

Algèbre Linéaire

Devoir Maison - Fiche 5 Licence 2 Informatique (2022-2023)

Guillaume Metzler

Institut de Communication (ICOM)
Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

Résumé

Cette fiche se décompose en deux parties. La première partie est composée de questions de cours dont les justifications sont en générales très courtes et dont toutes les réponses figurent dans le cours (moyennant une petite réflexion par moment). Les questions ne sont pas difficiles et sont un bon moyen pour vous de travailler le cours et de vérifier que les notions sont comprises. La deuxième partie est composée de trois exercices d'applications pour vérifier que les exercices effectuées en TD sont maîtrisées. A nouveau, ces derniers sont très proches de ceux effectués en TD et seront un excellent moyen pour vous de vérifier que vous savez refaire ce qui a été fait en TD.

1 Questions de cours

Les propositions suivantes sont-elles vraies ou fausses?

1. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = 3x_1y_2 + 6x_2y_2 + 3x_1y_1 + 4x_2y_1$$

est-elle une forme bilinéaire?

VRAI. On vérifie facilement que la forme est bien bilinéaire. En effet, l'application ϕ est linéaire à gauche, *i.e.* pour tout $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$ et pour tout $\lambda \in \mathbb{R}$, nous avons

$$\phi(\mathbf{x} + \lambda \mathbf{x}', \mathbf{y}) = 3(x_1 + \lambda x_1')y_2 + 6(x_2 + \lambda x_2')y_2 + 3(x_1 + \lambda x_1')y_1 + 4(x_2 + \lambda x_2')y_1,$$

$$\downarrow \text{ simple développement et factorisation}$$

$$= 3x_1y_2 + 6x_2y_2 + 3x_1y_1 + 4x_2y_1 + \lambda(3x_1'y_2 + 6x_2'y_2 + 3x_1'y_1 + 4x_2'y_1),$$

$$= \phi(\mathbf{x}, \mathbf{y}) + \lambda\phi(\mathbf{x}', \mathbf{y}).$$

De même notre application est linéaire à droite, *i.e.* pour tout $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^2$ et pour tout $\lambda \in \mathbb{R}$, nous avons

$$\phi(\mathbf{x}, \mathbf{y} + \mu \mathbf{y}') = 3x_1(y_2 + \mu y_2') + 6x_2(y_2 + \mu y_2') + 3x_1(y_1 + \mu y_1') + 4x_2(y_1 + \mu y_1'),$$

$$\downarrow \text{ simple développement et factorisation des termes}$$

$$= 3x_1y_2 + 6x_2y_2 + 3x_1y_1 + 4x_2y_1 + \mu(3x_1y_2' + 6x_2y_2' + 3x_1y_1' + 4x_2y_1'),$$

$$= \phi(\mathbf{x}, \mathbf{y}) + \lambda\phi(\mathbf{x}', \mathbf{y}).$$

Notre application ϕ est donc bien bilinéaire.

Remarque: nous aurions pu le voir directement en voyant que notre application s'écrivait comme le produit de monômes de la x_iy_j , donc comme somme de fonctions linéaires en \mathbf{x} et \mathbf{y} .

2. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = -2x_1y_2^2 + 5x_2y_2 - 7x_1y_1$$

est-elle une forme bilinéaire?

FAUX. La présence d'un terme quadratique assure instantanément qu'il ne s'agit pas d'une forme bilinéaire. En effet, cette application n'est pas linéaire en \mathbf{y} car $(y + \mu y')^2 = y^2 + \mu^2 y'^2 + 2\mu yy' \neq y + \mu y'$.

3. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = 2x_1y_1 - 3x_1y_2 - 3x_2y_1 + 6x_2y_2$$

est-elle une forme bilinéaire symétrique?

VRAI. Si on reprend un développement similaire que celui effectué à la question 1, on trouve que la forme ϕ est bien bilinéaire.

En outre, on vérifie facilement qu'elle est symétrique car

$$\phi(\mathbf{x}, \mathbf{y}) = 2x_1y_1 - 3x_1y_2 - 3x_2y_1 + 6x_2y_2,$$

= $2y_1x_1 - 3y_1x_2 - 3y_2x_1 + 6y_2x_2,$
= $\phi(\mathbf{y}, \mathbf{x}).$

4. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = 2x_1 - 3x_1y_2 - 3x_2y_1 + 2y_2$$

est-elle une forme bilinéaire symétrique?

