TP4: Résolution numérique de l'équation f(x) = 0

Objectifs:

L'objectif de ce TP est de :

- Implémenter les méthodes de dichotomie et de Newton pour calculer une approximation de la solution de l'équation f(x) = 0.
- Comparer les deux méthodes de résolution numérique.

1) Méthode de Dichotomie :

Contexte du travail :

On suppose que:

i. f est continue sur [a, b].

ii. f(a). f(b) < 0 sur l'intervalle [a, b].

iii. f est strictement monotone sur [a, b].

Ces hypothèses suffisent à garantir que f s'annule une seule fois sur a, b.

Démarche:

Technique à répéter :

i. On divise l'intervalle [a, b] en deux, et on ne garde que la section qui contient la solution.

Pour cela, on examine le signe de $f(\frac{a+b}{2})$.

Si f(a) et $f(\frac{a+b}{2})$ sont de signes contraires, on se place alors sur $[a, \frac{a+b}{2}]$ sinon il faudra travailler sur $[\frac{a+b}{2}, b]$.

ii. Puis on recommence.

Condition d'arrêt :

Plusieurs conditions peuvent justifier l'arrêt des itérations décrites précédemment :

- i. Lorsque la taille de notre intervalle de travail est « suffisamment petite » l'écart entre le milieu de cet intervalle et x^* , la solution exacte, est encore plus petit.
- ii. Lorsqu'on estime que le nombre d'itérations est suffisant. Le dernier milieu calculé sera alors considéré comme une approximation de x^* .

vitesse de convergence :

Comme, à chaque étape, la taille de l'intervalle de travail est divisée par 2, l'intervalle de recherche à la nième étape est de longueur $\frac{b-a}{2^n}$. Ainsi, le milieu de cet intervalle est alors distant de x^* d'au plus $\frac{b-a}{2^n}$.

Programmation:

Écrire une fonction dichotomie(f,a,b,epsilon,Nmax) qui renvoie la valeur approchée du zéro x^* d'une fonction f continue, strictement monotone sur [a,b], selon la méthode de dichotomie, et renvoie aussi le nombre d'itérations.

- Les arguments de la fonction dichotomie devront être: la fonction f, des réels a et b, avec a < b, un réel $\varepsilon > 0$ et Nmax le nombre maximal d'itérations.
- Le résultat renvoyé doit être composé d'une valeur approchée de x^* à ε près et le nombre d'itérations.
- On testera au préalable si f(a)f(b) > 0, et dans ce cas, on renverra f(a) et f(b) ne sont pas de même signe.

In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import sympy as sp
```

In [2]:

Application 1:

Tester la fonction dichotomie(f,a,b,epsilon,Nmax) pour : $a=1,b=2,\varepsilon=10^{-5},f(x)=x^2-2$ et Nmax=20.

In [3]:

