Car Resale Value prediction

PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTERPRENEUSHIP - HX8001

Submitted by

Ajith E 512219104001

Jothi Murugan A 512219104009

Rahul M 512219104014

Navinvarma A 512219104301

TEAM ID PNT2022TMID40127

Of

Department of Computer Science Engineering

SKP ENGINEERING COLLEGE

Tiruvannamalai ,606611

College Mentor: Mr.Sankaran

Industrial Mentor: Prof Swetha

ACKNOWLEDGEMENT

I am very thankful to the management of SKP Engineering College, Tiruvannamalai for giving us this wonderful opportunity to study in this college and utilize all the facilities to the fullest.

My sincere thanks to lord blessing on us for the successful completion of my mini project. I thank proudly **Mr. K. KARUNANITHI, B.E., MBA**, Chairman of my college for providing the facility to do the mini project. I am grateful for my Principal **Dr.S.BASKARAN, M.E, Ph.D.**, for his constant support and encouragement to our project.

I express my sincere thanks to **Dr.N.PURUSHOTHAMAN,M.E, Ph.D.,**Head of the Department of Computer science and Mentor **L.SANKARAN,ME** for us for guidance,timely suggestions and word motivation.

It is a Great pleasure to express my gratitude and thanks towards my project Guide **L.SANKARAN,ME** for his uninterruptable suggestions and words of improvements regarding this mini project, which played a major role in guiding me in my track.

We also extend our thanks to our Class Advisor and every member of the faculty who provided valuable academic guidance, and their co-operation to do this successful project. Finally, we would like to thank our parents, relatives and friends for their encouragement and enthusiastic co-operation.

ABSTRACT

This paper aims to build a model to predict used cars' reasonable prices based on multiple aspects, including vehicle mileage, year of manufacturing, fuel consumption, transmission, road tax, fuel type, and engine size. This model can benefit sellers, buyers, and car manufacturers in the used cars market. Upon completion, it can output a relatively accurate price prediction based on the information that user input. The model building process involves machine learning and data science. The dataset used was scraped from listings of used cars. Various regression methods, including linear regression, polynomial regression, support vector regression, decision tree regression, and random forest regression, were applied in the research to achieve the highest accuracy. Before the actual start of model-building, this project visualized the data to understand the dataset better. The dataset was divided and modified to fit the regression, thus ensure the performance of the regression. To evaluate the performance of each regression, Rsquare was calculated. Among all regressions in this project, random forest achieved the highest R-square of 0.90416. Compared to previous research, the resulting model includes more aspects of used cars while also having a higher prediction accuracy.

TABLE OF CONTENTS

CHAPTER	TOPIC	PAGE NO
	ACKNOWLEDGEMENT	2
	ABSTRACT	3
1.	INTRODUCTION	6
	1.1 PROJECT OVERVIEW	
	1.2 PURPOSE	
2.	LITERATURE SURVEY	7
	2.1 EXISTING PROBLEM	
	2.2 REFERENCES	
	2.3 PROBLEM STATEMENT DEFINITION	
3.	IDEATION & PROPOSED SOLUTION	9
	3.1 EMPATHY MAP CANVAS	
	3.2 IDEATION & BRAINSTORMING	
	3.3 PROPOSED SOLUTION	
	3.4 PROBLEM SOLUTION FIT	
4.	REQUIREMENT ANALYSIS	16
	4.1 FUNCTIONAL REQUIREMENT	
	4.2 NON-FUNCTIONAL REQUIREMENT	
5.	PROJECT DESIGN	17
	5.1 DATA FLOW DIAGRAMS	
	5.2 SOLUTION & TECHNICAL ARCHITECTURE	
	5.3 USER STORIES	
6.	PROJECT PLANNING & SCHEDULING	23
	6.1 SPRINT PLANNING AND ESTIMATION	
	6.2 SPRINT DELIVERY SCHEDULE	
	6.3 REPORTS FROM JIRA	

7.	CODING & SOLUTIONING	26
	7.1 FEATURE 1	
	7.2 FEATURE 2	
8.	TESTING	33
	8.1 TEST CASES	
	8.1 USER ACCEPTANCE TESTING	
9.	RESULTS	35
	9.1 PERFORMANCE METRICS	
10.	ADVANTAGES AND DISDVANTAGES	36
11.	CONCLUSION	37
12.	FUTURE SCOPE	37
13.	APPENDIX	38

1.INTRODUCTION

1.1 PROJECT OVERVIEW:

- The main idea of making a car resale value prediction system is to get hands-on practice for python using Data Science.
- Car resale value prediction is the system to predict the amount of resale value based on the parameters provided by the user.
- User enters the details of the car into the form given and accordingly the car resale value is predicted.
- The system is defined in the python language that predicts the amount of resale value based on the given information.
- The system works on the trained dataset of the machine learning program that evaluates the precise value of the car.
- User can enter details only of fields like purchase price of car, kilometers driven, fuel of car, year of purchase.

1.2 PURPOSE

- This resale value prediction system is made for general purpose to just predict the amount that can be roughly acquired by the user.
- We try to predict the amount of resale by best 70% accuracy so the user can get estimated value before he resales the car and doesn't make a deal in loss.

