openHPSDR Ethernet Protocol

V2.7

©January 2016 Phil Harman VK6PH

Hermes Network Interface

Rev	Date	Changes	Ву
1.0	20 June 2015	First release	VK6PH
1.1	27 June 2015	Changed Hermes Lite reference number from 5 to 6. Added DSP clock frequency and number of DDCs implemented to Discovery reply. Enable either DDC and DUC frequency or phase word to be sent to hardware. Added memory mapped registers.	VK6PH KF7O
1.2	1 July 2015	Added version of Protocol implemented and frequency or phase word required to Discovery reply packet.	VK6PH
1.3	2 July 2015	Corrected network format to be Network Byte Order, or Big-Endian.	N2ADR
1.4	1 Aug 2015	Added Wideband packets per frame to General Packet	VK6PH
1.5	27 Aug 2015	Corrected General Packet source and destination ports. Corrected Microphone and Wideband data packets source port. Removed default Wideband data rate, added default samples per frame for ANAN-10E. Removed blank page 15. Changed discovery hardware identification numbers to allow ANAN-10E to be identified. Added full hardware description option for Discovery reply.	VK6PH
		Added hardware time out should communications with host be lost.	G4ELI
1.6	6 Sept 2015	Added 10MHz reference PLL locked to High Priority packet	G4ELI
1.7	14 Sept 2015	Added data format where 2's complement used. Added calibration information e.g. max I&Q value for -20dBm input. Corrected Envelope PWM_min and max settings, corrected byte 38 in General Packet to SDR, Corrected DDCk,0 in Figure 3.	VK6PH IW0HDV
1.8	16 Oct 2015	Added Discovery reply for ANAN-100E, clarified where DSP clock frequency is obtained.	VK6PH
1.9	24 Oct 2015	Various typographical errors corrected. Clarified number of samples per Ethernet packet for Audio and I&Q data. Added Appendix C – block diagram of Alex filters.	G4ELI, VK6PH
2.0	28 Oct 2015	Clarified Open Collector drive. Added NOTE1 and 2 on page 3 relating to PureSignal operation, DUC I&Q data and DUC architecture. Added number of general purpose ADCs support to Appendix A. Expanded Alex filter operation in Appendix C. Added note on Page 19 relating to synchronous and multiplexed DDC restrictions.	G4ELI, VK6PH, KC9XG

2.1	9 Nov 2015	Added additional Alex filter descriptions in Appendix D. Increased support for Alex filters from 4 to 8. NOTE: Open Collector register in High Priority packet has moved due to this. Added support for XLM format Discovery reply. Clarified PA enable and Envelope Tracking bits. Added note that ANAN-10E only has 31dB attenuator. Corrected number of I&Q samples in DDC packet. Corrected number of bytes in DDC packet. Added conversion constants for supply volts, exciter, Forward and Reverse power to Appendix A.	VK6PH, KC9XG, G4ELI
2.2	30 Nov 2015	Removed conversion constants on page 38 since now in Appendix A. Corrected number of DDC 1&Q samples per packet in Appendix A. Updated Alex diagrams in Appendix D. Corrected number of DUC 1&Q packets. Corrected DDC0 default port in Fig3. Added a note relating to the sequence that DDC 1&Q samples are received in.	VK6PH, G4ELI, KC9XG
2.3	16 Dec 2015	Set bits 26 & 27 in DUC Specific Packet to reserved. Added ability to send Discovery to hardware IP address or the broadcast address specific of the current subnet. – see page5. Added note regarding connecting to running hardware – see page 34, Byte 4. Replaced 100E with 100B on page 34. Added description of DAC data feedback via a DDC for PureSignal use – note 1 on page 3 and Byte 17 on page 17.	VK6PH, G4ELI, W5WC
2.4	26 Dec 2015	Corrected Byte 1443 on page 17. Corrected length of IQ samples – page 28.	VK6PH, W5WC,G0ODC
2.5	28 Dec 2015	High Priority to Hardware Byte 4 bits [5] / [6] indicates I&Q FIFO empty/full – see page 38.	VK6PH, G0ODC, G4ELI
2.6	20 Feb 2016	Replace 'receiver' with DDC, replace 'Rxn' with DDCn, replace 'transmitter' with DUC, replace Txn with DUCn. Added note re DUC I&Q FIFO and re-sampling - Page 3. Added note re Drive level operation - Page 3. Changed DAC I&Q FIFO from empty/full to almost empty/almost full – Page 38. Added note that whilst in standby the PTT output and Open Collector outputs will be deactivated – Page 3.	VK6PH, WU2O, G4ELI
2.7	20 Mar 2016	Added hardware timer enable – General Packet, Byte 38 [0] – Page 13 and Page 3.	VK6PH

Acknowledgements

My thanks to Jeremy, NH6Z, for providing the initial suggestions regarding a possible protocol and for the suggested document format.

Thanks also to Alex, VE3NEA, for the original suggestion of using UDP ports to send and receive data from.

Special thanks to Scotty, WA2DFI, for his detail analysis of the early drafts of this protocol and numerous significant contributions.

The follow have provided input and review of the protocol during its development:

Warren - NROV, Doug - W5WC, Joe - K5SO, Chen - W7AY, George - K9TRV, Leif - SM5BSZ, Simon - G4ELI, Vasiliy - K3IT, Tom - N5EG, Edson - PY2SDR, Dave - KV0S, Alex - VE3NEA, John - G0ODC, Francis - ON5RF, Alberto - I2PHD, David - WA8YWQ, Roger - W3SZ, Bob - G3UKB, Steve-K7FO, Scott - WU2O.

Thanks to William, KC9XG, for preparing the Alex filter block diagrams.

Thanks also to those contributors who wish to remain anonymous.

Table of Contents

Purpose	1
Architecture	1
Detailed operation	3
openHPSDR Host to Hardware Protocol	5
Discovery Packet	6
Erase Packet	7
Program Packet	8
Set IP Address Packet	10
General Packet to SDR	12
DDC SPECIFIC packet	17
Transmiter SPECIFIC packet	21
DUC Synchronisation Packet	24
High Priority DATA Packet	25
DDC Audio Packet	29
DUC I&Q Data Packet	30
Memory mapped Registers From PC	32
openHPSDR Hardware to Host Protocol	34
Discovery Reply Packet	35
Command Reply Packet	38
high priority Status Packet	39
Microphone Data Packet	42
Wideband Data Packet	43
DDC Packet	45
Memory mapped registers from hardware	47
Figure 1 UDP Data from Host	49
Figure 2 UDP Data to Host	50
Figure 2 DDC Architecture	E1

Figure 4 DUC Architecture	52
Appendix A – Hardware capabilities – openHPSDR boards	53
APPENDIX B – XML format hardware description	70
APPENDIX C – Hardware capabilities – SPECIFIC	71
Appendix D – Alex filters description	80
Alex filters for Atlas based systems	81
Alex filters for ANAN-10 & Anan-10E systems	83
Alex filters for ANAN-100, 100D and 200D systems (Rev 15/16)	84
Alex filters for ANAN- 100/100B/100E/200D systems (Rev 24)	86

Purpose

This specification describes the protocol used to communicate with current and future openHPSR hardware. Its intended audience is hardware and software developers who wish to develop, or modify, hardware and software to use this architecture and protocol.

Architecture

The basic architecture is built on the concept of using UDP ports to send and receive signals and Command & Control data.

Some configuration settings will change infrequently and can be applied to all DDCs and DUCs. These 'General' settings need only be sent when the SDR hardware is first turned on or when a setting changes during operation.

Settings that need to change more frequently are sent to control registers associated with DDCs or DUCs.

Settings that require near real-time responses are sent as priority packets to specific UDP ports.

Where possible the protocol does not restrict the number of configurable resources. The number of fully independent DDCs, associated with a particular analogue to digital converter (ADC), can be configured using the General settings. Similarly, the number of DDCs or DUCs that may be combined synchronously or multiplexed is configurable.

The basic architecture for UDP data from the Host (i.e. PC, Tablet etc) is shown in Figure 1. The UDP ports here configure General Registers (where data changes infrequently after initialisation), DUC and DDC Specific Registers and High Priority Registers (where, for example, register settings change between receive and transmit.

Figure 2 illustrates the architecture for UDP data from the SDR hardware to the Host. The ports here include the Microphone data and both wide and narrow band DDC data ports.

In both diagrams some UDP ports are predetermined. Others are set by the user and/or depending on the actual number of ADCs and DACs available on the specific SDR hardware and the number of synchronous and non-synchronous (i.e. multiplexed) DDCs and DUCs the user wishes to configure.

Figure 3 illustrates how multiple DDCs can be configured on a specific ADC. It also shows how a specific DDC can be configured to be synchronous or multiplexed with other DDCs configured on other ADCs.

In general the input of a specific DDC can be fed from a selected ADC or, for PureSignal requirements, from the data being sent to a specific DAC. Each DDC can operate independently from all others i.e. its sampling rate is set independently.

Where no synchronous or multiplexed DDCs are selected then the output of the DDC directly feeds a FIFO and subsequently, using its designated port, the Ethernet PHY.

Where synchronous or multiplexed DDCs are selected then the data from these additional DDCs are sequentially passed to the FIFO associated with the base DDC. All synchronous or multiplexed DDCs must operate at the same sampling rate.

Synchronous DDCs are phase coherent whilst multiplexed DDCs can be set to different frequencies.

The maximum number of synchronous DDCs that can be selected per base DDC is equal to the number of ADCs. The maximum number of multiplexed DDCs per base DDC is equal to the number of DDCs implemented.

The DDC follows the conventional architecture of CORDIC, CIC filters and sinc compensating FIR filter.

Figure 4 illustrates how multiple DUCs can be configured in either synchronous or multiplexed modes. Presently, no openHPSDR SDR hardware is able to support more than one DAC. In which case data from the FIFO connect to port 1029 (default) is connected directly to the DUC and the selection of synchronous or multiplexed data is not supported.

The DUC is configured as a 5 stage CIC filter and CORDIC. Note that the Host I&Q data (24 bit I&Q data at 192ksps) directly feeds the CIC filter. In which case the transmitted signal will be -1dB at +/- 22kHz. For most modes this is acceptable but should wider bandwidths be required the designer may wish to include a sinc compensation filter in the Host software.

In order to overcome any potential latency issues between the Host and SDR Hardware, RF and sidetone generation for CW is done in the SDR Hardware. This includes applying a raised cosine profile to the leading and trailing edges of the CW RF and sidetone waveforms. An lambic Keyer is also implemented and operates in Straight, simulated Bug and lambic A or B.

Variable frequency and amplitude sidetone is also generated in the SDR Hardware.

Time stamping of DDC I & Q packets is in accordance with the VITA-49 specification for Fractional-seconds Timestamps.

For the current hardware implementation an arbitrary limit of 80 DDCs and 8 ADCs has been applied. These limits will be removed as hardware that is capable of exceeding these settings becomes available.

Compared with the previous openHPSDR Ethernet/USB protocol, numerous new features and facilities have been added. However, we should bear in mind the 'Second-system effect' - see

http://en.wikipedia.org/wiki/Second-system_effect

Detailed operation

Consider a network made up of multiple SDRs and multiple Hosts (e.g. PCs). Each SDR on the network has a unique IP address, and listens on fixed port 1024 for Discovery packets.

The following scenario outlines how SDRs and Hosts interact within a given network segment. It is important that multiple SDRs and multiple Hosts each running multiple applications be able to interact on one segment. Note that the term "SDR" applies to a single network connection (IP address); there may be many hardware ports associated with each single IP address.

To establish communication, one network Host will broadcast a Discovery to address <255.255.255.255.255:1024> from its own IP address and a source port number. In this example, assume it is from <192.168.1.10:8000>.

Every device listening on port 1024 will respond to this broadcast with a response to the Hosts IP address and source port with its IP address and port number. In this example, the SDR responds to <192.168.1.10:8000> from its own fixed address of <192.168.1.30:1024>. Now a command/response channel has been established between the SDR and the Host. This channel will be used for all SDR—to-Host and Host-to-SDR communications until one or more other streams are established.

Once a channel has been established then the General Registers and DDC and DUC Specific Registers should be set up. A High Priority packet should then be send with the 'run' bit set in order to start data from the Hardware.

