Задача А. Егор и массив

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.25 секунд Ограничение по памяти: 256 мегабайт

У Егора есть массив $a=a_1,a_2,\ldots,a_n$ и m операций. Каждая операция имеет вид: $l_i,r_i,d_i,(1\leqslant l_i\leqslant r_i\leqslant n)$. Применить операцию i-ю к массиву значит элементы массива с номерами l_i,l_i+1,\ldots,r_i увеличить на величину d_i .

Егор записал на листочке бумаги k запросов. Каждый запрос имеет вид: $x_i, y_i, (1 \le x_i \le y_i \le m)$, что означает, что нужно применить к массиву операции с номерами $x_i, x_{i+1}, \ldots, y_i$.

Сейчас Егор хочет узнать, какой будет массив а после выполнения всех запросов. Помогите Егору.

Формат входных данных

В первой строке заданы целые числа $n, m, k \ (1 \le n, m, k \le 10^5)$. Во второй строке заданы n целых чисел: $a_1, a_2, \ldots, a_n (0 \le a_i \le 10^5)$ — изначальный массив.

В следующих m строках заданы операции, операция с номером i записана тремя целыми числами: $l_i, r_i, d_i, (1 \le l_i \le r_i \le n), (0 \le d_i \le 10^5)$.

В следующих k строках заданы запросы, запрос с номером i записан двумя целыми числами: $xi, yi, (1 \le x_i \le y_i \le m)$.

Числа в строках разделяются одиночными пробелами.

Формат выходных данных

В единственную строку выведите n целых чисел a_1, a_2, \ldots, a_n — массив, который получит Егор после применения всех запросов. Выведенные числа разделяйте пробелами.

стандартный вывод
9 18 17
2

Задача В. Отрезок с максимальной суммой

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.4 секунд Ограничение по памяти: 256 мегабайт

Дан массив целых чисел. Найти отрезок этого массива с максимальной суммой.

Формат входных данных

В первой строке дано натуральное число n ($1 \le n \le 10^5$) — размер массива. Во второй строке через пробел перечислены элемента массива. Числа не превышают 10^4 по модулю.

Формат выходных данных

Выведите три числа — индекс начала отрезка, индекс конца и саму максимальную сумму. Массив индексируется с единицы. Если ответов несколько — выведите любой.

стандартный ввод	стандартный вывод	
1	1 1 1	
1		
2	2 2 2	
-1 2		
5	2 5 8	
-1 2 3 -2 5		

Задача С. Объединение последовательностей

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 0.25 секунд Ограничение по памяти: 256 мегабайт

Даны две бесконечных возрастающих последовательности чисел a и b. i-й член последовательности a равен i^2 . i-й член последовательности b равен i^3 .

Требуется найти c_x , где c — возрастающая последовательность, полученная при объединении последовательностей a и b. Если существует некоторое число, которое встречается и в последовательности a и в последовательности b, то в последовательность c это число попадает в единственном экземпляре.

Формат входных данных

В единственной строке входного файла дано натуральное число x ($1 \le x \le 10^7$).

Формат выходных данных

В выходной файл выведите c_x .

стандартный ввод	стандартный вывод
1	1
4	9

Задача D. Стильная одежда (2)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.3 секунд Ограничение по памяти: 256 мегабайт

Глеб обожает шоппинг. Как-то раз он загорелся идеей подобрать себе кепку, майку, штаны и ботинки так, чтобы выглядеть в них максимально стильно. В понимании Глеба стильность одежды тем больше, чем меньше разница в цвете элементов его одежды.

В наличии имеется n_1 кепок, n_2 маек, n_3 штанов и n_4 пар ботинок ($1 \le n_i \le 10^5$). Про каждый элемент одежды известен его цвет (целое число от 1 до 10^5). Комплект одежды — это одна кепка, майка, штаны и одна пара ботинок. Каждый комплект характеризуется максимальной разницей между любыми двумя его элементами. Помогите Глебу выбрать максимально стильный комплект, то есть комплект с минимальной разницей цветов.

