

The Broad Institute - Eric Minikel

B6;129-Tg(Prnp)a20Cwe

11-May-2023

Cergentis B.V. Yalelaan 62 3584 CM Utrecht The Netherlands +31 30 760 1636 info@cergentis.com

cergentis.com

Taconic Biosciences, GmbH
Marie-Curie Str. 10
51377 Leverkusen
Germany
+45 70 23 04 05
info@taconic.com
taconic.com

Goal

In this study, 1 transgenic mouse sample with the transgene fragment (TG fragment) Tga20 was analyzed. The aim of this analysis was to:

- 1. Identify genetic alterations in the TG fragment:
 - Sequence variants and their allele frequency.
 - TG fragment-TG fragment breakpoints that represent concatemerization of multiple copies of the TG fragment and/or structural rearrangements in a TG sequence.
- 2. Identify TG integration site(s) and breakpoint sequences between TG and genome.
- 3. Assess the presence of structural variants surrounding the TG integration site(s).
- 4. Estimate the copy number of the TG.
- 5. Assess the co-integration of *E. coli* genomic sequences at the integration site.

An overview of the TLA technology and technical details of the performed analyses is provided in the manual "Introduction to the terminology and methods used in TLA analyses v2".

Summary

Sample	Sequence and structural variants in TG fragment	Integration site(s)	Structural variants at the integration site	Copy number	Notes
TBD	6 sequence variants, 8 structural variants	chr17:46,761,775- 46,762,856	1 kb deletion	8-70	No co-integration of <i>E. coli</i> genomic sequences

Conclusion

In sample TBD, the TG has integrated on chromosome 17, in the intron 1 of *Ptcra*. The integration event led to a 1 kb deletion of mouse genome sequence. Additionally, 6 sequence variants and 8 structural variants were detected in the integrated TG fragment sequence. Finally, no co-integration of *E. coli* genomic sequences was detected at the TG integration site.

cergentis.com page 2 of 12 version 1 11-May-2023 taconic.com

TLA, sequencing and data mapping

Viable frozen mouse splenocytes cells were used and processed according to Cergentis' TLA protocol (de Vree et al. Nat Biotechnol. Oct 2014). An overview of the TLA technology and technical details of the performed analyses is provided in the manual "Introduction to the terminology and methods used in TLA analyses_v2".

TLA was performed with 2 independent primer sets specific for the TG sequence (Table 1).

Table 1: Primers used in TLA analysis

Primer set	Name/View point	Direction	Binding position (chr2, mm10)	Sequence
1	exon 1	RV	131,909,564	AGAAAGTATATTGGCCATTGC
		FW	131,910,364	CAGTTTCATTCTCAACGTCG
2	exon 2	RV	131,911,782	CCTGTACTTTGACTCTCAGT
		FW	131,911,964	GATTGCTGGGATCGAACC

The NGS reads were aligned to the TG sequence and host genome. The mouse GRCm38/mm10 genome was used as host reference genome sequence.

cergentis.com page 3 of 12 version 1 11-May-2023 taconic.com

Results TBD

TRANSGENE INTEGRITY

Figure 1 depicts the NGS coverage across the TG sequence using primer sets 1 and 2.

Figure 1: NGS sequencing coverage (in grey) across the mouse *Prnp* locus. Black arrows indicate the primer location. The purple arrows indicate the locations of the identified TG-genome breakpoint sequences (described below). The red bar indicates the provided reference sequence. The *Prnp* transcripts are shown on the bottom. Y-axes are limited to 1000x.

High coverage is observed across the *PrnP* locus sequence chr2:131,903,786-131,912,292 and chr2:131,936,420-131,940,019, indicating that the integrated TG is longer than the provided TG fragment (red bar in Figure 1). The following breakpoints have been identified at the borders of the coverage which represent the connection between the upstream and downstream regions with coverage (breakpoint 1) and concatemerization of the TG copies (breakpoints 2-7).

