PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-271974

(43) Date of publication of application: 27.09.1994

(51)Int.Cl.

C22C 38/00 C22C 38/04 C22C 38/50

(21)Application number: 05-059150

(71)Applicant: NIPPON STEEL CORP

(22)Date of filing:

18.03.1993 (72)Invent

(72)Inventor: TAKAHASHI AKIHIKO

OGAWA HIROYUKI HARA TAKUYA

(54) LINE PIPE EXCELLENT IN HYDROGEN INDUCED CRACKING RESISTANCE

(57)Abstract:

PURPOSE: To improve hydrogen induced cracking resistance in a wet hydrogen sulfide environment by specifying C, Si, Mn, P, S, Nb, Ni, Cu, Fe, etc., and limiting the size of an Mn spot segregation part, P concentration, etc., in a segregation part.

CONSTITUTION: This line pipe has a composition consisting of, by weight, 0.03-0.09% C, 0.1-0.6% Si, 0.5-1% Mn, $\le 0.015\%$ P, $\le 0.0015\%$ S, 0.01-0.05% Nb, 0.005-0.05% Al, 0.002-0.004% Ca, and the balance Fe, etc. Further, the size of an Mn segregation spot, which is a region having Mn concentration ≥ 1.32 times the average Mn concentration and becomes the origin of hydrogen induced cracking, is regulated to ≤ 400 ,,m, by which hydrogen induced cracking can be reduced. Moreover, the concentration of P in the segregation part is regulated to ≤ 0.35 , and effective Ca ratio is regulated to ≥ 1.7 . This Ca ratio is computed from (%Ca) [1-98(%0)]/(%S).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-271974

(43)公開日 平成6年(1994)9月27日

(51)Int.Cl.5

識別記号

FΙ

技術表示箇所

C 2 2 C 38/00

38/04 38/50 301 F

庁内整理番号

(21)出願番号

特願平5-59150

(71)出願人 000006655

44_D A +1

審査請求 未請求 請求項の数1 OL (全 7 頁)

(22)出願日

平成5年(1993)3月18日

新日本製鐵株式会社 東京都千代田区大手町2丁目6番3号

(72)発明者 髙橋 明彦

富津市新富20-1 新日本製鐵株式会社技

術開発本部内

(72)発明者 小川 洋之

富津市新富20-1 新日本製鐵株式会社技

術開発本部内

(72)発明者 原 卓也

富津市新富20-1 新日本製鐵株式会社技

術開発本部内

(74)代理人 弁理士 茶野木 立夫 (外1名)

(54)【発明の名称】 耐水素誘起割れ性に優れたラインパイプ

(57)【要約】

【目的】 本発明は低中強度ラインパイプにおいて、NACE環境中でも水素誘起割れが生じない、成分と偏析条件、有効なCaの条件を与える。

【構成】 主要成分として、C, Si, Mn, P, S, Nb, Al, Ca を含有し、Ti, V, Ni, Cu, Cr, Mo の一種または二種以上を含有するAPI グレード X 4 2 から X 5 2 の ラインパイプに関して、成分範囲を限定するとともに、Mn スポット 偏析部のサイズを 4 0 0 μ m未満、かつ、 偏析部の P 濃度を 0 . 0 3 5 %未満とし、硫化物の 形態制御に必要な 有効 Ca 比を 1 . 7以上とすることにより、Mn 偏析部が実質的に水素誘起割れの発生に関して無害となる。

【効果】 本発明により、湿潤な硫化水素環境における耐水素誘起割れ性を有する、APIグレードX42からX52のラインパイプが得られる。

【特許請求の範囲】

【請求項1】 重量%で、

 $C : 0.03 \sim 0.09\%$

 $Si:0.1\sim0.6\%$

 $Mn: 0.5 \sim 1.0\%$

P:0.015%以下、

S:0.0015%以下、

 $Nb:0.010\sim0.050\%$

 $A1:0.005\sim0.05\%$

 $Ca:0.002\sim0.004\%$

を含有し、

 $Ti:0.005\sim0.025\%$

有効Ca比={(%Ca)(1-98(%O))}/(%S) ·······(1)

プ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、湿潤な硫化水素環境に おける耐水素誘起割れ性を有する、APIグレードX4 2からX52のラインパイプに関するものである。

[0002]

