Universität Leipzig Institut für Informatik Sommersemester 2025 Prof. Dr. Andreas Maletti, Dr. habil. Karin Quaas, Fabian Sauer

Aufgaben zur Lehrveranstaltung

Berechenbarkeit

Lösungen zu Serie 3

Übungsaufgabe 3.1 (Turingmaschinen Mächtigkeit)

Beweisen Sie die folgende Aussage.

Für jeden endlichen Automaten $A = (Q, \Sigma, q_0, \delta, F)$ existiert eine normierte Turingmachine M_A mit $L(M_A) = L(A)$.

In Ihrem Beweis geben Sie bitte für einen beliebigen Automaten A eine direkte Konstruktion von M_A an, das heisst, vermeiden Sie die Verwendung von bereits bekannten Zusammenhängen zwischen Automaten und Grammatiken.

LÖSUNG: Sei $A = (Q, \Sigma, q_0, \delta, F)$ ein endlicher Automat. Konstruiere $M_A = (Q', \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$, wobei

- $Q' = Q \cup \{q_+, q_-, q_L\}$, wobei $q_+, q_-, q_L \notin Q$ nicht in Q vorkommen
- $\Gamma = \Sigma \cup \{\Box\},$
- Δ enthält die folgenden Transitionen:
 - (q, a) \rightarrow (q', a, \triangleright) für alle (q, a, q') ∈ δ
 - (q, \square) → $(q_L, \square, \triangleleft)$ für alle $q \in F$
 - (q_L, σ) → $(q_L, \sigma, \triangleleft)$ für alle $\sigma \in \Sigma$, and (q_L, \square) → $(q_+, \square, \triangleright)$ (Bewegung zum Bandanfang für Normiertheit)

 M_A ist normiert, denn für alle $w \in \Sigma^*$, $u, v \in \Sigma^*$ mit $\varepsilon q_0 w \vdash_{M_A}^* u q_+ v$ gilt: $u \in \{\Box\}^*$ und $v \in \Gamma_{M_A}^* \cdot \{\Box\}^*$. Es gilt $L(A) = L(M_A)$ (ohne Beweis).

Zusatzfrage: Wie funktioniert der Beweis für die stärkere Aussage: M_A soll deterministisch sein? (Mehrere Möglichkeiten: (1) Für jede TM M gibt es deterministische TM M' mit L(M') = L(M). (2) TM kann Potenzmengenkonstruktion für endliche Automaten direkt ausführen.)

Übungsaufgabe 3.2 (Turing-berechenbare Funktionen)

Sei Σ ein endliches Alphabet. Wir definieren die Präfixrelation \leq_p über Σ^* durch $u \leq_p w$ falls $v \in \Sigma^*$ mit $w = u \cdot v$ existiert. Analog definieren wir die Suffixrelation \leq_s

über Σ^* durch $u \leq_p w$ falls $v \in \Sigma^*$ mit $w = v \cdot u$ existiert. Wir definieren die Funktion $f: \Sigma^* \to \mathcal{P}(\Sigma^+)$ durch

$$f(w) = \{ u \in \Sigma^+ \mid u \le_p w \text{ und } u \le_s w \}$$

für alle $w \in \Sigma^*$. Beispielsweise ist $f(abaab) = \{ab, abaab\}$ und $f(aaaa) = \{a, aa, aaa, aaaa\}$.

Zeigen Sie, dass f Turing-berechenbar ist. Bitte geben Sie aussagekräftige Erläuterungen zur Verhaltensweise Ihrer Turingmaschine.

LÖSUNG: Wir definieren eine deterministische Turingmaschine M mit T(M) = f. Die Idee der Funktionsweise von M ist wie folgt: M besitzt 3 Bänder. Auf Band 1 befindet sich das Eingabewort w. Auf Band 2 speichert M nacheinander jeweils (Buchstabe für Buchstabe) alle möglichen Präfixe u von w und prüft, ob u auch Suffix von w ist. Falls ja, wird u auf Band 3 gespeichert (die einzelnen Wörter auf Band 3 trennen wir durch ein frisches Symbol #).

