Lesson 3 Dynamical Systems

3-2: Measurable Dynamics

Jan Reimann

Math 574, Topics in Logic Penn State, Spring 2014

Stochastic Processes

A finite alphabet, $(X_n)_{n\in\mathbb{N}}$ **A**-valued process.

ightharpoonup Recall: joint distribution (P_n) , where

$$P_n(X_0 = a_0, ..., X_n = a_n)$$
 (short: $P_n(a_0, ..., a_n)$)

describes the distribution of the process up to time n, and is subject to the consistency requirement

$$P_n(a_0,\ldots,a_n) = \sum_{a \in A} P_{n+1}(a_0,\ldots,a_n,a).$$

Nolmogorov Extension Theorem: Constructs an underlying measure μ on $A^{\mathbb{N}}$ such that

$$\mu[\sigma] = P_{|\sigma|}(\sigma).$$

Stationary Processes

In many cases, the joint distributions of the process will not depend on the choice of time origin, i.e. for all $m \leq n$, $a_i \in A$,

$$Prob(X_i = a_i, m \leqslant i \leqslant n) = Prob(X_{i+1} = a_i, m \leqslant i \leqslant n)$$

Such a process is called stationary.

From Stationarity to Shift-Invariance

Let (X_n) be stationary, and let $(A^{\mathbb{N}}, \mathcal{B}, \mu)$ its Kolmogorov extension (\mathcal{B} Borel sets on $A^{\mathbb{N}}$). Then μ is shift-invariant.

Hence the preimage of a cylinder is a cylinder, and it follows that $T^{-1}(B)$ is Borel for any Borel set $B \subseteq A^{\mathbb{N}}$. $\Rightarrow T$ is measurable.

ightharpoonup Since (X_n) is stationary,

$$\mu[a_0 \ldots a_{n-1}]_k = \mu[a_0 \ldots a_{n-1}]_{k+1} = \mu(T^{-1}[a_0 \ldots a_{n-1}]_k).$$

This in turn extends to all Borel sets:

$$\mu(T^{-1}(B)) = \mu(B)$$
 for all $B \subseteq A^{\mathbb{N}}$ Borel.

Measure-theoretic Dynamical Systems

Together with the shift map T, the Kolmogorov measure space $(A^{\mathbb{N}}, \mathcal{B}, \mu)$ corresponding to a stationary process (X_n) forms a measure-preserving dynamical system.

In general, such a system is a tuple (X, \mathcal{A}, μ, T) , where (X, \mathcal{A}, μ) is any probability space $(\mathcal{A} \text{ is a } \sigma\text{-algebra})$, and $T: X \to X$ is measurable and measure-preserving, i.e.

$$\mu(T^{-1}(B)) = \mu(B)$$
 for all $B \in A$.

Example: Bernoulli Shifts

Let $A = \{0, 1\}$, and $0 \le p \le 1$. Then the measure μ_p given by

$$\mu_p[\sigma] = p^N (1-p)^{|\sigma|-N},$$

where $N = \#\{i : \sigma(i) = 1\}$, is shift-invariant. The system $(A^{\mathbb{N}}, \mathcal{B}, \mu_p, T)$ is the most simple example of a Bernoulli shift.

We can also look at the two-sided Bernoulli shift on $A^{\mathbb{Z}}$. This has the advantage that the shift is invertible.

Example: Bernoulli Shifts

More generally, if (X, A, μ) is a probability space, then

$$(Y, \mathcal{F}, \mathbf{v}) = \prod_{i=-\infty}^{\infty} (X, \mathcal{A}, \mu)$$

is invariant under the shift $T: Y \to Y$, where $T(y) = T((x_n)_{n \in \mathbb{Z}}) = (z_n)_{n \in \mathbb{Z}}$ with $z_n = x_{n+1}$. This is called the (two-sided) Bernoulli shift with state space (X, \mathcal{A}, μ) .

From Shifts to Processes

If μ is a shift-invariant measure on $A^{\mathbb{N}}$, then we can derive a stationary process from it as follows:

- ▶ Partition $A^{\mathbb{N}}$ into $\mathfrak{P} = \{P_a : a \in A\}$, where $P_a = \{x : x_0 = a\}$.
- ▶ Define the *A*-valued random variable $X_{\mathcal{P}}$ by mapping $x \in A^{\mathbb{N}} \mapsto X_{\mathcal{P}}(x) = a$ where a is such that $x \in P_a$.
- ightharpoonup The random variable X_n is then given by

$$X_n(x) = X_{\mathcal{P}}(T^n(x)) \quad (n \geqslant 1).$$

