

MT2511 Datasheet

Version: 1.0

Release date: 5 May 2017

© 2015 - 2017 MediaTek Inc.

This document contains information that is proprietary to MediaTek Inc. ("MediaTek") and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek ("License Agreement") and been granted explicit permission within the License Agreement ("Permitted User"). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN "AS-IS" BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice.

Document Revision History

Revision	Date	Description
0.1	06 October 2015	Initial draft
0.2	24 November 2015	Update ball diagram and detailed pin description
0.3	05 February 2016	Document format update
0.31	16 February 2016	Document format update
0.32	18 February 2016	Marking update
		TMODE is tied to ground.
	24 March 2016	Correct package size.
0.33		Figure refine.
		Remove duplicated chapter.
		Update Boost spec
0.34	31 March 2016	Rename package ball TXP-> TX1, TXN->TX2
0.45	29 August 2016	Remove Boost support
0.43	29 August 2010	Current consumption update.
0.46	11 January 2017	List MCU interface operation condition for low power simulation.
0.40	11 January 2017	Top marking description update.
1.0	5 May 2017	Official version.

Table of contents

1.	Syste	em Overview	5
	1.1.	MT2511 System Block Diagram	7
	1.2.	EKG Channel Features	8
		1.2.1. General Specifications	8
	1.3.	PPG Channel Features	9
		1.3.1. General Specification	9
	1.4.	Heartbeat Interval Estimation Feat	ure10
2.	Pin D	escription	11
	2.1.	Ball Diagram	11
	2.2.	Pin Coordination	
	2.3.	Detailed Pin Description	
3.	Elect	rical Characteristics	15
	3.1.	Absolute Maximum Ratings	
	3.2.	Recommended Operating Conditio	ns16
	3.3.	EKG Electrical Characteristics	
	3.4.	PPG Electrical Characteristics	
	3.5.	System Electrical Characteristics	20
4.	Low	Power Performance	22
	4.1.	Operating Scenarios and Current C	onsumption22
5.	Func	tional Overview	23
	5.1.	SPI/I2C Specification	23
		5.1.1. SPI/I2C Supply Voltage.	23
	5.2.	Access Speed of SPI/I2C	24
	5.3.	Power Sequence	25
	5.4.	Timing Module Operation	26
		5.4.1. General Operation	26
		5.4.2. Dynamic Power Down N	Лode26
		5.4.3. Timing Module Operation	on28
6.	Pack	age Information	29
	6.1.	Package Mechanical Data	29
7.	Orde	ring Information	32
	7.1.	MT2511 Top Marking Definition	32

Lists of tables and figures

Table 1. Pin Coordinates	12
Table 2. Pin Type Acronyms	13
Table 3. PIN Function Description and Power Domain	13
Table 4. Power Supply Absolute Maximum Ratings	15
Table 5. Voltage Input Absolute Maximum Ratings	15
Table 6. Storage Temperature Absolute Maximum Ratings	15
Table 7. Recommended Operating Conditions for Power Supply	16
Table 8. Recommended Operating Conditions for Operating Temperature	16
Table 9. EKG Electrical Characteristics	
Table 10. IA Gain versus Bandwidth	17
Fable 11. Input-Referred Noise (uVrms/uVpp) vs Data Rate and PGA Gain	18
Table 12. PPG Electrical Characteristics	18
Table 13. PPG Electrical Characteristics	19
Table 14. System Electrical Characteristics	20
Table 15. Operating Scenarios and Current Consumption	22
Table 16. SPI/I2C Specification	23
Table 17. Ordering information	32
Figure 1. MT2511 System Block Diagram	7
Figure 2. EKG Channel Block Diagram	
Figure 3. PPG Channel Block Diagram	9
Figure 4. Ball Diagram and Top View	11
Figure 5. MT2511 Power-on, Idle and Power-off Sequence	25
Figure 6. Timing Module General Operation	26
Figure 7. Dynamic Power Down Mode	27
Figure 8. Timing Module Operation Example	28
Figure 9. Outlines and Dimension of MT2511 WLCSP 3.1 mm * 3.4 mm, 41-ball, 0.4 mm Pitch Package	
igure 10.MT2511 Mass Production Top Marking	32

1. System Overview

MT2511 is a 2-in-1 bio-sensing analog front-end (AFE) to facilitate bio-signal acquisition. The AFE consists of low noise voltage and current sensing channels, and is capable of sensing EKG (Electrocardiography) and PPG (Photoplethysmography) simultaneously.

