Trajectory optimization

$$X_1 = o$$
 (position)
 $X_2 = o$ (relocity)

nininize time taken
$$\int_{0}^{T} dt = T$$

trying to find u (t) =?

Cost
$$\int_{\infty}^{\infty} dt = T$$
 $\int_{\infty}^{\infty} \int_{\infty}^{\infty} dt = T$
 $\int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty}^{\infty}$

Formulati

Two ways:

Trajectory optimization -- Parameter optimization Infinite divension - Finite dimension

- 1) Collocation or transcription method
- © Shooting wethod
- 1) Collocation or transcription method

(3) X,(1) = X2(N+1) = 0 X,(N+1)=P - Umax (Uli) & Umax

$$\dot{x}_{1} = \dot{x}_{2} = \dot{x}_{1}(it_{1}) - \dot{x}_{1}(i) = \dot{x}_{2}(i) dt$$
 $\dot{x}_{2} = \dot{x}_{2} = \dot{x}_{2}(it_{1}) - \dot{x}_{2}(i) = \dot{x}_{2}(i) dt$
 $\dot{x}_{2} = \dot{x}_{2}(it_{1}) - \dot{x}_{2}(i) = \dot{x}_{2}(i) dt$
Enley's

X2(i+1)-X2(i)= 0.5 (u(i)+v(i+1)) at

@ Shooting method

blackbox (integration)

=) $\chi_1(0) = \chi_2(0) = \chi_2(T) = 0$, $\chi_1(7) = D$ Constraints $\chi_2(N+1) = 0$ $\chi_1(N+1) = D$

- =) T (ost minimized)
- -) T, u(1), u(2), ... u(N), u(NH) optimization variable

interpl (tdata, Ydata, tquean)

= Yqueny.

U(ix)