エレクトロニクス 2022

火曜3時限,0321講義室 福澤 理行

本日の予定

1. 授業目的・概要、学習目標、授業計画 脱線1: 情報工学課程の科目体系

2. エレクトロニクスって何ですか? 脱線2: IoTとエレクトロニクス

3. 回路って何ですか?

4. 回路の見方:キルヒホッフの法則

授業計画項目(シラバス抜粋+追記)

1	2022/09/27	情報工学とエレクトロニクス
2	2022/10/04	受動素子
3	2022/10/18	能動素子
4	2022/10/25	直流回路
5	2022/11/01	過渡解析の基礎
6	2022/11/08	実用回路Case Study (1)
7	2022/11/15	交流回路(1)
8	2022/11/22	交流回路(2)
9	2022/11/29	交流回路(3)
10	2022/12/06	交流回路(4)
11	2022/12/13	実用回路Case Study (2)
12	2022/12/20	回路のグラフとキルヒホッフの法則(1)
13	2023/01/10	回路のグラフとキルヒホッフの法則(2)
14	2023/01/17	回路方程式とその解き方
15	2023/01/24	実用回路Case Study (3)
試験	2023/02/07	

その他

履修条件	高校数学の三角関数と複素数について復習しておくこと。
受講に当たっての留意事項	各授業に対し、講義資料に関する予習を1時間、講義内容に関する復習を2時間、合わせて3時間の予習・復習に加え、レポート課題と定期試験に備えるための学習時間を要する。
教科書/参考書	講義資料はMoodleにアップロードする。予めコース登録し、講 義資料をダウンロードしておくこと。コースの登録キーはコース 概要に記載されている。
成績評価の方法 及び基準	2021年度の成績は、学期末に科す対面試験の成績(50%)、レポート課題の評点(30%)、各授業回のフィードバックの提出状況(20%)によって評価し、その合計点が60点以上を合格とする。
備考	2022年度はハイフレックス授業(対面授業とそのオンライン同時配信)で実施する。ただし、オンライン配信での授業参加は、持病等の重傷化リスク、COVID-19感染・濃厚接触・発熱・風邪症状など、原則として対面授業に出席できないやむを得ない場合に限る。

授業の進め方

受講形態 (ハイフレックス)		対面	オンライン (同時配信のみ,録画非提供)	
前日まで	講義資料	 MoodleにPDFをアップロードします。 ダウンロード・印刷 or 私物端末に保存して持参して下さい。 持参忘れやプリンターを持たない人が著しく不利にならないよう 講義室にはプリントを用意しますが、各自での準備を推奨。 		
講義当日	場所	• 0321講義室(3号館2F)	• Webex(URLはMoodle参照) 概ね10分前から開室予定	
	講義中の 質問	随時OK。挙手してくれれば指名します。	チャットで質問して下さい。SAが中継してくれます。	
講義後	フィードバック	Moodleから毎回回答。期限は次回授業日の前日まで。 回答の有無は成績評価対象ですが、回答内容は評価対象外 なので気にせずありのままを書いて下さい【重要】。		
	演習問題	手書きで解答し、次回の授業に持参。提出は不要。授業冒頭で前回の演習問題を板書解答して詳説するので、赤ペンで書き込みを加えた上で保存して下さい。 実は、これがコスパ最強の試験対策です【超重要】。		
注意事項		ソフトウェア演習 の授業中はエレクトロニクスの演習問題を解かないこと。		

エレクトロニクスって何ですか?

- Electronicsとは、電子の性質を利用する技術の総称。 狭義には、能動素子(トランジスタとか)の回路を対象とする。
- 能動素子と対になるのが受動素子(抵抗とか)で、電気工学で扱う。
- 本授業では、電気工学の基礎と電子工学の冒頭くらいを扱う。さらに理解を深めるには、ディジタル電子回路(2後)の受講を推奨。

	電気回路(electric circuit)	電子回路(electronic circuit)
回路素子	受動素子 (passive element) 例: 抵抗、コンデンサ、コイル、トランス、etc.	能動素子 (active element) ダイオード、トランジスタ、 MOSトランジスタ、etc.
用途	電気エネルギーの発生、 伝送、消費、制御	電気信号を用いた情報伝達、 通信、情報処理
学問分野	電気工学 (electrical engineering)	電子工学 (electronics)

情報工学とエレクトロニクスの関係

- エレクトロニクスでは、2種類の回路を扱う。
 - アナログ回路連続した電圧・電流波形を扱ったり、電力を供給する回路
 - ディジタル回路 電圧の高低(H/L)を1/0とみなして、2進数を扱う回路(ゲート回路)
- 情報工学では、ゲート回路が2進数を扱えることを前提として、 各種演算のためのゲート回路の組み合わせ方(論理設計)、 CPUの構造、OSの構造を経て、ソフトウェアまでを専門に扱う。
- コンピュータのハードウェアは電子回路の塊であり、IoTではさらに各応用に固有の回路が必要となる。情報の学生であっても、回路の知識は身につけておけば必ず役立つ。
 - CPUやメモリやUSBインターフェース回路はディジタル回路
 - HDDのモータを制御する回路はアナログ回路

エレクトロニクスに関連する学問分野

回路って何ですか?

