

Tecnología	Industrial	Ш	(F.E.)
------------	------------	---	--------

Septiembre - 2015 Duración: 90min.

MODELO 16

Hoja: 1 de 3

INSTRUCCIONES GENERALES Y VALORACIÓN

Tiempo: Una hora y treinta minutos.

Instrucciones: La prueba se compone de dos opciones ("A" y "B"). Sólo se contestará una de las dos opciones, desarrollando integramente su contenido.

Puntuación: Cada una de las opciones ("A" y "B") consta de 4 preguntas. Cada una de las preguntas se calificará con 2,5 puntos como máximo.

Material permitido: Calculadora no programable

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

En la corrección de las pruebas se tendrá en cuenta en especial:

- El rigor y concreción en la expresión y justificación de las respuestas aportadas.
- El uso adecuado de la terminología y el lenguaje.
- La correcta utilización del Sistema Internacional (SI) de unidades.
- La claridad y precisión de las respuestas.
- La resolución total o parcial de las cuestiones planteadas.
- Las cuestiones dejadas en blanco o con errores graves en las contestaciones.
- La adecuada justificación de posibles enfoques alternativos.
- La aportación de aclaraciones que complementen las respuestas dadas.

Además, se valorará que el alumno demuestre poseer un equilibrio de conocimiento de las distintas partes de la asignatura.

03100601

Tecnología	Industrial	II	(F.E.)

PRUEBA DE ACCESO A LA UNIVERSIDAD

Septiembre - 2015 Duración: 90min.

MODELO 16

Hoja: 2 de 3

OPCIÓN A

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

Se pide indicar las transformaciones isotérmicas del diagrama Fe-Fe₃C, definiendo tanto el nombre específico de cada una de ellas, la temperatura a la que tienen lugar y las fases que intervienen.

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

Responda a las siguientes preguntas:

- a) (1 punto) Explicar el funcionamiento de una bomba de calor reversible.
- b) (1 punto) Dibujar el ciclo ideal de Carnot, analizando cada una de sus transformaciones.
- c) (0,5 puntos) Definir los conceptos de caloría y frigoría.

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Diseñe un circuito neumático para activar un cilindro de simple efecto, controlado desde dos puntos simultáneamente, para que provoque el avance del vástago.

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Indique la función lógica y la tabla de la verdad de una puerta lógica NAND.

03100601

Tecnología	Industrial	Ш	(F.E.)
------------	------------	---	--------

PRUEBA DE ACCESO A LA UNIVERSIDAD

otiembre - 2015 Duración: 90min.

MODELO 16

Hoja: 3 de 3

OPCIÓN B

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

Responda a las siguientes preguntas:

- a) (0,5 puntos) Indique dos de las redes cristalinas más frecuentes en los metales
- b) (1 punto) Represente sus celdas cristalinas unitarias de forma esquemática
- c) (1 punto) A partir de la geometría de la celda cristalina unitaria FCC, calcule la longitud de la arista para un elemento de radio atómico 0,1 nm

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

Una probeta de sección transversal cuadrada de 2,5 cm de lado y 25 cm de longitud se deforma elásticamente a tracción hasta que se alcanza una fuerza de 12.000 N. Si se aumenta la fuerza en la probeta empiezan las deformaciones plásticas hasta que al alcanzar una fuerza de 16.200 N se rompe. Su módulo elástico es de 10⁶ N/cm². Calcule:

- a) (0,5 puntos) Tensión límite elástica
- b) (1 punto) Tensión máxima de trabajo con un coeficiente de seguridad sobre rotura n = 2.
- c) (0,5 puntos) Alargamiento cuando se alcanza el límite elástico
- d) (0,5 puntos) Alargamiento cuando se aplica una fuerza de 5.000 N

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Explicar cómo puede ser el régimen de circulación de un fluido y cómo se determina.

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Se desea diseñar un sistema digital con una entrada de cuatro bits (x_3, x_2, x_1, x_0) y una salida z, de manera que tenga el siguiente comportamiento: la salida debe valer 1 cuando el número a su entrada sea impar o capicúa (es decir que es igual leído de izquierda a derecha que de derecha a izquierda) y 0 en caso contrario.