The two AFE channels in MT2511 have >100dB dynamic range and can sense pulses accurately by detecting the heart's electric signals with the presence of environment interferences and motion artifacts, and complements this method optically by illuminating the skin and measuring changes in light absorption.

MT2511 contains built-in heartbeat interval estimation for PPG signals and SRAM to optimize power consumption for sleep heart rate monitoring. This feature allows the external MCU to stay in idle mode up to four minutes when motion artifact cancellation is not required.

The sampling rates of the high-precision voltage and current sensing channels in MT2511 are configurable between 64-4kHz to support applications with other bio-signals, such as Electromyography (EMG), Electroencephalography (EEG), and Pulse oximetry (SpO2), and high-precision data acquisitions for different kinds of sensors, such as pressure and impedance sensors. With multiple MT2511s, a higher degree of sensor fusion can be achieved with synchronized data acquisition by triggering each MT2511 with the same external clock input. In addition, MT2511 integrates an oscillator to offer high-precision clock with external crystal.

With its tiny package (3.1mm x 3.4mm) and limited energy needs, MT2511 is suitable for various types of wearable devices, particularly fitness trackers, active lifestyle smart watches and sports bands. It is also suitable for next-generation health and wellness devices such as a smart medical patch and smart clothing for the emerging eldercare segment.

MT2511 is optimized for bio-sensing products with the following strengths:

- 2-in-1 bio-sensing AFE (Voltage/Current)
- Built-in beat interval detection circuit with SRAM can optimize power consumption for sleep heart rate monitoring
- Integrates an oscillator to offer high-precision clock with external crystal.
- Flexible timing control for dynamic power down for power saving.
- Two-electrode (2E) mode and right leg drive (RLD) mode for EKG monitoring.
- Ultra-low power consumption

EKG Channel

MT2511 integrates a high-resolution dc-coupled front end. It can endure wide input offset, large interference, and different electrode impedance. MT2511 is the first AFE supporting 2-electrode EKG monitoring with 500-M Ω input impedance. This facilitates the use of two dry electrodes to optimize product form factor, reduce electrode cost, and maintain good signal quality. MT2511 also supports conventional right-leg drive (RLD)

mode to reach medical-grade EKG acquisition. Note that there is larger interference at two-electrode (2E) mode.

PPG Channel

MT2511 comprises of LED drivers, a high-end dc-coupled current-mode front end, and a flexible timing control for PPG channel. The flexible timing control enable the users to control the device timing for different application and to power down the device for power saving. And the PPG front end can sense up to four channels (two for signal and two for ambient) by time multiplexing.

Heartbeat Interval Estimation

MT2511 contains built-in heartbeat interval estimation for PPG signals and SRAM to optimize power consumption for sleep heart rate monitoring. This feature allows the external MCU to stay in idle mode up to four minutes when motion artifact cancellation is not required.

Memory

MT2511 supports on-chip SRAM for data buffering. There are 1KB SRAM for EKG channel, 2KB SRAM for 2PPG channels, and 1KB SRAM for heartbeat internal detection channel. The SRAM buffering allows the MCU to stay in idle mode for power saving.

Connectivity

MT2511 supports I2C/SPI dual interface.

Package

The MT2511 device is offered in a 3.1mm×3.4mm, 41-ball, 0.4mm pitch, and WLCSP package.

1.1. MT2511 System Block Diagram

Figure 1. MT2511 System Block Diagram

1.2. EKG Channel Features

Figure 2. EKG Channel Block Diagram

Figure 2 above shows a DC-coupled EKG system. The EKG channel supports two-electrode (2E) mode and right leg drive (RLD) mode, and acts as a buffer between human and circuit. It integrates a programmable gain amplifier (PGA), a right leg drive amplifier, and a 24-bit sigma-delta analog-to-digital converter (ADC) to sense and digitize the EKG signal.

