UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

AVALIAÇÃO DE INÓCULOS METANOGÊNICOS NA ACELERAÇÃO DO PROCESSO DE DEGRADAÇÃO DA FRAÇÃO ORGÂNICA DOS RESÍDUOS SÓLIDOS URBANOS

EDMUNDO PACHECO GADELHA

ORIENTADOR: Ricardo Silveira Bernardes

DISSERTAÇÃO DE MESTRADO EM TECNOLOGIA AMBIENTAL E RECURSOS HÍDRICOS

BRASÍLIA/DF:SETEMBRO - 2005

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

AVALIAÇÃO DE INÓCULOS METANOGÊNICOS NA ACELERAÇÃO DO PROCESSO DE DEGRADAÇÃO DA FRAÇÃO ORGÂNICA DOS RESÍDUOS SÓLIDOS URBANOS

EDMUNDO PACHECO GADELHA

DISSERTAÇÃO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA OBTENÇÃO DO GRAU DE MESTRE EM TECNOLOGIA AMBIENTAL E RECURSOS HÍDRICOS.

APROVADA POR:			
PROFa. RICARDO SILVEIRA BERNARDES, PhD	(ENC-UnB)		
(Orientador)			
PROF. MARCO ANTONIO ALMEIDA DE SOUSA, PhD (ENC-UnB) (Examinador Interno)			
PROFa. VIVIANA MARIA ZANTA , DSc (UFBA)			
(Examinador Externo)			
BRASÍLIA/DF, 8 DE SETEMBRO DE	2 2005.		

FICHA CATALOGRÁFICA

GADELHA, EDMUNDO PACHECO

Avaliação de inóculos metanogênicos na aceleração do processo de degradação da fração orgânica dos resíduos sólidos urbanos

(PP), 210 x 297mm (ENC/FT/UnB, M.Sc., Tecnologia Ambiental e Recursos Hídricos, 2005)

Dissertação de Mestrado – Universidade de Brasília. Faculdade de Tecnologia. Departamento de Engenharia Civil e Ambiental.

1. Metanogênese 2. Inóculos

3. Resíduos sólidos4. Digestão anaeróbiaI. ENC/FT/UnBII. Título (série)

REFERÊNCIA BIBLIOGRÁFICA

GADELHA, E. P. (2005). Avaliação de inóculos metanogênicos na aceleração do processo de degradação da fração orgânica dos resíduos sólidos urbanos. Dissertação de Mestrado, Publicação PTARH.DM-70/2004, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, (n)p.

CESSÃO DE DIREITOS

NOME DO AUTOR: Edmundo Pacheco Gadelha

TÍTULO DA DISSERTAÇÃO: Avaliação de inóculos metanogênicos na aceleração do processo de degradação da fração orgânica dos resíduos sólidos urbanos.

GRAU: Mestre. ANO: 2005.

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte dessa dissertação de mestrado pode ser reproduzida sem autorização por escrito do autor.

Edmundo Pacheco Gadelha

Rua Ipê Amarelo, Lote 2, Bloco B, Ap. 203

CEP-72030-100 Águas Claras – DF – Brasil.

AGRADECIMENTOS

Desde já quero agradecer a todos que, direta ou indiretamente, me ajudaram a concluir mais esta fase de minha vida e desculpar-me com aqueles que, por acaso, não citar aqui.

A minha família, minha esposa, meu filho, meus pais e irmãos, que sempre me incentivaram em todos os momentos a concluir este mestrado.

A professora Deíza, que tive o privilégio de ter como minha orientadora, pela intensa dedicação e paciência em todos os dias desses últimos dois anos, ensinando-me também a perseverança na busca dos melhores resultados.

Aos professores Ricardo Bernardes, Cristina Célia e Marco Antonio que tanto contribuirão no desenvolvimento deste trabalho. Obrigado pelo incentivo.

Aos professores Sergio Koide, Nestor Campana, Nabil Joseph Eid e Oscar Moraes pelo incentivo e principalmente por todo o conhecimento que me transmitiram no decorrer desses anos.

Aos inúmeros colegas de mestrado que desde o início me incentivaram a prosseguir, sempre compartilhando seu tempo ajudando-me. Obrigado pela amizade.

Aos amigos André e Boy que por tantas vezes me ajudaram no laboratório de análises de água.

A colega Cristine Brasil pela intensa dedicação e amizade no decorrer deste estudo.

Aos alunos Bruno e Hugo Cristófidis pela grande e inestimável ajuda.

Aos colegas da BELACAP, Engenheiros Alberto, Pedro e Cláudio Rachid (*in memorian*) que sempre compreenderam e sustentaram minhas inúmeras ausências.

A professora Viviana Maria Zanta, por suas inúmeras sugestões na conclusão deste trabalho.

A minha esposa Andréa e meu filho Pedro,

por meus momentos ausentes,

por seu constante incentivo e seu dedicado amor.

A meu pai Christovão e minha mãe Rejane,

DEDICO.

RESUMO

AVALIAÇÃO DE INÓCULOS METANOGÊNICOS NA ACELERAÇÃO DO PROCESSO DE DEGRADAÇÃO DA FRAÇÃO ORGÂNICA DOS RESÍDUOS SÓLIDOS URBANOS

Autor: Edmundo Pacheco Gadelha

Orientadora: Deíza Maria Corrêa Lara Pinto

Programa de Pós Graduação em Tecnologia Ambiental e Recursos Hídricos

Brasília, Setembro 2005

O conhecimento do processo de degradação do FORSU é a chave para o entendimento e controle da digestão anaeróbia. Processos físicos, químicos e principalmente microbiológicos ocorrem na degradação dos resíduos sólidos e a utilização de métodos que beneficiem o desenvolvimento de certos grupos de microrganismos pode auxiliar na obtenção de uma partida rápida e equilibrada.

Neste sentido o presente estudo analisou a capacidade de dois inóculos na aceleração da degradação anaeróbia da FORSU. Foram empregados como inóculos o percolado de um aterro controlado e o lodo de esgoto de uma estação de tratamento de esgotos sanitários.

A fração orgânica utilizada como substrato foi preparada no laboratório segundo metodologia citada por Pinto (2000), a fim de evitar problemas de reprodutibilidade e formando assim um resíduo padrão. Desenvolveu-se um reator anaeróbio com capacidade de 2,65 litros e um sistema para a medição do gás metano.

O meio de reação foi preparado com o resíduo padrão e os inóculos em diferentes proporções, de forma a atingir Fator de Inoculo (FI) de 0,02, 0,015 e 0,01. Comparou-se o desempenho dos dois inóculos avaliando qual FI proporcionaria as melhores condições para o processo de degradação.

Após 120 dias de digestão, os substratos com maior capacidade de degradação, em termos de STV, estavam nos reatores inoculados com Percolado.

A DQO, ao final do ensaio, apresentou valores de 32 a 52 g/L e valores de pH na faixa de 4,3 a 5,5, indicando que o processo encontrava-se na fase ácida de degradação, sendo que os maiores valores eram correspondentes aos reatores inoculados com lodo de esgoto.

A produção de metano e a DQO observadas nos reatores com diferentes FI's e mesmo inóculo foram semelhantes, sugerindo assim, que os FI's testados não chegaram a causar alterações significativas no processo de degradação.

ABSTRACT

EVALUATION OF METHANOGENIC INOCULUM IN **ANAEROBIC**

DIGESTION PROCESS OF URBAN SOLID WASTE ORGANIC FRACTION.

Author: Edmundo Pacheco Gadelha

Supervisor: Deíza Maria Corrêa Lara Pinto

Programa de Pós Graduação em Tecnologia Ambiental e Recursos Hídricos

Brasília, September of 2005

The knowledge of MSWOF digestion is the key for understanding and control of anaerobic

digestion. The physics, chemicals and mainly microbiological process happen in solid

waste digestion and the use of methods that can benefit some microorganism groups may

help to obtain a fast and equilibrated start.

This present study analyzed the capacity of two inoculum in anaerobic digestion

acceleration of MSWOF. Were used like inoculum the leach ate of a controlled landfill

and the sewerage mud of a treat plant of municipal sewerage.

The used organic fraction like substrate was prepared in laboratory by methodology

mentioned by Pinto (2000), to prevent reproductibility problems and making the standard

waste. Was developed a anaerobic reactor with 2,65 litters of capacity and a measuring

methane system.

The reaction moisture was prepared with the standard waste and one of the different

inoculums in three proportions to make the Inoculum Factor (IF) of 0.02, 0.015 and 0.01.

It was compared the capacity of the inoculums evaluating witch IF promoted better

conditions to digestion process.

After 120 days of digestion, the substrates with highest digestion rates of TVS were the

leach ate inoculated.

The OQD, at the end of study, presented values of 32 to 52 g/L and rates of pH at 4,3 to

5,5, indicating that's the process was at acid faze of digestion, and the highest rates

corresponds to the sewerage mud inoculated reactors.

The observed methane production and OQD in the reactors with different IF's and same

inoculum were similar suggesting that's the tested IF's did not cause significant changes in

digestion process.

7

SUMÁRIO

1 – INTRODUÇÃO	01
2 – OBJETIVOS	06
3 – FUNDAMENTAÇÃO TEÓRICA	07
3.1 – DIGESTÃO ANAERÓBIA DE RESÍDUOS SÓLIDOS	07
3.1.1 – Aspectos Microbiológicos	09
3.1.2 - Fatores Intervenientes	12
3.1.2.1 – Temperatura	12
3.1.2.2 - Potencial Hidrogeniônico (pH)	14
3.1.2.3 – Substâncias inibidoras da metanogênese	16
3.1.2.4 – Nutrientes	17
3.1.2.5 – Umidade	18
3.1.2.6 – Tamanho das partículas	20
3.1.2.7 – Potencial de Oxi-redução	21
3.2 - EXPERIÊNCIAS COM DIGESTÃO ANAERÓBIA	22
3.4.1 – Processos utilizados para aceleração da metanogênese.	22
3.4.2 – Inoculação em escala experimental	24
3.4.3 - Biorreatores Anaeróbios em escala real	26
4 – METODOLOGIA	30
4.1 – APARATO EXPERIMENTAL	30
4.1.1 – Construção dos Biorreatores	30
4.1.1.1 – Descrição do reator	31
4.1.1.2 – Testes com os reatores	33
4.1.2 – Aparato para medição dos gases – Mariotte	34
4.1.3 – Correção estequiométrica dos gases	35
4.2 – ETAPAS DE PREPARAÇÃO DO MEIO DE REAÇÃO	37
4.2.1 – Elaboração da Fração Orgânica dos Resíduos Sólidos	
Urbanos Padrão	37
4.2.2 – Coleta dos Inóculos	41

4.2.3.– Definição das massas de FORSUp e Inóculos	42
4.2.4 – Procedimento de preenchimento dos reatores	43
4.4 – PARÂMETROS FÍSICO-QUÍMICOS AVALIADOS	45
5 – RESULTADOS E DISCUSSÃO	47
5.1 – CARACTERIZAÇÃO DO MEIO DE REAÇÃO	47
5.1.1 – Características dos inóculos	47
5.1.2 – Análises da Fração Orgânica dos Resíduos	
Sólidos Urbanos padrão	48
5.1.3 - Características do Meio de Reação	50
5.2 –PRODUÇÃO GÁSOSA	51
5.3 – MONITORIZAÇÃO DO EXPERIMENTO	53
5.3.1 – Aspecto geral do meio de reação ao fim do ensaio	55
5.3.2 – Variação do teor de umidade dos MR	56
5.3.3 — Análise dos sólidos totais e dos sólidos totais voláteis	57
5.3.4 – Análise da Produção Metano	58
5.3.5 – Análise da DQO do lixiviado produzido no ensaio	59
5.3.6 - Análise da degradação dos STV	60
5.3.7 – Análise do pH	61
6 – CONCLUSÕES E RECOMENDAÇÕES	63
REFERÊNCIAS BIBLIOGRAFIAS	65
<u>APÊNDICES</u>	71
APENDICE A – TABELAS DE PRODUÇÃO GASOSA	72
APÊNDICE B - TABELAS TOTALIZADORAS DA	
PRODUÇÃO DE METANO	86
APÊNDICE C - METODOLOGIAS PARA ANÁLISES DE	
RESÍDUOS SÓLIDOS DEFINIDAS PELO	
PROSAB	88
APÊNDICE D - ILUSTRAÇÕES COMPLEMENTARES	93

LISTA DE TABELAS

Tabela	4.1	Composição Física dos RSU do Brasil e Distrito Federal	38
Tabela	4.2	Definição de Massas de FORSUp e Volumes de Inóculos	43
Tabela	4.3	Análises realizadas	46
Tabela	5.1	Análises Preliminares dos Inóculos	47
Tabela	5.2	Valores médios de ST, STV, Umidade e Densidade da FORSUp	48
Tabela	5.3	Composição gravimétrica dos RSU de Ceilândia e Taguatinga - DF	49
Tabela	5.4	Composição elementar da FORSU das cidades de Ceilândia e	
		Taguatinga - DF	49
Tabela	5.5	Composição gravimétrica dos RSU do Brasil e Distrito Federal	50
Tabela	5.6	Análises de Sólidos Totais e Sólidos Totais Voláteis dos MR	50
Tabela	5.7	pH e DQO iniciais dos MR	51
Tabela	5.8	Análises do Meio de Reação no final do ensaio	54
Tabela	5.9	Diferenças de massa do MR inicial e final	56
Tabela	5.10	Balanço de massa de STV e produção de metano por g de STV	
		degradado	57
Tabela	5.11	Valores comparativos de degradação de STV e produção de Metano	58
Tabela	5.12	Produção de metano em função da DQO e da degradação dos ST e	
		STV.	61
Tabela	A1	produção de gás em 29/12 e 02/01	72
Tabela	A2	produção de gás em 5/1 e 8/1	72
Tabela	A3	produção de gás em 11/1 e 14/1	73
Tabela	A4	produção de gás em 17/1 e 20/1	73
Tabela	A5	produção de gás em 23/1 e 26/1	74
Tabela	A6	produção de gás em 29/1 e 01/2	74
Tabela	A7	produção de gás em 04/2 e 07/2	75
Tabela	A8	produção de gás em 10/2 e 13/2	75
Tabela	A9	produção de gás em 16/2 e 19/2	76
Tabela	A10	produção de gás em 22/2 e 25/2	76

Tabela	A11	produção de gás em 28/2 e 3/3	77
Tabela	A12	produção de gás em 6/3 e 9/3	77
Tabela	A13	produção de gás em 12/3 e 15/3	78
Tabela	A14	produção de gás em 18/3 e 21/3	78
Tabela	A15	produção de gás em 24/3 e 27/3	79
Tabela	A16	produção de gás em 30/3 e 2/4	79
Tabela	A17	produção de gás em 5/4 e 8/4	80
Tabela	A18	produção de gás em 9/4 e 10/4	80
Tabela	A19	produção de gás em 11/4 e 12/4	81
Tabela	A20	produção de gás em 13/4 e 14/4	81
Tabela	A21	produção de gás em 15/4 e 16/4	82
Tabela	A22	produção de gás em 17/4 e 18/4	82
Tabela	A23	produção de gás em 19/4 e 20/4	83
Tabela	A24	produção de gás em 21/4 e 22/4	83
Tabela	A25	produção de gás em 23/4 e 24/4	84
Tabela	A26	produção de gás em 25/4 e 26/4	84
Tabela	A27	produção de gás em 27/4 e 28/4	85
Tabela	A28	produção de gás em 29/4 e 30/4	85
Tabela	B1	Produção totalizada de metano até o 40° dia	86
Tabela	B2	Produção totalizada de metano até o 82º dia	86
Tabela	В3	Produção totalizada de metano até o 106º dia	87
Tabela	B4	Produção totalizada de metano até o 120º dia	87

LISTA DE FIGURAS

Figura	3.1	Metanogênese	09
Figura	3.2	Atividade relativa de produção de metano em função da temperatura	13
Figura	3.3	Produção de biogás em função da Umidade	19
Figura	3.4	Efeito da umidade na produção de biogás em aterro sanitário	20
Figura	3.5	Reatores do Sistema Vagron – Tilburg, Holanda	28
Figura	3.6	Reatores do Sistema Valorga	28
Figura	4.1	Projeto do Reator - corte transversal	31
Figura	4.2	Conexão Bico injetor e registro	31
Figura	4.3	Reator	32
Figura	4.4	Detalhe do anel de segurança encaixado no reator	33
Figura	4.5	Teste com reator	33
Figura	4.6	Esquema de montagem do aparato de mariotte	34
Figura	4.7	Aparato de medição de gás- Mariotte	34
Figura	4.8	Regulador eletrônico de temperatura	36
Figura	4.9	Interior da câmara com reatores	36
Figura	4.10	Preparo da FORSUp	40
Figura	4.11	FORSUp preparada	40
Figura	4.12	Meio de Reação colocado no reator	44
Figura	4.13	Meio de Reação sendo comprimido	44
Figura	4.14	Esquema de distribuição do meio de reação	45
Figura	5.1	Produção de metano nos diferentes reatores	52
Figura	5.2	Comparativo da produção de CH ₄ com os vazamentos ocorridos	53
Figura	5.3	Meio de Reação após ser retirado do reator	55
Figura	5.4	Meio de Reação ao fim do ensaio	55
Figura	5.5	Variação de umidade no início e no fim do ensaio	56
Figura	5.6	Comparativo DQO x Metano produzido	59
Figura	5.7	Variação do pH no início e no fim do ensaio	62
Figura	D1	Leitura de pressão interna do reator	93

Figura D2	Leitura da produção gasosa com o Mariotte	
Figura D3	Meio de Reação ao final de ensaio	
Figura D4	Coleta do percolado do Meio de Reação	
LISTA DE S	SIGLAS E ABREVIATURAS	
A – Amostra 1		
A' – Amostra	2	
B - Branco		
BELACAP -	Serviço de Ajardinamento e Limpeza Urbana do Distrito Federal	
CAESB – Con	npanhia de Água e Esgotos de Brasília	
CNTP – Condições Normais de Temperatura e Pressão		
C:N – Relação	entre Carbono Orgânico Total e Nitrogênio Total	
C:N:P – Relag	ção entre Carbono Orgânico Total, Nitrogênio Total e Fósforo	
CH ₄ – Gás me	tano	
CO ₂ – Dióxido	o de Carbono	
DF – Distrito l	Federal	
DQO – Demai	nda Química de Oxigênio	
EH – Potencia	ıl oxi-redução	
FORSUD – Fração orgânica dos resíduos sólidos urbanos domésticos		
FORSUp – Fr	ação orgânica dos resíduos sólidos urbanos padrão	
FI – Fator de Inóculo		
GDF – Govern	no do Distrito Federal	
I - Inóculo		
IBGE – Institu	nto Brasileiro de Geografia e Estatística	
Le – Lodo de esgoto		
Mf – Massa da FORSUp		
MR – Meio de Reação		
N_2 - Nitrogênio		
NTK – Nitrogênio Total Kjeldahl		
N-NH₄ ⁺ - Nitrogênio amoniacal		
P _L - Percolado		
P _{met} – Potencial metanogênico		
P _{atm} – Pressão atmosférica		

pH – Potencial hidrogeniônico

PSNB – Pesquisa Nacional de Saneamento Básico

RSU – Resíduos sólidos urbanos

STV – Sólidos Totais Voláteis

ST – Sólidos Totais

T_{amb} _ Temperatura ambiente

V bio – Volume de biogás

V_{CH4} – Volume de gás metano

V med – Volume medido

P 0,02 A – Fator de inóculo 0,02, inóculo percolado, amostra A

P 0,02 A' – Fator de inóculo 0,02, inóculo percolado, amostra A'

P0,02b - Fator inoculo 0,02, inóculo percolado- Branco

L 0,02 A – Fator inoculo 0,02, inóculo Lodo, amostra A

L 0,02 A' – Fator inoculo 0,02, inóculo Lodo, amostra A'

L0,02 b – Branco - Fator inoculo 0,02, inóculo Lodo

P 0,015 A – Fator de inóculo 0,015, inóculo percolado, amostra A

P 0,015 A' – Fator de inóculo 0,015, inóculo percolado, amostra A'

P0,015b - Fator inoculo 0,015, inóculo percolado- Branco

L 0,015 A – Fator inoculo 0,015, inóculo Lodo, amostra A

L 0,015 A' – Fator inoculo 0,015, inóculo Lodo, amostra A'

L0,015 b – Branco - Fator inoculo 0,015, inóculo Lodo

P 0,01 A – Fator de inóculo 0,01, inóculo percolado, amostra A

P 0,01 A' – Fator de inóculo 0,01, inóculo percolado, amostra A'

P0,01b - Fator inoculo 0,01, inóculo percolado- Branco

L 0,01A – Fator inoculo 0,01, inóculo Lodo, amostra A

L 0,01 A' - Fator inoculo 0,01, inóculo Lodo, amostra A'

L0,01 b – Branco - Fator inoculo 0,01, inóculo Lodo

1 - INTRODUÇÃO

A produção dos Resíduos Sólidos Urbanos (RSU) sempre acompanhou o desenvolvimento humano, em função do crescimento populacional e dos meios de produção, seja na agricultura ou na indústria. Caracterizando-se como um fenômeno irreversível, tem no crescimento populacional seu elemento principal, pois com este vem o aumento pela demanda de maiores quantidades de bens de consumo e serviços.

Outros fatores podem influenciar a produção de Resíduos Sólidos Urbanos (RSU) destacando-se: área relativa à ocupação urbana, número de habitantes, variações sazonais, condições climáticas, hábitos e costumes da população e nível socioeconômico, sendo este último um dos mais importantes. A componente econômica tem se caracterizado em todo mundo como o principal fator determinante na produção per capita de resíduos, tendo influência direta na quantidade e na qualidade do lixo produzido diariamente.

Segundo Maciel e Jucá (2002) todas as etapas envolvidas nos sistemas de limpeza urbana têm sido implantadas em função do poder econômico das populações atendidas, sendo os equipamentos envolvidos na coleta e no transporte, bem como a forma de tratamento e destino final dos RSU definidos a partir disso.

Independentemente da limitação econômica essas duas últimas etapas do sistema têm ganhado cada vez mais importância em função de sua complexidade e das possíveis consequências danosas ao meio ambiente. A escolha apropriada dos métodos e das tecnologias de tratamento e destino final para os RSU implicará em formas de controle ou, pelo menos, remediação dos aspectos negativos dessas consequências, diminuindo os prejuízos para o meio ambiente.

No Brasil, o destino final dos RSU é distribuído da seguinte forma: 63,8% lixões a céu aberto, 18,4% aterros controlados, 13,8% aterros sanitários, 3,9% tratamento em usinas de compostagem e 0,1% incinerados, (IBGE 2000).

O lançamento a céu aberto tem sido a prática para disposição inadequada dos resíduos empregada na maior parte dos municípios brasileiros, onde ainda há disponibilidade de áreas para este tipo de destinação e as capacidades de investimento municipais ou estaduais não priorizam o tratamento e a disposição final de lixo como prioridades. A disposição nos denominados lixões ou bota-foras, não prioriza medidas de proteção, causando sérias conseqüências ambientais muitas vezes irreparáveis para os solos, a água, fauna, flora e atmosfera. Em muitos casos é prática comum a queima dos resíduos, tanto para catação de materiais recicláveis como para diminuição do volume de resíduos já depositados, causando poluição atmosférica. Normalmente não ocorre o recobrimento diário, o que facilita a proliferação de insetos e outros animais, vetores de inúmeras doenças, geração de odores e poluição de águas superficiais. Tais práticas passam então, de soluções de limpeza urbana para catalisadores de problemas sociais e de saúde pública.

Buscando solucionar os problemas gerados pelos resíduos sólidos urbanos (RSU), várias formas de disposição, pré-tratamento, tratamento e operação de sistemas vêm sendo estudadas e aplicadas, podendo-se destacar: incineração, pirólise, hidrólise térmica, combustão em leito catalítico, combustão em leito fluidificado, compostagem, lixiviação microbiana e físico-química, encapsulamento, secagem/ desidratação, reciclagem e disposição em aterro sanitário, (Pinto 2000).

Dentre os métodos de tratamento mais utilizados no Brasil destacam-se o aterro sanitário, a compostagem e, em poucas cidades, a incineração conforme PNSB de 2000 (IBGE, 2002).

Como forma de manejo, a coleta seletiva tem sido fomentada em diversas cidades brasileiras, podendo implicar na redução significativa do volume de RSU, pois os produtos segregados teriam uma destinação mais direta para os processos de reciclagem, com inúmeras vantagens tais como: valorização dos produtos para comercialização, redução da atividade industrial com conseqüente redução da poluição ambiental e com redução de consumo de energia, geração de trabalho e renda com o engajamento de pessoas sem qualificação profissional no processo de segregação.

A incineração tem custos de implantação e manutenção dos equipamentos envolvidos bastante elevados. Sua utilização quase sempre é restrita aos considerados resíduos

perigosos, como resíduos hospitalares e os demais pertencentes a classe I (NBR 10004, ABNT 2004).

