CS/DS 541: Class 20

Jacob Whitehill

seq2seq models

seq2seq models

- Seminal paper:
 - Sutskever et al. 2014

- Suppose we want to translate from one language to another.
- Language 1 vocabulary: { a, b, . }.
- Language 2 vocabulary: { u, v, w, . }.
- We add to both vocabularies a "." symbol that means end-of-sentence (EOS).

 We construct a sequence-to-sequence model consisting of an encoder RNN and a decoder RNN:

 We construct a sequence-to-sequence model consisting of an encoder RNN and a decoder RNN:

- The encoder digests the input sequence $x_1, ..., X_T$ and produces a context vector **c**.
- The decoder uses the context vector to produce the translation sequence $y_1, ..., y_{T'}$.

• At each timestep t=1, ..., T', the decoder tries to estimate the probability distribution $P(y_t \mid y_1, ..., y_{t-1}, x_1, ..., x_T)$.

• More precisely, the RNN produces a probability distribution conditioned on the context: $P(y_t \mid y_1, ..., y_{t-1}, \mathbf{c})$.

 For example, if the input is "ab" and the first two output symbols were "wu", then the decoder estimates

$$P(y_3 \mid Y_1=w, Y_2=u, X_1=a, X_2=b, X_3=.) \cong$$

 $P(y_3 \mid Y_1=w, Y_2=u, \mathbf{c})$

 Given an input sentence, we can generate an output sentence as follows:

1. Encode $x_1, ..., x_T$ into **c**:

2. Decode **c** for one time-step to compute $P(y_1 \mid \mathbf{c})$.

3. Sample from $P(y_1 \mid \mathbf{c})$ to obtain a symbol $y_1 \in \{ u, v, w, . \}$, e.g., w.

4. If y_1 =. then stop; else feed y_1 as input to the decoder during the next time-step.

5. Compute $P(y_2 | y_1, \mathbf{c})$.

6. Repeat the procedure until we produce a . symbol.

Training a seq2seq model

- We train a seq2seq model using maximum likelihood estimation (MLE) on a set of input-output pairs.
- Given any input-output pair, we want the RNN's weights θ to maximize the likelihood:

$$P(y_1,\ldots,y_{T'}\mid x_1,\ldots,x_T,\theta)$$

Training a seq2seq model

- We train a seq2seq model using maximum likelihood estimation (MLE) on a set of input-output pairs.
- Given any input-output pair, we want the RNN's weights θ to maximize the likelihood:

$$P(y_1,\ldots,y_{T'}\mid x_1,\ldots,x_T,\theta)=P(y_1\mid x_1,\ldots,x_T,\theta)$$
 $P(y_2\mid y_1,x_1,\ldots,x_T,\theta)$ The probability distribution factorizes over t $P(y_{T'}\mid y_1,\ldots,y_{T'-1},x_1,\ldots,x_T,\theta)$

• At test time, we want to find the *most probable* output sentence given any input sentence, i.e.:

$$\operatorname{argmax}_{(y_1, \dots, y_{T'})} P(y_1, \dots, y_{T'} \mid x_1, \dots, x_T, \theta)$$

• How can we search over all possible $(y_1, ..., y_{T'})$ (for fixed T')?

• Since $P(y_1, ..., y_{T'} | x_1, ..., x_T)$ factorizes over t, we can pass each candidate sequence into our RNN, obtain the probability of each symbol y_t , and then multiply the probabilities together.

• Suppose x_1 =a and x_2 =b. Then for y_1 =w and y_2 =v, we have:

$$P(w, v | a, b) = 0.1$$

• Suppose x_1 =a and x_2 =b. Then for y_1 =w and y_2 =v, we have:

• Suppose x_1 =a and x_2 =b. Then for y_1 =w and y_2 =v, we have:

$$P(w, v | a, b) = 0.1 * 0.7 = 0.07$$

- Unfortunately, for large T', there are exponentially many different probabilities $P(y_1, ..., y_{T'} \mid x_1, ..., x_T)$ we would need to compute.
- Heuristic: perform a greedy **beam search** to keep track of the top-K most likely translations $y_1, ..., y_{T'}$.

Beam search

Beam search

1. At each output timestep *t*, keep track of top-*K* most likely translations, where *K* is the **beam width**:

$$\{(y_1,\ldots,y_t)^{(1)},\ldots,(y_1,\ldots,y_t)^{(K)}\}$$

2. For each of our *K* candidates, we can compute:

$$P(y_{t+1} | y_1, \dots, y_t, x_1, \dots, x_T)$$

- 3. If the output vocabulary has N words, then this results in N^*K possible sequences of length t+1.
- 4. From these *N*K* choices, we select the top-*K* most likely translations of length *t*+1.

- Let input vocabulary={a, b, .} and output vocabulary={u, v, w, .}.
- Let beam width *K*=2.

- Beam at *t*=0: {}
- At *t*=1, pick top-*K* most likely possible symbols:

- 0.5 0.3 Beam at *t*=1: { (*y*₁=v), (*y*₁=u) }
- At t=2, compute $P(y_2 \mid y_1, x_1=a, x_2=b)$ for each (y_1) in the beam:

- 0.5 0.3
 Beam at t=1: { (y₁=v), (y₁=u) }
- At t=2, compute $P(y_2 \mid y_1, x_1=a, x_2=b)$ for each (y_1) in the beam:

• This results in a total of *N*K*=4*2=8 possible sequences of length 2:

- We pick the top-K most likely sequences as our next beam.
- Beam at t=2: { $(y_1=v, y_2=.), (y_1=u, y_2=u)$ }

Word embeddings

Paper discussion:

"Distributed Representations of Words and Phrases and their Compositionality" (Mikolov et al. 2013)

Presented by Jacob Whitehill

Background

- For a variety of natural language processing (NLP) tasks, it is important to represent each word in a vocabulary.
- Tasks:
 - Understanding the sentiment of natural text
 - Translating from one language to another
 - Question & answering tasks

Background

- One of the simplest and most common ways to represent each word in a vocabulary V is to assign each word a number, e.g.:
 - A = 1
 - a = 2
 - aa = 3
 - aal = 4
 - aalii = 5
 - aam = 6
 - Aani = 7
 - aardvark = 8
 - aardwolf = 9
 - ...

