

GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Present by: Ahmed, Chandra, Joseph, Muhammad, and Rajat

CAP 6412

Spring 2023

Outline

- Motivation
- Objectives
- Diffusion Model
- GLIDE
- Image Inpainting
- Results
- Conclusion

GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

Alex Nichol * Prafulla Dhariwal * Aditya Ramesh * Pranav Shyam Pamela Mishkin Bob McGrew Ilya Sutskever Mark Chen

Abstract

Mar

 ∞

2.10741v3

Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifierfree guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing. We train a smaller model on a filtered dataset and release the code and weights at https://github.com/openai/glide-text2im.

their corresponding text prompts.

On the other hand, unconditional image models can synthesize photorealistic images (Brock et al., 2018; Karras et al., 2019a;b; Razavi et al., 2019), sometimes with enough fidelity that humans can't distinguish them from real images (Zhou et al., 2019). Within this line of research, diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2020b) have emerged as a promising family of generative models, achieving state-of-the-art sample quality on a number of image generation benchmarks (Ho et al., 2020; Dhariwal & Nichol, 2021; Ho et al., 2021).

To achieve photorealism in the class-conditional setting, Dhariwal & Nichol (2021) augmented diffusion models with classifier guidance, a technique which allows diffusion models to condition on a classifier's labels. The classifier is first trained on noised images, and during the diffusion sampling process, gradients from the classifier are used to guide the sample towards the label. Ho & Salimans (2021) achieved similar results without a separately trained classifier through the use of classifier-free guidance, a form of guidance that interpolates between predictions from a diffusion model with and without labels.

https://github.com/openai/glide-text2im

Diffusion models have revolutionized generating photorealistic images from text prompts.

"a hedgehog using a calculator"

Diffusion models have revolutionized generating photorealistic images from text prompts.

"a hedgehog using a calculator"

"a painting of a fox in the style of starry night"

One of the interesting applications of diffusion models is **Image editing**, which is making realistic edits to an image based on natural language prompts.

"zebras roaming in the field"

One of the interesting applications of diffusion models is **Image editing**, which is making realistic edits to an image based on natural language prompts.

"zebras roaming in the field"

Objectives

Objectives

- Develop guided diffusion model to generate photorealistic images given text prompts using,
 - CLIP guidance
 - Classifier-free guidance

Perform image inpainting

Diffusion Model

Diffusion Model

- Noise is added iteratively to generate sample noised images.
- A model is learned to take noised image and iteratively generate denoised samples.

Forward process

Noise Adding Function

$$q(x_t|x_{t-1}) \coloneqq \mathcal{N}(x_t; \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)\mathcal{I})$$

Where:

- N is the Gaussian distribution
- a_t is a hyperparameter variance scheduler
- I is the identity matrix

Backward Process

Inference

$$p_{\theta}(x_{t-1}|x_t) \coloneqq \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

Where:

- N is the Gaussian distribution
- μ_θ(x_t) is the learned mean vector
- $\Sigma_{\theta}(x_t)$ is the learned covariance vector

Text-Guided Diffusion Model

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

Label = "Goldfinch"

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

Label = "Goldfinch"

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

Label = "robots meditating in a vipassana retreat"

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

Label = "robots meditating in a vipassana retreat"

You already understand the Diffusion.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

But you need something More Controlled.

You already understand the Diffusion.

You already understand the Diffusion.

Convert text to discrete tokens & attend to them in UNET

But. Naïve Text Conditional Models = Incoherent Samples

But. Naïve Text Conditional Models = Incoherent Samples

Solution: Guidance

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

Guidance | Simple Classifier-Based Guidance | Label = "Goldfinch"

First: Train a Classifier.

First: Train a Classifier.

First: Train a Classifier.

First: Train a Classifier.

Then in Diffusion:

Pass x_t through classifier; $\det y$. Compute gradient of log-probability of y by x_t

.

