PicoRV32 DEMO应用指南

(版本号: V1.0)

深圳市紫光同创电子有限公司 版权所有 侵权必究

文档版本修订记录

版本号	发布日期	修订记录
V1.0	2019-05-29	初始版本

名词术语解释

Abbreviations 缩略语	Full Spelling 英文全拼	Chinese Explanation 中文解释
RISCV	Reduced Instruction Set Computing V	精简指令集五代
NMI	Native Memory Interface	本地存储接口

目录

1.	概述		1
	1.1.	介绍	
	1.2.	主要功能	1
	1.3.	设计信息	1
	1.4.	PicoSoC资源使用情况	2
2.	功能描	5述	7
	2.1.	PicoSoC设计架构	7
	2.2.	接口列表	8
	2.3.	参数定义	8
	2.4.	接口时序	7
3.	参考设	b计	7
	3.1.	参考功能设计	7
	3.2.	PicoSoC系统与配置	7
	3.3.	参考设计文件目录	8
	3.4.	参考设计仿真	8
	3.5.	参考设计上板验证	8

图目录

图	1 PicoSoC功能框图	.7
图	2 NMI外部读入指令典型时序	.7
图	3 NMI内部写出数据典型时序	.7
图	4 PicoSoC配置情况图	.7
图	5 文件目录	.8
图	6 GPIO-OUT-LED仿真	.8
图	7 GPIO-IN-DATA仿真	.8
图	8 UART分频仿真	.8
图	9 UART打印仿真	.8
图	10 串口打印结果	.8
	表目录	
表	1 PICORV32软核信息	. 1
表	2 资源使用率	.2
表	3 PicoSoC接口列表	.4
表	4 PicoRV32参数定义	.4
表	5 寻址空间总体划分表	.7

1. 概述

1.1. 介绍

本文档为深圳市紫光同创电子有限公司PicoRV32软核产品及应用文档。本文当主要介绍了PicoRV32软核的功能列表、设计架构、接口定义、接口时序、支持器件以及参考设计等。

PicoRV32软核是建立在精简指令集(Reduced Instruction Set Computing V, RISCV)基础上的可扩展处理器,支持整数指令集(Integer, I)、乘除法指令集(Multiplication and Division, M)以及压缩指令集(Compact, C),其主要应用场景为嵌入式工控领域。

1.2. 主要功能

PicoRV32所组成的单核片上系统(PicoSoC)支持的主要功能如下:

- ➤ PicoSoC主频12-150MHz
- ➤ 软核资源占用3.7K LUTs
- ▶ 支持RV32IMC指令集
- ▶ 单指令平均周期数为4
- > 冯诺依曼结构
- ➤ RAM指令初始化
- ▶ 支持UART与GPIO
- ▶ 支持本地存储接口(Native Memory Interface, NMI)

本参考设计是利用NMI总线对PicoRV32软核本身进行访问和操作,同时将UART与GPIO外设挂载在该总线上。根据C代码的功能设计,成功实现了UART数据打印、GPIO-OUT-LED闪烁,以及GPIO-IN数据输入三项功能,并验证了IMC指令集的兼容性。

1.3. 设计信息

表 1 PicoRV32软核信息

PicoRV32软核		
支持器件	PGT/PGL系列FPGA产品	
支持用户接口	本地存储接口(NMI)	
提供的设计文件		
PicoRV32设计文件	Verilog文件	
PicoRV32参考设计	Verilog文件	
PicoRV32仿真文件	Verilog文件	
PicoRV32约束文件	fdc文件	
开发工具支持		

RTL设计工具	PDS开发套件
	Pango Design Suite 2019.1-patch2版本
软件设计工具	Windows x64版本的Eclipse开发工具
	jdk-8u101-windows-x64
	python3x64
仿真工具	ModelSim10.2c

1.4. PicoSoC 资源使用情况

表 2 资源使用率

器件	Distributed RAM	DRM	FF	LUT	PLL
PGL22G	32	16	1326	4089	1

2. 功能描述

目前,PicoRV32软核的主要场景是FPGA芯片外设配置和复杂状态逻辑实现。通过PicoRV32软核和相关配置组成PicoSoC,并在PGL22关键特性板卡上实现UART打印和简易GPIO功能。

2.1. PicoSoC 设计架构

图 1 PicoSoC功能框图

PicoRV32软核模块:

该模块由PicoRV32软核,32个通用寄存器以及可选择的协处理器组成。

协处理器包括乘法器(MUL)、快速乘法器(Fast MUL)以及除法器(Divider),并通过Pico Co-Processor Interface (PCPI)总线与PicoRV32软核连接,其中乘法器和快速乘法器不能同时使用。

协处理器部分与自定义的PCPI总线和中断处理等高级应用有关,详细介绍请参见 README.md介绍,PicoSoC并未使用此项功能,因此不做介绍。

UART模块:

该模块由分频系数和数据收发控制组成,主要用于C代码调试中的字符打印和命令等外部数据的输入,其逻辑部分完全遵循UART协议,在此不对UART原理赘述。

该模块可配合C代码实现字符/字符串、十进制/十六进制/浮点数打印。

GPIO模块:

该模块是配合C代码,在固定地址处输出LED灯闪烁信息,同时将GPO输入数据写在另一固定地址处,软件端发出扫描申请,提出该地址处的数据。

其他模块:

PLL、RAM、软复位/按键复位、较为普通不做介绍。

2.2. 接口列表

表 3 PicoSoC接口列表

信号名	I/O	位宽	描述	
顶层信号				
clk_50m	I	1	晶振50MHz	
resetn	I	1	按键复位,低有效	
ser_rx	I	1	UART数据接收	
ser_tx	О	1	UART数据发送	
led	O	8	8bit用户led灯	
irq_5	I	1	保留	
irq_6	I	1	保留	
irq_7	I	1	保留	
Native Memory Int	erface	(NMI-本	地存储接口)	
mem_valid	О	1	存储有效信号,高有效	
mem_instr	О	1	指令指示信号	
			1: 指令	
			0: 数据	
mem_ready	I	1	指令输入准备信号,高有效	
mem_addr	О	32	PocoRV32软核地址输出	
mem_wdata	О	32	PocoRV32软核数据输出	
mem_wstrb	О	4	0000: 32位数据无效	
			1111: 32位数据无效	
			1100: 高16位数据有效	
			0011: 低16位数据有效	
			1000, 0100, 0010, 0001: 8位数据有效	
mem_rdata	I	32	PocoRV32软核指令输入	

2.3. 参数定义

表 4 PicoRV32参数定义

PARAMETER	描述	默认值
STACKADDR	堆栈大小,即栈底位置	32'h FFFF_FFFF
PROGADDR_RESET	首次地址首次输出值	32'h 0000_0000
PROGADDR_IRQ	中断编译地址	32'h 0000_0010
BARREL_SHIFTER	筒形移位寄存器	1'b0
COMPRESSED_ISA	压缩指令集使能	1'b0
ENABLE_MUL	乘法器使能	1'b0
ENABLE_DIV	触发器使能	1'b0
ENABLE_IRQ	中断使能	1'b0
ENABLE_IRQ_QREGS	中断 q0-q3 使能	1'b1
其余参数为默认值	详细请见 README.md	略

2.4. 接口时序

此处只介绍 NMI 接口时序,UART 等接口时序较为普通,不做赘述。

NMI 接口只有 mem_ready 与 mem_rdata 为输入,即可受 RTL 逻辑控制,其余接口均为 PicoRV32 软核内部输出,作为外部逻辑的控制信号或数据来源,因此输入信号是整个时序的 关键。

其中,用户最为关心的是机器码指令读入时序(外部-"读出"、软核-"写入")和软核内部数据写出时序(软核-"读出"、外部-"写入"),其典型时序如图2和图3所示。

值得注意的是,PicoRV32软核的单指令平均周期数为4,因此执行单个指令需要大约四个系统时钟(不是每个指令都需要四个时钟)。

不论读入还是写出时序,都要在mem_valid拉高后,且mem_ready高有效时才能进行操作。mem_instr为高时,代表此时输入软核的数据为可执行的机器码指令;为低时,代表此时可输出指令执行后的结果,与mem_wdata有关。

图 2 NMI外部读入指令典型时序

图 3 NMI 内部写出数据典型时序

3. 参考设计

3.1. 参考功能设计

PicoSoC功能设计如图1所示,系统时钟为125Mhz,内部设置软复位功能,其功能模块介绍请参见第二章-PicoSoC设计架构所述。此外,为符合本参考设计所要求的软件代码量和功能需求,设置堆栈大小为32bit*1024,系统起始地址为32'h1000,详细配置如3.2节所示。

