9/11/23, 3:29 PM PYTHON_MLR_OSL

Intro to MLR OLS in statmodels.api

```
In [1]:
         import pandas as pd, numpy as np, statsmodels.api as sm
         df=pd.read csv("D:\\datasets\\insurance.csv")
         df.head()
Out[1]:
                  sex bmi children smoker
                                            region expenses
               female 27.9
                                     yes southwest
                                                   16884.92
                male 33.8
            18
                                          southeast
                                                    1725.55
            28
                male 33.0
                                          southeast
                                                    4449.46
                male 22.7
                                                   21984.47
                                         northwest
            32
                male 28.9
                                      no northwest
                                                    3866.86
In [2]:
         label= 'expenses'
         y= df.expenses
         x= df[['age', 'bmi', 'children']].assign(const=1)
         model= sm.OLS(y, x)
         results= model.fit()
         print(results.summary())
                                   OLS Regression Results
        Dep. Variable:
                                    expenses
                                               R-squared:
                                                                               0.120
        Model:
                                               Adj. R-squared:
                                         OLS
                                                                               0.118
                                               F-statistic:
        Method:
                               Least Squares
                                                                               60.74
                            Thu, 10 Aug 2023
        Date:
                                               Prob (F-statistic):
                                                                            8.32e-37
        Time:
                                    16:49:34
                                               Log-Likelihood:
                                                                             -14392.
        No. Observations:
                                        1338
                                               AIC:
                                                                           2.879e+04
        Df Residuals:
                                        1334
                                               BIC:
                                                                           2.881e+04
        Df Model:
                                           3
        Covariance Type:
                                   nonrobust
        ______
                                                        P>|t|
                         coef
                                std err
                                                                   [0.025
                                                                              0.9751
```

```
239.9626
                      22.288
                               10.766
                                          0.000
                                                  196.239
                                                            283.686
age
bmi
           332.5216
                      51.307
                                6.481
                                          0.000
                                                  231.870
                                                            433.173
children
           543.0436
                                2.103
                                          0.036
                     258.230
                                                   36.462
                                                            1049.625
                               -3.943
const
         -6929.3145
                    1757.434
                                          0.000
                                                 -1.04e+04
                                                           -3481.678
______
Omnibus:
                         325.223
                                  Durbin-Watson:
                                                              2.012
Prob(Omnibus):
                           0.000
                                  Jarque-Bera (JB):
                                                            602.850
Skew:
                                  Prob(JB):
                           1.520
                                                           1.24e-131
Kurtosis:
                           4.254
                                  Cond. No.
                                                               290.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [3]: df['predictions']= results.fittedvalues
df
```

Out[3]:		age	sex	bmi	children	smoker	region	expenses	predictions
	0	19	female	27.9	0	yes	southwest	16884.92	6907.326136
	1	18	male	33.8	1	no	southeast	1725.55	9172.284502
	2	28	male	33.0	3	no	southeast	4449.46	12391.979997
	3	33	male	22.7	0	no	northwest	21984.47	8537.689692
	4	32	male	28.9	0	no	northwest	3866.86	10359.360926
	•••	•••							
	1333	50	male	31.0	3	no	northwest	10600.55	17006.113044
	1334	18	female	31.9	0	no	northeast	2205.98	7997.449896
	1335	18	female	36.9	0	no	southeast	1629.83	9660.057790
	1336	21	female	25.8	0	no	southwest	2007.95	6688.955930
	1337	61	female	29.1	0	yes	northwest	29141.36	17384.779329

1338 rows × 8 columns

```
In [4]: print(results.predict([33, 22.7, 0, 0]))
```

```
[15467.00414517]

In [5]: print(results.predict([19, 27.9, 0, 1]))

[6907.32613573]
```

