

WORKDOOK 2025

Detailed Explanations of Try Yourself Questions

ELECTRICAL ENGINEERING

Power Electronics & Drives

1

Power Semiconductor Devices

Detailed Explanation of

Try Yourself Questions

T1: Solution

(c)

Devices mentioned in figure 2 and 4 allow current flow in both direction.

T2: Solution

(d)

$$\left(\frac{di}{dt}\right)_{\text{max}} = \left(\frac{V_{s_{\text{max}}}}{L}\right)$$
$$= \frac{\sqrt{2} \times 230}{15 \times 10^{-6}} = 21.685 \text{ A/}\mu\text{s}$$

$$\left(\frac{dv}{dt}\right)_{\text{max}} = R_s \left(\frac{di}{dt}\right)_{\text{max}} = 10 \times 21.685$$

= 216.85 V/\(\text{\max}\) sec

T3: Solution

(d)

KVL in the loop is,
$$-V + L\frac{di}{dt} = 0$$

$$V = L\frac{di}{dt}$$

$$dt = \frac{L}{V}di$$

Integrating on both sides, $\int dt = \int \frac{L}{V} di$

...(i)

$$t_{\text{min}} = \frac{0.1}{100} \times 4 \times 10^{-3} = 4 \,\mu\text{s}$$

.. The minimum width of the gating pulse required to properly turn on the SCR is 4 µs.

T4: Solution

(a)

During interval t_2 , voltage starts decreasing and becomes zero and current starts increasing and becomes constant (I), so transition is turn on.

$$\int dt = \int \frac{L}{V} di$$

During t_1 interval,

power loss = vi

$$E_1$$
 = Energy loss = $\int vidt = V \int idt$

V is constant during this period, v = V

fidt represents area under i-t curve

$$\int i dt = \frac{1}{2} \times I \times t_1$$

$$E_1 = V \int i dt = \frac{1}{2} V I t_1$$

During t_2 interval, Power loss = vi

$$E_2$$
 = Energy loss = $\int Vidt = I \int Vdt$

i is constant during this period i = I

\int vdt represents are under v-t curve

$$\int V dt = \frac{1}{2} V I t_2$$

$$E_2 = I \int V dt = \frac{1}{2} V I t_2 \qquad ...(ii)$$

Total energy lost during the transition

$$E = E_1 + E_2 = \frac{1}{2}VIt_1 + \frac{1}{2}VIt_2$$

T5: Solution

(b)

When reverse current flows through diode D.

So, $I_S < 0$ and $V_{DS} = 0$

When MOSFET is in ON state,

$$I_{S} > 0$$
 and $V_{DS} = 0$

When MOSFET is in OFF state,

$$I_s = 0$$
 and $V_{DS} > 0$

T6: Solution

(c)

When the pulses are applied to the base of the transistor. Transistor operates in ON state. So, the forward voltage drop in transistor $V_{\text{CE}} = 1 \text{ V}$.

$$V_1 = 10 - V_{CE} = 10 - 1 = 9 \text{ V}$$

$$V_2 = V_1 \left(\frac{1}{1}\right) = V_1 = 9 \text{ V}$$
 [turn ratio 1 : 1]

 D_1 is forward biased and voltage drop in diode V_{D1} = 1 V.

 D_2 is reversed biased and acts as open circuit.

Capacitor behaves as open circuit for DC voltage. Forward voltage drop of gate cathode junction

$$V_{ak} = 1 \text{ V}$$

Voltage drop across resistor R,

$$V_R = V_2 - V_{D1} - V_{gk} = 9 - 1 - 1 = 7 \text{ V}$$

To ensure turn –ON of SCR,

$$R = \frac{V_R}{I_{g(\text{max})}} = \frac{7}{150 \,\text{mA}} \approx 47 \,\Omega$$

T7: Solution

(a)

Forward voltage drop of SCR during ON-state

$$V_T = 1 \text{ V}$$

$$E - \frac{Ldi_a}{dt} - Ri_a - V_T = 0$$

$$\Rightarrow 200 - 0.15 \frac{di_a}{dt} - i_a - 1 = 0$$

$$\Rightarrow$$

$$i_a = 199(1 - e^{-t/0.15})$$

 $\Rightarrow i_a = 199(1 - e^{-t/0.15})$ Gate pulse width required = time taken by i_a to rise upto $I_L = T$

$$\Rightarrow$$

$$I_L = i_a \\ 250 \times 10^{-3} = 199 (1 - e^{-7/0.15})$$

$$T = 188.56 \,\mu s$$

Width of the pulse,

 $T = 188.56 \,\mu s$

Magnitude of voltage,

V = 10 V

Voltage second rating of PT

$$VT = T = 10 \times 188.56 \,\mu\text{s} = 1885.6 \,\text{V-s} \approx 2000 \,\mu\text{s}$$

T8: Solution

(d)

 $V_s = 230 \cos \omega t$ $\omega = 314 \, \text{rad/sec}$

Diode will turn on at $\omega t = \frac{-\pi}{2}$

Applying KVL

$$V_{s} = V_{o}$$

$$V_{m} \cos \omega t = L \frac{di}{dt}$$

$$\int di = \int \frac{V_{m} \cos \omega t}{L} dt$$

$$i_o = \frac{V_m}{\omega L} \sin \omega t + K$$

At
$$\omega t = -\frac{\pi}{2}$$
,

$$i_0 = 0$$

$$0 = \frac{V_m}{\omega L} \sin\left(-\frac{\pi}{2}\right) + K$$

$$K = \frac{V_m}{\omega L}$$

$$i_{o} = \frac{V_{m}}{\omega L} \sin \omega t + \frac{V_{m}}{\omega L}$$

At
$$\omega t = \frac{\pi}{2}$$

$$i_{\text{peak}} = \frac{V_m}{\omega L} \sin \frac{\pi}{2} + \frac{V_m}{\omega L}$$
$$= \frac{2V_m}{\omega L} = \frac{2 \times 230}{314 \times 80 \times 10^{-3}}$$
$$= 18.31 \text{ A}$$

T9: Solution

$$(I_T)_{RMS \text{ rating}} = 35 \text{ A}$$

$$\begin{split} i_{T} &= i_{o} \\ \text{Form factor} &= \frac{(I_{T})_{\text{RMS}}}{(I_{T})_{\text{Avg}}} \\ &= \frac{I_{or}}{I_{o}} \\ &= \frac{V_{or}/R}{V_{o}/R} \\ &= \frac{V_{or}}{V_{o}} \end{split}$$

Form factor =
$$\frac{\frac{V_m}{\sqrt{2 \times 2\pi}} \left\{ (\pi - \alpha) + \frac{1}{2} \sin 2\alpha \right\}^{\frac{1}{2}}}{\frac{V_m}{2\pi} [1 + \cos \alpha]} = 3.98$$

Put
$$\alpha = \frac{\pi}{6}$$

Note : At α = 0, conduction angle of SCR is maximum.

$$(I_T)_{\text{Avg rating}} = \frac{(I_T)_{\text{RMS Rating}}}{\text{Form Factor}}$$

$$= \frac{35}{FF}$$

$$= \frac{35}{3.98} = 8.79$$

T10: Solution

Energy =
$$\int_{0}^{T_{1}} V \cdot i dt + \int_{0}^{T_{2}} V \cdot i dt$$
$$= V \left[\frac{1}{2} I T_{1} \right] + I \left[\frac{1}{2} V T_{2} \right]$$

$$= 600 \left[\frac{150}{2} \times 1 \times 10^{-6} \right] + 100 \left[\frac{1}{2} \times 600 \times 1 \times 10^{-6} \right]$$

