Contents

1	Itroduzione	1			
	Definizione Variabili2.1 Input e Output2.2 Stati del Sistema2.3 Altre Variabili	3			
3	Assunzioni				
4	4 Problematiche				
5	Programma	4			

1 Itroduzione

Il sistema per cui abbiamo fatto lo schema il controllo tramite SFC gestisce il carico e lo scarico delle bottiglie, su dei pallet [figura: 1].

Si hanno sue zone principali (carico e scarico), collegate da un nastro trasportatore, di cui quella a destra serve per caricare automaticamente le bottiglie (10 bottiglie) su un pallet, le quali vengono contate da una fotocellula. La zona a sinistra serve per lo scarico del pallet, da parte di un operatore.

Al momento che il pallet è scarico, rilevato da un sensore, e l'operatore clicca il pulsante START il pallet torna verso la zona di carico, ricominciando il ciclo di lavoro.

Figure 1: Schema di funzionamento

2 Definizione Variabili

In questa sezione definiamo e spieghiamo le diverse variabili che abbiamo utilizzato, in particolare le raggruppiamo per:

- Input e Output
- Stati
- Valori e Costanti

2.1 Input e Output

Di seguito presentiamo la tabella [2.1] contenente tutti gli input e output che abbiamo utilizzato:

Nome	tipologia	Descrizione
RM	Output	Motore nastro trasportatore verso destra
LM	Output	Motore nastro trasportatore verso sinistra
MAI	Output	Allarme che indica la manutenzione
CELL	Input	Fotocellula che rileva il passaggio delle bottiglie
RS	Input	Sensore di fine corsa destro
LS	Input	Sensore di fine corsa sinistro
ES	Input	Sensore che rileva se il pallet è vuoto(ES=1)
start	Input	Pulsante per avviare il nastro trasportatore verso destra
MAIR	Input	Pulsante per il reset della manutenzione

2.2 Stati del Sistema

Nome	Descrizione		
inizio	Stato iniziale, il quale viene eseguito solo all'avvio della macchina		
attesaBottiglia	Stato nel quale siamo in attesa del passaggio di una bottiglia		
conta	Incremento di uno il contatore delle bottiglie		
attesaSicurezza	Stato che garantisce i 5 secondi, per motivi di sicurezza		
vaASinistra	Stato in cui il nastro trasportatore si muove verso sinistra		
scarico	Momento in cui l'operatore sta scaricando il pallet		
vaADestra	Stato in cui il nastro trasportatore si muove verso destra		
manutenzione	Stato di manutenzione		

2.3 Altre Variabili

Nome	Tipo	Descrizione
X	USINT	Contatore delle bottiglie per il carico del pallet
botPerMan	USINT	Contatore per la manutenzione

3 Assunzioni

Abbiamo deciso, di creare uno stato iniziale, chiamato *inizio* dove si entra solo una volta, all'accesione della macchina. Serve per assicurarsi che il pallet sia a destra all'inizio, infatti la transizione viene regolata da RS(fotocellula presenza pallet destra); in uscita dallo stato inizio abbiamo aggiunto il reset delle variabili: $x \in botPerMan$.

Dato che nel testo non era specificato, la manutenzione abbiamo decisa di inserirla dopo/durante il conteggio delle bottiglie; quindi il blocco del pulsante start viene fatto in modo implicito.

4 Problematiche

 $\label{problematica} Durante lo svolgimento abbiamo affrontato qualche problematica, in particolare:$

1. nella transizione "attesaSicurezza.t>=T#5s, ci dava errore dicendo che attesaSicurezza doveva essere dichiarata come variabile, ma è uno stato.

Di conseguenza abbiamo capito che il problema era che lo stato non aveva nessuna azione da eseguire; perciò abbiamo dovuto inserire la variabile: "nonFaNulla", che non fa nulla.

- 2. Durante il debugging abbiamo notato che se x=10 è nello stesso momento botPerMan=25, il programma su attesaSicurezza e non in manutenzione, perciò abbiamo inserito nella transizione: "AND botPerMan<25" (che abbiamo anche applicato alla transizione che da conta porta in attesaBottiglia)
- 3. Infine, abbiamo separato le 2 casistiche in cui siamo in manutenzione:
 - x < 10: in questo caso, quando la manutenzione finisce (a seguito della pressione di MAIR), ritorniamo ad attendere una nuova bottiglia.
 - $x \ge 10$ (che saranno ogni n cicli, dove n è multiplo di 6): essendo già dieci le bottiglie, finita la manutenzione, andremo in attesaSicurezza.

5 Programma

Di seguito presentiamo il nostro programma SFC

Project: ExeBonusSFC Cyclic.sfc

Sequential Function Chart - Cyclic : C:\projects\ExeBonusSFC\Logical\Program\Cyclic.sfc

