STAT 331 Final Project

Krishna Prem Pasumarthy & Islam Amin

April 13, 2020

1 Summary

2 Descriptive Statistics

First, take a look at summary statistics of the fhsd dataset.

Table 1: Summary Statistics

chdrisk	sex	totchol	age	sysbp	diabp	cursmoke	cigpday	bmi	diabetes	bpmeds	heartrte	glucose	prevmi	prevstrk	prevhyp	hdle	ldlc
Min. :0.0050	Female:1305	Min. :112.0	Min. :44.00	Min.: 86.0	Min.: 30.00	No :1504	Min.: 0.00	Min. :14.43	No :2142	No :1973	Min.: 44.00	Min.: 46.00	No :2189	No :2260	No: 957	Min.: 10.00	Min. : 20.0
1st Qu.:0.1320	Male :1001	1st Qu.:207.0	1st Qu.:53.00	1st Qu.:122.5	1st Qu.: 73.00	Yes: 802	1st Qu.: 0.00	1st Qu.:23.22	Yes: 164	Yes: 333	1st Qu.: 70.00	1st Qu.: 75.00	Yes: 117	Yes: 46	Yes:1349	1st Qu.: 38.00	1st Qu.:152.0
Median :0.2240	NA	Median :235.5	Median :60.00	Median :136.0	Median : 80.00	NA	Median: 0.00	Median :25.40	NA	NA	Median : 76.00	Median : 83.00	NA	NA	NA	Median : 47.00	Median :180.0
Mean :0.2655			Mean :60.23		Mean: 81.07			Mean :25.78		NA	Mean: 77.61		NA	NA	NA	Mean: 48.89	Mean :183.1
3rd Qu.:0.3448	NA	3rd Qu.:265.0	3rd Qu.:67.00	3rd Qu.:153.0	3rd Qu.: 88.00	NA	3rd Qu.:10.00	3rd Qu.:27.91	NA	NA	3rd Qu.: 85.00	3rd Qu.: 95.00	NA	NA	NA	3rd Qu.: 57.00	3rd Qu.:210.0
Max. :0.9770	NA	Max. :625.0	Max. :81.00	Max. :246.0	Max. :130.00	NA	Max. :80.00	Max. :46.52	NA	NA	Max. :150.00	Max. :478.00	NA	NA	NA	Max. :189.00	Max. :565.0

Then take a look at chdrisk grouped by sex as well as chdrisk grouped by cursmoke.

```
## fhsd$sex: Female
##
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                           Max.
    0.005 0.104 0.179 0.215 0.285
                                          0.949
## fhsd$sex: Male
     Min. 1st Qu. Median
                            Mean 3rd Qu.
   0.0210 0.1860 0.2860 0.3314 0.4060 0.9770
## fhsd$cursmoke: No
##
     Min. 1st Qu. Median
                            Mean 3rd Qu.
   0.0050 0.1390 0.2350 0.2754 0.3580 0.9770
## fhsd$cursmoke: Yes
     Min. 1st Qu. Median
                            Mean 3rd Qu.
                                           Max.
   0.0080 0.1220 0.1995 0.2471 0.3140
```

[ADD SOME COMMENTS HERE REGARDING SUMMARY]

Now take a look at pair plots of all numeric explanatory variates i.e. variates excluding response variate chdrisk and logical variates such as cursmoke.

Pair Plots of Continuous Variates

From the pair plots, we can observe a strong correlation between low density lipoprotein cholesterol and serum total cholestrol. This correlation could be explained by the fact that there could be a relationship between the amount [TO BE CONTINUED]

Now take a look at the VIFs of these variates.

##	sexMale	totchol	age	sysbp	diabp	cursmokeYes
##	1.225191	10.634882	1.489926	2.918660	2.406411	2.978609
##	cigpday	bmi	diabetesYes	bpmedsYes	heartrte	glucose

2.973594 1.181865 1.286401 1.214744 1.105902 1.308923 ## prevmiYes prevstrkYes prevhypYes hdlc ldlc ## 1.067134 1.045746 1.823014 2.287571 10.367649

[ADD COMMENTS]