(In der folgenden Abbildung der Turingmaschine haben wir der Einfachheit halber an manchen Transitionen die Angaben für das 3. Band weggelassen.)

Übungsaufgabe 3.3 (LOOP-berechenbare Funktionen)

Zeigen Sie, dass die beidem im Folgenden definierten Funktionen LOOP-berechenbar sind.

(a) $g_1 \colon \mathbb{N} \to \mathbb{N}$ sei definiert durch

 $n \mapsto n!$

für alle $n \in \mathbb{N}$.

(b) $g_2 \colon \mathbb{N}^2 \to \mathbb{N}$ sei definiert durch

$$g_2(n_1, n_2) = \begin{cases} 1 & \text{falls } n_1 = n_2 \\ 0 & \text{sonst} \end{cases}$$

für alle $n_1, n_2 \in \mathbb{N}$.

LÖSUNG: (a) Wir konstruieren ein LOOP-Program P_1 mit $|P_1| = g_1$.

```
IF (x_1 = 0) {x_1 = 1} ELSE {
x_2 = x_1 - 1;
x_3 = x_1 - 2;
LOOP(x_3) {
x_1 = x_1 \cdot x_2;
x_2 = x_2 - 1
}
```

Zuerst Behandlung des Sonderfalls $x_1 = 0$ (Ausgabe 1 denn 0! = 1). Anderenfalls: In x_1 wird der Eingabewert gespeichert; auch die Ausgabe steht wieder in x_1 . In x_2 werden die zu multiplizierenden Faktoren schrittweise verkleinert. x_3 legt fest, wie oft der LOOP ausgeführt wird, in unserem Fall 2-mal weniger als der Wert der Eingabe.

(b) Wir konstruieren ein LOOP-Program P_2 mit $|P_2| = g_2$.

$$x_3 = x_2 - x_1;$$

$$x_4 = x_1 - x_2;$$

$$x_3 = x_3 + x_4:$$

$$x_1 = 1;$$

$$LOOP(x_3)\{x_1 = 0\}$$

(6)

Hausaufgabe 3.4 (Turingmaschinen Mächtigkeit)

Sei $A=(Q,\Sigma,q_0,\delta,F)$ ein endlicher Automat¹ und sei $w\in\Sigma^*$. Wir nennen w einen Zeugen für Mehrdeutigkeit von A falls es mindestens zwei unterschiedliche akzeptierende Läufe von A auf w gibt.

Beweisen Sie die folgende Aussage.

Für jeden endlichen Automaten $A = (Q, \Sigma, q_0, \delta, F)$ existiert eine Turingmachine M_A mit $L(M_A) = \{w \in \Sigma^* \mid w \text{ ist Zeuge für Mehrdeutigkeit von } A\}.$

Seite 3 von 8

 $^{^{1}\}delta\subseteq Q imes \Sigma imes Q$, d.h., es sind keine arepsilon-Transitionen erlaubt.

LÖSUNG: Sei $A = (Q, \Sigma, q_0, \delta, F)$ ein endlicher Automat. Definiere die Turingmaschine $M_A = (Q', \Sigma, \Gamma, \Box, \Delta', q_0, q_+, q_-)$, wobei

- $Q' = \{q_+, q_-\} \cup Q \cup (Q \times Q)$, wobei $q_+, q_- \notin Q$;
- Δ enthält genau die folgenden Transitionen:
 - (q, a) \rightarrow (q', a, \triangleright) für alle (q, a, q') ∈ δ;
 - (q,a) → $((p,r),a,\triangleright)$ für alle $(q,a,p),(q,a,r) \in \delta$ mit $p \neq r$;
 - ((p,r),a) → $((p',r'),a,\triangleright)$ für alle $(p,a,p'),(r,a,r') \in \delta$;
 - ((p,r),□) → $(q_+,□,\diamond)$ für alle $p,r \in F$.

Sei $w = a_1 \dots a_n$. Die Idee ist, den Beginn i von zwei unterschiedlichen Läufen von A auf w zu raten: simuliere zunächst auf $a_1 \dots a_{i-1}$ ein Verhalten von A, d.h. verfolge einen Lauf von A auf $a_1 \dots a_{i-1}$. Angenommen, dieser Lauf endet q. Falls es von q aus für den nächsten Buchstaben a_i zwei mögliche Fortführungen p und r des Laufes gibt, und es von p und r von A auf $a_{i+1} \dots a_n$ einen akzeptierenden Lauf gibt, so wird w akzeptiert von M.

Punktevergabe: ●₁ ●₂ für richtige Idee, ●₃ ●₄ ●₅ für richtige Umsetzung ●₆ Formal keinerlei Fehler

Hausaufgabe 3.5 (Turing-berechenbare Funktionen)

(11)

Sei $\Sigma = \{a, b\}$. Wir definieren die Infixrelation \leq_i über Σ^* durch $u \leq_i w$ falls $v_1, v_2 \in \Sigma^*$ mit $w = v_1 \cdot u \cdot v_2$ existieren. Wir definieren die partielle Funktion $f : \{a, b, \#\}^* \dashrightarrow \{0, 1\}$ durch

$$f(u#w) = \begin{cases} 1 & \text{falls } u \leq_i w \\ 0 & \text{sonst} \end{cases}$$

für alle $u, w \in \{a, b\}^*$. Beispielsweise ist f(ab#aab) = 1, f(aa#b) = 0, und $f(aa) = \bot$ ist undefiniert.

Zeigen Sie, dass f Turing-berechenbar ist. Bitte geben Sie aussagekräftige Erläuterungen zur Verhaltensweise Ihrer Turingmaschine.

LÖSUNG: Wir definieren eine deterministische 2-Band-Turingmaschine M mit T(M) = f.

Sei
$$M = (Q, \Sigma \cup \{\#\}, \Gamma, \square, \Delta, q_0, q_+, q_-)$$
, wobei

- $Q = \{q_0, q_{\#}, q^{copy}, q^{\leftarrow}, q^{comp}, q_{\infty}, q_{+}, q_{-}, q_2^{comp}, q_0^{fin}, q^{fin}, q^{move}\},$
- Δ besteht aus folgenden Transitionen:
 - Zunächst prüft M ob das Eingabewort die Form $\Sigma^* \# \Sigma^*$ besitzt.
 - * für alle $\gamma \in \Gamma$ definiere $(q_{\infty}, \langle \gamma, \square \rangle) \to (q_{\infty}, \langle (\gamma, \diamond), (\square, \diamond) \rangle)$ für Endlosschleife,

