АлГем

Сергей Григорян

18 сентября 2024 г.

Содержание

1	Лен	кция 1	3
	1.1	Инфа	3
	1.2	Матрицы	3
		1.2.1 I. Сложение	3
		1.2.2 II. Умножение матрицы на вещественное число $\lambda \in \mathbb{R}$	3
	1.3	III. Транспонирование	4
	1.4	IV. Умножение матриц	5
		1.4.1 Частный случай	5
		1.4.2 Общий случай	5
2	Лен	кция 2	8
	2.1	Упражняемся	8
	2.2	Векторная алгебра	9
	2.3	Операции с векторами	10
		2.3.1 І. Сложение	10
		2.3.2 Умножение вектора на $\lambda \in \mathbb{R}$	10
	2.4	Системы векторов в пр-ве V_i	11
3	Лен	кция 3	13
	3.1	Понятие базиса лин. пр-ва. Базисы в пр-вах V_i	13
	3.2	Описание базисов в пр-вах V_1, V_2, V_3	16
	3.3	Матрица перехода от одного базиса к другому	17
4	Лен	кция 4	18
	4.1	Декартова система коор-т	18
	4.2	Скалярное произведение	22
5	Лекция 5		
	5.1	Выр-е скалярного произведения в ОНБ и произвольном ба-	0.4
	. .	зисе	24
	5.2	Ориентация на пл-ти	26

1 Лекция 1

1.1 Инфа

Лектор: Вадим Владимирович Штепин

1.2 Матрицы

Определение 1.1. Матрица - прямоугольная таблица чисел.

Обозначение.
$$A_{m*n} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \cdots & & & & \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}$$

Определение 1.2. Поле - мн-во, на котором определены "+, -, *, /".

1.2.1 І. Сложение

<u>Обозначение</u>. $M_{m*n}-$ мн-во всех матрии, размера m*n $A, B \in M_{m*n}, A+B \in M_{m*n}$

Определение 1.3. $[A+B]_{ij}=a_{ij}+b_{ij}=[A]_{ij}+[B]_{ij}$ - сложение матриц определено поэлементно.

1.2.2 II. Умножение матрицы на вещественное число $\lambda \in \mathbb{R}$

Определение 1.4. Умножение матрицы на число осущ. поэлементно:

$$A \in M_{m*n}$$

$$\lambda \in \mathbb{R}$$

$$\lambda A \in M_{m*n}$$

$$[\lambda A]_{ij} = \lambda a_{ij} = \lambda [A]_{ij}$$

Теорема 1.1. Операции сложения матриц и "* λ "удовл. след. св-вам $[A, B, C \in M_{m*n}]$:

- 1. Коммутативность сложения: A + B = B + A
- 2. Ассоциативность сложения: (A+B)+C=A+(B+C)

- 3. Существование нулевой матрицы: $\exists O \in M_{m*n}, \ m. \ ч. \ A+O = A, \forall A \in M_{m*n}$
- 4. Св-во сущ. прот. матрицы: $\forall A \in M_{m*n} \exists (-A) \in M_{m*n}, \ m. \ ч. \ A + (-A) = (-A) + A = O$
- 5. Унитарность: 1 * A = A;
- 6. Ассоциативность отн-но скалярного мн-ва : $(\lambda * \mu) * A = \lambda * (\mu * A)$;
- 7. Дистрибутивность $(\lambda + \mu)A = \lambda A + \mu A$
- 8. Дистрибутивность $\lambda(A+B) = \lambda A + \lambda B$;

Доказательство. 8) $A, B \in M_{m*n}$

$$[\lambda(A+B)]_{ij} = \lambda[A+B]_{ij} = \lambda(a_{ij} + b_{ij}) = \lambda * a_{ij} + \lambda * (b_{ij}) = [\lambda A]_{ij} + [\lambda B]_{ij} = [\lambda A + \lambda B]_{ij}.$$

Определение 1.5. Линейное пр-во над M_{m*n} :

Пусть V - произв. мн-во, на кот. определены операции сложения эл-ов из V и умн-я эл-ов из V на эл-ты \mathbb{R} , и эти оп-ции удовл аксиомам (1-8). Тогда V - действительное линейное (векторное) пр-во.

Вывод: $M_{m*n}(\mathbb{R})$ - действ. лин. пр-во.

1.3 III. Транспонирование

 $A \in M_{m*n} \Rightarrow A^T$ или $A^t \in M_{n*m}$

Определение 1.6.

$$[A^T]_{ij} = [A]_{ji}.$$

Пример.

$$\begin{pmatrix} 1 & 9 & 9 & -1 \\ 3 & -7 & -2 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 \\ 9 & -7 \\ 9 & -2 \\ -1 & 4 \end{pmatrix}.$$

1.4 IV. Умножение матриц

1.4.1 Частный случай

 $A \in M_{1*n}, B \in M_{n*1}$

$$(a_1 \ a_2 \ \cdots \ a_n) * \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n.$$

1.4.2 Общий случай

A * B имеет смысл (опр.), если:

$$A \in M_{m*n}, B \in M_{n*k}$$

Тогда:

$$C = A * B \in M_{m*k}$$
.

$$[C]_{ij} = \sum_{s=1}^{n} a_{is} b_{sj}.$$

$$\begin{pmatrix} \dots & \dots & \dots \\ a_{i1} & \dots & a_{in} \\ \dots & \dots & \dots \end{pmatrix} * \begin{pmatrix} \dots & b_{1j} & \dots \\ \vdots & \vdots & \vdots \\ \dots & b_{nj} & \dots \end{pmatrix} = \begin{pmatrix} \dots & \dots & \dots \\ \vdots & c_{ij} & \vdots \\ \dots & \dots & \dots \end{pmatrix}.$$

Чтобы получить эл-т c_{ij} матрицы C, нужно умножить і-ую строку A на ј-ую строку B

Пример.

$$\begin{pmatrix} 1 & -1 & 2 \\ 4 & 5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 4 & 2 \\ 2 & 5 & 7 \\ 3 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -3 & -11 \\ 23 & 38 & 34 \end{pmatrix}.$$

<u>Утверждение</u> **1.1** (О св-вах опер. транспонирования). Операция транспонирования матрицы обладает св-вами.

