Rule	Direction	Src Addr	Dest Addr	Protocol	Dest Port	Action
A	In	External	Internal	TCP	25	Permit
В	Out	Internal	External	TCP	>1023	Permit
С	Out	Internal	External TCP		25	Permit
D	In	External	Internal	TCP	>1023	Permit
Е	Either	Any	Any	Any	Any	Deny

- a. Describe the effect of each rule.
- b. Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail from a remote host with IP address 192.168.3.4. If successful, this generates an SMTP dialogue between the remote user and the SMTP server on your host consisting of SMTP commands and mail. Additionally, assume that a user on your host tries to send e-mail to the SMTP server on the remote system. Four typical packets for this scenario are as shown:

Packet	Direction	Src Addr	Dest Addr	Protocol	Dest Port	Action
1	In	192.168.3.4	172.16.1.1	TCP	25	?
2	Out	172.16.1.1	192.168.3.4	TCP	1234	?
3	Out	172.16.1.1	192.168.3.4	TCP	25	?
4	In	192.168.3.4	172.16.1.1	TCP	1357	?

Indicate which packets are permitted or denied and which rule is used in each case. c. Someone from the outside world (10.1.2.3) attempts to open a connection from port 5150 on a remote host to the Web proxy server on port 8080 on one of your local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as follows:

Packet	Direction Src Addr		Dest Addr Protocol		Dest Port	Action
5	In	10.1.2.3	172.16.3.4	TCP	8080	?
6	Out	172.16.3.4	10.1.2.3	TCP	5150	?

Will the attack succeed? Give details.

12.6 To provide more protection, the ruleset from the preceding problem is modified as follows:

Rule	Direction	Src Addr	Dest Addr	Protocol	Src Port	Dest Port	Action
A	In	External	Internal	TCP	>1023	25	Permit
В	Out	Internal	External	TCP	25	>1023	Permit
С	Out	Internal	External	TCP	>1023	25	Permit
D	In	External	Internal	TCP	25	>1023	Permit
Е	Either	Any	Any	Any	Any	Any	Deny

- a. Describe the change.
- b. Apply this new ruleset to the same six packets of the preceding problem. Indicate which packets are permitted or denied and which rule is used in each case.

- A hacker uses port 25 as the client port on his or her end to attempt to open a connection to your Web proxy server.
 - a. The following packets might be generated:

Packet	Direction	Src Addr	Dest Addr	Protocol	Src Port	Dest Port	Action
7	In	10.1.2.3	172.16.3.4	TCP	25	8080	?
8	Out	172.16.3.4	10.1.2.3	TCP	8080	25	?

Explain why this attack will succeed, using the ruleset of the preceding problem.

- b. When a TCP connection is initiated, the ACK bit in the TCP header is not set. Subsequently, all TCP headers sent over the TCP connection have the ACK bit set. Use this information to modify the ruleset of the preceding problem to prevent the attack just described.
- A common management requirement is that "all external Web traffic must flow via the organization's Web proxy." However, that requirement is easier stated than implemented. Discuss the various problems and issues, possible solutions, and limitations with supporting this requirement. In particular consider issues such as identifying exactly what constitutes "Web traffic" and how it may be monitored, given the large range of ports and various protocols used by Web browsers and servers.
- Consider the threat of "theft/breach of proprietary or confidential information held in key data files on the system." One method by which such a breach might occur is the accidental/deliberate e-mailing of information to a user outside of the organization. A possible countermeasure to this is to require all external e-mail to be given a sensitivity tag (classification if you like) in its subject and for external e-mail to have the lowest sensitivity tag. Discuss how this measure could be implemented in a firewall and what components and architecture would be needed to do this.
- You are given the following "informal firewall policy" details to be implemented using a firewall like that in Figure 12.2:
 - 1. E-mail may be sent using SMTP in both directions through the firewall, but it must be relayed via the DMZ mail gateway that provides header sanitization and content filtering. External e-mail must be destined for the DMZ mail server.
 - 2. Users inside may retrieve their e-mail from the DMZ mail gateway, using either POP3 or POP3S, and authenticate themselves.
 - 3. Users outside may retrieve their e-mail from the DMZ mail gateway, but only if they use the secure POP3 protocol, and authenticate themselves.
 - 4. Web requests (both insecure and secure) are allowed from any internal user out through the firewall but must be relayed via the DMZ Web proxy, which provides content filtering (noting this is not possible for secure requests), and users must authenticate with the proxy for logging.
 - 5. Web requests (both insecure and secure) are allowed from anywhere on the Internet to the DMZ Web server.
 - 6. DNS lookup requests by internal users allowed via the DMZ DNS server, which queries to the Internet.
 - 7. External DNS requests are provided by the DMZ DNS server.
 - 8. Management and update of information on the DMZ servers is allowed using secure shell connections from relevant authorized internal users (may have different sets of users on each system as appropriate).
 - 9. SNMP management requests are permitted from the internal management hosts to the firewalls, with the firewalls also allowed to send management traps (i.e., notification of some event occurring) to the management hosts.

