Measurement Systems

1. Introduction to Measurement Systems

Dr. Ronan McCann

setu.ie
INSPIRING FUTURES

Course Overview

Topics:

Measurement Systems

Sensors

Signal Amplification

Signal Conditioning

Analog-to-Digital Conversion

Specialised Sensing Systems

- Design, analysis and implementation of a number of complete measurement systems.
- General principles of measurement systems, including sensors, signal conditioning, signal processing and presentation.
- Lab programme: National Instruments LabVIEW and MultiSim.

Course Overview

Reading List:

Bentley, J. Principles of Measurement Systems.

Doebelin, E. Measurement Systems Applications and Design. 5th ed.

Horowitz, P. and W. Hill. *The Art of Electronics*...

Lawless, B. Fundamental Analog Electronics.

Waldemar, N. Measurement Systems and Sensors.

Course Overview

Structure – must get 40% overall:

(35% to pass) — Final Exam: 60%

— Labs: 30% (3 x 10%) (Week 2-11)

(35% to pass, must attend 75%)

Presentation 10% (Week 12)

Timetable:

— Labs (Computing): Tue 0915-1115hrs W05

— Labs (Physics): Thur 1515-1715hrs W05

– Lectures: Tue 1615 FTG12

> Wed 1315 AT105

Fri 1215 F28

Measurement Systems

GPS

Microphone

Accelerometer

Touch

Camera(s)

Orientation

Compass

Measurement Systems

Why measure?

 Numbers allow us compare what we expected to what we saw, and what others saw

- Scientists can test a theory
- Engineers can test a design
- Measurements are how computers sense the world

Measurements also tell us what you don't know

What are measurements?

- Measurements transform the physical world into data
- When we measure an object we determine a "quantity"
- A quantity is:
 - Distinguished (qualitative)
 - Determined (quantitative)
- **Examples:**
 - distance, time, velocity, acceleration, mass, force
 - What about... Brightness?

International System (SI) of Units

International System (SI) of Units

SI photometry quantities

11	т	Е
v		E

Quantity		Unit		Dimension	Notes	
Name	Symbol ^[nb 1]	Name	Symbol	Symbol ^[nb 2]	Notes	
Luminous energy	Q _v [nb 3]	lumen second	Im·s	TJ	The lumen second is sometimes called the talbot.	
Luminous flux, luminous power	Φ _V [nb 3]	lumen (= candela steradian)	Im (= cd·sr)	J	Luminous energy per unit time	
Luminous intensity	I _v	candela (= lumen per steradian)	cd (= lm/sr)	J	Luminous flux per unit solid angle	
Luminance	L_{V}	candela per square metre	cd/m^2 (= $lm/(sr \cdot m^2)$)	L ⁻² J	Luminous flux per unit solid angle per unit <i>projected</i> source area. The candela per square metre is sometimes called the <i>nit</i> .	
Illuminance	E _v	lux (= lumen per square metre)	lx (= lm/m ²)	L ⁻² J	Luminous flux incident on a surface	
Luminous exitance, luminous emittance	M _v	lumen per square metre	lm/m ²	L ⁻² J	Luminous flux emitted from a surface	
Luminous exposure	H_{v}	lux second	lx·s	L ⁻² T J	Time-integrated illuminance	
Luminous energy density	ω_{v}	lumen second per cubic metre	lm⋅s/m ³	L ⁻³ T J		
Luminous efficacy (of radiation)	К	lumen per watt	lm/W	M ⁻¹ L ⁻² T ³ J	Ratio of luminous flux to radiant flux	
Luminous efficacy (of a source)	η ^[nb 3]	lumen per watt	lm/W	M ⁻¹ L ⁻² T ³ J	Ratio of luminous flux to power consumption	
Luminous efficiency, luminous coefficient	V			1	Luminous efficacy normalized by the maximum possible efficacy	

Standards are important

- The Mars Climate Orbiter, launched in 1998 to Mars
- NASA use SI Units (newton-seconds)
- Lockheed Martin use US customary units (foot-pounds-second)
- Impulse calculations were off by a factor of 4.5 and probe went into atmosphere instead of orbit
- How much did this mistake cost?
- Total cost: \$495 million (2022)

Overview of measurement systems

Overview of measurement systems

Overview of measurement systems

Sensor

In direct contact with the process or system being measured and gives an output which depends in some way of the variable to be measured – Process is called Transduction

Examples

• Thermocouple where mV output depends on the

temperature

A position or linear displacement

Linear potentiometer construction

Wiper Terminal

Resistive strip

Reference Terminal

Conditioning Element

Takes output from the sensing element and converts it into a form more suitable for further processing (usually into a DC voltage).

