Statistics MCQ Question Bank

Second Paper

Abdullah Al Mahmud

www.statmania.info

1 Introduction to Probability

1.1 Permutation-Combination

(a) 3

1. Three objects can be placed in 2 positions in – ways.

(b) 4

2.	In how many ways can a team of 2 be formed from 4 people?				
	(a) 4	(b) 6	(c) 8	(d) 12	
3.	$^{n}p_{r}=$				
	(a) $\frac{n!}{(n-r)!}$	(b) $\frac{n!}{(n+r)!}$	(c) $\frac{n!}{r!}$	(d) $\frac{n!}{(r-n)!}$	
4.	$^{n}C_{r} =$				
	(a) $\frac{n!}{(n-1)!(n+r)!}$	(b) $\frac{r!}{n!(n-r)!}$	(c) $\frac{n!(n-1)!}{r!}$	(d) $\frac{n!}{(r-n)!}$	
	1.2 Conceptual	Questions			
5.	The probability of ty	wo disjoint sets happe	ning together is:		
	(a) 0.5	(b) 0	(c) 1	(d) $0 \le x < 1$	
6.	How many additive	laws of probability are	e there?		
	(a) 1	(b) 2	(c) 3	(d) 4	
7.	$P(A \cup B) = P(A) + P(A$	B) implies A & B are	_		
	(a) Disjoint	(b) Independent	(c) Joint	(d) Independent	
8.	Which is the formula	a of classical approach	of probability?		
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$	outcomes ple outcomes	(b) $P = \frac{\text{No. of total out}}{\text{No. of favorable of}}$	comes_ utcomes	
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$		(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$		
9.		a of empirical/relative	e frequency approach	of probability?	
	(a) $P = \frac{\text{No. of favorable}}{\text{Total no. of possible}}$		(b) $P = \frac{\text{No. of total oute}}{\text{No. of favorable of }}$		
	(c) $P = \lim_{n(S) \to \infty} \frac{n(A)}{n(S)}$	AC Outcomes	(d) $P = \lim_{n(A) \to \infty} \frac{n(A)}{n(S)}$	uvones	
10.	What is the correct	formula for conditions	al probability?		
		(b) $P(A B) = \frac{P(A \cap B)}{P(A)}$	-	(d) $P(A B) = \frac{P(B A)}{P(B A)}$	
11.	The third axiom of p	probability is –			
	(a) $0 \le P(A) \le 1$		(b) $P(S) = 1$		
	(c) $P(A_1UA_2U\cdots UA_n)$	$) = \sum_{i=1}^{\infty} P(A_i)$	(d) $P(A) = 1 - P(A)$		
12.	Possible value of pro	bability			
	i1 ii. 0.5 iii. 0				
	Which one is correct	?			
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii	

(c) 6

(d) 8

13.	An act repeated under some specific conditions is called –				
	(a) Event	(b) Experiment	(c) Sample	(d) Sample space	
14.	P(0) implies –				
	(a) A certain event	(b) An uncertain event	(c) An impossible event	(d) A probable event	
15.	Events having some	common elements are	called –		
	(a) Complementary eve	nts	(b) Mutually exclusive e	events	
	(c) Exhaustive events		(d) Non-Mutually exclusion	sive events events	
16.	The minimum value	of probability is			
	(a) $-\alpha$	(b) 1	(c) 0	(d) -1	
17.	Each element of sam	ple space is called-			
	(a) Trial	(b) Experiment	(c) Variable	(d) Sample Point	
18.	Two events not ocur	ring together are calle	ed –		
	(a) dependent Events		(b) Independent Events		
	(c) Mutually Exclusive	Events	(d) Marginal Events		
19.	If A and B are independent, which formula is correct?				
	(a) $P(A \cap B) = P(A) \cdot A$	P(B)	(b) $P(A \cap B) = P(\bar{A}) \cdot \bar{A}$	P(B)	
	(c) $P(A \cap B) = P(A) \cdot A$	$P(ar{B})$	(d) $P(A \cap \bar{B}) = P(A) \cdot \bar{B}$	P(B)	
20.	10 out of each 100 people in a city walk to the office. If one is picked randomly, what is the probability s/he does not walk to the office?				
	(a) 0.95	(b) 0.10	(c) 0.90	(d) 0.01	
	1.3 Coin-Die				
21.	A coin is thrown thr	ice. How many outco	mes are generated?		
	(a) 3	(b) 4	(c) 8	(d) 9	
22.	A die is thrown twic	e. This is called –			
	(a) An experiment	(b) sample space	(c) A random experiment	-(d) A trial	
23.	If a neutral die is the	rown, the probability	of having a digit grea	ter than 6 is	
	(a) $\frac{1}{6}$	(b) $\frac{0}{6}$	(c) $\frac{2}{3}$	(d) $\frac{3}{6}$	
24.	Tossing a coin twice	generates how many	outcomes?		
	(a) 4	(b) 16	(c) 8	(d) 2	
25.	A die is rolled twice.	How many possible	outcomes are there?		
	(a) 6	(b) 12	(c) 36	(d) 18	

