Medidas Descritivas

Gilberto Pereira Sassi

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Estatística

17 de maio de 2016

1/6

Distribuição de Frequência – Caso Contínuo

Considere a Distribuição de Frequência da taxa de mortalidade infantil em 1982 nos municípios da microrregião do oeste catarinense:

Taxa de Mortalidade Infantil	Frequência	Ponto Médio
0 10	1	5
10 20	10	15
2030	15	25
30	7	35
4050	0	45
50 60	0	55
60 70	1	65
Total	34	_

Então podemos aproximar a média e a variância por

$$\bar{x} = \frac{1 \cdot 5 + 10 \cdot 15 + 15 \cdot 25 + 7 \cdot 35 + 65}{34} = 24,71$$

$$\sum x_i^2 = 1 \cdot 5^2 + 10 \cdot 15^2 + 15 \cdot 25^2 + 7 \cdot 35^2 + 65^2 = 24450$$

$$s^2 = \frac{24450 - 34 \cdot \bar{x}^2}{33} = 112,82$$

Medidas de Posição

Moda Realização mais frequente mais usado para variável quantitativa discreta. **Notação:** mo(x).

Mediana Realização que ocupa a posição dos dados em ordem crescente.

Notação:
$$md(x) = \begin{cases} x_{(\frac{n}{2})}, & \text{se } n \text{ \'e par} \\ \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}, & \text{se } n \text{ \'e impar} \end{cases}$$

Exemplo

Notas finais de três turmas de estatística básica.

Turma		Notas							
A B C	4 1 0	5 2 6	5 4 7	6 6 7	6 6 7	7 9 7	7 10 8	8 10	

Turma A Dados Ordenados:

$$mo(x) = 5$$

$$mo(x) = 5, 6, 7$$

$$md(x) = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{6+6}{2} = 6$$

$$\begin{matrix} x_{(1)} & x_{(2)} & x_{(3)} & x_{(4)} & x_{(5)} & x_{(6)} & x_{(7)} & x_{(8)} \\ 1 & 2 & 4 & 6 & 6 & 9 & 10 & 10 \end{matrix}$$
 . Então,

$$mo(x) = 6, 10$$

$$md(x) = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{6+6}{2} = 6$$

Turma C Dados Ordenados: 0 6 7 7 7 8 . Então,

$$mo(x) = 7$$

$$md(x) = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{7+7}{2} = 7$$

Medidas de Dispersão

Desvio Médio O objetivo é avaliar como os valores se distribuem em torno da média. A ideia é tomar a média dos desvios absolutos:

$$dm = \frac{|x_1 - \overline{x}| + |x_2 - \overline{x}| + \cdots + |x_n - \overline{x}|}{n}$$

Desvio Médio indica, em média, qual será o erro que cometemos se substituirmos os dados observados pela média.

Exemplo

Turma A
$$dm = \frac{|4-6|+2\cdot|5-6|+2\cdot|6-6|+2\cdot|7-6|+|8-6|}{8} = 1$$

Turma B
$$dm = \frac{|1-6|+|2-6|+|4-6|+2\cdot|6-6|+|9-6|+2\cdot|10-6|}{8} = 2,75$$

Turma C
$$dm = \frac{|0-6|+|6-6|+4\cdot|7-6|+|8-6|}{7} = 1,71$$

