

UNITED INTERNATIONAL UNIVERSITY

Department of Electrical and Electronics Engineering
EEE 3200: Numerical Techniques Lab
FALL 2023
Group- 08

[Project Report]

Submitted by

	ID	Name
1	021191058	Ayman Zafar
2	021211018	Noushadul Alam
3	021211020	Sayem Hossain Rafi

Submitted to

RaBr Mr. Raiyan Basher		
Lecture		
Dep. Of EEE		

Title: Load flow study using Gauss-Seidel method and Newton Raphson methods

Introduction:

The Gauss-Seidel method is a numerical technique used to solve load flow analysis in power systems. It is an iterative method that starts with initial assumptions for the voltage magnitudes and phase angles at each bus, and then refines these values in each iteration until the solution converges. The method is advantageous because it requires simple calculations and less memory, making it useful for small to medium-sized systems. However, it may converge slowly or fail to converge for certain types of systems. It is commonly used in power system analysis software and is the focus of various educational materials and research papers.

Resources/Components:

- MATLAB
- Course Resources
- Internet

Methods:

Two known methods were followed in this project. They are-

- Gauss-Seidel method.
- Newton Raphson method.

Gauss-Seidel method

The Gauss-Seidel method is an iterative technique used for solving a system of linear equations. It's particularly useful in numerical analysis and computational mathematics. When applied to electrical power systems, specifically for calculating the voltage at a power bus (a node where multiple components are connected), it helps determine the steady-state voltages in a power network.

In power systems, the voltage at a bus is influenced by the power injections, line impedances, and other factors within the network. The basic idea behind the Gauss-Seidel method is to iteratively solve a set of equations until reaching an acceptable solution.

Newton Raphson method

The Newton-Raphson method is another iterative technique used to find successively better approximations to the roots of a real-valued function. It's widely applied in various fields of science and engineering for solving equations and finding the roots of nonlinear systems.

In the context of calculating the voltage of a power bus in an electrical network, the Newton-Raphson method can be used to determine the steady-state voltages in a power system. The Newton-Raphson method typically converges faster than the Gauss-Seidel method for many types of systems. However, it requires the calculation of the Jacobian matrix, which can be computationally intensive, especially for large power systems.

This method is powerful for solving nonlinear equations and is widely used in power system analysis to determine voltage profiles, power flows, and stability analysis, allowing engineers to understand and optimize the performance of electrical networks.

Code:

```
% The Gauss-Seidel iteration
 if z == 1
 iteration = 0;
 max iterations = 1000;Z
 del = 1; % Initialize a value larger than the tolerance
while del > le-4 && iteration < max iterations
     iteration = iteration + 1;
     %P-Q buses
    for i = 2:4
         tmpl = (p(i) - li * q(i)) / conj(v(i));
         tmp2 = 0;
         for k = 1:5
             if i == k
                 tmp2 = tmp2 + 0;
                 tmp2 = tmp2 + ybus(i, k) *v(k);
             end
          end
          v(i) = (tmpl - tmp2) / ybus(i, i);
     end
     %P-V bus (Bus 5)
     q5 = 0;
Ė
     for i = 1:5
         q5 = q5 + ybus(5, i) *v(i);
     q5 = -imag(conj(v(5)) * q5);
     tmpl = (p(5) - li * q5) / conj(v(5));
     tmp2 = 0;
for k = 1:4
         tmp2 = tmp2 + ybus(5, k) * v(k);
     end
```

```
vt = (tmpl - tmp2) / ybus(5, 5);
     v(5) = abs(vt) * exp(li * angle(v(5)));
     % Calculate S for all buses
     S = zeros (5, 1);
    for i = 1:5
        sm = 0;
        for k = 1:5
             sm = sm + ybus(i, k) * v(k);
         end
         S(i) = conj(v(i)) * sm;
    end
     % Calculate the mismatch
     delp = p - real(S);
     delq = q + imag(S);
     delpq = [delp(2:5); delq(2:5)];
    del = max(abs(delpq));
     fprintf('Iteration: %d, Max Mismatch: %.6f\n', iteration, del);
-end
% Display results
disp('Bus Voltages and Angles:')
for i = 1:5
    fprintf('Bus %d Voltage Magnitude: %.4f, Voltage Angle: %.4f degrees\n', ...
     i, abs(v(i)), rad2deg(angle(v(i))));
-end
 end
                        % The Newton-Raphson iteration
      if z == 2
      iteration = 0;
      max_iterations = 1000;
      tolerance = 1e-4;
       delta = inf;
     while delta > tolerance && iteration < max iterations
          iteration = iteration + 1;
           % Construct Jacobian matrix
          J = zeros(10, 10); % Jacobian matrix size (5 buses, 2 unknowns per bus)
          F = zeros(10, 1); % Function evaluations
          for i = 1:5
              for j = 1:5
                  if i ~= j
                      % Off-diagonal elements
                      J(i, j) = -imag(conj(v(i)) * ybus(i, j));
                      J(i+5, j+5) = -real(conj(v(i)) * ybus(i, j));
                  else
                      % Diagonal elements
                      sm = 0;
                      for k = 1:5
                         if k ~= i
                             sm = sm + ybus(i, k) * v(k);
                      J(i, j) = real(conj(v(i)) * sm) + q(i);
                      J(i+5, j+5) = -imag(conj(v(i)) * sm) - p(i);
                  end
              end
              % Function evaluations
              sm = 0;
              for k = 1:5
                  if k ~= i
                     sm = sm + ybus(i, k) * v(k);
```

```
F(i) = v(i) * conj(sm) - p(i) - li * q(i);
        F(i+5) = imag(v(i) * conj(sm)) - q(i) + li * p(i);
    % Newton-Raphson step
   increment = J \setminus (-F);
   v = v + increment(1:5);
   th = th + increment(6:10);
    % Recalculate maximum mismatch
   S = zeros(5, 1);
    for i = 1:5
        sm = 0;
       for k = 1:5
           sm = sm + ybus(i, k) * v(k);
        end
       S(i) = conj(v(i)) * sm;
    end
    delp = p - real(S);
   delq = q + imag(S);
    delpq = [delp(2:5); delq(2:5)];
   delta = max(abs(delpq));
   fprintf('Iteration: %d, Max Mismatch: %.6f\n', iteration, delta);
% Display results
disp('Bus Voltages and Angles:')
for i = 1:5
   fprintf('Bus %d Voltage Magnitude: %.4f, Voltage Angle: %.4f degrees\n', ...
       i, abs(v(i)), rad2deg(angle(v(i))));
end
end
```

