1 idk

1.1 Notation

Let's first consider the general case of a mapping of the form $f_c: z \mapsto f(z) + c$ for a function $f: \mathbb{C} \to \mathbb{C}$ partially differentiable almost everywhere, and for which 0 is a zero of order $d \geq 2$. This would for example be $f: z \mapsto z^n$ for the *n*-th-power mandelbrot set, $f: z \mapsto (z^n)^*$ for the *n*-th-power mandelbar set, $f: |\Re(z^2)| + i |\Im(z^2)|$ for the burning ship fractal and so on. For any starting point z_0 , let's also define z_n as $f_{z_0}^n(z_0)$; the fractal set in question is then the set of values $z_0 \in \mathbb{C}$ for which (z_n) does not tend towards infinity. Also, from here on we'll use $\frac{\partial z'}{\partial z}$ to denote the Jacobian matrix

$$\frac{\partial z'}{\partial z} := \begin{pmatrix} \frac{\partial \Re(z')}{\partial \Re(z)} & \frac{\partial \Re(z')}{\partial \Im(z)} \\ \frac{\partial \Im(z')}{\partial \Re(z)} & \frac{\partial \Im(z')}{\partial \Im(z)} \end{pmatrix}$$

of $(\Re(z'),\Im(z'))\in\mathbb{R}^2$ with respect to $(\Re(z),\Im(z)),$ and M(z) to denote the matrix

$$M(z) := \begin{pmatrix} \Re(z) & -\Im(z) \\ \Im(z) & \Re(z) \end{pmatrix}.$$

Now, let z_0 be a point with $z_{n-1} = 0$ for an $n \in \mathbb{N}$ and $z_k \neq 0$ for all $k \in \{1, ..., n-2\}$. Then for all $x_0 \simeq z_0$, the orbit of x_0 evolves as follows:

$$x_{n-1} = z_{n-1} + \frac{\partial f_{z_0}^{n-1}(z_0)}{\partial z_0} \cdot (x_0 - z_0) + o((x_0 - z_0)^2)$$

$$= 0 + \frac{\partial f_{z_0}^{n-1}(z_0)}{\partial z_0} \cdot (x_0 - z_0) + o((x_0 - z_0)^2)$$

$$=: d_0 + o((x_0 - z_0)^2),$$

$$x_n = x_{n-1}^2 + x_0$$