This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1/13

Figure 1 - Group Delay Compensator

Figure 2 - WM8600A Channel Step Response Exhibiting Poor Group Delay Characteristics

Figure 3 - WM8600A Channel Step Response Resulting From Improper Group Delay Compensation

Figure 4 -WM8600A Channel Step Response with Proper Group Delay Compensation

Figure 5 - Uncompensated Channel Group Delay Characteristic

Figure 6 - WaveMaster 8600A Calibration Arrangement

Figure 7 - Dialog Showing Allpass Filter Fitter options and Final Filter Evaluation

Figure 8 - Dialog Showing Grading Options and Optimization Strategy Options

1	for n=0 N	for each response point
2	$R_n = GD_{comprel}(f_n, g_{i-1}) + gd_{spec_n}$	calculate a residual
3	for j=0 2S-1	for each coefficient
4	$J_{n,j} = \frac{\partial}{\partial (g_{i-1})_j} GD_{comprel}(f_n, g_{i-1})$	calculate an element of the Jacobian matrix
5	$H = J^T \cdot W \cdot J$	calculate the approximate Hessian matrix
6	for j=0 2S-1	generate a matrix whose diagonal is identical to the
7	$D_{j,j} = H_{j,j}$	Hessian matrix and is zero elsewhere
8	$\Delta P = (H + \lambda \cdot D)^{-1} \cdot J^T \cdot W \cdot R$	calculate the change in coefficient values
9	$g_i = g_{i-1} - \Delta P$	apply the change to the coefficients
10	$mse_i = \frac{1}{N+1} \cdot \sum_{n} \left(gd_{spec_n} + GD_{comprel}(f_n, g_{i-1}) \right)^2$	calculate the new mean- squared error
11	true $mse_i > mse_{i-1}$ false	did the mean squared error increase?
12	$\lambda = \lambda \cdot 10 \begin{vmatrix} \text{favor steepest} \\ \text{decent} \end{vmatrix} \lambda = \frac{\lambda}{10} \begin{vmatrix} \text{favor Newton-} \\ \text{Gauss} \\ \text{convergence} \end{vmatrix}$	

Figure 9 – An Iteration of the Levenberg-Marquardt Algorithm during Allpass Filter Fit

Figure 10 - A Three-Section (Sixth Order) Digital Allpass Filter

Figure 11 - Result of Allpass Filter Fit to Group Delay Compensation Specification

Figure 12 - Definitions of Risetime, Overshoot, and Preshoot Measurements

Figure 13 - Fuzzy Membership

Figure 14 - Initial Optimization Scan and Result

Figure 15 – Second Optimization Scan and Result

Figure 16 – Third Optimization Scan and Result

Figure 17 – Fourth Optimization Scan and Result

Figure 18 – Score vs. Optimization System Output Variables

Figure 19 - Score and Measurer Parameter Outputs vs. Optimization System Output Control Variables

Figure 20 - Optimization Region and Result

Figure 21 - Comparison of Uncompensated and Compensated Group Delay