Chapter 19 – Revision of chapters 17–18

Solutions to 19A Short-answer questions

1
$$\frac{s(4) - s(2)}{4 - 2} = \frac{6(4)^2 - 6(2)^2}{2}$$

= $\frac{96 - 24}{2}$
= $36 \text{ cm}^2/\text{cm}$

2 **a**
$$x(0) = 0$$
 and $x(1) = 1$
Average velocity = $\frac{x(1) - x(0)}{1 - 0}$
= 1 cm/s

b
$$x(1) = 1$$
 and $x(4) = 124$
Average velocity = $\frac{x(4) - x(1)}{4 - 1}$
= 41 m/s

3 a i Average rate of change
$$= \frac{0-8}{3-1} = -4$$

ii Average rate of change
$$= \frac{5-8}{2-1} = -3$$

$$= \frac{(9 - (1 + h)^2) - (9 - 1)}{1 + h - 1}$$

$$= \frac{9 - (1 + 2h + h^2) - 8}{h}$$

$$= \frac{-2h - h^2}{h}$$

$$= -2 - h$$

4
$$\frac{f(x+h) - f(x)}{x+h-x}$$

$$= \frac{\frac{1}{2}(x+h)^2 - (x+h) - (\frac{1}{2}x^2 - x)}{h}$$

$$= \frac{xh + \frac{1}{2}h^2 - h}{h}$$

$$= x + \frac{1}{2}h - 1$$

$$\therefore f'(x) = x - 1$$

5 a Let
$$f(x) = 2x^3 - x + 1$$

∴ $f'(x) = 6x^2 - 1$

b Let
$$f(x) = (x-1)(x-2) = x^2 + x - 2$$

 $\therefore f'(x) = 2x + 1$

c Let
$$f(x) = \frac{x^2 + 5x}{x} = x + 5$$

 $f'(x) = 1$

6 a Let
$$y = 3x^4 + x$$

Then $\frac{dy}{dx} = 12x^3 + 1$

When
$$x = 1$$
, $\frac{dy}{dx} = 13$
Gradient = 13 at the point(1, 4)

b Let
$$y = 2x(1-x) = 2x - x^2$$

Then $\frac{dy}{dx} = 2 - 2x$
When $x = -2$, $\frac{dy}{dx} = 10$
Gradient = 10 at the point(-2, -12)

7 a
$$f(x) = 0$$

 $x - 2x^2 = 0$
 $x(1 - 2x) = 0x = 0 \text{ or } x = \frac{1}{2}$

$$\mathbf{b} \qquad f'(x) = 0$$
$$1 - 4x = 0$$
$$x = \frac{1}{4}$$

$$\mathbf{c} \qquad f'(x) > 0$$
$$1 - 4x > 0$$
$$x < \frac{1}{4}$$

$$\mathbf{d} \qquad f'(x) < 0$$
$$1 - 4x < 0$$
$$x > \frac{1}{4}$$

e
$$f'(x) = 10$$

 $1 - 4x = 10$
 $4x = 11 \ x = \frac{11}{4}$

8 **a**
$$\frac{d}{dx}(2x^{-3} - x^{-1}) = -6x^{-4} + x^{-2}$$

b $\frac{d}{dz}(\frac{3-z}{z^3}) = \frac{d}{dz}(3z^{-3} - z^{-2}) = -9z^{-4} + 2z^{-3} = \frac{2z-9}{z^4}$

9 Let
$$y = x^2 - 5x$$

$$\frac{dy}{dx} = 2x - 5$$
When $x = 1$, $\frac{dy}{dx} = -3$
When $x = 1$, $y = -4$
Therefore equation of tangent:

$$y + 4 = -3(x - 1)$$

$$y = -3x - 1$$

Normal has gradient
$$\frac{1}{3}$$

Equation of Normal $y = \frac{1}{3}x - \frac{13}{3}$

10
$$x = \frac{1}{6}t^3 - \frac{1}{2}t^2$$

 $v = \frac{dx}{dt} = \frac{1}{2}t^2 - t$
 $a = \frac{dv}{dt} = t - 1$

$$\mathbf{a} \quad v = 0 \Rightarrow \frac{1}{2}t^2 - t = 0$$
$$\Rightarrow t(\frac{1}{2}t - 1) = 0$$
$$\Rightarrow t = 0 \text{ and } t = 2$$

b
$$t = 0$$
, $a = -1$ cm/s²; $t = 2$, $a = 1$ cm/s²

$$\mathbf{c} \ \ a = 0 \Rightarrow t = 1 \Rightarrow v = -\frac{1}{2} \text{ cm/s}$$

11
$$y = 2(x^3 - 4x) = 2x^3 - 8x \frac{dy}{dx} = 6x^2 - 8$$

$$\frac{dy}{dx} = 0$$

$$\Rightarrow 3x^2 - 4 = 0$$

$$\Rightarrow x = \frac{2}{\sqrt{3}} \text{ or } x = -\frac{2}{\sqrt{3}}$$
When $x = \frac{2}{\sqrt{3}}$, $y = \frac{32}{3\sqrt{3}}$
When $x = -\frac{2}{\sqrt{3}}$, $y = \frac{32}{3\sqrt{3}}$
Local minimum $\left(\frac{2}{\sqrt{3}}, -\frac{32}{3\sqrt{3}}\right)$
Local maximum $\left(-\frac{2}{\sqrt{3}}, \frac{32}{3\sqrt{3}}\right)$
Leading coefficient of the cubic is positive.

Solutions to 19B Multiple-choice questions

1 C 1st week:
$$t = 0$$
 to $t = 1$
2nd week: $t = 1$ to $t = 2$
3rd week: $t = 2$ to $t = 3$
4th week: $t = 3$ to $t = 4$
5th week: $t = 4$ to $t = 5$

$$\frac{P(5) - P(4)}{5 - 4} = \frac{10 \times 1.1^5 - 10 \times 1.1^4}{5 - 4}$$

$$= 1.4641$$

2 A Gradient
$$\approx \frac{0-60}{6-0} = -10$$

3 B Av. speed =
$$\frac{3-0}{3-0}$$
 = 1 m/s

4 A Av. rate =
$$\frac{f(2) - f(0)}{2 - 0}$$

= $\frac{13 - 1}{2}$
= 6

5 B Av. rate =
$$\frac{23.5 - 10}{12 - 7}$$

= 2.7° C/h

6 A
$$y = 5x^2 + 1$$
 : $\frac{dy}{dx} = 10x$

7 D
$$f(5+h) - f(5) = (5+h)^2 - 5^2$$

= $10h + h^2$

8 B Gradient = 0 at turning points
$$x = -1, 1.5$$

9 C
$$V = 3t^2 + 4t + 2$$
, $V' = 6t + 4$
 $V'(2) = 6(2) + 4$
 $= 16 \text{ m}^3/\text{min}$

10 A
$$\frac{f(3+h)-f(3)}{h} = 2h^2 + 2h$$

 $\therefore \lim_{h\to 0} 2h^2 + 2h = 0$

11 C Curve increases for
$$x \in (-\infty, -2) \cup (1, \infty)$$

12 B
$$f(x) = x^3 - x^2 - 5$$

 $f'(x) = 3x^2 - 2x$
 $f'(x) = 3x^2 - 2x$
 $f'(x) = 0, x = 0, \frac{2}{3}$

13 A
$$f'(x) = \frac{0-3}{5-0} = -\frac{3}{5}$$
 for all x

14 C
$$y = 2x^3 - 3x^2$$
, $y' = 6x^2 - 6x$
 $y'(1) = 6 - 6 = 0$

15 C
$$y = 7 + 2x - x^2$$
, $\therefore y' = 2(1 - x)$
Inverted parabola, so $y \text{ max.} = y(1) = 8$

16 A
$$s = 28t - 16t^2$$
, $v = 28 - 32t$
 $s_{\text{max}} = s\frac{7}{8}$
 $= \frac{49}{2} - \frac{49}{4}$
 $= \frac{49}{4}$ m/s

17 D
$$f'(x) > 0$$
 for $x < 1$, $f'(x) < 0$ for $x > 1$ $f'(1) = 0$; only **D** fits.

18 E
$$f'(-2) > 0$$
, $f'(-1) = 0$, $f'(0) < 0$
 $f(x)$ has a local max. at $x = -1$.

19 C
$$y = \frac{x^2}{2}(x^2 + 2x - 4)$$

= $\frac{x^4}{2} + x^3 - 2x^2$
 $\therefore \frac{dy}{dx} = 2x^3 + 3x^2 - 4x$

20 B
$$\frac{d}{dx}(5+3x^2) = 6x$$

- **21** E Negative slope for x < -1, x > 1
- **22 D** Rise/run = $\frac{(1+h)^2-1}{1+h-1}$
- **23** A $y = x^2(2x 3) = 2x^3 3x^2$ $y' = 6x^2 - 6x < \therefore y'(1) = 0$
- **24** A Rise/run = $\frac{b^2 a^2}{b a} = b + a$
- **25** C $f(x) = 3x^3 + 6x^2 x + 1$ $f'(x) = 9x^2 + 12x - 1$
- **26 D** y + 3x = 10, : y = 10 3xA = 4x(10 - 3x)A' = 40 - 24x = 0 $\therefore 5 - 3x = 0$
- **27 B** $y = x^2 + 3$, y' = 2xv'(3) = 6
- **28** B $v = x^3 + 5x^2 8x$ $v' = 3x^2 + 10x - 8$ =(3x-2)(x+4)

х	-5	-4	0	$\frac{2}{3}$	1
y'	+	0	_	0	+

x = -4 is a local maximum. $x = \frac{2}{3}$ is a local minimum.

29 B
$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f'(1)}{h}$$

30 C
$$y = x^2 + 4x - 3$$

$$\therefore y' = 2(x + 2)$$

$$y \min = y(-2) = -7$$

31 **D**
$$y = x^2, \therefore y' = 2x$$

 $y'(2) = 4$
 \therefore gradient of normal $= -\frac{1}{4}$

32 E
$$y = \frac{2x+5}{x} = 2 + 5x^{-1}$$

$$\therefore \frac{dy}{dx} = -5x^{-2} = -\frac{5}{x^2}$$

33 A
$$y = x^2 - 3x - 4$$
, $\therefore y' = 2x - 3$
 $y' < 0$, $\therefore x < \frac{3}{2}$

34 A
$$\lim_{x\to 0} \frac{x^2 - x}{x} = x - 1 = -1$$

- **35** C Graph is discontinuous at x = 0, 2since in both cases the positive and negative limits are different.
- **36** C Graph is discontinuous at x = -1, 1since in both cases the positive and negative limits are different.
- 37 D
- 38 D
- 39 D

Solutions to 19C Extended-response questions

1 a When the particle returns to ground level, y = 0

$$\therefore \qquad x - 0.01x^2 = 0$$

$$\therefore x(1 - 0.01x) = 0$$

$$x = 0 or 1 - 0.01x = 0$$

$$0.01x = 1$$

$$x = 100$$

The particle travels 100 units horizontally before returning to ground level.

