Lecture 6: Optimization over a Convex Set

- Optimality conditions
- Projection theorem
- Feasible direction methods
- Conditional gradient method
- Gradient projection methods

Optimality Conditions

 $\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in X, \end{array}$

where f is continuously differentiable, X is convex.

- At a local minimum x^* , the gradient $\nabla f(x^*)$ makes an angle less than or equal to 90 degrees with all feasible variations $x x^*$, $x \in X$.
 - a) If x^* is a local minimum of f over X, then

$$\nabla f(\boldsymbol{x}^*)'(\boldsymbol{x} - \boldsymbol{x}^*) \ge 0, \quad \forall \ \boldsymbol{x} \in X.$$

- b) If f is convex over X, then this condition is also sufficient for x^* to minimize f over X.
- The optimality condition fails when X is not convex. For example, x^* is a local min but we have $f(x^*)'(x-x^*) < 0$ for some feasible vector $x \in X$.

Proof

a) Suppose that $\nabla f(x^*)'(x-x^*) < 0$ for some $x \in X$. By the Mean Value Theorem, for every $\epsilon > 0$ there exists an $s \in [0,1]$ such that

$$f(\mathbf{x}^* + \epsilon(\mathbf{x} - \mathbf{x}^*)) = f(\mathbf{x}^*) + \epsilon \nabla f(\mathbf{x}^* + s\epsilon(\mathbf{x} - \mathbf{x}^*))'(\mathbf{x} - \mathbf{x}^*).$$

Since ∇f is continuous, for sufficiently small $\epsilon > 0$,

$$\nabla f(\boldsymbol{x}^* + s\epsilon(\boldsymbol{x} - \boldsymbol{x}^*))'(\boldsymbol{x} - \boldsymbol{x}^*) < 0,$$

so that $f(x^* + \epsilon(x - x^*)) < f(x^*)$. The vector $x^* + \epsilon(x - x^*)$ is feasible for all $\epsilon \in [0, 1]$ because X is convex, contradicting the local optimality of x^* .

b) Using the convexity of *f*

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*) + \nabla f(\boldsymbol{x}^*)'(\boldsymbol{x} - \boldsymbol{x}^*)$$

for every $x \in X$. If the condition $\nabla f(x^*)'(x - x^*) \ge 0$ holds for all $x \in X$, we obtain $f(x) \ge f(x^*)$, so x^* minimizes f over X.

Optimization Subject to Bounds

• Let $X = \{x \mid x \ge 0\}$. Then the necessary condition for $x^* = (x_1^*, ..., x_n^*)'$ to be a local min is

$$\sum_{i=1}^{n} \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} (x_i - x_i^*) \ge 0, \quad \forall \ x_i \ge 0, i = 1, ..., n.$$

• Fix i. Let $x_j = x_j^*$ for $j \neq i$ and $x_i = x_i^* + 1$:

$$\frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \ge 0, \quad \forall i.$$

• If $x_i^* > 0$, let also $x_j = x_j^*$ for $j \neq i$ and $x_i = \frac{1}{2}x_i^*$. Then $\frac{\partial f(x^*)}{\partial x_i} \leq 0$, so

$$\frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} = 0, \quad \text{if } x_i^* > 0.$$

Optimization over a Simplex

Simplex:
$$X = \left\{ \boldsymbol{x} \mid \boldsymbol{x} \geq \boldsymbol{0}, \sum_{i=1}^n x_i = r \right\}$$
, where $r > 0$ is a given scalar.

• Necessary condition for $\mathbf{x}^* = (x_1^*, \dots, x_n^*)'$ to be a local min:

$$\sum_{i=1}^{n} \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} (x_i - x_i^*) \ge 0, \quad \forall \ x_i \ge 0 \text{ with } \sum_{i=1}^{n} x_i = r.$$

• Fix i with $x_i^* > 0$ and let j be any other index. Use x with $x_i = 0$, $x_j = x_j^* + x_i^*$, and $x_m = x_m^*$ for all $m \neq i, j$:

$$\left(\frac{\partial f(\boldsymbol{x}^*)}{\partial x_j} - \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i}\right) x_i^* \ge 0,$$

$$x_i^* > 0 \implies \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i} \le \frac{\partial f(\boldsymbol{x}^*)}{\partial x_i}, \quad \forall j.$$

Projection Over A Convex Set

• Let $z \in \mathbb{R}^n$ and a closed convex set X be given. Problem:

minimize
$$f(\boldsymbol{x}) = \|\boldsymbol{z} - \boldsymbol{x}\|^2$$
 subject to $\boldsymbol{x} \in X$.

has a unique solution $x^* = [z]^+$ (the projection of z).

- Necessary and sufficient condition for x^* to be the projection: The angle between $z-x^*$ and $x-x^*$ should be greater or equal to 90 degrees for all $x \in X$, or $(z-x^*)'(x-x^*) \leq 0$
- If X is a subspace, $z x^* \perp X$.

