H

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.impute import SimpleImputer
import warnings
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import f1 score
from sklearn.model selection import cross val score
from sklearn.model selection import GridSearchCV
from sklearn.model selection import RandomizedSearchCV
from sklearn.linear model import LogisticRegression
from sklearn.linear model import SGDClassifier
from sklearn.naive bayes import BernoulliNB
from sklearn import svm
from sklearn.exceptions import DataConversionWarning
warnings.filterwarnings(action='ignore', category=DataConversionWarning)
warnings.filterwarnings("ignore")
import seaborn as sns
from sklearn.metrics import roc auc score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import warnings
warnings.simplefilter("ignore", UserWarning)
```

In [2]:

ls

In [3]:

```
data = pd.read_table('orange_small_train .data')
churn = pd.read_table('orange_small_train_churn.labels')
appetency = pd.read_table('orange_small_train_appetency.labels')
upselling = pd.read_table('orange_small_train_upselling.labels')
```

In [4]:

```
churn = churn.replace(-1,0)
appetency = appetency.replace(-1,0)
upselling = upselling.replace(-1,0)
```

In [5]:

```
from sklearn.utils import class_weight
c_weight = class_weight.compute_class_weight('balanced',np.unique(churn['Churn']),cl
churn_dict = dict(zip(np.unique(churn['Churn']), c_weight))
a_weight = class_weight.compute_class_weight('balanced',np.unique(appetency['Appeter
appetency_dict = dict(zip(np.unique(appetency['Appetency']), a_weight))
u_weight = class_weight.compute_class_weight('balanced',np.unique(upselling['Upsell:
upselling_dict = dict(zip(np.unique(upselling['Upselling']), u_weight))
```

In [6]:

```
data.describe()
```

Out[6]:

	Var1	Var2	Var3	Var4	Var5	Var6	
count	702.000000	1241.000000	1240.000000	1579.000000	1.487000e+03	44471.000000	4446
mean	11.487179	0.004029	425.298387	0.125396	2.387933e+05	1326.437116	
std	40.709951	0.141933	4270.193518	1.275481	6.441259e+05	2685.693668	
min	0.000000	0.000000	0.000000	0.000000	0.000000e+00	0.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000e+00	518.000000	
50%	0.000000	0.000000	0.000000	0.000000	0.000000e+00	861.000000	
75%	16.000000	0.000000	0.000000	0.000000	1.187425e+05	1428.000000	
max	680.000000	5.000000	130668.000000	27.000000	6.048550e+06	131761.000000	14

8 rows × 192 columns

In [7]:

```
count churn = churn['Churn'].value counts()
count_appetency = appetency['Appetency'].value_counts()
count upselling = upselling['Upselling'].value counts()
plt.subplot(151)
sns.barplot(count_churn.index, count_churn.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('churn', fontsize=12)
plt.subplot(153)
sns.barplot(count_appetency.index, count_appetency.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('appetency', fontsize=12)
plt.subplot(155)
sns.barplot(count upselling.index, count upselling.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('upselling', fontsize=12)
plt.show()
```


for all 3 task, data is highly imbalanced

removing constant variables

```
In [8]:
```

```
data = data.loc[:,data.apply(pd.Series.nunique) != 1]
```

```
In [9]:
```

data.shape

Out[9]:

(50000, 225)

checking missing datapoints feature wise}

In [10]:

```
no_data_sample = len(data.index)
input_features_missing_proportions = data.isnull().sum() / no_data_sample
plt.hist(input_features_missing_proportions)
plt.title('Proportion of Missing Values in Input Features')
```

Out[10]:

Text(0.5, 1.0, 'Proportion of Missing Values in Input Features')

In [11]:

```
data = data.loc[:, data.isnull().mean() <= .8]</pre>
```

In [12]:

data.shape

Out[12]:

(50000, 76)

for all 3 task, data is highly imbalanced

checking missing datapoints feature wise}

In [13]:

```
numeric_col = data._get_numeric_data().columns
numeric_col
```

Out[13]:

In [14]:

```
#replacing null missing value with mean of dataset
numeric_column = [i for i in numeric_col]
for i in numeric_column:
    data[i]=data[i].fillna(data[i].median())
```

In [15]:

```
data_num =data[numeric_column]
data_num.head()
```

Out[15]:

	Var6	Var7	Var13	Var21	Var22	Var24	Var25	Var28	Var35	Var38	 Var140	Var
0	1526.0	7.0	184.0	464.0	580.0	14.0	128.0	166.56	0.0	3570.0	 185.0	
1	525.0	0.0	0.0	168.0	210.0	2.0	24.0	353.52	0.0	4764966.0	 0.0	
2	5236.0	7.0	904.0	1212.0	1515.0	26.0	816.0	220.08	0.0	5883894.0	 800.0	
3	861.0	0.0	0.0	144.0	0.0	2.0	0.0	22.08	0.0	0.0	 0.0	
4	1029.0	7.0	3216.0	64.0	80.0	4.0	64.0	200.00	0.0	0.0	 3255.0	

5 rows × 42 columns

In [16]:

data_num.describe()

Out[16]:

	Var6	Var7	Var13	Var21	Var22	Var24	
count	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	50000.000000	ţ
mean	1274.969080	6.830600	1136.948880	224.508720	279.201000	4.145280	
std	2537.052042	5.965663	2654.880938	534.128741	669.089558	9.225198	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	581.000000	0.000000	4.000000	120.000000	150.000000	0.000000	
50%	861.000000	7.000000	232.000000	144.000000	180.000000	2.000000	
75%	1316.000000	7.000000	1264.000000	212.000000	265.000000	4.000000	
max	131761.000000	140.000000	197872.000000	36272.000000	45340.000000	494.000000	-

8 rows × 42 columns

In [17]:

```
# doing data standardization
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(data_num)
data_num= scaler.transform(data_num)
```

In [18]:

```
data_num = pd.DataFrame(data_num)
data_num.head()
```

Out[18]:

	0	1	2	3	4	5	6	7	
0	0.098947	0.028396	-0.358946	0.448382	0.449569	1.068250	0.176938	-0.615269	-0.2263
1	-0.295609	-1.144997	-0.428253	-0.105797	-0.103427	-0.232548	-0.333302	1.385127	-0.2263
2	1.561289	0.028396	-0.087745	1.848807	1.847004	2.369048	3.552375	-0.042626	-0.2263
3	-0.163171	-1.144997	-0.428253	-0.150731	-0.417289	-0.232548	-0.451050	-2.161146	-0.2263
4	-0.096952	0.028396	0.783113	-0.300509	-0.297722	-0.015748	-0.137056	-0.257474	-0.2263

5 rows × 42 columns

data cleaning categorical column

In [19]:

```
num_cat =data.select_dtypes(exclude=['int', 'float']).columns
num_cat = [i for i in num_cat]
```

In [20]:

```
imp = SimpleImputer( strategy='most_frequent')
imp.fit(data[num_cat])
```

Out[20]:

In [21]:

```
data[num_cat] = imp.transform(data[num_cat])
data_cat = data[num_cat]
```

In [22]:

```
data_cat.head()
```

Out[22]:

	Var192	Var193	Var194	Var195	Var196	Var197	Var198	Var199	Var200	_
0	bZkvyxLkBI	RO12	SEuy	taul	1K8T	IK27	ka_ns41	nQUveAzAF7	yP09M03	
1	CEat0G8rTN	RO12	SEuy	taul	1K8T	2lx5	qEdASpP	y2LIM01bE1	yP09M03	
2	eOQt0GoOh3	AERks4l	SEuy	taul	1K8T	ffXs	NIdASpP	y4g9XoZ	vynJTq9	
3	jg69tYsGvO	RO12	SEuy	taul	1K8T	ssAy	_ybO0dd	4hMlgkf58mhwh	yP09M03	
4	IXSgUHShse	RO12	SEuy	taul	1K8T	uNkU	EKR938I	ThrHXVS	0v21jmy	

5 rows × 34 columns

In [23]:

```
# finding no of category in categorical columns
data_cat= data_cat.astype('category')
cat_level = data_cat.apply(lambda col: len(col.cat.categories))
cat_level
```

Out[23]:

Var192	361
Var193	51
Var194	3
Var195	23
Var196	4
Var197	225
Var198	4291
Var199	5073
Var200	15415
Var201	2
Var202	5713
Var203	5
Var204	100
Var205	3
Var206	21
Var207	14
Var208	2
Var210	6
Var211	2
Var212	81
Var214	15415
Var216	2016
Var217	13990
Var218	2
Var219	22
Var220	4291
Var221	7
Var222	4291
Var223	4
Var225	3
Var226	23
Var227	7
Var228	30
Var229	4
dtype:	int64

In [24]:

```
processed_cat_col = cat_level[cat_level <= 5000].index
processed_cat_col</pre>
```

Out[24]:

In [25]:

```
data_cat_new = data_cat[processed_cat_col]
data_cat_new.head()
```

Out[25]:

	Var192	Var193	Var194	Var195	Var196	Var197	Var198	Var201	Var203	Var204	
0	bZkvyxLkBI	RO12	SEuy	taul	1K8T	IK27	ka_ns41	smXZ	9_Y1	Fblm	
1	CEat0G8rTN	RO12	SEuy	taul	1K8T	2lx5	qEdASpP	smXZ	9_Y1	k13i	
2	eOQt0GoOh3	AERks4l	SEuy	taul	1K8T	ffXs	NIdASpP	smXZ	9_Y1	MGOA	
3	jg69tYsGvO	RO12	SEuy	taul	1K8T	ssAy	_ybO0dd	smXZ	9_Y1	YULI	
4	IXSgUHShse	RO12	SEuy	taul	1K8T	uNkU	EKR938I	smXZ	9_Y1	RVjC	

5 rows × 29 columns

In [26]:

```
data = pd.concat([data_num,data_cat_new],axis=1)
```

In [27]:

```
data_train = data.head(int(len(data)*(90/100)))
appetency_train_y = appetency.head(int(len(data)*(90/100)))
churn_train_y = churn.head(int(len(data)*(90/100)))
upselling_train_y = upselling.head(int(len(data)*(90/100)))
```

In [28]:

```
data_test = data.tail(int(len(data)*(10/100)))

appetency_test_y = appetency.tail(int(len(data)*(10/100)))
churn_test_y = churn.tail(int(len(data)*(10/100)))
upselling_test_y = upselling.tail(int(len(data)*(10/100)))
```

In [29]:

```
count churn test y = churn test y['Churn'].value counts()
count_appetency_test_y = appetency_test_y['Appetency'].value_counts()
count_upselling_test_y = upselling_test_y['Upselling'].value_counts()
plt.subplot(151)
sns.barplot(count churn test y.index, count churn test y.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('churn_test_y', fontsize=12)
plt.subplot(153)
sns.barplot(count_appetency_test_y.index, count_appetency_test_y.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('appetency_test_y', fontsize=12)
plt.subplot(155)
sns.barplot(count_upselling_test_y.index, count_upselling_test_y.values, alpha=0.8)
plt.ylabel('no of datapoints', fontsize=12)
plt.xlabel('upselling_test_y', fontsize=12)
plt.show()
```


In [48]:

```
data_train.head()
```

Out[48]:

	0	1	2	3	4	5	6	7	
0	0.098947	0.028396	-0.358946	0.448382	0.449569	1.068250	0.176938	-0.615269	-0.2263
1	-0.295609	-1.144997	-0.428253	-0.105797	-0.103427	-0.232548	-0.333302	1.385127	-0.2263
2	1.561289	0.028396	-0.087745	1.848807	1.847004	2.369048	3.552375	-0.042626	-0.2263
3	-0.163171	-1.144997	-0.428253	-0.150731	-0.417289	-0.232548	-0.451050	-2.161146	-0.2263
4	-0.096952	0.028396	0.783113	-0.300509	-0.297722	-0.015748	-0.137056	-0.257474	-0.2263

5 rows × 71 columns

train

In [41]:

```
data_train_cat_col =data_train.select_dtypes(exclude=['int', 'float']).columns
```

In [44]:

```
numeric_col_train = data_train._get_numeric_data().columns
numeric_col_train = [i for i in numeric_col_train]
data_train_num = data_train[numeric_col_train]
```

In [45]:

```
cat_one_hot_train = data_train[data_train_cat_col].apply(LabelEncoder().fit_transform)
```

In [50]:

```
#cat_one_hot_train = pd.get_dummies(data_train[data_train_cat_col])
```

In [46]:

```
df_train = pd.concat([data_train_num,cat_one_hot_train],axis=1)
```

In [49]:

```
df_train.head()
```

Out[49]:

	0	1	2	3	4	5	6	7	
0	0.098947	0.028396	-0.358946	0.448382	0.449569	1.068250	0.176938	-0.615269	-0.2263
1	-0.295609	-1.144997	-0.428253	-0.105797	-0.103427	-0.232548	-0.333302	1.385127	-0.2263
2	1.561289	0.028396	-0.087745	1.848807	1.847004	2.369048	3.552375	-0.042626	-0.2263
3	-0.163171	-1.144997	-0.428253	-0.150731	-0.417289	-0.232548	-0.451050	-2.161146	-0.2263
4	-0.096952	0.028396	0.783113	-0.300509	-0.297722	-0.015748	-0.137056	-0.257474	-0.2263

5 rows × 71 columns

test

In [50]:

```
data_test_cat_col =data_test.select_dtypes(exclude=['int', 'float']).columns
numeric_col_test = data_test._get_numeric_data().columns
numeric_col_test = [i for i in numeric_col_test]
data_test_num = data_test[numeric_col_test]
cat_one_hot_test = data_test[data_test_cat_col].apply(LabelEncoder().fit_transform)
df_test = pd.concat([data_test_num,cat_one_hot_test],axis=1)
df_test.shape
```

```
Out[50]:
```

(5000, 71)

Machine Learning Models

Naive Bayes

In [34]:

```
import sklearn
sklearn.metrics.SCORERS.keys()
```

Out[34]:

dict_keys(['f1_macro', 'f1_micro', 'recall', 'neg_mean_squared_log_err
or', 'roc_auc', 'brier_score_loss', 'average_precision', 'neg_median_a
bsolute_error', 'f1_weighted', 'fowlkes_mallows_score', 'completeness_
score', 'neg_mean_squared_error', 'mutual_info_score', 'r2', 'v_measur
e_score', 'precision_weighted', 'recall_macro', 'precision_micro', 'ne
g_log_loss', 'adjusted_rand_score', 'precision', 'f1', 'balanced_accur
acy', 'accuracy', 'explained_variance', 'homogeneity_score', 'precisio
n_macro', 'recall_micro', 'f1_samples', 'recall_weighted', 'neg_mean_a
bsolute_error', 'normalized_mutual_info_score', 'precision_samples',
'adjusted_mutual_info_score', 'recall_samples'])

In [51]:


```
The best parameters are {'alpha': 0.2} with a score of 0.62 roc_auc for Churn is: 0.550 Precision for Churn is: 0.133 Recall for Churn is: 0.208 F1-Score for Churn is: 0.162
```

In [52]:

The best parameters are {'alpha': 0.9} with a score of 0.75 roc_auc for appetency is: 0.633
Precision for appetency is: 0.061
Recall for appetency is: 0.390
F1-Score for appetency is: 0.105

In [53]:


```
The best parameters are {'alpha': 0.1} with a score of 0.71 roc_auc for upselling is: 0.542 Precision for upselling is: 0.190 Recall for upselling is: 0.127 F1-Score for upselling is: 0.153
```

Linear SVC

In [54]:

```
from scipy.stats import uniform
import scipy
tuned parameters ={'penalty':['11','12','elasticnet'],
             'alpha':[500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001]
model = RandomizedSearchCV(SGDClassifier(),param distributions=tuned parameters,scol
model.fit(df train, churn train y)
pred=model.predict(df test)
conf_mat = confusion_matrix(churn test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
print("The best parameters are %s with a score of %0.2f"
      % (model.best params , model.best score ))
sgd churn result = roc auc score(churn test y, pred)
print("roc auc for Churn is: %0.3f"%(roc auc score(churn test y, pred)))
print("Precision for Churn is: %0.3f"%(precision score(churn test y, pred)))
print("Recall for Churn is: %0.3f"%(recall score(churn test y, pred)))
print("F1-Score for Churn is: %0.3f"%(f1 score(churn test y, pred)))
```



