Discrete Fourier transform	If $f: \mathbb{F}_p^n \to \mathbb{C}$, then $\hat{f}(t) = \mathbb{E}_{x \in \mathbb{F}_p^n} f(x) \omega^{x \cdot t}$ where $\omega = e^{\frac{\tau i}{p}}$. More generally, if $f: G \to \mathbb{C}$, then $\hat{f}: \hat{G} \to \mathbb{C}$ is defined by $\hat{f}(\gamma) = \mathbb{E}_{x \in G} f(x) \gamma(x)$
fourier-transform fourier-analysis dft-def	
Inversion formula for the discrete Fourier transform	$f(x) = \sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t}$ $Proof.$ $\sum_{t \in \mathbb{F}_p^n} \hat{f}(t)\omega^{-x \cdot t} = \sum_{t \in \mathbb{F}_p^n} \left(\mathbb{E}_y f(y)\omega^{y \cdot t} \right) \omega^{-x \cdot t}$ $= \mathbb{E}_y f(y) \sum_t \omega^{(y-x) \cdot t}$ $= \mathbb{E}_y f(y) 1_{y=x} p^n$ $= f(x)$
fourier-transform fourier-analysis dft-inversion	
Ways to turn a set $A\subseteq \mathbb{F}_p^n$ into a function	• 1_A the characteristic function of A , ie $1_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$ Normalised in the ∞ norm. • μ_A the characteristic measure of A , ie $\mu_A = \alpha^{-1} 1_A$ where $\alpha = \frac{ A }{ G }$. Normalised in the L^1 norm. • f_A the balanced function of A , ie $f_A(x) = 1_A(x) - \alpha$ Normalised to have sum 0 .
Fourier transform of $-A$	Proof. $\widehat{1_{-A}} = \overline{1_A}$ $\widehat{1_{-A}}(t) = \mathbb{E}_x 1_{-A}(x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(-x) \omega^{x \cdot t}$ $= \mathbb{E}_x 1_A(x) \omega^{-x \cdot t}$ $= \widehat{1_A}(t)$
fourier-transform fourier-analysis dft-neg	

Fourier transform of a subspace		If $V \leq \mathbb{F}_p^n$, then $\widehat{\mu_V}(t) = 1_{V^\perp}(t)$ Proof. $\widehat{1_V}(t) = \mathbb{E}_x 1_V(x) \omega^{x \cdot t} = \frac{ V }{ G } 1_{V^\perp}(t)$
fourier-transform fourier-analysis	dft-subspace	
Fourier transform of a random set		Let $R \subseteq \mathbb{F}_p^n$ be such that each x is included with probability $\frac{1}{2}$ independently. Then with high probability $\sup_{t \neq 0} \left \widehat{1_R}(t) \right = O\left(\sqrt{\frac{\log(p^n)}{p^n}}\right)$ Proof. Chernoff
fourier-transform fourier-analysis	dft-random-set	
Inner product, L^p norm		If $f, g : \mathbb{F}_p^n \to \mathbb{C}$, then $ \langle f, g \rangle = \mathbb{E}_x f(x) \overline{g(x)} $ $ \langle \hat{f}, \hat{g} \rangle = \sum_t \hat{f}(t) \overline{\hat{g}(t)} $ $ f _p^p = \mathbb{E}_x f(x) ^p $ $ \hat{f} _p^p = \sum_t \hat{f}(t) ^p $
fourier-analysis	discrete-lp-norm-def	
Plancherel and Parseval's identities		$\langle f,g\rangle = \left\langle \hat{f},\hat{g}\right\rangle \qquad \text{(Plancherel)}$ $\ f\ _2 = \left\ \hat{f}\right\ _2 \qquad \text{(Parseval)}$ $Proof.$ $\left\langle \hat{f},\hat{g}\right\rangle = \sum_t \hat{f}(t)\overline{\hat{g}(t)} = \sum_{t,x,y} f(x)\overline{g(y)}\omega^{(x-y)\cdot t}$ $= \sum_{x,y} f(x)\overline{g(y)}1_{x=y} = \langle f,g\rangle$
fourier-transform fourier-analysis	discrete-plancherel-parseval	

Large spectrum	The ρ -large spectrum of f is
	$\operatorname{Spec}_{\rho}(f) = \{ t \mid \hat{f}(t) \ge \rho f _1 \}$
large-spectrum fourier-analysis large-spectrum-def	
Large spectrum of a subspace	If $V \leq \mathbb{F}_p^n$ and $\rho > 0$, then
	$\operatorname{Spec}_{\rho}(1_V) = V^{\perp}$
large-spectrum fourier-analysis large-spectrum-subspace	
Upper bound on the size of the large spectrum	For all $\rho > 0$,
	$\left \operatorname{Spec}_{\rho}(f) \right \le \rho^{-2} \frac{\ f\ _{2}^{2}}{\ f\ _{1}^{2}}$
	Proof.
	$\left\ f\right\ _{2}^{2}=\left\ \hat{f}\right\ _{2}^{2}\geq\sum_{t\in\operatorname{Spec}_{\rho}(f)}\left \hat{f}(t)\right ^{2}\geq\left \operatorname{Spec}_{\rho}(f)\right (\rho\left\ f\right\ _{1})^{2}$
	$t \in \operatorname{Spec}_{\rho}(f)$
large-spectrum fourier-analysis card-large-spectrum-le	
Convolution of functions	Given $f,g:\mathbb{F}_p^n\to\mathbb{C}$, their convolution $f*g:\mathbb{F}_p^n\to\mathbb{C}$ is given by
	given by $(f*g)(x) = \mathbb{E}_y f(y)g(x-y)$
convolution fourier-analysis convolution-def	

Meaning of 1_A*1_B	$(1_A*1_B)(x) = \mathbb{E}_y 1_A(y) 1_B(x-y)$ $= \frac{1}{p^n} A \cap (x-B) $ $= \frac{\# \text{ ways to write } x = a+b, a \in A, b \in B}{p^n}$ In particular, the support of 1_A*1_B is the sum set $A+B = \{a+b \mid a \in A, b \in B\}$
convolution fourier-analysis convolution-indicators	
Relationship between convolution and Fourier transform	Given $f, g : \mathbb{F}_p^n \to \mathbb{C}$, $\widehat{f * g}(t) = \widehat{f}(t)\widehat{g}(t)$ Proof. $\widehat{f * g}(t) = \mathbb{E}_x \left(\mathbb{E}_y f(y) g(x - y) \right) \omega^{x \cdot t}$ $= \mathbb{E}_y f(y) \mathbb{E}_u g(u) \omega^{(u+y) \cdot t}$ $= \widehat{f}(t) \widehat{g}(t)$
fourier-analysis dft-convolution	
Meaning of the L^4 norm of the Fourier transform	ш4

 $\left\| \hat{f} \right\|_{4}^{4} = \left\| \hat{f}^{2} \right\|_{2}^{2} = \left\| \widehat{f * f} \right\|_{2}^{2} = \left\| f * f \right\|_{2}^{2}$ $= \mathbb{E}_a(f * f)(a)\overline{(f * f)(a)}$ $= \mathbb{E}_{a,x,y,z,w} f(x) f(y) 1_{x+y=a} \overline{f(z) f(w) 1_{z+w=a}}$ $= \mathbb{E}_{x+y=z+w} f(x) f(y) \overline{f(z) f(w)}$ fourier-transform fourier-analysis 14-norm-fourier-transform

 $\left\|\hat{f}\right\|_{A}^{4} = \mathbb{E}_{x+y=z+w}f(x)f(y)\overline{f(z)f(w)}$

