Лекции ИУ7. Методы Вычислений. Семестр 2

Власов П. $A.^*$

21 марта 2016 г.

Содержание

1	Оді	Одномерная оптимизация		
	1.1	Основ	вные понятия одномерной оптимизации	2
		1.1.1	Минимум функции	2
		1.1.2	Унимодальные функции	2
		1.1.3	Выпуклые функции	3
		1.1.4	Липшицевы функции	4
	1.2	Метод	цы одномерной оптимизации	6
		1.2.1	Классический метод	6
		1.2.2	Методы перебора и поразрядного поиска	7
		1.2.3	Методы исключения отрезков	9
		1.2.4	Метод парабол	15
		1.2.5	Метод бисекции и хорд	17
		1.2.6	Метод Ньютона	21
		1.2.7	Метод перебора	24
		1.2.8	Метол ломаных	26

Основные понятия

Типовая задача оптимизации имеет следующий вид

$$\begin{cases} f\left(x\right) \to min \\ x \in G \end{cases} \tag{1}$$

Замечание:

- 1. Если требуется задачу максимизации, то обычно вместо функции f(x) рассматривают функцию g(x) = -f(x) и решают задачу минимизации для G.
- 2. В прошлом семестре мы рассматривали задачу (1) для:
 - (а) случая, когда G конечно или счетно
 - (b) случая, когда f линейна, а G выпуклый многоугольник в пространстве \mathbb{R}^n . (B этом случае задачу (1) называют задачей исследования операций)
- 3. В этом семестре будем рассматривать задачу (1) для

^{*}Законспектировано Абакумкиным А. В.

- (a) произвольной (не обязательно скалярной) функции f и
- (b) для произвольного множества $G \subseteq \mathbb{R}^n$.

Используется следующая терминология:

Φ ункция f	Mножество G	Название задачи
$f:G\to\mathbb{R}$	$[a;b] \subset \mathbb{R}$	Задача одномерной оптимизации
$f:G o\mathbb{R}$	$G = \mathbb{R}^n, n \geqslant 2$	Задача многомерной безусловной оптимизации
$f:G\to\mathbb{R}$	$G \subset \mathbb{R}^n, n \geqslant 2$	Задача многомерной условной оптимизации
$f:G\to\mathbb{R}^m, m\geqslant 2$	$G \subseteq \mathbb{R}^n$	Задача многокритериальной оптимизации

1. Одномерная оптимизация

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases} \tag{2}$$

1.1. Основные понятия одномерной оптимизации

1.1.1. Минимум функции

Пусть $f: G \to \mathbb{R}^n, G \subseteq \mathbb{R}$

<u>Определение:</u> Точка $x^* \in G$ называется точкой глобального минимума функции f на множестве $\forall x \in G \quad f\left(x^*\right) \leqslant f\left(x\right).$

При этом число f^* называется muhumym (глобальным) функции f на G и обозначается $f^* = \min_{x \in G} f(x)$.

Замечание: Обозначим множество всех точек глобальных минимумов f на G, как

$$G^* = \left\{ x^* \in G : f\left(x^*\right) = \min_{x \in G} f\left(x\right) \right\}$$

<u>Определение:</u> Точка $\tilde{x} \in G$ называется *точкой локального минимума* функции на множестве G,

$$\exists \varepsilon > 0 \quad \forall x \in u_{\varepsilon}(\tilde{x}) \cap G \quad f(\tilde{x}) \leqslant f(x),$$

где $u_{\varepsilon}(\tilde{x}) = \{x : |\tilde{x} - x| < \varepsilon\}$.

Замечание:

- 1. Точка глобального минимума является точкой локального минимума. Обратное неверное.
- 2. Задача (2) имеет решение тогда и только тогда, когда $G^* \neq 0$
- 3. Согласно теореме Вейерштрасса, всякая функция, непрерывная на замкнутом ограниченном множестве, достигает на этом множестве своих inf и sup (которые являются в этом случае минимум и максимумом этой функции на этом множестве).

Таким образом задача (2) всегда имеет решение в случае непрерывной функции f.

1.1.2. Унимодальные функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: f называется унимодальной на отрезке [a;b], если $\exists a_1,b_1 \in \mathbb{R}$:

- 1. $a \leqslant a_1 \leqslant b_1 \leqslant b$
- 2. Если $a < a_1$, то f монотонно убывает на $[a; a_1]$
- 3. Если $b_1 < b$, то f монотонно возрастает на $[b_1; b]$.

4. $\forall \tilde{x} \in [a_1; b_1]$ $f(\tilde{x}) = \min_{x \in G} f(x)$

Свойства унимодальных функций

- $1^{\rm o}$ Каждая точка локального минимума унимодальной функции является одновременно точкой её глобального минимума.
- $\mathbf{2}^{\mathbf{o}}$ Если f унимодально на [a;b], то f унимодально и на любом отрезке $[a_1,b_1]\subset [a;b]$.
- **3**° Пусть:
 - 1. f унимодальна на отрезке [a; b]
 - 2. $a \le x_1 < x_2 \le b$
 - 3. x^* точка минимума функции f.

