Exercise 1. Let $\Omega = \{ \mathbf{x} \in \mathbb{R}^2 : |\mathbf{x}| < 1/2 \}$. Define

$$v(\mathbf{x}) = (\log |\mathbf{x}|)^k, \ \forall \mathbf{x} \in \Omega \setminus \{0\}, \ 0 < k < 1/2.$$

Prove $v \in H^1(\Omega)$.

Proof. It is clear that $v \in L^2(\Omega)$ and

$$\nabla v(\mathbf{x}) = k(-\log|\mathbf{x}|)^{k-1} \frac{\mathbf{x}}{|\mathbf{x}|^2},$$

which is also in $L^2(\Omega)$, i.e., $\|\nabla v\|_0 < \infty$.

Exercise 2. 1). If K is a rectangle, $P(K) = Q_1(K) = \text{span}\{1, x, y, xy\}$, $\Sigma_K = \{\text{mid-points of four sides}\}$. Prove that $(K, p(K), \Sigma_K)$ is not a finite element.

2). If K is a rectangle, $P(K) = \text{Span}\{1, x, y, x^2 - y^2\}$, $\Sigma_K = \{\text{mid-points of four sides}\}$. Prove that $(K, P(K), \Sigma_K)$ is a finite element.