CSE 230: Data Structures

Lecture 10: Graphs
Dr. Vidhya Balasubramanian

Graphs

- A graph G= (V,E) is a set of vertices V, and a collection of edges E which is a subset of VxV
- A way of representing connections between pairs of objects from some set V
 - Edges can be either directed or undirected

CSE 201: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

Examples

www.visualcomplexity.com

http://t1065550.files.wordpress.com/2012/02/mouse.jpg

CSE 201: Data Structures and Algorithms

Definitions

- End vertices are end points of edges
 - v1 and v2 end vertices of e2
- Edges incident on a vertex
 - e9 incident on v6
- Adjacent vertices (end pts of an edge
 - v1, v2 adjacent
- Degree of vertex is number of edges incident on it
- Parallel edges connect same set of vertices
- Self loop, edge connecting same vertex

e6 e8

CSE 201: Data Structures and Algorithms

Definitions

Path

- Sequence of alternating vertices and edges
- Eg: P1=(v1,v2,v3,v6)
- Simple path
 - Vertices and edges are distinct - e.g P1
 - v1,v2,v3,v7,v3,v6, not simple

Cycle

Path that ends at start node

- v2,v1,v4,v5,v3,v2_{Amrita School of Engineering} CSE 201: Data Structures and **Algorithms**

Amrita Vishwa Vidyapeetham

Definitions

- Independent edges: don't have common vertices
- Complete graph: Every node adjacent to each other
- Simple Graph: Has no loops or parallel edges

Definitions contd

- Degree: Number of edges incident at a vertex
 - Min degree of G --> $\delta(G)$ = min $\{d(v)| v \in V\}$
- Total degree of G is 2m (number of edges)
- Number of vertices of odd degree is always even in a graph
- In an undirected simple graph
 - $m \le n (n 1)/2$, where n is number of vertices
- Proof: each vertex has degree at most (n 1)

Definitions contd

- Planar Graphs: Graph whose edges intersect only at their end
- Graph Isomorphism
 - Two graphs G and H are isomorphic if
 - They have same number of vertices
 - A pair of nodes are adjacent in G iff a corresponding pair

exists in H

Example: Isomorphism

http://upload.wikimedia.org/

http://www.sonoma.edu/

http://www.math.tamu.edu/~sottile/teaching/98S/figures/hard_iso.gif

CSE 201: Data Structures and Algorithms

Graph ADT

- Accessor methods
 - isVertex()
 - incidentEdges(v)
 - endVertices(e)
 - isDirected(e)
 - origin(e)
 - destination(e)
 - opposite(v, e)
 - areAdjacent(v, w)

- Update methods
 - insertVertex(x)
 - insertEdge(v, w, x)
 - insertDirectedEdge(v, w, x)
 - removeVertex(v)
 - removeEdge(e)
- Generic methods
 - numVertices()
 - numEdges()
 - vertices()
 - edges()

CSE 201: Data Structures and Algorithms

Graph Representations

- Adjacency list
 - Each vertex has incidence container
 - List of vertices incident on v
 - Edge list
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices

CSE 201: Data Structures and Algorithms

Adjacency Map

- Similar to adjacency list
 - secondary container of all edges incident to a vertex is organized as a map, rather than as a list
 - adjacent vertex serves as a key to the edge
- Allows for fast access to a particular neighbor

CSE 201: Data Structures and Algorithms

Edge List Representation

- Vertex object
 - Element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex
 - destination vertex
 - reference to position in edge sequence
- Vertex sequence
 - Sequence of vertices in G
- Edge sequence
 - Sequence of edge objects

CSE 201: Data Structures and Algorithms

Adjacency Matrix

- Edge list
- 2D-array adjacency array A where
 - A[i,j] is 1 if there is an edge between vertices i and j
 - A[i,j] =0, if there is no edge incident on i and j

	u	V	W
u	0	1	0
V	1	0	1
W	0	1	0

Exercises

- Represent the following graphs using the three representations
- Suppose we represent a graph G with n vertices and m edges with edge list structure. Why does the function insertVertex() function take O(1) time, while removeVertex() function runs in O(n) time

CSE 201: Data Structures and Algorithms

Exercises

- Would you use the adjacency list structure or the adjacency matrix structure for the following cases? Justify.
 - The graph has 10,000 vertices and 20,000 edges and it is important to use as little space as possible
 - The graph has 10,000 vertices and 20,000,000 edges and it is important to use as little space as possible
 - You need to answer the query areAdjacent(v,w) as fast as possible, no matter how much space you use

Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G
 - is a subgraph that contains all the vertices of G

CSE 201: Data Structures and Algorithms

Connectivity

- A graph is connected if there is a path between every pair of vertices
- Connected component of G
 - Maximally connected subgraph of G

CSE 201: Data Structures and Algorithms

Trees and Forests

- A tree is an undirected graph such that
 - T is connected
 - T has no cycles
 - Need not be rooted
- Forest is an undirected graph without cycles
 - Connected component of a forest are trees

