TD n°12 : Formes quadratiques (et révision) 14 et 17/01/2025

Exercice 1. Quelques réductions

Une forme bilinéaire symétrique sur un \mathbb{R} -espace vectoriel de dimension finie n est toujours équivalente à $b(X,Y)=x_1y_1+\ldots+x_sy_s-x_{s+1}y_{s+1}-\ldots-x_ry_r$. On appelle r le rang et (s,r-s) la signature. Donner le rang et la signature pour les forme bilinéaires associées aux formes quadratiques suivantes :

- 1. La forme $f((x,y,z)) = 3x^2 + 3y^2 + 3z^2 2xy 2yz 2zx \text{ sur } \mathbb{R}^3$.
- 2. La forme $g((x,y)) = 4xy \text{ sur } \mathbb{R}^2$.
- 3. La forme $Tr(A)^2$ sur $M_n(\mathbb{R})$.
- 4. La forme $\operatorname{Tr}({}^tAA)$ sur $\operatorname{M}_n(\mathbb{R})$.

Dans le cas de \mathbb{F}_p , pour $p \neq 2$, nous nous intéressons à la dimension 2.

- 5. Combien y a-t-il de carrés dans \mathbb{F}_p ?
- 6. En déduire que pour tous $a, b \in \mathbb{F}_p^{\times}$, l'équation $ax^2 + by^2 = 1$ a une solution.
- 7. lacktriangle En déduire qu'il n'y a que deux classes d'équivalence de formes bilinéaires symétriques non dégénérées sur \mathbb{F}_p^2 . À quelle classe un plan hyperbolique appartient-il?

Correction de l'exercice 1:

- 1. On vérifie que $f((x, y, z)) = (x + y)^2 + (y + z)^2 + (z + x)^2$. Les trois coordonnées dans les carrés sont libres, donc la forme est de rang 3 et de signature (3, 0).
- 2. On écrit que $g((x,y)) = (x+y)^2 (x-y)^2$. Les coordonnées dans les carrés sont libres, donc la forme est de rang 2 et de signature (1,1).
- 3. On écrit que $\operatorname{Tr}({}^t AA) = \sum_{i,j} a_{i,j}^2$. La forme est de rang n^2 et de signature $(n^2,0)$.
- 4. On écrit que $Tr(A)^2 = (\sum_i a_{i,j})^2$. La forme est de rang 1 et de signature (1,0).

Exercice 2. Isométrie avec un grand espace fixe

Soit K un corps de caractéristique $\neq 2$. Soit b une forme bilinéaire symétrique non dégénérée sur un K-espace vectoriel V. Soit H un hyperplan de V et $u \in O(b)$ tel que $u_{|H} = \operatorname{Id}_H$.

- 1. Supposons que $b_{|(H\times H)}$ est non dégénérée. Démontrer que $H\oplus H^{\perp}=V$. Démontrer que l'on est dans exactement l'un des deux cas : u est l'identité ou u est la symétrie orthogonale par rapport à H.
- 2. Supposons que $b_{|(H\times H)}$ est dégénérée. En déduire que tout élément de $V\backslash H$ n'appartient pas à H^{\perp} . Démontrer que u est l'identité.

Correction de l'exercice 2:

1. L'hypothèse $b_{|(H\times H)}$ non dégénérée se traduit exactement par $H\cap H^{\perp}=\{0\}$. Dans ce cas, les identités entre dimensions affirment que $H\oplus H^{\perp}=V$. Soit v une base de H^{\perp} (qui est de dimension 1 puisque H est un hyperplan). Puisque u préserve b, on sait que $u(v)\in H^{\perp}$. Les deux cas demandées correspondent à $u(v)=\pm 1$ et sont distincts par $\operatorname{car}(K)\neq 2$.

En posant $u(v) = \lambda v$, on a

$$\lambda^2 b(v, v) = b(u(v), u(v)) = b(v, v).$$

Puisque v est orthogonal à H et que b n'est pas dégénérée, on sait que $b(v,v) \neq 0$, donc que $\lambda^2 = 1$. Ceci conclut.

2. Soit $v \in V \backslash H$. Puisque H^{\perp} est de dimension 1 et $b_{|(H \times H)}$ non dégénérée, on sait que $H^{\perp} \subset H$, d'où $v \notin H^{\perp}$.

Posons $u(v) = \lambda v + h$. Posons également $h_0 \in H^{\perp}$ qui est tel que $b(h_0, v) \neq 0$ pour les mêmes raisons que ci-dessus. On obtient

$$b(h_0, v) = b(u(h_0), u(v)) = b(h_0, \lambda v + h) = \lambda b(h_0, v)$$

d'où $\lambda=1$. On en déduit aussi que $v+h=u(v)=u^2(v-h)$ ce qui implique sur les formes quadratiques l'égalité entre

$$b(v+h,v+h) = b(v,v) + 2b(v,h) + b(h,h)$$

$$b(v,v) \text{ et}$$

$$b(v-h,v-h) = b(v,v) - 2b(v,h) + b(h,h).$$

Comme on est en caractéristique différente de 2, on en déduit que b(v, h) = 0. On finit en réécrivant que

$$\forall h' \in H, \ b(v, h') = b(u(v), u(h')) = b(v, h') + b(h, h')$$

ce qui prouve que $h \in H^{\perp}$. Comme nous avons déjà prouvé b(v,h) = 0, et que b est non dégénérée h = 0.

Figure $1-{\rm Puissance}~65^e$ appliquée aux racines 1554-ièmes de l'unité.