FAUX. L'application est bien bilinéaire, en revanche, elle n'est pas symétrique du tout.

5. Les matrices associées aux formes bilinéaires symétriques sont nécessairement symétriques.

VRAI. C'est un point de cours.

6. A toute forme bilinéaire symétrique, il est possible d'associer une forme quadratique.

VRAI. Si A est la matrice d'une forme biliénaire symétrique, alors la forme quadratique associée est définie par

$$q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}.$$

7. Une forme quadratique est dite positive si et seulement si toutes ses valeurs propres sont positives.

VRAI. En effet, une forme quadratique est dite positive si et seulement si, pour tout $\mathbf{x} \in \mathbb{R}^n$ non nul, on a

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} > 0 \iff \mathbf{x}^T P D P^T \mathbf{x} > 0 \iff \underbrace{(P^T \mathbf{x})^T}_{=\mathbf{x}'^T} D \underbrace{(P^T \mathbf{x})}_{\mathbf{x}'} > 0,$$

ce qui équivaut bien au fait que toutes les valeurs propres sont positives.

8. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + 3x_1y_2 + 3x_2y_1 + 6x_2y_2$$

est-elle un produit scalaire?

VRAI. Il s'agit bien d'une forme bilinéaire symétrique comme le montre la définition. On peut vérifier cela formellement en procédant de façon analogue aux questions a) et c).

9. L'application $\phi: \mathbb{R}^2 \times \mathbb{R}$ définie par

$$\phi(\mathbf{x}, \mathbf{y}) = 2x_1y_1 + 3x_1y_2 + 3x_2y_1 - 6x_2y_2$$

est-elle un produit scalaire?

FAUX. Il s'agit bien d'une forme bilinéaire, mais elle n'est pas définie positive. En effet, considérons le vecteur $\mathbf{x} = (0, 1)$. On alors

$$\phi(\mathbf{x}, \mathbf{x}) = -6 < 0.$$

Ce qui montre que ϕ n'est pas définie positive.

10. On peut associer une norme à tout produit scalaire $\langle \cdot, \cdot \rangle$.

VRAI. Cette norme ne sera rien d'autre que le carré scalaire, *i.e.* si note $\langle \cdot, \cdot \rangle$ le produit scalaire, alors la norme de sera une application $\| \cdot \|^2 = \langle \cdot, \cdot \rangle$.

11. Tout endomorphisme d'un espace euclidien est diagonalisable.

FAUX. Un espace euclidien est un espace vectoriel muni d'un produit scalaire, en revanche les endomorphismes n'ont aucune raison d'être forcément diagonalisables.

12. De toute base $\mathscr{B} = (\mathbf{e}_i)_{i=1}^n$ d'un espace euclidien E de dimension n, il est possible de construire une base orthonormale.

VRAI. C'est le processus

- 13. L'inégalité de Cauchy-Schwarz devient une égalité lorsque les deux vecteurs sont orthogonaux.
 - FAUX. Le cas d'égalité ce produit lorsque les deux vecteurs sont colinéaires.
- 14. Si une matrice P est orthogonale, alors son inverse est égale à sa transposée.
 - VRAI. Par définition, une matrice P est orthogonale si $P^TP=I_n,\ i.e.$ si $P^T=P^{-1}.$
- 15. L'application définie comme la combinaison linéaire de deux normes est une norme.
 - FAUX. Considérons l'application ϕ définie par $\|\cdot\|_2 \|\cdot\|_1$. Cette application n'est pas définie positive.
 - En effet, prenons le cas où $\mathbf{x} = 0.5$, alors

$$\phi(\mathbf{x}) = \|\mathbf{x}\|_2 - \|\mathbf{x}\|_1 = \sqrt{0.5^2} - |0.5| = 0$$

- Or $\mathbf{x} \neq \mathbf{0}$.
- 16. Une application définie comme la somme positive de deux normes est encore une norme.
 - VRAI. Il suffit de vérifier les différents points de la définition de norme pour s'en convaincre. C'est d'ailleurs la positivité qu'il manquait à la question précédente.
- 17. Toute matrice orthogonale P est inversible.
 - VRAI. C'est une conséquence du fait que pour toute matrice $P \in I_n(\mathbb{R})$, on a :

$$P^T P = I_n$$
.