```
The best parameters are {'penalty': 'elasticnet', 'alpha': 0.1} with a score of 0.55 roc_auc for Churn is: 0.500 Precision for Churn is: 0.000 Recall for Churn is: 0.000 F1-Score for Churn is: 0.000
```

In [55]:

```
from scipy.stats import uniform
import scipy
tuned parameters ={'penalty':['11','12','elasticnet'],
             'alpha':[500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001,
model = RandomizedSearchCV(SGDClassifier(),param distributions=tuned parameters,scol
model.fit(df train, appetency train y)
pred=model.predict(df test)
conf mat = confusion matrix(appetency test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
print("The best parameters are %s with a score of %0.2f"
      % (model.best params , model.best score ))
sgd appetency result = roc auc score(appetency test y, pred)
print("roc_auc for appetency is: %0.3f"%(roc_auc_score(appetency_test_y, pred)))
print("Precision for appetency is: %0.3f"%(precision score(appetency test y, pred))
print("Recall for appetency is: %0.3f"%(recall_score(appetency_test_y, pred)))
print("F1-Score for appetency is: %0.3f"%(f1 score(appetency test y, pred)))
```



```
The best parameters are {'penalty': 'l1', 'alpha': 1e-05} with a score of 0.52 roc_auc for appetency is: 0.500 Precision for appetency is: 0.000 Recall for appetency is: 0.000 F1-Score for appetency is: 0.000
```

In [56]:

```
from scipy.stats import uniform
import scipy
tuned parameters ={'penalty':['elasticnet'],
             'alpha': [500,100,50,10,5,1,0.5,0.1,0.05,0.01,0.005,0.001,0.0005,0.0001,
model = RandomizedSearchCV(SGDClassifier(),param distributions=tuned parameters,scol
model.fit(df train, upselling train y)
pred=model.predict(df test)
conf mat = confusion matrix(upselling test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
print("The best parameters are %s with a score of %0.2f"
      % (model.best params , model.best score ))
sgd upselling result = roc auc score(upselling test y, pred)
print("roc_auc for upselling is: %0.3f"%(roc_auc_score(upselling_test_y, pred)))
print("Precision for upselling is: %0.3f"%(precision score(upselling test y, pred))
print("Recall for upselling is: %0.3f"%(recall_score(upselling_test_y, pred)))
print("F1-Score for upselling is: %0.3f"%(f1 score(upselling test y, pred)))
```



```
The best parameters are {'penalty': 'elasticnet', 'alpha': 1e-05} with a score of 0.09 roc_auc for upselling is: 0.527 Precision for upselling is: 0.081 Recall for upselling is: 0.716 F1-Score for upselling is: 0.146
```

Decision Tree

In [57]:

```
depth = [x \text{ for } x \text{ in } range(1,20,1)]
cv_scores = []
for d in depth:
    clf = DecisionTreeClassifier(max depth = d)
    scores = cross val score(clf, df train, churn train y, cv=3, scoring='roc auc')
    cv scores.append(scores.mean())
error = [1 - x for x in cv scores]
optimal depth = depth[error.index(min(error))]
plt.plot(depth, error)
xy = (optimal depth, min(error))
plt.annotate('(%s, %s)' % xy, xy = xy, textcoords='data')
plt.xlabel("Depth")
plt.ylabel("Misclassification Error")
plt.show()
model = DecisionTreeClassifier(max depth = optimal depth) # MAx depth obtained from
model.fit(df train, churn train y)
pred=model.predict(df_test)
conf mat = confusion matrix(churn test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
dt_churn_result = roc_auc_score(churn_test_y, pred)
print("roc auc for churn is: %0.3f"%(roc auc score(churn test y, pred)))
print("Precision for churn is: %0.3f"%(precision score(churn test y, pred)))
print("Recall for churn is: %0.3f"%(recall score(churn test y, pred)))
print("F1-Score for churn is: %0.3f"%(f1 score(churn test y, pred)))
```


roc_auc for churn is: 0.505
Precision for churn is: 0.278
Recall for churn is: 0.014
F1-Score for churn is: 0.026

In [51]:

```
from sklearn import model_selection
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
seed = 7
kfold = model_selection.KFold(n_splits=5, random_state=seed)
cart = DecisionTreeClassifier()
num_trees = 50
model = BaggingClassifier(base_estimator=cart, n_estimators=num_trees, random_state=
results = model_selection.cross_val_score(model, df_train, churn_train_y,n_jobs=-1,s
print(results.mean())
```

0.6480924064111282

In [52]:

```
model.fit(df_train, churn_train_y)
pred=model.predict(df_test)
conf_mat = confusion_matrix(churn_test_y,pred)
sns.heatmap(conf_mat,annot=True,fmt="d",linewidths=.5)
plt.show()

dt_churn_result = roc_auc_score(churn_test_y, pred)
print("roc_auc for churn is: %0.3f"%(roc_auc_score(churn_test_y, pred)))
print("Precision for churn is: %0.3f"%(precision_score(churn_test_y, pred)))
print("Recall for churn is: %0.3f"%(recall_score(churn_test_y, pred)))
print("F1-Score for churn is: %0.3f"%(f1_score(churn_test_y, pred)))
```


roc_auc for churn is: 0.502 Precision for churn is: 0.273 Recall for churn is: 0.004 F1-Score for churn is: 0.008

In [52]:

```
depth = [x \text{ for } x \text{ in } range(1,20,1)]
cv_scores = []
for d in depth:
    clf = DecisionTreeClassifier(max depth = d)
    scores = cross val score(clf, df train, appetency train y, cv=3, scoring='roc at
    cv scores.append(scores.mean())
error = [1 - x for x in cv scores]
optimal depth = depth[error.index(min(error))]
plt.plot(depth, error)
xy = (optimal depth, min(error))
plt.annotate('(%s, %s)' % xy, xy = xy, textcoords='data')
plt.xlabel("Depth")
plt.ylabel("Misclassification Error")
plt.show()
model = DecisionTreeClassifier(max_depth = optimal_depth) # MAx depth obtained from
model.fit(df train, appetency train y)
pred=model.predict(df test)
conf mat = confusion matrix(appetency test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
dt_appetency_result = roc_auc_score(appetency_test_y, pred)
print("roc auc for appetency is: %0.3f"%(roc auc score(appetency test y, pred)))
print("Precision for appetency is: %0.3f"%(precision score(appetency test y, pred))
print("Recall for appetency is: %0.3f"%(recall score(appetency test y, pred)))
print("F1-Score for appetency is: %0.3f"%(f1_score(appetency_test_y, pred)))
```


roc_auc for appetency is: 0.513
Precision for appetency is: 0.250
Recall for appetency is: 0.027
F1-Score for appetency is: 0.049

In [62]:

```
depth = [x \text{ for } x \text{ in } range(1,20,1)]
cv_scores = []
for d in depth:
    clf = DecisionTreeClassifier(max depth = d)
    scores = cross val score(clf, df train, upselling train y, cv=3, scoring='roc at
    cv scores.append(scores.mean())
error = [1 - x for x in cv scores]
optimal depth = depth[error.index(min(error))]
plt.plot(depth, error)
xy = (optimal depth, min(error))
plt.annotate('(%s, %s)' % xy, xy = xy, textcoords='data')
plt.xlabel("Depth")
plt.ylabel("Misclassification Error")
plt.show()
model = DecisionTreeClassifier(max depth = optimal depth) # MAx depth obtained from
model.fit(df train, upselling train y)
pred=model.predict(df_test)
conf mat = confusion matrix(upselling test y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
dt_upselling_result = roc_auc_score(upselling_test_y, pred)
print("roc auc for upselling is: %0.3f"%(roc auc score(upselling test y, pred)))
print("Precision for upselling is: %0.3f"%(precision score(upselling test y, pred))
print("Recall for upselling is: %0.3f"%(recall score(upselling test y, pred)))
print("F1-Score for upselling is: %0.3f"%(f1 score(upselling test y, pred)))
```


roc_auc for upselling is: 0.706 Precision for upselling is: 0.751 Recall for upselling is: 0.424 F1-Score for upselling is: 0.542

Xgboost

In []:

In [67]:

```
from xgboost import XGBClassifier
params = {'n_estimators':[i for i in range(100,1001,100)],
        'subsample':[0.7, 0.8, 0.9],
        'min child weight':[x for x in range(1,50,3)],
        'reg lambda':[x for x in range(100,1000,100) ],
        'max depth': [x for x in range(0,50,3)]}
xgb = XGBClassifier(nthread=-1)
model = RandomizedSearchCV(xgb,params,cv=None,scoring = 'roc auc')
model.fit(appetency tr x, appetency tr y)
pred=model.predict(appetency_cv_x)
conf mat = confusion matrix(appetency cv y,pred)
sns.heatmap(conf_mat,annot=True,fmt="d",linewidths=.5)
plt.show()
xgb appetency result = roc auc score(appetency cv y, pred)
print("roc_auc for appetency is: %0.3f"%(roc_auc_score(appetency_cv_y, pred)))
print("Precision for appetency is: %0.3f"%(precision_score(appetency_cv_y, pred))))
print("Recall for appetency is: %0.3f"%(recall score(appetency cv y, pred)))
print("F1-Score for appetency is: %0.3f"%(f1 score(appetency cv y, pred)))
```


roc_auc for appetency is: 0.500 Precision for appetency is: 0.000 Recall for appetency is: 0.000 F1-Score for appetency is: 0.000

```
In [ ]:
```

```
from xgboost import XGBClassifier
params = {'n_estimators':[i for i in range(100,1001,100)],
        'subsample':[0.7, 0.8, 0.9],
        'min child weight':[x for x in range(1,50,3)],
        'reg lambda':[x for x in range(100,1000,100) ],
        'max depth': [x for x in range(0,50,3)]}
xqb = XGBClassifier(nthread=-1)
model = RandomizedSearchCV(xqb,params,cv=None,scoring = 'roc auc')
model.fit(upselling tr x, upselling tr y)
pred=model.predict(upselling cv x)
conf mat = confusion matrix(upselling cv y,pred)
sns.heatmap(conf mat,annot=True,fmt="d",linewidths=.5)
plt.show()
xgb upselling result = roc auc score(upselling cv y, pred)
print("roc auc for upselling is: %0.3f"%(roc auc score(upselling cv y, pred)))
print("Precision for upselling is: %0.3f"%(precision score(upselling cv y, pred)))
print("Recall for upselling is: %0.3f"%(recall_score(upselling_cv_y, pred)))
print("F1-Score for upselling is: %0.3f"%(f1 score(upselling cv y, pred)))
```

```
In [ ]:
```

```
## final scoring is arithmatic mean of all appetency , appetency and upselling
xgb_score = (xgb_appetency_result + xgb_appetency_result + xgb_upselling_result) / xgb_score
```

NN

```
In [63]:
```

```
from sklearn import metrics
from keras import backend as K

def auc(y_true, y_pred):
    auc = tf.metrics.auc(y_true, y_pred)[1]
    K.get_session().run(tf.local_variables_initializer())
    return auc
```

Using TensorFlow backend.

In [70]:

```
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import BatchNormalization
from keras.initializers import RandomNormal
# some model parameters
output dim = 2
input dim = df train.shape[1]
batch size = 128
nb epoch = 10
model = Sequential()
model.add(Dense(512, activation='relu', input shape=(input dim,), kernel initialize
model.add(BatchNormalization())
model.add(Dense(256, activation='relu', kernel initializer=RandomNormal(mean=0.0, st
model.add(BatchNormalization())
model.add(Dense(128, activation='relu', kernel initializer=RandomNormal(mean=0.0, st
model.add(BatchNormalization())
model.add(Dense(output dim, activation='softmax'))
print(model.summary())
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['ac
model log = model.fit(df train, upselling train y, batch size=batch size, epochs=nb
```

-	-	Param #
		36864
(None,	512)	2048
(None,	256)	131328
(None,	256)	1024
(None,	128)	32896
(None,	128)	512
(None,	2)	258
		_
	(None, (None, (None, (None, (None, (None,	Output Shape

2690 - acc: 0.9265 - val loss: 0.2799 - val acc: 0.9246

