Random Features, Density Estimate and Simultaneous Localization and Mapping

Yermek Kapushev

y.kapushev@skoltech.ru

Skolkovo Institute of Science and Technology Moscow, Russia

Moscow, 2020

Random Features

Denoising Score Matching

Simultaneous Localization and Mapping

Summary

Kernel Trick

Data set

$$(\mathbf{X}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\} \in \mathcal{X} \times \mathbb{R}, \quad y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- Let $\phi(x): \mathcal{X} \to \mathbb{R}^d$ be some feature map
- ▶ Suppose that $y = \beta^{\top} \phi(x)$, then prediction is given by

$$\hat{f}(x^*) = \phi(x^*)^{\mathsf{T}} \left(\phi(\mathbf{X})^{\mathsf{T}} \phi(\mathbf{X}) + \lambda \mathbf{I} \right)^{-1} \phi(\mathbf{X})^{\mathsf{T}} \mathbf{y}, \qquad \mathcal{O}(d^3)$$

▶ Let $k(x,x') = \langle \phi(x), \phi(x') \rangle$ be a *kernel function*. Then prediction can be rewritten as

$$\hat{f}(x^*) = \mathbf{k}_*^{\mathsf{T}} (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y},$$
 $\mathcal{O}(n^3)$

where $\mathbf{k}_* = (k(x^*, x_1), \dots, k(x^*, x_n)), \mathbf{K}_{ij} = k(x_i, x_j).$

Random Fourier Features (RFF)

Theorem (Bochner)

A continuous kernel k(x,x')=k(x-x') on \mathbb{R}^d is positive definite if and only if $k(\delta)$ is a Fourier transform of a non-negative measure

$$k(x, x') = \int_{\Omega} p(w)e^{jw^{\top}(x-x')}dw$$

RFF idea

Idea: use Monte-Carlo to approximate the integral¹

$$k_{RFF}(x, x') = \frac{1}{D} \sum_{i=1}^{D} \cos(w_i^{\mathsf{T}}(x - x')) = \psi_{\mathbf{W}}(x)^T \psi_{\mathbf{W}}(x'),$$

where

$$-w_i \sim p(w)$$

$$- \mathbf{W} = (w_1^\top, \dots, w_D^\top)^\top$$

$$- \psi_{\mathbf{w}}(x) = 1/\sqrt{D}(\cos(w_1^{\mathsf{T}}x), \sin(w_1^{\mathsf{T}}x), \dots, \cos(w_D^{\mathsf{T}}x), \sin(w_D^{\mathsf{T}}x))^{\mathsf{T}}$$

$$\hat{\mathbf{K}} = \Psi \Psi^T, \quad \Psi = \|\psi_{\mathbf{w}}(x_i)^\top\|_{i=1}^n$$

 \rightarrow Go back to linear model with $\psi_{\mathbf{W}}(x)$ features

¹Rahimi, A., Recht, B. (2008). Random features for large-scale kernel machines.

Related works

- ► Quasi Monte-Carlo (QMC)²
- ► Gaussian Quadrature ³
- Orthogonal Random Features (ORF)⁴
- ► Random Orthogonal Matrices (ROM)⁵
- ► Ridge Leverage Score based Features ⁶

²Yang, et al. (2016). Quasi-Monte Carlo feature maps for shift-invariant kernels.

³Dao et al. (2017). Gaussian quadrature for kernel features.

Felix, X. Yu, et al. (2016). Orthogonal random features.

 $^{^{\}bf 5} \mbox{Choromanski, et al. (2016)}.$ Recycling randomness with structure for sublinear time kernel expansions.

⁶Avron, et al. (2017). Random Fourier features for kernel ridge regression: A pproximation bounds and statistical guarantees.

Quadrature-based Features

Integral representation of kernel function

$$k(x,x') = \int_{\Omega} \psi(w,x)\psi(w,x')p(w)dw = \int_{\Omega} f_{xx'}(w)p(w)dw,$$

where p(w) is $\mathcal{N}(0, \sigma_p^2 \mathbf{I})$ – density associated with the kernel and $\psi(\cdot, x)$ is a feature map.

Quadrature rules

1. Change variables to spherical-radial coordinates $(w = r\mathbf{z}, \mathbf{z}^{\mathsf{T}}\mathbf{z} = 1, w^{\mathsf{T}}w = r)$

$$k(x, x') = \frac{(2\pi)^{-\frac{d}{2}}}{2} \int_{U_d} \int_{-\infty}^{\infty} e^{-\frac{r^2}{2}} |r|^{d-1} f_{xx'}(r\mathbf{z}) dr d\mathbf{z},$$

where U_d is a d-dimensional unit sphere.

