Parcial 1 (09/11/09) Solucions als problemes

Problema 3.

Siguin $X = \{2, 5, 6, 8\}$ i $Y = \{2, \{5\}, 6, \{8\}\}$. Respon a les següents preguntes, justificant breument les respostes.

(a) És veritat que $X \subseteq \{x \in \mathbb{N} : \exists y \in \mathbb{N} (x = 2y)\}$?

No. El conjunt de la dreta és el conjunt dels naturals parells, i 5 no és parell.

(b) Calcula $X \cap \{x \in \mathbb{N} : \exists y \in \mathbb{N} (x = 2y)\}.$

El resultat és $\{2,6,8\}$, ja que aquests són els elements de X que són parells.

(c) És veritat que $X \subseteq \{x \in \mathbb{N} : \exists y \in \mathbb{N} (y = 2x)\}$?

Sí. El conjunt de la dreta és el conjunt de tots els naturals, i tots els elements de *X* són naturals.

(d) És veritat que $\{2\} \in X$?

No. $\{2\}$ no és cap dels elements de X, que són 2,5,6 i 8, i $\{2\}$ és diferent de tots ells.

Observació: Justificacions com "Perquè el símbol \in no es fa servir amb conjunts", o "Perquè $2 \neq \{2\}$ ", o "Perquè el que sí que és veritat és que $2 \in X$ ", **no** són correctes. El punt clau és que $\{2\}$ no apareix a la llista dels elements de X; si hi ha 2 o no és irrellevant.

Observació més general: Per justificar que una afirmació és *falsa*, **no val** explicar que una altra afirmació semblant sí que seria certa; s'ha de mostrar concretament per què és falsa la que s'ha proposat!

- (e) És veritat que $\{2\} \subseteq Y$?
 - Sí. La pregunta original equival a dir si $2 \in Y$, i efectivament 2 és un dels elements de Y.

Observació: Una justificació com "Perquè \subseteq correspon a conjunts, i $\{2\}$ és un conjunt", **no** és correcta si no s'acompanya de l'explicació que en concret *aquest* conjunt està format per elements de Y. Tampoc no es considera suficient *llegir* la fórmula i respondre "Perquè el conjunt $\{2\}$ està inclòs/contingut en el conjunt Y": això només és una forma alternativa de dir el mateix, però no ho *justifica*.

(f) Calcula $X \cap Y$.

El resultat és $\{2,6\}$, ja que són els elements comuns a X i Y.

(g) És veritat que $Y \cap \{x \in \mathbb{N} : \exists y \in \mathbb{N} (x = 2y)\} = \emptyset$?

No. El conjunt de la dreta és el dels naturals parells, i Y té dos naturals parells, el 2 i el 6.

Problema 4.

Demostra, justificant tots els passos del teu raonament, que si A, B, C són conjunts qualssevol, aleshores $(B \cup A) \cap B = (B \cap C) \cup B$.

Solució 1:
$$B \subseteq B \cup A$$
, per tant $(B \cup A) \cap B = B$ $B \cap C \subseteq B$, per tant $(B \cap C) \cup B = B$ Per tant, $(B \cup A) \cap B = (B \cap C) \cup B$.

La propietat clau que hem usat és que si $X \subseteq Y$ aleshores $X \cap Y = X$ i $X \cup Y = Y$.

Solució 2: Demostrem les dues inclusions separadament, agafant elements.

- (⊆) Si $x \in (B \cup A) \cap B$, aleshores en particular $x \in B$, i això implica que $x \in (B \cap C) \cup B$. Per tant, hem provat que $(B \cup A) \cap B \subseteq (B \cap C) \cup B$
- (⊇) Si $x \in (B \cap C) \cup B$, hi ha dos casos: $x \in B \cap C$, i $x \in B$:
 - Si $x \in B \cap C$, aleshores també $x \in B$, i això implica que $x \in B \cup A$, i per tant $x \in (B \cup A) \cap B$.
 - Si $x \in B$, el mateix raonament anterior (sense el primer pas) mostra que $x \in (B \cup A) \cap B$.

En tots dos casos hem provat que $x \in (B \cup A) \cap B$. Per tant hem provat que $(B \cap C) \cup B \subseteq (B \cup A) \cap B$.

