TSP: Simulated Annealing

Matheus Farnese Lacerda Senna

Departamento de Ciência da Computação – Universidade Federal de Minas Gerais Belo Horizonte, MG – Brasil

1. Descrição do problema

O problema do caixeiro-viajante é um problema NP-hard bem conhecido e estudado. Devido a sua natureza combinatorial, diversos métodos aproximados já foram propostos para resolvê-lo em tempo polinomial. No presente relatório, foi utilizado um modelo de Simulated Annealing para resolver o TSP de forma aproximada e rápida.

Assim sendo, o restante do relatório está organizado da seguinte forma: primeiro, foi utilizado o exemplo disponibilizado no Moodle contendo 130 cidades para plotar os gráficos da energia total e do caminho percorrido, ilustrando o funcionamento do método. Após isso, foram feitos vários experimentos variando-se parâmetros do modelo e colocando os resultados em tabelas. Finalmente, foram plotados outros gráficos de energia e caminho.

2. 130 cidades

Foram utilizados 100 passos de Monte Carlo em cada iteração, sendo que cada passo consiste em 100 alterações no caminho da forma proposta (i.e. o processo de escolher duas cidades e inverter o caminho entre elas é realizado 100 vezes em cada passo de Monte Carlo). Ademais, a temperatura inicial foi de 10, a final foi de 0.000001 e o decaimento foi de 0.88 a cada iteração. Finalmente, o algoritmo foi executado 4 vezes, sendo que a cada vez que foi executado, a configuração inicial era a melhor configuração obtida na execução anterior e a temperatura inicial era igual a anterior multiplicada por 0.01. Abaixo estão os gráficos representando a evolução da energia e do melhor caminho encontrado.

Observa-se que a energia apresenta o comportamento esperado no primeiro gráfico, i.e., oscila por um tempo e decai após isso. Observa-se que com 6000 passos de Monte Carlo, a energia já possui um valor próximo ao valor mínimo do gráfico. Os próximos gráficos mostram uma grande oscilação na energia devido ao fato de que a escala é 100 vezes menor a cada gráfico, mas é possível perceber que, em todos os casos, a energia final do sistema foi melhorada, isso é, foi encontrado um valor novo de energia que era menor do que o menor valor que já fora encontrado.

Com relação aos caminhos, percebe-se que houve grandes alterações do 1 para o 2, poucas alterações do 2 para o 3 (destacadas no gráfico 3) e nenhuma alteração do 3 para o 4 (sendo que a melhora na energia presente no gráfico 4 foi atribuida a erro de float na hora da computação). O comprimento dos caminhos foram:

 $1 \rightarrow 9.023492429638281$ $2 \rightarrow 8.796362526947632$

 $8 \rightarrow 8.791416317224503 \qquad 4 \rightarrow 8.791416357504204$

Verifica-se que, de fato, o caminho melhorou muito do 1 para o 2, pouco do 2 para o 3 (terceira casa decimal) e permaneceu constante do 3 para o 4 (diferenças na sétima casa decimal atribuida a erros de float). A solução ótima para esse problema, como mostrado em sala de aula, é 8.210. De fato, o modelo de Simulated Annealing obteve uma boa resposta, sendo que o melhor caminho encontrado (em 3 e 4) é 7.08% pior do que a solução ótima.

3. Experimento: Tamanho do passo e número de repetições

Para essa seção, foram realizados experimentos com 3 quantidades de cidade (130, 500 e 1200) para verificar o efeito do tamanho do passo, i.e., quantas alterações de caminho (escolher duas cidades e inverter o caminho entre elas) são feitas por passo de Monte Carlo e da repetição da execução do algoritmo, assim como descrito na seção anterior (a cada vez que for executado, a configuração inicial é a melhor configuração obtida na execução anterior e a temperatura inicial é igual a anterior multiplicada por 0.01). O algoritmo foi executado com 100 passos de Monte Carlo e com os mesmos parâmetros de temperatura definidos na seção anterior. Os resultados encontrados estão nas tabelas a seguir, onde as linhas representam cada execução e as colunas representam o tamanho do passo. O tempo de execução está expresso em segundos e é relativo ao total das 4 execuções da respectiva coluna.

