All of the measurements were with in the error rang of $\pm 10\%$. The greatest resistor error was resistor number two which had a error of 3.617%. Finding resistors that had close to true values was hard. The greatest voltage error was the voltage at node 2 with and error of 7.955%. The most likely reason is that it is the farthest from the voltage supply, so the error in the resistor would combine resulting in a greater error. Current number seven was the greatest off and was most likely due to the use of two voltage sources to get the right amount of current moving through the circuit. Resistor number one had the greatest error in "Power Absorbed" this was due to the finicky current source.

Table 1: Resistor Values

Element	Calculated/Nominal Values	Measure Values	Percent Differences
R_1	220Ω	223Ω	1.3636%
R_2	470Ω	453Ω	3.6170%
R_3	680Ω	669Ω	1.6176%
R_4	680Ω	676Ω	0.5882%
R_5	1500Ω	1486Ω	0.9333~%
R_6	330Ω	335Ω	1.5151%
R_7	1000Ω	965Ω	3.500%

Table 2: Node Voltages

Element	Calculated/Nominal Values	Measure Values	Percent Differences
V_1	15.990 [V]	15.478 [V]	3.202%
V_2	12.470 [V]	11.478 [V]	7.955%
V_3	14.104 [V]	13.897 [V]	1.467%
V_4	18.00 [V]	18.032 [V]	0.1777~%
V_S	18.00 [V]	18.034 [V]	0.1888%

Table 3: Branch Currents

Element	Calculated/Nominal Values	Measure Values	Percent Differences
$\overline{I_1}$	16.00 [mA]	15.307 [mA]	4.331 %
I_2	26.5319 [mA]	$26.36 \; [mA]$	0.6497~%
I_3	-2.402 [mA]	-2.428 [mA]	1.082%
I_4	-8.131 [mA]	-8.167 [mA]	0.4427%
I_5	9.402 [mA]	9.394 [mA]	0.08509%
I_6	$11.806 \; [mA]$	-11.607 [mA]	1.685%
I_7	$18.00 \; [mA]$	18.664 [mA]	3.688~%
I_S	$16.00 [\mathrm{mA}]$	15.979 [mA]	0.1312~%
$I_V s$	-37.936 [mA]	38.59 [mA]	1.723%

Table 4: Power Absorbed

Element	Calculated/Nominal Values	Measure Values	Percent Differences
R_1	56.32 [mW]	$52.250 \; [mW]$	7.2268~%
R_2	$330.8 \; [mW]$	314.767 [mW]	4.8468~%
R_3	$3.924 \; [mW]$	$3.944 \; [mW]$	0.5066~%
R_4	44.959 [mW]	45.089 [mW]	0.2894~%
R_5	$132.6 \; [mW]$	131.135 [mW]	1.1045~%
R_6	45.996 [mW]	45.132 [mW]	1.8784~%
R_7	324 [mW]	336.153 [mW]	3.7509~%
I_s	$-255.85 \; [mW]$	-247.323 [mW]	3.3328~%
V_s	$-682.8 \; [\mathrm{mW}]$	-695.932 [mW]	1.9233~%