$q^+(x)=0$ a.e. Then $V:C_O(\mathbb{R})\to C_O(\mathbb{R})$ given by $Vf=f\circ q$ is an algebra isomorphism. Let A be the generator of the translation group on $C_O(\mathbb{R})$ and $\delta=V^{-1}AV$. Then $D(\delta)=\{\ f\in C_O(\mathbb{R}):Vf\in D(A)\}=\{f\in C_O(\mathbb{R}):f\circ q\in C^1(\mathbb{R})\ ,\ (f\circ q)^+\in C_O(\mathbb{R})\ \}$. Let $f\in C^1(\mathbb{R})\cap D(\delta)$. If $f\neq 0$, then f is not constant. Hence there exists $x_O\in \mathbb{R}$ such that $f^+(x_O)\neq 0$. Then f has a continuously differentiable inverse in some open neighbourhood of x_O . Since $f\circ q\in C^1(\mathbb{R})$, it follows that q is continuously differentiable in some neighborhood of $q^{-1}(x_O)$. This is a contradiction since $q^+(y)=0$ a.e.

Theorem 3.23. Let δ be the generator of an automorphism group on $C_o((a,b))$, where $-\infty \le a < b \le \infty$. The following assertions are equivalent.

- (i) There exists a continuous admissible function $\, {\rm m} \, : \, ({\rm a}, {\rm b}) \, \to \, \mathbb{R} \,$ such that $\, \delta \, = \, \delta_{\rm m} \,$.
- (ii) $C_C^1(a,b) \subset D(\delta)$ and $D_O(\delta) = \{ f \in D(\delta) : f \text{ is differentiable } \}$ is a core of δ .

 $\underline{\mathtt{Proof}}$. We have already pointed out that (i) implies (ii).

So assume that (ii) holds. Let $(T(t))_{t\in\mathbb{R}}$ be the group generated by δ and ϕ the continuous flow associated with the group. We can assume that ϕ is of the form given in Prop. 3.21.

Let $n \in J$. We show that $r_n^{-1} : \mathbb{R} \to (a_n, b_n)$ is continuously differentiable. Let $x_o \in (a_n, b_n)$. There exists $f \in C_c^1(a, b)$ such that f(x) = x in a neighborhood of x_o . Then $r_n^{-1}(r_n(x_o) + t)$

= f(ϕ (t,x_O)) = (T(t)f)(x_O) for all t in some neighborhood of 0 . Since f \in D(δ) it follows that the function t + $r_n^{-1}(r_n(x_O) + t)$ is continuously differentiable in some neighborhood of 0 and so r_n^{-1} is continuously differentiable in $r_n(x_O)$. Since $r_n: (a_n,b_n) + \mathbb{R}$ is surjective this proves the claim.

Next we show $(r_n^{-1})'(t) \neq 0$ for all $t \in \mathbb{R}$. In fact, let $x_0 \in (a_n,b_n)$ and assume that $(r_n^{-1})'(r_n(x_0)) = 0$. Then for all $f \in D_0(\delta)$ one has $(\delta f)(x_0) = \frac{\partial}{\partial t}\big|_{t=0} f(r_n^{-1}(r_n(x_0) + t)) = f'(x_0)(r_n^{-1})'(r_n(x_0)) = 0$. Since $D_0(\delta)$ is a core of δ this implies that $\phi(t,x_0) = x_0$ for all

 $t \in \mathbb{R}$. Hence $x_0 \in K$, a contradiction. It follows that $r_n : (a_n, b_n) \to \mathbb{R}$ is a C^1 -diffeomorphism for all $n \in J$.