Тогда

- 1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a; x_2]$
- 2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1; b]$

1.1.3. Выпуклые функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: Функция f называется выпуклой, если

$$\forall \forall x_1, x_2 \in [a; b] \quad \forall \alpha \in [0; 1]$$

$$f(\alpha x_1 + (1 - \alpha)x_2) \leqslant \alpha f(x_1) + (1 - \alpha)f(x_2)$$
(3)

Замечание:

1. Неравенство (3) означает, что для любой хорды графика функции f(x), которая соединяет точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$, график функции f(x) на отрезке, соединяющий x_1 и x_2 , лежит не выше этой хорды.

3

2. В классическом математическом анализе такие функции называются выпуклыми вниз. Функции, которые в классическом математическом анализе являются выпуклыми вверх, мы не будем считать выпуклыми (так как они не удовлетворяют нашему определению). Эта «дискриминация» связана с тем, что в дальнейшем будем рассматривать только задачу минимизации.

Свойства выпуклых функций

Через $C^{(k)}\left[a;b\right]$ будем обозначать функции, которые непрерывны на отрезке $\left[a;b\right]$ и имеют на $\left[a;b\right]$ непрерывные производные до порядка k включительно.

1° Пусть
$$f \in C^{(1)}[a;b]$$

Тогда f выпукла тогда и только тогда, когда $f'\left(x\right)$ не убывает на $\left[a;b\right]$

 $\mathbf{2}^{\mathbf{o}}$ Пусть $f \in C^{(2)}[a;b]$, тогда f выпукла на $[a;b] \Leftrightarrow f''(x) \geqslant 0, \quad x \in [a;b]$

3° Пусть $f \in C^{(3)}[a;b]$, тогда f выпукла $\Leftrightarrow \forall x_0 \in [a;b]$ касательная к графику функции f(x) в точке x_0 лежит не выше графика f(x).

 $4^{\rm o}$ Пусть

1.
$$f \in C^{(1)}[a;b]$$

$$2. \, f$$
 выпукла на $[a;b]$

3.
$$f'(x^*) = 0$$
, $x^* \in [a; b]$

Тогда x^* — точка глобального минимума $f(x), x \in [a; b]$.

$$\mathbf{5}^{\mathbf{o}} \ C[a;b] = C^{0}[a;b]$$

Пусть

1.
$$f \in C[a; b]$$

$$2. \, f$$
 выпукло на $[a;b]$

Тогда f унимодальна на [a;b]

Замечание:

- 1. Многие методы минимизации разработанны для унимодальных функций. При этом эти методы хорошо сходятся, если f выпукла.
- 2. На практике проверку выпуклости целевой функции осуществляют не с помощью использования определения, а с использованием свойств 1-3 или физических соображений.

1.1.4. Липшицевы функции

Пусть $f:[a;b] \to \mathbb{R}$

<u>Определение:</u> Говорят, что f удовлетворяет на отрезке [a;b] удовлетворяет условию Липшица (является липшицевой), если

4

$$\exists L \geqslant 0 \quad \forall \forall x_1, x_2 \in [a; b]$$

$$|f(x_1) - f(x_2)| \le L \cdot |x_1 - x_2|$$

При этом L называется константой Липшица для f на [a;b].

Замечание: Для дифференцируемой на [a;b] функции условие Липшица означает, что для любой точки $\tilde{x} \in [a;b]$ угловой коэффициент касательной к графику f(x) в этой точке по абсолютной величине не превосходит L.

$$\forall \tilde{x} \quad |\operatorname{tg}\alpha\left(\tilde{x}\right)| \leqslant L$$

Свойства липшицевых функции

 ${f 1}^{
m o}$ Если f удовлетворяет условию Липшеца с констанотой L, то f удовлетворяет условию и с любой константой $L_1>L.$

2° Если f липшицева на [a;b], то f является липшицевой и на любом отрезке $[a_1,b_1]\subseteq [a,b]$.

 ${\bf 3^o}$ Если $f\in C^{(1)}\left[a;b\right],$ то

1. f липшицева на [a;b]

2. константа Липшица для f на [a;b] может быть выбрана

$$L = \max_{x \in [a,b]} |f'(x)|.$$

 $4^{\rm o}$ Пусть

1. $x_0 < x_1 < \cdots < x_n$

2. f является липшицевой на $[x_{i-1},x_i]$ с константой $L_i,\,i=\overline{1;n}.$

Тогда f является липшицвой на $[x_0; x_n]$ с константой

$$L = \max_{i=\overline{1;n}} L_i.$$

 $\mathbf{5}^{\mathbf{o}}$ Если f липшицева на [a;b], то она непрерывна на [a;b].

Пример:

- 1. $f(x) = \sin x$ является липшицевой на любом отрезке [a;b], так как она непрерывно дифференцируема на [a;b]
- 2. $f(x) = \sqrt{x}$ не является липшицевой на [0;a], a>0. Если бы f была липшицевой, то угловые коэффициенты касательных к графику были бы ограничены некоторой константой. Для \sqrt{x} на [0;a] это не так.

