Formulário Derivadas e Primitivas quase imediatas

$$(u^p)' = p u^{p-1} u'$$
 $(\arcsin(u))' = \frac{u'}{\sqrt{1-u^2}}$

$$(\ln u)' = \frac{u'}{u} \qquad (\operatorname{arctg}(u))' = \frac{u'}{1 + u^2}$$

$$(\cos u)' = -u' \operatorname{sen} u$$
 $(\operatorname{sec} u)' = u' \operatorname{sec}(u)\operatorname{tg}(u)$

$$(\operatorname{sen} u)' = u' \operatorname{cos} u$$
 $(\operatorname{cosec} u)' = -u' \operatorname{cosec} (u) \operatorname{cotg} (u)$

$$(\operatorname{tg} u)' = u' \operatorname{sec}^2 u$$
 $(e^u)' = u' e^u$

$$(\cot u)' = -u' \operatorname{cosec}^2 u \ (a^u)' = \frac{u'a^u}{\ln a}, \ a \in \mathbb{R}^+ \setminus \{1\}$$

$$(\operatorname{senh}^{-1}u)' = \frac{u'}{\sqrt{1+u^2}} \quad (uv)' = u'v + uv'$$

$$(\operatorname{tgh} u)' = u' \operatorname{sech}^2 u$$
 $(\operatorname{sech} u)' = -u' \operatorname{sech} u \operatorname{tgh} u$

$$(\operatorname{senh}^{-1}u)' = \frac{u'}{\sqrt{1+u^2}} \qquad (\operatorname{tgh}^{-1}u)' = \frac{u'}{1-u^2}$$

$$\int u' u^p dx = \frac{u^{p+1}}{p+1} + C,$$
$$(p \neq -1)$$

$$\int \frac{u'}{\sqrt{1-u^2}} dx = \arcsin(u) + C$$

$$\int \frac{u'}{u} dx = \ln|u| + C \qquad \qquad \int \frac{u'}{1+u^2} dx = \arctan(u) + C$$

$$\int u' \sin u \, dx = -\cos u + C \qquad \qquad \int u' \sec u \tan u \, dx = \sec u + C$$

$$\int u' \cos u dx = \sin u + C$$

$$\int u' \csc u \cot g u dx = -\csc u + C$$

 $\int u'a^u dx = \frac{a^u}{\ln a} + C, \quad a \in \mathbb{R}^+ \setminus \{1\}$

$$\int u' \sec^2 u \, \mathrm{d}x = \tan u + C$$

$$\int u'e^u \, \mathrm{d}x = e^u + C$$

$$\int u' \csc^2 u \, dx = -\cot g u + C$$

$$\int u'v + uv' \, \mathrm{d}x = uv + C$$

$$\int u' \operatorname{sech}^2 u \, \mathrm{d}x = \operatorname{tgh} u + C$$

 $\int \frac{u'}{\sqrt{1+u^2}} dx = \operatorname{senh}^{-1} u + C$

$$\int u' \operatorname{sech} u \operatorname{tgh} u \, \mathrm{d}x = -\operatorname{sech} u + C$$

$$\int \frac{u'}{\sqrt{1+u^2}} dx = \operatorname{senh}^{-1}(u) + C$$

$$\int \frac{u'}{1-u^2} dx = \operatorname{tgh}^{-1} u + C$$

$$\int u' \sec u \, dx = \ln|\sec u + \lg u| + C$$

Exercício resolvido 6.3. Exprima, em termos de integrais definidos, a área da região do plano delimitada pelos gráficos das funções $f(x) = \sin x$ e $g(x) = \cos x$ e pelas retas $x = -\pi$ e $x = \pi$.

Exercício 6.11 Exprima, em termos de integrais definidos, a área da região limitada pelos gráficos das funções dadas por $f(x) = \frac{1 + \cos^2 x}{1 + e^{2x}}$ e $g(x) = \frac{\cos^2 x}{1 + e^{2x}}$, em $[\ln 2, \ln 5]$.

