# **Decision Trees**

How to decide

## **Why Decision Trees**

They help us see into logical space



### What is Purity

Gini is the percent chance that a randomly drawn element will be misclassified

Purity is information gain

Information Gain =

Entropy(parent) - Weighted Sum of Entropy(Children)



### What kind of decision?

The Classification And Regression Tree (CART)



### **Classification Decisions**

Is it a duck? If it looks like a duck: Looks like a duck Big increase in purity 66.6% 33.4% YES

### As seen in SciKitLearn



## **Regression Decisions**

Useful for continuous variables



Figure 4.11. Test condition for continuous attributes.



### **Bias or Variance?**





#### **Methods to reduce bias**

Pruning: Remove the nodes with the least explanatory power

Max depth: Specify number of nodes at outset

Reduce complexity, reduce overfitting

### **Pros and Cons of Decision Trees**

Pros:

Simple to understand and interpret

Can handle categorical and numerical

Little data prep

Performs well with big data

Mirrors human decision-making

### **Pros and Cons of Decision Trees**

#### Cons:

A change in the training data can dramatically affect predictions

Prone to overfitting and complexity

Computationally expensive