Lab 2: Bootstrap methods

PB HLTH 250C

February 8, 2023

Review of concepts (see Carpenter and Bithell (2000) for details)

A confidence interval for parameter θ is a random interval (l, u) that is expected to contain that parameter $(1 - \alpha) \times 100\%$ of the time. In other words, we would like

$$\Pr(\theta > l \cap \theta < u) = 1 - \alpha.$$

Typically, we estimate confidence intervals using knowledge about the sampling distribution of some estimator $\hat{\theta}$ of θ . Most commonly, we assume

$$\hat{\theta} - \theta \sim \text{Normal}\left(0, \text{var}\left(\hat{\theta}\right)\right)$$
.

Let's take that idea and put it to the side and return to the first equation. For simplicity, let's make our CI one-sided by putting $l \mapsto -\infty$. Then, we have

$$\begin{split} 1 - \alpha &= \Pr \left(\theta > l \cap \theta < u \right) \\ &= \Pr \left(\theta > -\infty \cap \theta < u \right) \\ &= \Pr \left(\theta < u \right) \\ &= \Pr \left(\theta + (\hat{\theta} - \theta) < u + (\hat{\theta} - \theta) \right) \\ &= \Pr \left(\hat{\theta} < u + (\hat{\theta} - \theta) \right) \\ &= \Pr \left(\hat{\theta} < u + (\hat{\theta} - \theta) \right) \\ &= \Pr \left(\hat{\theta} - \theta > \hat{\theta} - u \right) \\ &= 1 - \Pr \left(\hat{\theta} - \theta \leq \hat{\theta} - u \right) \\ \Rightarrow \Pr \left(\hat{\theta} - \theta \leq \hat{\theta} - u \right) = \alpha. \end{split}$$

Using the assumption above, we should pick u such that $\hat{\theta} - u$ is the $(\alpha \times 100)^{\text{th}}$ percentile of Normal $(0, \text{var}(\hat{\theta}))$ i.e. $u = \hat{\theta} - F^{-1}(\alpha)$ where $F^{-1}(\cdot)$ is the inverse cumulative distribution function. When symmetry is satisfied, we can also pick u such that $\hat{\theta} - u$ is the $[(1 - \alpha) \times 100]^{\text{th}}$ percentile.

Non-parametric bootstrap for the interaction contrast ratio

The interaction contrast ratio (ICR) is an estimand used to assess the presence of additive interaction when only relative measures are available. Take p_{11} , p_{10} , p_{01} , and p_{00} to be the conditional probabilities of some outcome Y when $X_1 = 1$ and $X_2 = 1$; when $X_1 = 1$ and $X_2 = 0$; and so forth. The additive interaction contrast is the expected difference in the risk differences:

$$p_{11} - p_{00} - \left((p_{10} - p_{00}) + (p_{01} - p_{00}) \right)$$

Dividing the expression by the baseline risk p_{00} gives the expression for the ICR:

$$\frac{p_{11}}{p_{00}} - \frac{p_{10}}{p_{00}} - \frac{p_{01}}{p_{00}} + 1$$

Consider the following log-binomial model for stroke:

$$\log (\Pr(Y = 1 \mid x, \beta)) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 \times x_2)$$

where

- Pr $(Y = 1 \mid x, \beta)$ is the conditional risk of stroke Y given covariates x and parameters β
- x is a vector of covariates including x_1 diabetes status and x_2 smoking status
- β is a vector containing the coefficients β_0 , β_1 , and β_2 of covariates 1, x_1 and x_2 , respectively
 - $-\beta_0$ is the log risk of stroke among those with no diabetes and no smoking
 - $-\beta_1$ is the log risk ratio of stroke comparing those with diabetes at baseline to those without, holding smoking status constant at no smoking
 - $-\beta_2$ is the log risk ratio of stroke comparing smokers at baseline to non-smokers at baseline, holding diabetes status constant at no diabetes
 - $-\beta_3$ is left for the reader to interpret

In the context of the model above, the ICR is

$$\exp\left(\beta_{1}+\beta_{2}+\beta_{3}\right)-\exp\left(\beta_{1}\right)-\exp\left(\beta_{2}\right)+1$$

Goal: Estimate BS intervals for the ICR by Normal approximation (Wald-type), the percentile method, and the bias corrected and accelerated method (BC_A).

