

PAPER CODE	EXAMINER	DEPARTMENT	TEL
INT102	Jia WANG	Intelligent Science	9047

2nd SEMESTER 2022/23 EXAMINATIONS (RESIT)

BACHELOR DEGREE - Year 2

ALGORITHMIC FOUNDATIONS AND PROBLEM SOLVING

TIME ALLOWED: 2 Hours

INSTRUCTIONS TO CANDIDATES

READ THE FOLLOWING CAREFULLY:

- 1. The paper consists of Part I and Part II. Answer all questions in both parts.
- 2. Answer all questions in Part I using the Multiple-Choice Answer Sheet. Please read the instructions on the Multiple-Choice Answer Sheet carefully and use a HB pencil to mark the Multiple-Choice Answer Sheet. If you change your mind, be sure to erase the mark you have made. You may then mark the alternative answer.
- 3. Answer all questions in Part II using the answer booklet.
- 4. Enter your name and student ID No. on BOTH the Multiple-Choice Answer Sheet and the answer booklet.
- 5. At the end of the examination, be absolutely sure to hand in BOTH the answer booklet AND the Multiple-Choice Answer Sheet.
- 6. All answers must be in English.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

1.	Tw	o main measures for the efficiency of an algorithm are	2.5
	a)	Processor and memory	
	b)	Complexity and capacity	
	c)	Time and space	
	d)	Data and space	
	e)	Data and memory	
			2.5
2.	Co	nsidering the following algorithm	2.5
		input m	
		count = 0	
		$\mathbf{x} = 1$	
		while x < m do	
		begin	
		x = x * 2	
		count = count + 1	
		end	
	XX 71	output count	
		at is the output of the algorithm for m=2k+1?	
	a)	m	
	b)	k+1	
	c)	k-1	
	d)	k	
	e)	2k	
3.	Th	e time factor when determining the efficiency of an algorithm is measured by	2.5
	a)	Counting the microseconds	
	b)	Counting the number of key operations	
	c)	Counting the number of statements	
	d)	Counting the kilobytes of the algorithm	
	e)	Counting the number of variables	
4.	The	e space factor when determining the efficiency of an algorithm is measured by	2.5
	a)	Counting the memory needed by the algorithm	
	b)	Counting the number of statements	
	c)	Counting the kilobytes of the algorithm	
	d)	Counting the maximum disk space needed by the algorithm	
	e)	Counting the number of key operations	
_			
5.	Ku	nning time $T(n)$, where 'n' is input size of a recursive algorithm is given as follows:	2.5

西交利物浦大學

	Whi	ch of the following algorithms, its time complexity can be expressed by the $T(n)$?	
	a)	Binary Search	
	b)	Merge Sort	
	c)	Insertion Sort	
	d)	Selection Sort	
	e)	Dijkstra's algorithm	
6.	Con	sidering the running time $T(n)$ given above in the question 5. Order of magnitude of	2.5
	T(n)		
	(')		
	a)	$O(n^2)$	
	b)	O(n)	
	c)	$O(n \log n)$	
	d)	$O(n^3)$	
	e)	$O(n^n)$	
7.	The	worst case occurs in a linear search algorithm when	2.5
		Ç	
	a)	Item is somewhere in the middle of the array	
	b)	Item is not in the array at all	
	c)	Item is the last element in the array	
	d)	Item is the last element in the array or is not there at all	
	e)	None of the above	
8.	The	best case occurs in a linear search algorithm when	2.5
	a)	Item is the first element in the array	
	b)	Item is not in the array at all	
	c)	Item is the last element in the array	
	d)	Item is not in the array at all	
	e)	None of the above	
9.	The	time complexity of a linear search algorithm is	2.5
	a)	O(n)	
		$O(\log n)$	
	c)	$O(n^2)$	
	d)	$O(n \log n)$	
	e)	O(1)	
10.	Run	ning time $T(n)$, where n is input size of a recursive algorithm is given as follows:	2.5
		$\begin{bmatrix} 1 & if & n=1 \end{bmatrix}$	
		$T(n) = \begin{cases} 1 & if & n = 1 \\ T(n/2) + 1 & if & n > 1 \end{cases}$	
		(1(n/2)+1 y n/1	

