

### 오픈소스SW기초 (2024-2)

# 1. 교과목 소개 및 개요

국립금오공과대학교 컴퓨터공학과 / 인공지능공학과







- 본 교과에서는 오픈 소스 소프트웨어 개발에 필수적인 클라우드 기반의 <u>버전 관리</u> <u>도구</u>와 대표적인 오픈 소스 운영체제인 <u>리눅스(Linux)</u>, 그리고 안정적인 소프트웨어 개발을 위한 <u>가상 환경</u>의 기본 개념을 이해하고 이들에 대한 구체적인 활용 방법을 학습한다.
- 클라우드 기반 노트북 환경에서의 프로그래밍과 소프트웨어 배포 및 버전 관리를 수행하는 일련의 전 과정을 학습한다.
- 이를 통해 컴퓨터공학자가 갖추어야 할 프로그램 개발 능력과 오픈 소스 활용 능력, 그리고 협업과 의사소통 능력을 동시에 배양한다.







- ① 소프트웨어의 효과적인 개발과 관리를 위해 필수적으로 요구되는 <u>버전 관리 도구</u>의 기초적인 사용법을 이해하고 이를 실제 소프트웨어의 개발과 배포 및 기여에 활용할 수 있다.
- ② 대표적인 오픈 소스 기반의 운영체제인 <u>리눅스</u>의 기초적인 활용법과 명령어를 이해하고, 리눅스 환경에서 소프트웨어의 버전 관리와 가상환경 구축 방법을 이해할 수 있다.
- ③ 다양한 <u>오픈 소스 소프트웨어</u>와 <u>패키지 라이브러리</u>를 활용하는 방법을 익히고, 실제 프로그램을 개발/배포하는 일련의 <u>소프트웨어 개발 프로세스</u>를 이해하여 <u>실제</u> <u>간단한 프로젝트</u>를 수행할 수 있다.





## 주차 별 강의 계획

| 주차  | 강의주제                       | 강의내용                                                       |
|-----|----------------------------|------------------------------------------------------------|
| 1주차 | GitHub 소개 및 입문             | 오픈 소스 소프트웨어의 소개, 버전관리 도구 개요,<br>GitHub Desktop을 활용한 Git 입문 |
| 2주차 | GitHub를 이용한 코드 관리          | GitHub를 이용한 코드 관리 방법, 코드 업로드와 수정 및 변경 방법 실습                |
| 3주차 | GitHub를 이용한 오픈소스<br>협업과 기여 | Branch의 기본 개념, 프로그램 배포와 오픈 소스 기여 방법 실습                     |
| 4주차 | Linux and Git 초급 기능        | 리눅스 기초 명령 실습 (1)                                           |
| 5주차 | Linux and Git 초급 기능        | 리눅스 기초 명령 실습 (2), Git bash 활용 방법 실습 (1)                    |
| 6주차 | Linux and Git 초급 기능        | Git bash 활용 방법 실습 (2)                                      |
| 7주차 | Linux and Git 중급 기능        | Git bash를 활용한 협업과 프로그램 배포 및 오픈 소스 기여 방법                    |
| 8주차 | 중간고사                       |                                                            |





# 주차 별 강의 계획

| 주차   | 강의주제                                 | 강의내용                                                                                          |
|------|--------------------------------------|-----------------------------------------------------------------------------------------------|
| 9주차  | Linux and Git 중급 기능                  | Git 중급 명령어 및 관련 기능 실습                                                                         |
| 10주차 | Linux and Git 중급 기능                  | Git 중급 명령어 및 관련 기능 실습                                                                         |
| 11주차 | Linux C 프로그래밍 입문                     | Linux C 프로그래밍 환경 구축과 프로그램 개발 실습                                                               |
| 12주차 | Linux C 프로그래밍 입문                     | Linux C 프로그램 개발 및 배포 실습                                                                       |
| 13주차 | 파이썬 패키지 라이브러리 관리와<br>파이썬 인터랙티브 프로그래밍 | 패키지 관리의 기본 개념과 필요성,<br>Conda 기초 명령어 및 Conda를 활용한 패키지 관리 방법,<br>Google Colab을 활용한 파이썬 프로그래밍 실습 |
| 14주차 | 종합 실습                                | Git을 이용한 프로그램 협업 개발과 배포, 타 사용자의 Git remote repository에 기여하는 전 과정에 대한 종합 실습 진행                 |
| 15주차 | 기말고사                                 |                                                                                               |



