Extending propositional separation logic for robustness properties

Alessio Mansutti

INFINI - November 2018

Program verification with Hoare calculus

Hoare calculus is based on proof rules manipulating Hoare triples.

$$\{\varphi\} \ C \ \{\varphi'\}$$

where

- C is a program
- ullet φ and φ' are assertions in some logical language.

Any (memory) state that satisfies φ will satisfy φ' after being modified by C.

Programming languages with pointers

The so-called **rule of constancy**

$$\frac{\{\varphi\}\ C\ \{\varphi'\}}{\{\varphi\wedge\psi\}\ C\ \{\varphi'\wedge\psi\}} \qquad \qquad \text{``C does not mess with ψ''}$$

is generally not valid: it is unsound if ${\it C}$ manipulates pointers.

Programming languages with pointers

The so-called rule of constancy

$$\frac{\{\varphi\}\ C\ \{\varphi'\}}{\{\varphi\wedge\psi\}\ C\ \{\varphi'\wedge\psi\}} \qquad \qquad \text{``C does not mess with ψ''}$$

is generally not valid: it is unsound if C manipulates pointers.

Example:

$$\frac{\{\exists u.[x] = u\} [x] \leftarrow 4 \{[x] = 4\}}{\{[y] = 3 \land \exists u.[x] = u\} [x] \leftarrow 4 \{[y] = 3 \land [x] = 4\}}$$

not true if \boldsymbol{x} and \boldsymbol{y} are in aliasing.

Reynolds'02: Separation logic

Separation logic add the notion of **separation** (*) of a state, so that the **frame rule**

$$\frac{\{\varphi\}\ C\ \{\varphi'\}\ \operatorname{modv}(C)\cap\operatorname{fv}(\psi)=\emptyset}{\{\varphi*\psi\}\ C\ \{\varphi'*\psi\}}$$

is valid.

Morally, separation means $([x] = n * [y] = m) \implies x \neq y$

Reynolds'02: Separation logic

Separation logic add the notion of **separation** (*) of a state, so that the **frame rule**

$$\frac{\{\varphi\}\ C\ \{\varphi'\}\ \operatorname{modv}(C)\cap\operatorname{fv}(\psi)=\emptyset}{\{\varphi*\psi\}\ C\ \{\varphi'*\psi\}}$$

is valid.

Morally, separation means $([x] = n * [y] = m) \implies x \neq y$

- Automatic Verifiers: Infer, SLAyer, Predator
- Semi-automatic Verifiers: Smallfoot, Verifast

Also, see "Why Separation Logic Works" (Pym et al. '18)

Memory states

Separation Logic is interpreted over **memory states** (s, h) where:

store, $s: VAR \rightarrow LOC$

heap, $h : LOC \rightarrow_{fin} LOC$

where $VAR = \{x, y, z, ...\}$ set of (program) variables, LOC set of locations (typically LOC $\cong \mathbb{N} \cong VAR$).

- Disjointed heaps: $dom(h_1) \cap dom(h_2) = \emptyset$
- Sum of disjointed heaps $(h_1 + h_2) = \text{sum of partial functions}$

Propositional Separation Logic SL(*, -*)

$$\varphi \coloneqq \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \text{emp} \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} \hookrightarrow \mathbf{y} \mid \varphi_1 \ast \varphi_2 \mid \varphi_1 \ast \varphi_2$$

Semantics

- standard for ∧ and ¬;
- $(s,h) \models \text{emp} \iff \text{dom}(h) = \emptyset$
- $\bullet (s,h) \models x = y \iff s(x) = s(y)$
- $[s,h] \models x \hookrightarrow y \iff h(s(x)) = s(y), \text{ (previously } [x] = y)$

Separating conjunction (*)

$$(s,h) \models \varphi_1 * \varphi_2$$
 if and only if

There is a way to split the heap into two so that, together with the store, one part satisfies φ_1 and the other satisfies φ_2 .

Separating implication (*)

 $(s,h) \models \varphi_1 \twoheadrightarrow \varphi_2$ if and only if

Whenever a (disjoint) heap that, together with the store, satisfies φ_1 is added, the resulting memory state satisfies φ_2 .