If $A\subseteq \mathbb{F}_p^n$ has density $\alpha>0$, then there exists a subspace V of codimension at most $2\alpha^{-2}$ such that $V\subseteq (A+A)$ – Bogolyubov's lemma in \mathbb{F}_p^n
$$\begin{split} & \textit{Proof. Write } (A+A) - (A+A) = \text{supp} (\underbrace{1_A*1_A*1_{-A}*1_{-A}}_g), \\ & \text{set } K = \text{Spec}_{\rho}(1_A) \text{ for } \rho = \sqrt{\frac{\alpha}{2}} > 0 \text{ and define } V = \langle K \rangle^{\perp}. \\ & \text{We have codim } V \leq |K| \leq \rho^{-2}\alpha^{-1} = 2\alpha^{-2} \text{ and} \end{split}$$
 $g(x) = \alpha^4 + \underbrace{\sum_{t \in K \setminus \{0\}} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(1)} + \underbrace{\sum_{t \notin K} \left| \widehat{1_A}(t) \right|^4 \omega^{-x \cdot t}}_{(2)}$ Now prove (1) ≥ 0 and $|(2)| \leq \rho^2 \alpha^3 = \frac{\alpha^4}{2}$ so that g(x) > 0whenever $x \in V$.

Example of a set $A\subseteq \mathbb{F}_2^n$ of fixed density such that $A+A$ does not contain any subspace of bounded codimension	The set $A=\{x\in\mathbb{F}_2^n\mid x \geq \frac{n}{2}+\frac{\sqrt{n}}{2}\}$ has density at least $\frac{1}{4}$ but there is no coset C of any subspace of codimension \sqrt{n} such that $C\subseteq A+A$.
fourier-analysis sumset-no-subspace, finite-field-model	
Density increment in \mathbb{F}_p^n	Let $A \subseteq \mathbb{F}_p^n$ of density α . If $t \neq 0$ is in $\operatorname{Spec}_{\rho}(1_A)$, then there exists x such that $ A \cap (x+V) \geq \alpha \left(1 + \frac{\rho}{2}\right) V $ where $V = \langle t \rangle^{\perp}$. $Proof. \text{ For } j = 1, \dots, p, \text{ write } v_j + V \text{ the cosets of } V, \ a_j = \frac{ A \cap (v_j + V) }{ V } - \alpha \text{ the density increment within each } V_j. \text{ Calculate } \sum_j a_j = 0 \text{ and } \widehat{1_A}(t) = \mathbb{E}_j a_j \omega^j, \text{ so that}$ $\rho\alpha \leq \left \widehat{1_A}(t)\right \leq \mathbb{E}_j a_j = \mathbb{E}_j(a_j + a_j)$ and find j such that $ a_j + a_j \geq \rho\alpha$. Take $x = v_j$.
fourier-analysis density-increment-ff	
Definition of T_3	If $f, g, h : \mathbb{F}_p^n \to \mathbb{C}$, then $T_3(f, g, h) = \mathbb{E}_x f(x) g(x+d) h(x+2d) = \left\langle f * h, \overline{g}(2^{-1} \cdot) \right\rangle$
convolution fourier-analysis t3-def	
Number of 3APs in a uniform set $A \subseteq \mathbb{F}_p^n$	If $\sup_{t\neq 0} \left \widehat{1_A}(t) \right = o(1)$, then A contains $(\alpha^3 + o(1)) G ^2$ 3APs. Proof. The number of 3APs in A is $ G ^2$ times $T_3(1_A, 1_A, 1_A) = \langle 1_A * 1_A, 1_{2 \cdot A} \rangle = \left\langle \widehat{1_A}^2, \widehat{1_{2 \cdot A}} \right\rangle$ $= \alpha^3 + \sum_{t\neq 0} \widehat{1_A}(t)^2 \overline{\widehat{1_{2 \cdot A}}(t)} \text{ by Plancherel}$ In absolute value, the error term is at most $\sup_{t\neq 0} \left \widehat{1_{2 \cdot A}}(t) \right \sum_{t} \left \widehat{1_A}(t) \right ^2 = \alpha \sup_{t\neq 0} \left \widehat{1_A}(t) \right $
3AP finite-field-model fourier-analysis 3AP-uniform	

