

SEM2 CSC 3401 Section 5 OPERATING SYSTEMS SEMESTER 2, 2019/2020

CLASS SCHEDULING

GROUP NAME: CAYLEY

PREPARED BY:

NAME	MATRIC NO.
MAISARAH BINTI HAMZAH	1810325
NUR MAISARA BINTI AHMAD RASID	1818356
NOR NABILAH SHUHADA BINTI MOHD KAMAL	1817510
SITI NUR AISHAH BINTI SULAIMAN	1816454

LECTURER'S NAME: DR NORLIA YUSOF

TABLE OF CONTENT

1.	INTRODUCTION	3
2.	CONSIDERATION	4
3.	ANALYSIS	
	3.1 Input	4
	3.2 Output.	4
	3.3 Comparison CPU Scheduling.	8
4.	CONCLUSION	9
5.	REFERENCES	10

1.0 INTRODUCTION

Central Processing Unit (CPU) Scheduling is a process made to finish the work on time. In a multiprogramming system, CPU scheduling is needed to manage both Input/Output (IO) and CPU time. While these are the core of computer processing, there are many algorithms available to execute the scheduling process. In this project, we are testing out three algorithms of CPU scheduling that are First Come First Serve (FCFS), Shortest Job First (SJF), and Priority Scheduling and perform an analysis to differentiate between these algorithms in terms of CPU key processes..

2.0 CONSIDERATION

The scheduling algorithms that we considered in this project are First Come First Serve (FCFS), Shortest Job First (SJF), and Priority Scheduling. All of the algorithms that we considered are non-preemptive. We applied processes with the same input such as burst time, priority, and arrival time to evaluate the average waiting time and average turnaround time. Then, with the results, we analyse which one of those three (FCFS scheduling algorithm, SJF scheduling algorithm, and Priority Scheduling) is the better algorithm and optimum best class scheduling.

3.0 ANALYSIS

3.1 INPUT

We initialize the same input in an array proc[] by using the structure name Course for the three algorithms which is given as the following:

} **;**

```
Course proc[] = {{ccode, duration, priority, arrival_time},...};

Course proc[] = {{2201,3,2,0}, {3401, 5, 6,2}, {1103,4,3,1}, {2302,2,5,4}, {2602,9,7,6}, {3102,4,4,5}, {2011,10,10,7}};
```

Course Code	Burst Time	Priority	Arrival Time
2201	3	2	0
3401	5	6	2
1103	4	3	1
2302	2	5	4
2602	9	7	6
3102	4	4	5
2011	10	10	7

Table 1 Initialized input of the algorithms

3.2 OUTPUT

The outputs that we get from FCFS, Priority and SJF scheduling algorithms are the order of scheduling of the course, the attributes of each course code, the average waiting time and the average turnaround time which are given as the following:

i) FCFS

Order of the course code ---> 2201, 1103, 3401, 2302, 3102, 2602, 2011

Course	Burst Time	Arrival	Waiting	Turnaround	Completion
Code		Time	Time	Time	Time

2201	3	0	0	3	3
1103	4	1	2	6	7
3401	5	2	5	10	12
2302	2	4	8	10	14
3102	4	5	9	13	18
2602	9	6	12	21	27
2011	10	7	20	30	37

Average waiting time = 8

Average turnaround time = 13.2857

```
C:\Users\ACER\Desktop\FCFS.exe
FCFS scheduling algorithm
Order of the course code:
2201 1103 3401 2302 3102 2602 2011
Course Code Burst Time Arrival Time Waiting Time Turn-Around Time Completion Time
 2201
                                   0
                                                     2 5 8
 1103
                                                                        6
 3401
                                                                        10
 2302
                                                                        10
                                                                                          14
 3102
 2602
                                                                                          27
 2011
                 10
                                                     20
                                                                        30
                                                                                          37
Average waiting time = 8
Average turn around time = 13.2857
Process exited after 0.3934 seconds with return value 0
Press any key to continue . . .
```

Fig. 1 The output of FCFS

ii) Priority(non-preemptive)

Order of the course code ---> 2201, 1103, 3102, 2302, 3401, 2602, 2011

Course Code	Burst Time	Priority	Arrival Time	Waiting Time	Turnarou nd Time	Completi on Time
2201	3	2	0	0	3	3
1103	4	3	1	2	6	7
3102	4	4	5	2	6	11
2302	2	5	4	7	9	13
3401	5	6	2	11	16	18
2602	9	7	6	12	21	27
2011	10	10	7	20	30	37