2. Use stochastic radial-spherical rules.

Stochastic spherical-radial rules

▶ Spherical-radial rules⁶ of degree (n, p)

$$SR_{\mathbf{Q},\rho}^{(n,p)}(f) = \sum_{j=1}^{p} \widetilde{w}_{j} \sum_{i=1}^{n} \frac{w_{i}}{2} \left(f(-\rho_{i} \mathbf{Q} \mathbf{z}_{j}) + f(\rho_{i} \mathbf{Q} \mathbf{z}_{j}) \right)$$

Let p = 2n + 1. Then the weights are chosen such that the rule is exact for polynomials of degree 2n + 1.

⁶Genz, A., & Monahan, J. (1998). Stochastic integration rules for infinite regions.

Examples

▶ Degree 1 rule

$$SR_{\mathbf{Q},\rho}^{(1,1)}(f) = \frac{f_{xx'}(\rho \mathbf{Q} \mathbf{z}) + f_{xx'}(-\rho \mathbf{Q} \mathbf{z})}{2},$$

where

- $\rho \sim \chi(d)$, **Q** random orthogonal matrix,
- z point on unit sphere.
- → Classical Random Fourier Features
- ightharpoonup Degree (1,3) rule

$$SR_{\mathbf{Q},\rho}(f)^{(1,3)} = \sum_{i=1}^{d} \frac{f_{xx'}(-\rho \mathbf{Q} \mathbf{e}_i) + fxx'(\rho \mathbf{Q} \mathbf{e}_i)}{2d},$$

where $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)^{\mathsf{T}}$ with 1 in the i-th position.

→ Orthogonal Random Features!

Degree (3,3) rule

Degree (3,3) rule

$$k_{QBF}(x, x') = \left(1 - \frac{1}{d+1} \sum_{j=1}^{d+1} \frac{d}{\rho_j^2}\right) f_{xx'}(\mathbf{0}) + \frac{d}{d+1} \sum_{j=1}^{d+1} \left[\frac{f_{xx'}(-\rho_j \mathbf{Q} \mathbf{v}_j) + f_{xx'}(\rho_j \mathbf{Q} \mathbf{v}_j)}{2\rho_j^2} \right],$$

where

- $-\rho_j \sim \chi(d+2)$
- \mathbf{v}_j is the j'th vertex of unit d-simplex \mathbf{V}
- \mathbf{Q} is a random $d \times d$ orthogonal matrix.

Use structured Q matrix to speed up feature generation

Empirical results

Figure: Error of kernel approximation on different datasets

Empirical results

Figure: Error of regression/classification on different datasets

Score Matching

- ▶ Given a data set $\{\mathbf{x}_i\}_{i=1}^n$, $\mathbf{x}_i \sim p_0(\mathbf{x})$, estimate unknown density $p_0(\mathbf{x})$.
- ▶ Find $p_{\theta}(\mathbf{x}) \in \mathcal{P}$ that minimizes Fisher divergence

$$J(p_0||p_\theta) = \frac{1}{2} \int p_0(\mathbf{x}) ||\nabla \log p_\theta(\mathbf{x}) - \nabla \log p_0(\mathbf{x})||_2^2 d\mathbf{x}$$

► Equivalent score matching objective

$$J_{SM}(p_0||p_\theta) = \mathbb{E}_{p_0} \left[\Delta \log p_\theta(\mathbf{x}) + \frac{1}{2} ||\nabla \log p_\theta(\mathbf{x})||_2^2 \right]$$

Issues

- Need to compute second derivatives
- ▶ supp $p_0 \neq$ supp p_θ

Song, Y., Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.

Figure: Left: original and PCA reconstructions of images. Middle: score matching loss. Right: score matching loss with noisy data

Kernel Exponential Family and Score Matching

Consider distributions that satisfy

$$\log p_{\theta}(\mathbf{x}) = f(\mathbf{x}) + \log q_0(\mathbf{x}), \quad f \in \mathcal{H},$$

where \mathcal{H} is an RKHS with kernel k, q_0 is some generating density.

