BAB III AUTOMATA HINGGA NON-DETERMINISTIK DAN EKUIVALENSI AHN – AHD - GR

TUJUAN PRAKTIKUM

- 1) Mengetahui apa yang dimaksud dengan Automata Hingga Non-deterministik
- 2) Mampu menyelesaikan soal yang berkaitan dengan Automata Hingga Nondeterministik
- 3) Mengetahui dan memahami ekuivalensi AHD, AHN, dan GR
- 4) Mampu menyelesaikan soal yang berkaitan dengan ekuivalensi AHD, AHN, dan GR

TEORI PENUNJANG

3.1 Automata Hingga Non-deterministik (AHN)

Berikut ini sebuah contoh AHN $F(K, V_T, M, S, Z)$, dimana :

$$K = \{q_0, q_1, q_2, q_3, q_4\}$$

M diberikan dalam tabel berikut:

$$V_T = \{a, b, c\}$$

$$S = q_0$$

$$Z = \{q_4\}$$

	a	b	С
q_0	$\{q_0, q_1\}$	$\{q_0, q_2\}$	$\{q_0, q_3\}$
q_1	{q ₁ , q ₄ }	{q ₁ }	{q ₁ }
q ₂	{q ₂ }	$\{q_2, q_4\}$	{q ₂ }
q_3	{q ₃ }	{q ₃ }	$\{q_3, q_4\}$
q ₄	Ø	Ø	Ø

Ilustrasi graf untuk AHN F adalah sebagai berikut :

Gambar 3.1 Ilustrasi graf untuk AHN F

Contoh kalimat yang diterima AHN di atas : aa, bb, cc, aaa, abb, bcc, cbb Contoh kalimat yang tidak diterima AHN di atas : a, b, c, ab, ba, ac, bc

Fungsi transisi M sebuah AHN dapat diperluas sebagai berikut :

- 1. $M(q, \varepsilon) = \{q\}$ untuk setiap $q \in K$
- 2. $M(q, t T) = \bigcup M(p_i, T)$ dimana $t \in V_T$, T adalah V_T^* , dan $M(q, t) = \{p_i\}$
- 3. $M({q_1, q_2, ..., q_n}, x) = \bigcup M({q_i, x})$, untuk $x \in V_T^*$

Sebuah kalimat di terima AHN jika:

- salah satu tracing-nya berakhir di stata penerima, atau
- himpunan stata setelah membaca string tersebut mengandung stata penerima

Contoh:

Telusurilah, apakah kalimat-kalimat berikut diterima AHN: ab, abc, aabc, aabb

Jawab:

i) $M(q_0,ab) \Rightarrow M(q_0,b) \cup M(q_1,b) \Rightarrow \{q_0,q_2\} \cup \{q_1\} = \{q_0,q_1,q_2\}$ Himpunan stata tidak mengandung stata penerima \Rightarrow kalimat ab *tidak diterima*

ii)
$$M(q_0, abc) \Rightarrow M(q_0, bc) \cup M(q_1, bc) \Rightarrow \{M(q_0, c) \cup M(q_2, c)\} \cup M(q_1, c)$$

 $\Rightarrow \{\{q_0, q_3\} \cup \{q_2\}\} \cup \{q_1\} = \{q_0, q_1, q_2, q_3\}$

Himpunan stata tidak mengandung stata penerima ⇒ kalimat abc *tidak diterima*

iii)
$$M(q_0, aabc) \Rightarrow M(q_0, abc) \cup M(q_1, abc) \Rightarrow \{M(q_0, bc) \cup M(q_1, bc)\} \cup M(q_1, bc)$$

 $\Rightarrow \{\{M(q_0, c) \cup M(q_2, c)\} \cup M(q_1, c)\} \cup M(q_1, c)$
 $\Rightarrow \{\{\{q_0, q_3\} \cup \{q_2\}\}\} \cup \{q_1\}\} \cup \{q_1\}\} = \{q_0, q_1, q_2, q_3\}$

