

Capstone Project

Mobile Price Range Prediction

Rushikesh s Shete (rushishete101@gamil.com)

Problem statement:

In the competitive mobile phone market companies wantto understand sales data of mobile phones and factors which drive the prices. The objective is to find out some relation between features of a mobile phone(eg:- RAM,Internal Memory, etc) and its selling price. In this problem, we do not have to predict theactual price but a price range indicating how high the price is.

Points to discuss:

- Data description and summary
- Exploratory data analysis
- Heat map
- Machine learning algorithms
 - 1.Logistic regression
 - 2. Decision tree
 - 3. Random forest classifier
 - 4. Xgboost classifier
- conclusion

Data description:

The data contains information regarding mobile phone features, specifications etc and their price range. The various features and information can be used to predict the price range of a mobile phone.

- Battery_power Total energy a battery can store in one time measured inmAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera mega pixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone

Data description:

- N_cores Number of cores of processor
- Pc Primary Camera mega pixels
- Px_height Pixel Resolution Height
- Px_width Pixel Resolution Width
- Ram Random Access Memory in Mega Bytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last when you are
- Three_g Has 3G or not
- Touch_screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of O(low cost), 1(medium cost),
- 2(high cost) and 3(very high cost).

price

• there are mobile phones in 4 price ranges. the number of elements is almost similar

Battery

• this plot shows how the battery mAh is spread. there is a gradual increase as the price range increases

Bluetooth

 half the devices have Bluetooth, and half don't

 Ram has continuous increase with price range while moving from Low cost to Very high cost

There is not a continuous increase in pixel width as we move from Low cost to Very high cost. Mobiles with 'Medium cost' and 'High cost' has almost equal pixel width. so we can say that it would be a driving factor in deciding price_range.

px_height

 Pixel height is almost similar as we move from Low cost to Very high cost.little variation in pixel_height

screen_size

 Combining the sc_height and sc_width into one column that is sc_size, Screen Size shows little variation along the target variables. This can be helpful in predicting the target categories

4G and 3G

50% of the phones support 4_g and 76% of phones support
 3_g,feature 'three_g' play an important feature in prediction

FC (front camera megapixels)

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 price_range

PC (Primary camera Megapixels)

mobile weight

- This features distribution is almost similar along all the price ranges variable, it may not be helpful in making predictions
- Primary camera megapixels are showing a little variation along the target categories, which is a good sign for prediction.

• costly phones are lighter

Heat map

- RAM and price_range shows high correlation which is a good sign, it signifies that RAM will play major deciding factor in estimating the price range.
- There is some collinearity in feature pairs ('pc', 'fc') and ('px_width', 'px_height'). Both correlations are justified since there are good chances that if front camera of a phone is good, the back camera would also be good.
- Also, if px_height increases, pixel width also increases, that means the overall pixels in the screen. We can replace these two features with one feature. Front Camera megapixels and Primary camera megapixels are different entities despite of showing colinearity. So we'll be keeping them as they are.

ML algorithms:

- 1. Logistic regression
- 2. Decision tree
- 3. Random Forest classification
- 4. XGboost

Logistic regression

```
from sklearn.metrics import classification_report
  print('Classification report for Logistic Regression (Test set)= ')
  print(classification_report(y_pred_test, y_test))
Classification report for Logistic Regression (Test set)=
             precision
                          recall f1-score support
                   0.97
                             0.95
                                       0.96
                                                  107
                                      0.86
                  0.86
                             0.87
                                                   90
                  0.82
                            0.82
                                      0.82
                                                   92
           3
                  0.92
                             0.93
                                       0.92
                                                  111
                                       0.90
                                                  400
    accuracy
   macro avg
                   0.89
                             0.89
                                       0.89
                                                  400
weighted avg
                  0.90
                             0.90
                                       0.90
                                                  400
```

Train_accuracy: 92% Test_accuracy: 90%

Logistic Regression performed better than the other two model

Seaborn Confusion Matrix with labels

Random forest classifier with hyper parameter tuning :

Train accuracy: 86.5%

As we can see the top 3 important features of our dataset are: RAM, battery_power ,pixels

•RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.

