

CSE 206 - 파일 처리론 (File Processing)

7 장. M-Way Search Tree, B-Tree

Content

- 7.1. m-way Search Tree
 - Definition
 - Search
 - Insertion
- 7.2 B Tree
 - Definition
 - Search
 - Insertion
 - Deletion

7.1 m-way Search Tree (m-원 탐색 트리)

m-way search tree (m-원 탐색 트리)

- 각 Node에서의 분기가 최대 m개인 탐색 트리
 - 이원 탐색 트리의 2 보다 높은 분기율
 - 장점: 트리의 높이가 감소 (특정 Node의 탐색 시간 감소)
 - 단점: 삽입, 삭제 시 트리의 균형 유지를 위해 복잡한 연산이 필요

m-way search tree (m-원 탐색 트리) (Cont'd)

- · m-way search tree 의 성질
 - · 1. Node는 최소 1, 최대 m-1개의 Key를 가질 수 있다.
 - · 왜 m이 아닌, m-1인가?
 - · 2. Node 구조는

$$<$$
n, $<$ P₁, K₁, P₂, K₂, P₃, ..., P_n, K_n, P_{n+1} $>$ $>$

- n: Key 개수 (*K_i* 가 몇 개 있나), 1 ≤ n < m-1
 - = 하나의 Node는 최소 1, 최대 m-1 의 Key를 가질 수 있다.
- P_i : sub-tree에 대한 포인터 (**P**ointer),
- *K_i* : **K**ey 값

m-way search tree (m-원 탐색 트리) (Cont'd)

· m-way search tree 의 성질

- · 3. 한 Node에 있는 Key 값들은 오름차순 으로 정렬됨
- $\langle n, \langle P_1, K_1, P_2, K_2, P_3, ..., P_n, K_n, P_{n+1} \rangle \rangle$
 - $K_i < K_{i+1}$, $1 \le i \le n-1$
- 4. " P_i (0 \leq i \leq n)가 지시하는 sub-tree 모든 Node들의 Key 값" < K_i
- 5. " P_{i+1} 이 지시하는 sub-tree 의 모든 Node들의 Key 값" > K_i
- · 6. P_i 가 지시하는 sub-tree 는 m-way search tree

4원 탐색 트리 (최대 키 Key 3 (=4-1)을 가질 경우)

10 보다 작은 Key들이 들어 있는 Node에 대한 포인터 10 보다 크고20 보다 크고20 보다 작은30 보다 작은Key들이 들어Key들이 들어있는 Node에있는 Node에대한 포인터대한 포인터

30 보다 큰 Key들이 들어 있는 Node에 대한 포인터

3-way search tree

키 값 K_i: (K_i, A_i)를 의미하고, A_i는 키 값 K_i를 포함하고 있는 Data Record의 주소

m-way search tree 의 검색

- 탐색할 key를 K 라 하자.
- Step 1. Root node 부터 시작
- Step 2. Node의 정렬된 $< P_1$, K_1 , P_2 , K_2 , P_3 , ..., P_n , K_n , $P_{n+1}>의 <math>K_i(7)$ 를 왼쪽에서 부터(작은 쪽 부터) 비교해 나간다.
 - Case1. $K = K_i$ 이면:
 - Key를 찾았으므로 K_i 를 반환하고 종료
 - Case 2. K < K_i 가 되는 K_i 가 있다면:
 - 바로 왼쪽의 Pointer P_i 이 가리키는 Node로 이동하여 step 2를 수행.
 - P_i 이 NULL 값이라면 Key 값이 존재 하지 않으므로 종료.
 - Case 3. 마지막 키 K_n 보다 K가 크다면:
 - K_n 바로 오른쪽의 P_{n+1} 이 가리키는 Node로 이동하여 step 2를 수행.
 - P_{n+1} 이 NULL 값이라면 Key 값이 존재 하지 않으므로 종료.

