Contents

List of Figures				
1	Introduction	1		
2	Modelling 2.1 Model specifications	3		
3	Conclusion	4		
4	Discussion 4.1 Bone density			
$\mathbf{B}^{\mathbf{i}}$	ibliography	6		

List of Figures

1.1	Maximum displacement as a function of frequency for 100 periods. (a) displacement: $0.2\mu\text{m}$,		
	(b) load: 0.2 $\mu N.$		
1.2	Maximum displacement relative to spigot as a function of frequency. (a) displacement: $0.2 \mu\text{m}$,		
	(b) load: 0.2 $\mu N.$		
1.3	Maximum displacement as a function of the offset from base of spigot	9	

1. Introduction

Figure 1.1: Maximum displacement as a function of frequency for 100 periods. (a) displacement: $0.2 \,\mu\text{m}$, (b) load: $0.2 \,\mu\text{N}$.

Figure 1.2: Maximum displacement relative to spigot as a function of frequency. (a) displacement: $0.2\,\mu\text{M}$, (b) load: $0.2\,\mu\text{N}$.

Figure 1.3: Maximum displacement as a function of the offset from base of spigot

2. Modelling

2.1 Model specifications

PMMA density of $1180 \,\mathrm{kg}\,\mathrm{m}^{-3}$ (citation missing. took from Wikipedia). Bone density is $1750 \,\mathrm{kg}\,\mathrm{m}^{-3}$ to $2500 \,\mathrm{kg}\,\mathrm{m}^{-3}$ with the low-end representing a cortical diaphysis of a tibia [1] and in the high end, of a femur [2].

Orthotropic model that does not consider cancellous bone [3, 4]. In Abaqus the exact model is Engineering Constants, not Orthotropic.

Young's Modulus	Poisson's ratio	Shear Modulus
E_1 : 12.00 GPa	$\nu_{12}:0.22$	$G_{12}: 5.61\mathrm{GPa}$
E_2 : 20.00 GPa	$\nu_{13}:0.38$	$G_{13}: 4.53{ m GPa}$
E_3 : 13.40 GPa	$\nu_{23}:0.35$	$G_{23}:6.23{ m GPa}$

Table 2.1: Material properties. Directions 1 and 3 are radial, direction 2 is axial.

Two models of bone were produced: a simplified hollow cylinder, and CT reconstruction using InVesalius [5] and Bonemat [6, 7]. CT scan datasets were from the Laboratory of Human Anatomy and Embryology, University of Brussels (ULB), Belgium

3. Conclusion

4. Discussion

4.1 Bone density

Other authors have used similar density values when modelling bone as an isotropic material [8].

4.2

Bibliography

- [1] Benedikt Helgason, Egon Perilli, Enrico Schileo, Fulvia Taddei, Sigurður Brynjólfsson, and Marco Viceconti. Mathematical relationships between bone density and mechanical properties: A literature review. Clinical Biomechanics, 23(2):135–146, February 2008. ISSN 0268-0033. doi: 10.1016/j.clinbiomech.2007. 08.024. URL https://www.sciencedirect.com/science/article/pii/S0268003307001866.
- [2] G.M. Treece, K.E.S. Poole, and A.H. Gee. Imaging the femoral cortex: Thickness, density and mass from clinical CT. *Medical Image Analysis*, 16(5-4):952–965, July 2012. ISSN 1361-8415. doi: 10.1016/j. media.2012.02.008. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417239/.
- [3] K. Ahmed, R. J. Greene, W. Aston, T. Briggs, C. Pendegrass, M. Moazen, and G. Blunn. Experimental Validation of an ITAP Numerical Model and the Effect of Implant Stem Stiffness on Bone Strain Energy. Annals of Biomedical Engineering, 48(4):1382–1395, April 2020. ISSN 1573-9686. doi: 10.1007/s10439-020-02456-6. URL https://doi.org/10.1007/s10439-020-02456-6.
- [4] R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice. A continuous wave technique for the measurement of the elastic properties of cortical bone. *Journal of Biomechanics*, 17(5):349-361, January 1984. ISSN 0021-9290. doi: 10.1016/0021-9290(84)90029-0. URL https://www.sciencedirect.com/ science/article/pii/0021929084900290.
- [5] Paulo Amorim, Thiago Moraes, Jorge Silva, and Helio Pedrini. InVesalius: An Interactive Rendering Framework for Health Care Support. In Advances in Visual Computing, pages 45-54. Springer, Cham, 2015. doi: 10.1007/978-3-319-27857-5_5. URL https://link.springer.com/chapter/10.1007/978-3-319-27857-5_5.
- [6] Fulvia Taddei, Enrico Schileo, Benedikt Helgason, Luca Cristofolini, and Marco Viceconti. The material mapping strategy influences the accuracy of CT-based finite element models of bones: An evaluation against experimental measurements. *Medical Engineering & Physics*, 29(9):973–979, November 2007. ISSN 1350-4533. doi: 10.1016/j.medengphy.2006.10.014. URL https://www.sciencedirect.com/science/article/pii/S1350453306002293.
- [7] Enrico Schileo, Jonathan Pitocchi, Cristina Falcinelli, and Fulvia Taddei. Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur. *Bone*, 136:115348, July 2020. ISSN 8756-3282. doi: 10.1016/j.bone.2020.115348. URL https://www.sciencedirect.com/science/article/ pii/S8756328220301289.
- [8] Amir Shaikh, Sachin Negi, Akshant Aswal, Vaishali Chaudhry, Chandra Kishore, and K. C. Nithin Kumar. Modal analysis of Humerus bone using CAE tools. *Materials Today: Proceedings*, 26:2108–2112,