Package 'bioimagetools'

September 18, 2015

Version 0.02.23

Date 2015-06-16
Title Some tools for bioimaging
Author Volker Schmid
Maintainer Volker Schmid <stats@volkerschmid.de></stats@volkerschmid.de>
Depends R (>= 2.14.0), utils
Imports EBImage, tiff
Suggests parallel, spatstat, knitr
Description Some tools for bioimaging
License GPL
URL http://volkerschmid.de VignetteBuilder knitr R topics documented:
bwlabel3d

mexican.hat.brush13nextneighbourdistribution13nextneighbourenvelope14outside15points2class15

2 cmoments3d

	preprocess	(
	readBMP	
	readTIF	7
	segment	
	segment.outside	
	standardize	
	tablen	
	testColoc	3
	writeTIF	Z
Index	2	E

bwlabel3d

Binary segmentation in 3d

Description

Binary segmentation in 3d

Usage

bwlabel3d(img)

Arguments

Х

A 3d array. x is considered as a binary image, whose pixels of value 0 are considered as background ones and other pixels as foreground ones.

Value

A Grayscale 3d array, containing the labelled version of x.

cmoments3d

Computes moments from image objects

Description

Computes intensity-weighted centers of objects and their mass (sum of intensities) and size.

Usage

```
cmoments3d(mask, ref)
```

Arguments

mask a labeled stack as returned from bwlabel3d

ref the original image stack

cnnTest 3

Value

a matrix with the moments of the objects in the stack

cnnTest

Permutation Test for cross-type nearest neighbor distances

Description

Permutation Test for cross-type nearest neighbor distances

Usage

```
cnnTest(dist, n1, n2, w = rep(1, n1 + n2), B = 999, alternative = "less",
  returnSample = TRUE, papply = if (require("multicore")) mclapply else
  lapply, ...)
```

Arguments

dist	a distance matrix, the upper n1 x n1 part contains distances between objects of type 1 the lower n2 x n2 part contains distances between objects of type 2
n1,	n2 numbers of objects of type 1 and 2 respectively
w	(optional) weights of the objects (length n1+n2)
В	number of permutations to generate
alternative	alternative hypothesis ("less" to test H0:Colocalization)
returnSample	return sampled null distibution
papply	which apply function to use for generating the null distribution, defaults to mclapply if multicore is available, else lapply
	additional arguments for papply

Value

a list with the p.value, the observed weighted mean of the cNN-distances, alternative and (if return-Sample) the simulated null dist

4 colors.in.classes

colors.in.classes

Title Compute colors in classes distribution

Description

Title Compute colors in classes distribution

Usage

```
colors.in.classes(classes, color1, color2 = NULL, mask = array(TRUE,
  dim(classes)), N = max(classes, na.rm = TRUE), thresh1 = NULL,
  thresh2 = NULL, sd1 = 2, sd2 = 2, col1 = "green", col2 = "red",
  test = FALSE, plot = TRUE)
```

Arguments

classes	Image of classes
color1	Image of first color
color2	Image of second color
mask	Image mask
N	Maximum number of classes
thresh1	Threshold for first color image
thresh2	Threshold for second color image
sd1	For automatic threshold, that is: mean(color1)+sd1*sd(color1)
sd2	For automatic threshold of color2
col1	Name of color 1
col2	Name of color 2
test	Compute tests
plot	Plot barplots

Value

Table of classes with color 1 (and 2)

crossNN 5

crossNN	Compute cross-type nearest neighbor distances
crossNN	Compute cross-type nearest neighbor distances

Description

Compute cross-type nearest neighbor distances

Usage

```
crossNN(dist, n1, n2, w = rep(1, n1 + n2))
```

Arguments

dist	a distance matrix, the upper $n1 \times n1$ part contains distances between objects of type 1 the lower $n2 \times n2$ part contains distances between objects of type 2
n1,	n2 numbers of objects of type 1 and 2 respectively
W	optional weights of the objects (length n1+n2), defaults to equal weights

Value

a (n1+n2) x 2 matrix with the cross-type nearest neighbor distances and weights given as the sum of the weights of the involved objects

distance2border	A function to compute the distance from	
-----------------	---	--

Description

Find distances to borders in classified image

Usage

```
distance2border(points, img.classes, x.microns, y.microns, z.microns, class1, class2 = NULL, mask = a
```

Arguments

points	Data frame containing the coordinates of points in microns as X-, Y-, and Z-variables.
img.classes	3D array (or image) of classes for each voxel.
x.microns	Size of image in x-direction in microns.
y.microns	Size of image in y-direction in microns.
z.microns	Size of image in z-direction in microns.
class1	Which class is the reference class. If is.null(class2), the function computes the distance of points to the border of class (in img.classes).