```
Epoch 3/10
2668 - acc: 0.9265 - val loss: 0.2710 - val acc: 0.9246
Epoch 4/10
45000/45000 [============= ] - 3s 64us/step - loss: 0.
2644 - acc: 0.9266 - val loss: 0.2871 - val acc: 0.9246
Epoch 5/10
45000/45000 [============] - 3s 64us/step - loss: 0.
2604 - acc: 0.9265 - val loss: 0.2876 - val acc: 0.9246
Epoch 6/10
45000/45000 [============== ] - 3s 62us/step - loss: 0.
2545 - acc: 0.9265 - val loss: 0.3399 - val acc: 0.9246
Epoch 7/10
45000/45000 [============== ] - 3s 62us/step - loss: 0.
2466 - acc: 0.9267 - val loss: 0.3423 - val acc: 0.9246
Epoch 8/10
45000/45000 [============] - 3s 62us/step - loss: 0.
2350 - acc: 0.9270 - val loss: 0.2753 - val acc: 0.9248
Epoch 9/10
2293 - acc: 0.9278 - val loss: 0.2401 - val acc: 0.9248
Epoch 10/10
2246 - acc: 0.9287 - val loss: 0.2359 - val acc: 0.9260
```

In [71]:

```
pred = model.predict classes(df test)
```

In [72]:

```
conf_mat = confusion_matrix(upselling_test_y,pred)
sns.heatmap(conf_mat,annot=True,fmt="d",linewidths=.5)
plt.show()

xgb_upselling_result = roc_auc_score(upselling_test_y, pred)
print("roc_auc for upselling is: %0.3f"%(roc_auc_score(upselling_test_y, pred)))
print("Precision for upselling is: %0.3f"%(precision_score(upselling_test_y, pred)))
print("Recall for upselling is: %0.3f"%(recall_score(upselling_test_y, pred)))
print("F1-Score for upselling is: %0.3f"%(f1_score(upselling_test_y, pred)))
```


roc_auc for upselling is: 0.512 Precision for upselling is: 0.818 Recall for upselling is: 0.024 F1-Score for upselling is: 0.046

Random Forest

In [34]:

from mlxtend.feature selection import SequentialFeatureSelector as sfs

In [39]:

sfs1 = sfs1.fit(df train,upselling train y)

```
In [ ]:
```

```
[Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurren
t workers.
                                       1 | elapsed:
[Parallel(n jobs=1)]: Done
                           1 out of
                                                        1.9s remainin
      0.0s
a:
[Parallel(n jobs=1)]: Done 1032 out of 1032 | elapsed: 9.2min finishe
Ы
[2019-03-08 00:44:33] Features: 1/20 -- score: 0.5413180019887461[Para
llel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent wor
kers.
                                      1 | elapsed:
[Parallel(n jobs=1)]: Done
                            1 out of
                                                        2.1s remainin
      0.0s
g:
[Parallel(n jobs=1)]: Done 1031 out of 1031 | elapsed: 15.5min finishe
d
[2019-03-08 01:00:00] Features: 2/20 -- score: 0.547608163662988[Paral
lel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent work
ers.
[Parallel(n jobs=1)]: Done
                            1 out of
                                      1 | elapsed:
                                                        2.6s remainin
      0.0s
[Parallel(n jobs=1)]: Done 1030 out of 1030 | elapsed: 17.2min finishe
d
[2019-03-08 01:17:14] Features: 3/20 -- score: 0.5483378543118544[Para
llel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent wor
kers.
[Parallel(n jobs=1)]: Done 1 out of 1 | elapsed:
                                                        2.1s remainin
q:
[Parallel(n jobs=1)]: Done 1029 out of 1029 | elapsed: 16.3min finishe
d
[2019-03-08 01:33:31] Features: 4/20 -- score: 0.549060208381184[Paral
lel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent work
ers.
[Parallel(n jobs=1)]: Done 1 out of
                                      1 | elapsed:
g:
      0.0s
[Parallel(n jobs=1)]: Done 1028 out of 1028 | elapsed: 17.1min finishe
d
[2019-03-08 01:50:38] Features: 5/20 -- score: 0.5496899695969151[Para
llel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent wor
[Parallel(n jobs=1)]: Done 1 out of 1 | elapsed: 2.3s remainin
      0.0s
q:
```

In []: