Operating System

An Operating System (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. When you start using a Computer System then it's the Operating System (OS) which acts as an interface between you and the computer hardware. The operating system is really a low level **Software** which is categorised as a **System Software** and supports a computer's basic functions, such as memory management, tasks scheduling and controlling peripherals etc.

This simple and easy tutorial will take you through step by step approach while learning Operating System concepts in detail.

What is Operating System?

An Operating System (OS) is an interface between a computer user and computer hardware. An operating system is a software which performs all the basic tasks like file management, memory management, process management, handling input and output, and controlling peripheral devices such as disk drives and printers.

Generally, a Computer System consists of the following components:

- Computer Users are the users who use the overall computer system.
- Application Softwares are the softwares which users use directly to perform different activities. These softwares are simple and
 easy to use like Browsers, Word, Excel, different Editors, Games etc. These are usually written in high-level languages, such as
 Python, Java and C++.
- System Softwares are the softwares which are more complex in nature and they are more near to computer hardware. These software are usually written in low-level languages like assembly language and includes Operating Systems (Microsoft Windows, macOS, and Linux), Compiler, and Assembler etc.
- Computer Hardware includes Monitor, Keyboard, CPU, Disks, Memory, etc.

So now let's put it in simple words:

If we consider a Computer Hardware is body of the Computer System, then we can say an Operating System is its soul which brings it alive ie. operational. We can never use a Computer System if it does not have an Operating System installed on it.

Operating System - Examples

There are plenty of Operating Systems available in the market which include paid and unpaid (Open Source). Following are the examples of the few most popular Operating Systems:

- Windows: This is one of the most popular and commercial operating systems developed and marketed by Microsoft. It has different versions in the market like Windows 8, Windows 10 etc and most of them are paid.
- Linux This is a Unix based and the most loved operating system first released on September 17, 1991 by Linus Torvalds. Today, it has 30+ variants available like Fedora, OpenSUSE, CentOS, UBuntu etc. Most of them are available free of charges though you can have their enterprise versions by paying a nominal license fee.
- MacOS This is again a kind of Unix operating system developed and marketed by Apple Inc. since 2001.
- iOS This is a mobile operating system created and developed by Apple Inc. exclusively for its mobile devices like iPhone and iPad etc.
- Android This is a mobile Operating System based on a modified version of the Linux kernel and other open source software, designed primarily for touchscreen mobile devices such as smartphones and tablets.

Some other old but popular Operating Systems include Solaris, VMS, OS/400, AIX, z/OS, etc.

Operating System - Functions

To brief, Following are some of important functions of an operating System which we will look in more detail in upcoming chapters:

- Process Management
- I/O Device Management
- File Management
- Network Management

- Main Memory Management
- Secondary Storage Management
- Security Management
- Command Interpreter System
- Control over system performance
- Job Accounting
- Error Detection and Correction
- Coordination between other software and users
- Many more other important tasks

An **Operating System** (OS) is an interface between a computer user and computer hardware. An operating system is a software which performs all the basic tasks like file management, memory management, process management, handling input and output, and controlling peripheral devices such as disk drives and printers.

An operating system is software that enables applications to interact with a computer's hardware. The software that contains the core components of the operating system is called the **kernel**.

The primary purposes of an **Operating System** are to enable applications (spftwares) to interact with a computer's hardware and to manage a system's hardware and software resources.

Some popular Operating Systems include Linux Operating System, Windows Operating System, VMS, OS/400, AIX, z/OS, etc. Today, Operating systems is found almost in every device like mobile phones, personal computers, mainframe computers, automobiles, TV, Toys etc.

Definitions

We can have a number of definitions of an Operating System. Let's go through few of them:

An Operting System is the low-level software that supports a computer's basic functions, such as scheduling tasks and controlling peripherals.

We can refine this definition as follows:

An operating system is a program that acts as an interface between the user and the computer hardware and controls the execution of all kinds of programs.

Following is another definition taken from Wikipedia:

An operating system (OS) is system software that manages computer hardware, software resources, and provides common services for computer programs.

Architecture

We can draw a generic architecture diagram of an Operating System which is as follows:

Operating System Generations

Operating systems have been evolving over the years. We can categorise this evaluation based on different generations which is briefed below:

0th Generation

The term 0th generation is used to refer to the period of development of computing when Charles Babbage invented the Analytical Engine and later John Atanasoff created a computer in 1940. The hardware component technology of this period was electronic vacuum tubes. There was no Operating System available for this generation computer and computer programs were written in machine language. This computers in this generation were inefficient and dependent on the varying competencies of the individual programmer as operators.

First Generation (1951-1956)

The first generation marked the beginning of commercial computing including the introduction of Eckert and Mauchly's UNIVAC I in early 1951, and a bit later, the IBM 701.

