Feuille d'exercices nº 24 : géométrie dans l'espace

Exercice 1.

- 1. Déterminer les coordonnées cartésiennes des points de coordonnées cylindriques $\left(2; \frac{5\pi}{3}, 5\right)$ et $\left(4, \frac{3\pi}{2}, -2\right)$.
- 2. Déterminer les coordonnées cylindriques du point de coordonnées cartésiennes $\left(-\sqrt{6},\sqrt{2},2\sqrt{2}\right)$.

Exercice 2. Soient A(0,1,2); B(-1,1,1); C(2;-1;2); D(4;0;-1) quatre points de l'espace. Calculer les quantités suivantes : AB, $\overrightarrow{DA} \cdot \overrightarrow{AB}$, $\overrightarrow{AB} \wedge \overrightarrow{CD}$, $[\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}]$. Préciser si ces calculs permettent une conclusion géométrique.

Exercice 3. Soient A, B et C trois points de l'espace, et I, J et K les milieux respectifs de [BC], [AC] et [AB]. Montrer que les égalités suivantes sont vérifiées quel que soit le point M:

1.
$$\overrightarrow{MA} \wedge \overrightarrow{MB} + \overrightarrow{MB} \wedge \overrightarrow{MC} + \overrightarrow{MC} \wedge \overrightarrow{MA} = \overrightarrow{AB} \wedge \overrightarrow{AC}$$

$$2. \ \overrightarrow{MA} \wedge \overrightarrow{AI} + \overrightarrow{MB} \wedge \overrightarrow{BJ} + \overrightarrow{MC} \wedge \overrightarrow{CK} = \overrightarrow{0}.$$

3.
$$[\overrightarrow{MI}, \overrightarrow{MJ}, \overrightarrow{MK}] = [\overrightarrow{AI}, \overrightarrow{AJ}, \overrightarrow{MA}].$$

Exercice 4.

- 1. Prouver la formule du double produit vectoriel : $\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w})\overrightarrow{v} (\overrightarrow{u} \cdot \overrightarrow{v})\overrightarrow{w}$.
- 2. En déduire l'identité $\overrightarrow{u} \wedge (\overrightarrow{v} \wedge \overrightarrow{w}) + \overrightarrow{v} \wedge (\overrightarrow{w} \wedge \overrightarrow{u}) + \overrightarrow{w} \wedge (\overrightarrow{u} \wedge \overrightarrow{v}) = \overrightarrow{0}$.

Exercice 5. Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs fixés. Déterminer tous les vecteurs \overrightarrow{x} tels que $\overrightarrow{u} \wedge \overrightarrow{x} = \overrightarrow{v}$.

Exercice 6. Dans l'espace rapporté au repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on définit les vecteurs suivants : $\overrightarrow{u}(1, a, 2), \overrightarrow{v}(2, 1, a)$, et $\overrightarrow{w}(a, 2, 1)$. Déterminer pour quelles valeurs du réel a la famille $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de l'espace.

Exercice 7. L'espace est rapporté au repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les points A(0, -1, 4), B(1, -1, 2), C(2, -1, 1) et la droite \mathcal{D} d'équation paramétrique $\begin{cases} x = 1 + 2t \\ y = -2 + 3t \\ z = 3 + t \end{cases}$

- 1. Déterminer une équation cartésienne du plan P_1 contenant A, B, et C.
- 2. Déterminer une équation cartésienne du plan P_2 contenant A et la droite \mathcal{D} .
- 3. Déterminer une équation cartésienne du plan P_3 perpendiculaire à la droite $\mathcal D$ et contenant B.
- 4. Déterminer une équation cartésienne du plan P_4 contenant la droite \mathcal{D} et parallèle à la droite (BC).

Exercice 8. L'espace est rapporté au repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les droites D_1 définie par les équations cartésiennes $\begin{cases} x+y=2\\ y-2z=3 \end{cases}$ et D_2 par les équations cartésiennes $\begin{cases} x+y+z=1\\ x-2y+3z=a \end{cases}$ où a est un réel donné.

- 1. D_1 et D_2 sont-elles parallèles?
- 2. Calculer la valeur de a pour que D_1 et D_2 soient coplanaires. Donner alors les coordonnées de leur point d'intersection et une équation du plan P qui les contient toutes les deux.

Exercice 9.

- 1. Soit \mathcal{D} une droite de l'espace, dirigée par \overrightarrow{v} et A un point de cette droite. Soit M un point de l'espace. Montrer que la distance entre \mathcal{D} et M vaut $\frac{||\overrightarrow{MA} \wedge \overrightarrow{v}||}{||\overrightarrow{v}||}$.
- 2. Application : soit \mathcal{D} : $\begin{cases} x+y-z+2=0 \\ x+y+z=0 \end{cases}$ et M(1,1,1). Déterminer la distance entre \mathcal{D} et M.