3 Candidate Models

3.1 Automated Model Selection

```
library(gtools)
## Warning: package 'gtools' was built under R version 3.6.2
load_calcs = TRUE
# model with only intercept
MO <- lm(I(logit(chdrisk)) ~ 1, data = fhsd)</pre>
Mmax <- lm(I(logit(chdrisk)) ~ (.)^2, data = fhsd)</pre>
# starting model for stepwise selection
Mstart <- lm(I(logit(chdrisk)) ~ ., data = fhsd)</pre>
# find model coefficients which are NA
beta.max <- coef(Mmax)</pre>
names(beta.max)[is.na(beta.max)]
## [1] "cursmokeYes:cigpday" "bpmedsYes:prevhypYes"
# find the problem with the NA coeffs
kable(table(fhsd[c("cursmoke", "cigpday")]), "latex")
                           4
                                5
                                    6
                                       7
                                                        12
                                                             14
                                                                 15
                                                                     16
                                                                          17
                                                                               18
                                                                                   19
                                                                                         20
 No
      1504
              0
                  0
                       0
                           0
                                0
                                    0
                                        0
                                            0
                                                0
                                                    0
                                                         0
                                                             0
                                                                      0
                                                                               0
                                                                                         0
                                                                                              0
 Yes
                                                             3
                                                                 50
                                                                               8
             16
                 18 | 34
                          11
                               18
                                   24
                                           18
                                                   76
                                                         3
                                                                      6
                                                                           1
                                                                                    1
                                                                                       279
                                                                                              1
         0
                                       9
kable(table(fhsd[c("bpmeds", "prevhyp")]), "latex")
       No
             Yes
 No
      957
            1016
        0
             333
 Yes
# remove the coeffs with the problem and add quadratic terms for the continuous variables
Mmax <- lm(I(logit(chdrisk)) ~ (.)^2 - cursmoke:cigpday - bpmeds:prevhyp +</pre>
             I(totchol ^ 2) + I(sysbp ^ 2) + I(diabp ^ 2)
           + I(bmi ^ 2) + I(glucose ^ 2)
           + I(hdlc ^ 2) + I(ldlc ^ 2), data = fhsd)
anyNA(coef(Mmax)) # check if there are any remaining NAs
## [1] FALSE
if(!load_calcs){
  #forward model selection
  system.time({
    Mfwd <- step(object = MO,</pre>
                  scope = list(lower = MO, upper = Mmax),
                  direction = "forward", trace = FALSE)
  })
  #backward model selection
  system.time({
    Mback <- step(object = Mmax,</pre>
                  scope = list(lower = MO, upper = Mmax),
```