- 1) chr2:131,912,292 (tail) fused to chr2:131,936,420 (head)
 CTGAAGCATTCTGCCTTCCTAGTGGTACCAGTCCAATTTAGGAGAGCCAAGCAGACTATCAGTCATCATGGCG
 AACCTTGGCTACTGGCTGCCCTCTTTGTGACTATGTGGACTGATGTCGGCCTCTGCAAAAAGCGGCCAA
 AGC
- 2) chr2:131,939,950 (tail) fused to chr2:131,903,786 (head) with 12 inserted bases GTTCACCTGCTCCGTTGGCGCGCCGCGCGACGGATCCAAAGGCAGCAAAAAGGCAGAGAGGGTGATACTGGGCCTGGCTTAAGCATTTGAAACTTCAAAGCTCACCCCCAATTACACACTTCTTCCAACAAGTCCACACCTCCTAATTAG
- 3) chr2:131,939,493 (tail) fused to chr2:131,903,786 (head) with 4 inserted bases
 AGGCTCAACCTTTTGGCCCAAAAGGCCACACTTGCAATTCACTTTGCATACCTGTGTCCATTGTAAGGGAAGG
 CACGGGCTCATGGTGCAGGTGTCCATTGTGCGACGGATCCAAAGGCAGAAAAAGGCAGAGAGGGTGATACT
 GGGC
- 4) chr2:131,940,015 (tail) fused to chr2:131,904,511 (head) with 3 bp homology ATGCCCACCTCCTGCAGGACTCAGTCAGTCAGTCAACCTATCTACCATG

cergentis.com page 4 of 12 version 1 11-May-2023 taconic.com

- 7) chr2:131,940,019 (tail) fused to chr2:131,903,786 (head) with 6 inserted bases
 TGATGCCCACCTCCTGCAGGACTCAGTCAGTCAGTCGCGACGGATCCAAAGGCAGCAAAAAGGCAGAGGGGTGATACTGGGCCTGAGCATTTGAAACTTCAAAGCTCACCCCCAATTA

Sequence variants and structural variants were called in the covered regions.

Sequence variants

Sequence variants were called only in the provided reference sequence. Detected sequence variants are presented in table 2. All sequence variants are near or at 100% mutation frequency (present in all reads at the specific location) and most likely represent deviations present in the provided reference sequence of the TG before its introduction into the sample. The identified sequence variants have been identified in the provided TG fragment sequence. However, they all correspond to the WT sequence of the mouse genome in the *Prnp* locus.

				Primer s	et 1	Primer set 2		
Region	Position	Reference	Mutation	Coverage	%	Coverage	%	
Not annotated	897	G	С	349	100	294	100	
Not annotated	1,014	Т	Α	332	100	230	100	
Not annotated	1,117	T	-1C	409	95	303	97	
Not annotated	1,172	Т	+1C	320	94	263	94	
Not annotated	1,195	Α	G	322	100	266	99	
Not annotated	1 823	G	C	375	100	254	100	

Table 2. Identified sequence variants

TG concatemerization and structural variants

In addition to 7 structural variants described above, 1 structural variant was identified within the provided reference sequence. Intact reads were also found at the positions of this breakpoint and breakpoints 2-7 described above, indicating that (partial) TG sequences have concatemerized. A concatemer is formed prior to integration from the full length copies, and/or randomly fragmented vector copies. Using TLA it is not possible to determine the exact order of (partial) copies and to confirm the presence of at least one complete copy.

TG:1,931 (tail) fused to TG:2,177 (head)

AGGCCACACTTGCAATTCACTTTGCATACCTGTGTCCATTGTAAGGGAAGGCACGGGCTCATGGTGCAGGTGTCCATTGTGAGAAGACAAGGCCACAGGCTCATGGTGCAGGTGTCCAACAAGACCAAAGACCAAAGATCTGGGCAAGTGCTTTTTCTTAAAGTCAGGGAGGAGGAACACAGAAGGTAGTGGGGGGATGGGGGGTACTTGGGGGTTCTTTC

Please note that due to the lack of a complete TG sequence, the number of structural variants could be underestimated.

cergentis.com page 5 of 12 version 1 11-May-2023 taconic.com

INTEGRATION SITES

Whole genome coverage plot

Figure 2: TLA sequence coverage across the mouse genome using primer set 1 (red) and set 2 (blue). The chromosomes are indicated on the y-axis, the chromosomal position on the x-axis. Identified integration site is encircled in purple.

