

CloudMile 雲端費用預測

詹昊庭 魏詩庭 藍知生 蔡鉎驊 徐浚凱 林奕霆

CloudMile — 雲端花費預測報告大綱

產品簡介

本次優化產品為雲端服務管理平台 MileLync

專案目標

分析雲端服務使用,包含使用量、費用預測與異常行為偵測,提升使用者體驗,作為 MileLync 產品的加分項

模型選擇 與 評估 資料集介紹

三間公司在2022年1月至11月底的雲端使用花費

模型建立

- Conventional: 以 ACF 觀察週期,再以 auto arima 選出 AIC 最低的參數組合
- Tree-based: 以 XGBoost 及 Random forest 抽取特徵生成樹,進行預測
- Transformer-based: FEDformer
- RNN-based: LSTM
- BigQuery: SARIMA 加入 features

模型成效

SARIMA

時間序列分析與資料前處理,對所有 Project 進行初步使用量預測

Tree-Based

觀察 SARIMA,加入額外變數 (Features) MA

限制

僅以預測目標前90天內作為輸入資料,以降低實務上遇公司成本歷史資料不足造成的預測限制

Agenda

1. MileLync簡介

- 2. 資料集與專案設定
- 3. 模型比較
- 4. 模型優化: SARIMA、Tree-Based
- 5. 未來展望

MileLync 為一站式雲端管理平台,可以簡化並整合 GCP Console 複雜的管理平台

Cost Distribution by Service Type

透過圖表和報告的形式呈現成本 分佈的詳細信息,用戶可直觀看 到各服務類型所佔的成本比例。 有助於用戶識別成本較高或不必 要的服務,以便進行優化和調整

Top Spenders

以圖表和報告的形式呈現最高成本的詳細資訊,用戶可清楚看到 消費最多的使用者和相應金額, 有助識別出資源消耗較大的項目

Cost Trends

可按不同的時間範圍顯示成本趨勢,並提供相應的比較和分析。 我們本次專案則希望提升成本預 測的表現,優化客戶的使用體驗

Agenda

- 1. MileLync簡介
- 2. 資料集與專案設定
- 3. 模型比較
- 4. 模型優化: SARIMA、Tree-Based
- 5. 未來展望

共 3 個擁有相同欄位特徵的資料集,並因應實務限制而設定專案資料使用標準

資料集描述

檔案

project_a.csv, project_b.csv, project_c.csv

特徵

共兩個欄位,分別為 date 以及 cost

時間範圍

皆為自 2022/01/01 至 2022/11/30

專案與模型設定

資料切割

訓練資料:2022/01/01~2022/09/15;驗證資料:2022/09/15~2022/10/15;測試資料:2022/10/15~2022/11/30

方法選擇

各模型統一使用 Rolling-base 預測以捕捉序列中的時間相依性

Project A 資料輪廓

ADF Statistic: -6.989692

p-value: 0.000000

Project B 資料輪廓

Project C 資料輪廓

ADF Statistic: -5.588818

p-value: 0.000001

Agenda

- 1. MileLync簡介
- 2. 資料集與專案設定
- 3. 模型比較
- 4. 模型優化: SARIMA、Tree-Based
- 5. 未來展望

模型比較

以 RMSE 衡量 11/01 - 11/30 預測結果

RMSE	Baseline	SARIMA	XGBoost	Random Forest	FEDformer	LSTM	Big Query
Project A	10.36	8.69	17.9	8.88	12.37	7.57	10.79
Project B	3.75	5.71	9.68	6.39	7.70	7.22	6.74
Project C	2.48	1.57	4.16	1.835	3.62	4.30	2.46

模型比較

以 RMSE 衡量 10/16 - 11/30 預測結果

RMSE	SARIMA	XGBoost	Random Forest	FEDformer	LSTM	Big Query
Project A	6.49	7.61	8.13	11.20	7.90	11.037
Project B	4.72	7.28	5.43	7.06	6.25	21.241
Project C	2.29	2.13	2.91	3.43	3.50	2.725

Project A (10/16 - 11/30)

Project A: Sarima(Rolling-based: 90)

para=[1,0,2][8,1,0,7] RMSE= 7.87

Project A: XGBoost (Rolling-based: 35)

RMSE= 9.06

Project A: XGBoost Features (Rolling-based: 35)

參數介紹

- Dayofweek
- Quarter
- Month
- Dayofyear
- sin_day
- cos_day
- Dayofmonth
- Weekofyear

Project A: RandomForest (Rolling-based: 75)

RMSE = 10.02

Project A: RandomForest Features (Rolling-based: 75)

Project A: LSTM (Rolling-based: 12)

Project A: FEDformer (Rolling-based: 72)

Project B (10/16 - 11/30)

Project B: Sarima (Rolling-Based: 75)

para = [2,1,0],[7,1,0,15] RMSE = 6.68

Project B: XGBoost (Rolling-based: 25)

Project B: XGBoost Features (Rolling-based: 25)

Project B: RandomForest (Rolling-based: 85)

