

Bending and Buckling analysis of Composite plate.

Why are composite materials Important?

- Composite plates are a big deal in aerospace because they're super strong but also lightweight.
- They help make airplanes lighter, which means they use less fuel and can fly farther.
- x Lighter airplanes also need smaller engines, which saves even more fuel and reduces emissions.
- They're used in everything from airplane wings to the body of the plane itself.

Our Material

Material Chosen: AS4-3501/6 Graphite/Epoxy Composite

Widely Used in Aerospace: Key material in aircraft structures due to its exceptional properties.

Common Applications: Utilized in aircraft wings, fuselages, engine components, and interior structures.

Advantages Over Other Composites:

- High Strength-to-Weight Ratio: Provides robustness without adding unnecessary weight, enhancing fuel efficiency.
- Excellent Stiffness: Ensures structural integrity under aerodynamic forces, enhancing flight performance.
- × Corrosion Resistance: Maintains durability in harsh environments, reducing maintenance needs.
- x Tailorable Properties: Can be customized through fiber orientation, offering versatility in design and performance optimization.
- Preferred Choice: AS4-3501/6 is favored for its balance of strength, lightweight, and adaptability, making it a top pick for aerospace applications.

Material Properties and Q Values

Equations

Constants:

- Angle: $\theta = [0 \ 90 \ 90 \ 0]$
- Number of layers: k = 4
- ► Thickness: thickness = 1.34 × 10⁻⁴ meters
- ▶ Density: ρ_m =1580 kg/m³
- Derivation of the Q matrix:

$$Q = egin{bmatrix} Q_{11} & Q_{12} & 0 \ Q_{21} & Q_{22} & 0 \ 0 & 0 & Q_{66} \end{bmatrix}$$

$$Q_{11} = \frac{E_1}{1 - \nu_{12} \nu_{21}}$$

$$E_1 = 142 \times 10^9 \text{ Pa}$$
 $E_2 = 9.8 \times 10^9 \text{ Pa}$
 $\nu_{12} = 0.3$
 $\nu_{21} = \frac{E_2 \nu_{12}}{E_1}$
 $G_{12} = 6 \times 10^9 \text{ Pa}$
 $Q_{12} = \frac{\nu_{21} E_1}{1 - \nu_{12} \nu_{21}}$
 $Q_{21} = Q_{12}$
 $Q_{22} = \frac{E_2}{1 - \nu_{12} \nu_{21}}$
 $Q_{66} = G_{12}$

Q Transformation and D Value Formulations

Stacking Sequence: [0 90 90 0]

$$m = \cos(\theta)$$

$$n = \sin(\theta)$$

$$\bar{Q}_{11} = Q_{11}m^4 + 2(Q_{12} + 2Q_{66})m^2n^2 + Q_{22}n^4$$

$$\bar{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})m^2n^2 + Q_{12}(m^4 + n^4)$$

$$\bar{Q}_{22} = Q_{11}n^4 + 2(Q_{12} + 2Q_{66})m^2n^2 + Q_{22}m^4$$

$$\bar{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12})m^2n^2 + Q_{66}(m^2 - n^2)^2$$

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{n} (\bar{Q}_{ij}) k \left(tk^3 - t_{k-1}^3 \right)$$

Results

Given material properties:

$$D_{21} = 0.037964,$$
 $D_{1} = D_{11} = 1.6202,$ $D_{2} = D_{22} = 0.33993,$ $D_{3} = D_{12} + 2 * D_{66} = 0.19195$ $D_{10} = 0.037964,$ $D_{20} = 0.037964,$ $D_{30} = 0.037964,$ $D_{40} = 0.037964,$ $D_{50} = 0.03796,$ $D_{50} =$

$$\omega_{mn} = \frac{\pi^2}{\sqrt{\rho_m h}} \left[D_1 \left(\frac{m}{a} \right)^4 + 2D_3 \left(\frac{m}{a} \right)^2 \left(\frac{n}{b} \right)^2 + D_2 \left(\frac{n}{b} \right)^4 \right]^{1/2}$$

$$\omega_{mn} = \frac{\pi^2}{\sqrt{1580(0.536)_1}} \left[(1.6202 \text{ Nm}) \left(\frac{1}{2} \right)^4 + 2(0.19195 \text{ Nm}) \left(\frac{1}{2} \right)^2 \left(\frac{1}{1} \right)^2 + (0.33993 \text{ Nm}) \left(\frac{1}{1} \right)^4 \right]^{1/2}$$

$$\omega_{mn} = 1.251 \text{ Hz}$$

Natural Frequency

A TABLE DE LA PARTIE DE LA PART	DATE DE
-)	-1
mn = 16 96 mn D (m) +	$\frac{0}{22} \left(\frac{1}{b}\right)^{\frac{1}{4}} + 2 \left(0 - 20\right) \left(\frac{m}{a}\right)^{2} \left(\frac{n}{b}\right)^{2}$
m = odd	
n = odd.	

