

Data Exploration with dplyr

Hands-on Output 1: How many columns do the dataset have?

37 columns

Code:

> ncol(df)

[1] 37

Hands-on Output 2: How many non-numerical variables do the dataset have?

3 variables (County ID, State, and County)

Hands-on Output 3: What is the difference between observations and variables?

Normally, variables are those encoded in columns and the observations are those inputted in rows. Variables are considered to contain values that measure attributes that are similar (e.g. Age, County, Total Population). On the other hand, observations are those that contain values that are measured on the same unit such as an Individual (person), a city, etc. across all the tributes (aka the variables) (Weber, 2021).

Hands-on Output 4: Which State and County has the lowest population?

Texas and Loving County with a Total Population of 74

Code:

> df_state_county_pop<-df%>%select(State, County, TotalPop)

> df_state_county_pop%>%arrange(TotalPop)

Hands-on Output 5: What is the ratio of those that drive to work and walk? Create a new column called **Drive/Walk** and arrange the output in descending order based on the new column. Show the code.

_	lf_drive	wal k	-		-	-
	Drive			Drive	walk	
1	66.3	0.0	Nucto_	DI LVC	Inf	
2	89.0	0.0			Inf	
3		0.0			Inf	
4	75.1	0.0			Inf	
5	89.1	0.0			Inf	
6	83.7	0.0			Inf	
7	82.3	0.0			Inf	
8	79.8	0.0			Inf	
9	80.0	0.0			Inf	
10	78.6	0.0			Inf	
11	84.1	0.0			Inf	
12	78.2	0.0			Inf	
13	96.1	0.0			Inf	
14	94.2				Inf	
15	84.9	0.1			.00000	
16	84.4	0.1			.00000	
17	84.3				.00000	
18	81.4	0.1			.00000	
19	80.7	0.1		807.	.00000	

Code:

- > df_drive_walk <- df %>% select(Drive, Walk)
- > df_drive_walk <- df %>% select(Drive, Walk) %>% mutate(Ratio_Drive_Walk = Drive/Walk)
- > df_drive_walk <- df %>% select(Drive, Walk) %>% mutate(Ratio_Drive_Walk = Drive/Walk) %>% arrange(desc(Ratio_Drive_Walk))

Exercises:					
Answer the following questions and show the code.					
1. Which state has the highest income per capita?					
New York has the highest Income per capita					
Code:					
> df_state_incomepercap <- df %>% select(State, IncomePerCap)					
> df_state_incomepercap <- df %>% select(State, IncomePerCap) %>% arrange(desc(IncomePerCap))					
2. In the State of Ohio, which county has the highest percentage of Asians?					
Delaware County of Ohio has the Highest Percentage of Asian with 5.5%					
Code:					
> df_state_asian <- df %>% select(State, County, Asian)					
> df_state_asian <- df %>% select(State, County, Asian) %>% filter(State == "Ohio")					
> df_state_asian <- df %>% select(State, County, Asian) %>% filter(State == "Ohio") %>% arrange(desc(Asian))					
3. In States that have Drive greater than 60%, which State and County has the lowest income recorded?					
Puerto Rico and Adjuntas Municipio has the LOWEST Income recorded with a total of 11680					
Variables:					
Drive >60%, State, County, Income (lowest)					
Code:					

- > df_state_county_drive_income <- df %>% select(State, County, Drive, Income)
- > df_state_county_drive_income <- df %>% select(State, County, Drive, Income) %>% filter(Drive>60)
- > df_state_county_drive_income <- df %>% select(State, County, Drive, Income) %>% filter(Drive>60) %>% arrange(Income)
- 4. Create a new column that calculates the ratio of White from Black population. Store the results in a variable and the other columns are limited to State, County, TotalPop, White, Black.

	State		County	TotalPop	White	Black	Ratio_White_Black
1	Alabama	Autauga	County	55036	75.4	18.9	3.9894180
2	Alabama	Baldwin	County	203360	83.1	9.5	8.7473684
3	Alabama	Barbour	County	26201	45.7	47.8	0.9560669
4	Alabama	Bibb	County	22580	74.6	22.0	3.3909091
5	Alabama	Blount	County	57667	87.4	1.5	58.2666667
6	Alabama	Bullock	County	10478	21.6	75.6	0.2857143
7	Alabama	Butler	County	20126	52.2	44.7	1.1677852
8	Alabama	Calhoun	County	115527	72.7	20.4	3.5637255
9	Alabama	Chambers	County	33895	56.2	39.3	1.4300254
10	Alabama	Cherokee	County	25855	91.8	5.0	18.3600000
11	Alabama	Chilton	County	43805	80.4	9.5	8.4631579
12	Alabama	Choctaw	County	13188	56.3	42.1	1.3372922
13	Alabama	Clarke	County	24625	53.0	45.7	1.1597374
14	Alabama	Clay	County	13407	80.2	14.7	5.4557823
15	Alabama	Cleburne	County	14939	92.7	2.8	33.1071429
16	Alabama	Coffee	County	51073	71.0	17.1	4.1520468
17	Alabama	Colbert	County	54435	78.8	15.9	4.9559748
18	Alabama	Conecuh	County	12649	50.3	46.3	1.0863931
19	Alabama	Coosa	County	10955	65.3	33.2	1.9668675

Variables:

White, Black, State, County, Totalpop

Code:

- > df_white_black <- df %>% select(State, County, TotalPop, White, Black)
- > df_white_black <- df %>% select(State, County, TotalPop, White, Black) %>% mutate(Ratio_White_Black = White/Black)

REFERENCES

Weber. (2	2021, April 25). What are variable	s and observ	⁄ations in a dat	a set? – Machine lear	ning	
fut	ture.	BRAINBI	1	The	Analytics	Bot.	
htt	https://www.brainbi.dev/2021/04/25/what-are-variables-and-observations-in-a-d						
ata	ata-set-machine-learning-future/						