Artificial Intelligence Planning

Hierarchical Planning

Artificial Intelligence Planning

·Hierarchical Planning

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

≻Tasks and Task Networks

- now: a different view of planning: "tasks to do" vs. "goals to achieve"
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

STN Planning

- STN: Simple Task Network
- what remains:
 - terms, literals, operators, actions, state transition function, plans
- · what's new:
 - tasks to be performed
 - methods describing ways in which tasks can be performed
 - organized collections of tasks called task networks

STN Planning

STN: Simple Task Network

•STN: simplified version of the more general HTN case to be discussed later

•what remains:

terms, literals, operators, actions, state transition function, plans

•what's new:

- tasks to be performed
- ·methods describing ways in which tasks can be performed
- organized collections of tasks called task networks

DWR Stack Moving Example

 task: move stack of containers from pallet p1 to pallet p3 in a way that preserves the order

- (informal) methods:
 - move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
 - move stack: repeatedly move the topmost container until the stack is empty
 - move topmost: take followed by put action

DWR Stack Moving Example

•task: move stack of containers from pallet p1 to pallet p3 in a way the preserves the order

•preserve order: each container should be on same container it is on originally •(informal) methods:

methods: possible subtasks and how they can be accomplished

•move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)

move stack: repeatedly move the topmost container until the stack is empty

•move topmost: take followed by put action

•action: no further decomposition required

•note: abstract concept: stack

Tasks

- <u>task symbols</u>: $T_S = \{t_1, ..., t_n\}$ operator names $\subsetneq T_S$: primitive tasks

 - non-primitive task symbols: T_S operator names
- task: $t_i(r_1,...,r_k)$
 - − t_i: task symbol (primitive or non-primitive)
 - $-r_1,...,r_k$: terms, objects manipulated by the task
 - ground task: are ground
- action $a = op(c_1,...,c_k)$ accomplishes ground primitive task $t_i(r_1,...,r_k)$ in state s iff
 - name(a) = t_i and c_1 = r_1 and ... and c_k = r_k and
 - a is applicable in s

Tasks

- •task symbols: $T_S = \{t_1, ..., t_n\}$
 - ·used for giving unique names to tasks
 - •operator names $\subseteq T_s$: primitive tasks
 - •non-primitive task symbols: T_s operator names
- •task: $t_i(r_1,...,r_k)$
 - •t_i: task symbol (primitive or non-primitive)
 - tasks: primitive iff task symbol is primitive
 - • $r_1,...,r_k$: terms, objects manipulated by the task
 - •ground task: are ground
- •action a <u>accomplishes</u> ground primitive task $t_i(r_1,...,r_k)$ in state s iff
 - •action a = (name(a), precond(a), effects(a))
 - •name(a) = t_i and
 - ·a is applicable in s
 - applicability: s satisfies precond(a)
- •note: unique operator names, hence primitive tasks can only be performed in one way - no search!

Simple Task Networks

- A <u>simple task network</u> w is an acyclic directed graph (U,E) in which
 - the node set $U = \{t_1, ..., t_n\}$ is a set of tasks and
 - the edges in E define a partial ordering of the tasks in U.
- A task network w is <u>ground/primitive</u> if all tasks t_u∈U are ground/primitive, otherwise it is unground/non-primitive.

Simple Task Networks

- •A simple task network w is an acyclic directed graph (U,E) in which
 - •the node set $U = \{t_1, ..., t_n\}$ is a set of tasks and
 - •the edges in E define a partial ordering of the tasks in U.
- •A task network w is <u>ground/primitive</u> if all tasks $t_u \in U$ are ground/primitive, otherwise it is unground/non-primitive.
- •simple task network: shortcut "task network"

Totally Ordered STNs

- ordering: $t_u \prec t_v$ in w=(U,E) iff there is a path from t_u to t_v
- STN w is totally ordered iff E defines a total order on U
 - w is a sequence of tasks: $\langle t_1, ..., t_n \rangle$
- Let $w = \langle t_1, ..., t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - $-\pi(w) = \langle a_1, ..., a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