1.
$$(A^T)^T = A$$

2.
$$(\lambda A)^T = \lambda A^T$$

3.
$$(A+B)^T = A^T + B^T$$

4. Св-во транспон. произв-я:

$$(A*B)^T = B^T A^T.$$

Доказательство. 4) Пусть матрица $A \in M_{m*n}, B \in M_{n*k}. AB \in M_{n*k} \Rightarrow$ $(AB)^T \in M_{k*m}$ $B^T \in M_{k*n}, A^T \in M_{n*m} \Rightarrow B^T A^T \in M_{k*m}$

$$B^T \in M_{k*n}, A^T \in M_{n*m} \Rightarrow B^T A^T \in M_{k*m}$$

$$[(A * B)^T]_{ij} = [AB]_{ji} = \sum_{s=1}^n a_{js} b_{si} = \sum_{s=1}^n b_{si} a_{js} =$$
$$= \sum_{s=1}^n [B^T]_{is} [A^T]_{sj} = [B^T A^T].$$

 $(A * B * C)^T = C^T * B^T * A^T.$

Теорема 1.2. (О св-вах опер. "*"u "+")

1. Ассоциативность умножения:

$$(A * B) * C = A * (B * C).$$

2. Левая дистрибутивность умножения отн-но сложение

$$A*(B+C) = A*B + A*C.$$

3. Правая дистрибутивность умн. отн. слож:

$$(A+B)*C = A*C + B*C.$$

Доказательство. 1)

$$A \in M_{m*n}, B \in M_{n*k}, C \in M_{k*r}$$

Правая и левая часть, очев., имеют смысл.

$$[(AB) * C]_{ij} = \sum_{s=1}^{k} [AB]_{is} [C]_{sj} = \sum_{s=1}^{k} (\sum_{t=1}^{n} a_{it} b_{ts}) * c_{sj} = \sum_{s=1}^{k} \sum_{t=1}^{n} a_{it} b_{ts} c_{sj} = .$$

$$= \sum_{s=1}^{k} a_{it} \sum_{t=1}^{n} b_{ts} c_{sj} = \sum_{s=1}^{k} [A]_{it} [BC]_{tj} = [A(BC)]_{ij}.$$

Замечание. Умножение матриц некоммутативно:

$$AB \neq BA$$
.

Пример.

$$\begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

- это пример делителя нуля

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 2 & -2 \end{pmatrix}.$$

Определение 1.7. Матрица $\triangle \in M_{n*n}$ наз-ся **диагональной**, если:

$$\triangle = \begin{pmatrix} \alpha_1 & \cdots & 0 \\ 0 & \alpha_i & 0 \\ 0 & \cdots & \alpha_n \end{pmatrix}, ([\triangle]_{ij} = 0, i \neq j)$$

Утверждение 1.2.

а) Умножение матрицы A слева на матрицу \triangle , если это возм.,

$$[\triangle A].$$

равносильно умнож строк матрицы A на числа $\alpha_1, \alpha_2, \cdots, \alpha_n$ соотв.

b) Умнож. A справа на \triangle , если это возм.

$$[A * \triangle].$$

Равносильно умножению столбцов A на числа $\alpha_1, \alpha_2, \dots, \alpha_n$, соотв.

2 Лекция 2

2.1 Упражняемся

 $A \in M_{m*n}$ Произвольную і-ую строку будем записывать в виде:

$$A_{i*} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}.$$

Определение 2.1. Линейная комбинация (ЛК) строк A_{1*}, \dots, A_{m*} наз-ся форм. алг. выр-е:

$$\alpha_1 A_{1*} + \alpha_2 A_{2*} + \dots + \alpha_m A_{m*} \in M_{1n}.$$

- **Утверждение 2.1.** а) Пусть $A \in M_{m*n}, B \in M_{n*k}$. Тогда строки матрицы AB явл **ЛК** строк матрицы B с коэф. из соотв. строки матрицы A
 - b) Столбцы матрицы AB явл. ΠK столбцов матрицы A c коэф. из cooms. cmonбцов матрицы B.

Доказательство. b) Пусть $C = AB \in M_{m*k}$

$$C_{*j} = \begin{pmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{mj} \end{pmatrix} = \begin{pmatrix} \sum_{s=1}^{n} a_{1s} b_{sj} \\ \sum_{s=1}^{n} a_{2s} b_{sj} \\ \vdots \\ \sum_{s=1}^{n} a_{ms} b_{sj} \end{pmatrix} = \sum_{s=1}^{n} b_{sj} \begin{pmatrix} a_{1s} \\ a_{2s} \\ \vdots \\ a_{ms} \end{pmatrix} = \sum_{s=1}^{n} b_{sj} A_{*s}.$$

2.2 Векторная алгебра

 V_i - линейное пространство і-ого измерения. (i=1,2,3)

Определение 2.2. Две точки $X,Y \in V_i$ определяют направленный отрезок, если известно, какая из этих точек первая, какая вторая.

 \overline{XY} - направленный отрезок.

 $|\overline{XY}| = XY$ - длина напр. отр.

Обозначение.

 $\overline{0}$ - нулевой напр. отр..

Определение 2.3. $\overline{XY} = \overline{X'Y'} \iff$

- a) XY = X'Y'
- b) \overline{XY} и $\overline{X'Y'}$ коллинеарны (\exists прямая, || им обоим)
- c) \overline{XY} и $\overline{X'Y'}$ сонаправлены.

Определение 2.4. Вектор - это класс направленных отрезков, кот. равны некоторому фиксированному напр. отр.

Обозначение. $\overline{a}, \overline{b}, \overline{c}$

 ${\bf Утверждение}\ {\bf 2.2.}\ {\it Два}\ {\it напр.}\ {\it omp.}\ {\it \overline{XY}}\ u\ {\it \overline{X'Y'}}\ {\it onpedension}\ (\it noposedatom)\ {\it oduh}\ u\ mom\ see вектор\ m.\ u\ m.\ m.,\ когда\ ohu\ равны.$

Доказательство.

- а) Необходимое: Пусть \overline{XY} и $\overline{X'Y'}$ опр. один и тот же вектор $\Rightarrow \overline{XY} = \overline{X'Y'} = \overline{a}$
- **b)** Достаточное: Пусть $\overline{XY} = \overline{X'Y'} \Rightarrow$ они содерж. в одном классе $\overline{a} \Rightarrow$ они опред. один и тот же вектор.

Определение 2.5. $\overline{XY} = \overline{a} \iff$ он порождает вектор a

2.3 Операции с векторами

2.3.1 І. Сложение

<u>Замечание</u>. При данном векторе \overline{a} и фикс. точке X, то найдётся напр. $\overline{XY} = \overline{a}$

Определение 2.6. Пусть напр. отр. \overline{XY} опр. \overline{a} , \overline{YZ} опр. \overline{b} :

 $\overline{\mathbf{C}\mathbf{y}\mathbf{m}\mathbf{m}\mathbf{a}}$ векторов: вектором $\overline{a}+\overline{b}$ назыв. вектор, порожд. \overline{XZ}

 ${\underline{\bf 3aмечаниe}}.$ Данное onp. ${\it корректнo},\ u$ не зависит om начальной точ- ${\it ku}\ X$

Доказательство. ***Рисунок***

2.3.2 Умножение вектора на $\lambda \in \mathbb{R}$

Pассм. напр. отр. $\overline{a} = \overline{XY}$ и \overline{XZ} :

- a) $XZ = |\lambda| * XY$
- b) \overline{XZ} коллинеарен \overline{XY}
- c) \overline{XZ} сонаправлен \overline{XY} , при $\lambda>0$ \overline{XZ} прот. направлен. \overline{XY} при $\lambda<0$:

Вектор, определяемы напр. отр. \overline{XZ} , наз-ся вектором $\lambda \overline{a}$

Доказательство. to do by yourself

Теорема 2.1. Операции "+"и "* λ "удовл. след. св-вам:

1. Коммутативность сложения (Вытекает из св-в параллелограм-ма):

$$\overline{a} + \overline{b} = \overline{b} + \overline{a}.$$

2. Ассоциативность сложения:

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$$

- 3. $\exists \overline{o} : \overline{o} + \overline{a} = \overline{a} + \overline{o} = \overline{a}, \forall \overline{a} \in V_i$
- 4. $\forall \overline{a} \in V_i \ \exists (-\overline{a}) \in V_i : \overline{a} + (-\overline{a}) = (\overline{-a}) + \overline{a} = \overline{o}$

5. Унитарность:

$$1 * \overline{a} = \overline{a}, \forall \overline{a} \in V_i$$
.

