Residual export The diff blue one actual clata point with its predicted data point Day Date " LINEAR REGRESSION Egn of Linear Regression intercept (value of Y whom is dependent variable independent var (explanatory or predictor variable) (response variable) slope (how much Y changes for a unit change in -> Used for predicting continuous values-4 Predicting house price 4. Stock Price, House Price pro estimated delivery time prediction tre velationship works only on 2 posts D Least Square Regressions Doesnot give optimal n(2xy) - (2x)(2y) $n(2x^2) - (2x)^2$ weights b = { y - m ({ x) Page No.

*				M
				Day
Date	4	X ²	Y2	XY
1	1	1	1	1
2	1	4	(2
	2	9	4	6
3	2	16	4	8
5	4	25	16	20
9 15	10	55	26	37
m = 5(37) - (15)(10) = 0.70 $5(55) - (15)^2$				
b = 10 - 0.70(15) = -0.10				
5 positive				
y _z 0.70 π - 0.10 y _z y → perfect relationship				
1 w relationship				
320 3 no setter relation 820 3 no setter relation perfect				
$\delta = \left(\frac{S_{\pi}}{S_{\gamma}}\right) \times m$				1 P2 - Shows intensity of
(84) now strong selation				
1 1 1 1 1 2				
$S_{n,2}$ $\int 2x^2 - \frac{1}{n} (\frac{2}{2}x)^2$, $S_{y} = \int \frac{\xi}{y^2} \frac{1}{n} (\frac{2}{2}y)^2$				
$\sqrt{n-1}$				
Page No. —				

wo point Jaha cost function of no is called global minimum point which is only one. Date Xz - 0.80 income pain education pain medication actual predicted Relationship among SST, SSR, SSE SST = SSR + SSE 2(4;-9)2 = 2(9;-9)2 + 2(4; 19) SST - Total Sum of Squares

SST - Sum of Squares due to regression

SSF -> 4 2 4 4 4 4 66808 Jos Cost Rimc = 1 & (9-42) 82 = 85R 85T gives into about goodness of fit of a model Vry 2 (singnof b) 182 Page No ..

Day LOGISTIC REGRESSION a Continuous values par categorical values predict kom hai.

Ly Skudy has & Fail Pass Shudylins