Totally Ordered STNs

- •ordering: $t_u \prec t_v$ in w=(U,E) iff there is a path from t_u to t_v
- •STN w is totally ordered iff E defines a total order on U
 - •w is a sequence of tasks: $\langle t_1,...,t_n \rangle$
 - •sequence is special case of acyclic directed graph
 - • t_1 : first task in U; t_2 : second task in U; ...; t_n : last task in U
- •Let $w = \langle t_1, ..., t_n \rangle$ be a totally ordered, ground, primitive STN. Then the plan $\pi(w)$ is defined as:
 - • $\pi(w) = \langle a_1, ..., a_n \rangle$ where $a_i = t_i$; $1 \le i \le n$

STNs: DWR Example

- tasks:
 - $-t_1$ = take(crane,loc,c1,c2,p1): primitive, ground
 - $-t_2$ = take(crane,loc,c2,c3,p1): primitive, ground
 - $-\bar{t_3}$ = move-stack(p1,q): non-primitive, unground
- · task networks:

 - $w_1 = (\{t_1, t_2, t_3\}, \{(t_1, t_2), (t_1, t_3)\})$ partially ordered, non-primitive, unground
 - $w_2 = (\{t_1, t_2\}, \{(t_1, t_2)\})$
 - totally ordered: $w_2 = \langle t_1, t_2 \rangle$, ground, primitive
 - $\pi(w_2) = \langle \text{take}(\text{crane,loc,c1,c2,p1}), \text{take}(\text{crane,loc,c2,c3,p1}) \rangle$

STNs: DWR Example

·tasks:

- • t_1 = take(crane,loc,c1,c2,p1): primitive, ground
 - •carne "crane" at location "loc" takes container "c1" of container "c2" in pile "p1"
- • t_2 = take(crane,loc,c2,c3,p1): primitive, ground
- • t_3 = move-stack(p1,q): non-primitive, unground
 - •move the stack of containers on pallet "p2" to pallet "q" (variable)

•task networks:

- $\cdot w_1 = (\{t_1, t_2, t_3\}, \{(t_1, t_2), (t_1, t_3)\})$
 - ·partially ordered, non-primitive, unground
- $\cdot w_2 = (\{t_1, t_2\}, \{(t_1, t_2)\})$
 - •totally ordered: $w_2 = \langle t_1, t_2 \rangle$, ground, primitive
 - • $\pi(w_2) = \langle take(crane,loc,c1,c2,p1),take(crane,loc,c2,c3,p1) \rangle$

- Tasks and Task Networks
- Methods (Refinements)
- · Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

Tasks and Task Networks

• just done: a different view of planning: "tasks to do" vs. "goals to achieve"

≻Methods (Refinements)

- now: methods that describe how to break down tasks into simpler subtasks
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

STN Methods

- Let M_S be a set of method symbols. An <u>STN method</u> is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
 - name(m):
 - · the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - n∈ M_S : unique method symbol
 - $-x_1,...,x_k$: all the variable symbols that occur in m;
 - task(m): a non-primitive task;
 - precond(*m*): set of literals called the method's preconditions;
 - network(m): task network (U,E) containing the set of subtasks U of m.

STN Methods

- •Let M_S be a set of method symbols. An <u>STN method</u> is a 4-tuple m=(name(m),task(m),precond(m),network(m)) where:
 - method symbols: disjoint from other types of symbols
 - •STN method: also just called method
 - •name(*m*):
 - •the name of the method
 - •unique name: no two methods can have the same name; gives an easy way to unambiguously refer to a method instances
 - •syntactic expression of the form $n(x_1,...,x_k)$
 - •n∈M_S: unique method symbol
 - • $x_1,...,x_k$: all the variable symbols that occur in m;
 - •no "local" variables in method definition (may be relaxed in other formalisms)
 - •task(m): a non-primitive task;
 - •what task can be performed with this method
 - non-primitive: contains subtasks
 - precond(m): set of literals called the method's preconditions;
 - •like operator preconditions: what must be true in state *s* for *m* to be applicable
 - •no effects: not needed if problem is to refine/perform a task as opposed to achieving some effect
 - •network(m): task network (U,E) containing the set of subtasks U of m.
 - •describes one way of performing the task task(*m*); other methods may describe different way of performing same task: search!
 - method is totally ordered iff network is totally ordered

STN Methods: DWR Example (1)

- move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - precond: top(c, p_o), on(c, x_o), attached(p_o ,I), belong(k,I), attached(p_o ,I), top(x_o , p_o)
 - subtasks: $\langle take(k,l,c,x_o,p_o), put(k,l,c,x_d,p_d) \rangle$

STN Methods: DWR Example (1)

•move topmost: take followed by put action

simplest method from previous example

•take-and-put(c,k,l,p_o,p_d,x_o,x_d)

•using crane k at location l, take container c from object x_o (container or pallet) in pile p_o and put it onto object x_d in pile p_d (o for origin, d for destination)

•task: move-topmost(p_o,p_d)

•move topmost container from pile p_o to pile p_d

•precond:

- •top(\mathbf{c}, \mathbf{p}_o), on(\mathbf{c}, \mathbf{x}_o): pile must be empty with container c on top
- •attached(p_o ,l), belong(k,l), attached(p_d ,l): piles and crane must be at same location
- •top (x_d,p_d) : destination object must be top of its pile

•subtasks: $\langle take(k, l, c, x_o, p_o), put(take(k, l, c, x_d, p_d)) \rangle$

•simple macro operator combining two (primitive) operators (sequentially)

STN Methods: DWR Example (2)

- move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o,p_d,c,x_o)
 - task: move-stack(p_o, p_d)
 - precond: $top(c,p_0)$, $on(c,x_0)$
 - subtasks: $\langle move\text{-topmost}(p_o, p_d), move\text{-stack}(p_o, p_d) \rangle$
- no-move (p_o, p_d)
 - task: move-stack(p_o, p_d)
 - precond: top(pallet,p_o)
 - subtasks: ⟨⟩

STN Methods: DWR Example (2)

move stack: repeatedly move the topmost container until the stack is empty

•recursive-move(p_o, p_d, c, x_o)

•move container c which must be on object x_o in pile p_o to the top of pile p_d

•task: move-stack(p_o, p_d)

•move the remainder of the satck from p_o to p_d : more abstract than method

•precond: top (c,p_o) , on (c,x_o)

• p_o must be empty; c is the top container

•method is not applicable to empty piles!

•subtasks: $\langle move\text{-topmost}(p_o, p_d), move\text{-stack}(p_o, p_d) \rangle$

•recursive decomposition: move top container and then recursive invocation of method through task

•no-move (p_0, p_d)

performs the task by doing nothing

•task: move-stack(p₀,p๗)

•as above

•precond: top(pallet, p_a)

•the pile must be empty (recursion ends here)

•subtasks: ⟨⟩

do nothing does nothing

STN Methods: DWR Example (3)

- move via intermediate: move stack to intermediate pile (reversing order) and then to final destination (reversing order again)
- move-stack-twice(p_a, p_i, p_d)
 - task: move-ordered-stack(p_o, p_d)
 - precond: -
 - subtasks: $\langle move-stack(p_o,p_i), move-stack(p_i,p_d) \rangle$

STN Methods: DWR Example (3)

 move via intermediate: move stack to intermediate pallet (reversing order) and then to final destination (reversing order again)

•move-stack-twice(p_o, p_i, p_d)

•move the stack of containers in pile p_o first to intermediate pile p_i then to p_d , thus preserving the order

•task: move-ordered-stack(p_o, p_d)

•move the stack from p_o to p_d in an order-preserving way

•precond: -

none; should mention that piles must be at same location and different

•subtasks: $\langle move\text{-stack}(p_o, p_i), move\text{-stack}(p_i, p_d) \rangle$

•the two stack moves

Applicability and Relevance

- A method instance *m* is applicable in a state *s* if
 - precond $^+$ (m) ⊆ s and
 - precond⁻(m) ∩ s = { }.
- A method instance *m* is <u>relevant</u> for a task *t* if
 - there is a substitution σ such that $\sigma(t)$ = task(m).
- The <u>decomposition</u> of a task t by a relevant method m under σ is
 - $-\delta(t,m,\sigma) = \sigma(\text{network}(m)) \text{ or }$
 - $-\delta(t,m,\sigma) = \sigma(\langle \text{subtasks}(m) \rangle)$ if m is totally ordered.

