical model "behaves properly" and yields valid and accurate results. In the case of the field situation for Oregon Inlet, there are no field data available with which the model results can be compared. However, for this very complicated case, the model yields results that appear to be reasonable.

PART V: MODEL INPUT

General Description

39. The input data for CURRENT are discussed in this part. The model has been tested using the foot-pound-second system of units only. The number of time-steps computed is indicated by an integer variable ITIME. The grid index system is set up with N approximately in the alongshore direction and M increasing in the offshore direction. If a variable grid is used, the expansion coefficients must be defined for both cell centers and cell faces and are obtained from the programs MAPIT and GRID developed at WES.

Setting Matrix Dimensions

40. In the CRAY computer system on which the model was developed, matrix dimensions are changed for a particular application by using PARAMETER cards. The following parameters must always be set. This is done by using the UPDATE feature of CRAY. Using text editor, the following statements in *ID PARMRUN in update file UPDL2RV should be changed appropriately for the application:

```
PARAMETER(NDIM= , MDIM= , LDIM= , IFRC= )

PARAMETER(IPUT= , ITDS= , JPUT= , JFLS= )

PARAMETER(NGAGES= , NBCELS= , NBARCL= )
```

The significance of the various parameters is explained below. Normally, only the parameters marked with an asterisk have to be changed. The rest may be left at the values given with the program.

```
NDIM* = Grid dimension (number of cells) in y-direction
```

MDIM* = Grid dimension (number of cells) in x-direction

LDIM* = Larger of NDIM and MDIM

IFRC* = Dimension of friction array for Chezy values (>4*DMAXG, where DMAXG is the maximum total water depth (ft) that will be experienced anywhere in the grid during the numerical simulation)

IPUT* = Dimension of elevation (tidal) forcing array--array must include a value for each time-step

ITDS* = Number of different elevation (tidal) forcing arrays

JPUT = Dimension of discharge forcing arrays

JFLS = Number of different discharge forcing arrays

NGAGES = Number of special gage locations for which results are to be printed

NBARCL* = Number of barrier cell faces

Input Data

41. The input data for CURRENT have been assembled into card groups that may consist of one or more data cards. Some groups are optional and thus each group is marked with an R (required) or O (optional). The following text indicates for each input card group the necessity code, FORTRAN format, the variables involved, and a brief description of the variables.

Necessity Code	Card Group (Format)	Variable	Description				
R	1A (I5)	NDTAP	Number of file from which input data are to be read inusually set to 95				
NOTE:	by NDTAP (i:	llowing card groups are on a separate file defined if NDTAP#5). Group 1A must be on the system input 5, i.e. card reader)					
R	1B (8A8)	ITL	Identification title for run				
R	1C	PER	Period of the wave				
	(NAMELIST \$WAVE)	нто	Wave height at the offshore boundaryused for calculating $\epsilon_{ m v}$				
		ТНЕТАО	Angle of incidence of waves (in degrees) at the offshore boundary, measured with respect to the x-axisused for calculating ε_y				
		DEPMAX	Depth at the offshore boundary (ft) used for calculating $\epsilon_{_{f V}}$				
		GAMMA	Breaking index (ratio of wave height to depth in surf zone)				
R	2 (3I5)	NMAX	Grid dimension (number of cells) in y-direction				
		MMAX	Grid dimension (number of cells) in x-direction				

Necessity Code	Card Group (Format)	<u>Variable</u>	Description
R	3 (16I5)	ITID	Number of entries in input elevation (tidal) table
		JTID	Number of time-steps between entries in input elevation (tidal) table
		NTID	Number of distinct elevation (tidal) forcing functions
		MPR	Print control for initial conditions 1print flag arrays only 2print depth also <0print in addition flood, barrier, and elevation (tidal) data
		MSURF	Print elevation (tidal) forcing function in steps of MSURF
R	4	TAU	Time-step, Δt (sec) for one full cycle
	(8E10.1)	DX	Cell dimension $\Delta\alpha_1$ (ft)
		DY	Cell dimension $\Delta\alpha_2$ (ft)
		G	Acceleration due to gravity (ft/sec^2)
		EPSD	Minimum amount of water defining a dry cell (ft)
		DCON1	Add DCON1 to water cell bed elevations to translate datum (ft)
		DMPX	Value of still-water land elevation assigned artificially to areas that will never flood (ft)
		VIS	A multiplier for eddy viscosity terms (can be set between 0 and 1)
		XLAND*	A value of bed elevation, h >XLAND de- fines a cell that will never flood (ft) (positive)
		XSCOUR*	A value of h < XSCOUR defines a cell that will never go dry (ft) (negative)
		SMAX	If $\eta > SMAX$, stop computations and print η ; caution: set SMAX higher than highest land cell elevation
		DMAXG	Positive bound on maximum total water depth that will be experienced during simulation (ft)used for setting up size of friction matrix

^{*} Caution: Select XLAND< bed elevation of lowest land cell and XSCOUR < depth |h| of shallowest water cell if flooding/drying is not desirable. The flood/dry capabilities of the program have not been tested.

Necessity Code	Card Group (Format)	Variable	Description
R (Continued)	4 (8E10.1)	DCON2	Add DCON2 to elevation (tidal) input values to correspond to model datum (ft)
	(Continued)	DLIMIT	Artificial cutoff value on bed elevation (h) for water cells (negative) (ft)
R	5	MAXTIM	Number of time-steps to run simulation
	(1615)	INTAP	=msave $\bar{\eta}$, U and V on file 1 every m Δt =-1no data are saved on file 1
		IDELAY	Delay saving information on file 1 until ITIME= IDELAY (note ITIME counts the number of cycles)
		IXPAN	=0 uniform grid in real space ≠0 variable gridread in expansion coefficients
		NGAGE	Number of special gage points (up to 20 gages are permitted)
		NFREQ	Information will be printed at gage points every NFREQ Δt 'snever set equal to zero!
		NZP	Number of corrections to input depth matrix
R	7 (16I5)	NPRINT	Time-step index to print hydrodynamics ($\bar{\eta}$, U, and V) over the whole gridup to 32 printouts are allowedtwo cards must be included
0	8 (16I5)	NPOT	y-indices for special gage points (NGAGE in number)
		MPOT	x-indices for special gage points (NGAGE in number)start on a new card
	Note	: Group 8	is omitted if NGAGE=0
R	12 (10F8.3)	XMAN _i	Mannings's n for each code i, i=1,20 used for defining friction. Note: code l is used for all water outside computa- tional boundariestwo cards must be included
		ZB	Heights (ft) for barrier cells (see card group 17)start on a new cardtwo cards must be included
		СВ	Chezy coefficients for barrier cells (see card group 17)start on a new cardtwo cards must be included

Necessity Code	Card Group (Format)	<u>Variable</u>	
0	13 (215,F8.3)	N M DNM	Corrections to bed elevation matrixgrid indices N,M and corrected bed elevation DNM (ft)NZP cards must be provided
	Not	e: Group 1	3 is omitted if NZP=0
R	14 (2014)	ISHORE2 _N	Matrix indicating shoreline positionfor each N, read an M value corresponding to the last (seaward) land cell between beach and ocean. There are NMAX values
		IBRK1 _N	Matrix indicating first breaker line positionfor each N, read an M value corresponding to the breaker line
		ISHORE3 _N	Matrix indicating a fictitious shoreline position for a second surf zone
		IBRK2 _N	Matrix indicating second breaker line position
			there is no second surf zone, set all the ues of ISHORE3 and IBRK2 to zero
R	15 (3512)	MAN _N ,M	Friction codes (1 to 20)for each N, read MAN, M, M = 1, MMAX (start a new card for each N)use special code of 99 for all water cells outside of computational boundariescode 99 corresponds to XMAN(1)
R	17 (312,414)	ITYP	Used for boundary data 1impermeable nonovertopping barrier 8elevation (tidal) input boundary (used for radiation boundary) 9flow input boundary (used for uniform flux boundary) 99end of group 17 data
		INDX	0for flux boundary 1,2,3used for indicating different ele- vation (tidal) boundaries
		IDIR	1if flow or elevation (tide) is in the x-direction2if flow or elevation (tide) is in the y-direction
		I1 .	Grid index (M or N value) of boundary line
		12 } 13 }	Boundary extends from N or $M = I2$ to I3

Necessity Code	Card Group (Format)	<u>Variable</u>	Description
R (Continued)	17 (312,414)	14	<pre>0for top or left boundary (low values of x or y) 1for bottom or right boundary (high values of x or y)</pre>
		is gro	e termination of boundary data (group 17) indicated by including at the end of the oup a card containing 99 in columns 1 to 2. other columns should be blank
O	20 (10F8.4)	SURIN _i	Entries in input elevation (tidal) tablesthere are NTID tables and for each table, there are ITID entriesthe order in which the tables are read in depends on the sequence of the elevation (tidal) boundaries in group 17start each table on a new card
	Note: For r	URIN ₁ = SUR	_
	Note:	Group 20	is omitted if NTID = 0
R	23 (16I5)	JDELAY	Delay saving gage information until ITIME = JDELAY
R	32 (NAMELIST	RHO	Density of seawater (slugs/ft ³)usually set to 1.99
	\$PAR)	EY	Eddy viscosity ε_{y} (ft ² /sec)
		RAD	A weighting factor (between zero and one) for radiation stress gradient terms
		NTIMEB	Number of time-steps over which radiation terms are to be built up
		ADV1	A weighting factor (between zero and one) for advection terms
		FRC1	A weighting factor (between zero and one) for bottom friction terms
		ANLH	The parameter N _{IH} in Longuet-Higgins expression for eddy viscosity (Equation 13)varies between 0 and 0.016
		CF	Drag coefficient c in the Longuet- Higgins linear relation for bed friction
		ITAVG	Number of time-steps over which the solution (values of η , U, V, and discharges) is to be averaged. The program averages the solution starting with values from step MAXTIM-ITAVG + 1. These values are printed as well as saved on appropriate files

Necessity Code	Card Group (Format)	Variable	Description
R	33 (I2)	IEDDY	Index which indicates method of computing eddy viscosity ε_{x} 1 = Longuet-Higgins method 1 = Jonsson et al. method 3 = eddy viscosity ε_{x} is read in from file 40
O	34 (16F5.0)	XDIST _{N,M}	The matrix containing the distance from the shoreline to each cell for use in Longuet-Higgins formula for eddy viscosity . For each value of N, read MMAX values. Start each new N on a separate card. Note: For water cells offshore of breaker line, keep XDIST same as the value at the breaker line

Input Files

- 42. In Boeing Computer Services (BCS), the source deck for the program is on file WIFMSRC. It has to be updated first and a program library created. Then the program library should be updated again with the update file UPDL2RV.
- 43. The following input data files are often used. Some are optional depending on the run.

File FT 35

44. This file contains the wave data, usually the output from a numerical wave climate program. For each grid cell, the wave number AK, wave angle TH, and the wave height HT are read in sequence. The following statements are used to read the file in subroutine DEPTH:

DO 10060 M=1, MMAX DO 10060 N=1, NMAX

I = NMAX*(M-1) + N

READ (35,10061) AK(I), TH(I), HT(I)

10060 CONTINUE

10061 FORMAT (F10.6, 2F10.3)

Note that in the program the same matrix may be used either as a double index, e.g., AK(N,M) or a single index, e.g., AK(I) array. The conversion from the two index to one index system is accomplished by the relation

I = NMAX*(M-1) + N

This file is always required.

File FT 36

45. This file contains the bed elevations D(N,M) for grid cells. The following statements are used to read the file in subroutine DEPTH:

DO 99005 M=1,MMAX

READ (36,99001) (D(N,M), N = 1,NMAX)

99001 FORMAT (10F8.3)

99005 CONTINUE

Note: Usually, if SWL is taken as the datum,

D(N,M) < 0 for water cells

> 0 for land cells

This is a required file.

File FT 39

46. This file contains the grid expansion coefficients YNU and XMU for a variable grid. They correspond to μ_2 and μ_1 , respectively. There will be NYY = 2* NMAX values of YNU and NXX = 2*MMAX values of XMU. These coefficients are provided by a special program called GRID. The following statements are used to read the file in subroutine INTAKE:

READ (39,99002) (YNU(I), I = 1,NYY)

READ (39,99002) (XMU(I), I = 1,NXX)

99002 FORMAT (4G20.11)

This file is optional and required only for a variable grid (IXPAN \neq 0).

File FT 40

47. This file contains the eddy viscosity coefficients for the x-direction, EX. The following statements are used to read the coefficients in a string in subroutine EDDYVIS:

READ (40,115) (EX(I),I = 1,NMX)

115 FORMAT (16F5.1)

This file is optional and required only if IEDDY = 3.

File FT 95

48. This is a "card image" file. It contains the rest of the input data needed for running the program. The number of the file (NDTAP) may be other than 95. The number should be indicated always on the first input data card (card group 1A). This file is required.

PART VI: MODEL OUTPUT

General Description

- 49. This section describes the general output in the form of printed output and output files that may be obtained from the model and the controls one may exercise on the same. Most of the input data are printed as soon as they are read in so that errors in the input data may be easily detected and corrected by the user. By setting the variable MPR (card group 3) appropriately, the user may obtain as much information as he or she desires on the flag arrays, depths, flood, barrier, and tidal data. Similarly, by using the NPRINT (card group 7) option, the user may obtain detailed printout of $\bar{\eta}$, U , and V over the whole grid at intermediate times during the computation. By using the variables NGAGE, NFREQ, NPOT, and MPOT (card groups 5 and 8), the user may provide for special gages at several locations within the grid and obtain a time-history of water levels and velocities there either to check the results of the model or to compare model results with actual field gage data. The user must provide the necessary Job Control Language (JCL) to print the files FT 07 and FT 08. By setting the variable ITAVG (card group 32), the user may obtain a solution that is averaged over the last ITAVG time-steps. The program prints the averaged water levels and velocity components at the cell centers as well as the discharges across cell faces and stores them on file FT 20 for later use in a sediment transport model.
- 50. Program CURRENT constructs various arrays and tables packed with data to control double-sweep computation, forcing boundaries, barrier treatment, etc. There are two flag arrays ICU(N,M) and ICV(N,M) to control computation in x- and y-directions, respectively. Each element of ICU (ICV) consists of two digits: $n_1 n_2$. When the flags are printed, for any given cell (N,M) the values of ICU and ICV are printed together as a four-digit number ICF. The first digit n_1 in ICU (ICV) defines the character of the cell on the bottom (right) face of the cell. Digits n_1 and n_2 have the following significance:

n₁ Definition

(Continued)

Bottom (right) face of cell is an exposed barrier that cannot be overtopped. n₂ has no meaning. Note: The code ICU=10, ICV=10 is set by the program to indicate water cells outside computational boundaries.

- No flow through bottom (right) face of cell. n_2 is set to zero.
- Flow through bottom (right) face of cell. n_2 indicates the type of computation to use for advection. $n_2 = 0$ means no advection, $n_2 = 1$ advection in x-direction only, $n_2 = 2$ advection in y-direction only, and $n_2 = 3$ advection in both x- and y-directions.
- 7 Constructed by the program to indicate no computation for x-(y-) sweep.

 n₂ is set to zero to indicate a lower boundary, and 1 for an upper boundary, for the other sweep direction.
- 8 Elevation (tidal) or radiation boundary cell. n₂ indicates the number of the forcing elevation (tide) used.
- Bottom (right) face is a discharge boundary. $n_2 = 0$ indicates a uniform flux boundary condition applied at cell center; otherwise n_2 indicates the number of the forcing discharge used.

Forcing elevation (tidal) boundary control vectors take the form:

Vector i : 1000000*INDX+1000*N+M

and discharge boundary vectors the form:

Vector i : 1000000*(INDX+10*IDIR)+1000*N+M

where i is the ith element of the vector, N and M are indices of the grid cell and INDX and IDIR are defined in card group 17. The user is urged to set MAXTIM=0 (card group 5) and MPR=-1 (card group 3) during the first run to check the accuracy of the input data, the flags, boundary vectors, etc. Once these are found to be correct, then MAXTIM and MPR may be set to desired values and the actual computations may be performed.

Output Files

51. Output may be stored by the model in the following files. Some are optional. The user must dispose the files with proper JCL if he or she wants to save the files for later use.

File FT 01

52. This file contains the bed elevations h, and $\bar{\eta}$, U, and V saved every INTAP time-steps in subroutine POUT. The reader is referred to that subroutine for details.

Files FT 07 and 08

53. These contain the results $\bar{\eta}$, U , and V for selected gages (see

card groups 5 and 8) stored at intervals of NFREQ, starting from time-step JDELAY. Each file contains information for up to 10 gages. It is convenient to copy these files to system OUTPUT file at the end of the run. The results will then be printed in a tabular form. Files FT 07 and FT 08 are written on in subroutine DRIVE.

File FT 11

54. This file contains the surface elevation $\tilde{\eta}$ and the velocities U , V (averaged, respectively, at the center of the cell) for the special gage locations in a form that is convenient for plotting time series. The results are stored at intervals of NFREQ, starting from time-step JDELAY, using the following statements:

DO 10020 J=1, NGAGE

N = NPOT(J)

M = MPOT(J)

II = NMAX*(M-1)+N

WRITE(11)ITIME,J,N,M,SEP(II),UU,VV

10020 CONTINUE

where ITIME is the time-step number. This file is written on in subroutine DRIVE.

File FT 13

55. This file contains the surface elevations all over the grid at selected instants of time NPRINT during the course of the computation. The file is written on in subroutine POUT using the following statements:

WRITE(13) ITIME

DO 4800 M=1,MMAX

DO 4800 N=1,NMAX

I1 = (M-1)*NMAX+N

WRITE(13)SEP(I1)

4800 CONTINUE

This file may be used for 3-D plotting.

File FT 14

56. This file contains the velocities U , V at the center of each grid cell for all the grid cells at selected instants of time NPRINT during the course of the computation. The file is written on in subroutine POUT using the following statements:

WRITE(14)ITIME
DO 4900 M=1,MMAX
DO 4900 N=1,NMAX
II=NMAX*(M-1)+N
WRITE(14) UU,VV

4900 CONTINUE

This file may be used for vector plotting.

File FT 15

57. This file contains the vertically integrated discharges DISCHX and DISCHY across the lower and right faces of each grid call for all the grid cells at the end of the run (ITIME=MAXTIM). This file is written on in subroutine POUT using the following statements:

DO 31000 M=1, MMAX

DO 31000 N=1, NMAX

II = NMAX*(M-1)+N

WRITE(15)DISCHX(II), DISCHY(II)

31000 CONTINUE

File FT 20

58. This file contains some of the information needed for running a numerical sediment transport model subsequently, such as shoreline and breaker line positions, updated wave information, average values (averaged over ITAVG time-steps) of $\bar{\eta}$, U , V , and discharges across cell faces. It is written on in subroutines DEPTH, MOTN4, and POUT, respectively. The reader is referred to these subroutines for details.

PART VII: MODEL APPLICATION

Plane Beach: Longshore Currents

- 59. In order to demonstrate the use of the model for a simple situation, the case of monochromatic waves obliquely incident on a plane beach will be considered. This is the same case that was discussed in paragraphs 27-30 of PART IV except that the effect of setup, mixing, and advection are taken into account now during the course of the computation. The beach has a constant slope of 1:30. The wave characteristics in deep water are given by $T=12~{\rm sec},\ H_0=10~{\rm ft},\ {\rm and}\ \theta_\infty=20~{\rm deg}.$ For purposes of the present simulation, a uniform grid with $\Delta x=\Delta y=60~{\rm ft},\ NMAX=6$, and MMAX=50 is chosen. Also, let c=0.01, $\gamma=0.82$, $N_{LH}=0.00783$, $\Delta t=5.0~{\rm sec},\ {\rm and}$ NTIMEB=15. Uniform flux boundary conditions are employed at the lateral boundaries and a radiation boundary condition at the offshore boundary. The simulation is run for 105 time-steps.
- 60. The CRAY JCL for running the program at BCS is shown in Figure 14. The user must supply his or her own user number (UN) and password (PW) and filename XXXLOG for dayfile. File WAVESRV has the results of a wave climate program for the case under consideration. File DEPBCH has the bathymetric information and file DATABCH most of the input data. No output files are saved.
- 61. The input data for the job from file DATABCH are shown in Figure 15. Note that the full print option MPR=-1 has been selected and NGAGE has been set to 20 with NFREQ=5 and JDELAY=0. As for eddy viscosity, IEDDY has been set to 1 (Longuet-Higgins formulation) so that both ANLH and XDIST have to be supplied. Note also that blank lines are used for input statements containing all zeros.
- 62. Figure 16 shows the "echo-print" of the input data by the program, Figure 17 the results of computation, and Figure 18 a sample printing of the results for selected gages. Note that the program prints the updated wave heights at the end of the run and the CPU time spent in the double-sweep computation.

