Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа №6

По дисциплине

"Основы профессиональной деятельности"

Вариант: 102034

Выполнил: Голиков Денис Игоревич

Группа: Р3110

Преподаватель: Ларочкин Глеб Игоревич

Оглавление

Задание	2
Вариант	
Ход работы	
Текст исходной программы	
Описание программы	4
Трассировка с данными числами	5
Вывод	5

Задание

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Вариант

- 1. Основная программа должна увеличивать на 2 содержимое X (ячейки памяти с адресом $04D_{16}$) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=3X-1 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'И' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Ход работы

Текст исходной программы

```
ORG 0x000 ;инициализация векторов прерываний
V0: WORD $DEFAULT, 0x180
V1: WORD $INT2, 0x180 ;Вектор прерываний для ВУ 2
V3: WORD $INT3, 0x180 ;Вектор прерываний для ВУ 3
V4: WORD $DEFAULT, 0x180
```

```
V5: WORD
           $DEFAULT, 0x180
V6: WORD
         $DEFAULT, 0x180
V7: WORD
         $DEFAULT, 0x180
    ORG 0x04D
X: WORD
           0х0000 ;Переменная X
MIN: WORD 0xFFBD ;Нижняя граница значений X
MAX: WORD 0х002А ;Верхняя граница значений X
DEFAULT:
           IRET
                        ;Обработка прерывания по умолчанию
START: DI
    CLA
    OUT 0x1 ;запрет прерываний для неиспользуемых ВУ
    OUT 0xB
    OUT 0xD
    OUT 0x11
    OUT 0x15
    OUT 0x19
    OUT 0x1D
    LD #0xA ;загрузка в аккумулятор MR (1000 0010=1010)
    OUT 5 ;разрешение прерываний для 2 ВУ
    LD #0xB ;(1000|0011=1011)
    OUT 7 ;разрешение прерываний для 3 ВУ
    ΕI
MAIN:
    DI ;запрет прерываний чтобы обеспечить атомарность операции
    LD X
    INC
    INC
    CALL CHECK
    ST X
    ΕI
    JUMP MAIN
INT3: ;обработка прерывания на ВУ-3
    DΙ
    LD X
    ADD X
    ADD X
    DEC
    OUT 6
    LD X
    HLT
    ΕI
    IRET
INT2: ;обработка прерывания на ВУ-2
    DΙ
    HLT
    IN 4
    ST X
    HLT
```

Описание программы

Назначение программы:

Программа циклически увеличивает значение ячейки памяти на 2 и обрабатывает прерывания.

Расположение в памяти БЭВМ программы, исходных данных и результатов:

Вектор прерываний: 0x000 - 0x00F Переменные: 0x004D - 0x04F Программа: 0x050 - 0x080

Область представления:

X, MIN, MAX – знаковое 16-ричное целое число

Область допустимых значений

 $-128 \le f(x) \le 127$ $-128 \le 3x - 1 \le 127$ $-127 \le 3x \le 128$ $-42 \le x \le 42$

Методика проверки:

Проверка обработки прерываний:

- 1. Загрузить текст программы в БЭВМ.
- 2. Запустить программу в режиме РАБОТА.
- 3. Установить «Готовность ВУ-3».
- 4. Дождаться остановки.
- 5. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0x04D
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 6. Записать результат обработки прерывания содержимое DR контроллера ВУ-3
- 7. Рассчитать ожидаемое значение обработки прерывания

- 8. Нажать «Продолжение».
- 9. Ввести в ВУ-2 произвольное число, записать его
- 10. Установить «Готовность ВУ-2».
- 11. Дождаться остановки.
- 12. Записать текущее значение X из памяти БЭВМ (аналогично п.5).
- 13. Нажать «Продолжение».
- 14. Записать текущее значение X из памяти БЭВМ (аналогично п.5).
- 15. Рассчитать ожидаемое значение переменной X после обработки прерывания (если значение X выходит за пределы ОДЗ, тогда в X будет записано максимальное по ОДЗ значение)

Проверка основной программы:

- 1. Загрузить текст программы в БЭВМ.
- 2. Записать в переменную Х минимальное по ОДЗ значение (-42)
- 3. Запустить программу в режиме останова.
- 4. Пройти нужное количество шагов программы, убедиться, что при увеличении X на 2, до того момента, когда он равен 42, происходит сброс значения в минимальное по ОДЗ

Трассировка

?Адр	3нчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
051	1000	070	0100	06F	0100	7FE	006F	0025	081	0001	7FF	0067
		04D	0025									
		7FE	01E8									
070	1100	04D	0100	06F	0100	7FE	006F	0025	081	0001		
04D	0025	04E	0100	04D	0025	7FE	006F	0025	081	0001		
04E	FFBD	070	0100	04D	0025	7FE	006F	0025	081	0001		
070	1100	074	0100	073	0100	7FE	0073	FFC7	080	0000	7FF	0067
		04D	FFC7									
		7FE	01E9									
074	1204	078	0100	077	0100	7FE	0077	FF04	088	1000	04D	FF04
078	1100	04D	0100	077	0100	7FE	0077	FF04	088	1000		
04D	FF04	04E	0100	04D	FF04	7FE	0077	FF04	088	1000		
04E	FFBD	078	0100	04D	FF04	7FE	0077	FF04	088	1000		
078	1100	070	0100	06F	0100	7FE	006F	FFD1	089	1001	7FF	0067
		04D	FFD1									
		7FE	01E9									
070	1100	04D	0100	06F	0100	7FE	006F	FFD1	089	1001		
04D	FFD1	04E	0100	04D	FFD1	7FE	006F	FFD1	089	1001		
04E	FFBD	070	0100	04D	FFD1	7FE	006F	FFD1	089	1001		

Вывод

В ходе выполнения работы я ознакомился с устройством обмена по прерываниям, изучил процесс прерывания. Также закрепил знания в написании программ на ассемблере БЭВМ.