(P8) Interpolasi

- Pengertian dan tujuan Interpolasi
- Interpolasi vs Aproksimasi
- Kriteria pemilihan fungsi interpolant
- Metode interpolasi:
 - Interpolasi Lagrange
- Analisis Kesalahan

Pengertian Interpolasi

adalah suatu proses untuk menemukan formula (biasanya berupa suatu polinomial) yang grafiknya melalui setiap titik (t_i, y_i) $untuk \ i = 1, 2, ..., m$

 $dengan t_1 < t_2 < \ldots < t_m,$

akan ditentukan fungsi $f: \mathbb{R} \to \mathbb{R}$

sedemikian shg
$$f(t_i) = y_i, \quad i = 1, \dots, m$$

Tujuan Interpolasi

- Memplot kurva mulus pada data diskret
- Menurunkan atau mengintegralkan data dalam tabel
- Membaca informasi antar baris dalam tabel
- Mengevaluasi fungsi secara cepat dan mudah
- Merepresentasikan fungsi yang kompleks dalam bentuk yang lebih sederhana

Interpolasi vs Aproksimasi

- Fungsi interpolasi akan memfit titik-titik data secara tepat. Oleh karena itu, data tidak boleh mengandung kesalahan. Hanya digunakan untuk suatu *range* data
- Bila data mengandung kesalahan, maka metode aproksimasi lebih sesuai. Biasanya digunakan untuk sembarang *range* data. Sebagai contoh : *Least Square Method*

Kriteria untuk memilih Interpolant

- Apakah bentuk fungsi cukup mudah untuk
 - ditentukan parameternya?
 - dievaluasi nilainya?
 - diturunkan atau diintegralkan?
- Apakah sifat-sifat fungsi sudah sesuai dengan sifat-sifat data yang difitkan (kemonotonan, kemulusan, kecekungan, dll)?

Jenis fungsi Interpolasi

- Polynomials
- Piecewise polynomials
- Trigonometric functions
- Exponential functions
- Rational functions

Interpolasi polinomial

- Suatu polinomial P(t) derajat n-1 yang unik dapat dikonstruksi yang melalui n titik t yang berbeda.
- Banyak cara untuk mengonstruksi fungsi polinomial, namun secara teori akan menghasilkan suatu fungsi polinomial yang sama

Interpolasi Lagrange

Yang paling sederhana, menghubungkan 2 buah titik (x_0, y_0) dan (x_1, y_1) dengan garis lurus

$$P_1(x) = y_0 L_0(x) + y_1 L_1(x)$$

$$P_{1}(x) = \frac{x - x_{1}}{x_{0} - x_{1}} y_{0} + \frac{x - x_{0}}{x_{1} - x_{0}} y_{1}$$

$$= \frac{(x_{1} - x) y_{0} + (x - x_{0}) y_{1}}{x_{1} - x_{0}}$$

$$= y_{0} + \frac{x - x_{0}}{x_{1} - x_{0}} [y_{1} - y_{0}]$$

$$= y_{0} + \left(\frac{y_{1} - y_{0}}{x_{1} - x_{0}}\right) (x - x_{0})$$

$$P_1(x) = a_0 + a_1 x$$

$$x$$
11.11.21.3 $\tan x$ 1.55741.96482.57223.6021

Menggunakan interpolasi linear dengan titik $x_1 = 1.1 \text{ dan } x_2 = 1.2 \text{ dengan nilai } y$ yang bersesuaian, maka akan diperoleh:

$$\tan x \approx y_0 + \frac{x - x_0}{x_1 - x_0} [y_1 - y_0]$$

$$\tan x \approx y_0 + \frac{x - x_0}{x_1 - x_0} [y_1 - y_0]$$
 $\tan (1.15) \approx 1.9648 + \frac{1.15 - 1.1}{1.2 - 1.1} [2.5722 - 1.9648]$
 $= 2.2685$
 $\tan 1.15 = 2.2345.$

Nilai yang sebenarnya: tan 1.15 = 2.2345.

