

ISTA 421/521 Introduction to Machine Learning

Lecture 21: Support Vector Machines

Clay Morrison

clayton@sista.arizona.edu Gould-Simpson 819 Phone 621-6609

6 November 2014

Support Vector Machines

(SVMs)

Support Vector Machines (SVMs)

- Considered one of the best off-the-shelf classifiers for most problems – state of the art.
- BUT, "No free lunch": not guaranteed the best
 - Wolpert & Macready 1997
 - "...any two optimization algorithms are equivalent when their performance is averaged across all possible problems." (from 2005)
- SVMs are particularly useful in applications where the number of attributes is much larger than the number of training objects
 - Number of parameters is based on the number of training objects, not the number of attributes!

Support Vector Machines (SVMs)

- Standard SVM uses linear decision boundary given by: $\mathbf{w}^\mathsf{T} \mathbf{x}_{\mathsf{new}} + b$
- SVM *decision function* for test point:

$$t_{\mathsf{new}} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{new}} + b)$$
 labels are $\{1, -1\}$ rather than $\{0, 1\}$

$$sgn(x) := \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$$

- Goal: find w and b based on training data
- Criteria: Maximize the margin

Andrew W. Moore

Andrew W. Moore

Andrew W. Moore

Andrew W. Moore

Why Maximum Margin?

- Intuitively this feels safest.
- 2. If we've made a small error in the location of the boundary (it's been iolted in its perpendicular direction) this gives us least chance of causing a misclassification.
- LOOCV is easy since the model is immune to removal of any nonsupport-vector datapoints.
- There's some theory (using VC dimension) that is related to (but not the same as) the proposition that this is a good thing.
- Empirically it works very very well.

Recall: Relation of a^Tb to Geometry

a^Tb is special (also a · b), called the dot product

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

(This is actually a species of a more general operation called an inner product)

- Plays a role in defining
 - Euclidean vector length (norm)

$$\|x\| := \sqrt{x \cdot x}$$
.

$$\begin{array}{l} \textbf{-Angles} \\ \mathbf{a} \cdot \mathbf{a} = \|\mathbf{a}\|^2 \\ \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \ \|\mathbf{b}\| \cos \theta \\ \theta = \arccos \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \ \|\mathbf{b}\|} \right) \end{array}$$
 The dot (inner) project is therefore a measure of the length of vector \mathbf{a} when we *project* it onto \mathbf{b} (and normalize by the length (norm) of \mathbf{b}):
$$\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|} = \frac{1}{\|\mathbf{b}\|} \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta = \|\mathbf{a}\| \cos \theta$$

The dot (inner) project is therefore a measure of

 $|A| \cos \theta$

$$\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|} = \frac{1}{\|\mathbf{b}\|} \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta = \|\mathbf{a}\| \cos \theta$$

Defining the Margin

w is in the direction **perpendicular** to the boundary.

Normalize it to get the "unit vector": $\frac{\mathbf{w}}{\|\mathbf{w}\|}$

Our "decision function", which we will also refer to as D(x):

We note that the argument in D(x) is invariant under a rescaling: $\mathbf{w} \to \lambda \mathbf{w}, \ b \to \lambda b$.

We will implicitly fix a scale with:

$$\mathbf{w} \cdot \mathbf{x_1} + b = 1$$
$$\mathbf{w} \cdot \mathbf{x_2} + b = -1$$

for the support vectors (canonical hyperplanes).

Combine both **constraints** by subtracting one from the other, to get the following:

$$\mathbf{w} \cdot (\mathbf{x}_1 - \mathbf{x}_2) = 2$$

The margin (the length of the distance between the support vector canonical hyperplanes) will be given by the **projection** of the vector $(x_1 - x_2)$ onto the normal vector to the hyperplane!

The projection is accomplished by taking the inner product of these two quantities

Defining the Margin

w is in the direction **perpendicular** to the boundary.

Normalize it to get the "unit vector": $\underline{\mathbf{w}}$

 $\|\mathbf{w}\|$

 $2\gamma = \frac{1}{||\mathbf{w}||} \mathbf{w}^{\mathsf{T}} (\mathbf{x}_1 - \mathbf{x}_2)$ $= \frac{1}{||\mathbf{w}||} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_1 - \mathbf{w}^{\mathsf{T}} \mathbf{x}_2)$ $= \frac{1}{||\mathbf{w}||} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_1 + b - \mathbf{w}^{\mathsf{T}} \mathbf{x}_2 - b)$ $= \frac{1}{||\mathbf{w}||} (1+1)$ $\gamma = \frac{1}{||\mathbf{w}||}.$

Constraints: $\mathbf{w} \cdot \mathbf{x_1} + b = 1$ $\mathbf{w} \cdot \mathbf{x_2} + b = -1$ $\mathbf{w} \cdot (\mathbf{x_1} - \mathbf{x_2}) = 2$

The margin (the length of the distance between the support vector canonical hyperplanes) will be given by the **projection** of the vector $(x_1 - x_2)$ onto the normal vector to the hyperplane!

