I Definitions

Let
$$W(x) := \left(-\frac{x}{2} + \left(\frac{1}{27} + \frac{x^2}{4}\right)^{1/2}\right)^{1/3} - \left(\frac{x}{2} + \left(\frac{1}{27} + \frac{x^2}{4}\right)^{1/2}\right)^{1/3}$$
 and define $Lz := -az - b\frac{\partial z}{\partial x}$, where $a(x) := 1 + \frac{W(x)}{x} + \frac{\partial W}{\partial x}(x)$ and $b(x) := \frac{3x}{2} + W(x)$.

II Computation in Sobolev spaces

Let $\langle f,g\rangle := \langle f,g\rangle_{L^2} = \int_{\mathbb{R}} f(x)g(x)\,dx$ be the usual inner product of $L^2(\mathbb{R})$. Let $w,z\in H^k(\mathbb{R})$ for k large enough. For simplicity, we will denote $\frac{\partial z}{\partial x}:=z'$.

II.1 Symetric part in L^2 space

In L^2 , the symetric part is computed as follows:

$$\langle Lz, w \rangle_{L^2} = \langle -az - bz', w \rangle = \langle z, -aw \rangle - \langle z, b'w + bw' \rangle$$
$$= \langle z, (-a + b')w + bw' \rangle = \langle z, L^*w \rangle$$

Thus,
$$\frac{1}{2}(L+L^*)z = \frac{1}{2}(-az-bz'-az+b'z+bz') = -az+\frac{b'}{2}z$$
 in L^2 .

II.2 Quadratic form in H^1 space

In H^1 , the quadratic form is computed as follows:

$$\begin{split} \langle Lz,z\rangle_{H^1} &= \langle -az-bz',z\rangle + \langle -a'z-az'-b'z'-bz'',z'\rangle \\ &= \langle -az,z\rangle + \langle -bz-a'z,z'\rangle + \langle -az'-b'z',z'\rangle + \langle -bz',z''\rangle \\ &= \langle -az,z\rangle + \langle \frac{1}{2}(b'+a'')z,z\rangle + \langle (-a-b')z',z'\rangle + \langle \frac{1}{2}b'z',z'\rangle \\ &= \langle (-a+\frac{b'}{2}+\frac{a''}{2})z,z\rangle + \langle (-a-\frac{b'}{2})z',z'\rangle \end{split}$$

REMARQUE. The operator (Lz)' is not defined on H^1 as it involves second derivatives of z, but it is a classical fact that the quadratic form of an operator as a larger domain that the operator itself.

II.3 Quadratic form in H^2 space

In H^2 , the quadratic form is computed as follows:

$$\begin{split} \langle (Lz)'',z''\rangle &= \langle -a''z - a'z' - a'z' - az'' - b''z' - b'z'' - bz^{(3)},z''\rangle \\ &= \langle -a''z,z''\rangle + \langle (-2a'-b'')z',z''\rangle + \langle (-a-2b')z'',z''\rangle + \langle -bz^{(3)},z''\rangle \\ &= \langle a^{(3)}z + a''z',z'\rangle + \langle \frac{1}{2}(2a''+b^{(3)})z',z'\rangle + \langle (-a-2b')z'',z''\rangle + \langle \frac{1}{2}b'z'',z''\rangle \\ &= \langle -\frac{1}{2}a^{(4)}z,z\rangle + \langle 2a'' + \frac{1}{2}b^{(3)})z',z'\rangle + \langle (-a-\frac{3}{2}b')z'',z''\rangle \end{split}$$

Thus, we have in H^2 :

$$\langle Lz, z \rangle_{H^2} = \langle (-a + \frac{b'}{2} + \frac{a''}{2} - \frac{a^{(4)}}{2})z, z \rangle + \langle (-a - \frac{b'}{2} + 2a'' + \frac{b^{(3)}}{2})z', z' \rangle + \langle (-a - \frac{3}{2}b')z'', z'' \rangle$$

Sacha Ben-Arous 1 E.N.S Paris-Saclay

II.4 Quadratic form in H^3 space

In H^3 , the quadratic form is computed as follows:

$$\begin{split} \langle (Lz)^{(3)},z^{(3)}\rangle &= \langle -a'''z-3a''z'-3a'z''-az^{(3)}-b'''z'-3b''z''-3b'z^{(3)}-bz^{(4)},z^{(3)}\rangle \\ &= \langle -a'''z,z^{(3)}\rangle + \langle (-3a''-b''')z',z^{(3)}\rangle + \langle (-3a'-3b'')z'',z^{(3)}\rangle + \langle (-a-3b')z^{(3)},z^{(3)}\rangle \\ &+ \langle -bz^{(4)},z^{(3)}\rangle \\ &= \langle a^{(4)}z+a'''z',z''\rangle + \langle (3a'''+b^{(4)})z'+(3a''+b''')z'',z''\rangle + \langle \frac{3}{2}(a''+b''')z'',z''\rangle \\ &+ \langle (-a-3b')z^{(3)},z^{(3)}\rangle + \langle \frac{1}{2}b'z^{(3)},z^{(3)}\rangle \\ &= \langle -a^{(5)}z-a^{(4)}z',z'\rangle + \langle -\frac{1}{2}a^{(4)}z',z'\rangle + \langle \frac{1}{2}(-3a^{(4)}-b^{(5)})z',z'\rangle + \langle (3a''+b''')z'',z''\rangle \\ &+ \langle \frac{3}{2}(a''+b''')z'',z''\rangle + \langle (-a-3b')z^{(3)},z^{(3)}\rangle + \langle \frac{1}{2}b'z^{(3)},z^{(3)}\rangle \\ &= \langle \frac{a^{(6)}}{2}z,z\rangle + \langle (-3a^{(4)}-\frac{1}{2}b^{(5)})z',z'\rangle + \langle (\frac{9}{2}a''+\frac{5}{2}b^{(3)})z'',z''\rangle + \langle (-a-\frac{5}{2}b')z^{(3)},z^{(3)}\rangle \end{split}$$

