PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-287822

(43) Date of publication of application: 27.10.1998

(51)Int.Cl.

CO9D 4/00

G03F 7/027 G03F 7/075

(21)Application number : 09-096992

(71)Applicant: MITSUBISHI CHEM CORP

(22)Date of filing:

15.04.1997

(72)Inventor: HOSOKAWA NORITAKA

HAYAMA KAZUHIDE

(54) ACTIVE ENERGY BEAM-CURABLE COATING COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject composition which is excellent in resistance to wear, slippability and transparency, and gives a coating film capable of preventing the tight rolling of film, by formulating an organopolysiloxane unit—containing polymer, multifunctional acrylate, and a colloidal metal oxide.

SOLUTION: This composition comprises (A) an organopolysiloxane unit—containing polymer, (B) a multifunctional acrylate having at least three acryloyl groups, and (C) a colloidal metal oxide dispersed in an organic solvent as dispersion medium. The component A is preferably an organopolysiloxane unit—containing polymer having a (meth)acryloyl group on its side chain. The polymer is obtained e.g. by copolymerizing an organopolysiloxane compound and glycidyl (meth) acrylate, followed by addition of (meth)acrylic acid. The component B is preferably a carboxyl group—containing multifunctional acrylate prepared by reacting a tetracarboxylic acid dianhydride with hydroxyl group—containing multifunctional acrylate having a hydroxyl group and at least three acryloyl groups.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-287822

(43)公開日 平成10年(1998)10月27日

(51) Int.Cl. ⁶		識別記号	FΙ		
C 0 9 D	4/00		C09D	4/00	
G03F	7/027	5 0 1	G 0 3 F	7/027	501
	7/075	5 1 1		7/075	5 1 1

		審査請求	未請求 請求項の数4 OL (全 9 頁)
(21)出願番号	特願平9-96992	(71)出願人	000005968 三菱化学株式会社
(22)出顧日	平成9年(1997)4月15日	(70) SAND 45	東京都千代田区丸の内二丁目5番2号
		(72)発明者	細川 範孝 三重県四日市市東邦町1番地 三菱化学株 式会社四日市総合研究所内
		(72)発明者	葉山 和秀 三重県四日市市東邦町1番地 三菱化学株 式会社四日市総合研究所内
		(74)代理人	弁理士 長谷川 曉司

(54) 【発明の名称】 活性エネルギー線硬化性被覆組成物

(57)【要約】

【課題】 熱可塑性樹脂基材上に、活性エネルギー線を 照射することにより硬化し、耐摩耗性、滑り性、透明性 に優れ、加工時巻き締まりのない皮膜を形成する活性エ ネルギー線硬化性被覆組成物を提供する。

【解決手段】 オルガノポリシロキサン単位を有する重合体(A)と、分子内に3個以上のアクリロイル基を有する多官能アクリレート(B)、および有機溶剤を分散媒としたコロイド状金属酸化物(C)を含有する活性エネルギー線硬化性被覆組成物。

【特許請求の範囲】

【請求項1】 オルガノポリシロキサン単位を有する重 合体(A)と、分子内に3個以上のアクリロイル基を有 する多官能アクリレート(B)、および有機溶剤を分散 媒としたコロイド状金属酸化物(C)を含有する活性エ ネルギー線硬化性被覆組成物。

【請求項2】 オルガノポリシロキサン単位を有する重 合体(A)が、側鎖に(メタ)アクリロイル基を有する 重合体である請求項1記載の活性エネルギー線硬化性被 覆組成物。

【請求項3】 分子内に3個以上のアクリロイル基を有 する多官能アクリレート(B)が、テトラカルボン酸二 無水物と、分子内に水酸基及び3個以上のアクリロイル 基を有する水酸基含有多官能アクリレートとを反応して 得られるカルボキシル基含有多官能アクリレートである 請求項1記載の活性エネルギー線硬化性被覆組成物。

【請求項4】 被覆組成物中、(A)成分は1~25重 量%、(B)成分は40~94重量%、(C)成分は5 ~25重量%含有されることを特徴とする、請求項1記 載の被覆組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、活性エネルギー線 を照射することにより硬化し、耐摩耗性、滑り性、およ び透明性に優れた皮膜を与える活性エネルギー線硬化性 被覆組成物に関するものである。

[0002]

【従来の技術】ポリエステルフィルム、酢酸セルロース フィルム、アクリル系樹脂フィルム、ポリカーボネート フィルム、ポリ塩化ビニルフィルム等の熱可塑性樹脂フ 30 イルムは、建物や自動車の窓ガラスに貼る窓貼り用フィ ルム、電子材料のタッチパネルや液晶用偏光板の保護フ イルム、冷蔵庫等家電製品のハウジングの美粧性を向上 するためのラミネートフィルム等に広く用いられてい る。これら熱可塑性樹脂フィルムが大量に使われている 理由はその軽量性、易加工性、耐衝撃性などに優れてい る理由によるが、熱可塑性樹脂フィルムは表面硬度が低 いため傷がつき易すく、その樹脂固有の透明性あるいは 外観が著しく損なわれるという欠点がある。

