Machine learning

Linear regression

Exercise VII

פיתוח: ד"ר יהונתן שלר משה פרידמן עידן טוביס קרדיט: ד"ר יונתן רובין Dr. Andrew Ng,, ד"ר קובי מייק ואחרים

למידת מכונה: רגרסיה Regression

קרדיט: ד"ר אוהד סיוון

- ⇒ חיזוי ערכו של משתנה רציף על פי ערכם של משתנים הקשורים אליו
- למשל: כמה כסף תוציא המשפחה בחו"ל (כמובן ברגע שתגמר תקופת הקורונה)
 - שימו לב שזו אינה בעיית סיווג 🎄
 - אין כאן מספר קטגוריותשהאלגוריתם צריך להכריעבניהם
 - כאן אנו מחפשים ערך חיובי כלשהו שיחזה בצורה הטובה ביותר את הוצאות המשפחה
 - בעיה כזו נקראת בעיית רגרסיה(למה נקראת כך נראה בהמשך)

למידת רגרסיה מדוגמאות

שם	מספר נפשות	ימים בטיול	ארץ יעד	הוצאות
כהן	4	5	איטליה	2000
רבין	2	12	תאילנד	1000
שמיר	5	2	ניו יורק	1500
שרון	12	10	בלגיה	10000
רמון	3	3	אנגליה	1200
לוי	6	21	מצרים	1500
בן דוד	3	7	סין	800
מיכאלי	1	10	אוסטריה	2500

גם למידה כזו נקראת למידה מונחית (supervised learning) כי עבור כל דוגמא אנחנו יודעים כמה כל משפחה הוציאה בחו"ל והמחשב ישתמש בדוגמאות כדי ללמוד

קרדיט: ד"ר אוהד סיוון

דוגמא לבעיית רגרסיה כלמידה מונחית – חיזוי ציון של סטודנט

נתונים לנו ווקטורים במרחב עם ערך המוצמד לכל אחד מהם. (תצפיות)

מצא משוואה אופטימלית כך שבהינתן ווקטור חדש, נוכל לשערך את ערכו.

מס' שעות שסטודנט לומד למבחן

דוגמא לבעיית רגרסיה כלמידה מונחית – חיזוי ציון של סטודנט

נתונים לנו ווקטורים במרחב עם ערך המוצמד לכל אחד מהם. (תצפיות)

מצא משוואה אופטימלית כך שבהינתן ווקטור חדש, נוכל לשערך את ערכו.

מס' שעות שסטודנט לומד למבחן

רגרסיה לינארית

ברגרסיה לינארית נחזה את הקשר בין המאפיינים לבין הערך אותו נרצה לחזות, כקשר לינארי.

שיערוך מודל רגרסיה (regression model evaluation)

שיערוך מודל רגרסיה

$$SAE = \sum_{I=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$$
 $MAE = \frac{1}{n} \sum_{I=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$
 $SSE = \sum_{I=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$
 $MSE = \frac{1}{n} \sum_{I=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$
 $RMSE = \sqrt{\frac{1}{n} \sum_{I=1}^{n} (y_i - \hat{y}_i)^2 : \underline{RMSE}}$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ ממוצע הערכים המונחים, כלומר \bar{y} : \bar{y}
 $SST = \sum_{I=1}^{n} (y_i - \bar{y})^2 = : (Sum of Squared Total) SST$
 $R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2} : R\text{-SQARE}$

שאלה 1 (סקר)

$$MAE = \frac{1}{n} \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$$
 $SAE = \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2}} : \underline{RMSE} \qquad MSE = \frac{1}{n}\sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2} : \underline{MSE} \qquad SSE = \sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2} : \underline{SSE}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$$

$$SST = \sum_{l=1}^{n} (y_l - \overline{y})^2 = :$$
(Sum of Squared Total) SST $\overline{y} = \frac{1}{n} \sum_{l=1}^{n} y_l$ כלומר : \overline{y}

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$
 ממוצע הערכים המונחים, כלומר: $ar{y}$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2}$$
 :R-SQARE

לאיזו מהפונקציות הלינאריות הבאות הטעות המינימלית?

שאלה 1 (סקר)

$$MAE = \frac{1}{n} \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$$
 $SAE = \sum_{l=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i| : SAE$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2}} : \underline{RMSE} \qquad MSE = \frac{1}{n}\sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2} : \underline{MSE} \qquad SSE = \sum_{l=1}^{n}(y_{l} - \hat{y}_{l})^{2} : \underline{SSE}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$$

$$SST = \sum_{l=1}^{n} (y_l - \bar{y})^2 = :$$
(Sum of Squared Total) SST $\bar{y} = \frac{1}{n} \sum_{l=1}^{n} y_l$ כלומר : \bar{y}

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$
 ממוצע הערכים המונחים, כלומר: $ar{y}$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2}$$
 :R-SQARE

לאיזו מהפונקציות הלינאריות הבאות הטעות המינימלית?

SSE Illustration – the 1st model (with y_pred1 predictions) has better (lower) SSE

	,	у	y_pred1	y_pred1-y	(y_pred1-y)^2	y_pred2	y_pred2-y	(y_pred2-y)^2
SSE					1000			31000
	0	120	130	10	100	50	-70	4900
	1	140	120	-20	400	200	60	3600
	2	150	160	10	100	150	0	0
	3	200	220	20	400	350	150	22500

שאלה 2א – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Predicted (Ŷ)	Error (Y-Ŷ)	Absolute-Error (Y-Ŷ)
43	41	43.6	-2.6	2.6
44	45	44.4	0.6	0.6
45	49	45.2	3.8	3.8
46	47	46	1	1
47	44	46.8	-2.8	2.8
Regression	line = $y=9.2+0.8$	8x		

$$SAE = \sum_{i=1}^{n} |y_i - \hat{y}_i| : \underline{SAE}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| : \underline{MAE}$$

<u>תרגיל</u> –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה לינארי:

:MAE -השבו את ה- SAE וה-

 $\hat{y}=9.2+0.8x_1$

פתרון

- Y קודם נשערך את •
- כעת נחשב את הטעות המוחלטת
- <u>SAE</u> = 10.8 נסכום ונקבל
 - נחלק בכמות הדו' ונקבל

$$\underline{MAE} = \frac{1}{5} \cdot 10.8 = 2.16$$

שאלה 2ב – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Predicted (Ŷ)	Error (Y-Ŷ)	squared error (Y-Ŷ)2
43	41	43.6	-2.6	6.76
44	45	44.4	0.6	0.36
45	49	45.2	3.8	14.44
46	47	46	1	1
47	44	46.8	-2.8	7.84
Regression	line = $y=9.2+0.3$	8x		

תרגיל –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה (הנ"ל)

ה- את ה- SSE, ה-MSE וה- RMSE:

פתרון:

- Y נשתמש בשערוך הקודם של Y (\hat{Y}) ובחישוב הטעות (\hat{Y})
 - כעת נחשב את הטעותהריבועית
 - נסכום ונקבל SSE=30.4
 - נחלק בכמות הדו' ונקבל

$$\underline{MSE} = \frac{1}{5} \cdot 30.4 = 6.08$$

$$\underline{RMSE} \approx 2.46$$

$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{MSE}$$

$$RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2} : \underline{RMSE}$$

שאלה 2ג – שיערוך מודל רגרסיה

Height (X)	Weight (Y)	Y-Ÿ	squared dist from avg (Y-\bar{Y})2
43	41	-4.2	17.64
44	45	-0.2	0.04
45	49	3.8	14.44
46	47	1.8	3.24
47	44	-1.2	1.44
Regression	line = $y=9.2+0.8$	×	

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 : \underline{SSE}$$

$$ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$
 ממוצע הערכים המונחים, כלומר: $ar{y}$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = :(Sum of Squared Total) SST$$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{MSE}{\sigma^2}$$
 : R-Squared

<u>תרגיל</u> –

נתונים 2 משתנים – גובה ומשקל. רוצים לשערך את המשקל כתלות בגובה, ומצאו קו רגרסיה (הנ"ל)

