Universidad del Valle de Guatemala

Colegio Universitario

Química General

AUXILIAR: ANDREA MENDOZA

AUXILIA: DAVID PALENCIA

Práctica No. 6 INDICADORES ÁCIDO-BASE

José Pablo Cifuentes Sánchez

Carnet: 17509

Sección: 41; Mesa: 6

Fecha de Entrega: 09/03/2017

Sumario.

El objetivo de la práctica consistió en extraer sustancias que sirvan como indicadores naturales de nivel de acidez y observar el cambio que ocurre al contacto entre una solución y un indicador de pH. La técnica empleada constó de extraer controles conocidos como el repollo morado, rosa roja y el repollo. Para ello se machacó la sustancia y se mezcló con etanol y se remojó papel filtro en los diferentes extractos para obtener indicadores de pH. Como resultado se dio que el mejor indicador natural es el repollo debido a que en sus hojas contiene un indicador que pertenece a un tipo de sustancias orgánicas denominadas antocianinas. Esto permite proveer una escala amplia de colores al combinarlos con diferentes soluciones de pH y así es más fácil analizar el grado de acidez de dicha sustancia. Entre las posibles fuentes de error se cita no machacar por completo las hojas de los vegetales o agregar una cantidad incorrecta de etanol. De esta forma, se recomienda usar las medidas de seguridad y trabajar bajo las campanas de extracción al momento de trabajar con las diferentes soluciones.

Datos, cálculos y resultados.

Cuadro 1. Cambios de extracto en medio ácido y base.

Producto Casero	Color Inicial	Con HCl (Ácido)	Con NaOH (Base)
Apio	transparente	no cambió	amarillo leve
Jamaica	rosado pálido	rosado fuerte	verde amarillento
Mora	transparente	rosado fuerte	azul
Manzana	transparente	rosado pálido	transparente
Rábano	rosado pálido	anaranjado	morado fuerte
Repollo	rosado pálido	rosado fuerte	aqua
Rosa Roja	transparente	anaranjado fuerte	marrón
Flor rosada	transparente	rosado claro	verde claro
Uva	transparente	rosado claro	celeste

Cuadro 2. Papel indicador de pH

Solución	Rosa Roja	Repollo	Rábano	Valor de pH
HCI 2M	Rosado fuerte	Rosado fuerte	Anaranjado	Ácido
pH1	Rosado fuerte	Rosado fuerte	Anaranjado	Ácido
рН3	Rosado claro	Rosado claro	Rosado claro	Ácido
Agua	Igual	Igual	Igual	Neutro
pH11	Aqua	Verde azulado	Morado	Base
pH13	Amarillo	Amarillo verdoso	Amarillo	Base
NaOH	Anaranjado	Amarillo	Amarillo	Base

Cuadro 3. Predicción del pH de sustancias caseras con extracto de repollo.

Sustancia Casera	Color obtenido	Valor de pH
Ceniza	Morado	Neutro
Bicarbonato de sodio	Azul	Básico
Jabón	Lila	Básico
Crema	Morado	Básico
Vinagro	Rosado	Ácido
Vinagre	oscuro	Acido
Crema facial	Lila	Básico
Limón	Rosado	Ácido
LIIIIOII	oscuro	
Agua carbonatada	Morado	Básico
Detergente	Verde	Básico
Agua	No cambió	Neutro

Cuadro 4. Predicción del pH de sustancias caseras con extracto de rábano.

Sustancia Casera	Color obtenido	Valor de pH
Ceniza	No cambió	Neutro
Bicarbonato de sodio	Rosado Claro	Básico
Jabón	Rosado Claro	Básico
Crema	Rosado Claro	Básico
Vinagre	Anaranjado	Ácido
Crema facial	Rosado Claro	Básico
Limón	Anaranjado	Ácido
Agua carbonatada	Rosado Claro	Básico
Detergente	Verde	Básico

Cuadro 5. Predicción del pH de sustancias caseras con extracto de rosa roja.

Sustancia Casera	Color obtenido	Valor de pH
Ceniza	Morado	Neutro
Bicarbonato de sodio	No cambió	Básico
Jabón	Rosado	Básico
Crema	Rosado claro	Básico
Vinagre	Rosado claro	Ácido
Crema facial	No cambió	Básico
Limón	Rosado oscuro	Ácido
Agua carbonatada	Rosado claro	Básico
Detergente	Verde	Básico
Agua	No cambió	Neutro

Cuadro 6. Productos Caseros en extracto de Rábano.

Cuadro 7. Papel indicador de pH.

Cuadro 8. Productos Caseros en extracto de Rosa Roja.

Cuadro 9. Productos Caseros en extracto de Repollo.

Discusión

En esta práctica se cumplió con el objetivo de extraer sustancias que sirvan como indicadores naturales de nivel de acidez y observar el cambio que ocurre al contacto entre una solución y un indicador de pH. En la técnica, se extrajo controles conocidos como el repollo morado, rosa roja y el repollo. Para ello se machacó la sustancia y se mezcló con etanol y se remojó papel filtro en los diferentes extractos para obtener papel indicador de pH.