6 distance2border

class2	Which class is the second reference class. If not is.null(class2), the function computes the distance of points from the border between classes class1 and class2. Default: class2=NULL.
mask	Array of mask. Needs to have same dimension as img.classes. Only voxels with mask[i,j,k]==TRUE are used. Default: array(TRUE,dim(img.classes))
hist	Automatically plot histogram using hist() function. Default: FALSE.
main	If (hist) title of histogramm. Default: "Minimal distance to border".
xlab	If (hist) description of x axis. Default: "Distance in Microns".
xlim	If (hist) vector of range of x axis (in microns). Default: c(3,.3)
n	If (hist) number of bins used in hist(). Default: 20.
stats	If (hist) write statistics into plot. Default: TRUE.
file	If (hist) the file name of the produced png. If NULL, the histogram is plotted to the standard device. Default: NULL.

Details

This function computes the distances from points to the border of a class or the border between two classes. For the latter, only points in these two classes are used.

Value

The function returns a vector with distances. Negative values correspond to points lying in class1.

Note

Warning: So far no consistency check for arguments is done. E.g., distance2border(randompoints,img.classes=array(1,c(100, will fail with some cryptic error message (because class1 > max(img.classes)).

Author(s)

Volker Schmid

```
## Not run:
require(bioimagetools)
#simulate random data
randompoints<-data.frame("X"=runif(100,0,3),"Y"=runif(100,0,3),"Z"=runif(100,0,.5)) # coordinates in microns!
plot(randompoints$X,randompoints$Y,xlim=c(0,3),ylim=c(0,3),pch=19)

# points in a circle
circlepoints<-read.table(system.file("extdata","kreispunkte.table",package="bioimagetools"),header=TRUE)
plot(circlepoints$X,circlepoints$Y,xlim=c(0,3),ylim=c(0,3),pch=19)

# a circle like image
img<-readTIF(system.file("extdata","kringel.tif",package="bioimagetools"))
img<-array(img,dim(img)) # save as array for easier handling
image(img[,,1])</pre>
```

filter 7

```
#and a mask
mask<-readTIF(system.file("extdata", "amask.tif", package="bioimagetools"))</pre>
mask<-array(mask==65536,dim(mask)) # save as array for easier handling</pre>
image(mask[,,1])
xy.microns <- 3 # size in x and y direction (microns)</pre>
z.microns <- 0.5 # size in z direction (microns)</pre>
# distance from points to class
d1<-distance2border(randompoints, img, xy.microns, xy.microns, z.microns, class1=1,hist=TRUE)
d2<-distance2border(circlepoints, img, xy.microns, xy.microns, z.microns, class1=1,hist=FALSE)
plot(density(d2),type="l")
lines(c(0,0),c(0,10),lty=3)
lines(density(d1),col="blue")
# use mask, should give some small changes
d3<-distance2border(circlepoints, img, xy.microns, xy.microns, z.microns, class1=1,mask=mask,hist=FALSE)
plot(density(d2),type="l")
lines(c(0,0),c(0,10),lty=3)
lines(density(d3),col="blue")
# distance from border between classes
anotherimg<-img+mask
image(seq(0,3,length=300),seq(0,3,length=300),anotherimg[,,1])
points(circlepoints,pch=19)
d4<-distance2border(circlepoints, anotherimg, xy.microns, xy.microns, z.microns, class1=1,class2=2)
plot(density(d4),lwd=2)
# this should give the same answer
d5<-distance2border(circlepoints, anotherimg, xy.microns, xy.microns, class1=2,class2=1)
lines(density(-d5),lty=3,col="blue",lwd=1.5)
## End(Not run)
```

filter

Apply filter to 3D images

Description

A filter is applied to a 3D array representing an image. So far only variance filters are supported.

Usage

```
filter(img, filter="var", window, z.scale=1)
```

8 img

Arguments

img is a 3d arrary representing an image.

filter is the filter to be applied. Options: var: Variance filter.

window half size of window; i.e. window=1 uses a window of 3 voxels in each direction.

z.scale ratio of voxel dimension in x/y direction and z direction.

