COMPUTATIONAL METHODS IN FREEFORM OPTICAL TECHNOLOGIES

KEVIN CHEW FIGUEROA & ZENAS HUANG
EE 575 PROJECT - COMPUTATIONAL DIFFERENTIAL GEOMETRY

OUTLINE

- I. INTRODUCTION & DESCRIPTION
- II. THEORETICAL SETUP & FRAMEWORK
- III. IMPLEMENTATION
- IV. CONCLUSIONS & FUTURE DIRECTIONS

INTRODUCTION

- OPTICAL APPLICATIONS
 - CORRECTIVE LENSES
 - IMAGE FORMATION
 - AR/VR SYSTEMS
 - TELESCOPES
 - PRECISION CAMERAS
 - LED DISPLAY

INTRODUCTION

- Freeform Lenses
 - IN OPTICS, FREEFORM LENSES ARE OPTICAL SURFACES THAT ARE DESIGNED WITHOUT RIGID RADIAL DIMENSIONS SUCH AS TRANSLATIONAL OR ROTATIONAL SYMMETRY ABOUT AXES NORMAL TO ANY MEAN PLANE.

GENERAL SETUP

GIVEN AN ILLUMINATION SOURCE AND AN IRRADIANCE DISTRIBUTION ON A PLANE. HOW CAN WE COMPUTE THE SURFACE OF THE LENS NEEDED TO GENERATE THE TARGET DISTRIBUTION?

EIKONAL EQUATION:

$$\nabla^2 E = c^2(x, y, z)$$

SOLUTIONS TO THE 3D WAVE EQUATION THAT REPRESENT LIGHT WAVEFRONT AT DIFFERENT TIMES.

Integrating the Eikonal at different spatial points yields an optical ray path length

$$\int_{A}^{B} \nabla^{2} E \ de \approx \sum_{i \in [A,B]} n_{i} d_{i}$$

FIND A REFRACTIVE OPTICAL SURFACE WHICH GIVES US RAY PATHS THAT SATISFY THE CONDITIONS FROM THE SOURCE (A) AND TARGET ENDPOINT LOCATIONS (B).

The coordinates of a Light ray on the target plane are related to the source points (x,y) by a vector valued function z(x,y) so that:

$$x_t = z_1(x, y) ; y_t = z_2(x, y)$$

Snell's Law and the Jacobian defines a conformal mapping from the freeform lens surface to the target plane:

$$dx_t dy_t = |J(z)| DXDY$$

WHERE:

$$J(z) = \begin{bmatrix} \frac{\partial z_1}{\partial x} & \frac{\partial z_1}{\partial y} \\ \frac{\partial z_2}{\partial x} & \frac{\partial z_2}{\partial x} \end{bmatrix}$$

MORE PRECISELY, THE PHYSICS INTERPRETATION DESCRIBES THE TRANSFORM BETWEEN IRRADIANCE DISTRIBUTIONS OF THE TARGET AND FREEFORM SURFACES:

$$dI_t(x_t, y_t) = |J(z)|dI(x, Y)$$

GIVEN:

$$dI_t(x_t, y_t) = |J(z)| \, \mathrm{DI}(X, Y)$$
 (Conformal Map of Irradiance Distributions)
$$\iint I_t(x_t, y_t) \, dx_t dy_t = \iint I(x, y) \, dx dy$$
 (Conservation of Energy)

THESE CONDITIONS IMPLY A NONLINEAR MONGE-AMPERE ELLIPTICAL PDE:

DET
$$D^2z = K(\bar{x})(1 + |Dz|^2)^{\frac{n+2}{2}}$$
 (PRESCRIBED CURVATURE PROBLEM)

ALSO EXPRESSED IN A LOCALLY LINEARIZED FORM AS:

$$A(z_{xx}z_{yy} - z_{xy}^{2}) + Bz_{xx} + Cz_{yy} + Dz_{xy} + E = 0$$

$$BC: \begin{cases} x_{t} = f_{1}(x, y, z, z_{x}, z_{y}) \\ y_{t} = f_{2}(x, y, z, z_{x}, z_{y}) \end{cases} : \partial S \rightarrow \partial T$$

Where the target coordinates are re-expressed as functions of the ray source and their incidence at the optical surface.

