Méthode d'éléments finis en 1D

Considérant l'équation différentielle suivante :

$$\alpha \ddot{u} + \beta u = f$$

On cherche à évaluer la solution de cette équation numériquement à l'aide d'un script écrit sous Matlab.

Concept

Le programme MEFSolution fonctionne de la manière suivante :

- 1. Maillage du domaine.
- 2. Calcul des matrices élémentaires avec la méthode de Boole.
- 3. Assemblage des matrices élémentaires en matrice globale pour tout le domaine.
- 4. Résolution numérique du problème.
- 5. Evaluation de l'erreur éventuelle.

Le programme prend donc les paramètres suivants :

- Le domaine en 1D [a,b]
- Pas de maillage
- · Coefficients alpha et beta
- Fonction 2ème membre

Utilisation

L'interface générale de l'application

Saisie des données d'entrée

Si on désire évaluer l'erreur au cas ou la solution exacte du problème est connue

Analyse d'erreur				
Solution exacte				

Choisir la méthode d'approximation (P1/P2) et si le programme doit exporter

Methode		Exportation	
● P1	○ P2	Tout Rien	

Après saisie, lancer l'évaluation, un timer enregistre le temps de fonctionnement de l'application

Timer	0	Evaluer

Panel des résultats, regroupe les éléments suivants :

- Maillage
- Solution évaluée
- Comparaison des solution (En cas d'analyse d'erreur)
- Analyse d'erreur
- Erreur relative
- Log, suivi des étapes effectuées

Exemple d'évaluation

Prenons le cas où f(x)=sin(x) et lpha=1 et eta=2

Maillage

Solution évaluée

Comparaison de solutions

Analyse d'erreur

Erreur relative

Log

