Low-Cost Brucella Detector in Milk

Methodology and Preliminary Results

BSc students – Electronics and Computer Departments

Mohamed Tarek Mohamed 1900889 Hanan Saeed Mohamed 1900948

Progress Report # 3, Dec 10th, 2023

Low-Cost Sensing Solution using Electrochemical Impedance Spectroscopy (EIS)

The proposed solution consists of:

- Low cost potentiostat built from on the shelf components (COTS)
- ESP32 for signal generation and data acquisition (I/O)
- Postprocessing MATLAB code

Platform's Functional Block Diagram

EIS with 3-Electrode Sensor Equivalent Circuit for Testing

Preliminary Simulation Results (Nyquist Plot)

This simulation was done using:

 $Rp = 270K \pm 10\% \Omega$

Rs = $10k \pm 10\% \Omega$

Cd = 1nF

ESP32 EIS sweep from 100Hz to 10KHz

Input amplitude: 200mV

ESP32

- Controls the EIS input signal frequency sweep from 100Hz to 10KHz
- Acquirers the signal generated from the cell-current to voltage converter (Transimpedance Amplifier TIA)
- Wirelessly sends data to the host where it is postprocessed and displayed

MATLAB Postprocessing

A MATLAB script running on the host side calculates the parameters of the analyte (Rp & Rs) to extract brucella concentration

The Real and Imaginary components can be calculated by utilizing the Fast Fourier Transform (FFT) magnitudes of the Reference, TIA, and summing signals.

Preliminary Measurement Results (Nyquist Plot)

This test was run using the values

 $Rp = 360K \pm 10\% \Omega$

Rs = $10k \pm 10\% \Omega$

Cd = 1nF

ESP32 EIS sweep from 100Hz to 10KHz

Input amplitude: 200mV

The semi-circle is slightly skewed at high frequencies Rs (measured) $\approx 10-20 \ k\Omega$ Rp (measured) $\approx 330 \ K\Omega$

Rp is the only parameter that depends on the Brucella concentration in this non-Faradaic scenario.

Next

- Tweak design parameters to get better semi-circle fit
- Replace the sensor equivalent circuit by the 3-electrode cell
- Calibration

Estimated BOM Cost

Unit	Number	Price
ESP32	1	10\$
CA3140	2	4x2 = 8\$
LM358	2	3x2 = 6\$
PCB	5	4 \$
Laptop	4GB Ram/Intel corei3/ Win10	30\$
		\$ 58