

Laboratorio SEDICOMVET, C.A., está dedicado a la asistencia técnica integral del sector industrial, con un servicio eficiente, rápido, confiable, con la base de un laboratorio de diagnóstico moderno, que nos hacen estar en capacidad de resolver a través de una solución práctica y eficaz diversos problemas que afectan a la industria Venezolana.

SEDICOMVET C.A., con registro S.A.S.A. lo encabeza un grupo de profesionales con estudios de cuarto nivel, lo que garantiza que nuestros análisis y proyectos están guiados por personas de reconocida reputación y profesionalismo en el área específica.

SEDICOMVET C.A., no escatima recursos para el montaje de análisis, utilizando los materiales y utensilios de la mejor calidad, corriendo todos los controles posibles y reglamentados; esto garantiza un resultado legítimo, ya que es un compromiso adquirido con nuestros clientes.

SEDICOMVET C.A., trabaja cuando el cliente lo requiera, en coordinación con otros laboratorios de organismos oficiales y de excelente trayectoria en nuestro País, con el fin de brindar a nuestros clientes el más alto apoyo y soporte en el cumplimiento de sus objetivos, con la absoluta confidencialidad que se requiere.

. Estamos para Servirles y Prestarles un apoyo Técnico, Dinámico, Profesional con Rapidez y Confiabilidad.

POLÍTICA DE CALIDAD

SEDICOMVET, C.A., es un laboratorio de servicio dedicado al análisis físico-químico y microbiológico, como apoyo al sector industrial, público y privado, que tiene como política de calidad proporcionar a sus clientes resultados confiables y reproducibles siempre en búsqueda de la excelencia, para ello contamos con infraestructura, equipos adecuados y un personal comprometido con la calidad, en constante formación interna/externa, lo que nos permite mejorar continuamente nuestros procesos.

Es un compromiso de la organización en todos sus niveles el cumplir con el sistema de calidad según la Noma Internacional ISO/IEC 17025:2000 y NVC 2534:2000.

OBJETIVOS DE CALIDAD

- 1. Implementar una estructura técnica y administrativa que permita cumplir con el sistema de calidad.
- 2. Asegurar el cumplimiento del plan de formación del personal.
- Asegurar la satisfacción de nuestros clientes mediante la trazabilidad, confiabilidad y reproductibilidad del nuestros resultados.

EQUIPOS DE ALTA TECNOLOGÍA

► CROMATOGRAFÍA DE GASES (GC)

La Cromatografía de gases es una técnica cromatográfica en la que la muestra se volatiliza y se inyecta en la cabeza de una columna cromatográfica. La elución se produce por flujo de una fase móvil de gas inerte, A diferencia de los otros tipos de cromatografía, la fase móvil no interacciona con las moléculas del analito; su única función es la de transportar el analito a través de la columna.

► ESPECTRÓMETRO DE MASAS (MS)

El espectrómetro de masas es un instrumento que permite analizar con una gran precisión la composición de diferentes elementos químicos e isótopos atómicos, separando los núcleos atómicos en función de su relación masa-carga (m/z).

Puede utilizarse para identificar los diferentes elementos químicos que forman un compuesto o determinar el contenido isotópico de diferentes elementos en un mismo compuesto.

► CROMATOGRAFÍA LIQUIDA DE ALTA RESOLUCIÓN (HPLC)

La cromatografía liquida de alta resolución (HPLC, del ingles High Performance Liquid Chromatography), es unas de las técnicas cromatográfica más empleadas en la actualidad. La Cromatografía de líquidos es una técnica ampliamente utilizada que permite separar físicamente y cuantificar los distintos componentes de una solución. En toda cromatografía existe un contacto entre dos fases, una fija que suele llamarse Fase Estacionaria, y una móvil (Fase Móvil) que fluye permanente durante el análisis, y que en este caso es un líquido. Las sustancias que permanecen más tiempo libres en la Fase Móvil avanzan más rápidamente con el fluir de la misma y las que quedan mas unidas a las Fase estacionaria o retenidas avanzan menos y por tanto demoraran mas en salir o eluir, Este es el principio fundamental de la cromatografía.