:R-Squared -חשבו את ה

פתרון:

- נשתמש בחישוב הקודם של SSE: קיבלנו SSE=30.4
 - $ar{y}$ נחשב את הממוצע

 $\bar{y} = 45.2$

- יונחשב את המרחקים הריבועיים $(Y-\bar{Y})^2$ מהממוצע
 - נחשב את SST (סכום המרחקים SST=36.8 (הריבועיים הנ"ל):
- R-Squared נחשב את יחשב $R^2 = 1 \frac{SSE}{SST} = 1 \frac{30.4}{36.8} \approx 0.174$

מציאת מינימום - השוואת הנגזרת לאפס

$$\frac{df(x)}{dx} = 0$$
 אלא תמיד ניתן לפתור את המשוואה $*$

⇒במקרים אלו ניתן להתקרב אל נקודת המינימום באופןאיטרטיבי

הכללה - התקדמות בכיוון הנגזרת

⇒נמשיך להתקדם לכיוון בו הפונקציה יורדת

גד (להקטין) נגד אלכן, כדאי לעדכן את א (להגדיל או להקטין) נגד כיוון הנגזרת

gradient descent אלגוריתם

- :f(x) על מנת למצוא את נקודת המינימום של פונקציה *
 - א נגריל נקודת התחלה ·
 - : נקדם את ערך x לפי הנוסחה:

$$x \leftarrow x - \alpha \frac{\partial f(x)}{\partial x}$$

(0.01 או 0.1 או לדוגמא לדוו. לדוגמא (נקבע על ידנו הלמידה – α

בגזרת הפונקציה -
$$\frac{\partial f(x)}{\partial x}$$

תרגיל חישוב Gradient descent

- $f(x)=x^2-10x+5$ נתונה הפונקציה *
- gradient עקבו אלגוריתם של של אלגוריתם α =0.1 עבור descent

Step	X	$\frac{\partial f(x)}{\partial x}$	$\alpha \frac{\partial f(x)}{\partial x}$
0	0		
1			
2			
3			
4			

תרגיל חישוב Gradient descent פתרון

epoch	х	dx	$\alpha \cdot dx$
0	0.00	-10.00	-1.00
1	1.00	-8.00	-0.80
2	1.80	-6.40	-0.64
3	2.44	-5.12	-0.51
4	2.95	-4.10	-0.41
5	3.36	-3.28	-0.33
6	3.69	-2.62	-0.26
7	3.95	-2.10	-0.21
8	4.16	-1.68	-0.17
9	4.33	-1.34	-0.13
10	4.46	-1.07	-0.11
11	4.57	-0.86	-0.09
12	4.66	-0.69	-0.07
13	4.73	-0.55	-0.05
14	4.78	-0.44	-0.04
15	4.82	-0.35	-0.04
16	4.86	-0.28	-0.03
17	4.89	-0.23	-0.02
18	4.91	-0.18	-0.02
19	4.93	-0.14	-0.01
20	4.94	-0.12	-0.01

- $f(x)=x^2-10x+5$ נתונה הפונקציה *
- gradient עקבו אלגוריתם של אלגוריתם α =0.1 עבור descent

(linear regression) רגרסיה לינארית

רגרסיה לינארית

ברגרסיה לינארית – הקשר בין וקטור המאפיינים, לערך אותו רוצים לחזות הוא פונקציה לינארית

מקרה פשוט (כמו בדוגמה): יש רק מאפיין אחד בווקטור המאפיינים

סכום הציונים	שכר יומי בש"ח
2104	460
1416	232
1534	315
852	178
	•••

(Cost Function) פונקצית מחיר

המודל הלינארי:

פונקצית המחיר – מוגדרת ע"י ממוצע הטעות הריבועית

$$J\left(\vec{w}
ight) = rac{1}{n} \sum_{i=1}^{n} \left(w_0 + w_1 x_i - y_i
ight)^2$$
 $MSE = rac{1}{n} \sum_{l=1}^{n} (\hat{y}_i - y_i)^2$ הטעות:

$$\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$$

 $\min \left[J\left(\overrightarrow{\boldsymbol{w}} \right) \right]$

מטרה: למצוא היפותזה עם טעות מינימלית ע"י שימוש בפו' [

w_0, w_1 פונקצית מחיר עבור 2 פרמטרים

(Cost Function) פונקצית מחיר

פונקצית המחיר – מוגדרת ע"י ממוצע הטעות הריבועית

$$J\left(\mathbf{\vec{w}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w_0} + \mathbf{w_1} x_i - y_i\right)^2$$

המודל הלינארי:

$$\hat{y} = f\left(x; \mathbf{\vec{w}}\right) = \mathbf{w_0} + \mathbf{w_1}x$$

Linear Regression via Gradient Descent

$$J\left(\overrightarrow{\boldsymbol{w}}
ight) = rac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w_0} + \mathbf{w_1} x_i - y_i
ight)^2$$
 פונקצית המחיר:

$$\frac{\partial J}{\partial w_0} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x_i - y_i) \cdot 1$$

$$\frac{\partial J}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x_i - y_i) \cdot x_i$$

הנגזרות החלקיות

Linear Regression via Gradient Descent

$$w_0 := w_0 - rac{2lpha}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i
ight)$$
עדכון $w_1 := w_1 - rac{2lpha}{n} \sum_{i=1}^n \left(w_0 + w_1 x_i - y_i
ight) \cdot x_i$

Linear Regression with Gradient Descent

Gradient-Descent(S: training-examples & targets, α)

Initialize $w_0 \& w_1$ with small random numbers

Until TERMINATION Do

- * Initialize each $\Delta w_0 \& \Delta w_1$ to zero
- * For each $\langle x_i, y_i \rangle$ in S Do
 - * Compute $\widehat{y}_i = w_{0+} w_1 x_{i1}$
 - * Update $\Delta w_0 \& \Delta w_1$ values for example i as following:

$$\Delta w_0 = \Delta w_0 - \alpha \frac{2}{n} (\widehat{y}_i - y_i)$$

$$\Delta w_1 = \Delta w_1 - \alpha \frac{2}{n} (\widehat{y}_i - y_i) x_{i1}$$

- * $w_0 = w_0 + \Delta w_0$
- $w_1 = w_1 + \Delta w_1$

 \hat{y} –predicted value y – actual target value α - learning rate

 $H_W(x)$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר -

תרגיל – בתחילת האיטרציה (הסבב) הרביעית ב
 $h(\mathbf{x}) = 1$ המשקולות המתאימות למשוואה הבאה: $\alpha = 0.0000001$ train-set -, ועבור ה-, ועבור ה-, ועבור ה-, 200-0.1-x

Gradient חשבו הבאה הבאה לאיטרציה לאיטרציה הבאה על w_0, w_1 את Descent עבטר הרגרסיה הלינארית השבו סבב נוסף

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$$H_W(x)$$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x של -

$$J(w_0,w_1)$$

- פונקצית המחיר (מדמה גרף תלת מימדי)

 w_0, w_1 פונקציה של - פונקציה - פונקצית המחיר -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

$$H_W(x)$$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

$J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

 $H_W(x)$

- ישר הרגרסיה, מאפיין אחד

מסוימים w_0, w_1 עבור x, של -

$J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר -

סכום הציונים	שכר יומי בש"ח
2104	460
1534	315
852	178

Train set

:פתרון לאחר איטרציה אחת

$$w_0 = 899.99$$

 $w_1 = -0.147$
 $H_W(x) = 899.99 - 0.147x$

$H_W(x)$

- ישר הרגרסיה, מאפיין אחד
- פונקציה של x, עבור w_0, w_1 מסוימים -

סכום הציונים	שכר יומי בש"ח	
2104	460	
1534	315	
852	178	

Train set

$J(w_0,w_1)$

- פונקצית המחיר (מדמה גרף תלת מימדי)
 - w_0, w_1 פונקציה של פונקציה פונקצית המחיר -

