Wiskundige Structuren Huiswerk

Jasper Vos Huiswerkset 3 28 september 2025

Studentnr: s2911159

Opgave 1

Bewijs. We bewijzen voor zowel n=0 en n=1, omdat er vaak dubbelzinnigheid is over $0\in\mathbb{N}$ of $0\notin\mathbb{N}$.

1. Basisstap: n = 0, n = 1

Neem $|A| = |\emptyset| = 0$, dan en slechts dan als $|\mathcal{P}(A)||\{\emptyset\}| = 2^0 = 1$. Dus de uitspraak geldt voor n = 0.

Neem $|A| = |\{a\}| = 1$ dan en slechts dan als $|\mathcal{P}(A)| = |\{\emptyset, \{a\}\}| = 2^1 = 2$. Dus de uistpraak geldt voor n = 1.

2. Inductiehypothese:

Neem aan dat de stelling geldt voor $0 \le k < n$, dan geldt dus: |A| = k en $|\mathcal{P}(A)| = 2^k$.

Laat k = n - 1 en $B = A \cup \{b\}$ waarbij $b \notin A$ Dan kunnen we de machtsverzameling opstellen voor $\mathcal{P}(B)$ waarbij we $\mathcal{P}(B)$ partioneren met $\mathcal{P}(B) = P_1 \cup P_2$ in het geval $b \in \mathcal{P}(B)$ of $b \notin \mathcal{P}(B)$:

$$P_1 = \{ V \in \mathcal{P}(B) : b \notin V) \} = \mathcal{P}(A)$$

$$P_2 = \{ V \in \mathcal{P}(B) : b \in V \}$$

Nu moeten we nog bewijzen dat $P_1 \cup P_2 = \mathcal{P}(B)$ met:

$$P_1 \cup P_2 \subset \mathcal{P}(B)$$

Geval $V \in P_1$:

 $\implies V \in \mathcal{P}(B) \text{ en } b \notin V \quad \text{(De definitie van } P_1\text{)}$

$$\implies V \in \mathcal{P}(B)$$

Geval $V \in P_2$:

 $\implies V \in \mathcal{P}(B)$ en $b \in V$ (De definitie van P_2)

$$\implies V \in \mathcal{P}(B)$$

$$\mathcal{P}(B) \subset P_1 \cup P_2$$

Geval $b \notin V \text{ met } V \in \mathcal{P}(B)$:

 $\implies V \in \mathcal{P}(B)$ en $b \notin V$ (Volgens definitie van P_1)

$$\implies V \in P_1$$

$$\implies V \in P_1 \cup P_2$$

Geval $b \in V \text{ met } V \in \mathcal{P}(B)$:

 $\implies V \in \mathcal{P}(B)$ en $b \in V$ (Volgens definitie van P_2)

$$\implies V \in P_2$$

$$\implies V \in P_2 \cup P_1$$

Dus $P_1 \cup P_2 = \mathcal{P}(B)$, we kunnen nu een functie $f: P_1 \to P_2$ met $f(V) = V \cup \{b\}$, als we bewijzen dat f een bijectie is dan $\mathcal{P}(A) = |P_1| = |p_2|$.

Voor alle $V, W \in P_1$ als f(V) = f(W) dan $V \cup \{b\} = W \cup \{b\} \implies V = W$, en dus is f injectief.

Voor alle $W \in P_2$ geldt dat er een $V \in P_1$ bestaat zodanig dat f(V) = W. laat $V = W/\{b\}$ dan $f(W/\{b\}) = W/\{b\} \cup \{b\} = W$, en dus is f surjectief.

We hebben dus een bijectie tussen P_1 en P_2 en dus $|P_1| = |P_2|$. Als we nu alles optellen krijgen we:

$$\begin{aligned} |\mathcal{P}(B)| &= |P_1 \cup P_2| \quad (P_1, P_2 \text{ partioneren } \mathcal{P}(B)) \\ &= |\mathcal{P}(A)| + |\mathcal{P}(A)| \quad (|P_1| = |P_2| \text{ omdat we } P_2 \text{ kunnen construreren uit } P_1) \\ &= 2^k + 2^k \\ &= 2(2^k) \\ &= 2^{k+1} \end{aligned}$$

3. Uitspraak waar voor alle n:

We stellen dat de uitspraak waar is voor alle n en gaan dit bewijzen door te stellen dat dit niet zo is door vervolgens een tegenspraak te vinden.

Vanuit de welordening van \mathbb{N} is er een kleinste element $n_0 \in \mathbb{N}$. We zeggen dat er een kleinste n_0 moet bestaan waarvoor de uispraak niet waar is, maar we hebben al bewezen dat voor $0 \le k \le n$ de uitspraak waar is. Dit is dus een tegenspraak en daarom geldt voor alle $n \in \mathbb{N}$ dat de uitspraak waar is.

Opgave 2

Bewijs. Als f een inverse heeft geldt:

$$f^{-1}(a) = b \Leftrightarrow f(b) = a$$

Neem $a \in A$ en laat $f^{-1}(a) = b$, en f(b) = a. Vervolgens stellen we op dat $f(b) = f(f^{-1}(a)) = a$, echter hebben we per definitie van f dat f(f(a)) = a, en dus moet $f = f^{-1}$, omdat f injectief is kan $f(f(a)) = f(f^{-1}(a))$ alleen als $f(a) = f^{-1}(a)$.

Opgave 3

Bewijs. Volledige inductie laten we eerst beginnen met n=0 aangezien de formule impliceert dat $0 \in \mathbb{N}$.

1. Basisstap: n = 0 Voor de linkerkant:

$$\sum_{i=0}^{0} 3i(i+1) = 3(0)(0+1) = \boxed{0}$$

en de rechterkant:

$$0(0+1)(0+2) = \boxed{0}$$

Dus de stelling klopt als n = 0.

2. Inductiehypothese: Neem aan dat de stelling klopt voor $0 \le k \le n$ dus:

$$\sum_{i=0}^{k} 3i(i+1) = k(k+1)(n+2)$$

Laat nu k = n - 1 dan, en bewijs voor k + 1 = n:

$$\sum_{i=0}^{k} 3i(i+1) + 3(k+1)(k+2) = k(k+1)(k+2) + 3(k+1)(k+2)$$
 (Substitutie)
= $(k+3)(k+1)(k+2)$ (Distributie)
= $(k+1)(k+2)(k+3)$ (Commutativiteit)
= $(k+1)((k+1)+1)((k+1)+2)$

3.	Uitspraak waar voor alle n : Stel dat de stelling niet geldt voor alle $n \in \mathbb{N}$ dan bestaat er een kleinste n_0
	waarbij de stelling niet waar moet zijn, echter geldt voor $0 \le k \le n$ dat de stelling klopt, en dus is dit een
	tegenspraak.

De stelling is dus waar voor alle $n \in \mathbb{N}$.