• The mapping $f: \mathbb{R}^n \mapsto X$ defined by $f(x) = [x]^+$ is continuous and non-expansive, that is,

$$\|[\boldsymbol{x}]^+ - [\boldsymbol{y}]^+\| \le \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \ \boldsymbol{x}, \ \boldsymbol{y} \in \mathbb{R}^n.$$
 Why? [Add $\langle \boldsymbol{x} - [\boldsymbol{x}]^+, [\boldsymbol{y}]^+ - [\boldsymbol{x}]^+ \rangle \le 0$ to $\langle \boldsymbol{y} - [\boldsymbol{y}]^+, [\boldsymbol{x}]^+ - [\boldsymbol{y}]^+ \rangle \le 0$]

• Exercise: Assume X is convex. A vector $x^* \in X$ is a stationary point of

iff x^* satisfies the following fixed point equation

$$\boldsymbol{x}^* = [\boldsymbol{x}^* - \alpha \nabla f(\boldsymbol{x}^*)]^+$$

for any $\alpha > 0$.

Feasible Directions Method

• A feasible direction at an $x \in X$ is a vector $d \neq 0$ such that $x + \alpha d$ is feasible for all sufficiently small $\alpha > 0$

- The set of feasible directions at x is the set of all $\alpha(z-x)$ where $z \in X$, $z \neq x$, and $\alpha > 0$
- A feasible direction method:

$$\boldsymbol{x}^{r+1} = \boldsymbol{x}^r + \alpha_r \boldsymbol{d}^r,$$

where d^r : feasible descent direction, i.e., $\nabla f(x^r)'d^r < 0$, and $\alpha_r > 0$ is such that $x^{r+1} \in X$.

Alternative definition:

$$\boldsymbol{x}^{r+1} = \boldsymbol{x}^r + \alpha_r(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r),$$

where $\alpha_r \in (0,1]$ and if x^r is nonstationary, then there exists an

$$\bar{\boldsymbol{x}}^r \in X, \quad \nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) < 0.$$

• Stepsize rules: Limited minimization, Constant $\alpha_r = 1$, Armijo: $\alpha_r = \beta^{m_r} s$, where m_r is the first nonnegative m for which

$$f(\boldsymbol{x}^r) - f(\boldsymbol{x}^r + \beta^m(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) \ge -\sigma\beta^m\nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r)$$

Convergence Analysis

- Similar to the one for (unconstrained) gradient methods.
- The direction sequence $\{d^r\}$ is gradient related to $\{x^r\}$ if the following property can be shown: For any subsequence $\{x^r\}_{r\in K}$ that converges to a nonstationary point, the corresponding subsequence $\{d^r\}_{r\in K}$ is bounded and satisfies

$$\lim_{r \to \infty, r \in K} \nabla f(\boldsymbol{x}^r)' \boldsymbol{d}^r < 0.$$

- Proposition (Stationarity of Limit Points) Let $\{x^r\}$ be a sequence generated by the feasible direction method $x^{r+1} = x^r + \alpha_r d^r$. Assume that:
 - $\star \{d^r\}$ is gradient related
 - $\star \alpha_r$ is chosen by the limited minimization rule or the Armijo rule.
 - Then every limit point of $\{x^r\}$ is a stationary point.
- Proof is nearly identical to the unconstrained case.

Conditional Gradient Method

• Define $\boldsymbol{x}^{r+1} = \boldsymbol{x}^r + \alpha_r(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r)$, where

$$ar{m{x}}^r = rg \min_{m{x} \in X}
abla f(m{x}^r)'(m{x} - m{x}^r).$$

- Assume that X is compact, so \bar{x}^r is guaranteed to exist.
- Slow (sublinear) convergence.

Convergence of the Conditional Gradient Method

- Show that the direction sequence of the conditional gradient method is gradient related, so the generic convergence result applies.
- Suppose that $\{x^r\}_{r\in K}$ converges to a nonstationary point \tilde{x} . We must prove that

$$\{\|\bar{\boldsymbol{x}}^r-\boldsymbol{x}^r\|\}_{r\in K}: \text{ bounded, } \limsup_{r\to\infty,r\in K} \nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r-\boldsymbol{x}^r)<0.$$

- 1st relation: Holds because $\bar{x}^r \in X$, $x^r \in X$, and X is compact.
- ullet 2nd relation: Note that by definition of $ar{oldsymbol{x}}^r$,

$$\nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) \le \nabla f(\boldsymbol{x}^r)'(\boldsymbol{x} - \boldsymbol{x}^r), \text{ for all } \boldsymbol{x} \in X$$

Taking limit as $r \to \infty$, $r \in K$, minimizing the RHS over $x \in X$, and using the nonstationarity of \tilde{x} ,

$$\limsup_{r \to \infty, r \in K} \nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) \le \min_{\boldsymbol{x} \in X} \nabla f(\tilde{x})'(\boldsymbol{x} - \tilde{\boldsymbol{x}}) < 0,$$

thereby proving the 2nd relation.