1.4 Balls-Cards

26.		4 black, and 5 whi ability that both are		two balls are randomly taken	n,	
	(a) $\frac{1}{66}$	(b) $\frac{1}{22}$	(c) $\frac{2}{22}$	(d) $\frac{3}{11}$		
	Answer the next three questions based on the following information.					
	A card is drawn fro	m of pack of playing ca	ards.			
27.	What is the prob	oability that the care	d is a King?			
	(a) 0.0192	(b) 0.25	(c) 0.5	(d) 0.0769		
28.	P(The card is no	t from Diamonds)-				
	(a) $\frac{1}{2}$	(b) 0	(c) $\frac{3}{4}$	(d) $\frac{1}{4}$		
29.	P(The card is red	d or Clubs)				
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$		
	Answer the next	TWO questions bas	sed on the following in	formation.		
	An urn contains 5 r	ed, 7 blue, and 8 green	balls.			
30.	What is the prob	ability that the ball	drawn is red?			
	(a) 0.26	(b) 0.25	(c) 0.2	(d) 0.4		
31.	P(The ball drawn	n is not blue)–				
	(a) $\frac{13}{20}$	(b) 0.5	(c) $\frac{7}{20}$	(d) $\frac{8}{20}$		
	1.5 Set-Probl	ems				
	Answer the next two questions based on the following information					
		For two exhaustive ev	renst A & B, $P(A) = 0.7$	and $P(B) = 0.4$		
32.	$P(A \cap B) = ?$					
	(a) 0.1	(b) 0.3	(c) 0.6	(d) 1		
33.	The events A & 1	B are –				
	i. independentii. dependentiii. not mutually exclusive					
	Which one is correct?					
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
			ng the following inform	nation		
	$P(A) = \frac{1}{3}, P(B) = \frac{1}{3}$	$\frac{1}{2}\&P(A\cup B) = \frac{\imath}{12}$				
34.	$P(A \cap B) = ?$					
	(a) $\frac{5}{12}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{15}{16}$		
35.	$P(A \cap \bar{B}) = ?$					
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	(c) $\frac{5}{6}$	(d) $\frac{1}{12}$		

36.	6. What is the probability that B occurs or A does not occur?			
	(a) $\frac{3}{4}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{11}{12}$
	Answer the next through $D) = \frac{9}{10}$	ee questions using the	following information	$P(C) = \frac{2}{5}, P(D) = \frac{3}{4} \& P(C \cup C)$
37.	$P(C \cap D) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{1}{4}$	(c) $\frac{7}{20}$	(d) $\frac{4}{5}$
38.	$P(C\cap \bar{D})=?$			
	(a) $\frac{1}{10}$	(b) $\frac{2}{5}$	(c) $\frac{2}{20}$	(d) $\frac{3}{10}$
39.	What is the probabil	lity that D occurs or	C does not occur?	
	(a) $\frac{17}{20}$	(b) $\frac{7}{10}$	(c) $\frac{3}{4}$	(d) $\frac{11}{20}$
Answer the next three questions using the following information CHECK $P(E)=\frac{1}{4}$ $\frac{3}{5}\&P(E\cup F)=\frac{11}{20}$				n CHECK $P(E) = \frac{1}{4}, P(F) =$
40.	$P(E \cap F) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{3}{20}$	(c) $\frac{7}{20}$	(d) $\frac{1}{4}$
41.	$P(E \cap \bar{F}) = ?$			
	(a) $\frac{1}{10}$	(b) $\frac{1}{5}$	(c) $\frac{3}{10}$	(d) $\frac{1}{20}$
42.	What is the probabil	lity that F occurs or l	E does not occur?	
	(a) $\frac{11}{20}$	(b) $\frac{4}{5}$	(c) $\frac{3}{4}$	(d) $\frac{9}{10}$
43.	An un contains 10 regetting two red balls		Two balls are drawn;	what is the probability of
	(a) $\frac{3}{7}$	(b) $\frac{4}{7}$	(c) $\frac{20}{21}$	(d) $\frac{2}{21}$
	2 Random Va	riables		
	2.1 Concept of F	Random Variable		
44.	Which is a discrete r	andom variable?		
	(a) Age of students		(b) Amount of Product	ion in a factory
	(c) Height of workers		(d) Page size in word pr	rocessing softwares
45.	A set of sample poin –	ts tabulated along wit	th their respective pro	obabilities is an example of
	(a) Probability distribu	tion	(b) Probability function	1
	(c) Frequency distributi	on	(d) Marginal probability	y distribution
46.	How many condition	s does a probability of	lensity function have?	
	(a) 2	(b) 3	(c) 4	(d) 5
47.	A coin is tossed twice values of X are there		appeared is denoted	by X. How many possible
	(a) 1	(b) 2	(c) 0	(d) 3
	Answer the next two	questions based on t	the following informat	ion

X	0	1	2
P(x)	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

48.	What is $F(1)$	(1) 0.75	(-) 0 5	(1) 1
	(a) 0.65	(b) 0.75	(c) 0.5	(d) 1
49.	$P(X \le 1 \le 3) = -$	(1) 0 70	() 0.05	(1) 1
	(a) 0.75	(b) 0.70	(c) 0.95	(d) 1
50.		perty of marginal prol		
	(a) $\int_{x} f(x^2) dx = 1$	(b) $\int_x f(x^2) dx = 0.5$	(c) $\int_{x} f(x) dx = 1$	(d) $P(x \ge 1)$
51.	Which one is NOT	an example of a conti	nuous random variab	le –
	(a) Weight	(b) Height	(c) Time	(d) Size of television
52.	Integrated value of	$\frac{1}{4}x^4$ -		
	(a) $\frac{1}{20}x^5$	(b) $\frac{1}{20}x^5 + c$	(c) $\frac{1}{5}x^4$	(d) $\frac{5}{4}x^5$
53.	The conditions of a	probability distributi	on are-	
	i. $\sum P(X) = 1$			
	ii. $\sum P(X) = 0$			
	iii. $0 \le P(X) \le 1$			
	Which one is corre		()	(2)
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii
54.	The conditions for	a cumulative distribut	tion function (CDF) a	re-
	i. $F(x)$ is non-decreas	ing.		
	ii. $0 \le F(x) \le 1$			
	iii. $\lim_{x \to \infty} F(x) = 1$			
	Which one is corre		(-):1:::	(4):::4:::
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
55.		discrete probability of	listribution table are-	-
	i. $\sum P(X) = 1$	-		
	ii. $P(X) \ge 0$ for all X		ro luo	
	Which one is corre	orresponds to a discrete v	/arue.	
	(a) i and ii	(b) ii and iii	(c) i and iii	(d) i, ii, and iii
56		distribution function	, ,	
50.	(a) $-\infty$	(b) -1	(c) 0	(d) 1
57	What is $F(-\infty)$ for	a distribution functio	$\mathbf{n} F(x)$?	,
J	(a) $-\infty$	(b) -1	(c) 0	(d) 1
58	• •	f random variables are	. ,	· /
<i>,</i> 0.	(a) 2	(b) 3	(c) 4	(d) 5
	(- /) =	(-) -	(- / =	(-) -

59.	Which of the following is not a discre	te random variable?				
	(a) umber of students	(b) Weight	(b) Weight			
	(c) Number of heads in coin toss	(d) Population				
60.	Which one is a property of a probabil	lity distribution?				
	(a) $P(x_i) = 0$ (b) $P(x_i \neq 1)$	(c) $\Sigma P(x_i) = 1$	(d) $\int_x P(X)dx \le 1$			
61.	Which one is not a discrete random v	variable?				
	(a) Summation two die throw outcome	(b) Weight				
	(c) Number of heads in five coin tosses	(d) Released version	number of a software			
62.	Which one is not a discrete random v	variable?				
	(a) Number of students in a class	(b) Weight of a packa	age			
	(c) Shoe size	(d) Total goals scored	l in a match			
63.	Which variable type can skip certain	whole numbers?				
	(a) Number of chapters read in a day	(b) Weight of a perso	n			
	(c) Number of floors in a building	(d) Number of people	e boarding a train			
64.						
	(a) The amount of liquid in a glass	(b) Temperature read	(b) Temperature readings at noon			
	(c) Number of defective items in a batch	(d) Exact age in year	(d) Exact age in years			
65.	Identify which one is not a discrete variable.					
	(a) Number of cookies eaten		(b) Height of students			
	(c) Total cars in a parking lot	, , _	(d) Number of siblings			
66.	Which one is a property of joint probability distribution?					
	(a) $P(X_i, Y_j) < 1$ (b) $P(X_i, Y_j) = 0$		$(d) \ 0 \le P(X_i, Y_j) \le 1$			
	2.2 Misc					
	Answer the next two questions based	on the following inform	ation			
	f((x) = kx; 0 < x < 5				
67.	What is the value of $P(2 < x < 3)$					
	(a) $\frac{4}{5}$ (b) $\frac{3}{5}$	(c) $\frac{2}{5}$	(d) $\frac{1}{5}$			
68.	P(X > 0)					
	(a) 0.99 (b) 0.5	(c) 1	(d) 0			
	Answer the next two questions using	the following information	on			
	x 1	2 3 4 5 6				
	$\frac{1}{P(x)}$ k	2 3 4 5 6 2k 3k 4k 5k 6k				
69.	What is the value of k?					
	(a) $\frac{7}{21}$ (b) $\frac{5}{21}$	(c) $\frac{1}{21}$	(d) 1			