1.2.1. General Specifications

• Programmable gain from 1 to 12

• Low input-referred noise: 0.83uV_{rms} at G=6 and BW=150Hz

• Dynamic range: 110 dB at G=6

CMRR>85dB at 60Hz

Data rate: 64SPS to 4096SPS

Supports two-electrode and right leg drive mode

• Input impedance: $125M^{500M}\Omega$ at two-electrode mode and 16Ω at right leg drive mode

1.3. PPG Channel Features

Figure 3. PPG Channel Block Diagram

The PPG channel is separated into two parts: Receiver (RX) and Transmitter (TX). The TX part consist of LED driver. The LED driver and the voltage boost are used to light up external LED and to provide the voltage drop of LED. The light emitted by LED is penetrated/reflected by the skin, and received by photodiode and the RX. The RX consists of a trans-impedance amplifier (TIA), a programmable gain amplifier (PGA), an ambient digital-to-analog converter (DAC), and a 24-bit incremental ADC. It amplifies and digitizes the received current.

1.3.1. General Specification

- Input maximum current range: 0.5-50 (μA)
- Input maximum capacitance: 1nF
- Input-referred noise: 52pA_{rms} at 5μA input current
- CMRR>80dB at 60Hz
- PGA gain: 1~6 V/V
- Ambient DAC1/2 range: 1~6 μA
- TX LED current range: 9.5/22.9/36.3/49.7/63.1/76.5/79.9/103.3mA, each with 8-bit current resolution
- TX supports H-bridge and push/ pull mode
- Loop back dynamic range: 100 dB at 5μA input current
- Flexible timing control and Support dynamic power down

1.4. Heartbeat Interval Estimation Feature

MT2511 has a built-in heartbeat interval (BI) detector to enhance heart rate monitoring application. When the signal quality of PPG is good enough, the BI detector is able to approximate wavelength of major tone. Instead of complete PPG signals, only beat time intervals are recorded in SRAM. The MCU is freed from estimating heart rate; as a result the amount of data read from MT2511 SRAM via I2C/SPI is reduced significantly.

2. Pin Description

2.1. Ball Diagram

For MT2511, a WLCSP 3.1mm*3.4mm, 41-ball, 0.4mm pitch package is offered. Pin-outs are illustrated in Figure 4 for this package.

7	AVDD28	VIP_EKG	VIN_EKG	VRLD O	TSTP O		XTALI O	XTALO O
6	VIN_PPG	AVSS28			ADC_RDY	GPIOA O	AFE_PWD	TMODE O
5		VIP_PPG				DVSS18	CLK_OUT	DVDD18
4	VREFP O	VCM O					I2C_SEL O	DVDDIO O
3	VREFN O	AVSS28				DVSSIO	SPI_MISO	SPI_CLK
2	TX1 O	AVSS_TX		SPI_MOSI	DVSS18	GPIOB O	GPIOC O	SPI_CSN
1	TX2 O	AVSS_TX	NC O	VLX O	AVSS45	AVDD45	IRQ O	RESETB O
'	Н	G	F	E	D	С	В	A

Figure 4. Ball Diagram and Top View

2.2. Pin Coordination

Table 1. Pin Coordinates

Pin#	Net name	Pin#	Net name	Pin#	Net name
A1	RESETB	C1	AVDD45	G1	AVSS_TX
A2	SPI_CSN=SDA	C2	GPIOB	G2	AVSS_TX
А3	SPI_CLK=SCL	C3	DVSSIO	G3	AVSS28
A4	DVDDIO	C5	DVSS18	G4	VCM
A5	DVDD18	C6	GPIOA	G5	VIP_PPG
A6	TMODE	D1	AVSS45	G6	AVSS28
A7	XTALO	D2	DVSS18	G7	VIP_EKG
B1	IRQ	D6	ADC_RDY	H1	TX2
B2	GPIOC	D7	TSTP	H2	TX1
В3	SPI_MISO	E1	VLX	Н3	VREFN
B4	I2C_SEL	E2	SPI_MOSI	H4	VREFP
B5	CLK_OUT	E7	VRLD	H6	VIN_PPG
В6	AFE_PWD	F1	NC	H7	AVDD28
В7	XTALI	F7	VIN_EKG		

