

第7讲量子 (Hamiltonian) 模拟

高 飞 网络空间安全学院

- ➤ Hamiltonian模拟的概念
- ► k-Local型Hamiltonian模拟
- ➤ LCU型Hamiltonian模拟
- > 典型Hamiltonian模拟结果总结

Hamiltonian 模拟

▶ 量子系统动态演化: 一个封闭量子系统的演化遵循薛定谔方程

$$i\hbar \frac{d|\psi\rangle}{dt} = H(t)|\psi\rangle$$

当H与时间无关时

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

- □ *ħ*是普朗克常数, *t*是演化时间
- **旦** 封闭系统的Hamiltonian H(t)是 厄米矩阵,此时 e^{-iHt} 是酉矩阵
- □ 经典计算模拟量子系统的复杂 度随着qubits数目指数级增长

Hamiltonian 模拟

量子系统动态演化: 一个封闭量子系统的演化遵循薛定谔方程

$$i\hbar \frac{d|\psi\rangle}{dt} = H(t)|\psi\rangle$$

当H与时间无关时

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

- □ ħ是普朗克常数, t是演化时间
- **旦** 封闭系统的Hamiltonian H(t)是 厄米矩阵,此时 e^{-iHt} 是酉矩阵
- □ 经典计算模拟量子系统的复杂 度随着qubits数目指数级增长

➤ Feynman: 提出利用量子计算机模拟量子系统的构想[1]

Hamiltonian 模拟: 给定访问厄米矩阵H 的量子黑盒、任意时间 t 以及误差 ϵ ,如何设计量子电路 U 使其以精度 ϵ 近似酉操作 e^{-iHt} ?

$$||U - e^{-iHt}|| \le \epsilon$$

视情形选某一种范数

- □ 给出量子态结果,尽管不像经典模拟那样给出数值解(信息更全面),但在需要量子末态(作为下一步的输入)时更优
- □ 应用: 量子化学和材料科学; 设计量子算法(如HHL^[2]、PCA算法^[3])

[1] Feynman R P. Simulating physics with computers, IJTP, 1982. [2] Harrow et al., Quantum algorithm for linear systems of equations, PRL, 2009. [3] Lloyd et al., Quantum principal component analysis, Nature physics, 2014.

设
$$x = \begin{bmatrix} x_1, x_2, ..., x_n \end{bmatrix}^T$$
 是向量空间 C^n 上的任一向量

(1)
$$1 - \overline{2}$$
 $||x||_1 = \sum_{i=1}^n |x_i|$

H表示厄米共轭

$$(3) \infty - 范数 \|x\|_{\infty} = \max_{i} |x_{i}|$$

(4)
$$p$$
一范数 $\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$

 $(p \ge 1)$

显然在p -范数中,令p=1, p=2或 $p\to\infty$,则它分别对应了向量的1-范数, 2-范数和 ∞ -范数

设 C^m , C^n 上的同类向量范数为 $\|\cdot\|_V$, 对矩阵 $A \in C^{m \times n}$, 函数

$$||A||_V = \max_{||x||_V=1} ||Ax||_V$$

是 $C^{m \times n}$ 上的矩阵范数。

量子信息中,常假定 $\||\psi\rangle\| = 1$,取的是向量的2-范数,对应的是矩阵的2-范数(又称为谱范数),定义为:

$$||A||_2 = \max_{|\varphi\rangle} ||A|\varphi\rangle||_2 = \sqrt{\lambda_1}$$

其中 λ_1 为 $A^{\dagger}A$ 的最大特征值。

- ➤ Hamiltonian模拟的概念
- ➤ k-Local型Hamiltonian模拟
- ➤ LCU型Hamiltonian模拟
- > 典型Hamiltonian模拟结果总结

> k-Local Hamiltonians: [1]
$$H = \sum_{j=1}^{L} H_j$$

- $\square H_i$ 是只作用于少数k个qubits的Hamiltonian(用 I 补齐 e^{-iH_jt} 的维度)
- □ 作用在小的子系统上的 e^{-iH_jt} 可以直接用量子线路来近似【假设其复杂度为O(1)】
- □ 很多物理系统的H满足该特点,例如Hubbard和Ising模型

矩阵函数的一般化定义:对可对角化的矩阵A(如酉矩阵、厄米矩阵),设

$$A = P \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} P^{-1}, \quad \text{Mfa} \quad f(A) = P \begin{bmatrix} f(\lambda_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & f(\lambda_n) \end{bmatrix} P^{-1}$$

[1] Lloyd S. Universal Quantum Simulators. Science, 1996, 273(5278):1073-1078.

