Clustering and Expectation Maximization

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2015

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Clustering

- We now consider the unsupervised datasets $\mathcal{X} = \{\pmb{x}^{(t)}\}_{t=1}^N$ where labels $\pmb{r}^{(t)}$ are missing
 - Learning the a posteriori knowledge from unlabeled data is called the unsupervised learning
- Clustering is one unsupervised learning technique used to identify the groups G_1, \dots, G_K in each which instances are similar (or close) to each other
 - K could be either predefined (a hyperparameter) or not (a parameter)
- Output: $\mathcal{Z} := \{z^{(t)}\}_t$, where
 - Hard labeling: $z^{(t)} \in \{0,1\}^K$ and $z_i^{(t)} = 1$ iff the instance t belongs to group i
 - Soft labeling: $z^{(t)} \in \mathbb{R}^K$ and $z_i^{(t)}$ denotes the degree (e.g., probability) the instance t belongs to group i

Applications

- Pattern recognition: groups may be meaningful
 - E.g., product/user cluster in market analysis
- Compression: instances in the same group can be represented by a prototype
- Data labeling: groups are good hints for labels
- Data reprocessing for classification/regression: attributes of instances can be augmented by group information; or we can identify groups in each class to estimate $P[x|C_i]$ and $P[C_i]$ more precisely
- And so on...

Clustering vs. Dimensionality Reduction

- In dimensionality reduction, we find correlations between attributes and "group" (i.e., select/extract) attributes
- In clustering, we find similarities between *instances* and group instances

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

K-Means Clustering (1/2)

- Suppose each group G_i is parametrized by a prototype m_i , the mean of all instances in this group
- Hard labeling: $z_i^{(t)} = 1$ iff $\boldsymbol{x}^{(t)}$ is the closest to \boldsymbol{m}_i ; i.e., $\|\boldsymbol{x}^{(t)} \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^{(t)} \boldsymbol{m}_j\|$
- The objective of *K*-means clustering is to find m_i such that the total reconstruction error $rec(\{m_i\}_{i=1}^K; \mathcal{X}) = \sum_{t=1}^N \sum_{i=1}^K z_i^{(t)} \|\mathbf{x}^{(t)} \mathbf{m}_i\|^2$ is minimized

K-Means Clustering (2/2)

```
Input: \mathfrak{X} \leftarrow \{x^{(t)}\}_{t=1}^{N}, K
Output: The prototypes m_i, 1 \le i \le K
Initialize each m_i to a random example x^{(t)}:
repeat
      foreach x^{(t)} \in \mathcal{X} do
           z_i^{(t)} \leftarrow \begin{cases} 1 & \text{if } \|\boldsymbol{x}^{(t)} - \boldsymbol{m}_i\| = \min_j \|\boldsymbol{x}^{(t)} - \boldsymbol{m}_j\| \\ 0 & \text{otherwise} \end{cases};
      end
      foreach m_i do
      m_i \leftarrow \sum_{t=1}^{N} z_i^{(t)} x^{(t)} / \sum_{t=1}^{N} z_i^{(t)};
until all m_i converge;
```

Algorithm 1: The K-means algorithm.

Example

Applications (1/2)

- One famous application of the K-means clustering is vector quantization, which aims to find a discrete set of vectors $\{m_i\}_{i=1}^K$ representative of the whole, possibly continuous, set of data points
 - E.g., in *color quantization*, we seeks the best 256 colors of an 24 bits/pixel (16 million) color image
 - Once we get these 256 colors, for each pixel we only need to store the 8 bits color index
- We can quantize the 16 million colors uniformly into 256, but some of these 256 colors may be wasted when there is no nearby color appears in the image
 - ullet We want nonuniform quantization where $oldsymbol{m}_i$ sit at the most dense areas of the whole dataset
- The K-means clustering minimizes $rec(\{m{m}_i\}_{i=1}^K; \mathcal{X}) = \sum_{t=1}^N \sum_{i=1}^K z_i^{(t)} \left\| m{x}^{(t)} m{m}_i \right\|^2$ and finds prototypes at the center of the dense regions

Applications (2/2)

- Another example is the use of codebooks in telecommunication systems
 - Each point in the dataset is a vector storing the sample of a voice signal
 - ullet We want to quantize samples into K representative vectors
 - If we store these *K* vectors in each device, the signal can be sent by indexes (of lg *K* bits each) only

Figure: Given x, the encoder sends the index i of the nearest **codeword** m_i and the decoder receives $x' = m_i$. The error is $||x - x'||^2$.

Limitations (1/2)

- The main disadvantage of the K-means clustering is that it is a local search procedure
 - The final prototypes m_i may not be the optimal ones, and highly depend on the initial m_i
 - Can you give an example dataset based on which the K-means returns bad clusters? [Homework]
- Generally, the initial m_i should a) locate at regions where instances occur; b) be far away from each other
- The K-means++ proposes one possible initialization step:
 - **1** Choose an instance uniformly at random to be m_1
 - ② For each $x^{(t)}$, compute $d(x^{(t)})$, the distance between $x^{(t)}$ and the nearest m_i that has already been determined
 - **3** Assign another instance to m_{i+1} , but this time an instance x is chosen with probability $\frac{d(x)^2}{\sum_{i=1}^{N} d(x^{(i)})^2}$
 - \bullet Repeat Steps 2 and 3 until K initial prototypes are determined

Limitations (2/2)

- Another shortcoming of the K-means is that clusters are assumed to be spherical and with equal size
 - Due to that the Euclidean distance is used when updating the cluster assignment $z_i^{(t)}$ for each instance
- In practice, clusters may have different sizes
 - Next, we see how the above assumption can be relaxed using the probability framework we are already familiar

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Mixture Models

- ullet Basic assumption: the dataset ${\mathfrak X}$ is a mixture of groups G_1,\cdots,G_K
 - E.g., in the hand-written digit recognition, $\mathcal X$ consists of images of "0," "1," "2," and so forth
 - Even if $\mathfrak X$ are images of the same digit (say "1") there are still typical different ways to write the digit (with or without head)
- ullet Soft labeling: $\mathcal{Z} = \{z^{(t)} \in \mathbb{R}^K\}_t$
- The mixture density of an instance x can be expressed as $p(x) = \sum_{i=1}^{K} p(x|G_i)P[G_i]$
- ullet Model: a collection of groups, i.e., $\{G_i\}_{i=1}^K$
- ullet Parameters: $G_1, \, \cdots, \, {\sf and} \, G_K$
- Objective: $\arg_{G_1,\cdots,G_K}\max\prod_{t=1}^N\sum_{i=1}^Kp(\pmb{x}^{(t)}|G_i)P[G_i]d\pmb{x}$
- A generative model this case

Parametric vs. Nonparametric vs. Semiparametric

- Parametric models: models that can be completely described by (a small number of) parameters
- Nonparametric models: those that cannot be described by parameters
- Semiparametric models: those that can be partially described by parameters
 - Each cluster is parametric
 - But the mixture of clusters, $\mathcal{Z} = \{z^{(t)}\}_t$, is not (i.e., we do not assume the mixture to follow some distribution)

