基於 YOLO-V7 進行害蟲辨識

鄧喬尹 國立臺灣大學生物機電工程學系

摘要

為了提高農民對於農場害蟲的應變能力,以及針對不同種類的害蟲噴灑合適的農藥,本研究在農場各處擺放黏蟲紙,透過掃描的方式取得高解析度的黏蟲紙影像。將每張影像都切割成數張小的影像進行人工標示,使用目前最新的深度學習 YOLO-V7 物件偵測模型,區分出不同的害蟲進行種類辨識,本研究的貢獻在於透過高解析度的影像可以區分出害蟲物種(Species)。完成模型訓練後,根據 1009 個樣本訓練出來的 YOLO 模型區分南黃薊馬準確率可達 93%、臺灣花薊馬可達 73%,表示該模型確實具備將薊馬類害蟲區分出來。

關鍵字:影像處理、害蟲辨識、黏蟲紙掃描、YOLO-V7、深度學習

一、簡介

1-1 研究動機

近年來,得益於圖形處理器的平行運算架構,深度學習的技術得以普及,結合電腦視覺與影像辨識的方法, 也成功應用於影像相關的研究領域上,並有了許多成果。Sabanci et al. (2017)提出利用電腦視覺的系統結合人工 神經網路(Artificial Neural Network, ANN),從影像中辨識出不同品種的小麥。物聯網以及大數據的發展也應用於 農業上,Sanchez et al. (2011)以多個嵌入式系統相機模組拍攝農地,結合通訊協定將拍攝到的影像即時串流到手 機以及網路上,作為農場監控系統。實驗室先前的研究已經做出拍攝即時(real time)害蟲影像,進行害蟲數量以及 種類的辨識。然而目前現有的硬體設備(樹莓派相機 V2)拍照解析度以及影像處理程式的辨識率與準確度仍有改 善空間。為了更有效的減少程式的誤判以及提高照片解析度,本研究以掃描黏蟲紙的方式直接取得高解析度的照 片,並採用最新的 YOLO-V7 模型(王建堯,2022)以及影像處理方法進行害蟲數量以及種類辨識。

1-2 研究目的

採用非即時(non-real time)的方式,透過掃描黏蟲紙取得照片,犧牲即時性換取高解析度的黏蟲紙影像。透過 YOLO-V7 進行害蟲種類辨識,手動標示(label)害蟲種類讓模型進行學習,最終目的為訓練出準確率高並且能區分害蟲物種(species)的模型,本研究欲區分出的害蟲物種為南黃薊馬與臺灣花薊馬。

二、材料與方法

本研究的材料部分以實驗室先前的嵌入式系統-樹莓派(Raspberry Pi)為核心進行開發設計,搭載相機模組拍攝黏蟲紙影像,結合環境因子感測器(溫度、濕度、光照、揮發性有機物以及二氧化碳)作為物聯網系統應用於農場。本研究的方法部分,將黏蟲紙從物聯網裝置取下並掃描成高解析度圖片(800dpi),後續再將圖片手動標示不同害蟲種類,用YOLO-V7進行害蟲辨識,最後針對模型訓練的結果分析,研究架構圖如下圖一所示。

圖一、研究架構圖

2-1 研究材料

先前的研究以樹莓派(Raspberry Pi)作為物聯網系統中的設置在場域中(node),結合許多搜集環境數據的感測器和樹莓派相機模組,透過 Wi-Fi 傳輸協定將資料回傳至實驗室的伺服器,作為即時(real-time)回傳場域資料的物聯網設備。本研究捨棄即時性,利用掃描的方式取得更佳的影像品質,材料為黏蟲紙與掃描機(scanner),掃描機輸出可達 800dpi 的解析度。

2-2 圖片掃描

使用掃描器(Scanner)掃描黏蟲紙,得到高解析度的黏蟲紙掃描結果,本研究採用800dpi的黏蟲紙掃描影像,將整張黏蟲紙影像切割成小影像,透過人工標示(label)作為資料集(datasets),放入YOLO-V7進行深度學習模型訓練。

2-3 害蟲辨識

使用 2022 年 7 月中研院王建堯博士發表的 YOLO-V7 進行模型訓練與害蟲辨識。不同於實驗室以往使用 YOLO-V4 進行物件偵測(object detection)加上害蟲辨識的演算法,本研究除了透過 YOLO-V7 辨識害蟲類別,希望透過高解析度的掃描圖片與 YOLO-V7 模型訓練,區分出不同物種的害蟲,本研究以臺灣常見的薊馬類害蟲,希望能區分出臺灣花薊馬以及南黃薊馬兩個物種。

三、結果與討論

本研究使用的資料集一共有 100 張影像,總計標示了 1009 隻害蟲,訓練集(Training dataset)和驗證集 (Validation dataset)比例分別為 7:3,影像大小為 640 x 640,個別的害蟲種類與數量如表一。

