Fonctions continues

1 01

Fonctions dérivables

Soit une fonction $f: I \longrightarrow \mathbb{R}$ (*I* intervalle) continue en $a \in I$.

- Rappel : la fonction f est continue en a si et seulement si : $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x a| < \eta \Longrightarrow |f(x) f(a)| < \varepsilon$; dit autrement : $\lim_{x \to a} f(x) = f(a)$.
- Nous avons donc : pour tout $x \in I$, $f(x) = f(a) + \varepsilon(x)$ pour une certaine fonction $\varepsilon : I \longrightarrow \mathbb{R}$ telle que $\varepsilon(x) \longrightarrow 0$ quand $x \to a$. La fonction ε est uniquement définie : $\varepsilon = f f(a)$.
- Ces formules s'interprètent aisément : la fonction constante y = f(a) est une "bonne" approximation de f, quand $x \to a$.

Soit une fonction $f: I \longrightarrow \mathbb{R}$ (*I* intervalle) dérivable en $a \in I$.

- Rappel : la fonction f est dérivable en x=a si et seulement s'il existe $\ell \in \mathbb{R}$, tel que $\lim_{x \to a} \frac{f(x) f(a)}{x-a} = \ell$. Ce nombre ℓ , "la dérivée de f en a", est noté f'(a).
- Donc, pour $x \in I$: $f(x) = f(a) + f'(a)(x a) + \alpha(x)(x a)$, où $\alpha : I \to \mathbb{R}$ est une certaine fonction, $\alpha(x) \to 0$ si $x \to a$; la fonction α est unique et pourrait s'expliciter. Nous avons aussi $f(x) = f(a) + f'(a)(x a) + \beta(x a)(x a)$, avec β définie au voisinage de 0 et telle que $\beta(x) \to 0$ quand $x \to 0$.
- La fonction affine y = f(a) + f'(a)(x a) a pour graphe la droite tangente au graphe de f en x = a; pour x voisin de a, elle offre une excellente approximation de f, bien meilleure en tout cas que la fonction constante y = f(a).

Développements Limités

Développements Limités

◆御▶ ◆重▶ ◆重▶ 重 りQ@

Formule de Taylor-Young

Pour une fonction $f:I\to\mathbb{R}$ et pour $a\in I$, les approximations en x=a précédentes sont des exemples de développements limités :

- par une fonction constante : on dit "à l'ordre 0" (cela existe si f est continue en x = a);
- par une fonction affine : on dit "à l'ordre 1" (cela existe si f est dérivable en x = a).

Théorème

Si f est n-fois-dérivable en a, il existe un unique polynôme $T_{a,n}$: $d^{\circ}(T_{a,n}) \leq n$ et $f(x) = T_{a,n}(x-a) + \varepsilon(x-a).(x-a)^n$ $(x \in I)$, où ε est telle que $\lim_{x \to 0} \varepsilon(x) = 0$. On $a : T_{a,n} = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} X^k$.

 $f^{(k)}$ est la dérivée k-ième de $f:f^{(0)}(a)=f(a),\ f^{(1)}(a)=f'(a),...$

Premiers Exemples

La formule $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \varepsilon (x-a) \cdot (x-a)^n$ de

Taylor-Young est le **développement limité** de f, avec 2 parties :

- la partie polynomiale $T_{a,n}(X-a) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (X-a)^k$, qui est une approximation de f au voisinage de a (uniquement).
- "le reste" $\varepsilon(x-a).(x-a)^n$, ou "l'erreur", qui donne la qualité de l'approximation de f par $T_{a,n}$: plus n est grand, meilleure est l'approximation; il convient de bien préciser $\lim_{x\to 0} \varepsilon(x) = 0$.
- Exemple 1. L'exponentielle : $T_{0,n}(X) = \sum_{k=0}^{n} \frac{X^k}{k!}$.
- Exemple 2. Un polynôme est son propre développement limité en $0: 5-3x^2+x^3-x^4+2x^5=(5-3x^2+x^3)+x^3\varepsilon_1(x)$, avec $\lim_{x\to 0}\varepsilon_1(x)=0$; il suffit de poser $\varepsilon_1(x)=-x+2x^2$.

Quelques Applications

- Lois fondamentales de la Physique. Les plus utiles sont des approximations par développement limité de lois complexes, parfois inexploitables : loi d'Ohm U = RI (électrocinétique), loi de Mariotte PV = nRT (gaz parfaits),...
- Newton vs. Einstein. Quantité de mouvement en mécanique classique d'une masse ponctuelle : $p_N = m.v$ (masse m(t) et vitesse v(t)); la formulation relativiste $p_E = \frac{m.v}{\sqrt{1-v^2c^{-2}}}$ admet le développement limité $p_E = p_N + mv\varepsilon(v)$, $\lim_{v\to 0} \varepsilon(v) = 0$.
- Calculs de limites. Exemple : $\lim_{x\to 0} \frac{e^x-1-x}{\sqrt{x}}$? $\frac{e^x-1-x}{\sqrt{x}} = \frac{1+x+x\varepsilon_1(x)-1-x}{\sqrt{x}} = \frac{\sqrt{x}\varepsilon_1(x)}{\sqrt{x}} = \sqrt{x}\varepsilon_1(x) \to 0.$ Nous y avons utilisé le développement limité de l'exponentielle (en 0, à l'ordre 1) : $e^x = 1+x+x\varepsilon_1(x)$, avec $\lim_{x\to 0} \varepsilon_1(x) = 0$.