- * $(q_0, \langle \Box, \Box \rangle) \rightarrow (q_\infty, \langle (\Box, \diamond), (\Box, \diamond) \rangle)$ für Eingabe von der Form Σ^* ist f nicht definiert gehe in q_∞ ;
- * Für alle $\sigma \in \Sigma$ definiere $(q_0, (\sigma, \square)) \to (q_0, \langle \sigma, \triangleright), (\square, \diamond) \rangle$ Lesen von $\sigma \in \Sigma$ vor dem Trennsymbol.
- * $(q_0, \langle \#, \square \rangle) \rightarrow (q_\#, \langle (\#, \triangleright), (\square, \diamond) \rangle)$ Lesen von Trennsymbol #
- * $(q_{\#}, \langle \#, \square \rangle) \rightarrow (q_{-}, \langle (\#, \diamond), (\square, \diamond) \rangle)$ Falls ein weiteres Trennsymbol gelesen wird, hat Eingabewort nicht die richtige Form. Gehe in q_{∞} .
- * Für alle $\sigma \in \Sigma$, define $(q_{\#}, \langle \sigma, \Box \rangle) \to (q_{\#}, \langle (\sigma, \triangleright), (\Box, \diamond) \rangle)$ gehe bis zum rechten Ende der Eingabe
- * $(q_{\#}, \langle \Box, \Box \rangle) \rightarrow (q^{copy}, \langle (\Box, \lhd), (\Box, \diamond) \rangle)$ Eingabe ist korrekt; LSM steht auf Band 1 am Ende der Eingabe und M ist in Zustand q^{copy} .
- Kopiere nun den Teil hinter dem Trennsymbol von Band 1 auf Band 2 (um leichter vergleichen zu können): für alle $\sigma \in \Sigma$, definiere $(q^{copy}, \langle \sigma, \Box \rangle) \rightarrow (q^{copy}, \langle (\sigma, \lhd), (\sigma, \lhd) \rangle)$ und $(q^{copy}, \langle \#, \Box \rangle) \rightarrow (q^{\leftarrow}, \langle \#, \lhd), (\Box, \diamond) \rangle)$
- Laufe in q^{\leftarrow} auf Band bis zum Anfang des Eingabewortes: für alle $\sigma \in \Sigma$, definiere $(q^{\leftarrow}, \langle \sigma, \Box \rangle) \to (q^{\leftarrow}, \langle (\sigma, \lhd), (\Box, \diamond) \rangle)$ und $(q^{\leftarrow}, \langle \Box, \Box \rangle) \to (q^{comp}, \langle (\Box, \triangleright), (\Box, \triangleright) \rangle)$. SLK steht nun auf Band 1 und Band 2 vor Beginn des jeweiligen Bandinhalts. Hier beginnt nun in q^{comp} der eigentliche Infix-Check.
- In q^{comp} wird geprüft, ob Eingabe auf Band 1 vor dem # ein Infix des Wortes auf Band 2 ist. Die Idee dazu ist wie folgt. Das Wort auf Band 1 (vor #) ist Infix des Wortes auf Band 2 falls es eine Position i im Wort auf Band 2 gibt, von wo an die Wörter auf Band 1 und Band 2 übereinstimmen solange bis auf Band 1 das Trennsymbol # gelesen wird.
 - Beginnend ab Position 1 auf Band 2 wird durch synchrone Bewegung von links nach rechts auf beiden Bändern geprüft, ob Symbol auf Band 1 gleich zu Symbol auf Band 2 ist, solange bis (a) Ungleichheit auftritt (Neubeginn nötig) (b) auf Band 2 □ gelesen wird (Miserfolg) (c) auf Band 1 # gelesen wird (Erfolg). Das dabei erste Symbol auf Band 2 muss markiert (hier: durch □ ersetzt) werden, damit wir dieses Symbol nur genau einmal als Start des Vergleichs verwenden.
- Verschiedene Fälle:
 - * Für alle $\sigma \in \Sigma$ definiere $(q^{comp}, \langle \sigma, \sigma \rangle) \to (q_2^{comp}, \langle (\sigma, \triangleright), (\square, \triangleright) \rangle)$. Das erste Zeichen auf Band 1 und 2 ist gleich, vergleiche weiter in Zustand q_2^{comp} , aber lösche das erste Zeichen von Band 2 damit ein eventuell neuer Beginn ab der nächsten Position beginnt.
 - * Für alle $\sigma, \sigma' \in \Sigma$ mit $\sigma \neq \sigma'$ definiere $(q^{comp}, \langle \sigma, \sigma' \rangle) \rightarrow (q^{comp}, \langle (\sigma, \diamond), (\Box, \triangleright) \rangle)$. Die jeweils ersten Zeichen sind nicht gleich: lösche auf Band 2 und beginne direkt neuen Vergleich ab der nächsten Position.
 - * Sonderfall kein Symbol auf Band 2 mehr übrig (Miserfolg): gib 0 aus auf Band 2 und akzeptiere. Für alle $\sigma \in \Sigma$ definiere $(q^{comp}, \langle \sigma, \Box \rangle) \rightarrow (q_+, \langle (\sigma, \diamond), (0, \diamond) \rangle)$

