

Implementieren eines Energiespeichersystems eMule 7.0

Studienarbeit T3_3100

Studiengang Elektrotechnik

Studienrichtung Fahrzeugelektronik

Duale Hochschule Baden-Württemberg Ravensburg, Campus Friedrichshafen

von

Philipp Bellmann, Rafael Heuschkel

Abgabedatum: 13. Januar 2025

Bearbeitungszeitraum: 01.10.2024-13. Januar 2025

Matrikelnummern: 6889044, 4002442

Kurs: TFE22-1

Betreuerin / Betreuer: Khamis Jakob

Erklärung

gemäß Ziffer 1.1.14 der Anlage 1 zu §§ 3, 4 und 5 der Studien- und Prüfungsordnung für die Bachelorstudiengänge im Studienbereich Technik der Dualen Hochschule Baden-Württemberg vom 29.09.2017 in der Fassung vom 24.07.2023.

Ich versichere hiermit, dass ich meine Studienarbeit T3_3100 mit dem Thema:

Implementieren eines Energiespeichersystems eMule 7.0

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung übereinstimmt.

P. Herschker

München, den 13. Januar 2025

Philipp Bellmann, Rafael Heuschkel

Kurzfassung

Diese Arbeit befasste sich mit der Erstellung und Überarbeitung von Stromlaufplänen für ein Fahrzeug, das von einem konventionellen Verbrennungsmotor auf einen Elektroantrieb umgerüstet wurde, konkret dem Kawasaki Mule 610. Im Rahmen der Implementierung eines Energiespeichersystems in das umgebaute Fahrzeugmodell "Kawasaki eMule" sollten die folgenden Ziele erreicht werden: die Erstellung von aktuellen Stromlauf- und Bestückungsplänen für die elektrisch/elektronischen Fahrzeugschaltkreise, eine Standardisierung und Integration der Pläne des Systems sowie seiner Einzelkomponenten und die Entwicklung einer Installationsanleitung für Autodesk Fusion 360, die auf verschiedenen Betriebssystemen anwendbar war. Der erste Schritt umfasste die Erstellung der Installationsanleitung. Angesichts der Tatsache, dass die Endgeräte der Teammitglieder mit macOS und die Laborgeräte mit Windows betrieben wurden, wurden beide Varianten in der Anleitung berücksichtigt. Im darauf folgenden Schritt erfolgte die Erstellung und Vereinheitlichung der Stromlaufpläne in der Softwareumgebung. In Phasen, in denen keine unmittelbare Arbeitsbelastung vorlag, wurde die Unterstützung anderer Teams angeboten. Insgesamt wurden fünf Stromlaufpläne gemäß der Norm DIN EN(Deutsche Industrienorm, Europäische Norm) 60617 erstellt. Im Zuge der Erstellung dieser Pläne wurde eine eigene Bibliothek auf Basis der DIN EN 60617 entwickelt und eine Struktur zur effizienten Erweiterung und Integration der Bibliothek geschaffen. Zudem wurde eine detaillierte Anleitung zur Installation der CAD-Software Autodesk Fusion 360 für die Betriebssysteme macOS und Windows ausgearbeitet. Neben den spezifischen Aufgaben des eigenen Teams konnte auch die Unterstützung anderer Projektteams bei verschiedenen Aufgabenstellungen erfolgen.

Abstract

This study focused on the development and revision of circuit diagrams for a vehicle that was converted from a conventional internal combustion engine to an electric drive, specifically the Kawasaki Mule 610. As part of the integration of an energy storage system into the modified vehicle model "Kawasaki eMule," the following objectives were pursued: the creation of updated circuit and component diagrams for the electrical and electronic vehicle systems, the standardization and integration of the system's plans and its individual components, and the formulation of an installation manual for Autodesk Fusion 360, applicable across different operating systems.

The initial phase involved the preparation of the installation manual, as team members needed to download the software and perform installations on the laboratory devices. Given that the team members' devices operated on macOS and the laboratory devices on Windows, both platforms were addressed within the manual. The subsequent phase involved the creation and unification of circuit diagrams within the software environment. During periods of reduced workload, assistance was provided to other teams as needed.

In total, five circuit diagrams were developed in accordance with the DIN EN 60617 standard. As part of the diagram development process, a custom library based on the DIN EN 60617 standard was established, along with a structure designed for efficient expansion and integration of the library. Additionally, a comprehensive installation guide for Autodesk Fusion 360 was compiled for both macOS and Windows operating systems. In addition to fulfilling the team's specific tasks, support was also extended to other project teams in relation to various tasks.

Inhaltsverzeichnis

1	Einl	Einleitung				
2	Grundlagen					
	2.1	Geschichte der Elektrofahrzeuge	7			
	2.2	Lithium-Ionen-Batterien				
	2.3	Normen zur Zeichnung von Schaltzeichen	13			
	2.4	Autodesk Fusion 360	15			
3	Dok	umentation	17			
	3.1	Installationsanleitung Fusion 360	18			
	3.2	Stromlaufpläne	22			
		3.2.1 Stromlaufplan Battery Circuit	22			
		3.2.2 Stromlaufplan Motor Controller	25			
		3.2.3 Stromlaufplan LV-Onboard-Netz	28			
		3.2.4 Stromlaufplan Charger Temperature Control	31			
		3.2.5 Stromlaufplan HV-Onboard-Network	34			
	3.3	Legende der Schaltzeichen	37			
4	Krit	sche Reflektion und Ausblick	39			
Li	terat	rverzeichnis	43			
Ve	erzeio	nnis verwendeter Formelzeichen und Abkürzungen	47			
Αŀ	bild	ngsverzeichnis	49			

In halts verzeichn is

Tabellenverzeichnis	51
A Nutzung von Künstliche Intelligenz basierten Werkzeugen	53
Sachwortverzeichnis	56

1 Einleitung

Der globale Wandel hin zu nachhaltigeren Mobilitätslösungen ist in vollem Gange. Angesichts steigender Umweltauflagen und wachsendem Bewusstsein für die negativen Auswirkungen fossiler Brennstoffe vollzieht sich ein paradigmatischer Wechsel von konventionellen Verbrennungsmotoren hin zu Elektroantrieben. Dieser technologische Umbruch betrifft nicht nur den privaten Automobilsektor, sondern auch Nutzfahrzeuge und Spezialfahrzeuge, die zunehmend auf elektrische Antriebe umgestellt werden. [Pis23] Im Rahmen eines universitären Projekts haben wir ein Kawasaki Mule 610 Fahrzeug erfolgreich von einem Verbrennungsmotor auf einen Elektroantrieb umgerüstet. Dieser Umbau stellte einen ersten Meilenstein dar, der es uns ermöglichte, die Vorteile elektrischer Mobilität in einer praktischen Anwendung zu demonstrieren. Nun soll das Projekt weiterentwickelt werden, um durch gezielte Verbesserungen – wie den Einsatz einer leistungsfähigeren Batterie – die Effizienz und Reichweite des Fahrzeugs zu optimieren und neue Standards in der elektrischen Antriebstechnologie zu setzen.