Applicability and Relevance

- •A method instance m is applicable in a state s if
 - •precond $^{+}(m) \subseteq s$ and
 - •precond $(m) \cap s = \{\}.$
- •A method instance m is relevant for a task t if
 - •there is a substitution σ such that $\sigma(t)$ = task(m).
- •The decomposition of a task t by a relevant method m under σ is
 - $\bullet \delta(t, m, \sigma) = \sigma(\text{network}(m)) \text{ or }$
 - • $\delta(t,m,\sigma) = \sigma(\langle \text{subtasks}(m) \rangle)$ if m is totally ordered.

Method Applicability and Relevance: DWR Example

- task t = move-stack(p1,q)
- state s (as shown)

- method instance m_i = recursive-move(p1,p2,c1,c2)
 - $-m_i$ is applicable in s
 - $-m_i$ is relevant for t under $σ = {q \leftarrow p2}$

Method Applicability and Relevance: DWR Example

- •task t = move-stack(p1,q)
- •state s (as shown)
- •method instance m_i = recursive-move(p1,p2,c1,c2)
 - • m_i is applicable in s
 - • m_i is relevant for t under $\sigma = \{q \leftarrow p2\}$

- Tasks and Task Networks
- Methods (Refinements)
- · Decomposition of Tasks
- · Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
- Methods (Refinements)
 - just done: methods that describe how to break down tasks into simpler sub-tasks

▶ Decomposition of Tasks

- now: using methods to refine task networks (state-transitions)
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Method Decomposition: DWR Example $\delta(t,m_i,\sigma) = \langle \text{move-topmost}(\text{p1,p2}), \, \text{move-stack}(\text{p1,p2}) \rangle$

Method Decomposition: DWR Example

- • $\delta(t,m_i,\sigma) = \langle \text{move-topmost(p1,p2)}, \text{move-stack(p1,p2)} \rangle$
- •[figure]
- •graphical representation (called a decomposition tree):
 - •view as AND/OR-graph: AND link both subtasks need to be performed to perform super-task
 - •link is labelled with substitution and method instance used
 - •arrow under label indicates order in which subtasks need to be performed
 - •often leave out substitution (derivable) and sometimes method parameters (to save space)

Decomposition of Tasks in STNs

- Let
 - w = (U,E) be a STN and
 - *t*∈*U* be a task with no predecessors in *w* and
 - m a method that is relevant for t under some substitution σ with network(m) = (U_m , E_m).
- The decomposition of t in w by m under σ is the STN $\delta(w,t,m,\sigma)$ where:
 - t is replaced in U by $\sigma(U_m)$ and
 - edges in *E* involving *t* are replaced by edges to appropriate nodes in $\sigma(U_m)$.

Decomposition of Tasks in STNs

- •idea: applying a method to a task in a network results in another network
- •Let
- •w = (U, E) be a STN and
- •t∈U be a task with no predecessors in w and
- •*m* a method that is relevant for *t* under some substitution σ with network(m) = (U_m , E_m).
- •The decomposition of t in w by m under σ is the STN $\delta(w,u,m,\sigma)$ where:
 - t is replaced in U by $\sigma(U_m)$ and
 - replacement with copy (method maybe used more than once)
 - •edges in E involving t are replaced by edges to appropriate nodes in $\sigma(U_m)$.
 - •every node in $\sigma(U_m)$ should come before nodes that came after t in E
 - $\bullet \sigma(E_m)$ needs to be added to E to preserve internal method ordering
 - •ordering constraints must ensure that precond(m) remains true even after subsequent decompositions

