ECE 345 / ME 380 Introduction to Control Systems Lecture Notes 6

Dr. Oishi oishi@unm.edu

October 6, 2020

Outline

- Introduction
- Asymptotic stability
- BIBO stability
- Routh-Hurwitz Criterion
- Routh tables

Learning Objectives

- Characterize the stability of a system
- Asymptotic stability
- BIBO stability
- Relate asymptotic stability and BIBO stability
- Use Routh-Hurwitz criterion or Routh table to determine existence of RHP poles

References:

• Nise Chapter 6

Stability

Two types of stability

- What does "stability" mean for the cone on a flat surface?
- What does "stability" mean for the car in a slalom course?

Can define stability of a system in response to an initial condition or in response to an input signal.

3

Stability

Two types of stability

- Asymptotic stability (in response to a non-zero initial condition)
- Bounded Input-Bounded Output (BIBO) stability (in response to input signals)

Addresses different problems, but these types of stability are closely related!

Asymptotic Stability

Stability depends on location of the poles in the complex plane.

Stability	Pole location
Asymptotic Stability	All poles in the open LHP
Stability	
Marginal	At least one non-repeated pole on the imaginary axis,
Stability	and remaining poles in the open LHP
Unstable	At least one pole in the open RHP, or
	repeated poles on the imaginary axis

Examples

- $G(s) = \frac{s-2}{(s+1)(s+3)}$
- $A = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$

Asymptotic Stability

- ullet A system is *asymptotically stable* if the natural response converges to zero as time approaches infinity, x(t) o 0 as $t o \infty$
- A system is *unstable* if the natural response grows without bound as time approaches infinity, $|x(t)| \to \infty$ as $t \to \infty$
- A system is marginally stable if the natural response neither decays nor grows but remains constant or oscillates as time approaches infinity, |x(t)| < c as $t \to \infty$, for some c > 0

Asymptotic Stability

Clicker question

Consider the effect of parameter K on stability of the transfer function

$$G(s) = \frac{1}{s^2 + Ks + 4}$$

Which of the following statements is most correct?

- A. The system is asymptotically stable for K>2, marginally stable for K=2, and unstable for K<2.
- B. The system is asymptotically stable for K>0, and unstable for $K\leq 0$.
- C. The system is asymptotically stable for K>0, marginally stable for K=0, and unstable for K<0
- D. The system is asymptotically stable for K<0, marginally stable for K=0, and unstable for K>0.

THE UNIVERSITY OF NEW MEXICO

INVERSITY of MEXICO

Asymptotic Stability

Role of feedback on stability

- Feedback is often used to stabilize a system
- In some cases, a sufficiently high gain can actually destabilize a system

• However, there are many systems for which increasing the gain will not destabilize the system

BIBO Stability

Clicker question

For a system described by the transfer function G(s), we obtain the following input-output data:

Which of the following statements is most correct?

- A. The system is BIBO stable because a bounded input leads to a bounded output.
- B. The system is BIBO unstable because a bounded input leads to an unbounded output.
- C. The system is BIBO unstable because an unbounded input leads to an unbounded output.
- D. The system may be BIBO stable, but not enough information is provided to be sure.

BIBO Stability

- A system is BIBO stable if every bounded input yields a bounded output
- A system is *unstable* otherwise, e.g., if there exists a bounded input that yields an unbounded output

Bounded signals

- A bounded signal u(t) is one for which |u(t)| < M (with M some finite, positive number)
- E.g., $\mathbf{1}(t)$; $e^{j\omega t}$; $e^{-at}\mathbf{1}(t)$, a > 0.

THE UNIVERSITY OF NEW MEXICO

BIBO Stability

Assuming no pole-zero cancellation,

- If a system is asymptotically stable, it is BIBO stable
- The converse is NOT true!

Disproving BIBO stability can be easier than proving BIBO stability.

• Consider $G(s) = \frac{1}{s^2 + \omega^2}$. What output results when the input is $u(t) = \sin \omega t$?

(Only one counterexample is needed to disprove BIBO stability.)

THE UNIVERSITY OF NEW MEXICO

11

BIBO Stability

What constitutes 'proof'?

For $G(s)=\frac{2}{s^2+2s+3}$, why aren't either of the following two input-output trajectories adequate proof of BIBO stability?

**Use asymptotic stability to prove BIBO stability, and counterexamples to disprove BIBO stability.

BIBO Stability

Clicker question

Which of the following is most consistent with a system that is BIBO stable?

- A. A sinusoidal input generates a sinusoidal output.
- B. A step response generates an output for which $y(t) \to \infty$ as $t \to \infty$
- C. An impulse input generates an output $|y(t)| \le 1$ for all $t \ge 0$.
- D. In response to a non-zero initial state, all elements of the state satisfy $|x_i(t)| \le 1$, $i \in \{1, \cdots, n\}$
- E. Both A and D are both consistent with BIBO stability.

THE UNIVERSITY OF NEW MEXICO

BIBO Stability

Clicker question

Which of the following is not BIBO stable?