b
$$y = x - 0.01x^2$$

$$\therefore \frac{dy}{dx} = 1 - 0.02x$$

$$\frac{dy}{dx} = 0$$

$$\therefore 1 - 0.02x = 0$$

$$\therefore 0.02x = 1$$

$$\therefore \qquad \qquad x = 50$$

When
$$x = 50$$
, $y = 50 - 0.01(50)^2$
= $50 - 0.01 \times 2500$
= $50 - 25$
= 25

e i When
$$\frac{dy}{dx} = \frac{1}{2}$$
, $1 - 0.02x = \frac{1}{2}$
 \therefore $0.02x = \frac{1}{2}$
 \therefore $x = 25$
When $x = 25$, $y = 25 - 0.01(25)^2$
 $= 25 - 0.01 \times 625$
 $= 25 - 6.25$
 $= 18.75$

i.e. the coordinates of the point with gradient $\frac{1}{2}$ are (25, 18.75).

ii When
$$\frac{dy}{dx} = -\frac{1}{2}$$
, $1 - 0.02x = -\frac{1}{2}$
 $0.02x = 1.5$
 $x = 75$
When $x = 75$, $y = 75 - 0.01(75)^2$
 $x = 75 - 0.01 \times 5625$
 $x = 75 - 56.25$
 $x = 75 - 56.25$
 $x = 75 - 56.25$

i.e. the coordinates of the point with gradient $-\frac{1}{2}$ are (75, 18.75).

2 a
$$y = -0.0001(x^3 - 100x^2)$$

= $-0.0001x^3 + 0.01x^2$

:.

Highest point is reached where $\frac{dy}{dx} = 0$

$$\frac{dy}{dx} = -0.0003x^2 + 0.02x$$

When
$$\frac{dy}{dx} = 0$$
, $-0.0003x^2 + 0.02x = 0$

$$\therefore \qquad x(0.02 - 0.0003x) = 0$$

$$\therefore$$
 $x = 0$ or $0.02 - 0.0003x = 0$

$$\therefore 0.0003x = 0.02$$

$$x = \frac{200}{3}$$
$$= 66\frac{2}{3}$$

When
$$x = 0$$
, $y = 0$
When $x = 66\frac{2}{3}$, $y = -0.0001x^2(x - 100)$
 $= -0.0001\left(\frac{200}{3}\right)^2\left(\frac{200}{3} - 100\right)$
 $= -0.0001 \times \frac{40000}{9}\left(-\frac{100}{3}\right)$
 $= -\frac{4}{9} \times -\frac{100}{3}$
 $= \frac{400}{27}$
 $= 14\frac{22}{27}$

i.e. the coordinates of the highest point are $\left(66\frac{2}{3}, 14\frac{22}{27}\right)$.

b i At
$$x = 20$$
,
$$\frac{dy}{dx} = x(0.02 - 0.0003x)$$
$$= 20(0.02 - 0.0003 \times 20)$$
$$= 20(0.02 - 0.006)$$
$$= 20 \times 0.014$$
$$= 0.28$$

i.e. at x = 20, the gradient of the curve is 0.28.

ii At
$$x = 80$$
,
$$\frac{dy}{dx} = x(0.02 - 0.0003x)$$
$$= 80(0.02 - 0.0003 \times 80)$$
$$= 80(0.02 - 0.024)$$
$$= 80 \times -0.004$$
$$= -0.32$$

i.e. at x = 80, the gradient of the curve is -0.32.

iii At
$$x = 100$$
,
$$\frac{dy}{dx} = x(0.02 - 0.0003x)$$
$$= 100(0.02 - 0.0003 \times 100)$$
$$= 100(0.02 - 0.03)$$
$$= 100 \times -0.01$$
$$= -1$$

i.e. at x = 100, the gradient of the curve is -1.

- c The rollercoaster begins with a gentle upwards slope until it reaches the turning point (its highest point). On its downward trip the rollercoaster has a steeper slope and by the end of the ride it has reached a very steep downward slope.
- **d** It would be less dangerous if the steep slope at the end were smoothed out.
- 3 a Let h = height of the block.

Now
$$4(3x + x + h) = 20$$

$$\therefore$$
 4(4x + h) = 20

$$\therefore \qquad 4x + h = 5$$

$$h = 5 - 4x$$

i.e. the height of the block is (5 - 4x) cm.

- **b** $V = x \times 3x \times (5 4x)$ $=3x^2(5-4x)$ $= 15x^2 - 12x^3$ as required
- **c** x > 0 and V > 0

$$\therefore 15x^2 - 12x^3 > 0$$

$$\iff 3x^2(5-4x) > 0$$

$$\iff$$
 5 - 4x > 0 as 3x² > 0 for all x

$$\iff$$
 5 > 4x

$$\iff \qquad \qquad \frac{5}{4} > x$$

Domain is $\left\{ x \colon 0 < x < \frac{5}{4} \right\}$

d
$$\frac{dV}{dx} = 30x - 36x^2$$

e When
$$\frac{dV}{dx} = 0$$
, $30x - 36x^2 = 0$

$$\therefore \qquad 6x(5-6x)=0$$

$$6x = 0$$
 or $5 - 6x = 0$

$$\therefore \qquad x = 0 \quad \text{or} \qquad \qquad x = \frac{5}{6}$$

$$\therefore x = \frac{5}{6} \text{ as } x > 0$$

When
$$x = \frac{5}{6}$$
, $V = 3\left(\frac{5}{6}\right)^2 \left(5 - 4 \times \frac{5}{6}\right)$
 $= 3 \times \frac{25}{36} \left(5 - \frac{10}{3}\right) = \frac{25}{12} \times \frac{5}{3}$
 $= \frac{125}{36} = 3\frac{17}{36}$
 $\frac{dV}{dx} = 6x(5 - 6x)$
If $x < \frac{5}{6}$, e.g. $x = \frac{1}{6}$, $\frac{dV}{dx} > 0$.
If $x > \frac{5}{6}$, e.g. $x = 1$, $\frac{dV}{dx} < 0$.
∴ local maximum at $\left(\frac{5}{6}, \frac{125}{36}\right)$.

i.e. the maximum volume possible is $3\frac{17}{36}$ cm³, for $x = \frac{5}{6}$.