Amı

Amrita School of Engineering Amrita Vishwa Vidyapeetham

CSE 201: Data Structures and Algorithms

Graph Traversal

- Depth first search
 - Recursive O(m+n) algorithm
 - Start with some node v
 - Of all neighbors of v, goto next w which is unexplored do DFS(w)
 - If w explored, then mark edge as back edge
- Similar to a Maze traversal
 - Mark each intersection, corner and dead end (vertex) visited
 - Mark each corridor (edge) traversed
 - Keep track of the path back to the entrance (start vertex) by means of a rope (recursion)

DFS Example

CSE 201: Data Structures and Algorithms

DFS Example Contd

CSE 201: Data Structures and Algorithms

DFS

Algorithm DFS(G,v)

for all edges e in G do

if e is unexplored then

 $w \leftarrow G.opposite(v,e)$

if w is unexplored then

label e as a discovery edge

DFS(G,w)

else

Label e as back edge

DFS Properties

- DFS(G, v) visits all the vertices and edges in the connected component of v
- The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v
 - Spanning tree is a tree which contains
 - All the nodes in the connected component
 - Subset of edges connecting all the nodes in the component such that no cycles are formed

DFS Applications

- Path finding
 - Can be used to find path between two vertices
- Cycle Finding
 - Usually a cycle is a sequence of forward edges with one backward edge
 - Backward edge indicates an already visited node

CSE 201: Data Structures and Algorithms

Breadth First Traversal

- Discovery in levels, marks new nodes in levels
- O(m+n)

CSE 201: Data Structures and Algorithms

Breadth First Traversal

- Discovery in levels, marks new nodes in levels
 - Cross edges connect to already discovered nodes
- O(m+n)

CSE 201: Data Structures and Algorithms

BFS

Algorithm BFS(v) initialize container L₀ to contain vertex v and i to 0 while L_i is not empty do for each vertex v in L_i do for each edge e incident on v if e is unexplored let w be the other endpoint of e If w is unexplored label e as a discovery edge and insert w into L_{i+1} else label e as cross edge i ← i+1

CSE 201: Data Structures and Algorithms

Applications of BFS

- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS vs DFS

CSE 201: Data Structures and Algorithms

Exercises

Do the BFS and DFS traversal over the following

graph

 Illustrate all possible structures of traversal trees generated on a wheel graph Wn

CSE 201: Data Structures and Algorithms

CSE 201: Data Structures and Algorithms

Exercise

CSE 201: Data Structures and Algorithms

Exercise

- How are the DFS and BFS modified for a directed graph?
- Write an algorithm to find the longest path in a DAG, where the length of the path is measured by the number of edges that it contains.

Digraphs

- A directed graph or digraph is a pair G = (V,E) of
 - a set V, whose elements are called vertices or nodes
 - a set A of ordered pairs of vertices, called arcs, directed edges, or arrows
- A directed acyclic graph (DAG) is a directed graph with no directed cycles

Digraph Applications

- Used to model several kinds of structures in maths or science
- Scheduling
 - Edge (a, b) indicates task a must be completed before b
- Topological Ordering
- Data Processing Networks
 - data enters a processing element through its incoming edges and leaves the element through its outgoing edges
 - Bayesian Networks
 - Compilers
 - Circuit Design

Topological Ordering

- A DAG is a digraph that has no directed cycles and a topological ordering of a digraph is a numbering v₁, ..., v_n of the vertices such that
 - for every edge (v_i, v_j), we have i < j
- Example
 - In task scheduling, a topological ordering is a task sequence that satisfies the precedence constraints
- Theorem
 - A digraph admits a topological ordering if and only if it is a DAG

- For the above graph these are some valid topological ordering
 - 5, 7, 3, 11, 8, 2, 9, 10
 - 3, 5, 7, 8, 11, 10, 9, 2

Topological Sorting Algorithm

- Let S be an empty stack
- For each vertex u of G, set incounter(u) as the indegree(u)
 - If incounter(u) =0, push it in the stack
- Set i as 1
- If S is empty it has a directed cycle
- Pop the ith vertex u_i from the stack and increment i
 - For each neighbor v of u_i, decrement incounter(v) by 1
 - If incounter(v) =0, push it in stack
 - Do this this while stack has elements in it

Push C

CSE 201: Data Structures and Algorithms

Pop H

Pop G

CSE 201: Data Structures and Algorithms

Analysis

- Runs in O(n+m) time n vertices and m edges
 - Initial computation of indegree O(n+m)
- Uses O(n) auxiliary space (stack)
- If some vertices are not numbered then there is a cycle
 - Any vertex on a directed cycle will not be visited
 - A vertex visited only when incounter is 0
 - Implies all its previous predecessors were previously visited

Exercise

- A student entering the computer science department wants to plan his course schedule to take the following courses: The course prerequisites are:
 - CS105 none
 - CS106 CS105
 - CS122 none
 - CS201 CS105
 - CS202 CS106, CS201
 - CS326 CS122, CS202
 - CS327 CS106
 - CS141 CS122, CS106
 - CS169 CS202
- Find a sequence of courses that allows Bob to satisfy all the prerequisites

CSE 201: Data Structures and Algorithms

Exercise

 The root of a DAG is a vertex R such that every vertex of the DAG can be reached by a directed path from R. Write an algorithm that takes a directed graph as input and determines the root (if there is one) for the graph. The running time of your algorithm should be (|V| + |E|).