Lógica y proposiciones

Si un número es par entonces su siguiente es impar.

$$p(x)$$
: x es par
 $q(x)$: $x + 1$ es $impar$
 $(\forall x)(p(x) \rightarrow q(x))$

El número 10 tiene divisores distintos de 1, -1, 10 y -10

$$p(x)$$
: $x \neq 1$

$$q(x)$$
: $x \neq -1$

$$r(x)$$
: $x \neq 10$

$$s(x): x \neq -10$$

$$t(x)$$
: x divide a 10

$$(\exists x)(p(x) \land q(x) \land r(x) \land s(x) \land t(x))$$

Si un número es negativo entonces su cuadrado es positivo.

$$p(x)$$
: $x < 0$

$$q(x): x^2 > 0$$

$$(\forall x)(p(x) \to q(x))$$

Existe un número que es primo y es par.

$$p(x)$$
: x es $primo$

$$q(x)$$
: x es par

$$(\exists x)(p(x) \land q(x))$$

Si un número es par entonces su triple es múltiplo de 6

$$p(x) = x \text{ es múltiplo de 2}$$

$$q(x) = 3x \text{ es múltiplo de 6}$$

$$(\forall x)(p(x) \rightarrow q(x))$$

Contrario:

$$(\forall x)(\neg p(x) \rightarrow \neg q(x))$$

Si un número no es par entonces su triple no es múltiplo de 6.

Recíproco:

$$(\forall x)(q(x) \to p(x))$$

Si el triple de un número es múltiplo de 6 entonces el número era par.

Contrarrecíproco:

$$(\forall x)(\neg q(x) \to \neg p(x))$$

Si el triple de un número no es múltiplo de 6 entonces el número no era par.

p	q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

p	q	$q \rightarrow p$
V	V	V
V	F	V
F	V	F
F	F	V

p	q	$\neg p \to \neg q$
V	٧	V
٧	H	V
F	٧	F
F	F	V

p	q	$\neg q \to \neg p$
V	V	V
>	H	F
F	V	V
F	F	V

Método directo

Método indirecto (contrarrecíproco)

p	q	$\neg (p \to q)$
V	V	F
V	F	V
F	V	F
F	F	F

$$\begin{array}{c|cccc} p & q & p \land \neg q \\ \hline V & V & F \\ V & F & V \\ \hline F & V & F \\ \hline F & F & F \\ \end{array}$$

Método del absurdo

Demostraciones

Método directo:

Si un número es par entonces su triple es múltiplo de 6

$$p(x) = x \text{ es múltiplo de 2}$$

$$q(x) = 3x \text{ es múltiplo de 6}$$

$$(\forall x)(p(x) \rightarrow q(x))$$

Supongamos que x es par. Entonces, existe un $m \in \mathbb{Z}$ tal que x = 2. m

Si calculamos ahora 3x, tenemos que 3x = 3. (2.m) = 6.m, es decir, que 3x es múltiplo de 6, porque $m \in \mathbb{Z}$.

Por lo tanto, probamos el enunciado.

Método indirecto/contrarrecíproco:

$$p(x) = x \text{ es múltiplo de 2}$$

 $q(x) = 3x \text{ es múltiplo de 6}$
 $(\forall x)(\neg q(x) \rightarrow \neg p(x))$

Si el triple de un número no es múltiplo de 6 entonces el número no era múltiplo de 2.

Supongamos que el triple del número no es múltiplo de 6, entonces tenemos que

$$3x \neq 6.m$$

Para todos los números $m \in \mathbb{Z}$.

Si dividimos a ambos lados por 3, nos queda que

$$x \neq 2.m$$

Es decir, que x no es par.

Por lo tanto, probamos el enunciado.

Si un número es par entonces su triple es múltiplo de 6

$$p(x) = x \text{ es múltiplo de 2}$$

$$q(x) = 3x \text{ es múltiplo de 6}$$

$$(\forall x)(p(x) \rightarrow q(x))$$

Al tomar la negación de la proposición anterior tenemos:

$$\neg(\forall x) (p(x) \to q(x)) = (\exists x) (p(x) \land \neg q(x))$$

Si probamos que esto es falso, entonces lo opuesto, es decir, la proposición original, será verdadero.