Meshulam's theorem	IF $p \geq 3$ and $A \subseteq \mathbb{F}_p^n$ only contains trivial 3APs, then the
Westuren 5 Western	density of A is $O(n^{-1})$.
	<i>Proof.</i> By assumption, $T_3(1_A, 1_A, 1_A) = \frac{\alpha}{p^n}$. But
	$\left T_3(1_A, 1_A, 1_A) - \alpha^3\right \le \alpha \sup_{t \ne 0} \left \widehat{1_A}(t)\right $
	Hence, provided that $2\alpha^{-2} \leq p^n$, we find a subspace $V \leq \mathbb{F}_p^n$ of codimension 1 and $x \in \mathbb{F}_p^n$ such that
	$ A \cap (x+V) \ge \alpha \left(1 + \frac{\alpha^2}{4}\right) V $
3AP fourier-analysis meshulam, finite-field-model	Iteratively increase α like this until $2\alpha^{-2} \leq p^n$. Since $\alpha \leq 1$, this takes at most $9\alpha^{-1}$ steps. So $p^{n-9\alpha^{-1}} \leq 2\alpha^{-2}$ which implies $\alpha \leq \frac{18}{n}$, as wanted.
Characters, dual group	Characters of the group G are group homomorphisms $\gamma:G\to\mathbb{C}^{\times}$. They form a group called the Pontryagin dual or dual group of G .
character fourier-analysis character-def	
Duals of $\mathbb{F}_p^n, \mathbb{Z}/n\mathbb{Z}$	• If $G = \mathbb{F}_p^n$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{x \cdot t} \mid t \in G \}$
	• If $G = \mathbb{Z}/n\mathbb{Z}$, then $\hat{G} = \{ \gamma_t : x \mapsto \omega^{xt} \mid t \in G \}$
character fourier-analysis dual-ff	
Fourier transform of an interval in $\mathbb{Z}/p\mathbb{Z}$	Write $J = \left[-\frac{L}{2}, \frac{L}{2} \right] \subseteq \mathbb{Z}/p\mathbb{Z}$ with $L < p$ even. For all t ,
	$\widehat{1_J}(t) \le \min\left(\frac{L+1}{p}, \frac{1}{2 t }\right)$

Proof. If t = 0, then $\widehat{1_J}(t) = \frac{|J|}{p} = \frac{L+1}{p}$. If $t \neq 0$, then $\widehat{1}_{J}(t) = \mathbb{E}_{x} 1_{J}(x) \omega^{xt} = \mathbb{E}_{x=-\frac{L}{2}}^{\frac{L}{2}} \omega^{xt} = \frac{\omega^{(L+1)\frac{t}{2}} - \omega^{-(L+1)\frac{t}{2}}}{p(\omega^{\frac{t}{2}} - \omega^{-\frac{t}{2}})}$ Noting that for all $x \in [-\pi, \pi]$ we have $\left| e^{ix} - 1 \right| \ge \frac{2|x|}{\pi}$, $\left|\widehat{1_J}(t)\right| \leq \frac{2}{p} \left|\omega^t - 1\right|^{-1} \leq \frac{2}{p} \left(\frac{2}{\pi} \frac{2\pi t}{p}\right)^{-1} = \frac{1}{2 \left|t\right|}$ fourier-transform integer-model fourier-analysis dft-interval

