

SHOULD WE LOAN?

PROJETO DATA MINING I

MARIA PAIS, UP202308322 MÓNICA ARAÚJO, UP202005209

INDICE

01

DEFINIÇÃO DO PROBLEMA

02

DATA UNDERSTANDING

03

DATA PREPARATION

04

DESCRIPTIVE MODELLING

05

PREDICTIVE MODELLING

06

CONCLUSÃO E TRABALHO FUTURO

DEFINIÇÃO DO PROBLEMA

Um banco planeja melhorar a qualidade do seu serviço ao cliente. Um desafio particular que enfrenta é a ambiguidade em torno da identificação de bons clientes e maus clientes.

Este projeto visa utilizar técnicas de extração de dados neste conjunto de dados para ajudar os gestores do banco a compreender melhor os seus clientes e a identificar se um empréstimo será concluído com êxito.

DATA UNDERSTANDING

Data Understanding é uma fase crucial do processo de análise de dados. Envolve a obtenção de conhecimentos sobre a natureza, estrutura, conteúdo e qualidade de um conjunto de dados. O objetivo da compreensão dos dados é familiarizar-se com os dados, identificar potenciais problemas e lançar as bases para as fases subsequentes da análise de dados.

Os principias pontos retirados:

- os dados observados vão desde 1993 até 1997;
- só temos informação sobre os loans desde 1993 até 1996;
- os distritos com mais contas são o nº1, nº74 e nº70;
- a região com mais habitantes é Prague
- cada account tem 1 ou O loans
- existem 282 loans com status "1" e 46 com status "-1"

DATA PREPARATION

CONVERSÃO DO TIPO DE DADOS

TRATAMENTO DE MISSING VALUES

REMOÇÃO DE DUPLICADOS

ENCODING DE VARIÁVEIS CATEGÓRICAS

Garantia de consistencia e adequação dos tipos no

Ex: conversão das datas para formatos adequados

Remoçao de Propriedades com mais de 50% de NA

Imputação dos missing values

Indentificação de valores duplicados: por linha e por algumas linha de conjunto de coluna(s)

Transformação de variaveis em formato adequado através do metodo One-hot encoding

DATA PREPARATION

FEATURE ENGINEERING

Criação de novas características relevantes

Exemplo: Calculo do dinheiro na conta antes de um emprestimo

DIVISÃO DOS DADOS

Separação dos dados em conjuntos de treino e teste

PADRONIZAÇÃO DAS FEATURES

Aplicação da padronization utilizando o metodo z-scale normalization em variaveis selecionadas

ARMAZENAMENTO OS DADOS PROCESSADOS

Armazenamento dos dados em ficheiros RData, prontos para serem usados em passos posteriores

DESCRIPTIVE MODELING

K-MEANS

K-MEAN -SILHOUETTE METHOD K-MEAN -ELBOW METHOD

DBSCAN

DESCRIPTIVE MODELING

HIERARCHICAL AGGLOMERATIVE
METHOD SINGLE LINK

HIERARCHICAL AGGLOMERATIVE
METHOD COMPLETE LINK

HIERARCHICAL AGGLOMERATIVE
METHOD COMPLETE LINK

PREDICTIVE MODELING

São um tipo de algoritmo de aprendizagem supervisionada que imita a estrutura de uma árvore para tomar decisões. A estrutura em árvore é constituída por nós, em que cada nó representa uma decisão baseada numa determinada caraterística, e os ramos representam os resultados possíveis dessa decisão

DECISION TREES

Modelar a relação entre uma variável dependente e uma ou mais variáveis independentes.

O objetivo da regressão linear é encontrar a melhor relação linear (uma linha reta no caso da regressão linear simples) que preveja a variável dependente com base nas variáveis independentes.

LINEAR REGRESSION

O Random Forest é uma técnica de aprendizagem de conjunto que combina as previsões de vários modelos individuais para melhorar o desempenho global e a generalização. O Random Forest é particularmente poderoso e versátil, sendo frequentemente utilizado para tarefas de classificação e regressão.

RANDOM FOREST

PREDICTIVE MODELING

DECISION TREES

LINEAR REGRESSION

RANDOM FOREST

```
predictions -1 1
-1 0 0
1 10 56
[1] 0.8484848
```

O R-squared do modelo de regressão linear é bastante baixo, indicando que o modelo explica apenas uma pequena proporção da variação na variável de resposta.

O modelo de random forest tem maior exatidão, precisão e recuperação, o que sugere um melhor desempenho global de classificação em comparação com o modelo de regressão linear.

O modelo escolhido é o random forest

CONCLUSÃO E TRABALHO FUTURO

Como modelo final foi escolhido random forest

Como trabalho futuro fica a sugestão de implementação de redes neuronais e o teste de mais modelos.

OBRIGADA PELA ATENÇÃO

