Problem Set 2 Advanced Macroeconomics II, WISE, Xiamen University

March 16, 2009

The due date for this assignment is Monday March 23. It needs to be delivered by 8 am before the lecture starts. The total score is 10 points.

Solving a real business cycle model with adjustment cost to investment.

Consider the following model where a representative household solves

$$\max_{c_t, k_t} E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \ln \left(c_t \right) \right\} \tag{1}$$

s.t.

$$c_t + k_t = z_t k_{t-1}^{\theta} \bar{n}^{1-\theta} - \frac{\phi}{2} (k_t - k_{t-1})^2$$
(2)

$$\ln z_t = (1 - \rho) \ln \bar{z} + \rho \ln z_{t-1} + \varepsilon_t \tag{3}$$

where c_t , n_t , k_t denote consumption, labor and capital. z_t is a stochastic process for technology with $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$, and $0 \le \rho < 1$. Labor is constantly supplied and normalized to be equal to one: $\bar{n} = 1$. \bar{z} is the steady state value of z_t . β , θ , and ϕ are parameters with $0 < \beta < 1$, $0 < \theta < 1$, and $\phi \ge 0$. It might be useful to define the expression for output as:

$$y_t = z_t k_{t-1}^{\theta} \bar{n}^{1-\theta} \tag{4}$$

- 1. Describe the economy briefly. Comment on the preference, endowment, technology, and information. (0.4 point)
- 2. Find the first order necessary conditions (FONCs) of the representative agent. (1.5 points)
- 3. Write down the model in five equations, including output and the lagrange multiplier. (0.5 point)
- 4. Solve for the steady state, i.e. provide formulas for \bar{c} , $\bar{\lambda}$, \bar{k} , and \bar{y} given \bar{z} and other parameters. (Show the steps that you solve these values subsequently.) (0.8 points)
- 5. Log-linearize the equations. Define log-deviation of variable x_t as $\tilde{x}_t = \log(x_t/\bar{x})$. Write down all necessary log-linearized equations characterizing the equilibrium in the notation of log-deviation term \tilde{x}_t . (Note: you can use $\theta\beta\bar{z}\bar{k}^{\theta-1}=1$ to simplify one equation.) (1.5 points)
- 6. Classify the exogenous state as \tilde{z}_t , endogenous state as \tilde{k}_t and other endogenous variables as $\tilde{\lambda}_t$, \tilde{c}_t , and \tilde{y}_t . Substitute out \tilde{c}_t by $\tilde{\lambda}_t$ in the log-linearized budget constraint, and combine this equation

with the log-linearized Euler equation, so that you can obtain the following two-dimensional stochastic difference equation together with exogenous technology process:

$$0 = -\tilde{k}_t + a_1 \tilde{k}_{t-1} + a_2 \tilde{\lambda}_t + a_3 \tilde{z}_t \tag{5}$$

$$0 = -\tilde{k}_{t} + a_{1}\tilde{k}_{t-1} + a_{2}\tilde{\lambda}_{t} + a_{3}\tilde{z}_{t}$$

$$0 = E_{t} \left[a_{4}\tilde{k}_{t+1} + a_{5}\tilde{k}_{t} + a_{6}\tilde{k}_{t-1} + \tilde{\lambda}_{t+1} - \tilde{\lambda}_{t} + \tilde{z}_{t+1} \right]$$

$$\tilde{z}_{t} = \rho\tilde{z}_{t-1} + \varepsilon_{t}$$

$$(5)$$

$$(6)$$

$$\tilde{z}_{t} = (7)$$

$$\tilde{z}_t = \rho \tilde{z}_{t-1} + \varepsilon_t \tag{7}$$

what are a_1 , a_2 , a_3 , a_4 , a_5 , and a_6 in terms of the original parameters? (Note: \tilde{c}_t , and \tilde{y}_t can be solved immediately according to the log-linearized equation, once the above system is solved out. So for the moment we leave them out.) (1 points)

- 7. Calculate steady state values of \bar{c} , $\bar{\lambda}$, \bar{k} , and \bar{y} , and calculate a_1 to a_6 given the following parameter values: $\phi = 8, \ \beta = 0.99, \ \rho = 0.95, \ \theta = 1/3, \ \bar{z} = 1, \ \sigma_{\varepsilon}^2 = 0.712$. Assume that your model parameters are calibrated from quarterly data. (0.8 points)
- 8. Guess the recursive law of motion of the above system in step 6 as:

$$\tilde{\lambda}_{t} = \eta_{\lambda k} \tilde{k}_{t-1} + \eta_{\lambda z} \tilde{z}_{t} \quad (8)$$

$$\tilde{k}_{t} = \eta_{kk} \tilde{k}_{t-1} + \eta_{kz} \tilde{z}_{t} \quad (9)$$

$$\tilde{k}_t = \eta_{kk} \tilde{k}_{t-1} + \eta_{kz} \tilde{z}_t \quad (9)$$

and exploit $E_t[\tilde{z}_{t+1}] = \rho \tilde{z}_t$. Using the undetermined coefficient method, insert these expression into (5) and (6) and collect terms on k_{t-1} and \tilde{z}_t , to get two transformed equations. (Note that you may insert (8) and (9) twice into (6) to eventually reduce the equation to a function of only k_{t-1} and \tilde{z}_t .) (0.4. points)

- 9. By comparing the coefficients on \tilde{k}_{t-1} , you can get a characteristic quadratic equation η_{kk} as $a\eta_{kk}^2$ + $b\eta_{kk} + c = 0$, where a, b, and c are determined by a_1 , to a_6 . What are a, b, and c? Solve this equation, what are the roots? Which root should you choose and why? Use your chosen value of η_{kk} to calculate $\eta_{\lambda k}$. (1.2 points)
- 10. By comparing the coefficients on \tilde{z}_t , solve for η_{kz} and $\eta_{\lambda z}$ (0.2 points)
- 11. Assume $\tilde{z}_0 = 0$, $\varepsilon_1 = 1$, and $\varepsilon_t = 0$ for $t = 1, ..., \infty$. Calculate \tilde{z}_t recursively and plot the impulse response of \tilde{z}_t for t = 1, ..., 8. (0.2 points)
- 12. Assume $k_0 = 0$, given the above technology shock, calculate k_t recursively and plot the impulse response of k_t for t = 1, ..., 8. (0.4 points)
- 13. Assume now $\phi = 50$. Recalculate the solution and plot impulse response of k_t for the same technology shock as given in step 11. Compare the plot in step 12, give an economic explanation for the difference between scenario I and II. (1.1 points)