Laboratorium Podstaw Elektroniki								
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	Symbol grupy lab.				
Informatyka	_	I		I3				
Temat Laboratorium	·			Numer lab.				
Twierdzenie Thevenina								
Skład grupy ćwiczeniowej oraz numery indekso	ów							
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)								
Uwagi			Ocena					

1 Cel zadania

Celem tego zadania jest dokonanie odpowiednich pomiarów w przedstawionym przez prowadzącego układzie, a następnie korzystając z twierdzenia Thevenina obliczyć wartości prądów I_1, I_2, I_3 , oraz wykonać to samo przy pomocy obliczeń analityczne. Na koniec podać zastosowania twierdzenia Thevenina.

2 Budowa wskazanej konfiguracji przy pomocy środków dostępnych na stanowisku laboratoryjnym.

Rysunek 1: Schemat badanego obwodu.

Rysunek 2: Schemat badanego obwodu wykonany w programie Fritzing.

3 Obliczenie wartości prądów I_1, I_2, I_3

3.1 *I*₁

3.1.1 Korzystając z twierdzenia Thevenina

Pomiar U_{th} po wyeliminowaniu rezystora R_1 przy użyciu multimetru skonfigurowanego do pomiaru napięcia. Multimetr wskazał wynik: 1.824V.

Rysunek 3: Schemat badanego obwodu przygotowanego do pomiaru napięcia.

Zastąpienie źródła napięcia i pomiar rezystancji zastępczej R_{th} przy użyciu multimetru skonfigurowanego do pomiaru rezystancji. Multimetr wskazał wynik: 434,202 Ω .

fritzing

Rysunek 4: Schemat badanego obwodu przygotowanego do pomiaru rezystancji zastępczej.

Wyznaczenie prądu I_1 , z wartości otrzymanych podczas pomiarów, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_1 = \frac{1.824V}{434.202\Omega + 220\Omega} = 2.788mA$$

3.1.2 Przy pomocy obliczeń analitycznych

Obliczenie U_{ht} przy wyeliminowanym oporniku R_1 .

$$U_{th} = \frac{V_1}{R_4 + R_5 + R_{23}} \cdot R_{23}$$

$$R_{23} = \frac{R_2 \cdot R_3}{R_2 + R_3}$$

$$R_{23} = \frac{2200\Omega \cdot 1000\Omega}{2200\Omega + 1000\Omega} = 687.5\Omega$$

$$U_{th} = \frac{5V}{1000\Omega + 220\Omega + 689.5\Omega} \cot 687.5\Omega$$

$$U_{th} = 1.802V$$

Obliczenie R_{ht} przy wyeliminowanym oporniku R_1 .

$$R_{23} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}$$

$$R_{45} = R_4 + R_5$$

$$R_{th} = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_{45}}} = \frac{1}{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3}}} + \frac{1}{R_4 + R_5}$$

$$R_{th} = \frac{1}{\frac{1}{\frac{1}{2200\Omega} + \frac{1}{2200\Omega}}} + \frac{1}{1000\Omega + 220\Omega} \approx 439,712\Omega$$

Wyznaczenie prądu I_1 , z wartości otrzymanych podczas obliczeń, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_1 = \frac{1.802V}{439,712\Omega + 220\Omega} = 2.732mA$$

3.2 *I*₂

3.2.1 Korzystając z twierdzenia Thevenina

Pomiar U_{th} po wyeliminowaniu rezystora R_2 przy użyciu multimetru skonfigurowanego do pomiaru napięcia. Multimetr wskazał wynik: 0.749V.

Rysunek 5: Schemat badanego obwodu przygotowanego do pomiaru napięcia.

Zastąpienie źródła napięcia i pomiar rezystancji zastępczej R_{th} przy użyciu multimetru skonfigurowanego do pomiaru rezystancji. Multimetr wskazał wynik: 168.841Ω .

Rysunek 6: Schemat badanego obwodu przygotowanego do pomiaru rezystancji zastępczej.

Wyznaczenie prądu I_2 , z wartości otrzymanych podczas pomiarów, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_2 = \frac{0.749V}{171,831\Omega + 1000\Omega} = 0.641mA$$

3.2.2 Przy pomocy obliczeń analitycznych

Obliczenie U_{ht} przy wyeliminowanym oporniku R_2 .

$$U_{th} = \frac{V_1}{R_4 + R_5 + R_{13}} \cdot R_{13}$$

$$R_{13} = \frac{R_1 \cdot R_3}{R_1 + R_3}$$

$$R_{13} = \frac{220\Omega \cdot 2200\Omega}{2420\Omega} = 200\Omega$$

$$U_{th} = \frac{5V}{1000\Omega + 220\Omega + 200\Omega} \cot 200\Omega$$

$$U_{th} = 0.704V$$

Obliczenie R_{ht} przy wyeliminowanym oporniku R_2 .