RMSE = 7.16

Project B: RandomForest Features (Rolling-based: 85)

Project B: LSTM (Rolling-based: 12)

Project B: FEDformer (Rolling-based: 36)

Project C (10/16 - 11/30)

Project C: Sarima (Rolling Base: 90)

Project C: XGBoost (Rolling-based: 45)

Project C: XGBoost Features (Rolling-based: 45)

Project C: RandomForest (Rolling-based: 60)

RMSE = 2.91

Project C: RandomForest Features (Rolling-based: 60)

Project C: LSTM (Rolling-based: 60)

Project C: FEDformer (Rolling-based: 36)

Agenda

- 1. MileLync簡介
- 2. 資料集與專案設定
- 3. 模型比較
- 4. 模型優化: SARIMA、Tree-Based
- 5. 未來展望

Sarima模型優化方法

異常值偵測

- 法一: 若第t日到第t-4日之平均標準差超過定值則視為異常值。
- 法二: 若第t日到第t-n日之平均標準差與第t-1日到第t-n-1日平均標準差相 減超過定值則視為異常值。

異常值處理

● 平滑化方法:

為了滿足Rolling需求,將包含當天以及過去四天的**五日平均值**取代異常值。

定期自動選出 最佳參數

● 在假設只有三個月的時間序列資料下,於預測資料時,每15日以ACF輸出之數值尋找局部最大值,選出最佳的Seasonality參數,並透過auto_ARIMA自動選出(p,d,q)(P,D,Q)之參數。

模型比較

Project A: Sarima 對異常值平滑化 Rolling-based=80

para = [1,0,0],[5,1,0,7]RMSE = 7.65

Project A: Sarima

定期自動選出最佳參數

m=7,7,7,8 RMSE = 7.12 windows = 80

Project A: Sarima

對異常值做平滑化+定期自動選出最佳參數

m=7,7,7,8 RMSE = 6.49 windows = 80 模型比較

Project B: Sarima 對異常值平滑化

para = [2,0,1],[7,1,0,15] RMSE = 4.85 模型比較

Project B: Sarima 對所有數值以五日平均平滑

para = [2,0,1],[7,1,0,15] RMSE = 5.75

Project B: Sarima

對異常值平滑化+定期自動選出最佳參數

m=31,31,31,31 RMSE = 4.72

Project C: Sarima 定期自動選出最佳參數

m=31,31,31,31 RMSE = 2.84

Sarima 模型優化結果

RMSE	SARIMA	優化後SARIMA	Difference
Project A	7.87	6.49	-21%
Project B	6.68	4.72	-29%
Project C	2.29	2.84	+19%

Project A: XGBoost (Rolling-based: 40)

RMSE: 7.61

Project A: XGBoost Features Importance (Rolling-based: 40)

Project B: XGBoost (Rolling-based: 25)

Project B: XGBoost Features Importance (Rolling-based: 25)

Project C: XGBoost (Rolling-based: 35)

Project C: XGBoost Features Importance (Rolling-based: 45)

XGBoost 模型優化結果

RMSE	XGBoost	優化後 XGBoost	Difference
Project A	9.06	7.61	-16%
Project B	7.53	7.28	-3.3%
Project C	2.29	2.13	-7%

Project A: RandomForest (Rolling-based: 75)

RMSE = 8.13

Project A: RandomForest Features Importance (Rolling-based: 75)

Project B: RandomForest (Rolling-based: 50)

RMSE = 5.43

Project B: RandomForest Features Importance (Rolling-based: 50)

Project C: RandomForest (Rolling-based: 60)

RMSE = 2.91

Project C: RandomForest Features Importance (Rolling-based: 60)

RandomForest 模型優化結果

RMSE	RandomForest	優化後 RandomForest	Difference
Project A	10.02	8.13	-19%
Project B	7.16	5.43	-24%
Project C	2.21	2.91	+32%

Agenda

- 1. MileLync簡介
- 2. 資料集與專案設定
- 3. 模型比較
- 4. 模型優化: SARIMA、Tree-Based
- 5. 未來展望

分析雲端服務使用量的費用預測,以提升使用者體驗,作為 MileLync 產品的加分項

結論

- 1. 建議模型篩選上可採用 SARIMA 來預測雲端費用
- 2. Tree-based 在進行適當特徵工程後表現提升,建議可參考較好模型使用之參數作為特徵
- 3. 我們使用 SARIMA Moving Average 參數作為 Tree-Based 的特徵優化模型表現

模型 效益

- 1. 有效提升GCP使用量預測功能,打敗 Baseline 分別提升 RMSE 約 27% (A)、37% (C)
- 2. SARIMA 定期自動選參數與季節性
- 3. 在有限資料 (90天) 即可以達到預測效益

Question

附錄

FEDFormer 加入 MA 後結果

RMSE	FEDFORMER	加入 MA後	Difference
Project A	11.20	12.16	+8%
Project B	7.06	6.93	-2%
Project C	3.43	3.14	-9%