

CÉSAR VALLEJO

CÉSAR VALLEJO

GEOMETRIA

Tema: Cuadriláteros

OBJETIVOS

Analizar como se pueden ampliar los conceptos dados para el triángulo, a figuras poligonales de 4 lados o más.

Clasificar a cuadriláteros según el paralelismo de sus lados opuestos.

Aplicar lo aprendido en la resolución de problemas tipo examen de admisión UNI

EL CUADRILÁTERO

Vértices

A, B, C, D

Lados

 $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$

Diagonales

 \overline{AC} , \overline{BD}

Medidas angulares

Interiores: α , β , θ , γ

Exteriores: ε_1 , ε_2 , ε_3 , ε_4

Región cuadrangular

{Reg. Interior} \cup { \overline{AB} , \overline{BC} , \overline{CD} , \overline{DA} }/

TEOREMA

 $\alpha + \beta + \theta + \gamma = 360^{\circ}$

TEOREMA

 $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4 = 360^{\circ}$

Región Convexa:

Toda recta que pase por puntos de su región interior interseca a su frontera a lo más en dos puntos.

Región no convexa (cóncavo):

Región interior

Algunas rectas que pasan por puntos de su región interior intersecan a su frontera en más de dos puntos.

EL TRAPEZOIDE

☐ Cuadrilátero que no tiene lados paralelos

Trapezoide Simétrico Una diagonal es mediatriz de la otra diagonal A D C

APLICACION

En el trapezoide simétrico mostrado, calcule θ .

A) 75° B)100° C)110° D)115° E)120°

RESOLUCIÓN:

Nos piden θ

Podemos reconocer que, \overline{AC} es el eje de simetría.

$$\rightarrow m \triangleleft ABC = m \triangleleft ADC = \theta$$

 Sabemos que, en todo cuadrilátero, la suma de medidas de sus ángulos internos es 360°

$$\theta + \theta + \theta + 6\theta = 360^{\circ}$$

$$3\theta = 300^{\circ}$$

$$\therefore \theta = 100^{\circ}$$

EL TRAPECIO

☐ Cuadrilátero que tiene únicamente dos lados paralelos

INTENSIVO UNI

Bases: \overline{BC} y \overline{AD}

 $\overline{BC} \parallel \overline{AD}$

Altura: *h*

Laterales: \overline{AB} y \overline{CD}

<u>DEMOSTRACIÓN PUNTOS MEDIOS DE LAS DIAGONALES</u>

- Trazamos CL
- ΔACL , MN es base media : $x = \frac{AL}{2}$
 - De allí: $\therefore x = \frac{b a}{2}$

Base Media

$$x = \frac{a+b}{2}$$

Puntos medios de las diagonales

$$x = \frac{b - a}{2}$$

LD = a

Bases: \overline{BC} y \overline{AD}

 $\overline{BC} \parallel \overline{AD}$

 $a \neq b$

Bases: \overline{BC} y \overline{AD}

 $\overline{BC} \parallel \overline{AD}$

a = b

 $m \not\preceq BAC = m \not\preceq CDA$

Bases: \overline{BC} y \overline{AD}

 $\overline{BC} \parallel \overline{AD}$

 $\overline{AB} \perp \overline{BC} \ y \ \overline{AB} \perp \overline{AD}$

TEOREMA

 $\overline{BC} \parallel \overline{AD}$

AB = CD

Se cumple:

AC = BD

TEOREMA

Bases: \overline{BC} y \overline{AD}

 $\overline{BC} \parallel \overline{AD}$

a = b

TEOREMA

 $\overline{BC} \parallel \overline{AD}$

AB = CD

Se cumple:

x = y

EL PARALELOGRAMO

☐ Cuadrilátero que tiene sus lados opuestos paralelos

El Paralelogramo

Lados opuestos paralelos: $\overline{AB} \parallel \overline{CD} \ y \ \overline{BC} \parallel \overline{AD}$

Ángulos opuestos de igual medida

Las diagonales se bisecan AO = CO, BO = DO

El Rectángulo

Es un cuadrilátero equiángulo

Sus diagonales tienen igual longitud

Se determinan 4 triángulos isósceles

El Rombo

Es un cuadrilátero equilátero
Sus diagonales son perpendiculares
Sus diagonales son bisectrices

El Cuadrado

Es un cuadrilátero equilátero y equiángulo Las diagonales son perpendiculares
Sus diagonales son

bisectrices

TEOREMA

MN = PQ

TEOREMA

Si P pertenece a la diagonal AC

$$PB = PD$$

 $m \not ABP = m \not ADP$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe

ACADEMIA CESAIR UALLEJO