Se extrajo sustancias que sirvieron como indicadores naturales de algunas plantas como: repollo, apio, rosas rojas, mora, manzana, Jamaica, uvas y rábano. Los mejores indicadores naturales son los que se extraen de las flores y hojas que contengan colores vistostosos, esto se debe a que grandes cantidades de cromoplastos que son organelos donde se almacenan los pigmentos (Jiménez, 2003). Los carotenos que dan los colores rojos, anaranjados a frutos y raíces como la zanahoria, son precursores de la vitamina A y no son útiles como indicadores naturales (Ibáñez y García, 2004).

Los resultados obtenidos con los papeles indicadores de repollo y rosa roja fueron muy parecidos, sin embargo, el repollo es el mejor indicador ya que contiene en sus hojas un indicador que pertenece a un tipo de sustancia orgánica denominada antocianinas. Esto permite proveer una escala amplia de colores al combinarlos con diferentes soluciones de pH y así es más fácil analizar el grado de acidez de dicha sustancia (Taiz y Zeiger, 2006). Por otro lado, el papel indicador del rábano fue bueno, ya que el papel cambió de color en presencia de todas las sustancias y se pudo analizar con exactitud el valor de pH.

En la prueba para determinar la capacidad indicadora de los vegetales no todos los extractos cambiaron de color en el medio ácido y básico, esto se puede deber a que no contienen muchos cromoplastos donde se almacenan los pigmentos. Sin embargo, se pudo observar que los colores que predominaron en el medio ácido fueron rosado y anaranjado; y en el medio básico fueron amarillo, verde, azul y morado.

Para la extracción de los colorantes vegetales, luego de romper las células en el mortero los pigmentos que se hallaban encerrados en los cloroplastos se extraen con etanol. Otra forma de extraer el colorante vegetal es con agua, aunque no muy efectivo ya que la clorofila (el color verde de las hojas) no es soluble en agua (Jiménez, 2003).

Entre las posibles fuentes de error se cita no machacar por completo las hojas de los vegetales o agregar una cantidad incorrecta de etanol. Así, se recomienda usar las medidas de seguridad y trabajar bajo las campanas de extracción al momento de trabajar con las diferentes soluciones.

Conclusiones

- Los colores predominantes de las soluciones en medios ácidas fueron rosado y anaranjado.
- El repollo es el mejor indicador natural por su enorme cantidad de cromoplastos.
- Los colores predominantes de las soluciones en medios básicos fueron amarillo, verde, azul y morado.

Apéndice

- 1. Cuáles son los valores de pH en que viran algunos indicadores comerciales, tales como fenolftaleína, rojo de fenol, azul de timol, violeta de metilo.
 - Fenolftaleína: 8.2(incoloro) 10 (magenta) (Harris, 2006).
 - Rojo de fenol: 6.8(amarillo) 8(anaranjado) (Harris, 2006).
 - Azul de timol: 1.2 (rojo) 2.8 (amarillo) (Harris, 2006).
 - Violeta de metilo: 0(amarillo) 1.8 (violeta) (Harris, 2006).
 - Purpura de metacresol: 0.5(rojo) 2.8(amarillo) (Harris, 2006).
 - Rojo Congo: 3(azul) 5.20(rojo) (Harris, 2006).
 - Verde de bromocresol: 3.8(amarillo) 5.4(azul verdoso) (Harris, 2006).

¿Cuáles colores de viraje asociados?

Rojo, azul, amarillo, anaranjado y rosa, estos dependen del nivel de acidez de la solución (Oliver y García, 2006).

2. Para la industria ¿Cuál es la importancia de conocer los distintos valores de pH que puedan mostrar el agua?

Debido a que una gran cantidad de productos lleva por ingrediente el agua, el pH de este debe ser controlado estrictamente ya que es de suma importancia para la seguridad de sus consumidores (Harris, 2006).

Ejemplo: si una empresa descuida el pH con la que hacen sus jugos, estos productos pueden llevar a efectos secundarios para el consumidor, como irritación o desgaste de los dientes (Harris, 2006).

Ejercicio del libro:

Calcular el pH de una disolución 0.5N de hidróxido de sodio (Atkins y Jones, 2005).

$$NaOH \rightarrow Na^{+} + OH^{-}$$

 $pOH = -log[OH^{-}] = -log[0.5] = 0.3$
 $PH = 14 - pOH = 14 - 03 = 13.4$

Literatura Citada

Atkins, W. y Jones, L. (2005). Principios de Química. Buenos Aires, Argentina: Medica Panamericana.

Harris, D. (2006). Análisis químico cuantitativo. New York: Reverté.

Ibáñez, J. y García, E. (2004). Química en microescala. México: Universidad Iberoamericana. A.C.

Jiménez, G. (2003). Biología celular y molecular. México: Pearson Education.

Oliver, A. y García, L. (2006). Técnico especialista en laboratorio. España: MAD.

Taiz, L. y Zeiger, E. (2006). Fisiología vegetal. España: UJI.