6.

$$(\lambda * \mu) * \overline{a} = \lambda * (\mu * \overline{a}).$$

7.

$$(\lambda + \mu) * \overline{a} = \lambda \overline{a} + \mu * \overline{a}.$$

8.

$$\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}.$$

<u>Замечание</u>. Mн-во векторов является действительным линейным пространством отн-но мн-ва \mathbb{R} .

2.4 Системы векторов в пр-ве V_i

$$V_i, i = 1, 2, 3$$

 $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n} \in V_i$

Обозначение.

$$\sum_{i=1}^n lpha_i \overline{v_i}$$
 - наз-ся ЛК векторов.

Если $\alpha_i = 0, \forall i = 1 \cdots n$, то такая ЛК наз-ся **тривиальной**. Если $\exists i : \alpha_i \neq 0$, то ЛК **нетривиальная**.

Определение 2.7 (ЛЗ система векторов). Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ наз-ся линейно зависимой (ЛЗ), если \exists нетривиальная ЛК этих векторов, равная \overline{o}

Определение 2.8 (ЛНЗ сис. вект.). Система векторов $\overline{v_1},\overline{v_2},\cdots,\overline{v_n}$ назся линейно независимой (ЛНЗ), если $\not \equiv$ нетривиальной ЛК этих векторов, равной \overline{o}

Пример.

$$\overline{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overline{c} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, - \mathcal{J}H3 \ cucm. \ \textit{sekm.}.$$

Док-во ЛНЗ: предствить, что есть коэф-ты, дающие Л $K=\overline{o}$, и показать, что она тривиальная.

Утверждение 2.3. Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - $\mathcal{I}\mathcal{I}\mathcal{I}$ \iff хотя бы один из них представим в виде $\mathcal{I}\mathcal{K}$ остальных.

Доказательство. a) **Heoбх:** пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛЗ:

 $\Rightarrow \exists$ нетрив. ЛК : $\alpha_1 \overline{v_1} + \alpha_2 \overline{v_2} + \cdots + \alpha_n \overline{v_n} = \overline{o}$.

Пусть $\alpha_i \neq 0$:

$$\frac{\alpha_1}{\alpha_i} \overline{v_1} + \dots + \overline{v_i} + \dots + \frac{\alpha_n}{\alpha_i} \overline{v_n} = \overline{o}.$$

$$\overline{v_i} = -\frac{\alpha_1}{\alpha_i} \overline{v_1} - \dots - \frac{\alpha_n}{\alpha_i} \overline{v_n}.$$

b) Дост.: Пусть $\overline{v_i} = \lambda_1 \overline{v_1} + \cdots + \lambda_n \overline{v_n}$

$$\Rightarrow \lambda_1 \overline{v_1} + \dots + \lambda_n \overline{v_n} - \overline{v_i} = \overline{o}.$$

<u>Замечание</u>. *HEBEPHO* было бы сформ. утв. вот так: каждый из вектор выразим в виде ЛК остальных.

Пример.

$$\overline{a},\overline{b}$$
 - неколлин..

 \Rightarrow Для $(\overline{a} \ \overline{a} \ \overline{b})$ - это неверно, т. к. b не выразим через a.

 $Ho\ 1*\overline{a}+(-1)*\overline{a}+0*\overline{b}=\overline{o}$ - нетривиальная ЛК.

<u>Утверждение</u> **2.4.** а) Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - $\mathcal{I}\mathcal{J} \Rightarrow$ всякая её **надсистема** тоже $\mathcal{I}\mathcal{J}$

b) Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - ЛНЗ \Rightarrow , то всякая её подсистема ЛНЗ.

Доказательство. a) $\exists \alpha_1, \cdots, \alpha_n$,- не все равны \overline{o} , тогда $\sum_{i=1}^n \alpha_i \overline{v_i} = \overline{o}$ $\Rightarrow \sum_{i=1}^n \alpha_i \overline{v_i} + \sum_{i=n+1}^{n+k} 0 * \overline{v_j} = \overline{o}$

b) Пусть подсистема $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_k})$ - ЛЗ (от прот.), тогда по а), $(\overline{v_1} \ \cdots \ \overline{v_n})$ - ЛНЗ \Rightarrow Противоречие

Утверждение 2.5. Пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛНЗ сист. векторов в $\overline{V_i}$. Тогда каждый вектор $\overline{w} \in V_i$ выражется через $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ не более чем одним способом.

Доказательство.

$$\overline{w} = (\overline{v_1} \quad \overline{v_2} \quad \cdots \quad \overline{v_n}) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \overline{V}\alpha = \overline{V}\beta$$

$$\Rightarrow \overline{o} = \overline{V}(\alpha - \beta).$$

3 Лекция 3

3.1 Понятие базиса лин. пр-ва. Базисы в пр-вах V_i

Утверждение 3.1. а) Пусть $\overline{a} \neq \overline{o}$ и \overline{b} коллинеарен \overline{a} . Тогда $\overline{b} = \lambda \overline{a}$.

- b) Пусть $\overline{a_1}, \overline{a_2}$ не коллин. $u\ \overline{b}$ компл. $\overline{a_1}, \overline{a_2}$. Тогда $\overline{b} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$
- c) Пусть $\overline{a_1},\overline{a_2},\overline{a_3}$ не комплан. Тогда всякий вектор представим в виде $\overline{b}=\lambda_1\overline{a_1}+\lambda_2\overline{a_2}+\lambda_3\overline{a_3}$

 $\ensuremath{\mathcal{A}}$ оказательство. а) (***Картинка***)

 $\lambda = \begin{cases} \frac{XZ}{XY},$ если Y и Zлежат на одной стороне с $X\\ -\frac{XZ}{XY},$ если Y и Zлежат на разных сторонах отн. $X \Rightarrow \overline{b} = \lambda \overline{a}$

b) Оба вектора $\overline{a_1}, \overline{a_2}$ - ненулевые. (***Картинка***)

$$\overline{b} = \overline{b_1} + \overline{b_2} = \overline{XZ_1} + \overline{XZ_2} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$$

c) $\overline{a_1},\overline{a_2},\overline{a_3}$ порожд. $\overline{XY_1},\overline{XY_2},\overline{XY_3},$ а вектор b - \overline{XZ} . $\overline{a_1},\overline{a_2}$ - не коллин., (***Картинка***) $Z'=l\cap (X_1Y_1Y_2)$

$$\overline{b} = \overline{b_1} + \overline{b_2} = \overline{XZ'} + \overline{Z'Z} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2} + \lambda_3 \overline{a_3}$$

Следствие. 1) Система, сост. только из \overline{o} - $\mathcal{I}3$.

