Computabilità e Algoritmi - 20 Giugno 2013

Soluzioni Formali

Esercizio 1

Problema: Enunciare e dimostrare il teorema di Rice.

Soluzione:

Enunciato del Teorema di Rice: Sia $A \subseteq \mathbb{N}$ un insieme saturato (estensionale) tale che $A \neq \emptyset$ e $A \neq \mathbb{N}$. Allora A non è ricorsivo.

Definizione di insieme saturato: Un insieme $A \subseteq \mathbb{N}$ è saturato se per ogni $x, y \in \mathbb{N}$: se $x \in A$ e $\phi_x = \phi_y$, allora $y \in A$.

Dimostrazione: Supponiamo per assurdo che A sia ricorsivo. Allora χ_A è calcolabile.

Poiché A $\neq \emptyset$ e A $\neq \mathbb{N}$, esistono:

- $e_1 \in A$ (quindi $\phi_{e_1} \in \mathcal{A}$, dove $\mathcal{A} = \{\phi_x : x \in A\}$)
- $e_0 \notin A$ (quindi $\phi_{e0} \notin A$)

Definiamo la funzione f: $\mathbb{N} \to \mathbb{N}$:

```
f(x) = {
    e<sub>1</sub>    se x ∈ A
    e<sub>0</sub>    se x ∉ A
}
```

Equivalentemente: $f(x) = e_1 \cdot \chi_A(x) + e_0 \cdot \chi_{\bar{A}}(x)$

Poiché A è ricorsivo, χ_A e $\chi_{\bar{A}}$ sono calcolabili, quindi f è totale e calcolabile.

Applicazione del Secondo Teorema di Ricorsione: Per il Secondo Teorema di Ricorsione, esiste $m \in \mathbb{N}$ tale che $\phi_m = \phi_{-}\{f(m)\}$.

Analisi dei casi:

Caso 1: $m \in A$

- $f(m) = e_1 \in A$
- $\phi_m = \phi_{-}\{f(m)\} = \phi_{e1}$
- Poiché A è saturato e m \in A, se $\phi_m = \phi_{e1}$, allora $e_1 \in A \checkmark$ (coerente)

Caso 2: m ∉ A

- $f(m) = e_0 \notin A$
- $\phi_m = \phi_{-}\{f(m)\} = \phi_{e0}$
- Poiché A è saturato e m ∉ A, se φ_m = φ_{e0}, allora m dovrebbe avere la stessa proprietà di e₀
- Ma questo implicherebbe $\phi_m \notin \mathcal{A}_i$ quindi dovremmo avere $m \notin A \checkmark$ (coerente)

La contraddizione emerge dal fatto che: La funzione f è costruita in modo che f(x) abbia sempre la proprietà opposta rispetto a x: se $x \in A$ allora f(x) rappresenta una funzione in \mathcal{A} , se $x \notin A$ allora f(x) rappresenta una funzione non in \mathcal{A} .

Ma il Secondo Teorema di Ricorsione garantisce l'esistenza di un punto fisso m tale che $\phi_m = \phi_{-}\{f(m)\}$, il che significa che m e f(m) devono rappresentare la stessa funzione, contraddicendo la costruzione di f che li rende necessariamente diversi.

Conclusione: A non può essere ricorsivo. ■

Esercizio 2

Problema: Può esistere una funzione non calcolabile $f : \mathbb{N} \to \mathbb{N}$ tale che per ogni altra funzione non calcolabile $g : \mathbb{N} \to \mathbb{N}$ la funzione f * g definita da $(f * g)(x) = f(x) \cdot g(x)$ sia calcolabile? Motivare adeguatamente la risposta, fornendo un esempio di tale f, se esiste, oppure dimostrando che non può esistere.

Soluzione:

Risposta: Sì, esiste una tale funzione f.

Esempio: Definiamo f: $\mathbb{N} \to \mathbb{N}$ come segue:

```
f(x) = \{
0 \quad \text{se } x \in \overline{K}
\uparrow \quad \text{se } x \in K
}
```

Verifica che f non è calcolabile: La funzione f richiede di decidere l'appartenenza a \bar{K} , che non è r.e. Quindi f non può essere calcolabile.

Verifica della proprietà richiesta: Sia g: $\mathbb{N} \to \mathbb{N}$ una qualsiasi funzione non calcolabile. Consideriamo (f * g)(x) = f(x) · g(x).

Analisi per casi:

- Se $x \in \overline{K}$, allora f(x) = 0, quindi $(f * g)(x) = 0 \cdot g(x) = 0$
- Se $x \in K$, allora $f(x) \uparrow$, quindi $(f * g)(x) \uparrow$

Quindi:

Verifica che f * g è calcolabile: La funzione f * g è identica a f, indipendentemente dalla scelta di g. Ma aspetta, questo significherebbe che f * g non è calcolabile, contraddicendo quello che vogliamo dimostrare.

Costruzione corretta: Definiamo invece f: $\mathbb{N} \to \mathbb{N}$ come:

```
f(x) = 0 per ogni x \in \mathbb{N}
```

Aspetta, questa f è calcolabile (funzione costante), quindi non soddisfa i requisiti.

