NEC LCD Technologies, Ltd.

TFT MONOCHROME LCD MODULE

NL256204AM15-01 NL256204AM15-01A

51cm (20.1 Type) QSXGA LVDS Interface (4 ports)

DATA SHEET

DOD-PP-0209 (8th edition)

This DATA SHEET is updated document from DOD-PP-0113(7).

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NEC LCD Technologies, Ltd. (hereinafter called "NEC"). No part of this document will be used, reproduced or copied without prior written consent of NEC.

NEC does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NEC.

Some electronic parts/components would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NEC, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three quality grades: "Standard", "Special", and "Specific" of the highest grade of a quality assurance program at the choice of a customer. Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard quality grade is required to contact an NEC sales representative in advance.

The **Standard** quality grade applies to the products developed, designed and manufactured in accordance with the NEC standard quality assurance program, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses are, directly or indirectly, free of any damage to death, human bodily injury or other property, like general electronic devices.

Examples: Computers, office automation equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.

The **Special** quality grade applies to the products developed, designed and manufactured in accordance with an NEC quality assurance program stricter than the standard one, which are designed for such application as any failure or malfunction of the products (sets) or parts/components incorporated therein a customer uses might directly cause any damage to death, human bodily injury or other property, or such application under more severe condition than that defined in the Standard quality grade without such direct damage.

Examples: Control systems for transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, medical equipment not specifically designed for life support, safety equipment, etc.

The **Specific** quality grade applies to the products developed, designed and manufactured in accordance with the standards or quality assurance program designated by a customer who requires an extremely higher level of reliability and quality for such products.

Examples: Military systems, aircraft control equipment, aerospace equipment, nuclear reactor control systems, medical equipment/devices/systems for life support, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

1.2 APPLICATION 4 1.3 FEATURES 4 2. GENERAL SPECIFICATIONS 5 3. BLOCK DIAGRAM 6 4. DETAILED SPECIFICATIONS 7 4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Power supply voltage ripple 10 4.3.4 Power supply voltage ripple 10 4.4.5 Inverter 11 4.4.1 LCD panel signal processing board 11 4.4.2 Liverter 11 4.5.2 Inverter 11 4.5.3 Positions of socket 14 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 Input signal timing chart 20	INTRODUCTION	4
1.1 STRUCTURE AND PRINCIPLE 4 1.2 APPLICATION 4 1.3 TEATURES 4 2. GENERAL SPECIFICATIONS 5 3. BLOCK DIAGRAM 6 4. DETAILED SPECIFICATIONS 7 4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply Voltage ripple 10 4.3.5 Fuse 10 4.4.1 CD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LUT panel signal processing board 12 4.5.2 Inverter 11 4.6 LUMINANCE CONTROL 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.9 Imming characteristi	1 OUT INE	1
1.2 APPLICATION 4 1.3 FEATURES 4 2. GENERAL SPECIFICATIONS 5 3. BLOCK DIAGRAM 6 4. DETAILED SPECIFICATIONS 7 4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 ILCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple 10 4.3.5 Fuse 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 ILCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Luminance control methods 15 4.6.2 Luminance control methods 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.7 BISPLAY GRAY SCALE A		
1.3 FEATURES. 4.2 GENERAL SPECIFICATIONS 5 3. BLOCK DIAGRAM 6 4. DETAILED SPECIFICATIONS. 7 4.1 MECHANICAL SPECIFICATIONS. 7 4.2 ABSOLUTE MAXIMUM RATINGS. 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 ILCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter unent wave 9 4.3.4 Power supply voltage ripple. 10 4.5.5 Fuse. 10 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter. 11 4.5.2 ONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 LUMINANCE CONTROL 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 Immigratory and analysis of the product of the pro		
2. GENERAL SPECIFICATIONS 5 3. BLOCK DIAGRAM 6 4. DETAILED SPECIFICATIONS 7 4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple. 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5.2 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 1 Input signal timing characteristics 20 4.9.1 Input Signal timing characteristics 20 4.10 LVDS DATA TRANSM		
3. BLOCK DIAGRAM. 6 4. DETAILED SPECIFICATIONS. 7 4.1 MECHANICAL SPECIFICATIONS. 7 4.2 ABSOLUTE MAXIMUM RATINGS. 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.5 Fuse. 10 4.4.9 OWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter. 11 4.5.0 NNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.2 Inverter. 14 4.5.2 Inverter. 14 4.5.2 Inverter. 14 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.1 LUMINANCE CONTROIL 15 4.6.1 Luminance control methods. 15 4.6.2 Detail of BRIP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.7 Immigrater of the product of State and Interpretable of State and Interpretable of State and Interpretable	2 CENEDAL SDECIEICATIONS	4
4. DETAILED SPECIFICATIONS 7 4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 7 4.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple 10 4.4.5 Fuse 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.1 Luminance control methods 15 4.6.2 LUMINANCE CONTROL 15 4.6.3 Verter billing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20		
4.1 MECHANICAL SPECIFICATIONS 7 4.2 ABSOLUTE MAXIMUM RATINGS 3.3 ELECTRICAL CHARACTERISTICS 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 99 4.3.3 Fuseners 99 4.3.4 Power supply voltage ripple 10 4.3.5 Fuse 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5.2 LONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22		
4.3 ELECTRICAL CHARACTERISTICS. 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter. 9 4.3.3 Inverter current wave. 9 4.3.3 Power supply voltage ripple. 10 4.3.5 Fuse. 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter. 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 Input signal timing chart 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSTITONS 22 4.12 PIXEL ARRANGNMENT 23 4.15.1 Optical characteristics 29 4.15.2 Definition of luminance uniformit		
4.3 ELECTRICAL CHARACTERISTICS. 8 4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave. 9 4.3.4 Power supply voltage ripple. 10 4.3.5 Fuse. 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter. 11 4.5.2 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS. 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods. 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER. 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS. 19 4.9 1 Injung characteristics 20 4.9.2 Input signal timing chart 20 4.9.1 Injung part of the product of the part of viewing angles 21 4.11 DISPLAY POSITIONS. 22 4.12 PIXEL ARRANGMENT 23 4.13 LOPLICAL COMMUNICATION TIMINGS 29 4		
4.3.1 LCD panel signal processing board 8 4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple 10 4.3.5 Fuse 10 4.4.9 OWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5.2 ONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.1 Luminance control methods 15 4.6.2 Lotal of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Iming characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 23 4.15.1 Optical characteristics 29 4.15.2 Definition		
4.3.2 Inverter 9 4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple 10 4.3.5 Fuse 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5.2 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.9 Input Signal timing characteristics 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGMENT 23 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of invinance uniformity 31 </td <td></td> <td></td>		
4.3.3 Inverter current wave 9 4.3.4 Power supply voltage ripple 10 4.3.5 Fuse 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.1 DISPLAY POSITIONS 22 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 Optin		
4.3.4 Power supply voltage ripple. 10 4.3.5 Fuse. 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS. 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter. 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.4 Definition of response times 31 4.15.5 Defin		
4.3.5 Fuse. 10 4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6.1 Luminance control methods 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition o		
4.4 POWER SUPPLY VOLTAGE SEQUENCE 11 4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5. 1 LCD panel signal processing board 12 4.5. 2 Inverter 14 4.5. 3 Positions of socket 14 4.6. LUMINANCE CONTROL 15 4.6. 1 Luminance control methods 15 4.6. 2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 I Input SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15. OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of response times 31 4.15.3 Definition of wiewing angles 31 <t< td=""><td></td><td></td></t<>		
4.4.1 LCD panel signal processing board 11 4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 Optical characteristics 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. P		
4.4.2 Inverter 11 4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.5 Definition of response times 31 4.15.5 Definition of response times 31 4.15.5 Definition of vewing angles 31 5. RELIABILI		
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS 12 4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.2 Definition of viewing angles 31 4.15.2 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECA		
4.5.1 LCD panel signal processing board 12 4.5.2 Inverter 14 4.5.3 Positions of socket 14 4.6. LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of presponse times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.3 ATTENTIONS 33		
4.5.2 Inverter. 14 4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL. 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 Optical characteristics 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of presponse times 31 4.15.5 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.3 ATTENTIONS 33 6.3.2 Environment 34		
4.5.3 Positions of socket 14 4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product <t< td=""><td></td><td></td></t<>		
4.6 LUMINANCE CONTROL 15 4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35		
4.6.1 Luminance control methods 15 4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3.3 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35 <td></td> <td></td>		
4.6.2 Detail of BRTP timing 16 4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.3 ATTENTIONS 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER 17 4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.3 ATTENTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS 19 4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.9 INPUT SIGNAL TIMINGS 20 4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.9.1 Timing characteristics 20 4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.9.2 Input signal timing chart 20 4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.10 LVDS DATA TRANSMISSION MODE 21 4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.11 DISPLAY POSITIONS 22 4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.12 PIXEL ARRANGNMENT 23 4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT 24 4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.14 LUT SERIAL COMMUNICATION TIMINGS 27 4.15 OPTICS 29 4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15 OPTICS. 29 4.15.1 Optical characteristics. 29 4.15.2 Definition of contrast ratio. 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS. 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15.1 Optical characteristics 29 4.15.2 Definition of contrast ratio 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15.2 Definition of contrast ratio. 31 4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15.3 Definition of luminance uniformity 31 4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15.4 Definition of response times 31 4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
4.15.5 Definition of viewing angles 31 5. RELIABILITY TESTS 32 6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35	•	
5. RELIABILITY TESTS. 32 6. PRECAUTIONS. 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS. 33 6.3 ATTENTIONS. 33 6.3.1 Handling of the product 33 6.3.2 Environment. 34 6.3.3 Characteristics. 35 6.3.4 Other. 35		
6. PRECAUTIONS 33 6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
6.1 MEANING OF CAUTION SIGNS 33 6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
6.2 CAUTIONS 33 6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
6.3 ATTENTIONS 33 6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
6.3.1 Handling of the product 33 6.3.2 Environment 34 6.3.3 Characteristics 35 6.3.4 Other 35		
6.3.2 Environment		
6.3.3 Characteristics	· ·	
6.3.4 Other35		
7. UUTLINE DRAWINGS	7. OUTLINE DRAWINGS	

