Apache Spark

Osnove, osobine, primeri

Apache Spark

- Objedinjeno radno okruženje za analizu velike količine podataka
- Kombinuje SQL, tokove podataka i kompleksnu analitiku (mašinsko učenje)
- Radi nad različitim tipovima skladišta podataka
- Visoka performansa rada prilikom paketne i obrade tokova podataka
- Korisničke programe moguće je pisati u
 - Scala (izvorno)
 - Java
 - Python
 - SQL
 - 0 F

Lightning-fast unified analytics engine

Spark - arhitektura

- Master/slave arhitektura
- Osnovni Spark moduli
 - Spark Core
 - Spark SQL
 - Spark Streaming
 - MLib
 - GraphX

Spark - arhitektura

Spark Framework

Copyright @2016 V2 Maestros, All rights reserved.

Docker compose

- Servisi
 - HDFS
 - Namenode
 - Datanode x 2
 - Spark
 - Spark-master
 - Spark-worker x 2
 - Opciono:
 - Hue Web-bazirani file-browser za HDFS
 - Spark-notebook Web-interfejs za pokretanje Spark aplikacija

RDD

- Problem sa interativnim map-reduce programima
 - Sporo deljenje memorije
 - Upis na disk nakon svakog map-reduce koraka
 - Previše (za krajnji rezultat) nepotrebnih I/O operacija

RDD

- Resilient Distributed Datasets (RDD)
 - Kolekcija elemenata distribuirana po čvorovima klastera koju je moguće obrađivati paralelno u radnoj memoriji
 - Eliminacija velikog broja I/O poziva značajno povećava brzinu izvršavanja iterativnih map-reduce programa

RDD - osnove

- Fundametalni koncept u Spark-u
- Resilient Distributed Dataset
 - Resilient otporan na greške sa mogućnošću nadoknađivanja oštećenih/izgubljenih delova strukture podataka
 - Distributed podaci su smeštni na više čvorova u klasteru
 - Dataset predstavlja skup slogova (zapisa) u bilo kom formatu
 - najčešće JSON, CSV, tekstuelni format

RDD - mehanizmi

- Čitanje
 - Celokupnog dataseta (coarse-grained)
 - Pojedinačnih elemenata (fine-grained)
- Pisanje
 - Celokupnog dataseta (coarse-grained)
- Konzistentnost
 - Na visokom nivou s obzirom da je RDD nepromenljiv
- Oporavak od grešaka
 - Omogućen upotrebom usmerenih acikličnih grafova operacija (DAG)

RDD - osobine

- In-memory computation
- Odložena (*lazy*) evaluacija
- Otpornost na greške
- Nepromenljivost
- Particionisanje
- Mogućnost perzistovanja
- Operacije na celokupnim setom podataka

Deljene promenljive

- Spark nudi dva tipa deljenih promenljivih između zadataka koji se izvršavaju na različitim čvorovima klastera
 - Broadcast varijable
 - Keširane read-only promenljive na svakom čvoru
 - Često se koriste da svaki čvor dobije svoju kopiju nekog ulaznog skupa podataka
 - Akumulatori
 - Njihova vrednost može samo biti uvećana
 - Često se koriste za implementaciju agregacionih funkcija (npr. brojanje, suma)

RDD - operacije

- Transformacije
 - Od postojećeg RDD formiraju novi
 - Uske (pipelining)
 - Nad jednom particijom
 - Široke (shuffle)
 - Zahtevaju više particija
- Akcije
 - o daju neki rezultat
 - Sve do nailaska na akciju Spark odlaže isvršenje transfomacija

RDD - operacije

- Transformacije
 - Uske
 - Map
 - FlatMap
 - MapPartition
 - Filter
 - Sample
 - ı Union
 - Široke
 - Intersection
 - Distinct
 - ReduceByKey
 - AggregateByKey
 - SortByKey
 - Join
 - Cartesian
 - Repartition
 - Coalesce

Akcije

- Count
- CountByKey
- Collect
- First
- Take
- Top
- CountByValue
- Reduce
- Fold
- Aggregate
- Foreach
- SaveAsText
- SaveAsSequenceFile
- SaveAsObjectFile

RDD - ograničenja

- Nepostojanje ugrađenog optimizatora operacija sa RDD
 - Sva optimizacija prepuštena programeru
- Obrada strukturiranih podataka
 - RDD nema mehanizme da prepozna šemu ulaznog skupa podataka
- Performansa
 - RDD su JVM objekti i često uzrokuju preteranu upotrebu Garbage Collectora i Java serijalizacije
- Skladištenje
 - U slučaju da RDD ne može stati u radnu memoriju, sledi smeštanje jednog dela na disk

