RUNNING HEAD: FECHNER'S LAW AND REPRESENTATION UPDATING

The foundation of Fechner's law: representation updating in working memory decodes the conscious perception of logarithmic magnitudes

Youguo Chen¹, Chunna Hou¹, Jie Yu¹, Chunhua Peng²

¹Key Laboratory of Cognition and Personality (Ministry of Education), Time

Psychology Research Center, Center of Studies for Psychology and Social

Development, Faculty of Psychology, Southwest University, Chongqing 400715,

China

² Chongqing Key Laboratory of Emotion and Mental Health, Chongqing University of

Arts and Sciences, Chongqing 402160, China

Corresponding Author: Youguo Chen

Faculty of Psychology, Southwest University, Chongqing 400715, China;

E-mail: ygchen246@gmail.com

Supplementary materials

Supplementary Table 1. Best-fitting parameter values of the classical model

		ω			$BIAS_{0.8}$				BIAS _{1.2}				
	M	95% CI		M	959	M		95%	5 CI	M	95% CI		
S 1	0.999	0.996	1.001]	0.248 [0.193	0.302]	0.402	[0.215	0.589]	0.281	[0.137	0.425]
S2	0.999	0.998	1.000]	0.269 [0.249	0.289]	0.065	[-0.008	0.138]	-0.067	[-0.173	0.038]
S 3	1.001	0.998	1.003]	0.279 [0.176	0.382]	-0.080	[-0.267	0.106]	-0.287	[-0.603	0.029]
S 4	1.000	0.997	1.002]	0.427 [0.334	0.521]	0.860	[0.624	1.096]	0.640	[0.331	0.948]
S5	0.998	0.996	1.000]	0.334 [0.299	0.369]	0.343	[0.163	0.523]	0.339	[0.119	0.559]
S 6	0.999	0.997	1.000]	0.429 [0.402	0.455]	0.320	[0.147	0.493]	0.106	[-0.064	0.275]
S 7	0.999	0.998	1.001]	0.205 [0.176	0.234]	0.228	[0.114	0.341]	-0.103	[-0.233	0.027]
S 8	1.000	0.997	1.002]	0.256 [0.196	0.317]	0.580	[0.410	0.750]	0.287	[0.061	0.512]
S 9	0.998	0.997	1.000]	0.642 [0.589	0.694]	0.687	[0.585	0.790]	0.134	[-0.053	0.321]
S10	0.999	0.996	1.001]	0.394 [0.315	0.474]	0.654	[0.358	0.951]	0.468	[0.286	0.651]
S11	0.998	0.996	1.001]	0.835 [0.750	0.921]	0.741	[0.413	1.069]	0.501	[0.241	0.762]
S12	1.000	0.998	1.001]	0.253 [0.227	0.280]	0.238	[0.114	0.363]	0.042	[-0.087	0.171]

Supplementary Table 2. Best-fitting parameter values of the logarithmic version of the classical model (LCM)

	ω				w_p				$BIAS_{0.8}$					BIAS _{1.2}					
	M 95% CI			M		95% CI		M	95% CI				M	95% CI					
S 1	0.992 [0.987	0.998] 0.	240	[0.227	0.253]	0.421	[0.385	0.458]	0.281	[0.216	0.346]
S2	0.994 [0.989	1.000] 0.	265	[0.250	0.280]	0.061	[0.017	0.105]	-0.105	[-0.169	-0.041]
S 3	0.997 [0.985	1.010] 0.	245	[0.206	0.284]	-0.133	[-0.220	-0.046]	-0.395	[-0.507	-0.284]
S 4	0.993 [0.979	1.008] 0.	406	[0.370	0.442]	0.840	[0.663	1.017]	0.632	[0.485	0.778]
S5	0.984 [0.978	0.990] 0.	313	[0.298	0.328]	0.333	[0.297	0.370]	0.323	[0.246	0.400]
S 6	0.993 [0.984	1.002] 0.	427	[0.402	0.453]	0.341	[0.252	0.430]	0.133	[0.048	0.219]
S 7	0.994 [0.986	1.001] 0.	196	[0.180	0.212]	0.222	[0.160	0.284]	-0.139	[-0.215	-0.063]
S 8	1.001 [0.995	1.007] 0.	251	[0.238	0.265]	0.609	[0.575	0.643]	0.330	[0.256	0.404]
S 9	0.988 [0.973	1.002] 0.	629	[0.567	0.691]	0.664	[0.508	0.821]	0.123	[-0.031	0.277]
S10	0.993 [0.985	1.001] 0.	378	[0.351	0.405]	0.676	[0.623	0.729]	0.468	[0.360	0.575]
S11	0.987 [0.965	1.009] 0.	809	[0.694	0.924]	0.748	[0.547	0.949]	0.492	[0.259	0.725]
S12	1.000 [0.988	1.011] 0.	251	[0.236	0.266]	0.259	[0.142	0.376]	0.054	[-0.032	0.139]