Prediction of student performance in secondary education.

Name: AHMED SHMELS MUHE

REG_NO:GE22M009

M.Tech in Data Science

Indian institute of technology Madras

Objectives

- To find out what features most affect student achievement
- Descriptive analysis, and correlation studies of the given data.
- To classify the data using classification algorithms(SVM,KNN,logistic).
- Compare the three ML models
- Find the best algorithm with high accuracy

Data processing

Feature Engineering:

Datasets came up with non-numerical values and it is impossible to give them to any classifier. So, I convert non-numeric values to numerical ones/ **Digitization of values.**

- Feature scaling: is a method used to normalize the range of independent variables or features of data, This will help our model to converge quickly. Just by calling:
- Data Normalization
- z-score normalisation/Standardization
- Missing value check: No missing values in the data, The shape of our data set is (395 rows × 31 columns).

$$rac{col-mean(col)}{std(col)}$$

$$rac{col - mean(col)}{max(col)}$$

Correlation of the Data

- This correlation could be positive or negative.
- Positive correlation: This means the variable 个, the related variable also 个,
- **↑StudyTime↑FinalGrades**
- Negative correlation: This means that as the variable \uparrow , the related variable \downarrow ,
- **↑**Failures **↓** FinalGrades

Features Correlating with the status of student

Features have a +ve impact on academic performance

Features have a -ve impact on academic performance

KNN

- Step-1: Select the number K of the neighbors
- Step-2: Calculate the Euclidean(or any other type of distances) distance of K number of neighbors
- Step-3: Among the k nearest neighbors, count the number of the data points in each category.
- Step-4: Assign the new data points to that category for which the number of the neighbor is maximum.
- Suppose we have a new data point and we need to put it in the required category. Consider the below image:

KNN classification result

SVM classification result

- SVM uses the kernel trick technique to transform The data and then finds an optimal boundary between the possible outputs based on these transformations. We will use three kernels:
- Linear, polynomial and Gaussian kernel.
- Gaussian kernel performed better

Comparison of three ROC curves

Metric	Linear kernel	polynomial kernel	gaussian kernel
training time	11ms	7ms	3ms
accuracy %	84.375	78.125	82.8125
confusion matrix	[15 8] [2 39	[12 8] [6 38]	[10 11] [0 43]
f1 score	0.82	0.74	0.77
roc_auc_score	0.80	0.73	0.74

Logistic Regression

- The algorithm gives different accuracy each time we change the data split:
- accuracy should not vary too much depending on the random state
- Improving model accuracy:
- instead of using the values "0" and "1" for the random state, we will choose the value "optimal_state" this maximizes the accuracy and the F1 score.

#import classification_report
print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
50 69	0.36 0.75	0.24 0.93	0.71 0.63	0.0 1.0
119 119 119	0.64 0.55 0.58	0.58 0.64	0.67 0.66	accuracy macro avg eighted avg

*Accuracy is: 80.67226890756302

*f1 score is: 0.7408389357068459

Comparison of the three algorithms

- The metrics that we will be used to compare those three algorithms are:
- F1 score.
- 2. Accuracy score.
- 3. Confusion matrix.
- ROC curve.
- 5. ROC score.
- SVM classifier with high accuracy of 84%, the confusion matrix is roughly diagonal which indicates that this classifier is able to label data correctly.

ompare_lg_knn_svm(yt_knn,yp_knn,yt_lg,yp_lg,yt_svm,yp_svm)	

-----Table of metrics-----

SVM	KNN	Logistic regression	metric
82.0	54.0	74.0	f1 score
84.0	80.0	81.0	accuracy %
	[3 23] [1 92]		confusion matrix
80.0	55.0	72.0	ROC score

metric	Learning	algorithm	winnig
max f1 score			SVM
max accuracy %			SVM
max ROC score			SVM

Conclusions

Factors helping students succeed:

father's education
guardian
wants to take higher education
studytime
father's job

Factors leading students to failure:

age
health
going out with friends
absences
failures

metric	Logistic regression	KNN	SVM
f1 score	74	48	82
accuracy %	81	70	84
confusion matrix		[3 23] [13 80]	
ROC score	72	49	80

