Lomonosov Moscow State University
Faculty of mechanics and mathematics
Department of Probability Theory

Term paper

 $\begin{array}{c} \textbf{Declustering parameter selection for semiparametric maxima estimators of the extremal} \\ \textbf{index} \end{array}$

Student:

N.A. Akimov, groupe 433

Advisors:

E.M. Ryadnova, I.V. Rodionov

1 Introduction

Let X_1, X_2, \ldots, X_n be a strictly stationary sequence of random variables (r.v.s) with cumulative distribution function (cdf) F(x). According to Leadbetter et al. (1983) we say that such sequence has the extremal index $\theta \in (0,1]$ if for each $0 < \tau < \infty$ there exists a sequence of real numbers $u_n = u_n(\tau)$ such that it holds

$$\lim_{n \to \infty} n(1 - F(u_n)) = \tau, \qquad \lim_{n \to \infty} P(M_{1,n} < u_n) = e^{-\tau \theta}, \tag{1}$$

where $M_{i,j} = \max\{X_{i+1}, X_{i+2}, \dots, X_j\}$, $M_{1,1} = -\infty$. Denote tail function as $\overline{F}(x) = 1 - F(x)$. Now and further we assume that F(x) and, therefore, $\overline{F}(x)$ are continuous.

Define a cluster as the number of consecutive observations exceeding the threshold u between two consecutive non-exceedances. Ferro and Segers (2003) considered a random variable T(u), equal in distribution to $\min\{j \geq 1 : X_{j+1} > u\}$ given $X_1 > u$.

Defenition 1.1. (Ferro and Segers (2003)) For real u and integers $1 \le k \le l$, let $\mathcal{F}_{k,l}(u)$ be the σ -field generated by events $\{X_i > u\}$, $k \le i \le l$. Define the mixing coefficients $\alpha_{n,q}(u)$,

$$\alpha_{n,q}(u) = \max_{1 \le k \le n-q} \sup |P(B|A) - P(B)|.$$

where supremum is taken over all $A \in \mathcal{F}_{1,l}(u)$ with P(A) > 0 and $B \in \mathcal{F}_{k+q,n}(u)$ and k, q are positive integers.

Theorem 1.1. (Ferro and Segers (2003)) Let $\{X_n\}_{n\geq 1}$ be a stationary process of r.v.s with tail function $\overline{F}(x)$. Let the positive integers $\{r_n\}$ and the thresholds $\{u_n\}$, $n\geq 1$ be such that $r_n\to\infty$, $r_n\overline{F}(u_n)\to\tau$ and $P\{M_{r_n}\leq u_n\}\to\exp(-\theta\tau)$ holds as $n\to\infty$ for some $\tau\in(0,\infty)$ and $\theta\in(0,1]$. If there are positive integers $q_n=o(r_n)$ such that $\alpha_{cr_n,q_n}(u_n)=o(1)$ for any c>0, then we get for t>0

$$P\{\overline{F}(u_n)T(u_n) > t\} \to \theta \exp(-\theta t).$$

For sample $X_1, X_2, ..., X_n$ from strictly stationary sequence $\{X_i\}$ let $N = \sum_{i=1}^n \mathbb{I}(X_i > u)$ be the number of exceedances over u and $1 \le S_i \le n$ be the times of such exceedances. Denoting $T_i = S_{i+1} - S_i$, for i = 1, ..., L where L = N - 1 and using Theorem 1.1 one can get the intervals estimator of the extremal index

$$\hat{\theta}_n(u) = \begin{cases} \min(1, \hat{\theta}_n^1(u)), & \text{if } \max\{T_i : 1 \le i \le L\} \le 2, \\ \min(1, \hat{\theta}_n^2(u)), & \text{if } \max\{T_i : 1 \le i \le L\} > 2, \end{cases}$$

where

$$\hat{\theta}_n^1(u) = \frac{2(\sum_{i=1}^L T_i)^2}{L\sum_{i=1}^L T_i^2}, \quad \hat{\theta}_n^2(u) = \frac{2(\sum_{i=1}^L (T_i - 1))^2}{L\sum_{i=1}^L (T_i - 1)(T_i - 2)}.$$

Next we denote intervals estimator as $\hat{\theta}_0$.

2 Estimators and the discrepancy method

2.1 The discrepancy method and threshold selection for extremal index estimation

All known methods of extremal index estimation depends on some parameters such as threshold and/or declustering parameter. Markovich (2015) suggested a way to optimize this selection using the discrepancy method. In general, discrepancy methods are based on nonparametric statistics like Kolmogorov-Smirnov D_n and Cramer-von Mises-Smirnov ω_n^2 .

Suppose we have a sample of r.v.s with cdf F(x), which belongs to some parametric family of distributions with parameter h. We are looking for the best choice of h. The idea of the method is to solve the discrepancy equation

$$\rho(\hat{F}_h, F_n) = \delta$$

regarding h, where $\rho(\cdot, \cdot)$ is some metric on the space of density functions, F_n is the empirical cdf and $\delta = \rho(F, F_n)$ is some value. Taking Cramer-von-Mises-Smirnov (C-M-S) statistic as $\rho(F, F_n)$ we get

$$\omega_n^2(h) = n \int_{-\infty}^{\infty} (F_n(x) - \hat{F}_h(x))^2 d\hat{F}_h(x).$$

Regarding practical applications Markovich (1989) propose to select the parameter h as a solution of the equation

$$\hat{\omega}_n^2(h) = 0.05,$$

where

$$\hat{\omega}_n^2(h) = \sum_{i=1}^n \left(\hat{F}_h(X_{i,n}) - \frac{i - 0.5}{n} \right)^2 + \frac{1}{12n}$$
 (2)

was calculated by the order statistics $X_{1,n} \leq \cdots \leq X_{n,n}$ corresponding to the sample $\{X_i\}_{i=1}^n$, and the value 0.05 corresponding to the mode of limit distribution of the C-M-S statistic A_1 . A similar idea was explored in Markovich (2015) to estimate the extremal index.

From Theorem 1.1 we know that the cdf of $Y_i = (N_u/n)T_i$ is asymptotically equal to $G_{\theta}(t) = 1 - \theta \exp(-\theta t)$ for some $\theta \in (0,1]$. So, taking $G_{\hat{\theta}}(Y_{i,L})$ instead of $F_h(X_{i,n})$ where $\hat{\theta}(u)$ is some estimator of θ and using only k largest inter-exceedance times we can rewrite (2) as

$$\omega_L^2(\hat{\theta}(u)) = \sum_{i=L-k+1}^L \left(\hat{G}_{\hat{\theta}}(Y_{i,L}) - \frac{i-0.5}{L} \right)^2 + \frac{1}{12L} = \delta.$$
 (3)

The selection of k and δ remains a problem. To overcome it, Markovich and Rodionov (2020) suggested a specific normalization of the discrepancy statistic $\omega_L^2(\hat{\theta}(u))$ in (3) such that its limit distribution coincides with the limit distribution A_1 of C-M-S statistic. Then its quantiles can be used as δ . They introduced the statistic

$$\tilde{w}_L^2(\hat{\theta}(u)) = \sum_{i=L-k+1}^{k-1} \left(1 - \frac{\hat{\theta} \exp(-Y_{L-i,L}\hat{\theta})}{1 - \hat{t}_k} - \frac{k - i - 0.5}{k} \right)^2 + \frac{1}{12k},\tag{4}$$

where $\hat{t}_k = 1 - \hat{\theta} \exp(-Y_{L-k,L}\hat{\theta})$.

Theorem 2.1. (Theorem 3.3, Markovich and Rodionov (2020)) Let the conditions of Theorem 1.1 and the condition (9) in Markovich and Rodionov (2020) be fulfilled and the estimator of extremal index $\hat{\theta} = \hat{\theta}_n$ be such that

$$\sqrt{m_n}(\hat{\theta}_n - \theta) \xrightarrow{d} \zeta, \ n \to \infty,$$

where the r.v. ζ has a nondegenerate distribution function H. Let us assume that the sequence m_n is such that

$$\frac{k}{m_n} = o(1) \text{ and } \frac{(\ln L)^2}{m_n} = o(1),$$

as $n \to \infty$. Then

$$\tilde{w}_L^2(\hat{\theta}) \xrightarrow{d} \xi \sim A_1$$

holds, where A_1 is the limit distribution function of the C-M-S statistic.

2.2 Declustering parameter selection for semiparametric maxima estimators of θ

The first of semiparametric maxima estimators was suggested by Northrop (2015) and then some modification of them was considered in Berghaus, Bücher (2018). We are interested in both versions.

For $x \in (0,1)$ define sequences u_n and u'_n such that $u_n = F^{\leftarrow}(1 - x/n)$ and $u'_n = F^{\leftarrow}(e^{-x/n})$, where $F^{\leftarrow}(x)$ is the generalized inverse for F(x). Then $n\overline{F}(u_n) = x$ and $n\overline{F}(u'_n) = n(1 - e^{-x/n}) \to x$, as $n \to \infty$. Also let $R_{1,n} = -n\log(F(M_{1,n}))$ and $Q_{1,n} = n(1 - F(M_{1,n}))$. We get by (1)

$$P\{Q_{1,n} \ge x\} = P\{n(1 - F(M_{1,n})) \ge n(1 - F(u_n))\} = P\{M_{1,n} \le u_n\} \to e^{-\theta x},$$

$$P\{R_{1,n} > x\} \sim P\{-n\log(F(M_{1,n})) \ge -n\log(F(u_n))\} = P\{M_{1,n} < u_n\} \to e^{-\theta x},$$
(5)

as $n \to \infty$

We just showed that $Q_{1,n}$ and $R_{1,n}$ both asymptotically follow an exponential distribution with parameter θ .

Divide X_1, X_2, \ldots, X_n into r_n blocks of length b_n (we can omit last block if it has less then b_n observations). We can use two approaches: disjoint blocks $(r_n = \lfloor n/b_n \rfloor)$ or sliding blocks $(r_n = n - b_n + 1)$. For block $B_i = \{X_{(i-1)b_n+1}, \ldots, X_{ib_n}\}, i = 1, \ldots, r_n$ define $R_{i,n}$ and $Q_{i,n}$ similarly to $R_{1,n}$ and $Q_{1,n}$ with u_n replaced with $u(b_n)$ and u'_n replaced with $u'(b_n)$. If b_n is sufficiently large, then, according to $(4), R_{1,n}, \ldots, R_{r_n,n}$ and $Q_{1,n}, \ldots, Q_{r_n,n}$ have approximately the exponential distribution with mean $1/\theta$. Consider the maximum likehood estimators

$$\tilde{\theta}_n^N = \left(\frac{1}{r_n} \sum_{i=1}^{r_n} R_{i,n}\right)^{-1}, \qquad \tilde{\theta}_n^B = \left(\frac{1}{r_n} \sum_{i=1}^{r_n} Q_{i,n}\right)^{-1}.$$

Usually we do not know the cdf of $\{X_i\}$ and thus we need to estimate F(x) and, therefore, $R_{i,n}$ and $Q_{i,n}$. For $y \in B_i$ Northrop (2015) used the empirical cdf based on $X_k \notin B_i$

$$\hat{F}_i(y) = \frac{1}{n - b_n + 1} \sum_{X_k \notin B_i} \mathbb{1}(X_k \le y).$$

.

Taking $\hat{R}_{i,n} = -n \log(\hat{F}_i(M_{(i-1)b_n,ib_n}))$ and $\hat{Q}_{i,n} = n(1 - \hat{F}_i(M_{(i-1)b_n,ib_n}))$, we finally get

$$\hat{\theta}_n^N = \left(\frac{1}{r_n} \sum_{i=1}^{r_n} \hat{R}_{i,n}\right)^{-1}, \qquad \hat{\theta}_n^B = \left(\frac{1}{r_n} \sum_{i=1}^{r_n} \hat{Q}_{i,n}\right)^{-1}.$$

These estimators are asymptotically equivalent, consistent and asymptotically normal for both sliding and disjoint blocks approaches (see theorem 3.1, theorem 3.2 in Berghaus, Bücher (2018)), with $\sigma_{dj}^2 - \sigma_{sl}^2 = \theta^2 (3 - 4 \ln 2)$, where σ_{dj}^2 and σ_{sl}^2 are asymptotic variances.

