SOME INTERESTING OPEN PROBLEMS

AIDAN BACKUS

1. HARMONIC ANALYSIS AND PDE

Given a compact set $X \subset \mathbf{R}^d$ and h > 0, let $X_h := \{x \in \mathbf{R}^d : \operatorname{dist}(x, X) < h\}$. Let

$$\mathscr{F}_h f(\xi) := (2\pi h)^{-d/2} \int_{\mathbf{R}^d} e^{-ix \cdot \xi/h} f(x) \, \mathrm{d}x$$

be the semiclassical Fourier transform. Let

$$\beta^{\sharp}(X,Y) := \sup\{\beta : \|1_{X_h} \mathscr{F}_h 1_{Y_h}\|_{L^2 \to L^2} \lesssim_{\beta} h^{\beta}\}.$$

denote the sharp uncertainty exponent of two compact sets $X, Y \subset \mathbf{R}^d$.

An arithmetic Cantor set is a compact set $X \subset \mathbf{R}$ such that $0 < \dim_{\mathcal{H}}(X) < 1$ and there exists an integer $M \geq 3$ and a set $A \subseteq \{0, \ldots, M-1\}$ such that X is the set of $x \in \mathbf{R}$ such that there exists a sequence $(a_i) \subset A$ such that $x = \sum_{i=1}^{\infty} a_i/M^i$.

Problem 1.1 (Dyatlov). Let $0 < \delta < 1$.

(1) Show that there exists $\beta_{\delta}^{\sharp} > 0$ such that for every arithmetic Cantor set X, if $\dim_{\mathcal{H}}(X) = \delta$, then for the generic $\alpha > 0$,

$$\beta^{\sharp}(X, \alpha X) \ge \beta^{\sharp}_{\delta}.$$

(2) Show that the above estimate fails for $\alpha = 1$.

An Ahlfors-David set is a compact set $X \subset \mathbf{R}^d$ such that, with $s := \dim_{\mathcal{H}}(X)$, for every $x \in X$ and 0 < r < 1,

$$r^s \lesssim \mathcal{H}^s(X \cap B(x,r)) \lesssim r^s$$
.

The sharp implied constant here is called the Ahlfors-David regularity of X.

Problem 1.2. Construct arithmetic Cantor sets X_j such that:

- (1) $\dim_{\mathcal{H}}(X_j) > 1 1/j$.
- (2) The Ahlfors-David regularity of X_i is bounded.
- (3) For some $\theta < 1$, $\beta^{\sharp}(X_i, X_i) \lesssim \theta^j$.

Problem 1.3 (Dyatlov). Let $X \subset \mathbf{R}^2$ be an Ahlfors-David set such that $0 < \dim_{\mathcal{H}}(X) \le 1$, and let $\chi \in C^{\infty}_{\mathrm{cpt}}((0,\infty))$. Show that there exists $\beta = \beta(X,\chi) > 0$ such that the following holds: Let

$$\mathcal{B}_h f(x) := \frac{1}{2\pi h} \int_{\mathbf{R}^2} |x - y|^{2i/h} \chi(|x - y|) f(y) \, dy.$$

Then

$$\|1_{X_h}\mathcal{B}_h1_{X_h}\|_{L^2\to L^2}\lesssim h^{\beta}.$$

If this estimate fails, then X is self-orthogonal in the sense of [BLT23].

Given a matrix A, let $Q(A) := (AA^{\dagger})^{1/2}$ be the positive-semidefinite part of A. A map $u : M \to N$ is Schatten p-harmonic if $u \in W^{1,p}_{loc}$ and

$$\nabla_u^*(Q(\mathrm{d}u)^{p-2}\,\mathrm{d}u) = 0,$$

where ∇_u^* is the covariant divergence.

Date: March 21, 2025.

Problem 1.4 (Daskalopoulos-Uhlenbeck). Let $u: M \to N$ is Schatten p-harmonic where p > 1 $\dim M$.

- (1) Show that $Q(du)^{p-2} du \in W^{1,2}_{loc}$. This holds if $M = N = \mathbf{H}^2$ [DU22, Theorem 4.17]. (2) Must $u \in W^{1,\infty}_{loc}$?
- (3) Must there exist $\alpha > 0$ such that $u \in C^{1+\alpha}_{loc}$?