の表面に耐摩耗性を付与する活性エネルギー線硬化性ハ ードコート剤を塗布することが行われている。ハードコ ート処理されたフィルムが上記の窓貼り用フィルムやラ ミネート用フィルムに使用される場合、これらのものは 手に触れる場所で使用されるため、滑り性のある触感の 良いものが求められる。また、ハードコート層(皮膜) 表面に滑り性があると、ハードコート層を有するフィル ムを巻き取ったり巻戻したりする工程で、巻き締まりに よる巻き戻し時のトラブルを防ぐことができる。

【0004】ハードコート層に滑り性を付与するには、

ハードコート剤にオルガノポリシロキサン化合物を添加 することが考えられるが、単にオルガノポリシロキサン 化合物を添加するだけではオルガノポリシロキサン化合 物が皮膜表面にブリードし透明性や表面状態をかえって 阻害するという問題があった。このため、オルガノポリ シロキサングラフトビニル共重合体を配合したラジカル 重合性樹脂を用いること(特開平8-283362号公 報)が提案されているが、このものではハードコート層 を有するフィルムの巻き締まりを防ぐことができなかっ 10 た。

[0005]

【発明が解決しようとする課題】本発明は、耐摩耗性、 滑り性および透明性に優れ、フィルムの巻き締まりを防 ぐことができる皮膜を与えるハードコート剤の提供を目 的とする。

[0006]

【課題を解決するための手段】本発明は、オルガノポリ シロキサン単位を有する重合体(A)と、分子内に3個 以上のアクリロイル基を有する多官能アクリレート

(B)、および有機溶剤を分散媒としたコロイド状金属 20 酸化物(C)を含有する活性エネルギー線硬化性被覆組 成物を提供するものである。

[0007]

【発明の実施の形態】以下に本発明をさらに詳細に説明

- (A) オルガノポリシロキサン単位を有する重合体:
- (A) 成分のオルガノポリシロキサン単位を有する重合 体は、1分子中に1個のラジカル重合性基または1分子 中に2個のメルカプト基を有するオルガノポリシロキサ ン化合物(a1)と、1分子中に1個のラジカル重合性 基を有する単量体 (a2) とを共重合することにより得 られる。

【0008】ここで、(a1)成分の1分子中に1個の ラジカル重合性基を有するオルガノポリシロキサン化合 物は、アクリル、メタクリル、スチリル、ケイ皮酸エス テル、ビニル、アリル等のラジカル重合性基を1分子中 に1個有するものである。中でも、これと1分子中に1 個のラジカル重合性基を有する単量体との共重合の容易 さを考慮すると、アクリル、メタクリル、スチリル基を 【0003】この欠点を改良するため、これらフィルム 40 有するオルガノポリシロキサン化合物であることが好ま

> 【0009】また、1分子中に1個ラジカル重合性基を 有する単量体 (a 2) が重合する際、連鎖移動によりス ルフィド結合を介して重合体中に導入される1分子中に 2個のメルカプト基を有するオルガノポリシロキサン化 合物も好適に用いることができる。本発明に使用するオ ルガノポリシロキサン化合物は、通常400~100. 000程度、好ましくは1,000~30,000の数 平均分子量を有するものである。これらオルガノポリシ 50 ロキサン化合物 (a 1) に含まれるオルガノポリシロキ

3

サン単位は、下記一般式(1)で表される。

$$\begin{bmatrix}
0 & 0 & 1 & 0 \\
\text{(£1)} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

【0011】(式中、R'とR'は同一でも異なってい てもよく、それぞれ独立に炭素数1~6のアルキル、炭 10 素数6~8のアリルであり、具体的には好ましくはメチ ル基もしくはフェニル基を示す。nは5以上の整数を表 す。)

【0012】次に、1分子中に1個のラジカル重合性基 を有する単量体(a2)としては、上記オルガノポリシ ロキサン化合物(a1)との共重合性の点から(メタ) アクリル酸「本明細書で表記している(メタ)アクリル はメタクリルおよびアクリルの両方の意味を表す] およ び(メタ)アクリレートが望ましい。(メタ)アクリレ ートとしては、例えば、メチル(メタ)アクリレート、 エチル (メタ) アクリレート、n-ブチル (メタ) アク リレート、イソブチル (メタ) アクリレート、2-エチ ルヘキシル(メタ)アクリレート、ベンジル(メタ)ア クリレート、シクロヘキシル(メタ)アクリレート、イ ソボルニル(メタ)アクリレート、ジシクロペンテニル (メタ) アクリレート、ジシクロペンテニルオキシエチ ル(メタ)アクリレート、エトキシエチル(メタ)アク リレート、エチルカルビトール(メタ)アクリレート、 ブトキシエチル (メタ) アクリレート、シアノエチル ト、2ーヒドロキシエチル (メタ) アクリレート、2ー ヒドロキシプロピル (メタ) アクリレート等が挙げられ

