Problem 2.25

Express y(t) as

$$y(t) = x^{2}(t)$$
$$= x(t)x(t)$$

Since multiplication in the time domain corresponds to convolution in the frequency domain, we may express the Fourier transform of y(t) as

$$Y(f) = \int_{-\infty}^{\infty} X(\lambda)X(f - \lambda)d\lambda$$

where X(f) is the Fourier transform of x(t). However, X(f) is zero for |f| > W. Therefore,

$$Y(f) = \int_{-W}^{W} X(\lambda)X(f - \lambda)d\lambda$$

In this integral we note that $X(f - \lambda)$ is limited to $-W \le f - \lambda \le W$. When $\lambda = -W$, we find that $-2W \le f \le 0$. When $\lambda = W$, we find that $0 \le f \le 2W$. Accordingly, the Fourier transform Y(f) is limited to the frequency interval $-2W \le f \le 2W$.