

Lecture C3: Lazy Evaluation and Memoïsing functions USCS 2017

Stefan Holdermans Doaitse Swierstra

Utrecht University

Aug 21-25, 2017

Infinite Lists

Given the following code:

```
take 0 \ l = []
take n \ l = head \ l : take \ (n-1) \ (tail \ l)
length \ [] = 0
length \ (\_: l) = 1 + length \ l
```

what is the result of the following session?

```
Prelude> let v = error "undefined"
Prelude> v
*** Exception: undefined
Prelude> length (take 3 v)
...
```


Infinite Lists

Given the following code:

```
take \ 0 \ l = []
take \ n \ l = head \ l : take \ (n-1) \ (tail \ l)
length \ [] = 0
length \ (\_: l) = 1 + length \ l
```

what is the result of the following session?

```
Prelude> let v = error "undefined"
Prelude> v
*** Exception: undefined
Prelude> length (take 3 v)
...
```


◆□▶◆御▶◆団▶◆団▶ 団 めの◎

What is going on?

We evaluate the original expression stepwise:

```
length (take 3 v)
length (head v: take 2 (tail v))
1 + length (take 2 (tail v))
1 + length (head (tail v) : take 1 (tail (tail v)))
1+1+length (take 1 (tail (tail v)))
1+1+length (head (tail (tail v)): take 0 (tail (tail (tail v))))
1+1+1+length (take 0 (tail (tail (tail v))))
1 + 1 + 1 + length
1+1+1+0
1 + 1 + 1
1 + 2
3
```

What is driving the evaluation?

In the example we have seen that every expression is evaluated when it is needed in order to decide which alternative of the function *length* should be taken. We conclude:

It is pattern matching (and evaluation of conditions) which drives the evaluation!

Each expression is only evaluated when, and as far as needed, when we have to decide how to proceed with the evaluation.

Why Functional programming is Easy

We have learned to appreciate that when we have automatic garbage collection we do not have to worry about when the life of a value ends!

Why Functional programming is Easy

We have learned to appreciate that when we have automatic garbage collection we do not have to worry about when the life of a value ends!

When using lazy evaluation we do not have to worry about when the life of a value starts!

Where lazy evaluation matters

- describing process like structures, streams of values
- recurrent relations
- combining functions, e.g. by building an infinite structure and inspecting only a finite part of it.

Example: Communicating processes

Two processes which communicate:

```
| let pout = map p pin | qout = map q qin | pin = 1 : qout | qin = pout | in pout |
```

We can build arbitray complicated nets of communication processes in this way.

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

1. take the list of all natural numbers starting from 2: [2..].

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.
- 3. the smallest number still in the list is 3, so remove all multiples of 3 and remember that 3 is a prime number

The famous algorithm, attributed to Eratosthenes, computes prime numbers:

- 1. take the list of all natural numbers starting from 2: [2..].
- 2. remove all multiples of 2, and remember that 2 is a prime number.
- 3. the smallest number still in the list is 3, so remove all multiples of 3 and remember that 3 is a prime number
- 4. the smallest remaining number is 5, so ...

 $removeMultiples\ n\ list = filter\ ((\not\equiv 0) \circ ('mod'n))\ list$

 $remove Multiples \ n \ list = filter \ ((\not\equiv 0) \circ ('mod'n)) \ list$

Apply repeatedly, letting prime numbers pass:

sift (p:xs) = p:sift (removeMultiples p xs)

 $removeMultiples\ n\ list = filter\ ((\not\equiv 0)\circ ('mod'n))\ list$

Apply repeatedly, letting prime numbers pass:

$$sift (p:xs) = p:sift (removeMultiples p xs)$$

And now pass the list of candidates:

primeNumbers = sift [2...]

 $remove Multiples \ n \ list = filter \ ((\not\equiv 0) \circ ('mod'n)) \ list$

Apply repeatedly, letting prime numbers pass:

$$sift (p:xs) = p:sift (removeMultiples p xs)$$

And now pass the list of candidates:

$$primeNumbers = sift [2...]$$

Programs> take 4 primeNumbers [2,3,5,7]

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

1. 1 is a Hamming number.