System operation was performed with the help of expert operators and without the benefit of an operating system for a time though programs began to be written in higher level, procedure-oriented languages, and thus the operator's routine expanded. Later monoprogrammed operating system was developed, which eliminated some of the human intervention in running job and provided programmers with a number of desirable functions. These systems still continued to operate under the control of a human operator who used to follow a number of steps to execute a program. Programming language like FORTRAN was developed by John W. Backus in 1956.

Second Generation (1956-1964)

The second generation of computer hardware was most notably characterised by transistors replacing vacuum tubes as the hardware component technology. The first operating system GMOS was developed by the IBM computer. GMOS was based on single stream batch processing system, because it collects all similar jobs in groups or batches and then submits the jobs to the operating system using a punch card to complete all jobs in a machine. Operating system is cleaned after completing one job and then continues to read and initiates the next job in punch card.

Researchers began to experiment with multiprogramming and multiprocessing in their computing services called the time-sharing system. A noteworthy example is the Compatible Time Sharing System (CTSS), developed at MIT during the early 1960s.

Third Generation (1964-1979)

The third generation officially began in April 1964 with IBM's announcement of its System/360 family of computers. Hardware technology began to use integrated circuits (ICs) which yielded significant advantages in both speed and economy.

Operating system development continued with the introduction and widespread adoption of multiprogramming. The idea of taking fuller advantage of the computer's data channel I/O capabilities continued to develop.

Another progress which leads to developing of personal computers in fourth generation is a new development of minicomputers with DEC PDP-1. The third generation was an exciting time, indeed, for the development of both computer hardware and the accompanying operating system.

Fourth Generation (1979 – Present)

The fourth generation is characterised by the appearance of the personal computer and the workstation. The component technology of the third generation, was replaced by very large scale integration (VLSI). Many Operating Systems which we are using today like Windows, Linux, MacOS etc developed in the fourth generation.

Following are some of important functions of an operating System.

- Memory Management
- Processor Management
- Device Management
- File Management
- Network Management
- Security
- Control over system performance
- Job accounting
- Error detecting aids
- Coordination between other software and users

Memory Management

Memory management refers to management of Primary Memory or Main Memory. Main memory is a large array of words or bytes where each word or byte has its own address.

Main memory provides a fast storage that can be accessed directly by the CPU. For a program to be executed, it must in the main memory. An Operating System does the following activities for memory management –

- Keeps tracks of primary memory, i.e., what part of it are in use by whom, what part are not in use.
- In multiprogramming, the OS decides which process will get memory when and how much.
- Allocates the memory when a process requests it to do so.
- De-allocates the memory when a process no longer needs it or has been terminated.

Processor Management

In multiprogramming environment, the OS decides which process gets the processor when and for how much time. This function is called **process scheduling**. An Operating System does the following activities for processor management –

- Keeps tracks of processor and status of process. The program responsible for this task is known as traffic controller.
- Allocates the processor (CPU) to a process.
- De-allocates processor when a process is no longer required.

Device Management

An Operating System manages device communication via their respective drivers. It does the following activities for device management –

- Keeps tracks of all devices. Program responsible for this task is known as the I/O controller.
- Decides which process gets the device when and for how much time.
- Allocates the device in the efficient way.

De-allocates devices.

File Management

A file system is normally organized into directories for easy navigation and usage. These directories may contain files and other directions.

An Operating System does the following activities for file management -

- Keeps track of information, location, uses, status etc. The collective facilities are often known as file system.
- Decides who gets the resources.
- Allocates the resources.
- De-allocates the resources.

Other Important Activities

Following are some of the important activities that an Operating System performs -

- Security By means of password and similar other techniques, it prevents unauthorized access to programs and data.
- Control over system performance Recording delays between request for a service and response from the system.
- Job accounting Keeping track of time and resources used by various jobs and users.
- Error detecting aids Production of dumps, traces, error messages, and other debugging and error detecting aids.
- Coordination between other softwares and users Coordination and assignment of compilers, interpreters, assemblers
 and other software to the various users of the computer systems.

There are various components of an Operating System to perform well defined tasks. Though most of the Operating Systems differ in structure but logically they have similar components. Each component must be a well-defined portion of a system that appropriately describes the functions, inputs, and outputs.

There are following 8-components of an Operating System:

- Process Management
- 2. I/O Device Management
- 3. File Management
- 4. Network Management
- 5. Main Memory Management
- 6. Secondary Storage Management
- 7. Security Management
- 8. Command Interpreter System

Following section explains all the above components in more detail:

Process Management

A process is program or a fraction of a program that is loaded in main memory. A process needs certain resources including CPU time, Memory, Files, and I/O devices to accomplish its task. The process management component manages the multiple processes running simultaneously on the Operating System.

A program in running state is called a process.

