МАТЕМАТИКА В ТЕХНИЧЕСКОМ УНИВЕРСИТЕТЕ

А.И. Белоусов, С.Б. Ткачев

ДИСКРЕТНАЯ МАТЕМАТИКА

Математика в техническом университете

Выпуск XIX

Серия удостоена
Премии Правительства
Российской Федерации
в области науки и техники
за 2003 год

Комплекс учебников из 21 выпуска

Под редакцией В.С. Зарубина и А.П. Крищенко

I. Введение в анализ

II. Дифференциальное исчисление функций одного переменного

III. Аналитическая геометрия IV. Линейная алгебра

V. Дифференциальное исчисление функций многих переменных

VI. Интегральное исчисление функций одного переменного

VII. Кратные и криволинейные интегралы. Элементы теории поля

VIII. Дифференциальные уравнения IX. Ряды

Х. Теория функций комплексного переменного

XI. Интегральные преобразования и операционное исчисление

XII. Дифференциальные уравнения математической физики

XIII. Приближенные методы математической физики XIV. Методы оптимизации

XV. Вариационное исчисление и оптимальное управление XVI. Теория вероятностей

XVII. Математическая статистика

XVIII. Случайные процессы

XIX. Дискретная математика

ХХ. Исследование операций

XXI. Математическое моделирование в технике

А.И. Белоусов, С.Б. Ткачев

ДИСКРЕТНАЯ МАТЕМАТИКА

Под редакцией д-ра техн. наук, профессора В.С. Зарубина и д-ра физ.-мат. наук, профессора А.П. Крищенко

Издание третье, стереотипное

Рекомендовано
Министерством образования
Российской Федерации
в качестве учебника для студентов
высших технических учебных заведений

Москва Издательство МГТУ им. Н.Э. Баумана 2004 УДК 512.5+519.1(075.8) ББК 22.174 Б43

Рецензенты: чл.-корр. РАН Ю.Н. Павловский, проф. А.К. Платонов

Б43 Белоусов А.И., Ткачев С.Б. Дискретная математика: Учеб. для вузов / Под ред. В.С. Зарубина, А.П. Крищенко. — 3-е изд., стереотип. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. — 744 с. (Сер. Математика в техническом университете; Вып. XIX).

ISBN 5-7038-1769-2 (Вып. XIX) ISBN 5-7038-1270-4

В девятнадцатом выпуске серии "Математика в техническом университете" изложены теория множеств и отношений, элементы современной абстрактной алгебры, теория графов, классические понятия теории булевых функций, а также основы теории формальных языков, куда включены теории конечных автоматов, регулярных языков, контекстно-свободных языков и магазинных автоматов. В анализе графов и автоматов особое внимание уделено алгебраическим методам.

Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.

Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.

Ил. 200. Табл. 27. Библиогр. 65 назв.

УДК 512.5+519.1(075.8) ББК 22.174

- © А.И. Белоусов, С.Б. Ткачев, 2001
- © Московский государственный технический университет им. Н.Э. Баумана, 2001
- © Издательство МГТУ им. Н.Э. Баумана, 2001

ISBN 5-7038-1769-2 (Вып. XIX) ISBN 5-7038-1270-4

К 175-летию МГТУ им. Н.Э. Баумана

ПРЕДИСЛОВИЕ

Предлагаемая читателю книга является девятнадцатым выпуском комплекса учебников "Математика в техническом университете". Она содержит систематическое изложение курса дискретной математики.

Развитие классической ("непрерывной") математики было обусловлено прежде всего решением задач естествознания, главным образом физики. "Дискретная" же математика развивалась в связи с изучением законов и правил человеческого мышления, что и обусловило ее применение в тех областях техники, которые так или иначе связаны с моделированием мышления, и в первую очередь в вычислительной технике и программировании.

