Keywords: Quantum Entanglement, Tensor Norms, Separability, Nuclear Norm, Partial Transpose, PPT Criterion, Unextendible Product Basis

Abstract

(Part 2)

We present the Positive Partial Transpose (PPT) criterion as a powerful, computable test for entanglement. Furthermore, we explore its limitations by discussing PPT-entangled states, constructed using the notion of an Unextendible Product Basis (UPB), which necessitates even more general criteria for a complete characterization of entanglement.

1 Recap

We begin by recalling the basic definitions of states in finite-dimensional quantum mechanics.

1.1 Definition (Quantum State). A quantum state ρ is a positive semi-definite, self-adjoint operator on a complex Hilbert space \mathcal{H} with unit trace. For these notes, we consider a finite d-dimensional space, $\mathcal{H} = \mathbb{C}^d$

1.2 Definition (Pure State). A **pure state** is a state of rank one. It can be written as a projection operator $\rho = |\psi\rangle\langle\psi|$, where $|\psi\rangle \in \mathbb{C}^d$ is a unit vector, i.e., $\langle\psi|\psi\rangle = 1$.

1.3 Definition (Mixed State). A **mixed state** is a state that is not pure (i.e., has rank greater than one).

Any mixed state can be expressed as a convex combination of pure states: $ho = \sum_i \lambda_i |\psi_i
angle \langle \psi_i| \quad ext{with} \quad \lambda_i > 0, \sum_i \lambda_i = 1$

1.4 Definition (Separable Pure State). A separable pure state in a k-partite Hilbert space $\mathcal{H} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_k}$ is a unit vector $|\psi\rangle$ that can be written as a tensor product:

 $|\psi
angle = |\psi_1
angle \otimes |\psi_2
angle \otimes \cdots \otimes |\psi_k
angle, \quad |\psi_j
angle \in \mathbb{C}^{d_j}$

That is, $|\psi\rangle$ is separable if and only if it is a product vector across all k subsystems.

 $\mathcal{H} = \mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_k}$ is a convex combination of product states of density operators:

1.5 Definition (Separable Mixed State). A separable mixed state (density operator) ρ on

$$ho = \sum_i \lambda_i \left(
ho_i^{(1)} \otimes \cdots \otimes
ho_i^{(k)}
ight)$$
 i is a density operator on \mathbb{C}^{d_j} .

where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$, and each $\rho_i^{(j)}$ is a density operator on \mathbb{C}^{d_j} . Remark: By Carathéodory's theorem, the $\rho_i^{(j)}$ can always be chosen to be pure states, i.e., $\rho_i^{(j)} = |\psi_i^{(j)}\rangle\langle\psi_i^{(j)}|$ for some unit vector $|\psi_i^{(j)}\rangle\in\mathbb{C}^{d_j}$.

When dealing with a composite system, the total Hilbert space is a tensor product of the individual spaces, e.g.,

A state that is not separable is called **entangled**. Detecting entanglement is a central problem in quantum information theory.

 $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B = \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. This structure gives rise to the phenomenon of entanglement.

One of the most practical tools for detecting entanglement is the **nuclear norm criterion**, which is equivalent to the famous Positive Partial Transpose (PPT) criterion. We present the nuclear norm test first, then explain its

2.1 Theorem (Entanglement Test via Nuclear Norm). Let ρ be a bipartite density operator on

 $\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$. If the nuclear norm of its partial transpose is greater than one,

$$\|
ho^{\Gamma_B}\|_*>1$$

then the state ρ is entangled.

equivalence to the positivity condition.

Proof. Suppose ρ is a separable bipartite density operator:

2 The PPT Criterion for Entanglement

$$ho=\sum_k p_k
ho_k^A\otimes
ho_k^B$$
 where $p_k\geq 0,$ $\sum_k p_k=1,$ and $ho_k^A,$ ho_k^B are density operators.

The partial transpose with respect to \boldsymbol{B} is:

 $ho^{\Gamma_B} = \sum_{m{ ilde{L}}} p_k
ho_k^A \otimes (
ho_k^B)^T$

Each
$$(\rho_k^B)^T$$
 is also a density operator (since the transpose preserves positivity and trace), so ρ^{Γ_B} is a convex

combination of product density operators, and thus a density operator itself (i.e., positive semi-definite and $\operatorname{Tr}(
ho^{\Gamma_B})=1$). To compute the nuclear norm, recall that for any $S \in \mathcal{M}_d(\mathbb{C})$, the singular value decomposition (SVD) is

 $S = \sum_i \sigma_i |u_i\rangle\langle v_i|$, where $\sigma_i \geq 0$ are the singular values. For positive semi-definite operators, the SVD coincides with the spectral decomposition: $S = \sum_j \lambda_j |\psi_j\rangle \langle \psi_j|$ with $\lambda_j \geq 0$.

