

Fall Semester 2019-2020 Continuous Assessment Test -1

Programme Name & Branch: B. Tech.

Course Code: MAT3004 Exam Duration: 90 minutes Slot: A1+TA1+TAA1+V1

Course Title: Applied Linear Algebra

Maximum Marks: 50

Answer All the Questions ($5 \times 10 = 50$)

S.N	O. Question	Course Outcome (CO)
I.	(a) Solve $Ax = b$ by Gauss-Jordan elimination method, where $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 4 & 5 \\ 1 & 4 & 7 \end{bmatrix}$, $x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$. [7]	CO1
	(b) Prove or disprove, if A and B are invertible matrices such that $A^2 = I$ and $B^2 = I$, then $(AB)^{-1} = BA$. [3]	CO1
2.	Investigate the values of λ and μ , so that the equations: $2x + 3y + 5z = 9$, $7x + 3y - 2z = 8$, $2x + 3y + \lambda z = \mu$ have (i) No solution (ii) A unique solution (iii) An infinite number of solutions.	co:
1.	(a) Let $A^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix}$, then find the matrix B such that $AB = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 4 & 1 \end{bmatrix}$. [3]	CO1
	(b) Let V be the vector space of polynomials of degree 3 over set of real numbers \mathbb{R} . Determine whether the polynomials $u = t^3 + 4t^2 - 2t + 3$, $v = t^3 + 6t^2 - t + 4$, $w = 3t^3 + 8t^2 - 8t + 7$ are linearly independent. [7]	
	Let V be the vector space of all 3×3 matrices whose entries are real numbers. Let $W = \{A \in V : A \text{ is symmetric matrix}\}$. (i) Show that W is subspace of vector space V . (ii) Find a basis of W . (iii) Find the dimension of W .	CO2
	(a) Let W be subspace of vector space \mathbb{R}^4 spanned by the vector $(1, 4, -1, 3), (2, 1, -3, -1)$, and $(0, 2, 1, -5)$. Find a basis for W and extend to a basis for \mathbb{R}^4 .	t CO2
1	(b) Prove that if the vector space V is the direct sum of subspaces U and V then for any vector $v \in V$, there exist unique $u \in U$ and $w \in W$ such that $v = u + w$.	= 0