9-4 Arcs and Chords

In $\bigcirc O$ shown at the right, \overline{RS} cuts off two arcs, \widehat{RS} and \widehat{RTS} . We speak of \widehat{RS} , the minor arc, as being the arc of chord \overline{RS} .

Theorem 9-4

In the same circle or in congruent circles:

- (1) Congruent arcs have congruent chords.
- (2) Congruent chords have congruent arcs.

Here is a paragraph proof of part (1) for one circle. You will be asked to write a paragraph proof of part (2) in Written Exercise 16.

Given: $\bigcirc O$; $\widehat{RS} \cong \widehat{TU}$

Prove: $\overline{RS} \cong \overline{TU}$

Proof:

Draw radii \overline{OR} , \overline{OS} , \overline{OT} , and \overline{OU} . $\overline{OR} \cong \overline{OT}$ and $\overline{OS} \cong \overline{OU}$ because they are all radii of the same circle. Since $\widehat{RS} \cong \widehat{TU}$, central angles 1 and 2 are congruent. Then $\triangle ROS \cong \triangle TOU$ by SAS and corresponding parts \overline{RS} and \overline{TU} are congruent.

A point Y is called the *midpoint* of \widehat{XYZ} if $\widehat{XY} \cong \widehat{YZ}$. Any line, segment, or ray that contains Y bisects \widehat{XYZ} .

Theorem 9-5

A diameter that is perpendicular to a chord bisects the chord and its arc.

Given: $\bigcirc O$; $\overline{CD} \perp \overline{AB}$

Prove: $\overrightarrow{AZ} \cong \overrightarrow{BZ}$; $\overrightarrow{AD} \cong \overrightarrow{BD}$

Plan for Proof: Draw \overline{OA} and \overline{OB} . Then use the HL Theorem to prove that $\triangle OZA \cong \triangle OZB$. Then use corresponding parts of congruent triangles to show that $\overline{AZ} \cong \overline{BZ}$ and $\triangle 1 \cong \triangle 2$. Finally, apply the theorem that congruent central angles have congruent arcs.

