Trabalho de Biometria

Relatório da Análise de Dose Resposta Para Base Binária e Contínua

Jayme Gomes dos Santos Junior Luciana Helena Kowalski 07/10/2019

Sumário

1	Aná	álise Binária	1
	1.1	Análise Exploratória dos Dados	1
	1.2	Ajustando Modelos	2
	1.3	Equação do Modelo Ajustado e Interpretação dos Parâmetros	3
	1.4	Quadro Resumo do Modelo	4
	1.5	Análise dos Resíduos e Teste da Falta de Ajuste	4
	1.6	Prediçõs Para a Resposta	4
	1.7	Estimativas Pada Doses Efetivas	5
2	Aná	álise Contínua	5
	2.1	Análise Exploratória dos Dados	5
	2.2	Ajustando Modelos	6
	2.3	Equação do Model Ajustado e Interpretação dos Parâmetros	8
	2.4	Quadro Resumo do Modelo	9
	2.5	Análise de Resíduos e Teste de Faltade Ajuste	9
	2.6	Predições para a Resposta	10
	2.7	Estimativas Para Doses Efetivas	10
	28	Estimativas do Potâncias Rolativas	10

1 Análise Binária

1.1 Análise Exploratória dos Dados

Base original mais as proporções da resposta, logito das proporções e o logarítmo das doses.

	Tabela 1: Base Binária									
dose	resposta	n	prop	logito	logDose					
0.000	1	45	0.033	-3.390	-0.693					
0.001	5	50	0.108	-2.113	-0.691					
0.010	24	49	0.490	-0.040	-0.673					
0.100	27	41	0.655	0.640	-0.511					
1.000	46	50	0.912	2.335	0.405					
0.000	9	42	0.221	-1.260	-0.693					
0.001	20	49	0.410	-0.364	-0.691					
0.010	32	48	0.663	0.678	-0.673					
0.100	42	44	0.944	2.833	-0.511					
1.000	44	44	0.989	4.489	0.405					

Gráfico das respostas e do logito das respostas usando dose e a log-dose.

1.2 Ajustando Modelos

Foram ajustados oito modelos usnado quatro distribuições: Logística, Normal, Gumbel e Cauchy para a resposta e as doses nas escalas original e logarítmica.

Posteriormente, a seleção do modelo para proseguir a análise foi feita com base no critério de informação de Akaike (AIC):

Tabela 2: Modelos Candidatos						
Modelo	AIC					
Cauchy(log-dose)	117.9507					
Cauchy(dose)	121.5133					
Logístico(log-dose)	155.4287					
Normal(log-dose)	161.5525					
Gumbel(log-dose)	170.1359					
Logístico(dose)	171.4545					
Normal(dose)	174.8448					
Gumbel(dose)	180.1680					

Comparativo gráfico dos modelos com log-dose:

A curva azul que representa o modelo Cauchy se ajusta melhor aos dados.

O modelo ${f Cauchy}$ com a dose na escala logarítmica produziu o melhor ajuste com ${f AIC}=117,9507$

1.3 Equação do Modelo Ajustado e Interpretação dos Parâmetros

O modelo teórico é dado por:

$$\tan\left[\pi\left(\pi_i - \frac{1}{2}\right)\right] = \beta_0 + \beta_1 d_i$$

Onde e^{β_1} corresponde ao acréscimo na chance de resposta para um aumento unitário na dose d_i e β_0 seria a resposta no caso da dose zero, mas dose zero não faz parte do escopo do modelo, logo β_0 não é interpretável.