Energy = 75 mJ

T11: Solution

(c)

Derating factor = 1 - String efficiency
$$0.2 = 1 - \frac{6000}{n_s \times 1000} = 1 - \frac{1000}{n_p \times 200}$$

$$n_s = 7.5 \approx 8$$

$$n_p = 6.25 \approx 7$$

T12: Solution

(b)

$$P_{\text{avg}} = I_{\text{rms}}^2 \cdot R_{ON}$$

 $R_{ON} = 0.15 \,\Omega \text{ and } I_{\text{rms}} = \sqrt{\frac{1}{2\pi}} \int_{0}^{\pi} 10t \, dt = \frac{10}{\sqrt{6}}$
 $P_{\text{avg}} = \frac{100}{6} \times 0.15 = 2.50 \,\text{W}$

- Publications

2

Controlled and Uncontrolled Rectifiers

Detailed Explanation of

Try Yourself Questions

T1: Solution

(b)

Average output voltage

$$V_0 = \frac{2V_m}{\pi} \cos \alpha = \frac{2\sqrt{2} \times 230}{\pi} \cos 45^\circ = 146.42 \text{ V}$$

$$I_0 = \frac{V_0}{R} = \frac{146.42}{10} = 14.642 \text{ A}$$

Reactive power input to the converter is

$$Q_i = \frac{2V_m}{\pi} I_0 \sin \alpha$$

$$= \frac{2\sqrt{2} \times 230}{\pi} \times 14.642 \times \sin 45^{\circ}$$

$$Q_i = 2143.92 \text{ VAr}$$

T2: Solution

$$V_0 = L \frac{di}{dt} = V_s$$

$$\int di = \int \frac{V_s}{L} dt = \int \frac{100 \sin \omega t}{L} dt$$

$$i_0 = -\frac{100}{\omega L} \cos \omega t + K$$

$$\omega t = 100\pi \times 2.5 \times 10^{-3} = \frac{\pi}{4}$$

$$i_0(t = 2.5 \text{ ms}) = 0$$

$$\frac{-100\cos 45^{\circ}}{100\pi \times 31.83 \times 10^{-3}} + K = 0$$

$$K = 7.07$$

$$i_0 = -10\cos \omega t + 7.07$$

$$i_{0, \text{ peak}} = -10\cos \pi + 7.07$$

$$= 17.07 \text{ A}$$

T3: Solution

The half-wave diode rectifier uses a step-up transformer, therefore, ac voltage applied to rectifier = $230 \times 460 \text{ V} = V_s$

Average value of load voltage

$$V_0 = \frac{V_m}{\pi} = \frac{\sqrt{2} \times 460}{\pi} = 207.04 \text{ V}$$

Output dc power,

$$P_{cc} = \frac{V_o^2}{R} = \frac{207.04^2}{60} = 714.43 \text{ W}$$

It is seen from the table that TUF for 1-phase half-wave diode rectifier is 0.2865.

$$\therefore$$
 VA rating of transformer = $\frac{P_{dc}}{TUF} = \frac{714.43}{0.2865} = 2493.65 \text{ VA}$

So, choose a transformer with 2.5 kVA (next round figure) rating.

T4: Solution

(1.05)

Input to the converter,

$$V_s = \left(\frac{1}{4}\right) 230 = 57.5 \text{ V}$$

Diode conducts when $V_s \ge E$

$$V_m \sin \theta_1 = E$$

$$57.5\sqrt{2}\sin\theta_1 = 12$$

$$\theta_1 = 8.486^{\circ} \text{ or } 0.148 \, \text{rad}$$

Charging current flows during $\theta_1 \le \omega t \le \pi - \theta_1$ and can be expressed as,

$$I_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} i_{0} d\omega t = \frac{1}{2\pi} \int_{\theta_{1}}^{\pi-\theta_{1}} \left(\frac{V_{m} \sin \omega t - E}{R} \right) d\omega t$$

$$I_{0} = \frac{1}{2\pi R} \left[2V_{m} \cos \theta_{1} - E(\pi - 2\theta_{1}) \right]$$

$$= \frac{1}{2\pi \times 19.04} \left[2 \times 57.5 \sqrt{2} \times \cos 8.486^{\circ} - 12 \times (\pi - 2 \times 0.148) \right]$$

$$= 1.05 \text{ A}$$

T5: Solution

(d)

 $\alpha = 60^{\circ}$, $V_{YB} = V_{ML} \sin \omega t$ (Ref)

Lower limit,

 $L = 60 + \alpha = 120^{\circ} = \frac{2\pi}{3}$ rad

Upper limit,

 $U = 120 + \alpha = 180^{\circ} = \pi \text{ rad}$

$$x_1 \to V_{RY}$$

$$x_2 \to V_{YB}$$

$$x_3 \to V_{BR}$$

T6: Solution

(b)

$$V_s = 280\sqrt{2}\sin\omega t$$

 $P.I.V. = 2 \times 280\sqrt{2}$

The rms voltage across diode

$$= 280\sqrt{2} = 395.3 \text{ V}$$

T7: Solution

(c)

Frequency of the voltage source, f = 50 Hz

Time period, $T = \frac{1}{f} = \frac{1}{50} = 20 \text{ ms}$.

During positive half cycle of the source voltage, $0 < t < \frac{T}{2}$, energy is stored in the inductor and current increases.

During negative half cycle of the source voltage, $\frac{T}{2} \le t \le T$, current decreases and energy stored in the inductor is delivered to source.

T8: Solution

(b)

$$V_s = 100\sqrt{2}\sin(100\pi t)$$

$$i = 10\sqrt{2}\sin\left(100\pi t - \frac{\pi}{3}\right) + 5\sqrt{2}\sin\left(300\pi t + \frac{\pi}{4}\right) + 2\sqrt{2}\sin\left(500\pi t - \frac{\pi}{6}\right) A$$

Active power =
$$V_{sr}I_{s1}\cos\phi_1$$

= $100 \times 10 \times \cos 60^\circ$
= 500 W

T9: Solution

(b)

Rms value of input voltage,

$$V_{\rm rms} = \frac{100\sqrt{2}}{\sqrt{2}} = 100 \,\rm V$$

Rms value of current,

$$I_{\text{rms}} = \sqrt{\left(\frac{10\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{5\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{2\sqrt{2}}{\sqrt{2}}\right)^2} = 11.358 \text{ A}$$

Let input power factor cos \$\phi\$

 $V_{\rm rms}\,I_{\rm rms}\cos\phi$ = active power drawn by the converter

$$\Rightarrow 100 \times 11.358 \times \cos \phi = 500 \text{ W}$$

$$\Rightarrow \cos \phi = 0.44$$

T10: Solution

(c)

$$i_s \propto \frac{I_a}{n} \cdot \cos \frac{n\pi}{6}$$
 where $n \in 1, 3, 5$

$$i_s = 0$$

For n = 5, $i_s \propto -\frac{I_a}{5}$

Lowest harmonic present is fifth harmonic. Its frequency = $50 \times 5 = 250$ Hz.