As shown in figure 2, the TG has integrated in chromosome 17. The peak on chromosome 2 is due to homology of the TG with the genome (*Prnp* promoter).

cergentis.com page 6 of 12 version 1 11-May-2023 taconic.com

Locus-wide coverage

Figure 3: TLA sequence coverage (in grey) across the TG integration locus, mouse chr17:46,713,042-46,828,006. The purple arrows indicate the location of the breakpoint sequences. Y-axes are limited to 150x.

Coverage is observed across the TG integration site as shown in figure 3.

Breakpoint sequences

The following breakpoint sequences were identified marking the vector integration:

5' integration site:

chr17:46,761,775 (tail) fused to TG (homologous to chr2:131,909,936 (head))
ATCCCAGCGCCTACACACCCAACACTTCAATCTGTAATGAAATCCTATGCCCTCGTCTAGTGTGTCTGAAGACA
CACTCCCGGCTCCCCCGCGTTGTCGGATCAGCAGACCGATTCTGGGCGCTCGCATCGGTGGCAGGTA
AGCG

3' integration site:

The coverage profile in figure 3 shows that a genomic deletion has occurred in the region of the integration site. The 1 kb genomic sequence in between the two identified breakpoints is deleted.

From this data it is concluded that the vector has integrated at mouse chr17:46,761,775-46,762,856 as shown in Figure 4. According to the RefSeq, this is in intron 1 of *Ptcra*.

cergentis.com page 7 of 12 version 1 11-May-2023 taconic.com

Figure 4: Schematic representation of the integration site.

COPY NUMBER

In this sample, the coverage on the TG-side (calculated based on the homology with chr2) is much higher than on the genome-side of the integration site (roughly 5-70 times). 1 integration sites and at least 7 TG-TG junctions indicating TG concatemerization are found. The copy number is estimated to be 8-70 (partial) TG copies.

cergentis.com page 8 of 12 version 1 11-May-2023 taconic.com

Integration of *E.coli* genomic sequences

Figure 5: TLA sequence coverage (in grey) across the *E.coli* genome. Y-axes are limited to 20x.

As shown in figure 5, no coverage was observed across the *E.coli* chromosome indicating that no co-integration of the bacterial genomic sequences has occurred at the integration site in this sample.

cergentis.com page 9 of 12 version 1 11-May-2023 taconic.com

QC INFORMATION

SAMPLE STUDY AND DETAILS

Sample receipt date
Condition of sample at receipt
Start date in the lab
Sequencing run
Date data analysis
Deviations from the protocol
TLApp version:

24-Mar-2023
frozen
27-Mar-2023
23-014
24-Apr-2023
None
1.5.1

STUDY PERSONNEL

Lab technician Melinda Aprelia, BSc Data Analyst Andrea Conidi, PhD QC Analysis and Report Clara Esteban, PhD

QUALITY CONTROL

The results are independently verified and reviewed and are an accurate and complete representation of the study. TLA processing of cells, NGS sequencing, and data analysis (except for copy number) are ISO/IEC 17025:2017 accredited by the Dutch Accreditation Council RvA, Registration number L671. Section "Proposed Genotyping Assay" of the report is provided by Taconic Biosciences, Inc. and is not covered by the abovementioned accreditation.