Implementation: Write a function that returns a single estimate of the ICR given data frame dataset and a vector index of rows to use from dataset.

library(fastglm)

Loading required package: bigmemory

- 1 Select rows of 'dataset' using 'index'.
- 2 Using the data frame with rows given by 'index', fit a log binomial regression to estimate the parameters of the model given above.
 - Indicator of stroke status is stroke
 - Diabetes status is diabetes
 - Smoking status is cursmoke
- (3) Return the ICR by extracting the coefficient estimates and applying the formula above.

Compute R=5000 BS estimates of the ICR using the boot() function. Runtime can be reduced by specifying parallel = "multicore" and ncpus = parallel::detectCores() - 1 (one less than cores available). Compute BS 95% CIs by normal approximation, the percentile method, and BC_A using the boot.ci() function.

```
library(boot)
set.seed(1108)
R <- 5000 # Must be greater than `nrow(stroke.data)` for skew adjustment
icr.boot <- boot(
    stroke.data,
    icr.fun,
    R,
    parallel = "multicore",
    ncpus = parallel::detectCores() - 1)
boot.ci(icr.boot, type = c("norm", "perc", "bca"))</pre>
```

Parametric bootstrap for the attributable fraction (Greenland, 2004)

Consider the following expression giving the adjusted attributable fraction:

$$AF_{p} = \frac{RR_{a} - 1}{RR_{a} + 1/O_{0}}$$

where P_0 is the exposure prevalence, $O_0 = P_0/(1 - P_0)$ is the prevalence odds, and RR_a is the adjusted relative measure of association. We assume that exposure prevalence is independent of the adjusted measure of association.

Suppose we estimated RR_a and O_0 using maximum likelihood estimation. From the two model results, we have

$$\begin{split} \log\left(\widehat{RR}_{a}\right) &= 0.519, \quad \widehat{Var}\left(\log\left(\widehat{RR}_{a}\right)\right) = 0.159^{2} \\ \log\left(\widehat{O}_{0}\right) &= -3.041, \quad \widehat{Var}\left(\log\left(\widehat{O}_{0}\right)\right) = 0.153^{2}. \end{split}$$

The parametric BS procedure for i = 1, ..., R is as follows:

Step 1: Suppose the model results were generated using adequately large data so that the sampling distributions are approximately normal. Draw two R-length vectors $\left\{\log\left(\widehat{\mathbf{RR}}_{\mathbf{a}}\right)^{(i)}\right\}_{i=1}^{R}$ and $\left\{\log\left(\widehat{\mathbf{O}}_{0}\right)^{(i)}\right\}_{i=1}^{R}$ from the implied sampling distributions.

Step 2: Calculate $\left\{\widehat{AF}_{p}^{(i)}\right\}_{i=1}^{R}$ using the $\left\{\log\left(\widehat{RR}_{a}\right)^{(i)}\right\}_{i=1}^{R}$ and $\left\{\log\left(\widehat{O}_{0}\right)^{(i)}\right\}_{i=1}^{N}$ generated from the previous step.

Step 3: Transform $\left\{\widehat{AF}_{p}^{(i)}\right\}_{i=1}^{R}$ to get $\left\{\widehat{L}_{p}^{(i)}\right\}_{i=1}^{R}$ for better behavior under normal approximation:

$$L_{\rm p} = \log(1 - AF_{\rm p})$$

Step 4: Compute the BS 95% CI for \hat{L}_p using normal approximation (or some other method). Transform the interval endpoints back to the scale of AF_p to get the BS 95% CI for \widehat{AF}_p .

References

Carpenter, James, and John Bithell. 2000. "Bootstrap Confidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians." *Statistics in Medicine*. Wiley Online Library.