➤ *k*-Local Hamiltonians: [1]

$$H = \sum_{j=1}^{L} H_j$$

- $\square H_i$ 是只作用于少数k个qubits的Hamiltonian(用 I 补齐 e^{-iH_jt} 的维度)
- 口作用在小的子系统上的 e^{-iH_jt} 可以直接用量子线路来近似【假设其复杂度为O(1)】
- □ 很多物理系统的H满足该特点,例如Hubbard和Ising模型
- $> e^{-iHt} = \prod_j e^{-iH_jt}$ 是否成立?

No, 只有所有 H_i 对易才成立!

定理. 若两个厄米算子A和B对易,即 [A, B]=AB-BA=0,则

$$e^{-i(A+B)t} = e^{-iAt}e^{-iBt}$$

根据引理易证 定理(下页)

引理. 设A和B是厄米算子,则

A和B对易 ⇔ 存在一个标准正交基,使A和B同时对角化

若AB对易。则

$$A + B = P \begin{bmatrix} \lambda_1^A & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^A \end{bmatrix} P^{-1} + P \begin{bmatrix} \lambda_1^B & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^B \end{bmatrix} P^{-1}$$

$$= P \begin{bmatrix} \lambda_1^A + \lambda_1^B & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^A + \lambda_n^B \end{bmatrix} P^{-1}$$

$$e^{-i(A+B)t} = P \begin{bmatrix} e^{-i(\lambda_1^A + \lambda_1^B)t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{-i(\lambda_n^A + \lambda_n^B)t} \end{bmatrix} P^{-1}$$

$$=P\begin{bmatrix}e^{-i\lambda_1^At} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & e^{-i\lambda_n^At}\end{bmatrix}\begin{bmatrix}e^{-i\lambda_1^Bt} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & e^{-i\lambda_n^Bt}\end{bmatrix}P^{-1}=e^{-iAt}e^{-iBt}$$

$$+im_P^{-1}P$$

有无其他方法: 用 e^{-iAt} 和 e^{-iBt} 实现 $e^{-i(A+B)t}$?

 \triangleright Suzuki 公式: 令A和B是厄米算子, t取值足够小时, 有

$$\|e^{-i(A+B)t}-e^{-iAt/2}e^{-iBt}e^{-iAt/2}\|=o(t^3)$$

- □ 泰勒展开每个指数项即可证明: $e^{iAt} = I + iAt \frac{1}{2}A^2t^2 + O(t^3)$
- □ 一个具体的界[1]:

$$\left\| e^{-i(A+B)t} - e^{-\frac{iAt}{2}} e^{-iBt} e^{-\frac{iAt}{2}} \right\| \le t^3 * f(A,B)$$

其中 $f(A,B) = \frac{1}{12} (\|[[A,B],B]\| + \frac{1}{2} \|[[A,B],A]\|) \exp(\|iAt\| + \|iBt\|)$ 为常数 (注意t足够小)

ightharpoonup 推广到L个矩阵求和^[2]:令 H_j 是厄米算子, $\max_j \|H_j\| = \Lambda = O(1)$,有

$$\left[e^{-iH_1t/2}e^{-iH_2t/2}\cdots e^{-iH_{L-1}t/2}\right]e^{-iH_Lt}\left[e^{-iH_{L-1}t/2}\cdots e^{-iH_2t/2}e^{-iH_1t/2}\right]$$

> Suzuki公式

$$\left\| e^{-it\sum_{j}^{L}H_{j}} - \left[e^{-iH_{1}t/2}e^{-iH_{2}t/2} \cdots e^{-iH_{L-1}t/2} \right] e^{-iH_{L}t} \left[e^{-iH_{L-1}t/2} \cdots e^{-iH_{2}t/2}e^{-iH_{1}t/2} \right] \right\|$$

$$= O((Lt)^{3})$$

可由小系统上的模拟电路组合实现,但t必须足够小才行:一方面t足够小上式才成立;另一方面t大的话误差 $O((Lt)^3)$ 太大

▶ 黄皮书P178: 把 t 分解成小段,分别模拟,可缩小误差!