Scientific approval Irina Sergeeva, PhD - Scientific Account Manager Date 11-May-2023

Signature

cergentis.com page 10 of 12 version 1 11-May-2023 taconic.com

PROPOSED GENOTYPING ASSAYS

Tga20_5'_fw Tga20_5'_wt_rev Tga20_5'_tg_rev AAGCAGTGCTTGCACAGACC TTAGGACCTCTGGTCTCTCTGG CAGAATCGGTCTGCTGATCC

wt amplicon: 608 bp tg amplicon: 366 bp

NA	
٧v	ι
_	-

	Tga2	:0_51_fw 100.0%	****						
CACCCCACAC	ACAAGCAGTG	CTTGCACAGA	CCACAAAGGG	ACATCAGGTA	CCCTGGGATT	GGAGTCATAG	GTGGTTGTGA	GTCACCATGT	AGGGGCTGGG
GTGGGGTGTG	TGTTCGTCAC	GAACGTGTCT	GGTGTTTCCC	TGTAGTCCAT	GGGACCCTAA	CCTCAGTATC	CACCAACACT	CAGTGGTACA	TCCCCGACCC
AATGAAACTC	AGATCCTCTG	GAAGAGCAGC	CAGCACTCTT	AACCAGTAAG	CTATTGCTCT	AGCCCCACTT	ATTTCTTCTC	TTAAGAAAAC	ATATACTGGG
TTACTTTGAG	TCTAGGAGAC	CTTCTCGTCG	GTCGTGAGAA	${\tt TTGGTCATTC}$	GATAACGAGA	TCGGGGTGAA	TAAAGAAGAG	AATTCTTTTG	TATATGACCC
CTGGGGAGAT	GGTTCAGCAG	TTAAGAGCAC	TGGCTGCTCT	TCCAGAGGTC	CTGGGTTCAA	TTCCCAGCGC	CTACACACCC	AACACTTCAA	TCTGTAATGA
GACCCCTCTA	CCAAGTCGTC	AATTCTCGTG	ACCGACGAGA	AGGTCTCCAG	GACCCAAGTT	AAGGGTCGCG	GATGTGTGGG	TTGTGAAGTT	AGACATTACT
AATCCTATGC	CCTCGTCTAG	TGTGTCTGAA	GACAATGACA	GCGTACTCAT	ATATTCTCAT	AAGTACTCAT	TAAACAAATA	AATATATTT	TAAAAATTAT
TTAGGATACG	GGAGCAGATC	ACACAGACTT	CTGTTACTGT	CGCATGAGTA	TATAAGAGTA	TTCATGAGTA	ATTTGTTTAT	TTATATAAAA	ATTTTTAATA
GTTCTTGGGG	CTGGTGAGAT	GGCTCGGTGG	TTAAGAGCAC	TGACTGCTCC	TCTGAAGGTC	TGAATCCCAG	CAACCACATG	GTGGCTCACA	ACCACCCGTA
CAAGAACCCC	GACCACTCTA	CCGAGCCACC	AATTCTCGTG	ACTGACGAGG	AGACTTCCAG	ACTTAGGGTC	GTTGGTGTAC	CACCGAGTGT	TGGTGGGCAT
ATGAGATCTG	ACGCCCTGTT	CTGGTGTGTC	TGAAGACAGC	TACAGTATAC	TTAATTATAA	TAATGAATAA	ATCTTTGGGC	CTGAGCGAGC	AGAGTTGACC
TACTCTAGAC	TGCGGGACAA	GACCACACAG	ACTTCTGTCG	ATGTCATATG	AATTAATATT	ATTACTTATT	TAGAAACCCG	GACTCGCTCG	TCTCAACTGG
								Tga	20_51_wt_rev 100.0%
AGAGAGACCA	GAGGTCCTAA	ATTCAATTCC	TAACAACCAG	ATGAAGACTC	ACAACTATCT	GTACAGCTAC	AGTGTGTACT	CATATACATA	AAATAAATAA
TCTCTCTGGT	CTCCAGGATT	TAAGTTAAGG	ATTGTTGGTC	TACTTCTGAG	TGTTGATAGA	CATGTCGATG	TCACACATGA	GTATATGTAT	TTTATTTATT
Tga20_5′_	wt_rev 100.0%	•							