A compostagem tem como principal vantagem o aproveitamento do composto orgânico resultante do processo de estabilização da matéria orgânica, todavia necessita de grandes espaços além de requerer o processo de segregação ou coleta seletiva.

O aterro sanitário é uma técnica para disposição de resíduos sólidos no solo, que fundamentado em critérios de engenharia e normas operacionais específicas permite o confinamento seguro, em termos de controle da poluição e proteção ao meio ambiente, (Bidone e Povinelli 1999).

O aterro sanitário é a opção mais comumente utilizada no país, em função do seu baixo custo de operação, comparado às outras formas de tratamento; capacidade de absorção diária de grandes volumes de resíduos; possibilidade de recuperação de áreas degradadas e de baixo valor comercial; não requerimento de pessoal operacional altamente qualificado; aceitação de todo tipo de RSU, exceto os considerados perigosos, e ainda a possibilidade de produção de gás combustível.

Do ponto de vista técnico alguns fatores limitantes da implantação e operação de aterros sanitários são: indisponibilidade de áreas apropriadas; indisponibilidade de material de cobertura diária e ausência de condições climáticas favoráveis à operação durante todo ano.

A exemplo do Distrito Federal, nos últimos 33 anos, aproximadamente 15 milhões de toneladas de lixo, a maior parte "in natura", foram dispostas em um aterro não controlado, sujeito a todos os tipos de problemas de saúde pública e ambiental citados anteriormente e, deste total, mais de 50% corresponde à fração orgânica. (BELACAP, 2004).

Não diferente da realidade nacional, o crescimento populacional do DF superou a capacidade de investimento do poder público, resultando na atual incapacidade de tratamento adequado do volume total dos RSU coletados. O Distrito Federal tem aproximadamente dois milhões de pessoas e a produção diária de RSU é de 2000

toneladas, deste total 1100 toneladas são dispostas em aterro não controlado, sem tratamento algum, (BELACAP, 2004).

O aterro sanitário é a alternativa mais viável em termos econômicos para o DF e que, em médio prazo, absorveria o grande excedente de lixo não tratado. Todavia, conforme abordado anteriormente, o principal problema relacionado com os aterros é que necessitam de grandes áreas em função do elevado tempo de degradação, o que resulta em maior tempo de ocupação do espaço físico. A estabilização dos resíduos sólidos em um aterro pode levar mais de 100 anos, dependendo do material aterrado e das condições ambientais. Isto decorre do fato do processo de degradação e de bioestabilização dos resíduos sólidos ser bastante complexo, envolvendo uma série de fatores que influenciam fortemente a partida e a estabilização do processo. A grande quantidade de material celulolítico é um dos principais fatores que eleva o tempo de operação.

Vários autores como Barlaz (1989a), Lima (1988), entre outros, citam que o aterro sanitário funciona como um digestor anaeróbio onde a atividade microbiana, principalmente das bactérias anaeróbias e organismos metanogênicos, através do seu metabolismo, transformam a matéria orgânica em produtos combustíveis como o gás metano, gás carbônico e o hidrogênio. Isto é possível dentro de padrões rígidos de projeto e operação dos aterros para que se alcance alguma eficiência semelhante a um reator.

Partindo-se deste princípio e levando em consideração que entre 50 a 60 % dos resíduos aterrados no Brasil, são compostos por matéria orgânica degradável (IBGE, 2002), é possível otimizar e acelerar o processo de degradação em um aterro, desde que conhecidos os aspectos básicos deste processo, de forma a interferir nos pontos de desequilíbrio do sistema. Nesse sentido, a utilização de inóculo adaptável ao resíduo ou mesmo a otimização dos fatores intervenientes ao processo, como a umidade, poderá influenciar significativamente no processo de degradação, contribuindo para a redução do tempo de bioestabilização. Com isso a área do aterro poderá ser reutilizada em espaço de tempo significativamente menor.

No Brasil o processo de tratamento anaeróbio de resíduos sólidos ainda está em fase de estudos, não existindo nenhum reator em operação em escala real.

As diferenças nas características dos resíduos produzidos no Brasil e a escassez de informações técnico científicas sobre os projetos desenvolvidos na Europa, devido muitas vezes à segredos industriais, tem levado os pesquisadores brasileiros a realizar pesquisas básicas para compreensão do processo de degradação e aplicação da tecnologia de acôrdo com a nossa realidade.

A realização de estudos para conhecer e desenvolver todos os aspectos relativos à digestão anaeróbica de resíduos sólidos urbanos possibilitará a otimização da vida útil dos aterros sanitários, o controle mais adequado de poluentes então produzidos, ampliar a possibilidade de produção de gás combustível, bem como desenvolver novas tecnologias de disposição final para o tratamento de outros subprodutos dos sistemas de saneamento, como os efluentes de esgotos sanitários e do próprio lixiviado produzido no aterro.

Dessa forma, o presente trabalho pretende obter dados que possam contribuir para a compreensão do processo de degradação dos resíduos sólidos urbanos, especialmente no que se refere à aceleração do processo por meio do emprego de inóculos. O estudo permitirá ainda avaliar a capacidade de produção de gás combustível durante o processo de degradação, o que trará como consequência a otimização da vida útil dos aterros sanitários.

2 – OBJETIVOS

2.1 - OBJETIVO GERAL

O presente trabalho tem por objetivo avaliar o desempenho de dois tipos de inóculos na aceleração do processo de degradação da fração orgânica dos resíduos sólidos urbanos .

2.2 - OBJETIVOS ESPECÍFICOS:

- Conceber um aparato experimental composto de reator anaeróbio e de um medidor para a produção de gases provenientes da digestão anaeróbia;
- Realizar o aprimoramento metodológico para a elaboração do resíduo padrão compatibilizando com trabalho já desenvolvido;
- Analisar o desempenho dos inóculos na aceleração do processo de degradação da Fração Orgânica dos Resíduos Sólidos Urbanos através da análise quantitativa do gás metano, dos parâmetros físico-químicos do percolado e do percentual de degradação da fração sólida;

3 – FUNDAMENTAÇÃO TEÓRICA

3.1 – DIGESTÃO ANAERÓBIA DE RESÍDUOS SÓLIDOS

A decomposição da Fração Orgânica dos Resíduos Sólidos Urbanos - FORSU em um aterro sanitário e sua conversão em gás metano é um processo que envolve a ação de diversos grupos tróficos de microrganismos. Segundo Barlaz (1989b), esta decomposição ocorre em quatro fases distintas: fase aeróbia (fase I), fase anaeróbia ácida (fase II), fase de produção acelerada de metano (fase III) e fase de produção desacelerada de metano (fase IV).

Fase I, denominada aeróbia, inicia-se já na deposição dos resíduos no aterro, quando então os componentes orgânicos biodegradáveis dos resíduos sólidos começam a sofrer a decomposição microbiana. A decomposição nessa fase ocorre em condições aeróbias, pois uma certa quantidade de ar é aterrada com o resíduo. Oxigênio e nitrato são consumidos e os açúcares solúveis servem como fontes de carbono para as atividades microbianas. O gás é composto praticamente de CO₂ e H₂O, e o pH, em torno de 7,0, cai rapidamente com o consumo do oxigênio e o início da fermentação, (Barlaz 1989b).

Fase II- anaeróbia ácida, inicia-se com a produção significativa de ácidos carboxílicos provocados pela aceleração da atividade microbiana e queda do valor do pH abaixo de 6,0. Segundo Lima (1989), um fator determinante dessa fase é a produção de hidrogênio, que tem como fonte os ácidos orgânicos de cadeia longa. Ainda no início dessa fase, ocorre a hidrólise enzimática dos compostos de massas moleculares mais elevadas (lipídios, proteínas e polissacarídeos), formando compostos mais simples (açúcares, aminoácidos, ácidos graxos), respectivamente, passíveis de serem utilizados pelos microrganismos como fontes de energia. Esses compostos mais simples são então convertidos a outros intermediários, como o acetato, ácidos propiônico e butirico, gás carbônico e hidrogênio (acidogênese). Numa terceira etapa dessa fase, a acetogênese, os compostos intermediários são convertidos a hidrogênio, ácido acético e gás carbônico, este, o principal gás gerado nessa fase. O valor do pH do percolado é reduzido para valores em torno de 5,0 ou

menores, devido ao acúmulo dos ácidos intermediários gerados na fermentação de açúcares, resultado do baixo consumo de ácidos pelas populações metanogênicas e acetogênicas e pela elevada concentração de CO₂ no aterro. A DQO solúvel e a condutividade do percolado aumentam significativamente devido à dissolução dos ácidos orgânicos no percolado. Muitos nutrientes essenciais são também removidos do sistema, através do percolado, se o mesmo não for recirculado, (Barlaz 1989b)

Fase III, caracteriza-se pela produção acelerada de metano até valores máximos de 50 a 70 % (vol/vol), pela queda na concentração de ácidos carboxílicos, pelo aumento do pH, pela pouca hidrólise de sólidos e aumento nas populações de bactérias celulolíticas, acetogênicas e da Archaeas metanogênicas, (Barlaz 1989b).

Em sistemas em equilíbrio esses grupos de microrganismos começam a se desenvolver mais ativamente antes do final da fase anterior. Nesta fase ocorre principalmente a conversão de ácido acético e hidrogênio, produzidos na fase ácida, a CH₄ e CO₂, pelas bactérias metanogênicas. A formação de ácidos e a de metano ocorre simultaneamente, entretanto, a taxa de formação de metano é significativamente menor no início, provocando um acúmulo de ácidos. A taxa de produção de metano eleva-se gradualmente durante essa fase, com a concomitante redução da concentração de ácidos orgânicos e elevação do pH, (Barlaz 1989b).

A Fase IV é determinada pela desaceleração na produção de metano, com o início da bioestabilização da matéria orgânica, e pela intrusão de ar no aterro, sendo denominada "fase de maturação final", (Lima 1989). A taxa de produção de gás diminui, pois muitos nutrientes disponíveis foram utilizados nas fases anteriores, e o substrato remanescente no aterro é de difícil degradação.

Segundo Barlaz (1989b) essa fase é caracterizada pelo decréscimo da taxa de produção de CH₄ e CO₂, permanecendo constante em torno de 60 e 40%, respectivamente.

Esse decréscimo está relacionado com a redução da concentração de ácidos carboxílicos para valores abaixo de 100 mg/L, provocando um aumento do pH do sistema. Em compensação, segundo Barlaz (1998), a taxa de decomposição por hidrólise da celulose e hemicelulose nessa fase é maior que a das anteriores. A produção de metano é controlada

pela hidrólise de sólidos, uma vez que nessa fase não há muita disponibilidade de substrato solúvel (ácidos carboxílicos acumulados).

A duração de cada fase depende de vários fatores, como por exemplo: natureza do resíduo, distribuição espacial dos componentes orgânicos no aterro, disponibilidade de nutrientes, grau de compactação inicial, características químicas do resíduo, fechamento das células e fechamento final do aterro, (Pohland e Harper, *apud* Pinto, 2000).

3.1.1 – Aspectos Microbiológicos

O conhecimento dos fundamentos microbiológicos da digestão anaeróbia sugere um prérequisito necessário à sobrevivência microbiana, ou seja, a existência de água. A água em contato com os resíduos sólidos dissolve diversos constituintes muito rapidamente, formando o percolado, (Lima 1988).

A decomposição de matéria orgânica dos resíduos sólidos urbanos é um processo mediado pela ação microbiana, através da atividade conjunta de vários grupos de microorganismos anaeróbios, cada um executando uma determinada classe de reações a partir de polímeros biológicos como celulose, hemicelulose e proteínas, (Zhender, 1978).

A Figura 3.1 representa o esquema apresentado por Barlaz (1998), que mostra um diagrama das etapas metabólicas envolvidas na digestão anaeróbia de polímeros complexos e a interação dos microrganismos.

 CH_4

Figura 3.1 – Metanogênese (Barlaz, 1998)

Segundo estudo de Barlaz (1989), na primeira etapa verifica-se a hidrólise de polímeros complexos (carboidratos, lipídios e proteínas) pelas bactérias hidrolíticas. Os produtos da hidrólise são açúcares, ácidos carboxílicos de cadeias longas e glicerol. Na segunda etapa, os microrganismos fermentativos transformam os produtos da hidrólise em ácidos carboxílicos de cadeias curtas, como valérico, butírico e propiônico, e também em dióxido de carbono e hidrogênio. O acetato, um precursor direto do metano, é formado em pequenas quantidades. Dependendo das condições do meio, ácido lático ou etanol também começam a ser formados.

Na terceira etapa ocorre a conversão dos produtos da fermentação pelas bactérias acetogênicas, redutoras obrigatórias de prótons. Elas oxidam os produtos da fermentação, incluindo o propionato e butirato, para acetato, CO₂ e H₂. A oxidação dos ácidos propiônico e butirico somente é termodinamicamente favorável sob concentração muito baixa de hidrogênio. Assim, as bactérias acetogênicas, redutoras obrigatórias de prótons, agem somente em associação sintrófica com as utilizadoras de hidrogênio, tais como as hidrogênio, são essenciais para a degradação, pois catabolizam o propionato e outros ácidos orgânicos, maiores que o acetato, álcoois e certos compostos orgânicos para acetato e CO₂. O grupo das bactérias fermentativas responsáveis pela hidrólise e acidogênese, também merece uma atenção especial devido ao importante papel que desempenham na etapa inicial do processo de degradação, com a quebra dos compostos orgânicos complexos (celulose, hemicelulose, pectina, amido, etc).

O papel das bactérias homoacetogênicas tem sido enfatizado como uma importante etapa da digestão anaeróbia, devido ao seu produto final, o acetato, indicado como o maior precursor do metano. Esse grupo de bactérias desempenha no ambiente anaeróbio um papel que sugere uma competição com os organismos utilizadores de hidrogênio, metanogênicos e redutores do íon sulfato, (Vazoller 1986).

Na quarta etapa, metanogênese propriamente dita, ocorre a formação do metano através da descarboxilação do acetato pelas bactérias metanogênicas acetotróficas, e da hidrogenação do dióxido de carbono pelas metanogênicas hidrogenotróficas.

As metanogênicas são organismos dependentes da atividade de outros anaeróbios, principalmente em função de suas necessidades de fontes orgânicas bastante simples. As metanobactérias ocupam a posição terminal na cadeia alimentar complexa anaeróbia, embora elas possam ser substituídas em sua posição por bactérias que utilizam como aceptores de elétrons o nitrato e o sulfato, (Oremland, 1988).

A natureza das interações metanogênicas varia com os tipos de organismos envolvidos, com as substancias químicas do meio e com os compostos orgânicos disponíveis, (Lima, 1988). Essas interações ou parcerias das metanogênicas com outros microorganismos anaeróbios podem ser sintróficas obrigatórias, desde que exista uma dependência mútua de sobrevivência, ou agrupamentos ocasionais, nos quais o crescimento de um ou mais membros não é dependente do crescimento dos outros. (Oremland, 1988).

Esses microrganismos são mais sensíveis que os formadores de ácidos, no que diz respeito às condições ambientais como temperatura, pH e presença de compostos tóxicos. As bactérias fermentativas apresentam alta tolerância para baixos valores de pH (inferiores a 6,0). Segundo Zehnder *et al*, (1981) as diferenças na fisiologia e sensibilidade, podem ser explicadas pelo fato dos organismos metanogênicos pertencerem ao domínio *Archaea*, enquanto que os outros três grupos pertencem ao domínio Bactérias.

O primeiro tratamento taxonômico de metanogênicos data de 1974, utilizando características morfológicas e afinidades por substratos, definindo a família "Methanobacteriaceae" em três grandes gêneros: *Methanobacterium, Methanosarcina* e *Methanococcus*. O gênero *Methanococcus*, com algumas exceções, cresce na presença de hidrogênio, dióxido de carbono e formiato. O gênero *Methanosarcina* é o mais versátil, com habilidade de utilizar hidrogênio, monóxido e dióxido de carbono, acetato, metanol e metalaminas. Várias espécies de organismos metanogênicos como *Methanobacterium thermoautotrophicum, M. bryantii e Methanobrevibacter arboriphilus*, utilizam somente o hidrogênio e dióxido de carbono. Com exceção da *M. thermoautotrophicum*, que é

autótrofa obrigatória, as outras espécies do gênero também utilizam formiato (Oremland 1988).

3.1.2 - Fatores Intervenientes

Embora seja um processo natural, a decomposição dos RSU em aterro sanitário é um processo complexo, em particular pela digestão anaeróbia. Considerando que dentre os microrganismos que participam do processo da digestão os metanogênicos são os mais sensíveis e, sendo estes de extrema importância para o equilíbrio do processo, todas as condições ambientais devem proporcionar meios ideais para o seu desenvolvimento. Como em um aterro os fatores intervenientes são inúmeros, alguns deles serão aqui comentados, em função de sua importância no processo de digestão.

3.1.2.1 – Temperatura

A temperatura tem importância significativa no processo de conversão de resíduos, pois tem a ver com a produção de gás e com a eficiência da atividade microbiana, (Lima, 1988). Existem duas faixas de temperatura nas quais os organismos metanogênicos desenvolvemse naturalmente: a mesofílica (30 a 40°C) e a termofílica (50 a 60°C) (Speece1981).

Em estudo realizado por Brummeler (1993) foi observado que a produção de metano atingiu os valores mais altos com a massa de resíduos submetida à temperaturas entre 40 e 55°C e que, entre 14 e 20°C a taxa de digestão foi muito baixa, com a produção de gás atingindo apenas a 20% do potencial do experimento.

Farquhar e Rovers (1973) observaram uma variação típica de temperatura nos aterros, em função da atividade dos microrganismos, sendo que o pico pode ocorrer na fase inicial ou fase aeróbia e que o gradiente ótimo de produção de gás ocorre entre 30 a 35°C.

No processo de digestão anaeróbia não existe uma relação biunívoca entre aumento de temperatura e aumento da taxa de reação na faixa compreendida entre 30 e 60°C (Zehnder *et al* 1981). Esse comportamento, segundo o autor, pode ser explicado pela análise da

Figura 3.2 que mostra as curvas de atividades relativas, em função da temperatura, de várias espécies metanogênicas, obtidas em diferentes ambientes (digestor de lodo e sedimento de lago).

Figura 3.2 – Atividade relativa de produção de metano em função da temperatura (Zehnder *et al*, 1981)

A temperatura ideal de produção para uma espécie não necessariamente propicia a atividade de outra a exemplo da *Methanobacterium arboriphilus* (30 a 40°C) e da *Methanobacterium thermoautotrophicum* (60 a 70°C).

As archaea metanogênicas, ao contrário dos organismos superiores, não podem controlar sua própria temperatura, estando sujeitas ao meio ambiente, sendo ainda muito sensíveis a mudanças bruscas (Lima, 1988).

Trabalho realizado por Pfeffer (1974) com resíduos sólidos orgânicos, utilizando reatores de mistura completa, na faixa de temperatura entre 35 a 60° C, indicou a ocorrência de processos de digestão otimizados em duas temperaturas distintas, uma a 42°C, considerado na faixa mesofílica, e outro a 60° C, na faixa termofílica, sendo que para este último valor ocorre maior produção gasosa.

Pesquisa realizada por Brummeler (1993), tratando a Fração Orgânica dos Resíduos Sólidos usando reatores anaeróbios, mostrou que a taxa de formação do metano é mais afetada pela temperatura que as de ácidos e de hidrogênio, devido à alta sensibilidade dos organismos metanogênicos às mudanças de temperatura.

3.1.2.2 - Potencial Hidrogeniônico (pH)

A atividade do íon hidrogênio na fase aquosa é um aspecto ambiental crítico que afeta o balanço entre as várias populações de microrganismos, como também a atividade microbiana. Em função do pH e de sua capacidade de crescimento no meio, os microorganismos podem ser classificados em acidófilos, neutrófilos e alcalinófilos. Os primeiros apresentam crescimento ótimo em meio com pH baixo, enquanto os últimos a taxa de crescimento ótima ocorre em meios alcalinos. A maioria dos microorganismos é classificada como neutrófila, com melhor crescimento na faixa de pH próximo de 7.

O pH do meio anaeróbio está diretamente relacionado com as concentrações dos álcalis e dos ácidos no sistema. Bruscas alterações do pH afetam consideravelmente a atividade dos organismos metanogênicos, (Bidone e Povinelli, 1999). Os organismos metanogênicos são os mais sensíveis ao pH e a sua faixa ótima é de 6,6 a 7,4, (Kayahanian *et al* 1971).

Nos aterros sanitários, onde a digestão se processa em meio heterogêneo, o pH varia com o tempo de disposição e com a fase do processo (Lima, 1988).

Ainda segundo esse autor, a produção máxima de metano é observada quando o pH situase na faixa de valores médios (7,0 a 7,2). Valores abaixo de 6,5 ou acima de 7,6 podem inibir a atividade microbiana, reduzindo a produção de gás metano. Com a redução do pH aumenta a concentração de amoníaco e de ácidos graxos no meio. No caso específico da digestão de resíduos sólidos em aterro, recomenda-se prevenir as variações do pH e para tal, pode-se utilizar a adição de lodo de esgoto digerido e estabilizado. (Lima, 1988).

Farquhar e Rovers (1973) consideram os valores ótimos de pH para a produção de metano na faixa de 6,4 a 7,2.

Na pesquisa realizada por Pinto (2000) tratando a FORSU inoculada com percolado de digestor anaeróbio, foi observado produção de gás com o valor de pH de 8,2, mostrando que o pH acima de 7,6 ainda possibilita às atividades metanogênicas, desde que os microorganismos estejam adaptados ao meio.

Quando ocorre um desbalanceamento no sistema anaeróbio, tem-se o acúmulo de ácidos voláteis, caso a capacidade tampão, determinada em sua maior parte pela alcalinidade a bicarbonato, não seja suficiente para a neutralização. Nesse caso ocorrerá queda do pH, provocando um desequilíbrio maior do processo de degradação (Bidone e Povinelli, 1999).

Como a digestão de substratos complexos resulta na produção de ácidos intermediários, é importante que a alcalinidade do sistema seja suficiente para manter o pH na faixa considerada ótima. A alcalinidade pode ser gerada durante o processo de digestão, pela produção de amônia, e caso essa produção não atinja valores suficientes, deve-se adicionar alcalinizantes capazes de aumentar a capacidade tampão do meio (Speece, 1981).

Segundo o mesmo autor, as principais fontes de alcalinidade em um aterro são as proteínas que, ao serem hidrolisadas liberam o gás NH₃, que em solução aquosa e em presença de gás carbônico gera bicarbonato, conforme as reações:

$$NH_3 + H_2O + CO_2 \longrightarrow NH_4^+ + HCO_3^-$$
 (3.2)

Os sais de ácidos orgânicos fracos, tais como o acético, também são responsáveis pela geração de alcalinidade, porém, não utilizável para neutralizar os ácidos gerados na digestão anaeróbia.

$$CH_3COONa + H_2O \longrightarrow CH_3COOH + Na^+ + OH^-$$
 (3.3)

A alcalinidade a bicarbonato é a responsável pelo efeito de tamponamento na faixa de pH situado entre 6,0 e 8,0, conforme as reações abaixo:

$$HCO_3^- + H^+ \longrightarrow CO_2 + H_2O$$
 (3.4)

$$HCO_3^- + OH^- \longrightarrow CO_3^{2-} + H_2O$$
 (3.5)

De acordo com Bidone e Povinelli (1999), o pH não é um bom parâmetro para o controle da metanogênese, pois, quando for observada sua variação, o desequilíbrio do processo já ocorreu.

3.1.2.3 – Substâncias inibidoras da metanogênese

Em função da formação heterogênea dos resíduos sólidos urbanos, podem existir diversas substâncias inibitórias ao processo de digestão anaeróbia, tais como: ácidos, óleos, metais, amônia, antibióticos, compostos de metais alcalinos e alcalinos terrosos, detergentes, etc. A água em excesso infiltrada no aterro pode inibir o processo de digestão pelo lixiviamento das substâncias solúveis passíveis de fermentação e dos substratos ou meios de desenvolvimento dos organismos metanogênicos, (Rees 1980a).

As archaeas metanogênicas são muito sensíveis ao oxigênio, mesmo em níveis muito baixos. Segundo Oremland (1989), o oxigênio causa a dissociação de enzimas da hidrogenase. Em células que crescem sob a limitação de Ferro , tais enzimas se degradam rapidamente quando expostas ao oxigênio. Ainda segundo Oremland (1989), o íon sulfato não tem efeito sobre o desenvolvimento dos organismos metanogênicos, porém os sulfitos e o enxofre elementar são extremamente inibidores da formação de metano nas culturas de bactérias metanogênicas.

Existe controvérsia sobre os limites de toxicidade de sulfetos. Em princípio, concentrações da ordem de 100 a 150 mg/L de sulfetos são consideradas inibitórias aos processos anaeróbios (Foresti, 1987). O limite de operação de um digestor está situado entre 0,5% a 6% de gás sulfídrico na atmosfera do reator.