【従来の技術】近年生産される石油、天然ガス中に硫化 20 する(例えば、特開昭58-133348号公報)。 水素を含む場合が非常に多くなっているため、これらの 石油、天然ガスを輸送するラインパイプは海水等の水が 共存した硫化水素環境(サワー環境)にさらされる可能 性が高くなっている。サワー環境中では、鋼表面の腐食 による鋼中への水素の侵入が硫化水素の触媒作用により 促進され、外部からの付加応力がない場合でもいわゆる 水素誘起割れが生じることがある。従って、サワー環境 にさらされる可能性があるラインバイプには耐水素誘起 割れ性が求められる。

【0003】との水素誘起割れの発生機構については、 種々の研究がなされており、熱間圧延によって延伸した 非金属介在物と地鉄との界面に、侵入水素が拡散、集積 し、分子状水素となる際のガス圧により割れが生じると いう機構が広く認められている。この延伸介在物の代表 がMnSである。

【0004】さらに、連続鋳造で製造された鋳片中に は、一般に中心偏析が存在するため、Mnの偏析により MnSが形成され易くなるのに加えて、Mn、Pの偏析 により割れの伝播を助長する硬度の高い領域が生じる。 て、従来より次のような水素誘起割れ防止対策が採ら れ、ラインパイプの生産において実用化され効果を上げ ている。

(1) 高純化

製鋼段階でSをできる限り低減し、MnSの量を低減す る。また、Pをできるだけ低減し、偏析部の硬度を低く する。

(2)マクロ中心偏析の低減

連続鋳造の凝固末端部において、鋳片のバルジングを防 止する等の手段を講じマクロ偏析を低減する。

 $*V : 0.01 \sim 0.1\%$

Ni:0.5%以下、

Cu: 0.5%以下、

Cr:0.5%以下、

Mo: 0. 5%以下

の一種または二種以上を含有し、残部が鉄及び不可避不 純物からなり、Mnの濃度が平均Mn濃度の1.32以 上の領域であるMn偏析スポットの大きさが400μm 未満、かつ偏析部のPの濃度が0.035%未満、かつ

(1)式で計算される有効Ca比が1.7以上であるC とを特徴とする耐水素誘起割れ性に優れたラインパイ

(3)硫化物の形態制御

二次精錬においてCa処理により、硫化物の形態をMn Sから熱間圧延時に延伸化しにくいCaSとする。

(4)制御圧延、加速冷却による組織制御 鋼管用原板の圧延段階で、制御圧延、加速冷却を適用 し、金属組織をできるだけ均一にして、割れ抵抗を増大 [00006]

【発明が解決しようとする課題】耐水素誘起割れ性を評 価する試験法として、NACEで規格化されたTM02 84が広く用いられている。これはラインパイプから切 り出した短冊状試験片をサワー環境で浸漬試験し、試験 片の断面の観察を行って水素誘起割れの発生率を判定す るものである。同規格の試験環境は、pHが約5である が、最近の油井環境のサワー化に伴って、NACE規格 TMO177-90 Method Aに規定するpH 30 約3の環境(以降NACE環境と言う)で評価すること が一般的となってきた。

【0007】さらに、割れ発生の判定に関して、断面観 察を行うのではなく、試験片を超音波で探傷してより厳 密に割れを判定すること、すなわちより厳しい品質保証 が求められるようになっている。しかるに、上記従来技 術の適用だけでは、NACE環境の浸漬試験で、超音波 で探傷される割れを皆無にするまでには至っていない。 かかる観点から、超音波探傷で検出される、NACE環 境で生じる水素誘起割れを防止する条件を設定すること 【0005】以上の割れ発生機構に関する研究に基づい 40 が、耐水素誘起割れ性に優れたラインパイプを製造する にあたっての課題となる。

[0008]

【課題を解決するための手段】本発明は、水素誘起割れ の発生起点となるMnのスポット偏析部の大きさ、偏析 部のP濃度、硫化物の形態制御に必要な有効Ca量を限 定して、NACE環境で水素誘起割れを生じなくすると いうものである。

【0009】すなわち、本発明の要旨とするところは、 重量%で、C:0.03~0.09%、Si:0.1~ 50 0.6%, Mn: 0.5~1.0%, P: 0.015%

以下、S:0.0015%以下、Nb:0.010~ 0. 050%, A1:0. 005~0. 05%, Ca: 0.002~0.004%を含有し、Ti:0.005 ~0. 025%, V:0. 01~0. 1%, Ni:0. 5%以下、Cu:0.5%以下、Cr:0.5%以下、 Mo:0.5%以下の一種または二種以上を含有し、残*