Problem 1.5. When p=4, the Bochner formula for the Schatten p-Laplacian is known [Nak11, Theorem 5]. Determine the Bochner formula for the Schatten p-Laplacian when $p=2^n$, $n\geq 3$.

2. Calculus of variations in nonreflexive Banach spaces

Problem 2.1 (Evans). Let u be an ∞ -harmonic function on a domain in \mathbf{R}^2 . Must $u \in C^{4/3}_{loc}$?

Problem 2.2. Consider the scalar PDE

$$A^{ijk\ell}\partial_i\partial_i u\partial_k u\partial_\ell u = F(u)$$

on a domain in \mathbb{R}^2 , where F(u) is a smooth first-order nonlinearity and A is a smooth elliptic tensor. (Here, you can be loose about what "elliptic tensor" means, but at least the class of PDE considered should include the ∞ -Laplacian in the presence of a Riemannian metric.)

Show that the Evans-Savin theorem [ES08] holds: there exists $\alpha > 0$ such that $u \in C^{1+\alpha}_{loc}$

Problem 2.3. Let u be a function of least gradient on a simply connected domain in \mathbb{R}^d . Show that there exist functions u_{ac}, u_C, u_j of least gradient such that:

- (1) $u = u_{ac} + u_C + u_i$.
- (2) $u_{ac} \in W_{\text{loc}}^{1,1} \cap C_{\text{loc}}^{0}$. (3) $u_C \in C_{\text{loc}}^{0}$ and $\text{supp}(|du_C|)$ has Lebesgue measure zero. (4) $\dim_{\mathcal{H}}(\text{supp} |du_j|) \leq d-1$.

This holds for d < 7 by [Bac24a, Proposition 4.6]; the obstruction to this holding for arbitrary BV functions is basically topological in nature and so should not be detected by codimension 8 singularities.

Problem 2.4. Let u be a solution of the total variation flow on a convex domain in \mathbb{R}^d , with Dirichlet boundary data.

- (1) Under what conditions on the initial and boundary data do the level sets of u undergo mean curvature flow?
- (2) If the level sets are undergoing mean curvature flow, do they form a lamination?

A Borel set Λ is Hausdorff equidimensional if for every $s < \dim_{\mathcal{H}}(\Lambda)$, $x \in \Lambda$, and r > 0, the restriction of the Hausdorff measure \mathcal{H}^s to $B(x,r) \cap \Lambda$ is not σ -finite.

Problem 2.5. For each $2 \leq p < \infty$, let u_p be a p-harmonic function on a simply connected, nonpositively curved surface M, all of which have the same boundary data. Let

$$\mathrm{d}v_q := |\,\mathrm{d}u_p|^{p-2} \star \mathrm{d}u_p$$

where 1/p + 1/q = 1. Then v_q is a well-defined function and there exists a function v of least gradient such that $v_q \to v$ in $L_{\text{loc}}^{3/2}$ along a subsequence and the energy density of u_p concentrates as $p \to \infty$ on the set $\Lambda := \text{supp}(|dv|)$.

Show that Λ is Hausdorff equidimensional. The intuition for this comes from [Bac24b, Theorem 1.6], which is a quantitative version of this in some special cases.

A map u is Schatten ∞ -harmonic if it is a limit in C^0_{loc} of Schatten p-harmonic maps with the same boundary data (see the harmonic analysis and PDE section). Schatten ∞-harmonic maps were introduced in [DU22], and their key feature is that L := Lip(u) is minimized among all maps with the boundary data f. The canonical stretch locus of u is the set of pairs $(x,y) \in M^2$ such that $x \neq y$ and for every Lipschitz map $v: M \to N$ with the same boundary data as u, if Lip(v) = L, then $\text{dist}(v(x), v(y)) = L \, \text{dist}(x, y)$.

Problem 2.6 (Daskalopoulos–Uhlenbeck). Let M, N be simply connected Riemannian manifolds such that N is complete and nonpositively curved. (To avoid technicalities, it may help to assume that M, N are both flat.) Let $u: M \to N$ be a Schatten ∞ -harmonic map.

