RADIOISOTOPE THERMOPHOTOVOLTAIC (RTPV) POWER SYSTEM FOR SPACE APPLICATIONS

Abstract

Thermophotovoltaic (RTV) energy conversion, coupled to the radioisotope powered General Purpose Heat Source (GPHS) is currently being developed by NASA. The goal of the program is to develop a 100 watt electrical power system with an efficiency of 20%. Spectral control is the key element in obtaining an efficient system. Results presented show that excellent spectral control can be achieved so that reaching the goal of 20% efficiency is possible. Excellent spectral control is achieved by using a combination of selective emitters and optical filters and by eliminating radiation leakage from the optical cavity.

THERMOPHOTOVOLTAIC(RTPV) POWER SYSTEM for SPACE RADIOISOTOPE **APPLICATIONS**

Donald L. Chubb, NASA Glenn Research Center Cleveland, Ohio David A. Scheiman, Ohio Aerospace Institute (OAI) **Brook Park, Ohio**

OUTLINE

- NASA RTPV Program
- Thermophotovoltaic (TPV) Concept
- Importance & Methods of Spectral Control
- Theoretical Model Results for System Performance
- Conclusion

POWER CONVERSION TECHNOLOGY THERMOPHOTOVOLTAIC (TPV) FOR RADIOISOTOPE POWER SYSTEMS (RPS)

Goals

- Develop TPV power converter compatible with an advanced RPS
- Demonstrate system conversion efficiency and specific power that is 2 to 3 times higher than present radioisotope thermoelectric generators(RTG)

PARTICIPANTS

 Creare, Inc. – PI, Technical Leader, Integration Manager, Hot-Side and Selective Emitter Fabrication

• Emcore, Inc. - Co-I, Advanced InGaAs Cells and Filters

 NASA Glenn – Co-I, TPV design for performance and test life issues Polytechnic U. – Co-I, Radiation Heat Transfer Modeling

•Oak Ridge NL - Subcontractor, Materials data and

cooling strategies

 Rugate Technologies, Inc. – Subcontractor, Filter fabrication

RTPV CONCEPT*

Terminal Housing Cover (2, AI)

Selective Emitter Coating

Canister Cover (W/Re)GPHS Modules (2)

Canister Frame (W/Re)

Modified Design of Radioisotope

*A. Shock, C. T. Or and V.

Kumar;

Generator to Mitigate Adverse

Thermophotovoltaic

Effect of Measured Cell

31st IECEC, August, 1996

Voltage;

Canister Base (W/Re)

Multifoil Insulation (W)

Generator Housing (AI)

Ball (ZrO₂), Piston (Ti),

0000

PV Cells (InGaAs) w/Filters

Terminal
Housing Cover (AI)
Seal Groove (AI)

at Lewis Field

ENERGY CONVERSION CONCEPT THERMOPHOTOVOLTAIC (TPV)

 $η_{th}(thermal\ eff.)$ $η_c(cavity\ eff.)$ $η_{pv}(PV\ eff.) = η_T$ (total eff.)

MAXIMUM TPV EFFICIENCY

R=Nonconvertible Rad./Convertible Rad. Spectral control parameter,

Dimensionless bandgap energy, E_g/kT_E

Glenn Research Center

Design Choices for Maximum Efficiency

Cavity Geometry

- Minimize radiation and conduction losses by:
- Eliminate gaps allowing radiation to leak out of cavity
- Use low emittance insulation

Emitter

- Large emittance for $\lambda < \lambda_g (\lambda_g = hc_o/E_g)$ E_a - bandgap energy of PV cell
- Small emittance for $\lambda > \lambda_g$

Filter

- Large transmittance for $\lambda < \lambda_{g}$
- Large reflectance for $\lambda > \lambda_{g}$
- Negligible absorptance for all λ

PV Array

For given emitter temperature, T_E, there will be an optimum E_g

OPTICAL CAVITY ENERGY BALANCE FOR IDEAL FILTER

Reflector reflectance, $\rho_b = .9$ Filter reflectance, $\rho_c = .1$ for λ <1750nm; $\rho_c = .9$ for λ >1750nm Filter absorptance, $\alpha_c = 0$ Emitter emittance, $\varepsilon_E = .6$

Glenn Research Center

REFLECTANCES FOR SPECTRAL CONTROL

Glenn Research Center

QUANTUM EFFICIENCY of .6eV InGaAs Array

Glenn Research Center

Model of 1/2 RTPV Converter

DEMONSTRATION EXPERIMENT Thermal Input = Q_{th} = 250 W, .6eV InGaAs PV array, Tandem filter has no absorptance THEORETICAL MODEL RESULTS FOR

Total Efficiency for η_{th} =.85 η_{th} =.485	.16	.20	.16	.21	.15	.21
TPV Efficiency ncnpv	.19	.24	.19	.25	.18	.25
PV Efficiency NPV	.24	.31	.25	.32	.25	.32
Cavity Efficiency	.81	92.	62.	.78	.74	22.
Emitter, Reflector, Gap Temp. °K	1365	1465	1313	1411	1305	1416
Filter	BSR	Tandem Filter	BSR	Tandem Filter	BSR	Tandem Filter
Emitter	W25Re	W25Re	W on W25Re	W on W25Re	Er ₂ 0 ₃	Er ₂ 0 ₃

CONCLUSION

- Presently Not Clear Which Method of Spectral Control Will Yield the "BEST" RTPV System
- Factors Other than Efficiency Must Be Considered
- Lifetime & Reliability Issues
- Radiation Damage to Filters and PV Arrays
- Evaporation of Emitter Material on to Filter or PV Arrays
- Durability of Materials at Elevated **I**emperatures
- Mass of System
- PV Temperature Determines Radiator Size

