Data Structure for Disjoint Sets

Chapter 21 (omit 21.4)

Disjoint Set Data Structure

- Its implementation
- Its operations

Relations

- R: a relation defined on a set S of elements
- aRb is true (where a,b∈S) ⇒ a is related to b by R

Properties

- R is reflexive if aRa is true $\forall a \in S$
- R is symmetric if (aRb is true \Leftrightarrow bRa is true) \forall a,b \in S
- R is transitive if (aRb is true and bRc is true \Rightarrow aRc is true) \forall a,b,c \in S
- R is an Equivalence Relation (ER) if it is reflexive, symmetric and transitive

Properties

	reflexive	symmetric	transitive	equivalence
=	Y	Y	Y	Y
<	N	N	Y	N
>=	Y	N	Y	N
married	N	Y	?	N
sibling-of	Y	Y	Y	Y
father-of	N	N	N	N

Equivalence Problem

• If R is an ER defined over a set of objects S, for every pair (a, b) where a,b∈S, determine if aRb is true or false

Equivalence Class (EC)

• The EC of an element $a \in S$ is the subset of S containing all elements that are related to a by the ER R.

• In other words, if we define an ER R over a set S, R partitions S into a number of disjoint sets that are ECs.

S john mary george sam randy peter tim sara james kathy tom claire

R: sibling of; suppose we know these are siblings

Since R is an ER, additional relations (red lines) are also true, and R divides S into 3 ECs.

ECs

- Now, if we maintain information about all ECs in a database of objects with a relation R defined over these objects, we can answer the question aRb? by checking if a and b belong to the same EC.
- Similarly, we can assert aRb in the database by putting a and b in the same EC.

ECs

- This means that we need to be able to efficiently implement two operations:
 - determine if aRb is true/false how?
 - true if EC(a)=EC(b); false otherwise
 - assert aRb in the database how?
 - if EC(a) != EC(b) then merge EC(a) and EC(b)
 - So we need two operations
 - Find(element) returns its EC
 - Union(EC1, EC2) merges the two ECs

Implementation

- Data elements in the database are numbered 1...n
- ECs are named 1...n also (don't get confused with element numbering)
- Initially we assume that no element is related to any other, i.e. each is in an EC by itself
- Two approaches to implementing such a database so that Find and Union operations can be done very efficiently

• Use an array A in which A[i] contains the "name" of the EC to which element i belongs.

1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	5	4	3	2	1

• How will you implement Find(i) & Union(i,j)? With what complexities?

- Find(i) (where i is an element)
 - Returns A[i]
 - Find is $\Theta(1)$
- Union(i,j) (where i and j are names of ECs)
 - How can this be implemented?
 - Go through the array and change all i's to j's or vice versa
 - Union is $\Theta(n)$
 - Result of Union(1,2) on the previous array:

1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	5	4	3	2	2

- Keep all elements in the same EC in a tree.
- The root provides the name of the EC.
- This generates a forest of trees, which is implemented with an array P.
- P[i] = parent of i if i is not the root; else P[i]=0

How can Find and Union be implemented?

1	2	3	4	5	6	7	8	9	10
5	1	4	5	0	0	6	7	6	9

- Find(element): return the root of the tree containing element.
- Find(i) needs exactly as many steps as the depth of element i in its tree why?
- Find is O(n) why?

1	2	3	4	5	6	7	8	9	10
5	1	4	5	0	0	6	7	6	9

- Union(i,j) where i & j are roots of trees (names of ECs): if i != j then set P[i]=j OR P[j]=i (be consistent)
- Union's complexity is $\Theta(1)$

Which approach is better?

- Approach 1
 - Find is $\Theta(1)$ and Union is $\Theta(n)$
- Approach 2
 - Find is O(n) and Union is $\Theta(1)$
 - O(n) better than Θ (n) in this case: why?
 - So this is the preferred approach
- In either, a sequence of m operations on a database of size n will require O(mn) time

Disjoint Set Operations

- Now, let us take a closer look at the fundamental operations Find and Union under the implementation approach 2 where a disjoint set is implemented as a forest.
- Note that if there are n data elements, the id's of the elements, names of the disjoint sets, and the indexes of the array implementation range from 1 to n.