- Tasks and Task Networks
- Methods (Refinements)
- · Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
 - just done: using methods to refine task networks (state-transitions)

▶ Domains, Problems and Solutions

- now: defining the semantics of STN planning problems and solutions
- Planning with Task Networks
- General HTN Planning

STN Planning Domains

- An STN planning domain is a pair $\mathcal{D}=(O,M)$ where:
 - O is a set of STRIPS planning operators and
 - M is a set of STN methods.
- *𝑉* is a <u>total-order STN planning domain</u> if every *m*∈*M* is totally ordered.

STN Planning Domains

- •An STN planning domain is a pair \mathcal{D} =(0,M) where:
 - •O is a set of STRIPS planning operators and
 - •M is a set of STN methods.
- • \mathcal{D} is a <u>total-order STN planning domain</u> if every $m \in M$ is totally ordered.

STN Planning Problems

- An <u>STN planning problem</u> is a 4-tuple $\mathcal{P}=(s_i, w_i, O, M)$ where:
 - $-s_i$ is the initial state (a set of ground atoms)
 - w_i is a task network called the initial task network and
 - \mathcal{D} =(O,M) is an STN planning domain.
- \mathcal{P} is a <u>total-order STN planning problem</u> if w_i and \mathcal{D} are both totally ordered.

STN Planning Problems

- •An <u>STN planning problem</u> is a 4-tuple $\mathcal{P}=(s_i, w_i, O, M)$ where:
 - • s_i is the initial state (a set of ground atoms)
 - •w, is a task network called the initial task network and
 - • \mathcal{D} =(O,M) is an STN planning domain.
- • \mathcal{P} is a <u>total-order STN planning domain</u> if w_i and \mathcal{D} are both totally ordered.

STN Solutions

- A plan $\pi = \langle a_1, ..., a_n \rangle$ is a solution for an STN planning problem $\mathcal{P}=(s_i, w_i, O, M)$ if:
 - w_i is empty and π is empty;
 - or:
 - there is a primitive task $t \in w_i$ that has no predecessors in w_i and
 - $a_1 = t$ is applicable in s_i and
 - $\pi' = \langle a_2, ..., a_n \rangle$ is a solution for $\mathcal{P}' = (\gamma(s_i, a_1), w_i = \{t\}, O, M)$
 - or
 - there is a non-primitive task *t*∈*w*, that has no predecessors in *w*, and
 - $m \in M$ is relevant for t, i.e. $\sigma(t) = task(m)$ and applicable in s_i and
 - π is a solution for $\mathcal{P}'=(s_i, \delta(w_i, t, m, \sigma), O, M)$.

STN Solutions

- •A plan $\pi = \langle a_1, ..., a_n \rangle$ is a solution for an STN planning problem $\mathcal{P}=(s_i, w_i, O, M)$ if:
 - •if π is a solution for \mathcal{P} , then we say that $\underline{\pi}$ accomplishes P
 - •intuition: there is a way to decompose w_i into π such that:
 - • π is executable in s_i and
 - •each decomposition is applicable in an appropriate state of the world
 - • w_i is empty and π is empty;

·or:

- •there is a primitive task $t \in w_i$ that has no predecessors in w_i and
- $\cdot a_1 = t$ is applicable in s_i and
- • π ' = $\langle a_2,...,a_n \rangle$ is a solution for \mathcal{P} '=($\gamma(s_i,a_1), w_i$ -{t}, O, M)

·or:

- •there is a non-primitive task $t \in w_i$ that has no predecessors in w_i and
- • $m \in M$ is relevant for t, i.e. $\sigma(t) = task(m)$ and applicable in s_i and
- • π is a solution for $\mathcal{P}'=(s_i, \delta(w_i, t, m, \sigma), O, M)$.
- •2nd and 3rd case: recursive definition
 - •if w_i is not totally ordered more than one node may have no predecessors and both cases may apply

