Analyse factorielle discriminante

G. Marot-Briend

guillemette.marot@univ-lille.fr

2021-2022

Plan

Introduction

2 Analyse factorielle discriminante

3 Analyse discriminante probabiliste

Objectifs et notations

Objectifs

- étudier le lien entre une variable à expliquer Y et des variables explicatives X_j : notion de facteurs prédictifs
- ullet construire une règle de décision pour prédire Y à partir des X_j

Notations

- Y: la variable cible/réponse/à expliquer (qualitative) : $Y \in \{1, 2, ..., K\}, K \ge 2$
- $\{X_1, X_2, \dots, X_p\}$: p prédicteurs quantitatifs des groupes ou variables quantitatives explicatives.

Exemple : recherche de facteurs prédicitifs de la sévérité de la covid-19. Y : groupe asymptomatique, groupe non sévère, groupe sévère. X_j : mesures d'expression du miARN j.

Illustration

Introduction 000000000

Objectif:

Pour un nouvel individu pour lequel on n'a observé que x, prédire la valeur de y associée avec la plus faible erreur possible.

Méthodologie générale

Objectif:

Apprendre une règle de classement r qui à tout $\mathbf{x} \in \mathbb{R}^p$ associe un $\hat{y} \in \{1,2,\ldots,K\}$:

$$r: \mathbf{x} \in \mathbb{R}^p \mapsto \hat{y} = r(\mathbf{x}) \in \{1, 2, \dots, K\}$$

Deux méthodes d'analyse discriminante :

- factorielle (Fisher) : analyse factorielle discriminante (AFD)
- probabiliste (Bayes) : analyse discriminante linéaire (LDA) et analyse discriminante quadratique (QDA)

Sous certaines conditions l'analyse factorielle discriminante se réduit à une analyse discriminante probabiliste.

Estimation : données

n unités statistiques (individus) tels que :

- Groupe 1 : n_1 (Y = 1)
- Groupe 2 : n_2 (Y = 2)
- Groupe K : n_K (Y = K)

avec
$$n_1 + n_2 + \cdots + n_K = n$$
.

Soit X_{ijh} $(i = 1, ..., K, j = 1, ..., p, h = 1, ..., n_i)$, l'observation de la variable X_i sur l'individu h dans le groupe i.

Estimation : données

	X_1		X_j	• • •	X_p	Υ
÷						1
÷						:
:						1
1			:			i
: h			÷			:
h		• • •	X_{ijh}			i
:						• • •
÷						K
÷						:
÷						K

X matrice $n \times p$, Y vecteur $n \times 1$.

Estimation : espérances

Pour chaque groupe i et variable j

$$\bar{X}_{ij} = \frac{1}{n_i} \sum_{h=1}^{n_i} X_{ijh}$$

est un estimateur de μ_{ii} et donc

$$\bar{X}_i = (\bar{X}_{i1}, \ldots, \bar{X}_{ij}, \ldots, \bar{X}_{ip})$$

est un estimateur de μ_i .

Moyennes regroupées dans un tableau $K \times p$, noté G

	X_1	 X_j		X_p
Y = 1	\bar{X}_{11}	\bar{X}_{1j}		\bar{X}_{1p}
:	:	÷		÷
Y = i	\bar{X}_{i1}	$ar{X}_{ij}$		\bar{X}_{ip}
:	:	:		:
Y = K	\bar{X}_{K1}	\bar{X}_{Ki}	4.5	\bar{X}_{Kp}

Estimation : espérances

$$\bar{X} = \sum_{i=1}^{K} \frac{n_i}{n} \bar{X}_i$$

la moyenne globale de X, estimateur de

$$\mu = E(X_1, \ldots, X_p).$$

$$\bar{X}=(\bar{X}_1,\bar{X}_2,\ldots,\bar{X}_p)$$

οù

$$\bar{X}_j = \sum_{i=1}^K \frac{n_i}{n} \bar{X}_{ij} = \frac{1}{n} \sum_{i=1}^K \sum_{h=1}^{n_i} X_{ijh}$$

estimateur de la moyenne de la variable X_j sans la connaissance du groupe.

