

LDS285

Data Sheet

720 Source (240 x RGB) + 320 Gate 16M-Color One-Chip TFT Driver

CONTENTS

1	D	ESCRI	PTION	2
2	F	EATUR	RES	2
3	ВІ	LOCK	DIAGRAM	4
4	PI	N DES	SCRIPTION	5
5			ONAL DESCRIPTION	10
_				
	5.1		JINTERFACE	
		5.1.1	Interface Type Selection	
		5.1.2	General Protocol	
		5.1.3 5.1.4	8080-Series Parallel Interface (P68 = "L")	
		5.1.4	Serial Interface	
		5.1.6	Interface Pause	
		5.1.7	Data Transfer Recovery	
		5.1.8	Display Module Data Transfer Modes	
	5.2		PLAY DATA RAM (DDRAM)	
		5.2.1	Display Data Formats	
		5.2.2	RGB Interface	
		5.2.3	Address Counter	49
		5.2.4	Memory Map	51
		5.2.5	Normal Display On or Partial Mode On	52
		5.2.6	Tearing Effect Output Line	53
	5.3	INST	RUCTION DECODER & REGISTER	57
	5.4	SYS	TEM CLOCK GENERATOR	57
	5.5	OSC	ILLATOR	57
	5.6	SOU	RCE DRIVER	57
	5.7	GAT	E DRIVER	58
	5.8		INTERFACE TIMING DIAGRAM	
		5.8.1	Relationship between Input Signal and Output Signal (RGB I/F Mode 3)	
		5.8.2	Input / Output Timing Chart (G0->G320, S1->S720)	
	5.9	LCD	POWER GENERATION CIRCUIT	
		5.9.1	LCD Power Generation Scheme	61
		5.9.2	Various Boosting Steps	
		5.9.3	Gray Voltage Generator	63
		5.9.4	Temperature Compensation	70
	5.10	POV	VER ON/OFF SEQUENCE	71

	5.10.	1 Case 1 – RESB line is held High or Unstable by Host at Power On	71
	5.10.	2 Case 2 – RESB line is held Low by host at Power On	72
5	.11 UN	CONTROLLED POWER OFF	72
5	.12 PO	WER FLOW CHART FOR DIFFERENT POWER MODES	73
5	.13 INF	PUT / OUTPUT PIN STATE	74
	5.13.	1 Output or Bi-directional (I/O) Pins	74
	5.13.	2 Input Pins	74
5	.14 SLI	EEP OUT –COMMAND AND SELF-DIAGNOSTIC FUNCTIONS OF THE DISPLAY MODULE	75
	5.14.	1 Register loading Detection	75
	5.14.	2 Functionality Detection	76
	5.14.	3 Chip Attachment Detection (optional)	77
	5.14.	4 Display Glass Break Detection (optional)	78
6	ADAPT	IVE BCAKLIGHT CONTROL AND LED DRIVER CONTROL	79
6	.1 LAI	BC (LIGHT ADAPTIVE BACKLIGHT CONTROL)	79
	6.1.1	System Block Diagam with ALS (Ambient Light Sensor) and LDS285	79
	6.1.2	LABC Function Flow	80
6	.2 CA	BC (CONTENT ADAPTIVE BACKLIGHT CONTROL)	82
	6.2.1	CABC Function Flow	83
6	.3 CA	BC AND LABC	83
6	.4 LEI	D DRIVER CONTROL	84
	6.4.1	LED Driver control with PWM pulse	84
	6.4.2	LED Driver control with 1-wire digital interface(only for LDS8861)	
7	INSTRI	JCTION DESCRIPTION	88
		TRUCTION CODE	
'	7.1.1	Instruction Code Table	
	7.1.2	NO (00h)	
	7.1.3	SWRESET: Software Reset (01h)	
	7.1.4	RDDID: Read Display ID (04h)	
	7.1.5	RDDST: Read Display Status (09h)	95
	7.1.6	RDDPM: Read Display Power Mode (0Ah)	97
	7.1.7	RDDMADCTR: Read Display MADCTR (0Bh)	98
	7.1.8	RDDCOLMOD: Read Display Pixel Format (0Ch)	99
	7.1.9	RDDIM: Read Display Image Mode (0Dh)	100
	7.1.1		
	7.1.1		
		2 SLPIN: Sleep In (10h)	
		3 SLPOUT: Sleep Out (11h)	
		4 PTLON: Partial Display Mode On (12h)	
	7.1.1	5 NORON: Normal Display Mode On (13h)	108

7.1.16	INVOFF: Display Inversion Off (20h)	109
7.1.17	INVON: Display Inversion On (21h)	110
7.1.18	GAMSET: Gamma Set (26h)	111
7.1.19	DISPOFF: Display Off (28h)	112
7.1.20	DISPON: Display On (29h)	113
7.1.21	CASET: Column Address Set (2Ah)	114
7.1.22	RASET: Row Address Set (2Bh)	116
7.1.23	RAMWR: Memory Write (2Ch)	118
7.1.24	RAMRD: Memory Read (2Eh)	119
7.1.25	PTLAR: Partial Area (30h)	120
7.1.26	TEOFF: Tearing Effect Line OFF (34h)	122
7.1.27	TEON: Tearing Effect Line ON (35h)	123
7.1.28	MADCTR: Memory Data Access Control (36h)	124
7.1.29	IDMOFF: Idle Mode Off (38h)	126
7.1.30	IDMON: Idle Mode On (39h)	127
7.1.31	COLMOD: Interface Pixel Format (3Ah)	129
7.1.32	WRDISBV : Write Display Brightness (51h)	130
7.1.33	RDDISBV : Read Display Brightness (52h)	131
7.1.34	WRCTRLD: Write CTRL Display (53h)	132
7.1.35	RDCTRLD : Read CTRL Value Display (54h)	133
7.1.36	WRCABC: Write Content Adaptive Brightness (55h)	134
7.1.37	RDCABC : Read Content Adaptive Brightness (56h)	135
7.1.38	RDID1: Read ID1 Value (DAh)	136
7.1.39	RDID2: Read ID2 Value (DBh)	137
7.1.40	RDID3: Read ID3 Value (DCh)	138
7.1.41	IFMODE: Set Display Interface Mode (B0h)	139
7.1.42	DISCLK: Display Clock Set (B1h)	141
7.1.43	INVCTR: Inversion Control (B2h)	143
7.1.44	REGCTR: Regulator Control (C0h)	145
7.1.45	VCOMCTR: VCOML / VCOMH Voltage Control (C1h)	146
7.1.46	GAMCTR1: Set Gamma Correction Characteristics (C8h)	147
7.1.47	GAMCTR2: Set Gamma Correction Characteristics (C9h)	148
7.1.48	GAMCTR3: Set Gamma Correction Characteristics (CAh)	149
7.1.49	GAMCTR4: Set Gamma Correction Characteristics (CBh)	150
7.1.50	EPPGMDB: Write ID2, VCOM Offset Value	151
7.1.51	EPERASE: EPROM Erase (D1h)	154
7.1.52	EPPROG: EPROM Program (D2h)	155
	EPRDVRF: EPROM Read Verify (D3h)	
7.1.54	RDVCOF: VCOM offset registers bits Read Back (D9h)	157
7.1.55	LEDCTRL: Write the configuration for LED driver	158
RES	ET TABLE (DEFAULT VALUE) (TBD)	160

7.2

7	'.3	INST	RUCTION SETUP FLOW	161
		7.3.1	Initializing with the Built-in Power Supply Circuits (TBD)	161
		7.3.2	Power OFF Sequence (TBD)	162
		7.3.3	EEPROM Access Sequence for Initialization (Data Clear)	163
		7.3.4	EEPROM Access Sequence for program (Data write) (TBD)	164
8	SF	PECIFI	CATIONS	165
8	3.1	ABS	OLUTE MAXIMUM RATINGS	165
8	3.2	ESD	PROTECTION LEVEL	165
8	3.3	LAT	CH-UP PROTECTION LEVEL	165
8	3.4	LIGH	IT SENSITIVITY	165
8	3.5	MAX	IMUM SERIES RESISTANCE	166
8	3.6	DC (CHARACTERISTICS	167
		8.6.1	Basic Characteristics	167
		8.6.2	Current Consumption	169
8	3.7	AC C	CHARACTERISTICS(TBD)	170
		8.7.1	Parallel Interface Characteristics (8080-series MPU)	170
		8.7.2	Parallel Interface Characteristics (6800-series MPU)	172
		8.7.3	Serial Interface Characteristics (3-Pin Serial)	174
		8.7.4	Serial Interface Characteristics (4-Pin Serial)	175
		8.7.5	RGB Interface Characteristics	177
		8.7.6	Reset Input Timing	178
		8.7.7	Measurement Conditions	179
9	RE	EFERE	NCE APPLICATIONS	183
9).1	MICI	ROPROCESSOR INTERFACE	183
		9.1.1	Interfacing with 3-Pin Serial Mode (P68 = "L", BS2="L", BS1 = "L", BS0 = "L")	183
		9.1.2	Interfacing with 4-Pin Serial Mode (P68 = "H", BS2="L", BS1 = "L", BS0 = "L")	183
		9.1.3	Interfacing with 8080-series MPU 8-Bit Bus (P68 = "L", BS2="L", BS1 = "L", BS0 = "H")	184
		9.1.4	Interfacing with 6800-series MPU 8-Bit Bus (P68 = "H", BS2="L", BS1 = "L", BS0 = "H")	184
		9.1.5	Interfacing with 8080-series MPU 9-Bit Bus (P68 = "L", BS2="H", BS1 = "L", BS0 = "L")	185
		9.1.6	Interfacing with 6800-series MPU 9-Bit Bus (P68 = "H", BS2="H", BS1 = "L", BS0 = "L")	185
		9.1.7	Interfacing with 8080-series MPU 16-Bit Bus (P68 = "L", BS2="L", BS1 = "H", BS0 = "H")	186
		9.1.8	Interfacing with 6800-series MPU 16-Bit Bus (P68 = "H", BS2="L", BS1 = "H", BS0 = "H")	186
		9.1.9	Interfacing with 8080-series MPU 18-Bit Bus (P68 = "L", BS2="H", BS1 = "H", BS0 = "L")	
		9.1.10	Interfacing with 6800-series MPU 18-Bit Bus (P68 = "H", BS2="H", BS1 = "H", BS0 = "L")	187
9).2	CON	NECTIONS WITH LCD PANEL	188
		9.2.1	One Layer Connection for Gate output	188
		9.2.2	Two Layer Connection for Gate output	189
9	9.3	EXA	MPLE CONNECTION WITH PANEL (CASE11)	190

9.4	CONNECTION EXAMPLE WITH EXTERNAL COMPONENTS	191
	9.4.1 Application Circuit Example	192
9.5	EXTERNAL COMPONENTS CONNECTION	193
10 CH	HIP INFORMATION	194
10.1	1 CHIP OVERVIEW	194
10.2	2 BUMP INFORMATION	196
	10.2.1 Source / Gate / VCOM / Gate control / Output side dummy Pad Format	196
	10.2.2 Input / Input side dummy Pad Format	197
10.3	3 PAD COORDINATES	198

Document No: LTT285A-000

Prepared by: Sam_oh

REVISION HISTORY

Date	Contents	Version
Oct. 17, 2006	- Preliminary Version 0.00.	Ver. 0.00 (Preliminary)
Feb. 1, 2007	Totally revised	Ver. 1.00 (Preliminary)
Mar. 1, 2007	Command , EEPROM and DBC description	Ver. 2.00 (Preliminary)

1 DESCRIPTION

LDS285 is a single chip low power CMOS LCD controller/driver for color TFT-LCD displays of 320 gates and 240xRGB columns. It has a 1.84M-bit (240 x 24bit x 320) display RAM and a full set of control functions. LDS285 offers 10 kinds microprocessor interfaces: 8080-system (8-bit, 9-bit, 16-bit, 18-bit), 6800-system (8-bit, 9-bit, 16-bit, 18-bit) and serial (3-pin or 4-pin). It also supplies 24-bit or 8-bit RGB interface for driving Video signal directly from controller.

2 FEATURES

- □ Single chip TFT-LCD controller/driver
- Outputs:
 - 720 source outputs (240 x RGB)
 - 320 gate outputs
 - Common electrode output
- □ Display mode (Color modes):
 - Full colors (Idle mode off): 16M-colors,262K-colors
 - Reduced color (Idle mode on): 8-colors (3-bit binary mode)
- ☐ Interface mode (Color modes on the display host interface):
 - 24 bit/pixel: (RGB) = (888) using the 1.84M-bit frame memory directly
 - 18 bit/pixel: (RGB) = (666) using the 1.84M-bit frame memory with 256k-colors
- ☐ Display Data RAM (DDRAM): 240 x 320 x 24-bit = 1.84M bit
- □ MPU Interfaces:
 - 3-pin or 4-pin serial interface
 - 8-bit, 9-bit, 16-bit, 18-bit interface with 8080-series MPU
 - 8-bit, 9-bit, 16-bit, 18-bit interface with 6800-series MPU
 - 24-bit or 8-bit RGB interface with graphic controller
- Display features
 - Partial display mode
 - Software programmable color depth mode
 - N-line inversion for low cross talk
- □ On chip:
 - DC/DC converter
 - Adjusted VCOM generation by MTP
 - Oscillator for display clock generation.
 - One set of 4 gamma curves with micro-adjustment points
 - Temperature compensation for display quality
- Driving algorithm:
 - Line inversion, frame inversion

Ш	I/O supply voltage range.
	1.65 to 3.3V
	Optional logic supply voltage range
	VDD1 to VSS1 (when PSEL=Low): 1.65 to 1.95V
	VDD1 to VSS1 (when PSEL=High): 1.95 to VDD2
٥	Analog supply voltage range VDD2 to VSS2: 2.3 to 3.3V
	Output voltage levels:
-	Source output voltage range VS to VSS2: 3.0 to 6.0 V
	Common electrode output voltage range Vcom amplitude (max) = 5.5V
	VcomH output voltage range VcomH to VSS2 2.0 to 5.0V
	· VcomL output voltage range VcomL to VSS2 -2.0 to 1.0V · Positive Gate output voltage range: +12.0 to +16.0 V when VR=4
	Negative Gate output voltage range: -8.0 to -12.0 V when VR=4
	Low power consumption, suitable for battery operated systems
	CMOS compatible inputs
	Optimized layout for COG assembly
	Temperature range: -30 ~ 70°C (to +85°C no damage)
	Support DBC(Dynamic Backlight Control) function and ALS(Ambient light sensing)Function
	Support normal black / normal white LCD
	Support wide view angle display

3 BLOCK DIAGRAM

4 PIN DESCRIPTION

Table 4.1.1 Pin Description

Name	Туре	Description
Driver output pins	S	
S1 to S720	0	Source driver output pins.
G1 to G320	0	Gate driver output pins.
Power supply pin	ıs	
PSEL	ı	I/O power voltage level selection pin. When PSEL="VSS2": I/O signal voltage should be less than 1.95V and in this case, VDD1_IO and VDD1 should be connected together and external power for I/O system should be supplied to those pins (VDD1_IO and VDD1) When PSEL="VDD2": I/O signal voltage should be larger than 1.95V and in this case, VDD1_IO and VDD1 should not be connected together and external power for I/O system should be supplied to VDD1_IO and VDD1 should have stabilization capacitor (about 2.2uF) to VSS.
VDD1_IO	Р	Power supply for I/O circuit system. (Refer PSEL pin description)
VDD1, VDD1_R	Р	Power supply for logic system. (Refer PSEL pin description)
VDD2, VDD2_DC	Р	Power supply for analog system and boosting input voltage. 2.3V~3.3V supported. All VDD2 and VDD2_DC pins must be externally connected.
VSS1, VSS1_R, VSS2 VSS2_DC	Р	System ground for logic and analog circuits. All VSS1,VSS1_R and VSS2,VSS2_DC pins MUST be externally connected to system ground.
D_VDD1O	РО	Dummy VDD1_IO power output pin. It can be used to fix some input pins to "H" level and must be left open if not used.
D_VSS1	РО	Dummy VSS1 power output pin. It can be used to fix some input pins to "L" level and must be left open if not used.
ME_CMP	Р	MACRO EEPROM write - erase power. When you write on internal EEPROM you must provide power through this pin and it must be left open when you do not write on EEPROM.

·	PIN Description (continued)				
Name	Type	Description			
LCD supply v	oltage g	peneration (DC-DC converter and Regulator)			
C1P to C6P, C1M to C6M	I/O	Capacitor connection pins for booster circuits.			
AVDD	0	Output of booster circuit (2*VDD2 or 3*VREG_DC). Connect capacitor to VSS (GND)			
VDC1	I	1st booster reference voltage Using VS<4.2V, VDC1 and VDD2_DC should be connected together Using VS>4.2V, VDC1 and VREG_DC should be connected together			
VREG_DC	0	Output of the VREG_DC regulator Connect capacitor between VREG_DC and system ground (GND). Using VS>4.2V, VDC1 and VREG_DC should be connected together			
VR	0	Output of the VR regulator. Connect capacitor between VR and system ground (GND).			
VS	0	Output of the VS regulator. All VS pads in left side and right side must be connected together by external metal layer for lower resistance. Connect stabilizing capacitor between VS and system ground (GND).			
VGH	0	Positive reference voltage for gate driver circuits (3*VR or 4*VR). Please refer to the 5.9.2 Various Boosting Steps for details			
VGL	0	Negative reference voltage for gate driver circuits (-2*VR or -3*VR). Please refer to the 5.9.2 Various Boosting Steps for details			
VCL	0	Negative voltage output of booster circuits for VCOM (-1*VDD2)			
VCOMH	0	Positive voltage output of VCOM.			
VCOML	0	Negative voltage output of VCOM.			
VCOM	0	Common output signal. The swing voltage level is VCOML to VCOMH.			

Name	Туре	Description	
Host interface pi	Host interface pins		
P68,BS2,BS1,	I	Interface mode setting (Please refer to the section 5.1).	
BS0		In the serial interface mode, RGB interface mode can be used by "ENABLE" pin.	
RESB	I	This signal will reset the device and must be applied to properly initialize the chip. Signal is active low.	
		Chip select input pin ("Low" enable). This pin can be permanently fixed "Low" in parallel interface mode only.	
CSB (!SCE)	I	If CSB is connected to ground in Parallel interface mode, there will be no abnormal visible effect to the display module. Also there will be no restriction on using the Parallel Read/Write protocols, Power On/Off Sequences or other functions. Furthermore there will be no influence to the Power Consumption of the display module.	
D/IO(001)		Display data / Command selection pin in parallel interface.	
D/!C(SCL)		In serial I/F, this is used SCL.	
		If not used, please connect to ground or VDD1_IO this pin.	
\\\DD \(D\\\\)		Write enable in 8080-series parallel interface.	
WRB (RW)	- 1	Read write selection in 6800-series parallel interface.	
(D/!C)		In serial I/F, this is used D/IC for 4-line serial.	
	-	If not used, please connect to ground or VDD1_IO this pin. Read enable in 8080-series parallel interface.	
RDB (E)	ı	Read/write enable in 6800-series parallel interface.	
NDB (L)		If not used, please connect to ground or VDD1_IO this pin.	
	0	Tearing effect output.	
TE		If not used, please open this pin.	
		18-Bit bi-directional display data bus for parallel interface with MPU.	
		16-Bit bi-directional display data bus for parallel interface with MPU.	
		9-Bit bi-directional display data bus for 9-bit parallel interface.	
		8-Bit bi-directional display data bus for 8-bit parallel interface.	
		8-Bit command bus for 18-bit, 16-bit, 9-bit and 8-bit parallel interface.	
D23to D8.		In 8-bit parallel, D7 to D0 are used and the others (D23 to D8) should be connected to VSS1.	
D7 to D0	I/O	In 9-bit parallel, D8 to D0 are used and the others (D23 to D9) should be connected to VSS1.	
		In 16-bit parallel, D23 to D16 are not used and should be connected to VSS1.	
		In 18-bit parallel, D23 to D18 are not used and should be connected to VSS1.	
		In serial interface, D23 to D1 are not used and should be let open or connected to VSS1.	
		In only RGB interface, D23 to D18 are used.	