Формат входных данных

Для каждого типа одежды i (i = 1, 2, 3, 4) сначала вводится количество n_i элементов одежды этого типа, далее в следующей строке — последовательность из n_i целых чисел, описывающих цвета элементов. Все четыре типа подаются на вход последовательно, начиная с кепок и заканчивая ботинками. Все вводимые числа целые, положительные и не превосходят 10^5 .

Формат выходных данных

Выведите четыре целых числа — цвета соответственно для кепки, майки, штанов и ботинок, которые должен выбрать Глеб из имеющихся для того, чтобы выглядеть наиболее стильно. Если ответов несколько, выведите любой.

стандартный ввод	стандартный вывод
3	3 3 3 3
1 2 3	
2	
1 3	
2	
3 4	
2	
2 3	

Задача Е. Прибавляем, суммируем

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Есть массив целых чисел длины $n=2^{24}$, изначально заполненных нулями. Вам нужно сперва обработать m случайных запросов вида «прибавление на отрезке». Затем обработать q случайных запросов вида «сумма на отрезке».

Формат входных данных

На первой строке числа $m, q \ (1 \le m, q \le 2^{24})$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
0. unsigned int a, b; // даны во входных данных
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand() {
       cur = cur * a + b; // вычисляется с переполнениями
3.
       return cur >> 8; // число от 0 до 2^{24}-1.
4.
5. }
   Каждый запрос первого вида генерируется следующим образом:
1. add = nextRand(); // число, которое нужно прибавить
2. 1 = nextRand();
3. r = nextRand();
4. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Каждый запрос второго вида генерируется следующим образом:
1. l = nextRand();
2. r = nextRand();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Сперва генерируются запросы первого вида, затем второго.
```

Формат выходных данных

Выведите сумму ответов на все запросы второго типа по модулю 2^{32} .

стандартный ввод	стандартный вывод
5 5	811747796
13 239	
10 10	3460675938
239017 170239	

Задача F. Интеллектуальный отпуск

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.9 секунд Ограничение по памяти: 256 мегабайт

Туристическая отрасль в этом сезоне столкнулась с серьёзными сложностями. Добросовестные туроператоры ищут новые рекламные ходы для продажи своих туров. Как известно, наиболее благоприятная для отдыха погода меняется плавно, причём не только от одного дня к другому, но и в течение суток.

Для большинства туристических направлений есть многолетние посекундные результаты измерений различных климатических параметров, например, температуры или влажности. У каждого человека своё понимание того, насколько различными могут быть подобные значения во время отпуска, но всех интересуют непрерывные туры как можно большей продолжительности.

Пусть мы зафиксировали туристическое направление и некоторый климатический параметр. Будем называть <u>изменчивостью</u> тура разницу между максимальным и минимальным значением выбранного параметра за всё время поездки. Для каждого туриста известно максимальное приемлемое значение изменчивости k_i .

Даны результаты измерений некоторого климатического параметра на одном из курортов и значения k_i для нескольких туристов. Требуется для каждого из них определить максимальный диапазон, подходящий для отпуска.

Формат входных данных

В первой строке входного файла находится целое число N ($1 \le N \le 600\,000$) — количество сделанных измерений. Во второй строке — N целых чисел, по модулю не превосходящих 10^9 — данные посекундных измерений.

В третьей строке входного файла находится число M ($1 \leqslant M \leqslant 100$) — количество туристов, для которых необходимо найти оптимальный диапазон. В четвёртой строке — M целых чисел k_1, k_2, \ldots, k_M ($0 \leqslant k_i \leqslant 10^9$) — максимальная возможная разница между выбранным климатическим параметром в непрерывном диапазоне дней для каждого из туристов.