In order to recover from a network interruption, a Command & Control packet (i.e. <u>any</u> C&C packet) must be sent from the host to the hardware at least every second (every 100 mS is recommended). Should a C&C packet not be received, and the hardware is in the RUN state, then the hardware will switch out of the RUN state into standby.

Whilst in standby the PTT output and Open Collector outputs will be deactivated. This is to ensure the system can't be let in a Transmit state following a network interruption.

The session can be re-started either by sending a High Priority Packet with the RUN bit set, if the same network session is still active, or a Discovery exchange followed by re-initiation of all C&C settings and thence a High Priority Packet with the RUN bit set.

The automatic hardware reset on network or PC software failure may be disabled for debugging purposes. See the General Packet for specific details.

The format of the Ethernet packets is generally consistent in that they all commence with a 32 bit sequence number. This enables the Host and Hardware to determine if packets have been lost.

In general, configuration data that is typically required by all SDR hardware is sent at the head of a packet. Settings that are specific to openHPSDR hardware are sent at the end of a packet. This leaves room in the middle of the packet for additional register settings to be included in the future without disturbing existing settings.

RF output from the DAC(s) is controlled via a Drive setting. With current openHPSDR hardware this setting controls the current available from the associated DAC and hence the RF output. The Drive setting for a particular power output will vary with frequency. However, since the exciter and PA forward power is available the PC software can calibrate the power output verses Drive setting to ensure consistency with frequency if desired.

NOTE1: The protocol provides for any ADC to be used for PureSignal RF and DAC feedback. However, due to FPGA size limitations and timing requirements, for all current implementations RF feedback will be via DDC0 and DAC feedback via DDC1. DAC data may be fed back by setting 'n' in ADC(n) equal to the number of ADCs fitted to the hardware.

NOTE2: The protocol enables a variable DUC I&Q sample width and sample rate. For all current openHPSDR implementations the sample width is set to 24 bits and sampling rate fixed at 192 ksps. In current hardware the DUC I&Q FIFO is 4096 by 48 bits wide. If the hardware contains an Audio CODEC (sourcing microphone data and sinking received audio) then the rate of sending I&Q data to the FIFO may be determined by the rate at which microphone data is being received e.g. there will be a fixed relationship between the number of microphone samples received and I&Q samples sent. In which case the FIFO is unlikely to over or underrun.

However, if an Audio CODEC is not provided, or microphone and receiver audio is not sourced from the hardware (e.g. a USB headset) then the data sample rate of the mic and receiver data will most likely not match the sample rate of the hardware. In which case there is potential for the FIFO to over or underrun.

In order to prevent this situation the status of the I&Q FIFO (e.g. almost full or almost empty) is returned in the High Priority Status packet. The presence of the FIFO status is intended to enable the PC software to pace how I&Q packets are sent in order to avoid an over or underrun situation.

Rather than discarding or duplicating audio and I&Q samples in order to match the required sampling rates, it is recommended that PC code developers implement a fractional re-sampler. Note that if an Audio CODEC is fitted, but microphone data is not sourced from it, then mic data packets will still be sent to the PC. In which case the PC code may use the rate that this data is received in order to determine the rate at which I&Q samples to the DUC should be sent.

In order to minimise DUC latency, I&Q data should be sent as soon as sufficient data is available to full a UDP packet i.e. it is not necessary, nor desirable, to wait until 4096 by 48 bit samples are available.

openHPSDR Host to Hardware Protocol

The Host will communicate with the Hardware using standard UDP protocol. Byte order shall be MSB first (Network Byte Order, or Big-Endian) and all values are interpreted as unsigned integers unless otherwise noted.

IP and UDP headers are as per UDP/IP standards.

Key:

IP Header (24 bytes)	
UDP Header (8 bytes)	
UDP Data (variable bytes)	

Bits Bytes	0-7	8-15	16-23	24-31	32- 39	40-47	48-55	56-63
0	Version/IH L	Type of Service	Total Length		Identification		Flags/Fragment Offset	
8	TTL	Protocol	Header Checksum		Source IP Address			
16	Destination IP Address				IP Options		Pad	
24	Source Port Destination Port			UDP L	ength	UDP Che	ecksum	
32	UDP Data							
1443								

Future diagrams will only show the UDP Data with a starting byte reference of zero.

DISCOVERY PACKET

A Discovery packet is sent from a Host in order to determine what SDRs are present on the network, and if so, how many. The format is as follows:

	Discovery - PC to Hardware		
Byte	To Port 1024	Notes	
0	Seq #	[31:24]	
1	Seq #	[23:16]	
2	Seq #	[15:8]	
3	Seq#	[7:0]	
4	0x02	Command - Discovery	
5		Zero	
6		Zero	
7		Zero	
8		Zero	
59		Zero	

Destination Address

This may either be sent to the IP address of a specific SDR or a **broadcast** to Ethernet address 255.255.255.255 or the specific broadcast address of the current subnet.

Destination Port

This will be 1024.

Sequence Number

A 4-byte integer set to 0x00000000.

The hardware will respond with the relevant Command Reply Packet.

ERASE PACKET

An Erase packet is sent from a Host in order to erase the EEPROM on the hardware prior to programming it. The format is as follows:

	Erase Command - PC to Hardware	
Byte	To IP Address of Hardware and Port 1024	Notes
0	Seq #	[31:24]
1	Seq#	[23:16]
2	Seq #	[15:8]
3	Seq#	[7:0]
4	0x04	Command - Erase
5	Zero	
6	Zero	
7	Zero	
8	Zero	
59	Zero	

Destination Address

This will be the Ethernet address assigned to the hardware.

Destination Port

This will be 1024.

Sequence Number

A 4-byte integer set to 0x00000000.

The hardware will respond with a Command Reply Packet confirming receipt of the Erase command and a subsequent reply when the erase has completed.

NOTE: Larger EEPROMS can take up to 15 seconds to erase. The Host program should include a timer such that if a reply has not been received within this time the user should be prompted to re-try.

PROGRAM PACKET

A Program packet is sent from a Host in order to program the EEPROM on the hardware. The format is as follows:

	Program Command - PC to Hardware	Notes	
Byte	To IP Address of Hardware and Port 1024		
0	Seq#	[31:24]	
1	Seq#	[23:16]	
2	Seq#	[15:8]	
3	Seq#	[7:0]	
4	0x05	Command - Program	
5	# of blocks [31:24]		
6	# of blocks [23:16]		
7	# of blocks [15:8]		
8	# of blocks [7:0]		
9	Program data 0		
10	Program data 1		
11	Program data 2		
12	Program data 3		
13	Program data 4		
14	Program data 5		
15	Program data 6		
264	Program data 255		

Destination Address

This will be the Ethernet address assigned to the hardware.

Destination Port

This will be 1024.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 , increments for each new packet, and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the hardware can determine if a decoder is missing samples in its stream. The sequence number is set to zero when initiating a Programming sequence.

Number of Blocks

A 4 byte integer that indicates the total number of 256 byte blocks that will be sent from the Host to the SDR hardware.

The hardware will respond with a Command Reply Packet that requests the next block of 256 bytes be sent.

NOTE: Should the Sequence Number in the Command Reply Packet not be consistent with the sent Sequence Number then the Program process should be aborted and the user given the option to restart. An affirmative response should initiate an Erase sequence followed by a Program sequence.

SET IP ADDRESS PACKET

A Set IP Address packet is sent from a Host in order to set the IP address of the hardware. Prior to setting an IP address a Discovery Packet should be sent and the MAC address of the hardware that's IP address is to be updated recorded.

The format is as follows:

	Set IP Address - PC to Hard	lware
Byte	Broadcast to Port 1024	Notes
0	Seq#	[31:24]
1	Seq#	[23:16]
2	Seq#	[15:8]
3	Seq#	[7:0]
4	0x03	Command - Set IP Address
5	ToMAC	MSB
6	ToMAC	
7	ToMAC	
8	ToMAC	
9	ToMAC	
10	ToMAC	LSB
11	AssignIP	MSB
12	AssignIP	
13	AssignIP	
14	AssignIP	LSB
15	Zero	
16	Zero	
17	Zero	
18	Zero	
59	Zero	

Destination Address

This will be Ethernet address 255.255.255.255.

Destination Port

This will be 1024.

Sequence Number

A 4-byte integer set to 0x00000000.

MAC Address

A 6-byte value that contains the MAC address of the hardware that's IP address requires to be set.

IP Address

A 4-byte value that contains the IP address that is required to be set in the hardware's EEPROM. This may be increased in the future to enable IPv6 addressing. Setting the IP address to 0.0.0.0 will force the hardware to use DHCP addressing.

NOTE: After the IP address has been saved in EEPROM, which will take a few seconds, the successful setting of the IP address can be verified by sending a Discovery Command. The reply from the hardware will include the new IP address.

GENERAL PACKET TO SDR

The General packet contains data that sets infrequently changed settings of the transceiver subsystems. This data is sent when the UDP data changes and, optionally, periodically.

A General Packet should be sent following a successful Discovery exchange.

The format is as follows:

	Control Elements - PC to Hardware	
Byte	To IP Address of Hardware and Port 1024	Notes
0	Seq #	[31:24]
1	Seq#	[23:16]
2	Seq #	[15:8]
3	Seq#	[7:0]
4	0x00	Command
5	DDC Specific port [15:8]	Default Port # 1025
6	DDC Specific port [7:0]	
7	DUC Specific port [15:8]	Default Port # 1026
8	DUC Specific port [7:0]	
9	High Priority from PC port [15:8]	Default Port # 1027
10	High Priority from PC port [7:0]	
11	High Priority to PC port [15:8]	Default Port # 1025
12	High Priority to PC port [7:0]	
13	DDC Audio port [15:8]	Default Port # 1028
14	DDC Audio port [7:0]	
15	DUC0 I&Q port [15:8]	Base Port (Default Port # 1029)
16	DUC0 I&Q port [7:0]	
17	DDC0 port [15:8]	Base Port (Default Port # 1035), DDC1 = Base Port # +
18	DDC0 port [7:0]	1DDC79 = Base Port # + 79
19	Mic samples port [15:8]	Default Port # 1026
20	Mic samples port [7:0]	Belaute of the 1929
21	Wideband ADC0 port [15:8]	Base Port (Default Port # 1027), ADC1 = Base Port # +
	linessana na es pont [25.5]	1ADC7 = Base Port # + 7
22	Wideband ADC0 port [7:0]	
23	Wideband Enable [7:0]	WB0 = [0], WB1 = 1WB7 = [7]
24	Wideband Samples per packet [15:8]	Default 512
25	Wideband Samples per packet [7:0]	
26	Wideband sample size	Default 16 bits
27	Wideband update rate	0 to 255mS per frame, default 20ms per frame
28	Wideband packets per frame	Default to 32 (i.e. 16k by 16 bit samples per frame)
29	Memory mapped from PC port [15:8]	Default Port # xxxx
30	Memory mapped from PC port [7:0]	

31	Memory mapped to PC port [15:8]	Default Port # xxxx
32	Memory mapped to PC port [7:0]	
33	Envelope PWM_min	[15:8] Reserved for future use
34	Envelope PWM_min	[7:0] Reserved for future use
35	Envelope PWM_max	[15:8] Reserved for future use
36	Envelope PWM_max	[7:0] Reserved for future use
37	Bits - [0]Time stamp, [1]VITA-49, [2]VNA mode, [3] frequency or phase word	
38	Bit[0] set = enable hardware timer	
39		Reserved for future use
56	Bits - Atlas bus configuration	[2:0] Configuration - see below
57	Bits - 10MHz ref source	[1:0] 10MHz reference source - see below
58	Bits - PA, Apollo, Mercury, clock source	[0] = PA, 1 = Apollo, [2] = Mercury Common Frequency, [3] Clock Source - see below
59	Bits - Alex(n) enable, 1= enable, 0 = disable	[0] = Alex 0[7] = Alex7

Source Port

This will be set to the Source Port of the Host that initiated the Discovery Packet.

Destination Port

This will be set to 1024.

Sequence Number

A 4-byte integer set to 0x00000000.

Bytes 5 & 6

These two bytes form a 16 bit number that specifies the port that DDC Specific commands will be sent to. If set to zero the default port 1025 will be used.

Bytes 7 & 8

These two bytes form a 16 bit number that specifies the port that DUC Specific commands will be sent to. If set to zero the default port 1026 will be used.

Bytes 9 & 10

These two bytes form a 16 bit number that specifies the port that High Priority commands will be sent to. If set to zero the default port 1027 will be used.