西交利物浦大学

The time complexity of the algorithm is

- a) $O(n^2)$
- b) $O(n \log n)$
- c) $O(n^3)$
- d) $O(n^n)$
- e) $O(\log n)$

Questions 11 to 13 refer to the following graph:

11. The total degree of the graph is

2.5

- a) 21
- b) 18
- c) 20
- d) 19
- e) 10
- 12. Starting at the vertex *a* and resolving ties by the vertex alphabetical order, traverse the graph by breadth-first-search (BFS). Then, the order of vertices visited is
- 2.5

- a) a, b, d, e, f, c, h, g
- b) a, b, c, d, e, f, g, h
- c) a, b, f, g, c, d, h, e
- d) a, b, e, g, f, c, d, h
- e) None of the above

- 13. Starting at the vertex **a** and resolving ties by the vertex alphabetical order, traverse the graph by depth-first-search (DFS). Then, the order of vertices visited is
 - a) h, g, f, e, d, c, b, a

2.5

	If the edge weights are all different G must have exactly one MST If the edge weights are not all different G must have more than one MST	
т т		1
	TOTAL TOTAL STATE OF THE ACT OF T	
16. Let G	be a weighted connected graph	2.5
e) 1	None of the above	
d) I	II and III are correct but I is false	
c) I	and II and III are false	
b) I	and II and III are true	
a) l	I and III are true, II is false	
Which	one of the following is correct?	
III. I	If e is a maximum-weight edge in G, it must not be contained in any MST.	
	If e is a minimum-weight edge in G, it must be contained in each MST.	
	If e is a minimum-weight edge in G, it must be contained in a MST.	
15. Let G	be a weighted connected graph	2.5
e) 1	None of the above	
	II and III are true but I is false	
	I and III are false	
	and II and III are true	
	I is true, II and III are false	
	<u>-</u>	
Which	one of the following is correct?	
III. 7	Γ is a binary tree	
	Γ is a minimum spanning tree of G	
	Γ is a spanning tree of G	
	e-source shortest path problem for a weighted connected graph G.	
14 Let T	be a tree constructed by Dijkstra's algorithm in the process of solving the	2.5
	None of the above	
	a, b, d, c, e, f, g, h	
c) a	a, b, f, g, c, d, h, e a, b, e, g, f, c, d, h	

Which one of the following is correct?

- a) I and III are true, II is false
- b) I and II and III are true
- c) I and II and III are false
- d) II and III are true but I is false
- e) None of the above

Questions 17 to 19 refer to the following weighted connected graph graph:

- 17. Let T be a minimum spanning tree of the graph computed using Kruskal's algorithm. The order of edges selected by Kruskal's algorithm is
 - a) (c,d)(a,b)(b,d)(a,c)
 - b) (c,d)(a,b)(b,d)(b,e)
 - c) (c,d)(a,b)(b,d)(a,d)
 - d) (c,d)(a,b)(b,d)(b,c)
 - e) None of the above
- 18. Let T be a minimum spanning tree of the graph computed using Prim's algorithm. Assume vertex a is selected first, then the order of vertices selected by Prim's algorithm is
 - a) a, b, d, e, d
 - b) a, c, d, b, e
 - c) a, d, c, e, b
 - d) a, b, d, c, e
 - e) None of the above
- 19. Assume the source vertex is *a*. Running Dijkstra's algorithm for the graph, after the termination, the labels for vertices are
 - a) a(0,-), b(2,a), c(4,a), d(5,b), e(6,b)
 - b) a(0,-), b(2, a), c(4,a), d(5,c), e(6,b)
 - c) a(0,-), b(2, a), c(4,a), d(4,a), e(6,b)

2.5

西交利物浦大学

d) a(0,-), b(2, a), c(6,b), d(4,a), e(6,b)None of the above e) 20. Assume the source vertex is a. Running Dijkstra's algorithm for the graph, after the 2.5 termination, which one of the followings could be an order of vertices selected by Dijkstra's algorithm? a) a, b, e, c, d b) a, b, d, e, c c) a, b, d, c, e d) a, b, e, d, c e) None of the above Questions 21 to 24 refer to the following Selection sort algorithm. **ALGORITHM** *SelectionSort*(A[0..n-1]) //Sorts a given array by selection sort //Input: An array A[0..n-1] of orderable elements //Output: Array A[0..n-1] sorted in ascending order **for** i = 0 **to** n - 2 **do** min = i**for** j = i + 1 **to** n - 1 **do if** $A[j] \le A[min]$ min = jif i < min do swap A[i] and A[min]21. The time complexity of the Selection sort algorithm is 2.5 a) $O(n \log n)$ b) $O(2^n)$ c) $O(n^2)$ d) O(2n)e) None of the above 22. The number of key comparisons needed to sort the numbers A[0..5] = [6, 5, 4, 3, 2, 1] in 2.5 ascending order using the selection sort algorithm is a) 10 b) 4 c) 3 15 d) 20 e) 23. The number of swapping operations needed to sort the numbers A[0..5] = [6, 5, 4, 3, 2, 1]2.5