Value

Multi-dimensional array of filtered image data.

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

img image for microscopy

Description

image for microscopy

Usage

$$img(x, col = "grey", ...)$$

Arguments

x Image, 2D Matrix

col Color, "grey", "red" ("r"), "green" ("g") or "blue" ("b")

... other parameters for graphics::image

Value

no return

intensity3d 9

intensity3d

Intensity of a 3d Dataset or a Model

Description

Generic function for computing the intensity of a spatial dataset or spatial point process model.

Usage

```
intensity3d(X,...)
```

Arguments

X A spatial dataset or a spatial point process model.

... Further arguments depending on the class of X.

Details

This is a generic function for computing the intensity of a spatial dataset or spatial point process model. There are methods for point patterns (objects of class "ppp") and fitted point process models (objects of class "ppm"). The empirical intensity of a dataset is the average density (the average amount of <e2><80><98>stuff<e2><80><99> per unit area or volume). The empirical intensity of a point pattern is computed by the method intensity.ppp. The theoretical intensity of a stochastic model is the expected density (expected amount of <e2><80><98>stuff<e2><80><99> per unit area or volume). The theoretical intensity of a fitted point process model is computed by the method intensity.ppm.

Value

Usually a numeric value or vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/and Rolf Turner <r.turner@auckland.ac.nz>

See Also

```
intensity.ppp, intensity.ppm.
```

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
```

10 Kcross3D

```
{
   }
```

Kcross3D

Multitype K Function (Cross-type)

Description

For a multitype point pattern, estimate the multitype \$K\$ function which counts the expected number of points of type \$j\$ within a given distance of a point of type \$i\$.

Usage

```
Kcross3D(X, i, j, r=NULL, breaks=NULL, correction, ..., ratio=FALSE)
```

Arguments X

	tion \$K_ij(r)\$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
i	The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).
j	The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).
r	numeric vector. The values of the argument \$r\$ at which the distribution function \$K_ij(r)\$ should be evaluated. There is a sensible default. First-time users are strongly advised not to specify this argument. See below for important conditions on \$r\$.
breaks	This argument is for internal use only.
correction	A character vector containing any selection of the options "border", "bord.modif", "isotropic", "or "best". It specifies the edge correction(s) to be applied.
	Ignored
ratio	Logical. If TRUE, the numerator and denominator of each edge-corrected estimate will also be saved, for use in analysing replicated point patterns.

The observed point pattern, from which an estimate of the cross type \$K\$ func-

Details

This function Kcross and its companions Kdot and Kmulti are generalisations of the function Kest to multitype point patterns.

A multitype point pattern is a spatial pattern of points classified into a finite number of possible <e2><80><9c>colours<e2><80><9d> or <e2><80><9c>types<e2><80><9d>. In the \textbfspatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.

Kcross3D

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as ppp. It must be a marked point pattern, and the mark vector X\$marks must be a factor.

The arguments i and j will be interpreted as levels of the factor X\$marks. If i and j are missing, they default to the first and second level of the marks factor, respectively.

The <e2><80><9c>cross-type<e2><80><9d> (type \$i\$ to type \$j\$) \$K\$ function of a stationary multitype point process \$X\$ is defined so that \$\lambda_j K_ij(r)\$ equals the expected number of additional random points of type \$j\$ within a distance \$r\$ of a typical point of type \$i\$ in the process \$X\$. Here \$\lambda_j\$ is the intensity of the type \$j\$ points, i.e. the expected number of points of type \$j\$ per unit area. The function \$K_ij\$ is determined by the second order moment properties of \$X\$.

An estimate of \$K_ij(r)\$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type \$i\$ points were independent of the process of type \$j\$ points, then \$K_ij(r)\$ would equal \$\pi r^2\$. Deviations between the empirical \$K_ij\$ curve and the theoretical curve \$\pi r^2\$ may suggest dependence between the points of types \$i\$ and \$j\$.

This algorithm estimates the distribution function $K_{ij}(r)$ from the point pattern X. It assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as X\$window) may have arbitrary shape. Biases due to edge effects are treated in the same manner as in Kest, using the border correction.

The argument \$r\$ is the vector of values for the distance \$r\$ at which \$K_ij(r)\$ should be evaluated. The values of \$r\$ must be increasing nonnegative numbers and the maximum \$r\$ value must not exceed the radius of the largest disc contained in the window.

The pair correlation function can also be applied to the result of Kcross; see pcf.

Value

An object of class "fv" (see fv. object).

Essentially a data frame containing numeric columns

r the values of the argument \$r\$ at which the function \$K_ij(r)\$ has been esti-

mated

theo the theoretical value of \$K_ij(r)\$ for a marked Poisson process, namely \$\pi\$

r^2\$

together with a column or columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $K_{ij}(r)$ obtained by the edge corrections named.

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of K(r).

Warnings

The arguments i and j are always interpreted as levels of the factor X\$marks. They are converted to character strings if they are not already character strings. The value i=1 does \textbfnot refer to the first level of the factor.

12 L.cross.3D

Author(s)

Adrian Baddeley <Adrian.Baddeley@uwa.edu.au> http://www.maths.uwa.edu.au/~adrian/and Rolf Turner <r.turner@auckland.ac.nz>

References

Cressie, N.A.C. \emphStatistics for spatial data. John Wiley and Sons, 1991. Diggle, P.J. \emphStatistical analysis of spatial point patterns. Academic Press, 1983. Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants<e2><80><99> nests. \emphApplied Statistics \textbf32, 293<e2><80><93>303 Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. \emphJ. Royal Statist. Soc. Ser. B \textbf44, 406<e2><80><93>413. Ripley, B.D. \emphStatistical inference for spatial processes. Cambridge University Press, 1988. Stoyan, D, Kendall, W.S. and Mecke, J. \emphStochastic geometry and its applications. 2nd edition. Springer Verlag, 1995.

See Also

