Devoir facultatif n° 2

Dans tout le problème, le plan est muni d'un repère orthonormé direct, et n est un entier fixé supérieur ou égal à 3.

Dans le plan un polygone régulier de centre Ω est un polygone inscrit dans un cercle de centre Ω et dont les côtés sont de même longueur. On numérotera les sommets $(M_k)_{k=0}^{n-1}$ et on posera $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$ $\xrightarrow{}$ $\xrightarrow{}}$ $\xrightarrow{}}$

 $M_n = M_0$, de sorte que pour tout $t \in [0, n-1]$, l'angle $(\overrightarrow{\Omega M_k}, \overrightarrow{\Omega M_{k+1}})$ soit égal à $\frac{2\pi}{n}$.

Les coordonnées d'un point M_k sont notées (x_k, y_k) et on cherche les polygones réguliers tels que pour tout k, les coordonnées x_k et y_k sont rationnelles.

On rappelle qu'on appelle rationnel tout réel s'écrivant comme quotient de deux entiers relatifs et que tout rationnel peut s'écrire de façon unique sous forme irréductible, c'est-à-dire sous la forme p/q où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ et p et q n'ont aucun facteur commun.

On admettra que si n est entier, alors \sqrt{n} est rationnel si et seulement si n est le carré d'un entier.

Partie 1

On note E l'ensemble des nombres complexes dont les parties réelles et imaginaires sont entières

On note F l'ensemble des nombres complexes dont les parties réelles et imaginaires sont rationnelles.

- 1) a) Montrer que la somme de deux éléments de E est élément de E, et que la somme de deux éléments de F est élément de F.
 - b) Montrer que le produit de deux éléments de E est élément de E, et que le produit de deux éléments de F est élément de F.
 - c) Montrer que l'inverse d'un élément non nul de F est un élément de F.
- 2) Déterminer les éléments de E ayant un inverse dans E (on pourra remarquer que si $z \in E$, $|z|^2$ est un entier).
- 3) Notons E_n l'ensemble des nombres complexes z non nuls tels que toutes leurs racines $n^{\text{ièmes}}$ sont dans E, et F_n ceux ayant toutes leurs racines $n^{\text{ièmes}}$ dans F.
 - a) Montrer que si E_n est non vide alors F_n est non vide.
 - b) Suposons F_n non vide. Soit $z \in F_n$ et $(z_k)_{1 \le k \le n}$ ses n racines $n^{\text{ièmes}}$. Notons d le produit des dénominateurs entiers de toutes les parties réelles et imaginaires des z_k (chacune étant écrite sous forme irréductible). Montrer que $d^n z$ est dans E_n .
 - c) Montrer que si $e^{2i\pi/n}$ est élément de F alors $1 \in F_n$.
 - d) Montrer que si F_n est non vide, alors $e^{2i\pi/n} \in F$ (on pourra prendre un élément z de F_n , et considérer deux racines $n^{\text{ièmes}}$ successives de z).
 - e) En déduire que $E_n \neq \emptyset \iff F_n \neq \emptyset \iff e^{2i\pi/n} \in F$.
- **4)** Pour $n = 3, 4, 6, F_n$ est-il vide?

- 5) a) Résoudre dans \mathbb{C} l'équation $z^4 + z^3 + z^2 + z + 1 = 0$.
 - b) En déduire que $\cos(2\pi/5)$ est racine d'une équation du second degré à coefficients entiers et donner la valeur de $\cos(2\pi/5)$.
 - c) Montrer que E_5 est vide.

Partie 2

On appelle isobarycentre de n complexes z_1, z_2, \ldots, z_n le complexe $g = \frac{1}{n} \sum_{k=1}^{n} z_k$.

- 6) Montrer que si F_n est non vide, il existe un polygone régulier ayant tous ses sommets à coordonnées rationnelles.
- 7) Soit un polygone régulier à n sommets, dont le centre est noté Ω et un sommet est noté s_0 . Donner l'expression des autres sommets du polygone en fonction de Ω , s_0 et n.
- 8) Montrer que le centre d'un polygone régulier est l'isobarycentre de ses sommets.
- 9) Montrer qu'il existe un polygone régulier ayant tous ses sommets à coordonnées rationnelles si et seulement si F_n est non vide.
- **10)** Existe-t-il de tels polygones pour n = 3, 4, 5, 6?
- 11) Montrer que si un carré a deux sommets consécutifs à coordonnées rationnelles, alors les quatre sommets ont des coordonnées rationnelles.

Partie 3

On suppose désormais n > 6. On veut montrer par l'absurde que E_n est vide.

Soient alors a un élément de E_n , a_0 une racine $n^{\text{ième}}$ de a, et pour tout $k \in [1, n-1]$, $a_k = a_0 e^{2ik\pi/n}$ et A_k le point d'affixe a_k .

On pose enfin pour tout $k \in [0, n-1]$, $b_k = (2\cos(2\pi/n) - 1)a_k$ et on appelle B_k le point d'affixe b_k .

- 12) Montrer que les A_k forment un polygone régulier et que les coordonnées des A_k sont entières.
- 13) Montrer que le quadrilatère $A_{k-1}A_kA_{k+1}B_k$ est un parallélogramme, en utilisant ses diagonales.
- 14) Montrer que le quadrilatère $A_{k-1}A_kA_{k+1}B_k$ est un losange (cette question est inutile dans la suite du problème).
- 15) On pose $b = (b_0)^n$. Montrer que pour tout $k \in [0, n-1]$, $b = (b_k)^n$, et que b est élément de E_n . Montrer également que |b| < |a|. Donc, si $a \in E_n$, on construit un élément $b \in E_n$ tel que |b| < |a|. Notons $\alpha_0 = a$ et $\alpha_1 = b$. En itérant cette contruction à partir de α_1 , on obtient un élément α_2 de E_n , et ainsi, une suite d'éléments de E_n .
- 16) À l'aide des carrés des modules des termes de cette suite, montrer qu'on aboutit à une impossibilité. En déduire que E_n est vide.
- 17) Montrer que les seuls polygones réguliers ayant des sommets à coordonnées rationnelles sont des carrés.

— FIN —