Package 'psychtoolbox'

July 30, 2024

```
Title Tools for psychology research and psychometrics
Version 0.0.1
Description This package contains functions helping to analyse psychological data.
License CC BY 4.0
URL https://gitlab.com/lukas.novak/psychtoolbox
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports coin,
      docxtractr,
      dplyr,
      equaltestMI,
      insight,
      lavaan,
      magrittr,
      rmarkdown,
      rstatix,
      stats,
      tidyr,
      expss,
      stringr,
     tidyselect,
      vctrs,
      purrr,
     reshape2,
     janitor,
     broom,
      car,
      bootnet
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 2.10)
```

2 clin_sig_chang

R topics documented:

clin_sig_chang	2
edge_weight_summary	3
lasy.lin.reg	4
lasy.log.reg	6
mitab	8
mult.g.comp	10
node_predictability_summary	11
paq.validation.study	12
RCI	14
small_boot_table	15
two.g.comp	17
word2pdf	18
	19

clin_sig_chang

Clinically significant change

Description

This easy function calculates Clinically significant change (clinical cut-off scores) as defined by Jacobson and Truax (1991).

Usage

Index

```
clin_sig_chang(SD_0, SD_1, M_1, M_0)
```

Arguments

SD_0	standard deviation of the non-clinical population
SD_1	standard deviation of the clinical population
M_1	mean of the clinical population
M_0	mean of the non-clinical population

Format

numeric vector of values

Details

This function computes cut-off score differentiating between the clinical and non-clinical population based on the Jacobson and Truax (1991) formula (p. 13). The mathematical formula can be also found in Biescad & Timulak(2014, p. 150).

Value

numeric vector

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

See Also

RCI() function for calculation of the Reliable Change Index

Examples

edge_weight_summary

Summarizing Bootstrapped Network Estimates from 'bootnet'

Description

Summarizing Bootstrapped Network Estimates from 'bootnet'

Usage

```
edge_weight_summary(
  bootnet_output,
  include_sample_edge_weight = TRUE,
  include_p_values = "stars"
)
```

Arguments

bootnet_output Output from the 'bootnet' package after bootstrapping network analysis. include_sample_edge_weight

Logical, whether to include sample edge weight in the summary table.

include_p_values

String, whether to include p-values as significance stars, add p-value column, or exclude p-values entirely. Options are "stars", "exact", or "none". Default is "stars".

Format

An object of class "tibble".

4 lasy.lin.reg

Details

This function provides a convenient summary of bootstrapped network estimates from the 'bootnet' package, including edge weights, their confidence intervals, and p-values alternatively. It is tailored to enhance the usability of 'bootnet' output by summarizing critical metrics in a concise format. Importantly, it only summarizes results in edges that were non-zero on sample level. Edges that had zero edge weight in a sample are filtered out.

The empirical p-values are calculated using the following formula:

$$p = \frac{\sum_{i=1}^{n} \mathbf{1}\{|x_i| \ge |x_0|\}}{n}$$

where x_0 is the original estimate and x_i are the bootstrap estimates.

Value

A tibble summarizing edge weights.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

Examples

lasy.lin.reg

Lasy linear regression function

Description

This function performs linear regression and print results in tibble output. This function aims to provide the results of the regression analysis in the format, which is frequently desired in academic journals.

lasy.lin.reg 5

Usage

```
lasy.lin.reg(
  independent.var,
  dependent.var,
  print.cov = FALSE,
  Z_score_independent = FALSE,
  check_multicolinearity = TRUE,
  covariates = NULL,
  data
)
```

Arguments

```
independent.var
independent variable/s

dependent.var dependent variable/s

print.cov Print effect of covariates, default is FALSE

Z_score_independent
Should independent variables be z-scored? Default is FALSE

check_multicolinearity
Should multicolinearity assumption be checked? Default is TRUE

covariates covariates to be included in a model

data frame or tibble object
```

Format

An object of class "tibble"

Details

Currently, this function does not provide model fit indicators such as AIC or BIC.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