Interpolasi kuadratik memerlukan tiga titik : (x_0, y_0) , (x_1, y_1) dan (x_2, y_2) untuk mendapatkan fungsi kuadratik $P_2(x) = a_0 + a_1 x + a_2 x^2$, yang memenuhi

$$P_2(x_i) = y_i, \qquad i = 0, 1, 2$$

Cara menghitung polinomial kuadratik:

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

$$L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}, \qquad L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$$
$$L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$

Fungsi $L_0(x)$, $L_1(x)$ dan $L_2(x)$ di atas disebut fungsi landasan Lagrange untuk interpolasi kuadratik.

Interpolasi menggunakan fungsi polinomial derajat n memerlukan (n+1) buah titik (x_0, y_0) , $(x_1, y_1) \dots (x_n, y_n)$. Solusinya adalah :

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

Fungsi landasan Lagrange untuk interpolasi derajat tinggi tersebut adalah :

$$L_k(x) = \frac{(x-x_0)..(x-x_{k-1})(x-x_{k+1})..(x-x_n)}{(x_k-x_0)..(x_k-x_{k-1})(x_k-x_{k+1})..(x_k-x_n)}$$

untuk k = 1, 2, ... n

Interpolasi ini ditemukan oleh Joseph-Louis Lagrange yang hidup pada tahun 1736-1813.

Karakteristik Polinomial Lagrange

- Mudah dicari
- Mahal biaya evaluasi fungsinya
- Lebih sulit diturunkan atau diintegralkan

Contoh:

Cari polinomial Lagrange derajat dua untuk menginterpolasi titik (-2,-27), (0,-1), (1,0)

Polinomial Lagrange derajat dua untuk menginterpolasi titik (t₁,y₁), (t₂,y₂), (t₃,y₃) adalah

$$p_2(t) = y_1 \frac{(t - t_2)(t - t_3)}{(t_1 - t_2)(t_1 - t_3)} + y_2 \frac{(t - t_1)(t - t_3)}{(t_2 - t_1)(t_2 - t_3)} + y_3 \frac{(t - t_1)(t - t_2)}{(t_3 - t_1)(t_3 - t_2)}$$

$$p_2(t) = -27 \frac{t(t-1)}{(-2)(-2-1)} + (-1) \frac{(t+2)(t-1)}{(2)(-1)}$$

Kurva di bawah ini memberikan ilustrasi polinomial Lagrange derajat 3 yang melalui 4 titik (x_k, y_k) untuk k = 0, 1, 2, 3.

Contoh:

Buat polinomial Lagrange derajat n = 1, 2, 3, 4, 5 untuk menghampiri fungsi f(x) = cos(x) pada interval $[x_0, x_n] = [0, 1]$, dengan partisi yang sama.

Jawab:

Bila digunakan 2 titik, yaitu (0, f(0)) dan (1, f(1)), diperoleh polinomial derajat 1 berikut :

$$p_1[x] = -1.(-1.+x) + 0.540302(0.+x)$$

Bila digunakan 3 titik, yaitu (0, f(0)), (0.5, f(0.5)), (1, f(1)) diperoleh polinomial derajat 2 berikut:

$$p_{2}[x] = 1. - 0.0299721x - 0.429726x^{2}$$

Bila digunakan 4 titik, yaitu (0, f(0)), (0.33, f(0.33)), (0.67, f(0.67)), (1, f(1)) diperoleh polinomial rajat 3 berikut :

```
p_3[x] = 1. + 0.00842215x - 0.546921x^2 + 0.0788011x^3
```


Teorema Batas Kesalahan

- Andaikan f(x) didefinisikan pada [a, b] yang memuat partisi yang sama $x_k = x_0 + kh$
- Andaikan pula f dan turunan f sampai orde (n+1) kontinyu serta terbatas pada subinterval $[x_0, x_1]$, $[x_0, x_2]$, $[x_0, x_3]$, $[x_0, x_4]$, $dan [x_0, x_5]$, yaitu $|f^{(n+1)}(x)| \le M_{(n+1)}$ untuk $x_0 < x < x_n$ dengan n = 1, 2, 3, 4, 5.

