1. FIND U SUCH THAT $UA = \operatorname{rref}(A)$

Notation: If B is the matrix you get by applying the elementary row operation O to A, we write

$$B = OA$$
.

To find *U*: Row-reduce the *horizontal join*

$$(A|I)$$
,

i.e., apply EROs O_1, O_2, \ldots, O_n to $(A \mid I)$ until it has the form $(\operatorname{rref} A \mid U)$:

$$(A | I) \xrightarrow{O_1} (O_1 A | O_1 I) \xrightarrow{O_2} (O_2 O_1 A | O_2 O_1 I) \xrightarrow{O_3} \cdots \xrightarrow{O_n} (\operatorname{rref} A | U).$$

Then:

U is invertible and $UA = \operatorname{rref} A$.

2. FINDING THE INVERSE OF A MATRIX

Finding the inverse of an invertible matrix is a *special case* of the problem of finding an invertible U such that UA = rref A:

If rref
$$A = I$$
, then $UA = I$.

Since U is invertible, so is A (why?) and

$$A^{-1} = U$$
.

In particular:

If $\operatorname{rref} A = I$ then A is invertible.

The *converse* of this implication is also true:

If A is invertible, then rref A = I.

Thus:

A is invertible **if and only if** rref A = I.

3. Why this works: Elementary matrices

Let E(O) be the matrix you get by applying the ERO O to the identity matrix, I:

$$E(O) = OI.$$

E(O) is called the elementary matrix (EM) of O. A matrix E is an EM if E = E(O) for some ERO O.

EM fact 1: E(O)A is the matrix you get by applying O to A.

$$E(O)A = OA$$
.

As above, suppose

$$(\operatorname{rref} A | U) = O_n \cdots O_2 O_1 (A | I).$$

Set

$$E_i = E(O_i).$$

Since¹

$$O_n \cdots O_2 O_1 \left(A \mid I \right) = \left(O_n \cdots O_2 O_1 A \mid O_n \cdots O_2 O_1 I \right),$$

= $\left(E_n \cdots E_2 E_1 A \mid E_n \cdots E_2 E_1 \right),$

we have:

$$U = E_n \cdots E_2 E_1$$
 and $UA = \operatorname{rref} A$.

4. Writing a matrix as a product of elementary matrices

Suppose that A is invertible. Then, as we observed above, U is invertible and

$$A^{-1} = U.$$

Inverting both sides of this identity yields

$$A = U^{-1}$$

Since $U = E_n \cdots E_2 E_1$,

$$U^{-1} = E_1^{-1} E_2^{-1} \cdots E_n^{-1}.$$

Remember: the inverse of a product is a product of inverses, in the reversed order. Thus, A is a product of inverses of elementary matrices:

$$A = U^{-1} = E_1^{-1} E_2^{-1} \cdots E_n^{-1}.$$

¹The first identity describes how EROs interact with horizontal joins of matrices. The second follows from the EM fact 1, relating EROs and EMs.

But:

EM fact 2: Inverses of EMs exist and are, themselves, EMs. More precisely, the inverse of the EM of an ERO is the EM of the inverse ERO:

$$E(O)^{-1} = E(O^{-1})$$

Perhaps we have not stated the following explicitly:

ERO fact: Every ERO is invertible.

Type	O	O^{-1}
1	swap rows i and j	swap rows i and j
2	multiply row i by c ($c \neq 0$)	multiply row i by $1/c$
3	add $k \times (\text{row } i)$ to row j	add $-k \times (\text{row } i)$ to row j

Thus,

$$A = E_1^{-1} E_2^{-1} \cdots E_n^{-1}$$

is an expression for A as a product of elementary matrices.