1 Interpolation et splines

On donne n+1 points (x_i, y_i) où $x_i \neq x_j$ si $i \neq j$. On cherche un polynôme de degré $n: p_n(x) = a_n x^n + a_{n-1}^{n+1} + a_1 x + a_0$ où $a_i \in \mathbb{R}(0 \leq i \leq n)$, tel que $p_n(x_i) = y_i$.

2 POLYNÔME D'INTERPOLATION DE LAGRANGE

On sait qu'il existe **exactement un** polynôme d'interpolation de degrés n ou inférieur qu'on appelle **polynôme d'interpolation**. Avec n=3: $l_0(x)=\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}$. $l_0(x)$ est un polynôme cubique avec les propriétés suivantes : $l_0(x_0)=1, l_0(x_1)=l_0(x_2)=l_0(x_3)=0$. On calcule ensuite $l_1(x), l_2(x)$ et $l_3(x)$ avec :

$$l_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$
$$l_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$
$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$
$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

Le polynôme d'interpolation est donnée par

$$p_3(x) = y_0 l_0(x) + y_1 l_1(x) + y_2 l_2(x) + y_3 l_3(x)$$

On désire évaluez x:

$$\lambda_0 = \frac{1}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)}$$

$$\lambda_1 = \frac{1}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)}$$

$$\lambda_2 = \frac{1}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)}$$

$$\lambda_3 = \frac{1}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)}$$

On définis $\mu_i=\frac{\lambda_i}{x-x_i},$ $(0\leq i\leq 3),$ on peut maintenant mettre $p_3(x)$ sous la forme :

$$p_3(x) = (x-x_0)(x-x_1)(x-x_2)(x-x_3) \cdot (y_0\mu_0 + y_1\mu_1 + y_2\mu_2 + y_3\mu_3)$$

Si tous les y_i sont égaux à 1, il en découle que $(x-x_0)(x-x_1)(x-x_2)(x-x_3)=\frac{1}{\mu_0+\mu_1+\mu_2+\mu_3}$. On peut donc écrire $p_3(x)$ comme suit :

$$p_3(x) = \frac{y_0\mu_0 + y_1\mu_1 + y_2\mu_2 + y_3\mu_3}{\mu_0 + \mu_1 + \mu_2 + \mu_3}$$

3 POLYNÔME D'INTERPOLATION DE NEWTON

 $p_3(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + c_3(x - x_0)(x - x_1)(x - x_2)$ avec

$$p_3(x_0) = c_0 = y_0$$

$$p_3(x_1) = c_0 + c_1(x - x_0) = y_1$$

$$p_3(x_2) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) = y_2$$

$$p_3(x_3) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) +$$

$$c_3(x - x_0)(x - x_1)(x - x_2) = y_3$$

On utilise la notation $c_0 = f[x_0], c_1 = f[x_0, x_1], c_2 = f[x_0, x_1, x_2], c_3 = f[x_0, x_1, x_2, x_3]$ et on définit les polynômes de

degrés $0: q_i(x) = y_i = f[x_i], 0 \le 1 \le 3$. On peut ensuite construire un tableau T:

avec $T_{i,j}=\frac{T_{i-1,j-1}-T_{i-1,j}}{x_{i-1}-x_i},$ $T_{1,1}=f[x_0,x_1].$ i est la auteur (ligne) et j la colonne.

4 ERREUR D'INTERPOLATION

Si on approche une fonction y = f(x) par le polynôme qui interpole les points x_i , $(0 \le i \le n)$. Si la fonction f(x) est n+1 fois continûment dérivable et si $x_0 \le x \le x_n$, alors on a la borne suivante pour l'erreur :

$$|f(x) - p_n(x)| \le \frac{M_{n+1}}{(n+1)!} |\prod_{i=0}^n (x - x_i)|$$

$$M_{n+1} := \max_{\epsilon \in [a,b]} |f^{(n+1)}(\epsilon)|$$

Si les nœuds sont équipartitis et si $n \in \{1, 2, 3\}$:

Interpolation linéaire : $x_1 = x_0 + h$

$$|f(x) - p_1(x)| \le \frac{1}{8} M_2 h^2, x \in [x_0, x_1]$$

Interpolation quadratique : $x_1 = x_0 + h$, $x_2 = x_0 + 2h$

$$|f(x) - p_2(x)| \le \frac{\sqrt{3}}{27} M_3 h^3, x \in [x_0, x_2]$$

Interpolation cubique : $x_1 = x_0 + h$, $x_2 = x_0 + 2h$, $x_3 = x_0 + 3h$

$$|f(x) - p_3(x)| \le \frac{3}{128} M_4 h^4, x \in [x_1, x_2]$$
$$|f(x) - p_3(x)| \le \frac{1}{24} M_4 h^4, x \in [x_0, x_1] \cup [x_2, x_3]$$

Si le degrés est trop grand, ne pas utiliser des nœuds équidistants, mais plutôt utiliser les abscisses de Tchebychev : $x_i = 5\cos(\frac{2(n-i)+1}{2n+2}\pi)$, 0 < i < n.