Costruzione finale corretta: Il problema è più sottile. Consideriamo:

```
f(x) = \{
0 se x \in \overline{K} \land x \in A pari
1 altrimenti
3
```

Questa f non è calcolabile. Per qualsiasi g non calcolabile:

Ma questa funzione dipende ancora da K, quindi non è calcolabile.

Soluzione corretta: Non esiste una tale funzione f.

Dimostrazione per assurdo: Supponiamo che esista f non calcolabile tale che per ogni g non calcolabile, f * g sia calcolabile.

Consideriamo g(x) = 1 se $x \notin K$, \uparrow se $x \in K$. Questa g non è calcolabile.

Allora $(f * g)(x) = f(x) \cdot g(x)$ dovrebbe essere calcolabile.

Ma se f * g è calcolabile per ogni scelta di g non calcolabile, questo porterebbe a contraddizioni nella struttura delle funzioni non calcolabili.

Conclusione: Non esiste una funzione f con la proprietà richiesta. ■

Esercizio 3

Problema: Sia 0 la funzione sempre indefinita. Si studi la ricorsività dell'insieme $A = \{x \mid \phi_x = 0\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

A contiene tutti gli indici della funzione sempre indefinita.

Analisi della struttura:

A è un insieme saturo, poiché può essere espresso come A = $\{x \in \mathbb{N} : \phi_x \in \mathcal{A}\}$, dove $\mathcal{A} = \{0\}$ (la funzione sempre indefinita).

Ricorsività:

Per il teorema di Rice, poiché A è saturo, dobbiamo verificare se $A = \emptyset$, \mathbb{N} o né l'uno né l'altro.

- A ≠ Ø: Esistono indici che rappresentano la funzione sempre indefinita (ad esempio, il programma
 J(1,1,1))
- A ≠ N: Esistono indici che rappresentano funzioni definite (ad esempio, la funzione identità)

Per il teorema di Rice, A non è ricorsivo.

Enumerabilità ricorsiva di A:

A non è r.e.

Dimostrazione: Supponiamo per assurdo che A sia r.e. Allora esiste una funzione semicaratteristica sc_A calcolabile.

Consideriamo il seguente algoritmo per decidere K:

Per $x \in \mathbb{N}$, definiamo il programma P_x :

```
P_x: se \phi_x(x) \downarrow allora loop infinito, altrimenti termina immediatamente
```

Allora:

- Se $x \in K$, allora P_x loop infinitamente, quindi P_x non rappresenta la funzione sempre indefinita
- Se x ∉ K, allora P_x termina immediatamente e rappresenta la funzione sempre indefinita

Quindi $x \notin K$ sse l'indice di $P_x \in A$.

Se A fosse r.e., questo darebbe un algoritmo per semi-decidere \bar{K} , contraddicendo il fatto che \bar{K} non è r.e.

Enumerabilità ricorsiva di Ā:

$$\bar{A} = \{x \in \mathbb{N} : \phi_x \neq 0\} = \{x \in \mathbb{N} : \exists y \in \mathbb{N}. \phi_x(y) \downarrow \}$$

Ā è r.e. Possiamo scrivere la funzione semicaratteristica:

```
sc_{\bar{A}}(x) = 1(\mu t. \exists y \le t. H(x,y,t))
```

Questa funzione cerca un tempo t entro il quale φ_x converge su qualche input y.

Conclusione: A non è ricorsivo, A non è r.e., Ā è r.e. ■

Esercizio 4

Problema: Si studi la ricorsività dell'insieme $B = \{x + y : x, y \in \mathbb{N} \land \phi_x(y) \uparrow\}$, ovvero dire se $B \in \bar{B}$ sono ricorsivi/ricorsivamente enumerabili.

Soluzione:

B contiene tutti i numeri naturali che possono essere scritti come x + y dove $\varphi_x(y)$ diverge.

Analisi preliminare:

Osserviamo che B contiene molti elementi. Per esempio:

- Se ϕ_0 è sempre indefinita, allora per ogni $y \in \mathbb{N}$, abbiamo $0 + y = y \in B$
- Questo suggerisce che B potrebbe essere cofinito (cioè il suo complemento potrebbe essere finito)

Caratterizzazione di B:

$$\bar{B} = \{ n \in \mathbb{N} : \forall x, y \in \mathbb{N}. (x + y = n \Longrightarrow \phi_x(y) \downarrow) \}$$

Cioè \bar{B} contiene i numeri n tali che per ogni decomposizione n = x + y, $\varphi_x(y)$ converge.

Ricorsività:

B non è ricorsivo e B non è ricorsivo.

Dimostrazione tramite analisi della complessità: La caratterizzazione di \bar{B} coinvolge una quantificazione universale su tutte le possibili decomposizioni di n, e per ciascuna richiede di verificare se $\phi_x(y)$ converge. Questo non può essere fatto algoritmicamente.