- Tasks and Task Networks
- Methods (Refinements)
- · Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
 - just done: defining the semantics of STN planning problems and solutions

≻Planning with Task Networks

- now: two algorithms for solving STN planning problems
- General HTN Planning

Ground-TFD: Pseudo Code

```
function Ground-TFD(s,\langle t_1, ..., t_k \rangle, O,M)

if k=0 return \langle \rangle

if t_1.isPrimitive() then

actions = \{(a,\sigma) \mid a = \sigma(t_1) \text{ and } a \text{ applicable in } s\}

if actions.isEmpty() then return failure

(a,\sigma) = actions.chooseOne()

plan \leftarrow \text{Ground-TFD}(\gamma(s,a),\sigma(\langle t_2, ..., t_k \rangle), O,M)

if plan = \text{failure then return failure}

else

methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}

if methods.isEmpty() then return failure

(m,\sigma) = methods.chooseOne()

plan \leftarrow \text{subtasks}(m) \bullet \sigma(\langle t_2, ..., t_k \rangle)

return Ground-TFD(s,plan,O,M)
```

Ground-TFD: Pseudo Code

```
•TFD = Total-order Forward Decomposition; direct implementation of definition of STN solution
```

```
•function Ground-TFD(s,\langle t_1,...,t_k\rangle,O,M)
•if k=0 return \langle \rangle
•if t_1.isPrimitive() then
•actions = \{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}
•if actions.isEmpty() then return failure
•(a,\sigma) = actions.chooseOne()
•plan \leftarrow Ground-TFD(\gamma(s,a),\sigma(\langle t_2,...,t_k\rangle),O,M)
•if plan = failure then return failure
•else return \langle a \rangle \bullet plan
•else t_1 is non-primitive
•methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}
•if methods.isEmpty() then return failure
•(m,\sigma) = methods.chooseOne()
•plan \leftarrow \text{subtasks}(m) \bullet \sigma(\langle t_2,...,t_k\rangle)
•return Ground-TFD(s,plan,O,M)
```


Decomposition Tree: DWR Example

- •choose method: recursive-move(p1,p2,c1,c2) binds variable q
- decompose into two sub-tasks
- •choose method for first subtask: take-and-put: c1 from c2 onto pallet
- •decompose into subtasks primitive subtasks (grey) cannot be decomposed/correspond to actions
- •choose method for second sub-task: recursive-move (recursive part)
- decompose (recursive)
- •choose method and decompose (into primitive tasks): take-and-put: c2 from c3 onto c1
- choose method and decompose (recursive)
- •choose method and decompose: take-and-put: c3 from pallet onto c2
- choose method (no-move) and decompose (empty plan)

•note:

- •(grey) leaf nodes of decomposition tree (primitive tasks) are actions of solution plan
- •(blue) inner nodes represent non-primitive task; decomposition results in subtree rooted at task according to decomposition function $\boldsymbol{\delta}$
- •no search required in this example

TFD vs. Forward/Backward Search

- · choosing actions:
 - TFD considers only applicable actions like forward search
 - TFD considers only relevant actions like backward search
- plan generation:
 - TFD generates actions execution order; current world state always known
- lifting:
 - Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search

TFD vs. Forward/Backward Search

- •choosing actions:
 - •TFD considers only applicable actions like forward search
 - •TFD considers only relevant actions like backward search
 - •TFD combines advantages of both search directions better efficiency

•plan generation:

- •TFD generates actions execution order; current world state always known
 - •e.g. good for domain-specific heuristics

·lifting:

- •Ground-TFD can be generalized to Lifted-TFD resulting in same advantages as lifted backward search
- •avoids generating unnecessarily many actions (smaller branching factor)
- ·works for initial task list that is not ground

