OB - naming - Serial position analysis (v5)

```
# do this in calling R script
# library(qqplot2)
# library(fmsb) # for TestModels
# library(lme4)
# library(kableExtra)
# library(MASS) # for dropterm
# library(tidyverse)
# library(dominanceanalysis)
# library(cowplot) # for multiple plots in one figure
# library(formatters) # to wrap strings for plot titles
# library(pals) # for continous color palettes
# load needed functions
# source(pasteO(RootDir, "/src/function_library/sp_functions.R"))
# do this in the calling R script
# for testing - set by calling script normally
# ppt_parms <- read.csv(config$patient_param_file)</pre>
# CurPat <- ppt_parms$patient</pre>
# CurTask <- ppt_parms$task</pre>
# MinLength <- ppt_parms$min_length
# MaxLength <- ppt_parms$max_length</pre>
# RemoveFinalPosition <- ppt_parms $ remove_final_position
# create patient directory if it doesn't already exist
if(!dir.exists(pasteO(RootDir,"/output/",CurPat))){
  dir.create(pasteO(RootDir, "/output/", CurPat), showWarnings = TRUE)
TablesDir <- pasteO(RootDir,"/output/",CurPat,"/tables/")</pre>
if(!dir.exists(TablesDir)){
  dir.create(TablesDir,showWarnings = TRUE)
FigDir <- pasteO(RootDir,"/output/",CurPat,"/fig/")</pre>
if(!dir.exists(FigDir)){
  dir.create(FigDir,showWarnings = TRUE)
ReportsDir <- pasteO(RootDir, "/output/", CurPat, "/reports/")</pre>
if(!dir.exists(ReportsDir)){
  dir.create(ReportsDir,showWarnings = TRUE)
}
results_report_DF <- data.frame(Description=character(), ParameterValue=double())
ModelDatFilename<-paste0(RootDir,"/data/",CurPat,"/",CurPat,"_",CurTask,"_posdat.csv")
if(!file.exists(ModelDatFilename)){
  print("**ERROR** Input data file not found")
  print(sprintf("\tfile: ",ModelDatFilename))
 print(sprintf("\troot dir: ",RootDir))
```

```
PosDat<-read.csv(ModelDatFilename)
# may already be done in datafile
# if(RemoveFinalPosition){
  PosDat <- PosDat[PosDat$pos < PosDat$stimlen,] # remove final position
# }
PosDat <- PosDat[PosDat$stimlen >= MinLength,] # include only lengths with sufficient N
PosDat <- PosDat[PosDat$stimlen <= MaxLength,]</pre>
# include only correct and nonword errors (not no response, word or w+nw errors)
PosDat <- PosDat[(PosDat\err_type == "correct") | (PosDat\err_type == "nonword"), ]
PosDat <- PosDat[(PosDat$pos) != (PosDat$stimlen), ]</pre>
# make sure final positions have been removed
PosDat$stim_number <- NumberStimuli(PosDat)</pre>
PosDat$raw_log_freq <- PosDat$log_freq</pre>
PosDat$log_freq <- PosDat$log_freq - mean(PosDat$log_freq) # centre frequency
PosDat$CumErr <- CalcCumErrFromPreserved(PosDat)</pre>
# plot distribution of complex onsets and codas
# across serial position in the stimuli -- do complexities concentrate
# on one part of the serial position curve?
# syll_component = 1 is coda
# syll_component = S is satellite
# get counts of syllable components in different serial positions
syll_comp_dist_N <- PosDat %>% mutate(pos_factor = as.factor(pos), syll_component_factor = as.factor(sy
syll_comp_dist_perc <- syll_comp_dist_N %>% ungroup() %>%
 mutate(across(0:S, ~ . / total))
kable(syll_comp_dist_N)
```

1 176 12 19 NA NA 207 2 20 NA 145 11 31 207 3 80 NA 50 75 2 207 4 106 NA 49 19 9 183 5 56 NA 47 12 9 124 6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16							
2 20 NA 145 11 31 207 3 80 NA 50 75 2 207 4 106 NA 49 19 9 183 5 56 NA 47 12 9 124 6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	pos_factor	О	Р	V	1	S	total
3 80 NA 50 75 2 207 4 106 NA 49 19 9 183 5 56 NA 47 12 9 124 6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	1	176	12	19	NA	NA	207
4 106 NA 49 19 9 183 5 56 NA 47 12 9 124 6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	2	20	NA	145	11	31	207
5 56 NA 47 12 9 124 6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	3	80	NA	50	75	2	207
6 41 NA 15 17 5 78 7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	4	106	NA	49	19	9	183
7 29 NA 12 3 1 45 8 11 NA 2 3 NA 16	5	56	NA	47	12	9	124
8 11 NA 2 3 NA 16	6	41	NA	15	17	5	78
	7	29	NA	12	3	1	45
9 5 NA 1 NA 2 8	8	11	NA	2	3	NA	16
	9	5	NA	1	NA	2	8

kable(syll comp dist perc)

pos_factor	O	Р	V	1	S	total
1	0.8502415	0.057971	0.0917874	NA	NA	207
2	0.0966184	NA	0.7004831	0.0531401	0.1497585	207
3	0.3864734	NA	0.2415459	0.3623188	0.0096618	207
4	0.5792350	NA	0.2677596	0.1038251	0.0491803	183
5	0.4516129	NA	0.3790323	0.0967742	0.0725806	124
6	0.5256410	NA	0.1923077	0.2179487	0.0641026	78

pos_factor	O	Р	V	1	S	total
7	0.6444444	NA	0.2666667	0.0666667	0.0222222	45
8	0.6875000	NA	0.1250000	0.1875000	NA	16
9	0.6250000	NA	0.1250000	NA	0.2500000	8

```
# get percentages only from summary table
syll_comp_perc <- syll_comp_dist_perc[,2:(ncol(syll_comp_dist_perc)-1)]</pre>
syll_comp_perc$pos <- as.integer(as.character(syll_comp_dist_perc$pos_factor))</pre>
syll_comp_perc <- syll_comp_perc %>% rename("Coda" ="1","Satellite"="S")
# pivot to long format for plotting
syll_comp_plot_data <- syll_comp_perc %>% pivot_longer(cols=seq(1:(ncol(syll_comp_perc)-1)),
            names_to="syll_component", values_to="percent") %>% filter(syll_component %in% c("Coda", "Sa
# plot satellite and coda occurances across position
syll_comp_plot <- ggplot(syll_comp_plot_data,</pre>
                         aes(x=pos,y=percent,group=syll_component,
                             color=syll_component,
                             linetype = syll_component,
                             shape = syll_component)) +
  geom_line() + geom_point() + scale_color_manual(name="Syllable component", values = palette_values) +
syll_comp_plot <- syll_comp_plot + scale_y_continuous(name="Percent of segment types") + scale_linetype
  scale_shape_discrete(name="Syllable component")
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_pos_of_syll_complexities_in_stimuli.png"),plot=syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 4 rows containing missing values or values outside the scale range
## (`geom_point()`).
syll_comp_plot
## Warning: Removed 3 rows containing missing values or values outside the scale range (`geom_line()`).
```

Removed 4 rows containing missing values or values outside the scale range (`geom_point()`).

```
0.3 -
Percent of segment types
                                                                          Syllable component
   0.2 -
                                                                               Coda
                                                                               Satellite
  0.1 -
  0.0 -
                2
                                      5
                                                            8
                                                                   9
                               Word position
# len/pos table
pos_len_summary <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
min_preserved_raw <- min(as.numeric(unlist(pos_len_summary$preserved)))</pre>
max_preserved_raw <- max(as.numeric(unlist(pos_len_summary$preserved)))</pre>
preserved_range <- (max_preserved_raw - min_preserved_raw)</pre>
min_preserved <- min_preserved_raw - (0.1 * preserved_range)</pre>
max_preserved <- max_preserved_raw + (0.1 * preserved_range)</pre>
pos_len_table <- pos_len_summary %>% pivot_wider(names_from = pos, values_from = preserved)
write.csv(pos_len_table,paste0(TablesDir,CurPat,"_",CurTask,"_preserved_percentages_by_len_position.csv
pos_len_table
## # A tibble: 7 x 10
## # Groups:
                stimlen [7]
##
                `1`
                       `2`
                                             `5`
                                                    `6`
                                                            `7`
                                                                    .8,
                                                                            `9`
##
       <int> <dbl> <dbl> <dbl>
                                   <dbl>
                                          <dbl>
                                                  <dbl>
                                                          <dbl>
                                                                 <dbl>
                                                                         <dbl>
            4 0.958 0.875 0.792 NA
                                         NA
                                                 NA
                                                        NA
                                                                NA
                                                                        NA
           5 0.831 0.771 0.729
                                  0.703 NA
                                                 NA
## 2
                                                        NA
                                                                NA
                                                                        NA
           6 0.880 0.743 0.848
                                  0.710
                                          0.630 NA
## 3
## 4
           7 0.879 0.864 0.742 0.682
                                          0.682
                                                  0.561 NA
                                                                        NA
```

0.615

0.656

0.125

0.563

0.438

0.238

pos_len_N <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved), N=n()) %>% dply.

0.546 NA

0.625 NA

0.262

0.438

0.475

0.667

0.425

0.781 0.688 0.406

0.9

8 0.793 0.856 0.730

10 0.875 0.65

6

7

len/pos table

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
pos_len_N_table <- pos_len_N %>% pivot_wider(names_from = pos, values_from = N)
write.csv(pos_len_N_table,paste0(TablesDir,CurPat,"_",CurTask,"_N_by_len_position.csv"))
pos_len_N_table
## # A tibble: 7 x 10
## # Groups:
              stimlen [7]
              `1`
                    `2`
                          `3`
                                 `4`
                                      `5`
                                            `6`
                                                  `7`
                                                        .8.
                                                               -9-
    stimlen
##
       ## 1
          4
               24
                     24
                           24
                                 NA
                                       NA
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 2
          5
               59
                     59
                           59
                                 59
                                       NΑ
                                             NΔ
                                                   NΑ
                                                         NΑ
                                                               NΑ
## 3
          6
               46
                     46
                           46
                                 46
                                       46
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 4
          7
               33
                     33
                           33
                                       33
                                                               NA
                                 33
                                             33
                                                   NA
                                                         NA
                     29
                                        29
## 5
          8
               29
                           29
                                 29
                                             29
                                                   29
                                                         NA
                                                               NA
## 6
          9
                8
                      8
                            8
                                  8
                                        8
                                              8
                                                    8
                                                          8
                                                               NA
## 7
         10
                8
                      8
                            8
                                  8
                                              8
                                                    8
                                                          8
                                                                8
obs linetypes <- c("solid", "solid", "solid", "solid",
                      "solid", "solid", "solid", "solid")
pred_linetypes <- "dashed"</pre>
pos_len_summary$stimlen<-factor(pos_len_summary$stimlen)</pre>
pos_len_summary$pos<-factor(pos_len_summary$pos)</pre>
# len_pos_plot <- qqplot(pos_len_summary,aes(x=pos,y=preserved,qroup=stimlen,shape=stimlen,color=stimle
len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                          pasteO(CurPat),
                                          NULL,
                                           c(min_preserved,max_preserved),
                                          palette_values,
                                          shape values,
                                          obs_linetypes,
                                          pred_linetypes)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos.png"),
      plot=len_pos_plot,device="png",unit="cm",width=15,height=11)
len_pos_plot
```


Length and position

