

Introduction to Problem Solving (I)

Dr. Lisa Jardine-Wright & Dr Anton Machacek

Director of Isaac Physics Physics

Associate Director of Isaac

slido

Please download and install the Slido app on all computers you use

Join at slido.com #4002326

i) Start presenting to display the joining instructions on this slide.

Why is problem solving challenging and valuable?

- ➤ Identifying or remembering a fact or equation has its place BUT this doesn't mean that we understand that concept or idea.
- Answering problems identifies misconceptions and assumptions in our understanding that may be valid in special cases but not generally.
- > For example: **Newton's third law**
 - For every action (force) there is an equal and opposite reaction (force) of the same type on a different object.

Why is problem solving challenging and valuable?

Definitions – a physicists' best friends...

- Along with dimensions!
- Learning a definition with clarity and precision makes problem solving easier.
- > For example: **Random journey of a fly.**
 - distance, displacement, speed, velocity, acceleration.

Good Isaac Physics question for practice:

The Half Hour

Random journey of a fly

Definitions – deducing connections

- > Help clear confusion between similar but different ideas.
- E.g. force, power, work done, energy, potential, potential energy...
 - Mind maps

Definitions – deducing connections

5 steps to problem solving.

- 1. Identify key words in the question
 - This may provide extra information to add to the **diagram** e.g **rough** surface means there will be a friction force.
- 2. Draw a **diagram** and include all information given **and** all information you can deduce.
- 3. Think about the physics that may be relevant to the problem
 - Write down everything that may be relevant some many not be needed.
- 4. Stay in symbols
 - Different from common practice in schools but makes finding mistakes much easier.
- 5. Check dimensions, put in numbers and check if reasonable.

Dimensions (or units)

- > Students rarely have to remember equations at school but understanding dimensions and units is still valuable for checking algebra.
 - Won't give dimensionless constants of proportionality.
- For example: speed=distance/time, period of a pendulum

Period of a pendulum

(I) Please rank the top 3 questions that you would most like to discuss.

(i) Start presenting to display the poll results on this slide.