Bellanger Géry; Guérin Thibaut; Trebern Ewan

LES BIOPLASTIQUES:

UNE ALTERNATIVE AU PÉTROLE DANS LE DOMAINE DES MATIÈRES PLASTIQUES ?

- I. Les origines du pétrole et les plastiques classiques
- II. Les bioplastiques « classiques »
- III. Les bioplastique de 2^e génération

I. Les origines du pétrole et les plastiques classiques

Extraction du pétrole

Les étapes de formation d'un plastique à partir de pétrole

Matières premières : HYDROCARBURES (pétrole brut par exemple)

DISTILLATION

NAPHTA

VAPO-CRAQUAGE

MONOMERES

POLYMERISATION

POLYMERES

ADJUVANTS/ ADDITIFS

MATIERES PLASTIQUES (thermoplastiques ou thermodurcissables)

FACONNAGE

MOULAGE / EXTRUSION / INJECTION/ THERMOFORMAGE

Chauffage pour séparation des composants

Chauffage puis refroidissement pour obtenir des alcènes (éthylène, propylène)

Regroupement des monomères en polymères

Un exemple de polymérisation : la fabrication du polyéthylène

Les multiples problèmes des plastiques pétroliers:

Les bioplastiques « classiques »

Le caoutchouc naturel existait bien avant les plastiques pétroliers

Déchiqueteur de caoutchouc (1820)

Des exemples de polymères organiques non fossiles, ou « bioplastiques »:

A partir d'amidon (polymère de glucose)

A partir d'acide lactique

UN BIOPLASTIQUE FABRIQUE A PARTIR D'AMIDON DE MAIS

Peser (directement dans un erlenmeyer de 100 ml) 2.5 g d'amidon de maïs

Ajouter dans l'erlenmeyer 2 ml de glycérol (solution aqueuse à 50% en volume)

Le glycérol permet d'augmenter le volume libre entre deux chaînes de polymères pour en diminuer les interactions et ainsi favoriser le mouvement de l'une par rapport à l'autre. On passe donc d'un matériau rigide à un plastique. Le film fabriqué sera ainsi plus résistant à la tension et à la flexion. De plus, l'ajout de glycérol rend le film plastique transparent

Ajouter enfin 20 ml d'eau distillée et 3 ml d'acide chlorhydrique.

L'acide chlorhydrique sert à favoriser la déstructuration du grain d'amidon en favorisant la séparation amylose / amylopectine et le passage de l'amylose en solution

Mettre l'agitateur magnétique dans la solution et la faire chauffer en agitant au bain marie. Surveiller la température avec le thermomètre. Quand la température est de 100 °C, continuer le chauffage et l'agitation appere pendant 15 minutes.

encore pendant 15 minutes.

Étaler le mélange ainsi obtenu sur du papier sulfurisé

Avantages et inconvénients des bioplastiques de 1e génération :

	Avantages	Inconvénients
	Pollue moins	Pas toujours biodégradable
	Compostable ou (peu) biodégradable	Concurrence avec la production alimentaire!
	Ressources illimitée!	Additifs chimiques
	Plus facile a produire	Couteux et hydrovore

III. Les bioplastique de 2^e génération

Qu'est-ce que le Biomiscanthus®?

L'invention du Biomiscanthus® est avant tout une **rupture technologique** déterminante par le choix de ses composants et par son avancée technologique en rapport avec les bio plastiques dits de 1ère génération, eux même considérés comme une alternative aux plastiques

traditionnels.

Le Biomiscanthus® est une innovation écologique et environnementale qui s'émancipe de la controverse liée à l'utilisation de ressources alimentaires pour fabriquer la majorité des bio plastiques actuellement commercialisés sur le marché.

Pour exemple, l'acteur principal, Nature Work, fabrique et exporte le PLA des USA en utilisant principalement du maïs.

Le biomiscanthus

La cellulose : un biopolymère de glucose

Cellulose au microscope (LPNA??) x200

Une innovation: le bioplastique de chitine de crevette, ou « shrilk »!

FORMULE DU CHITOSANE

FORMULE DE LA FIBROÏNE DE SOIE

Pour résumer

Plastiques	Bioplastiques 1 ^{ère} génération	Bioplastiques 2 ^{ème} génération
Facile à produire	Illimité en production	Engrais naturel
Infrastructures déjà présentes	Ne pollue pas	Fabriqué a partir de déchets
MAIS	MAIS	Illimité en production
Rejette des GES	Pourrait empiéter sur les champs agricoles	MAIS
Polluants	Additifs toxiques	Aucune infrastructure
Limité en production	Peu biodégradable	Difficile a produire

Conclusion

BIOPLASTIQUES

Bellanger Géry; Guérin Thibaut; Trebern Ewan

- > Accueil
- I Les origines du pétrole et les plastiques classiques
- II Les bioplastiques « classiques »
- III Les bioplastique de 2^e génération
- × Exit