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Monochrome LCD module NL256204AM15-01 and NL256204AM15-01A are composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a monochrome-filter glass substrate.

Grayscale data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Monochrome images are created by regulating the amount of transmitted light through the TFT array.

1.2 APPLICATION

• Monochrome monitor system

1.3 FEATURES

- Ultra-wide viewing angle (Adoption of Super-Advanced Super Fine TFT (SA-SFT))
- High luminance
- High contrast
- Low reflection
- High resolution
- 256 gray scales per 1 sub-pixel
- LVDS interface
- Adjustable gamma characteristics by using built-in 10-bit LUT (look up table)
- Selectable LVDS data input map
- Selectable LVDS data transmission mode
- Small foot print
- Incorporated direct type backlight
- Replaceable backlight unit and inverter
- Compliance with the European RoHS directive (2002/95/EC) (From product which was produced after April. 1, 2006)
- Differences between NL256204AM15-01 and NL256204AM15-01A

Item	NL256204AM15-01	NL256204AM15-01A
White chromaticity	Wx, Wy = (0.255, 0.310) (typ.)	Wx, $Wy = (0.280, 0.304)$ (typ.)
Backlight unit (Replaceable part)	201LHS07	201LHS08

2. GENERAL SPECIFICATIONS

Display area	399.36 (H) × 319.488 (V) mm				
Diagonal size of display	51 cm (20.1 inches)				
Drive system	a-Si TFT active matrix				
Display gray scale	256 gray scales per 1 sub-pixel (8-bit) (766 gray scales per 1 pixel)			
Pixel	2,560 (H) × 2,048 (V) pixels (1 p	pixel consists of 3 sub pixels (LCR))			
Pixel arrangement	LCR Vertical stripe				
Sub-pixel pitch	$0.052 \text{ (H)} \times 0.156 \text{ (V)} \text{ mm}$				
Pixel pitch	$0.156 \text{ (H)} \times 0.156 \text{ (V)} \text{ mm}$				
Module size	423.4 (W) × 343.5 (H) × 43.5 (D)) mm (typ.)			
Weight	2,440 g (typ.)				
Contrast ratio	600:1 (typ.)				
Viewing angle	At the contrast ratio ≥10:1 • Horizontal: Right side 85° • Vertical: Up side 85° (type)	(typ.), Left side 85° (typ.) /p.), Down side 85° (typ.)			
Designed viewing direction	Viewing angle with optimum gra	ayscale (γ=DICOM): normal axis (perpendicular) Note1			
Polarizer surface	Antiglare				
Polarizer pencil-hardness	2H (min.) [by JIS K5400]				
Response time	$Ton + Toff (10\% \longleftrightarrow 90\%)$ 30 ms (typ.)				
Luminance	At the maximum luminance cont. 850 cd/m ² (typ.)	rol			
White chromaticity	NL256204AM15-01	Wx, Wy = (0.255, 0.310) (typ.)			
white chromaticay	NL256204AM15-01A	Wx, Wy = (0.280, 0.304) (typ.)			
Signal system	4 ports LVDS interface [LCR 8-bit signals, Data enable	signal (DE), Dot clock (CLK)]			
Power supply voltage	LCD panel signal processing box Inverter: 12.0V	ard: 12.0V			
	Direct light type: 12 cold cathod	e fluorescent lamps with an inverter			
Backlight	NL256204AM15-01	Replaceable parts • Backlight unit: Type No.: 201LHS07 • Inverter: Type No.: 201PW121			
	NL256204AM15-01A	Replaceable parts • Backlight unit: Type No.: 201LHS08 • Inverter: Type No.: 201PW121			
Power consumption	At checkered flag pattern, the mo 49.2 W (typ.)	aximum luminance control			

Note1: When the product luminance is 850cd/m², the gamma characteristic is designed to γ =DICOM.

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), FG (Frame ground) and GNDB (Inverter ground) in the LCD module are as follows.

GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2: GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds are connected together in customer equipment.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$423.4 \pm 1.0 \text{ (W)} \times 343.5 \pm 1.0 \text{ (H)} \times 43.5 \pm 1.0 \text{ (D)}$	Note1	mm
Display area	399.36 (H) × 319.488 (V)	Note1	mm
Weight	2,440 (typ.), 2,600 (max.)		g

Note1: See "7. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

	Parar		Symbol	Rating	Unit	Remarks		
pro			Power supply voltage LCD panel signal processing board		-0.3 to +15.0	V	Ta = 25°C	
1 Owel st	ippiy voitage		Inverter	VDDB	-0.3 to +15.0	V	1a – 25 C	
			Display signals Note1	VD	-0.3 to +3.6			
	LCD panel s processing b		Function signal 1 Note2	VF1	-0.3 to +3.9	V	$Ta = 25^{\circ}C$ $VDD=12.0V$	
Input voltage			Function signal 2 Note3	VF2	-0.3 10 +3.9			
for signals			BRTI signal	VBI	-0.3 to +1.5	V		
	Inverter		BRTP signal	VBP	-0.3 to +5.5	V	Ta = 25°C	
	mverter	inverter		BRTC signal	VBC	-0.3 to +5.5	V	VDDB = 12.0V
			PWSEL signal	VPSL	-0.3 to +5.5	V		
	Storage te	mperat	ure	Tst	-20 to +60	°C	-	
Operating te	mnoratura		Front surface	TopF	0 to +55	°C	Note4	
Operating te	mperature		Rear surface	TopR	0 to +55	°C	Note5	
					≤ 95	%	Ta ≤ 40°C	
Relative humidity Note6			RH	≤ 85	%	40 < Ta ≤ 50°C		
					≤ 70	%	50 < Ta ≤ 55°C	
	Absolute No	ity	АН	≤ 73 Note7	g/m ³	Ta > 55°C		

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-, DC0+/-,

DC1+/-, DC2+/-, DC3+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, CKD+/-

Note2: MOD0, MOD1, BSEL0, BSEL1

Note3: CSR, CSL, SCLK, SDAT

Note4: Measured at center of LCD panel surface (including self-heat)

Note5: Measured at center of LCD module's rear shield surface (including self-heat)

Note6: No condensation

Note7: Water amount at $Ta = 55^{\circ}C$ and RH = 70%

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

 $(Ta = 25^{\circ}C)$

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage			VDD	10.8	12.0	13.2	V	-
Power supply current			IDD	-	900 Note1	1,800 Note2	mA	at VDD = 12.0V, Mode 0 is selected.
Differential input thresh	old	High	VTH	-	-	+100	mV	at VCM= 1.2V
voltage for Display sign	als	Low	VTL	-100	-	-	mV	Note3, Note4
Input voltage swing			VI	0	-	2.4	V	Note4
Terminating resistance			RT	-	100	-	Ω	-
Input voltage for	Н	ligh	VFH1	Keep this pin open.			-	
Function signal 1	L	ow	VFL1	0	-	0.8	V	Note5
Input current for Function signal 1	Low		IFL1	-10	-	10	μΑ	
High		V+	-	-	2.3	V		
Input voltage for Function signal 2	L	ow	V-	0.5	-	-	V	Note6
	Hys	teresis	VH	0.4	-	-	V	

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver

Note4: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, CKD+/-.

Note5: MOD0, MOD1, BSEL0, BSEL1

Note6: CSR, CSL, SCLK, SDAT

4.3.2 Inverter

 $(Ta = 25^{\circ}C)$

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage			VDDB	11.4	12.0	12.6	V	-
Power supply current			IDDB	-	3,200	4,000	mA	VDDB = 12.0V, At the maximum luminance control
	BRTI signal		VBI	0	-	1.0	V	
	BRTP signal	High	VBPH	2.0	-	5.25	V	
I	BK1P signal	Low	VBPL	0	-	0.8	V	
Input voltage for signals	BRTC signal	High	VBCH	2.0	-	5.25	V	
TOT SIGNAIS		Low	VBCL	0	-	0.8	V	
	PWSEL signal	High	VPSLH	2.0	-	5.25	V	
	I WSEL signal	Low	VPSLL	0	-	0.8	V	
	BRTI signal		IBI	-130	-	-	μΑ	-
	BRTP signal	High	IBPH	-	-	3.5	mA	
T	DKIF signal	Low	IBPL	-1.6	-	-	mA	
Input current for signals	BRTC signal	High	IBCH	-	-	440	μΑ	
101 Signais	DKIC Signal	Low	IBCL	-610	-	-	μA	
	PWSEL signal	High	IPSLH	-	-	440	μΑ	
	I WOEL SIGNAL	Low	IPSLL	-610	-	-	μΑ	

4.3.3 Inverter current wave

Maximum luminance control: 100% Minimum luminance control: 20%

Luminance control frequency: 285Hz (typ.)

Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "**4.6.2 Detail of BRTP timing**".

Note2: The power supply lines (VDDB and GNDB) have large ripple voltage (See "4.3.4 Power supply voltage ripple".) during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on. Put a capacitor $(5,000 \text{ to } 6,000 \mu\text{F})$ between the power supply lines (VDDB and GNDB) to reduce the noise, if the noise occurred in the circuit.

4.3.4 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power supp	oly voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	12.0 V	≤ 100	mVp-p
VDDB	12.0 V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

Example of the power supply connection

a) Separate the power supply

4.3.5 Fuse

Parameter	Fuse		Rating	Fusing current	Remarks
T di diffictei	Туре	Supplier	Kaung	rusing current	Kemarks
VDD	EUC20 502 A D	KAMAYA ELECTRIC	5A	12.5A,	
VDD	FHC20 502AD	Co., Ltd.	24V	5s max.	Note1
VDDB	0453007	Littelfuse Inc.	7A	14A,	Note1
V DDB	0433007	Litterfuse file.	125V	5s max.	

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board

- *1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-, DC0+/-, DC1+/-, DC2+/-, DC3+/-, CKC+/-, DD0+/-, DD1+/-, DD2+/-, DD3+/-, CKD+/-
- *2: LVDS signals should be measured at the terminal of 100Ω resistance.
- Note1: In terms of voltage variation (voltage drop) while VDD rising edge is below 10.8V, a protection circuit may work, and then this product may not work.
- Note2: LVDS signals and CSR, CSL, SCLK, SDAT must be Low or High-impedance, exclude the VALID period (See above sequence diagram), in order to avoid that internal circuits is damaged.

If some of signals are cut while this product is working, even if the signal input to it once again, it might not work normally. VDD should be cut when the display and function signals are stopped.

Note3: At the beginning of the serial communication mode, take 20ms or more after the LVDS signal input.

