Professor: Jeferson Almir

Aluno(a):			Nž:	
Data:	/	/		

1 Problemas

- 001. Seja ABC um triângulo. Prove que suas medianas CD, AE e BF são concorrentes. **Dicas:**
- 002. Seja ABC um triângulo. Prove que suas alturas AE, CF e BD são concorrentes. **Dicas:**
- 003. Prove que as bissetrizes internas de um $\triangle ABC$ são concorrentes. **Dicas:**
- **004.** Seja ABC um triângulo. Seu incírculo toca AB, BC e CA nos pontos C_1 , A_1 e B_1 respectivamente. Prove que as retas CC_1 , BB_1 e AA_1 são concorrentes. **Dicas:**
- 005. Prove que as mediatrizes dos lados de um dado $\triangle ABC$ são concorrentes. Dicas:
- 006. Seja ABC um triângulo de circuncírculo k. Sejam l_A, l_B e l_C as retas tangentes a k pelos pontos A, B e C respectivamente. Se $l_A \cap l_B = C_1, l_B \cap l_C = A_1$ e $l_C \cap l_A = B_1$, prove que as retas AA_1, BB_1 e CC_1 são concorrentes. **Dicas:**
- **007.** Seja ABC um triângulo. Sejam A_1 , B_1 e C_1 os pontos de tangência dos segmentos BC, CA e AB com os exincírculos de $\triangle ABC$. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 008. Seja ABC um triângulo e seja N seu ponto de Nagel (ponto de concorrência do exercício anterior). Digamos que AN, BN e CN intersectem o incírculo de $\triangle ABC$ nos pontos A_1 , B_1 e C_1 , e os lados BC, CA e AB nos pontos A_2 , B_2 e C_2 , respectivamente. Prove que $AA_1 = NA_2$, $BB_1 = NB_2$ e $CC_1 = NC_2$. Dicas:
- 009. Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no exterior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- 010. Seja ABC um triângulo. Os triângulos equiláteros $\triangle ABC_1$, $\triangle AB_1C$ e $\triangle A_1BC$ são construídos no interior do triângulo ABC. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes. **Dicas:**
- **011.** Prove que para um dado $\triangle ABC$, existe algum ponto X tal que vale $AX \cdot BC = BX \cdot AC = CX \cdot AB$. **Dicas:**
- 012. Prove que para um dado $\triangle ABC$, exatamente dois pontos satisfazem a condição da questão anterior. Dicas:
- 013. Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC + AS = CA + BS = AB + CS. Dicas:

- **014.** Seja ABC um triângulo. Prove que existe um ponto único S tal que vale BC AS = CA BS = AB CS. **Dicas:**
- 015. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências externamente. Prove que o primeiro centro de Soddy do $\triangle ABC$ (problema 13) coincide com o centro de k_4 . Dicas:
- 016. Três circunferências $k_1(A)$, $k_2(B)$ e $k_3(C)$ são dadas, e elas são todas tangentes externamente entre si. Seja C_1 e B_1 os pontos de tangência de k_1 com k_2 , e de k_1 com k_3 , respectivamente. Seja A_1 o ponto de tangência de k_2 com k_3 . A circunferência k_4 toca as outras três circunferências internamente. Prove que o segundo centro de Soddy do $\triangle ABC$ (problema 14) coincide com o centro de k_4 . Dicas:
- **017.** Seja ABC um triângulo. Sejam S_1 e S_2 seus primeiro e segundo centros de Soddy (problemas 13 e 14), respectivamente. Prove que os pontos A, B e C estão sobre uma elipse de focos S_1 e S_2 . **Dicas:**
- **018.** Seja ABC um triângulo. Seja S_1 seu primeiro centro de Soddy (problema 13). Prove que existe uma circunferência inscrita no quadrilátero convexo formado pelas retas CS_1 , BS_1 , AC e AB. **Dicas:**