Oregon Inlet

63. The next application to be considered is that of Oregon Inlet. This has been discussed at length in paragraphs 32-37 of PART IV. This is a

```
CDEXX, PO2, T40, STCA1.
USER, UN, PW.
FETCH, DN=AA, GDN=WIFMSRC, UN=CER OD2, DT=C, DS=FF.
UPDATE, F, I=AA, P=0, C=0, N, L=0.
FETCH, DN=A, GBN=UPDL2RV, UN=CEROD2, DT=C, DS=FF.
UPDATE, F, P=$NPL, IN.
CFT, I=SCPL, L=0.
FETCH, DN=FT35, GDN=WAVESRV, UN=CCCD26, DS=CI.
FETCH, DN=FT36, GDN=DEPBCH, UN=CEROD2, DT=C, DS=FF.
FETCH, DN=FT95, GDN=DATABCH, UN=CEROD2, DT=C, DS=FF.
LDR.
REWIND, DN=FT07.
COPYD, I=FT07, D=$OUT.
REWIND, DN=FT08.
COPYD, I=F108, D=$OUT.
EXIT,U.
COST, LO=F.
LOGFILE, L=LOG, FULL.
STORE, DN=LOG, GDN=XXXLOG, DT=C, DS=FF, UN=XXXXXX.
◆MEDR
+READ A
♦WEOR
   95
◆WEOF
```

Figure 14. Job Control Language (JCL) for plane beach application

```
CURRENT MODEL - PLANE BEACH APPLICATION
 $WAVE PER=12.0, HTD=10.0, THETAD=20.0, DEPMAX=97., GAMMA=0.82, SEND
       50
    2 2000
                       100
 5.0
            60.
                       60.
                                32.2
                                            . 0001
                                                        0. 0
                                                                  5.0
                                                                             1.0
0.4
                     40.0
                               97.0
                                          0.0
                                                     -97. û
  105
                        20
  105
         .4
3
   2
                    5
                                                                                  17
   18
             48
        . 03
5555555555555
 22222222222222
 9999999999999999999999999999
             2 49 2 49
 902
         1
                      0
         5
 902
99
 0.0
         0.0
 SPAR RHO=1.99,EY=5.,RAD=1.,NTIMEB=15,ADV1=1.,FRC1=1.,CF=.01,
  I1AV6=0, ANLH=. 00783, $END
-30. 30. 90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 750. 810. 870. 930. 990. 1050.1110.1170.1230.1290.1350.1410.1470.1530.1590.1650.1710.1770.1830.
1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
2850.2910.
 -30. 30.
            90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 750. 810. 870.
 930. 990.1050.1110.1170.1230.1290.1350.1410.1470.1530.1590.1650.1710.1770.1830.
1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
2850.2910.
 -30. 30. 90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 750. 810. 870. 930. 990.1050.1110.1170.1230.1290.1350.1410.1470.1530.1590.1650.1710.1770.1830.
1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
-30. 30. 90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 750. 810. 870. 930. 990.1050.1110.1170.1230.1290.1350.1410.1470.1530.1590.1650.1710.1770.1830. 1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
2850.2910.
 -30. 30. 90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 750. 810. 870. 930. 990.1050.1110.1170.1230.1290.1350.1410.1470.1530.1590.1650.1710.1770.1830.
1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
2850.2910.
 -30. 30. 90. 150. 210. 270. 330. 390. 450. 510. 570. 630. 690. 730. 610. 670. 630. 690. 730. 610. 670. 630. 690. 730. 610. 670. 630. 690. 1050. 1110. 1170. 1230. 1290. 1350. 1410. 1470. 1530. 1590. 1650. 1710. 1770. 1830.
            90, 150, 210, 270, 330, 390, 450, 510, 570, 630, 690, 750, 810, 870,
1890.1950.2010.2070.2130.2190.2250.2310.2370.2430.2490.2550.2610.2670.2730.2790.
2850.2910.
```

ن المرابع المر

Figure 15. Input data for plane beach application

```
INPUT DATA--CARD GROUP 1A
IMPUT DATA--CARD GROUP 18
                                       CURRENT HODEL - PLANE BEACH APPLICATION
INPUT DATA--CARD GROUP 1L AWAYE PER = 12.0 HTO = 18.0 THETAL = 23.0 DEPMAX = 97.0 GAMMA = 0.82, SEND
INPUT DATA--CARD GROUP 2
     XAMM.XAMN
50 6
IMPUT DATA--CARD GROUP 3
ITID-JTID-NTID-MPR-MSURF
2 2000 1 -; 100
INPUT DATA--CARD GROUP 4
TAU-DX-DY-G-EPSD-DC'N1-DMPX-VIS- XLANJ-XSCOUR-SMAX-DMAXG-DCON2-ULIMIT
       5.00C0
0.40C00
                       60. JC
-0.40°JC
                                                            32.200
97.000
                                           46..00
IMPUT DATA--CARD GROUP 5
MAXTIM, INTAP, IDELAY, 4 XPA No NGAGE + AFREGON_P
105 -1 0 20 5 0
INPUT DATA--CARD GROUP 7
INPUT DATA--CARD GROUP
     SPECIAL GAGE LOCATIONS
 INFUT DATA--CARD GRGUP 12
      FRICTION CODES XMAN 0.039 J.03J
      BARRIER HEIGHTS
      0.000
BARKIER CHEZYS
                                     J. 0 C C
                                               J. 0CC
                                                          0.000
                                                                                         0.000
                                                                                                               1,000
```

Figure 16. Echo print of input data for plane beach application (Sheet 1 of 8)

WAVE NUMBER AK MULTIPLIED BY 10000.

I J	1	2	3	4	5	6
1	0	0	0	ij	0	0
2	924	924	924	924	924	924
3	535	535	535	535	5 35	535
4	416	416	416	416	416	416
5	352	352	352	352	352	352
6	312	312	312	312	3 12	312
7	283	283	283	2 . 3	2 43	283
8	261	261	261	261	261	261
9	243	243	243	245	243	243
10	229	229	229	221	229	229
11	218	218	218	213	218	218
12	208	208	208	2 . 9	2 G8	20 €
13	159	199	199	199	1 79	199
14	191	191	191	171	191	191
15	185	185	185	165	1 65	155
16	179	179	179	17,	179	179
17	173	173	173	173	173	173
18	169	169	169	16,	169	169
19	164	164	164	164	164	164
20	160	160	160	160	160	160
2 1 2 2	156 153	156	156	156	156	156
2 2 2 3	158	153 150	153 150	153 153	153	153 150
23 24	147	147	147	147	150 147	147
25	144	144	144	144	144	144
26	142	142	142	142	142	142
27	139	139	139	139	1 39	139
28	137	137	137	137	137	137
29	135	135	135	135	1 35	135
30	133	133	133	135	1 33	133
31	131	131	131	131	1 31	131
32	129	129	129	12)	129	129
3 3	128	128	128	123	1 28	128
34	126	126	126	120	1 26	126
35	125	125	125	125	1 25	125
36	123	123	123	123	123	123
37	122	122	122	122	1 22	122
38	121	121	121	121	121	121
3 9	119	119	119	117	119	119
40 41	118	118	118	115	118	118
42	117 116	117	117	117	117	117
43	115	116	116	116	116	116
44	114	115 114	115 114	1:5 114	1 15 1 14	115 114
45	113	113	113	113	113	113
46	112	112	112	112	112	112
47	111	111	111	111	111	111
48	110	110	110	113	110	110
49	109	109	109	1 ,	109	109
50	109	109	109	103	109	109

Figure 16. (Sheet 2 of 8)

1 0 0 0 0 0 0 2 216 216 216 216 216 3 327 327 327 327 327	0 216 327 411
2 216 216 216 216 216	216 327
	327
J JE; JE; JE; JE; JE;	411
4 411 411 411 411 411	
5 481 481 481 481 481	481
6 541 541 541 541 541	541
7 595 595 595 595 595	595
8 644 644 644 644	644
9 690 690 690 693 590	690
10 732 732 732 732 732	732
11 771 771 771 771 771	771
12 808 808 808 6 8 8 68	803
13 843 843 843 843 843	843
14 877 877 877 877 877	877
15 909 909 909 959 969	309
16 939 939 939 939 939	93 9 64 0
17 968 968 968 968 968 968	968
18 996 996 996 996 996 19 1023 1023 1023 1023 1023	996 1023
19 1023 1023 1023 1023 1023 1023 20 1049 1049 1049 1049 1049	1023
21 1074 1074 1074 1074 1074	1074
22 1058 1058 1058 1058 1058	1098
23 1121 1121 1121 1121 1121	1121
24 1143 1143 1143 1143 1143	1143
25 1165 1165 1165 1165 1165	1165
26 1186 1186 1186 1186 1186	1186
27 1207 1207 1207 12"7 1207	1207
28 1227 1227 1227 1227 1227	1227
29 1246 1246 1246 1246 1246	1246
30 1265 1265 1265 1265 1265	1265
31 1283 1283 1283 1233 1283	1283
32 1301 1301 1301 1301 1301	1301
33 1318 1318 1318 131a 1318	1318
34 1335 1335 1335 1335 1335	1335
35 1352 1352 1352 1352 1352	1352
36 1368 1368 1368 1368 1368	1368
37 1383 1383 1383 1383 1383	1383
38 1398 1398 1398 1398 1398 39 1413 1413 1413 1413 1413	1398
39 1413 1413 1413 1413 1413 40 1428 1428 1428 1428 1428 1428	1413 1428
41 1442 1442 1442 1442 1442	1442
42 1456 1456 1456 1456 1456	1456
43 1469 1469 1469 1469 1469	1469
44 1482 1482 1482 1482 1482	1482
45 1495 1495 1495 1495 1495	1495
46 1507 1507 1507 1507 1507	1507
47 1520 1520 1520 1520 1520	152 C
48 1531 1531 1531 1531 1531	1531
49 1543 1543 1543 1545 1543	1543
50 1554 1554 1554 1554 1554	1554

Figure 16. (Sheet 3 of 8)

WAVE HEIGHT HT MULTIPLIED BY 100-00

1 0	1	J	1	2	3	4	5	6
2 82 82 82 42 42 246		1	0	0	0		Q	0
3 246								
5 574 574 574 574 574 574 574 574 574 574 574 578 738			246	246	246	246	2 46	246
6 738		4	410	410	410	41)	410	410
7 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902 902		5	574	574	574	574	574	574
8		6	738	738	738	733	738	738
9 1218 1218 1218 1218 1218 1218 1218 1218 1218 1218 1218 1185 1185 1185 1185 1185 1185 1158 1159 1158 1158 1158 1158 1158 1158 1156 1158 1158 1156 1158 1156 1158 1156 1158 1156 1158 1156 1158 1156 1156 1158 1156 1156 1156 1156 1169 1169 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 1179 <t< td=""><td></td><td>7</td><td>902</td><td>902</td><td>902</td><td></td><td>9 62</td><td>502</td></t<>		7	902	902	902		9 62	502
10		8						
11								
12 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1134 1114 1107 1079 1070 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 <								
13								
14								
15								
16 1065 1065 1065 1065 1065 1065 1065 1065 1065 1065 1065 1065 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1040 1020 <								
17 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1052 1040 <								
18								
19								
20 1020 <								
21 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1011 1013 1004 1004 <								
22 1003 <								
23 995 995 995 995 995 995 995 998 989 982 983 98								
24 989 982 966 967 967 96								
25 982 932 93								
26 976 976 976 976 976 976 976 976 976 977 971 972 97								
27 971 966 967 957 957 957 957 957 957 957 953 953 953 953 953 953 953 953 949 949 949 949 949 949 949 949 949 949 940 940 940 940 940 940 940 940 94								
28 966 967 967 957 957 957 957 957 957 957 957 957 957 957 957 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 953 949 940 940 940 940 940 940 940 940 94								
30 957 953 953 953 953 953 953 953 953 949 940 940 940 940 940 940 940 940 940 940 940 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 932 932 93								
31 953 953 953 953 953 953 953 953 953 953 953 953 953 953 949 949 949 949 949 949 949 949 946 940 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 934 932 932 93	2	9	961	961	961	961	961	961
32 949 949 949 949 949 949 949 949 949 949 949 949 949 946 943 943 943 940 94	3	0	957	957	957	957	957	957
33 946 946 946 946 946 946 946 946 946 946 946 946 946 946 943 943 943 943 943 943 940 934 932 932 932 932 932 932 932 932 932 932 930 930 930 930 930 930 93			953	953	953	953	953	
34 943 943 943 943 943 943 943 943 943 943 944 940 937 934 934 934 934 934 934 934 934 934 932 932 932 932 932 932 930 930 930 930 930 930 930 930 930 930 930 930 93								
35 940 937 937 937 937 937 937 937 937 937 937 934 934 934 934 934 934 934 932 932 932 930 928 928 928 92								
36 937 937 937 937 937 937 937 937 937 937 937 937 937 937 938 934 934 934 934 934 934 934 934 934 934 934 932 932 932 932 932 932 932 932 932 930 926 926 926 926 926 926 924 924 924 924 924 924 923 923 923 923 923 923 92								
37 934 934 934 934 934 934 934 38 932 932 932 932 932 39 930 930 930 930 930 40 928 928 924 928 928 41 926 926 926 926 926 42 924 924 924 924 924 43 923 923 923 923 923 44 921 921 921 921 921 45 920 920 920 920 920 46 919 919 919 919 919 919 47 918 918 918 918 918 48 917 917 917 917 917 917 49 916 916 916 916 916 916 916								
38 932 932 932 932 932 932 39 930 930 930 930 930 40 928 928 924 928 928 41 926 926 926 926 926 42 924 924 924 924 924 43 923 923 923 923 923 44 921 921 921 921 921 45 920 920 920 920 920 46 919 919 919 919 919 919 47 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916 916								
39 930 928 928 928 928 928 928 928 926 926 926 926 926 926 926 924 924 924 924 924 924 923 923 923 923 923 923 923 923 923 921 921 921 921 921 921 921 921 921 921 921 920 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
40 928 928 928 926 924 924 924 924 924 924 924 924 924 923 923 923 923 923 923 923 921 921 921 921 921 921 921 921 921 921 921 920 92								
41 926 926 926 926 926 926 42 924 924 924 924 924 924 43 923 923 923 923 923 923 44 921 921 921 921 921 921 45 920 920 920 920 920 46 919 919 919 519 919 919 47 918 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916 516				-				
42 924 924 924 924 924 924 924 43 923 923 923 923 923 923 44 921 921 921 921 921 921 45 920 920 920 920 920 46 919 919 919 513 919 919 47 918 918 918 918 918 918 48 917 917 917 917 917 917 49 916 916 916 916 916 916								
43 923 923 923 923 923 923 44 921 921 921 921 921 921 45 920 920 920 920 920 920 46 919 919 919 513 919 919 47 918 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916 916								
44 921 921 921 921 921 921 45 920 920 920 920 920 920 46 919 919 919 513 919 919 47 918 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916 916								
45 920 920 920 920 920 920 46 919 919 919 513 919 919 47 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916 516								
46 919 919 919 919 919 919 47 918 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916				-				
47 918 918 918 918 918 918 48 917 917 917 917 917 49 916 916 916 916 916								
48 917 917 917 917 917 917 49 916 916 916 916 916 916								
49 916 916 916 916 916 916								
		-						
	5	0	915	915	915		915	915

Figure 16. (Sheet 4 of 8)

INPUT DATA--CARD GROUP 14
ISHORE2(N) MATRIX
1 1 1 1 1

IBRK1(N) MATRIX
9 9 9 9 9

ISHORE3(N) MATRIX
0 0 0 0 0 5

IBRK2(N) MATRIX
0 0 0 0 0 0

ADJ BED ELEV MULTIPLIED BY 10.000

I	J	1	2	3	4	5	6
-	1	10	10	10	1 ย	10	10
	2	-16	-10	-10	-10	- 10	-10
	3	-30	-30	-30	-36	- 30	-30
	4	-50	-50	-50	-5û	-50	-5 C
	5	-70	-70	-70	-70	-70	-70
	6	-90	-90	-90	- 94	- 90	-90
	7	-110	-110	-110	-110	-110	-110
	8	-130	-130	-130	-133	-130	-13C
	9	-150	-150	-150	-150	-150	-150
1	.0	-170	-170	-170	-17 <i>i</i>	-170	-170
1	.1	-190	-190	-190	-1 0	-1 90	-190
1	.2	-210	-210	-210	-21u	-210	-210
1	.3	-230	-230	-230	-230	-230	-230
_	.4	-250	-250	-250	-25J	-250	-250
_	.5	-27C	-270	-270	-27ú	-270	-270
	.6	-250	-290	-290	-2 1.7	-2 90	-290
1	.7	-310	-310	-310	-314	-310	-310
	.8	-330	-330	-330	-3 36	-330	-330
_	.9	-350	-350	-350	-350	-35 0	- 35 0
	0	-370	-370	-370	-370	-370	-37 C
_	21	-390	-390	-390	-3:0	-3 90	-390
	2	-410	-41 C	-410	-41 u	-410	-410
	3	-430	-43C	-430	-43J	-430	-430
_	4	-450	-450	-450	-450	-450	-450
	:5	-470	-470	-470	-47j	-473	-470
	6	-490	-490	-490	-463	-4 90	-490
_	27	-510	-510	-510	-51 J	-510	-510
	8	-530	-530	-530	-53 J	-530	-530
	9	- 550	-550	-550	-5 50	-550	-550
_	0	-570	-570	-570	-57,	-570	-570
3	1	-590	-590	-590	-5 50	-5 90	-590

Figure 16. (Sheet 5 of 8)

```
32
      -610 -610 -610 -61J -610 -610
 33
      -630 -630 -630 -630 -630
 34
      -650 -650 -650 -653 -650 -650
 35
      -670 -670 -670 -67J -670 -670
 36
      -690 -690 -690 -680 -690 -690
 37
      -710 -710 -710 -710 -710 -710
 38
      -730 -730 -730 -730 -730 -730
 39
      -750 -750 -750 -75J -750 -750
 40
      -770 -770 -770 -773 -770 -770
      -790 -790 -790 -770 -790 -790
 41
 42
      -810 -810 -810 -810 -810 -813
 43
      -830 -830 -830 -834 -830 -830
 44
      -850 -850 -850 -85J -85C -850
 45
      -870 -870 -870 -870 -870 -870
 46
      -850 -890 -890 -840 -850 -890
 47
      -910 -910 -910 -513 -910 -910
 48
      -930 -930 -930 -930 -930 -930
 49
      -950 -950 -950 -950 -950 -950
 50
      -970 -970 -970 -970 -970 -970
SPECIAL PRINTOUT OF CODED FRICTION ARRAY -- CARD GROUP 15
                                      10
  1
       2
           2
              2
                  2
                     2
                         2
           2
              2
                     2
  2
      99
                  2
                        99
           2
              2
                  2
  3
      99
                     2
                        üõ
      99
           2
              2
                  2
                     2
                        99
  5
              2
                  2
                     2
      99
           2
                        95
      99
           2
              2
                  2
                     2 45
  6
              2
      99
                  2
                     2 99
  7
           ٤
              2
                  2
  8
      99
           2
                     2
                       وه
                       95
  9
      99
              2
                  2
           Ź
                     2
                        95
      99
              2
                  2
                     2
 10
           2
 11
      99
           2
              2
                  2
                     2
                        Òè
 12
      99
           2
              2
                  2
                     2
                        99
           2
              2
                  2
 13
      99
                     2
                        95
           2
              2
                  2
                     2 99
 14
      99
                  2
 15
      99
           2
              2
                     2 99
 16
      99
           2
              2
                  2
                     2 99
 17
      99
           2
              2
                  2
                     2
                        39
           2
              2
                  2
 18
      99
                     2
                        99
 19
      99
           2
              2
                  2
                     2
                       99
 20
      99
           2
              2
                  2
                     2 99
 21
      99
           2
              2
                  2
                     2 99
 22
           2
              2
                  2
                     2 94
      99
 23
              2
                  2
      99
           2
                     2 99
      99
              2
 24
           Ź
                  2
                     2 99
      99
              2
 25
           2
                  2
                     2
                        99
                        99
 26
      99
           2
              2
                  2
                     2
 27
      99
           2
              2
                  2
                     2
                        99
              2
 28
      99
           2
                  2
                     2
                        95
           2
              2
                  2
 29
      99
                     2 99
 30
      99
           2
               2
                  2
                     2
                       99
```

Figure 16. (Sheet 6 of 8)

NO. OF FLOOD CELLS

•

```
INFUT DATA--CAND GROUP 17
ITYP-INDX:IDIR:IL:12:13-14
3 1 1 50 2 5 1
9 0 2 1 2 49 f
9 0 2 5 2 49 f
9 0 2 5 2 49 f
9 0 0 0 0 0 f

INPUT DATA--CARD GROUP 23 BOUNDARY ELEVATIONS
G:0060 0:6000

INPUT DATA--CARD GROUP 23 JOELAY= 0

INPUT DATA--CARD GROUP 34
GFAR RHO = 1:99, EY = 500 RAD = 1:0 NTIMED = 150 ADV1 = 1:0 FAC1 = 1:0 ANLH = 7:035E-30 CF = 1:E-20 ITAYG = 1:0 BEND
```

Figure 16. (Sheet 7 of 8)

I J	1	2	3	4	5	6
1	-30	-30	-30	-39	- 30	-30
2	30	30	30	3 ũ	30	30
3	90	90	90	ز ت	90	90
4	150	150	150	15 J	150	150
5	210	210	210	213	210	210
6	279	270	270	273	270	270
7	330	330	330	331	3 30	330
8	390	390	390	3 [∩] 0	3 50	390
9	450	450	450	450	450	450
10	510 570	510	510	51 J	510	510
11 12	630	570 630	570 630	572	5 70 6 30	570 630
13	690	690	690	63 y 60 y	6 40	630
14	750	750	750	753	750	750
15	810	810	610	613	810	81 9
16	870	870	970	£7J	870	870
17	930	530	930	933	930	930
18	950	990	990	950	9 90	990
19	1050	1050	1050	1650	1050	1050
20	1110	1110	1110	1115	1110	1110
21	1170	1170	1170	117j	1170	1170
22	1230	1230	1230	1230	1230	1230
23	1290	1290	1290	1200	1290	1290
24	1350	1350	1350	1359	1350	1350
25	1410	1410	1410	1413	1410	1410
26	1470	1470	1470	1470	1470	1470
27	1530	1530	1530	1530	1530	1530
28	1590	1590	1590	1570	1590	1590
2 9 30	1650 1710	1650 1710	1650 1710	1650 1719	1650 1710	1650 1710
31	1776	1770	1770	1770	1770	1770
32	1830	1830	1830	1633	1830	1830
33	1890	1890	1890	1890	1890	1890
34	1950	1950	1950	1954	1950	1950
35	2010	2010	2010	2013	2010	2010
36	2070	2070	2070	2073	2070	2070
37	2130	2130	2130	2135	2130	2130
38	2190	2190	2190	2153	2190	2190
39	2250	2250	2250	225 1	2250	2250
40	2310	2310	2310	231J	2310	2310
41	2370	2370	2370	2371	2370	2370
42	2430	2430	2430	2430	2430	2430
43 44	2490	2490	2490	24 1	2450	2490
44 45	2550	2550 2610	2550	2553	2550	2550
46	2610 2670	2670	2610 2670	2610 2670	2610 2670	261 C 267 C
47	2730	2730	2730	2730	2730	2730
48	2790	2790	2790	2703	2750	2730
49	2850	2850	2850	285 u	2850	2850
50	2910	2910	2910	2511	2910	2510
- •						•

Figure 16. (Sheet 8 of 8)

