Auto dataset	two regimes:	Pre-oilshock a	and Post-oilshock

Table of contents

We can also test if there are two regimes that contribute to the heteroskedasticity by running
separate regressions for pre-oilshock and post-oilshock
Imports for python objects and libraries
Data Cleaning and exploratory data analysis
Create two datasets based on whether the car models have been exposed to the 1973 oil shock
or not
Analysis for pre-oil shock model
Analysis for post Oil Shock
Pre-oilshock model
Explanatory power of preoilshock model
Explanatory power of postoilshock model
Post oil shock model with intercept (Corollary)
Explanatory power of postoilshock model with intercept
Finished

We can also test if there are two regimes that contribute to the heteroskedasticity by running separate regressions for preoilshock and post-oilshock.

Imports for python objects and libraries

Set up IPython libraries for customizing notebook display

```
from notebookfuncs import *
```

Import standard libraries

```
import numpy as np
import pandas as pd

pd.set_option("display.max_rows", 1000)
pd.set_option("display.max_columns", 1000)
```

```
pd.set_option("display.width", 1000)
pd.set_option("display.max.colwidth", None)
import matplotlib.pyplot as plt
import seaborn as sns
import itertools
```

Statsmodels imports

```
import statsmodels.api as sm
```

Import statsmodels.objects

```
from statsmodels.stats.outliers_influence import summary_table
```

Import ISLP objects

```
import ISLP
from ISLP import models
from ISLP import load_data
from ISLP.models import ModelSpec as MS, summarize, poly
```

Import user functions

```
from userfuncs import display_residuals_plot
from userfuncs import identify_least_significant_feature
from userfuncs import calculate_VIFs
from userfuncs import identify_highest_VIF_feature
from userfuncs import standardize
from userfuncs import perform_analysis
```

Set level of significance (alpha)

```
LOS_Alpha = 0.01
```

0.01

Data Cleaning and exploratory data analysis

```
Auto = load_data("Auto")
Auto = Auto.sort_values(by=["year"], ascending=True)
Auto.head()
Auto.columns
```

```
Auto = Auto.dropna()
Auto.shape
Auto.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592	1.576531
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737	0.805518
\min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000	1.000000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000	2.000000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000	3.000000

Convert origin to categorical type

npg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year
392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000
23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.979592
7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.683737
0.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.000000
17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.000000
22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.000000
29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.000000
16.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.000000
	392.000000 33.445918 7.805007 0.000000 7.000000 22.750000 29.000000	392.000000 392.000000 33.445918 5.471939 7.805007 1.705783 0.000000 3.000000 7.000000 4.000000 22.750000 4.000000 99.000000 8.000000	392.000000 392.000000 392.000000 33.445918 5.471939 194.411990 3.805007 1.705783 104.644004 3.000000 3.000000 68.000000 4.000000 105.000000 2.750000 4.000000 151.000000 29.000000 8.000000 275.750000	392.000000 392.000000 392.000000 392.000000 33.445918 5.471939 194.411990 104.469388 3.805007 1.705783 104.644004 38.491160 3.000000 3.000000 68.000000 46.000000 4.000000 105.000000 75.000000 22.750000 4.000000 151.000000 93.500000 29.000000 8.000000 275.750000 126.000000	692.000000 392.000000 392.000000 392.000000 392.000000 692.000000 392.000000 392.000000 392.000000 392.000000 692.000000 1.705783 194.411990 104.469388 2977.584184 7.805007 1.705783 104.644004 38.491160 849.402560 8.000000 3.000000 68.000000 46.000000 1613.000000 17.000000 4.000000 105.000000 75.000000 2225.250000 19.000000 8.000000 275.750000 126.000000 3614.750000	692.000000 3614.750000 17.025000 392.000000 3614.750000 17.025000 392.000000 392.000000 3614.750000 17.025000 392.000000 392.000000 392.000000 3614.750000 17.025000 392.000

Create two datasets based on whether the car models have been exposed to the 1973 oil shock or not