盒子

4. 1 中也证明,如果执行一系列的门运算 V_1, \dots, V_m 来近似另外一系列门 U_1, \dots, U_m ,则误差至多以线性相加,即

$$E(U_m U_{m-1} \cdots U_1, V_m V_{m-1} \cdots V_1) \leqslant \sum_{j=1}^m E(U_j, V_j)$$
 (4.63)

误差函数: $E(U,V) \equiv \max_{|\varphi\rangle} ||(U-V)|\varphi\rangle||_2$

> Suzuki公式

$$\left\| e^{-it\sum_{j}^{L} H_{j}} - \left[e^{-iH_{1}t/2} e^{-iH_{2}t/2} \cdots e^{-iH_{L-1}t/2} \right] e^{-iH_{L}t} \left[e^{-iH_{L-1}t/2} \cdots e^{-iH_{2}t/2} e^{-iH_{1}t/2} \right] \right\|$$

$$= O((Lt)^{3})$$

 \triangleright 将时间 t 平分为 2m 小段,即 $t=2m\Delta t$,则 $2\Delta t$ 时间段的酉操作:

$$e^{-iH2\Delta t} = U_{2\Delta t} + O((L\Delta t)^3)$$
,其中

$$U_{2\Delta t} = \left[e^{-iH_1\Delta t} e^{-iH_2\Delta t} \cdots e^{-iH_{L-1}\Delta t} \right] e^{-iH_L2\Delta t} \left[e^{-iH_{L-1}\Delta t} \cdots e^{-iH_2\Delta t} e^{-iH_1\Delta t} \right]$$

根据盒子4.1,门序列的整体误差最多是单个门误差的和,因此重复执行m次 $U_{2\Delta t}$,产生的误差为 $(\alpha$ 是一常数): $E\left(U_{2\Delta t}^{m},e^{-iH2m\Delta t}\right) \leq m\alpha(L\Delta t)^{3}$

对比——不分段时误差更大:对 $t=2m\Delta t$ 直接模拟,误差 $\leq \alpha(L*2m\Delta t)^3$

➤ Suzuki公式.

$$\left\| e^{-it\sum_{j}^{L}H_{j}} - \left[e^{-iH_{1}t/2}e^{-iH_{2}t/2} \cdots e^{-iH_{L-1}t/2} \right] e^{-iH_{L}t} \left[e^{-iH_{L-1}t/2} \cdots e^{-iH_{2}t/2}e^{-iH_{1}t/2} \right] \right\|$$

$$= O((Lt)^{3})$$

 \triangleright 将时间 t 平分为 2m 小段,即 $t=2m\Delta t$,则 $2\Delta t$ 时间段的酉操作:

$$e^{-iH2\Delta t} = U_{2\Delta t} + O((L\Delta t)^3)$$
,其中

$$U_{2\Delta t} = \left[e^{-iH_1\Delta t} e^{-iH_2\Delta t} \cdots e^{-iH_{L-1}\Delta t} \right] e^{-iH_L2\Delta t} \left[e^{-iH_{L-1}\Delta t} \cdots e^{-iH_2\Delta t} e^{-iH_1\Delta t} \right]$$

根据盒子4.1,门序列的整体误差最多是单个门误差的和,因此重复执行m次 $U_{2\Delta t}$,产生的误差为 $(\alpha$ 是一常数): $E(U_{2\Delta t}^m, e^{-iH2m\Delta t}) \leq m\alpha(L\Delta t)^3$

分多少段才行? 若令
$$m\alpha(L\Delta t)^3 = \epsilon$$
,则有 $m = O\left((Lt)^{3/2}\epsilon^{-1/2}\right)$ $t=2m\Delta t$

算法的复杂度为 $O(L^{5/2}t^{3/2}\epsilon^{-1/2})$: 每段要模拟 $L \cap H_l$,所以乘了L当 $L_{1}1/\epsilon = O(\text{poly}(\log N))$ 时,对于维数N,相对经典算法有指数加速效果

