Tarea 3 Informatica Teorica

Matias peñaloza 202373037-8

2024-2

Concepto	Tiempo [min]
Revisión	10
Desarrollo	30
Informe	30

1 Enunciado

Dé gramáticas de contexto libre para los lenguajes siguientes. Explique brevemente sus diseños.

- 1. $L_1 = \{a^m b^n c^{m+n} : m, n \in \mathbb{N}\}$
- 2. $L_2 = \{a^m b^m c^n d^n : m, n \in \mathbb{N}\}$
- 3. $L_3 = \{\omega \in \{a, b\}^* : |\omega| \text{ es impar y el símbolo central es } a\}$

2 Desarollo

Para evitar confusion es clave aclarar que en esta entrega se considera:

- 1. $0 \notin \mathbb{N}$
- 2. $0 \neq 2n \pm 1, \forall n \in \mathbb{Z} \Rightarrow 0$ no es impar

una vez aclarado esto se presentan a continuacion las gramaticas pedidas en el enunciado.

2.1 Gramatica G_1 para L_1

Podemos notar que para formar palabras del tipo $a^mb^nc^{m+n}=a^mb^nc^nc^m$ unicamente necesitamos generar la misma cantidad de a's que de c's y la misma cantidad de b's que de c's, entonces para las a's tendriamos algo asi:

$$S \longrightarrow aSc$$

Y para las b's algo asi:

$$T \longrightarrow bTc$$

Ahora la seccion b^nc^n esta entre la seccion a^m y la seccion c^m por lo que agregamos:

$$S \longrightarrow aTc$$

Uniendo las producciones anteriores para S tendriamos algo asi:

$$S \longrightarrow aSc \mid aTc$$

Donde Tgeneraria b^nc^n y Sgeneraria $a^mTc^m,$ luego agregamos una produccion que le de fin a T con:

$$T \longrightarrow bc$$

Finalmente escribimos la gramatica G_1 como:

$$S \longrightarrow aSc \mid aTc$$

$$T \longrightarrow bTc \mid bc$$

2.2 Gramatica G_2 para L_2

Teniendo en cuenta la gramatica que genera a $\{a^nb^n\colon n\in\mathbb{N}\}$ a la cual llamaremos G_{ab} :

$$S \longrightarrow aSb \mid ab$$

Nos basta con concatenar 2 gramaticas de este tipo ya que:

$$a^m b^m c^n d^n = a^m b^m \cdot c^n d^n$$

$$L(a^m b^m \cdot c^n d^n) = L(G_{ab}) \cdot L(G_{cd})$$

De esta forma nombramos a G_{ab} como A y a G_{cd} como B, lo que resulta en nuestro G_2 :

$$S \longrightarrow AB$$

$$A \longrightarrow aAb \mid ab$$

$$B \longrightarrow cBd \mid cd$$

2.3 Gramatica G_3 para L_3

Lo primero que podemos notar es que como minimo debe haber una a:

$$S \longrightarrow a$$

Luego necesitamos generar pares de simbolos alrededor para que la palabra mantenga un largo impar:

$$S \longrightarrow TST$$

Ahora juntamos las producciones anteriores en:

$$S \longrightarrow TST \mid a$$

Donde T debiese poder ser a o b pero no ε para poder generar todas las combinaciones de a's y b's alrededor de una a, manteniendo el largo impar. Por lo que para T tenemos:

$$T \longrightarrow a \mid b$$

Finalmente escribimos nuestra gramatica G_3 como:

$$S \longrightarrow TST \mid a$$

$$T \longrightarrow a \mid b$$