2.LITERATURE SURVEY

2.1 EXISTING PROBLEM

The problem is defined as the optimised way to estimate insurance cost based on the manufacturer with some additional costs incurred by the Government in the form of taxes. As the existing methods for estimating the cost takes a lot of time and energy and due to the increased price of new cars and the inability of customers to buy new cars due to the lack of funds, used cars sales are on a global increase. The prices of new cars in the industry is fixed by the So, customers buying a new car can be assured of the money they invest to be worthy. There is a need for a used car price prediction system to effectively determine the worthiness of the car using a variety of features. Even though there are websites that offer this service, their prediction method may not be the best. Besides, different models and systems may contribute to predicting power for a used car's actual market value. It is important to know their actual market value while both buying and selling.

2.2 REFERENCES

- 1. Sameerchand Pudaruth, "Predicting the Price of Used Cars using Machine Learning Techniques";(IJICT 2014)
- 2. Enis gegic, Becir Isakovic, Dino Keco, Zerina Masetic, Jasmin Kevric, "Car Price Prediction Using Machine Learning"; (TEM Journal 2019)
- 3. Shonda Kuiper (2008) Introduction to Multiple Regression: How Much Is Your Car Worth?, Journal of Statistics Education, 16:3.
- 4. Geurts P. (2009) Bias vs Variance Decomposition for Regression and Classification. In: Maimon O., Rokach L. (eds) Data Mining and Knowledge Discovery Handbook. Springer, Boston, MA
- 5. Ning sun, Hongxi Bai, Yuxia Geng, Huizhu Shi, "Price Evaluation Model In Second Hand Car System Based On BP Neural Network Theory"; (Hohai University Changzhou, China)
- 6. Nitis Monburinon, Prajak Chertchom, Thongchai Kaewkiriya, Suwat Rungpheung, Sabir Buya, Pitchayakit Boonpou, "Prediction of Prices for Used Car by using Regression Models"

- 7. Doan Van Thai, Luong Ngoc Son, Pham Vu Tien, Nguyen Nhat Anh, Nguyen Thi Ngoc Anh, "Prediction car prices using qualify qualitative data and knowledge-based system"
- 8. Robert T. (1996) Regression Shrinkage and Selection Via the Lasso. In: Journal of the Royal Statistical Society: Series B (Methodological) Volume 58.

2.3 PROBLEM STATEMENT DEFNITION

Problem	I am	I'm trying	But	Because	Which makes me
Statement	(Customer)	to			feel
(PS)					
PS-1	I'm owner of	I'm trying to	I can't find	There is only	Like I should just by
	Car Travels	buy a Latest	the one that	few Resale	a new car instead of
		Resale	I expect in	Cars are	resale cars.
		Models of	local.	Available	
		Cars for my		But I want a	
		Travel		Bunch of	
		agency.		Cars.	
PS-2	I'm a Car Seller	I'm trying to	I'm not	My old car	Like I don't want to
		sell a Car	able to find	doesn't have	sell my old car.
		with Best	the	a AC & Auto	
		Price for my	value/price	Pilot Mode	
		Purpose.	of my old	So I want to	
			car.	sell it and	
				buy a one.	
PS-2	I'm a Son	I'm trying to	I don't	It's my first	Like I'm overdoing
		buy a Resale	have any	time buying	and overthinking it,
		Car for My	idea that I	Resale car	just because of a Car
		Father who	can buy a	and I don't	for My Father and
		is working in	car with	want to	also for My Family.
		a Factory	good	embarrass	
		that is 10km	condition	myself	
		away from	within my	Infront of my	
		my home.	budget.	family.	

3.IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

Empathy Map:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes. It is a useful tool to helps teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

3.2 IDEATION AND BRAINSTORMING

Brainstorm:

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statemen

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

3.3 PROPOSED SOLUTION

S. No	Parameter	Description
1.	Problem Statement (Problem to be solved)	User needs a way to buy recommended used cars on online through all the used cars available in the platform so that they can save time on surfing through the Internet and different platforms!
2.	Idea / Solution description	To develop a efficient and effective model which predicts the price of a used car according to user's inputs. To develop a User Interface(UI) which is user-friendly and takes input from the user and predicts the price.
3.	Novelty / Uniqueness	Accuracy in Price Prediction.
4.	Social Impact / Customer Satisfaction	A car price prediction has been a high-interest research area, as it requires noticeable effort and knowledge of the field expert. Considerable number of distinct attributes are examined for the reliable and accurate prediction. The final prediction model was integrated into Java application. Furthermore, the model was evaluated using test data and the accuracy of 87.38% was obtained.

5.	Business Model (Revenue Model)	With the development of the used car market, the demand for a more accurate and scientific price prediction model of used cars becomes urgent. With the development of the used car market, the demand for a more accurate and scientific price prediction model of used cars becomes urgent. It uses multiple linear regression decision tree and random forest to build up the automobile price forecasting model. We use means to cluster cars and find out that some factors like power, kilometres, gearbox have an influence on the price.
6.	Scalability of the Solution	In future this machine learning model may bind with various website which can provide real time data for price prediction. Also we may add large historical data of car price which can help to improve accuracy of the machine learning model. We can build an android app as user interface for interacting with user. For better performance, we plan to judiciously design deep learning network structures, use adaptive learning rates and train on clusters of data rather than the whole dataset.

3.4 PROBLEM SOLUTION FIT

1. CUSTOMER SEGMENT(S)
Who is your customer?
Let working purers of 0.5 cg, kids

Tracelles. Tracelles is a person who is making a journey or a person who travels a for.

Back vehicle lass a capacity: the maximum quantity that the vehicle can hold. As a vehicle travels along its route, the total quantity of the item.