4.4.2 Inverter

- Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.
- Note2: If tr is more than 800ms, the backlight will be turned off by a protection circuit for inverter.
- Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): FI-WE41P-HFE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: FI-W41S (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal		Rem			
1	GND	Signal ground	Note1	Rem	iu Ko		
2	CSR	Chip selection R	Note1				
		*	LUT communic	cation conti	ol signal		
3	CSL	Chip selection L	See "4.13 TEN-bit LOOK UP TABLE FOR				
4	SCLK	Serial Clock	GAMMA ADJ	USTMEN'	T".		
5	SDAT	Serial Data					
	1.0000		See "4.10 LVD				
6	MOD0		_	MOD0	MOD1	Mode	
		Selection of LVDS Data Transmission Mode	_	Open	Open	0	
7	MODI	(Pull-up 25kΩ)	_	Open	Low	1	
7	MOD1		_	Low	Open	Reserved	
			C UAS MEDICA	Low	Low	0	
8	BSEL0		See "4.7 METI			ION FOR	
8	BSELU		LVDS TRANS		BSEL1	Mada	
		Selection of LVDS data input map	_	BSEL0		Mode	
		(Pull-up 25kΩ)	_	Open	Open Low	A B	
9	BSEL1		_	Open Low		С	
			-	Low	Open Low		
10	DCMD	D	V this min O		LOW	A	
10	RSVD GND	Reserved Signal ground	Keep this pin O Note1	реп.			
12	DB3+	Signal ground	Note1				
13	DB3-	Pixel data B3	LVDS different	ial data inp	ut No	ote2	
14	GND	Signal ground	Note1				
15	CKB+	Signal ground	Note1				
16	CKB+	Pixel clock B	LVDS differential clock input Note2				
17	GND	Signal ground	Note1				
18	DB2+	Signal ground	Note1				
19	DB2-	Pixel data B2	LVDS differential data input Note2				
20	GND	Signal ground	Note1				
21	DB1+	Signar ground					
22	DB1-	Pixel data B1	LVDS different	ial data inp	ut No	ote2	
23	GND	Signal ground	Note1				
24	DB0+						
25	DB0-	Pixel data B0	LVDS different	ial data inp	out No	ote2	
26	GND	Signal ground	Note1				
27	DA3+				, , , , , , , ,	2	
28	DA3-	Pixel data A3	LVDS different	ial data inp	ut No	ote2	
29	GND	Signal ground	Note1				
30	CKA+		LVDG 1100		, 27	. 2	
31	CKA-	Pixel clock A	LVDS different	iai ciock in	put No	ote2	
32	GND	Signal ground	Note1				
33	DA2+			:-1 -1	4 P.T	-4-2	
34	DA2-	Pixel data A2	LVDS differential data input Note2				
35	GND	Signal ground	Note1				
36	DA1+			:-1 -1	4 P.T	-4-2	
37	DA1-	Pixel data A1	LVDS different	iai data inp	out No	ote2	
38	GND	Signal ground	Note1				
39	DA0+	Pixel data A0	IVDS different	ial data inn	aut NI.	ota?	
40	DA0-	1 IAGI UATA AU	LVDS differential data input Note2				
41	GND	Signal ground	Note1				
<u> </u>		O O					

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

CN2 socket (LCD module side): FI-WE31P-HFE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: FI-W31S (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal	Remarks
1	GND	Signal ground	Note1
2	DD3+	- Pixel data D3	LVDS differential data input Note2
3	DD3-		LVDS differential data input Note2
4	GND	Signal ground	Note1
5	CKD+	Pixel clock D	LVDS differential clock input Note2
6	CKD-		· ·
7	GND	Signal ground	Note1
8	DD2+	Pixel data D2	LVDS differential data input Note2
9	DD2-		·
10	GND	Signal ground	Note1
11	DD1+	Pixel data D1	LVDS differential data input Note2
12	DD1-	G: 1 1	N . 1
13	GND DD0+	Signal ground	Note1
14 15	DD0+ DD0-	Pixel data D0	LVDS differential data input Note2
16	GND	Signal ground	Note1
17	DC3+	Signal ground	Note1
18	DC3-	Pixel data C3	LVDS differential data input Note2
19	GND	Signal ground	Note1
20	CKC+		
21	CKC-	Pixel clock C	LVDS differential clock input Note2
22	GND	Signal ground	Note1
23	DC2+	Pixel data C2	LVDS differential data input Note2
24	DC2-	Tixel data C2	LVDS differential data input Note2
25	GND	Signal ground	Note1
26	DC1+	Pixel data C1	LVDS differential data input Note2
27	DC1-		Ly D3 differential data input 140te2
28	GND	Signal ground	Note1
29	DC0+	Pixel data C0	LVDS differential data input Note2
30	DC0-		1
31	GND	Signal ground	Note1

Note1: All GND terminals should be used without any non-connected lines.

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

CN3 socket (LCD module side): IL-Z-8PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: IL-Z-8S-S125C (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Function	Description				
1	VDD						
2	VDD	Power supply	Note1				
3	VDD	1 Ower suppry	Note1				
4	VDD						
5	GND						
6	GND	Signal ground	Note1				
7	GND	Signal ground	Note1				
8	GND						

Note1: All VDD and GND terminals should be used without any non-connected lines.

4.5.2 Inverter

CN201 socket (LCD module side): DF3Z-8P-2H (2*) (HIROSE ELECTRIC Co,.Ltd.)
Adaptable plug: DF3-8S-2C (HIROSE ELECTRIC Co,.Ltd.)

	· 1 · · O		
Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB	Inverter ground	Note1
3	GNDB	inverter ground	Note1
4	GNDB		
5	VDDB		
6	VDDB	Dower supply	Note1
7	VDDB	Power supply	Note1
8	VDDB		

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): IL-Z-9PL-SMTYE (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: IL-Z-9S-S125C3 (Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Function	Description
1	GNDB	Inverter ground	Note1
2	GNDB	inverter ground	Note1
3	N.C.	-	Keep this pin Open.
4	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF
5	BRTH	Luminance control terminal	
6	BRTI	Lummance control terminal	See "4.6 LUMINANCE CONTROL".
7	BRTP	BRTP signal	
8	GNDB	Inverter ground	Note1
9	PWSEL	Selection of luminance control signal method	See " 4.6 LUMINANCE CONTROL ". Note2

Note1: All GNDB terminals should be used without any non-connected lines.

Note2: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

4.5.3 Positions of socket

4.6 LUMINANCE CONTROL

4.6.1 Luminance control methods

Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal
Method Variable resistor control Note1	• Adjustment The variable resistor (R) for luminance control should be 10kΩ ±5%, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals.	PWSEL terminal	BRTP terminal
	• Luminance ratio Note3 Resistance Luminance ratio 0 Ω 30% (Min. Luminance) 10 kΩ 100% (Max. Luminance)	High or Open	Open
Voltage control Note1	Adjustment Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open. BRTI Voltage (VBI) Luminance ratio 0V 30% (Min. Luminance)		
Pulse width modulation	1.0V 100% (Max. Luminance) • Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal.	Low	BRTP signal
Note1 Note2	Duty ratio Note4 Luminance ratio 0.2 20% (Min. Luminance) 1.0 100% (Max. Luminance) asso of the variable resistor control method and the volta		Ç

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use PWM method, if interference noises appear on the display image!

Note2: The inverter will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The inverter will start to work when power is supplied again.

Note3: These data are the target values.

Note4: See "4.6.2 Detail of BRTP timing".

4.6.2 Detail of BRTP timing

- (1) Timing diagrams
 - Outline chart

• Detail of A part

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Luminance control frequency	FL	185	-	325	Hz	Note1, Note2
Duty ratio	DL	0.2	-	1.0	-	Note1, Note3
Low period	tPWL	0	-	50	ms	Note4

Note1: Definition of parameters is as follows.

$$FL = \frac{1}{tPW}$$
 $DL = \frac{tPWH}{tPW}$

Note2: See the following formula for luminance control frequency.

Luminance control frequency = $1/\text{tv} \times (\text{n+0.25})$ [or (n + 0.75)]

 $n = 1, 2, 3 \cdot \cdot \cdot \cdot$

tv: Vertical cycle (See "4.9.1 Timing characteristics".)

The interference noise of luminance control frequency and input signal frequency for LCD panel signal processing board may appear on a display. Set up luminance control frequency so that the interference noise does not appear!

Note3: See "4.6.1 Luminance control methods".

Note4: If tPWL is more than 50ms, the backlight will be turned off by a protection circuit for inverter. The inverter will start to work when power is supplied again.

4.7 METHOD OF CONNECTION FOR LVDS TRANSMITTER

LVDS data input map is selectable by BSEL0 and BSEL1 terminal.

