

IEL – protokol k projektu

Kirill Shchetiniuk xshche05

17. prosince 2022

Obsah

1	Příklad 1	2
	1.1 Řešení	2
	1.2 Výsledky	5
2	Příklad 2	6
	2.1 Řešení	6
	2.2 Výsledky	7
3	Příklad 3	8
		8
	3.2 Výsledky	9
4	Příklad 4	10
	4.1 Řešení	10
	4.2 Výsledky	11
5	Příklad 5	12
	5.1 Řešení	12
	5.2 Výsledky	13
	5.3 Kontrola	13
6	Shrnutí výsledků	14

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

Řešení

Nejprve tedy můžeme zjednodušit rezistory R_6 a R_8 , jsou zapojeny sériově, a zároveň sloučit zdroje napětí U_1 a U_2 . Po zjednodušení bude v obvodu rezistor, který nazveme R_{68} a jediný zdroj napětí U_{12} :

$$R_{68} = R_6 + R_8 = 750 + 190 = 940\Omega$$

 $U_{12} = U_1 + U_2 = 80 + 120 = 200$ V

Teď nemůžeme jednoznačně určit, jak jsou rezistory R_4 , R_5 a R_7 zapojeny. Abychom jsme mohli to jednoznačně určit, musíme provést transformace. Povedeme transformace Hvězda \rightarrow Trojúhelník a

dostaneme nový obvod:

$$\begin{split} R_{AB} &= R_4 + R_5 + \frac{R_4 * R_5}{R_7} = 130 + 360 + \frac{130 * 360}{310} \approx 640.9677\Omega \\ R_{AC} &= R_4 + R_7 + \frac{R_4 * R_7}{R_5} = 130 + 310 + \frac{130 * 310}{360} \approx 551.9444\Omega \\ R_{BC} &= R_5 + R_7 + \frac{R_5 * R_7}{R_4} = 360 + 310 + \frac{360 * 310}{130} \approx 1528.4615\Omega \end{split}$$

Rezistory R_2 , R_3 a R_{AB} jsou paralelně zapojeny, po zjednodušení bude v obvodu rezistor, který nazveme R_{23AB} . Zároveň R_{68} a R_{BC} jsou paralelně zapojeny, po zjednodušení bude v obvodu rezistor, který nazveme R_{68BC} . Po zjednodušení dostaneme nový obvod:

$$R_{23AB} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_{AB}}} = \frac{1}{\frac{1}{650} + \frac{1}{410} + \frac{1}{640.9677}} \approx 180.5828\Omega$$

$$R_{68BC} = \frac{1}{\frac{1}{R_{68}} + \frac{1}{R_{BC}}} = \frac{1}{\frac{1}{940} + \frac{1}{1528.4615}} \approx 582.0443\Omega$$

Rezistory R_{23AB} a R_{68BC} jsou zapojeny sériově, po zjednodušení bude v obvodu rezistor, který nazveme $R_{23AB68BC}$. Po zjednodušení dostaneme nový obvod:

$$R_{23AB68BC} = R_{23AB} + R_{68BC} = 180.5828 + 582.0443 = 762.6271\Omega$$

Rezistory $R_{23AB68BC}$ a R_{AC} jsou zapojeny paralelně, po zjednodušení bude v obvodu rezistor, který nazveme $R_{23AB68BCAC}$. Po zjednodušení dostaneme nový obvod:

$$R_{23AB68BCAC} = \frac{1}{\frac{1}{R_{23AB68BC}} + \frac{1}{R_{AC}}} = \frac{1}{\frac{1}{762.6271} + \frac{1}{551.9444}} \approx 320.2015\Omega$$

Rezistory R_1 a $R_{23AB68BCAC}$ jsou zapojeny sériově, po zjednodušení bude v obvodu rezistor, který nazveme R_{EKV} . Po zjednodušení dostaneme nový obvod:

$$R_{EKV} = R_1 + R_{23AB68BCAC} = 350 + 320.2015 = 670.2015\Omega$$

Teď můžeme spočítat celkový proud I:

$$I = \frac{U_i}{R_{EKV}} = \frac{200}{670.2015} \approx 0.2984 \mathrm{A}$$

Nyní zpětně spočítáme U_{R_2} a I_{R_2} :

Výsledky

$$\begin{split} U_{R_{23AB68BCAC}} &= \frac{R_{23AB68BCAC}}{R_{23AB68BCAC} + R_1} * U_{12} = \frac{320.2015}{320.2015 + 350} * 200 \approx 95.5538 \mathrm{V} \\ &\qquad U_{R_{23AB68BC}} = U_{R_{23AB68BCAC}} = 95.5538 \mathrm{V} \\ U_{R_{23AB}} &= \frac{R_{23AB}}{R_{23AB} + R_{68BC}} * U_{R_{23AB68BC}} = \frac{180.5828}{180.5828 + 582.0443} * 95.5538 \approx 22.6262 \mathrm{V} \\ &\qquad U_{R_2} = U_{R_{23AB}} = 22.6262 \mathrm{V} \\ I_{R_2} &= \frac{U_{R_2}}{R_2} = \frac{22.6262}{650} \approx 0.0348 \mathrm{A} \end{split}$$

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu Théveninovy věty.