m-way search tree의 검색 (m=3)

m-way search tree 분석

- · 한 Node에 m-1개 Key 값을 저장하는 m-way search tree
 - 높이 h 이면 $m^{h+1}-1$ 개의 키 값을 저장 가능
 - 높이 h 이면 Tree에 최대 $\sum_{i=0}^h m^i$ 개 (= $\frac{m^{h+1}-1}{(m-1)}$ 개) 의 Node 저장.
 - 각 Node에 m-1 개의 키 값을 저장 가능하므로
 - 최대 $\mathbf{n}=(m-1)*\sum_{i=0}^h m^i=(m-1)*\frac{m^{h+1}-1}{(m-1)}=m^{h+1}-1$ 개의 키 값을 저장 가능
 - (예) 3-원 탐색 트리: 높이가 2이면 n=2*(1+3+9)=26개의 키 값을 저장
 - (교과서에서는 $m^h 1$ 이라 하나 이는 잘못됨)

m-way search tree 분석 (Cont'd)

m-way search tree **탐색시간**: 탐색 경로 길이(높이)에 비례

- Node 수 N이 같을 경우 분기 수(m)가 커지면 트리의 높이가 낮아짐

- N개의 Node를 가진 m-원 탐색 트리
 - 최소 높이 $h = [log_m((m-1) \cdot N + 1) 1]$
- n 개의 키를 가진 m-원 탐색 트리
 - 최소 높이
 - $n = (m-1) \cdot N$ 이므로 $N = \frac{n}{(m-1)}$
 - $h = \left[log_m ((m-1) \cdot N + 1) 1 \right]$
 - $\cdot = [log_m(n+1) 1]$
 - 평균 검색 시간
 - = $O([log_m(n+1)-1])$
 - = $O(log_m n)$

최소 높이 계산 과정 (참고)

N = $\frac{m^{h+1}-1}{(m-1)}$:높이 h의 m원 탐색 트리의 최대 Node 수. 이는 높이 h의 탐색 트리의 리프 제외한 모든 Node가 m개의 자식 Node를 가지고 있다는 뜻이다. 따라서 위 식에서의 높이 h가 N개의 Node를 가지는 트리 최소 높이가 된다.

$$N = \frac{m^{h+1} - 1}{(m-1)}$$

$$<=> (m-1) \cdot N + 1 = m^{h+1}$$

$$<=> h + 1 = log_m((m-1) \cdot N + 1)$$

$$<=> h = log_m((m-1) \cdot N + 1) - 1$$

$$=> h = [log_m((m-1) \cdot N + 1) - 1]$$

7.2 B Tree

- Definition & Search (정의 & 검색)

B-Tree

- · 1972년 Bayer & McCreight가 제안
- · Balanced m-way Search Tree (균형 m-원 탐색 트리)
 - 가장 많이 사용되는 인덱스 방법
 - 효율적인 균형 알고리즘을 제공

B-Tree

· 차수(order)가 m인 B-tree의 특성

- 1. B-Tree는 공백이거나 높이가 0 이상인 m-way search tree
 - 교과서에서는 1 이라 되어 있으나, Tree 높이의 정의에 따르면 root만 있는 Tree는 높이가 0이라 0이 맞다.
- 2. Root와 Leaf(단말)를 제외한 내부 Node (=중간 Node)
 - 최소 [m/2], 최대 m개의 Sub-Tree
 - 적어도 [m/2] 1개의 key 값이 존재 (Node의 반 이상이 채워짐)

B-Tree (Cont'd)

- · 차수(order)가 m인 B-tree의 특성 (Cont'd)
 - 3. Root
 - Root는 자신이 Leaf가 아닌 이상 적어도 두 개의 Sub-Tree를 가짐
 - Root는 만약 자식이 있다면 적어도 두 개 자식이 있다.
 - 4. 모든 Leaf는 같은 레벨

3 Order B-Tree **બ**

m차 B-트리 Node 구조

· Node 구조

 $< n, < P_1, K_1, P_2, K_2, P_3, K_3, ..., P_n, K_n, P_{n+1} >>$

- n:키 값의 개수(1≤n<m-1),
- P_1, \dots, P_{n+1} : sub-tree에 대한 포인터
- 각키 값 K_i 는 그키 값을 가진 레코드에 대한 포인터 A_i 를 포함
- 1. 각 Node의 Key 값들은 항상 오름차순($1 \le i \le n \rightarrow K_i < K_{i+1}$)을 유지
- 2. P_i 가 지시하는 sub-tree의 Key 값들은 모두 K_i 보다 작다.
- 3. P_{n+1} 이 지시하는 sub-tree의 Key 값들은 모두 K_n 보다 크다.
- 4. P_i (0 \leq I \leq n+1)가 지시하는 sub-tree들은 모두 m-way search tree이다.

m차 B-Tree Node 구조 (Cont'd)