Problemstellung

Das Kawasaki Mule 610 wurde durch unsere Vorgängerjahrgänge von einen auslieferungsgemäß verbauten Verbrennungsmotor auf einen Elektromotorantrieb umgebaut. Das Fahrzeug wurde von "Kawasaki Mule 610" in "Kawasaki eMule" umgetauft. Die Dokumentation des Umbaus wurde in diesem Zuge nur notdürftig bis garnicht und ohne jegliche Vereinheitlichung vorgenommen. Die vorhandene Dokumentation liegt für jeden Stromlaufplan nach einer anderen Norm durchgeführt vor. Legenden zu den genutzten Normen sind nicht vorhanden. Die Aktualität der vorliegenden Dokumentation muss durch Abgleiche mit dem Verbaustand des Fahrzeugs und Absprache mit dem Dozenten Herr Khamis Jakob für jeden Stromlaufplan einzeln überprüft werden.

Im folgenden werden lediglich die Aspekte der Problemstellung für die Aufgabe der Erstellung von Stromlaufplänen und Bestückungsplänen betrachtet. Das erste Problem ergibt sich in der Auswahl eines geeigneten Programmes zum Erstellen der Dokumentation. Die Schwierigkeit besteht hierbei darin, ein Programm zu finden, welches allen gestellten Anforderungen entspricht. Diese sind:

- Das Programm muss möglichst kostengünstig sein, da nur ein begrenztes Budget zur Verfügung steht.
- Das Programm muss sowohl für die Betriebssysteme Windows als auch macOS ausgelegt sein, um sicherzustellen, dass jedes Teammitglied optimal arbeiten kann.
- Das Programm muss sowohl in der Lage sein Stromlaufpläne als auch Bestückungspläne erstellen zu können, da auf Grund des beschränkten Budgets nicht mehrere Programmlizenzen finanziert werden können.
- Das Programm muss die ausgewählte Norm unterstützen, oder die Möglichkeit bieten eigene Bibliotheken mit Bauteilen zu erstellen.

Sollte das Programm die ausgewählte Norm nicht unterstützen und diese muss als eigene Bibliothek angelgt werden, so ist dies mit enormem zeitlichem Mehraufwand verbunden. Dieser Mehraufwand kann eine Gefahr für die angesetzten Zeitziele des Projektes darstellen. Ein weiteres Problem stellt der Umstand, dass noch keins der Teammitglieder sowohls jemals mit Computer-Aided Design (CAD) Software, als auch an einem Projekt in diesem Ausmaß ohne saubere Dokumentation gearbeitet hat.

Zielsetzung

Für das Team, welches für die "Erstellung der Stromlauf- und Bestückugspläne des Fahrzeugs" zuständig ist werden folgende Ziele für den ersten Arbeitszeitraum im Wintersemester 2024 definiert:

- Erstellung von aktuellen Stromlauf und Bestückungsplänen der elektrisch/elektronischen Fahrzeugschaltkreise
- Vereinheitlichung und Vergemeinschaftung der Pläne des Systems und dessen Einzelkomponenten
- Erstellung einer Installationsanleitung für die ausgewählte CAD-Software für verschiedene Betriebssysteme

Geplante Vorgehensweise

Um die Ziele bestmöglich umsetzen zu können muss das eMule-Team in verschiedene Kleingruppen aufgeteilt werden. So können die verschiedenen Teilaufgaben möglichst effizient bearbeiten werden. Im ersten Schritt muss sich das gesamte eMule-Team einen Überblick über das Fahrzeug und dessen Zustand verschafften. Dieser Überblick umfasst sowohl den mechanischen sowie elektrisch/elektronischen Aufbauzustand des Gesamtfahrzeugs und der einzelnen Komponenten. Im nächsten Schritt wählt jedes Teilteam sein eigenes weiteres Vorgehen. In dieser Arbeit wird nur das Vorgehen des Teams zur "Erstellung der Stromlauf- und Bestückugspläne des Fahrzeugs" näher betrachtet.

Im ersten Schritt wird eine passende CAD-Software ausgewählt. Es wird eine Online-Recherche zu möglichen Optionen durchgeführt. Diese werden dann auf die folgenden Kriterien geprüft:

- Preis,
- Systemkompatibilität,
- Funktionsangebot,
- Implementierungsmöglichkeiten.

Nach der Prüfung sollten zwei bis drei Programme in der näheren Auswahl stehen, welche dann nochmals gegeneinander verglichen werden, um die bestmögliche Option auszuwählen.

Ist die Auswahl der Software getroffen, soll die Erstellung der Installationsanleitung abgearbeitet werden. Zeitgleich soll die Software sowohl auf den Laborendgeräten als auch auf den für die Nutzung geplanten privaten Endgeräten installiert werden.

Im nächsten Schritt soll eine Einarbeitung der Teammitglieder in Eigenverantwortung durchgeführt werden. Dieser Arbeitsschritt soll sicherstellen, dass bei der

späteren Arbeit mit dem Programm möglichst wenig Zeit verloren wird. Im Zuge der Einarbeitung soll auch die Projektumgebung zur späteren Vergemeinschaftung angelegt werden. Diesen dient ebenfalls als Digitale Datenbank des Projekts.

Der erste Schritt zur eigentlichen Erstellung der Pläne besteht darin, die vorhandenen Unterlagen einzusehen. Hier wird überprüft, welche Teile der Aufzeichnungen dem aktuellen Aufbauzustand entsprechen. Die Teile der Aufzeichnungen, welche nicht dem aktuellen Stand entsprechen, müssen verworfen werden. Auf Basis der vorhandenen Unterlagen und des Aufbauzustandes des Fahrzeugs muss eine neue, umfassende Beschreibung des Gesamtsystems erstellt werden. Um die Unterlagen einheitlich zu gestalten, muss eine Norm festgelegt werden, nach der die neue Beschreibung erstellt wird.

Zur Vergemeinschaftlichung der einzelnen Pläne werden diese nochmals auf Übersichtlichkeit überprüft und gegebenenfalls angepasst sowie in ein DIN A3 Format mit Titelblock und Legende übertragen.

2 Grundlagen

Das folgende Kapitel fasst die für die vorliegende Arbeit benötigten theoretischen Grundlagen zusammen. Hierzu wird in Kapitel 2.1 die Geschichte der Elektrofahrzeuge näher betrachtet. Anschließend werden in Kapitel 2.2 auf Lithium-Ionen-Batterien, in Kapitel 2.3 auf Normen zur Zeichnung von Schaltzeichen eingegangen und abschließend in Kapitel 2.4 das zur Erstellung der Dokumentation genutzte Tool Autodesk Fusion 360 durchleuchtet.

2.1 Geschichte der Elektrofahrzeuge

Die Geschichte der Elektrofahrzeuge ist ein faszinierendes Kapitel in der Entwicklung der Mobilität. Obwohl Elektrofahrzeuge heute als Zukunftstechnologie gelten, reichen ihre Ursprünge weit zurück und sind eng mit den Anfängen des Automobilbaus verknüpft.

