CODE2INV: A Deep Learning Framework for Program Verification

Xujie Si et al.

August 19, 2020

Reference

- [1] Learning Loop Invariants for Program Verification.
- [2] Code2Inv: Learning Loop Invariants for Program Verification.

Background

Counterexample-guided Inductive Synthesis(CEGIS):

CEGIS is a classical paradigm for program verification where

- Generator proposs a candidate solution.
- Checker determines whether the solution is correct or not. If not, provide counterexample to refine later.

Shortcomes?

- ► The framework does not utilize the info that can be directly taken from program source.
- Candidate cannot be adaptive for the program.

Overview of CODE2INV

 ${\rm CODE2INV}$ is an extensible end-to-end deep learing framework aims to compensate above shortcomes. The contribution of the tool is

- ► A framework for program verification which leverage deep learning, reinforcement learning and attention mechanism..
- ► Two small-scale instance of Code2Inv: loop invariant synthesizer and Constrained Horn Clause(CHC) Solver.

Idea of Invariant Synthesis

The basic idea of this paper is to mimic how human experts reason the loop invariant.

Example

```
int main() {
    int x = 0, y = 0;
    while (*) {
      if (*) {
5
         x++:
         v = 100:
    } else if (*) {
8
         if (x >= 4) {
           x++:
10
            y++;
         if (x < 0) y--;
12
13
14
15
     assert(x < 4 \mid \mid y > 2);
16 }
```

► Start by reading the

assertion. x, y.

- ➤ x may increase. x < 4 may not always hold.
- ► How can $x \ge 4$: by executing the first branch 4 times. Then we guess $y \ge 100$ because...
- $x < 4 \lor y \ge 100$ is not enough, then add $x \ge 0$
- ► $x \ge 0 \land (x < 4 \lor y \ge 100)$

Idea of Invariant Synthesis

After going through the reasoning process three key components are concluded:

- Organize the program in a hierarchical structured way.
- ► Compose the loop invariant step by step.
- Focus on different part of the program at each step.

Preliminaries

Definition (Multilayer Perceptron(MLP))

A multilayer perceptron(MLP) is a basic neural network model approximating an arbitrary continuous function $\vec{y} = f^*(\vec{x})$, where \vec{x}, \vec{y} are numeric vectors. An MLP defines a mapping $\vec{y} = f(\vec{x}; \theta)$.

Definition (RNN)

An RNN approximate the mapping from a sequence of inputs $\vec{x}^1, \ldots, \vec{x}^t$ to either a single output \vec{y} or a sequence of outputs $\vec{y}^1, \ldots, \vec{y}^t$. It defines a mapping $\vec{h}^t = f(\vec{h}^{t-1}, \vec{x}^t; \theta)$.

A common RNN model are the long short-term memory network(LSTM) and gated recurrent units(GRUs).

Remark. GNN: commonly used to learn over graph structure data. It learns an embedding for each node of the given graph.

Domains of Program Structures:

$$\begin{split} \boldsymbol{\mathcal{G}}(T) &= G_{\mathrm{inst}} \\ \boldsymbol{\mathcal{G}}(A) &= G_{\mathrm{inv}} \\ A &= \langle \boldsymbol{\Sigma} \uplus \boldsymbol{H}, \boldsymbol{N}, \boldsymbol{P}, \boldsymbol{S} \rangle \\ &\quad \boldsymbol{x} \in \boldsymbol{H} \uplus \boldsymbol{N} \\ &\quad \boldsymbol{v} \in \boldsymbol{\Sigma} \\ &\quad \boldsymbol{n} \in \boldsymbol{N} \\ &\quad \boldsymbol{p} \in \boldsymbol{P} \\ &\quad \boldsymbol{S} \\ &\quad \boldsymbol{inv} \in \boldsymbol{\mathcal{L}}(A) \\ &\quad \boldsymbol{cex} \in \mathbb{C} \\ &\quad \boldsymbol{C} \in \boldsymbol{\mathcal{P}}(\mathbb{C}) \\ &\quad \boldsymbol{check}(T, inv) \in \{\boldsymbol{\bot}\} \uplus \mathbb{C} \end{split}$$