```
Kdot, Kest, Kmulti, pcf
```

L.cross.3D

Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

```
L.cross.3D(X, Y, Z, X2, Y2, Z2, psz = 25, width = 1, intensity = NULL,
intensity2 = NULL, parallel = FALSE)
```

Arguments

Χ	X coordinate of first observed point pattern in microns.
Υ	Y coordinate
Z	Z coordinate
X2	X coordinate of second observed point pattern
Y2	Y coordinate
Z2	Z coordinate
psz	pointsize used for discetization. Smaller values are more precise, but need more computation time.
width	maximum distance

mexican.hat.brush 13

intensity intensity of first pattern. Only if

 $\lambda(s)! = \lambda$

.

intensity2 intensity of second pattern

parallel Logical. Can we use parallel computing?

Value

a list of breaks and counts.

mexican.hat.brush

Mexican hat brush to use with filter2

Description

Mexican hat brush to use with filter2

Usage

```
mexican.hat.brush(n = 7, sigma2 = 1)
```

Arguments

n size of brush

sigma2 standard deviation

Value

brush

nextneighbourdistribution

Ploting next neighbour distribution of 3D point patterns

Description

Computes the minimal distances between next neighbours and plots their distribution. For marked points (e.g., red and green), same=FALSE computes the minimal distances to the next neighbour of the other mark (color). X, Y and Z coordinates of the point pattern have to be given in microns.

Usage

nndist(X,Y,Z,X2=X,Y2=Y,Z2=Z,same=TRUE,psz=25,main="Next neighbour distribution",file=NULL, return=FARAME and the property of the property of

Arguments

Χ	X coordinate of (first) point pattern in microns.
Υ	Y coordinate of (first) point pattern in microns.
Z	Z coordinate of (first) point pattern in microns.
X2	X2 coordinate of second point pattern in microns.
Y2	Y2 coordinate of second point pattern in microns.
Z2	Z2 coordinate of second point pattern in microns.
same	is a boolean parameter; TRUE if all points are of same color.
psz	is the approximate number of pixels per micron (for internal purposes only).
main	is the title of the plot.
file	is the file name of the png file. Default is NULL, which plots to the Null Device.
return	if TRUE, return next neighbour histogram (default: FALSE).

Value

Histogram of Next Neighbour Distribution (if return=TRUE).

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

 $\begin{tabular}{ll} next neighbour envelope & \it Envelope for distribution of next-neighbour distances of 3D point patterns \\ \hline & \it terns \\ \end{tabular}$

Usage

```
nextneighbourenvelope(x)
```

Arguments

Х

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
    }
```

outside 15

outside

Segmentation of the background of 3D images based on classes

Description

Segmentation of the background of 3D images based on classes.