Procesamos las siguientes Muestras

- Agua (todo tipo)
- Alimentos
- Ambientes
- Cereales
- Granos
- Materia Prima en general

Este servicio va dirigido a:

- Plantas de Alimentos Concentrados
- Granias
- Incubadoras
- Almacenadoras
- Plantas
- Procesadoras

Análisis

- Bromatológicos
- Vitaminas
- Antibióticos
- Perfil de Carbohidratos
- Perfil de ácidos grasos
- Perfil de amino ácidos
- Ingredientes activos

Análisis Microbiológicos

- Salmonella
- E. coli
- Coliformes Totales
- Coliformes Fecales
- Mohos v Levaduras
- Aerobios mesofilos
- Staphylococcus aureus
- Sulfitos Reductores
- Otros

Análisis Toxicológicos

Micotoxinas

- Aflatoxinas G2,G1, B2, B1
- Toxina T-2
- Fumonisina
- Ochratoxina
- Zearalenona
- Vomitoxina

Pesticidas

- Organo Fosforados
- Carbamatos
- Organo Clorados
- Piretroides

OTROS:

- Histaminas
- Dioxinas

Son metabolitos tóxicos producidos por diversos hongos que crecen en los granos de cereales, leguminosas y en los alimentos concentrados. Las micotoxinas pueden causar daños a la salud en diferentes especies animales cuando son ingeridas. incluyendo al hombre.

Los alimentos son deteriorados por Hongos cuando sufren cambios inaceptables en su apariencia, textura, olor, y gusto o cuando están contaminados con niveles potencialmente.

LISTA PARCIAL DE MICOTOXINAS CONOCIDAS

Alfatoxinas	fatoxinas Monocetoxirspenol		Rodirina	
Alternariol	Neosolaniol	Fumitremorgeno	Rubra Toxina	
Citreoviridina	Ocratoxina	Fumonisinas	Eslaframina	
Citrinina	Oosporeina	Ácido Fusárico	Esporidesmina	
Ácido Ciclopiazoico	Paspalitreno	Fusariocina	Estaquibotrioxinas	
Deoxinivalenol	Patulina	Islanditoxina	Toxina T-2	
Diacetoscirpenol	Ácido Penicilico	Luterosquirina	Tremorgenos	
Dicumarol	Penitreno	Moniliformina	Zearalenona	
Ergotamina	Fomopsina			

Principales tipos de alimentos y sus fúngicos

22	20		77	15	
С	ΕF	ľΕ	Αl	15	S
-	-	-	-	-	-

MAIZ

Aspergillus candidus A. flavus A. niveus A restrictus

A. terreus Pencillium Aureanteorgriseum P citrinum P. Cyclopium P. viridicatum

Fusarium graminearum Alternaria alternata Wallemia sebi

CEBADA

Aspergillius glaucus A. restrictus Penicillium viricatum Alternaria soo Cladosporium spr

TRIGO

A. flavus

A. glaucus

a. restrictus

P. viridicatum

Fusarium spp

Aspergillus terreus Penicillium viridicatum

OLEAGINOSAS

Aspergillus flavus

A. Parasiticus

A. terreus

A. wentii

AVENA

MANIES

Aspergillus Candidus Aspergillus flavus A.ochraceus A. terreus ARROZ

ALGODON

Aspergillus Penicillium citrinum A. flavus A nidulans Altemaria alternate

A. ochraceus A. parasiticus A. versicolor Penicillium citrinum P.citrioniarum P. viridicatum

Aspergillus clavatus A. wentii

NUECES

Aspergillus clavatus A. flavus A. niger A. ochraceous A. parasiticus A. restrictus

A. terreus A. versicolor A. wentii Penicillium citrinum P. Crustosum

PRINCIPALES PROPIEDADES FISICO-QUINICA DE LAS AFLATOXINAS

	AFLATOXINAS					
CARACTERÍSTICAS	В,	B,	G,	G,	M,	
Fórmula Química	C,,H,2O,	C,,H,,O,	C,,H,2O,	G,,H,,O,	C17H12O7	
Peso Molecular	312	314	328	330	330	
Punto de Fusión °C	268-269 (D)	287-289 (D)	244-249 (D)	230	290 (D)	
Absorción Ultravioleta nm(E) En etanol	223 (25,600)	220 (20,500)	243 (11,500)	217 (28,000)	226 (23,100)	
	285 (23,400) 362	265 (12,700)	257 (9,900)	245 (12,900)	265 (11,600)	
	362 (21,800)	363 (24,000)	264 (10,000)	365 (19,300)		

Ensavos Toxicológicos

Objetivo:

Determinar el potencial toxicológico que tienen el producto a objeto de estudio, analizándose los efectos que puede producir. causar muerte o signos de toxicidad sistemática en animales utilizados en dichos ensayos.

Se emplea métodos de la EPA, para pruebas, aplicación y los materiales utilizados son las sustancias en estudio, animales, condiciones ambientales, aseguramiento de la salud de los animales.