6. CUSTOMER CONSTRAINTS

What constraints prevent your customers from baking action or limit their choices of which it is made to write a first part of whother they include the part of the individence are available to the customers when they due the gradean or routed a part the job deader. Here along which where they incle the part of the individence are a value and with years of being time-steed in various conditions, it is meant to writenes some kind of breakdowns. The same goes with cars, even thought the modern-ade year are a robat and a tight still there are various factors which can cause a car for put down every conce in a while.

For Examples, Solutions

1. Dead of Disclarged Battery

1. Dead of Disclarged Battery

2. Leve Engine Orl Level

5. AVAILABLE SOLUTIONS

Which subtaines are available to the customers when they due the gradean or routed and the resulting provers when they face the gradean or routed and the resulting in the circles and a delivery when the routed in various conditions, it is meant to which are a war as a robat and a light still there are various factors which can cause a car for put down every conce in a while.

For Example, Solutions

1. Dead of Disclarged Battery

2. Leve Engine Orl Level

3. Engine Or cells are are a robat and a light still there are various factors which can cause a car for put down every conce in a while.

For Example, Solutions

1. Leve Engine Orl Level

2. JOBS-TO-BE-DONE / PROBLEMS
Which jobs to be-done (or problems) do you address for your customers? There could be more than one; explore different sides.

As are fore, roy and by in just two the fire—specific positionars about the engineering that goes in one early whiche. Well, your love for ears cheen't have to end in your garage

9. PROBLEM ROOT CAUSE
What is the real reason that this problem exists? What is the back story behind the need to do do its) jeb?
Le customers have to do it because of the change in regulations.
It seeks to identify the critical of a problem units a specific set of steps, with associated toods, to find the primary cause of the problem.

1. SEP
What is the real reason that this problem exists? What is the back story behind the need to do do its) jeb?
Le customers the real reason that this problem exists?

What above your customers do to address the problem and get the jebs done?

Le directly related find the right solar panel installer, calculate usage and benefits; indirectly succincif customers specified free time on volunteering word (i.e. directly related).

The outcomer service department is the face of the care company for the customers the service team should experience the customer problem to give the solution.

4.REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Process of Value Prediction	Accuracy in Price Prediction

4.2 NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Indicates how effectively and easy users can
		learn and use a system.
NFR-2	Security	Assures all data inside the system or its part
		will be protected against malware attacks or
		unauthorized access.
NFR-3	Reliability	Specifies the probability of the software
		performing without failure for a specific
		number of uses or amount of time.
NFR-4	Performance	Deals with the measure of the system's
		response time under different load conditions.
NFR-5	Availability	Describes how likely the system is accessible
		for a user at a given point in time.
NFR-6	Scalability	Accesses the highest workload under which
		the system will still meet the performance
		requirements.

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict right value of the resale car of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Simplified:

Car resale value model:

Acceptance criteria Priority Release

5.2 SOLUTION AND TECHNICAL ARCHITECTURE

i.SOLUTION ARCHITECTURE

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Form
		Registration through Gmail
		Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Process of Value Prediction	Accuracy in Price Prediction

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Indicates how effectively and easy users can
		learn and use a system.
NFR-2	Security	Assures all data inside the system or its part
		will be protected against malware attacks or
		unauthorized access.
NFR-3	Reliability	Specifies the probability of the software
		performing without failure for a specific
		number of uses or amount of time.
NFR-4	Performance	Deals with the measure of the system's
		response time under different load conditions.
NFR-5	Availability	Describes how likely the system is accessible
		for a user at a given point in time.
NFR-6	Scalability	Accesses the highest workload under which
		the system will still meet the performance
		requirements.

ii.TECHNICAL ARCHITECTURE

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with	HTML, CSS,Python, Flask
		application e.g.	
		Web Ui only	
2.	Application Logic-1	Load the data set and find	Python
		the test data and train data	
3.	Application Logic-2	Logic for a process in the	Pandas,numpy,sklearn
		application	
4.	Application Logic-3	Logic for a process in the	flask
		application	
5.	Database	Data Type,	Dataset
		Configurations etc.	
6.	Cloud Database	Database Service on	IBM Cloudant
		Cloud	
7.	File Storage	File storage requirements	IBM Block Storage or Other
			Storage Service or Local
			Filesystem
8.	External API-1	Purpose of External API	IBM cloud API, etc.
		used in the application	
9.	Machine Learning	Purpose of Machine	Regression Model.
	Model	Learning Model	
10.	Infrastructure (Server	Application Deployment	Local, Cloud Foundry,
	/ Cloud)	on Local System / Cloud	Kubernetes, etc.
		Local Server	
		Configuration:	
		Cloud Server	
		Configuration :	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Technology of
	Frameworks	frameworks used	Opensource framework
2.	Security	List all the security / access	e.g. SHA-256,
	Implementations	controls implemented, use	Encryptions, IAM
		of firewalls etc.	Controls, OWASP etc.
3.	Scalable Architecture	Justify the scalability of	Machine Learning
		architecture (3 – tier, -	
		services)	
4.	Availability	Justify the availability of	Machine Learning
		application (e.g. use of	
		load balancers, distributed	
		servers etc.)	
5.	Performance	Design consideration for	Pyhton Flask,html,css
		the performance of the	Micro
		application (number of	
		requests per sec, use of	
		Cache, use of CDN's) etc.	

