Tyler H. Chang

Argonne National Laboratory Mathematics & Computer Science (MCS) Division 9700 S. Cass Ave, Bldg. 240, Lemont, IL 60439 E-mail: tchang@anl.gov

Website: https://thchang.github.io GitHub: https://github.com/thchang

Interests

Blackbox optimization, scientific machine learning, approximation theory, computational geometry, and scientific software

Education

Ph.D., May 2020, Computer Science, Virginia Polytechnic Institute & State University (Virginia Tech)

- Advisor: Layne Watson
- Dissertation: Mathematical Software for Multiobjective Optimization Problems

B.S., May 2016, Computer Science & Mathematics (double-major), Virginia Wesleyan University

• Summa cum laude; 2x ACM ICPC site champion; 8x Dean's list; 4x all-ODAC (conference) for varsity tennis

Research Experience

Jun 2020 - Present. Postdoctoral appointee: Argonne National Laboratory, MCS Division

- Designed and implemented a Python framework for building and deploying multiobjective optimization solvers
- Deployed solvers for particle accelerator design, autonomous material discovery, and neural-network architecture search

Aug 2016 - May 2020. Cunningham fellow: Virginia Tech, Dept. of Computer Science

- Designed parallel algorithms and software for predicive modeling, blackbox optimization, and computational geometry
- Applied solvers to model and tune HPC systems to control performance variability

Jun 2019 - Dec 2019. SCGSR awardee: Argonne National Laboratory, MCS Division

• Conducting research in multiobjective optimization software via DOE SCGSR program (see awards)

Feb 2016 - Aug 2016. Research assistant: Old Dominion University, Dept. of Computer Science

Aided in parallelizing NASA's FUN3D CFD kernel on NVIDIA GPUs using CUDA and MPI

Dec 2015 - Jan 2016. Intern: US Army Research Labs, Computational Science Division May 2015 - Aug 2015. Intern: US Army Research Labs, Computational Science Division

Accelerating software for real-time optimal control (summer) & using AR technology for info viz (winter)

Dec 2014 - Jan 2015. Intern: US Army Research Labs, Guidance Technology Branch May 2014 - Aug 2014. Intern: US Army Research Labs, Guidance Technology Branch

• Using OpenCV for real-time sensing (summer) & developing software for embedded systems (winter)

Awards

2021.	Nominee for Outstanding Dissertation Award: Virginia Tech, Graduate School
2019.	Davenport Leadership Fellowship: Virginia Tech, College of Engineering

- 2018. SCGSR Award: DOE Office of Science, Graduate Student Research (SCGSR) Program
- 2018. **Pratt Fellowship: Virginia Tech**, College of Engineering

- 2017. **Pratt Fellowship: Virginia Tech**, College of Engineering
- 2016. Cunningham Doctoral Fellowship: Virginia Tech, Graduate School
- 2016. Davenport Leadership Fellowship: Virginia Tech, College of Engineering
- 2016. Outstanding Student in Computer Science & Mathematics: Virginia Wesleyan University

Publicly Available Software

2023. ParMOO: Python library for parallel multiobjective simulation optimization. Release: 0.2.2

Devs: **T. H. Chang** (lead), S. M. Wild, and H. Dickinson¹ Primary Prog. Lang: Python 3

git: https://github.com/parmoo/parmoo

2022. VTMOP: Solver for blackbox multiobjective optimization problems.

Devs: T. H. Chang (sole) Primary Prog. Lang: Fortran 2008

git: https://github.com/vtopt/VTMOP

2020. **DelaunaySparse**: Interpolation via a sparse subset of the Delaunay triangulation.

Devs: T. H. Chang (lead) and T. C. H. Lux Primary Prog. Lang: Fortran 2003

git: https://github.com/vtopt/DelaunaySparse

2019. **QAML**: Quantum annealing math library.

Devs: T. C. H. Lux (lead), T. H. Chang, and S. S. Tipirneni Primary Prog. Lang: Python 3

git: https://github.com/tchlux/qaml

Selected Publications (from 29 indexed on Scholar)

