Find similarity in Galaxy tools and predict next tools in workflows

(Master's thesis)

Anup Kumar

Find similarity in Galaxy tools

Similarity in tools using machine learning (ML) and natural language processing (NLP) approaches

Tool's attributes

Approach

- Extract tool's attributes
- Clean text
- Create sets of tokens
- Learn similarities
- Combine optimally

Tokens

Attributes/ Tools	LinearRegression	LogisticRegression	Similarity
Input, output	'pdf', 'tabular'	'tabular'	?
Name, description	<pre>'regress', 'linear', 'perform'</pre>	'logist', 'regress', 'perform'	?
Help text	-	<pre>'vif','regress', 'glm','car','inflat', 'function','statist', 'logist'</pre>	?

Compute similarity

Compute Jaccard Index for input/output

- Learn dense vectors for name, description and helptext*
- ['regress', 'linear', 'perform'] = [0.98, 0.07, ..., 0.12]
- Compute cosine distance between dense vectors

^{*[}https://cs.stanford.edu/~quocle/paragraph_vector.pdf]

How to combine?

- 3 similarity matrices, one for each attribute
- How to combine them? Take average?
- Optimal combination, learn weights for each tool
- Similarity:

$$\underset{(w_i,\ldots,w_n)}{\arg\max} \sum_{i=1}^{N} w_i \cdot s_i$$

Optimization

Helptext Name, desc. **S**2 **S**3 Input, output **S**1 0.9 0.9 0.56 0.6 0.6 0.90 0.34 0.65 0.7 0.34 0.56 0.6 .66 0.9 0.65 0.66 1 1 • • • 0.9 0.7

$$Minimize ([1.0, 1.0, 1.0, ..., 1.0] - [w1 \cdot s1 + w2 \cdot s2 + w3 \cdot s3])$$

where
$$w1 + w2 + w3 = 1$$

Example

- Tool: LinearRegression
- Similarity for input/output: s1 = [0.33, 0.5, 1.0,]
- Similarity for name, desc: s2 = [0.83, 0.09, 0.005,]
- •Similarity for helptext: s3 = [0.45, 0.36, 0.001]
- Optimal weights: w1, w2 and w3
- Similarity:

$$[w1 \cdot s1 + w2 \cdot s2 + w3 \cdot s3]$$

Visualizer and References

- Static website: results for ~ 1000 tools
- https://rawgit.com/anuprulez/similar_galaxy_tools/maste r/viz/similarity_viz.html
- https://github.com/anuprulez/similar_galaxy_tools
- https://cs.stanford.edu/%7Equocle/paragraph_vector.pdf
- https://arxiv.org/pdf/1607.05368.pdf

Predict next tools in Galaxy workflows

Galaxy workflow

Next tools?

Workflow as a sequence

Data preprocessing

- fastq_groomer, trim_galore (Step 1)
- fastq_groomer, trim_galore, tophat2, fastqc (Step 2)
- fastq_groomer, trim_galore, tophat2, samtools_rmdup (Step 3)
- fastq_groomer, trim_galore, tophat2, samtools_rmdup, rseqc_bam2wig (Step 4)

Data preprocessing

```
'fastq_groomer': 1, 'trim_galore': 2, 'tophat2': 3, 'samtools_rmdup': 4, 'rseqc_bam2wig': 5, 'fastqc': 6
```

Sample	Label (next tool(s)/classes)
fastq_groomer, trim_galore	tophat2, fastqc
1,2	3, 6
1,2,3	4

Classification

- Multi label, multi class classification
- Long short term memory (LSTM) networks
- Topk accuracy

Next tools (labels) pred. topk acc vs. train and test samples 70% accuracy) 0.6 Topk accuracy (0.7 and topic of the contract o Train samples Test samples 10 20 30 40 50 Training epochs

Next steps

- Convolution
- Data balancing/ augmentation
- Different activations
- Compatibility constraint
- Bayesian Inference

References

- https://github.com/anuprulez/similar_galaxy_workflow
- https://arxiv.org/pdf/1511.03677.pdf
- https://arxiv.org/pdf/1604.04573.pdf
- https://arxiv.org/pdf/1506.00019.pdf

Thank you for your attention