Semiparametric maxima estimators highly depend on parameter b_n . We can use the discrepancy method for selection of b_n . The first way is use $\hat{\theta}_n^N$ or $\hat{\theta}_n^B$ instead of $\hat{\theta}$ with b = b(u) in (4) and solve discrepancy equation regarding to u and then get the value of b.

The second way is described below. We showed that $R_{i,n}$ and $Q_{i,n}$ both have approximately the exponential distribution with mean $1/\theta$. Then, replacing $G_{\hat{\theta}}(t)$ with $\hat{F}_{\hat{\theta}}(t) = 1 - \exp(-\hat{\theta}t)$ and $Y_{i,L}$ with \hat{R}_{ni} or Q_{ni} in (4) we get

$$\tilde{\omega}_N^2(\hat{\theta}(b)) = \sum_{i=1}^{r_n} \left(\hat{F}_{\hat{\theta}}(R_{i,n}) - \frac{i - 0.5}{r_n} \right)^2 + \frac{1}{12r_n},\tag{6}$$

$$\tilde{\omega}_B^2(\hat{\theta}(b)) = \sum_{i=1}^{r_n} \left(\hat{F}_{\hat{\theta}}(Q_{i,n}) - \frac{i - 0.5}{r_n} \right)^2 + \frac{1}{12r_n}.$$
 (7)

Then we can choose b_n as solution of the discrepancy equation

$$\tilde{\omega}_N^2 = \delta, \quad \tilde{\omega}_B^2 = \delta, \tag{8}$$

where δ is some quantile of A_1 distribution.

Remark 2.1. The limit distributions of $\tilde{\omega}_N^2$ and $\tilde{\omega}_B^2$ are unknown. Its quantiles can be used as δ in (8) for better accuracy.

Simulation study

In this section, we simulated some processes with known values of θ and calculated the interval and semiparametric maxima estimators for them using the discrepancy method for the selection of threshold ufor $\hat{\theta}_0$ and b_n for $\hat{\theta}_n^N$ and $\hat{\theta}_n^B$. The simulation is repeated 1000 times with the sample size of $n=10^5$ and n = 5000 of initial measurements

3.1 Models

In this modelling were considered processes MM, ARMAX, AR(1), AR(2), MA(2) and GARCH(1,1) with known values of θ .

The mth order MM process is $X_t = \max_{0 \le i \le m} \{\alpha_y Z_{t-i}\}, t \in \mathbb{Z}$, where $\{\alpha_i\}$ are constants with $\alpha_i \ge 0$, $\sum_{i=0}^{m} \alpha_i = 1$, and Z_t are i.i.d standard Fréchet distributed r.v.s with cdf $F(x) = \exp(-1/x)$, for x > 0. The extremal index of this process is equal to $\theta = \max\{\alpha_i\}$, Ancona-Navarrete and Tawn (200). Values $m=3 \text{ and } \theta in\{0.5,0.8\} \text{ corresponding to } \{\alpha_i\}_{i=0}^3=\{0.5,0.3,0.15,0.05\} \text{ and } \{\alpha_i\}_{i=0}^3=\{0.8,0.1,0.008,0.02\},$ respectively, are taken for our study.

4

The ARMAX process is determined as $X_t = \max\{\alpha X_{t-1}, (1-\alpha)Z_t\}$, $t \in \mathbb{Z}$, where $0 \le \alpha < 1$, $\{Z_t\}$ are i.i.d standard Fréchet distributed r.v.s and $P\{X_t \le x\} = \exp(-1/x)$ holds assuming $X_0 = Z_0$. The extremal index of the process was proven to be equal $\theta = 1 - \alpha$, Beirlant et al. (2004). We consider $\theta \in \{0.25, 0.75\}$.