Name	Type	Description
Mode Select		
SRGB	- 1	Module RGB order select pin. (Refer section 8.2)
SINV	- 1	Source output data polarity select pin. (SINV=H: Data reverse) (Refer section 8.2)
SMX	- 1	Module Source output direction select pin. (Refer section 8.2)
SMY	- 1	Module Gate output direction select pin. (Refer section 8.2)
		Enable pin for extended command set and test command set.
EXTC	I	To use extended command set and test command set (such as EEPROM WRITE), please connect this pin to VDD1_IO. During normal operation, please open this pin. (Internal Rpull-down=15K Ω)
TGS	ı	Enable pin for extended command set. To use extended command and normal command sets only, please connect this to VSS1 and make EXTC connected to VSS1 or open. (The test commands can not be used and are treated as NOPs).
		To use normal command set only, please connect this to VDD1 and open EXTC.
LED_Control		
LED_CNT	0	Back-light control output.
LLD_0/11		If not used, please open this pin

or input for test purpose.
sed, please connect this pin to VSS1
sync input for RGB interface.
as a start pulse input for the gate driver circuits.
sed, please connect this pin to VSS1.
tal sync input for RGB interface.
as a start pulse input to receive the valid data for the source driver circuits.
sed, please connect this pin to VSS1.
ata clock input for RGB interface.
ne RGB interface is used, the dot clock is input. The RGB data of VD17 to
s are read at the rising edge or falling edge of this signal.
sed, please connect this pin to VSS1.
terface enable pin.
is used for the RGB data enable signal when RGB interface is used.
sed, please connect this pin to VSS1.
RGB interface data bus.
23~D1 are shared between RGB interface and parallel interface, only VD0 is
sed, please connect these pins to VSS1.
terface vertical sync output for RGB interface.
sed, please open this pin.
display glass break detection. the section 5.14.4 for details.
sed, please open these pins.
chip attachment detection.
the section 5.14.3 for details.
sed, please open these pins.
out pin. Free Running Mode test.
n use this pin when you do reliability test for your panel.
sed, please open this pin (Internal Rpull-down=15K Ω).
n, not accessible to user must be left open.
n, not accessible to user must be left open.
n, not accessible to user must be left open.
n, not accessible to user must be left open.
pins.
oins can be used for ITO routing.

NOTE: DUMMY - These pins should be open (float).

5 FUNCTIONAL DESCRIPTION

5.1 MPU INTERFACE

LDS285 can interface with MPU at high speed. However, if the interface cycle time is faster than the limit, MPU needs to have dummy wait(s) to meet the cycle time limit.

5.1.1 Interface Type Selection

The selection of a given interfaces are done by setting P68, BS2, BS1 and BS0 pins as shown in *Table 5.1.1* and *Table 5.1.2*.

Table 5.1.1 Interface Type Selection

P68	BS1	BS1	BS0	Interface	Read back select
0	0	0	0	3-Pin Serial Interface	Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
0	0	0	1	8080 MPU 8-bit Parallel	RDB strobe (8-bit read data and 8-bit read parameter)
0	0	1	1	8080 MPU 16-bit Parallel	RDB strobe (16-bit read data and 16-bit read parameter)
0	1	0	0	8080 MPU 9-bit Parallel	RDB strobe (9-bit read data and 8-bit read parameter)
0	1	1	0	8080 MPU 18-bit Parallel	RDB strobe (18-bit read data and 16-bit read parameter)
1	0	0	0	4-Pin Serial Interface	Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
1	0	0	1	6800 MPU 8-bit Parallel	E strobe (8-bit read data and 8-bit read parameter)
1	0	1	1	6800 MPU 16-bit Parallel	E strobe (16-bit read data and 16-bit read parameter)
1	1	0	0	6800 MPU 9-bit Parallel	E strobe (9-bit read data and 8-bit read parameter)
1	1	1	0	6800 MPU 18-bit Parallel	E strobe (18-bit read data and 16-bit read parameter)

Table 5.1.2 Pin Connection according to the Interface Type

P68	BS2	BS1	BS0	Interface	RDB	WRB	DC	D23-D0
0	0	0	0	3-Pin Serial Interface	*1)	*1)	SCL	*1) D23-D1: Unused, D0: SDA
0	0	0	1	8080 MPU 8-bit Parallel	RDB	WRB	DC	*1) D23-D8: Unused, D7-D0: 8-bit Data
0	0	1	1	8080 MPU 16-bit Parallel	RDB	WRB	DC	*1) D23-D16: Unused, D15-D0: 16-bit Data
0	1	0	0	8080 MPU 9-bit Parallel	RDB	WRB	DC	*1) D23-D9: Unused, D8-D0: 9-bit Data
0	1	1	0	8080 MPU 18-bit Parallel	RDB	WRB	DC	*1) D23-D18: Unused, D17-D0: 18-bit Data
1	0	0	0	4-Pin Serial Interface	*1)	DC	SCL	*1) D23-D1: Unused, D0: SDA
1	0	0	1	6800 MPU 8-bit Parallel	Е	RW	DC	*1) D23-D8: Unused, D7-D0: 8-bit Data
1	0	1	1	6800 MPU 16-bit Parallel	Е	RW	DC	*1) D23-D16: Unused, D15-D0: 16-bit Data
1	1	0	0	6800 MPU 9-bit Parallel	Е	RW	DC	*1) D23-D9: Unused, D8-D0: 9-bit Data
1	1	1	0	6800 MPU 18-bit Parallel	Е	RW	DC	*1) D23-D18: Unused, D17-D0: 18-bit Data

NOTE: 1) Unused pins can be open, connected to VSS1

5.1.2 General Protocol

For programming of the LCD driver, the general supported protocol is shown in Fig. 5.1.1

Fig. 5.1.1 Programming protocol

If data write or parameter write is interrupted by any other command, data write command or parameter write command should be done again to write the remained data or parameter.

Fig. 5.1.2 Write interrupt sequence

5.1.3 8080-Series Parallel Interface (P68 = "L")

The 8080-series bi-directional interface can be used for communication between the micro controller and the LCD driver chip. The selection of this interface is done when P68 pin is "L" state (VSS1). Interface bus width can be selected with BS2, BS1 and BS0.

The interface functions of the parallel interface (8080-series) are given in Table 5.1.3.

Table 5.1.3 Parallel Interface Function (8080-series, P68="L")

BS2	DC4	BSO	Intonfooo	DC	8080-series		Function				
B32	BS1	BS0	Interface	DC	RDB	WRB	i dilodoli				
				1	1	↑	Write 8-bit display data or 8-bit parameter (D7 to D0)				
0	_	1	8-bit	0	1	1	Write 8-bit command (D7 to D0)				
0	0	ı	interface	1	↑	1	Read 8-bit display data (D7 to D0)				
				1	↑	1	*1) Read 8-bit parameter or status (D7 to D0)				
				1	1	↑	Write 16-bit display data (D15 to D0) or				
			16-bit	I	ı	1	8-bit parameter (D7 to D0)				
0	1	1	interface	0	1	↑	Write 8-bit command (D7 to D0)				
				1	1 1		Read 16-bit display data (D15 to D0)				
				1	↑	1	*1) Read 8-bit parameter or status (D7 to D0)				
				1 1 Write 9-bit display data(D8 to D0) of to D0)		Write 9-bit display data(D8 to D0) or 8-bit parameter (D7 to D0)					
1	0	0	9-bit interface	0	1	1	Write 8-bit command (D7 to D0)				
				1	↑	1	Read 9-bit display data (D8 to D0)				
				1	↑	1	*1) Read 8-bit parameter or status (D7 to D0)				
				1	1	↑	Write 18-bit display data (D17 to D0) or				
			18-bit	I	ı	1	8-bit parameter (D7 to D0)				
1	1	0	interface	0	1	↑	Write 8-bit command (D7 to D0)				
				1	↑	1	Read 18-bit display data (D17 to D0)				
NOTE				1	↑	1	*1) Read 8-bit parameter or status (D7 to D0)				

NOTE: "?"= rising edge

^{*1)} Applied for command code: DAh, DBh, DCh, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh, 04h and 09h

The parallel interface timing diagram is given in Fig. 5.1.3 and Fig. 5.1.4.

Fig. 5.1.3 8080-Series parallel bus protocol, write to register or display DDRAM

Fig. 5.1.4 8080-Series parallel bus protocol, read from register

5.1.4 6800-Series Parallel Interface (P68 = "H")

The 6800-series bi-directional interface can be used for communication between the micro controller and the LCD driver chip. The selection of this interface is done when P68 pin is "H" state (VDD1_IO). Interface bus width can be selected with BS2, BS1 and BS0.

The interface functions of the parallel interface (6800-series) are given in Table 5.1.4.

Table 5.1.4 Parallel Interface Function (6800-series, P68="H")

BS2	DC4	DCO	Interfoce	DC	6800-series		Function			
DOZ	BS1	BS0	Interface	טם	RW	Е	Function			
0				1	0	+	Write 8-bit display data or 8-bit parameter (D7 to D0)			
	0	1	8-bit	0	0	→	Write 8-bit command (D7 to D0)			
U	U		interface	1	1	→	Read 8-bit display data (D7 to D0)			
				1	1	→	*1) Read 8-bit parameter or status (D7 to D0)			
				1	0	1	Write 16-bit display data (D15 to D0) or			
			16-bit interface		U	*	8-bit parameter (D7 to D0)			
0	1	1		0	0	→	Write 8-bit command (D7 to D0)			
				1	1	→	Read 16-bit display data (D15 to D0)			
				1	1	→	*1) Read 8-bit parameter or status (D7 to D0)			
			9-bit interface	1	0	\	Write 9-bit display(D8 to D0) data or 8-bit parameter (D7 to D0)			
1	0	0		0	0	→	Write 8-bit command (D7 to D0)			
				1	1	+	Read 9-bit display data (D8 to D0)			
				1	1	+	*1) Read 8-bit parameter or status (D7 to D0)			
				1	0		Write 18-bit display data (D17 to D0) or			
			18-bit	ı	U	*	8-bit parameter (D7 to D0)			
1	1	0	interface	0	0	\rightarrow	Write 8-bit command (D7 to D0)			
				1	1 ↓		Read 18-bit display data (D17 to D0)			
	1 1 1 1 *1			1	*1) Read 8-bit parameter or status (D7 to D0)					

NOTE: "

√" = falling edge

^{*1)} Applied for command code: DAh, DBh, DCh, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh, 04h and 09h

The parallel interface timing diagram is given in Fig. 5.1.5 and Fig. 5.1.6.

Fig. 5.1.5 6800-Series parallel bus protocol, write to register or display DDRAM

Fig. 5.1.6 6800-Series parallel bus protocol, read from register

5.1.5 Serial Interface

Communication with the microprocessor can also be done via a clock-synchronized serial peripheral interface. The selection of this interface is done when all of BS2, BS1 and BS0 are "L" state (VSS1).

The serial interface is a 3-pin or 4-pin bi-directional interface for communication between the micro controller and the LCD driver chip. The 3-pin serial use: SCEB (chip enable), SCL (serial clock) and SDA (serial data input/output) and 4-pin serial use: SCEB (chip enable), DC (data / command select), SCL (serial clock) and SDA (serial data input/output). Serial clock (SCL) is controlled for interface only by MPU, so it can be stopped when the communication is not necessary.

5.1.5.1 Write Mode

The write mode of the interface means the micro controller writes commands and data to the LDS285. 3-Pin serial data packet contains a control bit DC and a transmission byte and in 4-pin serial case, data packet contains just transmission byte and control bit DC is transferred by the DC pin. If DC is "L", the transmission byte is interpreted as a command byte. If DC is "H", the transmission byte is stored in the display data RAM (Memory write command), or command register as a parameter.

Any instruction can be sent in any order to the LDS285. The MSB is transmitted first. The serial interface circuits are initialized when the SCEB is "H" state. In this initialize state, SCL clock pulse or SDA data inputs have no effect. A falling edge of SCEB enables the serial interface and indicates the start of data transmission.

Fig. 5.1.7 Serial data stream, write mode

When SCEB is "H" state, SCL clock is ignored. During the high time of SCEB the serial interface is initialized. At the falling SCEB edge, SCL can be high or low (see *Fig 5.1.8*). SDA is sampled at the rising edge of SCL. DC indicates, whether the byte is command code (DC=0) or parameter/DDRAM data (DC=1). It is sampled when first rising SCL edge (3-line serial interface) or 8th rising SCLK edge (4-line serial interface). If SCEB stays low after the last bit of command/data byte, the serial interface expects the DC bit (3-line serial interface) or D7 (4-line serial interface) of the next byte at the next rising edge of SCL.

Fig. 5.1.8 Serial bus protocol, write to register with control bit in transmission

5.1.5.2 Read Mode

The read mode of the interface means that the micro controller reads register value from the LDS285. To do so the micro controller first has to send a command (Read ID or Read Register command) and then the following byte is transmitted in the opposite direction. After that, SCEB is required to go high before a new command is send (see *Fig. 5.1.9* and *Fig. 5.1.10*). The LDS285 samples the SDA (input data) at the rising edges, but shifts SDA (output data) at the falling SCL edges. Thus the micro controller is supported to read data at the rising SCL edges.

After the read status command has been sent, the SDA line must be set to tri-state no later than at the falling SCL edge of the last bit (see *Fig. 5.1.9* and *Fig. 5.1.10*).

Fig. 5.1.9 Serial bus protocol, read mode (3-Pin serial interface case)

Fig. 5.1.10 Serial bus protocol, read mode (4-Pin serial interface case)

5.1.6 Interface Pause

It will be possible when transferring a Command, DDRAM Data or Multiple Parameter Data to invoke a pause in the data transmission. If the Chip Select Line (CSB) is released after a whole byte of a DDRAM Data or Multiple Parameter Data has been completed, then LDS285 will wait and continue the DDRAM Data or Parameter Data Transmission from the point where it was paused. If the Chip Select Line is released after a whole byte of a command has been completed, then the Display Module will receive either the command's parameters (if appropriate) or a new command when the Chip Select Line is next enabled as shown below.

This applies to the following 4 conditions:

- 1) Command-Pause-Command
- 2) Command-Pause-Parameter
- 3) Parameter-Pause-Command
- 4) Parameter-Pause-Parameter

5.1.6.1 Parallel Interface Pause

Fig. 5.1.11 Parallel bus protocol, write mode – paused by CSB

5.1.6.2 Serial Interface Pause

Fig. 5.1.12 Serial bus protocol, write mode – paused by SCEB (3-Pin serial case)

5.1.7 Data Transfer Recovery

If there is a break in data transmission by RESB pulse, while transferring a Command or DDRAM Data or Multiple Parameter command Data, before Bit D0 of the byte has been completed, then LDS285 will reject the previous bits and have reset the interface such that it will be ready to receive command data again when the chip select line (SCEB) is next activated after RESB have been High state. See the following example (See *Fig. 5.1.13*)

If there is a break in data transmission by SCEB pulse, while transferring a Command or DDRAM Data or Multiple Parameter command Data, before Bit D0 of the byte has been completed, then LDS285 will reject the previous bits and have reset the interface such that it will be ready to receive the same byte re-transmitted when the chip select line (SCEB) is next activated. See the following example (See *Fig. 5.1.14*)

Fig. 5.1.13 Serial bus protocol, write mode – interrupted by RESB

Fig. 5.1.14 Serial bus protocol, write mode – interrupted by SCEB

If 1, 2 or more parameter command is being sent and a break occurs while sending any parameter before the last one and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the parameters that were successfully sent are stored and the parameter where the break occurred is rejected. The interface is ready to receive next byte as shown in *Fig. 5.1.15*.

Fig. 5.1.15 Write interrupt recovery (serial interface)

If a 2 or more parameter command is being sent and a break occurs by the other command before the last one is sent, then the parameters that were successfully sent are stored and the other parameter of that command remains previous value.

Fig. 5.1.16 Write interrupt recovery (both serial and parallel interface)

5.1.8 Display Module Data Transfer Modes

The Module has two kinds color modes for transferring data to the display RAM. These are 18-bit color per pixel and 24-bit color per pixel. The data format is described for each interface. Data can be downloaded to the DDRAM by 2 methods.

5.1.8.1 Method 1

The Image data is sent to the DDRAM in successive Frame writes, each time the DDRAM is filled, the DDRAM pointer is reset to the start point and the next Frame is written.

5.1.8.2 Method 2

Image Data is sent and at the end of each DDRAM download, a command is sent to stop DDRAM Write. Then Start Memory Write command is sent, and a new Frame is downloaded.

Start

Start DDRAM Write	Image Data Frame 1	Any Command	Start DDRAM Write	Image Data Frame 2	Any Command]
vvrite	Frame 1		vvrite	Frame 2		

Note:

- 1) These apply to all Data Transfer Color modes on both Serial and Parallel interfaces.
- 2) The DDRAM can contain both odd and even number of pixels for both Methods. Only complete pixel data will be stored in the DDRAM.

5.2 DISPLAY DATA RAM (DDRAM)

The LDS285 has an integrated 240x320x24-bit graphic type static RAM. This 1.84M-bit memory allows to store on-chip a 240xRGBx320 image with an 24-bpp resolution (16M-color).

There will be no abnormal visible effect on the display when there is a simultaneous Panel Read and Interface Read or write to the same location of the DDRAM.

5.2.1 Display Data Formats

5.2.1.1 Serial Interface Mode (3-Pin serial I/F)

Different display data formats are available for two colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input (see Table 5.2.1)

16M colors, RGB 8-8-8-bits input (see Table 5.2.2)

Table 5.2.1 Write data for RGB 6-6-6-bits input

NOTE: 1 pixel data with the 18-bit color depth information.

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

NOTE: 1 pixel data with the 24-bit color depth information.

The most significant bits are: Rx7, Gx7 and Bx7. The least significant bits are: Rx0, Gx0 and Bx0.

5.2.1.2 8-Bit Parallel Interface Mode

Different display data formats are available for two colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input (see Table 5.2.3)

16M colors, RGB 8-8-8-bits input (see Table 5.2.4)

Read (see Table 5.2.5)

Table 5.2.3 Write data for RGB 6-6-6-bits input

"X": Don't care

										A . Dont care
262k Color data	DC	D7	D6	D5	D4	D3	D2	D1	D0	Memory Write
MEMWR	0		Me	mory \	Write C	Comma	and Co	ode		•
1 st write	1	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	R1 ₀	Х	Х	-
2 nd write	1	G1 ₅	G1 ₄	G1 ₃	G1 ₂	G1₁	G1 ₀	Х	Х	-
3 rd write	1	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	Х	Х	1 st pixel data (R1/G1/B1)
4 th write	1	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	Х	Х	-
5 th write	1	G2 ₅	G2 ₄	G2 ₃	G2 ₂	G2 ₁	G2 ₀	Х	Х	-
6 th write	1	B2 ₅	B2₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	Х	Х	2 nd pixel data (R2/G2/B2)

NOTE: 3 times transfer is used to transmit 1 pixel data with the 18-bit color depth information.

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.4 Write data for RGB 8-8-8-bits input

										"X" : Don't care
262k Color data	DC	D7	D6	D5	D4	D3	D2	D1	D0	Memory Write
MEMWR	MEMWR 0 Memory Write Command Code								-	
1 st write	1	R1 ₇	R1 ₆	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	R1 ₀	-
2 nd write	1	G1 ₇	G1 ₆	G1 ₅	$G1_4$	$G1_3$	G1 ₂	G1 ₁	$G1_0$	-
3 rd write	1	B1 ₇	B1 ₆	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	1 st pixel data (R1/G1/B1)
4 th write	1	R2 ₇	R2 ₆	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	-
5 th write	1	G2 ₇	G2 ₆	G2 ₅	G2 ₄	G2 ₃	G2 ₂	G2 ₁	G2 ₀	-
6 th write	1	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd pixel data (R2/G2/B2)

NOTE: 3 times transfer is used to transmit 1 pixel data with the 18-bit color depth information.

