

Instituto Superior Técnico

Licenciatura em Engenharia Naval e Oceânica Arquitetura Naval

Dimensionamento Preliminar de Navios e Arranjo Geral

Professor Sérgio Ribeiro e Silva

Grupo 5:

Júlia Alves de Souza Viera - 104692 Íris-Salomé Pires Gonçalves - 106563

Ano letivo 2023/2024

2º Semestre

Maio 2024

Índice

Introdução	4
Glossário	5
Dados iniciais	6
Cálculos teóricos	7
Estimativa da razão K _D	7
Estimativa do Coeficiente de Bloco C _B	7
Cálculo das dimensões principais do navio	7
Estimativa dos pesos	9
Estimativas do peso da Estrutura de Aço (WS):	9
Estimativas do Peso da Maquinaria (WMt):	10
Estimativas do peso do Equipamento (WO):	10
Estimativa do Peso dos Consumíveis(WC):	11
Peso do Combustível	11
Estimativa do Peso do Óleo Lubrificante do Motor(WLO):	12
Estimativa do Peso da Água Doce(WFW):	13
Estimativa do Peso da Tripulação e da Bagagem(WCrew):	
Estimativa do peso das Provisões (W _P):	
Estimativa do Peso dos Consumíveis(Wc):	13
Peso da Carga Útil (<i>DWTC</i>):	14
Deslocamento Máximo(Δmax):	14
Processos Iterativos e Resultados Finais:	14
Estimativa da Posição Longitudinal do Centro de Carena (LCB)	15
Dimensão dos tanques	15
Tanques de carga	15
Centros de Gravidade dos Tanques	15
Tanques Laterais	16
Centros de Gravidade dos Tanques Laterais	16
Arqueação Bruta	16
Arqueação Útil	
Conclusão	18
Bibliografia	18

Índice de Tabelas6Tabela 1- Dados Iniciais6Tabela 2- Rácios tabelados para navios graneleiros6Tabela 3- Centros de Gravidade dos Tanques de Carga15Tabela 4- Centros de Gravidade dos Tanques Laterais16

Introdução

Este projeto, realizado na disciplina de Arquitetura Naval, tem como propósito aplicar uma ampla variedade de conhecimentos, incluindo arquitetura naval, física e matemática, para calcular as principais dimensões necessárias na concepção de um navio Graneleiro (Bulk Carrier). Dessa forma, conseguimos entender melhor os desafios enfrentados pelos engenheiros navais no dia a dia.

Para começar, foram fornecidos dados iniciais que nos permitiram determinar as dimensões essenciais do navio, além dos pesos do navio leve, da estrutura, da maquinaria, dos consumíveis e do deslocamento máximo carregado. Em seguida, realizamos diversas iterações para alcançar valores mais próximos da realidade.

Após concluir os cálculos, procedemos à construção do modelo e ao desenho 3D, utilizando a plataforma de modelagem 3D Rhino. Finalmente, estimamos os valores da arqueação bruta e líquida do navio e elaboramos o arranjo geral.

Glossário

K_D – Rácio ou razão Deadweight/Displacement

CB – Coeficiente de Bloco ou de Finura Total

DWT – Deadweight (Porte Bruto)

Δ – Displacement (Deslocamento de Volume de Água)

∇ – Volume de Carena

LCB – Posição Longitudinal do Centro de Carena

L – Comprimento entre Perpendiculares

Ls – Comprimento da Superestrutura

 L_{OA} – Comprimento Total

B-Boca

T — Calado

D — Pontal

P_B – Potência no veio

BHP – Potência no veio em Cavalo-Vapor (cv)

W_S – *Weight of Structure* (Peso da Superestrutura)

W_{Mt} – Weight of Machinery (Peso da Maquinaria)

W_M – Peso da Maquinaria Principal

W_m – Peso da Maquinaria Auxiliar

W₀ – Weight of Outfit (Peso do Equipamento)

W_{LS} – Light Ship Weight (Peso do Navio Leve)

W_C – Weight of Consumables (Peso dos Consumíveis)

W_F – Weight of Fuel (Peso dos Combustíveis)

Whfo - Weight of Heavy Fuel Oil

W_{MDO} – Weight of Marine Diesel Oil

W_{LO} – Weight of Lube Oil (Peso do Óleo Lubrificante)

