МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет)

Использование $YAG:Nd^{3+}$ -лазера для гравировки материалов

Лабораторная работа по курсу фотоника

Выполнили: студенты 654 и 653 групп.

Нехаев А.С.

Суманова Е.Д.

Тихонов С.С.

Хисматулина Е.А.

Карпова Т.К.

Содержание

1.	Цели и задачи исследования	2
2.	Схема установки	3
3.	Теоретичесое введение	3
4.	Результаты эксперимента	4
5.	Анализ полученных результатов	6
6.	Гравировка изображения	7
7.	Вывод	8
8.	Задачи	8

1. Цели и задачи исследования

- 1) Изучить физические основы работы лазера в непрерывном режиме и режиме модуляции добротности;
- 2) Исследовать зависимость мощности излучения от мощности накачки в режимах свободной генерации и модуляции добротности, т.е. найти КПД лазера в разных режимах работы;
- 3) Исследовать зависимость ширины импульса от мощности накачки;
- 4) Выгравировать изображение на пластиковой поверхности.

2. Схема установки

Рис. 1: Принципиальная схема установки

Рис. 2: Схема оптической части

3. Теоретичесое введение

В основе гравировки лазером лежит его тепловое воздействие на материал. При этом может происходить нагревание, плавление и испарение материала. Распределение тепла по материалу описывается уравнением теплопроводности, соответственно, к веществам с малым коэффициентом теплопроводности (например, металлам) необходимо применять короткоимпульсные лазеры, чтобы не взаимодействовать только с той областью материала, на которую попадает излучение. Отверстие наилучшей формы образуется в случае, если фокус лазера находится на поверхности материала. В этом случае определяющим процессом является испарение (рост отверстия вглубь), а ролью плавления (роста отверстия в ширину) можно пренебречь.

Описывать работу лазера принято скоростными уравнениями:

$$\frac{dN}{dt} = R_p - B\phi N - \frac{N}{\tau}, \quad \frac{d\phi}{dt} = \left[BV_a N - \frac{1}{\tau_c}\right]\phi. \tag{1}$$

Первое уравнение описывает изменение инверсии населённости, которое происходит из-за накачки, вынужденного и спонтанного излучений соответственно. Второе уравнение описывает изменение числа фотонов в резонаторе, обусловленное спонтанным излучением и временем жизни фотона в резонаторе.

В случае режима свободной генерации оба этих параметра принимают стационарные значения. При модуляции добротности в лазере используется акустооптический модулятор, препятствующий генерации излучения путём увеличения потерь. Закрытый модулятор позволяет увеличивать рост инверсии заселённостей, а после открытия модулятора происходит генерация и резкое увеличесние числа фотонов в резонаторе. Таким образом, лазер может генерировать излучение в виде импульсов с большой пиковой мощностью, а из-за малой длительности импульса можно получить большую плотность мощности, что используется в обработке тугоплавких материалов.

4. Результаты эксперимента

Таблица 1: Результаты измерений для режима свободной генерации.

Ток, А	Напряжение, В	Мощность накачки, мВт	Входная мощность, Вт
14.6	167.	2.	2438.2
14.7	167.	11.	2454.9
14.8	167.	23.	2471.6
14.9	168.	38.	2503.2
15.	168.	54.	2520.
15.1	168.	72.	2536.8
15.2	169.	95.	2568.8
15.3	169.	116.	2585.7
15.4	169.	131.	2602.6
15.5	170.	152.	2635.
15.6	170.	170.	2652.
15.7	170.	194.	2669.
15.8	171.	218.	2701.8
15.9	171.	254.	2718.9
16.	171.	284.	2736.
16.1	172.	320.	2769.2
16.2	172.	354.	2786.4
16.3	172.	386.	2803.6
16.4	173.	425.	2837.2
16.5	173.	464.	2854.5
16.6	173.	490.	2871.8
16.7	174.	538.	2905.8
16.8	174.	599.	2923.2
16.9	175.	642.	2957.5
17.	175.	690.	2975.
17.1	176.	736.	3009.6
17.2	176.	790.	3027.2
17.3	176.	835.	3044.8
17.4	177.	884.	3079.8

Таблица 2: Результаты измерений для режима модуляции добротности.