- **019.** Seja ABC um triângulo. Seja S_2 seu segundo centro de Soddy (problema 14). Prove que existe uma circunferência que toca as retas BA e BC e os segmentos AS_2 e CS_2 . **Dicas:**
- **020.** Seja ABC um triângulo, com exincírculos ω_a , ω_b e ω_c . Sejam I_a , I_b e I_c os centros de ω_a , ω_b e ω_c respectivamente. Seja A_1 o ponto de tangência de ω_a com o lado BC. Defina os pontos B_1 e C_1 analogamente. Prove que as retas C_1I_c , B_1I_b e A_1I_a são concorrentes. **Dicas:**
- **021.** Seja ABC um triângulo. O primeiro ponto de Brocard Br_1 é definido como o ponto para o qual $\angle BABr_1 = \angle ACBr_1 = \angle CBBr_1$. Prove que esse ponto sempre existe. **Dicas:**
- 022. Seja ABC um triângulo. O segundo ponto de Brocard Br_2 é definido como o ponto tal que $\angle ABBr_2 = \angle CABr_2 = \angle BCBr_2$. Prove que ele sempre existe. Dicas:
- 023. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6) e sejam Br_1 e Br_2 seu primeiro e segundo pontos de Brocard, respectivamente (problemas 21 e 22). Seja $CL \cap AB = F$. Prove que $\angle AFBr_1 = \angle BFBr_2$. Dicas:

- **024.** Seja ABC um triângulo, com circuncentro O. Seja L seu ponto de Lemoine (problema 6) e sejam Br_1 e Br_2 seu primeiro e segundo pontos de Brocard, respectivamente (problemas 21 e 22). Prove que valem as igualdades $\angle OBr_1L = \angle OBr_2L = 90^\circ$ e $Br_1L = Br_2L$. **Dicas:**
- **025.** Seja ABC um triângulo. Sejam Ap_1 e Ap_2 seus dois pontos isodinâmicos (problemas 11 e 12). Prove que os triângulos pedais com respeito a esses dois pontos são equiláteros. **Dicas:**
- 026. Seja ABC um triângulo. Sejam E e D os pés das bissetrizes interna e externa em relação a C, respectivamente. Prove que os dois pontos isodinâmicos de $\triangle ABC$ (problemas 11 e 12) ficam sobre a circunferência de diâmetro ED. **Dicas:**
- 027. Seja ABC um triângulo. Seja T_1 seu primeiro ponto de Fermat-Torricelli (problema 9). Prove que $\angle AT_1B = \angle BT_1C = 120^{\circ}$. Dicas:
- **028.** Seja ABC um triângulo. Seja T_2 seu segundo ponto de Fermat-Torricelli (problema 10). Prove que vale exatamente uma das igualdades $\angle AT_2B = \angle AT_2C = 60^\circ$, $\angle BT_2A = \angle BT_2C = 60^\circ$ e $\angle CT_2B = \angle CT_2A = 60^\circ$. **Dicas:**
- 029. Seja ABC um triângulo. Prove que o primeiro ponto isodinâmico (problema 11) é conjugado isogonal do primeiro ponto de Fermat-Torricelli (problema 9) com respeito a $\triangle ABC$. Dicas:
- 030. Seja ABC um triângulo. Prove que o segundo ponto isodinâmico (problema 12) é conjugado isogonal do segundo ponto de Fermat-Torricelli (problema 10) com respeito a $\triangle ABC$. **Dicas:**
- 031. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6). Os pontos $M, K \in AB, H, I \in BC$ e $J, G \in AC$ são escolhidos de tal forma que $MI \parallel AC, GH \parallel AB, KJ \parallel BC$ e $MI \cap KJ \cap GH = L$. Prove que os pontos M, K, H, I, J e G ficam sobre uma circunferência. **Dicas:**
- 032. Seja ABC um triângulo. Seja L seu ponto de Lemoine (problema 6). Os pontos $M, K \in AB$, $H, I \in BC$ e $J, G \in AC$ são escolhidos de tal modo que os quadriláteros MICA, GHBA e KJCB são cíclicos e $MI \cap KJ \cap GH = L$. Prove que os pontos M, K, H, I, J e G ficam sobre uma circunferência de centro L. Dicas:
- 033. Seja ABCD um quadrilátero convexo tal que $AB \cap CD = E$ e $AD \cap BC = E$. Prove que os circuncírculos de $\triangle BFC$, $\triangle AFD$ e $\triangle ABE$ passam por um ponto em comum. **Dicas:**
- 034. A construção do problema 33 é dada. Prove que o ponto M e os respectivos centros $O_1,~O_2,~O_3$ e O_4 dos circuncírculos de $\triangle AFD,~\triangle BFC,~\triangle ABE$ e $\triangle DCE$ ficam sobre uma circunferência. **Dicas:**

- **035.** As circunferências k_1, k_2, k_3 e k_4 são dadas de tal modo que elas passam por um ponto em comum M. Prove que as circunferências que passam pelos pontos de interseção de (k_1, k_2, k_3) , (k_1, k_2, k_4) , (k_1, k_3, k_4) e (k_2, k_3, k_4) , diferentes de M, também passam por um ponto em comum. **Dicas:**
- **036.** Seja ABCDE um pentágono convexo tal que $AC \cap BE = D_1, \ BD \cap AC = E_1, \ BD \cap EC = A_1, \ EC \cap AD = B_1 \ e \ AD \cap BE = C_1.$ Digamos que (XYZ) denote o circuncírculo de $\triangle XYZ$. Sejam $(AD_1C_1) \cap (B_1C_1E) = \{C_1, C_2\}, \ (B_1C_1E) \cap (A_1B_1D) = \{B_1, B_2\}, \ (A_1B_1D) \cap (A_1E_1C) = \{A_1, A_2\}, \ (A_1E_1C) \cap (E_1D_1B) = \{E_1, E_2\} \ e (E_1D_1B) \cap (C_1D_1A) = \{D_1, D_2\}.$ Prove que os pontos A_2, B_2, C_2, D_2 e E_2 ficam sobre uma circunferência. **Dicas:**
- 037. Seja ABCDE um pentágono convexo tal que $AC \cap BE = D'$, $BD \cap AC = E'$, $BD \cap EC = A'$, $EC \cap AD = B'$ e $AD \cap BE = C'$. Digamos que (XYZ) denote o circuncírculo de $\triangle XYZ$. Sejam $(AD'B) \cap (BE'C) = \{B, B''\}$, $(BE'C) \cap (CA'D) = \{C, C''\}$, $(CA'D) \cap (DB'E) = \{D, D''\}$, $(DB'E) \cap (AC'E) = \{E, E''\}$ e $(AC'E) \cap (AD'B) = \{A, A''\}$. Prove que as retas AA'', BB'', CC''', DD'' e EE'' são concorrentes. **Dicas:**
- **038.** Seja ABC um triângulo. Seja O seu circuncentro. Seja M seu baricentro e seja H seu ortocentro. Prove que os pontos H, O e M são colineares. **Dicas:**
- 039. Seja ABC um triângulo. Seja N seu ponto de Nagel (problema 7). Seja M seu baricentro e seja I seu incentro. Prove que os pontos N, I e M são colineares. Dicas:
- 040. Seja ABC um triângulo. Prove que as retas formadas pelos primeiro e segundo pontos de Fermat-Torricelli (problemas 9 e 10) e pelos primeiro e segundo pontos isodinâmicos (problemas 11 e 12) se intersectam no ponto de Lemoine L (problema 6). Além disso, prove que o circuncentro de $\triangle ABC$ fica na reta dada pelos pontos isodinâmicos. **Dicas:**
- **041.** Seja ABC um triângulo. Prove que Ap_2T_1 e Ap_1T_2 se intersectam no baricentro M do $\triangle ABC$. (Ap_1 e Ap_2 são os pontos isodinâmicos dos problemas 11 e 12, e T_1 e T_2 são os pontos de Fermat-Torricelli dos problemas 9 e 10). **Dicas:**
- **042.** Seja ABC um triângulo. Seja I seu incentro, e seja O seu circuncentro. Seja Bi seu ponto de Bevan (problema 20). Prove que os pontos I, O e Bi são colineares. **Dicas:**
- **043.** Seja ABC um triângulo. Seja I seu incentro, seja G seu ponto de Gergonne (problema 4), e sejam S_1 e S_2 seus primeiro e segundo centros de Soddy (problemas 13 e 14), respectivamente. Prove que os pontos I, G, S_1 e S_2 são colineares. **Dicas:**