```
Auto_preos = Auto[Auto["year"] <= 76]
Auto_preos.shape
Auto_preos.describe()
Auto_preos.corr(numeric_only=True)</pre>
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
mpg	1.000000	-0.863133	-0.878385	-0.812052	-0.903557	0.494406	0.172135
cylinders	-0.863133	1.000000	0.955270	0.852144	0.906436	-0.616635	-0.157796
displacement	-0.878385	0.955270	1.000000	0.900549	0.926890	-0.653019	-0.195140
horsepower	-0.812052	0.852144	0.900549	1.000000	0.861309	-0.748969	-0.294137
weight	-0.903557	0.906436	0.926890	0.861309	1.000000	-0.522137	-0.073366
acceleration	0.494406	-0.616635	-0.653019	-0.748969	-0.522137	1.000000	0.298412
year	0.172135	-0.157796	-0.195140	-0.294137	-0.073366	0.298412	1.000000

```
Auto_postos = Auto[Auto["year"] > 76]
Auto_postos.shape
Auto_postos.describe()
```

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000
mean	27.900562	4.960674	160.426966	91.410112	2726.679775	16.133146	79.455056
std	7.504963	1.466624	80.477444	27.144212	670.417952	2.504227	1.714248
\min	15.000000	3.000000	70.000000	48.000000	1755.000000	11.100000	77.000000
25%	20.875000	4.000000	98.000000	70.000000	2144.250000	14.500000	78.000000
50%	28.000000	4.000000	134.500000	87.000000	2630.000000	15.800000	79.000000
75%	33.650000	6.000000	200.000000	105.000000	3208.750000	17.600000	81.000000
max	46.600000	8.000000	400.000000	190.000000	4360.000000	24.800000	82.000000

```
display(
    "If you look at the two datasets as displayed above, it's evident that the oil
    shock had a major impact on the models produced since."
)
display(Auto_preos.mean(numeric_only=True), Auto_postos.mean(numeric_only=True))
display(
    "Mileage increased, number of cylinders decreased, displacement decreased,
    horsepower decreased, weight decreased and time to acceleration increased
    thus indicating that less powerful and less performant cars were produced in
    the immediate period after the oil shock of 1973."
)
```

"If you look at the two datasets as displayed above, it's evident that the oil shock had a major impact on the models produced since."

mpg 19.740654 cylinders 5.897196 displacement 222.679907 horsepower 115.331776 weight 3186.280374 acceleration 15.049065
year 73.088785
dtype: float64

mpg 27.900562
cylinders 4.960674
displacement 160.426966
horsepower 91.410112
weight 2726.679775

year dtype: float64

acceleration

'Mileage increased, number of cylinders decreased, displacement decreased, horsepower decreased, weight decreased and time to acceleration increased thus indicating that less powerful and less performant cars were produced in the immediate period after the oil shock of 1973.'

Standardize numeric variables in the model

16.133146 79.455056

Auto_preos = Auto_preos.apply(standardize)
Auto_preos.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	2.140000e+02	2.140000e+02	2.140000e+02	2.140000e+02	214.000000	214.000000	2.140000e+02
mean	-4.150366e-17	-2.490220e-17	2.490220e-17	-1.494132e-16	0.000000	0.000000	-5.312469e-16
std	1.002345e+00	1.002345e+00	1.002345e+00	1.002345e+00	1.002345	1.002345	1.002345e+00
\min	-1.829062e+00	-1.635252e+00	-1.362364e+00	-1.617309e+00	-1.705900	-2.463723	-1.552289e+00
25%	-8.073018e-01	-1.070826e+00	-9.550106e-01	-6.842252 e-01	-0.944725	-0.698694	-1.049733e+00
50%	-1.261285e -01	5.802508e-02	4.685742 e- 02	-3.576458e-01	-0.081084	-0.017149	-4.461951e -02
75%	7.891982e-01	1.186877e+00	8.395442 e-01	8.087090e-01	0.913215	0.629446	9.604936 e-01
max	2.598565e+00	1.186877e + 00	2.046190e+00	2.674877e + 00	2.118409	2.953691	$1.463050\mathrm{e}{+00}$

Auto_postos = Auto_postos.apply(standardize) Auto_postos.describe()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
count	1.780000e+02	1.780000e+02	1.780000e+02	1.780000e+02	178.000000	1.780000e+02	1.780000e + 0
mean	-3.193450e-16	2.794269e-16	-7.983626e-17	-1.796316e-16	0.000000	-1.237462e-15	-1.516889e-15
std	1.002821e+00	1.002821e+00	1.002821e+00	1.002821e+00	1.002821	1.002821e+00	1.002821e+0
\min	-1.723786e+00	-1.340633e+00	-1.126801e+00	-1.603751e+00	-1.453453	-2.015529e+00	-1.436187e + 0
25%	-9.387629e-01	-6.568717e-01	-7.778958e-01	-7.909792e-01	-0.871207	-6.539953e -01	-8.511958e-01
50%	1.328704 e-02	-6.568717e-01	-3.230732e-01	-1.629280e-01	-0.144615	-1.334087e-01	-2.662041e-01
75%	7.682459 e-01	7.106507e-01	4.931154 e-01	5.020674 e-01	0.721088	5.874034 e-01	9.037793e-01