2.3. Detailed Pin Description

Table 2. Pin Type Acronyms

Abbreviation	Description
Al	Analog input
AO	Analog output
AIO	Analog bi-direction
DI	Digital input
DO	Digital output
DIO	Digital bi-direction
Р	Power
G	Ground

Table 3. PIN Function Description and Power Domain

Pin Name Type		Description	Power	
Pili Naille	Туре	Description	Domain	
VIP_EKG	Al	EKG IA positive input	AVDD28	
VIN_EKG	Al	EKG IA negative input	AVDD28	
VRLD	AO	RLD output. (leave floating at 2E mode)	AVDD28	
VIP_PPG	Al	PPG receiver input pin. Connected to photodiode anode.	AVDD28	
VIN_PPG	Al	PPG receiver input pin. Connected to photodiode cathode.	AVDD28	
VCM	Al	PPG input common mode voltage. (leave floating)	AVDD28	
TX1	AO	LED driver output. Connected to LED.	AVDD45	
TX2	AO	LED driver output. Connected to LED.	AVDD45	
AVDD45	Р	PPG LED driver power.	AVDD45	
AVDD43	-	2.2uF decoupling capacitor to ground.	AVDD43	
AVSS_TX G		PPG LED driver ground.	AVDD45	
		Connected to common board ground.	AVDD43	
VLX	Al	PPG circuit bias	AVDD45	
AVSS45	G	PPG LED driver ground.	AVDD45	
AV3343	١	Connected to common board ground.	AVDD43	
VREFP	AIO	Bandgap output voltage.	AVDD28	
VILLI	Alo	1uF decoupling capacitor to ground.	AVDDZO	
VREFN	AIO	Bandgap negative reference voltage.	AVDD28	
VREFIN AIO		Connected to common board ground.	AVDDZO	
TSTP	AIO	For testing. (leave floating)	AVDD28	
AVSS28	G	Analog ground. Connected to common board ground.	AVDD28	
AVDD28	Р	Analog supply. 2.2uF decoupling capacitor to ground.	AVDD28	
DVSS18	G	Digital ground. Connected to common board ground.	DVDD18	
DVDD18	Р	Digital supply. 2.2uF decoupling capacitor to ground.	DVDD18	

Din Nome	Toma	Description	Power
Pin Name	Туре	Description	Domain
DVSSIO	G	Digital IO ground. Connected to common board ground.	DVDDIO
DVDDIO	Р	Digital IO supply. 2.2uF decoupling capacitor to ground.	DVDDIO
		Crystal oscillator pins. Connect an external 32kHz crystal	
XTALI	AIO	with 22pF decoupling capacitor.	AVDD28
		It can be connected to an external 32kHz clock source.	
		Crystal oscillator pins. Connect an external 32kHz crystal	
XTALO	AIO	with 22pF decoupling capacitor.	AVDD28
		If with external clock source, leave floating.	
ADC_RDY	DIO	For testing. (leave floating)	DVDDIO
GPIO	DIO	For testing. (leave floating)	DVDDIO
AFE_PWD	DIO	Power down pin. Can be connected to an external MCU	DVDDIO
TMODE	DIO	Tied to ground.	DVDDIO
CLK_OUT	DIO	For testing. (leave floating)	DVDDIO
IRQ	DO	Interrupt pin. Can be connected to an external MCU.	DVDDIO
RESETB	DIO	Reset pin. Can be connected to an external MCU.	DVDDIO
I2C_SEL	DIO	(1)SPI mode -> please keep I2C_SEL Low	DVDDIO
120_366	DIO	(2)I2C mode -> please keep I2C_SEL High	DVDDIO
SPI_CLK	DIO	(1)SPI mode: SPI clock pin (SPI_CLK)	DVDDIO
JFI_CLK	DIO	(2)I2C mode: I2C clock pin (I2C_SCL)	DVDDIO
SPI CSN	DIO	(1)SPI mode: SPI data pin (SPI_CSN)	DVDDIO
SPI_CSN DIO		(2)I2C mode: I2C data pin (I2C_SDA)	DVDDIO
SPI_MISO	DIO	SPI serial out master in.	DVDDIO
		(1)SPI mode: SPI serial in master out.	
SPI_MOSI	DIO	(2)I2C mode: I2C slave address (7-bit mode)	DVDDIO
2F1_IVIU3I	010	(a)H=7-bit slave address (hex))=37 & 27	DVDDIO
		(b)L=7-bit slave address (hex))=33 & 23	
NC		Leave floating	

