COL870: Assignment 1 | Report

Ankit Garg 2017EE10439 Devang Mahesh 2017EE10093

Link to the Model Weight Folder:

https://drive.google.com/drive/folders/1oholx0j60WGXgmx-W5f3-ZEgLr9 N uf ?usp=sharing

Part 1

ResNet over Convolutional Networks and different Normalization schemes

We built a generalized ResNet architecture of depth 6*n + 2, and r outputs. We trained this model on the CIFAR-10 dataset, with n = 2 and r = 10, and reported the results. We experimented with various normalization techniques.

The train / validation / test split was 40k / 10k / 10k images. We used SGD optimizer, in all the experiments, with weight decay of 0.0001.

Part 1.1 Image Classification using Residual Network

Normalization

Without any normalization

Hyperparameters

Optimizer	SGD
Learning Rate	0.001
Momentum	0.9
Weight Decay	0.0001
Batch Size	128

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 49
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	85.78%	85.80%	93.52%
Validation	72.09%	72.04%	82.61%
Test	71.74%	71.73%	82.26%

Part 1.2: Impact of Normalization

We implemented various normalizations, from scratch in pytorch :-

- (a) Batch Normalization
- (b) Instance Normalization
- (c) Batch-Instance Normalization
- (d) Layer Normalization
- (e) Group Normalization

The statistics of No Normalization variant has been mentioned in the previous part. We report variant wise statistics, and then we perform the comparative study. The normalization layers are applied just before the activation in all these cases.

1.2.1 - 1.2.3

BN Variant

Normalization

This uses batch normalization

Hyperparameters

Optimizer	SGD
Learning Rate(initial)	1
Momentum	0.9
Weight Decay	0.0001
Batch Size	128

It starts with a high learning rate of 1. After every epoch, the learning rate becomes 0.96 times the previous learning rate.

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 40
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	93.19%	93.17%	96.48%
Validation	82.87%	82.78%	89.44%
Test	81.39%	81.28%	89.48%

IN Variant

Normalization

This uses instance normalization

Hyperparameters

Optimizer	SGD
Learning Rate (initial)	1
Momentum	0.9
Weight Decay	0.0001
Batch Size	128

It starts with a high learning rate of 1. After 50 Epochs, we change it to 0.1

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 52
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	94.05%	94.08%	97.23%
Validation	83.99%	84.06%	90.19%
Test	83.35%	83.43%	89.79%

BIN Variant

Normalization

This uses batch - instance normalization

Hyperparameters

Optimizer	SGD
Learning Rate (initial)	1
Momentum	0.9
Weight Decay	0.0001
Batch Size	128

It starts with a high learning rate of 1. After 30 Epochs, we change it to 0.1

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 35
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	92.12%	92.14%	96.31%
Validation	83.31%	83.38%	90.32%
Test	82.98%	83.00%	89.78%

LN Variant

Normalization

This uses layer normalization

Hyperparameters

Optimizer	SGD
Learning Rate	0.01
Momentum	0.9
Weight Decay	0.0001
Batch Size	128

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 37
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	87.09%	87.07%	94.04%
Validation	77.66%	77.59%	86.63%
Test	76.61%	76.52%	85.09%

GN Variant

Normalization

This uses group normalization

Hyperparameters

Optimizer	SGD
Learning Rate (initial)	0.1
Momentum	0.9
Weight Decay	0.0001
Batch Size	128
No of Group	16

After 20 epochs, the learning rate is changed to 0.01

Plots

The error and accuracy plots are obtained as shown:-

Regularization

- Early stopping
 Early stopping at epoch = 20
- Weight Decay
 We use weight decay = 0.0001

Data	Accuracy	Macro F1	Micro F1
Training	96.93%	96.93%	98.79%
Validation	82.41%	82.41%	88.89%
Test	81.98%	82.00%	89.29%

1.2.4 Compare BN variant with 1.1 model

We take the model in 1.1 and add a batch norm layer (provided by pytorch). We compare it with our own implementation of batch norm

	Inbuilt Batch Norm	Our Implementation			
Test Accuracy	79.41%	81.39%			
Test Macro F1	79.50%	81.28%			
Test Micro F1	88.17%	89.48%			
Error Plot	Taining Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss Validation Loss	16			

The results from our implementation are almost the same to the inbuilt batch norm provided by the pytorch. The error curves also converge to the same loss value.

