Set Convesso

Il set $C \subseteq \mathbb{R}^n$ è **convesso** se $\forall x, y \in C$ and $\forall \alpha \in [0, 1] \rightarrow \alpha x + (1 - \alpha)y \in C$

Set Affine

Il set $C \subseteq \mathbb{R}^n$ è **affine** se $\forall x, y \in C$ and $\forall \alpha \in \mathbb{R} \rightarrow \alpha x + (1 - \alpha)y \in C$

Combinazione Convessa

$$y = \sum_{i=1}^{k} \alpha_i x_i$$
 con: 1) $\alpha_1 \dots \alpha_k \in [0, 1],$ 2) $\sum_{i=1}^{k} \alpha_i = 1$

Lemma 1

C convesso $\rightarrow \forall x_1 \dots x_k \in C$ and $\alpha_1 \dots \alpha_k \in [0,1] : \sum_{i=1}^k \alpha_i = 1$,

$$\sum_{i=1}^k \alpha_i x_i \in C$$

Proposizione

 $\{C_i\}_{i\in I}$ ogni possibile famiglia di set convessi $\rightarrow \bigcap_{i\in I} C_i$ è convesso

Convex Hull

conv(C) di un set C è il più piccolo set convesso che contiene C

Proposizione

 $conv(C) = \{tutte \ le \ combinazioni \ convesse \ dei \ punti \ in \ C\}$

Nota

conv(C) = C per C convesso

Definizione di Poliedro

Un poliedro P è l'intersezione di un numero finito di semipiani in \mathbb{R}^n

Somma Di Set Convessi

Siano C_1 e C_2 set convessi \rightarrow $C_1 + C_2 := \{x + y : x \in C_1, y \in C_2\}$ (Vale anche per la differenza)

Prodotto Di Set Convessi

Sia C un set convesso $\rightarrow \alpha \cdot C := \{\alpha \cdot x : x \in C\}$

Closure

C convesso $\rightarrow cl(C)$ convesso

Interior

C convesso $\rightarrow int(C) \neq \emptyset$, convesso

Affine Set

Sia $C \subseteq \mathbb{R}^n \rightarrow aff(C)$ è il più piccolo set affine che contiene C

Relative Interior

Sia
$$C \subseteq \mathbb{R}^n$$
 convesso $\rightarrow ri(C) := \{x \in C : \exists \epsilon > 0 : aff(C) \cap B(x, \epsilon) \subseteq C\}$

Teorema

Sia $C \subseteq \mathbb{R}^n$ set convesso non vuoto $\rightarrow ri(C)$ è convesso non vuoto

Teorema

Siano $A, B \subseteq \mathbb{R}^n$ due set convessi non vuoti $\Rightarrow A \ e \ B$ sono linearmente separabili **SSE** $ri(A) \cap ri(B) = \emptyset$

Funzioni Affine

Sia
$$f: \mathbb{R}^n \to \mathbb{R}^m$$
 è affine se $f(x) = Ax + b \operatorname{con} A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m$

$$C \subseteq \mathbb{R}^n$$
 convesso $\rightarrow f(C) = \{ f(x) : x \in C \}$ è convesso $C \subseteq \mathbb{R}^m$ convesso $\rightarrow f^{-1}(C) = \{ x \in \mathbb{R}^n : f(x) \in C \}$ è convesso

Definizione Di Cono

Un set $C \subseteq \mathbb{R}^n$ è un cono SE $\forall x \in C, \ \forall \lambda > 0 \implies \lambda x \in C$

Cono Di Recessione

Dato un poliedro
$$P = \{x : Ax \le b\}$$
 il cono di recessione di P è $rec(P) := \{d : x + \alpha \cdot d \in P, \forall x \in P, \alpha > 0\}.$

Cono Tangente •••

Dato $x' \in cl(C) \subseteq \mathbb{R}^n$ il cono tangente a x' è:

$$T_{\mathcal{C}}(x') := \{ d \in \mathbb{R}^n \colon \exists \{z_k\} \subset \mathcal{C}, \ \exists \{t_k\} > 0, \ z_k \to x', \ t_k \to 0, \ \lim_{k \to \infty} \frac{z_k - x'}{t_k} = d \}$$

Funzione Convessa

Sia
$$C \subseteq \mathbb{R}^n$$
 set convesso. Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è convessa in C se $f(\alpha y + (1 - \alpha)x) \le \alpha f(y) + (1 - \alpha)f(x) \quad \forall x, y \in C, \quad \forall \alpha \in [0, 1]$

Teorema

 $f: \mathbb{R}^n \to \mathbb{R}$ è convessa in \mathbb{R}^n **SSE** $epi\ f_{\mathcal{C}} := \{(x,y) \in \mathcal{C} \times \mathbb{R}: y \geq f(x)\}$ è convesso

Funzione Concava

Sia
$$C \subseteq \mathbb{R}^n$$
 set convesso. Una funzione $f: \mathbb{R}^n \to \mathbb{R}$ è concava in C se $-f$ è convessa in C $f(\alpha y + (1 - \alpha)x) \ge \alpha f(y) + (1 - \alpha)f(x) \quad \forall x, y \in C, \quad \forall \alpha \in [0, 1]$

Teorema

 $f: \mathbb{R}^n \to \mathbb{R}$ è convessa in $C \subseteq \mathbb{R}^n$ set convesso $\rightarrow f$ continua nel ri(C)

Strictly Convex

Dato
$$C \subseteq \mathbb{R}^n$$
 set convesso, $f: \mathbb{R}^n \to \mathbb{R}$ è **strictly** convex in C se $f(\alpha y + (1 - \alpha)x) < \alpha f(y) + (1 - \alpha)f(x) \quad \forall x, y \in C, \quad \forall \alpha \in (0, 1)$

Strongly Convex

Dato $C \subseteq \mathbb{R}^n$ set convesso, $f: \mathbb{R}^n \to \mathbb{R}$ è **strongly** convex in C se $\exists \tau > 0$:

$$f(\alpha y + (1-\alpha)x) < \alpha f(y) + (1-\alpha)f(x) - \frac{\tau}{2}\alpha(1-\alpha) \parallel y - x \parallel_2^2 \quad \forall x,y \in \mathcal{C}, \ \forall \alpha \in [0,1]$$

Teorema

f è strongly convex **SSE** $\exists \ \tau > 0 : f(x) - \frac{\tau}{2} \parallel x \parallel_2^2$ è convessa

Nota

f è strongly convex **SSE** esiste una funzione ψ e $\tau > 0$: $f(x) = \psi(x) + \frac{\tau}{2} \|x\|_2^2$

Teorema

f è convessa in C **SSE** $f(y) \ge f(x) + (y-x)^T \nabla f(x) \quad \forall x, y \in C$

Teorema

f è strictly convex in C **SSE** $f(y) > f(x) + (y - x)^T \nabla f(x) \quad \forall x, y \in C, x \neq y$

Teorema

f è strongly convex in C SSE $\exists \tau > 0$: $f(y) \ge f(x) + (y-x)^T \nabla f(x) + \frac{\tau}{2} \| y - x \|_2^2 \quad \forall x, y \in C$

Teorema •••

- f è convessa in C **SSE** $\forall x \in C$ la Hessiana $\nabla^2 f(x)$ è **semi-definita positiva** $(v^T \nabla^2 f(x) \ge 0)$ Ovvero che gli autovalori λ di $\nabla^2 f(x)$ sono: $\lambda \ge 0 \ \forall x \in C$
- Se $\nabla^2 f(x) > 0 \ \forall x \in C \implies f$ è strictly convex
- f è strongly convex in C **SSE** $\exists \tau > 0: \nabla^2 f(x) \tau I$ è **semi-definita positiva** $\forall x \in C$. Ovvero: $v^T \nabla^2 f(x) \ v \geq \tau \parallel x \parallel_2^2 \quad \forall x \in C, \ \forall v \in \mathbb{R}^n$ Ovvero che gli autovalori λ di $\nabla^2 f(x)$ sono: $\lambda \geq \tau \ \forall x \in C$

Teoremi •••

- Se f è convessa e $\alpha > 0 \rightarrow \alpha \cdot f$ è convessa
- Se f_1 , f_2 sono convesse $\rightarrow f_1 + f_2$ è convessa
- Se f è convessa $\rightarrow f(Ax + b)$ è convessa
- Se $f_1 \cdots f_n$ sono convesse \rightarrow max $\{f_1(x), \cdots, f_n(x)\}$ è convessa
- Se $\{f_i\}_{i\in I}$ è una famiglia di funzioni convesse \rightarrow sup_{$i\in I$} $\{f_i(x)\}$ è convessa

Teoremi

Siano $f: \mathbb{R}^n \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$

- Se f è convessa e g è convessa non-decrescente $\rightarrow f \circ g$ è convessa
- Se f è concava e g è convessa non-crescente $\rightarrow f \circ g$ è convessa
- Se f è concava e g è concava non-decrescente $\rightarrow f \circ g$ è concava
- Se f è convessa e g è concava non-crescente $\rightarrow f \circ g$ è concava

Problema Di Ottimizzazione

Con

$$f_* = \min\{ f(x) : x \in X \} \longrightarrow P$$
$$f: \mathbb{R}^n \to \mathbb{R}$$
$$X \subseteq \mathbb{R}^n$$

Valore Ottimo

Il valore ottimo di P è definito come $v(p) = \inf\{f(x): x \in X\}.$ $v(P) \in \mathbb{R}$

Ottimo Globale

$$x^* \in X : f(x^*) \le f(x) \ \forall x \in X$$

Ottimo Locale

$$x^* \in X : f(x^*) \le f(x) \quad \forall x \in B(x^*, r) \quad \forall r > 0$$

Teorema di Weierstrass •••

Per f continua in X regione di ammissione chiusa e limitata \Rightarrow Esiste (almeno) un ottimo globale

Corollario 2

Se la funzione obiettivo f è continua e la regione di ammissione X è chiusa e $\exists k \in \mathbb{R}$ tale che il $k-sublevel\ set$: $S_k(f)=\{x\in X: f(x)\leq k\}$ è non-vuoto e limitato \Longrightarrow Esiste (almeno) un ottimo globale

Funzione Coerciva

$$\lim_{\|x\| \to \infty \atop x \in X} f(x) = +\infty$$

Corollario 3

Se la funzione f è continua e coerciva, e $X \neq \emptyset$ è chiuso \rightarrow Esiste (almeno) un ottimo globale

Teorema 1

Sia f convessa in X convesso \rightarrow Ogni ottimo locale di P è anche globale

Proposizione 1

Sia f strictly convex in X convesso, e P ammette un ottimo globale $x^* \rightarrow x^*$ è l'unica soluzione ottima di P

Teorema 2

 $f: \mathbb{R}^n \to \mathbb{R}$ è strongly convex in \mathbb{R}^n e X è chiuso \rightarrow Esiste un ottimo globale

Corollario 1

 $f: \mathbb{R}^n \to \mathbb{R}$ è strongly convex in \mathbb{R}^n e X è chiuso e CONVESSO \Longrightarrow Esiste un ottimo globale UNICO

Teorema 3

Sia X APERTO e sia f differenziabile in $x^* \in X$. Se x^* è un ottimo locale per P $\rightarrow \nabla f(x^*) = 0$

Teorema 4 - Second order necessary optimality condition

Sia X aperto e $x^* \in X$ ottimo locale per $P \rightarrow 1$) $\nabla f(x^*) = 0$. 2) $\nabla^2 f(x^*) \ge 0$

Teorema 5 - Second order sufficient optimality condition

Sia X aperto, preso $x^* \in X$ assumiamo le seguenti condizioni vere

- 1) $\nabla f(x^*) = 0$.
- 2) 2) $\nabla^2 f(x^*) \ge 0$

 $\rightarrow x^*$ è un ottimo locale per P

Teorema 6 - Optimality condition for convex problems

Sia f differenziabile e convessa nel set X convesso e aperto $\Rightarrow x^* \in X$ è un ottimo globale per P SSE $\nabla f(x^*) = 0$

Teorema 7

Sia f differenziabile e STRICTLY CONVEX nel set aperto e convesso $X \rightarrow x^* \in X$ è un ottimo globale UNICO per P SSE $\nabla f(x^*) = 0$

METODI DI OTTIMIZZAZIONE PER PROBLEMI NON VINCOLATI

Metodo del gradiente

- 1) Scegliere $x_0 \in \mathbb{R}^n$
- 2) k = 0
- 3) $SE \nabla f(x_k) = 0$ ALLORA stop
- 4) ALTRIMENTI

a.
$$d_k = -\nabla f(x_k)$$

a.
$$d_k = -\nabla f(x_k)$$

b. $t_k \leftarrow \min_{t>0} f(x_k + t \cdot d_k)$

c.
$$x_{k+1} = x_k + t_k \cdot d_k$$

d. $k = k + 1$

d.
$$k = k + 1$$

5) Step 2

Proposizione

Sia f continua e differenziabile $\rightarrow (d_k)^T d_{k+1} = 0$

Proposizione

Sia f continua e differenziabile \rightarrow SE $\{x_k\} \rightarrow x^*$ ALLORA $\nabla f(x^*) = 0$

Teorema

Se f è coerciva $\rightarrow \forall x_0$ punto di partenza della sequenza $\{x_k\} \rightarrow x^*$, essa è limitata, e ogni punto di accumulo di $\{x_k\}$ è un punto stazionario per f(x)

Corollario

Se f è coerciva e convessa $\rightarrow \forall x_0$ punto di partenza della sequenza $\{x_k\} \rightarrow x^*$, essa è limitata, e ogni punto di accumulo di $\{x_k\}$ è un minimo globale per f(x)

Corollario

Se f è stongly convex $\rightarrow \forall x_0$ punto di partenza della sequenza $\{x_k\}$, essa converge all'unico minimo globale per f(x)

Metodo del gradiente - Caso Quadratico

Se
$$f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$$
, con $Q > 0$.

Dove:
$$g_k = \nabla f(x_k) = Qx_k + c$$

Dove:
$$g_k = \nabla f(x_k) = Qx_k + c$$

Per cui $t_k = -\frac{(d_k)^T \cdot g_k}{(d_k)^T \cdot Q \cdot d_k}$

Metodo del gradiente con la linea di ricerca inesatta di Armijo

- 1) Scegliere $\alpha, \gamma \in (0, 1)$
- 2) Scegliere t' > 0
- 3) Scegliere $x_0 \in \mathbb{R}^n$
- 4) k = 0
- 5) $SE \nabla f(x_k) = 0$ ALLORA stop
- 6) ALTRIMENTI

$$\begin{array}{ll} \mathrm{a.} & d_k = -\nabla f(x_k) \\ \mathrm{b.} & t_k = t' \end{array}$$

b.
$$t_{\nu} = t$$

c. while
$$f(x_k + t_k \cdot d_k) > f(x_k) + \alpha t_k (d_k)^T \nabla f(x_k)$$

i.
$$t_k = \gamma t_k$$

$$d. \ x_{k+1} = x_k + t_k \cdot d_k$$

e.
$$k = k + 1$$

7) Step 2

Metodo del gradiente coniugato

- 1) Scegliere $x_0 \in \mathbb{R}^n$
- 2) $g_0 = \nabla f(x_0) = Qx_0 + c$
- 3) k = 0
- 4) $SE g_k = \nabla f(x_k) = 0$ ALLORA stop
- 5) ALTRIMENTI

a.
$$SE k = 0 ALLORA d_k = -g_k$$

b. ALTRIMENTI

i.
$$\beta_k = \frac{(g_k)^T Q \ d_{k-1}}{(d_{k-1})^T Q \ d_{k-1}}$$

ii.
$$d_k = -g_k + \beta_k d_{k-1}$$

ii.
$$d_k = -g_k + \beta_k d_{k-1}$$

c. $t_k = -\frac{(g_k)^T d_k}{(d_k)^T Q d_k}$

$$d. \ x_{k+1} = x_k + t_k \cdot d_k$$

e.
$$g_{k+1} = Qx_{k+1} + c$$

f.
$$k = k + 1$$

6) Step 2

Proposizioni

- Un modo alternativo di calcolare $t_k = \frac{\|g_k\|^2}{(d_k)^T \ Q \ d_k}$
- Un modo alternativo di calcolare $\beta_k = \frac{\|g_k\|^2}{\|g_{k-1}\|^2}$
- Se non troviamo il minimo globale dopo k iterazioni $\rightarrow \{g_1, g_2, ..., g_k\}$ sono ortogonali
- Se non troviamo il minimo globale dopo k iterazioni $\rightarrow \{d_1, d_2, ..., d_k\}$ sono coniugate rispetto a Q e x_k è il minimo di f(x) su $x_0 + Span(d_1, d_2, ..., d_k)$

Teorema

Il metodo del Gradiente Coniugato (CG) trova il minimo globale in, al massimo, n iterazioni

Teorema

Se Q ha r autovalori distinti -> CG trova il minimo globale in, al massimo, r iterazioni

Metodo di Newton - Basic Version

- 1) Scegliere $x_0 \in \mathbb{R}^n$
- 2) k = 0
- 3) $SE \nabla f(x_k) = 0$ ALLORA stop
- 4) ALTRIMENTI

a.
$$d_k \leftarrow \nabla^2 f(x_k) d = -\nabla f(x_k)$$

b.
$$x_{k+1} = x_k + d_k$$

c.
$$k = k + 1$$

5) Step 2

Teorema Di Convergenza

Se x^* è un minimo locale di f(x) e $\nabla^2 f(x^*) > 0$ \Rightarrow $\exists \delta > 0$: $\forall x_0 \in B(x^*, \delta)$ e la sequenza $\{x_k\} \to x^*$ e

$$\parallel x_{k+1} - x^* \parallel \leq C \parallel x_k - x^* \parallel^2 \qquad \forall k > k', \ per \ C > 0 \ e \ k' > 0$$

Metodo di Newton - con linea di ricerca (inesatta)

- 1) Scegliere $\alpha, \gamma \in (0, 1)$
- 2) Scegliere t' > 0
- 3) Scegliere $x_0 \in \mathbb{R}^n$
- 4) k = 0
- 5) $SE \nabla f(x_k) = 0$ ALLORA stop
- 6) ALTRIMENTI

d.
$$d_k \leftarrow \nabla^2 f(x_k) d = -\nabla f(x_k)$$

e.
$$t_k = t'$$

f. while
$$f(x_k + t_k \cdot d_k) > f(x_k) + \alpha t_k (d_k)^T \nabla f(x_k)$$

i.
$$t_k = \gamma t_k$$

$$g. \quad x_{k+1} = x_k + t_k d_k$$

h.
$$k = k + 1$$

7) Step 2

Teorema Di Convergenza

Se f è strongly convex $\Rightarrow \forall x_0 \in \mathbb{R}^n$ la sequenza $\{x_k\} \to x^*$ minimo globale di f(x) Se $\alpha \in (0, \ ^1\!/_2)$ e t'=1 \Rightarrow la convergenza è quadratica

PROBLEMI VINCOLATI

Set Di Disequazioni Attive

Definiamo $\mathcal{A}(x^*) = \{j: g_i(x^*) = 0\}$ il set di disequazioni attive $x^* \in X$

First Order Feasible Direction Cone

$$D(x^*) = \left\{ d \in \mathbb{R}^n \colon \frac{d^T \nabla g_i(x^*) \le 0 \quad \forall i \in \mathcal{A}(x^*)}{d^T \nabla h_k(x^*) = 0 \quad \forall k = 1 \dots p} \right\}$$

Definizione – Abadie Constraint Qualification (ACQ)

ACQ è valida per un punto ammissibile $x^* \in X$ **SE**: $T_X(x^*) = D(x^*)$

Teoremi •••

1) Vicoli Affini

SE g_j e h_k sono funzioni affini $\forall j, k$ \longrightarrow ACQ è verificata

2) Slatex Condition

SE g_j è convessa $\forall j=1\dots m$, e h_k è affine $\forall k=1\dots p$, e $\exists x'\in X: g(x')<0$, h(x')=0 \Longrightarrow ACQ è verificata $\forall x\in X$

3) Dipendenza lineare dei gradienti dei vincoli attivi

SE $x^* \in X$ e i vettori

i.
$$\nabla g_i(x^*) \leq 0, \forall i \in \mathcal{A}(x^*)$$

j.
$$\nabla h_k(x^*) = 0 \quad \forall k = 1 \dots p$$

sono linearmente dipendenti \rightarrow ACQ è verificata in x^*

TEOREMA KKT •••

SE x^* è un minimo locale e **SE** l'ACQ è verificata $\Rightarrow \exists \lambda^* \in \mathbb{R}^n$, $\exists \mu^* \in \mathbb{R}^n : (x^*, \lambda^*, \mu^*)$ soluzione del sistema:

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \cdot \nabla g_i(x^*) + \sum_{j=1}^p \mu_j^* \cdot \nabla h_j(x^*) = 0 \\ \lambda_i^* \cdot g_i(x^*) = 0 & \forall i = 1 \dots m \\ \lambda^* \ge 0 \\ g(x^*) \le 0 \\ h(x^*) = 0 \end{cases}$$

LAGRANGIANA

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i \cdot g_i(x) + \sum_{j=1}^{p} \mu_j \cdot h_j(x) = 0$$

KKT Con la lagrangiana

$$\begin{cases} \nabla_{\mathbf{x}} \mathbf{L}(x, \lambda, \mu) = 0. \\ \lambda_{i} \cdot g_{i}(x) = 0 \quad \forall i = 1 \dots m \\ \lambda \ge 0 \\ g(x) \le 0 \\ h(x) = 0 \end{cases}$$

