

Description

Image

Caption

1. Hair dryer with a Nichrome heating element. an alloy of nickel and chromium. © Granta Design 2. Toaster with a Nichrome heating element. an alloy of nickel and chromium. © Granta Design

The material

Nickel forms a wide range of alloys, valued by the chemical engineering and food processing industries for their resistance to corrosion, and by the makers of furnaces and high temperature equipment for their ability to retain useful strength at temperatures up to 1200 C. Typical of these are the nickel-chromium (Ni-Cr) alloys, often containing some iron (Fe) as well. The chromium increases the already-good resistance to corrosion and oxidation by creating a surface film of Cr203, the same film that makes stainless steel stainless. The data given here are for nickel-chromium alloys. There are separate records for stainless steel and nickel-based super alloys.

Composition (summary)

Ni + 10 to 30% Cr + 0 to 10% Fe

General properties

•				
Density	8.3e3	-	8.5e3	kg/m^3
Price	* 13.9	-	15.3	USD/kg
Date first used	1905			

Mechanical properties

Young's modulus	200	-	220	GPa
Shear modulus	72	-	82	GPa
Bulk modulus	155	-	285	GPa
Poisson's ratio	0.305	-	0.315	
Yield strength (elastic limit)	365	-	460	MPa
Tensile strength	615	-	760	MPa
Compressive strength	365	-	460	MPa
Elongation	20	-	35	% strain

Nickel-chromium alloys

Hardness - Vickers	160	-	200	HV
Fatigue strength at 10^7 cycles	* 245	-	380	MPa
Fracture toughness	* 80	-	110	MPa.m^0.5
Mechanical loss coefficient (tan delta)	* 4e-4	-	0.002	

Thermal properties

Melting point	1.35e3	-	1.43e3	$\mathcal C$
Maximum service temperature	* 900	-	1e3	$\mathcal C$
Minimum service temperature	-272	-	-271	$\mathcal C$
Thermal conductor or insulator?	Poor co	ndud	ctor	
Thermal conductivity	9	-	15	W/m.℃
Specific heat capacity	430	-	450	J/kg.℃
Thermal expansion coefficient	12	-	14	µstrain/℃

Electrical properties

Electrical conductor or insulator?	Good conductor
Electrical resistivity	102 - 114 μohm.cm

Optical properties

Critical Materials Risk

Processability

Castability	3
Formability	3 - 4
Machinability	3
Weldability	4 - 5
Solder/brazability	5

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

Acetic acid (10%)	Excellent
Acetic acid (glacial)	Excellent
Citric acid (10%)	Excellent

Nickel-chromium alloys

Hydrochloric acid (10%)	Acceptable
Hydrochloric acid (36%)	Unacceptable
Hydrofluoric acid (40%)	Acceptable
Nitric acid (10%)	Acceptable
Nitric acid (70%)	Limited use
Phosphoric acid (10%)	Acceptable
Phosphoric acid (85%)	Acceptable
Sulfuric acid (10%)	Acceptable
Sulfuric acid (70%)	Acceptable

Durability: alkalis

Sodium hydroxide (10%)	Acceptable
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Excellent
Benzene	Excellent
Carbon tetrachloride	Excellent
Chloroform	Excellent
Crude oil	Excellent
Diesel oil	Excellent
Lubricating oil	Excellent
Paraffin oil (kerosene)	Excellent
Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Excellent
3 \ 3 /	

Nickel-chromium alloys

Fluorine (gas)	Excellent
O2 (oxygen gas)	Excellent
Sulfur dioxide (gas)	Acceptable

Durability: built environments

Industrial atmosphere	Excellent
Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Excellent

Durability: flammability

Flammability	Non-flammable
--------------	---------------

Durability: thermal environments

Tolerance to cryogenic temperatures	Excellent
Tolerance up to 150 C (302 F)	Excellent
Tolerance up to 250 C (482 F)	Excellent
Tolerance up to 450 C (842 F)	Excellent
Tolerance up to 850 C (1562 F)	Excellent
Tolerance above 850 C (1562 F)	Unacceptable