6 lasy.log.reg

Examples

```
# data simulation
library(dplyr)
data.PAQ = tibble(.rows = 1000)
data.PAQ <- data.PAQ %>%
 mutate("multiple__exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5)) %>%
 mutate("exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5)) %>%
 mutate("exper_1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5),
        "exper_2" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 5),
        "last_binary_vasd1" = rnorm(n = nrow(data.PAQ), mean = 20, sd = 20),
        "last_binary_val2" = rnorm(n = nrow(data.PAQ), mean = 5, sd = 5),
        "last_binary_val3" = rnorm(n = nrow(data.PAQ), mean = 10, sd = 40),
        "last_binary_val4" = rnorm(n = nrow(data.PAQ), mean = 50, sd = 5),
        "last_binary_val5" = rnorm(n = nrow(data.PAQ), mean = 5, sd = 4),
        "last_binary_val6" = rnorm(n = nrow(data.PAQ), mean = 65, sd = 5))
lin.reg.output <- lasy.lin.reg(independent.var = c("last_binary_vasdl"),</pre>
                              covariates = c("last_binary_val6"),
                              dependent.var = c("last_binary_val5","last_binary_val4"),
                              Z_score_independent = FALSE,
                              check_multicolinearity = TRUE,
                              data = data.PAQ,
                              print.cov = FALSE)
print(lin.reg.output)
```

lasy.log.reg

Lasy logistic regression function

Description

This function performs logistic regression and print results in tibble output. This function aims to provide the results of the regression analysis in the format, which is frequently desired in academic journals.

Usage

```
lasy.log.reg(
  independent.var,
  dependent.var,
  print.cov = FALSE,
  covariates = NULL,
  check_multicolinearity = TRUE,
  data
)
```

Arguments

```
independent.var
independent variable/s
dependent.var
dependent variable/s
print.cov
Print effect of covariates, default is FALSE
```

lasy.log.reg 7

```
covariates covariates to be included in a model check_multicolinearity
```

Should multicolinearity assumption be checked? Default is TRUE

data frame or tibble object

Format

```
An object of class "tibble"
```

Details

Currently, this function does not provide model fit indicators such as AIC or BIC.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

8 mitab

mitab

Measurement invariance table

Description

Measurement invariance table

Usage

```
mitab(
   group1_nam,
   group2_nam,
   ordered,
   model,
   data,
   std.lv,
   meanstructure,
   group,
   yes_no_results,
   estimator,
   robust = FALSE,
   cfi.difference = TRUE,
   rmsea.difference = TRUE,
   ...
)
```

Arguments

	group1_nam	name of the first group
	group2_nam	name of the second group
	ordered	logical, if set to TRUE items will be treated as ordered variables
	model	lavaan model to test
	data	data frame or tibble
	std.lv	logical, if TRUE than standardized loadings are stored in temporal output
	meanstructure	logical, if TRUE than model with meanstructure is estimated
	group	name of grouping variable
	yes_no_results	logical, if TRUE than lasy output indicating difference between models is added, currently working only based on CFI and RMSEA
	estimator	name of estimator to be used during fitting procedure
	robust	logical, if TRUE, than robust results are printed, working only with estimators providing robust results (e.g. MLR or DWLS)
	cfi.difference	logical, if TRUE, delta of the CFI is printed in output
rmsea.difference		ce
		logical, if TRUE, delta of RMSEA is printed in output
		optional arguments for CFA function

mitab 9

Format

An object of class "tibble"

Details

This function creates table with the key output from measurement invariance testing.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

```
# The famous Holzinger and Swineford (1939) example
HS.model \leftarrow 'visual = x1 + x2 + x3
textual = \sim x4 + x5 + x6
speed = ^{\sim} x7 + x8 + x9 '
library(lavaan)
dat <- HolzingerSwineford1939</pre>
res.tab.mi <- mitab(</pre>
group1_nam = "Grant-White",
group2_nam = "Pasteur",
ordered = FALSE,
model = HS.model,
data = dat,
std.lv = TRUE,
meanstructure = TRUE,
group = "school",
yes_no_results = TRUE,
estimator = "MLR",
robust = TRUE,
cfi.difference = TRUE,
rmsea.difference = TRUE
print(res.tab.mi)
```

10 mult.g.comp

mult.g.comp

Robust multi-group comparison

Description

This function allows to compare multiple groups in multiple outcome variables with violated parametric assumptions.