Semiparametric Clustering vs. Parametric Classification

- Parametric classification is a special case of mixture model where the groups (i.e., classes) are known in advance: $P[\mathbf{x}^{(t)}] = \sum_{i=1}^{K} p(\mathbf{x}^{(t)}|C_i)P[C_i]d\mathbf{x}$
- Assume $p(x^{(t)}|C_i)dx$ and $P[C_i]$ follow Gaussian and Bernoulli distributions parametrized by $\theta_i = (\mu_i, \Sigma_i)$ and $\theta_i' = p_i$ respectively
- Since we know which instance belongs to which class by $\mathbf{r}^{(t)}$, we can estimate θ_i and θ_i' analytically by maximizing $P[\mathfrak{X}|\theta_i]$ and $P[\mathfrak{X}|\theta_i']$:
 - ullet $\widehat{p_i} = rac{N_i}{N}$, where $N_i = \sum_{t=1}^N r_i^{(t)}$
 - $m_i = \frac{1}{N_i} \sum_{t=1}^{N} x^{(t)} r_i^{(t)}$ and $S_i = \frac{1}{N_i 1} \sum_{t=1}^{N} r_i^{(t)} (x^{(t)} m_i) (x^{(t)} m_i)^{\top}$
- Unfortunately, in semiparametric clustering we don't know $z^{(t)}/r^{(t)}$ so we cannot solve $p(x^{(t)}|C_i)dx$ and $P[C_i]$ analytically

If No $\{\theta_i, \theta_i'\}_{i=1}^K$, Make Them Up

• How?

If No $\{\theta_i, \theta_i'\}_{i=1}^K$, Make Them Up

- How? Borrowing the iterations from K-means
- Start from a random guess of $\{\theta_i, \theta_i'\}_{i=1}^K$ and then perform the following two steps iteratively:
 - For each instance $x^{(t)}$, update its $z^{(t)}$ based on the current G_1, \dots, G_K parametrized by $\theta_1, \dots, \theta_K$
 - 2 Update $\theta_1, \dots, \theta_K$ based on the current $z^{(t)}$
- ullet Stop until the groups do not change in Step 2 (or the changes of groups are smaller than a threshold arepsilon)

Semiparametric Density Estimation (1/2)

- Suppose in the mixture density $p(\mathbf{x}) = \sum_{i=1}^K p(\mathbf{x}|G_i)P[G_i]$, each $p(\mathbf{x}^{(t)}|G_i)$ and $P[G_i]$ are Gaussian and Bernoulli distributions parametrized by $\theta_i = (\mathbf{\mu}_i, \mathbf{\Sigma}_i)$ and $\theta_i' = \pi_i$ respectively
- ullet Denote the collection of estimators by $\Theta = (oldsymbol{m}_i, oldsymbol{S}_i, \pi_i)_{i=1}^K$
- We guess initial Θ , and then:
 - $\begin{array}{l} \bullet \quad \text{Update mixture: } z_i^{(t)} = P[z_i^{(t)} | \mathbf{x}^{(t)}; \Theta] = \frac{p(\mathbf{x}^{(t)} | z_i^{(t)}; \Theta) P[z_i^{(t)}; \Theta]}{p(\mathbf{x}^{(t)}; \Theta)} = \\ \frac{p(\mathbf{x}^{(t)} | z_i^{(t)}; \Theta) \pi_i}{\sum_{j=1}^K p(\mathbf{x}^{(t)} | z_j^{(t)}; \Theta) \pi_j} = \frac{\det(S_i)^{-1/2} exp[-(1/2)(\mathbf{x}^{(t)} \mathbf{m}_i)^\top S_i^{-1}(\mathbf{x}^{(t)} \mathbf{m}_i)] \pi_i}{\sum_{j=1}^K \det(S_j)^{-1/2} exp[-(1/2)(\mathbf{x}^{(t)} \mathbf{m}_j)^\top S_j^{-1}(\mathbf{x}^{(t)} \mathbf{m}_j)] \pi_j} \end{array}$
 - ullet Unlike in K-means, we assign **soft labels** to $z_i^{(t)}$
 - ② Update Θ : knowing $z_i^{(t)}$, we can update π_i , m_i , and S_i by, e.g., maximizing the likelihood $P[\mathfrak{X}|\Theta]$

Semiparametric Density Estimation (2/2)

Input:
$$\mathcal{X} \leftarrow \{\boldsymbol{x}^{(t)}\}_{t=1}^N$$
, K
Output: $\Theta = (\boldsymbol{m}_i, \boldsymbol{S}_i, \pi_i)_{i=1}^K$

Initialize Θ by performing several iterations of K-means; repeat

foreach π_i , m_i , and S_i do

until ⊕ converges;

Algorithm 2: Semiparametric density estimation for Gaussian mixtures.

Simplifications

- As in parametric classification, with small training dataset and large dimensionality we can regularize our model by simplifying assumptions
- When the priors $P[G_i] = \pi_i$ are all equal and $S_i = s^2 I$, we have $z_i^{(t)} = \frac{exp[-(1/2s^2)||\mathbf{x}^{(t)} \mathbf{m}_i||]}{\sum_{i=1}^K exp[-(1/2s^2)||\mathbf{x}^{(t)} \mathbf{m}_i||]}$
- ullet We thus see that the K-means clustering is just a special case of the semiparametric density estimation applied to Gaussian mixtures, where
 - Attributes of instances are independent and with equal variance
 - All groups have equal priors
 - Labels are hardened

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Hierarchical Clustering (1/2)

- So far, we assume that clusters are independent groups (although they may overlap)
- In some applications, we may want to find the hierarchy of clusters
- Two common types of algorithms:
 - Agglomerative: Starting from N groups, each with single instance, iteratively merging two most similar groups to form a larger one, until there remains a single group
 - **Divisive**: Starting one group containing all instances, dividing large groups into smaller ones, until there are N groups

Hierarchical Clustering (2/2)

- When deciding which groups should be merged (or split), a measure of similarity, or equivalently distance d, is required
 - One common choice is the Minkowski distance:

$$d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)}) = \left(\sum_{i=1}^{d} \left| x_i^{(r)} - x_i^{(s)} \right|^p \right)^{1/p}$$
 for some p

• But how to calculate the distance between two groups?

Hierarchical Clustering (2/2)

- When deciding which groups should be merged (or split), a measure of similarity, or equivalently distance d, is required
 - One common choice is the Minkowski distance:

$$d(\mathbf{x}^{(r)}, \mathbf{x}^{(s)}) = \left(\sum_{i=1}^{d} \left| x_i^{(r)} - x_i^{(s)} \right|^p \right)^{1/p}$$
 for some p

- But how to calculate the distance between two groups?
 - Single-link metric: $d(G_i, G_j) = \min_{\boldsymbol{x}^{(r)} \in G_i, \boldsymbol{x}^{(s)} \in G_i} d(\boldsymbol{x}^{(r)}, \boldsymbol{x}^{(s)})$
 - Complete-link metric: $d(G_i, G_j) = \max_{\boldsymbol{x}^{(r)} \in G_i, \boldsymbol{x}^{(s)} \in G_j} d(\boldsymbol{x}^{(r)}, \boldsymbol{x}^{(s)})$

Dendrograms

The result of hierarchical clustering can be shown as the dendrogram:

- Each internal node corresponds to a group
- The height of the internal node denote the distance between groups
- The dendrogram can be intersected at a user-specific level h to get the clusters
- In each cluster, instances in the input space are connected as a tree

Single- or Complete-Link?

