Problem A. A

Time limit 1000 ms **Mem limit** 65536 kB

In a strange shop there are n types of coins of value A_1 , A_2 ... A_n . C_1 , C_2 , ... C_n denote the number of coins of value A_1 , A_2 ... A_n respectively. You have to find the number of ways you can make K using the coins.

For example, suppose there are three coins 1, 2, 5 and we can use coin 1 at most 3 times, coin 2 at most 2 times and coin 5 at most 1 time. Then if K = 5 the possible ways are:

(1, 1, 1, 2)

(1, 2, 2)

(5)

So, 5 can be made in 3 ways.

Input

Input starts with an integer $T (\le 100)$, denoting the number of test cases.

Each case starts with a line containing two integers $n \ (1 \le n \le 50)$ and $K \ (1 \le K \le 1000)$. The next line contains 2n integers, denoting $A_1, A_2 \dots A_n, C_1, C_2 \dots C_n \ (1 \le A_i \le 100, 1 \le C_i \le 20)$. All A_i will be distinct.

Output

For each case, print the case number and the number of ways **K** can be made. The result can be large, so, print the result modulo **100000007**.

Sample

Output
Case 1: 3 Case 2: 9