```
# length and position
LPModelEquations<-c("preserved ~ 1",</pre>
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
LPRes<-TestModels(LPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 8
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
       (Intercept)
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
##
                             stimlen
          2.274198
                            0.041451
                                              0.092748
                                                              -0.497365
                                                                                -0.004818
##
       stimlen:pos
##
         -0.029405
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1085 AIC: 1231
## log likelihood: -542.6306
## Nagelkerke R2: 0.117655
## % pres/err predicted correctly: -372.8264
## % of predictable range [ (model-null)/(1-null) ]: 0.09440452
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
                               -0.28918
      2.60573
                  -0.09343
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1090 AIC: 1232
## log likelihood: -545.2282
## Nagelkerke R2: 0.1109301
## % pres/err predicted correctly: -374.9085
## % of predictable range [ (model-null)/(1-null) ]: 0.08936078
## **********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                                                 pos
                   stimlen
      2.93468
                                0.01929
##
                  -0.10679
                                            -0.44259
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1089 AIC: 1232
## log likelihood: -544.6354
## Nagelkerke R2: 0.1124676
## % pres/err predicted correctly: -373.9211
## % of predictable range [ (model-null)/(1-null) ]: 0.09175274
## **********
## model index: 5
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
      2.20778
                  -0.03908
                                           -0.01593
##
                               -0.16736
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1090 AIC: 1233
## log likelihood: -545.0067
## Nagelkerke R2: 0.1115047
## % pres/err predicted correctly: -374.9774
## % of predictable range [ (model-null)/(1-null) ]: 0.08919387
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
##
       2.1069
                   -0.3264
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1236
## log likelihood: -547.0127
## Nagelkerke R2: 0.1062913
## % pres/err predicted correctly: -376.9225
## % of predictable range [ (model-null)/(1-null) ]: 0.08448177
## *********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      2.24537
                  0.01036
                               -0.41171
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1238
## log likelihood: -546.8309
## Nagelkerke R2: 0.1067644
## % pres/err predicted correctly: -376.5375
## % of predictable range [ (model-null)/(1-null) ]: 0.08541439
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                    stimlen
        2.5791
##
                    -0.2402
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                        1173
## Residual Deviance: 1140 AIC: 1288
## log likelihood: -570.1462
## Nagelkerke R2: 0.04474136
## % pres/err predicted correctly: -395.4661
## % of predictable range [ (model-null)/(1-null) ]: 0.03955988
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
        0.9487
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1074 Residual
## Null Deviance:
                        1173
## Residual Deviance: 1173 AIC: 1330
## log likelihood: -586.3585
## Nagelkerke R2: -3.343613e-16
## % pres/err predicted correctly: -411.7963
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestLPModel<-LPRes$ModelResult[[1]]</pre>
BestLPModelFormula<-LPRes$Model[[1]]</pre>
LPAICSummary<-data.frame(Model=LPRes$Model,</pre>
                       AIC=LPRes$AIC,
                       row.names = LPRes$Model)
LPAICSummary $DeltaAIC <- LPAICSummary $AIC - LPAICSummary $AIC [1]
LPAICSummary $AICexp <-exp(-0.5*LPAICSummary $DeltaAIC)
LPAICSummary $AICwt <-LPAICSummary $AICexp/sum(LPAICSummary $AICexp)
LPAICSummary$NagR2<-LPRes$NagR2
LPAICSummary <- merge(LPAICSummary, LPRes Coefficient Values, by='row.names', sort=FALSE)
LPAICSummary <- subset(LPAICSummary, select = -c(Row.names))</pre>
write.csv(LPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_len_pos_model_summary.csv"),row.names = FA
kable(LPAICSummary)
Model
                        DeltaAl&ICexpAlCwt NagR2 (Interceps)imlen
                  AIC
                                                                       stimlen:plopos^2\stimlen:I(pos^2)
                                                                  pos
preserved \sim
                  - 0.0927481
                                                                                     0.004818
stimlen * (I(pos^2)
                                                                 0.497365000294053
+ pos
                  1231.80    0.514472    677318     \mathbf{5} 526789    \mathbf{8} 711093    \mathbf{2} 16057281
preserved ~
                                                                         NA
                                                                                NA
                                                                                         NΑ
stimlen + pos
                                                          0.093428062891773
```

```
stimlen + I(pos^2)
                                                          0.10678884425920
+ pos
                  1233.158.87298043920003135823311150272077806
                                                                                         NA
preserved ~
                                                                                NA
stimlen * pos
                                                          0.039077416735780159321
                  1235.894.60877350998200034586310629231068695 NA
                                                                                NΑ
                                                                                         NA
preserved \sim pos
                                                                         NA
                                                                0.3264059
                  1237.593.3079183.0426828014789010676242453679 NA
                                                                              0.0103572
preserved \sim
                                                                         NA
                                                                                         NA
I(pos^2) + pos
                                                                0.4117057
preserved ~
                  1288.4437.157770.800000000000004474245790741
                                                                  NA
                                                                         NA
                                                                                NA
                                                                                         NA
stimlen
                                                          0.2401896
preserved \sim 1
                  NA
                                                                         NA
                                                                                NA
                                                                                         NA
print(BestLPModelFormula)
## [1] "preserved ~ stimlen * (I(pos^2) + pos)"
print(BestLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                               stimlen
                                                I(pos^2)
                                                                             stimlen:I(pos^2)
##
           2.274198
                              0.041451
                                                0.092748
                                                                  -0.497365
                                                                                    -0.004818
##
        stimlen:pos
##
          -0.029405
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                        1173
## Residual Deviance: 1085 AIC: 1231
PosDat$LPFitted<-fitted(BestLPModel)</pre>
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat, PosDat$patient[1],
                           NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
fitted_pos_len_summary <- PosDat ">" group_by(stimlen,pos) ">" summarise(fitted = mean(LPFitted))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
fitted_pos_len_table <- fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_from = fitted)
fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
               stimlen [7]
               `1`
                   `2`
                            `3`
                                   `4`
                                          `5`
                                                 `6`
                                                        `7`
                                                                `8`
##
     stimlen
##
       <int> <dbl> <dbl> <dbl> <dbl> <dbl>
                                        <dbl>
                                               <dbl>
                                                      <dbl>
                                                             <dbl>
                                                                     <dbl>
## 1
           4 0.870 0.818 0.778 NA
                                       NA
                                              NA
                                                     NA
                                                            NA
                                                                    NΔ
           5 0.871 0.813 0.762 0.732 NA
                                                                    NA
                                                     NΑ
                                                            NΑ
```

AIC DeltaAI@ICexpAICwt NagR2 (Intercept) imlen pos stimlen:pos^2; timlen:I(pos^2)

NA

0.0192874

1232.380.0949037.5784208200415611246269346760

Model

3

preserved ~

NA

NΑ

NΑ

6 0.871 0.807 0.746 0.700 0.679 NA

```
## 5
           8 0.873 0.795 0.710 0.632 0.574
                                                0.540 0.533 NA
                                                                     NΑ
## 6
           9 0.874 0.789 0.691 0.596
                                        0.518
                                                0.463 0.434 0.428 NA
          10 0.875 0.783 0.672 0.559
                                        0.462 0.388 0.339
                                                               0.312 0.305
## 7
fitted_pos_len_summary$stimlen<-factor(fitted_pos_len_summary$stimlen)</pre>
fitted_pos_len_summary$pos<-factor(fitted_pos_len_summary$pos)</pre>
\# fitted_len_pos_plot <- ggplot(pos_len_summary, aes(x=pos, y=preserved, group=stimlen, shape=stimlen, color
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                            paste0(PosDat$patient[1]),
                                            "LPFitted",
                                            NULL.
                                            palette_values,
                                            shape_values,
                                            obs_linetypes,
                                            pred_linetypes = c("longdash")
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos_wfit.png"),plot=fitted_len_po
```

0.615 NA

NA

4

7 0.872 0.801 0.728 0.667 0.628

length and position without fragments to see if this changes position 2 influence

```
# first number responses, then count resp with fragments - below we will eliminate fragments
# and re-run models
# number responses
resp num<-0
prev_pos<-9999 # big number to initialize (so first position is smaller)
resp_num_array <- integer(length = nrow(PosDat))</pre>
for(i in seq(1,nrow(PosDat))){
  if(PosDat$pos[i] <= prev_pos){ # equal for resp length 1</pre>
    resp_num <- resp_num + 1</pre>
 resp_num_array[i] <-resp_num</pre>
  prev_pos <- PosDat$pos[i]</pre>
PosDat$resp_num <- resp_num_array
# count responses with fragments
resp_with_frag <- PosDat %>% group_by(resp_num) %>% summarise(frag = as.logical(sum(fragment)))
num_frag <- resp_with_frag %>% summarise(frag_sum = sum(frag), N=n())
num_frag
## # A tibble: 1 x 2
    frag sum
##
        <int> <int>
## 1
           41
                207
num_frag$percent_with_frag[1] <- (num_frag$frag_sum[1] / num_frag$N[1])*100
## Warning: Unknown or uninitialised column: `percent with frag`.
print(sprintf("The number of responses with fragments was %d / %d = %.2f percent",
              num_frag$frag_sum[1],num_frag$N[1],num_frag$percent_with_frag[1]))
## [1] "The number of responses with fragments was 41 / 207 = 19.81 percent"
write.csv(num_frag,paste0(TablesDir,CurPat,"_",CurTask,"_percent_fragments.csv"),row.names = FALSE)
# length and position models for data without fragments
NoFragData <- PosDat %>% filter(fragment != 1)
NoFrag_LPRes<-TestModels(LPModelEquations,NoFragData)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 8
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
```

```
##
## Coefficients:
                                                                    pos stimlen:I(pos^2)
##
        (Intercept)
                             stimlen
                                              I(pos^2)
          2.250434
                            0.049590
                                              0.148758
                                                              -0.584864
                                                                                -0.008099
##
##
       stimlen:pos
         -0.025753
##
## Degrees of Freedom: 977 Total (i.e. Null); 972 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 900.7
                               AIC: 1056
## log likelihood: -450.3666
## Nagelkerke R2: 0.0407591
## % pres/err predicted correctly: -302.1336
## % of predictable range [ (model-null)/(1-null) ]: 0.03611337
## *********
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                   stimlen
                                                pos
##
      2.92166
                  -0.10713
                                0.04273
                                            -0.45550
## Degrees of Freedom: 977 Total (i.e. Null); 974 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 905.5
                               AIC: 1057
## log likelihood: -452.7667
## Nagelkerke R2: 0.0329175
## % pres/err predicted correctly: -304.5323
## % of predictable range [ (model-null)/(1-null) ]: 0.02848627
## ***********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
      2.29971
##
                  -0.08351
                               -0.13493
##
## Degrees of Freedom: 977 Total (i.e. Null); 975 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 909.3
                               AIC: 1060
## log likelihood: -454.6677
## Nagelkerke R2: 0.02667912
## % pres/err predicted correctly: -305.6497
## % of predictable range [ (model-null)/(1-null) ]: 0.02493324
## *********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
      2.22355
                               -0.42065
##
                  0.03336
##
## Degrees of Freedom: 977 Total (i.e. Null); 975 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 909.3
                               AIC: 1062
## log likelihood: -454.64
## Nagelkerke R2: 0.0267701
## % pres/err predicted correctly: -306.694
## % of predictable range [ (model-null)/(1-null) ]: 0.02161245
## ***********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
     2.105574
                 -0.056734
                              -0.069528
                                          -0.008679
##
## Degrees of Freedom: 977 Total (i.e. Null); 974 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 909.2
                               AIC: 1062
## log likelihood: -454.6206
## Nagelkerke R2: 0.02683385
## % pres/err predicted correctly: -305.5601
## % of predictable range [ (model-null)/(1-null) ]: 0.02521787
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       1.8405
                   -0.1642
##
## Degrees of Freedom: 977 Total (i.e. Null); 976 Residual
## Null Deviance:
                       925.4
## Residual Deviance: 911.7
                               AIC: 1062
## log likelihood: -455.8572
## Nagelkerke R2: 0.02276344
## % pres/err predicted correctly: -307.1696
## % of predictable range [ (model-null)/(1-null) ]: 0.02010022
## **********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       2.2338
                   -0.1393
```