Gradient Projection Methods

 Gradient projection methods determine the feasible direction by using a quadratic cost subproblem. Simplest variant:

$$\mathbf{x}^{r+1} = \mathbf{x}^r + \alpha_r(\bar{\mathbf{x}}^r - \mathbf{x}^r)$$

 $\bar{\mathbf{x}}^r = \operatorname{proj}_X [\mathbf{x}^r - s_r \nabla f(\mathbf{x}^r)]$

where, $\operatorname{proj}_X[\cdot]$ denotes projection on the set X, $\alpha_r \in (0,1]$ is a stepsize, and s_r is a positive scalar.

• \bar{x}^r can be defined as

$$ar{oldsymbol{x}}^r = rg \min_{oldsymbol{x} \in X}
abla f(oldsymbol{x}^r)'(oldsymbol{x} - oldsymbol{x}^r) + rac{1}{2} \|oldsymbol{x} - oldsymbol{x}^r\|^2$$

so $(\bar{x}^r - x^r)$ is a descent direction. The proximal term $\frac{1}{2}||x - x^r||^2$ provides regularization. [No need for X to be compact.]

- Stepsize rules for α_r
 - \star assuming $s_r \equiv s$: Limited minimization, Armijo along the feasible direction, constant stepsize.
 - \star Also, assuming $\alpha_r \equiv 1$: Armijo along the projection arc (s_r) : variable.

Convergence Analysis of GP Methods

• If α_r is chosen by the limited minimization rule or by the Armijo rule along the feasible direction, every limit point of $\{x^r\}$ is stationary.

• **Proof:** Show that the direction sequence $\{\bar{x}^r - x^r\}$ is gradient related. Assume $\{x^r\}_{r \in K}$ converges to a nonstationary \tilde{x} . Must prove

$$\{\|\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r\|\}_{r \in K} : \text{ bounded, } \limsup_{r \to \infty, r \in K} \nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) < 0.$$

• 1st relation holds because $\{\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r\}_{r \in K}$ converges to $\operatorname{proj}_X[\tilde{\boldsymbol{x}} - s\nabla f(\tilde{\boldsymbol{x}})] - \tilde{\boldsymbol{x}}$. By optimality condition for projections,

$$(\boldsymbol{x}^r - s\nabla f(\boldsymbol{x}^r) - \bar{\boldsymbol{x}}^r)'(\boldsymbol{x} - \bar{\boldsymbol{x}}^r) \le 0$$
, for all $\boldsymbol{x} \in X$.

Applying this relation with $x = x^r$, and taking limit,

$$\limsup_{r \to \infty, r \in K} \nabla f(\boldsymbol{x}^r)'(\bar{\boldsymbol{x}}^r - \boldsymbol{x}^r) \le -\frac{1}{s} \|\tilde{\boldsymbol{x}} - \operatorname{proj}_X[\tilde{\boldsymbol{x}} - s\nabla f(\tilde{\boldsymbol{x}})]\|^2 < 0$$

- Similar conclusion for constant stepsize $\alpha_r = 1$, $s_r = s$ (under a Lipschitz condition on ∇f).
- Similar conclusion for Armijo rule along the projection arc.

Convergence Rate Analysis

• Consider a strongly convex quadratic function $f(x) = \frac{1}{2}x'Ax + b'x$, with $A \succ 0$.

• \exists a unique solution $x^* \in X$ satisfying $x^* = \operatorname{proj}_X[x^* - \alpha^r \nabla f(x^*)]$, so

$$\|\boldsymbol{x}^{r+1} - \boldsymbol{x}^*\| = \|\operatorname{proj}_{X}[\boldsymbol{x}^r - \alpha_r \nabla f(\boldsymbol{x}^r)] - \operatorname{proj}_{X}[\boldsymbol{x}^* - \alpha_r \nabla f(\boldsymbol{x}^*)]\|$$

$$\leq \|(\boldsymbol{x}^r - \boldsymbol{x}^*) - \alpha_r (\nabla f(\boldsymbol{x}^r) - \nabla f(\boldsymbol{x}^*))\|$$

$$= \|(\boldsymbol{I} - \alpha_r \boldsymbol{A})(\boldsymbol{x}^r - \boldsymbol{x}^*)\|$$

$$\leq \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right) \|\boldsymbol{x}^r - \boldsymbol{x}^*\| = \left(1 - \frac{2}{\kappa + 1}\right) \|\boldsymbol{x}^r - \boldsymbol{x}^*\|.$$

- Convergence rate depends on $\kappa = \lambda_{\text{max}}/\lambda_{\text{min}}$, but independent of dimension.
- Requires $O(1)\kappa \ln(1/\epsilon)$ to find an ϵ -relative optimal solution.