Мышление реализует себя прежде всего в языке. Поэтому разумно считать, что ядро дискретной математики образует именно математическая теория языков, точнее, область этой теории, называемая теорией формальных языков. Слово "формальный" подчеркивает, что в этой теории изучаются в основном искусственные языки, специально созданные для каких-то целей: языки программирования, языки математики и т.п. Теория формальных языков является базой теории кодирования, "криптологии", изучающей методы защиты информации, теории алгоритмов и в определенном смысле математической логики. В прикладном аспекте эта теория служит основой разработки математического обеспечения вычислительных машин.

Доминирующим в современной теории формальных языков является алгебраический подход, в котором существенно используется аппарат, базирующийся на понятии алгебраической структуры полукольца. Этот аппарат во многом похож на аппарат линейной алгебры. Систематическое изложение теории

формальных языков на базе теории полуколец и является одной из основных задач этой книги. Отметим, что в отечественной учебной литературе такой подход почти не получил отражения.

Теория формальных языков существенно опирается и на теорию графов. Многие задачи теории языков (например, задача определения языка конечного или магазинного автомата) сводится к задаче о путях во взвешенных (размеченных) ориентированных графах, где множество меток имеет алгебраическую структуру полукольца.

Изложение материала построено следующим образом. Глава 1 посвящена множествам и отношениям. Здесь напоминаются основы теории множеств, изложенные в первом выпуске комплекта учебников, причем некоторые вопросы излагаются более детально. Основное содержание главы составляет теория отношений. Центральным результатом является теорема о неподвижной точке для индуктивных упорядоченных множеств, на базе которой строятся методы решения задач о путях в графах и алгебраические методы в теории формальных языков.

Ввиду важности алгебраических методов в дискретной математике большое внимание уделяется алгебраической теории: ей посвящены три главы. В главе 2 излагаются элементы классической общей алгебры и рассматриваются группы, кольца и поля. Глава 3 посвящена полукольцам и булевым алгебрам. Приведенный здесь материал имеет важное значение с точки зрения приложения алгебраических методов как в теории формальных языков, так и в теории булевых функций. Особенностью изложения является определение булевой алгебры как частного случая полукольца. В главе 4 приведены некоторые результаты общей теории алгебраических систем.

Глава 5 посвящена теории графов. Центральное место в главе занимает изложение алгебраического метода решения задач о путях в ориентированных графах, размеченных над полукольцами. Этот материал служит, с одной стороны, иллюстрацией применения алгебраической техники в решении графовых задач, а с другой — основой решения задач в теории формальных

языков. Глава содержит также описание некоторых алгоритмов на графах: алгоритма "поиска в глубину" и "поиска в ширину", алгоритма Краскала для отыскания остовного дерева наименьшего веса, алгоритма топологической сортировки. Коротко рассматриваются изоморфизм графов, группы автоморфизмов графов и элементы цикломатики (анализа структуры циклов неориентированного графа).

Глава 6 посвящена классическому разделу дискретной математики — булевым функциям — и включает вопросы минимизации булевых функций и теорему Поста о функциональной полноте.

В главах 7 и 8 изложена теория формальных языков. Глава 7 содержит "линейную часть" этой теории — теорию конечных автоматов и регулярных языков, а глава 8 — теорию контекстно-свободных языков. Это важнейший класс языков, его теоретический анализ является основой многих информационных технологий, таких, в частности, как проектирование компиляторов или разработка лингвистического обеспечения баз данных. Фундаментальным является понятие магазинного автомата — распознавателя в классе контекстно-свободных языков. Именно эта модель языка служит математической основой конкретных технологий разработки синтаксических анализаторов для языков программирования.

В дополнениях к главе 8 приведены элементарные сведения о синтаксическом анализе контекстно-свободных языков и введение в математическую теорию семантики формальных языков (в частности, языков программирования). Здесь мы пытаемся перекинуть "мостик" от чистой теории к практической технологии анализа контекстно-свободных языков, используемой прежде всего в компиляторах. Этот материал призван проиллюстрировать связь между изложеной математической теорией и ее приложениями к разработке математического обеспечения компьютеров.

В конце каждой главы помещены задачи для самостоятельного решения. Наиболее трудные задачи снабжены указаниями. В некоторых задачах содержатся и теоретические результаты,

дополняющие основной текст. Часть задач придумана авторами, часть заимствована из других задачников и учебников.

Дискретная математика — бурно развивающаяся область. К сожалению, в этом учебнике мы не нашли возможности даже обзорно изложить некоторые результаты, развивающие классическую теорию графов (гиперграфы, сети Петри, потоковые диаграммы) и теорию языков (сверхъязыки, автоматы над структурами, отличными от слов, теорию алгоритмов как динамических систем, топологические методы в семантике). Мы рекомендуем интересующемуся читателю обстоятельно написанную "Handbook of Theoretical Computer Science", а также последние выпуски периодического издания "Lecture notes in Computer Science". Наиболее интересные, с нашей точки эрения, работы из этого издания указаны в списке литературы.

Для успешного освоения материала книги достаточно знания традиционных курсов математического анализа и линейной алгебры, читаемых в техническом университете. Мы в основном опирались на материал, изложенный в выпусках I–IV настоящего комплекса учебников.

В тексте книги имеются ссылки на другие выпуски комплекса учебников. Такой ссылкой служит номер выпуска. Например, [I] означает, что имеется в виду первый выпуск. Ссылки без римских цифр относятся только к этому, девятнадцатому, выпуску. Так, (см. 1.2) отсылает читателя ко второму параграфу первой главы, а (см. Д.7.1) — к первому дополнению седьмой главы этой книги. Ссылки на номера формул и рисунков набраны обычным шрифтом (например, (2.1) — первая формула в главе 2, (рис. 1.5) — пятый рисунок в главе 1).

Большинство используемых в этой книге обозначений помещено в перечне основных обозначений, где наряду с их краткой расшифровкой указаны глава и параграф, в которых можно найти более подробное объяснение по каждому из обозначений. Для части обозначений, введенных в первом выпуске, указаны глава и параграф первого выпуска, а также при необходимости глава и параграф этой книги. Например, I-1.3, 1.1 показывает, что обозначение введено в третьем параграфе первой главы

первого выпуска и пояснения к нему содержатся в первом параграфе первой главы девятнадцатого выпуска. После этого перечня приведены написание и русское произношение входящих в формулы букв латинского и греческого алфавитов.

В конце книги помещены список рекомендуемой литературы и предметный указатель, в котором расположены в алфавитном порядке (по существительному в именительном падеже) все выделенные в тексте полужирным курсивом термины с указанием страницы, где они строго определены или описаны.

Выделение термина светлым курсивом означает, что этот термин в данном параграфе относится к ключевым словам и читателю должно быть известно его значение. Значение этого термина можно уточнить, найдя с помощью предметного указателя необходимую страницу этого выпуска, на которой термин определен или описан. Если термин введен в другом выпуске, то дана ссылка на этот выпуск (например, III означает ссылку на третий выпуск), а также указана курсивом страница предлагаемой книги, на которой имеются некоторые пояснения к этому термину.

Авторы выражают глубокую благодарность А.А. Кирильченко и М.С. Виноградовой за многочисленные пожелания и замечания, которые были учтены при подготовке книги.

Перед чтением книги в целях самоконтроля предлагается выполнить приведенные ниже задания. В тексте заданий прямым полужирным шрифтом выделены термины, значение которых должно быть известно читателю, а в конце каждого задания указана ссылка на номер выпуска, в котором можно найти соответствующие разъяснения. В основном тексте книги эти термины не выделены и не входят в предметный указатель.

Задания для самопроверки

1. Что такое конечное **множество**, подмножество, элемент множества? Какими способами можно задать множество? Приведите примеры конечных и счетных множеств. [I]

- 2. Является ли множество всех рациональных чисел счетным? [I]
- 3. Что такое множество всех действительных чисел? Что понимают под расширенной (пополненной) числовой прямой? [I]
- 4. Является ли множество натуральных чисел собственным подмножеством множества целых чисел? [I]
- 5. Какие операции над множествами Вы знаете? Перечислите свойства этих операций. [I]
- 6. В чем заключается принцип двойственности для законов де Моргана? [I]
- 7. Из каких этапов состоит доказательство по методу математической индукции? [I]
- 8. Сформулируйте определение взаимно однозначного отображения двух множеств. Что такое тождественное отображение? Чему равна композиция прямого и обратного отображений двух множеств? [I]
- 9. При каких условиях отображение одного множества в другое называют сюръекцией, инъекцией и биекцией? [I]
- 10. Что называют неподвижной точкой отображения? Сколько неподвижных точек у отображения $y = \sin x$? [I]
 - 11. Какие элементарные функции Вы знаете? [II]
- 12. Что такое область определения и область значения функции? [I]
- 13. Приведите примеры функций, непрерывных в интервале (a,b). В чем различие между монотонной и строго монотонной в некотором промежутке функциями? [I]
- 14. Что такое последовательность элементов множества? [I]
- 15. Какими свойствами обладает предел последовательности? [I]
- 16. Сформулируйте признак Вейерштрасса сходимости ограниченной последовательности. [I]
- 17. Какова связь между количеством сочетаний и количеством размещений из n элементов по k? [I]

- 18. Что такое единичная и нулевая матрицы? [III]
- 19. Что такое диагональная матрица, верхняя треугольная (нижняя треугольная) матрица? [III]
- 20. Для матриц каких **типов** (размеров) определены операции **сложения** и **умножения**? [III]
- 21. Что такое определитель числовой квадратной матрицы порядка n? Как связаны операции транспонирования и вычисления обратной матрицы? [III]
- 22. Какую квадратную матрицу называют вырожденной, а какую невырожденной? [III]
- 23. Какие свойства имеют операции сложения свободных векторов в пространстве и умножения вектора на число? Какими алгебраическими свойствами обладают скалярное и векторное произведения векторов? [III]
- 24. Что такое коллинеарные и компланарные векторы? [III]
- 25. Что такое линейное пространство? Каковы аксиомы линейного пространства? Что такое линейное арифметическое пространство? [IV]
- 26. Что такое размерность линейного пространства и базис линейного пространства? [IV]
 - 27. Что такое линейный оператор? [IV]

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

- **◄** и ▶ начало и окончание доказательства
 - # окончание примера или замечания
- $a \in A$ элемент a принадлежит множеству A (множество A содержит элемент a) I-1.1, 1.1
- $a \notin A$ элемент a не принадлежит множеству A (множество A не содержит элемент a) **I-1.1**, **1.1**
- $\{a,b,c\}$ множество, состоящее из элементов $a,\ b,\ c$ I-1.1, 1.1
- $A = \{x: \ldots\}$ множество A состоит из элементов x, обладающих свойством, указанным после двоеточия **I-1.1**, **1.1**
- Ø пустое множество I-1.1, 1.1
- U универсальное множество 1.1
- A = B множества A и B равны 1.1
- $A \subset B, B \supset A$ множество A является подмножеством множества B (A включено в B) I-1.2, 1.1
- $A \subseteq B, B \supseteq A$ множество A включено в множество B или совпадает с ним, **I-1.2**, **1.1**
- $A \cap B$ пересечение множеств A и B I-1.4, 1.1
- $A \cup B$ объединение множеств A и B **I-1.4**, **1.1**
- \overline{A} дополнение множества A до универсального множества I-1.4, 1.1
- $A \setminus B$ разность множеств A и B I-1.4, 1.1
- $A\triangle B$ симметрическая разность множеств A и B I-1.4, 1.1

- объединение k множеств $A_1, ..., A_k$ I-1.4, 1.5
- пересечение k множеств $A_1, ..., A_k$ I-1.4, 1.5
- множество всех подмножеств множества A 1.1
- символы дизъюнкции и конъюнкции І-1.5, 1.1
- булево объединение 3.4
- булево пересечение 3.4
- символ импликации **I-1.5**, **1.1**
- символ эквивалентности І-1.5, 1.1
- отрицание высказывания A I-1.5, 1.1
- булево дополнение элемента x **3.4**
- квантор всеобщности ($\forall x$ для любого x) и квантор существования ($\exists x$ существует x) I-1.5, 1.1
- упорядоченная пара элементов x и y 1.2
- прямое (декартово) произведение множества X на множество Y **I-2.5**, **1.2**
- n-я декартова степень множества X (декартово произведение n экземпляров множества X) **I-2.5**
- число размещений (без повторений) из n элементов по m I-2.6, 1.9
- число сочетаний (без повторений) из n элементов по m I-2.6, 1.9
- число перестановок из n элементов **I-2.6**, **1.9**
- множество натуральных чисел І-1.3, 1.9
- множество неотрицательных целых чисел 1.9
- множество целых чисел І-1.3
- множество рациональных чисел I-1.3

```
R — множество действительных чисел I-1.3
```

[x,y] — замкнутый промежуток (отрезок) І-1.3

(x,y) — открытый промежуток (интервал) І-1.3

[x, y), (x, y] — полуинтервалы **I-1.3**

 $f \colon A \to B$ — отображение (функция) из множества A в множество B **I-2.1**, **1.3**

y = f(x) — элемент y есть образ элемента x при отображении f I-2.1, 1.3

 $f: x \mapsto y$ — отображение (функция) переводит элемент x в элемент y, т.е. y = f(x) 1.3

 f^{-1} — отображение, обратное отображению f I-2.3, 1.3

 $f^{-1}(y)$ — полный прообраз элемента y при отображении f I-2.1, 1.3

f(C) — образ множества C при отображении f I-2.1, 1.3

 $f^{-1}(D)$ — полный прообраз множества D при отображении f **I-2.1**, **1.3**

 B^A — множество всех отображений из A в B 1.3

 $ho\circ\sigma,\ f\circ g$ — композиция соответствий ho и $\sigma,$ композиция отображений f и g 1.3

 $ho\subseteq A_1 imes A_2$ — соответствие из множества A_1 в множество A_2 1.3

D(f) — область определения отображения f I-2.1, 1.3

 $D(\rho)$ — область определения соответствия ρ 1.3

R(f) — область значения отображения f I-2.1, 1.3

 $R(\rho)$ — область эначения соответствия ρ 1.3

 $\rho(x)$ — сечение соответствия ρ 1.3

 ho^{-1} — соответствие, обратное соответствию ho 1.3

 $\rho \subseteq A_1 \times \ldots \times A_n - n$ -арное отношение на множествах $A_1, \ldots, A_n - 1.3$

 id_A — диагональ множества A 1.3

 $\rho|_{M}$ -- ограничение бинарного отношения ρ на подмноже-CTBO M 1.4 $(A_i)_{i \in I}$ — индексированное семейство множеств (с множеством индексов I) 1.5 $\bigcup A_i$ — объединение индексированного семейства множеств 1.5 $\bigcap_{i\in I}A_i$ — пересечение индексированного семейства множеств 1.5 $[x]_o$ — класс эквивалентности элемента $oldsymbol{x}$ по отношению эквивалентности ρ 1.7 A/ρ — фактор-множество множества A по отношению эквивалентности ρ 1.7 $a = b \pmod{k}$ — числа a и b равны по модулю k 1.7 $=_{(\mathrm{mod}\,k)}$ — бинарное отношение равенства по модулю k 1.7 \leq , \leq , \subseteq , \preccurlyeq — стандартные обозначения различных отношений порядка 1.8 ≥, ≿, ⊒, ≽ — обозначения отношений порядка, двойственных соответственно к \leq , \leq , \subseteq , \leq 1.8 <, <, С — обозначения отношений строгого порядка, определяемых соответственно \leq , \leq , \sqsubseteq 1.8 >, ≻, □ — обозначения отношений строгого порядка, двойственных соответственно к <, ≺, ⊏

— обозначения отношения доминирования, определяе-

мого отношением порядка ≤ 1.8

— рефлексивно-транзитивное замыкание бинарного от-

— результат n-кратного применения функции f к эле-

менту x, причем $f^{0}(x) = x$ 1.8

— C-сужение соответствия ρ 1.4

— (C,D)-ограничение соответствия ρ 1.4

— строгое C-сужение соответствия ρ 1.4

ношения ρ 1.6

 ρ^*

 $f^{n}(x)$

 $ho|_{C,D}$ $ho|_C$

 $\rho|_{\circ C}$

4

- $\sup B \ (\inf B)$ точная верхняя (точная нижняя) грань множества B **I-2.7**, **1.8**
- $\sup X_n \ (\inf X_n)$ точная верхняя (точная нижняя) грань последовательности $X_n \ \ 1.8$
- $\lim_{n\to\infty}x_n$ предел последовательности x_n при $n\to\infty$ I-6.3
- наименьший элемент индуктивного частично упорядоченного множества 1.8
- $A \sim B$ множество A эквивалентно множеству B 1.9
- |A| мощность множества A 1.9
- \aleph_0 мощность счетного множества 1.9
- c мощность континуума 1.9
- 0 нуль относительно операции 2.1
- 1 единица относительно операции 2.1
- a^{-1} элемент, обратный элементу a при мультипликативной записи группы **2.2**
- -a элемент, противоположный элементу а при аддитивной записи коммутативной группы 2.2
- S_n симметрическая группа степени n (группа подстановок n-элементного множества) 2.2
- aH (Ha) левый (правый) смежный класс подгруппы H (какой-либо группы G), определяемый элементом $a \in G$ 2.7
- G/H фактор-группа группы G по нормальной подгруппе H 2.8
- \mathbb{Z}_k кольцо вычетов по модулю k 2.3
- \mathbb{Z}_k^+ аддитивная группа вычетов по модулю k 2.3
- \mathbb{Z}_p^* мультипликативная группа вычетов по модулю p (для простого p) 2.3
- \mathcal{B} полукольцо ($\{0,1\},\ +,\ \cdot,\ 0,\ 1$) (двухэлементное полукольцо) **3.1**

- \mathcal{R}^+ полукольцо (\mathbb{R}^+ , min, +, + ∞ , 0) (полукольцо неотрицательных действительных чисел вместе с + ∞ с операциями взятия наименьшего элемента и сложения) 3.1
- S_A полукольцо $(2^A, \cup, \cap, \varnothing, A)$ (полукольцо всех подмножеств множества A) 3.1
- \mathcal{R}_A полукольцо $(2^{A\times A}, \cup, \circ, \varnothing, \mathrm{id}_A)$ (полукольцо всех бинарных отношений на множестве A) 3.1
- \mathcal{N} полукольцо (\mathbb{N}_0 , +, ·, 0, 1) (полукольцо неотрицательных целых чисел с обычными операциями сложения и умножения) **3.1**
- $\mathcal{S}_{[a,\,b]}$ полукольцо ($[a,\,b]\subset\mathbb{R}$, max, min, $a,\,b$) (полукольцо чисел из отрезка числовой прямой с операциями взятия максимума и минимума из двух чисел) 3.1
- $\mathbf{Matr}(\mathcal{S})$ множество всех матриц с элементами из полукольца \mathcal{S} 3.3
- $\mathrm{M}_n(\mathcal{S})$ полукольцо квадратных матриц порядка n с элементами из полукольца \mathcal{S} 3.3
- \mathcal{D}_n полукольцо всех делителей натурального числа n
- $\sum_{n\in N} x_n, \sum x_n$ точная верхняя грань бесконечной последовательности x_1, \ldots, x_n, \ldots элементов замкнутого полукольца **3.2**
- a^* итерация (замыкание) элемента a замкнутого полукольца (или полукольца с итерацией) 3.2
- \blacksquare двухэлементная булева алгебра (то же, что полукольцо \mathcal{B}) 3.4
- $\mathcal{A}=(A,\ \Omega,\ \Pi)$ алгебраическая система с носителем A, сигнатурой, состоящей из множества операций Ω и множества отношений Π 4.1
- $\mathcal{A} = (A, \ \Omega)$ алгебра с носителем A и сигнатурой (множеством операций) Ω 4.1

