Seminar 5

- **1.** Determine the order of each element and all generators of the cyclic groups $(\mathbb{Z}_8,+)$ and (U_6,\cdot) .
- **2.** Determine the order of each element of Klein's group (K, \cdot) , permutation group (S_3, \circ) , dihedral group (D_4, \cdot) and quaternion group (Q, \cdot) . Are they cyclic groups?
- **3.** (i) Consider the matrices $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$ in the group $(GL_2(\mathbb{R}), \cdot)$. Determine ord A, ord B, ord $(A \cdot B)$ and ord $(B \cdot A)$.
- (ii) Give an example of group in which there exist two elements of infinite order, whose product has finite order.
- **4.** Let (G,\cdot) be a group, and let $x,y\in G$ be such that xy=yx, ord x=m and ord y=n $(m,n\in\mathbb{N}^*)$. Then:
 - (i) $\operatorname{ord}(xy)$ is finite and divides [m, n].
 - (ii) If $\langle x \rangle \cap \langle y \rangle = \{1\}$, then $\operatorname{ord}(xy) = [m, n]$.
 - (iii) If (m, n) = 1, then $\operatorname{ord}(xy) = m \cdot n$.
 - **5.** Let (G,\cdot) be a group and $x,y\in G$. Show that:

$$\operatorname{ord}(xy) = \operatorname{ord}(yx).$$

6. Let (G,\cdot) be an abelian group. Show that

$$t(G) = \{ x \in G \mid \text{ord } x \text{ is finite} \}$$

is a subgroup of G. Is the property still true if G is not abelian?

- 7. Let (G, \cdot) and (G', \cdot) be abelian groups. Show that if $G \simeq G'$, then $t(G) \simeq t(G')$. Using this, show that the following groups are not isomorphic:
- (i) $(\mathbb{Q},+)$ and (\mathbb{Q}^*,\cdot) .
- (ii) $(\mathbb{R}, +)$ and (\mathbb{R}^*, \cdot) .
- **8.** Let $f: G \to G'$ be a group homomorphism and let $x \in G$ be an element of finite order. Prove that:
 - (i) ord f(x) is finite and ord f(x) ord x.
 - (ii) If f is injective, then ord $f(x) = \operatorname{ord} x$.
- **9.** Using Exercise **8.**, show that the groups $(\mathbb{Z}_4, +)$ and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$ are not isomorphic, and determine all non-isomorphic groups with 4 elements.
- **10.** Let $m, n \in \mathbb{N}$ with $m, n \geq 2$. Show that the group $(\mathbb{Z}_m \times \mathbb{Z}_n, +)$ is cyclic if and only if (m, n) = 1.