$\operatorname{sk}.$	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
\mathbf{E}	250	150	335	625	245	600

Řešení

Pro řešení příkladů vytvoříme ekvivalentní obvod a zjistíme R_i a $U_i\colon$

Nejprve v původním obvodu zkratuji (odpojím) napěťový zdroj a odpojím R_5 , obvod zjednoduším a zjistím R_i :

Rezistory $R_1,\,R_2$ a R_3 jsou zapojené sériově - zjednoduším na R_{123} :

$$R_{123} = R_1 + R_2 + R_3 = 150 + 335 + 625 = 1110\Omega$$

Rezistory R_{123} a R_4 jsou zapojené paralelně - zjednoduším a zjistím R_i :

$$R_i = \frac{1}{\frac{1}{R_{123}} + \frac{1}{R_4}} = \frac{1}{\frac{1}{1110} + \frac{1}{245}} \approx 200.7011\Omega$$

Nyní je třeba zjistit I_x :

$$R_{1234} = R_1 + R_2 + R_3 + R_4 = 150 + 335 + 625 + 245 = 1355\Omega$$

$$I_x = \frac{U}{R_{1234}} = \frac{250}{1355} \approx 0.1845 \text{A}$$

 U_i bude se rovnat U_{R_4} :

$$U_i = U_{R_4} = I_x * R_4 = 0.1845 * 245 \approx 45.203 \text{V}$$

Teď třeba zjistit U_{R_5} a I_{R_5} :

Výsledky

 R_i a R_5 jsou zapojené sériově, spočítáme U_{R_5} a $I_{R_5}\colon$

$$U_{R_5} = \frac{R_5}{R_i + R_5} * U_i = \frac{600}{200.7011 + 600} * 45.203 \approx 33.8725 \text{V}$$
$$I_{R_5} = \frac{U_{R_5}}{R_5} = \frac{33.8725}{600} = 0.0565 \text{A}$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U[V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	110	0.85	0.75	44	31	56	20	30

Řešení

Dle II. Kirchhoffova zákona zapíšeme rovnice pro uzly A (začátek napětí U_A), B (začátek napětí U_B), C (začátek napětí U_C):

$$A: \quad I_{R_1} - I_{R_2} - I_{R_3} = 0$$

$$B: \quad I_{R_2} - I_{R_4} - I_2 = 0$$

$$C: \quad I_{R_4} + I_2 - I_1 - I_{R_5} = 0$$

Spočítáme proudy pro každý rezistor s napětími U_A, U_B, U_C :

$$I_{R_{1}} = \frac{U - U_{A}}{R_{1}}$$

$$I_{R_{2}} = \frac{U_{A} - U_{B}}{R_{2}}$$

$$I_{R_{3}} = \frac{U_{A}}{R_{3}}$$

$$I_{R_{4}} = \frac{U_{B} - U_{C}}{R_{4}}$$

$$I_{R_{5}} = \frac{U_{C}}{R_{5}}$$

Dostaneme rovnice pro každý uzel, kde proud je vyjádřen napětím a odporem:

$$A: \quad \frac{110 - U_A}{44} - \frac{U_A - U_B}{31} - \frac{U_A}{56} = 0$$

$$B: \quad \frac{U_A - U_B}{31} - \frac{U_B - U_C}{20} - 0.75 = 0$$

$$C: \quad \frac{U_B - U_C}{20} + 0.75 - 0.85 - \frac{U_C}{30} = 0$$

Vyneseme koeficienty za závorky:

$$A: \quad -U_A * \frac{92}{1263} + U_B * \frac{1}{31} = -2.5$$

$$B: \quad U_A * \frac{1}{31} - U_B * \frac{51}{620} + U_C * \frac{1}{20} = 0.75$$

$$C: \quad U_B * \frac{1}{20} - U_C * \frac{1}{12} = 0.1$$

Zapíšeme soustavu rovnic do matice a spočítáme hodnoty $U_A,\,U_B,\,U_C$:

$$\begin{pmatrix} -\frac{92}{1263} & \frac{1}{31} & 0\\ \frac{1}{31} & -\frac{51}{620} & \frac{1}{20}\\ 0 & \frac{1}{20} & -\frac{1}{12} \end{pmatrix} \times \begin{pmatrix} U_A\\ U_B\\ U_C \end{pmatrix} = \begin{pmatrix} -2.5\\ 0.75\\ 0.1 \end{pmatrix}$$

$$U_A = 37.7857V$$

 $U_B = 7.8245V$
 $U_C = 3.4947V$

Výsledky

Vypočítáme si U_{R_4} , a pak dopočítáme proud I_{R_4} :

$$U_{R_4} = U_B - U_C = 7.8245 - 3.4947 = 4.3298$$
V
$$I_{R_4} = \frac{U_{R_4}}{R_4} = \frac{4.3298}{20} = 0.2165$$
A