Ground-PFD: Pseudo Code

```
function Ground-PFD(s,w,O,M) if w.U={} return \langle \rangle task \leftarrow \{t \in U \mid t \text{ has no predecessors in } w.E \}.chooseOne() if task.isPrimitive() then actions = \{(a,\sigma) \mid a = \sigma(t_1) \text{ and } a \text{ applicable in } s \} if actions.isEmpty() then return failure (a,\sigma) = actions.chooseOne() plan \leftarrow Ground-PFD(\gamma(s,a),\sigma(w-\{task\}),O,M) if plan = failure then return failure else return \langle a \rangle \cdot plan else methods = \{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s \} if methods.isEmpty() then return failure (m,\sigma) = methods.chooseOne() return Ground-PFD(s, \delta(w,task,m,\sigma),O,M)
```

Ground-PFD: Pseudo Code

- •PFD = Partial-order Forward Decomposition; direct implementation of definition of STN solution
- •function Ground-PFD(s,w,O,M)
- •if w.U={} return ⟨⟩
- task ← {t∈U | t has no predecessors in w.E}.chooseOne()
- •if task.isPrimitive() then
- •actions = $\{(a,\sigma) \mid a=\sigma(t_1) \text{ and } a \text{ applicable in } s\}$
- ·if actions.isEmpty() then return failure
- \cdot (a, σ) = actions.chooseOne()
- •plan \leftarrow Ground-PFD($\gamma(s,a),\sigma(w-\{task\}),O,M$)
- •if plan = failure then return failure
- •else return (a) plan
- ·else
- •methods = $\{(m,\sigma) \mid m \text{ is relevant for } \sigma(t_1) \text{ and } m \text{ is applicable in } s\}$
- ·if methods.isEmpty() then return failure
- • $(m,\sigma) = methods.chooseOne()$
- return Ground-PFD(s, δ(w,task,m,σ),O,M)

- Tasks and Task Networks
- Methods (Refinements)
- · Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
 - just done: two algorithms for solving STN planning problems

≻General HTN Planning

now: generalizing the STN planning problem and approach

Preconditions in STN Planning

- STN planning constraints:
 - ordering constraints: maintained in network
 - preconditions:
 - enforced by planning procedure
 - · must know state to test for applicability
 - must perform forward search
- HTN Planning
 - additional bookkeeping maintains general constraints explicitly

Preconditions in STN Planning

- •STN planning constraints:
 - ordering constraints: maintained in network
 - •preconditions:
 - •enforced by planning procedure
 - ·must know state to test for applicability
 - must perform forward search
- HTN Planning
 - •additional bookkeeping maintains general constraints explicitly

HTN Methods

- Let M_S be a set of method symbols. An <u>HTN method</u> is a 4-tuple m=(name(m),task(m),subtasks(m),constr(m)) where:
 - name(m):
 - the name of the method
 - syntactic expression of the form $n(x_1,...,x_k)$
 - $-n \in M_S$: unique method symbol
 - $-x_1,...,x_k$: all the variable symbols that occur in m
 - task(m): a non-primitive task
 - (subtasks(m),constr(m)): a hierarchical task network (HTN).

HTN Methods

- extension of the definition of an STN method
- •Let M_S be a set of method symbols. An <u>HTN method</u> is a 4-tuple m=(name(m),task(m),subtasks(m),constr(m)) where:
 - •name(*m*):
 - •the name of the method
 - •syntactic expression of the form $n(x_1,...,x_k)$
 - •n∈M_s: unique method symbol
 - • $x_1,...,x_k$: all the variable symbols that occur in m;
 - •task(m): a non-primitive task;
 - •(subtasks(m),constr(m)): a hierarchical task network (HTN).

HTN Methods: DWR Example (1)

- · move topmost: take followed by put action
- take-and-put(c,k,l,p_o,p_d,x_o,x_d)
 - task: move-topmost(p_o, p_d)
 - network:
 - subtasks: $\{t_1 = \text{take}(k, l, c, x_o, p_o), t_2 = \text{put}(k, l, c, x_d, p_d)\}$
 - constraints: $\{t_1 \prec t_2$, before($\{t_1\}$, top(c,p_o)), before($\{t_1\}$, on(c,x_o)), before($\{t_1\}$, attached(p_o,l)), before($\{t_1\}$, belong(k,l)), before($\{t_2\}$, attached(p_d,l)), before($\{t_2\}$, top(x_d,p_d))}