[0010]

【作用】本発明者らは、水素誘起割れ防止対策である (1) 高純化、(2) マクロ中心偏析の低減、(3) 硫 10 化物の形態制御、(4)制御圧延、加速冷却による組織 制御を施してもなお発生する水素誘起割れの破面を観察 し、発生原因を考察した。その結果、マクロ的な中心偏 析が除かれた後でも、水素誘起割れは群状のMnSを起 点として発生しており、この群状MnSが存在する領域 は、Mnのスポット的な偏析部に対応し、その中ではP の偏析が認められる上、Ca処理が有効に作用していな いことを知見した。

【0011】この結果に基づき、実機で製造したX42 からX52グレードの種々のUOEラインパイプについ 20 て、Mnスポット偏析部のサイズ、及び偏析部のP濃度 とNACE環境中の水素誘起割れの発生の関係を調べ、 図1に示すように、Mnの濃度が平均Mn濃度の1.3※

30

以上の事実に基づき、後述する理由で化学成分を限定し た上で、Mnのスポット偏析部の大きさ、偏析部のP濃 度、硫化物の形態制御に必要な有効Ca量を限定すれ ば、NACE環境での耐水素誘起割れ性に優れたAPI グレードX42からX52のラインパイプの製造が可能 であるという結論を得た。

【0013】次に本発明における成分限定理由を述べ る。Cは、強化元素であるため、所望の強度を得るため に0.03%以上とする。一方、多量に添加すると、ラ インパイプの母材、溶接部の硬度が高くなり、靭性が低 下することに加え、硫化水素環境中では、硫化物応力割 れが生じ易くなるため0.09%以下とする。

【0014】Siは脱酸元素であり、0.1%未満で は、十分な脱酸力が得られないため、また、0.6%を 超えると鋼を脆化させるため0.1~0.6%とする。 Mnは、水素誘起割れの発生起点となるMnSを形成す るとともに、鋼の脆化を促進するPと共偏析して、水素 誘起割れの伝播、進展を助長するので、Mnの添加量 は、できるだけ低い方が望ましい。しかし、Mnは強 度、靭性を得る上で、不可欠の元素であるため、X42 からX52のラインパイプの強度を得るため、0.5~ 1.0%とする。

【0015】Pは偏析により水素誘起割れの伝播を起こ し易くする元素で、低い方が望ましく、0.015%を 上限とする。SはMnと結びついて水素誘起割れの発生 *部が鉄及び不可避不純物からなり、Mnの濃度が平均M n 濃度の1.32以上の領域であるMn 偏析スポットの 大きさが400μm未満、かつ偏析部のΡの濃度が0. 035%未満、かつ(1)式で計算される有効Ca比が 1. 7以上であることを特徴とする耐水素誘起割れ性に 優れたラインパイプにある。

有効Ca比={(%Ca)(1-98(%O))}/(%S) ·······(1)

※2以上の領域をMnスポット偏析部と定義した場合、M nスポット偏析部のサイズが400μm未満で、かつ、 偏析部のP濃度が0.035%未満の場合に下記の有効 Caに関する条件が満たされていれば水素誘起割れが生 じないという知見を得た。

【0012】また、本発明者らは上記の偏析に関する条 件に併せて、硫化物の形態制御を十分に行うために必要 なCa量の条件を検討した。その結果、図2に示すよう に(1)式で表される有効Ca比が1.7以上の場合 に、上記の偏析に関する条件が満たされれば、水素誘起 割れが生じないという知見を得た。(1)式は酸化物と して消費されるCaを除いたCa、すなわち硫化物の形 成に作用するCaとSの比を示したもので、理論的に は、1以上でMnSの形態制御が可能となるはずである が、実際にはMnのスポット偏析部が形成されるために 1. 7以上とする必要がある。

有効Ca比={(%Ca)(1-98(%O))}/(%S) ·······(1)

い。ラインパイプのNACE環境中での水素誘起割れを 防止する観点から、0.0015%を上限とする。Nb は圧延組織の細粒化、焼入性の向上と析出硬化のため 0.010%以上添加するが、0.050%を超えて添 加しても多量に添加する効果は小さく、むしろ、粗大な 炭化物を形成して耐水素誘起割れ性を低下するので、 0.05%を上限とする。