A formação da amônia dá-se em meios anaeróbios contendo proteína ou uréia, podendo estar presente na forma de íon NH₄⁺ ou de gás NH₃ dependendo do pH do meio. Em pH ácido, há predominância da espécie NH₄⁺, menos tóxica que a espécie NH₃ predominante em meio alcalino. Segundo Foresti, (1987), em reatores anaeróbios, concentrações da amônia da ordem de 50 a 200 mg/L são benéficas ao processo. Na faixa de 200 a 1000 mg/L, praticamente não afetam o processo; de 1100 a 3000 mg/L podem inibir, se o pH for maior que 7,6; acima de 3000 mg/L podem ser consideradas tóxicas para culturas não

adaptadas. Culturas adaptadas podem suportar concentrações maiores que 8000 mg/L, sem que efeitos tóxicos se manifestem.

Os metais pesados são encontrados freqüentemente nos resíduos sólidos urbanos. Quanto mais industrializado for o centro urbano, maior será a contaminação dos resíduos por metais pesados, principalmente na ausência de coletas seletivas ou especiais.

Pesquisa realizada por Leite (1997), com resíduos sólidos, mostrou que no início da degradação os metais são carreados pelo percolado e, à medida que se realiza a recirculação do lixiviado, esses metais ficam retidos na massa de resíduos. Isso indica que o percolado formado no início do processo de degradação pode apresentar uma quantidade significativa de metais.

A concentração de metais pesados, considerada prejudicial às atividades metanogênicas, depende de vários fatores, dentre eles, por exemplo, a presença de sulfeto, responsável pela precipitação de muitos metais, provocando antagonismo (redução do efeito tóxico de uma substância pela presença de outra) (Speece, 1981).

3.1.2.4 – Nutrientes

A atividade microbiana só é levada a efeito a partir da existência no meio de níveis adequados de nutrientes, principalmente no que se refere a carbono, nitrogênio e enxofre (na forma de sulfetos). Este último tem especial importância pelas características de toxidade, quando em excesso, que pode conferir a massa em decomposição, na presença de H₂S ou pela competição pelo mesmo substrato entre as bactérias redutoras de sulfato e as metanogênicas. (Bidone e Povinelli 1999).

Experiências sobre estimulação da metanogênese, realizadas por Speece (1981), demonstraram a importância de nutrientes tais como: Nitrogênio, Enxofre, Fósforo, Ferro, Cobalto, Níquel, Molibdênio, Selênio, Riboflavina e Vitamina B₁₂.

A necessidade nutricional do nitrogênio pode ser determinada através da relação C: N. Segundo Silva 1989 *apud* Pinto (2000), a relação C:N deve ser maior que 20, pois, se for muito menor, o carbono pode ser insuficiente para a conversão do nitrogênio disponível,

sendo o último liberado para a atmosfera; por outro lado, essa relação deve ser menor que 35 para que o processo se desenvolva rapidamente.

Souza (1984) relatou que a necessidade nutricional dos organismos atuantes no processo de digestão anaeróbia é satisfeita quando o substrato possui relações C:N de 30/1 e C:P de 150/1.

Brummeler (1993), estudando as concentrações de nutrientes presentes na biomassa de um reator tratando a FORSU, estimou que a relação ótima de C:N:P é aproximadamente de 24:4: 1.

A determinação da relação C:N baseada na massa seca total da matéria orgânica, pode não ser um parâmetro apropriado para a FORSU porque nem todo carbono orgânico é biodegradável (por ex. organoalogenados como o pentaclorofenol). Entretanto, todo nitrogênio na matéria orgânica está disponível para conversão à amônia, via metabolismo microbiano. Assim, a relação C:N pode ser determinada baseada na quantidade de nitrogênio contida na massa orgânica total e a de carbono no conteúdo da massa orgânica biodegradável, ou seja, massa de material orgânico que pode ser convertido em CO₂ e CH₄, sob condições ambientais ótimas, (Kayahanian *et al.*,1991).

Segundo Speece (1981), a necessidade de nitrogênio no processo anaeróbio é de 6 kg/1000 kg DQO e a de fósforo, de 1/7 desse valor. Esse autor afirma que as necessidades de enxofre para os microrganismos metanogênicos, não foram suficientemente esclarecidas, sendo inclusive difíceis de ser determinadas, pois diversos mecanismos removem sulfetos dos digestores anaeróbios, tais como: perda na forma de H₂S, juntamente com o gás, precipitação por metais pesados, na forma de biomassa sintetizada, além das espécies presentes na parte líquida (HS⁻ e S²⁻).

3.1.2.5 – Umidade

A água tem grande importância no processo de decomposição dos resíduos sólidos em aterros sanitários, pois os microrganismos que participam do processo dependem de um meio aquoso para atingir seu pleno crescimento. A água possibilita a solubilização dos substratos e dos nutrientes requeridos pelos microrganismos bem como sua rápida

propagação no meio sólido. A água também possibilita o transporte de enzimas e de outros compostos metabolizados importantes no processo de decomposição, (Lima, 1988).

Qualquer resíduo gerado no meio urbano, tal como produzido, tem um determinado teor de umidade. Esse varia em função de inúmeros fatores: a composição dos resíduos sólidos, as condições climáticas, as práticas de coleta, etc. Segundo Tchobanoglous *et al.* (1993), os componentes orgânicos do lixo normalmente retêm a maior parcela de umidade. Em segundo lugar vêm os papeis e papelões, trapos e couros.

Segundo Lima (1988), o teor de umidade médio dos RSU Brasileiros está em torno de 60%, porém nos períodos chuvosos este percentual pode elevar-se para 75%.

Estudos realizados por Farquhar e Rovers (1972) mostraram a influência da umidade na produção do biogás. Segundo esses autores, para obter-se a máxima produção de biogás, os resíduos devem apresentar teores de umidade próximos à saturação; teores maiores retardam a produção do gás.

A influência da umidade na geração do biogás foi pesquisada por Rees (1980) e ilustrados nas Figuras 3.3 e 3.4

Figura 3.3- Produção de biogás em função da Umidade

Figura: 3.4 – Efeito da umidade na produção de biogás em aterro sanitário Fonte: (Rees 1980b)

Na Figura 3.4 são demonstrados o efeito da umidade (%) com tratamentos que vão desde a ausência de umidade até o provimento diário por irrigação, que apresenta os melhores resultados quanto a produção de biogás.

Na pesquisa realizada por Kasali *et al.* (1990) foram observados aumentos da produção de metano nas etapas de degradação anaeróbia em substratos contendo umidade crescente na faixa de 60 a 75% e queda quando chegou a 80% de umidade.

3.1.2.6 – Tamanho das partículas

A redução do tamanho das partículas por trituração em veículos de coleta ou em estações de transbordo ou beneficiamento aumenta significativamente a reatividade do processo, devido ao aumento da área superficial de contato do substrato disponível ao ataque enzimático pelos microorganismos. Deve-se considerar, no entanto, que o aumento excessivo da hidrólise de polímeros no percolado pode levar, por sua vez, a uma

fermentação por ácidos voláteis muito rápida, resultando na inibição dos organismos metanogênicos, (Bidone e Povinelli, 1999).

Kayahanian *et al.* (1991) relataram que a redução do tamanho das partículas influencia o processo biológico, destruindo as barreiras naturais que impedem o ataque microbiano dos substratos a serem decompostos e aumentando a área superficial do resíduo para o ataque bacteriano ou atividade química. O estudo realizado por esses autores, utilizando papel com diferentes tamanhos, mostrou um aumento de 25% na produção do gás quando o diâmetro das partículas foi reduzido de 215 mm para 41 mm. Porem, o principal gás observado foi o CO₂.

3.1.2.7 – Potencial de Oxi-redução

Os processos de decomposição da matéria orgânica são realizados através de reações de oxi-redução. Essas são definidas como tendência de um meio de cultura aceitar ou ceder elétrons. A oxidação é caracterizada pela perda de elétrons e a redução, o ganho de elétrons. Como não existem elétrons livres, o processo de troca é simultâneo, ou seja, quando uma substância libera elétrons (oxidação) outra simultaneamente os recebe (redução).

Há uma analogia conceitual entre as reações ácido-base e as de oxi-redução: sendo ácidos e bases definidas, respectivamente, como doadores e receptores de prótons, redutores e oxidantes, ou são como doadores e receptores de elétrons.

A relação termodinâmica do EH com a composição de uma solução é conhecida como a equação de NERNST

$$EH = EH^{0} - \underbrace{0,059}_{n} \cdot log \underbrace{[oxidante]}_{redutor}$$
(3.6)

onde; EH = potencial de oxi-redução

 EH^0 = potencial padrão (t = 25^0 C)

n- número de elétrons envolvidos no processo

Segundo Lima (1988), a produção de gás pode ser determinada empiricamente através da medição direta do EH. A decomposição dos resíduos sólidos em um aterro sanitário tem início com valores do potencial de oxi-redução (EH) positivos (+200mV) correspondentes à fase aeróbia. À medida que as reações ocorrem, o valor do potencial vai diminuindo. O autor observou que a produção de metano ocorreu em valores de EH negativos (-100 a -600 mV), e a fase metanogênica ocorreu em valores de potenciais na faixa de -300 a -600 mV, demonstrando que os organismos metanogênicos requerem meios reduzidos para o seu crescimento.

O crescimento dos organismos metanogênicos só ocorre em potencial de oxi-redução inferior a –330mV. (Zehnder 1978).

Em estudo realizado por Farquhar e Rovers (1973), foram observadas condições ótimas para a produção de CH₄ com Eh abaixo de –200mV.

As causas de erro da medida de potencial de oxi-redução (EH) estão relacionadas à possibilidade de exposição da amostra ao oxigênio durante a coleta e a medida, como também a incrustações no eletrodo; por esses motivos, as medidas de potencial de oxi-redução (E_H) devem ser feitas em células fechadas e com limpezas intermitentes do eletrodo, (Pinto 2000).

3.2 - EXPERIÊNCIAS COM DIGESTÃO ANAERÓBIA

Os sistemas conhecidos, tanto a nível de laboratório quanto a nível industrial, podem ser separados em sistemas de uma ou sistemas de duas ou mais fases. Em sistemas de uma fase (em batelada), todas as transformações bioquimicas envolvidas na digestão anaeróbia são realizadas simultaneamente e em um único reator, enquanto nos sistemas de duas ou mais fases, as reações ocorrem seqüencialmente e, no mínimo, em dois reatores.

3.4.1 – Processos utilizados para aceleração da metanogênese.

Brummeler (1993) relatou diversas experiências que possibilitam a aceleração no processo de metanogênese, em aterro sanitário, mostrando que o processo de degradação pode ser acelerado por duas vias: a primeira, denominada pré-tratamento, favorece a decomposição

no início da disposição, através da utilização de algumas técnicas como a trituração do lixo para aumento da superfície específica e a inoculação com lodo de esgoto; a segunda, denominada pós-tratamento, utiliza os microrganismos da parte mais antiga do aterro para tratar a parte mais recente, através da reciclagem do percolado (cru e biologicamente tratado) e adição de soluções tampão e de nutrientes.

A partida do processo da digestão anaeróbia em biorreatores de batelada de RSU passa por características típicas de desbalanceamento entre produção e consumo dos produtos formados: ácidos, hidrogênio e metano. Buscando alcançar uma digestão balanceada, vários procedimentos de partida da digestão têm sido apresentados na literatura. Brummeler (1993) reuniu os principais métodos de partida, realizados tanto em aterros, como em reatores, podendo-se destacar:

- Adição de inóculo metanogênico Normalmente são usados como inóculos os seguintes materiais: lodo de esgoto digerido, lodo de UASB, estrume digerido e resíduo digerido. Por outro lado, Barlaz (1998) relatou que o uso do lodo de esgoto como inoculo no processo degradação dos resíduos sólidos, estimula o acúmulo de ácidos carboxílicos e, conseqüentemente requer o uso de quantidade substancial de tampão.
- Adição de tampão Geralmente usada quando a taxa de formação de ácidos excede a do seu consumo, e a capacidade de tamponamento natural não é suficiente para manter o pH ao redor de 7,0.
- Recirculação e neutralização envolvem adição de umidade suficiente no resíduo durante o preenchimento do reator, permitindo drenagem de líquido no sistema de coleta. Esse líquido, neutralizado e recirculado, promove a mudança da fase anaeróbia ácida para a de produção do metano em 1 ou 2 meses.
- Diluição do resíduo pela adição de composto, ao resíduo sólido urbano, diminui a formação de ácidos, resultando em processos mais equilibrados e dispensando a adição do inóculo metanogênico.

- Pré-tratamento aeróbio pode reduzir a taxa de produção de ácidos durante o subsequente processo da digestão, pois se acredita que, nessa etapa, a fração facilmente degradável será processada, permanecendo a fração com baixa taxa de biodegradação para ser processada em uma segunda etapa, por degradação anaeróbia.
- Separação espacial das produções de ácidos e de metano, combinada com a reciclagem de chorume - Isso pode ser feito carregando-se o digestor com camadas separadas de substrato e inóculo metanogênico.

3.4.2 – Inoculação em escala experimental

Apesar dos estudos e experiências realizadas até o momento, não foi definida uma relação ótima de percentagem de inóculo nem mesmo o melhor inóculo a ser adicionado a FORSU para acelerar o processo de digestão anaeróbia. A literatura sobre digestão anaeróbia de resíduos sólidos muitas vezes pode parecer controversa ou difícil de ser resumida; uma razão para isso é devida à dificuldade de se encontrar trabalhos com semelhanças experimentais, dada a grande diversidade de projetos que, com larga variabilidade, diferem na composição do resíduo e na escolha de parâmetros operacionais (tempo de retenção, quantidade de sólidos, tipo de mistura, recirculação , inoculação, número de fases e estágios, temperatura, etc.). O conhecimento existente é empírico e certamente não existe consenso quanto ao desenvolvimento ótimo de um reator para tratar resíduos sólidos urbanos (RSU). (Mata-Alvarez, 2002, apud Picanço 2004).

Pesquisa realizada por Stone *apud* Lima (1988), em aterro sanitário utilizando como inóculo lodo de esgoto sanitário mostrou que, em média, pode-se atingir bons resultados com a relação inóculo/lixo variando de 0,48 a 1,45 litros de inóculo por quilograma de resíduos (+- 80% de umidade). Segundo Pinto (2000), a relação de L / Kg RS da forma como apresentada é muito frágil e não expressa nenhuma correlação que garanta o equilíbrio do sistema, uma vez que se pode empregar grandes quantidades de inóculo contendo baixos valores de SV ou inóculo com alta quantidade de microrganismos da fase hidrolítica fermentativa e até mesmo inóculo não adaptado ao resíduo a ser degradado.

Em pesquisa sobre a digestão anaeróbia de resíduos verdes, compostos por vegetais, frutas e podas de jardim, Brummeler (1993) testou três tipos de inóculos: lodo granulado de um reator UASB, estrume de porco digerido e resíduo verde digerido. No primeiro caso, a

maior taxa de sólido total inóculo/ sólido total do meio de reação (I) possível de ser utilizada (concentração de sólidos totais acima de 35%) foi de 0,09, o que resultou em um processo de digestão balanceada, porém, o tempo de digestão foi prolongado.

No caso do estrume de porco, foi possível utilizar uma taxa de inóculo sólido/ sólidos totais inicial de 0,20, uma vez que esse tipo de inóculo apresentou altas concentrações de sólidos totais. Além disso, esse inóculo apresentou uma população metanogênica mais adaptada a condições extremas do que o lodo granulado, o que resultou em uma rápida partida, sem a presença de H₂ no biogás. O tempo de digestão foi de 43 dias.

O melhor resultado foi obtido com o resíduo digerido de vegetais , frutas e podas de jardim como inóculo, visto que a população bacteriana já estava adaptada às condições desse resíduo. Foram testadas duas taxas de inóculo (I = 0,2 e 0,5), sendo obtida com I = 0,5, uma partida equilibrada , com o tempo de retenção de apenas 28 dias. As atividades metanogênicas máximas (CNTP) dos dois inóculos foram muito similares. Entretanto, por razões desconhecidas, o resíduo verde digerido exigiu um fator de inóculo maior que 0,2, para resultar em partida semelhante à obtida com o estrume de porco .

Segundo Brummeler (1993), o valor de I (Sólido total do inóculo/ sólido total do meio de reação) deve ser alto para prevenir a forte inibição na partida, devida às altas concentrações de ácidos orgânicos (> 10 g/l) e ao baixo valor de pH (< 6,0), porém deve-se levar em consideração o teor de umidade do meio de reação.

Leite *et al* (2003) utilizaram o tratamento anaeróbio da FORSU com lodo de esgoto sanitário, na proporção de 80 e 20% em reatores de batelada, tomando como parâmetros respectivamente os sólidos totais e os sólidos totais voláteis. Foi utilizado um substrato com 20% (percentagem em pêso) de sólidos totais. O sistema experimental foi monitorado por 270 dias. A análise dos resultados indicou uma redução de 89% dos sólidos totais voláteis, o que mostra ser possível utilizar a digestão anaeróbia para bioestabilizar a FORSU.

Em pesquisa realizada por Baldochi *apud* Pinto (2000) foi utilizado, como inóculo o percolado metanogênico de um aterro sanitário (0,56 L/kg de resíduo, com teor de ST da FORSU de 28% e teor umidade da mistura de 67%), neutralizado com hidróxido de sódio

até pH 7,0. Os resultados obtidos nesse experimento indicaram a aceleração da digestão anaeróbia, isto é, a etapa metanogênica foi atingida mais rapidamente quando comparada com o reator com água no lugar do inóculo, além disso o pH permaneceu estável, próximo ao valor neutro, e foi observado maior produção de metano.

Pinto (2000) realizou estudos sobre a digestão anaeróbia da FORSUDp empregando 18 biorreatores operados em regime de batelada. Seis biorreatores foram preparados, em duplicata, com o meio de reação constituído da mistura de 200 g da FORSUp e quantidades distintas de cada tipo de inóculo, de modo a resultar em um fator de inóculo de 0,2 (sólidos totais do inóculo / sólidos totais da mistura de inóculo e FORSUp). Foi utilizado como inóculos percolado de aterro sanitário com oito anos de idade. O estudo concluiu que a degradação anaeróbia da FORSUp apresentou partida rápida e equilibrada, com imediata e elevada produção de metano e degradação de ST superior a 50%, em um período de 150 dias, atingindo a estabilização na produção de metano após 50 dias do início do processo de digestão com a composição do gás metano em torno de 60% do biogás

Estudos realizados por Karnchanawong e Tipsuntornsak (2003), utilizando três tipos de resíduos com 9,08, 15,5 e 10,6% de ST, inoculados com lodo de esgoto anaeróbio apresentaram redução de sólidos voláteis em 79,2, 80,1 e 82,2% respectivamente, e uma produção de gás de50 a 60% de CH₄ no 70° dia, totalizando de 101, 131 e 136 litros de CH₄ por Kg de resíduos secos.

3.4.3 - Biorreatores Anaeróbios em escala real

Os sistemas de tratamento apresentados a seguir utilizam a FORSU separada em uma estação de triagem ou separadas na origem . Em todos esses sistemas inclui-se como prétratamento : separação magnética, triturador, gradeamento, bombeamento, separação gravitacional. Como pós-tratamento , a seqüência típica envolve o desaguamento mecanizado, maturação aeróbia e tratamento da água residuária, mas existem alternativas como esquemas de desaguamento biológico ou separação mecânica a úmido por meio dos quais podem ser recuperados vários produtos.

São dois os principais parâmetros que diretamente influenciam a escolha e classificação dos projetos: número de estágios (fases) e concentração de sólidos totais (%ST) no

fermentador. Estes parâmetros influenciam no custo total, desempenho e credibilidade do processo de digestão.

Há dois principais tipos de processos industriais de digestão anaeróbia para degradação da FORSU, diferenciados pelo teor de umidade: "úmida" (10 a 15% de matéria seca) e "seca" (24 a 40% de matéria seca). (Picanço, 2004). O teor de umidade é conseguido com ou sem o acréscimo de água, respectivamente.

Luning et al (2003) compararam dois sistemas: a "seco" Valorga e Vagron. (Figuras 3.5 e 3.6). Ambas podem ser consideradas tecnologias avançadas para a digestão anaeróbia da FORSU sendo a produção de gás praticamente idêntica. É produzido muito mais efluente líquido no sistema "úmido", como esperado, mas isso é compensado por uma menor quantidade de resíduo para a disposição final. O sistema Vagron apresenta taxa de carregamento orgânico maior, requerendo reatores de menores volumes em comparação com o sistema Valorga.

Os sistemas podem ainda ser separados em sistemas de uma, duas ou mais fases. As transformações bioquímicas que, em primeira fase podem ser separadas em hidrólise, acidificação e liquefação, em segunda fase, na formação de acetato, hidrogênio e dióxido de carbono, posteriormente são transformados em metano. Em sistemas de uma fase, todas essas transformações são realizadas simultaneamente e em um único reator, enquanto nos sistemas de duas ou mais fases, as reações são realizadas seqüencialmente e, no mínimo em dois reatores

Figura 3.5 – Reatores do Sistema Vagron – Tilburg, Holanda

Figura 3.6 – Reatores do Sistema Valorga

Segundo De Baere (2000), na Europa, aproximadamente 90% das estações em operação têm sistemas de uma fase, divididas segundo suas condições operacionais , a "seco" e a "úmido". A preferência parece recair sobre os sistemas de uma fase dado seu desenvolvimento simples e por apresentarem, com menor freqüência, falhas técnicas e, principalmente, pelo menor custo de investimento. Ainda segundo De Baere (2000) a quantidade de resíduos sólidos urbanos tratados por digestão anaeróbia passou de 122.000

ton/ano em 1990 para mais de um milhão de toneladas em 2000, demonstrando o avanço no uso desta tecnologia.

A revisão bibliográfica nos mostra um crescimento significativo no conhecimento do processo de digestão anaeróbia, resultado de seu potencial uso como alternativa tecnológica para o tratamento da FORSU, como tem sido empregado na Europa. Todavia, por razões comerciais, a maioria dos trabalhos publicados no exterior, omitem detalhes metodológicos e de processo o que inviabiliza o entendimento do funcionamento dos reatores e da bioquímica e da microbiologia que ocorrem no processo da digestão.

No Brasil os estudos sobre a digestão anaeróbia tiveram um crescimento significativo somente nos últimos dez anos. As pesquisas aqui realizadas ainda se encontram em um estágio básico de conhecimento onde procura-se aliar a aplicação desta tecnologia à realidade brasileira.

Neste sentido buscar-se-á com a presente pesquisa, dados e informações que sirvam como ferramentas para aplicação da tecnologia da digestão anaeróbia à nossa realidade.

4 – METODOLOGIA

O presente trabalho, de caráter experimental, foi desenvolvido no Laboratório de Análise de Água do Departamento de Engenharia Civil e Ambiental da UnB.

Seu desenvolvimento envolveu as etapas de:

- construção e testes com 18 biorreatores;
- construção de aparato para medição do metano;
- coleta e avaliação dos inóculos ;
- elaboração da FORSUp e preparação do meio de reação e
- acompanhamento do pocesso de degradação.

4.1 – APARATO EXPERIMENTAL

4.1.1 – Construção dos Biorreatores

Para realização dos ensaios construiu-se 18 biorreatores em PVC. A escolha por este material se deve ao fato de o mesmo ser inerte a ação de diversos ácidos, presentes na digestão anaeróbia, além de ser um material de fácil manipulação. A sua utilização para estes fins não é muito difundida, o que acarretou alguns problemas na confecção de peças e equipamentos, como a soldagem das diversas peças e o encaixe das peças de metal.

Uma outra vantagem é que a tubulação de PVC pode ser utilizada para pressões de aproximadamente 400 kPa que é uma pressão considerável frente ao projeto que foi realizado. Foi estabelecido um volume de 2,65 litros, o que, em um tubo de 150 mm de diâmetro, resultou em um reator com 15 cm de altura, atendendo bem as necessidades do experimento.

Aparato semelhante foi utilizado na pesquisa de Picanço (2004), sendo que esse autor utilizou um reator com uma seção de 21cm de um tubo de 150 mm de diâmetro, com capacidade total de 3,65 litros.

4.1.1.1 – Descrição do reator

Figura 4.1 – Projeto do Reator - corte transversal

Cada reator foi construído, empregando uma seção 15 cm de tubo PVC de 150 mm de diâmetro e dois caps correspondentes. No cap superior foram feitos dois furos para se acoplarem dois bicos injetores conectados a registros para a coleta do biogás, como se pode observar nas Figuras 4.1 e 4.2.

Figura 4.2 – Conexão Bico injetor e registro

Figura 4.3 - Reator

Na parte externa do cap superior, foram soldados discos de PVC com 5 mm de espessura e 4,0 cm de diâmetro, (Figuras 4.1 e 4.3) com o intuito de aumentar a área de contato entre a rosca do bico injetor que transpassava o disco e a parede superior do cap, melhorando assim sua fixação. Tais discos foram confeccionados a partir de um cilindro maciço de PVC com 4,0 cm de diâmetro Nos bicos injetores aplicou-se fita veda-rosca e cola de PVC, garantindo então a estanqueidade do cap superior em relação aos orifícios feitos.