4 a
$$h = 30t - 5t^2$$
 $\frac{dh}{dt} = 30 - 10t$

b Maximum height is reached where
$$\frac{dh}{dt} = 0$$

$$\therefore 30 - 10t = 0$$

$$\therefore 10t = 30 \quad \therefore t = 3$$

(a maximum, as it is a quadratic with negative coefficient of t^2)

When
$$t = 3$$
, $h = 30(3) - 5(3)^2$
= $90 - 5 \times 9$
= $90 - 45 = 45$

i.e. maximum height reached is 45 m after 3 seconds.

5 a Let
$$A = \text{surface area of the net}$$

$$A = 4x(1 - 2x) + 2x2$$
$$= 4x - 8x2 + 2x2$$
$$= 4x - 6x2$$

$$\begin{array}{c|ccccc}
x & & & & & \\
x & & & & & & \\
1-2x & & & & & \\
x & & & & & \\
\end{array}$$

$$V = x \times x \times (1 - 2x)$$
$$= x^{2}(1 - 2x)$$
$$= x^{2} - 2x^{3}$$

c
$$x > 0$$
 and $V > 0$

$$\therefore \qquad x^2 - 2x^3 > 0$$

$$\iff$$
 $x^2(1-2x) > 0$

$$\iff$$
 $1-2x>0$

(as $x^2 > 0$ for all x)

$$\therefore \qquad x < \frac{1}{2}$$

Domain $\left\{ x \colon 0 < x < \frac{1}{2} \right\}$

When
$$x = 0$$
, $V = 0$

When
$$x = 0$$
, $V = 0$
When $x = \frac{1}{2}$, $V = 0$

$$\frac{dV}{dx} = 2x - 6x^2$$

When
$$\frac{dV}{dx} = 0$$
, $2x - 6x^2 = 0$

$$2x - 6x^2 = 0$$

$$\therefore \qquad 2x(1-3x)=0$$

$$\therefore x = 0 \text{ or } x = \frac{1}{3}$$

When
$$x = \frac{1}{3}$$
, $V = \left(\frac{1}{3}\right)^2 - 2\left(\frac{1}{3}\right)^3 = \frac{1}{9} - \frac{2}{27} = \frac{1}{27}$

$$V(\text{cm}^3)$$

$$\frac{1}{27}$$

$$\frac{1}{6}$$

$$\frac{1}{3}$$

$$\frac{1}{2}$$
 $x(\text{cm})$

If
$$x < \frac{1}{3}$$
, e.g. $x = \frac{1}{6}$, $\frac{dV}{dx} > 0$.
If $x > \frac{1}{3}$, e.g. $x = \frac{1}{2}$, $\frac{dV}{dx} < 0$.
 \therefore a local maximum at $\left(\frac{1}{3}, \frac{1}{27}\right)$

d A box with dimensions $\frac{1}{3}$ cm $\times \frac{1}{3}$ cm $\times \frac{1}{3}$ cm will give a maximum volume of $\frac{1}{27}$ cm³.

6 a i Using Pythagoras' theorem:

$$x^{2} + r^{2} = 1^{2}$$

$$\therefore \qquad r^{2} = 1 - x^{2}$$

$$\therefore \qquad r = \sqrt{1 - x^{2}}$$

ii
$$h = 1 + x$$

b
$$V = \frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi (1 - x^2)(1 + x)$
= $\frac{\pi}{3}(1 + x - x^2 - x^3)$ as required

c
$$x > 0$$
 and $V > 0$
For $V > 0$, $\frac{\pi}{3}(1 - x^2)(1 + x) > 0$
 $\iff 1 - x^2 > 0$ as $1 + x > 0$ for all $x > 0$
 $\iff -1 < x < 1$

$$\therefore V > 0 \text{ for } -1 < x < 1$$

To satisfy $x > 0$ and $V > 0$, domain is $\{x: 0 < x < 1\}$.

d i
$$\frac{dV}{dx} = \frac{\pi}{3}(1 - 2x - 3x^2)$$

ii When
$$\frac{dV}{dx} = 0$$
, $\frac{\pi}{3}(1 - 2x - 3x^2) = 0$
 $\therefore \frac{-\pi}{3}(3x^2 + 2x - 1) = 0$
 $\therefore \frac{-\pi}{3}(3x - 1)(x + 1) = 0$

$$3x - 1 = 0 \quad \text{or} \quad x + 1 = 0$$

$$3x = 1 \quad x = -1$$

$$x = \frac{1}{3}$$

$$x = \frac{1}{3}, \text{ as } x > 0$$
i.e.
$$\left\{x : \frac{dV}{dx} = 0\right\} = \left\{x : x = \frac{1}{3}\right\}$$

iii When
$$x = \frac{1}{3}$$
, $V = \frac{\pi}{3} \left(1 - \left(\frac{1}{3} \right)^2 \right) \left(1 + \frac{1}{3} \right)$

$$= \frac{\pi}{3} \left(1 - \frac{1}{9} \right) \left(\frac{4}{3} \right)$$

$$= \frac{\pi}{3} \times \frac{8}{9} \times \frac{4}{3}$$

$$= \frac{32\pi}{81}$$

$$\approx 1.24$$
1 1 dV

If
$$x < \frac{1}{3}$$
, e.g. $x = \frac{1}{6}$, $\frac{dV}{dx} > 0$.
If $x < \frac{1}{3}$, e.g. $x = \frac{1}{2}$, $\frac{dV}{dx} < 0$.

