4-(6-acetyl-3-(3-(4-acetyl-3-hydroxy-2-propylphenylthio)propoxy)-2-propylphenoxy)butyric acid

```
FILE 'CAPLUS' ENTERED AT 15:48:48 ON 05 AUG 2004
           STRUCTURE UPLOADED
           S L1
```

FILE 'REGISTRY' ENTERED AT 15:49:24 ON 05 AUG 2004 11 S L1 FULL

FILE 'CAPLUS' ENTERED AT 15:49:28 ON 05 AUG 2004

3 S L2 FULL

0 S POLYMORPH AND L3

13 1-3 ibib abs hitstr

Ll

L2

L3

L4

L3

ANSWER 1 OF 3 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER: 1995:39068 CAPLUS

DOCUMENT NUMBER: 123:169347

preparation of phenylthiopropoxyphenyloxybutyric acid TITLE:

derivatives as leukotriene antagonists

INVENTOR (S): Oohashi, Mitsuo; Hori, Wataru

PATENT ASSIGNEE(S):

Kyorin Seiyaku Kk, Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 06100526	A2	19940412	JP 1992-273717	19920917
PRIORITY APPLN. INFO.:			JP 1992-273717	19920917
OTHER SOURCE(S):	MARPAT	123:169347		

OTH GΙ

Me
$$-A$$
 \longrightarrow S $+$ CH_2 $+$ O \longrightarrow B CH_2 E $+$ O $+$ CH_2 CH_2 $+$ O $+$ CH_2 $+$ O $+$ O

AB Title derivs. I (A, B = CO, hydroxymethylene; E = H, OH, acetoxy; G, L = Et, acetyl, 1-hydroxyethyl, 2-hydroxyethyl, hydroxycarbonylmethyl, lower alkoxycarbonylmethyl; X = void, O, O2; R1 = H, lower alkyl; X = O, O2 and B = hydroxymethylene when A = carbonyl, E = H, and G = L = Et) or theiralkali salts, acting as strong antagonists for leukotrienes C4, D4, and E4 and useful for antiasthmatics, are prepared Thus, treating 2'-hydroxy-3'-(2-hydroxypropyl)-4'-mercaptoacetophenone (prepared in 6 steps from 3-ally1-2,4-dihydroxyacetophenone) with Et 4-[6-acety1-3-(3bromopropoxy)-2-propylphenoxy]butyrate gave I (A = B = CO, E = H, G =1-hydroxyethyl, L = Et, R1 = Et, X = void). IT 167211-60-1P 167211-72-5P 167211-78-1P 167211-82-7P 167211-90-7P 167211-91-8P

167211-92-9P 167211-93-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of phenylthiopropoxyphenyloxybutyric acid derivs. as leukotriene antagonists)

167211-60-1 CAPLUS

RN

CN Butanoic acid, 4-[6-acetyl-3-[3-[[4-acetyl-3-hydroxy-2-(2hydroxypropyl)phenyl]thio]propoxy]-2-propylphenoxy]-, ethyl ester (9CI) (CA INDEX NAME)

167211-72-5 CAPLUS

Butanoic acid, 4-[6-acetyl-3-[3-[[4-acetyl-3-hydroxy-2-(3-hydroxypropyl)phenyl]thio]propoxy]-2-propylphenoxy]-, ethyl ester (9CI) (CA INDEX NAME)

167211-78-1 CAPLUS

Butanoic acid, 4-[6-acetyl-3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)thio]propoxy]-2-(2-hydroxypropyl)phenoxy]-, ethyl ester (9CI) (CA INDEX NAME)

O AC
$$CH_2$$
 OH_2 OH_3 OH_4 OH_4 OH_5 OH_5 OH_6 OH

167211-82-7 CAPLUS

Butanoic acid, 4-[6-acetyl-3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)thio]propoxy]-2-(3-hydroxypropyl)phenoxy]-, ethyl ester (9CI) (CA INDEX NAME)

O AC
$$(CH_2)_3-S$$
 OH $O-C-(CH_2)_3-OH$ AC

167211-90-7 CAPLUS

Butanoic acid, 4-[6-acetyl-3-[3-[[4-acetyl-3-hydroxy-2-(2-oxopropyl)phenyl]thio]propoxy]-2-propylphenoxy]-, ethyl ester (9CI) (CAINDEX NAME)

167211-91-8 CAPLUS Butanoic acid, 4-[6-acetyl-3-[3-[(4-acetyl-3-hydroxy-2-

propylphenyl)thio]propoxy]-2-propylphenoxy]-, methyl ester (9CI) (CA INDEX NAME)

167211-92-9 CAPLUS

Butanoic acid, 4-[3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)thio]propoxy]-6-(chloroacetyl)-2-propylphenoxy]-, methyl ester (9CI) (CA INDEX NAME)

167211-93-0 CAPLUS

Butanoic acid, 4-[3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)thio]propoxy]-6-[(acetyloxy)acetyl]-2-propylphenoxy]-, methyl ester (9CI) (CA INDEX NAME)

$$-CH_{2}-C$$

$$0-(CH_{2})_{3}-S$$

$$-CH_{2}-C$$

$$0-(CH_{2})_{3}-C$$

$$-CH_{2}-C$$

$$0-(CH_{2})_{3}-C$$

$$-CH_{2}-C$$

$$-CH_{2}$$

ANSWER 2 OF 3 CAPLUS COPYRIGHT 2004 ACS on STN

CESSION NUMBER:

1990:138760 CAPLUS

CUMENT NUMBER:

112:138760

TLE:

Preparation of phenoxyalkylcarboxylic acid derivatives

as antiallergic agents

VENTOR(S):

URCE:

Ohashi, Mitsuo; Awano, Katsuya; Tanaka, Toshio;

Kimura, Tetsuya

TENT ASSIGNEE(S):

Kyorin Pharmaceutical Co., Ltd., Japan

Eur. Pat. Appl., 32 pp. CODEN: EPXXDW

DOCUMENT, TYPE:

Patent English

LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 332109	A1	19890913	EP 1989-103897	19890306
EP 332109	B1	19911204		
R: BE, CH, DE,	ES, FR	, GB, IT,	LI, NL, SE	
JP 02001459	A2	19900105	JP 1989-38912	19890218
JP 07116125	B4	19951213		
US 4985585	A	19910115	US 1989-313900	19890223
AU 8930884	A1	19890907	AU 1989-30884	19890301
AU 617439	B2	19911128		
CA 1331763	A1	19940830	CA 1989-592555	19890302
HU 50112	A2	19891228	HU 1989-1039	19890303
HU 204030	В	19911128		
HU 208418	В	19931028	HU 1991-2410	19890303
HU 208524	В	19931129	HU 1991-2411	19890303
ES 2045219	T 3	19940116	ES 1989-103897	19890306
CN 1036560	Α	19891025	CN 1989-101301	19890307
CN 1022407	В	19931013		
PRIORITY APPLN. INFO.:			JP 1988-53374	19880307
			HU 1989-1039	19890303
OTHER SOURCE(S).	маррат	112 - 13876	0	

OTHER SOURCE(S):

MARPAT 112:138760

GI

RN

CN

MeCO
$$\longrightarrow$$
 $X^1 (CH_2)_m X^2 \longrightarrow$ COMe HO Pr Pr $O (CH_2)_n CO_2 R^1$ I

AB The title compds. (I; R1 = H, Me, Et; X1, X2 = O, S, SO, SO2; X1 = X2 ≠ O; m = 2-5; n = 3-8), useful as antiallergic agents, are prepared A mixture of phenoxybutyrate II, bromopropyl thioether III, KI, and K2CO3 in Me2CO was refluxed to give 72.4% I (R1 = Et, X1 = S, X2 = O, m = n = 3). I showed 66.7-96.2% inhibition of leukotriene D4-induced bronchoconstriction at 50 mg/kg p.o. in guinea pigs. Addnl. 70 I were also prepared

IT 125961-80-0P 125961-81-1P

125961-80-0P 125961-81-1P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of, as antiallergic agent)

125961-80-0 CAPLUS

Butanoic acid, 4-[6-acetyl-3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)sulfinyl]propoxy]-2-propylphenoxy]-, ethyl ester (9CI) (CIINDEX NAME)

RN 125961-81-1 CAPLUS

CN

Butanoic acid, 4-[6-acetyl-3-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)sulfonyl]propoxy]-2-propylphenoxy]-, ethyl ester (9CI) (CAINDEX NAME)

L3 ANSWER 3 OF 3 CAPLUS COPYRIGHT 2004 ACS on STN

ACCESSION NUMBER:

1983:575604 CAPLUS

DOCUMENT NUMBER:

99:175604

TITLE:

Anti-SRS-A carboxylic acid derivatives and pharmaceutical formulations containing them

INVENTOR(S):

Bantick, John Raymond

PATENT ASSIGNEE(S):

Fisons Ltd., UK

SOURCE:

Eur. Pat. Appl., 67 pp.

CODEN: EPXXDW

DOCUMENT TYPE: LANGUAGE:

Patent

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
EP 79637	A1	19830525	EP 1982-201368	19821101
EP 79637	B1	19870128		
R: AT, BE, CH,	DE, FR	, GB, IT, LI	, LU, NL, SE	
US 4474788	A	19841002	US 1982-438163	19821101
AT 25251	E	19870215	AT 1982-201368	19821101
JP 58090557	A2	19830530	JP 1982-196883	19821111
PRIORITY APPLN. INFO.:			GB 1981-34186	19811112
			EP 1982-201368	19821101
GI				1201101

OR9

III

Pr

Pr

Anti-allergy (no data) bicyclic compds. I [R, R1 = H, alkyl; RR1 = bond; R2 = CO2H, carboxyalkyl; R3 = substituted OH, SH, NH2; R4, R5 = H, halogen, (un) substituted OH, NH2, alkyl, acyl; X = S, O, NR6 (R6 = H, alkyl)] were prepared Thus, 3,2,4-Pr(HO)2C6H2Ac reacted with 4,2,3-AcPr(H2N)C6H2S(CH2)3Br to give phenol II, which cyclized with EtO2CCO2Et to give quinoline III [R7 = Et, R8R9 = CH:C(CO2Et)]. The latter compound gave III (R7 = H, R8 = Me, R9 = H) on hydrolysis. 87472-34-2P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation and hydrolysis of)

87472-34-2 CAPLUS

 \mathbf{IT}

RN CN

4H-1-Benzopyran-2-propanoic acid, 7-[3-[(4-acetyl-3-hydroxy-2-propylphenyl)thio]propoxy]-4-oxo-8-propyl-, ethyl ester (9CI) (CA INDEX NAME)