Sistemas Operacionais I

Deadlocks – Parte 2

Prof. Leandro Marzulo

Impedimento de deadlock (deadlock avoidance)

- O sistema demanda informações adicionais sobre como os recursos devem ser solicitados.
- A chave é se manter em Estado de Segurança
 - O sistema pode alocar recursos a cada processo (até o seu máximo) em alguma ordem e continuar evitando deadlocks.
 - Existe uma sequência de segurança <P1, P2, ..., Pn> onde, para cada Pi, as solicitações de recursos restantes para Pi podem ser satisfeitas pelos recursos disponíveis e pelos recursos detidos por outros processos Pj (sendo j<i).
- Estado inseguro significa que há possibilidade de deadlock.

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	2
С	9	2

Total de recursos do sistema: 12
Total de recursos disponíveis: 12

1 2 3 4 5 6

A

В

C

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	2
С	9	2

Total de recursos do sistema: 12
Total de recursos disponíveis: 3

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	4
С	9	2

Total de recursos do sistema: 12

Total de recursos disponíveis: 1

SEQUÊNCIA DE SEGURANÇA: B, A, C

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	0
С	9	2

Total de recursos do sistema: 12 Total de recursos disponíveis: 5

Processo	Necessidade Máxima	Alocação Corrente
A	10	10
В	4	0
С	9	2

SEQUÊNCIA DE SEGURANÇA: B, A, C

Processo	Necessidade Máxima	Alocação Corrente
A	10	0
В	4	0
С	9	2

Total de recursos do sistema: 12 Total de recursos disponíveis: 10

A

В

Processo	Necessidade Máxima	Alocação Corrente
A	10	0
В	4	0
С	9	9

Total de recursos do sistema: 12
Total de recursos disponíveis: 3

10
11
12

A

В

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	2
С	9	2

Total de recursos do sistema: 12
Total de recursos disponíveis: 12

A

В

C

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	2
С	9	3

Total de recursos do sistema: 12
Total de recursos disponíveis: 2

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	4
С	9	3

Total de recursos do sistema: 12
Total de recursos disponíveis: 0

E AGORA?

Processo	Necessidade Máxima	Alocação Corrente
A	10	5
В	4	0
С	9	3

Total de recursos do sistema: 12 Total de recursos disponíveis: 4

DEADLOCK!!! TANTO A QUANTO C PRECISAM DE MAIS DE 4 RECURSOS

Algoritmo do Grafo de Alocação de recursos

- Arestas de requisição e de solicitação
- Arestas de solicitação só podem existir se estiverem substituindo arestas de requisição
- Arestas de requisição devem ser adicionadas no início ou quando só existirem arestas de requisição no sistema.

Algoritmo do Grafo de Alocação de recursos

Detecção de Deadlocks

• Grafo de espera (wait-for)

Recuperação de Deadlocks

- Encerramentos de Processos
 - Todos
 - Um por um, até que não existam mais ciclos (segundo uma política)
 - Menor custo
 - Prioridade
 - Quanto o processo já rodou e quanto falta para terminar
 - Quantos recursos ele usou e de que tipo (preemptivos)
 - Quantos recursos ele precisa para terminar
 - Quantos processos serão encerrados
 - Interativo ou batch

Recuperação de Deadlocks

- Preempção de recursos
 - Seleção de vítima
 - Reversão (rollback)
 - Inanição

Escalonamento por reversão de arestas - SER

m=1, p=3

Escalonamento por reversão de arestas - SER

m=1, p=5

Escalonamento por reversão de arestas - SER