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
max	2.498638e+00	2.078173e+00	2.985294e+00	3.642323e+00	2.443144	3.470652e + 00	1.488771e + 0

Encode categorical variables as dummy variables dropping the first to remove multicollinearity.

```
Auto_preos = pd.get_dummies(
    Auto_preos, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_preos.columns

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin_Europe', 'origin_Japan'], dtype='object')

Auto_postos = pd.get_dummies(
    Auto_postos, columns=list(["origin"]), drop_first=True, dtype=np.uint8
)
Auto_postos.columns

Index(['mpg', 'cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'year', 'origin_Europe', 'origin_Japan'], dtype='object')
```

Analysis for pre-oil shock model

Test for multicollinearity using correlation matrix and variance inflation factors

```
Auto_preos.corr(numeric_only=True)
```

	mpg	cylinders	${\it displacement}$	horsepower	weight	acceleration	year	origin_Eur
mpg	1.000000	-0.863133	-0.878385	-0.812052	-0.903557	0.494406	0.172135	0.429946
cylinders	-0.863133	1.000000	0.955270	0.852144	0.906436	-0.616635	-0.157796	-0.507897
displacement	-0.878385	0.955270	1.000000	0.900549	0.926890	-0.653019	-0.195140	-0.499456
horsepower	-0.812052	0.852144	0.900549	1.000000	0.861309	-0.748969	-0.294137	-0.373257
weight	-0.903557	0.906436	0.926890	0.861309	1.000000	-0.522137	-0.073366	-0.420078
acceleration	0.494406	-0.616635	-0.653019	-0.748969	-0.522137	1.000000	0.298412	0.215335
year	0.172135	-0.157796	-0.195140	-0.294137	-0.073366	0.298412	1.000000	0.061819
origin_Europe	0.429946	-0.507897	-0.499456	-0.373257	-0.420078	0.215335	0.061819	1.000000
origin_Japan	0.454576	-0.408555	-0.428045	-0.292877	-0.424328	0.164038	0.030362	-0.192745

	VIF
Feature	
cylinders	12.409093
displacement	23.483690
horsepower	9.924721
weight	10.993223
acceleration	2.965117
year	1.296707
origin_Europe	2.286473
$origin_Japan$	2.062780

identify_highest_VIF_feature(vifdf)

We find the highest VIF in this model is displacement with a VIF of $23.483689524756567\,$

Hence, we drop displacement from the model to be fitted.

('displacement', 23.483689524756567)

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_preos.columns) + " - mpg - displacement", Auto_preos
)
vifdf
```

-	VIF
Feature	
cylinders	8.727646
horsepower	8.845099
weight	9.513189
acceleration	2.856231
year	1.287027
origin_Europe	1.960903
origin_Japan	1.789531

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

 $\label{linear Regression} \mbox{ Linear Regression for mpg} \sim \mbox{ horsepower} + \mbox{ acceleration} + \mbox{ weight} + \mbox{ cylinders} + \mbox{ year} + \mbox{ origin_Europe} + \mbox{ origin_Japan}$

```
cols = list(Auto_preos.columns)
cols.remove("mpg")
```

```
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.848
Model:	OLS	Adj. R-squared:	0.842
Method:	Least Squares	F-statistic:	163.8
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	1.51e-80
Time:	14:37:55	Log-Likelihood:	-102.32
No. Observations:	214	AIC:	220.6
Df Residuals:	206	BIC:	247.6

