

PROTOKÓŁ POMIAROWY DO LABORATORIUM PODSTAW ELEKTRONIKI

Rok akademicki 2020/2021	TEMAT: Badanie panelu fotowoltaicznego		
Kierunek studiów: Semestr: Grupa:		Wykonawcy:	
Data wykonania:		Podpis:	

1. Spis aparatury pomiarowej

Tabela 1.1 Wykaz aparatury pomiarowej stosowanej podczas wykonywania ćwiczenia

Urządzenie	Тур	Numer	Klasa
Panel fotowoltaiczny			
Multimetr cyfrowy			
Multimetr cyfrowy			
Dekada oporowa			

2. Zadania i wyniki pomiarowe

Rys. 2.1 Układ pomiarowy z panelem fotowoltaicznym

UWAGA!

Nie włączać zasilania! Włączenie zasilania może nastąpić TYLKO w obecności prowadzącego, po uprzednim sprawdzeniu przez niego obwodu pomiarowego. Niestosowanie się do zasad bezpieczeństwa będzie skutkować usunięciem z zajęć.

Niniejsze ćwiczenie polega na wyznaczeniu charakterystyk mocy panelu fotowoltaicznego przy różnym natężeniu oświetlenia. W tym celu należy:

- Zmontować układ zgodnie z rys. 2.1, gdzie U_zreprezentuje napięcie panelu fotowoltaicznego (panel fotowoltaiczny powinien być odłączony)
- Zawołać prowadzącego w celu sprawdzenia obwodu
- Po sprawdzeniu i akceptacji obwodu pomiarowego przez prowadzącego, można podłączyć panel, włączyć lampę oświetlającą panel i przystąpić do pomiarów. UWAGA – należy zmierzyć i zapisać odległość lampy od panelu
- Na rezystorze Rnależy ustawiać rezystancje w zakresie od 5 do 10 000 Ω (przynajmniej 20 punktów), a następniemierzyć prąd i napięcie przy pomocy multimetrów cyfrowych.
- Zmienić odległość lampki od panelu fotowoltaicznego, zapisać odległość, a następnie powtórzyć czynności zawarte w poprzednim punkcie
- Pomiary należy wykonać dla trzech przypadków: z włączoną lampą (dwie różne odległości lampy od panelu) i wyłączoną lampą
- Po zakończeniu pomiaru należy wyłączyć lampę, odłączyć panel i rozmontować układ pomiarowy

Tabela 2.1 Wyniki pomiarów dla wyłączonej lampy

R	U	1	P=U·I
[Ω]	[V]	[mA]	[W]
5			
7			
10			
20			
30			
50			
70			
100			
200			
300			
500			
700			

R	U	I	P=U·I
[Ω]	[V]	[mA]	[W]
1000			
1250			
1500			
1750			
2000			
2250			
2500			
2750			
3000			
5000			
7000			
10000			

Tabela 2.2 Wyniki pomiarów przy włączonej lampie (odległość od panelucm)

	<u>, </u>	1 1 1	, - (-
R	U	1	P=U·I
[Ω]	[V]	[mA]	[W]
5			
7			
10			
20			
30			
50			
70			
100			
200			
300			
500			
700			

R	U	Ī	P=U·I
[Ω]	[V]	[mA]	[W]
1000			
1250			
1500			
1750			
2000			
2250			
2500			
2750			
3000			
5000			
7000			
10000			

Tabela 2.3 Wyniki pomiarów przy włączonej lampie (odległość od panelucm)

R	U	1	P=U·I
[Ω]	[V]	[mA]	[W]
5			
7			
10			
20			
30			
50			
70			
100			
200			
300			
500			
700			

R	U	1	P=U·I
[Ω]	[V]	[mA]	[W]
1000			
1250			
1500			
1750			
2000			
2250			
2500			
2750			
3000			
5000			
7000		-	
10000			

R – rezystancja dekady

U – napięcie odczytane woltomierza

I – prąd odczytany z miliamperomierza

3. Zagadnienia do opracowania

W sprawozdaniu należy:

- Zamieścić wszystkie niezbędne schematy oraz (jeżeli jest taka potrzeba) teoretyczne charakterystyki (osie mają być podpisane)
- Obliczyć moc panelu dla każdego punktu pomiarowego ze wzoru P=U·I
- Zamieścić wszystkie niezbędne wzory oraz podać przynajmniej jeden przykład wykonanych obliczeń
- Wykonać wykres mocy w funkcji rezystancji obciążenia w skali:
 - Liniowo-liniowej
 - o Liniowo-logarytmicznej
 - o Logarytmiczno-logarytmicznej
- Odpowiedzieć na pytania:
 - Od czego zależy moc pobierana z panelu fotowoltaicznego
 - Jak można sterować mocą pobieraną z panelu przy stałej temperaturze i natężeniu oświetlenia
 - Kiedy stosować na wykresie skalę liniową, a kiedy logarytmiczną
 - Czy dobrane wartości rezystancji pozwalają uzyskać poprawną charakterystykę? Jak taki dobór rezystancji wpływa na rozmieszczenie punktów na charakterystyce w skali logarytmicznej?