No interior dos caps foram utilizadas arruelas de borracha para fazer a vedação entre o tubo e os caps, além dos anéis de vedação de borracha dispostas nas ranhuras dos caps.

Para que os caps não se deslocassem devido à pressão interna foram providenciados dois anéis em aço com 3 mm de espessura e um diâmetro interno de aproximadamente 155mm. Esses anéis são encaixados na parte externa dos caps sendo presos por quatro barras rosqueadas, conforme é apresentado na Figura 4.4.

Figura 4.4: Detalhe do anel de segurança encaixado no reator.

4.1.1.2 – Testes com os reatores

Antes da preparação do Meio de Reação todos os 18 reatores foram testados com pressões internas de 40 m.c.a. pela injeção de ar comprimido. Esta condição era mantida por três dias, sendo mergulhados em um balde de água duas vezes ao dia (Figura 4.5) e os eventuais vazamentos sanados com a colocação de araldite nos pontos observados.

Figura 4.5 – Teste com reator

4.1.2 – Aparato para medição dos gases – Mariotte

Para a medição da quantidade de metano produzido foi montado um aparato que segue a lei de Boyle-Mariotte, ou seja, o produto da pressão pelo volume de um gás é uma constante se a temperatura se mantiver inalterada. A Figura 4.4 apresenta o esquema do aparato empregado para a medida do metano.

Figura 4.6 : Esquema de montagem do aparato de mariotte.

Figura 4.7: Aparato de medição de gás- Mariotte

Como o objetivo era o de realizar a medição do gás metano, CH₄, alguns procedimentos foram incorporados ao aparato experimental.

O primeiro deles foi a introdução no primeiro frasco de uma solução contendo NaOH a 3% de volume, cujo objetivo é dissolver o CO₂ presente no biogás . Desta forma, ao passar o biogás pelo frasco 1, o CO₂ fica retido na solução, possibilitando a passagem dos outros gases, como H₂ e o metano. Para evitar a formação de grandes bolhas de gás na entrada do frasco 1, o que dificultaria a dissolução do CO₂ na solução de NaOH, foi introduzido um difusor de gás na saída da mangueira que interligava o reator e o frasco 1. Como no processo de degradação os principais gases formados são o CO₂ e o Metano, considerou-se outros gases desprezíveis na medida dos gases que passaram pelo frasco 1. Desta forma, os gases que passaram pelo frasco 1 eram injetados no frasco 2, expulsando a água presente no mesmo pela diferença de pressão entre o interior do frasco e o ambiente externo até que o equilíbrio manométrico fosse restabelecido. Assumindo que o volume de água expulso é igual ao volume de gás que foi injetado e desprezando-se outros gases, obteve-se o volume de CH₄ produzido.

No momento da medição o reator era retirado da câmara a 35°C. O registro de controle de pressão era conectado a um barômetro para leitura e anotação da pressão interna. Uma mangueira ligada ao Mariotte era conectada ao registro de saída de gases, quando então se abria este registro para liberação dos gases, que primeiro passavam pelo frasco 1 e em seguida pelo frasco 2, para a quantificação da coluna de água transportada para um becker e medida numa proveta de 1,0 litro, conforme apresentado na Figura 4.5. A pressão atmosférica e a temperatura ambiente eram medidas por um barômetro estacionário e por um termômetro, respectivamente, antes e ao final de todas as medições.

4.1.3 – Correção estequiométrica dos gases

Em função das diferenças de temperatura e pressão a que estão submetidos os gases no interior dos reatores, em relação a pressão atmosférica — P_{atm} e à temperatura ambiente T_{amb} foi necessário realizar a correção estequiométrica do volume desses gases no momento da medição. Os reatores estavam com a pressão interna normalmente superior à atmosférica e

submetidos a uma temperatura constante de 35+- 1°C em câmara com temperatura controlada (Figuras 4.7 e 4.8). Essa câmara tinha suas paredes revestidas com lâminas de isopor e dispunha de um sistema eletrônico de controle de temperatura composto de um aquecedor, um circulador de ar e um termostato.

Figura 4.8- Regulador eletrônico de temperatura

Figura 4.9 – Interior da câmara com reatores

Desta forma, partindo da equação 4.1 (baseada no Modelo de Dalton) define-se a relação 4.2 onde encontrase o V1 para calcular o volume de biogás subtraindo o volume do *Head Space* (equação 4.3)

$$\begin{array}{ccc}
\underline{P1 \ V1} & = & \underline{P2 \ V2} \\
\underline{T1} & & \underline{T2}
\end{array} \tag{4.1}$$

$$V1 = \frac{P2 \ V2 \ T1}{P1}$$
 (4.2)

A – Volume de biogás:

Volume de Biogás =
$$V1 - V2$$
 (4.3)

Onde: P1 pressão atmosférica na CNTP (760 mmHg)

V1 volume de biogás

T1 Temperatura na CNTP (273 K)

P2 pressão medida no reator somada a pressão ambiente

V2 Volume do Head Space do reator (ml)

T2 temperatura do reator (35 + 273 = 308 K)

A subtração do V2 (equação 4.3) é necessária pois o volume de gás dentro do reator , no *Head Space*, deve ser desprezado, caso contrário seria super estimado o volume final de biogás. Seria o caso quando a P2 igual a zero. Sem essa subtração, pela equação (4.2), o V1 seria igual ao volume do *Head Space* (V2).

$$VCH_4 = \underbrace{\begin{array}{c} P2\ V2\ T1 \\ T2\ P1 \end{array}} \eqno(4.4)$$

Onde: P1 pressão atmosférica na CNTP (760 mmHg)

V1 volume de Metano

T1 Temperatura na CNTP (273 K)

P2 pressão medida no reator somada a pressão ambiente

V2 Volume medido na proveta (ml)

T2 temperatura ambiente + 273 K

4.2 – ETAPAS DE PREPARAÇÃO DO MEIO DE REAÇÃO

4.2.1 - Elaboração da Fração Orgânica dos Resíduos Sólidos Urbanos Padrão

A diversidade de origem dos resíduos sólidos faz com que os mesmos apresentem composição com variabilidade significativa, tanto quantitativa como qualitativa. Estas variações são geralmente em função da situação geográfica, dos hábitos da população, do clima, das mudanças tecnológicas, entre outras. (Picanço 2004).

Castilhos Junior (1988) ressaltou que a variedade e a complexidade dos resíduos sólidos é uma questão delicada do ponto de vista experimental, devido à dificuldade em se reproduzir os experimentos quando se utiliza, como substrato, pequenas quantidades de resíduos. Além disso, a sua aplicação fica limitada para estudos em diferentes locais e momentos. Dessa forma, a coleta aleatória de RSU em locais de disposição, com finalidade destes serem utilizadados em estudos que exijam padronizão, fica impossibilitada pela sua heterogeneidade.

Buscando obter amostras de resíduos sólidos urbanos com composição e granulometria definidas, que pudesse ser reproduzido e repetido em quantidades e momentos diferentes, reduzindo assim a variabilidade de resultados experimentais, a FORSUp empregada neste estudo baseou-se em método de Pinto (2000). A pesquisadora desenvolveu uma metodologia para elaboração de um resíduo padrão em laboratório, cujos percentuais e constituição são apresentados na Tabela 4.1.

Tabela 4.1– Valores percentuais dos elementos utilizados na elaboração da FORSUp

Categoria/Elemento	% em massa da categoria na forsup	% em massa do componente na forsup
FRUTAS	30,0	
Casca/bagaço Laranja		17,8
Casca Banana		3,8
Pedaços Tomate		4,6
Casca Melancia		3,8
Legumes Crus	11,0	
Casca de Batata		5,5
Casca/pedaços Cebola		2,3
Casca de Abobrinha		1,6

Casca/pedaços Mandioca		1,6
Legumes Cozidos	4,0	
Casca/pedaços Batata		1,3
Pedaços Mandioca		2,7
Hortaliças	7,2	
Alface		3,8
Repolho		1,9
Couve-flor		1,5
Pão/Bolo	3,0	
Pão		3,0
Carne	2,0	
Pele/pedaços de frango cru		1,3
Pedaços carne de boi crus		0,7
Café	3,5	3,5
Folhas	10,8	
Seca		9,2
Verde		1,6
Queijo	0,4	0,4
Arroz	11,2	11,2
Feijão	4,7	4,7
Macarrão	2,2	2,2
Osso	1,8	
Frango		1,8
Outros	8,2	
Papel Úmido		5,0
Casca de ovo		3,2

(Pinto, 2000)

Empregando a mesma metodologia utilizada por Pinto (2000) baseada em estudos sócio-econômicos foi realizado estudo quanto à composição dos RSU de duas cidades do Distrito Federal, Ceilândia e Taguatinga, no sentido de confirmar os dados e valores empregados na elaboração da FORSUp. Foi realizada amostragem nos RSU de 16 domicílios do DF, sendo 8 da Ceilândia e 8 de Taguatinga, cidades vizinhas, porém com diferenças quanto ao padrão sócio econômico .

A caracterização das amostras coletadas foi realizada durante três semanas, entre os dias 20 de julho e 7 de agosto de 2004, recolhendo diariamente todos os RSU produzidos nesses domicílios. Por amostragem aleatória, de no mínimo de 4 amostras diárias, foram realizadas a classificação quanto à composição física dos RSU e qualitativa da fração orgânica encontrada.

Considerando que a diferença nos percentuais dos componentes observados nos resíduos sólidos objeto da pesquisa no DF e os obtidos por Pinto, não foi significante, optou-se por preparar o resíduo padrão em laboratório de acordo com a metodologia descrita por Pinto (2000).

A Fração Orgânica dos Resíduos Sólidos Urbanos padrão – FORSUp foi fracionada em tamanhos de aproximadamente 2,5 cm

Uma vez fracionados e misturados, os componentes foram acondicionados em bandejas plásticas por um período de 3 dias , simulando o tempo entre a produção dos resíduos sólidos nos domicílios e seu recolhimento pelos serviços de limpeza.

Figura 4.10 – Preparo da FORSUp

Figura 4.11 – FORSUp preparada

4.2.2 – Coleta dos Inóculos

Os inóculos definidos para a avaliação foram o lodo de esgoto digerido, e o percolado de resíduos sólidos urbanos aterrados. O Percolado de RSU foi coletado no aterro controlado da Via Estrutural em uma célula com mais de dois anos após seu fechamento, retirando-se quatro amostras de 1,5 litros em pontos diferentes da célula. Destas foram retiradas 700 a 800 ml, compondo uma amostra final de 3,0 litros que foi usada para as análises e para a inoculação. O Lodo de Esgoto sanitário foi obtido na Estação de Tratamento de Esgotos Norte da CAESB. A partir de duas amostras iniciais de 2,5 litros coletadas do digestor anaeróbio secundário, foram então retirados 1,5 litros de cada amostra compondo a amostra final de 3,0 litros usada para análises de caracterização e para a inoculação.

Todas as coletas foram realizadas uma semana antes da inoculação e preparação do Meio de Reação permitindo assim a realização das análises de caracterização que permitiram o cálculo dos Fatores de Inóculo – FI, quantidades de FORSUp, Sólidos Totais da mistura e conseqüentemente, do Meio de Reação em cada reator.

Alguns estudos como Brummeler (1993), Pinto (2000) e Picanço (2004) apresentam bons resultados da digestão anaeróbia quando trabalhando com Fator de Inóculo na faixa de 0,3. Todavia, os cálculos indicaram que empregando tal fator resultaria em um meio de reação com valor de umidade muito alta, caracterizando a digestão a úmido. Como um dos objetivos é buscar parâmetros da degradação que possa ser empregado no processo de degradação de um aterro sanitário (digestão a seco), e considerando que umidade acima de 80% é operacionalmente inviável nesse caso, procurou-se fixar a umidade em torno de 70%. Desta forma, O volume de inóculo adicionado à Fração Orgânica foi calculado de modo a atingir 70% de umidade, o que resultou em três diferentes Fatores de Inóculo – FI, de 0,02, 0,015 e 0,01, sendo o FI definido como:

$$FI = \underbrace{ST_{I}}_{ST_{I} + ST_{R}}.$$
 (4.5)

Sendo : ST_I – Sólidos Totais do Inóculo (g) ST_R – Sólidos Totais do Resíduo (g)

4.2.3 – Definição das massas de FORSUp e Inóculos

O meio de reação empregado em cada biorreator foi preparado separadamente misturando a FORSUp com cada tipo de inóculo e adicionando Na CO₃ como tampão na proporção de 0,06 Kg/Kg ST, conforme indicado por Brummeler, 1993.

Em função da densidade observada da FORSUp de 0,73 Kg/L e visando manter um *head space* de 40% do volume do reator, foi calculado o volume útil ocupado pelo meio de reação que resultou em 1590 ml, correspondendo a 1161gramas do meio de reação (FORSUP + Inóculo).

A partir dos valores conhecidos dos Sólidos Totais dos Inóculos e da FORSUp e da definição da quantidade total do Meio de Reação para os reatores, foi calculado a quantidade de inóculo e FORSUp para cada reator de forma a atingir valores de FI: 0,02, 0,015 e 0,01.

Exemplificando para o cálculo do volume de inóculo no caso do Percolado de aterro com FI de 0,02 :

$$FI = \frac{STi}{STi + STr}.$$
(4.6)

$$0.02 = \frac{0.014 \text{ x Vi}}{(0.014 \text{ x Vi}) + (0.35 \text{ x Mf})}.$$

Sendo: STi – Sólidos Totais do inóculo (g),

STr – Sólidos totais da forsup (g)

Vi – Volume de inóculo (ml)

Mf – Massa da FORSUp

O Volume de inóculo foi calculado atribuindo-se valores a Massa da FORSUP - Mf de forma que o total atingisse o volume útil de 1161 gramas. Desta forma foram definidos os valores de Inóculos e FORSUp para todos os reatores. A Tabela 4.2 apresenta dados da quantidade da FORSUp, Inóculo e tampão empregado em cada reator.

Tabela 4.2 – Definição de Massas de FORSUp e Volumes de Inóculos

		ST MR				Tampão
	FI	(%)	Mf (g)	Vi (ml)	Total (g)	Na $CO_3(g)$
Percolado	0,02	25	748	413	1161	17,4
	0,015	27	812	349	1161	18,8
	0,01	30	907	254	1161	20,9
Lodo	0,02	27	886	275	1161	18,8
	0,015	28	962	199	1161	19,5
	0,01	30	1020	141	1161	20,9

Como da densidade dos dois inóculos éra praticamente igual a 1,0 o Vi em ml pode ser calculado como massa em gramas para totalizar 1161g.

Para que não houvesse grande variação nos teores de Sólidos Totais do Meio de Reação, formados pelas misturas de inóculos e FORSUp, definiu-se um límite de 25 a 30%.

Conhecidos os valores de Vi e Mf procedeu-se a montagem dos 18 reatores.

Para cada inóculo listado e cada FI, empregou-se dois reatores (duplicata) e um reator branco (testemunha) contendo somente e FORSUp e água destilada em vez de inóculo, conforme mostra o esquema apresentado na Figura 4.14.

4.2.4 – Procedimento de preenchimento dos reatores

No procedimento de preenchimento dos reatores com o MR cada amostra era preparada individualmente. Primeiro pesava-se a quantidade de FORSUp, misturava-se com o tampão e em seguida media-se o volume de inóculo numa proveta sendo realizada a mistura numa bandeja plástica para finalmente acomoda-la no reator. Na montagem dos reatores, Figuras 4.12 e 4.13, todo Meio de Reação era colocado em um saco plástico de 3 litros, como mais uma forma de evitar vazamentos e facilitar o manuseio. Ainda nas Figuras 4.12 e 4.13 observa-se o MR já depositado no reator onde era então, comprimido com um disco de madeira para simular a compactação dos aterros

Figura 4.12 – Meio de Reação - montagem do reator

Figura 4.13 – Compactação do Meio de Reação

Figura: 4.14 – Esquema de distribuição do meio de reação

Em seguida, com auxílio de um instrumento de madeira com diâmetro levemente inferior ao do reator, procedeu-se a sua compactação.

Realizado o preenchimento dos reatores, estes foram fechados , os anéis de aço colocados e aparafuzados e então procedeu-se à troca de atmosfera por N_2 , empregando-se uma mangueira que era conectada a um dos registros e permitindo a abertura do outro promovendo assim a a circulação do gás por 2 minutos. Em seguida fechavam-se os 2 registros. Realizada esta última operação os reatores foram colocados na câmara com temperatura controlada a $35 + 1^{\circ}$ C.

4.4 – PARÂMETROS FÍSICO-QUÍMICOS AVALIADOS

Foram consideradas três fases de análises: a Primeira,antes de iniciar-se o ensaio, onde foi avaliado os parâmetros físico químicos dos inóculos , da FORSUp e do Meio de Reação, parâmetros esses necessários às definições de massas e volumes empregados no experimento; a 2ª fase durante o decorrer do ensaio onde foi monitorizada a produção gasosa e a 3ª fase onde se realizou novas análises do meio de reação e do percolado produzido no processo de digestão.

A Tabela 4.3 apresenta as análises realizadas para cada componente do estudo nas três fases de andamento ou seja: FORSUp; Inóculo (I) e Meio de Reação (MR)

Tabela 4.3 – Análises realizadas.

Parâmetros	In	ício)	Durante	Final
	Forsup	Ι	M.R.	M.R.	M.R.
Sólidos Totais	X	X	X		X
Sólidos Totais Voláteis	X	X	X		X
DQO	X	X	X		X
рН		X	X		X
N – Total		X			
N – Amoniacal		X			
Alcalinidade Total		X			
Alcalinidade à Bicarbonato		X			
Alcalinidade a ácidos Voláteis		X			
Fósforo Total		X	·		
Gases			·	X	•
Aparência geral					X

Legenda : FORSUp – Fração orgânica dos resíduos sólidos; I – Inóculos ; M.R. – Meio de reacão.

As análises da 1ª fase de ST, STV, pH, N-Total, N- Amoniacal e Fósforo, foram realizadas de acordo com as metodologias da APHA- American Public Health Association e

publicados na 21° edição do *Standard Methods for the Examination of Water and Wastewater* (APHA/WEF, 2002).

As análises de DQO, dos inóculos expressa em g/Kg de Resíduo Seco foram realizadas com base nas recomendações estabelecidas pelos pesquisadores do PROSAB, Ediotal 4, Tema 3 para Resíduos Sólidos. Estas metodologias são descritas no Apêndice C.

As análise de alcalinidade total, a bicarbonato e ácidos voláteis foram realizadas de acordo com a metodologia descrita por Dilallo e Albertson (1961).

5 – RESULTADOS E DISCUSSÃO

5.1 – CARACTERISTICAS DO MEIO DE REAÇÃO

Os resultados obtidos são discutidos abordando-se: características dos inóculos, fração orgânica dos resíduos sólidos urbanos; características do meio de reação; produção gasosa; análises finais (ST, STV, pH e DQO)

5.1.1 - Características dos inóculos

Na Tabela 5.1 são apresentados os resultados das análises físico-químicas preliminares realizadas com os inóculos.

A coleta ocorreu em um período de grande precipitação pluviométrica no mês de dezembro de 2004 resultando, no caso do Percolado do aterro, em ST com valores muito abaixo dos citados na literatura, como também da amostra coletada no período da seca onde o teor de ST foi de 18 g/l. O Lodo de Esgoto apresentou concentração de ST superior ao Percolado, porem em níveis abaixo do esperado, provavelmente devido à eficiência do tratamento.

Tabela 5.1 – Análises Preliminares dos Inóculos

Análises	Percolado	Lodo de Esgotos
Umidade %	86	78
рН	7,6	7,3
Sólidos Totais (g / L)	14	22
Sólidos Totais Voláteis (g/L)	9,5	8,0
DQO (g /Kg resíduo seco)	14	18
N – total (NTK) (mg/L)	2980 ^(a)	3850 ^(b)
N – amoniacal (mg/L)	830	950
Fósforo total (mg/L)	2,8	3,8
Alcalinidade		
Bicarbonato (mg/L CaCo ₃)	7300	6000
Intermediária (mg/L CaCo ₃)	6900	5500
Total (mg/l CaCo ₃)	14200	11500
Ácidos Voláteis (mg/L CaCo ₃)	1920	720

⁽a) Análise realizada pela empresa Qualix Ambiental (Dezembro 2004)

⁽b) Análise realizada pelo departamento de Química da UnB. (Junho 2005)

Os teores de ST dos dois inóculos embora baixos, foram semelhantes aos empregados por Picanço (2004) na primeira fase da sua pesquisa, alcançando 72% de CH₄ por volta de 200 dias após inoculação e com o ensaio desse pesquisador usado FI de 0,4. Portanto esse autor trabalhou com digestão à úmido, enquanto que neste trabalho trabalhou-se com digestão a seco sendo o maior FI de 0,02. Isto mostra que a concentração de células presentes no inóculo tem influência significativa no processo de degradação.

As análises correspondentes ao Nitrogênio Total foram realizadas em amostras diferentes das quais foram extraídos os demais resultados. Isto se deu em função de problemas metodológicos para a realização destas análises no Laboratório de Saneamento da UnB, no período em que foram realizadas as demais análises. Em função disso foram empregadas as análises periódicas do lixiviado, realizadas pela empresa QUALIX, que opera o aterro controlado do Jóquei Clube, e análises do laboratório de Química da UnB para o lodo de esgoto.

Os valores obtidos nas análises da alcalinidade total e bicarbonato de ambos os inóculos foram abaixo dos encontrados normalmente na literatura. A alcalinidade a bicarbonato resultou em aproximadamente 50% da alcalinidade total. Diante desta constatação, optouse por empregar substância tampão em todos os reatores, exceto nos reatores brancos, visando assim reduzir os efeitos negativos da fase hidrolítica e fermentativa que ocorre no início do processo de degradação, podendo resultar no desbalanceamento do pH do sistema.

5.1.2 – Análises da Fração Orgânica dos Resíduos Sólidos Urbanos padrão

As primeiras análises da FORSUp (Tabela 5.2) subsidiaram os cálculos dos valores empregados na composição dos Meio de Reação, especificamente os valores de ST.

Tabela 5.2 – Valores médios de ST, STV, Umidade e Densidade da FORSUp

Umidade (%)	65
Densidade (g/l)	725
ST (%)	35
STV (%)	12

A pesquisa realizada com os RSU das cidades de Ceilândia e Taguatinga – DF resultaram na análise de 92 amostras. Na Tabela 5.3 são apresentados os resultados da composição gravimétrica dos resíduos sólidos urbanos destas cidades. BELACAP (2004)

Tabela 5.3- Composição gravimétrica dos RSU das cidades de Ceilândia e Taguatinga - DF

		% em peso						
Componentes	Ceilândia	Taguatinga	média					
Matéria orgânica	69,3	61,4	65,3					
Papel e Papelão	12,0	18,3	15,1					
Plásticos	3,6	3,0	3,3					
Vidros e metais	7,4	8,2	7,8					
Trapos	1,0	1,0	1,0					
Borracha, madeira	4,6	5,4	5,0					
outros	2,1	2,7	2,4					

Os valores percentuais de cada componente observado na fração orgânica dos resíduos sólidos urbanos das cidades de Ceilândia e Taguatinga – DF são apresentados na Tabela 5.4.

Tabela 5.4 – Composição elementar da Fração Orgânica dos RSU das cidades de Ceilândia e Taguatinga - DF

	%	em peso dos componen	tes
Componentes	Ceilândia	Taguatinga	média
Cascas de frutas	12	14	13
Pedaços de frutas	21	17	19
Cascas de legumes	9	9	9
Pedaços de legumes	6	4	5
Folhas de hortaliças	8	6	7
Arroz	14	12	13
Feijão	4	5	4,5
Massas	3	5	4
Carnes	2	3	2,5
Ossos	3	4	3,5
Papeis sujos	5	7	6
Restos de jardinagem	9	11	10
outros	4	3	3,5

A quantidade de matéria orgânica obtida na pesquisa, em torno de 65 %, encontra-se dentro da média brasileira (IBGE, 2000) e do Distrito Federal (BELACAP 2004), conforme Tabela 5.5 e é compatível com o valor apresentado por Pinto (1999) na elaboração da FORSUDp.

Tabela 5.5- Composição gravimétrica dos RSU do Brasil e Distrito Federal

	Composição	Composição	Grau de Biodegrada	bilidade
Componente	média	média		
	DF (%)	Brasil (%)	Classificação	% média
Matéria Orgânica	65,8	64,7	Fácil	65
Papel	13,1	18,6	Moderado	15,6
Trapo	1,4	-		
Madeira, Couro e			Difícil	
Borracha	3,3	3,0		3,1
Vidro				
Plástico	14,2	13,6	Não degradável	13,9
Metal				
Inertes				

Fontes: BELACAP (2004) e IBGE (2000)

5.1.3 - Características do Meio de Reação

As análises dos sólidos totais –ST e sólidos totais voláteis –STV dos meios de reação preparados com os diferentes tipos de inóculos são apresentados na Tabela 5.6.