Troncature

Soit une fonction $f:I\longrightarrow \mathbb{R}$ n-fois-dérivable en $a\in I$ (pour un certain $n\in \mathbb{N}$). Pour tout $m\leqslant n$, nous avons une formule : $f(x)=T_{a,m}(x-a)+\varepsilon_m(x-a).(x-a)^m\ (x\in I)$, où $\lim_{x\to 0}\varepsilon_m(x)=0$ et $T_{a,m}$ est un polynôme $(d^\circ T_{a,m}\leqslant m)$; il existe des polynômes S_m et R_m , uniques tels que $T_{a,n}=S_m+X^{m+1}R_m$ et $d^\circ S_m\leqslant m$ (division euclidienne). Formules de troncature :

Théorème

$$S_m = T_{a,m}$$
 et, pour tout $x \in I$, $\varepsilon_m(x) = xR_m(x) + x^{n-m}\varepsilon_n(x)$.

Dans l'exemple précédent (développements limités en a=0 de l'exponentielle), nous obtenons $T_{a,2}=1+X+\frac{X^2}{2}$ en supprimant le monôme $\frac{X^3}{6}$ de $T_{a,3}=1+X+\frac{X^2}{2}+\frac{X^3}{6}$.

101101112

Développements Limités

Développements Limités

◆□ > ◆□ > ◆ = > ◆ = > ●
• ●

Translation

Soit une fonction $f:I\longrightarrow \mathbb{R}$ n-fois-dérivable en $a\in I$ (pour un certain $n\in \mathbb{N}$). Introduisons la fonction g:g(x)=f(x+a) (translation horizontale); elle est n-fois-dérivable en 0 et y mérite donc un développement limité à l'ordre n:

$$g(x) = \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} x^{k} + \varepsilon(x) . x^{n}, \text{ où } \lim_{x \to 0} \varepsilon(x) = 0.$$

Théorème

La formule de Taylor-Young de f en a s'écrit : pour tout $x \in I$, $f(x) = \sum_{k=0}^{n} \frac{g^{(k)}(0)}{k!} (x-a)^k + \varepsilon (x-a) \cdot (x-a)^n$.

Pour le développement limité d'une fonction f en a (quelconque), nous pouvons toujours nous ramener au cas a=0, en utilisant la fonction g(x)=f(x+a).

Sinus et Cosinus

Dérivées des fonctions sinus et cosinus : $\sin^{(k)}(x) = \sin(x - k\frac{\pi}{2})$ et $\cos^{(k)}(x) = \cos(x - k\frac{\pi}{2})$ (récurrence sur $k \in \mathbb{N}$). Pour tout $n \in \mathbb{N}$:

Théorème

$$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \varepsilon_1(x) x^{2n+1}, \text{ avec } \lim_{x \to 0} \varepsilon_1(x) = 0.$$

$$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \varepsilon_2(x) x^{2n}, \text{ avec } \lim_{x \to 0} \varepsilon_2(x) = 0.$$

- Bien noter les epsilons différents $\varepsilon_1 \neq \varepsilon_2$;
- l'ordre de chacun : 2n + 1 pour sin, 2n pour cos;
- la parité : polynôme impair pour sin, polynôme pair pour cos ;

Fonctions Hyperboliques

Pour tout entier pair k, nous avons : $sh^{(k)} = sh$ et $ch^{(k)} = ch$; pour tout k impair, $sh^{(k)} = ch$ et $ch^{(k)} = sh$. Pour tout $n \in \mathbb{N}$:

Théorème

$$sh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + \varepsilon_3(x)x^{2n+1}$$
, avec $\lim_{x\to 0} \varepsilon_3(x) = 0$.

$$ch(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + \varepsilon_4(x)x^{2n}, \text{ avec } \lim_{x \to 0} \varepsilon_4(x) = 0.$$

- Bien noter les propriétés de parité...
- Il ne s'agit pas de développements limités à l'ordre n.
- Nous avons : $sh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + \varepsilon_5(x)x^{2n+2}$ (ordre 2n+2), pour $\varepsilon_3(x) = x\varepsilon_5(x)$.

Fonction Inverse

De classe C^{∞} , la fonction inverse $f: \mathbb{R}^* \longrightarrow \mathbb{R}$, $x \longmapsto 1/x$, admet partout (excepté en 0) des développements limités de tout ordre n.

