Étude du Pendule Simple : Analyse des Oscillations Harmoniques

Rapport du Laboratoire

Cătălin Bozan, Liviu Arsenescu 05.03.2024

1 Objectifs du laboratoire

- Démontrer expérimentalement le fait que la période ne dépend pas de la masse, lorsque la longueur est constante
- Vérifier la formule de la période d'un pendule
- Trouver l'accélération gravitationnelle de la terre

2 Éléments théoriques

2.1 Les différentes quantités rencontrées

- $oldsymbol{ heta}$ l'angle entre la verticale et le pendule
- ullet L la longueur du fil
- T la période du pendule
- m masse d'objet
- s la position de la masse
- g l'accélération gravitationnelle

2.2 La formule fondamentale du pendule

La position de la masse suspendue est calculée à l'aide de la formule suivante:

$$s = L\theta$$
,

La deuxième loi de Newton $(\sum_{i=1}^n F_i = ma)$ selon l'axe tangentiele s'écrit:

$$-mgsin(\theta) = m\frac{d^2s}{dt^2}$$

où $-mgsin(\theta)$ est l'équation obtenue pour la seule force agissant sur l'objet (P poids), et $\frac{d^2s}{dt^2}$ est l'accélération totale du système, obtenue en dérivant deux fois la position.

On sait que $\frac{d^2s}{dt^2} = L\frac{d^2}{dt^2}$ (L - constante). Alors:

$$-mgsin(\theta) = mL\frac{d^2\theta}{dt^2}$$
$$-\frac{g}{L}sin(\theta) = \frac{d^2\theta}{dt^2}$$
$$\frac{d^2\theta}{dt^2} + \frac{g}{L}sin(\theta) = 0$$

Pour notre expérience, nous n'utilisons que de petits angles, ce qui nous permet de faire l'approximation suivante: $sin(\theta) \approx \theta$. Le pendule simple devient alors un système oscillatoire harmonique, décrit par l'équation suivante:

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$$

En comparant cette équation avec l'équation du mouvement oscillatoire harmonique $(\frac{d^2x}{dt^2}+\omega^2x(t)=0)$, nous obtenons:

$$\omega = \sqrt{\frac{g}{L}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{L}{g}}$$

- 3 Manipulation
- 4 Mesures
- 5 Analyse des mesures et résultats
- 6 Synthèse et conclusion