... לאחר כמה סבבים

רגרסיה לינארית (linear regression) ריבוי משתנים (multivariate) - מוטיבציה

Gradient Descent – for linear regression - summary

univariate linear regression

$$\left\{ (x_i, y_i) \right\}_{i=1}^n$$

$$\hat{y}_i = w_0 + w_1 x_i$$

$$J\left(\mathbf{\vec{v}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{y}_i - y_i\right)^2$$

$$\min_{\mathbf{w}} \left[J\left(\mathbf{\vec{w}} \right) \right]$$

$$\mathbf{w_0} := \mathbf{w_0} - \frac{2\alpha}{n} \sum_{i=1}^n (\mathbf{w_0} + \mathbf{w_1} x_i - y_i)$$

$$\mathbf{w_1} := \mathbf{w_1} - \frac{2\alpha}{n} \sum_{i=1}^{n} (\mathbf{w_0} + \mathbf{w_1} x_i - y_i) \cdot x_i$$

multivariate linear regression

$$\left\{ (\vec{x}_i, y_i) \right\}_{i=1}^n$$

$$\hat{y}_i = \vec{w} \cdot \vec{x}_i$$

$$J\left(\overrightarrow{\boldsymbol{v}}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{y}_i - y_i\right)^2$$

$$\min_{\mathbf{w}} \left[J\left(\mathbf{\vec{w}} \right) \right]$$

$$\vec{\mathbf{w}} := \vec{\mathbf{w}} - \frac{2\alpha}{n} \sum_{i=1}^{n} (\vec{\mathbf{w}} \cdot \vec{x}_i - y_i) \cdot \vec{x}_i$$

Linear Regression with Gradient Descent

Gradient-Descent(S: training-examples & targets, α)

Initialize each w_i with small random number

Until TERMINATION Do

- * Initialize each Δw_j to zero
- * For each $\langle x_i, y_i \rangle$ in S Do
 - * Compute $\hat{y}_i = \vec{w} \vec{x}_i$
 - * Update Δw_j values for example i as following (for each Δw_j):

$$\Delta w_j = \Delta w_1 - \alpha \frac{2}{n} (\widehat{y}_i - y_i) x_{ij}$$

- * For each weight w_i Do
 - * $w_j = w_j + \Delta w_j$

 \hat{y} –predicted value

y – actual target value

 α - learning rate

multivariate linear regression

במקרה זה, לכל וקטור באימון יש יותר ממאפיין אחד (למשל: גודל הדירה, קומה, כיווני-אוויר, וכו')

Price (\$K) (y)	Size (meter²) (x4)	Number of bedrooms (x3)	Number of floors (x2)	Age of home (years) (x1)
460	2104	5	1	45
232	1416	3	2	40
315	1534	3	2	30
178	852	2	1	36

$$H_W(x) = \overrightarrow{w}^T \cdot \overrightarrow{x} = w_0 \cdot x_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \dots + w_d \cdot x_d$$

המודל הלינארי -עבור רגרסיה מרובת משתנים:

$$\hat{y}_i = \vec{w} \cdot \vec{x}_i$$

קומבינציה לינארית של המאפיינים 37

(Cost Function) פונקצית מחיר

$$\hat{y}_i = \vec{w} \cdot \vec{x}_i$$
 במודל הלינארי:

$$J\left(ec{oldsymbol{v}}
ight)=rac{1}{n}\sum_{i=1}^n\left(\hat{y}_i-y_i
ight)^2=rac{1}{n}\sum_{i=1}^n\left(ec{oldsymbol{v}}\cdotec{x}_i-y_i
ight)^2$$
 פונקצית המחיר ($n\geq 1$)

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done:

We want w_0 to be partialy derived as the rest of \vec{w} , so if j=0, $x_{i,0}=1$

$$w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_j} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot \vec{x}_{i,j} \right]$$

(simultaneously update w_j for j=0,...,d)

Gradient Descent - 4 שאלה

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done:
$$w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_j} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot x_{i,j} \right]$$

Train set

Size			
(meter ²)	Number of	Age of home	Price (\$K)
	bedrooms	(years)	
2104	5	45	460
1416	3	40	232
852	2	36	178