On peut utiliser la formule : $f^{(k)}(x) = \frac{(-1)^k k!}{x^{k+1}} (k \le n)$; on peut aussi utiliser la somme des termes d'une série géométrique :

Théorème

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^k + \varepsilon_1(x)x^n, \text{ où } \varepsilon_1(x) = \frac{x}{1+x} \text{ (suite de raison } x);$$

$$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + \varepsilon_2(x)x^n, \text{ où } \varepsilon_2(x) = \frac{(-1)^n x}{1+x} \text{ (raison } -x).$$

Autre exemple :
$$\frac{1}{1+x^2} = \sum_{k=0}^{n} (-1)^k x^{2k} + \varepsilon(x) x^{2n}, \lim_{x \to 0} \varepsilon(x) = 0.$$

Développements Limités

Développements Limités I

Binôme Généralisé

• La formule du binôme $(1+x)^N = \sum_{k=0}^N \binom{N}{k} x^k$ (pour tout entier N), se laisse tronquer à tout ordre $n \leq N$: $(1+x)^N = \sum_{k=0}^m \binom{N}{k} x^k + x^m \varepsilon_1(x), \text{ où } \varepsilon_1(x) = \sum_{k=0}^N \binom{N}{k} x^{k-m}.$

• Posons $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)(\alpha-2)...(\alpha-k+1)}{k!} \ (\alpha \in \mathbb{R}, \ k \in \mathbb{N}).$

Théorème

$$(\forall m \in \mathbb{N})$$
 $(1+x)^{\alpha} = \sum_{k=0}^{m} {\alpha \choose k} x^k + x^m \varepsilon_2(x), \ our \lim_{x \to 0} \varepsilon_2(x) = 0.$

• Cas particuliers : $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{3}{8}x^2 + x^2\varepsilon_3(x)$ ($\alpha = 1/2$); $\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon_4(x)$ ($\alpha = -1/2$).

Notation "o"

Pour tout $a \in \mathbb{R}$: un **voisinage** de a est une partie de \mathbb{R} contenant un intervalle $]a - \alpha, a + \alpha[$, pour un certain $\alpha > 0$.

- Soient des fonctions f et g définies au voisinage de a: f est **négligeable** par rapport à g si $\lim_{\substack{x \to a \\ x \neq a}} \frac{f(x)}{g(x)} = 0$, ce qui requiert un voisinage V de a, tel que g ne s'annule pas sur $V \setminus \{a\}$; on dit aussi : "g **prépondérante** par rapport à f".
- Notation de Landau, pour f négligeable par rapport à g : f(x) = o(g(x)), quand $x \to a$.
- Exemples. Si $\lim_{x\to a} f(x) = 0$, alors f(x) = o(1) quand $x\to a$. Pour tous entiers naturels n>m: $x^n=o(x^m)$ quand $x\to 0$.

La notation de Landau se généralise à d'autres usages. Exemple : pour tout réel r, $x^r = o(e^x)$ quand $x \to +\infty$; soit : $\lim_{x \to +\infty} \frac{x^r}{e^x} = 0$.

母▶《意▶《意》 意 釣魚◎

Taylor-Young avec "o"

Soit une fonction f, définie sur un voisinage du réel a.

Théorème

Si, pour un entier n, f est n fois dérivable en a, nous avons :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n), \text{ quand } x \to a.$$

La notation "o" est plus intuitive et moins lourde : elle permet de masquer les fonctions "epsilon" sous-jacentes. Exemple $(x \to 0)$: $\exp(x) = 1 + x + o(x)$ et $\sin(x) = x - \frac{x^3}{6} + o(x^4)$. Quelques règles de calcul élémentaires :

- $h = o(g) \implies f.h = o(f.g)$, soit : f.o(g) = o(fg);
- $f = o(h), g = o(h) \Rightarrow f + g = o(h) : o(h) + o(h) = o(h);$
- $h = o(f), k = o(g) \Rightarrow hk = o(f.g) : o(f).o(g) = o(f.g);$
- f = o(g) et $g = o(h) \Longrightarrow f = o(h)$: transitivité.

Soit des fonctions f et g, définies sur une partie I et soit $a \in I$. La notation "f(x) = O(g(x)) quand x tend vers a" signifie qu'il existe un réel $M \geqslant 0$ et un voisinage V de a, tels que : $\forall x \in V$, $|f(x)| \leqslant M|g(x)|$. Exemple : f(x) = O(1) quand $x \to a$, signifie que f est bornée sur un voisinage de a.

Comparaison "o" vs "O" : $f = o(g) \Rightarrow f = O(g)$. Comme la notation "o", celle "O" bénéficie de quelques règles de calcul, telle : $h = O(g) \implies f.h = O(f.g)$, soit : f.O(g) = O(f.g); aussi : h = o(f) et $k = O(g) \Rightarrow hk = o(f.g)$, soit : o(f).O(g) = o(f.g);

Théorème

Si, pour un entier n, f est de classe C^{n+1} en a, nous avons :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O((x-a)^{n+1}), \text{ quand } x \to a.$$

Exemples : $\exp(x) = 1 + x + O(x^2)$ et $sh(x) = x + O(x^3)$ $(x \to 0)$.

. 1: 9/ 1

Développements Limités

Développements Limités