T11: Solution

For n = 3,

$$I_{0, \text{ rms}} = \frac{V_s}{R} \implies R = \frac{230}{10} = 23 \Omega$$

T12: Solution

(c)

 $T_{\rm 1}$ and $T_{\rm 4}$ gets forward biased, when

$$V_m \sin \theta_1 \leq E$$

$$I_{\text{avg}} = (\text{Average current})$$
$$= \frac{1}{2\pi R} \int_{\theta_1}^{\pi - \theta_1} (V_m \sin \omega t - E) d\theta$$

$$I_0 \text{ (avg)} = \frac{1}{2\pi R} \left[2V_m \cos\theta - E(\pi - 2\theta_1) \right]$$
$$= \frac{1}{2\pi \times 2} \left[2 \times (230 \times \sqrt{2}) \cos\theta_1 - 200(\pi - 2\theta_1) \right]$$

where,

$$\theta_1 = \sin^{-1}\left(\frac{E}{V_m}\right)$$

$$= \sin^{-1}\left(\frac{200}{230 \times \sqrt{2}}\right) = 38^\circ = 0.66 \text{ rad}$$

$$I_0 \text{ (avg)} = \frac{1}{2\pi \times 2} \left[2\sqrt{2} \times 230 \cos 38^\circ - 200(\pi - 2 \times 0.66) \right] = 11.9 \text{ A}$$

T13: Solution

Output waveforms of highly inductive load (without F.W. diode).

Fourier series of supply current is given as

$$i_{s}(t) = \sum_{n=1,3,5}^{\infty} \frac{4I_{o}}{n\pi} \sin n\omega_{o}t$$

Frequency components present in supply current is

1st, 3rd, 5th, 7th: all odd frequencies.

Two most dominant harmonics are 3rd and 5th, i.e., 150 Hz and 250 Hz.

Two most dominant frequencies are 1st and 3rd, i.e., 50 Hz and 150 Hz.

Except fundamental, all other frequencies are harmonics in supply current.

T14: Solution

1-φ, SCR bridge rectifier

$$\alpha = 45^{\circ}, R = 10 \Omega$$

supply 230 V, 50 Hz

$$L_s = 2.28 \text{ mH}, \quad \mu = ?$$

$$\Delta V_d = \frac{V_m}{\pi} [\cos \alpha - \cos(\alpha + \mu)] = 4f L_s I_0$$

$$V_0 = \frac{2V_m}{\pi} \cos \alpha - 4f L_s I_0 \text{ (with } L_s)$$

$$I_0 R = \frac{2V_m}{\pi} \cos \alpha - 4f L_s I_0$$

Find I_0

$$I_0 \times 10 = \frac{2 \times 230\sqrt{2}}{\pi} \cdot \cos 45 - 4 \times 50 \times 2.28 \times 10^{-3} I_0$$

$$I_0(10 + 0.456) = 146.42$$

$$I_0 = \frac{146.49}{10.456} = 14.0036 \text{ A}$$

$$\Delta V_{c0} = \frac{230\sqrt{2}}{\pi} \left[\cos 45 - \cos(45 + \mu)\right]$$

$$= 4 \times 50 \times 2.28 \times 10^{-3} \times 14 = 6.384$$

$$\cos 45^\circ - \cos(45^\circ + \mu) = 0.061659$$

$$45 + \mu = 49.80 \implies \mu = 4.80^\circ$$

T15: Solution

$$V_o = 2 \frac{V_m}{\pi} \cos \alpha = 2 \frac{200\pi}{\pi} \cos 120^\circ$$
$$V_o = -200 \text{ V}$$
$$|V_o| = 200 \text{ V}$$

Power balance equation,

$$EI_o = I_o^2 R + V_o I_o$$

 $800 I_o = I_o^2 (20) + 200 I_o \implies I_o = 30 \text{ A}$
 $I_o = I_{or}$

Power fed to source

$$= V_0 I_0 = 200 \times 30 = 6 \text{ kW}$$

T16: Solution

Conduction angle of each diode = π + μ rad

Output Waveform

$$\begin{split} V_{o(\text{avg})} &= \frac{2V_m}{\pi} & (\because \text{ without } L_s) \\ V_{o(\text{avg})} &= \frac{1}{\pi} \int_{\mu}^{\pi} V_m \sin \omega t \cdot d\omega t & (\because \text{ with } L_s) \\ &= \frac{V_m}{\pi} [1 + \cos \mu] \\ \Delta V_{do} &= V_{o(\text{avg})} - V_{o(\text{avg})}' = \frac{V_m}{\pi} [1 - \cos \mu] \end{split}$$

and

 $\Delta V_{do} = 4 extit{fL}_s I_o$ [average reduction in voltage due to source inductance]

On equating,

$$\frac{V_m}{\pi} [1 - \cos \mu] = 4f L_s I_o$$

$$\frac{220\sqrt{2}}{\pi} (1 - \cos \mu) = 4 \times 50 \times 10 \times 10^{-3} \times 14$$

On solving,

$$\mu = 44.17$$

So, conduction angle of each diode

$$\gamma_D = 180^{\circ} + \mu = 180^{\circ} + 44.17^{\circ} = 224.17^{\circ}$$

T17: Solution

$$V_0 = \frac{V_m}{2\pi} (3 + \cos \alpha)$$

$$E_b I_0 = 1600 \text{ W}$$

$$I_0 = \frac{1600}{80} = 20 \text{ A}$$

$$V_0 = E_b + I_0 R_a$$

$$\frac{V_m}{2\pi} (3 + \cos \alpha) = 80 + (20 \times 2)$$

$$\frac{80\pi}{2\pi}(3+\cos\alpha) = 80+40$$

$$\alpha = 90^{\circ}$$

T18: Solution

(0.78)

$$V_{sr}I_{sr}\cos\phi = V_0I_0$$

 $V_{sr}I_{sr}\cos\phi = V_0I_0$ For single-phase fully controlled converter,

$$I_0 = I_{sr} = 10 \text{ A}$$

 $\cos\phi = \frac{V_0}{V_{sr}} = \frac{180}{230} = 0.78$

T19: Solution

(a, c, d)

$$V_{o} = \frac{1}{2\pi} \left[\int_{\alpha}^{\pi} V_{m} \sin \omega t \cdot d\omega t + \int_{\pi}^{2\pi} -V_{m} \sin \omega t d\omega t \right]$$

$$V_o = \frac{V_m}{2\pi} [3 + \cos \alpha]$$

= $\frac{200}{2\pi} [3 + \cos 60^\circ] = 111.4 \text{ V}$

$$I_o = \frac{V_o}{R} = \frac{111.4}{100} = 1.114 \text{ A}$$

$$I_{T1,\text{avg}} = \frac{1}{2\pi} \int_{\alpha}^{\pi} \frac{V_m \sin \omega t}{R} d\omega t$$

$$I_{T1} = \frac{V_m}{2\pi R} [1 + \cos \alpha] = \frac{200}{2\pi \times 100} [1 + \cos 60^{\circ}]$$

= 0.4774 A

Power drawn by load $P_o = V_{o,rms}I_{o,rms} = \frac{V_{o,rms}^2}{R}$

3

Choppers

Detailed Explanation of

Try Yourself Questions

T1: Solution

Circuit turnoff time,

$$t_c = \frac{CV_s}{I_0} = \frac{8 \times 10^{-6} \times 250}{20} = 1 \times 10^{-4} \text{ s}$$