Df Model: 7
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1025	0.040	-2.583	0.010	-0.181	-0.024
cylinders	-0.1149	0.080	-1.430	0.154	-0.273	0.043
horsepower	-0.1394	0.081	-1.724	0.086	-0.299	0.020
weight	-0.6079	0.084	-7.248	0.000	-0.773	-0.443
acceleration	-0.0653	0.046	-1.421	0.157	-0.156	0.025
year	0.0776	0.031	2.514	0.013	0.017	0.138
origin_Europe	0.2534	0.097	2.618	0.009	0.063	0.444
origin_Japan	0.3985	0.106	3.749	0.000	0.189	0.608
=========	=======	=========			========	=====
Omnibus:		12.372	Durbin-Wa	atson:		1.407
<pre>Prob(Omnibus):</pre>		0.002	Jarque-Be	era (JB):		16.578
Skew:		-0.403	Prob(JB):	:	0.	000251
Kurtosis:		4.099	Cond. No.	•		9.30

Notes

 $\cite{black} \cite{black}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

_	df	sum_sq	mean sq	F	PR(>F)
cylinders	1.0	159.429574	159.429574	1007.436126	2.877624e-81
horsepower	1.0	4.577852	4.577852	28.927463	2.030739e-07
weight	1.0	13.283446	13.283446	83.938147	5.242535e-17
acceleration	1.0	0.533174	0.533174	3.369126	6.787066e-02
year	1.0	1.267919	1.267919	8.011985	5.107121e-03
origin_Europe	1.0	0.083174	0.083174	0.525577	4.692948e-01
origin_Japan	1.0	2.224788	2.224788	14.058446	2.302318e-04
Residual	206.0	32.600074	0.158253	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x76450324c890>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is acceleration with a p-value of 0.15682628665346462 and a coefficient of -0.06530735672959463 Using the backward methodology, we suggest dropping acceleration from the new model

Linear Regression after dropping acceleration in pre-oil shock. The model now is mpg \sim horsepower + weight + cylinder + year + origin_Europe + origin_Japan

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.846
Model:	OLS	Adj. R-squared:	0.842
Method:	Least Squares	F-statistic:	189.8
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	2.86e-81
Time:	14:37:55	Log-Likelihood:	-103.36
No. Observations:	214	AIC:	220.7
Df Residuals:	207	BIC:	244.3
Df Model:	6		

Covariance Type: nonrobust

==========	========		========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
Intercept cylinders	-0.1073 -0.0832	0.040 0.077	-2.705 -1.075	0.007 0.284	-0.185 -0.236	-0.029 0.069
horsepower	-0.0718	0.066	-1.095	0.275	-0.201	0.057
weight	-0.6564	0.077	-8.546	0.000	-0.808	-0.505
year	0.0789	0.031	2.552	0.011	0.018	0.140
origin_Europe	0.2722	0.096	2.832	0.005	0.083	0.462
origin_Japan	0.4069	0.106	3.825	0.000	0.197	0.617
===========	========	:=======	=======	========		======
Omnibus:		9.704	Durbin-Wa	atson:		1.384
<pre>Prob(Omnibus):</pre>		0.008	Jarque-B	era (JB):		10.825
Skew:		-0.398	Prob(JB)	:		0.00446

Notes

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

3.763

Cond. No.

8.52

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	159.429574	159.429574	1002.499833	2.735220e-81
horsepower	1.0	4.577852	4.577852	28.785723	2.155884e-07
weight	1.0	13.283446	13.283446	83.526863	5.919063e-17
year	1.0	1.323199	1.323199	8.320328	4.335077e-03
origin_Europe	1.0	0.139721	0.139721	0.878569	3.496863e-01
origin_Japan	1.0	2.326581	2.326581	14.629642	1.731691e-04
Residual	207.0	32.919628	0.159032	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x764503279fd0>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.28351001934768794 and a coefficient of -0.08318186983127318 Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

OLS Regression Results

mpg	R-squared:	0.845
OLS	Adj. R-squared:	0.842
Least Squares	F-statistic:	227.3
Tue, 25 Feb 2025	Prob (F-statistic):	3.20e-82
14:37:55	Log-Likelihood:	-103.95
214	AIC:	219.9
208	BIC:	240.1
	0LS Least Squares Tue, 25 Feb 2025 14:37:55 214	OLS Adj. R-squared: Least Squares F-statistic: Tue, 25 Feb 2025 Prob (F-statistic): 14:37:55 Log-Likelihood: 214 AIC:

Df Model: 5
Covariance Type: nonrobust

Covariance Type	:	nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept horsepower weight year origin_Europe origin_Japan	-0.1213 -0.0964 -0.6974 0.0802 0.3185 0.4445	0.037 0.061 0.067 0.031 0.086 0.101	-3.235 -1.569 -10.455 2.597 3.708 4.422	0.001 0.118 0.000 0.010 0.000 0.000	-0.195 -0.218 -0.829 0.019 0.149 0.246	-0.047 0.025 -0.566 0.141 0.488 0.643
Omnibus: Prob(Omnibus): Skew: Kurtosis:		7.861 0.020 -0.371 3.598	Durbin-Wa Jarque-Ba Prob(JB): Cond. No	era (JB):		1.406 8.096 0.0175 6.43

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
horsepower	1.0	141.117636	141.117636	886.687803	6.026431e-77
weight	1.0	34.542884	34.542884	217.044124	4.053391e-34
year	1.0	1.552002	1.552002	9.751732	2.046623e-03
origin_Europe	1.0	0.572100	0.572100	3.594690	5.935071e-02
origin_Japan	1.0	3.111879	3.111879	19.552944	1.576086e-05
Residual	208.0	33.103499	0.159151	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7645032a3e00>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is horsepower with a p-value of 0.11823063227848224 and a coefficient of -0.09641477003432276 Using the backward methodology, we suggest dropping horsepower from the new model

```
cols.remove("horsepower")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_preos)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.843
Model:	OLS	Adj. R-squared:	0.840
Method:	Least Squares	F-statistic:	281.6
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	6.06e-83
Time:	14:37:55	Log-Likelihood:	-105.21
No. Observations:	214	AIC:	220.4
Df Residuals:	209	BIC:	237.3
Df Model:	4		

Covariance Type: nonrobust

oovariance Type	•	HOHI ODUBU				
	coef	std err	t	P> t	[0.025	0.975]
Intercept weight year origin_Europe origin_Japan	-0.1151 -0.7850 0.1028 0.3078 0.4140	0.037 0.037 0.027 0.086 0.099	-3.077 -21.422 3.742 3.582 4.183	0.002 0.000 0.000 0.000 0.000	-0.189 -0.857 0.049 0.138 0.219	-0.041 -0.713 0.157 0.477 0.609
Omnibus: Prob(Omnibus): Skew: Kurtosis:		10.672 0.005 -0.443 3.722	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):		1.398 11.650 0.00295 4.59

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
weight	1.0	174.712905	174.712905	1090.157519	7.188986e-85
year	1.0	2.410414	2.410414	15.040281	1.409621e-04
origin_Europe	1.0	0.576721	0.576721	3.598570	5.920817e-02
origin_Japan	1.0	2.804802	2.804802	17.501148	4.226183e-05
Residual	209.0	33.495157	0.160264	NaN	NaN

 $\verb|\scale=| statsmodels.regression.linear_model.RegressionResults | wrapper at 0x76450324d730 > 1 | statsmodels.regression.linear_model.RegressionResults | wrapper at 0x76450324d730 > 1 | statsmodels.regressionResults | wrapper at 0x76450324d730 > 1 | s$

 ${\tt identify_least_significant_feature(results, alpha=LOS_Alpha)}$

No variables are statistically insignificant.

The model mpg \sim weight + year + origin_Europe + origin_Japan cannot be pruned further.

Residual plot for model for pre-oil shock

display_residuals_plot(results)

preoilshock_model = results

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x76450324d730>

Analysis for post Oil Shock

Test for multicollinearity using correlation matrix and variance inflation factors

Auto_postos.corr(numeric_only=True)

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin_Eur
mpg	1.000000	-0.710232	-0.771039	-0.796617	-0.837333	0.278650	0.460200	0.212795
cylinders	-0.710232	1.000000	0.936943	0.796697	0.860088	-0.247767	-0.338905	-0.181385
displacement	-0.771039	0.936943	1.000000	0.854454	0.929346	-0.264374	-0.319411	-0.240143
horsepower	-0.796617	0.796697	0.854454	1.000000	0.837067	-0.535033	-0.353954	-0.214702
weight	-0.837333	0.860088	0.929346	0.837067	1.000000	-0.130152	-0.319783	-0.144152
acceleration	0.278650	-0.247767	-0.264374	-0.535033	-0.130152	1.000000	0.157159	0.235217
year	0.460200	-0.338905	-0.319411	-0.353954	-0.319783	0.157159	1.000000	-0.057596
origin_Europe	0.212795	-0.181385	-0.240143	-0.214702	-0.144152	0.235217	-0.057596	1.000000
origin_Japan	0.405159	-0.359263	-0.436964	-0.317954	-0.459869	0.000714	0.155368	-0.264286