Exercice 10. L'espace est rapporté au repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Le plan \mathcal{P} a pour équation cartésienne x+y-z=0. Soit M(x,y,z) un point de l'espace.

- 1. Déterminer les coordonnées de H, projeté orthogonal de M sur \mathcal{P} .
- 2. Déterminer les coordonnées de l'image de M dans la symétrie orthogonale par rapport au plan \mathcal{P} .

Exercice 11. L'espace est rapporté au repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soient les droites D_1 de représentation paramétrique $\begin{cases} x = 3 + 2t \\ y = 1 + t \\ z = 2 - t \end{cases}$ et D_2 définie par les équations $\begin{cases} 3x + 2y + 4z = -8 \\ x + y + z = 0 \end{cases}$.

- 1. Montrer que D_1 et D_2 ne sont pas coplanaires.
- 2. Déterminer un vecteur directeur de la perpendiculaire commune Δ de D_1 et D_2 .
- 3. Calculer la distance de D_1 à D_2 .

Exercice 12. Soient \mathcal{P} et \mathcal{Q} les deux plans d'équations respectives 3x - 4y + 1 = 0 et 2x - 3y + 6z - 1 = 0. Déterminer tous les points équidistants des plans \mathcal{P} et \mathcal{Q} .

Exercice 13. L'espace est rapporté au repère $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soit la droite \mathcal{D} d'équation paramètrique $\begin{cases} x = 4 + 2t \\ y = 3 + t \\ z = 1 + t \end{cases}$

- 1. Calculer la distance f(t) de O au point M(t) de \mathcal{D} . Déterminer la valeur de t pour laquelle cette distance est minimale. En déduire les coordonnées de H, projection orthogonale de O sur \mathcal{D} . Que vaut la distance de O à \mathcal{D} ?
- 2. Montrer que le plan \mathcal{P} d'équation x-2z=2 contient la droite \mathcal{D} . Déterminer une équation cartésienne du plan \mathcal{P}' contenant \mathcal{D} et perpendiculaire à \mathcal{P} .
- 3. Calculer la distance de O à \mathcal{P} et de O à \mathcal{P}' . Retrouver la distance de O à \mathcal{D} .

Exercice 14. Déterminer le centre et le rayon des sphères suivantes. Étudier leur intersection avec le plan $\mathcal{P}: x+y+z-3=0$ (on donnera le centre et le rayon du cercle quand c'est possible).

1.
$$x^2 + y^2 + z^2 - 4y + 6z + 12 = 0$$

2.
$$x^2 + y^2 + z^2 - 2x - 2y - 2z + 1 = 0$$

3.
$$x^2 + y^2 + z^2 - 4 = 0$$

Exercice 15. Dans l'espace \mathcal{E} muni d'un repère orthonormé, on donne les points A(6, -6, 6) B(-6, 0, 6) et C(-2, -2, 11).

- 1. Déterminer une équation de la sphère S de centre B et passant par A.
- 2. Déterminer une équation du plan Π tangent à S en A.
- 3. Soit \mathcal{D} la droite orthogonale à Π passant par C. Déterminer les coordonnées du point D, intersection de Π avec \mathcal{D} .
- 4. Étudier l'intersection des droites (AD) et (BC) et déterminer les coordonnées de l'éventuel point d'intersection.

Pour s'entrainer

Exercice 16. L'espace est rapporté au repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Soient \mathcal{S} la sphère de centre A(1,0,0) et de rayon 1, et \mathcal{D} la droite définie par le système d'équations $\begin{cases} x-y=1\\ x+y+z=0 \end{cases}$.

- 1. Calculer la distance de A à \mathcal{D} , et déterminer les points d'intersection de \mathcal{S} et \mathcal{D} .
- 2. Montrer que le point $B(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ est sur S et écrire l'équation du plan T tangent à S au point B. Déterminer l'intersection de T et D.

Exercice 17. Soit $a \in \mathbb{R}^*$ et dans l'espace usuel \mathbb{R}^3 la droite \mathcal{D} et le plan \mathcal{P} d'équations respectives : $\mathcal{D}: \frac{x-3}{2} = \frac{y+1}{-3} = \frac{z-6}{a}$ et $\mathcal{P}: x+6y+5z-1=0$. Déterminer a pour que \mathcal{D} soit parallèle à \mathcal{P} .

Exercice 18. Dans l'espace, que représentent séparément en coordonnées sphériques les équations : $\rho = \rho_0$, $\varphi = \varphi_0$, $\theta = \theta_0$ pour $\rho_0 \in \mathbb{R}_+$, $\varphi_0 \in [-\pi, \pi]$, $\theta_0 \in [0, \pi]$ fixés?