5.3 USER STORIES

User Type	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Acceptance criteria	Priori ty	Release
(Mobile user)			entering my email, password, and confirmingmy password.	dashboard		
		USN-2	As a user, I will receiveconfirmati on emailonceI have registered for the application	I can receive confirmationemail & click confirm	High	Sprint-1
		USN-3	As a user,I can register for the application through Facebook	I can register &access thedashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medi um	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	USN-6	Entering the car details in the application		High	Sprint-1
Customer (Webuser)	Process	USN-1	As a user, I can enterthe car whichI want topredict theprice		Medi um	Sprint-2
Customer Care Executive	Maintenance	USN-2	As a executive, I can rectify Customer's Problems as well as Comments	I can interact throughcommen ts	High	Sprint-2
Administrat or	Developing		As a administrator, I can checkthe carprediction values are up to date	I cangather the details ofeach car	High	Sprint-2

6. PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

Sprint	Functional	UserSto	UserStory / Task	Story	Priori	Team
	Requireme	ry		Points	ty	Members
	nt (Epic)	Number				
Sprint-1	Dataset reading andPre- processi ng	USN-1	Cleaning the dataset and splitting to dependent andindependent variables	2	High	Ajith.E A.Navinvar ma
Sprint-2	Building the model	USN-2	Choosing the appropriate model for building and saving the model as pickle file	1	High	Ajith.E Rahul.M Jothi murugan.A
Sprint-3	Applicati on building	USN-3	Using flaskdeploying the ML model	2	Medi um	Ajith.E Navinvarma .A
Sprint-4	Train themodel in IBM	USN-4	Finally trainthe model on IBM cloudand deploy the application	2	Medi um	Ajith.E Jothi murugan.A Rahul.M Navinvarma .A

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total Story Poin ts	Durati on	Sprint Start Date	Sprint End Date (Planne d)	Story Points Complet ed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	15	5 Days	24 Oct2022	29 Oct2022	15	29Oct 2022
Sprint-2	15	5 Days	31 Oct2022	05 Nov2022	15	05Nov 2022
Sprint-3	15	5 Days	07 Nov 2022	12 Nov2022	15	12Nov 2022
Sprint-4	15	5 Days	14 Nov 2022	19 Nov2022	15	19Nov 2022

6.3 REPORTS FROM JIRA

7.CODING AND SOLUTIONING

7.1 FEATURE 1

```
import pandas as pd
import numpy as np
import matplotlib as plt
from sklearn.preprocessing import LabelEncoder
import pickle
#Load the dataset
df = pd.read_csv(r"E:\car_resale\Data\autos.csv", header=0, sep=',', encoding='Latin1', )
#print all the different sellers
print(df.seller.value_counts())
#remove the seller type haveing only 3 car
df[df.seller != 'gewerblich']
#now all the sellers are same so we can get rid of this column
df=df.drop(columns=['seller']) #1 refer the columns & 0 refer the index
#print all different seller
print(df.offerType.value_counts())
#remove the offers type having only 12 listings
df[df.offerType != 'Gesuch']
#now all offer are sameso we can get rid this collumn
df=df.drop(columns=['offerType']) # 1 refer the columns & 0 refer the index
```

"car having power les then 50ps and above 900ps seems a little suspicious, let's remove

```
them and see what we have got now"
print(df.shape)
df = df[(df.powerPS > 50) & (df.powerPS < 900)]
print(df.shape)
#around 50000 cars ahave been removed which could have introunduced error toour data
#Simlarly, filtering our the cars having registeration years not in the mentioned range
#print(df.shape)
df = df[(df.vearOfRegistration >= 1950) & (df.vearOfRegistration < 2017)]
print(df.shape)
#not much of a difference but still, 10000 rows have been reduced. it's better to
#get rid of faulty data instead of keeping them just to increase the size
"removing irrelevent columns which are either the same for all the cars in the dataset, or can
introduce bias, so removing them too.."
df.drop(['name', 'abtest', 'dateCrawled', 'nrOfPictures', 'lastSeen',
     'postalCode', 'dateCreated'], axis='columns', inplace=True)
"dropping the duplicates from the dataframe and stroing it in a new
here all row having same value in all the mentioned columns will be deleted and by defult,
only first occurance of any such row is kept"
new_df = df.copy()
new_df = new_df.drop_duplicates(['price', 'vehicleType', 'yearOfRegistration', 'gearbox',
'powerPS',
                    'model', 'kilometer', 'monthOfRegistration', 'fuelType',
'notRepairedDamage'])
#As the dataset contained same german words for many features, changing them to engilsh
new_df.gearbox.replace(('manuell','automatik'), ('manual','automatic'), inplace=True)
new_df.fuelType.replace(('benzin','andere','elektro'), ('petrol','others','electric'), inplace=True)
```

```
new df.vehicleType.replace(('kleinwagen','cabrio','kombi','andere'),
                 ('small car','canvertible','combination','others'), inplace=True)
new_df.notRepairedDamage.replace(('ja','nein'), ('Yes','No'), inplace=True)
#### Removing the outliers
new df = new df[(new df.price \geq 100) & (new df.price \leq 150000)]
" Filling NaN values for columns whose data might not be there with the information provider,
which might lead to some variance but our model but we will still be able to give some estimate
to the user"
new_df['notRepairedDamage'].fillna(value='not-declared',inplace=True)
new df['fuelType'].fillna(value='not-declared',inplace=True)
new df['gearbox'].fillna(value='not-declared',inplace=True)
new_df['vehicleType'].fillna(value='not-declared',inplace=True)
new_df['model'].fillna(value='not-declared',inplace=True)
#can save the csv for future purpose.
new df.to csv("autos preprocessed.csv")
#Columns which contain categorical values, which we'll need to convert via label encoding
labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
"looping over the labels to the label encoding for all at once and
saveing the LABEL ENCODING FILES"
mapper = \{\}
for i in labels:
  mapper[i] = LabelEncoder()
  mapper[i].fit(new_df[i])
  tr = mapper[i].transform(new df[i])
  np.save(str('classes'+i+'.npy'), mapper[i].classes_)
  print(i,":", mapper[i])
```

```
new_df.loc[:, i+ '_labels'] = pd.Series(tr, index=new_df.index)
#Final data to be put in a new dataframe called "LABELED",
labeled = new_df[
  [
     'price',
     'yearOfRegistration',
     'powerPS',
     'kilometer',
     'monthOfRegistration'
  ] + [x+"_labels" for x in labels]
]
print(labeled.columns)
#Storing price in Y and reset of the data in X
Y = labeled.iloc[:,0].values
X = labeled.iloc[:,1:].values
#need to reshape the Y values
Y = Y.reshape(-1,1)
#traing data and test data
from sklearn.model_selection import cross_val_score, train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=3)
#Model building and fitting
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
regressor = RandomForestRegressor(n_estimators = 1000, max_depth = 10, random_state = 34)
#fitting the model
```

```
regressor.fit(X_train , np.ravel(Y_train, order = 'C'))
#predicting the values of test
y_pred = regressor.predict(X_test)

#printing the Accuraccy for test set
print(r2_score(Y_test, y_pred))

#saving the model for future use.
filename = 'resale_model.pkl'
pickle.dump(regressor, open(filename, 'wb'))
```

