Numerical Relativity Cheat Sheet

Equations I should remember, but I don't

Gabriele Bozzola

Contents

1	Conventions	1
2	ADM Decomposition 2.1 Constraints	1 1
3	Matter and Equations of State 3.1 Velocity definitions	2
4	Useful identities	2
1	Conventions	
W	We denote the metric as $g_{\alpha\beta}$.	
2	ADM Decomposition	
T	he line element ds^2 is	
	$ds^{2} = g_{\alpha\beta} dx^{\alpha} dx^{\beta} = -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt)(dx^{j} + \beta^{j} dt)$	(1)
	$\gamma^{a\beta} = g^{\alpha\beta} + n^{\alpha}n^{\beta}$	(2)
	$n^{\alpha} = \frac{1}{\alpha}(1, -\beta^i)$	(3)
	$n_{\alpha} = (-\alpha, 0, 0, 0)$	(4)
2.	1 Constraints	
. .		

Momentum constraint

$$S_i = -\gamma_{i\alpha} n_{\beta} T^{\alpha\beta} \,. \tag{5}$$

3 Matter and Equations of State

Let ρ_0 be the rest-mass density, and ϵ the specific internal energy density, the total mass-energy ρ measured by an observer comoving with the fluid is

$$\rho = \rho_0(1+\epsilon) = \rho_0 + \rho_0\epsilon = \rho_0 + \varepsilon_{\text{int}}, \qquad (6)$$

with $\varepsilon_{\rm int}$ internal energy density.

The enthalpy is $h = (1 + \epsilon + P/\rho_0)$, or $\rho_0 h = \rho + P$.

The Gamma-law equation of state is $P = (\Gamma - 1)\rho_0\epsilon$, or $P = (\Gamma - 1)\varepsilon_{\text{int}}$.

3.1 Velocity definitions

Let u^{α} be the four-velocity of the fluid.

$$W = -n_{\alpha}u^{\alpha} \tag{7}$$

$$u^t = \frac{W}{\alpha} \,. \tag{8}$$

Stress-energy tensor of a perfect fluid

$$T^{\alpha\beta} = \rho_0 h u^{\alpha} u^{\beta} + P g^{\alpha\beta}, \tag{9}$$

4 Useful identities

$$\sqrt{-g} = \alpha \sqrt{\gamma} \tag{10}$$