Con $\lambda_i \cdot \nabla g_i(x) = 0$, sostituibile con $\lambda^T \cdot g(x) = 0$ o $<\lambda$, g(x) >= 0

Teorema – KKT per problemi convessi

SE il problema P è convesso e (λ^*, μ^*, x^*) è la soluzione del KKT $\rightarrow x^*$ è un ottimo globale

Rilassamento Lagrangiano

$$\begin{cases} \inf(L(x,\lambda,\mu)) \\ x \in \mathbb{R}^n \end{cases}$$

Funzione duale Lagrangiana

$$\varphi(\lambda, \mu) := \inf(L(x, \lambda, \mu))$$

- 1) Concava
- 2) $\varphi(\lambda, \mu) \to -\infty$ per qualche punto
- 3) $\varphi(\lambda, \mu)$ non differenziabile per qualche punto

Teorema

 $\forall \lambda \geq 0 \text{ e } \forall \mu \in \mathbb{R}^p \Rightarrow \varphi(\lambda, \mu) \leq v(P) \text{ minimo globale per P}$

Problema duale Lagrangiano

$$\begin{cases} \max(\varphi(\lambda,\mu)) \\ \lambda \ge 0 \end{cases} = \mathbf{D}$$

D è per definizione convesso sempre

Teorema

Per qualsiasi problema di ottimizzazione P vale che: $v(D) \le v(P)$

Teorema

Supponiamo che f, g e h siano continue e differenziabili:

$$\begin{cases} \min f(x) \\ g(x) \le 0 = P \\ h(x) = 0 \end{cases}$$

con P convesso, $\exists x^*$ ottimo globale e l' ACQ è soddisfatto \Rightarrow

- 1) v(D) = v(P) e D ammette l'ottimo
- 2) (λ^*, μ^*) è l'ottimo per D **SSE** (λ^*, μ^*) è un vettore dei moltiplicatori KKT associato a x^*

Teorema

$$(x^*, \lambda^*, \mu^*)$$
 è punto di **sella** per $L(x, \lambda, \mu)$, ovvero $L(x^*, \lambda, \mu) \le L(x^*, \lambda^*, \mu^*) \le L(x, \lambda^*, \mu^*) \quad \forall x \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R}^m, \ \forall \mu \in \mathbb{R}^p$ **SSE** x^* è un ottimo per P , e (λ^*, μ^*) è un ottimo per D , e vale $v(D) = v(P)$

SUPPORT VECTOR MACHINE

Iperpiano Di Separazione

$$H = \{ z \in \mathbb{R}^n : w^T x + b = 0 \} : \begin{array}{ll} w^T x_i + b > 0 & \forall x_i \in A \\ w^T x_i + b < 0 & \forall x_i \in B \end{array}$$

Dove $A \in B$ sono i due labeled-set. Affinché H valga $conv(A) \cup conv(B) = \emptyset$

Funzione di Decisione

$$y_i = f(x) = sign(w^T x + b) = \begin{cases} 1 & se & w^T x + b > 0 \\ -1 & se & w^T x + b < 0 \end{cases}$$
 \leftarrow classe

Definizione - Margine di Separazione

Se H è l'iperpiano di separazione dei due insiemi A e B, allora definiamo il margine di separazione di H come:

$$\rho(H) = \min_{x \in A \cup B} \frac{|w^T x + b|}{\parallel w \parallel}$$

Teorema

Trovare l'iperpiano H che ha il massimo margine di separazione $\rho(H)$ equivale a risolvere il seguente problema di programmazione quadratico convesso:

$$\begin{cases} \min \frac{1}{2} \| w \|^2 \\ w^T x_i + b > 1 & \forall x_i \in A \\ w^T x_i + b < -1 & \forall x_i \in B \end{cases}$$

Linear SVM

$$\begin{cases} \min \frac{1}{2} \parallel w \parallel^2 \\ 1 - y_i(w^T x_i + b) \le 0 \quad \forall x_i = 1, \dots, l \end{cases}$$

Funzione Lagrangiana

$$L(x, b, \lambda) = \frac{1}{2} \| w \|^2 - \sum_{i=1}^{l} \lambda_i y_i w^T x_i - b \sum_{i=1}^{l} \lambda_i y_i + \sum_{i=1}^{l} \lambda_i$$

1) SE
$$\sum_{i=1}^{l} \lambda_i y_i \neq 0 \implies \min_{w,b} L(x,b,\lambda) = -\infty$$

2) **SE**
$$\sum_{i=1}^{l} \lambda_i y_i = 0$$
 \Rightarrow L non dipende da b , L è strongly convex, $\nabla_w L(x,b,\lambda) = w - \sum_{i=1}^{l} \lambda_i y_i x_i = 0$

Funzione Duale

$$\varphi(\lambda) = \begin{cases} -\infty & se \quad \sum_{i=1}^{l} \lambda_i y_i \neq 0 \\ -\frac{1}{2} \sum_{i=1}^{l} \sum_{i=1}^{l} y_i y_j x_i^T x_j \lambda_i \lambda_j + \sum_{i=1}^{l} \lambda_i & se \quad \sum_{i=1}^{l} \lambda_i y_i = 0 \end{cases}$$

Problema Duale

$$\begin{aligned} & \text{Problema Duale} \\ & \left\{ \begin{aligned} & \max_{\lambda} - \frac{1}{2} \sum_{i=1}^{l} \sum_{i=1}^{l} y_i y_j x_i^T x_j \; \lambda_i \lambda_j + \sum_{i=1}^{l} \lambda_i & \textit{OPPURE} & \max_{\lambda} - \frac{1}{2} \lambda^T X^T X \lambda + e^T \lambda \\ & \sum_{i=1}^{l} \lambda_i y_i = 0 \\ & \lambda \geq 0 \end{aligned} \right. \\ & \text{Con } e^T = (1, \dots, 1) \; \text{e} \; X = \{y_1 x_1, \dots, y_l x_l\} \end{aligned}$$

Con
$$e^T = (1, ..., 1)$$
 e $X = \{y_1 x_1, ..., y_l x_l\}$

- 1) Il duale è convesso: $X^TX \ge 0$
- 2) λ^* ottimo del KKT associato a (w^*, b^*) è ottimo anche del duale
- 3) SE $\lambda_i^* > 0 \implies x_i$ è detto support vector
- 4) **SE** λ_i^* è ottimo del duale \rightarrow $w^* = \sum_{i=1}^l \lambda_i^* y_i x_i$
- 5) b^* è ottenuto da: $\lambda_i^* (1 y_i(w^T x_i + b^*)) \rightarrow b^* = \frac{1}{v_i} (w^*)^T x_i$

Primale Linear SVM con SOFT MARGIN

$$\begin{cases} \min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{l} \xi_i \\ 1 - y_i (w^T x_i + b) \le \xi_i \quad \forall i = 1, ..., l \\ \xi_i \ge 0 \quad \forall i = 1, ..., l \end{cases}$$

- 1) **SE** $\xi_i > 1$ \rightarrow il punto x_i è miss-classificato e $\sum_{i=1}^{l} \xi_i$ è un limite superiore al numero di punti miss-classificati
 - a. $\mathbf{SE} x_i \in A \text{ e } w^T x_i + b < 0 \implies \xi_i > 1 \text{ miss-classificato}$
 - b. **SE** $x_i \in B$ e $w^T x_i + b > 0 \implies \xi_i > 1$ miss-classificato

Duale Linear SVM con SOFT MARGIN

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} y_i y_j x_i^T x_j \lambda_i \lambda_j + \sum_{i=1}^{l} \lambda_i \\ \sum_{i=1}^{l} \lambda_i y_i = 1 \\ 0 \le \lambda_i \le C \end{cases}$$

- 1) **SE** λ^* è una soluzione ottima di questo duale $\Rightarrow w^* = \sum_{i=1}^l \lambda_i^* y_i x_i$ 2) Possiamo ottenere b^* , fissando $0 \le \lambda_i \le C$, e usando la condizione complementare (slackness): $\begin{cases} \lambda_i^* [1 y_i ((w^*)^T x_i + b^*) \xi_i^*] = 0 \\ \mu_i^* \xi_i^* = (C \lambda_i^*) \xi_i^* = 0 \end{cases}$ da cui: $b^* = \frac{1}{y_i} (w^*)^T x_i$ 3) ξ_i^* è l'errore nel classificare il punto i esimo

- 4) **SE** $0 \le \lambda_i^* < C \implies \xi_i^* = 0$ 5) **SE** $0 < \lambda_i^* \le C \implies \xi_i^* = 1 y_i((w^*)^T x_i + b^*)$
- 6) **SE** $\xi_i^* > 0 \implies \lambda_i^* = C \implies$ condizione necessaria per **mis-classificare** x_i

Primale Non-Linear SVM

$$\begin{cases} \min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{l} \xi_i \\ 1 - y_i (w^T \phi(x_i) + b) \le \xi_i & \forall i = 1, ..., l \\ \xi_i \ge 0 & \forall i = 1, ..., l \end{cases}$$

Duale Non-Linear SVM

$$\begin{cases} \max_{\lambda} -\frac{1}{2} \sum_{i=1}^{l} \sum_{i=1}^{l} y_i y_j \phi(x_i^T) \phi(x_j) \lambda_i \lambda_j + \sum_{i=1}^{l} \lambda_i \\ \sum_{i=1}^{l} \lambda_i y_i = 0 \\ \lambda \ge 0 \end{cases}$$

$$w^* = \sum_{i=1}^l \lambda_i^* y_i \, \phi(x_i)$$

Troviamo b^* , fissando $0 < \lambda_i^* < C$:

$$y_i \left[\sum_{i=1}^{l} \lambda_i^* y_i \, \phi^T(x_i) \, \phi(x_i) + b^* \right] - 1 = 0$$

$$f(x) = sign ((w^*)^T \phi(x_i) + b^*)$$

Funzione Kernel

Definiamo $k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, la funzione kernel: $k(x,y) = \langle \phi(x), \phi(y) \rangle$

Teorema

Se k è una funzione Kernel, e se $x_1, ..., x_l \in \mathbb{R}^n \rightarrow$ la matrice $K: k_{ij} = k(x_i, x_j) \geq 0$ Possiamo usare la funzione k per ridefinire il duale.

In Pratica

- 1) Scegliere una funzione Kernel k
- **2)** Trovare la soluzione ottima del duale λ^*
- 3) Scegliere $i: 0 < \lambda_i^* < C$, e trovare b^*
- 4) Calcolare la decision function f(x)

REGRESSIONE

Sistema per trovare il polinomio di regressione

$$\left\{
\begin{array}{l}
\min \parallel Az - y \parallel \\
z \in \mathbb{R}^n
\end{array} \right.$$

Residual Vector

$$r \in \mathbb{R}^l : r_i = p(x_i) - y_i$$

Dove r è la differenza fra valore reale e valore predetto.

