"Machine Learning and Computational Statistics"

8th Homework

Exercise 1(*):

Suppose you are given a data set $Y = \{(y_i, x_i), i=1,...,N\}$ where $y_i \in \{0,1\}$ is the class label for vector $x_i \in R^l$. Extract the gradient descent logistic regression classifier for the two-class case (write in detail the algebraic manipulations using the hints in the relevant slides of its presentation).

Exercise 2:

Suppose you are given a data set $Y = \{(y_i, x_i'), i=1,...,N\}$ where $y_i \in \{0,1\}$ is the class label for vector $x_i' \in \mathbb{R}^l$. Assume that y and x' are related via the following model: $y = f(\theta^T x' + \theta_0)$, where θ and θ_0 are the model parameters and $f(z) = 1/(1 + \exp(-az))$.

- (a) **Plot** the function f(z) for various values of the parameter a.
- (b) Propose a gradient descent scheme to **train** this model (that is, to estimate the values of the involved parameters), based on the **minimization** of the sum of error squares criterion, using *Y*.
- (c) Can the model ever respond with a "clear" 1 or a "clear" 0, for a given x?
- (d) How can we interpret the response of the model for a given x?
- (e) Propose a way for leading the model responses very close to 1 (for class 1 vectors) or 0 (for class 0 vectors).

Hints:

- (a) Use a more compact notation by setting $\mathbf{x}_i = [1 \ \mathbf{x}_i]^\mathsf{T}$, i = 1,...N, and $\boldsymbol{\theta} = [\theta_0 \ \boldsymbol{\theta}]^\mathsf{T}$. The model then becomes $y = f(\boldsymbol{\theta}^\mathsf{T} \mathbf{x})$.
- (b) The sum of error squares criterion in this case is $J(\theta) = \sum_{n=1}^{N} (y_n f(\theta^T x_n))^2$.
- (c) It is $f'(z) = \frac{df(z)}{dz} = af(z)(1 f(z))$.

Exercise 3 (python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW8.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- $rac{train}{x}$ (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- $rain_y$ (a N_{train} —dim. column **vector** containing the **class labels** (1 or 2) of the corresponding training vectors x_i included in $train_x$).
- \triangleright test_x (a N_{test} x2 matrix that contains in its rows the test vectors x_i)
- \succ test_y (a N_{test} -dim. column vector containing the class labels (1 or 2) of the corresponding test vectors x_i included in test x_i).

Assume that the two classes, ω_1 and ω_2 are modeled by normal distributions.

- (a) Adopt the **Bayes classifier**.
 - i. Use the training set to **estimate** $P(\omega_1)$, $P(\omega_2)$, $p(x|\omega_1)$, $p(x|\omega_2)$ (Since $p(x|\omega_j)$ is modeled a normal distribution, it is completely identified by μ_j and Σ_j . Use the **ML estimates** for them as given in the lecture slides).
- ii. Classify the points x_i of the test set, using the Bayes classifier (for each point apply the Bayes classification rule and keep the class labels, to an a N_{test} —dim. column vector, called $Btest_y$ containing the estimated class labels (1 or 2) of the corresponding test vectors x_i included in $test_x$.).
- iii. Estimate the error classification probability ((1) **compare** *test_y* and *Btest_y*, (2) **count** the positions where both of them have the same class label and (3) **divide** with the total number of test vectors).
- (b) Adopt the naïve Bayes classifier. °

- Recall that $\boldsymbol{x} = [x_1, x_2]^T$
- i. Use the training set to estimate $P(\omega_1)$, $P(\omega_2)$, $p(x_1|\omega_1)$, $p(x_2|\omega_1)$, $p(x_1|\omega_2)$, $p(x_2|\omega_2)$ (Each $p(x|\omega_j)$ is written as $p(x|\omega_j) = p(x_1|\omega_j)^*$ $p(x_2|\omega_j)$. Use the **ML estimates** of the mean and variance for each one of the 1-dim. pdfs).
- ii. Classify the points $x_i = [x_{i1}, x_{i2}]^T$ of the test set, using the naïve Bayes classifier (Estimate $p(x|\omega_j)$ with $p(x_{i1}|\omega_j)^* p(x_{i2}|\omega_j)$ and then apply the Bayes rule. Keep the class labels, to an a N_{test} —dim. column **vector**, called $NBtest_y$ containing the **estimated class labels** (1 or 2) of the corresponding test vectors x_i included in $test_x$)
- iii. Estimate the error classification probability (work as in the previous case).
- (c) Adopt the **k-nearest neighbor classifier**, for k = 5 and estimate the classification error probability.
- (d) Adopt the **logistic regression classifier** and (i) train it using the training set and then (ii) measure its performance on the test set.
- (e) Depict graphically the training set, using different colors for points from different classes.
- (f) Report the classification results obtained by the four classifiers and comment on them. Under what conditions, the two classifiers would exhibit the same performance?

Hint: Use the attached Python code.