MS 221 — Homework Set (5)

(Applications of The Chain Rule)

QUESTION 1

A particle moving on a plane has Cartesian and polar coordinates at time t given by (x(t), y(t)) and $(r(t), \theta(t))$, respectively. Thus,

$$x(t) = r(t)\cos\theta(t)$$
 and $y(t) = r(t)\sin\theta(t)$ $\forall t \in \mathbf{R}$.

If the speed in Cartesian coordinates is given by $\sqrt{\dot{x}^2(t) + \dot{y}^2(t)}$ find the corresponding formula for the speed in terms of polar coordinates, that is, in terms of r, θ , \dot{r} and $\dot{\theta}$.

QUESTION 2

A disc with **centre at the origin** rotates anti-clockwise with **constant angular speed** ω revolutions/sec about the origin. An insect on this disc is crawling in a straight line (relative to the disc) towards the centre at a constant speed (relative to the disc) of α cm/sec. If the polar coordinates of the insect at time t=0 are r(0)=100 cm and $\theta(0)=0$ radians do the following:

- (a) Find the polar coordinates $(r(t), \theta(t))$ of the insect at any subsequent time t.
- (b) Use part (a) to determine the Cartesian coordinates (x(t), y(t)) of the insect at any subsequent time t.
- (c) Find the velocity and acceleration (vectors) in Cartesian coordinates of the insect at any subsequent time t.

QUESTION 3

A function $f: \mathbf{R}^2 \to \mathbf{R}: (x, y) \mapsto f(x, y)$ satisfies

$$\frac{\partial f}{\partial x}(0, 0) = 3$$
 and $\frac{\partial f}{\partial y}(0, 0) = -5$.

If in addition, f(ta, tb) = tf(a, b) for every $t \in \mathbf{R}$ and for every $(a, b) \in \mathbf{R}^2$, find $f(a, b) \ \forall \ (a, b) \in \mathbf{R}^2$.

Hint: $tf(a, b) \equiv f(ta, tb) \implies f(a, b) \equiv \frac{d}{dt}f(ta, tb).$

QUESTION 4

Express the partial derivative $\frac{\partial}{\partial x} f(u(x, y), v(x, y), w(x, y))$ in terms of the **Chain Rule**.

QUESTION 5

Throughout this question Ω will denote the set in the xy-plane given by:

$$\Omega = \{ (x, y) \in \mathbf{R}^2 \mid y > 0 \}.$$

If the functions $\xi:\Omega\to \mathbf{R}$ and $\eta:\Omega\to \mathbf{R}$ are specified by

$$\xi(x, y) = x \ln y$$
 and $\eta(x, y) = x$,

express the partial differential equation

$$x\frac{\partial u}{\partial x} - y \ln y \, \frac{\partial u}{\partial y} = u \qquad \text{on } \Omega$$

as a partial differential equation in the (ξ, η) - coordinates and, hence or otherwise, solve this partial differential equation subject to the condition that

$$u(x,e) \equiv xe^x$$
 for all $x \in \mathbf{R}$

QUESTION 6

Notation: In the case where $\omega = f(u(x, t), v(x, t))$ we will write $\frac{\partial \omega}{\partial u} := \frac{\partial f}{\partial u}(u, v)$,

$$\frac{\partial \omega}{\partial v} := \frac{\partial f}{\partial v}(u, v), \qquad \frac{\partial \omega}{\partial x} := \frac{\partial f}{\partial x}(u(x, t), v(x, t)), \qquad \frac{\partial \omega}{\partial t} := \frac{\partial f}{\partial t}(u(x, t), v(x, t))$$

and similarly for higher order derivatives. Now, if

$$u(x, t) = x + ct$$
 and $v(x, t) = x - ct$,

where c is a non-zero constant, show that

$$\frac{\partial^2 \omega}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \omega}{\partial t^2} \equiv 4 \frac{\partial^2 \omega}{\partial u \partial v}$$

QUESTION 7

Find all solutions of the (partial differential) equation $\frac{\partial^2 \omega}{\partial u \partial v} \equiv 0$.

Hint: If a function h(r, s) satisfies $\frac{\partial h}{\partial r} \equiv 0$, then h is constant in r. That is, h is a function of s only.

QUESTION 8

Use Questions 6 and 7 above to show that **every solution** ω of the 1-dimensional wave equation

$$\frac{\partial^2 \omega}{\partial x^2} \equiv \frac{1}{c^2} \frac{\partial^2 \omega}{\partial t^2}$$

is of the form $\omega = \varphi(x+ct) + \psi(x-ct)$ where φ and ψ are arbitrary smooth functions