integer-model fourier-analysis partition-progressions-small-diam	Density increment or large Fourier coefficient for 3APs in an interval $ \begin{array}{l} \text{ \tiny 3AP integer-nodel} \\ \text{ \tiny fourier-analysis} \end{array} \\ \text{ \tiny large-fourier-coeff-int} \\ \\ \text{For } t \neq 0, \varepsilon > 0 \text{ and } \phi: [m] \to \mathbb{Z}/p\mathbb{Z} \text{ multiplication by } \\ t, \text{ how to partition } [m] \text{ into progressions of length roughly } \\ \varepsilon \sqrt{m} \text{ such that } \text{diam}(t \cdot P_i) \leq \varepsilon p? \end{aligned} $	Let $A\subseteq [N]$ be of density $\alpha>0$ with $N>50\alpha^{-2}$ and containing only trivial 3APs. Let p be a prime in $\left[\frac{N}{3},\frac{2N}{3}\right]$ and write $A'=A\cap[p]\subseteq\mathbb{Z}/p\mathbb{Z}$. Then either $1. \sup_{t\neq 0}\left \widehat{1_A}(t)\right \geq \frac{\alpha^2}{10}$ 2. or there exists an interval J of length $\geq \frac{N}{3}$ such that $ A\cap J \geq \alpha\left(1+\frac{\alpha}{400}\right) J $ Proof. There's no non-trivial 3AP with terms in A',A'',A'' where A'' is the middle third of A' . If A' and A'' are both dense enough, then we're in Case 1 by computing $T_3(1_{A'},1_{A''},1_{A''})$. Else we're in Case 2 by looking at the appropriate complement. \square Let $u=\lfloor\sqrt{m}\rfloor$ and consider $0,t,\ldots,ut$. By pigeonhole, find $0\leq v< w\leq u$ such that $ wt-vt \leq \frac{p}{u}$. Set $s=w-v\leq u$ so that $ st \leq \frac{p}{u}$. Divide $[m]$ into residue classes mod s . Each has size at least $\lfloor \frac{m}{s} \rfloor \geq \lfloor \frac{m}{u} \rfloor$ and can be divided into progressions of the form $a,a+s,\ldots,a+ds$ with $\frac{\varepsilon u}{2}< d\leq \varepsilon u$. The diameter of each progression under ϕ is $ dst \leq \varepsilon p$.
in an interval $\left \frac{N}{3},\frac{2N}{3}\right \text{ and write } A' = A \cap [p]. \text{ Suppose there exists } t \neq such that } \left \widehat{1_A}(t)\right \geq \frac{\alpha^2}{10}. \text{ Then there exists a progression of length at least } \alpha^2 \frac{\sqrt{N}}{500} \text{ such that } \left A \cap P\right \geq \alpha \left(1 + \frac{\alpha}{50}\right) P $ $Proof. \text{ Let } \varepsilon = \frac{\alpha^2}{40\pi} \text{ and partition } [p] \text{ into progressions } P_i \text{ length at least } \frac{\varepsilon\sqrt{p}}{2} \geq \frac{\alpha^2\sqrt{N}}{500} \text{ and diam } \phi(P_i) \leq \varepsilon p. \text{ Fix of } x_i \text{ inside each } P_i. \text{ Write } \left \widehat{f_{A'}}(t)\right = \frac{1}{p} \left \sum_i \sum_{x \in P_i} f_{A'}(x)\omega\right $	in an interval 3AP integer-model	$ A \cap P \ge \alpha \left(1 + \frac{\alpha}{50}\right) P $ $Proof. \text{ Let } \varepsilon = \frac{\alpha^2}{40\pi} \text{ and partition } [p] \text{ into progressions } P_i \text{ of length at least } \frac{\varepsilon \sqrt{p}}{2} \ge \frac{\alpha^2 \sqrt{N}}{500} \text{ and diam } \phi(P_i) \le \varepsilon p. \text{ Fix one } x_i \text{ inside each } P_i. \text{ Write } \left \widehat{f_{A'}}(t)\right = \frac{1}{p} \left \sum_i \sum_{x \in P_i} f_{A'}(x) \omega^{xt}\right $ and use the fact that $\omega^{xt} \approx \omega^{x_i t}$ whenever $x \in P_i$ to find

roth

Roth's theorem

Let $A\subseteq [N]$ be a set containing only trivial 3APs. Then $|A|=O(\frac{N}{\log\log N}).$

 $|A| = O(\frac{N}{\log \log N}).$ Proof. Iterate the density increment.

3AP integer-model fourier-analysis

Behrend's construction		There exists a set $A \subseteq [N]$ containing non nontrivial 3APs of size at least $e^{-O(\sqrt{\log n})}$. See Example Sheet 1.
3AP integer-model fourier-analysis	behrend	
Bohr set		Let $\Gamma\subseteq\hat{G}$. The Bohr set of frequencies Γ and width ρ is $B(\Gamma,\rho)=\{x\in G\mid \forall\gamma\in\Gamma, \gamma(x)-1 \leq\rho\}$ $ \Gamma $ is the rank of the Bohr set.
bohr-set fourier-analysis	bohr-set-def	
Bohr set in \mathbb{F}_p^n		When $G = \mathbb{F}_p^n$, $B(\Gamma, \rho) = \langle \Gamma \rangle^{\perp}$ for all small enough ρ (depending only on p , not n).
bohr-set finite-field-model fourier-analysis	bohr-set-ff	
Lower bound on the size of a Bohr set		If B is a Bohr set of rank d and width ρ , then $ B \geq \left(\frac{\rho}{2\pi}\right)^d G $.
bohr-set fourier-analysis	bohr-set-card-ge	

