SafeStreets

Mandatory project 2019 — 2020 Software Engineering II Maldini - Paone

Requirements

Goals

USER:

- G1 Notify authorities about traffic violations
 - G1-1 Send picture of violation
 - G1-2 Send Position of the violation
- G2 Authorities must be able to take an available assignment
- G3 Allow authorities to report a finished assignment
- G₄ Allow all actors to visualize update statistics
- G5 Allow the system manager to register Municipality to the service

SafeStreets:

- G6 Allow a Visitor to join the system registering him/herself to ensure reliability of the information provided by him/her
- G7 Store information about violations provided by users:
 - G7-1 Complete it with metadata
 - G7-2 Mine information
- G8 Identify potentially unsafe areas:
 - G8-1 Suggest possible interventions
- G9 Allow municipality to register Authorities to the service
- G10 Help the Municipality to make decision

Security Goals:

- S1 Offer different levels of visibility to different type of users
- S2 Personal data of users are stored respecting current security standards

Assumptions

- D1) For each notification data and metadata provided by the system of the mobile phone are correct.
- D2) Authorities always intervene in case of a notified violation
- D3) GPS of authorities devices works correctly and gives the correct position every time.
- D4) Authorities if available correctly informs the system about their availability.
- D5) When citizen takes a photo the mobile application completes it with the correct metadata.

- D6) System Manager, Municipality and authorities respects their duty of care
- D7) When an authority is sent an email to register this will surely be received
- D8) Information provided by authority are correct and no false report is ignored (always reported by authority as false).
- D9) The Agent and municipality must be able to communicate
- D10) Information of authority which is being registered are known by municipality
- D11) The data of external database are always available

Requirements

- R1) Authorities' location must be known by the system when they are in service.
- R2) When a Citizen makes a report the position is correctly added with the GPS when is available.
- R₃) The right authorities are notified about violations.
- R4) Authority must be able to provide the system how the assignment finished: resolved and the type of violation, no intervention needed when arrived, false report.

- R₅) The system must make Statistics available when asked.
- R6) Statistics are always updated when an event happens.
- R7) For registering a Municipality his/her data must be provided to a System manager who will add those data to the service to sign up him/her.
- R8) A visitor must be able to begin sign up process in the SafeStreets App filling a form with his data.

Requirements

- R9) When the creation of an account is successful the system must notify the Visitor sending an email to the address provided in the sign up process.
- R10) When GPS is not available the user can input the position from a map.
- R11) Users to use the full service must be able to login providing the right credentials.

- R12) The camera of the mobile phone must be accessible to take photos of violations.
- R13) Suggestions must be available when municipalities request them.
- R14) The User must be able to select the licence plate between the ones in output from the Licence Plate Recognition algorithm.
- R15) Each Username is unique

Main Use Case

Citizen

Authority

Design

Architecture

We've chosen the three-tier architecture:

Why three-tier architecture?

Lightness

Flexibility

Scalability

Security

Maintainability

Reusability

DATABASE STRUCTURE: ER diagram

- User
- System Manager
- Municipality
- Authority
- Citizen
- District
- Cityhall
- Statistic Suggestion
- Report
- Photo
- Assignment

SERVER SIDE: General component view

We have divided the system in various part:

- Safestreets Servlet
- Web Application Server
- Database Connection
- SafestreetsDatabaseConnection
- ExternalDatabase Connection

SafeStreets Servlets

- Mail Manager
- User Manager
- Notification Manager
- Statistics Manager
- Suggestion Manager

Why multiple Servlet server?

Different access points

Expansion

Parrallel testing

Maintainability

Scalability

Web Application Server

Provides to Web Application the static data (HTML, CSS, JS)

• We have introduced this component because it is essential to divide the static data from dynamic data.

Database Connection

 We have used the pattern façade for the realization of this component because it hides the complexities of the larger system and provides a simpler interface.

• It provides the functionalities to access data to Servlets, communicating with Connection Subsytem.

SafestreetsDatabaseConnection

It comunicates with SafeStreets DataBase

It executes query (select / insert / update)

ExternalDatabaseConnection

• It communicates with external databases

• It executes query (only read)

CLIENT SIDE: Web Application

Request Manager

Utils Manager

CLIENT SIDE: Mobile Application

Services

• Utils

Implementation & Testing

DEVELOPMENT CHOISES: Back end

• Eclipse IDE for Java EE Developers

- Apache Tomcat
- MySQL Workbench

Why java?

Cross-platform

Variety of functionalities

Object oriented

Annotations

Garbage collector

DEVELOPMENT CHOISES: Front end

Software

Eclipse IDE

API

- openStreetMaps (leaflet)
- OpenALPR (OCR)

Why web application?

Advantage of Javascript with jquery

Chaching mechanism

Leaflet efficiency