Thus, we have in H^3 :

$$\langle Lz, z \rangle_{H^3} = \langle (-a + \frac{b'}{2} + \frac{a''}{2} - \frac{a^{(4)}}{2} + \frac{a^{(6)}}{2})z, z \rangle + \langle (-a - \frac{b'}{2} + 2a'' + \frac{b^{(3)}}{2} - 3a^{(4)} - \frac{1}{2}b^{(5)}))z', z' \rangle + \langle (-a - \frac{3}{2}b' + \frac{9}{2}a'' + \frac{5}{2}b^{(3)})z'', z'' \rangle + \langle (-a - \frac{5}{2}b')z^{(3)}, z^{(3)} \rangle$$

III Compact part of the quadratic form

We proved in the previous section that the quadratic form associated with L in H^3 is of the form :

$$\langle Lz, z \rangle_{H^3} = \langle \varphi_0 z, z \rangle + \langle \varphi_1 z', z' \rangle + \langle \varphi_2 z'', z'' \rangle + \langle \varphi_3 z^{(3)}, z^{(3)} \rangle$$

In the next section, we will show that φ_3 has a sign and is bounded. This leaves to study the lower order terms, and we will prove that there exists a compact operator M such that

$$\langle Mz, z \rangle_{H^3} = \langle \varphi_0 z, z \rangle + \langle \varphi_1 z', z' \rangle + \langle \varphi_2 z'', z'' \rangle$$

Combining those results yield the following energy estimate:

$$\langle Lz, z \rangle_{H^3} \leqslant -\delta \|z\|_{H^3} + \langle Mz, z \rangle_{H^3}$$

We will use the Fourier transform, with the following convention:

$$\hat{f}(\xi) := \mathcal{F}(f)(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$$

and we will denote

$$\mathcal{F}^{-1}(f)(x) := \int_{-\infty}^{\infty} f(\xi) e^{2\pi i x \xi} d\xi$$

the inverse Fourier transform.

III.1 Base case

We want to find M_0 such that

$$\langle M_0 z, z \rangle_{H^3} = \langle \varphi_0 z, z \rangle \tag{3.1}$$

The Parseval identity gives:

$$\int \hat{z}(\xi)\widehat{M_0z}(\xi)(1+\xi^2)^3d\xi = \int \hat{z}(\xi)\widehat{\varphi_0z}(\xi)d\xi$$

Sacha Ben-Arous 2 E.N.S Paris-Saclay

Thus, choosing M_0 such that $\widehat{M_0z}(\xi) = \frac{1}{(1+\xi^2)^3}\widehat{\varphi_0z}(\xi)$ would give the equality. Defining $\theta(\xi) := \frac{1}{(1+\xi^2)^3}$, this condition is equivalent to :

$$\widehat{M_0 z} = \widehat{\mathcal{F}^{-1}(\theta)} \widehat{\varphi_0 z} = \widehat{\mathcal{F}^{-1}(\theta)} * \widehat{\varphi_0} z$$

i.e. $M_0 z = \mathcal{F}^{-1}(\theta) * \varphi_0 z$ satisfies eq. (3.1).

III.2 First order case

We want to find M_1 such that

$$\langle M_1 z, z \rangle_{H^3} = \langle \varphi_1 z', z' \rangle$$
 (3.2)

Integrating by parts and applying the Parseval identity, we have the equivalence

$$\langle M_1 z, z \rangle_{H^3} = -\langle \varphi_1' z' + \varphi_1 z'', z \rangle = -\langle \varphi_1' z, z' \rangle - \langle \varphi_1 z, z'' \rangle$$

$$\Leftrightarrow \int \widehat{z}(\xi) \widehat{M_1 z}(\xi) (1 + \xi^2)^3 d\xi = -\int (2\pi i \xi) \widehat{z}(\xi) \widehat{\varphi_1' z}(\xi) d\xi + \int (4\pi^2 \xi^2) \widehat{z}(\xi) \widehat{\varphi_1 z}(\xi) d\xi$$

$$\Leftrightarrow \int \widehat{z}(\xi) \widehat{M_1 z}(\xi) (1 + \xi^2)^3 d\xi = -\int \widehat{z} \left[(2\pi i \xi)(\xi) \widehat{\varphi_1' z}(\xi) + (4\pi^2 \xi^2) \widehat{z}(\xi) \widehat{\varphi_1 z}(\xi) \right] d\xi$$

Sacha Ben-Arous 3 E.N.S Paris-Saclay