The positively correlated AR(1) process with uniform noise (ARu+) is defined by $X_j = (1/r)X_{j-1} + \varepsilon_j$, $j \ge 1$ and $X_0 \sim U(0,1)$ with X_0 independent of $\{\varepsilon_j\}$. Then $X_j \sim U(0,1)$ holds for all $j \ge 1$. For a fixed integer $r \ge 2$ let ε_n , $n \ge 1$ be i.i.d. r.v.s with $P\{\varepsilon_1 = k/r\} = 1/r$, $k \in \{0,1,\ldots,r-1\}$. The extremal index of ARu+ is $\theta = 1 - 1/r$ (Chernick et al. (1991)). $\theta \in \{0.5,0.8\}$ corresponding to $r \in \{2,5\}$ are taken.

The negatively correlated AR(1) process with uniform noise (ARu-) is defined by $X_j = -(1/r)X_{j-1} + \varepsilon_j$ with similarly distributed $\{\varepsilon_j\}$ but with support $k \in \{1, \dots, r\}$. Its extremal index is $\theta = 1 - 1/r^2$ (Chernick et al. (1991)). The same r's were taken corresponding to $\theta \in \{0.75, 0.96\}$.

We simulate the MA(2) process (Sun and Samorodnitsky (2018)) $X_i = pZ_{i-2} + qZ_{i-1} + Z_i$, $i \ge 1$, with p > 0, q < 1, and i.i.d. Pareto random variables Z_{-1}, Z_0, Z_2, \ldots with $P\{Z_0 > x\} = 1$ if x < 1, and $P\{Z_0 > x\} = x^{-\alpha}$ if $x \ge 1$, for some $\alpha > 0$. The extremal index of the process is $\theta = (1 + p^{\alpha} + q^{\alpha})^{-1}$. The cases $\alpha = 2$, $(p, q) = (1/\sqrt{2}, 1/\sqrt{2})$, $(1/\sqrt{3}, 1/\sqrt{6})$ with corresponding $\theta \in \{1/2, 2/3\}$ are considered.

We consider also processes studied in (Ferreira (2019); Northrop (2015); Süveges and Davison (2010)): the AR(1) process $X_j=0.7X_{j-1}+\varepsilon_j$, where $\{\varepsilon_j\}$ are standard Cauchy distributed and $\theta=0.3$ (ARc); the AR(2) process $X_j=0.95X_{j-1}-0.89X_{j-2}+\varepsilon_j$, where $\{\varepsilon_j\}$ are Pareto distributed with tail index 2 and $\theta=0.25$; and the GARCH(1,1) process $X_j=\sigma_j\varepsilon_j$ with $\sigma_j^2=\alpha+\lambda X_{j-1}^2+\beta\sigma_{j-1}^2$, $\alpha=10^{-6}$, $\beta=0.7$, $\lambda=0.25$, the i.i.d. sequence of standard Gaussian r.v.s $\{\varepsilon_j\}_{j\geq 1}$ and $\theta=0.447$ (see Laurini and Tawn (2012)).

3.2 Algorithms

For estimating we used the following algorithms.

Algorithm 3.1. Threshold selection. (Algorithm 4.1 from Markovich, Rodionov (2020)):

1. Using $X^n = \{X_i\}_{i=1}^n$ and taking thresholds u corresponding to quantile levels $q \in \{0.90, 0.905, \dots, 0.995\}$, generate samples of the inter-exceedance times $\{T_i(u)\}$ and the normalized r.v.s

$$\{Y_i\} = \{\overline{F}(u)T_i(u)\} = \{(N_u/n)T_i(u)\}, \quad i \in \{1, 2, \dots, L\}, \quad L = L(u),$$

where N_u is the number of exceedances over threshold u.

- 2. For each u select $k = \lfloor \hat{\theta}_0 L \rfloor$ (in case $\hat{\theta}_0 = 1$ accept k = L 1), where the intervals estimation was selected as a pilot estimator $\hat{\theta}_0 = \hat{\theta}_0(u)$ with the same u as in Item 1.
- 3. Use the sorted sample $Y_{L-k+1,L} \leq \cdots \leq Y_{L,L}$ and find all solutions u_1,\ldots,u_l among considered quantiles of the following discrepancy inequality

$$\tilde{w}_L^2(\hat{\theta}_0) \le \delta,$$

where $\delta = 1.49$ is the 99.98 % quantile of the C-M-S statistic.