- $\mathcal{A} = (A, \Pi)$ модель с носителем A и сигнатурой (множеством отношений) Π 4.1
- $[B]_{\Omega}$ замыкание множества B по операциям сигнатуры Ω (Ω -замыкание множества B) 4.2
- $h: \mathcal{A} \to \mathcal{B}$ гомоморфизм h алгебраической системы \mathcal{A} в алгебраическую систему \mathcal{B} 4.4
- Кег h ядро гомоморфизма h одной алгебраической системы в другую 4.4
- $h(\mathcal{A})$ гомоморфный образ алгебраической системы \mathcal{A} (относительно гомоморфизма h) 4.4
- ≃ символ изоморфизма алгебраических систем 4.4
- $\mathcal{A}/
 ho$ фактор-система алгебраической системы \mathcal{A} по конгруэнции ho 4.3
- $u \mapsto_G v$ вершина u соединена ребром с вершиной v в неориентированном графе G (имя графа часто опускается) 5.1
- $u \to_G v$ существует дуга в ориентированном графе G с началом u и концом v (имя графа часто опускается) 5.1
- $u \bowtie^*_G v$ из вершины u (неориентированного графа G) достижима вершина v (имя графа часто опускается) 5.1
- $u \bowtie^+ v$ существует цепь ненулевой длины, соединяющая вершины u и v (неориентированного графа) 5.1
- $u \bowtie^n v$ существует цепь длины n, соединяющая вершины u и v (неориентированного графа) 5.1
- $u\Rightarrow^*v$ из вершины u (некоторого ориентированного графа) достижима вершина v 5.1
- $u \Rightarrow^+ v$ существует путь ненулевой длины из вершины u в вершину v (в ориентированном графе) 5.1

- $u\Rightarrow^n v$ существует путь длины n из вершины u в вершину v (в ориентированном графе) 5.1
- dg(v) степень вершины v (в неориентированном или ориентированном графе) 5.1
- $\mathrm{dg}^+(v)$ полустепень исхода вершины v (в ориентированном графе) 5.1
- $dg^-(v)$ полустепень захода вершины v (в ориентированном графе) 5.1
- $\Gamma(v)$ множество всех таких вершин u (ориентированного графа), что $u \to v$ (для ориентированного графа) или $u \mapsto v$ (для неориентированного графа) 5.1
- $\Gamma^{-1}(v)$ множество всех таких вершин u (ориентированного графа), что $u \to v$ 5.1
- L[v] список смежности вершины v (в неориентированном или ориентированном графе) 5.2
- d(v), h(v), l(v) глубина, высота и уровень соответственно узла v дерева 5.3
- h_T высота дерева T 5.3
- $G_1\cong G_2$ графы G_1 и G_2 изоморфны 5.7
- \overline{G} дополнение графа G 5.7
- V^* множество всех слов в алфавите V 7.1
- V^{+} множество всех непустых слов в алфавите V 7.1
- V^n множество всех слов длины n в алфавите V 7.1
- λ пустое слово 7.1
- x(i) i-я буква слова x 7.1
- $x(1)x(2)\dots x(k)$ побуквенная запись слова x 7.1
- (u, x, v) вхождение слова x в слово y = uxv 7.1
- $u \sqsubseteq v$ слово u входит в слово v 7.1
- $L_1 \cdot L_2$ соединение (конкатенация) языков L_1 и L_2 7.1