HTN Methods: DWR Example (1)

•move topmost: take followed by put action

•take-and-put(c,k,l,p_o,p_d,x_o,x_d)

•task: move-topmost(p_o, p_d)

•network:

•subtasks: $\{t_1 = \text{take}(k, l, c, x_o, p_o), t_2 = \text{put}(k, l, c, x_d, p_d)\}$

•constraints: $\{t_1 \prec t_2$, before($\{t_1\}$, top(c,p_o)), before($\{t_1\}$, on(c,x_o)), before($\{t_1\}$, attached(p_o,l)), before($\{t_1\}$, belong(k,l)), before($\{t_2\}$, attached(p_o,l)), before($\{t_2\}$, top(x_o,p_o))}

•note: before-constraints refer to both tasks; more precise than STN representation of preconditions

HTN Methods: DWR Example (2)

- · move stack: repeatedly move the topmost container until the stack is empty
- recursive-move(p_o,p_d,c,x_o)
 - task: move-stack(p_o,p_d)
 - network:

 - $\begin{array}{l} \bullet \ \ \text{subtasks:} \ \{t_1 = \mathsf{move-topmost}(p_o,p_d), \ t_2 = \mathsf{move-stack}(p_o,p_d)\} \\ \bullet \ \ \mathsf{constraints:} \ \{t_1 < t_2, \ \mathsf{before}(\{t_1\}, \ \mathsf{top}(c,p_o)), \ \mathsf{before}(\{t_1\}, \ \mathsf{on}(c,x_o))\} \end{array}$
- move-one (p_o, p_d, c)
 - task: move-stack(p_o,p_d)
 - network:
 - subtasks: $\{t_1 = move topmost(p_o, p_d)\}$
 - constraints: {before($\{t_1\}$, top(c,p_o)), before($\{t_1\}$, on(c,pallet))}

```
HTN Methods: DWR Example (2)
```

•move stack: repeatedly move the topmost container until the stack is empty

•recursive-move(p_o, p_d, c, x_o)

•task: move-stack(p_o, p_d)

•network:

•subtasks: $\{t_1 = move-topmost(p_o, p_d), t_2 = move-stack(p_o, p_d)\}$

•constraints: $\{t_1 \prec t_2, \text{ before}(\{t_1\}, \text{ top}(c, p_o)), \text{ before}(\{t_1\}, \text{ on}(c, x_o))\}$

•move-one (p_o, p_d, c)

•task: move-stack(p_o,p_d)

•network:

•subtasks: $\{t_1 = move - topmost(p_o, p_d)\}$

•constraints: {before($\{t_1\}$, top(c,p_0)), before($\{t_1\}$, on(c,pallet))}

•note: problem with no-move: cannot add before-constraint when there are no tasks

•move-stack-twice(p_o, p_i, p_d) trivial; not shown again

HTN vs. STRIPS Planning

- · Since
 - HTN is generalization of STN Planning, and
 - STN problems can encode undecidable problems, but
 - STRIPS cannot encode such problems:
- STN/HTN formalism is more expressive
- non-recursive STN can be translated into equivalent STRIPS problem
 - but exponentially larger in worst case
- · "regular" STN is equivalent to STRIPS

HTN vs. STRIPS Planning

- •Since
 - •HTN is generalization of STN Planning, and
 - •STN problems can encode undecidable problems, but
 - •STRIPS cannot encode such problems:
- •STN/HTN formalism is more expressive
- •non-recursive STN can be translated into equivalent STRIPS problem
 - ·but exponentially larger in worst case
- "regular" STN is equivalent to STRIPS
 - non-recursive
 - •at most one non-primitive subtask per method
 - •non-primitive sub-task must be last in sequence

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning

Overview

- Tasks and Task Networks
- Methods (Refinements)
- Decomposition of Tasks
- Domains, Problems and Solutions
- Planning with Task Networks
- General HTN Planning