Decision Problems

- Hoare proof-system requires to solve classical problems:
 - satisfiability/validity/entailment
 - weakest precondition/strongest postcondition

$$\frac{P \implies P'}{\{P\} \ C \ \{Q'\}} \quad \frac{Q' \implies Q}{\{Q\}}$$
 consequence rule

■ satisfiability is PSPACE-complete for SL(*, →*)

Note: entailment and validity reduce to satisfiability for SL(*, -*).

Robusness properties

- **Acyclicity** holds for φ iff every model of φ is acyclic
- **Garbage freedom** holds for φ iff in every model of φ , each memory cell is reachable from a program variable of φ

C. Jansen et al., ESOP'17

Checking for robustness properties is EXPTIME-complete for Symbolic Heaps with Inductive Predicates.

- Symbolic Heaps ⇒ no negation, no →
- Inductive Predicates: akin of Horn clauses where * replaces ∧

$$P \Leftarrow Q_1 \overset{*}{\times} \dots \overset{*}{\times} Q_n$$

Our Goal Provide similar results, but for **propositional** separation logic.

Desiderata

We aim to an extension of propositional separation logic where

- satisfiability, validity and entailment are decidable
- in PSPACE (as propositional separation logic)
- robustness properties reduce to one of these problems

Known extensions

SL(*, -*) + reachability and one quantified variable

- $(s,h) \models \operatorname{reach}^+(x,y) \iff h^L(s(x)) = s(y) \text{ for some } L \geq 1$
- $(s,h) \models \exists u \varphi \iff \text{there is } \ell \in \texttt{LOC s.t. } (s[u \leftarrow \ell],h) \models \varphi$

It is only possible to quantify over the variable name $\boldsymbol{u}.$

Robustness properties reduce to entailment

- **Acyclicity**: $\varphi \models \neg \exists u \; \mathtt{reach}^+(u,u)$
- Garbage freedom: $\varphi \models \forall u \ (alloc(u) \Rightarrow \bigvee_{x \in fv(\varphi)} reach(x, u))$

where $u \notin fv(\varphi)$ and

- \blacksquare alloc(x) $\stackrel{\text{def}}{=}$ x \hookrightarrow x \rightarrow * \bot
- reach(x,y) $\stackrel{\text{def}}{=}$ x = y \vee reach⁺(x,y)

Restrictions

The logic $1SL(*, -*, reach^+)$ is undecidable. We syntactically restrict the logic so that for each occurrence of $reach^+(x, y)$:

- R1 it is not on the right side of its first -* ancestor (seeing the formula as a tree)
- R2 if x = u then y = u

For example, given φ, ψ satisfying these conditions,

- reach $^+$ (u,x)*($\varphi woheadrightarrow \psi$) only satisfies R1
- $\varphi \twoheadrightarrow (\operatorname{reach}^+(\mathbf{x},\mathbf{u}) \twoheadrightarrow \psi)$ satisfies both R1 and R2
- $\varphi \twoheadrightarrow (\psi * reach^+(u, u))$ only satisfies R2

Note: robustness properties are expressible in this fragment.

Results

- Weakening even slightly R1 leads to undecidability
- 1 $1SL_{R1}(*, -*, reach^+)$: satisfiability is NON-ELEMENTARY (more precisely, TOWER-hard)
- $2 1SL_{R1}^{R2}(*, -*, reach^+)$: satisfiability is PSPACE-complete

Proof Techniques

- (1) reduce Propositional interval temporal logic under locality principle (PITL) to a logic captured by $1SL_{R1}(*, -*, reach^+)$
- (2) use the test formulae technique already used for SL(*, reach)

PITL (Moszkowski'83)

$$\varphi \coloneqq \mathsf{pt} \mid \mathsf{a} \mid \varphi_1 | \varphi_2 \mid \neg \varphi \mid \varphi_1 \wedge \varphi_2$$

