TD prediction

Saturday, April 18, 2020 11:47 PM

Reinforcement Learning Temporal Difference - Prediction

TD - Introduction

Boot bropping. Parfect model of the env.

Model free - Samples of episodes.

TD - Prediction

Monte - calro update rule (contant a MC): $V(S_t) - V(S_t) + \alpha[G_t - V(S_t)]$ When $SA \leftarrow OUD$ $SA + UR$ $Target - OUD$ SA realizable.
alter + (V(Skt1))
Vx(S) = Ext (4t St=S) = Ext [Rote + Y (4th St=S) = Ext [Rote + Y Vx (Sten) St=S]
TD(0)update rule: $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$ TD \(\sqrt{1}\)

TD(0) - Prediction Algorithm

14

Tabular TD(0) for estimating v_{π}

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0,1]$ Initialize V(s), for all $s \in \mathbb{S}^+$, arbitrarily except that V(terminal) = 0

Loop for each episode: Initialize S

> Loop for each step of episode:

Loop for each step of episode: $A \leftarrow \text{action given by } \pi \text{ for } S$ Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]$ until S is terminal

Reinforcement Learning On-Policy TD Control : SARSA

SARSA - Introduction

TD(0)update rule for action values:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

(S,A,R,S,A)

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0

Repeat (for each episode):

Initialize S

Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Reinforcement Learning Off-Policy TD Control: Q-Learning

Q-Learning : Algorithm:

Comparison between Q-learning and SARSA:

Sarsa (on-policy TD control) for estimating $Q \approx q_*$ Initialize $Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode): Initialize SChoose A from S using policy derived from Q (e.g., ϵ -greedy) Repeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ϵ -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]$ $S \leftarrow S'$, $A \leftarrow A'$; until S is terminal

$$q_{\pi}(s,a) = \sum_{s',r} p(s,r|s,a)[r+\gamma \sum_{a'} n(a|s')q_{\pi}(s,a')]$$

$$\Rightarrow \gamma \text{ Ext} \left[O\left(\text{Ster}, \text{Ater} \right) \right]$$

$$= \sum_{s',r} \left(a \left(\text{Ster} \right) \cdot O\left(\text{Sterior} \right) \right)$$

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ $q_*(s,a) = \sum_{s',r} p(s',r|s,a)[r+\gamma \max_a q_*(s',a')]$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal,\cdot) = 0$ Loop for each episode: Initialize S Loop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$ until S is terminal

SARSA and Q-Learning on Cliff-Walking task:

- 1. Undiscounted, episodic task.
- 2. Task is to move from start state (S) to goal state(G)
- 3. Actions : Up, Down, Left and Right.
- 4. Deterministic environment.
- 5. Reward of -1 on all transitions, except those into the region marked as "The Cliff". Stepping into this region incurs a reward of -100 and sends the agent instantly to the start state.

Action selected acording to $\epsilon-greedy~(\epsilon=0.1)$

Reinforcement Learning Double Q-Learning

Maximization Bias:

$$SARSA: \quad Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underbrace{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})}_{Q(S_t, A_t)} - Q(S_t, A_t) \right]$$

$$Q - learning: \quad Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underbrace{R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)}_{Q(S_t, A_t)} - Q(S_t, A_t) \right]$$

Double Q-Learning Algorithm:

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_\bullet$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize $Q_1(s,a)$ and $Q_2(s,a)$, for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, such that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using the policy ε -greedy in $Q_1 + Q_2$ Take action A, observe R, S'With 0.5 probabilility: $Q_1(S,A) \leftarrow Q_1(S,A) + \alpha \Big(R + \gamma Q_2 \big(S', \arg \max_a Q_1(S',a) \big) - Q_1(S,A) \Big)$ else: $Q_2(S,A) \leftarrow Q_2(S,A) + \alpha \Big(R + \gamma Q_1 \big(S', \arg \max_a Q_2(S',a) \big) - Q_2(S,A) \Big)$ $S \leftarrow S'$ until S is terminal

Reinforcement Learning n-step TD and TD(λ)

n-step Temporal Difference Learning:

 $Monte\ carlo\ update\ rule:$ $V(s_t) = V(s_t) + \alpha[G_t - V(s_t)]$

 $TD(0) \left(one - step \, TD\right) \ update \ rule: \\ V\left(s_{t}\right) = V\left(s_{t}\right) + \alpha \underbrace{\left[R_{t+1} + \gamma V\left(s_{t+1}\right)\right]}_{l} - V\left(s_{t}\right)\right]$

= 10(6) $\begin{array}{ll} n-step\ returns\ for\ n=1,2,...\infty: \\ &n=1\ :\ G_t^{(1)}=R_{t+1}+\gamma V(s_{t+1}) \\ &n=2\ :\ G_t^{(2)}=R_{t+1}+\gamma R_{t+2}+\gamma^2 V(s_{t+1}) \end{array}$

 $n = \infty$: $G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-1} R_T$

 $General\ n-step\ return:$

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(s_{t+n})$$

 $n-step\ TD\ update:$

$$V(s_t) = V(s_t) + \alpha [G_t^{(n)} - V(s_t)]$$

$TD(\lambda)$:

Using a weight of $(1 - \lambda)\lambda^{n-1}$ for n^{th} return:

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

$$TD(\lambda)$$
 update rule:
 $V(s_t) = V(s_t) + \alpha[G_t^{\lambda} - V(s_t)]$

 $TD(\lambda)$, λ -return

 $\sum = 1$