Tabela 5.6 – Análises de Sólidos Totais e Sólidos Totais Voláteis dos MR

Meio Reação	FORSUp + percolado			FORSUp + Lodo		
FI	0,02 0,015 0,01			0,02	0,015	0,01
ST (%)	25,3	27,6	29,6	25,8	28,8	29,6
STV (%)	15,0	15,8	16,4	14,4	15,7	16,6

Apesar dos mesmos terem sido preparados a partir de quantidades de inóculos e FORSUp previamente calculados, houve, em alguns casos, pequenas alterações nos valores de ST e

STV para o mesmo FI. Isso se deve provavelmente, às pequenas partes não homogêneas da FORSUp como grãos ou gravetos.

Na Tabela 5.7 são apresentados os valores de pH e DQO obtidos nos M.R. , já tamponados, dos diferentes reatores.

Tabela 5.7 – pH e DQO iniciais dos MR

		FORSUp + Percolado			FORSUp + Lodo de esgoto		
	FI	0,02	0,015	0,01	0,02	0,015	0,01
DQO	(g/Kg de Rs)	3,3	3,6	4,2	4,1	3,9	4,2
	pН	6,8	7,7	7,9	7,3	7,5	7,3

Pode-se observar valores de pH em torno de 7,0, o que é favorável à partida do processo de degradação.

5.2 –PRODUÇÃO GASOSA

A produção de gás foi monitorada por 120 dias, inicialmente com medições a cada três dias e no último mês com medições diárias, totalizando 56 medições. A mudança na freqüência da medição fez-se necessária para evitar que o acúmulo do gás provocasse maior pressão no reator e, consequentemente, maior risco de vazamento do gás.

Vazamentos de gás foram observados na maioria dos reatores durante todo o experimento e foram sendo sanados no decorrer do ensaio, todavia, resultaram em perda do biogás. Atribuiram-se esses vazamentos às diversas junções de caps e tubos. A confecção de reatores conectados a um dispositivo para coleta permanente dos gases ou o uso de garrafas ou mesmo frascos provavelmente restringiria os vazamentos.

Os valores então registrados foram corrigidas estequiométricamente para o cálculo final das quantidades de metano. Após um total de 56 medições foram observadas as evoluções apresentadas na Figura 5.1.

Figura 5.1 – Produção de metano nos diferentes reatores

Alguns reatores mantiveram o problema de vazamento durante todo o ensaio, sendo os mais graves aqueles inoculados com percolado e FI 0,01, o que inviabilizou a sua análise. Em contrapartida, os reatores inoculados com lodo e FI 0,015 foram os que apresentaram os menores problemas de vazamento, o que consequentemente resultou nos maiores valores de produção de metano, como pode ser visto na Figura 5.2

Figura 5.2 – Comparativo da produção de CH₄ com os vazamentos ocorridos

Diante da constatação de vazamentos ao longo dos 120 dias, as análises dos resultados da produção gasosa são efetuadas de forma conjunta com os resultados dos parâmetros físico químicos analisados no meio de reação no final do ensaio, conforme apresentados na Tabela 5.8.

5.3 – MONITORIZAÇÃO DO EXPERIMENTO

Os resultados das análises realizadas com o MR (meio de reação) no final do ensaio são apresentados na Tabela 5.8

Tabela 5.8 – Análises do Meio de Reação no final do ensaio

	Observação visual	Peso	Umidade	ST	STV		DQO
Reator	e odor	(gramas)	%	(%)	(%)	pН	(g/L)
1 P0,02A	Coloração bem amarelada com pedaços e cascas não degradados, cheiro pronunciado ácido	1062,13	82	18,0	10,8	5,56	35,1
2 P0,02A'	Coloração marrom amarelada com material não degradado, cheiro ácido	1079,0	81,5	18,5	10,9	5,49	33,7
3 P0,02B	Coloração amarelada com muito material não degradado, cheiro pronunciado ácido	1061,36	82	18,0	10,4	4,21	31,5
4 P0,015B	Coloração amarelada com muito material não degradado, cheiro pronunciado ácido	1082,37	81	19,0	10,3	4,16	33,7
5 P0,015 A	Coloração marrom amarelada com material não degradado, cheiro bastante ácido	1090,64	79	21,0	11,4	5,53	40,2
6 P0,01 B	Coloração marrom e parte bem amarelada com material não degradado, cheiro ácido	1076,87	77	23,0	11,6	4,09	47,1
7 P0,015 A`	Coloração marrom com material não degradado, cheiro ácido	1005,22	79	21,0	10,4	5,39	34,9
8 P0,01 A	Coloração escura por fora e amarelada por dentro, com material não degradado, cheiro ácido	1096,29	78	22,0	11,6	5,64	46,3
9 P0,01 A`	Coloração escura com pouco material não degradado, cheiro pouco ácido	1084,45	78	22,0	11,2	5,54	43,7
10 L0,02 B	Coloração amarelada com pedaços não degradados, cheiro pronunciado ácido	1106,00	79,5	20,5	10,8	4,06	38,2
11 L0,02 A	Coloração escura por fora e amarelada por dentro, cheiro ácido pronunciado	1048,67	78,5	21,5	11,8	5,80	48,1
12 L0,02 A`	Coloração escura com pouco líquido, cheiro não pronunciado	1041,62	76,5	22,0	12,1	5,73	49,2
13 L0,015 B	Coloração amarelada com pedaços e cascas não degradados, cheiro pronunciado ácido	1078,72	77	23,0	12,4	4,08	49,6
14 L0,015 A	Coloração escura por fora e amarelada por dentro, cheiro ácido pronunciado	1091,68	77	23,0	11,8	5,50	46,5
15 L0,015 A`	Coloração marrom com pedaços não degradados, cheiro ácido	1087,47	75	23,0	12,8	5,14	51,1
16 L0,01 A	Coloração marrom e amarelada com material não degradado, cheiro ácido	1107,69	72	26,0	13,5	4,28	52,3
17 L0,01 B	Coloração escura com material não degradado cheiro levemente ácido	1115,40	75	25,0	12,1	3,91	46,9
18 L0,01 A`	Coloração escura e marrom pouco material não degradado , cheiro ácido não pronunciado	1097,42	74	26,0	12,8	4,82	52,4

5.3.1 – Aspecto geral do Meio de Reação ao fim do ensaio.

Com a abertura dos dezoito reatores foi observado que, de modo geral, todos apresentavam a parte superior bastante escura com tonalidades entre o marrom escuro e o quase preto, caracterizando a intensa oxidação provavelmente causada pelo ar comprimido injetado no momento da abertura dos reatores. O O₂, como grande oxidante e colocado em excesso sob pressão, promoveu o escurecimento do MR. Nas Figuras 5.3 e 5.4 é apresentado o aspecto geral do meio de reação no momento da abertura do reator.

Figura 5.3 – Meio de Reação após ser retirado do reator

Figura 5.4 – Meio de Reação ao fim do ensaio

Na parte mais interna do MR foram observados tons mais amarelados, quase todos com presenças de materiais não degradados como cascas ou alguns grãos. Porém, a maioria da

matéria orgânica apresentava-se em adiantado estado de decomposição. O odor observado em todos reatores era caracteristicamente ácido, mais ou menos pronunciado, o que corrobora com os dados das análises físico-química obtida no final do ensaio.

5.3.2 - Variação do teor de umidade dos MR

A análise conjunta da variação de massas no início e no fim do ensaio (Tabela 5.9), bem como dos teores de umidade, obtidos na análise de ST e apresentados na Tabela 5.8, mostram que o processo de degradação transformou parte da matéria orgânica presente na FORSUDp em biogás e outra parte água liberada, aumentando assim o teor de umidade em todas as amostras.

Reator	MR	MR	Diferença	Reator	MR	MR	Diferença
	inicial (g)	Final (g)	(%)		inicial (g)	Final (g)	%
P0,02A	1161	1062,13	8,52	L0,02A	1161	1048,67	9,68
P0,02A'	1161	1079,00	7,06	L0,02A'	1161	1041,62	10,28
Pb 0,02	1161	1061,36	8,58	Lb0,02	1161	1106,00	4,74
P0,015A	1161	1090,64	6,06	L0,015A	1161	1091,68	5,97
P0,015A'	1161	1090,64	6,06	L0,015A'	1161	1087,47	6,33
Pb 0,015	1161	1082,37	6,77	Lb0,015	1161	1078,72	7,09
P0,01A	1161	1096,29	5,57	L0,01A	1161	1107,69	4,59
P0,01A'	1161	1084,45	6,59	L0,01A'	1161	1097,42	5,48
Pb 0.01	1161	1076.87	7.25	Lb0.01	1161	1115.40	3.93

Tabela 5.9 – Diferenças de massa do MR inicial e final.

Figura 5.5 – Variação de umidade no início e no fim do ensaio

No final do ensaio a umidade observada nos reatores variou entre 75 a 82% correspondendo um aumento médio de 8%.

5.3.3 – Análise dos sólidos totais e sólidos totais voláteis

Os baixos valores do ST dos inóculos influenciaram significativamente nos valores dos fatores de inóculos (FIs) de tal forma que a manutenção dos valores previstos inicialmente de FI = 0,2; 0,3 e 0,5 resultariam em valores de umidade do M.R. próximos à saturação, em torno de 80%, o que inviabilizaria a sua aplicação em um aterro sanitário por questões operacionais. Desta forma os valores de FIs foram reavaliados de modo a resultar em ST do meio de reação próximos a 30%, resultando, conseqüentemente, na redução dos FIs empregados na pesquisa.

A Tabela 5.10, elaborada a partir das análises de STV e produção do metano, apresenta balanços de massa em cada reator.

Tabela 5. 10 – Balanço de massa de STV e produção de metano por g de STV degradado

Reatores	STV	Massa	ST (%)	STV (%)	STV	STV	STV difer	Metano	Metano
	inicial (g)	final (g)	inicial	final	final (g)	degradado (g)	(%)	produzido(ml)	(ml/gSTV)
P0,02A	44,1	1062,1	18	10,8	20,6	23,4	53	1729	74
P0,02A'	44,1	1079,0	18,5	10,9	21,8	22,3	51	2149	96
Pb 0,02	44,1	1061,4	18	10,4	19,9	24,2	55	4245	175
P0,015A	50,6	1090,6	21	11,4	26,1	24,5	48	1524	62
P0,015A'	50,6	1005,2	21	10,4	22,0	28,7	57	2325	81
Pb 0,015	50,6	1082,4	19	10,3	21,2	29,4	58	1902	65
P0,01A	56,4	1096,3	22	11,6	28,0	28,4	50	2226	78
P0,01A'	56,4	1084,5	22	11,2	26,7	29,6	53	2120	72
Pb 0,01	56,4	1076,9	23	11,6	28,7	27,6	49	3953	143
L0,02A	43,1	1048,7	21,5	11,8	26,6	16,5	38	4070	246
L0,02A'	43,1	1041,6	22	12,1	27,7	15,4	36	5155	335
Lb0,02	43,1	1106,0	20,5	10,8	24,5	18,6	43	3378	181
L0,015A	52,5	1091,7	23	11,8	29,6	22,9	44	4075	178
L0,015A'	52,5	1087,5	23	12,8	32,0	20,5	39	7393	361
Lb0,015	52,5	1078,7	23	12,4	30,8	21,7	41	5817	268
L0,01A	57,0	1107,7	26	13,5	38,9	18,2	32	6378	351
L0,01A'	57,0	1097,4	26	12,8	36,5	20,5	36	2767	135
Lb0,01	57,0	1115,4	25	12,1	33,7	23,3	41	5489	236

Em função destes dados realizou-se as análises:

5.3.4 – Análise da Produção Metano

Apesar dos vazamentos detectados impedirem de realizar uma análise mais acurada da produção de metano, pode-se verificar que os reatores inoculados com Lodo de esgoto apresentaram tendência de produção de metano superior aos reatores inoculados com percolado. Isto sugere que pode ter ocorrido alguma inibição provocada por algum tipo de substância presente no percolado, como, por exemplo, altas concentrações de metais pesados ou que a quantidade de células ativas presentes no percolado não foi suficiente para garantir uma partida eficiente.

Os reatores que apresentaram os menores problemas de vazamento foram: L 0,02A; L0,015A; L 0,015b; P0,02b e L 0,01A. No período de 120 dias, a produção de metano nestes reatores foi respectivamente de 5155; 7393; 5817; 4245 e 6378 mL.

Utilizando os dados destes reatores para análise da produção de metano, observa-se que a produção de metano por STV degradado variou entre 175 a 351 ml CH₄/gSTV.

Na Tabela 5.11 observam-se alguns dados citados na literatura sobre a produção de metano por STV degradado e da porcentagem de degradação dos STV.

Tabela 5.11 – Valores comparativos de degradação de STV e produção de Metano

		Volume de CH ₄ / Kg
Fonte	Degradação de STV	de STV degradado
	(%)	(m^3)
Chynoweth et al(1996)	50	0,2
Leite et al (1997)	89	0,067
Pinto (2000)	37	0,38
Karnchawong e		
Tipsuntornsak (2003)	76 a 85	0,1
Picanço (2004)	-	0,3

Os valores obtidos neste experimento, especificamente nos reatores citados acima, em geral, são muito semelhantes aos descritos na literatura quando empregando inóculos,

conforme mostra a Tabela 5.11. Vale ressaltar que em todos os estudos apresentados para efeito de comparação, os maiores volumes dos diferentes inóculos adicionado às também diferentes composições de FORSU foi muito superior às quantidades deste ensaio.

A maior taxa de metano/STV degradado, no valor de 354 ml CH₄/g STV, foi obtida no reator inoculado com lodo e FI de 0,01A, indicando que outros parâmetros influenciaram no processo de degradação. A literatura indica que o teor de umidade ideal ao processo de degradação anaeróbia é em torno de 70%. Esta informação pode justificar o melhor desempenho do reator L 0,01 que foi inoculado com teor de umidade próximo a 70%.

Os reatores com mesmo tipo de inóculo e FI's diferentes apresentaram, apesar dos vazamentos, mesma tendência de produção de metano, o que sugere que os FI's empregados não apresentaram influência significativa no processo de degradação.

5.3.5 – Análise da DQO do Meio de Reação

Observaram-se valores de DQO na faixa de 32 a 52 g/L. Valores desta ordem têm sido reportados na literatura correspondendo à fase ácida do processo de degradação, onde grande parte dos compostos orgânicos de cadeia simples é transformada em compostos intermediários como, acetato, ácidos propiônico e butirico. Pode-se observar na Figura 5.6 que os maiores valores de DQO foram obtidos nos reatores que apresentaram as maiores taxas de produção de metano , em geral os reatores inoculados com Lodo. A exceção é dada aos reatores inoculados com percolado e FI 0,01. Mais uma vez, neste caso, a baixa produção de metano observada pode ter ocorrido, provavelmente, pelo problema de vazamento aliado a um possível problema de inibição.

Figura 5.6 – Comparativo DQO x Metano produzido

A DQO e produção de metano dos reatores L 0,015A e L 0,01A são semelhantes, sugerindo mais uma vez que os diferentes FIs empregados não chegaram a causar alterações significativas no processo de degradação.

Na pesquisa realizada por Pinto (2000), a fase metanogênica foi atingida em 29 dias, obtendo produção de metano por STV degradado superior aos deste experimento. A pesquisadora atribui o bom desempenho do processo de degradação ao inóculo empregado. Nota-se pelos resultados de pH e DQO obtidos nesta pesquisa que, após 120 dias, todos os reatores encontravam-se na fase ácida do processo de degradação. Isto sugere que os inóculos empregados não apresentavam condições apropriadas para acelerar o processo de degradação.

5.3.6 - Análise da degradação dos STV

O percentual de degradação dos STV variou na faixa de 31 a 58%.

Os reatores inoculados com Percolado apresentaram os maiores percentuais de degradação em termos de STV, em torno de 50%. Todavia, com exceção dos reatores P 0,01, os valores de DQO e produção de metano observados no final do ensaio, nestes reatores, foram inferiores aos reatores inoculados com Lodo. Isto sugere que grande parte da DQO foi transformada em Biogás que, devido aos problemas de vazamento, não pode ser quantificado. A ausência de dados da quantidade de biogás gerado inviabiliza a análise

mais profunda desta informação, pois o conhecimento dos outros gases formados nos traria a informação se a degradação nestes reatores seguiu outra rota de degradação que não a de produção de metano. Os reatores P 0,01 apresentaram valores de DQO final na mesma faixa dos reatores inoculados com lodo, indicando que o processo de transformação dos ácidos responsáveis pelo aumento da DQO em biogás ocorreu de forma mais lenta.

Na Tabela 5.12 são apresentados comparativamente os valores iniciais de DQO, ST, STV e a produção de metano por ensaio, onde se observa que os maiores valores de DQO correspondem aos maiores valores de CH₄ por STV degradado.

Tabela 5.12 – Produção de metano em função da DQO e da degradação dos ST e STV.

Reatores	D	QO	ST	(%)	STV	(%)	STV (%)	CH ₄ (ml)	CH ₄ (ml / g de
reatores	Inicial*	Final**	inicial	final	inicial	final	degradado	produzido	STV degradado)
P0,02A	3,3	35,1	25,3	18	15,0	10,8	53	1729	74
P0,02A'	3,3	33,7	25,3	18,5	15,0	10,9	51	2149	96
Pb 0,02	3,3	31,5	25,3	18	15,0	10,4	55	4245	175
P0,015A	3,6	33,7	27,6	21	15,8	11,4	48	1524	62
P0,015A'	3,6	40,2	27,6	21	15,8	10,4	57	2325	81
Pb 0,015	3,6	47,1	27,6	19	15,8	10,3	58	1902	65
P0,01A	4,2	34,9	29,6	22	16,4	11,6	50	2226	78
P0,01A'	4,2	46,3	29,6	22	16,4	11,2	53	2120	72
Pb 0,01	4,2	43,7	29,6	23	16,4	11,6	49	3953	143
L0,02A	4,1	38,2	25,8	21,5	14,4	11,8	38	4070	246
L0,02A'	4,1	48,1	25,8	22	14,4	12,1	36	5155	335
Lb0,02	4,1	49,2	25,8	20,5	14,4	10,8	43	3378	181
L0,015A	3,9	49,6	28,8	23	15,7	11,8	44	4075	178
L0,015A'	3,9	46,5	28,8	23	15,7	12,8	39	7393	361
Lb0,015	3,9	51,1	28,8	23	15,7	12,4	41	5817	268
L0,01A	4,2	52,3	29,6	26	16,6	13,5	32	6378	351
L0,01A'	4,2	46,9	29,6	26	16,6	12,8	36	2767	135
Lb0,01	4,2	52,4	29,6	25	16,6	12,1	41	5489	236

^{*}DQO em g / Kg de resíduo seco – a partir da análise do MR

Comparando os resultados dos reatores inoculados com percolado com os obtidos por Pinto (2000), empregando também percolado como inóculo, nota-se que os percentuais de degradação de STV obtidos nesta pesquisa foram muito superior às obtidas por Pinto (2000).

^{**} DQO g / L - lixiviado produzido durante o ensaio e analisado ao final

5.3.7 – Análise do pH

Conforme pode ser observado na Tabela 5.8 e na Figura 5.6, todos os reatores controles (brancos) apresentaram, no final do ensaio, valores de pH em torno de 4,0, enquanto que os reatores inoculados apresentaram pH na faixa de 5,1 a 5,8. Isto indica que embora o pH se reduziu com a presença dos ácidos formados no processo de degradação, o tampão mostrou um efeito significante para manter o pH acima de 5,0, embora ainda fora da faixa de neutralidade, ideal aos organismos metanogênicos.

Esse efeito também pode ser facilmente visualizado pela análise dos resultados da DQO dos reatores inoculados com lodo FI 0,01. Nota-se que, apesar do valores da DQO dos reatores inoculados serem superiores ao reator controle, o pH deste último foi inferior devido à ausência de tampão.

A Figura 5.7 apresenta a variação de pH entre os valores iniciais e finais do ensaio.

Figura 5.7 – Variação do pH no início e no fim do ensaio.

6 - CONCLUSÕES E RECOMENDAÇÕES

6.1 – CONCLUSÕES

Apesar dos testes iniciais realizados nos biorreatores terem demonstrado eficiência em termos de estanqueidade gasosa, no decorrer experimento observaram-se sérios problemas de vazamentos dos gases gerados.

Os resíduos orgânicos produzidos nas cidades de Taguatinga e Ceilândia apresentaram composição gravimétrica e elementar muito semelhantes as geradas na cidade de São Carlos – SP, e semelhante às medias do Brasil, comprovando a adequação da FORSUp elaborada por Pinto (2000).

Os inóculos testados não apresentaram desempenho satisfatório para a aceleração do processo de degradação, tendo em vista que após 120 dias encontravam-se na fase ácida.

O baixo pH aliado aos valores da DQO em todos os reatores, nos levam a concluir a predominância da fase acidogênica após 120 dias de digestão.

Os Fatores de Inóculo testados não chegaram a causar efeito significativo ao processo de degradação.

Os reatores inoculados com percolado apresentaram baixa taxa de metano/STVdegradado; indicando que, possivelmente, este tipo de inóculo encontrava-se em condições inapropriadas ao processo de degradação.

Os reatores inoculados com Percolado apresentam maiores percentuais de degradação e menores taxas de metano/STVdegradado, sugerindo que seguiram outra rota de degradação que não a de formação do metano.

O tampão mostrou efeito significativo durante o processo de degradação para a manter o pH acima de 5,0, porem não foi suficiente para garantir a manutenção do pH inicial.

6.2 - RECOMENDAÇÕES

Recomenda-se testar novos tipos de inóculos, que apresentem STV superiores ao empregado neste experimento, de forma a se trabalhar com FI em torno de 0,3 .

Recomenda-se inserir nos biorreatores um dispositivo para coleta do biogás produzido como forma de evitar acúmulo de gases no head space e consequentemente o vazamento do mesmo.

Recomenda-se testar também os reatores depois de montados, com diferentes pressões e também com diferentes temperaturas, a fim de possibilitar verificar efeitos da dilatação e contração dos diferentes materiais, ou mesmo projetar e testar novos modelos de reatores com menor número de partes soldáveis, o que possivelmente diminuiria a possibilidade de vazamento.

Recomenda-se o uso da metodologia apresentada para o preparo da FORSUp visando a padronização dos meios de reação.

Recomenda-se a realização de análise cromatográfica do biogás produzido, buscando maior confiabilidade aos dados produzidos;

Recomenda-se a realização das análises dos ácidos voláteis , buscando conhecer as rotas metabólicas do processo de degradação.

REFERÊNCIAS BIBLIOGRÁFICAS

- APHA, AWWA,WPFC, (2002). Standard Methods for the Examination of Water and Wastewater. 19^a ed., Washington, D.C., 1268 p.
- Associação Brasileira de Normas Técnicas ABNT. (1987). *NBR 10.004 Resíduos Sólidos: Classificação*. Norma Técnica, ABNT, Rio de Janeiro, 63 p.
- Barlaz, M. A. (1998) "Microbial Studies of Landfills and Anaerobic Refuse Decomposition". *In: Manual of Environmental Microbiology*, ed. Hurst, C.J.; ASM PRESS, Washington, D.C. Cap.60, p. 541-557.
- Barlaz, M. A.; Schaefer, D.M.; Ham, R.K. (1989a) "Inhibition of Methane Formation from Municipal Refuse in Laboratory Scale Lysimeters. *Biochem. and Biotechnol.*, v.20-22, p.181-295.
- Barlaz, M.A.; Schaefer, D.M.; Ham, R.K(1989b). "Bacterial Populations Development and Chemical Characteristics of Refuse Decomposition in a Simulated Sanitary Landfill". *Environmental Microbiol.*, V. 55, p. 55-65.
- Battistoni, P., Pavan, P., Mata-Alvarez, J., Prisciandaro, M., Cecchi, F. (2000) "Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste." *Water Science and Technology*, Vol. 41, n° 3, p.: 51-59.
- BELACAP, *Relatório de atividades de 2003*. Belacap, Serviço de Ajardinamento e Limpeza Urbana do Distrito Federal, Assessoria de Planejamento Belacap/GDF, Brasília DF. 2003
- BELACAP, *Relatório de atividades de 2003*. Belacap, Serviço de Ajardinamento e Limpeza Urbana do Distrito Federal, Assessoria de Planejamento, Belacap/GDF, Brasília DF. 2004.
- Belgiorno, V., De Feo, G., Della Rocca, C., Napoli, R. M. A. (2002). "Energy from gasification of solid wastes." *Waste Management*, n° 23, p.: 1-15.
- Bidone , F.R.A., Povinelli, J. 1999. *Conceitos básicos de resíduos sólidos*. São Carlos EESC/USP. 17 a 49.
- Biey, E. M., Musiboro, E. D., Verstraete, W. (2003). Start-up of multi-stage system for biogas production and solid waste treatment in low-tech countries." *Water Science and Technology*, Vol. 48, n° 4, p.: 239-243.

