Subproblems

Define C(i, j, m) for indices $1 \le i \le m \le j \le n$ such that C(i, j, m) represents the cost of constructing a proper binary tree using the subsequence $\langle a_i, a_{i+1}, \ldots, a_j \rangle$ with a_m as the root of the tree. Obviously, the final result is $\sum_{m=1}^{n} C(0, n, m)$.

Recursive Formula

For base case, if the subsequence has a single element then it is a leaf, and there are no edges so that cost C(i, i, i) = 0. If the subsequence has even number of elements, then it is invalid, because you could not construct a proper binary tree from it, so $C(i, i + 2k, *) = \infty$ for $k \in \mathbb{Z}$.

For subsequence has odd number of elements (and is more than one element), then we need to pick a element a_m to be the root, then we need to total cost is the cost to construct left subtree (plus an edge) and right subtree (plus an edge):

$$C(i,j,m) = L(i,m) + R(m,j)$$

where the cost for left part and right part is:

$$egin{aligned} L(i,m) &= \min_{k \in [1,m-1]} C(i,m-1,k) + |a_m - a_k| \ R(m,j) &= \min_{\ell \in [m+1,j]} C(m+1,j,\ell) + |a_m - a_\ell| \end{aligned}$$

That is, the minimum for constructing the subtree plus the edge cost.

Evaluation Order

We notice that for C(i, j, m), the case depends on case C(i', j', m') where the interval length L = j - i + 1 is bigger than L' = j' - i' + 1. So, we evaluate all intervals $L \in [1, n]$ in increasing order (we only evaluate odd length as even length is already a base case). For m, we evaluate them in $m \in (i, j)$. (We could just evaluate m in any order, but let's evaluate it in increasing order).

Complexity

There are $O(n^2)$ intervals for $(i \leq i \leq j \leq m)$, for each interval, we evaluate O(n) choices of m. For each choice, we iterate over k and ℓ so it will take O(n) time. So, in total it will take $O(n^4)$ time. For space complexity, since we are storing for each interval with each choice of m, it will take $O(n^3)$ space.