5 SPLINE CUBIQUE

On définit $h_i=x_{i+1}-x_i,\,i=1,2,...,n-1$, le spline cubique s(x) sur chaque sous-intervalle $[x_i,x_i+1]$ est un polynôme cubique :

$$s_i(x) = a_i(x - x_i)^3 + b_i(x - x_i)^2 + c_i(x - x_i) + d_i$$

$$s_i' = 3a_i(x - x_i)^2 + 2b_i(x - x_i) + c_i(x - x_i)$$

$$s_i'' = 6a_i(x - x_i) + 2b_i(x - x_i)$$

On a pour chaque sous-intervalle $[x_i, x_{i+1}]$:

$$\begin{split} s_i(x_i) &= d_i &= y_i \\ s_i(x_{i+1}) &= a_i h_i^3 + b_i h_i^2 + c_i h_i + d_i &= y_{i+1} \\ s_i'(x_i) &= c_i \\ s_i'(x_{i+1}) &= 3a_i h_i^2 + 2b_i h_i + c_i \\ s_i''(x_i) &= 2_b i &= y_i'' \\ s_i''(x_{i+1}) &= 6a_i h_i + 2b_i &= y_{i+1}'' \end{split}$$

On en ressort les coefficients suivants :

$$a_{i} = \frac{1}{6h_{i}}(y_{i+1}'' - y_{i}'')$$

$$b_{i} = \frac{1}{2}y_{i}''$$

$$c_{i} = \frac{1}{h_{i}}(y_{i+1} - y_{i}) - \frac{1}{6}hi(y_{i+1}'' + 2y_{i}'')$$

$$d_{i} = y_{i}$$

Avec n=5 on obtient le système suivant :

$$\begin{vmatrix} y_1'' & y_2'' & y_3'' & y_4'' & 1 \\ 4 & 1 & & \frac{6}{h^2}(y_2 - 2y_1 + y_0) - y_0'' \\ 1 & 4 & 1 & \frac{6}{h^2}(y_3 - 2y_2 + y_1) \\ & 1 & 4 & 1 & \frac{6}{h^2}(y_4 - 2y_3 + y_2) \\ & & 1 & 4 & \frac{6}{h^2}(y_5 - 2y_4 + y_3) - y_5'' \end{vmatrix}$$

6 PARAMÉTRISATION D'UNE COURBE

On a $f:[a,b] \to \mathbb{R}^2$ et $t \to (x(t),y(t))$ avec x(t) et y(t) des fonctions. Par exemple, le cercle unitaire possède comme paramétrisation $f:[0,2\pi[\to\mathbb{R} \text{ et } t\to(\cos(t),\sin(t)).$

On donne n points (x_i, y_i) , on approche les deux inconnues x(t), y(t) par deux splines naturelles. On prend comme distance $t_{i+1} - t_i$ comme la distance entre les points (x_i, y_i) et (x_{i+1}, y_{i+1}) et $t_0 = 0$.

Exemple: TODO

7 FORMULE DU TRAPÈZE

Approximation d'une intégrale par l'aire du trapèze :

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

On divise l'intervalle [a,b] en n sous-intervalles de même longueur $h:=\frac{b-a}{n}$, les extrémités sont données par $x_j=a+jh,\ j=0,1,2,...,n$ et ont additionne les aires de chaque trapèze (pour n=4) :

$$h\left[\frac{1}{2}f(x_0) + f(x_1) + f(x_2) + f(x_3) + \frac{1}{2}f(x_4)\right]$$

et la formule générale :

$$T(h) = h\left[\frac{1}{2}f(a) + \sum_{j=1}^{n-1} f(x_j) + \frac{1}{2}f(b)\right]$$

8 FORMULE DU POINT DU MILIEU

On approche l'aire par (avec $x_i = a + \frac{h(2i+1)}{2}$ pour i=0,1,2,...,n)

$$M(h) = h[f(x_{0.5} + f(x_{1.5} + f(x_{2.5} + f(x_{3.5})))]$$

On a aussi

$$T(\frac{h}{2}) = \frac{1}{2}[T(h) + M(h)]$$

Pour le calcule de T(h), on prend les extrémités au départ (pour n=4): $T(h)=\frac{h}{2}(f_0+f_4).$ Puis on prend le milieu pour $M(h)=hf_2$ puis $M(\frac{h}{2})=\frac{h}{2}[f_1+f_3]...$

9 MAJORANT DE L'ERREUR (TRAPÈZE)

Si la fonction à intégrer est deux fois continûment dérivable, alors on peut majorer l'erreur :

$$\left| \int_{a}^{b} f(x)dx - T(h) \right| \le \frac{h^{2}(b-a)}{12} \max_{a \le x \le b} |f''(x)|$$

