Chương 1 HÀM SỐ VÀ ĐỒ THỊ

Nguyễn Minh Hải

nmhaiuns@ gmail.com

TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP.HCM

Tháng 09/2023

Nội dung

- 1.1 Giải tích là gì?
- 1.2 Mở đầu
- 3 1.3 Đường thẳng trong mặt phẳng
- 1.4 Hàm số và đồ thị
- 5 1.4 Hàm số và đồ thị
- 6 1.5 Hàm ngược

1.2. Các khái niêm cơ bản

Giá trị tuyệt đối

Giá trị tuyệt đối của số thực x, ký hiệu |x|, là khoảng cách giữa x và gốc tọa độ.

$$|x| = egin{cases} x & \mathsf{khi}\ x \geq 0 \ -x & \mathsf{khi}\ x < 0 \end{cases}$$

Tính chất

$$|a| \ge 0$$

$$|-a| = |a|$$

$$|a|^2 = a^2$$

$$|ab| = |a| |b|$$

$$ullet \left| rac{a}{b}
ight| = rac{|a|}{|b|}$$
 với $b
eq 0$.

$$|a| = b \Leftrightarrow a = \pm b.$$

$$|a| < b \Leftrightarrow -b < a < b$$

$$|a|>b\Leftrightarrow a>b$$
 hoặc $a<-b$

$$|a+b| \le |a| + |b|$$

Ví du 4.1

Giải các phương trình và bất phương trình sau:

$$|2x-5|=3$$

$$|x-5|<2$$

$$|3x+2| \ge 4$$

Ví du 4.2

Cho
$$|x-4| < 0.1$$
 và $|y-7| < 0.2$. Hãy ước lượng $|(x+y)-11|$.

Khoảng cách giữa 2 điểm trong mặt phẳng

Cho hai điểm $P_1(x_1,y_1)$ và $P_2(x_2,y_2)$. Khoảng cách d giữa P_1 và P_2 là:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Ví dụ 4.3

Cho tam giác ABC với A(1,2), B(3,4) và C(2,6). Tìm độ dài các cạnh của tam giác.

Lượng giác

Công thức chuyển đổi giữa Độ và Radian

(2)

$$rac{ heta^{\circ}}{360} = rac{ heta rad}{2\pi}$$

Ví du 4.4

• Chuyển 135° sang radian

 $oldsymbol{2}$ Chuyển $oldsymbol{2rad}$ sang đô.

$$\sin \theta = \frac{y}{r}$$
 $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$ $\csc \theta = \frac{r}{y}$ $\cot \theta = \frac{x}{y}$

Hình:

Bài tập 4.1

Giải phương trình

- $\mathbf{0} \,\, 2\cos\theta\sin\theta = \sin\theta$ với $\theta \in [0,2\pi)$.
- $\sin x + \sqrt{3}\cos x = 1 \text{ với } \theta \in [0, 2\pi).$
- $3 2\sin^2 x + 3\cos x 3 = 0$

Đường thẳng trong mặt phẳng

Hệ số góc

Hệ số góc của đường thẳng đi qua $P(x_1,y_1)$ và $Q(x_2,y_2)$ là:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \tan \alpha$$

Phương trình đường thẳng

- Ax + By + C = 0
- y = mx + b
- y k = m(x h)
- y = 0
- x = h

Ví dụ 4.5

Viết phương trình đường thẳng

- lacksquare Qua (1,-7) có hệ số góc $m=-rac{1}{2}$
- ② Qua 2 điểm A(-1,2) và B(3,-4)

Hệ số góc của đường thẳng song song và vuông góc

Nếu hai đường thẳng L_1 và L_2 có hệ số góc lần lượt là m_1 và m_2 thì:

- ullet $L_1 \parallel L_2$ khi và chỉ khi $m_1 = m_2$.
- ullet $L_1 \perp L_2$ khi và chỉ khi $m_1 m_2 = -1$.