- 2) Система, сост. из двух колин. векторов ЛЗ.
- 3) Система, сост. из трёх комплан. векторов ЛЗ.
- 4) Любая сист., сост. из четырех векторов в пр-ве ЛЗ.

Доказательство. 1) $1*\overline{o}=\overline{o}$

- 2) $\overline{a},\overline{b}$ коллин. Если $\overline{a}=\overline{o}$ - ЛЗ система \Rightarrow (a,b)- надсистема ЛЗ \Rightarrow она ЛЗ Если $\overline{a}\neq\overline{o}\Rightarrow\overline{b}=\lambda\overline{a}\Rightarrow(\overline{a},\overline{b})$ - ЛЗ
- 3) Пусть $\overline{a_1}, \overline{a_2}, \overline{b}$ компл. Если $\overline{a_1}, \overline{a_2}$ - коллин., то $(\overline{a_1}, \overline{a_2})$ - ЛЗ \Rightarrow $(\overline{a_1}, \overline{a_2}, \overline{b})$ - ЛЗ, как надсистема. Иначе, $\overline{a_1}, \overline{a_2}$ - не коллин. $\Rightarrow b = \lambda_1 \overline{a_1} + \lambda_2 + \overline{a_2}$ - ЛЗ
- 4) $\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{b}$: Если $\overline{a_1}, \overline{a_2}, \overline{a_3}$ компл. $\Rightarrow (\overline{a_1}, \overline{a_2}, \overline{a_3}, \overline{b})$ ЛЗ, как надсистема ЛЗ сист. Иначе $\Rightarrow \overline{b} = \alpha_1 \overline{a_1} + \alpha_2 \overline{a_2} + \alpha_3 \overline{a_3}$.

Утверждение 3.2. Пусть $(\overline{a_1}, \overline{a_2}, \dots, \overline{a_n})$ - ЛНЗ сист. вект. $u(\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}, \overline{b})$ - ЛЗ. Тогда:

$$\overline{b} = \sum_{i=1}^{n} \alpha_i \overline{a_i}$$

Доказательство. \exists нетрив. ЛК:

$$\alpha_1 \overline{a_1} + \alpha_2 \overline{a_2} + \ldots + \alpha_n \overline{a_n} + \beta \overline{b} = \overline{o}$$

Предположим, что $\beta=0\Rightarrow$ противоречие с условием $\Rightarrow \beta \neq 0 \Rightarrow$:

$$\overline{b} = -\frac{\alpha_1}{\beta} \overline{a_1} - \dots - \frac{\alpha_n}{\beta} \overline{a_n}$$

Определение 3.1. V - лин. пр-во (над \mathbb{R}).

 $\overline{\text{Система векторов }(\overline{e_1},\overline{e_2},\ldots,\overline{e_n})}$ - наз-ся базисом в $V_i,$ если:

- a) $(\overline{e_1}, \overline{e_2}, \dots, \overline{e_n})$ Π H3
- b) Каждый вектор $\overline{v} \in V_i$ представим в виде ЛК:

$$\overline{v} = \alpha_1 \overline{e_1} + \alpha_2 \overline{e_2} + \ldots + \alpha_n \overline{e_n}, \alpha_i \in \mathbb{R}$$

Пример.

$$M_{3*1}(\mathbb{R}) \colon \overline{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overline{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\overline{v} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \sum_{i=1}^3 \alpha_i \overline{e_i}$$

Замечание.

$$\overline{v} = \begin{pmatrix} \overline{e_1} & \overline{e_2} & \dots & \overline{e_n} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
 - коор-т столбец \overline{v} в базисе \overline{e}

Утверждение 3.3. Если в V фикс. базис $G = (\overline{e_1} \ \overline{e_2} \ \dots \ \overline{e_n})$, то всякий вектор $\overline{v} \in V$ однозначно раскладывается по одному базису. (т. е. имеет однозначно опред. коор-тный столбец)

Доказательство. См. прошлую лекцию

<u>Утверждение</u> 3.4. Пусть в пр-ве V фикс. базис G, $\overline{v} \iff_{G} \alpha, \overline{w} \iff_{G} \beta$. Тогда:

$$\overline{v} + \overline{w} \iff_{G} \alpha + \beta,$$
$$\lambda \overline{v} \iff_{G} \lambda \alpha$$

Доказательство.

$$\overline{v} = G\alpha$$

$$\overline{v} = G\beta$$

$$\Rightarrow \overline{v} + \overline{w} = G(\alpha + \beta)$$

$$\lambda \overline{v} = \lambda G\alpha = G(\lambda \alpha)$$

3.2 Описание базисов в пр-вах V_1, V_2, V_3

Теорема 3.1 (О ЛНЗ системах векторов).

- 1) Система, состоящая из одного **ненулевого** вектора \bar{a} ЛНЗ
- 2) Система, сост. из двух неколлин. векторов $\overline{a_1}, \overline{a_2}$ ЛНЗ
- 3) Система, сост. из трёх некомплан. векторов $\overline{a_1}, \overline{a_2}, \overline{a_3}$ ЛНЗ

Доказательство. 1) От. противного, пусть $\lambda \neq 0$ и $\lambda \overline{a} = \overline{o}$:

 $|\lambda||\overline{a}| = 0!!!$ Два ненулевых числа в умнож. дают 0.

- 2) От. противного, пусть $\overline{a_1}, \overline{a_2}$ ЛЗ. Б. О. О. (без ограничения общности) $\overline{a_2} = \lambda \overline{a_1}$ противоречие.
- 3) От. пр., пусть $(\overline{a_1} \ \overline{a_2} \ \overline{a_3})$ ЛЗ. Б. О. О. $\overline{a_3} = \lambda_1 \overline{a_1} + \lambda_2 \overline{a_2}$ противоречие.

Теорема 3.2 (Об описании базиса в V_i). Система векторов является:

- а) базисом в $V_1 \iff$ она состоит из одного вектора $\overline{e} \neq \overline{o}$
- b) базисом в $V_2 \iff$ она сост. из двух неколин. векторов $\overline{e_1}, \overline{e_2}$
- c) базисом в $V_3 \iff$ она сост. из трёх некомпл. векторов $\overline{e_1}, \overline{e_2}, \overline{e_3}$ Доказательство.

а) $V_1: \bar{e} \neq 0$ (ЛНЗ сист.)

$$\forall \overline{b} \in V_1(\overline{b} = \lambda \overline{e}) \Rightarrow (\overline{e})$$
 - базис в V_1 .

Если $\overline{e_1}, \overline{e_2} \in V_1 \Rightarrow$ они коллин. \Rightarrow ЛЗ и аналогично (\overline{o}) - ЛЗ.

b) V_2 - фикс. $(\overline{e_1},\overline{e_2})$ - неколл. \Rightarrow ЛНЗ.

$$\forall b \in V_2 \underset{\text{Утв. 1}}{\Rightarrow} \overline{b} = \lambda_1 \overline{e_1} + \lambda_2 \overline{e_2} \Rightarrow (\overline{e_1}, \overline{e_2})$$
- базис.

