

1 Reclining Apparatus for Chair

2

3 **Field of Invention**

4 The present invention relates to a chair and, more particularly, to a
5 reclining apparatus for use in a chair.

6

7 **Background of Invention**

8 Referring to Figures 10 and 12, a chair is equipped with a conventional
9 reclining apparatus 100 so that the chair can be reclined. The chair
10 includes a base 122, a hydraulic cylinder 119 installed on the base 122, a
11 seat 124 connected with the hydraulic cylinder 119 by means of the
12 reclining apparatus 100 and a backrest 126 connected with the seat 124.

13

14 Referring to Figures 12 and 13, the reclining apparatus 100 includes a
15 first joint 113 and a second joint 120 pivotally connected with the first
16 joint 113. The joint 113 defines an aperture 118 for receiving the
17 hydraulic cylinder 119. The second joint 120 is attached to the seat 124.
18 The screw 114 includes a first end inserted through an aperture defined in
19 the first joint 113 and a second end inserted through an aperture defined
20 in the second joint 120. A nut 112 is screwed on the second end of the
21 screw 114. A spring 117 is put around the screw 114. A nut/knob 115
22 is screwed on the first end of the screw 114. As the seat 124 is reclined
23 relative to the hydraulic cylinder 119, the spring 117 is compressed so as
24 to "counter." The nut/knob 115 can be screwed or unscrewed on the
25 screw 114 so as to adjust the range within which the seat 124 can be
26 reclined relative to the hydraulic cylinder 119. However, the rotation of

1 the nut/knob 115 is exhausting and time-consuming. Hence, a tongue
2 114 and a crankshaft 103 are used to adjust the range. The tongue 114 is
3 movable into a space between the first joint 113 and the second joint 120
4 through a window 110 defined in a front plate 128 formed on the second
5 joint 120. The adjust block 114 includes a thick portion 106 and a thin
6 portion 107 extending from the thick portion 106. When only the thin
7 portion 107 is between the first joint 113 and the second joint 120, the
8 range is large. When the thick portion 106 is between the first joint 113
9 and the second joint 120, the range is small. The crankshaft 103 is
10 rotationally mounted on two lugs 108 formed on the front plate 122.
11 The crankshaft 103 includes a first crank 101 and a second crank 102.
12 The first crank 101 is inserted in a lug 105 formed on the tongue 104.
13 The second crank 102 is for abutment against the front plate 122. The
14 rotation of the crankshaft 103 causes the movement of the tongue 104.
15 It is however impossible to retain the seat in any reclined position relative
16 to the hydraulic cylinder 119 with the conventional reclining apparatus
17 100.

18

19 The present invention is therefore intended to obviate or at least alleviate
20 the problem encountered in prior art.

21

22 **Summary of Invention**

23 It is the primary objective of the present invention to provide a chair with
24 a reclining apparatus that can retain a seat in position relative to a
25 hydraulic cylinder of the chair.

26

1 According to the present invention, a reclining apparatus is provided
2 between a post and a seat of a chair. The reclining apparatus includes a
3 first joint for attachment to the post, a second joint pivotally connected
4 with the first joint for supporting the seat and a locking device for locking
5 the second joint in one of several reclined positions relative to the casing.

6

7 Other objects, advantages and novel features of the invention will become
8 more apparent from the following detailed description in conjunction
9 with the attached drawings.

10

11 **Brief Description of Drawings**

12 The present invention will be described via detailed illustration of the
13 preferred embodiment referring to the drawings.

14

15 Figure 1 is a perspective view of a reclining apparatus for use in a chair
16 according to the preferred embodiment of the present invention.

17

18 Figure 2 is a cross-sectional view of the reclining apparatus of Figure 1,
19 observed from the left.

20

21 Figure 3 is a cross-sectional view taken along a line 3-3 in Figure 2.

22

23 Figure 4 is similar to Figure 3 but shows the reclining apparatus in a
24 different position.

25

26 Figure 5 is similar to Figure 4 but shows the reclining apparatus in a

1 different position.

2

3 Figure 6 is similar to Figure 2 but shows the reclining apparatus in a
4 different position.

5

6 Figure 7 is similar to Figure 6 but shows the reclining apparatus in a
7 different position.

8

9 Figure 8 is similar to Figure 7 but shows the reclining apparatus in a
10 different position.

11

12 Figure 9 is similar to Figure 8 but shows the reclining apparatus in a
13 different position.

14

15 Figure 10 is a right side view of a chair equipped with a conventional
16 reclining apparatus.

17

18 Figure 11 is similar to Figure 10 but shows the chair equipped in a
19 different position.

20

21 Figure 12 is a perspective view of the conventional reclining apparatus of
22 Figure 10.

23

24 Figure 13 is an exploded view of the conventional reclining apparatus of
25 Figure 12.

26

1 **Detailed Description of Preferred Embodiment**

2 Referring to Figures 1 and 2, a reclining apparatus 10 is used in a chair 72.
3 The chair 72 includes a base 70 for installment on the ground, a hydraulic
4 cylinder 71 installed on the base 70, a seat 90 connected with the
5 hydraulic cylinder 71 via the reclining apparatus 10 and a backrest 80
6 installed on the seat 90. The seat 90 can be reclined relative to the
7 hydraulic cylinder 71 and kept in the reclined position by means of the
8 reclining apparatus 10.

9

10 The reclining apparatus 10 includes a first joint 20 for attachment to the
11 hydraulic cylinder 71, a second joint 30 pivotally connected with the first
12 joint 20 for supporting the seat 90, a locking device 40 for locking the
13 second joint 30 in one of several reclined positions relative to the first
14 joint 20, a tuning device 50 for tuning the reclined positions of the second
15 joint 30 relative to the first joint 20 and a lifting device 60 for controlling
16 the hydraulic cylinder 71.

17

18 The first joint 20 is in the form of a casing. The casing 20 includes a
19 bottom and two lateral walls. An aperture 21 is defined in the bottom of
20 the casing 20. The hydraulic cylinder 71 is inserted into the casing 20
21 through the aperture 21. An arched slot 22 and an aperture 24 are
22 defined in each lateral wall of the casing 20.

23

24 The second joint 30 is in the form of a bracket. The bracket 30 includes
25 a top member for supporting the seat 90 and two lateral members
26 extending from the top member. Two apertures 33 and 34 are defined in

1 each lateral member of the bracket 30. A pin 31 is inserted in the
2 apertures 33 of the bracket 30 and the apertures 24 of the casing 20.
3 Another pin 32 is inserted in the apertures 34 of the bracket 30 and the
4 arched slots 22 of the casing 20. Thus, the bracket 30 is pivotally
5 connected with the casing 20.

6

7 Referring to Figure 3, the locking device 40 includes a mount 41 installed
8 on the bottom of the casing 20. A rod 42 is movably installed on the
9 mount 41. The rod 42 is connected with the pin 32 at an end and defines
10 several dents 47 near an opposite end. A latch 43 is movably installed
11 on the mount 41. The rod 42 and the latch 43 are movable in transverse
12 directions so that the latch 43 can enter the dents 47. As the latch 43
13 enters selective one the dents 47, the bracket 30 is locked in selective one
14 of several reclined positions relative to the casing 20. A V-shaped lever
15 46 is pivotally installed on the bottom of the casing 20. The V-shaped
16 lever 46 includes a first end linked to the latch 43 and a second end
17 connected with a link 45. The link 45 is further connected with a shaft
18 44. The shaft 44 is rotationally installed on the lateral walls of the
19 casing 20. A handle 48 extends transversely from the shaft 44.

20

21 Referring to Figures 3 and 4, pivotal of the handle 48 causes rotation of
22 the shaft 44. The rotation of the shaft 44 causes movement of the link
23 45. The movement of the link 45 causes pivotal of the V-shaped lever
24 46. The pivotal of the V-shaped lever 46 causes the movement of the
25 latch 43 into and from the dents 47.

26

1 Referring to Figure 2, the tuning device 50 includes two springs 54
2 connected with the pin 32. The springs 54 are further connected with a
3 bar 55. The bar 55 is further connected with a screw 53. The screw 53
4 is further engaged with a nut/gear 52. The nut/gear 52 is further
5 engaged with a worm 51. The worm 51 is rotationally installed on the
6 lateral walls of the casing 20. A crank 56 extends from the worm 51.

7

8 Referring to Figures 5-7, rocking of the crank 56 causes rotation of the
9 worm 51. The rotation of the worm 51 causes rotation of the nut/gear
10 52. The rotation of the nut/gear 52 causes movement of the screw 53.
11 The movement of the screw 53 causes movement of the bar 55. The
12 movement of the bar 55 causes movement of the springs 54. Through
13 the pin 32, the movement of the springs 54 causes pivotal of the rod 42
14 about the latch 43 and therefore the reclining of the seat 90 relative to the
15 hydraulic cylinder 71.

16

17 Referring to Figure 3, the lifting device 60 includes an L-shaped lever 62
18 with a first section and a second section extending transversely from the
19 first section. The first section of the L-shaped lever 62 is for contact
20 with the hydraulic cylinder 71. The second section of the lever 62 is
21 pivotally installed on one of the lateral walls of the casing 20. The
22 second section of the L-shaped lever 62 is further in contact with a tab 63
23 extending transversely from a shaft 61. The shaft 61 is rotationally
24 installed on the lateral walls of the casing 20. A handle 64 extends
25 transversely from the shaft 61.

26

1 Referring to Figures 8 and 9, pivotal of the handle 64 causes rotation of
2 the shaft 61. The rotation of the shaft 61 causes pivotal of the tab 63.
3 The pivotal of the tab 63 causes pivotal of the second section of the
4 L-shaped lever 62. The pivotal of the second section of the L-shaped
5 lever 62 causes movement of the first section of the L-shaped lever 62.
6 The movement of the first section of the L-shaped lever 62 results in
7 operation of the hydraulic cylinder 71.

8

9 The present invention has been described via detailed illustration of the
10 preferred embodiment. Those skilled in the art can derive variations
11 from the preferred embodiment without departing from the scope of the
12 present invention. Therefore, the preferred embodiment shall not limit
13 the scope of the present invention defined in the claims.

14

15