The System is defined in the python language that predicts the amount of resale value based on the given information. The system works on the trained dataset of the machine learning program that evaluates the precise value of the car. User can enter details only of fields like purchase price of car, kilometers driven, fuel of car, year of purchase.

7.1 FEATURE 2

```
import pandas as pd
import numpy as np
from flask import Flask, render_template, Response, request
import pickle
from sklearn.preprocessing import LabelEncoder

app = Flask(__name__)
filename = 'resale_model.pkl'
model_rand = pickle.load(open(filename, 'rb'))

@app.route('/')
def index():
```

```
return render template('resaleintro.html')
@app.route('/predict')
def predict():
  return render_template('resalepredict.html')
@app.route('/y_predict', methods=['GET', 'POST'])
def y predict():
  regyear = int(request.form['regyear'])
  powerps = float(request.form['powerps'])
  kms = float(request.form['kms'])
  regmonth = int(request.form.get('regmonth'))
  gearbox = request.form['gearbox']
  damage = request.form[ 'dam']
  model = request.form.get('modeltype')
  brand = request.form.get('brand')
  fuelType = request.form.get('fuel')
  vehicletype = request.form.get('vehicletype')
  new_row = {'yearOfRegistration': regyear, 'powerPS': powerps, 'kilometer': kms,
         'monthOfRegistration': regmonth, 'gearbox':gearbox, 'notRepairedDamage': damage,
         'model':model, 'brand':brand, 'fuelType': fuelType, 'vehicleType': vehicletype}
  print(new_row)
  new_df = pd.DataFrame (columns =['vehicleType', 'yearOfRegistration', 'gearbox',
                       'powerPS', 'model', 'kilometer', 'monthOfRegistration', 'fuelType',
                       'brand', 'notRepairedDamage'])
  new_df = new_df.append(new_row, ignore_index = True)
  labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
  mapper = \{\}
  for i in labels:
     mapper[i]= LabelEncoder()
     mapper[i].classes_ = np.load(str('classes'+i+'.npy'), allow_pickle=True)
     tr = mapper[i].fit_transform(new_df[i])
```

Upon from submission, the data is sent to the ML model via Flask API and the model responds with a predicted resale value of the car based on user input. The prediction is displayed on the web page using a render template . Thus, with minimal information and without human intervention or manual examination, a user can predict the resale value of his car.

8.TESTING

8.1 TEST CASES

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: LGBM Regressor MAE: 1327.56 MSE: 9492244.25 RMSE: 3080.93 RMSLE: 8.05 R2 Score: 0.8664 Adjusted R2 Score: 0.8666	and if collections there is the collection and anticolor of a stream of a stream of an experience of a stream of a
2.	Tune the Model	Hyperparameter Tuning 1) Learning Rate: [0.01, 0.03, 0.05, 0.07] 2) Boosting Type: ['gbdt','dart','goss','rf'] 3) Number of Estimators: [100,200,300] Validation Method: Grid Search Cross Validation Best Parameters: Learning Rate — 0.07 Boosting Type — 'gbdt' Number of Estimators - 300	<pre>lgtm_configs = ("name": Lowellegrescor', "method": grid", "setric": "adj_r2", "goal": "maximize" }, parameters": { "values": [0.01, 0.03, 0.05, 0.07] }, "values": ["root_mean_squared_error'] }, "values": [root_mean_squared_error'] }, "values": [foue] }, "values": [frue] }, "rog_sqrt": {</pre>

