Growth order
$$c < \ln(\ln(n)) < \ln(n) < [\ln(n)]^{c} < n^{c} < c^{n} < n! < n^{n}$$

2.	$\lim_{n \to \infty} \frac{\left(-2\right)^n}{n} \neq 0$	Does not converge
3.	$\sum_{n=1}^{\infty} \left \frac{n}{5^n} \right $ converges by Ratio Test	Converges absolutely
4.	$\sum_{n=1}^{\infty} \left \left(-1 \right)^{n-1} \frac{n}{n^2 + 4} \right \sim \sum_{n=1}^{\infty} \frac{1}{n} \text{ DNC by LCT}$ $\sum_{n=1}^{\infty} \left(-1 \right)^{n-1} \frac{n}{n^2 + 4} \text{ converges by AST}$	Converges conditionally
5.	$\sum_{n=0}^{\infty} \left \frac{(-1)^n}{5n+1} \right \sim \sum_{n=1}^{\infty} \frac{1}{5n} \text{ DNC by LCT}$ $\sum_{n=0}^{\infty} \frac{(-1)^n}{5n+1} \text{ converges by AST}$	Converges conditionally
6.	$\sum_{n=0}^{\infty} \left \frac{\left(-3\right)^n}{\left(2n+1\right)!} \right $ converges absolutely by Ratio Test	Converges absolutely
7.	$\sum_{k=1}^{\infty} \left k \left(\frac{2}{3} \right)^k \right $ converges absolutely by the Ratio Test	Converges absolutely
8.	$\lim_{n\to\infty}\frac{n!}{100^n}\neq 0$	Does not converge
9.	$\lim_{n\to\infty}\frac{\left(-1\right)^n\left(1.1\right)^n}{n^4}\neq0$	Does not converge
10.	$\sum_{n=1}^{\infty} \left (-1)^n \frac{n}{\sqrt{n^3 + 2}} \right \sim \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \text{ does not converge by LCT}$ $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3 + 2}} \text{ converges by AST}$	Converges conditionally

11.	$\left \sum_{n=1}^{\infty} \left \frac{\left(-1\right)^n e^{\frac{1}{n}}}{n^4} \right \le \sum_{n=1}^{\infty} \frac{e}{n^4} \text{ converges by DCT}$	Converges absolutely
12.	$\left \sum_{n=1}^{\infty} \left \frac{\sin(4n)}{4^n} \right \le \sum_{n=1}^{\infty} \frac{1}{4^n} \text{ converges by DCT} \right $	Converges absolutely
13.	$\sum_{n=1}^{\infty} \left \frac{10^n}{(n+1)4^{2n+1}} \right = \sum_{n=1}^{\infty} \frac{1}{4(n+1)} \cdot \left(\frac{10}{16} \right)^n \text{ converges}$ absolutely by the Ratio Test	Converges absolutely
14.	$\sum_{n=1}^{\infty} \left \frac{n^{10}}{(-10)^{n+1}} \right $ converges absolutely by Ratio Test	Converges absolutely
15.	$\left \sum_{n=1}^{\infty} \left \frac{(-1)^n \arctan(n)}{n^2} \right \le \sum_{n=1}^{\infty} \frac{\left(\frac{\pi}{2}\right)}{n^2} \text{ converges by direct comparison test} \right $	Converges absolutely
16.	$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{2}{3}}} \le \sum_{n=1}^{\infty} \frac{3 - \cos(n)}{n^{\frac{2}{3}} - 2}$ diverges by DCT	Diverges
17.	$\sum_{n=1}^{\infty} \frac{1}{n} \le \sum_{n=1}^{\infty} \left \frac{(-1)^n}{\ln(n)} \right \text{ diverges by DCT}$ $\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n)} \text{ converges by AST}$	Converges conditionally
18.	$\sum_{n=1}^{\infty} \left \frac{n!}{n^n} \right $ converges absolutely by Ratio Test	Converges absolutely
19.	$\sum_{n=1}^{\infty} \left \frac{\cos\left(\frac{n \cdot \pi}{3}\right)}{n!} \right \le \sum_{n=1}^{\infty} \frac{1}{n!} \text{ converges by DCT}$	Converges absolutely
20.	$\sum_{n=1}^{\infty} \left \frac{(-2)^n}{n^n} \right $ converges absolutely by Ratio Test	Converges absolutely
21.	$\sum_{n=1}^{\infty} \left \left(\frac{n^2 + 1}{2n^2 + 1} \right)^n \right $ converges absolutely by Root Test	Converges Absolutely
22.	$\sum_{n=1}^{\infty} \left \left(\frac{-2n}{n+1} \right)^{5n} \right $ diverges by Root Test	Diverges