逻辑 \rightarrow 集合 \rightarrow 函数 数论

数学归纳法

计数问题 ← 数列 ← 生成函数

Relation
ightarrow Graph
ightarrow Tree

Chapter 4

可除性(Divisibility)

- a 是 b 的倍数(mutiple)
 - $\circ \ \exists k, b = ka$
 - o 有多少不大于n的数可以整除d?

$$0 \le p = kd \le n$$
 $\Rightarrow k \le \frac{n}{d} \Leftrightarrow k = \lfloor \frac{n}{d} \rfloor$

• 基本性质:可加性、可乘性、传递性

同余关系

- $a \equiv b \pmod{m} \Leftrightarrow a = km + b$
- 加法和乘法保持同余关系
- \mathbb{Z}_m 上定义加法和乘法 \rightarrow 整数群在同余关系下的商群

质数

- Prime
- 质数筛
- 定理一: 质因数分解定理
- 定理二: 能整除n的质数一定小于 \sqrt{n}
 - 证明113是质数

 $\sqrt{113}=10.13$,由上述定理,有可能被113整除的质数只有2,3,5,7但他们都不能被113整除,所以113是质数

- ∘ 如何将一个数n质因数分解?
 - 枚举比√n小的质数, 若能整除就一直除
- 定理三: 有无限个质数
- 梅森质数 (Mersenne Prime) : $2^p 1$ 了解一下就好

最大公约数 (gcd) 和最小公倍数 (lcm)

• 怎么找gcd/lcm

- 。 质因数分解
 - mn = gcd * lcm(定理五)
- 。 欧几里得算法 (辗转相除法)
 - 引理 a = bq + r, gcd(a, b) = gcd(b, r)
- 用线性组合表示最小公约数
 - \circ gcd(a,b) = sa + tb
 - / gcd(6,14) = 2 = (-2) * 6 + 14
 - 怎么求? 倒过来做辗转相除法

express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution:

First use the Euclidean algorithm to show gcd(252,198) = 18

I.
$$252 = 1.198 + 54$$

II.
$$198 = 3.54 + 36$$

III.
$$54 = 1.36 + 18$$

IV.
$$36 = 2.18$$

Now working backwards, from ■ and ■ above

$$18 = 54 - 1.36$$
$$36 = 198 - 3.54$$

Substituting the 2nd equation into the 1st yields:

$$18 = 54 - 1 \cdot (198 - 3.54) = 4.54 - 1.198$$

Substituting
$$54 = 252 - 1.198$$
 (from **I**)) yields: $18 = 4.(252 - 1.198) - 1.198 = 4.252 - 5.198$

乘法逆元

- $a\bar{a}=1(\mod m)$, $a = \bar{a}$ 互为模m意义下的乘法逆元
- 定理:若a,m互质,则a有在模m意义下的乘法逆元,且该逆元对m的模唯一
- 怎么找?
 - 。 用上面的线性组合法
 - 。 gcd(a,m)=1=sa+tm,则s就是a在模m意义下的逆元
- 用逆元解决同余问题

总结: 先求逆元 (用欧几里得算法), 再利用逆元的性质解题 (如两边同乘逆元, 左边等于1)

• 中国剩余问题

考虑
$$x\equiv a_i\mod m_i, i=1,2,\ldots,n$$
,其中 m_1,m_2,\ldots,m_n 两两互质,求 x 该问题有模 m 意义下的唯一解,其中 $m=m_1m_2\ldots m_n$

考虑 $M_i=rac{m}{m_i}$,则由两两互质的性质可知, M_i 与 m_i 互质,则 M_i 有在模 m_i 意义下的唯一逆元 y_i

即
$$M_i y_i \equiv 1 \mod m_i$$
考虑 $p = \sum_{i=1}^n a_i M_i y_i$

因为
$$M_i=rac{m}{m_i}$$
,所以 M_i 可以被除了 m_i 以外的任何 m_j 整除,即 $M_i\equiv 0\mod m_j, j
eq i$
所以我们有 $p\equiv a_iM_iy_i\equiv a_i\mod m_i, orall i=1,2,\ldots,n$
所以 p 就是我们要求的 x

• 也可用回代法求解中国剩余问题

Back Substitution

We can also solve systems of linear congruences with pairwise relatively prime moduli by rewriting a congruences as an equality, substituting the value for the variable into another congruence, and continuing the process until we have worked through all the congruences.

