Deep Reinforcement Learning Notebook

Han Cheol Moon
School of Computer Science and Engineering
Nanyang Technological University
Singapore
hancheol001@edu.ntu.edu.sg

February 5, 2023

Contents

1	Intr	troduction			
	1.1	Marko	v Decision Process	1	
		1.1.1	The State-Value Function	2	

Chapter 1

Introduction

1.1 Markov Decision Process

The general framework of MDPs (representing environments as MDPs) allows us to model virtually any complex sequential decision-making problem under uncertainty in a way that RL agents can interact with and learn to solve solely through experience.

Definition 1 (Markov Property) A state S_t is **Markov** if and only if

$$P[S_{t+1}|S_t, A_t] = P[S_{t+1}|S_t, A_t, S_{t-1}, A_{t-1}, ...]$$

Definition 2 (Transition Function)

$$p(s'|s,a) = P(S_t = s'|S_{t-1} = s, A_{t-1} = a)$$

- The way the environment changes as a response to actions is referred to as the state-transition probabilities, or more simply, the transition function, and is denoted by T(s, a, s').
- $\sum_{s' \in S} p(s'|s, a) = 1, \forall s \in S, \forall a \in A(s)$

Definition 3 (Reward Function)

$$r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a]$$

- The reward function is defined as a function that takes in a state-action pair.
- It is the expectation of reward at time step t, given the state-action pair in the previous time step.
- It can also be defined as a function that takes a full transition tuple s, a, s'.

$$r(s, a, s') = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s]$$

• $R_t \in \mathcal{R} \in \mathbb{R}$

Definition 4 (Discount Factor, γ)

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{T-1} R_t$$

- $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$
- $\bullet \ G_t = R_{t+1} + \gamma G_{t+1}$
- $\gamma = 0$: myopic evaluation
- $\gamma = 1$: far-sighted evaluation
- Uncertainty about the future that may not be fully observed
- Mathematically convenient to discount rewards.
- Avoid infinite returns in cyclic Markov processes.

1.1.1 The State-Value Function

Definition 5 (The State-Value Function, V) The state value function v(s) of an Markov Reward Process is the expected return starting from state s

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- The value of a state s is the expection over policy π .
- Policies are universal plans, which provides all possible plans for all states.
 - Plans are not enough in stochastic environments.
 - Policy can be stochastic or deterministic.
 - A policy is a function that prescribes actions to take for a given non-terminal state.
- If we are given a policy and the MDP, we should be able to calculate the expected return starting from every single state.

Bellman equation can be derived as follows:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots \middle| S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots \middle) \middle| S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \middle| S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} \middle| S_{t} = s\right] + \gamma \mathbb{E}_{\pi}[G_{t+1} \middle| S_{t} = s\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} \middle| S_{t} = s\right] + \gamma \mathbb{E}_{\pi}\left[\mathbb{E}_{\pi}[G_{t+1} \middle| S_{t+1} = s'\right] \middle| S_{t} = s_{t}\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} \middle| S_{t} = s\right] + \gamma \mathbb{E}_{\pi}\left[v(s_{t+1}) \middle| S_{t} = s_{t}\right]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v(s_{t+1}) \middle| S_{t} = s\right]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

The expectation here describes what we expect the return to be if we continue from state s following policy π . The expectation can be written explicitly by summing over all possible actions and all possible returned states. The next two equations can help us make the next step.

Bibliography

- [1] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
- [2] Rachit Singh. . https://rachitsingh.com/elbo_surgery/, 2017. Online; accessed 29 January 2014.
- [3] Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, Shujie Liu, Tie-Yan Liu, Renqian Luo, Arul Menezes, Tao Qin, Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia, Dongdong Zhang, Zhirui Zhang, and Ming Zhou. Achieving human parity on automatic chinese to english news translation. *CoRR*, abs/1803.05567, 2018.