COS 226 Lecture 22: Mincost Flow

MAXFLOW: assign flows to edges that

- equalize inflow and outflow at every vertex
- maximize total flow through the network

MINCOST MAXFLOW: find the BEST maxflow

Mincost maxflow is important for two primary reasons

it is a GENERAL PROBLEM-SOLVING MODEL

· solves (through reduction) numerous practical problems

it is TRACTABLE and PRACTICAL

- we know fast algorithms that solve mincost flow problems
- basic data structures play a critical role

One step closer to a single ADT for combinatorial problems

Mincost flow

Add COST to each edge in a flow network FLOW COST: sum of cost*flow over all edges

Maxflows have different costs

MINCOST FLOW: find a minimal-cost maxflow

Distribution problem

SUPPLY vertices (produce goods)

DEMAND vertices (consume goods)

DISTRIBUTION points (transfer goods)

Feasible flow problem

- Can we make supply to meet demand?
 Distribution problem
 - Add costs, find the lowest-cost way

Ex: Walmart

Ex: McDonald's

supply		channels	
0:	3	0-3:	2
1:	4	0-7:	1
2:	6	1-4:	5
distribution		2-4:	3
3		2-9:	1
4		3-5:	3
5		3-6:	4
6		4-5:	2
demand		4-6:	1
7:	7	5-7:	6
8:	3	5-8:	3
9:	4	6-9:	4

THM: Feasible flow reduces to maxflow

THM: Distribution reduces to mincost maxflow

Proof: Add source to provide supply, sink to take demand

Transportation problem

No distribution points

- feasibility: is there a way?
- transportation: find best way

supply		channels	
0:	3	0-6:	2
1:	4	0-7:	1
2:	6	0-8:	5
3:	3	1-6:	3
4:	2	1-5:	1
demand		2-8:	3
5:	6	2-9:	4
6:	6	3-6:	2
7:	7	3-7:	1
8:	3	4-9:	6
9:	4	4-5:	3

0-1	4			\bigcirc	
0-2	3			\mathfrak{Q}	
1-2	3		~		
1-4	2	(<u></u> 上	$\xrightarrow{2}$)
2-3	2		1	\setminus / \parallel	
2-4	1		Ш,	\wedge \downarrow	
3-1	3	(3	4	١
3-5	2	(3		,
4-3	3			5	
4-5	3				
0-6	25	12-0	5	6-13	5
1-7	25	12-1	5	7-13	5
2-8	25	12-2	3	8-13	3
3-9	25	12-3	5	9-13	5
4-10	25	12-4	6	10-13	6
5-11	25	12-5	0	11-13	0
0-7	2				
0-8	3		(12	
1-8	3				
1-10	2				
2-9	2				S.
2-10	1	\mathbb{Q}^{\oplus}	$\bigcup_{i=1}^{2}$	$\begin{pmatrix} 3 \\ 4 \end{pmatrix}$	Į(₹)
3-7	3	$- M\rangle$	\≯	XV	I = I
3-11	2	¥ 11	X	DAX I	M

0-1 2

4-9 3 4-11 3

Seems easier, but that is not the case (!)

THM: Maxflow reduces to maxflow for acyclic networks

THM: Transportation reduces to mincost maxflow

Mincost flow reductions

SHORTEST PATHS
MAXFLOW
DISTRIBUTION and TRANSPORTATION

ASSIGNMENT

Minimal weight matching in weighted bipartite graph

MAIL CARRIER

Find a cyclic path that includes each edge AT LEAST once

SCHEDULING (example)

Given a sport's league schedule, which teams are eliminated?

POINT MATCHING

Given two sets of N points, find minimal-distance pairing

ALL of these problems reduce to mincost flow

Cycle canceling

RESIDUAL NETWORK

for each edge in original network

- flow f in edge u-v with capacity c and cost x
 define TWO edges in residual network
 - FORWARD edge: capacity c-f and cost x in edge u-v
 - BACKWARD edge: capacity f and cost -x in edge v-u

THM: A maxflow is mincost iff there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow REPEAT until no negative cycles are left

increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles 22.6

Cycle canceling example

	cap	cost	flow
0-1	3	3	0
0-2	3	1	0
1-3	2	1	0
1-4	2	1	0
2-3	1	4	0
2-4	2	2	0
3-5	2	2	0
4-5	2	1	0

0-1	3
0-2	3
1-3	2
1-4	2
2-3	1
2-4	2
3-5	2
4-5	2

initial maxflow

	cap	cost	flow
0-1	3	3	2
0-2	3	1	2
1-3	2	1	1
1-4	2	1	1
2-3	1	4	1
2-4	2	2	1
3-5	2	2	2
4-5	2	1	2
total	cost	: 22	

negative cycles: 4-1-0-2-4 3-2-0-1-3 3-2-4-1-3

augment +1 on 4-1-0-2-4 (cost -1)