【0013】上記オルガノポリシロキサン化合物 (a) 1) と1分子中に1個のラジカル重合性基を有する単量 体(a2)の共重合は、溶剤中で、通常のラジカル重合 開始剤を用いて行われる。溶剤としては、トルエン、キ シレン等の芳香族炭化水素類、酢酸エチル、酢酸プロピ ル、酢酸ブチル等のエステル類、メチルアルコール、エ チルアルコール、n-プロピルアルコール、iso-プ 40 ロピルアルコール、nーブチルアルコール等のアルコー ル類、アセトン、メチルエチルケトン、メチルイソブチ ルケトン、シクロヘキサノン等のケトン類、2-メトキ シエタノール、2-エトキシエタノール、2-ブトキシ エタノール、エチレングリコールジメチルエーテル、エ チレングリコールジエチルエーテル、ジエチレングリコ ールジメチルエーテル等のエーテル類、2-メトキシエ チルアセタート、2-エトキシエチルアセタート、2-ブトキシエチルアセタート等のエーテルエステル類が挙

用することもできる。

【0014】重合反応に使用するラジカル重合開始剤と しては、ベンゾイルパーオキサイド、ジーtーブチルパ ーオキサイド、クメンハイドロパーオキサイド等の過酸 化物、2, 2' -アゾビスイソブチロニトリル、2, 2' -アゾビスー(2, 4-ジメチルバレロニトリ (4-y) 、 2, 2' -アゾビス (4-y)キシー2, 4-ジ メチルバレロニトリル)等のアゾ化合物が好適に用いら れる。共重合反応液中のラジカル重合性基を有する単量 体の濃度は通常10~60重量%であり、重合開始剤は 通常単量体に対し、0.1~10重量%である。

【0015】重合における原料のオルガノポリシロキサ ン化合物(a1)と1分子中に1個のラジカル重合性基 を有する単量体 (a 2) の比率は、重量比 (a 1/a 2) $\frac{0.000}{0.000}$ で1/99~50/50であり、好ましくは5/9 5~40/60である。オルガノポリシロキサン化合物 が1未満では滑り性および巻き締まり防止性が不充分で あり、50を越えると配合する多官能アクリレートとの 相溶性が悪くなり、得られる皮膜の透明性が悪くなる。

【0016】オルガノポリシロキサン単位を有する重合 体(A)の中でも、特に、側鎖に(メタ)アクリロイル 基を有するオルガノポリシロキサン単位を有する重合体 を用いることにより、活性エネルギー線照射時に重合体 (A) と多官能アクリレート (B) との間に結合が形成 され、得られる皮膜の滑り性の耐久性の向上がはかれ る。側鎖に(メタ)アクリロイル基を有するオルガノポ リシロキサン単位を有する重合体は、例えば、オルガノ ポリシロキサン化合物 (a 1) とグリシジル (メタ) ア クリレートとを共重合した後、(メタ) アクリル酸を付 (メタ) アクリレート、グリシジル (メタ) アクリレー 30 加することにより得られる。また、オルガノポリシロキ サン化合物と(メタ)アクリル酸とを共重合した後、グ リシジル(メタ)アクリレートを付加することによって も得られる。更に、オルガノポリシロキサン化合物(a 1)とヒドロキシエチル(メタ)アクリレート、ヒドロ キシプロピル (メタ) アクリレート等の水酸基を有する (メタ) アクリレートとを共重合した後、ヒドロキシエ チル (メタ) アクリレート、ヒドロキシプロピル (メ タ)アクリレート、ペンタエリスリトールトリアクリレ ート、ジペンタエリスリトールペンタアクリレート等の 水酸基を有する(メタ)アクリレートとトリレンジイソ シアネート、イソホロンジイソシアネート、ヘキサメチ レンジイソシアネート等のイソシアネート化合物のモル 比1対1の付加体や、メタクリロイルイソシアネート、 2-メタクリロイルオキシエチルイソシアネート等を付 加することによっても得られる。

【0017】(B) 多官能アクリレート:分子内に3個 以上のアクリロイル基を有する多官能アクリレートとし ては、例えば、トリメチロールプロパントリアクリレー ト、エチレンオキシド変性トリメチロールプロパントリ げられる。これらは単独で、又は2つ以上を混合して使 50 アクリレート、プロピレンオキシド変性トリメチロール