Design suitable packet filter rulesets (similar to those shown in Table 12.1) to be implemented on the "External Firewall" and the "Internal Firewall" to satisfy the aforementioned policy requirements.

APPENDIX A

SOME ASPECTS OF NUMBER THEORY

A.1 Prime and Relatively Prime Numbers

Divisors Prime Numbers Relatively Prime Numbers

A.2 Modular Arithmetic

In this appendix, we provide some background on two concepts referenced in this book: prime numbers and modular arithmetic.

A.1 PRIME AND RELATIVELY PRIME NUMBERS

In this section, unless otherwise noted, we deal only with nonnegative integers. The use of negative integers would introduce no essential differences.

Divisors

We say that $b \neq 0$ divides a if a = mb for some m, where a, b, and m are integers. That is, b divides a if there is no remainder on division. The notation $b \mid a$ is commonly used to mean b divides a. Also, if $b \mid a$, we say that b is a divisor of a. For example, the positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

- If $a \mid 1$, then $a = \pm 1$
- If $a \mid b$ and $b \mid a$, then $a = \pm b$
- Any $b \neq 0$ divides 0
- If $b \mid g$ and $b \mid h$, then $b \mid (mg + nh)$ for arbitrary integers m and n

To see this last point, note that

If $b \mid g$, then g is of the form $g = b \times g_1$ for some integer g_1 .

If $b \mid h$, then h is of the form $h = b \times h_1$ for some integer h_1 .

So

$$mg + nh = mbg_1 + nbh_1 = b \times (mg_1 + nh_1)$$

and therefore b divides mg + nh.

Prime Numbers

An integer p > 1 is a prime number if its only divisors are ± 1 and $\pm p$. Prime numbers play a critical role in number theory and in the techniques discussed in Chapter 3.

Any integer a > 1 can be factored in a unique way as

$$a = p_1^{a_1} \times p_2^{a_2} \times \ldots \times p_t^{a_t}$$

where $p_1 < p_2 < \ldots < p_t$ are prime numbers and where each a_i is a positive integer. For example, $91 = 7 \times 13$ and $11011 = 7 \times 11^2 \times 13$.

It is useful to cast this another way. If P is the set of all prime numbers, then any positive integer can be written uniquely in the following form:

$$a = \prod_{p \in P} p^{a_p}$$
 where each $a_p \ge 0$

The right-hand side is the product over all possible prime numbers p; for any particular value of a, most of the exponents a_p will be 0.

The value of any given positive integer can be specified by simply listing all the nonzero exponents in the foregoing formulation. Thus, the integer 12 is represented by $\{a_2 = 2, a_3 = 1\}$, and the integer 18 is represented by $\{a_2 = 1, a_3 = 2\}$. Multiplication of two numbers is equivalent to adding the corresponding exponents:

$$k = mn \rightarrow k_p = m_p + n_p$$
 for all p

What does it mean, in terms of these prime factors, to say that $a \mid b$? Any integer of the form p^k can be divided only by an integer that is of a lesser or equal power of the same prime number, p^{i} with $j \leq k$. Thus, we can say

$$a|b \rightarrow a_p \leq b_p$$
 for all p

Relatively Prime Numbers

We will use the notation gcd(a, b) to mean the **greatest common divisor** of a and b. The positive integer c is said to be the greatest common divisor of a and b if

- 1. c is a divisor of a and of b.
- 2. Any divisor of a and b is a divisor of c.