				•
	cap	cost	flow	
0-1	3	3	1	0
0-2	3	1	3	
1-3	2	1	1	$\begin{pmatrix} 1 & \langle \ \rangle \end{pmatrix}^2$
1-4	2	1	0	
2-3	1	4	1	
2-4	2	2	2	3 4
3-5	2	2	2	3 / 7
4-5	2	1	2	5
total	cost	: 21		

negative cycle: 3-2-0-1-3

augment +1 on 3-2-0-1-3 (cost -1)

_				
	cap	cost	flow	
0-1	3	3	2	0
0-2	3	1	2	
1-3	2	1	2	$\begin{pmatrix} 1 & \end{pmatrix} 2$
1-4	2	1	0	
2-3	1	4	0	
2-4	2	2	2	3
3-5	2	2	2	3 / 3
4-5	2	1	2	5
total	cost	: 20		•

Cycle canceling implementation

```
void addflow(link u, int d)
  { u->flow += d; u->dup->flow -=d; }
int GRAPHmincost(Graph G, int s, int t)
  { int d, x, w; link u, st[maxV];
     GRAPHmaxflow(G, s, t);
     while ((x = GRAPHnegcycle(G, st)) != -1)
          u = st[x]; d = Q;
          for (w=u->dup->v; w != x; w=u->dup->v)
          \{ u = st[w]; d = (Q > d?d:Q); \}
          u = st[x]; addflow(u, d);
          for (w=u->dup->v; w != x; w=u->dup->v)
          \{ u = st[w]; addflow(u, d); \}
     return GRAPHcost(G);
```

Cycle canceling analysis

No need to compute initial maxflow

use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes O(VE^2CM) time Proof:

- each edge has at most capacity C and cost M
- total cost could be ECM
- each augment reduces cost by at least i
- · Bellman-Ford takes O(VE) time

There exist O(VE^2log^2 V) cycle-canceling implementations

mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds

- · not useful for predicting performance in practice
- algs that achieve such bounds would be useless
- algs are typically fast on practical problems

Network simplex algorithm

An implementation of the cycle-canceling algorithm

Identify negative cycles quickly by

- maintaining a tree data structure
- reweighting costs at vertices

Edge classification

- EMPTY
- FULL
- PARTIAL

FEASIBLE SPANNING TREE

· Any spanning tree that contains all the partial edges

VERTEX POTENTIALS

a set of vertex weights (vertex-indexed array phi)

Network simplex concepts (continued)

REDUCED COST (reweighted edge cost)

 $\bullet c*(u, v) = c(u, v) - (phi(u) - phi(v))$

VALID vertex potentials for a spanning tree

· all tree edges have reduced cost o

ELIGIBLE EDGE

nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either

- · a full edge with positive reduced cost, or
- an empty edge with negative reduced cost

Proof:

- · cycle cost equals cycle reduced cost
- edge cost is negative of cycle reduced cost
 (since reduced costs of tree edges are all zero)

THEREFORE, it is easy to identify eligible edges

Network simplex algorithm

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree REPEAT until no eligible edges are left

- ensure that vertex potentials are valid
- add to the tree an eligible edge
- increase the flow along the negative cycle formed
- remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle

THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges

- · cope with zero-flow cycles
- strategy to choose eligible edges
- · data structure to represent tree

Network simplex example

Feasible spanning tree data structure

Operations to support

- compute valid vertex potentials
- find cycle created by nontree edge
- · replace tree edge by nontree edge

use PARENT-LINK representation!

to compute vertex potentials

- start with root at potential o
- · for each vertex

follow parent links to vertex with known potential (recursively) set each vertex potential on path

to make reduced edge costs o

to follow cycle created by nontree edge u-v

- follow parent links from each to their LCA
- to delete nontree edge that fills or empties
 - REVERSE the parent links from u or v

Computing vertex potentials (example)

Spanning tree update example

0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 st 3 13 14 11 2 5 3 5 0 2 15 5 13 11 0 1

Network simplex basic implementation

```
#define R(u) u->cost - phi[u->v]+phi[u->dup->v]
int GRAPHmincost(Graph G, int s, int t)
{ int v; link u, x, st[maxV];
  GRAPHinsertE(G, EDGE(t, s, M, 0, C));
  initialize(G, s, t, st);
  for (valid = 1; valid++; )
     for (v = 0; v < G->V; v++)
       phi[v] = phiR(st, v);
     for (v = 0, x = G->adj[v]; v < G->V; v++)
       for (u = G->adi[v]; u!=NULL; u = u->next)
            if (R(u) < R(x)) x = u;
     if (R(x) == 0) break;
     update(st, augment(st, x), x);
  return GRAPHcost(G);
```

Network simplex variations

OBJECTIVES

- guarantee terminimation
- · reduce number of iterations
- reduce cost per iteration

Eligible edge selection strategies

- random
- · find next
- queue of eligible edges
 Lazy vertex potential calculation
 Tree representations
 - · triply-linked, threaded

Guided by practical performance, not worst-case bounds

DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE

· accessible code for powerful problem-solving model