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.5 Read

NOTE: 3 times transfer is used to transmit 1 pixel data with the 24-bit color depth information. The read data can be different to the written data because of the LSB Expansion.

5.2.1.3 9-Bit Parallel Interface Mode

Different display data formats are available for two colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input (see Table 5.2.6)

16M colors, RGB 8-8-8-bits input (see Table 5.2.7)

Read (see Table 5.2.8)

Table 5.2.6 Write data for RGB 6-6-6-bits input

"X": Don't care 262k Color DC D8 D7 D5 D4 D3 D2 D1 D0 Memory Write D6 data **MEMWR** 0 Memory Write Command Code Х 1st write 1 R1₅ $R1_4$ $R1_3$ $R1_2$ $R1_1$ $R1_0$ G1₅ G1₄ G1₃ 2nd write 1 G1₁ B1₅ B1₄ B1₂ $B1_0$ -1st pixel data (R1/G1/B1) G1₂ $G1_0$ B1₃ B1₁ 3rd write 1 R2₅ R2 R2₄ R2₂R2₁ $R2_0$ G2₅ $G2_4$ G2₃4th write -2nd pixel data (R2/G2/B2) 1 G2₂ G2₁ $G2_0$ B2₅ B2₄ $B2_3$ B2₂ B2₁ B2₀

NOTE: 3 times transfer is used to transmit 1 pixel data with the 18-bit color depth information.

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.7 Write data for RGB 8-8-8-bits input

											"X" : Don't care
262k Color	DC	D8	D7	D6	D5	D4	D3	D2	D1	D0	Memory Write
data											
MEMWR	0			Memo	ry Wri	te Cor	nmand	d Code)		-
1 st write	1	Х	R1 ₇	R1 ₆	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	R1 ₀	-
2 nd write	1	Х	G1 ₇	G1 ₆	G1 ₅	$G1_4$	G1 ₃	G1 ₂	G1 ₁	$G1_0$	-
3 rd write	1	Х	B1 ₇	B1 ₆	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	1 st pixel data (R1/G1/B1)
4 th write	1	Х	R2	R2 ₆	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	-
5 th write	1	Х	G2	G2 ₆	G2 ₅	G2 ₄	G2 ₃	G2 ₂	G2 ₁	G2 ₀	-
6 th write	1	Х	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd pixel data (R2/G2/B2)

NOTE: 3 times transfer is used to transmit 1 pixel data with the 18-bit color depth information.

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.8 Read

16M Color data D3 DC ₽6 D5 D4 D2 D1 D0 D8 D7 Memory Read **MEMRD** 0 Memory Read Command Code Х dummy 1 Χ Х Х Х Χ Х 1st Read R1₅ 1 $R1_7$ R1₆ $R1_4$ $R1_3$ R1₂ $R1_1$ $R1_0$ Х 2nd Read $G1_2$ 1 G1₇ G1₅ G1₆ G1₄ G1₃ G1₁ $G1_0$ Χ 3rd Read 1 B1₅ B1₀ 1st pixel data (R1/G1/B1) B1₇ B1₆ B1₄ B1₃ $B1_2$ B1₁ Χ

NOTE: 3 times transfer is used to transmit 1 pixel data with the 24-bit color depth information. The read data can be different to the written data because of the LSB Expansion.

5.2.1.4 16-Bit Parallel Interface Mode

Different display data formats are available for two colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input (see Table 5.2.9)

16M colors, RGB 8-8-8-bits input (see Table 5.2.10)

Read (see Table 5.2.11)

Table 5.2.9 Write data for RGB 6-6-6-bits input in 16-bit parallel Interface

"X": Don't care 262k Color D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 DC Memory Write data **MEMWR** Memory Write Command Code 0 $R1_2$ 1st write 1 R1₅ R1₄ R1₃ $R1_1$ $R1_0$ G1₅ G1₄ $G1_3$ G1₂ G1₁ G1₀ Х Х Х Х 2nd write 1 B1₅ B1₄ B1₃ B1₂ B1₁ B1₀ 1st pixel (R1/G1/B1) Х Х R25 R24 R2₃ R2₂R2₁ R20 Х Х 3rd write 1 G2₅ G2₁ G2₀ 2nd pixel (R2/G2/B2) $G2_4$ G2: G2₂Х Х B2₅ B2₄ B2₃ B2₂B2₁ B2₀ Χ 18-bit 18-bit

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 18-bit color depth information..

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.10 Write data for RGB 8-8-8-bits input in 16-bit parallel Interface

																"X" : [Don't o	care
16M Color data	DC	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Memory Write
MEMWR	0				2	<				N	/lemc	ry W	rite C	Comr	nand	Cod	е	-
1 st write	1	R1 ₇	R1 ₆	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	$R1_0$	G1 ₇	G1 ₆	G1 ₅	G1₄	G1 ₃	G1 ₂	G1₁	$G1_0$	-
2 nd write	1	B1 ₇	B1 ₆	₽ 1₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	R2 ₇	R2 ₆	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	1 st pixel (R1/G1/B1)
3 rd write	1	G2 ₇	G2 ₆	G 2 ₅	G2 ₄	G2 ₃	G2 ₂	G2₁	G2 ₀	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd pixel (R2/G2/B2)
Frar	me me	emor	y <u>:</u>		24 bit	:		24	l bit	:	:							

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 24-bit color depth information..

R1 G1 B1 R2 G2 B2 R3 G3 B3

The most significant bits are: Rx7, Gx7 and Bx7. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.11 Read

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 24-bit color depth information..

The read data can be different to the written data because of the LSB Expansion.

5.2.1.5 18-Bit Parallel Interface Mode

Different display data formats are available for four colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input (see Table 5.2.12)

16M colors, RGB 6-6-6-bits input (see Table 5.2.13)

Read (see Table 5.2.14)

Table 5.2.12 Write data for RGB 6-6-6-bits input in 18-bit parallel Interface "X": Don't care 262k Coloi DC D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D0 D5 D4 D3 D2 D1 Memory Write data **MEMWR** Memory Write Command Code 0 1st write R1₅|R1₄|R1₃|R1₂|R1₁|R1₀|G1₅|G1₄|G1₃|G1₂|G1₁|G1₀|B1₅|B1₄|B1₃|B1₂|B1₁|B1₀ -1st pixel (R1/G1/B1) 1 2nd write 2nd pixel (R2/G2/B2) R2₃ R2₂ R2₁ R2₀ G2₅ G2₄ G2₃ G2₂ G2₁ G2₀ B2₅ B2₄ B2₃ B2₂ B2₁ B2₀ 18-bit 18-bit LSB Expansion DB[0] DB[5] **DB[4]** DB[3] **DB[2] DB[1]**

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 18-bit color depth information..

The most significant bits are: Rx5, Gx5 and Bx5. The least significant bits are: Rx0, Gx0 and Bx0.

Table 5.2.13 Write data for RGB 8-8-8-bits input in 18-bit parallel Interface

																		-	"X" : [Oon't care	
16M Color data	DC	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Memor	y Write
MEMWR	0					Χ						Men	nory	Write	e Co	mma	and C	Code)		-
1 st write	1	Х	Х	R1 ₇	R1 ₆	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	$R1_0$	G1 ₇	G1 ₆	G1 ₅	G1₄	G1 ₃	G1 ₂	G1₁	$G1_0$		-
2 nd write	1	Х	Х	B1 ₇	B1 ₆	₿1 ₅	B1 ₄	B1 ₃	B1 ₂	B1 ₁	B1 ₀	R2 ₇	R2 ₆	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	1 st pixel (F	R1/G1/B1
3 rd write	1	Х	Х	G2 ₇	G2 ₆	d 2 ₅	G2 ₄	G2 ₃	G2 ₂	G2₁	G2 ₀	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd pixel (I	R2/G2/B2
							24 bit					24 bi	t								
	Fr	ame	men	nory							1	,									

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 24-bit color depth information..

G2

B2

R3

G3 B3

The most significant bits are: Rx7, Gx7 and Bx7. The least significant bits are: Rx0, Gx0 and Bx0.

G1

B1

R2

Table 5.2.14 Read

NOTE: 3 times transfer is used to transmit 2 pixels data or 2 times transfer are used to transmit 1 pixel data with the 24-bit color depth information..

The Read data can be different to the written data because of the LSB Expansion.

5.2.2 RGB Interface

For direct interface with both graphic controller and MPU, LDS285 offers RGB interface mode to receive video data. In RGB interface mode, video data bus becomes (D23 to D1, VD0) and grahic controller can write 24-bit RGB data to predefined row and column address area (by CASET and RASET command) of the DDRAM. Command and parameter to control LDS285 can be accessed by MPU via serial interface mode.

5.2.2.1 RGB Interface Bus Width Set

All 2-kinds of bus width can be available during RGB interface mode. (selected by the 2nd parameter of IFMODE command: DW).

DW	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Bus Width
0	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0	24-bit data
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	R7	R6	R5	R4	R3	R2	R1	R0	
1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	G7	G6	G5	G4	G3	G2	G1	G0	8-bit data
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	B7	B6	B5	B4	В3	B2	B1	B0	

NOTE: Unused RGB data bus must be connected to VSS1.

- 24-Bit RGB Interface Mode

Different display data formats are available for four colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input when (see Table 5.2.15)

16M colors, RGB 8-8-8-bits input when (see Table 5.2.16)

Table 5.2.15 Write data for RGB 6-6-6-bits input in 24-bit rgb Interface

Table 5.2.16 Write data for RGB 8-8-8-bits input in 24-bit rgb Interface

14016 3.2.10		1110	aata	,,,	,,,,,,		<i>,</i> ,	<i>31</i> 13	при			<i>,,,</i> ,,,,	,~ ··	11011	uoc														
65k Color data	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		Mem	nor	уW	rite
1 st write	R1 ₇	R1 ₆	R1₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	R1 ₁₀	G1 ₇ (G1 ₆	G1₅	G1₄	G1₃	G1 ₂	G1₁	G1₀	B1 ₇	B1 ₆	B1 ₅	B1 ₄	B1 ₃	B1 ₂	B1₁	B1 ₀	1 st	pixe	l (F	R1/G	1/B1)
2 nd write	R2 ₇	R2 ₆	R2₅	R2₄	R2 ₃	R2 ₂	R2₁	R20	G2 ₇ (G2 ₆	G2₅	G2 ₄	G2 ₃	G2 ₂	G2₁	G2 ₀	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd	pixe	l (F	R2/0	32/B2)
						\2	4-bi	t	\	2	4-bi	t																	
Fı	ram	e m	em	ory	:		:	:		:	:	`	:	:		:			:										
			•			R1	G	61	В1	R	2	G2	! E	32	R3	3 0	33	В	3										

- 8-Bit RGB Interface Mode

Different display data formats are available for four colors depth supported by the LDS285 listed below.

262k colors, RGB 6-6-6-bits input when (see Table 5.2.17)

16M colors, RGB 8-8-8-bits input when (see Table 5.2.18)

Table 5.2.17 Write data for RGB 6-6-6-bits input in 24-bit rgb Interface

Table 5.2.18 Write data for RGB 8-8-8-bits input in 24-bit rgb Interface

65k Color data	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Memory Write
1 st write	х	х	х	х	х	х	х	х	х	Х	х	х	х	х	Х	х	R1 ₇	R1 ₆	R1 ₅	R1 ₄	R1 ₃	R1 ₂	R1 ₁	R1 ₀	
2 nd write	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	×	G1 ₇	G1 ₆	G1 ₅	G1₄	G1 ₃	G1 ₂	G1₁	G1 ₀	
3 rd write	х	х	х	х	х	х	х	х	х	х	х	х	х	х	X	х	G1 ₇	G1 ₆	G15	G1 ₄	G1 ₃	G1 ₂	G1₁	G1 ₀	1 st pixel (R1/G1/B1)
4 th write	х	х	х	х	х	х	х	х	х	х	х	х	х	у/	×	х	R2 ₇	R2 ₆	R2 ₅	R2 ₄	R2 ₃	R2 ₂	R2 ₁	R2 ₀	
5 th write	х	х	х	х	х	х	х	х	х	х	х	х	x/	×	Х	ž	G2 ₇	G2 ₆	G2 ₅	G2 ₄	G2 ₃	G2 ₂	G2₁	G2 ₀	
6 th write	х	х	Х	х	х	Х	х	х	х	Х	х	x	/x	х	х	/x	B2 ₇	B2 ₆	B2 ₅	B2 ₄	B2 ₃	B2 ₂	B2 ₁	B2 ₀	2 nd pixel (R1/G1/B1)
		•			•				•																

5.2.2.2 RGB Interface Mode Set

All 3-kinds of RGB interface mode can be available to fit the various controller type.(selected by 1st parameter of IFMODE command: IF1,IF0)

RGB I/F Mode	DCK	ENABLE	Video Data Bus D23 to D1, VD0	VSYNC	VSYNCO	HSYNC	Reference clock for display
RGB Mode1	Used	Used	Used	Not used	Used	Not used	Internal Oscillator
RGB Mode2	Used	Used	Used	Used	Not used	Not used	Internal Oscillator
RGB Mode3	Used	Used	Used	Used	Not used	Used	DCK

NOTE: Unused RGB data bus must be connected to VSS1.

RGB Interface Mode1

Data write to the DDRAM is done by DCK and Video Data Bus (D23 to D1, VD0) when ENABLE is "H" state.

To make the internal displaying clock, internal oscillator is used. So, to write the video data without flickering, controller needs to transfer the data with synchronous to the VSYNCO output signal.

RGB Interface Mode2

Data write to the DDRAM is done by DCK and Video Data Bus (D23 to D1, VD0) when ENABLE is "H" state

To make the internal displaying clock, internal oscillator is used. But frame display starts with synchronous to VSYNC input. So, to write the video data without flickers, the graphic controller must always transfer VSYNC signal to LDS285.

RGB Interface Mode3

Data write to the DDRAM is done by DCK and Video Data Bus (D23 to D1, VD0) when ENABLE is "H" state

To make the internal displaying clock, external clocks (DCK, VSYNC and HSYNC) are used. So, the graphic controller must always transfer DCK, VSYNC and HSYNC signal to LDS285.

Fig. 5.2.1 An example to overwrite still picture data during moving picture display (RGB Interface Mode1)

Fig. 5.2.2 An example of RGB Interface Mode2

Fig. 5.2.3 Video signal data writing method in RGB Interface Mode 3

5.2.3 Address Counter

The address counter sets the addresses of the display data RAM for writing and reading.

Data is written pixel-wise into the DDRAM matrix of LDS285. The data for one pixel or two pixels is collected (RGB 8-8-8-bit), according to the data formats. As soon as this pixel-data information is complete the "Write access" is activated on the DDRAM. The locations of DDRAM are addressed by the address pointers. When MV = 0 (MV is one of register value controlled by instruction MADCTL), the address ranges are X=0 to X=239 (0EFhex) and Y=0 to Y=319 (13Fh). When MV = 1, the address ranges are X=0 to X=319(13Fh) and Y=0 to Y=239 (0EFh). Addresses outside these ranges are not allowed. Before writing to the DDRAM, a window where data will be written must be defined. The window is programmable via the command registers XS, YS designating the start address and XE, YE designating the end address.

For example the whole display contents will be written, the window is defined by the following values: XS=0 (0h) YS=0 (0h) and XE=239 (0EFh), YE=319 (13Fh).

In vertical addressing mode (MV=1), the Y-address increments after each byte, after the last Y-address (Y=YE), Y wraps around to YS and X increments to address the next column. In horizontal addressing mode (MV=0), the X-address increments after each byte, after the last X-address (X=XE), X wraps around to XS and Y increments to address the next row. After the every last address (X=XE and Y=YE) the address pointers wrap around to address (X=XS and Y=YS).

For flexibility in handling a wide variety of display architectures, the commands "CASET, RASET" and "MADCTL" (see section "6 INSTRUCTION DESCRIPTION"), define flags MX and MY, which allows mirroring of the X-address and Y-address. All combinations of flags are allowed. *Fig. 5.2.4* shows the available combinations of writing to the display RAM. When MX, MY and MV will be changed, the data must be rewritten to the display RAM.

For each image condition, the controls for the column and row counters apply as below:

Condition	Column Counter	Row Counter
When RAMWR/RAMRD command is accepted	Return to "Start Column (XS)"	Return to "Start Row (YS)"
Complete Pixel Read / Write action	Increment by 1	No change
The Column counter value is larger than "End Column (XE)"	Return to "Start Column (XS)"	Increment by 1
The Column counter value is larger than "End Column (XE)" and the Row counter value is larger than "End Row (YE)"	Return to "Start Column (XS)"	Return to "Start Row (YS)"

(where MY= 0)

MADCTR Display Data Image in the Host Image in the Driver Parameter Direction (DDRAM) (MPU) MV MX MY Normal 0 0 H/W position (0,0) X-Y address (0,0) X: CASET, Y: RASET Y-Mirror 0 0 В H/W position (0,0) E X-Y address (0,0) X: CASET, Y: RASET X-Mirror 0 0 В В X-Y address (0,0) H/W position (0,0) X: CASET, Y: RASET X-Mirror 0 1 1 H/W position (0,0) В Y-Mirror X-Y address (0,0) X: CASET, Y: RASET В X-Y Exchange 0 В В H/W position (0,0) X-Y address (0,0) X: RASET, Y: CASET X-Y Exchange 0 В H/W position (0,0) Y-Mirror X-Y address (0,0) X: RASET Y: CASET В X-Y Exchange 0 H/W position (0,0) В X-Y address (0,0) В X: RASET, Y: CASET X-Mirror Ė X-Y Exchange 1 H/W position (0,0) В X-Mirror Y-Mirror X-Y address (0,0) X: RASET, Y: CASET

Fig. 5.2.4 Frame Data Write Direction According to the MADCTR parameters (MV, MX and MY)

NOTE: MV=D5 parameter of MADCTL command, MX=D6 parameter of MADCTL command, MY=D7 parameter of MADCTL command

5.2.4 Memory Map

 $NOTE: RA = Row\ Address,$

 $CA = Column\ Address.$

SA = Scan Address,

MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTR command

MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTR command

ML = Scan direction parameter, D4 parameter of MADCTR command

RGB= Red, Green and Blue pixel position change, D3 parameter of MADCTR command

5.2.5 Normal Display On or Partial Mode On

In this mode, the content of the frame memory within an area where column pointer is 00h to 0EFh and page pointer is 00h to 13Fh is displayed.

To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0).

Example2) Partial Display On: PSL [15:0] = 004h, PEL [15:0] = 13Ch, MADCTR (ML)=0

5.2.6 Tearing Effect Output Line

The Tearing Effect output line supplies a Panel synchronization signal to the MPU. This signal can be enabled or disabled by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the Tearing Effect Line On command. The signal can be used by the MPU to synchronize DDRAM Writing when displaying video images.

5.2.6.1 Tearing Effect Line Modes

Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only:

t_{vdh}= The LCD display is not updated from the DDRAM

t_{vdl} = The LCD display is updated from the DDRAM (except Invisible Line – see below)

Mode 2, the Tearing Effect Output signal consists of V-Blanking and H-Blanking Information, there are one V-sync and 320 H-sync pulses per field.

t_{hdh}= The LCD display is not updated from the Frame Memory

t_{hd l}= The LCD display is updated from the Frame Memory (except Invisible Line – see above)

Note: During Sleep In Mode, the Tearing Output Pin is active Low

5.2.6.2 Tearing Effect Line Timing

The Tearing Effect signal is described below:

Table 5.2.19 AC characteristics of Tearing Effect Signal

Idle Mode Off (Frame Rate = 59Hz)

Symbol	Parameter	min	max	unit	description
t _{vdl}	Vertical Timing Low Duration	TBD	-	ms	
t _{vdh}	Vertical Timing High Duration	1000	-	μs	
t _{hdl}	Horizontal Timing Low Duration	TBD	-	μs	
t _{hdh}	Horizontal Timing High Duration	TBD	500	μs	

NOTE: The timings in Table 5.2.12 apply when MADCTL ML=0 and ML=1 $\,$

The signal's rise and fall times (tf, tr) are stipulated to be equal to or less than 15ns.