本章将介绍与软件端匹配的PicoSoC系统搭建与配置情况,而Eclipse软件开发工具使用方法和可执行的机器码指令(ram.hex)生成方法,详细请参见《PicoRV32 IDE Quick Start应用指南》。

3.2. PicoSoC 系统与配置

PicoSoC系统包括PicoRV32软核、UART、GPIO、RAM、PLL以及复位信号、LED灯等必要的信号,将外设直接挂载在NMI总线上,其读写时序请参见图2和图3所示。

将系统实例化调用,其配置如图4所示:

```
picorv32 #(
    .STACKADDR (4096),
    .PROGADDR RESET (32'h0000 1000),
    .PROGADDR IRQ(32'h0000 0000),
    .BARREL SHIFTER (1),
    .COMPRESSED ISA(1),
    .ENABLE MUL(1),
    .ENABLE_DIV(1),
    .ENABLE_IRQ(1),
    .ENABLE_IRQ_QREGS(0)
) cpu (
    .clk
                 (sys clk
    .resetn
                (reset n
    .mem_valid (mem_valid ),
    .mem instr
                (mem instr
    .mem_ready
                (mem_ready
    .mem_addr
                (mem addr
    .mem_wdata
                (mem wdata
    .mem wstrb
                (mem wstrb
    .mem rdata
                (mem rdata ),
                 (ira
    .ira
```

图 4 PicoSoC配置情况图

由图4可知,整个系统的堆栈栈顶地址为4096,软核起始地位为32'h1000,支持筒形移位、乘除法器、中断以及IMC指令集。

为配合软件端实现软核及外设的正常运行,就需要将32位的寻址空间进行划分,本参考设计是在FPGA中开辟一块大小为256Kb(32bit*8192),且可读写的RAM空间。将堆栈划归在RAM的0到1023处,即32'h0-32'hFFc;机器码指令存储在1024到8191处,即32'h1000-32'h7FFC;UART分频配置地址为32'h8000,UART数据打印地址32'h8010;GPIO输出地址为32'h8020,GPIO输入地址为32'h8030,寻址空间总体划分如表5所示:

表 5 寻址空间总体划分表

地址范围	描述
32'h0000-32'h0FFC	堆栈

32'h1000-32'h7FFC	指令空间
32'h8000-32'h800C	UART分频
32'h8010-32'h801C	UART打印
32'h8020-32'h802C	GPIO输出
32'h8030-32'h803C	GPUO输入

此外,生成可被执行的ram.hex文件需要依赖初始化汇编代码-start.s、链接文件-section.lds、主程序及相关C代码和头文件-main.c,同时通过Makefile调用Eclipse开发工具中的GCC等工具将该操作完成,详情请参见《PicoRV32 IDE Quick Start应用指南》。

3.3. 参考设计文件目录

pgr PICORV32设计实例目录结构图:

```
-bench
                             //仿真test bench
                             //设计文档、PicoRV32 README
-docs
                             //设计调用相关IP
-ip
                             //工程目录
                             //.sbit
  -generate_bitstream
                             //IP中用到的IP
  -ipcore
                             //fdc文件
  -source
  -picorv32.pds
                             //工程文件
                             //机器码hex文件
  -ram.hex
                             //仿真工程目录
-simulation
                             //设计实例包含的RTL文件
  -picosoc
                             //soc代码
                             //软核本身
  -picorv32.v
                            //Eclipse, JAVA, Python软件压缩包
software
```

图 5 文件目录

3.4. 参考设计仿真

由于关键的机器码和软核代码已经加载至RTL工程中,因此只需要提供时钟激励就可以开始仿真,以下依次是GPIO-OUT-LED仿真、GPIO-IN-DATA仿真(32'haa55)、UART分频仿真、UART打印仿真,各自时序都符合预计设计且完全正确。

图 6 GPIO-OUT-LED 仿真

图 7 GPIO-IN-DATA 仿真

图 8 UART 分频仿真

图 9 UART打印仿真

3.5. 参考设计上板验证

- 1)上板前确保工程代码正确,连接UART和约束管脚
- 2) 上电后,观察流水灯和串口输出结果,以及实际波形

LED闪烁点亮,串口成功打印"Hello Risc-V Pango 2019"字符串等信息,具体情况如图9 所示:

图 10 串口打印结果