The operating system is responsible for the following activities in connection with process management:

- Create, load, execute, suspend, resume, and terminate processes.
- Switch system among multiple processes in main memory.
- Provides communication mechanisms so that processes can communicate with each others
- Provides synchronization mechanisms to control concurrent access to shared data to keep shared data consistent.
- Allocate/de-allocate resources properly to prevent or avoid deadlock situation.

I/O Device Management

One of the purposes of an operating system is to hide the peculiarities of specific hardware devices from the user. I/O Device Management provides an abstract level of H/W devices and keep the details from applications to ensure proper use of devices, to prevent errors, and to provide users with convenient and efficient programming environment.

Following are the tasks of I/O Device Management component:

- Hide the details of H/W devices
- Manage main memory for the devices using cache, buffer, and spooling
- Maintain and provide custom drivers for each device.

File Management

File management is one of the most visible services of an operating system. Computers can store information in several different physical forms; magnetic tape, disk, and drum are the most common forms.

A file is defined as a set of correlated information and it is defined by the creator of the file. Mostly files represent data, source and object forms, and programs. Data files can be of any type like alphabetic, numeric, and alphanumeric.

A files is a sequence of bits, bytes, lines or records whose meaning is defined by its creator and user.

The operating system implements the abstract concept of the file by managing mass storage device, such as types and disks. Also files are normally organized into directories to ease their use. These directories may contain files and other directories and so on.

The operating system is responsible for the following activities in connection with file management:

- File creation and deletion
- Directory creation and deletion
- The support of primitives for manipulating files and directories
- Mapping files onto secondary storage
- File backup on stable (nonvolatile) storage media

Network Management

The definition of network management is often broad, as network management involves several different components. Network management is the process of managing and administering a computer network. A computer network is a collection of various types of computers connected with each other.

Network management comprises fault analysis, maintaining the quality of service, provisioning of networks, and performance management.

Network management is the process of keeping your network healthy for an efficient communication between different computers.

Following are the features of network management:

- Network administration
- Network maintenance
- Network operation
- Network provisioning
- Network security

Main Memory Management

Memory is a large array of words or bytes, each with its own address. It is a repository of quickly accessible data shared by the CPU and I/O devices.

Main memory is a volatile storage device which means it loses its contents in the case of system failure or as soon as system power goes down.

The main motivation behind Memory Management is to maximize memory utilization on the computer system.

The operating system is responsible for the following activities in connections with memory management:

- Keep track of which parts of memory are currently being used and by whom.
- Decide which processes to load when memory space becomes available.
- Allocate and deallocate memory space as needed.

Secondary Storage Management

The main purpose of a computer system is to execute programs. These programs, together with the data they access, must be in main memory during execution. Since the main memory is too small to permanently accommodate all data and program, the computer system must provide secondary storage to backup main memory.

Most modern computer systems use disks as the principle on-line storage medium, for both programs and data. Most programs, like compilers, assemblers, sort routines, editors, formatters, and so on, are stored on the disk until loaded into memory, and then use the disk as both the source and destination of their processing.

The operating system is responsible for the following activities in connection with disk management:

- Free space management
- Storage allocation

Disk scheduling

Security Management

The operating system is primarily responsible for all task and activities happen in the computer system. The various processes in an operating system must be protected from each other's activities. For that purpose, various mechanisms which can be used to ensure that the files, memory segment, cpu and other resources can be operated on only by those processes that have gained proper authorization from the operating system.

Security Management refers to a mechanism for controlling the access of programs, processes, or users to the resources defined by a computer controls to be imposed, together with some means of enforcement.

For example, memory addressing hardware ensure that a process can only execute within its own address space. The timer ensure that no process can gain control of the CPU without relinquishing it. Finally, no process is allowed to do it's own I/O, to protect the integrity of the various peripheral devices.

Command Interpreter System

One of the most important component of an operating system is its command interpreter. The command interpreter is the primary interface between the user and the rest of the system.

Command Interpreter System executes a user command by calling one or more number of underlying system programs or system calls.

Command Interpreter System allows human users to interact with the Operating System and provides convenient programming environment to the users.

Many commands are given to the operating system by control statements. A program which reads and interprets control statements is automatically executed. This program is called the shell and few examples are Windows DOS command window, Bash of Unix/Linux or C-Shell of Unix/Linux.

Other Important Activities

An Operating System is a complex Software System. Apart from the above mentioned components and responsibilities, there are many other activities performed by the Operating System. Few of them are listed below:

- Security By means of password and similar other techniques, it prevents unauthorized access to programs and data.
- Control over system performance Recording delays between request for a service and response from the system.
- Job accounting Keeping track of time and resources used by various jobs and users.
- Error detecting aids Production of dumps, traces, error messages, and other debugging and error detecting aids.

• Coordination between other softwares and users – Coordination and assignment of compilers, interpreters, assemblers and other software to the various users of the computer systems.

Types of Operating System

Operating systems are there from the very first computer generation and they keep evolving with time. In this chapter, we will discuss some of the important types of operating systems which are most commonly used.