1.2. Методы одномерной оптимизации

1.2.1. Классический метод

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

Из курса математического анализа известно:

- 1. Если
 - (a) f(x) дифференцируемая в точке x^* ,
 - (b) f(x) имеет локальный экстремум в точке x^* ,

то
$$f'(x) = 0$$

- 2. Если
 - (a) f(x) дифференцируемая в окрестности x^* ,
 - (b) $f'(x^*) = 0$,

то

- (a) Если f(x)при переходе через x^* меняет знак с «-» на «+», то x^* точка локального минимума
- (b) Если f(x)при переходе через x^* меняет знак с «+» на «-», то x^* точка локального
- 3. Если
 - (a) f(x) n раз дифференцируемая в точке x^* ,
 - (b) $f'(x) = f^{(n-1)}(x^*) = 0$,
 - (c) $f^{(n)}(x^*) \neq 0$,

то

- (a) если n нечетно, то f(x) не имеет локального экстремума в точке x^* ,
- (b) если n четно, а $f^{(n)}(x^*) > 0$, то x^* точка локального минимума,
- (c) если n четно и $f^{(n)}\left(x^{*}\right)<0$, то x^{*} точка локального максимума.

Классический метод

1. Вычисляем $f'(x), x \in (a; b)$, решаем уравнение

$$f'(x) = 0 (4)$$

Пусть x_1, \ldots, x_n — его решения

- 2. Для каждой точки x_k , $k = \overline{1,n}$ проверяем условие 2 или 3 и отбираем точки $\tilde{x}_1, \dots, \tilde{x}_p$, которые отвечают условию локального минимума.
- 3. Полагаем

$$f^* = \min \left\{ f\left(\tilde{x}_1\right), \dots f\left(\tilde{x}_p\right), f\left(a\right), f\left(b\right) \right\}$$

Замечание: На практике для применения этого метода затруднительно по следующим причинам

- 1. Для практически интересных(?) функций аналитическое решение (4) часто затруднительно
- 2. Функция может быть известна из наблюдений, что ведет к тому, что невозможно получить аналитическое представление для f'(x)
- 3. Проверка достижимости условий затруднительна

Эти трудности привели к появлению численных методов.

Их делят

- 1. Прямые методы
 - методы перебора и поразрядного поиска
 - методы исключения отрезков
 - метод парабол
- 2. Методы использующие производные целевой функции
 - метод бисекций
 - метод хорд и Ньютона

1 и 2 используются для унимодальных функций

- 3. Для минимизации многомодальных функций:
 - метод перебора
 - метод ломаных

Замечание: *Прямыми* называются методы, которы используют только значения целевой функции и не используют значения её производных.

1.2.2. Методы перебора и поразрядного поиска

Всегда предполагаем, что функция является унимодальной

I метод перебора

- 1. Разобьем [a,b] системой точек $x_i=a+i\Delta,\,i=\overline{0,n},$ где $\Delta=\frac{b-a}{n}$
- 2. Затем вычислим $f(x_i)$, где $i = \overline{0,n}$
- 3. Выбираем точки $x_m, m \in \{0, \dots, n\}$ так, чтобы $f(x_m) = \min_{i=\overline{0,n}} f(x_i)$. Положим $x^* = x_m, f^* = f(x_m)$

Замечание:

1. Погрешность нахождения x^* с использованием этого метода

$$\varepsilon_n \leqslant \frac{b-a}{n}$$

2. Если принять $n\gg 1$, то $\frac{1}{n}\approx \frac{1}{n+1}$ поэтому точность $\varepsilon(N)$, которую обеспечивает этот метод для N кратного вычисления(?) целевой функции

$$\varepsilon(N) \approx \frac{b-a}{N}$$

II метод поразрядного поиска

Этот метод является усовершенствованием метода перебора с целью уменьшения количества значений целевой функции f, которое необходимо найти для достижения заданной точности.

Замечание:

1. Если в методе перебора $f(x_{i+1}) \ge f(x_i)$, то $x^* \in [a, x_{i+1}]$ и следовательно $f(x_{i+2}), f(x_{i+3}), \dots$ можно не вычислять.

2. Целесообразно сперва найти приближенное (грубо) значение x^* , а затем уточнить это значение, используя более точный шаг.

Пусть ε — требуемая точность нахождения x^* (глобальный минимум). При реализации, обычно, сперва фиксируют $\Delta > \varepsilon$, вычисляют $f_i = f\left(x_i\right)$, $x_i = a + i\Delta$, до тех пор,пока не будет выполнено условие $f_{i+1} \geqslant f_i$.

При выполнении этого условия шаг Δ уменьшается (как правило в четыре раза, а процесс поиска запускается в обратную сторону).

Пусть ε — искомая точность.

Метод поразрядного поиска

1.2.3. Методы исключения отрезков

Один из подходов к построению основан на использовании следующих свойств. Если $x_1 < x_2$, то

1. Если $f(x_1) \leqslant f(x_2)$, то $x^* \in [a, x_2]$

2. Если $f(x_1) > f(x_2)$, то $x^* \in [x_1, b]$

При построении соответствующих методов выбираем две произвольные точки x_1, x_2 :

$$a < x_1 < x_2 < b$$

Далее проверяем условия 1-2 и по результатам этой проверки отбрасываем часть отрезка [a,b].

Вычисления продолжаются до тех пор, пока длина текущего отрезка не станет меньше ε .

Пробные точки x_1, x_2 выбирают обычно симметричными от середины отрезка. Это делается для того, чтобы отношение длины нового отрезка к длине предыдущего не зависело от того, кака часть (правая или левая) отбрасывается.