- **044.** Seja ABCD um quadrilátero. Digamos que os pés das perpendiculares de A até BC e CD sejam R e Q,

- respectivamente. Digamos que os pés das perpendiculares de B até CD e DA sejam N e I, respectivamente. Digamos que os pés das perpendiculares de C até DA e AB sejam L e M, respectivamente. Digamos que os pés das perpendiculares de D até AB e BC sejam J e K, respectivamente. Sejam $AR \cap BI = G$, $BN \cap CM = H$, $CL \cap DK = E$ e $AQ \cap DJ = F$. Prove que os pontos E, F, G e H são colineares. **Dicas:**
- **045.** Seja ABCD um quadrilátero tal que $AB \cap CD = E$ e $AD \cap BC = F$. Prove que os pontos médios M, N e P dos segmentos AC, BD e EF, respectivamente, são colineares. **Dicas:**
- **047.** Seja ABCD um quadrilátero tal que $AB \cap DC = E$ e $AD \cap BC = F$. As circunferências k_1, k_2 e k_3 têm AC, BD e EF como diâmetros, respectivamente. Prove que elas têm um eixo radical em comum. **Dicas:**
- 048. Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Um ponto arbitrário D é escolhido no arco \widehat{AB} de k que não contém C. Os pontos E, F e G ficam sobre CA, AB e BC respectivamente, e são escolhidos de forma que $\angle AED = \angle AFD = \angle BGD = 90^{\circ}$. Prove que os pontos E, F e G são colineares. Dicas:
- **049.** Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Um ponto arbitrário D é escolhido no arco \widehat{AB} de k que não contém C. Os pontos E, F e G ficam sobre CA, AB e BC respectivamente, e são escolhidos de forma que $\angle AED = \angle AFD = \angle BGD = \varphi$. Prove que os pontos E, F e G são colineares. **Dicas:**
- **050.** Seja ABC um triângulo. Seja k o circuncírculo de $\triangle ABC$. Dois pontos arbitrários P e Q são escolhidos no arco \widehat{AB} que não contém C. Pontos M, N e K são escolhidos em BC, CA e AB respectivamente, tais que $\angle(PM,BC) = \angle(QM,CB)$, $\angle(PN,AC) = \angle(QN,CA)$ e $\angle(QK,AB) = \angle(PK,BA)$. Prove que os pontos M, N e K são colineares. **Dicas:**
- 051. Seja ABC um triângulo. Seja D um ponto do circuncírculo de $\triangle ABC$. Prove que o ponto médio J do segmento DH (H é o ortocentro de $\triangle ABC$) fica sobre a reta de Simson (problema 48) do $\triangle ABC$ e do ponto D. Dicas:
- 052. Seja ABCD um quadrilátero cíclico. Os pés das perpendiculares de A até BC e CD são E e F, respectivamente. Os pés das perpendiculares de B até CD e DA são I e J, respectivamente. Os pés das

- perpendiculares de C até DA e AB são G e H, respectivamente. Os pés das perpendiculares de D até AB e BC são K e L, respectivamente. Prove que as retas JI, EF, GH e KL são concorrentes. **Dicas:**
- 053. Seja ABCD um quadrilátero cíclico, e seja X um ponto arbitrário. Os pés das perpendiculares de X até AB e CD são H e I, respectivamente. Os pés das perpendiculares de X até BC e DA são K e F, respectivamente. Os pés das perpendiculares de X até AC e BD são G e J, respectivamente. Os pontos médios de HI, GJ e KF são L, M e N, respectivamente. Prove que os pontos M, N e L são colineares. Dicas:
- **054.** Seja ABC um triângulo. O circuncírculo de $\triangle ABC$ é k e seu ortocentro é H. A altura relativa a B intersecta AC e k nos pontos B_1 e B_2 , respectivamente. Prove que os pontos H e B_2 são simétricos com respeito a B_1 . **Dicas:**