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

- 1. 1 is a Hamming number.
- 2. If n is a Hamming number then also 2 * n, 3 * n en 5 * n are Hamming numbers.

Hammings problem

Generate an increasing list of values of which the prime factors are only 2, 3 and 5 ($\{2^i3^j5^k|i>=0, j>=0, k>=0\}$).

The typical way to approach this is to start with an inductive definition:

- 1. 1 is a Hamming number.
- 2. If n is a Hamming number then also 2 * n, 3 * n en 5 * n are Hamming numbers.
- 3. Purist add "And there are no other Hamming numbers", but for computer scientists this is obvious.

We now reason as follows:

1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.

We now reason as follows:

- 1. Suppose that *ham* is the sought list, then the lists *map* (*2) *ham*, *map* (*3) *ham*, and *map* (*5) *ham* also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1:...
```

We now reason as follows:

- 1. Suppose that ham is the sought list, then the lists map~(*2)~ham,~map~(*3)~ham,~and~map~(*5)~ham also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1 : \dots (map \ (*2) \ ham)
\dots
(map \ (*3) \ ham)
\dots
(map \ (*5) \ ham)
```

We now reason as follows:

- 1. Suppose that ham is the sought list, then the lists map~(*2)~ham,~map~(*3)~ham,~and~map~(*5)~ham also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

We now reason as follows:

- 1. Suppose that ham is the sought list, then the lists map~(*2)~ham,~map~(*3)~ham,~and~map~(*5)~ham also contain Hamming numbers.
- 2. If *ham* is monotonically increasing then this hold also for these other three lists.
- 3. The numbers in these lists are not all different.

```
ham = 1 : remdup ((map (*2) ham)
'merge'
(map (*3) ham)
'merge'
(map (*5) ham)
)
remdup (x : ys) = x : remdup (dropWhile (<math>\equiv x) ysoperating
```

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
\mid otherwise = x:remdup (y:zs)
```

We evaluate a few steps:

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
\mid otherwise = x: remdup (y:zs)
```

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Why doesn't the follow work:

```
remdup (x:y:zs) \mid x \equiv y = remdup (y:zs)
| otherwise = x: remdup (y:zs)
```

Why doesn't the follow work:

```
remdup(x:y:zs) \mid x \equiv y = remdup(y:zs)
                  otherwise = x : remdup (y : zs)
```

```
'merge'
           (3: map (*3) (tail ham))
           'merge'
           (5: map (*5) (tail ham))
```

For *head* (tail ham) we need the result of remdup!

Faculty of Science Information and Computing Sciences

Productivity

Compare the two definitions of remdup

Productivity

Compare the two definitions of remdup

If we apply these definitions to the sequence [1, <expr1>, <expr2>] then the first definition needs the result of <expr1>, before it yields the 1. The second definition yields the 1 directly.

Productivity

Compare the two definitions of remdup

If we apply these definitions to the sequence [1, <expr1>, <expr2>] then the first definition needs the result of <expr1>, before it yields the 1. The second definition yields the 1 directly.

Strictness

We say that the second definition is less strict than the first one: it both definitions return something then these values will be the same, but the second definition will evaluate a small part of its argument.

The Fibonacci sequence

Leonardo van Pisa ($\pm 1170 - \pm 1250$):

$$F_n = \begin{cases} n & \text{if } n < 2, \\ F_{n-2} + F_{n-1} & \text{if } n \geqslant 2. \end{cases}$$

$$fib :: Integer \rightarrow Integer$$

$$fib 0 = 0$$

$$\begin{array}{ccc} \textit{fib} & 0 & & = 0 \\ \textit{fib} & 1 & & = 1 \end{array}$$

$$fib$$
 n = fib $(n-2) + fib$ $(n-1)$

Faculty of Science Information and Computing Sciences

GHCi with :set +s:

Main>

GHCi with :set +s:

Main > fib 10

GHCi with :set +s:

```
Main > fib 10
55
0.02 secs, 3043752 bytes
Main >
```


GHCi with :set +s:

Main> fib 10 55 0.02 secs, 3043752 bytes Main> fib 20

GHCi with :set +s:

Main > fib 10 55 0.02 secs, 3043752 bytes Main > fib 20

6765

 $0.06 \ \text{secs}$, $3133924 \ \text{bytes}$

Main>

GHCi with :set +s:

Main> fib 10

0.02 secs, 3043752 bytes

Main > fib 20

6765

55

0.06 secs, 3133924 bytes

Main > fib 25

GHCi with :set +s:

```
Main > fib 10
55
0.02 secs, 3043752 bytes
Main > fib 20
6765
0.06 secs, 3133924 bytes
Main > fib 25
75025
0.63 secs, 34743476 bytes
Main >
```


GHCi with :set +s:

Main > fib 10

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

75025

0.63 secs, 34743476 bytes

Main > fib 30

GHCi with :set +s:

Main > fib 10

0.02 secs, 3043752 bytes

Main > fib 20

6765

0.06 secs, 3133924 bytes

Main > fib 25

75025

0.63 secs, 34743476 bytes

Main> fib 30

832040

6.80 secs, 383178156 bytes

Interactive session: number of steps

Hugs (http://haskell.org/hugs):

```
Main > fib 10
55
Main > fib 20
6765
Main > fib 25
75025
Main > fib 30
832040
```


Interactive session: number of steps

Hugs (http://haskell.org/hugs) with +s:

```
Main > fib 10
55
3177 reductions, 5054 cells
Main> fib 20
6765
390861 reductions, 622695 cells
Main > fib 25
75025
4334725 reductions, 6905874 cells, 6 garbage collections
Main> fib 30
832040
48072847 reductions, 76587387 cells, 77 garbage collections
```


[Faculty of Science Information and Computing Sciences]

Call Tree

Call Tree

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Number of recursive calls

We show the number of recursive calls for fib n:

value of n	number of <i>fib</i> calls
5	15
10	177
15	1973
20	21891
25	242785
30	2692537

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

```
fib:: Integer \rightarrow Integer

fib n = fibs ! n

where

fibs = listArray (0, n) $

0:1:[fibs!(k-2) + fibs!(k-1) | k \leftarrow [2...n]]
```

4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Local memoïsation

Idea: 'remember' the results of the function calls for a sequence of arguments.

```
fib :: Integer \rightarrow Integer

fib n = fibs ! n

where

fibs = listArray (0, n) $

0:1: [fibs ! (k-2) + fibs ! (k-1) | k \leftarrow [2..n]]
```

For each call of fib we construct a completely new array fibs.

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Global memoïsation

The global memo function

- ▶ also remembers the results of previous calls directly from the program,
- remembers the result for all all arguments ever passed.

Global memoïsation

The global memo function

- ▶ also remembers the results of previous calls directly from the program,
- remembers the result for all all arguments ever passed.

Goal: to construct a library which makes it easy to build a memoïsing version of a function which takes an *Integer* parameter.

Fixed-point Combinator

The fixed point of a function f is the value x, for which f x = x holds.

Fixed-point Combinator

The fixed point of a function f is the value x, for which f x = x holds.

A fixpoint combinator is a higher-order function which 'computes' the fixpoint of other functions:

$$\begin{array}{ccc} fix :: (a \rightarrow a) \rightarrow a \\ fix & f = \textbf{let} \ fixf = f \ fixf \ \textbf{in} \ fixf \end{array}$$

Using fix we can make the use of recursion explicit:

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

Using fix we can make the use of recursion explicit:

Example:

```
fac :: Integer \rightarrow Integer

fac 0 = 1

fac n = n * fac (n - 1)
```

can, using fix, be written as:

```
fac :: Integer \rightarrow Integer
fac = fix fac'
where
fac' f 0 = 1
fac' f n = n * f (n - 1)
```

Using fix we can make the use of recursion explicit:

Example:

```
\begin{array}{ll} \textit{fac} :: \overline{\textbf{Integer}} \to \overline{\textbf{Integer}} \\ \textit{fac} & 0 & = 1 \\ \textit{fac} & n & = n * \textit{fac} \; (n-1) \end{array}
```

can, using fix, be written as:

```
fac :: Integer \rightarrow Integer

fac = fix fac'

where

fac' f 0 = 1

fac' f n = n * f (n - 1)
```

