# Valuation of Piecewise Linear Double Barrier Options

Hangsuck Lee<sup>1</sup> Hongjun Ha<sup>2</sup> Minha Lee<sup>3\*</sup>

<sup>1</sup>Department of Mathematics & Actuarial Science; Sungkyunkwan University

<sup>2</sup>Department of Mathematics; Saint Joseph's University

<sup>3</sup>Department of Mathematics; Sungkyunkwan University

\*Presenter

May 28, 2021

#### **Contents**

- Introduction
- Literature review
- Preliminaries
- Piecewise linear double barrier
- Closed-form pricing formulas
- Numerical analysis
- Conclusion
- Reference

#### Introduction

- The double barrier options are actively traded in the over-the-counter market by virtue of their tailoring capacity for risk management and investment strategy with low cost.
  - For example, double knock-out options provide a vehicle to materialize investment projects.
- It is possible to approximate the prices of complex double barrier options using numerical methods, but it may be costly to employ them.
- Hence, it is worth investing in a new type of non-trivial double barrier and developing a corresponding valuation formula from practical and theoretical perspectives.
- In this paper, we establish a closed-form pricing formula for piecewise linear double barrier options and their variants.

#### Literature review

- Kunitomo and Ikeda (1992) provide the closed-form solutions to the curved double barrier options.
- Buchen and Konstandatos (2009) derives prices of the exponential double barrier options including partial barrier.
- Guillaume (2010) provide non-crossing probability of a piecewise linear double barrier over two disjoint intervals.
- Lee et al. (2021) derived the closed-form solutions to the piecewise linear barrier options over three disjoint intervals.

#### Literature review

Illustrations of four classical double barriers









#### Literature review

Illustrations of four double barriers discussed in this paper









#### **Preliminaries**

- One-dimensional Brownian motion
  - $S(t) = S(0) e^{X(t)}, t \ge 0$
  - $dX(t) = \mu dt + \sigma dZ(t), dZ(t) \sim N(0, dt).$

- Essher transform and factorization formula (see Gerber and Shiu (1994, 1996))
  - The moment generating function of X(t) under Esshcer measure of parameter h is

$$E[e^{zX(t)}; h] = \exp(z\mu t + z^2\sigma^2t/2).$$

• The **risk-neutral measure** is the Essher measure of parameter  $h = h^*$  with respect to which the process  $\{e^{-rt}S(t)\}$  is a martingale. Thus,

$$E[e^{-rt}S(t); h^*] = S(0).$$

#### **Preliminaries**

• The process  $\{X(t)\}$  under Esscher measure of parameter h is a one-dimensional Brownian motion with drift  $\mu + h\sigma^2$  and diffusion coefficient  $\sigma > 0$ .

- Special case of the factorization formula (see Gerber and Shiu (1994, 1996))
  - For a random variable Y that is a real-valued function of  $\{X(t)\}_{t\geq 0}$ ,  $E[e^{cX(t)}Y;h]=E[e^{cX(t)};h]$  E[Y;h+c].
  - In particular, for and event B whose condition is determined by  $\{X(t)\}_{t\geq 0}$ ,  $\mathrm{E}[e^{cX(t)}I(B);h]=\mathrm{E}[e^{cX(t)};h]\,\mathrm{E}[I(B);h+c]=\mathrm{E}[e^{cX(t)};h]\,\mathrm{Pr}(B;h+c),$  where  $I(\cdot)$  denotes the indicator function and  $\mathrm{Pr}(B;h)$  is the probability of the even B under the parameter h.

# Piecewise linear double barrier (Preview)



#### Piecewise linear double barrier

- Barrier expression
  - Up barrier  $u(t) = \sum_{i=1}^{n} u_i(t) I(t_{i-1} \le t < t_i) = \sum_{i=1}^{n} (u_i + u_i^s(t t_{i-1})) I(t_{i-1} \le t < t_i)$
  - Down barrier  $d(t) = \sum_{i=1}^{n} d_i(t) I(t_{i-1} \le t < t_i) = \sum_{i=1}^{n} (d_i + d_i^s(t t_{i-1})) I(t_{i-1} \le t < t_i)$