Способ выбора пробных точек x_1 и x_2 определяет конкретный метод поиска минимума.

I Метод дихотомии

Выбираем достаточно малое $\delta > 0$ и положим $x_1 = \frac{a+b}{2} - \frac{\delta}{2}, x_2 = \frac{a+b}{2} + \frac{\delta}{2}$.

В этом случае отношение длины нового отрезка к длине предыдущего:

$$\tau = \frac{b - x_1}{b - a} = \frac{x_1 - a}{b - a} \approx \frac{1}{2}$$

Вычисления прекращаются, когда для очередного отрезка его длина

$$b - a < 2\varepsilon \tag{5}$$

Использование ослабленного неравенства (5) связано с тем, что в алгоритме принимается $x^* = \frac{a+b}{2}$

Замечание:

1. О выборе δ :

- (a) Чем меньше δ , тем метод лучше сходится
- (b) При слишком малых значениях δ значения $f(x_1) \approx f(x_2)$, если эти значения содержат ошибки измерений или вычислений, то возможно выполнение «не того» неравенства.

2. Число n итераций метода дихотомии необходимое для достижения заданной точности ε , определяется условием

$$n \geqslant \log_2 \frac{b - a - \delta}{2\varepsilon - \delta}$$

Доказательство

Пусть $\Delta_0 = b - a$ — длина искомого отрезка. Тогда длина искомого отрезка после первой итерации метода:

$$\Delta_1 = \frac{\Delta_0}{r} + \frac{\delta}{2}$$

Длина отрезка после второй итерации:

$$\Delta_2 = \frac{\Delta_1}{2} + \frac{\delta}{2} = \frac{\Delta_0}{4} + \delta \left(\frac{1}{2} + \frac{1}{4}\right)$$

Длина отрезка после третей итерации:

$$\Delta_3 = \frac{\Delta_2}{2} + \frac{\delta}{2} = \frac{\Delta_0}{8} + \delta \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right)$$

. . .

После n итераций:

$$\Delta_n = \frac{\Delta_0}{2^n} + \delta\left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right) = \frac{\Delta_0}{2^n} + \delta\left(1 - \frac{1}{2^n}\right)$$

Уловие окончания: $\Delta_n \leqslant 2\varepsilon$

Тогда

$$\frac{b-a-\delta}{2^n} + \delta \leqslant 2\varepsilon$$

$$\frac{b-a-\delta}{2^n} \leqslant 2\varepsilon - \delta$$

$$2^n \geqslant \frac{b-a-\delta}{2\varepsilon - \delta}$$

$$n \geqslant \log_2 \frac{b-a-\delta}{2\varepsilon - \delta}$$

3. Так как δ обычно выбирают достаточно малым, то точность ε_n , которая обеспечивается после выполнения n итераций алгоритма,

$$n \approx \log_2 \frac{b - a - \delta}{2\varepsilon_n} \Rightarrow \varepsilon_n \approx \frac{b - a}{2^{n+1}}$$

Поскольку для выполнения n итераций алгоритма требуется N=2n вычислений значений целевой функции f, то точность $\varepsilon(N)$, которая будет гарантированно после N вычислений значений функции

$$\varepsilon(N) = \varepsilon_{\frac{N}{2}} = \frac{b-a}{2^{N/2+1}}$$

II Метод золотого сечения

Для уменьшения количества значений целевой функции, которые приходится вычислять в ходе реализации алгоритма постараемся выбрать пробные точки x_1 и x_2 внутри отрезка [a;b] так, чтобы при переходе к очередному отрезку одна из этих точек стала новой пробной точкой.

При этом будем считать, что отношение длины нового отрезка к длине текущего отрезка не зависит от номера итерации и равно τ . Так же будем считать, что x_1 и x_2 располагаются симметрично относительно середины отрезка [a;b].

$$\tau = \frac{b' - a'}{b - a}$$

1.

$$x_2 = a + \tau (b - a)$$
$$x_1 = b - \tau (b - a)$$

2. Отношение длины отрезка $[a', x_2']$ к длине отрезка [a', b'] должны быть равны τ :

$$Д\pi([a', x_2']) = Д\pi([a; x_1]) = x_1 - a = b - a - \tau(b - a)$$

$$Д\pi([a',b']) = Д\pi([a,x_2]) = x_2 - a = \tau(b-a)$$

Таким образом

$$\frac{b-a-\tau\,(b-a)}{\tau\,(b-a)} = \tau \Rightarrow \frac{1-\tau}{\tau} = \tau \Rightarrow \tau^2 + \tau - 1 = 0$$
$$\tau = \frac{-1+\sqrt{1+4}}{2} = \frac{\sqrt{5}+1}{2} \approx 0.6183$$

отрицательное решение не рассматриваем.

Таким образом

$$\tau = 0.6183$$

$$x_1 = b - \tau (b - a)$$

$$x_2 = a + \tau (b - a)$$

Замечание:

1. Каждая из точек x_1 и x_2 , используемых в рассматриваемом методе, делит отрезок [a;b] на неравные части так, что

длина отрезка
$$[a;b]$$
 длина большей части отрезка $[a;b]$ длина большей части отрезка $[a;b]$ длина меньшей части отрезка $[a;b]$

Про такие точки говорят, что они реализуют золотое сечение отрезка [a;b].