4. For each u_j , $j \in \{1, ..., l\}$ calculate $\hat{\theta}(u_j)$ and find

$$\hat{\theta}^{MR} = \frac{1}{l} \sum_{i=1}^{l} \hat{\theta}(u_i)$$

as the resulting estimator.

Remark 3.1. Let $b = \frac{1}{1-q}$, where q is the level of quantile u. In our method we use $\hat{\theta}_n^N$ or $\hat{\theta}_n^B$ instead of θ_0 in the latter algorithm. The estimates $\hat{\theta}_1^N$ and $\hat{\theta}_1^B$ appearing in item 4, are resulting.

Algorithm 3.2. Declustering parameter selection:

- 1. Using $X^n = \{X_i\}_{i=1}^n$ and taking $b_1 = 2n \cdot 10^{-4}$, and $b_j = 5n(i-1) \cdot 10^{-4}$, for all $2 \le i \le 21$, generate samples $R_{i,n}(b_j)$, for $1 \le i \le r_n$ and $1 \le j \le 21$ (see Fig.1 and Fig.2).
- 2. Use the sorted sample $R_{(1,n)} \leq \cdots \leq R_{(r_n,n)}$ and find all solutions b_1, \ldots, b_l among considered declustering parameters of the following discrepancy inequality

$$\tilde{\omega}_N^2(\hat{\theta}(b_j)) \le \delta, \tag{9}$$

where $\delta = 1.49$ is the 99.98 % quantile of the C-M-S statistic.

3. For each b_j , $j \in \{1, ..., l\}$ calculate $\hat{\theta}(b_j)$ and find

$$\hat{\theta}_2^N = \frac{1}{l} \sum_{i=1}^l \hat{\theta}(b_i)$$

as the resulting estimator.

For $\hat{\theta}^B$ the algorithm is the same.

Remark 3.2. Inequality (8) may not have solutions. In that case, we select b_0 as

$$b_0 = \underset{P}{\operatorname{argmin}} \left[\tilde{\omega}_N^2(\hat{\theta}(b_j)) \right],$$

where B is the set from Item 1 of Algorithm 3.2., and then find

$$\hat{\theta}_2^N = \hat{\theta}^N(b_0)$$

as the resulting estimator.

Figure 1: Dependence of $\tilde{\omega}_N^2(\hat{\theta}(b))$ and $\tilde{\omega}_B^2(\hat{\theta}(b))$ on r_n , where $b_n = r_n \cdot n$; $n = 10^5$. Dotted line shows level 1.49. We can see, that for large n, we should take r_n less than $n \cdot 10^{-2}$, such that $\tilde{\omega}_N^2(\hat{\theta}(b))$ and $\tilde{\omega}_B^2(\hat{\theta}(b))$ reach 1.49 or less.

Figure 2: Dependence of $\tilde{\omega}_N^2(\hat{\theta}(b))$ and $\tilde{\omega}_B^2(\hat{\theta}(b))$ on r_n , where $b_n = r_n \cdot n; n = 5000$. Dotted line shows level 1.49. We can see, that for not so large n, we also should take r_n less than $n \cdot 10^{-2}$, such that $\tilde{\omega}_N^2(\hat{\theta}(b))$ and $\tilde{\omega}_B^2(\hat{\theta}(b))$ reach 1.49 or less.

3.3 Results

Simulation results are presented below. We are interested in Bias and RMSE of our estimators.

