Decidable properties of CFL

Several undecidable are there ...

- Membership question.
- Empty?
- Infinite/not?

Membership question

- Given the CFG G and string w, we ask is $w \in L(G)$?
- There is a $O(n^3)$ algorithm where |w|=n, which is called the CYK algorithm.
 - This is a parsing technique whereby one can create the parse tree if the string is in the language.
 - Since this works for any CFG (not restricted to a subclass), this is one of universal parsers.

- If $w = \epsilon$, we verify to find whether S is nullable or not.
- Else, we convert the CFG in to CNF first.
- With CNF form the parse tree is a binary tree.
- And the string w can be derived in exactly 2|w|-1 steps.
- The parse tree will have exactly this many variables.

- We can list all possible derivations having 2|w|-1 steps.
- We verify whether, any, gave the string.
- But, this is an exponential time algorithm.

- There is a much more efficient technique based on the idea of "dynamic programming".
- This is called the CYK algorithm.
- Also called the table-filling or tabulation algorithm.

³It is named after three people, each of whom independently discovered essentially the same idea: J. Cocke, D. Younger, and T. Kasami.

CYK algorithm

- Let $w = a_1 a_2 \cdots a_n$ be the given string.
- We fill a table, as shown, for example when $w = a_1 a_2 \cdots a_5$

The table entry X_{ij} is the set of variables A such that $A \stackrel{*}{\Rightarrow} a_i a_{i+1} \cdots a_j$.

• If $S \in X_{1n}$ then $S \Rightarrow w$

• To find X_{1n} we need to fill the table, in a bottom-up fashion.

The table entry X_{ij} is the set of variables A such that $A \stackrel{*}{\Rightarrow} a_i a_{i+1} \cdots a_j$. $X_{12} X_{23} X_{34} X_{45}$

$$X_{15}$$
 X_{14} X_{25}
 X_{13} X_{24} X_{35}
 X_{12} X_{23} X_{34} X_{45}
 X_{11} X_{22} X_{33} X_{44} X_{55}
 a_1 a_2 a_3 a_4 a_5

 $\begin{array}{ccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \end{array}$

 $B \rightarrow CC \mid b$

 $C \rightarrow AB \mid a$

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

Parse tree

 Parse tree can be found by keeping track of some side information.

S	\rightarrow	AB	BC
A	\rightarrow	BA	a
B	\rightarrow	CC	b
C	\rightarrow	AB	a

$$\begin{array}{cccc} S & \rightarrow & AB \mid BC \\ A & \rightarrow & BA \mid a \\ B & \rightarrow & CC \mid b \\ C & \rightarrow & AB \mid a \end{array}$$

S	\rightarrow	$AB \mid BC$
A	\rightarrow	$BA \mid a$
B	\rightarrow	$CC \mid b$
C	\rightarrow	$AB \mid a$

Time complexity of CYK

• $O(n^3)$

Empty?

- This is easy.
- Is S generating?

Infinite or not?

- Algorithm.
- 1. Remove useless symbols.
- 2. Remove unit and ϵ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite, else not.

Example

• $S \rightarrow AB, A \rightarrow aCb|a, B \rightarrow bB|b, C \rightarrow cBS$

Example

• $S \rightarrow AB, A \rightarrow aCb|a, B \rightarrow bB|b, C \rightarrow cBS$

Some undecidable properties 😊

- Let G_1 and G_2 be two CFGs.
- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1)$ is regular?
- Is $L(G_1) \subseteq L(G_2)$?
- Is $L(G_1) = L(G_2)$?
- Is $L(G_1) \cap L(G_2) = \phi$?
- Is $L(G_1)$ ambiguous? (inherent ambiguity)
- Is G_1 ambiguous?