I J	1	2	3	4	5	6
1	0	0	0	J	0	0
2	1	1	1	1	1	1
3 4	7	7	7	7	7	7
5	15 25	15 25	15 25	15	15	15
6	36	36	36	25 36	25	25
7	49	49	49	43	36 49	36 49
8	62	62	62	62	62	62
9	77	77	77	77	77	77
10	77	77	77	77	77	77
11	77	77	77	77	77	77
12	77	77	77	77	77	77
13	77	77	77	77	77	77
14	77	77	77	77	77	77
15 16	77	77	77	7 7	77	77
17	77 77	77 77	77 77	77	77	77
18	77	77	77	77 77	77 77	77
19	77	77	77	77	77	77 77
20	77	77	77	77	77	77
21	77	77	77	77	77	77
22	77	77	77	77	77	77
23	77	77	77	77	77	77
24	77	77	77	77	77	77
25	77	77	77	77	77	77
26	77	77	77	77	77	77
27	77	77	77	77	77	77
28 29	77 77	77	77	77	77	77
30	77	77 77	77 77	77 7 7	77 77	77
31	77	77	77	77	77	77 77
32	77	77	77	77	77	77
33	77	77	77	77	77	77
34	77	77	77	77	77	77
35	77	77	77	77	77	77
36	77	77	77	77	77	77
37	77	77	77	77	77	77
38 39	77	77	77	77	77	77
40	77 77	77 77	77	77	77	77
41	77	77 77	77 77	77 77	77	77
42	77	77	77 77	71	77 77	77 7 7
43	77	77	77	71	77	77
44	77	77	77	77	77	77
45	77	77	77	71	77	77
46	77	77	77	77	77	77
47	77	77	77	77	77	77
48	77	77	77	77	77	77
49	77	77	77	77	77	77
50	77	77	77	77	77	77

Figure 17. Results of computation for plane beach (Sheet 1 of 11)

ICF	FLAG ARRA	Y				
M	N 1	. 2	3	4	5	6
1	5050	5050	505 C	5050	5050	505 J
2	7050	6062	626 2	6262	6090	101 J
3	7050	6163	6363	6363	6190	101)
4	7090	6163	636 3	6363	6190	101)
5	7090	6163	6363	6363	6190	101,
6	7090	6163	6363	6363	6190	101)
7	7090	6163	6363	6363	6190	1013
8	7090	6163	6363	6363	6190	1013
9	7050	6163	6363	6363	61 90	101
10	7090	6163	6363	6363	6190	101)
11	7090	6163	6363	6363	6190	101)
12	7090	6163	6363	6363	6190	101)
13	7090	6163	6363	6363	6190	1013
14	7093	6163	6363	6363	6190	101
15	7050	6163	6363	6363	6190	1013
16	7090	6163	6363	6363	6190	101)
17	7050	6163	6363	6363	6190	101)
18 19	7050	6163	6363	6363 6363	6190	101) 101)
20	7090 70 9 0	6163 6163	6363 6363		6190 6190	101)
21	70 9 0	6163	6363	6363 6363	6190	1019
22	7090	6163	6363	6363	6190	1013
23	7090	6163	6363	6363	6190	1013
24	7050	6163	636 3	6363	6190	101)
25	7050	6163	6363	6363	6190	101)
26	7390	6163	6363	6363	6190	101,
27	7090	6163	6363	6363	6190	101)
26	7050	6163	6363	6363	6190	101)
29	7050	6163	6363	6363	6190	101)
30	7050	6163	6363	6363	6190	101/
31	7050	6163	6363	6363	6190	101,
32	7050	6163	6363	6363	6190	101;
3 3	7050	6163	636 3	6363	6190	101)
34	7050	6163	636 3	6363	6190	101)
35	7090	6163	6363	6363	6190	1013
36	7050	6163	6363	6363	6190	101)
37	7090	6163	6363	6363	6190	1017
38	7050	6163	6363	6363	6190	101)
39	7050	6163	6363	6363	6190	101)
40	7090	6163	6363	6363	6190	101)
41	7050	6163	6363	6363	6190	1013
42	7050	6163	6363	6363	6190	1013
43	7050	6163	636 3	6363	6190	1013
44	7090	6163	6363	6363	61.90	1013
45	7090	6163	6363	6363	6190	101)
46	7090	6163	636 3	6363	6190	1013
47	7090	6163	6363	6363	6190	1013
48	7050	6163	6363	6363	6190	101)
49	7090	6062	626 Z	6262	609C	101)
58	1010	8171	8171	8171	8171	1013

Figure 17. (Sheet 2 of 11)

```
TIDAL AND DISCHARGE BOURDARY VECTORS---TRANSMISSION ECUNDARY VECTOR 1 1002056 20001002
                1002056
1003050
1004050
                              20001003
                                                     0
         3
                              20001004
                1005058
                              200 01 0 05
                              200 61 0 0 6
                              20001007
                              20001008
                              20061000
                              20001010
                              20001811
                              20001012
        12
                              20001013
        13
                              20001014
        14
15
                              20001015
                              20001016
        16
                              20001017
        17
                              20001018
        18
                              20001019
        19
                              20101020
        20
                              20001021
        21
                              20061022
        22
                              20001023
        23
                              200 01 024
        24
                              20001025
        25
                              20001026
        26
27
                              230 01 027
                              20001028
        26
                              20001029
        29
                              20001030
                                                     0
        30
                              200 01 031
        31
                              20001032
        32
                              20001033
        33
                              200 01 034
        34
                              20001635
        35
                              20001036
        36
                              20001037
        37
                              20001038
        38
                              20001039
        39
                              20001040
        40
                              200 01 041
                              20001042
        42
                              200 01 043
        43
                              20001044
                              20001045
        45
                              20001046
        46
                              20001047
                              20001048
        48
                              20001045
                              200 05002
        50
                              20005003
        51
                              200 050 04
        52
53
                              200 050 05
                              200 05 006
        54
                              200 95 9 07
        55
                              200 050 08
        56
                              20005009
        57
                              20005010
        56
                              20005311
```

こののののでは 日本ののののののでは

いとことのこともなる

★日のことでは、自由しているできるものは、ことできることがある。ことではないできた。

Figure 17. (Sheet 3 of 11)

```
62
                             200 05615
        63
                            200 05016
                            200 05617
        65
                             200 05018
                             20005019
        66
        67
                             20005020
        6 8
                             20005021
                            20005022
        76
                            20005023
        71
                            200 05 024
        72
                             20005025
        73
                            200 05 0 26
        74
                            20005027
        75
                            20005028
        76
                            20005029
        77
                            20005030
        76
                            200 05 C31
        70
                             20005032
        80
                            20005033
        81
                             20005034
        82
                             200 050 35
                             20005036
        83
        84
                             20005037
        85
                             200 95 0 38
                             200 05 039
        86
        87
                             20005040
        8ċ
                            200 05041
        89
                            20005042
        90
                            200 05043
        91
                             29005044
        52
                            20005045
        93
                             20005046
        94
                             200 05047
        95
                            200 05048
        96
                            20005045
BMDRY INPUTS--SURFE AND DCHRGE ARRAYS--LIJEAR INTERPLLATION HAS BEEN USED
 T
        I
                1
               0.000
   1
 101
               0.000
 201
               0.000
 301
               0.000
  40 1
               0.000
 50 1
               0.000
 601
               0.000
  701
               0.000
 £01
               0.000
 50 1
               0.000
1001
               0.000
1101
               0.000
               0.000
1201
1301
               0.000
1401
               0.000
1501
               0.000
1631
               0.000
1701
               0.000
               0.000
1101
1561
               0.000
*** *END PRINTOUT OF INFUT DATA****
```

Figure 17. (Sheet 4 of 11)

CRBITAL VEL UORB MULTIPLIED BY 100.00

I J	1	2	3	4	5	6
1	C	0	0	ن	0	0
2	148	148	148	143	148	148
3	254	254	254	254	254	254
4	326	326	326	326	326	326
5	384	384	384	3 : 4	3 84	384
6	433	433	433	433	4 3 3	433
7	476	476	476	476	476	476
8	514	514	514	514	514	51.4
9	544	544	544	544	5 4 4	544
10	494	494	494	4 54	4 94	494
11	454	454	454	454	454	454
12	420	420	420	423	4 20	420
13	392	392	392	3 2	3 72	392
14	368	368	368	363	368	368
15	346	346	346	346	346	346
16	328	328	328	323	328	328
17	311	311	311	311	311	311
18	296	296	296	206	2 96	296
19	283	283	283	2 3 3	283	283
20	271	271	271	271	271	271
21	260	260	260	264	260	26 Q
22	250	250	250	25)	250	250
23	240	240	240	244	240	240
24	232	232	232	232	2 32	232
25	224	224	224	224	2 24	224
26	217	217	217	217	217	217
27	210	210	210	210	210	210
28	203	203	203	2.13	2 3 3	203
29	197	197	197	107	197	197
30	191	191	191	191	1 71	171
31	186	186	186	100	1 06	186
32	181	181	181	131	1 81	181
33	176	176	176	176	176	176
34	172	172	172	172	172	172
35	167	167	167	167	167	167
36	163	163	163	163	163	163
37	159	159	159	159	159	159
38	156	156	156	150	1 56	156
39	152	152	152	152	152	152
40	145	149	149	143	149	149
41	145	145	145	145	145	145
42	142	142	142	142	142	142
43	139	139	139	13)	1 39	139
44	136	136	136	136	1 36	136
45	134	134	134	134	1 34	134
46	131	131	131	131	1 31	131
47	128	128	128	123	128	128
48	126	126	126	126	1 26	126
4 9 50	123	123	123	123	1 23	123
90	121	121	121	121	1 21	121

Figure 17. (Sheet 5 of 11)

I J	1	2	3	4	5	6
1	0	0	0	J	0	0
2	228	228	228	228	2 28	228
3	355	355	355	355	355	355
4			484			
	4 2 4	484		4 ? 4	4 34	464
5	613	613	613	613	613	613
6	742	742	742	742	7 42	742
7	870	870	870	£75	870	67 O
В	997	997	997	9=7	957	997
9	1124	1124	1124	1124	1124	1124
10	1185	1185	1185	1195	11 65	1185
11	1158	1158	1158	1155	1158	1158
12	1134	1134	1134	1134		1134
13	1114	1114	1114	1114	1114	1114
14	1096	1096	1096	1056	1096	1096
15	1079	1079	1079	1075	1079	1079
16	1065	1065	1065	1065	1065	1965
17	1052	1052	1052	1052	1052	1052
18	1040	1040	1040	1045	1040	1040
19	1030	1030	1030	1030	1030	1030
20	1020	1020	1020	1023	1020	1020
21	1011	1011	1911	1011	1011	1011
22	1003	1903	1003	1633	1003	1003
23	995	995	995	5 95	995	995
24	989	989	989	9 ≎ ≯	9 89	989
25	982	582	982	9 92	9 82	982
26	976	976	976	976	976	976
27	971	971	971	971	971	971
28	966	966	966	966	966	966
29	961	961	961	961	961	961
30	957	957	957	957	957	957
31	953	953	953	953	953	953
32	949	749	949	943	949	94 9
33	946	946	946	946	9 46	946
3 4	943	943	943	943	943	943
3 5		940	940	940	940	54 O
	940					
36 37	937	937	937	937	937	937
37	934	934	934	934	934	934
38	932	932	932	932	932	932
39	930	930	930	539	930	930
40	928	928	928	5 28	9 28	528
41	926	926	926	926	9 26	926
42	924	924	924	924	924	924
43	923	923	923	923	9 23	923
44	921	921	921	921	921	921
45	920	920	920	52 0	9 20	920
46	919	919	919	913	919	919
47	918	918	918	913	918	916
48	917	917	917	917	917	917
49	916	916	916	916	916	916
50	915	915	915	915	915	915
	ATION				458 HF	
						-

Figure 17. (Sheet 6 of 11)

SURFACE ELEV MULTIPLIED BY 100.00

I J	1	2	3	4	5	6
1	160	100	100	1 ^3	1 30	100
2	183	183	183	163	1 63	183
3	141	141	141	141	141	141
4	103	103	103	103	1 03	103
5	66	66	66	66	66	66
6	29	29	29	?≯	29	2 9
7	-6	-6	-6	-6	-6	-6
8	-41	-41	-41	-4i	-41	-41
9	- 75	-75	-75	- 75	- 75	-75
10	-90	-90	-90	− ?⊍	- 50	-98
11	- 52	-82	-82	-82	- 52	-ê2
12	-76	-76	-76	- 76	- 76	-76
13	-72	-72	-72	-72	- 72	- 72
14	-68	-68	-68	-60	-68	-68
15	-65	- 65	-65	-63	-65	-65
16	-63	-63	-63	- 63	-63	-63 -61
17	-61 -50	-61 -50	-61 -50	-61	- 61 - 5.9	_
18 19	-59 -57	- 59	-59 -57	-53 -57	- 59 - 57	-59 -57
20	-57 -56	-57 -56	-57 -56	-56	- 56	-5 <i>6</i>
21	-55	-55	-55	- 3 5	- 55	-55
22	-54	-54	-54	-5 4	- 54	-54
23	-53	- 53	-53	-53	- 53	-53
24	- 52	-52	- 52	- 52	- 52	- 52
25	-51	-51	-51	-51	-51	-51
26	-51	-51	- 51	-51	-51	- 51
27	-50	-50	-50	-51	- 50	- 50
28	-50	-50	-50	-50	-50	-50
29	-49	-49	-49	-49	- 49	-49
30	-49	-49	-49	-43	- 40	-4 °
31	-48	-48	-48	-45	- 48	-4 t
32	-48	-48	-48	-43	- 48	-48
33	-48	-48	-48	-43	- 48	-4 &
34	-47	-47	-47	-47	- 47	-47
35	-47	-47	-47	-47	-47	-47
36	-47	-47 ·	-47	-47	-47	-47
37	-46	-46	-46	-46	- 46	-46
38	-46	-46	-46	-46	- 46	-46
39	-46	-46	-46	- 46	- 46	-46
40	-46	-46	-46	-46	- 46	-46
41	-46	-46	-46	-40	- 46	-46
42	-45	-45	-45	-45	- 45 ^=	-45
43	-45 -45	-45 -45	-45 -45	-45 -45	- 45 - 45	-45 -45
44 45	-45 -45	-45 -45	-45 -45	-45 -45	- 45 - 45	-45 -45
45 46	-45 -45	-45 -45	-45 -45	-45 -45	- 45	-45 -45
46 47	-45 -45	-45	-45 -45	-45	- 45 - 45	-45 -45
46	-45 -45	-45 -45	-45 -45	-45 -45	- 45 - 45	-45
49	-44	-44	-44	-44	- 44	-44
50	0	-44	-44	-44	- 44	0
~ ~	v	1 7	* *	• •	**	v

Figure 17. (Sheet 7 of 11)

I	J	1	2	3	4	5	6
	1	Đ.	0	0	U	0	v
	2	-78	-78	-78	- 76	-78	Ö
	3	-142	-142	-142	-142	-1 42	Ç
	4	-205	-205	-205	-215	-2 35	8
	5	-254	-254	-254	-254	-254	9
	6	-285	-285	-285	−2 :5	-2 25	0
	7	-294	-294	-294	-274	-2 94	0
	8	-277	-277	-277	-277	-277	0
	9	-232	-232	-232	-232	-232	9
1		-168	-168	-168	-165	-168	C
1		-111	-111	-111	-111	-111	C C
1 1		-73 -47	-73 -47	-73 -47	- 75 -47	- 73 - 47	£ 0
	ა 4	-25	-29	-29	-29	- 29	0
1		-18	-18	-18	-1s	-18	e
î		-10	-10	-10	-10	-10	Ö
1		-6	-6	-6	-6	-6	0
1		-3	-3	-3	-3	~3	Ō
	9	-1	-1	-1	-1	-1	0
2	0	0	0	0	J	0	0
2		0	0	0	ú	7	0
2		1	1	1	1	1	O.
2		1	1	1	1	1	0
2		1	1	1	1	1	O
2		1	1	1	Ĭ	1	C
2		1	1	1	1	1	O
2		1	1	1	1	1	0
2		1 1	1	1	1	1	0
2 3		1	1	1	i 1	1	0
ა 3		1	1	î	ı.	1	0
3		î	î	î	î	1	0
3		1	ī	ī	i	î	G
3		1	1	1	ī	1	Ö
3		1	1	1	ů	0	0
3	6	9	0	0	Ų	0	Û
3		C	0	0	ئن	0	C
3	8	e	C	0	J	9	0
3	9	0 0 0	0	0	ű	9	Û
4	0	0	0	C	J	0	ŋ
4	1	0	0	0	J	ņ	Ü
4	2	0	C	0	ن	0	0 0
4	ے د	0	0	0	.	0 0 0 0	υ ^
4		ů Ú	0 0	C	J	0	0 0 0
4	J 6	0	0	n	1		
4	7 7	0	0	0	.1	ņ	Ö
4	6	Č	Ö	0	1	Õ	C
4	9	0 0 0	Ö	0 0		0 0 0	0
5	0	Ç	Ö	C	ز	C	Ċ

Figure 17. (Sheet 8 of 11)

VELOCIT MULTIPL		Y 1	00.00			
I J	1	2	3	4	5	6
1	0	0	0	ij	0	0
2 3	0	2	2 2 2 2 2 2 2 3 2 3	2	2	0
4	0	2	2	2	2	Ō
5	Ċ	2 2 2 2	2	2	2	Ō
6	0	2	2	2 2 2 2 3 2 3	2 2 2 2 2 3 2	0
7	0	2	2	2	2	C
8	C	3 2 3	3	3	3	0
9	0	2	2	2	2	0
10 11	0 0	3	3		3	G G
12	Č	3	3 3	პ პ	3 3	O G
13	Ö	3 3 3	3			
14	0	3	3 3	პ ა	3 3	0
15	Ū	3	3	ა პ	3	C
16	9	3 3	3 3	3	3 3 3	S
17	0	3	3	3	3	0 0
18	0	3	3	3	3	Č.
1 9 20	0 0	3 3	3 3 3 3	3	3 3	Ü
21	Û	3	ى ت	3 3	3	0
22	0	3 3	3	3 3	3 3	Ú
23	Č	3	3	3		Ĉ
24	Ç.	3	3	3	3 3	0
25	0	3 3	3 3	5	3	0
26	0	3	3	غ	3	
27	e	3	3	Ś	3	0
28	C O	3 3	3 3	3	3	0
2 9 30	0	3 3	3 3	3 3	3 3	0
31	0	3	3	۰.۶ خ	3	9
32	õ	3	3	3	3	0
33	0	3	3	3		e
34	O	3	3	3	3 3	0
35	0	3	3	3	3	0
35 36 37 38 39	0	3	3	3	3	O
57 70	0	3	3	<u>ي</u> -	3	ű
35 30	2	3	3	<u>ي</u> د	,3 3) n
40	ก	3	3	3	3	0
41	Ö	3	3	3	3	Õ
42	Ö	3	3	3	3	Č
43	0	3	3	3	3	6
44	C	3	3	3	3	0
45	0	3	3	3	3	0
46 47	0	3	3	3	3	ů.
4/ 46	Ú	3 7	3	<u>ي</u> 2	3	û
40 41 42 43 44 45 46 47 46 49		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 4	3 3 3 3 3 3 3 3 3 4	3 3 3 3 3 3 3 3 3 3 3 3 0	00000000000000000
50	D	D	0	ù	0	Ď
	-	-	-	-	-	-

Figure 17. (Sheet 9 of 11)

DISCHARGE Y DIR MULTIPLIED BY 0.10000E-u1

I J	1	2	3	4	5	6
1	0	0	0	j	0	0
2	-1	-1	-1	-1	-1	0
3	-4	-4	-4	-4	-4	0
4	-7	-7	-7	-7	-7	0
5	-12	-12	-12	-12	-12	0
6	-16	-16	-16	-16	-16	0
7	-19	-19	-19	-17	-19	0
9	-21	-21	-21	-21	- 21	0
9 10	-20 -16	-20 -16	-20 -16	-2J -16	-20 -16	0
11	-12	-12	-12	-12	- 12	0
12	-9	-9	-9	-,	- 9	Č
13	-6	-6	-6	-6	-6	Ď
14	-4	-4	-4	-4	-4	0
15	-3	-3	-3	-3	-3	9
16	-2	-2	-2	-2	-2	0
17	-1	-1	-1	-i	-1	C.
18	-1	-1	-1	-1	-1	0
19	0	0	0	3	0	0
20 21	0	0	0 0	ĵ	0	O C
21 22	0	0	0	ن و	9	0
23	C	0	Ů	J	Õ	ő
24	Ö	Ö	Ö	. U	Ō	ō
25	õ	Ö	Ď	j	ŋ	Č
26	0	0	0	J	0	0
27	0	e	0	j	0	C
26	C	0	0	J	G	0
2 9	0	0	0	J	9	0
30	C	0	Ö	3	9	0
31	0	0	0	ن ث	0	0
32 33	0	0	0	Ş	Ĉ G	0 0
3 3	0	0 0	0	j S	Ċ	0
3 5	Č	Ö	0	ر ز	ò	0
36	ō	0	Ö	j	Č	Ö
37	0	Ō	0	J	0	C
38	8	C	0	j	9	0
39	0	0	0	J	0	0
40	C	0	0	3	0	0
41	0	0	C	j	C	C
42	C	0	0		0	0
43 44	0	0	0	J	0	0
4 4 45	C	0 C	C	3	0 0	0
46	0	0	0	j	9	0
47	C	Ö	Ö	ن	0	
48	ů.	ő	Ċ	J	ŏ	0 0
47	Č	Ō	C	j	Ō	C
50	C	C	0	J	0	C

Figure 17. (Sheet 10 of 11)

DIS CHAP		DIR Y 0.	10000	E-J1		
I J	1	2	3	4	5	6
1	0	6	0	Ü	0	0
2	0	0	0	3	0	0
3	0	0	C	U	0	0
•	0	0	0	J	C	0
5	0	0	0	ú	0	C
6	0	0	0	3	0	0
7 8	0	0	0	u j	0	0
9	0	0	ŏ	j	0	Ö
10	Ö	Č	Ö	Š	0	8
11	ŏ	Ö	Ö	š	ŏ	ŏ
12	Ö	Ö	ŏ	ง	ŏ	Ö
13	Ŏ	Ö	Ŏ	õ	Ö	Ğ
14	Ŏ	Ö	Ö	ŭ	Ö	0
15	C	0	0	3	9	0
16	0	0	e	j	0	0
17	0	0	0	3	0	0
18	0	1	1	1	1	0
19	0	1	1	1	1	8
20	0	1	1	1	1	0
21	0	1	1	1	1	0
22	0	1	1	1	1	0
23	0	1	1	1	1	0
24	0	1	1	1	1	0
25 26	0	1	1	1	1	0
26 27	0	1	1	1	1	0
28	0	1	1	:	1	Č
2 9	Ö	i	i	i	î	ŏ
30	Ö	ī	ī	ī	ī	ō
31	ŏ	ī	ī	ī	ī	ŏ
32	ō	ī	ī	ī	ī	Ď
33	0	1	1	1	1	e
34	0	1	1	i.	1	0
35	C	1	1	1	1	0
36	0	1	1	1	1	0
37	0	1	1	1	1	0
38	0	1	1	1	1	0
39	0	1	1	1	1	0
40 41	C 0	1	1	1	1	0
42	Ö	i	i	i	1	0
43	0	1	2	2	i	0
44	Ö	i	2	2	î	Ö
45	ŏ	2	2	2	Ž.	ŏ
46	ŏ	2	2	2	2	Ö
47	Č	2	2	2	2	ŏ
48	C	2	2	2	2	Ö
49	0	2	2	2	2	0
50	0	0	0	3	Ð	0

TIMES FOR START.STOP. AND EXECUTION -- 5.186 7.175 2.90.