1.2.5 Compare error curves and statistics of all the models

All the variants are compared below. Instance norm performs the best on all metrics for test data. The NN variant performs the worst. Within the normalization variants, LN performs the worst.

Accuracy

Variant	Training Data	Val. Data	Test Data
NN	85.78%	72.09%	71.74%
BN	93.19%	82.87%	81.39%
IN	94.05%	83.99%	83.35%
BIN	92.12%	83.31%	82.98%
LN	87.09%	77.66%	76.61%
GN	96.93%	82.41%	81.98%

Based, on Accuracy of test data, we can say Performance : IN > BIN > GN > BN > LN > NN

Macro F1

Variant	Training Data	Val. Data	Test Data
NN	85.80%	72.04%	71.73%
BN	93.17%	82.78%	81.28%
IN	94.08%	84.06%	83.43%
BIN	92.14%	83.38%	83.00%
LN	87.07%	77.59%	76.52%
GN	96.93%	82.41%	82.00%

Based, on Macro F1 score of test data, we can say Performance : IN > BIN > GN > BN > LN > NN

Micro F1

Variant	Training Data	Val. Data	Test Data
NN	93.52%	82.61%	82.26%
BN	96.48%	89.44%	89.48%
IN	97.23%	90.19%	89.79%
BIN	96.31%	90.32%	89.78%
LN	94.04%	86.63%	85.09%
GN	98.79%	88.89%	89.29%

Based, on Macro F1 score of test data, we can say Performance : IN > BIN > BN > GN > LN > NN

Error Curves

1.2.6 Impact of Batch Size

We retrained the BN and GN variants for batch size 8. We do not observe any significant change of performance in any of the two variants. The performance almost remains the same. The effect might be more prominent if we take further small batch size. We get the following statistics:

Batch Norm

Data	В	satch Size =	128	Batch Size = 8			
	Acc	Macro F1	Micro F1	Acc	Macro F1	Micro F1	
Training	93.19%	93.17%	96.48%	92.78%	92.79%	96.79%	
Val	82.87%	82.78%	89.44%	82.42%	82.38%	90.18%	
Test	81.39%	81.28%	89.48%	81.39%	81.42%	88.99%	

Group Norm

Data	В	atch Size =	128	Batch Size = 8			
	Acc	Macro F1	Micro F1	Acc	Macro F1	Micro F1	
Training	96.93%	96.93%	98.79%	89.05%	88.98%	94.88%	
Val	82.41%	82.41%	88.89%	81.67%	81.57%	89.03%	
Test	81.98%	82.00%	89.29%	81.26%	81.11%	88.78%	

1.2.7 Evolution of feature distributions

We observe that in the later epochs the quantiles saturate for all the variants. It shows that after some epochs the input distribution that our model sees, becomes uniform. In other words, the learning becomes stable.

Part 2: LSTM with Layer Normalization and CRF

2.1 NER Tagging with Bi-LSTM

2.1.1. Bi-LSTM without pre-trained embeddings

In this part, we train a Bi-LSTM with random embeddings of size 100 that are trained from scratch at time of training.

Hyperparameters

Optimizer	SGD
Learning Rate	0.01
Momentum	0.9
Weight Decay	0.0001
Gradient Clipping	5 (p =2)
Batch Size	128

Plots

Results

For this part, we calculated the per class F1-score, Precision and Recall (at instance level) using the package sequel. We also report the accuracy, which was evaluated at token level.

