定义 e= lim (1+六)"

一个序列 $\chi_n = (l + \frac{1}{n})^n$. 当 $n \to \infty$ 时,序列有界 吗? $0 < \chi_n = l + n \cdot \frac{1}{n} + \frac{n(n+1)}{2} \cdot \frac{1}{n^2} + \frac{n(n+1)(n-2)}{3!} \cdot \frac{1}{n^3}$ (三项式定理) $+ \dots + \frac{n(n+1) \cdots (n-k+1)}{k!} \cdot \frac{1}{n^2} \cdot \frac{1}{n^2} + \dots + \frac{n(n+1) \cdots (1-\frac{n}{n})}{n!} \cdot \frac{1}{n^n}$ $= l + l + \frac{1}{2} \cdot (1 - \frac{1}{n}) + \dots + \frac{1}{n!} \cdot (l - \frac{1}{n}) + \dots + \frac{1}{n!} \cdot (l - \frac{1}{n}) \cdots (l - \frac{n+1}{n}) \cdots (l - \frac{n+1}{n})$ $\leq l + l + \frac{1}{2} \cdot l + \frac{1}{2^2} \cdot l + \dots + \frac{1}{n!}$ $\leq l + l + \frac{1}{2} \cdot l + \frac{1}{2^2} \cdot l + \dots + \frac{1}{2^{k-1}} + \dots + \frac{1}{2^{k-1}}$ $= l + \frac{l - (\frac{1}{2})^n}{l - \frac{1}{2}} < l - \frac{1}{l - \frac{1}{3}} = 3$ $n \to \infty$ $\chi_n \in \mathbb{R}$ $\eta \in \mathbb$

不限于 $n \in N^*$ 的 推广、 求证 $\lim_{x \to \infty} (h + y)^x = e$ $\forall \epsilon > 0$, $\exists N \in N$, $\exists s.t.$ n > N 断 $e - \epsilon < (h + \frac{1}{(x+1)})^n < (h + \frac{1}{x})^x < (h + \frac{1}{(x+1)})^{(x+1)} < e + \epsilon$ $\Rightarrow \lim_{x \to +\infty} (h + \frac{1}{x})^x = e$ $\lim_{x \to +\infty} (h + \frac{1}{x})^x =$

 $\Rightarrow (G_x)_x = G_x$