WEST Search History

Hide Items Restore Clear Cancel

DATE: Friday, September 02, 2005

Hide?	<u>Set</u> Name	Query	<u>Hit</u> <u>Count</u>
		SPT; PLUR=YES; OP=OR	
	L2	L1 and 3D same shape same model	4
	L1	(cut or cutting) same (portion or image or region or area) and parameter and (altering or altered or alter) same parameter	1776

END OF SEARCH HISTORY

WEST Search History

Hide Items Restore Clear Cancel

DATE: Friday, September 02, 2005

Hide?	<u>Set</u> Name	Query	<u>Hit</u> Count		
	DB=P	GPB,USPT,USOC,EPAB,JPAB,DWPI; PLUR=YES; OP=OR			
	L24	L22 and (alter or altered) and parameter	27		
	L23	L22 and altered same parameter	0		
	L22	111 and (omitted or omitting) same (portion or area or region) and fit or (join or joined) same 3D same shape	457		
	L21	L20 and altered same parameter	2		
	L20	L19 and 345/\$.ccls.	219		
	L19	(omitted or omitting or cut or cutting) same (portion or area or region) and image and 3D and parameter and (fit or join\$)	2014		
	L18	3d same shape and (omit or omitting) same portion and (modified or modify) and parameter	6		
	L17	3d same shape and (omit or omitting) same portion and fit and joint and parameter	0		
	L16	3d same shape and (omit or omitting) same portion and fit and joint and altered same parameter	0		
	L15	111 and (ormitted or omitting) same (portion or area or region) and altered same parameter	0		
	L14	111 and (ormitted or omitting) same (portion or area or region) and curve same surface and fit and parameter	0		
	L13	111 and (ormitted or omitting) same (portion or aera or region) and curve same surface and fit and parameter	0		
	L12	345/442.ccls.	354		
	L11	345/441.ccls.	940		
	L10	345/642.ccls.	47		
	L9	345/641.ccls.	67		
	L8	345/631.ccls.	11		
	L7	345/630.ccls.	170		
	L6	345/629.ccls.	965		
	L5	345/626.ccls.	63		
	L4	345/620.ccls.	220		
	L3	345/619.ccls.	966		
	DB=USPT; $PLUR=YES$; $OP=OR$				
	L2	L1 and joint and fit and (modify or modified)	21		
		(omit or omitted or omitting or cut or cutting) same (portion or area or region)			

L1 and curve same surface and altered same parameter

89

END OF SEARCH HISTORY

PALM INTRANET

Day: Friday Date: 9/2/2005 Time: 15:09:23

Inventor Information for 09/749624

Inventor Name	City		State/Country	
FUJIWARA, KOICHI	OTSU-SHI		JAPAN	
TOYAMA, OSAMU	KAKOGAWA-SHI		JAPAN	
FUJII, EIRO	OSAKA		JAPAN	
Appin Info Contents Petition In	fo Atty/Agent Info	Continu	ity Data	Foreign Data
Search Another: Application#	Search o	r Patent#		Search
PCT /	Search or Po	G PUBS#		Search
Attorney Docket #	£	Search		
Bar Code #	Search			

To go back use Back button on your browser toolbar.

Back to PALM | ASSIGNMENT | OASIS | Home page

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: The ACM Digital Library The Guide

3d shape generating and omitted portion and curve surface an

GEACH DIG TALLIBRARI

Feedback Report a problem Satisfaction survey

Terms used 3d shape generating and omitted portion and curve surface and altered parameter Found 37,616 of 160,906

Sort results

Best 200 shown

Display

results

relevance expanded form

Save results to a Binder 2 Search Tips Open results in a new

Try an Advanced Search Try this search in The ACM Guide

Results 1 - 20 of 200

window

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

Relevance scale

Status report of the graphic standards planning committee

Computer Graphics staff

August 1979 ACM SIGGRAPH Computer Graphics, Volume 13 Issue 3

Full text available: pdf(15.01 MB)

Additional Information: full citation, references, citings

2 Status report of the graphic standards planning committee of ACM/SIGGRAPH: Stateof-the-art of graphic software packages

Compuater Graphics staff

September 1977 ACM SIGGRAPH Computer Graphics, Volume 11 Issue 3

Full text available: pdf(9.03 MB)

Additional Information: full citation, references

Local control of bias and tension in beta-splines

Brian A. Barsky, John C. Beatty

July 1983 ACM SIGGRAPH Computer Graphics, Proceedings of the 10th annual conference on Computer graphics and interactive techniques, Volume 17 Issue 3

Full text available: pdf(1.37 MB)

Additional Information: full citation, abstract, references, citings, index terms

The Beta-spline introduced recently by Barsky is a generalization of the uniform cubic Bspline: parametric discontinuities are introduced in such a way as to preserve continuity of the unit tangent and curvature vectors at joints (geometric continuity) while providing bias and tension parameters, independent of the position of control vertices, by which the shape of a curve or surface can be manipulated. Using a restricted form of quintic Hermite interpolation, it is possi ...