Die Anfänge im 19. Jahrhundert

Bereits in der ersten Hälfte des 19. Jahrhunderts wurden die Grundlagen für Elektrofahrzeuge geschaffen. Der Schotte Robert Anderson baute in den 1830er Jahren eines der ersten elektrisch betriebenen Fahrzeuge. Es handelte sich um ein einfaches Fahrzeug mit einer nicht wiederaufladbaren Batterie. In den folgenden Jahrzehnten

wurden Elektrofahrzeuge durch die Entwicklung von wiederaufladbaren Batterien und Elektromotoren immer praktikabler. [Vat25] Einen wichtigen Beitrag leistete der Franzose Gaston Planté, der 1859 den ersten funktionsfähigen Bleiakkumulator entwickelte. Diese wiederaufladbare Batterie ermöglichte den kontinuierlichen Betrieb von Elektromotoren und legte den Grundstein für die spätere Entwicklung von Elektrofahrzeugen. [Ind25]

Die Blütezeit der Elektrofahrzeuge um 1900

Um die Jahrhundertwende erfreuten sich Elektrofahrzeuge großer Beliebtheit. Sie waren leiser, sauberer und einfacher zu bedienen als die damals üblichen Fahrzeuge mit Dampf- oder Verbrennungsmotoren. Vor allem in Städten wurden Elektroautos aufgrund ihrer geringen Reichweite und einfachen Handhabung bevorzugt eingesetzt. [Ene25b] Marken wie Baker Electric und Detroit Electric prägten diese Ära. [Ein25]

Elektrofahrzeuge hatten zu dieser Zeit bedeutende Marktvorteile. Während Verbrennungsmotoren oft manuell gekurbelt werden mussten und unangenehm laut waren, konnten Elektrofahrzeuge mit einem einfachen Schalter gestartet werden. [Blo25] Die Reichweiten von etwa 50 bis 100 Kilometern pro Batterieladung reichten für den städtischen Einsatz vollkommen aus. [ADA25]

Der Rückgang durch den Verbrennungsmotor

Die Dominanz der Elektrofahrzeuge begann jedoch im ersten Drittel des 20. Jahrhunderts zu schwinden. Wesentliche Faktoren dafür waren:

- Die Erfindung des elektrischen Anlassers durch Charles Kettering im Jahr 1912, der die Handkurbel bei Verbrennungsmotoren überflüssig machte. [Gre25]
- Die zunehmende Verfügbarkeit von billigem Erdöl, das Kraftstoffe für Verbrennungsmotoren erschwinglich machte. [gün25]
- Die Massenproduktion von Fahrzeugen mit Verbrennungsmotor durch Henry Ford, die die Kosten für Autos drastisch senkte. [alp25]
- Bis in die 1930er Jahre waren Elektrofahrzeuge weitgehend vom Markt verdrängt. [alp25]

Wiederbelebung im 20. Jahrhundert

Die Energiekrisen der 1970er Jahre und das wachsende Umweltbewusstsein führten zu einem erneuten Interesse an Elektrofahrzeugen. [Wis25] Automobilhersteller experimentierten mit Prototypen, um Alternativen zu fossilen Brennstoffen zu entwickeln. [Ene25a] In dieser Phase entstanden Fahrzeuge wie der General Motors EV1, der 1996 eingeführt wurde. [Ins25a] Trotz seiner technischen Fortschritte wurde die Produktion jedoch nach wenigen Jahren eingestellt. [Ene25a]

Die Renaissance der Elektrofahrzeuge im 21. Jahrhundert

Der Beginn des 21. Jahrhunderts markierte eine neue Ära für Elektrofahrzeuge. Fortschritte in der Batterietechnologie, insbesondere die Entwicklung von Lithium-Ionen-Akkus, machten Elektroautos leistungsfähiger und alltagstauglicher. [Lab25] Gleichzeitig führten Umweltauflagen und staatliche Förderprogramme zu einer verstärkten Nachfrage.

Ein entscheidender Wendepunkt war die Gründung von Tesla Motors im Jahr 2003. Mit dem Tesla Roadster, der 2008 auf den Markt kam, bewies das Unternehmen, dass Elektrofahrzeuge nicht nur umweltfreundlich, sondern auch leistungsstark und attraktiv sein können. Dies ebnete den Weg für weitere Modelle wie den Nissan Leaf, den BMW i3 und die elektrische Version des Volkswagen Golf. [Ins25b]

Herausforderungen und Perspektiven

Trotz der Erfolge stehen Elektrofahrzeuge weiterhin vor Herausforderungen. Die Infrastruktur für Ladestationen muss ausgebaut werden, um eine flächendeckende Versorgung zu gewährleisten. [Sta25] Zudem sind die Produktionskosten von Batterien nach wie vor hoch, obwohl sie durch Skaleneffekte und technologische Fortschritte stetig sinken. [Pro25]

Die Perspektiven für Elektrofahrzeuge sind dennoch vielversprechend. Die fortschreitende Entwicklung von Feststoffbatterien und die Integration erneuerbarer Energien in die Stromerzeugung könnten die Elektromobilität nachhaltig vorantreiben. Politische Initiativen wie das Verbot von Verbrennungsmotoren in einigen Ländern ab 2035 unterstreichen den globalen Wandel hin zu emissionsfreien Fahrzeugen. [ISI25]

2.2 Lithium-Ionen-Batterien

Lithium-Ionen-Batterien werden aufgrund ihrer kompakten Bauweise bereits seit Jahren in der Computertechnik eingesetzt. Ihr Anwendungsbereich erstreckt sich dabei von Smartphones bis hin zu Laptops. Angesichts des bevorstehenden Verbots von Blei in Fahrzeugen gewinnt ihr Einsatz auch im Automobilsektor zunehmend an Bedeutung und wird perspektivisch unverzichtbar.

Eine Lithium-Ionen-Batterie mit einer Nennspannung von X Volt besteht aus in Reihe geschalteten Zellen, wodurch sich die Zellspannungen addieren, während die Gesamtkapazität durch die Kapazität der schwächsten Zelle begrenzt bleibt. Für größere Kapazitätsanforderungen werden Zellen parallel geschaltet, wodurch sich die Kapazitäten der einzelnen Zellen addieren, während die Spannung unverändert bleibt. Die Bewertung einer solchen Batterie erfolgt klassischerweise anhand ihrer nominalen Kapazität, der gespeicherten elektrischen Energie und ihrer Leistung.

