Operating Systems

Youjip Won

15. Address Translation

Memory Virtualizing with Efficiency and Control

- Memory virtualizing takes a similar strategy known as limited direct execution(LDE) for efficiency and control.
- In memory virtualizing, efficiency and control are attained by hardware support.
 - e.g., registers, TLB(Translation Look-aside Buffer)s, page-table

Address Translation

- Hardware transforms a virtual address to a physical address.
 - The desired information is actually stored in a physical address.
- The OS must get involved at key points to set up the hardware.
 - The OS must manage memory to judiciously intervene.

Example: Address Translation

C - Language code

```
void func()
    int x=3000;
    ...
    x = x + 3; // this is the line of code we are interested
in
```

- Load a value from memory
- Increment it by three
- Store the value back into memory

Example: Address Translation(Cont.)

Assembly

```
128 : movl 0x0(%ebx), %eax ; load 0+ebx into eax
132 : addl $0x03, %eax ; add 3 to eax register
135 : movl %eax, 0x0(%ebx) ; store eax back to mem
```

- Load the value at that address into eax register.
- Add 3 to eax register.
- Store the value in eax back into memory.

Example: Address Translation(Cont.)

- Fetch instruction at address 128
- Execute this instruction (load from address 15KB)
- Fetch instruction at address 132
- Execute this instruction (no memory reference)
- Fetch the instruction at address 135
- Execute this instruction (store to address 15 KB)

Dynamic Relocation: Base and Bound Register

- The OS wants to place the process somewhere else in physical memory, not at address 0.
 - The address space start at address 0.

Base and Bounds Register

Dynamic(Hardware base) Relocation

- When a program starts running, the OS decides where in physical memory a process should be loaded.
 - Set the **base** register a value.

$$T_{turnaround} = T_{completion} - T_{arrival}$$

Every virtual address must not be greater than bound and negative.

Average turnaround time =
$$\frac{10+20+30}{3}$$
 = 20 sec

Relocation and Address Translation

128 : movl 0x0(%ebx), %eax

Fetch instruction at address 128

Average turnaround time =
$$\frac{100 + 110 + 120}{3} = 110 \text{ sec}$$

- Execute this instruction
 - Load from address 15KB

Average turnaround time =
$$\frac{10 + 20 + 120}{3}$$
 = 50 sec

Two ways of Bounds Register

Hardware Requirements

- Privileged mode: prevent user-mode processes from executing privileged operations
- Base/bounds registers: Need pair of registers per CPU to support address translation and bounds checks
- Ability to translate virtual addresses and check if within bounds limits;
 Circuitry to do translations.
- Privileged instruction(s) to update base/bounds: OS must be able to set
 these values before letting a user program run
- Privileged instruction(s) to register: OS must be able to tell hardware what exception handlers code to run if exception occurs
- Ability to raise exceptions when processes try to access privileged instructions or out-of-bounds memoryl

OS Issues for Memory Virtualizing

The OS must take action to implement base-and-bounds approach.

Youjip Won

- Three critical junctures:
 - When a process starts running:
 - Finding space for address space in physical memory
 - When a process is terminated:
 - Reclaiming the memory for use
 - When context switch occurs:
 - Saving and storing the base-and-bounds pair

14

OS Issues: When a Process Starts Running

- The OS must **find a room** for a new address space.
 - free list: A list of the range of the physical memory which are not in use.

OS Issues: When a Process Is Terminated

The OS must put the memory back on the free list.

OS Issues: When Context Switch Occurs

- The OS must save and restore the base-and-bounds pair.
 - In process structure or process control block(PCB)

OS Issues: provide exception handlers

- the OS must provide exception handlers,
- the OS installs these handlers at boot time (via privileged instructions
 - Exception handler for segmentation fault

Summary

- Address translation: hardware support and OS support
- Basic form: base and bound
- Fragmentation issue