Computer-Linguistische Anwendungen

CLA | B.Sc. | LMU

Input Matrix

Input Matrix: Outline

• Erinnerung:

Wir möchten die Embedding Parameter durch Matrix Faktorisierung lernen

- Dafür brauchen wir eine (nput Matrix) für die Matrix Faktorisierung
- Wir schauen uns an wie eine Input Matrix erzeugt wird (PPMI, Cooccurrence)
- Diese Methode kommt aus der Information Retrieval
 - Demnach betrachten wir ein Beispiel aus diesem Feld

Vektor Repräsentationen: Wörter vs. Dokumente

- Statistische NLP & Deep Learning:
 Embeddings als Model für Wort-Ähnlichkeit
- In Information Retrieval:
 Vektor Repräsentationen als Model für Anfrage-Dokument Ähnlichkeit
- Einfache Suchmaschine:
 - BenutzerIn gibt Anfrage ein
 - Anfrage wird in Anfrage-Vektor transformiert
 - Dokumente werden in Dokument-Vektoren transformiert
 - Ähnlichkeit des Anfrage und Dokument Vektors werden verglichen
 - Dokument(e) mit höchster Ähnlichkeit werden zurückgegeben

tf-idf

Basis für WordSpace: Cooccurrence → Ähnlichkeit

Die Ähnlichkeit zwischen zwei Worten ist der Kosinus des Winkels zwischen den beiden Vektoren

Kleiner Winkel: silver und gold sind ähnlich

Mittlerer Winkel: silver und society sind nicht sehr ähnlich

Großer Winkel: silver und disease sind noch weniger ähnlich

Dokumente geordnet nach Ähnlichkeit zur Anfrage

Wörter geordnet nach Ähnlichkeit zum Anfrage-Wort

silver

1.000 silver, 0.865 bronze, 0.842 gold, 0.836 medal, 0.826, medals, 0.761 relay, 0.740 medalist, 0.737 coins ...

Setup für Coocurrence Count Matrix

		W_2				
		rich	poor	silver	society	disease
<i>w</i> ₁	rich poor silver society disease					

Coocurrence Count Matrix

				w_2		
		rich	poor	silver	society	disease
<i>w</i> ₁	rich	$CC(w_1, w_2)$				
	poor	$CC(w_1, w_2)$				
	silver	$CC(w_1, w_2)$				
	society	$CC(w_1, w_2)$				
	disease	$CC(w_1, w_2)$				

PPMI der Coocurrence Count Matrix

PMI: pointwise mutual information $\text{PMI}(w,c) = \log \frac{P(wc)}{P(w)P(c)}$ $\text{PPMI} = \\ \text{positive pointwise mutual information}$ $\text{PPMI}(w,c) = \max(0, \text{PMI}(w,c))$ $\text{More generally (with offset } k): \\ \text{PPMI}(w,c) = \max(0, \text{PMI}(w,c)-k)$

				w_2		
		rich	poor	silver	society	disease
w_1	rich	$PPMI(w_1, w_2)$				
	poor	$PPMI(w_1, w_2)$				
	silver	$PPMI(w_1, w_2)$				
	society	$PPMI(w_1, w_2)$				
	disease	$PPMI(w_1, w_2)$				

Diese Matrix wird verwendet für die Matrix Faktorisierung und wird für die Word Embeddings verwendet.

Anwendungsbeispiel: Wort-Dokument Matrix (Information Retrieval)

	doc 1	doc 2	doc 3	doc 4	doc 5	query
anthony	5.25	3.18	0.0	0.0	0.0	0.35
brutus	1.21	6.10	0.0	1.0	0.0	0.0
caesar	8.59	2.54	0.0	1.51	0.25	0.0
calpurnia	0.0	1.54	0.0	0.0	0.0	0.0
cleopatra	2.85	0.0	0.0	0.0	0.0	0.0
mercy	1.51	0.0	1.90	0.12	5.25	0.88
worser	1.37	0.0	0.11	4.15	0.25	0

... als nächstes: Matrix Faktorisierung