- B-Tree의 장점
 - Key 삽입, 삭제 뒤에도 트리의 균형 상태를 유지
 - 저장장치의 효율적인 사용
 - 각 Node의 Key를 위해 확보한 공간의 반 이상은 항상 Key 값으로 채워짐

B-Tree에서의 검색

- 검색: m-way search tree의 검색과 같은 과정
 - 직접 탐색 : 검색 키 값과 비교하는 키의 크기에 따라 왼쪽 또는 오른쪽 sub-tree로 분기
 - 검색 키 < 비교하는 키 => 왼쪽 sub-tree
 - 검색 키 > 비교하는 키 => 오른쪽 sub-tree
 - 동일 Node 안에서의 키 검색은 순차 검색 예) 키 값 42 검색

B-트리에서의 검색 예.

7.2 B Tree

- Insertion (삽입)

B-Tree에서의 Insertion

- 삽입 : **새로운 Key 값은 항상 Leaf Node에** 삽입
 - Node에 공간이 있는 경우: 단순히 순서에만 맞게 삽입

B-Tree에서의 Insertion (Cont'd)

- Node에 공간이 없는 경우 : overflow로 split 발생
 - 해당 Node를 **두 개의 Node로 분할**
 - 해당 Node에 새로운 Key 값을 삽입했다고 가정
 - 중간([m/2] 번째) Key 값을 기준으로 왼쪽 작은 키 값들은 그대로 두고, 오른쪽 큰 키 값들은 새로운 Node에 저장
 - 중간 Key 값은 분할된 두 Node가 왼쪽 sub-tree, 오른쪽 sub-tree가 되도록 부모 Node에 삽입
 - 이 때, 다시 overflow가 발생하면 위와 같은 분할(split) 작업을 반복

B-Tree에서의 삽입 예

• 앞의 예의 3원 B-Tree에 새로운 키 값 22, 41, 59, 57, 54, 44, 75, 124, 122, 123 삽입

B-Tree에서의 삽입 예 (Cont'd) : Node *o*에 key 59의 삽입

- 1. 59 가 Node o에 들어가서 Node의 key가 넘침. (3 > 2 (m-1)) 2. 중간 key 58을 기준으로 작은 Key(50)들은 왼쪽 sub-tree, 큰 Key (59)들은 오른쪽 sub-tree가 되도록 함.
- 3. key 58이 부모키가 되고 (58은 60 보다 작으므로 60 앞에 위치) 58의 왼쪽/오른쪽 sub-tree를 설정.

B-Tree에서의 삽입 예 (Cont'd) : Node *o*에 Key 59의 삽입

(d) Node *o*에 key 57 삽입

(d) key 54의 삽입으로 Node *o*의 분할 (54는 부모 Node *f*로 이동)

(e) Node f 분할: f 에 key 54의 삽입, 58는 부모 Node b에 삽입, 60은 새 Node f'로

(g) Node b에 키 58의 삽입 (43은 부모 Node a에 삽입)

마지막 키 값인 123을 삽입 : B-트리는 한 레벨 증가됨

123 삽입으로 인해 r' 가 overflow되어 split하려 해도, Node r'에서 root 까지 경로의 모든 Node의 키가 가득 차 있음. => 부모 Node를 split 해 가며 root까지 도달 => root도 split => B-트리는 한 레벨 증가.

3원 B-Tree 생성 과정

• key 값 43, 69, 138, 19 순으로 삽입하여 생성

(a) 크기가 2인 공백 root Node

(b) 키 값 43의 삽입(Node 1개의 3차 B-트리)

3원 B-Tree 생성 과정 (Cont'd)

• key 값 43, 69, 138, 19 순으로 삽입하여 생성

(c) key 값 69의 삽입(Node 1개의 3차 B-트리)

(d) key 값 138의 삽입(Node 3개의 3차 B-트리)

(e) key 값 19의 삽입(Node 3개의 3차 B-트리)

B-Tree Key 삽입 연산의 특성

- Key 삽입 시 Node 분할이 일어나지 않는 한 Key는 Leaf Node에 저장된다.
- root Node가 분할되면 Tree 높이가 위로 하나 증가한다. (새 root 추가)
- => 모든 Leaf Node가 같은 레벨에 있다.