Maximum value of duty cycle,

$$\alpha_{\text{max}} = (1 - 2ft_c)$$
= $(1 - 2 \times 250 \times 1 \times 10^{-4})$
 $\alpha_{\text{max}} = 0.95$

maximum load or output voltage,

$$V_{0, \text{max}} = V_s[\alpha_{\text{max}} + 2ft_c]$$

$$= 250[0.95 + (2 \times 250 \times 1 \times 10^{-4})]$$

$$V_{0, \text{max}} = 250 \text{ V}$$

T2: Solution

(24)

$$\alpha = 0.75, f = 25 \text{ kHz}$$

Assume continous conduction:

$$V_{0} = \frac{\alpha V_{s}}{1 - \alpha} = \frac{0.75 \times 20}{1 - 0.75}$$

$$V_{0} = 60 \text{ V}$$

$$I_{0} = \frac{V_{0}}{R} = \frac{60}{10} = 6 \text{ A}$$

$$I_{L} = \frac{I_{0}}{1 - \alpha} = \frac{6}{1 - 0.75} = 24 \text{ A}$$

$$\Delta I_{L} = \frac{\alpha V_{s}}{f_{L}}$$

$$= \frac{0.75 \times 60}{25 \times 10^{3} \times (1 \times 10^{-3})} = 1.8 \text{ A}$$

$$I_{L \min} = I_{L} - \frac{\Delta I_{L}}{2} = 24 - \frac{1.8}{2} = 24 - 0.9$$

 $(I_{L \, \mathrm{min}} = 23.1 \, \mathrm{A}) > 0$.: Continous conduction assumption is correct.

$$I_{I} = 24 \text{ A}$$

T3: Solution

(c)

 $S \rightarrow \mathsf{ON}$:

KVL:

$$-V_S + V_L + V_o = 0$$

$$V_L = V_S - V_o$$

$$L \frac{di_L}{dt} = V_S - V_o$$

$$\frac{di_L}{dt} = \frac{V_S - V_o}{L}$$

 $V_L + V_o = 0$ $V_L = -V_o$

$$L\frac{di_L}{dt} = -V_o$$

$$\frac{di_L}{dt} = \frac{-V_O}{L}$$

 $R \uparrow, I_o \downarrow$ $\therefore I_L \downarrow$ \therefore Area \downarrow $\therefore \beta \downarrow$ $\therefore V_o \uparrow$ $\uparrow V_o = \frac{\alpha V_S}{\beta \downarrow}$

T4: Solution

$$f = 1000 \, \text{kHz}$$

$$T = 10 \,\mu\text{sec}$$

$$\alpha = 0.5$$

$$T_{\rm ON} = \alpha$$
. $T = \alpha \times 10~\mu {\rm sec} = 0.5 \times 10~\mu {\rm sec} = 5~\mu {\rm sec}$

$$V_s = R_{DS}i_{s\omega} + L\frac{di_L}{dt}$$
 (Neglect $R_{DS}i_{s\omega}$)

$$V_s = L \frac{di_L}{dt}$$

$$\frac{di_L}{dt} = \frac{V_s}{L} = \frac{100}{L}$$

$$V_o = \frac{\alpha V_s}{1-\alpha}$$
 (at $\alpha = 0.5$)

$$V_o = V_s = 100 \text{ V}$$
$$0 \ge t \le T_{ON}$$

$$0 \ge t \le T_{ON}$$

At the boundary,

$$i_{s\omega} = \frac{100}{L}t$$

$$I_{\text{sw, rms}} = \left\{ \frac{1}{T} \int_{0}^{\tau_{\text{ON}}} i_{\text{sw}}^2 dt \right\}^{\frac{1}{2}}$$
$$= \frac{1}{T} \int_{0}^{\tau_{\text{ON}}} \left(\frac{100}{L} t \right)^2 dt$$

$$T = \frac{1}{f} = 10 \,\mu\text{sec}$$

$$T_{ON} = \alpha T = 5 \mu sec$$

 $L = 100 \mu H$

$$L = 100 \,\mu\text{H}$$

$$I^2_{\text{sw,rms}} = \frac{1}{T} \int_0^{T_{\text{ON}}} \left(\frac{100}{L} t \right)^2 dt = 4.1667 A^2$$

Condition power loss in MOSFET

$$=I_{S\omega,rms}^2.R_{DS}=4.1667\times 1=4.1667 \text{ W}$$

T5: Solution

(c)

At $t = 0^-$, $v_c = V_s$, $i_c = 0$ and $i_{T1} = I_0$.

At t = 0, Th_{aux} is triggered, a resonant current i_c designs to flow from C through Th_{aux}, L and back to C. This resonant current is given by

$$i_c = -V_s \sqrt{\frac{C}{L}} \sin \omega_0 t$$
$$= -I_P \sin \omega_0 t$$

After half a cycle of $i_c \left\{ t_1 = \frac{\pi}{\omega_0} \right\}$;

 $i_{_{C}}$ = 0, $v_{_{C}}$ = $-V_{_{S}}$ and $i_{_{71}}$ = $I_{0}.$ As $i_{_{C}}$ tends to reverse, $\mathrm{Th}_{\mathrm{aux}}$ is turned off.

When $v_c = -V_{s'}$ right hand plate has positive polarity, resonant current i_c now builds up through C, L, D and Th_m . As this current i_c grows opposite to forward thyristor current of Th_m , net forward current $i_m = I_0 - i_c$ begins to decrease. Finally when i_c in the reversed direction attains the value I_0 , i_m is reduced to zero and Th_m is turned off.

$$i_{m} = I_{0} - i_{c}$$

$$= I_{0} - I_{p} \sin \omega_{0} \Delta t = 0$$

$$\Delta t = \frac{1}{\omega_{0}} \sin^{-1} \left(\frac{I_{o}}{I_{p}}\right)$$

So, Th_m is turned off between

$$\begin{aligned} t_1 &< t < t_1 + \Delta t \\ t_1 &= \frac{\pi}{\omega_0} = \pi \sqrt{LC} \\ &= \pi \times \sqrt{10 \times 25.28} \\ &= 50 \ \mu \sec \end{aligned}$$

Option (c) is correct.