First: Train a Classifier.

Then in Diffusion:

Pass x_t through classifier; get y . Compute $abla_{x_t} \log p_\phi(y|x_t)$

First: Train a Classifier.

Then in Diffusion:

Pass x_t through classifier; get y . Compute $abla_{x_t} \log p_\phi(y|x_t)$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

First: Train a Classifier.

Then in Diffusion:

Pass x_t through classifier; get y . Compute $abla_{x_t} \log p_\phi(y|x_t)$

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\underline{\mu_{\theta}(x_t)}, \Sigma_{\theta}(x_t))$$

$$\hat{\mu}_{\theta}(x_t|y) = \mu_{\theta}(x_t|y) + s \cdot \Sigma_{\theta}(x_t|y) \nabla_{x_t} \log p_{\phi}(y|x_t)$$

First: Train a Classifier.

Then in Diffusion:

Pass x_t through classifier; get y . Compute $\nabla_{x_t} \log p_\phi(y|x_t)$ $p_\theta(x_{t-1}|x_t) = \mathcal{N}(\mu_\theta(x_t), \Sigma_\theta(x_t))$ $\hat{\mu}_\theta(x_t|y) = \mu_\theta(x_t|y) + s \cdot \Sigma_\theta(x_t|y) \nabla_{x_t} \log p_\phi(y|x_t)$

First: Train a Classifier.

First: Train a Classifier.

Then in Diffusion:

But. You need even more Control. Label = "robots meditating in a vipassana retreat"

Guidance |

First: Train a CLIP

model.

First: Train a CLIP model.

First: Train a CLIP model.

First: Train a CLIP model.

$$x_t$$
 Image Encoder $\rightarrow f(x_t)$

First: Train a CLIP model.

First: Train a CLIP model.

First: Train a CLIP model.

First: Train a CLIP model.

Then in Diffusion:

Compute gradient of score by x_t .

First: Train a CLIP model.

First: Train a CLIP model.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$$

First: Train a CLIP model.

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(\underline{\mu_{\theta}(x_t)}, \Sigma_{\theta}(x_t))$$

$$\hat{\mu}_{\theta}(x_t|y) = \mu_{\theta}(x_t|y) + s \cdot \Sigma_{\theta}(x_t|y) \nabla_{x_t} (f(x_t) \cdot g(y))$$

First: Train a CLIP model.

First: Train a CLIP model.

Then in Diffusion:

But. The results rely on Pre-Trained (often smaller) Models.

But. The results rely on Pre-Trained (often smaller) Models.

Solution: Classifier-Free Guidance

Guidance |

Previously: Train a Guidance Model.

No Separate Guidance Model Needed

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Text-Conditioned Diffusion

Convert text to discrete tokens & attend to them in UNET

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

Then at Inference:

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

$\bullet \quad \boxed{\epsilon_{\theta}(x_t|\emptyset)}$

Then at Inference:

$$\hat{\epsilon}_{\theta}(x_t|y) = \epsilon_{\theta}(x_t|\emptyset)$$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

Then at Inference:

$$\hat{\epsilon}_{\theta}(x_t|y) = \epsilon_{\theta}(x_t|\emptyset)$$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

Then at Inference:

$$\hat{\epsilon}_{\theta}(x_t|y) = \epsilon_{\theta}(x_t|\emptyset) + (\epsilon_{\theta}(x_t|y) - \epsilon_{\theta}(x_t|\emptyset))$$

No Separate Guidance Model Needed

Train a Naïve Text Conditional Model.

Use noisy x_t and y to train it.