Ток, А	Напряжение, В	Мощность накачки, мВт	Входная мощность, Вт
14.4	167.	2.	2404.8
14.5	167.	14.	2421.5
14.6	168.	35.	2452.8
14.7	168.	51.	2469.6
14.8	168.	69.	2486.4
14.9	169.	85.	2518.1
15.	169.	102.	2535.
15.1	169.	121.	2551.9
15.2	170.	140.	2584.
15.3	170.	161.	2601.
15.4	170.	182.	2618.
15.5	171.	203.	2650.5
15.6	171.	232.	2667.6
15.7	171.	257.	2684.7
15.8	172.	284.	2717.6
15.9	172.	297.	2734.8
16.	172.	325.	2752.
16.1	172.	357.	2769.2
16.2	173.	397.	2802.6
16.3	173.	432.	2819.9
16.4	174.	470.	2853.6
16.5	174.	511.	2871.
16.6	174.	531.	2888.4
16.7	174.	562.	2905.8
16.8	175.	602.	2940.
16.9	175.	641.	2957.5
17.	175.	686.	2975.
17.1	176.	727.	3009.6
17.2	176.	772.	3027.2
17.3	176.	810.	3044.8
17.4	177.	854.	3079.8

Рис. 3: Зависимость мощности излучения от мощности накачки в режиме свободной генерации

Рис. 4: Зависимость мощности излучения от мощности накачки в режиме модуляции добротности

Таблица 3: Результаты измерения зависимости длительности импульса от мощности накачки лазера в режиме модуляции добротности.

I, A	U, B	t, MKC	W, B _T
17.4	177.	0.38	3079.8
17.2	176.	0.33	3027.2
17.	176.	0.34	2992.
16.8	175.	0.34	2940.
16.6	175.	0.38	2905.
16.4	174.	0.42	2853.6
16.2	173.	0.34	2802.6
16.	173.	0.37	2768.
15.8	172.	0.42	2717.6
15.6	171.	0.45	2667.6
15.4	170.	0.54	2618.
15.2	170.	0.52	2584.
15.	169.	0.56	2535.
14.8	169.	0.7	2501.2
14.6	168.	0.84	2452.8

Рис. 5: График зависимости длительности импульса от мощности накачки

5. Анализ полученных результатов

По графикам определим КПД лазера в разных режимах работы, как угловой коэффициент наклона аппроксимирующей прямой: $\eta_{CW} \approx (0, 14 \pm 0, 02)\%$ и $\eta_{QW} \approx (0, 13 \pm 0, 02)\%$. Это незначительное различие можно объяснить меньшим средним значением инверсии населённости уровней и, как следствие, меньшими потерями на спонтанное излучение.

Также определим пороговую мощность $W_{CW} \approx (2505 \pm 125)$ Вт и $W_{CW} \approx (2457 \pm 95)$ Вт соответственно. Близость этих значений объясняется равенством потерь в резонаторе в обоих случаях.

На рисунке 5 видна логарифмическая зависимость времени импульса от мощности накачки, которая видна и в формуле оценки длительности импульса:

$$\Delta \tau_p = \tau_c \frac{(N_i/N_p)\eta_E}{\left(\frac{N_i}{N_p}\right) - \ln\left(\frac{N_i}{N_p}\right) - 1} = \tau_c \frac{-\ln(1 - \eta_E)}{\left(\frac{N_i}{N_p}\right) - \ln\left(\frac{N_i}{N_p}\right) - 1}$$
(2)

На рисунке 6 представлено фото изображения импульса на экране осциллографа:

Рис. 6: Внешний вид импульса на экране осциллографа.

6. Гравировка изображения

Для демонстрации технических возможностей лазера была произведена гравировка изображения.

Рис. 7: Выгравированное изображение

7. Вывод

Были изучены физические основы работы различных режимов лазера и определены КПД и пороговая мощность:

Режим	Свободной генерации	Модуляции добротности
η , %	0,14	0,13
$P_{\text{nop}}, B_{\text{T}}$	2505	2457

В режиме модуляции добротности КПД лазера меньше, чем в непрерывном режиме. Это связано с тем, что в режиме модуляции добротности инверсная населённость в среднем больше (потому что в данном случае отсутствует вынужденное излучение при закрытом модуляторе), чем в непрерывном режиме, а значит, больше потери на спонтанное излучение.