W_{FW} – Weight of Fresh Water (Peso da Água Potável)

W_P – Weight of Provisions (Peso das Provisões)

W_{CB} – *Weight of Crew* + *Baggage* (Peso da Tripulação + Bagagem)

Dados iniciais

Tabela 1- Dados Iniciais

Bulk Carrier 3			
DWT (design draft)	42500 [t]		
Main Propulsion Engine power (MCR)	7800 [<i>kW</i>]		
RPM (slow speed diesel)	125 [rpm]		
Diesel Generators power	1500~[kW]		
Range (at 14 knots)	18250 [nm]		
Speed	14 [kts]		
Crew	25		
Provisions	0.01 [t]/person. day		
Crew + Baggage	0.17 [t]/person		
Fresh water	0.25 [t]/person.day		
Ballast water in full load condition	0 [t]		
Fuel Consumption of MPP and GE	$210 \left[g/kW.h \right]$		

- 1) Main engine runs at 85% of MCR;
- 2) Generators runs at 50% of rated power

Rácios		
L/B	6.25	
B/T	2.65	
L/D	11.75	
T/D	0.71	
B/D	1.88	

Tabela 2- Rácios tabelados para navios graneleiros

Nos cálculos efetuados, assumiram-se os seguintes valores de densidades:

 $\rho_{SW} = 1.025 [t/m3]$ (densidade da água salgada)

 $\rho_{LO} = 0.81 \, [t/m3]$ (densidade do óleo lubrificante)

 $\rho_{MDO} = 0.88 [t/m3]$ (densidade do Marine Deisel Oil)

 $\rho_{HFO} = 0.93 \ [t/m3]$ (densidade do *Heavy Fuel Oil*) $\rho_{FW} = 1.00 \ [t/m3]$ (densidade da água potável)

Cálculos teóricos

Estimativa da razão K_D

O Deadweight Displacement Ratio, K_D , é o rácio que relaciona o Deadweight do navio, DWT, com o Deslocamento, Δ . Partindo de valores tabelados em que $K_D \approx 0$, 78 para navios com DWT de 15 000 [t] e $K_D \approx 0$, 88 para navios com DWT de 200 000 [t],podemos calcular que:

$$K_D = \frac{DWT}{\Delta} = \frac{200000 - 15000}{0,88 - 0,78} = \frac{42500 - 15000}{Kd - 0,78} \iff$$

$$K_D = 0.794864$$

Estimativa do Coeficiente de Bloco CB

Sabendo que o Coeficiente de Bloco C_B , ou Coeficiente de Finura Total, trata-se da razão entre o volume deslocado na ossada, ∇ , e o volume do bloco retangular de arestas L,B e T e também que para navios graneleiros de 15000 a 200000 DWT, o coeficiente de bloco (C_B) varia entre 0.80 a 0.86, utilizando-se do mesmo raciocínio aplicado acima para o cálculo do K_D , tem-se que:

$$C_B = \frac{\nabla}{LBT} = \frac{200000 - 15000}{0,86 - 0,80} = \frac{42500 - 15000}{C_B - 0,80} \iff$$

$$C_B = 0.80891$$

Cálculo das dimensões principais do navio

Para se determinar as dimensões do navio, isto é, o comprimento entre perpendiculares (L), a boca (B), o calado (T) e o pontal (D), levamos em conta os dados apresentados da Tabela 2 com os rácios tabelados de forma a que o navio que projetamos fosse proporcional e coerente com os graneleiros existentes e, tendo em conta que $\rho = \frac{\Delta}{V}$ e que $\rho_{salt\ water} = 1.025$ [t/m3], e relacionando-as com as fórmulas de K_D e C_B , temos que:

$$K_D = \frac{DWT}{\Delta} \iff \Delta = \frac{DWT}{K_D} = \frac{42500}{0,794864} \iff \Delta = 53467,954$$

$$\begin{cases} \rho = \frac{\Delta}{\nabla} \leftrightarrow \Delta = \rho \times \nabla \ (1) \\ C_B = \frac{\nabla}{LBT} \leftrightarrow \nabla = C_B \times LBT \ (2) \\ \Delta = \rho \times C_B \times LBT \ (3) \end{cases}$$

Da equação (3), podemos calcular LBT:

LBT =
$$\frac{\Delta}{\rho \times C_B \times 1.005} = \frac{53467,954}{1,025 \times 0,80891 \times 1,005} \leftrightarrow LBT = 64165,067$$

Resolvendo um sistema com o valor de *LBT* obtido acima e com os rácios dimensionais $\frac{L}{B}$ e $\frac{B}{T}$ obtém-se:

$$\begin{cases} LBT = \frac{\Delta}{\rho \times C_B \times 1.005} \\ \frac{L}{B} = 6.25 \\ \frac{B}{T} = 2.65 \end{cases} \Leftrightarrow \begin{cases} LBT = 64165,067 \\ L = 6.25 B \\ T = \frac{B}{2.65} \end{cases}$$

$$\Leftrightarrow \begin{cases} L = 187,976 \ [m] \\ B = 30,076 \ [m] \\ T = 11,349 \ [m] \end{cases}$$

Por fim, para se obter o pontal do nosso navio (D) utiliza-se o rácio dimensional $\frac{L}{D}$:

$$\frac{L}{D} = 11.75 \Leftrightarrow D = \frac{L}{11.75} \Leftrightarrow \mathbf{D} = \mathbf{15}, \mathbf{998}[\mathbf{m}]$$

Estimativa dos pesos

Estimativas do peso da Estrutura de Aço (W_S):

Foram usados 3 métodos diferentes de obter uma estimativa do peso da estrutura, tendo sido feita a média aritmética desses mesmos 3 resultados de modo a obter uma estimativa mais próxima da realidade:

1. Método de Murray

$$W_{S1} = 340 \times \left(\frac{LBD}{100000}\right)^{0.9} \times \left(0.675 + \frac{C_B}{2}\right) \times \left[0.00585 \times \left(\frac{L}{D} - 8.3\right)^{1.8} + 0.939\right]$$

Onde L=616,7192 [fts], temos:

$$W_{SMurray} = 3561.34 [t]$$

2. Método de Benford

$$W_{S2} = C \left(\frac{LBD}{2832}\right)^{0.9} c_1 c_2 c_3$$

Onde,

C = 340

$$c_1 = 0.675 + \frac{c_B}{2} = 1.079459$$

 $c_2 = 1 + 0.36 \frac{L_S}{L} = 1.04428$, L_S= 0.123L (comprimento da superestrutura)

$$c_3 = 0.006(\frac{L}{D} - 8.3)^{1.8} + 0.939 = 0.994747$$

$$W_{SBenford} = 8611.522 [t]$$

3. DNV formula by Kupras for bulk carriers

$$W_{S3} = 3.28 \times cZ^{0.69}L\left(1.104 - 0.016\frac{L}{B}\right)\left(0.53 + 0.04\frac{L}{D}\right)\left(1.98 - 0.04\frac{L}{D}\right)\left(1.146 - 0.0163\frac{L}{D}\right)$$

Onde,
$$c = 1.0 + \frac{0.73}{\sqrt{L}} = 1.053244$$

$$Z = 2.1FL^2B\left(\frac{C_B + 0.7}{10^6}\right) = 17.5612$$

$$F = 3.0408175 + 0.014826515L - 0.0000173469L^2 = 5.214894$$

$$W_{SKupras} = 5686.29[t]$$

Peso da Estrutura de Aço:

$$W_S = \frac{W_{SMurray} + W_{SBenford} + W_{SKupras}}{3} = 5953.049[t]$$

Estimativas do Peso da Maquinaria (W_{Mt}):

O W_{Mt} corresponde à soma do peso da maquinaria principal (W_M) com a maquinaria auxiliar (W_m). O peso da maquinaria principal corresponde ao motor propulsor e o peso da maquinaria auxiliar corresponde ao peso do gerador. Para esta cálculo foi apenas utilizado um método, não fazendo qualquer média aritmética, foi escolhido o método de *Watson and Gilfillan*.