Почему нет других? $(\overline{e_1} \ \overline{e_2} \ \overline{e_3})$ - компл. \Rightarrow ЛЗ. Если $(\overline{e_1} \ \overline{e_2})$ - коллин. \Rightarrow через них выр-ся только коллин. им вектора.

c) $(\overline{e_1} \ \overline{e_2} \ \overline{e_3})$ - некомпл. \Rightarrow ЛНЗ:

$$\forall b \in V_3 \colon b = \sum_{i=1}^3 \alpha_i \overline{e_i} \Rightarrow \text{ базис.}$$

Почему нет других?

$$(\overline{e_1} \ \overline{e_2} \ \overline{e_3} \ \overline{e_4})$$
 - ЛЗ

 $\left(\overline{e_1} \ \overline{e_2} \ \overline{e_3}\right)$ - компланарный, то тогда ЛЗ

- $-|\overline{e_1}||\overline{e_2}$ очев.
- $-\overline{e_1 / |\overline{e_2}|}$ образ. плоскость.

3.3 Матрица перехода от одного базиса к другому

$$V$$
: два базиса: $G = (\overline{e_1} \ \overline{e_2} \ \dots \ \overline{e_n}), G' = (\overline{e_1}' \ \overline{e_2}' \ \dots \ \overline{e_n}')$

$$\overline{e_1}' = S_{11}\overline{e_1} + S_{21}\overline{e_2} + \ldots + S_{n1}\overline{e_n}$$

:

$$\overline{e_n} = S_{1n}\overline{e_1} + S_{2n}\overline{e_2} + \ldots + S_{nn}\overline{e_n}$$

 \Rightarrow

$$S' = \begin{pmatrix} S_{11} & S_{12} & \dots & S_{1n} \\ S_{21} & S_{22} & \dots & S_{2n} \\ \vdots & \dots & \dots & \vdots \\ S_{n1} & S_{n2} & \dots & S_{nn} \end{pmatrix} = S_{G \to G'}$$

- матрица перехода от G к G'

$$(\overline{e_1}' \ \overline{e_2}' \ \dots \ \overline{e_n}') = (\overline{e_1} \ \overline{e_2} \ \dots \ \overline{e_n}) S_{G \to G'} \iff$$

$$G' = GS_{G \to G'}$$

Утверждение 3.5. Пусть в V фикс. G и G' - базисы и G' = GS. Пусть $\overline{a} \iff_{G'} \alpha$ и $\overline{a} \iff_{G'} \alpha'$. Тогда $\alpha = S\alpha'$.

Доказательство.

$$\overline{a} = G\alpha$$

$$\overline{a} = G'\alpha' = GS\alpha' \Rightarrow \alpha = S\alpha'$$

Определение 3.2. $\overline{a}, \overline{b}$ наз-ся ортогональными, если он перпендикулярны друг другу.

<u>Определение</u> **3.3.** Базис G наз-ся ортогональным, если все базис. векторы попарно ортогональны.

Определение 3.4. Базис G наз-ся ортонормированным (ОНБ), если он ортогональный и нормированный ($\forall i \colon |\overline{e_i}| = 1$).

4 Лекция 4

4.1 Декартова система коор-т

$$G = \begin{pmatrix} \overline{e_1} & \overline{e_2} \end{pmatrix}$$

- ОНБ

$$G'$$
- G повёрнутый на α
$$\overline{e_1}' = \cos \alpha \overline{e_1} + \sin \alpha \overline{e_2}$$

$$\overline{e_2}' = -\sin\alpha\overline{e_1} + \cos\alpha\overline{e_2}$$

$$\Rightarrow S = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} = R(\alpha) - \text{Rotation - поворот.}$$

Утверждение 4.1. Пусть $S = S_{G \to G'}$. Пусть $T = S_{G' \to G''}$. Тогда:

$$ST = S_{G \to G''}$$

Доказательство.

$$G' = GS, G'' = G'T \Rightarrow G'' = G'T = GST$$

Утверждение 4.2. Пусть S - матрица перехода от G κ G'. T - матр. перехода от G' κ G. Тогда:

$$ST = TS = E$$
 - единичная матрица

Доказательство.

$$G''=G\Rightarrow ST$$
 - матрица перехода от G к $G\Rightarrow ST=E$
$$TS$$
 - матрица перехода от G' к $G'\Rightarrow TS=E$

<u>Обозначение</u>. **Единичная матрица** E - диагональная матрица c единицами на главной диагонали.

$$E = \begin{pmatrix} 1 & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & 1 \end{pmatrix}$$

Определение 4.1. Если выполняется рав-во ST = TS = E, то матрица T называется обратной к S.

Определение 4.2. Матрица наз-ся **обратимой**, если у неё есть обратная матрица.

<u>Утверждение</u> **4.3.** *Если обратная матрица сущ-ет, то она единствен-* $\frac{}{}$ *ная.*

Доказательство. От. прот. Пусть $A^{-1}, \overline{A}^{-1}$ - обратные матрицы к матр. A.

$$A^{-1} = EA^{-1} = (\overline{A}^{-1}A)A^{-1} = \overline{A}^{-1}(AA^{-1}) = \overline{A}^{-1}E = \overline{A}^{-1}$$

<u>Следствие</u>. Матрица перехода от одного базиса к другому **всегда об**ратима.

Задача 4.1. Док-ть, что $R(\alpha)$ обладает св-вами:

- 1) $R(\alpha)R(\beta) = R(\alpha + \beta)$
- 2) $R(\alpha)^{-1} = R(-\alpha) = R(\alpha)^T$

 ${\bf \underline{3} a \underline{ a a a}}$ **4.2.** Пусть $\overline{a}=\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$ (отн. ОНБ G) - вектор, выход. из нач. коор-т. \overline{b} - вектор \overline{a} повернутый на α , тогда:

$$\overline{b} = R(\alpha), \overline{a} = R(\alpha) \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Определение 4.3. Пусть т. O - фикс. точка, начало коор-т. G базис в $\overline{V_i}$. Тогда: (O,G) - ДСК

Определение 4.4. ДСК наз-ся **прямоугольной**, если G - ОНБ.

Определение 4.5. A - точка. Тогда коор-ты вектора \overline{OA} наз-ся коор-тами точки A в ДСК (O,G):

$$A \underset{(O,E)}{\longleftrightarrow} \alpha \iff \overline{OA} = G\alpha = \begin{pmatrix} \overline{e_1} & \overline{e_2} & \overline{e_3} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$

<u>Утверждение</u> 4.4. $A \longleftrightarrow_{(O,E)} \alpha, B \longleftrightarrow_{(O,E)} \beta \Rightarrow$

$$\overline{AB} = \overline{OB} - \overline{OA} = G\beta - G\alpha = G(\beta - \alpha)$$

Итого: чтобы найти вектор по его концам, нужно из коор-ты конца вычесть коор-ту начала.