При достижении пороговой мощности усиление в активной среде становится равным потерям в резонаторе, поэтому пороговая мощность не должна зависеть от режима работы. Это и было получено в работе, так как мощности оказались равны в пределах погрешности.

8. Задачи

Задача 1

Считаем для простоты $\eta = 100\%$, тогда

$$E = N \cdot \tau = mC_{\text{\tiny TB}}(T_1 - T_0) + mC_{\text{\tiny 3K}}(T_2 - T_1) + m\Lambda + mQ$$

где $m=\rho_{\rm ap}\cdot V=2.7\cdot 10^{-3}$ г, $C_{\rm tb}$ и $C_{\rm w}$ – удельные теплоемкости Al в твердом и жидком состояниях соотвественно, $\Lambda,\ Q$ – теплоты плавления и парообразования, T_0 – комнатная температура, $T_1,\ T_2$ – температуры плавления и кипения (при 1 атм). Таким образом $E\approx 37.34\ {\rm Дw}.$ Учтем коэффициент отражения $T=0.93\Rightarrow E\approx 34.73\ {\rm Дw}.$

Задача 2

Из теории диффракции Фраунгофера

$$\psi = \frac{1.22\lambda}{D} \approx 1.3 \cdot 10^{-4}$$
 рад.

Задача 3

1) Будем считать, что линза расположена в области перетжки пучка. Чтобы найти d пучка в области следующей перетяжки, обратимся к теории Гауссовых пучков и введем комплексный параметр q:

$$\frac{1}{q} = \frac{1}{R} - \frac{i\lambda}{\pi r^2},$$

где R(z) – радиус кривизны пучка, r(z) – поперечный радиус пучка.

2) Если оптическая система описываются матрицей $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, то периметр q_2 на выходе системы связан с параметром q, на входе как

$$q_2 = \frac{aq_1 + b}{cq_1 + d}$$

Для системы из собирающей линзы и свободного пространства имеем:

$$A(z) = \begin{pmatrix} 1 - \frac{z}{f} & z \\ -\frac{1}{f} & 1 \end{pmatrix}$$

Тогда формула для параметра принимает вид:

$$\frac{1}{q(z)} = \frac{1 - q(0)/f}{\left(1 - \frac{z}{f}\right)q(0) + z}$$

3) Обозначим координату следующей перетяжки как z_m . Так как в областях перетяжки $R=\infty$, то q(0) и $q(z_m)$ – чисто мнимые величины:

$$q(0) = i \cdot \frac{\pi d_0^2}{4\lambda} = i \cdot z_0,$$

поэтому величину z_m найдем из:

$$\operatorname{Re} \frac{1 - i\frac{z_0}{f}}{\left(1 - \frac{z_m}{f}\right)q(0) + z_m} = 0 \longrightarrow z_m = \frac{fz_0^2}{f^2 + z_0^2}$$

т.к. $z_0=295~{\rm cm}\gg f=20~{\rm cm}\Rightarrow$ считаем, что $z_m=f$, т.е. диаметр минимален в фокусе линзы. Тогда

$$\operatorname{Im} \frac{1}{q}(z_m) = -\frac{4\lambda}{\pi d^2} \Rightarrow d = \frac{4\lambda f}{\pi d_0} = 0.677 \text{ MM}$$

4) В свободном пространстве для функции r(z) (при r(0) – область перетяжки) имеем:

$$r(z) = r(0) \cdot \sqrt{1 + \left[\frac{\lambda z}{\pi r(0)^2}\right]^2}$$

тогда условие $r(z) < \sqrt{2} \cdot r(0)$ выполняется внутри области шириной $z_c = 2 \cdot \frac{\pi r(0)^2}{\lambda} = 2z_0 = 584$ м.