 $\|
ho^{\Gamma_B}\|_*=\mathrm{Tr}(
ho^{\Gamma_B})=1$

Thus, for any positive semi-definite A, $||A||_* = \sum_j \lambda_j = \operatorname{Tr}(A)$. Therefore, for separable ρ ,

• Partial transpose of a separable state is a convex combination of density operators \implies density operator

Summary of steps:

- (positive semi-definite, trace 1). • For positive semi-definite operators, nuclear norm equals trace.
- Thus, $\|\rho^{\Gamma_B}\|_* = 1$ for separable ρ .
- Contrapositive: If $\|\rho^{\Gamma_B}\|_* > 1$, then ρ cannot be separable, i.e., ρ is entangled.

Remark (Relation to PPT criterion):

• **Really used:** If ρ is separable, then ρ^{Γ_B} is also a density operator. • Can show: For any state, $(\rho^{\Gamma_B})^* = \rho^{\Gamma_B}$ and $\operatorname{Tr}(\rho^{\Gamma_B}) = 1$ (i.e., ρ^{Γ_B} is always Hermitian and trace 1).

• If ρ is separable, then ρ^{Γ_B} is also positive semi-definite.

Positive Partial Transpose (PPT) Test: If $\rho^{\Gamma_B} \ngeq 0$, then ρ is entangled.

3 Limits of the PPT Criterion: PPT-Entangled States

known as **PPT-entangled states** or **bound entangled states**. A common way to construct such states is by using an Unextendible Product Basis (UPB). 3.1 Definition (Unextendible Product Basis). An Unextendible Product Basis (UPB) is a set of

orthonormal product vectors $\{|x_i\rangle=|a_i\rangle\otimes|b_i\rangle\}$ that span a proper subspace $\mathcal{E}\subset\mathcal{H}_A\otimes\mathcal{H}_B$, with the

The PPT criterion is a powerful tool, but it is not a perfect one. It is a necessary condition for separability, but it is

not sufficient in general. There exist entangled states that nonetheless have a positive partial transpose. These are

property that there is no other product vector $|\psi\rangle=|a\rangle\otimes|b\rangle$ that is orthogonal to every vector in the set. In other words, the orthogonal complement \mathcal{E}^{\perp} contains no product vectors. Using a UPB, we can construct a class of PPT-entangled states.

3.2 Proposition (Werner-like states from UPBs). Let $\{|x_i\rangle\}_{i=1}^k$ be a UPB in a d-dimensional space

 $\mathcal{H}_A \otimes \mathcal{H}_B$. Let $P_{\mathcal{E}} = \sum_{i=1}^k |x_i\rangle \langle x_i|$ be the projector onto the subspace spanned by the UPB. The state

 $ho_{\mathcal{E}} = rac{1}{d-k}(\operatorname{Id} - P_{\mathcal{E}})$ is a PPT-entangled state (i.e., it is entangled but has a positive partial transpose).

Proof Sketch. • **PPT Property:** The partial transpose of $\rho_{\mathcal{E}}$ is $\rho_{\mathcal{E}}^{\Gamma_B} = \frac{1}{d-k}(\mathrm{Id} - P_{\mathcal{E}}^{\Gamma_B})$. The partial transpose of the projector

is $P_{\mathcal{E}}^{\Gamma_B} = \sum_i (|a_i\rangle\langle a_i|\otimes |b_i\rangle\langle b_i|)^{\Gamma_B} = \sum_i |a_i\rangle\langle a_i|\otimes |ar{b_i}\rangle\langle ar{b_i}|$. Since $\{|x_i\rangle\}$ are orthonormal, the set $\{|a_i\rangle\otimes|ar{b_i}\rangle\}$ is also an orthonormal set of product vectors. Thus, $P_{\mathcal{E}}^{\Gamma_B}$ is also a projector. This means $ho_{\mathcal{E}}^{\Gamma_B}$ is

defined by

- proportional to a projector $(\operatorname{Id} P_{\mathcal{E}}^{\Gamma_B})$ and is therefore positive semi-definite. So, the state is PPT. • Entanglement: The support of a density operator ρ , denoted supp (ρ) , is the orthogonal complement of If a state is separable, its support is spanned by product vectors. The support of $\rho_{\mathcal{E}}$ is the subspace \mathcal{E}^{\perp} . By the definition of a UPB, the subspace \mathcal{E}^{\perp} contains no product vectors. Therefore, $\rho_{\mathcal{E}}$ cannot be separable.
- **3.1** Example: The "Tiles" UPB in $\mathbb{C}^3 \otimes \mathbb{C}^3$

