CURRICULUM VITAE

Dr. James O'Donoghue

james.odonoghue@reading.ac.uk \diamond odonoghuespace.github.io

Professional Summary —

I am a planetary scientist specialising in observations of Jupiter and Saturn with the world's largest observatories. My research examines planetary upper-atmosphere processes like aurorae and Saturn's ring erosion and is widely covered by international media. I create educational animations to make astronomy accessible, with hundreds of millions of views, and have contributed to documentaries with BBC, PBS, and NHK Japan.

Research Experience -

University of Reading, UK STFC ERF Fellow & Research Associate Prof.

November 2023 - present

Q To understand global energy drivers at Jupiter and estimate precisely the decay rate of Saturn's rings.

Japanese Space Agency (JAXA), Japan JAXA Fellow & Research Associate Prof. May 2019 - October 2023

- **Q** Observing Jupiter's upper atmosphere to find heat sources and investigating the detectability of H_3O^+ at Saturn.
- Discovery that Jupiter's aurorae globally heat the upper atmosphere. H₃O⁺ not detected at Saturn.

NASA Goddard Space Flight Center, USA NASA Postdoctoral Program Fellow January 2017 - March 2019

- **Q** Led a study on 'ring rain' at Saturn, supported Juno spacecraft observations.
- Estimated Saturn's rings' decay rate limits their lifetime to 300 million years.

Boston University, USA Research Scientist

May 2014 - January 2017

- Q Investigation into Jupiter's upper-atmospheric energy balance and Saturn's ring influence on the planet.
- Discovered Jupiter's Great Red Spot heats the upper atmosphere; Saturn's temperature too low to detect emissions.

Education —

University of Leicester, UK

Ph.D. in Planetary Space Science

October 2010 - May 2014 Supervisor: Dr. Tom Stallard

Grade: First-class hons.

Thesis: The response of gas giant ionospheres to their local space environments

Discoveries: Saturn's rings fall into the ionosphere & differences between Saturn's northern and southern aurorae.

Aberystwyth University

2006 - 2010

B.Sc. Planetary & Space Science

Dissertation: A Study of Lunar Impact Flashes

Awards —

Winner: Europlanet Society Prize for Public Engagement with Science.

2021

2022

For work in creating high-quality space science animations and sharing them globally.

Finalist: American Association for Advancement of Science Award for Public Engagement with Science.

Prize: Elsie Pritchard Prize for achievement in physics. 2010

Technical Skills —

Programming Languages

Digital Tools Further Skills Interactive Data Language (IDL), Python, LATEX and basic HTML Adobe Creative Suite, Blender 3D, MS Office 365 Suite, ChatGPT

Animation creation, home astronomy, digital imaging

Grants Awarded —

2024 Keck Observatory award of \$14,000 as part of the award for Keck telescope time.

2023 Science and Technology Facilities Council Ernest Rutherford Fellowship over 5 years, \$850,000.

2022 Keck Observatory award of \$14,000 as part of the award for Keck telescope time.

2021 Keck Observatory award of \$12,750 as part of the award for Keck telescope time.

2020 Keck Observatory award of \$12,750 as part of the award for Keck telescope time.

2019 JAXA International Top Young Fellowship, PI, grant of \$460,000.

2018 Keck Observatory award of \$12,750 as part of the award for Keck telescope time.

2017 NASA grant NNH16ZDA001N-SSO: Solar System Observations, Science PI, \$395,969.

2017 NASA Postdoctoral Program Fellowship, PI, award of \$250,000 (not including overheads).

2017 Keck Observatory award of \$11,000 as part of the award for Keck telescope time.

2016 Keck Observatory award of \$15,000 as part of the award for Keck telescope time.

2014 NASA grant NNH13ZDA001N-PAST: Planetary Astronomy, main Co-I, \$351,052.

2012 Royal Astronomical Society (United Kingdom) travel grant of \$600.

Total: \$2,399,900

Teaching and Mentoring —

Mentoring

2023 - present Ph.D. Student, University of Northumbria - External Supervisor

2020 – 2021 Undergraduate Student, Tohoku University – Research Project Support

2016 – 2017 Master's Student, Boston University – Co-Mentor

University Teaching

2012–2014 Experimental Physics 1 (PA1900) – Led lab-based classes on telescope construction and use.

