2012-1: Transmission Lines and Antennas

Javier Leonardo Araque Quijano

Of: 453 - 204

Ext. 14083

jlaraqueq@unal.edu.co

Transmission Lines

© Javier Araque, this material cannot be used outside the course where it was obtained without author's whiten

Waves in Transmission Lines

• Partial derivation of equations above (one wrt t, other wrt z followed by substitution of the element with crossed differentials) results in identical (wave) equations for v(z,t) and i(z,t):

$$\frac{\partial^2 v(z,t)}{\partial z^2} - LC \frac{\partial^2 v(z,t)}{\partial t^2} = 0$$
 Units (s/m)², the inverse of a square velocity

General solutions have the form:

$$v(z,t) = V^{+}f^{+}\left(t - \frac{z}{v}\right) + V^{-}f^{-}\left(t + \frac{z}{v}\right)$$

$$i(z,t) = \frac{V^{+}}{Z_{c}}f^{+}\left(t - \frac{z}{v}\right) - \frac{V^{-}}{Z_{c}}f^{-}\left(t + \frac{z}{v}\right)$$

$$Z_{c} = \sqrt{\frac{L}{C}} \quad v = \frac{1}{\sqrt{LC}}$$

© Javier Araque, this material cannot be used outside the course where it was obtained without author's written consent.

Terminated Transmission Lines (Time Domain)

In general both forward and backward waves are required to satisfy boundary conditions (voltage/current ratio at lumped loads). Whenever Zc and the terminating load are different, a reflected wave is generated, the reflection coefficient is:

$$\Gamma_L = \frac{R_L - Z_c}{R_L + Z_c} \qquad \Gamma_g = \frac{R_g - Z_c}{R_g + Z_c}$$

Lossy Transmission Lines (Frequency Domain)

$$v(z) = V^{+}e^{-\gamma z} + V^{-}e^{\gamma z}$$

$$i(z) = \frac{V^{+}}{Z_{c}}e^{-\gamma z} - \frac{V^{-}}{Z_{c}}e^{\gamma z}$$

$$\gamma = \sqrt{(R + j\omega L)(G + j\omega C)}$$

$$Z_{c} = \sqrt{\frac{R + j\omega L}{G + j\omega C}}$$

Generic lossy lines are:

<u>Dispersive</u> = phase velocity
depends on frequency
<u>Distorting</u> = Attenuation
constant depends on frequency

© Javier Araque, this material cannot be used outside the course where it was obtained without author's written consent.

Terminated Lossy Line (Frequency Domain)

$$Z_{in} = Z_C \frac{Z_L + Z_C \tanh(\gamma l)}{Z_C + Z_L \tanh(\gamma l)}$$

Important parameters

- Wavelength
- Phase velocity
- Power flow
- Terminated lines, load matching
- Reflection coefficient
- Standing Wave Ratio (SWR)
- Attenuation constant (perturbation technique)