MA 3140: Statistical Inference

Dr. Sameen Naqvi
Department of Mathematics, IIT Hyderabad
Email id: sameen@math.iith.ac.in

Power function

▶ Power function is defined as follows:

$$\beta^*(\theta) = P_{\theta}(X \in R), \quad \theta \in \Theta_1.$$

Ideally, $\beta^*(\theta)$ is 0 for all $\theta \in \Theta_0$ and 1 for all $\theta \in \Theta_1$.

Example: Let $X \sim Bin(10, p)$.

Consider

$$H_0: p = 0.6$$
 vs. $H_1: p > 0.6$

Test procedure: Reject H_0 if $X \ge 7$ and accept H_0 if $X \le 6$.

Power function

ightharpoonup First, calculate α .

$$lpha = P(\text{Type I error}) = P(\text{Rejecting } H_0 \text{ when it is true})$$

$$= P_{p=0.6}(X \ge 7)$$

$$= \sum_{k=7}^{10} {10 \choose k} (0.6)^k (0.4)^{10-k} = 0.382$$

Let us now calculate β .

$$\beta(p) = P(\text{Accepting } H_0 \text{ when it is false})$$

$$= P_p(X \le 6), \quad p > 0.6$$

$$= \sum_{k=0}^{6} {10 \choose k} p^k (1-p)^{(10-k)}$$

Power function

Finally, calculate $\beta^*(p)$.

$$\beta^*(p) = 1 - \beta(p) = \sum_{k=7}^{10} {10 \choose k} p^k (1-p)^{(10-k)}, \quad p > 0.6.$$

Using Binomial Distribution Table, we can obtain these values:

p	0.7	8.0	0.9	0.95
$\beta(p)$	0.35	0.121	0.013	0.001
$\beta^*(p)$	0.65	0.879	0.987	0.999

Thus, $\beta^*(p)$ increases in p.

Remark

▶ The job of the statistician is to fix an appropriate α .

► Usually, $\alpha = 0.05, 0.01, 0.1$.

 $\alpha = 0.05$ indicates that we are willing to take 5% risk of rejecting the null hypothesis when it is true.

Test function

- ▶ **Test function**: A function ϕ on the sample space that is 1 if $x \in R$ and 0 if $x \in R^c$.
- ► Consider $X \sim P_{\theta}$;

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$.

$$P_{\theta}(X \in R) = E_{\theta}\phi(X) = \beta_{\phi}^*(\theta)$$

- ▶ If $\theta \in \Theta_0$, β_{ϕ}^* denotes the probability of Type I error.
- ▶ If $\theta \in \Theta_1$, β_{ϕ}^* denotes the power of the test.

Test function

So, the problem of finding an optimal test procedure is to find a test function ϕ such that

Maximize
$$\beta_{\phi}^* = E_{\theta}\phi(X), \quad \theta \in \Theta_1$$

subject to

$$\beta_{\phi}^* = E_{\theta}\phi(X) \le \alpha, \quad \forall \ \theta \in \Theta_0.$$

Here, the restriction $\beta_{\phi}^* \leq \alpha$, $\forall \theta \in \Theta_0$ means that if H_0 was true, ϕ rejects it with a probability $\leq \alpha$.

Most powerful/ Uniformly most powerful test

▶ If Θ_1 is a singleton set, we maximize β_{ϕ}^* with respect to θ .

This gives a test say ϕ_0 , which is referred to as the most powerful (MP) test.

▶ If Θ_1 is not singleton, then β_{ϕ}^* has to be maximized over $\theta \in \Theta_1$.

This gives a uniformly most powerful (UMP) test.

MP tests

Neyman Pearson Lemma

Theorem: Let π_0 and π_1 be populations with known distributions f_0 and f_1 , respectively. Then for testing

$$H_0: f = f_0$$
 against $H_1: f = f_1$,

we can define a test ϕ with a constant k such that

$$E_0\phi(X) = \alpha \tag{1}$$

and

$$\phi(x) = \begin{cases} 1, & \text{when } f_1(x) > kf_0(x) \\ 0, & \text{when } f_1(x) < kf_0(x) \end{cases}$$
 (2)

If ϕ satisfies (1) and (2) for some k then it is MP test for H_0 against H_1 at level α .

Neyman Pearson Lemma

Proof:

To prove that ϕ is the MP test, let us consider ϕ^* as any other test with $E_0\phi^*(X) \leq \alpha$.

