	得分	教师签名	批改日期
课程编号1800440081			

深圳大学实验报告

课程名称:_	<u>大学物埋实验(一)</u>	_
实验名称:_		
学 院:_		_
指导教师 <u>:</u>		_
报告人:	组号:	_
学号	实验地点 致原楼 210	
实验时间:_		日
提交时间:		

1

一、实验目的

- 1. 掌握电位差计的补偿式工作原理、结构和特点
- 2. 训练使用精密仪器的技巧
- 3. 设计线式电位差计,测量未知电动势或电位差
- 4. 掌握电表的校准方法,校准电流计

二、实验原理

1. 补偿原理

 E_0 为校准过的连续可调补偿电压 E_x 为待测电动势 G 检流计

通俗的来讲,补偿原理就是利用一个补偿电压去抵消另一个电压或电动势。将 E_x 与 E_0 通过检流计并 联在一起,接通电路后调节 E_0 的大小,当 E_x = E_0 时,检流计不偏转,即电路中没有电流,两个电源的电动势大小相等,称为"补偿",若已知补偿状态下 E_0 的大小,就可以确定 E_x ,这种测定电源电动势的方法叫作补偿法。

2. UJ33a 型直流携带式电位差计的工作原理

该电位差计的内部电路主要由三个电路组成,如上图所示:

- (1) 工作电路: 该电路实际上是一个限流回路,主要作用是提供工作电流 I,
- (2) 电流校准回路: 该电路的作用是校准工作电流, 使其保持一个固定的值
- (3) 测量回路:该电路实际上是一个分压电路,电路的作用是输出一个电压去补偿未知电压或电动势,由于工作电流 I_p 是一定的,可将补偿电阻 R_k 的不同取值标定成相应的输出电压值。故我们可以直接从电位差计读取到它输出的电压。在测量档位达到补偿状态时,这个电压就是 E_k

三、实验仪器:

- 1. UJ33a 型直流携带式电位差计
- 2. 直流恒压电源
- 3. 标准电阻: 阻值为 100 Ω
- 4. 数字毫安表

四、实验内容:

用 UJ33a 型直流携带式电位差计校准毫安表:

1. 校准毫安表的意义

用经过校准的毫安表测量电流,测量值按校准曲线修正后,可以认为测量结果接近标准表测电流的精度,比原来精度有所提高。

2. 电位差计校准毫安表的方法

电位差计只能直接测量电压,故在校准电流表时,需要将电流转化为电压来测量,方法是在电路中串入一个高精度的取样电阻,通过测量电阻上的电压就可以知道电路中的电流。

- 3. 校准毫安表的具体要求
 - (1) 对毫安表的整刻度分上行和下行两个方向进行校对, 并根据校对数据做出毫安表的校对曲线。
 - (2)根据所测数据校验毫安表的等级。
- (3)分析用上述方法校准毫安表的误差,对比校对所得数据,分析测量时仪器可能引起的误差是否小于电流表基本误差限的 1/3,进而评估测量方法是否合理。

五、数据记录:

组号: ____3 ; 姓名 陈昊阳

	校准值		平均值			
被校刻	上行电压值	下行电压值	平均电压值	平均电流值	ΔΙ (μΑ)	
度值	(mV)	(mV)	(mV)	(μΑ)		
200	19.945	19.942	19.944	199.44	0.56	
400	39.762	39.792	39.777	397.77	2.23	
600	59.672	59.714	59.693	596.93	3.07	
800	79.588	79.570	79.579	795.79	4.21	
1000	99.439	99.430	99.435	994.35	5.65	
1200	119.402	119.306	119.354	1193.54	6.46	
1400	139.201	139.176	139.189	1391.89	8.12	
1600	159.109	159.068	159.089	1590.89	9.11	
1800	179.001	178.990	178.996	1789.96	10.05	
1999	199.026	199.026	199.026	1990.26	8.74	

六、数据处理

根据实验数据做出校准曲线,如下图:

$$\frac{\Delta I}{I} = \frac{10.05}{1800} \times 100 = 0.56 < 1.0$$

七、结果陈述:

- 1. 该电表的等级为 1.0,不可以使用。
- 2. 仪器灵敏高,测量时指针偏转不定,使得读数较大误差,结果误差也偏大。

八、实验总结与思考题

- 1. 通过本次实验掌握了电路的连接,电表的校准方法,校准电流计,绘制了校准曲线。实验仪器灵敏度高,指针偏转不定,读数时没有待指针居中静止后读数,导致实验误差较大。
- 2. 思考题
- (1) 电位差计有几个回路? 各是什么作用?

电位差计一共有三个回路

- 1.工作电路: 该电路实际上是一个限流回路,主要作用是提供工作电流。
- 2.电流校准回路: 该电路的作用是校准工作电流, 使其保持一个固定的值。
- 3.测量回路:该电路实际上是一个分压电路,电路的作用是输出一个电压去补偿未知电压或电动势。
- (2)如果检流计总是往一边偏转,可能的原因? 原因可能是倍率过大或者过小;调节电阻的档位过小。
- (3) 测量结果为何比较精确

对于精度较低的毫安表,用比它精度高的标准表进行校准,考察它的精度级别,并做出它的校准曲线,测量值按校准曲线修正后,可以认为测量结果接近标准表测电流的精度,比原来的精度有所提高,因此比较精确。

(4) 电位差计除了可以测量电动势,还可以测量电流、电阻吗? 电位差计除了可以测量电动势,也可以测量电流和电阻。

指-	导教师批阅	阅意见:					
成组	成绩评定:						
	预习			思考题]
	(20	操作及记录	数据处理与结果陈述 30 分	10 分	报告整体	总分	
	分) (40分)	(40分)			印 象		