TG

Tga20_5′_fw100.0%									
CTATTTTAA	TTTTTTTCCC	CTAGATTTTA	TTTTACTTTA	CATCTATGAG	TGTTTTGACA	GCAAGTCTGT	CCACACCCCA	CACACAAGCA	GTGCTTGCAC
GATAAAAATT	AAAAAAAGGG	GATCTAAAAT	AAAATGAAAT	GTAGATACTC	ACAAAACTGT	CGTTCAGACA	GGTGTGGGGT	GTGTGTTCGT	CACGAACGTG
Tga20_5′_fw 100.0%	;								
AGACCACAAA		GTACCCTGGG	ATTGGAGTCA	TAGGTGGTTG	TGAGTCACCA	TGTAGGGGCT	GGGAATGAAA	CTCAGATCCT	CTGGAAGAGC
TCTGGTGTTT	CCCTGTAGTC	CATGGGACCC	TAACCTCAGT	ATCCACCAAC	ACTCAGTGGT	ACATCCCCGA	CCCTTACTTT	GAGTCTAGGA	GACCTTCTCG
AGCCAGCACT	CTTAACCAGT	AAGCTATTGC	TCTAGCCCCA	CTTATTTCTT	CTCTTAAGAA	AACATATACT	GGGCTGGGGA	GATGGTTCAG	CAGTTAAGAG
TCGGTCGTGA	GAATTGGTCA	TTCGATAACG	AGATCGGGGT	GAATAAAGAA	GAGAATTCTT	TTGTATATGA	CCCGACCCCT	CTACCAAGTC	GTCAATTCTC
CACTGGCTGC	TCTTCCAGAG	GTCCTGGGTT	CAATTCCCAG	CGCCTACACA	CCCAACACTT	CAATCTGTAA	TGAAATCCTA	TGCCCTCGTC	TAGTGTGTCT
GTGACCGACG	AGAAGGTCTC	CAGGACCCAA	GTTAAGGGTC	GCGGATGTGT	GGGTTGTGAA	GTTAGACATT	ACTTTAGGAT	ACGGGAGCAG	ATCACACAGA
GAAGACACAC	TCCCGGCTCC	CCCGCGTTGT	CGGATCAGCA	GACCGATTCT	GGGCGCTGCG	TCGCATCGGT	GGCAGGTAAG	CG	
CTTCTGTGTG	AGGGCCGAGG	GGGCGCAACA	GCCTAGTCGT	CTGGCTAAGA	CCCGCGACGC	AGCGTAGCCA	CCGTCCATTC	GC	
Tga20_5'_tg_rev 100.0%									

