Homework 4 - Relational Algebra

Atharv Kulkarni

U1322897

CS-5530

Part 1 -

T1

A	Q	R
20	a	5
25	b	8
35	а	6

T2

Α	В	С
20	b	6
45	С	3
20	b	5

1.

T1 × T1.A = T2.A T2

T1.A	Q	R	T2.A	В	С
20	а	5	20	b	6
20	а	5	20	b	5

2.

T1⋈ _{T1.Q = T2.B} T2

Α	Q	R	Α	В	С
25	b	8	20	b	6
25	b	8	20	b	5

3.

T1⋈T2

Α	Q	R	В	С
20	а	5	b	6
20	а	5	b	5

4.

$T1 \bowtie T_{1.A} = T_{2.A} \&\& T_{1.R} = T_{2.C} T_2$

T1.A	Q	R	T2.A	В	С
20	а	5	20	b	5

Part 2 -

5 basic relational algebra operators: π , σ , \times , \neg , \cup

T1

X

T2

T3

X	V	7
/	,	-

1.

T2⋈T3

Ans: $\sigma_{T2.x = T3.x \land T2.y = T3.y}(T2 \times T3)$

2.

 π_x (T2) \cap T1

Ans: $\pi_x(T2) - (\pi_x(T2) - T1)$

3.

 $\pi_z (T3 \bowtie _{T3.y} == _{T2.y} T2)$

Ans: $\pi_z (\sigma_{T3.y == T2.y} (T3 \times T2))$

4.

T2/T1

Ans:

$$\pi_y\, T2 - \pi_y \, (((\pi_y\, T2) \times T1) - T2)$$

Part 3 -

1. Find the names of any player with an Elo rating of 2850 or higher.

Answer:

$$\pi_{\text{Name}}$$
 ($\sigma_{\text{Elo}} >= 2850$ (Players))

2. Find the names of any player who has ever played a game as white.

Answer:

$$\pi_{Players.Name}$$
 ($\sigma_{Games.wpID} = Players.pID$ (Games × Players))

3. Find the names of any player who has ever won a game as white.

Answer:

$$\pi_{Players.Name}$$
 ($\sigma_{Games.wpID} = Players.pID ^ Games.wpID = "W" (Games × Players))$

4. Find the names of any player who played any games in 2018.

Answer:

$$\pi_{Players.Name}$$
 ($\sigma_{Games.wpID} = Players.pID \lor Games.bpID = Players.pID$ (Players × ($\sigma_{Year = 2018}$ (Games \bowtie Events))))

5. Find the names and dates of any event in which Magnus Carlsen lost a game.

Answer:

```
\pi_{\text{Events.Name}}, Events.Year ((\sigma_{\text{Players.Name}} = "Magnus Carlsen" ^ Games.wpID = Players.pID ^ Games.Result = "B" ((Games \bowtie Events) \times Players))

U
(\sigma_{\text{Players.Name}} = "Magnus Carlsen" ^ Games.bpID = Players.pID ^ Games.Result = "w" ((Games \bowtie Events) \times Players)))
```

6. Find the names of all opponents of Magnus Carlsen. An opponent is someone who he has played a game against. **Hint**: Both Magnus and his opponents could play as white or black.

Answer:

```
π<sub>Players.Name</sub> (Players ⋈ (
ρ (Opponents<sub>pld</sub>/<sub>Games.wpID</sub>, (σ<sub>Players.Name</sub> = "Magnus Carlsen" ^ Games.bpID = Players.plD(Games × Players)))

U
ρ (Opponents<sub>pld</sub>/<sub>Games.bpID</sub>, (σ<sub>Players.Name</sub> = "Magnus Carlsen" ^ Games.wpID = Players.plD(Games × Players)))

))
```

7. Find the names of all players who have never lost a game (a draw is not considered a loss).

Answer:

```
\pi_{Players.Name} (Players) - \pi_{Players.Name} (
\sigma_{Games.wpID} = Players.pID \land Games.Result = "B"} (Players \times Games)
U
\sigma_{Games.bpID} = Players.pID \land Games.Result = "W"} (Players \times Games)
```

Part 4 -

1. A)

Name	
Jon	
Abby	

1. B)

We are searching for names of the students who are enrolled in a course and have received a grade other than "C".

2. A)

S2

Name

2. B)

Names of all the students of the same date of birth as Maria except Maria.

- 3. A) cName
- 3. B)

Names of the courses enrolled by all students with the given set of student ID's.

```
4.)
\rho \ (cID\_3000\_courses, \pi_{Courses.cld}(\sigma_{Courses.cID} >= 3000 \land Courses.clD < 4000 \ (Courses)))
\pi_{Students.Name} \ ((\pi_{Enroll.cld}, Enroll.slD} \ (Enroll) \ / \ cID\_3000\_courses)
\bowtie \ Students)
5.)
\rho \ (steve\_courses, \pi_{Enroll.cld}(\sigma_{Student.Name} == "Steve" \ (Students)
\bowtie \ Enroll)))
\pi_{Students.Name} \ (\sigma \ Students.Name \ != "Steve" \ ((\pi_{Enroll.cld}, Enroll.slD} \ (Enroll) \ / \ steve\_courses)
\bowtie \ Students))
```