Example: Use the method of back substitution to find all integers x such that $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$, and $x \equiv 3 \pmod{7}$.

Solution: the first congruence can be rewritten as x = 5t + 1, where t is an integer.

- Substituting into the second congruence yields $5t+1 \equiv 2 \pmod{6}$.
- Solving this tells us that $t \equiv 5 \pmod{6}$.
- Using Theorem 4 again gives t = 6u + 5 where u is an integer.
- Substituting this back into x = 5t + 1, gives x = 5(6u + 5) + 1 = 30u + 26.
- Inserting this into the third equation gives $30u + 26 \equiv 3 \pmod{7}$.
- Solving this congruence tells us that $u \equiv 6 \pmod{7}$.
- By Theorem 4, u = 7v + 6, where v is an integer.
- Substituting this expression for u into x = 30u + 26, tells us that x = 30(7v + 6) + 26 = 210u + 206.

Translating this back into a congruence we find the solution $x \equiv 206 \pmod{210}$.

• 费马小定理

$$a^{p-1} \equiv 1 \mod p$$

Chapter 6

计数原理

鸽巢原理

经典题型

- n个数的同余问题
 - 任意的n+1个数,一定有两个数对n同余
- 10 个人的party有两个人有相同数量friend
 - 。 朋友个数0~9 且不可能同时出现0和9

- 不超过2n的n+1个数有两个可除
 - \circ 分解为 2^tq_i , q_i 为奇数
 - o 小于2n的奇数至多有n个
- 前n项和问题
 - · 任意的n个数,存在一个连续子列之和可以整除n
 - o 用前n项和转化为n个数的同余问题
- 单调子列长度问题
 - o (a,b) 为以k为起点的最长单增列长度和最长单减列长度
- 计数和问题
 - 。 连续的k天里有p场比赛
 - 前n项和a_k, c_k = a_k + p
 - 用范围框定
- Ramsey Number

排列组合

- SUCCESS排列问题
- A, B, C, D—共有几种不同分法?

$$S(n,j)=rac{n$$
到 j 的满射个数 $j!=rac{\sum_{i=0}^{j}(-1)^{i}inom{j}{i}(j-i)^{j}}{j!}$ 分法 $=\sum_{i=0}^{n}S(n,j)$

- r-combination
 - $x_1 + x_2 + x_3 = 6$
 - 。 生成函数
 - o stars and bars
- Partition
 - o 枚举

二项式定理

double counting

Chapter 8

线性数列递推

- 从实际问题构造递推
 - 。 数字串 (从短一点的数字串出发)
- 齐次型 $a_n = \sum_{i=1}^k c_i a_{n-i}$
 - 。 特征方程 $r^k \sum_{i=1}^k c_i r^{k-i} = k$
 - \circ 特征根 r_1,\ldots,r_t , 重数 $m_1+\ldots+m_t=0$
 - \circ 通解 $a_n = P_{m_1}(n)r_1^{m_1} + \ldots + P_{m_t}(n)r_t^{m_t}$
- 非齐次部分 $F(n) = \sum_{i=1}^{p} Q_{t_i}(n) s_i^n$

。 特解形式 $a_n^{(p)} = \sum_{i=1}^p R_{t_i}(n) s_i^n \cdot n^{\alpha_i}$

生成函数

- 数列转化成生成函数
- 生成函数展开成数列
- 生成函数解决 r-combination 型问题
- 生成函数解决数列递推问题
- 生成函数解决恒等式证明问题

