Training neural networks (2)

EECE454 Intro. to Machine Learning Systems

Recap

- Last class. Setting up the training
 - Gradients and activation functions
 - Data preprocessing
 - Normalization layers
 - Parameter Initialization

Recap

- Last class. Setting up the training
 - Gradients and activation functions
 - Data preprocessing
 - Normalization layers
 - Parameter Initialization
- Today. Tuning the training process
 - Learning rate & Batch size
 - Optimizers
 - Regularizers
 - Hyperparameter tuning

Learning rate & Batch size

SGD

• SGD. Recall that the can be written as

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} \left(\sum_{i=1}^{B} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i)) \right)$$

- There are two <u>key hyperparameters</u>
 - Learning rate η
 - Batch size $m{B}$

SGD

• SGD. Recall that the can be written as

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} \left(\sum_{i=1}^{B} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i)) \right)$$

- There are two key hyperparameters
 - Learning rate η
 - Batch size B
- Question. How do we tune the hyperparameters?
 - Usually by trial and error, with validation sets
 - ullet Guideline. Choose the largest possible B, and then tune the η

Reason: Fast training

RAM constraints + Generalization

(discussed soon)

Learning rate vs. Loss

- High LR.
 - Faster convergence 👍
 - High final loss

- Low LR.
 - Slower convergence 👎
 - Low final loss

Question. Can we get the best of both worlds?

Learning rate scheduling

- Idea. Decay the learning rate.
 - This requires a careful scheduling of rates
 - Step decay
 - Linear decay
 - Exponential decay

•

- Note. Optimizers have different sensitivities to LR decay
 - e.g., less critical issues in Adam than SGD + Momentum

Learning rate scheduling

• Popular. Quite common to use cosine annealing / cyclic LR

(Optional: Warm restart, Warmup)

Learning rate vs. Batch size

• Empirically, increasing the batch size has a similar effect to decreasing the learning rate

Learning rate vs. Batch size

- With a larger batch size, we expect
 - Reduced #SGD steps needed to achieve the similar test performance
 - Optimal LR scales linearly with batch size
 - Eventually the benefit saturates

Optimizers

Optimizers

We rarely use the "vanilla" version of the SGD

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta^{(t)})$$

- There are many alternatives:
 - PyTorch native. AdaDelta, AdaFactor, AdaGrad, Adam AdamW, SparseAdam, AdaMax, ASGD, LBFGS, NAdam, RAdam, RMSProp, RProp, ...
 - More recent. Shampoo, Lion, Signum, ...
- Now. Understand key concepts

Optimizers

We rarely use the "vanilla" version of the SGD

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta^{(t)})$$

- There are many alternatives:
 - PyTorch native. AdaDelta, AdaFactor, AdaGrad, Adam AdamW, SparseAdam, AdaMax, ASGD, LBFGS, NAdam, RAdam, RMSProp, RProp, ...
 - More recent. Shampoo, Lion, Signum, ...
- Now. Understand a key concept; momentum

- Motivation. Suppose that the risk
 - Changes fast in one direction
 - Changes slowly in another direction
- Question. What would happen?

- Motivation. Suppose that the risk
 - Changes fast in one direction
 - Changes slowly in another direction
- Question. What would happen?
- Observation. GD evolves as...
 - Slow progress in shallow direction
 - High jitter in steep direction
- Note. The loss has a large "condition number"

- Idea. Let our GD have an inertia
 - If we were moving to one direction consistently, move more faster in that direction

- Idea. Let our GD have an inertia
 - If we were moving to one direction consistently, move more faster in that direction
- Original GD

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta^{(t)})$$

• GD + Momentum

Accumulated gradients

$$v^{(t+1)} = \beta \cdot v^{(t)} + \nabla_{\theta} L(\theta^{(t)})$$

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot v^{(t+1)}$$

Nesterov's momentum

- A small fix to the momentum
- Idea. Evaluate the gradients at the parameter + momentum, not the current parameter
 - Interpretation. Looking ahead any hardship that will come next

Nesterov's momentum

- A small fix to the momentum
- Idea. Evaluate the gradients at the parameter + momentum, not the current parameter
 - Interpretation. Looking ahead any hardship that will come next
- **Empirically.** Neat idea, but does not always guarantee a better convergence rate
 - Thus, try both

Adaptive learning rate

- Motivation. Single learning rate may not work well for all parameters.
 - Example. Suppose that we have a "cat neuron" and a "dog neuron."

If we see much less "dogs" than "cats," then maybe using higher LR for "dogs" will help run faster.

Adaptive learning rate

- Motivation. Single learning rate may not work well for all parameters.
 - Example. Suppose that we have a "cat neuron" and a "dog neuron."

If we see much less "dogs" than "cats," then maybe using higher LR for "dogs" will help run faster.

• **RMSProp.** Keep the moving average of gradient², and divide the LR by it (do this elementwise)

$$g^{(t+1)} = \gamma \cdot g^{(t)} + (1 - \gamma) \cdot \left(\nabla_{\theta} L(\theta^{(t)})\right)^{2}$$

$$\theta^{(t+1)} = \theta^{(t)} - \frac{\eta}{\sqrt{g^{(t+1)} + \varepsilon}} \cdot \nabla_{\theta} L(\theta^{(t)})$$

tiny value, for avoiding division by zero

Adaptive learning rate

- Motivation. Single learning rate may not work well for all parameters.
 - Example. Suppose that we have a "cat neuron" and a "dog neuron."