	Train D	ata			Val Da	ta			Test Da	ıta	
	precision		f1-score	art	precision	recall 0.00	f1-score		precision		f1-score
art eve	0.00 0.00	0.00 0.00	0.00	eve	0.00	0.00	0.00	art	0.00	0.00	0.00
	0.00 0.75	0.00 0.76	0.76	geo	0.71	0.75	0.73	eve	0.00 0.71	0.00 0.75	0.00
geo	0.84	0.76	0.82	gpe	0.84	0.79	0.81	geo	0.71	0.75	0.73 0.82
gpe nat	0.00	0.00	0.00	nat	0.00	0.00	0.00	gpe nat	0.00	0.00	0.00
	0.49	0.44	0.00 0.47	org	0.46	0.44	0.45		0.46	0.44	0.45
org				per	0.56	0.49	0.52	org	0.46 0.57	0.44	0.43 0.53
per	0.57	0.53	0.55	tim	0.79	0.73	0.76	per tim			
tim micro avg macro avg	0.79 0.70 0.43	0.74 0.66 0.41	0.76 0.68 0.42	micro avg macro avg	0.68 0.42	0.65 0.40	0.66 0.41	micro avg macro avg	0.77 0.68 0.42	0.72 0.65 0.40	0.74 0.66 0.41
weighted avg	0.69	0.66	0.68	weighted avg	0.67	0.65	0.66	weighted avg	0.67	0.65	0.66
Acc: 0.95	0.09	0.00	0.08	Acc: 0.94				Acc: 0.94			

2.1.2. Bi-LSTM with pre-trained embeddings: Glove embeddings

In this part, we train a Bi-LSTM with the embeddings for our data vocabulary coming from the glove embeddings. The embeddings were then fine tuned while training for our dataset.

Hyperparameters

Optimizer	SGD
Learning Rate	0.01
Momentum	0.9
Weight Decay	0.0001
Gradient Clipping	5 (p =2)
Batch Size	128

Plots

Results

We calculated the per class F1-score, Precision and Recall (at instance level) using the package sequent. We also report the accuracy, which was evaluated at token level.

Acc: 0.96				Acc: 0.96				Acc: 0.96			
weighted avg	0.75	0.75	0.75	macro avg weighted avg	0.47 0.74	0.45 0.73	0.46 0.74	weighted avg	0.74	0.74	0.7
micro avg macro avg	0.76 0.47	0.75 0.47	0.76 0.47	micro avg	0.75	0.73	0.74	micro avg macro avg	0.75 0.59	0.74 0.46	0.7 0.4
tim	0.84	0.81	0.82	per tim	0.67 0.83	0.69 0.80	0.68 0.82	tim	0.83	0.79	0.8
per	0.70	0.73	0.72	org	0.54	0.46	0.50	per	0.69	0.70	0.7
org	0.56	0.48	0.52	nat	0.00	0.00	0.00	nat org	0.00 0.53	0.00 0.45	0.0 0.4
gpe nat	0.90 0.00	0.86 0.00	0.88 0.00	gpe	0.90	0.86	0.88	gpe	0.89	0.85	0.8
geo	0.78	0.85	0.81	geo	0.77	0.83	0.80	geo	0.78	0.83	0.8
eve	0.00	0.00	0.00	eve	0.00	0.00	0.00	eve	1.00	0.01	0.6
art	0.00	0.00	0.00	art	0.00	0.00	0.00	art	0.00	0.00	0.6
	precision	recall	f1-score		precision	recall	f1-score		precision	recall	f1-scor

2.1.3. Bi-LSTM with Character Level Embeddings

In this part, we train a Bi-LSTM with the the embeddings for our data vocabulary coming from the glove embeddings plus character level embeddings coming from an additional Bi-LSTM trained at a alphabet level as compared to word level. Then the glove and character embeddings were combined and fed into the Bi-LSTM for training.

Hyperparameters

Optimizer	SGD
Learning Rate	0.01
Momentum	0.9
Weight Decay	0.0001
Gradient Clipping	5 (p =2)
Batch Size	128

Plots

Results

We calculated the per class F1-score, Precision and Recall (at instance level) using the package sequel. We also report the accuracy, which was evaluated at token level.

