A Two-Stage Approach for Learning a Sparse Model with Sharp Excess Risk Analysis

Zhe Li*, Tianbao Yang*, Lijun Zhang[‡], Rong Jin[†]

*The University of Iowa, \$\psi\$Nanjing University, \$\dagger*Alibaba Group

February 3, 2017

- Problem and Chanllenges
- 2 The Two-stage Approach

- 3 Experimental Results
- 4 Conclusion

- Problem and Chanllenges
- 2 The Two-stage Approach
- 3 Experimental Results
- 4 Conclusion

Problem

- Let $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$ denote an input and output pair
- Let w_* be an optimal model that minimizes the expected error

$$w_* = \arg\min_{||w||_1 \le B} \frac{1}{2} \mathrm{E}_{\mathcal{P}}[(w^T x - y)^2]$$

- Key Problem: w_* is not necessarily sparse
- The goal: to learn a sparse model w to achieve small excess risk

$$ER(w, w_*) = E_{\mathcal{P}}[(w^T x - y)^2] - E_{\mathcal{P}}[(w_*^T x - y)^2] \le \epsilon$$

The challenges

- $L = \mathbb{E}_{\mathcal{P}}[(w^T x y)^2]$ is not necessarily strongly convex
 - Stochastic optimization: $O(1/\epsilon^2)$ sample complexity and no sparsity guarantee
 - Empirical risk minimization + ℓ_1 penalty: $O(1/\epsilon^2)$ sample complexity and no sparsity guarantee
- Challenges:
 - Can we reduce sample complexity (e.g. $O(1/\epsilon)$)?
 - Can we also have a guarantee on sparsity of model?
- Our solution:

- Problem and Chanllenges
- 2 The Two-stage Approach
- 3 Experimental Results
- 4 Conclusion

The first stage

- Our first stage algorithm is motivated by EPOCH-GD algorithm [Hazan, Kale 2011], which is on strongly convex setting.
- How to avoid strongly convex assumption?

•
$$L(w) = E_{\mathcal{P}}[(w^Tx - y)^2] = h(Aw) + b^Tw + c$$

- $h(\cdot)$: a strongly convex function
- The optimal solution set is a polyhedron
- By Hoffmans' bound we have

$$2(L(w)-L_*) \geq \frac{1}{\kappa}||w-w^+||_2^2$$

where w^+ is the closest solution to w in the optimal solution set.

[1] Elad Hazan, Satyen Kale, Beyond the regret minimization barrier: optimal algorithm for stochastic strongly-convex optimization

The first stage (algorithm)

Stochastic Optimization for Sparse Learning

Input: the total number of iterations T and η_1, ρ_1, T_1 .

Initialization: $\mathbf{w}_1^1 = 0$ and k = 1.

While $\sum_{i=1}^{m} T_i \leq T$

- For $t = 1, ..., T_k$
 - Obtain a sample denoted by (\mathbf{x}_t^k, y_t^k)
 - $\bullet \ \ \mathsf{Compute} \ \ \mathbf{w}_{t+1}^k = \Pi_{\|\mathbf{w}\|_1 \leq \mathcal{B}, \|\mathbf{w} \mathbf{w}_1^k\|_2 \leq \rho_k} [\mathbf{w}_t^k \eta_k \nabla \ell(\mathbf{w}_t^k \cdot \mathbf{x}_t^k, y_t^k)]$
- Update $T_{k+1} = 2T_k, \eta_{k+1} = \eta_k/2, \ \rho_{k+1} = \rho_k/\sqrt{2}$ and $\mathbf{w}_1^{k+1} = \sum_{t=1}^{T_k} \mathbf{w}_t^k/T_k$
- Set k = k + 1

Output: $\widehat{\mathbf{w}} = \mathbf{w}_1^{m+1}$

The first stage (theoretical guarantee)

Theorem

Assume $\|\mathbf{x}\|_2^2 \leq R^2$. By running the previous algorithm with $\rho_1 = B$, $\eta_1 = 1/(2R\sqrt{T_1})$, $T_1 \geq (8cR + 64R\sqrt{2\log(1/\widetilde{\delta})})^2$. In order to have $ER(\widehat{\mathbf{w}}, \mathbf{w}_*) \leq \epsilon$ with a high probability $1 - \delta$ over $\{(\mathbf{x}_t^k, y_t^k)\}$, it suffice to have

$$T = \frac{cB^2T_1}{\epsilon}$$

where
$$\widetilde{\delta} = \frac{\delta}{m}$$
, $m = \lfloor \log_2(cB^2/(2\epsilon) + 1) \rfloor$ and $c = \max(\kappa, 1)$.

- No strong convexity assumption
- No sparsity assumption

The second stage (algorithm)

• Our second stage algorithm:

Randomized Sparsification

For
$$k = 1, ..., K$$

- Sample $i_k \in [d]$ according to $Pr(i_k = j) = p_j$
- Compute $[\widetilde{\mathbf{w}}_k]_{i_k} = [\widetilde{\mathbf{w}}_{k-1}]_{i_k} + \frac{\widehat{w}_{i_k}}{p_{i_k}}$

End For

$$p_j = \frac{\sqrt{\hat{w}_j^2 E[x_j^2]}}{\sum_{j=1}^d \sqrt{\hat{w}_j^2 E[x_j^2]}} \text{ instead of } p_j = \frac{|\hat{w}_j|}{||\hat{w}||_1} \text{ [Shalve-Shwartz et al., 2010]}$$

• Reduced constant in $O(1/\epsilon)$ for sparsity

[2] shalve-shwartz, Srebro, Zhang, Trading accuracy for sparsity in optimization problems with sparsity constraints

The second stage (theoretical guarantee)

Theorem

Given the samples in the first stage algorithm, let $p_j = \frac{\sqrt{\widehat{w}_j^2 \mathrm{E}[x_j^2]}}{\sum_{i=1}^d \sqrt{\widehat{w}_i^2 \mathrm{E}[x_i^2]}}, j \in [d] \text{ in the second stage algorithm. In order}$

to have $ER(\widetilde{\mathbf{w}}, \mathbf{w}_*) \leq ER(\widehat{\mathbf{w}}, \mathbf{w}_*) + \epsilon$ with a probability $1 - \delta$ over i_1, \ldots, i_K , it suffice to have

$$K = \left\lceil \frac{\left(\sum_{i=1}^{d} \sqrt{\widehat{w}_{j}^{2} \mathrm{E}[x_{j}^{2}]}\right)^{2}}{\epsilon \delta} \right\rceil$$

- Problem and Chanllenges
- 2 The Two-stage Approach
- 3 Experimental Results
- 4 Conclusion

Experimental Results

• The first stage

Comparison of RMSE between SGD and EPOCH-SGD

Experimental Results

The second stage

Comparison of RMSE between MG-Sparsification and DD-Sparsification

Experimental Results

Overall

RMSE vs Sparsity

- Problem and Chanllenges
- 2 The Two-stage Approach
- 3 Experimental Results
- 4 Conclusion

Conclusion

- We proposed a two-stage approach for learning a sparse model.
- We reduced the sample complexity from $O(1/\epsilon^2)$ to $O(1/\epsilon)$ without strongly convexity assumption.
- We reduced the constant in $O(1/\epsilon)$ for sparsity by exploring the distribution dependence sampling.
- We emprically justified the proposed approach could achieve better performance.