A equação do modelo ajustado:

$$\tan \left[\pi \left(\pi_i - \frac{1}{2} \right) \right] = 8,323 + 13,012d_i$$

1.4 Quadro Resumo do Modelo

Tabela 3: Modeo Cauchy com log-dose

Parâmetros	LI	Estimativas	LS	Erro Padrão
Intercept	5.27	8.323	14.655	8.323
logDose	8.47	13.012	22.264	13.012

1.5 Análise dos Resíduos e Teste da Falta de Ajuste

Normal Q-Q Plot

O ajuste ficou satisfatório dados fáfico de resíduos vs valores ajustados, que em virtude da base ser binária dá a impressão de não ser bom, e o qqplot evidenciou normalidade dos resíduos. Dado o pequeno numero de observações não se pode ser muito rigoroso na análise.

Para o teste de ajuste, foi utilizado o teste $\tilde{\chi}^2$ (Qui-quadrado). Como o modelo teve deviance=76,312 e 8 graus de liberdade, o resultado do teste foi 2.69e-13, portanto ao nível de significância de 5% não existe evidência significativa de falta de ajuste.

1.6 Prediçõs Para a Resposta

Aqui são realizadas predições para 3 doses que não estão na base original $(0.5,\,0.05~{\rm e}~0.005)$ utilizando o modelo selecionado anteriormente.

Tabela 4: Predição							
logDose	Resp. Predita						
-0.693	0.306						
-2.996	0.010						
-5.298	0.005						

1.7 Estimativas Pada Doses Efetivas

Estimativas para doses 25%, 50% e 75% efetivas com intervalo de confiança(95%):

Tabela 5: Estimativas de Doses Efetivas

	LI	Estimativa	LS
p = 0.25:	0.464	0.488	0.513
p = 0.50:	0.505	0.527	0.550
p = 0.75:	0.521	0.570	0.618

2 Análise Contínua

2.1 Análise Exploratória dos Dados

Base contendo dois grupos (a) e (b), as mesmas doses para os dois grupos e as respostas.

Tabela 6: Primeiras linhas da Base Contínua

Grupo	Dose	Resposta
a	1	2.703
a	1	4.372
a	1	2.392
a	1	3.386
a	1	4.617
a	1	2.881

Gráfico das respostas com a dose e a log-dose para cada grupo:

2.2 Ajustando Modelos

Foram ajustados sete modelos usando a dose na escala original e os separando por grupo: **Log-logístico** de três parâmetros, **Log-logístico** de quatro parâmetros, **Log-logístico** de cinco parâmetros, **Log-normal** de três parâmetros, **Log-normal** de quatro parâmetros, **Weibull** de três parâmetros e **Weibull** de quatro parâmetros.

Novamente, a seleção do modelo para proseguir a análise foi feita com base no critério de informação de Akaike (AIC):

Tabela 7: Modelos Candidatos						
Modelo	AIC					
Weibull(4 par.)	221.1363					
Log-logístico(4 par.)	222.0648					
Log-normal(4 par.)	222.8025					
Log-log stico(3 par.)	223.8237					
Log-normal(3 par.)	223.9782					
Log-logístico(5 par.)	225.3243					
Weibull(3 par.)	226.5111					

O modelo selecionado para seguir com a análise foi o **Weibull** de quatro parâmetros com AIC = 221,1363 Verificando as curvas de dose-resposta:

Curva Ajustada Sobre as Médias

Curva Ajustada Sobre os Dados Amostrais

Ao analisar as curvas é visível que existe indício de que pode ser usado o mesmo parâmetro de inclinação relativa ao ponto de inflexão b. Vamos investigar essa possibilidade usando a ANOVA para comparar os dois modelos.

Tabela 8: Comparação dos Modelos

Modelo	ModelDf	RSS	Df	F value	p value
Weibull('b' igual)	93	44.72518			
Weibull	92	44.64115	1	0.1731699	0.678279

Como não há diferença significativa no ajuste dos dois modelos, a análise será conduzida com o modelo mais simples, em que b é o mesmo nas duas curvas. Mas antes de prosseguir, investigaremos se podemos fixar a mesma assíntota superior d para as duas curvas.