2013 Mathematical Physics 1.1 (PA1710) – Supported teaching and grading in foundational concepts.

Awarded Telescope Time ————

Year	Telescope	Nights (proposals)	Role	Topic
2025	W.M. Keck	1.5 (2)	Co-I	Uranus aurora drivers, Jupiter Juno support
2024	W.M. Keck	1.5	PΙ	Saturn: Auroras and Ring Rain with JWST
	W.M. Keck	6.5	Co-I	Jupiter: Juno support
	JWST Cyc $_3$	2.5(2)	Co-I	Saturn and Uranus: auroral drivers
2023	JWST Cyc 2	1.9	Co-I	Jupiter: upper atmosphere study
	NASA IRTF	4.0(2)	Co-I	Jupiter, Uranus: energy crisis, ionosphere study
2022	W.M. Keck	1.0	PI	Exoplanet: aurora/ionosphere detection attempt
	W.M. Keck	6.0(2)	Co-I	Jupiter, Uranus: Juno support, aurora mapping
	JWST Cyc 1	2.6	Co-I	Giant planets: early release science
2021	W.M. Keck	1.0	PI	Saturn: H ₃ O ⁺ detection attempt
	W.M. Keck	1.0	PΙ	Exoplanet: aurora/ionosphere detection attempt
	NASA IRTF	7.0(2)	Co-I	Jupiter, Uranus: Juno support, aurora mapping
2020	W.M. Keck	1.0	PΙ	Saturn: ring rain search
	NASA IRTF	2.0	PΙ	Exoplanet: aurora/ionosphere detection attempt
	NASA IRTF	10.0(2)	Co-I	Saturn, Jupiter: aurorae, Ganymede shadow
2019	NASA IRTF	2.5(2)	Co-I	Saturn, Jupiter: ring rain, Juno support
2018	W.M. Keck	1.5	PΙ	Jupiter: Juno support
	W.M. Keck	1.5	Co-I	Jupiter: Juno support
	NASA IRTF	3.0	PΙ	Jupiter: Juno support
2017	W.M. Keck	1.5	PI	Jupiter: Juno support
	NASA IRTF	5.0(2)	Co-I	Jupiter: Juno support
2016	W.M. Keck	2.0	PI	Jupiter: Juno support
	NASA IRTF	1.0	PI	Mars: H ₃ ⁺ search
	W.M. Keck	1.5	Co-I	Saturn: Cassini support
	NASA IRTF	2.0	Co-I	Jupiter: Juno support
2015	Gemini N.	3.0	Co-I	Saturn: solar influence on ionosphere
	NASA IRTF	6.0	PΙ	Jupiter: low-latitude heating
	NASA IRTF	8.5 (4)	Co-I	Saturn, Jupiter, Uranus and Titan
2014	W.M. Keck	2.0	Co-I	Saturn: Cassini support
	Gemini N.	4.0	Co-I	Saturn: auroral energy flows
	NASA IRTF	16.5(3)	Co-I	Saturn, Jupiter: Cassini, Hisaki support
2013	W.M. Keck	4.0	Co-I	Saturn: Cassini support
	NASA IRTF	8.5(2)	Co-I	Jupiter, Saturn: Cassini, Hisaki support

	Gemini N.	2.0	Co-I	Uranus: energy drivers in upper atmosphere
2012	NASA IRTF	5.5	PΙ	Jupiter: global ionosphere mapping
2011	NASA IRTF	18.0	Co-I	Jupiter, Saturn, Uranus: various topics
Total:		151.9 (50)		

