Lecture 9:

Fuzzy Logic

Roman V Belavkin

BIS4127

OVERVIEW

- 1. Historical background.
- 2. Fuzzy variables and sets.
- 3. Reasoning with fuzzy facts and rules.
- 4. Defuzzyfication.
- 5. Strengths and weaknesses.
- 6. Application of fuzzy logic.

HISTORICAL BACKGROUND

- **400 B.C.** Classical logic of Aristotle: every proposition is either True or False (no middle). Plato objected.
- **1900** Jan Lukasiewicz proposed three—valued logic: True, False and Possible.
- 1965 Lotfi A. Zadeh published "Fuzzy Sets" article.
- 1979 S. Haack "Do we need fuzzy logic?"

CRISP vs FUZZY

Consider two facts describing an income, High and Low, and two rules concluding about the degree of risk:

IF income is high THEN risk is low

IF income is low THEN risk is high

- How much income is high?
- If $\pounds 20,000$ p.a. is high, is $\pounds 19,500$ high too?

TRADITIONAL ES 'SOLUTION'

Traditional Rule—Based system would have to use many rules:

IF income $\pounds 20,000$ THEN risk is very low

IF income £19,500 THEN risk is almost very low

IF income £19,000 THEN risk is almost low

IF income £18,500 THEN risk is low

IF income £18,000 THEN risk is quite low

IF income $\pounds17,500$ THEN risk is nearly low

IF income £17,000 THEN risk is somewhat low

How many rules would we need to account for all cases?

FUZZY MEMBERSHIP

Membership function M(x) represents the degree of belief (confidence factor) that x belongs to some category.

$$0 \le M(x) \le 1$$
 or $0\% \le M(x) \le 100\%$

M(x)=0 does not belong, M(x)=1 does belong. For example, the fact "Income" belongs to category High:

Income	belongs to High
$\pounds 20,000$	M = 0.90
$\pounds 19,500$	M = 0.85
$\pounds 19,000$	M = 0.80

FUZZY SETS

A set of several fuzzy variables (categories) is called a **fuzzy set**. For example, an income can be {Small, Medium, High}

Each category in the set has its membership function:

Income $\pounds15\mathrm{K}$

 $\mathbf{High} \qquad M = 0.2$

Medium M=0.8

Small M=0

WHAT IS THE ADVANTAGE?

 $\pounds 20 \mathrm{K}$ $\pounds 19 \mathrm{K}$ High IF High THEN $\vdots \longrightarrow \mathrm{Medium} \longrightarrow \mathrm{IF} \, \mathrm{Medium} \quad \mathrm{THEN}$ $\vdots \qquad \mathrm{Small} \qquad \mathrm{IF} \, \mathrm{Small} \qquad \mathrm{THEN}$ $\pounds 5 \mathrm{K}$

- Many real values are converted into few fuzzy variables with different memberships.
- Then just a few rules can be used for reasoning.

REASONING WITH FUZZY RULES

Reasoning with fuzzy facts with different degrees of membership (confidence) is similar to Stanford algebra:

$$M(\operatorname{NOT} x) = 1 - M(x)$$

$$M(x_1 \operatorname{AND} x_2) = \min[M(x_1), M(x_2)]$$

$$M(x_1 \operatorname{OR} x_2) = \max[M(x_1), M(x_2)]$$

Rules in fuzzy systems also have degrees of confidence:

IF condition THEN action

$$M(\mathit{action}) = M(\mathit{condition}) \times M(\mathit{rule})$$

EXAMPLE

Consider a rule with confidence M=0.8:

IF income is high OR income is stable THEN risk is low What is the confidence that risk is low if $M({\it income is high})=0.6$ $M({\it income is stable})=0.2?$

Answer: because condition (left–hand–side) of the rule uses OR, the confidence of the condition is the largest of the two:

 $M(\textit{income is high} \ \mathsf{OR} \ \textit{income is stable}) = \max[0.6, 0.2] = 0.6$ and the confidence of action (right–hand–side) is

$$M(\textit{risk is low}) = 0.6 \times 0.8 = 0.48$$

MULTIPLE RULES

In a fuzzy logic system **ALL** rules are firing in parallel. This means that we can have multiple conclusions about the same fact or even contradictory conclusions.

• If two rules arrive to the same conclusion x with different $M_1(x)$ and $M_2(x)$, then we use a formula to combine the beliefs

$$M(x) = M_1(x) + M_2(x) - M_1(x) \times M_2(x)$$

For example, let $M_1=0.2$, $M_2=0.6$ that the *risk is low*, then $M=0.2+0.6-0.2\cdot0.6=0.68$.

 Different and even contradictory conclusions (e.g. risk is low and risk is high) are all allowed to stay in the system.

CRISP CONCLUSIONS

- ullet The conclusions that a fuzzy reasoning system will arrive to are fuzzy facts (facts with degrees of membership). For example, $\it risk$ is low with M=0.5.
- The outcome, however, must be a precise decision (e.g. how much money exactly can be let).
- The process of converting a fuzzy fact into a crisp value is called defuzzyfication.

DEFUZZYFICATION

Suppose the system has arrived to three conclusions:

Risk

Low M = 0.5

 $\text{Medium} \quad M=0.8$

 $\mathbf{High} \qquad M=0$

DEFUZZYFICATION (CONT.)

One of the way to of defuzzyfication is called **centroid** method (finding the 'centre of gravity'):

Unite and select the areas under the belief values M. The centre of the selected area provides the crisp output value.

FUZZY LOGIC EXPERT SYSTEMS

```
\pounds 20 \mathrm{K}
\pounds 19 \mathrm{K}
High IF THEN Low \pounds 70 \mathrm{K}
\vdots \longrightarrow \mathrm{Medium} \longrightarrow \mathrm{IF} \mathrm{THEN} \longrightarrow \mathrm{Medium} \longrightarrow \vdots
\vdots \qquad \mathrm{Small} \qquad \mathrm{IF} \mathrm{THEN} \qquad \mathrm{High} \qquad \vdots
\pounds 5 \mathrm{K}
```

- From crisp values (Salary) to fuzzy variables (Income).
- Reasoning leads to conclusions with other fuzzy variables (Risk).
- Defuzzyfication provides crisp output outcomes (Lending limit).

STRENGTHS AND WEAKNESSES

Strengths are

- Use fewer rules as there is no need to cover all the cases.
- Thus, it is easier to understand the system.
- Fine tuning by changing the membership functions.

Weaknesses are

- Limited explanatory system.
- Still necessary to consult experts.
- Saturation problem (if memberships are not defined carefully).

APPLICATION OF FUZZY LOGIC

- Risk assessment.
- Loan assessment.
- Investment advice.
- Strategic planning.
- Control systems (appliances such as washing machines, etc)
- Robotics.