Bytes 11 & 12

These two bytes form a 16 bit number that specifies the port that High Priority commands <u>from</u> the hardware will be sent from. If set to zero the default port 1025 will be used.

Bytes 13 & 14

These two bytes form a 16 bit number that specifies the port that DDC Audio will be sent to. If set to zero the default port 1028 will be used.

Bytes 15 & 16

These two bytes form a 16 bit number that specifies the port that DUC I&Q data will be sent to. If set to zero the default port 1029 will be used.

Bytes 17 & 18

These two bytes form a 16 bit number that specifies the port that DDC 0 I&Q data will originate from. If set to zero the default port 1035 will be used. Each subsequent DDC will increment the port number respectively e.g. DDC 1 will originate from Port + 1, DDC 2 from Port +2.....DDC 79 from Port + 79

Bytes 19 & 20

These two bytes form a 16 bit number that specifies the port that microphone or line in data will originate from. If set to zero the default port 1026 will be used.

Bytes 21& 22

These two bytes form a 16 bit number that specifies the port that wideband data from ADC0 will originate from. If set to zero the default port 1027 will be used.. Each subsequent wideband data will increment the port number respectively e.g. ADC1 1 will originate from Port + 1, ADC 2 from Port + 2.....ADC7 from Port + 7

Byte 23

Enable wideband data. A set bit enables Wideband data from an associated ADC to be sent e.g. bit 0 enables ADC0, bit1 enables ADC1 etc.

Bytes 24 & 25

These two bytes form a 16 bit number that specifies the number of wideband samples to use per packet. The default is 512 by 16 bits samples. (default only at present)

Byte 26

Sets the size of a wideband sample in bits. If set to zero the default of 16 bits will be used. (default only at present)

Byte 27

Sets the update rate of the wideband data in mS.

Byte 28

Sets the number of packets of wideband data sent per frame. The default is 32 (i.e. for defaults will send 32 * 512 = 16k by 16 bit samples per frame). For ANAN-10E this is fixed at 1024 by 16 bit samples per frame.

Bytes 29 & 30

These two bytes form a 16 bit number that specifies the port that memory mapped data from the PC will be sent to. If set to zero the default port xxxx will be used.

Bytes 31 & 32

These two bytes form a 16 bit number that specifies the port that memory mapped data to the PC will be sent to. If set to zero the default port xxxx will be used.

Bytes 33 & 34

These two bytes form a 16 bit number that specifies the minimum pulse width for the Envelope Tracking PWM.

Bytes 35 & 36

These two bytes form a 16 bit number that specifies the maximum pulse width for the Envelope Tracking PWM.

Byte 37

Bits when set activate the following functions; Bit[0] - Enable time stamping of DDC I&Q packets, Bit[1] - send data using VITA-49 format, Bit[2] - select VNA mode, Bit[3] selects if the DDC and DUC frequency data is sent as frequency ([3] = 0) (in Hz) or phase word ([3] = 1). A phase word is calculated as follows:

DSP clock frequency is dependent on the Board type and is either specified in Appendix A or, if hardware specific, then as part of the Discovery response as specified in Appendix B.

NOTE: Currently ALL openHPSDR FGPA code requires transmit and receive phase words.

Byte 38

Bit[0] when set enables the hardware reset timer. This should normally be set but can be clear to assist with software testing.

Byte 56

This selects the Atlas bus Mercury DDC configuration as follows:

Configuration (Mercury)
000 - single DDC
001 - two DDCs
010 - three DDCs
011 - four DDCs

Byte 57

For Atlas based systems this selects the source of the 10MHz reference clock as follows:

10MHz reference source
00 = 10MHz reference from Atlas bus
01 = 10MHz reference from Penelope
10 = 10MHz reference from Mercury

Byte 58

Bit[0] when set enables the PA. When in VNA mode or when using the Transverter output, the PA stage may be disabled.

Bit[1] when set enables the Apollo automatic ATU if fitted.

For Atlas based systems, Bit[2] when set enables Mercury Common Frequency and Bit [3] selects the Clock Source - see below

Clock Source
0 = 122.88MHz source from Penelope
1 = 122.88MHz source from Mercury

Byte 59

Each bit enables the respective Alex filter board e.g. Bit[0] set enables Alex0, Bit[1] set enables Alex 1 etc.

DDC SPECIFIC PACKET

This sets the number of ADCs and the number of DDCs associated with each ADC. It also sets DDC parameters that change infrequently. This packet is sent following a successful Discovery command and prior to a Run command or when a parameter changes and, optionally, periodically.

The format of the packet is as follows:

	Control Elements - PC to Hardware		
Byte	DDC Specific	Notes	
0	Seq#	[31:24]	
1	Seq #	[23:16]	
2	Seq #	[15:8]	
3	Seq #	[7:0]	
4	Number of ADCs	Max of 8 ADCs	
5	Bits - Dither ADC07	[0] = ADC0, [1] = ADC1[7] = ADC7	
6	Bits - Random ADC07	[0] = ADC0, [1] = ADC1[7] = ADC7	
7	DDC Enable DDC0DDC7	[0] = DDC0, [1]= DDC1[7] = DDC7	
8	DDC Enable DDC 8 DDC 15		
9	DDC Enable DDC 16 DDC 23		
10	DDC Enable DDC 24 DDC 31		
11	DDC Enable DDC 32 DDC 39		
12	DDC Enable DDC 40 DDC 47		
13	DDC Enable DDC 48 DDC 55		
14	DDC Enable DDC 56 DDC 63		
15	DDC Enable DDC 64 DDC 71		
16	DDC Enable DDC 72 DDC 79	[0] = DDC 72[7] = DDC 79	
17	ADC DDC0	ADC(n) or DAC data that DDC 0 is allocated to	
18	Sampling Rate DDC 0	[15:8] 48/96/192/384/768/1536	
19	Sampling Rate DDC 0	[7:0]	
20	CIC1 DDC 0	For Future use	
21	CIC2 DDC 0	For Future use	
22	Sample Size DDC0	Default 24 bits	
23	ADC DDC 1	ADC(n) or DAC data that DDC 1 is allocated to.	
24	Sampling Rate DDC 1	[15:8]	
25	Sampling Rate DDC 1	[7:0]	
26	CIC1 DDC 1		
27	CIC2 DDC 1		
28	Sample Size DDC 1		
29	ADC DDC 2	ADC(n) or DAC data that DDC 2 is allocated to.	
30	Sampling Rate DDC 2	[15:8]	
31	Sampling Rate DDC 2	[7:0]	
32	CIC1 DDC 2		

33	CIC2 DDC 2		
34	Sample Size DDC 2		
35	ADC DDC 3	ADC(n) or DAC data that DDC 3 is allocated to.	
36	Sampling Rate DDC 3	[15:8]	
37	Sampling Rate DDC 3	[7:0]	
38	CIC1 DDC 3		
39	CIC2 DDC 3		
40	Sample Size DDC 3		
41	ADC DDC 4	ADC(n) or DAC data that DDC 4 is allocated to.	
42	Sampling Rate DDC 4	[15:8]	
43	Sampling Rate DDC 4	[7:0]	
44	CIC1 DDC 4		
45	CIC2 DDC 4		
46	Sample Size DDC 4		
485	ADC DDC 78	ADC(n) or DAC data that DDC 78 is allocated to.	
486	Sampling Rate DDC 78		
487	Sampling Rate DDC 78		
488	CIC1 DDC 78		
489	CIC2 DDC 78		
490	Sample Size DDC 78		
491	ADC DDC 79	ADC(n) or DAC data that DDC 78 is allocated to.	
492	Sampling Rate DDC 79		
493	Sampling Rate DDC 79		
494	CIC1 DDC 79		
495	CIC2 DDC 79		
496	Sample Size DDC 79		
1363	Sync DDC 0	[7:0] If bit set then DDC (n) is synched or muxed to DDC 0	
1364	Sync DDC 1	[7:0] If bit set then DDC (n) is synched or muxed to DDC 1	
1365	Sync DDC 2	[7:0] If bit set then DDC (n) is synched or muxed to DDC 2	
1442	Sync DDC 79	[7:0] If bit set then DDC (n) is synched or muxed to DDC 79	
1443	Mux	[7:0] If bit set then DDC (n) is in Multiplexed mode	

Destination Port

This may be set using the General packet and if zero defaults to 1025.

Sequence Number

A 4-byte integer set to 0x00000000.

Byte 4

Indicates the number of ADC that the hardware supports. This will be up to four on Atlas based systems, one on Hermes (ANAN-10/10E/100) and two on Angelia and Orion (ANAN-100D/200D),

Byte 5

A set bit activates Dither on the associated ADC e.g. Bit[0] actives ADC0, Bit[1] activates ADC1 etc.

Byte 6

A set bit activates Random on the associated ADC e.g. Bit[0] actives ADC0, Bit[1] activates ADC1 etc.

Byte 7

A set bit enables the associated DDC e.g. Bit[0] actives DDC 0, Bit[1] activates DDC 1 etc.

Bytes 8 to 16

A set bit enables DDCs 8 through 79.

Byte 17

Selects the ADC that DDC 0 is connected to where 0 connects to ADC0, 1 to ADC1 etc. For PureSignal use, to return the DAC data via a DDC, set the ADC selection to the number of ADCs fitted on the hardware.

Bytes 18 and 19

These two bytes from a 16 bit word that selects the sampling rate of DDC 0. Valid rates are 48/96/192/384/768/1536 ksps.

Bytes 20 & 21

For future use – to enable selection of the decimation rates of DDC 0 CIC filters.

Byte 22

Sets DDC 0 I&Q data sample size – default is 24 bits.

Bytes 23 to 496

Sets the ADC, sampling rate, CIC rates and data sample size of DDC 1 to 79 as above.

Bytes 1363 to 1442

Sets the DDC that DDC (n) is synchronised or multiplexed with. If a bit is set then DDC (n) is synchronised or multiplexed to the associated DDC. See the description of synchronous and multiplexed DDCs that follows.

Byte 1443

A set bit indicates that the DDC indicated by the set bit is multiplex with others. The DDC (s) to which it is multiplexed is indicated by set bits in the relevant Byte 1363 to 1442.

Synchronous and Multiplexed DDCs

NOTE: The sampling rate of all Synchronous or Multiplexed DDCs must be the same and is the responsibility of the PC Control program to ensure this.

DDCs that are connected to a base DDC, either Synchronised or Multiplexed, are usually disabled so they are not also sent from an Ethernet port. It is the responsibility of the PC Control program to ensure this.

The selection code will allow unsuitable or unnecessary DDC combinations e.g. DDC 0 + DDC 0 or DDC 0 + DDC 1 and DDC 1 + DDC 0. It is the responsibility of the PC Control program to prevent this.

There is no special provision for PureSignal operation. For PureSignal use, the PC Control program is responsible for setting the sampling rates, selecting DAC data as the source for one DDC and selecting either Synchronous or Multiplex operation of the RF and DAC DDC.

Synchronous DDCs: (where a number of DDCs are phase synchronous)

The maximum number of synchronised DDCs is equal to the number of ADCs.

For synchronous DDCs, if SyncDDC[n] is > 0 then DDC[n] is synchronised with another DDC(s). The bit(s) set indicate which DDC(s) are synchronised e.g. bit[0] = DDC0, bit[1] = DDC1......bit[7] = DDC7.

All DDC's frequencies will be set to the frequency of the base DDC. If SyncDDC[n] is = 0 then there are no synchronous DDCs selected.

NOTE: For the time being, due to FPGA size limitations and timing closure issues only DDC0 and DDC1 may be synchronised with synchronised data presented from DDC0's output.

Multiplexed DDCs: (where a number of DDCs are multiplexed over the one Ethernet portand may or may not be at a common frequency)

The maximum number of Multiplexed DDCs is equal to the number of DDCs.

For multiplexed DDCs if Mux(n) bit n is set then DDC(n) is multiplexed with another DDC(s). SyncDDC[n] bits [7:0] when set indicate which DDC(s) are multiplexed together e.g. bit[0] = DDC0, bit[1] = DDC1......bit[7] = DDC7.

NOTE: For the time being, due to FPGA size limitations and timing closure issues, only DDC0 and DDC1 may be multiplexed with multiplexed data presented from DDC0 's output.