#### Piecewise linear double barrier

#### Barrier expression

• Up barrier 
$$u(t) = \sum_{i=1}^{n} u_i(t) I(t_{i-1} \le t < t_i) = \sum_{i=1}^{n} (u_i + u_i^s(t - t_{i-1})) I(t_{i-1} \le t < t_i)$$

• Down barrier 
$$d(t) = \sum_{i=1}^{n} d_i(t) I(t_{i-1} \le t < t_i) = \sum_{i=1}^{n} (d_i + d_i^s(t - t_{i-1})) I(t_{i-1} \le t < t_i)$$

#### Definition

• 
$$m_i^k = [u_i - (d_i - u_i) \frac{k-1}{2}]I(k : \text{odd}) + [(d_i - u_i) \frac{k}{2}]I(k : \text{even})$$

• 
$$v_i^k = [u_i^s - (d_i^s - u_i^s) \frac{k-1}{2}]I(k : \text{odd}) + [(d_i^s - u_i^s) \frac{k}{2}]I(k : \text{even})$$

• 
$$w_i^k = [(u_i d_i^s - d_i u_i^s) \frac{k}{2}] I(k : \text{even}).$$

- Single period
  - Linear double barrier

$$\Pr(x_1^d < X(t_1) < x_1^u, \{d_1(t) < X(t) < u_1(t), 0 < t < t_1\})$$

$$=\sum_{k\in\mathbb{Z}}(-1)^k e^{\frac{2}{\sigma^2}[(\mu_1-\nu_1^k)m_1^k+\nu_1^k]}\Pr(x_1^d < X(t_1) + 2m_1^k < x_1^u \mid \mu_1).$$



- Single period
  - Linear double barrier

$$\Pr(x_1^d < X(t_1) < x_1^u, \{d_1(t) < X(t) < u_1(t), 0 < t < t_1\})$$

$$= \sum_{k \in \mathbb{Z}} (-1)^k e^{\frac{2}{\sigma^2} [(\mu_1 - v_1^k) m_1^k + w_1^k]} \Pr(x_1^d < X(t_1) + 2m_1^k < x_1^u \mid \mu_1).$$

• In (A.10) of Kunitomo and Ikeda (1992), above formula can be obtained by replacing  $x_0$ ,  $\gamma_1$ ,  $\gamma_2$ ,  $\delta_1$ ,  $\delta_2$ ,  $\mu^*$ , and T by 0,  $u_1$ ,  $d_1$ ,  $u^s_1$ ,  $d_1^s$ ,  $u_1^s$ , and  $t_1$ , respectively.

- Two-period
  - Two-period piecewise linear double barrier

$$\Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \bigcap_{i=1}^{2} \{d_{i}(t) < X(t) < u_{i}(t), t_{i-1} < t < t_{i}\} \mid \mu_{1}, \mu_{2}\right) \\
= \sum_{\kappa = (k_{1}, k_{2}) \in \mathbb{Z}^{2}} (-1)^{k_{1} + k_{2}} e^{\sum_{i=1}^{2} 2 \frac{(s_{i}^{\kappa} \mu_{[i]}^{\kappa} - v_{i}^{k_{i}}) m_{i}^{k_{i}} + w_{i}^{k_{i}}}{\sigma^{2}}} \mathbb{E}\left[e^{-\frac{2R_{1}^{\kappa}}{\sigma^{2}} X(t_{1})}\right] \Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < s_{i}^{\kappa} X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:2]}^{\kappa}\}\right).$$



- Two-period
  - Two-period piecewise linear double barrier

$$\begin{split} & \Pr \bigg( \bigcap\nolimits_{i=1}^{2} \{ x_{i}^{d} < X(t_{i}) < x_{i}^{u} \}, \bigcap\nolimits_{i=1}^{2} \{ d_{i}(t) < X(t) < u_{i}(t), t_{i-1} < t < t_{i} \} \mid \mu_{1}, \mu_{2} \bigg) \\ & = \sum_{\kappa = (k_{1}, k_{2}) \in \mathbb{Z}^{2}} (-1)^{k_{1} + k_{2}} e^{\sum_{i=1}^{2} 2 \frac{(s_{i}^{\kappa} \mu_{[i]}^{\kappa} - v_{i}^{k_{i}}) m_{i}^{k_{i}} + w_{i}^{k_{i}}}{\sigma^{2}}} \mathbf{E} \Bigg[ e^{-\frac{2R_{1}^{\kappa}}{\sigma^{2}} X(t_{1})} \Bigg] \Pr \Bigg( \bigcap_{i=1}^{2} \{ x_{i}^{d} < s_{i}^{\kappa} X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:2]}^{\kappa} \} \Bigg). \end{split}$$

$$m_{[1]}^{\kappa} = m_1^{k_1}, \ m_{[2]}^{\kappa} = (m_2^{k_2} - m_1^{k_1})I(k_2 : \text{odd}) + (m_2^{k_2} + m_1^{k_1})I(k_2 : \text{even})$$
 
$$s_2^{\kappa} = 1, \ s_1^{\kappa} = -I(k_2 : \text{odd}) + I(k_2 : \text{even})$$
 
$$R_1^{\kappa} = (\mu_2 - \nu_2^{k_2})I(k_2 : \text{odd})$$
 
$$\mu_{[1]}^{\kappa} = s_1^{\kappa}(\mu_1 - 2R_1^{\kappa}), \ \mu_{[2]}^{\kappa} = \mu_2$$

- Two-period
  - Early monitoring partial double barrier  $(k_2 = 0)$

$$\Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \{d_{1}(t) < X(t) < u_{1}(t), t_{0} < t < t_{1}\} \mid \mu_{1}, \mu_{2}\right) \\
= \sum_{k_{1} \in \mathbb{Z}} (-1)^{k_{1}} e^{\frac{2(\mu_{1} - v_{1}^{k_{1}})m_{1}^{k_{1}} + w_{1}^{k_{1}}}{\sigma^{2}}} \mathbb{E}\left[e^{-\frac{2R_{1}^{\kappa}}{\sigma^{2}}X(t_{1})}\right] \Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < X(t_{i}) + 2m_{1}^{k_{1}} < x_{i}^{u} \mid \mu_{1}, \mu_{2}\}\right).$$



- Two-period
  - Late monitoring partial double barrier  $(k_1 = 0)$

$$\Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \{d_{2}(t) < X(t) < u_{2}(t), t_{1} < t < t_{2}\} \mid \mu_{1}, \mu_{2}\right) \\
= \sum_{k_{2} \in \mathbb{Z}} (-1)^{k_{2}} e^{\frac{2(\mu_{2} - v_{2}^{k_{2}})m_{2}^{k_{2}} + w_{2}^{k_{2}}}{\sigma^{2}}} \operatorname{E}\left[e^{\frac{-2R_{1}^{\kappa}}{\sigma^{2}}X(t_{1})}\right] \Pr\left(\bigcap_{i=1}^{2} \{x_{i}^{d} < s_{i}^{\kappa}X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:2]}^{\kappa}\}\right).$$



- Three-period
  - Three-period piecewise linear double barrier

$$\Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \bigcap_{i=1}^{3} \{d_{i}(t) < X(t) < u_{i}(t), t_{i-1} < t < t_{i}\} \mid \mu_{1}, \mu_{2}, \mu_{3}\right) \\
= \sum_{\kappa = (k_{1}, k_{2}, k_{3}) \in \mathbb{Z}^{3}} (-1)^{k_{1} + k_{2} + k_{23}} e^{\sum_{i=1}^{3} 2^{\frac{(s_{i}^{\kappa} \mu_{[i]}^{\kappa} - v_{i}^{k_{i}}) m_{i}^{k_{i}} + w_{i}^{k_{i}}}{\sigma^{2}}} \operatorname{E}\left[e^{-\frac{2R_{1}^{\kappa}}{\sigma^{2}} X(t_{1})}\right] \operatorname{E}\left[e^{-\frac{2R_{2}^{\kappa}}{\sigma^{2}} [X(t_{2}) - X(t_{1})]}\right] \times \\
\Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < s_{i}^{\kappa} X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:3]}^{\kappa}\}\right)$$



- Three-period
  - Three-period piecewise linear double barrier

$$\Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \bigcap_{i=1}^{3} \{d_{i}(t) < X(t) < u_{i}(t), t_{i-1} < t < t_{i}\} \mid \mu_{1}, \mu_{2}, \mu_{3}\right) \\
= \sum_{\kappa = (k_{1}, k_{2}, k_{3}) \in \mathbb{Z}^{3}} (-1)^{k_{1} + k_{2} + k_{23}} e^{\sum_{i=1}^{3} 2^{\frac{(s_{i}^{\kappa} \mu_{[i]}^{\kappa} - v_{i}^{k_{i}}) m_{i}^{k_{i}} + w_{i}^{k_{i}}}{\sigma^{2}}} \operatorname{E}\left[e^{-\frac{2R_{1}^{\kappa}}{\sigma^{2}} X(t_{1})}\right] \operatorname{E}\left[e^{-\frac{2R_{2}^{\kappa}}{\sigma^{2}} [X(t_{2}) - X(t_{1})]}\right] \times \\
\Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < s_{i}^{\kappa} X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:3]}^{\kappa}\}\right)$$

$$\begin{split} m_{[1]}^{\kappa} &= m_{1}^{k_{1}}, \ m_{[i]}^{\kappa} = (m_{i}^{k_{2}} - m_{[i-1]}^{k_{1}})I(k_{i}: \text{odd}) + (m_{2}^{k_{2}} + m_{[i-1]}^{k_{1}})I(k_{i}: \text{even}), \ i = 2,3 \\ s_{3}^{\kappa} &= 1, \ s_{1}^{\kappa} = [-I(k_{i+1}: \text{odd}) + I(k_{i+1}: \text{even})]s_{i+1}^{\kappa}, \ i = 2,1 \\ R_{3}^{\kappa} &= 0, \ R_{i}^{\kappa} = (\mu_{i+1} - v_{i+1}^{k_{i+1}} - R_{i+1}^{\kappa})I(k_{i+1}: \text{odd}) + R_{i+1}^{\kappa}I(k_{i+1}: \text{even}), \ i = 2,1 \\ \mu_{[i]}^{\kappa} &= s_{i}^{\kappa}(\mu_{i} - 2R_{i}^{\kappa}), \ i = 1,2,3 \end{split}$$

- Three-period
  - Three-period partial double barrier  $(k_1 = k_3 = 0)$

$$\Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < X(t_{i}) < x_{i}^{u}\}, \{d_{2}(t) < X(t) < u_{2}(t), t_{1} < t < t_{2}\} \mid \mu_{1}, \mu_{2}, \mu_{3}\right) \\
= \sum_{k_{2} \in \mathbb{Z}} (-1)^{k_{2}} e^{\frac{2(\mu_{2} - v_{2}^{k_{2}})m_{2}^{k_{2}} + w_{2}^{k_{2}}}{\sigma^{2}}} \operatorname{E}\left[e^{\frac{-2R_{1}^{\kappa}}{\sigma^{2}}X(t_{1})}\right] \Pr\left(\bigcap_{i=1}^{3} \{x_{i}^{d} < s_{i}^{\kappa}X(t_{i}) + 2m_{[i]}^{\kappa} < x_{i}^{u} \mid \mu_{[1:3]}^{\kappa}\}\right)$$



# Piecewise linear double barrier (Step double barrier)

- Step double barrier
  - By setting each slope of the piecewise linear double barrier 0, (hence,  $v^k_i = w^k_i = 0$ ) we can easily obtain the non-crossing probabilities for step double barrier.



# Piecewise linear double barrier (Single barrier)

- Piecewise linear up barrier
  - By reducing combination of integers  $\mathbb{Z}$  to combination of  $\{0,1\}$  and letting  $x^d_i = -\infty$ ,  $d_i = -\infty$ , we can easily obtain the non-crossing probabilities for piecewise linear up barrier.