Figure 17. (Sheet 11 of 11)

Ä	GAGE NO.	*	N 19	n •	* in	•	•	;	•	4: 19	. 11	
•	SURF ELV	00.000	9000	000000	0000	0000	0000-0	03000	300	000000	-	
	UVEL F/S	0.00.0	0000	000000	00000	0.900	0.000	000000	0,000	000000	0.000	
	VVEL F/S	0000	0000.0	0.00.0	0.000	0.0000	9.009	00000	9	0.00.0	_	
	GRO ELEV	-1.00	-3.60	-5.00	-7.00	-9.30	-11.90	-13.79	3.	-17.00	_	
	VCIR F/S	00.000	00 00 0	00000	000,00	0.000	0000-6	00000	ě	ر 0000	_	
4	4	4 404 4	4701	41.00		1070	9	1441	-0.2810	-11-2754	-0-10-0-	
•	1161			14.8.0	2476	-0.6742	9	80.44.54	-0-3447	-0.2555	-0-185	
	VVF1 F/S	47.0.0	-9.06.72	-0.0832	-0.6951	-0-1045	! =	-0-1109	-9.06.53	-0.0184	-0.000	
	500 FIFT		00 00		-7.00	-	9	- 13.00	15000	-17.00	-19.00	
	VCTR F/S	U.523E	1.0022	0,9178	0.036	0.6823	0.5678	9.4624	0,3515	n.2561	9.185	
;			,			1			•			
2	SURF ELV	1.6435	1.2335		0.5587	0.2766	6400.0	-0.2628	1116-0-	1000	******	
	UVEL F/S	-0.3025	-0.7349		-0.5305	-0.8933	-0-8174	6001-0-	-0.6331	02460	10000	
	VVEL F/S	0 TH TO 1	-0.2063		-0.2943	9226+0-	##00 *F.	82250 111	201200	00/00/0		
	VCTR F/S	0.3525	0.7633	0.9374	0.5759	0.9498	0.9651	0.7939	0.6651	6.5461	0.4575	
		,										
12	SURF ELV	2.3364	1.0000	1.455	2063-1	0.7119	0.5165	01/00/0	61C+-0-	**************************************	6 26.0	
	UVEL P/S	0142-0-	1664.01	1064.01	104637	116440-		-0-4053	-0-4153	0.000		
	VAEL F/S	70000		250010-	06/20-		11.11	00.25	115,00	17.60	10.01	
	VCTR F/S	15.4.9	0.6443	26010	0.7435	0.7789	n. 7926	n .7505	0.5922	0.4266	0.3687	
									i !			
20	SURF ELV	5.4966	2.0132	1.6152	1.2119	0.8076	0.4233	0.0553	-0.3006	-0.3732	-0.3087	
	UVEL F/S	6.0636	0.2005	0.2226	0.1754	0.1030	0.0442	· 0143	0.0052	0.0012	-0.004	
	VVEL F/S	-0.4695	-0.5836	-9.7347	-0-6470	-0.4299	-0.9617	-0.8907	-0.6242	-0.2883	2 480 40 -	
	GRO ELEV	39.11	-3.00	00.0	00.7-	06.6	-11.00	00000	0.00	60 * / T -	200	
	VCTR F/S	* * * * * * *	0.6171	0.7677	0.000	9.4226	1296.06		24790	C007	* * * * * * * * * * * * * * * * * * * *	
52	SURF ELV	2.2301	1.6163	1.4504	1.0798	0.7318	0.3979	0.0759	-0.2429	-0.2869	-0.221	
	UVEL F/S	4.0402	0.0871	0.1063	0.1269	0.1482	3.1814	0.2113	0.2267	n. 2227	0.1092	
	VVEL F/S	-0.5634	-0.7263	-0.9266	-1.6825	-1-1959	-1.2486	-1.1534	-0.8319	-:.4266	-0-159	
	GRD ELEV	-1.30	-3.00	-5.00	-7.00	-9.00	-11.90	-13.00	-15.0	-17.00	13.00	
	VCTR F/S	4.5638	0.7315	0.9326	1.0895	1.2050	1.2538	1.1725	n • 86 £ 2	4.4.812	0.254 8	
30	SURF ELV	2.1277	1.7476	1,3670	98650	0.6348	0.2874	-0.0461	-0.3913	-9.4726	-0.4015	
3	UVEL F/S	6.0331	0.0529	0.0348	0.6261	0.0308	0.0426	06400	0.0537	0.0303	0.048	
	VVEL F/S	-6.6330	-0.5463	-1.0933	-1.2874	-1.4264	-1.4766	-1.3669	-1.0144	- 3.5621	-0.2410	
	GRO ELEV	-1 .0	-3.00	-5.10	-7.00	00.6-	-11.00	-13.00	-15.0	-17.30	-19.00	
	VCTR F/S	0.6335	0.8479	1 0939	1,2876	1.4267	1-4773	1.3698	1.0158	1,5643	9-2457	
50	SURF ELV	2.1669	1.7026	1,3305	0.5643	0.6007	3.2506	-0-1019	-0.4452	-0.5422	-0.4693	
	UVEL F/S	-0.0.15	0.0025	0.0200	0.0414	0.0528	0.0530	-0506	0.0468	2.0419	0.0435	
	VVEL F/S	-C.6310	-0.9501	-1,2428	-1.4736	-1.6346	-1.6859	-1 -5586	-1.1767	-0.6861	-0.3204	
	GRD ELEV	1.40	-3.00	-5.00	-7.00	00.6-	-11.90	-13.0	-15.0	-17.00	19.00	
	VCTR F/S	0 - e c 1 0	0.9501	1.2430	1.4742	1.6355	1.6667	1.55.4	1.1776	n.6874	0.3233	
•	SURF ELV	2,1126	1.6597	1.2924	0.5237	0.5610	0.1959	-0.1520	-0.49FB	5952	-0.5142	
	UVEL F/S	0.0183	0.0442	0.0653	0.6789	0.0765	0.0669	9.0558	0.051.0	0.0518	1 - 05 - 0	
	VVEL F/S	-0.7151	-1.0295	-1.3647	-1.6293	-1.8097	-1.8629	-1.7233	-1,3231	-7.8029	-0-400C	
	GRD ELEY	-1.09	-3.00	-5.1C	-7.00	-9.00	-11.00	- 13.00	-15.00	-17.00	-14.00	
	VCTR F/S	4.7133	1.0304	1,3662	1.6312	1.8113	1.8641	1.7242	1.3241	9.03.0	4 + 0 + * 0	
4		2.050.5	1.6104	.2348	0.4710	0.5847	0.1563	-n .1869	-0.5248	-2.6240	-9.5426	
		6.0175	0.0370	.0348	0.6391	0.0425	0.0435	1.0444	0.0470	7.0474	9.050°	
	VVEL F/S	-0.7359	-1.0977	-1.4726	-1.7689	-1.9677	-2.1236	-1.8753	-1.4556	-0-8140	-0.4792	
	Fig	gure 18.	Sample	results	for se	lected	ososa fr	an plane	40004		! !	

results for selected gages for plane beach computation

more complicated situation. A variable grid is employed, with NMAX=77 and MMAX=54, so as to have a greater resolution near the inlet and the surf zone. The JCL for this case is shown in Figure 19. In addition to files FT 35, 36, and 95, file FT 39 containing the grid expansion coefficients is needed. In this case, output files FT 11, 13, 14, 15, and 20 are being saved at the end of the run for later use.

- 64. Part of the input data from file DATAW3L is shown in Figure 20. Note that MPR is set to -1 for full printout, $\Delta\alpha_1 = \Delta\alpha_2 = 100$ ft and $\Delta t = 18$ sec. The simulation is run for 67 time-steps. Twenty special gages are used with NFREQ=2. A printout of results is desired at ITIME=67. There are two surf zones over a part of the grid. JDELAY is set to 15 to delay printing of gage information. It is desired to build up the radiation stress terms over 15 time-steps (NTIMEB=15). γ is set to 0.754. Averaging of results over the last 10 time-steps is required (ITAVG=10). Jonsson-type eddy viscosity formulation is desired so IEDDY is set to 2.
- 65. Figure 21 shows the coded friction array and the flags for this application. A sampling of the averaged results for $\bar{\eta}$, U, and V at the end is also shown.

Cost of Computation

66. In general, the cost of running the model depends on the number of grid points used, the number of time-steps of simulation run, amount of input and output, the job priority, the computer, and the computer vendor used. The following total cost information was for running the model at standard priority on the CRAY computer of BCS. For the plane beach application, described in paragraphs 59-62, involving 300 grid points and 105 time-steps, the total cost was approximately \$7. For the Oregon Inlet application, described in paragraphs 63-65, involving 4,158 grid points and 67 time-steps, the total cost was approximately \$23. Therefore the computation costs for the model may be considered modest.

```
CDEXX, P02, T40, STCA1.
USER, UN, PW.
FETCH, DN=AA, GDN=WIFMSRC, UN=CEROD2, DT=C, DS=FF.
UPDATE, F, I=AA, P=0, C=0, N, L=0.
FETCH, DN=A, GDN=UPDL2RV, UN=CEROD2, DT=C, DS=FF.
UPDATE, F, P=&NPL, IN.
CFT, I=SCPL, L=0.
FETCH, DN=FT35, GDN=AWED3M, UN=CCCC26, DS=CI.
FETCH, DN=FT36, GDN=ORDPRV1, UN=CEROD2, DT=C, DS=FF.
FETCH, DN=FT39, GDN=EXPCFRV, UN=CEROD2, D1=C, DS=FF.
FETCH, DN=FT95, GDN=DATAW3L, UN≈CEROD2, DT=C, DS=FF.
LDR.
REWIND, DN=FT07.
COPYD, I=FT07, D=$OUT.
REWIND, DN=FT08.
COPYD, I=FT08, D=$OUT.
REWIND, DN=F111.
STORE, DN=FT11, GDN=OREGAGE, PAM=R, DS=CI, NEW, NA.
REWIND, DN=FT13.
STORE, DN=FT13, GDN=ORESURF, PAM=R, DS=CI, NEW, NA.
REWIND, DN=F714.
STORE, IN=FT14, GDN=OREVEL, PAM=R, DS=CI, NEW, NA.
REWIND, DN=FT15.
STORE, DN=FT15, GDN=OREDIS, PAM=R, DS=CI, NEW, NA.
REWIND, DN=FT20.
STORE, DM=FT80, GDM=ORESEDI, PAM=R, DS=CI, NEW, NA.
EXIT, U.
COST,LO≃F.
LOGFILE, L=LUG, FULL.
STORE, DN=LOG, GDN=XXXLOG, DT=C, DS=FF, UN=XXXXXX.
◆₩EDR
+READ A
◆₩EOR
   95
◆WEDF
```

Figure 19. Job Control Language (JCL) for Oregon Inlet, North Carolina, application

```
CURPENT MODEL - OREGON INLET APPLICATION
 $60VE PER=8.0,HTQ=11.39,THETAD=51.1,DEPMAX=61.,GAMM9=0.754, $END
  77
      54
   2 2000
                 100
 18.0
         100.
                 100.
                         32.2
                                  .0001
                                           0. u
                                                   5.0
                                                           1.0
0.4
         0.4
                40.0
                        63.0
                                0.0
                                        -63.0
  67
           0
                       2
               1
                  20
                           0
  67
   4
              35
                      37
                  36
                          37
                               37
                                   38
                                       38
                                           40
                                               73
                                                       73
                                                           51
                                                               52
      5∂
25
  53
          52
              52
  53
          27
               2
                       2
                  14
                          11
                              16
                                   10
                                       19
                                           26
                                               12
                                                   14
                                                               35
                                                       16
  35
      34
          36
              37
 .03
      .03
 22
    22
        22
           22
              ...
                 22
                    22
                        22
                           22
                              22
                                  22
                                     55
                                        22
                                           55
                                                     22
                                               25
                                                  25
                                                        22
                                                           55
                                                               20
 22
    21
        21
           21
              21
                 21
                     21
                        21
                           21
                              21
                                  21
                                     20
                                        19
                                           16
                                               13
                                                  12
                                                     15
                                                        17
                                                           26
                                                               25
 24
    21
        13
           14
              16
                 21
                     9
                        10
                           10
                              11
                                  11
                                     1 1
                                        11
                                                  11
                                                     10
                                           11
                                                        10
                                               11
                                                           10
                                                               10
 11
    10
        11
                 11
           11
              11
                     11
                        11
                           11
                              11
                                  11
                                     11
                                        11
                                           11
                                               11
                                                  11
                                                     11
 35
    35
        35
           35
              35
                 35
                    35
                        35
                           35
                              35
                                  35
                                     35
                                               35
                                                  34
                                        35
                                           35
                                                     35
                                                        36
                                                           37
                                                              35
 33
    35
        35
           35
                 37
                    35
                                  41
              34
                           36
                              41
                                     40
                                        41
                        36
                                           41
                                               40
                                                  40
                                                     41
                                                        42
                                                           42
                                                              42
 43
    43
        42
           43
              43
                 43
                    12
                        16
                           18
                              22
                                  31
                                     44
                                        45
                                               43
                                                  35
                                                           20
                                           43
                                                     33
                                                              22
 21
        55
                 23
    24
           25
              23
                    24
                        24
                           53
                              24
                                 24
                                     24
                                        24
                                                  24
                                           24
                                              24
                                                     24
                    26
                        31
                           37
                              38
                                 38
                              47
                                 45
                        45
                           46
9399999999999999999999999999999
     55555
               5 5
                   5 5
                        5555555555555555555
                  5
                       5
2555555
                   5 2 2
              2 2
                  2
                        5555
                   555555555555555555555
99 2 2 2 2 2 2 2 2 2
              555
   555555
               2 2
                  2
                   5 2 5
2 2 2 5
2 3 6 6
      5 5
                5 5
                        55-5555555555555555
          5 5 5
               2
                   5 5 5
     2
      55555555555555
   5
        5
          2
                  2
                   2
           2
             5
               5
                5
                     ٤,
                       2
                        5
                            5
                             555555555555555
      2 2
           s s
               2 2 2
                   2
                     2 2
          2
                        2 2 2 2
          2 2 2
              5 2 5
                   5 5 5
                        22222222222222222222
              5 5 5
  2
   2
                   55555
     5 5 5
          2 2 2
             2
      5
        2
  2
     2
      2
  2
   2
     22222222222222
                          222222222222222222
ϙϥϙϥϙϥϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙϙ
            76
8 1 1
      54
          2
9
  0 2
       1
          2
            1ē
                 Ű
9
         23
            53
                 ŋ
  0 2
       1
9
            53
  Ü
   2
      76
         12
                1
9
  0 1
       1
                 0
99
 0.0
       0.0
  15
 $PAP PHD=1.99.6" =6..RAD=1..NTIMEB=15.ADV1=1..FRC1=1..CF=.01.
  THEFT OF STAD
```

Figure 20. Input data from file DATAW3L for Oregon Inlet, North Carolina, application

for averaged results it 1 of 26) Oregon Inlet, North Carolina, application (Sheet 1 of sample and a array, flags, friction Coded 21 Figure

Figure 21. (Sheet 2 of

igure 21. (Sheet 3 of 26)

Figure 21. (Sheet 4 of 26)

Figure 21. (Sheet 5 of 26)

11	5850	5750	5050	5053	8080	000	9000	5000	5050	5050	1019	1919	1010	1010		1010	1010	1010	1010	1910	1910		1010	1010	1910	1910	1010	1010	2101	1010	1010	1910	1010	1919	0101	1010	1010	1010	1010	1910	1010	0101	0161	2101	2707	0101) C	1010	
16	5050	5050	505	\$050	5056	5050	0 00	5053	5050	5350	0 + 0 9	9179	6150	61.7		6130	6100	61.19	9 10	61 an	61 70	10	0, 19	6119	, i	6119	61:19	6130	61.53	61.19	6113	6150	61 an	6129	61.9	0, 19	ù: 19	6133	6103	61.3	61.9	61,0	6103			0.14	2007	8171	
5	5050	5050	5050	5059	5359			5050	5050	5050	6262	6363	6363	6363	2070	6363	6363	6363	6363	6363	6363	2020	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6565	200	6363	6363	6262	8171	
*	5050	5050	5050	5059	5050	000		50.00	5050	5050	6262	6363	6363	6363	2020	6363	6363	6363	6363	6363	6363	200	6464	6363	6363	6363	6363	6363	6563	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6565	929	6363	4262	8171	
22	6	2	5	£	2	£	2 5	38	8	5	8	36	χ.	3 2	? ;	, 4	36	36	26	36	8;	8;	9 5	36	38	36	2	200	3;	2 2	36	36	36	36	6 36 3	36	36	36	36	36	20	36	9;	5;	9;	9 %	6 26 2	171	
72	5050	5050	5050	5050	5050	0000	0000	50.00	5050	5050	6262	6363	6363	6363	2000	6363	6363	6363	6363	6363	6363	2020	6262	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6.563	6.563	6 2 6 3	6262	9171	
11	5050	5050	5050	5050	5050	000		5050	5050	5050	6262	6363	6363	6363	2000	6363	6363	6363	6363	6363	6363	2000	6263	6363	6363	6363	6363	6363	6363	6363	6363	6363	5363	6363	6363	6363	6363	6363	6363	6363	6363	6363	5363	6363	2000	6363	4040	3171	
10	5.050	5050	5050	5050	5050	2020	2000	5050	5050	5050	6262	6363	6363	6363	2020	6363	6363	6363	6363	6363	6363	2000	6262	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6353	7	2004	6969	0000	3171	
69	5050	5050	5050	5050	5050	200	000		5050	5050	6262	6363	6363	6363	2020	6.000	6363	6363	6363	6363	6363	2020	2020	6363	6363	6353	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	2000	4171	
ę¢	5050	5050	5050	5050	5050	0000	0000	1000	5050	5050	6262	6363	6363	6363		6363	6363	6363	6363	6363	6363	2020	2020	6363	6363	6363	6363	6363	6363	6363	6.46.5	6363	6363	6363	6363	6.36.3	6363	6363	6363	6363	6363	6363	6363	6.56.	6262	6 2 6 2	4243	8171	
67	5050	5050	5050	5050	505	2020	000		5050	5050	6262	6363	6363	6363	2000	6363	6363	6363	6363	6363	6363	2000	6363	6363	6363	6363	6363	6363	6363	6363	6.36.5	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	2424	4242	A171	
99	505	505	505	505	505	202	505	200	505	505	6262	6363	6365	6363	7076	636.4	6365	6365	6365	6363	6365	6262	6363	6363	6365	6363	6365	6363	6365	6363	636.5	6363	6363	6365	6365	6365	6365	6365	6365	6365	6365	6365	6363	6363	6363	6263	4267	417L	
6.5	5050	5050	5050	5050	5050	5050	200	900	5050	5050	6262	6363	6363	6363	2000	6363	6363	6363	6363	6363	6363	200	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	4242	£171	
•	50.50	5050	5050	5050	5050	2020	5050	900	5050	50.50	6262	6363	6363	6363	20.00	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6363	6363	6363	6363	6363	200	6565	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	2000	6363	4040	8171	
63	50.5	505	505	202	505	202		. 6	500	505	6262	6363	6363	6363	000	6.00	6363	6363	6363	6363	6363	6.56	, qc q	6.36	636.4	636	6363	6363	6363	636	6.36	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	636	6363	636	000	1263	424.7	6171	
62	9000	5050	5050	5650	5050	5050	9000	900	5050	6050	6362	6363	6363	6363	2020	6363	6363	6363	6363	6363	6363	6565	6.06.	6.36.5	6363	6363	6363	6363	6363	6363	6.36.3	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	2929	200	6 26 3	4242	8171	
61	5050	5050	5050	5050	5050	2020	000		5050	6260	6363	6363	6363	6363	2000	6.46.4	6363	6363	6363	6363	6363	6563	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	6363	2000	4242	8171	
2	-	۰ ۵	מיו	•	6	، م	~ •	o o	` a	=	21	1	s	£ ;	9 :	. K	2	8	2	8	ಌ :	₹ 8	C a	8 2	: 8	8	묽	ន	3 :	3 \$	5 27	28	37	3 3	F) =	; ;	; ş	÷	\$	đ.	ş	7	.	£ ;	3 :	ត	X I	3 3	