Утверждение 4.5 (О делении отрезка в данном соотношении).

$$A \longleftrightarrow_{(O,E)} \alpha, B \longleftrightarrow_{(O,E)} \beta$$

Пусть т. C делит отрезок [A,B] в отношении $\frac{\lambda}{\mu}$. Тогда:

$$C \underset{(O,E)}{\longleftrightarrow} \frac{\mu \alpha + \lambda \beta}{\lambda + \mu} \iff$$
 $\iff \overline{c} = \frac{\mu}{\lambda + \mu} \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b} - выпуклая ЛК$

Доказательство.

$$\overline{OC} = \overline{OA} + \overline{AC}$$

$$\overline{AC} = \frac{\lambda}{\lambda + \mu} \overline{AB} = \frac{\lambda}{\lambda + \mu} (\overline{b} - \overline{a})$$

$$\overline{c} = \alpha + \frac{\lambda}{\lambda + \mu} (\overline{b} - \overline{a}) = (1 - \frac{\lambda}{\lambda + \mu}) \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b} = \frac{\mu}{\lambda + \mu} \overline{a} + \frac{\lambda}{\lambda + \mu} \overline{b}$$

Теорема 4.1 (Об изменении коор-т точки при замене ДСК). *Пусть в* $\overline{V_i} \ \phi u \kappa c...$ (O,G) ($I \ \mathcal{A}CK$) $u \ (O',G') \ (II \ \mathcal{A}CK)$.

Пусть
$$A \longleftrightarrow_{(O,G)} \alpha$$
 и $A \longleftrightarrow_{(O',G')} \alpha'$ и пусть $S = S_{G \to G'}$ (***Картинка***)
Тогда $\alpha = S\alpha' + \gamma$

Доказательство.

$$\overline{OA} = \overline{OO'} + \overline{O'A}$$

$$\overline{OA} = G\alpha$$

$$\overline{OO'} + \overline{O'A} = G\gamma + G'\alpha' = G\gamma + GS\alpha' = G(S\alpha' + \gamma)$$

4.2 Скалярное произведение

Определение **4.6.** V_i . Скалярное произведение векторов \overline{a} и \overline{b} обозначаем $(\overline{a}, \overline{b})$ (в физике $\overline{a} \cdot \overline{b}$). Это число, равное:

$$(\overline{a}, \overline{b}) = |\overline{a}| |\overline{b}| \cos \alpha$$

$$\alpha = \angle (\overline{a}, \overline{b})$$

Если хотя бы один из векторов нулевой, то скал. произ. = 0.

Обозначение.

$$(\overline{a},\overline{a})=|\overline{a}|^2$$
 - скалярный квадрат \overline{a}

Замечание.

$$(\overline{a}, \overline{b}) = 0 \iff \overline{a} \perp \overline{b}$$

Определение 4.7. (***Картинка***)

Вектор, порождаемые напр. отр-ом $\overline{OA'}$ наз-ся проекцией вектора \overline{a} на вектор \overline{b} :

$$pr_{\overline{b}}\overline{a} = \overline{OA'}$$
$$(pr_{\overline{b}}\overline{a} = 0 \Rightarrow (\overline{a}, \overline{b}) = 0)$$

Утверждение 4.6. (Линейность векторной проекции)

- a) $pr_{\overline{b}}(\overline{a_1}+\overline{a_2})=pr_{\overline{b}}(\overline{a_1})+pr_{\overline{b}}(\overline{a_2})(\overline{b}
 eq \overline{o})$ ассоциативность
- b) $\forall \lambda \in \mathbb{R} \colon pr_{\overline{b}}(\lambda \overline{a}) = \lambda pr_{\overline{b}}(\overline{a})$ однородность

Доказательство. а) (***Картинка***)

$$pr_{\overline{b}}(\overline{a_1} + \overline{a_2}) = \overline{OA_2'} = \overline{OA_1'} + \overline{A_1'A_2'} = pr_{\overline{b}}(\overline{a_1}) + pr_{\overline{b}}(\overline{a_2})$$

b) Для $\lambda > 0$: (****Картинка***)

$$pr_{\overline{b}}(\lambda \overline{a}) = \overline{OA'} = \lambda \overline{OA'} = \lambda pr_{\overline{b}}(\overline{a})$$

Утверждение 4.7. Пусть $\bar{b} \neq \bar{o}$. Тогда:

$$(pr_{\overline{b}}(\overline{a}), \overline{b}) = (\overline{a}, \overline{b})$$

Доказательство.

$$\angle(\overline{a}, \overline{b}) = \phi.$$

- ullet Если $\phi=rac{\pi}{2}$ рав-во верно.
- ullet Если $\overline{a}=\overline{o}$ рав-во верно
- Пусть $\phi \neq \frac{\pi}{2} \Rightarrow \cos \alpha \neq 0$.

$$|pr_{\overline{b}}(\overline{a})| = |\overline{a}||\cos\phi| = \begin{cases} |\overline{a}|\cos\phi, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \uparrow \overline{b} \\ -|\overline{a}|\cos\phi, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \downarrow \overline{b} \end{cases}$$

$$\Rightarrow (pr_{\overline{b}}(\overline{a}), \overline{b}) = \begin{cases} |\overline{a}|\cos\phi|\overline{b}| * 1, \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \uparrow \overline{b} \\ -|\overline{a}|\cos\phi|\overline{b}| * (-1), \text{если } pr_{\overline{b}}(\overline{a}) \uparrow \downarrow \overline{b} \end{cases} = (\overline{a}, \overline{b})$$

Теорема 4.2 (О св-вах скалярного произведения). *1. Симметричность* $(\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$

- 2. Аддитивность по I арг-ту: $(\overline{a_1} + \overline{a_2}, \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b})$
- 3. Однородность по I арг-ту: $(\lambda \overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$
- 4. Полож. определённость: $(\overline{a}, \overline{a}) \geq 0, \forall \overline{a} \ u \ (\overline{a}, \overline{a}) \iff \overline{a} = \overline{o}$

Доказательство. 3) При $\lambda=0$ и $\lambda=-1$ очев. При $\lambda>0$:

$$\angle(\lambda \overline{a}, \overline{b}) = \angle(\overline{a}, \overline{b})$$

$$(\lambda \overline{a}, \overline{b}) := |\lambda \overline{a}| |\overline{b}| \cos(\lambda \overline{a}, \overline{b}) = \lambda |\overline{a}| |\overline{b}| \cos \angle(\overline{a}, \overline{b}) = \lambda(\overline{a}, \overline{b})$$

2)

$$\begin{split} (\overline{a_1} + \overline{a_2}, \overline{b}) &= (pr_{\overline{b}}(\overline{a_1} + \overline{a_2}), \overline{b}) = (pr_{\overline{b}}(\overline{a_1}) + pr_{\overline{b}}(\overline{a}), \overline{b}) = \begin{bmatrix} pr_{\overline{b}}(\overline{a_1}) &= \lambda_1 \overline{b} \\ pr_{\overline{b}}(\overline{a_2}) &= \lambda_2 \overline{b} \end{bmatrix} = \\ &= ((\lambda_1 + \lambda_2)\overline{b}, \overline{b}) = (\lambda_1 + \lambda_2)(\overline{b}, \overline{b}) = \lambda_1(\overline{b}, \overline{b}) + \lambda_2(\overline{b}, \overline{b}) = (\lambda_1 \overline{b}, \overline{b}) + (\lambda_2 \overline{b}, \overline{b}) = \\ &= (pr_{\overline{b}}(\overline{a_1}), \overline{b}) + (pr_{\overline{b}}(\overline{a_2}), \overline{b}) = (\overline{a_1}, \overline{b}) + (\overline{a_2}, \overline{b}) \end{split}$$

