I File System

Le memorie di massa

- Forse la periferica più importante di un elaboratore
- File system:
 - Un insieme di funzionalità per astrarre i dati grezzi presenti in memoria di massa e interpretare questi ultimi in termini di files e cartelle
 - Principalmente concepiti per gestire i dischi fissi
 - Altre memorie di massa importanti: SSD, CD, DVD...

Dalle applicazioni alle m. di massa

Applicazioni

File system

HAL => Driver disco

Interfaccia (SATA, SAS, SCSI, NVMe...). Numerazione LBA

PHY (Mezzo fisico. Numerazione C/H/S)

Dalle applicazioni alle m. di massa

Come è fatto un Hard disk

Parametri prestazionali

- Latenza di rotazione (in ms)
 - Tempo che ci mettono i dati richiesti ad arrivare sotto la testina (in media 1/ (RPM/60*2))
- Seek time (in ms)
 - Tempo che ci mettono le testine ad arrivare su un dato cilindro (dipende da fattori costruttivi)
- Tempo di trasmissione (in bit/sec)
 - Tempo che ci mettono tutti i dati richiesti (sequenze di bit adiacenti) ad essere letti = RPM/60 * bit per cilindro.

Alcuni valori plausibili

Model (Environment)	Average Seek Time (ms)	Average Rotational latency (ms)
Maxtor DiamondMax Plus 9 (High-end desktop)	9.3	4.2
WD Caviar (High-end desktop)	8.9	4.2
Toshiba MK8025GAS (Laptop)	12.0	7.14
WD Raptor (Enterprise)	5.2	2.99
Cheetah 15K.3 (Enterprise)	3.6	2.0

Performance	
Data transfer rate® (max Sustained)	291MB/s
RPM	7200
Cache ^{1,7}	512MB

Solid State Disk (SSD)

- Soggetti a wearing.
- Necessità di 'trimming'
- Seek Time Irrisorio
 - Valori Tipici (Samsung 840 EVO)
 - 4KB Random Read (QD1): Max. 9,900 IOPS
 - Sequential Read/Write: >500 MB/s

Cosa c'è su un singolo piattello

•Ogni traccia è usualmente divisa in settori di 512 byte

Hard Drive Structure:

A = track

B = sector

C = sector of a track

D = cluster

Memorizzazione magnetica

Dalle applicazioni alle m. di massa

Che comandi posso dare a un HD?

Comandi di basso livello:

- Comandi di lettura
 - (es. READ StartBlock, Num, *DestBuffer □ READ C/H/S)
- Comandi di scrittura
 - (es. WRITE StartBlock, Num, *SourceBuffer □ WRITE C/H/S)
- Si tratta di comandi di basso livello che consentono di leggere/scrivere 1 o più settori per volta
- Su questo livello di astrazione non esiste il concetto di file, directory, etc. etc.
- Per dischi tradizionali: piano di numerazione interno dei settori a 3 coordinate:
 - Cilindro (Cylinder), Testina (Head), Settore (Sector)
 - Coordinate CHS

Communication Drivers

Used by Operating Systems to communicate data with storage devices

AHCI

Designed for Hard Drives with Spinning Disk technology

Has only 1 command queue

Can only send 32 commands per queue

Commands utilize High CPU cycles

Has a latency of 6 microseconds

Must communicate with the SATA controller

10Ps up to 100K

NVMe

Designed for SSDs with Flash technology

Has 64K command queues

Can send 64K commands per queue

Commands utilize Low CPU cycles

Has a latency of 2.8 microseconds

Communicates directly with the System CPU

10Ps over 1 million

Con che modalità i comandi vengono impartiti?

- Tecnica mista DMA/Interrupt
- Presenza di una o più command queues
- Traduzione automatica da LBA a CHS
 - LBA: Numerazione logica in blocchi da 0 a N

Cos' è il DMA

- DMA consente accesso diretto alla memoria da parte del disco con intervento minimo della CPU
 - I dati sono trasferiti direttamente dal dispositivo alla memoria e viceversa
 - Nel frattempo il processore è libero
 - C'è un chip I/O che gestisce il trasferimento al posto della CPU
 - La CPU viene notificata quando il trasferimento termina
 - Enorme miglioramento della performance per sistemi multitasking con molti accessi al disco

DIRECT MEMORY ACCESS

Come avvengono le notifiche alla CPU?