MLR with categorical values dummy codes

```
In [6]:
         #df= pd.qet dummies(df, columns=['sex'], prefix='sex', drop first=True)
          #df= pd.get dummies(df, columns=['smoker'], prefix='smoker', drop first=True)
          #df= pd.get dummies(df, columns=['region'], prefix='region', drop first=True)
          #df.head()
In [7]:
         for col in df:
              if not pd.api.types.is numeric dtype(df[col]):
                  df=pd.get dummies(df, columns=[col], prefix=col, drop first=True)
          df.head()
                                         predictions sex_male smoker_yes region_northwest region_southeast region_southwest
Out[7]:
            age bmi children expenses
            19 27.9
                              16884.92
                                        6907.326136
                                                                                                                      1
             18 33.8
                               1725.55
                                        9172.284502
                                                                     0
                                                                                                                      0
            28 33.0
                               4449.46 12391.979997
                                                                     0
                                                                                                                      0
            33 22.7
                             21984.47
                                       8537.689692
                               3866.86 10359.360926
            32 28.9
In [8]:
         x= df.drop(columns=[label]).assign(const=1)
          results=sm.OLS(y, x).fit()
          print(results.summary())
```

OLS Regression Results

Dep. Variable: expenses R-squared: 0.751
Model: OLS Adj. R-squared: 0.749

Least Squares

Date: Thu, 10 Aug 2023 Prob (F-statistic): 0.00 Time: 16:49:34 Log-Likelihood: -13548. No. Observations: 1338 AIC: 2.711e+04 Df Residuals: 1329 BIC: 2.716e+04 Df Model: 8 Covariance Type: nonrobust P>|t| coef std err [0.025 -154.8900 31.521 -4.914 0.000 -216.727-93,053 age -231.2527 -291.177 bmi 30.546 -7.571 0.000 -171.328 children -456.0686 149.330 -3.054 -749.018 -163.120 0.002 predictions 1.7158 0.142 12.122 0.000 1.438 1.993 sex male -131.3520 332.935 -0.395 0.693 -784,488 521,784 57.723 smoker ves 2.385e+04 413.139 0.000 2.3e+04 2.47e+04 region northwest -352.7901 476.261 -0.741 0.459 -1287.095 581.515 -96.544 region southeast -1035.5957 478.681 -2.163 0.031 -1974.648 region southwest -959.3058 477.912 -2.007 0.045 -1896.850 -21.762 const -52,2030 12.612 -4.139 0.000 -76,944 -27,462 _____ Omnibus: 300.499 Durbin-Watson: 2.088 Prob(Omnibus): 0.000 Jarque-Bera (JB): 719.382 Skew: 1.212 Prob(JB): 6.14e-157 Cond. No. Kurtosis: 5.652 2.34e + 19

F-statistic:

500.9

Notes:

Method:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 4.75e-28. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

MLR OLS standardization normalization

```
In [9]: x= df.drop(columns=[label, 'predictions']).assign(const=1)
    results=sm.OLS(y, x).fit()
    print(results.summary())
```

OLS Regression Results

Dep. Variable:	expenses	R-squared:	0.751					
Model:	OLS	Adj. R-squared:	0.749					
Method:	Least Squares	F-statistic:	500.9					

Date:	Thu, 10 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:49:34	Log-Likelihood:	-13548.
No. Observations:	1338	AIC:	2.711e+04
Df Residuals:	1329	BIC:	2.716e+04
Df Model:	8		
Covaniance Type:	nonnohust		

Covariance Type: nonrobust

==========	coef	std err	t	P> t	[0.025	0.975]
age	256.8392	11.899	21.586	0.000	233.497	280.181
bmi	339.2899	28.598	11.864	0.000	283.187	395.393
children	475.6889	137.800	3.452	0.001	205.360	746.017
sex_male	-131.3520	332.935	-0.395	0.693	-784.488	521.784
smoker_yes	2.385e+04	413.139	57.723	0.000	2.3e+04	2.47e+04
region_northwest	-352.7901	476.261	-0.741	0.459	-1287.095	581.515
region_southeast	-1035.5957	478.681	-2.163	0.031	-1974.648	-96.544
region_southwest	-959.3058	477.912	-2.007	0.045	-1896.850	-21.762
const	-1.194e+04	987.811	-12.089	0.000	-1.39e+04	-1e+04
=======================================						====
Omnibus:		300.499	Durbin-Wats	son:		2.088
Prob(Omnibus):		0.000	Jarque-Bera	a (JB):	71	9.382
Skew:		1.212	Prob(JB):		6.14	e-157

5.652 Cond. No.

Notes:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [10]:

```
from sklearn import preprocessing

df_zscore= pd.DataFrame(preprocessing.StandardScaler().fit_transform(df), columns=df.columns)
df_zscore.head()
```

