zacharylaborde.com

Zachary Laborde

Self-motivated research scientist in Artificial Intelligence and Machine Learning with strong communication and teamwork skills in addition to problem-solving and analytical abilities looking to advance the field of machine learning and contribute to innovative solutions for complex problems.

Skills

Machine Learning Information Theory	Quasistatic Approximation	Neural Networks	Simulated Annealing
Particle Swarm Optimization Boids	Ant Colony Optimization	K-means++ Evol	utionary Algorithms
Recurrent Neural Networks Gradient Descent Theta Sparse Grouping Hierarchical Agglomerative Clustering			
Graph Theory Graph Embedding	Graph Clustering Dynamic	al System Analysis	Cellular Automata
Hopfield Networks Convolutional Neural Networks Transformers Level Set Method Bootstrapping			
Topological Data Analysis Computational Topology Lifetime Learning Backpropagation			
Software			
PyTorch TensorFlow NumPy SciPy MongoDB Hadoop Spark Matplotlib Plotly Git			
SQL Python Scikit-learn Pandas Jupyter LATEX			

Publications & Conferences

Laborde, Z., & Izquierdo, E. J. (2023). Spatial embedding of edges in a synaptic generative model of C. elegans. *ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference, ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference*(26). https://doi.org/10.1162/isal_a_00611

- Severino, G. J., Laborde, Z., & Barwich, A.-S. (2023). The degeneracy of control architectures in cell lineages: Implications for tissue homeostasis. *ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference*, *ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life Conference*(23). https://doi.org/10.1162/isal_a_00608
- Laborde, Z., Toler, W., Velhal, K., Farag, T., & Chakra, A. (2019). Method and system for implementing a holistic umbrella drone. https://priorart.ip.com/IPCOM/000257353
- Laborde, Z., Stephenson, D., Reiss, A., Beaton, E., & Cohen, J. (2017). Anterior-posterior insular cortex bisection plugin for mango [Poster presentation]. *Cognitive Neuroscience Society*.
- Laborde, Z., & Cohen, J. (2016). Nostalgia and the perception of time. *XULAnEXUS*, *14*(1). https://digitalcommons.xula.edu/xulanexus/vol14/iss1/1

Education

Indiana University Bloomington Neuroscience & Cognitive Science Aug. 2021 - Present Ph.D.*

Xavier University of Louisiana Psychology Computer Science (minor) Aug. 2013 - May 2017 Bachelor of Science

Research Experience

Indiana University Bloomington

Aug 2021 - Present

Dr. Eduardo Izquierdo & Dr. Justin Wood

- Pioneered the evolution of optimal sensorimotor configurations in simulated agents utilizing Continuous Time Recurrent Neural Network (CTRNN) controllers achieving neural networks that were simultaneously smaller and more performant
- Modeled development of a C. elegans connectome leading to improved accuracy versus existing models and new perspectives on its structure
- Discovered a new biologically-realistic dynamic control system for cellular lineages with potential applications in synthetic biology and regenerative medicine
- Developed and launched an online application for the dynamical analysis of cellular differentiation in multi-compartment systems integrating multiple control mechanisms (see https://nanohub.org/resources/dynsysregen)
- Conceived and implemented a novel level set approximation algorithm for high-dimensional manifolds significantly reducing computational complexity and resource usage by 90%.

Work Experience

IBM

July 2017 - Aug 2021

Software Engineer

 Developed features to automate event analytics analysis and prediction for operation engineers using machine learning

* coursework complete