► k-Local型Hamiltonian模拟

哈密顿量的形式、前提条件	核心思想	复杂度
$H = \sum_{j=1}^{L} H_j$,即 H 是以一些只作用于少数qubits上的哈密尔顿量 H_j 之和, $\max_i \ H_j\ = O(1)$;	1. 利用Suzuki公式,可将 e^{-iHt} 近似分解为一系列(易实现的) e^{-iH_jt} 的乘积	$O(L^{5/2}t^{3/2}\epsilon^{-1/2}),$ 当 $L,1/\epsilon=$
且 每个 $e^{-iH_j\Delta t}$ 都必需存在有效的 量子线路实现。	2. 可通过将模拟时间 分段来降低误差	O(poly(log N)) 时 对维数N指数加速

分段方法并非万能:每个 H_i 易模拟,所以 $U_{2\Delta t}$ 易实现;反之若不满足条件(可分解成易模拟的厄米算子之和),则不行

未来研究: 若某类厄米算子可给出符合条件的分解, 则能用该方法模拟

- ➤ Hamiltonian模拟的概念
- ► k-Local型Hamiltonian模拟
- ➤ LCU型Hamiltonian模拟
- > 典型Hamiltonian模拟结果总结

➤ k-Local Hamiltonians:

$$H = \sum_{j=1}^{L} H_j$$

- \square H_i 是只作用于少数k个qubits的Hamiltonian(用 I 补齐维度)
- 口作用在小的子系统上的 e^{-iH_jt} 可以直接用量子线路来近似【假设其复杂度为O(1)】
- ▶ 其实求和形式的H, 还有一种模拟思路

泰勒展开 忽略*k*太大的项

$$U \equiv \exp(-iHt) \approx \sum_{k=0}^{K} \frac{(-iHt)^k}{k!} \equiv \widetilde{U}$$

代入H的求和式,发现这个酉操作是多个 H_i 及它们间乘积的线性组合

$$\widetilde{U} = I + (-it) \sum_{j=1}^{L} H_j + \frac{(-it)^2}{2!} \left(\sum_{j=1}^{L} H_j \right)^2 + \frac{(-it)^3}{3!} \left(\sum_{j=1}^{L} H_j \right)^3 + \cdots$$

如果每个 H_i 是容易实现的<mark>酉算子</mark>,有办法可以实现这个 \tilde{U} !

LCU型Hamiltonian

➤ LCU (Linear Combination of Unitaries) 型Hamiltonian:

$$H = \sum_{l=1}^{L} \alpha_l H_l$$

注:这里要保证 H_l 是酉的,所以不能像k-local中那样把 α_l 可以吸收到 H_l 中

其中, α_l 是一些正实数(如果是复数,相位可以吸收到 H_l 中), H_l 是一些容易实现的西矩阵

- □ 很多Hamiltonian都是以这样的形式给出,如一些Pauli矩阵构成的k-local型以及量子化学中的某些Hamiltonian等;
- □ 理论上,任意Hamiltonian都可以分解为酉矩阵的线性组合;但一般来说,若只给出H,找到一个好的分解(L=O(poly(logN)))是难的
- □ 这里是酉矩阵的组合,不能用k-local方法模拟(H_l 是酉的,所以 e^{-iH_lt} 不一定是酉的,不一定能实现)

LCU型Hamiltonian

➤ LCU (Linear Combination of Unitaries) 型Hamiltonian:

$$H = \sum_{l=1}^{L} \alpha_l H_l$$

$$U \equiv \exp(-iHt) \approx \sum_{k=0}^{K} \frac{(-iHt)^k}{k!} \equiv \widetilde{U}$$

$$\widetilde{U} = I + (-it) \sum_{l=1}^{L} \alpha_l H_l + \frac{(-it)^2}{2!} \left(\sum_{l=1}^{L} \alpha_l H_l \right)^2 + \frac{(-it)^3}{3!} \left(\sum_{l=1}^{L} \alpha_l H_l \right)^3 + \cdots$$

$$=\sum_{k=0}^{K}\sum_{l_1\cdots l_k=1}^{L}\frac{t^k}{k!}\alpha_{l_1}\cdots\alpha_{l_k}(-i)^kH_{l_1}\cdots H_{l_k}$$

k表示该项有k个 H_l 的乘积 $l_1, \cdots l_k$ 表示是哪k个 H_l

为表示展开中的不同项,定义指标集 $\tilde{I} = \{(k, l_1, \cdots l_k): k \leq K, l_1, \cdots l_k \in \{1, \cdots L\}\}$

则上式 =
$$\sum_{(k,l_1,\cdots l_k)} \beta_{(k,l_1,\cdots l_k)} V_{(k,l_1,\cdots l_k)} = \sum_{j \in \tilde{J}} \beta_j V_j$$
 (或写为 = $\sum_{j=0}^{m-1} \beta_j V_j$)

明显,上式为 $m = \sum_{k=0}^{K} L^k$ 项酉算子的求和。如何实现酉算子的线性组合?