```
##
## Degrees of Freedom: 977 Total (i.e. Null); 976 Residual
## Null Deviance:
                          925.4
## Residual Deviance: 917.5
                                  AIC: 1070
## log likelihood: -458.7271
## Nagelkerke R2: 0.01327617
## % pres/err predicted correctly: -309.3283
## % of predictable range [ (model-null)/(1-null) ]: 0.01323618
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
##
          1.308
##
## Degrees of Freedom: 977 Total (i.e. Null); 977 Residual
## Null Deviance:
## Residual Deviance: 925.4
                                  AIC: 1082
## log likelihood: -462.7152
## Nagelkerke R2: -3.629335e-16
## % pres/err predicted correctly: -313.4909
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
NoFragBestLPModel<-NoFrag_LPRes$ModelResult[[1]]
NoFragBestLPModelFormula <- NoFrag_LPRes $Model[[1]]
NoFragLPAICSummary <- data.frame (Model=NoFrag_LPRes$Model,
                         AIC=NoFrag_LPRes$AIC,
                         row.names = NoFrag_LPRes$Model)
NoFragLPAICSummary $DeltaAIC <- NoFragLPAICSummary $AIC-NoFragLPAICSummary $AIC [1]
NoFragLPAICSummary$AICexp<-exp(-0.5*NoFragLPAICSummary$DeltaAIC)
NoFragLPAICSummary $AICwt <- NoFragLPAICSummary $AICexp/sum(NoFragLPAICSummary $AICexp)
NoFragLPAICSummary$NagR2<-NoFrag_LPRes$NagR2
NoFragLPAICSummary <- merge(NoFragLPAICSummary, NoFrag_LPRes CoefficientValues, by='row.names', sort=FALS
NoFragLPAICSummary <- subset(NoFragLPAICSummary, select = -c(Row.names))
write.csv(NoFragLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_no_fragments_len_pos_model_summary.c
kable(NoFragLPAICSummary)
Model
                         DeltaAl&ICexpAlCwt NagR2 (Interceps)imlen
                                                                     pos
                                                                          stimlen:plopos^2\stimlen:I(pos^2)
preserved ~
                   1055.64 \underline{9}.00000 \underline{0}.00000 \underline{0}\underline{0}58019 \underline{2}004075 \underline{2}12504340.0495898
                                                                               - 0.1487582
stimlen * (I(pos^2)
                                                                   0.584864 \cdot 0.0257528
                                                                                         0.0080987
+ pos
preserved \sim
                   1057.14 \mathbf{B}.49364 \mathbf{D}.47387 \mathbf{05} 27493 \mathbf{59} 93291 \mathbf{Z} 5921657
                                                                             NA 0.0427267
stimlen + I(pos^2)
                                                            0.10712684555013
+ pos
                   NA
                                                                                   NA
                                                                                             NA
preserved ~
stimlen + pos
                                                            0.08351291349314
```

```
Model
                    AIC
                          DeltaAlaICexpAlCwt NagR2 (Interceps)imlen
                                                                               stimlen:plopos^2\text{stimlen:I(pos^2)}
                                                                         pos
preserved ~
                    1061.674.024690.049176202853060267721223553 NA
                                                                                        0.0333552
I(pos^2) + pos
                                                                        0.4206525
preserved \sim
                    1061.814.164838.045848202660080268328105574
                                                                                         NA
                                                                                                    NA
                                                                0.05673390695281.0086785
stimlen * pos
preserved \sim pos
                    1062.378.728724.034584102006540227634840464 NA
                                                                                  NA
                                                                                         NA
                                                                                                    NA
                                                                        0.1642339
preserved ~
                    1070.3754.725205000630500036820132762233801
                                                                          NA
                                                                                  NA
                                                                                         NA
                                                                                                    NA
stimlen
                                                                0.1393333
                    1082.2326.584138000000070000000000000000308344 NA
preserved \sim 1
                                                                          NA
                                                                                  NA
                                                                                         NA
                                                                                                    NA
```

```
# plot no fragment data
NoFragData$LPFitted<-fitted(NoFragBestLPModel)
nofrag_obs_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData, NoFragData$patient[1],</pre>
                                                      NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
nofrag_fitted_pos_len_summary <- NoFragData %% group_by(stimlen,pos) %% summarise(fitted = mean(LPFit
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
nofrag_fitted_pos_len_table <- nofrag_fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_f
nofrag_fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
                               stimlen [7]
                               `1`
                                            `2`
                                                         `3`
                                                                       `4`
                                                                                      `5`
                                                                                                     `6`
                                                                                                                                  `8`
                                                                                                                                                 `9`
##
          stimlen
               <int> <dbl> <dbl> <dbl> <dbl>
                                                                                 <dbl>
                                                                                                <dbl>
                                                                                                               <dbl>
                                                                                                                              <dbl>
##
                      4 0.867 0.823 0.807 NA
## 1
                                                                               NA
                                                                                              NA
                                                                                                             NA
                                                                                                                            NA
                                                                                                                                          NΑ
                      5 0.869 0.818 0.791 0.798 NA
## 2
                                                                                              NA
                                                                                                             NΑ
                                                                                                                            NA
                                                                                                                                          NΑ
## 3
                                                                                                                                          NΑ
                      6 0.871 0.813 0.774 0.767
                                                                                 0.795 NA
                                                                                                                            NΔ
                      7 0.873 0.808 0.756 0.733
                                                                                 0.745
                                                                                                0.789 NA
                                                                                                                                          NΑ
## 5
                      8 0.874 0.802 0.737 0.696
                                                                                 0.688
                                                                                                0.716 0.773 NA
                                                                                                                                          NA
                      9 0.876 0.797 0.717 0.656 0.625
                                                                                                0.629 0.668 0.735 NA
## 6
                     10 0.878 0.791 0.696 0.613 0.557 0.533 0.542 0.585 0.658
## 7
fitted_pos_len_summary$stimlen<-factor(nofrag_fitted_pos_len_summary$stimlen)
fitted_pos_len_summary$pos<-factor(nofrag_fitted_pos_len_summary$pos)</pre>
\#\ fitted\_len\_pos\_plot <-\ ggplot(pos\_len\_summary, aes(x=pos,y=preserved, group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, shape=stimlen,
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
nofrag_fitted_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData,</pre>
                                                                                        paste0(NoFragData$patient[1]),
                                                                                        "LPFitted",
                                                                                        NULL,
                                                                                        palette_values,
                                                                                        shape_values,
                                                                                        obs_linetypes,
                                                                                        pred_linetypes = c("longdash")
```

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag fitted len pos_plot.
```