$$R_{13} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_3}}$$

$$R_{45} = R_4 + R_5$$

$$R_{th} = \frac{1}{\frac{1}{R_{13}} + \frac{1}{R_{45}}} = \frac{1}{\frac{1}{\frac{1}{R_1} + \frac{1}{R_3}}} + \frac{1}{R_4 + R_5}$$

$$R_{th} = \frac{1}{\frac{1}{\frac{1}{220\Omega} + \frac{1}{2200\Omega}}} + \frac{1}{10000\Omega + 220\Omega} \approx 171,831\Omega$$

Wyznaczenie prądu I_2 , z wartości otrzymanych podczas obliczeń, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_2 = \frac{0.704V}{168.841 + 1000\Omega} = 0.602mA$$

3.3 *I*₃

3.3.1 Korzystając z twierdzenia Thevenina

Pomiar U_{th} po wyeliminowaniu rezystora R_3 przy użyciu multimetru skonfigurowanego do pomiaru napięcia. Multimetr wskazał wynik: 0.658V.

Rysunek 7: Schemat badanego obwodu przygotowanego do pomiaru napięcia.

Zastąpienie źródła napięcia i pomiar rezystancji zastępczej R_{th} przy użyciu multimetru skonfigurowanego do pomiaru rezystancji. Multimetr wskazał wynik: 154,512 Ω .

Rysunek 8: Schemat badanego obwodu przygotowanego do pomiaru rezystancji zastępczej.

Wyznaczenie prądu I_3 , z wartości otrzymanych podczas pomiarów, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_3 = \frac{0.658V}{154.512\Omega + 2200\Omega} = 0.279mA$$

3.3.2 Przy pomocy obliczeń analitycznych

Obliczenie U_{ht} przy wyeliminowanym oporniku R_3 .

$$U_{th} = \frac{V_1}{R_4 + R_5 + R_{12}} \cdot R_{12}$$

$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_{12} = \frac{220000\Omega}{1220\Omega} = 180.33\Omega$$

$$U_{th} = \frac{5V}{1000\Omega + 220\Omega + 180.33\Omega} \cot 180.33\Omega$$

$$U_{th} = 0.644V$$

Obliczenie R_{ht} przy wyeliminowanym oporniku R_3 .

$$R_{21} = \frac{1}{\frac{1}{R_2} + \frac{1}{R_1}}$$

$$R_{45} = R_4 + R_5$$

$$R_{th} = \frac{1}{\frac{1}{R_{21}} + \frac{1}{R_{45}}} = \frac{1}{\frac{1}{\frac{1}{R_2} + \frac{1}{R_1}}} + \frac{1}{R_4 + R_5}$$

$$R_{th} = \frac{1}{\frac{1}{\frac{1}{2200\Omega} + \frac{1}{220\Omega}}} + \frac{1}{1000\Omega + 220\Omega} \approx 157,106\Omega$$

Wyznaczenie prądu I_3 , z wartości otrzymanych podczas obliczeń, przy pomocy wzoru: $I_x = \frac{U_{thx}}{R_{thx} + R_x}$.

$$I_3 = \frac{0.644V}{154,512\Omega + 2200\Omega} = 0.273mA$$

4 Zestawienie wszystkich wyników obliczeń i pomiarów

	Pomiar			Obliczenia		
	R_1	R_2	R_3	R_1	R_2	R_3
U_{th}	1.824V	0.749V	0.658V	1.802V	0.704V	0.644V
R_{th}	434.202Ω	168.841Ω	154.512Ω	439,712Ω	171,831Ω	157, 106Ω
I	2.788mA	0.641 <i>mA</i>	0.279mA	2.732mA	0.602mA	0.273mA

5 Wnioski z przeprowadzonych badań

Po przeanalizowaniu wyników obliczeń i pomiarów można wywnioskować, że zostały one poprawnie przeprowadzone.

6 Zastosowania twierdzenia Thevenina

Twierdzenia Thevenina można użyć:

- podczas rozwiązywania układów elektrycznych liniowych
- do uproszczenia obwodów w celu ułatwienia rachunków analitycznych

Literatura

[1] S. Bolkowski, *Teoria obwodów elektrycznych*, ser. Elektrotechnika teoretyczna. Wydawnictwa Naukowo-Techniczne, 1986,

Spis treści

1	Cel zadania						
2 Budowa wskazanej konfiguracji przy pomocy środków dostępnych na stanowisku laboratoryjn							
3	Obliczenie wartości prądów I_1, I_2, I_3						
	3.1 I_1	2					
	3.1.1 Korzystając z twierdzenia Thevenina	2					
	3.1.2 Przy pomocy obliczeń analitycznych	3					
	3.2 <i>I</i> ₂	4					
	3.2.1 Korzystając z twierdzenia Thevenina	4					
	3.2.2 Przy pomocy obliczeń analitycznych	5					
	3.3 <i>I</i> ₃	6					
	3.3.1 Korzystając z twierdzenia Thevenina	6					
	3.3.2 Przy pomocy obliczeń analitycznych	7					
4 Zestawienie wszystkich wyników obliczeń i pomiarów							
5	Wnioski z przeprowadzonych badań	8					
6	5 Zastosowania twierdzenia Thevenina						