8.2 USER ACCEPTANCE TESTING:

				Date	17 Nov. 22								
		Date Team ID	17-Nov-22 PNT2022TMID40127										
		Project Name											
				Maximum Marks									
Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Comments	TC for Automation(Y/N)	BUG ID	Executed By
HomePage_TC_001	5	Home Page	Verify all the UI elements in Home page rendered properly		Enter URL and click go Verify all the UI elements displayed or not	1	All the UI elements rendered properly	Working as expected	Pass		z		Ajith
HomePage_TC_002	Functional	Home Page	Verifiy the Data Entry page can be reachable.		Enter URL and click go Verify all the UI elements displayed or not. Press the Check Price button.	-	User should navigate to Data Entry Page	Working as expected	Pass		N		Navinvarma
DataEntryPage_TC_001	υ	Data Entry Page	Verify all the UI elements in Data Entry page rendered properly		I. Enter URL and click go 2. Verify all the UI elements displayed or not. 3. Press the Check Price button in the home page 4. Verify all the UI elements displayed or not	-	All the UI elements rendered properly	Working as expected	Pass		N		Rahul
DataEntryPage_TC_002	Functional	Data Entry Page	Verify user is able to enter all values		1. Enter URL and click go 2. Verify all the UI elements displayed or not. 3. Press the Check Price button in the home page 4. Verify all the UI elements displayed or not 5. Verify if all values can be entered	2012 12 12 12 12 Manual Yes Golf Volkswagen Petrol Coupe	User should be able to enter all values in data entry page	Working as expected	Pass		N		Jothi muruga
DataEntryPage_TC_003	Functional	Data Entry Page	Verifiy the Output Display page can be reachable.		2. Enter URL and click go 2. Verify all the UI elements displayed or not. 3. Press the Check Price button in the home page 4. Verify all the UI elements displayed or not 5. Verify if all values can be entered 6. Press the submit Button	-	User should navigate to Output Display Page	Working as expected	Pass		N		Rahul
							•						
OutputDisplayPage_TC_001	ui	Output Display Page	Verify all the UI elements in Output Display page rendered properly		1. Enter URL and click go 2. Verify all the UI elements displayed or not. 3. Press the Check Price button in the home page 4. Verify all the UI elements displayed or not 5. Verify if all values can be entered 6. Press the submit Button 7. Verify all the UI elements displayed or not 7. Verify all the UI elements displayed or not	-	All the UI elements rendered properly	Working as expected	Pass		N		Navinvarma
OutputDisplayPage_TC_002	Functional	Output Display Page	Verify user is able to get predicted result		1. Enter URL and click go 2. Verify all the UI elements displayed or not. 3. Press the Check Price button in the home page 4. Verify all the UI elements displayed or not 5. Verify if all values can be entered 6. Press the submit Button 7. Verify all the UI elements displayed or not 8. Verify if the predicted value is displayed or not 8. Verify if the predicted value is displayed or not	-	Predited Car Resale Value is displayed on the page	Working as expected	Pass		N		Ajith

Test Scenarios :

Verify user is able to see home page?
Verify user is able to navigate to data entry page?
Verify user is able to see data entry page?
Verify user is able to enter values in the fields?
Verify user is able to navigate to output display page?
Verify user is able to view the output display page?

9.RESULTS

9.1 PERFORMANCE METRICS

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User	UserStory / Task	StoryPoin	Priori	Team
	Requirement	Story		ts	ty	Members
	(Epic)	Number				
Sprin t-1	Dataset reading andPre- processing	USN-1	Cleaning thedataset and splitting to dependent andindependent	2	High	Ajith.E A.Navinvarma
Sprin t-2	Building the model	USN-2	variables Choosing the appropriate model for building andsaving the modelas pickle file	1	High	Ajith.E Rahul.M Jothi murugan.A
Sprin t-3	Application building	USN-3	Usingflask deploying the ML model	2	Medi um	Ajith.E Navinvarma.A
Sprin t-4	Train the model in IBM	USN-4	Finally train the model on IBM cloud and deploy the application	2	Medi um	Ajith.EJothi murugan.A Rahul.M Navinvarma.A

Project Tracker, Velocity& Burndown

Spri nt	Total Story Poin ts	Durati on	SprintSta rt Date	Sprint End Date (Planne d)	Story Points Complet ed (as on Planned End Date)	Sprint Relea se Date (Actua I)
Sprin t-1	15	5 Days	24 Oct2022	29 Oct 2022	15	29 Oct2022
Sprin t-2	15	5 Days	31 Oct2022	05 Nov 2022	15	05 Nov 2022
Sprin t-3	15	5 Days	07 Nov 2022	12 Nov 2022	15	12 Nov 2022

Sprin	15	5 Days	14 Nov	19 Nov 2022	15	19 Nov 2022
t-4			2022			

10.ADVANTAGES AND DISDVANTAGES

i.ADVANTAGES

- Value for money. Pre-owned cars come with a lower price tag and offer a much better value for the amount paid.
- Slow rate of depreciation.
- Lower insurance and registration charges.
- Higher inflation.
- Lower loan amount to be borrowed.

ii. DISDVANTAGES

- Little to No Warranty
- New models not avaliable
- Little to No Financing
- No accurate prediction

11.CONCLUSION

Car price prediction can be a challenging task due to the high number of attributes that should be considered for the accurate prediction. Data cleaning is one of the processes that increases prediction performance, yet insufficient for the cases of complex data sets as the one in this research. Applying single machine algorithm on the data set accuracy was less than 50%. Therefore, the ensemble of multiple machine learning algorithms has been proposed and this combination of ML methods gains approximate price prediction.

