COM3110/4115/6115: Text Processing

Information Retrieval: Evaluating IR systems

Mark Hepple

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Web Search Ranking
- Evaluation

Evaluation of IR systems – Why?

- There are various retrieval models/algorithms/IR systems
 - How determine which is the best?
- What is the best component/technique for:
 - Ranking? (cosine, dot-product, ...)
 - ♦ Term selection? (stopword removal, stemming, ...)
 - ♦ Term weighting? (binary, TF, TF.IDF, ...)
- How far down the ranked list will a user need to look to find some/all relevant items?

Evaluation – Relevance

- Evaluation of effectiveness in relation to the relevance of the documents retrieved
- Relevance is judged in a binary way, even if it is in fact a continuous judgement
 - Impossible when the task is to rank thousands or millions of options: too subjective, too difficult
- Other factors could also be evaluated:
 - User effort/ease of use
 - Response time
 - Form of presentation

Evaluation – Relevance (Benchmarking)

- In IR research/development scenarios, one cannot afford humans looking at results of every system/variant of system
- Instead, performance measured/compared using a pre-created benchmarking corpus, a.k.a. gold-standard dataset, which provides:
 - a standard set of documents, and queries
 - ◇ a list of documents judged relevant for each query, by human subjects
 - relevance scores, usually treated as binary
- Example: TREC IR evaluation corpora (http://trec.nist.gov/)
 - ◆ TREC has run annually since 1991

Evaluation of IR systems – Metrics

• AIM:

- 1. get as much good stuff as possible
- 2. get as little junk as possible
- The two aspects of this aim are addressed by two separate measures — recall and precision

	Relevant	Non-relevant	Total
Retrieved	А	В	A+B
Not retrieved	С	D	C+D
Total	A+C	B+D	A+B+C+D

- Recall: $\frac{A}{A+C}$ = proportion of relevant documents returned
- Precision: $\frac{A}{A+B}$ = proportion of retrieved documents that are relevant
 - ♦ Both measures have range: [0...1]

Retrieved vs. Relevant Documents

 Precision and Recall address the relation between the retrieved and relevant sets of documents

 Various situations that arise can be pictorially represented in these terms

• High precision, low recall:

Low precision, low recall:

• Low precision, high recall:

• High precision, high recall:

Trade-off Between Recall and Precision

- There is always a trade-off between precision and recall
 - For IR: as more results are considered down the list, precision generally drops, while recall generally increases

Recall and Precision: Example

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

- All documents: A+B+C+D=130
- Relevant documents for query: A+C=28

Recall and Precision: System 1

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$
 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

- System 1 retrieves 25 items: $A_1+B_1=25$
- Relevant and retrieved items: $A_1 = 16$
- Relevant documents for query: $A_1+C_1=28$

Recall and Precision: System 2

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$
 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

- System 2 retrieves 15 items: $A_2+B_2=15$
- Relevant and retrieved items: $A_2 = 12$
- Relevant documents for query: $A_2 + C_2 = 28$

Recall and Precision: Which is the better system?

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$
 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$
 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

Which did better: System 1 or System 2?

F-measure

- F measure (also called F1):
 - combines precision and recall into a single figure
 - gives equal weight to both:

$$F = \frac{2PR}{P + R}$$

- F is a harmonic mean:
 - penalises low performance in one value more than arithmethic mean:

	values	mean	F
e.g.	P=0.5, R=0.5	0.5	0.5
	P=0.1, R=0.9	0.5	0.18

	R	P	F
System 1	.57	.64	0.603
System 2	.43	.8	0.559

- Related measure F_{β} :
 - \diamond allows user to determine relative importance of P vs. R, by varying β
 - \diamond *F1* is a *special case* of F_{β} (where $\beta = 1$)

Precision at a cutoff

 Measures how well a method ranks relevant documents before non-relevant documents

• E.g. there are $\frac{5}{6}$ relevant documents = $\frac{d1}{d2}$, $\frac{d3}{d4}$, $\frac{d5}{d5}$ – compute

precision at top 5

	System 1		Systei	m 2	System 3	
	d1:	$\sqrt{}$	d10:	×	d6:	×
	d2:	$\sqrt{}$	d9:	X	d1:	$\sqrt{}$
	d3:	$\sqrt{}$	d8:	X	d2:	$\sqrt{}$
	d4:	$\sqrt{}$	d7:	×	d10:	×
rank 5:	d5:	$\sqrt{}$	d6:	×	d9:	×
	d6:	×	d1:	$\sqrt{}$	d3:	
	d7:	×	d2:	$\sqrt{}$	d5:	$\sqrt{}$
	d8:	×	d3:	$\sqrt{}$	d4:	$\sqrt{}$
	d9:	×	d4:	$\sqrt{}$	d7:	×
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×
precision at rank 5:	1.0)	0.0)	0.4	ļ
precision at rank 10:	0.5		0.5		0.5	-

Precision at a cutoff (ctd)

• Note precision at top 5 for System 1: inner order of relevant documents doesn't matter as long as they are all relevant

	Syste	System 1		System 2		m 3
	d5:	$\sqrt{}$	d10:	×	d6:	×
	d4:	$\sqrt{}$	d9:	X	d1:	$\sqrt{}$
	d3:	$\sqrt{}$	d8:	×	d2:	$\sqrt{}$
	d1:	$\sqrt{}$	d7:	X	d10:	×
rank 5:	d2:	$\sqrt{}$	d6:	×	d9:	X
	d6:	X	d1:	$\sqrt{}$	d3:	
	d7:	X	d2:	$\sqrt{}$	d5:	$\sqrt{}$
	d8:	X	d3:	$\sqrt{}$	d4:	$\sqrt{}$
	d9:	×	d4:	$\sqrt{}$	d7:	×
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×
precision at rank 5:	1.0)	0.0)	0.4	ļ
precision at rank 10:	0.5	<u>, </u>	0.5	5	0.5)

Average Precision

- Aggregates many precision numbers into one evaluation figure
- Precision computed for each point a relevant document is found, and figures averaged

	System 1			S	System 2			System 3		
	d1:		(1/1)	d10:	×		d6:	×		
	d2:	$\sqrt{}$	(2/2)	d9:	×		d1:	$\sqrt{}$	(1/2)	
	d3:	$\sqrt{}$	(3/3)	d8:	×		d2:	$\sqrt{}$	(2/3)	
	d4:	$\sqrt{}$	(4/4)	d7:	×		d10:	×		
	d5:	$\sqrt{}$	(5/5)	d6:	×		d9:	×		
	d6:	X		d1:		(1/6)	d3:		(3/6)	
	d7:	×		d2:	$\sqrt{}$	(2/7)	d5:	$\sqrt{}$	(4/7)	
	d8:	×		d3:	$\sqrt{}$	(3/8)	d4:	$\sqrt{}$	(5/8)	
	d9:	X		d4:	$\sqrt{}$	(4/9)	d7:	×		
	d10:	×		d5:	$\sqrt{}$	(5/10)	d8:	×		
precision	n at ran	ık 5:	1.0			0.0			0.4	
precision	at rank	<i>10</i> :	0.5			0.5			0.5	
-	avg. p		1.0			0.354			0.573	