		Bit mapping			Transmitter Pin Assignm	nent		l		
	BSEL[1:0] Note1	, Note2		Dual type	LVDS TX		i		CN1
	[H:H], [L:L]	[H:L]	[L:H]	Single type LVDS Tx	THine THC63LVD823	NS DS90C387	Output Connector		Pin No.	Signal name
	Mode A LA2	Mode B LA7	Mode C LA0	TA0	R12	R10	-	i		
	LA2 LA3	LA7 LA6	LA0 LA1	TA1	R12	R11	-	Note3		
	LA3	LA5	LA1 LA2	TA2	R14	R12	ATA-		40	DA0-
	LA4 LA5	LA3	LA2 LA3	TA3	R15	R13	ATA+	\rightarrow	39	DA0+
							- AIA+	\rightarrow	39	DA0+
	LA6 LA7	LA3 LA2	LA4 LA5	TA4 TA5	R16 R17	R14 R15	-	i		
	CA2	CA7	CA0	TA6	G12	G10	-	i		
	CA2	CA6	CA0	TB0	G13	G10	1	i		
	CA3	CA5	CA1	TB1	G14	G12	1	i		
	CA5	CA4	CA3	TB2	G15	G13	ATB-	\rightarrow	37	DA1-
	CA6	CA3	CA4	TB3	G16	G14	ATB+	\rightarrow	36	DA1+
	CA7	CA2	CA5	TB4	G17	G15	1 1111	~	50	Ditti
	RA2	RA7	RA0	TB5	B12	B10	1 !	i		
	RA3	RA6	RA1	TB6	B13	B11	1	i		
Pixel data	RA4	RA5	RA2	TC0	B14	B12		i		-
A	RA5	RA4	RA3	TC1	B15	B13	1 !	1		
	RA6	RA3	RA4	TC2	B16	B14	ATC-	\rightarrow	34	DA2-
	RA7	RA2	RA5	TC3	B17	B15	ATC+	\rightarrow	33	DA2+
	Hsync	Hsync	Hsync	TC4	HSYNC	HSYNC	1	1		
	Vsync	Vsync	Vsync	TC5	VSYNC	VSYNC	1 !	1		
	DE	DE	DE	TC6	DE	DE] !	1		
	LA0	LA1	LA6	TD0	R10	R16		i		
	LA1	LA0	LA7	TD1	R11	R17]	i		
	CA0	CA1	CA6	TD2	G10	G16	ATD-	\rightarrow	28	DA3-
	CA1	CA0	CA7	TD3	G11	G17	ATD+	\rightarrow	27	DA3+
	RA0	RA1	RA6	TD4	B10	B16		i		
	RA1	RA0	RA7	TD5	B11	B17		i		
	N.C.	N.C.	N.C.	TD6	-	-		i		
	CLK	CLK	CLK	CLK	CLK	CLK	ATCLK- ATCLK+	$\begin{array}{c} \rightarrow \\ \rightarrow \end{array}$	31 30	CKA- CKA+
	LB2	LB7	LB0	TA0	R22	R20		1		
	LB3	LB6	LB1	TA1	R23	R21	<u> </u>	i		
	LB4	LB5	LB2	TA2	R24	R22	BTA-	\rightarrow	25	DB0-
	LB5	LB4	LB3	TA3	R25	R23	BTA+	\rightarrow	24	DB0+
	LB6	LB3	LB4	TA4	R26	R24	_	i		
	LB7	LB2	LB5	TA5	R27	R25	-	i		
	CB2	CB7	CB0	TA6	G22	G20		i		
	CB3	CB6	CB1	TB0	G23	G21	-∥ !	1		
	CB4	CB5	CB2	TB1	G24	G22	- I	i		n-:
	CB5	CB4	CB3	TB2	G25	G23	BTB-	\rightarrow	22	DB1-
	CB6	CB3	CB4	TB3	G26	G24	BTB+	\rightarrow	21	DB1+
	CB7	CB2	CB5	TB4	G27	G25	-∥ !	1		
	RB2	RB7	RB0	TB5	B22	B20	∥	1		
Dimal Jee	RB3 RB4	RB6	RB1 RB2	TB6 TC0	B23 B24	B21 B22	╂────┦	1		
Pixel data B	RB4 RB5	RB5 RB4	RB3	TC1	B24 B25	B22 B23	╢ !	1		
1 "	RB6	RB3	RB4	TC2	B25 B26	B23 B24	BTC-	1	19	DB2-
	RB7	RB2	RB4 RB5	TC3	B26 B27	B24 B25	BTC+	\rightarrow	19	DB2+
	Hsync	Hsync	Hsync	TC4	HSYNC	HSYNC	- DICT	\rightarrow	10	DD2T
	Vsync	Vsync	Vsync	TC5	VSYNC	VSYNC	-	1		
	DE	DE	DE	TC6	DE	DE	1 !	1		
	LB0	LB1	LB6	TD0	R20	R26	1	1		
	LB1	LB0	LB7	TD1	R21	R27	1 !	1		
	CB0	CB1	CB6	TD2	G20	G26	BTD-	\rightarrow	13	DB3-
	CB1	CB0	CB7	TD3	G21	G27	BTD+	\rightarrow	12	DB3+
	RB0	RB1	RB6	TD4	B20	B26	1	1		
	RB1	RB0	RB7	TD5	B21	B27	1	i		
	N.C.	N.C.	N.C.	TD6	-	-	1 !	i		
	CLK	CLK	CLK	CLK	CLK	CLK	BTCLK-	\rightarrow	16	CKB-
			ULK.				BTCLK+	4		