3원 B-Tree 생성 과정 (Cont'd)

• key 값 80 삽입

• key 값 90 삽입

3원 B-Tree 생성 과정 (Cont'd)

• key 값 84, 150 삽입

3원 B-Tree 생성 과정 (Cont'd)

• key 값 86 삽입

7.2 B Tree

- Deletion (삭제)

B-Tree에서의 삭제

· 삭제 알고리즘

- 0. 검색을 이용해 삭제할 Key 값 K_{rm} 을 찾는다.
- 1. K_{rm} 이 Leaf Node에 저장되어 있는 경우
 - 그대로 삭제

B-Tree에서의 삭제

- 2. K_{rm} 이 내부 Node에 저장되어 있는 경우
 - => K_{rm} 값의 후행Key를 찾아 (K_{rm} 보다 큰 키 중 가장 작은 key) K_{rm} 과 교환 후 Leaf Node에서 삭제
 - B-트리 특성상 이 **후행 key 값은 항상 Leaf Node에 있음**
 - Leaf Node에서의 삭제 연산이 더 간단
 - => 후행 key 값 대신 선행 key 값 (K_{rm} 보다 작은 key 중 제일 큰 key 값) 을 사용할 수 있음

B-Tree에서의 삭제

- 3.삭제 결과로 Node의 key 값 수가 B-트리의 최소 key 값 수 $(\lceil \frac{m}{2} \rceil$ 1) 보다 작게 되면underflow 가 일어남
 - 재분배나 합병을 수행

B-Tree에서의 삭제 예 : K_{rm} 값이 Leaf Node에 저장되어 있는 경우

- 1. K_{rm} 값이 Leaf Node에 저장되어 있는 경우 => 그대로 삭제
- (자식에의 Pointer도 없으므로 key 삭제만 필요)

B-Tree에서의 삭제 예 : K_{rm} 값이 내부 Node에 저장되어 있는 경우

- 2. K_{rm} 값이 내부 Node에 저장되어있는 경우
 - => K_{rm} 값의 후행 key 값 (K_{rm} 보다 큰 자식 중 제일 작은 key 값)과 교환 후 Leaf Node에서 삭제
 - => 후행 key 값 대신 선행 key 값 (K_{rm} 보다 작은 자식 중 제일 큰 key 값)을 사용할 수 있음

Node *f*에서 key 값 60의 삭제

B-Tree에서의 삭제 예 (Cont'd)

• 3.삭제 결과로 Node의 key 값 수가 B-트리의 최소 key 값 수 $(\lceil \frac{m}{2} \rceil$ - 1) 보다 작게 되면 underflow 가 일어남 => **재분배**나 합병을 수행

Node /에서 key 값 20의 삭제

B-Tree 에서의 삭제: 재분배

· 재분배(redistribution)

- Step 1. Underflow가 일어난 Node의 오른쪽이나 왼쪽 형제 Node 중에서 최소 key 수보다 많은 수의 key를 가진 Node에서 key 하나를 차출
- Step 2. 부모 Node에 있는 분리key를 Under가 일어난 Node로 이동하고, 이 빈 자리로 차출된 key를 이동
 - 트리 구조가 변경되지 않음

B-Tree에서의 삭제 예 : 재분배

재분배(redistribution)

Node /에서 key 값 20의 삭제

1. 해당 Node의 오른쪽이나 왼쪽 **형제 Node** 중에서 최소 key 수보다 많은 수의 key를 가진 Node에서 key를 하나 차출.

(오른쪽 형제 Node에서 찾을 경우 Node 안의 key 중 가장 작은 key. 왼쪽 형제 Node면 그 반대.) 2. 부모 Node에 있는 key 를 언더플로가 일어난 Node로 이동하고, 이 빈 자리로 차출된 key를 이동 (Key 이동은 삭제와 다르게 처리. Key가 삭제될 경우 그 자리에 후행Key를 가져다 놓으나, 이동은 key만 이동. 결과 발생할 수 있는 고아 pointer(경로)는 따로 처리)

B-Tree 에서의 삭제: 합병

· 합병(merge)

- 재분배가 불가능한 경우(두 형제 Node 모두가 최소의 key 수만을 가짐)에 적용
- Step 1. Underflow가 된 Node의 오른쪽(또는 왼쪽) 형제 Node에 있는 key들과 이 두 Node를 분리시키는 부모 Node의 key를 합치고(이동시키고) 트리 구조를 조정.
 - Key 이동은 삭제와 다르게 처리.
 - ・ Key가 삭제될 경우 그 자리에 후행Key를 가져다 놓으나, 이동은 Key만 이동. 결과적으로 발생할 수 있는 고아 pointer(경로)는 따로 처리)
- Step 2. 합병으로 생긴 빈 Node를 제거
 - 트리 구조가 변경됨
- 이 합병 작업은 root Node까지 연쇄적으로 파급될 수 있음. 이 경우에는 트리의 레벨이 하나 감소될 수도 있음.