Examples

Voltage amplification from mV to V

Analog-to-digital Conversion

Takes output of the conditioning element and converts it into a form more suitable for presentation.

Examples

Analog to digital converter, abbreviated ADC

Types of measurement systems

Range

- All sensors have an operation range
- Input range of I_{MIN} to I_{MAX} and output range of O_{MIN} to O_{MAX}
- Example Thermocouple, sensing element that converts temperature to voltage
- Input range 0 oC to 250 oC and output range 0 to 10 mV

Transfer Functions

For each quantity x_1 , x_2 , x_3 ... we have a corresponding measurement y_1 , y_2 , y_3 ...

Or more generally: y = H(x)

Uncertainty

Every system has some degree of uncertainty

- Measurement y of quantity x has an uncertainty Δy
 - Randomness
 - Varying conditions
 - Resolution

Uncertainty and error

- Uncertainty is NOT error
- Error: difference between reading and true value
- Uncertainty: doubt in our reading
- How do we quantify uncertainty?

Standard deviation

Confidence Intervals z = confidence level

$$s = \frac{\sqrt{\Sigma(x_i - \bar{x})^2}}{n - 1}$$

$$CI = \bar{x} \pm z \left(\frac{s}{\sqrt{n}}\right)$$

Sensitivity

An ideal sensor would have a linear sensitivity

$$S = \frac{\Delta x}{\Delta y}$$

A change in x results in a linear response in y

Linear vs. Differential Sensitivity

Not all sensors have linear sensitivity responses, some have a differential behavior

$$S = \frac{dx}{dy}$$

If we understand our transfer function and sensitivity, we can correct for non-linearity

Example: Sensitivity

$$\frac{dV}{dT} = 38.74 + 6.658 \times 10^{-2} \text{T} + 6.183 \times 10^{-4} \text{T}^2 - 8.472 \times 10^{-6} \text{T}^3 + 5.495 \times 10^{-8} \text{T}^4 - 1.8486 \times 10^{-10} \text{T}^5 + 3.1839 \times 10^{-13} \text{T}^6 - 2.2008 \times 10^{-16} \text{T}^7$$

Show that at 100 °C, the sensitivity of the thermocouple above is 47 mV/°C

Temp	Sensitivity		
0	38.74		
100	47		
200	55		
300	65		
400	79		

Non-Linearity

- If we assume the Transfer Function is linear, any deviation will be a problem.
- Not all Transfer Functions are linear, does this result in uncertainty or error?
- Error a difference between the reading and the true value

 x_1 – Actual value of quantity

 x'_1 – Measured value of quantity

y₁ – Output signal of measured system

$$Error = x'_1 - x_1$$

What is the error and the percentage error for the following measurements:

Actual Value = 25 V

Nominal Value = 30 V

Error =
$$x'_1 - x_1 = 30 - 25 = 5V$$

Percentage Error = $(5 / 30) * 100 = +16.7\%$

 Offset error is a transposition of the reading from actual (real) value to some nominal value

$$- y(x) = m * H(x) + c$$

c is the offset value

 Can be linear or non-linear over the sensor's range

Offset error

 Gain error is a transposition of the reading from actual (real) value to some nominal value

$$- y(x) = m * H(x) + c$$

- m is the gain value
- Can be also linear or non-linear over the sensor's range

Gain error (sensitivity error)

Non-Linearity - Saturation

Limitations in the maximum or minimum

- Results in "clipping" the response
- Loss of information of absolute values

saturation

Non-Linearity - Hysteresis

- Time or directional change in response
- Can sometimes be eliminated by going slowly "rate-dependent"
- Can sometimes be the effect of a physical phenomenon e.g. magnetism i.e. "rateindependent"

hysteresis

Non-Linearity - Dead Zone

- Lack of response over a certain range
- Often occurs near the zero point of a sensor where the initial input is too small to be measured
- Can also occur at non-zero values, or in measurement systems where multiple sensors have been combined and may not overlap

dead zone

Ambiguity

Do we know the type of the error or non-linearity? Think about the sensor!