The Tearing Effect Output Line is fed back to the MPU and should be used as shown below to avoid Tearing Effect:

5.2.6.3 Example 1: MPU Write is faster than Panel Read.

Data write to Frame Memory is now synchronized to the Panel Scan. It should be written during the vertical sync pulse of the Tearing Effect Output Line. This ensures that data is always written ahead of the panel scan and each Panel Frame refresh has a complete new image:

5.2.6.4 Example 2: MPU Write is slower than Panel Read.

The MPU to Frame Memory write begins just after Panel Read has commenced i.e. after one horizontal sync pulse of the Tearing Effect Output Line. This allows time for the MPU to download the image behind the Panel Read pointer and to finish downloading during the subsequent Frame before the Read Pointer "catches" the MPU to Frame memory write position.

5.3 INSTRUCTION DECODER & REGISTER

The instruction decoder identifies command words arriving at the interface and routes the following data type bytes to their destination. The command set can be found in "6 INSTRUCTION DESCRIPTION" section.

5.4 SYSTEM CLOCK GENERATOR

The timing generator produces the various signals to drive the internal circuitry. Internal chip operation is not affected by operations on the data bus.

5.5 OSCILLATOR

LDS285 has on-chip oscillator which does not require external components. This oscillator output signal is used for system clock generation for internal display operation

5.6 SOURCE DRIVER

The source driver block includes 240x3 source outputs (S1 to S720), which should be connected directly to the TFT-LCD. The source output signals are generated in the data processing block after the data is read out of the RAM and latched, which represent the simultaneous selected rows. When less then 720 sources are required the unused source outputs should be left open-circuit.

5.7 GATE DRIVER

The gate driver block includes 320 gate outputs (G1 to G320) which should be connected directly to the TFT-LCD.

5.8 RGB INTERFACE TIMING DIAGRAM

5.8.1 Relationship between Input Signal and Output Signal (RGB I/F Mode 3)

5.8.2 Input / Output Timing Chart (G0->G320, S1->S720)

Horizontal valid data start time=10DCK, Vertical valid data start time=3HSYNC, 1 Line scan, Line inversion.

5.9 LCD POWER GENERATION CIRCUIT

5.9.1 LCD Power Generation Scheme

1. The boost voltage generated in LDS285 is shown as below. (Case=VS<4.2V)

Fig. 5.9.1 LCD power generation scheme1

2. The boost voltage generated in LDS285 is shown as below. (Case=VS>4.2V)

Fig. 5.9.2 LCD power generation scheme2(wide viewing angle)

5.9.2 Various Boosting Steps

The boost steps of each boosting voltage are selected according to how the external capacitors are connected. Different booster applications are shown as below.

Fig. 5.9.3 Various boosting Step

5.9.3 Gray Voltage Generator

LDS285 supports 4 gamma curves. They can be selected by GAMSET command(26h).

5.9.3.1 Gamma Correction Curve Circuit

Fig. 5.9.4 Gamma Correction Curve cirsuit

5.9.3.2 Relationship between DDRAM Data and Output Voltages. (TBD)

Data				C	output Voltag	e when	VS= V			
(Hex)			VCOM = I					VCOM = F	ligh	
00	Gamma	1.0	1.8	2.2	2.5	Gamma	1.0	1.8	2.2	2.5
00	V0+ V1+					V0- V1-				
02	V2+					V2-				
03 04	V3+ V4+					V3- V4-				
05	V5+					V5-				
06	V6+					V6-				
07 08	V7+ V8+					V7- V8-				
09	V9+					V9-				
0A	V10+					V10-				
0B 0C	V11+ V12+					V11- V12-				
0D	V13+					V13-				
0E	V14+					V14-				
0F 10	V15+ V16+					V15- V16-				
11	V17+					V17-				
12	V18+ V19+					V18- V19-				
13 14	V19+ V20+					V19-				
15	V21+					V21-				
16	V22+					V22-				
17 18	V23+ V24+					V23- V24-				
19	V25+					V25-				
1A	V26+ V27+					V26- V27-				
1B 1C	V27+ V28+					V27- V28-				
1D	V29+					V29-				
1E	V30+					V30-				
1F 20	V31+ V32+					V31- V32-				
21	V33+					V33-				
22	V34+					V34-				
23 24	V35+ V36+					V35- V36-				
25	V37+					V37-				
26 27	V38+ V39+					V38-				
28	V40+					V39- V40-				
29	V41+					V41-				
2A 2B	V42+ V43+					V42- V43-				
2C	V43+					V43-				
2D	V45+					V45-				
2E 2F	V46+ V47+					V46- V47-				
30	V48+					V48-				
31	V49+					V49-				
32 33	V50+ V51+					V50- V51-				
34	V52+					V52-				
35	V53+					V53-				
36 37	V54+ V55+					V54- V55-				
38	V56+					V56-				
39	V57+					V57-				
3A 3B	V58+ V59+					V58- V59-				
3C	V60+					V60-				
3D	V61+					V61-				
3E 3F	V62+ V63+					V62- V63-				
40	V64+					V64-				
41	V65+					V65-				
42	V66+ V67+					V66- V67-				
44	V68+					V68-				
45	V69+					V69-				
46	V70+					V70-				
47	\/71					\/71	İ			

48								
489 1773-1	48	V/72+			V/72-			
48	49	V73+						
48 Y75		V74+						
4C								
## Company								
## 1779- 177								
## V79- 50 V80- 50 V80								
SO								
ST V91 V92 V92 V92 V92 V92 V93								
S2								
53 V634 V644 V644 V644 V645 V656 V6								
54 V94 V95								
56 V85+ V86- V86- V86- S7 V87- V87- V87- V87- V87- V87- V88- S8 V88- V88								
56 V89+ V87- V87- 58 V88+ V88- V88- 58 V88+ V88- V89- 58 V81+ V89- 58 V81+ V91- 59 V92- V92- 50 V93+ V93- 51 V94- V94- 57 V94- V94- 58 V88+ V94- 61 V88- V98- 62 V88+ V99- 63 V100+ V100- 64 V101+ V101- 65 V102+ V102- 66 V103+ V100- 66 V103+ V100- 67 V104- V101- 68 V108+ V109- 69 V108+ V109- 69 V108+ V109- 69 V109+ V109- 60 V109+ V109- 61 V109+ V109- 62 V109+ V109- 63 V109+ V109- 64 V109+ V109- 65 V109+ V109- 66 V109+ V109- 67 V109+ V109- 68 V109+ V109- 69 V109+ V109- 60 V119+ V109- 60 V119+ V109- 61 V109+ V109- 62 V119+ V109- 63 V109+ V109- 64 V109+ V109- 65 V119+ V119- 70 V113+ V114- 71 V114+ V114- 72 V115+ V119- 73 V116+ V119- 74 V117+ V119- 75 V119+ V119- 76 V119+ V119- 77 V120+ V120- 78 V121+ V121- 79 V122+ V122- 79 V122+ V122- 79 V122+ V122- 70 V134+ V134- 71 V144- V124- 72 V154+ V124- 74 V124- V124- 75 V127+ V129- 76 V139+ V139- 77 V120+ V122- 78 V121+ V122- 79 V122+ V122- 70 V124+ V124- 70 V124+ V124- 71 V144- V144- 72 V144- V144- 73 V144- 74 V144- 75 V144- 76 V144- 77 V144- 78 V144- 79 V144- 70 V144- 70 V144- 71 V144- 71 V144- 72 V144- 73 V144- 74 V144- 74 V144- 75 V144- 75 V144- 76 V144- 77 V144- 78 V144- 79 V144- 70 V144- 70 V144- 71								
58								
58 V894 V895 V895 SA V896 SA V897 SA V897 SA V898 SA								
59 V89+ V89- V89- SA V89-								
58								
58								
SC								
Description								
SE								
5F V95+								
60								
61								
62 V98+								
63 V100+								
64 V101+								
66 1103+	63							
G6								
68 V105+	65							
68	66							
69 V106+	67	V104+			V104-			
68 V107+ 68 V108+ 68 V109+ 60 V109+ 60 V110+ 60 V110+ 61 V111- 61 V111- 65 V111+ 66 V111+ 70 V113+ 70 V113+ 71 V114+ 72 V115+ 73 V116+ 74 V117+ 75 V118+ 76 V119+ 77 V120+ 78 V121+ 79 V122+ 70 V128+ 71 V118- 71 V118- 72 V118- 73 V118- 74 V117- 75 V118- 75 V118- 76 V119- 77 V120+ 78 V121+ 79 V122- 70 V128- 71 V128- 71 V128- 72 V128- 73 V128- 74 V128- 75 V128- 77 V129- 78 V121- 79 V122- 79 V122- 70 V128- 71 V128- 71 V128- 72 V128- 73 V128- 74 V128- 75 V128- 75 V128- 76 V199- 77 V129- 78 V129- 79 V129- 79 V129- 70 V128- 71 V128- 71 V128- 72 V128- 73 V128- 74 V128- 75 V138- 76 V138- 77 V128- 78 V128- 79 V128- 79 V128- 79 V128- 70 V128- 70 V128- 71 V128- 71 V128- 72 V128- 73 V138- 74 V128- 75 V138- 76 V138- 77 V138- 78 V138- 79 V148- 79 V148- 79 V148- 70 V148-	68	V105+			V105-			
BB V108+ V109- V109- BC V110+ BC V110+ BC V111+ BC V111+ BC V111+ BC V112+ BC V113- BC V113- BC V113- BC V114- BC V113- BC V114- BC V114- BC V115- BC V115- BC V116- BC V117- BC V117- BC V117- BC V118- BC BC BC BC BC BC BC B	69	V106+			V106-			
6C V109+ V100- 6E V111+ V111- 6F V112- V112- 70 V113+ V112- 71 V114- V115- 71 V114- V116- 72 V115- V116- 73 V116- V116- 74 V117- V117- 75 V118+ V118- 76 V119+ V119- 77 V120- V120- 78 V121+ V121- 79 V122+ V122- 70 V123- V123- 71 V124- V122- 70 V125- V125- 70 V125- V125- 70 V126- V126- 70 V126- V126- 70 V126- V126- 70 V126- V126- 70 V126- V127- 7F V127- V127-	6A	V107+			V107-			
6D V110+ V111- 6E V112+ V112- 70 V113- V113- 71 V114- V114- 72 V115- V115- 73 V116- V116- 74 V117- V116- 74 V117- V118- 75 V118+ V118- 70 V120- V120- 70 V121- V120- 77 V120- V120- 78 V121+ V121- 79 V122- V122- 7A V123- V123- 7B V124- V122- 7A V124- V122- 7A V124- V122- 7A V124- V122- 7D V124- V124- 7D V126- V126- 7E V127- V127- 80 V128- V127- 80 V128- V128-	6B	V108+			V108-			
6E V111+ V111- 70 V113+ V113- 71 V114- V113- 72 V115- V115- 73 V116- V116- 74 V117- V116- 74 V117- V118- 76 V119- V119- 77 V120- V120- 78 V121+ V121- 79 V122- V122- 70 V123- V123- 78 V124+ V123- 78 V124+ V123- 70 V125- V126- 70 V126- V126- 70 V126- V126- 70 V126- V126- 70 V126- V127- 70 V127- V127- 71 V127- V127- 72 V127- V128- 81 V129- V129- 82 V130- V130-	6C	V109+			V109-			
FF V112+	6D							
FF V112+	6E	V111+			V111-			
TO		V112+						
Till								
72		V114+						
73 V116+ V116- 74 V117+ V118- 75 V118+ V119- 76 V119+ V119- 77 V120+ V120- 78 V121+ V121- 79 V122+ V122- 7A V123+ V123- 7B V124+ V124- 7C V125+ V125- 7D V126+ V126- 7E V127+ V127- 7F V127+ V127- 80 V128+ V128- 81 V129+ V129- 82 V130+ V130- 83 V131+ V131- 84 V132+ V130- 85 V134+ V135- 86 V134+ V135- 87 V135+ V136- 88 V134+ V135- 88 V134+ V136- 89 V135+ V136-	72							
74	73							
T5								
76 V119+ 77 V120+ 78 V121+ 79 V122+ 7A V123- 7B V124+ 7C V125- 7D V126- 7D V126- 7E V127- 7F V127- 80 V128+ 81 V129+ 82 V130+ 83 V131+ 84 V132- 85 V133+ 86 V134+ 87 V135- 88 V134+ 87 V135- 88 V134+ 87 V135- 88 V136- 88 V138- 88 V136- 89 V137- 80 V138- 88 V136- 88 V136- 88 V138- 88 V139- 88 V139- <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
77 V120+ 78 V121+ 79 V122+ 7A V123+ 7B V124+ 7C V125+ 7D V126+ 7E V127- 7F V127+ 80 V128+ 81 V129+ 82 V130+ 83 V130+ 83 V131+ 84 V132+ 85 V133+ 86 V134+ 87 V135+ 88 V136+ 89 V137- 88 V138+ 89 V134+ 87 V135- 88 V136+ 89 V137- 80 V138+ 80 V138+ 80 V138- 88 V139+ 80 V130- 81 V136- 82 V130- 83 V139- <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
78 V121+ V121- 79 V123+ V123- 78 V124+ V123- 78 V124+ V124- 7C V125- V125- 7D V126+ V126- 7E V127+ V127- 80 V128+ V129- 81 V129+ V129- 82 V130+ V130- 83 V131+ V131- 84 V132- V132- 85 V133+ V131- 86 V134- V132- 85 V133+ V132- 86 V134- V134- 87 V135+ V135- 88 V136+ V136- 88 V136+ V137- 8A V138+ V137- 8B V139+ V149- 8B V139+ V149- 8B V139+ V140- 8B V139- 8C <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
79 V122+ 7A V123+ 7B V124+ 7C V125+ 7D V126+ 7E V127+ 7F V127+ 7F V127- 7F V128- 81 V129+ 82 V130+ 83 V131+ 84 V132+ 85 V133+ 86 V133+ 87 V135- 88 V136+ 88 V135+ 88 V135+ 88 V135+ 88 V135- 88 V135- 88 V135- 88 V138+ 89 V137- 8A V138+ 8B V138- 8C V140+ 8E V142+ 8F V143+ 90 V144+ 91 V145+ 92 V146+ <th></th> <th></th> <th></th> <th></th> <th>V121-</th> <th></th> <th></th> <th></th>					V121-			
7A V123+ 7B V124+ 7C V125+ 7D V126+ 7E V127+ 7F V127+ 80 V128+ 81 V129- 82 V130+ 83 V131+ 84 V132- 85 V133+ 86 V134+ 87 V135- 88 V134+ 89 V137- 88 V134+ 89 V137- 88 V136- 89 V137- 88 V136- 89 V137- 80 V138- 81 V129- 82 V136- 83 V131- 84 V132- 85 V133- 86 V134- 87 V135- 88 V138- 89 V137- 80 V140- <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
7B V124+ V124- 7C V125+ V125- 7D V126+ V126- 7E V127+ V127- 7F V127+ V128- 80 V128+ V128- 81 V129+ V129- 82 V130- V130- 83 V131+ V131- 84 V132+ V132- 85 V133+ V133- 86 V134+ V134- 87 V135+ V135- 88 V136- V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V143+ V142- 8F V143- V145- 92 V146+ V146- 93 V148+ V148-								
7C V125+ V126- 7D V126- V127- 7E V127+ V127- 80 V128- V128- 81 V129+ V129- 82 V130+ V130- 83 V131+ V131- 84 V132- V132- 85 V133+ V133- 86 V134+ V134- 87 V135- V135- 88 V136+ V136- 89 V137+ V137- 8A V138- V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V140- 8D V142+ V142- 8F V143+ V142- 8F V143+ V144- 90 V144+ V144- 91 V145+ V146- 92 V146+ V146- 93 V148+ V148- <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
7D V126+ V127+ V127- 7F V127- V127- V127- V128- V128- V128- V129- V129- V129- V129- V130- V130- V131- V131- V131- V131- V132-								
7E V127+ V127- 7F V127+ V128- 80 V128+ V128- 81 V129+ V129- 82 V130+ V130- 83 V131+ V131- 84 V132+ V132- 85 V133+ V133- 86 V134+ V133- 87 V135- V136- 88 V136+ V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V144- 90 V144+ V144- 91 V145+ V146- 92 V146+ V146- 93 V148+ V148-								
7F V127+ V128- V128- 81 V129+ V129- V130- 82 V130+ V130- V130- 83 V131+ V131- V132- 84 V132+ V132- V133- 86 V134+ V134- V134- 87 V135+ V135- V136- 88 V137+ V137- V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V146- 93 V147+ V147- 94 V148+ V148-								
80 V128+ 81 V129+ 82 V130+ 83 V131+ 84 V132- 85 V133+ 86 V134+ 87 V135- 88 V136+ 89 V137+ 80 V138+ 88 V139+ 88 V139+ 80 V140+ 80 V140+ 80 V141+ 81 V142- 85 V143+ 86 V144+ 87 V136- 89 V137- 80 V140+ 80 V140+ <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
81 V129+ V129- 82 V130+ V130- 83 V131+ V131- 84 V132+ V132- 85 V133+ V133- 86 V134+ V134- 87 V135- V136- 88 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V146- 92 V146+ V146- 93 V147+ V148-								
82 V130+ V130- 83 V131+ V131- 84 V132- V132- 85 V133+ V133- 86 V134- V134- 87 V135+ V135- 88 V136- V136- 89 V137+ V137- 8A V138+ V139- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145- V146- 92 V146+ V146- 93 V147+ V148-								
83 V131+ V132- 84 V132+ V132- 85 V133+ V133- 86 V134+ V134- 87 V135- V135- 88 V136+ V136- 89 V137- V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V146- 93 V147+ V148- 94 V148+ V148-					V130-			
84 V132+ V132- 85 V133+ V133- 86 V134+ V134- 87 V135+ V135- 88 V136+ V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V145- 91 V145+ V145- 92 V146+ V146- 93 V147+ V148-								
85 V133+ V133- 86 V134+ V134- 87 V135- V135- 88 V136+ V136- 89 V137- V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V145- 92 V146+ V146- 93 V147+ V148-								
86 V134+ V134- 87 V135+ V135- 88 V136- V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V146- 92 V146+ V146- 93 V147+ V148-								
87 V135+ V136- 88 V136+ V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V146- 92 V146+ V146- 93 V147+ V148- 94 V148+ V148-								
88 V136+ V136- 89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V145- 92 V146+ V146- 93 V147+ V147- 94 V148+ V148-					V135-			
89 V137+ V137- 8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V145- 92 V146+ V146- 93 V147+ V147- 94 V148+ V148-		V136+			V136-			
8A V138+ V138- 8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V145- 92 V146+ V146- 93 V147+ V147- 94 V148+ V148-					V137-			
8B V139+ V139- 8C V140+ V140- 8D V141+ V141- 8E V142+ V142- 8F V143+ V143- 90 V144+ V144- 91 V145+ V145- 92 V146+ V146- 93 V147+ V147- 94 V148+ V148-								
8C V140+ 8D V141+ 8E V142+ 8F V143+ 90 V144+ 91 V145+ 92 V146+ 93 V147+ 94 V148+								
8D V141+ 8E V142+ 8F V143+ 90 V144+ 91 V145+ 92 V146+ 93 V147+ 94 V148+								
8E V142+ 8F V143+ 90 V144+ 91 V145+ 92 V146+ 93 V147+ 94 V148+					\/1 <u>/</u> 11_			
8F V143+ 90 V144+ 91 V145+ 92 V146+ 93 V147+ 94 V148+		V 141+ V/1/12±			V 1417			
90 V144+ 91 V145+ 92 V146+ 93 V147+ 94 V148+								
91 V145+ 92 V146+ 93 V147+ 94 V148+								
92 V146+ 93 V147+ 94 V148+ V148-								
93 V147+ 94 V148+ V148- V148-		V 140+						
94 V148+ V148-								
L_95 LV149+ L L LV149 L L LV149 L L L LV149 L L L L L L L L L L L L L L L L L L L								
	95	V149+			V149		l	