- $lue{}$ interpreted on finite non-empty words over a finite alphabet Σ
- $lackbox{ } \mathfrak{w}\models\operatorname{pt}\qquad\Longleftrightarrow\;|\mathfrak{w}|=1$
- $\mathbf{w} \models \mathbf{a} \iff \mathbf{w} \text{ headed by a}$
- $$\begin{split} \bullet \ \mathfrak{w} \models \varphi_1 | \varphi_2 \iff & \mathfrak{w}[1:j] \models \varphi_1 \text{ and } \mathfrak{w}[j:|\mathfrak{w}|] \models \varphi_2 \\ & \text{for some } j \in [1,|\mathfrak{w}|] \end{split}$$

$$\underbrace{ \begin{bmatrix} \mathfrak{w}_1 \dots \mathfrak{w}_{j-1} & \mathfrak{w}_j & \mathfrak{w}_{j+1} \dots \mathfrak{w}_{|\mathfrak{w}|} \\ \varphi_1 & & & \\ \varphi_2 & & & \\ \end{bmatrix} }_{\varphi_2}$$

Note: Satisfiability is decidable, but NON-ELEMENTARY

Auxiliary Logic on Trees (ALT)

$$\varphi \coloneqq \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \varphi_1 * \varphi_2 \mid \exists \mathbf{u} \ \varphi \mid \mathsf{T}(\mathbf{u}) \mid \mathsf{G}(\mathbf{u})$$

- interpreted on acyclic memory states
- one *special* location: the root ρ of a tree
- $(s,h) \models \mathsf{T}(\mathsf{u}) \text{ iff } s(\mathsf{u}) \in \mathrm{dom}(h) \text{ and it does reach } \rho$
- $(s,h) \models \mathsf{G}(\mathtt{u}) \text{ iff } s(\mathtt{u}) \in \mathrm{dom}(h) \text{ and it does not reach } \rho$
- \blacksquare \exists u φ and $\varphi_1 * \varphi_2$ as before

Note: ALT is captured by $1SL_{R1}(*, -*, reach^+)$.

Reducing PITL to ALT

Easy to encode words as acyclic memory states

- Set of models encoding words can be characterised in ALT
- However, difficult to translate $\varphi_1 | \varphi_2$: ALT cannot express properties about the set of locations that do not reach ρ , apart from its size

After the cut, left side does not reach ρ anymore.

Reducing PITL to ALT

Solution: we introduce an alternative semantics for PITL, based on marking letters.

- a marked representation of a
- $\mathbf{w} \models \varphi_1 | \varphi_2$ if and only if $\mathbf{w}[\mathbf{j} : |\mathbf{w}|] \models \varphi_2$ and

$$\mathfrak{w}[1:j-1]\cdot \boxed{\mathfrak{w}_{j}}\cdot \mathfrak{w}[j+1:|\mathfrak{w}|] \models \varphi_{1}$$

for some $j \in [1,|\mathfrak{w}|]$ s.t. $\mathfrak{w}[1:j{-}1]$ has no marked symbols

- 1 marking a symbol can be simulated in ALT
- 2 ALT and $1SL_{R1}(*, -*, reach^+)$ are NON-ELEMENTARY
- 3 ALT is decidable in TOWER, as it is captured by $SL(\forall,*)$

$1\mathrm{SL}^{R2}_{R1}(*,-\!\!*,\mathtt{reach}^+)$ is in PSPACE

$$\begin{array}{llll} \pi & \coloneqq \mathtt{x} = \mathtt{y} \ | \ \mathtt{x} \hookrightarrow \mathtt{y} \ | \ \mathtt{emp} \ | \ \underline{\mathcal{A}} \twoheadrightarrow \mathcal{C} \ (\mathtt{R1}) \\ \mathcal{C} & \coloneqq \pi \ | \ \mathcal{C} \land \mathcal{C} \ | \ \neg \mathcal{C} \ | \ \exists \mathtt{u} \ \mathcal{C} \ | \ \mathcal{C} \ast \mathcal{C} \\ \mathcal{A} & \coloneqq \pi \ | \ \underline{\mathtt{reach}}^+(v_1, v_2) \ | \ \mathcal{A} \land \mathcal{A} \ | \ \neg \mathcal{A} \ | \ \exists \mathtt{u} \ \mathcal{A} \ | \ \mathcal{A} \ast \mathcal{A} \end{array}$$
 where (R2) if $v_1 = \mathtt{u}$ then $v_2 = \mathtt{u}$

