

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

FIG. 8A.

FIG. 8B.

J. G. O. M. H. J. P. 199

MEAN 285930.7
 VAR 2173242E+10
 σ 147419.2

FIG. 9A.

1000FT. GOLF ROAD

6177353
4177307
1427242
1277239
1177236
1127235
1077234
6772245
5772221
4772198
1772127

MEAN 117723.6
VAR 1.000047E+10
 σ 100002.3

FIG. 9B.

DO NOT DESTROY

- 55248A.3
373317.4
126963
113525.5
104567.2
100000
95608.83
59775.46
50017.12
41858.78
14983.75

MEAN: 104567.2
VAR: 8.025189E+09
 σ : 89583.42

FIG. 9C.

495246
335766.3
116481.9
104520.9
96546.92
92559.93
88572.94
56677.02
48703.04
40729.06
16807.12

MEAN 96546.92
VAR 6.358437E+09
 σ 79739.8

FIG. 9D.

FIG. II.

636588
4285838
1425779
1269775
1165773
1113772
1061771
6457625
5417603
4377582
1257518

MEAN: 1165773
VAR: 1.081645E+10
 σ : 1040021

FIG._12.

FIG. 13A.

FIG. 13B.

50780.26
34141.69
30813.97
28595.5
27486.26
26377.02
17503.12
11956.92
6410.734
-15774.03
37958.79

MEAN 28595.5
VAR 4.921637E+08
 σ 22184.76

FIG. 13C.

879976.1
6005043
216230.6
195270.2
181296.6
174309.8
167323
111428.7
97455.07
83481.48
41560.72

MEAN: 181296.6
VAR: 1.952612E+10
 σ : 139735.9

FIG._13D.

667348.3
453053
158397
142324.9
131610.1
126252.7
120895.3
78036.29
67321.52
56606.77
24462.47

MEAN: 131610.1
VAR: 1.148062E+10
 σ : 107147.6

FIG. 14.

P	A	S	G	L
<u>LPGFL</u>	<u>LAGFL</u>	<u>LSGFL</u>	<u>LGGFL</u>	L
<u>FPGFL</u>	<u>FAGFL</u>	<u>FSGFL</u>	<u>FGGFL</u>	F
<u>WPGFL</u>	<u>WAGFL</u>	<u>WSGFL</u>	<u>WGGFL</u>	W
<u>YPGFL</u>	<u>YAGFL</u>	<u>YSGFL</u>	<u>YGGFL</u>	Y

FIG. 15A.

1001475-1.dwg

P	A	S	G	Y
<u>YpGFL</u>	<u>YaGFL</u>	<u>YsGFL</u>	<u>YGGFL</u>	Y
<u>f_pGFL</u>	<u>f_aGFL</u>	<u>f_sGFL</u>	<u>f_{GGFL}</u>	f
<u>w_pGFL</u>	<u>w_aGFL</u>	<u>w_sGFL</u>	<u>w_{GGFL}</u>	w
<u>y_pGFL</u>	<u>y_aGFL</u>	<u>y_sGFL</u>	<u>y_{GGFL}</u>	y

FIG. 15B.

149,000

20,000

FIG. 16.

FIG. 17.

FIG. 18.

FIG. 19.

FIG. 20A.

FIG. 20B.

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128

FIG. 21A.
FIG. 21B.

FIG. 39A. FIG. 39B.
FIG. 39C.

FIG. 23.

FIG. 24A.

FIG. 24B.

FIG. 25.

1.00 ± 0.05 2.00 ± 0.05 3.00 ± 0.05 4.00 ± 0.05

FIG. 26.

1.000 1.400 1.600 1.800 2.000 2.200 2.400 2.600 2.800 3.000

FIG. 27.

FIG. 28A.

FIG. 28B.

FIG. 29.

100% TELLURE

FIG. 30.

STEP	AREA PHOTOLYZED	MASK	COPPLE
1	100%		T
2	100%	"	V
3	100%	"	V
4	100%	"	K
5	50%		F
6 TO 25	Y20		G,A,R,K,C,M,S D,E,N,Q,F,H W,Y,L,P,V,I,T
26	50%		O
27	100%		R

WILL GENERATE AN ARRAY OF 4 CLASSES OF PEPTIDES:

- | | |
|--------------|--|
| (1) RXKVVT | WHERE X REPRESENTS SUBSTITUTION OF ALL
20 L-AMINO ACIDS |
| (2) RQXKVVT | |
| (3) RQXFKVVT | |
| (4) RXFKVVT | |

FIG. 31.

FIG. 32.

FIG. 33.

100
80
60
40
20
0

FIG. 34.

FIG 35.

FIG. 36.

1300-1316 - FIG. 37

FIG. 37.

FIG. 38.

FIG. 40A.

FIG. 40B.

+
FIG. 40C.

FIG. 40D.

FIG. 40E.

+

VLSIPS
SLIDE

WHERE R = AMINO ACID SIDE CHAIN OR OTHER DERIVATIVES

R' = ALKYL

P = PHOTO LABILE PROTECTING GROUP

HCl OR AcOH
IN DMF

SLIDE

NaBH₄ OR NaCNBH₃

SLIDE

R'' = H OR METHYL

FIG. 41.