Course Information and Overview

STAT3009 Recommender Systems

by Ben Dai (CUHK-STAT)
on September 4, 2025

» Course Overview and Key Features

- * Contemporary and Emerging Field
 - Recommender systems emerged from industry needs around 2000
 - This course covers cutting-edge methods from 2010 to present
 - Focus on modern deep learning and machine learning approaches
- * Interdisciplinary Approach with Hands-on Learning
 - * Theory: Statistics + Machine Learning + Mathematical Optimization
 - Practice: Python Programming + Real-world Applications
 - * Delivery: Interactive lectures + Live Kaggle competitions + Jupyter notebooks

» Course Overview and Key Features

- * Highly Relevant to Industry Applications
 - E-commerce: Amazon, Alibaba product recommendations
 - * Entertainment: Netflix, Spotify content suggestions
 - Social Media: Facebook, LinkedIn connection recommendations
 - * **Finance**: Investment portfolio recommendations
- * Distinctive from Traditional Statistics Courses
 - Emphasis on computational implementation and programming skills
 - Strong mathematical foundation required but practical coding equally important
 - * Real-time problem-solving with large-scale datasets

» Course Information and Prerequisites

- * Course Position in Curriculum
 - * STAT3009 is an elective course for Statistics majors
 - Also open to students from related quantitative disciplines
 - * Bridges theoretical statistics with practical machine learning applications

» Course Information and Prerequisites

- * Course Position in Curriculum
 - * STAT3009 is an elective course for Statistics majors
 - Also open to students from related quantitative disciplines
 - Bridges theoretical statistics with practical machine learning applications
- * Prerequisites and Required Background
 - Statistical Methods: Linear regression, ridge regression, basic hypothesis testing
 - Programming Skills: Python (NumPy, Pandas), basic scikit-learn usage
 - * **Mathematics**: Linear algebra, calculus, probability theory
 - Note: Comprehensive tutorials provided for Python libraries

» Class Composition

- Class Composition and Diversity
 - * **Enrollment**: 49/60 students (as of September 1)
 - * **Backgrounds**: STAT, Risk Management, Quantitative Finance, Natural Sciences, CS, Math, ...

Hybrid interdisciplinary + teaching mode

Mix Statistics + Machine Learning + Python + Mathematics

Teaching mode

- * lecture slides/note
- * real time Python programming in colab (Jupyter notebook)
- * InClass practice
- * real time competitions in Kaggle
- * Additional Resources
 - * Course Homepage with lecture materials
 - * GitHub Repository with code examples

» Grading policy

- * Homework (15%)
- Inclass Kaggle Competition (Open-book InClass Kaggle Competition) (50%)
- * Final InClass Quiz (coding and exercise) (35%): Basic Python programming and implementation of recommender systems models (during the final lecture of the semester)

» My suggestion

- * practice by yourself
- * enjoy debugging: most coding experiences are from that
- * independent: 99.9% bugs can be solved by Google
- bad example. Just look at the code, but never practice/implement on your own
- → You must have a laptop

Toolbox we will use:

Python Python is the programming language of choice for data scientists.

* State of Data Science 2021: Popularity of Python

Source: https://businessoverbroadway.com Source: https://www.alibabacloud.com/blog

Toolbox we will use:

NB Jupyter notebook - create and share documents that contain live code, equations, visualizations and narrative text

Source: https://jupyter.org/

Toolbox we will use:

Colab Register - Colaboratory (Google account)

- * Online Python computing platform
- * Python Jupyter notebook

Toolbox we will use:

- Go to colab.research.google.com and sign in with your Google account.
- * Create a new notebook by clicking on the "New Notebook" button.
- Write Python code in the cells of the notebook, using the same syntax and semantics as you would in a local Python environment.
- Execute the code by clicking on the "Run" button or pressing Shift+Enter.
- * See the output of your code in the notebook, including any plots, tables, or text output.

Toolbox we will use:

Colab Online Markdown documentation

Toolbox we will use:

Kaggle - online community of data scientists and machine learning practitioners

Source: https://kaggle.com/

Toolbox we will use:

Libs Python libraries for Data Science

- * Python package installation
 - * Basic packages: numpy + pandas + seaborn + scipy +
 scikit-learn
 - * Install packages in Jupyter notebook / colab

```
install python package
!pip install <package name>
```