Restricted Languages - de finite clauses and their Specialized Proof Systems - SLD resolution Selecting an atom Definite clauses using a Linear strategy (backward chaining, top-down reasoning)

# Simple language: propositional definite clauses

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form  $b_1 \wedge b_2$  where  $b_1$  and  $b_2$  are bodies.
- A definite clause is an atom or is a rule of the form  $h \leftarrow b$  where h is an atom and b is a body.
- A knowledge base is a set of definite clauses

# Electrical Environment



# Representing the Electrical Environment

 $light_{-}l_{1}$ .

 $light_{-}l_{2}$ .

 $down_{-}s_{1}$ .

 $up_{-}s_{2}$ .

 $up_{-}s_{3}$ .

 $ok_-l_1$ .

 $ok_{-}l_{2}$ .

 $ok_-cb_1$ .

 $ok_-cb_2$ .

live\_outside.

$$lit_{-}l_{1} \leftarrow live_{-}w_{0} \wedge ok_{-}l_{1}$$

$$live_{-}w_0 \leftarrow live_{-}w_1 \wedge up_{-}s_2$$
.

$$live_{-}w_0 \leftarrow live_{-}w_2 \wedge down_{-}s_2$$
.

$$live_{-}w_1 \leftarrow live_{-}w_3 \wedge up_{-}s_1$$
.

$$live_{-}w_2 \leftarrow live_{-}w_3 \wedge down_{-}s_1$$
.

$$lit_{-}l_{2} \leftarrow live_{-}w_{4} \wedge ok_{-}l_{2}$$
.

$$live\_w_4 \leftarrow live\_w_3 \land up\_s_3$$
.

$$live_-p_1 \leftarrow live_-w_3$$
.

$$live_{-}w_3 \leftarrow live_{-}w_5 \wedge ok_{-}cb_1$$
.

$$live_-p_2 \leftarrow live_-w_6$$
.

$$live_{-}w_6 \leftarrow live_{-}w_5 \wedge ok_{-}cb_2.$$

$$live\_w_5 \leftarrow live\_outside$$
.



# Definite Clause

 $f_{act} = 0$ b, Ab2A...Abm -> h -> rule = 7(b, Ab2 A... Abm) V A = 7b, V7b, V... V7bm Vh dansel form clausal form

Definite clauses are clauses with exactly one positive literal.

#### **Proofs**

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure,  $KB \vdash g$  means g can be derived from knowledge base KB.
- Recall  $KB \models g$  means g is true in all models of KB.
- A proof procedure is sound if  $KB \vdash g$  implies  $KB \models g$ .
- A proof procedure is complete if  $KB \models g$  implies  $KB \vdash g$ .



# Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens:

If " $h \leftarrow b_1 \land ... \land b_m$ " is a clause in the knowledge base, and each  $b_i$  has been derived, then h can be derived.

This is forward chaining on this clause. (This rule also covers the case when m = 0.)

# Bottom-up proof procedure

 $KB \vdash g$  if  $g \in C$  at the end of this procedure:

$$C := \{\};$$
**repeat**

$$\mathbf{select} \text{ clause "} h \leftarrow b_1 \wedge \ldots \wedge b_m \text{" in } KB \text{ such that}$$

$$b_i \in C \text{ for all } i, \text{ and}$$

$$h \notin C;$$

$$C := C \cup \{h\}$$

until no more clauses can be selected.

# Example

$$a \leftarrow b \land c$$
.

$$a \leftarrow e \wedge f$$
.

$$b \leftarrow f \wedge k$$
.

$$c \leftarrow e$$
.

$$d \leftarrow k$$
.

e.

$$f \leftarrow j \land e$$
.

$$f \leftarrow c$$
.

$$j \leftarrow c$$
.



# Soundness of bottom-up proof procedure

### If $KB \vdash g$ then $KB \models g$ .

- Suppose there is a g such that  $KB \vdash g$  and  $KB \not\models g$ .
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h. Suppose h isn't true in model I of KB.
- There must be a clause in KB of form

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

Each  $b_i$  is true in I. h is false in I. So this clause is false in I. Therefore I isn't a model of KB.