Figure 21

9 ^ 1	300.00	
SURFACE ELEV A	MULTIPLIED BY	

53	٥	r.	۲,	-	7	120	7,	250	4 50	4 50	5 C1	563	200	201	200	500		0 0	9 (2 6			2 6	•	, u) U		2	-	(A	2	-13	-54	-35	-23	-21	9 2		-21	g,	-1:	٠ -	7	-15	N 4	~ ^	?	7) ·	7 7	7	,
13	0	0	0	0	•	0	90	004	400	ر 4 ن د	50.0	500	500	500	200	000	2 0		9 0			9 6				: :	;	8	27	13	15	n	8-	-18	-27	-3	75.	-24	-27	-1-	-51	1	-13	∾.	7	? '	~	•	N 1	7 6	, ,	ı
=	2	,		٠	٠.	٠.	35.	9	Ť,	4		ુ અલ	ر. د.	30	20	200	0 4					,	3 :	20			3 5	'n		16		7	7	-24	-36	-16	. v .		,	7	Ÿ	ĩ	7	7	7	7		7		4 6	` `	ı
	0	6	•	ر.	ن ،	c	^	0	0	ن	0	0	200	503	ن د د	200	9 6	200	9 6		9 6		7 6	9 6	3 5	3 4	0	3 =	=	*	7	-15	-24	-37	-2	-28	61.0	-	-13	Ð	9	9	~	'n.	?	?		7 '	N -	, (ı P	,
31	۰	ں		•	٠,>	ت	0	3	er.	•		200	200	200	200	205	ָ ה ה	3 4 C) c	 		2	1 2	. 4	0 F			-	-	ę	==	-25	-31	-24	-54	3 3	13	-	ī	ï	9	9	- 2	•	(y (7	N -	• •	V P	,
15	0	9	-	0	0	0	0	0	0	O	170	200	200	200	200	200	000	000			0 0	136	2 .	;;	- 4	2 2		3.5	-	-	Ť	-12	-22	-34	-29	-26	77	-	-15	-12	-10	-1	9	7	•	?	٠,	7	7	• (V P7	1
=	6	•	•	0	0	0	0	0	0	c	0	170	200	500	200	9	900	200	200	9 6	0 0	2 2	2	7	2 2	2 5	3 6	: :	•	۰ م	7	-12	-22	45	- 32	12.	2 .		-15	-13	-13	-	Ģ	Ť	'n	?	ņ,	;	2 -	7 6	7	,
13	٥	•	•		o	6	•	0	0	<u></u>	200	200	200	000	200	200	0 0	900	200	9 6	0 0	7	9 9			7 .	3 6	- 2		~	'n	-13	-23	-35	-32	-27	52	3	-15	-13	-10	Ŷ	Ģ	ņ	7	2	7.	7	N (7 9	7 7	•
12	c	-	. 62		0	0	c	0	0	c ·	c	٥	200	200	200	200	0 0		200		9 6	9 2	2 0	, ,	2 5	V #	, ,	? =	•	~	ř.	-15	-23	-35	-32	- 28	-23		-16	-13	7	ų. I	•	ç	Ť	2	?	~	N (•	, r	•
=	٥	•	•	0	•	0	0	0	0	0	0	٥	200	200	200	200	200	200	000			7 6	2 .	2 6	0 =) E	3 :	2 0	•	~	7	-11	-25	-33	-33	-29	0 0		-17	+1+	7	6	•	ş	1	17	7	?	Ņ	V) M	,
97	6	•	•		0	•	•	•	0	0	0	٥	200	200	000	200	000	200		2 6	9 6	9 6		1 1	: :	, R	9 6	4 F	•	۰ ۵	7	-11	-20	-32	-33	-30	-26	100	-11	=	-15	6	-	٩	ĩ	•		ş	2 (7	7 17	,
6	0	-	-	-	ں و	0	0	0	0	0	•	0	200	200	200	200	0 0	000	200) (2 6	9 4	2 .	1 .	- 4	* # 0 #	9 6			· 177	4	-10	-26	-32	46-	-30		100	-17	-15	-15	61	7	9	Ŧ	'n	'n	?	?	7 1	? !?	•
6 0	c	c		٠.2		0	0	0	• •	c	o	<i>د</i>	200	200	200	200	0	2 0	3 c			9 4	2 6	1		F 16	9 6		•	· m	'n	-:	-20	-32	45-	9	72.	200	-17	-15	-15	•	ű	9	10	7		~	Ņ	7	7 P7	,
~	•	-	•	-	•	0	•	0	0	u	0	9	200	200	200	200	900	000	000	9 6	0 0	9 4	0 .	1 1	: :	, w	9 6	, F	•	• ••	?	-11	-20	-32	-35	-31	-51		-18	-15	-12	-10	8	9	ŗ	?	7	ņ,	Ņ	Y 0	¥ •7	,
9	•	•		- 73	• •	0	•	•	•	J	0	٥	200	200	200	200	300	200	200	9 6		3 2	2	7 7	: :	P 4	9 6	7 .	-	- 17	ņ	-10	-20	-32	-25	-35	- S	,	-19	-15	-13	-	9	٩	'n	7		ř	N	N 6	V 17	•
in i	•	•	-		•	0	•	•	•	0	0	9	200	00 E	9	9	3	0	3 :	3 :	0	9 6	1	7 0 0	2 4	2	9 6	7 1	•	*1	7	6	- 19	- 31	- 35	- 35	7 4	3 %	- 19	- 15	- 13	97-	မှ	ģ	7	ŗ,	'n	7	2	7	"	,
•	7	, ;	• •	. 7	۰.٦	7	•	,	•	,	,	7	S		o o	3	ت د ر	, G	, ,	,	,	, . •		? .	2 3	6 6		3 :	, ,	'n	7	°	7.0	7	-36	- 35	7 C	3	7	-15	-17	?	-	ů	Ţ	?	?	7	7 ;	7 7	7 7	,
m	•	•	•	• •	0	0	•	•	0	•	3	9	200	200	200	200	200	000	200				1		- 1	0 5	5 6	: :	: =		0	-	-18	-30	42-	-29	126	9 7 7	-16	-1	-11	9	ę	1	?	7.	7	•	7 9	> -	77	•
~	0		• •	•	• •	•	3	•	•	•	•	9	500	200	200	200	200	200	200	9 6	2 0	9 4	1	3 7	2 4	9 9	y 4	9 -	: :		Š		-	-26	-33	-30	9 6	101	-16	-13	-10	9	ŗ	ĩ	۲	7	7	-	0	> c	• -	•
-	7		• •	• =	•	0	د	-	3	3	•	8	200	300	500	200	3	3	300	9 6		9 6	•	1	3 3	9 4	2 5	3 .	2	13	•	-	-10	-25	-33	99	-27	100	-16	-13	7.	-	ņ	'n	7	0	•		۰,	- 4 -5	a c	•
7	_	۰ ۵	. ~	•	'n	۰	~	20	•	2	=	2	2	£	2	9	Ξ.	2	2	₹:	3 8	3 3	3 3	C Y	C S	e 8	į	e 8	; S	3 2	23	3	*	R	A	2	3 3, 9	.	: 7	3	2	\$	ŧ	\$	-	3	6	3	3 5	X:	2 2	i

Figure 21. (Sheet 7 of 26)

7	500	210	450	500	=	= :	3 ~	· 00	1	-	12	52	0 6	7 P	56	27	, K	36	80	45	4	21		*	. (3	26	26	2	20	r 0	66	53	5	Ξ°	ů	5-	-35	82-	2	7 1	•	9	•	2	çı e	7	
62	500	310	4 30	•	10	= :	3 2		13	=	13	÷:	7 6	5 2	23	52	? ;	, 10 10 10 10 10 10 10 10 10 10 10 10 10 1	37	0	m (5 1	U	2	9	26	53	n (6 u	6 4	32	58	13	- o	7	-18	-31	7	D	•	7	۰ ب	7	?	7	77	
3	500	300	9	u.		7	٠. م	: =	: 4	ç	ų.	13	,	2.5	'n	13	í	, v	~	22	50	3.	2 -	-		J.	57	27	กับ	J ►	7		i	ي .ر ا	-14	-32	+	-53	7	3 2		9	Ņ	~	7	77	
37	-	0	0	9	^	σ,	D L	7	0	'n	11	53		27	20	27	9	0 K	9	3.0	80	6 5	~ o	<u> </u>	36	39	35	37	•	2 4 6	9	9-	+1-		-32	-27	-33	-15	-12	, ,	•	4	7	-5	- 7 .	77	
36	0	6	c	ŝ	u:	3 0	gv •4	116	120	5,70	500	23	? :	7 2	45	6	:	† 4	9	41	47	9	e 4	-	37	40	36	56	7 .	7	7	-	-13		-27	-26	-2 B	7:	200		9 ()		Ň	~	7	77	
35	1	0	•		œ	no ·	~	700	200	200	200	200	2 ;	9	63	63	•	0 4 V W	29	62	61	6.	9 0	V 4	9	35	53	7	<u>.</u>	٠ -	9	-11	-15	2 2	-22	-41	-15	-37	-17	3 y	9 4	1	~	2-	7	77	
ø,	iņ.	0	S.	~	α	~	~ 6	7.00	800	200	263	200		900	1 02	66	6	9 G	£2	79	11	25	0 K	9 6	2	40	56	18	9	• •	ø	-13	-16	- 19	-29	-33	40	-55	-12	<u> </u>		7	-5	Ņ.	ᅻ .	77	
33	9	0	s	1	w	۲.		730	150	500	530	000		200	500	200	5.0	107	133	96	89	31	1,5	9 50	9	32	23	12	æ (١,	- ap	-12	-10	, i	-30	-35	-52	5.	21-			٠ ٢	7	7	7 .	77	
32	in i		w.	^	٥,	~	200	720	306	500	500	500		900	200	305	200	126	114	105	*	e0 (1,) (j	(A)	5. 2.	20	2	۰.	٦ ٢	9	-11	-14		-33	-29	-27	-15	250		2 =	٠ ،	75	2	7	77	
31	1	0	*	9	w	6 0	8 6	650	750	500	200	200		900	500	200	200	900	136	105	٠. د ت	79	24	9 4	35	56	18	=	ი.	- r	-	-10	<u>.</u>	2 C	-36	-28	=	-53	25		, ,	ņ	7	7	7	77	
30	1																																													77	
29	17	0	117	S.	9	۲.																																								77	
28	P7	ے ,	P)	'n	R	•		_					_							_	_						_								_											7 7	
27	4	•	~	'n	'n	9																																								77	
56	7	•	~	'n	•	S																																								77	
52							ne		•																										_											77	
5.4 2.4	1						٠ ٦																																							11	
23	7						- °																				S					_			_	_			_							7 7	
22	•	_					7 7																				7	_							_											7 7	
21																																														7 7	
7				. ~	<u>ر</u>	_			,	۔۔				o .c		., 	· ·			_	_		۰ ۸		. ~	_	_			• •			•	•	۰.	۵,	_	_	•	• •	'				•		
						-					• •		"		, , , ,	-		-		~ *	•				• •	-	•				, ,		72			17	~,	• '	٠,			, .	_	_		., .	

Figure 21. (Sheet 8 of 26)

9	9	20	00	8	00	6	o (, ,	9 0	20	72	E	£	25	•	· ·	; ;	27	*	<u>ب</u>	25	34	*		3	2	, ,		15	25	* :	-26	1 10		56	-	52	7 7	ូភូ	. c	91	7	ş	r	2	7	7	7	
D		_	_				_	-	•				_							_	_					_																							
in i	•	20	20	20	20	io (ē (6	, J	13	€	œ.	_	•	N -	• ´	ī	Ť	Ĩ	Ť	ĩ	Ÿ	ï	'n	ī	'n	7	ī	ñ	í	<u>.</u>	1 17	í		ĭ	Ñ		1	i 1	Ŧ	7	ï	Ť	•	ĩ	ï	ĭ	ï	•
35	15.	500	0.0	20.	0	ر ا و	2 5	, ,	900	147	102	111	10,	80 i	0 4	,	0		9	4	-16	-22	5	-36	~ ·	-23	3 0	177	-24	-31	52	7 7	-25	ŕ	-21	7	2 1	7	-27	3.	Ĩ	e.	÷	?	7	7	-5	ŗ	٠
57	150	190	230	253	200	000	9 6		500	137	102	127	110	65		,	•	•	33	13	0	~	-13	-50	7	200		. 63	Ť	-+1	Ş;		-36	-20	-32	-14	-52	4	: =	9	P	-10	=	~	-2	7	?	ç	•
2 6	20%	150	500	500	150	500	206			133	95	111	107	5	. J	, t		72	'n,	52	4	3 6	16	۲.	~ ;	-12		-26	4	-34	5	2 4	į	-11	-27	9	25		3	or.	-23	T	~	ÇJ	F.	7	?	?	
in S	:	_																_			_											9 -																	
Š	;																				_											9 5																	
53																																2 t																	
25	ľ																																																
	!																															ָרָים ביים																	
<u>.</u>	500	20(ĕ	110	120	9	233	7	4	4	~	•,	*	•	ñ :	n u		9	5	ç	š	4	4	6	-	- (• •	ï	Ξ	7	•	3 · a	, 6.	=	-19	-	-	-		Ť		-27	Ÿ	T	7	?	ç	?	
20	500	100	100	110	200	300	320	9 6	9 0	00	7	83	63	4	-	19	9 4	5.2	2	21	•	9	₩	9	5	æ :	-	:=	:=	13	15		::	=	-12	9	10 P		22	~	•9-	-80	~	1		-5	7	?	,
4.9	500	100	110	12 C	130	150	200	9 6	4	6	15	40	83 Q.	20	e .	9 6	•	· m	-	S	'n	E D	9	-	₽ :	n d	: :		. 5	9 ?	S ·	~ -	: -	17	27	•	96	9	, ,	7	-55	-15	7	9-	1	?	?	?	1
a T	500	200	100	110	150	200	000		200	31	24	ß	-13	••	N	7	,	?	?	7	7	N	'n	9 ;	= :	12	0 4	2	32	.	:0 ·	7 :	9	7	85	12	6 °		. 6	0	-14	-14	?	'n	r)	?	7	~	
•	200	200	200	140	150	200	000		2	-27	-56	-42	-40	-29	-13		9	9	7	7	-	9	10	<u>س</u>	17	27	9 6	Q Q	72	69	67	9 4	9	65	69	9	76		. 2	5.1.	-16	-13	-16	-10	2	7	7	7	
9	200	200	100	156	200	300	0 9	3 6	3 ~	19	9-	-63	99	52	7	9 5	9 4	2 -	9	18	\$	36	63	ر ا	4	ı∧ ,	0 u	9 0	63	29	6.8	9 4 20 4	67	63	5	:	£ :	- 1	.27		-16	-50	-11	Đ,	ا	~	-2	7	1 .
Ş.	1	_							_	_			_							_												8 , 4																	
•	}																															3 4 7																	
m																																																	
•	6	in in	2	31	7	90																										7.5																	
\$	200	200	210	300	00	200	•	•	-10	-51	-53	-13	*	56	52	9 6	5	100	33	33	38	4	4	60 i	ຄີ	21	•	4	28	65	67	4 6	63	42	22	=	7 1		-26	-10	-23	-20	7	-	'n	-5	7	7	•
7	30.00	260	210	90 ¢	500	70	o r	- ,	.	-16	-16	?	2	97	25	, c	3 %	8 2	8	5	21	55	52	35	2	37	U 4	2 5	9	53	9	3 3	32	39	=	-	7	3	-11	-24	-27	ç	7	9-		7	7	7	
7	-	۰ م	· • • •	•	G	9	~ :	• •) <u>e</u>	: =	27	13	:	55	4 !	3 2	; <u>a</u>	2 2	1	8	2	z	£	%	23	8 5	. 5	3 25	K S	:3	ន	ខ្ល ៖	3 25	38	39	2	7 9	; ;	;	Ŝ.	\$	47	9	64	50	23	S	3	

Figure 21. (Sheet 9 of 26)

-	200	500	52.	500	350	770	9 6	0.04	*	503	148	113	6.	9 5	Í	, to	16	m	th I	-15	2	- 36	7	?	7	7		-28	-24	-25	-55	7	7	1 7	-19	-15	5	7		` *	9	9	ç	1	Ť	7 ?	; ``		
2	0	~	~	•	•	ne	> •	200		•	•	-	6	2 7	? •	32	7	'n	~	-17	-27	3	9	?	?	126	25	12.1	-22	-21	-25	() . ()	1	7	-15	-13	7:	ب د ا ا	-	-	5	'n	Ť	P).	?	77	1 7	-	
2	0	2	2	20	•	3	Э (200		0	S	- 1	6	9 4	7 6	'n	20	1	ę	-16	-52	?	-29	87	2	200	-21	-19	-19	-17	-17	9:		*	-15	-1	ŗ	p r	4	ķ	ç	7	7		7	7 7	1 7	•	1
2	200	200	000	200	5		9 6	200	300	500	154	110	9	E 7	9 4	9 5	23	-	ř.	-15	52	3	-28	2		121	118	-18	-16	-17	-15	:: ::		-12	-11	ę,	ę i	7	•	7	7	7	ņ	ş	2	٠,	; 7	•	,
2	200	200	60,	200			0 0	900	300	200	153	117	97	19	9 6	, w	21	•	7	-15	-5	-35	-27	-52	57	N C	37	-12	-17	-16	-15	÷:		-12	7	6	9	9 4	•	1		7	?	-5	7	¢, ¢	' 7	•	,
25	•	8	ະ	0	2	2 6	м с	200		0	S.	-	97	9 4) Q	, e	20	^	ų	-15	52	-35	80	522	7	7 6	3 5	-18	-17	-16	-15	-12		-12	-11	Ç,	•	9 4	•	7	'n	٩	۲	7	7	E: C	' '		
7	0	6		0	► .	•	Ν.	200		0	•	-	95	67	2 4	P 17	13	9	9	-16	-26	40-	-28	-52	*2-	121	10	1	-16	-16	-15	ज़ .	-	3	•	ŗ	.		, ,	7	. 5	?	-5	7	7	c	? -	10	,
2	0	0	•	0		•	N 6	200		0	•	-	و ا	:;	7 4	3.1	17	•	-	-18	-27	-36	N (Ν (N (725	- ۸		18	-15	-16		67.	112	-10	-10	-		1) P)	i in	?	-2	7	7	~ <	, c	•	,
69	•	•		•		•				0	-	_	16	9	2	PM	16	m	61	-19	-58	-27	-31	-55	-21	6 F	? -	-21	-13	-15	F1-	-:	717	7 -	-13	9	5	9	9 4	1	1	7	-3	-	7		, e	• •)
8.8	0	•	•	0	•	9 (•	9 6		0	•	-	91	+ 0	r +	5 7	15	~	ů	-	N	n	~ •	N	N	No	u o		-	~	-	┍ .	-	-13	-	~	71	- 7	1	ď	1	ç	-5	7	7	c- c	, ·-	ی د	
67	•		•	•	0	ο.		000		-	-	•	99	11	9 .	1 6	12		-	N	~	×	∾ .	N I	N (\sim	N	• -	1 (1)	•	~	~	~ .	7	• ~	~	8	ي ا	<u>ب</u> م	? 1	1	'n		7	7		> c	9 6	,
99	200	250	300	200	200	200	280	000	000	20	142	104	83	9 0		70	_	10	-16	-25	40	-29	-59	-52	-25	7,0	775	2 -	-1:9	-17	-17	-16	-		-12	-11	5	,	9 4		1	1	1	?	7	ಬ ೯	ə -	10	•
59	9.0	200	5.00	900	3 00	2 20	3	200	000		138	65	11	29		9 =	-	- 10	- 19	- 28	- 36	- 32	- 32	12.	- 59	-5	9 6		- 13	-21	-11	٥٧-	- 16	9 4	-16	- 12	- 12	,		· "	'n	1	17	7	7	0 0	° -	1 6	•
3	3	500		150	7	ر ب	3	٠ د د	•		130	.r)	3	9 1	ř.	3 4	7	-11	12	134	25.	134	-24	70	-51	٦.	110		-23	-1	-21	-10				-15	-14	7	1	9 7		1	?	?	7	٠,	7 -	7	•
63	200	500	200	500	200	200	200	205	200		121	11	28	7 5	7	3-	-10	-19	-27	-34	-25	-39	-19	9 -	-17	9	611	1	139	-13	-36	-15	, ,		101	-26	•		9	3 7	•	'n	Ť	7	ç	77	11	7 -	•
62	500	200	200	200	126	-	200	000		. ~	69	72	24	8	Ξ'	י ח ו	-22	-26	-2.	-33	-39	14.	-32	9	-27	3	22.	? ?	-36	-16	-35	-13	# ·	1 1	. 40 1	-30	9	7.	1	3 7		•	Ť		ř	7	17	; =	•
61	200	200	150	500	200	200	200	260		115	67	6.2	Ŧ	13	9	27.	-26	-30	-39	-17	-35	-16	9	-	7	-15		1 1	-10	-32	-10	9	2	7	-22	7	-16	2,	7	3 =		?	ķ	7	۶	7.	77	7 -	,
7		۰ م	10	•	ĸ	9	~			: =	2	23	#	£ ;	9 9	> 2	2	2	ี ส	8	ន	٤	ស	æ	23	R 8	R C 5	3 5	; p	3	\$	13	3 8 1	3 #	3 53	ş	7	? :	2 :	; 4	2 2		\$	49	3	Z (7 2	3 3	ξ.

