Analyzing Higher Order Effects on Eigenvalues

Saaketh Vedantam

Massachusetts Institute of Technology - MIT

December 8, 2021

Table of Contents

Background

2 Eigenvalue Spacing

Contents

Background

2 Eigenvalue Spacing

Motivation

- It is well known that the eigenvalues of a symmetric random matrix approach the Wigner semicircle, by the CLT.
- How do the spacings look? For an $n \times n$ matrix, the eigenvalues are $\lambda_1 \leq \lambda_1 \leq \cdots \leq \lambda_n$. We look at the distribution of $\lambda_{i+1} \lambda_i$.

Figure: Raw spacings. As *n* increases, they're concentrated at 0.

Unfolded Spacings

- Want to "unfold" the eigenvalues so they're not bunched next to 0.
- Idea: Use cumulative density function.

$$p_w(\lambda) = \frac{2}{\pi} \sqrt{1 - \lambda^2} \implies f(\lambda) = (n+1) \int_{-1}^{\lambda} p_w(x) dx$$

• The distribution of the CDF is uniform, so the kth smallest value has mean $\frac{k}{n+1} \implies$ the expected value of n+1 times a spacing is 1.

The Wigner Surmise

• The proposed distribution of these unfolded eigenvalues for a GOE is called the **Wigner surmise**.

Wigner surmise :
$$p_s(x) = \frac{\pi}{2} x e^{-\pi x^2/4}$$

Figure: Unfolded spacings. These are centered at 1.

Evidence of Higher Order Effects

• If unfolding were the whole story, then the distribution would be the same as the spacings in $\mathcal{U}([0, n+1])$.

Figure: Uniform spacing. The limiting distribution is e^{-x} .

Contents

Background

2 Eigenvalue Spacing

Procedure

- Generate an $n \times n$ matrix A from distribution f.
- Calculate $\frac{A+A^T}{2\sqrt{2n}}$.
- Find the spacing distribution, as well as first order errors.

Assumption :
$$p(x) = p_s(x) \left[1 + \frac{1}{n} e(x) \right] + O\left(\frac{1}{n^2} \right)$$

• Hopefully, e(x) also depends on the normalized kurtosis γ .

Constraints

- Issues and their solutions
 - Outlier eigenvalues: Mean of f is 0
 - Normalization so range of semicircle is [-1,1]: Variance of f is 1
- Potential distributions
 - $\mathcal{U}([-\sqrt{3}, \sqrt{3}])$
 - $\Gamma(1,1)$, subtract 1 from samples
 - Bernoulli: -1 with probability 1/2, 1 with probability 1/2

Figure: Comparison of various spacing distributions to surmise

Results

Figure: First order errors for each distribution

Contents

Background

2 Eigenvalue Spacing

Tracy-Widom

- ullet Tracy Widom distribution is distribution of $(\lambda_{\sf max} \sqrt{2n})\sqrt{2}n^{1/6}$
 - Used for GOE matrices $(\beta = 1)$

Figure: Visualization of basic Tracy-Widom

Other Distributions

Figure: Comparison of various extreme distributions to Tracy-Widom

Results

Figure: First order errors for each distribution

Future Steps

- More compute resources
- Obtain a quantitative measure of error
 - Perhaps this requires rethinking the format of the error

References

Y. Liu. Statistical behavior of the eigenvalues of random matrices. Spring 2001.

Hoi Nguyen, Terence Tao, and Van Vu. Random matrices: tail bounds for gaps between eigenvalues, 2015.

Analyzing Higher Order Effects on Eigenvalues

Saaketh Vedantam

Massachusetts Institute of Technology - MIT

December 8, 2021