Test Formulae

- 1 Design an equivalence relation on models, based on the satisfaction of atomic predicates (test formulae $\mathsf{Test}(\mathtt{X},\alpha)$)
- **2** Show that any formula of our logic is equivalent to a Boolean combination of test formulae $Bool(Test(X, \alpha))$
- **3** Prove small-model property for Bool(Test(X, α))

Designing Test Formulae

- Fix X \subseteq_{fin} VAR and let $\alpha \in \mathbb{N}^+$
- Test(X, α) finite set of predicates, e.g.
 - $(s,h) \models \#loops(2) \ge \beta$ iff h has at least β loops of size 2
 - $(s,h) \models \mathtt{size} \geq \gamma \text{ iff } \mathrm{dom}(h) \text{ has at least } \gamma \text{ locations}$ not inside loops of size 2

where
$$\beta \in [1, \mathcal{L}(\alpha)]$$
 and $\gamma \in [1, \mathcal{G}(\alpha)]$

 $lue{\mathcal{L}}$ and $\mathcal G$ are functions in $[\mathbb N o \mathbb N]$

Indistinguishability relation $(s, h) \approx_{\alpha}^{X} (s', h')$

for every
$$T \in \text{Test}(X, \alpha)$$
, $(s, h) \models T$ iff $(s', h') \models T$

Note: φ of SL will be translated into a formula of $Bool(Test(X, \alpha))$ with $X = fv(\varphi)$ and α roughly the number of * and -* in a φ .

* elimination Lemma

We want to design $Test(X, \alpha)$ so that the following result holds

Hypothesis:

- $(s,h) \approx^{\mathtt{X}}_{\alpha} (s',h')$
- $\alpha_1, \alpha_2 \in \mathbb{N}^+$ s.t. $\alpha_1 + \alpha_2 = \alpha$
- $h_1 + h_2 = h$

Thesis: there are h'_1, h'_2 s.t.

- $h_1' + h_2' = h'$
- $(s, h_1) \approx^{\mathtt{X}}_{\alpha_1} (s', h'_1)$
- $(s, h_2) \approx^{\texttt{X}}_{\alpha_2} (s', h_2')$

Note: it can be restated as an EF-style game. Spoiler split α and h, Duplicator has to mimic the split on h' so that \approx still holds.

* elimination Lemma

We want to design $Test(X, \alpha)$ so that the following result holds

Hypothesis:

Note: it can be restated as an EF-style game. Spoiler split α and h, Duplicator has to mimic the split on h' so that \approx still holds.

Finding \mathcal{G} for size $\geq \gamma$ formulae

Given $h = h_1 + h_2$, every location not in a loop of size 2 of h cannot be in a loop of size 2 of h_1 or h_2 . Then \mathcal{G} must satisfy

$$\mathcal{G}(\alpha) \geq \max_{\substack{\alpha_1,\alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2))$$

Finding \mathcal{L} for $\#loops(2) \geq \beta$ formulae

Take $h = h_1 + h_2$. Given a loop of size 2 of h, two cases:

- **both locations of the loop are in the same heap** $(h_1 \text{ or } h_2)$;
- one location of the loop is in h_1 and the other is in h_2 .

$$\mathcal{L}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} (\mathcal{L}(\alpha_1) + \mathcal{L}(\alpha_2) + \mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2))$$

Finding ${\mathcal L}$ and ${\mathcal G}$

We have the inequalities

$$\begin{split} \mathcal{G}(1) \geq 1 & \qquad \mathcal{G}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} & \left(\mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2) \right) \\ \mathcal{L}(1) \geq 1 & \qquad \mathcal{L}(\alpha) \geq \max_{\substack{\alpha_1, \alpha_2 \in \mathbb{N}^+ \\ \alpha_1 + \alpha_2 = \alpha}} & \left(\mathcal{L}(\alpha_1) + \mathcal{L}(\alpha_2) + \mathcal{G}(\alpha_1) + \mathcal{G}(\alpha_2) \right) \end{split}$$

Which admit $\mathcal{G}(\alpha) = \alpha$ and $\mathcal{L}(\alpha) = \frac{1}{2}\alpha(\alpha + 3) - 1$ as a solution.