Usage

```
mult.g.comp(
   df,
   outcome.var,
   groups,
   desc_only = FALSE,
   short_results = TRUE,
   remove_missings = FALSE,
   percent_decimals = 2
)
```

Arguments

```
data frame or tibble object
outcome.var continuous variable/s
groups grouping variable/s
desc_only print only descriptive statistics, default is FALSE
short_results prints only significance stars without numerical results, default is TRUE
remove_missings
remove missing values from a table, default is FALSE
percent_decimals
number of decimals used to round percenages, default is 2
```

Format

An object of class "tibble"

Details

Currently, this function does not report effect size from post-hoc tests.

Two group comparison:

If there is less than three groups, the Welch test or the Wilcoxon test depending on data distribution.

Three and more groups comparison:

If more than two groups are present in data, the Dunn test or Games-Howell test is performed.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Welch, B. L. (1947). "The generalization of "Student's" problem when several different population variances are involved". Biometrika. 34 (1–2): 28–35.

Wilcoxon, F., Individual Comparisons by Ranking Methods, Biometrics Bulletin, Vol. 1, 1945, pp. 80–83. DOI:10.2307/3001968

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association. 56, 52–64.

Games, P. A., Keselman, H. J., & Clinch, J. J. Tests for homogeneity of variance in factorial designs. Psychological Bulletin, 86, 978–984

Examples

node_predictability_summary

Summarizing Node Predictability

Description

Summarizing Node Predictability

Usage

```
node_predictability_summary(predict_function_output)
```

Arguments

Format

An object of class "tibble".

Details

This function provides a summary of node predictability metrics. It is designed to extract and format predictability information from the output of a predictability analysis function.

12 paq.validation.study

Value

A tibble summarizing node predictability.

Author(s)

Lukas Novak, <lukas jirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

Examples

```
paq.validation.study paq.validation.study
```

Description

This dataset contains data which were used for validation of the Perth Alexithymia Questionnaire in the Czech Republic.

Usage

```
paq.validation.study
```

Format

A data frame with 848 rows and 53 variables:

```
P_DIF double COLUMN_DESCRIPTION
P_DDF double COLUMN_DESCRIPTION
P_DAF double COLUMN_DESCRIPTION
N_DIF double COLUMN_DESCRIPTION
N_DDF double COLUMN_DESCRIPTION
```

paq.validation.study 13

- N_DAF double COLUMN_DESCRIPTION
- G_EOT double COLUMN_DESCRIPTION
- G_DIF double COLUMN DESCRIPTION
- G_DDF double COLUMN_DESCRIPTION
- G_DAF double COLUMN_DESCRIPTION
- family_status integer COLUMN_DESCRIPTION
- Gender integer COLUMN_DESCRIPTION
- TEQ_1 double COLUMN_DESCRIPTION
- TEQ_3 double COLUMN_DESCRIPTION
- TEQ_5 double COLUMN_DESCRIPTION
- TEQ_16 double COLUMN_DESCRIPTION
- TEQ_CON_2 double COLUMN_DESCRIPTION
- TEQ_CON_4 double COLUMN_DESCRIPTION
- TEQ_CON_14 double COLUMN_DESCRIPTION
- TEQ double COLUMN_DESCRIPTION
- Age double COLUMN_DESCRIPTION
- age_group double COLUMN_DESCRIPTION
- age.quality double COLUMN_DESCRIPTION
- ethnicity integer COLUMN_DESCRIPTION
- education integer COLUMN_DESCRIPTION
- economical_status integer COLUMN_DESCRIPTION
- PAQ_1 double COLUMN_DESCRIPTION
- PAQ_2 double COLUMN_DESCRIPTION
- PAQ_3 double COLUMN_DESCRIPTION
- PAQ_4 double COLUMN_DESCRIPTION
- PAQ_5 double COLUMN_DESCRIPTION
- PAQ_6 double COLUMN_DESCRIPTION
- PAQ_7 double COLUMN_DESCRIPTION
- PAQ_8 double COLUMN_DESCRIPTION
- PAQ_9 double COLUMN_DESCRIPTION
- PAQ_10 double COLUMN_DESCRIPTION
- PAQ_11 double COLUMN_DESCRIPTION
- PAQ_12 double COLUMN_DESCRIPTION
- PAQ_13 double COLUMN_DESCRIPTION
- PAQ_14 double COLUMN_DESCRIPTION
- PAQ_15 double COLUMN DESCRIPTION
- PAQ_16 double COLUMN_DESCRIPTION
- PAQ_17 double COLUMN_DESCRIPTION
- PAQ_18 double COLUMN_DESCRIPTION
- PAQ_19 double COLUMN_DESCRIPTION