 \therefore local maximum at $\left(\frac{1}{3}, \frac{32\pi}{81}\right)$.

i.e. the maximum volume of the cone is $\frac{32\pi}{81}$ m³ or approximately 1.24 m³.

7 **a** When
$$t = 0$$
, $P(0) = 1000 \times 2^{\frac{0}{20}}$
= 1000

On 1 January 1993, there were 1000 insects in the colony.

b When
$$t = 9$$
, $P(9) = 1000 \times 2^{\frac{9}{20}}$
= $1000 \times 2^{0.45}$
 ≈ 1366

On 10 January, there were approximately 1366 insects in the colony.

c i When
$$P(t) = 4000$$
, $1000 \times 2^{\frac{t}{20}} = 4000$
 \therefore $2^{\frac{t}{20}} = 4$
 \therefore $2^{\frac{t}{20}} = 2^2$
 \therefore $\frac{t}{20} = 2$
 \therefore $t = 40$
ii When $P(t) = 6000$, $1000 \times 2^{\frac{t}{20}} = 6000$
 \therefore $2^{\frac{t}{20}} = 6$

$$\log_{10} 2^{\frac{t}{20}} = \log_{10} 6$$

$$\therefore \qquad \qquad \frac{t}{20} = \frac{\log_{10} 6}{\log_{10} 2}$$

$$\therefore \qquad \qquad t = \frac{20 \log_{10} 6}{\log_{10} 2}$$

$$\approx 51.70$$

d
$$P(20) = 1000 \times 2^{\frac{20}{20}}$$

= 1000×2
= 2000

$$P(15) = 1000 \times 2^{\frac{15}{20}}$$

$$\approx 1000 \times 1.681792831$$

$$\approx 1681.792831$$

Average rate of change of P with respect to time, for the interval of time

[15, 20]
$$= \frac{P(20) - P(15)}{20 - 15}$$

$$\approx \frac{2000 - 1681.792831}{5}$$

$$\approx \frac{318.2071695}{5} \approx 63.64$$

e i Average rate of change
$$= \frac{P(15+h) - P(15)}{15+h-15}$$

$$= \frac{1000 \times 2^{\frac{15+h}{20}} - 1000 \times 2^{\frac{15}{20}}}{h}$$

$$= \frac{1000 \times 2^{\frac{3}{4}} \times 2^{\frac{h}{20}} - 1000 \times 2^{\frac{3}{4}}}{h}$$

$$= \frac{1000 \times 2^{\frac{3}{4}} \left(2^{\frac{h}{20}} - 1\right)}{h}, h \neq 0$$

ii Consider h decreasing and approaching zero:

Consider
$$h$$
 decreasing and approaching zero:
Let $h = 0.0001$
Average rate of change $\approx \frac{1681.792\,831(2^{0.000\,005}-1)}{0.0001}$
 $\approx 58.286\,566\,86$
Let $h = 0.00001$
Average rate of change $\approx \frac{1681.792\,831(2^{0.000\,000\,5}-1)}{0.000\,01}$
 $\approx 58.285\,894\,14$
Let $h = 0.000\,001$
Average rate of change $\approx \frac{1681.792\,831(2^{0.000\,000\,05}-1)}{0.000\,001}$
 $\approx 58.286\,566\,86$

Hence as $h \to 0$, the instantaneous rate of change is approaching 58.287 insects per day.

8 a Let A (m²) be the total surface area of the block.

