

No.	Parameter(cm)	description
1	z_set(cm)	2개의 회전 DOF(base,platform)로 움직임을 구속하기 위한
		상수 값. (base, platform은 원하는대로 지정할 수 있다.)
2	p_rad(cm)	Platform에서 각 엑추에이터까지의 반지름
3	b_rad(cm)	Base에서 각 엑추에이터까지의 반지름
4	z0(cm)	사물(platform)이 충돌하기 전에 시스템의 최소 변환 z 값.
		(platform에서부터 base까지 길이 변화 시 서로 충돌하지
		않도록 지정하는 값)

허리의 Roll, Pitch 값에 따른 제어를 하는 수식은 다음과 같다.

$$\overrightarrow{L}_i = \overrightarrow{T} + ({}^{B}\!R_P \times \overrightarrow{P_i}) - \overrightarrow{B_i}$$

$$\overrightarrow{T} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ z_set & z_set & z_set \end{bmatrix}$$

$${}^{B}\!R_{P} = R_{z}(\varPsi) \times R_{y}(\varTheta) \times R_{x}(\varPhi)$$

$$= I \times \begin{bmatrix} \cos\Theta & 0 & \sin\Theta \\ 0 & 1 & 0 \\ -\sin\Theta & 0 & \cos\Theta \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\Phi & -\sin\Phi \\ 0 & \sin\Phi & \cos\Phi \end{bmatrix}$$

$$\therefore {}^{B}R_{P} = \begin{bmatrix} \cos\Theta & \sin\Theta\sin\Phi & \cos\Phi\sin\Phi \\ 0 & \cos\Phi & -\sin\Phi \\ -\sin\Theta & \cos\Theta\sin\Phi & cps\Phi\cos\Theta \end{bmatrix} \qquad (I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix})$$

$$\overrightarrow{P}_i = \begin{bmatrix} p_rad & -p_rad \times \sin 30 & -p_rad \times \sin 30 \\ 0 & p_rad \times \cos 30 & -p_rad \times \cos 30 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\overrightarrow{B}_i = \begin{bmatrix} p_rad & -b_rad \times \sin 30 & -b_rad \times \sin 30 \\ 0 & b_rad \times \cos 30 & -b_rad \times \cos 30 \\ z0 & z0 & z0 \end{bmatrix}$$

roll, pitch에 따른 각각의 엑추에이터 길이 계산은 다음과 같다.

$$L_1 = (L[0][0])^2 + (L[1][0])^2 + (L[2][0])^2$$

$$L_2 \ = (L[0][1])^2 + (L[1][1])^2 + (L[2][1])^2$$

$$L_3 \ = \ (L[0][2])^2 + \ (L[1][2])^2 + \ (L[2][2])^2$$

Reference:

[1]https://github.com/adamweld/microgoats_stewie

[3]Khalid Ali Abdelaziz Ali and Ying Liu (2016). Position Analysis Of 3-DOF 3-RPS Parallel Manipulator