Background

- One of the simplest and most common ways to represent each word in a vocabulary V is to assign each word a number, e.g.:
 - A = 1
 - a = 2
 - aa = 3
 - aal = 4
 - aalii = 5
 - aam = 6
 - Aani = 7
 - aardvark = 8
 - aardwolf = 9
 - ...
- We can then construct a one-hot vector of length |V|:
 - A = [1, 0, 0, ..., 0]
 - a = [0, 1, 0, ..., 0]
 - $aa = [0, 0, 1, 0, \dots 0]$
 - ...

Background

- However, this one-hot representation does not allow any generalization across words.
- For application domains with relatively small amounts of training data (e.g., speech processing in a specialized context), this is wasteful and may decrease the accuracy of downstream systems.
- Is there a way to use DL to learn an efficient (≪ |V|) and expressive vector for each word?

Key contributions

- In the word2vec paper by Mikolov et al. 2013, the authors explored how to train a NN to map each word in a large vocabulary *V linearly* to a continuous (real-valued) vector.
- They explored two training strategies:
 - Hierarchical softmax
 - Negative sampling
- They found that their approach yielded excellent performance on word analogy tasks.
- The learned embedding model also exhibited useful compositionality.

 In traditional NLP models, we often predict the tth of a sentence using the previous n words (t-1, t-2, ..., t-N), e.g.:

 However, recent work has found that skip-gram models often work better because they include both forward and backward context, e.g.:

 However, recent work has found that skip-gram models often work better because they include both forward and backward context, e.g.:

 One variant of skip-gram models is to predict the surrounding context from the word itself (conceptually: the previous example but backwards).

 To do so, they project each word w into an embedding space.

Word embedding model

• Their goal, given a large dataset of sentences over vocabulary V, is to maximize the probability of the contexts (length c) given the "center" words w_t :

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

NN architecture

- The embedding of each word is actually just linear:
 - Multiply a one-hot vector (for each input word) by a (|V| x K)-dimensional matrix.
 - Due to sparsity, this corresponds to just a vector lookup.

Word embedding model

• What is the probability that word w_0 is within the context of w_l ?

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime} \top v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} \top v_{w_I}\right)}$$

 Each word is given an "input" embedding vector v_w and "output" embedding vector v'_w.

Word embedding model

• What is the probability that word w_0 is within the context of w_l ?

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}^{\prime} \top v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} \top v_{w_I}\right)}$$

 If the inner product between these two vectors is relatively high (compared to other pairs of words in V), then the probability of their co-occurrence is high.

Softmax

 The problem with this softmax is that V is very large, and computing each probability is too slow.

$$p(w_O|w_I) = rac{\exp\left(v_{w_O}^{\prime} ^{ op} v_{w_I}
ight)}{\sum_{w=1}^{W} \exp\left(v_w^{\prime} ^{ op} v_{w_I}
ight)}$$

 Instead, the authors borrow a technique called hierarchical softmax.

Hierarchical softmax

- Ultimately, all we care about is computing a probability distribution over w such that $P(w \mid w_i)$ sums to 1.
- Here's a clever way to achieve this without needing to normalize by summing over all words in V.

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

• We can think of this as navigating down a "tree", where each possible w corresponds to one leaf node.

Negative sampling

 Alternatively, they also explore how simply training on a set of "negative" contexts (i.e., not found in the dataset) can encourage the model to learn useful embeddings:

$$\log \sigma(v_{w_O}^{\prime} \mathsf{T} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime} \mathsf{T} v_{w_I}) \right]$$

In this loss function, the first term represents
words+contexts that are in the dataset, and the second
term represents words+contexts not in the dataset.

Evaluation

 Analogical reasoning — complete the fourth word in each of the following:

Newspapers					
New York	New York Times	Baltimore	Baltimore Sun		
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer		
NHL Teams					
Boston	Boston Bruins	Montreal	Montreal Canadiens		
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators		
NBA Teams					
Detroit	Detroit Pistons	Toronto	Toronto Raptors		
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies		
Airlines					
Austria	Austrian Airlines	Spain	Spainair		
Belgium	Brussels Airlines	Greece	Aegean Airlines		
Company executives					
Steve Ballmer	Microsoft	Larry Page	Google		
Samuel J. Palmisano	IBM	Werner Vogels	Amazon		

Key results

 Analogical reasoning comparison between hierarchical softmax (HS) and negative sampling (NCE):

Method	Dimensionality	No subsampling [%]	10^{-5} subsampling [%]
NEG-5	300	24	27
NEG-15	300	27	42
HS-Huffman	300	19	47

Compositionality

- One of the coolest parts of their work is the implicit compositionally that emerged between the words in the embedding space.
- For instance, the word "capital" seemed to have a consistent direction (as a vector) between each country and capital city:

Conclusion

- This paper was one of the first to show how a neural network can automatically compute continuous-valued low-dimensional embeddings for large vocabularies of words so that:
 - Training is fast (only 1 day for billions of sentences).
 - The set of vectors are representationally expressive (with implicit compositionality).
- word2vec now serves as the "go-to" feature representation for words in many NLP tasks.