Single- or Complete-Link?

- With the complete-link metric, all instance in a group have distance less than h
 - Assumes that each cluster is spherical
 - Similar to k-means and semiparametric density estimation
 - Used only when this assumption is likely to be true
- ullet Single-link clusters may have diameter (i.e., the greatest length of the shortest paths between instances) much larger than h
 - With the single-link metric, two instance are grouped together at level h if
 - The distance between them is less than h; or
 - There exists a path between them such that any two consecutive instances along the path have mutual distance less than h
 - Each final cluster may have an arbitrary shape
 - Suitable for clusters backed by respective underlying manifolds

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Global vs. Local Models

- We have seen models that find clusters by assuming some structure for each cluster
- Global structure: each cluster represents a dense region of a known shape
 - E.g., *k*-means, semiparametric density estimation, hierarchical clustering with complete-link metric
- Local similarity: each instance in a cluster is similar to its nearby instances
 - E.g., hierarchical clustering with single-link metric
 - Local models can produce clusters of arbitrary shapes
 - Suitable to datasets where clusters are backed by respective underlying manifolds

More Local Models

- In local models, any two instances in the same cluster are not necessarily similar
 - This is both an advantage and disadvantage
- Cons: they tends to find clusters of unbalanced sizes

- Outliers form singleton clusters
- How to make clusters balanced?

More Local Models

- In local models, any two instances in the same cluster are not necessarily similar
 - This is both an advantage and disadvantage
- Cons: they tends to find clusters of unbalanced sizes

- Outliers form singleton clusters
- How to make clusters balanced?
- We consider only the the flat clustering in the next

Balanced Cut of Local Similarity Graph (1)

- Given a set of data points $x^{(1)}, \dots, x^{(N)}$. Let $S \in \mathbb{R}^{N \times N}$ be the local similarity matrix where $s_{i,j} \geqslant 0$ is the similarity between instance between instances i and j if they are neighbors
 - Euclidean distance is clearly not a good choice
- Local similarity measure?

Balanced Cut of Local Similarity Graph (1)

- Given a set of data points $x^{(1)}, \dots, x^{(N)}$. Let $S \in \mathbb{R}^{N \times N}$ be the local similarity matrix where $s_{i,j} \geqslant 0$ is the similarity between instance between instances i and j if they are neighbors
 - Euclidean distance is clearly not a good choice
- Local similarity measure?
 - ϵ -NN similarity: $s_{i,j}$ inverse proportional to the Euclidean distance between i and j if i is a ϵ -nearest neighbor of j or vice versa; otherwise 0
 - Gaussian similarity (soft ϵ -NN): $s_{i,j} = \exp(-\frac{\|\mathbf{x}^{(i)} \mathbf{x}^{(j)}\|^2}{\sigma^2})$ for some hyperparameter σ

Balanced Cut of Local Similarity Graph (2)

- Consider the graph G=(V,E) where V denotes the set of instances and E denotes the set of non-zero local similarity scores
- Given a set of nodes $A \subset V$, define $Cut(A) := \sum_{i \in A, j \notin A} s_{i,j}$
- We want to find a k-partition A_1, \dots, A_K of V that solve the problem:

$$\arg\min_{A_1,\dots,A_K\subset V} RatioCut(A_1,\dots,A_K) := \frac{1}{2}\sum_{i=1}^K \frac{Cut(A_i)}{|A_i|}$$

- Cross-partition links are edges are minimized
- $|A_1|, \cdots, |A_K|$ are balanced

Relaxation

- Unfortunately, although the min-cut problems can be solved efficiently, the balanced min-cut problems are NP-hard
- Spectral clustering solves a relaxation of the above problem
 - Finds the eigenvectors of a **graph Laplacian matrix** induced from the local similarity graph
 - Efficient

Graph Laplacian

• Given a (local) similarity matrix S, the graph Laplacian matrix is defined as

$$L = D - S$$

where $m{D}$ is an $N \times N$ diagonal matrix with $d_i = \sum_{j=1}^N s_{i,j}$ on the diagonal

- For any vector $f \in \mathbb{R}^N$, we have $f^{\top} L f = \frac{1}{2} \sum_{i,j=1}^N s_{i,j} \left(f_i f_j \right)^2$ [Homework]
- L is symmetric and positive semi-definite
 - The smallest eigenvalue of L is 0, and the constant one vector $\mathbf{1} \in \mathbb{R}^N$ must be (one of) the corresponding eigenvector
 - L has N non-negative eigenvalues $0 = \lambda_1 \leqslant \cdots \leqslant \lambda_N$.

Spectral Clustering

- Idea: map each $x^{(t)} \in \mathbb{R}^N$ to $z^{(t)} \in \mathbb{R}^m$ in some low dimensional space such that $z^{(i)}$ and $z^{(j)}$ are similar if they belong to the same cluster
 - Then apply a traditional clustering algorithm (e.g., k-means) to obtain the final cluster
- Based on $f^{\top} L f = \frac{1}{2} \sum_{i,j=1}^{N} s_{i,j} (f_i f_j)^2$, we can first solve

$$\arg\min_{\pmb{F} = \left[f^{(1)}, \cdots, f^{(m)}\right] \in \mathbb{R}^{N \times m}} \operatorname{tr}(\pmb{F}^{\top} \pmb{L} \pmb{F}) = \sum_{i=1}^{m} f^{(i)\top} \pmb{L} f^{(i)},$$
 subject to $\pmb{F}^{\top} \pmb{F} = \pmb{I}$

and then let $oldsymbol{z}^{(t)}$ be the \emph{t} -th row of $oldsymbol{F}$

- ullet f_i and f_j are orthogonal so that they provide complementary perspectives
- ullet Each f_i is normalized so that the clusters are balanced (to be explained later)

Spectrum of L (1)

ullet From the Rayleigh-Ritz theorem, $f^{(1)}, \cdots, f^{(m)}$ are the eigenvectors corresponding to the smallest eigenvalues of $oldsymbol{L}$

Theorem

Let G=(V,E) be an undirected graph with non-negative weights. Then the multiplicity K of the eigenvalue 0 of L equals the number of connected components $A_1,\cdots,A_K\subset V$ in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbf{1}_{A_1},\cdots,\mathbf{1}_{A_K}\in\mathbb{R}^N$ of those components.

Spectrum of L (2)

Proof.

Assume that f is an eigenvector with eigenvalue 0. We know that $0=f^{\top}Lf=\sum_{i,j=1}^{N}s_{i,j}\left(f_{i}-f_{j}\right)^{2}$. As $s_{i,j}$ is non-negative, the sum can only vanish if all terms vanish. Thus, if two vertices v_{i} and v_{j} are connected (i.e., $s_{i,j}>0$), then $f_{i}=f_{j}$. When K=1, f needs to be constant one vector and L has eigenvalue 0 with multiplicity 1. When K>1, without loss of generality we assume that the vertices are ordered according to the connected components they belong to. Then S has a block diagonal form, and the same is true for L:

$$oldsymbol{L} = \left(egin{array}{ccc} oldsymbol{L}_1 & & & \ & \ddots & & \ & & oldsymbol{L}_K \end{array}
ight).$$

Since the spectrum of L is given by the union of the spectra of L_i , and the corresponding eigenvectors of L are the eigenvectors of L_i , filled with 0 at the positions of the other blocks.