Bogolyubov's lemma in $\mathbb{Z}/p\mathbb{Z}$	If $A \subseteq \mathbb{Z}/p\mathbb{Z}$ has density $\alpha > 0$, then there exists $\Gamma \subseteq \widehat{\mathbb{Z}/p\mathbb{Z}}$ of size at most $2\alpha^{-2}$ such that $B(\Gamma, \frac{1}{2}) \subseteq (A+A) - (A+A)$. Proof. Pick $\Gamma = \operatorname{Spec}_{\sqrt{\frac{\alpha}{2}}}(1_A)$ and lower bound $\operatorname{Re}(1_A * 1_A * 1_{-A} * 1_{-A})(x) = \operatorname{Re} \sum_{t \in \widehat{\mathbb{F}_p}} \left \widehat{1_A}(t) \right ^4 \omega^{-xt}$ by splitting the sum over Γ and Γ^c .
bohr-set fourier-analysis bogolyubov-int	
Doubling constant, difference constant	For a finite nonempty set $A\subseteq G$, its doubling and difference constants are $\sigma(A)=\frac{ A+A }{ A }, \delta(A)=\frac{ A-A }{ A }$
doubling-constant combinatorial-methods doubling-constant-def	
When is the doubling constant 1?	When the set is a subspace
doubling-constant combinatorial-methods doubling-constant-one	
If A has Small doubling constant then A lies in a small coset.	If A is such that $ A+A <\frac{3}{2} A $. Then there exists $V\leq \mathbb{F}_p^n$ such that A is contained in a coset of V and $ V <\frac{3}{2} A $.

doubling-constant combinatorial-methods doubling-constant-lt-three-halves

Example of a set with big doubling	Let $A\subseteq \mathbb{F}_p^n$ be a set where each point is taken randomly with probability $p^{-\theta n}$ where $\theta\in]\frac{1}{2},1]$. Then with high probability $ A+A =(1+o(1))\frac{ A ^2}{2}$.
doubling-constant combinatorial-methods big-doubling-random	
Ruzsa distance	Given finite sets $A,B\subseteq G$, we define the Ruzsa distance between A and B to be $d(A,B)=\log\frac{ A-B }{\sqrt{ A B }}$
ruzsa-distance combinatorial-methods ruzsa-distance-def	
Ruzsa's triangle inequality	For $A,B,C\subseteq G$ finite, $d(A,C)\leq d(A,B)+d(B,C)$ Proof. The inequality reduces to $ B A-C \leq A-B B-C $ This is true because $\phi:B\times (A-C)\to (A-B)\times (B-C)$ $(b,d)\mapsto (a_d-b,b-c_d)$ is injective, where for each $d\in A-C$ we have chosen $a_d\in A,c_d\in C$ such that $d=a-c$.
ruzsa-distance combinatorial-methods ruzsa-triangle-inequality	
Plünnecke's inequality	Let $A, B \subseteq G$ be finite such that $ A + B \le K A $. Then for all ℓ, m , $ \ell B - mB \le K^{\ell+m} B $ Proof. WLOG $ A + B = K A $. Find $A' \subseteq A$ nonempty minimising $K' = \frac{ A' + B }{ A' }$. Claim. For all finite $C \subseteq G$, $ A' + B + C \le K' A' + C $ From the claim, prove that $ A' + mB \le K'^m A' $ for all m by induction. Now, by the triangle inequality, $ A' \ell B - mB \le A' + \ell B A' + mB \le K'^\ell A' K'^m A' $ Namely, $ \ell B - mB \le K'^{\ell+m} A' \le K^{\ell+m} A $.
doubling-constant combinatorial-methods pluennecke-inequality	

