FMI, Info, Anul I

Logică matematică și computațională

Seminar 11

(S11.1) Considerăm limbajul de ordinul I $\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura $\mathcal{N} = (\mathbb{N}, <, +, \cdot, S, 0)$.

- (i) Fie $x, y \in V$ cu $x \neq y$, şi $t = \dot{S}x \dot{\times} \dot{S}\dot{S}y = \dot{\times}(\dot{S}x, \dot{S}\dot{S}y)$. Să se calculeze $t^{\mathcal{N}}(e)$, unde $e: V \to \mathbb{N}$ este o evaluare ce verifică e(x) = 3 şi e(y) = 7.
- (ii) Fie $\varphi = x \dot{<} \dot{S}y \rightarrow (x \dot{<} y \vee x = y) = \dot{<} (x, \dot{S}y) \rightarrow (\dot{<} (x, y) \vee x = y)$. Să se arate că $\mathcal{N} \models \varphi[e]$ pentru orice $e: V \rightarrow \mathbb{N}$.

Notația 1. Fie \mathcal{L} un limbaj de ordinul I. Pentru orice variabile x, y cu $x \neq y$, orice \mathcal{L} -structură \mathcal{A} , orice $e: V \to A$ și orice $a, b \in A$, avem că:

$$(e_{y \leftarrow b})_{x \leftarrow a} = (e_{x \leftarrow a})_{y \leftarrow b}.$$

În acest caz, notăm valoarea lor comună cu $e_{x \leftarrow a, y \leftarrow b}$. Aşadar,

$$e_{x \leftarrow a, y \leftarrow b} : V \to A, \quad e_{x \leftarrow a, y \leftarrow b}(v) = \begin{cases} e(v) & dac v \neq x \text{ si } v \neq y \\ a & dac v = x \\ b & dac v = y. \end{cases}$$

(S11.2) Să se arate că pentru orice formule φ , ψ și orice variabile x,y cu $x\neq y$ avem,

- (i) $\neg \exists x \varphi \vDash \forall x \neg \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \bowtie \forall x\varphi \wedge \forall x\psi$;
- (iii) $\exists y \forall x \varphi \vDash \forall x \exists y \varphi;$
- (iv) $\forall x(\varphi \to \psi) \vDash \forall x\varphi \to \forall x\psi$.

(S11.3) Fie x, y variabile cu $x \neq y$. Să se dea exemple de limbaj de ordinul I, \mathcal{L} , şi de formule φ, ψ ale lui \mathcal{L} astfel încât:

- (i) $\forall x(\varphi \lor \psi) \not\vDash \forall x\varphi \lor \forall x\psi;$
- (ii) $\exists x \varphi \land \exists x \psi \not \vDash \exists x (\varphi \land \psi);$
- (iii) $\forall x \exists y \varphi \not\vDash \exists y \forall x \varphi$.