- .Bolzonela, D.,Battistoni, P., Mata-Alvarez, J., Cecchi, F. (2003). "Anaerobic digestion of organic solid waste: process behavior in transient conditions." *Water Science and Technology*. Vol. 48 n°4, p.:1-8.
- Borzaconi, L., Lopez, I., Anido, C. (1997). "Hydrolysis Constant and VFA Inhibition in Acidogenic Phase on MSW Anaerobic Degradation". *Water Science Technology*. Vol. 36, n° 6-7. p.: 479-484.
- Brummeler, E.T.(1993) "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste". 193 p. Tese (Doutorado) Wageningen Agricultural University; Wageningen, the Netherlands.
- De Baere, F. (2000). "Anaerobic digestion of solid waste: state-of-the-art." *Water Science and Technology*. Vol. 41 n°3, p.:283-290.
- Dilallo, R; Albertson, O.E. (1961) "Volatile acids by direct titulation."- *Journal WPcF*, Vol. 33, N. 04, pags 356 365.
- Edelmenn, W., Schleiss, K., Joss, A. (2000). "Ecological, energetic and economic comparison of anaerobic digestion with different competing technologies to treat biogenic wastes." *Water Science and Technology*. Vol. 41 n°3, p.:263-273.
- Ejlertsson, J., Karlsson, A., Lagerkavist, A., Hjertberg, T., Svensson, B. (2003). "Effects of co-disposal of waste containing organic pollutants with municipal solid waste. A landfill simulation reactor study." *Advances in Environmental Research*, n° 7, p.: 949-960.
- Farquhar, G. J.; Rovers, F.A. (1973) "Gas Production During Refuse Decomposition" Water, Air, Soil Pollution, Vol. 2, pg. 483-495.
- Fernandez, B., Porrier, P., Chamy, R. (2001). "Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters". *Water Science and Technology*. Vol. 44 n°4, p.:103-108.
- Flor, A.; Arroja, L e Capela, I. (2003). "Anaerobic co-digestion of organic fraction of municipal solid waste and waste activated sludge at different ratios." *Proceedings Sardinia 2003, Ninth International Waste management and landfill symposium.*Sardinia, Italy 2003.
- Foresti, E. (1987) "Efeitos da Concentração inicial do Substrato no Desempenho de Reatores Anaeróbios de Fluxo Ascendente de Manta de Lodo". 147p. Tese (Livre Docência) Escola de Engenharia de São Carlos, Universidade de São Paulo.

- Fujishima, S., Miyahara, T., Noike, T. (2000). "Effect of moisture content on anaerobic digestion of dewatered sludge: ammonia inhibition to carbohydrate removal and methane production." *Water Science and Technology*. Vol. 41 n°3, p.:119-127.
- Instituto Brasileiro de Geografia e Estatística -IBGE, (2000), *Pesquisa Nacional de Saneamento Básico 2000*. IBGE, Diretoria de Pesquisas, Departamento de População e Indicadores Sociais.
- Karnchanawong, S.; Tipsuntornsak, K. (2003). "Organic waste decomposition using leach bed anaerobic digestion." *Proceedings Sardinia 2003, Ninth International Waste management and landfill symposium.* Sardinia, Italy 2003.
- Kasali, G.B.; Senior, E.; Watson-Craik, I.A. (1990). "Solid State Refuse Promotion Methanogenic Fermentation: Control and Promotion by Water Addition". *Letters applied microbiology*, v.11, n.1, p. 22-26.
- Kayahanian, M.; Lindenauer, K.; Hardy, S.; Tchobanoglous, G. (1991) "The Recovery of Energy and Production of Compost from the Biodegradable Organic Fraction of MSW using the High-Solids Anaerobic Digestion/ Aerobic Biodrying Process" A Report prepared for the Prison Industry Authority University of California, Davis.
- Kim, I. S., Kim, D. H., Hyun, S. H. (2000). "Effect of particle size and sodium ion concentrate on anaerobic thermophilic food waste digestion." *Water Science Technology*, vol. 41, n° 3, p.: 67-73.
- Lange, L.C.; Coelho,H.M.G.; Alves,D.E.W.S.; Ferreira, C.F.; Simões, G. F.; Silva, F. V.. Metodologia para análises laboratoriais de Resíduos Sólidos Urbanos, Líquidos lixiviados de aterros sanitários e solos. Projeto PROSAB, ABES, RIMa, 2003. pág.199 a 220.
- Leite, V.D. (1997) "Processo de Tratamento Anaeróbio de Resíduos Sólidos Urbanos inoculado com Esgoto Sanitário". 251p. Tese (Doutorado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- Leite, V.D.; Povinelli, J.; Vasquez, V.R.C. (2003). "Modelos de bioconversão anaeróbia de resíduos sólidos urbanos inoculados com lodo de esgoto sanitário." *Anais do 19*° *Congresso Brasileiro de Engenharia Sanitária e Ambiental.* Págs 1590 a 1595. Joinvile SC.
- Leite, V.D.; de Sousa, J.T.; Prasad, S.; Lopes, W.S.; Athayde Junior, G.B.; Dantas, A. M.M. (2003). "Tratamento de resíduos sólidos de centrais de abastecimento e feiras livres em reator anaeróbio de batelada." Revista Brasileira de Engenharia Agrícola e Ambiental, V.7, n.2, pág. 318-322.

- Lima, L. M.Q. (1988) "Estudo da Influência de Reciclagem de Chorume na Aceleração da Metanogênese em Aterro Sanitário". 242p. Tese (Doutorado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- Luning, L., Van Zundert, E. H. M., Brinkmann, A. J. F. (2003). "Comparison of dry and wet digestion for solid waste." *Water Science and Technology*. Vol. 48 n°4, p.:15-20.
- Mace, S., Bolzonella, D., Mata-Alvarez, J., Cecchi, F. (2003). "Comparison of the biodegradability of the grey fraction of municipal solid waste of Barcelona in mesophilic and thermophilic conditions." *Water Science and Technology*. Vol. 48 n°4, p.:21-28.
- Maciel, F. J.; Jucá, J. F. T. (2002). "Análises para controle ambiental dos gases produzidos no aterro de resíduos sólidos de Muribeca". *Anais do VI Simpósio Ítalo Brasileiro de Engenharia Sanitária e Ambiental*. 2002.
- Mata-Alvarez, J., Mace, S., Llabres, P. (2000). "Anaerobic digestion of organic solid waste. An overview of research achievements and perspectives. "Bioresource Technology. 74, p.: 3-16.
- Mata-Alvarez, J., Cecchi, F., Tilche, A. (2000). "Anaerobic digestion of solid waste II". Water Science and Technology. Vol. 41 n°3, p.:17-24.
- Mata-Alvarez, J. (2002). "The biomethanization of the organic fraction of municipal solid waste." *Water 21 Magazine*, IWA. October, p.:59-61.
- Novaes, R. F. V. (1986). "Microbiology of digestion anaerobic." Water Science and Technology. Vol. 18, p.:1-14.
- Okamoto, M., Miyahara, T., Mizuno, O., Noike, T. (2000). "Biological hydrogen potential of material characteristic of the organic fraction of municipal solid wastes." *Water Science and Technology*, Vol 41, no 3, p.: 25-32.
- Oremland, S.G. (1988) "Biogeochemistry of Methanogenic Bacteria". IN: *Biology of Anaerobic Microorganisms*", ed.A. J. B. Zehnder, Wageningem, John Wiley & Sons, p. 641-706
- Palmisano, A.C; Barlaz, M.A. (1996) "Introduction to Solid Waste Decomposition." In: *Microbiology of Solid Waste*. Ed. Palmisano et Barlaz; CRC PRESS, Boca Raton, Florida, NY. Cap.1, p. 1-30.
- Pavan, P., Battistoni, P., Mata-Alvarez, J., Cecchi, F. (2000). "Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability." *Water Science Technology*, vol. 41, n° 3, p.: 75-81.

- Pavan, P., Battistoni, P., Cecchi, F. Mata-Alvarez, J. (2000) "Two-phase anaerobic digestion of sorted OFSMW (organic fraction of municipal solid waste): performance and kinetic study." *Water Science Technology*, vol. 41, n° 3, p.: 111-118.
- Pfeffer, J.T. (1974) "Temperature Effects on Anaerobic Fermentation of Domestic Refuse". *Biochem. Bioeng.*, n.16, p. 771-787.
- Picanço, A. P. (2004) "Influência da recirculação de percolado em sistemas de batelada de uma fase e híbrido na digestão da fração orgânica dos resíduos sólidos urbanos". 142p. Tese (Doutorado) Escola de Engenharia de São Carlos, Universidade de São Paulo.
- Pinto, D.M.C.L. (2000), "Avaliação da partida da digestão anaeróbia da fração orgânica de resíduos sólidos domésticos inoculados com percolado". Tese de Doutorado. 192p. Escola de Engenharia de São Carlos, Universidade de São Paulo.
- Pohland, F.G.; Harper, S.R. (1985) " *Critical Review and Summary of Leach ate and Gas Production from Landfills*". Tech. project n.E20 G01, dec.
- Rees, J.F.(1980a) "Optimization of Methane Production and Refuse Decomposition in Landfills by Temperature Control". *Journal Chemical Tech. Biot.*, n.30, p. 458-465.
- Rees, J.F. (1980b) "The Fate of Carbon Compounds in the Landfill Disposal of Organic Matter"- *Journal Chem. Tech. Biotech*, n. 30, pg.161-175.
- Rodrigues Iglesias, J., Castrillón Pelaez, L., Maranon Maison, E., Sastre Andrés, H. (2000). "Biomethanization of municipal solid waste in a pilot plant." *Water Research*. Vol. 34, n° 2, p.: 447-454
- Schober, G., Schaefer, J., Schimid-Satiger, U., Trosch, W. (1999). "One and two-stage digestion of solid organic waste." *Water Research*. Vol. 33, n° 3, p.: 854-860.
- Silvey, P. Pullammanappallil, P. Blackall, L., Nichols, P. (2000). "Microbial ecology of the leach bed anaerobic digestion of unsorted municipal solid waste." *Water Science Technology*, Vol. 41, n° 3 p.:9-16.
- Sosnovski, P., Wieczorek, A., Ledakowics, S. (2003). "Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes." *Advances in Environmental Research*. No 7, p.: 609-616
- Souza, M. E. (1984) "Fatores que Influenciam a Digestão Anaeróbia". *Revista DAE*, n.44, p. 88-94.
- Speece, R.E. (1981) "Review Environmental Requirements for Anaerobic Digestion of Biomass (Advances in Solar Energy- An Annual Review of Research and

- Development)". Environmental Studies Institute, Drexel University Philadelphia, 69p.
- Tchobanoglous S,G.; Theinsen, H.; Vigil,S.A. (1993) " *Integrated Solid Waste Management*"- Ed. McGraw-Hill International.Cap.14, p.671-716.
- Vazoller Novaes, R.F. (1986) "Microbiology of Anaerobic Digestion". *Water Science Technology*; n.18, p. 1-14.
- Viturtia, A. M., Mata-Alvarez, J. Cecchi, F. (1995). "Two-phase continuous anaerobic digestion of fruit and vegetables wastes." *Resources, Conservation and Recycling*. No 13, p.: 257-267.
- Yesiller, N.; Hanson, J.L. (2003). "Analysis of temperatures at a municipal solid waste landfill." *Proceedings Sardinia 2003, Ninth International Waste management and landfill symposium.* Sardinia, Italy 2003.
- Zehnder, A.J.B. (1978) "Ecology of Methane Formation ". Water Pollution Microbiology, v.2, p. 349-376
- Zehnder, A.J.B.; Ingvorsen, K.; Marty, T. (1981) "Microbiology of Methane Bacteria" In: *Anaerobic Digestion* Hughes et al. Eds, p. 45-69.

APÊNDICES

APENDICE A – TABELAS DE PRODUÇÃO GASOSA

Tabela A1 – produção de gás em 29/12 e 02/01

			29/dez	Templ	27		Patml	673	2/jan	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,0	0	832	832	0	0	0,0	0	828	828	0	0
0,02	2	1046	0,5	55	866	821	45	44	0,0	0	821	817	4	0
	3b	1039	8,0	872	1529	816	713	703	4,0	416	1172	812	360	336
	5	1060	2,0	218	1014	832	182	176	1,6	166	978	828	149	134
0,02	7	1074	10,5	1145	1811	843	968	922	8,0	832	1580	839	741	672
	4b	1046	1,2	131	929	821	108	105	0,0	0	821	817	4	0
	8	1060	8,0	872	1560	832	728	703	1,4	146	959	828	131	118
0,01	9	1060	5,0	545	1287	832	455	439	1,0	104	923	828	95	84
	6b	1039	9,5	1036	1662	816	847	834	4,8	499	1243	812	432	403
	11	1060	7,5	818	1514	832	682	659	7,5	780	1514	828	686	630
0,02	12	1053	14,5	1581	2137	826	1310	1274	9,0	936	1640	823	817	756
	10b	1039	11,5	1254	1841	816	1025	1010	1,3	135	931	812	120	109
	14	1053	14,0	1526	2091	826	1265	1230	5,2	541	1296	823	474	437
0,02	15	1053	22,5	2453	2859	826	2033	1976	9,0	936	1640	823	817	756
	13b	1046	20,0	2180	2616	821	1795	1757	6,7	697	1422	817	605	563
	16	1060	24,0	2616	3015	832	2183	2108	7,0	728	1469	828	640	588
0,01	18	1060	0,0	0	832	832	0	0	1,5	156	968	828	140	126
	17b	1039	23,0	2507	2866	816	2050	2020	11,0	1144	1796	812	984	924

Tabela A2 – produção de gás em 5/1 e 8/1

			5-jan	Templ	25		Patml	671	8-jan	Templ	26		Patml	673
			Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
0,02	1	1060	0,0	0	830	830	0	0	0,0	0	832	832	0	0
	2	1046	0,0	0	819	819	0	0	0,0	0	821	821	0	0
	3b	1039	5,0	530	1259	813	446	429	1,0	108	905	816	89	87
0,02	5	1060	2,0	212	1011	830	182	171	2,0	216	1014	832	182	175
	7	1074	0,5	53	887	840	46	43	3,5	378	1166	843	323	306
	4b	1046	0,0	0	819	819	0	0	1,1	118,8	920	821	99	96
0,01	8	1060	5,0	530	1284	830	455	429	0,5	54	877	832	45	44
	9	1060	4,0	424	1193	830	364	343	1,0	108	923	832	91	87
	6b	1039	7,5	795	1482	813	669	643	3,9	421,2	1163	816	348	341
0,02	11	1060	2,0	212	1011	830	182	171	4,6	496,8	1250	832	418	402
	12	1053	12,0	1272	1908	824	1084	1029	6,0	648	1369	826	542	524
	10b	1039	1,5	159	947	813	134	129	0,8	86,4	887	816	71	70
0,02	14	1053	1,0	106	914	824	90	86	3,0	324	1098	826	271	262
	15	1053	14,5	1537	2134	824	1310	1243	8,5	918	1594	826	768	742
	13b	1046	9,0	954	1626	819	808	772	2,0	216	1001	821	179	175
0,01	16	1060	7,0	742	1466	830	637	600	4,5	486	1241	832	409	393
	18	1060	3	318	1102	830	273	257	2	216	1014	832	182	175
	17b	1039	14	1484	2061	813	1248	1200	5,4	583,2	1297	816	481	472

Tabela A3 – produção de gás em 11/1 e 14/1

		1		r	rodaşa	(J	11/10	1 1/ 1					
	,		11/jan	Templ	27		Patml	673	14/jan	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,0	0	832	832	0	0	1,5	162	965	828	136	131
0,02	2	1046	2,4	250	1036	821	215	201	2,1	227	1009	817	192	183
	3b	1039	2,1	218	1003	816	187	176	2,7	292	1056	812	244	236
	5	1060	1,0	104	923	832	91	84	1,3	140	950	828	122	113
0,02	7	1074	0,0	0	843	843	0	0	0,3	32	871	839	31	26
	4b	1046	2,0	208	1001	821	179	168	1,8	194	983	817	165	157
	8	1060	0,0	0	832	832	0	0	1,0	108	923	828	95	87
0,01	9	1060	1,6	166	978	832	146	134	1,7	184	987	828	158	148
	6b	1039	2,2	229	1012	816	196	184	2,2	238	1012	812	200	192
	11	1060	2,2	229	1032	832	200	184	2,8	302	1087	828	258	244
0,02	12	1053	1,1	114	926	826	99	92	1,1	119	926	823	103	96
	10b	1039	1,7	177	967	816	152	142	1,2	130	922	812	111	105
	14	1053	5,5	572	1323	826	497	461	3,1	335	1107	823	284	270
0,02	15	1053	3,6	374	1152	826	325	302	3,9	421	1179	823	356	340
	13b	1046	1,4	146	947	821	126	117	2,2	238	1018	817	201	192
	16	1060	1,8	187	996	832	164	151	2,7	292	1078	828	249	236
0,01	18	1060	2,6	270	1068	832	236	218	2,0	216	1014	828	186	174
	17b	1039	1,7	177	967	816	152	142	1,4	151	940	812	128	122

Tabela A4 – produção de gás em 17/1 e 20/1

			17-jan	Templ	25		Patml	671	20-jan	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	1	105	920	830	91	85	1,1	116,6	932	832	100	94
0,02	2	1046	1,2	126	926	819	108	102	0,5	53	866	821	45	43
	3b	1039	3	315	1081	813	267	255	2,3	243,8	1021	816	205	197
	5	1060	0,7	73,5	893	830	64	59	0,5	53	877	832	45	43
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	1,6	168	962	819	144	136	0,9	95,4	902	821	81	77
	8	1060	0,7	73,5	893	830	64	59	0,8	84,8	905	832	73	69
0,01	9	1060	1,2	126	939	830	109	102	0,5	53	877	832	45	43
	6b	1039	2,2	231	1009	813	196	187	0,8	84,8	887	816	71	69
	11	1060	2,6	273	1066	830	236	221	1,9	201,4	1005	832	173	163
0,02	12	1053	0,9	94,5	905	824	81	76	0,9	95,4	908	826	81	77
	10b	1039	1,4	147	938	813	125	119	1,5	159	949	816	134	129
	14	1053	1,2	126	932	824	108	102	0,6	63,6	881	826	54	51
0,02	15	1053	3,7	388,5	1158	824	334	314	3	318	1098	826	271	257
	13b	1046	3,8	399	1160	819	341	323	3,5	371	1135	821	314	300
	16	1060	1	105	920	830	91	85	1,4	148,4	959	832	127	120
0,01	18	1060	1,7	178,5	984	830	155	144	0,7	74,2	896	832	64	60
	17b	1039	1,2	126	920	813	107	102	1	106	905	816	89	86

Tabela A5 – produção de gás em 23/1 e 26/1

			23/jan	Templ	27		Patml	673	26/jan	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	1,0	103	923	832	91	83	1	108	919	828	91	87
0,02	2	1046	1,2	124	929	821	108	100	0,8	86	893	817	75	70
	3b	1039	1,9	196	985	816	169	158	2	216	994	812	182	174
	5	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,02	7	1074	0,4	41	880	843	37	33	0	0	843	839	4	0
	4b	1046	0,5	52	866	821	45	42	1,1	119	920	817	102	96
	8	1060	0	0	832	832	0	0	0,3	32	859	828	31	26
0,01	9	1060	0,6	62	887	832	55	50	0,9	97	914	828	86	79
	6b	1039	0,5	50	860	816	45	40	0,7	76	878	812	66	61
	11	1060	1,7	175	987	832	155	141	1,3	140	950	828	122	113
0,02	12	1053	0,9	93	908	826	81	75	0	0	826	823	4	0
	10b	1039	0,7	72	878	816	62	58	3,4	367	1119	812	307	297
	14	1053	0,4	41	863	826	36	33	0,7	76	890	823	67	61
0,02	15	1053	2,7	278	1070	826	244	224	1,8	194	989	823	166	157
	13b	1046	2,3	237	1027	821	206	191	3,4	367	1126	817	309	297
	16	1060	0,8	82	905	832	73	66	1,1	119	932	828	104	96
0,01	18	1060	0,8	82	905	832	73	66	0,7	76	896	828	67	61
	17b	1039	0,8	82	887	816	71	66	0,6	65	869	812	57	52

Tabela A6 – produção de gás em 29/1 e 01/2

			29-jan	Templ	25		Patml	671	1-fev	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	52	875	830	45	42	0,6	61,2	887	832	55	49
0,02	2	1046	1	104	908	819	90	84	1,2	122,4	929	821	108	99
	3b	1039	1,3	135,2	929	813	116	109	0,9	91,8	896	816	80	74
	5	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	7	1074	0,2	20,8	859	840	18	17	0	0	843	843	0	0
	4b	1046	1,2	124,8	926	819	108	101	0,7	71,4	884	821	63	58
	8	1060	0,5	56	875	830	45	45	0,2	20,4	850	832	18	16
0,01	9	1060	0	0	830	830	0	0	0,6	61,2	887	832	55	49
	6b	1039	1,4	145,6	938	813	125	118	0,9	91,8	896	816	80	74
	11	1060	1,7	176,8	984	830	155	143	1	102	923	832	91	82
0,02	12	1053	0,8	83,2	896	824	72	67	1	102	917	826	90	82
	10b	1039	0,5	42	858	813	45	34	0,9	91,8	896	816	80	74
	14	1053	0,2	20,8	842	824	18	17	0,6	61,2	881	826	54	49
0,02	15	1053	2,3	239,2	1032	824	208	193	1,1	112,2	926	826	99	91
	13b	1046	2	208	998	819	179	168	1,9	193,8	992	821	171	157
	16	1060	1	104	920	830	91	84	1,3	132,6	950	832	118	107
0,01	18	1060	0,8	87	902	830	73	70	0,7	71,4	896	832	64	58
	17b	1039	0,5	50	858	813	45	40	0,3	30,6	842	816	27	25

Tabela A7 – produção de gás em 4/2 e 7/2

			Tuocia	, P	roauşu		5000 011	1/20						
			4/fev	Templ	27		Patml	673	7/fev	Templ	25		Patml	670
	1	Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,7	74	896	832	64	59	1,2	124	937	828	109	100
0,02	2	1046	0,8	84	893	821	72	68	1	103	911	817	93	83
	3b	1039	1,2	126	922	816	107	102	0,6	62	869	812	57	50
	5	1060	0	0	832	832	0	0	0,6	62	887	828	58	50
0,02	7	1074	0	0	843	843	0	0	0,3	31	871	839	31	25
	4b	1046	0,5	53	866	821	45	42	0,7	72	884	817	66	58
	8	1060	0	0	832	832	0	0	0,2	21	850	828	22	17
0,01	9	1060	0,4	42	868	832	36	34	0,4	41	868	828	40	33
	6b	1039	0,6	63	869	816	53	51	0,5	52	860	812	48	42
	11	1060	0,9	95	914	832	82	76	1,1	113	932	828	104	92
0,02	12	1053	1	105	917	826	90	85	0,5	52	872	823	49	42
	10b	1039	0,6	63	869	816	53	51	0,5	52	860	812	48	42
	14	1053	0,7	98	890	826	63	79	0,4	41	863	823	40	33
0,02	15	1053	0	0	826	826	0	0	1,1	113	926	823	103	92
	13b	1046	0,7	69	884	821	63	56	0,4	41	857	817	40	33
	16	1060	0,7	76	896	832	64	61	1,1	113	932	828	104	92
0,01	18	1060	0,5	49	877	832	45	39	0,7	72	896	828	67	58
	17b	1039	0	0	816	816	0	0	0,3	31	842	812	30	25

Tabela A8 – produção de gás em10/2 e 13/2

			10-fev	Templ	25		Patml	671	13-fev	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	1	106	920	830	91	86	0	0	832	832	0	0
0,02	2	1046	1,3	137,8	935	819	117	111	0,5	52	866	821	45	42
	3b	1039	0,8	84,8	884	813	71	69	0,9	93,6	896	816	80	76
	5	1060	0,4	42,4	866	830	36	34	0	0	832	832	0	0
0,02	7	1074	0,3	31,8	868	840	28	26	0	0	843	843	0	0
	4b	1046	0,6	63,6	872	819	54	51	0,9	93,6	902	821	81	76
	8	1060	0,4	42,4	866	830	36	34	0	0	832	832	0	0
0,01	9	1060	0,3	31,8	857	830	27	26	0	0	832	832	0	0
	6b	1039	1	106	902	813	89	86	0,3	31,2	842	816	27	25
	11	1060	0,5	53	875	830	45	43	0	0	832	832	0	0
0,02	12	1053	1,1	116,6	923	824	99	94	0,6	62,4	881	826	54	50
	10b	1039	0,5	56	858	813	45	45	0,9	93,6	896	816	80	76
	14	1053	0,6	63,6	878	824	54	51	0	0	826	826	0	0
0,02	15	1053	1	106	914	824	90	86	1,2	124,8	935	826	108	101
	13b	1046	0,2	21,2	837	819	18	17	0,6	62,4	875	821	54	50
	16	1060	1,3	140	948	830	118	113	1,2	124,8	941	832	109	101
0,01	18	1060	0,7	74,2	893	830	64	60	0,9	93,6	914	832	82	76
	17b	1039	0,3	31,8	840	813	27	26	0	0	816	816	0	0