	BSEL[1:0] Note1	, Note2		Dual type	LVDS TX				CN2
	[H:H],	[H:L]	[L:H]	Single type	THine	NS	Output			
	[L:L] Mode A	Mode B	Mode C	LVDS Tx	THC63LVD823	DS90C387	Connector		Pin No.	Signal name
`	LC2	LC7	LC0	TA0	R12	R10				
	LC3	LC6	LC1	TA1	R13	R11		Note3		
	LC4	LC5	LC2	TA2	R14	R12	CTA-	\rightarrow	30	DC0-
	LC5	LC4	LC3	TA3	R15	R13	CTA+	\rightarrow	29	DC0+
	LC6	LC3	LC4	TA4	R16	R14				
	LC7	LC2	LC5	TA5	R17	R15				
	CC2	CC7	CC0	TA6	G12	G10				
	CC3	CC6	CC1	TB0	G13	G11				
	CC4	CC5	CC2	TB1	G14	G12	-			
	CC5	CC4	CC3	TB2	G15	G13	CTB-	→	27	DC1-
	CC6 CC7	CC3	CC4	TB3	G16	G14 G15	CTB+	\rightarrow	26	DC1+
	RC2	CC2 RC7	CC5 RC0	TB4 TB5	G17 B12	B10				
	RC3	RC6	RC1	TB6	B13	B11				
Pixel data	RC4	RC5	RC2	TC0	B13	B12				
C	RC5	RC4	RC3	TC1	B15	B13	1			
	RC6	RC3	RC4	TC2	B16	B14	CTC-	\rightarrow	24	DC2-
	RC7	RC2	RC5	TC3	B17	B15	CTC+	\rightarrow	23	DC2+
	Hsync	Hsync	Hsync	TC4	HSYNC	HSYNC				
	Vsync	Vsync	Vsync	TC5	VSYNC	VSYNC				
	DE	DE	DE	TC6	DE	DE				
	LC0	LC1	LC6	TD0	R10	R16	4			
	LC1	LC0	LC7	TD1	R11	R17				
	CC0	CC1	CC6	TD2	G10	G16	CTD-	\rightarrow	18	DC3-
	CC1	CC0	CC7	TD3	G11	G17	CTD+	\rightarrow	17	DC3+
	RC0	RC1	RC6	TD4	B10	B16				
	RC1 N.C.	RC0 N.C.	RC7	TD5 TD6	B11	B17				
	N.C.	N.C.	N.C.	1100	-	-	CTCLK-	\rightarrow	21	CKC-
	CLK	CLK	CLK	CLK	CLK	CLK	CTCLK+	\rightarrow	20	CKC+
	LD2	LD7	LD0	TA0	R22	R20			20	CHO.
	LD3	LD6	LD1	TA1	R23	R21				
	LD4	LD5	LD2	TA2	R24	R22	DTA-	\rightarrow	15	DD0-
	LD5	LD4	LD3	TA3	R25	R23	DTA+	\rightarrow	14	DD0+
	LD6	LD3	LD4	TA4	R26	R24				
	LD7	LD2	LD5	TA5	R27	R25				
	CD2	CD7	CD0	TA6	G22	G20				
	CD3	CD6	CD1	TB0	G23	G21	-			
	CD4	CD5	CD2	TB1	G24	G22	DTD		12	DD1
	CD5	CD4 CD3	CD3	TB2 TB3	G25	G23	DTB-	\rightarrow	12	DD1-
	CD6 CD7	CD3	CD4 CD5	TB4	G26 G27	G24 G25	DTB+	\rightarrow	11	DD1+
	RD2	RD7	RD0	TB5	B22	B20	1			
	RD3	RD6	RD1	TB6	B23	B21	1			
Pixel data	RD4	RD5	RD2	TC0	B24	B22				
D	RD5	RD4	RD3	TC1	B25	B23				
	RD6	RD3	RD4	TC2	B26	B24	DTC-	\rightarrow	9	DD2-
	RD7	RD2	RD5	TC3	B27	B25	DTC+	\rightarrow	8	DD2+
	Hsync	Hsync	Hsync	TC4	HSYNC	HSYNC	4			
	Vsync	Vsync	Vsync	TC5	VSYNC	VSYNC	4			
	DE	DE	DE	TC6	DE	DE	 			
	LD0	LD1	LD6	TD0	R20	R26	-			
	LD1	LD0	LD7	TD1	R21	R27	Dar		2	DD2
	CD0	CD1	CD6	TD2	G20	G26	DTD-	\rightarrow	3	DD3-
	CD1 RD0	CD0 RD1	CD7 RD6	TD3 TD4	G21 B20	G27 B26	DTD+	\rightarrow	2	DD3+
	RD0 RD1	RD0	RD6 RD7	TD4	B20 B21	B26 B27	1			
	N.C.	N.C.	N.C.	TD6	- -	- B21	1			
							DTCLK-	\rightarrow	6	CKD-
	CLK	CLK	CLK	CLK	CLK	CLK	DTCLK+	\rightarrow	5	CKD+
NT 4	1 TT' 1									

Note1: High must be Open.

Note2: Do not change the setting of BSEL0 and BSEL1 during VDD ON period.

Note3: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

4.8 DISPLAY GRAY SCALE AND INPUT DATA SIGNALS

This product can display 256 gray scales in each LCR sub-pixel and 766 gray scales per 1 pixel. Also the relation between display gray scale and input data signals is as the following table.

			Data signal (0: Low level, 1: High level)																						
		LA7	LA6	LA5	LA4	LA:	3 LA	2 LA	1 LA0	CA	7 CA	6 CA:	5 CA	4 CA	3 CA2	2 CA1	CA0	RA	7 RA	6 RA	5 RA	4 RA	3 RA2	RA1	RA0
Display gr	ay scale	LB7	LB6	LB5	LB4	LB3	B LB:	2 LB	1 LB0	CB	CB7 CB6 CB5 CB4 CB3 CB2 CB1 CB0			CB0	RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0										
		LC7	LC6	LC5	LC4	LC:	3 LC	2 LC	1 LC0	CC	7 CC	6 CC:	5 CC ²	4 CC	CC2	2 CC1	CC0	RC	7 RC	6 RC	5 RC	4 RC	RC2	RC1	RC0
		LD7	LD6	LD5	LD4	LD3	3 LD	2 LD	1 LD0	CD	7 CD	6 CD:	5 CD4	4 CD3	CD2	2 CD1	CD0	RD	7 RD	6 RD	5 RD4	4 RD3	RD2	RD1	RD0
9	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ray	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Left sub-pixel gray scale	↑					:								:								:			
ó-pi	\downarrow					:		_			0	_	_	:	0	0	0		0	0	0	:	0	0	0
t sul	bright	1	1	1	l	l	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lef	****	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	White	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scale	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ray s	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
el gg	dark ↑		U	U	U	:	U	U	O	0	U	U	U	:	U	1	O		U	U	U	:	U	U	O
Center sub-pixel gray scale	<u>,</u>					:								:								:			
qns.	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
ınter		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
రి	White	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
ile	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
, sca		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
gray	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Right sub-pixel gray scale	↑					:								:								:			
ig-qr	↓	_	0	0	0	:	0	0	0	0	0	0	0	:	0	0	0	1	1	1	1	:	1	0	,
ht su	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I	1	1	1	1	1	0	1
Rigl	White	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	I 1	1	1	1	1	1	1	0
	wnite	U	U	U	U	U	U	U	U	U	U	U	0	U	U	0	U	1	1	1	1	1	1	1	1

4.9 INPUT SIGNAL TIMINGS

4.9.1 Timing characteristics

	Paramete	r	Symbol	min.	typ.	max.	Unit	Remarks	
	Freq	uency	1/tc	80.0	83.26	85.0	MHz	12.01 ns (typ.)	
CLK	D	uty	-				-	Note2	
	Rise time	-		-		ns	Note2		
	CLK-DATA	Setup time	-				ns		
DATA	CLK-DAIA	Hold time	-		-		ns	Note2	
	Rise time	e, Fall time	-			ns			
		Cycle	th	7.72	8.071	ı	μs	122.0 [-1] - (+	
	Horizontal	Сусіе	ui	660	672	690	CLK	123.9 kHz (typ.) Note1, Note3	
		Display period	thd		640			110101, 110103	
	M	Cycle	tv	-	16.667	1	ms	(0,0 H= (+)	
DE	Vertical (One frame)	Сусіе	tv	2,053 2,064 -		ı	Н	60.0 Hz (typ.) Note1	
	(one frame)	Display period	tvd		2,048		Н	110101	
	CLK-DE	Setup time	-		•	•	ns		
	CLK-DE	Hold time	-	-			ns	Note2	
	Rise time	-				ns			

Note1: Definition of parameters is as follows.

tc = 1CLK, th = 1H

Note2: See the data sheet of LVDS transmitter.

Note3: "th" (CLK number) should be fixed to "16n+k" (n= natural number: 1,2,3..., k=0, 2, 4 or 6). In case "th" is not the specified value, it may cause display deterioration. e.g.: "th" (CLK number)= 660, 662, 672, 674, 676, 678, 688, 690

4.9.2 Input signal timing chart

4.10 LVDS DATA TRANSMISSION MODE

Transmission mode of LVDS data is selectable by MOD0 and MOD1 terminal.

Note1: High must be Open.