Himpunan stata tidak mengandung stata penerima ⇒ kalimat aabc tidak diterima

$$\begin{split} \text{iv)} \quad & M(q_0 \text{,aabb}) \Rightarrow M(q_0 \text{,abb}) \cup M(q_1 \text{,abb}) \Rightarrow \{M(q_0 \text{,bb}) \cup M(q_1 \text{,bb})\} \cup M(q_1 \text{,bb}) \\ \\ & \Rightarrow \{\{M(q_0 \text{,b}) \cup M(q_2 \text{,b})\} \cup M(q_1 \text{,b})\} \cup M(q_1 \text{,b}) \\ \\ & \Rightarrow \{\{\{q_0, q_2\} \cup \{q_2, q_4\}\} \cup \{q_1\}\} \cup \{q_1\} = \{q_0, q_1, q_2, q_4\} \end{split}$$

Himpunan stata tidak mengandung stata penerima ⇒ kalimat aabb *diterima*

3.2 Ekuivalensi AHN, AHD, dan GR

AHD bisa dibentuk dari AHN.

GR bisa dibentuk dari AHD.

AHN bisa dibentuk dari GR.

3.2.1 Pembentukan AHD dari AHN

Diberikan sebuah AHN $F = (K, V_T, M, S, Z)$. Akan dibentuk sebuah AHD $F' = (K', V_T', M', S', Z')$ dari AHN F tersebut. Algoritma pembentukannya adalah sbb. :

- 1. Tetapkan : $S' = S dan V_T' = V_T$
- 2. Copy-kan tabel AHN F sebagai tabel AHD F'. Mula-mula K' = K dan M' = M
- 3. Setiap stata q yang merupakan *nilai* (atau *peta*) dari fungsi M dan q ∉ K, ditetapkan sebagai elemen baru dari K'. Tempatkan q tersebut pada kolom Stata M', lakukan pemetaan berdasarkan fungsi M.
- 4. Ulangi langkah (3) sampai tidak diperoleh stata baru.
- 5. Elemen Z' adalah semua stata yang mengandung stata elemen Z.

Contoh:

Berikut ini diberikan sebuah AHN $F = (K, V_T, M, S, Z)$ dengan :

 $K = \{A, B, C\}, V_T = \{a, b\}, S = A, Z = \{C\}, dan M didefinisikan sebagai berikut :$

Stata K	Input	
AHN F	a	В
A	[A,B]	С
В	A	В
С	В	[A,B]

Tentukan AHD hasil transformasinya!

Jawab:

Berdasarkan algoritma di atas, maka:

1.
$$S' = S = A, V_T' = V_T = \{a, b\}.$$

2. Hasil copy tabel AHN F menghasilkan tabel AHD F' berikut:

Stata K'	Input	
AHD F'	a	b
A	[A,B]	С
В	A	В
С	В	[A,B]

3. Pada tabel AHD F' di atas terdapat stata baru yaitu [A,B]. Pemetaan [A,B] adalah :

$$M([A,B],a) = M(A,a) \cup M(B,a) = [A,B] \cup A = [A,B]$$
, dan

 $M([A,B],b) = M(A,b) \cup M(B,b) = C \cup B = [B,C]$, sehingga diperoleh tabel berikut :

Stata K'	Input		
dari AHD F'	a	b	
A	[A,B]	С	
В	A	В	
С	В	[A,B]	
[A,B]	[A,B]	[B,C]	

4. Langkah (3) di atas menghasilkan stata baru yaitu [B,C]. Setelah pemetaan terhadap [B,C] diperoleh tabel berikut :

Stata K'	Input		
dari AHD F'	a	b	
A	[A,B]	С	
В	A	В	
С	В	[A,B]	
[A,B]	[A,B]	[B,C]	
[B,C]	[A,B]	[A,B]	

5. Setelah langkah (4) di atas tidak terdapat lagi stata baru.

Dengan demikian AHD F' yang dihasilkan adalah : AHD F' = (K', V_T ', M', S', Z'), dimana : K' = {A, B, C, [A,B], [B,C]}, V_T ' = {a, b}, S' = A, Z' = {C, [B,C]}. Fungsi transisi M' serta graf dari AHD F' adalah sebagai berikut :

Stata K'	Input		
dari AHD F'	a	b	
A	[A,B]	С	
В	A	В	
С	В	[A,B]	
[A,B]	[A,B]	[B,C]	
[B,C]	[A,B]	[A,B]	

3.2.2 Pembentukan GR dari AHD

Diketahui sebuah AHD F = (K, V_T , M, S, Z). Akan dibentuk GR G = (V_T ', V_N , S', Q).

