TD2. Dénombrement

Exercice 1. [Formule de Pascal]

a) Pour n, p des entiers tels que $0 \le p \le n$, montrer que

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}.$$

b) Pour n, p des entiers tels que $0 \le n \le p$, montrer que

$$\sum_{k=n}^{p} \binom{k}{n} = \binom{p+1}{n+1}.$$

Exercice 2. [Formule de Vandermonde] Soit $m, n, p \in \mathbb{N}$. Démontrer que

$$\sum_{k=0}^{p} {m \choose k} {n \choose p-k} = {m+n \choose p}.$$

Exercice 3. Soit $n \in \mathbb{N}$. Calculer

$$\sum_{k=0}^{n} k \binom{n}{k}, \qquad \sum_{k=0}^{n} k(k-1) \binom{n}{k}, \qquad \sum_{k=0}^{n} k^2 \binom{n}{k}.$$

Exercice 4. Combien y a-t-il d'applications strictement croissantes de [1, p] à [1, n] (où $1 \le p \le n$)?

Exercice 5. Pour un ensemble E fini de cardinal $n \ge 1$, on note u_n le nombre d'involutions de E, c'est à dire d'application $f: E \to E$ telle que $f \circ f = \mathrm{id}_E$.

- a) Calculer $u_1, u_2,$ et u_3 .
- b) Pour tout $n \in \mathbb{N}^*$, montrer que

$$u_{n+2} = u_{n+1} + (n+1)u_n$$
.

Exercice 6. Soit $n \in \mathbb{N}^*$.

- a) Combien y a-t-il de surjections de [1, n] dans [1, n]?
- b) Combien y a-t-il de surjections de [1, n+1] dans [1, n]?

c) Combien y a-t-il de surjections de [1, n+2] dans [1, n]?

Exercice 7. Pour $n \in \mathbb{N}^*$, on note π_n le nombre de partions d'un ensemble de [1, n]. On rappelle qu'une partition d'un ensemble E est un ensemble de parties non vides et deux à deux disjoints, dont la réunion est E. On note, de plus, $\pi_0 = 1$.

- a) Calculer π_1, π_2 , et π_3 .
- b) Démontrer que, pour tout $n \in \mathbb{N}$, on a

$$\pi_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \pi_k.$$

Exercice 8. On considère p boules identiques qu'on désire de ranger dans n boîtes numérotées. Combien y a-t-il des rangements distincts.

Exercice 9. [Formule d'inversion de Pascal] Soit $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ deux suites de réels telles que, pour tout $n \in \mathbb{N}$, $a_n = \sum_{p=0}^n \binom{n}{p} b_p$. Montrer que, pour tout $n \in \mathbb{N}$, on a

$$b_n = \sum_{p=0}^{n} (-1)^{n-p} \binom{n}{p} a_p.$$

Exercice 10. On note d_n le nombre de permutations d'un ensemble E de cardinal n ne laissant aucun point fixe.

a) Montrer que, pour tout $n \in \mathbb{N}$, on a

$$n! = \sum_{k=0}^{n} \binom{n}{k} d_k$$

b) En déduire que pour tout $n \in \mathbb{N}$,

$$d_n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}.$$

c) En déduire que le nombre de permutations de E, lissant exactement p points fixes $(0 \le p \le n)$ est

$$\frac{n!}{p!} \sum_{k=0}^{n-p} \frac{(-1)^k}{k!}.$$

Exercice 11. [Théorème de Dirichlet] Soit $x \in \mathbb{R}$.

a) Soit $N \in \mathbb{Z}$ tel que $N \ge 2$. Montrer qu'il existe des entiers p, q avec $1 \le q \le N$ tels que |qx - p| < 1/N.

(Indication : on pourrait appliquer le principle des tiroirs pour les nombres réels $x_k = kx - [kx] \in [0, 1[$, avec $k \in [0, N]$.)

b) On suppose que x est irrationnel. Montrer qu'il existe une infinité de nombres rationnels p/q tels que

$$\left| x - \frac{p}{q} \right| < \frac{1}{q^2}.$$

c) Montrer que le résultat tombe en défaut si x est rationnel.

Exercice 12. On considère r drapeaux distincts et n poteaux numérotés, suffisamment grands pour accueillir les r drapeaux.

- a) On suppose r = 2 et n = 2. De combien de façons peut-on disposer les drapeaux sur les poteaux (on tient compte de l'ordre des drapeaux sur chaque poteau)?
- b) Même question dans le cas général. On pourra raisonner par récurrence sur r.