Estimation: variances

• W_i : matrice de variance-covariance dans le groupe Y = i

$$W_i[j,j'] = cov(X_j,X_{j'})_{/Y=i} = \frac{1}{n_i} \sum_{h=1}^{n_i} (X_{ijh} - \bar{X}_{ij})(X_{ij'h} - \bar{X}_{ij'})$$

W : matrice de variance-covariance intra-groupes

$$W = \sum_{i=1}^K \frac{n_i}{n} W_i.$$

• B : la matrice de variance-covariance inter-groupes

$$B[j,j'] = \sum_{i=1}^{K} \frac{n_i}{n} (\bar{X}_{ij} - \bar{X}_j) (\bar{X}_{ij'} - \bar{X}_{j'})$$

 V : matrice de variance-covariance du tableau X : variance-covariance totale

$$V[j,j'] = cov(X_j, X_{j'}) = \frac{1}{n} \sum_{i=1}^{K} \sum_{h=1}^{n_i} (X_{ijh} - \bar{X}_j)(X_{ij'h} - \bar{X}_{j'})$$

Plan

2 Analyse factorielle discriminante

Objectif

Chercher des facteurs (composantes) discriminants

$$d = a_1 X_1 + a_2 X_2 + \cdots + a_p X_p$$

tels que les groupes soient les plus **séparés** les uns des autres et les données soient le plus **regroupées** possible autour du centre de gravité de leur groupe.

Critère de l'AFD

ACP (rappel) Rechercher l'axe a de plus forte variance

$$a_1 = \operatorname{argmax} a' Va$$

 $a \in \mathbb{R}^d$

Objectif en AFD

Trouver a:

- sur lequel la variance inter-classes est maximale : maximisant a'Ba
- mais aussi avec des classes bien condensées : minimisant a' Wa

Or, ces quantités sont liées par : a'Va = a'Wa + a'Ba

Critère

$$\underset{a \in \mathbb{R}^d}{\operatorname{argmax}} \frac{a'Ba}{a'Va} = \underset{a \in \mathbb{R}^d}{\operatorname{argmax}} \frac{a'Ba}{a'Wa}$$

Solution de l'AFD

Solution

- Le vecteur propre a associé à la plus grande valeur propre λ_1 de $V^{-1}B$
- Les K-1 vecteurs propres de $V^{-1}B$ notés $a_1, a_2, \ldots, a_{K-1}$ permettent de calculer les composantes principales, et les valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_{K-1}$ l'inertie portée par les axes
- La ie composante discriminante s'écrit alors :

$$d_i = a_{i1}X_1 + a_{i2}X_2 + \cdots + a_{ij}X_j + a_{ip}X_p$$

Solution de l'AFD

Solution

- Le vecteur propre a associé à la plus grande valeur propre λ_1 de $V^{-1}B$
- Les K-1 vecteurs propres de $V^{-1}B$ notés $a_1, a_2, \ldots, a_{K-1}$ permettent de calculer les composantes principales, et les valeurs propres $\lambda_1, \lambda_2, \ldots, \lambda_{K-1}$ l'inertie portée par les axes
- La *i*^e composante discriminante s'écrit alors :

$$d_i = a_{i1}X_1 + a_{i2}X_2 + \cdots + a_{ij}X_j + a_{ip}X_p$$

Remarques

- Métrique V^{-1} et W^{-1} équivalentes
- W^{-1} la plus utilisée (Métrique de Mahalanobis) : $d^2(x, y) = (x y)'W^{-1}(x y)$.

AFD et ACP

Remarque:

L'ACP recherche la combinaison linéaire des variables d'origine maximisant l'inertie totale du nuage projeté (restitution de la forme globale du nuage) tandis que l'AFD recherche la combinaison linéaire des variables d'origine maximisant la seule inertie entre les classes (restitution optimale de la séparation induite par la partition).

Illustration

Régle de décision

Règle de décision donnée par

$$\hat{y} = \arg\min_{i} (x - \bar{X}_i)' W^{-1} (x - \bar{X}_i)$$

où
$$x=(x_1,\ldots,x_p).$$

Le point n'est pas affecté à la classe dont il est le plus proche en terme de distance euclidienne, mais à la classe dont il est le plus proche dans la métrique de Mahalanobis.