An equivalent definition is the following:

$$gcd(a, b) = max[k, such that k | a and k | b]$$

Because we require that the greatest common divisor be positive, gcd(a, b) $= \gcd(a, -b) = \gcd(-a, b) = \gcd(-a, -b)$. In general, $\gcd(a, b) = \gcd(|a|, |b|)$. For example, gcd(60, 24) = gcd(60, -24) = 12. Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|.

It is easy to determine the greatest common divisor of two positive integers if we express each integer as the product of primes. For example,

$$300 = 2^{2} \times 3^{1} \times 5^{2}$$

$$18 = 2^{1} \times 3^{2}$$

$$gcd(18, 300) = 2^{1} \times 3^{1} \times 5^{0} = 6$$

In general,

$$k = \gcd(a, b)$$
 \rightarrow $k_p = \min(a_p, b_p)$ for all p

Determining the prime factors of a large number is no easy task, so the preceding relationship does not directly lead to a way of calculating the greatest common divisor.

The integers a and b are relatively prime if they have no prime factors in common, that is, if their only common factor is 1. This is equivalent to saying that a and b are relatively prime if gcd(a, b) = 1. For example, 8 and 15 are relatively prime because the divisors of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5, and 15, so 1 is the only number on both lists.

A.2 MODULAR ARITHMETIC

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer quotient q and an integer remainder r that obey the following relationship:

$$a = qn + r$$
 $0 \le r < n; q = |a/n|$

where $\lfloor x \rfloor$ is the largest integer less than or equal to x.

Figure A.1 a demonstrates that, given a and positive n, it is always possible to find q and r that satisfy the preceding relationship. Represent the integers on the number line; a will fall somewhere on that line (positive a is shown, a similar demonstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn such that $qn \le a$ and (q + 1)n > a. The distance from qn to a is r, and we have found the unique values of q and r. The remainder r is often referred to as a **residue**.

If a is an integer and n is a positive integer, we define $a \mod n$ to be the remainder when a is divided by n. Thus, for any integer a, we can always write:

$$a = |a/n| \times n + (a \bmod n)$$

Two integers a and b are said to be **congruent modulo** n, if $(a \mod n) = (b \mod n)$. This is written $a \equiv b \mod n$. For example, $73 \equiv 4 \mod 23$ and $21 \equiv -9 \mod 10$. Note that if $a \equiv 0 \mod n$, then $n \mid a$.

The modulo operator has the following properties:

- 1. $a \equiv b \mod n$ if $n \mid (a b)$
- 2. $(a \bmod n) = (b \bmod n) \text{ implies } a \equiv b \bmod n$

Figure A.1 The Relationship a = qn + r; $0 \le r < n$

- 3. $a \equiv b \mod n$ implies $b \equiv a \mod n$.
- **4.** $a \equiv b \mod n$ and $b \equiv c \mod n$ imply $a \equiv c \mod n$.

To demonstrate the first point, if $n \mid (a - b)$, then (a - b) = kn for some k. So we can write a = b + kn. Therefore, $(a \mod n) = (remainder when <math>b + kn$ is divided by n) = (remainder when b is divided by n) = ($b \mod n$). The remaining points are as easily proved.

The (mod n) operator maps all integers into the set of integers $\{0, 1, \ldots, (n-1)\}$. This suggests the question: Can we perform arithmetic operations within the confines of this set? It turns out that we can; the technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

- 1. $[(a \bmod n) + (b \bmod n)] \bmod n = (a + b) \bmod n$
- 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- 3. $[(a \bmod n) \times (b \bmod n)] \bmod n = (a \times b) \bmod n$

We demonstrate the first property. Define $(a \mod n) = r_a$ and $(b \mod n) = r_b$. Then we can write $a = r_a + jn$ for some integer j and $b = r_b + kn$ for some integer k. Then

$$(a+b) \bmod n = (r_a + jn + r_b + kn) \bmod n$$
$$= (r_a + r_b + (k+j)n) \bmod n$$
$$= (r_a + r_b) \bmod n$$
$$= [(a \bmod n) + (b \bmod n)] \bmod n$$

The remaining properties are as easily proved.