Contradiction.



#### Fixed Point

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let I be the interpretation in which every element of the fixed point is true and every other atom is false.
- I is a model of KB. Proof: suppose  $h \leftarrow b_1 \land \ldots \land b_m$  in KB is false in I. Then h is false and each  $b_i$  is true in I. Thus h can be added to C. Contradiction to C being the fixed point.
- I is called a Minimal Model.



# Completeness

#### If $KB \models g$ then $KB \vdash g$ .

- Suppose  $KB \models g$ . Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus  $KB \vdash g$ .



# Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of KB.

An answer clause is of the form:

$$yes \leftarrow a_1 \land a_2 \land \ldots \land a_m$$

The SLD Resolution of this answer clause on atom  $a_i$  with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \wedge \cdots \wedge a_{i-1} \wedge b_1 \wedge \cdots \wedge b_p \wedge a_{i+1} \wedge \cdots \wedge a_m.$$



# SLD Resolution

 $a_i \leftarrow b_1 \wedge b_2 \wedge \dots \wedge b_k$   $yes \leftarrow a_1 \wedge \dots \wedge a_i \wedge \dots \wedge a_n$   $yes \leftarrow a_1 \wedge \dots \wedge a_i \wedge \dots \wedge a_n$ 

ai V 7b, V ... V 7an

yes V 7a, V ... V 7b, V 7b, V 7b, V ... V 7an

#### **Derivations**

- An answer is an answer clause with m=0. That is, it is the answer clause  $yes \leftarrow$ .
- A derivation of query " $?q_1 \wedge ... \wedge q_k$ " from KB is a sequence of answer clauses  $\gamma_0, \gamma_1, ..., \gamma_n$  such that
  - ▶  $\gamma_0$  is the answer clause  $yes \leftarrow q_1 \land \ldots \land q_k$ ,
  - $\triangleright \gamma_i$  is obtained by resolving  $\gamma_{i-1}$  with a clause in KB, and
  - $ightharpoonup \gamma_n$  is an answer.



# Top-down definite clause interpreter

```
To solve the query ?q_1 \wedge \ldots \wedge q_k:

ac := "yes \leftarrow q_1 \wedge \ldots \wedge q_k"

repeat

select atom a_i from the body of ac;

choose clause C from KB with a_i as head;

replace a_i in the body of ac by the body of C

until ac is an answer.
```

# Example: successful derivation

$$a \leftarrow b \land c$$
.  $a \leftarrow e \land f$ .  $b \leftarrow f \land k$ .  $c \leftarrow e$ .  $d \leftarrow k$ .  $e$ .  $f \leftarrow j \land e$ .  $f \leftarrow c$ .  $j \leftarrow c$ .

Query: ?a

$$\gamma_0$$
:  $yes \leftarrow a$   $\gamma_4$ :  $yes \leftarrow e$   $\gamma_1$ :  $yes \leftarrow e \land f$   $\gamma_5$ :  $yes \leftarrow f$   $\gamma_3$ :  $yes \leftarrow c$ 

# Example: failing derivation

$$a \leftarrow b \wedge c$$
.  $a \leftarrow e \wedge f$ .  $b \leftarrow f \wedge k$ .  $c \leftarrow e$ .  $d \leftarrow k$ .  $e$ .  $f \leftarrow j \wedge e$ .  $f \leftarrow c$ .  $j \leftarrow c$ .

Query: ?a

$$\gamma_0$$
:  $yes \leftarrow a$   $\gamma_4$ :  $yes \leftarrow e \land k \land c$   
 $\gamma_1$ :  $yes \leftarrow b \land c$   $\gamma_5$ :  $yes \leftarrow k \land c$   
 $\gamma_2$ :  $yes \leftarrow f \land k \land c$   
 $\gamma_3$ :  $yes \leftarrow c \land k \land c$ 

# Search Graph for SLD Resolution