Faktor kesalahan yang bersesuaian dengan kasus-kasus tersebut memiliki batas atas berikut

Contoh:

Selidiki kesalahan yang timbul akibat penggunaan metode hampiran Lagrange orde n = 2, 3, 4, dan 5 pada contoh di atas.

Jawab: untuk n=2

Kesalahan yang terjadi : $e_2(x) = f(x) - P_2(x)$,

Dari grafik tersebut dapat dibuat perkiraan

$$|e_2[x]| \le 0.00329294$$

$$f(x) = \cos x ; f^{(3)}(x) = \sin x$$

$$|R_2(x)| \le \frac{M_3}{9\sqrt{3}}h^3 = \frac{\sin[1]}{72\sqrt{3}} = 0.00674755$$

$$||R_2|(x)|| \le \frac{M_3}{9\sqrt{3}}h^3$$

Jadi batas atas kesalahan

$$\mid R_{2}(x) \mid \le 0.00674755$$
 untuk $x \in [0, 1]$

yang ternyata sedikit lebih besar dari kesalahan terbesar, yakni 0.00329294

Jawab: untuk n=3

Kesalahan yang terjadi : $e_3(x) = f(x) - P_3(x)$,

Dari grafik tersebut dapat dibuat perkiraan

$$|e_3[x]| \le 0.000463413$$

$$f(x) = \cos x$$
; $f^{(4)}(x) = \cos x$

$$|R_3(x)| \le \frac{M_4}{24}h^4 = \frac{1}{1944} = 0.000514403$$

$$|R_3(x)| \leq \frac{M_4}{24} h^4$$

Jadi batas atas kesalahan

$$|R_3|(x)| \le 0.000514403$$
 untuk $x \in [0, 1]$

yang ternyata sedikit lebih besar dari kesalahan terbesar, yakni 0.000463413

Jawab: untuk n=4

Kesalahan yang terjadi : $e_4(x) = f(x) - P_4(x)$,

Dari grafik tersebut dapat dibuat perkiraan

$$|e_{4}[x]| \le 0.0000157713$$

$$|R_4(x)| \le \frac{\sqrt{4750 + 290\sqrt{145}}}{3000} |R_5| h^5 = \frac{\sqrt{4750 + 290\sqrt{145}|Sin[1]}}{3072000} = 0.0000248677$$

$$|R_4(x)| \le \frac{\sqrt{4750 + 290\sqrt{145}}}{3000} N_5 h^5$$

Jadi batas atas kesalahan

$$|R_4(x)| \le 0.0000248677$$
 untuk $x \in [0, 1]$

yang ternyata sedikit lebih besar dari kesalahan terbesar, yakni 0.0000157713

Jawab: untuk n=5

Kesalahan yang terjadi : $e_5(x) = f(x) - P_5(x)$,

Dari grafik tersebut dapat dibuat perkiraan

$$|e_5[x]| \le 0.00000134999$$

$f(x) = \cos x ; f^{(6)}(x) = -\cos$

$$|R_5(x)| \le \frac{10 + 7\sqrt{7}}{1215} M_6 h^6 = \frac{10 + 7\sqrt{7}}{18984375} = 1.5023 \times 10^{-6}$$

$$|R_5(x)| \le \frac{10 + 7\sqrt{7}}{1215} N_6 h^6$$

Jadi batas atas kesalahan

$$|R_{5}(x)| \le 1.5023 \times 10^{-6}$$
 untuk $x \in [0, 1]$

yang ternyata sedikit lebih besar dari kesalahan terbesar, yakni

$$1.34999 \times 10^{-6}$$