This is significant improvement compared to single machine learning method approach. However, the drawback of the proposed system is that it consumes much more computational resources than single machine learning algorithm.

12.FUTURE SCOPE

Currently, system can only deal with Swift Dzire cars due to lack of data. Also, data has been collected of only 5 cities of India. This can be extended to multiple car models and cities so as to improve accuracy and usability.

Efficient use of deep learning such as LSTM (Long shortterm memory) or RNN (Recurrent Neural networks) can be implemented once enough data is collected. This can improve accuracy and decrease RMSE drastically. One can also implement CNN to determine physical condition of the car from images like identifying dents, scratches etc. and thus predicting more relevant resale value of a car.

13.APPENDIX CODING

Source code:

```
Resale value prediction final.py.

import pandas as pd
import numpy as np
import matplotlib as plt
from sklearn.preprocessing import LabelEncoder
import pickle

#Load the dataset
df = pd.read_csv(r"E:\car_resale\Data\autos.csv", header=0, sep=',', encoding='Latin1',)

#print all the different sellers
print(df.seller.value_counts())
#remove the seller type haveing only 3 car
df[df.seller != 'gewerblich']
#now all the sellers are same so we can get rid of this column
df=df.drop(columns=['seller']) #1 refer the columns & 0 refer the index
```

```
#print all different seller
print(df.offerType.value_counts())
#remove the offers type having only 12 listings
df[df.offerType != 'Gesuch']
#now all offer are sameso we can get rid this collumn
df=df.drop(columns=['offerType']) # 1 refer the columns & 0 refer the index
"car having power les then 50ps and above 900ps seems a little suspicious, let's remove
them and see what we have got now"
print(df.shape)
df = df[(df.powerPS > 50) & (df.powerPS < 900)]
print(df.shape)
#around 50000 cars ahave been removed which could have introunduced error toour data
#Simlarly, filtering our the cars having registeration years not in the mentioned range
#print(df.shape)
df = df[(df.yearOfRegistration >= 1950) & (df.yearOfRegistration < 2017)]
print(df.shape)
#not much of a difference but still, 10000 rows have been reduced. it's better to
#get rid of faulty data instead of keeping them just to increase the size
"removing irrelevent columns which are either the same for all the cars in the dataset, or can
introduce bias, so removing them too.."
df.drop(['name', 'abtest', 'dateCrawled', 'nrOfPictures', 'lastSeen',
     'postalCode', 'dateCreated'], axis='columns', inplace=True)
"dropping the duplicates from the dataframe and stroing it in a new
here all row having same value in all the mentioned columns will be deleted and by defult,
only first occurance of any such row is kept"
new_df = df.copy()
new_df = new_df.drop_duplicates(['price', 'vehicleType', 'yearOfRegistration', 'gearbox',
'powerPS',
                    'model', 'kilometer', 'monthOfRegistration', 'fuelType',
'notRepairedDamage'])
```

```
#As the dataset contained same german words for many features, changing them to engilsh
new_df.gearbox.replace(('manuell','automatik'), ('manual','automatic'), inplace=True)
new_df.fuelType.replace(('benzin','andere','elektro'), ('petrol','others','electric'), inplace=True)
new_df.vehicleType.replace(('kleinwagen','cabrio','kombi','andere'),
                 ('small car','canvertible','combination','others'), inplace=True)
new_df.notRepairedDamage.replace(('ja','nein'), ('Yes','No'), inplace=True)
#### Removing the outliers
new df = new df[(new df.price \geq 100) & (new df.price \leq 150000)]
"Filling NaN values for columns whose data might not be there with the information provider,
which might lead to some variance but our model but we will still be able to give some estimate
to the user"
new df['notRepairedDamage'].fillna(value='not-declared',inplace=True)
new df['fuelType'].fillna(value='not-declared',inplace=True)
new_df['gearbox'].fillna(value='not-declared',inplace=True)
new_df['vehicleType'].fillna(value='not-declared',inplace=True)
new df['model'].fillna(value='not-declared',inplace=True)
#can save the csv for future purpose.
new_df.to_csv("autos_preprocessed.csv")
#Columns which contain categorical values, which we'll need to convert via label encoding
labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
"looping over the labels to the label encoding for all at once and
saveing the LABEL ENCODING FILES"
mapper = \{\}
for i in labels:
  mapper[i] = LabelEncoder()
  mapper[i].fit(new df[i])
  tr = mapper[i].transform(new_df[i])
  np.save(str('classes'+i+'.npy'), mapper[i].classes_)
```

```
print(i,":", mapper[i])
  new_df.loc[:, i+ '_labels'] = pd.Series(tr, index=new_df.index)
#Final data to be put in a new dataframe called "LABELED",
labeled = new_df[
  'price',
     'yearOfRegistration',
     'powerPS',
     'kilometer',
     'monthOfRegistration'
  ] + [x+"_labels" for x in labels]]
print(labeled.columns)
#Storing price in Y and reset of the data in X
Y = labeled.iloc[:,0].values
X = labeled.iloc[:,1:].values
#need to reshape the Y values
Y = Y.reshape(-1,1)
#traing data and test data
from sklearn.model_selection import cross_val_score, train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=3)
#Model building and fitting
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
regressor = RandomForestRegressor(n_estimators = 1000, max_depth = 10, random_state = 34)
#fitting the model
regressor.fit(X_train , np.ravel(Y_train, order = 'C'))
#predicting the values of test
y_pred = regressor.predict(X_test)
#printing the Accuraccy for test set
print(r2_score(Y_test, y_pred))
```

```
#saving the model for future use.
filename = 'resale_model.pkl'
pickle.dump(regressor, open(filename, 'wb'))
Resale flask.py
import pandas as pd
import numpy as np
from flask import Flask, render_template, Response, request
import pickle
from sklearn.preprocessing import LabelEncoder
app = Flask(__name__)
filename = 'resale_model.pkl'
model_rand = pickle.load(open(filename, 'rb'))
@app.route('/')
def index():
  return render_template('resaleintro.html')
```

