CS 61B 1	lidterm) / Note	28		Jeffrey Shen 3034555577		
Pointers - Passes a point	iter to	array as	s paramete	r for a			
- pass by Valu		,					
Classes / Inherit	ance		_				
- Always implici	+ call	to Supercla	ass constr	nctor R	om subclass		
•		selection		Variable	Static Dynamic		
- Dynamic method selection Compile Time Runtime Static Dynamic Congi Congi Static Dynamic							
Static		Dynanic		C 1	Congi Congi		
if using fr	to use	Packag	e Norme	for p	nblie class 1. C1 x = new)		
Modifier	Class	Package	Subclass	Global			
public -	1		1	1	- Avaliable any where		
protected	1	1	1	X	-Avaliable within subclass antside package		
package (default) private			X	X	-Avaliable within same package		
private	1	Х	X	X	- Avaliable only within Same class		
- Static methods	can	not be	overridde	\sim			
- Overriding: s	iame me	thod signa	ture in	sub class			
- Overloading:	Same	method nam. of argume	e but	ditterent	numbers or		
- State belong		•		to instan	nce		

Exception 5	
Ex) "throw new Illegal Argument Exception ();"	
try & 11 code 3 cotch (Some Exception e) & 11 code 3	
- Checked Exceptions: non-programmer errors declared	in method head
- Unchecked Exceptions: programmer errors	
Throwable	Unchecked, Checked
[Error] [Exception]	
Assertion Kuntime File Not Found Exception Error Index Out Of	
Bounds Exceptor)	
Unit Testing x) assert Array Equals (int [] expected, int [] actual) assert Equals (double expected, double actual, double	e delta)
Interfaces: implements	
public interface Iterable (T) { public interface : boolean has Iterator (T) iterator (); E next(Next();
3	9
Tips There mariable trips and return indexes	
- Check variable types and return indexes - go back and check numbers after filling out	lve
- Int List for loops	
Ex) for (p.tail = null, p= result; p.tail != null; p= p.ta	3(1)

	CS 61 B	Midkern	2 Notes	Illien	Shen 3034555577
Integer	5			Americania secon Americani instituto	
Type	Bits	Signed	Bit Tuidding Mask & Set 1	"and" 2	Mod (last digits (n-1)
byte	8	Yes	Mask & Set 1	"or" 2	Add
Short	16	Yes	Elia A	"not equal" 2	Urequal bits RE Multiply
char	16	No No s	71.p	"not"	
int	32 64	Yes	Flip all	shift left, falls	ff Multiply
long	64	Yes	Shift left <<	. Brings sign b	oit { Divide
^			Shift Left // Arithmetic Right >> Logical Right >>	> Starts with (0 0
Complexi	4				
	ur Dorst	Case	Big T	leta $\Theta(N)$	Same order of growth
		overall runtine	Rica	O(N)	Upper bounded by N
3) Ignore	lower or	der terms	5.0	D. 51N)	Lover bounded by N
		the constants	Big	Unega Socie	
	_				
CO140 1101	16 Interfor	sequences w/	duplication	(ex. Array List,	Linked List)
			dudication	lex. Hash Set, To	neset)
367, 36	and Man:	Dictron ares	, key value pars	cex. HashMap	, TreMap)
		/			
	Complexitie			re [Worst Time]	
Data	Structure	Access	Search		Duction
Arra	4	$\theta(i)$	$\theta(v)$	0 (n)	O (n)
Stack / (Queve/	$\theta(v)$	$\theta(n)$	D(1)	0(1)
Linked Hash Tal		NJA	[(1)0]	D(1)[0(n)]	[(n)0](1)0
BST		O(190) [O(n)]		[(n)0] (logn)	[(n)0](n pol)A
DO 1 /	TKERAS	ACCOUNT FOR A	aca Trans	2000 50000	
1					
Insurty	ng n ele	lments with	logn time	each becomes	nlogn
$\theta(y): x$	lana	Alaloan): »	i V loan Al	nlogn): 2 n	
״	4 1091	0(m3.y. 2	7 7 1	8	
!	1	4 4	4 4 3	-	1.79

Pesize when Load Factor > some value, resize table, rehash all items of sheets less

Add, lookup, deletion: O(i) but carlt find largest 1 smallest 2 present

Pattern Matching, Regular Expressions (RegEx) Character class ([0-9 abd-qs-z]) - Any of the single characters Wildcard (.) - forod can match any character Compliment, Not ([abe]) - Matches any single character other than those listed Character Class shortcut (1s, 1d) 15 - whitespace 12 - [0-9] need to use "112" to get /by Repetitions (*, +, ?) P* - "O or more repititions of P" P+ - "I or more Ps" P? - "0 or 1 Ps" OF (P/Q) - Either "P" or "Q" Group ((P)) - Subpattern to refreme later Escape (17, 1*, 1., 1+) - Need to use two-character escape sequences to match (11?) Exam Tips - Pay after hon to object types - Renember case where input is null - Don't forget capital and lowercase RugEx, edge cases - Linked List in Hash Map takes linear time to add, (checkfor repeat)

