EDHEC 2005

Exercice 1

On note $J_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $J_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $J_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, et $J_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, et on rappelle que la famille (J_1, J_2, J_3, J_4) est une base de $\mathfrak{M}_2(\mathbb{R})$.

Soit f l'application qui, à toute matrice $M=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ de $\mathfrak{M}_2\left(\mathbb{R}\right)$, associe $f\left(M\right)=M+\left(a+b\right)I$ où I désigne la matrice (

- $\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}$
- 1. Montrer que f est un endomorphisme de $\mathfrak{M}_2(\mathbb{R})$.
- 2. a) Exprimer $f(J_1)$, $f(J_2)$, $f(J_3)$, et $f(J_4)$ comme combinaisons linéaires de J_1 , J_2 , J_3 et J_4 .
 - b) Vérifier que la matrice A de f dans la base (J_1, J_2, J_3, J_4) est $A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$.
 - c) Justifier que f est diagonalisable.
- 3. a) Montrer que $(J_1 J_4, J_2, J_3, I)$ est une base de $\mathfrak{M}_2(\mathbb{R})$.
 - b) Écrire la matrice D de f dans cette base.
 - c) En déduire l'existence d'une matrice P inversible telle que $A = PDP^{-1}$.
- 4. a) Déterminer la matrice P^{-1} .
 - **b)** Montrer que, pour tout n de \mathbb{N} , $A^n = PD^nP^{-1}$.
 - c) En déduire explicitement la matrice A^n .

Exercice 2

Soit f la fonction définie sur \mathbb{R}^2 par : $\forall (x,y) \in \mathbb{R}^2$, $f(x,y) = x e^{x(y^2+1)}$.

- 1. Justifier que f est de classe C^2 sur \mathbb{R}^2 .
- 2. a) Déterminer les dérivées partielles premières de f.
 - b) En déduire que le seul point en lequel f est susceptible de présenter un extremum local est A = (-1,0).
- 3. a) Déterminer les dérivées partielles secondes de f.
 - b) Montrer qu'effectivement, f présente un extremum local en A. En préciser la nature et la valeur.
- **4.** a) Montrer que : $\forall (x, y) \in \mathbb{R}^2$, $f(x, y) \geqslant x e^x$.
 - b) En étudiant la fonction g définie sur \mathbb{R} par $g(x) = x e^x$, conclure que l'extremum trouvé à la question 2b) est un extremum global de f sur \mathbb{R}^2 .

ECE2 Mathématiques

Exercice 3

Dans cet exercice, a désigne un réel strictement positif.

- 1. On considère la fonction f sur \mathbb{R} par : $f(t) = \begin{cases} a(1-t)^{a-1} & \text{si } t \in [0,1[\\ 0 & \text{si } t \notin [0,1[\end{cases}$
 - a) Pour tout x de [0,1[, calculer $\int_{0}^{x} f(t) dt$.
 - b) En déduire que $\int_{0}^{1} f(t) dt$ est une intégrale convergente et donner sa valeur.
 - c) Montrer que f peut être considérée comme une fonction densité de probabilité. On considère maintenant une variable aléatoire X admettant f comme densité et on note F sa fonction de répartition.
- 2. Expliciter F(x) pour tout réel x.

On se propose de déterminer l'espérance $\mathbb{E}(X)$ et la variance $\mathbb{V}(X)$ de la variable aléatoire X. Pour ce faire, on pose $Y = -\ln(1-X)$ et on admet que Y est une variable aléatoire à densité. On note alors G sa fonction de répartition.

- 3. a) Pour tout réel x positif, exprimer G(x) en fonction de x.
 - b) En déduire que Y suit la loi exponentielle de paramètre a.
- 4. a) Pour tout réel $\lambda > 0$, donner la valeur de $\int_0^{+\infty} \, e^{-\lambda x} dx$.
 - b) En déduire que la variable aléatoire e^{-Y} possède une espérance et donner sa valeur en fonction de a.
 - c) Exprimer X en fonction de Y, puis en déduire que X possède une espérance dont on donnera l'expression en fonction de a.
 - d) Montrer que la variable aléatoire e^{-2Y} possède une espérance et que $\mathbb{E}\left(e^{-2Y}\right) = \frac{a}{a+2}$. En déduire la variance de e^{-Y} puis la variance de X.