Dans le cas de deux groupes : individu x affecté au groupe 2 si

$$(x - \bar{X}_1)'W^{-1}(x - \bar{X}_1) > (x - \bar{X}_2)'W^{-1}(x - \bar{X}_2)$$

Règle de décision

Autrement dit, cela revient à maximiser un score $(s_i(x))$

$$\arg\min_i (x-\mu_i)'W^{-1}(x-\mu_i) \simeq \arg\min_i (x-ar{X_i})'W^{-1}(x-ar{X_i})$$

$$\arg\min_{i}(x-\bar{X}_{i})'W^{-1}(x-\bar{X}_{i}) = \arg\min_{i}-2x'W^{-1}\bar{X}_{i}+\bar{X}_{i}'W^{-1}\bar{X}_{i}$$

car W est symétrique. On cherche donc

$$\arg\max_i 2x'W^{-1}\bar{X}_i - \bar{X}_i'W^{-1}\bar{X}_i = \arg\max_i s_i(x)$$

avec
$$s_i(x) = \alpha_{0i} + \alpha_{i1}x_1 + \cdots + \alpha_{ip}x_p$$

Plan

Analyse factorielle discriminante

Analyse discriminante probabiliste

Cadre général

Une nouvelle observation x est affectée au groupe :

$$\arg\max_{i} P(Y = i/X = x)$$

Remarque:

$$\sum_{i=1}^K P(Y=i/X=x)=1$$

Par la formule de Bayes on a :

$$P(Y = i/X = x) = \frac{P(X = x/Y = i)P(Y = i)}{\sum_{i'=1}^{K} P(X = x/Y = i')P(Y = i')}$$

On note:

- $f_i(x)$: la densité du vecteur X dans le groupe Y = i, $i=1,\ldots,K$
- $P(Y=i)=\pi_i$: probabilité *a priori* du groupe Y=i

Remarques

- $P(Y = i) = \pi_i$: probabilité *a priori* car calculée sans aucune information sur X.
- P(Y = i/X = x): probabilité a posteriori car calculée à partir de l'information complémentaire X = x, probabilité postérieure à l'observation de X = x.

La règle de décision devient :

$$rgmax P(Y=i/X=x) = rgmax P(X=x/Y=i) P(Y=i)$$
 $rgmax f_i(x) \pi_i$

Cadre gaussien

X dans le groupe i suit une loi gaussienne multivariée.

$$X/Y = i \sim \mathcal{N}(\mu_i, W_i)$$

avec $\mu_i = (\mu_{i1}, \dots, \mu_{ip})$ l'espérance et W_i la matrice de variance-covariance de X/Y = i.

La densité gaussienne multivariée $\mathcal{N}(\mu_i, W_i)$ a pour densité $f_i : \mathbb{R}^p \mapsto [0; +\infty[$:

$$f_i(x) = \frac{1}{(2\pi)^{p/2}|W_i|^{1/2}} e^{-\frac{1}{2}(x-\mu_i)'W_i^{-1}(x-\mu_i)}$$

Introduction

• pour p=1 on retrouve la loi $\mathcal{N}(\mu_i, \sigma_i^2)$

$$f_i(x) = \frac{1}{\sqrt{2\pi}\sigma_i}e^{-\frac{1}{2}\left(\frac{x-\mu_i}{\sigma_i}\right)^2}$$

• pour p=2 on retrouve la loi normale bivariée $\mathcal{N}((\mu_{i1}, \mu_{i2}), \sigma_{i1}^2, \sigma_{i2}^2, \rho_i)$ avec

$$W_i = \begin{pmatrix} \sigma_{i1}^2 & \rho_i \sigma_{i1} \sigma_{i2} \\ \rho_i \sigma_{i1} \sigma_{i2} & \sigma_{i2}^2 \end{pmatrix}$$

Introduction

Dans le cas gaussien, la règle de décision devient :

$$\underset{i}{\operatorname{argmax}} \frac{1}{(2\pi)^{p/2} |W_i|^{1/2}} e^{-\frac{1}{2}(x-\mu_i)'W_i^{-1}(x-\mu_i)} \pi_i$$

équivalent à

$$\underset{i}{\operatorname{argmax}} - \frac{p}{2} \ln(2\pi) - \frac{1}{2} \ln(|W_i|) - \frac{1}{2} (x - \mu_i)' W_i^{-1} (x - \mu_i) + \ln(\pi_i)$$

Cas homoscédastique (lda)

Si on fait l'hypothèse que :

