LLIÇÓ 2: MATRIUS I VECTORS. OPERACIONS AMB MATRIUS IDEES CLAU, DEFINICIONS, PROPIETATS, MÈTODES...

Matrius. Definicions

- Una *matriu* $m \times n$ és un conjunt de nombres ordenats en m files i n columnes
 - Una matriu *quadrada* és una matriu $n \times n$
 - Una matriu columna és una matriu $m \times 1$
 - Una matriu *fila* és una matriu $1 \times n$
 - Una matriu és *nulla* si totes les entrades són zeros
 - La matriu identitat és quadrada i només conté uns a la diagonal i zeros fora de la diagonal
 - $\mathcal{M}_{m \times n}(\mathbb{R}) = \{ \text{matrius reals } m \times n \}$
 - $\mathcal{M}_{m\times n}(\mathbb{C}) = \{\text{matrius complexes } m\times n\}$
 - $\mathcal{M}_{m\times n} = \{\text{matrius } m \times n\}$

Operacions amb matrius

- Suma: sumeu element a element
- Diferència: resteu element a element
- Producte escalar-matriu: multipliqueu l'escalar per tots els elements de la matriu
- Combinació lineal: $\alpha_1 A_1 + \alpha_2 A_2 + \cdots + \alpha_p A_p$

Vectors

- un vector n-dimensional és una matriu $n \times 1$
 - \mathbb{R}^n = {vectors n dimensionals reals}
 - \mathbb{C}^n = {vectors n − dimensionals complexos}
 - \mathbb{K}^n = {vectors n dimensionals}

Producte escalar real

- Definició: $(u_1, u_2, ..., u_n) \cdot (v_1, v_2, ..., v_n) = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$
- Norma: $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$
- Distància: $d(\vec{u}, \vec{v}) = ||\vec{u} \vec{v}||$
- Angle: $\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{||\vec{u}|| \, ||\vec{v}||}$ (si $\vec{u} \neq \vec{0}$ i $\vec{v} \neq \vec{0}$)

Producte escalar complex

- Definició: $(u_1, u_2, \dots, u_n) \cdot (v_1, v_2, \dots, v_n) = \overline{u_1}v_1 + \overline{u_2}v_2 + \dots + \overline{u_n}v_n$
- *Norma:* $||\vec{u}|| = \sqrt{\vec{u} \cdot \vec{u}}$
- Distància: $d(\vec{u}, \vec{v}) = ||\vec{u} \vec{v}||$
- Angle: $\cos \alpha = \frac{\operatorname{Re}(\vec{u} \cdot \vec{v})}{||\vec{u}|| ||\vec{v}||}$ (si $\vec{u} \neq \vec{0}$ i $\vec{v} \neq \vec{0}$)

Vectors ortogonals

- Dos vectors \vec{u} i \vec{v} són *ortogonals* $(\vec{u} \perp \vec{v})$ si $\vec{u} \cdot \vec{v} = 0$
 - Zero és ortogonal a tots els vectors: $\vec{0} \perp \vec{u}$, $\forall \vec{u} \in \mathbb{K}^n$