Since, commutation of Th_m starts from $t_1 = 50 \,\mu\text{sec.}$

T6: Solution

(1.60)

Checking for continuous conduction mode

$$\Delta I_L = \frac{\alpha V_S}{fL} = \frac{0.6 \times 15}{25 \times 10^3 \times 1 \times 10^{-3}} = 0.36A$$

$$\frac{\Delta I_L}{2} = 0.18A$$

$$I_{L,min} = I_L - \frac{\Delta I_L}{2} = I_S - \frac{\Delta I_L}{2}$$

= (9.375 - 0.18) = 9.195 > 0

As it is continuous conduction

$$V_0 = \frac{V_S}{1-\alpha} = \frac{15}{1-0.6} = 37.5V$$

$$I_0 = \frac{V_0}{R} = \frac{37.5}{10} = 3.75V$$

$$\frac{V_0}{V_S} = \frac{I_S}{I_o} = \frac{1}{1-\alpha}$$

$$I_S = \frac{I_o}{1-\alpha} = \frac{3.75}{1-0.6} = 9.375A$$

$$R_{\text{in}} = \frac{V_S}{I_S} = \frac{15}{9.375} = 1.6\Omega$$

T7: Solution

(b)

Stepdown chopper:

$$\tau = \frac{L}{R} = \frac{40.10^{-3}}{5} = 8.10^{-3}$$
$$V_0 = \alpha V_s$$

 $S \rightarrow ON$:

$$V_S = Ri_s + L \frac{di_s}{dt}$$

$$i_{s} = \frac{V_{S}}{R} \left(1 - e^{-t/8.10^{-3}} \right) + 10 \cdot e^{-t/8.10^{-3}}$$

$$= \frac{100}{5} \left(1 - e^{-t/8.10^{-3}} \right) + 10 \cdot e^{-t/8.10^{-3}}$$

$$= 20 \left(1 - e^{-t/8.10^{-3}} \right) + 10 \cdot e^{-t/8.10^{-3}}$$

$$= 20 \left(1 - e^{-t/8.10^{-3}} \right) + 10 \cdot e^{-t/8.10^{-3}}$$

$$i_{s} = 20 - 10 e^{-t/8.10^{-3}}$$

$$At \ t = T_{\text{ON}}, \qquad i_{s} = 12 \text{ A}$$

$$\therefore \qquad 12 \text{ A} = 20 - 10 e^{-t/8.10^{-3}}$$

$$10e^{-T_{\text{ON}}/8.10^{-3}} = 8$$

$$e^{-T_{\text{ON}}/8.10^{-3}} = 0.8$$

$$\frac{-T_{\text{ON}}}{8.10^{-3}} = -0.223$$

$$T_{\text{ON}} = 1.785 \times 10^{-3} = 1.785 \text{ ms}$$

$$\text{FD} \rightarrow \text{ON}:$$

$$i_{FD} = 12 \cdot e^{-t'/\tau}$$

$$= 12 \cdot e^{-t'/8.10^{-3}}$$

$$i_{FD} = 10 \text{ A}$$

$$10 = 12 \cdot e^{-T_{\text{OFF}}/8.10^{-3}}$$

$$e^{-T_{\text{OFF}}/8.10^{-3}} = \frac{10}{12}$$

$$\frac{-T_{\text{OFF}}}{8.10^{-3}} = -0.182$$

$$T_{\text{OFF}} = 1.458 \text{ ms}$$

$$Time \ ratio = \frac{T_{\text{ON}}}{T_{\text{OFF}}} = \frac{1.785}{1.458} = 1.22$$

Alternate Solution:

$$I_{o(\text{avg})} = \frac{I_{o(\text{max})} + I_{o(\text{min})}}{2}$$

$$I_{o(\text{avg})} = \frac{12 + 10}{2} = 11 \text{ A}$$

$$V_{o(\text{avg})} = I_{o(\text{avg})} \times R$$

$$= 11 \times 5 = 55 \text{ V}$$

$$V_{o(\text{avg})} = \frac{T_{\text{on}}}{T} V_s$$

$$\frac{55}{100} = \frac{T_{\text{on}}}{T}$$

and

$$\frac{T_{\text{off}}}{T} = \frac{T - T_{\text{on}}}{T} = \frac{45}{100}T$$

So,

$$\frac{T_{\text{on}}}{T_{\text{off}}} = \frac{55}{45} = \frac{11}{9} = 1.222$$

T8: Solution

$$V_1 \times 50 \,\mu\text{sec} = V_2.20 \,\mu\text{sec} = 0$$

$$\frac{V_1}{V_2} = \frac{2}{5}$$

T9: Solution

(2500)

On the verge of discontinuity

$$L = L_c \text{ (critical inductance)}$$

$$I_{L,\min} = 0$$

$$I_{L(\text{avg})} - \frac{\Delta I_L}{2} = 0 \implies I_{L(\text{avg})} = \frac{\Delta I_L}{2}$$

$$I_{L(\text{avg})} = \frac{D(1-D) \cdot V_s}{2fL} \qquad \{ \because I_{L(\text{avg})} = I_{o(\text{avg})} \}$$

$$\frac{V_{o(\text{avg})}}{R} = \frac{D(1-D)V_s}{2fL}$$

$$\frac{36}{R} = \frac{60 \times 0.4 \times 0.6}{2 \times 100 \times 10^3 \times 5 \times 10^{-3}}$$

On solving, $R = 2500 \Omega$

T10 : Solution

(Sol)

$$\frac{V_o}{V_S} = \frac{1}{1-\alpha}$$

$$\frac{I_s}{I_s}$$

$$\frac{400}{360} = \frac{1}{1-\alpha}$$
 $\alpha = 0.1$
 $V_s I_s = \text{Power}$
 $360 I_s = 4000 \implies I_s = 11.1 \text{ A}$

Neglecting ripple in i_s ,

$$I_{\text{switch (rms)}} = I_s \left(\frac{T_{on}}{T}\right)^{1/2}$$

= $I_s \sqrt{\alpha} = 11.1\sqrt{0.1} = 3.5 \text{ A}$

T11: Solution

Buckboost converter,

$$V_{0} = \frac{\alpha V_{S}}{1 - \alpha}$$

$$V_{S} = 50 \text{ V}$$

$$\alpha = 0.6$$

$$V_{0} = 75 \text{ V}$$

$$\frac{V_{0}}{V_{S}} = \frac{I_{S}}{I_{0}} = \frac{\alpha}{1 - \alpha} = \frac{0.6}{1 - 0.6} = \frac{0.6}{0.4} = \frac{3}{2}$$

$$I_{0} = \frac{V_{0}}{R} = \frac{75}{5} = 15 \text{ A}$$

$$I_{S} = \frac{\alpha}{1 - \alpha} \cdot I_{0} = \frac{3}{2} \times 15 = 22.5 \text{ A}$$

Since capacitor is very large $i_C = 0$ at steady state

$$(i_L)_{\text{avg}} = (i_S)_{\text{avg}} + (i_0)_{\text{avg}}$$

 $I_L = I_S + I_0$
 $I_L = 22.5 + 15 = 37.5 \text{ A}$
 $I_L = 37.5 \text{ A}$

:.

$$\Delta I_{L} = \frac{\alpha V_{S}}{fL} = \frac{0.6 \times 50}{10 \times 10^{3} \times (0.6 \times 10^{-3})} = 5 \text{ A}$$

$$(i_{L})_{peak} = I_{L} + \frac{\Delta I_{L}}{2} = 37.5 + \frac{5}{2} = 40 \text{ A}$$

.. Peak value of current drawn from source

$$= (i_L)_{peak} = 40 \text{ A}$$

T12: Solution

(a, c)

$$I_o = 10 \text{ A}$$
 $\alpha = 0.45$
 $f = 80 \text{ kHz}$
 $L = 10 \text{ mH}$
 $C = 120 \text{ µF}$

$$I_S = I_L = \frac{I_o}{1 - \alpha} = \frac{10}{1 - 0.45} = 18.18 \text{ A}$$

$$\Delta V_C = AV_o = \frac{\alpha I_o}{fC} = \frac{0.45 \times 10}{80 \times 10^3 \times 120 \times 10^{-6}} = 0.468 \text{ V}$$

$$I_{S0} = \alpha I_S = 0.45 \times 18.18 = 8.18 \text{ A}$$

T13: Solution

(a)