Exemple

On veut calculer avec la formule composite l'intégrale

$$\int_0^{\pi} \sin(x) dx = 2$$

avec une erreur limité par 0.00002. Quel est la valeur de n ?

$$f(x) = \sin(x)$$
$$f''(x) = -\sin(x)$$

Puisse que sin est bornée par 1 :

$$\left| \int_{a}^{b} f(x)dx - T(h) \right| \le \frac{h^{2}\pi}{12}$$

On déduit que

$$h \le \left(\frac{0.00002 \cdot 12^{\frac{1}{2}}}{\pi}\right) = 0.00874039$$

La méthode du trapèze est optimale si :

- La fonction est périodique
- La fonction est infiniment dérivable
- On intègre sur une période

10 MÉTHODE DE SIMPSON

Le polynôme d'interpolation $p_2(x)$ pour les 3 nœuds équirépartis $x_0=a, x_1=\frac{b+a}{2}, x_2=b$ est donné par :

$$\begin{split} p_2(x) &= \frac{(x-x_1)(x-x_2)}{2h^2} f_0 \\ &+ \frac{(x-x_1)(x-x_2)}{2h^2} f_1 \\ &+ \frac{(x-x_0)(x-x_2)}{-h^2} f_1 \\ &+ \frac{(x-x_0)(x-x_1)}{2h^2} f_2 \\ &\text{où } h = \frac{b-a}{2} \end{split}$$

On obtient l'approximation suivante :

$$\int_a^b f(x)dx \approx \int_a^b p_2(x)dx = \frac{b-a}{6}[f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

Cette méthode intègre les polynômes de degrés 2 et 3 exactement.

11 MAJORANT DE L'ERREUR (SIMPSON)

Si la fonction est 4 fois continûment dérivable

$$\left| \int_{a}^{b} f(x)dx - S \right| \le \frac{(b-a)^{5}}{90} \max_{a < x < b} |f^{(4)}(x)|$$

12 FORMULE DE SIMPSON COMPOSITE

On applique Simpson sur des sous-intervalles, on prend n=6:

$$S_c = \frac{2h}{6}(f_0 + 4f_1 + f_2) + \frac{2h}{6}(f_2 + 4f_3 + f_4) + \frac{2h}{6}(f_4 + 4f_5 + f_6)$$

$$= \frac{h}{3}[f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + 4f_5 + f_6]$$

$$= \frac{h}{3}[f_0 + 4f_1 + f_6 + 2(f_2 + f_3 + f_4 + 2f_5)]$$

et avec 2n sous-intervalles :

$$S_c = \frac{h}{3} \left(f(a) + 4f(x_1) + f(b) + 2 \sum_{k=1}^{n-1} [f(x_{2k}) + 2f(x_{2k+1})] \right)$$

avec $h = \frac{b-a}{2}$.

13 ERREUR DE LA FORMULE COMPOSITE DE SIMPSON

Si la fonction est 4 fois continûment dérivable :

$$\left| \int_{a}^{b} f(x)dx - S \right| \le \frac{h^{4}(b-a)}{180} \max_{a \le x \le b} |f^{(4)}(x)|$$

14 FORMULE DE NEWTON-COTES

On peut généraliser Simpson en utilisant un polynôme de degré n passant par les points $(x_i, f(x_i))$ avec $(0 \le i \le n)$ où $x_i = x_0 + ih$. Les formules pour n = 3 et n = 4:

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)] - \frac{3h^5}{80} f^{(4)}(\epsilon)$$

$$\int_{x_0}^{x_4} f(x)dx = \frac{2h}{45} [7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)]$$

$$- \frac{8h^7}{945} f^{(6)}(\epsilon)$$

avec $x_0 \le \epsilon \le x_{3,4}$.

avec

La formule de Newton-Cotes associée à une valeur **paire** de n intègre un polynôme de degré n+1 exactement. Ce n'est pas conseillé d'utiliser cette formule avec des polynômes de degré élevé.

15 INTÉGRATION DE ROMBERG

$$T_{0,0}$$

$$T_{1,0} T_{1,1}$$

$$T_{2,0} T_{2,1} T_{2,2}$$

$$T_{3,0} T_{3,1} T_{3,2} T_{3,3}$$

$$T_{4,0} T_{4,1} T_{4,2} T_{4,3} T_{4,4}$$

$$T_{5,0} T_{5,1} T_{5,2} T_{5,3} T_{5,4} T_{5,5}$$

$$T_{i,j} = \frac{4^{j}T_{i,j-1} - T_{i-1,j-1}}{4^{j} - 1}$$

$$T_{0,0} = \frac{1}{2}(a - b)(f(a) + f(b))$$

$$T_{n,0} = \mathbf{T}(2^{n})$$

où T(h) est la méthode du trapèze composite.