```
vifdf = calculate_VIFs(
    "mpg ~ " + " + ".join(Auto_postos.columns) + " - mpg", Auto_postos
)
vifdf
```

	VIF
Feature	
cylinders	9.017020
displacement	20.423355
horsepower	9.245687
weight	12.693737
acceleration	2.788052
year	1.185236
origin_Europe	1.452328
$origin_Japan$	1.651675

identify_highest_VIF_feature(vifdf)

```
We find the highest VIF in this model is displacement with a VIF of 20.423354692792778
```

Hence, we drop displacement from the model to be fitted.

('displacement', 20.423354692792778)

	VIF
Feature	
cylinders	4.251590
horsepower	9.104343
weight	9.540921
acceleration	2.770794
year	1.182561
origin_Europe	1.278261
origin_Japan	1.512852

identify_highest_VIF_feature(vifdf)

No variables are significantly collinear.

Linear Regression Analysis for post oil shock dropping feature displacement

```
cols = list(Auto_postos.columns)
cols.remove("mpg")
cols.remove("displacement")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

Dep. Variable:	mpg	R-squared:	0.788
Model:	OLS	Adj. R-squared:	0.779
Method:	Least Squares	F-statistic:	90.11
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	7.20e-54
Time:	14:37:56	Log-Likelihood:	-114.64
No. Observations:	178	AIC:	245.3
Df Residuals:	170	BIC:	270.7
Df Model:	7		

Covariance Type: nonrobust

==========		========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.1072	0.051	-2.096	0.038	-0.208	-0.006
cylinders	0.1988	0.073	2.728	0.007	0.055	0.343
horsepower	-0.1879	0.107	-1.762	0.080	-0.398	0.023
weight	-0.7149	0.109	-6.550	0.000	-0.930	-0.499
acceleration	0.0713	0.059	1.212	0.227	-0.045	0.187
year	0.2148	0.038	5.589	0.000	0.139	0.291
origin_Europe	0.3461	0.111	3.108	0.002	0.126	0.566
origin_Japan	0.1946	0.097	2.012	0.046	0.004	0.385

Omnibus:	6.408	Durbin-Watson:	1.583
<pre>Prob(Omnibus):</pre>	0.041	Jarque-Bera (JB):	6.069
Skew:	0.398	Prob(JB):	0.0481
Kurtosis:	3.431	Cond. No.	7.71

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	89.788355	89.788355	403.941459	8.824859e-47
horsepower	1.0	25.953062	25.953062	116.758098	4.752402e-21
weight	1.0	15.387223	15.387223	69.224316	2.748274e-14
acceleration	1.0	0.660414	0.660414	2.971082	8.658318e-02
year	1.0	6.087213	6.087213	27.385264	4.863030e-07
origin_Europe	1.0	1.436421	1.436421	6.462195	1.191261e-02
origin_Japan	1.0	0.899608	0.899608	4.047172	4.582475e-02
Residual	170.0	37.787704	0.222281	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x764500f83ef0>

identify_least_significant_feature(results, alpha=LOS_Alpha)