2. На каждой итерации длина отрезка уменьшается в $\tau = \frac{\sqrt{5}-1}{2}$ раз. Поэтому после n итераций длина соответствующего отрезка равна

$$\frac{1}{2}\tau^n \left(b-a\right)$$

так как в конце берем $x^* = \frac{a+b}{2}$

3. Число n итераций, необходимых для достижения заданной точности ε , составляет

$$\begin{split} \frac{1}{2}\tau^n \left(b-a\right) \leqslant \varepsilon \Rightarrow \tau^n \leqslant \frac{2\varepsilon}{b-a} \Rightarrow \\ n \geqslant \log_\tau \frac{2\varepsilon}{b-a} &= \frac{\ln \frac{2\varepsilon}{b-a}}{\ln \tau} \approx -2.1 \cdot \ln \frac{2\varepsilon}{b-a} = 2.1 \ln \frac{b-a}{2\varepsilon} \end{split}$$

4. Для выполнения первой итерации необходимо вычисление двух значений целевой функции f. Для выполнения второй, третей, . . . итераций необходимо вычисление одного значения функции. Поэтому для выполнения n итераций необходимо вычислить N+1 значений функции. Поэтому

$$\varepsilon(N) = \varepsilon_n \Big|_{n=N-1} = \frac{1}{2} \tau^{N-1} (b-a) \approx \tau^{N-2} (b-a)$$

1.2.4. Метод парабол

Метод парабол является представителем группы методов, основанных на аппроксимации целевой функции некоторой более простой функцией (как правило полиномом), минимум которой можно легко найти. Точка минимума этой аппроксимируещей функции и принимается за очередное приближение точки минимума целевой функции.

Пусть

- 1. f унимодальна на [a; b]
- 2. f достигает минимума во внутренней точке отрезка [a;b]

Выберем три точки $x_1, x_2, x_3 \in [a; b)$, так чтобы (*):

- 1. $x_1 < x_2 < x_3$
- 2. $f(x_1) \geqslant f(x_2) \leqslant f(x_3)$ принимает по крайне мере одно неравенство строгое

Тогда в силу унимодальности функции f точка минимума $x^* \in [x_1, x_3]$.

Аппроксимируем целевую функцию параболой, проходящей через точки (x_1, f_1) , (x_2, f_2) , (x_3, f_3) , где $f_i = f(x_i)$, $i = \overline{1;3}$.

В силу условий (*) ветви параболы направленны вверх. Это значит, что точка \overline{x} минимума этой параболы также принадлежит отрезку $[x_1, x_3]$.

Точка \overline{x} принимается за очередное приближение точки x^* .

Пусть $q(x) = a_0 + a_1(x - x_1) + a_2(x - x_1)(x - x_2)$ — уравнение параболы.

Можно показать, что условия $q\left(x_{i}\right)=f_{i},\,i=\overline{1;3},$ приводят к (**):

$$a_0 = f_1$$

$$a_1 = \frac{f_2 - f_1}{x_2 - x_1}$$

$$a_2 = \frac{1}{x_3 - x_2} \left[\frac{f_3 - f_1}{x_3 - x_1} - \frac{f_2 - f_1}{x_2 - x_1} \right]$$

$$\overline{x} = \frac{1}{2} \left[x_1 + x_2 - \frac{a_1}{a_2} \right]$$

Метод парабол

Замечание:

1. В качестве критерия окончания вычислений используется условие $|\overline{x}-\overline{x}'|<\varepsilon$, означающее близость друг к другу двух последовательных приближений точки x^* . Вообще говоря, выполнение этого условия не гарантирует близость этих точек к x^* . Однако на практике такое условие удовлетворительно работает. Дополнительно точность текущего приближения можно оценивать (если получится) с использованием длины отрезка $[x_1, x_3]$.

- 2. О выборе точек x_1, x_2, x_3
 - (a) На первой итерации для выбора точек x_1, x_2, x_3 обычно достаточно использование нескольких пробных точек. Если это не получается за разумное время, можно выполнить несколько итераций метода золотого сечения до тех пор, пока пробные точки этого метода и одна из граничных точек текущего отрезка не будут удовлетворять условиям (*).
 - (b) На второй и последующих итерациях на отрезке $[x_1, x_3]$ рассматриваются две пробные точки x_2 и \overline{x} , для которых используется метод исключения отрезков. В новом отрезке $[x_1', x_3']$ в качестве x_2' выбирается та точка из x_2 и \overline{x} , которая оказалась внутри.
- 3. На каждой итерации метода парабол, кроме первой, вычисляется только одно значение целевой функции: \overline{f} .

1.2.5. Метод бисекции и хорд

Согласно сформулированным в п. 1 свойствам для дифференцируемой выпуклой (а значит и унимодальной) функции f условие:

$$f'(x) = 0$$

является не только необходимым, но и достаточным условием точки минимума.

Метод бисекции поиска минимума функции f(x)

Является методом решения уравнения f'(x) = 0.