Idea: introduce an extra parameter which is used in the recursive calls:

Using fix we can make the use of recursion explicit:

Example:

```
 \begin{array}{ll} \textit{fac} :: \overline{\textit{Integer}} \to \overline{\textit{Integer}} \\ \textit{fac} & 0 & = 1 \\ \textit{fac} & n & = n * \textit{fac} \; (n-1) \end{array}
```

can, using fix, be written as:

```
fac :: Integer \rightarrow Integer

fac = fix fac'

where

fac' f 0 = 1

fac' f n = n * f(n-1)
```


Explicit recursion: example

$$fac 3$$
=
$$fix fac' 3$$
=
$$fac' (fix fac') 3$$
=
$$3 * fix fac' (3 - 1)$$
=
$$3 * fix fac' 2$$
=
$$3 * fac' (fix fac') 2$$
=
$$3 * (2 * fix fac' (2 - 1))$$
=
$$3 * (2 * fix fac' 1)$$

$$= 6$$

$$= 3*2$$

$$= 3*(2*1)$$

$$= 3*(2*(1*1))$$

$$= 3*(2*(1*fix fac' 0))$$

$$= 3*(2*(1*fix fac' (1-1)))$$

$$= 3*(2*fac' (fix fac') 1)$$

$$= 3*(2*fix fac' 1)$$

Fibonacci again

Fibonacci function with explicit recursion

:

```
fib :: Integer \rightarrow Integer

fib = fix fib'

where

fib' f 0 = 0

fib' f 1 = 1

fib' f n = f (n-2) + f (n-1)
```

Fibonacci again

Fibonacci function with explicit recursion, and clever (ab)use of Haskell scope rules:

```
fib :: Integer \rightarrow Integer

fib = fix fib

where

fib fib 0 = 0

fib fib 1 = 1

fib fib n =  fib (n - 2) +  fib (n - 1)
```

Idea: replace fix by a memoising fixpoint combinator

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Library for memofunctions: plan of attack

Choose a (parameterised) datatype *Memo* for the memo tables.

Library for memofunctions: plan of attack

Choose a (parameterised) datatype *Memo* for the memo tables.

Define functions tabulate and apply,

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a apply :: Memo \ a \rightarrow Integer \rightarrow a
```

such that:

- ► tabulate f results in a (lazily constructed) memo table containing all results of calls to f and
- ▶ apply mem n retrieves the corresponding value for the parameter n from mem.

Library for memofunctions: plan of attack

Choose a (parameterised) datatype Memo for the memo tables.

Define functions tabulate and apply,

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a apply :: Memo \ a \rightarrow Integer \rightarrow a
```

such that:

- ► tabulate f results in a (lazily constructed) memo table containing all results of calls to f and
- ▶ apply mem n retrieves the corresponding value for the parameter n from mem.

Define a fixedpoint combinator memo using tabulate and apply.

Memo lists

In our first approach we will represent memo tables using infinite lists:

type *Memo* a = [a]

Memo lists

In our first approach we will represent memo tables using infinite lists:

type
$$Memo \ a = [a]$$

tabulate :: $(Integer \rightarrow a) \rightarrow Memo \ a$ tabulate $f = map \ f \ [0..]$

Memo lists

In our first approach we will represent memo tables using infinite lists:

type
$$Memo \ a = [a]$$

tabulate ::
$$(Integer \rightarrow a) \rightarrow Memo \ a$$
 tabulate $f = map \ f \ [0..]$

```
apply :: Memo a \rightarrow Integer \rightarrow a

apply (x : \_) \ 0 = x

apply (\_: xs) \ n = apply \ xs \ (n-1)
```

