2 El moviment

2.1 Introducció

La cinemàtica és la part de la física que estudia el moviment dels cossos sense tenir en compte les seves causes. Definirem el **punt material** com un objecte sense mida, però amb massa. També l'anomenarem **mòbil**.

2.2 La posició

Per estudiar el moviment d'un mòbil, típicament farem servir un sistema de coordenades cartesià, de forma que la posició quedarà determinada en cada moment per les coordenades del punt on es trobi el mòbil. Per determinar la posició en un pla en tenim prou amb dues coordenades (x, y). En canvi, per estudiar el moviment dels cossos a l'espai calen tres coordenades (x, y, z).

2.3 El vector posició

Sovint descriurem la posició dels objectes mitjançant un vector anomenat **vector posició** $\vec{r}(t)$, que per definició és un vector amb origen l'origen de coordenades del sistema de referència O, i final les coordenades del punt P on es troba l'objecte que estem estudiant, de forma que és

$$\vec{r}(t) = \overrightarrow{OP}$$

El vector posició determina la posició en funció del temps.

2.4 El vector desplaçament

Suposem que un mòbil descriu una trajectòria determinada. Llavors el vector desplaçament entre dos instants de temps t_1 , t_2 es calcula com

$$\Delta ec{r} = ec{r}(t_2) - ec{r}(t_1) = ec{r}_2 - ec{r}_1$$

on $\vec{r_2}$, $\vec{r_1}$ són els vectors posició en cada temps. Cal notar que es compleix sempre

$$|\Delta \vec{r}| \leq \Delta s$$

on Δs és la distància real sobre la trajectòria recorreguda per el mòbil (també anomenada longitud d'arc). Podeu dir en quines condicions es dóna la igualtat?

Exemple

El vector posició en funció del temps (en unitats del SI), per un determinat objecte que es mou al pla, ve donat per $\vec{r}(t) = (t^2 + 1, t - 4)$. Es demana trobar el mòdul del vector desplaçament entre els instants $t_1 = 1 \ s, t_2 = 5 \ s$

Calculem

$$\vec{r}(t_1) = \vec{r}(1) = (2, -3)$$

$$\vec{r}(t_2) = \vec{r}(5) = (26, 1)$$

llavors

$$\Delta \vec{r} = \vec{r}(5) - \vec{r}(1) = (26, 1) - (2, -3) = (24, 4)$$

finalment

$$|\Delta ec{r}| = |(24,4)| = \sqrt{24^2 + 4^2} = \sqrt{592} \; m$$

2.5 La velocitat

La velocitat d'un objecte indica la rapidesa amb que varia la seva posició en funció del temps. En l'SI, la velocitat es mesura en m/s.

2.5.1 La velocitat mitjana

La velocitat mitjana \vec{v}_m d'un objecte entre dos instants del temps $t_1,\,t_2$ es calcula com

$$ec{v}_m = rac{\Delta ec{r}}{\Delta t}$$

2.5.2 La velocitat instantània

La velocitat instantània \vec{v} , d'un objecte es calcula com

$$ec{v} = \lim_{\Delta t o 0} rac{\Delta ec{r}}{\Delta t}$$

Aquest vector és sempre tangent a la trajectòria sigui quina sigui aquesta.

2.5.3 La velocitat i el sistema de referència

La velocitat d'un objecte depèn del sistema de referència respecte al qual es mou. Quan tenim diversos objectes en un mateix sistema de referència,

podem considerar la **velocitat relativa** d'un d'ells respecte un altre. D'aquesta manera, si volem calcular la velocitat relativa d'un cos 2 respecte un altre 1 farem

$$ec{v}_{rel_{2,1}} = ec{v}_2 - ec{v}_1$$

Exemple

Suposem que circulem per una carretera amb un vehicle que va a $90 \, km/h$ i veiem venir per l'altre carril una moto que circula a $70 \, km/h$. La velocitat relativa de la moto respecte nosaltres és

$$ec{v}_{rel} = -70 - 90 = -160 \, km/h$$

El signe ens diu que la moto va en sentit contrari a nosaltres. Si ara la moto ens avança per l'esquerra a $110\,km/h$ la velocitat relativa de la moto serà

$$\vec{v}_{rel} = 110 - 90 = 20 \, km/h$$

Com veiem el signe ara és positiu ja que la moto circula en el mateix sentit que el nostre vehicle.

2.6 L'acceleració

L'acceleració d'un objecte que es mou representa com varia la seva velocitat. Si aquesta augmenta diem que el cos està accelerant, si per contra, la velocitat disminueix, direm que està frenant. És important tenir en compte que un objecte accelera si la seva acceleració té el mateix signe que la velocitat, sigui quin sigui aquests signe, positiu o negatiu i si l'acceleració i la velocitat tenen signe contrari, llavors l'objecte en moviment està frenant. En qualsevol cas cal recordar que la velocitat és un vector i quan parlem de la seva variació, aquesta pot ser en mòdul i/o direcció. Aquest detall serà important quan parlem de moviment circular. En l'SI l'acceleració es mesura en m/s^2 .

2.6.1 L'acceleració mitjana

L'acceleració mitjana \vec{a}_m es defineix com

$$ec{a}_m = rac{\Delta ec{v}}{\Delta t} = rac{ec{v}_f - ec{v}_i}{t_f - t_i}$$

2.6.2 L'acceleració instantània

Si en l'expressió anterior prenem intervals de temps cada cop més petits obtenim l'acceleració instantània.

$$ec{a} = \lim_{\Delta t o 0} rac{\Delta ec{v}}{\Delta t}$$

La direcció d'aquest vector és tangent a la trajectòria (en moviments rectilinis) i el seu sentit és igual o oposat al de la velocitat.

2.7 Components intrínseques de l'acceleració

Tal com hem dit abans, el vector velocitat pot variar en mòdul o direcció. D'aquesta manera es defineix:

- Acceleració tangencial, \vec{a}_t : quan canvia el mòdul de la velocitat.
- Acceleració normal o centrípeta, $\vec{a}_n = \vec{a}_c$: quan canvia la direcció de la velocitat.

Per qualsevol tipus de trajectòria que segueixi un objecte, l'acceleració tangencial té la mateixa direcció que la velocitat (i mateix sentit o contrari en funció de si l'objecte es troba accelerant o frenant), i l'acceleració centrípeta té la direcció perpendicular a la velocitat i sentit dirigit cap al centre de curvatura de la trajectòria en cada moment.

El mòdul de l'acceleració normal es calcula com

$$ec{a}_n = rac{v^2}{R}$$

on \mathbf{R} és el radi de curvatura de la trajectòria en cada moment. Si el moviment és circular, \mathbf{R} coincideix amb el radi del cercle.

D'aquesta manera per un moviment que segueix una trajectòria qualsevol l'acceleració total és la suma de la tangencial i la normal

$$\vec{a} = \vec{a}_t + \vec{a}_n$$

i el seu mòdul val

$$|\vec{a}|=a=\sqrt{a_t^2+a_n^2}$$