Замечание: Метод бисекции решения уравнения $g\left(x\right)=0$

Пусть

1. g(x) имеет единственный корень на [a;b]

2.
$$g(a)g(b) < 0$$

В качестве очередного приближения корня x^* в методе бисекции принимают значение

$$\overline{x} = \frac{a+b}{2}$$

Далее:

если
$$g\left(\overline{x}\right)g\left(a\right)<0\Rightarrow b:=\overline{x};$$

если
$$g(\overline{x})g(a) > 0 \Rightarrow a := \overline{x}.$$

Вычисления останавливают, когда

$$|b-a| < 2\varepsilon$$

и полагают

$$x^* = \frac{x+b}{2}$$

Конец замечания

Метод бисекции решения задачи

$$\begin{cases} f\left(x\right) \to \min \\ x \in [a;b] \end{cases}$$

< !!! БЛОК СХЕМА>

Замечание:

1. Так как мы используем метод бисекции для минимизации именно выпуклой функции, то

$$\begin{cases} f'(a) < 0 \\ f'(b) > 0 \end{cases}$$

2. На каждой итерации отрезок уменьшается вдвое, следовательно после n итераций будет достигнута точность

$$\varepsilon_n = \frac{b-a}{2^{n+1}}$$

Для достижения заданной точности ε необходимо сделать определенное число шагов, которое можно посчитать заранее:

$$n \geqslant \log_2 \frac{(b-a)}{\varepsilon} - 1$$

Метод хорд

Метод хорд решения задачи минимизации

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

является методом хорд решения уравнения f'(x) = 0

Замечание: Метод хорд решения уравнения g(x) = 0.

В методе хорд предполагается, что

1. g(x) имеет единственный корень на [a;b],

2.
$$g(a)g(b) < 0$$
.

В качестве очередного приближения \overline{x} корня x^* используется точка пересечения с осью Ox хорды, соединяющей точки (a, g(a)), (b, g(b)).

В качестве условия окончания вычислений используется

либо $|\overline{x}-\overline{x}'|\leqslant \varepsilon$, где \overline{x}' — приближение x^* с предыдущей итерации

либо $|g\left(\overline{x}\right)| < \varepsilon$

Получим расчетное соотношение метода хорд.

$$\begin{pmatrix} a,g\left(a\right) \end{pmatrix} \\ (b,g\left(b\right))$$

Уравнение хорды:

$$\frac{x-a}{b-a} = \frac{y-g\left(a\right)}{g\left(b\right)-g\left(a\right)}$$

Пересечение с Ox:

$$y = 0$$

$$x = \frac{b - a}{g(b) - g(a)} \cdot (-g(a)) + a$$

Метод хорд

Решение задачи

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

< !!! БЛОК СХЕМА>

<u>Замечание:</u> На каждой итерации, кроме первой, необходимо вычислять только одно значение функции $f'(\overline{x})$.

1.2.6. Метод Ньютона

Пусть

1.
$$f \in C^2[a;b]$$

2.
$$f''(x) > 0$$

Из условия 2 вытекает, что f выпукла на [a;b]. Совместно с условием 1 это значит, что f унимодальна.

Метод Ньютона поиска минимума функции f(x) является метод касательных (Ньютона) решения уравнения f'(x) = 0.

Замечание: Метод касательных решения g(x) = 0.

Пусть g'(x)имеет постоянный знак на [a;b],

В качестве очередного приближения неизвестного корня x^* используется точка \overline{x} пересечения касательной к графику функции g(x) в точке \overline{x}' , где x' — текущее приближение известного корня.

Условием окончания итераций служит:

либо
$$|\overline{x}' - \overline{x}| \leqslant \varepsilon$$
,

либо
$$|g(\overline{x})| \leqslant \varepsilon$$
.

Замечание: Метод Ньютона обладает высокой точностью и скоростью сходимости, только в том случае, когда начальное приближение x_0 достаточно близкого x^* . В случае неудачного выбора x_0 метод может расходится. Как правило, чем больше значения функции g'(x) в окрестности x^* , тем лучше сходится метод.

Расчетное соотношения метода Ньютона:

1. Уравнение касательной в точке точке \overline{x}' :

$$y = g'(\overline{x}') \cdot (x - \overline{x}) + g(\overline{x}')$$

2. Пересечение с Ox

 $\underline{\text{Замечание:}}$ Иногда, когда вычисление g'(x) очень трудоемко, используют модификацию метода Ньютона, которая называется «Методом одной касательной».

В качестве очередного приближения \overline{x} неизвестного корня x^* используют точку пересечения Ox прямой, проходящей через точку $(\overline{x}', g(\overline{x}'))$, где \overline{x}' — текущее приближение, параллельное касательной к графику g(x) в точке x_0, x_0 — начальное приближение.

Метод Ньютона решения задачи

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases}$$

Замечание:

1. Формулу $x_{k+1} := x_k - \frac{f'(x_k)}{f''(x_k)}$, с помощью которой вычисляется очередное приближение точки x^* , так же можно получить из следующих соображений. Рассмотрим квадратный трехчлен.

$$q(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f''(x_k)(x - x_k)^2$$

Точка минимума трехчлена q(x):

$$\overline{x} = x_k + " - \frac{b}{2a}" = x_k + \frac{-f'(x_k)}{2 \cdot \frac{1}{2} \cdot f''(x_k)} = x_k - \frac{f'(x_k)}{f''(x_k)}$$

Так как функция f выпукла и дважды дифференцируемая то её график в окрестности точки x_k «похожа» на параболу и, следовательно, парабола хорошо аппроксимирует f. Поэтому точка x_{k+1} миндимиума функции q(x) близка к точке x^* функции f(x), если x_k выбрана удачно.