Usage

```
outside(img,what,blobsize=1)
```

Arguments

img is a 3d arrary representing an image.

what is an integer of the class of the background.

blobsize is an integer, representing the minimal diameter for bridges from the outside.

E.g., a blobsize=3 allows for holes of size 2*(blobsize-1)=4 in the edge of the

object.

Value

A binary 3d array: 1 outside the object, 0 inside the object.

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

points2class

Count points in classified image

Usage

```
points2class(x)
```

Arguments

Χ

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

16 preprocess

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x)
{
  }
```

preprocess

Get central moments of objects in a single-channel image stack

Description

Uses the methodology used for segmentation in the EBImage vignette (threshhold->opening->fillHull) from all 3 spatial directions and overlays these results to get a binary image which is then segmented with bwlabel3d. Central moments are extracted with cmoments3d

Usage

```
preprocess(file, threshold = 0.95, threshW = 5, threshH = 5,
  brushsize = 3, quantile = TRUE)
```

Arguments

the path of the image stack

threshold the quantile of intensities used for thresholding if quantile=TRUE or the intensity value if quantile=FALSE, defaults to the 80% quantile

threshW, threshH width and height of the moving rectangular window for threshold, defaults to 5.

brushsize the brushsize for makeBrush for opening, defaults to 3

quantile defaults to TRUE

Value

a list with the original stack, the labeled stack, and the matrix of central moments of the found objects

readBMP 17

readBMP

Read bitmap files

Description

Read 2D grey-value BMP files

Usage

```
readBMP(file)
```

Arguments

file

A character vector of file names or URLs.

Value

Returns a matrix with BMP data as integer.

Author(s)

Volker J. Schmid

Examples

```
\label{lem:billing} $$bi<-readBMP("http://www.statistik.lmu.de/institut/ag/bioimg/bit/ratbert.bmp")$$ image(bi,col=grey(seq(1,0,length=100)))
```

readTIF

Read tif stacks

Description

Read tif stacks

Usage

```
readTIF(file = file.choose(), native = FALSE, as.is = FALSE,
    channels = NULL)
```

Arguments

file Name of the file to read from

native determines the image representation - if FALSE (the default) then the result is

an array, if TRUE then the result is a native raster representation (suitable for

plotting).

as.is attempt to return original values without re-scaling where possible

channels number of channels

18 segment

Value

3d or 4d array

segment

Segmentation of 3D images using EM algorithms

Description

egmentation of 3D images using EM algorithms

Usage

```
segment(img, nclust, beta, z.scale = 0, method = "cem", varfixed = TRUE,
maxit = 30, mask = array(TRUE, dim(img)), priormu = rep(NA, nclust),
priormusd = rep(NULL, nclust), min.eps = 10^{ -7 },
inforce.nclust = FALSE, start = NULL)
```

Arguments

img	is a 3d arrary representing an image.
nclust	is the number of clusters/classes to be segmented.
beta	is a matrix of size nclust \boldsymbol{x} nclust, representing the prior weight of classes neighbouring each other.
z.scale	ratio of voxel dimension in x/y direction and z direction. Will be multiplied on beta for neighbouring voxel in z direction.
method	only "cem" classification EM algorithm implemented.
varfixed	is a logical variable. If TRUE, variacne is equal in each class.
maxit	is the maximum number of iterations.
mask	is a logical array, representing the voxels to be used in the segmentation.
priormu	is a vector with mean of the normal prior of the expected values of all classes. Default is NA, which represents no prior assumption.
priormusd	is a vector with standard deviations of the normal prior of the expected values of all classes.
min.eps	stop criterion. Minimal change in sum of squared estimate of mean in order to stop.
inforce.nclust	if TRUE enforces number of clusters to be nclust. Otherwise classes might be removed during algorithm.
start	?

Value

A list with "class": 3d array of class per voxel; "mu" estimated means; "sigma": estimated standard deviations.

segment.outside 19

Examples

