

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A method for regenerating an NO_x removal catalyst employed in a flue gas NO_x removal apparatus, characterized in that the method comprises a regeneration step including immersing the NO_x removal catalyst for 1 to 30 minutes at ambient temperature in regeneration water containing substantially no chlorine and no cleaning component; removing the catalyst from the regeneration water; and removing water from the catalyst without drying the catalyst; and a treatment step including treating the regeneration water which has been employed in the regeneration step in an ordinary wastewater treatment facility without performing a heavy metal treatment step on regenerating water.

2. (previously presented): A method for regenerating an NO_x removal catalyst according to claim 1, wherein the NO_x removal catalyst is immersed in regeneration water until bubbling stops and, subsequently, removed ~~from~~ from the regeneration water.

3. (original): A method for regenerating an NO_x removal catalyst according to claim 1, wherein the NO_x removal catalyst removed from the regeneration water is washed with water.

4. (original): A method for regenerating an NO_x removal catalyst according to claim 2, wherein the NO_x removal catalyst removed from the regeneration water is washed with water.

5. (previously presented): A method for regenerating an NO_x removal catalyst according to claim 1, wherein the regeneration water which has been used in the regeneration step is treated in the treatment step after it is repeatedly used, without undergoing any treatment, a plurality of times in a regeneration step for regenerating another NO_x removal catalyst.

6. (currently amended): A method for regenerating an NO_x removal catalyst according to claim 2, wherein the regeneration water which has been used in the regeneration step is treated in the treatment step after it is repeatedly used, without undergoing any treatment, a plurality of times in a regeneration step for regenerating another NO_x removal catalyst.

7. (previously presented): A method for regenerating an NO_x removal catalyst according to claim 3, wherein the regeneration water which has been used in the regeneration step is treated in the treatment step after it is repeatedly used, without undergoing any treatment, a plurality of times in a regeneration step for regenerating another NO_x removal catalyst.

8. (previously presented): A method for regenerating an NO_x removal catalyst according to claim 4, wherein the regeneration water which has been used in the regeneration step is treated in the treatment step after it is repeatedly used, without undergoing any treatment, a plurality of times in a regeneration step for regenerating another NO_x removal catalyst.

9. (original): A method for regenerating an NO_x removal catalyst according to any of claims 1 to 8, wherein the NO_x removal catalyst having been regenerated is installed in the flue gas NO_x removal apparatus without drying the catalyst before installation.

10. (original): A method for regenerating an NO_x removal catalyst according to any of claims 1 to 8, wherein the NO_x removal catalyst having been regenerated is installed in the flue gas NO_x removal apparatus after catalytic performance of the regenerated NO_x removal catalyst is assessed.

11. (original): A method for regenerating an NO_x removal catalyst according to claim 9, wherein the NO_x removal catalyst having been regenerated is installed in the flue gas NO_x removal apparatus after catalytic performance of the regenerated NO_x removal catalyst is assessed.

12. (original): A method for regenerating an NO_x removal catalyst according to any of claims 1 to 8, wherein the regenerated NO_x removal catalyst is installed in the flue gas NO_x removal apparatus such that the catalyst is inverted with respect to the direction of the flow of discharge gas.

13. (original): A method for regenerating an NO_x removal catalyst according to claim 9, wherein the regenerated NO_x removal catalyst is installed in the flue gas NO_x removal apparatus such that the catalyst is inverted with respect to the direction of the flow of discharge gas.

14. (original): A method for regenerating an NO_x removal catalyst according to claim 10, wherein the regenerated NO_x removal catalyst is installed in the flue gas NO_x removal apparatus such that the catalyst is inverted with respect to the direction of the flow of discharge gas.

15. (original): A method for regenerating an NO_x removal catalyst according to claim 11, wherein the regenerated NO_x removal catalyst is installed in the flue gas NO_x removal apparatus such that the catalyst is inverted with respect to the direction of the flow of discharge gas.