Polinomio di regressione con $\| \bullet \|_2$

$$\begin{cases} \min \frac{1}{2} \| Az - y \|_2^2 = \frac{1}{2} z^T A^T A z - z^T A^T y + \frac{1}{2} y y^T \\ z \in \mathbb{R}^n \end{cases}$$

Con rank(A) = n, $A^T A > 0$

Soluzione: $z = (A^T A)^{-1} A^T y$

Polinomio di regressione con $\| \cdot \|_1$

$$\begin{cases} \min \frac{1}{2} \| Az - y \|_1 \\ z \in \mathbb{R}^n \end{cases} = \begin{cases} \min \sum_{i=1}^l u_i \\ u_i \ge A_i z - y_i \\ u_i \le y_i - A_i z \end{cases}$$

Forma vettoriale:

$$\begin{cases} \min_{z,u} (\emptyset_n^T, e_n^T) \binom{z}{u} \\ D\binom{z}{u} \le d \end{cases}$$

Con:

$$D = \begin{pmatrix} A & -I_l \\ -A & -I_l \end{pmatrix}, \quad d = \begin{pmatrix} y \\ -y \end{pmatrix}$$

Polinomio di regressione con $\| \bullet \|_{\infty}$

$$\begin{cases} \min \|Az - y\|_{\infty} \\ z \in \mathbb{R}^n \end{cases} = \begin{cases} \min(u) \\ u_i \ge A_i z - y_i \\ u_i \le y_i - A_i z \end{cases}$$

Forma vettoriale:

$$\begin{cases} \min_{z,u} (0,0,...,0,1) {z \choose u} \\ D {z \choose u} \le d \end{cases}$$

Con:

$$D = \begin{pmatrix} A & -I_l \\ -A & -I_l \end{pmatrix}, \quad d = \begin{pmatrix} y \\ -y \end{pmatrix}$$

Regressione $\varepsilon - SV$ Lineare

$$\begin{cases} \min\left(\frac{1}{2} \| w \|^{2}\right) \\ y_{i} \geq w^{T} x_{i} + b + \varepsilon \\ y_{i} \leq w^{T} x_{i} + b - \varepsilon \end{cases}$$

Forma vettoriale:

$$\begin{cases} \min_{z,u} \frac{1}{2} (w^T, b) Q {w \choose b} \\ D {w \choose b} \le d \end{cases}$$

Con:

$$Q = \begin{pmatrix} I_l & \emptyset \\ \emptyset_l^T & \emptyset \end{pmatrix}, \ D = \begin{pmatrix} -X & -e_l \\ X & e_l \end{pmatrix}, \ d = \begin{pmatrix} \varepsilon e_l - y \\ \varepsilon e_l + y \end{pmatrix}$$

Regressione $\varepsilon - SV$ Lineare con variabili di rilassamento (Slack Variables)

$$\begin{cases} \min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{l} (\xi_i^+, \xi_i^-) \\ y_i \leq w^T x_i + b + \varepsilon + \xi_i^+ & \forall i = 1, ..., l \\ y_i \geq w^T x_i + b - \varepsilon - \xi_i^- & \forall i = 1, ..., l \\ \xi^+, \xi^- > 0 \end{cases}$$

Forma vettoriale:

$$\begin{cases} \min \frac{1}{2} (w^T, b, (\xi_i^+)^T, (\xi_i^-)^T) Q_1 \begin{pmatrix} w \\ b \\ \xi_i^+ \\ \xi_i^- \end{pmatrix} + c^T \begin{pmatrix} w \\ b \\ \xi_i^+ \\ \xi_i^- \end{pmatrix} \\ D_1 \begin{pmatrix} w \\ b \\ \xi_i^+ \\ \xi_i^- \end{pmatrix} \le d_1 \\ \xi_i^+ \ge 0 \\ \xi_i^- \ge 0 \end{cases}$$

Con:

$$Q_1 = \begin{pmatrix} I_n & 0_n & \emptyset_{n \times 2l} \\ 0_n^T & 0 & 0_{2l}^T \\ \emptyset_{2l \times n} & 0_{2l} & 1_{2l \times 2l} \end{pmatrix}, \quad D_- 1 = \begin{pmatrix} -x & -e_l & -I_l & \emptyset_{l \times l} \\ x & e_l & \emptyset_{l \times l} & -I_l \end{pmatrix}, \quad d = \begin{pmatrix} \varepsilon e_l - y \\ \varepsilon e_l + y \end{pmatrix}$$

Lagrangiana $\varepsilon - SV$ Lineare (Slack Variables)

$$L(w, b, \xi^{+}, \xi^{-}, \lambda^{+}, \lambda^{-}, \eta^{+}, \eta^{-}) = \frac{1}{2} \| w \|^{2} - w^{T} \left[\sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) x_{i} \right] - b \sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) + \sum_{i=1}^{l} \xi^{+}(C - \lambda_{i}^{+} - \eta_{i}^{+}) + \sum_{i=1}^{l} \xi_{i}^{-}(C - \lambda_{i}^{-} - \eta_{i}^{-}) - \varepsilon \sum_{i=1}^{l} (\lambda_{i}^{+} + \lambda_{i}^{-}) + \sum_{i=1}^{l} y_{i} (\lambda_{i}^{+} - \lambda_{i}^{-}) \right]$$

1)
$$\nabla_{\mathbf{w}} L = w - \sum_{i=1}^{l} (\lambda_i^+ - \lambda_i^-) x_i = 0$$

2)
$$\nabla_{\mathbf{b}}L = -\sum_{i=1}^{l} (\lambda_i^+ - \lambda_i^-) = 0$$

2)
$$\nabla_{b}L = -\sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) = 0$$

3) $\nabla_{\xi_{i}^{\pm}}L = C - \lambda_{i}^{\pm} - \eta_{i}^{\pm} = 0$

Duale $\varepsilon - SV$ Lineare (Slack Variables)

$$\begin{aligned} &\text{uale } \varepsilon - \textit{SV Lineare (Slack Variables)} \\ &\left\{ \begin{aligned} &\max_{\lambda^+,\lambda^-} - \frac{1}{2} \sum_{i=1}^l \sum_{j=1}^l (\lambda_i^+ - \lambda_i^-) (\lambda_j^+ - \lambda_j^-) (x_i)^T x_j - \varepsilon \sum_{i=1}^l (\lambda_i^+ + \lambda_i^-) + \sum_{i=1}^l y_i \; (\lambda_i^+ - \lambda_i^-) \\ &\sum_{i=1}^l (\lambda_i^+ - \lambda_i^-) = 0 \\ &\lambda_i^+ \in [0,C] \\ &\lambda_i^- \in [0,C] \end{aligned} \right.$$

In formato vettoriale:

ettoriale:
$$\begin{cases} \max_{\lambda^+,\lambda^-} -\frac{1}{2}((\lambda^+)^T,(\lambda^-)^T) \ Q \ \binom{\lambda^+}{\lambda^-} + \left[-e(e_l^T,\ e_l^T) + (y^T,-y^T)\right] \binom{\lambda^+}{\lambda^-} \\ (e_l^T,-e_l^T) \binom{\lambda^+}{\lambda^-} = 0 \\ \lambda_i^+ \in [0,C] \qquad \qquad i=1,\dots,l \\ \lambda_i^- \in [0,C] \qquad \qquad i=1,\dots,l \end{cases}$$

Con:

$$Q = \begin{pmatrix} X & -X \\ -X & X \end{pmatrix}, \ X = \begin{bmatrix} (x_i)^T x_j \end{bmatrix} \ \forall i,j = 1, \dots, l$$

- 1) È un problema convesso di programmazione quadratica
- 2) SE $\lambda^+ > 0$ oppure $\lambda^- > 0 \rightarrow x_i$ è un support vector
- 3) **SE** (λ^+, λ^-) ottimo del duale $\rightarrow w = \sum_{i=1}^l (\lambda_i^+ \lambda_i^-) x_i$ 4) b è ottenuto tramite la complementary condition: $\begin{cases} \lambda_i^+[\varepsilon + \xi_i^+ - y_i + w^T x_i + b] = 0\\ \lambda_i^-[\varepsilon + \xi_i^- + y_i - w^T x_i - b] = 0\\ \xi_i^+(C - \lambda_i^+) = 0\\ \xi_i^-(C - \lambda_i^-) = 0 \end{cases}$

i.
$$0 < \lambda^+ < C \Rightarrow b = y_i - w^T x_i - \varepsilon$$

ii. $0 < \lambda^- < C \Rightarrow b = y_i - w^T x_i + \varepsilon$

Regressione $\varepsilon - SV$ NON Lineare

Definiamo: $\phi \colon \mathbb{R}^n \to \mathcal{H}$, spazio delle caratteristiche, e cerchiamo una regressione lineare in $\{\phi(x_i), y_i\}$ nello spazio $\mathcal{H} \times \mathbb{R}$.

Primale

$$\begin{cases} \min \frac{1}{2} \| w \|^2 + C \sum_{i=1}^{l} (\xi_i^+, \xi_i^-) \\ y_i \ge w^T \phi(x_i) + b + \varepsilon + \xi_i^+ \\ y_i \le w^T \phi(x_i) + b - \varepsilon - \xi_i^- \end{cases}$$

$$\begin{cases} \max_{\lambda^{+},\lambda^{-}} -\frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) (\lambda_{j}^{+} - \lambda_{j}^{-}) k(x_{i}, x_{j}) - \varepsilon \sum_{i=1}^{l} (\lambda_{i}^{+} + \lambda_{i}^{-}) + \sum_{i=1}^{l} y_{i} (\lambda_{i}^{+} - \lambda_{i}^{-}) \\ \sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) = 0 \\ \lambda_{i}^{+} \in [0, C] \\ \lambda_{i}^{-} \in [0, C] \end{cases}$$

Ricordando che $k(x_i, x_i) = \phi(x_i)^T \phi(x_i)$

Passi

- 1) Scegliere una funzione kernel: $k(x_i, x_j)$
- 2) Risolvendo il duale abbiamo: $(\lambda^+, \lambda^-) \rightarrow w = \sum_{i=1}^l (\lambda_i^+ \lambda_i^-) \phi(x_i)$

a.
$$w^T \phi(x_i) = \sum_{i=1}^{l} (\lambda_i^+ - \lambda_i^-) k(x_i, x_i)$$

3) complementary condition:
$$\begin{cases} \lambda_i^+[y_i - f(x_i) - \varepsilon - \xi_i^+] = 0\\ \lambda_i^-[y_i - f(x_i) + \varepsilon + \xi_i^+] = 0\\ \xi_i^+(C - \lambda_i^+) = 0\\ \xi_i^-(C - \lambda_i^-) = 0 \end{cases}$$

4)
$$\mathbf{0} < \lambda^{+} < \mathbf{C} \Rightarrow b = y_{i} - w^{T} \phi(x_{i}) - \varepsilon = y_{i} - \sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) k(x_{i}, x_{j}) - \varepsilon$$