Average waiting time = 7.71429

Average turnaround time = 13

Fig. 2 The output of Priority non-preemptive scheduling

iii) SJF

Order of the course code ---> 2201, 2302, 1103, 3102, 3401, 2602, 2011

Course Code	Burst Time	Priority	Arrival Time	Waiting Time	Turnarou nd Time	Completi on Time
2201	3	2	0	0	3	3
2302	2	5	4	0	2	6
1103	4	3	1	4	8	9
3102	4	4	5	4	8	13
3401	5	6	2	11	16	18
2602	9	7	6	12	21	27
2011	10	10	7	20	30	37

Average waiting time = 7.28571

Average turnaround time = 12.5714

Fig. 3 The output of SJF scheduling

3.3 COMPARISON CPU SCHEDULING

CHARACTERISTICS	FCFS		FCFS		SJF		PRIORITY		Ϋ́
1) Output order	2201,	1103,	3401,	2201,	2302,	1103,	2201,	1103,	3102,
	2302,	3102,	2602,	3102,	3401,	2602,	2302,	3401,	2602,
	2011			2011			2011.		
2) Waiting time	The ave	erage wa	iting	The av	erage wa	iting	The av	erage wa	niting
	time (8)) is the la	argest	time is	(7.28571) is the	time (7	7.71429)	is
	among	the other	two	smalles	t among	the	smalle	r than FC	CFS
	algorith	ıms thus	results	other tv	vo algori	thms.	schedu	ling algo	rithm
	in a wo	rst					but big	ger than	SJF
	perform	nance.					schedu	ling algo	rithm.
3) Turnaround	The ave	erage		The average		The average			
time	turnaro	und time	;	turnaround time			turnaround time (13)		
	(13.2857) is the		(12.5714) is the			is shorter than FCFS			
	longest among the		shortest among the		scheduling algorithm				
	other two algorithms.		other two algorithms.		but bigger than SJF		SJF		
							schedu	ling algo	orithm.
4) Complexity	FCFS Scheduling is		SJF Scheduling is		The alg	gorithm i	s quite		
	easy an	d simple	to	difficult and complex			difficult to		
	underst	and. The	order	to understand as it is		understand.			
	of outp	uts can b	e	imposs	ible to				
	easily k	nown		implem	ent in				
	accordi	ng to the	input	interact	tive syste	ems			
	order.			where 1	required	CPU			
				time is	not knov	vn.			
5) Allocation	Job are executed on a		The process holds it		Based on the priority.				
	first co	me, first	serve	till it re	aches a v	waiting	Higher	priority	job

basis.	state or terminated	can execute first.
	once the CPU cycle is	
	allocated to process,	

4.0 CONCLUSION

As a conclusion of our research, we can say that FCFS is the best algorithm and best optimum class scheduling as the SJF is better in minimizing the average waiting time thus resulting in a more effective and higher performance compared to the other two algorithms. The SJF is better if the process comes to a processor simultaneously and can minimize the waiting time. SJF can also lead to higher effectiveness to the systems due to the lower average waiting time. However, it may happen that long processes may never be processed by the system and may remain in the queue for a long period. As for the FCFS, it is easy to understand and implement, however it is poor in performance as their average waiting time is the highest than the rest class scheduling thus can leads to convoy effect. Convoy effect will eventually result in lower device or CPU utilization and lower efficiency. As for the priority scheduling, it is best suited for real-time operating systems, however, it may happen that a low priority process would keep waiting for an indefinite time and never get executed as the systems keep executing the high priority processes.

5.0 REFERENCES

- UKEssays. (November 2018). A Comparison of CPU Scheduling. Retrieved from https://www.ukessays.com/essays/computer-science/a-comparison-of-cpu-scheduling.
 php?vref=1
- Mohitg593Check out this Author's contributed articles., Mohitg593, & Check out this
 Author's contributed articles. (2020, June 09). Difference between FCFS and Priority
 CPU scheduling. Retrieved from
 https://www.geeksforgeeks.org/difference-between-fcfs-and-priority-cpu-scheduling/
- 4. Shortest Job First (SJF): Preemptive, Non-Preemptive Example. (n.d.). Retrieved from https://www.guru99.com/shortest-job-first-sjf-scheduling.html#:~:text=Shortest Job First (SJF) is, for other processes awaiting execution.
- 5. First Come First Serve(FCFS) Scheduling Algorithm | Studytonight. (n.d.). Retrieved August 17, 2020, from

https://www.studytonight.com/operating-system/first-come-first-serve

- Priority CPU Scheduling with different arrival time Set 2 GeeksforGeeks. (n.d.).
 Retrieved August 17, 2020, from
 https://www.geeksforgeeks.org/priority-cpu-scheduling-with-different-arrival-time-set-2/
- 7. Shortest Job First Scheduling Algorithm | Studytonight. (n.d.). Retrieved August 17, 2020, from https://www.studytonight.com/operating-system/shortest-job-first