Algorithmen und Datenstrukturen: Übung 4

Tanja Zast, Alexander Waldenmaier

2. Dezember 2020

Aufgabe 4.1

a) Wenn mit Wahrscheinlichkeit $p' = \frac{2}{3}$ zwei Marsianer am selben Tag Geburtstag haben, dann beträgt die Wahrscheinlichkeit für völlig unterschiedliche Geburtstage $p = \frac{1}{3}$. Mit m = 687 ergibt die Formel aus dem Skript dann für die gesuchte Anzahl n an Marsianern:

$$\prod_{i=1}^{n-1} \frac{m-1}{m} = p \approx e^{-\frac{\left(n-\frac{1}{2}\right)^2}{2m}}$$

$$\ln p \approx -\frac{\left(n-\frac{1}{2}\right)^2}{2m}$$

$$2m \ln p \approx -\left(n-\frac{1}{2}\right)^2$$

$$\sqrt{-2m \ln p} \approx n - \frac{1}{2}$$

$$n \approx \sqrt{-2m \ln p} + \frac{1}{2}$$

$$n \approx \sqrt{-2 \cdot 687 \ln \frac{1}{3}} + \frac{1}{2} \approx 39,3522$$

$$\Rightarrow n = 40$$

Ab 40 Marsianern beträgt die Wahrscheinlichkeit für mindestens eine Dopplung der Geburtstage mehr als $\frac{2}{3}$.

b) Die Wahrscheinlichkeit, dass bei n Einträgen in einer m großen Hashtabelle eine Kollision auftritt, beträgt:

$$p = 1 - \prod_{i=1}^{n-1} \frac{m-1}{m} \approx 1 - e^{-\frac{\left(n - \frac{1}{2}\right)^2}{2m}}$$

Mit der Bedingung $p > \frac{2}{3}$ und unter Verwendung der Approximation folgt:

$$\frac{2}{3} \lesssim 1 - e^{-\frac{\left(n - \frac{1}{2}\right)^2}{2m}}$$

$$\frac{1}{3} \gtrsim e^{-\frac{\left(n - \frac{1}{2}\right)^2}{2m}}$$

$$\ln \frac{1}{3} \gtrsim -\frac{\left(n - \frac{1}{2}\right)^2}{2m}$$

$$2m \ln \frac{1}{3} \gtrsim -\left(n - \frac{1}{2}\right)^2$$

$$\sqrt{-2m \ln \frac{1}{3}} \lesssim n - \frac{1}{2}$$

$$n \gtrsim \sqrt{-2m \ln \frac{1}{3}} + \frac{1}{2}$$

Aufgabe 4.2

Gegeben: $S = \{92, 19, 83, 37, 16, 57, 61\}, m = 11$

a)

Es entstehen zwei Kollisionen: 92 kollidiert mit 57 am Index 4, 83 kollidiert mit 61 am Index 6.

b)

b)			_			
,	0	/	-	\rightarrow		
	1	/	1	\rightarrow		
	2		_	\rightarrow	57	/
	3	/		\rightarrow		
	4		_	\rightarrow	92	/
	5		-	\rightarrow	37	/
	6		-	\rightarrow	83	/
	7		-	\rightarrow	16	/
	8		1	\rightarrow	19	/
	9		_	\rightarrow	61	/
	10	/	-	\rightarrow		

Es entstehen insgesamt 6 Kollisionen.

Es entstehen insgesamt 5 Kollisionen.

Aufgabe 4.3

Aussage:

$$A: \forall h(s_i) \exists s_1, s_2 \in S \subset U \mid n = |S|, |U| > m(n-1): h(s_1) = h(s_2)$$

Gegenaussage:

$$\bar{A}: \forall h(s_i) \forall s_1, s_2 \in S \subset U \mid n = |S|, |U| > m(n-1): h(s_1) \neq h(s_2)$$

Die Gegenaussage gilt es nun zu widerlegen.

Damit alle Schlüssel des Universums einen eigenen Platz in der Hashtabelle bekommen können (sonst würden zwangsläufig Kollisionen auftreten), muss gelten:

$$\begin{split} m &\geq |U| \\ \stackrel{\bar{A}}{\Rightarrow} m &\geq |U| \stackrel{!}{>} m(n-1) \\ m &\not\geq m(n-1), \text{mit } n \geq 2 \end{split}$$

Die Gegenaussage wurde widerlegt, womit A gilt.

Aufgabe 4.4

Wir nehmen an, dass zwei unterschiedliche Werte x_1, x_2 durch die k Hash-Funktionen auf die selben Indizes abgebildet werden. Ist x_1 bereits gespeichert, dann werden beim Abspeichern von x_2 keine Bits verändert. Wird nun beispielswiese x_1 gelöscht, so würde eine Abfrage (bloomCheck) von x_2 false ergeben, da alle zugehörigen Bits bei der Löschung von x_1 auf false gesetzt wurden. Das widerspricht dem Anspruch des BloomFilters, keine False Negatives herauszugeben.

Aufgabe 4.5

Qualitativ lässt sich sagen: Je mehr Hash-Funktionen, desto geringer sollte die Wahrscheinlichkeit für false positives werden, da die Anzahl an Bits, die identisch sein müssen, zunimmt. Andererseits werden mit mehr Hash-Funktionen auch mehr Bits befüllt, der Belegungsgrad wird höher, wodurch irgendwann wieder mehr false positives auftreten. Dies zeigt sich an der Formel aus dem Skript:

$$P(\text{false positive}) = (1-p)^k$$

$$\approx (1 - e^{-\frac{nk}{m}})^k$$

$$p = P(A[i] = \text{FALSE})$$

Die minimale Kollisionswahrscheinlichkeit liegt bei k=7 vor. Im Folgenden sind die Werte für alle zulässigen k und n=100, m=1000 aufgetragen und grafisch dargestellt:

Abbildung 1: Wahrscheinlichkeit p für false positives bei k Hash-Funktionen (n = 100, m = 1000)

Aufgabe 4.6

Abgabe in DOMjudge. Teamname: "test"