Tabela A9 – produção de gás em 16/2 e 19/2

			Tuocia	P	roauşu		5000 011	1 10/2 0						
			16/fev	Templ	27		Patml	673	19/fev	Templ	25		Patml	670
	1	Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	1	103	923	832	91	83	0,6	64	883	828	55	51
0,02	2	1046	0,7	72	884	821	63	58	0	0	821	817	4	0
	3b	1039	0,3	31	842	816	27	25	1,1	117	914	812	102	94
	5	1060	0,4	41	868	832	36	33	0	0	832	828	4	0
0,02	7	1074	0,4	41	880	843	37	33	0	0	843	839	4	0
	4b	1046	0	0	821	821	0	0	0,7	74	884	817	66	60
	8	1060	0,7	72	896	832	64	58	0,8	85	905	828	76	68
0,01	9	1060	0,5	52	877	832	45	42	0	0	832	828	4	0
	6b	1039	0,6	62	869	816	53	50	0,8	85	887	812	75	68
	11	1060	0,3	31	859	832	27	25	0	0	832	828	4	0
0,02	12	1053	0,6	62	881	826	54	50	0,6	64	881	823	58	51
	10b	1039	0,9	93	896	816	80	75	0,6	64	869	812	57	51
	14	1053	1,3	134	944	826	117	108	0,7	74	890	823	67	60
0,02	15	1053	1,1	113	926	826	99	91	1,2	127	935	823	112	103
	13b	1046	0,3	31	848	821	27	25	0	0	821	817	4	0
	16	1060	1,1	113	932	832	100	91	1,3	138	950	828	122	111
0,01	18	1060	0,7	72	896	832	64	58	0,5	53	877	828	49	43
	17b	1039	0,8	82	887	816	71	66	0	0	816	812	4	0

Tabela A10 – produção de gás em 22/2 e 25/2

			22-fev	Templ	25		Patml	671	25-fev	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,9	97,2	911	830	82	79	0,7	73,5	896	832	64	59
0,02	2	1046	0,4	43,2	854	819	36	35	0,5	52,5	866	821	45	42
	3b	1039	0,2	21,6	831	813	18	17	0,5	50	860	816	45	40
	5	1060	0,4	43,2	866	830	36	35	0,4	42	868	832	36	34
0,02	7	1074	0,6	64,8	896	840	55	52	0,3	31,5	871	843	28	25
	4b	1046	0,2	21,6	837	819	18	17	0,2	21	839	821	18	17
	8	1060	0,4	43,2	866	830	36	35	0	0	832	832	0	0
0,01	9	1060	0,5	54	875	830	45	44	0,3	28	859	832	27	23
	6b	1039	0,3	32,4	840	813	27	26	0,6	63	869	816	53	51
	11	1060	0,3	32,4	857	830	27	26	0	0	832	832	0	0
0,02	12	1053	0,5	54	869	824	45	44	0,7	73,5	890	826	63	59
	10b	1039	0,2	21,6	831	813	18	17	0	0	816	816	0	0
	14	1053	0,3	32,4	851	824	27	26	0,4	42	863	826	36	34
0,02	15	1053	0,3	32,4	851	824	27	26	0	0	826	826	0	0
	13b	1046	0,5	54	863	819	45	44	0	0	821	821	0	0
	16	1060	0,6	64,8	884	830	55	52	0	0	832	832	0	0
0,01	18	1060	0,6	64,8	884	830	55	52	0,6	58	887	832	55	47
	17b	1039	0,3	32,4	840	813	27	26	0	0	816	816	0	0

Tabela A11 – produção de gás em28/2 e 3/3

			28/fev	Templ	27		Patml	673	3/mar	Templ	25		Patml	670
		Head	Pressäo	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,8	83	905	832	73	67	0,5	53	874	828	45	43
0,02	2	1046	0,5	52	866	821	45	42	0,6	64	875	817	58	51
	3b	1039	1,1	114	914	816	98	92	0,3	32	842	812	30	26
	5	1060	0,3	31	859	832	27	25	0,3	30	859	828	31	24
0,02	7	1074	0,4	42	880	843	37	34	0,2	21	861	839	22	17
	4b	1046	0	0	821	821	0	0	0,3	32	848	817	31	26
	8	1060	0,3	29	859	832	27	23	0,2	21	850	828	22	17
0,01	9	1060	0,3	31	859	832	27	25	0,2	21	850	828	22	17
	6b	1039	0,4	42	851	816	36	34	0,3	32	842	812	30	26
	11	1060	0,3	31	859	832	27	25	0,3	29	859	828	31	23
0,02	12	1053	0,6	62	881	826	54	50	0,4	42	863	823	40	34
	10b	1039	0,3	31	842	816	27	25	0,3	33	842	812	30	27
	14	1053	0,5	54	872	826	45	44	0,2	21	845	823	22	17
0,02	15	1053	0,3	31	854	826	27	25	0	0	826	823	4	0
	13b	1046	0,3	25	848	821	27	20	0,2	21	839	817	22	17
	16	1060	0,6	62	887	832	55	50	1,1	117	932	828	104	94
0,01	18	1060	1	104	923	832	91	84	1,1	117	932	828	104	94
	17b	1039	0,3	33	842	816	27	27	0,2	23	833	812	21	19

Tabela A12 – produção de gás em 6/3 e 9/3

			6-mar	Templ	25		Patml	671	9-mar	Templ	26		Patml	673
		Head	Pressäo	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,6	61,8	884	830	55	50	0,4	42	868	832	36	34
0,02	2	1046	0,6	54	872	819	54	44	0,4	38	857	821	36	31
	3b	1039	1	103	902	813	89	83	0,7	73,5	878	816	62	59
	5	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	0,9	92,7	899	819	81	75	0,6	63	875	821	54	51
	8	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,01	9	1060	0	0	830	830	0	0	0	0	832	832	0	0
	6b	1039	0,3	30,9	840	813	27	25	0,5	52,5	860	816	45	42
	11	1060	0	0	830	830	0	0	0,3	31,5	859	832	27	25
0,02	12	1053	0,8	82,4	896	824	72	67	0,4	42	863	826	36	34
	10b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	14	1053	0,7	72,1	887	824	63	58	0,4	36	863	826	36	29
0,02	15	1053	0	0	824	824	0	0	0	0	826	826	0	0
	13b	1046	0,8	80	890	819	72	65	0	0	821	821	0	0
	16	1060	1,1	113,3	930	830	100	92	0,5	52,5	877	832	45	42
0,01	18	1060	0,7	74	893	830	64	60	0,6	62	887	832	55	50
	17b	1039	0	0	813	813	0	0	0	0	816	816	0	0

Tabela A13 – produção de gás em 12/3 e 15/3

			Tabela	1115	produg	uo uc	gas c	11 12/3	C 13/3					
			12/mar	Templ	27		Patml	673	15/mar	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	52	877	832	45	42	0,5	53	874	828	45	42
0,02	2	1046	0,4	43	857	821	36	34	0,5	50	866	817	49	40
	3b	1039	0,5	54	860	816	45	43	0,4	42	851	812	39	34
	5	1060	0,5	50	877	832	45	40	0,4	42	868	828	40	34
0,02	7	1074	0,6	64	898	843	55	52	0	0	843	839	4	0
	4b	1046	0,5	54	866	821	45	43	0,5	49	866	817	49	40
	8	1060	0	0	832	832	0	0	0,4	43	868	828	40	35
0,01	9	1060	0	0	832	832	0	0	0,4	42	868	828	40	34
	6b	1039	0,6	58	869	816	53	47	0,4	40	851	812	39	32
	11	1060	0,3	32	859	832	27	26	0,4	39	868	828	40	31
0,02	12	1053	0,4	43	863	826	36	34	0,7	74	890	823	67	59
	10b	1039	0	0	816	816	0	0	0	0	816	812	4	0
	14	1053	0,4	40	863	826	36	32	0,4	35	863	823	40	28
0,02	15	1053	0	0	826	826	0	0	0	0	826	823	4	0
	13b	1046	0,4	36	857	821	36	29	0	0	821	817	4	0
	16	1060	0,4	42	868	832	36	34	0,4	41	868	828	40	33
0,01	18	1060	0,6	64	887	832	55	52	0,4	42	868	828	40	34
	17b	1039	0	0	816	816	0	0	0	0	816	812	4	0

Tabela A14 – produção de gás em 18/3 e 21/3

			18-mar	Templ	25		Patml	671	21-mar	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	53	875	830	45	43	0,4	40,8	868	832	36	33
0,02	2	1046	0,6	63,6	872	819	54	51	0,4	40	857	821	36	32
	3b	1039	0,4	42,4	849	813	36	34	0	0	816	816	0	0
	5	1060	0,3	31,8	857	830	27	26	0	0	832	832	0	0
0,02	7	1074	0,3	30	868	840	28	24	0	0	843	843	0	0
	4b	1046	0,3	31,8	845	819	27	26	0	0	821	821	0	0
	8	1060	0,3	27	857	830	27	22	0	0	832	832	0	0
0,01	9	1060	0,3	31	857	830	27	25	0	0	832	832	0	0
	6b	1039	0,4	42,4	849	813	36	34	0,5	51	860	816	45	41
	11	1060	0,6	63,6	884	830	55	51	0,3	30,6	859	832	27	25
0,02	12	1053	0,4	42,4	860	824	36	34	0	0	826	826	0	0
	10b	1039	0,3	30	840	813	27	24	0	0	816	816	0	0
	14	1053	0,4	42,4	860	824	36	34	0,5	49	872	826	45	40
0,02	15	1053	0,3	25	851	824	27	20	0	0	826	826	0	0
	13b	1046	0	0	819	819	0	0	0	0	821	821	0	0
	16	1060	0,4	43	866	830	36	35	0,4	38	868	832	36	31
0,01	18	1060	0,5	53	875	830	45	43	0,6	61,2	887	832	55	49
	17b	1039	0,3	28	840	813	27	23	0	0	816	816	0	0

Tabela A15 – produção de gás em 24/3 e 27/3

			Tabela	1115	produg	uo uc	gus ci	111 2-7/3	0 2113					
			24/mar	Templ	27		Patml	673	27/mar	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	52	877	832	45	42	0,4	41	865	828	36	24
0,02	2	1046	0,5	50	866	821	45	40	0,4	41	857	817	40	33
	3b	1039	0,4	42	851	816	36	34	0,2	21	833	812	21	17
	5	1060	0,4	36	868	832	36	29	0,3	31	859	828	31	25
0,02	7	1074	0	0	843	843	0	0	0	0	843	839	4	0
	4b	1046	0,4	38	857	821	36	31	0,2	21	839	817	22	17
	8	1060	0,4	42	868	832	36	34	0,3	31	859	828	31	25
0,01	9	1060	0,3	31	859	832	27	25	0,4	41	868	828	40	33
	6b	1039	0,3	30	842	816	27	24	0	0	816	812	4	0
	11	1060	0,5	55	877	832	45	44	0,3	31	859	828	31	25
0,02	12	1053	0,5	46	872	826	45	37	0,2	21	845	823	22	17
	10b	1039	0,2	21	833	816	18	17	0,3	31	842	812	30	25
	14	1053	0,4	42	863	826	36	34	0,4	41	863	823	40	33
0,02	15	1053	0,4	32	863	826	36	26	0,3	31	854	823	31	25
	13b	1046	0,4	40	857	821	36	32	0	0	821	817	4	0
	16	1060	0,4	36	868	832	36	29	0,3	31	859	828	31	25
0,01	18	1060	0,8	83	905	832	73	67	0,4	41	868	828	40	33
	17b	1039	0,2	21	833	816	18	17	0,4	41	851	812	39	33

Tabela A16 – produção de gás em 30/3 e 2/4

			30-mar	Templ	25		Patml	671	2-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0,3	29	859	832	27	23
0,02	2	1046	0,5	46	863	819	45	37	0,4	38	857	821	36	31
	3b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	5	1060	0,5	35	875	830	45	28	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	0	0	819	819	0	0	0,4	41	857	821	36	33
	8	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,01	9	1060	0	0	830	830	0	0	0	0	832	832	0	0
	6b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	11	1060	0,5	53	875	830	45	43	0,5	54	877	832	45	44
0,02	12	1053	0	0	824	824	0	0	0,3	32	854	826	27	26
	10b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	14	1053	0	0	824	824	0	0	0	0	826	826	0	0
0,02	15	1053	0	0	824	824	0	0	0	0	826	826	0	0
	13b	1046	0	0	819	819	0	0	0	0	821	821	0	0
	16	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,01	18	1060	0,5	48	875	830	45	39	0,5	35	877	832	45	28
	17b	1039	0	0	813	813	0	0	0	0	816	816	0	0

Tabela A17 – produção de gás em 5/4 e 8/4

			1 40014		produg	,	800	111 5/ 1 0	0, .					
			5/abr	Templ	27		Patml	673	8/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,3	23	859	832	27	19	0,6	30	883	828	55	24
0,02	2	1046	0	0	821	821	0	0	0,6	35	875	817	58	28
	3b	1039	0	0	816	816	0	0	0	0	816	812	4	0
	5	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,02	7	1074	0	0	843	843	0	0	0	0	843	839	4	0
	4b	1046	0	0	821	821	0	0	0	0	821	817	4	0
	8	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,01	9	1060	0	0	832	832	0	0	0	0	832	828	4	0
	6b	1039	0,3	0	842	816	27	0	0	0	816	812	4	0
	11	1060	0,4	35	868	832	36	28	0,6	50	887	828	58	40
0,02	12	1053	0,3	13	854	826	27	10	0,5	20	872	823	49	16
	10b	1039	0	0	816	816	0	0	0,3	0	842	812	30	0
	14	1053	0	0	826	826	0	0	0,5	41	872	823	49	33
0,02	15	1053	0	0	826	826	0	0	0	0	826	823	4	0
	13b	1046	0	0	821	821	0	0	0	0	821	817	4	0
	16	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,01	18	1060	0,3	19	859	832	27	15	0,4	20	868	828	40	16
	17b	1039	0	0	816	816	0	0	0	0	816	812	4	0

Tabela A18 – produção de gás em 9/4 e 10/4

			9-abr	Templ	25		Patml	671	10-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0,4	25	868	832	36	20
0,02	2	1046	0	0	819	819	0	0	0,5	36	866	821	45	29
	3b	1039	1,1	110	911	813	98	89	0,4	19	851	816	36	15
	5	1060	0,8	60	902	830	73	49	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	1,5	14	953	819	135	11	0,6	30	875	821	54	24
	8	1060	0,9	85	911	830	82	69	0,3	20	859	832	27	16
0,01	9	1060	0	0	830	830	0	0	0	0	832	832	0	0
	6b	1039	0,9	0	893	813	80	0	0,5	20	860	816	45	16
	11	1060	0	0	830	830	0	0	0,3	20	859	832	27	16
0,02	12	1053	0	0	824	824	0	0	0	0	826	826	0	0
	10b	1039	1,4	135	938	813	125	109	0,5	41	860	816	45	33
	14	1053	0	0	824	824	0	0	0,3	22	854	826	27	18
0,02	15	1053	1,1	90	923	824	99	73	0	0	826	826	0	0
	13b	1046	1	100	908	819	90	81	0,4	23	857	821	36	19
	16	1060	4	410	1193	830	364	332	0,8	72	905	832	73	58
0,01	18	1060	0	0	830	830	0	0	0,3	13	859	832	27	11
	17b	1039	1	110	902	813	89	89	0	0	816	816	0	0

Tabela A19 – produção de gás em 11/4 e 12/4

			Tabela	111/	produg	uo uc	gus ci	11 11/7	C 12/ 1					
			11/abr	Templ	27		Patml	673	12/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,3	10	859	832	27	8	0,3	15	856	828	27	12
0,02	2	1046	0	0	821	821	0	0	0,5	50	866	817	49	40
	3b	1039	0,4	16	851	816	36	13	0,4	21	851	812	39	17
	5	1060	0,4	26	868	832	36	21	0,3	18	859	828	31	15
0,02	7	1074	0,5	21	889	843	46	17	0,4	15	880	839	41	12
	4b	1046	0,6	26	875	821	54	21	0,5	24	866	817	49	19
	8	1060	0,4	24	868	832	36	19	0	0	832	828	4	0
0,01	9	1060	0	0	832	832	0	0	0,7	48	896	828	67	39
	6b	1039	0,5	20	860	816	45	16	0,4	0	851	812	39	0
	11	1060	0,4	20	868	832	36	16	0,3	12	859	828	31	10
0,02	12	1053	0,4	33	863	826	36	27	0,3	13	854	823	31	10
	10b	1039	0,6	42	869	816	53	34	0,6	45	869	812	57	36
	14	1053	0	0	826	826	0	0	0	0	826	823	4	0
0,02	15	1053	0,3	0	854	826	27	0	0	0	826	823	4	0
	13b	1046	0,3	5	848	821	27	4	0,4	13	857	817	40	10
	16	1060	0,4	5	868	832	36	4	0,5	20	877	828	49	16
0,01	18	1060	0	0	832	832	0	0	0,3	20	859	828	31	16
	17b	1039	0,3	0	842	816	27	0	0	0	816	812	4	0

Tabela A20 – produção de gás em 13/4 e 14/4

			13-abr	Templ	25		Patml	671	14-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressäo	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0,4	15	868	832	36	12
0,02	2	1046	0,4	27	854	819	36	22	0,3	5	848	821	27	4
	3b	1039	0,4	21	849	813	36	17	0	0	816	816	0	0
	5	1060	0,4	0	866	830	36	0	0,4	15	868	832	36	12
0,02	7	1074	0,3	0	868	840	28	0	0,4	0	880	843	37	0
	4b	1046	0,4	10	854	819	36	8	0,5	11	866	821	45	9
	8	1060	0,4	10	866	830	36	8	0,4	15	868	832	36	12
0,01	9	1060	0,5	27	875	830	45	22	0,3	0	859	832	27	0
	6b	1039	0,4	0	849	813	36	0	0,5	17	860	816	45	14
	11	1060	0,3	19	857	830	27	15	0,3	5	859	832	27	4
0,02	12	1053	0,3	14	851	824	27	11	0,3	0	854	826	27	0
	10b	1039	0,7	27	875	813	62	22	0,7	56	878	816	62	45
	14	1053	0,8	78	896	824	72	63	0,4	20	863	826	36	16
0,02	15	1053	0,7	54	887	824	63	44	0,5	23	872	826	45	19
	13b	1046	0,3	8	845	819	27	6	0,3	0	848	821	27	0
	16	1060	0,5	26	875	830	45	21	0,4	8	868	832	36	6
0,01	18	1060	0,3	13	857	830	27	11	0,3	0	859	832	27	0
	17b	1039	0,8	59	884	813	71	48	0,4	17	851	816	36	14

Tabela A21 – produção de gás em 15/4 e 16/4

			1 40014		produg		800	111 15/ 1	U 10, .					
			15/abr	Templ	27		Patml	673	16/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	20	877	832	45	16	0,3	13	856	828	27	10
0,02	2	1046	0,6	27	875	821	54	22	0,4	26	857	817	40	21
	3b	1039	0,3	0	842	816	27	0	0,3	20	842	812	30	16
	5	1060	0	0	832	832	0	0	0,4	32	868	828	40	26
0,02	7	1074	0	0	843	843	0	0	0,3	19	871	839	31	15
	4b	1046	0,3	14	848	821	27	11	0,3	26	848	817	31	21
	8	1060	0	0	832	832	0	0	0,3	35	859	828	31	28
0,01	9	1060	0	0	832	832	0	0	0	0	832	828	4	0
	6b	1039	0,4	22	851	816	36	18	0	0	816	812	4	0
	11	1060	0,5	22	877	832	45	18	0,4	32	868	828	40	26
0,02	12	1053	0	0	826	826	0	0	0	0	826	823	4	0
	10b	1039	1,0	100	905	816	89	81	1,0	110	905	812	93	89
	14	1053	0,5	37	872	826	45	30	0,3	25	854	823	31	20
0,02	15	1053	0	0	826	826	0	0	0,3	21	854	823	31	17
	13b	1046	1,1	125	920	821	99	101	0,4	33	857	817	40	27
	16	1060	0,3	13	859	832	27	10	0,3	27	859	828	31	22
0,01	18	1060	0,5	18	877	832	45	15	0,4	24	868	828	40	19
	17b	1039	0,3	0	842	816	27	0	0,3	18	842	812	30	15

Tabela A22 – produção de gás em 17/4 e 18/4

			17-abr	Templ	25		Patml	671	18-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	2	1046	0,3	15	845	819	27	12	0,3	16	848	821	27	13
	3b	1039	0	0	813	813	0	0	0,3	14	842	816	27	11
	5	1060	0,3	12	857	830	27	10	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	0,4	0	854	819	36	0	0,4	17	857	821	36	14
	8	1060	0,4	11	866	830	36	9	0,4	0	868	832	36	0
0,01	9	1060	0,4	22	866	830	36	18	0	0	832	832	0	0
	6b	1039	0,3	0	840	813	27	0	0,3	0	842	816	27	0
	11	1060	0	0	830	830	0	0	0,3	19	859	832	27	15
0,02	12	1053	0	0	824	824	0	0	0	0	826	826	0	0
	10b	1039	0,7	46	875	813	62	37	0,8	0	887	816	71	0
	14	1053	0	0	824	824	0	0	0,3	0	854	826	27	0
0,02	15	1053	0,3	5	851	824	27	4	0	0	826	826	0	0
	13b	1046	0,4	12	854	819	36	10	0,4	19	857	821	36	15
	16	1060	0,4	10	866	830	36	8	0,4	17	868	832	36	14
0,01	18	1060	0	0	830	830	0	0	0,4	31	868	832	36	25
	17b	1039	0	0	813	813	0	0	0	0	816	816	0	0

Tabela A23 – produção de gás em 19/4 e 20/4

			Tabela	1123	produg	uo uc	gas c	1111/1	C 20/ I					
			19/abr	Templ	27		Patml	673	20/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0,5	36	877	832	45	29	0,3	31	856	828	27	25
0,02	2	1046	0	0	821	821	0	0	0,3	11	848	817	31	9
	3b	1039	0,3	0	842	816	27	0	0	0	816	812	4	0
	5	1060	0,3	0	859	832	27	0	0,3	11	859	828	31	9
0,02	7	1074	0,3	11	871	843	28	9	0	0	843	839	4	0
	4b	1046	0,3	8	848	821	27	6	0,4	3	857	817	40	2
	8	1060	0,5	19	877	832	45	15	0,3	0	859	828	31	0
0,01	9	1060	0,3	0	859	832	27	0	0,4	14	868	828	40	11
	6b	1039	0	0	816	816	0	0	0	0	816	812	4	0
	11	1060	0,3	16	859	832	27	13	0	0	832	828	4	0
0,02	12	1053	0,6	45	881	826	54	36	0	0	826	823	4	0
	10b	1039	0,5	35	860	816	45	28	0,5	20	860	812	48	16
	14	1053	0,3	5	854	826	27	4	0,4	0	863	823	40	0
0,02	15	1053	0,3	0	854	826	27	0	0,3	12	854	823	31	10
	13b	1046	0,3	0	848	821	27	0	0	0	821	817	4	0
	16	1060	0,5	22	877	832	45	18	0,5	16	877	828	49	13
0,01	18	1060	0,3	14	859	832	27	11	0	0	832	828	4	0
	17b	1039	0,7	68	878	816	62	55	0,4	16	851	812	39	13

Tabela A24 – produção de gás em 21/4 e 22/4

			21-abr	Templ	25		Patml	671	22-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0,3	25	859	832	27	20
0,02	2	1046	0	0	819	819	0	0	0,5	30	866	821	45	24
	3b	1039	0,4	21	849	813	36	17	0,7	60	878	816	62	49
	5	1060	0	0	830	830	0	0	0,4	20	868	832	36	16
0,02	7	1074	0	0	840	840	0	0	0,3	20	871	843	28	16
	4b	1046	0	0	819	819	0	0	0,4	42	857	821	36	34
	8	1060	0	0	830	830	0	0	0,3	28	859	832	27	23
0,01	9	1060	0	0	830	830	0	0	0,3	27	859	832	27	22
	6b	1039	0,5	27	858	813	45	22	0,4	48	851	816	36	39
	11	1060	0	0	830	830	0	0	0,4	42	868	832	36	34
0,02	12	1053	0	0	824	824	0	0	0,4	45	863	826	36	36
	10b	1039	0	0	813	813	0	0	0,6	28	869	816	53	23
	14	1053	0	0	824	824	0	0	0,4	32	863	826	36	26
0,02	15	1053	0	0	824	824	0	0	0,3	20	854	826	27	16
	13b	1046	0,5	25	863	819	45	20	0,7	60	884	821	63	49
	16	1060	0	0	830	830	0	0	0,4	26	868	832	36	21
0,01	18	1060	0	0	830	830	0	0	0,3	29	859	832	27	23
	17b	1039	0	0	813	813	0	0	0,3	10	842	816	27	8