Taking the view of light as a photon mass, Energy conservation also implies An Optimal Mass Transport problem (Monge-Kantorovich Formulation):

$$\int c(\bar{x}, T(\bar{x})) I(\bar{x}) d\bar{x}$$

S/T:
$$T: I(\bar{x}) \to I_t(\bar{x}_t)$$

Where the mass-preserving transform $T(\bar{x})$ expresses a set of constraints for the Irradiance correspondence between each source to target spatial pairing.

 $T(\bar{x})$ HAS ALSO BEEN SHOWN TO BE THE GRADIENT OF THE MA PDE SOLUTIONS.

EXISTING METHODS IN LITERATURE

- SIMULTANEOUS MULTIPLE SURFACE METHOD
- MA PDE AND NEWTON METHODS
- MK TRANSPORT AS LINEAR PROGRAM
- NURBS APPROACHES

The Goal is to compute a chart consisting of local Monge Patches defined as $m: U \to \mathbb{R}^3$, $U \subseteq \mathbb{R}^2$ where m(x,y) = (x,y,z(x,y)) uniquely satisfies the boundary conditions. From the Elliptical MA PDE and the Fundamental forms, the Monge patches should have:

DET
$$D^2 z = K(\bar{x})(1 + |Dz|^2)^{\frac{n+2}{2}} \iff K_{Gaussian} = \frac{z_{xx}z_{yy} - z_{xy}^2}{(1 + z_x^2 + z_y^2)^2}$$

In our case, we found an explicit expression of Monge-Ampere used in Lens Design:

$$|z_{Lxx}z_{Lyy} - z_{Lxy}|^2 = |J(z)| \frac{\sqrt{1 + (z_{Lx}^2 + z_{Ly}^2)(1 - n^2)}}{K(z_{Lx}, z_{Ly})^2}$$

Using the Lens Expression of Monge-Ampère we compute the surface as a function of Finite Difference Approximations:

$$z_L^{(i,j)} = \frac{av_1^{(i,j)} + av_2^{(i,j)} - \sqrt{(av_1^{(i,j)} - av_2^{(i,j)})^2 + (\frac{av_3^{(i,j)} - av_4^{(i,j)}}{2})^2 + h^4g^{(i,j)}}}{2}$$

SOLVING EACH POINT USING AN ITERATIVE METHOD BASED ON GAUSS-SEIDEL.

For
$$t = (1:ITERS)$$
 $z_L^{t+1} = f(z_L^t, z_L^{t-1});$

END

Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$


```
clf;
clear all;
img = imread("USC_logo2.jpg");
imshow(img);
```


NXN X 3

USC

USC

```
img_bw = im2bw(img);
global target_img;
target_img = imcomplement(img_bw);

%Turn the following section on to lower
%resolution of target image
downSampleScalar = 100;
target_img = imresize(target_img, [floor(size(target_img, 1)/downSampleScalar), floor(size(target_img, 2)/downSampleScalar)]);
target_img = imcomplement(target_img);
imshow(target_img);
```


MATRIX VALUES 0.0

MATRIX VALUES 1.0

USC

MATRIX VALUES 0.10

MATRIX VALUES 1.0

```
%Turn this on if you wish to add noise to the target image:
target_img = target_img + 0.1;
target_img(target_img>1) = 1.0;
imshow(target_img)
```


RESULTS:

LENS SIZE: 20MM X 20MM

Next we define our hyperparameters:

stepsize:

```
global h;
h = 1;
```

lens surface sample dimensions:

```
global sampleSize;
sampleSize = 99;
global stepSizeH;
%stepSizeH = 1;
stepSizeH = double(0.01);
```

targetDistance

```
global zT;
%zT = sampleSize*2;
zT = 2.0;
%zT = 20;
```

targetSize

```
global Tmax;
Tmax = 10;
%Tmax = 500;
```

Refractive Indicies:

```
refractiveIndexIn = 1.49; %PMMA
refractiveIndexOut = 1.0; %Vacuum
global n;
n = refractiveIndexIn/refractiveIndexOut;
```



```
global i1;
global j1;
for itr = 1: total_itr
    zLensPrev = zLens;
   for i1 = 2:sampleSize-1
       for j1 = 2:sampleSize-1
            av1 = avfunc(zLens(i1+1,j1), zLens(i1-1,j1));
            av2 = avfunc(zLens(i1,j1+1), zLens(i1,j1-1));
            av3 = avfunc(zLens(i1+1,j1+1), zLens(i1-1,j1-1));
            av4 = avfunc(zLens(i1-1,j1+1), zLens(i1+1,j1-1));
            g = gfunc(i1, j1);
            zLens(i1,j1) = 0.5*(av1 + av2 - sqrt((av1-av2)^2) + (((av3-av4)*0.5)^2) + (stepSizeH^4) * (g));
        end
    end
    stabilityContainer(itr) = stabilityfunc(zLensPrev, zLens);
end
```


LENS SIZE = 1MM x 1MM | | | DO 1MM

TARGET DISTANCE ZT= 2.0MM

Target max dimensions = 20mm x 20mm | 1max = 10mm

Snell's Law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

LENS SIZE = 1MM x 1MM | | | DO 1MM

TARGET DISTANCE ZT= 2.0MM

Target max dimensions = 20mm x 20mm | 1max = 10mm

$$\frac{1}{f} \approx (n-1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$$

$$z_{L0}^{(i,j)} = \frac{x_{i,j}^2 + y_{i,j}^2}{\frac{D_0(n-1)z_T}{2} + \sqrt{\left(\frac{D_0(n-1)z_T}{2}\right)^2 - (x_{i,j}^2 + y_{i,j}^2)}}$$

$$R_c = \frac{D_0(n-1)z_T}{2T_{\text{max}}}$$

$$z_L^{(i,j)} = \frac{av_1^{(i,j)} + av_2^{(i,j)} - \sqrt{\left(av_1^{(i,j)} - av_2^{(i,j)}\right)^2 + \left(\frac{av_3^{(i,j)} - av_4^{(i,j)}}{2}\right)^2 + h^4g^{(i,j)}}}{2}$$

Average:

function avCalc= avfunc(input1, input2)
avCalc = double(input1 + input2)/2;
end

$$g^{(i,j)} = \frac{I_0(x_i, y_i)}{I_T(f_1(x_i, y_i), f_2(x_i, y_i))} \frac{\sqrt{1 + \left(z_{Lx}^{(i,j)2} + z_{Ly}^{(i,j)2}\right)\left(1 - n^2\right)}}{K(z_{Lx}^{(i,j)}, z_{Ly}^{(i,j))2}}$$

$$z_L^{(i,j)} = \frac{av_1^{(i,j)} + av_2^{(i,j)} - \sqrt{\left(av_1^{(i,j)} - av_2^{(i,j)}\right)^2 + \left(\frac{av_3^{(i,j)} - av_4^{(i,j)}}{2}\right)^2 + h^4g^{(i,j)}}}{2}$$

INITIAL LENS:

LENS AFTER 25 ITERATIONS:

INITIAL LENS:

LENS AFTER 50 ITERATIONS:

IMPLEMENTATION - Challenges

$$z_L^{(i,j)} = \frac{av_1^{(i,j)} + av_2^{(i,j)} - \sqrt{\left(av_1^{(i,j)} - av_2^{(i,j)}\right)^2 + \left(\frac{av_3^{(i,j)} - av_4^{(i,j)}}{2}\right)^2 + h^4g^{(i,j)}}}{2}$$

$$g^{(i,j)} = \frac{I_0(x_i,y_i)}{I_T(f_1(x_i,y_i),f_2(x_i,y_i))} \frac{\sqrt{1+\left(z_{Lx}^{(i,j)2}+z_{Ly}^{(i,j)2}\right)\left(1-n^2\right)}}{K(z_{Lx}^{(i,j)},z_{Ly}^{(i,j))2}}$$

$$I_T(x',y')\cdot \big|J(x,y)\big|=I(x,y)$$

Matrix values 1.0

- An n-th degree polynomial fits a curve to n+1 points
 - called Lagrange Interpolation
 - result is a curve that is too wiggly, change to any control point affects entire curve (non-local)
 - this method is poor
- We usually want the curve to be as smooth as possible
 - minimize the wiggles
 - high-degree polynomials are bad