We find the least significant variable in this model is acceleration with a p-value of 0.22719512270297804 and a coefficient of 0.07129263347256862 Using the backward methodology, we suggest dropping acceleration from the new model

```
cols.remove("acceleration")
formula = " + ".join(cols)
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

===========	:==========	============	==========
Dep. Variable:	mpg	R-squared:	0.786
Model:	OLS	Adj. R-squared:	0.778
Method:	Least Squares	F-statistic:	104.6
Date:	Tue, 25 Feb 2025	Prob (F-statistic):	1.39e-54
Time:	14:37:56	Log-Likelihood:	-115.40
No. Observations:	178	AIC:	244.8
Df Residuals:	171	BIC:	267.1
Df Model:	6		

Covariance Type: nonrobust

========	coef	std err	t	P> t	[0.025	0.975]
Intercept cylinders	-0.1148 0.1915	0.051 0.073	-2.261 2.633	0.025 0.009	-0.215 0.048	-0.015 0.335
horsepower	-0.2864	0.069	-4.148	0.000	-0.423	-0.150

weight	-0.6311	0.085	-7.462	0.000	-0.798	-0.464
year	0.2149	0.038	5.584	0.000	0.139	0.291
origin_Europe	0.3689	0.110	3.355	0.001	0.152	0.586
origin_Japan	0.2096	0.096	2.183	0.030	0.020	0.399
===========	========				========	=====
Omnibus:		6.875	Durbin-Wa	itson:		1.555
<pre>Prob(Omnibus):</pre>		0.032	Jarque-Bera (JB):		6.653	
Skew:		0.400	Prob(JB):			0.0359
Kurtosis:		3.507	Cond. No.			6.16

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	89.788355	89.788355	402.836748	8.041561e-47
horsepower	1.0	25.953062	25.953062	116.438785	4.931248e-21
weight	1.0	15.387223	15.387223	69.034999	2.864764e-14
year	1.0	6.001042	6.001042	26.923762	5.941221e-07
origin_Europe	1.0	1.693907	1.693907	7.599738	6.471569e-03
origin_Japan	1.0	1.062190	1.062190	4.765532	3.039795e-02
Residual	171.0	38.114221	0.222890	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x764500f85a30>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is origin_Japan with a p-value of 0.030397952937226073 and a coefficient of 0.20964740213594493Using the backward methodology, we suggest dropping origin_Japan from the new model

- However, origin_Japan is one of three levels with origin_Europe significant. So we do not drop it from the model.
- We can check what will happen with dropping the Intercept with it also insignificant especially since we have standardized the variables.
- https://stats.stackexchange.com/questions/197923/difference-between-centered-and-uncenter ed-r2

```
postoilshock_model_intercept = results
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

Dep. Variable: R-squared (uncentered): mpg 0.779

Model: OLS Adj. R-squared (uncentered):

0.772

Method: Least Squares F-statistic:

101.3

Date: Tue, 25 Feb 2025 Prob (F-statistic):

8.07e-54

Time: 14:37:57 Log-Likelihood:

-118.03

No. Observations: 178 AIC:

248.1

Df Residuals: 172 BIC:

267.1

Df Model: 6
Covariance Type: nonrobust

==========	=======					
	coef	std err	t	P> t	[0.025	0.975]
cylinders	0.1892	0.074	2.572	0.011	0.044	0.334
horsepower	-0.2877	0.070	-4.117	0.000	-0.426	-0.150
weight	-0.6656	0.084	-7.905	0.000	-0.832	-0.499
year	0.2098	0.039	5.398	0.000	0.133	0.287
origin_Europe	0.2400	0.095	2.523	0.013	0.052	0.428
origin_Japan	0.0688	0.074	0.930	0.353	-0.077	0.215
	=======	9.950	======= Durbin-Wa	======== atson:	:=======:	1.526
<pre>Prob(Omnibus):</pre>	Prob(Omnibus): 0.007		Jarque-Bera (JB):		10.241	
Skew:		0.498	Prob(JB):		(0.00597
Kurtosis:		3.622	Cond. No.			5.06
==========	=======					=====

Notes

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
cylinders	1.0	89.788355	89.788355	393.430947	2.582371e-46
horsepower	1.0	25.953062	25.953062	113.720066	1.057893e-20
weight	1.0	15.387223	15.387223	67.423107	5.008832e-14
year	1.0	6.001042	6.001042	26.295121	7.831453e-07
origin_Europe	1.0	1.419140	1.419140	6.218329	1.358813e-02
origin_Japan	1.0	0.197537	0.197537	0.865561	3.534910e-01
Residual	172.0	39.253641	0.228219	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7644feefacf0>

identify_least_significant_feature(results, alpha=LOS_Alpha)

We find the least significant variable in this model is origin_Japan with a p-value of 0.35349096552578385 and a coefficient of 0.06881297255714136
Using the backward methodology, we suggest dropping origin_Japan from the new model

• We drop both origin_Europe and origin_Japan from the model.

```
cols.remove("origin_Europe")
cols.remove("origin_Japan")
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