70.	What is the type of	variable X?				
	(a) Discrete	(b) Discrete random	(c) Continuous	(d) Continuous random		
	Answer the next THREE questions using the following information					
		$P(x) = \frac{x}{x}$	$\frac{+1}{k}; x = 1, 2, 3, 4$			
71.	What is the value of	k?				
	(a) 10	(b) 11	(c) 14	(d) 15		
72.	$F(2) = -$ (a) $\frac{2}{14}$	(b) $\frac{3}{11}$	(c) $\frac{5}{14}$	(d) $\frac{5}{11}$		
73.	P(x) is a –					
	(a) Joint probability dis	tribution	(b) Cumulative probabi	lity distribution		
	(c) Probability mass fur	nction	(d) Probability Density	function		
74.	i. Binomial variateii. Poisson variateiii. Normal variateWhich one is correct	crete random variable				
	(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
75.	f(x) = 2x; 0 < X < 3;	What is $F(3)$?				
	(a) 3	(b) 0	(c) 1	(d) 0		
76.	f(x) = 3x; 0 < X < 2;	What is $F(2)$?				
	(a) 6	(b) 3	(c) 1	(d) 0		
77.	$f(x) = x^2; 0 < X < 4; V$	What is $F(4)$?				
	(a) 16	(b) 0	(c) 4	(d) 1		
78.	f(x) = 4 - x; 1 < X < 5	5; What is $F(5)$?				
	(a) 3	(b) 0	(c) 1	(d) 4		
		questions based on t	he following informat	ion:		
	$P(x,y) = \frac{1}{21}(x+y); x =$	= 1, 2, 3 and y = 1, 2				
79.	P(x)=?	(a) = (a) = (b)	4.19	9.15		
	(a) $P(x) = \frac{2x+3}{21}$	(b) $P(x) = \frac{x+3}{27}$	(c) $P(x) = \frac{4x+3}{21}$	(d) $P(x) = \frac{2x+5}{21}$		
80.	P(y)=?	. 0	0. +0			
	(a) $\frac{y+2}{7}$	(b) $\frac{y+3}{7}$	(c) $\frac{3y+2}{7}$	(d) $\frac{y+2}{9}$		
81.	If $f(x) = kx^3; -1 \le x \le$	≤ 1 , then k is				
	i) positiveii) negativeiii) lies from -1 to 1					
	(a) i	(b) ii	(c) iii	(d) i and ii		
	Answer the next two	auestions based on t	he following informat	ion		

X	4	5	6	3	2	1
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- 82. The value of P(3 < X < 5) is:
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{6}$

(c) $\frac{1}{3}$

(d) 0

- 83. $P(x \neq 2)is$:
 - (a) $\frac{5}{6}$

(b) 0

(c) 1

(d) Can't be found from this information

3 Mathematical Expectation

84.	E(X) + E(Y) = ? (a) $E(X) - E(Y)$	(b) $E(X) + E(Y)$	(c) 2E(X) - E(Y)	(d) $E(X) \times E(Y)$
	Answer the next TH	IREE questions based	l on the following info	rmation
		$\frac{X}{P(x)}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
85.	What is the value of	f E(X)		
	(a) $\frac{15}{12}$	(b) $\frac{13}{12}$	(c) $\frac{1}{12}$	(d) $\frac{11}{13}$
86.	What is the value of	$\mathbf{f} E(X^2)$		
	(a) $\frac{25}{12}$	(b) $\frac{13}{12}$	(c) $\frac{23}{12}$	(d) $\frac{25}{13}$
87.	What is $V(2X)$?			
	(a) 2.93	(b) 2.91	(c) 1.97	(d) 2.97
88.	What is the expecte from their mean?	d value of of the squa	red deviation of the va	alue of the random variable
	(a) Arithmetic Mean	(b) Expectation	(c) Variance	(d) Co-variance
89.	What is the minimu	m value of variance a	random variable?	
	(a) $-\infty$	(b) 1	(c) 0	(d) -1
90.	If $y = ax + b$, what is	the value of $V(y)$?		
	(a) $aV(X)$	(b) $a^2V(X)$	(c) $V(X)$	(d) a^2
91.	If $y = ax + b$, what is	the value of $E(y)$?		
	(a) $aE(X) + b$	(b) $a^2 E(X)$	(c) $E(X)$	(d) b
92.	What is the value of	f V(5)?		
	(a) 0	(b) 25	(c) 5	(d) 1
93.	If $P(x) = \frac{1}{n}$; $x = 1, 2, 3$	$,\cdots,n,$ what is the va	lue of $E(X)$?	
	(a) $\frac{n}{2}$	(b) $\frac{n-1}{2}$	(c) $\frac{n+1}{2}$	(d) $n+1$
94.	If $P(x) = \frac{4 - 5 - x }{k}$;	$x = 2, 3, 4, \dots 8, $ what is	the value of k?	
	(a) 5	(b) 8	(c) 16	(d) 24
95.	Expected value of a	constant a is –		
	(a) 1	(b) Variance	(c) a	(d) a+1
96.	The variance of a co	onstant m is –		
	(a) 0	(b) 1	(c) m	(d) m^2
97.	What is $V(X-Y)$ ed	qual to?		
	(a) $V(X) + V(Y)$		(b) $V(X) + V(Y) - 2C$	dov(X,Y)

(d) V(X) + V(Y) + 2Cov(X, Y)

(c) V(X) - V(Y)

98.	What is the value of	V(2X+5)?		
	(a) $4V(X) - 5$	(b) 20	(c) $4V(X)$	(d) 0
99.	If $P(x) = \frac{1}{20}$; $x = 1, 2, 3$	$3, \cdots, 20$, what is the s	tandard deviation?	
	(a) 1	(b) 5.77	(c) 7.75	(d) 12.57
100	. Expectation measur	res –		
	(a) Dispersion	(b) Skewness	(c) Kurtosis	(d) Central tendency
101	. If $E(X) = -0.5$, then	E(1-2X) = ?		
	(a) 0	(b) -1	(c) 2	(d) 1
102	2. If $P(X) = \frac{1}{10}$; $x = 1, 2$	$, \dots 10, \text{ then } E(X) = ?$		
	(a) 10	(b) 5.5	(c) 0	(d) 11
103	8. Which formula of v	ariance is correct?		
			(b) $V(X + Y) = V(X)$	
	(c) $V(X + Y) = V(X)$	+V(Y) - 2Cov(X,Y)	(d) $V(X+Y) = V(X)$	-V(Y) + 2Cov(X,Y)
104	. X is a constant; wh	at is the value of $V(\frac{X}{2})$	-)?	
	i) 0			
	ii) $\frac{1}{2}$ iii) $\frac{1}{4}$			
	(a) ii	(b) i	(c) iii	(d) i and iii
105	5. If $E(X) = 2$, $E(X^2) =$	8, V(X) =		
	(a) 0	(b) 2	(c) 4	(d) 8
106	5. If $P(x) = \frac{4- 5-x }{k}$; $x =$	$2,3,4,\cdots 8$, what is the	the value of $E(X)$?	
	(a) 3	(b) 8	(c) 16	(d) 5
107	7. If $P(x) = \frac{6 - 7 - x }{k}$; $x = \frac{6 - 7 - x }{k}$	$: 2.3.4.\cdots 12$, what is t	he value of $E(X)$?	
	(a) 6	(b) 9	(c) 13	(d) 36
108	3. If $P(x) = \frac{3- 4-x }{k}$; $x =$	· 2 3 46 what is th	a value of k?	, ,
100	(a) 6	(b) 9	(c) 10	(d) 40
109	. If the variance of X	,	, ,	
100	(a) 1	(b) 2	(c) 3	(d) 0
110). If $V(X) = 5$,, what is	V(X+5)?	· /	, ,
	(a) 0	(b) 5	(c) 10	(d) 25
111	. If $V(X) = 5$, what is	V(2X+5)?		
	(a) 20	(b) 5	(c) 10	(d) 25
112	2. If $E(X) = 2$ and $E(X)$	$(X^2) = 8$, then the value	e of the $V(X) = ?$	
	(a) 0	(b) 2	(c) 4	(d) 8
110	1 If $D(x) = \frac{1}{1}$	9 15 what is 41	roluo of the ownest-ti-	?
113			value of the expectation	
	(a) 8.5	(b) 7.5	(c) 7	(d) 8
	Answer the next two	o questions based on t	the following informat	ion

114. What is the value of k ?				
(a) 6	(b) 10	(c) 15	(d) 20	
115. What is $E(X)$?	•			
(a) 2.25	(b) 3.5	(c) 2.5	(d) 3.0	
Answer the nex	t three questions ba	sed on the following in	nformation	
	The probability fund	ction of random variable a	x is given below:	
	P($f(x) = \frac{2x+1}{k}; x = 1, 2, 3, 4$		
116. What is the va	alue of k ?			
(a) 18	(b) 25	(c) 12	(d) 24	
117. What is $E(X)$?				
(a) 1.75	(b) 2.92	(c) 3.25	(d) 2.25	
118. What is $V(X)$?				
(a) 1.05	(b) 3.0	(c) 1.5	(d) 1.25	
Answer the nex	ct two questions base	ed on the following infe	ormation	
	The probability fund	ction of random variable	x is given below	
	P	$(x) = \frac{x-1}{k}; x = 2, 3, 4, 5$		
119. What is the va	alue of k?			
(a) 2	(b) 5	(c) 10	(d) 25	
120. What is $E(X)$?	•			
(a) 0.425	(b) 0.525	(c) 0.725	(d) 0.625	
4 Binomia	al Distribution			
121. How many par	rameters are there in	a binomial distribution	on?	
(a) 1	(b) 2	(c) 3	(d) 4	
122. What is the M	Iean of Binomial Dis			
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}	
123. What is the V	ariance of Binomial	Distribution?		
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}	
124. What is the St	tandard Deviation of	Binomial Distribution	n?	
(a) np	(b) npq	(c) nq	(d) \sqrt{npq}	
125. What is the C	oefficient of Variatio	n of Binomial Distribu	ıtion?	
(a) np	(b) npq	(c) $\frac{q}{np}$	(d) \sqrt{npq}	

The probability function of random variable x is given below: $P(x) = \tfrac{x}{k}; x = 1, 2, 3, 4$

126. Which is true o	of mean (np) of Binor	mial Distribution?			
(a) $np = 0$	(b) $np < 0$	(c) $np > 0$	(d) $np \neq 0$		
127. In a Binomial d	listribution, how are	mean and variance re	elated?		
(a) $Mean > Variance$		(b) $Mean < Variable$	(b) $Mean < Variance$		
(c) $Mean = Variance$		(d) $Mean = 2 \times 1$	(d) $Mean = 2 \times Variance$		
128. When does Bin	omial distribution te	end to Poisson distrib	ution?		
(a) $n \to \infty$ and p	$\rightarrow \infty$ (b) $n \rightarrow 0$ and $p \rightarrow \infty$	$\rightarrow 0$ (c) $n \rightarrow \infty$ and p	$\rightarrow 0$ (d) $n \rightarrow 0$ and $p \rightarrow \infty$		
Answer the next	two questions based	on the following info	ormation.		
X is a binomial var	riate with expectation 4	and standard deviation	$\sqrt{3}$.		
129. What are the v	alues of the paramet	ers (mean and probal	oility)?		
(a) $16, \frac{1}{4}$	(b) $16, \frac{3}{4}$	(c) $15, \frac{1}{4}$	(d) $10, \frac{1}{4}$		
130. What is $P(X \neq$	0)?				
(a) 0	(b) 0.01	(c) 0.99	(d) 1		
131. The characteris	tics of binomial distr	ribution–			
i. $E(X) > V(X)$ ii. $E(X) = V(X)$ iii. $E(X) = np$					
Which one is con	rect?				
(a) i and ii	(b) i and iii	(c) ii and iii	(d) i, ii and iii		
132. What is true of	binomial distributio	n?			
(a) There is one pa	rameter	(b) Number of tri	ial is fixed		
(c) Mean is greater	than variance	(d) Skewness is no	egative		
133. What is the ske	wness of binomial di	istribution?			
(a) $\frac{(q-p)^2}{np}$	(b) $\frac{(q-p)^2}{np}$	(c) $\frac{(p+1)^2}{npq}$	(d) $\frac{(q+p)^2}{npq}$		
134. When is a binor	mial distribution pos	sitively skewed?			
(a) $p > q$	(b) p = q	(c) $p < q$	(d) $p+q < 1$		
Answer the next	two questions based	l on the following info	ormation		
	In a binomial distri	bution, $P(x=4) = \frac{1}{2}P(x)$	(x=5); n=10		
135. What is the me	ean?				
(a) 6.25	(b) 5.15	(c) 8.52	(d) 5.22		
136. $P(x=2) =$					
(a) 0.0053	(b) 0.0069	(c) 0.0085	(d) 0.94		

5 Poisson Distribution

137. The no. of parame	eters in a Poisson dist	ribution is —	
(a) 1	(b) 2	(c) 3	(d) 4
138. What is the mean	of Poisson distributio	n	
(a) $\frac{1}{\sqrt{m}}$	(b) <i>m</i>	(c) $\frac{1}{m}$	(d) $1 + \frac{1}{m}$
139. Which relationship	p between mean and v	variance of Poisson Dis	stribution is correct?
(a) $Mean > Variance$	(b) $Mean < Variance$	(c) $Mean = Variance$	(d) $Mean \neq Variance$
140. What is the Varia	nce of Poisson Distrib	ution(with parameter	m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) <i>m</i>	(d) $\frac{1}{m+1}$
141. What is the Stand	lard Deviation of Pois	${f son\ Distribution (with}$	parameter m)?
(a) $\frac{1}{\sqrt{m}}$	(b) $\frac{1}{m}$	(c) \sqrt{m}	(d) $\frac{1}{m+1}$
142. Which one is true	of the parameter (m)	of Poisson Distribution	on?
(a) $m = 0$	(b) $m < 0$	(c) $m > 0$	(d) $m = 1$
143. The parameter of	a Poisson Distribution	n is 5. What is its mea	an?
(a) 2	(b) 5	(c) 2.24	(d) 25
144. When does Binom	ial Distribution tend	to Poisson Distributio	n?
(a) $n \to \infty, p \to 0 \& n$	ap is finite	(b) $n \to \infty, p \to 0 \& np$	p is infinite
(c) $n \to \infty, p \to \infty \&$	np is finite	(d) $n \to 0, p \to \infty \& n_p$	v is infinite
145. The parameter of	a Poisson variate is 2.	What is its variance?	
(a) 0	(b) 4	(c) $\sqrt{2}$	(d) 2
146. The parameter of	a Poisson variate is 5.	What is its variance?	•
(a) 10	(b) 5	(c) $\sqrt{5}$	(d) 25
147. A Poisson distribu	ntion has a mean of 3.	What is the variance	?
(a) 9	(b) 3	(c) $\sqrt{3}$	(d) 0
148. X is a Poisson var	iate. $P(2) = P(4)$. W	hat is the value of the	parameter?
(a) 12	(b) 3.46	(c) 3.6	(d) 4
149. X is a Poisson var	iate. $P(3) = P(5)$. W	hat is the value of the	parameter?
(a) 4.5	(b) 5	(c) 2.3	(d) 4.1
150. For a Poisson vari	ate X, if $P(1) = P(3)$,	what is the variance?	
(a) 2.5	(b) 3.2	(c) 2.45	(d) 4.5
Answer the next tw For a Poisson variate		the following information	tion
151. What is standard			
(a) 1.978	(b) 1.998	(c) 1.989	(d) 1.889
152. What is the value	of P(2)?		
(a) 0.25	(b) 0.14	(c) 0.15	(d) 0.02

