Разработка и применение алгоритмов определения линейных параметров движущихся объектов методами компьютерного зрения

02.03.02 - Фундаментальная информатика и информационные технологии

Выполнил:

студент 4 курса И.В. Гончаров

Научный руководитель:

к. ф.-м. н., доцент В. В. Махно

20 мая 2020 г.

Институт ММиКН им. И.И. Воровича, Южный Федеральный Университет

Модель проективной камеры

C-центр камеры (оптический центр); Cp-главная ось камеры

Математическая модель проективной камеры

$$\mathbf{X} = KR \left[E| - \hat{C} \right] \mathbf{X}$$

где

Х - точка пространства в мировой системе координат,

 ${f x}$ – соответствующая ${f X}$ точка плоскости изображения в системе координат плоскости изображения,

K – верхнетреугольная матрица размера 3x3 внутренних параметров камеры (*калибровочная матрица камеры*),

R - матрица поворота размера 3x3,

$$\begin{bmatrix} E | -\hat{C} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\hat{C}_1 \\ 0 & 1 & 0 & -\hat{C}_2 \\ 0 & 0 & 1 & -\hat{C}_3 \end{bmatrix}$$

 \hat{C} – координаты центра камеры в мировой системе координат

Искажения оптической линзы

$$x'' = x'(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_1x'y' + p_2(r^2 + 2x'^2)$$

$$y'' = y'(1 + k_1r^2 + k_2r^4 + k_3r^6) + 2p_2x'y' + p_1(r^2 + 2y'^2)$$

где k_1 , k_2 , k_3 , p_1 , p_2 - коэффициенты дисторции; $r^2 = x^{'2} + y^{'2}$; $(x^{'},y^{'})$ - координаты проекции точки (x,y) в системе координат изображения *при отсутствии дисторции*; $(x^{''},y^{''})$ - *искаженные* координаты проекции точки (x,y) в системе координат изображения.

Модель стереокамеры

Описание системы

Описание системы

Описание системы

Алгоритм определения линейных параметров

Алгоритм определения линейных параметров

$$S(F_r) = \min\{\sum |F_r - F_{l_i}|, i \in Q\}$$

где

 F_r – ректифицированное изображение с правой камеры, F_l – ректифицированное изображение с левой камеры S – функция поиска наиболее похожего изображения Q – некоторая окрестность поиска

Пример работы на неректифицированном изображении

Пример работы на ректифицированном изображении

Комплекс весогабаритного контроля

Пример получаемых результатов

Пример получаемых результатов