0>

• $|x_2
angle=rac{1}{\sqrt{2}}|2
angle\otimes(|1
angle-|2
angle)$ • $|x_3
angle=rac{1}{\sqrt{2}}(|0
angle-|1
angle)\otimes|2
angle$

- $|x_4\rangle = \frac{1}{\sqrt{2}}(|1\rangle |2\rangle) \otimes |0\rangle$
 - $|x_5
 angle=rac{1}{3}(|0
 angle+|1
 angle+|2
 angle)\otimes(|0
 angle+|1
 angle+|2
 angle)$
- Claim: The set $\{|x_i\rangle\}_{i=1}^5$ is unextendible. Suppose, for contradiction, that there exists a product vector $|\psi\rangle = |a\rangle \otimes |b\rangle$ such that $\langle x_i|\psi\rangle = 0$ for all $i=1,\ldots,5$.

Explicitly, for $|x_1\rangle = |0\rangle \otimes (|0\rangle - |1\rangle)$, we have: $\langle x_1|\psi
angle = \langle 0|a
angle \cdot (\langle 0|b
angle - \langle 1|b
angle) = 0$

and similarly for the other $|x_i\rangle$. Each equation implies an orthogonality condition for $|a\rangle$ or $|b\rangle$ There are 5 equations. Hence by pigeonhole principle, this forces $|a\rangle$ or $|b\rangle$ to be orthogonal to at least 3 independent vectors in \mathbb{C}^3 , which is only possible if $|a\rangle = 0$ or $|b\rangle = 0$. Thus, there is no nonzero product vector orthogonal to all $|x_i\rangle$.

For each *i*, this gives a linear equation in the components of $|a\rangle$ and $|b\rangle$.

Therefore, the set is unextendible.

The existence of PPT-entangled states shows that the PPT criterion is not a complete solution to the entanglement

4 Toward a General Criterion for Entanglement

4.1 The Geometry of Separable States

 $K=\{x:p_K(x)\leq 1\}.$

tensor norm is defined as

detection problem. The ultimate goal is to find a condition that is both necessary and sufficient for separability. This leads us to a more geometric and functional-analytic perspective.

The set of all quantum states \mathcal{D} is a convex set. The subset of separable states, which we denote by S, is also a convex set. Specifically, S is the convex hull of all pure product states.

that we can test for entanglement by determining if a state lies inside or outside the convex set S. Functional analysis provides a tool for this: the Minkowski functional (or gauge function) of a convex set.

4.1 Definition (Minkowski Functional). For a convex set **K** containing the origin, its Minkowski functional $p_K(x)$ is defined as:

 $p_K(x) = \inf\{\lambda > 0 : x \in \lambda K\}$

 $S = \operatorname{conv}\{|\psi\rangle\langle\psi|: |\psi\rangle = |\psi_A\rangle\otimes|\psi_B\rangle\otimes\ldots\}$

A state ρ is separable if and only if $\rho \in S$. All other states in $\mathcal{D} \setminus S$ are entangled. This geometric picture suggests

Under suitable conditions (e.g., **K** is closed and bounded), the set **K** can be recovered from its functional as

Applying this to our problem, if we can define a functional $p_S(\rho)$ for the set of separable states S, then a state ρ would be separable if and only if $p_S(\rho) \leq 1$. This would provide the desired "if and only if" criterion.

 $\rho \in \mathcal{H}$, $p_K(
ho) = \inf \left\{ \sum_j \prod_{l=1}^k \|y_j^{(l)}\| :
ho = \sum_j y_j^{(1)} \otimes \cdots \otimes y_j^{(k)}
ight\}.$

4.2 Theorem (Evaluation of Minkowski Functional for Pure Tensors). Let

4.3 Definition (Projective Tensor Norm). Let $\mathcal{H} = \mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_k}$. For $\rho \in \mathcal{H}$, the projective

 $K = \operatorname{conv}\{x^{(1)} \otimes \cdots \otimes x^{(k)} : \|x^{(l)}\| = 1\}$ be the convex hull of unit-norm pure tensors in \mathcal{H} . Then, for any

 $\|
ho\|_\pi = \inf \left\{ \sum_i \prod_{l=1}^k \|y_j^{(l)}\| :
ho = \sum_j y_j^{(1)} \otimes \cdots \otimes y_j^{(k)}
ight\}$ where the infimum is over all possible decompositions of ρ as a sum of pure tensors $y_j^{(1)} \otimes \cdots \otimes y_j^{(k)}$.

While this provides a complete theoretical answer, computing the projective norm is an NP-hard problem in

general, making it impractical for direct application. The search for computable and powerful entanglement criteria remains an active area of research.