Abbildung 2.1: Aufbau einer Lithium-Ionen-Zelle [- D25]

Eine einzelne Lithium-Ionen-Zelle (siehe Abbildung 2.1) besteht grundlegend aus einer Anode, einer Kathode, einem Separator, Ableitern und einem Elektrolyten. Der positive Bereich der Zelle befindet sich auf der Seite der Anode, die aus einem Ableiter besteht, der mit einer Schicht aus Graphit, also Kohlenstoff, beschichtet ist. Als Material für den Ableiter wird üblicherweise Kupfer, seltener auch Nickel, verwendet. Die Kathode hingegen bildet das negative Element der Zelle und besteht aus einem Aluminium-Ableiter, der mit Materialien wie Lithium-Cobalt-Oxid, Lithium-Mangan-Oxid oder Lithium-Eisen-Phosphat beschichtet ist. Der Zwischenraum zwischen den beiden Elektroden ist mit einem flüssigen Elektrolyten gefüllt, der den Ionentransport zwischen den Elektroden ermöglicht. Dabei wird eine möglichst hohe Leitfähigkeit sichergestellt, um den Betrieb der Zelle in einem Temperaturbereich von -40 °C bis +80 °C zu gewährleisten. [Sie15] Ein Elektrolyt ist im Wesentlichen eine Flüssigkeit, die mit Leitsalzen angereichert ist, um den Ionentransport zu ermöglichen. Darüber hinaus muss das Elektrolyt eine hohe Stabilität aufweisen, um mehreren tausend Lade- und Entladezyklen standzuhalten. [Kor13, S.61f.] Der Separator bildet eine Trennschicht innerhalb des Elektrolyten zwischen den Elektroden einer Lithium-Ionen-Zelle. Er besteht in der Regel aus einer Membran oder einem Vliesstoff aus Materialien wie Glasfaser oder Kunststoffen und weist eine Porosität von etwa 40 % auf. Seine besondere Eigenschaft ist die selektive Durchlässigkeit für Ionen, die für die Umwandlung von chemischer in elektrische Energie unerlässlich sind. Elektronen hingegen werden durch den Separator blockiert, um sicherzustellen, dass sie über externe Leitungen zu den Verbrauchern, wie beispielsweise einem Steuergerät, transportiert werden können. Nach ihrer Nutzung kehren die Elektronen über den externen Stromkreis in die Zelle zurück, wo sie auf die gegenüberliegende Seite zu den Ionen gelangen. [Kor13, S. 80] Der Separator spielt eine entscheidende Rolle bei der Vermeidung

[Kor13, S. 80] Der Separator spielt eine entscheidende Rolle bei der Vermeidung interner Kurzschlüsse, die ohne ihn auftreten würden. Zusätzlich fördert er den Gasaustausch, indem er das Elektrolyt aufsaugt. Die physikalischen Eigenschaften des Separators, wie seine Dicke und Porosität, beeinflussen maßgeblich den Innenwiderstand der Zelle und tragen somit zur Gesamtleistung bei. [Kor13, S. 80] Beim Laden einer Lithium-Ionen-Batterie fungiert die positive Elektrode als Anode, während sie beim Entladen als Kathode dient. Der Ladevorgang erfolgt üblicherweise nach dem sogenannten CC-CV-Verfahren (Constant Current - Con-

stant Voltage). Dabei wird zunächst ein konstanter Strom (Constant Current, CC) angelegt, bis die Batterie eine festgelegte Spannung erreicht. Anschließend wird die Spannung konstant gehalten (Constant Voltage, CV), wobei der Stromfluss progressiv abnimmt. Die Beendigung des Ladevorgangs erfolgt in der Regel durch eine vorgegebene Zeitbegrenzung oder das Erreichen einer definierten Stromschwelle. [Kor13, S. 15] Lithium-Ionen-Akkumulatoren sind stark temperaturabhängig, da bei sehr niedrigen Temperaturen der Innenwiderstand deutlich ansteigt. Dies ist auf die verlangsamten chemischen Reaktionen innerhalb der Zelle zurückzuführen. Darüber hinaus ist es essenziell, eine Überladung der Batterie zu vermeiden, da dies zu sogenannten Zerfallsreaktionen führen kann. Die Intensität dieser Reaktionen variiert je nach den verwendeten Materialien der Zellkomponenten und kann die Lebensdauer sowie die Sicherheit der Batterie erheblich beeinträchtigen. [Kor13, S. 15f.]

2.3 Normen zur Zeichnung von Schaltzeichen

Entstehung und Bedeutung von Normen

Normen haben ihren Ursprung in der industriellen Revolution, als der Bedarf an standardisierten Verfahren und Produkten exponentiell anstieg. Unterschiedliche Maße, Zeichnungen oder Bezeichnungen führten zu Missverständnissen, Ineffizienzen und Fehlern in der Fertigung und Kommunikation. Um diesem Chaos entgegenzuwirken, wurden Normen geschaffen, die als verbindliche Regelwerke dienen.

Normen ermöglichen eine einheitliche Sprache zwischen Ingenieuren, Herstellern und Anwendern. Sie sichern die Kompatibilität von Bauteilen, verbessern die Qualität und fördern den internationalen Handel. Im Kontext technischer Zeichnungen – insbesondere von Schaltzeichen – gewährleisten Normen, dass technische Pläne weltweit eindeutig verstanden werden können, unabhängig von Sprache oder regionalen Besonderheiten.

Die bekanntesten Normen für Schaltzeichen

Drei der bekanntesten und am häufigsten verwendeten Normen für Schaltzeichen sind:

- **DIN-Normen** (**Deutschland**): Diese Normen, herausgegeben vom Deutschen Institut für Normung, sind insbesondere im deutschsprachigen Raum verbreitet. Sie umfassen eine breite Palette von Standards, darunter auch solche für elektrische, hydraulische und pneumatische Schaltzeichen.
- IEC-Normen (International): Die International Electrotechnical Commission (IEC) ist für die Entwicklung global gültiger Standards verantwortlich. Die IEC 60617-Serie beispielsweise definiert Symbole für elektrotechnische Anlagen und Komponenten.
- ANSI-Normen (USA): Das American National Standards Institute (AN-SI) ist die dominierende Normierungsorganisation in den USA. ANSI-Zeichnungen sind häufig in nordamerikanischen Projekten anzutreffen.

Die Wahl der Norm hängt von der Region und dem Anwendungsfall ab. Während europäische Projekte häufig auf DIN- oder IEC-Normen basieren, dominieren ANSI-Normen in den USA.

Die DIN-Norm für Schaltzeichen im Detail

Die DIN-Normen sind in Deutschland der zentrale Standard für die Erstellung technischer Zeichnungen und Schaltpläne. Besonders relevant ist die Norm DIN EN 60617, die elektrische Schaltzeichen beschreibt. Diese Norm wurde in Zusammenarbeit mit der IEC entwickelt, was die internationale Anschlussfähigkeit erleichtert.

Die DIN EN 60617 regelt detailliert:

- Die Darstellung von Bauelementen: Elektronische Bauteile wie Widerstände, Kondensatoren oder Schalter haben klar definierte Symbole.
- Das Layout von Schaltplänen: Vorgaben für Linienführung, Anschlussstellen und Abstände zwischen Symbolen sorgen für Übersichtlichkeit.
- Verbindungsleitungen: Die Darstellung von Leitungen und Kreuzungen vermeidet Missverständnisse, beispielsweise durch eindeutige Markierungen bei Verbindungen.