96	V150+			2.097	V150-			
97	V151+			2.056	V151-			
98	V152+			2.015	V152-			
99	V153+			1.975	V153-			
9A	V154+			1.934	V154-			
9B	V155+			1.893	V155-			
9C	V156+			1.853	V156-			
9D	V157+			1.817	V157-			
9E	V158+			1.782	V158-			
9F	V159+			1.746	V159-			
A0	V160+			1.711	V160-			
A1	V161+			1.676	V161-			
A2	V162+			1.640	V162-			
A3	V163+			1.605	V163-			
A4	V164+			1.575	V164-			
A5	V165+			1.545	V165-			
A6	V166+			1.515	V166-			
A7	V167+			1.485	V167-			
A8	V168+			1.455	V168-			
A9	V169+			1.425	V169-			
AA	V170+			1.395	V170-			
AB	V171+			1.363	V171-		ļ	
AC	V172+			1.330	V172-		ļ	
AD	V173+			1.298	V173-		ļ	
AE	V174+			1.265	V174-		ļ	
AF	V175+			1.233	V175-			
B0	V176+			1.200	V176-			
B1	V177+			1.166	V177-			
B2	V178+			1.131	V178-	ļ		ļ
B3	V179+		1	1.097	V179-		 	
B4	V180+			1.062	V180-			
B5	V181+			1.028	V181-			
B6 B7	V182+ V183+			0.985	V182- V183-			
B8	V183+ V184+			0.943 0.900	V183-			
B9	V185+			0.851	V185-			
BA	V186+			0.803	V186-			
BB	V187+			0.750	V187-			
BC	V188+			0.683	V188-			
BD	V189+			0.608	V189-			
BE	V190+			0.518	V190-			
BF	V191+			0.368	V191-			
C0	V192+			3.540	V192-			
C1	V193+			3.398	V193-			
C2	V194+			3.383	V194-			
C3	V195+			3.353	V195-			
C4	V196+			3.293	V196-			
C5	V197+			3.203	V197-			
C6	V198+			3.128	V198-			
C7	V199+			3.053	V199-			
C8	V200+			2.963	V200-			
C9	V201+			2.873	V201-			
CA	V202+			2.783	V202-		ļ	
CB	V203+			2.717	V203-		ļ	
CC	V204+			2.651	V204-			
CD	V205+			2.585	V205-			
CE	V206+			2.519	V206-			
CF	V207+		1	2.453	V207-		 	
D0	V208+		1	2.400	V208-		 	
D1	V209+			2.348	V209-		1	
D2	V210+			2.295	V210-		1	
D3 D4	V211+ V212+		+	2.243 2.190	V211- V212-		-	
D5	V212+ V213+	+	+	2.138	V212- V213-		 	
D6	V213+ V214+	+	+	2.138	V213- V214-		 	
D7	V214+ V215+			2.056	V214- V215-		 	
D8	V215+			2.015	V216-		 	
D9	V217+			1.975	V217-		1	
DA	V218+			1.934	V218-		İ	
DB	V219+			1.893	V219-			
DC	V220+			1.853	V220-			
DD	V221+			1.817	V221-			
DE	V222+			1.782	V222-			
DF	V223+			1.746	V223-			
E0	V224+			1.711	V224-			
E1	V225+			1.676	V225-			
E2	V226+			1.640	V226-		ļ	
E3	V227+			1.605	V227		1	

E4	V228+	V228-	
E5	V229+	V229-	
E6	V230+	V230-	
E7	V231+	V231-	
E8	V232+	V232-	
E9	V233+	V233-	
EA	V234+	V234-	
EB	V235+	V235-	
EC	V236+	V236-	
ED	V237+	V237-	
EE	V238+	V238-	
EF	V239+	V239-	
F0	V240+	V240-	
F1	V241+	V241-	
F2	V242+	V242-	
F3	V243+	V243-	
F4	V244+	V244-	
F5	V245+	V245-	
F6	V246+	V246-	
F7	V247+	V247-	
F8	V248+	V248-	
F9	V249+	V249-	
FA	V250+	V250-	
FB	V251+	V251-	
FC	V252+	V252-	
FD	V253+	V253-	
FE	V254+	V254-	
FF	V255+	V255-	

Fig. 5.9.5 Gamma Curve according to the GC0 to GC3 bit (TBD)

Fig. 5.9.6 Relationship between DDRAM data and output level

Fig. 5.9.7 Relationship between source output and VCOM

5.9.4 Temperature Compensation

The LDS285 has a built-in temperature compensation circuits. By the temperature compensation circuits, user can obtain a higher quality in the various temperature ranges.

5.10 POWER ON/OFF SEQUENCE

VDD1 and VDD2 can be applied in any order.

VDD2 and VDD1 can be powered down in any order.

During power off, if LCD is in the Sleep Out mode, VDD2 and VDD1 must be powered down minimum 120msec after RESB has been released.

During power off, if LCD is in the Sleep In mode, VDD1 or VDD2 can be powered down minimum 0msec after RESB has been released.

!SCE can be applied at any timing or can be permanently grounded. RESB has priority over !SCE.

There will be no damage to the display module if the power sequences are not met.

There will be no abnormal visible effects on the display panel during the Power On/Off Sequences.

There will be no abnormal visible effects on the display between ending the Power On Sequence and receiving Sleep Out command and between receiving Sleep In command and starting the Power Off Sequence. If RESB line is not held stable by host during Power On Sequence as defined in Sections 5.10.21, and 5.10.2, then it will be necessary to apply a Hardware Reset (RESB) after Host Power On Sequence is complete to ensure correct operation. Otherwise function is not guaranteed.

The power on/off sequence is illustrated below:

5.10.1 Case 1 - RESB line is held High or Unstable by Host at Power On

If RESB line is held High or unstable by the host during Power On, then a Hardware Reset must be applied after both VDD2 and VDD1 have been applied – otherwise correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

Fig. 5.10.1 RESB line is held high or unstable by Host at Power on

5.10.2 Case 2 – RESB line is held Low by host at Power On

If RESB line is held Low (and stable) by the host during Power On, then the RESB must be held low for minimum 10µsec after both VDD2 and VDD1 have been applied.

Fig. 5.10.2 RESB line is held low by Host at Power on

5.11 UNCONTROLLED POWER OFF

The uncontrolled power off means a situation when e.g. there is removed a battery without the controlled power off sequence. There will not be any damages for the display module or the display module will not cause any damages for the host or lines of the interface. At an uncontrolled power off the display will go blank and there will not be any visible effects within 1 second on the display (blank display) and remains blank until "Power On Sequence" powers it up.

5.12 POWER FLOW CHART FOR DIFFERENT POWER MODES

Note 1: There is not any abnormal visual effect when there is changing from one power mode to another power mode

2: There is not any limitation, which is not specified by this spec, when there is changing from one power mode to another power mode

Fig. 5.12.1 Power flow char for different Power Modest

5.13 INPUT / OUTPUT PIN STATE

5.13.1 Output or Bi-directional (I/O) Pins

Output or Bi-directional pins	After Power On	After Hardware Reset	After Software Reset
TE	Low	Low	Low
D23 to D0 (Output driver)	High-Z (Inactive)	High-Z (Inactive)	High-Z (Inactive)
TEST1, TEST4	X	X	Х

Note: There will be no output from D23-D0 during Power On/Off sequence, Hardware Reset and Software Reset.

5.13.2 Input Pins

Input pins	During Power On Process	After Power On	After Hardware Reset	After Software Reset	During Power Off Process
RESB	See Section 5.10	Input valid	Input valid	Input valid	See Section 5.10
CSB	Input invalid	Input valid	Input valid	Input valid	Input invalid
DC	Input invalid	Input valid	Input valid	Input valid	Input invalid
WRB	Input invalid	Input valid	Input valid	Input valid	Input invalid
RDB	Input invalid	Input valid	Input valid	Input valid	Input invalid
D23 to D0	Input invalid	Input valid	Input valid	Input valid	Input invalid
VSYNC, HSYNC, DCK, ENABLE, VD0	Input invalid	Input valid	Input valid	Input valid	Input invalid
SRGB, SINV, SMX,SMY, P68, BS2, BS1,BS0, TGS,EXTC,FRM,PSEL, OSC,TEST2, TEST3	Input invalid	Input valid	Input valid	Input valid	Input invalid

5.14 SLEEP OUT -COMMAND AND SELF-DIAGNOSTIC FUNCTIONS OF THE DISPLAY MODULE

5.14.1 Register loading Detection

Sleep Out-command (See section 6.1.13 "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module loading function of factory default values from EEPROM (or similar device) to registers of the display controller is working properly.

There are compared factory values of the EEPROM and register values of the display controller by the display controller. If those both values (EEPROM and register values) are same, there is inverted (=increased by 1) a bit, which is defined in command 6.1.11 "Read Display Self-Diagnostic Result (0Fh)" (=RDDSDR) (The used bit of this command is D7). If those both values are not same, this bit (D7) is not inverted (= increased by 1).

The flow chart for this internal function is following:

Note: There is not compared and loaded register values, which can be changed by user (00h to AFh and DAh to DDh), by the display module.

Fig. 5.14.1 Regist er loading Detection Flow chart

5.14.2 Functionality Detection

Sleep Out-command (See section 6.1.13 "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display module is still running and meets functionality requirements.

The internal function (= the display controller) is comparing, if the display module is still meeting functionality requirements (e.g. booster voltage levels, timings, etc.). If functionality requirement is met, there is inverted (= increased by 1) a bit, which defined in command 6.1.11 "Read Display Self- Diagnostic Result (0Fh)" (= RDDSDR) (The used bit of this command is D6). If functionality requirement is not same, this bit (D6) is not inverted (= increased by 1).

The flow chart for this internal function is following:

Note: It is needed 120msec after Sleep Out -command, when there is changing from Sleep In -mode to Sleep Out -mode, before it is possible to check if functionality requirements are met and a value of RDDSDR's D6 is valid. Otherwise, there is 5msec delay for D6's value, when Sleep Out -command is sent in Sleep Out -mode.

Fig. 5.14.2 Functionality Detection Flow chart

5.14.3 Chip Attachment Detection (optional)

Sleep Out-command (See section 6.1.13 "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if a chip or chips (e.g. driver, etc.) of the display module is/are attached to the circuit route of a flex foil or display glass ITO.

There is inverted (= increased by 1) a bit, which is defined in command 6.1.11 "Read Display Self- Diagnostic Result (0Fh)" (= RDDSDR) (The used bit of this command is D5), if the chip or chips is/are attached to the circuit route of the flex or display glass. If this chip is or those chips are not attached to the circuit route of the flex or display glass, this bit (D5) is not inverted (= increased by 1).

The following figure is for reference purposes; how this chip attachment can be implemented e.g. there are connected together 2 bumps via route of ITO or the flex foil on 4 corners of the driver (chip).

The flow chart for this internal function is following:

Fig. 5.14.3 Chip attachment Detection Flow chart

5.14.4 Display Glass Break Detection (optional)

Sleep Out-command (See section 6.1.12 "Sleep Out (11h)") is a trigger for an internal function of the display module, which indicates, if the display glass of the display module is broken or not.

There is inverted (= increased by 1) a bit, which is defined in command 6.1.11 "Read Display Self-Diagnostic Result (0Fh)" (= RDDSDR) (The used bit of this command is D4), if the display glass is not broken. If this display glass is broken, this bit (D4) is not inverted (= increased by 1).

The following figure is a reference, how this glass break detection can be implemented e.g. there is connected together 2 bumps via route of ITO. This route of ITO is the nearest route of the edge of the display glass.

The flow chart for this internal function is following:

Power on sequence
HW reset
SW reset

Sleep In (10h)

Sleep Out Mode
Sleep In Mode
RDDSDR's D4=0

Yes
Is the display glass is broken?

No
D4 inverted

Fig. 5.14.4 Display Glass Break Detection Flow chart

6 ADAPTIVE BCAKLIGHT CONTROL AND LED DRIVER CONTROL

6.1 LABC (LIGHT ADAPTIVE BACKLIGHT CONTROL)

6.1.1 System Block Diagam with ALS (Ambient Light Sensor) and LDS285

Fig. 6.1.1 System Block Diagram with ALS

The general block diagram of the ambient light and brightness control is illustrated in Fig 6.1.1. The information of the ambient light is sent to LDS285 and the Brightness Control in LDS285 deals with them if the user enables it.

The user can read ambient light information from LDS285 and control the brightness of LEDs in TFT Panel by writing the command to LDS285 manually. (See section 7.1.32 "Write Display Brightness (51h)").

6.1.2 LABC Function Flow

- 6.1.2.1 LABC contol from sleep out to sleep in
 - Previous status before the sequence
 - Sleep in Mode
 - BCTRL = 0, BL = 0 in "Write CTRL Display(53h)"
 - Command Sequence

Command: "Sleep out (11h)"

- Not working Brightness control
- Display backlight off

Command: "Write Display Brightness (51h)"

Parameter: DBV[7:0]: 216 (DBh: 85 % brightness)

- Not working Brightness control
- Display backlight off

Command: "Write CTRL Display (53h)"

Parameter: BCTRL = 1: Brightness Control Block on

BL = 1 : Backlight Control on

- Display waits for V-sync
- Display starts brightness control from 0 % to 85 % after V-sync

Command: "Write Display Brightness (51h)"

Parameter: DBV[7:0]: 255 (DBh: 100 % brightness)

- Display waits for V-sync
- Display starts brightness control from 85 % to 100 % after V-sync

Command: "Write CTRL Display (53h)"

Parameter: BCTRL = 0: Brightness Control Block off

BL = 0 : Backlight Control off

- Display waits for V-sync
- Display backlight off

Command: "Sleep in (10h)"

Following Fig 6.1.2 shows the brightness changes in the case of the above example..

Fig. 6.1.2 LABC (Light Adaptive Brightness control) example

6.2 CABC (CONTENT ADAPTIVE BACKLIGHT CONTROL)

A Content Adaptive Brightness Control function can be used to reduce the power consumption of the luminance source. Content adaptation means that content grey level scale can be increased while simultaneously lowering brightness of the backlight to achieve the same perceived brightness. The adjusted grey level scale and thus the power consumption reduction depend on the content of the image.

The function and its different modes can be controlled. See "7.1.36 Write Content Adaptive Brightness Control (55h)" for more information.

Definition modes:

Off mode:

Content Adaptive Brightness Control functionality is totally off.

UI(User Interface) image mode:

Optimized for UI image. It is kept image quality as much as possible.

Target power consumption reduction ratio: 10% or less

SI(Still picture mode):

Optimized for still picture. Some image quality degradation would be acceptable.

Target power consumption reduction ratio: more than 30 %

MI(Moving image mode):

Optimized for moving image. It is focused on the biggest power reduction with image quality degradation. Target power consumption reduction ratio: more than 30 %

6.2.1 CABC Function Flow

Content Adaptive Brightness Control operates like below.

Display brightness is changed, according to the image contents. The following graph in Fig 6.2.1 mentions the case of displaying three different images.

- Image A: -20 % brightness reduction
- Image B: -30 % brightness reduction
- Image C: -10 % brightness reduction

Fig. 6.2.1 CABC (Content Adaptive Brightness control) example)

6.3 CABC AND LABC

CABC and LABC can be "ON" simultaneously. Then the final Display Brightness is calculated with the following formula.

Display brightness = Brighness based on LABC * Brightness based on CABC

Table 6.3.1 Display Brightness ration when LABC and CABC are all "ON"

	LABC Brightness ratio	CABC Brightness ratio	Display Brightness ratio
Case1	85%	80%	68%
Case2	60%	70%	42%
Case3	85%	90%	76.5%

6.4 LED DRIVER CONTROL

LDS285 can change the brightness of LEDs in panel by controlling LED drivers if LABC or CABC is enabled (Refer to Section 6.1 LABC and 6.2 CABC).

LDS285 can support the two interfaces for two types of LED drivers, LED driver with pwm pulse contorl and LED driver with 1-wire digital interface (only for LDS8661), through the output LED_CNT.

6.4.1 LED Driver control with PWM pulse

LDS285 can calculate the backlight brightness level and send it to LED driver which is controlled by PWM pulse through the output LED_CNT.

Fig 6.4.1 is the basic timing diagram which is used in LDS285 to contol LED driver.

Fig. 6.4.1 PWM pulse timing on LED_CNT output

The period t_{period} of PWM pulse can be changed by the 3^{rd} parameter PER[3:0] of the command "LEDCTRL(EFh)". (see the section 7.1.55 LEDCTRL)

The LED-on time t_{on} and the LED-off time t_{off} are decided by the backlight brightness level which is calculated with LABC or/and CABC in LDS285. If LABC is off and CABC is off, then LED_CNT is the same to Display-On signal.

Fig 6.4.2 shows the change of PWM pulse according to PER[3:0].

Fig. 6.4.2 PWM pulse timing according to PER[3:0]

Fig 6.4.3 shows the two examples of PWM pulse with LABC, CABC and PER[3:0]

Fig. 6.4.3 PWM pulse examples with LABC, CABC and PER[3:0]

6.4.2 LED Driver control with 1-wire digital interface(only for LDS8861)

LDS285 can support only the LED driver LDS8861 with 1-wire digital interface.

Here we specify the interface between LDS285 and LDS8861 briefly. The LED_CNT output in LDS285 should be connected to EN/SET pin in LDS8816.

Fig. 6.4.4 Interconnection between LDS285 and LDS8861

LDS285 control LDS8861 through the one wire programming. The EN/SET logic input in LDS8861 operates as a chip enable and singla wire addressable interface for control and current setting of all LEDs.

LDS285 can write data to LDS8861 by programming the 2nd parameter of the command "LEDCTRL(EFh)". (see the section 7.1.55 LEDCTRL). The 2nd parameter of the command "LEDCTRL(EFh)" consists of ADDR[2:0] and DB[3:0].

The user can change the status of LDS8861 by changing the 2nd parameter of the command "LEDCTRL(EFh)".

Fig.6.4.5 shows the timing specification of EN/SET in LDS8861 and LDS285 drives the LED_CNT output meeting the timing specification of EN/SET in LDS8861.

