LAB#01

Introduction to Verilog Language, Gate Level Modelling and Example.

OBJECTIVE: Introduction to Verilog Language, Gate Level Modelling and Example

Lab Tasks: • Develop and implement different logic gates (AND, OR, NOT, XOR) using Gate Level Modeling in Verilog.

1. To Develop, Implement and Simulate AND gate using Verilog Gate Level Modelling.

3. To Develop, Implement and Simulate XOR gate using Verilog Gate Level Modelling


```
timescale lns / lps
module XorGateTf;
   // Inputs
   reg a;
  reg b;
   // Outputs
   wire c;
   // Instantiate the Unit Under Test (UUT)
   XorGateModule uut (
      .a(a),
      .b(b),
      .c(c)
   );
   initial begin
     // Initialize Inputs
      a = 0;
      b = 0;
      // Wait 100 ns for global reset to finish
      #100;
      a = 0; b = 0; #100;
      a = 0; b = 1; $100;
      a = 1; b = 0; #100;
      a = 1; b = 1; #100;
      // Add stimulus here
   end
endmodule
```

4. To Develop, Implement and Simulate NOT gate using Verilog Gate Level Modelling


```
'timescale lns / lps
module NotGateTf;
  // Inputs
  reg a;
  // Outputs
  wire b;
   // Instantiate the Unit Under Test (UUT)
   NotGateModule uut (
      .a(a),
      .b(b)
   initial begin
      // Initialize Inputs
      a = 0;
      // Wait 100 ns for global reset to finish
      #100;
      a=0; #100;
      a=1; #100;
      // Add stimulus here
   end
endmodule
```