# **Closed-form pricing formulas**

- Black-Sholes framework
  - $\mu_i = r \sigma^2 / 2$
- Activating event A (three-period)

• 
$$A = \bigcap_{i=1}^{3} \{x_i^d < X(t_i) < x_i^u\}, \bigcap_{i=1}^{3} \{d_i(t) < X(t) < u_i(t), t_{i-1} < t < t_i\}$$

Types of barrier option and their corresponding payoffs

| Option type |      | Payoff                |  |  |
|-------------|------|-----------------------|--|--|
| Knock-out   | Put  | $(K-S(T))_+ I(A)$     |  |  |
| KHOCK-OUL   | Call | $(S(T) - K)_{+} I(A)$ |  |  |
| Vnosk in    | Put  | $(K-S(T))_+ I(A^c)$   |  |  |
| Knock-in    | Call | $(S(T)-K)_+ I(A^c)$   |  |  |

Note. K is the strike price, S(T) is the price of underlying asset at time T,  $(x)_+$  is the maximum of x and zero, and I(A) is an indicator function of event A.

# **Closed-form pricing formulas**

Activating event for option pricing

• 
$$A_p = \bigcap_{i=1}^{3} \{x_i^d < X(t_i) < x_i^{u^*}\}, \bigcap_{i=1}^{3} \{d_i(t) < X(t) < u_i(t), t_{i-1} < t < t_i\}$$

• 
$$A_c = \bigcap_{i=1}^{3} \{x_i^{d^*} < X(t_i) < x_i^u\}, \bigcap_{i=1}^{3} \{d_i(t) < X(t) < u_i(t), t_{i-1} < t < t_i\}$$

where  $x^{u_i^*} = x^u_i$  and  $x^{d_i^*} = x^d_i$  for  $i = 1, 2, x^{u_3^*} = \min(x^u_3, k)$  and  $x^{d_3^*} = \max(x^d_3, k)$ , and  $k = \ln(K / S(0))$ .

Types of barrier option and their corresponding pricing formulas

| Option type |      | Pricing formula                                                                                 |  |  |  |  |
|-------------|------|-------------------------------------------------------------------------------------------------|--|--|--|--|
|             | Put  | $e^{-rT} K \operatorname{Pr}(A_p) - S(0) \operatorname{Pr}(A_p; 1)$                             |  |  |  |  |
| Knock-out   | Call | $S(0) \operatorname{Pr}(A_c; 1) - e^{-rT} K \operatorname{Pr}(A_c)$                             |  |  |  |  |
| Knock-in    | Put  | $e^{-rT} K \left[ \Phi(-d_2) - \Pr(A_p) \right] - S(0) \left[ \Phi(-d_1) - \Pr(A_p; 1) \right]$ |  |  |  |  |
| KHOCK-III   | Call | $S(0) \left[ \Phi(d_1) - \Pr(A_c; 1) \right] - e^{-rT} K \left[ \Phi(d_2) - \Pr(A_c) \right]$   |  |  |  |  |

Note. 
$$d_1 = [-k + (r + \sigma^2 / 2)t_3] / (\sigma \sqrt{t_3}), d_2 = [-k + (r - \sigma^2 / 2)t_3] / (\sigma \sqrt{t_3}).$$

Pr(; 1) means that the drift is shifted into  $r + \sigma^2 / 2$ .

Types of barrier (linear, concave, and more concave)



#### Numerical examples of option prices

| r      | _   | Option type — | Knock  | c - out | Knock - in |        |  |
|--------|-----|---------------|--------|---------|------------|--------|--|
|        | σ   |               | Put    | Call    | Put        | Call   |  |
|        |     | Linear        | 0.5213 | 0.6474  | 4.3609     | 5.7236 |  |
|        | 0.2 | Concave       | 3.3655 | 4.2634  | 1.5167     | 2.1075 |  |
| 0.02   |     | More concave  | 4.0275 | 5.1904  | 0.8547     | 1.1806 |  |
| 0.03 — |     | Linear        | 0.0126 | 0.0141  | 7.6480     | 9.1353 |  |
|        | 0.3 | Concave       | 1.1158 | 1.2570  | 6.5448     | 7.8924 |  |
|        |     | More concave  | 2.0724 | 2.3748  | 5.5882     | 6.7746 |  |
|        |     | Linear        | 0.4999 | 0.6673  | 4.1470     | 5.9597 |  |
| 0.04 — | 0.2 | Concave       | 3.2173 | 4.4100  | 1.4296     | 2.2171 |  |
|        |     | More concave  | 3.8403 | 5.3860  | 0.8067     | 1.2411 |  |
|        |     | Linear        | 0.0123 | 0.0143  | 7.3980     | 9.3762 |  |
|        | 0.3 | Concave       | 1.0893 | 1.2769  | 6.3210     | 8.1136 |  |
|        |     | More concave  | 2.0177 | 2.4194  | 5.3926     | 6.9710 |  |