2 Exercices

Exercice 2.1. Déterminer si les colonnes des matrices suivantes forment une base orthogonale de \mathbb{R}^3 :

$$A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 1 & -2 \\ 1 & 1 & 2 \end{pmatrix} \quad et \quad C = \begin{pmatrix} 2 & -2 & 1 \\ -1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Correction

Pour faire cela, il suffit de vérifier que les colonnes des différentes matrices sont deux à deux orthogonales, *i.e.* pour tout i, j, montrer que $\langle M_i, M_j \rangle = 0$, où M_i désigne la i-ème colonne de la matrice M considérée.

- Pour la matrice A, c'est bien le cas, la vérification est immédiate.
- Pour la matrice B, c'est aussi le cas après trois calculs triviaux.
- En revanche, les colonnes de la matrice C ne forment pas une base orthogonale. En effet, nous avons, par exemple, $\langle C_2, C_3 \rangle = -3 \neq 0$.

Exercice 2.2. Déterminer le signe des formes quadratiques suivantes

$$A = \begin{pmatrix} 2 & 5 & -6 \\ 5 & 6 & 3 \\ -6 & 3 & -1 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 2 & -1 \\ 3 & -1 & -2 \end{pmatrix} \quad et \quad C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Correction

Pour déterminer le signe de ces formes quadratiques, il faut étudier les valeurs propres de ces matrices.

- Pour la matrice A : on dénombre deux valeurs propres positives et une valeur propre négative, la forme quadratique n'est donc ni SDP ni SDN.
- Pour la matrice B : on dénombre à nouveau deux valeurs propres positives et une valeur propre négative, la forme quadratique n'est donc ni SDP ni SDN.
- Pour la matrice C : même constat que pour les matrices A et B précédentes.

Exercice 2.3. On se donne une droite générée par le vecteur $\mathbf{a} = (-2, 3, 4)$. Déterminer le projeté orthogonal des vecteurs suivant sur la droite vectorielle engendrée par \mathbf{a} .

1.
$$\mathbf{x} = (-2, 4, 1),$$

2.
$$\mathbf{y} = (0, 3, 0),$$

3.
$$\mathbf{z} = (-1, -3, 0.5).$$

Correction

On rappelle que la projection d'un vecteur **u** sur un vecteur **a** est donnée par

$$p_{\mathbf{a}}(\mathbf{u}) = \frac{\langle \mathbf{u}, \mathbf{a} \rangle}{\|\mathbf{a}\|_2^2} \mathbf{a},$$

où
$$\|\mathbf{a}\|_2^2 = (-2)^2 + 3^2 + 4^2 = 29$$

Il suffit d'appliquer cela aux différents vecteurs. Ce qui nous donne pour le vecteur :

1. $\mathbf{x} = (-2, 4, 1)$, nous avons

$$p_{\mathbf{a}}(\mathbf{x}) = \frac{\langle \begin{pmatrix} -2\\4\\1 \end{pmatrix}, \begin{pmatrix} -2\\3\\4 \end{pmatrix} \rangle}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix} = \frac{20}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix}.$$

2. $\mathbf{y} = (0, 3, 0)$, nous avons

$$p_{\mathbf{a}}(\mathbf{x}) = \frac{\langle \begin{pmatrix} 0\\3\\0 \end{pmatrix}, \begin{pmatrix} -2\\3\\4 \end{pmatrix} \rangle}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix} = \frac{9}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix}.$$

3. $\mathbf{z} = (-1, -3, 0.5)$, nous avons

$$p_{\mathbf{a}}(\mathbf{x}) = \frac{\langle \begin{pmatrix} -1\\3\\0.5 \end{pmatrix}, \begin{pmatrix} -2\\3\\4 \end{pmatrix} \rangle}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix} = \frac{14}{29} \begin{pmatrix} -2\\3\\4 \end{pmatrix}.$$