If you need more detailed specification, please refer to "the Specification of LDS8861 (6-Channel Fractional Charge Pump LED Driver in 3x3 TQFN).

symbol	Name	Conditions	Min	Тур	Max	Units
T _{SETUP}	EN/SET setup from shutdown		10			us
T _{LO}	EN/SET program low time		0.2		100	us
T _{HI}	EN/SET program high time		0.2		100	us
T _{OFF}	EN/SET low time to shutdown		1.5			ms
T _{DATADELAY}	EN/SET Delay to DATA		500		1000	us
T _{RESETDELAY}	EN/SET Delay High to ADDRESS		2			ms

Fig. 6.4.5 EN/SET timing specification in LDS8861

7 INSTRUCTION DESCRIPTION

7.1 INSTRUCTION CODE

7.1.1 Instruction Code Table

Table 7.1.1 Instruction Code

"-": Don't care Instruction Refer DC WRB **RDB** D17-8 D7 D6 D5 D4 D3 D2 D1 D0 (Hex) **Function** NOP 7.1.2 0 1 0 0 0 0 0 0 0 0 (00h) No Operation SWRESET 7.1.3 0 ↑ 1 0 0 0 0 0 0 0 1 (01h) Software reset 0 1 0 0 0 0 0 0 0 (04h) Read Display ID 1 Dummy read **RDDID** 7.1.4 1 ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID1 read 1 1 ID26 ID25 ID24 ID23 ID22 ID21 ID20 ID2 read 1 ID32 ID37 ID36 ID35 ID34 ID33 ID31 ID30 ID3 read 1 0 0 1 Read Display Status 1 0 0 0 1 0 0 (09h) 1 1 1 Dummy read 1 1 ST31 ST30 ST29 ST28 ST27 ST26 ST25 ST24 1 **RDDST** 7.1.5 1 1 1 ST23 ST22 ST21 ST20 ST19 ST18 ST17 ST16 1 1 1 ST15 ST14 ST13 ST12 ST11 ST10 ST9 ST8 ST4 ST2 1 1 ST7 ST6 ST5 ST3 ST1 ST₀ ↑ 0 0 0 Read Display Power Mode 0 1 0 0 1 0 1 (0Ah) **RDDPM** 7.1.6 1 1 1 Dummy read 1 1 1 _ D7 D6 D5 D4 D3 D2 D1 D0 0 ↑ 1 _ 0 0 0 0 1 0 1 1 (0Bh) Read Display MADCTR RDDMADCTR 7.1.7 1 1 1 -Dummy read 1 -D7 D6 D5 D4 D3 D2 D1 D0 Read Display Pixel Format ↑ 0 0 0 (0Ch) 0 1 0 0 1 1 0 RDDCOLMOD 7.1.8 1 Dummy read 1 1 1 ↑ D7 D6 D5 D3 D2 1 D4 D1 D0 0 ↑ 1 0 0 0 0 1 0 1 (0Dh) Read Display Image Mode 1 **RDDIM** 7.1.9 1 1 Dummy read D3 1 ↑ D7 D6 D5 D4 D2 D1 D0 1 (0Eh) Read Display Signal Mode 0 1 0 0 0 0 1 1 1 0 **RDDSM** 7.1.10 1 Dummy read ↑ D7 D6 D5 D4 D3 D2 D1 D0 Read Display Self-diagnostic result 0 1 0 0 0 0 1 1 1 1 (0Fh) **RDDSDR** 7.1.11 1 Dummy read 1 D7 D6 D5 D4 D3 D2 D1 D0 SLPIN ↑ 7.1.12 0 1 0 0 1 0 0 (10h) Sleep in & booster off 0 0 0 SLPOUT ↑ 7.1.13 0 1 0 0 0 1 0 0 0 1 (11h) Sleep out & booster on PTLON 7.1.14 ↑ 1 0 1 1 (12h) 0 0 0 0 0 0 Partial mode on ↑ NORON 7.1.15 0 1 0 0 0 1 0 0 1 1 (13h) Partial off (Normal) INVOFF 1 7.1.16 0 1 0 0 1 0 0 0 0 0 (20h) Display inversion off (normal) INVON 7.1.17 ↑ 0 0 0 0 0 (21h) Display inversion on 0 1 1 0 1 1 0 0 0 0 1 0 0 1 (26h) Gamma curve select **GAMSET** 7.1.18 1 1 _ GC7 GC6 GC5 GC4 GC3 GC2 GC1 GC0 1 DISPOFF 7.1.19 0 1 1 _ 0 0 1 0 1 0 0 0 (28h) Display off DISPON 7.1.20 0 1 1 _ 0 0 1 0 1 0 0 1 (29h) Display on 0 (2Ah) 0 1 0 0 1 0 1 0 Column address set XS15 XS13 XS12 XS8 1 XS14 XS11 KS10 XS9 X address start: $0 \le XS \le EFh$: MV=0 CASET 7.1.21 1 1 XS5 XS4 XS3 XS2 XS1 XS0 1 XS7 XS6 X address start: 0 ≤ XS ≤ 13Fh :MV=1 XE15 XE14 XE13 1 ↑ 1 XE12 XE11 XE10 XE9 XE8 X address end: $XS \le XE \le EFh : MV=0$ -1 ↑ 1 XE7 XE6 XE5 XE4 XE3 XE2 XE1 XE0 X address end: XS ≤ XE ≤ 13Fh :MV=1

Table 7.1.2 Instruction Code (Continued)

"-":Don't care

															"-":Don't care
Instruction	Refer	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Hex)	Function
RASET	7.1.22	0	1	1	-	0	0	1	0	1	0	1	1	(2Bh)	Row address set
		1	1	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8	-	Y address start: 0 ≤ YS ≤ 13Fh :MV=0
		1	1	1		YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	-	Y address start: 0 ≤ YS ≤ EFh :MV=1
		1	1	1		YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8	-	Y address end: YS ≤ YE ≤ 13Fh :MV=0
		1	1	1		YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	-	Y address end: YS ≤ YE ≤ EFh :MV=1
RAMWR	7.1.23	0	1	1	-	0	0	1	0	1	1	0	0	(2Ch)	Memory write
		1	1	1	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	-	Write data
RAMRD	7.1.24	0	1	1	-	0	0	1	0	1	1	1	0	(2Eh)	Memory read
		1	1	1	-	-	-	-	-	-	-	-	-	-	Dummy read
		1	1	1	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	-	Read data
PTLAR	7.1.25	0	1	1	-	0	0	1	1	0	0	0	0	(30h)	Partial start/end address set
		1	1	1	-	PSL15	PSL14	PSL13	PSL12	PSL11	PSL10	PSL9	PSL8	-	Partial start address (0,1,2,,319)
		1	1	1	-	PSL7	PSL6	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0	-	
		1	1	1	-	PEL15	PEL14	PEL13	PEL12	PEL11	PEL10	PEL9	PEL8	-	Partial end address (0,1,2,, 319)
		1	1	1	-	PEL7	PEL6	PEL5	PEL4	PEL3		PEL1	PEL0	-	, , ,
TEOFF	7.1.26	0	1	1	-	0	0	1	1	0	1	0	0	(34h)	Tearing effect line off
TEON	7.1.27	0	1	1	-	0	0	1	1	0	1	0	1		Tearing effect mode set & on
	Í	1	1	1	-	-	-	-	-	-	-	-	М	-	M="0": Mode1, M="1": Mode2
MADCTR	7.1.28	0	1	1	-	0	0	1	1	0	1	1	0	(36h)	Memory data access control
	ľ	1	1	1	-	MY	MX	MV	ML	RGB	-	-	-	-	-
IDMOFF	7.1.29	0	1	1	-	0	0	1	1	1	0	0	0	(38h)	Idle mode off
IDMON	7.1.30	0	1	1	-	0	0	1	1	1	0	0	1	(39h)	Idle mode on
COLMOD	7.1.31	0	<u>†</u>	1	-	0	0	1	1	1	0	1	0	(3Ah)	
		1	<u>†</u>	1	-	-	RP2	RP1	RP0	-	P2	P1	P0	-	Interface format
WRDISBV	7.1.32	0	1	1	-	0	1	0	1	0	0	0	1	(51h)	Write Display Brightness
		1	<u>†</u>	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	,	Write Data
RDDISBV	7.1.33	0	<u>†</u>	1		0	1	0	1	0	0	1	0	(52h)	Read Display Brightness value
		1	1	1	-	-	-	-	-	-	-	-	-	\·	Dummy Read
		1	1	<u>†</u>	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		Read parameter
WRCTRLD	7.1.34	0	1	1	-	0	1	0	1	0	0	1	1	(53h)	'
		1	<u>†</u>	1	-	-		BCTRL	-	-	BL	-	-	-	Write Data
RDCTRLD	7.1.35	0	<u>†</u>	1	-	0	1	0	1	0	1	0	0	(54h)	Read Control Display
		1	1	1	-	-	-	-	-	-	-	Ť	-	(*,	Dummy Read
		1	1	1	-	-	-	BCTRL	-	-	BL	-	-		Read parameter
WRCABC	7.1.36	0	1	1	-	0	1	0	1	0	1	0	1	(55h)	Wrtie Content Adaptive Brightness
		1	<u>†</u>	1		-	-					C1	C0	-	Write Data
RDCABC	7.1.37	0	<u>†</u>	1	-	0	1	0	1	0	1	1	0	(56h)	Read Content Adaptive Brightness
		1	1	1	-	-	-	-	-	-	-	-	-	(****)	Dummy Read
		1	1	<u> </u>	-	-	-					C1	C0		Read parameter
RDID1	7.1.38	0	1	1	_	1	1	0	1	1	0	1	0	(DAh)	Read ID1
		1	1	1	_	-	-	-	-	Ė	-	Ė	-	-	Dummy read
		1	1	<u>†</u>	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	-	Read parameter
RDID2	7.1.39	0	<u> </u>	1	-	1	1	0	1	1	0	1	1	(DBh)	<u>'</u>
		1	1	<u> </u>	-	-		-	-	-	-	<u> </u>	-	-	Dummy read
		1	1	<u> </u>	_	1	ID26	ID25	ID24	ID23	ID22	ID21	ID20	-	Read parameter
RDID3	7.1.40	0	<u>'</u>	1	_	1	1	0	1	1	1	0	0	(DCh)	,
יטוטי	7.1.40	1	1	†		'	_ '	_			_ '	_	_	-	Dummy read
		1	1	↑		ID37	ID36	IDSE	ID34	ID33	ID32	ID34	ID30	-	Read parameter
1		ı	_ '			וטטו	סטעו	ID35	1004	וטטט	וטטע	ID31	וטטטו		rveau parameter

Table 7.1.3 Instruction Code (Extended code set)

"-": Don't Care

Imptureties:	Defe-	DC	WRB	חחם	D17-8	D7	De	D5	D4	Da	Da	D4	DΛ	/Hav/	"-": Don't Care ex) Function				
	Refer			_	8-1וע		D6		D4	D3	D2	D1	D0	•					
IFMODE	7.1.41	0	↑	1	-	1	0	1	1	0	0	0	0	(B0h)	Set display interface mode				
		1	<u>↑</u>	1	-	-	-	-	-	-	-	IF1	IF0	-	Data transfer mode set				
DIOOLI/	7.4.40	1	<u>↑</u>	1	-	-	-	DW	-	DP	EP	HSP	VSP	- (541)	RGB I/F data width & Clock polarity set				
DISCLK	7.1.42	0	↑	1	-	1	0	1	1	0	0	0	1	(B1h)	Display clock set				
		1	↑	1	-	HA7	HA 6	HA 5	HA 4	HA 3	HA 2	HA 1	HA 0	-	Number of clocks during 1H (full-color)				
		1	<u>↑</u>	1	-	-	-	BPA5	BPA4	BPA3	BPA2	BPA1	BPA0	-	Number of vertical back porches (full-color)				
		1	↑ ↑	1	-	-	-	FPA5	FPA4	FPA3	FPA2	FPA1	FPA0	-	Number of vertical front porches (full-color)				
		1	•	1	-	HB7	HB 6	HB 5 BPB5	HB 4 BPB4	HB 3 BPB3	HB 2 BPB2	HB 1 BPB1	HB 0 BPB0	-	Number of clocks during 1H (8-color)				
		1	↑		-	-	-			_				-	Number of vertical back porches (8-color)				
IND/OTD	7 4 40		↑	1				FPB5	FPB4	FPB3	FPB2	FPB1	FPB0		Number of vertical front porches (8-color)				
INVCTR	7.1.43	0	↑	1	-	1	0	1	1	0	0	1	0	(B2h)	Display inversion control				
		1	↑	1	-	0	0	0	0	-	NLA2	NLA1	NLA0	-	Line inversion (full color)				
		1	↑	1	-	0	0	0	0	-	NLB2	NLB1	NLB0	-	Line inversion (8-color)				
REGCTR	7.1.44	0	1	1	-	1	1	0	0	0	0	0	0	(C0h)	Regulator control				
		1	1	1	-	-	VR2	VR1	VR0	-	VS2	VS1	VS0	-	VR/VS regulator output voltage control				
VCOMCTR	7.1.45	0	↑	1	-	1	1	0	0	0	0	0	1	(C1h)	VCOML/VCOMH voltage control				
		1	↑	1	-	-	-	VCLC5	VCLC4	VCLC3	VCLC2	VCLC1	VCLC0	-	-2.5V ~ +0.5V (50mV step)				
		1	1	1		-	-	VCHC5	VCHC4	VCHC3	VCHC2	VCHC1	VCHC0		+2.5V ~ +5.5V (50mV step)				
GAMCTR1	7.1.46	0	↑	1	-	1	1	0	0	1	0	0	0	(C8h)	Set gamma correction characteristics				
		1	↑	1	-	-	-	GS102	GS101	GS100	GS112	GS111	GS110	-	Gamma adjustment .				
		1	↑	1	-	-	-	GS122	GS121	GS120	GS132	GS131	GS130	-	Gamma adjustment .				
		1	1	1	-	-	-	GS142	GS141	GS140	GS152	GS151	GS150	-	Gamma adjustment .				
		1	↑	1	-	-	-	GS162	GS161	GS160	GS172	GS171	GS170	-	Gamma adjustment .				
GAMCTR2	7.1.47	0	1	1	-	1	1	0	0	1	0	0	1	(C9h)	Set gamma correction characteristics				
		1	↑	1	-	•	-	GS202	GS201	GS200	GS212	GS211	GS210	-	Gamma adjustment .				
		1	1	1		-	-	GS222	GS221	GS220	GS232	GS231	GS230		Gamma adjustment .				
		1	↑	1	-	-	-	GS242	GS241	GS240	GS252	GS251	GS250	-	Gamma adjustment .				
		1	1	1	-	-	-	GS262	GS261	GS260	GS272	GS271	GS270	-	Gamma adjustment .				
GAMCTR3	7.1.48	0	↑	1	-	1	1	0	0	1	0	1	0	(CAh)	Set gamma correction characteristics				
		1	1	1	-		-	GS302	GS301	GS300	GS312	GS311	GS310	-	Gamma adjustment .				
		1	1	1	-	-	-	GS322	GS321	GS320	GS332	GS331	GS330		Gamma adjustment .				
		1	1	1	-	-	-	GS342	GS341	GS340	GS352	GS351	GS350	-	Gamma adjustment .				
		1	1	1	-	-	-	GS362	GS361	GS360	GS372	GS371	GS370	-	Gamma adjustment .				
GAMCTR4	7.1.49	0	↑	1	-	1	1	0	0	1	0	1	1	(CBh)	Set gamma correction characteristics				
		1	1	1	-		-	GS402	GS401	GS400	GS412	GS411	GS410	-	Gamma adjustment .				
		1	1	1	-	-	-	GS422	GS421	GS420	GS432	GS431	GS430	-	Gamma adjustment .				
		1	1	1	-	-	-	GS442	GS441	GS440	GS452	GS451	GS450	-	Gamma adjustment .				
 		1	↑	1					GS461						Gamma adjustment .				

Table 7.1.4 Instruction Code (Extended code set, continued)

"-": Don't Care

Instructi on	Refer	DC	WRB	RDB	D17 -8	D7	D6	D5	D4	D3	D2	D1	D0	(Hex)	Function
EPPGMDB	7.1.50	0	1	1	-	1	1	0	1	0	0	0	0	(D0h)	Write ID2,VCOM Offset for EEPROM program
		1	1	1	-	-	-	-	-	-	VCOF82	VCOF81	VCOF80	-	VCOM middle voltage trimming in 8color
		1	1	1		-	-	VCOF5	VCOF4	VCOF3	VCOF2	VCOF1	VCOF0		VCOM middle voltage trimming
		1	↑	1		ID26	ID25	ID24	ID23	ID22	ID21	ID20	db_sel		Just ID2 [6:0] are stored in EEPROM
EPERASE	7.1.51	0	↑	1	-	1	1	0	1	0	0	0	1	(D1h)	EEPROM erase
EPPROG	7.1.52	0	↑	1	-	1	1	0	1	0	0	1	0	(D2h)	EEPROM program
EPRDVRF	7.1.53	0	1	1	-	1	1	0	1	0	0	1	1	(D3h)	EEPROM read, verify register set
						0	0	0	0	READ	PGMVF	ERVF	0		macro read , program verify, Erase verify
RDVCOF	7.1.54	0	↑	1	-	1	1	0	1	1	0	0	1	(D9h)	VCOM offset bits read
		1	1	↑	-	•	•	٠	-	•	•	i	-		Dummy Read
		1	1	↑	-	1	1	RVCOF5	RVCOF4	RVCOF3	RVCOF2	RVCOF1	RVCOF0	-	Read Parameter
		1	1	↑							RVCOF82	RVCOF81	RVCOF80		Read Parameter
LEDCTRL	7.1.55	0	1	1	-	1	1	1	0	1	1	1	1	(EFh)	Write LED control value
		1	1	1									TYPE	-	LED driver type
		1	1	1	,	0	ADR2	ADR1	ADR0	DB3	DB2	DB1	DB0	-	Control value for LDS8861
		1	1	1		0	PER3	PER2	PER1	PER0	STEP2	STEP1	STEP0	-	Contorl value for PWM output

NOTE:

- 1) After the H/W reset by RESB pin or S/W reset by SWRESET command, each internal register becomes default state (Refer "RESET TABLE" section)
- 2) Before command D1(EPER), supply 22V to the ME_CMP for EEPROM Erase.
- 3) Before command D2(EPPGM), supply 8.5V to the ME_CMP for EEPROM Program.
- 4) To use extended code set,

the TGS pad should be connected to VSS. Extended code set is just used for module test. If TGS pad is not connected to VSS, all the extended code set will be ignored and regarded as NOP (00h) command.

- 5) Undefined commands are treated as NOP (00 h) command.
- 6) Commands 10h, 12h, 13h, 20h, 21h, 26h, 28h, 29h, 30h, 33h, 36h (ML parameter only), 37h, 38h and 39h are updated during V-sync when Module is in Sleep Out Mode to avoid abnormal visual effects. During Sleep In mode, these commands are updated immediately. Read status (09h), Read Display Power Mode (0AH), Read Display MADCTL (0BH), Read Display Pixel Format (0CH), Read Display Image Mode (0DH), Read Display Signal Mode (0EH) and Read Display Self Diagnostic Result (0FH) of these commands of these commands is updated immediately both in Sleep In mode and Sleep Out mode.

