Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE- SEMESTER- 1st / 2nd (NEW) • EXAMINATION - SUMMER 2016

Subject Code: 2110015 Subject Name: Vector calculus & Linear Algebra			Date:30/05/2016	
•	02:30	PM to 05:30 PM Total M	arks: 70	
	1. (2. N	Question No. 1 is compulsory. Attempt any four out of remaining Sixquestions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1		Objective Question (MCQ)	Mark	
	(a)		07	
	1.	Which of the following is orthogonal to $(1,2,-3)$?		
		(a) $(3,6,3)$ (b) $(-3,6,3)$ (c) $(-3,6,-3)$ (d) $(-3,-3,6)$		
	2.	If $\lambda = 3.2$ are eigen values of 2×2 matrix A, then one of the eigen value		
		of A^4 is		
	2	(a) 0 (b) 3 (c) 9 (d) 81		
	3.	Which of the following is not a subspace of R^2 ?		
	4	(a) $\{0\}$ (b) line $y = 5x$ (c) line $y = 3x + 2$ (d) R^2		
	4.	$\begin{bmatrix} 5 & -3 & 4 \\ 0 & 2 & 0 \end{bmatrix}$		
		Rank of the matrix $\begin{bmatrix} 5 & -3 & 4 \\ 0 & 2 & 9 \\ 0 & 0 & -6 \end{bmatrix}$ is		
		(a) 0 (b) 1 (c) 2 (d) 3		
	5.	If A is an 5×6 matrix and rank of A is 4 then nullity of A is		
	6.	(a) 0 (b) 1 (c) 2 (d) 3 If A is any square matrix then, $A+A^T$		
	0.	(a) symmetric (b) skew symmetric (c) orthogonal (d) none of these		
	7.	Which of the following is not an elementary matrix?		
		(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$		
		$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix}$		
	(b)		07	
	1.	If $r = xi + yj - zk$ then $curl(r)$ is		
	2	(a) 1 (b) 2 (c) 0 (d) none of these.		
	2.	If $\phi = xyz$, then the value of $ grad\phi $ at $(1,2,-1)$ is		
	2	(a) 0 (b) 1 (c) 2 (d) 3		
	3.	The set $\{(0,0),(1,0)\}$ is		
		(a) linearly independent (b) linearly dependent		
	4.	(c) basis of R^2 (d) none of these If eigen values of a 3×3 matrix A are -1 , 0, 1 the $trace(A)$ is		
	7.	(a) 0 (b) 1 (c) -1 (d) none of these		
	5.	Dimension of $P_3 = \left\{ a + bx + cx^2 + dx^3 : a, b, c, d \in R \right\}$ is		
		(a) 1 (b) 2 (c) 3 (d) 4		
		(a) 1 (b) 2 (c) 3 (a) 4		

- (b) State why the following set are not vector space
 - (i) $V = R^2$ with the operation $(x_1, y_1) + (x_2, y_2) = (x_1 + y_1 + 1, x_2 + y_2 + 1)$ k(x, y) = (kx, ky)
 - (ii) $V = \{ p \in P_2 : p(0) = 1 \}$ with the usual operation.
- (c) Find eigenvalues and basis for eigenspace for the matrix

s for eigenspace for the matrix
$$A = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}.$$

04

- Q.6 (a) Find curl F, if $F = (y^2 \cos x + z^3)i + (2y \sin x 4)j + 3xz^2k$. Whether F is irrotational?
 - **(b)** Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at (1,1,0) in the direction of 2i 3j + 6k
 - (c) For which value of "a" will the following system have
 (i) No solution?, (ii) Unique solution? (iii) Infinitely many solution. x+2y-3z=4 3x-y+5z=2

$$3x - y + 5z = 2$$
$$4x + y + (a^2 - 14)z = a + 2$$

- Q.7 (a) Find the unit normal to the surface $z^2 = 4(x^2 + y^2)$ at a point (1,0,2).
 - (b) If $F = (2xy + z^3)i + x^2j + 3xz^2k$. Show that $\int_C F \cdot dr$ is independent of path of integration. Hence find the integral when C is any path joining (1, -2, 1) and (3, 1, 4)
 - (c) Verify Green's theorem for the function F = (x + y)i + 2xyj and C is the rectangle in the xy-plane bounded by x = 0, y = 0, x = a, y = b.