153. The standard devia	tion of a poisson distr	ibution is 2 . What is	the parameter?
(a) 2	(b) 3	(c) 4	(d) 5
154. Mean of a Poisson	variate is a. What is i	ts standard deviation	?
(a) 0	(b) a	(c) $a^{\frac{1}{2}}$	(d) a^2
155. The standard devia	tion of a Poisson distr	ribution is 3. What is	the parameter?
(a) 6	(b) 9	(c) 3	(d) 4
156. For a Poisson distri	bution with a mean o	f 5, what is the variar	nce?
(a) 5	(b) 10	(c) 25	(d) 15
157. If the variance of a	Poisson distribution i	s 4, what is $P(2)$?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2184
158. A Poisson distribut	ion has a mean of 7.	What is the standard	deviation?
(a) 3.2	(b) 4.1	(c) 2.65	(d) 1.78
159. If $P(2)$ in a Poisson λ ?	distribution with par	rameter λ equals 0.22	40, what is the parameter
(a) 2.4551	(b) 1.2515	(c) 1.2115	(d) 2.5112
160. A Poisson distribut	ion has a mean of 4.	What is $P(3)$?	
(a) 0.1465	(b) 0.1954	(c) 0.1839	(d) 0.2381
161. If the variance of a	Poisson distribution i	s 3, what is the mean	?
(a) 3	(b) $\sqrt{3}$	(c) 2	(d) 6
162. For a Poisson distri	bution with mean 6, v	what is the probability	y of $P(0)$?
(a) 0.0895	(b) 0.012	(c) 0.0454	(d) 0.0024
163. The mean of a Pois	son distribution is 10.	What is its standard	l deviation?
(a) 5	(b) $\sqrt{10}$	(c) 10	(d) $\sqrt{20}$
164. Given that the para	ameter of a Poisson di	stribution is 8, what	is the variance?
(a) 4	(b) 8	(c) $\sqrt{8}$	(d) 16
5.1 Problems			
	00 houses in a city geity that, in a certain y		r.If there are 2000 houses, will be burnt?
(a) 0.036	(b) 0.040	(c) 0.027	(d) 0.091
6 Vital Statis	tics		
166. What is the called t	the ratio of the depen	dent population to th	e earning population?
(a) Dependency ratio	(b) Sex ration	(c) Population density	(d) Growth rate

167.	Thich of the following best describes the dependency ratio?	
	The ratio of the elderly population to the working-age population	

(b) The ratio of the combined non-working (0-14 and 65+) population to the working-age (15-64) population

(c) The proportion of young dependents (0-14) in the population

(d) The total population divided by the number of children (0-14)

168. City A has 12,000 individuals aged 0-14, 35,000 aged 15-64, and 5,000 aged 65+. What is the dependency ratio?

(a) 0.31

(b) 0.48

(c) 0.60

(d) 0.25

169. A City has a dependency ratio of 0.52. If its working-age population (15-64) is 50,000, what is the total number of dependents (0-14 and 65+)?

(a) 15,600

(b) 20,000

(c) 26,000

(d) 30,000

Answer the following 2 questions based on the information given below.

City	Population (in thousands)	Area (in km ²
Gamma	1200	400
Delta	800	320

170. What is the population density of City Delta?

(a) 2 people/km²

(b) 4 people/km²

(c) 2.5 people/km^2

(d) 2.2 people/km^2

171. Which city is less densely populated?

(a) Gamma

(b) Delta

(c) Both are equal

(d) Cannot be determined

Answer the following questions based on the information given below.

In a city, the total number of live births in a year was 2,400. The number of women aged 15-49 years in the population was 48,000.

172. Calculate the General Fertility Rate (GFR) for the city.

(a) 40 per 1,000 women (b) 50 per 1,000 women (c) 60 per 1,000 women (d) 30 per 1,000 women

173. If live births increase to 3,000 while the number of women aged 15-49 remains the same, what is the new GFR?

(a) 55 per 1,000 women (b) 65 per 1,000 women (c) 50 per 1,000 women (d) 62.5 per 1,000 women

174. What is the formula of population density?

(a) $\frac{M}{F} \times 100$

(b) $\frac{F}{M} \times 100$

(c) $\frac{B}{P} \times 100$

(d) $\frac{P}{A}$

175. In the following data, what is the dependency ratio?

(a) 35.54%

(b) 25.54%

(c) 23.24%

(d) 31.25%

176. Crude Birth Rate (CBR) is:

(a) $\frac{B}{P} \times 100$

(b) $\frac{B}{P} \times 1000$

(c) $\frac{P}{B} \times 100$

(d) $\frac{F}{P} \times 100$

178. The number of people living per unit area is called—				
(a) Population Index		(b) Population Density		
(c) Human Development Index		(d) Dependency Ratio	(d) Dependency Ratio	
179. Which formula of C	GFR is accurate?			
(a) $GFR = \frac{B}{P} \times 1000$		(b) $GFR = \frac{B}{F_{15-49}} \times 10^{-1}$	000	
(c) $GFR = \frac{B_i}{F_i} \times 1000$			(d) $GFR = \frac{G_i}{F15-49} \times 1000$	
Answer the next two	o questions based on	the following informat	tion	
180. Which type of grov	vth is seen here?			
(a) Arithmetic growth	(b) Geometric growth	(c) Exponential growth	(d) None	
181. What is the rate of	increase?			
(a) 1	(b) 0.1	(c) 10	(d) 1%	

(c) iii

(d) i and ii

177. Which one is a measure of reproduction?

(b) ii

i) CBR ii) CDR iii) NRR

(a) i

Answer Key:

23. (b)
$$\frac{0}{6}$$

3. (a)
$$\frac{n!}{(n!)!}$$

3. (a)
$$\frac{n!}{(n-r)!}$$

26. (b)
$$\frac{1}{22}$$

4. (a)
$$\frac{n!}{(n-1)!(n+r)!}$$

28. (c)
$$\frac{3}{4}$$

29. (d)
$$\frac{3}{4}$$

8. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 31.$$
 (a) $\frac{13}{20}$

9. (a)
$$P = \frac{\text{No. of favorable outcomes}}{\text{Total no. of possible outcomes}} 32$$
. (a) 0.1

10. (a)
$$P(A|B) = \frac{P(A \cap B)}{P(B|A)}$$

11. (c)
$$P(A_1UA_2U\cdots UA_n) = \sum_{i=1}^{\infty} P(A_i)^{34}$$
. (c) $\frac{1}{4}$ 35. (a) $\frac{1}{4}$

35. (a)
$$\frac{1}{4}$$

12. (c) ii and iii
$$\frac{1}{2}$$

36. (d)
$$\frac{11}{12}$$

37. (b)
$$\frac{1}{4}$$

38. (c)
$$\frac{2}{20}$$

39. (a)
$$\frac{17}{20}$$

40. (b)
$$\frac{3}{20}$$

41. (a)
$$\frac{1}{10}$$

18. (c) Mutually Exclusive Events
19. (a)
$$P(A \cap B) = P(A) \cdot P(B)$$

42. (d)
$$\frac{9}{10}$$

43. (a)
$$\frac{3}{7}$$

50. (c)
$$\int_x f(x) dx = 1$$

52. (b)
$$\frac{1}{20}x^5 + c$$

60. (c)
$$\Sigma P(x_i) = 1$$

66. (d)
$$0 \le P(X_i, Y_j) \le 1$$

67. (d)
$$\frac{1}{5}$$

69. (c)
$$\frac{1}{21}$$

72. (c) $\frac{5}{14}$

- 97. (c) V(X) V(Y)
- 122. (a) np

- 73. (c) Probability mass function
- 98. (c) 4V(X)

123. (b) npq

74. (a) i and ii

99. (a) 1

124. (d) \sqrt{npq}

75. (c) 1

- 100. (d) Central tendency
- 125. (c) $\frac{q}{np}$

76. (c) 1

101. (c) 2

126. (c) np > 0

77. (d) 1

102. (b) 5.5

127. (a) Mean > Variance

78. (c) 1

- 103. (b) V(X+Y)=V(X)+V(Y) 128. (c) $n\to\infty$ and $p\to0$

- 79. (a) $P(x) = \frac{2x+3}{21}$
- 104. (b) i

129. (a) $16, \frac{1}{4}$

80. (c) $\frac{3y+2}{7}$

105. (c) 4

130. (c) 0.99

81. (a) i

106. (d) 5

131. (b) i and iii

82. (b) $\frac{1}{6}$

107. (d) 36

132. (c) Mean is greater than variance

83. (a) $\frac{5}{6}$

108. (b) 9

133. (a) $\frac{(q-p)^2}{np}$

- 84. (b) E(X) + E(Y)
- 109. (d) 0

134. (c) p < q

85. (b) $\frac{13}{12}$

110. (b) 5

135. (a) 6.25

86. (b) $\frac{13}{12}$

111. (a) 20

136. (b) 0.0069

87. (d) 2.97

112. (c) 4

137. (a) 1

88. (c) Variance

113. (d) 8

138. (b) m

89. (c) 0

114. (b) 10

139. (c) Mean = Variance

140. (c) m

90. (b) $a^2V(X)$

115. (d) 3.0

141. (c) \sqrt{m}

- 91. (a) aE(X) + b
- 116. (d) 24

142. (c) m > 0

92. (a) 0

117. (b) 2.92

143. (b) 5

93. (c) $\frac{n+1}{2}$

118. (a) 1.05

144. (a) $n \to \infty, p \to 0 \& np$ is finite

94. (c) 16

119. (c) 10

145. (d) 2

95. (c) a

120. (c) 0.725

146. (b) 5

96. (a) 0

121. (b) 2

147. (b) 3

148. (b) 3.46	160. (b) 0.1954	172. (b) 50 per 1,000 women
149. (a) 4.5	161. (a) 3	173. (c) 50 per 1,000 women
150. (c) 2.45	162. (d) 0.0024	174. (d) $\frac{P}{A}$
151. (a) 1.978	163. (b) $\sqrt{10}$	174. (u) A
152. (c) 0.15	164. (b) 8	175. (b) 25.54%
153. (c) 4	165. (a) 0.036	176. (b) $\frac{B}{P} \times 1000$
154. (c) $a^{\frac{1}{2}}$	166. (a) Dependency ratio	177. (c) iii
155. (b) 9	167. (b) The ratio of the combination	ned non-working (0-14 and 65+) population to the 178. (b) Population Density
156. (a) 5	168. (b) 0.48	179. (b) $GFR = \frac{B}{F_{15,-49}} \times 1000$
157. (a) 0.1465	169. (c) 26,000	$F_{15-49} \wedge F_{15-49} \wedge F_{15-49}$
158. (c) 2.65	170. (b) 4 people/km ²	180. (a) Arithmetic growth
159. (b) 1.2515	171. (b) Delta	181. (b) 0.1