Input:

Result:

```
Iteration: 988, Max Mismatch: 4.087004
Iteration: 989, Max Mismatch: 4.086889
Iteration: 990, Max Mismatch: 4.086776
Iteration: 991, Max Mismatch: 4.086663
Iteration: 992, Max Mismatch: 4.086550
Iteration: 993, Max Mismatch: 4.086439
Iteration: 994, Max Mismatch: 4.086328
Iteration: 995, Max Mismatch: 4.086217
Iteration: 996, Max Mismatch: 4.086108
Iteration: 997, Max Mismatch: 4.085999
Iteration: 998, Max Mismatch: 4.085890
Iteration: 999, Max Mismatch: 4.085782
Iteration: 1000, Max Mismatch: 4.085675
Bus Voltages and Angles:
Bus 1 Voltage Magnitude: 1.0500, Voltage Angle: 0.0000 degrees
Bus 2 Voltage Magnitude: 0.9541, Voltage Angle: -5.7606 degrees
Bus 3 Voltage Magnitude: 0.8687, Voltage Angle: -8.2421 degrees
Bus 4 Voltage Magnitude: 0.8356, Voltage Angle: -8.5154 degrees
Bus 5 Voltage Magnitude: 0.7089, Voltage Angle: 0.0000 degrees
```

Comment:

The Gauss-Seidel method provide us very much accurate result where the magnitude is close to 1V. On the other hand, the output of Newton Raphson method is pretty much far from the required values.

Difference between Gauss Seidel and Newton Raphson:

	Gauss Seidel	Newton Raphson
Co-ordinates	Works well with rectangular coordinates.	Polar co-ordinates are preferred as rectangular coordinates occupy more memory.
Arithmetical operations	Least in number to complete one iteration.	Elements of jacobian to be calculated in each iteration

Time	Requires less time per iteration,	Time/iteration is 7 times of GS
	but increases with an increase	and increases with an increase
	in the number of buses.	in the number of buses.
Convergence	Linear convergence	Quadratic convergence
Slack bus selection	A large number, increases with	Very less (3 to 5 only) for large
	an increase in buses.	system and is practically
		constant.
Accuracy	Less accurate	More accurate
Memory	Less memory because of the	Large memory even with
	sparsity of the matrix.	compact storage scheme
Usage/application	Small size system	A large system, ill-
		conditioned problems, optimal
		load flow studies.
Programming Logic	Easy	Very difficult
Reliability	Reliable only for a small system.	Reliable only for a small system.

Conclusion:

In conclusion, the project demonstrated the importance of numerical methods in power system analysis and highlighted the advantages and limitations of the Gauss-Seidel and Newton-Raphson methods. The use of MATLAB allowed for efficient implementation and comparison of these methods, providing valuable insights into the performance of load flow studies.