 $\frac{\pi - \kappa_i - 1}{m_j}$ נתונים $\alpha = 0.1$, לכל $m_j = 0$, train set-ונתון ה

Gradient בצעו סבב אחד של Descent

:תשובה

Gradient Descent - 4 שאלה

Multivariate Gradient Descent Algorithm - for linear regression:

Repeat until done: $w_j = w_j - \alpha \cdot \frac{\partial J}{\partial w_i} = w_j - \alpha \cdot \frac{2}{n} \cdot \sum_{i=1}^n \left[(\vec{w} \cdot \vec{x}_i - y_i) \cdot x_{i,j} \right]$

Train set

Size			
(meter ²)	Number of	Age of home	Price (\$K)
	bedrooms	(years)	
2104	5	45	460
1416	3	40	232
852	2	36	178

Predicted (Ŷ)	(Ŷ-Y)xi,0	(Ŷ-Y)xi,1	(Ŷ-Y)xi,2	(Ŷ-Y)xi,3				
0	-460	-967840	-2300	-20700				
0	-232	-328512	-696	-9280				
0	-178	-151656	-356	-6408				
Sum	-870	-1448008	-3352	-36388				
α *2*1/n*Sum	-58	-96533.9	-223.4667	-2425.86667				
new w vals	58	96533.87	223.46667	2425.866667				

תרגיל –

j לכל $w_i=0$, $\alpha=0.$ נתונים 1.

train set-ונתון

Gradient בצעו סבב אחד של Descent

תשובה:

נחשב את ערכי הנגזרות החלקיות ונכפיל ב-מ

נחשב את ערכי וקטור המשקולות \ldots החדשים (\overrightarrow{w})

 \overrightarrow{w} המעדוכן האם ערכי שאלה: האם ?הראים סבירים? מדוע זה קרה?

רגרסיה לינארית (linear regression) - היבטים שונים ב-flow

חזרה על סוף מצגת ההרצאה על רגרסיה

Linear regression – features should not be correlated

Linear regression - predicted value is a linear combination

of the feature values

→ Doesn't work well if features are dependent.

NMI =
$$\frac{I(f1; f2)}{|H(f1) + H(f2)|/2}$$

Possible solution – look for correlation between features

- Pearson correlation coefficient
- Normalized Mutual information

$$ho_{X,Y} = rac{ ext{cov}(X,Y)}{\sigma_X \sigma_Y} \ = rac{\sum_i (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_i (x_i - ar{x})^2 \sum_i (y_i - ar{y})^2}}$$

Overfitting vs Underfitting

Linear regression tends to overfit, mainly if there are many features involve (even after removal of dependent features)

Overfitting vs Underfitting - solutions

Linear regression tends to overfit, mainly if there are many features involve (even after removal of dependent features)

Solution 1 – Reduce correlated features

- Remove correlated features (e.g., Pearson correlation)
- Remove correlation (e.g., PCA)

Solution 2 – Stop before convergence

Use validation set (e.g., k-fold cross-validation) to choose a stop point

Regularization - different values of lambda

Solution 3 – Regularization

Keep all the features but reduces the magnitudes of the hypothesis parameters.

works well when all features contribute to the target prediction.

Objective: min $J(\vec{w})$,

• With very large λ causes only w_0 to matter, we want a trade-off between them for a trade-off between overfitting and underfitting

 $\lambda = 0$: We'll get the same coefficients as simple linear regression.

 $\lambda = \infty$: The coefficients will be zero.

 $0 < \lambda < \infty$: We want our values in between

סילום (Scaling)

Gradient descent

- Gradient descent convergence more quickly
 - Might not converge if no scaling and alpha is not tuned.

