

Homework #1: Warming up for Calculus

Note: Your work can only be assessed if it is legible. You do not need a calculator to complete this assignment.

1. Simplify the following algebraic expressions. Be sure to show the algebraic steps required to find the final answer.

(a) Simplify
$$\frac{1}{3-2} - \frac{1}{3} + \frac{1}{4-1}$$
.

(b) Simplify
$$\frac{(x^2y^{-3})^2}{(y^{-3}x^{-2})^{-2}}$$
.

$$\frac{(x^2y^3)^2}{(y^{-3}x^2)^{-2}} = \frac{x^4y^6}{x^4y^6} = \frac{1}{y^{12}}$$

(c) Simplify
$$(4x^6)^{3/2}$$

$$(4x^{6})^{3/2} = (2x^{3})^{3} = 8x^{9}$$

(d) Let
$$f(x) = x^2 + 2x$$
 and $h \neq 0$. Simplify $\frac{f(x+h) - f(x)}{h}$, the difference quotient of $f(x)$.

$$\Rightarrow \frac{f(x+h)-f(x)}{h} = \frac{2x+h+1}{2x+h+1}$$

Due: Tuesday, July 3

(e) Rationalize
$$\frac{3}{x - \sqrt{x}}$$

$$\frac{3}{X-JX}\cdot \left(\frac{2}{X+JX}\right) = \frac{3(x+JX)}{x^2-X}$$

(a)
$$x^2 - 9$$

2. Factor the following expressions fully.

(a)
$$x^2 - 9$$

(b) $x^2 - 9$

(c) $x^2 - 9$

(b)
$$x^2 - 2x - 35$$

(c)
$$x^3 - a^2x$$

c)
$$x^3 - a^2x = x(x - a)(x + a)$$

$$(a) \frac{2^{5x}}{2^x}$$

$$\frac{2^{5x}}{2x} = 2^{5x} \cdot 2^{-x} = 2^{5x-x} = 2^{4x}$$

(b)
$$e^{2x}e^{-3x}$$

(c)
$$\frac{e^{2x}-1}{e^x-1}$$

$$\frac{e^{2x}-1}{e^{x}-1}=\frac{(e^{x})^{2}-(1)^{2}}{e^{x}-1}=\frac{(e^{x}-1)(e^{x}+1)}{(e^{x}-1)}=\frac{e^{x}+1}{(e^{x}-1)}$$

$$\sqrt[4]{3} = \sqrt[4]{3} = \sqrt[4]$$

4. Evaluate
$$\log_4\left(\frac{1}{64}\right)$$
.

logy (
$$\frac{1}{64}$$
) = logy ($\frac{1}{43}$) = log ($\frac{1}{43}$) = log ($\frac{1}{43}$) = $\frac{3}{1}$

5. Solve for
$$x$$
 exactly:

(a)
$$\log_2(x) + \log_2(x-2) = 3$$

(a)
$$\log_2(x) + \log_2(x-2) = 3$$

 $\log_2(x) + \log_2(x-2) = 3$ $\log_2(x) + \log_2(x-2) = 3$

$$=) 2^{\log_2(x)} 2^{\log_2(x-2)} = 8 \Rightarrow \times (x-2) = 8$$

(b)
$$\ln x - \ln(x^2) = 5$$
. _ —

$$\Rightarrow \frac{e^{l} \propto e^{s}}{l_{1} \propto e^{s}} = e^{s}$$

$$(\rightarrow (x-4)(x+2) = 0$$

=> x2-2x-8=0

$$\times = 1$$

$$\frac{7}{2} \times \frac{1}{2} = e^{5}$$

$$\frac{1}{2} \times \frac{1}{2} = e^{5}$$

$$\frac{1}{2} \times \frac{1}{2} = e^{5}$$

- 6. Write the following sets of numbers in interval notation
 - (a) the open interval with endpoints 2 and 3

- (c) all real numbers x such that x < -2 and $x \ge 2$.
- (-0,-2) 0 [2,00)
- 7. Evaluate the following trigonometric functions exactly.
 - (a) $\sin(\pi/3)$

(b) $\cos(\pi/3)$

(c) $sin(\pi)$

(d) $\sin(3\pi) = Sin(\pi)$

(e) $\cos(100\pi) = \cos(7\pi)$

8. Simplify the following trigonemtric expression: $\sin(\arctan 2x)$.

0 = arcten (2x)

2x +== (e) = 7x

9. Find the inverse of the following function and state its domain: $f(x) = \frac{x}{1+2x}$.

 $\Rightarrow \frac{1}{\sqrt{-2}} = \frac{1}{\sqrt{-2}} \Rightarrow \frac{1-2y}{\sqrt{-2}} = \frac{1}{\sqrt{-2}}$ so $x = \frac{1}{\sqrt{-2}}$

Hence, f'(x) = 1-7x which has donein

(-PO, =) U = PO