5) $\mathbf{0} < \lambda^{-} < \mathbf{C} \Rightarrow b = y_{i} - w^{T} \phi(x_{i}) + \varepsilon = y_{i} - \sum_{i=1}^{l} (\lambda_{i}^{+} - \lambda_{i}^{-}) k(x_{i}, x_{j}) + \varepsilon$

5)
$$\mathbf{0} < \lambda^{-} < C \Rightarrow b = y_i - w^T \phi(x_i) + \varepsilon = y_i - \sum_{i=1}^{l} (\lambda_i^+ - \lambda_i^-) k(x_i, x_i) + \varepsilon$$

Funzione di regressione per $\varepsilon - SV$ NON Lineare

$$f(x) = w^{T} \phi(x_i) + b = \sum_{i=1}^{l} (\lambda_i^{+} - \lambda_i^{-}) k(x_i, x_j) + b$$

CLUSTER

Modello

$$\begin{cases} \min \sum_{i=1}^{l} \min_{j=1,\dots,k} d(p_i, x_j) \\ x_j \in \mathbb{R}^n \quad \forall j = 1, \dots, k \end{cases} : M$$

Dove $d(p_i, x_i)$ è la distanza fra il punto p_i e il centroide x_i

Problema di Clustering

- 1) **SE** k=1 il problema è convesso
- 2) **SE** k > 1 il problema è non convesso e non differenziabile

Teorema

Il problema $\begin{cases} \min \sum_{i=1}^l \min_{j=1,\dots,k} \parallel p_i - x_j \parallel_2^2 \\ x_j \in \mathbb{R}^n \quad \forall j=1,\dots,k. \end{cases}$ è equivalente al seguente problema non convesso e

non differenziabile:

$$\begin{cases} \min_{x,\alpha} f(x,\alpha) \coloneqq \sum_{i=1}^{l} \sum_{j=1}^{k} \alpha_{ij} \parallel p_i - x_j \parallel_2^2 \\ \sum_{j=1}^{k} \alpha_{ij} = 1 & \forall i = 1, ..., l \\ \alpha_{ij} \ge 0 & \forall i = 1, ..., l & \forall j = 1, ..., k. \\ x_j \in \mathbb{R}^n & \forall j = 1, ..., k \end{cases} : C_2$$

K-Means

- 1) Inizializzazione
 - a. Set t = 0

a. Set
$$t=0$$
b. Setta i centroidi $x_1^0 \dots x_k^0$
c. Setta $\alpha_{ij}^0 = \begin{cases} 1 & j \colon \parallel p_i - x_j \parallel_2 = \min_{h=1,\dots,k} \parallel p_i - x_h^0 \parallel_2 \\ 0 & altrimenti \end{cases}$
i. $\forall i=1\dots l$

2) Aggiornamento centroidi

a.
$$\forall j = 1, ..., k$$
. $x_j^{t+1} = \frac{\sum_{i=1}^{l} \alpha_{ij}^t \cdot p_i}{\sum_{i=1}^{l} \alpha_{ij}^t}$

3) Aggiornamento clusters

$$\text{a. } \forall i=1,\ldots,l. \qquad \alpha_{ij}^{t+1} = \begin{cases} 1 & \quad j \colon \parallel p_i - x_j^{t+1} \parallel_2 = \min_{h=1,\ldots,k} \parallel p_i - x_h^{t+1} \parallel_2 \\ 0 & \quad altrimenti \end{cases}$$

4) Stopping condition

a. Se
$$f(x^{t+1}, \alpha^{t+1}) = f(x^t, \alpha^t) \rightarrow STOP$$

b. Altrimenti t + + e vai al passo 2

Teorema

L'algoritmo di K-Means termina dopo un numero finito di iterazioni in una soluzione (x^*, α^*) del sistema KKT del problema C_2 tale che

$$f(x^*, \alpha^*) \le f(x^*, \alpha) \qquad \forall \alpha \ge 0: \sum_{j=1}^k \alpha_{ij} = 1. \quad \forall i = 1, ..., l$$

$$f(x^*, \alpha^*) \le f(x, \alpha^*) \qquad \forall x \in \mathbb{R}^{kl}$$

Teorema $\| \bullet \|_1$

 $\text{Il problema} \left\{ \begin{array}{l} \min \sum_{i=1}^{l} \min_{j=1,\ldots,k} \parallel p_i - x_j \parallel_1 \\ x_j \in \mathbb{R}^n \quad \forall j=1,\ldots,k \end{array} \right. \text{è equivalente al seguente problema non convesso e}$ non differenziabile:

$$\begin{cases} \min_{x,\alpha} f(x,\alpha) \coloneqq \sum_{i=1}^{l} \sum_{j=1}^{k} \alpha_{ij} \| p_i - x_j \|_1 \\ \sum_{j=1}^{k} \alpha_{ij} = 1 \quad \forall i = 1, ..., l \\ \alpha_{ij} \ge 0 \quad \forall i = 1, ..., l \quad \forall j = 1, ..., k \\ x_j \in \mathbb{R}^n \quad \forall j = 1, ..., k \end{cases} : C_1$$

Teorema •••

Il problema \mathcal{C}_1 è equivalente al seguente problema non convesso e non differenziabile:

è equivalente al seguente problema non convesso e non differenza
$$\begin{cases} \min\limits_{x,\alpha,u} \sum_{i=1}^l \sum_{j=1}^k \sum_{h=1}^n \alpha_{ij} u_{ijk} \\ u_{ijk} \geq (p_i)_h - (x_j)_h & \forall i=1,\dots,l, \ \forall j=1,\dots,k, \ \forall h=1,\dots,n \\ u_{ijk} \geq (x_j)_h - (p_i)_h & \forall i=1,\dots,l, \ \forall j=1,\dots,k, \ \forall h=1,\dots,n \\ \sum_{j=1}^k \alpha_{ij} = 1 & \forall i=1,\dots,l \\ \alpha_{ij} \geq 0 & \forall i=1,\dots,l, \ \forall j=1,\dots,k \\ x_j \in \mathbb{R}^n & \forall j=1,\dots,k. \end{cases}$$

K-Median

1) Inizializzazione

a. Set
$$t = 0$$

b. Setta i centroidi
$$x_1^0 \dots x_k^0$$

a. Set
$$t=0$$
b. Setta i centroidi $x_1^0 \dots x_k^0$
c. Setta $\alpha_{ij}^0 = \begin{cases} 1 & j \colon \parallel p_i - x_j \parallel_1 = \min_{h=1,\dots,k} \parallel p_i - x_h^0 \parallel_1 \\ 0 & altrimenti \end{cases}$
i. $\forall i=1\dots l$

2) Aggiornamento centroidi

a.
$$\forall j = 1, ..., k$$
. $x_j^{t+1} = mediano(p_i: \alpha_{ij}^t = 1)$

3) Aggiornamento clusters

a.
$$\forall i = 1, ..., l.$$
 $\alpha_{ij}^{t+1} = \begin{cases} 1 & j: \parallel p_i - x_j^{t+1} \parallel_1 = \min_{h=1,...,k} \parallel p_i - x_h^{t+1} \parallel_1$

4) Stopping condition

a. Se
$$f(x^{t+1}, \alpha^{t+1}) = f(x^t, \alpha^t) \rightarrow STOP$$

b. Altrimenti t + + e vai al passo 2

Teorema

L'algoritmo di K-Median termina dopo un numero finito di iterazioni in una soluzione (x^*, α^*) punto stazionario tale che:

$$f(x^*, \alpha^*) \le f(x^*, \alpha) \qquad \forall \alpha \ge 0: \sum_{j=1}^k \alpha_{ij} = 1. \quad \forall i = 1, ..., l$$

$$f(x^*, \alpha^*) \le f(x, \alpha^*) \qquad \forall x \in \mathbb{R}^{kl}$$

METODI PER PROBLEMI DI OTTIMIZZAZIONE VINCOLATI

(Exact) Penality Method

Trasformiamo il problema P (convesso) in un problema senza vincoli aggiungendo una penalità a f

$$\begin{cases} \min f(x) + \frac{1}{\varepsilon} \rho(x) \coloneqq \rho_{\varepsilon}(x) \\ x \in \mathbb{R}^n \end{cases} = P_{\varepsilon}$$

Dove

$$\rho(x) = \sum_{i=1}^{m} (\max\{0, g_i(x)\})^2$$

Proposizione

1) SE f e g_i sono continue e differenziabili ightharpoonup anche $ho_{arepsilon}$ lo è, e il gradiente è:

$$\nabla \rho_{\varepsilon}(x) = \nabla f(x) + \frac{2}{\varepsilon} \sum_{i=1}^{m} \max\{0, g_i(x)\} \nabla g_i(x)$$

- 2) SE $f \in g_i$ sono convesse \rightarrow anche ρ_{ε} lo è
- 3) Ogni problema P_{ε} ha una relazione con $P \Rightarrow v(P_{\varepsilon}) \leq v(P) \ \forall \varepsilon > 0$
- 4) SE x_{ε}^* risolve il problema $P_{\varepsilon} \rightarrow x_{\varepsilon}^*$ è ottimo anche per P
- 5) SE $0 < \varepsilon_2 < \varepsilon_1 \rightarrow v(P_{\varepsilon_1}) \le v(P_{\varepsilon_2})$

Passi del metodo

- 1) Settare $\varepsilon_0 > 0$
- 2) Settare $\tau \in (0,1)$
- 3) Settare k = 0
- 4) Trovare l'ottimo x_k del problema P_{ε_k}
- 5) SE $x_k \in X$
 - a. STOP
- 6) ALTIMENTI
 - a. $\varepsilon_{k+1} = \tau \varepsilon_k$
 - b. k + +
 - c. Passo 1

Teoremi

- **SE** f è coerciva \Rightarrow \exists $\{x_k\}$, sequenza limitata, e ogni punto stazionario è un'ottima soluzione di P
- SE $\{x_k\} \to x^* \rightarrow x^*$ è un'ottima soluzione di P
- **SE** $\{x_k\} \to x^*$ e i gradienti dei vincoli attivi sono linearmente indipendenti $\Rightarrow x^*$ è un'ottima soluzione di P e la sequenza $\{\lambda_k\}: \ \lambda_k^i = \frac{2}{\varepsilon} \max\{0, g_i(x_k)\} \to \lambda^*$ vettore dei moltiplicatori del KKT associati a x^*

(In quello esatto, dato che il problema P convesso, abbiamo una sola soluzione e quindi un unico ε .)

