1 Questionnaire.

Dans tout le questionnaire, on considère l'espace euclidien $\mathbb{R}^n (n \in \mathbb{N} \setminus \{0\})$ muni du produit scalaire canonique.

Q.1 Dans \mathbb{R}^3 , quelle est la distance entre le vecteur (-5,2,5) et le plan Vect((1,0,2),(2,0,-1)):

Q.2 Soient $u, v, w \in \mathbb{R}^n$.

Lequel des énoncés suivants n'est pas toujours vrai pour u, v, w?

Q.3 Parmi les énoncés suivants, lequel n'est pas toujours vrai?

 \star \bigcirc Soit $U \in \mathcal{M}_n(\mathbb{R})$

$$U \in \mathcal{O}_n(\mathbb{R}) \Rightarrow U \in \mathcal{GL}_n(\mathbb{R})$$

- \star O Les colonnes d'une matrice orthogonale d'ordre n désignent des vecteurs formant une base orthonormée de \mathbb{R}^n .
- \star O Si U est une matrice carrée symétrique d'ordre n alors pour tout vecteur dont on note X sa matrice colonne de coordonnées dans la base canonique de \mathbb{R}^n :

$$||UX|| = ||X||$$

 \star O Si U est une matrice orthogonale alors son déterminant est strictement positif.

Q.4 Soient $a = (1, 1, 1), b = (0, 3, 6), c = (1, 4, 5) \in \mathbb{R}^3$.

Déterminer $x_0, y_0 \in \mathbb{R}$ tels que : $||c - (x_0.a + y_0.b)|| = \inf_{x,y \in \mathbb{R}} ||c - (x.a + y.b)||$.

Q.5 Soient les vecteurs de \mathbb{R}^3 : a = (1,3,5) b = (1,3,-2) et u = (1,1,1). Déterminer p(u) le projeté orthogonal de u sur Vect(a,b).

Q.6 Dans \mathbb{R}^4 , déterminer la distance entre les vecteurs (1,-1,2,3) et (1,2,3,4):

Q.7 Soient $u_1 = (1, 0, -1)$ et $u_2 = (2, 1, 4)$ deux vecteurs libres de \mathbb{R}^3 . Utiliser le procédé de Gram-Schmidt pour orthogonaliser la famille $\{u_1, u_2\}$:

Q.8 Soient u = (1, 2, 1) et v = (-1, 4, 5) deux vecteurs de \mathbb{R}^3 . Construire (u', v') une base orthogonale de Vect(u, v).

Q.9 Soient u = (2, 4, 6), a = (3, -3, 0), b = (2, 2, -1), c = (1, 1, 4) des vecteurs de \mathbb{R}^3 . Après avoir vérifié que (a, b, c) forme une base orthogonale de \mathbb{R}^3 , déterminer les coordonnées de u dans la vase (a, b, c).

Q.10 Soit
$$A = \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Parmi les matrices suivantes, laquelle est la matrice orthogonale P telle que $P^{-1}AP$ est diagonale?

- * vrai/faux $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$
- * vrai/faux $\frac{1}{\sqrt{5}}\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$
- * vrai/faux $\frac{1}{\sqrt{2}}\begin{pmatrix} -2 & 1\\ 1 & -2 \end{pmatrix}$
- vrai/faux $\frac{1}{\sqrt{2}}\begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix}$
 - Q.11 Dans \mathbb{R}^3 , quelle est la distance entre le vecteur v = (1, 2, 6) et la droite vectorielle engendrée par le vecteur u = (1, 1, 1)?

- Q.12 Certaines des propositions suivantes ne sont pas toujours vraies.
 - (1) Toute matrice symétrique d'ordre n admet n vecteurs propres linéairement indépendants.
 - (2) Une matrice carrée d'ordre n non symétriques n'a pas de vecteurs propres indépendants deux à deux.
 - (3) Pour toute matrice A, la matrice $A^{t}A$ est orthogonalement diagonalisable.
 - (4) Toute matrice carrée d'ordre n admet n valeurs propres distinctes.