Формат выходных данных

В выходной файл для каждого из M запросов в отдельной строке выведите два числа: номер первого измерения диапазона и номер последнего измерения, входящего в диапазон. Нумерация измерений ведётся с единицы. Если для некоторого туриста существует несколько подходящих диапазонов максимальной длины, выведите границы любого из них.

стандартный ввод	стандартный вывод
7	3 5
10 1 10 12 11 1 11	4 5
2	
2 1	
9	3 4
1 5 2 3 6 4 7 8 9	1 9
6	7 9
1 10 2 4 5 0	2 6
	1 6
	1 1

Задача G. Наибольший общий делитель

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Наибольшим общим делителем непустого набора натуральных чисел A называется максимальное натуральное число d, такое что оно является одновременно делителем всех чисел множества A.

Задан массив натуральных чисел $[a_1, a_2, \ldots, a_n]$ и число k. Требуется выбрать в нем подмассив из k подряд идущих элементов $[a_l, a_{l+1}, \ldots, a_{l+k-1}]$, чтобы их наибольший общий делитель был как можно больше, и вывести этот наибольший общий делитель.

Формат входных данных

Первая строка ввода содержит два целых числа n и k $(2 \le n \le 500\,000,\ 2 \le k \le n)$. Вторая строка содержит n натуральных чисел $a_1,a_2,\ldots,a_n\ (1 \le a_i \le 10^{18})$.

Формат выходных данных

Выведите одно натуральное число — максимальное возможное значение наибольшего общего делителя элементов подмассива длины k заданного массива.

стандартный ввод	стандартный вывод
10 4	6
2 3 4 8 12 6 12 18 4 3	
2 2	6
12 18	
3 2	6
12 18 24	

Задача Н. Большой, белый, очень прямоугольный

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В прямоугольной таблице клетки раскрашены в белый и черный цвета. Найти в ней прямоугольную область белого цвета, состоящую из наибольшего количества ячеек.

Формат входных данных

Во входном файле записана сначала высота N, а затем ширина M таблицы ($1 \le N \le 5000$), ($1 \le M \le 5000$), а затем записано N строк по M чисел в каждой строке, где 0 означает, что соответствующая клетка таблицы выкрашена в белый цвет, а 1 – что в черный.

Формат выходных данных

В выходной файл вывести одно число — количество клеток, содержащихся в наибольшем по площади белом прямоугольнике.

стандартный ввод	стандартный вывод
5 6	9
1 0 0 0 1 0	
0 0 0 0 1 0	
0 0 1 0 0 0	
0 0 0 0 0 0	
0 0 1 0 0 0	
4 4	4
0 0 0 0	
0 1 0 1	
0 0 0 0	
1 1 0 0	

Задача I. Cow Lineup

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Фермер Джон нанял профессионального фотографа, чтобы сфотографировать некоторых из своих коров. Поскольку у него есть коровы разных пород, он хочет иметь фото как минимум одной коровы каждой породы.

n коров Φ Д выстроены в ряд (позиция каждой указывается х-координатой) и целочисленным номером породы. Φ Д планирует сделать фотографию непрерывного участка коров. Стоимость фотографии равна ее размеру — то есть разностью между максимальной и минимальной х-координатами коров, представленных на фотографии.

Помогите Φ Д вычислить минимальную стоимость фотографии, в которой находится по крайней мере одна корова каждой породы.

Формат входных данных

Первая строка содержит целое число n — количество коров ($1 \le n \le 50\,000$).

Каждая из следующих n строк содержит два целых числа — х-координата и номер породы коровы. Оба числа не превосходят 10^9 .

Формат выходных данных

Выведите минимальную стоимость фотографии, содержащей не менее одной коровы каждой породы.

Примеры

стандартный ввод	стандартный вывод
6	4
25 7	
26 1	
15 1	
22 3	
20 1	
30 1	

Замечание

Имеется 6 коров, на позициях 25, 26, 15, 22, 20, 30, C соответствующими номерами пород 7, 1, 1, 3, 1, 1.

Диапазон от x = 22 до x = 26 (длиной 4) содержит коровы всех пород (1, 3, 7).