Утверждение 4.8. Пусть $\bar{b} \neq \bar{o}$. Тогда:

$$pr_{\overline{b}}(\overline{a}) = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^2} * \overline{b}$$

Доказательство.

$$pr_{\overline{b}}(\overline{a}) = \lambda \overline{b} \mid \cdot \overline{b}$$
$$(pr_{\overline{b}}(\overline{a}), \overline{b}) = \lambda (\overline{b}, \overline{b}) = \lambda |\overline{b}|^{2}$$
$$\lambda = \frac{(pr_{\overline{b}}(\overline{a}))}{|\overline{b}|^{2}} = \frac{(\overline{a}, \overline{b})}{|\overline{b}|^{2}}$$

5 Лекция 5

5.1 Выр-е скалярного произведения в ОНБ и произвольном базисе

<u>Утверждение</u> 5.1. G - OHB. $\overline{a} \stackrel{\longleftarrow}{\longleftarrow} \alpha$. $Tor\partial a \ \alpha_i = (\overline{a}, \overline{e_i})$

Доказательство.

$$\overline{a} = \sum_{s=1}^{n} \alpha_s \overline{e_s}$$

$$(\overline{a}, \overline{e_i}) = (\sum_{s=1}^{n} \alpha_s \overline{e_s}, \overline{e_i}) = \sum_{s=1}^{n} \alpha_s (\overline{e_s}, \overline{e_i}) = \alpha_i = 1$$

$$(\overline{e_i}, \overline{e_i}) = |\overline{e_i}|^2 = 1$$

Теорема 5.1. (Выраж. ск. произ. в ОНБ) G - ОНБ, $\overline{a} \longleftrightarrow_G \alpha, \overline{b} \longleftrightarrow_G \beta$. Тогда $(\overline{a}, \overline{b}) = \sum_{i=1}^n \alpha_i \beta_i = \alpha^T \beta$

Доказательство.

$$\overline{a} = \sum_{i=1}^{n} \alpha_i \overline{e_i}, \overline{b} = \sum_{j=1}^{n} \beta_j \overline{e_j}$$

$$(\overline{a}, \overline{b}) = (\sum_{i} \alpha_{i} \overline{e_{i}}, \sum_{j} \beta_{j} \overline{e_{j}}) = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} (\overline{e_{i}}, \overline{e_{j}}) = \sum_{i=1}^{n} \alpha_{i} \beta_{i} = \alpha^{T} \beta$$

<u>Замечание</u>. $V_3: (\overline{a}, \overline{b}) = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \alpha_3 \beta_3$

V - лин. пр-во, $G=(\overline{e_1},\overline{e_2},\ldots,\overline{e_n})$ - базис в V.

Определение 5.1. Матрицей Грама базиса G наз-ся матрица:

$$\Gamma = \begin{pmatrix} (\overline{e_1}, \overline{e_1}) & (\overline{e_1}, \overline{e_2}) & \dots & \overline{e_1}, \overline{e_n} \\ & \dots & & \\ (\overline{e_n}, \overline{e_1}) & (\overline{e_n}, \overline{e_2}) & \dots & (\overline{e_n}, \overline{e_n}) \end{pmatrix}$$

Теорема 5.2. Пусть V - лин. пр-во, G - произ. базис c матр. Грама Γ .

$$\overline{a} \longleftrightarrow \alpha, \overline{b} \longleftrightarrow \beta \Rightarrow (\overline{a}, \overline{b}) = \alpha^T \Gamma \beta$$

Доказательство.

$$\overline{a} = \sum_{i} \alpha_i \overline{e_i}$$

$$\overline{b} = \sum_{i} \beta_{j} \overline{e_{j}}$$

$$(\overline{a}, \overline{b}) = \sum_{i} \sum_{j} \alpha_{i} \beta_{j} (\overline{e_{i}}, \overline{e_{j}}) = \sum_{i} \sum_{j} \alpha_{i} [\Gamma]_{ij} \beta_{j} = \sum_{i} \alpha_{i} \sum_{j} [\Gamma]_{ij} \beta_{j} = \sum_{i} \alpha_{i} [\Gamma \beta]_{i} = \alpha^{T} [\Gamma] \beta$$

Определение 5.2. Матрица $S_{n \times n}$ наз-ся ортогональной, если:

$$S^TS = E$$

Утверждение 5.2. ПУсть в V_i , G - OHB u F - произвольный базис u nycmb $S = S_{G \to F}$. Тогда базис F явл. OHB \iff S - ортогональная.

Доказательство.

$$S = \begin{pmatrix} F_1^{\uparrow} & F_2^{\uparrow} & \dots & F_n^{\uparrow} \end{pmatrix}, S^T S = \begin{pmatrix} F_1^{\rightarrow} \\ F_2^{\rightarrow} \\ \vdots \\ F_n^{\rightarrow} \end{pmatrix} \begin{pmatrix} F_1^{\uparrow} & F_2^{\uparrow} & \dots & F_n^{\uparrow} \end{pmatrix} =$$

$$= \begin{pmatrix} (F_1, F_1) & (F_1, F_2) & \dots & (F_1, F_n) \\ & \dots & \\ (F_n, F_1) & (F_n, F_2) & \dots & (F_n, F_n) \end{pmatrix} = \Gamma_F$$

$$F - \text{OHB} \iff \Gamma_f = E \iff S^T S = E \iff S - \text{opt.}$$

 ${\bf \underline{ 3 a д a 4 a}}$ 5.1. Д-ть, что Γ_G и Γ_F - матр. грамма двух произв. базисов в V_i , то если $S=S_{G o F}$, то:

$$\Gamma_F = S^T \Gamma_G S$$

Утверждение 5.3. Пусть в V_i G - OHE. Тогда:

a)
$$|\overline{a}| = \sqrt{(\overline{a}, \overline{a})} = \sqrt{\alpha^T \alpha} = \sqrt{\sum_{s=1}^n \alpha_s^2} \ (\overline{a} \longleftrightarrow_G \alpha)$$

b) Ecnu $\overline{a} \neq \overline{o}$ u $\overline{b} \neq 0$. Torda:

$$\cos \phi = \frac{(\overline{a}, \overline{b})}{|\overline{a}| |\overline{b}|} = \frac{\alpha^T \beta}{\sqrt{\alpha^T \alpha} \sqrt{\beta^T \beta}} = \frac{\sum_{i=1}^n \alpha_i \beta_i}{\sqrt{\sum \alpha_i^2} \sqrt{\sum \beta_i^2}}$$

Следствие.
$$V_3$$
. $A \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$, $B \underset{(O,G)}{\longleftrightarrow} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}$, $\overline{AB} = \begin{pmatrix} \beta_1 - \alpha_1 \\ \beta_2 - \alpha_2 \\ \beta_3 - \alpha_3 \end{pmatrix}$:

$$|\overline{AB}| = \sqrt{(\overline{AB}, \overline{AB})} = \sqrt{\sum_{i=1}^{3} (\beta_i - \alpha_i)^2}$$

5.2 Ориентация на пл-ти

Определение 5.3. Упорядоченная пара векторов $\overline{a}, \overline{b}(\overline{a} / | \overline{b})$ наз-ся положительно ориентированной, если при взгляде из фиксир. полупрва кратчайший поворот первого вектора (\overline{a}) в вектор, сонаправленный второму вектору (\overline{b}) кажется совершающим против. часовой стрелки.