If we see much less "dogs" than "cats," then maybe using higher LR for "dogs" will help run faster.

• RMSProp. Keep the moving average of gradient², and divide the LR by it.

$$g^{(t+1)} = \gamma \cdot g^{(t)} + (1 - \gamma) \cdot \left(\nabla_{\theta} L(\theta^{(t)})\right)^{2}$$

$$\theta^{(t+1)} = \theta^{(t)} - \frac{\eta}{\sqrt{g^{(t+1)} + \varepsilon}} \cdot \nabla_{\theta} L(\theta^{(t)})$$

• Adam. RMSProp + Momentum (most cited paper in last 10 years)

Remarks

- Memory. Optimizer states should also be stored on memory!
 - For each parameter (32bits), we keep ...
 - Gradient (32bits)
 - Momentum (32bits)
 - Adaptive LR (32bits)
- Tuning. Advanced optimizers introduce additional hyperparameters to tune
 - Much training computation needed for the best performance

References

- Momentum. https://distill.pub/2017/momentum/
- Adam. https://optimization.cbe.cornell.edu/index.php?title=Adam
- Others. https://cs231n.github.io/neural-networks-3/

Regularization

Beyond training error

- Better optimization algorithms help reduce the training loss
 - But we actually care about the test performance how can we reduce the gap?

Beyond training error

- Better optimization algorithms help reduce the training loss
 - But we actually care about the test performance how can we reduce the gap?
- Core philosophy. Most regularization methods follow the principle of Occam's razor
 - "Whenever possible, use simpler models"

Beyond training error

- Better optimization algorithms help reduce the training loss
 - But we actually care about the test performance how can we reduce the gap?
- Core philosophy. Most regularization methods follow the principle of Occam's razor
 - "Whenever possible, use simpler models"
 - Simplicity. Many definitions, including
 - Number of weight parameters
 - Norm of the weight parameters
 - Prediction confidence ...

Regularization (through loss)

• Idea. Add complexity to the loss function; doable for differentiable complexity measures

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(y_i, f_{\theta}(\mathbf{x}_i)) + \text{complexity}(\theta)$$

Regularization (through loss)

• Idea. Add complexity to the loss function; doable for differentiable complexity measures

$$\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f_{\theta}(\mathbf{x}_i)) + \text{complexity}(\theta)$$

• **Example.** L2 regularization; use smaller ℓ_2 norm solution, whenever possible.

$$\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta}(L(\theta) + \lambda \cdot ||\theta||_2)$$

• This is equivalent to a simpler-to-implement form:

$$\theta^{(t+1)} = (1 - \eta \lambda)\theta^{(t)} - \eta \cdot \nabla_{\theta} L(\theta)$$

(thus often called "weight decay")

Nondifferentiable complexities

- For non-differentiable complexities, design a customized algorithm.
- Example. Whenever possible, use a smaller number of parameters
 - ullet <u>Dropout</u>. During the training, randomly remove each neuron, w.p. p
 - For the inference, rescale the weights back to 1/p.

Nondifferentiable complexities

- For non-differentiable complexities, design a customized algorithm.
- Example. Whenever possible, use a smaller number of parameters
 - Dropout. During the training, randomly remove each neuron, w.p. p
 - For the inference, rescale the weights back to 1/p.
- Example. Whenever possible, use a parameter that can be discovered within a shorter time
 - Early stopping. Pause training when validation error does not drop anymore.

Remarks

- Optimization. Sometimes, regularization make the optimization easier.
 - . Example. Consider solving a least-square problem $\min_{\mathbf{w}} \|\mathbf{y} \mathbf{X}\mathbf{w}\|^2$
 - Ordinary solution:

$$\mathbf{w} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$$
, (no guarantee that $\mathbf{X}^\mathsf{T} \mathbf{X}$ is invertible)

. Added \mathcal{C}_2 penalty:

$$\min_{\mathbf{w}} \left(\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \lambda \|\mathbf{w}\|^2 \right)$$

$$\mathbf{w} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I}_n)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} \qquad \text{(invertible, if } \lambda \text{ is nonzero)}$$

Hyperparameter tuning

- Question. How do we select the hyperparameter?
 - Grid search. Use coarse-to-fine grids, to reduce #trials.
 - Sometimes, use log-scales $(\text{e.g., search LR from } \{10^{-2}, 10^{-3}, 10^{-4}, \cdots \})$

Hyperparameter 1

- Question. How do we select the hyperparameter?
 - Grid search. Use coarse-to-fine grids, to reduce #trials.
 - Sometimes, use log-scales (e.g., search LR from $\{10^{-2},10^{-3},10^{-4},\cdots\}$)
 - Random search. Use randomly sampled HPs
 - Has a larger "effective sample size"

Random Layout Number of the parameter Random Layout Important parameter

- Sophisticated. In some cases, we use Bayesian HP optimization techniques...
 - Idea. The performance-HP relationship may be a smooth function as well.
 - Predict the performance with Gaussian processes

- Even more sophisticated. For LLMs, we transfer the hyperparameters.
 - Tune HPs on a small model, and use them on larger models
 - Requires a special parameterization (called μ -parameterization)

Figure 2: Illustration of μ Transfer

Cheers