Problème

Un mobile se déplace sur les points à coordonnées entières d'un axe d'origine O.

Au départ, le mobile est à l'origine.

Le mobile se déplace selon la règle suivante : s'il est sur le point d'abscisse k à l'instant n, alors, à l'instant (n+1) il sera sur le point d'abscisse (k+1) avec la probabilité p (0 ou sur le point d'abscisse <math>0 avec la probabilité 1 - p.

Pour tout n de \mathbb{N} , on note X_n l'abscisse de ce point à l'instant n et l'on a donc $X_0 = 0$.

On admet que, pour tout n de \mathbb{N} X_n est définie sur un espace probabilisé (Ω, \mathcal{A}, P) .

Par ailleurs, on note T l'instant auquel le mobile se trouve pour la première fois à l'origine (sans compter son positionnement au départ).

Par exemple, si les abscisses successives du mobile après son départ sont 0, 0, 1, 2, 0, 0, 1, alors on a T = 1. Si les abscisses successives sont : 1, 2, 3, 0, 0, 1, alors on a T = 4.

On admet que T est une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

1. a) Pour tout k de \mathbb{N}^{\times} , exprimer l'évènement (T=k) en fonction d'évènements mettant en jeu certaines des variables X_i .

ECE2 Mathématiques

- **b)** Donner la loi de X_1 .
- c) En déduire P([T=k]) pour tout k de \mathbb{N}^{\times} , puis reconnaître la loi de T.
- 2. a) Montrer par récurrence que, pour tout entier naturel $n, X_n(\Omega) = [0, n]$.
 - b) Pour tout n de \mathbb{N}^{\times} , utiliser le système complet d'évènements $(X_{n-1} = k)_{0 \leq k \leq n-1}$ pour montrer que : $P([X_n = 0]) = 1 p$.
- 3. a) Établir que : $\forall n \in \mathbb{N}$, $\forall k \in \{1, 2, \dots n+1\}$, $P([X_{n+1} = k]) = pP([X_n = k-1])$.
 - **b**) En déduire que : $\forall n \in \mathbb{N}^{\times}$, $\forall k \in \{0, 1, 2, ..., n-1\}$, $P([X_n = k]) = p^k (1-p)$. En déduire également la valeur de $P([X_n = n])$. Donner une explication probabiliste de ce dernier résultat.
 - c) Vérifier que $\sum_{k=0}^{n} P([X_n = k]) = 1$.
- 4. Dans cette question et dans cette question seulement, on prend $p = \frac{1}{3}$.

On rappelle que random(3) renvoie au hasard un entier de $\{0,1,2\}$.

Compléter le programme suivant pour qu'il simule l'expérience aléatoire étudiée et affiche la valeur prise par X_n pour une valeur de n entrée par l'utilisateur.

Program edhec2005;

```
Var k, n, u, X : integer;
begin
    Readln(n);
    Randomize;
    X := 0;
    For k := 1 to n do
    begin
        u := random(3);
        if (u = 2) then X :=.....;
        else X :=.....;
        end;
    Writeln (X);
end.
```

- **5.** a) Montrer que : $\forall n \ge 2$, $\sum_{k=1}^{n-1} kp^{k-1} = \frac{(n-1)p^n np^{n-1} + 1}{(1-p)^2}$.
 - **b)** En déduire que $\mathbb{E}(X_n) = \frac{p(1-p^n)}{1-p}$.
- **6.** a) Montrer, en utilisant la question 3a), que : $\forall n \in \mathbb{N}$, $E(X_{n+1}2) = p(E(X_n2) + 2\mathbb{E}(X_n) + 1)$.
 - b) Pour tout entier naturel n, on pose $u_n = E(X_n 2) + (2n-1)\frac{p^{n+1}}{1-p}$. Montrer que $u_{n+1} = pu_n + \frac{p(1+p)}{1-p}$.
 - c) En déduire l'expression de u_n , puis celle de $\mathbb{E}(X_n 2)$ en fonction de p et n.
 - **d)** Montrer enfin que : $\mathbb{V}(X_n) = \frac{p}{(1-p)^2} (1-(2n+1)p^n(1-p)-p^{2n+1}).$