TRANSMITER SPECIFIC PACKET

This sets the number of DACs and DUC parameters that change infrequently. This packet is sent following a successful Discovery command and prior to a Run command or when a parameter changes and, optionally, periodically.

The format of the packet is as follows:

	Control Elements - PC to Hardware	
Byte	DUC Specific	Notes
0	Seq #	[31:24]
1	Seq #	[23:16]
2	Seq #	[15:8]
3	Seq #	[7:0]
4	Number of DACs	Max of 4
5	Bits - Mode, CW, Reverse, Key Mode	See Below
6	Sidetone Level	
7	Sidetone Frequency (Hz)	[15:8]
8	Sidetone Frequency (Hz)	[7:0]
9	Keyer Speed	
10	Keyer Weight	
11	Hang delay	[15:8]
12	Hang delay	[7:0]
13	RF Delay	
14	DUC0 Sampling Rate	[15:8]
15	DUC0 Sampling Rate	[7:0]
16	DUC0 Bits	
1725		Reserved for future use
26	DUC0 Phase Shift (0 - 359 degrees)	[15:8] Reserved for future use
27	DUC0 Phase Shift	[7:0] Reserved for future use
2833		Reserved for future use
50	Bits - line in, mic boost, Orion mic	See Below
51	Line in gain	
5258		Reserved for future use
59	Step Attenuator ADCO on DUCO (0 - 31dB)	Reserved for future use

Destination Port

This may be set using the General packet and if zero defaults to 1026.

Sequence Number

A 4-byte integer set to 0x00000000.

Byte 4

Indicates the number of DACs the hardware supports. Presently unused.

Byte 5

If no bits are set then CW is not selected, otherwise indicates the selection of CW options as follows:

Bits - Mode, CW, Reverse, Key Mode. 0 = off, 1 = on.
[0] = EER
[1] = CW
[2] = Reverse CW Keys
[3] = lambic
[4] = Sidetone
[5] = Mode B (Mode A if not set)
[6] = Strict Character Spacing
[7] = Break_in

Byte 6

Sets the CW sidetone level, 0 = off, 255 = max

Bytes 7 & 8

Sets the CW sidetone frequency in Hz

Byte 9

Sets the CW keyer speed, 0 to 60 WPM

Byte 10

Sets the CW weight, 33 to 66, nominal is 50

Bytes 11 & 12

Sets the CW hang delay in mS

Byte 13

Sets the RF delay in mS

Bytes 14 & 15

Sets DUC0 sampling rate. For current hardware fixed at 192ksps.

Byte 16

Sets number of bits in the DUC I&Q data. For current hardware fixed at 24 bits per sample.

Bytes 17 to 49.

Reserved for future use.

Byte 50

Allows the selection of Line in or Microphone and Microphone selection for an Orion board (ANAN-200D) as follows:

- Bits line in, mic boost, Orion mic. 0 = off, 1 = on
- [0] = Line in
- [1] = Mic Boost
- [2] = 0 = Orion mic PTT enabled, 1 = Orion mic PTT disabled
- [3] = 0 = Orion mic PTT to ring and mic/mic bias to tip, 1 = Orion mic PTT to tip and mic/mic bias to ring
- [4] = 0 = disables Orion mic bias, 1 = enables Orion microphone bias

DUC SYNCHRONISATION PACKET

The DUC Synchronisation packet is used to configure synchronous DUCs.

The data is sent prior to a Run command, whenever a value changes and, optionally, periodically.

For future use.

HIGH PRIORITY DATA PACKET

A High Priority Packet is sent to the associated SDR hardware whenever data changes and may also be sent periodically. It should be sent at a higher priority than any other packet. It should be sent after a successful Discovery process after configuration is complete. The format is as follows:

	re Port (Default 1027)		
Byte	High Priority	Notes	
0	Seq #	[31:24]	
1	Seq #	[23:16]	
2	Seq #	[15:8]	
3	Seq #	[7:0]	
4	Bits - run, PTT(n)	[0] = run, [1] = PTT0[4] = PTT3	
5	CWX0	[0] = CWX, [1] = Dot, [2] = Dash	
6	CWX1	Reserved for future use	
7	CWX2	Reserved for future use	
8	CWX3	Reserved for future use	
9	Frequency/phase word DDC0	[31:24]	
10		[23:16]	
11		[15:8]	
12		[7:0]	
13	Frequency/phase word DDC1	[31:24]	
14		[23:16]	
15		[15:8]	
16		[7:0]	
17	Frequency/phase word DDC2	[31:24]	
18		[23:16]	
19		[15:8]	
20		[7:0]	
325	Frequency/phase word DDC79	[31:24]	
326		[23:16]	
327		[15:8]	
328		[7:0]	
329	Frequency/phase word DUC0	[31:24]	
330	DUC0	[23:16]	
331	DUC0	[15:8]	
332	DUC0	[7:0]	
333	Frequency/phase word DUC1	Reserved for future use	
334	DUC1	Reserved for future use	
335	DUC1	Reserved for future use	

225	I suga		
336	DUC1	Reserved for future use	
337	Frequency/phase word DUC2	Reserved for future use	
338	DUC2	Reserved for future use	
339	DUC2	Reserved for future use	
340	DUC2	Reserved for future use	
341	Frequency/phase word DUC3	Reserved for future use	
342	DUC3	Reserved for future use	
343	DUC3	Reserved for future use	
344	DUC3	Reserved for future use	
345	DUC0 Drive Level	0-255	
346	DUC1 Drive Level	Reserved for future use	
347	DUC2 Drive Level	Reserved for future use	
348	DUC3 Drive Level	Reserved for future use	
1401	Open Collector Outputs	[1] = Open Collector 1[7] = Open Collector 7	
1402	User Outputs DB9 pins 1-4	[0] = pin1[3] = pin4	
1403	Mercury Attenuator (20dB)	[0] = Mercury1[3] = Mercury4	
1404	Alex 7	Reserved for future use	
1405	Alex 7	Reserved for future use	
1406	Alex 7	Reserved for future use	
1407	Alex 7	Reserved for future use	
1408	Alex 6	Reserved for future use	
1409	Alex6	Reserved for future use	
1410	Alex6	Reserved for future use	
1411	Alex 6	Reserved for future use	
1412	Alex5	Reserved for future use	
1413	Alex5	Reserved for future use	
1414	Alex5	Reserved for future use	
1415	Alex 5	Reserved for future use	
1416	Alex 4	Reserved for future use	
1417	Alex 4	Reserved for future use	
1418	Alex 4	Reserved for future use	
1419	Alex 4	Reserved for future use	
1420	Alex 3	Reserved for future use	
1421	Alex 3	Reserved for future use	
1422	Alex 3	Reserved for future use	
1423	Alex 3	Reserved for future use	
1424	Alex 2	Reserved for future use	
1425	Alex 2	Reserved for future use	
1426	Alex 2	Reserved for future use	
1427	Alex 2	Reserved for future use	
1428	Alex 1	Reserved for future use	
	<u> </u>		

1429	Alex 1	Reserved for future use
1430	Alex 1	Reserved for future use
1431	Alex 1	Reserved for future use
1432	Alex 0	[31:24]
1433	Alex 0	[23:16]
1434	Alex 0	[15:8]
1435	Alex 0	[7:0]
1436	Step Attenuator 7 (0 - 31dB)	Reserved for future use
1437	Step Attenuator 6 (0 - 31dB)	Reserved for future use
1438	Step Attenuator 5 (0 - 31dB)	Reserved for future use
1439	Step Attenuator 4 (0 - 31dB)	Reserved for future use
1440	Step Attenuator 3 (0 - 31dB)	Reserved for future use
1441	Step Attenuator 2 (0 - 31dB)	Reserved for future use
1442	Step Attenuator 1 (0 - 31dB)	
1443	Step Attenuator 0 (0 - 31dB)	

Destination Address

This will be the Ethernet address assigned to the hardware.

Destination Port

This may be set using the General packet and if zero defaults to 1027.

Sequence Number

A 4-byte integer set to 0x00000000.

Byte 4

Bit [0] when set enables the associated SDR hardware and when clear disables. Bit [1] enables transmit of the associated SDR hardware. Bits [2] to [7] are reserved for future use.

Byte 5

Bit[0] when set selects CW mode from the Host (e.g. a CW keyboard) with bit[1] and[2] being dot and dash respectively. A set bit will send a dot or dash at the speed selected by the DUC Specific packet.

Bytes 9 to 12

These bytes represent a 32bit word that is used to set the frequency of DDC0 in Hz.

Bytes 13 to 16

These bytes represent a 32bit word that is used to set the frequency of DDC1 in Hz.

Bytes 17 to 328

These bytes represent a 32bit word that is used to set the frequency of DDC2 to DDC79.

Bytes 329 to 332

These bytes represent a 32bit word that is used to set the frequency of DUC0 in Hz.

Byte 345

This byte sets the power out from DUCO. 0 represents 0 power out and 255 maximum.

Byte 1417

A set bit enables the associated open collector output. [0] = OC0, [1] = OC2.....[6] = OC6.

Byte 1418

A set bit enables the associated Atlas Metis board User Outputs DB9 connector pins 1-4. [0] = pin1....[3] = pin4

Byte 1419

A set bit enables the 20dB attenuate on the associated Atlas Mercury board. [0] = Mercury1....[3] = Mercury4.

Bytes 1432 to 1435

These bytes form a 32bit word that selects the various functions on the (Alex) High and Low pass filters, preamplifier and antenna switching. See Appendix D for the mapping of bits to functions.

Byte 1442

Selects the attenuation applied to the 0-31dB attenuator before ADC1 (Angelia, Orion, ANAN-100D, ANAN-200D only).

Byte 1443

Selects the attenuation applied to the 0-31dB attenuator before ADCO (not Mercury boards).

DDC AUDIO PACKET

The DDC Audio packet contains left and right audio to be presented to the hardware audio DAC.

It is sent whenever 360 Left and Right audio samples are available. Data defaults to 16 bits per sample at 48ksps.

	DDC Audio Data (default port 1028)	
Byte	Data	Notes
0	Seq #	[31:24]
1	Seq #	[23:16]
2	Seq #	[15:8]
3	Seq #	[7:0]
4	Left Audio Sample 0	[15:8]
5	Left Audio Sample 0	[7:0]
6	Right Audio Sample 0	[15:8]
7	Right Audio Sample 0	[7:0]
8	Left Audio Sample 1	[15:8]
9	Left Audio Sample 1	[7:0]
10	Right Audio Sample 1	[15:8]
11	Right Audio Sample 1	[7:0]
1440	Left Audio Sample 358	[15:8]
1441	Left Audio Sample 358	[7:0]
1442	Right Audio Sample 359	[15:8]
1443	Right Audio Sample 359	[7:0]

Destination Port

This may be set using the General packet and if zero defaults to 1028.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the hardware can determine if a decoder is missing samples in its stream. The sequence number is set to zero at program start or whenever a stop command is sent.

Bytes 4 to 144

A sequence of 360 2-byte signed integer 2's Complement values representing demodulated samples for the audio DAC on the hardware. These are sequential in time from the first to last sample.

DUC I&Q DATA PACKET

The I & Q data packet contains data to be presented to the hardware DUC(n). It is sent whenever 240 I&Q samples are available. Default samples are 24 bits at 192ksps.

	DUC I&Q Data (default port 1029)	
Byte	Data	Notes
0	Seq #	[31:24]
1	Seq #	[23:16]
2	Seq #	[15:8]
3	Seq #	[7:0]
4	I Sample 0	[23:16]
5	I Sample 0	[15:8]
6	I Sample 0	[7:0]
7	Q Sample 0	[23:16]
8	Q Sample 0	[15:8]
9	Q Sample 0	[7:0]
10	I Sample 1 (or Envelope data)	[23:16]
11	I Sample 1 (or Envelope data)	[15:8]
12	I Sample 1 (or Envelope data)	[7:0]
13	Q Sample 1 (or Envelope data)	[23:16]
14	Q Sample 1 (or Envelope data)	[15:8]
15	Q Sample 1 (or Envelope data)	[7:0]
1441	Q Sample 239	[23:16]
1442	Q Sample 239	[15:8]
1443	Q Sample 239	[7:0]

Destination Port

This may be set using the General packet and if zero defaults to 1029 for DACO. It is automatically incremented by one for each subsequent DAC.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the hardware can determine if a decoder is missing samples in its stream. The sequence number is set to zero at program start or whenever a stop command is sent.

