0Отчет по заданию 2 «Численное интегрирование многомерных функций методом Монте-Карло»

Васильев Семён Михайлович, группа 620, вариант 10.

Постановка задачи:

- Дана функция: $f(x, y, z) = \frac{1}{(1+x+y+z)^3}$ и область G, ограниченная поверхностями: x + y + z = 1, x = 0, y = 0, z = 0.
- Необходимо вычислить определенный интеграл: $I = \iiint_G f(x, y, z) dx dy dz$.

Численный метод:

- Область G ограничена параллелепипедом Π : $\begin{cases} 0 \leq y \leq 1 \\ 0 \leq y \leq 1 \\ 0 \leq z \leq 1 \end{cases}$ Рассмотрим функцию $F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$
- Преобразуем исходный интеграл: $I = \iiint_G f(x,y,z) dx dy dz = \iiint_\Pi F(x,y,z) dx dy dz$
- Пусть $p_1(x_1, y_1, z_1)$, $p_2(x_2, y_2, z_2)$, ... случайные точки, равномерно распределенные в П. Возьмем п таких случайных точек. В качестве приближенного значения интеграла предлагается использовать выражение: $I \approx |\Pi| * \frac{1}{n} \sum_{i=1}^{n} F(p_i), |\Pi|$ – объем параллелепипеда.

Нахождение точного значения интеграла:

$$\int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} \frac{dz}{(1+x+y+z)^{3}}$$

$$= \frac{1}{2} \int_{0}^{1} dx \int_{0}^{1-x} \left(\frac{1}{(1+x+y)^{2}} - \frac{1}{4}\right) dy = \frac{1}{2} \int_{0}^{1} \left(\frac{x-1}{4} + \frac{1}{1+x} - \frac{1}{2}\right) dx$$

$$= \frac{\ln(2)}{2} - \frac{5}{16}$$

Программная реализация:

- В результате проделанной работы была реализована параллельная МРІ программа, принимающая в качестве аргумента командной строки требуемую точность є и выводящая четыре числа:
 - 1. Посчитанное приближенное значение интеграла.

- 2. Ошибка посчитанного значения: модуль разности между приближённым и точным значениями интеграла.
- 3. Количество сгенерированных случайных точек.
- 4. Время работы программы в секундах.

• Процесс-мастер:

- 1. Генерирует 1000 * <число процессов-рабочих> точек.
- 2. Рассылает по 1000 точек каждому процессу-рабочему с помощью функции MPI_Scatterv.
- 3. Генерирует 1000 * <число процессов-рабочих> точек.
- 4. Ожидает частей текущей оценки искомого интеграла от процессов-рабочих с помощью функции MPI_Allreduce.
- 5. Если требуемая точность достигнута: выводит требуемые величины и завешает работу. Иначе: шаг 2.

• Процесс-рабочий:

- 1. Принимает 1000 точек.
- 2. Вычисляет сумму значений целевой функции в принятых точках.
- 3. Ожидает частей текущей оценки искомого интеграла от процессов-рабочих с помощью функции MPI_Allreduce.
- 4. Если требуемая точность достигнута: Завешает работу. Иначе: шаг 1.

Исследование масштабируемости программы на системах Blue Gene/P и Polus:

Таблица 1. Таблица с результатами расчётов для системы Polus

Точность	Число	Время работы	Ускорение	Ошибка
	процессов	(c)		
3.0 * 0.00001	2	0.0027591	1	0.0000107791
	4	0.0028212	0.9779	0.0000107791
	16	0.0042495	0.6492	0.0000107791
	32	0.0057225	0.4821	0.0000107791
5.0 * 0.000001	2	0.0030410	1	0.0000002947
	4	0.0030923	0.9834	0.0000002947
	16	0.0051338	0.5923	0.0000002947
	32	0.0064463	0.4717	0.0000002947
1.5 * 0.000001	2	0.17179	1	0.0000005323
	4	0.169042	1.0162	0.0000005323
	16	0.207301	0.8286	0.0000005323
	32	0.194223	0.8844	0.0000005323

Рисунок 1. Ускорение/число процессов

Ускорение не наблюдается. Думаю, это связано с тем, процессы-«рабочие» недостаточно вычислительно нагружены. Основное время уходит на пересылки и генерацию точек. Возможно, подход мастер-рабочие не является эффективным для данной задачи. Пробовал ради эксперимента искусственно нагружать процессы рабочие, в этом случае ускорение появляется.