FBI4019 - Exercícios - Estrutura do Computador

Gabarito

Respostas corretas estão marcadas por

Q	ais são características do paradigma RISC de projeto de CPU?
eta	
	São mais baratos, menos acesso à memória, conjunto de instruções simples.
	Objetivo de criar um hardware mais otimizado, com isso os programas
	tendem a ocupar menos espaço em memória.
	\circ
	Grande número de registradores de propósito geral e os programas tendem
	a ocupar menos espaço em memória.
	Em geral usa mais memória para armazenamento de dados.
	 Muitos modos de endereçamento, e foco no hardware.

(2018 - UFT - Analista de Tecnologia da Informação) Em 1952 John von Neumann desenvolveu um protótipo de um novo computador de programa

	Memória Principal.	
	Unidade Lógica e Aritmética (ALU).	
eta	Barramento.	
	C Equipamento de Entrada e Saída (E/S).	
uti	penas uma das alternativas abaixo designa a arquitetura de computado liza memórias físicas separadas (isto é, memória para programas e out ra dados). Que alternativa é essa?	-
uti pa	liza memórias físicas separadas (isto é, memória para programas e ou	-
uti pa	liza memórias físicas separadas (isto é, memória para programas e outra dados). Que alternativa é essa? Von Neumann	-
uti pa	liza memórias físicas separadas (isto é, memória para programas e outra dados). Que alternativa é essa? Von Neumann Harvard	-
uti pa	liza memórias físicas separadas (isto é, memória para programas e outera dados). Que alternativa é essa? Von Neumann Harvard Tesla	-
uti	liza memórias físicas separadas (isto é, memória para programas e outera dados). Que alternativa é essa? Von Neumann Harvard Tesla PC	-

Neumann é frequentemente definida como o conjunto de atributos da máquina

que um programador deve compreender para que consiga programar o computador específico com sucesso, e também são compostas de três subsistemas básicos. Assinale a alternativa correta que apresenta os três subsistemas básicos.

a	 CPU, memória principal e sistema de entrada e saída.
	○ Vídeo, memória externa e não volátil e sistema de entrada e saída.
	CPU, memória secundária e sistema de entrada e saída.
	CPU, memória principal e sistema operacional.
	○ Vídeo, memória secundária e sistema de entrada e saída.
pa	017 - DPE-RS - Analista - Infraestrutura e Redes) A arquitetura de grande arte dos computadores atuais é baseada na máquina de von Neumann que presenta como componentes principais:
ра	,
ра	irte dos computadores atuais é baseada na máquina de von Neumann que presenta como componentes principais:
ра	orte dos computadores atuais é baseada na máquina de von Neumann que presenta como componentes principais: Acumulador, Registradores de propósito geral, Processador e Memória ROM.
ра	rite dos computadores atuais é baseada na máquina de von Neumann que presenta como componentes principais: Acumulador, Registradores de propósito geral, Processador e Memória ROM. Entrada/Saída, Memória Cache, Pipeline e Memória de Massa.

ur ac ca de	016 - IF-PI - Professor - Informática) O hardware de um computador possui na plataforma que está diretamente relacionada ao tipo de arquitetura dotado no processador. Qual arquitetura de computador tem como tracterística principal o fato de que nela ocorre a separação de barramentos e comunicação para a memória de instruções de programa e para a emória de dados?
	Arquitetura Von Neumann.
	O Arquitetura RISC.
eta 	O Arquitetura Harvard.
	O Arquitetura CISC.
	O Arquitetura IA.
	concurso Tribunal de Contas do Estado do Pará (TCE-PA) - Técnico de formática - AOCP (2012)) O assembly é
reta	utilizado para programar dispositivos computacionais com uma notação legível do código de máquina que uma arquitetura de computador específica utiliza.
	um compilador que transforma código em alto nível, linguagem humana, em código de baixo nível, linguagem de máquina.

