ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДА	МО
Проректор	-директор ФТИ
	В.П.Кривобоков
 »	 2012 г.

ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ ТРЕНИЯ ПРИ ПОМОЩИ МАШИНЫ АТВУДА

Методические указания к выполнению лабораторной работы M-14 по курсу «Общая физика» для студентов всех специальностей

Составитель Н.С. Кравченко, Н.И.Гаврилина

Издательство Томского политехнического университета 2012

УДК 53.076

Зав. кафедрой ТиЭФ

Определение моменты силы трения при помощи машины Атвуда. Методические указания к выполнению лабораторных работ М - 14 по курсу общей физики / сост. Н.С. Кравченко, Н.И. Гаврилина; Национальный исследовательский Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2012.—11с.

Методические указания рассмотрены и рекомендованы к изданию методическим семинаром кафедры теоретической и экспериментальной физики ФТИ. «___»_____2012 г.

доктор физ.-мат. наук, профессор В.Ф. Пичугин
Председатель учебно-методической комиссии С.И. Борисенко

Рецензент доцент к.ф.-м.н. Ю.А. Сивов

- © Составление. ГОУ ВПО «Национальный исследовательский Томский политехнический университет», 2012
- © Н.С. Кравченко, Н.И. Гаврилина составление, 2010
- © Оформление. Издательство Томского политехнического университета, 2012

ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ ТРЕНИЯ ПРИ ПОМОЩИ МАШИНЫ АТВУДА

Цель работы: определение момента силы трения, действующего на вращающийся блок, используя законы динамики.

Приборы и принадлежности: лабораторная установка (машина Атвуда) с грузами одинаковой массы, электрический секундомер, набор грузов.

ТЕОРЕТИЧЕСКОЕ СОДЕРЖАНИЕ

Puc. 1

Рассмотрим систему, состоящую из двух одинаковых (A) и (B) грузов, массами m каждый, подвешенных на невесомой нерастяжимой нити и блока, радиус которого R, момент инерции которого $I=0.5M_{\it Бл}R^2$ (блок - сплошной диск) (рис. 1).

Так как массы грузов (A) и (B) одинаковы, то система будет находиться в покое, т.е. грузы не перемещаются и блок не вращается.

Если на груз (A) положить перегрузок (дополнительный груз) массой m_1 , то система грузов придет в движение. Движение грузов будет равноускоренное. Применив второй закон Ньютона в проекции на направление движения, получим уравнения движения

груза (A):

$$(m+m_1)g - T_1 = (m+m_1)a$$
 (1)

груза (B):
$$T_2 - mg = ma$$

Блок вращается равноускоренно и для него основной закон динамики вращательного движения имеет вид:

$$T_1R-T_2R-M_{m\rho}=I\varepsilon$$

$$\varepsilon=a/R \text{ , где } \textbf{\textit{a}}-\text{ускорение грузов, } I=0.5\text{M}_{6\pi}R^2 \tag{3}$$

 T_1 и T_2 – силы реакции натяжения нитей;

 ε - угловое ускорение

I - момент инерции блока

R - радиус блока

 $M_{m
ho}$ - момент силы трения

Решая систему трех последних уравнений относительно а (ускорения), получим

$$a(2m + m_1 + M_{E\pi}/2) = m_1 g - M_{mp}/R \tag{4}$$

Поскольку $m_I << 2m + o,5 M_{m\rho}$., то можно считать, что ускорение линейно зависит от силы тяжести перегрузка $m_I g$. Значит, построив экспериментальный график зависимости ускорения a, от силы тяжести перегрузка $m_I g$, получим прямую под углом к оси, на которой откладывали значение силы тяжести перегрузка.

Из уравнения (11) следует, что если ускорение равно нулю т.е. движение равномерное, то

$$M_{m\rho}/R = m_1 g \tag{12}$$

Значит, чтобы найти величину $M_{m\rho}/R$ нужно экспериментальную прямую продолжить до пересечения с осью абсцисс. Отрезок, отсекаемый экспериментальной прямой по оси абсцисс, и будет численно равен величине $M_{m\rho}/R$. Зная радиус R блока, можно найти момент сил трения, умножив найденную по графику величину на R.