B-Tree 에서의 삭제 예: 합병

Node I에서 key 값 26의 삭제

- 26를 삭제하면 node I 가 underflow.
- 형제 Node에서 최소 수보다 key 개수가 많은 형제 Node가 없다. => 재분배 불가능.

B-Tree 에서의 삭제 예: 합병

· 합병(merge)

• Underflow가 된 Node의 오른쪽(또는 왼쪽) 형제 Node에 있는 key들과 이 두 Node를 분리시키는 부모 Node의 key를 합치고 트리 구조를 조정. 합병으로 생긴 빈 Node는 제거.

B-Tree 에서의 삭제 예: 합병

Node *j*에서 key 값 15의 삭제

- 15를 삭제하면 node j 가 underflow.
- 형제 Node에서 최소 수보다 key 개수가 많은 형제 Node가 없다. => 재분배 불가능.

(Node 안의 key들은 크기순으로 정렬되어

저장됨)

B-Tree 에서의 삭제 예: 합병

m

36

42

26

· 합병(merge)

16

• Underflow 된 Node의 오른쪽(또는 왼쪽) 형제 Node에 있는 key들과 이 두 Node를 분리시키는 부모 Node 의 key를 합치고 트리 구조를 조정. 합병으로 생긴 빈 Node는 제거.

B-Tree에서의 삭제 예 : 합병 (Cont'd)

Node d가 underflow이나 형제 Node e가 최소 key 수 보다 많은 key를 가지므로 중간 Node를 재분배 한다.

- 해당 Node의 오른쪽이나 왼쪽 형제 Node 중에서 최소 key 수보다 많은 수의 key를 가진 Node에서 key 하나를 차출
- 부모 Node에 있는 분리key를 언더플로가 일어난 Node로 이동하고, 이 빈 자리로 차출된 key를 이동

B-Tree에서의 삭제 예 : 합병 (Cont'd)

원래 30보다 작고, 19 보다 큰 데이터가 들어있는 sub-tree 이므로 Node 의 19 뒤에 sub-tree를 붙인다. (30이 이동했으므로 빨간 화살표와 같은 상태, 30왼쪽에 화살표가 2개 있어서 하나를 이동해야 함. 이동한 30의 부모 Key였던 19보다는 큰 것이 확실하므로. 19의 오른쪽에 붙임)

B-Tree key 삭제 연산의 특성

- key가 삭제 되어도 모든 Leaf Node는 트리의 같은 레벨에 위치한다.
- 바꾸어 말하면 root Node에서 모든 Leaf Node까지의 거리가 같아 균형 트리를 유지한다. (sub-tree의 높이차가 발생하지 않는다)

• 이유:

• 1. key 삭제 시 삭제되는 key는 Leaf Node에 있거나, Leaf Node로 이동하여 제거되므로 모든 Leaf Node는 트리의 같은 레벨에 위치한다.

B-Tree key 삭제 연산의 특성 (Cont'd)

- 2.key 삭제 시 underflow가 발생하면 재분배 혹은 합병이 일어나는데 이 경우 도 모든 Leaf Node는 트리의 같은 레벨에 위치한다.
 - ・ 2.1.재분배의 경우
 - 좌우 형제 Node 중 하나에서 차출된 key 하나와 underflowNode와 key가 차출된 형제 Node를 구분하는 부모 Node의 구분key가 이동한다.
 - 가끔 sub-tree가 다른 Node 밑으로 이동하기는 하나 트리의 높이가 바뀌지 않는 수 평 이동이다 (형제 Node 사이의 이동).

58

B-Tree key 삭제 연산의 특성 (Cont'd)

- key 삭제 시 underflow가 발생하면 재분배 혹은 합병이 일어나는데 이 경우도 모든 Leaf Node는 트리의 같은 레벨에 위치한다.
 - ・ 2.2.합병의 경우
 - 두 개의 Node가 합병되어 하나의 Node가 생성되지만, 이 경우도 같은 레벨의 Node n 개 가 n-1개로 하나 줄어드는 것일 뿐 트리의 높이가 변경되지는 않는다.
 - root 바로 아래의 두 개의 Node가 합병되어 root가 생성될 경우도 트리의 아래 레벨이 아닌 위 레벨이 하나 줄어드는 것이므로 모든 Leaf Node는 트리의 같은 레벨에 위치한 다.