Sometimes don't pass labels. $y = \emptyset$

Then at Inference:

$$\hat{\epsilon}_{\theta}(x_t|y) = \epsilon_{\theta}(x_t|\emptyset) + s \cdot (\epsilon_{\theta}(x_t|y) - \epsilon_{\theta}(x_t|\emptyset))$$

Guidance |

Guidance \mid Visualizing scale parameter S

Guidance | Visualizing scale parameter S

"a stained glass window of a panda eating bamboo"

Guidance | Visualizing scale parameter S

"a stained glass window of a panda eating bamboo"

Guidance | Visualizing scale parameter S

"a stained glass window of a panda eating bamboo"

S = 0

s = 3

Inception Score

Inception Score

- Named after the Inception classifier model used
- A way to evaluate samples without humans that still correlates well with human evaluation
- To calculate inception score ...
 - Inception model is ran on the generated images to get ...
 - p(y|x), conditional label distribution (distribution of labels for a given image)
 - p(y), marginal distribution (distribution of labels across all images)
 - Relative entropy is measured between p(y|x) and p(y)
- Measures if the images generated are distinct and varied

Inception Score

- Named after the Inception classifier model used
- A way to evaluate samples without humans that still correlates well with human evaluation
- To calculate inception score ...
 - Inception model is ran on the generated images to get ...
 - p(y|x), conditional label distribution (distribution of labels for a given image)
 - p(y), marginal distribution (distribution of labels across all images)
 - Relative entropy is measured between p(y|x) and p(y)
- Measures if the images generated are distinct and varied

Inception Score (cont.)

Inception Score Function

$$\exp(\mathbb{E}_{\boldsymbol{x}} KL(p(y|\boldsymbol{x})||p(y)))$$

Where:

- E_x is the expected value
- KL is relative entropy
- p(y|x) and (y) are values gotten from the inception model

Frechet Inception Distance / FID Score

- Drawback to IS: does not compare to real world samples in its calculation
- FID was created to address this drawback
- To calculate the FID score...
 - Runs Inception model on real life images and fake images
 - Then difference in the two resulting gaussians is taken, giving us our FID score

FID Score (cont.)

FID Score Function

$$d^{2}((\boldsymbol{m}, \boldsymbol{C}), (\boldsymbol{m}_{w}, \boldsymbol{C}_{w})) = \|\boldsymbol{m} - \boldsymbol{m}_{w}\|_{2}^{2} + \text{Tr}(\boldsymbol{C} + \boldsymbol{C}_{w} - 2(\boldsymbol{C}\boldsymbol{C}_{w})^{1/2})$$

Where:

- (m, C) is the normal distribution from running Inception on real life images
 - m and C representing it's mean and Covariance vectors, respectively
- (m_w, C_w) the distribution from Inception on the generated images
- Tr is the trace matrix operation

Setup:

Setup:

Setup:

Dataset: MS COCO images, textual prompts

Batch size: VITL/Text model, 2048. Upsampling block: 2048/4 = 512

Evaluation: FID vs Inception score

Zero-Shot FID is calculated from samples observed from classes which were not observed during training

Evaluation: FID vs Inception score

Zero-Shot FID is calculated from samples observed from classes which were not observed during training

Evaluation: FID vs Inception score

- Best method: FID: low, IS: High

Zero-Shot FID is calculated from samples observed from classes which were not observed during training

Evaluation: FID vs Inception score

Model	FID	Zero-shot FID
AttnGAN (Xu et al., 2017)	35.49	
DM-GAN (Zhu et al., 2019)	32.64	
DF-GAN (Tao et al., 2020)	21.42	
DM-GAN + CL (Ye et al., 2021)	20.79	
XMC-GAN (Zhang et al., 2021)	9.33	
LAFITE (Zhou et al., 2021)	8.12	
DALL-E (Ramesh et al., 2021)		~ 28
LAFITE (Zhou et al., 2021)		26.94
GLIDE		12.24
GLIDE (Validation filtered)		12.89

- Best method: FID: low, IS: High

Zero-Shot FID is calculated from samples observed from classes which were not observed during training

ELO SCORES.

$$L_{\text{elo}} \coloneqq -\sum_{i,j} A_{ij} \cdot \log \left(\frac{1}{1 + 10^{(\sigma_i - \sigma_j)/400}} \right)$$

ELO SCORES.