Training Datasets	Fly (蒼蠅)	Midge (域)	Gnat (蚋)	Moth fly (蛾蝇)	Chili Thrips (南黃薊馬)	Flower Thrips (臺灣花薊馬)	Whitefly (粉 <u>み</u>)	Others (其他)	
Labels	22	60	76	30	43	98	324	52	
Total: 705	A	The	*	-		-	Q	-3	
Image size	640 x 640								
Validation Datasets	Fly (蒼蠅)	Midge (蠓)	Gnat (蚋)	Moth fly (蛾蝇)	Chili Thrips (南黃薊馬)	Flower Thrips (臺灣花薊馬)	Whitefly (粉蝨)	Others (其他)	
Labels	14	42	44	21	24	25	95	39	
Total: 304	R	*	*	*		-	9	-3	
Image size				64	40 x 640				

表一、訓練用資料集

3-1 黏蟲紙標示結果

見下圖二,本次研究將害蟲種類區分成8個類別,依照表一從蒼蠅開始依序標示0至7。由於每張黏蟲紙的 大小都超過640x640,且每隻害蟲對比整張黏蟲紙太小,不利於模型訓練,因此本研究先將整張黏蟲紙的大小依 照大小進行圖片分割,再進行後續處理。

圖二、手動標示結果

3-2 模型訓練結果

YOLO-V7 的優點在於模型的各項參數都能自行調整,本研究調整了以下參數。

- (1) Backbone: Input -> stem -> ELAN -> (DS->ELAN)³ -> Output
- (2) 圖片大小(image size):640 x 640
- (3) 類別數量(classes): 8
- (4) 時期(epoch): 500 & 1000
- (5) 批次(batch size): 8 & 16

Batch size	Epoch	Precision(%)	Recall(%)	F1-Score(%)	AP(%)
8	500	87.0	78.8	82.7	83.2
16	500	81.5	78.2	79.8	81.0
8	1000	88.0	79.3	83.4	84.9
16	1000	85.0	79.8	82.3	82.3

表二、YOLO-V7 模型訓練結果

表二為調整不同參數訓練出的模型結果,可以看到在 batch size 設為 8, epoch 設為 1000 的時候模型的各項指標都表現的較佳。圖三為模型訓練過程中的損失函數(loss function),可以看到不論是訓練集和驗證集都沒有過適(overfitting)的狀況發生。圖四為本次模型訓練生成的混淆矩陣(confusion matrix),除了其他(others)的害蟲種類都有被模型學習並辨識出來,接續會談論薊馬類害蟲的物種區分。

圖三、訓練集損失函數 (左);驗證集損失函數 (右)

圖四、混淆矩陣

3-3 害蟲辨識結果

如同研究動機所述,本研究不僅能透過掃描得到高解析度的黏蟲紙影像,並藉此辨識出不同物種的害蟲。根據圖五可以得到在本實驗中,南黃薊馬(Chili thrips)準確率達 93%,臺灣花薊馬(Flower thrips)準確率可達 73%,且本次實驗僅使用 100 張影像、1009 個標示結果放入 YOLO-V7 進行訓練,未來仍有很多發展空間,也希望能藉此方法成功辨識出更多種類的害蟲。

圖五、薊馬類混淆矩陣

此外,我們也想知道模型在面對未知資料的表現如何,圖六是我隨機丟入一張模型沒看過的黏蟲紙影像(test data)。經過模型跑出來的結果,可以看到所有黏蟲紙上的害蟲都有被正確辨識到對應的害蟲類別。

圖六、模型測試資料

4-1 總結

本研究有效的提升害蟲辨識的準確度,進而達到辨識害蟲物種的目的。本實驗訓練出來的模型準確率,南 黃薊馬(Chili thrips)準確率達 93%,臺灣花薊馬(Flower thrips)準確率可達 73%,整體模型的 Accuracy 達 88.0%、 Recall 達 79.3%、F1-Score 達 83.4%以及 AP 達 84.9%。傳入測試資料給模型也能成功辨識出正確類別的害蟲。 4-2 未來研究方向

未來研究主要會往模型優化的方向進行。首先是增加資料量,讓模型看更多害蟲影像,以及解決資料不平均 (data imbalanced)的問題,在本次實驗中有觀察到粉蝨(whitefly)的數量明顯多於其他種類。接著調整模型的各項參數(hyperparameters)與優化器(optimizers),讓模型更快收斂到準確辨識的結果。最後,本研究預計將這套系統以使用者介面(User Interface)的方式呈現,未來會再花時間完善本研究。

参考文獻

- [1] Patrício, Diego Inácio, and Rafael Rieder. "Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review." Computers and electronics in agriculture 153 (2018): 69-81.
- [2] Sabanci, Kadir, Ahmet Kayabasi, and Abdurrahim Toktas. "Computer vision-based method for classification of wheat grains using artificial neural network." Journal of the Science of Food and Agriculture 97.8 (2017): 2588-2593.
- [3] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors." arXiv preprint arXiv:2207.02696 (2022).
- [4] Wu, Delin, et al. "Detection of Camellia oleifera Fruit in Complex Scenes by Using YOLOv7 and Data Augmentation." Applied Sciences 12.22 (2022): 11318.
- [5] Karantoumanis, Emmanouil, et al. "Computational comparison of image preprocessing techniques for plant diseases detection." 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022.
- [6] Garcia-Sanchez, Antonio-Javier, Felipe Garcia-Sanchez, and Joan Garcia-Haro. "Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops." *Computers and electronics in agriculture* 75.2 (2011): 288-303.