14 RCI

```
PAQ_20 double COLUMN_DESCRIPTION
PAQ_21 double COLUMN_DESCRIPTION
PAQ_22 double COLUMN_DESCRIPTION
PAQ_23 double COLUMN_DESCRIPTION
PAQ_24 double COLUMN_DESCRIPTION
PAQ double COLUMN_DESCRIPTION
edu_dich integer COLUMN_DESCRIPTION
econom_stat_dich integer COLUMN_DESCRIPTION
```

dichotomization of variables

paq.validation.study <- paq.validation.study %>% dplyr::mutate(edu_dich = as.factor(ifelse(education == "University master or higher", "University", "lower_edu")), econom_stat_dich = as.factor(ifelse(economical_status == "Student", "Student", "non_student")))

RCI

Reliable Change Index (RCI)

Description

This function calculates Reliable Change Index (RCI) as modified by Wiger and Solberg (2001, p.148).

Usage

```
RCI(SD_0, test.ret.rel)
```

Arguments

SD_0 standard deviation of the non-clinical population

test.ret.rel test-retest reliability of the instrument

Format

numeric vector of values

Details

This function computes value corresponding to "the minimum amount of change that could not be attributed to the error of measurement" (Biescad & Timulak, 2014, p. 150). If score change from before to post treatment is lower that value resulting from this function, than change in client score can not be attributed to the effectiveness of the therapy but rather other factors such as a measurement error (Biescad & Timulak, 2014). This function is a result of modification of the original Jacobson and Truax (1991) formula by Wiger and Solberg (2001, p.148).

Value

numeric vector

small_boot_table 15

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 12-19, DOI: https://doi.org/10.1037/0022-006X.59.1.12

Matus Biescad & Ladislav Timulak (2014). Measuring psychotherapy outcomes in routine practice: Examining Slovak versions of three commonly used outcome instruments, European Journal of Psychotherapy & Counselling, 16:2, 140-162, DOI: https://doi.org/10.1080/13642537. 2014.895772

Wiger, D. E., & Solberg, K. B. (2001). Tracking Mental Health Outcomes: A Therapist's Guide to Measuring Client Progress, Analyzing Data, and Improving Your Practice (1., Vol. 2001). Wiley.

See Also

clin_sig_chang() function for calculation of the clinical cut-off scores

Examples

```
re.ch.in = RCI(SD_0 = 4.87, test.ret.rel = 0.66)
re.ch.in
```

small_boot_table

Summarizing Bootstrapped Network Estimates from 'bootnet'

Description

Summarizing Bootstrapped Network Estimates from 'bootnet'

Usage

```
small_boot_table(
  bootnet_output,
  predict_function_output = NULL,
  include_sample_edge_weight = TRUE,
  include_p_values = "stars"
)
```

Arguments

```
bootnet_output output from the 'bootnet' package after bootstrapping network analysis.

predict_function_output

optional, output from a predictability analysis function.

include_sample_edge_weight
```

Logical, whether to include sample edge weight in the summary table.

include_p_values

String, whether to include p-values as significance stars, add p-value column, or exclude p-values entirely. Options are "stars", "exact", or "none". Default is "none".

16 small_boot_table

Format

An object of class "tibble".

Details

This function provides a convenient summary of bootstrapped network estimates from the 'bootnet' package, including edge weights, their confidence intervals, and optionally p-values and node predictability metrics if provided. It is tailored to enhance the usability of 'bootnet' output by summarizing critical metrics in a concise format. Importantly, it only summarizes results in edges that were non-zero on sample level. Edges that had zero edge weight in a sample are filtered out.

