MATH 1080 Vagnozzi

#### 12.2: Polar Coordinates

**Learning Objectives.** Upon successful completion of Section 12.2, you will be able to...

- Answer conceptual questions involving polar coordinates.
- Graph with polar coordinates and give alternate polar representations of polar points.
- Convert between polar and Cartesian coordinates.
- Convert between polar equations and Cartesian equations.
- Graph simple polar curves.
- Identify corresponding points given Cartesian and polar graphs of the same curve.

#### Introduction to Polar Coordinates

**Rectangular coordinates**, or **Cartesian coordinates**, describe the position of a point P by its horizontal (x) distance and vertical (y) distance.

Polar coordinates instead describe the position of a point P using...

- $\bullet$  a \_\_\_\_\_\_\_, which is a directed distance from the origin to P, and
- $\bullet$  an \_\_\_\_\_\_\_, which is a directed angle measured counterclockwise from the polar axis to P.

- **Example.** Plot the following polar coordinates.
  - $(0,\theta)$
- $\left(2,\frac{2\pi}{3}\right)$
- $\left(5, -\frac{\pi}{4}\right)$
- $\left(-3, \frac{\pi}{6}\right)$



Note: Polar coordinates do not give a unique representation of a point.

# **Coordinate Conversion**

Let the polar axis coincide with the positive x-axis and the pole with the origin.

- $\widehat{\ \ }$  A point with polar coordinates  $(r,\theta)$  has Cartesian coordinates (x,y) where
- (2) A point with Cartesian coordinates (x, y) has polar coordinates  $(r, \theta)$  where

**Example.** Find the Cartesian coordinates of the point with polar coordinates  $\left(-4, \frac{3\pi}{4}\right)$ .

**Example.** Find polar coordinates (with r > 0) of the point with Cartesian coordinates  $(-4, 4\sqrt{3})$ . Also find polar coordinates with r < 0 for this point.

#### Polar Curves

The graph of a polar equation  $r = f(\theta)$  consists of all points P that have at least one polar representation  $(r, \theta)$  whose coordinates satisfy the equation.

**Basic Curves** 

r = a, Example: r = 3

 $\theta = b$ , Example:  $\theta = 5\pi/6$ 

**Example.** Convert the following equation to Cartesian coordinates. Describe the resulting curve.

$$r = 6\cos\theta + 8\sin\theta$$

**Note:**  $r = 2a\cos\theta + 2b\sin\theta$  describes the circle of radius  $r = \sqrt{a^2 + b^2}$  and center (a, b).

MATH 1080 Vagnozzi

### Symmetry in Polar Equations

• We have symmetry about the x-axis (polar axis) if  $(r, \theta)$  is on the graph whenever  $(r, -\theta)$  is.

- We have symmetry about the **y-axis**  $(\theta = \pi/2)$  if  $(r, \theta)$  is on the graph whenever  $(r, \pi \theta) = (-r, -\theta)$  is.
- We have symmetry about the origin (the pole) if  $(r, \theta)$  is on the graph whenever  $(-r, \theta) = (r, \theta + \pi)$  is.

## **Sketching Polar Curves**

**Example.** Sketch the graph of the polar curve  $r = 4 + 4\cos\theta$  using a table of values and symmetry.