cergentis.com page 11 of 12 version 1 11-May-2023 taconic.com

Tga20_3'_wt_fw Tga20_3'_tg_fw Tga20_3'_rev TGTGGCCAAGATAAAGAGATGC TTGGAAGAAGTGTGTAATTGGG CACAAATACTATTTCCCAAGCTTAG

wt amplicon: 514 bp tg amplicon: 277 bp

<u>wt</u>

					Tga20_3'_wt_fw 100.0%				
TGCAATGTAA	GTAAAATCCC	CAATATTAGC	AACTGGAAAT	AAATTGACAC	TATGCACTCT	TGTGTGGCCA	AGATAAAGAG	ATGCCCAGGG	TGCCAGAGAA
ACGTTACATT	CATTTTAGGG	GTTATAATCG	TTGACCTTTA	TTTAACTGTG	ATACGTGAGA	ACACACCGGT	TCTATTTCTC	TACGGGTCCC	ACGGTCTCTT
ATGGGGAAGA	TCAGATGAAG	GTATTAGGTG	GCCAAATGAC	TGGTGTAGGA	ACACGGAGCA	CACCTCCAGT	GAGCATGCTC	ACTGGAGCCT	CTGTGACCAC
TACCCCTTCT	AGTCTACTTC	CATAATCCAC	CGGTTTACTG	ACCACATCCT	TGTGCCTCGT	GTGGAGGTCA	CTCGTACGAG	TGACCTCGGA	GACACTGGTG
AAATCTGTCT	TCTTTGCCTT	GAAGAATGTC	CAAAATTTTG	CCATGTGACA	TAGTGGGCCA	AGTGTAGGAC	AAGGCCTCAG	ACCGAGCCGA	GGTTGGCCCC
TTTAGACAGA	AGAAACGGAA	CTTCTTACAG	GTTTTAAAAC	GGTACACTGT	ATCACCCGGT	TCACATCCTG	TTCCGGAGTC	TGGCTCGGCT	CCAACCGGGG
TGACTCAATC	CCCTTAATTG	ATCGAGGTCC	AAATCTCCCG	ATAATTGCCC	AATAGGAATG	TTGTGAAGAG	TAAAGATAAT	GTAATTCTTT	GGTAAGTAAG
ACTGAGTTAG	GGGAATTAAC	TAGCTCCAGG	TTTAGAGGGC	TATTAACGGG	TTATCCTTAC	AACACTTCTC	ATTTCTATTA	CATTAAGAAA	CCATTCATTC
CTTTGGAAAT	AATCTTTCTT	TTTTTTAAGA	TTTATTTTAT	GTATATGAGT	GTTCTCGGAT	TCCATCACAG	ATGGTTGTGG	TTGCTGGGAT	TTGAACTCAG
GAAACCTTTA	TTAGAAAGAA	AAAAAATTCT	AAATAAAATA	CATATACTCA	CAAGAGCCTA	AGGTAGTGTC	TACCAACACC	AACGACCCTA	AACTTGAGTC
GACCTCTGGA	AGAGCAGCCA	GTGCTCTTAA	CCAATGAGCC	ATCCCTCCTG	CCTAAGCTTG	GGAAATAGTA	TTTGTGTTAA	TATTACTAAG	GCCTTGTAAA
CTGGAGACCT	TCTCGTCGGT	CACGAGAATT	GGTTACTCGG	TAGGGAGGAC	GGATTCGAAC	CCTTTATCAT	AAACACAATT	ATAATGATTC	CGGAACATTT
	Tga20_3'_rev 100.0%								

<u>TG</u>

	Гga20_3′_tg_fw 100.0:	4							
CTTGTTGGAA	GAAGTGTGTA	ATTGGGGGTG	AGCTTTGAAG	TTTCAAATGC	TTAAGCCAGG	CCCAGTATCA	CCCTCTCTGC	CTTTTTGCTG	CCTTTGGATC
GAACAACCTT	CTTCACACAT	TAACCCCCAC	TCGAAACTTC	AAAGTTTACG	AATTCGGTCC	GGGTCATAGT	GGGAGAGACG	GAAAAACGAC	GGAAACCTAG
CGTCGCTTTG	GAAATAATCT	TTCTTTTTT	TAAGATTTAT	TTTATGTATA	TGAGTGTTCT	CGGATTCCAT	CACAGATGGT	TGTGGTTGCT	GGGATTTGAA
GCAGCGAAAC	CTTTATTAGA	AAGAAAAAA	ATTCTAAATA	AAATACATAT	ACTCACAAGA	GCCTAAGGTA	GTGTCTACCA	ACACCAACGA	CCCTAAACTT
CTCAGGACCT	CTGGAAGAGC	AGCCAGTGCT	CTTAACCAAT	GAGCCATCCC	TCCTGCCTAA	GCTTGGGAAA	TAGTATTTGT	GTTAATATTA	CTAAGGCCTT
GAGTCCTGGA	GACCTTCTCG	TCGGTCACGA	GAATTGGTTA	CTCGGTAGGG	AGGACGGATT	CGAACCCTTT	ATCATAAACA	CAATTATAAT	GATTCCGGAA
	Tga20_3*_rev 100.0%								

cergentis.com page 12 of 12 version 1 11-May-2023 taconic.com

[©] Taconic Biosciences, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without prior permission.