Машинное обучение Лекция №1, осень 2022

Вводное занятие по курсу «Машинное обучение»

Окурсе

- Машинное обучение (осень) дифференциальный зачет
 - 15 недель занятий.
 - ~7 заданий допуск к зачету +1 доп. балл;
 - 14 тестов (перед каждым семинаром) +1 доп. балл;
 - Работа на семинарах +1 доп. балл;
 - Устный зачет.
 - 2 случайных билета по темам курса;
 - 1 тема на выбор студента вне программы курса (вопрос по выбору);
 - Доп. Вопросы по курсу.
- Глубокое обучение (весна) экзамен

Программа курса

- 1. Введение в машинное обучение.
- 2. Naive Bayes, kNN.
- 3. Линейные модели.
- 4. Логистическая регрессия.
- 5. SVM, PCA.
- 6. BVD, k.
- 7. Деревья решений. Методы ансамблирования моделей.
- 8. Градиентный бустинг.
- 9. Введение в нейронные сети.
- 10. Методы кластеризации и понижения размерности.
- 11. Неградиентная оптимизация.
- 12. Задачи ранжирования и матчинга.
- 13. Практика решения задач.

Формат курса

Оценка за курс

- устный ответ на билеты по программе курса
 - 2 вопроса из программы (на зачёте)
 - 1 вопрос по выбору по теме курса
- 3 дополнительных балла
 - работа на семинарах
 - решение дополнительных заданий
 - решение тестов в начале семинаров

- Лекционные занятия: записи и очные
- Семинарские занятия (по группам): очно
- Домашние задания с фиксированным дедлайном
 - Проверка семинаристами по группам

Введение

Три основных области исследований в ML (Machine learning)

- 1. CV (Computer Vision)
- 2. NLP (Natural Language Processing)
- 3. RL (Reinforcement Learning)

Коротко о задачах в ML

Решим задачу

Сколько минут в 3 часах?

Коротко о задачах в ML

Решим задачу

Сколько минут в 3 часах?

$$f(x) = 60 * x$$

 $f(3) = 60 * 3 = 180$

Решим другую задачу

Мальчик на санках едет с горки. Масса мальчика вместе с санками составляет 40 кг, угол наклона горы 30°. Найдите ускорение, с которым съезжает мальчик, если коэффициент трения скольжения равен 0,2.

Решим другую задачу

Мальчик на санках едет с горки. Масса мальчика вместе с санками составляет 40 кг, угол наклона горы 30°. Найдите ускорение, с которым съезжает мальчик, если коэффициент трения скольжения равен 0,2.

Дано:

$$m = 40 \text{ кг}$$

 $\alpha = 30^{\circ}$
 $\mu = 0.2$
 $a = 7$

$$m\vec{a} = \vec{N} + m\vec{g} + \vec{F}_{Tp}$$
 $X: ma = -F_{Tp} + mg_x$
 $Y: 0 = N - mg_y$
 $N = mg_y$
 $m\vec{g}$
 mg_x
 mg_x
 mg_x
 mg_x
 mg_x
 mg_x
 mg_x

$$F_{\text{Tp}} = \mu N = \mu m g_y$$
 $mg_x = mg \sin \alpha$
 $ma = mg_x - \mu mg_y$ $mg_y = mg \cos \alpha$

А что если?

- система сложнее?
- процесс сложнее?
- мы не имеем представления, как он устроен?
- мы не понимаем, как параметры внутри влияют друг на друга?

Попробуем найти зависимость

Попробуем найти зависимость

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ

Источник: https://www.transtats.bts.gov

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ

Объекты (прецеденты)

Источник: https://www.transtats.bts.gov

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ
	Признаки						Ист	очник: <u>https://www</u>	<u>v.transtats.bts.gov</u>

Матрица «объекты-признаки»

Датасет с задержками рейсов.

	Month	DayofMonth	DayOfWeek	DepTime	UniqueCarrier	Origin	Dest	Distance	dep_delayed_15min	
0	c-8	c-21	c-7	1934	AA	ATL	DFW	732	N	
1	c-4	c-20	c-3	1548	US	PIT	MCO	834	N	
2	c-9	c-2	c-5	1422	XE	RDU	CLE	416	N	
3	c-11	c-25	c-6	1015	00	DEN	MEM	872	N	
4	c-10	c-7	c-6	1828	WN	MDW	OMA	423	Υ	
Целевая переменная										

Источник: https://www.transtats.bts.gov

Признаки

Признаковое описание объекта - Вектор:

$$x_i = \{d_1, d_2, d_3, \dots d_n\}$$

Множество значений признака

$$d_j \in D_j$$

<u>Бинарные признаки</u>

$$D_i = \{0, 1\}$$

В нашем примере: Целевая переменная

Категориальные признаки

 D_i - упорядоченное множество

В нашем примере: Локация отправления Локация прибытия

Вещественные признаки

$$D_i = \mathbb{R}^m$$

В нашем примере: Расстояние

Определения

Машинное обучение – это процесс, в результате которого машина (компьютер) способна показывать поведение, которое в нее не было явно заложено (запрограммировано).

Артур Самуэль, 1959

Компьютерная программа обучается при решении какой-то задачи из класса Т, если ее производительность, согласно метрике Р, улучшается при накоплении опыта Е.

Том Митчелл, 1997

- Задача классификации
- Задача регрессии
- Задача ранжирования
- Задача прогнозирований

- Кластеризация
 Поиск ассоциативных правил
- Фильтрация выбросов
- Построение доверительной области
- Задача сокращения размерности
 Задача заполнения пропущенных значений

Structure Image Meaningful **Customer Retention** Classification Compression Discovery Выбор модели Big data Visualistaion **Identity Fraud** Diagnostics Feature Detection Elicitation Dimensionality Classification Recommender **Advertising Popularity** Unsupervised Supervised Systems Prediction Learning Learning Weather Forecasting Machine Clustering Regression Learning Targetted | Market Marketing Forecasting Customer Population Estimating Segmentation Growth Life expectancy Prediction Game Al Reinforcement Learning Real-time decisions **Skill Acquisition**

Robot Navigation

Learning Tasks

Формальная постановка задачи

Где взять данные?

- Google Dataset Search. Dataset Search позволяет по ключевому слову искать датасеты по всей Сети.
- Kaggle. Площадка для соревнований по машинному обучению с множеством интересных датасетов.
 В списке датасетов можно найти разные нишевые экземпляры от оценок рамена до баскетбольных данных NCAA и базы лицензий на домашних животных в Сиэтле.
- <u>UCI Machine Learning Repository. Один из старейших источников датасетов в Сети и первое место, куда стоит заглянуть в поиске интересных датасетов. Хотя они добавляются пользователями и потому имеют различную степень «чистоты», большинство из них очищены. Данные можно скачивать сразу, без регистрации.</u>
- VisualData. Датасеты для компьютерного зрения, разбитые по категориям. Доступен поиск.
- <u>Find Datasets | CMU Libraries. Коллекция датасетов, предоставленная университетом Карнеги Меллон.</u>

 Больше датасетов: https://tproger.ru/translations/the-best-datasets-for-machine-learning-and-data-science/

Что нужно знать и уметь (но это неточно)

Substantive

Expertise

Фундаментальное образование:

- Математический анализ
- Линейная алгебра
- Алгоритмы и структуры данных
- Вычислительная математика
- Математическая статистика

Знания в доменной области:

- Физика
- Биология

- ...

Роли в машинном обучении

Рабочий процесс