容斥原理

• 多并集计算

$$|igcup_{i=1}^n A_i| = \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cup A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cup A_j \cup A_k| \ldots$$

• 性质计数 + 容斥原理

N(P) = 满足性质P的种类数

- 直接用容斥原理
 - 。 找出相应的性质
 - 。 用容斥原理
- 先找出反向的性质, 再用容斥
 - 正面做不了就反过来做
- 素数筛

先找出 $<\sqrt{n}$ 的素数, P_i 代表能被 p_i 整除

• onto-function

 P_i 代表 b_i 不在值域中

错排

 P_i 代表第i个元素在本来的位置上

Chapter 9

Relation

- Relation性质和表示之间的关系/计数问题
 - 自反Reflexive
 - 特点:表示矩阵对角元全为1
 - 大小为n的集合上的自反关系有 2^{n^2-n} 个
 - 。 反-自反的Irreflexive
 - 特点:表示矩阵对角元全为0
 - 大小为n的集合上的反-自反关系有 2^{n^2-n} 个
 - o 对称Symmetric
 - 特点:表示矩阵 $A = A^T$
 - 计数: 2^{n²+n}/₂
 - 反对称的Antisymmetric

- 特点: 对称元不同时为1
- 计数: 3^{n²-n}/₂2ⁿ
- o 非对称的Asymmetric
 - 特点:不是对称的
 计数:2^{n²} 2^{n²+n}/₂
- \circ 注意:可以既对称又反对称,例如I
- Relation的复合(Composition)
 - 。 易错点:顺序

$$S \circ R = R \rightarrow S = M_R \cdot M_S$$

- 定理:R是连通的,当且仅当 R^n 是R的子集,证明用数归
- P闭包
 - 。 包含
 - o 满足性质P
 - 。 最小的: 任何一个满足上面两条的都包含他、
- 连通性Connectivity o 传递性Transitivity

$$\circ \ t(R) = R^* = \cup_{k=1}^n R^k$$

• WarShall 算法求传递闭包

等价关系 Equivalence Relation

- 证明等价关系(回归定义)
 - 。 自反的
 - o 对称的
 - 。 传递的
- 找等价类(equivalence class): 选人大
- **重要!!** A上的等价关系个数⇔ 找Partition(划分)
- 什么是Partition?
 - 。 非空的
 - 。 不交的
 - 。 完全的

偏序关系 Partial Ordering

- 什么是偏序关系(回归定义)
 - 。 自反的
 - 。 反对称的
 - 。 传递的
- Hasse Diagram
 - o Maximal/Minimal (局部的)
 - o Greatest/Least (全局的)
 - Upper Bound/ Lower Bound 上界/下界
 - Least Upper Bound / Greatest Lower Bound
- Well-Ordered 良序的
 - 。 任何子集有最小元
- Lattice

- o 任何pair有glb和ulb
- 拓扑排序: 炒菜模型

Chapter 10

Graph

- 各种定义
- Hand-shaking Theorm

$$\circ \sum_{v \in V} deg(v) = 2e$$

- 分类
- K_n 的子图有几种

$$\circ \sum_{k=1}^n C(n,k) 2^{C(k,2)}$$

- entry 项
- 综合考察特殊图的性质和Adjacency matrix 和 Incidence Matrix的概念
- Isomorphism 同构
 - 。 映射
 - 。 邻接矩阵
 - o 度数 (判断不同构或是找同构映射时使用)
 - 。 环的大小
- 两点间的路径数
 - \circ A^r
- 判断是否存在Euler/Hamilton Path / Circuit
 - o Euler Circuit ⇔ 度数为偶数
 - 。 Euler Path ⇔ 恰好两个点度数为奇数
 - Hamiltion Circult $deg(u) + deg(v) \ge n$
- Dijkstra求单源最短路
- 平面图
 - o 欧拉定理: r = e-v+2
 - 。 必要条件: 区域的最大边数为k→某个定理
 - \circ 非平面 充要条件 子图和 $K_{3,3}$ 或 K_5 同构
- 染色问题