Batch operating system

The users of a batch operating system do not interact with the computer directly. Each user prepares his job on an off-line device like punch cards and submits it to the computer operator. To speed up processing, jobs with similar needs are batched together and run as a group. The programmers leave their programs with the operator and the operator then sorts the programs with similar requirements into batches.

The problems with Batch Systems are as follows -

- Lack of interaction between the user and the job.
- CPU is often idle, because the speed of the mechanical I/O devices is slower than the CPU.
- Difficult to provide the desired priority.

Time-sharing operating systems

Time-sharing is a technique which enables many people, located at various terminals, to use a particular computer system at the same time. Time-sharing or multitasking is a logical extension of multiprogramming. Processor's time which is shared among multiple users simultaneously is termed as time-sharing.

The main difference between Multiprogrammed Batch Systems and Time-Sharing Systems is that in case of Multiprogrammed batch systems, the objective is to maximize processor use, whereas in Time-Sharing Systems, the objective is to minimize response time.

Multiple jobs are executed by the CPU by switching between them, but the switches occur so frequently. Thus, the user can receive an immediate response. For example, in a transaction processing, the processor executes each user program in a short burst or quantum of computation. That is, if \mathbf{n} users are present, then each user can get a time quantum. When the user submits the command, the response time is in few seconds at most.

The operating system uses CPU scheduling and multiprogramming to provide each user with a small portion of a time. Computer systems that were designed primarily as batch systems have been modified to time-sharing systems.

Advantages of Timesharing operating systems are as follows -

- Provides the advantage of quick response.
- Avoids duplication of software.
- Reduces CPU idle time.

Disadvantages of Time-sharing operating systems are as follows -

- Problem of reliability.
- Question of security and integrity of user programs and data.
- Problem of data communication.

Distributed operating System

Distributed systems use multiple central processors to serve multiple real-time applications and multiple users. Data processing jobs are distributed among the processors accordingly.

The processors communicate with one another through various communication lines (such as high-speed buses or telephone lines). These are referred as **loosely coupled systems** or distributed systems. Processors in a distributed system may vary in size and function. These processors are referred as sites, nodes, computers, and so on.

The advantages of distributed systems are as follows -

- With resource sharing facility, a user at one site may be able to use the resources available at another.
- Speedup the exchange of data with one another via electronic mail.
- If one site fails in a distributed system, the remaining sites can potentially continue operating.
- Better service to the customers.
- Reduction of the load on the host computer.
- Reduction of delays in data processing.

Network operating System

A Network Operating System runs on a server and provides the server the capability to manage data, users, groups, security, applications, and other networking functions. The primary purpose of the network operating system is to allow shared file and printer access among multiple computers in a network, typically a local area network (LAN), a private network or to other networks.

Examples of network operating systems include Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD.

The advantages of network operating systems are as follows -

- Centralized servers are highly stable.
- Security is server managed.
- Upgrades to new technologies and hardware can be easily integrated into the system.
- Remote access to servers is possible from different locations and types of systems.

The disadvantages of network operating systems are as follows -

- High cost of buying and running a server.
- Dependency on a central location for most operations.
- Regular maintenance and updates are required.

Real Time operating System

A real-time system is defined as a data processing system in which the time interval required to process and respond to inputs is so small that it controls the environment. The time taken by the system to respond to an input and display of required updated information is termed as the **response time**. So in this method, the response time is very less as compared to online processing.

Real-time systems are used when there are rigid time requirements on the operation of a processor or the flow of data and real-time systems can be used as a control device in a dedicated application. A real-time operating system must have well-defined, fixed time constraints, otherwise the system will fail. For example, Scientific experiments, medical imaging systems, industrial control systems, weapon systems, robots, air traffic control systems, etc.

There are two types of real-time operating systems.

Hard real-time systems

Hard real-time systems guarantee that critical tasks complete on time. In hard real-time systems, secondary storage is limited or missing and the data is stored in ROM. In these systems, virtual memory is almost never found.

Soft real-time systems

Soft real-time systems are less restrictive. A critical real-time task gets priority over other tasks and retains the priority until it completes. Soft real-time systems have limited utility than hard real-time systems. For example, multimedia, virtual reality, Advanced Scientific Projects like undersea exploration and planetary rovers, etc.

Operating System – Services

An Operating System provides services to both the users and to the programs.

- It provides programs an environment to execute.
- It provides users the services to execute the programs in a convenient manner.

Following are a few common services provided by an operating system -

- Program execution
- I/O operations
- File System manipulation
- Communication
- Error Detection
- Resource Allocation
- Protection

Program execution

Operating systems handle many kinds of activities from user programs to system programs like printer spooler, name servers, file server, etc. Each of these activities is encapsulated as a process.

