

Yushu Li¹, Xun Xu^{2†}, Yongyi Su¹, Kui Jia^{1†}

¹South China University of Technology, ²I2R, A*STAR

Project page: https://yushu-li.github.io/owttt-site/

Motivation

Science, Technology

The existing TTT method only takes into account covariate shift (weak OOD) and does not consider semantic changes (strong OOD). When facing an open-world environment, existing methods primarily encounter two issues:

- **♦** Fail to distinguish and reject strong OOD
- Severe performance drop on weak OOD
- ☐ Performance w/o & w/ strong OOD

Contribution

- Overlooked by existing studies into test-time training, we argue that open-world test-time training (OWTTT) could be spoiled by strong OOD testing data.
- ◆ We introduce a baseline method by prototype distribution alignment clustering regularization. A strong OOD detector and prototype expansion are further developed to improve the robustness of the baseline under OWTTT protocol.
- We established a benchmark for evaluating OWTTT protocol covering multiple types of domain shift, including common corruptions and style transfer. Our approach achieves state-of-theart performance on the proposed benchmark.

Method

☐ An overview of the proposed method

Prototype Clustering

$$\mathcal{L}_{PC} = -\sum_{k \in \mathcal{C}_s} \mathbb{1}(\hat{y} = k) \log \frac{\exp(\frac{\langle p_k, z_i \rangle}{\delta})}{\sum_{l} \exp(\frac{\langle p_l, z_i \rangle}{\delta})}$$

Hyper-parameter-free strong OOD detector & prototype expansion

$$os_i = 1 - \max_{p_k \in \mathcal{P}_s} \langle f(x_i), p_k \rangle$$

optimal threshold

Distribution Alignment

$$\mathcal{L}_{KLD} = D_{KL}(\mathcal{N}(\mu_s, \Sigma_s)||\mathcal{N}(\mu_t, \Sigma_t))$$

◆ Total Loss

$$\mathcal{L}_{total} = \mathcal{L}_{PC} + \lambda \mathcal{L}_{KLD}$$

Empirical Results

☐ Evaluation Metric

- lacktriangle Acc_S : Accuracy of the weak OOD samples.
- $igoplus Acc_N$: Accuracy of the strong OOD samples.
- lacktriangle Acc_H : Harmonic mean between Acc_S and Acc_N .

$$Acc_H = 2 \cdot \frac{Acc_S \cdot Acc_N}{Acc_S + Acc_N}$$

☐ ImageNet-C performance

Method		noise			MNIST		SVHN			
	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	
TEST	18.51	100.00	31.24	18.66	98.27	31.36	18.94	<u>87.75</u>	31.15	
BN	36.34	99.97	53.31	<u>30.77</u>	74.53	43.55	33.26	84.54	<u>47.74</u>	
TENT	22.54	10.47	14.29	27.53	10.01	14.68	<u>41.16</u>	45.51	43.22	
SHOT	46.79	100.00	63.75	27.47	55.25	36.70	34.00	75.94	46.97	
TTAC	<u>42.60</u>	94.52	<u>58.73</u>	30.43	72.11	42.80	31.59	74.07	44.29	
OURS	41.40	100.00	58.56	38.86	<u>93.35</u>	54.87	38.60	98.06	55.40	

□ Ablation Study

O.D.	P.C.	P.E.	D.A.	Noise				SVHN	-	CIFAR100-C		
				$\overline{Acc_S}$	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H
-	-	-	_	70.6	0.0	0.0	70.6	0.0	0.0	70.6	0.0	0.0
\checkmark	-	-	-	68.6	100.0	81.4	60.9	86.4	71.5	52.7	74.2	61.7
\checkmark	\mathcal{P}_s	-	-	65.2	91.5	76.1	60.9	90.0	72.7	56.3	69.0	62.0
\checkmark	\mathcal{P}_s + \mathcal{P}_n	\checkmark	-	68.7	99.8	81.4	65.3	95.0	77.4	52.6	78.9	63.2
\checkmark	-	-	\checkmark	72.9	88.8	80.1	78.1	88.0	82.8	70.5	78.7	74.4
\checkmark	\mathcal{P}_s + \mathcal{P}_n	\checkmark	\checkmark	85.5	98.6	91.6	85.0	87.9	86.4	74.1	84.6	79.0

☐ OWTTT results on CIFAR10-C. All numbers are in %.

Method	Noise		MNIST			SVHN			Tiny-ImageNet			CIFAR100-C			
	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H	Acc_S	Acc_N	Acc_H
TEST	68.59	99.97	81.36	60.48	88.81	71.96	60.94	86.44	71.48	57.41	79.63	66.72	52.74	74.24	61.67
BN	76.63	95.69	85.11	76.15	95.75	84.83	79.18	94.71	86.25	67.66	82.67	74.42	68.44	81.38	74.35
TTT++	41.09	57.31	47.86	59.52	77.52	67.34	68.77	85.80	76.34	66.70	79.28	72.44	65.69	77.47	71.10
TENT	32.24	33.30	32.77	55.64	68.27	61.31	66.70	82.50	73.77	66.54	79.32	72.37	64.80	76.40	70.12
SHOT	63.54	71.37	67.23	56.92	53.26	55.03	70.01	72.58	71.27	67.78	82.25	74.32	67.73	72.87	70.21
TTAC	64.46	77.42	70.35	77.60	84.53	80.92	77.30	81.10	79.16	71.64	77.14	$\overline{74.29}$	71.94	75.44	73.65

(c) 67%

☐ Cumulative performance during TTT progresses

(a) 0%

(b) 33%

Web Page

(d) 100%

PDF

Try it!