Spectrum of L (3)

- Based on the above theorem, we should make sure that # connected components < m when constructing the local similarity graph
 - Otherwise, some cluster may contain one connected component, and some may contain multiple
- In practice, we usually construct a fully-connected graph
 - The eigenvector of 0 is 1
- Other than 1, what f makes $f^{\top} L f = \frac{1}{2} \sum_{i,j=1}^{N} s_{i,j} \left(f_i f_j \right)^2$ small?
 - \bullet Those f's with value levels
 - Coordinates corresponding to the same G_i have the same value (forming a level)
 - The gap between different levels corresponds to the min-cuts

Spectrum of L (4)

- ullet Besides, $\|f\|=1$ makes gap correspond to the balanced min-cuts
- For example, suppose K = 2. Let

$$f_i = egin{cases} \sqrt{rac{|ar{G}|}{|V||ar{G}|}}, & ext{if } oldsymbol{x}^{(i)} \in G \ -\sqrt{rac{|G|}{|V||ar{G}|}}, & ext{otherwise} \end{cases}$$

We have

$$tr(\mathbf{f}^{\top} \mathbf{L} \mathbf{f}) = RatioCut(G, \overline{G}),$$

furthermore, $f^{\top} \mathbf{1} = 0$ and ||f|| = 1 [Homework]

m = K is enough due to orthogonality

Spectral Clustering Algorithms

Input: Similarity matrix S, number of clusters K

Output: Clusters A_1, \dots, A_K

Compute the Laplacian L.;

Compute the first K eigenvectors u_1, \dots, u_K of L. Let $U \in \mathbb{R}^{N \times K}$ be the matrix containing the vectors u_1, \dots, u_K as columns.

For $i=1,\cdots,N$, let $\mathbf{y}_i \in \mathbb{R}^K$ be the vector corresponding to the i-th

row of $oldsymbol{U}$;

Cluster the points $(y_i)_{i=1,\cdots,N}$ with the K-means algorithm;

Algorithm 3: The spectral clustering algorithm.

Pros and Cons

- Pros:
 - Local model, balanced
 - ullet Efficient event for large datasets (as S is sparse)
 - No issue of getting stuck in local minimum (e.g., as in k-means due to bad initializations)
- Cons:
 - Performance sensitive to the quality of the local similarity graph
 - Relaxation is loose: no guarantee that the final clusters correspond to the balanced min-cuts
- Which local similarity is better?
 - Empirically, ϵ -NN graph is less vulnerable to the imperfect choice of parameters (ϵ, σ)
 - Graph is sparse

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Evaluating the Clusters

• How to evaluate the clusters we found?

Evaluating the Clusters

- How to evaluate the clusters we found?
- If labels are not available during evaluation:
 - $\frac{\text{intercluster separation}}{\text{intracluster cohesion}} = \frac{\sum_{i,j} (\pmb{m}_i \pmb{m}_j)^2}{\sum_i \frac{1}{|G_i|} \sum_{\pmb{x} \in G_i} (\pmb{x} \pmb{m}_i)^2}$ (the higher the better)
- If labels (i.e., $\{r^{(t)}\}_{t=1}^N$, $r^{(t)} \in \mathbb{R}^K$) are available during the evaluation:
 - $entropy(G_i) = -\sum_{j=1}^K P_i[r_j^{(t)} = 1] \lg P_i[r_j^{(t)} = 1]$, where $P_i[r_j^{(t)} = 1]$ denotes the portions of instances in G_i which belong to class j
 - Here we define lg0 = 0
 - $entropy_{total}(\mathfrak{X}) = \sum_{i=1}^{K} \frac{|G_i|}{N} entropy(G_i)$ (the lower the better)
- Indirect evaluation: if clustering is used to help perform another task, then we can measure the performance of that task instead
 - E.g., click-through rate of the recommended item in a website (where clustering is used to group similar items/users)

Deciding the Number of Clusters K

- In the previous semiparametric methods, K is determined in advance
 - ullet We can decide K using the cross validation technique
 - Plot the reconstruction error against K and pick the "elbow"
- ullet In hierarchical clustering, K is decided along with h
 - h should be set to cut the "big jump"
- K can be either a parameter or a hyperparameter
- There are extensions for semiparametric methods that adapt K during the iteration
 - E.g.?

Deciding the Number of Clusters K

- In the previous semiparametric methods, K is determined in advance
 - ullet We can decide K using the cross validation technique
 - Plot the reconstruction error against K and pick the "elbow"
- ullet In hierarchical clustering, K is decided along with h
 - h should be set to cut the "big jump"
- K can be either a parameter or a hyperparameter
- There are extensions for semiparametric methods that adapt K during the iteration
 - E.g.? at each iteration, we can drop groups that are too small and/or split groups that are too large

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Why Iterative Methods Work?

- We have seen the iterative methods for clustering
 - K-means
 - Semiparametric density estimation
- But we haven't answered the following questions:
 - Why does the iteration end?
 - Why is the clusters found in Step 2 better than the ones found in the previous iteration?

Latent Variables and Complete Likelihood (1/2)

- Problem definition: given a dataset $\mathcal{X} = \{x^{(t)}\}_{t=1}^N$, suppose $p(x) = \sum_{i=1}^K p(x|G_i)P[G_i]$ and denote $\Theta = (\theta_i, \pi_i)_{i=1}^K$ where θ_i parametrizes $p(x|G_i)$ and $\pi_i = P[G_i]$, we want to find Θ such that the log likelihood $\ln P[\mathcal{X}|\Theta]$ is maximized
 - $\ln P[\mathcal{X}|\Theta] = \sum_{t=1}^{N} \ln \sum_{i=1}^{K} p(\mathbf{x}^{(t)}|\theta_i) \pi_i d\mathbf{x}$
 - Unfortunately, since we don't know which instance belongs to which group, we cannot solve this this objective analytically
- Now suppose there is a set $\mathcal{Z} = \{z^{(t)}\}_{t=1}^N$ of *latent variables*, the *complete likelihood* can be written as: $\ln P[\mathcal{X}, \mathcal{Z}|\Theta]$
 - $z_i^{(t)} = 1$ if $x^{(t)}$ belongs to group i; 0 otherwise
 - If we have \mathcal{Z} , we can solve this objective as we did in the parametric classification
 - ullet Unfortunately, we don't know ${\mathfrak Z}$

Latent Variables and Complete Likelihood (2/2)

- Observe that $\ln P[\mathcal{X}, \mathcal{Z}|\Theta] = \ln P[\mathcal{Z}|\mathcal{X}, \Theta] + \ln P[\mathcal{X}|\Theta]$
- We have $\ln P[\mathfrak{X}|\Theta] = L(q,\Theta) + \mathit{KL}(q||P) \ \textit{for any}$ distribution q of \mathfrak{Z}

