G H Raisoni College of Engineering and Management, Pune. (An Autonomous Institution) SY (Computer Engineering) (Term-III) TAE1 Quiz Data Structure and Algorithms (UCSL201)

Data Structures and Algorithms
TAE 1 [5 Marks] (*20 Marks scale down to 5 marks)

rudraksh.karpe.cs@ghrcem.raisoni.net Switch account

One Draft saved

* Required

Email *
rudraksh.karpe.cs@ghrcem.raisoni.net

17. Five people P,Q,R,S and T are standing in a queue. R is standing between 1 point P and T. P is just behind Q and Q is second in the queue. Who is second last in the queue?

O T

0 9

F

P

Clear selection

18. A linear list in which each node has pointers to point to the predecessor 1 point and successors nodes is called as
Singly Linked List
Circular Linked List
Doubly Linked List
C Linear Linked List
Clear selection
Name *
Rudraksh Karpe
Roll No. *
SCOB86

11/12/21, 11:02 AM

19. Consider an implementation of unsorted singly linked list. Suphas its representation with a head pointer only. Given the representation of the following operation can be implemented in O(1) time Insertion at the front of the linked list ii) Insertion at the end of the list iii) Deletion of the front node of the linked list iv) Deletion of node of the linked list I and II I and III	heentation, ne? i) he linked
I, II and IV	
	Clear selection
14. The worst-case occur in linear search algorithm when	1 point
Item is the last element in the array or item is not there at all	
O Item is not in the array at all	
O Item is the last element in the array	
Item is somewhere in the middle of the array	
	Clear selection
2. How do you initialize an array in C?	1 point
int arr[3] = $(1,2,3)$;	
int $arr(3) = \{1,2,3\};$	
int arr[3] = $\{1,2,3\}$;	
int $arr(3) = (1,2,3);$	
	Clear selection

5. push() and pop() functions are found in	1 point	
queue		
O linked list		
trees		
stack		
	Clear selection	
4. Stack in data structure is	1 point	
O FIFO		
■ LIFO		
LILO		
None of these		
	Clear selection	
10. Which of the following sorting algorithm is of divide and conquer type? 1 point		
O Bubble sort		
Merge sort		
Selection sort		
Radix sort		
	Clear selection	

3. In the stack, if users try to remove element from the empty stack then it 1 point is called as
Empty collection
Underflow of stack
Garbage collection
Overflow of stack
Clear selection
7. Linked list is considered as an example of type of memory 1 point allocation.
Неар
O Static
Compile
Dynamic
Clear selection

	1 point
Consider the following definition in c programming lang	guage
struct node {	
int data;	
<pre>struct node * next; } typedef struct node NODE;</pre>	
NODE *ptr;	
Which of the following code is used to create new no	de?
<pre>ptr = (NODE*)malloc(sizeof(NODE));</pre>	
<pre>ptr = (NODE*)malloc(NODE);</pre>	
<pre>ptr = (NODE*)malloc(sizeof(NODE*));</pre>	
<pre>ptr = (NODE)malloc(sizeof(NODE));</pre>	
	Clear selection
15. In a circular linked list	1 point
Components are all linked together in some sequential manner	
There is no beginning and no end.	
Components are arranged hierarchically.	
Forward and backward traversal within the list is permitted.	
	Clear selection

12 sorting algorithm is frequently used when n is small where n is tota number of elements.	1 point
O Heap	
Bubble	
Insertion	
Quick	
Clear sel	ection
16. Which of the following is not a limitation of binary search algorithm?	1 point
must use a sorted array	
requirement of sorted array is expensive when a lot of insertion and deletions a needed	re
o binary search algorithm is not efficient when the data elements more than 1500).
there must be a mechanism to access middle element directly	
Clear sel	ection
13. Which of this is not an application of linklist	1 point
To implement file system	
of for separate chaining in hash tables	
o to implement non binary trees	
random access of elements	
Clear sel	ection

9. An algorithm that calls itself directly or indirectly is known as
Sub algorithm
Recursion
O Polish notation
Traversal algorithm
Clear selection
In the worst case, the number of comparisons needed to search a singly 1 point linked list of length n for a given element is
O log 2 n
O n/2
O log 2 n – 1
o n
Clear selection
20. Match the following. a) Completeness i) How long does it take to find a 1 point solution, b) Time Complexity ii) How much memory need to perform the search., c) Space Complexity iii) Is the strategy guaranteed to find the solution when there in one.
a-ii, b-iii, c-ii
() a i, b iii, b ii

E

6. A linear collection of data elements where the linear node is given by means of pointer is called?	' 1 point
Linked list	
O Node list	
O Primitive list	
O Unordered list	
Clear	selection

A copy of your responses will be emailed to the address you provided.

Submit Clear form

Never submit passwords through Google Forms.

reCAPTCHA Privacy Terms

This form was created inside of Raisoni Group of Institutions. Report Abuse

Google Forms