

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Plano Aula 25

Markus Stein 11 November 2019

TRV considerações finais

Distribuições amostrais derivadas da distribuição Normal

- Exemplo 1: Seja $X = (X_1, \ldots, X_n)$ uma a. a. de $X \sim Normal(\mu_X, \sigma_X^2)$ e $Y = (Y_1, \ldots, Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_V^2)$, tal que X e Y são independentes. Encontre o TRV para testar:
- a. $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 = \sigma_Y^2 = \sigma^2$;
- b. (Behrens-Fisher problem) $H_0: \mu_X = \mu_Y$ contra $H_1: \mu_X \neq \mu_Y$ assumindo que $\sigma_X^2 \neq \sigma_Y^2$; c. $H_0: \sigma_X^2 = \sigma_Y^2$ contra $H_1: \sigma_X^2 \neq \sigma_Y^2$.
- Exemplo 2: (Teste t pareado) Seja $(X_1, Y_1), \ldots (X_n, Y_n)$ uma a.a. de $(X, Y) \sim Normal_2(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$ e $Y = (Y_1, \dots, Y_m)$ uma a.a. de $Y \sim Normal(\mu_Y, \sigma_Y^2)$. Use o TRV para testar $H_0: \mu_X = \mu_Y$. Dica: mostre que $W_i = X_i - Y_i \sim Normal(\mu_W, \sigma_W^2)$.

Modelos discretos

- Exemplo aula passada: Seja $X = (X_1, \ldots, X_n)$ uma a.a. de $X \sim Bernoulli(\pi_1)$ e $Y = (Y_1, \ldots, Y_m)$ uma a.a. de $Y \sim Bernoulli(\pi_2)$, tal que X e Y são independentes. Encontre o TRV para testar $H_0: \pi_1 = \pi_2 \text{ contra } H_0: \pi_1 \neq \pi_2.$
- Exemplo 3: (Equilíbrio de Hardy-Weinberg) Seja $X = (X_1, \dots, X_n)$ uma a. a. de $X \sim$ $Multinomial(N, \pi_1, \pi_2, \pi_3)$. Use o TRV para testar $H_0: \pi_1 = \pi_2 = \pi_3$.

Teste Qui Quadrado (χ^2)

- Exemplo 4: (Tabelas $r \times c$) Suponha que temos uma tabela de contingência $r \times c$ com n indivíduos independentemente selecionados, sendo n_{ij} o número de unidades classificadas na linha i e na coluna j, para todo $i=1,\ldots,r$ e $j=1,\ldots,c$. Seja π_{ij} a probabilidade de um indivíduo ser classificado na linha i e coluna j, tal que $\pi_{ij} \ge 0$ e $\sum_{i=1}^r \sum_{j=1}^c \pi_{ij} = 1$.
- a. Encontre o TRV para testar $H_0: \pi_{ij} = a_i b_j$, para algum $a_i > 0$ e $b_j > 0$ tais que $\sum_{i=1}^r a_i = 1$ e $\sum_{i=1}^{c} b_i = 1$, contra a alternativa $H_1: \pi_{ij} \neq a_i b_j$ para pelo meno
- b. Compare o teste do ítem (a) com o teste qui quadrado de independência, para tesar se a variável da linha e da coluna são independentes.

Teste Exato de Fisher

- Exemplo 5: $(Tabela\ 2\times 2\ restrita)$ Seja $S_1 \sim Binomial(n_1, \pi_1)$ independente de $S_2 \sim Binomial(n_2, \pi_2)$. Para testar as hipóteses $H_0: \pi_1 = \pi_2$ contra $H_1: \pi_1 > \pi_2$:
- a. Mostre que sob H_0 temos que $S = S_1 + S_2$ é estatística suficiente e $S_1 | S = s \sim Hipergeométrica(n_1 + s_2)$
- b. Como calcular o valor p (condicional) para esse teste?

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02023 - INFERÊNCIA B - 2019/2

Leitura: Ler seções 8.2.2 e 8.3.5 do livro Casella e Berger.
Tarefa: Fazer lista 5 para entregar.