不是无用功:原来H是酉算子的线性组合,现在把 $\exp(-iHt)$ 表示成了酉算子的线性组合

如何实现酉操作的叠加

- \triangleright 先考虑最简单的情形: $\Diamond M = U_0 + U_1$, 实现 $M|\psi\rangle$
 - 1. 对初始态 $|0\rangle|\psi\rangle$ 的第一量子比特做Hadamard变换:

$$\frac{1}{\sqrt{2}}(|0\rangle|\psi\rangle + |1\rangle|\psi\rangle)$$

2. 应用select(V) = $|0\rangle\langle 0| \otimes U_0 + |1\rangle\langle 1| \otimes U_1$, 得:

$$\frac{1}{\sqrt{2}}(|0\rangle U_0|\psi\rangle + |1\rangle U_1|\psi\rangle)$$

3. 对第一量子比特做Hadamard变换:

$$\frac{1}{2}[|0\rangle(U_0+U_1)|\psi\rangle+|1\rangle(U_0-U_1)|\psi\rangle]$$

当测量第一量子比特的结果为 $|0\rangle$ 时,第二寄存器即为 $M|\psi\rangle$

$ightharpoonup \widetilde{U} = \sum_{j=0}^{m-1} \beta_j V_j$ 可以用类似的线路来实现:

令
$$B|0\rangle=\frac{1}{\sqrt{s}}\sum_{j=0}^{m-1}\sqrt{\beta_j}\,|j\rangle$$
 ,其中 $s=\sum_{j=0}^{m-1}\beta_j$ 为归一化因子

$$\operatorname{select}(V) = \sum_{j=0}^{m-1} |j\rangle\langle j| \otimes V_j$$
, $W = (B^{\dagger} \otimes \mathbb{I})[\operatorname{select}(V)](B \otimes \mathbb{I})$

则
$$W|0\rangle|\psi\rangle = \frac{1}{s}|0\rangle\widetilde{U}|\psi\rangle + \sqrt{1 - \frac{1}{s^2}}|\Phi\rangle$$

其中, $|\Phi\rangle$ 中的辅助量子比特(即R1)与 $|0\rangle$ 正交。

证明略

 $ightharpoonup \widetilde{U} = \sum_{j=0}^{m-1} \beta_j V_j$ 可以用类似的线路来实现:

令
$$B|0\rangle = \frac{1}{\sqrt{s}}\sum_{j=0}^{m-1}\sqrt{\beta_j}|j\rangle$$
 ,其中 $s = \sum_{j=0}^{m-1}\beta_j$ 为归一化因子

$$\operatorname{select}(V) = \sum_{j=0}^{m-1} |j\rangle\langle j| \otimes V_j$$
, $W = (B^{\dagger} \otimes \mathbb{I})[\operatorname{select}(V)](B \otimes \mathbb{I})$

则
$$W|0\rangle|\psi\rangle = \frac{1}{s}|0\rangle\tilde{U}|\psi\rangle + \sqrt{1 - \frac{1}{s^2}}|\Phi\rangle$$

其中, |Φ⟩中的辅助量子比特(即R1)与|0⟩正交。

证明略

此时,测量R1,若全0(概率为 $|1/s|^2$),则R2为 $\tilde{U}|\psi$),即实现了 \tilde{U} 操作

幅度放大: 利用特殊的Oblivious AA,当s=2时,经过1次迭代,即可将R1测得全0的概率放大到1

- \triangleright 对具体模拟时间 t 可以分段处理,小段时长可选为使得 s=2成立的时长
 - □ 取满足 $(\alpha_1 + \cdots + \alpha_L)t/r \approx \ln 2$ 的 r,将模拟时间 t 平均分为 r 段,则s=2

