차드호의 운명

: 대기열역학적 계산을 통한 차드호의 증발률과 면적 변화

6조

강수민 김민유 신동민

Contents

#1. Characteristics of Lake Chad

#2. Evaporation Rate of Lake Chad

#3. Calculation & Result

Lake Chad (차드호)

- 아프리카 중서부에 위치
- 넓은 넓이에 비해 얕은 수심의 호수
- 차드를 포함한 주변 국가들의 주요 수자원

면적이 줄어드는 차드호

왜 면적이 줄어드는가?

	Catchment Area (km²)	Inflows and Outflows (km³/yr)	
		Pre-1970 mean	1971-1990 mean
Inflows			
Chari-Logone	590,000	39.8	21.8
Komadugu-Yobe	147,840	1.0	0.45
Yedseram-Ngadda-Ebeji	53,720	0.89	0.12
Other Rivers		1.2	0.2
Total River Inflows		42.89	22.57
Rainfall on open water surface		6.0	2.1
Total Input		48.89	24.68
Outflows			
Evapotranspiration		43.0	23.1
Infiltration		3.0	1.4
Total Outflow		46.0	24.5

Source: Oyebande (1997), UNEP/DEWA (2003).

• 유입원 : 주변의 강 (특히, Chari-Logone)

• 유출원 : 증발 (Evaporation)

• 유입량 급감 & 순수 유출량 감소

프로젝트의 목표

대기열역학적으로 호수의 증발률을 계산

1961년부터 매 달 증발하는 부피 계산

차드호의 면적 변화 계산

전제 조건

차드호의 면적은

1. 강의 유입량의 변화 2. 기후 변화에 따른 증발량 변화

에만 의존한다고 가정

가정 1. 호수의 기하학적 형태

가정 1. 호수의 기하학적 형태

부피 = 넓이의 절반imes 2 imes S

가정 1. 호수의 기하학적 형태

At 1983, $D = 10.5m \, (Max \, Depth), \, S = 1540 km^2, \, V = 6.3 km^3$ (World Lake Database)

$$n = 0.64, a = 1.51$$
 $D = 1.51S^{0.64}$

$$V = 2S \cdot \left[\frac{1.51S^{1.64}}{2} - \frac{1.51}{1.64} \cdot \left(\frac{S}{2} \right)^{1.64} \right]$$

가정 2. Boundary Layer

가정 2. Boundary Layer

Potential Temperature cross-section in the downwind direction over the lake

가정 2. Boundary Layer

dt 동안 호수 위로 빠져나간 Saturated air의 양 $d\,V_s$

Wind Speed
$$=\frac{ds}{dt}$$

$$\frac{dV_s}{dt} = \frac{ds}{dt} \cdot H(s) \cdot S$$

이상기체 상태방정식에 의해 $\;p=
ho R_d\,T_{virt}$

$$\rho = \frac{p}{R_d T (1 + 0.61q)}$$

밀도를 곱하면, dt 동안 Saturated air의 질량 변화

$$\rho \frac{dV_s}{dt} = \frac{dm_s}{dt}$$

증발하는 수증기의 양 dm_v 기온 T에서 포화 비습 $q_s(\mathit{T})$ 현재 비습 q

$$\frac{dm_{v}}{dt} = \frac{dm_{s}}{dt}(q_{s}(T) - q)$$

Evaporation Rate

기온 T에서 포화 비습 $q_s(T)$

$$e_s = 6.11 \exp(53.49 - \frac{6080}{T} - 5.09 \ln T)$$
 $w_s = \frac{\epsilon e_s}{p - e_s}$ $q_s = \frac{w_s}{1 + w_s}$

현재 비습 q

$$r = \frac{e}{e_s} \qquad w = \frac{\epsilon e}{p - e} \qquad q = \frac{w}{1 + w}$$

호수의 밀도 ho_l 증발에 의한 호수의 부피 감소율

$$\frac{dV_{evap}}{dt} = \frac{1}{\rho_l} \cdot \frac{dm_v}{dt}$$

계산을 위한 실제 자료 수집

- 기온 T 1972년부터 관측 데이터
- 상대습도 r 1992년부터 관측 데이터

• 풍속
$$=$$
 $\frac{ds}{dt}$

가정: 호수로의 강물 유입

Table 2. Drainage Areas, Inflows into Lake Chad, and the Overall Water Balance of the Lake.

	Catchment Area (km²)	Inflows and Outflows (km³/yr)	
		Pre-1970 mean	1971-1990 mean
Inflows			
Chari-Logone	590,000	39.8	21.8
Komadugu-Yobe	147,840	1.0	0.45
Yedseram-Ngadda-Ebeji	53,720	0.89	0.12
Other Rivers		1.2	0.2
Total River Inflows		42.89	22.57

가정: 호수로의 강물 유입

	Catchment Area (km²)	Inflows and Outflows (km³/yr)	
		Pre-1970 mean	1971-1990 mean
Inflows			•
Chari-Logone	590,000	39.8	21.8

연간 유입량 평균 감소 비율

월별 유입량 변화 추이

Figure 14 Monthly average discharge from Chari-Logone River at N'Djamena (1933-1991).

(Source: RIVDIS database 1991)

가정: 호수로의 강물 유입

실제 차드호 면적의 변화

Figure 12 Open surface area of Lake Chad (1960-1999). (Source: LCBC 2000b)

결과: 차드호의 면적 변화

결과: 차드호의 면적 변화

계산 결과,

- 호수의 월별 면적 변화가 뚜렷함 → 11월에 면적이 가장 넓음
- 전반적으로 줄어드는 경향

실제 면적 변화에 대해,

- 70년대 말, 호수 면적이 급감 → 주변 국가의 호숫물 사용 급증
- 80년대 이후, 호수 면적 유지 → Management of Lake Chad & Lake Chad Basin Commission

결과: 차드호의 유입과 유출

결과: 차드호의 유입과 유출

- 계절에 따른 증발량 변화 극심 → 온도가 높고 습도가 낮은 4월에 최대
- 계절에 따른 면적 변화폭이 큼 → 4월 최대 증발, 10월 최대 유입
- 호수의 전체 면적 감소 → 호수의 증발량 감소

결론

- 이번 프로젝트의 결과는 실제 결과를 분석하는 데에 있어 비교적 타당
- 차드호의 면적이 줄어드는 가장 큰 원인은 **유입량 감소**
- 증발량의 계절변화와 유입량의 계절변화로 인해

계절에 따라 호수의 면적이 변화

참고문헌

Wylie, Donald P.; Young, John A. 1978, "Boundary-Layer Observations of Warm Air Modification over Lake Michigan Using a Tethered Ballon", University of Wisconsin-Madison.

Odada, Eric O.; Oyebande, Lekan; Oguntola, Johnson A. 2005, "Lake Chad: Experiences and Lessons Learned Brief". Managing lakes and their Basins for Sustainable Use.

GIWA report production, 2004, "Global International Waters Assessment: Lake Chad Basin, GIWA Regional assessment 43", United Nations Environment Programme