Ondas viajeras y estacionarias

Los ejercicios con (*) son opcionales.

Parámetros de una onda viajera

- 1. Verifique si las siguientes expresiones matemáticas cumplen la ecuación de las ondas unidimensional. Grafique las funciones dadas.
- c) $\Psi(x,t) = A \operatorname{sen} \left[k(x-vt) \right]$
- a) $\Psi(x,t) = A e^{-\lambda(x-vt)^2}$ b) $\Psi(x,t) = \beta(x+vt)$ c) $\Psi(x,t) = A \operatorname{sen} [k(x-t)] + A \operatorname{sen} [k(x-t)] +$
- 2. La ecuación de una onda transversal en una cuerda está dada por: $y(x,t) = 0.1 \,\mathrm{m\,sen} \, (x\pi \,\mathrm{m}^{-1} t4\pi \,\mathrm{s}^{-1})$. Determine para la onda que se propaga en ella:
 - a) amplitud,

b) frecuencia de vibración, y

c) velocidad de propagación.

- d) Y en $x = 2 \,\mathrm{m}$ y $t = 1 \,\mathrm{s}$, desplazamiento, velocidad v la aceleración de la cuerda.
- 3. La frecuencia angular y número de onda de una onda transversal que se propaga en \hat{x} es $\omega = 10\,\mathrm{s}^{-1}$ y $k = 100 \,\mathrm{m}^{-1}$. En $x_1 = 1 \,\mathrm{km}$ y $t_1 = 1 \,\mathrm{s}$ tiene por fase $\phi = \frac{3\pi}{2}$.
 - a) ¿Cuál es la fase en ese mismo punto para t = 0?
 - b) Considerando que $\phi(x,t) = kx \omega t + \phi_0$, ¿cuánto vale ϕ_0 ?
 - c) ¿A qué velocidad se propaga la onda?
 - d) En que tiempo el frente de onda arriba a un $x_2 = 2x_1$?
- 4. Una cuerda con densidad lineal $\mu=0.005\,{\rm kg\over m}$ se tensa aplicando una fuerza de $0.25\,{\rm N}$. El extremo izquierdo se mueve hacia arriba y hacia abajo con un movimiento armónico simple de período 0,5 s y amplitud 0,2 m mientras se mantiene la tensión constante. Encontrar:
 - a) La velocidad de la onda generada en la cuerda, la frecuencia y la longitud de onda.
 - b) La expresión matemática para el desplazamiento: y(x,t).
 - c) La energía cinética media por unidad de longitud, de una partícula del medio.
 - d) La energía potencial media por unidad de longitud, de una partícula.

Estacionarias en una cuerda como superposición de viajeras

5. Una cuerda de longitud $L=0.6\,\mathrm{m}$, fija en sus dos extremos, oscila en uno de sus modos normales. La velocidad de propagación de las 8mm ondas en dicha cuerda es $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$. En el momento que presenta su máxima amplitud pico a pico esta es de 8 mm.

- a) Escribir $\Psi(x,t)$, sabiendo que a $\Psi(x,0)=0 \ \forall x,y$ que $\dot{\Psi}(L/2,0)>0$.
- b) Hallar las ondas viajeras $\Psi_{1,2}$ tales que $\Psi(x,t)$ sea una combinación lineal de estas.
- 6. Una cuerda de longitud $L = 1 \,\mathrm{m}$, con un extremo fijo y uno libre, oscila en uno de sus modos normales. La velocidad de propagación de las ondas en dicha cuerda es $v=80\,\frac{\mathrm{m}}{\mathrm{s}}$. En t=0 presenta su máxima $\pmb{8mm}$ amplitud pico a pico de 8 mm, siendo $\Psi(L,0) > 0$.

- a) Resolver, para esta situación, todo lo pedido en el problema anterior.
- b) Si ahora la cuerda está oscilando en un modo normal arbitrario n, con las mismas condiciones iniciales dadas arriba, repetir (a) (expresar en función de n).

Propagación en medios no dispersivos

7. Una perturbación se propaga en una cuerda infinita con velocidad v. Las figuras la muestran en t=0 y t=4 s. Determine v y $\psi(x,t)$.

Suponga ahora que conoce que $v=100\,\frac{\text{m}}{\text{s}}$ y vé que la cuerda fue soltada desde el reposo con la deformación vista en t=0.

- a) Halle las componentes de la perturbación que se propagan a izquierda y derecha que conforman $\psi(x,t) = \psi_{\text{derecha}}(x-vt) + \psi_{\text{izquierda}}(x+vt)$.
- b) Comparé esta situación con la anterior.
- 8. (*) Ambos extremos de una cuerda de densidad μ están fijos sometiéndola a una tensión T. A t=0 se la

suelta con
$$h \ll L$$
 desde $\psi(x,0) = \begin{cases} 0 & \text{si } 0 < x < a \\ h \frac{x-a}{L/2-a} & \text{si } a < x < L/2 \\ h \frac{L-a-x}{L/2-a} & \text{si } L/2 < x < L-a \\ 0 & \text{si } L-a < x < L. \end{cases}$

- a) Hallar $\psi(x,t)$ y demostrar que siempre es posible escribir esta solución como una superposición de una onda que se propaga hacia la derecha y una que se propaga hacia la izquierda.
- b) Hacer un esquema cualitativo del movimiento de la cuerda para los instantes $t_n = \frac{n}{8} \frac{L}{v}$, donde v es la velocidad de propagación de las ondas en la cuerda y n es un número natural.
- 9. (*) En un gas, a t=0, se produce la perturbación indicada en la figura. Conociendo la $v_{\rm sonido},\, \rho_1,\, \rho_0$ tales que $(\rho_1-\rho_0)/\rho_0\ll 1$ y que en ese momento el gas estaba en reposo, calcule $\rho(x,t)$.

10. Dos cuerdas semi-infinitas de distinta densidad lineal de masa, $\rho_{\rm izq}$ y $\rho_{\rm der}$, están unidas en un punto y sometidas a una tensión T_0 . Sobre la primera se propaga hacia la derecha la perturbación que muestra la figura. Se conocen $\rho_{\rm izq}$, $\rho_{\rm der}$, T_0 , Δx y h, y se considera que los medios son no dispersivos.

- a) Hallar el desplazamiento $\psi(x,t)$.
- b) Explique cualitativamente como cambian estos resultados si el medio es dispersivo.