•
$$L(q,\Theta) = \sum_{\mathcal{Z}} q(\mathcal{Z}) \ln \left(\frac{P[\mathcal{X}, \mathcal{Z}|\Theta]}{q(\mathcal{Z})} \right)$$

•
$$\mathit{KL}(q||P) = -\sum_{\mathcal{Z}} q(\mathcal{Z}) \ln \left(\frac{P[\mathcal{Z}|\mathcal{X},\Theta]}{q(\mathcal{Z})} \right)$$

- Both $L(q, \Theta)$ and KL(q||P) are functional of q
- Since KL(q||P) is the **relative entropy** (or **Kullback-Leibler divergence**) and is always greater than 0 [Proof: by Jensen's inequality or $\ln x \leqslant x-1$], we have the figure at right:

Iterative Methods: A Functional Perspective (1/3)

- To maximize $\ln P[\mathcal{X}|\Theta]$, we can employ an iterative method based on $\ln P[\mathcal{X}|\Theta] = L(q,\Theta) + KL(q||P)$
 - Since q is unknown, we make up q
 - We don't have to make up $\mathcal Z$ this time because we try out all possible $\mathcal Z$ in $L(q,\Theta)$ and KL(q||P)
- Start from a random guess about Θ , iterate the following steps:
 - ① Update q based on current Θ such that the blue line is up-aligned with the red
 - $oldsymbol{Q}$ Update $oldsymbol{\Theta}$ based on current q to raises the red line
- Stop until Θ converges
- Why another version?
 - We are sure that $\ln P[\mathfrak{X}|\Theta]$ (i.e., read line) can be raised at each iteration (although up to a local optimal)

Iterative Methods: A Functional Perspective (2/3)

- Denote by Θ^{old} the parameters found in the previous iteration
- In Step 1, if we update q such that $q(\mathcal{Z}) = P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$
 - $KL(q||P) = -\sum_{\mathcal{Z}} q(\mathcal{Z}) \ln 1 = 0$
 - $\ln P[\mathfrak{X}|\Theta^{old}] = L(q, \Theta^{old}) + 0$
- Note the value of $\ln P[\mathcal{X}|\Theta^{old}]$ won't change as we vary q
- So this step basically raises $L(q, \Theta^{old})$ such that the blue line is up-aligned with the red

Iterative Methods: A Functional Perspective (3/3)

- $$\begin{split} \bullet & \text{ Fixing } q, \text{ for any } \Theta \text{ we have} \\ & \ln P[\mathcal{X}|\Theta] = L(q,\Theta) + KL(q||P) = \\ & \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X},\Theta^{old}] \ln \left(\frac{P[\mathcal{X},\mathcal{Z}|\Theta]}{P[\mathcal{Z}|\mathcal{X},\Theta^{old}]} \right) \\ & \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X},\Theta^{old}] \ln \left(\frac{P[\mathcal{Z}|\mathcal{X},\Theta]}{P[\mathcal{Z}|\mathcal{X},\Theta^{old}]} \right) \end{split}$$
- In Step 2, we find Θ^{new} maximizing $\ln P[\mathcal{X}|\Theta]$
 - $\ln P[\mathcal{X}|\Theta^{new}] \geqslant \ln P[\mathcal{X}|\Theta^{old}]$
 - $$\begin{split} \bullet & \ KL(q||P) = \\ & -\sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(\frac{P[\mathcal{Z}|\mathcal{X}, \Theta^{new}]}{P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]} \right) \geqslant 0 \end{split}$$
- So this step basically raises the red line, meanwhile leaving the blue behind
- Repeating Steps 1 and 2 lifts $\ln P[\mathcal{X}|\Theta]$ till some local optimum

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Expectation Maximization (1/2)

- ullet Note that in step 1, we don't need to write down q explicitly
 - We just need to evaluate terms in $\ln P[\mathcal{X}|\Theta]$ (a function of Θ to be maximized in step 2) that are related to q
- Fixing $q(\mathcal{Z}) = P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$, we can rewrite $\ln P[\mathcal{X}|\Theta]$ as $\ln P[\mathcal{X}|\Theta] = L(q,\Theta) = \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(\frac{P[\mathcal{X},\mathcal{Z}|\Theta]}{P[\mathcal{Z}|\mathcal{X},\Theta^{old}]}\right)$ $= \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(P[\mathcal{X},\mathcal{Z}|\Theta]\right) \sum_{\mathcal{Z}} P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] \ln \left(P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]\right)$ $= E_{\mathcal{Z}}[\ln \left(P[\mathcal{X},\mathcal{Z}|\Theta]\right) | \mathcal{X}, \Theta^{old}] + constant$
 - ullet The second term is an entropy of $\mathcal Z$ and is independent of Θ
- Steps 1 and 2 can be refined to be:
 - Expectation step (E-step): Formulate $\mathcal{Q}(\Theta; \Theta^{old}) = E_{\mathcal{Z}}[\ln{(P[\mathcal{X}, \mathcal{Z}|\Theta])}|\mathcal{X}, \Theta^{old}]$ and evaluate the terms related to $P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$
 - *Maximization step (M-step)*: Solve $\Theta^{new} = \arg_{\Theta} \max \Omega(\Theta; \Theta^{old})$

Expectation Maximization (2/2)

- The Expectation Maximization (EM) algorithm is a general technique to find the maximum likelihood solutions for probabilistic models having latent variables
 - Typically, latent variables are discrete, and there is one latent variable per observed instance

```
\begin{split} & \text{Input: } \mathcal{X} \leftarrow \{x^{(t)}\}_{t=1}^{N} \\ & \text{Output: } \Theta^{new}, \text{ a local optimizer of } P[\mathfrak{X}|\Theta] \\ & \text{Choose an initial } \Theta^{new}; \\ & \text{repeat} \\ & & | \Theta^{old} \leftarrow \Theta^{new}; \\ & \text{Formulate } \Omega(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln{(P[\mathfrak{X},\mathcal{Z}|\Theta])|\mathcal{X},\Theta^{old}]} \text{ and evaluate} \\ & \text{the terms related to } P[\mathfrak{Z}|\mathcal{X},\Theta^{old}]; \text{ $//$ E-step } \\ & & | \Theta^{new} \leftarrow \arg_{\Theta} \max{\Omega(\Theta;\Theta^{old})^{new}; \text{ $//$ M-step } } \\ & \text{until } \Theta^{new} \text{ $converges$}; \end{split}
```

Algorithm 4: The general EM algorithm.