- (1) Show that for every $(x,y) \in M^2$ such that $x \neq y$ and $\operatorname{dist}(u(x),u(y)) = \operatorname{Lip}(u)\operatorname{dist}(x,y)$, (x,y) is contained in the canonical stretch locus of u.
- (2) Show that u is a absolutely minimizing Lipschitz map in the sense that for every convex $U \subseteq M$, and every Lipschitz map v which agrees with u away from U, $\text{Lip}_U(u) \leq \text{Lip}_U(v)$.
- (3) Show that u is *tight* in the sense of Sheffield–Smart [SS12].

Problem 2.7 (Daskalopoulos–Uhlenbeck). Let M be a simply connected Riemannian surface, let N a nonpositively curved Riemannian symmetric space, and let \mathfrak{g} be the Lie algebra of Killing fields on N. Let $u_p: M \to N$ be Schatten p-harmonic maps with the same boundary data, converging to a Schatten ∞ -harmonic map u. Since N is a symmetric space, one obtains a Noether current $\mathrm{d}v_q$ from u_p , where 1/p+1/q=1 and v_q maps M into \mathfrak{g} .

Show that there exists $v: M \to \mathfrak{g}$ such that:

- (1) Along a subsequence, $v_q \to v$ in $L_{\text{loc}}^{3/2}$.
- (2) supp |dv| is a subset of the projection of the canonical stretch locus of u.

Thus the energy density of u_p concentrates on the canonical stretch locus of u. This holds whenever $M = N = \mathbf{H}^2$ and $\mathrm{d}u_p$ descends to a compact quotient of M [DU22, Theorem 7.1].

3. Differential geometry and geometric topology

Problem 3.1 (Liu). Let M be a closed oriented Riemannian manifold of dimension d. Suppose that either $d \leq 7$ or the metric on M is suitably generic. Let $\rho \in H^{d-1}(M, \mathbf{R})$. If there exists a measurable d-1-form F such that $[F] = \rho$ and $||F||_{L^{\infty}} \leq 1$, must there exist a continuous d-1-form with these properties?

By a calibration argument, a positive answer to this question implies that every class in the image of the natural homomorphism $H_{d-1}(M, \mathbf{Z}) \to H_{d-1}(M, \mathbf{R})$ contains a smooth area-minimizing hypersurface. However, I expect that the proof would be utterly different than the usual proofs that minimal hypersurfaces are smooth.

Let \mathscr{T} denote the Teichmüller space of a closed surface, let $\|\cdot\|_{\infty}$ denote the earthquake norm on the tangent bundle of \mathscr{T} , let ω be the Weil-Petersson symplectic form on \mathscr{T} , and let $\|\cdot\|_1$ denote the dual norm of $\|\cdot\|_{\infty}$ with respect to ω . By Wolpert's duality theorem, $\|\cdot\|_1$ is the infinitesimal version of the Thurston asymmetric metric on \mathscr{T} .

Problem 3.2. Let $\sigma \in \mathcal{T}$. Construct a map

$$\exp_{\sigma}: T_{\sigma}\mathscr{T} \to \mathscr{T}$$

with the following properties:

- (1) On a neighborhood of 0, \exp_{σ} is a diffeomorphism.
- (2) For every ray ℓ based at 0, $(\exp_{\sigma})_*\ell$ is a geodesic for the Thurston asymmetric metric.
- (3) Let $v \in T_{\sigma} \mathscr{T}$ be such that $||v||_{\infty} = 1$, and let

$$v^* := \{ \alpha \in T_{\sigma} \mathcal{T} : \omega(v, \alpha) = \|\alpha\|_1 = 1 \}$$

be the dual flat of v. Then for every sufficiently small t > 0, v^* is the set of infinitesimal earthquakes generated by projective measured geodesic sublaminations of the canonical lamination maximally stretched by the homotopy class of

$$id_M: (M, \sigma) \to (M, \exp_{\sigma}(tv)).$$

The "abelianized" version of this theorem (that is, for the stable norm) is true [Bac24b, §8.3].

4. Descriptive set theory and recursion theory

Problem 4.1. What is the algorithmic information density of the Gromov-Hausdorff space?

