线性变换 复习题

黄利兵

数学科学学院

2023年3月31日

本章总结

- 主要概念: 线性变换, 可逆线性变换, 值域 (像), 核, 零化多项式, 最小多项式, 不变子空间, 特征值, 特征向量, 特征多项式.
- 基本结论: 线性变换与矩阵的对应; 相似矩阵的不变量; 零度秩定理; Hamilton-Cayley 定理; 可对角化的判别; Jordan 标准形.
- 常用算法: 计算矩阵的特征值和特征向量; 计算矩阵的 Jordan 标准形.
- 主要方法: 回到定义; 运用基本结论; 利用 Jordan 标准形.

判断题

- (1) 如果 T 是有限维线性空间 V 上的线性变换,则 dim $V = \dim \ker T + \dim TV$.
- (2) 如果 T 是有限维线性空间 V 上的线性变换, 则 $V = \ker T + TV$.
- (3) 如果 n 阶矩阵 A 与 B 有相同的特征值,则它们相似.
- (4) ℝ3 的线性变换一定有特征向量.
- (5) 如果 n 阶方阵 A 满足 $A^3 = A$, 则 A 可对角化.
- (6) 如果 A, B 都是线性空间 V 上的线性变换, 则 (A + B)V = AV + BV.

填空题

- (1) 如果 \mathbb{R}^2 上的线性变换 T 满足 $T(1,1)=(2,1),\ T(0,1)=(1,3),\ 则\ T(3,2)$ 等于
- (2) 设 α_1 , α_2 , α_3 , α_4 是线性空间 V 的一组基, 线性变换 A 满足 $A(\alpha_i) = \alpha_1$, $1 \le i \le 3$, $A(\alpha_4) = \alpha_2$. 则 A 的像空间的一组基是______, 核空间的一组基是______.
- (3) 若 3 阶矩阵 A 的特征值为 2, -1, -2, 则 A 的行列式是_____.
- (4) $\ddot{A} A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & k & 0 \\ -1 & 0 & -1 \\ 0 & k & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & k & 0 \\ -1 & 0 & -1 \\ 0 & k & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & k & 0 \\ -1 & 0 & k & 1 \end{bmatrix}$
- (5) 已知三阶矩阵 A 的特征值为 2, 1, -1, 且 (1,0,-1)', (1,-1,0)', (1,-1,1)' 分别是相应的特征向量. 则 A 的第三行是_____.

计算题

(1) 求矩阵
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
 的最小多项式, 并判断 A 是否可对角化.

(2) 对于矩阵
$$B = \begin{bmatrix} 3 & 1 & -2 \\ 6 & 4 & -6 \\ 4 & 2 & -3 \end{bmatrix}$$
, 求可逆矩阵 T , 使得 $T^{-1}BT$ 为对角矩阵.

证明题 (一)

设 $T: P[x]_4 \rightarrow P[x]_4$ 定义为

$$T(ax^3 + bx^2 + cx + d) = (a+b)x^3 + (b-a)x^2 + (a+b+d)x + (a-b+2c+d).$$

- (1) 求 T 在基 1, x-1, x^2-x , x^3-x^2 下的矩阵.
- (2) 证明 $V = \{p(x) \in P[x]_4 \mid p(1) = 0\}$ 是 T 的不变子空间.
- (3) 证明存在 T 的不变子空间 W, 使得 $P[x]_4 = P[x]_1 \oplus W$.

证明题 (二)

给定 $A \in P^{n \times n}$. 定义线性变换 $L_A: P^{n \times n} \to P^{n \times n}$ 和 $R_A: P^{n \times n} \to P^{n \times n}$ 如下 $L_A(B) = AB, \quad R_A(B) = BA, \quad \forall B \in P^{n \times n}.$

- (1) 如果 v 是 A 的特征向量, 证明 $(v,0,\cdots,0) \in P^{n\times n}$ 是 L_A 的特征向量;
- (2) 证明 L_A 可对角化当且仅当 A 可对角化;
- (3) 如果 A 可对角化, 证明 $L_A R_A$ 可对角化.

证明题 (三)

设 $T: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ 定义为 $T(A) = A^{\mathsf{T}}$.

- (1) 求 T 的特征值;
- (2) 证明 $\mathbb{R}^{n \times n}$ 可分解为 T 的特征子空间的直和.

证明题 (四)

设 $T: V \to V$ 为线性变换, $W \subset V$ 为它的不变子空间. 设 v_1, v_2, \dots, v_s 分别是属于不同特征值 $\lambda_1, \lambda_2, \dots, \lambda_s$ 的特征向量. 如果 $v_1 + v_2 + \dots + v_s \in W$, 证明: $v_i \in W$, 1 < i < s.

证明题 (五)

设 T 是有限维线性空间 V 上的线性变换. 令

$$U = \bigcap_{m=1}^{\infty} T^m V$$
, $W = \sum_{m=1}^{\infty} \ker T^m$.

证明: U 和 W 都是 T 的不变子空间, 且 $V = U \oplus W$.

10/11

证明题 (六)

设 $A\in\mathbb{C}^{n\times n}$ 且 $|A|\neq 0$, 证明存在 $B\in\mathbb{C}^{n\times n}$, 使得 $A=B^2$.