Tabela 9: Comparação dos Modelos

Modelo	ModelDf	RSS	Df	F value	p value
Weibull('d' igual)	94	52.44414			
Weibull('b' igual)	93	44.72518	1	16.05056	0.0001242

Agora a diferença dos dois ajustes é significativa. Logo, não podemos usar o mesmo d nas duas curvas de dose-resposta. Portanto seguiremos com o modelo **Weibull** de quatro parâmetros e o mesmo b para as curvas de cada grupo.

2.3 Equação do Model Ajustado e Interpretação dos Parâmetros

O modelo teórico para dois grupos (a) e (b) com (a)=1 e (b)=2 e mesmo parâmetro b é dado por:

$$f(\mathbf{x}, \boldsymbol{\theta}) = c_i + (d_i - c_i)exp\left(-exp(b(logx - loge_i))\right), i = 1, 2$$

Sendo o parâmetro b a inclinação relativa em torno do ponto de inflexão que é o parâmetro e, c e d as assíntotas inferior e superior da curva, respectivamente.

As equações do modelo ajustado:

Para o grupo (a):

$$f(\mathbf{x}, \boldsymbol{\theta}) = 3,143 + (9,175 - 3,143) exp\left(-exp(-1,570(logx - log2,418))\right)$$

Para o grupo (b):

$$f(\mathbf{x}, \boldsymbol{\theta}) = 6,018 + (11,597 - 6.018)exp\left(-exp(-1,570(logx - log2,333))\right)$$

2.4 Quadro Resumo do Modelo

Tabela 10: Modelo Weibull de Quatro Parâmetros

Tabela 10. Modelo Welball de Qualifo I alametros							
Parâmetros	LI	Coeficientes	LS	Erro Padrão			
b:(Intercept)	-2.097	-1.570	-1.044	0.265			
c:a	2.554	3.143	3.732	0.297			
c:b	5.401	6.018	6.635	0.311			
d:a	8.547	9.175	9.804	0.317			
d:b	11.005	11.597	12.189	0.298			
e:a	1.994	2.418	2.842	0.213			
e:b	1.870	2.333	2.795	0.233			

2.5 Análise de Resíduos e Teste de Faltade Ajuste

Normal Q-Q Plot

O ajuste ficou satisfatório dados o gero de resíduos vs valores ajustados que não mostrou padrões e o qqplot evidenciou normalidade dos resíduos.

Tabela 11: Teste de Falta de Ajuste

	ModelDf	RSS	Df	F value	p value
ANOVA	90	44.06179			
DRC model	92	44.64115	2	0.591698	0.555525

Pelo resultado do teste, não há evidência de falta de ajuste.

2.6 Predições para a Resposta

Utilizando o modelo para predição de três doses não contidas na base original (5, 12 e 18).

 Tabela 12: Predição

 Dose
 Resp. Predita

 5
 7.525

 12
 8.707

 18
 8.923

2.7 Estimativas Para Doses Efetivas

Estimativas para doses 25%, 50% e 75% efetivas com intervalo de confiança(95%):

Tabela 13: Estimativas de Doses Efetivas

	LI	Estimativa	LS
e:a:25	0.109	1.964	0.868
e:a:50	-0.026	3.054	1.081
e:a:75	-1.022	5.347	2.162
e:b:25	0.078	1.895	0.899
e:b:50	-0.061	2.946	1.116
e:b:75	-0.999	5.157	2.138

2.8 Estimativas de Potências Relativas

Agora vamos comparar cada grupo para cada dose efetiva usando a potência relativa.

Tabela 14: Estimativas de Potência Relativa

Dose Efetiva	Estimate	${\bf StdError}$	t.value	p.value
a/b:25/25	1.037	0.137	0.268	0.79
a/b:50/50	1.037	0.137	0.268	0.79
a/b:75/75	1.037	0.137	0.268	0.79

O fato do parâmetro b ser a mesma para as duas curvas implicaque a potência relativa é a mesma para qualquer dose efetiva, caracterizando paralelismo.