3. Electrical Characteristics

3.1. Absolute Maximum Ratings

Table 4. Power Supply Absolute Maximum Ratings

Symbol or Pin Name	Description	Min.	Max.	Unit
DVDDIO	Digital IO voltage input	-0.3	+4	V
DVDD18	Digital core circuit voltage input	-0.3	+4	V
AVDD28	Analog main voltage input	-0.3	+4	V
AVDD45	Analog secondary voltage input	-0.3	+4.5	V

Table 5. Voltage Input Absolute Maximum Ratings

Symbol or Pin Name	Description	Min.	Max.	Unit
Vin	Input voltage	-0.3	+4	V
lin	DC input current at V _{IN} < 0V or V _{IN} > VDD	-20	+20	mA
Гоит	DC output current at Vout < 0V or Vout > VDD	-20	+20	mA

Table 6. Storage Temperature Absolute Maximum Ratings

Symbol or Pin Name	Description	Min.	Max.	Unit
Tstg	Storage temperature range	-40	125	°C

3.2. Recommended Operating Conditions

Table 7. Recommended Operating Conditions for Power Supply

Symbol or Pin Name	Description	Min.	Тур.	Max.	Unit
DVDDIO	Digital IO voltage input	1.62	2.8	3.3	V
DVDD18	Digital core circuit voltage input	1.62	1.8	1.98	V
AVDD28 *(1)	Analog main voltage input	2.66	2.8	2.94	V
AVDD45	Analog secondary voltage input	3.4	4	4.5	V

^{*(1)} Please refer to Table 14 for AVDD28 power noise requirement.

Table 8. Recommended Operating Conditions for Operating Temperature

Symbol or Pin Name	Description	Min.	Тур.	Max.	Unit
Tc	Operating temperature range	-20	-	65	°C

3.3. EKG Electrical Characteristics

Table 9. EKG Electrical Characteristics

PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EKG ANA	LOG INPUTS				•	
	Full-scale differential input voltage			±1.9/GAIN		V
	Input capacitance	RLD mode		30		pF
	input capacitance	Two-electrode mode		190		pF
	DC input impedance	RLD mode	1000			ΜΩ
	De input impedance	Two-electrode mode		500		МΩ
KG IA PI	ERFORMANCE					
	Gain settings		1, 2, 3,	4, 6, 8, 12		V/V
	Bandwidth		See Tab	le 10		
EKG LOW	/-PASS FILTER					
	Low-pass corner frequency	3-dB attenuation	28, 112			kHz
EKG ADC	PERFORMANCE					
	Resolution				23	Bits
	Data rate		64		4096	SPS
EKG CHA	NNEL PERFORMANCE					
		Gain=6, 10 seconds of		5.25		μV_{PP}
		data		3.23		µ V PP
	Input-referred noise	Gain settings other than 6,				
		data rates other than	See Tab	le 11		
		500SPS			_	
	Common-mode rejection	f _{см} =50Hz, 60Hz		85		dB
	Power-supply rejection	f _{PS} =50Hz, 60Hz	100			dB
ТНД	Total harmonic distortion	100Hz, -0.5dBFs		78		dB
טוונ		100Hz, -20dBFs		105		dB

Table 10. IA Gain versus Bandwidth

GAIN	Bandwidth of IA(kHz)
------	----------------------

© 2015 - 2017 MediaTek Inc.