Maquinaria principal (Método de Watson e Gilfillan)

$$W_M = 12 \left(\frac{MCR}{RPM}\right)^{0.84} = 386.4883 [t]$$

MCR=7800 [kW]

RPM=125 [rpm]

Maquinaria principal (Método de Barras)

$$W_M = \frac{MGP}{18} + 300 = 383.3333[t]$$

Média aritmética das estimativas

$$W_M = \frac{W_{M1} + W_{M2}}{2} = \frac{386.4883 + 383.3333}{2} = 384.9108 [t]$$

Maquinaria Auxiliar

Para Bulk Carriers, a fórmula utilizada no cálculo do peso da maquinaria auxiliar é:

$$W_{mq} = 0.56(BHP)^{0.7} \iff W_{mq} = 188.6104 [t]$$

Com,

$$BHP_{gerador} = \frac{1500}{0.5} = 3000 \ kW = 4078.86 \ cv$$

Peso da Maquinaria Total W_{Mt} :

$$W_{Mt} = W_M + W_{ma} = 384.9108 + 188.6104 \Leftrightarrow W_{Mt} = 573,5211 [t]$$

Estimativas do peso do Equipamento (W_0):

A estimativa do peso do equipamento foi calculada utilizando os diversos métodos destinados a "Bulk Carriers", sendo essa estimativa a média aritmética desses resultados.

1. Método de Watson-Gilfillan

Este método estima que:

$$W_{Owg} = 0.45 \times LB = 2544.105$$
 [t]

2. Método de Kupras

Este método estima que:

$$W_{OKupras} = 277 + 0.115LB = 927.1601[t]$$

3. Método de Katsoulis

Este método estima que:

$$W_{OKatsoulis} = kL^{1.3}B^{0.8}D^{0.3} = 1423.447 [t]$$

Com k = 0.045, para Bulk Carriers.

Peso do Equipamento (W_0):

$$W_{0} = \frac{W_{0wg} + W_{0Kupras} + W_{0Katsoulis}}{3} = \frac{2544.105 + 921.1601 + 1423.447}{3} = 1631.571 [t]$$

Cálculo do Peso do Navio Leve (W_{LS}):

O peso do Navio Leve pode ser calculado por:

$$W_{LS} = W_S + W_{Mt} + W_O + W_{MAR} = 1.03(W_S + W_{Mt} + W_O)$$
 $W_{MAR} = 3\%(W_S + W_{Mt} + W_O)$
 $W_{MAR} = 0.03 \times (5953.049 + 573.5211 + 1631.571) = 244.744$
 $W_{LS} = 5953.049 + 573.5211 + 1631.571 + 244.744 =$
 $W_{LS} = 8402.89[t]$

Estimativa do Peso dos Consumíveis(W_c):

Peso do Combustível

É necessário calcular o peso do combustível necessário para a o funcionamento do motor, W_{HFO} , e é também necessário calcular o peso do combustível necessário para o funcionamento do gerador, W_{MDO} , sendo aplicada a mesma fórmula para o cálculo de ambos os pesos. Considerando que os motores diesel modernos têm um consumo de 210 g/kWh é utilizada a fórmula:

$$W_F = 0.000210 \left[\frac{t}{kW.h} \right] P_B[kW] \frac{R[nm]}{V[knot]} 1.05$$

P_B – Potência de veio

R – Autonomia do navio = 18250[nm]

V – Velocidade do navio = 14 [knot]

1. Para o Motor (HFO), sabendo que trabalha a 85% do MCR:

$$P_{Bmotor} = 7800 \times 0.85 = 6630 \text{ kW}$$

$$W_{HFO} = 1905.71$$
 [t]

2. Para o Gerador (MDO), sabendo que trabalha a 50% da potência nominal:

$$P_{Baerador} = 1500 \times 0.5 = 750 \text{ kW}$$

$$W_{MDO} = 215.578[t]$$

O peso total do combustível será:

$$W_F = W_{HFO} + W_{MDO} \Leftrightarrow W_F = 2121.29[t]$$

3. Consumo diário de combustível

Tanto o motor como o gerador consomem 210 g/kW.h, logo:

$$W_{F \ dilphario} = 210 \times 10^{-6} \times P_B \times 24h$$
 $W_{HFO \ dilphario} = 210 \times 10^{-6} \times 6630 \times 24h = 33.4152 \ [t/dia]$ $W_{MDO \ dilphario} = 210 \times 10^{-6} \times 750 \times 24h = 3.78 \ [t/dia]$

Estimativa do Peso do Óleo Lubrificante do Motor(W_{LO}):

Para motores de baixa velocidade o peso do óleo pode ser estimado por:

$$W_{LO} = 0.0010 \times \frac{Pounds}{Horsepower} \times Horas$$

Onde:

$$1 lb = 0.45 \times 10^{-3} [t]$$

$$1 hp = 0.7457 kW$$

$$W_{LO} = 0.0010 \times \frac{0.45 \times 10^{-3}}{0.7457} \times 7800 \times \frac{18250}{14} \iff W_{LO} = 6.13589 [t]$$

Estimativa do Peso da Água Doce(W_{FW}):

Conforme a Tabela 1, cada tripulante utiliza cerca de 0.25 toneladas de água potável por dia. Sabendo o número de dias que o navio consegue navegar sem reabastecer, conseguimos descobrir o peso de água fresca que é necessário ter a bordo, tendo em conta que o número de tripulantes do navio é 25.