Define

$$A_1 = \{x : \phi(x) - \phi^*(x) > 0\}$$

and

$$A_2 = \{x : \phi(x) - \phi^*(x) < 0\}.$$

If $x \in A_1$, then

$$\phi(x) > \phi^*(x) \Longrightarrow \phi(x) > 0 \Longrightarrow f_1(x) > kf_0(x).$$

If $x \in A_2$, then

$$\phi(x) < \phi^*(x) \Longrightarrow \phi(x) < 1 \Longrightarrow f_1(x) < kf_0(x).$$

Neyman Pearson Lemma

So,

$$\Big(\phi(x)-\phi^*(x)\Big)\Big(f_1(x)-kf_0(x)\Big)\geq 0, \ \forall \ x\in A_1\cup A_2.$$

Also,

$$\int_{A_1\cup A_2} \Big(\phi(x)-\phi^*(x)\Big)\Big(f_1(x)-kf_0(x)\Big)dx>0.$$

This implies

$$\int (\phi(x) - \phi^*(x)) f_1(x) dx > k \int (\phi(x) - \phi^*(x)) f_0(x) dx$$

$$\Longrightarrow \beta_{\phi}^* - \beta_{\phi^*}^* > 0$$

$$\Longrightarrow \beta_{\phi}^* > \beta_{\phi^*}^*$$

Thus, ϕ is more powerful than ϕ^* ; hence, ϕ is the MP test of level α .

Example 1

Let $X_1, \ldots, X_n \sim N(\mu, 1)$. Find the MP test for testing

$$H_0: \mu = \mu_0$$
 vs. $H_0: \mu = \mu_1$

Case 1: $\mu_0 < \mu_1$

Solution: The joint density of X_1, \ldots, X_n

$$f_{\mu}(\mathbf{x}) = \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}\sum(x_i - \mu)^2}$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}\sum(x_i^2 + \mu^2 - 2\mu x_i)}$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{-\frac{1}{2}\sum x_i^2 - \frac{n\mu^2}{2} + \mu x_i}$$

By NP Lemma, the test is

Reject
$$H_0$$
 when $\frac{f_1(\mathbf{x})}{f_0(\mathbf{x})} \ge k$

Thus,

$$\frac{f_{\mu_1}(\mathbf{x})}{f_{\mu_0}(\mathbf{x})} = e^{\frac{n\mu_0^2}{2} - \frac{n\mu_1^2}{2}} e^{(\mu_1 - \mu_0)n\overline{x}} \ge k$$

$$\implies e^{(\mu_1 - \mu_0)n\overline{x}} \ge k_1$$

$$\implies n(\mu_1 - \mu_0)\overline{x} \ge k_2$$

$$\implies \overline{x} \ge k_3,$$

where $\overline{X} \sim N(\mu, 1/n)$.

Now,

$$lpha = P_0(\overline{X} \ge k_3)$$
 ($\because \overline{X} \sim N(\mu_0, 1/n)$ when H_0 is true)
= $P_0(\sqrt{n}(\overline{X} - \mu_0) \ge \sqrt{n}(k_3 - \mu_0))$
= $P_0(Z \ge z_{\alpha})$,

where $z_{\alpha} = \sqrt{n}(k_3 - \mu_0)$ is the upper $100\alpha\%$ in the standard normal distribution.

Thus, the test is

Reject
$$H_0$$
 if $\sqrt{n}(\overline{X} - \mu_0) \ge z_{\alpha}$

Accept
$$H_0$$
 if $\sqrt{n}(\overline{X} - \mu_0) < z_{\alpha}$

This is the MP test of size α .

- ▶ Suppose $\mu_0 = 0$, $\mu_1 = 1$, n = 25, $\alpha = 0.05$ and $z_{0.05} = 1.645$
- (i) Let $\overline{X} = 0.2$.

Then

$$Z = \sqrt{n}(\overline{X} - \mu_0) = 5(0.2 - 0) = 1$$

Since $Z < z_{\alpha}$, we cannot reject $H_0: \mu = 0$ at 5%.

(ii) Let $\overline{X} = 0.4$.

Then,

$$Z = \sqrt{n}(\overline{X} - \mu_0) = 5(0.4 - 0) = 2$$

Since $Z>z_{\alpha}$, we reject $H_0:\mu=0$ at 5%.

Calculate Power:

$$P_{\mu=\mu_{1}}(\sqrt{n}(\overline{X} - \mu_{0}) \geq z_{\alpha})$$

$$= P_{\mu=\mu_{1}}(\sqrt{n}(\overline{X} - \mu_{1}) + \sqrt{n}(\mu_{1} - \mu_{0}) \geq z_{\alpha})$$

$$= P(Z \geq z_{\alpha} - \sqrt{n}(\mu_{1} - \mu_{0}))$$

$$= P(Z \geq 1.645 - 5)$$

$$= P(Z \geq -3.355) \approx 1$$

Case 2: $\mu_0 > \mu_1$

Solution: In this case, proceeding as before, the rejection region becomes

$$\overline{X} \leq k_3^*$$

This implies

$$\alpha = P_0(\overline{X} \le k_3^*) = P_0(\sqrt{n}(\overline{X} - \mu_0) \le \sqrt{n}(k_3^* - \mu_0))$$
$$= P(Z \le -z_\alpha)$$

Thus, the MP test is

Reject
$$H_0$$
 if $\sqrt{n}(\overline{X} - \mu_0) \leq -z_\alpha$

Accept H_0 otherwise

► Suppose $\mu_0 = 0$, $\mu_1 = -1$, n = 25, $\overline{X} = -0.6$, $\alpha = 0.05$ and $-z_{0.05} = -1.645$.

