Theorem (3.1.5). Let $X = (x_n)$ be a sequence of real numbers, and let $x \in \mathbb{R}$. The following statements are equivalent.

- (a) X converges to x.
- (b) For every $\epsilon > 0$, there exists a natural number K such that for all n > K, the terms x_n satisfy $|x_n x| < \epsilon$.
- (c) For every $\epsilon > 0$, there exists a natural number K such that for all n > K, the terms $x \epsilon < x_n < x + \epsilon$.
- (d) For every ϵ -neighborhood $V_{\epsilon}(x)$ or x, there exists a natural number K such that for all $n \geq K$, the terms x_n belong to $V_{\epsilon}(x)$.

Theorem (3.1.9). Let $X = (x_n : n \in \mathbb{N})$ be a sequence of real numbers and let $m \in \mathbb{N}$. Then the m-tail $X_m = \{x_{m+n} : n \in \mathbb{N}\}$ of X converges if and only if X converges. In this case, $\lim X_m = \lim X$.

Theorem (3.1.10). Let (x_n) be a sequence of real numbers and let $x \in \mathbb{R}$. If (a_n) is a sequence of positive real numbers with $\lim (a_n) = 0$ and if for some C > 0 and some $m \in \mathbb{N}$ we have $|x_n - x| \leq Ca_n$ for all $n \geq m$, then it follows that $\lim (x_n) = x$.

Theorem (3.2.2). A convergent sequence of real numbers is bounded.

- **Theorem** (3.2.3). (a) Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers that converge to x and y, respectively, and let $c \in \mathbb{R}$. Then the sequences $X + Y, X Y, X\dot{Y}$, and cX converge to x + y, x y, xy and cx, respectively.
 - (b) If $X = (x_n)$ converges to x and $Z = (z_n)$ is a sequence of nonzero real numbers that converges to $z \neq 0$, then the quotient sequence X/Z converges to x/z.

Theorem (3.2.4). If $X = (x_n)$ is a convergent sequence of real numbers and if $x_n \ge 0$ for all $n \in \mathbb{N}$, then $x = \lim_{n \to \infty} (x_n) \ge 0$.

Theorem (3.2.5). If $X = (x_n)$ and $Y = (y_n)$ are convergent sequences of real numbers and if $x_n \leq y_n$ for all $n \in \mathbb{N}$, then $\lim(x_n) \leq \lim(y_n)$.

Theorem (3.2.6). If $X = (x_n)$ is a convergent sequence and if $a \le x_n \le b$ for all $n \in \mathbb{N}$, then $a \le \lim_{n \to \infty} (x_n) \le b$.

Theorem (3.2.7). **Squeeze Theorem** Suppose that $X = (x_n), Y = (y_n)$ and $Z = (z_n)$ and sequences of real numbers such that $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$, and that $\lim(x_n) = \lim(z_n)$. Then $Y = (y_n)$ is convergent and

$$\lim(x_n) = \lim(y_n) = \lim(z_n)$$

Theorem (3.2.9). If $x = \lim(x_n)$, then $|x| = \lim(|x_n|)$.

Theorem (3.2.10). If $\lim(x_n) = x \ge 0$, then $\lim(\sqrt{x_n}) = \sqrt{x}$.

Theorem (3.2.11). Let $X = (x_n)$ be a sequence of positive real numbers such that $L := \lim_{n \to \infty} (x_{n+1}/x_n)$ exists. If L < 1, then (x_n) converges and $\lim_{n \to \infty} (x_n) = 0$.

Theorem (3.3.2). *Monotone Convergence Theorem* A monotone sequence of real numbers is convergent if and only if it is bounded. Further

(a) If $X = (x_n)$ is a bounded increasing sequence, then

$$\lim(x_n) = \sup\{x_n : n \in \mathbb{N}\}\$$

(b) If $Y = (y_n)$ is a bounded decreasing sequence, then

$$\lim(y_n) = \inf\{y_n : n \in \mathbb{N}\}\$$

Theorem (3.4.2). If a sequence $X = (x_n)$ of real numbers converges to a real number x, then any subsequence $X' = (x_{n_k})$ of X also converges to x.

Theorem (3.4.4). Let $X = (x_n)$ be a sequence of real numbers. Then following are equivalent

- (i) The sequence $X = (x_n)$ does not converge to $x \in \mathbb{R}$
- (ii) There exists an $\epsilon_0 > 0$ such that for any $k \in \mathbb{N}$, there exists $n_k \in \mathbb{N}$ such that $n_k \geq k$ and $|x_{n_k} x| \geq \epsilon_0$
- (iii) There exists an $\epsilon_0 > 0$ and a subsequence $X' = (x_{n_k})$ of X such that $|x_{n_k} x| \ge \epsilon_0$ for all $k \in \mathbb{N}$

Theorem (3.4.5). *Divergence Criteria* If a sequence $X = (x_n)$ of real numbers has either of the following properties, then X is divergent

- (i) X has two convergent subsequences $X' = (x_{n_k})$ and $X'' = (x_{r_k})$ whose limits are not equal.
- (ii) X is unbounded.

Theorem (3.4.7). *Monotone Subsequence Theorem* If $X = (x_n)$ is a sequence of real numbers, then there's a subsequence of X that is monotone.

Theorem (3.4.8). **Bolzano-Weierstraß Theorem** A bounded sequence of real numbers has a convergent subsequence.

Theorem (3.4.9). Let $X = (x_n)$ be a bounded sequence of real numbers and let $x \in \mathbb{R}$ have the property that every convergent subsequence of X converges to x. Then the sequence X converges to X.

