The later development in xenopus and zebrafish

曹莹 (65986033) yingcao@tongji.edu.cn

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm (轴旁中胚层): somite
- 2) intermediate (中间) mesoderm: urogenital (泌尿生殖) system
- 3) lateral plate (侧板) mesoderm: heart, blood vessels, blood cells

Endoderm

gut

Mesoderm derivatives (I)

Gastrulation and neurulation in the chick embryo

Mesoderm derivatives in chick embryo (II)

chordin: notochord

(脊索)

paraxis: somite

(体节,轴旁中胚层)

pax2: intermediate

mesoderm (中间中

胚层)

Somite in chick embryo

Somite
Presomitic Mesoderm (PSM)
Neural Crest cells

Somitogenesis (体节发生) in zebrafish embryo

What's the mechanism of somitogenesis?

Somitogenesis is disrupted in her1/her7 double mutant

"Oscillation" (震荡) pattern of Somitogenesis in zebrafish embryo

Presomitic mesoderm/ plate: 前体节中胚 层/板

Delta-Notch signaling is essential for proper somitogenesis in the mouse and in humans

(A) Mouse Lfng-/-Wild-type

(B) Human

Lfng 564 C-to-A missense mutation (inactive enzyme)

Lfng: Lunatic fringe, the Notch target DII3: Distaless3, the Notch binding partner

Notch Signaling

Notch signaling in wikipedia

Patterning of somite

- Anterioposteria (AP, 前后) patterning
- Dorsoventral (DV, 背腹) patterning

AP patterning of the somites

Somites form at the junction of retinoic acid and FGF domains.

Raldh2 (retinoic acid-synthesizing enzyme)

RA and Wnt/Fgf signaling in AP patterning of the somites.

FGF and RTK signaling

Model of the regulatory mechanisms governing somitogenesis

Presomitic mesoderm

DV patterning of somite

Transverse section through the trunk of a chick embryo on days 2-4

1, neural tube; 2, notochord; 3, dorsal aorta; 4, surface ectoderm; 5, intermediate mesoderm; 6, dorsal half of somite; 7, ventral half of somite; 8, somitocoel/arthrotome; 9, central sclerotome; 10, ventral sclerotome; 11, lateral sclerotome; 12, dorsal sclerotome; 13, dermomyotome

Model of major postulated interactions in the patterning of the somite

Development of the spinal column and intervertebral discs

Mouse embryo

Osteogenesis (骨的发生)

Three cell origins (生骨细胞的来源):

- 1. Somite (体节): → axial skeleton (背部骨骼, 肋骨)
- 2. Lateral plate (侧板中胚层): →limb (肢体) skeleton
- 3. Neural crest cells (神经嵴细胞): craniofacial bones and cartilage (颅面骨和软骨)

Two major modes of osteogenesis:

- intramembrane ossification (膜内成骨): mesenchymal cells (间质细胞)→ bone
- endochondral ossification (软骨内成骨):
 mesenchymal cells → cartilage (软骨) → bone

Intramembranous (膜内) vs Chondrondral (软骨) Ossification

WT

Cbfa1: is required for process of cartilage (软骨) → bone

Endochondral Ossification (I)

Endochondral Ossification (II)

BMP promote bone formation

Figure 2. Skeleton of a 40-year-old man who died from pneumonia secondary to fibrodysplasia ossificans progressiva. Plates and ribbonsof ectopic bone can be seen throughout the body. It has been found that overexpression of BMP4 in lymphocytes may be responsible for such diseases.

Bone Morphogenetic Protein (RMP)

• From the time of Hippocrates (方希腊的名医) it has been kr bone has considerable potentia regeneration and repair.

Bone Morphogenetic Protein (BMP)

• Marshall Urist (1914-2001) made the key discovery that demineralized (去除矿物质) segments of bone induced new bone formation when implanted in muscle pouches in rabbits. Marshall Urist proposed the name "Bone Morphogenetic Protein".

DV patterning of somite

Muscle differenciation (I)

Muscle differenciation (II)

Summary (III)

Key word:
 paraxial mesoderm, somite, Notch, oscillation pattern

 Event and mechanism somitogenesis, osteogenesis, AP patterning of the somite, DV patterning of the somite

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate (中间) mesoderm: urogenital (泌尿生殖) system
- 3) lateral plate mesoderm: heart, blood vessels, blood cells

Endoderm

gut & lung

Structure of the mammalian kidney

Intermediate mesoderm differentiates into kidney

Intermediate mesoderm differentiates into kidney

Intermediate mesoderm is induced into kidney by paraxial mesoderm

General scheme of development in the vertebrate kidney

Neph cord

Cloac

Pronephros: 前肾; mesonephros: 中肾; metanephros: 后肾

Development of the Metanephros

Two Systems:

- Collecting System
- Excretory System (Nephron)

