Math 102 - Winter 2013 - Final Exam

Name:		
Student ID:		
Section time:		

Instructions:

Please print your name, student ID and section time.

During the test, you may not use books, calculators or telephones.

There are 8 questions which are worth 125 points. You have 3 hours to complete the test.

Question	Score	Maximum
1		19
2		19
3		27
4		12
5		12
6		15
7		11
8		10
Total		125

Problem 1. [19 points.]

Consider the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ -1 & -1 \\ -2 & -1 \end{bmatrix}.$$

(i) [5] Find the left inverse of A.

(ii) [4] Find the matrix of the projection onto the colum	n space of A .
(iii) [3] Find the matrix of the projection onto the left nu	ll space of A .

(iv) [7] Find the QR decomposition of A.

Problem 2. [19 points.]

Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 3 & 4 & 2 & 5 \\ -2 & -6 & -1 & 4 \end{bmatrix}.$$

(i) [5] Find the LU decomposition of the matrix A.

(ii) [3] Find a basis for the column space of A. What is the rank of A? Fill in the blank: the column space $C(A) = \underline{\hspace{1cm}}$.

(iii)	[3] Find a basis for the null space of A .
(iv)	[2] Show that the columns of A are linearly dependent by exhibiting an explicit linear relation between them.
	relation between them.

(iv)	[2]	Find a basis for the row space of A .	
(v)	[2]	Find a basis for the orthogonal complement of the column spa	$x \in A$
(vi)	[2]	Does A admit either a left inverse or a right inverse?	

Problem 3. [27 points.]

Consider the matrix

$$A = \begin{bmatrix} 2 & 1 \\ -2 & -1 \\ 4 & 2 \end{bmatrix}.$$

(i) [12] Write down the SVD for the matrix A.

Continue part (i) here if needed.

(ii) [4] Find the pseudoinverse of A. (iii) [3] Find the matrix of the projection onto the row space of A.

- (iv) [4] From the SVD, write down orthonormal bases for
 - the column space of A,
 - the row space of A,
 - the null space of A,
 - the left null space of A.

(v) [4] Consider the incompatible system

$$Ax = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}.$$

Write down

- all least squares solutions;
- the least squares solution of minimum length.

Problem 4. [13 points.]

Consider \mathcal{P} the space of polynomials of degree at most equal to 2. Consider the basis \mathcal{B} consisting of the polynomials $\{1, 1-x, x^2-x\}$.

(i) [4] Find the matrix of the linear transformation $\mathcal{T}: \mathcal{P} \to \mathcal{P}$,

$$\mathcal{T}(f) = x^2 f'' + x f',$$

in the basis \mathcal{B} .

- (ii) [2] Using (i), find
 - the rank of \mathcal{T} and a basis for the column space of \mathcal{T} . (Your basis should consist of polynomials.)

(ii) [7] Endow \mathcal{P} with the inner product

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x).$$

Starting with the basis \mathcal{B} , obtain an orthogonal basis for \mathcal{P} via Gram-Schmidt.

Problem 5. [12 points.]

Consider the quadratic form

$$Q(x, y, z) = 3x^{2} + 3y^{2} + 3z^{2} + 4xy + 4yz + 4zx.$$

(i) [5] Discuss the definiteness of the form Q, using any method you wish.

(ii) [7] Using any method developed in this course, express Q as a	a sum of three squares.

Problem 6. [15 points.]

TRUE OR FALSE (no explanation is necessary):

- (T) (F) The set of all skew symmetric $n \times n$ matrices is a vector space.
- (T) (F) Any complex normal matrix is diagonalizable.
- (T) (F) The product of two skew Hermitian matrices is Hermitian.
- (T) (F) For any matrix A with singular values $\sigma_1, \ldots, \sigma_r$

Trace
$$(AA^T) = \sigma_1^2 + \ldots + \sigma_r^2$$
.

- (T) (F) There exist skew-Hermitian matrices of determinant 1+i.
- (T) (F) The LU decomposition of an invertible matrix, if it exists, must be unique.
- (T) (F) The QR decomposition, if it exists, must be unique.
- (T) (F) The positive decomposition $A = R^T R$ of a symmetric matrix, if it exists, must be unique.
- (T) (F) If A and B are unitarily similar, then $\exp(A)$ and $\exp(B)$ are unitarily similar.
- (T) (F) Any positive definite quadratic form of n variables can be written as sum of n squares of linear terms.
- (T) (F) If Q is a unitary matrix, then Q + 2I is invertible.
- (T) (F) For any complex vector \mathbf{v} , the matrix

$$R = I - 2\mathbf{v} \cdot \mathbf{v}^H$$

has real eigenvalues.

- (T) (F) A symmetric matrix has as many positive pivots as positive eigenvalues.
- (T) (F) All positive definite symmetric matrices admit LU decompositions.
- (T) (F) The rule

$$\langle f, g \rangle = f(0) g(0) + f(1) g(1)$$

defines an inner product on the space of polynomials of degree less or equal to 2.

Problem 7. [11 points.]

Consider the Fibonacci-type recursion

$$G_{n+2} = \frac{1}{3}G_{n+1} + \frac{2}{3}G_n, \ G_0 = 0, \ G_1 = 1.$$

 $G_{n+2}=\frac{1}{3}G_{n+1}+\frac{2}{3}G_n,\ G_0=0,\ G_1=1.$ (i) [2] Let $\vec{x}_n=\begin{bmatrix}G_{n+1}\\G_n\end{bmatrix}$. Write down a difference equation that \vec{x}_n satisfies in the form

$$\vec{x}_{n+1} = A\vec{x}_n$$

(To write A down, you may need to use a self-obvious second equation $G_{n+1} = G_{n+1}$.)

(ii) [3] Discuss the stability of the difference equation.

Problem 8. [10 points.]

Let $A = UDV^T$ be the singular value decomposition of the $n \times n$ matrix A with singular values

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0.$$

Let $A^+ = VD^+U^T$ denote the pseudoinverse of A.

- (i) [4] Explain why
 - the null space of A equals the left null space of A^+ ;
 - the column space of A equals the row space of $A^+.$

(ii) [2] Confirm (by direct calculation) that

$$DD^+D = D.$$

(iii) [4] Using (ii), confirm that

$$AA^+A = A.$$

(Similarly, $A^+AA^+=A^+$, but you don't need to show this.)