Evaluating associations between age at first birth, parity, and bone mineral density in premenopausal individuals

ANTHROPOLOGY

Calli N. Quire*, Maureen J. Devlin*
*Department of Anthropology, University of Michigan

Introduction

- Reproduction can have adverse effects on the skeleton (Yüce et al., 2015)
- Adolescent developmental period is essential to the accrual of total bone mineral density (BMD), which helps prevent skeletal degradation later in life (Xue et al., 2020)
- Evaluate potential associations between age at first birth (AFB), parity, and BMD in premenopausal indiv
- Particularly in individuals whose AFB was prior to peak BMD accrual

Methods

- Data from Continuous NHANES 2007, 2009, 2013, and 2017 surveys
- Age of peak BMD accrual at 27 yrs (Rodrick et al., 2024)
- Multivariate linear regressions were performed (R) to understand potential relationships between the variables of interest
- Two-way ANOVA was performed to determine best fit (R)
- For full analysis, see below

Results

Fig. 2. Relationship between Parity (binned) and Femoral Neck Bone Mineral Density;

Fig. 3. Relationship between Parity & Participant Age at First Birth and Femoral Neck Bone Mineral Density; n = 1108

- Fig. 1 and 2 are controlled for the participant's age at the time of DEXA scan, where all eligible premenopausal participants are represented
- Fig. 3 is contrained to participants ages 35-55 at time of scan, where only eligible premenopausal participants within that range are visually represented
- Grey rectangles in all figures represent the population average femoral neck BMD of individuals aged 20 and over (Looker et al., 1998)

Discussion

 Analyses show no statistically significant relationships between BMD and AFB and/or parity

UNIVERSITY OF MICHIGAN

- Evidence suggests a quicker
 decrease in BMD prior to
 menopause in participants whose
 AFB was < 27 yrs when compared
 to those whose AFB was >/= 27
 yrs; although, not statistically
 significant
- Analyses also suggest an inverse relationship between parity and BMD for nulliparious and those with 1-6 offspring, but a direct relationship between parity and BMD for those with 7+ offspring; neither relationship is statistically significant
- Limitations include controlling age at time of data collection and differences in sample size between analysis groups
- BMD is known to decrease with age after peak BMD; may have been a confounding factor
- Not all participants had values for all variables of interest

References and Materials

- Yüce, T., Kalafat, E., & Koc, A. (2015). Adolescent pregnancy; a determinant of bone mineral density in peri-menopausal women?. Maturitas, 82(2),
- Xue, Shanshan, Oumer Kemal, Meihan Lu, Lisa M. Lix, William D. Leslie, and Shuman Yang. "Age at Attainment of Peak Bone Mineral Density and Its Associated Factors: The National Health and Nutrition Examination Survey 2005–2014." Bone 131 (February 2020): 115163.
- Rodrick, E., & Kindler, J. M. (2024). Bone mass accrual in children. Current opinion in endocrinology, diabetes, and obesity, 31(1), 53–59.
- Looker, A. C., et al., "Updated Data on Proximal Femur Bone Mineral Levels of US Adults." Osteoporosis International 8, no. 5 (August 1, 1998): 468–90.

For complete list of references, scan below

Future Directions

- Study is an analysis of potential associations between young motherhood and BMD prior to menopause
- Future studies may consider analyzing longitudinal data to reduce indiv effects when modeling, as well as controlling for factors like socioeconomic status, ancestry, BMI, and others

Acknowledgments and Contact

Sincerest thanks to S. Rosenbaum and S. Taylor for their invaluable input regarding this project.

For more, see below: cquire@umich.edu | github.com/calliquire