A process includes the complete execution context (code to execute, data to manipulate, registers, OS resources in use). Following are the major activities of an operating system with respect to program management –

- Loads a program into memory.
- Executes the program.
- Handles program's execution.
- Provides a mechanism for process synchronization.
- Provides a mechanism for process communication.
- Provides a mechanism for deadlock handling.

I/O Operation

An I/O subsystem comprises of I/O devices and their corresponding driver software. Drivers hide the peculiarities of specific hardware devices from the users.

An Operating System manages the communication between user and device drivers.

- I/O operation means read or write operation with any file or any specific I/O device.
- Operating system provides the access to the required I/O device when required.

File system manipulation

A file represents a collection of related information. Computers can store files on the disk (secondary storage), for long-term storage purpose. Examples of storage media include magnetic tape, magnetic disk and optical disk drives like CD, DVD. Each of these media has its own properties like speed, capacity, data transfer rate and data access methods.

A file system is normally organized into directories for easy navigation and usage. These directories may contain files and other directions. Following are the major activities of an operating system with respect to file management –

- Program needs to read a file or write a file.
- The operating system gives the permission to the program for operation on file.
- Permission varies from read-only, read-write, denied and so on.
- Operating System provides an interface to the user to create/delete files.
- Operating System provides an interface to the user to create/delete directories.
- Operating System provides an interface to create the backup of file system.

Communication

In case of distributed systems which are a collection of processors that do not share memory, peripheral devices, or a clock, the operating system manages communications between all the processes. Multiple processes communicate with one another through communication lines in the network.

The OS handles routing and connection strategies, and the problems of contention and security. Following are the major activities of an operating system with respect to communication –

Two processes often require data to be transferred between them

- Both the processes can be on one computer or on different computers, but are connected through a computer network.
- Communication may be implemented by two methods, either by Shared Memory or by Message Passing.

Error handling

Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices or in the memory hardware. Following are the major activities of an operating system with respect to error handling –

- The OS constantly checks for possible errors.
- The OS takes an appropriate action to ensure correct and consistent computing.

Resource Management

In case of multi-user or multi-tasking environment, resources such as main memory, CPU cycles and files storage are to be allocated to each user or job. Following are the major activities of an operating system with respect to resource management –

- The OS manages all kinds of resources using schedulers.
- CPU scheduling algorithms are used for better utilization of CPU.

Protection

Considering a computer system having multiple users and concurrent execution of multiple processes, the various processes must be protected from each other's activities.

Protection refers to a mechanism or a way to control the access of programs, processes, or users to the resources defined by a computer system. Following are the major activities of an operating system with respect to protection –

- The OS ensures that all access to system resources is controlled.
- The OS ensures that external I/O devices are protected from invalid access attempts.
- The OS provides authentication features for each user by means of passwords.

Operating System - Properties

Following are the different properties of an Operating System. This tutorial will explain these properties in detail one by one:

- 1. Batch processing
- Multitasking
- 3. Multiprogramming
- Interactivity
- 5. Real Time System
- 6. Distributed Environment
- 7. Spooling

Batch processing

Batch processing is a technique in which an Operating System collects the programs and data together in a batch before processing starts. An operating system does the following activities related to batch processing –

- The OS defines a job which has predefined sequence of commands, programs and data as a single unit.
- The OS keeps a number a jobs in memory and executes them without any manual information.
- Jobs are processed in the order of submission, i.e., first come first served fashion.
- When a job completes its execution, its memory is released and the output for the job gets copied into an output spool for later printing or processing.

Advantages

- Batch processing takes much of the work of the operator to the computer.
- Increased performance as a new job get started as soon as the previous job is finished, without any manual intervention.

Disadvantages

- Difficult to debug program.
- A job could enter an infinite loop.
- Due to lack of protection scheme, one batch job can affect pending jobs.

Multitasking

Multitasking is when multiple jobs are executed by the CPU simultaneously by switching between them. Switches occur so frequently that the users may interact with each program while it is running. An OS does the following activities related to multitasking –

- The user gives instructions to the operating system or to a program directly, and receives an immediate response.
- The OS handles multitasking in the way that it can handle multiple operations/executes multiple programs at a time.
- Multitasking Operating Systems are also known as Time-sharing systems.
- These Operating Systems were developed to provide interactive use of a computer system at a reasonable cost.
- A time-shared operating system uses the concept of CPU scheduling and multiprogramming to provide each user with a small portion of a time-shared CPU.
- Each user has at least one separate program in memory.

- A program that is loaded into memory and is executing is commonly referred to as a process.
- When a process executes, it typically executes for only a very short time before it either finishes or needs to perform I/O.
- Since interactive I/O typically runs at slower speeds, it may take a long time to complete. During this time, a CPU can be utilized by another process.
- The operating system allows the users to share the computer simultaneously. Since each action or command in a time-shared system tends to be short, only a little CPU time is needed for each user.
- As the system switches CPU rapidly from one user/program to the next, each user is given the impression that he/she has his/her own CPU, whereas actually one CPU is being shared among many users.