I/Q Sample

A sequence of 240 3-byte signed integer 2's Complement I & Q values representing samples for the DUC on the SDR hardware. These are sequential in time from the first to last sample.

NOTE: When Envelope Tracking (ET) or Envelope Elimination & Restoration (EER) mode is selected then alternative I&Q pairs are for DUC and Envelope use respectively.

MEMORY MAPPED REGISTERS FROM PC

The memory mapped registers from PC packet contains address and data to be sent to the hardware. The format is as follows:

	Memory Mapped - PC to hardware (default port xxxx)			
Byte	Memory Mapped	Notes		
0	Seq#	[31:24]		
1	Seq#	[23:16]		
2	Seq#	[15:8]		
3	Seq #	[7:0]		
4	Address0	[15:8]		
5	Address0	[7:0]		
6	Data0	[31:24]		
7	Data0	[23:16]		
8	Data0	[15:8]		
9	Data0	[7:0]		
10	Address1	[15:8]		
11	Address1	[7:0]		
12	Data1	[31:24]		
13	Data1	[23:16]		
14	Data1	[15:8]		
15	Data1	[7:0]		
16	Address2	[15:8]		
17	Address2	[7:0]		
18	Data2	[31:24]		
19	Data2	[23:16]		
20	Data2	[15:8]		
21	Data2	[7:0]		
22	Address3	[15:8]		
23	Address3	[7:0]		
24	Data3	[31:24]		
25	Data3	[23:16]		
26	Data3	[15:8]		
27	Data3	[7:0]		
1438	Address239	[15:8]		
1439	Address239	[7:0]		
1440	Data239	[31:24]		
1441	Data239	[23:16]		
1442	Data239	[15:8]		
1443	Data239	[7:0]		

Destination Port

This may be set using the General packet and if zero defaults to xxxx.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the hardware can determine if a decoder is missing samples in its stream. The sequence number is set to zero at program start or whenever a stop command is sent.

Bytes 4 & 5 (en sequence)

These form the 16 bit address the 32 bit data in the next 4 bytes will be sent to.

Bytes 6 to 9 (en sequence)

This form a 32 bit data word that will be sent to the address specified by the address bytes.

openHPSDR Hardware to Host Protocol

The hardware will communicate with the Host using standard UDP protocol. Byte order shall be MSB first (little Endian) and all values are interpreted as unsigned integers unless otherwise noted.

IP and UDP headers are as per UDP/IP standards.

Key:

IP Header (24 bytes)
UDP Header (8 bytes)
UDP Data (variable bytes)

Bits Bytes	0-7	8-15	16-23	24-31	32- 39	40-47	48-55	56-63
0	Version/IH L	Type of Service	Total l	ength.	Identif	ication	Flags/Fra Offs	
8	TTL	Protocol	Header Checksum Source IP Address		Source IP Address			
16	Destination IP Address		IP Options Pad			Pad		
24	Source Port Destination Port			UDP L	ength.	UDP Che	ecksum	
32	UDP Data							
1443								

Future diagrams will only show the UDP Data with a starting byte reference of zero.

DISCOVERY REPLY PACKET

A Discovery Reply Packet is sent in response to a Host broadcasting a Discovery packet. The Host sends a discovery packet in order to determine what hardware is present on the network and how it is configured.

In order to allow for SDR hardware to provide complete details of all features available two reply formats are provided.

- 1. Where prior knowledge of the hardware is known by the Host software, and
- 2. Where the full description of the configuration of the hardware and its capabilities are provided in the response to the Discovery packet.

The data format for option 1 is shown below.

	Response to Discovery - Hardware to Host (from port 1024)		
Byte	To IP address and Port of Host PC	Notes	
0	Seq # = 0	[31:24]	
1	Seq # = 0	[23:16]	
2	Seq # = 0	[15:8]	
3	Seq # = 0	[7:0]	
4	0x02 (or 0x03)	Response to Discovery	
5	Board MAC	MSB	
6	Board MAC		
7	Board MAC		
8	Board MAC		
9	Board MAC		
10	Board MAC	LSB	
11	Board Type	See Below	
12	openHPSDR Protocol version supported		
13	Firmware Code Version		
14	Mercury 0 Code Version		
15	Mercury 1 Code Version		
16	Mercury 2 Code Version		
17	Mercury 3 Code Version		
18	Penny Code Version		
19	Metis Code Version		
20	Number of DDCs implemented		
21	Frequency or phase word	0 = frequency 1 = phase	
22			
23			
24			
25			
59			

Source Port

This will be set to 1024.

Destination Port

This will be set to the Source Port of the Host that initiated the Command.

Sequence Number

A 4-byte integer set to 0x00000000.

Byte 4

Normally 0x02 but if the hardware is running and already connected to a different Host it will be 0x03. If byte 4 is 0xFE (0XFF if running) then subsequent bytes contain the hardware configuration of the SDR. Appendix A describes the format of the hardware configuration.

NOTE: If the reply indicates that the hardware is already connected to a different host then it is recommended that the PC code advise the user that hardware is available but in use. If the user chooses to ignore this message, and proceeds to send appropriate C&C commands, then the hardware will disconnect from the existing connection and connect to the PC sending the C&C commands.

MAC

This is 6 bytes and holds the MAC address of the hardware that is responding to the Command request

Board Type

A byte interpreted as follows:

0: board = "ATLAS"
1: board = "HERMES" (ANAN-10,100)
2: board = "HERMES" (ANAN-10E, 100B)
3: board = "ANGELA" (ANAN-100D)
4: board = "ORION" (ANAN-200D)
5: Reserved
6: board = "Hermes Lite"
7: Reserved
8: Reserved
9: Reserved
254: XML hardware description follows
255: Full hardware description follows

Hardware descriptions for Board types less than 254 are documented in Appendix A. For a Board type of 254 a full hardware description is returned in XML format, see Appendix B. For a Board type of 255 a full hardware description is returned, see Appendix C.

Byte 12 - Code Version

A byte that indicates the version of this protocol that the board(s) implement. The Host interprets this as a decimal number e.g. 104 would be interpreted as version 10.4

Byte 13 - Code Version

For non-Atlas based systems, a byte that indicates the version of code loaded into the associated board. The Host interprets this as a decimal number e.g. 104 would be interpreted as version 10.4.

Bytes 14 to 19

Where an Atlas based system is identified, bytes 13 to 18 contain the code versions loaded into the respective boards. The Host interprets this as a decimal number e.g. 104 would be interpreted as version 10.4. A version number of zero indicates a board is not present.

Byte 20

This holds the number of independent DDCs that are implemented in the hardware.

Byte 21

This indicates if the hardware requires frequencies to be send as a frequency (Hz) or a phase word. A phase word is calculated as follows:

phase_word[31:0] = 2^32 * frequency(Hz)/DSP clock frequency (Hz)

COMMAND REPLY PACKET

A Command reply packet is returned to the Host making the Command request. The format of the reply is the same as a Discovery reply, up to and including byte 18, except that byte 4 (and for Program the sequence number) is different.

The reply is returned in response to the following:

Erase. Following an EEPROM erase command the hardware will respond with a reply packet that indicates the command has been received <u>and</u>, after the erase is complete – which may take 10's of seconds, that the erase has been successful. Byte 4 will be set to 0x03.

Program. Following a Program command the hardware will respond with a reply packet that indicates that the next 256 bytes of data should be sent by the Host. Byte 4 will be set to 0x04 and the sequence number will be set to the last sequence number received from the Host.

During programming the Host should check the received sequence number in order to verify that a programming packet has been received and in the correct sequence. An incorrect sequence number should be used by the Host to initiate a new Erase and Program cycle.

Set IP. Following a successful Set IP command the hardware will respond with a Discovery reply packet.

HIGH PRIORITY STATUS PACKET

The High Priority Status packet contains data that indicates the status of the transceiver subsystems. This data is sent when the data changes and, optionally, periodically.

Any change of Status data will be sent as a priority and has precedence over any other packet.

Since actual status changes will be hardware specific the format will vary between different SDR hardware.

The packet format is as follows:

	Control Elements - Hardware to PC (default port 1025)		
Byte	High Priority	Notes	
0	Seq#	[31:24]	
1	Seq #	[23:16]	
2	Seq #	[15:8]	
3	Seq #	[7:0]	
4	Bits - PTT, Dot, Dash	[0] = PTT, [1] = Dot, [2] = Dash, [4] PLL locked, [5] FIFO almost empty , [6] FIFO almost full	
5	Bits - ADC Overload	[0] = ADC0[7] = ADC7	
6	Exciter Power 0	[15:8]	
7	Exciter Power 0	[7:0]	
8	Exciter Power 1	[15:8] Reserved for future use	
9	Exciter Power 1	[7:0] Reserved for future use	
10	Exciter Power 2	[15:8] Reserved for future use	
11	Exciter Power 2	[7:0] Reserved for future use	
12	Exciter Power 3	[15:8] Reserved for future use	
13	Exciter Power 3	[7:0] Reserved for future use	
14	Forward Power - Alex 0	[15:8] (Set to zero if Alex not selected)	
15	Forward Power - Alex 0	[7:0] (Set to zero if Alex not selected)	
16	Forward Power - Alex 1	[15:8] Reserved for future use	
17	Forward Power - Alex 1	[7:0] Reserved for future use	
18	Forward Power - Alex 2	[15:8] Reserved for future use	
19	Forward Power - Alex 2	[7:0] Reserved for future use	
20	Forward Power - Alex 3	[15:8] Reserved for future use	
21	Forward Power - Alex 3	[7:0] Reserved for future use	
22	Reverse Power - Alex 0	[15:8] (Set to zero if Alex not selected)	
23	Reverse Power - Alex 0	[7:0] (Set to zero if Alex not selected)	
24	Reverse Power - Alex 1	[15:8] Reserved for future use	
25	Reverse Power - Alex 1	[7:0] Reserved for future use	
26	Reverse Power - Alex 2	[15:8] Reserved for future use	
27	Reverse Power - Alex 2	[7:0] Reserved for future use	
28	Reverse Power - Alex 3	[15:8] Reserved for future use	
29	Reverse Power - Alex 3	[7:0] Reserved for future use	

30	0	Presently unused
48	0	Presently unused
49	Supply Volts	[15:8]
50	Supply Volts	[7:0]
51	User ADC3	[15:8]
52	User ADC3	[7:0]
53	User ADC2	[15:8]
54	User ADC2	[7:0]
55	User ADC1	[15:8]
56	User ADC1	[7:0]
57	User ADC0	[15:8]
58	User ADC0	[7:0]
59	Bits - User logic inputs	[0] = IO0[7] = IO7

Source Port

This may be set using the General packet and if zero defaults to 1025.

Destination Port

This will be set to the Source Port of the Host that initiated the Discovery Packet.

Sequence Number

A 4-byte integer set to 0x00000000. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF. Each port decoder keeps a separate sequence count such that the Host can determine if a decoder is missing samples in its stream. The sequence number is set to zero at power on or whenever a stop command is received.

Byte 4

Bits [0] to [2] indicate the status of an attached PTT button or CW key. A bit is set when the input is active. Bit [4] set indicates that the PLL that locks the master VCXO to the 10MHz internal or external reference is locked. Bit[5] set indicates that the DUC I&Q FIFO is almost empty (<= 511 samples), bit[6] set indicates that the FIFO is almost full (>= 3,840 samples).

Byte 5

Bits [0] to [7] are set if the associated ADC[n] overload bit is set.

Bvtes 6 & 7

These form a 16 bit word that represents the forward power from the exciter (or Penelope or Penny Lane boards). The conversion to power is described in Appendix A.

Bytes 14 & 15

These form a 16 bit word that represents the forward power from the exciter Power Amplifier. The conversion to power is described in Appendix A.

Bytes 22 & 23

These form a 16 bit word that represents the reverse power from the exciter Power Amplifier. The conversion to power is described in Appendix A.

Bytes 49 & 50

These form a 16 bit word that represents the supply voltage applied to the hardware (not Atlas bus systems). The conversion to Volts is described in Appendix A.

Bytes 51 to 58

These form 16 bit words that represent the general purpose analogue voltage inputs to the hardware. These are presently undefined since they are user specific.

Byte 59

Bits [0] to [7] are set if the associated general purpose digital input is set. These are presently undefined since they are user specific.

MICROPHONE DATA PACKET

The microphone data packet contains 720 samples from the microphone or line-in inputs on the hardware.

