Домашнее задание №2

Д.А. Першин

29 октября 2014 г.

Словесное описание алгоритма 1

При решении данной задачи будем использовать алгоритм быстрой сортировки (временная слжность - $O(n \log n)$, память - $O(\log n)$) и алгоритм бинарного поиска (сложность - $O(\log n)$). Входной массив будет состоять из пар чисел e_i и i (необходим для восстановления начальных индексов после сортировки) - эффективность футболиста и входной индекс.

Отсортируем входной массив методом быстрой сортировки, назовем его a'. Получим массив, в котором эффективность всех футболистов отсортирована в порядке возрастания. Создадим вспомогательный массив s, где $s_i = s_{i-1} + a_i'$. Для суммы эффективностей каждой пары игроков a'_k, a'_{k+1} найдем наиболее эффективного футболиста, не нарушающего условие сплочености a_i' ,

$$a'_j = \max_{0 \le i < n; \ a'_i \le (a'_k + a'_{k+1})} a'_i$$

 $a_j' = \max_{0 \leq i < n; \ a_j' \leq (a_k' + a_{k+1}')} a_i'$ Создадим впомогательный массив r, в который будем записывать суммарную эффективность игроков из $[a'_k, ..., a'_i]$, а в массив p запишем индекс k (для восстановления комманды игроков). Найдем в массиве r максимальное значение r_m . Это и есть наибольшая суммарная эффективность, удовлетворяющая условию сплоченности, а a'_{p_m} ... a'_m искомая команда игроков. Восстановить исходные индексы не состаляет труда, так как во входном массиве хранятся изначальные индексы игроков до сортировки.

Алгоритм:

- 1. Запишем во входной массив a пару чисел: e_i эффективность, i начальный индекс.
- 2. Отсортируем входной массив по значению e в порядке возрастания, назавем его a'.
- 3. Создадим вспомогательный массив s, где $s_i = s_{i-1} + a_i'$.

- 4. Для каждай пары a'_k, a'_{k+1} :

 - найдем a_j' , такой что $a_j' = \max_{0 \le i < n; \ a_j' \le (a_k' + a_{k+1}')} a_i';$ найдем $r_j = s_j s_k$ максимальная эффективность команды, включающая игрока a_j' ;
 - \bullet $p_i = k;$
- 5. Найдем в массиве r максимальное значение r_m наибольшая суммарная эффективность, удовлетворяющая условию сплоченности.
- 6. Из a'_{p_m} ... a'_m найдем исходные индексы i, записанные на шаге 1 и запишем их в
- 7. Отсортируем массив I в порядке возрастания, получим результирующий массив

2 Доказательство корректнсти

Предположим, что найденный набор игроков $[a'_k, a'_i]$ не является максимально эффективным, но в таком случае существует другой игрок a_m' более эффективный, чем a_j' , но тогда a_i' не является максимальным, что протеворечит ранее описаным условиям

$$a'_{j} = \max_{0 \le i < n; \ a'_{j} \le (a'_{k} + a'_{k+1})} a'_{i}$$

Таким образом набор игроков $[a'_k, a'_i]$ является набором, имеющим наибольшую суммарную эффективность, удовлетворяющая условию сплоченности.

3 Асимптотические оценки

В результате получаем сложность по памяти O(n), так как мы используем 4 массива длиной n (a, s, p и r). Сложность по времени равна $O(n \log n)$, так как мы используем алгоритм быстрой сортировки - $O(n \log n)$ для сортировки входного массива, алгоритм бинарного поиска - $O(\log n)$ для поиска верхней границы в массиве a' для каждой пары элементов, и того $O(n \log n)$. Поиск максимума в массиве r и восстановление результирующей последоветльности индексов из массива a' выполняется не более чем за O(n).