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t), \ u_2 = U_2 \cdot \sin(2\pi f t).$

Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

									200
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [µF]	f [Hz]
A	3	5	12	14	120	100	200	105	70

Řešení

Určíme směr proudu pro každou smyčku, určíme proudy $I_A,\,I_B,\,I_C$ a jích směr:

Spočítáme hodnoty impedance pro cívky a kondenzátory:

$$\omega = 2\pi f = 2 * \pi * 70 = 140\pi = 439.8230Rad$$

$$Z_{C_1} = \frac{-j}{\omega C_1} = \frac{-j}{439.8230 * 200 * 10^{-6}} = -11.3682j\Omega$$

$$Z_{C_2} = \frac{-j}{\omega C_2} = \frac{-j}{439.8230 * 105 * 10^{-6}} = -21.6537j\Omega$$

$$Z_{L_1} = j\omega L_1 = j * 439.8230 * 120 * 10^{-3} = 52.7788j\Omega$$

$$Z_{L_2} = j\omega L_2 = j * 439.8230 * 100 * 10^{-3} = 43.9823j\Omega$$

Spočítáme napětí u_1 a u_2 :

$$u_1 = U_1 * \sin(2\pi f t) = U_1 * \sin(2\pi f * \frac{\pi}{4\pi f}) = U_1 * \sin(\frac{\pi}{2}) = U_1 * 1 = 3V$$

$$u_2 = U_2 * \sin(2\pi f t) = U_2 * \sin(2\pi f * \frac{\pi}{4\pi f}) = U_2 * \sin(\frac{\pi}{2}) = U_2 * 1 = 5V$$

Dle II. Kirchhoffova zákona zapíšeme pro každou smyčku rovnice pro napětí, dále dostaneme soustavu rovnic pro napětí ve smyčkách:

$$I_A: U_{L_2} + U_{R_2} + U_{L_1} + U_{R_1} + u_1 = 0$$

 $I_B: U_{C_1} + U_{C_2} + U_{L_1} + U_{R_2} = 0$
 $I_C: u_2 + U_{C_1} + U_{L_2} = 0$

Určíme napětí přes proud a odpor:

$$I_A: I_A * (Z_{L_2} + R_2 + Z_{L_1} + R_1) - I_B * (Z_{L_1} + R_2) - I_C * (Z_{L_2}) = -u_1$$

$$I_B: -I_A * (Z_{L_1} + R_2) + I_B * (Z_{C_1} + Z_{C_2} + Z_{L_1} + R_2) - I_C * (Z_{C_1}) = 0$$

$$I_C: -I_A * (Z_{L_2}) - I_B * (Z_{C_1}) + I_C * (Z_{L_2} + Z_{C_1}) = -u_2$$

Matice pro výpočet proudů v každou smyčce:

$$\begin{pmatrix} Z_{L_2} + R_2 + Z_{L_1} + R_1 & -Z_{L_1} - R_2 & -Z_{L_2} \\ -Z_{L_1} - R_2 & Z_{C_1} + Z_{C_2} + Z_{L_1} + R_2 & -Z_{C_1} \\ -Z_{L_2} & -Z_{C_1} & Z_{L_2} + Z_{C_1} \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -u_1 \\ 0 \\ -u_2 \end{pmatrix}$$

Spočítáme hodnoty proudů v každou smyčce:

$$\begin{pmatrix} 26.0000 + 96.7611j & -14.0000 - 52.7788j & -43.9823 \\ -14.0000 - 52.7788j & 14.0000 + 19.7568j & 11.3682 \\ -43.9823 & 11.3682 & 32.6141 \end{pmatrix} \times \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ -5 \end{pmatrix}$$

$$I_A = (-0.1025 - 0.1024j)A$$

 $I_B = (-0.0568 - 0.3126j)A$
 $I_C = (-0.1185 + 0.1242j)A$

Výsledky

Spočítáme proud i_{C_2} , napětí $|U_{C_2}|$ a fázový posun φ_{C_2} :

$$\begin{split} i_{C_2} &= I_B = (-0.0568 - 0.3126j) \text{A} \\ U_{C_2} &= i_{C_2} * Z_{C_2} = (-0.0568 - 0.3126j) * (-21.6537j) = (-6.7697 + 1.2291j) \text{V} \\ |U_{C_2}| &= \sqrt{Re(U_{C_2})^2 + Im(U_{C_2})^2} = \sqrt{(-6.7697)^2 + (1.2291)^2} = 6.8804 \text{V} \\ \varphi_{C_2} &= \arctan(\frac{Im(U_{C_2})}{Re(U_{C_2})}) + \pi = \arctan(\frac{1.2291}{-6.7697}) + \pi = 2.9620 Rad = 169.7093^\circ \end{split}$$

