⊢ Sistemas deductivos

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

15 de abril de 2025

Vamos a ver

- Sistemas deductivos
- Deducción natural
- Lógica intuicionista vs clásica
- Proposition de Weakening por inducción en la derivación

Sistemas deductivos 1 / 12

Lógica proposicional

Sintaxis

$$\tau ::= P \mid \bot \mid \neg \tau \mid \tau \wedge \tau \mid \tau \vee \tau \mid \tau \Rightarrow \tau$$

Valuaciones

Una valuación es una función $v: \mathcal{V} \to \{V, F\}$.

Una valuación v satisface una proposición τ (y decimos que $v \vDash \tau$) cuando:

$$\begin{array}{cccccc} v \vDash P & \text{sii} & v(P) = V \\ v \vDash \neg \tau & \text{sii} & v \not\vDash \tau \\ v \vDash \tau \lor \sigma & \text{sii} & v \vDash \tau & \text{o} & v \vDash \sigma \\ v \vDash \tau \land \sigma & \text{sii} & v \vDash \tau & \text{y} & v \vDash \sigma \\ v \vDash \tau \Rightarrow \sigma & \text{sii} & v \not\vDash \tau & \text{o} & v \vDash \sigma \end{array}$$

Sistemas deductivos 2 / 12

Lógica proposicional

Valuaciones

Una valuación v satisface una proposición τ (y decimos que $v \vDash \tau$) cuando:

$$\begin{array}{ccccccccc} v \vDash P & & \mathrm{sii} & & v(P) = V \\ v \vDash \neg \tau & & \mathrm{sii} & & v \not\vDash \tau \\ v \vDash \tau \lor \sigma & & \mathrm{sii} & & v \vDash \tau & \mathrm{o} & v \vDash \sigma \\ v \vDash \tau \land \sigma & & \mathrm{sii} & & v \vDash \tau & \mathrm{y} & v \vDash \sigma \\ v \vDash \tau \Rightarrow \sigma & & \mathrm{sii} & & v \not\vDash \tau & \mathrm{o} & v \vDash \sigma \end{array}$$

Equivalencia de fórmulas

au es lógicamente equivalente a σ cuando $v \models \tau$ sii $v \models \sigma$ para toda valuación v.

Ejercicio de la guía:

Mostrar que cualquier fórmula de la lógica proposicional que utilice los conectivos \neg (negación), \land (conjunción), \lor (disyunción), \Rightarrow (implicación) puede reescribirse a otra fórmula equivalente que usa sólo los conectivos \neg y \lor .

Sistemas deductivos 3 / 12

Sistemas deductivos

- Definidos por un conjunto de reglas
- 👫 Las reglas son de la forma:

$$\frac{\mathsf{Premisa}_1 \quad \mathsf{Premisa}_2 \quad \dots \quad \mathsf{Premisa}_n}{\mathsf{Conclusion}} \,\, \underset{\mathsf{la} \,\, \mathsf{regla}}{\mathsf{Nombre} \,\, \mathsf{de}}$$

 \rightarrow Un caso particular: n=0

Conclusión Nombre de la regla

→ Por ejemplo,¹

$$\left\{ \begin{array}{c|c} & \text{Queso}, & \hline & \text{Caja}, & \hline & \text{Rat\'on}, \\ \hline & \hline & & \\ \hline & \hline & & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \right. \text{Trampa}_i, \quad \frac{ \hline & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \text{Trampa}_e, \quad \frac{ \hline & \hline & \\ \hline & & \\ \hline & & \\ \hline \end{array} \text{Comequeso} \right)$$

Sistemas deductivos 4 / 12

¹Ningún animal fue dañado durante la producción de este sistema deductivo.

Un sistema deductivo: deducción natural

Secuentes:

Fórmula₁,..., Fórmula_n \vdash Fórmula_{n+1}

Por ejemplo...

$$P,Q \vdash P \land Q$$

Una regla de deducción

$$\frac{\mathsf{Premisa}_1 \quad \mathsf{Premisa}_2 \quad \dots \quad \mathsf{Premisa}_n}{\mathsf{Conclusion}} \quad \underset{\mathsf{la \ regla}}{\mathsf{Nombre \ de}}$$

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_i \quad \frac{}{\Gamma, \tau \vdash \tau} \text{ ax}$$

intuitivamente se puede pensar que expresa:

$$\left.\begin{array}{c} \mathsf{Premisa}_1 \\ \mathsf{Premisa}_2 \\ \vdots \\ \mathsf{Premisa}_n \end{array}\right\} \implies \mathsf{Conclusión}$$

$$\left. \begin{array}{c} \Gamma \vdash \tau \\ \Gamma \vdash \sigma \end{array} \right\} \implies \Gamma \vdash \tau \land \sigma$$

$$\operatorname{True} \implies \Gamma, \tau \vdash \tau$$

La demostración de un secuente es un árbol formado por reglas de deducción:

$$\frac{\overline{P,Q \vdash P} \text{ ax } \overline{P,Q \vdash Q}}{P,Q \vdash P \land Q} \overset{\text{ax}}{\land_i}$$

Sistemas deductivos 5 / 12

Reglas básicas

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_{i} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau \land \sigma} \land_{e_{1}} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_{2}} \\ \frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \Rightarrow_{e} \\ \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{1}} \qquad \frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{2}} \qquad \frac{\Gamma \vdash \tau \lor \sigma \quad \Gamma, \tau \vdash \rho \quad \Gamma, \sigma \vdash \rho}{\Gamma \vdash \rho} \lor_{e} \\ \frac{\Gamma, \tau \vdash \bot}{\Gamma \vdash \neg \tau} \lnot_{e} \\ \text{Lógica intuicionista (LJ)} \qquad \frac{\Gamma \vdash \tau \lnot \tau}{\Gamma \vdash \bot} \bot_{e} \\ \text{Lógica clásica (LK)} \qquad \frac{\Gamma \vdash \neg \tau}{\Gamma \vdash \tau} \lnot_{e}$$

Sistemas deductivos 6 / 12

Reglas derivadas

Reglas intuicionistas
$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \neg \neg \tau} \neg \neg_i \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \neg \sigma}{\Gamma \vdash \neg \tau} \text{ MT}$$
 Reglas clásicas
$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} \text{ PBC} \qquad \frac{\Gamma}{\Gamma \vdash \tau \vee \neg \tau} \text{ LEM}$$

- $\stackrel{*}{\leftrightarrow}$ Veamos que las reglas $\neg \neg_e$, PBC y LEM son equivalentes.
- Todas las reglas derivadas, incluyendo las que hayan probado en la guía de ejercicios, pueden usarse para resolver otros ejercicios y los parciales.

Sistemas deductivos 7 / 12

Deducción natural en lógica intuicionista

Ejercicio de la guía

Demostrar en deducción natural que las siguientes fórmulas son teoremas sin usar principios de razonamiento clásicos salvo que se indique lo contrario:

- \rightarrow Reducción al absurdo: $(P \Rightarrow \bot) \Rightarrow \neg P$
- \uparrow Introducción de la doble negación: $P \Rightarrow \neg \neg P$
- \rightleftharpoons Eliminación de la triple negación: $\neg\neg\neg P \Rightarrow \neg P$
- de Morgan (II): $\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ Para la dirección \Rightarrow es necesario usar principios de razonamiento clásicos.
- Arr Conmutatividad (\lor): $(P \lor Q) \Rightarrow (Q \lor P)$

Sistemas deductivos 8 / 12

Ejercicio de la guía

Demostrar en deducción natural que vale $\vdash \sigma$ para cada una de las siguientes fórmulas. Para estas fórmulas es imprescindible **usar lógica clásica**:

- \Rightarrow Absurdo clásico: $(\neg P \Rightarrow \bot) \Rightarrow P$
- ightharpoonupLey de Peirce: $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$
- \Rightarrow Análisis de casos: $(P \Rightarrow Q) \Rightarrow (\neg P \Rightarrow Q) \Rightarrow Q$

Sistemas deductivos 9 / 12

Debilitamiento o weakening

Ejercicio de la guía

Probar la siguiente propiedad:

Si $\Gamma \vdash \sigma$ es válido entonces $\Gamma, \tau \vdash \sigma$ es válido.

Pista: utilizar inducción estructural sobre la derivación o inducción global sobre su tamaño.

Por ejemplo,

$$\frac{\overline{P,Q \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q \vdash Q}} \overset{\mathsf{ax}}{\wedge_i}}{\frac{P,Q \vdash P \land Q}{P,Q \vdash (P \land Q) \lor R}} \lor_{i_1}} \quad \leadsto \quad \frac{\overline{P,Q,S \vdash P} \overset{\mathsf{ax}}{\xrightarrow{P,Q,S \vdash P}} \overset{\mathsf{ax}}{\xrightarrow{P,Q,S \vdash Q}} \overset{\mathsf{ax}}{\wedge_i}}{\frac{P,Q,S \vdash P \land Q}{P,Q,S \vdash (P \land Q) \lor R}} \lor_{i_1}}$$

Para usar esta propiedad como regla en otras derivaciones:

$$\frac{\Gamma \vdash \sigma}{\Gamma, \tau \vdash \sigma} \mathsf{W}$$

Sistemas deductivos 10 / 12

Último ejercicio

Demostrar en deducción natural que vale $\vdash (\rho \lor \tau) \land (\sigma \lor \tau) \Rightarrow \tau \lor (\rho \land \sigma)$.

Sistemas deductivos 11 / 12