- Gli eventi hardware possono essere catturati e gestiti tramite gli interrupt
 - Ad esempio possono essere generati da dei processi
 - A causa di una divisione per zero
 - · A causa di un tentativo di accesso a un area di memoria protetta
 - Ma anche, possono nascere da eventi esterni
 - · Ad esempio un interrupt è generato se il mouse viene mosso
 - O se qualcuno preme un tasto sulla tastiera
- La scomoda alternativa è il polling continuo
 - Il processore controlla continuamente tutti i dispositivi

Dalle applicazioni alle m. di massa

Block device driver & scheduler

Dalle applicazioni alle m. di massa

I file system

- Sono composti da codice e speciali strutture dati
 - Le **strutture dati** sono contenute in speciali settori della partizione, riservate a questi scopi. Ad esempio ci può essere una tabella dei cluster liberi.
 - Il **codice** è parte del sistema operativo e si occupa di gestire tali strutture dati, e di fornire ai programmi utente tutte le funzionalità per gestire file e cartelle
- Il file system è responsabile della gestione dei file, della loro integrità, delle modalità di accesso.

Cos'è un file system

- Numerazione lineare dei settori: sistema a 1 coordinata.
- Partizione: un blocco di settori consecutivi nel sistema di numerazione lineare
 - Ogni partizione viene di solito 'formattata' con un certo file system a scelta: FAT16, FAT32, NTFS, EXT3, ecc.
- I file system consentono di gestire lo spazio su disco organizzando logicamente i dati
- Files
 - Un gruppo di cluster a cui è associato un nome e che contiene dati tra loro correlati (esempio un immagine)
- Directory
 - Un 'raccoglitore' che raggruppa più file e possibili sottodirectory in un elenco comune

Gerarchia dei dati

- Al più basso livello di astrazione, ci sono dei semplici bit, memorizzati sulla superficie del disco.
- Questi sono raggruppati in byte, quindi in settori di 512 byte
- Ogni file system raggruppa i settori in cluster (cluster da 8k = 16 settori)
 - Un file da 10 byte occupa ALMENO un cluster!!!
- Ogni file ha un piano di numerazione interno (a partire dal byte 0)
 e una organizzazione dipendente dal suo formato.
- Non è detto che un file sia FISICAMENTE memorizzato su cluster consecutivi, nonostante il suo piano di numerazione interno lo faccia credere

Operazioni sui contenuti

- Il contenuto di un file può essere manipolato con operazioni come:
 - Open/Close/Locking
 - Read
 - Write
 - Update
 - Insert
 - Delete

```
int open(const char *path,
int oflag, ...);
```


Operazioni sugli attributi di file e cartelle (metadati)

- Open
- Close
- Create
- Destroy
- Copy
- Rename
- List (fstat)

Caratteristiche dei file system

Indipendenti dal dispositivo:

- Che si tratti di una penna USB, di un dischetto o di un disco fisso, l'interfaccia esposta al programmatore è comune. I dettagli implementativi sono nascosti.
- Dovrebbero fornire funzionalità di backup e/o recovery per contrastare le possibili perdite di dati
- Possono fornire funzionalità di compressione e crittografia
- Forniscono la possibilità di associare a file e directory attributi quali diritti di accesso, data/ora di creazione/modifica, ecc.
- Forniscono meccanismi di file locking

Directory e link

Directories:

 Sono 'file' speciali che in realtà costituiscono dei raccoglitori che elencano altri file

Link

 Un voce che sta in una directory che fa riferimento a un file logicamente raggruppato in un altra

Directory gerarchiche

Directories

FAT32

Linux - Unix: Inodes

File read()

- Unsigned long FAT[]
- File Directory[]
- Class File
 { char* nome;
 ...
 Unsigned long startingBlock; }
 byte* read(long length) { ... }

NTFS & Ext4

NTFS

- Molto robusto
- Remapping automatico dei cluster deboli
- Compressione
- Crittografia
- Diritti di accesso sofisticati
- Transazionale (sempre consistente)

Ext4

- journaled (transazionale)
- Ottima politica anti-frammentazione

Altri Filesystem: http://goo.gl/i04q

File locking

Windows

- Possibilità di aprire un file in modalità SHARED_READ, SHARED_WRITE,
 SHARED_DELETE
- Possibilità di mettere lock su porzioni di file

Linux

- Assenza di lock esplicito
- I programmi devono volontariamente usare lockf
- Possibilità di montare file systems con lock obbligatorio

Il concetto di "mounting"

- Operazione di mount:
 - Combina più file system in un unica gerarchia
 - Assegna una cartella, chiamata "mount point" nel file system nativo. Al mount point viene "agganciata" la radice del file system "montato".
- Le "mount tables" memorizzano le informazioni sui punti di mount:
- La tabella è usata dal SO per capire che formato hanno i dati e che dispositivo deve essere montato per ciascun mount point

Esempi

Figure 13.5 Mounting a file system.