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L = f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	E	50	30	40	10
t = 0 s S		R			

Řešení

U

Sestavíme rovnici pro i_L :

$$i_L' = \frac{U_L}{L}$$

Vyjádříme napětí U_L :

$$U_L = U - U_R$$

Upravíme rovnici:

$$i_L' = \frac{U - U_R}{L}$$

$$i_R = i_L$$

$$U_R = R * i_L$$

$$i_L' = \frac{U - R * i_L}{L}$$

Sestavíme rovnici napětí v obvodu:

$$L * i'_L + R * i_L = U$$
$$30i'_L + 40i_L = 50$$

Obecný tvar pro cívku:

$$i_L(t) = K(t) * e^{\lambda t}$$

Nemáme pro rovnice λ a K(t). Nejprve zjistíme λ :

$$L\lambda + R = 0$$

$$\lambda = -\frac{R}{L} = -\frac{40}{30} = -\frac{4}{3}$$

Teď pomoci λ zjistíme K(t):

$$i_L(t) = K(t) * e^{\lambda t}$$

$$i_L(t) = K(t) * e^{-\frac{4}{3}t}$$

$$i_L(t)' = K(t)' * e^{-\frac{4}{3}t} - \frac{4}{3}K(t) * e^{-\frac{4}{3}t}$$

Spočítáme hodnotu K(t)':

$$30 * (K(t)' * e^{-\frac{4}{3}t} - \frac{4}{3}K(t) * e^{-\frac{4}{3}t}) + 40 * (K(t) * e^{-\frac{4}{3}t}) = 50$$
$$30K(t)'e^{-\frac{4}{3}t} - 40K(t)e^{-\frac{4}{3}t} + 40K(t)e^{-\frac{4}{3}t} = 50$$
$$30K(t)'e^{-\frac{4}{3}t} = 50$$
$$K(t)' = \frac{5}{3}e^{\frac{4}{3}t}$$

Spočítáme hodnotu K(t):

$$K(t) = \int \frac{5}{3} e^{\frac{4}{3}t} dt$$
$$K(t) = \frac{5}{4} e^{\frac{4}{3}t} + C$$

Spočítáme hodnotu C, když máme t=0:

$$i_L(t) = (\frac{5}{4}e^{\frac{4}{3}t} + C) * e^{-\frac{4}{3}t}$$

$$i_L(t) = \frac{5}{4} + Ce^{-\frac{4}{3}t}$$

$$i_L(0) = \frac{5}{4} + C$$

$$10 = \frac{5}{4} + C$$

$$C = 10 - \frac{5}{4} = \frac{35}{4} = 8.75$$

Výsledky

Konečná rovnice má tvar:

$$i_L(t) = 1.25 + 8.75e^{-\frac{4}{3}t}$$

Kontrola

$$i_{L}(t)' = \frac{5}{3} * e^{\frac{4}{3}t} * e^{-\frac{4}{3}t} - \frac{4}{3} \left(\frac{5}{4} e^{\frac{4}{3}t} + \frac{35}{4} \right) e^{-\frac{4}{3}t}$$

$$i_{L} = \frac{5}{4} + \frac{35}{4} e^{-\frac{4}{3}t}$$

$$30i'_{L} + 40i_{L} = 50$$

$$30 \left(\frac{5}{3} * e^{\frac{4}{3}t} * e^{-\frac{4}{3}t} - \frac{4}{3} \left(\frac{5}{4} e^{\frac{4}{3}t} + \frac{35}{4} \right) e^{-\frac{4}{3}t} \right) + 40 \left(\frac{5}{4} + \frac{35}{4} e^{-\frac{4}{3}t} \right) = 50$$

$$50 - 50 - 35e^{-\frac{4}{3}} + 50 + 35e^{-\frac{4}{3}} = 50$$

$$50 = 50$$

Shrnutí výsledků

Příklad	Skupina	Výsl	edky
1	A	$U_{R2} = 22.6262V$	$I_{R2} = 0.0348$ A
2	E	$U_{R5} = 33.8725 \text{V}$	$I_{R5} = 0.0565$ A
3	C	$U_{R4} = 4.3298 V$	$I_{R4} = 0.2165$ A
4	A	$ U_{C_2} = 6.8804$ V	$\varphi_{C_2} = 169.7093^{\circ}$
5	E	$i_L(t) = 1.25$	$5 + 8.75e^{-\frac{4}{3}t}$