Apply boundary conditions,

$$I_{L} = \frac{\Delta I_{L}}{2}$$
Inductor current,
$$I_{L} = \frac{I_{o}}{1 - D}$$

$$\therefore \frac{I_{o}}{1 - D} = \frac{DV_{s}}{2fL}$$

$$\frac{V_{s}}{R(1 - D)^{2}} = \frac{DV_{s}}{2fL}$$

$$f = \frac{D(1 - D)^{2}R}{2L} = \frac{0.6 \times (1 - 0.6)^{2} \times 50}{2 \times 100 \times 10^{-6}}$$

$$f = 24 \text{ kHz}$$

4

Inverters

Detailed Explanation of Try Yourself Questions

T1: Solution

$$R_{\Delta} = 30 \ \Omega / \mathrm{phase}$$
 $R_{Y} = 10 \ \Omega / \mathrm{phase}$

$$V_{0, \, \mathrm{line}} = V_{s} \sqrt{\frac{2}{3}}$$

$$V_{0, \, \mathrm{phase}} = \frac{V_{s} \sqrt{2}}{3} = \frac{600 \sqrt{2}}{3} = 200 \sqrt{2} \ \mathrm{V}$$

$$P_{0} = \frac{3 V_{0, \, \mathrm{phase}}^{2}}{R} = \frac{3 \times (200 \sqrt{2})^{2}}{10} = 24 \ \mathrm{kW}$$

T2: Solution

(a)

(a) Distortion factor,

$$g = \frac{\text{Fundamental RMS Voltage}}{\text{Total RMS Voltage}}$$

$$g = \frac{V_{o1}}{V_{or}}$$

For 1-phase full bridge,

$$V_{o1} = \frac{2\sqrt{2}}{\pi}V_{s}$$

$$V_{or} = V_{s}$$

$$g = \frac{2\sqrt{2}}{\pi} = 0.9$$

Total harmonic distortion,

$$THD = \sqrt{\frac{1}{g^2} - 1}$$

$$THD = 48.34\%$$

(b) For 1-phase full bridge Fourier series of output voltage

$$V_o = \sum_{n=1,3,5}^{\infty} \frac{4V_s}{n\pi} \sin n\omega t$$

For RLC load

:.

$$Z_{n} = R + j(X_{Cn} - X_{Cn})$$

$$|Z_{n}| = \sqrt{R^{2} + (X_{Cn} - X_{Ln})^{2}}$$

$$\phi_{n} = \tan^{-1} \left(\frac{X_{Cn} - X_{Ln}}{R} \right)$$

Therefore, fourier series of load current

$$i_o = \sum_{n=1,3,5}^{\infty} \frac{4V_s}{n\pi |Z_n|} \sin(n\omega t - \phi_n)$$

 $g = \frac{I_{o1}}{I_{or}}$ (c) Distortion factor,

 n^{th} harmonic current, $I_{\text{on}} = \frac{4V_{\text{s}}}{n\pi Z_{n}} \sin(n\omega t - \phi_{n})$

$$I_{o1} = \frac{4V_s}{\pi Z_n} \sin(\omega t - \phi_1)$$

 $I_{or} = \sqrt{I_{o1}^2 + I_{o3}^2 + I_{o5}^2 + \dots}$ Rms output current,

$$g = \frac{I_{o1}}{I_{or}} = 0.988$$

THD% =
$$\left(\sqrt{\frac{1}{g^2} - 1}\right) \times 100 = 15.55\%$$

(d) Load power,

Load power, ${\rm P} = I_{or}^2 R$ Considering only fundamental component of load current,

$$I_{or} = (I_{o1})_{rms}$$

 $(I_{o1})_{rms} = \frac{4V_s}{\pi Z_1} \times \frac{1}{\sqrt{2}}$

$$=\frac{4\times220}{\pi\times\sqrt{\frac{1}{\omega C}-\omega L}}\times\frac{1}{\sqrt{2}}$$

$$=19.402$$

$$P=I_{o1}^{2}.R=2258.74~\mathrm{W}$$
Average DC source current,

$$I_{s} = \frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} I_{O1} \sin(\omega t + 54^{\circ}) d\omega t$$

= 10.52 A

(e) Conduction angle of diode,

$$\phi = \tan^{-1} \frac{\left(\frac{1}{\omega C} - \omega L\right)}{R}$$
$$= 54^{\circ} \text{ or } \frac{3}{10} \pi$$

Conduction time of diode.

$$\omega t_c = 54^{\circ} \text{ or } \frac{3}{10}\pi$$

$$t_c = 3 \text{ mS}$$

 $t_{\scriptscriptstyle C} = 3~{\rm mS}$ Conduction angle of transistor,

$$\pi - \phi = 126^\circ \text{ or } \frac{7}{10}\pi$$

Conduction time of transistor,

$$\omega t_{c} = 126^{\circ} \text{ or } \frac{7}{10}\pi$$

$$t_{c} = 7 \text{ mS}$$

$$(V_{o1})_{rms} = \frac{4V_{s}}{\sqrt{2} \times \pi} = 198.07 \text{ V}$$

$$(I_{o1})_{rms} = \frac{(V_{o1})_{rms}}{Z} = \frac{198.07}{\sqrt{k^{2} + \left(\frac{1}{\omega C} - \omega L\right)^{2}}} = 19.402$$

$$\phi_{1} = 54^{\circ} \text{ or } \frac{3}{10}\pi$$

$$(I_{71})_{peak} = 19.402 \times \sqrt{2} = 27.44 \text{ A}$$

$$(I_{71})_{rms} = \left[\frac{1}{2\pi} \int_{0}^{\frac{7}{10}\pi} (I_{rm} \sin \omega t)^{2} d(\omega t)\right]^{1/2}$$

$$= 12.66 \text{ A}$$

T3: Solution

For 120° mode

$$V_L = \frac{V_S}{\sqrt{2}}$$

For Δ load:

$$V_{Ph} = V_L = \frac{V_S}{\sqrt{2}}$$

$$I_{Phase} = \frac{V_{Ph}}{r} = \frac{V_S}{\sqrt{2}r} = \frac{200}{\sqrt{2} \times 15}$$

$$P = 3I_{Phase}^2 r = 3 \times \left(\frac{200}{\sqrt{2} \times 15}\right)^2 \times 15$$

$$= 4 \text{ kW}$$

T4: Solution

(d)

T5: Solution

(d)

As $V_o < 0$, $(Q_3, \ D_3)$ and (Q_4, D_4) should work. Also $P = v_o \ i_o$ As $I_o > 0$

Power is being feedback.

So, D_3 and D_4 are working.

T6: Solution

$$V_a = V_{1m} \sin \omega t + V_{5m} \sin(5\omega t) + V_{7m} \sin(7\omega t)$$

$$V_b = V_{1m} \sin\left(\omega t - \frac{2\pi}{3}\right) + V_{5m} \sin 5\left(\omega t - \frac{2\pi}{3}\right) + V_{7m} \sin 7\left(\omega t - \frac{2\pi}{3}\right)$$

$$V_{b} = V_{1m} \sin\left(\omega t - \frac{2\pi}{3}\right) + V_{5m} \sin\left(5\omega t + \frac{2\pi}{3}\right) + V_{7m} \sin\left(7\omega t - \frac{2\pi}{3}\right)$$

T7: Solution

(b)

- The circuit shown in the figure is a single phase bridge auto sequential commutated inverter (1-phase ASCI).
- Thyristor pairs T_1 , T_2 and T_3 , T_4 are alternatively switches to obtain a nearly square wave load current. Two commutating capacitors, one C_1 in the upper half and the other C_2 in the lower half are connected as shown
- Diodes D₁ to D₄ are connected in series with each SCR to prevent the commutation capacitors from discharging into the load.

