Homework Assignment 2

Due: 16:00pm Tuesday, Feb. 14, 2023

Problem 1. Given $g_1(t) \rightleftharpoons G_1(f), g_2(t) \rightleftharpoons G_2(f)$, please use the definitions of FT and inverse FT to proof the the following FT properties.

- a) The differentiation property: $\frac{d}{dt}g_1(t) \rightleftharpoons j2\pi fG_1(f)$.
- **b)** The convolutional property: $g_1(t) * g_2(T) \rightleftharpoons G_1(f)G_2(f)$.
- c) Parseval's theorem: $E_g = \int_{-\infty}^{\infty} |g_1(t)|^2 dt = \int_{-\infty}^{\infty} |G_1(f)|^2 df$.

Problem 2. a) Find the energy spectral density of the signal $g(t) = e^{-|t|}$.

b) Show that the signal $g_1(t) = e^{-|t-2|}$ has the same energy spectral density as g(t).

Problem 3. Let $g_{T_0}(t)$ be a periodic signal with period π . Over the period $0 \le t < \pi$, it is defined by $g_{T_0}(t) = \cos t$. Find the Fourier transform of $g_{T_0}(t)$ and draw the frequency spectrum.

Note: $\cos x \cos y = \frac{1}{2} [\cos(x-y) + \cos(x+y)],$

 $\sin x \cos y = \frac{1}{2} [\sin(x-y) + \sin(x+y)],$

Jear cos Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs