Econ 106

Lecture 17 slides derived from:

https://r4ds.had.co.nz/graphics-for-communication.html

Reminders

- Lab #5 is due Sunday, 11:59pm (best 4 out of 5 count towards your grade)
- Research Milestone #3 can be turned in until 11:59pm tonight (late penalty)
- Final project is due Sunday 11:59pm

Grading: Written Report

Things I will be evaluating:

- Does your writeup follow the structure of the outline?
- Do you have a strong hypothesis/objective?
- Are your visualizations clearly connected to the objective?
- Can you interpret your visualizations correctly?
- Can you provide a reason for the observed trends in your visualizations?
- Can you connect the findings to your objective?
- Does your research project reflect independent thought and originality?

Student Example 1: Police Stops in Oakland

Objectives & Goals

#1

I want to analyze any potential correlations between race and the reason an individual was stopped. I also want to consider if police stops are dependent on race by checking if the subjects in the data set proportionately represent the racial composition of Oakland.

#2

With faceting, I want to show any discrepancies between the way police officers interact with subjects of different races during a stop. I will do this using the logical variables from the data set.

#3

For spatial data, I want to see if there are any clusters or any areas where police stops occur the most. I will then compare these clusters to the racial composition of nearby neighborhoods.

Reason for Stop Broken Down by Race

- Black subjects were the biggest proportion for each reason
- Probation/parole was the reason with the highest proportion of Black subjects
- Racial breakdown for probation/parole and traffic violation differs slightly from the rest of the reasons

Location of Each Police Stop Over Alameda County

- Few stops outside of the county
- Large cluster near the top left of the projection
- Smaller cluster to the west of the county border

Student compiled additional information to provide context for the results.

Student Example 2: Mortality and Mental Health

Clear objective, but it is unclear how the visualizations are tied to the objective

Objectives and Goals

- Main research hypothesis: There is a significant correlation between mental distress and mortality, and countries with higher frequent mental distress are more likely to lead higher mortality
- · Investigate the hypothesis with data visualizations
 - Bar plot: Distribution of Air_Pollution_Rank variable
 - Density plot: Distribution of mortality variable.
 - Scatter plot with regression line: The trend for mortality with mental variable.
 - Faceting plot: The difference of trend for mortality by state.

Scatter plot

Most strongly tied to objective (relationship between mental health and mortality)

Density Plot

no clear connection to objective (mental health and mortality)

Bar Plot

Not clear how this graph helps investigate the objective (number of counties by air pollution quartile)

Only has one variable

Outline

- Exploratory vs Explanatory Plots
- Visualization Best Practices
- Customizing your plots

#tidytuesday

Exploratory vs Explanatory Plots

 As you move further into your data analysis, you will shift from making exploratory plots to explanatory plots.

Exploratory Plots:

 data displays to help you better understand and discover hidden patterns in the data you're working with.

Explanatory Plots:

• data displays that aim to communicate insights to others.

Exploratory Plot Example

- When exploring your data, you will make a lot of plots
- They won't have a lot of formatting/labeling
- These plots are for "internal use"- they help you understand your data

Explanatory Plot Example

- These are plots for "external use"communicating your findings to others
- Things to check:
 - the axis labels should all be clear
 - the labels should all be large enough to read
 - the colors should all be carefully chosen

Communicating Your Findings with Plots

- Ask yourself: What is the central message you are trying to communicate?
- Decide, then build your plot around that message.
- Make that message as easy to see as you can.
- Remove the clutter -- get rid of any features of the visualization that do not contribute to the central message.

Data Visualization as Art

http://www.dear-data.com/theproject

Stefanie

Data Example for today

 We're going to use data from the cspp package (<u>https://github.com/IPPSR/cspp</u>)

```
cspp_data <- get_cspp_data(vars=c("percentuninsured",
  "wellbeing", "sdce", "doctorsPerCapita", "higrenew",
  "popgovhealthins", "popnohealthins", "popprivhealthins",
  "hmdindex", "health_pro"),
  years = seq(2010,2010))</pre>
```

Plot Adjustments

- 1. Labels
 - a) title
 - b) x and y axis
 - c) annotations
- 2. Scales
 - a) x and y axis
 - b) color

Example

 Let's see what we can do to improve this scatter plot of a state's well being ranking against the percent of the state population that is uninsured

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
    geom_point()
```


Labels

- labs() specify labels
- Arguments:
 - title: plot title
 - x: x axis label
 - y: y axis label

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point()+
labs(title = 'States Rank Higher in Well Being When There Are
Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking')
```


Add line of best fit

 We can use geom_smooth() to add a line of best fit (expected value of y for every value of x)

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point()+
labs(title = 'States Rank Higher in Well Being When There Are
Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking')+
geom_smooth()
```


Add line of best fit

- Blue line: estimated line of best fit
- Interpretation:
 - mostly negative relationship between percent uninsured and ranking
 - seems mostly linear
- Dark grey: 95% CI for estimated line of best fit
- Interpretation: the relationship is not precisely estimated for the very low and high values of percent uninsured (wide bands)

Make it linear

estimate a straight line with the method argument

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point()+
labs(title = 'States Rank Higher in Well Being When There Are
Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking')+
geom_smooth(method="Im")
```

States Rank Higher in Well Being When There Are Fewer Uninsured

Class Exercise

- Create a scatter plot with doctors per capita on the x-axis and well being ranking (1-best, 50-worst) on the y-axis
- add a line of best fit (try linear and nonlinear)

Annotations

 In addition to labelling major components of your plot, it's often useful to label individual observations or groups of observations.

Annotations

- geom_label() add annotations to a geom
- Arguments:
 - label
- Remember to use aes() when referencing variable names

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point()+
labs(title = 'States Rank Higher in Well Being When
There Are Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking')+
geom_label(aes(label=st))
```

Annotations

- The annotations can get cluttered if they are too close to one another
- We can shift the labels away from the points using geom_label_repel() from the ggrepel package

ggrepel package

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point()+
labs(title = 'States Rank Higher in Well Being When
There Are Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking' )+
geom_hline(yintercept=25, color='red' )+
geom_label_repel(aes(label=st))
```


Quick PSA: don't overdo it

- You can definitely put too much on a graph
- This looks like a hot mess

Class Exercise

- Create a scatter plot with doctors per capita on the x-axis and well being ranking (1-best, 50-worst) on the y-axis
- label the states using ggrepel

Scales

- Scales control how your data is mapped on your plot
- Some common adjustments:
 - axis ticks and labels
 - colors

Continuous Scales

- The scale of your plot for continuous variables can be controlled using:
 - scale_x_continuous()
 - scale_y_continuous()

Color Scales

 ggplot will automatically pick a sequential color scale when we map a quantitative variable to color

States Rank Higher in Well Being When There Are Fewer Uninsured

Color Scales

- We can adjust the color scales for quantitative variables using scale_color_gradient()
- You can set the colors on the high and low ends of the scale:
 - red
 - green

Color Scales

- We can adjust the color scale manually by picking the colors in the high and low end
- the red-green color scale allows us to convey whether a number is "good" or "bad"

```
ggplot(data=cspp_data,
    mapping=aes(x=percentuninsured, y=wellbeing))+
geom_point(aes(color=doctorsPerCapita)+
labs(title = 'States Rank Higher in Well Being When There Are
Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking' )+
geom_label_repel(aes(label=st )+
scale_color_gradient(low="red", high="green")
```


Class Exercise

- Create a scatter plot with doctors per capita on the x-axis and well being on the y axis
- color the points with percent uninsured using a green and red gradient (green low, red high)

Color Scales for Categorical Variables

- scale_color_manual(): manually create color scale
- scale_color_brewer(): use a ColorBrewer palette

Manually Select Color Scale

- Now the legend shows the levels of the dependent_coverage factor variable
- It assigns a color to each level

```
ggplot(data=cspp_data,
    aes(x=percentuninsured, y=wellbeing))+

geom_point(aes( color=dependent_coverage)) +

labs(title = 'States Rank Higher in Well Being When There Are Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking') +

scale_color_manual(values= c("purple", "green"))
```

States Rank Higher in Well Being When There Are Fewer Uninsured

ColorBrewer Sequential Color Scales

- ColorBrewer provides sets of colors (palettes)
- Sequential palettes are good for ordinal categorical variables
- Educational levels:
 - high school
 - college
 - graduate school

ColorBrewer Diverging Color Scales

Diverging palettes are good for ordinal categorical variables

- Use this when your values are ordered in two directions relative to a center.
- political affiliation:
 - liberal
 - centrist
 - conservative

ColorBrewer Qualitative Color Scales

- Qualitative (nominal) palettes are good for categorical Variables whose values have no ordering.
- Major:
 - Economics
 - Business
 - Statistics

https://pollev.com/vsovero

Palette Example

- When we select a palette, ggplot will take colors in the order in which they are listed on the palette
- first color in Set1 is red, the second color is blue

```
ggplot(data=cspp_data,
    aes(x=percentuninsured, y=wellbeing))+
    geom_point(aes( color=dependent_coverage)) +
labs(title = 'States Rank Higher in Well Being When There Are Fewer Uninsured',
    x = 'Percent of State Population that is Uninsured',
    y = 'State Well Being Ranking') +
scale_color_brewer(palette= "Set1")
```


Use Themes

- Themes control the non-data settings of the plot
- theme() allows you to make adjustments to:
 - font size
 - legend position

Use Themes

- You can also use themes to change the grid settings:
 - Ex: theme_bw()
- Apply theme using + operator

https://ggplot2.tidyverse.org/reference/ggtheme.html

Figure 28.3: The eight themes built-in to ggplot2.

Use Themes

```
ggplot(data=cspp_data,
 aes(x=popgovhealthins, y=percentuninsured))+
 geom_point(aes( color=wellbeing, size=poptotal),
 alpha=.7) +
labs(title = 'Larger States have more uninsured and
more using Public Health Insurance',
     x = 'Population using Government Health
Insurance',
     y = Percent of State Population that is
Uninsured') +
scale_color_gradient(low= "green", high= "red", )+
theme(text=element_text(size=12, family="Arial")) +
theme_bw()
```

