VI. Maxwellove enačbe

Maxwellova teorija EM polja povezuje električno in magnetno polje $\vec{E}(\vec{r},t)$ in $\vec{B}(\vec{r},t)$ z gostoto naboja in gostoto toka $\rho(\vec{r},t)$ in $\vec{J}(\vec{r},t)$, ki sta izvira polj. Zavedamo se **Helmholtzevega izreka**, ki trdi, da je poljubno vektorsko polje popolnoma določeno, če poznamo njegovo divergenco in rotor.

6.1. Ohranjanje naboja (kontinuitetna enačba) [Glej sliko]

Zanima nas celoten naboj v V_0 :

$$e(t) = \int_{V_0} \rho(\vec{r}, t) d^3 \vec{r}$$

V splošnem e(t) ni konstanten, ker lahko \vec{j} stalno prinaša/odnaša naboj. Torej

$$\frac{de}{dt} = -\int_{\partial V_0} \vec{j} \cdot \hat{n} dS = -\int_{V_0} \nabla \cdot \vec{j} d^3 \vec{r}$$

$$\frac{de}{dt} = \frac{d}{dt} \int_{V_0} \rho(\vec{r}, t) d^3 \vec{r} = \int \frac{\partial \rho}{\partial t} d^3 \vec{r}$$

Tako dobimo kontinuitetno enačbo

$$\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} = 0$$

Posledica kontinuitetne enačbe je, da gostota naboja na nekem mestu ni več nujno konstantno saj tok lahko prinaša/odnaša naboje.

6.2. Maxwellov premikalni tok

Osnovne Maxwellove enačbe v kvazistatični sliki so oblike:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \qquad \nabla \times \vec{B} = \mu_0 \vec{J}$$

Tu pride do kršitve kontinuitetne enačbe, naboj se ne ohranja. Na 4. enačbo delujemo z divergenco in dobimo

$$\mu_0 \, \nabla \cdot \vec{j} = \nabla \cdot \left(\nabla \times \vec{B} \right) = 0$$

To se reši z dopolnitvijo enačbe s premikalnim tokom

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Lahko na hitro preverimo če velja (μ_0 lahko v zadnjem koraku pokrajšamo da dobimo prvotno obliko)

$$0 = \nabla \cdot \left(\nabla \times \vec{B} \right) = \mu_0 \nabla \cdot \vec{j} + \mu_0 \varepsilon_0 \frac{\partial}{\partial t} \left(\nabla \cdot \vec{E} \right) = \mu_0 \left[\nabla \cdot \vec{j} + \frac{\partial \rho}{\partial t} \right]$$

6.3. Popoln set Maxwellovih enačb

Te enačbe v celoti določajo klasično elektrodinamiko.

I. enačba

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

II. enačba

$$\nabla \cdot \overrightarrow{B} = 0$$

III. enačba

$$\nabla imes \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

IV. enačba

$$abla imes \overrightarrow{B} = \mu_0 \overrightarrow{j} + \mu_0 \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

Kontinuitetna enačba

$$\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$$

6.5. Ohranitveni zakoni

Maxwellove enačbe ohranjajo naboj, gibalno količino, vrtilno količino in celotno energijo.

6.5.1 Kontinuitetna enačba za energijo

Vzamemo III. in IV. in ju križno zmnožimo

$$\vec{B} \cdot \nabla \times \vec{E} = \vec{B} \cdot \frac{\partial \vec{B}}{\partial t}$$

$$\vec{E} \cdot \nabla \times \vec{E} = \vec{E} \cdot \mu_0 \vec{j} + \vec{E} \cdot \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Sedaj odštejemo prvo od druge in dobimo

$$\mu_0 \varepsilon_0 \vec{E} \frac{\partial \vec{E}}{\partial t} + \vec{B} \frac{\partial \vec{B}}{\partial t} = \vec{E} \cdot (\nabla \times \vec{B}) - \vec{B} (\nabla \times \vec{E}) - \mu_0 \vec{J} \vec{E}$$

Delimo z μ_0 in prepoznamo vektorsko identiteto za divergenco rotorja in odvode kvadratov

$$\frac{\partial}{\partial t} \left[\frac{1}{2} \varepsilon_0 \vec{E}^2 + \frac{1}{2\mu_0} \vec{B}^2 \right] = -\frac{1}{\mu_0} \nabla \cdot (\vec{E} \times \vec{B}) - \vec{J} \cdot \vec{E}$$

Prepoznamo obe gostoti energij in zapišemo

$$\frac{\partial w}{\partial t} + \nabla \cdot \vec{\mathcal{P}} + \vec{J} \cdot \vec{E} = 0$$

kjer je $w=\frac{1}{2}\varepsilon_0\vec{E}^2+\frac{1}{2\mu_0}\vec{B}^2$ gostota energija in $\vec{\mathcal{P}}$ predstavlja Poyntingov vektor

$$\vec{\mathcal{P}} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$$

Ta enačba velja v neki točki. Če nas zanima za nek volumen jo prepišemo v integralsko obliko

$$\frac{\partial}{\partial t} \int_{V} w d^{3} \vec{r} = -\int_{\partial V} \vec{\mathcal{P}} \cdot d\vec{S} - \int_{V} \vec{J} \cdot \vec{E} \ d^{3} \vec{r}$$

Torej celotna energija v nekem volumnu (1. člen) se lahko spreminja kot posledica odtoka/dotoka energije skozi površino (2. člen) ali pa na nivoju celega volumna kot npr. Ohmske izgube (3. člen).

6.5.2. Kontinuitetna enačba za gibalno količino (Cauchyjeva enačba)

Obravnavamo

$$\frac{\partial}{\partial t} \left[\varepsilon_0 (\vec{E} \times \vec{B}) \right] = \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \times \vec{B} + \varepsilon_0 \vec{E} \times \frac{\partial \vec{B}}{\partial t} =$$

Tu časovna odvoda polj izrazimo iz Maxwellovih enačb da dobimo

$$= \varepsilon_0 \left[\frac{1}{\mu_0 \varepsilon_0} (\nabla \times \vec{B}) \times \vec{B} - \frac{1}{\varepsilon_0} \vec{J} \times \vec{B} - \vec{E} \times (\nabla \times \vec{E}) \right] = \cdots$$

Naprej bi predelali vektorske produkte rotorjev in bi po nekem postopku dobili

$$\frac{\partial}{\partial t} \left[\varepsilon_0 (\vec{E} \times \vec{B}) \right] = \nabla \cdot \left[\varepsilon_0 \vec{E} \otimes \vec{E} - \frac{\varepsilon_0}{2} E^2 \underline{I} + \frac{1}{\mu_0} \vec{B} \otimes \vec{B} - \frac{1}{2\mu_0} B^2 \underline{I} \right] - \left[\rho \vec{E} + \vec{J} \times \vec{B} \right]$$

Prepoznamo gostoto gibalne količine

$$\vec{g} = \varepsilon_0 (\vec{E} \times \vec{B})$$

Napetostni tenzor EM polja

$$T_{ik} = \varepsilon_0 E_i E_k - \frac{\varepsilon_0}{2} E^2 \delta_{ik} + \frac{1}{\mu_0} B_i B_k - \frac{1}{2\mu_0} B^2 \delta_{ik}$$

in gostoto Lorentzeve sile

$$\vec{f} = \rho \vec{E} + \vec{J} \times \vec{B}$$

in tako dobimo **Cauchyjevo oz. kontinuitetno enačbo za gibalno količino** (v diferencialni in integralski obliki)

$$\frac{\partial g_i}{\partial t} - \frac{\partial T_{ik}}{\partial x_k} + f_i = 0$$

$$\frac{\partial}{\partial t} \int_{V} g_{i} d^{3} \vec{r} = \int_{\partial V} T_{ik} dS_{k} - \int_{V} f_{i} d^{3} \vec{r}$$

V danem volumnu se gibalna količina lahko spreminja kot posledica delovanja napetostnega tenzorja na površini telesa ali pa kot posledica Lorentzeve volumske sile.

6.5.4 Kontinuitetna enačba za vrtilno količino

Vzamemo kontinuitetno enačbo za ohranitev gibalne količine in jo množimo z ročico

$$\frac{\partial(x_jg_i)}{\partial t} = x_j \frac{\partial T_{ik}}{\partial x_k} - x_j f_i$$

V drugem členu uporabimo verižno pravilo, da člen izrazimo drugače in $rac{\partial x_j}{\partial x_k} = \delta_{jk}$

$$\frac{\partial}{\partial t}(x_jg_i) = \frac{\partial(x_jT_{ik})}{\partial x_k} - \frac{\partial x_j}{\partial x_k}T_{ik} - x_jf_i = \frac{\partial(x_jT_{ik})}{\partial x_k} - T_{ij} - x_jf_i$$

Sedaj pa še množimo z Levi-Civita simbolom

$$\frac{\partial}{\partial t} \left(\epsilon_{lji} x_j q_i \right) = \frac{\partial \left(\epsilon_{lji} x_j T_{ik} \right)}{\partial x_k} - \epsilon_{lji} T_{ij} - \epsilon_{lji} x_j f_i$$

Tretji člen odpade ker je tenzor simetričen. Uvedemo gostoto vrtilne količine

$$\gamma_l = \epsilon_{lii} x_i g_i$$

in gostoto navora

$$m_l = \epsilon_{lji} x_j f_i$$

in dobimo kontinuitetno enačbo za gibalno količino (v diferencialni in integralski obliki)

$$\frac{\partial \gamma_l}{\partial t} - \frac{\partial \left(\epsilon_{lji} x_j T_{ik}\right)}{\partial x_k} + m_l = 0$$

$$\frac{\partial}{\partial t} \int_{V} \gamma_{l} d^{3} \vec{r} - \int_{\partial V} (\epsilon_{lji} x_{j} T_{ik}) n_{k} dS + \int_{V} m_{l} d^{3} \vec{r} = 0$$

Vrtilna količina EM polja se torej spreminja kot posledica delovanja napetostnega tenzorja na površini volumna in volumskih navorov.