【0016】A1は脱酸元素として重要であるが、多量 に添加すると鋼を汚染し、また靭性を低下させるので、 0.005~0.05%とする。CaはMnS等の硫化 物系介在物の形状を制御するために、0.002%以上 添加するが、多量に添加すると鋼が汚染されるのでり、 004%以下とする。

【0017】本発明では、上記元素に加えてTi, V, Ni, Cu, Cr, Moの一種または二種以上を添加す る。Ti添加量の下限0.005%は、微細なTiNを 形成し、ミクロ組織の細粒化が期待される最小量であ り、上限はTiCによる靭性低下が起きない条件から 0.025%とする。Vは強化元素として0.01%以 上添加し、過剰に添加すると靭性を低下させるので0. 1%以下とする。Ni、Cu、Cr、Moはいずれも鋼 の焼入性を増大し、強度を増加する必要がある場合に添 加するが、過度の添加により低温変態生成物が形成され 靭性及び耐水素誘起割れ性が損なわれるので、0.5% を上限とする。

起点であるMnSを形成するため、極力低い方が望まし 50 【0018】本発明は、上位成分を有するラインパイプ

に関して、Mnの偏析部の大きさ、偏析部のP濃度を限 定し、さらに、有効なCa添加量を調整して、優れた耐 水素誘起割れ性を付与する。

【0019】中心偏析が低減され、マクロ的な中心偏析 が除かれた後でも、スポット状のMnの偏析部が存在す れば、Са処理を行っていても当該スポット偏析部では Mn Sが群状に形成され、水素誘起割れの発生起点とし て作用する。また、Mnの偏析部ではPも偏析する傾向 があり、水素誘起割れの進展を助長する。

状では相当に困難であるが、そのサイズを小さくするこ とによりNACE環境中での水素誘起割れの発生起点と* * して作用しなくなる。この場合の前提として、Caによ る硫化物の形態制御は必須で、Sと結合してMn偏析部 が実質的に水素誘起割れの発生に関して無害となるだけ の有効なCa量の確保が必要である。

【0021】かかる観点から、NACE環境での水素誘 起割れを防止する条件として、Mnの濃度が平均Mn濃 度の1. 32以上の領域をMnスポット偏析部と定義し た場合、Mnスポット偏析部のサイズ(圧延直角方向の 長さ、すなわちMnスポット偏析部の幅)を400μm 【0020】とのスポット偏析部を皆無にすることは現 10 未満、かつ、偏析部のP濃度を0.035%未満とし、

(1) 式で表される有効Ca比を1.7以上とする。

有効Ca比={(%Ca)(1-98(%O))}/(%S)(1)

[0022]

【実施例】表1に化学成分を示す鋼を溶製し、連続鋳造 でスラブを製造し、厚板圧延を実施後、UOE鋼管に造※ ※管した。

[0023] 【表1】

表1-1

ax 1 — 1							
	С	Si	Mn	P	S	N b	A £
本発明1	0. 050	0. 25	0. 90	0. 010	0.0010	0. 040	0. 025
本発明2	0.045	0. 29	0. 85	0.009	0.0005	0.040	0. 023
本発明3	0. 035	0. 25	0. 98	0.008	0.0005	0. 035	0. 025
本発明4	0.085	0. 24	0. 55	0. 007	0.0014	0.040	0.015
本発明5	0. 055	0. 21	0. 95	0.010	0.0008	0.045	0. 022
本発明6	0.045	0. 25	0. 60	0.008	0.0008	0.035	0. 025
本発明7	0.044	0. 29	0.88	0. 005	0. 0005	0.028	0.022
本発明8	0. 040	0. 15	0. 98	0. 008	0.0009	0.040	0.029
本発明9	0. 065	0. 21	0. 95	0. 010	0.0008	0.042	0. 022
比較例1	0. 050	0. 25	0. 95	0- 010	0.0010	0. 041	0. 021
比較例 2	0.044	0. 29	1. 25	0. 005	0. 0005	0.044	0.023
比較例3	0. 055	0.21	0.97	0.013	0.0007	0.041	0. 025
比較例4	0. 050	0. 25	0.98	0.010	0. 0008	0.040	0. 021
比較例 5	0.050	0. 25	0.95	0. 021	0.0008	0.042	0.021
比較例 6	0. 040	0. 29	0.98	0.004	0.0009	0.040	0.020
比較例7	0. 045	0. 29	0. 95	0. 005	0.0009	0.040	0.021
比較例8	0. 045	0. 29	0.99	0.005	0.0017	0.041	0. 020