Задача Ј. Уничтожение массива

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вам дан массив, состоящий из n неотрицательных целых чисел a_1, a_2, \ldots, a_n .

В этом массиве один за другим зачёркиваются числа. Вам задана перестановка чисел от 1 до n — порядок, в котором это происходит.

После зачёркивания очередного числа вам необходимо найти в этом массиве подотрезок с максимальной суммой, не содержащий ни одного зачёркнутого числа. Сумму чисел в пустом подотрезке считайте равной 0.

Формат входных данных

В первой строке входных данных записано число $n\ (1\leqslant n\leqslant 100\,000)$ — длина массива.

В второй строке записаны n целых чисел $a_1, a_2, \ldots, a_n \ (0 \le a_i \le 10^9)$.

В третьей строке входных данных записана перестановка чисел от 1 до n — порядок, в котором зачеркиваются числа.

Формат выходных данных

В выходной файл выведите n строк, каждая из которых должна содержать одно число — максимальную сумму на подотрезке заданного массива, не содержащем зачёркнутых чисел, после выполнения очередного действия.

Примеры

стандартный ввод	стандартный вывод
4	5
1 3 2 5	4
3 4 1 2	3
	0
5	6
1 2 3 4 5	5
4 2 3 5 1	5
	1
	0
8	18
5 5 4 4 6 6 5 5	16
5 2 8 7 1 3 4 6	11
	8
	8
	6
	6
	0

Замечание

В первом тестовом примере происходит следующее:

- 1. Зачеркивается третий элемент, массив принимает вид $1\ 3*5$. Отрезок с максимально суммой 5 состоит из одного числа 5.
- 2. Зачеркивается четвертый элемент, массив принимает вид $1\ 3\ *\ *$. Отрезок с максимально суммой 4 состоит из двух чисел $1\ 3$.
- 3. Зачеркивается первый элемент, массив принимает вид * 3 * * . Отрезок с максимально суммой 3 состоит из одного числа 3.

Тинькофф Поколение, B', 2023-2024, prefix sums, two pointers Russia, Moscow,

		i (ussia, ivi	JJCOW,			
4.	Зачеркивается оставшийся второй з не остается, поэтому здесь ответ ра		этот момент	непустых	допустимых	подотрезков

Задача К. Покупка земли

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Марк – опытный бизнесмен. Для открытия нового магазина ему необходимо купить землю, на которой он будет вести бизнес.

Доступная для покупки Марку земля является прямоугольником из $r \times s$ квадратных участков, каждый из которых можно либо купить целиком, либо не покупать вовсе. Квадратный участок в строке i и столбце j имеет стоимость, равную **целому положительному** числу $c_{i,j}$.

Марк хочет купить прямоугольный участок, стоимость которого вычисляется как сумма стоимостей квадратных участков, из которых он состоит. Однако, покупка участка минимальной или максимальной стоимости не соответствует бизнес-стратегии Марка. В начале своего пути он услышал от Гуру два **целых** числа a, b, которые должны привести его к успеху. Поэтому стоимость прямоугольного участка, который купит Марк, должна быть как можно ближе к a и b.

Ваша задача вывести минимально возможное значение |a-c|+|b-c|, где c - стоимость оптимального для этого выражения прямоугольного участка. Оптимальный прямоугольный участок (состоящий, возможно, из нескольких квадратных участков) Вы выбираете сами на доступной для покупки земле.

Формат входных данных

Первая строка содержит 4 целых положительных числа r, s, a, b $(1 \le r, s \le 500; 1 \le a, b \le 10^9)$. i-я из следующих r строк содержит s чисел $c_{i,j}$ $(1 \le c_{i,j} \le 10^9)$ - стоимости квадратных участков.

Формат выходных данных

В единственной строке выведите единственное целое число - минимально возможное значение выражения |a-c|+|b-c|.

Примеры

стандартный ввод	стандартный вывод
3 4 5 3	2
1 1 1 1	
9 6 7 6	
8 1 9 7	
3 2 3 4	3
1 9	
1 1	
8 1	
2 2 10 10	2
1 3	
4 1	

Замечание

Во втором примере Марк может купить прямоугольный участок из двух соседних квадратных, стоимостью 1. Общая стоимость участка c = 1 + 1 = 2, ответ |3 - 2| + |4 - 2| = 3.