Barrier Method

Questo metodo cerca una sequenza di punti ammissibili che approssima la soluzione ottima di P, problema vincolato, approssimandolo con:

$$\begin{cases} \min f(x) - \varepsilon \sum_{i=1}^{m} \log(-g_i(x)) = \psi_{\varepsilon}(x) \\ x \in int(X) \end{cases} := P_B$$

Proprietà di $B(x) = \sum_{i=1}^{m} \log(-g_i(x))$

- 1) dom(B) = int(X)
- 2) B convesso
- 3) B derivabile con:

a.
$$\nabla B(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)} \nabla g_i(x)$$

b. $\nabla^2 B(x) = \sum_{i=1}^{m} \frac{1}{[g_i(x)]^2} \nabla g_i(x) \nabla g_i(x)^T + \sum_{i=1}^{m} \frac{1}{-g_i(x)} \nabla^2 g_i(x)$

Passi del metodo

- 1) Settare $\delta > 0$
- 2) Settare $\varepsilon_1 > 0$
- 3) Settare $\tau \in (0,1)$
- 4) Scegliere x_0
- 5) Settare k = 1
- 6) Trovare l'ottimo x_k del problema P_B
 - a. Partendo da x_{k-1}
- 7) **SE** $m \varepsilon_k < \delta$
 - a. STOP
- 8) **ALTIMENTI**
 - a. $\varepsilon_{k+1} = \tau \varepsilon_k$
 - b. k + +
 - c. Passo 1

Trovare x_0

Consideriamo il problema ausiliare:

$$\begin{cases} \min s \\ g_i(x) < s \quad \forall i = 1, ..., m \end{cases}$$
1) Prendiamo $x^{\sim} \in \mathbb{R}^n$, e cerchiamo $s^{\sim} > \max_{i=1,...,m} g_i(x^{\sim}) \Rightarrow (x^{\sim}, s^{\sim})$

- $\iota=1,...,m$ 2) Cercare la soluzione ottima dell'ausiliare: (x^*,s^*) usando un Barrier Method
- 3) **SE** $s^* < 0 \implies x^* \in int(X)$
 - a. ALTRIMETNI $int(X) = \emptyset$

PROBLEMI MULTI OBIETTIVO

Definizione

$${\min_{x \in X} f(x) = (f_1(x), \dots, f_s(x))}$$

Ordine di Pareto

Dati $x, y \in \mathbb{R}^s$

$$x \ge y \iff x_i \ge y_i \quad \forall i = 1, ..., s$$

- 1) Reflexive: $x \ge x$
- 2) Asimmetrico: se $x \ge y$ e $y \ge x \rightarrow x = y$
- 3) Transitiva: se $x \ge y$ e $y \ge z \rightarrow x \ge z$

Minimi di Pareto per un Sottoinsieme

- 1) Ideal Minimun
 - a. $x^* \in A$ è un IMin(A) se $y \ge x^*, \forall y \in A$
 - b. $x^* \in A \text{ è un } IMin(A) \text{ se } A \subseteq (x^* + \mathbb{R}^s_+)$
- 2) Minimun
 - a. $x^* \in A$ è un Min(A) se $\nexists y \in A$, $y \neq x^*$, $x^* \geq y$
 - b. $x^* \in A \text{ è un } Min(A) \text{ se } A \cap (x^* \mathbb{R}^s_+) = \emptyset$
- 3) Weak Minimun
 - a. $x^* \in A$ è un WMin(A) se $\nexists y \in A$, $y \neq x^*$, $x^* > y$
 - b. $x^* \in A \text{ è un } WMin(A) \text{ se } A \cap (x^* int(\mathbb{R}^s_+)) = \emptyset$

Preposizione

Se
$$IMin(A) \neq \emptyset \rightarrow IMin(A) = Min(A) = \{x^*\}$$

Teorema - Esistenza del minimo

Se
$$\exists x^* \in A$$
: $A \cap (x^* - \mathbb{R}^s_+)$ è compatto $\rightarrow Min(A) \neq \emptyset$

Minimi di Pareto per un problema multi-obiettivo $P \bullet \bullet \bullet$

- 1) Ideal Minimun
 - a. $x^* \in X$ è un IMin(P) se $f(x^*) = IMin(f(X))$ ovvero se $f(x) \ge f(x^*)$, $\forall x \in X$
- 2) Minimun
 - a. $x^* \in X$ è un Min(P) se $f(x^*) = Min(f(X))$ ovvero che $\nexists x \in X$:
 - i. $f_i(x^*) \ge f_i(x)$. $\forall i = 1, ..., s$
 - ii. $f_i(x^*) > f_i(x)$. Per qualche $j \in \{1, ..., s\}$
- 3) Weak Minimun
 - a. $x^* \in X$ è un WMin(P) se $f(x^*) = WMin(f(X))$ ovvero che:

i.
$$\nexists x \in X$$
: $f_i(x^*) > f_i(x)$. $\forall i = 1, ..., s$

Teorema •••

Se
$$f_i$$
 è continua $\forall i = 1, ..., s$ e se X è compatto $\rightarrow \exists Min(P)$

Teorema •••

Se
$$f_i$$
 è continua $\forall i = 1, ..., s$ e se X è chiuso, e se $\exists v \in \mathbb{R}, \exists j = 1, ..., s$:

$$\{x \in X: f_i(x) \le v\}$$

è un insieme non vuoto e limitato \rightarrow $\exists Min(P)$

Corollario

Se f_i è continua $\forall i = 1, ..., s$ e se X è chiuso, con f_j coerciva per qualche $j \in \{1, ..., s\}$ \rightarrow \exists Min(P)

Teorema

Teorema
$$x^* \in X \text{ è un } Min(P) \text{ SSE il problema ausiliario } P_a \text{ ha soluzione } 0$$

$$\begin{cases} \max \sum_{i=1}^s \varepsilon_i \\ f_i(x) + \varepsilon_i \leq f_i(x^*). & \forall i=1,...,s \\ x \in X \\ \varepsilon \geq 0 \end{cases} := P_a$$

Teorema

 $x^* \in X$ è un WMin(P) **SSE** il problema ausiliario P_{wa} ha soluzione 0

$$\begin{cases} \max v \\ v \leq \varepsilon_i \\ f_i(x) + \varepsilon_i \leq f_i(x^*). \end{cases} \quad \forall i = 1, ..., s \\ \forall i = 1, ..., s \\ \forall i = 1, ..., s \end{cases} := P_{wa}$$

$$\begin{cases} \varepsilon \leq X \\ \varepsilon \geq 0 \end{cases}$$

PROBLEMI MULTI OBIETTIVO NON VINCOLATI

Definizione problema

$$\begin{cases} \min f(x) = \left(f_1(x), \dots, f_s(x)\right) \\ x \in \mathbb{R}^n \end{cases} := P_u$$
 con f_i continua e differenziabile $\forall i=1,\dots,s$

Teorema

$$\begin{aligned} \mathbf{SE} \ x^* \in X \ \text{\`e un} \ Min(P_u) & \implies \text{il problema} \ S_1 \ \text{non ha soluzione.} \\ \left\{ \begin{array}{l} \nabla f_i(x^*)^T d < 0. \quad \forall i=1,\dots,s \\ d \in \mathbb{R}^n \end{array} \right. \ := S_1 \end{aligned}$$

Condizione Necessaria di Ottimalità

SE $x^* \in X$ è un $WMin(P_u) \rightarrow \exists \theta^* \in \mathbb{R}^s$: (x^*, θ^*) è una soluzione di:

$$\begin{cases} \sum_{i=1}^{s} \theta_{i} \, \nabla f_{i}(x^{*}) = 0 \\ \theta \geq 0 \\ \sum_{i=1}^{s} \theta_{i} = 1 \\ x \in \mathbb{R}^{n} \end{cases} := S$$

Condizione Sufficiente di Ottimalità

SE P_u è convesso (Ovvero ogni f_i è convessa) e (x^*, θ^*) è l'ottimo per $S \rightarrow$

- 1) $x^* = WMin(P_u)$
- 2) **SE** vale anche $\theta^* > 0 \rightarrow x^* = Min(P_u)$

PROBLEMI MULTI OBIETTIVO VINCOLATI

Definizione problema

$$\begin{cases} \min f(x) = \left(f_1(x), \dots, f_s(x)\right) \\ x \in X = \{x \in \mathbb{R}^n \colon g_j(x) \le 0, \ h_k(x) = 0\} \end{cases} := P$$

$$\forall j = 1, \dots, m \in \forall k = 1, \dots, p$$

Teorema KKT Multi-Obiettivo

SE x^* è un WMin(P) e **SE** l'ACQ è verificata in $x^* \rightarrow \exists \theta^* \in \mathbb{R}^s$, $\exists \lambda^* \in \mathbb{R}^m$, $\exists \mu^* \in \mathbb{R}^p$: $(x^*, \theta^*, \lambda^*, \mu^*)$ è soluzione del sistema:

soluzione del sistema:
$$\begin{cases} \sum_{i=1}^s \theta_i \cdot \nabla f_i(x) + \sum_{j=1}^m \lambda_j \cdot \nabla g_j(x) + \sum_{k=1}^p \mu_k \cdot \nabla h_k(x) = 0 \\ \theta \geq 0 \\ \sum_{i=1}^s \theta_i = 1 \\ \lambda \geq 0 \\ \lambda_j \cdot \nabla g_j(x) = 0. \\ g(x^*) \leq 0 \\ h(x^*) = 0 \end{cases}$$

Teorema - Condizione Necessaria di Ottimalità

SE
$$x^* \in X$$
 è un $WMin(P)$ \Rightarrow il problema S non ha soluzione.
$$\begin{cases} \nabla f_i(x^*)^T d < 0. & \forall i=1,\ldots,s. \\ d \in T_X(x^*) \end{cases} := S$$

Corollario

SE x^* è un WMin(P) e **SE** l'ACQ è verificata in x^* il problema S_1 non ha soluzione.

$$\begin{cases} \mathbf{v}^{\mathsf{T}} \nabla f_i(x^*)^T d < 0. & \forall i = 1, ..., s \\ \mathbf{v}^{\mathsf{T}} \nabla g_j(x^*)^T d \leq 0. & \forall j = 1, ..., m \\ \mathbf{v}^{\mathsf{T}} \nabla h_k(x^*)^T d < 0. & \forall k = 1, ..., p \end{cases} := S_1$$

Teorema - Condizione Sufficiente di Ottimalità

Assunti f_i e g_i sono convesse $\forall i \ e \ \forall j$, e h_k è affine $\forall k$:

- 1) **SE** $(x^*, \theta^*, \lambda^*, \mu^*)$ risolve il $KKT \rightarrow x^* = WMin(P)$
- 2) **SE** $(x^*, \theta^*, \lambda^*, \mu^*)$ risolve il $KKT \in \theta^* > 0 \rightarrow x^* = Min(P)$

Proposizione

SE x^* è un unico minimo globale per f_k in X, per qualche $k=1,...,s \rightarrow x^*=Min(P)$

SCALARIZATION METHOD

Associamo al problema P vincolato, il sistema P_{α} che associa pesi a ogni f_i :

$$\begin{cases}
\min \sum_{i=1}^{s} \alpha_i f_i(x) \\
x \in X
\end{cases} := P_{\alpha}$$

