COMP3411/9814 Revision

Exam

- 2 May 2023
- Online Moodle
- Reading time starts 1:45pm
- Open for answers 2pm to 4pm (ELS students have extra time)
- 20 multiple choice questions (very similar to quiz questions)
- 6 multi-part written questions (max 16 sub-parts)
 - Short answer, some calculation
 - Not more complex than multiple choice, so don't panic.
- Supplementary exams in week 22-26 May (exact date not set yet)

Search

- What are the different types of search algorithms?
- What are their properties?
 - Order of search
 - Optimality
 - Complexity
- Can you demonstrate different search algorithms on a simple example?

Example Question

- Given Start (A) and Goal (I) nodes,
 can you work out the order of nodes visited in:
- A) Depth-first search
- B) Breadth-first search
- C) Iterative Deepening
- D) Uniform Cost Search
- E) A* Search
- F) Greedy Search

Н
10
13
5
7
15
6
5
2
0

CSP

- What are the different CSP strategies?
- e.g. forward checking, arc consistency
- Can you apply them on a small example?

Example Question

 In map colouring, can you apply forward checking to a graph?

 If you are given a partial assignment of variables, can you work out the remaining legal values by forward checking or arc consistency?

Neural Networks

- Given a network and an activation function, can you propagate value through a network to get an output (i.e. forward pass)?
- If you are given an incomplete network and an activation function, can you find the value for the missing weights so the network returns the expected output?
- Can you apply the perceptron training rule?

Example question

 Can you compute the output of a multilayer perceptron, given a simple activation function?

Uncertainty

- Given a joint probability distribution table, can you find the the probability of a proposition?
- Given, P(A), P(B) and P(A|B), can you calculate P(B|A)?

 Given a Bayesian network, can you calculate different probabilities using causal inference or diagnostic inference?

Example question

 Can you calculate P(E|~A)?

Reinforcement Learning and Robot Vision Recap

COMP3411/9814: Artificial Intelligence

Reinforcement Learning

COMP3411/9814: Artificial Intelligence

Reinforcement Learning

There are four essential elements:

Policy

- Informs how to act in a particular situation.
- Set of stimulus-response rules or associations.
- Can be stochastic.

There are four essential elements:

Reward function

- Defines the aim of an RL problem.
- Maps each perceived state (or state-action pair) into a number, the reward.
- The goal is to maximize the long-term reward.
- In biological systems may correspond to pain and pleasure feelings.
- Can be stochastic.

There are four essential elements:

Value function

- Shows what is good in the long run (the reward in an immediate sense).
- In biological systems corresponds to more refined judgments or foresight about the future from one state.
- Actions are decided based on the value.
- It's much harder to determine values than rewards.

There are four essential elements:

- Optionally, a model of the environment
 - Imitates the environment behaviour.
 - Can predict states and reward obtained.
 - The use of models of the environment is still relatively new.

Greedy method

- The simplest way to choose an action: the action with the highest estimated value.
- A_t^* where $Q_t(A_t^*) = \max_a Q_t(a)$.

ε-greedy method

- A simple alternative: to choose the best action most of the time, and sometimes (with a small probability ε) a random one.
- $Q_t(a)$ converges to $q_*(a)$ with probability 1- ϵ .

Softmax method

- ε-greedy effectively trades off exploration and exploitation, but the selection is equitable (or fair) among actions.
- Sometimes, the worst action is very bad.
- Softmax uses action probabilities as a Boltzmann distribution.

$$\frac{e^{Q_t(a)/\tau}}{\sum_{i=1}^n e^{Q_t(i)/\tau}}$$

Softmax method

- High temperatures give almost equal probability for all actions.
- Low temperatures make a bigger difference in the probability.
- It is not clear if softmax or ε -greedy performs better.
- However, softmax shows dissimilar performance making difficult the selection of the temperature.

$$\frac{e^{Q_t(a)/\tau}}{\sum_{i=1}^n e^{Q_t(i)/\tau}}$$

- In sumary, two possible action selection methods (among many others):
- ε-greedy method:

$$P(s_t, a) = \begin{cases} 1 - \epsilon & \text{if } a = \underset{a_i \in A(s_t)}{argmax} \ Q(s_t, a_i) \\ \epsilon & \text{otherwise} \end{cases}$$

• Softmax method:

$$P(s_t, a) = \frac{e^{Q(s_t, a)/T}}{\sum_{a_i \in A} e^{Q(s_t, a_i)/T}}$$

• Given a set of Q values, could you calculate the selection for all Q values using either ϵ -greedy or softmax methods?