Figure 21. (Sheet 10 of 26)

:	5 !	e.	ε.	7	7	?		٠,	ء د	. •	٠,	, .		، د	3 6		•	۴-۰	0	~	_	••	٠.	-25	-22	-27	-3	-33	•	-37	Ŧ	9	-52	9 0		2 0	-13	6	~	6	7.	36	••	9	-93	9:	2 5	701	27	=	-12	4.	•
:	2	0	0	0	.	7	5	5 (> c		, c		•	-	•	•	-	0	•	o	•	0	0	-17	-19	-23	-26	-21	-26	-26	-25	-27	2	-31	7 6	77.	-22	-20	7	-16	13	-27	27	-	137	127	201.	2 :	22	15	6	2	•
	¥	د.	;	٠:	٠	د. ،		Þ			٠.		. د	٠.		•	-			د	٠,	٠.	:				-31						_							-23	S.	-96	116							<u>ا</u> د ا	-5	13	ټ
:	- !	0	0	•	0	6	5 6	-		, ,	٠,٠	•	٠,	، د	٠ -	. •	3	0	o	~	•		c	-13	-23	-31	- 38	ī	ī	7	n + 1	•	90	59.		, ,	-23	1	Ŷ	•	-27	19	-5.	22	en (60	35	7	9 9	25	*	19	0
;	9	•	c	e	o	.= .	، د	-	٠,	, .	٠, د	, (٠ (.	, ت	. •	. د	=	ø	·.	٠,	ı	ر.	-16	-23	-31	ار ا	7	24-	ے 1	-35	7	ر ا چ	96	, c	ر د د د	27		•	ن.	•	52	ř	55	3	'n	ž.	9 4	2 0	25	Ç	22	o
:	2	-	0	0	•	•	-	5 (-	•	-	5 6	-	0	0	0	0	0	•	-16	-22	-30	-37	7	96-	+ ? +	-2	-32	-37	5	<u>,</u>	,,,	-12	:	6	-2	•	7	'n	15	-12	32	11	::	26.	21	16	5 6	•
:	=	0	0	0	0	6	ь с	e (> c		-	.	- (- (۰ د			0	0	0	c	-	0		-25		_	_		-35	5	200	- 36 - 36	5		7		Ť	0	7	-	۲	-	r.		59 1	۲,	9 5	2 2	24	21	36	e
;	2	•	•	0	o .	0	p (5 (۰ د		ہ ن	- c	.	-	٥.	، د	9	0	0	0	3	0	•				-33	7	55	-31	-28	9	-37	9:		200	, ,	•	-	0	-	'n	•	?	13	1	=:	2 6	2 2	27	56	33	•
;	75	5	6	r	0	e:	. , (. ن	·> <		، د	> 0	ه د	۰ ،	٠.	٠ ،	-	0	6	0	c	e,	ن			_		_	_	_	_	-23	_					٠,	-	~	7	-	m	S.	16	ac (ć i	, ;	2 6	3	30	36	c
;	=	•	0	•	0	0	-		•	•	> •			.	٥,		-	0	•	0	0	•	•	-19	.25		-	_	-37	_		-53		F:					-	-	7	-	~	~	=		23	,	7 17	100	34	÷	0
;			•	0	0	0	۰ د	•	.	•	.	5 6		۰ د	.	n (-	•	0	•	0	0	0		-52	.33	•	7	.36	_	Ĺ	-58		.		2 6			-		7	-	~	~	=	5 .	\$2	77	500	32	37	42	6
,	,	•	0	0	9	o,	۰ ،		۰ د		5	ه د	، د	۰.	9 (-	U	ပ	(7	မ	•	0				•	•	.36	_									-	-		-	•		15	٠. د د	2.5		4 P	30	1	5	w
	~	0	۰	0	Ģ	ے		، ب	، د	•	-		.	<u>ب</u>	.		-	C:	~	e.	0	0	ى	61	25		_	_	_	_	_	-29		Δ.	.	- 2 - 2			-	~	~	~	S	s	12	21	5		, e	: -	:	47	۲.
,	-	٥	•	•	0	0	•	0	9	> <	٠.		.	.	۰.	0	0	0	•	•	•	•	•	- 61	25		•	7	. 75	_	_	- 58	٠			_			-	~		~	9	70	18	21	56	9 :		. 4	9.	÷	•
	ا و	0	•		•	0	•	۰,	.	•	.	.	9	•	.	•	0	0	•	•	0	0	•	-19	-25	33 -	' ?	42	37	_	_	-58		•	,	_			-	~	-	•	n	12	11	23	5.0	? :	- G	•	51	51	•
1	ا	•	0	•	•	0	0	0		> •	-	.		•		9	-	0	0	•	0	0	•	- 61-	-	-	•	- 45	•					•	•	25				~	~	•	60	=	11	5	2	3 :	; ;	52	ŝ	53	•
-	•	7	,		,	,	,	•	,	>	,	,	,	,	-	-	•	•	•	,	,	,	,			- 35 -										7.5			۰ -	~	~	~	-	13	20	7.	7	7	? ;		5	÷	-
0.100605-01	,	0	0	0	0	0	-	•	0	- (.	.		.	٠,	-	•	0	0		•	•										- 53 -				201			-	m	•	•	9	13	2	53	27	ç	0 4	57	96	\$	•
	~	0	•	0	3	•	•	•	۰ م	.	.	.	-	. د	•	•	0	•	•	•	•	•	•	•	8	n						- 22				555				~	•	m	•	13	25	53	7	N		9.00	57	5	•
	-	0	•		•	ن	· Cı	(3)	۰ د	,	.	.	6		0	-	0	ب		'n	دى	•			25 -2	53 -5										201				~	-7	~	•	2	25	5.2	<u>-</u>	2	n e	200	2	*	
TIPLIED BY	_ !																							7	ï	7	ī	ī	í	ĩ	ï	ï	i	ī	i '	i i	í	•						~	•		•	•		•••	•	••	
į	_	-4	~	n	•	6	•	~	39 (•	2:	# :	2	2	2	ij	4	7	2	ĘŢ	2	77	8	2	7	£	8	23	8	8	8	3	×	3	\$ 1	8 1	3 5	3	S	ş	7	4	3	\$	Ş	\$	7	? ?	9	3	¥	3	8

Figure 21. (Sheet 11 of 26)

7	•	c	r	٠.	,	3	7	-131	-275	-23	26	8	•	- ·	7	1 7		1 ?	٠.		r	7	>	Ş	-5	-1	9 :		717		-23	-23	-23	-20	. K	-56	- 78	-93	9	-166			2 10	123	ث	•	-23	^	د
39	•	•	c	0	9:	70	101	-135	-169	-20	8	-12	S	1	۰ د	Y C	7	7	7	-5	7	7	†	1	Ŷ	•	•	؛ م	2 (-	::	-23	-32	-35		-57	-62	-102	- 60	2	? ;	158	160		:	-	-23	•	>
36	د.	.,	,	-	7	0		7	-105	16	~	n	7	1	? `	9 47	•	· Ç	ç	ĩ	?	?	<u>ا</u>	J	m	n (Ÿ	•	1		3 7	-26	-35	35		-57	1.62	-172	133	137	٠-	, 4	3		6.1	-15	-25	-	
37	-	0	-24	9 -	9 6				, en	9	24	•	10	~ ;	n ,	•		۰,	s	s	~	N	?	m	?	*	7	7 !	2		-31	45-	-34	-37	? ;	-11	-135	101	-	101		9	106	199	56	-22	-21	~ •	E.
36	ı.	6	-83	-+-	201	• • • • • • • • • • • • • • • • • • • •			O	د،	n	22	28	::	c:	4 -		۰,	7	9	5 ,	ı,	~	e	QI I	9 :	7	112	7 6	9	97	9	-36	-35	- J	-91	-86	-65	9	7	191	7 2	3 3	197	-22	-24	c .	- 4 :	z ,
35	0				•	•	•																												÷ ;						•							- (-
ň	•	E	-35	5	172																														-55			•		•								⊶ (D
33	•	0	-30	-85	160		> <	•	0	٥	0	o	6	o (.	ء د	•	• •	^	•	æ	ï	Ŧ	_									_				_			29	2 9	10.0	7.7	15-	52	16	-15	 (>
32	•	د	-56	- 63 J	123 -	921	> c	•		6	Ð	6	c	.	E. 6	ه د	· c	. 0	9	~	-5	Ť	3 0	-15	-17	-51	Ç (17-	2 2	9 0	121	-23	-20	-11	-17	. P.	-63	7	~	134	n :	. 4	- Y	143	54	÷	-16	- .	=
31					•	•																													51.														-
30					225	•																													250							•						-	•
29	•	•		25	0	:	• •		. 0	0	•	•	.	ه د	.	.	• <		0																-56						-					22	.18	-	0
28	-	6	. 25	4	~		-	, c	, o	0	0	c	E,	، ن	٠ ن	J =	•	· a	•															_	-24 -24	_										1,9	- 50		-
27																																			7					•						7			5
26								•	. 0	•	•	•		0	0	9 5	• •	3 (3																	-5*		•		•			•						-	ت
52	,				2:					9	•	0	•	0	۰ ۰	- -				19	\$\$	- 72	_	_	_		_						_	_	-21		_		_							- \$6 -	_	~	-
24	1				•			, -			,	.,	7	•	•	,	, .		, ,	- 55-	23 -	- 92	_	_	_	_		_				_	_	_	- :		_	_	_	_					_	•		~•	~
23		0	9-	?	.	•	? •	4 6						•	9 (.		•																	.					•					•			m (0
2	-	0	•	·	<u>.</u>	•	-) c			•				_	_																•					•			•	
1	3		' •	•	•	•		,							۰.	ے د								2 -23											7		_											• •	.
2		-		·	•	•		_	-	_	-	-			•		-		_	_	7	~	ń	'n	ř	í) I	•	ŗ	١	9	•	7	Š		2 6		٧	٠ <u>٠</u>	i i	r) .	N A	ารั		4	, -		Ť	~ `	
7	7	~	n	•	so .	ا 0	- 4	0 0	۹ ا	#	2	27	=	55	9 !	3.5	2 9	2 5	77	N	ล	2	ĸ	8	21	%	8	3	3 :	3 =	3 5	Ŋ	Ŋ	37	3	2	7	ş	2	\$:	? :	P 7	4	,	3	2	3	3	\$

Figure 21. (Sheet 12 of 26)

6.9	ç,	:71	c	Ė	6	، د.	- c	2. •	n e	, ,	9 9	Ģ	-52	-66	-73	3 C	70	9 (3 (3) (4)	-32	-27	-12	-22	-5	9-	Q)		ŋ. e		2 6	\	1. 107	·	•	~)	1 0	-> u	9	6.3	.10÷	190	525	ي رو ا	2 1	135	3	-16	-26	-13	
59	0	-	0	o	0	ر د	9 0	> (= =	,	23.5	-13	-34	-59	-61	60																								-23							-25	-13	•
30	,	٠.	٠.	ر ،	•					7	<u> </u>	-	s	ß	-33	ř	٠,	9 70 9 9		ت ا	•											-15				_			_	-196	_						-25	-1;	. ,
57	Ġ	•	ت	0	e.	0	c (د	, ,,	9 6	-11	-27	-24	Ŧ	٠.	٠,	, F	•		o	•	•	15	27	6 -	 !	-15	-16	7	9 0	- 1	-5	6		- ·				. RS1-					1	30	-26	-:	0
56	٠:	٠.	. (,	e.	O	٠ د	. (٠.	، ن	, 4) P	'n	-15	-13	=	N	•) ve	4	1	16	90 •4	23	=	•	io.	(C)	?		71-	-	?	-	Ť	S I				•	-81			•		170	-52	-27	-1:	co
55	٥	•		0	0	•		> •	.	•	_		_			_							_	_			_		. .		_								_	15	٠.					_	_		
Ť.	6	U	0	0	c (0	c •	.	5 C		-24	23.	*2-	-19	-15			7	-24	-10	•	~	6 0	7	9	7	9	•	۰,	7	? 2	•	ş	Œ,	2	61.		7	\$	•	200-	-272	710	100	258	-116	-31	110	0
53	0	43		ی	0	0	c 6	0		•	-37	-20	91-	-51	-20	-53	7	9 17	7																					9							-31	-10	•
52	G	62	-	c	.	.	c- c	ь •	r, c	٠.	- 13.5	13.5	-36	-18	-14	a (77	. 6	٠																					-105							-31	ď.	•
51	۵	U	0	•	0	0	0 0	-	.	•	-71	-32	-17	-17	-		;	ני	?	1	~	-12	-13	-20	-25	-20	=	6	÷	ŗ		9	Ħ	15	16	8 . - 5 8	9	1 00	-39	-114	507	-556	0 0	96	9	133	-31	œ 1	•
20	0	•	. 0	0	0	0	6	.	o c	•	-1-	-124	1	ē.	Ţ	ņ	9	7 7	1	-23	-42	-24	-27	01-	7	=	51	5	36		3 4	۰ م	1	-1-	5	-	9 "	-18	-11	-87	4.34	-	- 6	200	1	-29	-31	-	•
6	٥	•	•	0	Ç,	0	، ن	•	0 9	.	-144	35	1	61	-50	7	2 0		-12	9	-1.	-	'n	_	12	11	16	16	76	67	-	• •	-13	-23	-35	~ ;	7 4	9	-5	-105	- 320	7.5	111	167	126	35	-31	91	•
9	G	•	. 6.	cı	e,	3	rs e	= 1	ı> e	3 F	9) N	0	-35	97	7;	C S	, A	1	4	-17	1	9		15	21	15	M)	7	· •	- 3	۰.	1	-	30	17		1	-60	-197	-267		1	2 6		-51	-30	9-	7
4.7	0	•	•	•	•	0	0 (•	0 0	9	-122	1	-57	12	01	~ .	? :	7	-27	-20	-10																			-365									
9	9	•		•	•	0	(3 (•	9		-62	196	-46	-12	15	71	, c	11.	-	٠,	10	•	31	*	N	?	0	9	(، د	-	9 9	•	3	•	? :		-126	-212	-482	-293	161	9 6		1 4 6	-29	-24	1	
\$	٥	_		0	•	0	•	•	0 1	?	191-	- 79	9	28	%	9 9		- 20	۲ ۲	•	?	0	•	~	-	~	~	~	N C	v (v 0	4 ~	N	•	17		5.	-1 48	-267	-432		1 66	200	- 77	. 4	~	- 22	7	•
•	,										•																										•	•	-	-110	•								
	0	•		0	0	•				•																											•	•		-300									
45	9	•	•	•	•	^																																		-100									
7	9	•	•	•	9	0		•	1.4		112	100	1	-10	7	7'	? '	ï	1	' '?	ţ	-	•	Ş	-	?	1	S.	7:	= :	-10	-23	-23	-33	-27	- 56	17.5	-126	-269	9.6	DR 1-	-65		137	1	'n	-23	7	•
7	-	۰ ۵	· ~	•	s	•	٠,	30	۰:	3 ;	= 2	12	1	53	16	:	2 9	2 5	5	8	2	z	£	9	į,	88	67	8	ភវ	χ:	3 \$	ş 19	*	31	8	5 5	7	?		\$	<u>ئ</u>	9 ;	7	? 3	3	3	3	3	å

Figure 21. (Sheet 13 of 26)

Figure 21. (Sheet 14 of 26)

Figure 21. (Sheet 15 of 26)

+	0	0	، د	- 4	1	-79	-111	-115	4	•	10.		1 6 5	-6	-66	-65	-64	9	9	9 7	6.0	-67	9-	-71	-67	9	-65	9	0 E		-+-	-56	-10	7		-63	-11	-9 6	-80	97		184	115	; "	' ?	7	· c	er.
39	-	•	۰;		-78	-123	-157	-152	86.	29-	74-		1	-57	-60	-65	-67	7		1	7.5	-	-10	-61	-60	₽ C	-55	20		9-	19-	-67	-64	-52		19-	-133	-186	100	22	147	200	-21	-	1	ç	•	0
36	د.	•	-24	161	-185	-241	-354	-276	-137	7	-125		201	10	-11	•	-55	9	200	1 6	-12	7	-	-12	-12	5 7	-55	22.	7		15.	-57	-63	7 9	- 1 - 5	-1	-78	7	n	÷	-52	9	-122	'. F) */	7	٠.	
37	-15	-15	5.	132	-167	-157	4	-36	-	9.	-101		9	-52	Œ) 4	7	7	7	7		5.5	-23	-26	-26	-28	-29	55.	2	0 1	200	50	-63	-60	- 48	40.1	Š	-18	57	•	-123	56	E (= ;	2 9		7	7	e en
36	-126	-126	-113	611		-76	c	۰ .	• •	•) 0 0	9 1	1 1	1	_	_																	_	79		. 7.	_	_	n		_	٠.				7		·
35	-145	-145	-105	-121	-116	-45	•	•	D (9	-	•	52	-37	-38	Ť	-	60	•		1 17	5	8	-52	-56	-59	20	69		181	-51	-46	-37	-25	1	-20	79	-160	78	-	112	٠ د	5	0 0	1 17	7	•	0
*	-86	- 66	19-	107-	-65	•	•	0	p (•	9 4	> <	•	0	-1	-19	-29	- 30	2		1	-38	-41	- 45	-49	13	55			*	Ç	-35	-30	-56	- 37	14.	6	23	25	2	6	20	-113	3 4	?	7	•	•
33		_				•	0	۰ ،	0 (•	9 6	•	•	0	0	0	-	6			-23	-27	-30	-35	-38	ī	7	7		9 19	9	-27	-25	-5 e		1	2	•	73	-55	1	-215	-229		7	7	7	0
32	Ť	•9-		9 0	, °	0	c	.	• ت	5 6	n c	9 6	9 6	0	c	•	•	e (-	,	-12	-11	-23	-27	-31	46-	97	9		-27	-24	-20	-17		•	72	92	106	<u>a</u>	-15	9-	200	-26	\$ 7	•	7	7	ı Co
31	-69	-69	-61	5. 4	20,	•	0	0	0	•	5 C	• •	•	•	•	•	0	•	9 9	, ,	112	-19	-22	-25	-27	-28	- 58	12.	2 6	-21	-21	-22	-26	5	,	-68	-115	?	-20	-131	- 85	0	213	9 "	•	7	7	0
30	-1	-77	8	C 4	'n	0	0	0	0 (-	5 C	•	•	0	0	•	•	-	9	1	-15	•16	-20	-25	-24	-26	-29	25-	? *	100	-58	-65	-70	9.5	-101	7	-127	2	-227	4	37	9	137	7	7	7	7	•
29	-52	-52	-56	71.		•	0	•	-	-	9 6	• •	•	0	•	0	0	-	9 6	· ·	-11	-13	-16	-17	-19	-53	5	2 6	7	10.0	-61	-6.5	9-	9 5		-73	81	66-	-36	115	2	3	-t-2	•		7	7	0
2£	-5	-21	7	-21	7								- 6										-				-16	9 6	1 2 2	122	-11	10	23	9 4	2 6	1	101	-75	156	36	-62	-105	-186	;	: 7	7	7	
27	÷	-14	-21	- 20		•	•	•	0 (9 6		> <	•	•	•	0	•	0	9 (•	•	-	9-	1	7	~	4 (•		2 5	23	~	9	-26	9 27	77	-21	-25	115	-20	-29	13	801-	2 6	: :	7	7	•
26	-27	-27	-3.5	? :	7	0	0	•	، د	•	5 C	•	•	•	•	•	•	•	0 6	•	17	- 2	7	7	7	Ť	-10	617	2 4	10.1	3	-62	†	7 7	1 1	4	-91	122	21	-63	=	35 (40 (2	101	7	~	-	•
\$2	?	Ç	5	? =	7	•	9	0																						- 47	6+-	- 33	-37	2 9		?	18	1 36	-114		35	172	9 1 9	9 5	1	-5	7	•
2.	3,	-34	77	? 7	' 7	.◀		7	•	•	3 (2	• •) 1	•	•	3	•	9	> ^	•	` ^	•	~	7	-	25	7.0				114	110	1:0	31	117		145	-11	, S	\$	-17	13.	? :		9 6	?	7	• •
23	7	9	?	, ,	,	7							•																									•					•	•		7		
22	7	ĩ	† '	? ;	ŗ	7	•	0	3 (9	9 6	•	• •	•	•	•	•	•	÷;	3 6		12	•	•	-23	7	-62			-134	-129	-123	-107	-101	9	-1	-90	29	45	11	5	-19	-165	7 6	-	17	~	•
22	-	?	?'		•	3	9	•	. د	.	> <	•	•	•	•	•	9	-	-	•	1 17	, ro	-	•	=	22	e i	3	9 6	1.	67	99	25	00 5	4	8	9	97	9	-61	3	-147	-176	971		1		
3	-	~	,	• •		~	•	o (2 :	# :	¥ :	3 :	. 2	2	11	2	61	2	3 8	1 5	3 %	100	*	23	8	ೱ	ន្ត ;	7 2	¥ =	3 8	B	*	37	3 7 P	3	7	42	\$	\$	đ V	\$	-	? :	3	35	3	3	\$

Figure 21. (Sheet 16 of 26)