- M. Garg², **T. H. Chang**, and K. Raghavan. *SF-SFD: Stochastic optimization of Fourier coefficients for space-filling designs*. To appear in 2023 Winter Simulation Conference (WSC 2023). url: https://arxiv.org/abs/2305.12043
- 2023. **T. H. Chang**, J. R. Elias, S. M. Wild, S. Chaudhuri, and J. A. Libera. A framework for fully autonomous design of materials via multiobjective optimization and active learning: challenges and next steps. *In 11th Intl. Conf. on Learning Representation (ICLR 2023), Workshop on Machine Learning for Materials (ML4Materials*). url: https://openreview.net/forum?id=8KJS7RPjMqG
- 2023. **T. H. Chang** and S. M. Wild. ParMOO: a Python library for parallel multiobjective simulation optimization. *Journal of Open Source Software* 8(82), Article 4468, 5 pages. doi: 10.21105/joss.04468
- 2023. N. Neveu, **T. H. Chang**, P. Franz, S. Hudson, and J. Larson. Comparison of multiobjective optimization methods for the LCLS-II photoinjector. *Computer Physics Communication* 283, Article 108566, 10 pages. doi: 10.1016/j.cpc.2022.108566
- 2022. **T. H. Chang**, L. T. Watson, J. Larson, N. Neveu, W. I. Thacker, S. Deshpande, and T. C. H. Lux. Algorithm 1028: VTMOP: Solver for blackbox multiobjective optimization problems. *ACM Transactions on Mathematical Software* 48(3), Article 36, 34 pages. doi: 10.1145/3529258
- 2020. **T. H. Chang**, J. Larson, and L. T. Watson. Multiobjective optimization of the variability of the high-performance Linpack solver. *In Proc. 2020 Winter Simulation Conference (WSC 2020)*, pp. 3081–3092. doi: 10.1109/WSC48552.2020.9383875
- 2020. **T. H. Chang**, L. T. Watson, T. C. H. Lux, A. R. Butt, K. W. Cameron, and Y. Hong. Algorithm 1012: DELAUNAYSPARSE: Interpolation via a sparse subset of the Delaunay triangulation in medium to high dimensions. *ACM Transactions on Mathematical Software* 46(4), Article 38, 20 pages. doi: 10.1145/3422818
- 2019. **T. H. Chang**, T. C. H. Lux, and S. S. Tipirneni. Least-squares solutions to polynomial systems of equations with quantum annealing. *Quantum Information Processing* 18(12), Article 374, 17 pages. doi: 10.1007/s11128-019-2489-x

¹= DOE SULI at Argonne in my supervision

²= NSF MSGI at Argonne in my supervision

Funding Awarded

Mar 2023 - Sep 2023. A Scalable Multi-Physics Optimization Framework for Particle Accelerator Design.

ANL LDRD: 2023 LDRD Seed (LDRD 2023-0246).

Type: institutional award (3 pages + appendices). Budget: \$50K/y.

Role: co-Pl. Pl: G. Chen (ANL).

Teaching

Jan 2022 - Present. Adjunct Professor: College of DuPage, Dept. of Computer and Info. Science

Jan 2020 - May 2020. Instructor of Record: Virginia Tech, Dept. of Computer Science

Summer Students Advised

Jun 2022 - Aug 2022. Manisha Garg (Urbana-Champaign), NSF MSGI at Argonne
Jun 2022 - Aug 2022. Hyrum Dickinson (Urbana-Champaign), DOE SULI at Argonne

Invited Talks and Guest Lectures

Jun 2024. Title pending. The 2nd Derivative-Free Optimization Symposium (DFOS 2024), Padova, Italy.

Aug 2023. Data sampling for surrogate modeling and optimization. The 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023), Tokyo, Japan.

July 2023. Toward interpretable machine learning via Delaunay triangulations. *Argonne National Laboratory, LANS Seminar Series*, Lemont, IL, USA.

Jun 2023. Exploiting structures in multiobjective simulation optimization problems. *SIAM Conference on Optimization (OP 2023)*, Seattle, WA, USA.

Mar 2023. ParMOO: a Python library for parallel multiobjective simulation optimization. SIAM Conference on Computational Science and Engineering (CSE 2023), Amsterdam, Netherlands.

Oct 2022. An introduction to multiobjective simulation optimization with ParMOO. The Science Academy, Science Circle Cohort, guest speaker, virtual event. Recording: https://www.youtube.com/watch?v=gQha8URLEHM.

Sep 2022. Geometric considerations when surrogate modeling. SIAM Conference on Mathematics of Data Science (MDS 2022), San Diego, CA, USA.

May 2022. An introduction to multiobjective simulation optimization with ParMOO. *University of Chicago, Pritzker School of Molecular Engineering, guest lecture*, virtual event.

Jul 2021. Surrogate modeling of simulations for multiobjective optimization applications. *SIAM Conference on Optimization (OP 2021)*, virtual event.

Mar 2021. Computing sparse subsets of the Delaunay triangulation in high-dimensions for interpolation and graph problems. SIAM Conference on Computational Science and Engineering (CSE 2021), virtual event.

Technical Skills

Languages: Python, Fortran, C/C++, Java, Matlab

OS: MacOS, Unix/Linux

Markup: HTML/CSS, GNU Make, TeX/LaTeX/bibTeX

Libraries: numpy, pandas, scipy, matplotlib, keras, sklearn, MPI, OpenMP, CUDA, BLAS, LAPACK

Tools/Frameworks: pytest, sphinx, slurm, CI/CD, GitHub Actions, GitFlow