ОПИСАНИЕ УСТАНОВКИ И МЕТОДА ИЗМЕРЕНИЙ

Машина Атвуда (рис.2) представляет собой вертикальную штангу (1) с делениями, на верхнем конце которой укреплен легкий блок (2), вращающийся с небольшим трением вокруг горизонтальной оси. Через блок перекинута тонкая нить с грузами (A) и (B) одинаковой массы *т*. Груз (A) может удерживаться в верхнем положении при помощи электромагнита (ЭМ). На штанге закреплена платформа (С), имеющая контактную пластинку (3), соединенную с секундомером (4). При ударе груза (A) о платформу секундомер отключается.

Если на груз (A) положить дополнительный груз (перегрузок), то система грузов придет в движение. Отметив первоначальное положение груза (A) относительно платформы (C), можно определить ускорение, с которым движутся грузы.

Так как грузы движутся равноускоренно, то из кинематического уравнения движения, ускорение равно

$$a = \frac{2h}{t^2} \tag{13}$$

где h - расстояние от начального положения нижней части груза (A) до платформы C, t - время движения груза на этом пути.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Грузы (A) и (B) поставить в начальное положение. Тумблер переключения в положение (ЭМ). При этом через обмотку электромагнита протекает ток и груз (A) фиксируется в верхнем положении.
- 2. На груз (A) поместить перегрузок массой m_1 . Приподнять платформу (C), при этом замкнется цепь секундомера. Измерить расстояние h. Высота h задается преподавателем (не менее 50 см).
- 3. Тумблер установки перевести в положение (ЭС). Груз начинает двигаться вниз, а электрический секундомер включается. После удара груза (А) о платформу секундомер выключается.
- 4. С перегрузком m_1 повторяют опыт 3-5 раз. Находят среднее время движения груза и по формуле (13) определяют ускорение.
- 5. Повторяют измерения для других перегрузков m_1 : 4г., 6г., 8г., 10г., 12г. Вычисляют ускорения для всех случаев.
- 6. Строят зависимость $a = f(m_1 g)$. Из графика находят величину M_{mo}/R , а затем M_{mo} .

Таблица 1

No	<i>m</i> ₁ (кг)	<i>h</i> (см)	t (c)	$a\left(\frac{\mathrm{cm}}{\mathrm{c}^{2}}\right)$
1				
2				
3	4			
и т.д.				
1				
2				
3	6			
и т.д.				
и т.д.				

Контрольные вопросы

- 1. Какова роль перегрузка m_1 ?
- 2. Получите соотношение (4).
- 3. В чем сущность графического способа нахождения $M_{m\rho}$?
- 4. Предложите способ оценки погрешности измерения.
- 5. Как может сказаться на результатах измерений конечное время срабатывания электромагнита?

Учебное издание

ОПРЕДЕЛЕНИЕ МОМЕНТА СИЛЫ ТРЕНИЯ ПРИ ПОМОЩИ МАШИНЫ АТВУДА.

Методические указания к выполнению лабораторной работы М-14

Составители: Надежда Степановна Кравченко Нина Ивановна Гаврилина

Отпечатано в Издательстве ТПУ в полном соответствии с качеством предоставленного оригинал-макета

Подписано к печати _____ 2012. Формат 60х84/16. Бумага «Снегурочка». Печать XEROX. Усл.печ.л. 9,01. Уч.-изд.л. 8,16. Заказ . Тираж ____ экз.

Национальный исследовательский Томский политехнический университет Система менеджмента качества Томского политехнического университета сертифицирована

NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2008

издательство тпу. 634050, г. Томск, пр. Ленина, 30 Тел./факс: 8(3822)56-35-35, www.tpu.ru