Ein zentrales Ziel der DIN-Norm ist es, Komplexität zu reduzieren und eine intuitive Lesbarkeit zu fördern. Zusätzlich berücksichtigt die Norm auch neuere Technologien und Entwicklungen, wodurch sie immer wieder aktualisiert wird.

Durch die Einhaltung der DIN-Norm können Ingenieure sicherstellen, dass ihre Schaltpläne sowohl in der eigenen Organisation als auch international korrekt interpretiert werden. Normen sind daher nicht nur ein Werkzeug der Standardisierung, sondern auch ein Mittel zur Qualitätssteigerung und zur Vereinfachung technischer Prozesse.

2.4 Autodesk Fusion 360

Autodesk Fusion 360 ist eine integrierte Plattform für computergestütztes Design (CAD), Fertigung (Computer-Aided Engineering, kurz CAM) und technische Analyse (Computer-Aided Manufacturing, kurz CAE), die als Cloud-basierte Lösung entwickelt wurde. Sie erlaubt es, mechanische und elektronische Designprozesse zu vereinen, und bietet damit Ingenieuren, Designern und Entwicklern eine zentrale Plattform für die Produktentwicklung. Im Folgenden wird zunächst die Unternehmensgeschichte von Autodesk als Entwickler dieser Software beleuchtet, bevor die

Kernfunktionen und speziellen Funktionen zur Erstellung elektronischer Schaltpläne detailliert werden.

Historie und Entwicklung

Autodesk Incorporated (Inc.) wurde 1982 von John Walker und einer Gruppe von Programmierern gegründet und spezialisierte sich schnell auf Softwarelösungen für Architektur, Ingenieurwesen und digitale Medien. [Wik24b] Die Veröffentlichung von AutoCAD im Jahr 1982 setzte einen wichtigen Meilenstein für die computergestützte Konstruktion und wurde zur führenden CAD-Software für Architekten und Ingenieure weltweit. [Wik24a]

Mit dem Aufkommen neuer Anforderungen in der Fertigungsindustrie und der Integration von Elektronik in mechanische Systeme begann Autodesk, eine neue Art von Software zu entwickeln. Ziel war es, die Mechanik- und Elektronikentwicklung auf einer Plattform zu vereinen und kollaboratives, Cloud-basiertes Arbeiten zu ermöglichen. Dies führte zur Einführung von Fusion 360 im Jahr 2013. [con24] Durch die Integration traditioneller CAD/CAM/CAE-Funktionen und die cloudbasierte Zusammenarbeit wurde Fusion 360 zu einem beliebten Werkzeug in der Produktentwicklung und verhalf Autodesk zu einer neuen Marktposition im Bereich der digitalen Fertigung.

3 Dokumentation

Um die bestmögliche Dokumentation des Systemaufbaus sicherstellen zu können, dürfen die Vorbereitungen, auf die Aufgabe, nicht unterschätzt werden. Diese lassen sich in zwei große Teile aufgeteilen. Der wichtigere von beiden Schritten ist die sorgfältige Auswahl eines passenden Tools zur Erstellung der Dokumentation. Aspekte wie Benutzerfreundlichkeit, Funktionen die erfüllt werden, Betriebssystemkompatibilitäten und Kosten spielen hier eine große Rolle. Um diese Auswahl mit genügend Sorgfalt zu treffen wird folgendes Vorgehen angewandt:

Es werden verschiedene CAD-Softwareprogramm recherchiert und evaluiert. Die Funktionen stehen hier an erster Stelle. Das Programm muss in der Lage sein, Stromlaufpläne und Bestückungspläne erstellen zu können. An nächster Stelle stehen die Kosten, die für das Programm abgerufen werden. Da das Projekt ein begrenztes Budget hat sollen diese möglichst gering gehalten werden. Wichtig zu beachten ist hierbei jedoch, dass die Kosten im Verhältnis zur gebotenen Leistung des Programms stehen müssen. Die Programme Autodesk Fusion 360 und EPlan sind jeweils sehr vielversprechend. Die Nutzerfreundlichkeit ist in beiden Programmen gleichermaßen gegen. Entschieden wird sich für Autodesk Fusion 360, da EPlan über keine macOS kompatibilität verfügt.

Im nächsten Schritt der Vorbereitung muss eine tiefgreifende und umfassende Einarbeitung in das Programm durchgeführt werden. Hier wird ein besonderes Augenmerk auf die Aspekte Stromlaufplanerstellung, Bestückungsplanerstellung, Bibliothekerstellung und die dazugehörige Erstellung neuer Bauteile sowie die Programm-Projekt-Struktur gelegt.

3.1 Installationsanleitung Fusion 360

Anleitung zur Erstellung eines Studentenaccounts und zum Herunterladen von Fusion 360 Electronics.

Erstellung eines Autodesk-Studentenaccounts

Zur Nutzung von Fusion 360 Electronics ist die Erstellung eines Autodesk-Studentenaccounts erforderlich. Dies ermöglicht den kostenlosen Zugriff auf die Software.

Registrierung

- Zugriff auf die Registrierungsseite: Autodesk Registrierungsseite.
- Ausfüllen des Formulars mit den notwendigen Informationen:
 - Vor- und Nachname
 - Gültige E-Mail-Adresse
 - Passwort entsprechend den Sicherheitsrichtlinien

Bestätigung der E-Mail-Adresse

- Nach dem Absenden des Formulars wird eine E-Mail zur Bestätigung empfangen.
- Öffnen der E-Mail und Klicken auf den Bestätigungslink zur Verifizierung der Adresse.

Vervollständigung der Profilinformationen

- Anmeldung im Autodesk-Konto.
- Angabe weiterer Informationen wie Institution, Studienrichtung und Studienjahr zur Bestätigung des Studentenstatus.

Verifizierung des Studentenstatus

- Hochladen eines Dokuments, das die Immatrikulation belegt (beispielsweise eine Studienbescheinigung).
- Autodesk prüft die Dokumente innerhalb weniger Tage und sendet eine Bestätigung per E-Mail.

Herunterladen und Installieren von Fusion 360 Electronics

Zugriff auf den Download-Bereich

- Nach erfolgreicher Verifizierung des Accounts erfolgt die Anmeldung und Navigation zur Autodesk Education Community.
- Auswahl von Fusion 360 aus der Liste der verfügbaren Software.

Download und Installationsprozess unterscheiden sich für verschiedene Betriebssysteme. im folgenden wird auf die Unterschiede von Windows und macOS eingegangen.