Peer Reviewed Journal Publications

- 36. J. O'Donoghue, L. Moore, T. Stallard, B. Kurth, et al. A potential planetary-scale auroral heat transport event observed at Jupiter following a solar-wind compression. *Geophys. Res. Lett.*, submission Nov 2024.
- 35. Melin, H., **O'Donoghue**, J., Moore, L., et al. Ionospheric irregularities at Jupiter observed by JWST. *Nat. Astron.* 8, 1000–1007, doi:10.1038/s41550-024-02305-9, 2024.
- 34. Agiwal, O., Cao, H., Hsu, H-W., Moore, L., .. O'Donoghue, J. [6], et al. Current Events at Saturn: Ring-Planet Electromagnetic Coupling. *Planet. Sci. J.* 5, 134, doi:10.3847/PSJ/ad4343, 2024.
- 33. Bockelee-Morvan, D., Lellouch, E., Poch, O., Quirico, E., .. O'Donoghue, J. [7], et al. Composition and thermal properties of Ganymede's surface from JWST/NIRSpec and MIRI observations. *Astronomy & Astrophysics* 681, p. A27, doi:10.1051/0004-6361/202347326, 2024.
- 32. Cao, X., Chu, X., Hsu, H-W., Cao, H., .. O'Donoghue, J. [6], et al. Science return of probing magnetospheric systems of ice giants. Front. Astron. Space Sci. 11:1203705. doi:10.3389/fspas.2024.1203705, 2024.
- 31. Wang, R., Stallard, T. S., Melin, H., Baines, K. H., .. O'Donoghue, J. [6], et al. Asymmetric ionospheric jets in Jupiter's aurora. J. Geophys. Res. Space Phys. 128, 12, doi:10.1029/2023JA031861, 2023.
- 30. **J. O'Donoghue**, Stallard, T., What the Upper Atmospheres of Giant Planets Reveal. *Remote Sensing*, 14, 6326, doi:10.3390/rs14246326, 2022.
- Chowdhury, M. N., Stallard, T. S., Baines, K. H., Provan, G., .. O'Donoghue, J. [6], et al. Saturn's weather-driven aurorae modulate oscillations in the magnetic field and radio emissions. Geophys. Res. Lett., doi:10.1029/2021GL096492, 2022.
- 28. **O'Donoghue, J.**, Moore, L., Melin, H., Stallard, T. S., et al. Global upper-atmospheric heating on Jupiter by the polar aurorae. *Nature*, doi:10.1038/s41586-021-03706-w, 2021.
- 27. Moore, L., Moses, J. I., Melin, H., Stallard, T. S., .. O'Donoghue, J. [5], et al. Atmospheric implications of the lack of H₃⁺ detection at Neptune. *Phil. Trans. R. Soc. A.* 37820200100, doi:10.1098/rsta.2020.0100, 2020.
- 26. Yurchenko, S. N., Tennyson, J., Miller, S., Melnikov, V. V., .. O'Donoghue, J. [5], et al. ExoMol line lists XL. Rovibrational molecular line list for the hydronium ion (H₃O⁺). Monthly Notices of the Royal Astronomical Society, 497(2), Pages 2340-2351, doi:10.1093/mnras/staa2034, 2020.
- 25. O'Donoghue, J., Moore, L., Connerney, J. E. P., Melin, H., et al. Observations of the chemical and thermal response of 'ring rain' on Saturn's ionosphere. *Icarus*, 322, Pages 251-260, doi:10.1016/j.icarus.2018.10.027, 2019.
- 24. Moore, L., Melin, H., **O'Donoghue**, **J.** [5], et al. Modelling H₃⁺ in planetary atmospheres: effects of vertical gradients. *Phil. Trans. R. Soc. A.* 377, 20190067, doi:10.1098/rsta.2019.0067, 2019.
- 23. Ray, L. C., Lorch, C. T. S., .. O'Donoghue, J. [5], et al. Why is the H₃⁺ hot spot above Jupiter's Great Red Spot so hot? *Phil. Trans. R. Soc. A.* 377, 20180407, doi:10.1098/rsta.2018.0407, 2019.
- 22. Melin, H., Fletcher, L. N., Stallard, T. S., .. O'Donoghue, J. [5], et al. The H₃⁺ ionosphere of Uranus: decadeslong cooling and local-time morphology. *Phil. Trans. A.*, doi:10.1098/rsta.2018.0408, 2019.
- 21. Stallard, T., Baines, K., Melin, H., Bradley, T., .. O'Donoghue, J. [6], et al. Local-time averaged maps of H₃⁺ emission, temperature and ion winds. *Phil. Trans. A.*, doi:10.1098/rsta.2018.0405, 2019.
- Moore, L., Galand, M., Kliore, A., Nagy, A., .. O'Donoghue, J. [5], et al. Saturn's ionosphere: ring rain and other drivers. In book chapter: Saturn in the 21st Century, Cambridge University Press, doi:10.1017/9781316227220, 2018.
- 19. Hsu, H. W., Schmidt, J., Kempf, S., Postberg, F., Moragas-Klostermeyer, G., Seiß, M., Hoffmann, H., Burton, M., Ye, S., Kurth, W. S., Horanyi, M., Khawaja, N., Spahn, F., Schirdewahn, D., O'Donoghue, J. [7], Moore, L., Cuzzi, J., Jones, G. H., Srama, R. In situ collection of dust grains falling from Saturn's rings into its atmosphere. Science, 362 (6410), 2018.
- 18. Stallard, T., Burrell, A. G., Melin, H., Fletcher, L. N., Miller, S., Moore, L., **O'Donoghue, J.** [6], et al. Identification of Jupiter's magnetic equator through H₃⁺ ionospheric emission. *Nat. Astron.*, 2(7), doi:10.1038/s41550-018-0523-z, 2018.