Multiprogramming

Sharing the processor, when two or more programs reside in memory at the same time, is referred as **multiprogramming**. Multiprogramming assumes a single shared processor. Multiprogramming increases CPU utilization by organizing jobs so that the CPU always has one to execute.

The following figure shows the memory layout for a multiprogramming system.

An OS does the following activities related to multiprogramming.

- The operating system keeps several jobs in memory at a time.
- This set of jobs is a subset of the jobs kept in the job pool.
- The operating system picks and begins to execute one of the jobs in the memory.
- Multiprogramming operating systems monitor the state of all active programs and system resources using memory
 management programs to ensures that the CPU is never idle, unless there are no jobs to process.

Advantages

- High and efficient CPU utilization.
- User feels that many programs are allotted CPU almost simultaneously.

Disadvantages

- CPU scheduling is required.
- To accommodate many jobs in memory, memory management is required.

Interactivity

Interactivity refers to the ability of users to interact with a computer system. An Operating system does the following activities related to interactivity –

- Provides the user an interface to interact with the system.
- Manages input devices to take inputs from the user. For example, keyboard.
- Manages output devices to show outputs to the user. For example, Monitor.

The response time of the OS needs to be short, since the user submits and waits for the result.

Real Time System

Real-time systems are usually dedicated, embedded systems. An operating system does the following activities related to real-time system activity.

- In such systems, Operating Systems typically read from and react to sensor data.
- The Operating system must guarantee response to events within fixed periods of time to ensure correct performance.

Distributed Environment

A distributed environment refers to multiple independent CPUs or processors in a computer system. An operating system does the following activities related to distributed environment –

- The OS distributes computation logics among several physical processors.
- The processors do not share memory or a clock. Instead, each processor has its own local memory.
- The OS manages the communications between the processors. They communicate with each other through various communication lines.

Spooling

Spooling is an acronym for simultaneous peripheral operations on line. Spooling refers to putting data of various I/O jobs in a buffer. This buffer is a special area in memory or hard disk which is accessible to I/O devices.

An operating system does the following activities related to distributed environment -

- Handles I/O device data spooling as devices have different data access rates.
- Maintains the spooling buffer which provides a waiting station where data can rest while the slower device catches up.
- Maintains parallel computation because of spooling process as a computer can perform I/O in parallel fashion. It becomes
 possible to have the computer read data from a tape, write data to disk and to write out to a tape printer while it is doing its
 computing task.

Advantages

- The spooling operation uses a disk as a very large buffer.
- Spooling is capable of overlapping I/O operation for one job with processor operations for another job.

Operating System - Processes

Process

A process is basically a program in execution. The execution of a process must progress in a sequential fashion.

A process is defined as an entity which represents the basic unit of work to be implemented in the system.

To put it in simple terms, we write our computer programs in a text file and when we execute this program, it becomes a process which performs all the tasks mentioned in the program.

When a program is loaded into the memory and it becomes a process, it can be divided into four sections — stack, heap, text and data. The following image shows a simplified layout of a process inside main memory —

S.N.	Component & Description
1	Stack The process Stack contains the temporary data such as method/function parameters, return address and local variables.
2	Heap This is dynamically allocated memory to a process during its run time.
3	Text This includes the current activity represented by the value of Program Counter and the contents of the processor's registers.
4	Data

This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A computer program is usually written by a computer programmer in a programming language. For example, here is a simple program written in C programming language –

```
#include <stdio.h>
int main() {
    printf("Hello, World! \n");
    return 0;
}
```

A computer program is a collection of instructions that performs a specific task when executed by a computer. When we compare a program with a process, we can conclude that a process is a dynamic instance of a computer program.

A part of a computer program that performs a well-defined task is known as an **algorithm**. A collection of computer programs, libraries and related data are referred to as a **software**.

Process Life Cycle

When a process executes, it passes through different states. These stages may differ in different operating systems, and the names of these states are also not standardized.

In general, a process can have one of the following five states at a time.

S.N.	State & Description
1	Start This is the initial state when a process is first started/created.
2	Ready The process is waiting to be assigned to a processor. Ready processes are waiting to have the processor allocated to them by the operating system so that they can run. Process may come into this state after Start state or while running it by but interrupted by the scheduler to assign CPU to some other process.
3	Running Once the process has been assigned to a processor by the OS scheduler, the process state is set to running and the processor executes its instructions.
4	Waiting Process moves into the waiting state if it needs to wait for a resource, such as waiting for user input, or waiting for a file to become available.
5	Terminated or Exit Once the process finishes its execution, or it is terminated by the operating system, it is moved to the terminated state where it waits to be removed from main memory.