Задача 4

Глубина отверстия:

$$h = \sqrt[3]{\left(\frac{r_0}{\tan\varphi}\right)^3 + \frac{3E}{x\tan^2\varphi L_0}} - \frac{r_0}{\tan\varphi} = 0.005 \text{ м}.$$

Ширина:

$$d = 2\sqrt{r_0^3 + rac{3E anarphi}{\pi L_0}} = 22.8 \; \mathrm{cm}$$

Задача 5

Время жизни $au_c=\frac{2L'}{\gamma c}$, где $L'=(L-l)+n\cdot l$ – оптическая длина резонатора, $r=-\ln\left((1-T)^2R_1R_2\right)$ – потери за проход. $R_2=1-Q_2=80\%$ – коэффициент пропускания зеркала , T – относительные внтуренние потери. $T_1=\frac{(L-l)}{+}hl-\ln((1-T)^2\cdot R_1R_2)=687.6$ нс.

Задача 6

- 1) $P_{\text{изл}} = \frac{h\nu}{2\tau} q, q$ число фотонов в резонаторе.
- 2) q в стационарном состоянии находим из скоростных уравнений, приняв $\frac{dN}{dt} = 0$ и $\frac{dq}{dt} = 0$:

$$\begin{cases} R_p = BqN + \frac{N}{\tau} \\ BV_a N = \frac{1}{\tau_c} \end{cases},$$

где V_a – объем активного элемента, $B = \frac{\sigma c}{v}$ – константа Эйнштейна, $V = \frac{L'}{l}V_a$ – объем резонатора, τ – время жизни верхнего уровня.

$$q = V_a T_c R_p - \frac{1}{B\tau} = \frac{h}{B\tau} \left(\frac{P_{\text{нак}}}{P_{\text{порог}}} - 1 \right) \Rightarrow P_{\text{изл}} = \frac{h\nu}{2T_c} \frac{1}{B\tau} \left(\frac{P_{\text{нак}}}{P_{\text{порог}}} - 1 \right) = 21 \text{ Bt.}$$
 $P_{\text{порог}} = \frac{1}{\frac{B\tau\eta}{81b\nu}} = 2.5 \text{ кBt.}$

Задача 7

1) При закрытом модуляторе скоростное уравнение

$$\frac{dN}{dt} = R_p - \frac{N}{\tau}$$

пологая
$$N(0) = 0 \Rightarrow N(t) = R_p \tau (1 - e^{-\frac{t}{\tau}})$$

- 2) Сделаем грубую оценку: пусть длительность импульса модуляции равна половине периода $T=\frac{1}{\nu}$, в момент закрытия модулятора модулятора N=0, тогда $N_i=R_p\tau(1-e^{\frac{T}{2\tau}})=0.05R_p\tau$.
- 3) Для нахождения $R_p = \frac{\nu P_{\text{нак}}}{h \nu V_a} \Rightarrow N_i = 6.8 \cdot 10^{40}$

Задача 8

Обозначим $x=\frac{N_i}{N_p}$. Тогда для длительности импульса имеем: $\Delta t=\tau_c\frac{x\eta_E}{x-\ln x-1}$. $N_p=\frac{\gamma}{\sigma l}=8\cdot 10^{22}~{\rm M}^{-3}\Rightarrow x=2.62$. Из графика зависимости $\eta_E\left(\frac{9 {\rm фективная \; населенность}}{{\rm min \; населенность}}\right)$ находим $\eta_E=0.9\Rightarrow \Delta t=50$ нс.

Задача 9

$$E = \left(\frac{-\ln(R_2)c}{2Le} \right) (h\nu_p) \cdot \int_0^{\tau} \Phi dt = \left(\frac{\ln(R_2)}{2\ln((10L)\sqrt{R_1R_2}} \right) (N_i - N_f)(V_a h V_l),$$
 где $N_i \approx 0.05 \eta \frac{P_{\text{\tiny HAK}}}{slh\nu} \tau pprox E \sim P_{\text{\tiny HAK}}.$

Задача 10

 $x=\frac{N_i}{N_p}\uparrow\uparrow\Rightarrow E\uparrow\uparrow$. N_p не зависит от частоты. Чем меньше частота, тем больше времени происходит накачка фотонов $\Rightarrow N_o\uparrow\uparrow\Rightarrow x\uparrow\uparrow\Rightarrow$ с ростом частоты модулятора E в импульсе $\downarrow\downarrow$, и наоборот.

Задача 11

Из задачи 9: $E \sim 10^{-4}$ Дж.