Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 10:52:05 2021 Program finished at Tue Jun 1 11:26:56 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 1434373649

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	0	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	0	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	0	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	0	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	0	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	0	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	0	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	0	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	0	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	0	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	0		
12 LaJolla		0	0	0	0	0	0	0	0	0	0	*	*		
Order of paramet															
1	Θ_1								displa	-					
2	Θ_2								displa	-					
3	Θ_3								displa	-					
4	Θ_4								displa	-					
5	Θ_5								displa	-					
6	Θ_6								displa	-					
7	Θ_7								displa	-					
8	$\Theta_{8}^{'}$								displa	-					
9	Θ_9								displa	-					
10	Θ_{10}								displa	-					
11	Θ_{11}								displa	-					
12	Θ_{12}								displa	-					
24	IVI 1-	->2							displa	-					
36	N /	->3							displa	-					
48	N A	->4							displa	-					
60	N /	->5							displa	-					
72	N / 3-	->6							displa	-					
84 96	0-	->7							displa displa	-					
108	/-	->8							displa	-					
120	N 4 0-	->9							displa	-					
132	N / 9-	->10							displa						
144	V /)->11							displa	-					
'''	11	1->12	2						лоріс	.you					
Mutation rate amo	na loc	i:											Mut	tation rate i	s constant
Analysis strategy:														Bayesiaı	n inference
														•	
Proposal distribution	ons fo	r par	amet	ter											
Parameter		-				F	ropo	sal							
Theta				Ме	tropo	olis s	samp	ling							
М					SI	ice s	samp	ling							
Prior distribution fo	or para	amet	er												
Parameter F	Prior	M	linimu	um			Me	an*		M	axim	um	Delta		Bins
Theta Exp win	dow	0.0	00001	10		0.	0100	000		10.0	0000	00	1.000000		500
M Exp win	dow	0.0	00010	00	100	000.	.0000	000	1000	000.0	0000	00	100000.000000		500

Markov chain settings:			Lo	ong chain
Number of chains				1
Recorded steps [a]				1000
Increment (record every x step [b]				100
Number of concurrent chains (replicates) [c]				3
Visited (sampled) parameter values [a*b*c]			;	300000
Number of discard trees per chain (burn-in)				1000
Multiple Markov chains:				
Static heating scheme		4 chains	s with tem	peratures
	100000.00	3.00	1.50	1.00
		Sw	apping into	erval is 1
Print options:				
Data file:		//mcalifor	nianus_21	0528.mig
Output file:				outfile.txt
Posterior distribution raw histogram file:			ļ	bayesfile
Print data:				No
Print genealogies [only some for some data type]:				None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02151
1	Θ_2	0.00001	0.00001	0.01001	0.08001	0.22001	0.09001	0.05610
1	Θ_3^-	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.02798
1	Θ_4	0.00001	0.00001	0.01001	0.08001	0.18001	0.09001	0.03537
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01494
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02237
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02229
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01545
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01368
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01551
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01233
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01014
1	M _{1->2}	0.0	0.0	1000.0	0.0008	24000.0	9000.0	6043.5
1	$M_{2->3}$	0.0	4000.0	13000.0	20000.0	32000.0	17000.0	13082.3
1	$M_{3->4}$	0.0	4000.0	15000.0	22000.0	36000.0	19000.0	14881.9
1	$M_{4->5}$	22000.0	36000.0	55000.0	72000.0	166000.0	67000.0	79069.3
1	M _{5->6}	0.0	4000.0	17000.0	26000.0	58000.0	23000.0	22953.4
1	M _{6->7}	0.0	18000.0	37000.0	44000.0	58000.0	33000.0	28777.5
1	M _{7->8}	0.0	18000.0	29000.0	42000.0	60000.0	33000.0	31875.5
1	M _{8->9}	0.0	0.0	17000.0	30000.0	48000.0	29000.0	51875.9
1	M _{9->10}	0.0	2000.0	19000.0	34000.0	136000.0	31000.0	47904.1
1	M _{10->11}	0.0	2000.0	13000.0	22000.0	50000.0	19000.0	17288.6
1	M _{11->12}	0.0	14000.0	35000.0	64000.0	222000.0	57000.0	76294.2

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 10:52:05]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2199.599587	(1a)
	-2123.879734	(1b)
Harmonic mean	-1851.689914	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	461/6456	0.07141
Θ_2	604/6607	0.09142
Θ_3^2	1334/6451	0.20679
Θ_4°	1310/6550	0.20000
Θ_5	3944/6489	0.60780
Θ_6°	1983/6640	0.29864
Θ_7°	2287/6602	0.34641
$\Theta_8^{'}$	3047/6567	0.46399
Θ_{0}	3225/6548	0.49252
Θ_{10}	3718/6537	0.56876
Θ_{11}^{10}	3728/6566	0.56777
Θ_{12}^{11}	5632/6590	0.85463
$M_{1->2}^{12}$	6568/6568	1.00000
$M_{2->3}$	6560/6560	1.00000
$M_{3\rightarrow 4}$	6527/6527	1.00000
$M_{4->5}$	6589/6589	1.00000
$M_{5->6}$	6478/6478	1.00000
M _{6->7}	6441/6441	1.00000
M $_{7->8}^{0->7}$	6472/6472	1.00000
$M_{8->9}$	6459/6459	1.00000
M $_{9->10}^{8->9}$	6386/6386	1.00000
$M_{10->11}^{9->10}$	6380/6380	1.00000
$M_{11->12}^{10->11}$	6434/6434	1.00000
Genealogies	38406/150103	0.25586

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.96340	56.35
Θ_2	0.94155	95.17
Θ_3^2	0.81167	326.07
Θ_4°	0.79003	374.58
\mathbf{p}_{5}^{T}	0.38233	1362.71
Θ_6°	0.71697	509.09
) ₇	0.67911	599.93
$\Theta_8^{'}$	0.56217	842.65
Θ_{α}	0.50274	1012.09
Θ_{10}	0.44801	1216.08
) ₁₁	0.46793	1120.95
12	0.19521	2027.29
1 1−>2	0.72005	510.64
1 2->3	0.74577	448.19
A 3->4	0.65033	657.95
A 4->5	0.75606	432.21
1 5->6	0.84845	246.79
1 6->7	0.73467	459.03
1 7->8	0.64178	659.58
1 _{8->9}	0.67065	594.84
1 _{9->10}	0.76021	410.60
10->11	0.80130	332.90
11->12	0.65021	635.69
n[Prob(D G)]	0.98186	27.49

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run