Kidney induction in vitro

0.5 mm

0 hrs

Hoxb7:GFP
Kidney rudiment from 11.5day mouse embryo

Reciprocal induction in the development of mammalian kidney

Ureteric bud growth is dependent on GDNF and its receptors

Ret-deficient cells Ret-expressing cells

Genes involved in ureteric bud growth

Caused by mutations in:

Gdnf
Ret
Gfra1
Grem1
Pax2
Eya1
Six1
Hox11 paralogues

Caused by mutations in:

Spry1 Bmp4 Robo2 Slit2 Foxc1/c2

Key molecular pathways involved in early metanephric kidney development

E10.5

Creating organoids of mouse kidneys from induced pluripotent stem cells

Summary (IV)

- Key word
 kidney, pronephros, mesonephros,
 metanephros, GDNF/Ret
- Event and mechanism kidney induction,

outline

Ectoderm

- 1) neural tube formation and differentiation
- 2) neural crest cells
- 3) eye development

Mesoderm

- 1) paraxial mesoderm: somite
- 2) intermediate mesoderm: kidney
- 3) lateral plate mesoderm: heart, blood vessels, blood cells
- Endoderm
 gut & lung

Mesodermal development in frog embryos

Mesodermal development in chick embryos

Heart formation

- Specification of heart tissures—heart primordia (心原基的形成)
- Fusion of the heart primordia and initial heartbeats (心原基迁移融合成单一的心管,心跳启动)
- Looping (环绕) (rightward heart looping) and formation of heart chambers

The heart fields in the mouse embryo

Wnt signals from the neural tube instruct LPM to become precursors of the blood and blood vessels.

Model gene regulatory network for the vertebrate heart initiated by BMP signals

Heart tube formation in chick

Migration of Heart primordia

Migration of Heart primordia

Model for early cardio-vascular lineages

Schematic diagram of cardiac morphogenesis in humans

Cardiac looping and chamber formation

Heart formation in zebrafish

40% epiboly

Cascade of heart development

Heart Regeneration

Origin of regenerated cardiac cell: progenitor vs dedifferentiation?

nature

Vol 464 25 March 2010 doi:10.1038/nature08899

LETTERS

Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation

Chris Jopling¹, Eduard Sleep^{1,2}†, Marina Raya¹†, Mercè Martí¹, Angel Raya^{1,2,3}† & Juan Carlos Izpisúa Belmonte^{1,2,4}

Regenerated cardiomyocytes are derived from differentiated cardiomyocytes

tg-cmlc2a-Cre-Ert2; tg-cmlc2a-LnL-GFP

30 dpa

Jopling, et al., 2010 Nature

Differentiated cardiomyocytes re-enter the cell cycle

Reconstructing a decellularized rat heart

(A) Decellularization

(B) Recellularized beating heart

Hemangioblast (血管、血液前体细胞)

Blood vessel (血管) formation: Vasculogenesis and angiogenesis

Vasculogenesis (初级血管形成)

Blood vesscle (血管) in zebrafish (Fli:EGFP)

Angiogenesis (次级血管形成)in zebrafish

Angiogenesis and cancer

Blood vessel (血管) specification in zebrafish embryo

Figure 15.17

Blood vessel specification in the zebrafish embryo. (A) Angioblasts experiencing activation of Notch upregulate the Gridlock transcription factor. These cells express ephrin-B2 and become aorta cells. Those angioblasts experiencing significantly less Notch activation

do not express Gridlock, and they become EphB4-expressing cells of the cardinal vein. (B) Once committed to forming veins or arteries, the cells migrate toward the midline of the embryo and contribute to forming the aorta or cardinal vein.

Notch signaling in wikipedia

Blood cell formation

Figure 15.24

Colonization of the mouse liver by two waves of hematopoietic stem cells. The two main sources of hematopoietic progenitor cells are the yolk sac and the AGM region. (A) At day 9, the yolk sac contributes an early line of CFU-C cells that probably does not last long after birth, and which makes a population of pre-

dominantly red blood cells. This cell population is thought to be the major source of the first wave of hematopoiesis in the liver. (B) At day 10, the AGM-derived cells provide CFU-S cells and pluripotential hematopoietic stem cells. These constitute the major cells of the second wave. (After Dzierzak and Medvinsky 1995.) 哺乳动物造 血器官: 胎卵黄露M 胎儿AGM 成年个牌 髓和脾脏。

鱼类造血器 官:胚胎ICM →成年肾脏。

Blood cell lineage

summary

Key word:
 heart field, heart tube, looping, Vasculogenesis,
 Angiogenesis, VEGF,

 Event and mechanism heart formation, blood cell formation

outline

- Ectoderm
 - 1) neural tube formation and differentiation
 - 2) eye development
- Mesoderm
 - 1) paraxial mesoderm: somite
 - 2) intermediate mesoderm: kidney
 - 3) lateral plate mesoderm: heart, blood vessels, blood cells
- Endoderm

gut, lung

