CEFET/RJ - EIC Inteligência Artificial P1 - Duração: 1 hora e 50 minutos

Prof. Eduardo Bezerra

16 de abril de 2018

IMPORTANTE: Em cada questão desta prova, você deve fornecer justificativas para os passos do desenvolvimento. A correção de sua prova será feita levando isso em consideração. Toda a prova deve ser escrita com caneta, nos espaços fornecidos/indicados. Boa sorte!

Nome:	
Matrícula:	

Questão 1 (2,0 pontos) (Busca A^*) - Considere o espaço de busca abaixo, onde S é o estado inicial e G é o único estado que satisfaz o teste de objetivo. Os rótulos nas arestas indicam o custo de percorrê-las. Os rótulos próximos aos vértices representam os valores produzidos por uma função heurística h(n).

a) (0,5 ponto) Quais são os nós expandidos pela busca A^* usando a heurística h(n) e a busca em grafo? Solução:

b) (0,5 ponto) Qual é a solução (caminho) encontrada pelo A* usando a heurística h(n) e a busca em grafo? Solução:

с)	(0,5 ponto) fique sua resp Solução:	Responda se <i>n</i> posta.	v(n) e admiss	sivei ou cons	istente?	Em cad	a caso,	justi-
d)		Quais as orde ço de estados f		expandidos	pelas bu	ıscas DF	S e Bl	FS no

Questão 2 (1,0 ponto) (Busca Competitiva Determinística) - Considere a seguinte árvore de jogo.

- a) Considere a aplicação do algoritmo minimax básico. Apresente (na própria figura, internamente a cada nó) o valor minimax de cada nó não-terminal.
- b) Considere a aplicação do algoritmo de poda α - β . Circule (também na própria figura) as regiões da árvore que não seriam expandidas nesse caso.

Questão 3 (1,5 ponto) (Busca Competitiva Estocástica) - Considere que o Pacman vai jogar contra um fantasma descuidado. Esse fantasma realiza um movimento ótimo para o Pacman (e não para si mesmo) com 1/3 de probabilidade. Esse mesmo fantasma realiza um movimento que minimiza a utilidade da Pacman com os restante 2/3 de probabilidade. Considere que o Pacman é o maximizador. Considere ainda a figura a seguir. Essa não é a árvore de jogo completa, posto que não contempla a aleatoriedade do comportamento do fantasma (i.e., primeiro o fantasma escolhe aleatoriamente se irá jogar para ajudar o Pacman ou para ajudar a si próprio; a seguir, realiza a jogada).

Desenhe a árvore de jogo completa, com nós MAX, nós MIN, nós de acaso e nós terminais. Nas arestas dos nós de acaso, defina as probabilidades adequadas. Além disso, defina os valores minimax em cada nó.

Solução:

Questão 4 (1,5 ponto) (Processos de Decisão de Markov) - Considere o MDP fornecido abaixo, em que S_1 , S_2 e S_3 são estados, a_0 e a_1 são ações. Considere que todas as transições fornecem recompensa igual a 0, com exceção de $R(S_2, a_1, S_0) = -1$ e de $R(S_1, a_0, S_0) = +5$

Lembre-se de que o valor ótimo para um estado $s,\ V^*(s),$ é obtido pela equação de Bellman:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma \ V^*(s') \right)$$

Lembre-se também de que essa equação é adaptada pelo algoritmo Iteração de Valor como uma equação de atualização para computar $V^*(s)$:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V_k(s') \right)$$

Aplique o algoritmo Iteração de Valor para determinar a utilidade do estado S_1 na primeira iteração, isto é, determine $V_1(S_1)$. Lembre-se de que a iniciação desse algoritmo é fazer com que $V_0(s) = 0$, $\forall s$.

Solução: