المستوى : 2 علوم تجريبية . المدّة : 1 ساعة

الفرض الأول للفصل الثاني في العلوم الفيزيائية

نذيب كتلة $m_{_0}=0.4$ من هيدروكسيد الصوديوم الصلب NaOH في حجم $m_{_0}=0.4$ من الماء المقطر –I فنحصل على محلول $S_{_0}$ تركيزه المولي .

- 1- أكتب معادلة إنحلال هيدروكسيد الصوديوم في الماء .
 - 2- أحسب التركيز _₀ 2
- 3- نأخذ حجما V' من المحلول (S_0) ونضيف له حجما $V_{H_{20}} = 180 \mathrm{mL}$ من الماء المقطر فنحصل على محلول
 - . $C_1 = 10^{-2} \text{mol} / \text{L}$ و تركيزه المولي V_1 حجمه (S_1)

. فمّ أحسب قيمته
$$V' = \frac{C_1.V_{H_2O}}{C_0-C_1}$$
 ثمّ أحسب قيمته أ

. (S_1) أذكر البروتوكول التجريبي المتبع في تحضير المحلول الجريبي

. ($S_{_1}$) للمحلول الناقلية النوعية $\sigma_{_0}$ للمحلول -4

، $V=V_1$ مع كمية مادة n من النوع الكيميائي $C_3H_6O_2$ و نعتبر حجم المزيج التفاعلي n نمذج التفاعل الكيميائي الحادث بالمعادلة الكيميائية التالية :

$$C_3H_6O_2 + (Na^+ + OH^-) = (Na^+ + HCOO^-) + C_2H_5OH$$

 $G = f\left([\mathsf{HCOO}^-]
ight)$ باستعمال برمجية مناسبة تمكنا من تمثيل المنحنى

. HCOO - الذي يعطي تغيرات الناقلية G بدلالة تركيز الشاردة

- 1- أذكر الأنواع الكيميائية المسؤولة عن ناقلية المزيج.
 - 2- أنشىء جدولا لتقدم التفاعل.
- $m HCOO^-$ ثبت أن عبارة الناقلية للمزيج بدلالة تركيز شوارد -3 $m G=K(\lambda_{_{
 m HCOO^-}}-\lambda_{_{
 m OH^-}})[HCOO^-]+K.\sigma_{_0}$ تعطى بالعلاقة التالية:

حيث K ثابت الخلية .

G(mS)

4- إعتمادا على البيان أوجد:

أ/ K ثابت الخلية .

. HCOO- الناقلية النوعية المولية الشاردية للشاردة $\lambda_{_{
m HCOO^-}}$

 $x_{
m max}$. $x_{
m max}$ التقدم الأعظمي

2 [HCOO⁻](mmol/L)

. $C_3H_6O_2$ إذا كان المزيج الإبتدائي يحقق الشروط الستوكيومترية فأوجد n كمية المادة الإبتدائية ل-5

 $M_{H}=1\,g$ / mol ، $M_{O}=16\,g$ / mol ، $M_{Na}=23\,g$ / mol : يعطى . $\lambda_{OH^{-}}=20mS.m^2$ / mol ، $\lambda_{Na^{+}}=5mS.m^2$ / mol

Г	25/24	تصحيح الفرض 1 للفصل 2	<u> </u>	2 ثار	
		4-أ/ إبجاد ثابت الخلية:		في الماء:	سودىوم
	ن المبدأ معادلته من	المنحنى عبارة عن خط مستقيم لا يمر مز		•	aOH-
		$G = a \lceil HCOO^- \rceil + b$ الشكل:			
		ا بالمطابقة نجد :	C_0	$=\frac{\mathbf{m}_0}{\mathbf{V}_0\mathbf{M}}=0$),1×4
		, , ,		$C_0V' = C_1V$	
	$b = K.\sigma_0 \rightarrow K$	$=\frac{b}{\sigma_0} = \frac{2,5 \times 10^{-3}}{0,25} = 0.01 \text{m}$		$_{0}^{0}V' = C_{1}(V)$	1
		$: \lambda_{_{ m HCOO^-}}$ بارحساب	С	$_{0}V'-C_{1}V'$	$=C_1$.
	$a = K(\lambda_{HCOO^{-}} - \lambda_{O})$	$(1) \rightarrow \lambda_{\text{HCOO}^-} = \frac{a}{K} + \lambda_{\text{OH}^-}$		V'	$=\frac{C_1}{C_2}$
	$a = \frac{\Delta G}{\Delta G}$	$=\frac{2,5-1,05}{0-10}=-0,145\frac{\text{mS.m}^3}{\text{mol}}$			-0
	$\Delta \left[\text{HCOO}^{-} \right]$	0-10 mol		$V' = \frac{10^{-2}}{0.1}$	$\frac{\times 180}{-10^{-2}}$
	$\lambda_{\text{HCOO}^{-}} = \frac{-0.145}{0.01}$	$+20 = 5.5 \text{mS.m}^2 / \text{mol}$			10
		<u>جـ/ حساب التقدم الأعظمي</u> :		$V_1 = V' + V_H$	2
	$\left[HCOO^{-}\right]_{f} = \frac{X}{A}$	$X_{\frac{Max}{N_1}} \rightarrow X_{max} = \left[HCOO^{-}\right]_f .V_1$	أخذ	V′=20n ئا	تھا LL
	$x_{\text{max}} = 10 \times 0.2$	2=2mmol/L		. V	$V_1 = 2$
	max	5- حساب كمية المادة الابتدائية:		,	ع الرج.
	1	$\frac{n}{1} = \frac{C_1 V_1}{1}$ المزيج ستوكيومتري إذن :		$\sigma_0 = [\text{Na}]$	†12 .
	$n = C_1.V_1$	$=10^{-2}\times0,2=2$ mmol			
				$\sigma_0 = C_1 \lambda_1$	
				$\sigma_0 = 10^{-2}$	
				<u>زيج هي :</u> 1	
				ľ	HCOC
			المع	$C_3H_6O_2 + ($	Na ⁺ +
			ح.اب	n	
			ح.ان	n-x	C,
			ح.ن	n - x	C I

ثانوية بهية حيدور

1-I-<u>كتابة معادلة انحلال هيدروكسيد الص</u>و

$$NaOH \xrightarrow{H_2O} Na^+ + OH^-$$

$$C_0 = \frac{m_0}{V_0 M} = \frac{0.4}{0.1 \times 40} = 0.1 \text{mol} / L$$
: - حساب التركيز - 2

$$C_0V' = C_1V_1$$
 : -3

$$C_0V' = C_1(V' + V_{H,O}) = C_1V' + C_1V_{H,O}$$

$$C_0V' - C_1V' = C_1.V_{H_2O} \rightarrow V'(C_0 - C_1) = C_1V_{H_2O}$$

$$V' = \frac{C_1.V_{H_2O}}{C_0 - C_1}$$

$$V' = \frac{10^{-2} \times 180}{0.1 - 10^{-2}} = 20$$
mL $\frac{10^{-2} \times 180}{0.1 - 10^{-2}} = 20$

ب/ البروتوكول التجريبي:

$$V_1 = V' + V_{H,0} = 20 + 180 = 200 \text{mL}$$
 $: V_1$

- بواسطة ماصة عيارية مزودة بإجاصة سعتو (S_0) من المحلول من المحلول

- نسكبه في حوجلة عيارية سعتها 200mL
 - نضيف الماء المقطر إلى غاية خط العيار مع
 - : σ_0 عساب الناقلية النوعية -4

$$\sigma_{0} = [Na^{+}]\lambda_{Na^{+}} + [OH^{-}]\lambda_{OH^{-}}$$

$$\sigma_{0} = C_{1}\lambda_{Na^{+}} + C_{1}\lambda_{OH^{-}} = C_{1}(\lambda_{Na^{+}} + \lambda_{OH^{-}})$$

$$\sigma_{0} = 10^{-2} \times (20 + 5) = 0.25 \text{ S/m}$$

<u>II- 1- الأفراد الكيميائية المسؤولة عن ناقي</u>

2- **جدول التقدم**:

المع	$C_3H_6O_2 + (Na^+ + OH^-) = (Na^+ + HCOO^-) + C_2H_5OH$					
ح.اب	n	C_1V_1	0	0		
ح.ان	n-x	C_1V_1-x	X	X		
ن	$n-x_{max}$	$C_1V_1-X_{max}$	X _{max}	X _{max}		

3- إثبات العلاقة:

$$\sigma = [\mathrm{Na^+}] \lambda_{\mathrm{Na^+}} + [\mathrm{OH^-}] \lambda_{\mathrm{OH^-}} + [\mathrm{HCOO^-}] . \lambda_{\mathrm{HCOO^-}}$$

$$= \frac{\mathrm{C_1 V_1} - \mathrm{x} + \mathrm{x}}{\mathrm{V_1}} \lambda_{\mathrm{Na^+}} + \frac{\mathrm{C_1 V_1} - \mathrm{x}}{\mathrm{V_1}} \lambda_{\mathrm{OH^-}} + [\mathrm{HCOO^-}] \lambda_{\mathrm{HCOO^-}}$$

$$= \mathrm{C_1 \lambda_{\mathrm{Na^+}}} + \mathrm{C_1 \lambda_{\mathrm{OH^-}}} - \frac{\mathrm{x}}{\mathrm{V_1}} \lambda_{\mathrm{OH^-}} + [\mathrm{HCOO^-}] \lambda_{\mathrm{HCOO^-}}$$

$$= \sigma_0 - [\mathrm{HCOO^-}] \lambda_{\mathrm{OH^-}} + [\mathrm{HCOO^-}] \lambda_{\mathrm{HCOO^-}}$$

$$= \sigma_0 + [\mathrm{HCOO^-}] (\lambda_{\mathrm{HCOO^-}} - \lambda_{\mathrm{OH^-}})$$

$$G = \sigma.\mathrm{K} = \mathrm{K}. (\lambda_{\mathrm{HCOO^-}} - \lambda_{\mathrm{OH^-}}) [\mathrm{HCOO^-}] + \mathrm{K}.\sigma_0$$