The sample rate is 48ksps and packet format is as follows:

	Microphone Data (default port 1026)	
Byte	Data	Notes
0	Seq#	[31:24]
1	Seq#	[23:16]
2	Seq#	[15:8]
3	Seq#	[7:0]
4	Mic Sample 0	[15:8]
5	Mic Sample 0	[7:0]
6	Mic Sample 1	[15:8]
7	Mic Sample 1	[7:0]
8	Mic Sample 2	[15:8]
9	Mic Sample 2	[7:0]
10	Mic Sample 3	[15:8]
11	Mic Sample 4	[7:0]
1440	Mic Sample 718	[15:8]
1441	Mic Sample 718	[7:0]
1442	Mic Sample 719	[15:8]
1443	Mic Sample 719	[7:0]

Source Port

This may be set using the General packet and if zero defaults to 1026.

Destination Port

This will be set to the Source Port of the Host that initiated the Discovery Packet.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFFF.

Each port decoder keeps a separate sequence count such that the Host can determine if a decoder is missing samples in its stream. The sequence number is set to zero at power on or whenever a stop command is received.

Mic Sample

A sequence of 720 2-byte signed integer 2's Complement values representing samples from the microphone or line-in on the hardware. These are sequential in time from the first to last sample.

WIDEBAND DATA PACKET

The Wideband data packet contains raw samples from the ADCs selected by the user. The number of bits per sample, number of samples per packet and update rate specified in the General to Hardware settings will be sent when the Wideband enable bit for the associated ADC is set. The Wideband data is intended to be used to display very wide spectral and waterfall displays. Whilst data within a packet, and number of packets set in the General Packet, is time sequential otherwise the data is presented on a block basis so may not be used for real-time demodulation purposes.

The following assumes 512 by 16 bit samples per packet.

	Wideband Data (default port 1027)	
Byte	Data	Notes
0	Seq#	[31:24]
1	Seq#	[23:16]
2	Seq#	[15:8]
3	Seq#	[7:0]
4	Wideband Sample 0	[15:8]
5	Wideband Sample 0	[7:0]
6	Wideband Sample 1	[15:8]
7	Wideband Sample 1	[7:0]
8	Wideband Sample 2	[15:8]
9	Wideband Sample 2	[7:0]
10	Wideband Sample 3	[15:8]
11	Wideband Sample 3	[7:0]
1024	Wideband Sample 510	[15:8]
1025	Wideband Sample 510	[7:0]
1026	Wideband Sample 511	[15:8]
1027	Wideband Sample 511	[7:0]

Source Port

This may be set using the General packet and if zero defaults to 1027 for ADCO. The source port is automatically incremented by one for each subsequent Wideband data source.

Destination Port

This will be set to the Source Port of the Host that initiated the Discovery Packet.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the Host can determine if a decoder is missing samples in its stream. The sequence number is set to zero at power on or whenever a block of raw samples has been sent or whenever a stop command is received.

ADC Sample

A sequence of 2-byte signed integer values (default is 512) representing raw samples from the selected ADC on the hardware. These are sequential in time from the first to last sample. Following a request to send wideband data, the sequence number will be set to zero and incremented in each sequential packet until the number of samples set in the General packet has been sent. The sequence number is reset to zero for the next packet or when a stop command is received.

DDC PACKET

I & Q data from a DDC connected to an ADC will be sent from a UDP port with bits per sample specified by the General settings. I & Q data from either a single DDC or multiple synchronous or multiplexed DDCs can be presented.

The following assumes one DDC using 24 bits per sample.

	DDC I&Q Data (DDC0 default port 1035)	
Byte	Data	Notes
0	Seq#	[31:24]
1	Seq#	[23:16]
2	Seq#	[15:8]
3	Seq#	[7:0]
4	Time Stamp	[63:56]
5	Time Stamp	[55:48]
6	Time Stamp	[47:40]
7	Time Stamp	[39:32]
8	Time Stamp	[31:24]
9	Time Stamp	[23:16]
10	Time Stamp	[15:8]
11	Time Stamp	[7:0]
12	Bits per sample	[15:8]
13	Bits per sample	[7:0]
14	I&Q Samples per frame	[15:8]
15	I&Q Samples per frame	[7:0]
16	I Sample 0	[23:16]
17	I Sample 0	[15:8]
18	I Sample 0	[7:0]
19	Q Sample 0	[23:16]
20	Q Sample 0	[15:8]
21	Q Sample 0	[7:0]
22	I Sample 1	[23:16]
23	I Sample 1	[15:8]
24	I Sample 1	[7:0]
25	Q Sample 1	[23:16]
26	Q Sample 1	[15:8]
27	Q Sample 1	[7:0]
1441	Q Sample 238	[23:16]
1442	Q Sample 238	[15:8]
1443	Q Sample 238	[7:0]

Source Port

The DDC port will be as allocated by the General Packet and if zero defaults to 1035 for DDC 0. Each additional DDC will be allocated the next sequential port number e.g. DDC 1 will originate from port 1036.

Destination Port

This will be set to the Source Port of the Host that initiated the Discovery Command

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the Host can determine if a decoder is missing samples in its stream. The sequence number is set to zero at power on or whenever a stop command is received.

Time stamp

This is a 64 bit unsigned integer that is incremented at the sample rate of the ADC from which the data is being generated and is set to zero at the 0 to 1 transition of the 1 PPS from a GPS DDC. This complies with the 'Fractional -Seconds Timestamp - The Sample Count Timestamp' of the VITA-49 specification section 6.1.5.1.

Bits per sample

A two byte unsigned integer that indicates the number of bits per sample. Current hardware FPGA code supports 24 bits per sample.

I&Q Samples per frame

A two byte unsigned integer that indicates the number of samples that follow. The number of samples will not exceed the maximum length of the data payload for a UDP packet and will contain an integer number of I&Q samples. Where synchronous or multiplexed DDC data is presented then the UPD packet will contain an integer number of samples e.g. for two synchronous DDCs [(I0, Q0), (I1, Q1)] x 164.

The data diagram above illustrates the case for one DDC. Should a greater number of synchronous or multiplexed DDCs be used the above data format will be modified accordingly. The number of samples per UDP frame will depend on the width of each I & Q sample i.e. 8, 16, 24, or 32 bits.

DDC I/Q Samples

This is a sequence of signed integer 2's Complement values representing one I or one Q sample from the DDC hardware. These are sequential in time from the first to last sample.

For synchronous or multiplexed DDCs the sample rate of each DDC will be the same and specified by the register settings set using the DDC Specific packet.

NOTE: The sequence of the DDC I&Q samples is represented as 'I' samples followed by 'Q' samples. There does not appear to be an exact definition as to what constitutes an I or Q sample. In which case when processed by an FFT to resulting spectrum may appear reversed. In which case the I&Q samples should be reversed. However, if samples are considered to be reversed the sequence in which the samples are received will be invariant.

MEMORY MAPPED REGISTERS FROM HARDWARE

The memory mapped registers from PC packet contains address and data to be sent to the PC. The data should be sent whenever data changes and optionally periodically. The format is as follows:

	Memory Mapped - Hardware to PC (default port xxxx)			
Byte	Memory Mapped	Notes		
0	Seq#	[31:24]		
1	Seq#	[23:16]		
2	Seq#	[15:8]		
3	Seq#	[7:0]		
4	Address0	[15:8]		
5	Address0	[7:0]		
6	Data0	[31:24]		
7	Data0	[23:16]		
8	Data0	[15:8]		
9	Data0	[7:0]		
10	Address1	[15:8]		
11	Address1	[7:0]		
12	Data1	[31:24]		
13	Data1	[23:16]		
14	Data1	[15:8]		
15	Data1	[7:0]		
16	Address2	[15:8]		
17	Address2	[7:0]		
18	Data2	[31:24]		
19	Data2	[23:16]		
20	Data2	[15:8]		
21	Data2	[7:0]		
22	Address3	[15:8]		
23	Address3	[7:0]		
24	Data3	[31:24]		
25	Data3	[23:16]		
26	Data3	[15:8]		
27	Data3	[7:0]		
1438	Address239	[15:8]		
1439	Address239	[7:0]		
1440	Data239	[31:24]		
1441	Data239	[23:16]		
1442	Data239	[15:8]		
1443	Data239	[7:0]		

Destination Port

This may be set using the General packet and if zero defaults to xxxx.

Sequence Number

A 4-byte unsigned integer representing a sequence of packets from this port. The sequence starts at 0x00000000 and rolls over after exceeding 0xFFFFFFF.

Each port decoder keeps a separate sequence count such that the hardware can determine if a decoder is missing samples in its stream. The sequence number is set to zero at program start or whenever a stop command is sent.

Bytes 4 & 5 (en sequence)

These form the 16 bit address the 32 bit data in the next 4 bytes will be sent from.

Bytes 6 to 9 (en sequence)

This form a 32 bit data word that is the data contained at the address specified by the address bytes.

Figure 1 UDP Data from Host

* Default Port

Figure 3 DDC Architecture

Figure 4 DUC Architecture

* Default Port

Appendix A – Hardware capabilities – openHPSDR boards

Board 0 = Atlas Based Systems

To be written

Board 1 = Hermes (ANAN-10, 100)

Hardware Capabilities				
Host update of firmware supported	Yes			
Setting of UDP/IP ports supported	Yes			
Setting IP address supported	Yes			
Memory mapped registers supported	No			
Alex protocol receive filters supported	Yes			
Alex protocol transmit filters supported	Yes			
VITA-49 protocol supported	No			
DSP clock frequency (Hz)	122.88MHz			
Number of RF ADCs	1			
Dither supported	Yes			
Random supported	Yes			
Number of DDCs supported	ТВА			
DDC Frequency or Phase Word	Phase			
Receive attenuator supported	Yes			
Wideband data supported	Yes			
Wideband samples per Ethernet packet	512			
Wideband bits per sample fixed or variable	Fixed			

Wideband bits per sample fixed value	16
Wideband update rate fixed or variable	Variable
Wideband update rate fixed (mS)	
Wideband packets per frame fixed or variable	Variable
Wideband packets per frame fixed	
Individual DDC sample rates supported	Yes
Minimum DDC sampling rate (ksps)	48
Maximum DDC sampling rate (ksps)	1,536
CIC decimation values settable	No
Synchronous DDCs supported	No
Multiplexed DDCs supported	Yes (for PureSignal)
DDC Audio CODEC supported	Yes, stereo
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	360 Left, 360 Right
Time stamping of I&Q data supported	No
Number of DUCs supported	1
DUC Audio CODEC supported	Yes
Microphone supported	Yes

Line in supported	Yes
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	720
DUC Frequency or phase word required	Phase
DUC I&Q sample rate (ksps)	192
Bits per I/Q sample	24
I&Q samples per Ethernet packet (24bits per sample)	238 I samples, 238 Q samples
Envelope Tracking supported	No
CW Sidetone supported	Yes
CW from the Host supported	Yes
CW lambic Keyer supported	Yes
CW break-in supported	Yes
Hang supported (mS)	Yes, 1 to 1000
RF Delay supported (mS)	Yes, 1 to 255
DUC Phase shift supported	No
Receive attenuator on DUC supported	Yes
Open collector outputs supported	7
DDC Calibration	-138dBm (see Note)

Number of General Purpose ADCs	6
Calibration constant for Supply Voltage. V = ADC value /4095 * constant	constant = 3.3
Calibration constant for Exciter, FWD & REV power W = (ADC value/4095 * constant1) ² / constant2 Sale Exciter to 0 to 1000mW Scale ANAN-10 FWD & REV 0 to 20W Scale ANAN-100 FWD & REV 0 – 150W	Constant1 = 3.3 Constant2 = 0.09 (ANAN-10) Constant2 = 0.095 (ANAN-100)

NOTE: DDC calibration. Calibration level is with a 50 ohm load connected to the antenna input, the DDC set to 20m, 500 Hz bandwidth and is the averaged value of the magnitude of the I&Q samples at the output of the filter i.e. DDC noise floor.