> 大致流程

- □ 每一时间段 t/r 分别进行模拟
- □模拟中用到OAA来提高成功概率

哈密顿量	核心思想	复杂度	注意
$H = \sum_{l=1}^{L} \alpha_l H_l$ 即 H 是以一些 容易实现的酉 矩阵的线性组 合	用Taylor级数近似e ^{-iHt} ,然后用特殊方法实现酉算子的线性组合;用OAA实现幅度放大	$O\left(L \frac{\alpha t \log(\alpha t/\varepsilon)}{\log\log(\alpha t/\varepsilon)}\right)$ 个基本门; $O\left(\frac{\alpha t \log(\alpha t/\varepsilon)}{\log\log(\alpha t/\varepsilon)}\right)$ 个C-select(H) $\alpha = \sum_{l=1}^{L} \alpha_{l}$	(1)该方法适用于L 不太大的情况(若 L太大,复杂度就 会比较高,效果不 好) (2)根据实际情况, 受控酉算子可以用 更简单的量子线路 等效实现

- ➤ Hamiltonian模拟的概念
- ➤ k-Local型Hamiltonian模拟
- ➤ LCU型Hamiltonian模拟
- > 典型Hamiltonian模拟结果总结

- [1] Lloyd S. Universal Quantum Simulators. Science, 1996, 273(5278):1073-1078.
- [2] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, "Simulating Hamiltonian Dynamics with a Truncated Taylor Series," Physical Review Letters 114, 090502 (2015).
- [3] G. H. Low and I. L. Chuang, "Optimal Hamiltonian Simulation by Quantum Signal Processing," Physical Review Letters 118, 010501 (2017).
- [4] S. Lloyd, M. Mohseni, and P. Rebentrost, "Quantum principal component analysis," Nature Physics 10, 631 (2014).
- [5] Patrick Rebentrost, Adrian Steffens, and Seth Lloyd, Quantum singular value decomposition of non-sparse low-rank matrices, arXiv: 1607:05404
- [6] Low, Guang Hao, and Isaac L. Chuang. Hamiltonian simulation by qubitization. Quantum 3 (2019): 163
- [7] Chakraborty S, Gilyén A, Jeffery S. The Power of Block-Encoded Matrix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. ICALP 2019.

哈密顿	量类型	前提	方法	复杂度
		• $\max_{j} \ H_{j}\ = O(1)$ • 每个 H_{j} 都易模拟,即 $e^{-iH_{j}t}$ 可有效实现	 用Suzuki公式分解 e^{-iHt} 分段模拟 	$O(Lt^{3/2}\epsilon^{-1/2})$
LCU [2]	$\sum_{l=1}^{L} \alpha_l H_l$	H _l 是易实现的酉矩阵	 用Taylor级数近似 e^{-iHt}, 然后用LCU 线路实现 分段模拟 	$O\left(L\frac{\alpha t \log(\alpha t/\epsilon)}{\log\log(\alpha t/\epsilon)}\right)$ +若干C-select(H)
d 稀疏	[3]	访问H中任意元素和非零 元素位置的两个黑盒	量子信号处理 $l = poly(logN)$ 时指数加	速 $O\left(\tau + \frac{\log(1/\varepsilon)}{\log\log(1/\varepsilon)}\right)$
密度算	子模拟 [4]	给定多份未知量子态 <i>ρ</i>	分段+Swap模拟	$O\left(\frac{t^2}{\varepsilon}poly(logN)\right)$
A/N模	拟 [5]	访问A 元素的oracle	分段+Swap模拟	$O\left(\frac{\ A\ _{\max}^2 t^2}{\varepsilon} poly(logN)\right)$
Block enco ding:[6,7]	d 稀疏	存在访问H中任意元素和 非零元素位置的两个 oracle	设计对应于不同类型 的H的block encoding	$O(\tau + \log(1/\varepsilon))$
	LCU:	存在可制备关于 α_l 和 H_l 的 酉算子	N: 维度; t: 时间 ε: 误差/encoding参数	$O(\alpha t + \log(1/\varepsilon))$
	密度算子 <i>ρ</i>	存在黑盒可以制备对应于 ρ 的量子态	d: 稀疏度;	$O(t + \log(1/\varepsilon))$
	稠密矩阵	矩阵以特定的数据结构进 行存储,并用QRAM访问	τ : $d\ H\ _{\max}t$; α : $\sum_{l}\alpha_{l}$ μ : block-encoding参数	$O(\mu t \text{polylog}(N/\epsilon))$ 非指数加速

Email: gaof@bupt.edu.cn Tel: 86 -10 -62283192

Web: www.bupt.edu.cn

谢谢!

