LISTAS SEQUENCIAIS

Prof. Alberto Costa Neto

TIPOS DE DADOS

- Tipos de dados básicos
 - Inteiro, ponto flutuante, caractere.
- Tipos de dados estruturados
 - o Arranjo e registro.
- Tipos de dados definidos pelo usuário
 - Tipos de dados estruturados
 - o Construídos hierarquicamente através de componentes de tipos
 - Básicos
 - Estruturados
 - Definidos pelo usuário

TIPOS ABSTRATOS DE DADOS (TAD)

- ED's capazes de representar tipos de dados não previstos
- Dividem-se em duas partes:
 - Dados
 - Operações
- Característica principal
 - Separação entre conceito e implementação

NOSSO PRIMEIRO TAD: LISTA

Quais operações teria uma lista?

NOSSO PRIMEIRO TAD: LISTA

Quais operações teria uma lista?

- Inserir
- Remover
- Alterar
- Buscar
- Tamanho
- Vazia
- Cheia
- Limpar
- . . .

LISTA SEQUENCIAL

- Uma opção de implementação para o TAD Lista.
- Utiliza uma estrutura sequencial, como um arranjo (array) ou arquivo.
- Itens da ED armazenados em posições contíguas de memória.

NÓ DA LISTA

• Cada item da lista é comumente chamado de Nó

- É possível que o Nó seja:
 - Um tipo de dados primitivo: número ou caractere, por exemplo.
 - Um tipo de dados composto heterogêneo (struct, record, classe).

INSERÇÃO

- A inserção normalmente é feita na **primeira posição livre** do arranjo, geralmente começando da posição 0 (zero).
- Deve-se controlar a quantidade de itens (nós) na lista, ou seja, seu **tamanho**.
- Como o arranjo tem um tamanho fixo (capacidade), é possível que fique cheio em algum momento.

Inicialmente o arranjo está vazio (Tamanho = 0)

Inicialmente o arranjo está vazio (Tamanho = 0)

Quando Tamanho = Capacidade, a Lista está cheia.

10	5	2	3	4	6	7	8	9	1

O que fazer neste caso?

Quando Tamanho = Capacidade, a Lista está cheia.

		10	5	2	3	4	6	7	8	9	1
--	--	----	---	---	---	---	---	---	---	---	---

O que fazer neste caso?

- Realocar os dados para um arranjo maior (se a linguagem de programação suportar)
- Não aceitar mais inserções
- Criar uma lista maior e copiar os dados

BUSCA

OPERAÇÃO DE BUSCA

- Procurar a posição de um item na lista
- Inicia-se pela posição 0 (zero) e segue-se até:
 - o Encontrar um item e encerrar a procura.
 - Chegar ao último item sem encontrar.
- Quando o item procurado é encontrado, seu valor é retornado.
- Este algoritmo é conhecido como Busca Sequencial.

ALTERAÇÃO

OPERAÇÃO DE ALTERAÇÃO

- Consiste em alterar o item contido numa dada posição da lista.
- A posição deve ser dentro da faixa de posições preenchidas.
- O acesso à posição é direto, por se tratar de um array.
- O item contido naquela posição da lista é substituído pelo valor do novo item.

REMOÇÃO

OPERAÇÃO DE REMOÇÃO

- Consiste em remover um item da lista.
- A procura se inicia pela posição 0 (zero) e segue até:
 - o Encontrar um item igual e encerrar a procura.
 - o Chegar ao último item sem encontrar.
- Quando o item procurado é encontrado, seu valor é substituído pelo valor à sua direita (se houver).
 - Esta operação deve ser repetida para todos os elementos à direita.
- O tamanho da lista é decrementado em 1 (um).

OPERAÇÃO DE REMOÇÃO

• Considerando a lista abaixo, ao se tentar remover o 1, o que acontece?

		10	5	2	3	4	6	7	8	9	1
--	--	----	---	---	---	---	---	---	---	---	---

OPERAÇÃO DE REMOÇÃO (CASO SIMPLES)

• Considerando a lista abaixo, ao se tentar remover o 1, o que acontece?

	1)	5	2	3	4	6	7	8	9	1
--	---	---	---	---	---	---	---	---	---	---	---

Este é o caso mais simples, pois basta colocar a posição como disponível novamente (Tamanho = 9).

10	5	2	3	4	6	7	8	9	
----	---	---	---	---	---	---	---	---	--

OPERAÇÃO DE REMOÇÃO (CASO COMPLEXO)

 Considerando a lista abaixo, ao se tentar remover o 8, o que acontece?

10	5	2	3	4	6	7	8	9	1

OPERAÇÃO DE REMOÇÃO (CASO COMPLEXO)

• Considerando a lista abaixo, ao se tentar remover o 8, o que acontece?

9

Temos que colocar o 9 no lugar do 8.

10

6

OPERAÇÃO DE REMOÇÃO (CASO COMPLEXO)

• Note que o 1 não é apenas removido "logicamente" do array, ou seja, não deve mais ser acessado.

								\$	
10	5	2	3	4	6	7	9	1	1

SUGESTÕES DE ESTUDO

Estruturas de Dados (Nina Edelweiss)

- Capítulo 2
- Seções 3.1 a 3.3

Projeto de Algoritmos com implementações em Java e C++ (Nivio Ziviani)

• Seções 1.1, 1.2, 3.1 e 5.1

Estruturas de dados (Paulo Veloso)

• Seções 5.1 a 5.4 e 9.1