Table 1: Bias·10⁴ for $\hat{\theta}^{MR}$, $\hat{\theta}^N_1$, $\hat{\theta}^B_1$, $\hat{\theta}^B_2$ and $\hat{\theta}^B_2$ for $n=10^5$ and n=5000

	MM		ARMAX		ARu^+		ARu^-		MA(2)		ARc	AR(2)	GARCH
Bias· 10^4	0.5	0.8	0.25	0.75	0.5	0.8	0.75	0.96	0.5	2/3	0.3	0.25	0.447
	$n = 10^5$												
$\hat{ heta}^{MR}$	-30	-15	-30	-17	270	316	428	266	-200	-509	-79	310	-431
$\hat{ heta}_1^{N,SL}$	91	34	109	45	405	427	582	338	-206	-780	-131	443	-227
$\hat{ heta}_1^{B,SL}$	184	168	171	172	432	467	611	362	-41	-527	77	489	-179
$\hat{ heta}_1^{N,DJ}$	88	28	107	39	402	426	564	326	-207	-780	-97	443	-224
$\hat{ heta}_1^{B,DJ}$	174	153	167	158	434	463	574	348	-48	-537	73	484	-181
$\hat{ heta}_2^{N,SL}$	205	74	333	91	316	364	309	294	-169	-426	-29	580	-1.8
$\hat{ heta}_2^{B,SL}$	158	149	139	145	308	356	355	292	-21	-439	127	504	-38
$\hat{ heta}_2^{N,DJ}$	42	19	55	24	224	206	268	69	-115	-354	-12	365	-403
$\hat{ heta}_2^{B,DJ}$	99	79	76	84	228	242	302	70	-53	-302	48	393	-376
	n = 5000												
$\hat{ heta}^{MR}$	37	41	50	44	455	677	1054	226	-224	-712	-60	552	-1420
$\hat{ heta}_1^{N,SL}$	226	58	288	88	800	740	1275	304	-178	-934	-97	753	-903
$\hat{ heta}_1^{B,SL}$	509	456	471	469	931	1084	1408	354	195	-445	294	896	-888
$\hat{ heta}_1^{N,DJ}$	230	68	291	94	807	758	1280	299	-174	-929	-63	752	-875
$\hat{ heta}_1^{B,DJ}$	465	386	443	404	880	1005	1333	323	151	-495	267	841	-890
$\hat{ heta}_2^{N,SL}$	193	50	328	63	722	652	1014	286	-188	-794	-23	1230	1306
$\hat{ heta}_2^{B,SL}$	509	427	473	436	726	906	1378	320	221	-456	383	1051	1662
$\hat{ heta}_2^{N,DJ}$	58	-371	205	-251	136	107	27	-704	-98	-466	132	586	-2223
$\hat{ heta}_2^{B,DJ}$	116	-315	265	-194	192	161	72	-685	-38	-404	196	643	-2186

Table 2: RMSE·10⁴ for $\hat{\theta}^{MR}$, $\hat{\theta}^N_1$, $\hat{\theta}^B_1$, $\hat{\theta}^B_2$ and $\hat{\theta}^B_2$ for $n=10^5$ and n=5000

	MM		ARMAX		ARu^+		ARu^-		MA(2)		ARc	AR(2)	GARCH
$RMSE \cdot 10^4$	0.5	0.8	0.25	0.75	0.5	0.8	0.75	0.96	0.5	2/3	0.3	0.25	0.447
	$n = 10^5$												
$\hat{ heta}^{MR}$	106	166	90	150	313	335	487	284	231	537	134	355	556
$\hat{ heta}_1^{N,SL}$	115	117	129	112	427	437	622	341	213	783	241	455	301
$\hat{ heta}_1^{B,SL}$	206	221	192	217	459	480	648	364	82	535	108	501	266
$\hat{ heta}_1^{N,DJ}$	116	122	128	114	422	441	619	332	216	783	115	456	309
$\hat{ heta}_1^{B,DJ}$	201	214	189	209	457	486	630	351	90	546	107	499	280
$\hat{ heta}_2^{N,SL}$	216	121	344	128	399	408	467	324	190	499	115	617	347
$\hat{ heta}_2^{B,SL}$	215	256	188	234	383	419	501	336	7 9	448	170	534	328
$\hat{ heta}_2^{N,DJ}$	181	313	137	285	329	291	415	239	197	423	153	392	482
$\hat{ heta}_2^{B,DJ}$	204	322	152	296	333	322	438	247	168	378	154	417	465
	n = 5000												
$\hat{ heta}^{MR}$	342	467	335	441	-620	806	1166	283	382	820	349	745	1558
$\hat{ heta}_1^{N,SL}$	294	311	349	295	848	785	1329	320	237	959	243	818	1345
$\hat{ heta}_1^{B,SL}$	569	594	536	587	1006	1132	1474	359	284	519	376	963	1348
$\hat{ heta}_1^{N,DJ}$	300	319	354	303	858	807	1337	313	240	956	17 0	823	1319
$\hat{ heta}_1^{B,DJ}$	531	542	514	538	967	1071	1399	331	261	566	359	913	1351
$\hat{ heta}_2^{N,SL}$	291	400	371	358	830	743	1378	393	276	898	279	1381	1397
$\hat{ heta}_2^{B,SL}$	626	652	612	628	990	1048	1681	395	330	525	460	1193	1772
$\hat{ heta}_2^{N,DJ}$	777	1057	675	1005	1110	876	1075	946	719	1010	732	894	2261
$\hat{ heta}_2^{B,DJ}$	783	1037	697	991	1119	882	1074	928	713	983	747	933	2228

