Assignment # 5

Thermodynamics-III

Chapter. 19: The First Law of Thermodynamics

Important Concepts and Formulas:

$$W = \int_{V1}^{V2} P. \, dV$$

dU = dQ - dW (First law of thermodynamics)

$$C_p = C_v + R$$

$$\gamma = \frac{C_P}{C_V}$$

$$W = \frac{c_V}{R}$$
. $(P_1 V_1 - P_2 V_2) = \frac{1}{\gamma - 1} (P_1 V_1 - P_2 V_2)$

Question 1:

Two moles of an ideal gas are heated at constant pressure from $T = 27^{\circ}C$ to $T = 107^{\circ}C$

- (a) Draw a PV-diagram for this process.
- (b) Calculate the work done by the gas.

Question 2:

A gas undergoes two processes. In the first, the volume remains constant at 0.200 m^3 and the pressure increases from $2 \times 10^5 \text{ Pa}$ to $5 \times 10^5 \text{ Pa}$. The second process is a compression to a volume of 0.120 m^3 at a constant pressure of $5 \times 10^5 \text{ Pa}$.

- (a) In a PV-diagram, show both processes.
- (b) Find the total work done by the gas during both processes.

Question 3:

A gas in a cylinder expands from a volume of 0.110 m³ to 0.320 m³ . Heat flows into the gas just rapidly enough to keep the pressure constant at 1.65×10^5 Pa during the expansion. The total heat added is 1.15 \times 10⁵ J.

- (a) Find the work done by the gas.
- (b) Find the change in internal energy of the gas.
- (c) Does it matter whether the gas is ideal? Why or why not?

Question 4:

Propane gas (C_3H_8) behaves like an ideal gas with $\gamma = 1.127$ Determine the molar heat capacity at constant volume and the molar heat capacity at constant pressure.

Question 5:

The compression ratio of a diesel engine is 15.0 to 1; that is, air in a cylinder iis compressed to $\frac{1}{15.0}$ of its initial volume.

- (a) If the initial pressure is 1.01×10^5 Pa and the initial temperature is 27° C, find the final pressure and the temperature after adiabatic compression.
- (b) How much work does the gas do during the compression if the initial volume of the cylinder is $1.00 \text{ L} = 1.00 \times 10^{-3} \, \text{m}^3$? (let $C_V = 20.8 \, \text{J/mol.K}$ and γ 1.400 for air)