Indraprastha Institute of Information Technology Delhi (IIITD) Department of Computational Biotechnology

BIO213 - Introduction to Quantitative Biology

ASSIGNMENT-1 (March 18, 2023)

<u>Question 1.</u> Compute global alignment between the following DNA sequences using dynamic programming and the given scoring scheme.

DNA sequences: (1) GATGCGCAG, (2) GGCAGTA Scoring function: Match = +2, Mismatch = -3, Gap = -1

a) Provide the bidimensional array obtained for computing the optimal alignment. [5 marks]

		G	A	T	G	C	G	C	A	G
	0	-1	-2	-3	-4	-5	-6	-7	-8	-9
G	-1	2	1	0	-1	-2	-3	-4	-5	-6
G	-2	1	0	-1	2	1	0	-1	-2	-3
C	-3	0	-1	-2	1	4	3	2	1	0
Α	-4	-1	2	1	0	3	2	1	4	3
G	-5	-2	1	0	3	2	5	4	3	6
T	-6	-3	0	3	2	1	4	3	2	5
Α	-7	-4	-1	2	1	0	3	2	5	4

5 marks if all correct.

b) Is there more than one possibility of optimally aligning the given sequences? [5 marks]

Yes. 5 marks.

c) If yes, show all the optimal alignments with their scores. If no, provide the best alignment obtained with its corresponding score. [10 marks]

GATGCGCAG-- GATGC-GC-AG

GGCAGTA	GGCAG-TA-
GATGCGCAG	GATGC-G-CAG
GGCAGTA	GGCAGT-A-
GATGCGCAG	GATGCGCAG
G-GCAGTA	GGCAGTA

1.5 marks for each of the correct alignments, 1 mark extra if all the alignments have been shown.

<u>Question 2.</u> Will changing the scoring scheme to [Match = +2, Mismatch = -1, Gap = -3] modify the results obtained in Question 1? If yes, show the results and justify the same. [10 marks]

Dynamic programming matrix visualisation

Paths for optimal alignments are indicated in red

GATGC-GCAG

| | | | | |
G--GCAGTA-

5+2 marks for the correct matrix and alignment, respectively.

Now that gaps have more penalty than mismatches, we can see a mismatch in the alignment to get the next matched base-pair. Also, the number of possible alignments has reduced drastically due to the increase in penalty for gaps. 3 marks for the justification.

<u>Question 3.</u> Compute the most optimal local alignment (using dynamic programming) for the same DNA sequences, and the scoring scheme provided in Question 2.

a) Provide the generated bidimensional array. [5 marks]

		G	A	T	G	C	G	C	A	G
	0	0	0	0	0	0	0	0	0	0
G	0	2	0	0	2	0	2	0	0	2
G	0	2	1	0	2	1	2	1	0	2
C	0	0	1	0	0	4	1	4	1	0
Α	0	0	2	0	0	1	3	1	6	3
G	0	2	0	1	2	0	3	2	3	8
T	0	0	1	2	0	1	0	2	1	5
A	0	0	2	0	1	0	0	0	4	2

5 marks if all correct.

b) Provide all the alignments obtained with their corresponding scores. [10 marks]

GCAG

 \Box

GCAG 10 marks for correct alignment.

Question 4. What changes were required in the program in order to perform local rather than global pairwise sequence alignment? [5 marks]

- 1. First row and column had to be initialized to zero.
- 2. Minimum value added to the cell was zero. Negative values not acceptable.
- 3. Trace back need not start from the last cell of the matrix. It starts with the highest value located anywhere in the matrix.

First point; 1 mark, Second and third point: 2 marks each