```
original<-array(1,c(300,300,50))
for (i in 1:5)original[(i*60)-(0:20),,]<-original[(i*60)-(0:20),,]+1
for (i in 1:10)original[,(i*30)-(0:15),]<-original[,(i*30)-(0:15),]+1
original[,,26:50]<-4-aperm(original[,,26:50],c(2,1,3))
img<-array(rnorm(300*300*50,original,.2),c(300,300,50))
img<-img-min(img)
img<-img/max(img)
beta<-matrix(rep(-.5,9),nrow=3)
beta<-beta+1.5*diag(3)
seg.img<-segment(img,3,beta,z.scale=.3)
print(sum(seg.img$class!=original)/prod(dim(original)))
## Not run:
    EBImage::display(seg.img$class/3)
## End(Not run)</pre>
```

segment.outside

Segmentation of the background of 3D images based on automatic threshold

Description

Segmentation of the background of 3D images. Starting from the borders of the image, the algorithm trys to find the edges of an object in the middle of the image. From this, a threshold for the edge is defined automatically. The function then return the a logical array representing voxel inside the object.

Usage

```
segment.outside(img,blobsize=1)
```

Arguments

img is a 3d arrary representing an image.

blobsize is an integer, representing the minimal diameter for bridges from the outside.

E.g., a blobsize=3 allows for holes of size 2*(blobsize-1)=4 in the edge of the

object.

Value

A binary 3d array: 1 outside the object, 0 inside the object.

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

20 standardize

ŭ .

Description

Standardizes images in order to compare different images. Mean of standardized image is 0.5, standard deviation is sd.

Usage

```
standardize(img,mask=array(TRUE,dim(img)),N=32,sd=1/6)
```

Arguments

img is a 2d/3d arrary representing an image.

mask a mask.

N number of classes. sd standard deviation.

Value

Multi-dimensional array of standardized image.

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

```
#simuliere Daten zum Testen
test2<-runif(128*128,0,1)
test2<-sort(test2)
test2<-array(test2,c(128,128))
image(test2,col=grey(seq(0,1,by=1/1000)))
# Standardisiere test2 in 32 Klassen
std<-standardize(test2,N=32,sd=4)</pre>
```

tablen 21

tablen	Cross Tabulation and Table Creation (including empty classes)

Usage

tablen(x)

Arguments

... one or more objects which can be interpreted as factors (including character

strings), or a list (or data frame) whose components can be so interpreted. (For

as.table and as.data.frame, arguments passed to specific methods.)

exclude levels to remove for all factors in If set to NULL, it implies useNA = "always".

See <e2><80><98>Details<e2><80><99> for its interpretation for non-factor

arguments.

useNA whether to include NA values in the table. See <e2><80><98>Details<e2><80><99>.

dnn the names to be given to the dimensions in the result (the *dimnames names*).

deparse.level controls how the default dnn is constructed. See <e2><80><98>Details<e2><80><99>.

an arbitrary R object, or an object inheriting from class "table" for the as.data.frame

method.

row.names a character vector giving the row names for the data frame.

responseName The name to be used for the column of table entries, usually counts.

stringsAsFactors

logical: should the classifying factors be returned as factors (the default) or

character vectors?

Details

If the argument dnn is not supplied, the internal function list.names is called to compute the <e2><80><98>dimname names<e2><80><99>. If the arguments in ... are named, those names are used. For the remaining arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Only when exclude is specified and non-NULL (i.e., not by default), will table potentially drop levels of factor arguments.

useNA controls if the table includes counts of NA values: the allowed values correspond to never, only if the count is positive and even for zero counts. This is overridden by specifying exclude = NULL. Note that levels specified in exclude are mapped to NA and so included in NA counts.

Both exclude and useNA operate on an "all or none" basis. If you want to control the dimensions of a multiway table separately, modify each argument using factor or addNA.

It is best to supply factors rather than rely on coercion. In particular, exclude will be used in coercion to a factor, and so values (not levels) which appear in exclude before coercion will be mapped to NA rather than be discarded.

The summary method for class "table" (used for objects created by table or xtabs) which gives basic information and performs a chi-squared test for independence of factors (note that the function chisq.test currently only handles 2-d tables).

22 tablen

Value

tablen() returns a *contingency table*, an object of class "table", an array of integer values. Note that unlike S the result is always an array, a 1D array if one factor is given.

as. table and is. table coerce to and test for contingency table, respectively.

The as.data.frame method for objects inheriting from class "table" can be used to convert the array-based representation of a contingency table to a data frame containing the classifying factors and the corresponding entries (the latter as component named by responseName). This is the inverse of xtabs.

Author(s)

Volker J. Schmid <volkerschmid@users.sourceforge.net>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) *The New S Language*. Wadsworth & Brooks/Cole.

See Also

tabulate is the underlying function and allows finer control.

Use ftable for printing (and more) of multidimensional tables. margin.table, prop.table, addmargins.