- 17. Melin, H., Fletcher, L. N., Stallard, T. S., Johnson, R. E., **O'Donoghue, J.** [5], Moore, L., Donnelly, P. T. The quest for H₃⁺ at Neptune: deep burn observations with NASA IRTF iSHELL. *Monthly Notices of the Royal Astronomical Society*, 474(3), Pages 3714-3719, doi:10.1093/mnras/stx3029, 2018.
- 16. O'Donoghue, J., Moore, L., Connerney, J. E. P., Melin, H., et al. Re-detection of the ionospheric H₃⁺ signature of Saturn's "ring rain". Geophys. Res. Lett., 44(11), Pages 11762-11769, doi:10.1002/2017GL075932, 2017.
- 15. Stallard, T., Melin, H., Miller, S., **O'Donoghue, J.** [6], et al. Great Cold Spot in Jupiter's upper atmosphere. *Geophys. Res. Lett.*, 44(7), Pages 3000-3008, doi:10.1002/2016GL071956, 2017.
- 14. Moore, L., **O'Donoghue**, J., Melin, H., Stallard, T., et al. Variability of Jupiter's IR H₃⁺ aurorae during Juno approach. *Geophys. Res. Lett.*, 44, Pages 4513-4522, doi:10.1002/2017GL073156, 2017.
- 13. O'Donoghue, J., Moore, L., Stallard, T. S., Melin, H., et al. Heating of Jupiter's upper atmosphere above the Great Red Spot. *Nature*, 536(7615), Pages 190-192, doi:10.1038/nature18940, 2016.
- 12. Stallard, T., Clarke, J. T., Melin, H., Miller, S., Nichols, J. D., **O'Donoghue**, **J.** [6], et al. Stability within Jupiter's polar auroral 'Swirl region' over moderate timescales. *Icarus*, 268, 145-155, doi:10.1016/j.icarus.2015.12.044, 2016.
- 11. **O'Donoghue, J.**, Melin, H., Stallard, T. S., Provan, G., Moore, L., Badman, S. V., Cowley, S. W. H., Baines, K. H., Miller, S., Blake, J. S. D. Ground-based observations of Saturn's auroral ionosphere over three days: trends in H₃⁺ temperature, density and emission with Saturn local time and planetary period oscillation. *Icarus*, 263, 44-55, doi:10.1016/j.icarus.2015.04.018, 2016.
- 10. Melin, H., Badman, S. V., Stallard, T. S., Cowley, S. W. H., Dyudina, U., Nichols, J. D., Provan, G., O'Donoghue, J. [7], Pryor, W. R., Baines, K. H., Miller, S., Gustin, J., Radioti, A., Tao, C., Meredith, C. J., Blake, J. S. D., Johnson, R. E. Simultaneous multi-scale and multi-instrument observations of Saturn's aurorae during the 2013 observing campaign. *Icarus*, 263, 56-74, doi:10.1016/j.icarus.2015.08.021, 2016.
- Stallard, T. S., Melin, H., Miller, S., Badman, S. V., Baines, K. H., Brown, R. H., Blake, J. S. D., O'Donoghue, J. [6], Johnson, R. E., Bools, B., Pilkington, N. M., East, O. T. L., Fletcher, M. Cassini VIMS observations of H₃⁺ emission on the nightside of Jupiter. J. Geophys. Res. Space Physics, 120, 6948-6973, doi:10.1002/2015JA021097, 2016.
- 8. Moore, L., O'Donoghue, J., Mueller-Wodarg, I., Galand, M., Mendillo, M. Saturn ring rain: Model estimates of water influx into Saturn's atmosphere. *Icarus*, 245, 355-366, doi:10.1016/j.icarus.2014.08.041, 2015.
- 7. Mousis, O., Fletcher, L. N., .. O'Donoghue, J. [6], et al. Scientific rationale for Saturn's in situ exploration. *Planetary and Space Science*, 104, 29-47, doi:10.1016/j.pss.2014.09.014, 2014.
- 6. Melin, H., Stallard, T. S., .. O'Donoghue, J. [5], et al. On the anti-correlation between H₃⁺ temperature and density in giant planet ionospheres. *Mon. Not. R. Astron. Soc.*, doi:10.1093/mnras/stt2299, 2013.
- 5. O'Donoghue, J., Stallard, T. S., Melin, H., Jones, G. H., .., et al. Conjugate observations of Saturn's northern and southern aurorae. *Icarus*, 229, 214-220, doi:10.1016/j.icarus.2013.11.009, 2013.
- 4. O'Donoghue, J., Stallard, T. S., Melin, H., Jones, G. H., Cowley, S. W. H., Miller, S., Baines, K. H., Blake, J. S. D. The domination of Saturn's low-latitude ionosphere by ring 'rain". *Nature*, 496(7444), 193-195, doi:10.1038/nature12049, 2013.
- 3. Melin, H., Stallard, T. S., S. Miller, T. R. Geballe, L. R. Trafton, **O'Donoghue**, **J.**, Post-equinoctial observations of the ionosphere of Uranus. *Icarus*, 223(2), 741-748, doi:10.1016/j.icarus.2013.01.012, 2013.
- 2. Stallard, T. S., Melin, H., S. Miller, **O'Donoghue**, **J.** [6], et al. Temperature changes and energy inputs in giant planet atmospheres: what we are learning from H₃⁺. *Phil. Trans. Roy. Soc.*, 370, 5213-5224, doi:10.1098/rsta.2012.0028, 2012.
- 1. Melin, H., Stallard, T. S., S. Miller, Gustin, J., Galand, M., Badman, S. V., Pryor, W. R., **O'Donoghue, J.** [7], Brown, R. H., Radioti, A., Tao, C., Meredith, C. J., Blake, J. S. D., Johnson, R. E. Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H₂ and H₃⁺ at a high spatial resolution. *Geophys. Res. Lett.*, 38, L15203, doi:10.1029/2011GL048457, 2011.

