Unsupervised Learning: Introduction

About the Instructors

Genevera Allen:

- Rice University Departments of Electrical and Computer Engineering, Stat and CS & Baylor College of Medicine - Neurological Research Institute.
- Founder, Rice D2K Lab
- Research:
 - Statistical Machine Learning, Data Integration, Graphical Models, Modern Multivariate Analysis, Interpretability & Fairness, Neuroscience, Genomics.

https://genevera.rice.edu/

About the Instructors

Yufeng Liu:

- University of North Carolina, Chapel Hill Departments of Statistics and Operations Research, Genetics & Biostatistics.
- Research:
 - Statistical Machine Learning and Data Mining; High-dimensional Data Analysis; Nonparametric Statistics and Functional Estimation; Personalized Medicine; Bioinformatics.

http://yfliu.web.unc.edu

Statistical Machine Learning

• "Learn" from current data to make predictions about the future.

Examples?

• Intersection of: Computer Science, Statistics, Applied Math.

Big Data

Big Data - BIG in Volume, Variety and/or Velocity (or Complexity!).

Common Big Data themes in Statistical Learning:

- ullet Big n. Large number of observations.
 - Examples: Internet data, financial transactions, climate data, etc.
- Big p. Large number of features relative to observations. (High-dimensional data).
 - Examples: Medical data genomics, neuroimaging, medical imaging, etc.

Big Biomedical Data

Examples:

- High-throughput Genomics ("Omics").
 - RNA-sequencing, microarrays, methylation arrays, CGH-arrays, exome sequencing, mass spectrometry, NMR spectroscopy, etc.
- Neuroimaging / neural recordings.
 - ▶ MRI, Functional MRI (fMRI), EEG, MEG, DTI, ECoG, PET, etc.
- Electronic Health Records.
- Medical Imaging.
- Text Data Pubmed abstracts.

Data Matrix:

$$\boldsymbol{X}_{n \times p} = \left(\begin{array}{cccc} x_{11} & x_{12} & \dots & x_{1p} \\ \vdots & & \ddots & \\ x_{n1} & x_{n2} & \dots & x_{np} \end{array}\right)$$

- Rows: *n* observations / samples / subjects.
- Columns: p features / variables.

Example: Omics Data

Gene Expression Data (Microarray)

- Rows (observations): Subjects ($n \approx 100 500$).
- Columns (features): Genes ($p \approx 500 20,000$).
- Measurement: Gene expression levels (loosely, how much a gene is turned off or on in a sample).

Example: Text Mining

	data	R	big	cluster	shiny	fast	plot
doc1	57	1	43	2	0	22	4
doc 2	17	29	2	3	35	6	44
doc3	47	33	0	0	24	3	19
doc4	23	0	0	31	0	7	2
doc5	40	5	28	9	0	21	6
doc6	8	10	7	46	12	17	9

(Bag-of-Words Format)

- Rows (observations): Documents ($n \approx 500 100,000$).
- Columns (features): Words ($n \approx 100 50,000$).
- Measurement: Count of how many times words appeared in documents.

Example: Image Data

(Handwritten Digits Data)

- Rows (observations): Digits ($n \approx 10,000$).
- Columns (features): Pixels (p = 256).
 - ▶ Each digit image is converted to a 16×16 grayscale image. The 256 total pixels are vectorized to form the features.
- Measurement: Normalized grayscale intensity of each pixel.

Unsupervised vs. Supervised Learning

$$\boldsymbol{X}_{n \times p} = \left(\begin{array}{cccc} x_{11} & x_{12} & \dots & x_{1p} \\ \vdots & & \ddots & \\ x_{n1} & x_{n2} & \dots & x_{np} \end{array}\right)$$

- Rows: *n* observations / samples / subjects.
- Columns: p features / variables.

Supervised Learning:

$$\mathbf{y} = (y_1, y_2, \dots y_n)^T$$

ullet y - n labels / outcomes associated with each observation.

Unsupervised Learning: No outcomes / labels!

Supervised Learning

Main Goal

Prediction!

- Given: $(Y_n^{train}, \boldsymbol{X}_{n \times p}^{train})$ (Training Data).
- \bullet Training: Use training data to find $\hat{f}()$ that maps ${\pmb X}$ to Y : $Y = f({\pmb X}) + \epsilon.$
- $\bullet \text{ Prediction: Given new } \boldsymbol{X}_{m \times p}^{test} \text{, predict } Y_{m \times 1}^{test} \colon \hat{Y}^{test} = \hat{f}(\boldsymbol{X}^{test}).$

Examples?

Secondary Goals:

- Feature Selection What features are associated with the outcome?
- Others?

No labels! What is the goal?

Main Goal

Find some structure that characterizes the data.

(Or, find structure in training data that we expect to be present in future data.)

- Find patterns. (PCA, ICA, NMF, MDS)
- Dimension reduction. (PCA)
- Group observations / Group features / Group both. (Clustering)
- Find associations / relationships between features or observations. (Graphical or Network Models)
- Filter features. (Association testing)

Challenges:

- Difficult to validate unsupervised learning results.
- No validation or test labels to measure prediction accuracy.
- What is meaningful structure in data?

Uses:

- Data pre-processing / compression / denoising.
- Exploratory data analysis.
 - Need to use multiple unsupervised learning techniques as each gives slightly different "insights" into data.
- Data visualization.
- Data-Driven Discovery.

How does it fit into a data science pipeline?

How is it used in Big Biomedical Data?

Case Study: BRCA gene expression data.

- Data Visualization.
 - Cluster heatmap, graphical models, MDS, PCA.
- Exploratory Analysis.
 - Clustering / dimension reduction to find cancer subtypes.
- Gene Selection.
 - Large-scale hypothesis testing to find genes associated with subtypes.
- Gene Interactions.
 - Graphical models.

Breakout Discussion

- How will you use Unsupervised Learning?
- What type of big data do you work with?
- What do you hope to learn from this course?

This Course

Day 1:

- Lecture 1: 11:30-12:20pm Intro
- Lecture 2: 12:30-1:20pm Dimension Reduction I
- Secture 3: 1:30-2:20pm Dimension Reduction II/Lab Intro

^{*}All times Pacific.

This Course

Day 2:

- Lecture 1: 8-8:50am Dimension Reduction III / Lab
- 2 Lecture 2: 9-9:50am Dimension Reduction Lab
- Lecture 3: 10-10:50am Clustering I

Break

- Lecture 4: 11:30-12:20pm Clustering II
- Lecture 5: 12:30-1:20pm Clustering III / Lab
- **6** Lecture 6: 1:30-2:20pm Clustering Lab

^{*}All times Pacific.

This Course

Day 3:

- 1 Lecture 1: 8-8:50am Testing
- Lecture 2: 9-9:50am Graphical Models I
- Lecture 3: 10-10:50am Graphical Models II

Break

- Lecture 4: 11:30-12:20pm Validation + Final Lab
- Lecture 5: 12:30-1:20pm Final Lab
- Lecture 6: 1:30-2:20pm Final Lab Results + Best Practices

^{*}All times Pacific.