Hardware Capabilities	
Host update of firmware supported	No, use Bootloader mode
Setting of UDP/IP ports supported	No, use Bootloader mode
Setting IP address supported	No, use Bootloader mode
Memory mapped registers supported	No
Alex protocol receive filters supported	No
Alex protocol transmit filters supported	Yes (only used on DUC output)
VITA-49 protocol supported	No
DSP clock frequency (Hz)	122,880,000
Number of ADCs	1
Dither supported	Yes
Random supported	Yes
Number of DDCs supported	2
DDC Frequency or Phase Word	Phase
Receive attenuator supported	Yes, 0 to 31dB only, no Alex attenuators.
Wideband data supported	Yes
Wideband samples per Ethernet packet	512
Wideband bits per sample fixed or variable	Fixed

Wideband bits per sample fixed value	16
Wideband update rate fixed or variable	Fixed
Wideband update rate fixed (mS)	100
Wideband packets per frame fixed or variable	Fixed
Wideband packets per frame fixed	4
Individual DDC sample rates supported	Yes
Minimum DDC sampling rate (ksps)	48
Maximum V sampling rate (ksps)	1,536
CIC decimation values settable	No
Synchronous DDCs supported	No
Multiplexed DDCs supported	Yes (for PureSignal)
DDC Audio CODEC supported	Yes, stereo
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	360 left, 360 Right
Time stamping of I&Q data supported	No
Number of DUCs supported	1
DUC Audio CODEC supported	Yes
Microphone supported	Yes

Line in supported	Yes
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	720
DUC Frequency or phase word required	Phase
DUC I&Q sample rate (ksps)	192
Bits per I/Q sample	24
DUC I&Q samples per Ethernet packet	240 I, 240 Q
Envelope Tracking supported	No
CW Sidetone supported	Yes
CW from the Host supported	Yes
CW lambic Keyer supported	Yes
CW break-in supported	Yes
Hang supported (mS)	Yes, 1 to 1000
RF Delay supported (mS)	Yes, 1 to 255
DUC Phase shift supported	No
Receive attenuator on DUC supported	Yes
Open collector outputs supported	7
DDC Calibration	-138dBm (see Note)

Number of General Purpose ADCs	6
Calibration constant for Supply Voltage. V = ADC value /4095 * constant	constant = 3.3
Calibration constant for Exciter, FWD & REV power W = (ADC value/4095 * constant1) ² / constant2 Sale Exciter to 0 to 1000mW Scale ANAN-10E FWD & REV 0 to 20W	Constant1 = 3.3 Constant2 = 0.09

NOTE: DDC calibration. Calibration level is with a 50 ohm load connected to the antenna input, the DDC set to 20m, 500 Hz bandwidth and is the averaged value of the magnitude of the I&Q samples at the output of the filter i.e. DDC noise floor.

Hardware Capabilities	
Host update of firmware supported	Yes
Setting of UDP/IP ports supported	Yes
Setting IP address supported	Yes
Memory mapped registers supported	No
Alex protocol receive filters supported	Yes
Alex protocol transmit filters supported	Yes
VITA-49 protocol supported	No
DSP clock frequency (Hz)	122,880,000
Number of ADCs	2
Dither supported	Yes
Random supported	Yes
Number of DDCs supported	7
DDC Frequency or Phase Word	Phase
Receive attenuator supported	Yes
Wideband data supported	Yes
Wideband samples per Ethernet packet	512
Wideband bits per sample fixed or variable	Fixed

Wideband bits per sample fixed value	16
Wideband update rate fixed or variable	Variable
Wideband update rate fixed (mS)	
Wideband packets per frame fixed or variable	Variable
Wideband packets per frame fixed	
Individual DDCs sample rates supported	Yes
Minimum DDC sampling rate (ksps)	48
Maximum DDC sampling rate (ksps)	1,536
DDC I & Q samples per Ethernet packet (24 bits)	328 I, 328 Q
CIC decimation values settable	No
Synchronous DDCs supported	Yes
Multiplexed DDCs supported	Yes
DDC Audio CODEC supported	Yes, stereo
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	360 Left, 360 Right
Time stamping of I&Q data supported	No
Number of DUCs supported	1
DUC Audio CODEC supported	Yes

Microphone supported	Yes
Line in supported	Yes
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	720
DUC Frequency or phase word required	Phase
DUC I&Q sample rate (ksps)	192
Bits per I/Q sample	24
I&Q samples per Ethernet packet (24 bit samples)	238 I, 238 Q
Envelope Tracking supported	No
CW Sidetone supported	Yes
CW from the Host supported	Yes
CW lambic Keyer supported	Yes
CW break-in supported	Yes
Hang supported (mS)	Yes, 1 - 1000
RF Delay supported (mS)	Yes, 1 - 255
DUC Phase shift supported	No
Receive attenuator on DUC supported	Yes

Open collector outputs supported	7
DDC Calibration	-138dBm (see Note)
Number of General Purpose ADCs	6
Calibration constant for Supply Voltage. V = ADC value /4095 * constant	constant = 3.3
Calibration constant for Exciter, FWD & REV power W = (ADC value/4095 * constant1) ² / constant2 Sale Exciter to 0 to 1000mW Scale ANAN-100D FWD & REV 0 – 150W	Constant1 = 3.3 Constant2 = 0.095

NOTE: DDC calibration. Calibration level is with a 50 ohm load connected to the antenna input, the DDC set to 20m, 500 Hz bandwidth and is the averaged value of the magnitude of the I&Q samples at the output of the filter i.e. DDC noise floor.

Hardware Capabilities	
Host update of firmware supported	Yes
Setting of UDP/IP ports supported	Yes
Setting IP address supported	Yes
Memory mapped registers supported	No
Alex protocol receive filters supported	Yes
Alex protocol transmit filters supported	Yes
VITA-49 protocol supported	No
DSP clock frequency (Hz)	122,880,000
Number of ADCs	2
Dither supported	Yes
Random supported	Yes
Number of DDCs supported	ТВА
DDC Frequency or Phase Word	Phase
DDC attenuator supported	Yes
Wideband data supported	Yes
Wideband samples per Ethernet packet	512
Wideband bits per sample fixed or variable	Fixed

Wideband bits per sample fixed value	16
Wideband update rate fixed or variable	Variable
Wideband update rate fixed (mS)	
Wideband packets per frame fixed or variable	Variable
Wideband packets per frame fixed	
Individual DDC sample rates supported	Yes
Minimum DDC sampling rate (ksps)	48
Maximum DDC sampling rate (ksps)	1,536
DDC I & Q samples per packet	
Synchronous DDCs supported	Yes
Multiplexed DDCs supported	Yes
DDC Audio CODEC supported	Yes, stereo
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	360 left, 360 right
Time stamping of I&Q data supported	No
Number of DUCs supported	1
DUC Audio CODEC supported	Yes
Microphone supported	Yes

Line in supported	Yes
Audio CODEC sample rate (ksps)	48
Audio CODEC bits per sample	16
Audio samples per Ethernet packet	720
DUC Frequency or phase word required	Phase
DUC I&Q sample rate (ksps)	192
Bits per I/Q sample	24
Transmit I&Q samples per Ethernet packet	240 I, 240 Q
Envelope Tracking supported	No
CW Sidetone supported	Yes
CW from the Host supported	Yes
CW lambic Keyer supported	Yes
CW break-in supported	Yes
Hang supported (mS)	Yes, 1 - 1000
RF Delay supported (mS)	Yes, 1 - 255
DUC Phase shift supported	No
Receive attenuator on DUC supported	Yes
Open collector outputs supported	7
DDC Calibration	-138dBm (See Note)

Number of General Purpose ADCs	6
Calibration constant for Supply Voltage. V = ADC value /4095 * constant	constant = 5.0
Calibration constant for Exciter, FWD & REV power W = (ADC value/4095 * constant1) ² / constant2 Sale Exciter to 0 to 1000mW Scale ANAN-100 FWD & REV 0 – 150W	Constant1 = 5.0 Constant2 = 0.108

NOTE: DDC calibration. Calibration level is with a 50 ohm load connected to the antenna input, the DDC set to 20m, 500 Hz bandwidth and is the averaged value of the magnitude of the I&Q samples at the output of the filter i.e. DDC noise floor.

APPENDIX B – XML format hardware description

To be written

	Response to Discovery - Hardware to Host (from port 1024)	
Byte	To IP address and Port of Host PC	Notes
0	Seq # = 0	[31:24]
1	Seq # = 0	[23:16]
2	Seq # = 0	[15:8]
3	Seq # = 0	[7:0]
4	0x02 (or 0x03)	Response to Discovery
5	Board MAC	MSB
6	Board MAC	
7	Board MAC	
8	Board MAC	
9	Board MAC	
10	Board MAC	LSB
11	Board Type	255
12	openHPSDR Protocol version supported	
13	Firmware Code Version	
14	Spare	

15	Spare	
16	Spare	
17	Spare	
18	Spare	
19	Spare	
20	Host update of firmware supported	
21	Setting of UDP/IP ports supported	
22	Setting IP address supported	
23	Memory mapped registers supported	
24	Alex protocol receive filters supported	
25	Alex protocol transmit filters supported	
26	VITA-49 protocol supported	
27	DSP clock frequency (Hz)	[31:24]
28	DSP clock frequency (Hz)	[23:16]
29	DSP clock frequency (Hz)	[15:8]
30	DSP clock frequency (Hz)	[7:0]
3135	Reserved for additional General settings	
36	Number of ADCs	
37	Dither supported	

38	Random supported		
39	Number of DDCs supported		
40	Frequency or Phase Word	0 = frequency 1 = phase	
41	Receive attenuator supported		
42	Wideband data supported		
43	Wideband samples per Ethernet packet	[15:8]	
44	Wideband samples per Ethernet packet	[7:0]	
45	Wideband bits per sample fixed or variable	0 = fixed 1 = variable	
46	Wideband bits per sample fixed value		
47	Wideband update rate fixed or variable	0 = fixed 1 = variable	
48	Wideband update rate fixed (mS)		
49	Wideband packets per frame fixed or variable	0 = fixed 1 = variable	
50	Wideband packets per frame fixed		
51	Individual DDC sample rates supported		
52	Minimum DDC sampling rate (ksps)	[15:8]	
53	Minimum DDC sampling rate (ksps)	[7:0]	
54	Maximum DDC sampling rate (ksps)	[15:8]	
55	Maximum DDCsampling rate (ksps)	[7:0]	

56	CIC decimation values settable		
57	Synchronous DDCs supported	0 = no n = number	
58	Multiplexed DDCs supported	0 = no n = number	
59	DDC Audio CODEC supported	0 = no 1 = mono 2 = stereo	
60	Audio CODEC sample rate (ksps)		
61	Audio CODEC bits per sample		
62	Audio samples per Ethernet packet	[15:8]	
63	Audio samples per Ethernet packet	[7:0]	
64	Time stamping of I&Q data supported		
6569	Reserved for additional DDC settings		
70	Number of DUCs supported	0 = none n = number	
71	DUC Audio CODEC supported		
72	Microphone supported		
73	Line in supported		
74	Audio CODEC sample rate (ksps)		
75	Audio CODEC bits per sample		
76	Audio samples per Ethernet packet	[15:8]	
77	Audio samples per Ethernet packet	[7:0]	
78	Frequency or phase word required	0 = frequency 1 = phase	

79	I&Q sample rate (ksps)	
80	Bits per I/Q sample	
81	I&Q samples per Ethernet packet	[15:8]
82	I&Q samples per Ethernet packet	[7:0]
83	Envelope Tracking supported	
84	CW Sidetone supported	
85	CW from the Host supported	
86	CW lambic Keyer supported	
87	CW break-in supported	
88	Hang supported (mS)	0 = no n = max delay[15:8]
89	Hang supported (mS)	0 = no n = max delay[7:0]
90	RF Delay supported (mS)	0 = no n = max delay
91	DUC Phase shift supported	
92	Receive attenuator on DUC supported	
93	Open collector outputs supported	0 = no n = number
94	DDC Calibration	[15:8]
95	DDC Calibration	[7:0]
96	Number of General Purpose ADCs	[7:0]
971439	For future use	

Source Port

This will be set to 1024.

Destination Port

This will be set to the Source Port of the Host that initiated the Command.

Sequence Number

A 4-byte integer set to 0x00000000.

Byte 4

Normally 0x02 but if the hardware is running and already connected to a different Host it will be 0x03.

Bytes 5 to 10 - MAC

This is 6 bytes and holds the MAC address of the hardware that is responding to the Command request

Byte 12

A byte that indicates the openHPSDR Protocol Version supported. The Host interprets this as a decimal number e.g. 104 would be interpreted as version 10.4.