プロパントリアクリレート、トリス (アクリロキシエチ ル) イソシアヌレート、カプロラクトン変性トリス(ア クリロキシエチル) イソシアヌレート、ペンタエリスリ トールトリアクリレート、ペンタエリスリトールテトラ アクリレート、ジペンタエリスリトールテトラアクリレ ート、ジペンタエリスリトールペンタアクリレート、ジ ペンタエリスリトールヘキサアクリレート、アルキル変 性ジペンタエリスリトールトリアクリレート、アルキル 変性ジペンタエリスリトールテトラアクリレート、アル キル変性ジペンタエリスリトールペンタアクリレート、 カプロラクトン変性ジペンタエリスリトールヘキサアク リレート、テトラカルボン酸二無水物と分子内に水酸基 及び3個以上のアクリロイル基を有する水酸基含有多官 能アクリレートを反応して得られるカルボキシル基含有 多官能アクリレート、およびこれら2種以上の混合物が 挙げられる。

【0018】テトラカルボン酸二無水物の具体例として は、ピロメリト酸二無水物、3,3',4,4'-ベン ゾフェノンテトラカルボン酸二無水物、4,4′ービフ タル酸無水物、4,4'ーオキソジフタル酸無水物、 4, 4′ - (ヘキサフルオロイソプロピリデン) ジフタ ル酸無水物、1,2,3,4-シクロペンタンテトラカ ルボン酸二無水物、5-(2,5-ジオキソテトラヒド ロフリル) -3-メチル-3-シクロヘキセン-1, 2 ージカルボン酸無水物、4-(2,5-ジオキソテトラ ヒドロフラン-3-イル) ーテトラリン-1, 2-ジカ ルボン酸無水物、3,4,9,10-ペリレンテトラカ ルボン酸二無水物、ビシクロ〔2.2.2〕オクトー7 ーエンー2,3,5,6ーテトラカルボン酸二無水物等 クリロイル基を有する水酸基含有多官能アクリレートの 具体例としては、ペンタエリスリトールトリアクリレー ト、ジペンタエリスリトールテトラアクリレート、ジペ ンタエリスリトールペンタアクリレート、およびこれら の混合物等が挙げられる。

【0019】分子内に3個以上のアクリロイル基を有す る多官能アクリレートの中でも、特に、テトラカルボン 酸二無水物と分子内に水酸基及び3個以上のアクリロイ ル基を有する水酸基含有多官能アクリレートを反応して 得られるカルボキシル基含有多官能アクリレートを用い 40 ることにより、有機溶剤を分散媒としたコロイド状金属 酸化物(C)の、オルガノポリシロキサン単位を有する 重合体(A)と3個以上のアクリロイル基を有する多官 能アクリレート(B)に対する分散性が向上し、透明性 の高い塗膜が得られる。

【0020】(C) コロイド状金属酸化物:(C)成分 の有機溶剤を分散媒としたコロイド状金属酸化物として は、金属酸化物が有機溶媒に分散して平均粒子径が1~ $100 \mu m$ 、特に3~20 μm のコロイド状になったも

コロイド状金属酸化物を用いるとハードコート処理工程 での巻き締まりを防ぐことができない場合があり、10 0 μ mを超えたものを用いると皮膜の透明性が失われる 場合がある。有機溶剤としてはメチルアルコール、エチ ルアルコール、イソプロピルアルコール、nーブチルア ルコール、2-エトキシエタノール、アセトン、メチル エチルケトン、トルエン、キシレン等が挙げられる。

【0021】このようなコロイド状金属酸化物の具体例 としては、コロイド状シリカ、コロイド状チタニア、コ 10 ロイド状酸化アンチモン、コロイド状酸化亜鉛、コロイ ド状酸化スズ、コロイド状酸化タングステン等の1種又 は2種以上を使用することができる。また、酸化アンチ モン・シリカゾル、チタニア・シリカゾル、酸化セリウ ム・チタニアゾル、酸化鉄・チタニアゾル、酸化アンチ モン・チタニアゾル、酸化タングステン・酸化スズゾル 等の混晶ゾルを使用することもできる。

【0022】任意成分:本発明の被覆組成物は、オルガ ノポリシロキサン単位を有する重合体(A)と、分子内 に3個以上のアクリロイル基を有する多官能アクリレー 20 ト(B)、および有機溶剤を分散媒としたコロイド状金 属酸化物(C)を含むものであるが、分子内に1個また は2個のアクリロイル基を有するアクリレート (D) を 含有することを妨げるものではない。例えば、アクリロ イル基を2個有するウレタンアクリレートやエポキシア クリレートを、耐摩耗性の低下しない範囲で用いること ができる。