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag_fitted_len_pos_plot
OB

back to full data

```
results_report_DF <- AddReportLine(results_report_DF, "min preserved", min_preserved)
results_report_DF <- AddReportLine(results_report_DF, "max preserved", max_preserved)
print(sprintf("Min/max preserved range: %.2f - %.2f", min_preserved, max_preserved))
```

```
## [1] "Min/max preserved range: 0.04 - 1.09"

# find the average difference between lengths and the average difference
# between positions taking the other factor into account

# choose fitted or raw -- we use fitted values because they are smoothed averages
# that take into account the influence of the other variable
table_to_use <- fitted_pos_len_table
# take away column with length information
table_to_use <- table_to_use[,2:ncol(table_to_use)]

# take averages for positions
# don't want downward estimates influenced by return upward of U
# therefore, for downward influence, use only the values before the min
# take the difference between each value (differences between position proportion correct) **NOTE** pro
# average the difference in probabilities</pre>
```

```
# in case min is close to the end or we are not using a min (for non-U-shaped)
# functions, we need to get differences _first_ and then average those (e.g.
# if there is an effect of length and we just average position data,
# later positions) will have a lower average (because of the length effect)
# even if all position functions go upward
table_pos_diffs <- t(diff(t(as.matrix(table_to_use))))</pre>
ncol pos diff matrix <- ncol(table pos diffs)</pre>
first col mean <- mean(as.numeric(unlist(table pos diffs[,1])))</pre>
potential_u_shape <- 0</pre>
if(first_col_mean < 0){ # downward, so potential U-shape</pre>
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs</pre>
 filtered_table_pos_diffs[table_pos_diffs >= 0] <- NA
 potential_u_shape <- 1</pre>
}else{
  # upward - use the positive values
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs
  filtered_table_pos_diffs[table_pos_diffs <= 0] <- NA
}
average_pos_diffs <- apply(filtered_table_pos_diffs,2,mean,na.rm=TRUE)
OA_mean_pos_diff <- mean(average_pos_diffs,na.rm=TRUE)</pre>
table len diffs <- diff(as.matrix(table to use))
average_len_diffs <- apply(table_len_diffs,1,mean,na.rm=TRUE)</pre>
OA_mean_len_diff <- mean(average_len_diffs,na.rm=TRUE)</pre>
CurrentLabel <- "mean change in probability for each additional length: "
print(CurrentLabel)
## [1] "mean change in probability for each additional length: "
print(OA_mean_len_diff)
## [1] -0.02751203
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_len_diff)
CurrentLabel <- "mean change in probability for each additional position (excluding U-shape): "
print(CurrentLabel)
## [1] "mean change in probability for each additional position (excluding U-shape): "
print(OA mean pos diff)
## [1] -0.04626169
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_pos_diff)
if(potential_u_shape){ # downward, so potential U-shape
  # take only positive values from the table
  filtered_pos_upward_u<-table_pos_diffs
  filtered_pos_upward_u[table_pos_diffs <= 0] <- NA</pre>
  average pos u diffs <- apply(filtered pos upward u,
                                2, mean, na.rm=TRUE)
  OA_mean_pos_u_diff <- mean(average_pos_u_diffs,na.rm=TRUE)</pre>
```

```
if(is.nan(OA_mean_pos_u_diff) | (OA_mean_pos_u_diff <= 0)){</pre>
    print("No U-shape in this participant")
    results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
    potential_u_shape <- FALSE</pre>
  }else{
    results report DF <- AddReportLine(results report DF, "U-shape", 1)
    CurrentLabel <- "Average upward change after U minimum"
    print(CurrentLabel)
    print(OA mean pos u diff)
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, OA_mean_pos_u_diff)
    CurrentLabel <- "Proportion of average downward change"
    prop_ave_down <- abs(OA_mean_pos_u_diff/OA_mean_pos_diff)</pre>
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, prop_ave_down)
}else{
  print("No U-shape in this participant")
  results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)</pre>
}
## [1] "No U-shape in this participant"
if(potential_u_shape){
  n_rows<-nrow(table_to_use)</pre>
  downward_dist <- numeric(n_rows)</pre>
  upward_dist <- numeric(n_rows)</pre>
  for(i in seq(1,n_rows)){
    current_row <- as.numeric(unlist(table_to_use[i,1:9]))</pre>
    current row <- current row[!is.na(current row)]</pre>
    current_row_len <- length(current_row)</pre>
    row min <- min(current row,na.rm=TRUE)
    min_pos <- which(current_row == row_min)</pre>
    left max <- max(current row[1:min pos],na.rm=TRUE)</pre>
    right_max <- max(current_row[min_pos:current_row_len])</pre>
    left_diff <- left_max - row_min</pre>
    right_diff <- right_max - row_min</pre>
    downward_dist[i]<-left_diff</pre>
    upward_dist[i]<-right_diff
  print("differences from left max to min for each row: ")
  print(downward_dist)
  print("differences from min to right max for each row: ")
  print(upward_dist)
  # Use the max return upward (min of upward_dist) and then the
  # downward distance from the left for the same row
  print(" ")
  biggest_return_upward_row <- which(upward_dist == max(upward_dist))</pre>
  CurrentLabel <- "row with biggest return upward"</pre>
  print(CurrentLabel)
  print(biggest return upward row)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, biggest_return_upward_row)
```

```
print(" ")
  CurrentLabel <- "downward distance for row with the largest upward value"
  print(CurrentLabel)
  print(downward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, downward_dist[biggest_return_upwa
  CurrentLabel<-"return upward value"
  print(upward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF,</pre>
                                       CurrentLabel,
                                       upward_dist[biggest_return_upward_row])
  print(" ")
  # percentage return upward
  percentage_return_upward <- upward_dist[biggest_return_upward_row]/downward_dist[biggest_return_upwar
  CurrentLabel <- "Return upward as a proportion of the downward distance:"
  print(CurrentLabel)
 print(percentage_return_upward)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,</pre>
                        percentage_return_upward)
}else{
  print("no U-shape in this participant")
## [1] "no U-shape in this participant"
FLPModelEquations<-c(
  # models with log frequency, but no three-way interactions (due to difficulty interpreting and small
            "preserved ~ stimlen*log_freq",
            "preserved ~ stimlen+log_freq",
            "preserved ~ pos*log_freq",
            "preserved ~ pos+log_freq",
            "preserved ~ stimlen*log_freq + pos*log_freq",
            "preserved ~ stimlen*log_freq + pos",
            "preserved ~ stimlen + pos*log_freq",
            "preserved ~ stimlen + pos + log_freq",
            "preserved ~ (I(pos^2)+pos)*log_freq",
            "preserved ~ stimlen*log_freq + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen*log_freq + I(pos^2) + pos",
            "preserved ~ stimlen + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen + I(pos^2) + pos + log_freq",
            # models without frequency
            "preserved ~ 1",
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
FLPRes<-TestModels(FLPModelEquations,PosDat)</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 21
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              I(pos^2)
                                                                      pos stimlen:I(pos^2)
##
           2.274198
                            0.041451
                                              0.092748
                                                               -0.497365
                                                                                 -0.004818
##
        stimlen:pos
         -0.029405
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1085 AIC: 1231
## log likelihood: -542.6306
## Nagelkerke R2: 0.117655
## % pres/err predicted correctly: -372.8264
## % of predictable range [ (model-null)/(1-null) ]: 0.09440452
## *************
## model index: 17
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
##
       2.60573
                  -0.09343
                               -0.28918
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
```

```
## Residual Deviance: 1090 AIC: 1232
## log likelihood: -545.2282
## Nagelkerke R2: 0.1109301
## % pres/err predicted correctly: -374.9085
## % of predictable range [ (model-null)/(1-null) ]: 0.08936078
## *********
## model index: 20
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                                                pos
                   stimlen
##
      2.93468
                  -0.10679
                                0.01929
                                           -0.44259
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1089 AIC: 1232
## log likelihood: -544.6354
## Nagelkerke R2: 0.1124676
## % pres/err predicted correctly: -373.9211
## % of predictable range [ (model-null)/(1-null) ]: 0.09175274
## **********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
                                           log_freq
##
      2.44201
                  -0.06777
                               -0.29020
                                            0.08733
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1087 AIC: 1233
## log likelihood: -543.5935
## Nagelkerke R2: 0.1151659
## % pres/err predicted correctly: -374.0919
## % of predictable range [ (model-null)/(1-null) ]: 0.09133904
## ***********
## model index: 13
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                   stimlen
## (Intercept)
                               I(pos^2)
                                                pos
                                                        log_freq
##
                  -0.08118
                                0.01941
      2.77274
                                           -0.44459
                                                         0.08746
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1086 AIC: 1233
## log likelihood: -542.995
## Nagelkerke R2: 0.1167134
```

```
## % pres/err predicted correctly: -373.1079
## % of predictable range [ (model-null)/(1-null) ]: 0.09372267
## model index: 18
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                   pos stimlen:pos
                               -0.16736
##
      2.20778
                  -0.03908
                                           -0.01593
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1090 AIC: 1233
## log likelihood: -545.0067
## Nagelkerke R2: 0.1115047
## % pres/err predicted correctly: -374.9774
## % of predictable range [ (model-null)/(1-null) ]: 0.08919387
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
       (Intercept)
                                             log_freq
                                                                    pos stimlen:log_freq
                             stimlen
           2.45747
                            -0.07162
                                              0.17795
                                                               -0.28975
                                                                                 -0.01323
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1087 AIC: 1234
## log likelihood: -543.4822
## Nagelkerke R2: 0.1154538
## % pres/err predicted correctly: -373.9132
## % of predictable range [ (model-null)/(1-null) ]: 0.09177179
## *************
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               log_freq
                       pos
       2.0745
                                 0.1047
                   -0.3153
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1089 AIC: 1234
## log likelihood: -544.4627
## Nagelkerke R2: 0.1129151
## % pres/err predicted correctly: -375.239
## % of predictable range [ (model-null)/(1-null) ]: 0.08856005
## **********
```

```
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
   (Intercept)
                     stimlen
                                               log_freq pos:log_freq
                                      pos
       2.44802
                    -0.06671
##
                                  -0.29476
                                                0.13334
                                                             -0.01243
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1087 AIC: 1234
## log likelihood: -543.4683
## Nagelkerke R2: 0.1154898
## % pres/err predicted correctly: -374.0034
## % of predictable range [ (model-null)/(1-null) ]: 0.09155331
## *********
## model index: 11
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                                                               I(pos^2)
##
       (Intercept)
                             stimlen
                                             log_freq
                                                                                     pos
                            -0.08416
                                              0.16552
                                                                0.01895
##
           2.77823
                                                                                 -0.44056
## stimlen:log_freq
          -0.01136
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1086 AIC: 1235
## log likelihood: -542.913
## Nagelkerke R2: 0.1169253
## % pres/err predicted correctly: -372.9685
## % of predictable range [ (model-null)/(1-null) ]: 0.09406044
## **********
## model index: 16
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
##
       2.1069
                   -0.3264
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1236
## log likelihood: -547.0127
## Nagelkerke R2: 0.1062913
## % pres/err predicted correctly: -376.9225
## % of predictable range [ (model-null)/(1-null) ]: 0.08448177
## **********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
  (Intercept)
##
                                 log_freq pos:log_freq
                        pos
       2.08773
                    -0.31996
                                  0.15553
                                               -0.01377
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1089 AIC: 1236
## log likelihood: -544.3095
## Nagelkerke R2: 0.113312
## % pres/err predicted correctly: -375.1353
## % of predictable range [ (model-null)/(1-null) ]: 0.08881127
## **********
## model index: 12
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
                                                I(pos^2)
        (Intercept)
                              stimlen
                                                                                     log_freq
                                                                       pos
            2.68201
                             -0.07722
                                                 0.01133
                                                                   -0.39224
                                                                                     -0.09555
##
## I(pos^2):log_freq
                         pos:log_freq
           -0.01591
                              0.12341
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1068 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1084 AIC: 1236
## log likelihood: -541.9101
## Nagelkerke R2: 0.1195144
## % pres/err predicted correctly: -372.0839
## % of predictable range [ (model-null)/(1-null) ]: 0.09620327
## **********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             log_freq
                                                                   pos stimlen:log_freq
          2.456975
                           -0.069613
                                             0.180175
                                                                               -0.008680
##
                                                              -0.293186
##
      log_freq:pos
         -0.009008
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1087 AIC: 1236
## log likelihood: -543.4297
## Nagelkerke R2: 0.1155896
## % pres/err predicted correctly: -373.9076
## % of predictable range [ (model-null)/(1-null) ]: 0.09178551
## **********
```

```
## model index: 19
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      2.24537
##
                   0.01036
                               -0.41171
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1238
## log likelihood: -546.8309
## Nagelkerke R2: 0.1067644
## % pres/err predicted correctly: -376.5375
## % of predictable range [ (model-null)/(1-null) ]: 0.08541439
## *********
## model index: 10
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                                                                    I(pos^2)
                                                                                           pos
##
         (Intercept)
                               stimlen
                                                 log_freq
                                                                    0.011277
                                                                                      -0.392068
##
           2.680060
                             -0.076782
                                                -0.103671
##
   stimlen:log_freq log_freq:I(pos^2)
                                             log_freq:pos
##
           0.001275
                             -0.016010
                                                 0.123711
## Degrees of Freedom: 1074 Total (i.e. Null); 1067 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1084 AIC: 1238
## log likelihood: -541.9094
## Nagelkerke R2: 0.1195164
## % pres/err predicted correctly: -372.0914
## % of predictable range [ (model-null)/(1-null) ]: 0.0961851
## **********
## model index: 9
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
                                                      pos
##
        (Intercept)
                              I(pos^2)
                                                                    log_freq I(pos^2):log_freq
                                                -0.367978
                                                                   -0.073535
##
           2.179522
                              0.004718
                                                                                      -0.016491
##
       pos:log_freq
##
           0.125142
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1086 AIC: 1239
## log likelihood: -542.9655
## Nagelkerke R2: 0.1167896
## % pres/err predicted correctly: -373.5817
## % of predictable range [ (model-null)/(1-null) ]: 0.09257483
```

```
## ************
## model index: 15
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       2.5791
                   -0.2402
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1140 AIC: 1288
## log likelihood: -570.1462
## Nagelkerke R2: 0.04474136
## % pres/err predicted correctly: -395.4661
## % of predictable range [ (model-null)/(1-null) ]: 0.03955988
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               log_freq
      2.42297
                  -0.21625
                                0.08282
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1137 AIC: 1289
## log likelihood: -568.597
## Nagelkerke R2: 0.04894639
## % pres/err predicted correctly: -394.6444
## % of predictable range [ (model-null)/(1-null) ]: 0.04155044
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                                              log_freq stimlen:log_freq
                             stimlen
           2.44098
                            -0.22040
##
                                              0.18650
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1137 AIC: 1291
## log likelihood: -568.4436
## Nagelkerke R2: 0.0493621
## % pres/err predicted correctly: -394.5509
## % of predictable range [ (model-null)/(1-null) ]: 0.04177708
## model index: 14
##
```

```
##
                data = PosDat)
##
## Coefficients:
## (Intercept)
                  0.9487
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1074 Residual
## Null Deviance:
                                                     1173
## Residual Deviance: 1173 AIC: 1330
## log likelihood: -586.3585
## Nagelkerke R2: -3.343613e-16
## % pres/err predicted correctly: -411.7963
## % of predictable range [ (model-null)/(1-null) ]: 0
## *************
BestFLPModel<-FLPRes$ModelResult[[1]]</pre>
BestFLPModelFormula<-FLPRes$Model[[1]]</pre>
FLPAICSummary <- data.frame (Model=FLPRes$Model,
                                                   AIC=FLPRes$AIC,row.names=FLPRes$Model)
FLPAICSummary $DeltaAIC <-FLPAICSummary $AIC-FLPAICSummary $AIC[1]
FLPAICSummary$AICexp<-exp(-0.5*FLPAICSummary$DeltaAIC)
FLPAICSummary $AICwt <-FLPAICSummary $AICexp/sum(FLPAICSummary $AICexp)
FLPAICSummary$NagR2<-FLPRes$NagR2
FLPAICSummary <- merge(FLPAICSummary,FLPRes$CoefficientValues,
                                                          by='row.names',sort=FALSE)
FLPAICSummary <- subset(FLPAICSummary, select = -c(Row.names))</pre>
write.csv(FLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_freq_len_pos_model_summary.csv"),row.name
kable(FLPAICSummary)
                              AIC\ Delta \textbf{AIC} explCwN agR \textbf{2} nterseipt) \\ deg\_fsteignleuplosg\_fosclologgfreid(popsdet) \\ os^2 \\ loggfreid(popsdet) \\ os^2 \\ loggfreid(
Model
preserved ~
                              1231.285000000000000000301785250419976145A3 NA
                                                                                                                        - NA NA 0.0927481
                                                                                                                                                                         NA
stimlen *
                                                                                                                     0.4973650
                                                                                                                                                                                     0.029400534818
(I(pos^2) +
pos)
preserved ~
                              1231.8.504072630855489230236057281 NA NA
                                                                                                                        - NA NA NA NA
                                                                                                                                                                          NA
                                                                                                                                                                                    NA NA
stimlen + pos
                                                                                     0.0934286
                                                                                                                    0.2891773
                                                                                                                       - NA NA 0.01928744
preserved ~
                              1232.B809490578421156752267546760 NA NA
                                                                                                                                                                         NA
                                                                                                                                                                                     NA NA
stimlen +
                                                                                     0.1067888
                                                                                                                    0.4425920
I(pos^2) +
pos
preserved ~
                              1232.50215644292687645265420120 0.0873263
                                                                                                                        - NA NA NA NA
                                                                                                                                                                          NA
                                                                                                                                                                                    NA NA
                                                                                                                     0.2902015
stimlen + pos
                                                                                      0.0677693
+ \log freq
preserved \sim
                              1233.07926469806081748267.17327363 0.0874524
                                                                                                                        - NA NA 0.0194N46 NA
                                                                                                                                                                                   NA NA
                                                                                                                    0.4445851
stimlen +
                                                                                     0.0811750
I(pos^2) +
pos +
log_freq
preserved ~
                              1233.1L58729839920.0078629712020777896 NA NA
                                                                                                                        - NA NA NA NA
                                                                                                                                                                         NA
                                                                                                                                                                                         - NA
stimlen * pos
                                                                                     0.0390774
                                                                                                                    0.1673578
                                                                                                                                                                                     0.0159321
```

Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",

Model	AIC DeltaAICeApCwNagR(2nterstipn)dng_fstin	lenplosg_frosc ologgfr@ff(pppxf@)os^2)ngogfr@ff@ff(plossfp?)sr
preserved ~ stimlen * log_freq +	1234 .2.40 54 982282.009857.1173525487 4695 0.177951 0.0716198 0.0	
pos preserved ~ pos +	1234 .3.29 4 07.6280.6613725429.15 74 5N.A 6 0.104 70 8	- NA NA NA NA NA NA NA NA NA 0.3153131
log_freq preserved ~ stimlen + pos	1234 .3.42 6 543769 10 2345362 89 8 0244 0.133 3 14	
* log_freq preserved ~ stimlen *	1234 .8.8958316256.48880.834692778 2311 0.165524 0.0841565 0.0	- NA NA 0.018 95A7 NA NA NA
$ log_freq + I(pos^2) + pos $		
preserved ~ pos	1235 .85080739982009937629136863 5 NA NA	- NA NA NA NA NA NA NA NA 0.3264059
preserved ~ pos * log_freq	1236. 4.85 00 009907.17180.73482.128772A 5 0.155 53 2	NA NA NA NA NA NA NA NA 0.319 959£37 705
preserved \sim stimlen + $(I(pos^2) + pos) *$	1236. 4939895JH063H8097893.682 0093 - NA 0.077 9224 5549	
log_freq preserved ~ stimlen * log_freq + pos *	1236 .2022020856.40170 9 6252896 9752 0.180174 0.0696126 0.0	8 - NA - NA NA NA NA NA NA 86 797 931856 0.0090082
$\log_{\text{preserved}} \sim I(\text{pos}^2) +$	1237 .5.3379184268189550767 62445 36 49 NA NA	- NA NA 0.010 3%7 2 NA NA NA 0.4117057
oos oreserved ~ stimlen * og_freq + I(pos^2) + oos) *	1238 .6.82195233000066.112792.108 00596 - 0.0 0.076 08121 3671	12752 NA 0.123 7010012767 - NA NA 0.03920678 0.0160103
log_freq preserved ~ (I(pos^2) + pos) *	1238. 5@82547260.1886052467897952A 9 - NA	
$ \begin{array}{c} \log_{\text{freq}} \\ \text{preserved} \sim \end{array} $ stimlen	1288 5/7.3507700000000000000007.5/79 0741 NA NA 0.2401896	NA NA NA NA NA NA NA
preserved ~ stimlen +	0.2401890 1289 .27.06081130000000000324122 9668 0.082 82 2 0.2162456	NA NA NA NA NA NA NA
log_freq preserved ~ stimlen *	1290 538.4985000000000000000000000000000000000000	
$ log_freq \\ preserved ~ 1 $	1329 .98695300070000000000000000869A3 NA NA	NA NA NA NA NA NA NA

```
print(BestFLPModelFormula)
## [1] "preserved ~ stimlen * (I(pos^2) + pos)"
print(BestFLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                               I(pos^2)
                                                                       pos stimlen:I(pos^2)
##
           2.274198
                             0.041451
                                               0.092748
                                                                 -0.497365
                                                                                    -0.004818
##
       stimlen:pos
##
          -0.029405
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                        1173
## Residual Deviance: 1085 AIC: 1231
# do a median split on frequency to plot hf/ls effects (analysis is continuous)
median_freq <- median(PosDat$log_freq)</pre>
PosDat$freq_bin[PosDat$log_freq >= median_freq]<-"hf"
PosDat$freq_bin[PosDat$log_freq < median_freq]<-"lf"</pre>
PosDat$FLPFitted<-fitted(BestFLPModel)
HFDat <- PosDat[PosDat$freq_bin == "hf",]</pre>
LFDat <- PosDat[PosDat$freq_bin == "lf",]</pre>
HF_Plot <- plot_len_pos_obs_predicted(HFDat,paste0(CurPat," - High frequency"), "FLPFitted",c(min_preser</pre>
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
LF_Plot <- plot_len_pos_obs_predicted(LFDat,paste0(CurPat, " - Low frequency"), "FLPFitted",c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
library(ggpubr)
Both Plots <- ggarrange(LF Plot, HF Plot) # labels=c("LF", "HF", ncol=2)
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom_line()`).
```



```
## Coefficients:
## (Intercept)
                    CumErr
##
        1.586
                    -1.011
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 973.2
                               AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.1069
                   -0.3264
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1236
## log likelihood: -547.0127
## Nagelkerke R2: 0.1062913
## % pres/err predicted correctly: -376.9225
## % of predictable range [ (model-null)/(1-null) ]: 0.08448177
## ************
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.24537
                   0.01036
                              -0.41171
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1094 AIC: 1238
## log likelihood: -546.8309
## Nagelkerke R2: 0.1067644
## % pres/err predicted correctly: -376.5375
## % of predictable range [ (model-null)/(1-null) ]: 0.08541439
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       2.5791
                   -0.2402
```

```
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1140 AIC: 1288
## log likelihood: -570.1462
## Nagelkerke R2: 0.04474136
## % pres/err predicted correctly: -395.4661
## % of predictable range [ (model-null)/(1-null) ]: 0.03955988
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
       0.9487
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1074 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1173 AIC: 1330
## log likelihood: -586.3585
## Nagelkerke R2: -3.343613e-16
## % pres/err predicted correctly: -411.7963
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   CumPres
      1.05066
                  -0.05645
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1171 AIC: 1330
## log likelihood: -585.5799
## Nagelkerke R2: 0.002179638
## % pres/err predicted correctly: -411.1815
## % of predictable range [ (model-null)/(1-null) ]: 0.001489387
## **********
BestMEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]</pre>
BestMEModelFormula<-MERes$Model[[BestModelIndexL1]]</pre>
MEAICSummary<-data.frame(Model=MERes$Model,</pre>
                      AIC=MERes$AIC,row.names=MERes$Model)
MEAICSummary $DeltaAIC <- MEAICSummary $AIC - MEAICSummary $AIC [1]
MEAICSummary$AICexp<-exp(-0.5*MEAICSummary$DeltaAIC)</pre>
MEAICSummary$AICwt<-MEAICSummary$AICexp/sum(MEAICSummary$AICexp)
MEAICSummary$NagR2<-MERes$NagR2
```

Model	AIC DeltaAI	ICex	pAICv	vtNagR2 (Intercept)C	CumPre	esCumEr	$r I(pos^2)$	pos	stimlen
preserved ~	1076.5490.0000	1	1	0.2550256.5863632	NA	_	NA	NA	NA
CumErr						1.01119	8		
preserved \sim pos	1235.89 ± 59.3445	0	0	$0.106291 \\ 3.1068695$	NA	NA	NA	-	NA
								0.32640	59
preserved \sim	$1237.593\!\!161.0437$	0	0	0.106764 2 .2453679	NA	NA	0.010357	2 -	NA
$(I(pos^2) + pos)$								0.41170	57
preserved \sim	1288.44 2 11.8935	0	0	0.044741 2 .5790741	NA	NA	NA	NA	-
stimlen									0.2401896
preserved ~ 1	$1329.98 \\ 253.4311$	0	0	0.0000000.9486953	NA	NA	NA	NA	NA
preserved \sim	1330.175253.6258	0	0	$0.002179 {\color{red}6.0506617}$	-	NA	NA	NA	NA
CumPres				0	.056450	07			

```
if(DoSimulations){
      BestMEModelFormulaRnd <- BestMEModelFormula</pre>
    if(grepl("CumPres", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumPres", "RndCumPres", BestMEModelFormulaRnd)
    }else if(grepl("CumErr", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumErr", "RndCumErr", BestMEModelFormulaRnd)</pre>
    }
    RndModelAIC<-numeric(length=RandomSamples)</pre>
    for(rindex in seq(1,RandomSamples)){
    # Shuffle cumulative values
      PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
      PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
      BestModelRnd <- glm(as.formula(BestMEModelFormulaRnd),</pre>
                            family="binomial",data=PosDat)
      RndModelAIC[rindex] <- BestModelRnd$aic</pre>
    }
    ModelNames<-c(paste0("***",BestMEModelFormula),</pre>
                   rep(BestMEModelFormulaRnd,RandomSamples))
    AICValues <- c(BestMEModel$aic,RndModelAIC)
    BestMEModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
    BestMEModelRndDF <- BestMEModelRndDF %>% arrange(AIC)
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                                data.frame(Name=c("Random average"),
                                            AIC=c(mean(RndModelAIC))))
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                                data.frame(Name=c("Random SD"),
                                           AIC=c(sd(RndModelAIC))))
    write.csv(BestMEModelRndDF,
              pasteO(TablesDir,CurPat,"_",CurTask,
                      " best main effects model with random cum term.csv"),
```

