目 录

牛头刨床机构的分析与综合
1设计题目及原始数据
1.1 题目: 牛头刨床机构的分析与综合
1.2 原始数据
1.3 名称符号的意义
2 机构运动简图
3 各部分设计计算结果及必要的说明
4 导杆机构的运动分析
4. 1 已知数据
4.2设计步骤
4. 2. 1 位置的划分
4. 2. 2 4, 8', 11 位置的运动分析
4. 2. 3 运动分析结果汇总表
5 导杆机构动态静力分析
5. 1 已知数据
5. 2 设计步骤
5.2.1 惯性力及力矩结果汇总表
5. 2. 2 求齿轮的重量
5. 2. 3 4, 8', 11 位置动态静力分析
5. 2. 4 动力分析结果汇总表
6齿轮机构设计计算
6.1 已知数据
6.2 设计步骤
6. 2. 1 确定变位系数
6. 2. 2 计算齿轮几何尺寸
1) NI ENTEN STAY & A

牛头刨床机构的分析与综合

1设计题目及原始数据

1.1 题目: 牛头刨床机构的分析与综合

1.2 原始数据

方案号	H mm	K	L _{O2O3}	P ₁	P ₂	P_3	$ m L_{_{FS_6}}$ mm	m ₄	m₅ kg	m ₆ kg
III	500	1.5	430	0.5	0.32	0.5	150	20	3	62
	JS ₄ kgm²	JS ₅ kgm²	F _c	Y _p	n ₂ r.p.m	m mm	Z_4	Z_5		
	1.2	0.025	1500	180	80	14	16	48		

1.3 名称符号的意义

Н	刨头的最大行程
K	导杆机构行程速度变化系数
$L_{o_2o_3}$	导杆转动副 O_3 至曲柄转动副 O_2 的距离
P ₁	导杆 4 质心 S_4 至转动副 O_3 之距与导杆长之比,即 L_{BS5} / L_{BF}
P ₂	L _{BF} / L _{O3} 导杆 5 与导杆 4 的长度比
P ₃	连杆 5 质心 S_5 到转动副 B 之距与杆 5 长之比,即 L_{BS5} $/L_{BF}$
$L_{ ext{FS}_6}$	刨头6质心到转动副 F 之距
m ₄ , m ₅ , m ₆	分别为构件 4、5、6 的质量
JS ₄ , JS ₅	分别为构件 4、5 对各自质心的转动惯量
F _c	刨头所受切削阻力
Y _p	切削阻力 FC 至 O2 的垂直距离
n_2	曲柄 2, 齿轮 5 及凸轮 7 的转速
m	齿轮 4、5 的模数

Z₄, Z₅ 分别为齿轮 4、5 的齿数

2 机构运动简图

3 各部分设计计算结果及必要的说明

1.导杆机构的极位夹角 θ 与导杆的最大摆角 ψ :

$$\psi = \theta = 180^{\circ} \frac{K - 1}{K + 1} = 36^{\circ}$$

2. 求导杆长 L₀₃B:

$$L_{O_3B} = \frac{H}{2\sin\frac{\Psi}{2}} = 809mm$$

3.求曲柄长 L_{O,A}:

$$L_{O_2A} = L_{O_2O_3} \sin \frac{\Psi}{2} = 133mm$$

4. 求连杆长 L_{BF}:

$$L_{BF} = L_{O_3B} \cdot P_2 = 259mm$$

5.求刨头导路 x-x 至 O_3 点的距离 L_{O_3M} ; 从受力情况(有较大的传动角)出发,x-x 常取为通过 B_1B_2 的扰度 DE 的中点 M。由图得:

$$L_{O_3M} = L_{O_3B} - \frac{DE}{2} = L_{O_3B} \left(1 + \cos \frac{\Psi}{2} \right) / 2 = 789mm$$

6.求导杆质心到转动副 O3 之距 Lo3s4:

$$L_{O_3S_4} = L_{O_3B} \cdot P_1 = 405mm$$

7.求连杆质心到转动副 B 之距 L_{BS5}:

$$L_{BS_5} = L_{BF} \cdot P_3 = 130mm$$

4 导杆机构的运动分析

4.1 已知数据

- 1.由机构综合确定各构件长度和质心位置;
- 2.曲柄转速 n₂=80r.p.m。

4.2 设计步骤

4. 2. 1 位置的划分

将机构运动简图选定 17个位置,其中 1 对应导杆的左极限位置,1—12 每个位置间隔为 30°,1'对应刨头开始切削的位置,7'对应刨头结束切削的位置,4'与 10'对应曲柄与导杆共线的两个位置,8'对应导杆的右极限位置。

4. 2. 2 4, 8', 11 位置的运动 分析

4. 2. 2. 1 4位置运动分析

4位置速度向量方程

$$\overrightarrow{V_{A4}} = \overrightarrow{V_{A3}} + \overrightarrow{V_{A_4A_3}}$$
 $\bot 4$ 杆 $\bot 2$ 杆 $// 4$ 杆 ? ? ? ? $\overrightarrow{V_F} = \overrightarrow{V_B} + \overrightarrow{V_{FB}}$
水平 $\bot 4$ 杆 $// 5$ 杆

? \(\sqrt{?} \)

4位置速度多边形

4位置加速度向量方程

4位置加速度多边形

4. 2. 2. 2 8' 位置运动分析

8'位置速度向量方程

$$\overrightarrow{\mathbf{v}_{\mathrm{A4}}} = \overrightarrow{\mathbf{v}_{\mathrm{A3}}} + \overrightarrow{\mathbf{v}_{\mathrm{A_4A_3}}}$$
 $\bot 4$ 杆 $\bot 2$ 杆 $//4$ 杆 ? ? \checkmark ? ? $\overrightarrow{\mathbf{v}_{\mathrm{F}}} = \overrightarrow{\mathbf{V}_{\mathrm{B}}} + \overrightarrow{\mathbf{v}_{\mathrm{FB}}}$
水平 $\bot 4$ 杆 $//5$ 杆 ? \checkmark ?

8'位置速度多边形

8'位置加速度向量方程

$$\overrightarrow{a_{A4}^n}$$
 + $\overrightarrow{a_{A4}^t}$ = $\overrightarrow{a_{A3}}$ + $\overrightarrow{a_{A4A3}^k}$ + $\overrightarrow{a_{A4A3}^r}$ + $\overrightarrow{a_{A4A3}^r}$ + \cancel{A} +

$$\overrightarrow{a_F} = \overrightarrow{a_B} + \overrightarrow{a_{FB}} + \overrightarrow{a_{FB}}$$
水平 同 a4 方向 //5 杆 1.5 杆

8'位置加速度多边形

4.2.2.3 11 位置运动分析

11 位置速度向量方程

$$\overline{\mathbf{v}_{A4}} = \overline{\mathbf{v}_{A3}} + \overline{\mathbf{v}_{A_4A_3}}$$
 $\bot 4$ 杆 $\bot 2$ 杆 $// 4$ 杆 ? ? ? $\overline{\mathbf{v}_F} = \overline{\mathbf{V}_B} + \overline{\mathbf{v}_{FB}}$
水平 $\bot 4$ 杆 $// 5$ 杆 ? ?

11 位置速度多边形

11 位置加速度向量方程

$$\overrightarrow{a_{A4}}$$
 + $\overrightarrow{a_{A4}}$ = $\overrightarrow{a_{A3}}$ + $\overrightarrow{a_{A4A3}}$ + $\overrightarrow{a_{A4A3}}$ + A_{A4A3} + A_{A4A33} + A_{A4A3} + A_{A4A3} + A_{A4A33} +

11 位置加速度多边形

4.2.3 运动分析结果汇总表

数值	$\omega_{_4}$	$\omega_{\scriptscriptstyle 5}$	$V_{\scriptscriptstyle F}$	\mathcal{E}_4	\mathcal{E}_{5}	a_{s_4}	a_{ss}	$a_{_{\mathrm{F}}}$
位置	rad/s	rad/s	m/s	rad/s^2	rad/s^2	m/s^2	m/s^2	m/s^2
4	2.0	0.6	1.6	2.3	11.2	1.8	1.5	1.8
8,	0	0	0	23.2	21.6	9.3	18.0	18.2
11	3.5	1.0	2.9	15.7	32.4	7.9	13.8	12.9

5 导杆机构动态静力分析

5.1 已知数据

- 1.由运动分析确定的加速度与角加速度 ε_4 , ε_5 , a_{s4} , a_{s5} , a_F ;
- 2. 各构件的质量 m_4 , m_5 , m_6 (滑块 3 质量不计);
- 3. 各构件的转动惯量 JS_4 , JS_5 ;
- 4. 切削阻力F_c及其线图;
- 5. 齿轮 5 模数 m, 齿数 Z_5 , 两齿轮中心线 O_1O_2 与 X 轴夹角 $\alpha=30^\circ$ 。

5.2 设计步骤

5.2.1 惯性力及力矩结果汇总表

名称		导杆 4			导杆 5		刨头 6
	F_{I4}	M_{I4}	H_{I4}	F_{15}	M_{I5}	H_{I5}	F_{16}
位置	N	Nm	mm	N	Nm	mm	N
4	35	2.81	80.29	4.38	0.28	63.93	111.6
8'	186	27.84	149.68	54	0.54	10.00	1128.4
11	159	18.89	118.81	41.4	0.81	19.57	799.8

5.2.2 求齿轮 的重量

齿轮 5 的重量用下式近似计算:

$$G_{z5} = 1.274 \times 10^{-5} \pi d_f S \rho(N) = 835N$$

式中:

齿根圆直径 $d_f = m(Z_5 - 2.5) = 637mm$;

齿圈截断面面积: $S = 3mB = 4200mm^2$:

B: 齿轮宽, 取为100mm;

 ρ : 齿轮材料密度,钢的密度为7.8g/cm³。

5. 2. 3 4,8', 11 位置动态静力分析

5.2.3.1 4 位置动态 静力分析

a. 构件 5 力矩平衡:

$$\vec{F_{i5}} \cdot \vec{l_{\vec{F}_{i5} \to F}} + \vec{G_5} \cdot \vec{l_{\vec{G}_5 \to F}} + \vec{R_{45}} \cdot \vec{l_{\vec{R}_{45} \to F}} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

b. 杆组 6-5 力方程:

$$\vec{R}_{45}^n + \vec{R}_{45}^t + \vec{G}_5 + \vec{F}_{i5} + \vec{G}_6 + \vec{F}_{i6} + \vec{F}_C + \vec{R}_{16} = 0$$

求出 \vec{R}_{45}^n 和 \vec{R}_{16} 的大小

c. 构件 4 力矩平衡:

$$F_{i4} \cdot l_{\vec{F}_{i4} \to O_3} + G_4 \cdot l_{\vec{G}_4 \to O_3} + R_{34} \cdot l_{\vec{R}_{34} \to O_3} + R_{54} \cdot l_{\vec{R}_{54} \to O_3} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

d. 杆组 4-3 力方程:

$$\vec{R}_{54} + \vec{R}_{23} + \vec{G}_4 + \vec{F}_{i4} + \vec{R}_{14} = 0$$

求出 \vec{R}_{14} 的大小和方向

e. 构件 2 力矩平衡:

$$R_{z4z5} \cdot r_{b5} + R_{32} \cdot l_{\vec{R}_{32} \to O_2} = 0$$

求出成2425的大小和指向

f. 齿轮 Z5力方程

$$\vec{R}_{32} + \vec{R}_{2425} + \vec{G}_{25} + \vec{R}_{12} = 0$$

求得 \vec{R}_{12}

g、4位置动态静力图

5.2.3.2 8'位置动态 静力分析

a. 构件 5 力矩平衡:

$$F_{i5} \cdot l_{\vec{F}_{i5} \to F} + G_5 \cdot l_{\vec{G}_5 \to F} + R_{45}^t \cdot l_{\vec{R}_{45}^t \to F} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

b. 杆组 6-5 力方程:

$$\vec{R}_{45}^n + \vec{R}_{45}^t + \vec{G}_5 + \vec{F}_{i5} + \vec{G}_6 + \vec{F}_{i6} + \vec{R}_{16} = 0$$

求出 \vec{R}_{45}^n 和 \vec{R}_{16} 的大小

c. 构件 4 力矩平衡:

$$\vec{F_{i4}} \cdot \vec{l_{F_{i4} \to O_3}} + G_4 \cdot \vec{l_{G_4 \to O_3}} + R_{34} \cdot \vec{l_{R_{34} \to O_3}} + R_{54} \cdot \vec{l_{R_{54} \to O_3}} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

d. 杆组 4-3 力方程:

$$\vec{R}_{54} + \vec{R}_{23} + \vec{G}_4 + \vec{F}_{i4} + \vec{R}_{14} = 0$$

求出 \vec{R}_{14} 的大小和方向

e. 构件 2 力矩平衡:

$$R_{2425} \cdot r_{b5} + R_{32} \cdot l_{\vec{R}_{32} \to O_2} = 0$$

求出 \vec{R}_{z4z5} 的大小和指向

f. 齿轮 Zs 力方程

$$\vec{R}_{32} + \vec{R}_{2425} + \vec{G}_{25} + \vec{R}_{12} = 0$$

求得 \vec{R}_{12}

g、8'位置动态静力图

5.2.3.3 11 位置动态 静力分析

a. 构件5力矩平衡:

$$F_{i5} \cdot l_{\vec{F}_{i5} \to F} + G_5 \cdot l_{\vec{G}_5 \to F} + R_{45}^t \cdot l_{\vec{R}_{45}^t \to F} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

b. 杆组 6-5 力方程:

$$\vec{R}_{45}^n + \vec{R}_{45}^t + \vec{G}_5 + \vec{F}_{i5} + \vec{G}_6 + \vec{F}_{i6} + \vec{R}_{16} = 0$$

