תרגיל 77 חסמים וסדרות מונוטוניות

חדו"א: סדרות וטורים

1

יהיו אסומות לא קבוצות לא קבוצות $A,B\subseteq\mathbb{R}$

- $\inf(A \cup B) = \min\{\inf(A), \inf(B)\}$.1. הראו כי
- $\inf(A \cap B) \ge \max\{\inf(A),\inf(B)\}$ 2.

2

נתונה קבוצה חסומה את המפרר המפרר ומספר אומספר הבאים לתונה הבוצה החסומה אומספר

- $, \alpha < S$ מתקיים כי $\alpha \in A$ מתקיים כי β .1 היא חסם עליון של
 - $\alpha > S \varepsilon$ ע כך מיבר $\alpha \in A$ קיים איבר $\epsilon > 0$ לכל.

הוכיחו כי $S = \sup(A)$. הדרכה: השתמשו באופן ישיר בהגדרת הסופרמום.

3

עבור קבוצה גדיר קבוצה מלעיל. נגדיר איקות א קבוצה לא קבוצה $A,B\subseteq\mathbb{R}$

 $C = \{x \in \mathbb{R} \mid x = a + b$ כך ש־ט $b \in B$ ר־ $a \in A$ קיימים

- $.\alpha+b \leq \sup(A) + \sup(B)$ אז $b \in B$ ו־מ $\alpha \in A$ יני אם .1
- $a+b>\sup(A)+\sup(B)-arepsilon$ כך ש־ט $b\in B$ ו־מ $a\in A$ קיימים arepsilon>0 .2
 - . $\sup(C) = \sup(A) + \sup(B)$ 3.
- מצאו דוגמה המוכיחה כי הנוסחה .D $=\{x\in\mathbb{R}\mid x=a\cdot b$ כך ש־b $\in B$ ו־a $\in A$ קיימים.

$$\sup(D) = \sup(A) \cdot \sup(B)$$

 $B = \{-1\}$ איננה נכונה. רעז: וסו לבחון מקרים בהס

4

בסעיפים הבאים נתונות תת־קבוצות של $\mathbb R$. בדקו האם הקבוצות הנתונות הן חסומות מלעיל ומלרע ומצאו את הסופרמום והאינפימום שלהן.

- A = [2, 2.5) .1
- .A = $\left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$.2
- $.A = \left\{ \frac{1}{2^n} \mid n \in \mathbb{Z} \right\} .3$
- $A = \left\{ \frac{m}{n} \mid 0 \leq m < n, \ m, n \in \mathbb{N} \right\}$.4

ניזכר כי סדרה $\{a_n\}_{n=1}^\infty$ נקראת מונוטונית עולה אם לכל $n\in\mathbb{N}$ מתקיים $n\in\mathbb{N}$ מתקיים עולה ממש אם לכל $\{a_n\}_{n=1}^\infty$ נקראת מונוטונית עולה אם לכל $a_{n+1}>a_n$ מתקיים $n\in\mathbb{N}$ ומונוטונית יורדת אם לכל $a_{n+1}>a_n$ לכל $a_{n+1}>a_n$ לכל יורדת ממש אם $a_{n+1}>a_n$

, מונוטונית עולה, מונוטונית עולה ממש, ואם נדרשים לבדוק ואם $\{a_n\}_{n=1}^\infty$ אונוטונית עולה, מונוטונית עולה ממש, או שאינה אף אחד מהן.

ניתן להשתמש באינדוקציה, או בהשוואה ישירה של איברים עוקבים בסדרה.

$$.a_n = \frac{1}{n}$$
 .1

$$.a_n = \frac{2}{3} \cdot \frac{4}{5} \cdot \ldots \cdot \frac{2n}{2n+1} .2$$

$$.a_n = \frac{2}{n(n+1)} (1 + 2 + \ldots + n)$$
 .3

רמז: נסו קודם לכדוק את ערכי a_1, a_2, a_3, \ldots האם מצאתם חוקיות? נסו להוכיח אותה.

$$a_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$
 .4