Domains of Neural Structures

$$\begin{array}{ll} \pi &= \langle \nu_{\mathrm{T}}, \nu_{\mathrm{A}}, \eta_{\mathrm{T}}, \eta_{\mathrm{A}}, \alpha_{\mathrm{ctx}}, \epsilon_{\mathrm{inv}} \rangle \\ d \\ \\ \nu_{\mathrm{T}}, \ \eta_{\mathrm{T}}(G_{\mathrm{inst}}) &\in \ \mathbb{R}^{|G_{\mathrm{inst}}| \times d} \\ \nu_{\mathrm{A}}, \ \eta_{\mathrm{A}}(G_{\mathrm{inv}}) &\in \ \mathbb{R}^{|G_{\mathrm{inv}}| \times d} \\ ctx &\in \ \mathbb{R}^{d} \\ state &\in \ \mathbb{R}^{d} \\ \alpha_{\mathrm{ctx}} &\in \ \mathbb{R}^{d} \times \ \mathbb{R}^{d} \to \ \mathbb{R}^{d} \\ \epsilon_{\mathrm{inv}} &\in \ \mathcal{L}(A) \to \ \mathbb{R}^{d} \\ aggregate &\in \ \mathbb{R}^{k \times d} \to \ \mathbb{R}^{d} \\ \nu_{\mathrm{A}}[n] &\in \ \mathbb{R}^{k \times d} \end{array}$$

Definition (Neural Policy)

The neural policy is the key component of the framework and is define as

$$\pi = \langle \nu_T, \nu_A, \eta_T, \eta_A, \alpha_{\sf ctx}, \epsilon_{\sf inv} \rangle$$

Neural Policy is the most important component of the framework where

- $hline \eta_T, \eta_A$ are two graph neural networks used for computing the neural embeddings $u_T,
 u_A$ for graph representations G_{inst}, G_{inv} respectively.
- $ightharpoonup lpha_{ctx}$ is a neural network implemented as GRU maintains the attention context ctx when modifying invariant.
- ϵ_{inv} implemented as a Tree-LSTM is an invariant encoder that encodes partial generated invariant into *state*, which is used to update the attention.

Overall Framework of Loop Invariant Synthesis

10

Algorithm 1. Code2Inv Framework

```
Input: a verification instance T and a proof checker check
       Output: a invariant inv satisfying check(T, inv) = \bot
       Parameter: graph constructor \mathcal{G} and invariant grammar A
   1 \pi \leftarrow \text{initPolicy}(T, A)
   2 C \leftarrow \emptyset
   3 while true do
   inv \leftarrow \mathtt{sample}(\pi, T, A) 
 \langle \pi, C \rangle \leftarrow \mathtt{improve}(\pi, inv, C) 
Function initPolicy (T, A)
       Initialize weights of \eta_T, \eta_A, \alpha_{ctx}, \epsilon_{inv} with random values
   \nu_{\mathrm{T}} \leftarrow \eta_{\mathrm{T}}(\boldsymbol{\mathcal{G}}(T))
   \nu_{\rm A} \leftarrow \eta_{\rm A}(\boldsymbol{\mathcal{G}}(A))
  return \langle \nu_{\rm T}, \nu_{\rm A}, \eta_{\rm T}, \eta_{\rm A}, \alpha_{\rm ctx}, \epsilon_{\rm inv} \rangle
```

Structured External Memory

- First, convert a given program into a static single assignment form, then a flow graph where a vertex is an AST.
- Then, convert the graph into vector representation. $E = \{(e_x^{(i)}, e_v^{(i)}, e_t^{(i)})\}.$

$$\begin{split} \mu_v^{(l+1)} = & h(\{\mu_u^{(l)}\}_{u \in \mathcal{N}^k(v), k \in \{1, 2, \dots, K\}}) \\ \mu_v^{(0)} = & \mathbf{W}_1 \mathbf{x}_v \\ \mu_v^{(l+1), k} = & \sigma(\sum_{u \in \mathcal{N}^k(v)} \mathbf{W}_2 \mu_u^{(l)}), \forall k \in \{1, 2, \dots, K\} \\ \mu_v^{(l+1)} = & \sigma(\mathbf{W}_3[\mu_v^{(l+1), 1}, \mu_v^{(l+1), 2}, \dots, \mu_v^{(l+1), K}]) \end{split}$$