Ví dụ 4.6

Viết phương trình đường thẳng

- Qua (5,2) song song với 4x + 6y + 5 = 0
- ② Qua (-1,-2) và vuông góc với 2x+5y+8=0

Ví du 4.7

Khi không khí khô bốc lên trên, nó lan rộng và nguội đi. Nếu nhiệt độ mặt đất là $20^{\circ}C$ và nhiệt đô ở đô cao 1km là $10^{\circ}C$

- ullet hãy biểu diễn nhiệt độ T (đơn vị độ C) dưới dạng hàm số theo độ cao h (đơn vị km) biết rằng chúng có mối quan hệ tuyến tính.
- ② Tìm hệ số góc của hàm số ở câu trên. Hệ số góc tượng trưng cho điều gì?
- o ở đô cao 2.5 km thì nhiệt đô là bao nhiệu?

1.4 Hàm số và đồ thị

Định nghĩa 5.1 (Hàm số)

Một hàm f là quy tắc cho tương ứng mỗi phần tử $x \in D$ với duy nhất một phần tử y = f(x) thuộc tập Y.

FIGURE 13 A function assigns an element f(x) in Y to each $x \in D$.

FIGURE 14 Think of f as a "machine" that takes the input x and produces the output f(x).

- ullet Tập $oldsymbol{D}$ được gọi là miền xác định của $oldsymbol{f}$.
- ullet Miền giá trị của f là tập hợp: $R = \{f(x) \mid x \in D\}$

Ví du 5.1

Tìm miền xác định của các hàm số

$$f(x) = 2x - 1$$

$$f(x) = \sqrt{4-x^2}$$

$$f(x) = rac{2x^3 - 5}{x^2 + x - 6}$$
 $f(x) = rac{1}{\sqrt{x^2 - 5x}}$

$$f(x) = \frac{1}{\sqrt{x^2 - 5x}}$$

Ví du 5.2

Cho
$$f(x)=2x^2-x$$
. Tính $f(-1),f(0),f(x+h)$ và $\dfrac{f(x+h)-f(x)}{h}$

Ví du 5.3

Một vật rơi tự do trong chân không sẽ rơi được một khoảng s (ft) trong t (giây) theo công thức

$$s(t) = 16t^2, \quad t \ge 0$$

- Vật rơi được quãng đường là bao nhiều trong giây đầu tiên? Trong 2 giây tiếp theo?
- $oldsymbol{oldsymbol{arphi}}$ Vật rơi được quãng đường là bao nhiều trong khoảng thời gian từ t=1 đến t=1+h (giây)?
- $footnote{0}$ Tốc độ thay đổi khoảng cách trung bình (ft/s) trong khoảng thời gian từ t=1 đến t=3 (giây)?
- ullet Tốc độ thay đổi khoảng cách trung bình (ft/s) trong khoảng thời gian từ t=x đến t=x+h (giây)?

Hàm bằng nhau

Hai hàm số f và g gọi là bằng nhau khi và chỉ khi

- lacktriangledown f và $m{g}$ có tập xác định giống nhau;
- ② f(x) = g(x) với mọi x thuộc miền xác định

Ví dụ 5.4

Cho các hàm số

$$f(x)=2x-1$$
 $g(x)=2x-1, \ x
eq -3, \ \ h(x)=rac{(2x-1)(x+3)}{x+3}$

Hàm h(x) bằng f(x) hay g(x)?

Hàm xác định từng phần

Hàm được cho bởi các công thức khác nhau trên từng khoảng khác nhau của tập xác định

Ví du 5.5

Cho
$$f(x)=egin{cases} 1-x & ext{n\'eu}\ x\leq -1 \ x^2 & ext{n\'eu}\ x>-1 \end{cases}$$
 Tính $f(-2),\ f(-1),\ f(0).$

Hàm hợp

Định nghĩa 5.2 (Hàm hợp)

Cho hai hàm số f và g, hàm hợp của f và g, được ký hiệu $f\circ g$, là hàm xác định bởi

$$(f\circ g)(x)=f[g(x)]$$

Chú ý: $(f \circ g)(x)$ xác định khi g(x) và f(g(x)) xác định.

The domain of the composite function $f \circ g$ Tháng 09/2023

Ví dụ 5.6

Cho $f(x)=\sqrt{x}$ và $g(x)=\sqrt{2-x}$. Tìm mỗi hàm số sau và miền xác định của nó

 $lacksquare (f \circ f)(x)$

 $(g \circ f)(x)$

Ví dụ 5.7

Cho $F(x)=(2x+x^2)^4$. Tîm f,g sao cho $F=f\circ g$.