An indistinguishability relation built on the set

$$\left\{ egin{aligned} \# exttt{loops}(2) &\geq eta, \ exttt{size} &\geq \gamma \end{aligned} \middle| egin{aligned} eta &\in \left[1, rac{1}{2}lpha(exttt{n}+3) - 1
ight] \ \gamma &\in [1, lpha] \end{aligned}
ight\}$$

satisfy the * elimination Lemma.

$1\mathrm{SL}^{\mathtt{R2}}_{\mathtt{R1}}(*,-*,\mathtt{reach}^+)$, not so easy

- Find the right set of test formulae that capture the logic
- Asymmetric $\mathcal{A} \twoheadrightarrow \mathcal{C}$.
 - two indistinguishability relation, two sets of test formulae
 - → elimination Lemma that works on these relations
- ∃ elimination Lemma

If you like bounds: test formulae for ${\mathcal A}$

$$\begin{cases} v_1 = v_2, \ \operatorname{sees}_{\mathtt{X}}(v_1, v_2) \geq \beta^{\cdots$} \\ \# \operatorname{loop}_{\mathtt{X}}(\beta) \geq \beta^{\cdots$}, \ \# \operatorname{loop}_{\mathtt{X}}^{\cdots$} \geq \beta^{\cdots$} \\ \# \operatorname{pred}_{\mathtt{X}}^{\cdots$}(\mathtt{x}) \geq \beta, \ \operatorname{size}_{\mathtt{X}}^{\cdots$} \geq \beta \\ \mathtt{u} \in \operatorname{sees}_{\mathtt{X}}(v_1, v_2) \geq (\overleftarrow{\beta}, \overrightarrow{\beta}) \\ \mathtt{u} = v_1, \ \mathtt{u} \in \operatorname{loop}_{\mathtt{X}}(\beta), \ \mathtt{u} \in \operatorname{loop}_{\mathtt{X}}^{\cdots$} \\ \mathtt{u} \in \operatorname{pred}_{\mathtt{X}}^{\cdots$}(\mathtt{x}), \ \mathtt{u} \in \operatorname{size}_{\mathtt{X}}^{\cdots$} \end{cases} \\ \begin{vmatrix} \beta^{\cdots$} \in \left[1, \frac{1}{6}(\alpha+1)(\alpha+2)(\alpha+3)\right] \\ \overleftarrow{\beta} \in \left[1, \frac{1}{2}\alpha(\alpha+3) - 1\right], \ \beta \in \left[1, \alpha\right] \\ \overleftarrow{\beta} \in \left[1, \frac{1}{6}\alpha(\alpha+1)(\alpha+2) + 1\right] \\ \overrightarrow{\beta} \in \left[1, \frac{1}{6}\alpha(\alpha+1)(\alpha+2) + 1\right] \\ \times \left[1, \frac{1}{6}\alpha(\alpha+1)(\alpha+2) + 1\right]$$

Test formulae, after $*, -*, \exists$ elimination

Suppose we have two family of test formulae such that

- captures the atomic predicates of $1SL_{R1}^{R2}(*, -*, reach^+)$
- satisfies the *, →* and ∃ elimination Lemmata

Then, let $\alpha \geq |\varphi|$ and $\mathtt{X} \supseteq \mathsf{fv}(\varphi)$

- If $(s,h) \approx_{\alpha}^{X} (s,h')$ then we have $(s,h) \models \varphi$ iff $(s,h') \models \varphi$.
- $ullet \varphi$ is equivalent to a boolean combination of test formulae.

Small-model property

- I Small-model property for boolean combination of test formulae carries over to $1SL_{R1}^{R2}(*, -*, reach^+)$.
- 2 All bounds are polynomial \implies test formulae in PSPACE
- $1SL_{R1}^{R2}(*, -*, reach^+)$ is PSPACE-complete

Recap

- 1SL^{R2}_{R1}(*, -*, reach⁺) strictly generalise other PSPACE-complete extensions of propositional separation logic
- Can be used to check for robustness properties

Recap

■ ALT seems to be an interesting tool for reductions, as it is a fragment or it is easily captured by many logics in TOWER e.g. QCTL(U), $MSL(\diamondsuit, \langle U \rangle, *)$, 2SL(*)