JEE Main 2022 June 27 Shift 1

EE24BTECH11002 - Agamjot Singh

1) The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z} = iz^2$ is
a) $\frac{3\sqrt{3}}{4}$ b) $\frac{3\sqrt{3}}{2}$ c) $\frac{3}{2}$ d) $\frac{3}{4}$
b) $\frac{3\sqrt{3}}{2}$
d) 3/4
2) Let the system of linear equations $x + 2y + z = 2$, $\alpha x + 3y - z = \alpha$ and $-\alpha x + y + 2z = -\alpha$ be inconsistent. Then α is equal
to
a) $\frac{5}{2}$
$c) \frac{7}{2}$
a) $\frac{5}{2}$ b) $\frac{-5}{7}$ c) $\frac{7}{2}$ d) $\frac{-7}{2}$
3) If $x = \sum_{n=0}^{\infty} a^n$, $y = \sum_{n=0}^{\infty} b^n$, $z = \sum_{n=0}^{\infty} c^n$ where a, b, c are in A.P. and $ a < 1$, $ b < 1$, $ c < 1$, $abc \ne 0$, then
a) x, y, z are in A.P.
b) x, y, z are in G.P. c) $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ are in A.P.
c) $\frac{1}{x}$, $\frac{1}{y}$, $\frac{1}{z}$ are in A.P. d) $\frac{1}{x}$ + $\frac{1}{y}$ + $\frac{1}{z}$ = 1 - $(a + b + c)$
/->
4) Let $\frac{dy}{dx} = \frac{ax - by + a}{bx + cy + a}$, where a, b, c are constants, represent a circle passing through the point $\binom{2}{5}$. Then the shortest distance
of the point $\binom{11}{6}$ from this circle is
a) 10
b) 8 c) 7
d) 5
5) Let a be an integer such that $\lim_{x\to 7} \frac{18-[1-x]}{[x-3a]}$ exists, where [t] is greatest integer $\leq t$. Then a is equal to
a) -6
b) -2 c) 2
d) 6
6) The number of distinct real roots of $x^4 - 4x + 1 = 0$ is
a) 4
b) 2 c) 1
d) 0
7) The lengths of the sides of a triangle are $10 + x^2$, $10 + x^2$ and $20 - 2x^2$. If for $x = k$, the area of the triangle is maximum, then $3k^2$ is equal to
a) 5
b) 8
c) 10 d) 12
8) If $\cos^{-1}\left(\frac{y}{2}\right) = \log_e\left(\frac{x}{5}\right)^5$, $ y < 2$, then
a) $x^2y'' + xy' - 25y = 0$
b) $x^2y'' - xy' - 25y = 0$
c) $x^2y'' - xy' + 25y = 0$
d) $x^2y'' + xy' + 25y = 0$
9) $\int \frac{(x^2+1)e^x}{(x+1)^2} dx = f(x)e^x + C$, where C is a constant, then $\frac{d^3f}{dx^3}$ at $x=1$ is equal to
a) $\frac{-3}{4}$ b) $\frac{3}{4}$
4

- c) $\frac{-3}{2}$ d) $\frac{3}{2}$
- 10) The value of the integral $\int_{-2}^{2} \frac{|x^3+x|}{(e^{x|x|}+1)} dx$ is equal to
 - a) $5e^2$
 - b) $3e^{-2}$
 - c) 4
 - d) 6
- 11) If $\frac{dy}{dx} + \frac{2^{x-y}(2^y-1)}{2^x-1} = 0$, x, y > 0, y(1) = 1, then y(2) is equal to
 - a) $2 + \log_2 3$
 - b) $2 + \log_2 2$
 - c) $2 \log_2 3$
 - d) $2 \log_2 3$
- 12) In an isosceles triangle *ABC*, the vertex *A* is $\binom{6}{1}$ and the equation of the base *BC* is 2x + y = 4. Let the point *B* lie on the line x + 3y = 7. If $\binom{\alpha}{\beta}$ is the centroid of $\triangle ABC$, then $15(\alpha + \beta)$ is equal to
 - a) 39
 - b) 41
 - c) 51
 - d) 63
- 13) Let the eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b, be $\frac{1}{4}$. If this ellipse passes through the point $\begin{pmatrix} -4\left(\sqrt{\frac{2}{5}}\right)\\ 3 \end{pmatrix}$, then $a^2 + b^2$ is equal to
 - is equal to
 - a) 29b) 31
 - c) 32
 - d) 34
- 14) If two straight lines whose direction cosines are given by the relations 1 + m n = 0, $3l^2 + m^2 + cnl = 0$ are parallel, then the positive value of c is
 - a) 6
 - b) 4
 - c) 3
 - d) 2
- 15) Let $\mathbf{a} = \mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{c} = 2\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$. Then the number of vectors \mathbf{b} such that $\mathbf{b} \times \mathbf{c} = \mathbf{a}$ and $|\mathbf{b}| \in \{1, 2, \dots, 10\}$ is
 - a) 0
 - b) 1
 - c) 2
 - d) 3