4.11 DISPLAY POSITIONS

(1) Mode0: MOD0= Open, MOD1= Open / MOD0= Low, MOD1= Low

LA	CA I	D (1, 0)			LC	1280, 0) CC RC	D (1281, LD CD	0) RD	
(0,0	1,0	• • •	1278, 0	1279, 0	1280, 0	1281, 0	• • •	2558, 0	2559, 0
0, 1	1, 1	• • •	1278, 1	1279, 1	1280, 1	1281, 1	• • •	2558, 1	2559, 1
•	•	•	•	•	•	•	•	•	:
0, 2046	1, 2046	• • •	1278, 2046	1279, 2046	1280, 2046	1281, 2046	• • •	2558, 2046	2559, 2046
0, 2047	1, 2047	• • •	1278, 2047	1279, 2047	1280, 2047	1281, 2047	• • •	2558, 2047	2559, 2047

(2) Mode1: MOD0= Open, MOD1= Low

]	D (0,	0)	D (6	540, 0))	D (1	1280,	0)	D (1	1920,	0)
LA	CA	RA	LB	СВ	RB	LC	CC	RC	LD (CD 7	RD
\sim			$\overline{}$	1	-	$\overline{}$	1	·	$\overline{}$	1	
(0,0)	•••	639, 0	(640, 0)	•••	1279, 0	(1280, 0)	•••	1919, 0	(1920, 0)	•••	2559, 0
0, 1	•••	639, 1	640, 1	•••	1279, 1	1280, 1	•••	1919, 1	1920, 1	•••	2559, 1
•	• •	•	•	•	• • •	•	•	•	•	•	•
0, 2046	•••	639, 2046	640, 2046	•••	1279, 2046	1280, 2046	•••	1919, 2046	1920, 2046	•••	2559, 2046
0, 2047	•••	639, 2047	640, 2047	•••	1279, 2047	1280, 2047	•••	1919, 2047	1920, 2047	•••	2559, 2047

4.12 PIXEL ARRANGNMENT

	0	1		2,559
0	L C R	L C R		L C R
	• • •	• • •	• • • • • •	• • •
2,047	L C R	L C R		L C R

4.13 TEN-bit LOOK UP TABLE FOR GAMMA ADJUSTMENT

Adjustment of gamma characteristics for each 8-bit LCR data is possible by using built-in 10-bit LUT (look up table) for Gamma characteristics.

The LUT is set with the serial data. The combination of the control command determines Random/Sequential Address WRITE and Individual/Simultaneous LCR setting.

The serial data is composed as Table 1.

Table1: Serial data Composition

DATA	DATA name	Function	Remarks
D31	CMD5	Control Command	
D30	CMD4	Control Command	
D29	CMD3	Control Command	See Table2 and 3.
D28	CMD2	Control Command	See Table2 and 5.
D27	CMD1	Control Command	
D26	CMD0	Control Command	
D25	ADD9	LUT Address (MSB)	
D24	ADD8	LUT Address	
D23	ADD7	LUT Address	
D22	ADD6	LUT Address	
D21	ADD5	LUT Address	See Table4.
D20	ADD4	LUT Address	See Table4.
D19	ADD3	LUT Address	
D18	ADD2	LUT Address	
D17	ADD1	LUT Address	
D16	ADD0	LUT Address (LSB)	
D15	DATA15	LUT Data (MSB)	
D14	DATA14	LUT Data	
D13	DATA13	LUT Data	
D12	DATA12	LUT Data	
D11	DATA11	LUT Data	
D10	DATA10	LUT Data	
D9	DATA9	LUT Data	
D8	DATA8	LUT Data	See Table5.
D7	DATA7	LUT Data	see Tables.
D6	DATA6	LUT Data	
D5	DATA5	LUT Data	
D4	DATA4	LUT Data	
D3	DATA3	LUT Data	
D2	DATA2	LUT Data	
D1	DATA1	LUT Data	
D0	DATA0	LUT Data (LSB)	

Table2: Command table (CMD5 to CMD0: 6-bit)

DATA name	Parameter	Remarks
CMD5	Must be set to "1".	-
CMD4	Must be set to "1".	-
CMD3	Selection of Random/Sequential Address WRITE "1": Random Address WRITE "0": Sequential Address WRITE	-
CMD2	Must be set to "1".	-
CMD1	Selection of Individual/Simultaneous LCR setting "1": Individual LCR setting "0": Simultaneous LCR setting	"1": Select the Sub-pixel by using ADD9 and ADD8. (See Table4.) "0": ADD9 and ADD8 are invalid.
CMD0	Must be set to "0".	-

Table3: Command table (CMD5 to CMD0: 6-bit)

CMD5	CMD4	CMD3	CMD2	CMD1	CMD0	Function
1	1	1	1	1	0	Random Address WRITE, Individual LCR setting
1	1	1	1	0	0	Random Address WRITE, Simultaneous LCR setting
1	1	0	1	1	0	Sequential Address WRITE, Individual LCR setting
1	1	0	1	0	0	Sequential Address WRITE, Simultaneous LCR setting

^{*}Other combinations are prohibited, and may cause function error.

Table4: Address table (ADD9 to ADD0: 10-bit)

DATA name	Parameter	Remarks
ADD9	Sub-pixel Selection ADD[9:8]= 0:0 Left Sub-pixel	When "ADD[9:8]=1:1", ON/OFF of Gamma
ADD8	0:1 Center Sub-pixel 1:0 Right Sub-pixel 1:1 ON/OFF selection of Gamma Correction	correction can select according to the GMA[2:0]. (See Table6 and Table7.)
ADD7 ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0	LUT Address 256 address = 00h - FFh	When "ADD[9:8] = 1:1", ADD[7:0] must be set to 00h.

Table5: Data table (DATA15 to DATA0: 16-bit)

DATA	DATA name	Parameter	Remarks
DATA15	Dummy		
DATA14	Dummy		
DATA13	Dummy	Dummy Data	
DATA12	Dummy	Must be set to "0".	-
DATA11	Dummy		
DATA10	Dummy		
DATA9	DATA9	[MSB]	
DATA8	DATA8		
DATA7	DATA7		
DATA6	DATA6		
DATA5	DATA5	10-bit LUT Data	
DATA4	DATA4	000h - 3FFh	-
DATA3	DATA3		
DATA2	DATA2		
DATA1	DATA1		
DATA0	DATA0	[LSB]	

Table6: Gamma correction table (DATA15 to DATA0: 16-bit)

DATA	DATA name	Parameter	Remarks
DATA15	Dummy		
DATA14	Dummy		
DATA13	Dummy		
DATA12	Dummy		
DATA11	Dummy		
DATA10	Dummy	Dummy Data	
DATA9	Dummy	Must be set to "0".	-
DATA8	Dummy	Widst be set to 0.	
DATA7	Dummy		
DATA6	Dummy		
DATA5	Dummy		
DATA4	Dummy		
DATA3	Dummy		
DATA2	GAM2	[MSB]	
DATA1	GAM1	GMA Data	See Table7.
DATA0	GAM0	[LSB]	

Table7: Control code GAM[2:0]

GMA2	GMA1	GMA0	Function
0	0	0	No correction (Initial setting)
0	0	1	Correction according to the LUT Data. Note1

^{*}Other combinations are prohibited, and may cause function error.

- Note1: Initial setting of the LUT is undefined data. The LUT should be enabled by setting of the GMA after writing the LUT data in all the 256 addresses, in order to avoid undefined data display.
- Note2: Transfer the data every power-on, because the LUT data isn't stored in the LCD module.
- Note3: As writing and reading the LUT data, a noise may appear on the display image. In order to prevent the noise appearing on the display, following measures should be performed.
 - (1) The LUT data should be rewritten during invalid period of pixel data (See "4.8 INPUT SIGNAL TIMINGS".).
 - (2) The LUT data should be rewritten when the Gamma Correction is OFF (GMA[2:0] = 000).