Solution

$$f(\mathbf{x}) = -\frac{\xi}{\lambda} + \sum_{a=1}^{n} \sum_{i=1}^{d} \beta_{(\alpha-1)d+i} \partial_{i} k(\mathbf{x}_{a}, \cdot),$$

$$\xi = \frac{1}{n} \sum_{a=1}^{n} \sum_{i=1}^{d} \left(\partial_{i} k(\mathbf{x}_{a}, \cdot) \partial_{i} \log q_{0}(\mathbf{x}_{a}) + \partial_{i}^{2} k(\mathbf{x}_{a}, \cdot) \right),$$

$$(\mathbf{G} + n\lambda \mathbf{I}) \beta = \frac{1}{\lambda} \mathbf{h},$$

$$\mathbf{G}_{(a-1)d+i,(b-1)d+j} = \partial_{i} \partial_{j+d} k(\mathbf{x}_{a}, \mathbf{x}_{b}),$$

$$\mathbf{h} = \langle \xi, \partial_{i} k(\mathbf{x}_{a}, \cdot) \rangle_{ad}$$

Denoising score matching

Adding noise to input data is equivalent to convolution of the loss with noise distribution:

$$\mathbb{E}_{p_{\varepsilon}} \mathbb{E}_{p_{0}} \left[\Delta \log p_{\theta}(\mathbf{x} + \boldsymbol{\varepsilon}) + \frac{1}{2} \|\nabla \log p_{\theta}(\mathbf{x} + \boldsymbol{\varepsilon})\|^{2} \right]$$
$$= \mathbb{E}_{p_{0}} \left[\left(\left(\Delta \log p_{\theta}(\cdot) + \frac{1}{2} \|\nabla \log p_{\theta}(\cdot)\|^{2} \right) * p_{\varepsilon} \right) (\mathbf{x}) \right]$$

Solution derived only for Random Features

$$\hat{f}(\mathbf{x}) = \frac{1}{\lambda} \phi(\mathbf{x})^{\top} (\mathbf{H} + n\lambda \mathbf{I})^{-1} \mathbf{H} \mathbf{h} - \frac{1}{\lambda} \phi(\mathbf{x})^{\top} \mathbf{h},$$

where

$$m{H} = \int p_{arepsilon}(\mathbf{y}) \partial m{\Phi}_y^{ op} \partial m{\Phi}_y d\mathbf{y}, \quad m{h} = rac{1}{n} (\partial^2 m{\Phi}_z * p(\mathbf{z}))^{ op} \mathbf{1},$$

and

$$[\partial \mathbf{\Phi}_y]_{(a-1)d+i} = \partial_i \boldsymbol{\phi}^{\top} (\mathbf{W}(\mathbf{x}_a + \mathbf{y}))$$

Denoising Score Matching with Random Features

► Regularization:

$$\boldsymbol{h}_i \sim e^{-\sigma_{\varepsilon}^2 \|\mathbf{w}_i\|_2^2},$$

i.e. small weights for high-frequency components

- ightharpoonup Explicit dependence on noise parameters ightharpoonup easier to tune them
- ▶ We learn $p_0 * p_{\varepsilon} \rightarrow \mathsf{trade}\text{-off between}$
 - stability of convergence
 - ightharpoonup closeness to p_0

Experimental setup

- ▶ Adjust kernel parameters on training set using Denoising Score Matching
- Adjust noise variance on hold-out set using Score Matching
- Compare 3 models: proposed approach (DSM RFF), score matching with RFF (SM RFF), score matching with Nyström approximation (Nyström)
- Datasets
 - synthetic 2D data sets: Cosine, Uniform, Banana, Funnel, Rings
 - UCI: RedWine, WhiteWine, MiniBoone
- Metrics:
 - Log-likelihood
 - Wasserstein distance
 - Fisher divergence (for synthetic datasets)

Mixtures

Figure: Mixture of Gaussians

Figure: Mixture of Uniforms

Experiments

Figure: Comparison on synthetic and UCI data sets

Simultaneous Localization and Mapping (SLAM)

- Consider mobile robot moving in an environment.
- At each time step t_i we obtain measurements \mathbf{z}_i corresponding to some landmarks $m{l} = egin{bmatrix} m{l}_1 \\ \dots \\ m{l}_M \end{bmatrix}$

$$\mathbf{z}_i = \mathbf{h}(\mathbf{x}(t_i), \mathbf{l}) + \mathbf{n}_i, \quad \mathbf{n}_i \sim \mathcal{N}(0, \mathbf{R}_i).$$

- Control variables u_i (maybe missing or given at different timestamps)
- ▶ We want to estimate both the robot trajectory $\mathbf{x}(t_1), \dots, \mathbf{x}(t_T)$ and landmarks \boldsymbol{l} .
- ▶ Time-continuous SLAM: estimate trajectory as a function of time $\mathbf{x}(t)$.