Windows

- Beachten Sie bei der Auswahl der Downloaddatei die Unterschiede zwischen den Softwareversionen für die verschiedenen Windows-Betriebssysteme. Diese unterscheiden sich in der Versionsnummer (beispielsweise "Windows 11") und in den Bit-Versionen (32- und 64-Bit).
- Schritte zur Identifikation der Windows-Version:
 - 1. Drücke die Tastenkombination Windows-Taste + I, um die Einstellungen zu öffnen.
 - 2. Gehe zu System \rightarrow Info.
 - 3. Unter Windows-Spezifikationen findest du die genaue Version und Edition von Windows (beispielsweise "Windows 11 Pro", "Version 22H2").
- Schritte zur Identifikation der Bit-Version:
 - 1. Drücke die Tastenkombination Windows-Taste + I, um die Einstellungen zu öffnen.
 - 2. Gehe zu System \rightarrow Info.
 - 3. Unter Gerätespezifikationen \rightarrow Systemtyp steht beispielsweise "64-Bit-Betriebssystem".
- Klicken auf "Jetzt herunterladen" und Befolgen der Anweisungen auf dem Bildschirm.
- Nach Abschluss des Downloads Öffnen der Installationsdatei und Befolgen der Installationsanweisungen.

macOS

- Beachten Sie bei der Auswahl der Downloaddatei die Unterschiede zwischen der Softwareversion für Betriebssysteme mit Apple Silicon Prozessor und Intel Prozessor.
- Schritte zur Identifikation des verbauten Prozessors:
 - 1. Klicke oben links auf das Apple-Symbol.
 - 2. Wähle "Über diesen Mac".
 - 3. Schaue im Fenster, das sich öffnet:

Wenn dort "Chip" steht, gefolgt von beispielsweise "Apple M1" oder "Apple M2", ist ein Apple Silicon Prozessor verbaut.

Wenn dort "Prozessor" steht, gefolgt von einem Intel-Prozessor (beispielsweise "Intel Core i5"), ist ein Intel-Prozessor in dem Mac verbaut.

- Klicken auf "Jetzt herunterladen" und Befolgen der Anweisungen auf dem Bildschirm.
- Nach Abschluss des Downloads Öffnen der Installationsdatei und Befolgen der Installationsanweisungen.

Aktivierung der Education-Lizenz

- Beim ersten Start von Fusion 360 erfolgt die Eingabe der Anmeldeinformationen.
- Die Software erkennt automatisch den Studentenstatus und aktiviert die entsprechende Lizenz.

3.2 Stromlaufpläne

3.2.1 Stromlaufplan Battery Circuit

Für die Erstellung des Battery Circuit (siehe Abbildung 3.1) Stromlaufplans nach festgelegter Norm und aktuellem Verbaustand wird der vorliegende Plan zunächst ausgedruckt. Im ersten Schritt wird dieser Stromlaufplan systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden im nächsten Schritt markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im letzten Schritt muss herausgefunden werden, nach welcher Norm der Stromlaufplan erstellt wurde. Diese Norm muss recherchiert und in die von uns gewählte DIN EN 60617 Norm "übersetzt" werden. Der überarbeitete Stromlaufplan wird abschließend mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

3.2.2 Stromlaufplan Motor Controller

Für die Erstellung des Motor Controller (siehe Abbildung 3.2) Stromlaufplans nach festgelegter Norm und aktuellem Verbaustand wird der vorliegende Plan zunächst ausgedruckt. Im ersten Schritt wird dieser Stromlaufplan systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden im nächsten Schritt markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im letzten Schritt muss herausgefunden werden, nach welcher Norm der Stromlaufplan erstellt wurde. Diese Norm muss recherchiert und in die von uns gewählte DIN EN 60617 Norm "übersetzt" werden. Der überarbeitete Stromlaufplan wird abschließend mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

3.2.3 Stromlaufplan LV-Onboard-Netz

Für die Erstellung des LV-Onboard-Netz (siehe Abbildung 3.3) Stromlaufplans nach festgelegter Norm und aktuellem Verbaustand wird der vorliegende Plan zunächst ausgedruckt. Im ersten Schritt wird dieser Stromlaufplan systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden im nächsten Schritt markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im letzten Schritt muss herausgefunden werden, nach welcher Norm der Stromlaufplan erstellt wurde. Diese Norm muss recherchiert und in die von uns gewählte DIN EN 60617 Norm "übersetzt" werden. Der überarbeitete Stromlaufplan wird abschließend mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

3.2.4 Stromlaufplan Charger Temperature Control

Für die Erstellung des Charger Temperature Control (siehe Abbildung 3.4) Stromlaufplans nach festgelegter Norm und aktuellem Verbaustand wird zunächst eine händische Skizze des Systems, durch die für den Einbau zuständigen Kollegen, angefertigt und an das Dokumentationsteam weitergegeben. Im ersten Schritt wird dieser Stromlaufplan systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden im nächsten Schritt markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im letzten Schritt muss die Normkonformität der Stromlaufplanskizze überprüft werden. Der überarbeitete Stromlaufplan wird abschließend mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

3.2.5 Stromlaufplan HV-Onboard-Network

Für die Erstellung des HV-Onboard-Network (siehe Abbildung 3.5) Stromlaufplans nach festgelegter Norm und aktuellem Verbaustand wird zunächst eine händische Skizze des Systems, durch die für den Einbau zuständigen Kollegen, angefertigt und an das Dokumentationsteam weitergegeben. Im ersten Schritt wird dieser Stromlaufplan systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Gefundene Fehler werden im nächsten Schritt markiert und anschließend korrigiert, wobei die Einhaltung elektrotechnischer Standards gewährleistet wird. Zudem erfolgt eine Layoutanpassung zur Verbesserung der Übersichtlichkeit. Im letzten Schritt muss die Normkonformität der Stromlaufplanskizze überprüft werden. Der überarbeitete Stromlaufplan wird abschließend mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Dabei werden Titelblock und Legende integriert, um die Professionalität und Lesbarkeit sicherzustellen.

3.3 Legende der Schaltzeichen

In der folgenden Tabelle (siehe Abbildung 3.1) werden die verwendeten Schaltzeichen des Stromlaufpläne gemäß der Norm DIN EN 60617 erläutert. Diese Schaltzeichen dienen dazu, die elektrischen Komponenten und deren Verbindungen im Stromlaufplan eindeutig und standardisiert darzustellen. Die Legende bietet eine Übersicht über jene Symbole, die in den vorangegangenen Stromlaufplänenplänen verwendet werden, und erleichtert so das Verständnis der Systemarchitektur und Funktionalität der einzelnen Pläne sowie des Gesamtsystems. Dieses Verzeichnis umfasst aktuell:

- Schütz
- Kondensator
- Funkenstrecke
- Masse
- Batterie
- Sicherung
- Schalter

- Positive Temperature Coefficient (PTC)-Wiederstand
- Potentiometer
- Stecker
- LED (Light Emitting Diode)
- Spule
- Drei-Phasen-Motor

Im weiteren Verlauf des Projekts kann dieses Verzeichnis beliebig um weitere Schaltzeichen ergänzt und angepasst werden.

