Particle spectrograph

Wave operator and propagator

_							
${\mathfrak r}_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2 k^2}{(1+2 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\tau_1^{\#1}}_{+}^{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\alpha\beta$	$\frac{2}{2t_1}$	$\frac{+t_1}{t_1^2}$	$\frac{kt_1}{t_1^2}$				
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#2}{}_{\dagger}$	1	$-\frac{\sqrt{2}}{t_1 + k^2 t_1} \left \frac{-2 k^2 r_1}{(1 + k^2)^2} \right $	$ + \alpha \beta \frac{i \sqrt{2} k}{t_1 + k^2 t_1} \frac{i (2k^3 r_1)}{(1 + k^2)^2} $	0 0	0 0	0 0	0 0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^+}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2+}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

α				-			
$f_{1}^{\#2}$	0	0	0	$\bar{\it i}\it kt_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
'	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha \beta}$	$\frac{1}{2} + \alpha$	-̄ ₂ +α	$-1+\alpha$	-5 +α
	ω_1^{*1} .	$\omega_1^{\#2}$.	$f_{1}^{\#1}$	$\omega_{1^{\bar{-}}}^{\#1}$	$\omega_{1}^{\#2}$ -	$f_{1}^{\# 1}$	$f_1^{#2}$

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$-t_1$

$\omega_{2^{-}}^{\#1} \alpha \beta \chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$\omega_2^{\#1}$ $\alpha_2^{\#1}$ $\alpha_2^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}{}_+\alpha\beta$	<u>t1</u> 2	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} +^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2^{+}}^{\#1\alpha\beta} - 2ik\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5			
Total constraints:	16			

Massive and massless spectra

article			
ıe:	$-\frac{1}{r_1} > 0$		
ns:	5		
iss:	$-\frac{t_1}{2r_1} > 0$		
	2		
	Odd		

(No massless particles)

Unitarity conditions