Lagrange interpolation, degree=15

- Cubic polynomial:
 - $p(u) = au^3 + bu^2 + cu + d = [u^3 \ u^2 \ u \ 1] [a \ b \ c \ d]^T$
 - a,b,c,d are 3-vectors, u is a scalar
- Three cubic polynomials, one for each coordinate:

$$- x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$- y(u) = a_v u^3 + b_v u^2 + c_v u + d_v$$

$$-z(u) = a_z u^3 + b_z u^2 + c_z u + d_z$$

In matrix notation:

$$[x(u) \quad y(u) \quad z(u)] = [u^3 \quad u^2 \quad u \quad 1] \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix}$$

• Or simply: $p = [u^3 u^2 u 1] A$

 Four constraints: value and slope (in 3-D, position and tangent vector) at beginning and end of interval [0,1]:

$$p(0) = p_1 = (x_1, y_1, z_1)$$

$$p(1) = p_2 = (x_2, y_2, z_2)$$

$$p'(0) = \overline{p}_1 = (\overline{x}_1, \overline{y}_1, \overline{z}_1)$$

$$p'(1) = \overline{p}_2 = (\overline{x}_2, \overline{y}_2, \overline{z}_2)$$
the user constraints

- Assume cubic form: $p(u) = au^3 + bu^2 + cu + d$
- Four unknowns: a, b, c, d

• Assume cubic form: $p(u) = au^3 + bu^2 + cu + d$

$$p_1 = p(0) = d$$
 $p_2 = p(1) = a + b + c + d$
 $\overline{p_1} = p'(0) = c$
 $\overline{p_2} = p'(1) = 3a + 2b + c$

- Linear system: 12 equations for 12 unknowns (however, can be simplified to 4 equations for 4 unknowns)
- Unknowns: a, b, c, d (each of a, b, c, d is a 3-vector)

$$d = p_1$$

$$a + b + c + d = p_2$$

$$c = \overline{p_1}$$

$$3a + 2b + c = \overline{p_2}$$

Rewrite this 12x12 system as a 4x4 system:

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \overline{x}_1 & \overline{y}_1 & \overline{z}_1 \\ \overline{x}_2 & \overline{y}_2 & \overline{z}_2 \end{bmatrix}$$

After inverting the 4x4 matrix, we obtain:

- This form is typical for splines
 - basis matrix and meaning of control matrix change with the spline type

Every cubic Hermite spline is a linear combination (blend) of these 4 functions.

IMPLEMENTATION – B-Splines

IMPLEMENTATION LIGHT TOOLS

Lens Size = 1mm x 1mm | | | D0 1MM

Target distance Zt= 2.0mm

TARGET MAX DIMENSIONS = $20MM \times 20MM$ | TMAX = 10MM

IMPLEMENTATION LIGHT TOOLS

Lens Size = 1mm x 1mm | | DO 1MM

TARGET DISTANCE ZT= 2.0mm

TARGET MAX DIMENSIONS = $20MM \times 20MM$ | TMAX = 10MM

Discretizing the lens surface into 100x100 samples

Fact: Rotationally symmetrical lenses optimize image quality in a circle

The Opportunity: Optimize image quality almost any way you want

(within the laws of physics of course...)

Today: Image Quality from Conventional Rotationally Symmetric Lens

Image Quality
Optimized with using
free-form lenses

Deformable Mirror

CONCLUSIONS

CONCLUSIONS

END

