פתרון 11 לוגיקה מתמטית - תרגיל

- \mathbf{W}^{N} ל- \mathbf{f}^{M} איננה צמצום של \mathbf{f}^{N} איננה של \mathbf{M} מכיוון ש- \mathbf{f}^{N} איננה עמצום של \mathbf{f}^{N} ל- \mathbf{f}^{M} זוגמה: ניקח $\mathbf{g}=\mathbf{0}$. $\mathbf{p}=\mathbf{0}$ אבל \mathbf{f}^{M} .
- ב. N תת מבנה של M מכיוון ש- f^N היא צמצום של f^N . אבל N אינו תת מבנה M מכיוון שהפסוק $\exists x\exists y(\neg x=y \land f(x,x)=f(y,y))$ אמיתי ב-M אבל לא אמיתי ב-M.
 - ג. N תת מבנה של M מכיוון ש- $W^N \cap M^N = R^N$, אבל N אינו תת מבנה M אלמנטרי של M מכיוון שהפסוק M אמיתי ב-M אבל לא אמיתי ב-M ב-N.
- אמיתי $\exists x \forall y \neg R(x,y)$ אינו תת מבנה אלמנטרי של N מכיוון שהפסוק K .2 אינו תת מבנה אלמנטרי ב-N.
 - .M תת מבנה אלמנטרי של K -
- אמיתי $\exists x \forall y \neg R(x,y)$ אינו תת מבנה אלמנטרי של M מכיוון שהפסוק $M \rightarrow M$ אמיתי ב-M.
 - : נניח Σ_F היא קבוצת 10 האקטיומות של שדה. נגדיר: Σ_F נניח Σ_G = { $\neg f(d,d)=c, \neg f(f(d,d),d)=c, \dots$ }

 ϕ כל המודלים של $\Sigma_F \cup \Sigma_0$ הם כל השדות בעלי קרקטריסטיקה 0. לכן אם כל נוסחה אמיתית בכל שדה בעל קרקטריסטיקה 0, אזי לפי משפט השלמות של גדל היא יכיחה מתוך $\Sigma_F \cup \Sigma_0$

מכיוון שההוכחה מורכבת ממספר סופי של נוסחאות אזי משתמשים בה רק במספר סופי של הנחות מתוך הקבוצה 2.

אם אזי ϕ אמיתית בכל שדה. בפסוקים של Σ_0 בכלל אזי אמיתית בכל שדה.