Symbol	Beschreibung
(A)	Schütz
	Kondensator
SPARK_PLUG	Funkenstrecke
<u></u>	Masse (Ground)
BATTERY	Batterie
10A	Sicherung
20 ÷ 0 1	Schalter
+ 11	PTC-Widerstand
- +	Potentiometer
-(Stecker
	LED
-\-\-\-	Spule
M	Drei-Phasen-Motor

Tabelle 3.1: Legende der Symbole

4 Kritische Reflektion und Ausblick

Im Rahmen des Projekts eMule 7.0 wurden verschiedene Ziele für das Wintersemester 2024 definiert, darunter:

- 1. Fortsetzung der Entwicklung und Installation des neuen Energiespeichersystems in Form einer Traktionsbatterie für das eMule-Fahrzeug,
- 2. Weiterentwicklung des Kühlsystems der Traktionsbatterie,
- 3. Verbesserung der Temperaturregelung des Kühlsystems durch Arduino-Mikrocontrollerprogrammi
- 4. Optimierung der Verkabelung des Traktionsbatteriemanagementsystems,
- 5. Integration zusätzlicher Sensoren,
- 6. Erstellung aktueller Stromlauf- und Bestückungspläne der elektrisch/elektronischen Fahrzeugschaltkreise,
- 7. Standardisierung und Vereinheitlichung der System- und Einzelkomponentenpläne,
- 8. Entwicklung einer Installationsanleitung für Autodesk Fusion 360 für verschiedene Betriebssysteme,

- 9. Durchführung von Messungen und Funktionstests,
- 10. Vorbereitung des Fahrzeugs auf die bevorstehende Elektromagnetische Verträglichkeit (EMV) Prüfung und Technischer Überwachungsverein (TÜV) Abnahme.

Da sich diese Arbeit ausschließlich auf die Ziele 6 bis 8 konzentriert, werden im Folgenden nur diese detailliert betrachtet.

Um die Erstellung aktueller Stromlaufpläne effizient zu gestalten, wurden zwei verschiedene Vorgehensweisen angewendet. Bei der Aktualisierung bereits vorhandener Pläne wurde folgender Prozess implementiert: Die bestehenden Pläne wurden zunächst ausgedruckt und systematisch auf Unstimmigkeiten, wie fehlende Verbindungen oder unklare Symbolik, überprüft. Markierte Fehler wurden anschließend korrigiert, um die Einhaltung elektrotechnischer Standards sicherzustellen. Zusätzlich erfolgte eine Layoutanpassung, um die Übersichtlichkeit zu verbessern. Schließlich wurde die zugrundeliegende Norm des ursprünglichen Stromlaufplans identifiziert, recherchiert und in die gewählte Norm DIN EN 60617 "übersetzt."Die überarbeiteten Pläne wurden mit Autodesk Fusion 360 in ein DIN-A3-Format übertragen. Durch die Integration von Titelblöcken und Legenden konnte eine professionelle und lesbare Darstellung sichergestellt werden.

Stromlaufpläne wurden für alle Systemteile erstellt, die zum Zeitpunkt der Veröffentlichung dieser Arbeit finalisiert waren. Diese Pläne entsprechen den Standards der DIN EN 60617, sind einheitlich gestaltet und in einem übergeordneten Gesamtprojekt integriert. Insgesamt wurden fünf Stromlaufpläne erstellt. Aufgrund interner Absprachen wurde die Erstellung der Bestückungspläne auf den nächsten Bearbeitungszeitraum im Sommersemester 2025 verschoben.

Im Rahmen dieser Arbeiten wurde das Team in die Software Autodesk Fusion 360 eingearbeitet, eine eigene Bibliothek für die Norm DIN EN 60617 erstellt und eine Struktur zur einfachen Erweiterung der Bibliothek implementiert. Zudem wurde sichergestellt, dass neue Teammitglieder unkompliziert zur Projektcloud

hinzugefügt werden können. Eine detaillierte Anleitung zur Installation der CAD-Software auf allen relevanten Betriebssystemen wurde ebenfalls bereitgestellt. Der Installationsprozess auf den laborinternen Geräten wurde gestartet.

Neben den teamspezifischen Aufgaben unterstützte das Team andere Projektgruppen. Dies umfasste beispielsweise das Verladen sowie den Ein- und Ausbau der Batterie in das Fahrzeug und das Bohren zusätzlicher Löcher in die Außenwand des Fahrzeugs, um die Funktionalität der Lüfter zu verbessern.

Ausblick

Zwischen dem abgeschlossenen Arbeitszeitraum "Wintersemester 2024ünd dem bevorstehenden SSommersemester 2025"werden die Teams ihre Aufgaben im reduzierten Umfang weiterführen, je nach Bedarf und Möglichkeit. Zudem ist eine TÜV-Abnahme des Fahrzeugs geplant.

Im kommenden Bearbeitungszeitraum sollen ergänzend zur bestehenden Dokumentation weitere Stromlaufpläne erstellt und integriert werden. Zusätzlich wird die Dokumentation durch Bestückungspläne erweitert. Um die Übersichtlichkeit weiter zu erhöhen, wird die gesamte Dokumentation in einem zentralen Dokument zusammengeführt.

Weitere Ziele für das nächste Semester umfassen die Modularisierung der Batterie, den Einbau eines Bussystems, die Erweiterung der Temperaturüberwachung, die Modularisierung der Powerbox sowie die Installation eines Cockpit-Displays, das Fahr-, Verbrauchs- und Leistungsdaten anzeigt. Als optionales Ziel wird der Einbau einer Musikanlage in Betracht gezogen, sofern der Fortschritt des Systems dies zulässt.

Literaturverzeichnis

- [- D25] scinexx Das Wissensmagazin. Akku mit Schattenseiten: Ökologische und soziale Herausforderungen der Batterieproduktion. Zugriff am 13. Januar 2025. 2025. URL: https://www.scinexx.de/dossierartikel/akku-mit-schattenseiten/.
- [ADA25] ADAC. Stromverbrauch von Elektroautos im ADAC-Test. Zugriff am 13. Januar 2025. 2025. URL: https://www.adac.de/rund-ums-fahrzeug/elektromobilitaet/elektroauto/stromverbrauch-elektroautos-adac-test/.
- [alp25] ARD alpha. Henry Ford: Wie er das Auto und die Produktion revolutionierte. Zugriff am 13. Januar 2025. 2025. URL: https://www.ardalpha.de/wissen/geschichte/kulturgeschichte/henry-ford-automobil-auto-fliessband-erfinder-100.html.
- [Blo25] EnBW Blog. Elektroautos: Vorteile und Nachteile im Überblick. Zugriff am 13. Januar 2025. 2025. URL: https://www.enbw.com/blog/elektromobilitaet/fahren/elektroautos-vorteile-und-nachteile-im-ueberblick/.
- [con24] Wikipedia contributors. Autodesk Wikipedia, Die freie Enzyklopädie. [Online; abgerufen am 13. November 2024]. 2024. URL: https://de.wikipedia.org/wiki/Autodesk.
- [Ein25] EinfacheAuto. Die Geschichte des Elektroautos: Von den Anfängen bis heute. Zugriff am 13. Januar 2025. 2025. URL: https://einfacheauto.de/blog/die-geschichte-des-elektroautos-von-den-anfangen-bis-heute.