Sélectionner la bonne réponse.

- ⋆ Seulement le (1)
- \star \bigcirc Seulement les (1) et (2)
- \star \bigcirc Seulement le (1) et (4)

- ★ Seulement le (4)
- Q.13 Lequel des énoncés suivants est faux :
- ★ vrai/faux Deux matrices semblables ont le même déterminant.
- ★ vrai/faux Si une matrice est inversible alors elle est diagonalisable.
- * vrai/faux Deux matrices semblables ont le même spectre de valeurs propres.
- \star vrai/faux Une matrice carrée d'ordre n ayant n valeurs propres réelles distinctes est diagonalisable.
 - Q.14 Soient les vecteurs u = (2, -1, -3, 1) et v = (-1, 5, 6, -5) dans \mathbb{R}^4 . Déterminer la distance entre le vecteur v et la droite vectorielle Vect(u):

Q.15 Soient u = (2,1,1) et v = (-1,0,2) deux vecteurs de \mathbb{R}^3 . Par le procédé de Gram-Schmidt, orthogonaliser la famille $\{u,v\}$.

Q.16 Soient u = (1, 1, 1) et v = (2, -1, 2) deux vecteurs de \mathbb{R}^3 . Déterminer le projeté orthogonal de v sur Vect(u).

Q.17 Soient a = (2, 1, -1) b = (0, 1, 1), c = (1, -1, 1) et u = (1, 2, 3) des vecteurs de \mathbb{R}^3 . Après avoir vérifié que (a, b, c) forme une base orthogonale de \mathbb{R}^3 , déterminer les coordonnées de u dans la base (a, b, c).

nalisable	N.Auxire	2-QCM-Projection orthogonal	e-Distance à un espace euclidien EPU-PeiP2-Algèbre
Les matrices considérées, A et B, sont à coefficients réels. ★ vrai/faux Si A est orthogonalement diagonalisable alors A est symétrique. ★ vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable. Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de R³.			
Les matrices considérées, A et B, sont à coefficients réels. ★ vrai/faux Si A est orthogonalement diagonalisable alors A est symétrique. ★ vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable. Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de R³.			
Les matrices considérées, A et B, sont à coefficients réels. ★ vrai/faux Si A est orthogonalement diagonalisable alors A est symétrique. ★ vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable. Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de R³.			
Les matrices considérées, A et B, sont à coefficients réels. ★ vrai/faux Si A est orthogonalement diagonalisable alors A est symétrique. ★ vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable. Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de R³.			
Les matrices considérées, A et B, sont à coefficients réels. ★ vrai/faux Si A est orthogonalement diagonalisable alors A est symétrique. ★ vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. ★ vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable. Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de R³.			
 * vrai/faux Si A orthogonalement diagonalisable alors AA est orthogonalement diagonalisable. * vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. * vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable Q.19 Soit H = Vect((1,1,1), (1,5,0)) un plan vectoriel de ℝ³. 			
 * vrai/faux Si une matrice A est semblable à une matrice B symétrique alors A est orthogonalement diagonalisable. * vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable Q.19 Soit H = Vect((1,1,1),(1,5,0)) un plan vectoriel de ℝ³. 	⋆ vrai/faux Si	A est orthogonalement diagonalisable	alors A est symétrique.
nalisable * vrai/faux Si une matrice A est symétrique et inversible alors son inverse est orthogonalement diagonalisable Q.19 Soit $H = \text{Vect}((1,1,1),(1,5,0))$ un plan vectoriel de \mathbb{R}^3 .	⋆ vrai/faux Si	\dot{a} i A orthogonalement diagonalisable alon	rs AA est orthogonalement diagonalisable.
Q.19 Soit $H = \text{Vect}((1,1,1),(1,5,0))$ un plan vectoriel de \mathbb{R}^3 .			trice B symétrique alors A est orthogonalement diagonalement diagon
	∗ vrai/faux Si	${f F}$ i une matrice A est symétrique et inversib	ble alors son inverse est orthogonalement diagonalisable