130 Cidades	10	100	1000	10000
	Caminho:	Caminho:	Caminho:	Caminho:
1 ^a	9.3507548219058	9.0234924296382	8.7764748001936	8.7344063301570
	Caminho:	Caminho:	Caminho:	Caminho:
2ª	9.2314302402082	8.7963625269476	8.7569603258743	8.7363315832335
	Cominho	Cominho	Caminha	Cominho
	Caminho:	Caminho:	Caminho:	Caminho:
3ª	9.2314302206505	8.7914163172245	8.7569729231763	8.7363193263299
	Caminho:	Caminho:	Caminho:	Caminho:
4 ^a	9.2314302206505	8.7914163575042	8.7569742810446	8.7363300777506
	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:
	0.1230599880218	0.8645355701446	8.2473311424255	82.496478080749

500 Cidades	10	100	1000	10000
	Caminho :	Caminho:	Caminho :	Caminho:
1 ^a	27.927375903469	18.708494768943	17.402110207127	16.759436948108
	Caminho:	Caminho:	Caminho:	Caminho:
2ª	24.383278620196	18.115895845927	17.241370805539	16.692072507459
	Caminho :	Caminho :	Caminho :	Caminho:
3ª	21.952949629980	18.105137750506	17.241371791926	16.692079432308
	Caminho:	Caminho:	Caminho :	Caminho:
4 ^a	21.535100365872	18.105137750506	17.241371822077	16.692079646047
	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:
	0.2276318073272	1.7267880439758	16.851138591766	168.43468856811

1200 Cidades	10	100	1000	10000
	Caminho:	Caminho:	Caminho:	Caminho:
1ª	90.144134638831	37.245630260091	28.289206322631	26.584841992822
	Caminho:	Caminho:	Caminho:	Caminho:
2ª	72.352427348028	37.243656499427	28.148001041379	26.584636121406
	Caminho:	Caminho:	Caminho :	Caminho:
3 ª	63.013091108063	33.114993989584	28.147017510375	26.583389737061
	Caminho:	Caminho :	Caminho:	Caminho :
4 ^a	60.661466252990	32.294180872733	28.147017530980	26.583389598294
	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:	Tempo total gasto:
	0.4764497280120	3.5237612724304	34.639154434204	344.27824044227

O primeiro fato que se observa é o crescimento linear do tempo para o tamanho do passo, i.e., a cada vez que o tamanho foi multiplicado por 10, o tempo gasto também foi aproximadamente multiplicado por 10.

Com relação à qualidade da resposta, observa-se que o tamanho do passo de Monte Carlo tem efeito significativo no valor do caminho gerado, a saber, o pior valor de cada coluna é melhor do que o melhor valor da coluna anterior. Já o número de execuções do algoritmo, faz bastante diferença nos casos onde o tamanho do passo é pequeno (10 ou 100), principalmente para um número de cidades grande. Porém, para passos de tamanho 1000 ou 10000, não melhora a qualidade da solução de forma significativa em nenhuma das três tabelas geradas (considerando o nível de significância estatísica como sendo 1%).

4. Experimento: Temperaturas

O objetivo dessa seção é analisar o efeito que os parâmetros de temperatura, a saber, temperatura inicial, temperatura final e variação de temperatura a cada iteração, têm na qualidade da solução. Para tal, foram geradas três tabelas, uma para cada valor de ΔT , onde ΔT é o fator pelo qual de multiplica a temperatura a cada iteração. As colunas representam a temperatura inicial e as linhas representam a temperatura final. O modelo foi executado com 100 passos de Monte Carlo, tamanho do passo igual a 1000, 1200 cidades, e apenas uma execução do algoritmo.