	 um interpretador de código escrito em linguagem de alto nível, para a execução de programas em linguagem de máquina
	○ um runtime, que codifica o programa para linguagem de máquina em tempo de execução.
l e r	(Cespe/ANAC - Analista Administrativo - Tecnologia da Informação - 2009) Na área de arquitetura de computadores, o espaço de endereçamento determina a capacidade de um processador acessar um número máximo de células da memória, então um processador que manipula endereços de E bits é capaz de acessar, no máximo, E² células de memória.
ta	○ True É 2 ^E ○ False
	Possuir um conjunto de instruções simples e limitado é uma das principais características da arquitetura CISC.
	○ True

orreta	Com o desenvolvimento de técnicas avançadas de pipeline nas arquiteturas CISC, as diferenças de desempenho entre processadores RISC e CISC diminuíram.			
	A empresa INTEL produz, na sua grande maioria, processadores com arquitetura RISC.			
ins	018 - CODEMIG - Analista de Tecnologia da Informação) Considere que uma tituição precisa decidir sobre a compra de um novo sistema computacional está na dúvida entre RISC e CISC.			
mi	tre as características de arquiteturas para fabricação de croprocessadores a seguir, assinale aquela que é uma característica enas da arquitetura RISC.			
	Uso de microcódigo			
	○ Instruções completas e eficientes			
	Estruturas de máquinas de alto nível			
rreta	Pequeno conjunto de instruções			
	• • •			
	• • •			

_	São executadas indiretamente pelo barramento de controle.
rreta	○ Utilizam muitos endereços. ✔
	Trabalham no mesmo tempo de execução, que é 1 ciclo de clock.
_	Não necessitam de memória cache.
	Só fazem operações aritméticas.
(2017 - CFO-DF - Analista de Suporte de Tecnologia da Informação) Os chips da arquitetura RISC são mais simples e bem mais baratos que os chips da arquitetura CISC pelo fato de executarem várias centenas de nstruções complexas.
rreta	TrueFalse
(3	2016 - EBSERH - Analista de Tecnologia da Informação - Suporte de Redes HU-FURG)) Quanto as características originais do RISC (<i>Reduced Instruction Set Computer</i>), analise as afirmativas abaixo, dê valores Verdadeiro (V) ou Falso (F) e assinale a alternativa que apresenta a sequência correta (de cima para baixo):
() menor quantidade de instruções.
() instruções de tamanho variável.

	() uso intenso de pipeline.
	○ V - V - V
	○ V-V-F
orreta	○ V-F-V
	○ F - V - V
	○ F-F-F
	Quanto as características das classes de máquina registrador- memória, selecione as opções abaixo que caracterizam esse tipo de classe de máquina. Compilador complexo
	Decodificador mais simples
orreta	Instruções com formato variável
orreta	Instruções complexas
	☐ Instruções de formato Fixo
	Instruções simples
	Múltiplos registradores
	Poucos modos de endereçamento
orreta	Poucos registradores

	memória RAM, placa mãe, fonte de alimentação.
	monitor de vídeo, mouse e teclado.
	ULA, memória RAM e HD.
nclue ender da me	stradores são memórias internas do processador, entre as quais se em o registrador de endereços da memória (REM), que contém o reço do dado a ser lido ou escrito na memória, e o registrador de dados emória (RDM), que contém o dado a ser escrito na memória, no caso de operação de escrita.
	True False
de ha execu duas	pe/CNPQ - Analista em Ciências e Tecnologia Júnior - 2011) Um exemplo rdware, a unidade central de processamento (CPU), responsável por utar os programas armazenados na memória principal, é composta por grandes subunidades: a unidade de controle (UC) e a unidade lógica e ética (ULA).

False

(FCC - 2013 - MPE-SE - Técnico - Manutenção e Suporte de Equipamentos de Informática e Softwares) A maioria dos computadores digitais é baseada na arquitetura von Neumann e apresenta as características listadas abaixo. A única alternativa INCORRETA é:

É composto de três partes principais: a Unidade Central de Processamento – UCP, a memória e os dispositivos de E/S. Estas partes se encontram conectadas pelos barramentos. O funcionamento do computador se resume ao seguinte: a cada ciclo, o computador carrega instruções e dados da memória, instruções são executadas, seus resultados armazenados e a instrução seguinte é carregada.

Os dispositivos de E/S definem como o computador recebe informação do mundo exterior e como ele devolve informação para o mundo exterior. Teclados, mouses, scanners, microfones e câmeras são dispositivos comuns de entrada enquanto monitores e impressoras são dispositivos comuns de saída. Discos rígidos e placas de rede, que permitem conexões entre computadores, podem atuar como dispositivos tanto de entrada quanto de saída.