Page 17 of 32

GAIN	Bandwidth of IA(kHz)
1	680
2	250
3	135
4	100
6	65
8	50
12	34

Table 11. Input-Referred Noise (uVrms/uVpp) vs Data Rate and PGA Gain

Output data rate (SPS)	BW (Hz)	PGA G=1	PGA G=2	PGA G=3	PGA G=4	PGA G=6	PGA G=8	PGA G=12
4096	2048	15.2/91.55	6.34/30.52	3.51/20.35	3.13/15.26	2.64/15.26	2.05/11.44	1.69/10.17
2048	1024	7.24/45.78	3.35/19.07	2.4/15.25	1.8/11.44	1.49/8.9	1.3/8.58	1.15/9.63
1024	512	4.61/28.6	2.44/15.26	1.74/11.44	1.4/9.54	1.14/8.27	0.96/7.15	0.93/6.2
512	256	3.49/21.45	1.69/11.2	1.12/7.31	0.98/7.39	0.81/5.96	0.78/5.66	0.71/4.61
256	128	3.66/23.37	1.91/11.92	1.37/8.9	1.05/7.39	0.83/5.25	0.69/4.53	0.73/4.85
128	64	3.5/22.89	1.83/11.68	1.32/8.11	0.99/6.32	0.83/5.16	0.82/4.83	0.6/3.93
64	32	3.47/20.03	1.85/11.92	1.27/7.47	1.02/6.44	0.82/5.25	0.7/4.53	0.67/4.45

3.4. PPG Electrical Characteristics

Table 12. PPG Electrical Characteristics

MT2511 Datasheet

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
PPG Full-Signal Cl	nain		•	•	•	•
		$R_F=10K\Omega$		50		μΑ
		$R_F=25K\Omega$		20		μΑ
		$R_F=50K\Omega$		10		μΑ
IN_FS	Full-scale input current	R _F =100KΩ		5		μΑ
		R _F =250KΩ		2		μΑ
		R _F =500KΩ		1		μΑ
		R _F =1MΩ		0.5		μΑ
PRF	Pulse repetition frequency		64		4096	SPS
DC _{PRF}	PRF duty cycle				25%	
CMRR	Common-mode rejection ratio	f_{CM} =50Hz and 60Hz, R_{SERIES} =100KΩ, R_{F} =100KΩ		80		dB
PSRR	Power-supply rejection ratio	f _{CM} =50Hz,60Hz at PRF=125Hz	80			dB
	Total integrated noise	R_F =100K Ω with stage2 gain=1.5, PRF=1300Hz, duty cycle=5%		52		pA _{RMS}
, '	(receiver with transmitter loop back, 0.1Hz to 20Hz	R _F =500KΩ with ambient cancellation enabled and stage2 gain=6, PRF=1300Hz, duty cycle=25%		7.2		pA _{RMS}
PPG RECEIVER FU	INCTIONAL BLOCK LEVEL SPECIFICATI	ION	1			
	Total integrated noise current, input referred	R _F =500KΩ, ambient cancellation enabled, stage2 gain=6, PRF=1300Hz, LED duty cycle=25%		1.25		pA _{RMS}
	(receiver alone) over 0.1Hz to 5Hz bandwidth	R _F =500KΩ, ambient cancellation enabled, stage2 gain=6, PRF=1300Hz, LED duty cycle=5%		3.85		pA _{RMS}

Table 13. PPG Electrical Characteristics

PARAMETER		TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
PPG I-V TRANSIN	IPEDANCE AMPLIFIER		•	•	•	•
G	Gain	R _F =10KΩ to 1MΩ				
	Foodbook vocistores	D	10k, 25k	, 50k, 10	00k, 250k,	Ω
	Feedback resistance	R _F	500k, and	d 1M		(1)
	Feedback capacitance	C _F	5, 10, 25,	50, 100,	and 250	pF
	Common-mode voltage on input pins	Set internally		1.25		V
		Include equivalent				
	External differential input	capacitance of			1000	pF
	capacitance	photodiode, cables, EMI			1000	pi
		filter, and so forth				
PPG AMBIENT CA	ANCELLATION STAGE		1			
G	Gain		1, 1.5, 2,	3, 4, 6		V/V
	Current range		1		6	μΑ
	Current DAC step size			1		μΑ
PPG LOW-PASS F	ILTER					
	Low-pass corner frequency	3-dB attenuation	0.5, 1, 2,	and 4		kHz
PPG ANALOG-TO	-DIGITAL CONVERTER					
	Resolution		16			Bits
	Sample rate			4xPRF		SPS
	ADC full-scale voltage			±1.6		V
	ADC conversion time		60			μs
	ADC reset time		0.95			μs
PPG TRANSMITT	ER		•	•	•	•
	Output surrent res ==		9.5, 22.9	, 36.3, 4	9.7, 63.1,	A
	Output current range		76.5, 89.	9, and 10	3.3	mA
	Output current accuracy			±10%		
	Output current resolution			8		Bits
	Minimum sample time of			F0		
	LED1 and LED2 pulses			50		μs

3.5. System Electrical Characteristics

Table 14. System Electrical Characteristics

PARAMETER	MIN	TYP	MAX	UNIT
7.00.000				•

© 2015 - 2017 MediaTek Inc.

