30 VECTOR OPERATIONS

Let
$$\vec{U} = (ux, uy, uz)$$
 $\vec{v} = (0x, 0y, 0z)$
 $\vec{t} = (tx, ty, tz)$

be three vectors and k be a constant.

 $\vec{u} \pm \vec{v} = (ux \pm ux, uy \pm vy, uz \pm vz)$
 $\vec{k}\vec{u} = (ux \pm ux, uy \pm vy, uz \pm vz)$
 $\vec{u} \cdot \vec{v} = (ux \pm ux, uy, uz)$
 $\vec{u} \cdot \vec{v} = (ux \pm ux, uy, uz)$
 $\vec{u} \cdot \vec{v} = (ux \pm ux, uy, uz)$
 $\vec{u} \cdot \vec{v} = (ux \pm ux, uy, uz)$
 $\vec{u} \cdot \vec{v} = (ux \pm ux, uy, uz)$
 $\vec{u} \cdot \vec{v} = (uy, vz, uz)$
 $\vec{v} \cdot \vec{v} = (ux, uy, uz)$
 $\vec{v} \cdot \vec{v} = (uy, vz, uz)$
 $\vec{v} \cdot \vec{v} = (uy, vz, uz)$
 $\vec{v} \cdot \vec{v} = (ux, uy, uz)$

unit vector of
$$\vec{u} = \frac{\vec{u}}{|\vec{u}|}$$

Angle between \vec{u} and \vec{v} : $\vec{v} = acc \cos(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|})$

Distance between
$$\vec{u}$$
 and \vec{v} : $\vec{d}(\vec{u}, \vec{v}) = |\vec{u} - \vec{v}|$

Lux $\vec{v}_x + \vec{v}_x$
 $\vec{u} = \vec{v}_x + \vec{v}_x$

$$\vec{U}.\vec{U} = 0$$
 $\vec{U}.\vec{U} = 0$
 $\vec{U}.\vec{U} = 0$
 $\vec{U}.\vec{U} = 0$
 $\vec{U}.\vec{U} = 0$

Projection of
$$\vec{u}$$
 onto \vec{u} : $\frac{\vec{u} \cdot \vec{u}}{|\vec{u}|^2} = \frac{\vec{u} \cdot \vec{u}}{|\vec{u}|^2} = \vec{u}$

Orthogonal projection of \vec{u}

onto \vec{u}
 $\vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{u}}{|\vec{u}|^2} = \vec{u} - \frac{\vec{u} \cdot \vec{u}}{|\vec{$

The Gram - Schmidt Process

Let
$$\vec{u}$$
, \vec{v} and \vec{t} be linearly independent.

$$\frac{\partial}{\partial z} = \vec{v} - proj_{\vec{d}} \vec{v}$$

$$\frac{\partial}{\partial z} = \vec{t} - proj_{\vec{d}} \vec{v}$$