A Unidade de Controle – UC, componente da UCP, é responsável por buscar instruções e dados da memória, decodificar as instruções, alimentar a ULA com as entradas corretas de acordo com as instruções e enviar os resultados de volta à memória ou aos dispositivos de saída.

Um componente chave do sistema de controle da UCP é o registrador Program Counter – PC ou contador de programa, que mantém o endereço da instrução corrente e que, tipicamente, é incrementado cada vez que uma instrução é executada, a não ser que a própria instrução corrente indique onde se encontra a próxima instrução.

orreta

A Unidade Lógico-Aritmética – ULA, componente da Unidade de Controle – UC, é capaz de realizar apenas dois tipos de operações: operações aritméticas, como somas e subtrações, e operações booleanas, como comparações. Possui importantes registradores como o Instruction Register – IR, ou registrador de instrução, que contém a instrução que está sendo executada no momento.

(2013 - MPE-ES - Agente Especializado - Analista de Sistemas) Uma arquitetura hipotética de computador apresenta certo formato para suas instruções de maneira que estão disponíveis 1 byte para o código de operação das instruções e 2 bytes para os campos de endereçamento de operando na memória. Com base nessas informações, pode-se concluir que o número máximo de instruções distintas possíveis e o número máximo de endereços de memória possíveis de serem gerados a partir do modo de endereçamento direto são, respectivamente,

○ 8 e 512.
○ 8 e 64K.
○ 16 e 256.
○ 256 e 512.

	○ 256 e 64K. ▼
ai di	Cespe/TJ-SE - 2014 - Analista Judiciário - Engenharia Elétrica) Em uma rquitetura computacional, o tamanho da instrução, em bits, influencia iretamente o desenvolvimento da implementação e a organização dos ancos de registradores.
rreta	○ True ✓
	○ False
	m uma instrução de máquina, presente em uma arquitetura de computador, o nodo direto de endereçamento é aquele em que no
	nodo direto de endereçamento é aquele em que no
m	campo operando da instrução está indicado o dado. campo operando da instrução está indicado o endereço de memória, onde

	código de operação da instrução está indicado o endereço de memória, onde se localiza endereço do dado.
a	2016 - CREMESP - Analista de Suporte) Processadores são programados través de instruções, que podem ser das categorias CISC ou RISC. É correto firmar que
_	as instruções CISC têm tamanho padronizado e são executadas na mesma quantidade de tempo.
	cada instrução RISC pode demorar um tempo diferente para ser executada, pois não tem tamanho padronizado.
rreta 	as instruções usadas nos processadores da linha X86 são do tipo CISC.
	em computadores com processadores CISC o compilador é mais complexo que em computadores com processadores RISC.
	oprocessadores CISC são mais rápidos que RISC, apesar de terem que executar mais instruções para se chegar ao mesmo resultado.

A famosa "Lei de Moore" é uma previsão que as empresas de semicondutores dobrariam o número de transistores em um circuito integrado a cada _____ meses. Ela foi feita pelo Dr. Gordon Earl Moore, co-fundador da *Fairchild Semiconductor* e CEO da Intel, em 1965 e revisitada em 1975. Apesar que a previsão é atribuída a Moore, o período utilizado foi previsto pelo executivo da Intel David House. Com o tempo, a Intel substituiu a expressão "número de transistores" por "poder computacional", que é a atual base para o desenvolvimento de novos chips.

corretas 24

vinte e quatro

(Prova de Concurso Defensoria Pública do Estado do Espírito Santo (DPE-RS) - Analista - Tecnologia da Informação - FCC (2017)) Considere um processador em cujo conjunto de instruções há instruções de três operandos. A instrução mult multiplica os dois primeiros operandos e armazena o resultado no terceiro operando e add soma os dois primeiros operandos e armazena o resultado no terceiro. Neste processador, o código que corresponde à operação X = (B * C) + D é:

orreta

mult B, C, X

add D, X, X

mult B, C, B

mult B, C, C

add X, B, C

	 envia pedidos ao processador para que pare a execução de um programa e atenda outro processo incondicionalmente.
re	FADESP - 2017 - COSANPA - Técnico em Informática) Dentre os tipos de egistradores especiais presentes na CPU, aquele que armazena emporariamente os dados transferidos da memória principal para a CPU ou ansferidos da CPU para a memória principal é o
orreta	○ PC. ○ RDM. ✓ ○ REM.
	O RI.
In o p	2018 - Câmara de Belo Horizonte - MG - Analista de Tecnologia da formação - Infraestrutura de Sistema) "Um hazard de pipeline ocorre quando pipeline, ou alguma parte dele, precisa parar porque as condições não ermitem a execução contínua. A parada do pipeline é conhecida como bolha e pipeline." Existem três tipos de hazards; assinale-os.
orreta	○ Recurso; dados; controle. ✓
	Controle; endereço; dados.