Disjoint Set Operations

- Union
 - Arbitrary
 - By-Size
 - By-Height
- Find
 - without/with Path Compression

Arbitrary Union

- Union(i,j) where i & j are roots of trees (names of ECs): if i != j then set P[i]=j OR P[j]=i (be consistent)
- Union's complexity is $\Theta(1)$ best, worst and average case.

Arbitrary Union

- With arbitrary union, n-deep trees may be generated.
- Example: Initially,

1	2	3	4	5	6	7	8	_
0	0	0	0	0	0	0	0	

Union(Find(1),Find(2));
Union(Find(3), Find(1));
Union(Find(4), Find(3));
Union(Find(5), Find(4));
Union(Find(6), Find(5));
Union(Find(7), Find(6));
Union(Find(8), Find(7))

1	2	3	4	5	6	7	8
3	1	4	5	6	7	8	0

"Smart" Union

- Use some "smarts" in deciding how to merge two trees!
- Two ways: Union-by-Size and Union-by-Height

- Make the smaller tree a subtree of the root of the larger one
 - Implementation: at array cells corresponding to roots, use the negative of tree-size instead of 0
 - Add the two tree sizes when unioning

- Redo the previous example:
- Union(Find(1),Find(2));
 Union(Find(3), Find(1));
 Union(Find(4), Find(3));
 Union(Find(5), Find(4));
 Union(Find(6), Find(5));
 Union(Find(7), Find(6));
 Union(Find(8), Find(7))

1	2	3	4	5	6	7	8
-8	1	1	1	1	1	1	1

- If you start with n nodes in the set originally, any tree resulting from Unionsby-size will have a depth of at most logn.
- Why?

Informal Proof

- We start with each data in its own 1-node (0-depth) tree
- Note that a node's depth will change as a result of a subsequent U-b-s operation only if it is in the smaller of the two trees being merged (unless both are equal size)
- This means that every time the depth of a node increases by 1, the size of its tree at least doubles
- Suppose after many U-b-s operations a data item is k-deep in its tree
- This means that the tree must have at least 2^k nodes

Informal Proof

- So any tree of depth k must have at least 2^k nodes
- Since there are only n data items, $2^k \le n$
- So $k \le \log n$
- I.e. the depth of any node $\leq \log n$
- Therefore the depth of any tree $\leq \log n$

- Any tree resulting from Unions-by-size will have a depth ≤ logn
- This implies that Find is O(logn)
 - (an improvement over O(n) with arbitrary Union!)
- Union is still constant time $\Theta(1)$
- A sequence of m operations on a data set of size n has complexity O(mlogn).

Union-by-Height

- Make the shallower tree a subtree of the root of the deeper one
 - Implementation: at array cells corresponding to roots, use the negative of tree-depth instead of 0
 - Increase the height by 1 when unioning two trees of the same height

Union-by-Height

- Redo the previous example:
- Union(Find(1),Find(2));
 Union(Find(3), Find(1));
 Union(Find(4), Find(3));
 Union(Find(5), Find(4));
 Union(Find(6), Find(5));
 Union(Find(7), Find(6));
 Union(Find(8), Find(7))

1	2	3	4	5	6	7	8
-2	1	1	1	1	1	1	1

Union-by-Height

- If you start with n nodes in the set originally, any tree resulting from Unionsby-height will have a depth of at most logn.
- Thinking Assignment: Prove this by appropriately modifying the proof for Union-by-Size

- With smart unions we can bound the depth of any tree to logn.
- But Find operations on leaf nodes will still take logn time.
- We can improve this situation by modifying the Find operation.
- During Find(x), change the parent of every node between x and the root to be the root of the tree.
- An example of self-adjusting data structure

Find without Path Compression

Find with Path Compression

• Why?

- First, it gradually decreases the depth of the tree
- Second, items once accessed are generally more likely to be accessed again, and this makes such accesses single-step

- Path compression works well with Unionby-Size
- But how about Union-by-Height?

- As PC changes tree heights, for Union-by-Height to work correctly, tree heights need to be recomputed after every Find
- This is computationally expensive and cancels out the efficiency achieved by PC

• So the most efficient operations can be achieved by Find-with-PC and Union-by-Size

Summary

- Disjoint Set Implementations
 - Approaches 1 & 2: 2 commonly used
- Unions
 - arbitrary, by-size, by-height
- Find
 - with or without Path Compression
- The best combination
 - Approach 2, Union-by-Size, Find-with-PC