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every process. The PCB is identified by an integer process ID (PID). A PCB keeps all the information needed to keep track of a process as listed below in the table –

S.N.	Information & Description
1	Process State The current state of the process i.e., whether it is ready, running, waiting, or whatever.
2	Process privileges This is required to allow/disallow access to system resources.
3	Process ID Unique identification for each of the process in the operating system.
4	Pointer A pointer to parent process.
5	Program Counter Program Counter is a pointer to the address of the next instruction to be executed for this process.
6	CPU registers Various CPU registers where process need to be stored for execution for running state.
7	CPU Scheduling Information Process priority and other scheduling information which is required to schedule the process.
8	Memory management information This includes the information of page table, memory limits, Segment table

	depending on memory used by the operating system.
9	Accounting information This includes the amount of CPU used for process execution, time limits, execution ID etc.
10	IO status information This includes a list of I/O devices allocated to the process.

The architecture of a PCB is completely dependent on Operating System and may contain different information in different operating systems. Here is a simplified diagram of a PCB –

The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.

Operating System - Process Scheduling

Definition

The process scheduling is the activity of the process manager that handles the removal of the running process from the CPU and the selection of another process on the basis of a particular strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such operating systems allow more than one process to be loaded into the executable memory at a time and the loaded process shares the CPU using time multiplexing.

Categories of Scheduling

There are two categories of scheduling:

- Non-preemptive: Here the resource can't be taken from a process until the process completes execution. The switching of
 resources occurs when the running process terminates and moves to a waiting state.
- Preemptive: Here the OS allocates the resources to a process for a fixed amount of time. During resource allocation, the process
 switches from running state to ready state or from waiting state to ready state. This switching occurs as the CPU may give priority
 to other processes and replace the process with higher priority with the running process.

Process Scheduling Queues

The OS maintains all Process Control Blocks (PCBs) in Process Scheduling Queues. The OS maintains a separate queue for each of the process states and PCBs of all processes in the same execution state are placed in the same queue. When the state of a process is changed, its PCB is unlinked from its current queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues -

- **Job queue** This queue keeps all the processes in the system.
- Ready queue This queue keeps a set of all processes residing in main memory, ready and waiting to execute. A new
 process is always put in this queue.
- Device queues The processes which are blocked due to unavailability of an I/O device constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.). The OS scheduler determines how to move processes between the ready and run queues which can only have one entry per processor core on the system; in the above diagram, it has been merged with the CPU.

Two-State Process Model

Two-state process model refers to running and non-running states which are described below -

S.N.	State & Description
1	Running
	When a new process is created, it enters into the system as in the running state.

Not Running

Processes that are not running are kept in queue, waiting for their turn to execute. Each entry in the queue is a pointer to a particular process. Queue is implemented by using linked list. Use of dispatcher is as follows. When a process is interrupted, that process is transferred in the waiting queue. If the process has completed or aborted, the process is discarded. In either case, the dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handle process scheduling in various ways. Their main task is to select the jobs to be submitted into the system and to decide which process to run. Schedulers are of three types –

- Long-Term Scheduler
- Short-Term Scheduler
- Medium-Term Scheduler

Long Term Scheduler

It is also called a **job scheduler**. A long-term scheduler determines which programs are admitted to the system for processing. It selects processes from the queue and loads them into memory for execution. Process loads into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O bound and processor bound. It also controls the degree of multiprogramming. If the degree of multiprogramming is stable, then the average rate of process creation must be equal to the average departure rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or minimal. Time-sharing operating systems have no long term scheduler. When a process changes the state from new to ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as **CPU scheduler**. Its main objective is to increase system performance in accordance with the chosen set of criteria. It is the change of ready state to running state of the process. CPU scheduler selects a process among the processes that are ready to execute and allocates CPU to one of them.

Short-term schedulers, also known as dispatchers, make the decision of which process to execute next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of **swapping**. It removes the processes from the memory. It reduces the degree of multiprogramming. The medium-term scheduler is in-charge of handling the swapped out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes cannot make any progress towards completion. In this condition, to remove the process from memory and make space for other processes, the suspended process is moved to the secondary storage. This process is called **swapping**, and the process is said to be swapped out or rolled out. Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N.	Long-Term Scheduler	Short-Term Scheduler	Medium-Term Scheduler
1	It is a job scheduler	It is a CPU scheduler	It is a process swapping scheduler.
2	Speed is lesser than short term scheduler	Speed is fastest among other two	Speed is in between both short and long term scheduler.

3	It controls the degree of multiprogramming	It provides lesser control over degree of multiprogramming	It reduces the degree of multiprogramming.
4	It is almost absent or minimal in time sharing system	It is also minimal in time sharing system	It is a part of Time sharing systems.
5	It selects processes from pool and loads them into memory for execution	It selects those processes which are ready to execute	It can re-introduce the process into memory and execution can be continued.

Context Switching

A context switching is the mechanism to store and restore the state or context of a CPU in Process Control block so that a process execution can be resumed from the same point at a later time. Using this technique, a context switcher enables multiple processes to share a single CPU. Context switching is an essential part of a multitasking operating system features.