Byte 13 - Firmware Code Version

A byte that indicates the version of code loaded into the associated board(s). The Host interprets this as a decimal number e.g. 15 would be interpreted as version 1.5.

Bytes 14 to 19

Where an Atlas based system is identified, bytes 14 to 19 contain the code versions loaded into the respective boards. A version number of zero indicates a board is not present.

Byte 20

Bit[0] set when openHPSDRProgrammer.exe can be used to update the FPGA code.

Bvte 21

Bit[0] set when other than default UDP/IP ports can be set.

Byte 22

Bit[0] set when openHPSDRProgrammer.exe can be used to set a fixed IP address.

Byte 23

Bit[0] set when memory mapped registers supported

Byte 24

Bit[0] set when Alex protocol receive filters supported

Byte 25

Bit[0] set when Alex protocol transmit filters supported

Byte 26

Bit[0] set when VITA-49 protocol supported

Bytes 27 to 30

A four byte value representing the DSP clock frequency in Hz

Byte 36

A byte indicating the number of ADC available

Byte 37

Bit[0] set indicates that ADC dither is supported

Byte 38

Bit[0] set indicates that ADC random is supported

Byte 39

A byte indicating the number of DDCs supported

Byte 40

Bit[0] set when phase words are required, if not set then frequency required.

Byte 41

Bit[0] set when DDC input attenuator supported

Byte 42

Bit[0] set when wideband (i.e. raw ADC samples) supported

Bytes 43 and 44

A 16 bit word indicating the number of wideband samples per Ethernet packet

Byte 45

Bit[0] set when variable bits per wideband sample are supported

Byte 46

A byte indicating the number of fixed bits per wideband sample

Byte 47

Bit[0] set when the wideband update rate is variable

Byte 48

A byte indicating the fixed wideband update rate

Byte 49

Bit[0] set when the number of wideband packets per frame are variable

Byte 50

A byte indicating the fixed number of wideband packets per frame

Byte 51

Bit[0] set when individual DDC sample rates are supported

Bytes 52 and 53

A 16 bit word indicating the minimum DDC sampling rate

Bytes 54 and 55

A 16 bit word indicating the maximum DDC sampling rate

Byte 56

Bit[0] set when CIC decimation values settable

Byte 57

A byte indicating the number of synchronous DDCs supported, zero equates to none.

Byte 58

A byte indicating the number of multiplexed DDCs supported, zero equates to none.

Byte 59

A byte indicating an Audio CODEC is supported, zero equates to no, 1 equates to mono and 2 to stereo

Byte 60

A byte indicating the Audio CODECs sampling rate in ksps

Byte 61

A byte indicating the Audio CODEC bits per sample

Byte 62 and 63

A 16 bit word indicating the number of audio samples per Ethernet packet

Byte 64

Bit[0] set when time stamping of I&Q samples is supported

Byte 70

A byte indicating the number of DUCs supported, zero equates to none

Byte 71

Bit[0] set when a DUC Audio CODEC is supported

Byte 72

Bit[0] set when a microphone input to the DUC Audio CODEC is supported

Byte 73

Bit[0] set when a line input to the DUC Audio CODEC is supported

Byte 74

A byte indicating the Audio CODEC's sampling rate in ksps

Byte 75

A byte indicating the Audio CODEC bits per sample

Byte 76 and 77

A 16 bit word indicating the number of audio samples per Ethernet packet

Byte 78

Bit[0] set when a DUC phase word is required, if zero then frequency required

Byte 79

A byte indicating the transmit I&Q data sample rate in ksps

Byte 80

A byte indicating the transmit I&Q data sample size in bits

Byte 81 and 82

A 16 bit word indicating the number DUC I&Q samples per Ethernet packet

Bvte 83

Bit[0] set when an Envelope Tracking or Envelope Elimination and Restoration amplifier is supported

Byte 84

Bit[0] set when hardware CW sidetone generation is supported

Byte 85

Bit[0] set when CW from host is supported

Byte 86

Bit[0] set when an lambic hardware CW keyer is supported

Byte 87

Bit[0] set when CW break-in is supported

Bytes 89 and 89

A 16 bit word indicating the maximum delay of CW Hang supported in mS. A zero value indicates not supported

Byte 90

A byte indicating the maximum delay of RF Delay supported in mS. A zero value indicates not supported

Byte 91

Bit[0] set indicates DUC RF phase shift supported

Byte 92

Bit[0] set indicates the DDC front end attenuator may be activated on transmit is supported. A zero value indicates not supported

Byte 93

A byte indicating the number of open collector outputs supported. A zero value indicates none.

Bytes 94 and 95

A 16 bit word indicating the calibration value for a DDC. The value is the maximum value of an I or Q sample with a RF input of -20dBm at a frequency of 14.200 MHz with the DDC tuned to 14.210 MHz and the sample rate set a 48ksps. This value is intended to enable a bandscope and/or S Meter to be calibrated.

Byte 96

A byte indicating the number of general purpose ADCs available. These are typically used to indicate forward and reverse powers, supply voltages and temperatures etc.

Appendix D – Alex filters description

High Pass Filters (HPF) and Low Pass Filters (LPF) may be used with any openHPSDR board set.

The filters are called 'Alex' filters (short for Alexiares) which were initially designed by Graham, KE9H, for use with the original Atlas based hardware. The original Alex filters are currently used with Atlas based hardware but the design has evolved over time for use with other openHPSDR designs.

The method of controlling the various relays that select filters, 6m pre-amp, antennas and attenuators has not changed significantly over time. In which case this document will refer to Alex filters which implies the Alex data protocol rather than the original Alex hardware.

Whist individual Alex implementations will differ, hence the specific descriptions that follow, the common factor is the use of a 32 bit data word [31:0] that controls the various filters, 6m pre-amp, antenna selection and attenuators.

The top 16 bits [31:16] control LPFs, antenna selection and the antenna change over relay whilst the lower 16 bits [15:0] control HPFs, DDC inputs and attenuators. In general a set bit activates a relay that selects a filter, antenna or attenuator.

At power on all 32 bits are set to 0 by the FPGA code and remain in that state until an Alex command is received.

In the following block diagrams the numbers against each relay refer to the relay designation in the relevant board schematic followed by the bit that operates it e.g. K2[23] indicates relay K2 which is operated when bit [23] is set.

Note that in order to use an Alex filter it is necessary to set the relevant bit in Byte 59 of the 'General to hardware' packet. Since all existing openHPSDR hardware includes only one Alex filter set, this will mean setting bit [0] of Byte 59.

ALEX FILTERS FOR ATLAS BASED SYSTEMS

The Alex filters used with Atlas based system comprise two circuit boards, one containing LPFs, Antenna selection and change over relay and the other HPFs, 6m pre-amp, Receive Antenna selection and Attenuators. A block diagram of the filter system is shown in the following diagram.

Relays are shown in de-energised state. The bits in the Alex data register map as follows:

Bit	Function	Bit	Function
0	YELLOW LED	16	N.C.
1	13 MHz HPF	17	N.C.
2	20 MHz HPF	18	N.C.
3	6M Preamp	19	YELLOW LED
4	9.5 MHz HPF	20	30/20 Meters LPF
5	6.5 MHz HPF	21	60/40 Meters LPF
6	1.5 MHz HPF	22	80 Meters LPF
7	N.C.	23	160 Meters LPF
8	XVTR DDC In	24	ANT 1
9	DDC 2 In	25	ANT 2
10	DDC 1 In	26	ANT 3
11	DDC 1 Out	27	T/R
12	HF Bypass	28	RED LED
13	20 dB Atten.	29	Bypass
14	10 dB Atten.	30	12/10 Meters LPF
15	RED LED	31	17/15 Meters LPF

Where all bits are active high and bit 27 high selects transmit.

More details of the board features can be found here: http://openhpsdr.org/alex.php

ALEX FILTERS FOR ANAN-10 & ANAN-10E SYSTEMS

Both these systems use LPFs only. A block diagram of the filter system is shown in the following diagram.

Relays are shown in de-energised state. The bits in the Alex data register map as follows:

Bit	Function	
20	30/20 Meters LPF	
21	60/40 Meters LPF	
22	80 Meters LPF	
23	160 Meters LPF	
24	ANT 1	
25	ANT 2	
26	ANT 3	
27	T/R	
28	N.C.	
29	6 Mtrs/Bypass	
30	12/10 Meters LPF	
31	17/15 Meters LPF	

Where all bits are active high and bit 27 high selects transmit.

ALEX FILTERS FOR ANAN-100, 100D AND 200D SYSTEMS (REV 15/16)

The following block diagram relates to Rev15/16 boards which were fitted prior to February 2015.

Copyright © 2015 William Diaz KC9XG

Relays are shown in de-energised state. The bits in the Alex data register map as follows:

Bit	Function	Bit	Function
0	YELLOW LED	16	N.C.
1	13 MHz HPF	17	N.C.
2	20 MHz HPF	18	N.C.
3	6M Preamp	19	YELLOW LED
4	9.5 MHz HPF	20	30/20 Meters LPF
5	6.5 MHz HPF	21	60/40 Meters LPF
6	1.5 MHz HPF	22	80 Meters LPF
7	N.C.	23	160 Meters LPF
8	Xvrt DDC	24	ANT 1
9	Ext 1	25	ANT 2
10	Ext 2	26	ANT 3
11	ByPass	27	T/R
12	HF Bypass	28	RED LED
13	20 dB Atten.	29	6M/Bypass
14	10 dB Atten.	30	12/10 Meters LPF
15	RED LED	31	17/15 Meters LPF

Where all bits are active high and bit 27 high selects transmit.

ALEX FILTERS FOR ANAN- 100/100B/100E/200D SYSTEMS (REV 24)

The following block diagram relates to Rev24 boards which were fitted post February 2015.

ANAN-100/ANAN-100D/ANAN-200D/ANAN-100B radios produced after Feb 1, 2015 Apache Labs Rev24 PA/Filter board **DDC/DUC Transceiver Board** RX2: DDC receiver, Dual ADC models only. RX2 In J10 Rx 2 Dual ADC/Receiver models only ADC LTC2208 Pre-Amp LTC-6400-20 External coupler/sampler input Bypass K25[6] 1.5 MHZ K24[6] Numbers in brackets = 2.x Protocol command K33[5] 6.5 MHZ K21[5] to control relay(s) 2 K39[8] Xvrt Rx ± K23[4] 9.5 MHZ K27[4] = N RX1: DDC receiver, all models. K38[9] K36[11] K19A[27] K34[14] K35[13] K26[1] K32[1] 13 MHZ Ext 1 ADC LTC2208 RX1 In \approx J13 K37[10] 10db 20db K28[2] 20 MHZ K30[2]= Ext 2 K29[3] LNA 6M K31[3] = K22[12] HF Bypass K20[12]= **HPF** Attenuator Hermes only **DUC Transmitter** Internal PS Sample K2[23] 160M K1[23] 1/2 Watt R17/R18 Hermes R If present J3 K3[22] 80M K4[22] J2 K8[24] Ant 1 K6[21] 60/40M K7[21] æ K11[25] Power K5[27] Ant 2 K9[20] 30/20M K10[20] Amplifier Driver \approx K14[26] Ant 3 K12[31] 17/15M K13[31] SWR 2 Bridge ± K15[30] 12/10M K16[30]= 2 K17[29] 6M/Bypass K18[29] Fwd Rev Pwr Pwr Attenuator LPF Xvrt TX R65/R66

Copyright © 2015 William Diaz KC9XG

Relays are shown in de-energised state. The bits in the Alex data register map as follows:

Bit	Function	Bit	Function
0	YELLOW LED	16	N.C.
1	13 MHz HPF	17	N.C.
2	20 MHz HPF	18	N.C.
3	6M Preamp	19	YELLOW LED
4	9.5 MHz HPF	20	30/20 Meters LPF
5	6.5 MHz HPF	21	60/40 Meters LPF
6	1.5 MHz HPF	22	80 Meters LPF
7	N.C.	23	160 Meters LPF
8	Xvrt DDC	24	ANT 1
9	Ext 1	25	ANT 2
10	Ext 2	26	ANT 3
11	Bypass	27	T/R
12	HF Bypass	28	RED LED
13	20 dB Atten.	29	6M/Bypass
14	10 dB Atten.	30	12/10 Meters LPF
15	RED LED	31	17/15 Meters LPF

Where all bits are active high and bit 27 high selects transmit.