The empirical p-values are calculated using the following formula:

$$p = \frac{\sum_{i=1}^{n} \mathbf{1}\{|x_i| \ge |x_0|\}}{n}$$

where x_0 is the original estimate and x_i are the bootstrap estimates.

Value

A tibble summarizing edge weights and, optionally, node predictability.

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Network analysis: An integrative approach to the structure of psychopathology. Annual review of clinical psychology, 14, 91-121.

```
# Load required package

# Simulate data using base R
set.seed(654899)
Sigma <- matrix(0.5, nrow = 5, ncol = 5) + diag(0.5, 5)
chol_decomp <- chol(Sigma)
z <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
sim_data <- z %*% chol_decomp
sim_data_df <- as.data.frame(sim_data)

# Estimate a network using 'EBICglasso'
estimate <- bootnet::estimateNetwork(sim_data_df, default = "EBICglasso")

# Perform bootstrapping on the estimated network
boot_results <- bootnet::bootnet(estimate, nBoots = 100, nCores = 1)

# Summarize the bootstrapped network
summary <- small_boot_table(bootnet_output = boot_results)
print(summary)</pre>
```

two.g.comp 17

†wo	α	comp
LWU	. = .	COIIID

Automatic two-groups comparison

Description

Automatic two-groups comparison

Usage

```
two.g.comp(df, y, group.var)
```

Arguments

df data frame or tibble with one socio-demographic variable and one continuous

variable

y continuous variable group.var binary grouping variable

Format

An object of class "tibble"

Details

This function computes either Wilcox test or t-test depending on whether homogeneity of variances assumption is met or not.

Value

data frame

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

References

Myles Hollander and Douglas A. Wolfe (1973). Nonparametric Statistical Methods. New York: John Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample). Or second edition (1999).

18 word2pdf

word2pdf

word to pdf

Description

Conversion of word document to pdf using either R Markdown package or Libre office. The latter represents higher quality approach - in general.

Usage

```
word2pdf(imp_file, out_file)
```

Arguments

Format

An object of class "pdf"

Details

this function is currently running only on windows

Value

pdf file

Author(s)

Lukas Novak, <lukasjirinovak@gmail.com>

```
# example from word do pdf
#word2pdf(imp_file = "example.docx",out_file = "example1.pdf")
```

Index

* 'bootnet'	* of
$edge_weight_summary, 3$	mitab,8
small_boot_table, 15	* pdf,word
* Dunn-test	word2pdf, 18
mult.g.comp, 10	* predictability,
* Games-Howell	${\sf node_predictability_summary}, 11$
mult.g.comp, 10	* test,
* MI,	mult.g.comp, 10
mitab, 8	* testing,
* Wilcoxon	mult.g.comp, 10
two.g.comp, 17	* test
* analysis,	two.g.comp, 17
edge_weight_summary, 3	* two
small_boot_table, 15	two.g.comp, 17
* analysis	1
node_predictability_summary, 11	clin_sig_chang, 2
* a	clin_sig_chang(), 15
mitab, 8	edge_weight_summary, 3
* bootstrapping,	edge_weight_Summary, 5
edge_weight_summary, 3	lasy.lin.reg,4
small_boot_table, 15	lasy.log.reg, 6
* comparison,	3 3 3 ,
two.g.comp, 17	mitab, 8
* datasets	mult.g.comp, 10
paq.validation.study, 12	
* equivalence,	node_predictability_summary, 11
mitab, 8	nog validation study 12
* group	paq.validation.study, 12
two.g.comp, 17	RCI, 14
* invariance	RCI(), 3
mitab, 8	
* linear-regression	<pre>small_boot_table, 15</pre>
lasy.lin.reg, 4	
* logistic-regression	two.g.comp, 17
lasy.log.reg, 6	10, 10, 10
* measurement	word2pdf, 18
mitab, 8	
* multiple-groups	
mult.g.comp, 10	
* network	
edge_weight_summary, 3	
<pre>node_predictability_summary, 11</pre>	
<pre>small_boot_table, 15</pre>	