$$A = 300$$

$$A = 2(2xh + 2x^2 + xh)$$
$$= 2(2x^2 + 3xh)$$

$$2(2x^2 + 3xh) = 300$$

$$\therefore \qquad 2x^2 + 3xh = 150$$

$$3xh = 150 - 2x^2$$

$$h = \frac{150 - 2x^2}{3x}$$

$$\mathbf{b} \quad V = h \times 2x \times x$$

$$=\frac{150-2x^2}{3x}\times 2x^2$$

$$= \frac{2}{3}x(150 - 2x^2)$$

$$V = 100x - \frac{4}{3}x^3$$

$$\therefore \frac{dV}{dx} = 100 - 4x^2$$

d When
$$V = 0$$

d When
$$V = 0$$
,
$$\frac{2}{3}x(150 - 2x^2) = 0$$

$$\frac{2}{3}x = 0 \quad \text{or} \quad 150 - 2x^2 = 0$$

$$150 - 2x^2 = 0$$

$$r = 0$$

$$x = 0$$
 or $2x^2 = 150$

$$x^2 = 75$$

$$x = \pm 5\sqrt{3}$$

When
$$x = 1$$
,

$$V = \frac{2}{3} \times 1(150 - 2(1)^2)$$

$$=\frac{2}{3}(148)=\frac{296}{3}>0$$

$$V > 0$$
 for $0 < x < 5\sqrt{3}$

Note also, for x > 0

$$\frac{2}{3}x(150 - 2x^2) > 0$$

$$\iff 150 - 2x^2 > 0$$

$$\iff 75 > x^2$$

$$\iff 5\sqrt{3} > x$$

$$\therefore 100 - 4x^2 = 0$$

$$\therefore \qquad 4x^2 = 100$$

$$\therefore \qquad \qquad x^2 = 25$$

$$\therefore \qquad \qquad x = \pm \sqrt{25}$$

$$x = 5 \text{ as } x > 0$$

 $\frac{dV}{dx} = 0$

When
$$x = 5$$
,

$$V = \frac{2}{3} \times 5(150 - 2(5)^{2})$$

$$= \frac{10}{3}(150 - 50)$$

$$= \frac{1000}{3} = 333\frac{1}{3}$$

When x < 5, e.g. x = 4, $\frac{dV}{dx}$ and when x > 5, e.g. x = 6, $\frac{dV}{dx} < 0$

 \therefore a local maximum at $\left(5, \frac{1000}{3}\right)$.

i.e. when x = 5 m, the block has its maximum volume of $\frac{1000}{3}$ m³ or $333\frac{1}{3}$ m³.

:.

9 a
$$12x + y + y + 6.5x + 6.5x = 70$$

 \therefore $25x + 2y = 70$
If $x = 2$, $25(2) + 2y = 70$
 \therefore $50 + 2y = 70$

b
$$25x + 2y = 70$$

$$2y = 70 - 25x$$

$$\therefore \qquad y = \frac{70 - 25x}{2} \text{ as required}$$

c i Using Pythagoras' theorem:

$$h^{2} + (6x)^{2} = (6.5x)^{2}$$

$$h^{2} + 36x^{2} = 42.25x^{2}$$

$$h^{2} = 6.25x^{2}$$

$$h = \sqrt{6.25x^{2}}$$

$$= 2.5x \text{ as } x > 0$$

ii Let A(m) be the area of the front face of the building.

y = 10

A = area of rectangle + area of triangle
=
$$12x \times y + \frac{1}{2} \times 12x \times 2.5x$$

= $12xy + 15x^2$
= $15x^2 + 12xy$ as required

d Let $V(\text{cm}^3)$ be the volume of the building.

$$V = A \times 40$$

$$= 40(15x^{2} + 12xy)$$

$$= 40\left(15x^{2} + 12x\left(\frac{70 - 25x}{2}\right)\right)$$

$$= 40(15x^{2} + 6x(70 - 25x))$$

$$= 40(15x^{2} + 420x - 150x^{2})$$

$$= 600x(28 - 9x)$$

e i
$$V = 600(28x - 9x^2)$$

Volume is a maximum when $\frac{dV}{dx} = 0$

$$\frac{dV}{dx} = 600(28 - 18x)$$

$$\therefore \qquad 600(28 - 18x) = 0$$

$$\therefore \qquad 28 - 18x = 0$$

$$\therefore \qquad 18x = 28$$

$$\therefore \qquad x = \frac{28}{18} = \frac{14}{9}$$
When $x = \frac{14}{9}$,
$$\qquad y = \frac{70 - 25\left(\frac{14}{9}\right)}{2}$$

$$\qquad = \frac{70 - \frac{350}{9}}{2}$$

$$\qquad = \frac{630 - 350}{18}$$

$$\qquad = \frac{280}{18} = \frac{140}{9}$$
When $x < \frac{14}{9}$, e.g. $x = 1$, $\frac{dV}{dx} > 0$.

When $x > \frac{14}{9}$, e.g. $x = 2$, $\frac{dV}{dx} < 0$.
$$\therefore \text{ a local maximum at } \left(\frac{14}{9}, \frac{140}{9}\right)$$
.

i.e. the volume is a maximum when $x = \frac{14}{9}$ and $y = \frac{140}{9}$.

ii When
$$x = \frac{14}{9}$$
, $V = 40\left(420\left(\frac{14}{9}\right) - 135\left(\frac{14}{9}\right)^2\right)$
= $13066\frac{2}{3}$ m³

i.e. the maximum volume of the building is $13\,066\frac{2}{3}$ m³.

10 a
$$y = kx^2(a - x)$$

At $(200,0)$ $0 = k \times 200^2(a - 200)$
 \therefore either $k = 0$ or $a = 200$
At $(170, 8.67)$ $8.67 = k \times 170^2(a - 170)$ (1)
 $\therefore k \neq 0$ $\therefore a = 200$ (2)
Substitute (2) into (1) $8.67 = k \times 170^2(200 - 170)$
 $\therefore 8.67 = 28900k \times 30$
 $\therefore k = \frac{8.67}{28900 \times 30}$
 $\Rightarrow 0.00001$
 $\therefore y = 0.00001x^2(200 - x)$
b i $y = 0.00001x^2(200 - x)$
 $\Rightarrow 0.002x^2 - 0.00001x^3$
At the local maximum, $\frac{dy}{dx} = 0$
and $\frac{dy}{dx} = 0.004x - 0.00003x^2$
 $\therefore 0.004x - 0.00003x^2 = 0$
 $\therefore 0.001x(4 - 0.03x) = 0$
 $\therefore x = 0 \text{ or } 4 - 0.03x = 0$
 $\therefore 0.03x = 4$
 $\therefore x = \frac{400}{3}$
If $x < \frac{400}{3}$, e.g. $x = 150$, $\frac{dy}{dx} < 0$.
Therefore a local maximum when $x = \frac{400}{3}$.
ii When $x = \frac{400}{3}$, $y = 0.00001(\frac{400}{3})^2(200 - \frac{400}{3})$
 $= \frac{16}{90} \times \frac{200}{3}$