Jeffry Shen Notes 3034555577 6861B Final LSDIMSD + solution shops a place solution insurting Sorts Runhme Aug [Worst] Stable Sort Description Diagram - Add each item from unsorted signature, insert into ordered subsequence 0(KN) | 0(N2)] Insertion 6/1/3/0/5/ > for jel to not while arr(i) < orr[i-1] where k is not 1 6 3 0 5 Suap (1,1-1) Charsismy - Good Gr small data sets or donest ordered - Repeatedly finding min element and places in front $\theta(N_s)$ 61305 > for 1=0 to n-1 N for i to n-1 Selection fied ann element 0 1 3 6 5 Swap (min,i) - sort into max heap and keep selecting largest 65310 > Cor i=nb-1 to 0 heapify O(NlogN) Heap sort 5 3 106 Cor is not to O 2 Mab (01,) Bist: H(N) reapily o to i - Duide Lata who equal parts, recursively sort halves, 6 1 3 0 5 merge results Merge Sort A (NlogN) > sort (and arrive line r) { 1/6/0/3/5 sort (acr, 0, model) sort (arr, modele, 17) mergelam, 1,m,r) chose last as forthern -Batthon data into picus everythy > proof at high everything in past on low and 13056 Quicksort A(NlogN) -can do insurtion sort who portions is small enough > queksort(or(), low, high) 011356 if low Khigh [O(N2)] partition index = portition (are, low, high) quicksort (arr, low, pr) if choosing bad portitions govelesort (art, pillhigh) - put integers into N buckets of counts A(N+K) sum of indexes, tun Distribution ther have running 1110110111 want was find Country where k is range of input > for 1=0 to v set up rount array 0 1 0 2 0 3 4 entpur 3 3 4 5 6 count [arr []] ++ for 100 to K count[i]+= count[i-1] set up running sum 0/1/3/5/6 for send to 0 output [count lace [I] - I = ar [i] copy boutput Conver [44.[]]--Sert keys on at a time "Good for Small keys 110110111 $\theta(B)$ Rodix Sort >for each digit i PRINCIPLE SAME count digit (LSD, MSD) count [am [] 01.10] 44; Wen B is # byles, 0 1 0 2 0 3 4 size of key data Complite counting rund sum Least, Most System Digit 10111111

Hash tunctions Auction F Cyptographic Hash Functions - are so unlikely to have collision we can ignore - Pre-image resistance: given h=f(m) computationally infeasible to find m - Second pre-image resistance: given message M, infeasible to find M2 + M, st $f(m_1) = f(m_2)$ resistance: difficult to find any two messages m, +m2 st f(m,) = f(m2) Ex) SHA! 160 bit hash codes of contents in hex Graphs brophs have set of nodes (V) and edges (E), can be directed, cyclic or reyelic Ricursive Depth-First Traversal Stack - mark nodes as we traverse, don't traverse prenously traversed Postorder - mark, traverse edges, visit PROTOLO - mark, vist, towerse edges ·> void postorder Traverse (Graph G, Node V) { > void preorder Traverse (Graph G Node V) { V is unmarked V & unmarked mark (v) mark (V) for Edge (V,W) & Go VISIT (U) for Edge (J, W) & G traverse (G, W) traverse (G,W) (V) +181V Breadth-First Traversal - visit edges and store nodes in a greve for processing Topological Sortma For a Directed Acyclic Graph (DAG), find linear order of nodes where order 10,11,... et Ux 18 never reachable from Ux' 19 K'>K DFS pre order Topo logical Sort (A) B D C E F DFS postorder (A) F (B) (B) (A) Adja cency matrix Advacincy list BFS A>[D,E,F] (A) B E F DC B - [0] [] < J D > [C.E] E > []

Given weighted graph in non-regarder weights, connected Diskstra's Algorithm - Find shortest paths from source vertex s to some target vertex + in highed graph finge pronty que (B)-> forge, add (source, 0) for other vertices, fringe add(v, 20) while finge not empty Vertex v = Enrye. removesmallest() Node for each edge(V, W) F distTo[v] + neight(vim) < distTo[w] dist To [w] = dist To [w] + wight (v, w) odge To [V] = V Ange, charge fronty (w, & SHTO[W]) 3 9 0 3 forge: {A:0, B:4, C:6, D:2, E:73 - Visit vertices in order of best known distance, what edges A* search -Want shortest path from source vertex to desired vertex - Use heunstre guess h(V) and order by sum of distance + heunstre of remaining dist Properties of heunstic:) Admirsible: h(v, NYC) & true distance from 1 to NYC consistent => admissible 2) Consistent: for each neighbor of W: h(v, NYC)とweght(v,w) ナト(v,NYC) Both: time = time to remove U nodes from pronty great time to update reighbors, reorder great Dükora's us. A* O(W+E) log V) Ax searches to protocolar target node, Dytestral's Ends shortest-path tree -Given set of places and distances between, find set of connecting roads of min total length Minmum Spanning Tree Prim's Algorithm - Grow tree from arbitrary node, add shortest edge connecting some node that isn't in the - Similar to Dijkston's, compare weights instead of total distance > E w & forge Sh reight (VIW) < W. dist() W. dot() = weight (V,W); V. parent = V Kruskal's Algorithm - Consider edges in order of increasing neight, add whese cycle - Use Union-Find; - Find what group, park to root - combine two groups, point one root to other > for each edge in increasing order of weight, if (VIW) connects different subtres