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

I.I.D. Instances

- ullet Assume that $(oldsymbol{x}^{(t)},oldsymbol{z}^{(t)})$ are i.i.d. samples drawn from some distribution
- By definition, $P[\mathfrak{X},\mathfrak{Z}] = \prod_{t=1}^{N} P[x^{(t)},z^{(t)}]$
- Denote $\mathbf{\emph{e}}_1 = [1,0\cdots,0]^{\top}, \mathbf{\emph{e}}_2 = [0,1\cdots,0]^{\top},\cdots,\mathbf{\emph{e}}_K = [0,0\cdots,1]^{\top} \in \mathbb{R}^K$
- We have $P[\mathcal{X}] = \Sigma_{\mathcal{Z}} P[\mathcal{X}, \mathcal{Z}] = \Sigma_{\mathcal{Z}} \Pi_{t=1}^N P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}] = \sum_{\mathbf{z}^{(1)} = \mathbf{e}_1} \cdots \Sigma_{\mathbf{z}^{(N)} = \mathbf{e}_1}^{\mathbf{e}_K} \Pi_{t=1}^N P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Sigma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{z}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{z}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{z}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{z}^{(t)}, \mathbf{z}^{(t)}] = \Pi_{t=1}^N \Gamma_{\mathbf{z}^{(t)} = \mathbf{e}_1}^{\mathbf{e}_K} P[\mathbf{z}^{(t)}, \mathbf{z}^{(t)}]$
- $\begin{aligned} &\bullet \text{ So,} \\ &P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] = \frac{P[\mathcal{X}, \mathcal{Z}|\Theta^{old}]}{P[\mathcal{X}|\Theta^{old}]} = \frac{\Pi_{t=1}^N P[\mathbf{x}^{(t)}, \mathbf{z}^{(t)}|\Theta^{old}]}{\Pi_{t=1}^N P[\mathbf{x}^{(t)}|\Theta^{old}]} = \Pi_{t=1}^N P[\mathbf{z}^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}] \end{aligned}$

- Next, we formulate $Q(\Theta; \Theta^{old})$ given $P[\mathcal{Z}|\mathcal{X}, \Theta^{old}] = \Pi_{t=1}^N P[\mathbf{z}^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}]$ (due to the i.i.d. instances), and the assumption of mixture density:
 - $\Theta = (\theta_i, \pi_i)_{i=1}^K$ where θ_i parametrizes $p(\pmb{x}|G_i)$ and $\pi_i = P[G_i]$
- ullet Denote by $d(z^{(t)})$ the index of attribute of $z^{(t)}$ equal to 1
 - $\bullet \ P[x^{(t)},z^{(t)}|\Theta] = P[x^{(t)}|z^{(t)},\Theta]P[z^{(t)}|\Theta] = P[x^{(t)}|z^{(t)},\theta_{d(z^{(t)})}]\pi_{d(z^{(t)})}$
- For brevity, we use the shorthand $P[z_i^{(t)}]$ for $P[z^{(t)} = e_i]$ (or equivalently $P[z_i^{(t)} = 1]$)

$$\mathcal{Q}(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)|\mathcal{X},\Theta^{old}] = \sum_{\mathcal{Z}}\ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)P[\mathcal{Z}|\mathcal{X},\Theta^{old}]$$

$$\begin{split} & \mathcal{Q}(\boldsymbol{\Theta}; \boldsymbol{\Theta}^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X}, \mathcal{Z}|\boldsymbol{\Theta}]\right)|\mathcal{X}, \boldsymbol{\Theta}^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X}, \mathcal{Z}|\boldsymbol{\Theta}]\right) P[\mathcal{Z}|\mathcal{X}, \boldsymbol{\Theta}^{old}] \\ & = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\boldsymbol{x}^{(t)}, \boldsymbol{z}^{(t)}|\boldsymbol{\Theta}]\right) \prod_{j=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)}, \boldsymbol{\Theta}^{old}] \end{split}$$

$$\begin{split} & \mathcal{Q}(\boldsymbol{\Theta}; \boldsymbol{\Theta}^{old}) = E_{\mathcal{Z}}[\ln\left(P[\boldsymbol{\mathcal{X}}, \boldsymbol{\mathcal{Z}}|\boldsymbol{\Theta}]\right)|\boldsymbol{\mathcal{X}}, \boldsymbol{\Theta}^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\boldsymbol{\mathcal{X}}, \boldsymbol{\mathcal{Z}}|\boldsymbol{\Theta}]\right)P[\boldsymbol{\mathcal{Z}}|\boldsymbol{\mathcal{X}}, \boldsymbol{\Theta}^{old}] \\ & = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\boldsymbol{x}^{(t)}, \boldsymbol{z}^{(t)}|\boldsymbol{\Theta}]\right) \prod_{j=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)}, \boldsymbol{\Theta}^{old}] \\ & = \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\boldsymbol{x}^{(t)}|\boldsymbol{z}^{(t)}, \boldsymbol{\theta}_{d(\boldsymbol{z}^{(t)})}]\boldsymbol{\pi}_{d(\boldsymbol{z}^{(t)})}\right) \prod_{j=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)}, \boldsymbol{\Theta}^{old}] \end{split}$$

$$\begin{split} &\mathcal{Q}(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)|\mathcal{X},\Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)P[\mathcal{Z}|\mathcal{X},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\boldsymbol{x}^{(t)},\boldsymbol{z}^{(t)}|\Theta]\right) \prod_{j=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\boldsymbol{x}^{(t)}|\boldsymbol{z}^{(t)},\theta_{d(\boldsymbol{z}^{(t)})}]\pi_{d(\boldsymbol{z}^{(t)})}\right) \prod_{j=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \delta_{\boldsymbol{z}^{(t)},e} \ln\left(P[\boldsymbol{x}^{(t)}|\boldsymbol{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad\qquad\qquad \prod_{i=1}^{N} P[\boldsymbol{z}^{(j)}|\boldsymbol{x}^{(j)},\Theta^{old}] \quad // \delta_{a,b} = 1 \text{if } a = b; \text{ 0otherwise} \end{split}$$

$$\begin{split} &\mathcal{Q}(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)|\mathcal{X},\Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)P[\mathcal{Z}|\mathcal{X},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)},\mathbf{z}^{(t)}|\Theta]\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)},\theta_{d(\mathbf{z}^{(t)})}]\pi_{d(\mathbf{z}^{(t)})}\right) \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{E}} \delta_{\mathbf{z}^{(t)},e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \quad // \delta_{a,b} = \text{1if } a = b; \text{ 0otherwise} \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \sum_{\mathcal{Z}} \delta_{\mathbf{z}^{(t)},e} \Pi_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \sum_{t=1}^{e_{K}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \sum_{t=1}^{e_{K}} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \sum_{t=1}^{e_{K}} \left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \sum_{t=1}^{e_{K}} \left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &\qquad \qquad \sum_{t=1}^{e_{K}} \left(P[\mathbf{x}^{(t)}|\mathbf{e$$

$$\begin{split} &\mathcal{Q}(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln{(P[\mathcal{X},\mathcal{Z}|\Theta])|\mathcal{X},\Theta^{old}]} = \sum_{\mathcal{Z}} \ln{(P[\mathcal{X},\mathcal{Z}|\Theta])P[\mathcal{Z}|\mathcal{X},\Theta^{old}]} \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln{\left(P[\mathbf{x}^{(t)},\mathbf{z}^{(t)}|\Theta]\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}]} \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)},\theta_{d(\mathbf{z}^{(t)})}]\pi_{d(\mathbf{z}^{(t)})}\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}]} \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \delta_{\mathbf{z}^{(t)},e} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} // \delta_{a,b} = 1 \text{if } a = b; \text{ 0otherwise}} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} \sum_{\mathcal{Z}} \delta_{\mathbf{z}^{(t)},e} \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}]} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} \\ &\sum_{t=1}^{e_K} \sum_{e=e_1}^{e_K} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} \sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \\ &\sum_{t=1}^{e_K} \sum_{e=e_1}^{e_K} \ln{\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right)} \sum_{t=1}^{e_K} \sum_{i=1}^{e_K} (\mathbf{z}^{(i)}|\mathbf{z}^{(i)},\Theta^{old}] P[\mathbf{e}|\mathbf{x}^{(t)},\Theta^{old}] \end{split}$$