The projection is accomplished by taking the inner product of these two quantities

Maximizing the Margin

$$\gamma = \frac{1}{\|\mathbf{w}\|}$$

Recall, we set a scale for the closest points to the margin:

$$\mathbf{w}\cdot\mathbf{x_1}+b=1$$
 For the s.v. class 1 $\mathbf{w}\cdot\mathbf{x_2}+b=-1$ For the s.v. class 2

Therefore, w must be chosen such that:

$$\mathbf{w} \cdot \mathbf{x_n} + b \ge 1$$
 for all $\mathbf{x_n}$ in class 1 $\mathbf{w} \cdot \mathbf{x_n} + b \le -1$ for all $\mathbf{x_n}$ in class 2

Combining both constraints is easy:

$$t_n(\mathbf{w}^{\top}\mathbf{x}_n + b) \geq 1$$
 For all \mathbf{x}_n Easier to minimize

There are a total of N constraints

asier to minimize
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 (SISTA) 17

Constrained Optimization with Lagrange Multipliers

- Find values of a set of parameters that maximize (or minimize) an objective function, but also satisfy some constraints.
- Create new objective function that includes the original plus an additional term for each constraint.

For example, minimize f(x) subject to the constraint $g(w) \le a$

$$\underset{w}{\operatorname{argmin}} \quad f(w)$$
 subject to $g(w) \leq a$

Add Lagrange term of the form $\lambda(g(w) - a)$ and optimize for w and λ

Maximizing the Margin $\gamma = \frac{1}{||\mathbf{w}||}$

$$\frac{1}{2} \|\mathbf{w}\|^2 \qquad t_n(\mathbf{w}^\top \mathbf{x}_n + b) \ge 1$$

Maximizing the margin, y, becomes a constrained optimization problem, namely, to minimize the following:

We can incorporate the inequalities into the minimization by introducing *Lagrange multipliers*, resulting in the

following:
$$\underset{\mathbf{w},\alpha}{\operatorname{argmin}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} - \sum_{n=1}^{N} \alpha_{n}(t_{n}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{n} + b) - 1)$$

subject to $\alpha_n > 0$, for all n,

Recall how we maximize/minimize!

Il how we maximize/minimize!
$$\frac{\partial}{\partial \mathbf{w}} = \mathbf{w} - \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n \\ \frac{\partial}{\partial b} = -\sum_{n=1}^{N} \alpha_n t_n.$$
 Set to 0!
$$\sum_{n=1}^{N} \alpha_n t_n = 0$$
 be satisfied at the optimum

Maximizing the Margin $\gamma = \frac{1}{||\mathbf{w}||}$

$$\frac{1}{2} \|\mathbf{w}\|^2 \qquad t_n(\mathbf{w}^\top \mathbf{x}_n + b) \ge 1$$

$$\underset{\mathbf{w}, \alpha}{\operatorname{argmin}} \quad \frac{1}{2} \mathbf{w}^\top \mathbf{w} - \sum_{n=1}^N \alpha_n (t_n(\mathbf{w}^\top \mathbf{x}_n + b) - 1) \qquad \qquad \mathbf{w} = \sum_{n=1}^N \alpha_n t_n \mathbf{x}_n$$
subject to $\alpha_n \ge 0$, for all n ,
$$\sum_{n=1}^N \alpha_n t_n = 0$$

