

EL EXAMEN SE APRUEBA CON 3 EJERCICIOS CORRECTAMENTE RESUELTOS

Padrón:	
. Considerar la barra delgada de longitud l que se mueve en el plano $x-y$, como se ilustra e	n la figi

- 1. Considerar la barra delgada de longitud l que se mueve en el plano x-y, como se ilustra en la figura. La barra se fija en uno de sus extremos con un alfiler y tiene una masa en el otro extremo. Este sistema se resuelve con la siguiente ecuación diferencial de segundo orden: $\frac{d^2\theta(t)}{dt^2} \frac{g}{l}\theta(t) = 0.$ Sabiendo que: $g = 9.81\frac{m}{s^2}$, l = 0.5 m, $\theta(0) = 0$ y $\frac{d\theta}{dt}(0) = 0.25\frac{rad}{s}$. Hallar el ángulo y la velocidad angular en t = 0.2 segundos utilizando dos iteraciones del método de Runge-Kutta del punto medio.
- 2. Hallar una aproximación del trabajo que realiza la fuerza $\vec{F}(x,y) = (3y^2 + 2, 16x)$ al mover una partícula desde (1,0) hasta el (-1,0), siguiendo la mitad superior de la elipse $x^2 + \frac{y^2}{9} = 1$. Usar Simpson 1/3 y aproximar $\pi = 3$, con N = 12. Indicar el error cometido. Trabajar con dos decimales. (AYUDA: $W = \int_a^b \vec{F}(\sigma(t))\sigma'(t)dt$)
- 3. Dadas las rectas

$$\left\{\begin{array}{l} r_1:x_1+1.01x_2=-0.01\\ r_2:0.99x_1+x_2=-0.01 \end{array}\right.$$
 Escribir el sistema de la forma $\mathbf{A}x=\mathbf{b}$

Con aritmética de 5 dígitos se obtiene una aproximación de la solución: $\tilde{x} = (0.981, -0.981)^t$.

- a) Estimar el número de condición de la matriz A, e indicar si la matriz está bien condicionada.
- b) Obtener una mejor aproximación de la solución haciendo un paso de refinamiento iterativo.
- 4. Una partícula se mueve a lo largo del eje x con una aceleración que en cualquier tiempo $t \ge 0$ se escribe como: $a(t) = 8 4t + t^2$. Se sabe que la partícula se encuentra en x = 1 en t = 0 y al cabo de dos segundos se encuentra en x = 7. Hallar la posición de la partícula en los instantes t = 0.5seg., t = 1seg.y t = 1.5seg. Usando diferencias finitas.
- 5. Se sabe que la suma de dos números es 7 y su producto es 12. Plantear un sistema para estimar dichos números. Resolver el sistema usando dos iteraciones del método de Newton para sistemas no lineales tomando como semilla $x^0 = (3.9, 2.9)^t$. Trabajar al menos con cuatro decimales y redondeo.