### 수업 진행 방법



#### • Part I. Git 기초

- ▶ 버전 관리 도구의 개념과 필요성, 버전 관리의 원리
- ➤ GitHub Desktop을 활용한 Git 주요 명령어 실습
- ▶ Branch 기본 개념 및 필요성 이해와 관련 기능 실습

#### • Part II. Linux 및 Git bash 활용 기초

- ▶ Linux 소개 및 기초 명령어 실습
- ▶ Git bash를 활용한 주요 Git 명령어 실습
- ▶ GitHub를 이용한 협업 개발과 오픈소스SW 기여 방법 실습



### 수업 진행 방법



#### • Part III. Linux and Git 중급 기능

- ▶ Linux 중급 명령어 실습
- ➤ Git 중/고급 기능 실습
- Linux 환경에서 간단한 C 프로그래밍 실습

#### • Part IV. 파이썬 패키지 관리와 파이썬 인터랙티브 프로그래밍

- ▶ Conda를 이용한 파이썬 패키지 라이브러리 관리 방법 및 주요 명령어 실습
- ▶ Google Colab을 활용한 파이썬 프로그래밍 종합 실습
- ▶ 실습 결과를 Git을 이용하여 배포하고 다른 사람의 Git 저장소에 기여하는 전 과정 실습



### 평가 방법



• 지필평가: 70점

▶ 중간고사: 35% + 기말고사: 35% → 주관식(단답형/약술형) 중심으로 출제

• 과제: 15점

▶ 총 4번의 과제가 부여되며, 각 과제 당 10점 만점.

▶ 과제는 실습한 내용과 결과 그리고 실습 과정에서 발견된 다양한 이슈들을 종합적으로 분석하여 "실습 결과 보고서"로 제출함.

▶ 과제 제출 시 LMS를 활용함.

▶ 과제 제출 시 제출 기본 점수가 자동 부여되며, 미 제출 시에는 0점.



### 평가 방법



- 출석: 10점
  - ▶ 결석 1시간 당 1점, 지각 2시간 당 1점 감점
  - ▶ 총 출석 시수의 1/4 이상 결석 시 본교 규정에 의거 F학점 부여
- 태도: 5점
  - ▶ 전원 기본점수로 3점 부여
  - ▶ 수업 태도와 참여도에 따라 최대 ±2점 부여(가산점 / 감점)







- 각 과제별로 실습한 내용에 대한 최종 결과 보고서를 제출
- 보고서는 완전한 서술형 문장으로 기술되어야 하며 아래의 양식을 따름
  - 문제 분석: 제시된 문제의 정의와 개요를 포함하여 포괄적으로 분석
  - 실습 목표: 본 실습에서 중점을 두어 해결하고자 하였던 목표에 대해 서술
  - 실습 내용: 실습한 내용과 결과에 대해 가능한 구체적으로 서술 실습 결과 화면(screenshot)을 설명과 함께 반드시 첨부
  - 결과 고찰: 실습에서 사용한 각 명령어의 의미와 기능에 대해 분석하여 서술 실습 시 어려웠던 점은 무엇이며 어떻게 해결하였는가에 대해 설명 ※ 프로젝트 과제의 경우 소스코드를 반드시 첨부해야 함. (→ 별도 안내 예정)







- [필수] GitHub 사이트에 접속하여 GitHub <u>회원 가입</u>
  - ▶ 기존 GitHub 계정이 있는 학생 → 새로운 GitHub 계정 생성할 것.
  - ➤ Web site: <a href="https://github.com/">https://github.com/</a>
- [선택] 개인 노트북을 사용하여 수업에 참여하는 학생
  - ① Git 설치(※ git bash가 반드시 포함되어 있어야 함)
    - ➤ Download: <a href="https://git-scm.com/downloads">https://git-scm.com/downloads</a>
  - ② GitHub Desktop 설치
    - ➤ Download: <a href="https://desktop.github.com/">https://desktop.github.com/</a>





# Q & A