Los ensayos toxicológicos son aplicados de la siguiente manera:

- Toxicidad Oral Aguda DL50.
- Toxicidad Oral Crónica (28 días).
- Toxicidad Inhalatoria Aguda CL50.
- Toxicidad Dérmica Aguda.
- Irritación Ocular
- Irritación Dérmica Primaria.
- Sensibilidad Cutánea.

ANIMALES UTILIZADOS EN LOS ENSAYOS TOXICOLÓGICOS

Animales	Raza Nueva Zelanda Blanco		
Conejos			
Ratas	Cepa Wistar		
Ratones	Albinos NIH		

Ensayos de Eficacia

Brindar estudios de eficacia, de alto grado de confiabilidad en el producto investigado. Estudio de eficacia in Vitro, in vivo.

Evaluar la eficacia del producto en el control in Vitro, in vivo utilizando cepas que sea requerido según el bioensayo.

INSECTOS UTILIZADOS EN LOS ENSAYOS DE EFICACIA

Insectos	Cepa		
Mosquitos	Anopheles, Aedes aegypti		
Moscas	Musca doméstica		
Cucarachas	Periplaneta americana		
Chiripas	Linnaeus		
Otros			

MIGUTUXINAS MAS INVESTIGADAS

MICOTOXINAS MAS INVESTIGADAS

MICOTOXINAS	CULTIVOS SUCEPTIBLES DE CONTAMINARSE	MOHO QUE LO PRODUCE	CONDICIONES FAVORABLES PARA LA SINTESIS DE MICOTOXINA	EFECTOS	SERES SUSCEPTIBLES	CLIMA PROPICIO	NIVELES DONDE SE COMIENZAN A OBSERVAR DAÑOS
Aflatoxina	Maiz Trigo Afrecho Arroz Maní Algodón Nueces	Aspergillus flavus, A. parasiticus	 Calor excesivo Periodo de sequía prolongado. Secamiento prolongado Almacenamiento inadecuado 	Reducen la ingesta de alimentos Disminución de la producción Inmunosupresor Carcicoma hepático	Humanos Aves Bovinos Cerdos Conejos Equinos	• Tropicales Sequía	• Humanos 20 ppb • Aves 20 ppb • Bovinos 20 ppb • Cerdos 100 ppb
Vomitoxina	MaízTrigoAfrechoArrozHarinasMaltaCebada	Fusarium graminearum	Cambios bruscos de temperatura con alta humedad relativa	Desorden sanguíneo Vómito Rechazo al alimento Gastroenteritis Diarrea Pérdida de peso Inmunosupresor	Humanos Aves Bovinos Cerdos Pequeños animales	Noches frías Días calurosos Alta humedad relativa	Humanos 1ppm Aves 5 ppm Bovinos 10 ppm Cerdos 5 ppm Peq. Anim. 5 ppm
Toxina T-2	Maíz Trigo Afrecho Arroz Malta Cebada	Fusarium spp	Stress Temperatura irregular Alta humedad relativa Inundaciones de cultivos y silos	Diarrea Lesiones en el corazón Daño en el tracto digestivo Lesiones orales	Humanos Aves Cerdos Cabras	Noches frías Días calurosos Alta humedad relativa	• 500 ppb
Zearalenona	Maíz Trigo Afrecho Arroz Malta Cebada	Fusarium graminearum	Stress. Temperatura irregular. Alta humedad relativa. Inundaciones de cultivos y silos.	Vulvovaginitis. Irregularidad en el peso de la camada. Hiperestrogenismo. Reabsorción Fetal. Feminización en machos jóvenes. Repetición de celos. Prolapso rectal y/o vaginal.	Humanos Aves Cerdos Pequeños animales	Noches frías. Días calurosos. Alta humedad relativa.	• 500 ppb
Fumonisina on on on only on	• Maíz	Fusarium moliniforme, F. proliferatum	Estrés. Sequía prolongada. Exceso de humedad en el cultivo.	Disminución del consumo del concentrado, acompañado de ganancia mínima de peso. Diarrea, Letargia, palidez de la piel, irritación dermal, hipotermia, temblores, hemorragia e hidrotorax. Edema pulmonar e hidrotorax. Lesiones pancreáticas.	Humanos Cerdos Equinos	Cálidos. Muy Calientes.	Humanos 5 ppm Caballos 5 ppm Cerdos 10 ppm
Ocratoxina	Café Cereales Maíz Trigo Nueces Sorgo	Aspergillus ochraceus Penicillum viridicatum	Inundaciones del cultivo. Excesivo calor.	Lesiones renales. Fibrosis periglomerular, degeneración tubular y atrofia. Fibrosis intestinal. Polidipsia, poliurea, diarrea. Nefropatía	Humanos Aves Cerdos	• Cálido	• 20 ppb