Exercises in 3D Computer Vision I

Exercise 1 Singular Value Decomposition Basics

Let **A** be a $(m \times n)$ real matrix with $m \ge n$. Then, the Singular Value Decomposition (SVD) of **A** can be written as

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top} \tag{1}$$

Here **U** is an $(m \times m)$ matrix, **S** is an $(m \times n)$ matrix, and **V** an $(n \times n)$ matrix. The matrices **U** and **V** have orthonormal columns and **S** has entries only along the main diagonal.

The entries σ_i of the diagonal of **S** are called the singular values of the matrix **A**. These entries are positive and always arranged in descending order: $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$.

Note: There is also another, equivalent notational convention where the matrix \mathbf{U} is defined as an $(m \times n)$ matrix, \mathbf{S} as an $(n \times n)$ matrix, and \mathbf{V} as an $(n \times n)$ matrix. We will use the first convention, since it is also used by MATLAB.

- a) What similarities and differences are there between the SVD and the eigenvalue decomposition?
- b) Give the relationship between the entries of \mathbf{U} , \mathbf{S} and \mathbf{V} and the eigenvalues and the eigenvectors of the matrices $\mathbf{A}\mathbf{A}^{\top}$ and $\mathbf{A}^{\top}\mathbf{A}$.
- c) What do the entries of the diagonal matrix **S** tell about the rank of matrix **A**?
- d) How can the range and the null space of matrix A be expressed in terms of the columns of U and V, respectively?

Exercise 2 Proof of Existence of the SVD

Prove the existence of the singular value decomposition for any $(m \times n)$ real matrix **A**. You can take advantage of the basic theorems given below this exercise.

- a) Start by assuming that there exist $\mathbf{u}_1 \in \mathbb{R}^m$ and $\mathbf{v}_1 \in \mathbb{R}^n$ with $\|\mathbf{u}_1\|_2 = \|\mathbf{v}_1\|_2 = 1$ and $\|\mathbf{A}\|_2 = \sigma_1$, such that $\mathbf{A}\mathbf{v}_1 = \sigma_1\mathbf{u}_1$. Interpret the equation and state why this assumption can be made.
- b) Augment \mathbf{v}_1 to an $(n \times n)$ orthogonal matrix $\mathbf{V}_1 = [\mathbf{v}_1 | \tilde{\mathbf{V}}_1]$ and \mathbf{u}_1 to an $(m \times m)$ orthogonal matrix $\mathbf{U}_1 = [\mathbf{u}_1 | \tilde{\mathbf{U}}_1]$. Show that the product $\mathbf{U}_1^{\mathsf{T}} \mathbf{A} \mathbf{V}_1$ can be written as

$$\mathbf{U}_{1}^{\top} \mathbf{A} \mathbf{V}_{1} = \begin{bmatrix} \sigma_{1} & \mathbf{w}^{\top} \\ \mathbf{0} & \mathbf{A}_{1} \end{bmatrix} =: \mathbf{X}$$
 (2)

Hint: Write the equations in such a form that $\mathbf{w}^{\top} = \mathbf{u}_{1}^{\top} \mathbf{A} \tilde{\mathbf{V}}_{1}$. Why is the lower left part of \mathbf{X} a vector of zeros? What does \mathbf{A}_{1} explicitly look like?

c) Show that $\mathbf{w} = \mathbf{0}$. For this purpose, derive a lower and an upper bound on the term

$$\left\| \mathbf{X} \left[\begin{array}{c} \sigma_1 \\ \mathbf{w} \end{array} \right] \right\|^2$$
.

Hint: Observe that $\|\mathbf{X}\| = \|\mathbf{A}\| = \sigma_1$ (why?) and use the Cauchy-Schwarz inequality.

d) Proceed by induction on the size of **A** and show that $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$. In doing so, you can conclude that there exists a singular value decomposition for any $m \times n$ real matrix **A**. *Hint:* You can decompose \mathbf{A}_1 in the same way as you have done for \mathbf{A} .