=) +D $\frac{\partial^4 u}{\partial x^4}$ + D $\frac{\partial^4 u}{\partial x^4}$ + $\left(\frac{\partial D}{\partial D} - 4D\right)\frac{\partial^4 u}{\partial x^2}$ = 9 un = Sue Sin (mitx) Sin (mitty) 9 = Equision (mirx) sin (ontry) => 9 = 169 min H2 => Du mn (mt) Sin (mtx) Sin (mtx) + Du mn (mtx) Sin(mtx) Sin(mtx) $+2\left(\frac{D_{12}-2D_{66}}{a}\right)\left(\frac{m\pi}{a}\right)^{2}\left(\frac{n\pi}{b}\right)^{2}\frac{\sin\left(n\pi x\right)\sin\left(n\pi y\right)}{a}=\frac{16q_{mn}\pi^{2}\sin\left(m\pi x\right)}{ab}$

Thin plate Theory: {M3 = [B] {E°3 + [D] {X} EN3 = [A] = EBJ 2X3 M = D + D Ky + D Ky My = D X + D Ky + D Kny Mxy = D / + D xy + D x 9 => pressure load. (N/m²) Kxy = -2 22ml $\Rightarrow \frac{\partial^2 H_x}{\partial x^2} + \frac{\partial^2 H_y}{\partial y^2} - \frac{2 \partial^2 H_{xy}}{\partial x^2} + q = 0$ $\frac{\partial^{2} H_{x}}{\partial x^{2}} = -D \frac{\partial^{4} u}{\partial x^{4}} - D \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}} - 2D \frac{\partial^{4} u}{\partial x^{3} \partial y}$ $\frac{\partial^2 My}{\partial y^2} = \frac{-D}{21} \frac{\partial^4 u}{\partial x^2 \partial y^2} - \frac{\partial^4 u}{\partial x^2 \partial y^3} - \frac{\partial^4 u}{\partial x^2 \partial y^3} - \frac{\partial^4 u}{\partial x^2 \partial y^3}$ -232 May - 20 34m + 20 34m + 20 34m + 20 34m + 20 34m

All Edges are Simply Supported: Simply supported: UZ = 0, ROTX = 0 b=1m a=2m

Geometry and Boundary Conditions

	A	В	C Unit		D	E
1	Property	Value			8	(p)
2	Material Field Variables	Table		100		
3	2 Density	1800	kg m^-3	-		B
4	☐ ☑ Orthotropic Elasticity			250	F	
5	Young's Modulus X direction	142	GPa	-		
6	Young's Modulus Y direction	9.8	GPa	-		
7	Young's Modulus Z direction	8.9	GPa	-	100	
8	Poisson's Ratio XY	0.3				
9	Poisson's Ratio YZ 0.0559					
10	Poisson's Ratio XZ	0.3				
11	Shear Modulus XY	6	GPa		100	
12	Shear Modulus YZ	2.9	GPa ▼			
13	Shear Modulus XZ	4.5	GPa	-		

## Fabric	Prope	rties			-			×
Name: Fa	abric.1							
ID: Fal	bric.1							
General	Analy	sis	Solid Model Opt.	Draping				
Genera	ı—							
Ma	terial:	Cor	mposite					~
Thick	kness:	0.00	00134					
Price/	/Area:	0.0						
Weight	/Area:	No	ne					
				OK	Apply	/	Ca	incel

M	n	Theoretical Frequency	ANSYS Result
1	1	1.251	1.17
2	1	2.6133	2.4487
1	2	4.1545	3.8941
2	2	5.0041	4.6901
3	1	5.2341	4.9059
3	2	7.05	6.6145

$$N_{x cr} = -\frac{\pi^2 a^2}{m^2} \left[D_1 \left(\frac{m}{a} \right)^4 + 2D_3 \left(\frac{m}{a} \right)^2 \left(\frac{n}{b} \right)^2 + D_2 \left(\frac{n}{b} \right)^4 \right]^1$$

$$N_{x \text{ cr}} = -\frac{\pi^2 2^2}{1^2} \left[(1.6202 \text{ Nm}) \left(\frac{1}{2} \right)^4 + 2(0.19195 \text{ Nm}) \left(\frac{1}{2} \right)^2 \left(\frac{1}{1} \right)^2 + (0.33993 \text{ Nm}) \left(\frac{1}{1} \right)^4 \right]^1$$

 $N_{x cr} = 21.2 \text{ N/m}$

Load Factor =
$$\frac{N_{x \text{ cr}}}{\text{Applied Load}} = \frac{21.2}{10} = 2.12$$

Buckling

m	n	Load Multiplier(ANSYS wala)	Load(Ansys wala)	Load (Theoretical)
1	1	2.121	21.21	21.207
2	1	2.3138	23.138	23.135
3	1	4.1273	41.273	41.26
4	1	6.8632	68.632	68.592
5	1	10.437	104.37	104.27
3	2	7.5031	75.031	74.993
4	2	9.2595	92.595	92.54
2	2	8.4883	84.883	84.826
5	2	12.38	123.8	123.69
6	1	14.828	148.28	148.08

Bending Calculation

For bending, we have the following expressions: taking mode (1,1) p_0 =10 pascal

$$B_{mn} = \frac{P_0}{mn\pi^2} \left[1 - (-1)^m \right] \left[1 - (-1)^n \right]$$

$$A_{mn} = \frac{B_{mn}}{D_1(\frac{m\pi}{a})^4 + 2D_3(\frac{m\pi}{a})^2(\frac{n\pi}{b})^2 + D_2(\frac{n\pi}{b})^4}$$

Note: All edges are simply supported.

The bending deflection w(x, y) is given by:

$$w(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right)$$

Bending deflection: 302.8545 mm

Bending