Exercice 19. Montrer que pour tous vecteurs \overrightarrow{d} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} de l'espace on a :

$$(\overrightarrow{a}\wedge\overrightarrow{b})\cdot(\overrightarrow{c}\wedge\overrightarrow{d})=\left((\overrightarrow{c}\wedge\overrightarrow{d})\wedge\overrightarrow{d}\right)\cdot\overrightarrow{b}=\begin{vmatrix}\overrightarrow{a}\cdot\overrightarrow{c}&\overrightarrow{a}\cdot\overrightarrow{d}\\\overrightarrow{b}\cdot\overrightarrow{c}&\overrightarrow{b}\cdot\overrightarrow{d}\end{vmatrix}.$$

Exercice 20. Dans un tétraèdre régulier de côté 1, déterminer :

- 1. la hauteur du tétraèdre (distance entre un sommet et son projeté orthogonal sur la face opposée),
- 2. le volume du tétraèdre,
- 3. la distance entre deux arêtes non coplanaires,
- 4. l'angle entre deux faces.

Exercice 21. Déterminer le centre A et le rayon R de la sphère circonscrite au tétraèdre dont les faces ont pour équations cartésiennes x + y + z = 0, x + y - z = 2, x - y + z = 4 et -x + y + z = 6 (on pourra commencer par déterminer les coordonnées des sommets du tétraèdre).

Exercice 22. L'espace est rapporté au repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On considère les points A(1,0,0), B(0,1,0),

- 1. Déterminer le centre Ω , le rayon, et l'équation de la sphère S circonscrite au tétraèdre OABC.
- 2. Déterminer la distance de Ω au plan (ABC).
- 3. En déduire le rayon du cercle circonscrit au triangle ABC.

Exercice 23 (Autour de la perpendiculaire commune). Plaçons-nous dans l'espace. Soient deux droites $\mathcal{D} = (A, \overrightarrow{u})$ et $\mathcal{D}' = (A', \overrightarrow{u'})$ non coplanaires (rappelons que $\mathcal{D} = (A, \overrightarrow{u})$ signifie que \mathcal{D} passe par le point A et est dirigée par le vecteur \overrightarrow{u}).

1) Perpendiculaire commune à deux droites

1. Soit $\overrightarrow{v} = \overrightarrow{u} \wedge \overrightarrow{u'}$.

Justifier que les plans $\mathcal{P} = (A, \overrightarrow{u}, \overrightarrow{v})$ et $\mathcal{P}' = (A', \overrightarrow{u'}, \overrightarrow{v})$ sont bien définis et qu'ils sont sécants suivant une droite Δ qui rencontre orthogonalement \mathcal{D} et \mathcal{D}' .

2. Montrer que Δ est la seule droite sécante avec \mathcal{D} et \mathcal{D}' et orthogonale à \mathcal{D} et à \mathcal{D}' .

 Δ est appelée perpendiculaire commune à \mathcal{D} et \mathcal{D}' .

2) Distance entre deux droites

1. Montrer que Δ coupe \mathcal{D} et \mathcal{D}' en deux points H et H' tels que

$$\forall M \in \mathcal{D}, \forall M' \in \mathcal{D}', \quad \|\overrightarrow{HH'}\| \leq \|\overrightarrow{MM'}\|.$$

La distance $\|\overrightarrow{HH'}\|$ est appelée distance des droites \mathcal{D} et \mathcal{D}' et est notée $d(\mathcal{D}, \mathcal{D}')$.

2. Démontrer que

$$d\left(\mathcal{D},\mathcal{D}'\right) = \frac{\mid \left((\overrightarrow{u} \wedge \overrightarrow{u'}) \mid \overrightarrow{AA'} \right) \mid}{\parallel \overrightarrow{u} \wedge \overrightarrow{u'} \parallel}.$$

3) Une application

Supposons dans cette section que

$$\mathcal{D}: \left\{ \begin{array}{l} x = z - 1 \\ y = 2z + 1 \end{array} \right. \qquad \mathcal{D}': \left\{ \begin{array}{l} y = 3x \\ z = 1 \end{array} \right..$$

- 1. (a) Montrer que l'on peut prendre $A(-1,1,0), A'(0,0,1), \overrightarrow{u} = (1,2,1)$ et $\overrightarrow{u'} = (1,3,0).$
 - (b) Déterminer la distance entre les droites.
 - (c) Déterminer une équation cartésienne de \mathcal{P} et une de \mathcal{P}' .
 - (d) En déduire un système d'équations cartésiennes de Δ . En posant $z = \lambda$ et en résolvant le système, obtenir une équation paramétrique de Δ .
 - (e) Déterminer les coordonnées de H et H' et retrouver le résultat de 1b
- 2. Montrer qu'il existe un couple unique de plans (Q,Q^\prime) tel que :

$$\mathcal{D} \subset Q$$
, $\mathcal{D}' \subset Q'$ et $Q//Q'$.

Former les équations cartésiennes de Q et Q'.