2. Можно показать, что погрешность k-ой итерации метода Ньютона

$$|x_{k+1} - x^*| \leqslant C \cdot q^{2^k},$$

где $C>0,\ q\in (0;1),$ но только в случае, если начальные x_0 выбраны удачно. Константы $C,\ q$ зависят от f и от выбора $x_0.$

3. Если метод Ньютона расходится, то можно выполнить несколько некоторых итераций какогонибудь другого метода, например метода золотого сечения.

1.2.7. Метод перебора

Метод был описан выше. Отрезок [a;b] разбивается на n равных частей n+1 точками:

$$\begin{array}{rcl} x_i & = & a+i\Delta; & & i=\overline{0;n} \\ \Delta & = & \dfrac{b-a}{n} \end{array}$$

В качестве точки x^* принимается точка x_m , для которой

$$f\left(x_{m}\right) = \min_{i=\overline{0:n}} \left\{f\left(x_{i}\right)\right\}$$

Ранее была доказана сходимость этого метода для унимодальных на [a;b] функций.

Оказывается этот метод сходится и для многомодальных функций, если дополнительно потребовать липшецевость целевой функции.

Теорема: Пусть

1. Функция f удовлетворяет на отрезке [a;b] условию Липшица с константой L

2. $x^* := x_m$ — точка минимума, найденная методом перебора

3. $f^* := f(x^*)$

Тогда

$$\delta_n \leqslant L \cdot \frac{b-a}{2n},$$

где n — число отрезков разбиения $[a;b], \, \delta_n = |f^* - f^*_{\text{точн}}|.$

- 1. Так как f непрерывна на отрезке [a;b], то f достигает на [a;b] своей точки минимума (?), тогда $\exists \min_{x \in [a;b]} f(x) = f^*_{\text{точн}}$
- 2. Пусть x^* точка глобального минимума f(x) на [a;b]

Очевидно, что среди точек $x_i,\,i=\overline{0;n},$ найдется точка x_k такая, что

$$|x_k - x^*_{\text{точн}}| \leqslant \frac{\Delta}{2} = \frac{b-a}{2n}$$

Тогда

$$0 \leqslant f\left(x_{m}\right) - f_{\text{точн}}^{*} \leqslant f\left(x_{k}\right) - f_{\text{точн}}^{*} \leqslant L \cdot \left|x_{k} - x_{\text{точн}}^{*}\right| \leqslant L \cdot \frac{b - a}{2n}$$

Ввиду того, что $f(x_k) \geqslant f(x_m)$

_

Замечание:

1. Из доказанной теоремы вытекает, что вычисления n значений целевой функции гарантирует точность

$$\delta(N) \leqslant L \cdot \frac{(b-a)}{2(N-1)}$$

2. Для обеспечения заданной точности δ необходимо вычислить

$$N\geqslant\frac{L\left(b-a\right)}{2\delta}+1$$

3. Может получится так, что значение f^* найдено с заданной точностью $\delta,$ но точка минимума $x^* = x_m$ далека от $x^*_{\text{точн}}$

1.2.8. Метод ломаных

Метод ломаных также является прямым методом минимизации многомодальных функций. Пусть

- 1. f удовлетворяет на [a;b] условию Липшеца с константой L
- 2. $\overline{x} \in [a; b]$
- 3. Введем в рассмотрение вспомогательную функцию

$$g(\overline{x}, x) = f(\overline{x}) - L|x - \overline{x}|$$

 $\overline{x} = const$
 $x = var$

 $\underline{\text{Замечание:}}$ График $g\left(\overline{x},x\right)$ располагается ниже графика $f\left(x\right)$ так как L — константа Липшеца для f.

Идея метода ломаных заключается в аппроксимации целевой функции f кусочно-линейной функцией, звенья которой имеют угловые коэффициенты $\pm L$. В качестве минимального значения функции f принимается минимальное значение функции, графиком которой является эта ломанная.

<u>Обозначим:</u> $p_k\left(x\right),\,k=0,1,2,\ldots$ кусочно-линейная функция, построенная на k-ой итерации.

#0 Рассмотрим прямые

$$y = f(a) - L(x - a)$$

$$y = f(b) - L(x - b)$$

Эти прямые пересекаются в точке с координатами

$$x_0 = \frac{1}{2L} [f(a) - f(b) + L(a+b)]$$

 $y_0 = \frac{1}{2} [f(a) - f(b) + L(a-b)]$

Примем

$$p_{0}(x) = \begin{cases} f(a) - L(x - a), & a \leq x \leq x_{0} \\ f(b) + L(x - b), & x_{0} \leq x \leq b \end{cases}$$

#1 Построим $p_1(x)$.

Функция $p_0\left(x\right)$ имеет единственную точку глобального минимума $x_0^*=x_0$. Положим

$$p_1(x) = \max \{p_0(x), g(x_0^*, x)\}\$$

 $p_{1}\left(x\right)$ в отличие от $p_{0}\left(x\right)$ вместо одной точки x_{0}^{*} глобального минимума имеет две точки x_{1}^{\prime} и $x_{1}^{\prime\prime}$ локального минимума.