【0023】又、活性エネルギー線として紫外線を用い る場合、光重合開始剤(E)を被覆組成物中に含有させ てもよい。かかる光重合開始剤としては、ベンゾインメ が挙げられる。また、分子内に水酸基及び3個以上のア 30 チルエーテル、ベンゾインエチルエーテル、ベンゾイン イソプロピルエーテル、ベンゾインブチルエーテル、ジ エトキシアセトフェノン、ベンジルジメチルケタール、 2-ヒドロキシー2-メチルプロピオフェノン、1-ヒ ドロキシシクロヘキシルフェニルケトン、ベンゾフェノ ン、2,4,6ートリメチルベンゾインジフェニルホス フィンオキサイド、2-メチルー〔4-(メチルチオ) フェニル] -2-モルフォリノ-1-プロパノン、2-ベンジルー2ージメチルアミノー1ー(4ーモルフォリ **ノフェニル)ーブタンー1ーオン、ミヒラーズケトン、** N, N-ジメチルアミノ安息香酸イソアミル、2-クロ ロチオキサントン、2、4-ジエチルチオキサントン等 が挙げられる。

> 【0024】これらの光重合開始剤は、単独で、または 2種以上を適宜に併用する。光重合開始剤(E)は、分 子内に3個以上のアクリロイル基を有する多官能アクリ レート(B) および1個または2個のアクリレート (D) との和100重量部に対して0.1~10重量

部、好ましくは1~5重量部の割合で使用される。又、 被覆組成物の粘度調整や(A)成分の重合体の製造上の のが好適に使用される。平均粒子径が1 µ mに満たない 50 必要から有機溶剤を含有させることができる。有機溶剤

としては、例えば、(A)成分の重合体を合成する際に 用いた溶剤と同一のものを使用することができる。

【0025】更に、本発明の活性エネルギー線硬化性耐 摩耗性被覆組成物は、皮膜物性を改良する目的で紫外線 吸収剤(例えば、ベンゾトリアゾール系、ベンゾフェノ ン系、サリチル酸系、シアノアクリレート系紫外線吸収 剤)、紫外線安定剤(例えば、ヒンダードアミン系紫外 線安定剤)、酸化防止剤(例えば、フェノール系、硫黄 系、リン系酸化防止剤)、ブロッキング防止剤、スリッ プ剤、レベリング剤等を被覆組成物中、各々、3重量% 以下、好ましくは1重量%以下含有させることができ る。

【0026】組成:被覆組成物の溶剤を除いた固形分1 00重量%中、(A)成分のオルガノポリシロキサン単 位を有する重合体は、1~25重量%、好ましくは5~ 20重量%、(B)成分の3官能以上の多官能アクリレ ートは40~94重量%、好ましくは40~80重量 %、(C)成分の有機溶剤を分散媒としたコロイド状金 属酸化物は、溶剤を除いた金属酸化物として5~25重 量%の割合で使用される。(A)の重合体が1重量%未 20 満では十分な滑り性を有する皮膜が得られない。また、 25重量%を超えると皮膜の耐摩耗性が低下する。

(B) 成分が40重量%未満では耐摩耗性の良好な皮膜 が得られない。(C)成分が5重量%未満では十分な巻 き締まり防止性が得られない。

【0027】皮膜形成:本発明の被覆組成物は、例え ば、ポリカーボネート、ポリメチルメタクリレート、ポ リエチレンテレフタレート、塩化ビニル樹脂及びABS 樹脂等のプラスチック基材に、ディッピング法、フロー コート法、スプレー法、バーコート法、及びグラビアコ 30 ート、ロールコート、ブレードコート及びエアーナイフ コート等の塗工機械による塗工方法で、溶剤乾燥、活性 エネルギー線照射後、プラスチック基材表面に1~50 μ m、好ましくは1~20 μ mのハードコート層が得ら れる条件下で塗工することができる。次いで、塗布した ハードコート層を架橋硬化せしめるために用いられる活 性エネルギーとしては、キセノンランプ、低圧水銀灯、 高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カ ーボンアーク灯、タングステンランプ等の光源から発せ られる紫外線あるいは、通常20~2000kVの電子 40 線加速器から取り出される電子線、α線、β線、γ線等 の活性エネルギー線を用いることができる。

[0028]

【実施例】以下、実施例により本発明をさらに詳細に説 明する。なお、例中の部および%は、重量部および重量 %をそれぞれ意味する。

【0029】(オルガノポリシロキサン単位を有する重 合体の合成例):

(合成例1) 片末端スチレン基を有するオルガノポリシ

2-2440; 平均数分子量11, 300) 30部、メ チルメタクリレート70部、およびメチルエチルケトン 150部の混合物を加熱して80℃に昇温した時、及び 同昇温時より2時間後に、それぞれアゾビスイソブチロ ニトリルを0.3部ずつ添加し、80℃で8時間反応さ せて、オルガノポリシロキサン単位を有する重合体 [1] (固形分40%)を得た。