Определение 5.4. Упорядоченная тройка некомпл. векторов $(\overline{a}, \overline{b}, \overline{c})$ наз-ся правой тройкой (положит. ориент), если $(\overline{a}, \overline{b})$ из конца вектора \overline{c} каж-ся положит. ориентированной. Иначе - наз-ся левой тройкой (отриц. ориент.)

Утверждение 5.4. *a)* Если на пл-ти V_2 , $(\overline{a}, \overline{b})$ - положит. ориент., то пара $(\overline{b}, \overline{a})$ - отриц. ориент. и наоборот.

b) в $V_3:(\overline{a},\overline{b},\overline{c})$ и $(\overline{b},\overline{a},\overline{c})$ всегда прот. ориент. $(\overline{a},\overline{b},\overline{c})$ всегда одинаково ориент.

Доказательство. а) Очев.

b)

Определение 5.5. Транспозиция - перемещ. мест двух векторов.

Определение 5.6. 3-цикл: $(\overline{a},\overline{b},\overline{c})\mapsto (\overline{b},\overline{c},\overline{a})\mapsto (\overline{c},\overline{a},\overline{b})$

<u>Замечание</u>. \Rightarrow Всякая **транспозиция меняет** ориентацию, а всякий **3-цикл - сохраняет**.

Определение 5.7. V_2 - с фикс. ориентацией. Тогда ор. площадью упор. пары $(\overline{a},\overline{b})$ наз-ся число S:

$$S(\overline{a},\overline{b}) = \pm S_{\text{пар-м, порожд.}a\ \text{и}\ b}$$

(Знак +/- зависит от положит./отриц. ориентации $(\overline{a},\overline{b})$)

<u>Определение</u> **5.8.** V_3 - с фикс. ор. Тогда **ориентированным объёмом** упор. тройки $(\overline{a}, \overline{b}, \overline{c})$ наз-ся число:

$$V(\overline{a},\overline{b},\overline{c})=\pm V$$
 - объём параллелипипеда, порожд. $(\overline{a},\overline{b},\overline{c})$

(+/- зависит от полож./отриц. ориентации тройки)

Замечание.
$$E$$
сли $\overline{a}||\overline{b},\ mo\ S(\overline{a},\overline{b})=0$ E сли $\overline{a},\overline{b},\overline{c}$ - комплан., $mo\ V(\overline{a},\overline{b},\overline{c})=0$

 $\underline{\bf 3aмечание}.\ V(\overline{a},\overline{b},\overline{c})$ наз-ся также смешанным произведением векторов.

Утверждение 5.5. a) Если (\bar{a}, \bar{b}) - ОНБ в V_2 , то

$$S(\overline{a}, \overline{b}) = \pm 1,$$

в зависимости от ориентации $(\overline{a},\overline{b})$

b) $Ecnu(\overline{e_1}, \overline{e_2}, \overline{e_3})$ eV_3 , mo:

$$V(\overline{e_1}, \overline{e_2}, \overline{e_3}) = \pm 1,$$

в зависимости от ориентации $(\overline{e_1}, \overline{e_2}, \overline{e_3})$

- **Теорема 5.3** (О св-вах ориент. объёма). а) Ориент. объём $V(\overline{a}, \overline{b}, \overline{c})$ меняет знак на противоположный при любой транспозиции арг-ов. $V(\overline{a}, \overline{b}, \overline{c})$ не меняет знак при 3-цикле.
 - b) Аддитивность на III аргументах: $V(\overline{a},\overline{b},\overline{c_1}+\overline{c_2})=V(\overline{a},\overline{b},\overline{c_1})+V(\overline{a},\overline{b},\overline{c_2})$
 - c) Однородность на III аргументах: $V(\overline{a}, \overline{b}, \lambda \overline{c}) = \lambda V(\overline{a}, \overline{b}, \overline{c})$
- \mathcal{A} оказательство. b) Если $\overline{a}||\overline{b}$, то очев. Пусть $\overline{a}\not||\overline{b}$. α образована \overline{a} и \overline{b}

 $\overline{n}\colon \overline{n}\perp \overline{a}, \overline{b}, |\overline{n}|=1, (\overline{a}, \overline{b}, \overline{n})$ - правая

<u>Лемма</u> **5.4.** $V(\overline{a}, \overline{b}, \overline{c}) = S(\overline{a}, \overline{b}) * (\overline{n}, \overline{c})$ л. ч. $|V(\overline{a}, \overline{b}, \overline{c})| = V_{nap.}$ $|S(\overline{a}, \overline{b})(\overline{n}, \overline{c})| = S(\overline{a}, \overline{b})|\overline{c}||\cos \angle(\overline{n}, \overline{c})|$

$$V(\overline{a},\overline{b},\overline{c}) > 0 \iff (\overline{a},\overline{b},\overline{c})$$
 - правая \iff

концы \overline{n} и \overline{c} лежат в одном полупр-ве от $\alpha \iff \cos \angle(\overline{n},\overline{c}) > 0$

$$V(\overline{a}, \overline{b}, \overline{c_1} + \overline{c_2}) = S(\overline{a}, \overline{b})(\overline{n}, \overline{c_1} + \overline{c_2}) = S(\overline{a}, \overline{b})(\overline{n}, \overline{c_1}) + S(\overline{a}, \overline{b})(\overline{n}, \overline{c_2}) = V(\overline{a}, \overline{b}, \overline{c_1}) + V(\overline{a}, \overline{b}, \overline{c_2})$$

 ${ {
m {\bf Teopema}} \over {cocu}}$ 5.5 (O св-вах ориент площади). a) $S(\overline{a},\overline{b})=-S(\overline{b},\overline{a})$ - $\kappa o-cocu}$

b)
$$S(\overline{a}, \overline{b_1} + \overline{b_2}) = S(\overline{a}, \overline{b_1}) + S(\overline{a}, \overline{b_2})$$
 - аддитивность по II арг-ту.

c)
$$S(\overline{a}, \lambda \overline{b}) = \lambda S(\overline{a}, \overline{b})$$

$$S(\overline{a}, \overline{b}) = S(\alpha_1 \overline{e_1} + \alpha_2 \overline{e_2}, \beta_1 \overline{e_1} + \beta_2 \overline{e_2}) = \alpha_1 \beta_2 S(\overline{e_1}, \overline{e_2}) + \alpha_2 \beta_1 S(\overline{e_2}, \overline{e_1}) = S(\overline{e_1}, \overline{e_2})(\alpha_1 \beta_2 - \alpha_2 \beta_1) =$$

$$= \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} S(\overline{e_1}, \overline{e_2})$$