APPENDIX B

PROJECTS FOR TEACHING NETWORK SECURITY

- **B.1** Research Projects
- **B.2** Hacking Project
- **B.3** Programming Projects
- **B.4** Laboratory Exercises
- **B.5** Practical Security Assessments
- **B.6** Firewall Projects
- **B.7** Case Studies
- **B.8** Writing Assignments
- **B.9** Reading/Report Assignments

Many instructors believe that research or implementation projects are crucial to the clear understanding of network security. Without projects, it may be difficult for students to grasp some of the basic concepts and interactions among components. Projects reinforce the concepts introduced in the book, give the student a greater appreciation of how a cryptographic algorithm or protocol works, and can motivate students and give them confidence that they are capable of not only understanding but implementing the details of a security capability.

In this text, I have tried to present the concepts of network security as clearly as possible and have provided numerous homework problems to reinforce those concepts. However, many instructors will wish to supplement this material with projects. This appendix provides some guidance in that regard and describes support material available in the **Instructor's Resource Center (IRC)** for this book, accessible to instructors from Pearson Education. The support material covers nine types of projects:

- 1. Research projects
- 2. Hacking project
- 3. Programming projects
- 4. Laboratory exercises
- 5. Practical security assessments
- 6. Firewall projects
- 7. Case studies
- 8. Writing assignments
- 9. Reading/report assignments

B.1 RESEARCH PROJECTS

An effective way of reinforcing basic concepts from the course and for teaching students research skills is to assign a research project. Such a project could involve a literature search as well as an Internet search of vendor products, research lab activities, and standardization efforts. Projects could be assigned to teams or, for smaller projects, to individuals. In any case, it is best to require some sort of project proposal early in the term, giving the instructor time to evaluate the proposal for appropriate topic and appropriate level of effort. Student handouts for research projects should include the following:

- A format for the proposal
- A format for the final report
- A schedule with intermediate and final deadlines
- A list of possible project topics

The students can select one of the topics listed in the instructor's manual or devise their own comparable project. The IRC includes a suggested format for the proposal and final report as well as a list of fifteen possible research topics.

B.2 HACKING PROJECT

The aim of this project is to hack into a corporation's network through a series of steps. The Corporation is named Extreme In Security Corporation. As the name indicates, the corporation has some security holes in it, and a clever hacker is able to access critical information by hacking into its network. The IRC includes what is needed to set up the Web site. The student's goal is to capture the secret information about the price on the quote the corporation is placing next week to obtain a contract for a governmental project.

The student should start at the Web site and find his or her way into the network. At each step, if the student succeeds, there are indications as to how to proceed on to the next step as well as the grade until that point.

The project can be attempted in three ways:

- 1. Without seeking any sort of help
- 2. Using some provided hints
- 3. Using exact directions

The IRC includes the files needed for this project:

- 1. Web Security project
- 2. Web Hacking exercises (XSS and Script-attacks) covering client-side and server-side vulnerability exploitations, respectively
- 3. Documentation for installation and use for the above
- 4. A PowerPoint file describing Web hacking. This file is crucial to understanding how to use the exercises since it clearly explains the operation using screen shots.

This project was designed and implemented by Professor Sreekanth Malladi of Dakota State University.

PROGRAMMING PROJECTS

The programming project is a useful pedagogical tool. There are several attractive features of stand-alone programming projects that are not part of an existing security facility.

- 1. The instructor can choose from a wide variety of cryptography and network security concepts to assign projects.
- 2. The projects can be programmed by the students on any available computer and in any appropriate language; they are platform and language independent.
- 3. The instructor need not download, install, and configure any particular infrastructure for stand-alone projects.