- [Ene25a] Energieleben. Die Geschichte des EV1. Zugriff am 13. Januar 2025. 2025. URL: https://www.energieleben.at/die-geschichte-des-ev1/.
- [Ene25b] EnergyProfi. Geschichte der Elektromobile und Hybridfahrzeuge ab 1900. Zugriff am 13. Januar 2025. 2025. URL: https://www.energyprofi.com/uncategorized/geschichte-der-elektromobile-und-hybridfahrzeuge-ab-1900/.
- [Gre25] Greelane. Charles Kettering und das elektrische Zündsystem. Zugriff am 13. Januar 2025. 2025. URL: https://www.greelane.com/de/ge isteswissenschaften/geschichte--kultur/charles-kettering-electrical-ignition-system-4076281.
- [gün25] Tanke günstig. Aktuelle Ölpreise: Überblick und Entwicklung. Zugriff am 13. Januar 2025. 2025. URL: https://www.tanke-guenstig.de/oelpreise.
- [Ind25] Cosmos Indirekt. Gaston Planté. Zugriff am 13. Januar 2025. 2025.
 URL: https://www.cosmos-indirekt.de/Physik-Schule/Gaston_Plant%C3%A9.
- [Ins25a] InsideEVs. GM EV1: Das Elektroauto von 1996 und seine Historie. Zugriff am 13. Januar 2025. 2025. URL: https://insideevs.de/news/586129/gm-ev1-1996-elektroauto-historie/.
- [Ins25b] InsideTesla. Tesla-Geschichte: Der Weg des E-Auto-Pioniers. Zugriff am 13. Januar 2025. 2025. URL: https://insidetesla.de/tesla-geschichte-weg-des-e-auto-pioniers/.
- [ISI25] Fraunhofer ISI. Batterie-Rohstoffe und Preisschwankungen: Wie reagiert die Automobilindustrie? Auswirkungen auf die Zellkosten. Zugriff am 13. Januar 2025. 2025. URL: https://www.isi.fraunhofer.de/de/blog/themen/batterie-update/batterie-rohstoffe-preis-schwankungen-wie-reagiert-automobil-industrie-auswirkungen-zellkosten.html.

- [Kor13] Reiner Korthauer. *Handbuch Lithium-Ionen-Batterien*. SpringerLink Bücher. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. ISBN: 9783642306532. URL: https://doi.org/10.1007/978-3-642-30653-2.
- [Lab25] Sonepar Innovation Lab. Batterien 2023: Innovationen und Entwicklungen. Zugriff am 13. Januar 2025. 2025. URL: https://sonepar-innovationlab.com/batterien-2023/.
- [Pis23] Stefan Pischinger. "Die Revolution des Antriebsstrangs in der Automobilindustrie". In: MTZ Motortechnische Zeitschrift 84.9 (2023), S. 62–62. DOI: 10.1007/s35146-023-1510-1. URL: https://doi.org/10.1007/s35146-023-1510-1.
- [Pro25] Automobil Produktion. So hoch sind die Produktionskosten von Elektroautos. Zugriff am 13. Januar 2025. 2025. URL: https://www.automobil-produktion.de/produktion/so-hoch-sind-die-produktionskosten-von-elektroautos-745.html.
- [Sie15] Dipl.-Ing. Frank Siegert. Lithium Polymer Akku-Technologie. 2015. URL: https://www.elektromodellflug.de/files/Lit-Akku-Techn-Einfuehrung.pdf.
- [Sta25] Statista. Ladeinfrastruktur für Elektroautos: Statistiken und Fakten. Zugriff am 13. Januar 2025. 2025. URL: https://de.statista.com/themen/8348/ladeinfrastruktur-fuer-elektroautos/.
- [Vat25] Vattenfall InCharge. Die Geschichte des Elektroautos: 1832 ging es los. Zugriff am 13. Januar 2025. 2025. URL: https://incharge.vattenfa ll.de/wissens-hub/articles/die-geschichte-des-elektroautos -1832-ging-es-los.
- [Wik24a] Wikipedia contributors. AutoCAD version history Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/AutoCAD_version_history.
- [Wik24b] Wikipedia contributors. Autodesk Wikipedia, The Free Encyclopedia. [Online; accessed 11-November-2024]. 2024. URL: https://en.wikipedia.org/wiki/Autodesk.

[Wis25] Das Wissen. Die Ölkrise der 1970er: Schock und Transformation. Zugriff am 13. Januar 2025. 2025. URL: https://das-wissen.de/die-oelkrise-der-1970er-schock-und-transformation/.

Verzeichnis verwendeter Formelzeichen und Abkürzungen

ANSI American National Standards Institute

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CAM Computer-Aided Manufacturing

CC Constant Current

CV Constant Voltage

DIN Deutsche Industrie Norm

EMV Elektromagnetische Verträglichkeit

EN Europäische Norm

f. folgende Seite

HV High Voltage

IEC Inernational Electrotechnical Commission

Inc Incorporated

KI Künstliche Intelligenz

LED Light Emitting Diode

LV Low Voltage

PDF Portable Document Format

PNG Portable Network Graphics

PTC Positive Temperature Coefficient

Verzeichnis verwendeter Formelzeichen und Abkürzungen

TÜV	Technischer Überwachungsverein
vgl	vergleiche
z. B	zum Beispiel

Abbildungsverzeichnis

2.1	Aufbau einer Lithium-Ionen-Zelle [– D25]	.1
3.1	Schaltplan des Battery Circuits	:3
3.2	Schaltplan des Motor Controllers	6
3.3	Schaltplan des LV-Onboard-Netz	29
3.4	Schaltplan der Charger Temperature Control	2
3.5	Schaltplan des HV-Onboard-Networks	5

Tabellenverzeichnis

3.1	Legende der Symbole	38
A.1	Liste der verwendeten Künstliche Intelligenz basierten Werkzeuge	54

A Nutzung von Künstliche Intelligenz basierten Werkzeugen

Im Rahmen dieser Arbeit wurden Künstliche Intelligenz (KI) basierte Werkzeuge benutzt. Tabelle A.1 gibt eine Übersicht über die verwendeten Werkzeuge und den jeweiligen Einsatzzweck.

Tabelle A.1: Liste der verwendeten KI basierten Werkzeuge

Werkzeug	Beschreibung der Nutzung
ChatGPT	 Grundlagenrecherche zu bekannten Prinzipien optischer Sensorik zur Abstandsmessung (siehe Abschnitt) Suche nach Herstellern von Lidar-Sensoren (siehe Abschnitt)
	•
ChatPDF	 Recherche und Zusammenfassung von wissenschaftlichen Studien im Themenfeld
DeepL	• Übersetzung des Papers von []
Tabnine AI coding assistant	Aktiviertes Plugin in MS Visual Studio zum Programmieren des
	•