- $W_i = W$, $\forall i = 1, ..., K$ et
- $\pi_i = \pi$, probabilités *a priori* égales

alors on est ramené à la règle de décision de l'AFD

$$\arg \max_{i} -\frac{1}{2}(x - \mu_{i})'W^{-1}(x - \mu_{i}) = \arg \min_{i} (x - \mu_{i})'W^{-1}(x - \mu_{i})$$

Cas homoscédastique (lda)

Dans ce cas comme en AFD la décision est basée sur une forme linéaire car

$$\arg \min_{i} (x - \mu_{i})' W^{-1}(x - \mu_{i}) \simeq \arg \min_{i} (x - \bar{X}_{i})' W^{-1}(x - \bar{X}_{i}) =$$

$$\arg \min_{i} -2x' W^{-1} \bar{X}_{i} + \bar{X}'_{i} W^{-1} \bar{X}_{i} =$$

$$\arg \max_{i} 2x' W^{-1} \bar{X}_{i} - \bar{X}'_{i} W^{-1} \bar{X}_{i} = \arg \max_{i} s_{i}(x)$$

$$\operatorname{avec} s_{i}(x) = \alpha_{0i} + \alpha_{i1} x_{1} + \dots + \alpha_{ip} x_{p}$$

L'analyse discriminante probabiliste est dans ce cas connue sous le nom d'analyse discriminante linéaire (lda).

Cas homoscédastique (lda)

Dans ce cas comme en AFD la décision est basée sur une forme linéaire car

$$\arg\min_i (x - \mu_i)' W^{-1}(x - \mu_i) \simeq \arg\min_i (x - \bar{X}_i)' W^{-1}(x - \bar{X}_i) =$$

$$\arg\min_i -2x' W^{-1} \bar{X}_i + \bar{X}_i' W^{-1} \bar{X}_i =$$

$$\arg\max_i 2x' W^{-1} \bar{X}_i - \bar{X}_i' W^{-1} \bar{X}_i = \arg\max_i s_i(x)$$

$$\operatorname{avec} s_i(x) = \alpha_{0i} + \alpha_{i1} x_1 + \dots + \alpha_{ip} x_p$$

L'analyse discriminante probabiliste est dans ce cas connue sous le nom d'analyse discriminante linéaire (lda).

Remarque: Si les probabilités a priori π_i ne sont pas égales, la règle de décision reste linéaire en x mais on n'a plus équivalence avec l'AFD.

Cas hétéroscédastique (qda)

Si les matrices W_i ne sont pas égales, alors la règle devient quadratique

$$\arg\min_{i} \frac{1}{2} \ln(|W_{i}|) + \frac{1}{2} (x - \mu_{i})' W_{i}^{-1} (x - \mu_{i}) - \ln(\pi_{i})$$

qui est une forme quadratique en x.

On appelle alors cette analyse : quadratic discriminant analysis (qda)

Cas hétéroscédastique (qda)

Si les matrices W_i ne sont pas égales, alors la règle devient quadratique

$$\arg\min_{i} \frac{1}{2} \ln(|W_{i}|) + \frac{1}{2} (x - \mu_{i})' W_{i}^{-1} (x - \mu_{i}) - \ln(\pi_{i})$$

qui est une forme quadratique en x.

On appelle alors cette analyse : quadratic discriminant analysis (qda)

Remarque : l'analyse discriminante quadratique peut produire de meilleurs résultats que l'analyse discriminante linéaire, mais est moins robuste quand le nombre de variables p est grand (plus de paramètres à estimer).

Élaboration et validation des modèles prédictifs

Si la taille de l'échantillon le permet on le découpe en 3 parties :

- Echantillon d'apprentissage (~ 70%) : on élabore différents modèles à partir de cet échantillon (analyse discriminante linéaire, regression logistique, ...)
- Echantillon de validation ($\sim 20\%$) : on retient le modèle qui produit les meilleurs performances sur l'échantillon de validation
- \bullet Echantillon de test ($\sim 10\%$) : cet échantillon permet de déterminer les performances réelles du modèle retenu

Elaboration et validation des modèles prédictifs

Si la taille est réduite on n'utilise pas d'échantillon test :

- Modèles élaborés à partir de tout l'échantillon
- Choix du meilleur modèle par validation croisée v-fold : l'échantillon est partagé en v sous échantillons servant tour à tour d'échantillon de validation tandis que le reste est utilisé pour l'apprentissage, enfin on moyenne les performances sur les v sous échantillons