7.1.2 NOP (00h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
NOP	0	1	1		0	0	0	0	0	0	0	0	(00h)
Parameter	ameter No Parameter												

	This command is empty command. It does not have	ive effect on the display module.									
Description	However it can be used to terminate DDRAM data write or read as described in RAMW (Memory Write), RAMRD (Memory Read) and parameter write commands.										
Restriction	-										
	Status	Availability									
	Normal Mode On, Idle Mode Off, Sleep Out	Yes									
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes									
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes									
	Partial Mode On, Idle Mode On, Sleep Out	Yes									
	Sleep In	Yes									
	Status	Default Value									
Defect	Power On Sequence	N/A									
Default	S/W Reset	N/A									
	H/W Reset	N/A									
Flow Chart	-										

7.1.3 SWRESET: Software Reset (01h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
SWRESET	0	1	1		0	0	0	0	0	0	0	1	(01h)
Parameter	meter No Parameter												

NOTE: "-" D	on't care										
Description		• • •									
	It will be necessary to wait 5msec before sendin	g new command following software reset.									
	The display module loads all display supplier's f	actory default values to the registers during 5msec.									
Restriction	If Software Reset is applied during Sleep Out mode, it will be necessary to wait 120msec before sending Sleep Out command.										
	Software Reset command cannot be sent during Sleep Out sequence.										
	Status	Availability									
	Normal Mode On, Idle Mode Off, Sleep Out	Yes									
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes									
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes									
	Partial Mode On, Idle Mode On, Sleep Out	Yes									
	Sleep In Yes										
	Status	Default Value									
	Power On Sequence	N/A									
Default	S/W Reset	N/A									
	H/W Reset	N/A									
Flow Chart	Display whole blank screen Set Commands to S/W Default Value Sleep In Mode	Parameter Display Action Mode Sequential transfer									

7.1.4 RDDID: Read Display ID (04h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDID	0	1	1	-	0	0	0	0	0	1	0	0	(04h)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	-
3 rd parameter	1	1	1	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20	-
4 th parameter	1	1	↑	-	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	-

NOTE: "-" D	on't care					
	This read byte returns 24-bit display	identification	n infor	mation.		
	The 1 st parameter is dummy data					
	The 2 nd parameter (ID17 to ID10): Lo	CD module's	manı	ufacturer ID.		
Description	The 3 rd parameter (ID27 to ID20): L0					
	The 4 th parameter (ID37 to UD30): L					
	NOTE: Commands RDID1/2/3(DAh, D				meters 2,3,4 of the	command
	04h, respectively.			•	·	
Restriction						
	Status			Availability		
	Normal Mode On, Idle Mode Off, S	Sleep Out		Yes		
Register	Normal Mode On, Idle Mode On, S	•		Yes		
Availability	Partial Mode On, Idle Mode Off, S			Yes		
	Partial Mode On, Idle Mode On, S	leep Out		Yes		
	Sleep In			Yes		
	Otatus .			Dafault Walio		
	Status	ID1		Default Value ID2	ID3	
Default	Power On Sequence	Not Fixed	d	Not Fixed	Not Fixed	
	S/W Reset	Not Fixed		Not Fixed	Not Fixed	
	H/W Reset	Not Fixed	d	Not Fixed	Not Fixed	
	Serial I/F Mode	Paralle	ا ارا	Mode		
	RDDID (04h)	RD	DID (C	Host [
		•••••		Driver	Legend	1 :
	Dummy Clock	Dur	mmy R	ead	Command	
			<u> </u>	1	Parameter	
Flow Chart	,		+		Oisplay)
	Send ID1[7:0]	Sen	nd ID1[7:0]	Action	,
	<u> </u>		<u> </u>		7.0	
	Send ID2[7:0]	Send	d ID2[7	7:0]	Mode	<i>)</i>
			$\overline{}$		Sequential	
	Send ID3[7:0]	Sen	d ID3[7	7:01	transfer 4	'
		- OGIN	ر امرار ۳	<u></u> i_		i

7.1.5 RDDST: Read Display Status (09h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDST	0	1	1	-	0	0	0	0	1	0	0	1	(09h)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	ST31	ST30	ST29	ST28	ST27	ST26	ST25	ST24	-
3 rd parameter	1	1	↑	-	ST23	ST22	ST21	ST20	ST19	ST18	ST17	ST16	-
4 th parameter	1	1	↑	-	ST15	ST14	ST13	ST12	ST11	ST10	ST9	ST8	-
5 th parameter	1	1	↑	-	ST7	ST6	ST5	ST4	ST3	ST2	ST1	ST0	-

NOTE: "-" Do	micare		
	This com	mand indicates the current statu	s of the display as described in the table below:
	Bit	Description	Value
	ST31	Booster Voltage Status	"1"=Booster on, "0"=off
	ST30	Row Address Order (MY)	"1"=Decrement, "0"=Increment
	ST29	Column Address Order (MX)	"1"=Decrement, "0"=Increment
	ST28	Row/Column Exchange (MV)	"1"= Row/column exchange (MV=1)
			"0"= Normal (MV=0)
	ST27	Scan Address Order (ML)	"1"=Decrement, "0"=Increment
	ST26	RGB/BGR Order (RGB)	"1"=BGR, "0"=RGB
	ST25	Not Used	"0"
	ST24	Not Used	"0"
	ST23	Not Used	"0"
	ST22	Interface Colour Pixel Format	
	ST21	Definition	"110" = 18-bit / pixel (666 mode)
	ST20		"111" = 24-bit / pixel (888 mode)
	ST19	Idle Mode On/Off	"1" = On, "0" = Off
	ST18	Partial Mode On/Off	"1" = On, "0" = Off
	ST17	Sleep In/Out	"1" = Out, "0" = In
Description	ST16	Display Normal Mode On/Off	"1" = Normal Display, "0" = Partial Display
Description	ST15	Vertical Scrolling Status	"1" = Scroll on, "0" = Scroll off
	ST14	Not Used	"0"
	ST13	Inversion Status	"1" = On, "0" = Off
	ST12	All Pixels On (Not Used)	"0"
	ST11	All Pixels Off (Not Used)	"0"
	ST10	Display On/Off	"1" = On, "0" = Off
	ST9	Tearing effect line on/off	"1" = On, "0" = Off
	ST8	Gamma Curve Selection	"000" = GC0, "001" = GC1,
	ST7		"010" = GC2, "011" = GC3
	ST6		"100"~"111":Not used
	ST5	Tearing effect line mode	"0" = mode1, "1" = mode2
	ST4	Not Used	"0"
	ST3	Not Used	"0"
	ST2	Not Used	"0"
	ST1	Not Used	"0"
	ST0	Not Used	"0"
	ST0	Not Used	"0"

Restriction		
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
Default	Status Power On Sequence S/W Reset	Default Value (ST31 to ST0): 0000 0000_0111 0001_0000 0000_0000 0000 0xxx xx00_0xxx 0001_0000 0000_0000 0000
	H/W Reset	0000 0000_0111 0001_0000 0000_0000 0000
Flow Chart	RDDST (09h) RE	lel I/F Mode DDST (09h) Host Command Parameter Display Action Mode and ST[23:16] End ST[15:8] end ST[7:0]

7.1.6 RDDPM: Read Display Power Mode (0Ah)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDPM	0	1	1		0	0	0	0	1	0	1	0	(0Ah)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

NOTE: "-" Do	on't care		
	This command indicates the current sta	status of the display as described in the table below:	
	Bit Description	Value	
	D7 Booster Voltage Status	"1"=Booster on, "0"=Booster off	
	D6 Idle Mode On/Off	"1" = Idle Mode On, "0" = Idle Mode Off	
	D5 Partial Mode On/Off	"1" = Partial Mode On, "0" = Partial Mode Off	
Description	D4 Sleep In/Out	"1" = Sleep Out, "0" = Sleep In	
	D3 Display Normal Mode On/Off	ff "1" = Normal Display, "0" = Partial Display	
	D2 Display On/Off	"1" = Display On, "0" = Display Off	
	D1 Not Used	"0"	
	D0 Not Used	"0"	
Restriction			
	Status	Availability	
	Normal Mode On, Idle Mode Off, Slee	eep Out Yes	
Register	Normal Mode On, Idle Mode On, Slee	eep Out Yes	
Availability	Partial Mode On, Idle Mode Off, Slee	eep Out Yes	
	Partial Mode On, Idle Mode On, Slee	eep Out Yes	
	Sleep In	Yes	
	Otatua	D. (adi Value (D7 (a D0)	
	Status	Default Value (D7 to D0)	
Default	Power On Sequence S/W Reset	0000_1000 (08h) 0000_1000 (08h)	
	H/W Reset	0000_1000 (08h)	
	III/W Reset	0000_1000 (0011)	
	Serial I/F Mode	Parallel I/F Mode Legend	
	RDDPM (0Ah)	RDDPM (0Ah)	 -
		Host Parameter Driver	
	0 and D [7:0]	Display)	
Flow Chart	Send D [7:0]	Dummy Read Action	į
			-
		Send D [7:0]	1
	4		-
		Sequential transfer	
		taise 2	.;

7.1.7 RDDMADCTR: Read Display MADCTR (0Bh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDMADCTR	0	1	1	-	0	0	0	0	1	0	1	1	(0Bh)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

7.1.8 RDDCOLMOD: Read Display Pixel Format (0Ch)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDCOLMOD	0	1	1		0	0	0	0	1	1	0	0	(0Ch)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

7.1.9 RDDIM: Read Display Image Mode (0Dh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDIM	0	↑	1	-	0	0	0	0	1	1	0	1	(0Dh)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

7.1.10 RDDSM: Read Display Signal Mode (0Eh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDSM	0	1	1	-	0	0	0	0	1	1	1	0	(0Eh)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

NOTE: "-" Do	on t care		
	This command indicates the current status of the	e display as described in the table below:	
	Bit Description	Value	
	D7 Tearing Effect Line On/Off	"1" = On, "0" = Off	
	D6 Tearing effect line mode	"0" = mode1, "1" = mode2	
December	D5 Horizontal Sync. (RGB I/F) On/Off	"0"	
Description	D4 Vertical Sync. (RGB I/F) On/Off	"0"	
	D3 Pixel Clock (DCK, RGB I/F) On/Off	"0"	
	D2 Data Enable (ENABLE, RGB I/F) On/Off		
	D1 Not Used	"0"	
	D0 Not Used	"0"	
Restriction			
	Status	Availability	
	Normal Mode On, Idle Mode Off, Sleep Out	Yes	
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes	
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes	
	Partial Mode On, Idle Mode On, Sleep Out	Yes	
	Sleep In	Yes	
	Olates	D. (a.)(1)(al., a. (D7.) a. D0)	
	Status Pourar On Seguence	Default Value (D7 to D0) 0000_0000 (00h)	
Default	Power On Sequence S/W Reset	0000_0000 (00h)	
	H/W Reset	, ,	
	n/w reset	0000_0000 (00h)	
	Ossist I/E Mada	rallel I/F Mode	
	Serial I/F Mode Pa		1 ¦
	RDDSM (0Eh)	RDDSM (0Eh)	<u> </u>
		Host Parameter	
		Driver	\
Flow Chart	Send D [7:0]	Dummy Read Display	٦ ¦ .
Flow Chart		Action	> ¦
	_	, Mada	\
		Send D [7:0]	ノ ¦ .
		Sequential	. !
		transfer)
			!

7.1.11 RDDSDR: Read Display Self-Diagnostic Result (0Fh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDSDR	0	1	1	-	0	0	0	0	1	1	1	1	(0Fh)
Dummy Read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd parameter	1	1	↑	-	D7	D6	D5	D4	D3	D2	D1	D0	-

NOTE: - Don't care									
	This command indicates the current status of the display as described in the table below:								
Description	Bit Description	Value							
	D7 Register Loading Detection D6 Functionality Detection	refer section 5.14							
	D5 Chip Attachment Detection	-							
	D4 Display Glass Break Detection	-							
	D3 Not Used	"O"							
	D2 Not Used	"O"							
	D1 Not Used	"0"							
	D0 Not Used	"0"							
Restriction									
Register Availability	Status	Availability							
	Normal Mode On, Idle Mode Off, Sleep O	Out Yes							
	Normal Mode On, Idle Mode On, Sleep O	Out Yes							
	Partial Mode On, Idle Mode Off, Sleep C								
	Partial Mode On, Idle Mode On, Sleep C								
	Sleep In	Yes							
Default	Status	Default Value (D7 to D0)							
	Power On Sequence	0000_0000 (00h)							
	S/W Reset	0000_0000 (00h)							
	H/W Reset	0000_0000 (00h)							
		í							
	Serial I/F Mode	Parallel I/F Mode Legend							
	RDDSDR (0Fh)	RDDSDR (0Fh)							
	RDDSDR (0FII)	Host Parameter							
		Driver							
Flow Chart	Send D [7:0]	Dummy Read Display							
	Zena z [r.o]	Action							
		Send D [7:0] Mode							
	_	Sequential							
		transfer							

7.1.12 SLPIN: Sleep In (10h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
SLPIN	0	1	1	-	0	0	0	1	0	0	0	0	(10h)
Parameter	arameter No Parameter												

	This command causes the LCD module to enter In this mode the DC/DC converter is stopped, Int stopped.	the minimum power consumption mode. ernal display oscillator is stopped, and panel scanning is						
	Source/Gate Output Blank display	STOP						
Description	Memory scan operation	STOP						
	Internal Oscillator	STOP						
	DC/DC Converter	Discharge						
	MPU interface and memory are still working and	I the memory keeps its contents						
	This command has no effect when module is already in sleep in mode. Sleep In Mode can only be exit by the Sleep Out Command (11h).							
Restriction	It will be necessary to wait 5msec before sending next command, this is to allow time for the supporting voltages and clock circuits to stabilize.							
	It will be necessary to wait 120msec after sendir Sleep In command can be sent.	ng Sleep Out command (when in Sleep In Mode) before						
	Status	Availability						
	Normal Mode On, Idle Mode Off, Sleep Out	Yes						
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes						
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes						
	Partial Mode On, Idle Mode On, Sleep Out	Yes						
	Sleep In	Yes						
	Status	Default Value						
Default	Power On Sequence	Sleep in mode						
Doradit	S/W Reset	Sleep in mode						
	H/W Reset	Sleep in mode						

7.1.13 SLPOUT: Sleep Out (11h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
SLPOUT	0	1	1		0	0	0	1	0	0	0	1	(11h)
Parameter No Parameter													

	This command turns off sleep mode.					
	In this mode the DC/DC converter is enabled, I started.	nternal display oscillator is started, and panel scanning is				
	Source/Gate Output STOP	Blank Memory Contents				
		(If DISPON 29h is set)				
Description	Memory scan operation					
	Internal Oscillator STOP	START				
	DC/DC Converter 0V					
	This command has no effect when module is all by the Sleep In Command (10h).	ready in sleep out mode. Sleep Out Mode can only be exit				
	. , ,	ding next command, this is to allow time for the supply				
Restriction	LDS285 loads all default values of extended a there cannot be any abnormal visual effect on	nd test command to the registers during this 5msec and the display image if those default and register values are				
	same when this load is done and then the LDS2 LDS285 is doing self-diagnostic functions during	· · · · · · · · · · · · · · · · · · ·				
	,	ing Sleep In command (when in Sleep Out mode) before				
	Status	Availability				
	Normal Mode On, Idle Mode Off, Sleep Out	Yes				
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes				
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes				
	Partial Mode On, Idle Mode On, Sleep Out	Yes				
	Sleep In	Yes				
	Status	Default Value				
Default	Power On Sequence	Sleep in mode				
Delauit	S/W Reset	Sleep in mode				
	H/W Reset	Sleep in mode				

7.1.14 PTLON: Partial Display Mode On (12h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
PTLON	0	1	1	-	0	0	0	1	0	0	1	0	(12h)
Parameter	No Par	ameter											

	This command turns on Partial mode. The partial (30 _H)	mode window is described by the Partial Area command									
Description	To leave Partial mode, the Normal Display Mode	` ,									
	There is no abnormal visual effect during mode change between Normal mode On <-> Partial mode On.										
Restriction	This command has no effect when Partial mode is active.										
	Status	Availability									
	Normal Mode On, Idle Mode Off, Sleep Out Yes										
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes									
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes									
	Partial Mode On, Idle Mode On, Sleep Out	Yes									
	Sleep In	Yes									
		57,600									
	Status	Default Value									
Default	Power On Sequence	Normal Mode On									
Delault	S/W Reset	Normal Mode On									
	H/W Reset	Normal Mode On									
Flow Chart	See Partial Area (30h)										

7.1.15 NORON: Normal Display Mode On (13h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
NORON	0	1	1		0	0	0	1	0	0	1	1	(13h)
Parameter	No Par	ameter											

	This command returns the display to normal mode.									
Description	Normal display mode on means Partial mode off.									
•	There is no abnormal visual effect during mode cha	inge from Normal mode On <-> Partial mode On.								
Restriction	This command has no effect when Normal Display mode is active.									
	Status	Availability								
	Normal Mode On, Idle Mode Off, Sleep Out	Yes								
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes								
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes								
	Partial Mode On, Idle Mode On, Sleep Out	Yes								
	Sleep In	Yes								
	Status	Default Value								
Defecult	Power On Sequence	Normal Mode On								
Default	S/W Reset	Normal Mode On								
	H/W Reset	Normal Mode On								
Flow Chart		Normal Mode	On							

7.1.16 INVOFF: Display Inversion Off (20h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
INVOFF	0	1	1		0	0	1	0	0	0	0	0	(20h)
Parameter	Parameter No Parameter												

NOTE: "-" D		
Description	This command is used to recover from display in This command makes no change of contents of This command does not change any other status	frame memory.
Restriction	This command has no effect when module is alre	eady inversion off mode.
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value Display Inversion off Display Inversion off Display Inversion off
Flow Chart	Display Inversion On Mode INVOFF Display Inversion OFF Mode	Legend Command Parameter Display Action Mode Sequential transfer

7.1.17 INVON: Display Inversion On (21h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
INVON	0	1	1	-	0	0	1	0	0	0	0	1	(21h)
Parameter	Parameter No Parameter												

NOIE: - D	on i care	
Description	This command is used to enter into display inve This command makes no change of contents memory to the display. This command does not change any other statu	of frame memory. Every bit is inverted form the frame
Restriction	This command has no effect when module is alr	eady Inversion On mode.
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes Yes Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value Display Inversion off Display Inversion off Display Inversion off
Flow Chart	Display Inversion OFF Mode INVON Display Inversion ON Mode	Legend Command Parameter Display Action Mode Sequential transfer

7.1.18 GAMSET: Gamma Set (26h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
INVON	0	1	1	-	0	0	1	0	0	1	0	1	(26h)
Parameter	1	↑	1	-	GC7	GC6	GC5	GC4	GC3	GC2	GC1	GC0	-

	can be selected. The curve	es are defined in Fig 5		urrent display. A maximum elected by setting the appro			
	the parameter as describe GC [7:0]	Parameter		urve Selected	\neg		
D	01h	GC0		amma Curve 1	\dashv		
Description	 	GC0 GC1		amma Curve 2	_		
	02h				_		
	04h	GC2		amma Curve 3	_		
	08h Note: All other values are ur	GC3	G	amma Curve 4			
Restriction		wn in table above are	invalid and will no	t change the current select	ed Gamr		
	Statu	IS		Availability			
	Normal Mode On, Idle	Mode Off, Sleep Out		Yes	7		
Register	Normal Mode On, Idle	Mode On, Sleep Out		Yes			
Availability	Partial Mode On, Idle N	Mode Off, Sleep Out					
•	Partial Mode On, Idle N	Mode On, Sleep Out		Yes			
	Sleep	In		Yes			
	Statu	IS		Default Value			
D ()	Power On S						
Default	S/W R	•					
	H/W R	eset	01h				
Flow Chart	GC	ASET [7:0] Gamma Loaded		Legend Command Parameter Display Action Mode Sequential transfer			

7.1.19 DISPOFF: Display Off (28h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
DISPOFF	0	1	1	-	0	0	1	0	1	0	0	0	(28h)
Parameter	No Par	No Parameter											

NOTE: "-" Don't care

112

7.1.20 DISPON: Display On (29h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
DISPON	0	1	1		0	0	1	0	1	0	0	1	(29h)
Parameter	No Par	No Parameter											

7.1.21 CASET: Column Address Set (2Ah)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
CASET	0	↑	1	-	0	0	1	0	1	0	1	0	(2Ah)
1 st Parameter	1	1	1	-	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	-
2 nd Parameter	1	↑	1	-	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	-
3 rd Parameter	1	↑	1	-	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	-
4 th Parameter	1	↑	1	-	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	-

NOTE: "-" Don't care

This command is used to define area of DDRAM where MPU can access.

This command makes no change on the other driver status.

The value of XS [15:0] and XE [15:0] are referred when RAMWR command comes.

Each value represents one column line in the DDRAM.

(Example)

XS [15:0]

XE [15:0]

Description

XS [15:0] always must be equal to or less than XE [15:0]

When XS [15:0] or XE [15:0] is greater than maximum address like below, data of out of range will be ignored.

Restriction

(Parameter range: $0 \le XS [15:0] \le XE [15:0] \le 239 (00EFh)$): MV="0"

(Parameter range: $0 \le XS$ [15:0] $\le XE$ [15:0] ≤ 319 (013Fh)): MV="1"

(about MV register, refer section 6.1.30 (Row / Column exchange))

Register
Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

	Default Value							
Status	XS [15:0]	XE [15:0] (MV=0)	XE [15:0] (MV=1)					
Power On Sequence	0000h	00EFh(239d)						
S/W Reset	0000h	00EFh(239d)	013Fh(319d)					
H/W Reset	0000h	00EFI	n(239d)					

7.1.22 RASET: Row Address Set (2Bh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RASET	0	1	1	-	0	0	1	0	1	0	1	1	(2Bh)
1 st Parameter	1	↑	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8	-
2 nd Parameter	1	↑	1	-	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	-
3 rd Parameter	1	1	1	-	YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8	-
4 th Parameter	1	1	1	-	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	-

NOTE: "-" Don't care

This command is used to define area of DDRAM where MPU can access.

This command makes no change on the other driver status.

The value of YS [15:0] and YE [15:0] are referred when RAMWR command comes.

Each value represents one column line in the DDRAM.

(Example)

Description

YS [15:0] always must be equal to or less than YE [15:0]

When YS [15:0] or YE [15:0] are greater than maximum row address like below, data of out of range will be ignored.