- **055.** Seja O o circuncentro de $\triangle ABC$ de alturas AA_1 , BB_1 e CC_1 . As retas CC_1 e A_1B_1 se intersectam no ponto N e as retas CO e AB se intersectam no ponto E. Prove que $HM \parallel EN$, onde M é ponto médio de AB. **Dicas:**
- **056.** Seja ABC um triângulo. Seja k seu circuncírculo. Seja D um ponto arbitrário na tangente a k por C. Os pontos E e F são as projeções de D em AC e BC, respectivamente. Prove que $EF \perp AB$. **Dicas:**
- 057. Seja ABC um triângulo. Seja P um ponto arbitrário no arco menor \widehat{AB} do circuncírculo de $\triangle ABC$. As projeções de P em AC e AB são X e Y, respectivamente. Os pontos M e N são os pontos médios de BC e XY, respectivamente. Prove que $\angle PNM = 90^{\circ}$. Dicas:
- **058.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Os pontos M, N, P e Q são projeções de C_1 nas retas AC, AA_1 , BB_1 e BC_1 , respectivamente. Prove que os pontos M, N, P e Q são colineares. **Dicas:**
- **059.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Denote as reflexões de C_1 com respeito aos lados AC e BC por M e N, respectivamente. Prove que os pontos M, B_1 , A_1 e N são colineares. **Dicas:**
- **060.** Seja ABC um triângulo. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. Os pontos M e N são as projeções de C_1 sobre os lados AC e BC, respectivamente. Seja $P = MN \cap B_1C_1$. Prove que P é o ponto médio de B_1C_1 . **Dicas:**
- **061.** Seja ABC um triângulo. Seja k seu circuncírculo e seja H seu ortocentro. Sejam AA_1 e BB_1 alturas deste triângulo. Seja D um ponto arbitrário no segmento BH. A reta AD intersecta k novamente no ponto E. Sejam $BE \cap AA_1 = F$ e K o ponto médio de FD. Prove que os pontos A_1 , B_1 e K são colineares. **Dicas:**

- **062.** Seja ABC um triângulo. Seja k seu circuncírculo. A reta CM $(M \in AB)$ é bissetriz interna de $\angle ACB$, e intersecta k no ponto N. A reta que passa por M e é perpendicular a BC, intersecta BC e o arco menor \widehat{BC} de k nos pontos L e X, respectivamente. A reta que passa por C e é perpendicular a AX, intersecta AX e AB nos pontos Z e Y, respectivamente. Prove que os pontos X, Y e N são colineares. **Dicas:**
- 063. Sejam AA_1 , BB_1 e CC_1 as alturas de um dado triângulo ABC. Seja P um ponto arbitrário interno ao triângulo. Os pontos C_2 e C_3 são as projeções de P em AB e CC_1 , respectivamente. Os pontos $A_2 \in BC$, $A_3 \in AA_1$, $B_2 \in AC$ e $B_3 \in BB_1$ são definidos analogamente. Prove que as retas A_2A_3 , B_2B_3 e C_2C_3 são concorrentes. **Dicas:**
- **064.** Seja ABC um triângulo. Sejam AB_1 e BA_1 alturas desse triângulo, com interseção H. As retas A_1B_1 e AB se intersectam no ponto D, e M é ponto médio de AB. Prove que $MH \perp DC$. **Dicas:**
- **065.** Seja ABC um triângulo acutângulo. O ponto H é seu ortocentro e o ponto M é ponto médio de AB. Sejam AA_1 e BB_1 alturas desse triângulo e seja $AB \cap A_1B_1 = D$. A reta CH intersecta o circuncírculo de $\triangle ABC$ nos pontos C e K. Prove que os pontos K, M, C e D são concíclicos. **Dicas:**
- 066. Seja ABC um triângulo com $\angle ACB > 90^\circ$. Sejam AA_1 , BB_1 e CC_1 alturas desse triângulo. O ponto M é ponto médio do lado AB. Prove que os pontos médios de AA_1 e BB_1 , e os pontos M e C_1 são concíclicos. **Dicas:**
