Zero Knowledge Compilers

John McCall

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

December 3, 2013

1 / 22

Overview

- Zero knowledge protocols have practical applications in cryptography.
- They are difficult to design and to implement.
- Zero knowledge compilers help to ease this burden.

- Zero Knowledge Protocols
- Compilers
- 3 Zero Knowledge Compilers
- 4 Applications
- Conclusion

- Zero Knowledge Protocols
 - Examples
- Compilers
- 3 Zero Knowledge Compilers
- 4 Applications
- Conclusion

Interactive Proof

Must satisfy:

- Completeness: For every $x \in S$, the verifier always accepts after interacting with the prover on common input x.
- Soundness: For every $x \notin S$, the verifier rejects with probability at least $\frac{1}{p(|x|)}$.

Zero Knowledge Proof

Magic Cave

Graph Theory Intro

Hamiltonian Cycle

- 1 Zero Knowledge Protocols
- Compilers
- 3 Zero Knowledge Compilers
- 4 Applications
- Conclusion

Compilers

- 1 Zero Knowledge Protocols
- Compilers
- 3 Zero Knowledge Compilers
- Applications
- Conclusion

Relevant Background

Mostly Number Theory and Crypto stuff here.

Sigma-Protocols

ZKCrypt

ZKPDL

- 1 Zero Knowledge Protocols
- Compilers
- 3 Zero Knowledge Compilers
- 4 Applications
- Conclusion

Electronic Cash

- 1 Zero Knowledge Protocols
- Compilers
- 3 Zero Knowledge Compilers
- 4 Applications
- Conclusion

Final Thoughts

Acknowledgments

Questions