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)
memo f' = f
where
f = apply (tabulate (f' f))
```

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

▶ The combinator constructs a fixpoint f of f'.

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)
memo f' = f
where
f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ▶ The function f retreives its result from the memo table tabulate (f' f).

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)
memo f' = f
where
f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function f retreives its result from the memo table tabulate (f' f).
- **Each** element in the table is computed using f'.

Faculty of Science

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function *f* retreives its result from the memo table *tabulate* (*f' f*).
- **Each** element in the table is computed using f'.
- ightharpoonup Recursieve calls use the memo function f.

[Faculty of Science

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)

memo f' = f

where

f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function f retreives its result from the memo table tabulate (f' f).
- **Each** element in the table is computed using f'.
- ightharpoonup Recursieve calls use the memo function f.
- ► Thanks to lazy evaluation only those elements in the list are computed which are really used in constructing the resulting value

```
memo :: ((Integer \rightarrow a) \rightarrow (Integer \rightarrow a)) \rightarrow (Integer \rightarrow a)
memo f' = f
where
f = apply (tabulate (f' f))
```

- ▶ The combinator constructs a fixpoint f of f'.
- ► The function f retreives its result from the memo table tabulate (f' f).
- ▶ Each element in the table is computed using f'.
- ightharpoonup Recursieve calls use the memo function f.
- Thanks to lazy evaluation only those elements in the list are computed which are really used in constructing the resulting value
- The table does not depend on the parameter of f; calls to f share the table which is persistent during the evaluation of the [Faculty of Science University of Sciences]

Fibonacci sequence using memo lists

Fibonacci function using global memoïsation:

```
fib :: Integer \rightarrow Integer

fib = memo fib'

where

fib' f = 0

fib' f = 1

fib' f = 1
```

Memo lists: number of reductions

```
Main > fib 10
55
1450 reductions, 2316 cells
Main > fib 20
6765
5060 reductions, 8178 cells
Main > fib 25
75025
7690 reductions, 12463 cells
Main > fib 30
832040
10870 reductions, 17649 cells
```


Main>

Main> fib 30


```
Main> fib 30
832040
10870 reductions, 17649 cells
Main>
```



```
Main > fib 30
832040
10870 reductions, 17649 cells
Main > fib 30
```


Faculty of Science

```
Main > fib 30
832040
10870 reductions, 17649 cells
Main > fib 30
832040
359 reductions, 583 cells
```



```
Main > fib 30
832040
10870 reductions, 17649 cells
Main > fib 30
832040
359 reductions, 583 cells
```

In the second call all we have to do is to look up the result in the table.

Faculty of Science

Memo lists: lineair search time

- ► Arrays: fixed number of possible argument, but constant lookup time.
- Lists: no restriction on number of arguments, but lineair lookup time.

Faculty of Science

Memo lists: lineair search time

- Arrays: fixed number of possible argument, but constant lookup time.
- Lists: no restriction on number of arguments, but lineair lookup time.

Main > fib 5000 3878968454388325633701916308325905312082127714... 41.78 secs, 2532516300 bytes

Memo lists: lineair search time

- Arrays: fixed number of possible argument, but constant lookup time.
- Lists: no restriction on number of arguments, but lineair lookup time.

```
Main > fib 5000
3878968454388325633701916308325905312082127714...
41.78 secs, 2532516300 bytes
```

Golden middle road: memo trees (all arguments, logaritmic lookup time).

Faculty of Science

Library for memo functions: plan of attack (unchanged)

Choose a (parameterised) data type *Memo* for memo tables.

Define functions tabulate and apply,

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a apply :: Memo \ a \rightarrow Integer \rightarrow a
```

such that:

- ightharpoonup tabulate f a (lazy) memo tabel containing the results of all possible calls to f
- ightharpoonup apply mem n which locates the result for n in mem.

Define a fixedpoint memo using tabulate and apply.

- Infinite binary tree with values in the nodes.
 - No value in left children

- Infinite binary tree with values in the nodes.
- No value in left children.

- Infinite binary tree with values in the nodes.
- No value in left children.

Memo trees ► The search key for a right child is determined by the edges going right in the path from the root .

- ► The search key for a right child is determined by the edges going right in the path from the root .
- ► Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- The search key for a right child is determined by the edges going right in the path from the root.
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- ► Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- ► Each time we go right there is a contribution to the value, proportional to the depth of the tree.

- ► The search key for a right child is determined by the edges going right in the path from the root .
- Each time we go right there is a contribution to the value, proportional to the depth of the tree.