Durrant-Whyte, H., Bailey, T. (2006)

GP based SLAM

Assumptions

$$oldsymbol{x}(t) \sim \mathcal{GP}(oldsymbol{\mu}_x, oldsymbol{k}(t, t')) \ oldsymbol{l} \sim \mathcal{N}(oldsymbol{\mu}_l, \mathbf{L})$$

Let us denote $oldsymbol{ heta} = egin{bmatrix} x(t) \\ l \end{bmatrix}$. We want to maximize the posterior

$$p(\boldsymbol{\theta}|\boldsymbol{z}) \propto p(\boldsymbol{z}|\boldsymbol{\theta})p(\boldsymbol{\theta}) = -\frac{1}{2} \left(\sum_{i=1}^{T} \|\boldsymbol{z}_i - \boldsymbol{h}(\boldsymbol{\theta}(t_i))\|_{\mathbf{R}_i}^2 + \|\boldsymbol{\theta} - \boldsymbol{\mu}\|_{\mathbf{P}}^2 \right) = -J$$

RFF SLAM

Random Features for locations

$$m{x}(t) = egin{bmatrix} x(t) \ y(t) \ lpha(t) \end{bmatrix} = m{\psi}(t)^{ op} m{b} + arepsilon, & m{b} \in \mathbb{R}^{D imes 3}, i = \overline{1, 3} \ m{b} \sim \mathcal{N}(m{\mu}_b, \mathbf{B}) \end{pmatrix}$$

where $\psi(t)$ – random features, ${\bf B}$ is block-diagonal covariance matrix.

Gauss-Newton method

$$(\delta \boldsymbol{b}^*, \delta \boldsymbol{l}) = \underset{\delta \boldsymbol{b}, \delta \boldsymbol{l}}{\operatorname{argmin}} \sum_{i=1}^{T} \|\boldsymbol{z}_i - \boldsymbol{h}(\boldsymbol{\psi}(t_i)\bar{\boldsymbol{b}}, \boldsymbol{l}) - \mathbf{H}_i \Psi_i \delta \boldsymbol{b}\|_{\mathbf{R}_i}^2 + \|\bar{\boldsymbol{b}} + \delta \boldsymbol{b} - \boldsymbol{\mu}_b\|_{\mathbf{B}}^2 + \|\bar{\boldsymbol{l}} + \delta \boldsymbol{l} - \boldsymbol{\mu}_l\|_{\mathbf{L}}^2,$$

where \bar{b} is current solution.

Related works

- A lot of works that use splines
- ► State-space model ⁷

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{v}(t) + \mathbf{F}(t)\mathbf{w}(t),$$

- $\mathbf{A}(t)$, $\mathbf{F}(t)$ are time-dependent system matrices,
- $\mathbf{w}(t) \sim \mathcal{GP}(0, \mathbf{Q}_C \delta(t-t'))$
- ▶ Solution is GP with block-tridiagonal inverse **K** matrix.
- Assumes Markovian-trajectories.
- ▶ RBF kernel can better in some cases (like noisy observations)

⁷Barfoot et al. (2014). Batch Continuous-Time Trajectory Estimation as Exactly Spars Gaussian Process Regression

Synthetic trajectories

Synthetic trajectories

		Pos.	Rot.	Landmarks
RangeBearing	RFF	0.033	0.0018	0.019
	Barfoot	0.096	0.0013	0.191
Range	RFF	0.309	0.0197	0.004
	Barfoot	0.208	0.0114	0.001
Bearing	RFF	0.036	0.0016	0.018
	Barfoot	0.096	0.0013	0.191

Table: Relative Pose Errors

Relative position errors don't take into account drift:

$$\text{RPE} = \sum_{i=1}^{T} \|\delta \hat{\mathbf{x}}_i \ominus \delta \mathbf{x}_i\|$$

Autonomous Lawn-Mower

Range only data set

Summary

Random Features

- proposed Quadrature-based Features
- accurate kernel approximation
- in downstream tasks benefit is smaller

Score Matching

- exact solution for Denoising Score Matching with RFF was proposed
- Natural regularization
- ► Faster than N yström-type approximation

SLAM

- \blacktriangleright Random Features give dense covariance \rightarrow better accuracy in case of noisy data
- Random Features can oscillate