4.14 LUT SERIAL COMMUNICATION TIMINGS

(1) Timing chart

(2) Timing specifications

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
SCLK Frequency	1/Tsck	-	-	5	MHz	-
SCLK Pulse	Twsck	50	-	-	ns	-
SDAT-SCLK Setup Time	Tds	50	-	-	ns	-
SDAT-SCLK Hold Time	Tdh	50	-	-	ns	-
CSR/CSL-SCLK Setup Time	Tcs	50	-	-	ns	-
CSR/CSL-SCLK Hold Time	Tch	50	-	-	ns	-

Note1: During the serial communication mode, the display noise may appear because of rewriting the data. To avoid this, rewrite the LUT data when the pixel data is invalid or the Gamma Correction is OFF (GMA[2:0] = 000). The external noise may cause the data change, refresh the data regularly according to need.

4.15 OPTICS

4.15.1 Optical characteristics

(1) NL256204AM15-01

(Note1, Note2)

Parameter		Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminanc	e	White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	650	850	-	cd/m ²	BM-5A or SR-3	-
Contrast rat	tio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	400	600	1	1	BM-5A or SR-3	Note3
Luminance unif	ormity	White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	1	1.1	1.3	1	BM-5A	Note4
Chromaticity	White	x coordinate	Wx	0.225	0.255	0.285	1	SR-3	Note5
Cirolliaticity	Wille	y coordinate	Wy	0.280	0.310	0.340	1	SK-3	
Response ti	ma	Black to White	Ton	ı	15	25	ms	BM-5A	Note6 Note7
Kesponse th	ille	White to Black	Toff	ı	15	25	ms	DWI-JA	
	Right	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θR	70	85	-	0		
Viouing angle	Left	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θL	70	85	-	0	BM-5A	N . 0
Viewing angle	Up	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θU	70	85	-	0	DIVI-JA	Note8
	Down	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θD	70	85	-	0		

(2) NL256204AM15-01A

(Note1, Note2)

Parameter		Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminanc	e	White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	L	650	850	-	cd/m ²	BM-5A or SR-3	-
Contrast rat	tio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	400	600	1	-	BM-5A or SR-3	Note3
Luminance unif	ormity	White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	1	1.1	1.3	-	BM-5A	Note4
Chromaticity	White	x coordinate	Wx	0.250	0.280	0.310	-	SR-3	Note5
Cirollaticity	Willie	y coordinate	Wy	0.274	0.304	0.334	-	SK-3	
Response ti	ma	Black to White	Ton	ı	15	25	ms	BM-5A	Note6
Kesponse th	ille	White to Black	Toff	ı	15	25	ms	DWI-JA	Note7
	Right	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θR	70	85	1	0		
Viousing angle	Left	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θL	70	85	-	0	BM-5A	Note8
Viewing angle	Up	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, CR \ge 10$	θU	70	85	-	0	DIVI-JA	notes
	Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	70	85	-	0		

☆

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta=25°C, VDD=12V, VDDB=12V, Luminance control = maximum, Display mode: QSXGA, Horizontal cycle=1/123.9 kHz, Vertical cycle = 1/60.0 Hz

Optical characteristics are measured after 20minutes from working the product, in the dark room. Also measurement methods are as follows.

Note3: See "4.15.2 Definition of contrast ratio".

Note4: See "4.15.3 Definition of luminance uniformity".

Note5: These coordinates are found on CIE 1931 chromaticity diagram.

Note6: Product surface temperature: TopF=36°C

Note7: See "4.15.4 Definition of response times".

Note8: See "4.15.5 Definition of viewing angles".

4.15.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

4.15.3 Definition of luminance uniformity

The luminance uniformity is calculated by using following formula.

The luminance is measured at near the 5 points shown below.

4.15.4 Definition of response times

Response time is measured, the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 10% up to 90%. Also Toff is the time it takes the luminance change from 90% down to 10% (See the following diagram.).

4.15.5 Definition of viewing angles

5. RELIABILITY TESTS

Tes	st item	Condition	Judgment Note1		
C 1	cure and humidity eration)	① 60 ± 2°C, RH = 60%, 240hours ② Display data is white.			
	t cycle eration)	① 0 ± 3°C1hour 55 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white.	No display malfunctions		
	nal shock operation)	 3°C30minutes 60 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 			
	oration operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z direction 10 times each directions 	No display malfunctions		
	nical shock operation)	 ① 294m/ s², 11ms ② X, Y, Z direction ③ 3 times each directions 	No physical damages		
_	ESD eration)	 ① 150pF, 150Ω, ±10kV ② 9 places on a panel surface Note2 ③ 10 times each places at 1 sec interval 	No display malfunctions		
Dust (Operation)		 ① Sample dust: No.15 (by JIS-Z8901) ② 15 seconds stir ③ 8 times repeat at 1 hour interval 	No display manuncuons		
Low pressure	Non-operation	① 15 kPa (Equivalent to altitude 13,600m) ② -20°C±3°C24 hours ③ +60°C±3°C24 hours	No display malfunctions		
Low pressure	Operation	 53.3 kPa (Equivalent to altitude 4,850m) 0°C±3°C24 hours +55°C±3°C24 hours 	140 dispiay manunchons		

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: See the following figure for discharge points

6. PRECAUTIONS

6.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. Be sure to read "6.2 CAUTIONS" and "6.3 ATTENTIONS", after understanding these contents!

This sign has the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

6.2 CAUTIONS

* Do not touch the working backlight. There is a danger of an electric shock.

- * Do not touch the working backlight. There is a danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N (\$\phi\$16mm jig))

6.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook nor pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The torque for product mounting screws must never exceed 0.45 N·m. Higher torque might result in distortion of the bezel.

(6) When the product is installed, use the mounting holes. The product is very sensitive to a stress (such as bend or twist). A stress added by installation to any portion cause display mura. Do not add a stress to any portion (such as bezel flat area).

Recommended installing method: An ideal plane that is defined by datum point and mounting holes is to be the same plane within ± 0.3 mm.

- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, use of the cloth with ethanolic liquid such as screen cleaner for LCD is recommended.
- ® Do not push nor pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- We usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal for the worst, please wash it out with soap.

6.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box should be opened after enough time being left under the environment of an unpacking room. Evaluate the leaving time sufficiently because a situation of dew condensation occurring is changed by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with packing state)
- 3 Do not operate in high magnetic field. Circuit boards may be broken down by it.
- 4 This product is not designed as radiation hardened.

☆

6.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flicker, vertical seam or small spot may be observed depending on display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- 4 Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ⑤ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- 6 Optical characteristics may be changed depending on input signal timings.
- The interference noise between input signal frequency for this product's signal processing board and luminance control frequency of the inverter may appear on a display. Set up luminance control frequency of the inverter so that the interference noise does not appear.
- ® After the product is stored under condition of low temperature or dark place for a long time, the cold cathode fluorescent lamp may not be turned on under the same condition because of the general characteristic of cold cathode fluorescent lamp. In addition, when Luminance control ratio is low in pulse width modulation method inverter, the lamp may not be turned on. In this case, power should be supplied again.

6.3.4 Other

- ① All GND and VCC terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ See "REPLACEMENT MANUAL FOR BACKLIGHT UNIT", when replacing backlight lamps.
- 4 Pack the product with original shipping package, in order to avoid any damages during transportation, when returning the product to NEC for repair and so on.
- ⑤ The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.

☆

7. OUTLINE DRAWINGS