Keywords: Beta-splines, computer-aided design, geometric continuity, polynomial splines, tension

Local Control of Bias and Tension in Beta-splines Brian A. Barsky, John C. Beatty April 1983 ACM Transactions on Graphics (TOG), Volume 2 Issue 2

Additional Information: full citation, references, citings, index terms Full text available: pdf(1.31 MB)

Graphics Programming Using the Core System

R. Daniel Bergeron, Peter R. Bono, James D. Foley

December 1978 ACM Computing Surveys (CSUR), Volume 10 Issue 4

Additional Information: full citation, references, citings, index terms Full text available: Republic (2.92 MB)

Computer-generated pen-and-ink illustration

Georges Winkenbach, David H. Salesin

July 1994 Proceedings of the 21st annual conference on Computer graphics and interactive techniques

Full text available: pdf(1.16 MB) Additional Information: full citation, abstract, references, citings, index

This paper describes the principles of traditional pen-and-ink illustration, and shows how a great number of them can be implemented as part of an automated rendering system. It introduces "stroke textures," which can be used for achieving both texture and tone with line drawing. Stroke textures also allow resolution-dependent rendering, in which the choice of strokes used in an illustration is appropriately tied to the resolution of the target medium. We demonstrate these techn ...

Keywords: architectural rendering, comprehensible rendering, non-photorealistic rendering, prioritized stroke textures, resolution-dependent rendering, texture indication

The Quadtree and Related Hierarchical Data Structures

Hanan Samet

June 1984 ACM Computing Surveys (CSUR), Volume 16 Issue 2

Additional Information: full citation, references, citings, index terms Full text available: pdf(4.87 MB)

Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research

Additional Information: full citation, abstract, references, index terms Full text available: pdf(4.21 MB)

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

Bioinformatics—an introduction for computer scientists Jacques Cohen

June 2004 ACM Computing Surveys (CSUR), Volume 36 Issue 2

Full text available: pdf(261.56 KB) Additional Information: full citation, abstract, references, index terms

The article aims to introduce computer scientists to the new field of bioinformatics. This area has arisen from the needs of biologists to utilize and help interpret the vast amounts

of data that are constantly being gathered in genomic research---and its more recent counterparts, proteomics and functional genomics. The ultimate goal of bioinformatics is to develop in silico models that will complement in vitro and in vivo biological experiments. The article provides a bird's eye view of the ...

Keywords: DNA, Molecular cell biology, RNA and protein structure, alignments, cell simulation and modeling, computer, dynamic programming, hidden-Markov-models, microarray, parsing biological sequences, phylogenetic trees

10 Octree based assembly sequence generation

Raymond C. W. Sung, Jonathan R. Corney, Doug E. R. Clark

May 2001 Proceedings of the sixth ACM symposium on Solid modeling and applications

Full text available: ndf(808.17 KB) Additional Information: full citation, abstract, references, index terms

This paper describes a system for the automatic recognition of assembly features and the generation of assembly/disassembly sequences. The paper starts by reviewing the nature and use of assembly features. One of the conclusions drawn from this survey is that the majority of assembly features involve sets of spatially adjacent faces. Two principle types of adjacency relationships are identified and an algorithm is presented for identifying assembly features which arise from "spatial < ...

Keywords: assembly features, assembly planning, feature recognition, geometric modelling, octree representation

11 Planar Geometric Projections and Viewing Transformations

Ingrid Carlbom, Joseph Paciorek

December 1978 ACM Computing Surveys (CSUR), Volume 10 Issue 4

Full text available: pdf(2.81 MB) Additional Information: full citation, references, citings, index terms

12 Computing curricula 2001

September 2001 Journal on Educational Resources in Computing (JERIC)

Full text available: pdf(613.63 KB) Additional Information: full citation, references, citings, index terms html(2.78 KB)

13 Three dimensional apparel CAD system

Hidehiko Okabe, Haruki Imaoka, Takako Tomiha, Haruo Niwaya

July 1992 ACM SIGGRAPH Computer Graphics, Proceedings of the 19th annual conference on Computer graphics and interactive techniques, Volume 26 Issue 2

Full text available: mpdf(4.71 MB) Additional Information: full citation, references, citings, index terms