Geo-economic data for principal component

Annual world production, principal component	1.43e6	tonne/yr
Reserves, principal component	7.1e7	tonne

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 173	-	191	MJ/kg
CO2 footprint, primary production	* 10.9	-	12.1	kg/kg
Water usage	* 245	-	270	l/kg
Eco-indicator 95	5.2e3			millipoints/kg
Eco-indicator 99	2.83e3			millipoints/kg

Material processing: energy

Casting energy	* 10.5 - 1	1.6 MJ/kg
Extrusion, foil rolling energy	* 5.81 - 6	i.42 MJ/kg
Rough rolling, forging energy	* 3.05 - 3	3.37 MJ/kg
Wire drawing energy	* 21 - 2	3.2 MJ/kg
Metal powder forming energy	* 34.3 - 3	7.9 MJ/kg
Vaporization energy	* 1.17e4 - 1	.29e4 MJ/kg
Coarse machining energy (per unit wt removed)	* 0.768 - 0	.849 MJ/kg
Fine machining energy (per unit wt removed)	* 3.41 - 3	3.76 MJ/kg
Grinding energy (per unit wt removed)		

	* 6.34	-	7	MJ/kg
Non-conventional machining energy (per unit wt removed	117	-	129	MJ/kg
Material processing: CO2 footprint				
Casting CO2	* 0.785	-	0.868	kg/kg
Extrusion, foil rolling CO2	* 0.44	-	0.48	kg/kg
Rough rolling, forging CO2	* 0.23	-	0.25	kg/kg
Wire drawing CO2	* 1.57	-	1.74	kg/kg
Metal powder forming CO2	* 2.75	-	3.03	kg/kg
Vaporization CO2	* 875	-	967	kg/kg
Coarse machining CO2 (per unit wt removed)	* 0.0576	-	0.0637	kg/kg
Fine machining CO2 (per unit wt removed)	* 0.255	-	0.282	kg/kg
Grinding CO2 (per unit wt removed)	* 0.475	-	0.525	kg/kg
Non-conventional machining CO2 (per unit wt removed	8.75	-	9.67	kg/kg

Material recycling: energy, CO2 and recycle fraction

Recycle	✓
Embodied energy, recycling	* 30.1 - 33.3 MJ/kg
CO2 footprint, recycling	* 2.37 - 2.62 kg/kg
Recycle fraction in current supply	22 - 26 %
Downcycle	✓
Combust for energy recovery	×
Landfill	×
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Nickel alloys are non-toxic and can be recycled.

Supporting information

Design guidelines

Few other alloy systems can equal the nickel-based alloys in their combination of corrosion resistance and strength at low and high temperature. They are used in marine applications for heat exchanges in other structures. Nickel-iron alloys have high magnetic permeability (where electronic shielding and magnetic coils) and low thermal expansion (good for glass-to-metal joints). Invar, an alloy based on nickel, has essentially zero thermal expansion coefficient near room temperature; a magnetic contraction counteracts the ordinary thermal expansion, canceling it out. Nickel-chrome-iron alloys have high electrical resistance and are used as heating elements in toasters and industrial furnaces. Bi-metallic sheet of nickel bonded to copper is used as actuators for thermostats and safety devices. Alloys with titanium (Nitanols) have the remarkable property that they spring back to shape after severe deformation they are called "shape memory alloys" for this reason.

Technical notes

Ni-Cr-Fe alloys are marketed under a bewildering catalog of tradenames. Chromels are straight Ni-Cr alloys with up to 20% Cr. Durimet and Nichromes contain iron. There are many more.

Phase diagram

Phase diagram description

Nichromes are alloys of nickel (Ni) with 10 - 30% chromium (Cr). They have useful strength and oxidation resistance to 1200 C.

Typical uses

Heating elements and furnace windings, bi-metallic strips, thermocouples, springs, food processing equipment, chemical engineering equipment.

Links

Reference

ProcessUniverse

Producers