Ví dụ 5.8

Nếu g(x)=2x+1 và $h(x)=4x^2+4x+7$. Tìm một hàm số f sao cho $f\circ g=h$.

Ví dụ 5.9

Một quả bóng hình cầu được thổi phồng có bán kính tăng dần với tốc độ 2cm/giây.

- lacktriangle Biểu diễn bán kính r của quả bóng dưới dạng hàm số theo thời gian t (giây).
- ② Nếu V là thể tích của quả bóng, được biểu diễn dưới dạng hàm số theo bán kính. Hãy tìm $V \circ r$.

Định nghĩa 5.3 (Đồ thị)

Nếu f là một hàm số với miền xác định D thì đồ thị của nó là tập hợp gồm các cặp sắp thứ tự

$$G = \{(x, f(x)) \mid x \in D\}$$

Tiêu chuẩn đường thẳng đứng

Một đường cong trong mặt phẳng Oxy là đồ thị của một hàm theo \boldsymbol{x} khi và chỉ khi không có đường thẳng đứng nào cắt đường cong tại nhiều hơn một điểm.

(a) This curve represents a function.

(b) This curve doesn't represent a function.

Ví dụ 5.10

Hình: parabol $x=y^2$ không phải là đồ thi theo x

Hình: parabol $y=x^2$ là đồ thị theo x

Giao điểm

Cho hàm số y=f(x) với miền xác định D. Khi đó

- ullet Nếu $0\in D$ và f(0)=b thì điểm (0,b) được gọi là giao điểm với Oy của đồ thị hàm f .
- ullet Nếu $a\in D$ và f(a)=0 thì điểm (a,0) được gọi là giao điểm với Ox của đồ thị hàm f .

Ví dụ 5.11

Tìm tất cả các giao điểm của $f(x)=x^3-x$ với trục Ox và Oy.

Tính đối xứng

- ullet Nếu một hàm số thỏa f(-x)=f(x), với mọi x nằm trong miền xác định của nó thì f được gọi là hàm chẵn.
- ullet Nếu một hàm số thỏa f(-x)=-f(x), với mọi x trong miền xác định của nó thì f được gọi là hàm lẻ.

Ví dụ 5.12

Xác định xem các hàm số sau đây là chẵn, lẻ hay không chẵn, không lẻ:

$$f(x) = x^5 + x$$

$$h(x) = 2x - x^2$$

$$g(x) = 1 - x^4$$

Tính đồng biến và nghịch biến

ullet Hàm f được gọi là đồng biến trên khoảng I nếu

$$f(x_1) < f(x_2),$$
 khi $x_1 < x_2$ trên I

ullet Hàm f được gọi là nghịch biến trên khoảng I nếu

$$f(x_1) > f(x_2)$$
 khi $x_1 < x_2$ trên I

Phân loại hàm số

Hàm đa thức

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

trong đó n là số nguyên không âm và $a_n, a_{n-1}, \ldots, a_1, a_0$ là các hằng số.

- Hàm hằng f(x) = a
- Hàm tuyến tính f(x) = ax + b
- Hàm bậc hai $f(x) = ax^2 + bx + c$
- Hàm bậc ba $f(x) = ax^3 + bx^2 + cx + d$
- 4 Hàm hữu tỷ

$$f(x) = rac{p(x)}{q(x)}, \ q(x)
eq 0$$

trong đó p(x) và q(x) là các đa thức.

(3) Hàm lũy thừa

$$f(x) = x^r$$

trong đó r là số thực khác 0.

(4) Hàm đại số: Hàm f gọi là hàm đại số nếu nó được xây dựng từ các đa thức bởi các phép toán đại số (cộng, trừ, nhân, chia, căn thức).

(5) Hàm siêu việt

• Hàm lượng giác:

$$\sin x \quad \cos x \quad \tan x \quad \cot x$$

$$\sec x = \frac{1}{\cos x} \quad \csc x = \frac{1}{\sin x}$$

• Hàm mũ:

$$f(x) = a^x$$

trong đó $0 < a \neq 1$.