```
require(stats) # for rpois and xtabs
## Simple frequency distribution
table(rpois(100, 5))
## Check the design:
with(warpbreaks, table(wool, tension))
table(state.division, state.region)
# simple two-way contingency table
with(airquality, table(cut(Temp, quantile(Temp)), Month))
a <- letters[1:3]
                                        # dnn is c("a", "")
table(a, sample(a))
table(a, sample(a), deparse.level = 0) # dnn is c("", "")
table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")
## xtabs() <-> as.data.frame.table() :
UCBAdmissions ## already a contingency table
DF <- as.data.frame(UCBAdmissions)</pre>
class(tab <- xtabs(Freq ~ ., DF)) # xtabs & table</pre>
## tab *is* "the same" as the original table:
all(tab == UCBAdmissions)
all.equal(dimnames(tab), dimnames(UCBAdmissions))
a \leftarrow rep(c(NA, 1/0:3), 10)
table(a)
```

testColoc 23

```
table(a, exclude = NULL)
b <- factor(rep(c("A", "B", "C"), 10))</pre>
table(b)
table(b, exclude = "B")
d <- factor(rep(c("A","B","C"), 10), levels = c("A","B","C","D","E"))</pre>
table(d, exclude = "B")
print(table(b, d), zero.print = ".")
## NA counting:
is.na(d) <- 3:4
d. <- addNA(d)
d.[1:7]
table(d.) # ", exclude = NULL" is not needed
## i.e., if you want to count the NA's of 'd', use
table(d, useNA = "ifany")
## Two-way tables with NA counts. The 3rd variant is absurd, but shows
## something that cannot be done using exclude or useNA.
with(airquality,
   table(OzHi = Ozone > 80, Month, useNA = "ifany"))
with(airquality,
   table(OzHi = Ozone > 80, Month, useNA = "always"))
with(airquality,
   table(OzHi = Ozone > 80, addNA(Month)))
```

testColoc

Permutation Test for cross-type nearest neighbor distances

Description

Permutation Test for cross-type nearest neighbor distances

Usage

```
testColoc(im1, im2, hres = 0.102381, vres = 0.25, B = 999,
  alternative = "less", returnSample = TRUE, ...)
```

Arguments

im1, im2 image stacks as returned by preprocess
hres, vres horizontal and vertical resolution of the stacks
B number of permutations to generate
alternative alternative hypothesis ("less" to test H0:Colocalization)
returnSample return sampled null distibution
additional arguments for papply

Value

a list with the p.value, the observed weighted mean of the cNN-distances

24 writeTIF

writeTIF	Writes image stack into a TIFF file. Wrapper for writeTIFF

Description

Writes image stack into a TIFF file. Wrapper for writeTIFF

Usage

```
writeTIF(img, file, bps = NULL, twod = FALSE, reduce = TRUE,
  attr = attributes(img))
```

Arguments

img	An image, a 3d or 4d array.
file	File name.
bps	number of bits per sample (numeric scalar). Supported values in this version are $8, 16, $ and $32.$
twod	Dimension of channels. TRUE for 2d images, FALSE for 3d images.
attr	Attributes of image stack. Will be propagated to each 2d image.

Index

*Topic \textasciitildekwd1	preprocess, 16
distance2border, 5	
intensity3d, 9	readBMP, 17
Kcross3D, 10	readTIF, 17
nextneighbourenvelope, 14	. 10
points2class, 15	segment, 18
tablen, 21	segment.outside, 19
*Topic \textasciitildekwd2	standardize, 20
distance2border, 5	tablen, 21
intensity3d,9	testColoc, 23
Kcross3D, 10	testcoroc, 25
nextneighbourenvelope, 14	writeTIF, 24
points2class, 15	= = = = , = :
tablen, 21	
bwlabel3d, 2	
cmoments3d, 2	
cnnTest, 3	
colors.in.classes, 4	
crossNN, 5	
, -	
distance2border,5	
filter,7	
img, 8	
intensity3d, 9	
Kcross3D, 10	
L.cross.3D, 12	
mexican.hat.brush,13	
nextneighbourdistribution, 13 nextneighbourenvelope, 14 nndist(nextneighbourdistribution), 13	
outside, 15	
noints?class 15	