【0030】(合成例2)両末端メルカプト基を有する オルガノポリシロキサン化合物 (信越化学工業(株)製 商品名: X-22-167B、数平均分子量3,34 0) 10部、メチルメタクリレート90部、およびメチ ルエチルケトン150部の混合物を加熱して80℃に昇 温した時、及び同昇温時より2時間後に、それぞれアゾ ビスイソブチロニトリルを 0. 3 部ずつ添加し、80℃ で8時間反応させて、オルガノポリシロキサン単位を有 する重合体 [II] (固形分40%) を得た。

【0031】(合成例3) 片末端メタクリロイル基を有 するオルガノポリシロキサン化合物 (チッソ (株) 製商 品名:FM0725、数平均数分子量10,000)1 5部、メチルメタクリレート75部、2-ヒドロキシエ チルメタクリレート10部及びメチルエチルケトン15 0部の混合物を加熱して80℃に昇温した時、及び同昇 温時より2時間後に、それぞれアゾビスイソブチロニト リルを0.3部ずつ添加し、80℃で8時間反応して、 固形分40%の重合体を得た。このものに、メタクリロ イルイソシアネート8部を添加し80℃で6時間反応 (赤外吸収スペクトルで2250cm⁻¹ のイソシアネー ト基の吸収の消滅を確認) し、側鎖にメタアクリロイル 基を有するオルガノポリシロキサン単位を有する重合体 [III] (固形分42%)を得た。

【0032】(合成例4) 片末端スチレン基を有するオ ルガノポリシロキサン化合物(信越化学工業(株)製: X-22-2440) 30部、メチルメタクリレート6 0部、2-ヒドロキシエチルメタクリレート10部及び メチルエチルケトン150部の混合物を加熱して80℃ に昇温した時、及び同昇温時より2時間後に、それぞれ アゾビスイソブチロニトリルを0.3部ずつ添加し、8 0℃で8時間反応して、固形分40%の共重合体を得 た。このものに、イソホロンジイソシアネート28部と 2-ヒドロキシエチルアクリレート22部を反応して得 られる化合物50部を添加し80℃で6時間反応(赤外 吸収スペクトルで2250cm゚のイソシアネート基の 吸収の消滅を確認)し、側鎖にアクリロイル基を有する オルガノポリシロキサン単位を有する重合体「IV」(固 形分50%)を得た。

【0033】(ポリメチルメタクリレート(オルガノポ リシロキサン単位を持たない重合体)の合成例):(比 較例用)

(合成例5)メチルメタクリレート100部、およびメ ロキサン化合物 (信越化学工業 (株) 製商品名:X-2 50 チルエチルケトン150部の混合物を加熱して80℃に 昇温した時、及び同昇温時より2時間後に、それぞれア ゾビスイソブチロニトリルを0.3部ずつ添加し、80 ℃で8時間反応して、ポリメチルメタクリレート [V] (固形分40%) を得た。

【0034】(カルボキシル基含有多官能アクリレート の合成例)

(実施例6)ジペンタエリスリトールペンタアクリレー トを67モル%含有するジペンタエリスリトールヘキサ アクリレートおよびジペンタエリスリトールペンタアク リレートの混合物(日本化薬社製:カヤラッドDPH A、水酸基価69mgKOH/g) 163部とピロメリ ト酸二無水物21.8部、メチルエチルケトン100 部、ハイドロキノンモノメチルエーテル0.1部および N, N-ジメチルベンジルアミン1部を加え、80℃で 8時間反応しカルボキシル基含有多官能アクリレート [VI] (固形分65%)を得た。

【0035】実施例1~11

各成分を表1に示した割合で配合し、活性エネルギー線 硬化性被覆組成物を得た。各活性エネルギー線硬化性被 覆組成物を、透明な100μm厚の二軸延伸ポリエチレ 20 なお、基材の二軸延伸ポリエチレンテレフタレートフィ ンテレフタレートフィルム (ダイアホイルヘキスト

(株) 製:T100E) に、バーコーターを用いて乾燥 後の皮膜厚が6μmとなるように塗布し、80℃で2分 間加熱乾燥した。このものを、出力密度120w/cm の高圧水銀灯を用い、光源下10cmの位置で1000 m J / c m の紫外線照射を行い皮膜を形成し、その皮 膜について透明性、耐摩耗性、滑り性、および巻き締ま り性を試験した。