14 Three-dimensional medical imaging: algorithms and computer systems

M. R. Stytz, G. Frieder, O. Frieder

December 1991 ACM Computing Surveys (CSUR), Volume 23 Issue 4

Full text available: pdf(7.38 MB) Additional Information: full citation, references, citings, index terms, review

Keywords: Computer graphics, medical imaging, surface rendering, three-dimensional imaging, volume rendering

15 Geometric compression through topological surgery

Gabriel Taubin, Jarek Rossignac

April 1998 ACM Transactions on Graphics (TOG), Volume 17 Issue 2

Full text available: mbdf(8.98 MB)

Additional Information: full citation, abstract, references, citings, index terms

The abundance and importance of complex 3-D data bases in major industry segments, the affordability of interactive 3-D rendering for office and consumer use, and the exploitation of the Internet to distribute and share 3-D data have intensified the need for an effective 3-D geometric compression technique that would significantly reduce the time required to transmit 3-D models over digital communication channels, and the amount of memory or disk space required to store the models. Because ...

Keywords: 3D mesh compression, VRML, geometry compression

16 Special issue: Game-playing programs: theory and practice

M. A. Bramer

April 1972 ACM SIGART Bulletin, Issue 80

Full text available: pdf(9.23 MB)

Additional Information: full citation, abstract

This collection of articles has been brought together to provide SIGART members with an overview of Artificial Intelligence approaches to constructing game-playing programs. Papers on both theory and practice are included.

17 Dissertation Abstracts in Computer Graphics

January 1992 ACM SIGGRAPH Computer Graphics, Volume 26 Issue 1

Full text available: pdf(2.53 MB)

Additional Information: full citation

18 Projective and view-dependent textures: Exact from-region visibility culling

S. Nirenstein, E. Blake, J. Gain

July 2002 Proceedings of the 13th Eurographics workshop on Rendering EGRW '02

Full text available: mpdf(984.67 KB)

Additional Information: full citation, abstract, references, citings, index terms

To pre-process a scene for the purpose of visibility culling during walkthroughs it is necessary to solve visibility from all the elements of a finite partition of viewpoint space. Many conservative and approximate solutions have been developed that solve for visibility rapidly. The idealised exact solution for general 3D scenes has often been regarded as computationally intractable. Our exact algorithm for finding the visible polygons in a scene from a region is a computationally tractab ...

19 The holodeck ray cache: an interactive rendering system for global illumination in nondiffuse environments

Gregory Ward, Maryann Simmons

October 1999 ACM Transactions on Graphics (TOG), Volume 18 Issue 4

Full text available: pdf(935.74 KB)

Additional Information: full citation, abstract, references, citings, index terms

We present a new method for rendering complex environments using interactive,

progressive, view-independent, parallel ray tracing. A four-dimensional holodeck data structure serves as a rendering target and caching mechanism for interactive walk-throughs of nondiffuse environments with full global illumination. Ray sample density varies locally according to need, and on-demand ray computation is supported in a parallel implementation. The holodeck file is stored on disk and ...

Keywords: illumination, image reconstruction, mesh generation, ray tracing, rendering system, virtual reality

20 Modelling with implicit surfaces that interpolate

Greg Turk, James F. O'brien

October 2002 ACM Transactions on Graphics (TOG), Volume 21 Issue 4

Full text available: pdf(1.54 MB)

Additional Information: full citation, abstract, references, citings, index terms

We introduce new techniques for modelling with interpolating implicit surfaces. This form of implicit surface was first used for problems of surface reconstruction and shape transformation, but the emphasis of our work is on model creation. These implicit surfaces are described by specifying locations in 3D through which the surface should pass, and also identifying locations that are interior or exterior to the surface. A 3D implicit function is created from these constraints using a var ...

Keywords: Implicit surfaces, function interpolation, modeling, thin-plate techniques

Results 1 - 20 of 200 Result page: 1 2 3 4 5 6 7 8 9 10

The ACM Portal is published by the Association for Computing Machinery. Copyright @ 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

BROWSE

SEARCH

IEEE XPLORE GUIDE

Search Session History

Edit an existing query or compose a new query in the Search Query Display.

Select a search number (#)

- Add a query to the Search Query Display
- Combine search queries using AND, OR, or NOT
- Delete a search
- · Run a search

Fri, 2 Sep 2005, 3:57:50 PM EST

Search Query Display

Recent Search Queries

#1 ((3d shape modification and omitted portion and fit and altered parameter)<in>metadata)

((3d shape generating and fit and join<in>metadata) <and>
#2 (omitted portion <in>metadata))<and> (altered parameter<in>metadata)

Help Contact Us Privacy &:

@ Copyright 2005 (EEE --

Minspec"