Out[10]:		age	bmi	children	expenses	predictions	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
	0	-1.438764	-0.453646	-0.908614	0.298583	-1.516295	-1.010519	1.970587	-0.566418	-0.611324	1.765481
	1	-1.509965	0.514186	-0.078767	-0.953689	-0.976566	0.989591	-0.507463	-0.566418	1.635795	-0.566418
	2	-0.797954	0.382954	1.580926	-0.728675	-0.209329	0.989591	-0.507463	-0.566418	1.635795	-0.566418
	3	-0.441948	-1.306650	-0.908614	0.719843	-1.127787	0.989591	-0.507463	1.765481	-0.611324	-0.566418
	4	-0.513149	-0.289606	-0.908614	-0.776802	-0.693692	0.989591	-0.507463	1.765481	-0.611324	-0.566418

311.

9/11/23, 3:29 PM PYTHON_MLR_OSL

```
y= df_zscore.expenses
x=df_zscore.drop(columns=['predictions', 'expenses']).assign(const=1)
results=sm.OLS(y, x).fit()
print(results.summary())

OLS Regression Results
```

			==========
Dep. Variable:	expenses	R-squared:	0.751
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	500.9
Date:	Thu, 10 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:49:34	Log-Likelihood:	-968.62
No. Observations:	1338	AIC:	1955.
Df Residuals:	1329	BIC:	2002.
Df Madal:	0		

Df Model: 8
Covariance Type: nonrobust

==========	========	========	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
age	0.2980	0.014	21.586	0.000	0.271	0.325
bmi	0.1709	0.014	11.864	0.000	0.143	0.199
children	0.0474	0.014	3.452	0.001	0.020	0.074
sex_male	-0.0054	0.014	-0.395	0.693	-0.032	0.022
smoker_yes	0.7950	0.014	57.723	0.000	0.768	0.822
region_northwest	-0.0125	0.017	-0.741	0.459	-0.046	0.021
region_southeast	-0.0381	0.018	-2.163	0.031	-0.073	-0.004
region_southwest	-0.0340	0.017	-2.007	0.045	-0.067	-0.001
const	3.296e-17	0.014	2.41e-15	1.000	-0.027	0.027
===========	=======	=======	=======	=======	========	=====

Omnibus:	300.499	Durbin-Watson:	2.088
Prob(Omnibus):	0.000	Jarque-Bera (JB):	719.382
Skew:	1.212	Prob(JB):	6.14e-157
Kurtosis:	5.652	Cond. No.	2.21

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
import seaborn as sns
sns.histplot(y);
```


In [13]: sns.histplot(df.expenses);

df_MinMax= pd.DataFrame(preprocessing.MinMaxScaler().fit_transform(df), columns=df.columns)
df_MinMax.head()

Out[14]:	age	bmi	children	expenses	predictions	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
	0 0.021739	0.320755	0.0	0.251611	0.198761	0.0	1.0	0.0	0.0	1.0

9/11/23, 3:29 PM PYTHON_MLR_OSL

	age	bmi	children	expenses	predictions	sex_male	smoker_yes	region_northwest	region_southeast	region_southwest
1	0.000000	0.479784	0.2	0.009636	0.306026	1.0	0.0	0.0	1.0	0.0
2	0.217391	0.458221	0.6	0.053115	0.458506	1.0	0.0	0.0	1.0	0.0
3	0.326087	0.180593	0.0	0.333010	0.275973	1.0	0.0	1.0	0.0	0.0
4	0.304348	0.347709	0.0	0.043816	0.362244	1.0	0.0	1.0	0.0	0.0

