Torque Vectoring Transition

Purdue Electric Racing '22 Controls System

Desired Meeting Outcomes

 Provide vital information sources to facilitate transition

 Outline key components of the simulink model Outline discrepancies between simulink model and intended implementation

Motivation

To develop a control scheme for a 4WD hub motor system in Matlab/Simulink to be implemented and validated on PER '22.

Information Sources

- Basic Documentation is within Simulink
 MATLAB blocks itself
- Additional Documentation found on GitHub (incomplete, LP Variables Menu)
- Lot of reference documentation (theory, Simulink) can be provided as necessary

Information Links

- Model GitHub Page
- Optimization Function MATLAB Documentation
- PI Controller Theory
- Torque Vectoring Theory

Relevant Sections

- 3 MATLAB Function Blocks
 - Optimization function
 - Sine & Cosine
 - Lots of vectors
 - Lots of constants
- PI Controller

Development - Discrepancies

- Variables T2F, e_term, c_lower & c_upper are constant during runtime. They are dependent on other constants that may change.
- Convert acker_steer_angles, Fx, Fy, Fz into mathematical model
- Possibly compute Fx_max using a better friction circle

Suggestion

- Suggested Order
 - LP_calc
 - PI Controller
 - Layer 2
 - Layer 1
 - Layer 0

Development - Optimization Statement

Objective:

Maximize total driving force

Subject to:

- Total power input must not exceed total power available
- Vehicle yaw acceleration must be equal to PID
- Torque per motor must stay between an upper and lower bounds, based on slip, power, and motor
- defined limits.

- Objective Function
- 1 linear equality
- 1 linear inequality
- 4 boundary constraints (lower and upper) corresponding to 4 torques

Development - PID

- PI Controller, with fixed proportional and integral gains
- Controls the yaw rate based on reference, \dot{arphi}_{ref}
- Error: $e=\dot{\phi}_{ref}-\dot{\phi}_{real}$
- Output: Yaw moment, $\propto \ddot{arphi}$

PI Controller Theory, pg 231