Con S_{α} insieme delle soluzioni ottime di P_{α}

me di
$$P_{\alpha}$$
 $lpha \geq 0, \qquad \sum_{i=1}^{s} lpha_i = 1$

Teorema

•
$$\bigcup_{\alpha \ge 0} S_{\alpha} \subseteq \{WMin(P)\}$$
•
$$\bigcup_{\alpha \ge 0} S_{\alpha} \subseteq \{Min(P)\}$$

Teorema

SE che *X* è convesso e che f_i sono convesse in *X*, $\forall i = 1, ..., s \rightarrow$

$$\bigcup_{\alpha \ge 0} S_{\alpha} = \{WMin(P)\}\$$

Teorema

Sia P è lineare (ovvero che f_i è lineare $\forall i = 1, ..., s$) e sia X un poliedro \rightarrow

•
$$\bigcup_{\alpha \ge 0} S_{\alpha} = \{WMin(P)\}$$
•
$$\bigcup_{\alpha \ge 0} S_{\alpha} = \{Min(P)\}$$

Proposizione

SE x^* è un unico minimo globale per P_{α} , per qualche α , $\rightarrow x^* = Min(P)$

NOTA

Solo con $\alpha=0$ si hanno WMin(P), gli altri sono Min(P) di Pareto; tranne che se con $\alpha=0$ la funzione che rimane è strongly convex

NOTA

SE l'ottimo di P_{α} coincide sia con $\alpha=0$ che con $\alpha=1$ \Rightarrow $x^*=IMin(P)$ perché minimizza entrambe le funzioni obiettivo

GOAL METHOD

Definiamo nello spazio obiettivo \mathbb{R}^s un punto ideale z, così definito:

$$z_i = \min_{x \in X} f_i(x). \qquad \forall i = 1, \dots, s.$$

Teorema

Per avvicinarsi il più possibile a z, risolviamo:

$$\left\{ \begin{array}{ll} \min \parallel f(x) - z \parallel_q & con \ q \in [1, +\infty] \end{array} \right. := G$$

- SE $q \in [1, +\infty)$ ogni soluzione ottima di G è un Min(P)
- SE $q = +\infty$) \rightarrow ogni soluzione ottima di G è un WMin(P)

Goal Method - Norma 2

$$\begin{cases} \min \frac{1}{2} \| Cx - z \|_2^2 = \frac{1}{2} x^T C^T Cx - x^T C^T z + \frac{1}{2} z^T z \\ x \in X \end{cases} := G_2$$

GAME THEORY - Matrix Game

Definizione two-person non-cooperative game

$$P_1 \to \min_{x \in X} f_1(x, y), \qquad P_2 \to \min_{y \in Y} f_2(x, y)$$

Equilibrio di Nash

In un two-person non-cooperative game, una coppia di strategie (x^*, y^*) è detta Equilibrio di Nash SE

$$f_1(x^*, y^*) = \min_{x \in X} f_1(x, y^*), \qquad f_2(x^*, y^*) = \min_{y \in Y} f_2(x^*, y)$$

Matrix Game

In un two-person non-cooperative game, dove:

- $X \in Y$ sono set finiti: $X = \{1, ..., m\}, Y = \{1, ..., n\}$
- $f_1 = -f_2$ (zero-sum game)

definiamo la Matrix Game $C: c_{ij} = f_1(i, j)$

Definizione – Strategia Strictly Dominated

Dato un two-person non-cooperative game, una strategia $x \in X$ è strettamente dominata da $x^* \in X$ se:

$$f_1(x,y) > f_1(x^*,y) \quad \forall y \in Y$$

Similmente $y \in Y$ è strettamente dominata fa $y^* \in Y$ se:

$$f_2(x,y) > f_2(x,y^*) \quad \forall x \in X$$

Le strategie dominate possono essere eliminate dal gioco

Mixed Strategies

SE C è un Matrix Game $m \times n \rightarrow$

ullet una Mixed Strategy per il giocatore 1 è un vettore grande m contenete probabilità.

$$X = \{x \in \mathbb{R}^m : x \ge 0, \sum_{i=1}^m x_i = 1\}$$

 \bullet una Mixed Strategy per il giocatore 2 è un vettore grande n contenete probabilità.

$$Y = \{ y \in \mathbb{R}^n : y \ge 0, \sum_{j=1}^n y_j = 1 \}$$

Pure Strategy

Sono i vertici di X e Y: $e_i = (0, ..., 0, 1, 0, ..., 0)$

Expected Cost

$$f_1(x,y) = x^T C y, \qquad f_2(x,y) = -x^T C y$$

Nota

$$x^T C y = \sum_{i=1}^m \sum_{j=1}^n x_i c_{ij} y_j$$

Mixed Strategies Nash Equilibrium

SE C è un Matrix Game $m \times n \rightarrow (x^*, y^*) \in X \times Y$ è un Mixed Strategies Nash Equilibrium **SE**

$$\max_{y \in Y} (x^*)^T C y = (x^*)^T C y^* = \max_{x \in X} x^T C (y^*)$$

O equivalentemente:

$$(x^*)^T Cy \le (x^*)^T Cy^* \le x^T C(y^*) \quad \forall (x, y) \in X \times Y$$

 (x^*, y^*) è un **punto di sella** per $f_1(x, y) = x^T C y$ su $X \times Y$

Punto Di Sella

Sia $X \subseteq \mathbb{R}^m$ e $Y \subseteq \mathbb{R}^n$. (x^*, y^*) è un punto di sella della funzione $F: X \times Y \to \mathbb{R}$ **SE**

$$F(x^*, y) \le F(x^*, y^*) \le F(x, y^*), \quad \forall (x, y) \in X \times Y$$

Teorema

 $(x^*, y^*) \in X \times Y$ soddisfa la condizione di punto di sella **SSE**

- 1) x^* è una soluzione ottima di: $\min_{x \in X} (\sup_{y \in Y} F(x, y))$
- 2) y^* è una soluzione ottima di: $\max_{y \in Y} (\inf_{x \in X} F(x, y))$
- 3) $\sup_{y \in Y} F(x, y) = \inf_{x \in X} F(x, y)$

Tutte e tre le condizioni sono equivalenti a: $\min_{x \in X} (\sup_{y \in Y} F(x, y)) = \max_{y \in Y} (\inf_{x \in X} F(x, y)) = F(x^*, y^*)$

Teorema - Esistenza del punto di sella

Sia $X \subseteq \mathbb{R}^m$ e $Y \subseteq \mathbb{R}^n$. Assumendo che

- 1) X e Y sono non vuoti, convessi e compatti
- 2) $F(\bullet, y)$ è continua e quasi-convessa in $X, \forall y \in Y$
- 3) $F(x, \bullet)$ è continua e quasi-convessa in $Y, \forall x \in X$
- \rightarrow F ammette un punto di sella in $X \times Y$

Corollario

- 1) Ogni Matrix Game ha almeno un Mixed Strategies Nash Equilibrium
- 2) (x^*, y^*) è un Mixed Strategies Nash Equilibrium **SSE**

$$\begin{cases} x^* \text{ è una soluzione ottima di: } \min_{x \in X} (\max_{y \in Y} x^T C y) \\ y^* \text{è una soluzione ottima di: } \max_{y \in Y} (\min_{x \in X} x^T C y) \end{cases}$$

Con valore ottimo pari a $(x^*)^T C y^*$

Teorema

Il problema $\min_{x \in X} (\max_{y \in Y} x^T C y)$ è equivalente a risolvere il seguente problema di programmazione lineare:

$$\begin{cases} \min v \\ v \ge \sum_{i=1}^{m} c_{ij} x_i & \forall j = 1, \dots, n \\ x \ge 0 \\ \sum_{i=1}^{m} x_i = 1 \end{cases} := P_1$$

Teorema

Il problema $\max_{y \in Y} (\min_{x \in X} x^T C y)$ è equivalente a risolvere il seguente problema di programmazione lineare:

$$\begin{cases} \max w \\ w \ge \sum_{j=1}^{n} c_{ij} y_j & \forall i = 1, ..., m \\ y \ge 0 \\ \sum_{j=1}^{n} y_j = 1 \end{cases} := P_2$$

Proposizione

 P_2 è il duale di P_1

Risoluzione Esercizi

I Pure Strategies Nash Equilibria possono essere cercati fra **i minimi di ogni colonna** della matrice per $Player_1$ e **i massimi di ogni riga** per $Player_2$.

I punti in comune sono Pure Strategies Nash Equilibria.

Nota

SE il P_1 è convesso \Rightarrow Qualsiasi combinazione convessa fra due Pure Strategies Nash Equilibrium è una Mixed Strategies Nash Equilibria

Definizione Combinazione Convessa con due punti

$$\alpha x_1 + (1 - \alpha)x_2$$
 $\alpha \in [0, 1]$

GAME THEORY – Bimatrix Games

Definizione

Un Bimatrix Game è un two-person non-cooperative game, dove:

• X e Y sono set finiti:

$$\begin{array}{ll} \circ & X = \{x \in \mathbb{R}^m \colon x \geq 0, \; \sum_{i=1}^m x_i = 1\} \\ \circ & Y = \{y \in \mathbb{R}^n \colon y \geq 0, \; \sum_{j=1}^n y_j = 1\} \end{array}$$

• $f_1 \neq -f_2$ (non zero-sum game)

$$\begin{array}{ll}
\circ & f_1(x,y) = x^T C_1 y \\
\circ & f_2(x,y) = x^T C_2 y
\end{array}$$

$$\circ f_2(x,y) = x^T C_2 y$$

Teorema

Ogni Bimatrix Game ha almeno un Mixed Strategies Nash Equilibrium

Teorema

Definendo $B_1: Y \to X \in B_2: X \to Y$:

$$B_1(y) = \{Soluzioni\ ottime\ di\ \min_{x \in X} x^T C_1 y\}$$

$$B_2(x) = \{Soluzioni\ ottime\ di\ \min_{y \in Y} x^T C_2 y\}$$

$$(x^*, y^*)\ \text{\'e}\ un\ \text{Nash}\ \text{Equilibrium}\ \textbf{SSE}\ x^* \in B_1(y)\ \text{\'e}\ y^* \in B_2(x)$$

Teorema – KKT per Bimatrix Games

 (x^*, y^*) è un Nash Equilibrium **SSE** $\exists \mu_1, \mu_2 \in \mathbb{R}$:

$$\begin{cases} C_{1}y^{*} + \mu_{1}e_{m} \geq 0 \\ x^{*} \geq 0 \\ \sum_{i=1}^{m} x_{i}^{*} = 1 \\ x_{i}^{*}(C_{1}y^{*} + \mu_{1}e_{m}) \geq 0. \quad \forall i = 1 \dots m \\ C_{2}x^{*} + \mu_{2}e_{n} \geq 0 \\ y^{*} \geq 0 \\ \sum_{j=1}^{n} y_{j}^{*} = 1 \\ y_{j}^{*}(C_{2}x^{*} + \mu_{2}e_{n}) \geq 0. \quad \forall j = 1 \dots n \end{cases} := KS$$