	Train D	ata			Val Dat	а			Test Da	ta	
art eve geo gpe nat org per tim micro avg macro avg weighted avg	precision 0.00 0.00 0.76 0.81 0.00 0.49 0.58 0.81 0.70 0.43 0.70	recall 0.00 0.76 0.81 0.00 0.44 0.56 0.77 0.67	f1-score 0.00 0.00 0.76 0.81 0.00 0.46 0.57 0.79 0.69 0.42 0.68	art eve geo gpe nat org per tim micro avg macro avg	precision 0.00 0.00 0.76 0.82 0.00 0.48 0.54 0.81 0.70 0.43 0.69	recall 0.00 0.00 0.74 0.80 0.00 0.42 0.52 0.76 0.66 0.41 0.66	f1-score 0.00 0.00 0.75 0.81 0.00 0.45 0.53 0.78 0.68 0.42 0.67	art eve geo gpe nat org per tim micro avg macro avg weighted avg	0.00 0.00 0.76 0.80 0.09 0.48 0.57 0.80 0.70 0.43 0.69	recall 0.00 0.00 0.73 0.81 0.00 0.43 0.54 0.75 0.66 0.41 0.66	f1-score 0.00 0.00 0.74 0.81 0.00 0.45 0.56 0.78 0.68 0.42 0.67
Acc: 0.95				Acc: 0.94				Acc: 0.94			

2.1.4. Bi-LSTM with Layer Normalisation

In this part, we train a Bi-LSTM with the the embeddings for our data vocabulary coming from the glove embeddings plus character level embeddings coming from an additional Bi-LSTM trained at a alphabet level as compared to word leve

Further, inside the nn.LSTM cell, we implement layer normalisation before passing the output h^t out of the LSTM cell.

Hyperparameters

Optimizer	SGD
Learning Rate	0.01
Momentum	0.9
Weight Decay	0.0001
Gradient Clipping	5 (p =2)
Batch Size	128

Plots

Results

We calculated the per class F1-score, Precision and Recall (at instance level) using the package sequel. We also report the accuracy, which was evaluated at token level.

	Train Data				Val Data			Test Data			
_war ii_pr i (e	precision		_scare, ich f1-score		precision	recall	f1-score		precision	recall	f1-score
art	0.00	0.00	0.00	art	0.00	0.00	0.00	art	0.00	0.00	0.00
eve	0.83	0.08	0.15	eve	0.75	0.04	0.07	eve	0.71	0.06	0.11
geo	0.80	0.87	0.83	geo	0.78	0.84	0.81	geo	0.79	0.85	0.81
gpe	0.92	0.87	0.90	gpe	0.92	0.86	0.89	gpe	0.91	0.86	0.89
nat	0.00	0.00	0.00	nat	0.00	0.00	0.00	nat	0.00	0.00	0.00
org	0.59	0.52	0.55	org	0.55	0.49	0.52	org	0.55	0.49	0.52
per	0.72	0.75	0.74	per	0.69	0.69	0.69	per	0.71	0.71	0.71
tim	0.85	0.81	0.83	tim	0.84	0.80	0.82	tim	0.84	0.79	0.81
micro avg	0.78	0.77	0.77	micro avg	0.76	0.74	0.75	micro avg	0.76	0.75	0.75
macro avg	0.59	0.49	0.50	macro avg	0.57	0.46	0.47	macro avg	0.56	0.47	0.48
weighted avg	0.77	0.77	0.77	weighted avg	0.75	0.74	0.75	weighted avg	0.75	0.75	0.75
Acc: 0.96				Acc: 0.96				Acc: 0.96			

Comparison of Character Level Model to Pre-trained Embeddings

	Char Model: Macro F1	Glove Model: Macro F1		
Train Data	0.68	0.75		
Val Data	0.67	0.74		
Test Data	0.67	0.74		

We see that the glove model performs better as compared to the character level model. Firstly, the metric of comparison chosen to be is weighted Macro F1. As the data we have is imbalanced, looking at F1 will be unjust as there are few label classes like eve which has just 226 instances out of 86644 total instances. Because of such low data, no model is able to learn well on them, including the pre-trained ones.

