Instruction & Guidelines

- · You are allowed to use any library, built-in function or code base for this assignment.
- You are only allowed to use classical ML models or their ensemble, and your pipeline must not contain Deep Learning (DL) models. For example, use of the AutoGrad library from Pytorch is allowed but not a CNN/MLP. Similarly, generating code from GenAl/code-LLMs is allowed but generating directly predictions from these is not allowed.
- This is a competition, so each is competing against the others in the class. The higher your rank on the leaderboard, the higher the marks. Currently, there is no lower bar on performance, but after a week we will reassess if students are pushing the performance or not.
- You are given Train and Test splits. You are supposed to use only the Train set for model training. Groundtruth for Test split is not available. Sample submission is available in the competition link.

Dataset Description

The dataset used for predictive modeling was generated by the Wild Blueberry Pollination Simulation Model, which is an open-source, spatially-explicit computer simulation program that enables exploration of how various factors such as plant spatial arrangement, outcrossing and self-pollination, bee species compositions and weather conditions either in isolation and combination,

affect pollination efficiency and yield of the wild blueberry agroecosystem.

The simulation model has been validated by the field observation and experimental data collected in Maine USA and Canadian Maritimes during the last 30 years and now is a useful tool for hypothesis testing and theory development for wild blueberry pollination researches.

Table 1: Dataset Features Description

Features	Unit	Description
Clonesize	m2	Average blueberry clone size
Honeybee	bees/m2/	Honeybee density
Bumbles	min	Bumblebee density
Andrena	bees/m2/	Andrena bee density
Osmia	min	Osmia bee density
MaxOfUpperTRa	bees/m2/	Maximum air temperature (Blooming Season)
nge	min	Minimum air temperature (Blooming Season)
MinOfUpperTRan	bees/m2/	Average of the maximum daily air temperature The
ge	min °C	highest record of the lower band daily air temperature
AverageOfUpperTRa	°C	The lowest record of the lower band daily air
nge	°C	temperature The average of the lower band daily air
MaxOfLowerTRange	°C	temperature Rainy days during the bloom season.
MinOfLowerTRange	°C	The average of raining days for entire bloom season
AverageOfLowerTRa	°C	, , , , , , , , , , , , , , , , , , ,
nge RainingDays	Day	
AverageRainingDays	Day	

Task

Your task is to use any kind of regression model to predict the yield of wild blueberries.