University Institute of Engineering, Chandigarh University Department of Computer Science & Engineering Phase I (Project Scope, Planning and Task Definition)

Date: 13/03/2022

Project Title

Advanced algorithmic trading system using fundamental and technical analysis

Project Team					
Team Designation	Name	UID	Section		
Lead	Ayush Raj	20BCS7576	718 B		
Member1	Lekhraj Sharma	20BCS7553	718 B		
Member2	Shashwat Verma	20BCS7532	718 B		
Member3	Shubham Kumar	20BCS7572	718-B		
·		·			

Project Scope

Algorithmic trading is amongst the most talked about technologies in the recent years. It has given trading Firms more power in the rapidly evolving markets by eliminating human errors and changing the way financial markets are interlinked today. Its usage is credited to most markets and even to commodity trading. Some of the best performing hedge funds attribute their success to it. Devoid of human emotions, repelling latency, technology-oriented and fast-paced, Algorithmic trading executes trading commands instantly and with accuracy.

Project Planning and Task Definition

At the most basic level, an algorithmic trading system is a computer code that has the ability to generate and execute buy and sell signals in financial markets. The main components of such a system include entry rules that signal when to buy or sell, exit rules indicating when to close the current position, and position sizing rules defining the quantities to buy or sell. One of the first steps in developing an algorithmic strategy is to reflect on some of the core traits that every algorithmic trading strategy should have. The strategy should be market prudent in that it is fundamentally sound from a market and economic standpoint. Also, the mathematical model used in developing the strategy should be based on sound statistical methods.

Algorithmic trading strategies follow a rigid set of rules that take advantage of market behavior, and the occurrence of one-time market inefficiency is not enough to build a strategy around. Further, if the cause of the market inefficiency is unidentifiable, then there will be no way to know if the success or failure of the strategy was due to chance or not.

With the above in mind, there are a number of strategy types to inform the design of your algorithmic trading system. These include strategies that take advantage of the following (or any combination thereof):

- Macroeconomic news (e.g., non-farm payroll or interest rate changes)
- Fundamental analysis (e.g., using revenue data or earnings release notes)
- Statistical analysis (e.g., correlation or co-integration)
- Technical analysis (e.g., moving averages)
- The market microstructure (e.g., arbitrage or trade infrastructure)

Project	roject ID (If selected from project basket)													
Project Outcome (Tick the Column)		Patent		Journal Paper			S/W Project	yes	H/W + S/W Project		Other			
Remarl	of Supervisor	•												
Name of Supervisor Shuver		ndu Das	du Das Signa		Signat	tur	ure Shuvendu Das							
Name of Co- Supervisor		Shikha	a Atwal	Atwal Sign:		Signat	tur	e Sui	she					
S.No.	Signature of the Students Co			Coi	entact No.			Signature						
1.	Ayush Raj	9110	9110076495											
2.	Lekhraj Sharma		8188	8188897564										
3.	Shashwat Verma		8957	8957037795										
4.	Shubham Kumar		8863	8863937233										

Shuverdu Das

Signature

(Project Teacher)