- * Sonderfall: auf Band 1 kommt direkt ein # (Erfolg) Dann kein Vergleich nötig. Ersetze Inhalt von Band 2 durch 1 und akzeptiere. Für alle $\sigma \in \Sigma$ definiere $(q^{comp}, \langle \#, \sigma \rangle) \to (q^{fin}, \langle (\#, \diamond), (\square, \triangleright) \rangle)$ und $(q^{fin}, \langle \#, \sigma \rangle) \to (q^{fin}, \langle (\#, \diamond), (\square, \triangleright) \rangle)$ und $(q^{fin}, \langle \#, \sigma \rangle) \to (q^{fin}, \langle \#, \sigma \rangle)$
- In q_2^{comp} hat ähnliche Verhaltensweise wie q^{comp} :
 - * Für alle $\sigma \in \Sigma$ definiere $(q_2^{comp}, \langle \sigma, \sigma \rangle) \to (q_2^{comp}, \langle (\sigma, \triangleright), (\sigma, \triangleright) \rangle)$. Das erste Zeichen auf Band 1 und 2 ist gleich, vergleiche weiter in Zustand q_2^{comp} .
 - * Für alle $\sigma, \sigma' \in \Sigma$ mit $\sigma \neq \sigma'$ definiere $(q_2^{comp}, \langle \sigma, \sigma' \rangle) \rightarrow (q^{move}, \langle (\sigma, \lhd), (\sigma', \lhd) \rangle)$. Die jeweils ersten Zeichen sind nicht gleich. Es muss nun auf Band 1 dann auf Band 2 zum jeweils linken Ende gelaufen und ein neuer Vergleichsprozess in Gang gesetzt werden: $(q^{move}, \langle \sigma, \sigma' \rangle) \rightarrow (q^{move}, \langle (\sigma, \lhd), (\sigma', \lhd) \rangle)$, and $(q^{move}, \langle \Box, \sigma' \rangle) \rightarrow (q^{move}, \langle (\Box, \diamondsuit), (\sigma', \lhd) \rangle)$, and $(q^{move}, \langle \Box, \Box) \rightarrow (q^{comp}, \langle (\Box, \diamondsuit), (\Box, \rhd) \rangle)$.
 - * Sonderfall kein Symbol auf Band 2 mehr übrig (Miserfolg): gib 0 aus auf Band 2 und akzeptiere. Für alle $\sigma \in \Sigma$ definiere $(q_2^{comp}, \langle \sigma, \Box \rangle) \rightarrow (q_+, \langle (\sigma, \diamond), (0, \diamond) \rangle)$
 - * Sonderfall: auf Band 1 kommt direkt ein # (Erfolg) Dann kein Vergleich nötig. Ersetze Inhalt von Band 2 durch 1 und akzeptiere. Für alle $\sigma \in \Sigma$ definiere $(q_2^{comp}, \langle \#, \sigma \rangle) \to (q_0^{fin}, \langle (\#, \diamond), (\sigma, \lhd) \rangle), (q_0^{fin}, \langle \#, \sigma \rangle) \to (q_0^{fin}, \langle (\#, \diamond), (\Box, \lor) \rangle)$, und $(q_0^{fin}, \langle \#, \Box, \lor) \to (q_0^{fin}, \langle \#, \diamond), (\Box, \lor) \rangle)$.

Punktevergabe: ●7 ●8 ●9 Für die richtige Idee der eigentlichen Aufgabe. Diese sollte beinhalten: Check ob Eingabewort korrekt ist (Sonderfälle beachten), sowie die Prüfung des Infixchecks. ●10 ●11 Deterministische (!) Turingmaschine formal weitestgehend richtig aufgeschrieben ●12 ●13 Gute Erklärungen! ●14 ●15 ●16 korrekte Ausgabe 1, 0 bzw. Endlosschleife mit richtiger Position des SLK am Anfang von Ausgabeband (Band k bei k-Band TMs) ●17 Keinerlei formale Fehler

Hausaufgabe 3.6 (LOOP-berechenbare Funktionen)

Definiere die Funktion $g: \{0,1\}^3 \rightarrow \{0,1\}$ durch

$$g(a_1, a_2, a_3) = (a_1 \wedge a_2) \vee \neg a_3$$

(5)

für alle $a_1, a_2, a_3 \in \{0, 1\}$.

Zeigen Sie, dass g LOOP-berechenbar ist.

Seite 7 von 8

```
LÖSUNG: x_4 = 1;

LOOP(x_3) {

x_4 = 0;

LOOP(x_1) {

LOOP(x_2) {

x_4 = 1;

}

}

x_1 = x_4;
```

●18 ●19 Richtige Idee ●20 ●21 Formal richtig umgesetzt (also die LOOP Syntax und Semantik einhaltend) und richtiges Ergebnis ●22 Alles absolut richtig