Elo scores are computed by minimizing the objective:

$$L_{\text{elo}} \coloneqq -\sum_{i,j} A_{ij} \cdot \log \left(\frac{1}{1 + 10^{(\sigma_i - \sigma_j)/400}} \right)$$

Elo Score is a metric that measures the relative performance in zero shot learning

(a) Photorealism

Elo Score is a metric that measures the relative performance in zero shot learning

Elo Score is a metric that measures the relative performance in zero shot learning

(a) Photorealism

(b) Caption Similarity

Guidance	Photorealism	Caption
Unguided CLIP guidance	-88.6 -73.2	-106.2 29.3
Classifier-free guidance	82.7	110.9

Table 3. Human evaluation results comparing GLIDE to DALL-E. We report win probabilities of our model for both photorealism and caption similarity. In the final row, we apply the dVAE used by DALL-E to the outputs of GLIDE.

	DALL-E	Photo-	Caption
	Temp.	realism	Similarity
No reranking	1.0	91%	83%
	0.85	84%	80%
DALL-E reranked	1.0	89%	71%
	0.85	87%	69%
DALL-E reranked + GLIDE blurred	1.0	72%	63%
	0.85	66%	61%

a painting of a dog on the wall

a painting of a dog on the wall

"a round coffee table in front of a couch"

a painting of a dog on the wall

"a round coffee table in front of a couch"

a painting of a dog on the wall

"a round coffee table in front of a couch"

"a vase of flowers on a coffee table"

a painting of a dog on the wall

"a round coffee table in front of a couch"

"a vase of flowers on a coffee table"

a painting of a dog on the wall

"a round coffee table in front of a couch"

"a vase of flowers on a coffee table"

"a couch in the corner of a room"

a painting of a dog on the wall

"a round coffee table in front of a couch"

"a vase of flowers on a coffee table"

"a couch in the corner of a room"

a painting of a dog on the wall

"a round coffee table in front of a couch"

"a vase of flowers on a coffee table"

"a couch in the corner of a room"

- Input: Image + Mask + Guiding Text
- Output: New Image
- Process repeated at each time step, by <u>progressively adding</u> new elements to the scene.

"a couch in the corner of a room"

- Adding gaussian noise at mask regions.
- Leads to checkerboard artifacts.
- Network never looks at surrounding context during training

- Adding gaussian noise at mask regions.
- Leads to checkerboard artifacts.
- Network never looks at surrounding context during training

Text guided Image Generation

Naive GLIDE model:

Training: Image Inpainting

- Force the network to learn global context.

Inference: Image Inpainting

Conclusion & Future Work:

Conclusion & Future Work:

- Classifier Free is better than CLIP guidance.
- Interestingly, even though CLIP trained on <Image, text pairs>.
- Controlling scale adjust tradeoff b/w photorealism and diversity
 - Better than Gans: only photorealism, no diversity.
- Diffusion is iterative:
 - Scene editing requires careful prompts at regular intervals of generation.
 - Specify full scene semantics earlier & "learn" when to apply?

Conclusion & Future Work:

- Classifier Free is better than CLIP guidance.
- Interestingly, even though CLIP trained on <Image, text pairs>.
- Controlling scale adjust tradeoff b/w photorealism and diversity
 - Better than Gans: only photorealism, no diversity.
- Diffusion is iterative:
 - Scene editing requires careful prompts at regular intervals of generation.
 - Specify full scene semantics earlier & "learn" when to apply?

References

- Nichol, Alex, et al. "Glide: Towards photorealistic image generation and editing with text-guided diffusion models." arXiv preprint arXiv:2112.10741 (2021).
- Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S.
 Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017.
- Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. Improved techniques for training gans. arXiv:1606.03498, 2016.