Curse of Dimensionality

Bellman's (1961) phrase concerning exhaustive enumeration on product spaces

Optimizing, interpolating, or integrating a smooth d-D function to error ϵ requires $O(1/\epsilon^d)$ evaluations.

The "Excluded Middle"

Shell fraction = $1 - (1 - \epsilon)^d$

- Hi-D spheres have volume quickly decreasing with d
- Spherical core of a hypercube has negligible volume
- Volume in a simple d-D region is mostly near the boundary

Uniform Distribution in Hi-D

Consider a large sample of points from $U[0,1]^d$.

 $\langle \#$ pts in volume $\delta V \rangle \propto \delta V o$ volume effects map over

Empty space phenomenon (Scott & Thompson 1983)

- Most cells in a grid will be empty even for large samples
- Most points are near boundaries: Most points appear extreme/surprising in some respect
- Points are all near a (d-1)-D manifold
- Spherical neighborhoods of a point will be nearly empty

Concentration of Euclidean norm

$$r^2 = \sum_{i=1}^d x_i^2$$
; x_i^2 has mean 1/3, variance 4/45
 $\approx d \times \text{mean of } d \text{ draws from } N(1/3, 4/45)$
 $\sim d \times \text{draw from } N(1/3, 4/(45 \cdot d))$

 \rightarrow r concentrates near $\sqrt{d/3}$ with constant variance Average norms of 10^4 draws from $U[0,1]^d$

Standard Normal Distribution in Hi-D

Normal distribution has infinite range, with high-density region is localized near origin

Basic facts:

- Squared radius $\sum_{i=1}^{d} x_i^2$ is χ_d^2
- $\langle \chi_d^2 \rangle = d$; std dev'n = $\sqrt{2d}$

Most points are in thin shells

Most points are in the tails

Null Projection Phenomenon

Diagnoal vector $\vec{v} = [\pm 1, \pm 1, \dots \pm 1]$

$$\cos \theta = \frac{\vec{v} \cdot \vec{e_j}}{\sqrt{\vec{v} \cdot \vec{v}} \ \vec{e_j} \cdot \vec{e_j}}$$
$$= \frac{\pm 1}{\sqrt{d}}$$

- Diagonals become nearly orthogonal to all axes
- Clusters near diagonal all get mapped near the origin & may overlap in pairwise scatterplots
- Choice of coordinate system is important for finding structures

Sets of points lie on unit simplex vertices (Hall⁺ 2005) δ -method applied to $\operatorname{arccos}(\mathbf{x}_1 \cdot \mathbf{x}_2) \rightarrow$

$$heta_{12} = rac{\pi}{2} + O(1/\sqrt{d});$$
 pairwise angles $pprox \bot$

- Norms and angles between samples become nearly deterministic
- Randomness is in rotation of the simplex

Curse of Dimensionality for KDE

Estimate a normal density at the origin to 10% using Gaussian-kernel KDE with optimal smoothing.

Concentration of Measure

Both the uniform and normal settings exhibited Gaussian-like concentration into small volumes.

How generic is this? Very!

For random vector with IID components with 8 finite moments:

$$E(|\vec{x}|) = \sqrt{ad - b} + O(1/d)$$
$$Var(|\vec{x}|) = b + O(1/\sqrt{d})$$

Constants a, b depend on 1st 4 moments

- Norm grows like \sqrt{d} but variance \approx const.
- If you contain a region of the space with a substantial fraction of probability, a small expansion includes nearly all of it
- Smooth functions of d random variables become approximately constant for large d