25

0

14

26

27

0

```
direction = "backward", trace = FALSE)
  })
  #stepwise model selection
  system.time({
   Mstep <- step(object = Mstart,</pre>
                  scope = list(lower = MO, upper = Mmax),
                  direction = "both", trace = FALSE)
 })
}
# the caching/loading block
if(!load calcs) {
  saveRDS(list(Mfwd = Mfwd, Mback = Mback, Mstep = Mstep), file = "models_automated.rds")
} else {
  # just load the calculations
  tmp <- readRDS("models_automated.rds")</pre>
  Mfwd <- tmp$Mfwd
 Mback <- tmp$Mback
 Mstep <- tmp$Mstep</pre>
  rm(tmp) # optionally remove tmp from workspace
# Stepwise model selection
Mstep$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
##
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) +
##
       I(bmi^2) + I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk, data = fhsd)
# Forward model selection
Mfwd$call
## lm(formula = I(logit(chdrisk)) ~ prevmi + sysbp + sex + age +
       ldlc + prevhyp + diabetes + hdlc + I(hdlc^2) + cigpday +
##
       I(bmi^2) + bmi + totchol + I(glucose^2) + I(sysbp^2) + bpmeds +
##
       heartrte + cursmoke + prevstrk + prevmi:sysbp + sysbp:age +
##
       prevhyp:hdlc + prevmi:diabetes + sysbp:prevhyp + prevhyp:totchol +
##
       sysbp:diabetes + prevmi:hdlc + prevmi:prevhyp + age:ldlc +
##
       age:cigpday + hdlc:cigpday + prevhyp:bmi + ldlc:bmi + prevmi:totchol +
##
       ldlc:prevhyp + sysbp:bpmeds + sysbp:hdlc + hdlc:totchol +
```

```
##
       totchol:heartrte + age:heartrte + diabetes:hdlc + sysbp:heartrte +
##
       bmi:bpmeds + sysbp:sex + ldlc:hdlc + prevmi:bmi + age:bmi +
##
       prevmi:age + sysbp:cursmoke + hdlc:cursmoke + ldlc:cursmoke +
       prevmi:cigpday + sex:diabetes + prevmi:prevstrk, data = fhsd)
##
# Backward model selection
Mback$call
## lm(formula = I(logit(chdrisk)) ~ sex + totchol + age + sysbp +
##
       diabp + cursmoke + cigpday + bmi + diabetes + bpmeds + heartrte +
##
       glucose + prevmi + prevstrk + prevhyp + hdlc + Idlc + I(totchol^2) +
##
       I(sysbp^2) + I(diabp^2) + I(bmi^2) + I(hdlc^2) + I(ldlc^2) +
##
       sex:totchol + sex:sysbp + sex:glucose + sex:prevstrk + sex:prevhyp +
       totchol:age + totchol:bpmeds + totchol:heartrte + totchol:prevmi +
##
       totchol:prevstrk + totchol:prevhyp + totchol:hdlc + totchol:ldlc +
##
##
       age:cursmoke + age:bmi + age:heartrte + age:prevmi + age:prevhyp +
##
       age:hdlc + sysbp:diabetes + sysbp:bpmeds + sysbp:heartrte +
       sysbp:prevmi + sysbp:prevhyp + diabp:cursmoke + diabp:cigpday +
##
       diabp:bmi + diabp:glucose + diabp:prevhyp + diabp:hdlc +
##
       cursmoke:bmi + cursmoke:hdlc + cursmoke:ldlc + cigpday:bmi +
##
##
       cigpday:heartrte + cigpday:glucose + cigpday:prevmi + cigpday:hdlc +
##
       bmi:prevmi + bmi:prevhyp + bmi:ldlc + diabetes:prevmi + diabetes:hdlc +
       bpmeds:glucose + bpmeds:prevstrk + bpmeds:ldlc + heartrte:glucose +
##
       heartrte:prevmi + glucose:prevmi + prevmi:prevhyp + prevmi:hdlc +
##
       prevhyp:ldlc, data = fhsd)
beta.fwd = coef(Mfwd)
beta.back = coef(Mback)
beta.step = coef(Mstep)
identical(names(beta.fwd) [names(beta.fwd) %in% names(beta.back)], names(beta.fwd))
## [1] FALSE
identical(names(beta.fwd)[names(beta.fwd) %in% names(beta.step)], names(beta.fwd))
## [1] FALSE
identical(names(beta.back) [names(beta.back) %in% names(beta.step)], names(beta.back))
## [1] FALSE
```