When the scheduler switches the CPU from executing one process to execute another, the state from the current running process is stored into the process control block. After this, the state for the process to run next is loaded from its own PCB and used to set the PC, registers, etc. At that point, the second process can start executing.

Context switches are computationally intensive since register and memory state must be saved and restored. To avoid the amount of context switching time, some hardware systems employ two or more sets of processor registers. When the process is switched, the following information is stored for later use.

- Program Counter
- Scheduling information
- Base and limit register value
- Currently used register
- Changed State
- I/O State information
- Accounting information

Operating System Scheduling algorithms

A Process Scheduler schedules different processes to be assigned to the CPU based on particular scheduling algorithms. There are six popular process scheduling algorithms which we are going to discuss in this chapter –

• First-Come, First-Served (FCFS) Scheduling

- Shortest-Job-Next (SJN) Scheduling
- Priority Scheduling
- Shortest Remaining Time
- Round Robin(RR) Scheduling
- Multiple-Level Queues Scheduling

These algorithms are either **non-preemptive or preemptive**. Non-preemptive algorithms are designed so that once a process enters the running state, it cannot be preempted until it completes its allotted time, whereas the preemptive scheduling is based on priority where a scheduler may preempt a low priority running process anytime when a high priority process enters into a ready state.

First Come First Serve (FCFS)

- Jobs are executed on first come, first serve basis.
- It is a non-preemptive, pre-emptive scheduling algorithm.
- Easy to understand and implement.
- Its implementation is based on FIFO queue.
- Poor in performance as average wait time is high.

Process	Arrival Time	Execute Time	Service Time
P0	0	5	0
P1	1	3	5
P2	2	8	8
P3	3	6	16

Wait time of each process is as follows -

Process	Wait Time : Service Time - Arrival Time
P0	0 - 0 = 0
P1	5 - 1 = 4
P2	8 - 2 = 6
P3	16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

- This is also known as shortest job first, or SJF
- This is a non-preemptive, pre-emptive scheduling algorithm.
- Best approach to minimize waiting time.
- Easy to implement in Batch systems where required CPU time is known in advance.
- Impossible to implement in interactive systems where required CPU time is not known.

The processer should know in advance how much time process will take.

Given: Table of processes, and their Arrival time, Execution time

Process	Arrival Time	Execution Time	Service Time
P0	0	5	0
P1	1	3	5
P2	2	8	14
P3	3	6	8

Process	Arrival Time	Execute Time	Service Time
PO	0	5	3
P1	1	3	0
P2	2	8	16
P3	3	6	8

Waiting time of each process is as follows -

Process	Waiting Time
P0	0 - 0 = 0
P1	5 - 1 = 4
P2	14 - 2 = 12
Р3	8 - 3 = 5

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21/4 = 5.25

Priority Based Scheduling

- Priority scheduling is a non-preemptive algorithm and one of the most common scheduling algorithms in batch systems.
- Each process is assigned a priority. Process with highest priority is to be executed first and so on.
- Processes with same priority are executed on first come first served basis.
- Priority can be decided based on memory requirements, time requirements or any other resource requirement.

Given: Table of processes, and their Arrival time, Execution time, and priority. Here we are considering 1 is the lowest priority.

Process	Arrival Time	Execution Time	Priority	Service Time
P0	0	5	1	0
P1	1	3	2	11
P2	2	8	1	14

P3 3 6 3	5
----------	---

Process	Arrival Time	Execute Time	Priority	Service Time
P0	0	. 5	1	9
P1	1	3	2	6
P2	2	8	1	14
P3	3	6	3	0

	Р3	P1	PO	P2	
					1
0	(5	9	14	22

Waiting time of each process is as follows -

Process	Waiting Time
P0	0 - 0 = 0
P1	11 - 1 = 10
P2	14 - 2 = 12
P3	5 - 3 = 2

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6

Shortest Remaining Time

- Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.
- The processor is allocated to the job closest to completion but it can be preempted by a newer ready job with shorter time to completion.
- Impossible to implement in interactive systems where required CPU time is not known.
- It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

- Round Robin is the preemptive process scheduling algorithm.
- Each process is provided a fix time to execute, it is called a quantum.
- Once a process is executed for a given time period, it is preempted and other process executes for a given time period.
- Context switching is used to save states of preempted processes.

Quantum = 3

Wait time of each process is as follows -

Process	Wait Time : Service Time - Arrival Time
P0	(0 - 0) + (12 - 3) = 9
P1	(3 - 1) = 2
P2	(6 - 2) + (14 - 9) + (20 - 17) = 12
P3	(9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing algorithms to group and schedule jobs with common characteristics.

- Multiple queues are maintained for processes with common characteristics.
- Each queue can have its own scheduling algorithms.
- Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based on the algorithm assigned to the queue.