Key claim within the proof of Plünnecke's inequality	WLOG $ A+B =K A $. $A'\subseteq A$ is nonempty minimising $K'=\frac{ A'+B }{ A' }$. Claim. For all finite $C\subseteq G, A'+B+C \le K' A'+C $ Proof of claim. Induct on C . obvious if $C=\varnothing$. For $C'=C\cup\{x\},x\notin C$, write $A'+B+C'=A'+B+C\cup A'+B+x\setminus D+B+x$ $A'+C'=A'+C\cup A'+x\setminus E+x$ where $D=\{a\in A'\mid a+B+x\subseteq A'+B+C\}, E=\{a\in A'\mid a+x\in A'+C\}\subseteq D$. Note that the second union is
	disjoint. Use the induction hypothesis and the minimality
${\tt combinatorial-methods} \qquad \qquad {\tt pluennecke-inequality-claim}$	assumption for K' to deduce the claim. \Box
Relationship between the doubling and difference constant	If $ A - A \le K A $, then
	$ A A + A \le A - A A - A \le K^2 A ^2$
	by Ruzsa's triangle inequality. So $\sigma(A) \leq \delta(A)^2$.
	If $ A + A \le K A $, then
	$ A - A \le K^{1+1} A $
	by Plünnecke's inequality. So $\delta(A) \leq \sigma(A)^2$.
doubling-constant combinatorial-methods doubling-difference-constants-relation	
The Freiman-Ruzsa theorem	Let $A \subseteq \mathbb{F}_n^n$ be such that $ A + A \le K A $ for some $K > 0$.

freiman-ruzsa

The Freiman-Ruzsa theorem

combinatorial-methods

Let $A \subseteq \mathbb{F}_p^n$ be such that $|A + A| \le K |A|$ for some K > 0. Then A is contained in a subspace $H \leq \mathbb{F}_p^n$ of size $|H| \leq$ $K^2p^{K^4}|A|$.

Proof. Write S = A - A and choose $X \subseteq A + S$ maximal such that the translates x + A for $x \in X$ are disjoint. Use that $X + A \subseteq 2A + S$ to prove $|X| \le K^4$ by Plünnecke. Now $A+S\subseteq X+S$ because $y\in A+S$ is either in $X\subseteq X+S$ or x+A and y+A are not disjoint by maximality of X, namely $y \in x + A - A \subseteq X + S$. By induction, $\ell A + S \subseteq X + S$ for all ℓ . Hence, the subgroup generated by A is contained in $\langle X \rangle + S$ and size at most

$$|\langle X \rangle| \, |S| \le p^{|X|} K^2 \, |A| \le K^2 p^{K^4} \, |A|$$

Example of a set which generates a subgroup of size exponential in its doubling constant

Let $A=H\cup R\subseteq \mathbb{F}_p^n$ where H is a subspace of dimension $K\ll d\ll n-k$ and R consists of K-1 linearly independent vectors in H^\perp . Then $|A|=|H\cup R|\sim |H|$ and $|A+A| = |H \cup H + R \cup R + R| \sim K |H| \sim K |A| \text{ but any subspace } V \leq \mathbb{F}_p^n \text{ containing } A \text{ must have size } \geq p^{d+(K-1)} = p^{K-1} |H| \sim p^{K-1} |A| \text{ where the constant is exponential in }$

combinatorial-methods subgroup-exponential-size-doubling-constant

Polynomial Freiman-Ruzsa conjecture	Let $A \subseteq \mathbb{F}_p^n$ be such that $ A+A \leq K A $. Then there is a subspace $H \leq \mathbb{F}_p^n$ of size at most $C_1(K) A $ and $x \in \mathbb{F}_p^n$ such that $ A \cap (x+H) \geq \frac{ A }{C_2(K)}$ where $C_1(K)$ and $C_2(K)$ are polynomials.
combinatorial-methods polynomial-freiman-ruzsa	
Additive energy	Given an abelian group G and finite sets $A, B \subseteq G$, define additive quadruples to be the tuples $(a, a', b, b') \in A^2 \times B^2$ such that $a+b=a'+b'$ and the additive energy between A and B to be $E(A,B) = \frac{\#\{\text{additive quadruples}\}}{ A ^{\frac{3}{2}} B ^{\frac{3}{2}}}$
additive-energy combinatorial-methods additive-energy-def	
Relation between the additive energy and the Fourier transform	If G is finite and $A \subseteq G$, then $ A ^3 E(A) = G ^3 \mathbb{E}_{x+y=z+w} 1_A(x) 1_A(y) 1_A(z) 1_A(w)$ $= G ^3 \left\ \widehat{1_A} \right\ _4^4$ namely $\left\ \widehat{1_A} \right\ _4^4 = \alpha^3 E(A)$
additive-energy fourier-transform combinatorial-methods additive-energy-fourier-transform	
Additive energy of a subgroup	When $H \leq G$, we have $E(H) = 1$.
additive-energy combinatorial-methods additive-energy-subgroup	