Theorem (3.4.11). Limit Superior and Limit Inferior

If $X = (x_n)$ is a bounded sequence of real numbers, then the following statements for a real number x^* are equivalent

- (a) $x^* = \lim \sup(x_n)$.
- (b) If $\epsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ such that $x^* + \epsilon < x_n$, but an infinite number of $n \in \mathbb{N}$ such that $x^* \epsilon < x_n$.
- (c) If $u_m = \sup\{x_n : n \ge m\}$, then $x^* = \inf\{u_m : m \in \mathbb{N}\} = \lim(u_m)$.
- (d) If S is the set of subsequential limits of (x_n) , then $x^* = \sup S$.

Similarly, The following statements are equivalent

- (a) $x^* = \lim \inf(x_n)$.
- (b) If $\epsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ such that $x^* + \epsilon > x_n$, but an infinite number of $n \in \mathbb{N}$ such that $x^* \epsilon > x_n$.
- (c) If $u_m = \inf\{x_n : n \le m\}$, then $x^* = \sup\{u_m : m \in \mathbb{N}\} = \lim(u_m)$.
- (d) If S is the set of subsequential limits of (x_n) , then $x^* = \inf S$.

Theorem (3.4.12). A bounded sequence (x_n) is convergent if and only if $\limsup (x_n) = \liminf (x_n)$.

Definition (3.5.1). A sequence of real numbers, $X = (x_n)$ is said to be a Cauchy sequence if for every $\epsilon > 0$ there exists as natural number $H(\epsilon)$ such that for all natural numbers $n, m \ge H(\epsilon)$, the terms x_n, x_m satisfy $|x_n - x_m| < \epsilon$.

Lemma (3.5.3). If $X = (x_n)$ is a convergent sequence of real numbers, then X is a Cauchy sequence.

Lemma (3.5.4). A Cauchy sequence of real numbers is bounded.

Theorem (3.5.5). A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Definition (3.5.7). We say that a sequence of real numbers $X = (x_n)$ is **contractive** if there exists a constant C, 0 < C < 1, such that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$$

Theorem (3.5.8). Every contractive sequence is a Cauchy sequence, and hence is convergent.

Corollary (3.5.10). If $X = (x_n)$ is a contractive sequence with constant C, 0 < C < 1, and if $x^* := \lim X$ then

(i)
$$|x^* - x_n| \le \frac{C^{n-1}}{1-C} |x_2 - x_1|,$$

(ii)
$$|x^* - x_n| \le \frac{C}{1-C} |x_n - x_{n-1}|$$
.

Definition (3.6.1). Let $X = (x_n)$ be a sequence of real numbers.

- (i) We say that (x_n) tends to $+\infty$, and write $\lim(x_n) = +\infty$, if for every $\alpha \in \mathbb{R}$ there exists a natural number $K(\alpha)$ such that if $n > K(\alpha)$, then $x_n > \alpha$.
- (ii) We say that (x_n) tends to $-\infty$, and write $\lim(x_n) = -\infty$, if for every $\beta \in \mathbb{R}$ there exists a natural number $K(\beta)$ such that if $n > K(\beta)$, then $x_n < \beta$.

We say that (x_n) is **properly divergent** if either $\lim(x_n) = +\infty$ or $\lim(x_n) = -\infty$.

Theorem (3.6.3). A monotone sequence of real numbers is properly divergent if and only if it is unbounded

- (a) If (x_n) is an unbounded increasing sequence, then $\lim(x_n) = +\infty$.
- (b) If (x_n) is an unbounded decreasing sequence, then $\lim(x_n) = -\infty$.

Theorem (3.6.4). Let (x_n) and (y_n) be two sequence of real numbers and suppose for all $n \in \mathbb{N}$

$$x_n \le y_n$$

- (a) If $\lim(x_n) = +\infty$, then $\lim(y_n) = +\infty$.
- (b) If $\lim(y_n) = -\infty$, then $\lim(x_n) = -\infty$.

Theorem (3.6.5). Let (x_n) and (y_n) be two sequences of positive real numbers and suppose that for some $L \in \mathbb{R}, L > 0$ we have

$$\lim(x_n/y_n) = L$$

Then $\lim(x_n) = +\infty$ if and only if $\lim(y_n) = +\infty$.

Theorem (3.7.3). The nth Term Test If the series $\sum x_n$ converges, then $\lim(x_n) = 0$.

Theorem (3.7.4). Cauchy Criterion for Series The series $\sum x_n$ converges if and only if for every $\epsilon > 0$ there exists $M(\epsilon) \in \mathbb{N}$ such that if $m \geq n \geq M(\epsilon)$, then

$$|s_m - s_n| = |x_{n+1} + x_{n+2} + \dots + x_n| < \epsilon$$

Theorem (3.7.7). Comparison Test Let $X = (x_n)$ and $Y = (y_n)$ be sequences of real numbers and suppose that for some $K \in \mathbb{N}$ we have $0 \le x_n \le y_n$ for $n \ge K$.

- (a) Then the convergence of $\sum y_n$ implies the convergence of $\sum x_n$.
- (b) The divergence of $\sum x_n$ implies the divergence of $\sum y_n$.

Theorem (3.7.8). Limit Comparison Test Suppose that $X = (x_n)$ and $Y = (y_n)$ are strictly positive sequences and suppose that the following limit exists in \mathbb{R}

$$r := \lim(\frac{x_n}{y_n})$$

- (a) If $r \neq 0$ then $\sum x_n$ is convergent if and only if $\sum y_n$ is convergent.
- (b) If r = 0 then $\sum y_n$ is convergent if and only if $\sum x_n$ is convergent.