Theoretically, Glove and Character level embedding both take the context into picture. Glove has embeddings based on the usage of words and captures a whole range of Language, only a part of which may be present in our model training data. Character level model is trained from scratch and we hope to learn morphological context by using them which our model does learn as a slight improvement over a normal random model. Still as the vocab we have in training data is low, we don't see large improvement.

Comparison of Normalised Model to Non-Normalised

	Norm Model: Macro F1	Non-Norm Model: Macro F1
Train Data	0.77	0.75
Val Data	0.76	0.74
Test Data	0.76	0.74

From the table above, we see that normalisation helps in increasing the Macro F1 score. As normalisation helps in stable learning by keeping the distribution of input constant, we see the improvement in the predictions. Normalisation even does good

on the label classes which have a small number of samples. Thus, it makes the model better in a complete sense.

2.2 Linear chain CRF

In this part, we implemented a Linear Chain CRF from scratch. The partition function is used in calculating loss and training. The model does not directly give the predictions, it gives pre-softmax weights which are then used along with the transition matrix to calculate loss. Now we iterate through all possible outcomes (prediction) and choose the one with minimum loss. The sequence with minimum loss is called Most Likely Sequence.

Initialization: The transition matrix is initialised to zero in start. It is because a random initialisation will mean that we bias few labels to occur together and that may be wrong in the sense that it may not be true in real dataset. Such random initialisation will cause the model to go the wrong direction.

Zero initialisation means that we use start with no prior knowledge and learn the tendencies of labels to occur together directly from the dataset we have.

			CRF Train	ing Statis	stics	
Train			precision	recall	f1-score	support
		art	0.00	0.00	0.00	296
		eve	0.83	0.11	0.20	226
		geo	0.75	0.79	0.77	29240
		gpe	0.91	0.73	0.81	12058
		nat	0.00	0.00	0.00	133
		org	0.57	0.46	0.51	15803
		per	0.71	0.54	0.61	13121
		tim	0.86	0.76	0.81	15767
	micro	avg	0.76	0.67	0.71	86644
	macro	avg	0.58	0.42	0.46	86644
	weighted	avg	0.75	0.67	0.71	86644

Val			precision	recall	f1-score	support
			-			
		art	0.00	0.00	0.00	105
		eve	0.73	0.10	0.18	78
		geo	0.75	0.75	0.75	9724
		gpe	0.91	0.72	0.80	4210
		nat	0.00	0.00	0.00	50
		org	0.55	0.43	0.48	5187
		per	0.68	0.52	0.59	4457
		tim	0.85	0.74	0.80	5254
	micro	~	0.75	0.65	0.69	29065
	macro	-	0.56	0.41	0.45	29065
	weighted	avg	0.74	0.65	0.69	29065
Test			precision	recall	f1-score	support
		art	0.00	0.00	0.00	102
		eve	0.62	0.06	0.11	87
		geo	0.75	0.76	0.76	9912
		gpe	0.90	0.72	0.80	4168
		nat	0.00	0.00	0.00	55
		org	0.54	0.43	0.48	5205
		per	0.69	0.51	0.59	4406
		tim	0.85	0.73	0.79	5275
	micro	avg	0.75	0.65	0.69	29210
	macro	-	0.54	0.40	0.44	29210
	weighted	avg	0.74	0.65	0.69	29210

Comparison with BI-LSTM models

First thing to note here is that CRF is very computationally expensive. The partition function calculation uses dynamic programming and still has a time complexity of O(NC²) where N is the number of data points and C is the number of classes.

	CRF Model: Macro F1	Norm Model: Macro F1
Train Data	0.71	0.77
Val Data	0.69	0.76
Test Data	0.69	0.76

Because of limited computational resources, we were only able to train CRF for 5 epochs. To our surprise, CRF did fairly well even in just 5 epochs. The results are not drastically different. If given sufficient training, we may achieve better stats.