You can use the following properties for your proof:

- If a $(m \times n)$ matrix \mathbf{V}_1 has orthonormal columns (m > n), then there exists a $(m \times (m n))$ matrix \mathbf{V}_2 such that $\mathbf{V} = [\mathbf{V}_1 \ \mathbf{V}_2]$ is orthogonal, where the orthogonal complement of the span of column vectors of the matrix \mathbf{V}_1 is equal to the span of the column vectors of the matrix \mathbf{V}_2 .
- Let $\|.\|_2$ be the 2-norm in \mathbb{R}^n , i.e. $\forall \mathbf{x} \in \mathbb{R}^n$, we have:

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^{\top}\mathbf{x}}$$

• Let M be a $(m \times n)$ matrix, the 2-norm of M is defined as:

$$\|\mathbf{M}\|_2 = \max_{\|\mathbf{x}\|_2 = 1} \|\mathbf{M}\mathbf{x}\|$$

- A $(m \times n)$ matrix **M** has orthonormal columns, if $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbf{I}$.
- One can easily prove that $\forall \mathbf{x} \in \mathbb{R}^n$, if **M** is a $(m \times n)$ matrix with orthonormal columns, then:

$$\|\mathbf{M}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$$

• Let **M** be a $(m \times n)$ matrix. If the $(m \times m)$ matrix \mathbf{A}_1 and the $(n \times n)$ matrix \mathbf{A}_2 are orthogonal matrices, then one can also prove that:

$$\|\mathbf{A}_1 \mathbf{M} \mathbf{A}_2\|_2 = \|\mathbf{M}\|_2$$

Exercise 3 Pseudo-inverse

In this exercise, we will solve the following problem:

$$Q = MP$$

where \mathbf{Q} and \mathbf{P} are known and the matrix \mathbf{M} is unknown. In our case, \mathbf{Q} is a matrix with N columns, where each column contains a measured image point (in homogeneous coordinates), and \mathbf{P} is a matrix containing the corresponding N points in the 3D scene in each column (also in homogeneous coordinates). One way for solving this problem is provided by the use of the pseudo-inverse.

Let **A** be a full-rank real matrix that has the dimensions $(m \times n)$, where $m \leq n$. The pseudo-inverse of **A** can be written as:

$$\mathbf{A}^{+} = \mathbf{A}^{\top} \left(\mathbf{A} \mathbf{A}^{\top} \right)^{-1} \tag{3}$$

Let **A** be a full-rank real matrix that has the dimensions $(m \times n)$, where $m \ge n$. The pseudo-inverse of **A** can be written as:

$$\mathbf{A}^{+} = \left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \tag{4}$$

- a) What does the matrix M represent and what are its dimensions?
- b) Show that $\mathbf{M} = \mathbf{Q}\mathbf{P}^+$.
- c) If $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$ is the SVD of the matrix \mathbf{A} , prove that the pseudo-inverse of \mathbf{A} can be written as $\mathbf{A}^{+} = \mathbf{V}\mathbf{S}^{+}\mathbf{U}^{\top}$. Express the matrix \mathbf{S}^{+} using the singular values σ_{i} of the matrix \mathbf{A} .
- d) Explain why the pseudo-inverse can be defined by equation (3) only if $rank(\mathbf{A}) = m$, i.e. if **A** has full rank.

Exercise 4 (H) Line Fitting

The Singular Value Decomposition can be used to determine solutions for minimization problems, i.e. minimize $||\mathbf{A}\mathbf{x}||$ with $||\mathbf{x}|| = 1$.

In this exercise, we want to use the SVD for line fitting. Given a set of coordinate data (u_i, v_i) and the model of a line, we want to find the parameters that fit the line best to the data.

- d) Reformulate the problem such that it becomes one of minimizing $\|\mathbf{A}\mathbf{x}\|$, with $\mathbf{x} = [a, b, c]^{\top}$ containing the line parameters.
- e) Set up an array in MATLAB for the matrix **A** that contains points of the line v = 2u 1. Apply Gaussian noise to it to simulate measurement errors (use the function randn).
- f) Solve the resulting linear system of equations using the SVD and plot the line and the measurements array.
- g) Apply the algorithm with different measurements (apply randn 100 times) and plot the results again.
- h) For each measurement, state what the standard deviation is between the measured points and the computed line. In other words, determine how well you fitted the line to the data.