Then,

$$Z = \sqrt{n}(\overline{X} - \mu_0) = 5(-0.6 - 0) = -3$$

Since $Z < -z_{\alpha}$, we reject $H_0: \mu = 0$ at 5%.

► Calculate Power:

$$P_{\mu=\mu_{1}}(\sqrt{n}(\overline{X} - \mu_{0}) \leq -z_{\alpha})$$

$$= P_{\mu=\mu_{1}}(\sqrt{n}(\overline{X} - \mu_{1}) + \sqrt{n}(\mu_{1} - \mu_{0}) \leq -z_{\alpha})$$

$$= P(Z \leq -z_{\alpha} + \sqrt{n}(\mu_{0} - \mu_{1}))$$

$$= P(Z \leq -1.645 + 5) \approx 1$$

Example 2

Let $X_1, \ldots, X_n \sim N(0, \sigma^2)$. Find the MP test for testing

$$H_0: \sigma^2 = \sigma_0^2$$
 vs. $H_1: \sigma^2 = \sigma_1^2$

Case 1: $\sigma_1^2 > \sigma_0^2$

Solution: The joint density of X_1, \ldots, X_n under H_0 and H_1 are:

$$f_0(\mathbf{x}) = \frac{1}{(\sigma_0\sqrt{2\pi})^n} e^{-\frac{1}{2\sigma_0^2}\sum x_i^2}$$

$$f_1(\mathbf{x}) = \frac{1}{(\sigma_1 \sqrt{2\pi})^n} e^{-\frac{1}{2\sigma_1^2} \sum x_i^2}$$

NP Lemma gives the form of the MP test

Reject
$$H_0$$
 if $\frac{f_1(x)}{f_0(x)} \ge k$

where k is determined by the size condition.

This is equivalent to

$$\left(\frac{\sigma_0\sqrt{2\pi}}{\sigma_1\sqrt{2\pi}}\right)^n \exp\left[\frac{1}{2}\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2}\right)\sum x_i^2\right] \ge k$$

Taking log and adjusting the constants, we can write the rejection region as

$$\frac{1}{2} \left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right) \sum x_i^2 \ge k_1,$$

where k_1 is determined by the size condition.

This implies that Reject H_0 if

$$\sum x_i^2 \ge k_2 \qquad (\because \sigma_1^2 > \sigma_0^2).$$

In order to determine k_2 , we employ the size condition, i.e.,

$$lpha = P(\mathsf{Type\ I\ error}) = P(\mathsf{Rejecting\ } H_0 \mathsf{\ when\ it\ is\ true})$$
 $= P_{\sigma^2 = \sigma_0^2} \Big(\sum X_i^2 \geq k_2 \Big)$

Note that $Y_i = \frac{X_i}{\sigma_0} \sim N(0,1)$ (under H_0).

 Y_1, \ldots, Y_n are independent and $\sum Y_i^2 \sim \chi_n^2$.

Now,

$$\alpha = P(\text{Reject } H_0 \text{ when it is true}) = P_{\sigma_0^2} \left(\frac{\sum X_i^2}{\sigma_0^2} \ge k_3 \right)$$

$$\implies k_3 = \chi_{n,\alpha}^2$$

Thus the MP test for testing $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 = \sigma_1^2$ at level α is

Reject
$$H_0$$
 if $\frac{\sum X_i^2}{\sigma_0^2} \ge \chi_{n,\alpha}^2$

otherwise accept H_0 .

Case 2: $\sigma_1^2 < \sigma_0^2$

Solution: The test procedure will get modified as follows:

Reject
$$H_0$$
 if $\sum x_i^2 \le k_2^*$.

In order to determine k_2^* , we employ the size condition, i.e.,

$$\alpha = P(\text{Reject } H_0 \text{ when it is true}) = P_{\sigma_0^2} \left(\frac{\sum X_i^2}{\sigma_0^2} \le k_3^* \right)$$

$$\implies k_3^* = \chi_{n,1-\alpha}^2$$

Thus the MP test is

Reject
$$H_0$$
 if $\frac{\sum X_i^2}{\sigma_0^2} \le \chi_{n,1-\alpha}^2$

Thanks for your patience!