B-Tree key 삭제 연산의 특성 (Cont'd)

Leaf Node의 구조는 변화 없고 root Node가 사라짐.

옆으로 이동할 경우, 고아 포인터가 발생하면 데리고 이동.

B-Tree 부록 B-Tree에서, 임의의 중간 Node의 key의 후행 key는 항상 Leaf에 존재

- 임의의 $\ker k_i$ 가 중간 Node에 존재할 경우, $\ker k_i$ 의 후행 $\ker k_i$ 보다 큰 $\ker k_i$ 일 작은 $\ker k_{i+1}$ 은 항상 Leaf Node에 존재한다.
 - k_{i+1} 는 k_i 의 바로 오른쪽 sub-tree에 존재하는 key 중에서 제일 작은 key

Key 삽입의 경우 :

- B트리의 Key는 항상 leaf에 삽입됨.
- Key가 중간 Node에 삽입되는 경우는, 분할(split)에서 하나의 Node를 두개의 Node로 분할하는 과정에서 분할 대상 Node의 중간 Key만이 부모 Node (중간 Node)에 삽입 가능.
- 부모 Node로 올라가는 key를 k_i 라 하면 중간 Node에 저장되면
- k_i 의 후행 Key인 k_{i+1} 은 Leaf Node에 남아 있음.

23 혹은 20 추가 되어 분할되어도 각각 21, 20은 Leaf에 남아 있다.

• 이 후 k_{i+1} 이 새로운 삽입으로 발생한 분할로 중간 Node에 저장될 수 있나? => 저장될 수 있다. 그러나 k_{i+1} 가 중간 Node에 올라갈 수 있다는 것은 k_{i+1} 보다 작고, k_i 보다 큰 k_i 의 새로운 후행키가 존재하는 것을 뜻하며 이는 Leaf에 남아있다.

• **Key 삭제의 경우:** 중간 Node의 어떤 key가 삭제되면서 해당 key의 후행 key인 k_i 가 Leaf에서 중간 Node에 올라온 경우

트리에서 중간 Node의 key 19 삭제 연산이 일어남.

이 경우 21의 후행key도 Leaf Node에 존재할까?

- **Key 삭제의 경우:** 중간 Node의 어떤 key가 삭제되면서 해당 key의 후행 key인 k_i 가 Leaf에서 중간 Node에 올라온 경우
 - k_{i+1} 가 Leaf Node에 남아 있을 경우 => 문제 없음.

트리에서 중간 Node의 key 19 삭제 연산이 일어남.

중간 Node로 올라간 Key의 후행Key가 원래 Leaf Node에 있었을 경우 문제 없음.

- **Key 삭제의 경우:** 중간 Node의 어떤 key가 삭제되면서 해당 key의 후행 key인 k_i 가 Leaf에서 중간 Node에 올라온 경우
 - k_{i+1} 가 sub-tree의 중간 Node에 존재 할 경우
 - k_{i+1} 이 k_i 바로 다음으로 큰 key이므로, 만약 k_{i+1} 이 중간 node에 저장되어 있다면 k_{i+1} 을 저장하는 Node는 k_i 를 저장하고 있었던 Leaf Node의 부모 Node이다.
 - 즉 k_i 는 k_{i+1} 의 바로 왼쪽 자식 Node이다.

21의 후행key 23은 21의 부모 Node에 저장되어야 한다.

21의 후행key 23이 21의 부모 Node 보다 위에 저장되어 있다면, 23은 21의 후행 key가 될 수 없다.

- 후행key의 정의에 의해 k_i 이 원래 삭제된 key의 오른쪽 sub-tree에서 가장 작은 key였으므로,
 - k_{i+1} 의 왼쪽 자식 Node에는 k_i 하나 밖에 존재할 수 없다.
 - 그런데 k_i 가 더 상위의 중간 Node로 올라가 버리므로 해당 Node의 key 수는 0이되어 재분배 혹은 합병이 일어난다. => k_{i+1} 이 Leaf Node로 내려온다.

19 삭제전의 19의 후행 key 21 과 21의 후행 key 23의 예.