	O Desvio; repetição; endereço.
	Endereço; instrução; recurso.
pr se ex	017 - DPE-RS - Analista - Infraestrutura e Redes) Em arquitetura de ocessadores, o Pipeline possibilita que a execução das instruções possa er realizada mais rapidamente. Entretanto, esse aumento da velocidade de ecução pode ocasionar o problema de conflito de acesso simultâneo à emória para buscar as instruções e realizar a escrita/leitura de operandos
(d	ados). Uma das formas de solucionar esse problema é utilizar a
	arquitetura Harward.
	 ○ arquitetura Harward. ○ Redundância do estágio de execução do Pipeline.
	 □ arquitetura Harward. □ Redundância do estágio de execução do Pipeline. □ Memória Cache L2.

(2013 - MPE-ES - Agente Especializado - Analista de Sistemas) Na implementação das arquiteturas de computadores, existe um conceito que divide a execução de cada instrução de máquina em partes, sendo que cada uma dessas partes é tratada por uma unidade específica do hardware. A esse conceito dá-se o nome de

	O cache.
orreta	o pipeline.
	striping.
	○ big endian.
	hiperthreading.
	(ENADE 2005) Apesar de todo o desenvolvimento, a construção de computadores e processadores continua, basicamente, seguindo a arquitetura clássica de von Neumann. As exceções a essa regra encontram-se em computadores de propósitos específicos e nos desenvolvidos em centros de pesquisa. Assinale a opção em que estão corretamente apresentadas características da operação básica de um processador clássico.
orreta	Instruções e dados estão em uma memória física única; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.
	Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando o seu operando-destino necessita ser recalculado; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para o próximo operando a ser recalculado.

Instruções e dados estão em uma memória física única; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que tiver todos seus operandos disponíveis.

Instruções e dados estão em memórias físicas distintas; um programa é constituído de um conjunto de instruções de máquina; uma instrução é lida da memória quando todos os seus operandos-fonte estiverem prontos e disponíveis; essa instrução é executada e o resultado é escrito no operando de destino, passando-se, então, para a instrução seguinte que estiver com todos os seus operandos disponíveis.

Instruções e dados estão em memórias físicas distintas; um programa é constituído de uma seqüência de instruções de máquina; uma instrução é lida da memória de acordo com a ordem dessa seqüência e, quando é executada, passa-se, então, para a próxima instrução na seqüência.

(Companhia de Saneamento Básico de São Paulo - SP (SABESP/SP) 2012 - Analista de Gestão I - Área Sistemas).

Sobre os registradores, considere:

- I. São memórias de alta velocidade localizadas em um processador que guardam dados para uso imediato pelo processador.
- II. O tamanho dos registradores é determinado pelo número de bits sobre o qual o processador pode trabalhar de uma só vez.

III. Armazenar instruções de processador em qualquer outro tipo mais lento de memória que não sejam os registradores seria ineficiente, porque o processador ficaria ocioso enquanto esperasse pelo acesso aos dados.

V. Cada arquitetura de processador fornece um número diferente de registradores, e cada registrador atende a uma finalidade diferente.

Está correto o que se afirma em

	○ II, apenas.	
	○ I e III, apenas.	
	◯ II e III, apenas.	
	I, II e III, apenas.	
а	○ I, II, III e IV.	

(SUGEP - UFRPE - 2018 - UFRPE - Analista de Tecnologia da Informação - Suporte e Rede) A CPU (Unidade Central de Processamento, em português) é a parte de um computador que interpreta e executa as instruções de um programa (software). Ela é constituída basicamente de UC (Unidade de Controle), ULA (Unidade de Lógica e Aritmética) e Registradores. Sobre esse assunto, analise as proposições abaixo.