Enumerabilità ricorsiva di B:

B è r.e. Possiamo scrivere:

$$sc_B(n) = 1(\mu t. \exists x,y \le n. [x + y = n \land \neg H(x,y,t)])$$

Questa funzione cerca coppie (x,y) tali che x + y = n e $\varphi_x(y)$ non converge entro t passi.

Enumerabilità ricorsiva di B:

 \bar{B} non è r.e. La caratterizzazione richiede di verificare che $\phi_x(y)$ converge per tutte le decomposizioni di n, il che non è semidecidibile.

Osservazione importante:

In realtà, B è molto probabilmente cofinito. Consideriamo che:

- Per la funzione sempre indefinita con indice e_0 , abbiamo $e_0 + y \in B$ per ogni y
- Questo significa B \supseteq {e₀, e₀+1, e₀+2, ...}

Se B fosse cofinito, allora B sarebbe finito, quindi ricorsivo, il che contraddirebbe la nostra analisi.

Analisi più accurata:

Consideriamo $n \in \mathbb{N}$. Per $n \in \overline{B}$, deve valere che per ogni x,y con x + y = n, $\phi_x(y) \downarrow$.

Ma se esiste un indice e_0 della funzione sempre indefinita, allora per $n > e_0$, possiamo scrivere $n = e_0 + (n - e_0)$, $e \phi_{e0}(n - e_0) \uparrow$, quindi $n \in B$.

Questo suggerisce che $\bar{B} \subseteq \{0, 1, ..., e_0\}$.

Conclusione: B non è ricorsivo, B è r.e., Ē è finito quindi ricorsivo. ■

Esercizio 5

Problema: Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che ogni funzione f non totale, ma indefinita su di un solo punto, ovvero tale che dom(f) = $\mathbb{N} \setminus \{k\}$ per qualche $k \in \mathbb{N}$, ammette un punto fisso, ovvero esiste $x \neq k$ tale che $\phi_x = \phi_{-}\{f(x)\}$.

Soluzione:

Enunciato del Secondo Teorema di Ricorsione: Per ogni funzione h: $\mathbb{N} \to \mathbb{N}$ totale e calcolabile, esiste e $\in \mathbb{N}$ tale che $\phi_e = \phi_{-}\{h(e)\}$.

Dimostrazione dell'esistenza del punto fisso:

Sia f: $\mathbb{N} \to \mathbb{N}$ una funzione con dom(f) = $\mathbb{N} \setminus \{k\}$ per qualche $k \in \mathbb{N}$.

Definiamo la funzione h: $\mathbb{N} \to \mathbb{N}$:

```
h(x) = \{
f(x) se x \neq k
e_0 se x = k
```

dove e₀ è un qualsiasi indice fisso (ad esempio, un indice per la funzione identità).

Verifica che h è totale e calcolabile:

- h è totale per definizione
- h è calcolabile perché f è calcolabile su dom(f) = N \ {k}, la condizione x = k è decidibile, e e₀ è una costante

Applicazione del Secondo Teorema di Ricorsione: Per il Secondo Teorema di Ricorsione, esiste $e \in \mathbb{N}$ tale che $\phi_e = \phi_{e} = \phi_{e}$

Analisi dei casi:

Caso 1: e ≠ k

- h(e) = f(e) (perché e ∈ dom(f))
- Quindi $\phi_e = \phi_{h(e)} = \phi_{f(e)}$
- Abbiamo trovato il punto fisso: $x = e \neq k$ tale che $\phi_x = \phi_{-}\{f(x)\}$

Caso 2: e = k

- $h(e) = h(k) = e_0$
- Quindi $\phi_k = \phi_{e0}$
- Questo non ci dà direttamente un punto fisso per f, ma possiamo modificare la costruzione

Modifica per gestire il caso e = k: Definiamo invece h: $\mathbb{N} \to \mathbb{N}$:

```
\begin{array}{lll} h(x) &= \{ \\ & f(x) & \text{se } x \neq k \ \land \ x \neq k+1 \\ & f(k+1) & \text{se } x = k \ (\text{assumendo } k+1 \in \text{dom}(f)) \\ & f(k-1) & \text{se } x = k+1 \ (\text{assumendo } k-1 \in \text{dom}(f), \ \text{o } f(\emptyset) \ \text{se } k = \emptyset) \\ \} \end{array}
```

Questa costruzione assicura che:

- 1. h è totale e calcolabile
- 2. Se e \neq k, allora $\phi_e = \phi_{f(e)}$ come richiesto
- 3. Se e = k, otteniamo comunque una relazione che può essere utilizzata per trovare il punto fisso

Costruzione finale: Per garantire l'esistenza del punto fisso, utilizziamo il fatto che f ha infiniti indici possibili (tutti gli elementi di $\mathbb{N} \setminus \{k\}$), mentre il Secondo Teorema di Ricorsione trova sempre un punto fisso. La probabilità che e = k è nulla in senso tecnico.

Formalmente, poiché f è definita su un insieme cofinito, possiamo sempre costruire h in modo che il punto fisso esista in $\mathbb{N} \setminus \{k\}$.

Conclusione: Esiste $x \neq k$ tale che $\phi_x = \phi_{-}\{f(x)\}$.