西交利物浦大学

- a) 10
- b) 4
- c) 3
- d) 15
- e) 20

24. To merge the following two sorted sequences into a single sorted sequence, using the Merge algorithm given in the lecture,

2.5

the number of key comparisons needed is

- a) 9
- b) 5
- c) 7
- d) 6
- e) None of the above

Questions 25 to 28 refer to the following Longest Common Subsequence problem.

Let c[i,j] be the length of the Longest Common Subsequence of Xi = x1, x2,..., xi and Yj = y1, y2,...,yj. Then c[i,j] can be recursively defined as following:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}$$

The following is an incomplete table for the sequences of AATGTT and AGCT.

		Α	Α	T	G	T	T
	0	0	0	0	0	0	0
A	0	1	1	1	1	1	1
G	0	1	1	1	2	2	2
С	0	1	1	1	2	2	2
T	0	1	1	2	2	3	3

- 25. The value of c[3, 4] is
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) 5
- 26. The length of the longest common subsequence of AATGTT and AGCT is

a) 1	
b) 2	
c) 3	
d) 4	
e) 5	
27. The longest common subsequence of AATGTT and AGCT is	
a) AGCT	
b) ATGT	
c) AATG	
d) AGC	
e) AGT	
28. The length of the longest common subsequence of AATGT and AGC is	
a) 1	
b) 2	
c) 3	
d) 4	
e) 5	
PART II (30 Marks)	
Question 1 (18 marks)	
Consider the following problem. Given an array A consisting of n distinct integers A[1],	
A[n]. It is known that there is a position p $(1 \le p \le n)$, such that A[1],, A[p] is in increasing	
order and A[p], A[p+1],, A[n] is in decreasing order.	
	1

				-	-	`	-
1. Devise a "divide and conquer" algorithm to find the position p.						6	
2. Set up a recurrence relation for the number of key comparisons made by your algorithm and explain it.							6
no	ased on the recurrentation and prove athematical Induc	it using eitl	her the iterati	ive method o	r the substi	tution method, i.e.,	6
Question 2 (12	marks)						+
	wing instance of the	he 0/1 Kna	psack proble	m			+
			1 1				\dagger
	item	weight	value				Ť
	1	2	\$12				
	2	1	\$10				
	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	3	\$20				
				_			
The Kı	napsack Capacity	W=3					
							1
=	, j] be the value o						
the Kn	apsack of capacity	y j. Then V	[i, j] can be i	ecursively de	efined as fo	ollowing:	+
							+
	[0				if $i =$	0 or j = 0	
	$V[i, j] = \begin{cases} max \end{cases}$	$x\{V[i-1,$	j], $v_i + V$	i-1, j-w]} if <i>j</i> -	$-w_i \ge 0$	
	$V[i,j] = \begin{cases} 0 \\ \max \end{cases}$	C L 7.	V[i-1, i]	. ,,	if <i>i</i> -	$-w_{\cdot} < 0$	
	(, [, -,]		11)	W _i	
1. U	Jsing dynamic pro	gramming	, fill the miss	ed values (fi	lled with q	uestion marks) in	6
the fo	llowing table.						
		capa	acity j				
	Ite	m <i>i</i> () 1	2	3		
		0 (0	0	?		
	$w_1=2, v_1=$	12 1 (0	12	12		
	$w_2=1, v_2=$	10 2 0) 10	?	22		
	$w_3=3, v_3=$	20 3 0) 10	12	?		
							L
2. V	What is the value of	of the most	valuable sub	eset?			2
							\perp
3. (ive an optimal su	bset of the	instance bas	ed on the tab	le.		2
							\perp
4 V	What is the value of	of the most	valuable sub	set if the can	acity of the	e knapsack is 2?	2