Linear regression - predicted value is a linear combination of the feature values

Scaling assists for understanding (importance of features)

Regularization

Significant for regularization

Popular Scaling actions

- Popular range: [-1,1]
- Standardization
- centralization is popular (after, mean=0)

Hyperparameters and tuning

- קבוע הלמידה − α ♦
- שספר האיטרציות המקסימלי Epocs *
 - $-\lambda$ \Rightarrow
 - שיטת הרגולריזציה

גם עבור רגרסיה לנארית נוכל לבצע hyperparameter tuning שלמדנו

רגרסיה לינארית – יתרונות וחסרונות

יתרונות:

- קל למימוש, להבנה והסבר
- ניתן להסיק על חשיבות המאפיינים
- קטן train-set קטן -
 - זמן אימון מהיר
 - סיבוכיות מקום נמוכה
- (regularization בעזרת overfitting רוב החסרונות ברות טיפול (למשל טיפול ב-overfitting -

חסרונות:

- לא מתאים כשאין קשר לינארי ומתקשה שההיפותזה מורכבת
 - נטייה ל-overfitting במיוחד בריבוי מאפיינים
 - מתקשה לטפל במאפיינים לא רלוונטיים וברעש
 - (scaling) אילום ללא סילום - לא עובד טוב ללא
 - צריך לוודא חוסר תלות בין המאפיינים
 - הטעות צריכה להתפלג נורמלית

Other regression algorithms

Other regression algorithms

KNN Regressor

And many more

- CART Classification and regression trees
- Ensembles with week CARTs (e.g., Random forest regressor)
- Support Vector Regressors (we will learn SVM for classification)
- Artificial Neural Networks (we will learn ANN for classification)

CART - Classification and Regression Trees

CART - Classification and Regression Trees

- Only Binary splits
- *use of Gini Index instead of Information Gain/Entropy
- ❖More popular than ID3/C4.5
- Uses pruning

Gini impurity

CART - Classification and Regression Trees

 Instead of entropy, impurity can be measured by the Gini index

$$Gini(S) = 1 - \sum_{i} p_i^2$$

average Gini index

$$Gini(S, A) = \sum_{i} \frac{|S_{i}|}{|S|} \cdot Gini(S_{i})$$

Regression Trees

How to choose attributes?

- Instead of entropy/gini use variance
- *Early stopping must
- Use mean, median etc.

Example: location -> house price

KNN – both for classification and regression

- The new example, is marked with a black circle
- The examples from the training are marked in blue and red (2 classes) circles
- In example K = 3

KNN for Regression – the algorithm

Input:

- Hyper parameters: k the number nearest neighbors; d the distance metric; Averaging – uniform/weighted
- Training set (<X,y>)

The KNN Algorithm:

- * for test instance x_j in the test-set:
 - Calculate d(x_j,x_i)
 - Select the k closest training examples, d(x_j,x_i) sorted
 - Predict value = average of target values from nearest neighbors

Notations and Terms:

 x_j – example from the test-set

xi – example from the train-set

 $d(x_j,x_i)$ – distance between x_j and x_i .

KNN for Regression –Exercise

notations:

A feature vector with two features X1,X2, will be written as (x1,x2)<(x1,x2) t> denotes the example and its expected target (for training set examples)

X1=num of people, x2=num of days, target=price of trip

Our training set:

```
<(3,2)|50>, <(4,2)|100>, <(4,3)|400>, <(7,4)|1000>, <(6,7)|2000>, <(4,6)|800>,
<(6,2)|300>
```

Question: Predict the value for the new feature vector (6,4), using KNN Use Manhattan distance and K=1. What is the closest distance to the new example and how will it be classifier?

- B. Distance=1, target =1000
- D. Distance=4, target =800

KNN for Regression –Exercise

notations:

A feature vector with two features X1,X2, will be written as (x1,x2) <(x1,x2) | t> denotes the example and its expected target (for training set examples)

X1=num of people, x2=num of days, target=price of trip

Our training set:

```
<(3,2)|50>, <(4,2)|100>, <(4,3)|400>, <(7,4)|1000>, <(6,7)|2000>, <(4,6)|800>)
<(6,2)|300>
```

Question: Predict the value for the new feature vector (6,4), using KNN Use Manhattan distance and K=1. What is the closest distance to the new example and how will it be classifier?

- A. Distance=2, target =300
- C. Distance=3, target =400
- B. Distance=1, target =1000
- D. Distance=4, target =800

להתראות בשבוע הבא