syll_component	MeanPres	N
1	0.6871429	140
O	0.7187977	524
P	0.9166667	12
S	0.6169492	59
V	0.7490196	340

```
# main effects models for data without satellite positions
keep_components = c("0","V","1")
OV1Data <- PosDat[PosDat$syll_component %in% keep_components,]</pre>
OV1Data <- OV1Data %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OV1Data$CumPres <- CalcCumPres(OV1Data)</pre>
OV1Data$CumErr <- CalcCumErrFromPreserved(OV1Data)</pre>
SimpSyllMEAICSummary <- EvaluateSubsetData(OV1Data, MEModelEquations)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ******************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
                     -1.111
##
         1.594
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1002 Residual
## Null Deviance:
                        1091
## Residual Deviance: 898.6
                                AIC: 992
## log likelihood: -449.2952
## Nagelkerke R2: 0.2632383
## % pres/err predicted correctly: -298.7427
## % of predictable range [ (model-null)/(1-null) ]: 0.2173457
```

```
## ************
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
##
       2.1727
                   -0.3367
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1002 Residual
## Null Deviance:
                      1091
## Residual Deviance: 1014 AIC: 1142
## log likelihood: -507.1521
## Nagelkerke R2: 0.1110552
## % pres/err predicted correctly: -348.5078
## % of predictable range [ (model-null)/(1-null) ]: 0.08740455
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
                              -0.45996
      2.37462
                  0.01493
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1001 Residual
## Null Deviance:
                       1091
## Residual Deviance: 1014 AIC: 1144
## log likelihood: -506.8122
## Nagelkerke R2: 0.1120013
## % pres/err predicted correctly: -347.9774
## % of predictable range [ (model-null)/(1-null) ]: 0.08878969
## ************
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       2.4651
##
                   -0.2204
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1002 Residual
## Null Deviance:
                       1091
## Residual Deviance: 1066 AIC: 1200
## log likelihood: -532.8011
## Nagelkerke R2: 0.03777103
## % pres/err predicted correctly: -368.9597
## % of predictable range [ (model-null)/(1-null) ]: 0.034003
## *************
## model index: 1
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
      1.10136
                  -0.07756
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1002 Residual
## Null Deviance:
                       1091
## Residual Deviance: 1088 AIC: 1232
## log likelihood: -544.2026
## Nagelkerke R2: 0.003973035
## % pres/err predicted correctly: -380.9116
## % of predictable range [ (model-null)/(1-null) ]: 0.002795429
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
       0.9675
##
## Degrees of Freedom: 1003 Total (i.e. Null); 1003 Residual
## Null Deviance:
                       1091
## Residual Deviance: 1091 AIC: 1233
## log likelihood: -545.526
## Nagelkerke R2: 0
## % pres/err predicted correctly: -381.9822
## % of predictable range [ (model-null)/(1-null) ]: 0
## ************
write.csv(SimpSyllMEAICSummary,
         pasteO(TablesDir,CurPat,"_",CurTask,
                 "_OV1_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary)
```

Model	AIC DeltaAI	ICex	pAICv	vtNagR2 (Intercept)	CumPre	esCumEr	r I(pos^2)	pos	stimlen
preserved ~	991.95370.0000	1	1	0.263238 3 .5942980	NA	-	NA	NA	NA
CumErr						1.11069	5		
preserved \sim pos	1142.368 0 50.4144	0	0	$0.111055 \\ 2.1727176$	NA	NA	NA	-	NA
							0.	.33673	71
preserved \sim	1143.672 0 51.7183	0	0	0.112001 3 $.3746170$	NA	NA	0.0149261	-	NA
$(I(pos^2) + pos)$							0	.45995	94
preserved ~	1199.550 2 07.5965	0	0	$0.037771 \\ 0.4651257$	NA	NA	NA	NA	_
stimlen									0.2204216
preserved \sim	1232.148 2 40.1947	0	0	0.003973 0 $.1013577$	_	NA	NA	NA	NA
CumPres				(0.07756	09			
preserved ~ 1	$1233.159 \textcolor{red}{2} 41.2057$	0	0	0.00000000.9674864	NA	NA	NA	NA	NA

```
# main effects models for data without satellite or coda positions
# (tradeoff -- takes away more complex segments, in addition to satellites, but
```

```
# also reduces data)
keep_components = c("0","V")
OVData <- PosDat[PosDat$syll_component %in% keep_components,]</pre>
OVData <- OVData %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OVData$CumPres <- CalcCumPres(OVData)</pre>
OVData$CumErr <- CalcCumErrFromPreserved(OVData)</pre>
SimpSyllMEAICSummary2<-EvaluateSubsetData(OVData, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
         1.554
                    -1.237
##
## Degrees of Freedom: 863 Total (i.e. Null); 862 Residual
## Null Deviance:
                        929.1
## Residual Deviance: 779.8
                               AIC: 863.6
## log likelihood: -389.8964
## Nagelkerke R2: 0.2408698
## % pres/err predicted correctly: -259.3253
## % of predictable range [ (model-null)/(1-null) ]: 0.1989114
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                        pos
##
       2.1971
                   -0.3395
## Degrees of Freedom: 863 Total (i.e. Null); 862 Residual
## Null Deviance:
                        929.1
## Residual Deviance: 858.7
                               AIC: 968.7
## log likelihood: -429.3323
## Nagelkerke R2: 0.1188096
## % pres/err predicted correctly: -293.7107
## % of predictable range [ (model-null)/(1-null) ]: 0.09309836
```

```
## ************
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
                               -0.46080
##
      2.38953
                   0.01485
##
## Degrees of Freedom: 863 Total (i.e. Null); 861 Residual
## Null Deviance:
                       929.1
## Residual Deviance: 858.1
                               AIC: 970.2
## log likelihood: -429.0267
## Nagelkerke R2: 0.1197988
## % pres/err predicted correctly: -293.2121
## % of predictable range [ (model-null)/(1-null) ]: 0.09463293
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       2.4348
                   -0.2121
##
## Degrees of Freedom: 863 Total (i.e. Null); 862 Residual
## Null Deviance:
                       929.1
## Residual Deviance: 908.6
                               AIC: 1024
## log likelihood: -454.2873
## Nagelkerke R2: 0.03561113
## % pres/err predicted correctly: -313.5492
## % of predictable range [ (model-null)/(1-null) ]: 0.03205027
## **********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
       1.2335
##
                   -0.1581
##
## Degrees of Freedom: 863 Total (i.e. Null); 862 Residual
## Null Deviance:
                       929.1
## Residual Deviance: 921.8
                               AIC: 1045
## log likelihood: -460.9167
## Nagelkerke R2: 0.01268911
## % pres/err predicted correctly: -320.8754
## % of predictable range [ (model-null)/(1-null) ]: 0.009505677
## *************
## model index: 6
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
       0.9981
##
## Degrees of Freedom: 863 Total (i.e. Null); 863 Residual
## Null Deviance:
                       929.1
## Residual Deviance: 929.1
                               AIC: 1051
## log likelihood: -464.5433
## Nagelkerke R2: 0
## % pres/err predicted correctly: -323.9644
## % of predictable range [ (model-null)/(1-null) ]: 0
## ************
write.csv(SimpSyllMEAICSummary2,
         pasteO(TablesDir,CurPat,"_",CurTask,
                 "_OV_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary2)
```

Model	AIC DeltaAI	S ICex	pAICv	vtNagR2 (Intercept)	CumPres(CumEr	r I(pos^2)	pos	stimlen
preserved ~	863.60640.0000	1	1	0.2408698.5539721	NA	_	NA	NA	NA
CumErr					1	1.23662	25		
preserved \sim pos	968.7153105.1089	0	0	0.118809 0.1970994	NA	NA	NA	-	NA
							0	.33948	32
preserved \sim	970.1668106.5603	0	0	$0.119798 {\color{red}2.3895259}$	NA	NA	0.0148481	-	NA
$(I(pos^2) + pos)$							0	.46079	79
preserved \sim	1024.4289 60.8225	0	0	0.035611 2 .4347561	NA	NA	NA	NA	-
stimlen									0.2121295
preserved \sim	1044.955 2 81.3488	0	0	0.0126891.2334595	-	NA	NA	NA	NA
CumPres				0	.1581112	:			
preserved ~ 1	1051.235\$87.6294	. 0	0	0.00000000.9981291	NA	NA	NA	NA	NA

```
# plot prev err and prev cor plots
PrevCorPlot<-PlotObsPreviousCorrect(PosDat,palette_values,shape_values)</pre>
```

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)

PrevErrPlot<-PlotObsPreviousError(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)

PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "MEPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot_device="tiff",compression = "lzw")
## Saving 6.5 x 4.5 in image
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"PrevErrPlot_ObsPredME")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")</pre>
```

Saving 6.5 x 4.5 in image

```
5
```

```
CumAICSummary <- NULL
#######
# level 2 -- Add position squared (quadratic with position)
#######
# After establishing the primary variable, see about additions
BestMEFactor <- BestMEModelFormula
OtherFactor<-"I(pos^2) + pos"
OtherFactorName<-"quadratic_by_pos"
if(!grepl("pos", BestMEFactor, fixed = TRUE)){ # if best model does not include pos
  AICSummary <- TestLevel 2 Models (PosDat, BestMEFactor, Other Factor, Other Factor Name)
 CumAICSummary <- AICSummary</pre>
 kable(AICSummary)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                     CumErr
                               I(pos^2)
                                                  pos
                                              -0.4541
##
       2.3071
                    -1.0288
                                 0.0570
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 965 AIC: 1073
## log likelihood: -482.4927
## Nagelkerke R2: 0.2645965
## % pres/err predicted correctly: -323.4142
## % of predictable range [ (model-null)/(1-null) ]: 0.2141058
```

```
6
```

```
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
        1.586
                    -1.011
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                      1173
## Residual Deviance: 973.2
                              AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      2.24537
                   0.01036
                              -0.41171
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                      1173
## Residual Deviance: 1094 AIC: 1238
## log likelihood: -546.8309
## Nagelkerke R2: 0.1067644
## % pres/err predicted correctly: -376.5375
## % of predictable range [ (model-null)/(1-null) ]: 0.08541439
## *********
```

Model	AIC	${\bf DeltaAIC}$	AICexp	AICwt	NagR2	(Intercept)	CumErr	$I(pos^2)$	pos
$\overline{\text{preserved} \sim \text{CumErr} + \text{I}(\text{pos}^2) +}$	1072.574	0.000000	1.0000000	0.8795082	0.2645965	2.307076	-1.028789	0.0569979	-0.4541383
DOS									

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	I(pos^2)	pos
preserved ~ CumErr	1076.549	3.975562	0.1369991	0.1204918	0.2550256	1.586363	-1.011198	NA	NA
preserved $\sim I(pos^2) + pos$	1237.593	165.019221	0.0000000	0.0000000	0.1067644	2.245368	NA	0.0103572	-0.4117057

```
#######
# level 2 -- Add length
#######
BestMEFactor <- BestMEModelFormula
OtherFactor <- "stimlen"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                    CumErr
                                stimlen
      1.93395
                  -0.98568
                               -0.05425
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 972
                           AIC: 1076
## log likelihood: -486.0165
## Nagelkerke R2: 0.2564324
## % pres/err predicted correctly: -325.2726
## % of predictable range [ (model-null)/(1-null) ]: 0.2096038
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
##
        1.586
                    -1.011
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 973.2
                               AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## *********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       2.5791
                  -0.2402
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                      1173
## Residual Deviance: 1140 AIC: 1288
## log likelihood: -570.1462
## Nagelkerke R2: 0.04474136
## % pres/err predicted correctly: -395.4661
## % of predictable range [ (model-null)/(1-null) ]: 0.03955988
## **********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	stimlen
preserved ~ CumErr	1075.977	0.0000000	1.0000000	0.5710055	0.2564324	1.933951	-	_
+ stimlen							0.9856793	0.0542510
preserved \sim CumErr	1076.549	0.5719092	0.7512967	0.4289945	0.2550256	1.586363	_	NA
							1.0111985	
preserved \sim stimlen	1288.443	212.465421	30.0000000	0.0000000	0.0447414	2.579074	NA	-
								0.2401896

```
#######
# level 2 -- add cumulative preserved
#######
BestMEFactor <- BestMEModelFormula
OtherFactor<-"CumPres"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
  AICSummary <- TestLevel2Models (PosDat, BestMEFactor, OtherFactor)
  CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
  kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
##
        1.586
                    -1.011
##
```

Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual

```
## Null Deviance:
                        1173
## Residual Deviance: 973.2
                                AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                                 CumPres
## (Intercept)
                     CumErr
##
       1.62161
                   -1.00924
                                -0.02011
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                        1173
## Residual Deviance: 973.1
                                AIC: 1078
## log likelihood: -486.5438
## Nagelkerke R2: 0.2552061
## % pres/err predicted correctly: -325.9018
## % of predictable range [ (model-null)/(1-null) ]: 0.2080796
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
       1.05066
                   -0.05645
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                        1173
## Residual Deviance: 1171 AIC: 1330
## log likelihood: -585.5799
## Nagelkerke R2: 0.002179638
## % pres/err predicted correctly: -411.1815
## % of predictable range [ (model-null)/(1-null) ]: 0.001489387
## **********
Model
                       AIC
                            DeltaAIC AICexp
                                                AICwt
                                                        NagR2 (Intercept) CumErr
                                                                                   CumPres
                                     1.00000000\ 0.7184369\ 0.2550256\ 1.586363
                                                                                        NA
preserved ~ CumErr
                    1076.549 0.000000
                                                                          1.011198
preserved \sim CumErr + 1078.423 \ 1.873442 \ 0.3919107 \ 0.2815631 \ 0.2552061 \ 1.621613
CumPres
                                                                           1.009243
                                                                                   0.0201138
                    1330.175\ 253.625822\ 0.0000000\ 0.0000000\ 0.0021796\ 1.050662
preserved ~ CumPres
                                                                              NA
                                                                                   0.0564507
```

```
BestMEFactor <- BestMEModelFormula
OtherFactor<-"pos"
if(!grepl(OtherFactor, BestMEFactor, fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ******************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                    -1.011
##
        1.586
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 973.2
                               AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  CumErr
                                    pos
      1.64173
##
                 -0.98913 -0.02011
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                       1173
## Residual Deviance: 973.1
                               AIC: 1078
## log likelihood: -486.5438
## Nagelkerke R2: 0.2552061
## % pres/err predicted correctly: -325.9018
## % of predictable range [ (model-null)/(1-null) ]: 0.2080796
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
```

```
## Coefficients:
## (Intercept)
                      pos
       2.1069
##
                  -0.3264
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                      1173
## Residual Deviance: 1094 AIC: 1236
## log likelihood: -547.0127
## Nagelkerke R2: 0.1062913
## % pres/err predicted correctly: -376.9225
## % of predictable range [ (model-null)/(1-null) ]: 0.08448177
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	pos
preserved ~	1076.549	0.000000	1.0000000	0.7184369	0.2550256	1.586363	-	NA
CumErr							1.0111985	
preserved \sim	1078.423	1.873442	0.3919107	0.2815631	0.2552061	1.641727	-	-
CumErr + pos							0.9891291	0.0201138
preserved \sim pos	1235.894	159.344515	0.0000000	0.0000000	0.1062913	2.106870	NA	-
								0.3264059

CumAICSummary <- CumAICSummary %>% arrange(AIC)
BestModelFormulaL2 <- CumAICSummary\$Model[BestModelIndexL2]
write.csv(CumAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_model_summary.csv")
kable(CumAICSummary)</pre>

Model	AIC DeltaAICAICexpAICwt NagR2 (Intercep@umErrI(pos^2) pos stimlen CumPres
preserved ~	1072.57@.00000001.0000000087950&226459@5307076 - 0.0569979 - NA NA
CumErr +	$1.0287890 \qquad 0.4541383$
$I(pos^2) + pos$	
preserved \sim	1075.97 0 .00000001.000000 0 057100 5 0525643 2 4933951 - NA NA - NA
CumErr +	0.9856793 0.0542510
stimlen	
preserved \sim	1076.54 9 .975561 0 .13699 9 112049 1 825502 5 6586363 - NA NA NA NA
CumErr	1.0111985
preserved \sim	1076.54 9 .571909 2).75129 6 742899 4 52550256586363 - NA NA NA NA
CumErr	1.0111985
preserved \sim	1076.54 9 .00000001.0000000071843 6 92550256586363 - NA NA NA NA
CumErr	1.0111985
preserved \sim	1076.54 9 .00000001.0000000071843 6 92550256586363 - NA NA NA NA
CumErr	1.0111985
preserved \sim	1078.42 3 .873442 5 0.39191 07 28156 3 02552061621613 - NA NA NA -
CumErr +	1.0092429 0.0201138
CumPres	
preserved \sim	1078.42 3 .873442 5).39191 07 28156 31 125520 6 1641727 - NA - NA NA
CumErr + pos	$0.9891291 \qquad 0.0201138$
$preserved \sim pos$	1235.89 4 59.3445 D48 000000000000000000000000000000000000
	0.3264059
preserved \sim	1237.59 3 65.0192 2 1 2 00000000000000000000000000000000
$I(pos^2) + pos$	0.4117057
preserved \sim	1288.44 3 12.4654 2019 000000000000004474 2 4579074 NA NA NA - NA
stimlen	0.2401896

Model	${\rm AIC-Delta AICAIC expAIC wt\ Nag R2\ (Intercep {\rm Cumb})}$	$\operatorname{Err} I(\operatorname{pos}^2)$	pos	stimlen	CumPres
preserved ~	1330.17 2 53.6258 2 1 6 00000000000000021796050662 NA	NA	NA	NA	-
CumPres					0.0564507

```
# explore influence of frequency and length
if(grep1("stimlen", BestModelFormulaL2)){ # if length is already in the formula
  Level3ModelEquations<-c(
     BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
     paste0(BestModelFormulaL2," + log_freq")
}else if(grepl("log_freq",BestModelFormulaL2)){ # if log_freq is already in the formula
   Level3ModelEquations<-c(
     BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + stimlen")
  )
}else{
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + log_freq"),
     paste0(BestModelFormulaL2," + stimlen"),
      paste0(BestModelFormulaL2," + stimlen + log_freq")
  )
}
Level3Res<-TestModels(Level3ModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
                                I(pos^2)
                                                           stimlen
                                                  pos
##
       2.90540
                   -1.02504
                                 0.06502
                                             -0.48372
                                                          -0.09224
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                        1173
## Residual Deviance: 962
                           AIC: 1069
## log likelihood: -481.0217
## Nagelkerke R2: 0.2679889
## % pres/err predicted correctly: -321.9974
```

```
## % of predictable range [ (model-null)/(1-null) ]: 0.2175379
## *********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                         stimlen
                                                                     log_freq
                                                pos
      2.79096
                                0.06470
                                                                      0.06097
##
                  -1.01966
                                           -0.48369
                                                        -0.07452
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1069 Residual
## Null Deviance:
                       1173
## Residual Deviance: 960.7
                               AIC: 1072
## log likelihood: -480.3283
## Nagelkerke R2: 0.2695847
## % pres/err predicted correctly: -321.598
## % of predictable range [ (model-null)/(1-null) ]: 0.2185056
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                pos
##
       2.3071
                   -1.0288
                                 0.0570
                                            -0.4541
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 965
                           AIC: 1073
## log likelihood: -482.4927
## Nagelkerke R2: 0.2645965
## % pres/err predicted correctly: -323.4142
## % of predictable range [ (model-null)/(1-null) ]: 0.2141058
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                        log_freq
                                                pos
##
      2.30717
                  -1.02084
                                0.05857
                                           -0.46122
                                                         0.07947
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                       1173
## Residual Deviance: 962.4
                               AIC: 1073
## log likelihood: -481.2184
## Nagelkerke R2: 0.2675359
## % pres/err predicted correctly: -322.5361
## % of predictable range [ (model-null)/(1-null) ]: 0.2162329
## **********
## model index: 2
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
       0.9487
##
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1074 Residual
## Null Deviance:
                       1173
## Residual Deviance: 1173 AIC: 1330
## log likelihood: -586.3585
## Nagelkerke R2: -3.343613e-16
## % pres/err predicted correctly: -411.7963
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
BestModelFormulaL3<-Level3Res$Model[[BestModelIndexL3]]</pre>
AICSummary <- data.frame (Model=Level3Res$Model,
                       AIC=Level3Res$AIC,
                       row.names = Level3Res$Model)
AICSummary$DeltaAIC<-AICSummary$AIC-AICSummary$AIC[1]
AICSummary$AICexp<-exp(-0.5*AICSummary$DeltaAIC)
AICSummary$AICwt<-AICSummary$AICexp/sum(AICSummary$AICexp)
AICSummary$NagR2<-Level3Res$NagR2
AICSummary <- merge(AICSummary, Level3Res Coefficient Values,
                          by='row.names',sort=FALSE)
AICSummary <- subset(AICSummary, select = -c(Row.names))
write.csv(AICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_len_freq_summary.csv")
kable(AICSummary)
```

Model	AIC DeltaAl&ICexpAlCwt NagR2 (Intercept)umErf(pos^2) pos log_freqtimlen
preserved ~ CumErr +	1069.3810000001.000000059818622679829053967 - 0.0650226 - NA -
$I(pos^2) + pos + stimlen$	$1.025039 \qquad 0.4837176 \qquad 0.0922416$
preserved ~ CumErr +	1071.5 3 515447 0 .34053 5 20370 6 26958 2 77909611 - 0.0647047 - 0.0609731 -
$I(pos^2) + pos + stimlen$	$1.019658 \qquad 0.4836863 \qquad 0.0745208$
+ log_freq	
preserved $\sim \text{CumErr} +$	1072.5 73 419312 9 0.20259 0 442118 0 426459 0 53070757 - 0.0569979 - NA NA
$I(pos^2) + pos$	$1.028789 \qquad 0.4541383$
preserved $\sim \text{CumErr} +$	1073.48B10220\(9.12859\) \(0.079465\) \(0
$I(pos^2) + pos +$	$1.020836 \qquad 0.4612244$
log_freq	
preserved ~ 1	1329.9 3 60.599 7 9 8 00000 0 000000000000000000000000000

```
# BestModelIndex is set by the parameter file and is used to choose
# a model that is essentially equivalent to the lowest AIC model, but
# simpler (and with a slightly higher AIC value, so not in first position)
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
```

