MODULE 1: Introduction to Modeling and Simulation

- A simulation is the imitation of the operation of real-world processes over time.
- A model is a construct that describes the system.

Types of simulation

- 1. Continuous simulation
 - a. Refers to a system that tracks system changes continuously over a period of time.
 - b. A continuous simulation model is in which the state variable changes continuously.
 - c. Eg. Flight simulators, advanced engineering design tools, etc
- 2. Discrete event simulation
 - a. Refers to the simulation where the state variable changes at discrete time.
 - b. Useful when simulation is a queue of events
 - c. The system can change a countable number of times in time.
 - d. Eg. Stress testing, financial investments, etc

Single server queue system

- Calling population
 - o Infinite
 - Meaning if a unit leaves the calling population and joins waiting line, there is no change in the calling population
- Arrival
 - Defines the way customers enter the system
 - o Most arrivals are random with random intervals between two adjacent arrivals.
 - o Arrival is described by a random distribution of intervals aka Arrival Pattern

- Service mechanism
 - o FIFO is used by the server
 - Service mechanism is according to the distribution of service times
 - Service times are randomly distributed according to some distribution
- System capacity
 - Represents the wait queue length accepted by the system
 - o If system capacity is limited, some customers may have to leave without being served
 - Hence, the system capacity is assumed to be infinite.

- Arrival rate
 - Arrival rate must be less than service rate for stable systems. Otherwise, the system will be unbounded and the queue will grow endlessly
- Queue disciplines
 - o FIFO
 - o LIFO
 - SIRO (Serve in random order)
 - o Priority queue
- State
 - Represents the number of units in the system and the state of system (busy/idle)
- Event
 - Something that causes the state of the system to change.

Performance measures

1. Average waiting time

Total waiting time / Total number of customers

2. Probability of customers waiting

Number of customers waiting / Total number of customers

3. Probability of idle server

Idle time of server / total runtime of simulation

4. Average time between arrival

Total time between arrivals / number of arrivals - 1

Average waiting time for those who wait

Total time customer waits in queue / total number of customers who wait

6. Average time spent in system

Total time spent in system / total number of customers

MODULE 2: Random Number Generation

Need for random numbers

- 1. Random numbers are essential for mathematical modeling
- 2. Used in simulation of all discrete systems
- 3. Helps demonstrate the uncertainty of simulation models using random inputs

Properties Random Numbers

Uniformity: If the interval (0, 1) is divided into 'n' classes or subintervals of equal length, the expected number of observations in each interval is N/n, where N is the total number of observations.

Independence: The probability of observing a value in a particular interval is independent of the previous drawn value.

Problems faced in generating random numbers

- 1. Numbers may not be uniformly distributed
- 2. Numbers may not be independent
- 3. Mean of the numbers may be too high or low
- 4. Variance of the numbers may be too high or low

Insufficient period between random numbers. (Period: number of elements until numbers start to repeat with a given sequence)

Criteria for random number generator

- 1. Routine should be fast
- Routine should be portable
- 3. Should have a sufficiently large period
- 4. Routine should be replicable
- 5. Generated random numbers should closely replicate the ideal properties of a random number: Uniformity and Independence

Linear Congruential Method

Generate a sequence of random integers X1, X2, ... between 0 and m-1

 $X_{i+1} = (aX_i + c) \mod m$, i=0,1,2,...

X₀: seed a : multiplier c : increment

If $c=0 \rightarrow Multiplicative$ generator $c!=0 \rightarrow Mixed$ generator

m: modulus

Multiple Linear Congruential Method

Given will be:

 K, m_1, a_1, m_2, a_2

To do:

1. Select X₀ in range [1,m₁-1] Select X₁ in range [1,m₂-1]

Set j=0

2. Evaluate for each generator

$$X_{1,j+1} = a_1 X_{1,j} \mod m_1$$

$$X_{2,j+1} = a_2 X_{2,j} \mod m_2$$

- 3. Set $X_{j+1} = (X_{1,j+1} X_{2,j+1}) \mod m_1-1$
- 4. Return

$$\begin{split} R_{j+1} &= X_{j+1}/m_1 & \text{ if } X_i > 0 \\ &= m_1 \text{-} 1/m_1 & \text{ if } X_i = 0 \end{split}$$

5. Set j = j+1 and go to step 2

Monte Carlo Simulation

- Simulation that allows taking risk into consideration for decision making
- AKA Static simulation model. Represents the model at a particular point in time
- Eg. Simulating probabilities of rolling a dice

Tests on Random Numbers

KS TEST

158 Simulation and Modeling / Computer Simulation and Modeling

[II] Algorithm

The test consists of the following steps

(i) Define the hypothesis for testing the uniformity as:

$$H_0: R_i \sim U[0,1]$$

 $H_1: R_i \neq U[0,1]$

(ii) Rank the data from smallest to largest

$$R_{(1)} \leq R_{(2)} \leq \ldots \leq R_{(N)}$$

(iii) Compute D^+ and D^-

$$D^{+} = \max_{1 \le i \le N} \left\{ \frac{i}{N} - R_{(i)} \right\}$$
$$D^{-} = \max_{1 \le i \le N} \left\{ R_{(i)} - \frac{i-1}{N} \right\}$$

- (v) Determine the critical value, D_{α} for the significance level and the sample size N given.
- (vi) If $D \leq D_{\alpha}$ accept, otherwise reject H_0 .

Draw table

i	R_{i}	$D^+ = i/N - R_i$	$D^{-} = R_i - (i-1)/N$

Max D⁺ here

Max D here

MARK NEGATIVE VALUES AS - IN TABLE

Example:

	X=0.1	$D \Rightarrow D = D = 0$	€ N=5
W Sort	mybrus		
0.0	5, 0.14	, 0.44, 0.81, 0.93	3
2) Table	. \		
i	l Ri	1/N - Ri	Ri - (i-1)/H
1 9	0.05	0.15	0-05
2	0.14	0.26	
3 2	0.44	0.16	0.04
4	0.81	-	0.21
3 4	0-93	6.07	0.13
		max = D=0.26	max=D = 0.21
,	D= W	ax (D+, D-)	
	= 0		
	Sin 1 4-	D < Da (0.	26 < 0.565)
		accepted.	
	18 12		
	THA!	Z; ~ V [0,1]	

CHI SQUARE TEST

Chi-Square Test

- , It is used to test the uniformity within a data set or to determine the probability of a dependency relationship between two or more distinct data set.
- It tests a null hypothesis that the relative frequencies of occurrence of observed events follow a specified frequency distribution.
- . It is valid only for large samples say $N \ge 50$.

Algorithm:

(i) Define the hypothesis for testing the uniformity as :

$$H_0: R_i \sim U[0,1]$$

 $H_1: R_i \neq U[0,1]$

(ii) Divide the total number of observation (N) into equally numbered classes $(n),[a_0,\,a_1)...[a_{n-1},\,a_n).$ n should be chosen in such a way that $E_i(=N/n)\geq 5$.

(iii) Compute the sample test statistics

$$\chi_0^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

where O_i is the observed number in the ith class E_i is the expected number in the ith class n is the number of classes.