Invited Talks: Conferences and Seminars

- 2024 Keynote speaker at a Department of Meteorology event, University of Reading.
- 2024 Graduate Student Invited Seminar Speaker, Boston University (US).
- 2024 Talk at the International Space Science Institute (ISSI), Bern, Switzerland, 'Jupiter's non-auroral Upper Atmosphere'.

- 2024 Seminar for Department of Meteorology, University of Reading.
- 2023 Talk at Japan Geoscience Union (JpGU), Investigations of Giant Planet Upper Atmospheres: Past, Present and Future'.
- 2023 Talk for JAXA/ISAS Diversity Promotion, The Experience of Researching Internationally'.
- 2022 Seminar at JAXA/ISAS Coffee Talk, A planetary-scale heat wave in Jupiter's upper atmosphere'.
- 2022 Talk at ISSI, Bern, Switzerland, New and future observations of Saturn and insights for Jupiter, Uranus and Neptune' as part of 'ring-planet interactions' meeting.
- 2021 Seminar at JAXA/ISAS Planetary Exploration Workshop, Future Science at the Outer Planets'.
- 2021 Keynote Speaker for Outer Planet Systems, EuroPlanet Science Congress (EPSC), What the upper atmospheres of Giant Planets reveal'.
- 2021 Talk at EPSC, Global upper-atmospheric heating at Jupiter by the recirculation of auroral energy'.
- 2021 Award-acceptance talk at EPSC for the Europlanet Prize for Public Engagement.
- **2021** Talk at Royal Astronomical Society, Observational evidence for upper-atmospheric heat transfer to Jovian equatorial latitudes from the auroral regions'.
- 2020 Seminar at Japan Science Communication Forum, 'Animated Science Communication'.
- 2019 Seminar at Earth-Life Sciences Institute, Tokyo, 'Saturn's Rings and Jupiter's Great Red Spot: an animated discussion'.
- 2018 Seminar at Catholic University of America, Revealing the inner-workings of Saturn's Rings and Jupiter's Great Red Spot with ionospheric measurements'.
- 2018 Talk at EPSC, Ground-based observations of Giant Planet upper atmospheres'.
- 2017 Seminar at NASA Goddard Space Flight Center, 'Heating of Jupiter's upper atmosphere by the Great Red Spot'.
- 2016 Talk at American Geophysical Union (AGU) conference, Searching for sources of planet-wide heating in Jupiter's upper atmosphere: new clues from the Great Red Spot'.
- 2016 Seminar at University of New Hampshire, Ground-based observations of Jupiter and Saturn: aurora, ring rain and Jupiter's Great Red Spot'.
- 2015 Seminar at Georgia Institute of Technology, Observations of gas giant ionospheres'.
- 2015 Talk at Magnetospheres of the Outer Planets (MOP) conference, Ground-based observations of planetary aurorae'.
- 2013 Talk at ISSI, Bern, Switzerland, part of the second 'Comparative Jovian Aeronomy' meeting on 'Saturn's ring rain'.
- 2012 Talk at ISSI, Bern, Switzerland, Saturn's auroral energy balance' as part of Comparative Jovian Aeronomy' meeting.