3.4 Notations

From tables 1 and 2, we can conclude that, in general, $\hat{\theta}_1^N$ gives us more satisfactory results than $\hat{\theta}_1^B$. The usage of sliding blocks for some processes has better accuracy than the usage of disjoint blocks, but for some it is worse, so we cannot make a common conclusion.

From the use of the discrepancy method for selection b_n and u_n , we can infer that $\hat{\theta}^{MR}$ and $\hat{\theta}^{N,SL}$ has almost the same accuracy.

References

- [1] M.R. Leadbetter, G. Lindgren, H. Rootzén Extremes and related properties of random sequence and processes, ch.3. Springer-Verlag, New-York, 1983.
- [2] C.A.T. Ferro, J. Segers *Inference for clusters of extreme values*. Journal of the Royal Statistical Society Series B. 65 545–556, 2003.
- [3] P. J. Northrop An efficient semiparametric maxima estimator of the extremal index. Extremes 18:4 585–603., 2015.
- [4] B. Berghaus, A. Bücher Weak convergence of a pseudo maximum likelihood estimator for the extremal index. The Annals of Statistics 46(5) 2307–2335, 2018.
- [5] N.M. Markovich Nonparametric estimation of extremal index using discrepancy method. In: Proceedings of the X International conference "System identification and control problems" SICPRO-2015 Moscow January 26–29, V.A. Trapeznikov Institute of Control Sciences. 160–168. ISBN 978-5- 91450-162-1, 2015.
- [6] N.M. Markovich Experimental analysis of nonparametric distribution density estimates and methods of their smoothing. Automation and Remote Control 50 941–948, 1989.
- [7] L.N. Bolshev, N.V. Smirnov Tables of Mathematical Statistics Nauka, Moscow, 1965 (in Russian).
- [8] N.M. Markovich, I.V.Rodionov *Threshold selection for extremal index estimation*. Electronic Journal of Statistics, 2020.
- [9] M.A. Ancona-Navarrete, J. A Tawn Comparison of Methods for Estimating the Extremal Index. Extremes, 3:1 5–38, 2000.
- [10] J. Beirlant, Y. Goegebeur, J. Teugels, J. Segers, Statistics of Extremes: Theory and Applications. Wiley, Chichester, West Sus- sex, 2004.
- [11] M.R. Chernick, T. Hsing, W.P. McCormick Calculating the extremal index for a class of stationary sequences. Advances in Applied Probability,23 835–850, 1991.
- [12] M. Ferreira. Multiple thresholds in extremal parameter estimation. Extremes, 22 317–341, 2019.
- [13] J.Sun, G. Samorodnitsky. Analysis of estimation methods for the extremal index. Electronic Journal of Applied Statistical Analysis, 11:1 296–306, 2018.
- [14] M. Süveges, A.C. Davison. Model misspecification in peaks over threshold analysis. The Annals of Applied Statistics, 4:1 203–221,2010.
- [15] F. Laurini, J.A Tawn. The extremal index for GARCH(1,1) processes. Extremes 15, 511–529, 2012.