【0036】得た皮膜の評価結果を表2に示した。な

お、各評価は下記によった。

透明性: ヘイズ値 (H%) で評価 (ヘイズ値=Td/T t×100、Td:散乱光線透過率、Tt:全光線透過 率 JIS K7105)。

10

耐摩耗性: Calibrase社製CS-10Fの摩耗 輪を用い、荷重500gで100回転テーバー摩耗試験 を行い、テーバー摩耗試験後のヘイズ値とテーバー摩耗 試験前のヘイズ値との差 A H % で評価 (テーバー摩耗試 験法 ASTM D1044)。

10 【0037】滑り性:評価サンプルを相対湿度60%の 恒温室に24時間放置した後、スリップテスターを用 い、静摩擦係数および動摩擦係数を測定(摩擦係数試験 法 JISK7125)。

巻き締まり性:被覆組成物塗布面と二軸延伸ポリエチレ ンテレフタレートフィルムの裏面(未処理面)を重ね、 強く圧着し、こすり合わせたときフィルムが動くか否か により巻き締まり性を評価した。

動く(巻き締まり性なし) : 0

動かない(巻き締まり性あり):×

ルムの透明性は3%、耐摩耗性は28.5%、静摩擦係 数0.50、動摩擦係数は0.48であった。

【0038】比較例1~4

各成分を表1に示した割合で配合して得た活性エネルギ 一線硬化性被覆組成物を、実施例1と同様に試験し、そ の評価結果を表3に示した。

[0039]

【表1】

IPA :イソプロピルアルコール NBK :メチルエチルケトン

12

						被						
					配合	合成分と配	· 建 4	()				
		簡 合 存		多官能アクリレー	J L	<u></u>	邓作林	2017 伏金属酸化物	光重合開始剤	2000年	矬	夜
東施例 1	_	5.0(2.0)	DPHA	30.0		1	IPA-ST	26.7(8.0)	1M#17651	0.8	IPA	37.5
東施例2	-	10.0(4.0)	DPHA	28.0		1	IPA-ST	26.7(8.0)	1M#17651	0.8	I P.A	34.5
実施例3	<u>—</u>	20.0(8.0)	DPHA	28.0		1	IPA-ST	13.3(4.0)	111111111111111111111111111111111111111	0.8	IPA	37.9
実施例4		10.0(4.0)	DPHA	14.0	Ϊλ	21.5(14.0)	IPA-ST	26. 7(8. 0)	111111111111111111111111111111111111111	9.8	IPA	27.0
実施例5		10.0(4.0)	ΙΛ	43.1(28.0)		ı	IPA-ST	26.7(8.0)	4N#417651	9.8	I P.A	19.4
東施例 6	Ħ	10.0(4.0)	DPHA	10.0	٧I	27.7(18.0)	MEK-ST	26.7(8.0)	1168427651	0.8	MEX	24.8
実施例7	Ħ	10.0(4.2)	DPHA	27.8		ı	MEK-ST	26.7(8.0)	111111111111111111111111111111111111111	0.8	MEK	34.7
実施例8	<u>></u>	5.0(2.5)	PETA	29. 5		ı	IPA-ST	26.7(8.0)	1111427184	0.8	IPA	38.0
束施例 9	×	10.0(5.0)	DPHA	10.0	ΙΛ	32, 3(21, 0)	MEK-ST	13.3(4.0)	1111411184	0.8	MEK	33. 6
束施例10	2	5.0(2.5)	ΙΛ	45, 4(29, 5)		1	AME-130	26.7(8.0)	1M#417184	0.8	MEK	22. 1
実施例11	≥	5.0(2.5)	IA	45, 4(29, 5)		ı	008-SZ	26.7(8.0)	1N#\$27184	0.8	MEK	22. 1
比較例 1	-	10.0(4.0)	DPHA	36.0		ı	ı	ı	11/1/41/651	0.8	IPA	53. 2
比較例 2	>	10.0(4.0)	DPHA	14.0	ΚI	21.5(14.0)	IPA-ST	26.7(8.0)	1M# + 17851	8.0	IPA	27.0
比較例3			DPHA	32.0			IPA-ST	26. 7(8. 0)	145417651	0.8	IPA	41.3
比較例4	Ν	5.0(2.5)	VI	57, 7(37, 5)		ı	ì	ı	1111411184	0.8	MEK	36. 5

11

()内は固形分を示す。

DPHA:ジペンタエリスリトールヘキサアクリレート

PETA: ペンタエリスリトールトリアクリレート

IPA-ST:コロイダルシリカ(日産化学工業社製:固形分30%、IPA 咨詢) MEK-ST:コロイダルシリカ(日産化学工業社製:固形分30%、MEX 咨詢)

AME-130 :コロイダル酸化アンチモン(日産化学工業社製:固形分30%、MEK 絡剤)

28-300:コロイダル酸化亜鉛(住友大阪セメント社製:固形分30%、トルエン溶剤) イルガキュア651 : ベンジルジメチルケタール

イルガキュア184 : 1 - ヒドロキシンクロヘキシルフェニルケトン

[0040]