(a)

Cross Sensitivity

 Certain measurements are influenced simultaneously by multiple physical quantities or phenomena

 This can lead to unwanted deviations in the transfer function

Cross Sensitivity - Example

- Thermal radiation emission as measured by IR camera imaging
- Stefan-Boltzmann Law:

$$P = \epsilon \sigma T^4$$

- Emissivity is a function of temperature!
- Absolute vs. Radiant temperature measurement?

Cross Sensitivity - Example

- How to solve this problem?
- Ignore it? What error do we get? Is this acceptable?
- Calibration? Measure emissivity first Model it This is material dependent!
- Do we even need to know? Statistical analysis

Calibration

- International standards give us a benchmark to compare two discreet measurements
- Allows us to correct for variation in instrument type, age, etc.
- Generally needs to be done periodically
- International organizations agree and publish standards for calibration and measurements

International Standards (ISO/ASTM/IEEE)

National or Supranational Standards (EU/NSAI/BSI)

Lab Standards (Us!)

Calibration – Example

Resolution

- The resolution is the smallest change in x, that causes a change in y
- Resolution is a cause of uncertainty
- 17.44 V what is the resolution? 0.01 V

Resolution

Two types of resolution:

Display limitation

Sensor limitation

Accuracy and Reproducibility

- Accuracy: same as Error. The difference from our reading from the "true" reading
- Reproducibility: the uncertainty in our sensor to find the same measurement each time

Approximate Error

- Approximate error: error and reproducibility combined
- If error is 5V and the reproducibility is \pm 2.5V, what is our approximate error?
- $5V \pm 2.5V$. What is the range of the error?
- 2.5V 7.5V. This is our Tolerance Interval

Approximate Error

- Tolerance: What we consider acceptable error within our system or sensor
- If we define a maximum tolerance of 0.1V, is a sensor with an approximate error of 15V ± 1% within specification?

Sensor Qualities and Quantities

- Range
- Linearity and non-linearity
- Sensitivity
- Resolution
- Error and Accuracy
- Uncertainty and Reproducibility

Example - IR Sensor

Calex PC151MT-0 mA Output Signal Infrared Temperature Sensor, 1m Cable, 0°C to +250°C

RS Stock No.: 553-321 Mfr. Part No.: PC151MT-0 Manufacturer: Calex

84 In stock for delivery within 2 working days

- 1 + units Add to basket

Real time stock check

Price Each

£243.44 (exc. VAT) (inc. VAT)

units Per unit

1+

€243.44

Example - IR Sensor

High Performance PyroCouple Series

High quality, low cost, non-contact Infra-red temperature sensors suitable for measuring the temperature of inaccessible or moving objects and materials.

Fast response with high stability

Types available with air/water cooled housings

Quick and easy to install

Available as either two-wire or four-wire units

240 ms to 90% response time

Stainless steel housing

M16 x 1 mm mounting thread

Prewired 1 m cable connection

6 V dc minimum sensor voltage

0.95 emissivity

Temperature change varies by model

Two-wire sensors transmit the target temperature as a 4-20 mA output and offer a simple solution for most non-contact temperature measurement applications.

The PyroCouple is a simple infrared temperature sensor with a choice of analogue outputs. No complicated setup is required - just connect a temperature indicator and power supply, and instantly start taking measurements.

It is suitable for non-contact temperature measurement on most non-reflective non-metal surfaces, such as paper, thick plastics, asphalt, painted surfaces, food, rubber and organic materials, among many others.

All models can measure at longer distances than shown, with a larger measured spot size.

Diagrams show the diameter of the measured target spot versus the distance from the sensing head (90% energy).