Public Engagements and Media Appearances -

- 2024 Documentary appearance for BBC's Solar System with Prof. Brian Cox, Episode 5, Strange Worlds.
- 2024 Documentary appearance, on location in the Canary Islands, for PBS NOVA in the USA, Strange Worlds.
- 2024 Led NASA Observe the Moon Night at University of Reading: audience 200 in person, 1,100 online.
- 2024 Delivered two public lectures at the Royal Astronomical Society, Burlington House, London.
- 2023 Consultant and featured expert, Space chapter of Britannica's Encyclopedia Infographica.
- 2023 Animation featured in Cosmic Front, a documentary by NHK (Japan).
- 2022 Animation featured in Are You Smarter than a 5th Grader (Japan edition).
- 2022 Created fly-by animations for the BepiColombo mission's June 2022 flyby of Mercury.
- 2022 Organised Observe the Moon Night, serving as JAXA-NASA liaison.
- 2022 Chaired Hayabusa2 and Beyond live event for JAXA, British Science Museum.
- 2021 Organised Observe the Moon Night, serving as JAXA–NASA liaison.

- 2021 Created fly-by animations for BepiColombo's August 2021 flyby of Venus.
- 2021 Co-hosted live Uranus-observing event with the Royal Astronomical Society.
- 2021 Co-organised public outreach broadcast, JAXA Institute of Space and Astronautical Science Open Day.
- 2020 Presented seminar at American School in Japan, An Animated Tour of the Solar System.
- 2019 Hosted an exhibit using animations at JAXA Institute of Space and Astronautical Science Open Day.
- 2019 Appeared in Strip the Cosmos, Discovery Channel documentary on Saturn's rings.
- 2018 Appeared in Space's Deepest Secrets, Science Channel documentary on Saturn's rings.
- 2017 Interviewed by The New York Times on historic Juno spacecraft close-up images of the Great Red Spot.
- 2017 Appeared in NHK Japan's Cosmic Front, discussing Jupiter's Great Red Spot.
- 2016 Press release after Nature publication on Jupiter's Great Red Spot, featured by over 100 news outlets.
- 2014 Volunteer for BBC's Stargazing Live, promoting the study of Jupiter and Saturn.
- 2014 Invited speaker at Stratford-upon-Avon Astronomical Society, Saturn's Ring Rain.
- 2014 Participated in Live at the Observatory at the Keck telescope, with live Q&A for an audience of 1,000.
- 2013 Invited appearance on BBC Radio Leicester as a panel expert on space.
- 2013 Press release on Nature publication on Saturn's ring rain discovery; covered by over 100 news outlets.
- 2012 Conducted live outreach from NASA's Infrared Telescope Facility (IRTF) to schools and universities.

Training -

- 2024 MediaFirst media interview training. Including mock TV, radio, print news interviews.
- 2024 Writing for REF workshop at University of Reading.
- 2023 James Webb Space Telescope Proposal Workshop.
- **2020** Coursera course in *Python For Everybody* by the University of Michigan.
- 2012 STFC Summer school in Solar System Plasmas at Armagh Observatory
- 2010 STFC Summer school in Solar Physics at Leeds University