- **067.** Seja ABC um triângulo com $\angle ACB > 90^{\circ}$ e de alturas AA_1 e BB_1 . Os pontos P e M são as projeções de A_1 sobre AC e AB, respectivamente, e Q e N são as projeções de B_1 sobre BC e AB, respectivamente. Prove que PM = QN. **Dicas:**
- 068. Seja ABC um triângulo. Seja CD uma altura e O o circuncentro. Seja M o ponto médio de AB. Denote a projeção de A em CO por P. Prove que DM = PM. Dicas:
- 069. Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas. A circunferência de diâmetro AC intersecta a reta BB_1 nos pontos P e M de forma que P fica entre B e M. A circunferência de diâmetro BC intersecta AA_1 nos pontos N e Q de forma que N fica entre A e Q. Prove que o quadrilátero MNPQ é cíclico. Dicas:
- 070. Seja ABC um triângulo. Seja CD uma altura. Os pontos E e F são as projeções de D sobre AC e BC

- respectivamente. Prove que o quadrilátero ABFE é cíclico. **Dicas:**
- **071.** Seja ABC um triângulo. Seja CD uma altura. Os pontos E e F são as projeções de D sobre AC e BC respectivamente. Os pontos M e N são os pontos médios de AC e BC respectivamente. Prove que o quadrilátero EFNM é cíclico. **Dicas:**
- 072. Seja ABC um triângulo. Os segmentos AA_1 e BB_1 são alturas, e a bissetriz interna de $\angle ACB$ intersecta os segmentos A_1B_1 no ponto L. O circuncírculo de $\triangle AB_1L$ intersecta BB_1 uma segunda vez em X. Seja $Y \in AA_1$ um ponto tal que AY = BX. Prove que o quadrilátero BA_1LY é cíclico. **Dicas:**
- **073.** Seja ABC um triângulo. Seu circuncentro é O, seu ortocentro é H e suas alturas são AA_1 , BB_1 e CC_1 . O ponto M é a projeção de C sobre A_1B_1 , e N é a reflexão de C com respeito a A_1B_1 . Prove que os pontos H, O, N e C_1 são concíclicos. **Dicas:**
- **074.** Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas. Um ponto D é escolhido na semirreta AA_1 . Um ponto E é escolhido na semirreta BB_1 , de tal forma que $\angle DCE = 90^{\circ}$. Seja H o pé da perpendicular de C a ED. Prove que $\angle AHB = 90^{\circ}$. **Dicas:**
- **075.** Seja ABC um triângulo. Os segmentos AA_1 , BB_1 e CC_1 são alturas. Os pontos A_2 e A_3 são as projeções de A_1 sobre AC e AB respectivamente. Os pontos B_2 , B_3 , C_2 e C_3 são definidos analogamente. Prove que os pontos A_2 , A_3 , B_2 , B_3 , C_2 e C_3 são concíclicos. **Dicas:**
- **076.** Seja ABC um triângulo. Digamos que AC = BC. O segmento CC_1 é uma altura e M é seu ponto médio. Seja P a projeção de C_1 sobre BM. Prove que $\angle APC = 90^{\circ}$. **Dicas:**
- 077. Seja ABC um triângulo. Seja H seu ortocentro e seja M o ponto médio do lado AB. Prove que o ponto simétrico de H com respeito a M coincide com o ponto diametralmente oposto de C com respeito ao circuncírculo de ΔABC . Dicas:
- 078. Seja ABC um triângulo. Sejam AA_1 e BB_1 alturas que se intersectam em H. Seja D o segundo ponto de interseção dos circuncírculos de ΔABC e ΔA_1B_1C , e seja M o ponto médio de AB. Prove que os pontos D, H e M são colineares. **Dicas:**
- **079.** Seja ABC um triângulo. Seja k seu circuncírculo e H seu ortocentro. Seja l uma reta arbitrária que passa por H. Prove que as reflexões de l com respeito a AB, BC e CA concorrem num ponto de k. **Dicas:**