Page 20 of 32

PARAMETER		MIN	TYP	MAX	UNIT
AVDD28	noise requirement, BW :	=		90	μV_{RMS}
AVDD28	10 Hz to 100 kHz			90	μVRMS
Clock					
	External clock DC range	0		2.8	V
	External clock voltage	400			mVpp
	External clock frequency		32k		Hz
	Frequency shift		±100		ppm
	Phase noise		-100		dBc/Hz
VIH	Input logic low voltage	0.65*VDD		VDD+0.3	V
VIL	Input logic high voltage	-0.3		0.35*VDD	V
VOH(DC)	DC Output logic low	0.75*VDD			V
VOH(DC)	voltage	0.75 \ \			ľ
VOL(DC)	DC Output logic high		0.25*VDD		V
VOLIDO	voltage			0.23 VDD	v

4. Low Power Performance

4.1. Operating Scenarios and Current Consumption

Table 15 below summarizes the operating scenarios and gives the current consumption. Note the current measurement condition is under the typical condition of process, voltage, and temperature. The MCU interface used in measurement is 200 KHz I2C.

Table 15. Operating Scenarios and Current Consumption

	AVDD28	DVDD18	DVDDIO	AVDD45
Mode	2.8	1.8	2.8	4
IDLE	3.5	< 1	< 1	1.5
EKG	367	200	7.5	1.5
PPG *(1)	225	200	4	5
PPG1+BI	225	240	5	5
PPG1+PPG2	225	225	6	5
EKG+PPG1 *(2)	545	230	6	5
	uA	uA	uA	uA

^{*(1)} When MCU read PPG 125Hz sampling rate data.

^{*(2)} When MCU read PPG 512Hz and EKG 512Hz sampling rate data.

DVDDIO consumption depends on different I2C/SPI speed and data sample rates.

5. Functional Overview

5.1. SPI/I2C Specification

5.1.1. SPI/I2C Supply Voltage

Table 16. SPI/I2C Specification

I2C interface	I2C interface				
Pin name	Туре	Description	Power domain		
126 651	DIO	(1)SPI mode -> please keep I2C_SEL Low	DVDDIO		
I2C_SEL	DIO	(2)I2C mode -> please keep I2C_SEL High	DVDDIO		
CDL CLK	DIO	(1)SPI mode: SPI clock pin (SPI_CLK)	DVDDIG		
SPI_CLK	DIO	(2)I2C mode: I2C clock pin (I2C_SCL)	DVDDIO		
CDL CCNL	DIO	(1)SPI mode: SPI data pin (SPI_CSN)	DVDDIO		
SPI_CSN	DIO	(2)I2C mode: I2C data pin (I2C_SDA)	DVDDIO		
SPI_MISO	DIO	SPI serial out master in.	DVDDIO		
		(1)SPI mode: SPI serial in master out.			
SPI_MOSI	DIO	(2)I2C mode: I2C slave address	DVDDIO		
	DIO (a)H=7-bit slave address (hex))=37 & 27	(a)H=7-bit slave address (hex))=37 & 27	DVDDIO		
		(b)L=7-bit slave address (hex))=33 & 23			

Digital Input/ Output						
PARAMETER	DESCRIPTION	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIH	Input logic low voltage		0.65*VDD		VDD+0.3	V
VIL	Input logic high voltage		-0.3		0.35*VDD	V
VOH(DC)	DC Output logic low		0.75*VDD			٧
	voltage		0.75 VDD			
VOL(DC)	DC Output logic high				0.25*VDD	V
	voltage				0.23 VDD	v

5.2. Access Speed of SPI/I2C

The maximum SPI Clock is designed to operate at a frequency of 2MHz.

The maximum I2C Clock depends on board-level parameters such as trace latency. Typically, the maximum speed is 400K Hz.