42

```
Function sample (\pi, T, A)
          inv \leftarrow A.S
 12
          ctx \leftarrow aggregate(\pi.\nu_T)
 13
           while inv is partially derived do
 14
                x \leftarrow \text{leftmost non-terminal or placeholder symbol in } inv
 15
                state \leftarrow \pi.\epsilon_{inv}(inv)
 16
                ctx \leftarrow \pi.\alpha_{ctx}(ctx, state)
 17
                if x is non-terminal then
 18
                      p \leftarrow \operatorname{attention}(ctx, \pi.\nu_{\mathbf{A}}[x], \mathcal{G}(A))
 19
                      expand inv according to p
 20
                else
 21
                     v \leftarrow \mathtt{attention}(ctx, \pi.\nu_{\mathrm{T}}[x], \mathcal{G}(T))
 22
                      replace x in inv with v
 23
           return inv
 24
   Function attention (ctx, \nu, G)
          Return node t in G such that dot product of ctx and \nu[t]
41
          is maximum over all nodes of G
```

```
Function improve (\pi, inv, C)
           n \leftarrow \text{number of counter-examples } C \text{ that } inv \text{ can satisfy}
 26
           if n = |C| then
 27
                cex \leftarrow check(T, inv)

if cex = \bot then
 28
 29
                     save inv and weights of \pi
 30
                      exit
                                                                        // a sufficient inva
 31
                else
 32
                 33
        r \leftarrow n/|C|
 34
           \pi \leftarrow \text{updatePolicy}(\pi, r)
 35
           return \langle \pi, C \rangle
 36
   Function updatePolicy(\pi, r)
          Update weights of \pi.\eta_{\rm T}, \pi.\eta_{\rm A}, \pi.\alpha_{\rm ctx}, \pi.\epsilon_{\rm inv}, \pi.\nu_{\rm T}, \pi.\nu_{\rm A} by
38
          standard policy gradient [34] using reward r
39
```

Overall Framework of Loop Invariant Synthesis

Multi-Step Decision Making Process

Definition (Loop Invariant)

We define the loop invariant to be a tree ${\mathcal T}$

$$\mathcal{T} = (\mathcal{T}_1 \vee \mathcal{T}_2 \ldots) \wedge (\mathcal{T}_{t+1} \vee \mathcal{T}_{t+2} \ldots) \wedge \ldots \wedge (\ldots \mathcal{T}_{T-1} \vee \mathcal{T}_T)$$

 T_t is $X < 2 \times y + 10 - z$.

MDP: use MDP to model the problem of constructing the invariant incrementally.

$$\mathcal{M}^{G} = (s_1, a_1, r_1, \dots, s_T, a_T, r_T)$$

- ▶ $a_t = (op_t, \mathcal{T}_t)$. op_t can be \land or \lor .
- $ightharpoonup s_t = (G, \mathcal{T}^{< t}).$

Reward Design r_t

Early Reward: the goal is to quickly remove the trivial and meaningless predicates. e.g. e==e, e< e. Examine partially generated \mathcal{T}^t .

$$\frac{P\!\Rightarrow\! I \;\; (\textit{pre}) \qquad \{I\!\land\! B\}\,S\,\{I\} \;\; (\textit{inv}) \qquad (I\!\land\! \neg B)\!\Rightarrow\! Q \;\; (\textit{post})}{\{P\}\; \textbf{while}\; B\; \textbf{do}\; S\,\{Q\}}$$

Continuous Reward: ce_{pre} , ce_{inv} , ce_{post} and $pass_{pre}$, $pass_{inv}$, $pass_{post}$. No new counterexample is introduced:

$$\frac{|pass_{pre}|}{|ce_{pre}|} + \frac{|pass_{inv}|}{|ce_{inv}|} + \frac{|pass_{post}|}{|ce_{post}|}$$

New counterexample introduced:

$$\frac{|pass_{pre}|}{|ce_{pre}|} + [pass_{pre} = ce_{pre}] \frac{|pass_{inv}|}{|ce_{inv}|} + [pass_{pre} = ce_{pre}] [pass_{inv} = ce_{inv}] \frac{|pass_{post}|}{|ce_{post}|}$$

Termination

Situations for termination:

- Successfully generated.
- ► The tree of the generated invariant reach a ceiling number of branches.
- ► The agent generate invalid action.

Experimental Result

(b) sample complexity of C2I and CODE2INV

Ablation Study

Table 1: Ablation study for different configurations of Code2Inv.

configuration	#solved instances	max #Z3 queries	max #parameter updates
without CE, without attention	91	415K	441K
without CE, with attention	94	147K	162K
with CE, without attention	95	392	337K
with CE, with attention	106	276	290K
LSTM embedding + CE + attention	93	32	661K