

Mathematics 1A ITMTA1-B44

Limits and Derivatives

With

Amakan Elisha Agoni Amakan.agoni@EDUVOS.com

Lecture 4 Week 2

2 Limits and Derivatives

Copyright © Cengage Learning. All rights reserved.

2.2 The Limit of a Function

Finding Limits Numerically and Graphically

Let's investigate the behavior of the function f defined by $f(x) = \frac{(x-1)}{(x^2-1)}$ for values of x near 1.

The following table gives values of f(x) for values of x close to 1 but not equal to 1.

<i>x</i> < 1	f(x)	<i>x</i> > 1	f(x)
0.5	0.666667	1.5	0.400000
0.9	0.526316	1.1	0.476190
0.99	0.502513	1.01	0.497512
0.999	0.500250	1.001	0.499750
0.9999	0.500025	1.0001	0.499975

From the table and the graph of f shown in Figure 1 we see that the closer x is to 1 (on either side of 1), the closer f(x) is to 0.5.

Figure 1

In fact, it appears that we can make the values of f(x) as close as we like to 0.5 by taking x sufficiently close to 1.

We express this by saying "the limit of the function $f(x) = \frac{(x-1)}{(x^2-1)}$ as x approaches 1 is equal to 0.5."

The notation for this is

$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1} = 0.5$$

1 Intuitive Definition of a Limit

Suppose f(x) is defined when x is near the number a. (This means chat f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$\lim_{x \to a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by restricting x to be sufficiently close to a (on either side of a) but not equal to a.

This says that the values of f(x) approach L as x approaches a. In other words, the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but $x \ne a$.

An alternative notation for

$$\lim_{x \to a} f(x) = L$$

is

$$f(x) \to L \text{ as } x \to a$$

which is usually read "f(x) approaches L as x approaches a."

Notice the phrase "but x not equal to a" in the definition of limit. This means that in finding the limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be defined when x = a. The only thing that matters is how f is defined f(x) near f(x).

Figure 2 shows the graphs of three functions. Note that in part (b), f(a) is not defined and in part (c), $f(a) \neq L$.

But in each case, regardless of what happens at a, it is true that $\lim_{x\to a} f(x) = L$.

 $\lim_{x \to a} f(x) = L \quad \text{in all three cases}$

Figure 2

The Heaviside function *H* is defined by

$$H(t) = \begin{cases} 0 & \text{if} \quad t < 0 \\ 1 & \text{if} \quad t \ge 0 \end{cases}$$

As t approaches 0 from the left, H(t) approaches 0. As t approaches 0 from the right, H(t) approaches 1.

We indicate this situation symbolically by writing

$$\lim_{t \to 0^-} H(t) = 0$$
 and $\lim_{t \to 0^+} H(t) = 1$

and we call these one-sided limits.

2 Intuitive Definition of One-Sided Limits We write

$$\lim_{x \to a^{-}} f(x) = L$$

and say the **left-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the left] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x less than a.

Also,
$$\lim_{x \to a^+} f(x) = L$$

and say that the **right-hand limit** of f(x) as x approaches a [or the limit of f(x) as x approaches a from the right] is equal to L if we can make the values of f(x) arbitrarily close to L by restricting x to be sufficiently close to a with x greater than a.

For instance, the notation $x \to 5^-$ means that we consider only x < 5, and $x \to 5^+$ means that we consider only x > 5. Definition 2 is illustrated in Figure 6.

(a)
$$\lim_{x \to a^{-}} f(x) = L$$

$$(b)\lim_{x\to a^+} f(x) = L$$

Figure 6

Example 4

The graph of a function g is shown in Figure 7. Use the graph to state the values (if they exist) of the following:

(a)
$$\lim_{x\to 2^{-}} g(x)$$
 (b) $\lim_{x\to 2^{+}} g(x)$ (c) $\lim_{x\to 2} g(x)$ (d) $\lim_{x\to 5^{-}} g(x)$ (e) $\lim_{x\to 5^{+}} g(x)$ (f) $\lim_{x\to 5} g(x)$

(b)
$$\lim_{x \to 2^{+}} g(x)$$

(c)
$$\lim_{x\to 2} g(x)$$

(d)
$$\lim_{x \to 5^{-}} g(x)$$

(e)
$$\lim_{x \to 5^+} g(x)$$

(f)
$$\lim_{x\to 5} g(x)$$

Figure 7

Example 4

Looking at the graph we see that the values of g(x) approach 3 as x approaches 2 from the left, but they approach 1 as x approaches 2 from the right.

Therefore

Figure 7

(a)
$$\lim_{x \to 2^{-}} g(x) = 3$$

(b)
$$\lim_{x \to 2^+} g(x) = 1$$

(c) Since the left and right limits are different, $\lim_{x\to 2} g(x)$ we conclude that the limit does not exist.

(d)
$$\lim_{x \to 5^{-}} g(x) = 2$$

$$\lim_{x\to 5^+} g(x) = 2$$

(f) This time the left and right limits are the same and so, by (3), we have

$$\lim_{x\to 5}g\left(x\right) =2$$

Despite this fact, notice that $g(5) \neq 2$.

How Can a Limit Fail to Exist?

How Can a Limit Fail to Exist? (1 of 1)

We have seen that a limit fails to exist at a number *a* if the left- and right-hand limits are not equal (as in Example 4). The next example illustrate additional ways that a limit can fail to exist.

Example 5

Investigate $\lim_{x\to 0} \sin \frac{\pi}{x}$.

Solution:

Notice that the function $f(x) = \sin(\pi/x)$ is undefined at 0. Evaluating the function for some small values of x, we get

$$f(1) = \sin \pi = 0$$
 $f\left(\frac{1}{2}\right) = \sin 2\pi = 0$
 $f\left(\frac{1}{3}\right) = \sin 3\pi = 0$ $f\left(\frac{1}{4}\right) = \sin 4\pi = 0$
 $f(0.1) = \sin 10\pi = 0$ $f(0.01) = \sin 100\pi = 0$

Similarly, f(0.001) = f(0.0001) = 0.

Example 5 – Solution

On the basis of this information we might be tempted to guess that the limit is 0, but this time our guess is wrong.

The dashed lines near the *y*-axis indicate that the values of $sin(\pi/x)$ oscillate between 1 and -1 infinitely often as *x* approaches 0. Since the values of f(x) do not approach a fixed number as *x* approaches 0,

$$\lim_{x\to 0} \sin\frac{\pi}{x}$$
 does not exist

Next Class...

Infinite Limits; Vertical Asymptotes