

Lesson 6:

Maximum and Minimum

Introduction

METIS

Lecture Overview:

Goals of the lecture:

1. Find the maximum and minimum of a function

Maximum and Minimum

METIS

$$f(x) = x^3 - x$$

$$f(x) = x^3 - x$$

$$f'(x) = 3x^2 - 1 = 0$$

$$f(x) = x^3 - x$$

$$f'(x) = 3x^2 - 1 = 0$$
$$3x^2 = 1$$

$$f(x) = x^3 - x$$

$$f'(x) = 3x^{2} - 1 = 0$$
$$3x^{2} = 1$$
$$x^{2} = \frac{1}{3}$$

$$f(x) = x^3 - x$$

$$f'(x) = 3x^{2} - 1 = 0$$

$$3x^{2} = 1$$

$$x^{2} = \frac{1}{3}$$

$$x = \pm \sqrt{\frac{1}{3}} = \pm 0.54$$

$$f(x) = x^3 - x$$

$$f(x) = x^3 - x$$

Concave shapes f''(x) < 0

Convex shapes f''(x) > 0

$$f'(x) = 3x^2 - 1 \left(\frac{3}{5} \right)^2$$

Concave shapes f''(x) < 0

Convex shapes f''(x) > 0

$$f'(x) = 3x^2 - 1 \, \mathrm{s}^{2x}$$

Definition:

Maximum: f'(x) = 0 and f''(x) < 0

Minimum: f'(x) = 0 and f''(x) > 0

Neither: f'(x) = 0 and f''(x) = 0

Problem 1:

Problem 1:

Find the point where there is a maximum or minimum, and determine if it is a maximum or minimum.

Problem 1:

Problem 1:

Find the point where there is a maximum or minimum, and determine if it is a maximum or minimum.

$$f(x) = 60 \times -x^{2}$$
 $f''(x) = -2$
 $f''(x) = 60 - 2X = 0$
 $f''(x) = -2$
 $f''(x) = -2$
 $f''(x) = -2$
 $f''(x) = -2$
 $f''(x) = -2$

At $x = 30$

At $x = 30$

Maximum

QUESTIONS?