Algoritma pembentukan GR dari AHD adalah sebagai berikut :

- 1. Tetapkan $V_T' = V_T$, S' = S, $V_N = S$
- 2. Jika A_p , $A_q \in K$ dan $a \in V_T$, maka:

$$M(A_p,a) = A_q \text{ ekuivalen dengan produksi : } \begin{cases} A_p \rightarrow aA_q \text{ , jika } A_q \notin Z \\ A_p \rightarrow a \text{ , } \text{ jika } A_q \in Z \end{cases}$$

Contoh

Diketahui sebuah AHD F dengan $Z = \{S\}$ dan fungsi transisi M sebagai berikut :

Stata K	Input	
AHD F	0	1
S	В	A
A	С	S
В	S	С
С	A	В

Dengan algoritma di atas maka diperoleh Q(GR) sbb. :

$$M(S,0) = B \Leftrightarrow S \to 0B$$
 $M(S,1) = A \Leftrightarrow S \to 1A$

$$M(A,0) = C \Leftrightarrow A \to 0C$$
 $M(A,1) = S \Leftrightarrow A \to 1$

$$M(B,0) = S \Leftrightarrow B \to 0$$
 $M(B,1) = C \Leftrightarrow B \to 1C$

$$M(A,0) = C \Leftrightarrow A \to 0C$$
 $M(A,1) = S \Leftrightarrow A \to 1$ $M(B,0) = S \Leftrightarrow B \to 0$ $M(B,1) = C \Leftrightarrow B \to 1C$ $M(C,0) = A \Leftrightarrow C \to 0A$ $M(C,1) = B \Leftrightarrow C \to 1B$

GR yang dihasilkan adalah G(
$$V_T$$
', V_N , S', Q), dengan V_T ' = {0,1}, V_N = {S, A, B, C}, S' = S, dan Q = {S \rightarrow 0B, S \rightarrow 1A, A \rightarrow 0C, B \rightarrow 1C, C \rightarrow 0A, C \rightarrow 1B, A \rightarrow 1, B \rightarrow 0}

3.2.3 Pembentukan AHN dari GR

Diketahui GR G = (V_T, V_N, S, Q) . Akan dibentuk AHN F = (K, V_T', M, S', Z) .

Algoritma pembentukan AHN dari GR:

- 1. Tetapkan $V_T' = V_T$, S' = S, $K = V_N$
- 2. Produksi $A_p \rightarrow a A_q$ ekuivalen dengan $M(A_p, a) = A_q$ Produksi $A_p \rightarrow a$ ekuivalen dengan $M(A_p, a) = X$, dimana $X \notin V_N$
- 3. $K = K \cup \{X\}$
- 4. $Z = \{X\}$

Contoh

Diketahui GR G =
$$(V_T, V_N, S, Q)$$
 dengan : $V_T = \{a, b\}, V_N = \{S, A, B\}, S = S, dan$
 $Q = \{S \rightarrow aS, S \rightarrow bA, A \rightarrow aA, A \rightarrow aB, B \rightarrow b\}$

Terapkan algoritma di atas untuk memperoleh AHN F sebagai berikut :

1.
$$V_T' = V_T = \{a, b\}, S' = S, K = V_N = \{S, A, B\}$$

2.
$$S \rightarrow aS \Leftrightarrow M(S,a) = S$$
, $S \rightarrow bA \Leftrightarrow M(S,b) = A$,

$$A \rightarrow aA \Leftrightarrow M(A,a) = A, A \rightarrow aB \Leftrightarrow M(A,a) = B,$$

$$B \rightarrow b \Leftrightarrow M(B,b) = X$$

AHN yang diperoleh : $F(K,V_T',M,S',Z)$, dengan

$$K = \{S, A, B, X\}, V_T' = \{a, b\}, S' = S, Z = \{X\},$$

Tabel M:

Stata K	Input	
AHN F	a	b
S	S	A
A	[A,B]	ф
В	ф	X
X	ф	ф