Naïve Bayes Classifier

Instructor: Dr. Anam Qureshi

Naïve Bayes Classifier

 Naive Bayes is a probabilistic classifier based on Bayes' Theorem, assuming independence among features. It's often used for classification tasks such as spam filtering, sentiment analysis, and medical diagnosis.

Understanding Bayes' Theorem

 Bayes' Theorem calculates the probability of a hypothesis given some evidence:

$$P(H|E) = rac{P(E|H) \cdot P(H)}{P(E)}$$

- Where:
 - P(H|E) is the **posterior probability** (probability of the hypothesis H given the evidence E).
 - P(E|H) is the likelihood (probability of observing E given H).
 - P(H) is the **prior probability** (probability of the hypothesis before seeing the evidence).
 - P(E) is the **evidence** or **marginal likelihood** (probability of the evidence across all hypotheses).

Types of Naïve Bayes' Classifier

There are several variations of the Naive Bayes classifier depending on the type of data:

- **1.Gaussian Naive Bayes**: For continuous features, we assume they follow a normal distribution.
- **2.Multinomial Naive Bayes**: Suitable for discrete data, especially for document classification tasks where features represent word frequencies.
- **3.Bernoulli Naive Bayes**: For binary/Boolean data, where features represent binary outcomes (e.g., presence/absence of a word).

Training the model

To train the Naive Bayes model:

- 1. Calculate Prior Probabilities
- 2. Calculate the likelihoods

In Gaussian Naive Bayes, the likelihood is computed using the probability density function of a normal distribution.

In **Multinomial Naive Bayes**, the likelihood is based on feature counts (e.g., word frequencies).

Multinomial Naïve Bayes' Classifier

Source: Naive Bayes Classifier | Simplilearn

Dataset Link: Naive_Bayes_Dataset - Google Sheets

Calculating the Prior Probabilities

Emauson	u Table	В	ıy
Frequenc	y rable	Yes	No
Discount -	Yes	19	1
	No	5	5

Frequency Table		Buy		
		Yes	No	
Free Delivery	Yes	21	2	
	No	3	4	

Parameter Total		Buy	
rrequ	ency Table	Yes	No
Day	Weekday	9	2
	Weekend	7	1
	Holiday	8	3

Calculating the Likelihood

Likelihood Table		Buy		
Likelli	Likelinood Table		No	
Day	Weekday	9/24	2/6	11/30
	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Bu	ıy	
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Bu	ıy	
		Yes	No	
Free Delivery	Yes	21/24	2/6	23/30
	No	3/24	4/6	7/30
		24/30	6/30	

Example

- Consider a combination of the following factors where E equals:
 - Day = Holiday
 - Discount = Yes
 - Free Delivery = Yes

Probability that the customer will not purchase: H=No Buy

P(H|E)=P(No Buy| Discount= Yes, Free Delivery=Yes, Day=Holiday)

Probability that customer will buy. H=Buy

• P(H|E)=P(Buy| Discount= Yes, Free Delivery=Yes, Day=Holiday)

Results

- From the calculations, we find that:
 - Probability of purchase = 0.986
 - Probability of no purchase = 0.178
- Finally, we have a conditional probability of purchase on this day.
- Next, normalize these probabilities to get the likelihood of the events:
 - Sum of probabilities = 0.986 + 0.178 = 1.164
 - Likelihood of purchase = 0.986 / 1.164 = 84.71 percent
 - Likelihood of no purchase = 0.178 / 1.164 = 15.29 percent
- Result: As 84.71 percent is greater than 15.29 percent, we can conclude that an average customer will buy on holiday with a discount and free delivery.

Gaussian Naïve Bayes

- Gaussian Naive Bayes assumes that features follow a normal (Gaussian) distribution.
- Let's take a sample dataset

Feature 1	Feature 2	Class
6.0	3.0	0
2.0	2.0	0
3.0	1.0	0
8.0	3.0	1
7.0	2.0	1
9.0	3.0	1

Example

We want to classify a new data point (Feature 1 = 4.0, Feature 2 = 2.0)

Calculate the prior probabilities

The prior probability P(Class = 0) and P(Class = 1) can be calculated as the proportion of each class in the dataset.

