Reading Raw MUGA and MegaMUGA Data

Daniel M. Gatti

03 October 2013

1 Extracting Genotypes and Intensities

This vignette explains how to read in the raw MUGA and MegaMUGA data as it is received from GeneSeek (Lincoln, NE). When genotyping Diversity Outbred (DO) mice, GeneSeek provides six files:

- 1. *_DNAReport.csv: Quality metrics per sample containing allele call rates and frequencies.
- 2. *_FinalReport.txt: The main data file containing allele calls and intensities.
- 3. *_LocusSummary.csv: Quality metrics for each marker.
- 4. *_LocusXDNA.csv: Combined sample and marker quality report.
- 5. Sample_map.txt: A list of sample IDs and plate locations.
- 6. SNP_Map.txt: A list of the SNPs assayed with genomic locations.

The two files required by DOQTL are *_FinalReport.txt and Sample_map.txt. They are expected to be in the same directory. Each data set from GeneSeek should also be in a separate directory.

Below, we load in example data and write it out to directories similar to what GeneSeek produces.

> library(DOQTL)

```
R/QTLRel is loaded
```

The *_FinalReport.txt files are tab delimited files that contain 11 columns.

- 1. SNP Name: marker ID
- 2. Sample ID: sample ID
- 3. Allele1 Forward: allele call for one DNA strand
- 4. Allele2 Forward: allele call for the other DNA strand
- 5. X: normalized X intensity
- 6. Y: normalized X intensity
- 7. GC Score: uncertain, ranges from 0 to 1, with a skew toward 1
- 8. Theta: X and Y intensity transformed to θ
- 9. X Raw: raw X intensity
- 10. Y Raw: raw Y intensity
- 11. R: X and Y intensity transformed to ρ

		SNP.Na	me Sar	nple.ID	Allele1	.Forward	Allele2Forward	Х	Y
1	backupJAX	000004	184	F01		A	G	0.548	0.546
2	backupJAX	000035	592	F01		G	G	0.007	1.152
3	backupJAX	000042	293	F01		Т	C	0.557	0.396
4	backupJAX	000055	808	F01		G	G	0.019	0.814
5	backupJAX	000120)65	F01		Т	G	1.055	0.816
6	backupJAX	000124	123	F01		G	G	0.001	0.633
	GC.Score	Theta	X.Raw	Y.Raw	R				
1	0.6971	0.499	7415	5846	1.094				
2	0.8788	0.996	1020	11655	1.158				
3	0.7054	0.394	7497	4401	0.953				
4	0.8860	0.985	1127	8385	0.833				
5	0.7188	0.419	13503	8518	1.871				
6	0.9637	0.999	888	6639	0.634				

Each sample is listed sequentially. Note that the markers are not in genomic order in this file.

The Sample_Map.txt files contain a listing of the sample IDs and plate locations for each sample.

> read.delim(paste(data.dirs[1], "Sample_Map.txt", sep = "/"), nrows = 6)

	т 1	NT.	TD	a 1	D1 .	** 77	~	D 14	D . O	D 3: .
	Index	Name	ID	Gender	Plate	well	Group	Parentl	Parent2	Replicate
1	1	F01	9376-F01	${\tt Unknown}$	P02723	A01	NA	NA	NA	NA
2	2	F02	9376-F02	Unknown	P02723	A02	NA	NA	NA	NA
3	3	F03	9376-F03	Unknown	P02723	A03	NA	NA	NA	NA
4	4	F04	9376-F04	Unknown	P02723	A04	NA	NA	NA	NA
5	5	F05	9376-F05	Unknown	P02723	A05	NA	NA	NA	NA

```
6 6 F06 9376-F06 Unknown P02723 A06 NA NA NA NA NA SentrixPosition
1 5532807102_R01C01
2 5532807102_R03C01
3 5532807102_R05C01
4 5532807102_R07C01
5 5532807102_R09C01
6 5532807102_R11C01
```

In practice, you will have one or more directories with genotyping results from GeneSeek. The genotype, X and Y intensity data can be extracted from these directories using the function extract.raw.data(). Place the path to the data directories in the in path argument, the output path in out path and specify whether the array is muga or megamuga in the array argument.

```
> extract.raw.data(in.path = data.dirs, out.path = wd, array = "muga")
```

This will create x.txt, y.txt, geno.txt and call.rate.batch.txt files in the ouput directory.

Optionally, you may filter out samples with low allele call rates. Samples with call rates below 90% often produce poor genome reconstructions. The function removes samples with call rates below the threshold (default = 0.9), writes out the x.filt.txt, y.filt.txt and geno.filt.txt files and returns the samples that were removed.

Three samples had call rates below 0.9.

Finally, you may perform batch normalization on the intensity files. Currently, this simply subtracts the median intensity from each batch. Future improvements may be made to these methods. You must provide the SNP locations in the snps argument. We obtain these from the JAX FTP site.

```
> load(url("ftp://ftp.jax.org/MUGA/muga_snps.Rdata"))
> batch.normalize(path = wd, snps = muga_snps)
```

This will write out the files x.filt.norm.txt and y.filt.norm.txt. You may then use these as input into DOQTL's genome reconstruction pipeline.