Convergence of knock-out call option

| r      | _   | Option type  | $\max\{ k_i \}$ |         |        |         |        |        |        |
|--------|-----|--------------|-----------------|---------|--------|---------|--------|--------|--------|
|        | σ   |              | 0               | 1       | 2      | 3       | 4      | 5      | 6      |
| 0.03 — |     | Linear       | 5.0895          | 0.2569  | 0.6562 | 0.6474  | 0.6474 | 0.6474 | 0.6474 |
|        | 0.2 | Concave      | 6.0351          | 4.2624  | 4.2634 | 4.2634  | 4.2634 | 4.2634 | 4.2634 |
|        |     | More concave | 6.2865          | 5.1902  | 5.1904 | 5.1904  | 5.1904 | 5.1904 | 5.1904 |
|        |     | Linear       | 4.5009          | -1.0634 | 0.2159 | -0.0038 | 0.0148 | 0.0141 | 0.0141 |
|        | 0.3 | Concave      | 6.2338          | 1.1634  | 1.2574 | 1.2570  | 1.2570 | 1.2570 | 1.2570 |
|        |     | More concave | 7.5190          | 2.3017  | 2.3749 | 2.3748  | 2.3748 | 2.3748 | 2.3748 |
| 0.04 — |     | Linear       | 5.2651          | 0.2646  | 0.6764 | 0.6673  | 0.6673 | 0.6673 | 0.6673 |
|        | 0.2 | Concave      | 6.2607          | 4.4089  | 4.4100 | 4.4100  | 4.4100 | 4.4100 | 4.4100 |
|        |     | More concave | 6.5335          | 5.3857  | 5.3860 | 5.3860  | 5.3860 | 5.3860 | 5.3860 |
|        |     | Linear       | 4.5791          | -1.0790 | 0.2191 | -0.0038 | 0.0151 | 0.0143 | 0.0143 |
|        | 0.3 | Concave      | 6.3518          | 1.1818  | 1.2773 | 1.2769  | 1.2769 | 1.2769 | 1.2769 |
|        |     | More concave | 7.6819          | 2.3450  | 2.4196 | 2.4194  | 2.4194 | 2.4194 | 2.4194 |

• Convergence of knock-out call option (r = 0.03,  $\sigma = 0.3$ )



#### **Conclusion**

- Deriving distribution function including double barrier.
  - The function can also calculate the probability for special case of double barriers such as partial, step, and single barrier.
- Deriving closed-form pricing formula of piecewise linear double barrier options with the function.
- Numerical results show the relationship between parameter values and the price of the double barrier options.
  - It shows that the prices converge rapidly over a size of  $\max\{|k_i|\}$ .

#### References

- Buchen, P., and Konstandatos, O. (2009). A new approach to pricing double-barrier options with arbitrary payoffs and exponential boundaries. Applied Mathematical Finance, 16(6), 497-515.
- Essher, F. (1932). On the probability function in the collective theory of risk.
   Skadinavisk Aktuarietidskrift, 15, 175-195.
- Gerber, H. U., and Shiu, E. S. (1994). Option pricing by Esscher transforms.
   Transactions of the Society of Actuaries, 46, 99-191.
- Gerber, H. U., and Shiu, E. S. (1996). Martingale approach to pricing perpetual American options on two stock. Mathematical finance, 6(3), 303-322.
- Guillaume, T. (2016). Computation of the survival probability of Brownian motion with drift when the absorbing boundary is a piecewise affine or piecewise exponential function of time. International Journal of Statistics and Probability, 5(4), 119-138.

#### References

- Kunitomo, N., and Ikeda, M. (1992). Pricing options with curved boundaries.
   Mathematica Finance, 2(4), 275-298.
- Lee, H., Ha, H., and Lee, M. (2021). Valuation of piecewise linear barrier options.
   The North American Journal of Economics and Finance, 58, 101470