

Epidemic QA with h₂oloo

Justin Borromeo, Ronak Pradeep, and Jimmy Lin [University of Waterloo]

TAC 2020

February 23, 2021

Our Multi-Stage Ranking Pipeline

Definitions

Segment: A section of text we're interested in ranking

 H_n : Pipeline stage number

 R_n : The ranked set of segments outputted by H_n

 k_n : The number of segments in R_n

H₀: Anserini BM25 Retrieval

- BM25 retrieval function provides a firststage ranking of relevant sentences for each query
- Bag-of-words approach
- $k_0 = 10000$
- Performed with the Anserini toolkit, which is built on top of Lucene

T5

H₁: monoT5 Re-ranking

- Sentences from R_0 are augmented with 3 sentences before and 2 sentences after for context
- Augmented segments are re-ranked using monoT5
- Input (*d* is the segment):

Query: q Document: d Relevant:

 Output: probability that the segment is relevant to the query (i.e. probability that the model produces "true" or "false")

H₁: monoT5 Training

- Trained on the MS MARCO passage dataset, which contains pairs of queries and relevant passages
- Fine-tuned on Med-MARCO, a medically-focused subset of MS MARCO

H₂: duoT5 Re-ranking

duoT5 model:

Input:

Query: q Document0: d_0 Document1: d_1 Relevant:

- Output: probability that d_0 is more relevant than d_1 (i.e. probability that the model produces "true" or "false" token)
- Trained in the same manner as monoT5

name a more iconic duo.. I'll wait.

H₂: duoT5 Re-ranking

- duoT5 is used for every combination of documents in the top- k_2 documents of R_1
- duoT5 score aggregation:

SYM-SUM:
$$s_i = \sum_{j \in J_i} (p_{i,j} + (1 - p_{j,i}))$$

Top-k₂ documents are re-ranked according to their aggregated scores

H₃: Maximal Marginal Relevance Re-ranking

- Motivation: in NDNS, repeated nuggets don't count...diversity matters!
- We use MMR to incrementally build R_3 and improve diversity of R_2

$$MMR = \arg \max_{d_i \in R_2 \setminus S} \left[\lambda Sim_1(d_i, q) - (1 - \lambda) \max_{d_j \in S} Sim_2(d_i, d_j) \right]$$

- Sim_1 is the sym-sum aggregated duoT5 score from the previous stage
- Sim_2 is measured as cosine similarity of the sentences' BM25 vectors
- This stage returns a ranked set of singular sentences (without context sentences)

H₃: Maximal Marginal Relevance Re-ranking

- λ was tuned using preliminary round judgments
- Consumer task runs 1, 2, and 3 use λ s of 0.75, 0.7, and 1, respectively.
- Expert task runs 1, 2, and 3 use λ s of 0.375, 0.42, and 1, respectively.

$$MMR = \arg \max_{d_i \in R_2 \setminus S} \left[\lambda Sim_1(d_i, q) - (1 - \lambda) \max_{d_j \in S} Sim_2(d_i, d_j) \right]$$

Track A (Expert QA) Primary Round Results

	Run	NDNS-Partial	NDNS-Relaxed	NDNS-Exact
	(1) Median	0.3377	0.3387	0.3802
	(2) Max	0.3700	0.3709	0.4207
λ=0.375	(3) Run 1	0.3381	0.3390	0.3880
λ=0.42	(4) Run 2	0.3404	0.3412	0.3901
λ=1	(5) Run 3	0.3284	0.3292	0.3755

Table 1: Mean (across questions) NDNS for EPIC-QA Task A (Expert) Primary Round

Track B (Consumer QA) Results

	Run	NDNS-Partial	NDNS-Relaxed	NDNS-Exact
	(1) Median	0.3142	0.2858	0.2845
	(2) Max	0.3662	0.3675	0.4143
λ=0.75	(3) Run 1	0.3593	0.3607	0.4065
λ=0.7	(4) Run 2	0.3662	0.3675	0.4143
λ=1	(5) Run 3	0.3382	0.3395	0.3825

Table 2: Mean (across questions) NDNS for EPIC-QA Task B (Consumer) Primary Round

Discussion of Results

- MMR (Runs 1 and 2 for both tasks) shows improvement over mono-duo baseline (Run 3)
- Performance compared to median is much worse for expert track. Potential reasons include:
 - Suboptimal MMR tuning
 - Lack of fine-tuning on preliminary round judgments
 - Ineffectiveness of Med-MARCO fine-tuning (ablation study required)

Run	NDNS-Partial	NDNS-Relaxed	NDNS-Exact
(1) Median	0.3377	0.3387	0.3802
(2) Max		0.3709	0.4207
(3) Run 1	0.3381	0.3390	0.3880
(4) Run 2		0.3412	0.3901
(5) Run 3	0.3284	0.3292	0.3755

Table 1: Mean (across questions) NDNS for EPIC-QA Task A (Expert) Primary Round

Run	NDNS-Partial	NDNS-Relaxed	NDNS-Exact
(1) Median	0.3142	0.2858	0.2845
(2) Max	0.3662	0.3675	0.4143
(3) Run 1	0.3593	0.3607	0.4065
(4) Run 2	0.3662	0.3675	0.4143
(5) Run 3	0.3382	0.3395	0.3825

Table 2: Mean (across questions) NDNS for EPIC-QA Task B (Consumer) Primary Round

PyGaggle

- You too can replicate our results!
- Gaggle of Deep Neural Architectures for Text Ranking and Question Answering.
- Epidemic QA systems to be shared soon!
- · Find us at <u>pygaggle.ai</u>!

Thank you!

EPIC Q&A