$$\begin{split} &\mathcal{Q}(\Theta;\Theta^{old}) = E_{\mathcal{Z}}[\ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)|\mathcal{X},\Theta^{old}] = \sum_{\mathcal{Z}} \ln\left(P[\mathcal{X},\mathcal{Z}|\Theta]\right)P[\mathcal{Z}|\mathcal{X},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)},\mathbf{z}^{(t)}|\Theta]\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{z}^{(t)},\theta_{d(\mathbf{z}^{(t)})}]\pi_{d(\mathbf{z}^{(t)})}\right) \prod_{j=1}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)},\Theta^{old}] \\ &= \sum_{\mathcal{Z}} \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \delta_{\mathbf{z}^{(t)},e} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \left(\sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \right) \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \left(\sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \right) \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \left(\sum_{\mathbf{z}^{(t)}=e_1}^{e_K} \cdots \sum_{\mathbf{z}^{(t-1)}=e_1}^{e_K} \right) \\ &= \sum_{t=1}^{N} \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln\left(P[\mathbf{x}^{(t)}|\mathbf{e},\theta_{d(e)}]\pi_{d(e)}\right) \left(\sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \cdots \sum$$

$$\begin{split} = \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\boldsymbol{x}^{(t)} | \boldsymbol{e}, \boldsymbol{\theta}_{d(e)}] \boldsymbol{\pi}_{d(e)} \right) \left(\sum_{z^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(t-1)}=e_{1}}^{e_{K}} \sum_{z^{(t+1)}=e_{1}}^{e_{K}} \cdots \sum_{z^{(N)}=e_{1}}^{e_{K}} \boldsymbol{\Pi}_{j=1, j \neq t}^{N} P[\boldsymbol{z}^{(j)} | \boldsymbol{x}^{(j)}, \boldsymbol{\Theta}^{old}] \right) P[\boldsymbol{e} | \boldsymbol{x}^{(t)}, \boldsymbol{\Theta}^{old}] \end{split}$$

$$\begin{split} &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{\mathbf{z}^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{\mathbf{z}^{(t-1)}=e_{1}}^{e_{K}} \sum_{\mathbf{z}^{(t+1)}=e_{1}}^{e_{K}} \cdots \sum_{\mathbf{z}^{(N)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \\ & \left(\prod_{j=1, j \neq t}^{N} \sum_{\mathbf{z}^{(j)}=e_{1}}^{e_{K}} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \end{split}$$

$$\begin{split} &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{\mathbf{z}^{(1)}=e_{1}}^{e_{K}} \cdots \sum_{\mathbf{z}^{(t-1)}=e_{1}}^{e_{K}} \right. \\ &\qquad \qquad \sum_{\mathbf{z}^{(t+1)}=e_{1}}^{e_{K}} \cdots \sum_{\mathbf{z}^{(N)}=e_{1}}^{e_{K}} \prod_{j=1, j \neq t}^{N} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{1}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \\ &\qquad \qquad \left(\prod_{j=1, j \neq t}^{N} \sum_{\mathbf{z}^{(j)}=e_{1}}^{e_{K}} P[\mathbf{z}^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_{t}}^{e_{K}} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \end{split}$$

$$\begin{split} &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \left(\sum_{z^{(1)}=e_1}^{e_K} \cdots \sum_{z^{(t-1)}=e_1}^{e_K} \right. \\ &\qquad \qquad \qquad \sum_{z^{(t+1)}=e_1}^{e_K} \cdots \sum_{z^{(N)}=e_1}^{e_K} \prod_{j=1, j \neq t}^{N} P[z^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) \\ &\qquad \qquad \left(\prod_{j=1, j \neq t}^{N} \sum_{z^{(j)}=e_1}^{e_K} P[z^{(j)}|\mathbf{x}^{(j)}, \Theta^{old}] \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{e=e_1}^{e_K} \ln \left(P[\mathbf{x}^{(t)}|e,\theta_{d(e)}] \pi_{d(e)} \right) P[e|\mathbf{x}^{(t)}, \Theta^{old}] \\ &= \sum_{t=1}^{N} \sum_{i=1}^{K} \ln \left(\pi_i \right) P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}] + \\ &\qquad \qquad \qquad \sum_{t=1}^{N} \sum_{i=1}^{K} \ln \left(P[\mathbf{x}^{(t)}|z_i^{(t)}, \theta_i] \right) P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}] \end{split}$$

Evaluating $P[\mathfrak{Z}|\mathfrak{X}, \Theta^{old}]$

- Given mixtures of i.i.d. samples, we have $\Omega(\Theta;\Theta^{old}) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln\left(\pi_{i}\right) P[z_{i}^{(t)}|\boldsymbol{x}^{(t)},\Theta^{old}] + \sum_{t=1}^{N} \sum_{i=1}^{K} \ln\left(P[\boldsymbol{x}^{(t)}|z_{i}^{(t)},\theta_{i}]\right) P[z_{i}^{(t)}|\boldsymbol{x}^{(t)},\Theta^{old}]$
- The problem evaluating $P[\mathcal{Z}|\mathcal{X}, \Theta^{old}]$ is thus reduced to evaluating $P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}]$ for all $1 \leqslant i \leqslant K$ and $1 \leqslant t \leqslant N$

Outline

- Clustering
 - Why Clustering?
 - k-Means Clustering
 - Semiparametric Density Estimation
 - Hierarchical Clustering
 - Spectral Clustering
 - Practical Considerations
- Expectation Maximization
 - Latent Variables and Complete Likelihood
 - EM Steps
 - EM for Mixture Models
 - EM for Mixtures of Gaussians

Evaluating $P[z_i^{(t)}|x^{(t)},\Theta^{old}]$

- Problem: given Θ^{old} , evaluate $P[z_i^{(t)}|\pmb{x}^{(t)},\Theta^{old}]$ for all $1\leqslant i\leqslant K$ and $1\leqslant t\leqslant N$
- From Bayes' theorem,

$$P[z_i^{(t)}|\mathbf{x}^{(t)},\Theta^{old}] = \frac{P[\mathbf{x}^{(t)}|z_i^{(t)},\Theta^{old}]P[z_i^{(t)}|\Theta^{old}]}{\sum_{j=1}^K P[\mathbf{x}^{(t)}|z_j^{(t)},\Theta^{old}]P[z_j^{(t)}|\Theta^{old}]} = \frac{P[\mathbf{x}^{(t)}|z_i^{(t)},\theta_i^{old}]\pi_i^{old}}{\sum_{j=1}^K P[\mathbf{x}^{(t)}|z_j^{(t)},\theta_j^{old}]\pi_j^{old}}$$