• Hàm logarit:

$$f(x) = \log_a x$$

trong đó $0 < a \neq 1$.

Ví dụ 5.13

Xác định xem các hàm số sau đây thuộc loại hàm số nào?

- $f(x) = 5^x$
- $g(x) = x^5$
- **3** $h(x) = \frac{1+x}{1-\sqrt{x}}$
- $u(x) = 1 x + 5x^4$
- $v(x) = \frac{2x^4 x^2 + 1}{x^2 4}$

1.5 Hàm ngược

Định nghĩa 6.1 (Hàm ngược)

Cho f là hàm một -một với miền xác định D và miền giá trị R. Khi đó, hàm f^{-1} có miền xác định R và miền giá trị D là hàm ngược của f thỏa mãn

$$f^{-1}[f(x)] = x, \quad orall x \in D$$

và

$$f[f^{-1}(y)] = y, \quad orall y \in R$$

Chú ý

Không phải mọi hàm số đều có hàm ngược. Hàm f có hàm ngược khi và chỉ khi f là hàm một - một.

Định nghĩa 6.2 (Hàm một-một)

Hàm f gọi là hàm một-một nếu nó không bao giờ nhận cùng một giá trị đến 2 lần, nghĩa là:

$$f(x_1) \neq f(x_2) \Leftrightarrow x_1 \neq x_2$$

Tiêu chuẩn đường nằm ngang

Một hàm số là hàm một-một khi và chỉ khi không có đường nằm ngang nào giao với đồ thi của nó nhiều hơn một lần.

Ví dụ 6.1

Hàm nào sau đây là hàm một-một?

$$f(x) = x^3$$

$$f(x) = x^2$$

Ví du 6.2

Cho
$$f = \{(0,3), (1,5), (3,9), (5,13)\}$$
. Tìm f^{-1} (nếu có).

Ví du 6.3

Cho
$$f = \{(0,0), (1,1), (-1,1), (2,4), (-2,4)\}$$
. Tìm f^{-1} (nếu có).

Cách tìm hàm ngược của hàm một -một f

- lacksquare Viết y=f(x)
- ② Giải phương trình này để tính x theo y.
- ullet Đổi vai trò giữa x và y. Hàm ngược cần tìm có dạng $y=f^{-1}(x)$.

Ví du 6.4

Tìm hàm ngược của

$$f(x) = 3x - 4$$

$$f(x) = 3x - 4$$
 $f(x) = \frac{4x - 1}{2x + 3}$

3
$$f(x) = \sqrt{x-3}$$

$$f(x) = 1 + \sqrt{2+3x}$$

Ví du 6.5

Nếu
$$f(x) = x + \sqrt{x}$$
. Tìm $f^{-1}(6)$.

Đồ thị của hàm ngược

Đồ thị của hàm f^{-1} nhận được bằng cách lấy đối xứng của đồ thị hàm f qua đường thẳng y=x.

Định lý 6.1 (Sự tồn tại của hàm ngược)

- lacktriangle Một hàm có hàm ngược khi và chỉ khi f là song ánh.
- ② Nếu f là hàm đơn điệu ngặt trên khoảng I thì f là song ánh và có f^{-1} .

Hàm lượng giác ngược

$$\mathsf{H\grave{a}m}\ y = \sin^{-1} x$$

$$y = \sin^{-1} x \Leftrightarrow x = \sin y$$
 và $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

Phương trình giản ước

$$\sin^{-1}(\sin y) = y$$
 với $-rac{\pi}{2} \leq y \leq rac{\pi}{2}$

$$\sin(\sin^{-1}x) = x$$
 với $-1 \le x \le 1$

$$\mathsf{H\grave{a}m}\ y = \cos^{-1} x$$

$$y = \cos^{-1} x \Leftrightarrow x = \cos y \quad {
m và} \ 0 \leq y \leq \pi$$

Phương trình giản ước

$$\cos^{-1}(\cos y) = y$$
 với $0 < y < \tau$

$$\cos^{-1}(\cos y) = y \quad ext{v\'oi} \ 0 \leq y \leq \pi$$
 $\cos(\cos^{-1} x) = x \quad ext{v\'oi} \ -1 \leq x \leq 1$

$$\mathsf{H\grave{a}m}\ y = \tan^{-1} x$$

$$y = an^{-1} x \Leftrightarrow x = an y$$
 và $-rac{\pi}{2} < y < rac{\pi}{2}$

Phương trình giản ước

$$an(an^{-1}x) = x$$
 với mọi x $an^{-1}(an y) = y$ với $-rac{\pi}{2} < y < rac{\pi}{2}$

Hàm ngược	Miền xác định	Miền giá trị
$y=\sin^{-1}x$	$-1 \le x \le 1$	$-rac{\pi}{2} \leq y \leq rac{\pi}{2}$
$y = \cos^{-1} x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$y = an^{-1} x$	$-\infty < x < +\infty$	$-rac{\pi}{2} < y < rac{\pi}{2}$
$y=\csc^{-1}x$	$x \geq 1$ hoặc $x \leq -1$	$-rac{\pi}{2} \leq y \leq rac{\pi}{2}, y eq 0$
$y = \sec^{-1} x$	$x \geq 1$ hoặc $x \leq -1$	$0 \leq y \leq \pi, y eq rac{\pi}{2}$
$y=\cot^{-1}x$	$-\infty < x < +\infty$	$0 < y < \pi$

Bảng: Định nghĩa các hàm lượng giác ngược

Tính chất

- $\bullet \sin(\sin^{-1} x) = x \text{ v\'oi } -1 \le x \le 1.$
- \circ $\sin^{-1}(\sin y)=y$ với $-rac{\pi}{2}\leq y\leq rac{\pi}{2}$.
- $3 \tan(\tan^{-1} x) = x \text{ v\'ent } x \in \mathbb{R}.$
- $lacksquare an^{-1}(an y) = y$ với $-rac{\pi}{2} < y < rac{\pi}{2}$
- $\mathbf{S} \sec^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)$ nếu $|x| \geq 1$.
- $\mathbf{o} \; \csc^{-1} x = \sin^{-1} \left(rac{1}{x}
 ight)$ nếu $|x| \geq 1$.
- $\cot^{-1} x = \frac{\pi}{2} \tan^{-1} x$

Ví du 6.6

Tính

$$\mathbf{0} \sin^{-1}\left(\frac{1}{2}\right)$$

$$\circ$$
 $\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

$$\cos^{-1}(0)$$

$$\cos^{-1}(0)$$

$$\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

Ví du 6.7

Tính

- \circ $\sin(\sin^{-1} 0.5)$
- \circ $\sin(\sin^{-1}2)$

- $\sin^{-1}(\sin 0.5)$
- $\sin^{-1}(\sin 2)$

Ví du 6.8

Rút gọn biểu thức

$$B = \sin(\sin^{-1} x + \cos^{-1} x)$$

Ví dụ 6.9

Tính chính xác

$$1 an(\sin^{-1}\frac{1}{3})$$

$$\sin(2\sin^{-1}\frac{3}{5})$$

Bài tập 6.1

Giải phương trình
$$\cos(2\cos^{-1}x) + 3\cos(\cos^{-1}x) - 4 = 0$$

Bài tập 6.2

Giải
$$3(\sin^{-1}x)^2 - 2\sin^{-1}x - 1 = 0$$

Bài tập 6.3

Cho
$$f(x)=rac{2\sin^{-1}x+1}{\sin^{-1}x+2}$$
. Giải $(f\circ f)(x)=1$.

Bài tập 6.4

Cho
$$f(x)=rac{x+1}{x^2+1}$$
 và $g(x)=rac{2 an^{-1}x-1}{ an^{-1}x+1}$. Giải $(f\circ g)(x)=1$.

Bài tập 6.5

Cho
$$f(x)=2x^2-3x+4$$
 và $g(x)=\sin^{-1}x$. Giải $(f\circ g)(x)=3$.

Bài tập 6.6

Cho
$$f(x)=\cos 2x+4\sin x-3$$
 và $g(x)=\sin^{-1}x$. Giải $(f\circ g)(x)=0$.