#### **DAT630**

# Classification and Clustering Evaluation

28/09/2016

Krisztian Balog | University of Stavanger

#### **Classification Evaluation**

# **Binary Classification**

- Confusion matrix

|                 |          | Predicted class         |                         |
|-----------------|----------|-------------------------|-------------------------|
|                 |          | Positive                | Negative                |
| Actual<br>class | Positive | True Positives<br>(TP)  | False Negatives<br>(FN) |
|                 | Negative | False Positives<br>(FP) | True Negatives<br>(TN)  |

#### **Measures**

- Accuracy
  - Fraction of correct predictions  $A = \frac{TP + TN}{TP + FP + TN + FN}$
- Precision
  - Fraction of positive records among those that are classified as positive

classified as positive 
$$P = \frac{TP}{TP + FP}$$

- Recall
  - Fraction of positive examples correctly predicted  $R = \frac{TP}{TP + FN} \label{eq:R}$

#### **Measures**

- F1-measure (or F1-score)
  - Harmonic mean between precision and recall
    - The relative contribution of precision and recall to the F1-score are equal

$$F1 = \frac{2RP}{R+P}$$

#### **Multiclass Classification**

- Measures: Precison, Recall, F1
- Two averaging methods
  - Micro-averaging
    - Equal weight to each instance
  - Macro-averaging
    - Equal weight to each category

#### **Multiclass Classification**

#### - Micro-average method

- Sum up the individual TPs, FPs, TNs, FNs and compute precision and recall
- F1-score will be the harmonic mean of precision and recall
- "Each instance is equally important"

$$P = \frac{\sum_{i=1}^{M} TP_i}{\sum_{i=1}^{M} (TP_i + FP_i)} \qquad R = \frac{\sum_{i=1}^{M} TP_i}{\sum_{i=1}^{M} (TP_i + FN_i)}$$

- M is the number of categories

#### **Multiclass Classification**

#### - Macro-average method

- Consider the confusion matrix for each class to compute the measures (precision, recall, F1-score) for the given class
- Take the average of these values to get overall (macro-averaged) precision, recall, F1-score
- "Each class is equally important"
- Class imbalance is not taken into account
  - Influenced more by the classifier's performance on rare categories

# **Example**

 Compute microand macroaveraged precision, recall, and F1-score from the following classification results

| True class | Predicted class |
|------------|-----------------|
| 0          | 0               |
| 1          | 2               |
| 2          | 1               |
| 0          | 0               |
| 2          | 1               |
| 1          | 2               |
| 1          | 0               |
| 2          | 2               |
| 1          | 2               |

#### **Confusion matrices**

| class 0 |          | Predicted |       |
|---------|----------|-----------|-------|
|         |          | 0         | not 0 |
| Actual  | 0        | 2         | 0     |
|         | not<br>0 | 1         | 6     |

| class 1 |     | Predicted |       |
|---------|-----|-----------|-------|
|         |     | 1         | not 1 |
|         | 1   | 0         | 4     |
| Actual  | not | 2         | 3     |

| class 2 |          | Predicted |       |
|---------|----------|-----------|-------|
|         |          | 2         | not 2 |
| Antural | 2        | 1         | 2     |
| Actual  | not<br>2 | 3         | 3     |

# **Micro-averaging**



$$P = \frac{3}{3+6} = \frac{1}{3}$$

$$R = \frac{3}{3+6} = \frac{1}{3}$$

$$F1 = \frac{2 \cdot \frac{1}{3} \cdot \frac{1}{3}}{\frac{1}{3} + \frac{1}{3}} = \frac{1}{3}$$

# **Macro-averaging**

| class | P               | R             | F1               |
|-------|-----------------|---------------|------------------|
| 0     | 2/3             | 1             | 4/5              |
| 1     | 0               | 0             | 0                |
| 2     | 1/4             | 1/3           | 2/7              |
| avg   | 11/36<br>=0.305 | 4/9<br>=0.444 | 38/105<br>=0.361 |

# Classification Evaluation Using scikit-learn

- See code on GitHub

# **Clustering Evaluation**

# **Types of Evaluation**

- Unsupervised
  - Measuring the goodness of a clustering structure without respect to external information ("ground truth")
- Supervised
  - Measuring how well clustering matches externally supplied class labels ("ground truth")
- Relative
  - Compares two different clusterings

# **Unsupervised Evaluation**

- Cohesion and separation
- Graph-based vs. prototype-based views

$$overall\ validity = \sum_{i=1}^K w_i \cdot validity(C_i) \\ \downarrow \\ \text{cluster weight} \\ \text{(can be set to 1)} \qquad \text{The \textit{validity}} \text{ function can be} \\ - \textit{cohesion} \text{ (higher values are better) or} \\ - \textit{separation} \text{ (lower values are better) or} \\ - \textit{some combination of them}$$

## **Graph-based view**





(a) Cohesion

(b) Separation.

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i, \mathbf{y} \in C_i} proximity(\mathbf{x}, \mathbf{y})$$
$$separation(C_i, C_j) = \sum_{\mathbf{x} \in C_i, \mathbf{y} \in C_j} proximity(\mathbf{x}, \mathbf{y})$$

Proximity can be any similarity function

#### **Prototype-base view**



hesion. (b) Separation

$$cohesion(C_i) = \sum_{\mathbf{x} \in C_i} proximity(\mathbf{x}, \mathbf{c}_i)$$
 
$$separation(C_i, C_j) = proximity(\mathbf{c}_i, \mathbf{c}_j)$$

# **Supervised Evaluation**

- We have external label information ("ground truth")
- Purity
  - Analogous to precision; the extent to which a cluster contains objects of a single class
- Inverse purity
  - Focuses on recall; rewards a clustering that gathers more elements of each class into a corresponding single cluster

## **Purity**

Purity = 
$$\sum_{i} \frac{|C_i|}{N} \max_{j} \text{Precision}(C_i, L_j)$$

- L is the reference (ground truth) clustering
- C is the generated clustering
- N is the number of documents

$$Precision(C_i, L_j) = \frac{|C_i \cap L_j|}{|C_i|}$$

## **Inverse Purity**

Inv. Purity = 
$$\sum_{i} \frac{|L_i|}{N} \max_{j} \text{Precision}(L_i, C_j)$$

- L is the reference (ground truth) clustering
- C is the generated clustering
- N is the number of documents

$$Precision(C_i, L_j) = \frac{|C_i \cap L_j|}{|C_i|}$$

# **Purity vs. Inverse Purity**

- Purity penalizes the noise in a cluster, but it does not reward grouping items from the same category together
  - By assigning each document to a separate cluster, we reach trivially a maximum purity value
- Inverse Purity rewards grouping items together, but it does not penalize mixing items from different categories
  - We can reach a maximum value for Inverse purity by making a single cluster with all documents

#### F-Measure

 More robust metric by combining the concepts of Purity and Inverse Purity

$$F = \frac{1}{0.5 \frac{1}{\text{Purity}} + 0.5 \frac{1}{\text{Inv. Purity}}}$$

#### **Relative Evaluation**

E.g., comparing two K-means clusterings in terms of SSE





376.44 SSE = 304.79