Incremental implementation

• A simple implementation: record all the rewards.

$$Q_t(a) = \frac{R_1 + R_2 + \dots + R_{K_a}}{K_a}$$

Problem: growing use of memory and computational cost over time.

Incremental implementation

• Denote Q_k the estimated reward at time-step k, i.e., the average of the k-1 first rewards, then:

$$Q_{k+1} = \frac{1}{k} \sum_{i=1}^{k} R_i$$

$$= \frac{1}{k} \left(R_k + \sum_{i=1}^{k-1} R_i \right)$$

$$= \frac{1}{k} \left(R_k + (k-1)Q_k \right)$$

$$= \frac{1}{k} \left(R_k + kQ_k - Q_k \right)$$

$$= Q_k + \frac{1}{k} \left[R_k - Q_k \right],$$

Returns

• If the reward sequence received is R_{t+1} , R_{t+2} , R_{t+3} , We want to maximise the expected return G_t .

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

- In tasks with final state and that can be divided into subsequences (episodes)
- Each episode finishes in the final state and the task starts over from an initial state.
- These tasks are known as episodic tasks.

• Can you calculate a Q value based on average reward?

Returns

- Tasks intended to be performed continuously without limit are referred to as continuous tasks (or non-episodic).
- The return could be infinite, given that $T = \infty$.
- In this case, the agent maximises the discounted rewards, choosing actions to maximise the discounted return:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

• Discount rate $0 \le \gamma < 1$. Determine the present value of future rewards. If $\gamma = 0$, the agent is myopic. If $\gamma \to 1$ the agent is foresighted.

• Can you calculate G_i for a give i?

Q-values

r(s, a) (immediate reward) values

V*(s) values

Q(s, a) values

$$\gamma = 0.9$$

Grid world example

• Can you calculate the sequence a Q table of values for each action?

Sarsa: On-Policy TD Control

- Updates after each transition from a non-terminal S_t.
- If S_{t+1} is terminal, $Q(S_{t+1}, A_{t+1})$ is defined as zero.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- Each element of the 5-tuple (S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1}) is used, this gives the name to the algorithm.
- On-policy methods continuously estimate q_{π} for policy π , and at the same time change π greedily towards q_{π} .

Q-Learning: Off-Policy TD Control

- A simple but important breakthrough is an off-policy TD algorithm.
- The simplest way is one-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- The learned action-value function Q directly approximates q^* , the optimal action-value function, regardless the followed policy π .
- The policy still has an effect in which state-action pairs are visited and updated.

- Can you calculate the sequence a Q table of values for each action?
- How about for SARSA?

Robot Vision

Image processing: Averaging

- It can use a threshold.
- Larger rectangles achieve more smoothing.
- Broad lines are thickened and thin lines eliminated

Image processing: Averaging

Given a simple 4 x 4 picture matrix:

■Smooth this matrix using an averaging technique and a 3 x 3 pixel window.

Image processing: Averaging

- There are four 3 x 3 pixel windows in the matrix.
- Replace middle value in each window by average of all the values in the window.

• Given a really small image can you demonstrate how smoothing works?

Image processing: Region finding

- To find regions in which a property does not change abruptly.
- A region is homogeneous. Intensity difference no more than some ε
- Split-and-merge method. 2ⁿ x 2ⁿ array of pixels.
 - Each no homogeneous region is split in four.
 - Splits continues until no more splits need to be made.
 - Adjacent regions are merged if homogeneous.

Image processing: Region finding

- Splitting and merging candidate regions.
- In this example, intensities may not vary more than 1 unit. Therefore, $\varepsilon <= 1$.

• Given a really small image know how region splitting and merging works?