O número de dias (N) que o navio consegue navegar sem reabastecer calcula-se através da seguinte fórmula:

$$N = \frac{R}{V \times 24} = \frac{18250}{14 \times 24} \Leftrightarrow N = 54.3155 \Leftrightarrow N \cong 54 \ dias$$

Com,

R – Alcance em milhas

V – Velocidade em nós

$$W_{FW} = 0.25 \times Crew \times days$$

$$W_{FW} = 0.25 \times 25 \times 54 \iff W_{FW} = 339.472 [t]$$

Estimativa do Peso da Tripulação e da Bagagem(W_{Crew}):

Sendo que o peso de cada tripulante com a sua bagagem é em média 0.17 toneladas por tripulante, temos assim:

$$W_{Crew} = 0.17 \times Crew$$

$$W_{Crew} = 0.17 \times 25 \Leftrightarrow W_{Crew} = 4.25 [t]$$

Estimativa do peso das Provisões (W_P):

São necessárias 0.01 toneladas de provisões por dia para cada tripulante, assim temos:

$$W_P = 0.01 \times Crew \times day$$

 $W_P = 0.01 \times 25 \times 54 \Leftrightarrow W_P = 13.5 [t]$

Estimativa do Peso dos Consumíveis(Wc):

O peso dos consumíveis é a soma de todos os pesos calculados acima:

$$W_C = W_F + W_{LO} + W_{FW} + W_P + W_{Crew} \iff W_C = 2484.6 [t]$$

Peso da Carga Útil (DWT_c):

Para calcular o peso de carga útil utilizou-se a seguinte fórmula

$$DWT_C = DWT - W_C = 42500 - 2484.65 = 40015, 4 [ton]$$

Deslocamento Máximo(Δ_{max}):

$$\Delta_{max} = W_{LS} + W_C + DWT_C = W_{LS} + DWT = 8402.89 + 42500 = 50902.9$$

Processos Iterativos e Resultados Finais:

Para tornar os resultados mais próximos da realidade, foram feitos no Excel 3 processos de iterações para os cálculos realizados acima corrigindo-se sempre os valores de K_D , C_B e Δ :

Grandezas	Valores Iniciais	Iteração 1	Iteração 2	Iteração 3
Δ	53468	50902.9	50526.7	50471.52
K_D	0.79487	0.83492	0.84114	0.842059
C_B	0.80892	0.83295	0.83668	0.837235
L	187.976	183.125	182.4004	182.2937
В	30.0761	29.2999	29.18407	29.16699
T	11.3495	11.0566	11.01286	11.00641
D	15.9979	15.5851	15.52344	15.51436
$W_{\mathcal{S}}$	5953.05	5670.88	5629.543	5623.471
W_{O}	1631.57	1548.47	1536.272	1534.48
W_{M}	573.521	573.521	573.521	573.521
W_{margin}	244.744	233.786	232.1801	231.9442
W_{LS}	8402.886	8026.65	7971.517	7963.417

Tabela com valores iniciais e após Interação

Em que foram utilizadas as seguintes fórmulas:

$$K_{D=\frac{DWT}{\Delta}}$$

$$\Delta = W_{LS} + DWT$$

$$C_{B} = \frac{(K_{D} - 0.78) \times (0.86 - 0.8)}{(0.88 - 0.78)} + 0.8$$

Com isso,os valores finais por nós utilizados na modelação do casco foram os valores finais da terceira iteração da Tabela.