Прим этом

$$x'_{1} = x_{0}^{*} - \Delta_{1}$$

$$x''_{1} = x_{0}^{*} + \Delta_{1}$$

$$\Delta_{1} = \frac{1}{2L} [f(x_{0}^{*}) - p_{0}^{*}]$$

#2Опишем построение функции $p_{2}\left(x\right)$.

Выберем произвольную точку x_1^* , в которой $p_1(x)$ имеет глобальный минимум (в нашем случае таких точек две: x_1' и x_1'' , выберем $x_1^* = x_1'$).

$$p_2(x) = \max \{p_1(x), g(x_1^*, x)\}$$

 По сравнению с $p_{1}\left(x\right)$ функция $p_{2}\left(x\right)$ вместо точки x_{1}^{*} глобального минимума имеет две точки x_2' и x_2'' локального минимума

$$x_{2}' = x_{1} - \Delta_{2}$$

$$x_{2}'' = x_{1} + \Delta_{2}$$

$$\Delta_{2} = \frac{1}{2} [f(x_{1}^{*}) - p_{1}^{*}]$$

Причем

 $p_{2}\left(x_{2}'\right)=p_{2}\left(x_{2}''\right)=\frac{1}{2}\left[f\left(x_{1}^{*}\right)+p_{1}^{*}\right]$

#k Пусть построена функция $p_{k-1}(x)$. Опишем построение $p_k(x)$. Пусть x_{k-1}^* — точка глобального минимума функции $p_{k-1}(x)$, $p_{k-1}^* = p_{k-1}(x_{k-1}^*)$. Положим

$$p_k(x) = \max \{p_{k-1}(x), g(x_{k-1}^*, x)\}.$$

Функция $p_k\left(x\right)$ по сравнению с $p_{k-1}\left(x\right)$ будет иметь две точки x_k' и x_k'' локального минимума вместо одной точки x_{k-1}^* глобального минимума. При этом

$$x'_{k} = x_{k-1}^{*} - \Delta_{k}$$

$$x''_{k} = x_{k-1}^{*} + \Delta_{k}$$

$$\Delta_{k} = \frac{1}{2L} \left[f\left(x_{k-1}^{*}\right) - p_{k-1}^{*} \right]$$

Причем

$$p_k(x'_k) = p_k(x''_k) = \frac{1}{2} [f(x^*_{k-1}) + p^*_{k-1}]$$

Свойства функций $p_k(x)$

- 1. $p_k\left(x\right)$ непрерывная кусочно-линейная функция, каждое звено которой имеет угловой коэффициент +L или -L.
- 2. $p_{k}\left(x\right)$ имеет ровно k+1 точку локального минимума.
- 3. $p_{k-1}(x) \leq p_k(x) \leq f(x), x \in [a; b]$
- 4. Ломанные $p_k\left(x\right)$ при $k\to\infty$ приближаются снизу к графику функции $f\left(x\right)$ в окрестностях точек её глобального минимума

Основное достоинство метода ломаных заключается в том, что минимум кусочно-линейной функции искать существенно проще, чем минимум f(x). При этом на каждом шаге (кроме нулевого) метода ломанных требуется вычисление лишь одного значения целевой функции.

Теорема: Пусть

- 1. f(x) удовлетворяет условию Липшеца на [a;b] с константной L.
- 2. $p_{k}\left(x\right),\,k=0,1,2,\ldots$ последовательность ломаных, построенных по указному методу.

3. x_{k}^{*} — точка глобального минимума функции $p_{k}\left(x\right)$

Тогда

1.
$$\lim_{k \to \infty} p_k(x_k^*) = f(x^*) = \min_{x \in [a;b]} f(x)$$

- 2. Если точка x^* глобальный минимум функции $f\left(x\right)$ единственна на [a;b], то $x_k^*\underset{k\to\infty}{\to}x^*$
- 3. Оценка погрешности

$$\delta_k = 2L\Delta_k$$

где
$$\delta_k = f(x_k^*) - f^*$$

Замечание:

- 1. Последняя оценка погрешности используется в качестве критерия для остановки вычислений.
- 2. Если f(x) имеет несколько глобальных мимиумов на [a;b], то есть $|G^*| \ge 2$, то пункт 2 теоремы можно сформулировать таким образом

$$\lim_{k \to \infty} \rho_k = 0$$

где ρ_k — расстояние от x_k^* до ближайшей ей точки из G^* .

< БЛОК СХЕМА !!! >

Замечание: об определении константы L

- 1. Если получится, то можно оценить производную $|f'(x)| \leq A$ и принять L = A.
- 2. Найти угловые коэффициенты k_1, \ldots, k_l некоторого количества хорд графика функции f(x). Эти значения являются нижними оценками для постоянной Липшеца, тогда можно принять

$$L = \max_{i=\overline{1;l}} \{k_i\} + \{$$
некоторая величина $\}$

Если {некоторую велчину} выбрать слишком большой, то метод будет долго сходится. Если {некоторую велчину} выбрать слишком малой, так, что полученное значение L не будет постоянной Липшица для f, то метод может разойтись.