- 1) Os Registradores de Controle e Estado são utilizados por programadores de linguagem de máquina para otimizar as referências às memórias.
- 2) A UC gera sinais de controle externos ao processador para comandar a transferência de dados entre o processador e a memória, ou os módulos de E/S.

	stá(ão) correta(s):
	1, apenas.
	O 2, apenas.
	○ 1 e 2, apenas.
reta	2 e 3, apenas.
	○ 1, 2 e 3.
O	GV - 2017 - IBGE - Analista Censitário - Análise de Sistemas - Suporte peracional e de Tecnologia) O acesso a dados em registradores internos da nidade Central de Processamento (UCP):
O	
O	peracional e de Tecnologia) O acesso a dados em registradores internos da nidade Central de Processamento (UCP):
O _I	peracional e de Tecnologia) O acesso a dados em registradores internos da nidade Central de Processamento (UCP): produz uma cópia do dado em memória ROM;
O _I	peracional e de Tecnologia) O acesso a dados em registradores internos da nidade Central de Processamento (UCP): produz uma cópia do dado em memória ROM; não usa a memória RAM;

	as instru CO no qual,	ções po OP1 CO é o o	OP2	operação, OP1 é o operando 1 e OP2 é o OP2 possuem, cada um, 16 bits. Nessa
	arquitetu 1	2	tem o tar	manho (em bits) igual a:
orreta				
	pequena armazer	as porçõ namento	es de men	or-Fiscal da Receita Estadual) Registradores são nória dentro do processador usados para o de dados. Dentre os tipos de registradores há o

orreta

armazena o endereço da próxima instrução que será carregada na memória.

	possui apenas um bit para indicar que uma situação particular ocorreu, como por exemplo, overflow.
	funciona como uma pilha de instruções temporárias do tipo LIFO (Last In, First Out) para uso interno do processador.
	também é conhecido como cache de memória por fazer a intermediação entre a unidade de busca do processador e a memória RAM.
	o envia pedidos ao processador para que pare a execução de um programa e atenda outro processo incondicionalmente.
-	017 - UFSBA - Analista de Tecnologia da Informação) Assinale a alternativa le NÃO apresenta característica das arquiteturas RISC.
	Operaçãos register register
	Operações register-register
	Operações register-register Modos de endereçamentos simples

	Sobre a arquitetura RISC é correto afirmar o seguinte:
-	○ Em comparação com a CISC, RISC apresenta uma arquitetura com poucos registradores.
orreta	O uso de pipeline é uma característica da RISC.
_	Comumente, as instruções RISC consomem vários ciclos de clock.
	○ É comum, em uma arquitetura RISC, encontramos instruções de 32, 64, 128,256 e 512 bytes no mesmo processador.
_	○ Muitas instruções RISC são executadas pelo microcódigo.
	(2018 - UFRN - Engenheiro - Engenharia da Computação) A respeito das estratégias RISC e CISC, é correto afirmar que
_	a CISC investe no aumento do número de instruções por programa.
-	○ a CISC investe na redução do tempo por ciclo.
-	a RISC investe no aumento da complexidade das instruções.
orreta	a RISC investe na redução da quantidade e complexidade das instruções.

(2014 - Unilab - Analista de Tecnologia da Informação) Entre outros componentes, além da unidade lógica e aritmética (ULA), da unidade de controle (UC), e dos registradores, os microprocessadores mais sofisticados

	têm uma unidade de ponto flutuante que permite a realização de cálculos mais complexos do que a ULA, podendo até substituir totalmente as funções de processamento geral dessa unidade.
	○ True
orreta	False V
	A principal vantagem do uso da microprogramação para implementar uma unidade de controle é que ela simplifica o projeto, resultando em uma implementação mais barata e menos propensa a erros. Os decodificadores e a unidade de sequenciamento lógico tem uma lógica muito complexa.
	○ True
	A vantagem está correta, mas os decodificadores e a unidade de sequenciamento lógico tem uma lógica muito simples.
orreta	False V
	A unidade de controle desempenha as seguintes tarefas:
orreta	faz com que o processador siga uma série de micro-operações na sequência correta (sequenciamento), com base no programa que está sendo executado

orreta	☐ faz com que cada micro-operação seja executada
orreta	produz sinais de controle para a execução de micro-instruções
orreta	☐ Busca e decodifica instruções ✓
	realiza cálculos lógicos e aritméticos
	armazena instruções temporariamente