随机事件与概率

Didnelpsun

目录

1	排列组合		
	1.1	捆绑法	1
	1.2	插空法	1
	1.3	插板法	1
2	随机事件概率		2
3 概率模型		模型	2
	3.1	古典概型	2
4	独立	性	2

1 排列组合

排列公式:
$$A_n^m = \frac{n!}{(n-m)!}$$
。
组合公式: $C_n^m = \frac{n!}{(n-m)!m!}$ 。

1.1 捆绑法

要求某些元素必须在一起。

例题: ABCDEF 六个人排队,要求 AB 必须在一起,问有多少种排法。

解:排法就是排列的问题。首先 AB 在一起,要么是 AB 要么是 BA,也是一种排列,有 A_2^2 种。

然后将 AB 看作一个整体与 CDEF 进行排列,一共五个元素,进行全排列: A_5^5 。

因为是按步骤来的,所以使用乘法: $A_2^2 \cdot A_5^5 = 120$ 。

1.2 插空法

要求某些元素不能相邻。

例题:要对 6 个唱歌和 4 个舞蹈节目进行排列,要求两个舞蹈节目不能相邻,求多少种排法。

解:由于是对舞蹈进行限制,所以对唱歌的序列没有特别的限制,第一步先对唱歌进行全排列 A_6^6 。

第二步对舞蹈进行排列,由于舞蹈之间不能相邻,所以舞蹈节目必然是在两个唱歌节目之间进行插孔排序的,而唱歌 6 个节目一共 7 个空,所以排列 A_7^4 。由于是步骤,所以乘法: $A_6^6 \cdot A_7^4$ 。

1.3 插板法

与插空法类似,但是是组合进行归类,而不是排序。

例题:将8个完全相同的球放入三个不同的盒子,要求每个盒子至少有一个球,求一共有多少种放法。

解:相当于在七个空插入两个板。即 $C_7^2=21$ 。

2 随机事件概率

是基本事件关系的概率运算。

例题: 已知事件 A 和 B 相互独立,P(A) = a,P(B) = b,如果事件 C 必然导致 AB 同时发生,则求 ABC 都不发生的概率。

解: 首先必须理解题目的意思,并将其抽象为具体的计算式子。

ABC 都不发生就是 A 不发生且 B 不发生且 C 不发生,用式子表达就是 \overline{ABC} 。

然后是分析事件 C 必然导致 AB 同时发生,AB 同时发生就是 AB,即 AB 比 C 的范围大, $C \subset AB$, $\overline{AB} \subset \overline{C}$,: $\overline{ABC} = \overline{AB} \cap \overline{C} = \overline{AB}$ 。

又事件 AB 相互独立。 $P(\overline{AB}) = P(\overline{A})P(\overline{B}) = (1-a)(1-b)$ 。

3 古典概型

3.1 定义法

3.2 随机分配

将 n 个质点分配倒 N 个容器中:

4 独立性

例题:射手对同一目标独立地进行 4 次射击。若至少命中一次的概率为 $\frac{15}{16}$,则求该射手对同一目标独立地进行 4 次射击中至少没命中一次的概率。

解:这个题目其实就是四重伯努利试验,彼此之间的概率都是独立的。令每一次命中的概率为 p,则该次未命中的概率为 1-p。

若至少命中一次的概率为 $\frac{15}{16}$,则其对立事件全部不命中的概率为 $1-\frac{15}{16}=\frac{1}{16}$,则 $(1-p)^4=\frac{1}{16}$,则得到每次命中概率 $p=\frac{1}{2}$ 。

求该射手对同一目标独立地进行 4 次射击中至少没命中一次的概率,则其对立事件为每次命中,其概率为 $\left(\frac{1}{2}\right)^4 = \frac{1}{16}$,则至少没命中一次的概率为 $1 - \frac{1}{16} = \frac{15}{16}$ 。