The inverter output frequency is controlled by adjusting the period T through the triggering circuits of thyristors.

The theoretical maximum output frequency obtainable

$$f_{\text{max}} = \frac{1}{4 \, RC} = \frac{1}{4 \times 10 \times 0.1 \times 10^{-6}} = 250 \text{ kHz}$$

T8: Solution

(a)

Device used in current source inverter (CSI) must have reverse voltage blocking capacity. Therefore, devices such as GTOs, power transistors and power MOSFETs cannot be used in a CSI. So, a diode is added in series with the devices for reverse blocking.

T9: Solution

(c)

$$V_{S} = 600 \text{ V}$$

$$M_{A} = 1$$

$$\hat{V}_{L1} = \sqrt{3}M_{A} \cdot \frac{V_{S}}{2}$$

$$V_{L1,rms} = \left(\frac{\sqrt{3}}{2\sqrt{2}}\right)M_{A}V_{S}$$

$$= \frac{\sqrt{3}}{2\sqrt{2}} \times 600 = 367.4 \text{ V}$$

T10: Solution

The output voltage V_0 can be represented by Fourier series as under:

$$V_0 = \sum_{n=1,3,5,...}^{\infty} a_n \cos n\omega t + b_n \sin n\omega t$$

where,

$$a_n = \frac{2}{T} \int_0^1 f(t) \cos n\omega t \ d(\omega t)$$

$$b_n = \frac{2}{T} \int_{0}^{T} f(t) \sin n\omega t \ d(\omega t)$$

$$\begin{split} a_n &= \frac{1}{\pi} \left[\int_0^\alpha 100 \cos \omega t \ d(\omega t) + \int_\alpha^{180^\circ - \alpha} (-100) \cos \omega t \ d(\omega t) \right. \\ &+ \int_{180^\circ - \alpha}^{180^\circ - \alpha} 100 \cos \omega t \ d(\omega t) + \int_{180^\circ}^{360^\circ - \alpha} -100 \cos \omega t \ d(\omega t) \\ &+ \int_{180^\circ + \alpha}^{360^\circ - \alpha} 100 \cos \omega t \ d(\omega t) + \int_{360^\circ - \alpha}^{360^\circ - } -100 \cos \omega t \ d(\omega t) \right] \\ a_n &= \frac{100}{\pi} \left[\sin \alpha - \sin(180^\circ - \alpha) + \sin \alpha + \sin(180^\circ) - \sin(180^\circ - \alpha) - \sin(180^\circ - \alpha) - \sin(180^\circ + \alpha) + \sin(360^\circ - \alpha) - \sin(180^\circ + \alpha) - \sin(360^\circ - \alpha) \right] \\ a_n &= 0 \\ b_n &= \frac{1}{\pi} \left[\int_0^\alpha 100 \sin \omega t \ d(\omega t) + \int_\alpha^{180^\circ - \alpha} -100 \sin \omega t \ d(\omega t) + \int_{180^\circ - \alpha}^{180^\circ - \alpha} -100 \sin \omega t \ d(\omega t) + \int_{180^\circ - \alpha}^{360^\circ - \alpha} 100 \sin \omega t \ d(\omega t) + \int_{360^\circ - \alpha}^{360^\circ} -100 \sin \omega t \ d(\omega t) \right] \\ b_n &= \frac{100}{\pi} \left[-\cos \alpha + 1 + \cos(180^\circ - \alpha) - \cos \alpha - \cos 180^\circ + \cos(180^\circ - \alpha) + \cos(180^\circ + \alpha) + \cos(360^\circ - \alpha) \right] \\ b_n &= \frac{100}{\pi} \left[4 - 8 \cos \alpha \right] = 50\sqrt{2} \\ \cos \alpha &= 0.22231 = 77.15^\circ \end{split}$$

T11: Solution

$$V_{01} = 230 \text{ V}$$

 $\hat{V}_{01} = 230\sqrt{2}$

$$\hat{I}_{O1} = \frac{V_{O1}}{|Z_1|} = \frac{230\sqrt{2}}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$= \frac{230\sqrt{2}}{\sqrt{2^2 + (8-6)^2}} = 115 \text{ A}$$

$$\phi_1 = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) = \tan^{-1} \left(\frac{8-6}{2} \right) = 45^\circ = \frac{\pi}{4}$$

$$i_{o1} = 115 \sin \left(\omega t - \frac{\pi}{4} \right)$$

$$I_{s1,rms} = \left\{ \frac{1}{2\pi} \int_{\pi/4}^{\pi} 115^2 \sin^2 \left(\omega t - \frac{\pi}{4} \right) d\omega t \right\}^{\frac{1}{2}}$$

$$Is_{1,rms} = \left\{ \frac{1}{2\pi} \int_{0}^{3\pi/4} 115^2 \sin^2 \omega t d(\omega t) \right\}^{\frac{1}{2}} = 54.826 \text{ A}$$

T12: Solution

Applying fourier series

$$a_n = 0$$

$$b_n = \frac{4V_s}{n\pi} [1 - \cos n\alpha_1 + \cos n\alpha_2]$$

To eliminate 3rd and 5th harmonic

$$b_3 = 1 - \cos 3\alpha_1 + \cos 3\alpha_2 = 0$$

 $b_5 = 1 - \cos 5\alpha_1 + \cos 5\alpha_2 = 0$
 $\alpha_1 = 17.83^{\circ}$
 $\alpha_2 = 37.96^{\circ}$

T13: Solution

(a) Rms output voltage,

$$V_{or} = V_s \left[\frac{2d}{\pi} \right]^{1/2}$$
$$= 141.42 \text{ V}$$

(b) Fourier series of output voltage waveform

$$V_o = \sum_{n=1,3,5}^{\infty} \frac{8V_s}{n\pi} \sin n\gamma \sin \frac{nd}{2} \sin n\omega t$$

Peak value of 3rd harmonic,

$$\hat{V}_{O3} = \frac{8V_s}{3\pi} \sin(3 \times 45^\circ) \sin\frac{3 \times 20}{2}$$

$$\hat{V}_{O3} = 90.03 \text{ V}$$

(c) Rms value of fundamental voltage,

$$(V_{o1})_{rms} = \frac{8V_s}{\pi} \frac{\sin \gamma \sin \frac{d}{2}}{\sqrt{2}}$$

$$(V_{o1})_{\rm rms} = 66.328 \,\rm V$$

(d) 5th harmonic voltage,

$$V_{o5} = \frac{8V_s}{5\pi} \sin(5 \times 45^\circ) \sin\frac{5 \times 20}{2}$$

= -82.76

5

Resonant Converters and Power Electronics Applications (Drives & SMPS)