Small doubling implies big energy	Let G be abelian and $A, B \subseteq G$ be finite. Then $E(A, B) \ge \frac{\sqrt{ A B }}{ A\pm B }$. In particular, if $ A\pm A \le K A $ then $E(A) \ge \frac{1}{K}$.
	Proof. Write $r(x) = \#\{(a,b) \in A \times B \mid a+b=x\}$ so that $ A ^{\frac{3}{2}} B ^{\frac{3}{2}} E(A,B) = \#\{\text{additive quadruples}\} = \sum_{x} r(x)^2$
	Also note that $\sum_x r(x) = A B $ so that $ A ^{\frac{3}{2}} B ^{\frac{3}{2}} E(A,B) = \sum_x r(x)^2$
	$\geq \frac{\sum_{x} r(x) 1_{A+B}(x)}{\sum_{x} 1_{A+B}(x)^2} = \frac{(A B)^2}{ A+B }$
doubling-constant additive-energy combinatorial-methods small-doubling-constant-implies-big-additive-energy	by Cauchy-Schwarz. Do similarly for $A-B$.
Big energy does not imply small doubling	Let G be your favorite family of abelian groups. Then there are constants $\eta, \theta > 0$ such that for all sufficiently large n there exists $A \subseteq G$ with $ A = n$ satisfying $E(A) \gg \eta$ and $ A + A \ge \theta A ^2$.

doubling-constant additive-energy combinatorial-methods

Balog-Szemerédi-Gowers

combinatorial-methods

big-additive-energy-not-implies-small-doubling-constant

additive-energy combinatorial-methods balog-szemeredi-gowers

Dependent random choice step within the proof of Balog-

Szemerédi-Gowers

 $|A_i\cap A_j|\geq \frac{\delta^2 n}{2}$ for at least 90% of the pairs $(i,j)\in X^2.$ *Proof.* Let x_1, \ldots, x_5 be uniform random in [n] and let X = $\{i \in [m] \mid \forall k, x_k \in A_i\}$. Call a pair **bad** if $|A_i \cap A_j| < \frac{\delta^2 n}{2}$. Prove that

 $\frac{\delta^{10}m^2}{2} + 16\mathbb{E}[\#\{\text{bad pairs in }X^2\}] \leq \mathbb{E}[|X|^2]$

 $C(\eta)$ are polynomials in η .

Let G be an abelian group and let $A \subseteq G$ be finite such that $E(A) \geq \eta$ for some $\eta > 0$. Then there exists $A' \subseteq A$ of size at least $c(\eta)$ such that $|A' + A'| \le C(\eta) |A|$ where $c(\eta)$ and

Let $A_1, \ldots, A_m \subseteq [n]$ and suppose that $\mathbb{E}_{i,j} |A_i \cap A_j| \ge \delta^2 n$. Then there exists $X \subseteq [m]$ of size at least $\frac{\delta^5 m}{\sqrt{2}}$ such that

so that $\frac{\delta^{10}m^2}{2} + 16\#\{\text{bad pairs in }X^2\} \le |X|^2 \text{ for some } x_1, \dots, x_5$. This gives $|X| \ge \frac{\delta^5 m}{\sqrt{2}}$ and $\#\{\text{bad pairs in }X^2\} \le \frac{|X|^2}{16} \le 10\% |X|^2$

balog-szemeredi-gowers-dependent-random-choice