RDD - Primeri

- Brojanje reči
- Prosečna dužina reči
- Sve reči diže od X slova koje se pojavljuju više od Y puta
- Unija i presek
- Uklanjanje duplikata
- Grupisanje i sortiranje po ključu
- Spajanje
- Upotreba deljenih varijabli

Spark SQL

- Integriše relacioni način procesiranja podataka sa Spark funkcionalnom paradigmom
- Predstavlja Spark modul za procesiranje strukturiranih podataka
- Premošćava jaz između RDD koncepta i relacione tabele
- Deklarativni pristup na dva načina
 - DataFrame
 - Datasets API
 - Java i Scala

Spark SQL - osobine

- Integrisanost
 - SQL upiti sa Spark programima
- Unificiran pristup podacima
 - Izvori podataka mogu biti Hive, Parquet, JSON, JDBC, ...
- Kompatibilnost
 - Moguće pokretati Hive upite
- Standardni mehanizmi konekcije
 - Moguće se konektovati preko JDBC ili ODBC
- Optimizacija
 - Postoji ugrađeni optimizator upita

Spark SQL DataFrame

- Struktura podataka organizovana u imenovane tabele
 - Slično kao koncept R dataframe ili Python pandas dataframe
- Predstavlja reprezentaciju tabele iz relacione baze podataka u Spark SQL-u
- Poseduje šemu
 - Svaka kolona ima ime, tip i indikator dozvole NULL vrednosti
 - Moguće je programski definiti šemu
- Moguće je kreirati DataFrame od RDD
- DataFrame API se može koristiti u
 - Scala
 - Java
 - Python
 - R

Spark SQL DataFrame - osobine

- Oslanja se na RDD i od njega nasleđuje
 - Nepromenljivost
 - Distribuirano izvršavanje u radnoj memoriji
 - Otpornost na otkaze
- Poboljšanja u odnosu na RDD
 - Efikasnije upravljanje memorijom (Custom Memory Management)
 - Optimizacija upita
- Daje se prednost *DataFrame*-u u odnosu na RDD prilikom obrade strukturiranih podataka

Spark SQL DataFrame - primeri

https://spark.apache.org/docs/latest/sql-getting-started.html

Spark SQL DataFrame - Optimizator upita

DataFrame - kreiranje

- Od RDD-ova toDF()
- Od listi toDF()
- Od lokalnih ili HDFS datoteka.
 - CSV spark.read.csv(path)
 - Text spark.read.text(path)
 - JSON spark.read.json(path)
 - Parquet spark.read.parquet (path)
- Preko JDBC konekcije
 - o spark.read.format("jdbc").option().load()

DataFrame - dodavanje i uklanjanje kolona

Dodavanje nove kolone

```
o df.withColumn("Country", lit("USA"))
o df.withColumn("salary", col("salary")*100)
o df.withColumn("salary", col("salary").cast("Integer"))
```

Preimenovanje kolone

```
o df.withColumnRenamed("gender","sex")
```

Uklanjanje kolone

```
o df.drop("CopiedColumn")
```

DataFrame - filtriranje

Filtriranje

- Uslov može biti zadat kao
 - Poređenje
 - String sa logičkim izrazom
 - Kompleksan logički uslov

DataFrame - tipovi podataka i konverzije

- Podržani tipovi podataka
 - Numeric tipovi
 - ByteType, ShortType, IntegerType, LongType
 - FloatType, DoubleType, DecimalType
 - Stringovi StringType
 - Binarni BinaryType
 - Logički BooleanType
 - Datumski TimestampType, DateType
 - Kompleksni tipovi
 - ArrayType
 - MapType
 - StructType

DataFrame - pivoting

- Rotiranje podataka iz jedne u više kolona po vrednostima
 - df.groupBy("Product").pivot("Country").sum("Amount")
 - Za svaku vrednost iz kolune Country napraviće se posebna kolona
- Depivotiranje
 - pivotDF.select(col("Product"),
 expr("stack(3, 'Canada', Canada, 'China', China,
 'Mexico', Mexico) as (Country, Total)")).where("Total is not null")
 - Stack funkcija od kolona i vrednosti u njima prvi redove

