THEORY TO TACKLE THE PROBLEMS ABOVE:

For more on number theory check the Number Theory Chapter of Math Book: math-number-theory-88376.html

EXPONENTS

Exponents are a "shortcut" method of showing a number that was multiplied by itself several times. For instance, number a multiplied n times can be written as a^n , where a represents the base, the number that is multiplied by itself n times and n represents the exponent. The exponent indicates how many times to multiple the base, a, by itself.

Exponents one and zero:

$$a^0 = 1$$
 Any nonzero number to the power of 0 is 1.

For example:
$$5^0 = 1$$
 and $(-3)^0 = 1$
• Note: the case of 0^0 is not tested on the GMAT.

$$a^1 = a$$
 Any number to the power 1 is itself.

Powers of zero:

If the exponent is positive, the power of zero is zero: $0^n = 0$, where n > 0.

If the exponent is negative, the power of zero (0^n , where n < 0) is undefined, because division by zero is implied.

Powers of one:

$$1^n = 1$$
 The integer powers of one are one.

Negative powers:

$$a^{-n} = \frac{1}{a^n}$$

Powers of minus one:

If n is an even integer, then
$$(-1)^n = 1$$
.

If n is an odd integer, then
$$\left(-1\right)^n=-1$$

Operations involving the same exponents:

Keep the exponent, multiply or divide the bases

$$a^n * b^n = (ab)^n$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

$$(a^m)^n = a^{mn}$$

$$a^{m^n}=a^{(m^n)}$$
 and not $(a^m)^n$ (if exponentiation is indicated by stacked symbols, the rule is to work from the top down)

Operations involving the same bases:

Keep the base, add or subtract the exponent (add for multiplication, subtract for division)

$$a^{n*}a^{m} = a^{n+m}$$

$$\frac{a^n}{a^m} = a^{n-m}$$

Fraction as power:

$$a^{\frac{1}{\overline{n}}} = \sqrt[n]{a}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

ROOTS

Roots (or radicals) are the "opposite" operation of applying exponents. For instance x^2=16 and square root of 16=4.

General rules:

$$\sqrt{x}\sqrt{y} = \sqrt{x}\overline{y} \text{ and } \sqrt{\frac{x}{y}} = \sqrt{\frac{x}{y}}.$$

$$(\sqrt{x})^n = \sqrt{x^n}$$

$$\cdot x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$\cdot x^{\frac{n}{m}} = \sqrt[m]{x^n}$$

$$\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$$

,
$$\sqrt{x^2}=|x|$$
 , when $x\leq 0$, then $\sqrt{x^2}=-x$ and when $x\geq 0$, then $\sqrt{x^2}=x$

• When the GMAT provides the square root sign for an even root, such as \sqrt{x} or $\sqrt[4]{x}$, then the only accepted answer is the positive root.

That is, $\sqrt{25}=5$, NOT +5 or -5. In contrast, the equation $x^2=25$ has TWO solutions, +5 and -5. Even roots have only a positive value on the GMAT.

• Odd roots will have the same sign as the base of the root. For example,
$$\sqrt[3]{125} = 5$$
 and $\sqrt[3]{-64} = -4$.

- 1. What is the value of $\sqrt{25+10\sqrt{6}}+\sqrt{25-10\sqrt{6}}$?
- a. 2√5
- B. √<u>55</u>
- c. 2√15

2. What is the units digit of
$$(17^3)^4 - 1973^{3^2}$$
?

- B. 2
- C. 4
- D. 6
- E. 8

3. If
$$5^{10x} = 4,900$$
 and $2^{\sqrt{y}} = 25$ what is the value of $\frac{(5^{(x-1)})^5}{4^{-\sqrt{y}}}$?

- A. 14/5
- B. 5
- C. 28/5
- D. 13
- E. 14

4. What is the value of
$$5+4*5+4*5^2+4*5^3+4*5^4+4*5^5$$
?

- C. 5^8
- D. 5⁹
- E. 5¹⁰

5. If $x=23^2*25^4*27^6*29^8$ and is a multiple of 26^n , where n is a non-negative integer, then what is the value of $n^{26} - 26^n$?

B. -25

C. -1

D. 0 E. 1

6. If $x = \sqrt[5]{-37}$ then which of the following must be true?

A.
$$\sqrt{-x} > 2$$

B. x>-2

C. x^2<4

D. x^3<-8

E. x^4>32

7. If
$$x = \sqrt{10} + \sqrt[3]{9} + \sqrt[4]{8} + \sqrt[5]{7} + \sqrt[6]{6} + \sqrt[7]{5} + \sqrt[8]{4} + \sqrt[9]{3} + \sqrt{10}$$
, then which of the following must be true:

A. x<6

B. 6<x<8

C. 8<x<10

D. 10<x<12

E. x>12

8. If
$$x$$
 is a positive number and equals to $\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}}$, where the given expression extends to an infinite number of roots, then what is the value of x?

a. √6

B. 3

c. $1+\sqrt{6}$

D. 2√3

$$22^{22x}-22^{2x}$$

9. If
$$x$$
 is a positive integer then the value of $11^{11x}-11^x$ is closest to which of the following?

A. 211x

в. 1111 ж

c 2211x

D. 2²²x*₁₁11x

F 222x*1122x

10. Given that
$$5x=125-3y+z$$
 and $\sqrt{5x}-5-\sqrt{z-3y}=0$, then what is the value of $\sqrt{\frac{45(z-3y)}{x}}$

A. 5

B. 10

C. 15

D. 20

E. Can not be determined

11. If
$$x>0$$
, $x^2=2^{64}$ and $x^x=2^y$ then what is the value of y ?

A. 2

B. 2⁽¹¹⁾

C. 2⁽³²⁾

D. 2[^](37)

E. 2⁽⁶⁴⁾