Stereo vision

- Under perspective projection large, distant objects might produce the same image as similar but smaller, closer ones.
- Distance estimation from single images is problematic, but sometimes possible.
- e.g., If we know an object is on the floor and the camera height.

Depth Calculation from a Single Image

Stereo vision

- Depth information from stereo vision.
- Two-dimensional setup.
- Two lenses with distance b.
- Correspondence problem for pairs of points.

Figure 6.21

Triangulation in Stereo Vision

• Can you calculate the distance to an object from the disparity data (angles and distance between cameras)?

Logic and Automated Reasoning

- Can you translate English sentences to and from expressions in propositional and first order logic?
- Can you work out the truth table of an expression in propositional logic?
- Do you know what soundness, completeness and decidability mean?
- Can you show something like:

$$P \wedge (Q \rightarrow R) \Leftrightarrow \neg (P \rightarrow Q) \vee (P \wedge R)$$

Do you remember these identities?

Commutativity:	$p \wedge q \leftrightarrow q \wedge p$	$p \lor q \leftrightarrow q \lor p$
Associativity:	$p \wedge (q \wedge r) \leftrightarrow (p \wedge q) \wedge r$	$p \lor (q \lor r) \leftrightarrow (p \lor q) \lor r$
Distributivity:	$p \wedge (q \vee r) \leftrightarrow (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$
Implication:	$(p \to q) \leftrightarrow (\neg p \lor q)$	
Idempotent:	$p \land p \leftrightarrow p$	$p \lor p \leftrightarrow p$
Double negation:	$\neg \neg p \leftrightarrow p$	
Contradiction:	$p \land \neg p \leftrightarrow \text{FALSE}$	
Excluded middle:		$p \lor \neg p \leftrightarrow TRUE$
De Morgan:	$\neg (p \land q) \leftrightarrow (\neg p \lor \neg q)$	$\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$

Can you work out what the models of a formula are?

$$S \models P$$

$$S = \{\mathbf{p} \rightarrow \mathbf{q}, \, \mathbf{q} \rightarrow \mathbf{p}, \, \mathbf{p} \lor \mathbf{q}\}$$

$$P = \mathbf{p} \land \mathbf{q}$$

Each row is an interpretation of *S*. Only the first row is a model of *S*.

p	q	$p \rightarrow q$	$\mathbf{q} \rightarrow \mathbf{p}$	p V q	S	p∧q
$\overline{\mathbf{T}}$	T	T	T	T	T	T
\mathbf{T}	F	F	$oldsymbol{T}$	T	F	F
F	\mathbf{T}	Т	F	T	F	F
F	F	T	T	F	F	F

Proofs (propositional and first-order)

- Can you take any propositional or first order expression and turn it into conjunctive normal form?
- Given a knowledge base and a query, can you show all the steps in a resolution proof of the query?

Prolog

■ Can you write a simple Prolog program?

■ E.g. merge two sorted lists:

```
?- merge([1, 3, 7, 15], [5, 9, 13], X). X = [1, 3, 5, 7, 9, 13, 15]
```

Planning

- Can you write the pre-conditions and postconditions of an action in STRIPS (PDDL) representations (i.e. preconditions and effects).
- Do you know the difference between a forward chaining and backward chaining planner?
- Given a simple planning problem, can you draw a graph showing how a partial order planner works?
- Can you explain how constraint solving can improve the efficiency of a planning algorithm?

Inductive Logic Programming

- Given two definite clauses, can find the least general generalisation?
- Can you explain why intra_construction, absorption and truncation are generalisation operations?

Decision Trees

■ Can you calculate the entropy resulting from split so that you can choose the most informative attribute to split on?

■ Can you calculate the Laplace error and determine when to stop growing a branch in a decision tree?

■ What is k-fold cross-validation and how is it used to estimate the classification accuracy of a machine learning algorithm?

NLP

- Given a simple grammar, can you determine if an input sentence is recognised by the grammar?
- Given a simple grammar, can you generate a sentence that is recognised by the grammar?
- Can you demonstrate a left-most or right-most derivation?
- Given a definite clause grammar can you show what the output would be after recognising an input sentence?