求出 \vec{R}_{45}^n 和 \vec{R}_{16} 的大小

c. 构件 4 力矩平衡:

$$F_{i4} \cdot l_{\vec{F}_{i4} \to O_3} + G_4 \cdot l_{\vec{G}_4 \to O_3} + R_{34} \cdot l_{\vec{R}_{34} \to O_3} + R_{54} \cdot l_{\vec{R}_{54} \to O_3} = 0$$

求出 \vec{R}_{45}^t 的大小和指向

d. 杆组 4-3 力方程:

$$\vec{R}_{54} + \vec{R}_{23} + \vec{G}_4 + \vec{F}_{i4} + \vec{R}_{14} = 0$$

求出 \vec{R}_{14} 的大小和方向

e. 构件 2 力矩平衡:

$$R_{z4z5} \cdot r_{b5} + R_{32} \cdot l_{\vec{R}_{32} \to \Phi_2} = 0$$

求出 \vec{R}_{2425} 的大小和指向

f. 齿轮 Z5力方程

$$\vec{R}_{32} + \vec{R}_{2425} + \vec{G}_{25} + \vec{R}_{12} = 0$$

求得 \vec{R}_{12}

g. 11位置动态静力图

5.2.4 动力分析结果汇总表

名称	F_{c}	R ₁₆	R ₆₅	R ₅₄	R ₄₃	R ₁₄	R ₁₂	R _{z4Z5}	$M_{\rm b}$
位置	N	N	N	N	N	N	N	N	Nm
4	1500	380	1640	1630	2442	800	2580	1008.0	106.1
8'	0	530	1110	1120	2510	960	2 680	0	0
11	0	360	800	800	2414	1560	3120	996.3	-104.8

6齿轮机构设计计算

6.1 已知数据

- a、 占数中 z₄=16, z₅=48;
- b、模数 m=14mm;
- c、齿顶高系数 $h_a^*=1$,径向间隔系数 $c^*=0.25$;
- d、压力角 $\alpha = 20^{\circ}$;
- e、齿轮传动采用等高度变位传动。

6.2 设计步骤

6.2.1 确定变位系数

参阅附录三可确定变位系数 $x_4 = 0.366$, $x_5 = -0.366$ 。

6.2.2 计算齿轮几何尺寸

	1	r	i
名称	符号	计算公式	计算结果
分度圆直径	d_4	$d_4 = mz_4$	224mm
分度圆直径	d_5	$d_5 = mz_5$	672mm
基圆直径	d_{b4}	$d_{b4} = mz_4 \cos \alpha$	210.5mm
基圆直径	d_{b5}	$d_{b5} = mz_5 \cos\alpha$	631.5mm
齿根圆直径	d_{f4}	$d_{f4} = m(z_4 - 2 h_a^* - 2 c^* + 2 x)$	199.2mm
齿根圆直径	d_{f5}	$d_{f5} = m(z_5 - 2 h_a^* - 2 c^* + 2 x)$	626.8mm
齿顶圆直径	d_{a4}	$d_{a4} = m(z_4 + 2 h_a^* + 2 x_4)$	262.2mm
齿顶圆直径	d_{a5}	$d_{a5} = m(z_5 + 2 h_a^* + 2 \chi)$	689.7mm
分度圆齿厚	S_4	$s_4 = m(\frac{\pi}{2} + 2 \chi_4 \tan \alpha)$	25.7mm
分度圆齿厚	S ₅	$s_5 = m(\frac{\pi}{2} + 2 \times \tan \alpha)$	18.3mm
齿顶圆齿厚	s _{a4}	$s_{a4} = s_4 \frac{r_{a4}}{r_4} - 2r_{a4} (\text{inv } \alpha_{a4} - \text{inv } \alpha)$	6.8mm
齿顶圆齿厚	s _{a5}	$s_{a5} = s_5 \frac{r_{a5}}{r_5} - 2r_{a5} (\text{inv } \alpha_{a5} - \text{inv } \alpha)$	11.5mm
中心距 a	а	$a = \frac{m(z_4 + z_5)}{2}$	448mm
重合度 ε	3	$\varepsilon = \frac{1}{2\pi} \left[z_4 \left(\tan \alpha_{a4} - \tan \alpha^{\circ} \right) + z_5 \left(\tan \alpha_{a5} - \tan \alpha^{\circ} \right) \right]$	1.54