@app.route('/predict')

return render_template('resalepredict.html')

def predict():

```
@app.route('/y predict', methods=['GET', 'POST'])
def y_predict():
  regyear = int(request.form['regyear'])
  powerps = float(request.form['powerps'])
  kms = float(request.form['kms'])
  regmonth = int(request.form.get('regmonth'))
  gearbox = request.form['gearbox']
  damage = request.form[ 'dam']
  model = request.form.get('modeltype')
  brand = request.form.get('brand')
  fuelType = request.form.get('fuel')
  vehicletype = request.form.get('vehicletype')
  new row = {'yearOfRegistration': regyear, 'powerPS': powerps, 'kilometer': kms,
         'monthOfRegistration': regmonth, 'gearbox':gearbox, 'notRepairedDamage': damage,
         'model':model, 'brand':brand, 'fuelType': fuelType, 'vehicleType': vehicletype}
  print(new_row)
  new df = pd.DataFrame (columns = ['vehicleType', 'yearOfRegistration', 'gearbox',
                       'powerPS', 'model', 'kilometer', 'monthOfRegistration', 'fuelType',
                      'brand', 'notRepairedDamage'])
  new df = new df.append(new row, ignore index = True)
  labels = ['gearbox', 'notRepairedDamage', 'model', 'brand', 'fuelType', 'vehicleType']
  mapper = \{\}
  for i in labels:
     mapper[i]= LabelEncoder()
     mapper[i].classes_ = np.load(str('classes'+i+'.npy'), allow_pickle=True)
     tr = mapper[i].fit_transform(new_df[i])
     new_df.loc[:, i+'_labels'] = pd.Series(tr, index=new_df.index)
  labeled = new_df[ ['yearOfRegistration'
           ,'powerPS'
           ,'kilometer'
           ,'monthOfRegistration'
           1
```

```
+ [x+' labels' for x in labels]]
  X = labeled.values
  print(X)
  y_prediction = model_rand.predict(X)
  print(y_prediction)
  return render_template('resalepredict.html',ypred = 'The resale value predicted is
{:.2f}$'.format(y_prediction[0]))
if __name__== '__main__':
  app.run(host='localhost', debug=True, threaded=False)
resalepredict.html
<html lang="en">
<head>
<link rel="stylesheet" href="../static/style.css" type="text/css">
</head>
 <body>
 <div class="background-image">
  <marquee behavior="" direction="" scrollamount="15"><center><h1>GET THE
ACCURATE RESALE VALUE OF YOUR CAR...!</h1></marquee>
  <center><h2>Please fill the following details of your car:</h2>
<div class="form">
<form action="/y_predict" method="post">
<label>Registration year
 <input type="number" id="pj" name="regyear" placeholder="Enter the year" >
<br>><br>
<label>Registration month
 <input type="number" name="regmonth" id="pj" placeholder="Enter the month">
<br>><br>>
```

```
<label>Power of Car in PS</label>
 <input type="number" name="powerps" id="pj" placeholder="Enter power of car">
<hr><hr><
<label>Kilometers the car as driven</label>
 <input type="number" name="kms" id="pj" placeholder="Enter no of kms">
<br>><br>
<label>GearBox type</label>
 <input type="radio" id="manual" name="gearbox" value="manual" for="manual">Manual
 <input type="radio" id="automatic" name="gearbox" value="automatic"
for="automatic">Automatic
 <input type="radio" name="gearbox" value="not-declared" for="not-declared">Not declared
 <hr><hr><
<label>Your car is damaged(or)repaired</label>
 <input type="radio" id="Yes" name="dam" value="Yes" for="Yes">Yes
 <input type="radio" id="No" name="dam" value="No" for="No">No
 <input type="radio" id="not-declared" name="dam" value="not-declared" for="not-
declared">Not declared<br>
 <hr><hr><
<label>Modeltype</label>
 <input type="text" name="modeltype" id="pj" placeholder="Enter the Model">
<hr><hr><
<label>Brand of the car</label>
 <input type="text" name="brand" id="pj" placeholder="Enter the Brand">
<hr><hr><
<label>Fuel type of the car</label>
 <input type="text" name="fuel" id="pj" placeholder="Enter fule type">
<hr><hr><
<label>Vehicaltype</label>
 <input type="text" name="vehicletype" id="pj" placeholder="Enter Vchicle type">
 <br>><br>>
<input type="submit" value="PREDICT" style="background-color:#F28C0F;color:white;
width: 125px; height:50px;"/>
```

```
</form>
</div>
<b><h3>{{ypred}}</h3></b>
<br>
<br>
<br>
<br>
</div>
</div>
</div>
</body>
</html>
```

GitHub & Project Demo Link

<u>Github</u>

Demo work