- a) (1,5 puntos) Construya la tabla de verdad correspondiente
- b) (1 punto) Simplifique por el método de Karnaugh la función $z(x_3, x_2, x_1, x_0)$ que realiza el sistema descrito.

|--|

Tecnología	Industrial	II (F.E.)
------------	------------	-----------

Septiembre - 2015 Duración: 90min.

MODELO 18

Hoja: 1 de 3

INSTRUCCIONES GENERALES Y VALORACIÓN

Tiempo: Una hora y treinta minutos.

Instrucciones: La prueba se compone de dos opciones ("A" y "B"). Sólo se contestará una de las dos opciones, desarrollando integramente su contenido.

Puntuación: Cada una de las opciones ("A" y "B") consta de 4 preguntas. Cada una de las preguntas se calificará con 2,5 puntos como máximo.

Material permitido: Calculadora no programable

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

En la corrección de las pruebas se tendrá en cuenta en especial:

- El rigor y concreción en la expresión y justificación de las respuestas aportadas.
- El uso adecuado de la terminología y el lenguaje.
- La correcta utilización del Sistema Internacional (SI) de unidades.
- La claridad y precisión de las respuestas.
- La resolución total o parcial de las cuestiones planteadas.
- Las cuestiones dejadas en blanco o con errores graves en las contestaciones.
- La adecuada justificación de posibles enfoques alternativos.
- La aportación de aclaraciones que complementen las respuestas dadas.

Además, se valorará que el alumno demuestre poseer un equilibrio de conocimiento de las distintas partes de la asignatura.

_	_		_	_	_	_		
٦.	$\boldsymbol{\gamma}$	1	n	\cap	6	$\boldsymbol{\cap}$. 1	
	^		ιJ	u	n	u		
	.,		w	w	•	v		

Tecnología Industrial	Ш	(F.	E.)
-----------------------	---	-----	-----

Septiembre - 2015 Duración: 90min.

MODELO 18

Hoja: 2 de 3

OPCIÓN A

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

Responda a las siguientes cuestiones:

- a) (0,5 puntos) ¿Cuál es el principal objetivo de los tratamientos superficiales?
- b) (1 punto) Enumere tres de los principales tratamientos superficiales realizados en materiales metálicos
- c) (1 punto) Elija dos tratamientos térmicos superficiales de los seleccionados en el apartado anterior, explicando brevemente sus características principales

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

Se desea climatizar una nave a 24°C mediante una bomba de calor de 2 kW de potencia. Si la temperatura exterior es de 5°C y la bomba funciona según un ciclo de Carnot reversible, determine:

- a) (1 punto) Rendimiento de la bomba de calor
- b) (1 punto) Calor aportado al foco caliente
- c) (0,5 puntos) Calor sustraído al foco frio

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Una tubería horizontal de 20 mm de diámetro conduce agua con una velocidad de 1 m/s. La presión en la entrada es 10.000 Pa. En la salida hay un estrechamiento de 10 mm de diámetro. Si se desprecia el rozamiento, calcule la presión a la salida. (Densidad del agua = 1.000 kg/m³).

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Dado el diagrama de bloques de la figura, obtenga la función de transferencia Z = f(Y).

03	1	\cap	Λ	2	\cap	1
\ J.~	וו	W	W	n		

Septiembre - 2015 Duración: 90min.

MODELO 18

Hoja: 3 de 3

OPCIÓN B

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

En la figura adjunta se representa el diagrama simplificado Fe-C:

- a) (0,5 puntos) Indique las transformaciones isotermas que aparecen en el diagrama
- b) (1 punto) ¿En qué se transforma la aleación del 4.5%C al solidificar y en qué proporción?
- c) (1 punto) Cuando la temperatura del eutéctico desciende de los 700 °C, ¿qué transformaciones se producen?

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

Responda a las siguientes cuestiones:

- a) (1 punto) Indique la expresión del Teorema de Bernoulli
- b) (1 punto) Defina cada una de las variables que en ella aparecen
- c) (0.5 puntos) Identifique las componentes energéticas que la constituyen

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Responda a las siguientes preguntas:

- a) (0.5 puntos) Indique dos de las redes cristalinas más frecuentes en los metales
- b) (1 punto) Represente sus celdas cristalinas unitarias de forma esquemática
- c) (1 punto) Determine el número de átomos que contiene cada celda cristalina unitaria

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Una familia compuesta por padre (a), madre (b) e hijo (c), no se ponen de acuerdo en ir o no de vacaciones. Tras meditarlo, llegan al siguiente acuerdo: si los padres se ponen de acuerdo, esa será la decisión a tomar, en caso contrario decide el hijo. Se pide:

- a) (2 puntos) La tabla de verdad.
- b) (0,5 puntos) En un circuito de control, ¿qué misión tiene el comparador?

Tecnología Industrial II (F.E.)

PRUEBA DE ACCESO A LA UNIVERSIDAD

Septiembre - 2015 Duración: 90min.

MODELO 20

Hoja: 1 de 3

INSTRUCCIONES GENERALES Y VALORACIÓN

Tiempo: Una hora y treinta minutos.

Instrucciones: La prueba se compone de dos opciones ("A" y "B"). Sólo se contestará una de las dos opciones, desarrollando integramente su contenido.

Puntuación: Cada una de las opciones ("A" y "B") consta de 4 preguntas. Cada una de las preguntas se calificará con 2,5 puntos como máximo.

Material permitido: Calculadora no programable

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

En la corrección de las pruebas se tendrá en cuenta en especial:

- El rigor y concreción en la expresión y justificación de las respuestas aportadas.
- El uso adecuado de la terminología y el lenguaje.
- La correcta utilización del Sistema Internacional (SI) de unidades.
- La claridad y precisión de las respuestas.
- La resolución total o parcial de las cuestiones planteadas.
- Las cuestiones dejadas en blanco o con errores graves en las contestaciones.
- La adecuada justificación de posibles enfoques alternativos.
- La aportación de aclaraciones que complementen las respuestas dadas.

Además, se valorará que el alumno demuestre poseer un equilibrio de conocimiento de las distintas partes de la asignatura.

•					
ĺ	ገვ	1റ	าลเ	Դ1	

Septiembre - 2015 Duración: 90min.

MODELO 20

Hoja: 2 de 3

OPCIÓN A

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

Responda a las siguientes cuestiones:

a) (0,5 puntos) ¿Qué representa este gráfico?

- b) (1 punto) Explique qué indican los parámetros LE, LF y LR
- c) (1 punto) ¿Qué representan las zonas marcadas en el gráfico con números del 1 al 5?

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

Dibuje el diagrama p-V de un ciclo frigorífico de Carnot efectuado por un gas. Escriba la expresión del rendimiento del mismo.

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Explique qué se entiende por función de transferencia de un sistema.

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Identifique los componentes señalados en el esquema.

03100601

Tecnología Industrial II (F.E.)

PRUEBA DE ACCESO A LA UNIVERSIDAD

Septiembre - 2015 Duración: 90min.

MODELO 20

Hoja: 3 de 3

OPCIÓN B

Cuestión Nº 1 (máxima puntuación 2,5 puntos)

- a) (1 punto) ¿Qué es un diagrama TTT?
- b) (0,5 puntos) Enumere tres tratamientos térmicos básicos de los aceros
- c) (1 punto) Elija dos tratamientos térmicos de los seleccionados en el apartado anterior, explicando brevemente sus características principales

Cuestión Nº 2 (máxima puntuación 2,5 puntos)

A la vista del diagrama de equilibrio de fases simplificado hierro-carbono:

- a) (1 punto) Señale los nombres de fases y/o constituyentes en cada una de las zonas A, B, C, D
- b) (0,5 puntos) Indique qué parte del diagrama corresponde a los aceros y que parte a las fundiciones
- c) (1 punto) Determine la proporción de cada una de las fases de una aleación con un 4,3% de carbono a 900°C

Cuestión Nº 3 (máxima puntuación 2,5 puntos)

Un fluido hidráulico circula por una tubería horizontal de 4 cm de diámetro a una velocidad de 8 m/s.

- a) (1,25 puntos) Calcule el caudal de circulación.
- b) (1,25 puntos) Calcule la velocidad del fluido en un punto de la tubería donde se reduce el diámetro a 15 mm.

Cuestión Nº 4 (máxima puntuación 2,5 puntos)

Dado el diagrama de bloques de la figura:

- a) (1 punto) Obtenga la función de transferencia Z = f(Y)
- b) (1,5 puntos) Obtenga la función de transferencia Z = f(X)