Decision tree

Decision tree with hyperparameter tuning

Test_accuracy: 82%

Test accuracy: 84%

In [66]: # Evaluation metrics for test

print('Classification report for Decision Tree (Test set)= ')
print(classification_report(y_pred_test, y_test))

Classification report for Decision Tree (Test set)= precision recall f1-score support 0.87 0.98 0.92 0.81 0.73 0.77 101 0.78 0.67 0.72 108 0.93 0.87 98 0.81 0.82 400 accuracy 0.83 0.82 400 0.82 macro avg weighted avg 0.82 0.82 0.82

[n [68]:	# Prediction
	<pre>y_pred_test = grid.predict(X_test) y_pres_train = grid.predict(X_train) # Evaluation metrics for test</pre>
	<pre>print('Classification Report for Decision Tree (Test set)= ') print(classification_report(y_test, y_pred_test))</pre>
C	lassification Report for Decision Tree (Test set)= precision recall f1-score support

Classification	n Report for	Decision	Tree (Test	set)=	
	precision	recall	f1-score	support	
0	0.96	0.89	0.92	105	
1	0.75	0.85	0.79	91	
2	0.78	0.73	0.75	92	
3	0.90	0.92	0.91	112	
accuracy			0.85	400	
macro avg	0.85	0.84	0.84	400	
weighted avg	0.85	0.85	0.85	400	

Seaborn Confusion Matrix with labels

Predicted Values

XGboost

Test_accuracy: 89%

```
# Applying XGBoost
  from xgboost import XGBClassifier
  xgb = XGBClassifier(max depth = 5, learning rate = 0.1)
  xgb.fit(X_train, y_train)
  XGBClassifier(max depth=5, objective='multi:softprob')
  # Prediction
  y pred train = xgb.predict(X train)
  y pred test = xgb.predict(X test)
  # Evaluation metrics for test
  score = classification_report(y_test, y_pred_test)
  print('Classification Report for XGBoost(Test set)= ')
  print(score)
Classification Report for XGBoost(Test set)=
             precision
                          recall f1-score
                                             support
                   0.95
                             0.93
                                       0.94
                                                  105
                   0.83
                             0.88
                                       0.86
                                                   91
                             0.84
                                                   92
                   0.81
                                       0.82
                  0.94
                             0.89
                                       0.92
                                                  112
                                       0.89
                                                  400
    accuracy
                                                  400
                   0.88
                             0.89
                                       0.88
   macro avg
weighted avg
                  0.89
                             0.89
                                       0.89
                                                  400
```

XGboost with hyperparameter tuning

Test_accuracy: 90%

```
y_pred_train = grid.predict(X_train)
y pred test = grid.predict(X test)
# Evaluation metrics for test
score = classification_report(y_test, y_pred_test)
print('Classification Report for tuned XGBoost(Test set)= ')
print(score)
```

Classification Report for tuned XGBoost(Test set)=									
precision			recall	f1-score	support				
	•								
	0	0.94	0.93	0.94	105				
	1	0.85	0.89	0.87	91				
	2	0.84	0.87	0.86	92				
	3	0.95	0.90	0.93	112				
accurac	у			0.90	400				
macro av	/g	0.90	0.90	0.90	400				
weighted av	/g	0.90	0.90	0.90	400				

Seaborn Confusion Matrix with labels

Predicted Values

Conclusions:

- From EDA we can see that here are mobile phones in 4 price ranges. The number of elements is almost similar.
- half the devices have Bluetooth, and half don't
- there is a gradual increase in battery as the price range increases
- Ram has continuous increase with price range while moving from Low cost to Very high cost
- costly phones are lighter
- RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
- form all the above experiments we can conclude that logistic regression and, XGboosting with using hyperparameters we got the best results
- Logistic regression shows approx accuracy of 90% and the other two shows approx 80% accuracy, which shows that the data were properly classified.
- The accuracy and performance of the model is evaluated by using confusion matrix

You have successfully completed your Machine Learning Capstone Project !!!

You have successfully completed your Machine Learning Capstone Project !!!