Example - IR Sensor

- Temperature ranges from -20°C to 500°C
- Two-wire 4-20 mA output or four-wire voltage/ thermocouple output
- Choice of precision optics for large or small targets
- Fast response with high stability
- Stainless steel housing, sealed to IP65
- Quick and easy installation
- Wide range of accessories
- Fixed emissivity 0.95 for measuring non-reflective non-metals, and painted surfaces (including painted or coated metals)
- Conforms to industrial EMC standards

General			
Output	Choice of 4-20 mA, J or K Thermocouple, mV (See "Model Numbers")		
Temperature Range	LT = -20 to +100 °C MT = 0 to 250 °C HT = 0 to 500 °C		
Accuracy	±1% of reading or ±1°C, whichever is greater		
Repeatability	± 0.5% of reading or ± 0.5°C, whichever is greater		
Emissivity Setting	Fixed at 0.95		
Response Time	240 ms (90% response)		
Spectral Range	8 to 14 μm		
Supply Voltage (at Sensor)	6 V DC to 28 V DC		
Max. Loop Impedance	900 Ω (4-20 mA output)		
Output Impedance	56 Ω (voltage/thermocouple output)		
Max. Current Draw	20 mA		

Mechanical		
Construction	Stainless Steel	
Dimensions	18 mm diameter x 103 mm long	
Thread Mounting	M16 x 1 mm pitch	
Cable Length	1m (longer lengths available to order)	
Weight with Cable	95 g	

Environmental	
Environmental (IP) Rating	IP65
Ambient (Operating) Temperature Range	0°C to 70°C
Ambient (Operating) Humidity	95% max. non-condensing

Flow Sensor

General Specifications

Device Type	Turbine
Media Monitored	Liquid
Minimum Flow Rate	0.5L/min
Maximum Flow Rate	15L/min
Maximum Pressure	10bar
Material	Stainless Steel
Standard Accuracy	1%
Linearity	1.0% FSD
Applications	Active flow alarms, semiconductor plants and drink dispensers

Pressure Sensor

FSS Low Profile Force Sensors

PERFORMANCE CHARACTERISTICS @ 5.0 ± 0.01 Vdc Excitation*, 25 °C [77 °F]

Parameter	Min.	Typical	Max.	Units
Null Offset	-15	0	+15	mV
Operating Force	0	-	1500	grams
Sensitivity.	0.1	0.12	14	mV/gram
Linearity (B.FS.L.)**	-	± 1.5	-	% span
Repeatability @ 300 g	-	± 10	-	grams
Null Shift				
25 °C to 2 °C [77 °F to 35.6 °F]	-	± 0.5	-	mV
25 °C to 40 °C [77 °F to 104 °F]	_	± 0.5	-	mV
Sensitivity Shift				
25 °C to 50 °C [77 °F to 122 °F]	_	5.5	_	% span
25 °C to 0 °C [77 °F to 32 °F]	-	5.5	-	% span
Input Resistance	4.0 K	5.0 K	6.0 K	Ohms
Output Resistance	4.0 K	5.0 K	6.0 K	Ohms
Overforce	-	-	4,500	grams
ESD (direct contact, terminals and plunger)	8	_	_	kV
25 °C to 50 °C [77 °F to 122 °F] 25 °C to 0 °C [77 °F to 32 °F] Input Resistance Output Resistance Overforce ESD (direct contact, terminals and	4.0 K - 8	5.5 5.0 K	6.0 K	% spar Ohms Ohms grams kV

^{*} Non-compensated force sensors, excited by constant current (1.5 mA) instead of voltage, exhibit partial temperature compensation of Span.

** BFSL: Best Fit Straight Line

ENVIRONMENTAL SPECIFICATIONS

Operating temperature	-40 °C to 85 °C [-40 °F to 185 °F]
Storage temperature	-40 °C to 100 °C [-40°F to 212 °F]
Shock	Qualification tested to 150 g
Vibration	Qualification tested to 0 to 2 kHz, 20 g sine
MCTF	20 million at 25 °C [77 °F]
Solderability	5 sec at 315 °C [599 °F] per lead
Output ratiometric	Within supply range

Note: All force related specifications are established using dead weight or compliant force.

Summary

- Measurements are quantitative (determinable) and qualitative (distinguishable)
- The transfer function describes the relationship between an quantity x and measurement y
- Error and uncertainty are not the same!
- Accuracy and Repeatability
- Calibration and understanding the sources of error can get us more accurate data