```
a=1
b=2
epsilon=10**(-5)
f=lambda t: t**2-2
Nmax=20
print(dichotomie(f,a,b,epsilon,Nmax))
```

(1.4142112731933594, 17)

Remarque : La fonction dichotomie est déjà implémentée sous Python par la fonction bisect du module scipy.optimize.

2) Méthode de Newton:

Théorème:

Soit $f:[a,b]\to\mathbb{R}$ une fonction de classe \mathcal{C}^2 sur [a,b] et vérifiant :

- 1. f(a). f(b) < 0.
- 2. $f'(x) \neq 0$, $\forall x \in [a, b]$.
- 3. $f''(x) \neq 0$, $\forall x \in [a, b]$.

Alors pour tout $x_0 \in [a, b]$ vérifiant $f(x_0)$. $f''(x_0) > 0$, la suite $(x_n)_{n \ge 0}$ définie par :

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

converge vers la solution x^* de l'équation f(x) = 0.

Interprétation géometrique :

On considère une fonction f vérifiant les hypothèses du théorème ci-dessus et l'equation

$$f(x) = 0, \quad \forall x \in [a, b].$$

La méthode consiste à prendre une valeur initiale $x_0 \in [a,b]$, et construire une suite récurrente $(x_n)_{n\geq 0}$ qui converge vers la solution de l'équation x^* .

 x_{n+1} est l'abscisse du point d'intersection de la tangente $T_{(x_n,f(x_n))}$ à la courbe de f au point d'abscisse x_n et l'axe des abscisses Δ : y=0.

$$M(x_{n+1}, 0) \in (\Delta : y = 0) \cap T_{(x_n, f(x_n))}$$

Condition de convergence :

Une fois construite, la suite (x_n) convergente vers x^* , on considère une tolérance ε fixée et on désire déterminer une valeur approchée de x^* avec la tolérance ε .

On définit l'erreur absolue à l'étape k par:

$$e_k = |x_k - x^*|$$

Pour avoir une valeur approchée de x^* à ε près on s'arrête à l'itération k dès que:

$$|x_{k+1} - x_k| < \varepsilon$$

Il existe aussi d'autres critères d'arrêt et on cite comme exemple:

1 f(v 1 / c

Programmation:

Dérivation analytique d'une fonction sous la module sumpy

Avant de programmer l'algorithme de Newton, nous expliquons, à travers les lignes de codes ci-dessous, comment dériver une fonction f analytiquement sous le module sympy. Pour ce faire, nous utilisons comme exemple la fonction $f(x) = e^{-x} - x$.

In [4]:

```
x=sp.symbols('x') # La variable symbolique
f=sp.Lambda(x,sp.exp(-x)-x) # expression symbolique de f : La fonction f en fonction de
df=sp.Lambda(x,sp.diff(f(x),x)) # expression symbolique de f' : La fonction dérivée en f
# Evaluer f et df au point 2
print('l\'expression symbolique de f(2) est f(2)=', f(2))
print('la valeur numérique de f(2) est f(2)=', f(2).evalf())
print('l\'expression symbolique de f\'(2) est f\'(2)=', df(2))
print('la valeur numérique de f\'(2) est f\'(2)=', df(2).evalf())
```

```
l'expression symbolique de f(2) est f(2) = -2 + \exp(-2) la valeur numérique de f(2) est f(2) = -1.86466471676339 l'expression symbolique de f'(2) est f'(2)= -1 - \exp(-2) la valeur numérique de f'(2) est f'(2)= -1.13533528323661
```

Méthode de Newton

Ecrire une fonction Newton(x,f,df,epsilon, Nmax) qui renvoie:

- 1. la valeur approchée de la solution x^* de f à une tolérance epsilon près.
- 2. le nombre d'itérations effectué k pour atteindre la convergence.

On arrêtera l'algorithme après un nombre maximal d'itérations Nmax . L'argument df désigne la dérivée analytique de f .

In [5]:

```
def Newton(x,f,df,epsilon,Nmax):#x est la valeur initiale de la suite $x_n$.
    E=[abs(f(x)/df(x)).evalf()]
    k=1
    while (E[-1]>epsilon) and (k<Nmax):
        k=k+1
        x=x-(f(x)/df(x))
        E.append(abs(f(x)/df(x)).evalf())
    return x.evalf(),k</pre>
```

Application 2:

```
Tester la fonction Newton(x,f,df,epsilon,Nmax) pour : a=1,b=2,\varepsilon=10^{-5},f(x)=x^2-2 et Nmax=20.
```

In [6]:

```
Nmax=20
x=sp.symbols('x')
f=sp.Lambda(x,x**2-2)
df=sp.Lambda(x,sp.diff(f(x),x))
epsilon=10**(-3)
```

In [7]:

```
Newton(1,f,df,epsilon,Nmax)
```

Out[7]:

(1.41421568627451, 4)

Comparaison des deux méthodes:

Le but de cette partie est de comparer les deux méthodes de résolution de f(x)=0: dichotomie et Newton, en terme de nombre d'itérations effectuées, pour approcher la solution x^* de la fonction $f(x)=cos(2x)-x^2$ sur l'intervalle $[0,\frac{\pi}{4}]$.

- 1. Représenter la fonction f sur $[0, \frac{\pi}{4}]$ et vérifier graphiquement l'unicité de la racine x^* sur cet intervalle. Déduire graphiquement le signe de f' et f'', respectivement, la dérivée première et seconde de f.
- 2. Pour $Nmax = 10^3$, et $\varepsilon \in \{10^{-n}, \ 2 \le n \le 8\}$, représenter l'évolution du nombre d'itérations effectuées, par les deux méthodes, pour approcher x^* , en fonction de la valeur de la précision ε . Faire une lecture graphique des résultats obtenus.

Type *Markdown* and LaTeX: α^2

Question 1:

In [8]:

```
Nmax=10**3
a=0
b=np.pi/4
epsilon=1/10**np.arange(2,9)
x0=np.pi/4
x=sp.symbols('x')
f=sp.Lambda(x,sp.cos(2*x)-x**2)
df=sp.Lambda(x,sp.diff(f(x),x))
It_D=[]
It_N=[]
for eps in epsilon:
    It_D.append(dichotomie(f,a,b,eps,Nmax)[1])#nbre d'itération pour avoir la solution à
    It_N.append(Newton(x0,f,df,eps,Nmax)[1])
```

Question 2:

In []:

```
plt.figure(figsize=(20,10))
plt.plot(epsilon,It_N,'bo-',epsilon,It_D,'r*-',markersize=12,linewidth=2)
plt.xscale('log')#axis scaling
plt.grid(True)
plt.ylabel('Nombre d\'itération',fontsize=30)
plt.xlabel('Précision',fontsize=20)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.title("Nombre d\'itération versus précision", fontsize=30, color='blue')
plt.legend(('Newton','Dichotomie'), loc=0, fontsize=30)
plt.show()
```


Application (Asynchrone):

Le client d'une banque dépose au début de chaque année v euros dans un fond d'investisement et en retire, à la fin de la n-ème année, un capital de M euros. Nous voulons calculer le taux d'interet annuel moyen T de cet investisement. Comme M est reliée à T par la relation suivante :

$$M = v \sum_{k=1}^{k=n} (1+T)^k = v \frac{1+T}{T} [(1+T)^n - 1],$$

nous déduisons que T est une racine de l'équation f(T)=0 où $f(T)=M-v\frac{1+T}{T}[(1+T)^n-1].$

En supposant que v=1000 euros et qu'après 5 ans M sera égal à 6000 euro,

- 1. Tracer le graphe de la fonction f dans [0.01, 0.3].
- 2 Déterminer le taux d'interet T nar les deux méthodes programmées dans ce TP

In []:

```
h=lambda t:6000 -1000* ((1+t)/t ) * ((1+t)**5-1)
t=np.linspace(0.01,0.3,100)
plt.figure(figsize=(20,10))
plt.plot(t,h(t),'r-',markersize=12,linewidth=2)
#plt.xscale('log')#axis scaling
plt.grid(True)
plt.xlabel('taux annuel',fontsize=20)
plt.ylabel('capital',fontsize=30)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
plt.show()
```


In []:

```
a=0.01
b=0.3
epsilon=0.01
Nmax=20
print(dichotomie(h,a,b,epsilon,Nmax))
```

(0.05984375, 5)

Références

[1] <u>Kiusalaas, J. (2013). Numerical methods in engineering with Python 3. Cambridge university press.</u> (https://books.google.tn/books?

 $\frac{\text{h1=fr\&lr=\&id=YlkgAwAAQBAJ\&oi=fnd\&pg=PP10\&dq=numerical+methods+in+engineering+\&ots=-42y60OrWf\&psylvanian}{\text{tsYh1RK9o\&redir_esc=y$$\#$v=onepage\&q=numerical$$\%20methods$$\%20in$$\%20engineering\&f=false)}$

[2] Numpy Package (https://numpy.org/devdocs/user/quickstart.html)

- [3] Mathplotlib Package (https://matplotlib.org/tutorials/index.html#introductory)
- [4] Jupyter markdowns (http://faccanoni.univ-tln.fr/user/enseignements/20182019/M62-CM1.pdf)
- [5] Sympy Package (https://www.sympy.org/en/index.html)