

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	P3110	К работе допущен	
Студент	Цыпандин Николай Петрович	Работа выполнена	
Преподаватель	Коробков Максим Петрович	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 3.05

«Температурная зависимость электрического сопротивления металла и полупроводника»

Цель работы:

1. Получить зависимость сопротивления металлического и полупроводникового образцов от их температур и вычислить тепловой коэффициент металла и ширину запрещенной зоны полупроводника.

Задачи, решаемые при выполнении работы:

- 1. Построить график R(t) для металлического образца и график lnR(1/T) для полупроводникового образца и оценить их линейность.
- 2. Вычислить тепловой коэффициент металла и ширину запрещенной зоны полупроводника.

Объект исследования:

1. Металлический и полупроводниковый образцы.

Метод экспериментального исследования:

1. Прямое многократное измерение силы тока и напряжения при различных температурах.

Рабочие формулы:

$$k = 1,380649 * \frac{10^{-23} \text{Дж}}{\text{K}} = 8,61733 * \frac{10^{-5} \text{3B}}{\text{K}}$$

$$T = t + 273 -$$
 перевод из градусов в кельвины (1)

$$rac{R_i - R_j}{R_j * t_i - R_i * t_j}$$
 — тепловой коэф. сопротивления (2) $E_{g_{ij}} = 2k * rac{\Delta \ln(R_n)}{\Delta\left(rac{1}{T}
ight)} = 2k * rac{T_i T_j}{T_j - T_i} \ln\left(rac{R_i}{R_j}
ight)$ — ширина запрещенной зоны $I = rac{U}{R}$ — закон Ома на участке цепи (4)

Измерительные приборы:

№ π/π	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Цифровой	0-2000 мкА	1 мкА
2	Вольтметр	Цифровой	0-2 B	0,001 B

Схема установки:

Результаты прямых измерений и их обработки:

Измере211ния проводились:

Пятница 24 Май 2021 16:00 – 16:50

Таблица 1: Полупроводниковый образец

Nº	T, <i>K</i>	I, <i>мкА</i>	U, B	R, OM	In R	$\frac{10^3}{T}$, $\frac{1}{K}$
1	294	F101	0,202			
2	799	1065	0,162			
3	304	1105	0,136			
4	309	1138	0,113			
5	314	1165	0,095			
6	319	1187	0,080			
7	324	1206	0,068		177	
8	329	1221	0,058			
9	334	1234	0,049			
10	339	1244	0,042			

Konsk

Приложение

Таблица 2: Металлический образец

Nº	Т, К	І, мкА	U, <i>B</i>	R, ĸOm	t, °C
1	355	1066	1,635		
2	349	6500	1,672		
3	343	1081	1,617		
4	338	1094	1,600		
5	333	1106	1,588		
6	328	1111	1,575		
7	373	1178	1,570		
8	318	1139	1,562		
9	341	1195	1,550		
10	304	1173	1,536		

of the second

Расчёт результатов косвенных измерений:

Таблица 1. Полупроводниковый образец					
Т, К	I, мкA	U, B	R, OM	In R	10^3/T, 1/K
294	1017	0,202	198,623	5,291	3,401
299	1065	0,162	152,113	5,025	3,344
304	1105	0,136	123,077	4,813	3,289
309	1138	0,113	99,297	4,598	3,236
314	1165	0,095	81,545	4,401	3,185
319	1187	0,080	67,397	4,211	3,135
324	1206	0,068	56,385	4,032	3,086
329	1221	0,058	47,502	3,861	3,040
334	1234	0,049	39,708	3,682	2,994
339	1244	0,042	33,762	3,519	2,950

Таблица 2. Металлический образец				
т, к	I, mkA	U, B	R, кОм	t, C
355	1066	1,635	1,534	82
349	1072	1,622	1,560	76
343	1081	1,617	1,496	70
338	1094	1,600	1,463	65
333	1106	1,588	1,436	60
328	1111	1,575	1,418	55
323	1128	1,570	1,392	50
318	1139	1,562	1,371	45
311	1155	1,550	1,342	38
304	1173	1,536	1,309	31

Увеличиваем температуру установки и записываем значения с вольтметра и амперметра примерно с периодом $\Delta T \sim 5$ К

Вычислим сопротивление с помощью закона Ома
$$R = \frac{U}{I} = \frac{0,202}{1017} * 10^6 = 198,263$$

Разобьем точки таблицы 2(графика R(t)) на пары и рассчитаем α

Пары	alpha	
1-6	0,0036	
2-7	0,0040	
3-8	0,0043	
4-9	0,0038	
5-10	0,0037	

$$a_{ij} = \frac{R_i - R_j}{R_j * t_i - R_i * t_j} = \frac{1,534 - 1,418}{1,418 * 82 - 1,534 * 55} = 0,036$$

$$E_{g_{ij}} = 2k * \frac{T_i T_j}{T_j - T_i} \ln\left(\frac{R_i}{R_j}\right) = 2k * \frac{294 * 319}{319 - 294} * \ln\frac{198,623}{67,397} = 0,66 \text{ 9B}$$

Разобьем точки таблицы 1(графика lnR(1/T)) на пары и рассчитаем Eg

пары	Ед, Дж	Eg, əB
1-6	1,12E-19	0,70
2-7	1,06E-19	0,66
3-8	1,05E-19	0,66
4-9	1,04E-19	0,65
5-10	1,04E-19	0,65

<eg>, Дж</eg>	<Еg>, эВ
1,06E-19	0,66

Расчёт погрешности измерений:

$$\Delta \alpha = \sqrt{\frac{\sum (\alpha_i - \langle \alpha \rangle)^2}{5*(5-1)}} * 3,17 = 0,00052,$$
 $\varepsilon = 13\%$

$$\Delta E_g = \sqrt{\frac{\sum (E_g - \langle E_g \rangle)^2}{5 * (5 - 1)}} * 3,17 = 0,038 \text{ $9B$}, \qquad \epsilon = 6\%$$

Графики:

Окончательные результаты:

Температурный коэффициент сопротивления металла

$$\alpha = 0.0039 \pm 0.00052 \frac{1}{K},$$
 $\varepsilon = 13\%$

Ширина запрещенной зоны полупроводника:

$$E_g = 0.66 \pm 0.038 \text{ pB},$$
 $\epsilon = 6\%$

$$E_g^{\circ} = 1{,}06\mathrm{E} - 19 \pm 6{,}093\mathrm{E}$$
-21 Дж, $\epsilon = 6\%$

Выводы и анализ результатов работы:

- Если посмотреть на полученный температурный коэффициент сопротивления, то можно заметить, что металлический образец изготовлен из алюминия, олова или серебра.
- Судя по полученной ширине запрещенной зоны, полупроводниковый образец изготовлен из германия.
- Качественная оценка линейности графиков показывает линейность обеих из них. Это подтверждает то, что сопротивление линейно возрастает у металлического образца и экспоненциально убывает у полупроводникового образца, в зависимости от температуры.