Estimativa da Posição Longitudinal do Centro de Carena (LCB)

Para se determinar a posição Longitudinal do Centro de Carena (*LCB*), podemos utilizar a fórmula de *BMT standard line*, dada em termos percentuais do comprimento entre perpendiculares (a vante de meio-navio) por:

$$LCB = 20 \times (C_B - 0.675)$$

Assim, obtemos:

$$LCB = 20 \times (0.837 - 0.675) = 3.24\% L$$

Dimensão dos tanques

Tanques de carga

Foram modelados 7 tanques de carga e o volume total suportado por estes é:

$$V_{CH} = 3580.32654 + 3585.7878 + 3565.03838 + 3586.12598 + 3513.50534 + 3078.01226 + 1997.2622 = 22906.0585$$

Centros de Gravidade dos Tanques

Tanques	CGx	CGy	CGz
Cargo Hold 1	53,6634371	6,00E-16	8,16328208
Cargo Hold 2	70,970689	4,00E-15	8,16337697
Cargo Hold 3	88,2462404	2,00E-15	8,16303578
Cargo Hold 4	105,527101	1,28E-06	8,16337792
Cargo Hold 5	122,72798	2,00E-08	8,19373211
Cargo Hold 6	139,694597	-7,10E-15	8,28052855
Cargo Hold 7	156,35623	4,00E-15	8,37019693

Tabela 3- Centros de Gravidade dos Tanques de Carga

Tanques Laterais

Foram modelados 7 tanques Laterais.

$$V = 894,134226 + 897,388113 + 894,532182 + 873,458861 + 852,38524 + 802,36278 + 656,3261 = 5870,587502$$

Centros de Gravidade dos Tanques Laterais

Tanques	CGx	CGy	CGz
1	53,6779086	-7,65E-08	4,71414035
2	70,9841458	-4,83E-08	4,71388109
3	88,2738586	4,36E-07	4,71245494
4	105,32247	-9,34E-06	4,8357703
5	122,74247	1,17E-06	4,9457801
6	139,67039	1,00E-06	5,275298
7	156,9618	2,00E-12	6,61633

Tabela 4- Centros de Gravidade dos Tanques Laterais

Arqueação Bruta

A arqueação bruta consiste no cálculo do volume de todos os espaços fechados de um navio e é obtida através da seguinte expressão:

Arqueação Bruta
$$(GT) = K_1V$$

Onde,

$$K_1 = 0.2 + 0.02 \log 10 \text{ V} \iff K_1 = 0,298$$

 $V = volume total de todos os espaços fechados do navio em metros cúbicos = 79247.4469 <math>m^3$

$$GT = 23614$$

Arqueação Útil

A arqueação útil é o cálculo do volume dos porões de carga e dos espaços dedicados aos passageiros multiplicando estes por um coeficiente.

Arqueação útil (NT) =
$$K_2V_C \left(\frac{4T}{3D}\right)^2 + K_3 \left(N_1 + \frac{N_2}{10}\right)$$

Onde,

 V_C = volume total dos tanques = 28776,646 m³;

 $K_2 = 0.2 + 0.02 \log_{10} V_C = 0.298;$

T = imersão a meio navio = 11,00641;

D = pontal a meio navio = 15,51436;

 N_1 = número de passageiros em cabines com menos de 8 camas;

 N_2 = número de restantes passageiros;

$$K_3 = \frac{GT + 10000}{10000} = 3,36$$

Uma vez que o navio não tem passageiros N₁ e N₂ são variáveis nulas.

$$NT = 22177,47$$

Conclusão

O projeto foi muito enriquecedor, proporcionando uma visão prática e detalhada do trabalho de um engenheiro naval. Além de ampliar nosso conhecimento técnico, reforçou nossa capacidade de adaptação e resolução de problemas complexos, essenciais para a nossa formação.

A tutoria em Rhino e a modelação inicial do casco foram igualmente úteis. As bases em sistemas CAD, obtidas em disciplinas como Desenho de Construção Naval e Desenho e Modelação Geométrica, permitiram uma rápida adaptação ao software utilizado.

Apesar de alguns desafios, como a pesquisa e compreensão dos métodos para calcular os pesos das componentes do navio, concluímos o objetivo do trabalho.

Bibliografia

- https://fenix.tecnico.ulisboa.pt/downloadFile/1970943312401681/Preliminary%20Weight%20Estimate.pdf
- https://fenix.tecnico.ulisboa.pt/downloadFile/1970943312401679/RhinoTutorial-0nHullDistorsion.pdf
- NA_CourseWork1 (1).pdf