c i When
$$x = 105$$
, $y = 0.000 \, 01(105)^2(200 - 105)$

$$= \frac{1}{100 \, 000} \times 11 \, 025 \times 95$$

$$= \frac{104 \, 737 \, 5}{100 \, 000}$$

$$= \frac{8379}{800}$$

$$= 10 \frac{379}{800} \quad (= 10.473 \, 75)$$

ii When
$$x = 105$$
,
$$\frac{dy}{dx} = 0.001(105)(4 - 0.03 \times 105)$$
$$= \frac{105}{1000}(4 - 3.15)$$
$$= \frac{105}{1000} \times \frac{85}{100}$$
$$= \frac{8925}{100000} = \frac{357}{4000}$$

d i
$$y - y_1 = m(x - x_1)$$

$$\therefore y = \frac{357}{4000}(x - 105) + \frac{8379}{800}$$

$$\therefore y = \frac{357}{4000}x - \frac{37485}{4000} + \frac{41895}{4000}$$

$$\therefore y = \frac{357}{4000}x + \frac{441}{400}$$
i.e. the equation of the tangent at $x = 105$ is $y = \frac{357}{4000}x + \frac{441}{400}$

ii The y-axis intercept of the tangent is $\frac{441}{400}$.

e Average rate of change =
$$\frac{\frac{8379}{800} - 0}{105 - 0}$$

= $\frac{8379}{800 \times 105}$
= 0.09975

$$\mathbf{f} \ \ y = 0.000 \, 01 x^2 (200 - x)$$

11 a In the centre of the city

$$r = 0$$

and

$$P = 10 + 40(0) - 20(0)^2$$

i.e. the population density is 10 000 people per square kilometre.

b
$$P > 0$$

 $\therefore 10 + 40r - 20r^2 > 0$
 $\therefore -10(2r^2 - 4r - 1) > 0$
When $P = 0$, $2r^2 - 4r - 1 = 0$
 $\therefore r = \frac{4 \pm \sqrt{4^2 - 4(2)(-1)}}{2 \times 2}$
 $= \frac{4 \pm \sqrt{16 + 8}}{4}$
 $= \frac{4 \pm 2\sqrt{6}}{4}$
 $= \frac{2 \pm \sqrt{6}}{2}$
and, as $r \ge 0$ $r = \frac{2 + \sqrt{6}}{2}$
When $r = 1$, $P = 10 + 40(1) - 20(1)^2$
 $= 10 + 40 - 20$
 $= 30 > 0$

 $P > 0 \text{ for } 0 \le r \le \frac{2 + \sqrt{6}}{2}$

d i
$$\frac{dP}{dr} = 40 - 40r$$

ii When
$$r = 0.5$$
, $\frac{dP}{dr} = 40 - 40(0.5)$
= $40 - 20$
= 20

When
$$r = 1$$
, $\frac{dP}{dr} = 40 - 40(1)$
= $40 - 40$
= 0

When
$$r = 2$$
, $\frac{dP}{dr} = 40 - 40(2)$
= $40 - 80$
= -40

e The population density is greatest at a 1 km radius from the city centre.

12 a
$$y = x(a - x)$$

= $ax - x^2$

b
$$0 < x < a$$

c Maximum value of y is found where $\frac{dy}{dx} = 0$.

$$\frac{dy}{dx} = a - 2x$$

$$\therefore \qquad \qquad a - 2x = 0$$

$$\therefore \qquad 2x = a$$

$$\therefore \qquad x = \frac{a}{2}$$

When
$$x = \frac{a}{2}$$
, $y = \frac{a}{2}(a - \frac{a}{2})$
= $\frac{a}{2} \times \frac{a}{2} = \frac{1}{4}a^2$

So the maximum value of y is $\frac{1}{4}a^2$ when $x = \frac{a}{2}$.

d $y = \frac{1}{4}a^2$ is a maximum because the coefficient of the x^2 term is negative.

e i When
$$a = 9$$
, $y = x(9 - x)$

ii
$$0 < y \le \frac{81}{4}$$

13 a
$$V(t) = 0.6 \left(20t^2 - \frac{2t^3}{3} \right)$$

i When
$$t = 0$$
,
$$V(0) = 0.6 \left(20(0)^2 - \frac{2(0)^3}{3} \right)$$
$$= 0.6(0 - 0)$$
$$= 0$$

ii When
$$t = 20$$
,
$$V(20) = 0.6 \left(20(20)^2 - \frac{2(20)^3}{3} \right)$$
$$= 0.6 \left(8000 - \frac{16000}{3} \right)$$
$$= 0.6 \times \frac{8000}{3}$$
$$= 1600$$

b
$$V'(t) = 0.6(40t - 2t^2) = 1.2t(20 - t)$$

d
$$V'(t) = 1.2t(20 - t), t \in [0, 20]$$

$$= 24t - 1.2t^{2}$$
When $t = 0$,
$$V'(0) = 0$$
When $t = 20$,
$$V'(20) = 24 \times 20 - 1.2(20)^{2}$$

$$= 480 - 480$$

$$= 0$$
When $t = 10$,
$$V'(10) = 24 \times 10 - 1.2(10)^{2}$$

$$= 240 - 120$$

$$= 120$$

14 **a**
$$y = ax^3 + bx^2$$

At $(1, -1)$, $-1 = a(1)^3 + b(1)^2$
 \therefore $a + b + 1 = 0$ (1)

