REVIEW ITEMS FOR MIDTERM EXAM

PART 1. FILL THE BLANKS WITH CORRECT EXPRESSIONS OR WORDS.

- 1. If $\overrightarrow{A} = \langle 2, -1, -2 \rangle$, then $||\overrightarrow{A}|| = \underline{\hspace{1cm}}$.
- 2. The unit vector in the same direction as $\vec{A} = \langle 2, -1, -2 \rangle$ is $\vec{u}_{\vec{A}} = \underline{\hspace{1cm}}$.
- 3. If $\vec{C} = \langle 3, -4, 1 \rangle$ and $\vec{D} = \langle -8, 6, 3 \rangle$, then $3\vec{C} + 2\vec{D} = \underline{\hspace{1cm}}$.
- 4. The direction angles of $\langle 0,0,-3 \rangle$ are $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{2}$ and $\gamma = \underline{\hspace{1cm}}$.
- 5. If $\vec{A} = \left\langle \frac{-\sqrt{3}}{2}, \frac{1}{2} \right\rangle$ and $\vec{B} = \langle 0, 2 \rangle$, then $\vec{A} \cdot \vec{B} = \underline{\qquad}$.
- 6. In problem no.5, the radian measure of the angle between \overrightarrow{A} and \overrightarrow{B} is
- 7. In problem no.5, the scalar projection of \vec{A} onto \vec{B} is _____.
- 8. In problem no.5, the vector projection of \vec{A} onto \vec{B} is ______
- 9. If the direction angle of a vector \vec{G} is $\frac{5\pi}{4}$ and its magnitude is 4, then \vec{G} =
- 10. Consider the points C(4,-5) and D(-3,2). If \overrightarrow{DC} is a representation of \overrightarrow{E} , then $\overrightarrow{E}=$
- 11. An equation of a plane that is parallel to the xz-plane and which passes through the point (1,2,3) is
- 12. The distance between A(1,2,3) and B(-2,3,-4) is _____.
- 13. The midpoint of the segment whose endpoints are A(1,2,3) and B(-2,3,-4) is _____.
- 14. The standard equation of the sphere with A(1,2,3) and B(-2,3,-4) as endpoints of a diameter is
- 15. The point (1,2,3) lies _____ (on, inside, outside) the sphere given by $x^2 + y^2 + (z-1)^2 = 5$.
- 16. The graph of $x^2 + 4x + y^2 6y + z^2 2z 10 = 0$ is a/an _____.

- 17. A standard equation of the plane passing through (1,2,3) and having $\langle -2,3,-4 \rangle$ as a normal vector is given by _____.
- 18. The distance between the parallel planes given by 2x 2y + z + 5 = 0 and 4x 4y + 2z + 6 = 0 is _____.
- 19. The distance from the point (1,2,3) to the plane given by 2x 2y + z + 5 = 0 is _____.
- 20. The parametric equations of the line passing through (1,2,3) and is parallel to (4,5,6) are given by _____.
- 21. If $\vec{A} = \langle \mathbf{1}, \mathbf{2}, \mathbf{3} \rangle$ and $\vec{B}(-\mathbf{2}, \mathbf{3}, -\mathbf{4})$, then $\vec{A} \times \vec{B} = \underline{\hspace{1cm}}$.
- 22. In \mathbb{R}^3 , the graph of $x^2 4y = 1$ is called a/an _____ cylinder.
- 23. The trace of $\frac{x^2}{2} \frac{y^2}{9} z^2 = 1$ on the xz-plane is called a/an _____.
- 24. The limit of the sequence 1,-1,1,-1,1,-1,... is _____.
- 25. The limit of the sequence $\left\{\frac{\sin n}{n}\right\}$ as $n \to \infty$ is _____.
- 26. $\lim_{n\to\infty} \frac{2n+1}{1-3n^2}$ is equal to _____.
- 27. The *k*-th partial sum of the geometric series $\sum_{k=1}^{\infty} ar^{k-1}$ is ______.
- 28. The series $\sum_{n=1}^{\infty} 3 \left(\frac{1}{2}\right)^n$ is _____ (absolutely convergent, conditionally convergent, divergent).
- 29. The sum $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$ is equal to _____.
- 30. The sequence $\left\{\frac{(-1)^n}{n}\right\}$ is _____ (convergent, divergent)

- 31. If f'(x) < 0 for all $x \ge 1$, then $\{f(n)\}$ is _____ (decreasing, increasing, neither)
- 32. The sum of the infinite series $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^{n+1}$ is ______.
- 33. The sum of the infinite series $\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$ is ______.
- 34. The *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if ______.
- 35. The series $\sum_{n=1}^{\infty} \left(\frac{1}{n} + \frac{1}{2^n} \right)$ is _____ (convergent, divergent)
- 37. The series $\sum_{n=1}^{\infty} \frac{n^2}{2^{n^2}}$ is absolutely convergent. Using the *ratio* test, the value of $\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right|$ is _____.
- 38. In its interval of convergence, the sum of the power series $\sum_{n=0}^{\infty} (x-1)^n$ is expressed by ______.
- 39. The interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ is ______.
- 40. The Maclaurin series expansion of the function $f(x) = \sin x$ is ______.

PART 2. PROBLEM SOLVING. WRITE YOUR SOLUTIONS NEATLY, COMPLETELY AND LOGICALLY.

- 1. Determine the general equation of the plane through the point P(0,2,-1) and parallel to the plane 2x-y+3z+8=0.
- 2. Find an equation of a plane containing the point (3,1,-1) and parallel to the lines $\frac{x-2}{1} = \frac{y-2}{3} = \frac{z-3}{1}$ and $\frac{x-2}{1} = \frac{y-3}{4} = \frac{z-4}{2}$.
- 3. Identify and sketch the graph of the following surfaces:

a.
$$4x^2 - 9z^2 = 36$$

b.
$$\frac{x^2}{4} + \frac{y^2}{16} - \frac{z^2}{2} = 1$$

c.
$$4y^2 + z^2 = 4x$$

- 4. Given the series $\sum_{n=0}^{\infty} u_n = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots$
 - a. Find u_n .
 - b. Let $S_n = u_1 + u_2 + ... + u_n$. Find a formula for S_n .
 - c. Find $\lim_{n\to\infty} S_n$, if it exists.
 - d. Is the series $\sum_{n=0}^{\infty} u_n$ convergent? Why?
- 5. Use Ratio Test to determine whether the series $\sum_{n=1}^{+\infty} \frac{3^n}{n^2}$ is convergent or divergent.
- 6. Consider the power series $\sum_{n=0}^{\infty} \frac{(-1)^n (x-3)^n}{2^{2n+1}}$. Find its radius of convergence and determine its interval of convergence.

End of items