3.2 Manual Model Selection

```
library(stringr) # For string operations

table <- c() # Initialize empty vector

names.table <- names(beta.step) # Obtain variate names in stepwise model
names.table <- str_remove_all(names.table,"Yes") # Remove "Yes" from interactions
names.table <- str_remove_all(names.table,"Male") # Remove "Male"

# Perform F-tests by removing one variate at a time
for(i in names.table){
    # Obtain model without variate i
    mdl <- lm(as.formula(paste0("update(Mstep, . ~ . -", i,")")),data = fhsd)</pre>
```

```
test <- anova(Mstep,mdl)</pre>
                                          # F-Test between Stepwise and reduced model
  table <- cbind(table,test$`Pr(>F)`[2]) # Add corresponding p-value to the table
table <- as.data.frame(table)</pre>
 colnames(table) <- names.table # Add appropriate column names to the table</pre>
sort(table,decreasing = TRUE) # Look at the variates that show least significance
##
     cigpday:heartrte bpmeds:prevstrk bpmeds:glucose diabp:cigpday
## 1
            0.1506282
                            0.1492283
                                           0.1189197
                                                         0.1155989 0.1151079
      sex:ldlc age:prevmi cigpday:prevmi hdlc:ldlc bmi:bpmeds prevmi:prevstrk
##
## 1 0.1141483 0.1097987
                               0.1051865 0.0923568 0.0855445
    heartrte:prevmi glucose:prevmi I(sysbp^2) cursmoke:hdlc age:heartrte
## 1
          0.06451949
                         0.05883116 0.0585469
                                                  0.05660935
                                                               0.05562064
##
      age:hdlc cursmoke:ldlc sex:sysbp sysbp:bpmeds
                                                       age:ldlc cigpday:glucose
## 1 0.0510796
                   0.0417893 0.03623249
                                           0.0300776 0.02915113
##
    prevmi:prevhyp
                          hdlc sex:glucose diabetes:hdlc diabp:glucose
        0.02242217 0.01880445 0.01702301
                                              0.01394662
                                                            0.01362058 0.009985489
## 1
                     bpmeds age:cigpday heartrte:glucose
    totchol:hdlc
                                                            cursmoke
## 1 0.009840662 0.0077735 0.006735591
                                             0.004772297 0.004188557
    totchol:prevmi sysbp:heartrte diabp:prevhyp diabp:cursmoke prevhyp:ldlc
       0.003609581
                       0.002926201
                                    0.001409115
                                                    0.001393474
##
              bmi age:prevhyp sysbp:diabetes
                                                I(hdlc^2)
                                                            diabp:hdlc
## 1 0.0006664543 0.0005753017
                                0.0004931994 0.000320732 0.0001422969
    sysbp:prevhyp cigpday:hdlc prevmi:hdlc diabetes:prevmi
## 1 0.0001292531 0.0001038006 7.056001e-05
                                                6.226049e-05 6.021714e-05
    totchol:heartrte
                         diabp:bmi sysbp:prevmi
        3.512093e-05 2.940165e-05 2.305381e-05 2.396724e-06 9.478088e-07
## 1
              age totchol:prevhyp
                                      I(bmi^2)
                                                 I(diabp^2)
##
                     1.203731e-09 2.735937e-11 1.257752e-19 1.595006e-22
## 1 4.238229e-07
          prevhyp
## 1 1.119628e-27
# Remove first three variates from table since starting the 4th variate, reduction becomes significant
anova(Mstep, update(Mstep,. ~ . - cigpday:heartrte - bpmeds:prevstrk - bpmeds:glucose - sex:ldlc -age:p
## Analysis of Variance Table
##
## Model 1: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
##
       cigpday + bmi + diabetes + bpmeds + heartrte + glucose +
       prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
##
##
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + bpmeds:glucose +
##
       age:prevmi + sex:ldlc + cigpday:heartrte + cigpday:prevmi +
##
##
       glucose:prevmi + heartrte:prevmi + bpmeds:prevstrk
## Model 2: I(logit(chdrisk)) ~ sex + totchol + age + sysbp + diabp + cursmoke +
```

cigpday + bmi + diabetes + bpmeds + heartrte + glucose +

##

```
prevmi + prevstrk + prevhyp + hdlc + ldlc + I(hdlc^2) + I(bmi^2) +
##
##
       I(diabp^2) + I(sysbp^2) + sysbp:prevmi + totchol:prevhyp +
       diabetes:prevmi + prevhyp:ldlc + sysbp:prevhyp + totchol:heartrte +
##
##
       sysbp:diabetes + diabp:bmi + diabp:hdlc + prevmi:hdlc + prevmi:prevhyp +
       sex:glucose + age:ldlc + age:heartrte + cigpday:hdlc + bmi:ldlc +
##
##
       totchol:hdlc + totchol:prevmi + sysbp:heartrte + sysbp:bpmeds +
##
       cursmoke:hdlc + prevmi:prevstrk + diabetes:hdlc + sex:sysbp +
       cigpday:glucose + heartrte:glucose + diabp:glucose + cursmoke:ldlc +
##
##
       age:cigpday + age:hdlc + hdlc:ldlc + age:prevhyp + diabp:prevhyp +
##
       diabp:cursmoke + diabp:cigpday + bmi:bpmeds + cigpday:prevmi +
##
       glucose:prevmi + heartrte:prevmi
              RSS Df Sum of Sq
                                    F Pr(>F)
##
     Res.Df
      2240 489.70
## 1
## 2
      2245 492.27 -5
                      -2.5718 2.3528 0.03851 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

4 Model Diagnostics

4.1 Leverage and Influence Measures

```
# hatvalues(Mstep) # Leverages of stepwise model
#
# cooks.distance(Mstep)
```

5 Model Selection

6 Discussion