Actual operating clock frequency may depending on board level condition, like trace length and total loading,

Either MT2511 I2C or MT2511 SPI does not support burst access.

5.3. Power Sequence

Figure 5. MT2511 Power-on, Idle and Power-off Sequence.

(1) Depend on external boost settling time

5.4. Timing Module Operation

5.4.1. General Operation

- The data of LED and ambient (AMB) are stored at the low pass filter (LPF) separately and then digitized by 24-bit incremental ADC
- Flexible timing module: PRF: 64~4096 SPS, duty: 1~25%

Figure 6. Timing Module General Operation

5.4.2. Dynamic Power Down Mode

• The flexible timing control enables the users to control the device timing for different applications and to power down the device for power saving.

• IRX+TX=480 μ A \rightarrow 100 μ A at PRF=125 and duty=1.5%

Figure 7. Dynamic Power Down Mode

5.4.3. Timing Module Operation

The rising and falling edge position of below 14 signals can be set separately. The graphic below provides some timing examples.

Figure 8. Timing Module Operation Example

6. Package Information

6.1. Package Mechanical Data

Ball	Location X(mm)	Location Y(mm)	Ball	Location X(mm)	Location Y(mm)	Ball	Location X(mm)	Location Y(mm)
A1	-1.200	1.400	H2	-0.800	-1.400	A6	0.800	1.400
B1	-1.200	1.000	A3	-0.400	1.400	B6	0.800	1.000
C1	-1.200	0.600	В3	-0.400	1.000	C6	0.800	0.600
D1	-1.200	0.200	C3	-0.400	0.600	D6	0.800	0.200
E1	-1.200	-0.200	G3	-0.400	-1.000	G6	0.800	-1.000
F1	-1.200	-0.600	H3	-0.400	-1.400	H6	0.800	-1.400
G1	-1.200	-1.000	A4	0.000	1.400	A7	1.200	1.400
H1	-1.200	-1.400	B4	0.000	1.000	B7	1.200	1.000
A2	-0.800	1.400	G4	0.000	-1.000	D7	1.200	0.200
B2	-0.800	1.000	H4	0.000	-1.400	E7	1.200	-0.200
C2	-0.800	0.600	A5	0.400	1.400	F7	1.200	-0.600
D2	-0.800	0.200	B5	0.400	1.000	G7	1.200	-1.000
E2	-0.800	-0.200	C5	0.400	0.600	H7	1.200	-1.400
G2	-0.800	-1.000	G5	0.400	-1.000			

ltem	Symbol	Common Dimensions				
TCGITI	Syrribor	MIN.	NOM.	MAX		
Package Type		WLCSP				
Body Size	×	D	3.048	3.103	3.128	
Body Size	Y	Е	3.431	3.486	3.511	
Ball Pitch	Х	eD	0.400			
Buil 1 feeti	Υ	еE	0.400			
Total Thickness	А	0.49	0.53	0.57		
Back Side Coating	A2					
Wafer Thickness	S	0.305	0.330	0.355		
Ball Diameter		0.250				
Stand Off	A1	0.17	0.20	0.23		
Ball Width	Ь	0.24	0.27	0.30		
Package Edge Tolerance	aaa	+0.025 -0.055				
Coplanarity	ccc	0.030				
Ball Offset (Package)	ddd	0.050				
Ball Offset (Ball)	eee	0.015				
Ball Count	n	41				
Edge Ball Center to Center	D1 E1	2.400 2.800				
Edge Ball Center to Package Edge	X Y	gD gE	0.344 0.335			

Figure 9. Outlines and Dimension of MT2511 WLCSP 3.1 mm * 3.4 mm, 41-ball, 0.4 mm Pitch Package

7. Ordering Information

7.1. MT2511 Top Marking Definition

MT 2 5 1 1 P
D D D D - A N & H
A # # # #

Logo format: Refer 11.

PART NO.

&: Subcontractor code

DDDD: DATE CODE ####: U1 LOT NO.

Figure 10.MT2511 Mass Production Top Marking

Table 17. Ordering information

Product number	Package	Description
MT2511	WLCSP	3.1mm*3.4mm, 41-ball, 0.4mm pitch WLCSP Package