$\Delta T = 0.88$	10	1	0.1	0.01
0.001	Caminho:	Caminho:	Caminho :	Caminho:
	29.822289461386	29.744271049974	29.491118955193	30.826666333479
	Tempo:	Tempo:	Tempo:	Tempo:
	9.8699300289154	6.4170331954956	4.3646006584167	2.2747950553894

0.0001	Caminho:	Caminho:	Caminho:	Caminho:
	28.300954514765	28.506021371809	28.549278262187	28.595041638007
	Tempo:	Tempo:	Tempo:	Tempo:
	10.636663913726	8.4944176673889	6.4318804740905	4.3486311435699
0.00001	Caminho :	Caminho :	Caminho :	Caminho:
	28.023122116457	28.589691163506	28.234381915535	28.892225573770
	Tempo:	Tempo:	Tempo:	Tempo:
	12.693967103958	10.593178033828	8.5212247371673	6.4049055576324
0.000001	Caminho :	Caminho:	Caminho :	Caminho:
	27.800275651621	28.647646463010	28.120340141700	28.405742622213
	Tempo:	Tempo:	Tempo:	Tempo:
	14.707975864410	12.699868202209	10.584140539169	8.4937927722930

$\Delta T = 0.704$	10	1	0.1	0.01
0.001	Caminho :	Caminho :	Caminho :	Caminho:
	35.335821053013	37.104944760911	34.942919508554	39.445102193159
	Tempo:	Tempo:	Tempo:	Tempo:
	3.2183279991149	2.3936724662780	1.7101297378540	0.8965115547180
0.0001	Caminho:	Caminho:	Caminho:	Caminho:
	31.719388854224	31.207864756230	31.908384674228	32.469022806035
	Tempo:	Tempo:	Tempo:	Tempo:
	3.8978905677795	3.2121469974517	2.4052724838256	1.7094757556915
0.00001	Caminho:	Caminho:	Caminho:	Caminho:
	30.000820284709	30.029767874395	29.909863912966	30.431067660450
	Tempo:	Tempo:	Tempo:	Tempo:
	4.7022464275360	3.9007489681243	3.2049238681793	2.3990271091461
0.000001	Caminho:	Caminho:	Caminho:	Caminho:
	29.298114453675	29.243104260647	29.138324197381	29.902489885454
	Tempo:	Tempo:	Tempo:	Tempo:
	5.3974111080169	4.7097604274749	3.9053144454956	3.2091193199157

$\Delta T = 0.5632$	10	1	0.1	0.01
0.001	Caminho:	Caminho:	Caminho :	Caminho:
	39.696088291006	39.994202989386	39.705724688945	44.817377463332
	Tempo:	Tempo:	Tempo:	Tempo:
	2.0486609935760	1.5877089500427	1.1266000270843	0.6656310558319

0.0001	Caminho:	Caminho:	Caminho :	Caminho:
	35.034769261721	34.393672859994	34.461184682557	35.704796522622
	Tempo:	Tempo:	Tempo:	Tempo:
	2.5191876888275	2.0466597080230	1.5943763256072	1.1319291591644
0.00001	Caminho:	Caminho :	Caminho :	Caminho:
	32.002419563475	32.458706476958	31.973343986319	33.034588574431
	Tempo:	Tempo:	Tempo:	Tempo:
	2.9766798019409	2.5037677288055	2.0512840747833	1.5882101058959
0.000001	Caminho:	Caminho :	Caminho :	Caminho:
	30.447120799683	30.793301996542	30.951567894080	31.371406886959
	Tempo:	Tempo:	Tempo:	Tempo:
	3.4484133720397	2.9791097640991	2.5038168430328	2.0567812919616

Percebe-se que a temperatura inicial, desde que seja pelo menos duas ordens de grandeza maior do que a temperatura final, não influencia a qualidade da resposta, sendo que os caminhos obtidos são muito parecidos entre si e oscilam em qualidade, não havendo uma correlação clara entre temperatura inicial e caminho obtido. Já a redução da temperatura final, consistentemente melhora a qualidade da solução.

Com relação a ΔT , quanto maior ele for (i.e. quanto mais devagar a temperatura reduzir a cada iteração), melhor a qualidade da solução. Esse comportamento já era de ser esperado, pois a ideia do Simulated Annealing é, como o nome já implica, simular o processo de Annealing usado na metalurgia, processo esse que envolve o resfriamento lento da liga metálica. Portanto, quanto mais lento for a redução de temperatura do método, a tendência é que os resultados sejam melhores.

Finalmente, ao analisar-se o tempo de execução, percebe-se uma correlação entre a temperatura inicial e o tempo gasto, assim como entre o ΔT e dito tempo. Ou seja, quanto menor a temperatura inicial e o ΔT , menor será o tempo gasto. Já para a temperatura final, a correlação com o tempo é negativa, ou seja, quanto menor a temperatura final, maior o tempo gasto. Todos esses comportamentos estão de acordo com o esperado, haja vista que reduzir o intervalo de execução (diminuir o início ou aumentar o fim) ou acelerar o percurso de dito intervalo (aumentar o ΔT) vão diminuir o número de iterações, diminuindo, pois, o tempo.

5. Experimento: Número de passos

Como um último experimento, quere-se analisar o efeito do número de passos de Monte Carlo no resultado do modelo. Para tal, o algoritmo foi executado com os seguintes parâmetros: temperatura inicial igual a 10, temperatura final igual a 0.000001, $\Delta T = 0.88$, tamanho do passo 1000, 1200 cidades e uma execução apenas. Os resultados estão expressos a seguir:

```
100 passos → Caminho = 27.976739042438567; Tempo = 16.753663539886475

1000 passos → Caminho = 26.664158537168987; Tempo = 154.9589502811432

10000 passos → Caminho = 25.938709109672345; Tempo = 1501.3041412830353

100000 passos → Caminho = X; Tempo = X
```

Para o último caso, a execução foi cancelada, pois, caso ela siga o padrão linear, demoraria 4h para acabar a execução. Percebe-se que mais passos melhora a qualidade da solução, mas o tempo gasto passa a se tornar um fator proibitivo, tendo em vista que a solução exata para o problema para 1200 cidades também está na faixa de horas. Apesar da solução melhorar com o aumento do número de passos, foi julgado (subjetivamente) que tal melhoria não compensa, devido ao alto tempo de execução.

6. Conclusão

Finalmente, para encerrar a análilse do método de Simulated Annealing, foram escolhidos (subjetivamente) os melhores parâmetros para o modelo. Tais parâmetros foram: 100 passos de Monte Carlo de tamanho 1000, $\Delta T = 0.88$, $T_i = 0.1$, $T_f = 0.000001$ e 1 execução. Assim sendo, o modelo foi rodado para o mesmo conjunto de 1200 cidades usado nos experimentos anteriores, gerando-se os seguintes gráficos:

Os resultados foram: caminho = 28.35018536041025 ; tempo = 11.978688955307007. Observa-se, pelo gráfico de energia, que o comportamento está de acordo com o esperado. Já no gráfico do caminho, apesar de ser confuso de se analisar visualmente, verifica-se que não há linhas se cruzando, o que é um bom indício de que o caminho não é muito ruim.

7. Apêndice

Os arquivos de entrada de tamanho 130, 500 e 1200 estão disponíveis no arquivo zip enviado pelo Moodle. O código usado no relatório (tsp.py) e o código a ser usado na competição (competition.py) também estão disponíveis.

Para a execução do código da competição, basta chamar "python3 competition.py" na linha de comando, sendo que o arquivo "posicoes.dat" deve estar disponível no mesmo diretório.

Para a execução do código usado no relatório, basta chamar "python3 tsp.py" na linha de comando, sendo que pode-se alterar os parâmetros nas últimas linhas do arquivo para controlar a execução como quiser.