For our purposes, a sentence φ is relatively consistent, if the theory $\mathsf{ZFC} + \varphi$ is consistent provided that the theory $\mathsf{ZFC} +$ "There is a measurable cardinal" is consistent. The measurable cardinal is just to allow for the possibility that 2^{\aleph_0} is real-valued measurable; of course it would also be interesting to know that φ is consistent relative to ZFC alone.

Problem 4.2. A set $E \subseteq \mathbf{R}$ has a small distance set if

$$\dim(\{|x-y|: x, y \in E\}) = \dim E.$$

There exists $s_* < 1$ such that for every Σ_1^1 set E such that $\dim_{\mathcal{H}} E \in [s_*, 1]$, E does not have a small distance set [Fal85]. On the other hand, if Martin's axiom is true, then for every $s \in [0, 1]$ there exists E_s such that E_s has a small distance set and $\dim_{\mathcal{H}} E_s = s$.

- (1) Show that it is relatively consistent that there exists $s \in [0,1]$ such that for every E, if $\dim E = s$ then E does not have a small distance set.
- (2) What about Π_1^1 and Σ_n^1 sets?

Problem 4.3 (Fusco-Spector). Let X be a Polish space, let $\mathcal{B}(X)$ be the Borel σ -algebra of X, and let $\mathcal{M}(X)$ be the space of finite signed Borel measures on X, equipped with its total variation norm. A function $\psi : \mathcal{B}(X) \to \mathbf{R}$ is an *integral representation* of a continuous linear functional L on $\mathcal{M}(X)$, if for every $\mu \in \mathcal{M}(X)$,

$$L(\mu) = \int_X \psi \, \mathrm{d}\mu,$$

where the integral is a Kolmogorov–Burkhill integral. A modification of the arguments of [Mau73] shows that assuming Martin's axiom, every continuous linear functional on $\mathcal{M}(X)$ has an integral representation.

Show that it is relatively consistent that there exists a continuous linear functional on $\mathcal{M}(X)$ which does not have an integral representation.

References

- [Bac24a] A. Backus. Minimal laminations and level sets of 1-harmonic functions. 2024. arXiv: 2311.01541 [math.AP]. URL: https://arxiv.org/abs/2311.01541.
- [Bac24b] A. Backus. The canonical lamination calibrated by a cohomology class. 2024. arXiv: 2412.00255 [math.DG]. URL: https://arxiv.org/abs/2412.00255.
- [BLT23] A. Backus, J. Leng, and Z. Tao. The fractal uncertainty principle via Dolgopyat's method in higher dimensions. 2023. arXiv: 2302.11708 [math.CA]. URL: https://arxiv.org/abs/2302.11708.
- [DU22] G. Daskalopoulos and K. Uhlenbeck. Analytic properties of Stretch maps and geodesic laminations. 2022. arXiv: 2205.08250 [math.DG]. URL: https://arxiv.org/abs/2205.08250.
- [ES08] L. Evans and O. Savin. "C1alpha regularity for infinity harmonic functions in two dimensions". Calculus of Variations and Partial Differential Equations 32 (Jan. 2008), 325–347. DOI: 10.1007/s00526-007-0143-4.
- [Fal85] K. J. Falconer. "On the Hausdorff dimensions of distance sets". Mathematika 32.2 (1985), 206-212. DOI: https://doi.org/10.1112/S0025579300010998. eprint: https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/S0025579300010998. URL: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/S0025579300010998.
- [Mau73] R. Mauldin. "A representation theorem for the second dual of C[0,1]". eng. Studia Mathematica 46.3 (1973), 197–200. URL: http://eudml.org/doc/217766.
- [Nak11] N. Nakauchi. "A variational problem related to conformal maps". Osaka Journal of Mathematics 48.3 (2011), 719 -741.
- [SS12] S. Sheffield and C. K. Smart. "Vector-valued optimal Lipschitz extensions". Communications on Pure and Applied Mathematics 65.1 (2012), 128-154. DOI: https://doi.org/10.1002/cpa.20391. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.20391. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20391.

REFERENCES 5

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY *Email address*: aidan_backus@brown.edu