6.3	0	0	a	0	0	Ü	۰ ،	٠ د	٠.	9 4		8 1	36	43	25	9 1	: 5	0 9	8	91	25	107	113	117	1 1 E		106	106	96	103	6 Q	. 6	16	72	117	. 6	3.7	185	-27	-18	9	991-	ç;	,	, -	7	•	4 <	د
59	0	0	•	0	0	0	0 (9 (> •		2 7	S	=	4	16	202	120	000	2 K	265	271	280	260	253	223	,,	208	185	155	169	182	173	147	176	11	8 6	138	115	-57	99	99-		118	17	ï	7	•	u c.	.•
ų, Š	3	_	_		٠.	•	ډ.	ي و	: ت	٠,	9		4	-3,	-1:	~ :	7 (f 4	0 0	99 ·	8	35	116	:	191	202	206	204	173	16	1	141	137	134	111	4 4 7 4	166	-15	*	7	9	10 i	7	9 7	<u>`</u>	٠,	• -	4 ·	
57	=	-	ج -	C1	0	0	0	0 0	-		141	1 N	7	-29	-36	4	-	? 1	1	100	-16	'n	13	13	= =	0 0	3 G	177	18	5	ر د د	9	72	•9	æ ,	2 4	5	ø,	96	103	117	30	-161	911-	۲,	٦ -	4 6	> C	2
ĝ	0		U	۲,	c	0	٠.	٠.,	ه د	÷ 6	C 4	2 4	65	55	52	Ca (, t	,	9 9	-102	-115	-122	-129	-125	-121	2112	-111	-103	185	-105	٠. ١	-93	-97	-101	ě.		-57	13	112	56	5	-211	2	27.5	Ξ (٠,	•	-	•
52	0	-	•	•	0	•	•	-	۰ ۰	-	7	12.	32	†	-15	7	;														۵ و د د				-105		_	_	*	-115	-232	-145	296	316	,	7	1 6	> <	•
\$	0	•	0	•	0	0	•	-	-	5 (?	មា	f	•	-21	67.	9 7	16	22	~	8		• •				_		128			•	- 56	? 7	10	12	ŧ	- 76	-180	-35	? :	E 6		7 (> <	٥
53	-	•	0	0	•	•	0	0	- 1	•	9	7	-26	-24	-53	-21	-15	• 6	U #		24	16	13	16	21	1	2 6	27	8	=	•	-16	7	-11	-15	, ,	3	31	-19	-35	9	35	-104	-223	?	• •	•	> <	>
\$2	-				c											1	s i	7	7 5	2 :	*	Ģ	-15	-27	* (25.		-68	-11	153	40	7	9	102	93	9 6	96	16	~	0	-169	-1-	-26	. 4		7	4 6	; · C	2
15	-	•	•	•	•	0	•	0	0	o (9 5		-24	-11	į,	₩,	=		₽ ¢	4	. 6	-105	-118	-109	-87	e c	77.	57	96	97	Ø 6	* *	8	-32	-51	? :	7 [3.8	-10	155	729	699	-139	3	٠.	•	,	> •	>
8	-	•	•	0	0	•	•	0	0	0	Ð .	101	9 6	56	10	-31	=	6	611-	111	7	-	-51	-33	-20	91	121	9	7	0	275	? •	-56	-16	•	124	-79	1	-22	60	-124	-53	-	~ I	۰,	7 '	•	.	9
6	-	•	•		•	5	•	•	0	0	7	,	5	-63	-101	60°	17	12	7	40	-27	-24	-15	-12	6	ę,	4 6	9	4	1	4 (, ,	-11	2	0		-11	-	-165	-613	-557	-648	6	90.	0 '	'n	N 6	> c	>
₩	: :) C	•	•		•	•	۱ د	0	- 5		701	1114	39	-20	9	6.5	9 1	2 4	-	13	56	4	0	31	5 .	- 6	3.2	20	-		1 5	-	11	9	3	4 4	-140	-309	-272	-290	133	254	129	•	•	,	ه د	3
11	6	,	9 0	•	•	•	•	0	•	90-	B 02-	1000	101	-238	-234	-176	-67	7		4 6	7	*	4	38	93	1	-	,	-10		7	7	9	-10	-12	9 :	-116	-175	-292	-52	173	118	187	•	-27	•	,	> c	>
4	-	• •	9 3	ď	•	•	•	•	0	-157	-123	101	11.8	1	ę,	20	~	P	3 9	2 2	16.] [-20	-1-	-15	7	1		. R	7	۰ د	- r) 	70	4	?	-153	-208	-157	80	106	0	9 9	-117	65-	? (> 0	>
4	-	• •	9 0	•	• •	•	•	•	- 53	-148	9	CT 4	7	1 22	3	53	-37	4	- 23	1		12	6	ę.	6	ŗ	1	•	-10	- 13	87 -	971		-1	-115	7 1	-175	•	-		132	- 16	- 75	247	-27	Ÿ	? •	> (2
:	7	•	•	• •	, ,	•	••	~	-37	25	5.	9 4	7 1	100	13	-10	Ť	•	7	2 7	3 -	17	-13	-14	- 15	7	12.		3	- 46	72	,	9		-10	7 4 5	971	133	-51	7	-1 17	-153	?	E04-	?	7	7	7	7
€	-	•	•	• =	•	a	n	20	æ	-18	r:	5	2 6	•	'n	7	1	7	ŗ,	9 7		-11	-1	-19	-26	- 35	ņ	4	-54	-59	-59	9 -	17.	-73	-58	97-	-	-103	66	9-	-79	-97	-189	-35	a o .	7.	7	>	>
\$	•	•	>	• •	•	•	9	-19	-32	5	9	6	, ,	-23	-27	-32	-35	-37	80 F	?		100	-55	-56	-55	7	6 P	9 1	9	7	# 1	121	9	9-	-70	7	-	-104	46	-98	-17	Ť	5	80	16	7 '	N 1	> (>
7	-	•	> c	• =	•	-23	-53	-100	-139	-65	-1-			- 7.5	-7	-68	99-	99	9 :	9	4	9 40	-5	-50	7	20	-52	3	99-	89-	-	77	15.4	-11	-57	12	001	128	-135	84-	-17	-5	67	49	6 (Ņ (7	9	3
7	-	٠.	· -	•	r un		~	40	•	2	# :	2 :	3 \$	3	2	11	2	5	ន ខ	₹ 8	3 %	3 3	10	2	27	2	C 5	3 =	3 23	3	\$	ß ×	8 17	3	39	2 :	;	13	\$	ŧ	\$	F	2	\$	3	ភ :	1	3 :	አ

Figure 21. (Sheet 17 of 26)

gure 21. (Sheet 18 of 26)

Figure 21. (Sheet 19 of 26)

2:	9	0	ပ	•	ņ	93	99	3	33	56	53	30	53	23	36	0	25.	13	3	35	53	23	\$	æ	*	-82	2	ω ¢	2 ,	•		r .	9 4	2.2	35	92	2	0	5	50	N 2	0 -		ن ر	<u></u>	<u>ي</u>	U.	۲,	- ·	-	- c	
	_	_	_						٠	•	Ī	_	ī	_			٠															•		•	•	٠	٠	?	?	?	Ž	٦,	•	•				_	_			
8		•		٠	•	7	-87	•	7	٢		=	1	7	4	7	9	-42	7	-57	-6	-56	Ę,	-51	-51	-39		,					-263												4	•	•	.	7	7	-	
35	Ų	د	-76	-102	-132	-134	-122	-121	-11(-47	51	107	55		23	15	, (4	36	9	17	7	Ξ	-1	-1	-37	23	.6	-53	99.	701-	7 6 6		25.	-396	-385	-326	-29(-247	-252	-311	62		7		*	-11	13	9	7	7	۔ د	
37	0	Ü	-177	-113	-165	-157	-143	-147	-46	83	11	100	132	235	134	100	138	165	116	121	106	101	8	53	37	21	- Ca	-78	725		757		400	-402	-346	-305	-289	285	295	-261	9))	25	52	8	ŗ	23		7	7	- -	
36	ے						-132				۲,	o																					-36.7														13	1	7	7	= 0	
33	0						-136				6	0			56																		-308-													19	-	in i		;	5 0	,
*															0	0	118	87	65	1 62	136	26	4		*								1 657													7	-	7	,	7	= =	
33	•	_	۰	_	Ċ	٠ ۵									. 0	0			0	S.	11			64	_		•	•	•	•	•	•	223	•	٠	•	•			•				5	•	7	'n	m ·	_	7	>	ı
32	0		14 -9					0		9	0	0	0	0	0	0					S.	9	*																					10	21	۳.	2	n ·	н .	.	50	ı
31			•		•	•																											8 -191										· ·	•	9		•	۰.	.	·	.	,
																																	-155										•	_	-		~	_		' 		
, i	_							_	_	_	_	_	_			_	_		_	_	_	-13	-252	-24	-26	-27	-28	58	7			7	-125	-16	-15	-13	-15	-	-15	0		1			ī	ň	ï			ī		
29	•	-	-81	99-	96-	ě	-5	•	-	•	0		-	-		•	, 0		•		٥	-254	-273	-283	-286	-294	-295	-294	200	7	7	197	22.6	-215	-182	-158	-146	-132	- 2	- 1		1 1 1		, KO	•	3	-1	n ·	_	7	~ ~	
2.9	9	0	-46	-56	-67	-69	-59	0	0	ں	u	0	ت	٠	0	_	. •	C	C	0	c																								S	16		•	-	7	ی د	
27	0	0	-31	-50	-53	-64	-51	0	•	0	0	0	0	•	0	•	•	•	•	•	•	-338	-340	-331	-314	-296	-285	-289	062-	362-	927		-223	-169	-1117	-96	-64	184	e e	. 9	??!	- 11		10	_	-	9	1	•	7	>	
26	0	•	-36	-37	î	ţ	-42	•	0	•	a	•	٥	•	•	•		0	· ·	•	u	-366	-360	-342	-316	-286	-275	-277	682	7		22	197-	-163	-172	-67	-102	80 c	80	9.		7 d	•		~	-	21	-	~	7	-	1
8	•	6	- 22	5-	- 38	-37	-28	0	0	0	9	0	0	•	•	0	•	•	•	0	0	4	67		5	٠.		ž,	7	2	ž	6:	3 5	7	20	27) :	- 12	m	7	19	50	9	1	7	- 0	
3	9	•	-10	- 36	-24	ĊŽ.	-17	1	?	7	•	7	,	-7	• •	, ,	1	-3	. ~	•	7	ũ	9	340 -	316 -	5:0:	27.5	-250		?	000	3	-155 -2	176	-66-	-65	32	63	3	9 ;	?	71		7	53	33	•	+1	Ť.	7	ם כ	
23	9		_	~		_	_	6	7	0	•	0	0	•		•		· a	-		0		•	٠	- 86	- 19	940	0	2	2	0	2	202-	9	•	- 98	-	-62	9	6.5	2 6	. "	100 100 100 100 100 100 100 100 100 100	7	38	5	10	0.	2	7	- 0	
25	•	•	s	~	s		9	'n	•	•	•	0	•	۰			. 4																					91	2		7 N :		٠.	.	2.2	s	•	٠,	.	- ·	.	
	۰	۰			7 - 5						۰			ي		a					0												1252					n.	· ·	· •		•				_	'n	·	-d -		3 e	
8	_	_	ï	7	-15	•	_	_	_	_	_	_	_	_	_	_			_	-	_	_	-36	-36.	-35	# P)	-33	'n	C?	200			125	-17	-11	7	7	m'	•	96	v :	1 4	7	i • -	₹	7				•		
٦ إ	_	~	m	•	s		~	40	Ŀ		_	N	12	•	'n	ب	! !	: =	9	2	5	œ	23	Z.	Ŋ	æ	.	.		2:	# 9	¥ :	2 5	: Ω	92	-	92	6	9	7 9	¥ :	2 1	· 92	9	5	2	T	₹:	<u>,</u>	N :	3.5	

Figure 21. (Sheet 20 of 26)

AD-A148 102 EROSION CONTROL OF SCOUR DURING CONSTRUCTION REPORT 7 2/2 CURRENT—A HAVE—IND. (U) ARMY ENGINEER WATERWAYS EXPERIMENT STATION YICKSBURG MS HYDRA.

UNCLASSIFIED S R VEMULAKONDA SEP 84 MES/TR/HL-80-3-7 F/G 10/3 NL

END

THE PROPERTY OF THE PROPE

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS - 1963 - A

÷	•	0	c	c	6	0	.	•		-96	6	-94	- 200	E 6	225	100	-326	-285	-204	-137	9	٠ د م	-22	:	-15	41	-16	? :		-13		512	. 48	57	-15	9 5	; ;	36	60 9 1	15		1	•	; ;	7	7	0
59	•	0	0	•	•	•	o c		• •	-116	127	-55	-201	-236		107-	-223	-161	-117	•			95	-3	-16	-24	-12	7	-7	3	•	7:	- 5	Š	9	, i	200	-51	-13	יי ני) 	ָרָ י	1	7	7	7	•
35	e a	٠.	,	٠	2				•	-162	36	-57	-215	-207	101		'n	21	11	9:	7	7 6	17	2	11	Ĩ	-27	2 2		-1:		4	17	-17	T (9 7	1	18-	-5	7		21	`	• ::	7	7	3
57	ı	c	c	0	c	0	۰ د	٠. ٦	•	-302			-51	-165	P	•	ň	^	•	7	လ ?	2 8	8 6	. 6	37	16	60	9/-	•	1	-31	1		-61	37		-105		7		ſ	•	• 6	` "	7	7	•
25	•	ت	_	ت	ů	(3	ی د		9 6	-215				-175	-123	41.	-121	-121	-7B	.0	9	118	2 2 2	9	63	37	7	0 c	-24	36	28	1 6	7 1	-51	-54	-19	-115	64-	-36	-56	ě		4	` 1	?	7	•
22	-	•	•	•	•	•	96	•	a	•	-10		÷	-250				-35					9	7	*	-27	-11	21-	1 9	23	70	90	1 10	-100	-65	7.	-30	36	-90	9-	- 72	•		•		7	•
5	•	•	6	•	•	•	0 0	•	•	•	-258			-269						200	6	= ;	1 05	-148	- 72							-120		-132	-28	8	1	37	7	-97	•	2:		7	·	1	•
53	0		•	•	۵	9	-	•	9 0	9 4				-263						122	6		1 4 4									-161		-104		115	10.4	9	•	-122	-27	۲,		; 1	•		_
52	6	-	ت	•	6	6	c																													11					2	•	•	` <u>`</u>	•		
21	•		-	_	_	•	0 4	• •	-					-159																32						210		-190	1 -235	96-	-	7 '	, ,	- 6	· ``		_
20	0	_		-	-	-			.					-119									_	200	6	706	700		7	7	-	55	-122		186	221		1-224	-11	-	# i	-		-			
•				_	_	_								-263								? •					Š					¥ ;	121-		13(3	150	8 -31	-231	-5	<u> </u>		`	· ;			
-	~			_	_	_						_		-155		ñ (-15	-	9	; ;		ě	121	-	•	7		Š	_	- 5		11	Š		95.	•	-34	- 1		N	, i	i i			
					-	_	_		-1	2	•	5 -19		_	9	2	7	2 -13	•	_		ž č	٠.		100	- -	• • • • • • • • • • • • • • • • • • •	•	100		•	~ :	•			-			7 -24		9	9	•	7 ·	•	. =	
9				_		_		-	-36	4		1 -27	_		25		-	*	3 -1	-	in i	-		-	10	•	9	~;		•	ıñ.			7	•	200		. •	_	7 5	9	"	· ·	-	•		
*	,				,	-	•		•			7	7	343	•	•			•	•	4	m :	n j	7 0	7	2	77.4		0 4	• •	2		20-	7 -17	'n	7		7 -261			•	n c	7 - 7	•		• •	
•					•		•		2	7	•			5 840			•		7 11	8	2	•) H.			-	_			4 -12	7	12- 8	95-0	3 -33	4: F- 4		7	1			en e		• 0		• =	
2		. <			•		٠.		N .		_			594 0	•	-	:: •		-		•	_					_	-176			•				-	9 -314		. ~	-		-	7	•	•	•	• •	
-			• •		•	•								8 -21		7			_	•	~				- 15											2 -24					.	بو	n .	.	•	• =	. 4
•						ij	-32	?		200		•		-78	7	7	? "	7	7	7	7	•	•	7	-	7	-13	97	200	-25	-21	10 m	-32	98	-24	-225	77.	- 5	7	7	٠	~	~ .	•	•	1	
٦ =	-	• •	•	•	· m	•	~	•	• ;	3 :	::	12	=	3	2	: :	3 9	8	2	3	ಇ	& 1	S 2	3 9	8	2	3	# 1	P) :	3 \$	R	#	5	8 5	\$	7	7 3	3	Ş.	\$	7	7	3	7 2	3	1 2	3.5

Figure 21. (Sheet 21 of 26)

= :	0	ی	ن	د	• •	٠.	٠.	•	e -,	0	:	9	2	2	N 6	110	. 2	*	-	2	2 9	6 4	•	. 4	0	m	m	•	n •	-	~	_	۰.	۰ ،		•	-	~	.	~	7	~	-			· -	₹.
									_			•	•	•						•		ŧ				_	_						~ (_	• 6								
16		•2	.,			•	ی د			_	-	-235	-246	2	7	100	-	*	2	-	?	7		-12	7	•,	•	_		- 4	•	CAT.				•	.~		•	7	ï	7		7		•	3
2	0	0	•	•	•	-	-	•	•	•	-146	-235	-246	-273	200	-286		-	404-	0	200-	102-	35.	-12	7	N	•	• (e (0 •	· ~	-	•	N F	•	'n	m	~		1	?	?	?	7	1	7	•
۶	•	•	•	c	0	0 (9 6	0	0	•	-147	2	2	-272	7	3		-	-433	100		**	100	-13	ŗ	7	-	-	- (۰,	7	Ÿ	ņ·	7 6	۰ م	N	~	 •	٠ و	?	7	-5	ņ	7	? "	7	•
2	0	•	0	o	0	•	-	•	0	0	-149	2	-245	-472	22.0	1	-442	-445	-430	-297	-326	191	-32	7	•	-5	7	•		7	. 4	7	7	7 7	•	~		⊶.	1 6	7	?		4	7	? "		•
22	0	•	e)	C.	o ·	0 (9 0	6	•	6	-151	241	2	-274		100		:	930	396	3	687	9 19	=	9	*	7	7	E' •	7	ņ	?	ť	,	-	€.	-	;	: "	Ģ	ŗ	?	7	7 7	, ,	,	9
7	•	-	0	ى	•	.	-	•	•	•	2	2	2		2 :		. ~	•	35				-27	7	•	7	ņ	7	Ņ	ì	7	ņ	7	7	7	~	~	 (7 1	7	?	7	Ş.	- C	,	Ÿ	•
2	•	•	•	0	0	-	> c	•	•	•	-155	44		283	2		150	164-	-437		717		2.5	-13	1	1	7	•	0	? 7	ķ	-5	9	Y Y	9	?	~	ç	7	1	7	-	۲,		, ,	7	•
69	6	•	•	0	8	•	9 6		•	0	157	245	25.5	-264	?	2 5		5	136	32.2	, e	201	200	-12	9	'n	7	?	7	* 7				?		1	•	r I	, 4	•	?			•	,	•	•
8	0	٤1	•	•.	6	0 (> e	۔ ،	•	c	•		_					_		_			200	, 1	91	-	ŗ	. .	٠,	1	7	-	?'	•	• •	•	ŗ	~ •	77	, U	7	7	7	~ ?	,	?	e.
6	0	a	0	0	•	۰ د	9 a	•	•																			?	7	•	7	ç	ŗ.	0 0	, e	~	ę.	6	n "	1		•				17	•
9	•	•	•	0	•	۰ .	s c	• •3	•		~	~	•	۸.	.	971	۰.	•	100	*			? =				•	7	٠,	? -	•	7	•	7	9 ~	•	•	Ņ,	٠.	• • 1	•	ç		7	•	7	•
ç	•	a	•	•	0	•	> c	•	0	0	2 22	3 38	3 20	5 .	2 4		3	*		5	٠ و		- 150	7	-	N	7	~	•	• 1	•	*	ŗ'	- 7	, i	•	-	7'	n e		7	?	7	7	,	7	•
5	•	•	, ,	,	•		• •		7	,	27.	940	2	372	7		2	415	ū	\$	2	~ ,	, ,		*	•	7	7	77	: -	*	-13	٠,	? !	-34	2	-:1	9 :	71.	1	7	7	٠,	7	,	1	7
63	•	a	•	•	•	0	.	•	•	0	24	_	26	9 :	2:	101	2		2	2	2 :		200	-12	-	•	n	● (n :	-	'	1	• :	;	-32	ň	-	7	? ?	-22	ņ	•	⊶ .	7	,	7	•
29	0	a	•	•	•	•	ي ج	•	0	-107	_	_		٠.	Α.	22.	. ~	3					7 -	•	60	ņ	36	7	2		; ;	8	-15	77) () () ()	-36	11	~ •	r •	7	11	•	N :	3 •	• •	7	9
79	•	•	9	•	0	٠ ج	9 c	· 13	•					40									1	21	27		27	9	16	7 6	•	33	? ;	2 6	, d	9-	Ç	90		-22	•	-20	•	3 7		17	•
7					_					_		•	_	_	_										_	_	_					_	_					_			_	_	_	_			_
- !	-	•	•	•	.	,	- 1		2	=	2	2	2	# :	# :	3.5	: :	R	2	ম :	3		3 %	~	~	N	3	# 1	Х:	3 5	5 X	*	n	٦.	; ?	7	¥	7 :	F 4	*	7	₹,	7	ਰ 2	7 2	12	\$

Figure 21. (Sheet 22 of 26)

Figure 21. (Sheet 23 of 26)

2 !	9	_	, e	0	9	œ	•	~	=	•	•	ũ	•	2	ě	Ω:	* !				•	. 4	9.7	_	-	v.	2	ب	9	พู	-	9		2 -	•	=	<u>.</u>		13 6	2 5		ņ	•	-	Ņ	ū	•	ر.	<u>ب</u>	e (Ł)
							-84	•	•																	-333								-157									•	•		-,			•		
5	•			-5	- 38	-8	-101	-123	-166	-218	-229	-221	-203	-198	-213	-235	-261	117-	-27	202			-330	-318	-302	-277	-255	-244	-236	-225	-226	-238	122-	-151	-175	-10	-92	-	- 35	-212	-25	3	69	119	52	î	7	0	7	9	2
35	-	٠.	·		-145						*9*		.393	326	318	٠ ا	313	CBN	700	7	2 0	3 4	25	-			.2 C	-67						-154													^	-	~	-,	
37	121	95			- 191-				•	e.	N		550	98	55	66.	963	2	-				-133	91	4	2	_	106	113	32 -	69	9:	25		3	9			129								96	7	7	٥.	C >
36									" ~	•	ï		~	•	33	•					٠.				2	7										7											9	•	<u>.</u>	c. ;	•
					-129				_	_	_			-17										7	-	7	7	7	Ŧ	7	7	7		147	7	7	•	•			7	7		_	-	•	_	•	•		
35	-239	-242	-22	-173	-120	-101	-101	7	•	•	•	-	•	175	-110	-16	-196	1	-11		1		7	-17	1	-17	-172	-17	-178	-165	-155	7	27.	-91	-7	Š	-5	7	7 7	1		30	5	9	•	מיי	-17	ę,	7		-
ň	-201	-217	5	134	*	e e	7	•	0	•	£	0	•	•	•	•	2		-127	767				-10	4	:	-142	-139	-134	-121	-117	201-	,	-67	-56	-47	7	2	9 5		2	59	*	19	-23	-47	-22	1	~	6	>
35					-62				0	0	6	0	•	•	0	0	.	•					9.6											-96			7		2		38	56	-10	-62	117	\$	ñ	7	•	0	-
32					-53								•	•	0	٠ -	•	• د	D 6	•	•	1	-37	5	*	•				9 2		9				-27	-51	ſ		::	29	*	-25	143	-35	•	•	-	7	E; (Ľ
31					- 40			•	•	•	0	•	•	•	•	6	•	.	•	•	-22		-52		53-	9	-67	•	-62	-57	•	÷	60	-37	•	•		•	-81		-23	-11-	-75	-26	51	29	1	7	•	0	•
88					Ŧ			•	•	•	•	•	•	•	-	-	b (-	•						-	- 100	-56	-57	-58	9	Ş	7		-101	100	114	117	130	-99		-92		23	ř	99	27	-	7	•	.	=
53				~	_	_		•	•	•	•	•	•	•	•	-	.	•	9 (•	, ,			-37		=	7	m	Ļ	•	3	2	٠.	- 36	~	-	.				7 19	•		•	-	-33	m	•	.	0	•
					Ŧ				6	2	,	0	ت	٠.	.	٠,	> •		.	,	•			-					•.	•	۰.				•	•); •							~				~	3		-
~					-36																٠					*			7	1	,	7	3 6	• •	N	•			• •						-71						
27	-62	-	- 6	-5	-36	-22	-	•	•	•	•	•	•	•	•	• •	•		•	•	1	1	115	-17	-15	-12	~	7	n	12	61	2 :	, w	3 =	7	-21	•		202			28	-25	f	-22	-23	_	6	•	•	3
25	-127		, in	7	-2	-13	ņ	J	•	•	•	•	o	•	•	•	5	•	•	•	•	7	1 0		*	7	7	ŗ	-	-53	7	?		÷	-70	10	32	9	7 =	1	. 65	-13	-	٠	7	ţ	3	~	7	7	•
2	*			7	3.	•1•	7	•	•	•	•	•	•	•	0	•	•	9 (9 (9 (•	1	ş	ç	7	7	7	-10	67	-41	3		2 5	3	÷	-29	77.	• ;	٦,	. 2	, ~	7	•	25	115	1 16	\$		7	7	D
	36	3	5.	-37	-23	-11	7	-	7	,	,	•	,	•	3	•	3	•	•	•	, =		2	23	2.	2	21	33	•	=	701	22.	66.	7 7 7	123	11,	N :	•		, ,	7	ņ	11	13	7.5	30	;	7	7	7	•
23	•	-14	-24	-29	-16	-	-	ņ	7	-	•	•	•	•	•	•		•	•	•		:		•	9	2	33	3	.	- G	25	7 :	, ,	11	n	?	?	215	- 20		-16	33	25	Ť	9	-51	-36	-	7	7	-
22	•	-	-13	-25	-51	-1-	f	•	•	•	•	•	•	•	•	•		•	.	•					9	1	-25	;	-12	•	2.5	141	? * *	-121	105	ŗ						15	11	†		2	97-	†	7	7	>
27	-12				-17		•	9	J	•	9	0	•	0	0		.	•	5 6	•		•	. ~	•	1	2	1	52	•	9		2 :			•		53		7		1 10	-	-27	-39	- 55	-35	•	?	ņ.	7	•
7	-	•	ı 17	•	'n	•	~	•	•	2	=	2	2	S	2	4	1	= :	2 5	•	: 6	1 %	3 %	12	1	23	2	63	2	#	Ŋ;	3 :	r, s	3 #	31	3	3	? :	; 3	! 3	: \$	\$	*				3	ន	3	2:	8