- 回路とは、素子が導体で環状につなげられたもののこと。
- 大抵の回路は「電源(source)」と「負荷(load)」が並列につながる。
- 素子の端子が接続された箇所を「節点(node)」、回路に含まれる環を「閉路(loop)」と呼ぶ。

主な1端子対(=端子が2個ある素子)の回路図記号(描いてみよう)

電圧源 (直流)	電圧源 (交流)	電流源	抵抗	コンデンサ	コイル

電圧、電流、電力

- 電圧(voltage)
 - 回路の2点間の電位(電場の位置エネルギー)差のことで、電気 を流そうとする圧力に相当。単位は[V](ボルト)。
- 電流(current)
 - ある面を単位時間に通過する電荷量、つまりQ/t。単位は [A](アンペア)。
- 電力(power)
 - 単位時間に電流がする仕事(=仕事率)。単位は[W](ワット)。
 - 電圧Vの電源から電流Iが得られるとき、電力はV×I。

• 定格とは?

- 設計上安定して使用できる電圧や電流の上限値。
- 一瞬たりとも超えてはならない値は、絶対最大定格と呼ばれる

典型的な直流回路(超超重要!)

・ 大抵の直流回路は、「電源」と「負荷」との直列回路だと見なせる。

- 上記の直流回路の場合、負荷に電流が流れると、電源の出力電 EV_o は、内部抵抗によって、Eから $r \times I_o$ だけ下がる。
- 負荷Rが小さくなると、電源の出力電流/。が増加するが、このとき 出力電圧V。は下がることに注意。 つまり、大抵の電池は電流を取り出すと電圧が下がる。

回路の見方: キルヒホッフの法則

電流則

- ある節点に流入流出する電流の和は0
- 流入する電流は正,流出する電流は負とみ なす
- 右図では、

$$I_1 + I_2 + I_3 = 0$$

電圧則

- ある閉路に含まれる起電力の和と電圧降下 の和は等しい
- 起電力は+極から電流が流れるように働くので、閉路の方向と一致したら正、逆方向なら負
- 右図では、 E=rI+RI

回路解析とは?

回路上のある節点電圧や閉路電流を、オームの法則 やキルヒホッフの法則に基づいて調べること

- ・ 回路解析の3類型
 - 定常解析、直流解析(DC analysis)
 - ・ 定常=時間によらず電圧・電流が一定の場合
 - 過渡解析(Transient analysis)
 - 過渡=電圧・電流が時間の関数
 - 交流解析(AC analysis)
 - 正弦波交流に限定

まとめ

- エレクトロニクス[]とは、電子の性質を利用する技術の総称。対象となる回路は電子回路[]。
- 回路とは、素子が導体で〔 〕につなげられたもののこと。 支配原理は〔 〕の法則と〔 〕の法則。
- 大抵の回路は1端子対の電源〔 〕と負荷〔 〕が並列につながったものと見なせる。
- 多くの直流回路の場合、負荷は〔 〕、電源は〔 〕と〔 〕を含む回路と見做せる。
- 回路上のある部分の電圧や電流をオームの法則やキルヒホッフの法則に基づいて調べることを〔 〕という。

[埋め方] キーワードが既に〔〕の左側に記述されている場合は対応する英語を埋める。そうでなければキーワードを日本語で埋める。

第1回演習問題

1. 下図に、キルヒホッフの電圧則・電流則いずれかを適用した式を立てて、電流*i*をそれぞれ求めよ。

- 2. 1.5Vの電圧源と10Ωの内部抵抗からなる電源を考える。 この電源に、とあるランプを接続したところ、ランプに流れる電流 が10mAになった。電源の出力電圧を求めよ。
- 3. USBホストポートの定格電圧は5V, 定格電流は500mAである。 ポートからターゲットデバイスに供給できる最大電力を求めよ。 問題を簡単にするため、定格電流を出力した場合でも、出力電 圧は5Vのままだとする。

本日の宿題

• Moodleでコース登録(まだの人)

URL: https://moodle.cis.kit.ac.jp/

コース名: エレクトロニクス2022

登録キー: electronics2022

フィードバックに回答(下記())

• 演習問題を手書き解答(提出は不要)

09/27 情報工学とエレクトロニクス

キーワード: ハードウェア、ソフトウェア、電子機器、電気工学、電子工学

資料・文献へのリンク(学外):

情報通信白書 令和4年版

ダウンロードしてぜひ読んで下さい。