```
BestModelFormulaL3<-Level3Res$Model[BestModelIndexL3]</pre>
BestModel<-BestModelL3
BestModelDeletions<-arrange(dropterm(BestModel),desc(AIC))</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
# order by terms that increase AIC the most when they are the one dropped
BestModelDeletions
## Single term deletions
##
## Model:
## preserved ~ CumErr + I(pos^2) + pos + stimlen
          Df Deviance
                          AIC
## CumErr 1 1089.27 1194.6
## I(pos^2) 1 972.03 1077.4
         1 970.99 1076.3
## pos
## stimlen 1 964.99 1070.3
## <none>
                962.04 1069.4
###################################
# Single deletions from best model
###################################
write.csv(BestModelDeletions, paste0(TablesDir, CurPat, "_", CurTask, "_best_model_single_term_deletions.csv
# plot prev err and prev cor with predicted values
PosDat$OAPred<-fitted(BestModel)</pre>
PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "OAPred", palette_values, shape_values)
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "OAPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_ObsPred_BestFullModel")
ggsave(filename=paste(PlotName,"_prev_correct.tif",sep=""),plot=PrevCorPlot,device="tiff",compression =
## Saving 6.5 \times 4.5 in image
ggsave(filename=paste(PlotName,"_prev_error.tif",sep=""),plot=PrevErrPlot,device="tiff",compression = "
## Saving 6.5 \times 4.5 in image
if(DoSimulations){
  BestModelFormulaL3Rnd <- BestModelFormulaL3</pre>
  if(grepl("CumPres", BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumPres", "RndCumPres", BestModelFormulaL3Rnd)</pre>
  if(grepl("CumErr",BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumErr","RndCumErr",BestModelFormulaL3Rnd)</pre>
  }
  RndModelAIC<-numeric(length=RandomSamples)</pre>
  for(rindex in seq(1,RandomSamples)){
  # Shuffle cumulative values
    PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
    PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
    BestModelRnd <- glm(as.formula(BestModelFormulaL3Rnd),</pre>
                         family="binomial",data=PosDat)
    RndModelAIC[rindex] <- BestModelRnd$aic</pre>
  ModelNames<-c(paste0("***",BestModelFormulaL3),</pre>
```

```
rep(BestModelFormulaL3Rnd,RandomSamples))
  AICValues <- c(BestModelL3$aic,RndModelAIC)
  BestModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
  BestModelRndDF <- BestModelRndDF %>% arrange(AIC)
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random average"),
                                      AIC=c(mean(RndModelAIC))))
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                          data.frame(Name=c("Random SD"),
                                      AIC=c(sd(RndModelAIC))))
  write.csv(BestModelRndDF,paste0(TablesDir,CurPat,"_",CurTask,
                                   "_best_model_with_random_cum_term.csv"),
            row.names = FALSE)
}
# plot influence factors
num_models <- nrow(BestModelDeletions) - 1</pre>
# minus 1 because last
# model is always <none> and we don't want to include that
if(num_models > 4){
 last_model_num <- 4</pre>
}else{
  last_model_num <- num_models</pre>
FinalModelSet<-ModelSetFromDeletions(BestModelFormulaL3,
                                      BestModelDeletions,
                                      last_model_num)
PlotName <- paste O (FigDir, CurPat, "_", CurTask, "_FactorPlots")
FactorPlot<-PlotModelSetWithFreq(PosDat,FinalModelSet,</pre>
                                 palette_values,FinalModelSet,PptID=CurPat)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
                                I(pos^2)
## (Intercept)
                     CumErr
                                0.003466
      1.554049 -1.042042
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1072 Residual
## Null Deviance:
                        1173
## Residual Deviance: 973
                            AIC: 1078
## log likelihood: -486.4787
```

```
## Nagelkerke R2: 0.2553577
## % pres/err predicted correctly: -325.8888
## % of predictable range [ (model-null)/(1-null) ]: 0.2081111
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
##
        1.586
                    -1.011
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1073 Residual
## Null Deviance:
                       1173
## Residual Deviance: 973.2
                               AIC: 1077
## log likelihood: -486.6214
## Nagelkerke R2: 0.2550256
## % pres/err predicted correctly: -325.9679
## % of predictable range [ (model-null)/(1-null) ]: 0.2079195
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                               I(pos^2)
## (Intercept)
                    CumErr
                                                pos
                                 0.0570
       2.3071
                   -1.0288
##
                                            -0.4541
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1071 Residual
## Null Deviance:
                       1173
## Residual Deviance: 965
                          AIC: 1073
## log likelihood: -482.4927
## Nagelkerke R2: 0.2645965
## % pres/err predicted correctly: -323.4142
## % of predictable range [ (model-null)/(1-null) ]: 0.2141058
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                               I(pos^2)
                                                         stimlen
                                                pos
##
      2.90540
                  -1.02504
                                0.06502
                                           -0.48372
                                                        -0.09224
##
## Degrees of Freedom: 1074 Total (i.e. Null); 1070 Residual
## Null Deviance:
                      1173
## Residual Deviance: 962
                           AIC: 1069
## log likelihood: -481.0217
## Nagelkerke R2: 0.2679889
## % pres/err predicted correctly: -321.9974
## % of predictable range [ (model-null)/(1-null) ]: 0.2175379
```

```
## ***********
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
```

difficult to discriminate

##

them.

Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

i you have requested 7 values. Consider specifying shapes manually if you need that many have

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes

Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

ggsave(paste0(PlotName,".tif"),plot=FactorPlot,width = 360,height=400,units="mm",device="tiff",compress
use \blandscape and \elandscape to make markdown plots landscape if needed
FactorPlot

DA.Result<-dominanceAnalysis(BestModel)</pre>

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

DAContributionAverage <- ConvertDominanceResultToTable (DA.Result)
write.csv (DAContributionAverage, paste0 (TablesDir, CurPat, "_", CurTask, "_dominance_analysis_table.csv"), rokable (DAContributionAverage)

	CumErr	$I(pos^2)$	pos	stimlen
McFadden	0.1438752	0.0222747	0.0252043	0.0109076
SquaredCorrelation	0.1534374	0.0257684	0.0291477	0.0127369
Nagelkerke	0.2163341	0.0363313	0.0410958	0.0179580
Estrella	0.1724009	0.0271444	0.0307172	0.0133138

```
64
```

```
deviance_differences_df<-GetDevianceSet(FinalModelSet,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
write.csv(deviance_differences_df,paste0(TablesDir,CurPat,"_",CurTask,"_deviance_differences_table.csv"),row.names = FALSE)
deviance differences df
##
                                                                  model deviance
## CumErr + I(pos^2) + pos + stimlen CumErr + I(pos^2) + pos + stimlen 962.0434
## CumErr + I(pos^2) + pos
                                                CumErr + I(pos^2) + pos 964.9855
## CumErr + I(pos^2)
                                                      CumErr + I(pos^2) 972.9573
## CumErr
                                                                 CumErr 973.2428
## null
                                                                   null 1172.7170
                                      deviance_explained percent_explained
## CumErr + I(pos^2) + pos + stimlen
                                                210.6736
                                                                  17.96457
## CumErr + I(pos^2) + pos
                                                207.7316
                                                                  17.71370
## CumErr + I(pos^2)
                                                199.7597
                                                                  17.03392
## CumErr
                                                199.4742
                                                                  17.00958
## null
                                                  0.0000
                                                                   0.00000
                                     percent of explained deviance increment in explained
## CumErr + I(pos^2) + pos + stimlen
                                                          100.00000
                                                                                  1.3964904
## CumErr + I(pos^2) + pos
                                                           98.60351
                                                                                  3.7839949
## CumErr + I(pos^2)
                                                           94.81951
                                                                                  0.1355004
## CumErr
                                                           94.68401
                                                                                 94.6840143
## null
                                                                 NA
                                                                                  0.0000000
kable(deviance differences df[,2:3], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
kable(deviance_differences_df[,c(4:6)], format="latex", booktabs=TRUE) %>%
 kable_styling(latex_options="scale_down")
NagContributions <- t(DAContributionAverage[3,])</pre>
NagTotal<-sum(NagContributions)</pre>
NagPercents <- NagContributions / NagTotal</pre>
NagResultTable <- data.frame(NagContributions = NagContributions, NagPercents = NagPercents)</pre>
```

names(NagResultTable)<-c("NagContributions", "NagPercents")</pre>

	deviance	deviance_explained
$CumErr + I(pos^2) + pos + stimlen$	962.0434	210.6736
$CumErr + I(pos^2) + pos$	964.9855	207.7316
$CumErr + I(pos^2)$	972.9573	199.7597
CumErr	973.2428	199.4742
null	1172.7170	0.0000

	percent_explained	percent_of_explained_deviance	increment_in_explained
$CumErr + I(pos^2) + pos + stimlen$	17.96457	100.00000	1.3964904
$CumErr + I(pos^2) + pos$	17.71370	98.60351	3.7839949
$CumErr + I(pos^2)$	17.03392	94.81951	0.1355004
CumErr	17.00958	94.68401	94.6840143
null	0.00000	NA	0.0000000

```
write.csv(NagResultTable,paste0(TablesDir,CurPat," ",CurTask," nagelkerke contributions table.csv"),row.names = TRUE)
NagPercents
##
            Nagelkerke
## CumErr 0.69400304
## I(pos^2) 0.11655138
## pos
            0.13183600
## stimlen 0.05760958
sse_results_list<-compare_SS_accounted_for(FinalModelSet, "preserved ~ 1", PosDat, N_cutoff=10)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (cumerr residuals^2) * (N values$cumerr N): longer object length is not a multiple
## of shorter object length
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumcor_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (cumerr residuals^2) * (N values$cumerr N): longer object length is not a multiple
## of shorter object length
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumcor_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (cumerr residuals^2) * (N values$cumerr N): longer object length is not a multiple
## of shorter object length
```

```
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumcor resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (cumerr_residuals^2) * (N_values$cumerr_N): longer object length is not a multiple
## of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumcor resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
sse_table<-sse_results_table(sse_results_list)</pre>
write.csv(sse table,paste0(TablesDir,CurPat," ",CurTask," sse results table.csv"),row.names = TRUE)
sse_table
##
                                       model p_accounted_for model_deviance diff_CumErr
## 1
                          preserved ~ CumErr
                                                   0.8896471
                                                                    973.2428 0.000000000
## 2
                 preserved ~ CumErr+I(pos^2)
                                                   0.8989122
                                                                    972.9573 0.009265095
## 3
             preserved ~ CumErr+I(pos^2)+pos
                                                   0.9141261
                                                                    964.9855 0.024479055
## 4 preserved ~ CumErr+I(pos^2)+pos+stimlen
                                                   0.9158097
                                                                    962.0434 0.026162671
     diff CumErr+I(pos^2) diff CumErr+I(pos^2)+pos diff CumErr+I(pos^2)+pos+stimlen
## 1
             -0.009265095
                                      -0.024479055
                                                                        -0.026162671
## 2
              0.000000000
                                      -0.015213959
                                                                        -0.016897576
## 3
              0.015213959
                                       0.000000000
                                                                        -0.001683616
## 4
              0.016897576
                                       0.001683616
                                                                        0.000000000
kable(sse table[,1:3], format="latex", booktabs=TRUE) %>%
  kable styling(latex options="scale down")
```

model	$p_accounted_for$	${\bf model_deviance}$
preserved ~ CumErr	0.8896471	973.2428
preserved $\sim \text{CumErr} + I(\text{pos}^2)$	0.8989122	972.9573
preserved $\sim \text{CumErr} + I(\text{pos}^2) + \text{pos}$	0.9141261	964.9855
$preserved \sim CumErr + I(pos^2) + pos + stimlen$	0.9158097	962.0434

model	$diff_CumErr$	diff_CumErr+I(pos^2)	diff_CumErr+I(pos^2)+pos
preserved ~ CumErr	0.0000000	-0.0092651	-0.0244791
preserved $\sim \text{CumErr} + I(\text{pos}^2)$	0.0092651	0.0000000	-0.0152140
$preserved \sim CumErr+I(pos^2)+pos$	0.0244791	0.0152140	0.0000000
$preserved \sim CumErr + I(pos^2) + pos + stimlen$	0.0261627	0.0168976	0.0016836

```
write.csv(results_report_DF,paste0(TablesDir,CurPat,"_",CurTask,"_results_report_df.csv"),row.names = FALSE)
kable(sse_table[,c(1,4:6)], format="latex", booktabs=TRUE) %>%
kable_styling(latex_options="scale_down")
```