UFPB - CI - PPGMMC - EDO Segunda Lista de Exercícios Computacionais Data de entrega: 05/12/2019

Nesta lista considere a notação da Primeira Lista de Exercícios Computacionais e adicionalmente:

- $\phi: \mathbb{R}^3 \to \mathbb{R}$.
- Um método explícito de 1-passo (ME1P) verifica a relação: $y_{n+1}-y_n=h\phi(x_n,y_n,h)$.
- Um método explícito de Runge-Kutta (RKE) de R estágios é um ME1P no qual:

$$\phi(x,y,h) = c_1k_1 + c_2k_2 + c_3k_3 + c_4k_4 + \dots + c_Rk_R
k_1 = f(x,y)
k_2 = f(x + a_2h, y + hb_{21}k_1)
k_3 = f(x + a_3h, y + hb_{31}k_1 + hb_{32}k_2)
k_4 = f(x + a_4h, y + hb_{41}k_1 + hb_{42}k_2 + hb_{43}k_3)
\vdots
k_R = f(x + a_Rh, y + hb_{R1}k_1 + hb_{R2}k_2 + hb_{R3}k_3 + \dots + hb_{RR-1}k_{R-1})$$

onde:

 $c \in \mathbb{R}^R$ é chamado de vetor de pesos.

 $a \in \mathbb{R}^R$ é chamado de vetor de posições.

 $B = (b_{ij}) \in \mathbb{R}^{R \times R}$ é chamada de matriz de dependências.

e se impõem as seguintes condições entre $a \in B$:

$$a_1 = 0$$

 $a_2 = b_{21}$
 $a_3 = b_{31} + b_{32}$
 \vdots
 $a_R = b_{R1} + b_{R2} + \dots + b_{RR-1}$.

• Os dados c, a e B para um RKE são organizados na seguinte forma (tabela de Butcher):

Exercício 1. Prove que $c_1 + \ldots + c_R = 1$ é condição suficiente para que o RKE de R estágios seja consistente.

Exercício 2. Defina os métodos de Runge-Kutta de 3 estágios: defina ϕ , c, a, B e as relações entre estes dados(1) para que este método seja de ordem 3.

Exercício 3. Verifique se os dados das tabelas abaixo verificam as relações do exercício 2.

¹Consulte equações (233a)-(233d) do livro: Butcher, J.C. (2008). Numerical Methods for Ordinary Differential Equations. England: Wiley.

Exercício 4. Defina os métodos de Runge-Kutta de 4 estágios: defina ϕ , c, a, B e as relações entre estes dados(2) para que este método seja de ordem 4.

Exercício 5. Verifique se os dados das tabelas abaixo verificam as relações do exercício 4.

Exercício 6. Estude os seguintes códigos e responda as questões abaixo

```
function ynm1=incognita1(f,xn,yn,h,c,a,B)
 R=size(c,1);
 n=size(yn,1);
 k=zeros(n,R);
 k(:,1)=f([xn;yn]);
 phi=c(1)*k(:,1);
 for i=2:R
   soma=zeros(n,1);
   for j=1:i-1
     soma=soma+h*B(i,j)*k(:,j);
   endfor
   k(:,i)=f([xn+a(i)*h;yn+soma]);
   phi=phi+c(i)*k(:,i);
 endfor
 ynm1=yn+h*phi;
endfunction
```

```
function [x y]=incognita2(f,x0,y0,h,N)
  x(1)=x0;
  y(:,1)=y0;
  c=[1/4;0;3/4];
  a=[0;1/3;2/3];
  B=[0 0 0;1/3 0 0;0 2/3 0];
  for n=1:N
    y(:,n+1) = incognita1(f,x(n),y(:,n),h,c,a,B);
    x(n+1) = x(n) + h;
  endfor
endfunction
```

²Consulte equações (235a)-(235h) do livro: Butcher (2008).

- (1) O que calcula a função 'incognita1'?
- (2) O que calcula a função 'incognita2'?
- (3) Que modificações faria na função 'incognita2' para que represente a programação do método de Nystron.

Dica: para respoder o que calcula cada função dê significado as entradas, as saídas e o passo a passo.

Exercício 7. Considere o problema do pêndulo:

$$\begin{cases} y''(x) &= -\frac{g}{d}sen(y(x)), \\ y'(0) &= 0 \\ y(0) &= \frac{\pi}{3} \end{cases}$$
 (5)

onde d é o comprimento do haste do pêndulo, g a aceleração da gravidade, y(x) é o ângulo que faz o haste do pêndulo com a vertical no tempo x, y'(x) é a velocidade angular no tempo x e y''(x) é a aceleração angular no tempo x. Escreva um sistema de equações diferenciais de primeira ordem equivalente ao problema (5).

Exercício 8. Faça um script em OCTAVE para resolver o problema do pêndulo (5) que empregue a função 'incognita2' ou a função que programa o método de Nystron (exercício 6).

Exercício 9. Com base nas funções do exercício 6, faça funções semelhantes para programar o método explícito de Runge-Kutta de 4 estágios. Use a tabela (3) ou (4) para definir os valores de c, $a \in B$.

Exercício 10. Considere o problema de Kepler:

$$\begin{cases} y'_{1}(x) &= y_{3}(x), \\ y'_{2}(x) &= y_{4}(x), \\ y'_{3}(x) &= \frac{-y_{1}}{(y_{1}^{2}+y_{2}^{2})^{\frac{3}{2}}}, \\ y'_{4}(x) &= \frac{-y_{2}}{(y_{1}^{2}+y_{2}^{2})^{\frac{3}{2}}}, \\ y_{1}(0) &= 1 \\ y_{2}(0) &= 0 \\ y_{3}(0) &= 1 \\ y_{4}(0) &= 1 \end{cases}$$

$$(6)$$

onde $(y_1(x), y_2(x))$ é a posição no plano de um astro no tempo x, $(y_3(x), y_4(x))$ é a velocidade no plano no tempo x. Na origem (0,0) está um astro massivo que atrae o astro em movimento(³). Faça um script em OCTAVE para resolver o problema de Kepler que empregue a função desenvolvida no exercício 9. Faça o gráfico da trajetória $\{(y_1(x), y_2(x)) : x \in \mathbb{R}\}$ para diferentes valores iniciais.

³O modelo está explicado na página 4 do livro do Butcher (2008).