• P(Class = 0): There are 3 samples in Class 0 and 6 total samples.

$$P(Class = 0) = \frac{3}{6} = 0.5$$

• P(Class = 1): Similarly, there are 3 samples in Class 1.

$$P(Class=1)=rac{3}{6}=0.5$$

Calculate the mean and variance

Mean

$$\operatorname{Mean}(\mu) = rac{1}{n} \sum_{i=1}^n x_i$$

Standard Deviation

Standard Deviation
$$(\sigma) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Variance

$$\operatorname{Variance}(\sigma^2) = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Calculate mean and variance (For Class 0)

• For each class, we calculate the **mean** and **variance** of each feature, assuming Gaussian (normal) distribution.

For Class 0:

Feature 1:

$$\mu_{0,1} = rac{6.0 + 2.0 + 3.0}{3} = 3.67$$
 $\sigma_{0,1}^2 = rac{(6.0 - 3.67)^2 + (2.0 - 3.67)^2 + (3.0 - 3.67)^2}{3} = 2.89$

Feature 2:

$$\mu_{0,2} = rac{3.0 + 2.0 + 1.0}{3} = 2.0$$
 $\sigma_{0,2}^2 = rac{(3.0 - 2.0)^2 + (2.0 - 2.0)^2 + (1.0 - 2.0)^2}{3} = 0.67$

Calculate mean and variance (For Class 1)

For Class 1:

• Feature 1:

$$\mu_{1,1} = rac{8.0 + 7.0 + 9.0}{3} = 8.0$$
 $\sigma_{1,1}^2 = rac{(8.0 - 8.0)^2 + (7.0 - 8.0)^2 + (9.0 - 8.0)^2}{3} = 0.67$

Feature 2:

$$\mu_{1,2} = rac{3.0 + 2.0 + 3.0}{3} = 2.67$$
 $\sigma_{1,2}^2 = rac{(3.0 - 2.67)^2 + (2.0 - 2.67)^2 + (3.0 - 2.67)^2}{3} = 0.22$

Compute the likelihood

• For a new data point (4.0,2.0), we need to calculate the likelihood $P(x_i|Class_k)$ using the Gaussian probability density function:

$$P(x_i|Class_k) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x_i-\mu)^2}{2\sigma^2}
ight)$$

For class 0

For Class 0:

Feature 1:

$$P(4.0|Class = 0) = \frac{1}{\sqrt{2\pi \cdot 2.89}} \exp\left(-\frac{(4.0 - 3.67)^2}{2 \cdot 2.89}\right)$$
$$= \frac{1}{2.68} \exp\left(-\frac{0.11}{5.78}\right) = 0.15$$

Feature 2:

$$P(2.0|Class = 0) = \frac{1}{\sqrt{2\pi \cdot 0.67}} \exp\left(-\frac{(2.0 - 2.0)^2}{2 \cdot 0.67}\right)$$
$$= \frac{1}{2.05} \exp(0) = 0.49$$

For class 1

For Class 1:

• Feature 1:

$$P(4.0|Class = 1) = rac{1}{\sqrt{2\pi \cdot 0.67}} \exp\left(-rac{(4.0 - 8.0)^2}{2 \cdot 0.67}
ight)$$
 $= rac{1}{2.05} \exp\left(-rac{16.0}{1.34}
ight) pprox 4.95 imes 10^{-6}$

• Feature 2:

$$P(2.0|Class = 1) = rac{1}{\sqrt{2\pi \cdot 0.22}} \exp\left(-rac{(2.0 - 2.67)^2}{2 \cdot 0.22}
ight)$$
 $= rac{1}{1.18} \exp\left(-rac{0.45}{0.44}
ight) pprox 0.27$

Calculate the posterior probabilities

Now calculate the posterior probabilities for each class by multiplying the prior with the likelihoods.

For Class 0:

$$P(Class = 0|4.0, 2.0) \propto P(Class = 0) \cdot P(4.0|Class = 0) \cdot P(2.0|Class = 0)$$

$$= 0.5 \cdot 0.15 \cdot 0.49 = 0.03675$$

For Class 1:

$$P(Class = 1|4.0, 2.0) \propto P(Class = 1) \cdot P(4.0|Class = 1) \cdot P(2.0|Class = 1)$$
 $= 0.5 \cdot 4.95 \times 10^{-6} \cdot 0.27 \approx 6.68 \times 10^{-7}$

Results

Since P(Class=0|4.0,2.0) is larger than P(Class=1|4.0,2.0), we predict **Class 0** for the new data point (4.0,2.0).

Class activity

- When to use Naïve bayes classifier?
- When not to use Naïve bayes classifier?