Figure 21. (Sheet 24 of 26)

9	c	0	C	u	۰	•••	3 • 1	-	9 0	•	23	33	5	7	8	3	69	72	۲,	2;	: #	2	4	2	0	16	12	3	G :	0 v	5	\$	5.3	Ø, 0	2 2	9	36	8	- C	•	*` u		;	•	~ =	9 73	. 0	_	
53	•	0	٥.	0	•	> (9 6	• =	• •	-12	-31	-24	• ;	, ,	103	129	156	186	574	236		- 6 - 6 - 6	214	134	176	162	153	145	200	101	116	111	108	106	25	3	3	62	15	n •	•	2 -		3 °	• =		0	0	
35	٠.	J	•		,		•		۔، د	۔	-5(-5																		196																•	, ,	.,	
57	۲,	0	6	G	.	، د	:> C	, e	9 9	F 9	-1 51	-189	017-		-72	69	-66	99-	-1	- 55	0 4	•	,	-	-15	-	9	- ;	:	9 r	5.5	26	62	9	9	9	99	39	36	ģ.	3	9 5	7 4		1	9 (2	, 0	•	
26	3	c	0	12	٠,			. c		135	265	247	216	C 4		5	-19	-103	-169	-206	722-	-216	-211	161-	-172	-160	-157	-147	-129	121-	-131	-120	-124	-129	-126		-56	-25	9	3 c	7	0	\ \ \ \ \	š		4	, 13	ت ۱	
25	•	0	0	•	0	-	0 6	•	•	•	.45	-95	90	2 5		-24	-19	Ť	-60	-		9 -		107	-285	-380	-427	-371	-342	-323	-209	-246	-271	-287	-314	400	-301	-147	16	-50	9:1:	11.		1		9 6	, 0		
\$	0	•	٥	•	•	•	-	•	•	•	• 59		-28																															52	1	7			
53	0	0	6	•	•	0		> •	9 6	•	=			•																7.																îī	. 6		,
52	0	_	C)	٠		-	c (•				ı	-101																	-141																			
51	•	•	٥	•	•	•	•	-	.				•						•	•	•				•				124	157	1 4 4	108																	
8	•	•	•	-	-		o •		. .				165			-327	-423	-392										-17	- C	-25	7	.55	-	~	-33	? ?	7	27-	92-	E .	15.	ę,		?		•	, -		
•	•			-			۰.	-		•	-	æ	-295	9 4	֝֟֝֓֓֓֝֟֝֓֓֓֟֝֓֓֓֟֝֓֓֓֟֝֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֟֝֓֓֓֓֓֡֓֓֓֡				7	η,	? '	200	7	1 7	• •	•	7	-35			200	-12	-51				2	-30		_	_	50-	12-		V	•	1		
•			•	<u> </u>	-	-				-114	-346	-376	-270	902-		7	-	•	-	•	(N 4	•	0 4	•	. 113	=	79	•	1		٠	•	7			-22	-36	+		-23	9 :	3 :	7	•	•			
		-	-	•	_	-							***														+	P		-146																7			
•	-	_	-	-		-	.																																							7	_		
S				_		-		- 8								•	•	•	•	•	•	•	•				•	•	•	-154		•	•		٠			•											
	'			·	•	·	7	•	7		•	1				•	•	7	7	7	7	•	•	•	•	•	•	•	•	-24	•	•	•	•	•	• •	•						•				;		,
			-	-	-	-		1					568																	-24											_		_	_		~ -			,
+5				.	•	•																								-167														2		7			•
7	•		-	•	9	-31	7	3			-126	-272	-333	2	300	100	-349	-374	-363	-320	10	-256	777	3 7	3	-225	-248	-268	-276	-266	. 26	-24	-194	-170	-150		9	3	7	7	-5	7	- ;	ii .	Ξ,	` ;	; =		•
7	i -	• ~	. •		ď		~	35 (٠,		: 0	1 12	•	<u>.</u>	9 :	. ⊴			.	21	23	Z.	C :		. 2	9 9	9	=	앺	2	* 5	2 1	=	9	.	2 :	: 9	! 2	\$	g	•	<u>-</u>	2 1	•	9	ત્ર 9	X 7	3 1	Ł

Figure 21. (Sheet 25 of 26)

1	•	•	•	•	•	. 0	0	6	c	0	n	0	0	0	0	•	n	v	L	٠	a	62	• • •	•	•	•		•	. •	,	9 6	9	9	0	0	• •	0	0	0	0	د	•	0	0	Ö	0	n	0	د.	0	٠,	c	ပ	0	ن		
92	ç	U	€.	_	٠.	٠.		0	•		ų	ت	Ü	'n	J	•	a	0	73	ټ	•	·	• • •		•		9 4	٠.		ه ن	, c		، ب	0	•	بذه	(۲	c	ی	ت	J	c	•	L	۵	C.	ت	u	-	-	_	÷	د	ت	ت		
5	•	•		•		· a		•	•	•	o	•	•	•	•	•	•	•	•	•		•	•	-	• •	. •	•		, (ν.	٠.	-	-	_	•	•	0	•	•	-	-	-	<u>.</u>	-	-	7	7	7		•	-	•		-			
																																								•	٠	•	٠	٠	•	•	•	Ĭ			•						
*	•	•	•	•	•	•	•	•	0	0	•	•	•	•	-	~	~	~	-	~	~	~			107	•	•	•	•	o ,		•	N	~	~	~	~	~	~	-	_	-	_	•	0	•	0	7	•	0	7	•	0	~	•		
23	•	0	•	-		ه ه	•	•	0	c	•	•		-	~	~	~	~	~	~	~	~	•	-	•	•			•	N d	٧ (N (∾ •			-	-	-		-	-	-	0	•	0	0	7	7	•	•	c	0	•	-	-		1
72	0	•	•	•	• •	. e	•	0	0	6	0	c	e	J	•	Ų	7	7	7	7	7	?	ç	7	7	• €		• <	> (۰.		9	0	0	0	•	0	6	0	0	•	7	7	ĩ	7	7	7	0	7	0	•-	e	0	-			16.527
2	•	•	•		•		•	•	•	0	•	•	•	•	7	7	7	7	7	7	7	7	7		•	7	•	•	•	7	7 .	7	7	7	7	7	7	7	7	7	7	7	7	7	7	•	•	7	•	0	•	•	-	~	~		_
9.	0	•	•				•	0	•	0	0	7	7	-5	ŗ	7	Ŧ	1	7	1	1	7			-		• •	•	•	•	•	•	D	•	7	7	7	7	7	7	-	7	7	7	7	•	?	•	7	7	0	•	-	-	-		.2.853
6	•	•	•					6	0	•	•	-	2	•		7	7	•	,	'n	~	-					•	• -	•	٧.	- •	Ņ	Ņ	ņ	ņ	ň	ņ	ņ	~	7	~	7	<u>.</u>	ņ	7	Ÿ	-	÷	-	•		•	-	-			٠.
_												•	٠	٠	•	•	•	•	•	•	•	Ī			•	•				•		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	i	•	•	•								.366
3	6	•	•	ں .	•	0	0	0	7	0	0	7	1		~	9	5	-10	-	-10	-1:	6	•	-	•		-	•	7	7	;	ř	?	?	7	-2	?	7	7	۲	"	7	'n	7	7	?	7	7	-	•	•	-	-	~	-		•
67	•	•	•	•	•	•	•	•	•	•	•	4	•	-	-13	-16	-18	-19	-20	-21	75	-21	-	5	-	;			•	•	•	9	•	-	~	Ť	ŗ	÷	ş	ŗ	ņ	ş	7	?	?	7	?	?	•	7	7	0	•	-	-		:
99	•	•	•	•	•	• •	a	•	•	•	•	~	9	•	6.	=	-15	-15	-	-10	6	1	-	- 7	· •	•	•	• •	•	7	7 .	7	7	ř	ŗ	7	ç	۲	?	?	-2	-2	7	?	7	7	ř	0	•	7	7	•	•	-	~		
3	•	a	•	•	•	•	•	•	•	•	0	1	-11	-15	-20	- 23	- 25	-27	-20	- 26	-27	- 23		-11	2		2	•			2 1	ì	7	f	-	7	-	7	7	•	1	ŗ	ŗ	1	?	7	7	0	7	7	•	•	•	-	~		ALL EXECUTION
3	7	7	, 1	, ;		, 7	. 3	•	,	,	,	÷	-10	67		-1,	?	7	- 16	-12		1	-	5	12	; 1		9 11	•	•	•	•	•	~	2	7	7	7	•	•	~	•	v	•	•	¥	n	?	ī	7	7	,	-	-	7		13. E
m	•							•			•											•		. ~	, ,	•			۰,			,	.		_	~	~		•	•	•	•	~		_		~		ņ	-	_	_		_			
•												?	47-	7	•	7	7	ŗ	7	7	7	•	•	•	•	7		• 1	•	•	•	•	•												•		•	7	٠	•	•	•				!	510
2	•	•	•	•	•	• •	4	•	•	•	-37	-50	-12	?	-11	-19	-26	-35	-36	-39	-37	-31	-24	-1	-	*	7	• •	• •	•	ο ,	•	_	•	•	•	•	2	=	•	12	•	=	2	•	13	Ť	•	6	ï	7	-	•	9	•		STAKT . STOP.
61	a	•	•	• •	• •	• •		•	و	3	22	3	3	7	70	?	ŝ	ž	9	62	9	á	4	;		3	;	3 2	;;	3;	2 :	2	25	5	32	35	32	32	32	9	ň	3	32	7	27	75	20	76	:	-11		•	•	•	0		FOR S
7	-		, ,			۰.4	. ~	.	(A	9		~	•	•		•	_	•	•	۵			. 107								э.	-	.	~	•	•	۰			.		-	~	P)		•	٠	_	•	•		_	~	6			TIMES
- 1				•		_		_	•	Ä		-4	-	Ä	74	=	-	=	Ä	Ñ	1 67	1 10	'n	7	, 1		9 6	ıč	4 5		n i	n i	75	* 5	ň	2	m	m	ň	P	₹	•	#	•	₹	ď	₹	•	4	•	ň	•	ď	ď	8		=

Figure 21. (Sheet 26 of 26)

PART VIII: SUMMARY AND CONCLUSIONS

- 67. This report describes the development of a generalized numerical model for coastal currents induced by breaking waves. The model employs the radiation stress approach of Longuet-Higgins and solves the vertically integrated equations of momentum and continuity using an alternating direction implicit scheme. It includes mixing and advection terms.
- 68. The model has the following desired features in terms of application to engineering projects: the ability to handle real-life bathymetries, flexibility in terms of formulation of mixing and friction terms, computational efficiency, and economy.
- 69. The model was applied to a case of normally incident waves on a plane beach. The results for setup matched the experimental data of Bowen, Inman, and Simmons (1968).
- 70. For oblique incidence of waves on a plane beach, model results for longshore currents were compared with the analytical solution of Longuet-Higgins, first neglecting the effect of setup and later including the effect of setup. Agreement was excellent. As the numerical grid was made finer, the numerical results tended to converge toward the analytical solution. Next, the effect of lateral mixing on the velocity distribution was studied. As the mixing parameter P increased, the numerical solution exhibited the proper behavior, since the magnitude of the peak decreased, the peak moved closer to the shoreline, and the velocities offshore of the breaker line increased.
- 71. The model was finally applied to a field situation corresponding to Oregon Inlet, North Carolina. The bathymetry was very irregular and complex owing to the presence of channels and shoals. A variable grid was used. The significant wave condition during a part of the Ash Wednesday storm of March 1962 was selected for simulation. The numerical results obtained for this case appeared to be reasonable and the computer costs were modest.
- 72. For the convenience of the potential user, model input, output, and files are described and two sample applications are presented.

REFERENCES

- Birkemeier, W. A., and Dalrymple, R. A. 1975. "Nearshore Water Circulation Induced by Wind and Waves," <u>Proceedings, Modeling 75 Conference, American Society of Civil Engineers</u>, Vol II, pp 1062-1081.
- Bowen, A. J. 1969. "The Generation of Longshore Currents on a Plane Beach," <u>Journal of Marine Research</u>, Vol 27, pp 206-215.
- Bowen, A. J., Inman, D. L., and Simmons, V. P. 1968. "Wave 'Set-Down' and Set-Up," Journal of Geophysical Research, Vol 73, No. 8, pp 2569-2577.
- Butler, H. L. 1980. "Evolution of a Numerical Model for Simulating Long Period Wave Behavior in Ocean-Estuarine Systems," <u>Estuarine and Wetlands Processes with Emphasis on Modeling</u>, Marine Science Series, Vol 11, Plenum, New York.
- Dalrymple, R. A., Eubanks, R. A., and Birkemeier, W. A. 1977. "Wave-Induced Circulation in Shallow Basins," <u>Journal</u>, <u>Waterway</u>, <u>Port</u>, <u>Coastal and Ocean Division</u>, <u>American Society of Civil Engineers</u>, Vol 103, No. WW1, pp 117-135.
- Ebersole, B. A. 1980. "A Numerical Model for Nearshore Circulation Including Convective Accelerations and Lateral Mixing," M.S. Thesis, University of Delaware, Newark, Del.
- Ebersole, B. A., and Dalrymple, R. A. 1980. "Numerical Modelling of Nearshore Circulation," <u>Proceedings, Seventeenth Conference on Coastal Engineering,</u> Sydney, Australia, Vol III, Ch 163, pp 2710-2725.
- Jonsson, I. G., Skovgaard, O., and Jacobsen, T. S. 1974. "Computation of Longshore Currents," Proceedings, Fourteenth Conference on Coastal Engineering, Copenhagen, Denmark, Vol II, Ch 40, pp 699-714.
- Liu, P. L-F., and Dalrymple, R. A. 1978. "Bottom Frictional Stresses and Longshore Currents due to Waves with Large Angles of Incidence," <u>Journal of Marine Research</u>, Vol 36, No. 2, pp 357-375.
- Liu, P. L-F., and Lennon, G. P. 1978. "Finite Element Modeling of Nearshore Currents," <u>Journal</u>, <u>Waterway</u>, <u>Port</u>, <u>Coastal and Ocean Division</u>, <u>American</u> <u>Society of Civil Engineers</u>, Vol 104, No. WW2, pp 175-189.
- Liu, P. L-F., and Mei, C. C. 1976. "Wave Motion on a Beach in the Presence of a Breakwater; 2, Mean Currents," <u>Journal of Geophysical Research</u>, Vol 81, No. 17, pp 3085-3094.
- Longuet-Higgins, M. S. 1970. "Longshore Currents Generated by Obliquely Incident Sea Waves, 1 and 2," <u>Journal of Geophysical Research</u>, Vol 75, No. 33, pp 6778-6789 and pp 6790-6801.
- Longuet-Higgins, M. S., and Stewart, R. W. 1964. "Radiation Stresses in Water Waves; A Physical Discussion, with Applications," <u>Deep-Sea Research</u>, Vol 11, pp 529-562.
- Noda, E. K. 1974. "Wave-Induced Nearshore Circulation," <u>Journal of Geophysical Research</u>, Vol 79, No. 27, pp 4097-4106.
- Noda, E. K., et al. 1974. "Nearshore Circulations Under Sea Breeze Conditions and Wave-Current Interactions in the Surf Zone," Tetra Tech Report TC-149-4.

Phillips, O. M. 1969. The Dynamics of the Upper Ocean, Cambridge University Press, Cambridge.

Thornton, E. B. 1970. "Variation of Longshore Current Across the Surf Zone," Proceedings, Twelfth Conference on Coastal Engineering, Washington, DC, Vol I, Ch 18, pp 291-308.

Vreugdenhil, C. B. 1980. "A Method of Computation for Unsteady Wave-Driven Coastal Currents," Report R 1174, Part I, Waterloopkundig Laboratorium, Delft Hydraulics Laboratory.

APPENDIX A: NOTATION

```
Mapping function, dimensionless
                  Coefficients, 1/sec
                  Coefficients, sec
m+1/2 am-1/2
                  Coefficient, dimensionless
        a<sub>m+1/2</sub>
                  Computational parameter, ft
                  Mapping function, dimensionless
       ^{\mathrm{B}}_{\mathrm{m+1/2}}
                  Computational parameter, ft/sec
                  Drag coefficient (of the order of 0.01), dimensionless
                  Mapping function, dimensionless
            c<sub>1</sub>
                  Phase speed, ft/sec
             C
             d
                  Total water depth including setup, ft
                  Water depth at wave breaking, ft
            d<sub>b</sub>
                  Wave energy density, lb/ft
                  Acceleration due to gravity, 32.174 ft/sec<sup>2</sup>
             h
                  Bed elevation with still-water level taken as zero, ft
           |h|
                  Local still-water depth, ft
            Н
                  Local wave height, ft
            ዜ
                  Breaking wave height, ft
           H
                  Deepwater wave height, ft
                  Local wave number, 2\pi/L, 1/ft
             k
                  Local wavelength, ft
           L
                  Breaking wavelength, ft
                  x-index of arbitrary cell center
                  y-index of arbitrary cell center
             n
                  Ratio of wave group celerity to wave phase celerity,
                  dimensionless
          N<sub>LH</sub>
                  Empirical coefficient that varies from 0.000 to 0.016,
                  dimensionless
             P
                  Mixing parameter which varies between 0 and 0.40,
                  dimensionless
                  Recursion coefficient, sec
                  Recursion coefficient, sec
                  Recursion coefficient, ft
                  Recursion coefficient, ft
```

```
Recursion coefficient, 1/sec
      R
      R<sub>M</sub>
            Recursion coefficient, 1/sec
            Beach slope, dimensionless
      S
            Recursion coefficient, ft/sec
            Recursion coefficient, ft/sec
     S<sub>xx</sub>
            Radiation stress in the x-direction (normal to the
            y-z plane), lb/ft
            Radiation stress in the y-direction in the x-z plane, lb/ft
     Sxv
     S<sub>yy</sub>
            Radiation stress in the y-direction (normal to the
            x-z plane), lb/ft
            Time, sec
       t
       T
            Wave period, sec
      T1
            Computational parameter, dimensionless
      T2
             Computational parameter, dimensionless
       U
            Depth-averaged horizontal velocity in x-direction, ft/sec
< |u<sub>orb</sub>|>
             Time-averaged wave orbital velocity at the bottom, ft/sec
            Depth-averaged horizontal velocity in y-direction, ft/sec
            Horizontal Cartesian coordinate, ft
            Horizontal Cartesian coordinate, ft
       У
            Vertical Cartesian coordinate, ft
       Z
       Z
            Arbitrary variable
             Computational space coordinate, ft
      α,
             Computational space coordinate, ft
      \alpha_2
            Wave breaking index on the order of 1.0, dimensionesss
       Y
            Difference operator
      Δt
            Time increment, sec
             Cell dimension in x-direction in real space, ft
      Δх
      Δу
             Cell dimension in y-direction in real space, ft
     Δα,
             Cell dimension in \alpha,-direction in computational space, ft
             Cell dimension in \alpha_2-direction in computational space, ft
     Δα<sub>2</sub>
            Eddy viscosity in the x-direction, ft<sup>2</sup>/sec
            Eddy viscosity in the x-direction, ft<sup>2</sup>/sec
             Water-surface elevation at intermediate time level, ft
      ŋ*
             Displacement of the mean free surface with respect to still-
       n
            water level, ft
             Local wave direction, deg
       θ
```

	μ_1	Expansion coefficient, dimensionless
	μ_2	Expansion coefficient, dimensionless
	π	3.14159, dimensionless
	ρ	Mass density of seawater, 1.99 lb-sec ² /ft ⁴
	τ _{bx}	Bottom friction stress in the x-direction, $1b/ft^2$
	τ _{by}	Bottom friction stress in the y-direction, $1b/ft^2$
	τ _{xy}	Lateral shear stress due to turbulent mixing, lb/ft ²
umbo l		

Symbol

Partial derivative symbol, dimensionless

END

FILMED

1-85

DTIC