```
______
Dep. Variable:
                           mpg
                                R-squared (uncentered):
0.770
Model:
                           OLS
                                Adj. R-squared (uncentered):
0.765
Method:
                   Least Squares
                                F-statistic:
146.0
                Tue, 25 Feb 2025
                                Prob (F-statistic):
Date:
1.73e-54
Time:
                       14:37:57
                                Log-Likelihood:
-121.62
No. Observations:
                           178
                                AIC:
251.2
Df Residuals:
                           174
                                BIC:
264.0
Df Model:
Covariance Type:
                      nonrobust
```

	coef	std err	t	P> t	[0.025	0.975]
cylinders horsepower weight year	0.1776 -0.3084 -0.6688 0.1974	0.074 0.070 0.082 0.039	2.388 -4.424 -8.173 5.055	0.018 0.000 0.000 0.000	0.031 -0.446 -0.830 0.120	0.324 -0.171 -0.507 0.274
Omnibus: Prob(Omnibus Skew: Kurtosis:):	0.6	0.0 24121	•		1.582 14.628 0.000666 4.67

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
F
                                                       PR(>F)
             df
                    sum sq
                              mean sq
             1.0 89.788355 89.788355 382.262105 8.909529e-46
cylinders
             1.0 25.953062 25.953062 110.491745 2.548773e-20
horsepower
             1.0 15.387223 15.387223 65.509078 9.616073e-14
weight
             1.0 6.001042 6.001042 25.548647 1.085130e-06
year
Residual
           174.0 40.870318
                             0.234887
                                             {\tt NaN}
                                                          NaN
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x76450324dc40>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

We find the least significant variable in this model is cylinders with a p-value of 0.018006259822639592 and a coefficient of 0.17760733234778334 Using the backward methodology, we suggest dropping cylinders from the new model

```
cols.remove("cylinders")
formula = " + ".join(cols)
formula += " - 1"
results = perform_analysis("mpg", formula, Auto_postos)
```

OLS Regression Results

```
Dep. Variable: mpg R-squared (uncentered):
0.763
Model: OLS Adj. R-squared (uncentered):
0.759
```

Method: Least Squares F-statistic:

187.7

Date: Tue, 25 Feb 2025 Prob (F-statistic):

1.90e-54

Time: 14:37:57 Log-Likelihood:

-124.49

No. Observations: 178 AIC:

255.0

Df Residuals: 175 BIC:

264.5

Df Model: 3
Covariance Type: nonrobust

========				D> +		0.075	
	coef	std err	τ 	P> t	[0.025	0.975]	
horsepower	-0.2653	0.068	-3.888	0.000	-0.400	-0.131	
weight	-0.5548	0.067	-8.238	0.000	-0.688	-0.422	
year	0.1889	0.039	4.793	0.000	0.111	0.267	

Omnibus:	15.435	Durbin-Watson:	1.592
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	16.821
Skew:	0.690	Prob(JB):	0.000223
Kurtosis:	3.601	Cond. No.	3.56

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

	df	sum_sq	${\tt mean_sq}$	F	PR(>F)
horsepower	1.0	112.958534	112.958534	468.320143	2.378397e-51
weight	1.0	17.289976	17.289976	71.683331	9.907388e-15
year	1.0	5.541596	5.541596	22.975165	3.490133e-06
Residual	175.0	42.209894	0.241199	NaN	NaN

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7645032a19d0>

```
identify_least_significant_feature(results, alpha=LOS_Alpha)
```

No variables are statistically insignificant.

The model mpg ~ horsepower + weight + year - 1 cannot be pruned further.

```
postoilshock_model = results
```

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7645032a19d0>

Residual plot for model for post-oil shock

display_residuals_plot(results)

Pre-oilshock model

preoilshock_model.model.formula

^{&#}x27;mpg ~ weight + year + origin_Europe + origin_Japan'

Explanatory power of preoilshock model

```
preoilshock_model.rsquared_adj
```

0.8404849876892488

Post-oil shock model without intercept

postoilshock_model.model.formula

'mpg ~ horsepower + weight + year - 1'

Explanatory power of postoilshock model

```
postoilshock_model.rsquared_adj
```

0.7588006068263029

- Thus, we can conclude that prior to the oil shock of 1973, mileage was determined mostly by weight, year and origin.
- Post the oil shock of 1973, mileage was determined by horsepower, weight and year. Origin no longer played an important role as before.

Post oil shock model with intercept (Corollary)

```
postoilshock_model_intercept.model.formula
```

'mpg ~ cylinders + horsepower + weight + year + origin_Europe + origin_Japan'

Explanatory power of postoilshock model with intercept

postoilshock_model_intercept.rsquared_adj

0.7783620129852484

Finished

allDone()

<IPython.lib.display.Audio object>