Método del absurdo:

Si un número es par entonces su triple es múltiplo de 6

$$p(x) = x \text{ es múltiplo de 2}$$

$$q(x) = 3x \text{ es múltiplo de 6}$$

$$(\forall x) (p(x) \rightarrow q(x))$$

Su negación es:

$$(\exists x) (p(x) \land \neg q(x))$$

Existe un número que es par y su triple no es múltiplo de 6.

Supongamos que existe un número x que es par y su triple no es múltiplo de 6. Entonces sabemos que:

• Existe un $m \in \mathbb{Z}$ tal que x = 2.m (1)

• Para todo $n \in \mathbb{Z}$, $3x \neq 6$. n (2)

Si multiplicamos la igualdad (1) por 3, obtenemos

$$3.x = 3.(2.m)$$

3. x = 6. m

Pero esto contradice la afirmación (2), con lo cual es un absurdo y hemos demostrado que la afirmación es falsa.

Por lo tanto, su negación, $(\forall x)(p(x) \rightarrow q(x))$, es verdadera.

Probar que la suma de cuatro números enteros consecutivos es par.

$$p(x) = x \text{ es entero}$$

$$q(x) = x + (x + 1) + (x + 2) + (x + 3) \text{ es par}$$

$$(\forall x)(p(x) \rightarrow q(x))$$

Método directo:

Sea $x \in \mathbb{Z}$. Entonces tenemos que

$$x + (x + 1) + (x + 2) + (x + 3) = 4x + 6 = 2(2x + 3)$$

Y este número es par porque 2x + 3 es un número entero cuando $x \in \mathbb{Z}$.

Probar que la suma de cuatro números enteros consecutivos es par.

$$p(x) = x \text{ es entero}$$

$$q(x) = x + (x+1) + (x+2) + (x+3) \text{ es par}$$

$$(\forall x)(p(x) \to q(x))$$

Método del absurdo:

Supongamos que $x \in \mathbb{Z}$ y que x + (x + 1) + (x + 2) + (x + 3) no es par. Es decir, tenemos que:

- $x \in \mathbb{Z}$
- $x + (x + 1) + (x + 2) + (x + 3) \neq 2.m$, para todo $m \in \mathbb{Z}$

Si hacemos la cuenta, tenemos que:

$$x + (x + 1) + (x + 2) + (x + 3) \neq 2.m$$

 $4x + 6 \neq 2.m$
 $2(2x + 3) \neq 2.m$
 $2x + 3 \neq m$

Y esto es un absurdo, porque $2x + 3 \in \mathbb{Z}$ ya que $x \in \mathbb{Z}$. Por lo tanto, la afirmación es falsa y su negación debe ser verdadera.

Matemática I – Comisión 2B

Método indirecto/contrarrecíproco:

Supongamos que x + (x + 1) + (x + 2) + (x + 3) no es par, es decir, que $x + (x + 1) + (x + 2) + (x + 3) \neq 2$. m, para todo $m \in \mathbb{Z}$.

Si hacemos la cuenta, tenemos que:

$$x + (x + 1) + (x + 2) + (x + 3) \neq 2.m$$

$$4x + 6 \neq 2.m$$

$$2(2x + 3) \neq 2.m$$

$$2x + 3 \neq m$$

$$2x \neq m - 3$$

$$x \neq \frac{m - 3}{2}$$

Y esto vale para todos los $m \in \mathbb{Z}$. Entonces, esto quiere decir que $x \notin \mathbb{Z}$, ya que si x fuera un número entero, lo podríamos escribir como $x = \frac{(2x+3)-3}{2}$, donde 2x + 3 sería un número entero. Pero vimos que esa igualdad no se cumple. Por lo tanto, probamos la implicación contrarrecíproca.

Un **conjunto** es una colección de elementos.

Conjuntos

Extensión
$$\longrightarrow$$
 $A = \{a, e, i, o, u\}$

Comprensión
$$\longrightarrow$$
 $A = \{x \mid x \text{ es una vocal}\}$

Diagrama de Venn

 $\mathbf{B} = \{x \mid x \text{ es una letra de la palabra murciélago}\}$

$$\mathbf{B} = \{m, u, r, c, i, e, l, a, g, o\}$$

El **conjunto universal** es un conjunto que contiene a todos los subconjuntos con los que estamos trabajando en un problema. Se suele denominar con la letra U.

