EEL7052-Sistemas Lineares

Avaliação 3 - Semestre 2015/1 - 06/07/2015 Departamento de Engenharia Elétrica e Eletrônica - UFSC Profs. Marcio Holsbach Costa e Bartolomeu F. Uchôa Filho

1) O sinal analógico $x_a(t) = \cos(100\pi t) + \cos(120\pi t)$ é amostrado através de um dispositivo de chaveamento cuja saída $\bar{x}_s(t)$ alterna entre zero e o sinal $x_a(t)$, conforme a figura a seguir. A sincronização deste chaveamento é estabelecida por uma sequência periódica de pulsos de amplitude unitária, largura de cada pulso de τ =0,5ms e período de 2,5ms. Quando o sinal de sincronização se encontra em nível alto a saída é $x_a(t)$ e quando se encontra em nível baixo a saída é zero. (a) determine uma expressão analítica para a transformada de Fourier $X_a(\omega)$; (b) determine uma expressão analítica para a transformada de Fourier $\bar{X}_s(\omega)$; (c) Esboce os espectros de magnitude de $X_a(\omega)$ e $\bar{X}_s(\omega)$

2) Um sistema físico de tempo contínuo é caracterizado pela equação diferencial¹:

$$\frac{dy(t)}{dt} + \frac{3}{2}y(t) = -x(t) + \frac{dx(t)}{dt}$$

- a) Determine a equação de diferenças correspondente a ser implementada em um sistema de tempo discreto, assumindo um período de amostragem de 1s.
- b) Determine H(z), a transformada z da resposta ao impulso h[n].
- c) Determine a resposta ao impulso h[n] da equação de diferenças.
- d) Desenhe o diagrama em blocos que representa a equação de diferenças utilizando atrasos, somadores e ganhos.
- e) Apresente o diagrama de polos e zeros.
- f) Determine e justifique se o sistema é estável.

Obs: Caso não saiba realizar o item "a" então utilize a seguinte equação de diferenças para resolver os demais itens: y[n+1] = (-1/3)y[n]+x[n+1]+2x[n]

- 3) Dada a seguinte transformada z: $H(z) = \frac{z}{(z-0.5)(z+2)}$
- (a) Apresente o diagrama de polos e zeros e indique a região de convergência assumindo que o h[n] correspondente seja não-causal.
- (b) Determine h[n] assumindo que seja causal.
- (c) Determine se o sistema é BIBO estável para ambos os casos nos quais h[n] é causal e não-causal.
- 4) Dado o sinal discreto $x[n]=\alpha^n u[n]$, onde α é uma constante real, determine as expressões da magnitude e da fase do espectro do sinal discreto x[n].

FORMULÁRIO

Transformadas z e propriedades

	Transjori
x(n)	$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$
δ(n-m)	Z ^{-m}
u(n)	z/(z-1) RC: z >1
n.u(n)	z/(z-1) ² RC: z >1
n².u(n)	z(z+1)/(z-1) ³
γ ⁿ u(n)	z/z-γ RC: z > γ
γ ⁿ u(-n)	$\gamma/(\gamma-z)$ RC: $ z < \gamma $
γ ⁿ⁻¹ u(n-1)	1/(z-γ)
n.γ ⁿ u(n)	γ z/(z-γ) ²
γ ⁿ cos(βn).u(n)	$\frac{z(z- \gamma \cos(\beta))}{z^2-(2 \gamma \cos(\beta))z+ \gamma ^2}$
γ ⁿ sen(βn).u(n)	$\frac{z \gamma sen(\beta)}{z^2-(2 \gamma cos(\beta))z+ \gamma ^2}$

prieduces				
Domínio do tempo		Domínio de z		
x(n)		$X(z) = \sum_{n = -\infty} x(n) z^{-n}$		
x(n-m)		$z^{-m} X(z)$		
$x_1(n) * x_2(n) = \sum_{m=-\infty}^{\infty} x_1(m)x_2(n-m)$		X ₁ (z).X ₂ (z)		
Transformada z unilateral				
-				
x(n)	X_{u}	$\int_{1}^{\infty} (z) = \sum_{n=0}^{\infty} x(n)z^{-n}$		
x(n-1)	z^{-1}	$X_u(z) + x(-1)$		
x(n-2)	z^{-2}	${}^{2}X_{u}(z) + z^{-1}x(-1) + x(-2)$		
Soma dos termos de uma PG	S_N	$=\frac{a_1(1-q^N)}{1-q}$		

Pares de transformadas de Fourier

x(t)	X(j\omega)
$\delta(t)$	1
1	$2\pi\delta(\omega)$
u(t)	$\pi\delta(\omega) + 1/(j\omega)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$sen(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
$ret(t/\tau)$	$\tau.sinc(\omega\tau/2)$
$(W/\pi).sinc(Wt)$	$ret(\omega/2W)$
$e^{-at} u(t)$, $a>0$	1/(a+jω)
$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0), \omega_0 = \frac{2\pi}{T}$

Propriedades da transformada de Fourier

x(t)	X(j\omega)
y(t)	Y(j\omega)
a.x(t)+b.y(t)	$a.X(j\omega)+b.Y(j\omega)$
$x(t-\tau)$	$e^{-j\omega\tau}.X(j\omega)$
$e^{jWt}.x(t)$	$X(j(\omega-W))$
x*(t)	Χ*(-jω)
x(at)	$\frac{1}{ a }X\left(\frac{\boldsymbol{\omega}}{a}\right)$
x(t)*y(t)	$X(j\omega).Y(j\omega)$
x(t).y(t)	$(1/2\pi).X(j\omega)*Y(j\omega)$
$\frac{d}{dt}x(t)$	$j\omega.X(j\omega)$

Expansão em Frações Parciais:

$$K_{i} = \frac{N(z)}{D(z)} (z - p_{i}) \bigg|_{z=pi}$$

$$K_{1r} = \frac{N(z)}{D(z)} (z - p_{1})^{r} \bigg|_{z=p_{1}}$$

$$K_{1r-j} = \frac{1}{j!} \frac{d^{j}}{dz^{j}} \frac{N(z)}{D(z)} (s - p_{1})^{r} \bigg|_{z=p_{1}}$$