No hem usat res més que les definicions de la unió i la intersecció: Si $x \in X \cap Y$ aleshores $x \in X$; i si $x \in X$, aleshores $x \in X \cup Y$ per qualsevol Y.

Problema 5 (a).

Identifica els següents conjunts. Justifica la resposta.

1.
$$A = \{x \in \mathbb{Q} : \forall p \in \mathbb{Q} (p \cdot x = -x)\}.$$

 $A = \{0\}$. Per una banda, $0 \in A$ ja que $p \cdot 0 = 0 = -0$ per qualsevol $p \in \mathbb{Q}$. I si $a \in A$, aleshores hauria de ser $p \cdot a = -a$ per a tot $p \in \mathbb{Q}$, i en particular per a p = 0 tindríem $0 \cdot a = -a$, i això només pot passar si a = 0; dit d'una altra manera, si $a \neq 0$, podríem dividir la igualtat $p \cdot a = -a$ per a, i resultaria que p = -1 per tot $p \in \mathbb{Q}$, cosa absurda.

2.
$$B = \{x \in \mathbb{N} : \exists m \in \mathbb{N} \forall k \in \mathbb{N} (k \neq 0 \rightarrow k \cdot x < m)\}.$$

 $B = \{0\}$. La fórmula diu que $x \in B$ quan x és natural i *existeix una cota superior* $\underline{de \ tots}$ *els seus múltiples no nuls*. $0 \in B$ ja que per qualsevol k natural positiu, $k \cdot 0 = 0 < 1$, per tant m = 1 és una de les cotes demanades. Però cap natural $n \neq 0$ pot pertànyer a B, perquè donat un natural qualsevol m sempre existeix un múltiple de n que és més gran que m, per tant cap m pot ser cota superior de tots els múltiples no nuls de n.

Problema 5 (b).

Escriu amb símbols la següent propietat:

L'arrel quadrada de qualsevol nombre real comprès estrictament entre 0 i 1 està compresa estrictament entre 0 i 1 i és més gran que el propi nombre.

Pots usar només els símbols $\ \forall$, $\ \exists$, (,) , $\ \neg$, \rightarrow , \land , \lor , \leftrightarrow , = , \in , \cdot , < , \leqslant , \mathbb{R} .

Vàries solucions correctes:

$$\forall x, y \in \mathbb{R} \left(\left((0 < x < 1) \land (x = y \cdot y) \land (0 \leqslant y) \right) \rightarrow \left((0 < y < 1) \land (x < y) \right) \right)$$

i també

$$\forall x \Big(\big((x \in \mathbb{R}) \land (0 < x) \land (x < 1) \big) \to$$

$$\rightarrow \forall y \Big(\big((y \in \mathbb{R}) \land (x = y \cdot y) \land (0 \leqslant y) \big) \to \big((0 < y) \land (y < 1) \land (x < y) \big) \Big) \Big)$$

I les mateixes sense tants parèntesis:

$$\forall x, y \in \mathbb{R} \left(0 < x < 1 \ \land \ x = y \cdot y \ \land \ 0 \leqslant y \ \rightarrow \ 0 < y < 1 \ \land \ x < y \right)$$

$$\forall x \left(x \in \mathbb{R} \ \land \ 0 < x \ \land \ x < 1 \ \rightarrow \ \forall y \left(y \in \mathbb{R} \ \land \ x = y \cdot y \ \land \ 0 \leqslant y \ \rightarrow \ 0 < y \ \land \ y < 1 \ \land \ x < y \right) \right)$$

Observació: Cal especificar $0 \le y$ per tal que y sigui l'arrel quadrada de x, que sempre es pren positiva. També hi ha un y negatiu tal que $x = y \cdot y$, però no és *l'arrel quadrada* de x.

Si volem expressar que l'arrel quadrada existeix (encara que l'enunciat no ho diu explícitament), es pot escriure:

$$\forall x \left(x \in \mathbb{R} \ \land \ 0 < x \ \land \ x < 1 \ \rightarrow \ \exists y \left(y \in \mathbb{R} \ \land \ x = y \cdot y \ \land \ 0 < y \ \land \ y < 1 \ \land \ x < y \right) \right)$$