Plug constraint for **w** back into the objective function, to get:

$$\begin{split} &\frac{1}{2}\mathbf{w}^\mathsf{T}\mathbf{w} - \sum_{n=1}^N \alpha_n (t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) - 1) \\ &= \frac{1}{2} \left(\sum_{m=1}^N \alpha_m t_m \mathbf{x}_m^\mathsf{T} \right) \left(\sum_{n=1}^N \alpha_n t_n \mathbf{x}_n \right) - \sum_{n=1}^N \alpha_n \left(t_n \left(\sum_{m=1}^N \alpha_m t_m \mathbf{x}_m^\mathsf{T} \mathbf{x}_n + b \right) - 1 \right) \\ &= \frac{1}{2} \sum_{n,m=1}^N \alpha_m \alpha_n t_m t_n \mathbf{x}_m^\mathsf{T} \mathbf{x}_n - \sum_{n,m=1}^N \alpha_m \alpha_n t_m t_n \mathbf{x}_m^\mathsf{T} \mathbf{x}_n - \sum_{n=1}^N \alpha_n t_n b + \sum_{n=1}^N \alpha_n \\ &= \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{n,m=1}^N \alpha_m \alpha_n t_m t_n \mathbf{x}_m^\mathsf{T} \mathbf{x}_n \end{split}$$
This goes away by this constraint

This is the dual optimization problem (we have eliminated w!) It is a $\it quadratic\ optimization$ problem due to the $\alpha_{\rm m}\alpha_{\rm n}$ term (matlab: quadprog)

Making Predictions

Our final constraint problem:

$$\sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} \alpha_m \alpha_n t_m t_n \mathbf{x}_m^{\mathsf{T}} \mathbf{x}_n$$

Subject to:
$$\alpha_n \ge 0$$
, $\sum_{n=1}^{N} \alpha_n t_n = 0$.

Give it to a quadratic programming solver!

To predict, we need our decision function D(x)

$$t_{\text{new}} = \text{sign } (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{\text{new}} + b)$$

But we just optimized for α 's!

Recall:
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n$$

So rewrite the decision function as:

$$t_{\mathsf{new}} = \operatorname{sign}\left(\sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n^\mathsf{T} \mathbf{x}_{\mathsf{new}} + b\right)$$

To find b, we will use the fact that for the closest points, t_n ($\mathbf{w}^\mathsf{T} \mathbf{x}_n + b$) = 1

$$b = t_n - \sum_{m=1}^{N} \alpha_m t_m \mathbf{x}_m^\mathsf{T} \mathbf{x}_n \qquad \qquad \text{(note that } t_{\mathsf{n}} = 1/t_{\mathsf{n}} \text{ in this case)}$$

NOTE: after optimizing for all α_n 's, the only α 's that are non-zero are the support vectors! $^{!1}$

Hard Margin SMV

$$t_{new} = \operatorname{sign}\left(\sum_{n=1}^{N} \alpha_n t_n \mathbf{x}_n^{\top} \mathbf{x}_{new} + t_n - \sum_{m=1}^{N} \alpha_m t_m \mathbf{x}_m^{\top} \mathbf{x}_n\right)$$

After optimizing for all α_n 's, the only α 's that are non-zero are the support vectors!

Soft Margin SVM

 To allow points to lie on the wrong side of the boundary, need to "slacken" the constraints

$$t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1 - \xi_n$$
 where $\xi_n \ge 0$

- If $0 \le \xi_n \le 1$
 - Then the point lies on the correct side of the boundary, but within the boundary margin
- If $\xi_n > 1$
 - Then the point lies on the "wrong" side of the boundary

Soft Margin SVM

 To allow points to lie on the wrong side of the boundary, need to "slacken" the constraints

$$t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1 - \xi_n$$
 where $\xi_n \ge 0$

• The optimization task becomes: Recall, the original constrained optimization was:

 C controls to what extent we are willing to allow points to sit within the margin itself or on the wrong side of the decision boundary 👀 24

Soft Margin SVM

 To allow points to lie on the wrong side of the boundary, need to "slacken" the constraints

$$t_n(\mathbf{w}^\mathsf{T}\mathbf{x}_n + b) \ge 1 - \xi_n$$
 where $\xi_n \ge 0$

• It turns out that incorporating the new constraint C does not change the overall optimization much!: Recall: $\sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} \alpha_m \alpha_n t_m t_n \mathbf{x}_n^\mathsf{T} \mathbf{x}_n \quad \alpha_n \geq 0, \sum_{n=1}^{N} \alpha_n t_n = 0$

$$\underset{\mathbf{w}}{\operatorname{argmax}} \quad \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n,m=1}^{N} \alpha_n \alpha_m t_n t_m \mathbf{x}_n^\mathsf{T} \mathbf{x}_m \qquad \text{Just adds an upper bound on the influence any training point can have}$$
 subject to
$$\sum_{n=1}^{N} \alpha_n t_n = 0 \quad \text{and} \quad 0 \leq \alpha_n \leq C, \text{ for all } n.$$

Decision Boundary & Support Vectors for different *C*