- If we further assume that instances in each group are normally distributed, then $\theta_i^{old} = (\mu_i^{old}, \Sigma_i^{old})$ and we can easily obtain $P[\boldsymbol{x}^{(t)}|z_i^{(t)}, \theta_i^{old}]$ based on the normal distribution
- ullet For brevity, we denote the evaluated $P[z_i^{(t)}|m{x}^{(t)},\Theta^{old}]$ by $h_i^{(t)}$
 - ullet $h_i^{(t)}$ aligns with the soft label $z_i^{(t)}$ in semiparametric density estimation

Solving $arg_{\Theta} max \Omega(\Theta; \Theta^{old})$

- $Q(\Theta; \Theta^{old}) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(\pi_i) h_i^{(t)} + \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(P[\mathbf{x}^{(t)}|z_i^{(t)}, \theta_i]) h_i^{(t)}$
- Observe that the first term of $\mathcal{Q}(\Theta;\Theta^{old})$ depends only on $\{\pi_i\}_{i=1}^K$; and the second depends only on $\{\theta_i\}_{i=1}^K$
- We can obtain Θ^{new} by solving the two problems individually:
 - $\arg_{\pi_1,\cdots,\pi_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln(\pi_i) h_i^{(t)}$ subject to $\sum_{i=1}^K \pi_i = 1$
 - $\arg_{\theta_1,\dots,\theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln \left(P[\boldsymbol{x}^{(t)}|z_i^{(t)},\theta_i] \right) h_i^{(t)}$

Solving $\{\pi\}_{i=1}^K$

• Lagrangian:

$$L(\{x^{(t)}\}_{t=1}^{N}, \{\pi_{i}\}_{i=1}^{K}, \alpha) = \sum_{t=1}^{N} \sum_{i=1}^{K} \ln(\pi_{i}) h_{i}^{(t)} - \alpha \left(\sum_{i=1}^{K} \pi_{i} - 1\right)$$

- Taking the partial derivatives of L with respect to $\alpha, \pi_1, \cdots, \pi_K$ and setting them to zero we have $\sum_{i=1}^K \pi_i = 1$ and $\sum_{i=1}^N \frac{1}{-i} h_i^{(t)} \alpha = 0 \Rightarrow \sum_{i=1}^N h_i^{(t)} = \pi_i \alpha$ for $i = 1, \cdots, K$
- Summing the equations with α above we have $\sum_{i=1}^K \sum_{t=1}^N h_i^{(t)} = \sum_{i=1}^K \pi_i \alpha \Rightarrow \alpha = \sum_{t=1}^N \sum_{i=1}^K h_i^{(t)} = \sum_{t=1}^N \sum_{i=1}^K P[z_i^{(t)}|\mathbf{x}^{(t)}, \Theta^{old}] = N$
- Substituting N for α in each of the above equation we have $\pi_i = \frac{\sum_{t=1}^N h_i^{(t)}}{N}$
 - ullet This aligns with the π_i in semiparametric density estimation

Solving $\{\theta_i\}_{i=1}^K (1/2)$

- Objective: $\arg_{\theta_1, \cdots, \theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln \left(P[\boldsymbol{x}^{(t)} | \boldsymbol{z}_i^{(t)}, \boldsymbol{\theta}_i] \right) h_i^{(t)}$
- Since the groups in the mixtures are independent with each other, we can solve $\theta_i = (\mu_i, \Sigma_i)$ one by one
 - $\arg_{\theta_i} \max \sum_{t=1}^N \ln \left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i] \right) h_i^{(t)}$
- With the Gaussian mixture, we have

$$\begin{split} & \sum_{t=1}^{N} \ln \left(P[\mathbf{x}^{(t)} | z_i^{(t)}, \theta_i] \right) h_i^{(t)} = -\frac{N_i d}{2} \log(2\pi) - \frac{N_i}{2} \log(\det(\mathbf{\Sigma}_i)) - \\ & \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} (\mathbf{x}^{(t)} - \mathbf{\mu}_i)^\top \mathbf{\Sigma}_i^{-1} (\mathbf{x}^{(t)} - \mathbf{\mu}_i) = -\frac{N_i d}{2} \log(2\pi) + \\ & \frac{N_i}{2} \log(\det(\mathbf{\Sigma}_i^{-1})) - \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} tr \left(\mathbf{\Sigma}_i^{-1} (\mathbf{x}^{(t)} - \mathbf{\mu}_i) (\mathbf{x}^{(t)} - \mathbf{\mu}_i)^\top \right), \text{ where } \\ & N_i = \sum_{t=1}^{N} h_i^{(t)} \end{split}$$

Solving $\{\theta_i\}_{i=1}^K$ (2/2)

• Taking the partial derivatives of the above objective with respect to μ_i and Σ_i^{-1} and setting them to zero we have

$$\begin{cases} \sum_{t=1}^{N} h_i^{(t)} (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i)^{\top} \boldsymbol{\Sigma}_i^{-1} = \boldsymbol{0}^{\top} \\ \frac{N_i}{2} \boldsymbol{\Sigma}_i - \frac{1}{2} \sum_{t=1}^{N} h_i^{(t)} (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i) (\boldsymbol{x}^{(t)} - \boldsymbol{\mu}_i)^{\top} = \boldsymbol{O} \end{cases}$$

- $m_i = \frac{\sum_{t=1}^{N} x^{(t)} h_i^{(t)}}{\sum_{t=1}^{N} h_i^{(t)}}$
- $\bullet \ S_i = \frac{\sum_{t=1}^{N} (x^{(t)} m_i) (x^{(t)} m_i)^{\top} h_i^{(t)}}{\sum_{t=1}^{N} h_i^{(t)}}$
- ullet Again, these results align with the $oldsymbol{m}_i$ and $oldsymbol{S}_i$ in semiparametric density estimation

Remarks

- Both the K-means and semiparametric density estimation are EM algorithms
 - ullet The iteration ends and $oldsymbol{\Theta}$ converges to a local optimum
- In particular, when assuming that the priors π_i are all equal and $\Sigma_i = \sigma^2 I$, we have
 - $\bullet \ \, h_i^{(t)} = \frac{\exp \left[-(1/2(s^{old})^2) \left\| \mathbf{x}^{(t)} \mathbf{m}_i^{old} \right\| \right] }{\sum_{j=1}^K \exp \left[-(1/2(s^{old})^2) \left\| \mathbf{x}^{(t)} \mathbf{m}_j^{old} \right\| \right] }$
 - The objective $\arg_{\theta_1,\cdots,\theta_K} \max \sum_{t=1}^N \sum_{i=1}^K \ln \left(P[\mathbf{x}^{(t)}|z_i^{(t)},\theta_i]\right) h_i^{(t)}$ can be rewritten as $\arg_{\mathbf{m}_1,\cdots,\mathbf{m}_K,s} \min \sum_{t=1}^N \sum_{i=1}^K \frac{\left\|\mathbf{x}^{(t)}-\mathbf{m}_i\right\|^2}{s^2} h_i^{(t)}$
 - This is equivalent to minimizing the reconstruction error in the K-means