DataFrame - spajanje

- Tipovi spajanja
 - o INNER, LEFT OUTER, RIGHT OUTER, LEFT ANTI, LEFT SEMI, CROSS, SELF
- Optimizacija spajanja
 - o BROADCAST, MERGE, SHUFFLE HASH and SHUFFLE REPLICATE NL
 - Hint
 - SELECT /*+ COALESCE(3) */ * FROM t
 - SELECT /*+ REPARTITION(3) */ * FROM t
 - SELECT /*+ REPARTITION(c) */ * FROM t
 - SELECT /*+ REPARTITION(3, c) */ * FROM t
 - SELECT /*+ REPARTITION_BY_RANGE(c) */ * FROM t
 - SELECT /*+ REPARTITION_BY_RANGE(3, c) */ * FROM t
 - "Zakrivljenost" (skewness) podataka neuniformna distribucija vrednosti ključa
 - "Soljenje" (salting) ključa dodavanjem još jedne kolone u ključ radi ravnomernijeg particionisanja

DataFrame - perzistencija

- Čuvanje međurezultata
- Korišćenje međurezultata u uzastopnim operacijama
- cache()
 - MEMORY_AND_DISK DataFrame
 - MEMORY ONLY RDD
- persist()
 - MEMORY ONLY
 - MEMORY_AND_DISK
 - MEMORY_ONLY_SER
 - MEMORY_AND_DISK_SER
 - DISK_ONLY
 - MEMORY_ONLY_2
 - MEMORY_AND_DISK_2

DataFrame - agregacije

- Agregacione funkcije
 - o sum, avg, min, max, count, countDistinct
 - first, last, mean, stddev, variance, approx_count_distinct
- Sa ili bez groupBy

DataFrame - analitičke funkcije

- Definisanje prozora Window
 - windowSpec = Window.partitionBy("department").orderBy("salary")
- Rangiranje
 - row_number, rank, percent_rank, dense_rank, ntile
- Analiticke funkcije
 - cume_dist, lead, lag
- Agregacione funkcije

Zadatak

- Preuzeti CSV datoteku
 https://data.gov.rs/sr/datasets/zagadjivachi-chvrstim-otpadom/
- Kopirati je na proizvoljnu HDFS lokaciju
- Napisati Spark aplikaciju koja učitava sadržak CSV datoteke u dataframe
 - Separator je ;
 - Encoding je Windows-1250
- Ispisati shemu učitanog dataframe-a
- Ispisati prvih 5 redova
- Ispisati sve različite opštine

Zadatak

- Ispisati preduzeća koja su 2015 proizvela preko 10 tona otpada
- Ispisati sve pretežne delatnosti sa preko 10 postrojenja
- Ispisati top 5 zagađivača u oblasti *Proizvodnja komunikacione opreme*
- Ispisati najveće zagađivače po gradovima
- Kolone sa 2010-2017 pretvoriti u jednu kolonu godina, a iznos količine otpada u kolinu kolicina
- Ispisati preduzeća (PIB + Postrojenje) sa najvećim skokom proizvodnje neke vrste otpada (Indeksni broj) u odnosu na prethodnu godinu
- Rezultat sačuvati u relacionu bazu podataka (npr. MySQL, PostgreSQL)
 - Proširiti docker-compose kontejnerom za bazu podataka
 - Koristeći <u>uputstvo</u>, sadržaj dataframe-a upisati u tabelu u bazi podataka

Spark MLlib

- MLlib Sparkova biblioteka za mašinsko učenje zasnovana na RDD
 - o RDD API danas zastareo pa ga nije preporučljivo koristiti
- DataFrame-based API preporučeno za korišćenje Spark ML
- Osnovni koncepti
 - DataFrame ulazni dataset
 - Transformer algoritam za transformaciju DataFrame-a (npr. dodavanje kolone sa predikcijama)
 - Estimator algoritam za kreiranje transformatora (npr. fabrika modela)
 - Pipeline estimatori i transformatori povezani u neki smilsen tok
 - Parameter podešavanja estimatora i transformatora

Spark MLlib

- Osnovne statistike
 - Srednja vrednost, varijansa, kovarijsna, korelacija, testiranje hipoteze
- Klasifikacija i regresija
 - Linearni modeli, naivni Bayes, stabla odlučivanja, ansambli stabala
- Klasterovanje
 - k-means, Gaussian Mixture
- Kolaborativno filtriranje
- Redukcija dimenzionalnosti
 - SVD, PCA