MATRIZ

Operações

Um número real vezes uma MATRIZ.

Valor: meio ponto

Data da entrega: 27/08/2020

Multiplicação de uma MATRIZ vezes um número real.

Seja o número real \propto , tais que, $\forall \alpha$, $\alpha \in IR$ e uma MATRIZ "A". Fazendo o produto de ambos, teremos,

$$B = \propto. A = \propto. \begin{bmatrix} a_{ij} \end{bmatrix}_{mxn} = \propto. \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}_{2x4} = \begin{bmatrix} \propto. \, a_{11} & \propto. \, a_{12} & \propto. \, a_{13} & \propto. \, a_{14} \\ \propto. \, a_{21} & \propto. \, a_{22} & \propto. \, a_{23} & \propto. \, a_{24} \end{bmatrix}_{2x4}.$$

Concluindo, multiplica-se o número real \propto vezes cada objeto localizado da matriz 'A', temos a matriz, ordem conformáveis 2x4.

$$B = \begin{bmatrix} \propto a_{11} & \propto a_{12} & \propto a_{13} & \propto a_{14} \\ \propto a_{21} & \propto a_{22} & \propto a_{23} & \propto a_{24} \end{bmatrix}_{274}$$

EXEMPO 1

Exemplo com números.

Seja a matriz $A = \begin{bmatrix} 7 & 6 & 6 \\ 6 & 4 & 5 \end{bmatrix}_{2x3}$ e $\alpha = 3$, ordem conformáveis 2x3. Multiplicando, teremos.

RESOLUÇAO

$$B = 3. A = 3. \begin{bmatrix} 7 & 6 & 6 \\ 6 & 4 & 5 \end{bmatrix}_{2x3} = \begin{bmatrix} 3. (7) & 3. (6) & 3. (6) \\ 3. (6) & 3. (4) & 3. (5) \end{bmatrix}_{2x3} = \begin{bmatrix} 21 & 18 & 18 \\ 18 & 12 & 15 \end{bmatrix}_{2x3} = B$$

EXEMPLO 2

Seja a matriz $A = \begin{pmatrix} 2 & 4 \\ 7 & 8 \\ 9 & 1 \end{pmatrix}_{3x2}$, ordem conformáveis 3x2.

Multiplicação, o produto, -A

RESOLUÇAO

$$B = -A = (-1).A = (-1).\begin{pmatrix} 2 & 4 \\ 7 & 8 \\ 9 & 1 \end{pmatrix}_{3x2} = \begin{pmatrix} (-1).2 & (-1).4 \\ (-1).7 & (-1).8 \\ (-1).9 & (-1).1 \end{pmatrix}_{3x2} = \begin{pmatrix} -2 & -4 \\ -7 & -8 \\ -9 & -1 \end{pmatrix}_{3x2} = B$$

EXEMPLO 3

Seja a matriz QUADRADA, de conformidade 3x3,

$$A = \begin{pmatrix} 12 & -2 & 16 \\ 6 & 4 & 18 \\ -8 & -6 & 24 \end{pmatrix}_{3x3}, \text{ calcule o produto } \frac{A}{2}.$$

RESOLUÇÃO

$$C = \frac{A}{2} = \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 12 & -2 & 16 \\ 6 & 4 & 18 \\ -8 & -6 & 24 \end{pmatrix}_{3x3} = \begin{pmatrix} \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 12 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot -2 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 16 \\ \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 6 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 4 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 18 \\ \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot -8 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot -6 & \begin{pmatrix} \frac{1}{2} \end{pmatrix} \cdot 24 \end{pmatrix}_{3x3} = \begin{pmatrix} \frac{12}{2} & -\frac{2}{2} & \frac{16}{2} \\ \frac{6}{2} & \frac{4}{2} & \frac{18}{2} \\ -\frac{8}{2} & -\frac{6}{2} & \frac{24}{2} \end{pmatrix}_{3x3} = \begin{pmatrix} 6 & -1 & 8 \\ 3 & 2 & 9 \\ -4 & -3 & 12 \end{pmatrix}_{3x3} = c$$

Cada objeto da matriz foi multiplicado por $\left(\frac{1}{2}\right)$.

EXEMPLO 4

Calcule 3.
$$I_{3x3}$$
 . I_{mxn} é a matriz quadrada identidade $I_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}_{3x3}$, a diagonal com

elementos de valor 1 (um), uma unidade cada elemento da diagonal principal da matriz, quadrada, o restante dos elementos da matriz são os números zeros.

Um número real vezes uma matriz

DEFINIÇAO

Se
$$A=\left(a_{ij}\right)_{mxn}$$
 , então \propto A é a matriz $B=\left(b_{ij}\right)_{mxn}$ onde se tem:

$$b_{ij} = \propto a_{ij} \begin{cases} \forall i \in \{1, 2, 3, ..., m\} \\ \forall j \in \{1, 2, 3, ..., n\} \end{cases}$$

Matriz Identidade

Chamamos de MATRIZ IDENTIDADE (ou matriz unidade) de ordem quadrada $n \hspace{0.1cm}$ à matriz

DEFINIÇAO

$$I_n = \left(a_{ij}\right)_{nxn}$$
, tal que

$$a_{ij} = \begin{cases} 1, se \ i = j \\ 0, \ se \ i \neq j \end{cases} \; ; \; \forall i,j \; \in \; \{1, \; 2, \; 3, \ldots, \; n\}$$

EXERCÍCIO PROPOSTO 1

Calcule o produto
$$\frac{A}{-3}$$
, dado a matriz $A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 5 & 6 & 7 & 8 \\ 10 & 11 & 12 & 13 \\ 15 & 16 & 17 & 18 \end{bmatrix}_{4X4}$. Aplique o seu silogixmo.

O silogismo é a técnica de resolver exercícios e problemas aplicando as definições e os teoremas produtos de pesquisas científicas das universidades.

EXERCÍCIO PROPOSTO 2

Fazer a resenha crítica da definição do produto ∝. A.

EXERCÍCIO PROPOSTO 3

Fazer a resenha crítica da definição da matriz identidade, $A = I_{nxn} = I_n$.

ATENÇAO: Aluna ou aluno, se você estiver achando que está difícil as explicações deste conteúdo, por favor, me fale. Eu estou preparando as aulas gravadas.

Bibliografia: IEZZI. Volume 2

Prof. FRANÇA S. PAULO, 24/08/2020