Tabela A25 – produção de gás em 23/4 e 24/4

			Tabela	1123	produç	ao ac	gus c	111 43/4	0 2 1/ 1					
			23/abr	Templ	27		Patml	673	24/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	832	832	0	0	0	0	828	828	0	0
0,02	2	1046	0	0	821	821	0	0	0,3	0	848	817	31	0
	3b	1039	0	0	816	816	0	0	0,4	13	851	812	39	10
	5	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,02	7	1074	0	0	843	843	0	0	0	0	843	839	4	0
	4b	1046	0	0	821	821	0	0	0	0	821	817	4	0
	8	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,01	9	1060	0	0	832	832	0	0	0	0	832	828	4	0
	6b	1039	0	0	816	816	0	0	0,4	0	851	812	39	0
	11	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,02	12	1053	0	0	826	826	0	0	0	0	826	823	4	0
	10b	1039	0	0	816	816	0	0	0	0	816	812	4	0
	14	1053	0	0	826	826	0	0	0,3	14	854	823	31	11
0,02	15	1053	0	0	826	826	0	0	0	0	826	823	4	0
	13b	1046	0	0	821	821	0	0	0	0	821	817	4	0
	16	1060	0,6	58	887	832	55	47	0	0	832	828	4	0
0,01	18	1060	0	0	832	832	0	0	0	0	832	828	4	0
	17b	1039	0	0	816	816	0	0	0	0	816	812	4	0

Tabela A26 – produção de gás em 25/4 e 26/4

			25-abr	Templ	25		Patml	671	26-abr	Templ	26		Patml	673
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	2	1046	0,3	0	845	819	27	0	0	0	821	821	0	0
	3b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	5	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	0,3	11	845	819	27	9	0,4	21	857	821	36	17
	8	1060	0	0	830	830	0	0	0,4	13	868	832	36	11
0,01	9	1060	0,8	61	902	830	73	49	0	0	832	832	0	0
	6b	1039	0	0	813	813	0	0	0	0	816	816	0	0
	11	1060	0,3	13	857	830	27	11	0	0	832	832	0	0
0,02	12	1053	0	0	824	824	0	0	0	0	826	826	0	0
	10b	1039	0,3	5	840	813	27	4	0,4	15	851	816	36	12
	14	1053	0,3	12	851	824	27	10	0,3	8	854	826	27	6
0,02	15	1053	0	0	824	824	0	0	0	0	826	826	0	0
	13b	1046	0,6	59	872	819	54	48	0	0	821	821	0	0
	16	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,01	18	1060	1	98	920	830	91	79	0,5	35	877	832	45	28
	17b	1039	0,5	44	858	813	45	36	0	0	816	816	0	0

Tabela A27 – produção de gás em 27/4 e 28/4

			1 40014		produg	uo uc	800	111 2 // 1	- - 0, .					
			27/abr	Templ	27		Patml	673	28/abr	Templ	25		Patml	670
		Head	Pressão	Volume	gás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	832	832	0	0	0	0	828	828	0	0
0,02	2	1046	0,5	20	866	821	45	16	0,4	0	857	817	40	0
	3b	1039	0,3	0	842	816	27	0	0	0	816	812	4	0
	5	1060	0	0	832	832	0	0	0	0	832	828	4	0
0,02	7	1074	0	0	843	843	0	0	0	0	843	839	4	0
	4b	1046	0,3	8	848	821	27	6	0	0	821	817	4	0
	8	1060	0,4	10	868	832	36	8	0,4	12	868	828	40	10
0,01	9	1060	0,3	9	859	832	27	7	0	0	832	828	4	0
	6b	1039	0,3	0	842	816	27	0	0	0	816	812	4	0
	11	1060	0	0	832	832	0	0	0,3	14	859	828	31	11
0,02	12	1053	0	0	826	826	0	0	0	0	826	823	4	0
	10b	1039	0,5	12	860	816	45	10	0,4	0	851	812	39	0
	14	1053	0,4	22	863	826	36	18	0	0	826	823	4	0
0,02	15	1053	0	0	826	826	0	0	0	0	826	823	4	0
	13b	1046	0	0	821	821	0	0	0,3	10	848	817	31	8
	16	1060	0	0	832	832	0	0	0,4	21	868	828	40	17
0,01	18	1060	0,4	21	868	832	36	17	0,4	26	868	828	40	21
	17b	1039	0,5	33	860	816	45	27	0	0	816	812	4	0

Tabela A28 – produção de gás em 29/4 e 30/4

			29-abr	Templ	25		Patml	671	30-abr	Templ	26		Patml	673
		Head	Pressão	Volume	Bás 1	Vhs	gás 2	Metano	Pressão	Volume	gás 1	Vhs	gás 2	Metano
FI	Reatores	space (ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)	(mca)	med.(ml)	(ml)	cntp	(ml)	(ml)
	1	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	2	1046	0,3	20	845	819	27	16	0,3	2	848	821	27	2
	3b	1039	0,3	222	840	813	27	180	0	0	816	816	0	0
	5	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,02	7	1074	0	0	840	840	0	0	0	0	843	843	0	0
	4b	1046	0,4	13	854	819	36	11	0	0	821	821	0	0
	8	1060	0,4	0	866	830	36	0	0,3	11	859	832	27	9
0,01	9	1060	0	0	830	830	0	0	0	0	832	832	0	0
	6b	1039	0	0	813	813	0	0	0,4	0	851	816	36	0
	11	1060	0,3	11	857	830	27	9	0	0	832	832	0	0
0,02	12	1053	0	0	824	824	0	0	0	0	826	826	0	0
	10b	1039	0,4	7	849	813	36	6	0	0	816	816	0	0
	14	1053	0,4	17	860	824	36	14	0,3	16	854	826	27	13
0,02	15	1053	0	0	824	824	0	0	0	0	826	826	0	0
	13b	1046	0	0	819	819	0	0	0	0	821	821	0	0
	16	1060	0	0	830	830	0	0	0	0	832	832	0	0
0,01	18	1060	0	0	830	830	0	0	0,5	9	877	832	45	7
	17b	1039	0	0	813	813	0	0	0,4	0	851	816	36	0

APÊNDICE B – TABELAS TOTALIZADORAS DA PRODUÇÃO DE METANO

Tabela B1 – Produção totalizada de metano até o 40° dia (ml)

							Te	mpo (em dia	as					
FI	Reatores	1	4	7	10	13	16	19	22	25	28	31	34	37	40
	P0,02A	0	0	0	0	0	131	216	310	393	480	522	572	631	731
0,02	P0,02A'	44	44	44	44	245	428	530	573	673	742	826	925	993	1076
	P0,02b	703	1039	1467	1555	1731	1966	2221	2418	2576	2750	2860	2934	3035	3085
	P0,015A'	176	310	482	656	740	853	913	956	956	956	956	956	956	1006
0,015	P0,015A'	922	1594	1637	1943	1943	1969	1969	1969	2002	2002	2019	2019	2019	2044
	P0,015b	105	105	105	201	369	526	662	739	781	877	977	1035	1078	1136
	P0,01A	703	820	1249	1293	1293	1380	1439	1508	1508	1534	1579	1596	1596	1612
0,01	P0,01A'	439	523	866	953	1088	1236	1338	1381	1430	1509	1509	1558	1592	1625
	P0,01b	834	1238	1881	2221	2406	2597	2784	2853	2893	2954	3072	3146	3197	3239
	L0,02A	659	1289	1460	1862	2046	2290	2511	2674	2815	2929	3072	3154	3230	3322
0,02	L0,02A'	1274	2030	3058	3582	3674	3770	3847	3924	3999	3999	4066	4148	4233	4275
	L0,02b	1010	1119	1248	1318	1460	1565	1684	1812	1870	2167	2201	2275	2326	2368
	L0,015A	1230	1666	1752	2014	2475	2745	2847	2899	2932	2993	3010	3059	3138	3172
0,015	L0,015A'	1976	2732	3975	4718	5019	5359	5674	5931	6155	6312	6505	6596	6596	6688
	L0,015b	1757	2319	3091	3266	3383	3575	3898	4198	4389	4685	4853	5010	5066	5099
	L0,01A	2108	2696	3296	3689	3840	4075	4160	4280	4347	4443	4527	4634	4695	4787
0,01	L0,01A'	0	126	383	558	776	950	1095	1155	1221	1282	1352	1410	1450	1508
	L0,01b	2020	2944	4144	4616	4758	4881	4982	5068	5135	5187	5227	5252	5252	5277

Tabela B2 – Produção totalizada de metano até o 82º dia (ml)

	i														
							Te	mpo e	em dia	as					
FI	Reatores	43	46	49	52	55	58	61	64	67	70	73	76	79	82
	P0,02A	817	817	900	951	1030	1089	1156	1199	1249	1283	1325	1367	1410	1443
0,02	P0,02A'	1188	1230	1288	1288	1323	1365	1407	1459	1502	1533	1625	1666	1717	1749
	P0,02b	3154	3229	3254	3349	3366	3406	3499	3524	3608	3667	3692	3726	3761	3761
	P0,015A'	1040	1040	1073	1073	1108	1142	1167	1191	1191	1191	1225	1259	1285	1285
0,015	P0,015A'	2070	2070	2103	2103	2155	2181	2214	2231	2231	2231	2231	2231	2256	2256
	P0,015b	1187	1263	1263	1323	1340	1357	1357	1383	1458	1509	1532	1572	1597	1597
	P0,01A	1647	1647	1705	1773	1808	1808	1832	1849	1849	1849	1874	1909	1930	1930
0,01	P0,01A'	1651	1651	1693	1693	1736	1759	1784	1801	1801	1801	1835	1869	1894	1894
	P0,01b	3324	3349	3399	3468	3494	3545	3578	3604	3629	3672	3697	3729	3763	3805
	L0,02A	3365	3365	3389	3389	3416	3416	3441	3464	3464	3490	3540	3572	3623	3648
0,02	L0,02A'	4369	4419	4469	4521	4564	4624	4674	4708	4775	4809	4834	4893	4928	4928
	L0,02b	2413	2489	2563	2615	2632	2632	2657	2684	2684	2684	2727	2727	2752	2752
	L0,015A	3223	3223	3331	3391	3417	3451	3495	3512	3570	3599	3624	3653	3687	3726
0,015	L0,015A'	6773	6874	6966	7068	7095	7095	7120	7120	7120	7120	7140	7140	7160	7160
	L0,015b	5116	5166	5191	5191	5235	5235	5255	5272	5337	5337	5387	5387	5387	5387
	L0,01A	4900	5001	5092	5204	5256	5256	5306	5400	5492	5534	5618	5651	5686	5717
0,01	L0,01A'	1568	1644	1702	1744	1797	1844	1928	2022	2082	2132	2158	2192	2235	2285
	L0,01b	5303	5303	5369	5369	5395	5395	5422	5441	5441	5441	6114	6114	6136	6136

<u>Tabela B3 – Produção totalizada de metano até o 106º dia (ml)</u>

							Te	mpo (em dia	as					
FI	Reatores	85	88	91	94	97	98	99	100	101	102	103	104	105	106
	P0,02A	1485	1509	1509	1533	1551	1575	1575	1596	1604	1616	1616	1628	1644	1655
0,02	P0,02A'	1790	1823	1860	1891	1891	1919	1919	1948	1948	1989	2010	2014	2036	2057
	P0,02b	3794	3811	3811	3811	3811	3811	3900	3915	3928	3945	3962	3962	3962	3978
	P0,015A'	1314	1338	1367	1367	1367	1367	1415	1415	1436	1451	1451	1463	1463	1489
0,015	P0,015A'	2256	2256	2256	2256	2256	2256	2256	2256	2272	2285	2285	2285	2285	2300
	P0,015b	1628	1645	1645	1678	1678	1678	1689	1713	1734	1754	1762	1771	1782	1803
	P0,01A	1964	1989	1989	1989	1989	1989	2058	2074	2093	2093	2101	2113	2113	2142
0,01	P0,01A'	1919	1952	1952	1952	1952	1952	1952	1952	1952	1991	2013	2013	2013	2013
	P0,01b	3829	3829	3829	3829	3829	3829	3829	3845	3861	3861	3861	3875	3892	3892
	L0,02A	3692	3717	3760	3803	3832	3872	3872	3888	3904	3914	3929	3933	3951	3977
0,02	L0,02A'	4965	4981	4981	5007	5018	5034	5034	5034	5060	5071	5082	5082	5082	5082
	L0,02b	2768	2793	2793	2793	2793	2793	2903	2936	2970	3006	3028	3073	3154	3242
	L0,015A	3760	3793	3793	3793	3793	3826	3826	3844	3844	3844	3907	3923	3953	3973
0,015	L0,015A'	7186	7211	7211	7211	7211	7211	7284	7284	7284	7284	7327	7346	7346	7363
	L0,015b	5420	5420	5420	5420	5420	5420	5500	5519	5523	5534	5540	5540	5641	5667
	L0,01A	5746	5771	5771	5771	5771	5771	6102	6161	6165	6181	6202	6208	6219	6241
0,01	L0,01A'	2352	2385	2424	2452	2467	2483	2483	2494	2494	2510	2521	2521	2535	2555
	L0,01b	6153	6186	6186	6186	6186	6186	6275	6275	6275	6275	6323	6337	6337	6351

<u>Tabela B4 – Produção totalizada de metano até o 120º dia (ml)</u>

							Τe	empo (em di	as					
FI	Reatores	107	108	109	110	111	112	113	114	115	116	117	118	119	120
	P0,02A	1655	1655	1684	1709	1709	1729	1729	1729	1729	1729	1729	1729	1729	1729
0,02	P0,02A'	2069	2082	2082	2091	2091	2115	2115	2115	2115	2115	2132	2132	2148	2149
	P0,02b	3978	3989	3989	3989	4006	4055	4055	4065	4065	4065	4065	4065	4245	4245
	P0,015A'	1498	1498	1498	1507	1507	1524	1524	1524	1524	1524	1524	1524	1524	1524
0,015	P0,015A'	2300	2300	2309	2309	2309	2325	2325	2325	2325	2325	2325	2325	2325	2325
	P0,015b	1803	1817	1823	1826	1826	1860	1860	1860	1869	1886	1892	1892	1902	1902
	P0,01A	2151	2151	2166	2166	2166	2189	2189	2189	2189	2199	2207	2217	2217	2226
0,01	P0,01A'	2031	2031	2031	2042	2042	2064	2064	2064	2113	2113	2120	2120	2120	2120
	P0,01b	3892	3892	3892	3892	3914	3953	3953	3953	3953	3953	3953	3953	3953	3953
	L0,02A	3977	3992	4005	4005	4005	4039	4039	4039	4050	4050	4050	4061	4070	4070
0,02	L0,02A'	5082	5082	5119	5119	5119	5155	5155	5155	5155	5155	5155	5155	5155	5155
	L0,02b	3280	3280	3308	3324	3324	3347	3347	3347	3351	3363	3372	3372	3378	3378
	L0,015A	3973	3973	3977	3977	3977	4003	4003	4015	4024	4031	4049	4049	4062	4075
0,015	L0,015A'	7367	7367	7367	7377	7377	7393	7393	7393	7393	7393	7393	7393	7393	7393
	L0,015b	5677	5692	5692	5692	5713	5761	5761	5761	5809	5809	5809	5817	5817	5817
	L0,01A	6249	6262	6280	6293	6293	6314	6361	6361	6361	6361	6361	6378	6378	6378
0,01	L0,01A'	2555	2580	2591	2591	2591	2614	2614	2614	2694	2722	2739	2760	2760	2767
	L0,01b	6351	6351	6406	6419	6419	6427	6427	6427	6463	6463	6489	6489	6489	6489

APÊNDICE C – METODOLOGIAS PARA ANÁLISES DE RESÍDUOS SÓLIDOS DEFINIDAS PELO PROSAB

1 - DQO de Sólido

Um becker adicionar 1g do sólido e 20 ml do ácido sulfúrico concentrado e 5 ml de água destilada.

Mexer com bastão de vidro até que a reação química diminua (esfrie)

Passar a mistura para um balão de vidro de 250 ml complementando o volume com água destilada

Filtrar a amostra empregando papel de filtro e funil de vidro

O líquido filtrado constitui a amostra líquida que será então digerida segundo o método de determinação da DQO da fase líquida. O resultado é expresso em DQO/kg de resíduo seco. Referência: Gomes, L.P. – Estudo da caracterização física e da biodegradabilidade dos resíduos sólidos urbanos em aterros sanitários. Dissertação de Mestrado- EESC 1989

2 - DQO PARA LÍQUIDOS LIXIVIADOS

Geralmente a DQO do percolado é muito elevada, chegando a 50.000 mg/L Assim faz-se necessário diluir a amostra (1:100). Para o frasco de Hach faz-se a leitura direta da mesma forma que para águas residuárias.

Ligar o aparelho, programar o aparelho para o método 435 quando utilizando a solução de DQO da Hach ou 965 utilizando a solução elaborado em laboratório.

Esquentar o aparelho por 10 min -150⁰ C por 2 horas para ocorrer a digestão

3 - DETERMINAÇÃO DE ALCALINIDADE - MÉTODO VOLUMÉTRICO

A alcalinidade de uma solução é a medida da sua capacidade de neutralizar ácidos devido à presença de bases, de sais de ácidos inorgânicos fracos (bicarbonato, borato, silicato e fosfato) e de sais de ácidos voláteis (acetato, propionato, butirato, entre outros) e não voláteis (benzoato, lactato, humato, entre outros).

A alcalinidade total de uma amostra de reator anaeróbio é composta por dois tipos diferentes de bases:

- ➤ Alcalinidade parcial (5,75 < pH inicial < 8,00) ânions de ácidos fracos (bicarbonato, borato, silicato e fosfato) denominada de alcalinidade real para reatores anaeróbios.
- ➤ Alcalinidade intermediária (4,30 < pH < 5,75) ânions de ácidos orgânicos (ácido húmico, acético, propiônico, etc.), denominada de alcalinidade falsa para reatores anaeróbios.

O método comumente empregado na determinação da alcalinidade é o volumétrico, com detecção potenciométrica, até atingir um pH pré-fixado ou condutimétrica, quando o ponto final é determinado matematicamente, após adição de excesso de titulante.

A determinação da alcalinidade total, por potenciometria ou por condutimetria, é feita por titulação com solução padronizada de H₂SO₄.

3.1- Método Volumétrico com detecção potenciométrica

Determinação de alcalinidades total e parcial

Material:

Becker de 100 mL	Agitador magnético
Pipetas volumétricas de 50 mL	Papel absorvente
Bureta automática	pHmetro pré-calibrado
Pisseta com água destilada	Eletrodo de vidro

Reagente:

Solução padronizada de ácido sulfúrico, H₂SO₄ (aproximadamente 0,05M ou 0,10N).

Procedimento Experimental

- Centrifugar (2500 rpm por 10 minutos) ou filtrar a amostra para remoção de sólidos suspensos.
- Transferir 50,0 mL de amostra a ser analisada para o Becker de 100 mL.
- Colocar barra magnética para agitação.
- Retirar o eletrodo da solução de KCl, lavá-lo com água destilada e secá-lo em papel absorvente.
- Introduzir o eletrodo no Becker contendo a amostra, com a extremidade acima da barra magnética.
- Ligar o agitador magnético.
- Medir o pH da amostra. Se o pH for superior a 5,75, adicionar solução padronizada de ácido sulfúrico até pH 5,75. *Anotar o volume gasto* (V_1) .

- Continuar a adição até pH final de 4,3. *Anotar o volume gasto* (V_2) .
- Para pH inferior a 5,75 proceda da mesma maneira acima, até pH final de 4,3. Anotar o volume gasto (V_2) .
- Abaixar o pH até valor menor que 3,0. Desprezar o volume gasto. (O abaixamento do pH até 3,0 destruirá os íons bicarbonato). Reservar essa solução para determinação de ácidos voláteis.
- Retirar o eletrodo da amostra analisada, lavá-lo com bastante água destilada e colocá-lo no Becker contendo solução de KCl.

Cálculos:

Carbonato de Cálcio (CaCO₃) foi um padrão muito utilizado para determinar a concentração de soluções ácidas. Por esse motivo, em algumas situações, a alcalinidade é expressa como carbonato de cálcio, cuja massa fórmula é de 100,0 g.

mg/L de alcalinidade parcial, como
$$CaCO_3 = V_1 * M*100.000$$

sendo: V_1 = volume, em mL ,de ácido gasto na titulação até pH 5,75

V_a = volume da amostra, mL; M= molaridade do ácido empregado

mg/L de alcalinidade total, como CaCO₃ =
$$\frac{V_2 * M*100.000}{V_2}$$

sendo: V_2 = volume, em mL, de ácido gasto na titulação até pH 4,3.

M= molaridade do ácido empregado; V_a = volume da amostra, mL

PARA CORRIGIR:

- Fator de conversão de alcalinidade a ácidos voláteis = 0.833
- AB = AT 0,833 x 0,85 AV AB = AT 0,71 AV
- Equilíbrio do Sistema: AI / AT $\cong 0.3$
- Fator de Conversão = 0,85 significa que somente 85% da alcalinidade a ácidos voláteis é medida pela titulação até pH 4,3.

4 - DETERMINAÇÃO DE ÁCIDOS VOLÁTEIS - MÉTODO VOLUMÉTRICO

O acúmulo de ácidos orgânicos voláteis indica desbalanceamento entre velocidades de consumo de matéria orgânica dos diferentes tipos de bactérias responsáveis pelo desempenho adequado do sistema de tratamento anaeróbio. Os sais de ácidos voláteis gerados durante a degradação anaeróbia são responsáveis por uma falsa alcalinidade.

Quando a concentração de ácidos voláteis ultrapassa cerca de 500 mg/L, ou melhor, quando não existe mais efeito tampão devido à ausência de alcalinidade a bicarbonato, há probabilidade de ocorrência de problemas graves com o sistema de tratamento, devido à diminuição do pH. A determinação de ácidos voláteis pode ser realizada por cromatografia gasosa ou por meio de métodos volumétricos, utilizando pHmetro ou condutivímetro.

1- Método Volumétrico utilizando pHmetro (potenciometria)

1.1. Material

Becker de 100 mL	1 bureta de 10 mL
Eletrodo de vidro	Chapa aquecedora ajustável
Medidor de pH pré-calibrado	Centrífuga ou bomba de vácuo
2 buretas de 50 mL	Agitador magnético

Reagentes

Solução padronizada de $H_2SO_4 \sim 0.05M$ (ou 0.10N). Solução padronizada de $NaOH \sim 0.010$ M (ou 0.010N).

1.2. Procedimento Experimental

• Utilizar a solução usada na determinação da alcalinidade e iniciar o aquecimento

- Centrifugar (2500 rpm por 10 minutos) ou filtrar a amostra para remoção dos sólidos em suspensão.
- Transferir 50,0 mL de amostra para o Becker e medir o pH.
- Abaixar o pH até menor que 3,0 com solução padronizada de H₂SO₄ ~ 0,02M (~0,04N).
 Desprezar o volume gasto. (A redução do pH até 3,0 destruirá os íons bicarbonato)
- Adicionar pérolas de vidro à amostra.
- Aquecer em chapa elétrica, durante 3 minutos após fervura (remoção de ácido carbônico).

A fervura da amostra remove o gás carbônico remanescente na solução.

$$H_2CO_3 \rightarrow CO_2 + H_2O$$

- Resfriar, corrigir o pH até 4,0, com solução de NaOH ~ 0,010M (~ 0,010N).
- Adicionar solução de NaOH ~ 0,010M (~ 0,01 N) de pH 4,0 até pH 7,0. Anotar o volume gasto.

Em efluentes de reatores anaeróbios, a adição de NaOH entre pH de 4,0 até 7,0 permite a reação, principalmente, com os ácidos orgânicos e outros ácidos fracos presentes, estes geralmente presentes em menores concentrações.

1.3. Cálculo da concentração de ácidos voláteis, como ácido acético

$$mg/L \ HAc = \frac{V*N*60.000}{V_a}$$

sendo: V = volume gasto de NaOH de pH 4,0 até 7,0

N = normalidade do NaOH

 V_a = volume da amostra (50 mL)

OBS.: O método volumétrico, embora não seja adequado a trabalhos que exijam elevada precisão, pode ser utilizado para monitoramento de sistemas de digestão anaeróbia pela sua facilidade de execução.

APÊNDICE D – ILUSTRAÇÕES COMPLEMENTARES

Figura D. 1 – Leitura de pressão interna do reator

Figura D.2 – Leitura da produção gasosa com o Mariotte

Figura D.3 – Meio de Reação ao final de ensaio

Figura D.4 – Coleta do percolado do Meio de Reação