```
In [15]: sns.histplot(df_MinMax.expenses);
```



```
In [16]:
    y= df_MinMax.expenses
    x=df_MinMax.drop(columns=['predictions', 'expenses']).assign(const=1)
    results=sm.OLS(y, x).fit()
    print(results.summary())
```

OLS Regression Results

Dep. Variable:	expenses	R-squared:	0.751
Model:	OLS	Adj. R-squared:	0.749
Method:	Least Squares	F-statistic:	500.9
Date:	Thu, 10 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:49:36	Log-Likelihood:	1230.9
No. Observations:	1338	AIC:	-2444.

9/11/23, 3:29 PM PYTHON MLR OSL

> Df Residuals: 1329 BIC: -2397. Df Model: 8 Covariance Type: nonrobust ______ P>|t| 0.975] coef std err [0.025 0.1886 21,586 0.000 0.206 age 0.009 0.171 bmi 0.2009 0.017 11.864 0.000 0.168 0.234 children 0.011 3.452 0.060 0.0380 0.001 0.016 -0.395 sex male -0.0021 0.005 0.693 -0.013 0.008 smoker yes 0.3807 0.007 57.723 0.000 0.368 0.394 region northwest -0.0056 0.008 -0.741 0.459 -0.021 0.009 region southeast -0.0165 0.008 -2.163 0.031 -0.032 -0.002 region southwest -0.0153 0.008 -2.007 0.045 -0.030 -0.000 -0.0481 0.009 -5.137 0.000 -0.066 -0.030 ______ 300.499 Omnibus: Durbin-Watson: 2.088 Prob(Omnibus): 719.382 0.000 Jarque-Bera (JB): Skew: 1.212 Prob(JB): 6.14e-157

Kurtosis: 5.652 Cond. No. 9.58 ______

Notes:

Out[17]:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

_MLR_OLS assumptions normality multicollinearity VIF

```
In [17]:
          y= np.log1p(y)
          sns.histplot(y)
         <AxesSubplot:xlabel='expenses', ylabel='Count'>
```


In [18]: sns.histplot(np.log(df.expenses));


```
y= np.log(df.expenses)
x= df.drop(columns=['predictions', 'expenses']).assign(const=1)
print(sm.OLS(y, x).fit().summary())
```

OLS Regression Results

Dep. Variable:	expenses	R-squared:	0.768
Model:	OLS	Adj. R-squared:	0.767
Method:	Least Squares	F-statistic:	549.7
Date:	Thu, 10 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:49:36	Log-Likelihood:	-808.54
No. Observations:	1338	AIC:	1635.
Df Residuals:	1329	BIC:	1682.
Df Model:	8		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
age	0.0346	0.001	39.654	0.000	0.033	0.036
bmi	0.0134	0.002	6.377	0.000	0.009	0.017
children	0.1019	0.010	10.086	0.000	0.082	0.122
sex_male	-0.0754	0.024	-3.090	0.002	-0.123	-0.028
smoker_yes	1.5543	0.030	51.330	0.000	1.495	1.614
region_northwest	-0.0638	0.035	-1.827	0.068	-0.132	0.005
region southeast	-0.1572	0.035	-4.480	0.000	-0.226	-0.088
region_southwest	-0.1289	0.035	-3.680	0.000	-0.198	-0.060
const	7.0308	0.072	97.111	0.000	6.889	7.173

 Omnibus:
 463.941
 Durbin-Watson:
 2.046

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1674.108

 Skew:
 1.679
 Prob(JB):
 0.00

 Kurtosis:
 7.331
 Cond. No.
 311.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

_Multicollinearity

```
In [20]: # VIF = variance inflation factor= 1/ (1-R^2)
def vif(df):
    import pandas as pd
    from sklearn.linear_model import LinearRegression

#initialize dictionaries
    vif_dict, tolerance_dict = {}, {}

#from input data for each exogenous veriable
```

```
for col in df.drop(columns=['const']):
        y= df[col]
        x= df.drop(columns=[col])
         #extract r squared from the fit
         r squared = LinearRegression().fit(x, y).score(x, y)
         #calculate VIF
         if r squared < 1: # Prevent division by zero runtime error</pre>
             vif = 1/(1 - r squared)
         else:
             vif = 100
         vif dict[col] = vif
         #calculate tolerance
         tolerance = 1- r squared
         tolerance dict[col] = tolerance
         # generate the DataFrame to return
         df.output = pd.DataFrame({'VIF': vif_dict, 'Tolerance': tolerance_dict})
    return df output.sort values(by=['VIF'] , ascending=False)
VIF(x)
#10 > adequate
#5 >good
#3 >ideal
NameError
                                          Traceback (most recent call last)
C:\Users\TAWABC~1\AppData\Local\Temp/ipykernel 12936/3568147519.py in <module>
            return df output.sort values(by=['VIF'] , ascending=False)
     33
```