[0024]

【表2】

7 表1-2

	Са	O	Τi	V	Νi	Сu	Сг	Мо
本発明1	0.0022	0. 0020	0. 010					
本発明2	0.0030	0.0025		0.06				
本発明3	0.0025	0.0015	0. 010		0.31			
本発明4	0.0035	0.0020	0. 015			0. 45		
本発明5	0.0027	0. 0022	0.009				0.28	
本発明6	0.0021	0.0015	0.014					0. 25
本発明7	0.0025	0.0019	0.011		0. 27			0.15
本発明8	0.0021	0.0025	0.015		0.31	0.30		
本発明9	0. 0025	0.0030	0.013				0.35	
比較例1	0.0022	0.0020	0.010					
比較例2	0.0021	0.0015	0.015					
比較例3	0.0022	0.0015	0.010				0. 35	
比較例4	0.0025	0.0020	0.010					
比較例 5	0.0022	0.0015	0.014					
比較例 8	0.0021	0.0030	0.010					
比較例7	0. 0015	0.0015	0.010					
比較例8	0.0030	0.0015	0.011					

[0025]

【表3】

表1-3

	Mnスポット偏析	偏析部の P 濃度	有効Ca	水累誘起割れ率、	
	サイズ (畑)	(%)		CAR (%)	
本発明1	360	0. 031	1. 77	0	
本発明2	370	0. 030	4. 53	0	
本発明3	390	0. 030	4. 27	0	
本発明4	300	0.031	2. 01	0	
本発明5	370	0.033	2. 65	0	
本発明6	320	0. 027	2. 98	0	
本発明7	350	0. 025	4. 07	0	
本発明8	360	0. 032	2. 34	0	
本発明9	360	0. 033	2. 20	0	
比較例1	430	0. 032	1. 77	40	
比較例2	500	0. 024	3. 58	15	
比較例3	370	0. 036	2. 68	30	
比較例4	450	0. 038	2. 51	45	
比較例5	370	0.040	2. 34	22 .	
比較例 6	360	0.025	1.64	25 .	
比較例7	370	0.026	1. 42	20	
比較例8	370	0. 025	1. 51	30	

【0026】鋼管のサイズは、外径が約30インチ、管 格X42からX52を満足する。シーム溶接部から18 0°離れた鋼管の母材部より、NACE規格TM028 4に従い浸漬試験片を作製し、NACE規格TM017 7-90 Method Aの環境条件で、TM028 4の手順に従い、浸漬試験を実施した。同一鋼管からの 試験片は5本とした。浸漬試験終了後、試験片を周波数 25MHz の超音波探傷装置により走査し、試験片の幅× 長さ2000mm² 中、何%の割合で水素誘起割れが生じ ているかを検出した値、CAR(%)を求め、CAR= 0をもって耐水素誘起割れ性を有するとした。水素誘起 40 割れが生じた場合、5本の試験片のCARの平均値をそ の鋼管のCARとした。また、割れの断面をEPMAで 測定し、Mnスポット偏析サイズ、偏析部のP濃度を測 定した。一方、水素誘起割れが生じなかった場合は、電 解チャージ法により試験片に水素を侵入させ、生じた水 素割れの断面においてMnスポット偏析サイズ、偏析部 のP濃度を測定した。

【0027】表1に示すように、本発明に従う条件で 厚が約20mmで、各鋼管は成分により異なるがAPI規 30 は、いずれの場合もCAR=0%であり優れた耐水素誘 起割れ性が得られた。しかし、比較例1ではMnスポッ ト偏析サイズが、比較例2ではMn量、Mnスポット偏 析サイズが、比較例3では偏析部のP濃度が、比較例4 ではMnスポット偏析サイズ、偏析部のP濃度が、比較 例5ではP量と偏析部のP濃度が、比較例6では有効C a比が、比較例7ではCa量と有効Ca比が、比較例8 ではS量と有効Ca比が本発明の範囲を逸脱するため に、それぞれ水素誘起割れが生じる。

[0028]

【発明の効果】本発明により、湿潤な硫化水素環境にお ける耐水素誘起割れ性を有する、APIグレードX42 からX52のラインパイプが得られるため、工業的効果 は著しく大きい。

【図面の簡単な説明】

【図1】Mnスポット偏析サイズと偏析部P濃度との図 表である。

【図2】有効Ca比とCARとの図表である。

