

Monitoramento e Gerenciamento de Redes

- Firewall e Access-Control List-

- Continuação – arquivo com mesmo conteúdo da Aula 06 -

Mauro Cesar Bernardes

Plano de Aula

Objetivo

- Revisar conceitos de segurança da Informação
- Compreender a utilização de Listas de Controle de Acesso como um mecanismo de Firewall

Conteúdo

- Revisão sobre Segurança da Informação
- Revisão sobre Firewall
- Configurando roteador para utilização de ACLs padrão (access control lists)

Metodologia

• Aula expositiva sobre os conceitos de Segurança da Informação Firewall e desenvolvimento de atividade prática com configuração em simulador (*Packet Tracer*) de ACLs (*access control lists*) em roteador.

Agenda do Primeiro semestre - 2023

	Fevereiro 2023							
N°	Se	Te	Qu	Qu	Se	Sá	Do	
5			1	2	3	4	5	
6	6	7	8	9	10	11	12	
7	13	14	15	16	17	18	19	
8	20	<u>21</u>	22	23	24	25	26	
9	27	28						

Aula 7 Segurança: Firewall + ACL

	🗮 Abril 2023						
N°	Se	Te	Qu	Qu	Se	Sá	Do
13						1	2
14	3	4	5	6	7	8	9
15	10	11	12	13	14	15	16
16	17	18	19	20	<u>21</u>	22	23
17	24	25	26	27	28	29	30

	≝ Maio 2023							
N°	Se	Te	Qu	Qu	Se	Sá	Do	
18	1	2	3	4	5	6	7	
19	8	9	10	11	12	13	14	
20	15	16	17	18	19	20	21	
21	22	23	24	25	26	27	28	
22	29	30	31					

ä Junho 2023							
N°	Se	Te	Qu	Qu	Se	Sá	Do
22				1	2	3	4
23	5	6	7	<u>8</u>	9	10	11
24	12	13	14	15	16	17	18
25	19	20	21	22	23	24	25
26	26	27	28	29	30		

Início das aulas

1º Ponto importante:

Fique atento ao horário de início das aulas Atrasos refletem descaso!

Segurança da Informação e Firewall (revisão)

Segurança da Informação

- O termo Segurança;
- A demanda por segurança;
- Soluções em segurança;

https://medium.com/@fertorresfs/voc%C3%AA-sabe-a-diferen%C3%A7a-entre-ciberseguran%C3%A7a-e-seguran%C3%A7a-da-informa%C3%A7%C3%A3o-19bada8d047f

Considerações sobre segurança

- "Segurança não é uma questão técnica, mas uma questão gerencial e humana.
- Não adianta adquirir uma série de dispositivos de hardware e software sem treinar e conscientizar o nível gerencial da empresa e todos os seus funcionários"

Christopher Klaus
CTO – Chief Technology Officer
ISS – Internet Security System

"Segurança é um Processo"

Pode-se aplicar o processo seguidamente à rede e à empresa que a mantém e, dessa maneira, melhorar a segurança dos sistemas.

Se não iniciar ou interromper a aplicação do processo, sua segurança será cada vez pior, à medida que surgirem novas ameaças técnicas.

Definições de Segurança

O que é pior que não termos segurança alguma em nossos sistemas?

uma **falsa** sensação de segurança

Garantindo a segurança

- Segurança da Informação:
 - Confidencialidade;
 - Integridade;
 - Disponibilidade.
- Acesso à Informação:
 - Autenticação;
 - Autorização;
 - Não-Repúdio.

Autorização

Firewall

Equipamento ou conjunto de equipamentos que garantem o controle da conexão entre duas ou mais redes.

Firewall

Abordagens clássicas de configuração:

- O que não é expressamente proibido é permitido;
- O que não é expressamente permitido é proibido;

Segurança com listas de controle de acesso (Access Control Lists)

Agenda

Listas de controle de acesso (ACLs)

Tarefas da configuração ACL

ACLs padrão

Introdução

- Os administradores de rede devem configurar equipamentos de rede para negar o acesso não desejado à rede, enquanto devem permitir o acesso apropriado.
- Apesar de ferramentas de segurança como senhas e dispositivos físicos de segurança serem úteis, eles não possuem a flexibilidade da filtragem básica de tráfego e os controles específicos que a maioria dos administradores preferem.
- Por exemplo, um administrador de rede talvez deseje permitir que os usuários acessem a Internet, mas não que os usuários externos tenham acesso a um servidor na LAN da empresa.
- Isso é possível ser configurado em firewalls e em roteadores;
- Os roteadores fornecem recursos de filtragem básica, como bloqueio de tráfego da Internet, com as Access Control Lists (ACLs).

Listas de controle de acesso (ACLs)

- As ACLs são listas de instruções que o administrador aplica à interface do roteador.
- Essas listas informam o roteador sobre que tipos de pacotes deve aceitar e que tipos de pacotes deve recusar.
- A aceitação e a recusa de pacotes podem ser baseadas em certas especificações, como o endereço IP de origem.
- As ACLs permitem que se gerencie o tráfego e que se examine pacotes específicos ao aplicar a ACL à interface de um roteador.
- Qualquer tráfego que passe pela interface de um roteador é testado com relação a determinadas condições que fazem parte da ACL configurada naquela interface.

Roteador em uma Rede Doméstica

Roteador em uma Rede Doméstica

Listas de Controle de Acesso

ACLs podem ser configurados para serem aplicados ao tráfego de entrada e/ou de saída de um roteador, como mostrado na figura.

ACL de entrada

Uma ACL de entrada filtra pacotes que entram em uma interface específica, antes de eles serem roteados para a interface de saída.

ACL de saída

Uma ACL de saída filtra pacotes após seu roteamento, independentemente da interface de entrada.

- ACLs de entrada os pacotes de entrada são processados antes de serem roteados para a interface de saída. Uma ACL de entrada é eficiente porque salva a sobrecarga de pesquisas de roteamento se o pacote é descartado. Se o pacote for permitido pela ACL, ele será processado para roteamento. As ACLs de entrada são mais usadas para filtrar pacotes quando a rede conectada a uma interface de entrada é a única origem dos pacotes que precisa ser examinada.
- ACLs de saída os pacotes de entrada são encaminhados para a interface de saída e processados em seguida por meio da ACL de saída. As ACLs de saída são mais usadas quando o mesmo filtro é aplicado aos pacotes que vêm de várias interfaces de entrada antes de saírem da mesma interface de saída.

Listas de Controle de Acesso: Recordando

Para seu funcionamento ACLs precisam ser associadas a uma interface configurada no roteador.

Na entrada do roteador (in) ou na saída do Roteador (out).

No exemplo: pacotes com origem no host 10.0.0.2 serão negados (deny) na entrada da interface fa0/1 e os pacotes em qualquer outra origem (any) serão permitidos (permit) pela interface.

Access List padrão

Access-List Padrão:

A regra é construída para **permitir** (**permit**) ou **negar** (**deny**) pacotes a partir do **endereço IP de origem**.

Exemplo:

```
#access-list 1 deny host 10.0.0.1  // bloqueia (nega) pacotes com origem no host 10.0.0.1
#access-list 1 permit host 10.0.0.2  // permite pacotes com origem no host 10.0.0.1
#access-list 1 permit any  // permite pacotes com qualquer outra origem
```

Protocolos com ACLs

especificados por números

Protocolo	Intervalo				
IP	1-99	Acl padrão			
IP estendido	100-199	Acl estendida			
AppleTalk	600-699				
IPX	800-899				
IPX estendido	900-999				
Protocolo de anúncio de serviços IPX	1000-1099				

Razões para criar ACLs

- Limitar tráfego na rede e aumentar o desempenho da rede;
- Fornecer controle de fluxo de tráfego;
- Fornecer um nível básico de segurança para acesso à rede;
- Escolha que tipos de tráfego serão encaminhados ou bloqueados nas interfaces do roteador.

Limitando o tráfego com ACL

© Cisco Systems, Inc. 2000

Testando os pacotes com ACLs

- A ordem em que se cria as regras da ACL é importante.
- Por exemplo, quando um roteador CISCO está decidindo se deve encaminhar ou bloquear um pacote, o software Cisco *Internetwork Operating System* (IOS) testa o pacote em relação a cada instrução de condição, na ordem em que as instruções foram criadas

Exemplo:

```
#access-list 1 deny host 10.0.0.1  // regra 1
#access-list 1 permit host 10.0.0.2  // regra 2
#access-list 1 permit any  // regra 3
```

Na regra 1: pacotes de dados com origem no endereço IP 10.0.0.1 serão bloqueados na interface do roteador onde a regra for aplicada.

Na regra 3: pacotes de dados com origem em qualquer endereço (any) serão permitidos na interface do roteador onde a regra for aplicada.

A regra número 1 terá prioridade sobre a regra número 3. Ou seja, apesar a regra número 3 permitir pacotes de qualquer origem, o pacotes com origem em 10.0.0.1 serão bloqueados pela regra 1. (a regra 1 tem prioridade maior que a regra 3, uma vez que está apresentada primeiro.

Testando os pacotes com ACLs

- Se você criar uma instrução de condição que permita todo tráfego (any), nenhuma instrução adicionada posteriormente será verificada.
- Se precisar de instruções adicionais, em uma ACL padrão ou estendida, você deve excluir e recriar a ACL com as novas instruções de condição.
- Por isso, é uma boa ideia editar a configuração de um roteador em um PC usando um editor de texto, e depois enviá-la ao roteador usando o protocolo TFTP.

Comportamento das ACLs

As ACLs do Cisco IOS verificam os cabeçalhos do pacote e os das camadas superiores

Uma ACL é um grupo de instruções que definem como os pacotes:

- Entram nas interfaces de entrada do roteador
- São retransmitidos através do roteador
- Saem das interfaces de saída do roteador

- O início do processo de comunicação é o mesmo, estejam as ACLs sendo usadas ou não.
- À medida que um pacote entra em uma interface (in), o roteador verifica se o pacote é roteável.
- Em seguida, o roteador verifica se a interface de entrada (in) tem uma ACL.
- Se tiver, o pacote é testado em relação às condições da lista de entrada (in).
- Se o pacote for permitido, ele será testado em relação às entradas da tabela de roteamento para determinar a interface de saída do roteador (out).
- Na interface de saída do roteador (out) o roteador verifica se há alguma ACL.

Caso afirmativo o roteador irá testar o pacote de dados em relação às regras existentes.

- As instruções da ACL operam em ordem sequencial e lógica.
- Se a correspondência com a condição for verdadeira, o pacote será permitido (permit) ou negado (deny) e as instruções da ACL restantes não serão verificadas.
- Se não houver correspondência em nenhuma das instruções da ACL, uma instrução "deny any" implícita será imposta.
- Isso significa que mesmo que você não veja "deny any" como a última linha de uma ACL, um roteador funcionará como se ela está lá.

Fluxograma do processo de correspondência do teste de ACL

Como as ACLs funcionam

Para configurar uma ACL IP padrão:

Criar ACLs usando o modo de configuração global.

```
Router>
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
Router(config)#access-list 1 permit host 10.0.0.1
```

- Especificar um número de ACL de 1 a 99 instrui o roteador a aceitar as instruções de ACL padrão.
- Selecionar cuidadosamente a ACL e colocá-la em ordem lógica.

Tarefa de Configuração da ACL

Etapa 1

Definir a ACL usando o seguinte comando:

```
Router(config) # número da lista de acesso 
{permit | deny} {condições de teste}
```

Uma instrução global identifica a ACL. Especificamente, o intervalo 1-99 é reservado para o padrão IP. Esse número se refere ao tipo do ACL. No Cisco IOS Versão 11.2 ou mais recente, as ACLs podem também usar um nome ACL, como education_group, em vez de usar um número.

O termo permit ou deny na instrução ACL global indica como os pacotes que satisfazem às condições de teste são tratados pelo software Cisco IOS. O termo permit geralmente significa que o pacote poderá usar uma ou mais interfaces que você especificará mais adiante. O(s) termo(s) final(is) especifica(m) as condições de teste usadas pela instrução ACL.

Tarefa de Configuração da ACL

Etapa 2

Depois, você precisa aplicar as ACLs em uma interface usando o comando access-group, como mostrado neste exemplo:

Router (config-if) # {protocolo} access-group número da lista de acesso

Todas as instruções ACL identificadas pelo número da lista de acesso estão associadas a uma ou mais interfaces. Todos os pacotes que passarem nas condições do teste ACL podem usar qualquer interface no grupo de acesso das interfaces.

Atribuir um número exclusivo a cada ACL

- Quando configurar ACLs em um roteador, você deverá identificar cada ACL com exclusividade, atribuindo um número à ACL do protocolo.
- Quando você usar um número para identificar uma ACL, o número deverá estar dentro de um intervalo específico que seja válido para o protocolo.
- Você pode especificar ACLs pelos números dos protocolos listados na tabela.
- A tabela também lista o intervalo de números de ACL válidos para cada protocolo.
- Depois de criar uma ACL numerada, você deve atribuí-la a uma interface para que seja usada.
- Se você deseja alterar uma ACL que contenha instruções numeradas, precisa excluir todas as instruções da ACL numerada usando o comando no access-list número da lista

ACLs padrão

- Você usa as ACLs padrão quando deseja bloquear todo tráfego de uma rede, permitir todo tráfego de uma rede específica ou negar conjuntos de protocolos.
- As ACLs padrão verificam o endereço de origem dos pacotes que devem ser roteados.
- O resultado permite ou nega a saída de um conjunto inteiro de protocolos, baseado nos endereços de host, sub-rede e rede.

ACLs padrão

- No exemplo (imagem) anterior, será feita a verificação do protocolo e do endereço de origem nos pacotes que chegam à interface (in) gig0/1.
- Em seguida serão aplicadas as regras ACL de entrada na interface gig0/1. Se obtiverem permissão, os pacotes de dados sairão pela gig0/2.

Se não obtiverem permissão, os pacotes de dados serão descartados.

Sintaxe do comando ACL padrão

Parâmetro	Descrição
número da lísta de acesso	Número de uma ACL. Esse é um número decimal de 1 a 99 (para uma ACL IP padrão).
deny	Recusa o acesso se as condições forem correspondentes.
permit	Permite o acesso se as condições forem correspondentes.
origem	Número da rede ou do host de onde o pacote está sendo enviado. Existem duas formas de especificar a origem: ·Use uma quantidade de 32-bits, em um formato decimal com ponto em quatro partes. ·Use a palavra-chave any como uma abreviatura para uma origem e um curinga da origem de 0.0.0.0 255.255.255.55.
curinga de origem	(Opcional) Bits curingas a serem aplicados à origem. Existem duas formas de especificar o curinga de origem: *Use uma quantidade de 32 bits, em um formato decimal com ponto em quatro partes. Posicione os uns nas posições do bit que você deseja ignorar. *Use a palavra-chave any como a abreviatura para uma origem e um curinga da origem de 0.0.0.0 255.255.255.255. (Opcional) Produz uma mensagem de registro de informações sobre o pacote que corresponde à entrada a ser enviada ao console. (O nível das mensagens que efetuam logon no console é controlado pelo comando logging do console.)
log	A mensagem inclui o número da ACL, independentemente do pacote ter sido permitido ou recusado, o endereço de origem e o número de pacotes. A mensagem é gerada para o primeiro pacote que corresponde e depois em intervalos de cinco minutos, incluindo o número de pacotes permitidos ou recusados no intervalo de cinco minutos anterior.

ACLs padrão

- Usa-se a versão padrão do comando de configuração global access-list para definir uma ACL padrão numerada.
- Esse comando é usado no modo de comando da configuração global.
- A sintaxe completa do comando é

Router(config) # access-list número-da-lista-de-acesso {deny | permit} rede-origem [máscara-curinga-origem] [log]

- Use a forma no desse comando para retirar uma ACL padrão.
- Esta é a sintaxe:

Router(config) # no access-list número da lista de acesso

A tabela anterior mostra as descrições dos parâmetros usados nessa sintaxe.

Exemplos de ACL padrão

Parâmetro	Descrição
access-list-number	Indica o número da ACL a ser vinculada a essa interface.
in out	Seleciona se a ACL é aplicada à interface de chegada ou à interface de saída. Se in ou out não estiver especificado, out será o padrão.

Como Verificar Listas de Acesso

- Use o comando EXEC show access-lists para exibir o conteúdo de todas as ACLs.
- Além disso, use o comando EXEC show access-lists seguido do nome ou número de uma ACL para exibir o conteúdo de uma ACL.

```
Router(config)#
Router(config) #access-list 1 permit host 10.0.0.10
Router(config) #access-list 1 deny any
Router (config) #
Router(config) #interface gig0/1
Router(config-if) #ip access-group 1 in
Router(config-if)#
Router(config-if) #exit
Router (config) #exit
Router#
%SYS-5-CONFIG I: Configured from console by console
Router#show access-list 1
Standard IP access list 1
    permit host 10.0.0.10
    deny any
Router#
```

Exemplos de Access List

O exemplo a seguir de uma ACL padrão permite que os pacotes oriundos de hosts de três redes especificadas sejam transmitidos:

```
access-list 1 permit 192.5.34.00.0.0.255access-list 1 permit 128.88.0.00.0.255.255access-list 1 permit 36.0.0.00.255.255.255
```

Observação: qualquer outro acesso implicitamente negado

Exemplos de Access List

- O comando ip access-group agrupa uma ACL existente a uma interface.
- Lembre-se de que somente uma ACL por porta por protocolo por direção é permitida.
- O formato do comando é:

Router(config-if) # ip access-group número-da-lista-de-acesso {in | out}

Atividade Prática: Aula 06 2023.pkt

Configurar ACLs para:

- 1. Não permitir a saída de pacotes do host 192.168.1.2 da rede 192.168.1.0
- 2. Não permitir que pacotes do host 192.168.1.3 alcancem a rede 192.168.2.0
- 3. Não permitir que os pacotes da rede 192.168.1.0 alcancem a rede 10.1.1.0
- 4. Tudo o que não estiver explícito nas regras acima deve estar liberado

Configurar ACLs para:

1. Não permitir a saída de pacotes do host 192.168.1.2 da rede 192.168.1.0

Configurar ACLs no roteador Router7:

```
Router>enable
Router#configure terminal
Router(config) #access-list 1 deny host 192.168.1.2
Router(config) #access-list 1 permit any
Router(config) #
Router(config) #
Router(config) #interface gig0/1
Router(config-if) #ip access-group 1 in
Router(config-if) #
```


Configurar ACLs para:

2. Não permitir que pacotes do host 192.168.1.3 alcancem a rede 192.168.2.0

Configurar ACLs no roteador Router7:

```
Router>
Router>enable
Router#configure terminal
Router(config) #access-list 1 deny host 192.168.1.3
Router(config) #access-list 1 permit any
Router(config) #
Router(config) #interface gig0/0
Router(config-if) #ip access-group 1 out
Router(config-if) #
```


Configurar ACLs no roteador Router7:

Configurar ACLs para:

3. Não permitir que os pacotes da rede 192.168.1.0 alcancem a rede 10.1.1.0

```
Router>
Router#configure terminal
Router(config) #access-list 1 deny host 192.168.1.2
Router(config) #access-list 1 deny host 192.168.1.3
Router(config) #access-list 1 deny host 192.168.1.4
Router(config) #access-list 1 deny host 192.168.1.5
Router(config) #access-list 1 deny host 192.168.1.5
Router(config) #access-list 1 deny host 192.168.1.6
Router(config) #access-list 1 deny host 192.168.1.7
Router(config) #access-list 1 permit any
Router(config) #
Router(config) #interface gig0/2
Router(config-if) #ip access-group 1 out
Router(config-if) #
```


Configurar ACLs para:

3. Não permitir que os pacotes da rede 192.168.1.0 alcancem a rede 10.1.1.0

Configurar ACLs no roteador Router7

<u>(outra solução, com uso de máscara curinga):</u>

```
Router>enable
Router#configure terminal
Router(config) #access-list 1 deny 192.168.1.2 0.0.0.255
Router(config) #access-list 1 permit any
Router(config) #
Router(config) #interface gig0/2
Router(config-if) #ip access-group 1 out
Router(config-if) #
```

Até o momento foram criadas regras (ACL) que analisam apenas o endereço de ORIGEM dos pacotes de dados

(access-control-list padrão)

Exemplo

Configurar ACLs para:

- 1. Não permitir que pacotes com origem no host com IPv4 192.168.2.3 alcancem o host (servidor) com IPv4 10.1.1.3
 - origem: **192.168.2.3**
 - destino: 10.1.1.3
- 2. Tudo o que não estiver explícito nas regras criadas até o momento deve estar liberado

Configuração de regras para analisar o endereço IPv4 de ORIGEM dos pacotes e o

endereço IPv4 de DESTINO dos pacotes

(access-control-list estendidas)

Extended Access Control List

- As ACLs estendidas são usadas mais frequentemente para testar condições por proporcionarem um <u>intervalo maior de controle</u> que as ACLs padrão.
- As ACLs estendidas verificam os <u>endereços de origem</u> e <u>endereços de destino</u> dos pacotes.
- ACLs estendidas também podem verificar <u>protocolos específicos</u> (IP, TCP, UDP) números de portas e outros parâmetros.
- Isso torna mais flexível o processo de descrever que tipo de verificação a ACL fará.
- O tráfego de pacotes pode ser permitido (permit) ou recusado (deny) baseada em onde o pacote foi originado e/ou no seu destino.

Access-List Estendidas: recordando

ACLs podem ser configurados para serem aplicados ao tráfego de entrada e/ou de saída de um roteador, como mostrado na figura.

ACL de entrada

Uma ACL de entrada filtra pacotes que entram em uma interface específica, antes de eles serem roteados para a interface de saída.

ACL de saída

Uma ACL de saída filtra pacotes após seu roteamento, independentemente da interface de entrada.

- ACLs de entrada os pacotes de entrada são processados antes de serem roteados para a interface de saída. Uma ACL de entrada é eficiente porque salva a sobrecarga de pesquisas de roteamento se o pacote é descartado. Se o pacote for permitido pela ACL, ele será processado para roteamento. As ACLs de entrada são mais usadas para filtrar pacotes quando a rede conectada a uma interface de entrada é a única origem dos pacotes que precisa ser examinada.
- ACLs de saída os pacotes de entrada são encaminhados para a interface de saída e processados em seguida por meio da ACL de saída. As ACLs de saída são mais usadas quando o mesmo filtro é aplicado aos pacotes que vêm de várias interfaces de entrada antes de saírem da mesma interface de saída.

Access-List Estendidas: recordando

Para seu funcionamento ACLs precisam ser associadas a uma interface configuradas no roteador.

Na entrada do roteador (in) ou na saída do Roteador (out).

No exemplo: pacotes com origem no host 10.0.0.2 serão negados (deny) na entrada da interface fa0/1 e os pacotes em qualquer outra origem (any) serão permitidos (permit) pela interface.

Extended Access Control List

Padrão

- Especificações de endereço mais simples
- Geralmente permite ou recusa todo o conjunto de protocolos Estendida
 - ◆ Especificações de endereço mais complexas

Protocolos com ACLs

especificados por números

Protocolo	Intervalo	
IP	1-99	Acl padrão
IP estendido	100-199	Acl estendida
AppleTalk	600-699	
IPX	800-899	
IPX estendido	900-999	
Protocolo de anúncio de serviços IPX	1000-1099	

Extended Access Control List

```
A forma completa do comando access-list é:
Router(config) # access-list
                número da lista de acesso
                {permit | deny}
                protocolo
                origem
                 [máscara da origem]
                destino
                 [máscara do destino]
                operador
                 [operando]
                 [established]
```

Exemplo:

router# access-list 103 permit tcp host 10.0.0.3 host 192.168.10.4 eq 80

Extended Access Control List

A forma completa do comando access-list é: Router(config)# access-list número da lista de acesso {permit | deny} protocolo origem [máscara da origem] destino [máscara do destino] operador [operando] [established]

Exemplo:

router# access-list 103 permit tcp host 10.0.0.3 host 192.168.10.4 eq 80

Parâmetros estendidos da ACL

Parâmetro	Descrição
access-list-number	Identifica a lista usando um número no intervalo de 100 a 199.
permit deny	Indica se essa entrada permite ou bloqueia o endereço especificado.
protocol	O protocolo, como, por exemplo, IP, TCP, UDP, ICMP, GRE ou IGRP.
source and destination	Identifica os endereços de origem e de destino.
source-mask and destination-mask	Máscara curinga; os zeros indicam as posições que devem corresponder, os uns indicam as posições que não importam.
operator operand	It, gt, eq, neq (menor que, maior que, igual, diferente) e um número de porta.
established	Permite que o tráfego TCP passe se o pacote usar uma conexão estabelecida (por exemplo, se tiver bits ACK definidos).

Extended Access Control List

- O comando ip access-group vincula uma ACL estendida a uma interface.
- Lembre-se de que somente uma ACL por interface, por direção, por protocolo é permitida.
- O formato do comando é:

Exemplo:

```
router# ip access-group 103 in
```

Parâmetros estendidos da ACL

Parâmetro	Descrição
access-list-number	Indica o número da ACL a ser vinculada a essa interface.
in out	Seleciona se a ACL é aplicada ao pacote de chegada ou ao pacote de saída na interface. Se in ou out não estiver especificado, out será o padrão.

Router(config) # access-list número-da-lista-de-acesso {permit | deny} protocolo origem destino

No exemplo:

router# access-list 100 permit ip host 192.168.2.3 host 10.1.1.3

4ª Atividade Avaliativa (Parte integrante da 1ª NAC)

Configurar regras ACLs padrão para:

- 1. Não permitir a saída de pacotes com origem no host com IPv4 192.168.1.2 da rede com IPv4 192.168.1.0
- 2. Não permitir que pacotes com origem no host com IPv4 192.168.1.3 alcancem a rede com IPv4 192.168.2.0
- 3. Não permitir que os pacotes com origem na rede com IPv4 192.168.1.0 alcancem a rede com IPv4 10.1.1.0

Configurar regras ACLs estendida para:

- 1. Não permitir que pacotes com origem no host com IPv4 192.168.2.3 alcancem o host (servidor) com IPv4 10.1.1.3
 - 2. Implementar uma situação proposta por você (você deve propor e configurar 1 (uma) regra diferente das anteriores)

Tudo o que não estiver explícito nas regras acima deve estar liberado

Utilize o Arquivo: Aula 06 2023 ACL.pkt

ATENÇÃO:

Além de ser uma atitude antiética, o plágio em trabalhos acadêmicos pode ser considerado crime e poderá comprometer sua carreira acadêmica e profissional.

Referências Bibliográficas

Kurose, James F. Redes de computadores e a Internet: uma abordagem top-down/James F. Kurose e Keith W. Ross; 6ª edição, São Paulo: Addison Wesley, 2013. ISBN 978-85-8143-677-7.

Tanenbaum, Andrew S; Wetherall, David. Redes de Computadores. São Paulo: Pearson Prentice Hall, 2011. 5ª edição americana. ISBN 978-85-7605-924-0.

BIRKNER, Mathew H. Projeto de Interconexão de Redes. São Paulo: Pearson Education do Brasil, 2003. ISBN 85.346.1499-7.

Referências Bibliográficas

- Tanenbaum, A.; Wetherall, D. Redes de Computadores. 5^a ed. Pearson, 2011.
- Wikipedia. IEEE 802.1Q. Disponível em http://en.wikipedia.org/wiki/IEEE_802.1Q
- IEEE. 802.1Q-2011 IEEE Standard for Local and metropolitan area networks--Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks. Disponível em http://standards.ieee.org/findstds/standard/802.1Q-2011.html
- ODOM, W. CCNA ICND2 Guia Oficial de Certificação do Exame. 2ª ed. Alta Books, 2008.

Referência Complementar

Comer, Douglas E., Interligação de Redes Com Tcp/ip