b
$$\frac{dy}{dx} = 3ax^2 + 2bx$$

$$At (1,-1), \qquad \frac{dy}{dx} = 0$$

$$\therefore \qquad 3a(1)^2 + 2b(1) = 0$$

$$\therefore \qquad 3a + 2b = 0$$

$$(2) - 2 \times (1) \qquad 3a + 2b = 0$$

$$-2a + 2b + 2 = 0$$

$$a - 2 = 0$$

$$\therefore \qquad a = 2$$

Substitute
$$a = 2$$
 into (1) $2 + b + 1 = 0$

$$\therefore \qquad b = -3$$

$$y = 2x^3 - 3x^2$$

$$y = 0$$

$$2x^3 - 3x^2 = 0$$

$$x^2(2x-3) = 0$$

$$x = 0$$
 or $x = \frac{3}{2}$

$$\frac{dy}{dx} = 6x^2 - 6x$$

$$=6x(x-1)$$

Stationary points where $\frac{dy}{dx} = 0$

$$6x(x-1) = 0$$

$$\therefore$$
 6x = 0 or $x - 1 = 0$

$$x = 0$$

or
$$x = 1$$

At
$$x = 0$$
, $y = 0$

At
$$x = 1$$
, $y = -1$

	<i>x</i> < 0	0	0 < x < 1	1	<i>x</i> > 1
Sign of $\frac{dy}{dx}$	+	0	_	0	+
Shape	/		\		/

 \therefore there is a local minimum at (1, -1) and a local maximum at (0, 0).

15 a i
$$AD + AB + CB = 80$$

$$\therefore \qquad x + AB + x = 80$$

$$\therefore AB = 80 - 2x$$

$$\sin 60^\circ = \frac{h}{x}$$

$$h = x \sin 60^{\circ}$$

$$h = \frac{\sqrt{3}x}{2}$$

 \mathbf{c}

b Let area of trapezoid = A

$$A = \text{area of rectangle} + 2(\text{area of triangle})$$

$$= \frac{\sqrt{3}}{2}x(80 - 2x) + 2\left(\frac{1}{2} \times \frac{\sqrt{3}}{2}x \times x \sin 30^{\circ}\right)$$

$$= \frac{80\sqrt{3}}{2}x - \sqrt{3}x^{2} + \frac{\sqrt{3}}{2}x \times \frac{x}{2}$$

$$= \frac{80\sqrt{3}}{2}x - \sqrt{3}x^{2} + \frac{\sqrt{3}}{4}x^{2}$$

$$= \frac{80\sqrt{3}}{2}x - \frac{3\sqrt{3}}{4}x^{2}$$

$$= \frac{\sqrt{3}}{4}x(160 - 3x)$$

(Formula for the area of a trapezium may also be used.)

$$A = \frac{\sqrt{3}}{4}x(160 - 3x)$$

$$= 40\sqrt{3}x - \frac{3\sqrt{3}}{4}x^{2}$$

$$\frac{dA}{dx} = 40\sqrt{3} - \frac{3\sqrt{3}}{4}x$$
When $\frac{dA}{dx} = 0$, $40\sqrt{3} - \frac{3\sqrt{3}}{2}x = 0$

$$\therefore \qquad \frac{3\sqrt{3}}{2}x = 40\sqrt{3}$$

$$\therefore \qquad x = \frac{40\sqrt{3} \times 2}{3\sqrt{3}} = \frac{80}{3}$$

The area is a maximum for $x = \frac{80}{3}$, as $A = \frac{\sqrt{3}}{4}x(160 - 3x)$ is a quadratic function with negative coefficient of x^2 .

16 a Total amount of cardboard = $x^2 + 4xy + x^2 + 8x$

$$2x^{2} + 4xy + 8x = 1400$$

$$y = \frac{1400 - 2x^{2} - 8x}{4x}$$

$$V = x^{2}y$$

$$= x^{2} \left(\frac{1400 - 2x^{2} - 8x}{4x} \right)$$

$$= \frac{-x^{3}}{2} - 2x^{2} + 350x$$

$$V = \frac{-x^3}{2} - 2x^2 + 350x$$
$$\frac{dV}{dx} = \frac{-3}{2}x^2 - 4x + 350$$

$$\mathbf{d} \quad \frac{dV}{dx} = 0 \text{ implies}$$

$$\frac{-3}{2}x^2 - 4x + 350 = 0$$

$$3x^2 + 8x - 700 = 0$$

$$\therefore \qquad x = \frac{-8 \pm \sqrt{64 + 8400}}{6} = \frac{-8 \pm 92}{6}$$

$$\therefore$$
 $x = 14$, as x is positive.

e,f When
$$x = 14$$
, $V = 3136$

Maximum volume is 3136 cm³.
From part **b**,
$$V = x^2 \left(\frac{1400 - 2x^2 - 8x}{4x} \right)$$

 $= \frac{x}{4} (1400 - 2x^2 - 8x)$
defined if $x > 0$ and $V > 0$
i.e. $-2x^2 - 8x + 1400 > 0$

i.e.
$$-2x^2 - 8x + 1400 > 0$$

$$x^2 + 4x - 700 > 0$$

$$x = \frac{-4 \pm \sqrt{16 + 2800}}{2} = -2 \pm \sqrt{704} = -2 \pm 8\sqrt{11}$$

V is defined for $0 < x < -2 + 8\sqrt{11}$.

g On a CAS calculator, with $f1 = x/4(1400 - 2x^2 - 8x)$ and f2=1000.

From the CAS calculator, when V = 1000,

$$x = 22.827...$$
 or $x = 2.943...$

$$y = 1.919...$$
 or $y = 115.452...$