Detailed Explanation of

Try Yourself Questions

T1: Solution

At t = 0, steady state exists and therefore, generated torque = load torque

$$T_e = T_I$$

In general, the dynamic equation for the motor load combination is generated torque = inertia torque + friction torque + load torque

$$T_e = J \frac{d\omega_m}{dt} + D\omega_m + T_L$$

As friction torque is zero,

$$D\omega_m = 0$$

The differential equation, governing the speed of the drive at t > 0,

$$T_e = J \frac{d\omega_m}{dt} + T_L$$

$$100 = 0.01 \frac{d\omega_m}{dt} + 40$$
...(i)
$$\frac{d\omega_m}{dt} = 6000$$

$$dt = \frac{d\omega_m}{6000}$$

Its integration gives,

$$t = \frac{\omega_m}{6000} + A \qquad \dots (ii)$$

Initial speed at $t = 0^+$ remains 500 rpm. Therefore,

$$\omega_{m0} = \frac{2\pi \times 500}{60} = \frac{100\pi}{6} \text{ rad/sec}$$

Substituting this value in equation (ii),

$$0 = \frac{1}{6000} \times \frac{100\pi}{6} + A \text{ or } A = \frac{-\pi}{360}$$
$$t = \frac{\omega_m}{6000} - \frac{\pi}{360}$$

Final speed,

$$\omega_m = \frac{2\pi \times 1000}{60} = \frac{200\pi}{6} \text{ rad/sec}$$

$$t = \frac{200\pi}{6000 \times 6} - \frac{\pi}{360} = \frac{\pi}{360} \text{ sec} = 0.0873 \text{ sec}$$

 \therefore Time taken for the speed to reach 1000 rpm = 0.0873 sec \simeq 87.3 msec

T2: Solution

(a)

T3: Solution

(c)

T4: Solution

(a)

$$V_{S} = 400 \text{ V}$$

$$R_{a} = 0.2 \Omega$$

$$K_{m} = 1.2 \text{ V-s/rad}$$

$$I_{o} = 300 \text{ A (constant)}$$

$$N_{\min} = ?, N_{\max} = ?$$

$$E_{b} = V_{o} + I_{o}R_{a}$$

$$k_{m} \frac{2\pi}{60} N = V_{o} + I_{o}R_{a}$$

$$k_{m} \frac{2\pi}{60} N_{\min} = (V_{o})_{\min} + I_{o}R_{a}$$

$$k_{m} \frac{2\pi}{60} N_{\min} = 0 + I_{o}R_{a}$$

$$\frac{1.2 \times 2\pi}{60} N_{\min} = 300 \times 0.2$$

$$N_{\min} = 477 \text{ rpm}$$

$$k \frac{2\pi}{60} N_{\min} = V_{o} + I_{o}R_{a}$$

$$[V_o = (1 - \alpha)V_s]$$

$$\left[E_b = k_m \omega = k_m \frac{2\pi}{60} N\right]$$

$$k_m \frac{2\pi}{60} N_{\text{max}} = V_o + I_o R_a$$
$$k_m \frac{2\pi}{60} N_{\text{max}} = V_s + I_o R_a$$

$$1.2 \times \frac{2\pi}{60} N_{\text{max}} = 400 + 300 \times 0.2$$

 $N_{\text{max}} = 3660 \,\text{rpm}$

T5: Solution

$$N_{S1} = 3000 \text{ rpm}$$

 $N_1 = 2850 \text{ rpm}$

$$S_{FL} = \frac{3000 - 2850}{3000} = 0.05$$

(synchronous speed at 50 Hz)

(motor speed at 50 Hz)

(rated slip at 50 Hz)

where, by (V/f) control,

$$N_{S2} = 3000 \left(\frac{40}{50} \right) = 2400 \text{ rpm}$$

(synchronous speed at 40 Hz)

:.

 N_2 = New running speed of motor

$$N_{s2} \left(1 - \frac{S_{FL}}{2} \right) = 2400 \left(1 - \frac{0.05}{2} \right) = 2340 \text{ rpm}$$

T6: Solution

(a)

For a separately excited DC motor

Back emf =
$$E_a = V_0 - I_a R_a$$

 ${\rm Back\ emf} = E_a = V_0 - I_a R_a$ Since, losses are neglected R_a can be neglected

So,

$$E_a \approx V_0$$

$$V_0 = E_a = k_a \phi N$$

$$V_0 \propto N$$
...(i)

At rated voltage $V_0 = 440 \text{ V}$ and N = 1500 rpm so, at half the rated speed. $\left(\frac{N}{2} = 750 \text{ rpm}\right)$ output voltage of the bridge (V_0) is 220 V.

If I_a is the average value of armature current rms value of supply current will be

$$I_{s} = I_{a} \sqrt{\frac{2}{3}}$$

Power delivered to the motor

$$P_0 = V_0 I_a$$

Input VA to the thyristor bridge

$$S_{\rm in} = \sqrt{3} V_{\rm S} I_{\rm S}$$

Input power factor

$$= \frac{P_0}{S_{in}} = \frac{V_0 I_a}{\sqrt{3} V_s I_s} = \frac{220 \times I_a}{\sqrt{3} \times 440 \times I_a \sqrt{\frac{2}{3}}} = 0.354$$

T7: Solution

(4.98)

$$\alpha = 45^{\circ}$$

$$N = 1450 \text{ rpm}$$

$$T_{a} \propto \phi I_{a}$$

$$T_{a} = K_{m}I_{o}$$

$$E_{b} = K_{m}\omega = K_{m}\frac{2\pi}{60}N$$

$$V_{o} = E_{b} + I_{a}(R_{a} + R_{F})$$

$$\frac{V_{m}}{\pi}(1 + \cos\alpha) = K_{m}\frac{2\pi}{60}N + 5(3 + 3)$$

$$\frac{330}{\pi}(1 + \cos 45^{\circ}) = K_{m}\frac{2\pi}{60} \times 1456 + 5 \times (3 + 3)$$

$$K_{m} = 0.98 \text{ V-s/rad}$$

$$T = 0.98 \times 5 = 4.9 \text{ Nm}$$

(If flux is constant)

T8: Solution

At rated torque,

$$I_{o} = 100 \text{ A}$$

$$V_{o} = E_{b} + I_{o}R_{a}$$

$$V_{o} = K_{m} \frac{2\pi}{60} \cdot N + I_{o}R_{a}$$

$$220 = K_{m} \frac{2\pi}{60} \times 2100 + 100 \times 0.1$$

$$K_{m} = 0.955$$

$$V_{o} = E_{b} + I_{o}R_{a}$$

$$\alpha V_{S} = K_{m} \cdot \frac{2\pi}{60} N + I_{o}R_{a}$$

$$0.4 \times 250 = 0.955 \times \frac{2\pi}{60} N + 100 \times 0.1$$

$$N = 900 \text{ rpm}$$

T9: Solution

$$V_{\text{or}} = \frac{V_m}{\sqrt{2\pi}} \left\{ (\pi - \alpha) + \frac{1}{2} \sin 2\alpha \right\}^{\frac{1}{2}}$$

$$V_{\rm or} = \frac{V_m}{2}$$

or 2
$$I_{\text{or}} = \frac{V_{or}}{R} = \frac{V_m}{2R} = \frac{200\sqrt{2}}{2 \times \frac{10}{\sqrt{2}}} = 20 \text{ A}$$

:.