È Verificato

Proposizione

 (x^*, y^*, μ_1, μ_2) è una soluzione per KS **SSE** è una soluzione ottima del problema di programmazione quadratica seguente:

$$\begin{cases} \min \psi(x, y, \mu_1, \mu_2) = [x^T (C_1 y + \mu_1 e_m) + y^T (C_2 x + \mu_2 e_n)] \\ C_1 y + \mu_1 e_m \ge 0 \\ x \ge 0 \\ \sum_{i=1}^m x_i = 1 \\ C_2 x + \mu_2 e_n \ge 0 \\ y \ge 0 \\ \sum_{j=1}^n y_j = 1 \end{cases} := QP$$

Formato Matriciale di QP

$$\begin{cases} \min \frac{1}{2} (w^T, \mu^T) H {w \choose \mu} \\ A_{in} {w \choose \mu} \le b_{in} \\ A_{eq} {w \choose \mu} \le b_{eq} \\ w \ge 0 \end{cases} := QP$$

Con: $(O == matrice \ di \ uni)$

Here at ant)
$$H = \begin{pmatrix} O_{m \times m} & C_1 + C_2 & e_m & O_{m \times 1} \\ C_1^T + C_2^T & O_{n \times n} & O_{n \times 1} & e_n \\ e_m^T & O_{1 \times n} & 0 & 0 \\ O_{1 \times m} & e_n^T & 0 & 0 \end{pmatrix}$$

$$A_{in} = \begin{pmatrix} -C_2^T & O_{n \times n} & O_{n \times 1} & -e_n \\ O_{m \times m} & -C_1 & -e_m & O_{m \times 1} \end{pmatrix} \qquad b_{in} = \begin{pmatrix} O_{n \times 1} \\ O_{m \times 1} \end{pmatrix}$$

$$A_{eq} = \begin{pmatrix} 1 & \dots & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & \dots & 0 & 1 & \dots & 1 & 0 & 0 \end{pmatrix} \qquad b_{in} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$w^T = \begin{pmatrix} x^T & y^T \end{pmatrix}$$

GAME THEORY – Convex Games

$$P_1 \rightarrow \begin{cases} \min_x f_1(x,y) \\ g_i^1(x) \leq 0. \quad \forall i = 1 \dots p \end{cases}, \qquad P_2 \rightarrow \begin{cases} \min_y f_2(x,y) \\ g_j^2(y) \leq 0. \quad \forall j = 1 \dots q \end{cases}$$

Con f_1 , f_2 , g^1 e g^2 continue e differenziabili

Teorema

SE le regioni di ammissione

- $X = \{x \in \mathbb{R}^m : g_i^1(x) \le 0, \ \forall i = 1 \dots p\}$
- $Y = \{ y \in \mathbb{R}^n : g_i^2(y) \le 0, \ \forall j = 1 \dots q \}$

Sono chiuse, limitate e convesse e le funzioni di costo:

- 1) $f_1(\bullet, y)$ è quasi-convessa $\forall y \in Y$
- 2) $f_2(x, \bullet)$ è quasi-convessa $\forall x \in X$
- → esiste almeno un Nash Equilibrium

Teorema - Condizione KKT

SE (x^*, y^*) è un Nash Equilibrium e ACQ sono verificati sia in x^* che in $y^* \rightarrow \exists \lambda^1 \in \mathbb{R}^p$ e $\exists \lambda^2 \in \mathbb{R}^q$:

$$\begin{cases} \nabla_x f_1(x^*,y^*) + \sum_{i=1}^p \lambda_i^1 \nabla g_i^1(x^*) = 0 \\ \lambda^1 \geq 0 \\ g^1(x^*) \leq 0 \\ \lambda_i^1 g_i^1(x^*) = 0 \qquad \forall i=1,\dots,p \\ \nabla_y f_2(x^*,y^*) + \sum_{j=1}^q \lambda_j^2 \nabla g_j^2(y^*) = 0 \\ \lambda^2 \geq 0 \\ g^2(y^*) \leq 0 \\ \lambda_j^2 g_j^2(y^*) = 0 \qquad \forall j=1,\dots,q \end{cases}$$
 SE $(x^*,y^*,\lambda^1,\lambda^2)$ risolve il *KKT* di sopra, e il game è convesso \rightarrow (x^*,y^*) è un Nash Equilibrium

Equilibrium

MATLAB

Funzione linprog (f, A, b, Aeq, beq, lb, ub, opzioni) Dove. Il sistema che risolve, in generale è fatto:

$$\begin{cases} \min_{x} (f^{T}x) \\ Ax \leq b \\ Aeq \ x = b. \\ lb \leq x \leq ub \end{cases}$$

Funzione quadprog $(H, f, A, b, Aeq, beq, lb, ub, x_0, opzioni)$ Dove. Il sistema che risolve, in generale è fatto:

$$\begin{cases} \min_{x} \left(\frac{1}{2} x^{T} H x + f^{T} x \right) \\ Ax \leq b \\ Aeq x = beq \\ lb \leq x \leq ub \end{cases}$$

Funzione

 $[x, fval, exitflag, output, lambda] = fmincon (fun, x_0, A, b, Aeq, beq, lb, ub, nonlcon)$ Dove. Il sistema che risolve, in generale è fatto:

$$\begin{cases} \min_{x} f(x) \\ Ax \le b \\ Aeq x = beq \\ lb \le x \le ubq \\ c(x) \le 0 \\ ceq(x) = 0 \end{cases}$$

$$fun = @(x) \dots$$

$$nonlcon = @(x) const(x)$$

$$function [c, ceq] = const(x)$$

$$c = [\dots];$$

$$ceq = [\dots];$$
end

Funzione fminunc uguale ma senza vincoli

RISOLUZIONE ESERCIZI

ESERCIZIO 1: Mono-Objective

- 1) Provare se il problema ammette un ottimo globale
 - a. Controllare se f(x) è convessa tramite gli auto-vettori dell'Hessiana
 - b. Controllare se f(x) è continua nel set X di ammissione
- 2) Applicare il metodo indicato tramite lo script MatLab
- 3) Il punto ottenuto è un minimo globale del problema?
 - a. Se f(x) è strongly convex allora il minimo globale è unico
 - b. Per farlo bisogna vedere se la soluzione trovata è anche soluzione del KKT associato al problema. Usando il teorema che dice: SE il problema P è convesso e (λ^*, μ^*, x^*) è la soluzione del $KKT \rightarrow x^*$ è un ottimo globale

ESERCIZIO 2: SVM

- 1) Scrivere il modello richiesto, copiandolo da sopra.
- 2) Risolvere usando MatLab, con i parametri descritti dalla traccia
- 3) Trovare i punti miss-classified
 - a. Bisogna considerare la "complementary slackness condition", in particolare se il punto è miss-classificato allora l'errore $\xi_i^*>0$, per cui da $(C-\lambda_i^*)\xi_i^*=0$ deriviamo $C=\lambda_i^*$. Cercare i punti con questo λ_i^* . Ma non basta, potrebbero esserci punti classificati correttamente anche con $C=\lambda_i^*$. Per notarlo basta calcolare il valore dell'Iperpiano con il punto indicato, e vedere se soddisfa:

i.
$$w^T x_i + b > 0 \quad \forall x_i \in A$$

ii.
$$w^T x_i + b < 0 \quad \forall x_i \in B$$

- 4) Classifica il nuovo punto
 - a. Bisogna vedere se:

i.
$$w^T x_i + b > 0 \quad \forall x_i \in A$$

ii.
$$w^T x_i + b < 0 \quad \forall x_i \in B$$

ESERCIZIO 2: Regressione

- 1) Scrivere il modello richiesto, copiandolo da sopra.
- 2) Risolvere usando MatLab, con i parametri descritti dalla traccia
- 3) Trovare i Support Vector:
 - a. Usare MatLab, i SV sono dati dalla seconda e dalla terza colonna
- 4) Trovare i punti che cadono fuori dal $\varepsilon-tube$ usando la soluzione del duale
 - a. Guardando le condizioni del primale:

i.
$$y_i - f(x_i) - \varepsilon - \xi_i^+ \le 0$$

ii.
$$y_i - f(x_i) + \varepsilon + \xi_i^+ \le 0$$

Se un punto è fuori dal ε – tube, allora l'errore è ξ_i^+ , $\xi_i^- > 0$

Bisogna cercare i punti a cui corrisponde un errore positivo, cerchiamo prima nella soluzione duale i punti (λ^+, λ^-) , e cerchiamo i punti che hanno $C = \lambda_i^*$, per lo stesso principio del problema SVM.

ESERCIZIO 2: Clustering

- 1) Scrivere il modello richiesto, copiandolo da sopra.
- 2) Risolvere usando MatLab, con i parametri descritti dalla traccia

ESERCIZIO 3: Multi-Objective

- 1) Prova l'esistenza del Minimo di Pareto, trovare i WMin(P) e i Min(P)
 - a. Per farlo risolvere il P_{α} dello scalarizied problem, attraverso il KKT, provando che il problema P_{α} è convesso e che le ACQ sono soddisfatti:
 - i. Per $\alpha_1 = 0$
 - ii. Per $\alpha_1 = 1$
 - iii. Per $0 < \alpha_1 < 1$
 - 1. Distinguere i casi per $\lambda = 0$ e $\lambda > 0$
 - b. **SE** il problema P è lineare allora tutti i risultati trovati sono WMin(P) o Min(P) secondo il teorema di sopra descritto
 - c. **SE** una delle f_i è Strongly Convex allora ha un unico minimo che è un Min(P)

ESERCIZIO 4: Mono-Matrix

- 1) Trovare le strategie dominate per eliminarle:
 - a. Player 2: Eliminiamo le **colonne** che hanno tutti i valori ≤ agli elementi corrispondenti delle altre colonne (Mi tengo la colonna maggiore)
 - b. Player 1: Eliminiamo le **righe** che hanno tutti i valori ≥ agli elementi corrispondenti delle altre righe (Mi tengo la riga minore)
- 2) Trovare le Pure Strategies Nash Equilibiria
 - a. Cercare gli elementi che sono contemporaneamente **massimi per la propria** riga e minimi per la propria colonna.
 - b. Ricordare di mantenere gli indici della matrice originale
- 3) Trovare un Mixed Strategies Nash Equilibiria
 - a. Risolvere il sistema primale dato dalla definizione sopra, con MatLab
 - b. SE il risultato del sistema è un Pure Strategies Nash Equilibiria, allora controllare se il problema è lineare, per cui ogni combinazione convessa fra due punti di Pure Strategies Nash Equilibiria è un Mixed Strategies Nash Equilibiria.

ESERCIZIO 4: Bi-Matrix

1) Fa tutto MatLab 😂