A.
$$G(s) = \frac{1}{s^2 + 2s + 1}$$

B.
$$G(s) = \frac{s+1}{(s+2)(s+1)}$$

B.
$$G(s) = \frac{s+1}{(s+2)(s+1)}$$

C. $G(s) = \frac{s-1}{s^2+2s+1}$

D.
$$G(s) = \frac{1}{s^2 + 2s}$$

E. Both C and D

THE UNIVERSITY OF NEW MEXICO

13

Routh-Hurwitz Criterion

Tool to determine system stability, by checking for RHP poles

- 1. Routh arrays
 - ullet Uses coefficients of characteristic equation $\Delta(s)$ to determine how many roots of the polynomial lie in the open RHP.
 - Does not indicate where poles are located.
 - Analytic solution indicates how certain coefficients affect stability

Question: The Matlab command roots finds numerical values for poles, so why use more complicated Routh arrays?

THE UNIVERSITY OF NEW MEXICO

Routh-Hurwitz Criterion

Main idea: Number of roots of $\Delta(s)$ in the RHP is equal to the number of sign changes in the first column of the Routh table (=Routh array).

$$\frac{R(s)}{a_4 s^4 + a_3 s^3 + a_2 s^2 + a_1 s + a_0} \qquad C(s)$$

TABLE 6.2 Completed Routh table

s^4 s^3	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2	$\frac{-\begin{vmatrix} a_4 & a_2 \\ a_3 & a_1 \end{vmatrix}}{a_3} = b_1$	$\frac{-\begin{vmatrix} a_4 & a_0 \\ a_3 & 0 \end{vmatrix}}{a_3} = b_2$	$\frac{-\begin{vmatrix} a_4 & 0 \\ a_3 & 0 \end{vmatrix}}{a_3} = 0$
s^1	$\frac{-\begin{vmatrix} a_3 & a_1 \\ b_1 & b_2 \end{vmatrix}}{b_1} = c_1$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$	$\frac{-\begin{vmatrix} a_3 & 0 \\ b_1 & 0 \end{vmatrix}}{b_1} = 0$
s^0	$\frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = 0$	$\frac{-\begin{vmatrix}b_1 & 0\\c_1 & 0\end{vmatrix}}{c_1} = 0$

Routh-Hurwitz Criterion

What happens when there is a row of zeros?

Example:

$$\frac{Y(s)}{R(s)} = \frac{10}{s^5 + 7s^4 + 6s^3 + 42s^2 + 8s + 56}$$

TABLE 6.7 Routh table for Example 6.4

s ⁵			1			6			8
s^4		7	1		42	6		-56	8
s^3	-0	4	1	-0	12	3	-0	-0	0
s^2			3			8			0
s^1			$\frac{1}{3}$			0			0
s^0			8			0			0

Routh-Hurwitz Criterion

What happens when there is a zero in the first column?

Example:

$$\frac{Y(s)}{R(s)} = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

	6.4 Completed Rouple 6.2	$\epsilon = +$	$\epsilon = -$		
s ⁵	1	3	5	+	+
s^4	2	6	3	+	+
s^3	₽ €	$\frac{7}{2}$	0	+	-
s^2	$\frac{6\epsilon-7}{\epsilon}$	3	0	_	+
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	0	0	+	+
s^0	3	0	0	+	+

THE UNIVERSITY OF NEW MEXICO

Routh-Hurwitz Criterion

Consider the open-loop system with $G(s)=\frac{1}{(s-1)(s+2)(s+3)}$ under negative unity feedback as shown below, with positive gain K.

Which of the following most accurately describes the role of K on the stability of the closed-loop

- A. The closed-loop system is asymptotically stable for for 10 > K > 6.
- B. The closed-loop system has one pole in the RHP for K>10.
- C. The closed-loop system has *one* pole in the RHP for K < 6.
- D. Both A and B are correct.
- E. Both A and C are correct.

THE UNIVERSITY OF NEW MEXICO

Routh-Hurwitz Criterion

2. Hurwitz conditions

- ullet When criteria are satisfied, all roots of $\Delta(s)$ lie in open LHP
- When criteria fail, does not indicate how many poles lie in RHP
- Analytic solution indicates how certain coefficients affect stability

System	$\Delta(s) =$	Conditions for stability
First-order	$s + a_0$	$a_0 > 0$
Second-order	$s^2 + a_1 s + a_0$	
Third-order	$s^3 + a_2 s^2 + a_1 s + a_0$	

Exercise: Set up Routh arrays for 1st, 2nd, and 3rd order systems. Derive the above equations when $a_n=1$ and all coefficients are positive.

20

Summary

- Asymptotic stability: all poles in the open LHP
- BIBO stability: all bounded inputs generate bounded outputs
- Asymptotic stability —> BIBO stability
- Use Routh-Hurwitz criterion or Routh table to determine existence of RHP poles

22

Routh-Hurwitz Criterion

Clicker question

Consider the open-loop system with $G(s)=\frac{1}{s(s+1)(s+2)}$ under negative unity feedback as shown below, with positive gain K.

Which of the following most accurately describes the role of K on the stability of the closed-loop system $\frac{Y(s)}{R(s)}$?

- A. The closed-loop system is unstable for for K > 6.
- B. The closed-loop system is BIBO stable for K<6.
- C. The open-loop system KG(s) is marginally stable for all K.
- D. Both A and C are correct.
- E. Both A, B, and C are correct.