Mostre ainda que, quaisquer que sejam $a, b \in \mathbb{R}$ com a < b, a área da região limitada pelos gráficos das duas funções em [a,b] é dada por $\frac{1}{2} \ln \left(\frac{1+e^{2a}}{1+e^{2b}} \right) + b - a$.

Exercício 6.12 Exprima, em termos de integrais definidos, a área da região do primeiro quadrante limitada pela parábola de equação $y = x^2 - 2x + 2$ e pela reta que lhe é tangente no ponto (2, 2).

Aula 15: Exercícios 2

Exercício 6.13 Calcule os seguintes integrais definidos:

1.
$$\int_0^1 e^{-x} \cos(e^{-x}) \, dx$$

1.
$$\int_0^1 e^{-x} \cos(e^{-x}) dx$$
 2. $\int_4^9 \frac{dx}{\sqrt{x} - 1}$ (Suggestão: Faça a substituição $t = \sqrt{x}$)

Exercício 6.14 Considere a função F definida por $F(x) = \int_{x^2}^{k \ln(x)} e^{-t^2} dt$

- 1. Determine a expressão da derivada de F, F'(x). 2. Determine $k \in \mathbb{R}$ de modo a que F'(1) = 0.

Exercício 6.15 Considere a função definida em \mathbb{R} por $f(x) = xe^x$.

- 1. Diga, justificando, se a função f é integrável em qualquer intervalo $[a,b]\subset\mathbb{R}$ com b>a.
- 2. Calcule o valor da área da região limitada do plano situada entre x = -1 e x = 1 e compreendida entre o gráfico de f e o eixo das abcissas.

Exercício 6.16 Considere a função F definida por $F(x) = \int_0^{x^2} e^{-t^2} \arctan t \, dt$, para todo o $x \in \mathbb{R}$.

- 1. Determine F'(x) e o seu domínio.
- 2. Estude F quanto à existência de extremos locais.

Exercício 6.17 Considere a função F definida por $F(x) = \int_0^{x^2} t \ln(1 + e^t) dt$, para todo o $x \in \mathbb{R}$.

- 1. Justifique que F é diferenciável em \mathbb{R} e determine F'(x).
- 2. Estude F quanto à monotonia e existência de extremos locais.

Aula 15: Exercícios 3

Exercício 6.18 Exprima, em termos de integrais definidos, a área da região assinalada na figura

Exercício 6.19 Seja $A = \{(x, y) \in \mathbb{R}^2 : y \ge (x - 3)^2 \land y \ge x - 1 \land y \le 4\}.$

- 1. Represente geometricamente a região A.
- 2. Calcule a área da região A.

Exercício 6.20 Determine a área da região de \mathbb{R}^2 delimitada pelos gráficos de $f(x) = \sqrt{4 + x^2}$ e g(x) = x e pelas retas de equações x = -2 e x = 2.

Exercício 6.21 Considere a função F dada por $F(x) = \int_0^x \frac{1}{1+t^2} dt + \int_0^{\frac{1}{x}} \frac{1}{1+t^2} dt$ para $x \in [1, +\infty[$. Determine F(1).

Aula 15: Exercícios 4

Exercício 6.22 Considere a função real de variável real f definida por

$$f(x) = \begin{cases} x \ln x & \text{se } x > 0 \\ & & \\ k & \text{se } x \le 0 \end{cases}, \text{ onde } k \text{ \'e um n\'umero real.}$$

- 1. Diga, justificando, para que valores de k a função f é integrável no intervalo [-1,1].
- 2. Determine a família de primitivas $\int x \ln x \, dx$, definidas no intervalo $]0, +\infty[$.
- 3. Determine o valor da área da região limitada do plano situada entre x=1/e e x=e e delimitada pelo gráfico de f e pelo eixo das abcissas.

Exercício 6.23 Considere a função definida por $f(x) = \int_0^x \frac{1}{1+t+t^2} dt$. Determine o subconjunto de $\mathbb R$ onde o gráfico da função f tem concavidade voltada para cima.

Exercício 6.24 Prove que se f é uma função contínua em $\mathbb R$ e a é uma constante arbitrária, então

$$\int_0^a f(x) dx = \int_0^a f(a-x) dx.$$