表 2

14

		-200	۵		
	透明性	耐摩耗性	滑	b 性	46 + 64 + 10 All
	(H%)	(AH%)	動摩擦係数	静摩擦係数	巻き締まり性
実施例1	3. 2	4. 0	0.16	0. 15	0
95/02/79 I	3.3	4. 3	0. 21	0.19	0
実施例2	3.3	4, 3	0.14	0.14	0
失加的之	3. 2	4. 4	0. 20	0.18	0
実施例3	3.5	5. 2	0.12	0.11	0
天/图793	3.5	5. 3	0.17	0.17	0
実施例4	3.0	3. 9	0.14	0.13	0
天旭794	3.2	4.0	0.18	0.17	0
実施例5	2.8	3. 6	0.15	0.13	0
天/配がり 3	2.8	3. 7	0. 20	0.18	0
実施例6	3.2	3. 8	0.15	0.14	0
~ DIS (7) U	3. 4	3.8	0. 21	0.18	0
実施例7	3.4	4. 4	0.14	0.13	0
X 36E (79 1	3.4	4.3	0.14	0.14	0
実施例8	3. 3	5. 5	0.15	0.13	0
X 1/2 1/3 0	3.3	5.6	0.15	0.14	0
実施例 9	3.0	3. 6	0.14	0.14	0
	2. 9	3.6	0.15	0.14	0
実施例10	3.5	4.2	0. 15	0.14	0
>₹#B##10	3. 5	4.1	0.15	0.15	0
実施例11	3. 3	3. 9	0.15	0.13	0
~#E17911	3. 4	3.8	0.16	0.14	0

表中の数値

上段:硬化後初期

下段: 耐湿熱性試験後 (80℃、相対湿度90%、120時間)

[0041]

* *【表3】 **表 3**

			<u>.</u>		
	透明性	耐摩耗性	滑	滑 り 性	
	(H%)	(AH%)	動摩擦保数	静摩擦保数	巻き締まり性
比較例1	3.2	4. 5	0.15	0.14	×
PL#X199 1	3. 3	4. 4	0.22	0. 20	×
比較例2	3.1	4. 2	0.52	0.49	×
11 1 X179 Z	3.3	4. 2	0.51	0. 49	×
比較例3	3.3	3.8	0.54	0.52	×
PO-EX 173 G	3. 4	3. 9	0.53	0.52	×
比較例4	3.1	3. 6	0.14	0.13	×
HJEX 179 4	3. 1	3. 7	0.15	0.13	×

[0042]

【表4】

16

表 4

グレード名	オルガノポリシロキサン化合物の構造
FM0725	$\begin{array}{c c} \text{CH}_{3} \\ \text{CH}_{2} = \text{C} \\ \text{H}_{3} \\ \text{C} \\ \text{H}_{3} \\ \end{array} \begin{array}{c c} \text{CH}_{3} \\ \text{C} \\ \text{C} \\ \text{C} \\ \text{H}_{3} \\ \text{C} \\ \text{H}_{3} \\ \end{array} \begin{array}{c c} \text{CH}_{3} \\ \text{C} \\ \text{C} \\ \text{H}_{3} \\ \text{C} \\ \text{C} \\ \text{H}_{3} \\ \end{array} \begin{array}{c c} \text{CH}_{3} \\ \text{C} \\ \text{C} \\ \text{H}_{3} \\ \end{array} \begin{array}{c c} \text{CH}_{3} \\ \text{C} \\ \text{C}$
X - 2 2 - 2 4 4 0	$CH_2 = CH - \underbrace{CH_3}_{\begin{subarray}{c}CH_3\\Si\\CH_3\\\end{subarray}}_{\begin{subarray}{c}CH_3\\CH_3\\\end{subarray}}_{\begin{subarray}{c}CH_3\\CH_3\\\end{subarray}} \underbrace{CH_3\\OSi\\CH_3\\\end{subarray}}_{\begin{subarray}{c}C_4H_9\\\end{subarray}}_{\begin{subarray}{c}C_4H_9\\\end{subarray}}$
X - 2 2 - 1 6 7 B	$\begin{array}{c c} & CH_3 & CH_3 \\ I & OSi \\ CH_3 & CH_3 \end{array}$

[0043]

【発明の効果】本発明の活性エネルギー線硬化性被覆組成物は、透明性、耐摩耗性、滑り性および巻き締まり性に優れる皮膜を与える。特に、(A)成分のオルガノポ

リシロキサン単位を有する重合体として側鎖に (メタ) アクリロイル基を有する重合体を用いた場合、耐湿熱性 試験後も滑り性 (静摩擦係数、動摩擦係数) の変化の少ない耐久性に優れた皮膜が得られる。