[Faculty of Science Information and Computing Sciences]

- In the nodes we store the values for the function f which is to be memoïsed.
 - In a right child with weight *n* we store the value *f n*.

- ► In the nodes we store the values for the function f which is to be memoïsed.
- ► In a right child with weight *n* we store the value *f n*.

Data type for memo trees

Type of an infinite binaire tree with values in the root and in each right child.

Data type for memo trees

Type of an infinite binaire tree with values in the root and in each right child.

```
data Memo a = Memo (Memo' a) a (Memo a)
data Memo' a = Memo' (Memo' a) (Memo a)
```


Data type for memo trees

Type of an infinite binaire tree with values in the root and in each right child.

```
data Memo a = Memo (Memo' a) a (Memo a)
data Memo' a = Memo' (Memo' a) (Memo a)
```

Memo and Memo' are defined mutually recursive.

Faculty of Science Information and Computing Sciences

Construction of the memo tree

```
tabulate :: (Integer \rightarrow a) \rightarrow Memo \ a
tabulate f = tab \ 0 \ 1
where
tab k \ i =
let j = 2 * i in Memo \ (tab' \ k \ j) \ (f \ k) \ (tab \ (k+i) \ j)
tab' k \ i =
let j = 2 * i in Memo' \ (tab' \ k \ j) \ (tab \ (k+i) \ j)
```

Arguments of helper function:

- ► For *tab*: the next search key and the next weigth (i.e. the increase of the search key).
- ► For *tab'*: last search key and again the increase in weigth at this level.

Memo tree construction: example

tabulate f

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Searching in a memo tree

```
apply :: Memo \ a \rightarrow Integer \rightarrow a
apply = app
where
app (Memo \ l \ x \ r) \ n \mid n \equiv 0 = x
| even \ n = app' \ l \ (n'div' \ 2)
| otherwise = app \ r \ (n'div' \ 2)
| app' \ (Memo' \ l \ r) \ n \mid even \ n = app' \ l \ (n'div' \ 2)
| otherwise = app \ r \ (n'div' \ 2)
```

In each recursive step the search key is halved and we decrease one level in the tree

If the key reaches 0, we return the value in the current node.

Memo combinator (unchanged)

The definition of *memo* is independent of the table representation:

```
memo :: ((Integer \rightarrow a) \rightarrow Integer \rightarrow a) \rightarrow Integer \rightarrow a
memo :: (f' f)
memo :: ((Integer \rightarrow a) \rightarrow Integer \rightarrow a)
memo :: ((Integer \rightarrow a) \rightarrow Integer \rightarrow a)
memo :: ((Integer \rightarrow a) \rightarrow Integer \rightarrow a)
memo :: ((Integer \rightarrow a) \rightarrow Integer \rightarrow a)
memo :: (f' f)
```

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Fibonacci sequence using memo trees

```
fib :: Integer \rightarrow Integer

fib = memo fib'

where

fib' f 0 = 0

fib' f 1 = 1

fib' f n = f (n-2) + f (n-1)
```

Main>

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Main> fib 5000

Main > fib 5000 3878968454388325633701916308325905312082127714... 0.37 secs, 26809216 bytes

Main>

 $\label{eq:main} \begin{array}{ll} {\tt Main} > & fib \ 5000 \\ {\tt 3878968454388325633701916308325905312082127714...} \end{array}$

0.37 secs, 26809216 bytes

Main > fib 5000

Main > fib 5000 3878968454388325633701916308325905312082127714... 0.37 secs, 26809216 bytes Main > fib 5000

3878968454388325633701916308325905312082127714...

0.02 secs, 532752 bytes

Conclusions

- ▶ More efficiënt table structure requires some programming effort, but is a 'one-time investment'.
- ▶ Choice of data structure is invisible to user of the library.
- ▶ Only thing required from the user: making the recursion explicit.

Faculty of Science

Final remarks

- we can extend the memoisation for any kind of value that can be mapped onto an *Integer*
- functions with more than one parameter can be memoïsed by having memo tables returning memo tables and having succesive lookups
- is part of several hackage packages, see
 http://hackage.haskell.org/package/MemoTrie

[Faculty of Science