Restriction

(Parameter range: $0 \le YS$ [15:0] $\le YE$ [15:0] ≤ 319 (013Fh)): MV="0" (Parameter range: $0 \le YS$ [15:0] $\le YE$ [15:0] ≤ 239 (00EFh)): MV="1"

(about MV register, refer section 6.1.30 (Row / Column exchange))

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

	Default Value						
Status	YS [15:0]	YE [15:0] (MV=0)	YE [15:0] (MV=1)				
Power On Sequence	0000h	013FI	013Fh(319d)				
S/W Reset	0000h	013Fh(319d)	00EFh (239d)				
H/W Reset	0000h	013FI	h(319d)				

7.1.23 RAMWR: Memory Write (2Ch)

Inst / Para	DC	WRB	RDB	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RAMWR	0	↑	1	-	0	0	1	0	1	1	0	0	(2Ch)
Data write	1	↑	1	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	-
:	:	:	:	:	:	:	:	:	:	:	:	:	:
Data write	1	↑	1	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	-

Description	This command makes no change to the other dr When this command is accepted, the column Column/Start Row positions. The Start Column/Start Row positions are different	he Start Column/Start Row positions are different in accordance with MADCTR setting. (See 5.2.3) nen D [15:0] is stored in DDRAM and the column register and the row register increment as in <i>Fig 5.2.4</i> .												
	Then D [15:0] is stored in DDRAM and the column Sending any other command can stop Frame Williams		ig 5.2.4.											
Restriction	In all color modes, there is no restriction on length													
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes Yes Yes Yes Yes												
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value Contents of memory is set randomly Contents of memory is not cleared Contents of memory is not cleared												
Flow Chart	Image Data D1[15:0],D2[15:0],,Dn[15:0 Any Command	Legend Command Parameter Display Action Mode Sequential transfer												

7.1.24 RAMRD: Memory Read (2Eh)

Inst / Para	DC	WRB	RDB	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RAMRD	0	1	1	-	0	0	1	0	1	1	1	0	(2Eh)
Dummy read	1	1	↑	-	1	-	-	-	-	-	-	-	-
Data read	1	1	↑	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	-
:	:	:	:	:		:	:	:	:	:	:	:	:
Data read	1	1	↑	D15-8	D7	D6	D5	D4	D3	D2	D1	D0	-

NOTE: "-" Don't care

This command is used to transfer data from DDRAM to MPU. This command makes no change to the other driver status. When this command is accepted, the column register and the row register are reset to the Start Column/Start Row positions. The Start Column/Start Row positions are different in accordance with MADCTR setting. Description (See section 5.2.3) Then D[15:0] is read back from the DDRAM and the column register and the row register increment as in Fig. 5.2.4. Frame Read can be canceled by sending any other command. In all color modes, there is no restriction on length of parameters. Restriction Note - Memory Read is only possible via the Parallel Interface. Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Normal Mode On, Idle Mode On, Sleep Out Register Yes Availability Partial Mode On, Idle Mode Off, Sleep Out Yes Partial Mode On, Idle Mode On, Sleep Out Yes Sleep In Yes Status **Default Value** Power On Sequence Contents of memory is set randomly Default S/W Reset Contents of memory is not cleared H/W Reset Contents of memory is not cleared RAMRD Legend Command Dummy Parameter Display Flow Chart Image Data Action D1[15:0],D2[15:0]Dn[15:0] Mode Sequential transfer Any Command

7.1.25 PTLAR: Partial Area (30h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
PTLAR	0	↑	1	-	0	0	1	1	0	0	0	0	(30h)
1 st parameter	1	1	1	-	PSL15	PSL14	PSL13	PSL12	PSL11	PSL10	PSL9	PSL8	-
2 nd parameter	1	↑	1	-	PSL7	PSL6	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0	-
3 rd parameter	1	1	1	-	PEL15	PEL14	PEL13	PEL12	PEL11	PEL10	PEL9	PEL8	-
4 th parameter	1	1	1	-	PEL7	PEL6	PEL5	PEL4	PEL3	PEL2	PEL1	PEL0	-

NOTE: "-" Don't care

	Status	Δναί	lability
	Normal Mode On, Idle Mode Off, Sleep Out		'es
Register	Normal Mode On, Idle Mode On, Sleep Out		res
Availability	Partial Mode On, Idle Mode Off, Sleep Out		'es
7	Partial Mode On, Idle Mode On, Sleep Out	Y	'es
	Sleep In		'es
	·		
		Defau	It Value
	Status	PSL [15:0]	PEL [15:0]
Default	Power On Sequence	0000h	013Fh
Doragin	S/W Reset	0000h	013Fh
	H/W Reset	0000h	013Fh
Flow Chart	PTLAR PSL [15:0] PEL [15:0] PTLON Partial Mode	Partial Mode Partial Mode DISPOFF NORON rtial Mode OFF RAMRW Image Data 1[15:0],D2[15:0]Dn[15:0] DISPON	Optional To prevent Tearing Effect Image display Legend Command Parameter Display Action Mode Sequential transfer

7.1.26 TEOFF: Tearing Effect Line OFF (34h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
TEOFF	0	1	1		0	0	1	1	0	1	0	0	(34h)
Parameter	No Par	o Parameter											

Description	This command is used to turn OFF (Active Low signal line.	v) the Tearing Effect output signal from the TE
Restriction	This command has no effect when Tearing Effe	ect output is already OFF.
Register Availability	Status Normal Mode On, Idle Mode Off, Sleep Out Normal Mode On, Idle Mode On, Sleep Out Partial Mode On, Idle Mode Off, Sleep Out Partial Mode On, Idle Mode On, Sleep Out Sleep In	Availability Yes Yes Yes Yes Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset	Default Value Off Off Off
Flow Chart	TE Line Output ON TEOFF TE Line Output OFF	Legend Command Parameter Display Action Mode Sequential transfer

7.1.27 TEON: Tearing Effect Line ON (35h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
TEON	0	1	1	-	0	0	1	1	0	1	0	1	(35h)
Parameter	1	↑	1	-	-	-	-	-	-	-	-	М	-

NOTE: "-" Don't care

123

7.1.28 MADCTR: Memory Data Access Control (36h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
MADCTR	0	↑	1	-	0	0	1	1	0	1	1	0	(36h)
Parameter	1	↑	1	-	MY	MX	MV	ML	RGB	-	-	-	-

NOTE: "-" Don't care

	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Status	Default Value
	Power On Sequence	MY=0,MX=0,MV=0,ML=0,RGB=0
Default	S/W Reset	No Change
	H/W Reset	MY=0,MX=0,MV=0,ML=0,RGB=0
Flow Chart	1 st parameter (MY, MX, MV, ML, RGB)	Legend Command Parameter Display Action Mode Sequential transfer

7.1.29 IDMOFF: Idle Mode Off (38h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
IDMOFF	0	↑	1		0	0	1	1	1	0	0	0	(38h)
Parameter	No Par	o Parameter											

NOIE: "-" D	on i care	
	This command is used to recover from Idle mode	e on.
	There will be no abnormal visible effect on the d	isplay mode change transition.
Description	In the idle off mode,	
	1. LCD can display maximum 4k, 65k, 262k	c or 16M-colors.
	Normal frame frequency is applied.	
Restriction	This command has no effect when module is alre	eady in idle off mode.
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
,	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Status	Default Value
Default	Power On Sequence	Idle Mode Off
Delault	S/W Reset	Idle Mode Off
	H/W Reset	Idle Mode Off
Flow Chart	Idle mode on IDMOFF Idle mode off	Legend Command Parameter Display Action Mode Sequential transfer

7.1.30 IDMON: Idle Mode On (39h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
IDMON	0	1	1		0	0	1	1	1	0	0	1	(39h)
Parameter	No Par	o Parameter											

NOTE: "-" Don't care

This command is used to enter into Idle mode on.

There will be no abnormal visible effect on the display mode change transition.

In the idle on mode,

- 1. Color expression is reduced. The primary and the secondary colors using MSB of each R,G and B in the DDRAM, 8 color depth data is displayed.
- 2. 8-Color mode frame frequency is applied.
- 3. Exit from IDMON by Idle Mode Off (38h) command

Memory Display

Description

"X": don't care

Color	$R_7 R_6 R_5 R_4 R_3 R_2 R_1 R_0$	$G_7 G_6 G_5 G_4 G_3 G_2 G_1 G_0$	B ₇ B ₆ B ₅ B ₄ B ₃ B ₄ B ₁ B ₀
Black	0XXXXXXX	0XXXXXXX	0XXXXXXX
Blue	0XXXXXXX	0XXXXXXX	1XXXXXXX
Red	1XXXXXXX	0XXXXXXX	0XXXXXXX
Magenta	1XXXXXXX	0XXXXXXX	1XXXXXXX
Green	0XXXXXXX	1XXXXXXX	0XXXXXXX
Cyan	0XXXXXXX	1XXXXXXX	1XXXXXXX
Yellow	1XXXXXXX	1XXXXXXX	0XXXXXXX
White	1XXXXXXX	1XXXXXXX	1XXXXXXX

Restriction This command has no effect when module is already in idle on mode.

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default Value				
Power On Sequence	Idle Mode Off				
S/W Reset	Idle Mode Off				
H/W Reset	Idle Mode Off				

7.1.31 COLMOD: Interface Pixel Format (3Ah)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
COLMOD	0	↑	1	-	0	0	1	1	1	0	1	0	(3Ah)
Parameter	1	↑	1	-	-	RP2	RP1	RP0	-	P2	P1	P0	-

NOTE: "-" Don't care

Description

This command is used to define the format of RGB picture data, which is to be transferred via the MPU(P2-0) & RGB(RP2-0) Interface. The formats are shown in the table:

Interface Pixel Format	P2(RP2)	P1(RP1)	P0(RP0)
Not Defined	0	0	0
Not Defined	0	0	1
Not Defined	0	1	0
Not Defined	0	1	1
Not Defined	1	0	0
Not Defined	1	0	1
18Bit/Pixel	1	1	0
24Bit/Pixel	1	1	1

NOTE: In 18 Bit/Pixel mode, the LSB Expansion is applied to transfer data into the DDRAM.

Restriction There is no visible effect until the DDRAM is written to.

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default
Power On Sequence	24Bit/Pixel
S/W Reset	No Change
H/W Reset	24Bit/Pixel

Example:

129

7.1.32 WRDISBV: Write Display Brightness (51h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
WRDISBV	0	↑	1	-	0	1	0	1	0	0	0	1	(51h)
Parameter	1	↑	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	-

Description	This command is used to adju	st then hrightnes	s value of the display	M						
Description	•	•		y. e and output brightness of the display						
	is. This relationship is defined on the display module specification.									
	00h value means the lowest brightness and FFh value means the highest brightness.									
	our value means the lowest brightness and i i ii value means the highest brightness.									
Restriction	The display supplier cannot us is only for Nokia.	se this command	for tuning(e.g. factor	y tuning. Etc), because this command						
	Status			Availability						
	Normal Mode On, Idle Mode	Off Sleen Out		Yes						
Register	Normal Mode On, Idle Mode			Yes						
Availability	Partial Mode On, Idle Mode			Yes						
7 (Valiability	Partial Mode On, Idle Mode			Yes						
	Sleep In	. с., с.сер си.		Yes						
	Oloop III 163									
	Status		D ()							
			Default							
Default	Power On Sequence		FFh							
Delault	S/W Reset		FFh							
	H/W Reset		FFh							
	Example:									
				Legend						
	Current Brightne	ss Value)								
				Command						
	•	_		Parameter						
	WRDISBV			Pianlay						
[] Obt	<u> </u>			Display						
Flow Chart	↓			Action						
	DDV/IZ:01									
	DBV[7:0]	_		Mode						
				Seguential						
	N. Bill			Sequential transfer						
	New Brightness	/alue		tialisiei Z						

7.1.33 RDDISBV: Read Display Brightness (52h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDDDISBV	0	↑	1	-	0	1	0	1	0	0	1	0	(52h)
Dummy read	1	1	1	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0	-

7.1.34 WRCTRLD: Write CTRL Display (53h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
WRCTRLD	0	1	1	-	0	1	0	1	0	0	1	1	(53h)
Parameter	1	↑	1	-	-	-	BCTRL	-	-	BL	-	-	-

NOTE: - DO	Don't care								
Description	This command is used to control brightness set	ting.							
	BCTRL : Brightness Controll Block On/Off. This bit is always used to switch brightness for display . "0" = Off (Brightness registers are 00h) "1" = On (Brightness registers are active) BL : Backlight Control On/Off "0" = Off (Completely turn off backlight circuit : Control Lines must be low.) "1" = On								
Restriction	The display supplier cannot use this command t is of only for Nokia.	or tuning(e.g. factory tuning. Etc), because this command							
	Status	Availability							
	Normal Mode On, Idle Mode Off, Sleep Out	Yes							
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes							
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes							
,	Partial Mode On, Idle Mode On, Sleep Out	Yes							
	Sleep In	Yes							
Default	Status Power On Sequence S/W Reset H/W Reset	Default 00h 00h 00h							
	Example:	Legend Command							
Flow Chart	BCTRL, BL New Control value	Parameter Display Action Mode Sequential transfer							

7.1.35 RDCTRLD: Read CTRL Value Display (54h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDCTRLD	0	↑	1	-	0	1	0	1	0	1	0	0	(54h)
Dummy read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	↑	-	-	-	BCTRL	-	-	BL	-	-	-

7.1.36 WRCABC: Write Content Adaptive Brightness (55h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
WRCTRLD	0	↑	1	-	0	1	0	1	0	0	1	1	(53h)
Parameter	1	↑	1	-	-	-	-	-	-	-	C1	C0	-

NOTE: "-" Don't care

Description

This command is used to set parameters for image content based adaptive brightness control functionality.

There is possible to use 4 different modes for content adaptive image functionality, which are difined on a table below

C1	C0	Function	Note
0	0	OFF	
0	1	User Interface Image	
1	0	Still Picture	
1	1	Moving Image	

Restriction

Register
Availability
•

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default
Power On Sequence	00h
S/W Reset	00h
H/W Reset	00h

Example:

7.1.37 RDCABC: Read Content Adaptive Brightness (56h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDCABC	0	↑	1		0	1	0	1	0	1	1	0	(56h)
Dummy read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	1	-	-	-	-	-	-	-	C1	C0	-

NOTE: "-" Don't care

Description	function There i	This command is used to read the settings for image content based adaptive brightness contributionality. There is possible to use 4 different modes for content adaptive image functionality, which are difined on a table below											
	C1	C0	Function	1									
	0	0	OFF										
	0	1	User Interface Image										
	1	0	Still Picture										
	1	1	Moving Image										
Restriction													

	Status	Availability				
	Normal Mode On, Idle Mode Off, Sleep Out	Yes				
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes				
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes				
	Partial Mode On, Idle Mode On, Sleep Out	Yes				
	Sleep In	Yes				

Status Default Power On Sequence 00h Default S/W Reset 00h H/W Reset 00h

135

7.1.38 RDID1: Read ID1 Value (DAh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDID1	0	↑	1	-	1	1	0	1	1	0	1	0	(DAh)
Dummy read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	↑	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10	-

NOTE: "-" D	on't care	
	This read byte returns 8-bit LCD module's manu	ıfacturer ID
	The 1 st parameter is dummy data	
Description	The 2 nd parameter (ID17 to ID10): LCD module's	s manufacturer ID.
	NOTE: See command RDDID (04h), 2 nd parameter.	
Restriction		
1100111011011		
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Status	Default Value
Default	Power On Sequence	Not Fixed
	S/W Reset H/W Reset	Not Fixed Not Fixed
	H/W Reset	Not rixed
	Serial I/F Mode Para	allel I/F Mode Legend
	22/21/21/2	Command
	RDID1 (DAh)	RDID1 (DAh) Host Parameter
		Driver
	- Land	Display
Flow Chart	Send 2 nd parameter	Dummy Read Action
		Mode
	Send	d 2 nd parameter Sequential
		transfer
		Landler Z

7.1.39 RDID2: Read ID2 Value (DBh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDID2	0	1	1	-	1	1	0	1	1	0	1	1	(DBh)
Dummy read	1	1	↑	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	↑	-	1	ID26	ID25	ID24	ID23	ID22	ID21	ID20	-

7.1.40 RDID3: Read ID3 Value (DCh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDID3	0	1	1	-	1	1	0	1	1	1	0	0	(DCh)
Dummy read	1	1	1	-	-	-	-	-	-	-	-	-	-
2 nd Parameter	1	1	↑	-	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30	-

NOTE: "-" Don't care											
	This read byte returns 8-bit LCD module/driver ID.										
	The 1 st parameter is dummy data										
Description	The 2 nd parameter (ID37 to ID30): LCD module/driver ID.										
	NOTE: See command RDDID (04h), 4 th parameter.										
Restriction	-										
rtoomonon											
Register Availability	Status	Availability									
	Normal Mode On, Idle Mode Off, Sleep Out	Yes									
	Normal Mode On, Idle Mode On, Sleep Out	Yes									
	Partial Mode On, Idle Mode Off, Sleep Out	Yes									
	Partial Mode On, Idle Mode On, Sleep Out	Yes									
	Sleep In	Yes									
Default	0	D.C. W.I.									
	Status	Default Value									
	Power On Sequence S/W Reset	Not Fixed Not Fixed									
	H/W Reset	Not Fixed									
	1 // W Neset	NOLLINGU									
Flow Chart	RDID3 (DCh) Send 2 nd parameter	Adlel I/F Mode RDID2 (DCh) Host Driver Display Action Mode d 2 nd parameter Sequential transfer									

7.1.41 IFMODE: Set Display Interface Mode (B0h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
IFMODE	0	↑	1	-	1	0	1	1	0	0	0	0	(B0h)
1 st parameter	1	↑	1	-	-	-	-	-	-	-	IF1	IF0	-
2 nd parameter	1	↑	1	-	-	-	DW	-	DP	EP	HSP	VSP	-

- paramete		•			D 11		, , ,		V O.		
NOTE: "-" D	on't care										
	Sets the opera		f the dis	splay into	erface.	The set	ting becor	nes effectiv	e as so	on as th	
	1 st parameter:	Interface mo	nde set								
	IF1	IF0				Data T	ransfer Mod	de		7	
	0	0				MPU	data transfe	r			
	0	1									
	1	0				RGB o	data transfer	2			
	1	1				RGB o	data transfer	3			
Description	2 nd parameter	: RGB Interfa		width s		Width					
	0		24-	bit (1-tran	sfer for o	ne pixel)					
	1		8-bit (1-transfer for one pixel)								
F	EP: ENABLE HSP: HSYNC	polarity ("0"= polarity ("0"=	c polarity set for RGB interface t ("0"=data fetched at the rising edge, "1"=data fetched at the fa y ("0"= High enable for RGB interface, "1"=Low enable for RGE ty ("0"=Low level sync clock, "1"=High level sync clock) y ("0"= Low level sync clock, "1"= High level sync clock)								
		Status					Availab	pility		٦	
	Normal Mo	de On, Idle Mod	e Off, Sle	ep Out			Yes	•		1	
Register	Normal Mo	de On, Idle Mode	e On, Sle	ep Out			Yes				
Availability		de On, Idle Mode		•			Yes				
	Partial Mod	de On, Idle Mode	On, Sle	ep Out			Yes				
		Sleep In					Yes	:			
					Default Value					 7	
		Status			IF	[1:0]	DW	DP/EP/HS	SP/VSP	1	
Default		Power On Sequ	ence			00	0	0/0/0)/0	1	
		S/W Reset				00	0	0/0/0)/0		
		H/W Reset				00	0	0/0/0)/0		
	1	H/W Reset 00 0 0/0/0/0									

7.1.42 DISCLK: Display Clock Set (B1h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
DISCLK	0	↑	1	-	1	0	1	1	0	0	0	1	(B1h)
1 st parameter	1	↑	1	-	HA7	HA6	HA5	HA4	HA3	HA2	HA1	HA0	-
2 nd parameter	1	1	1	-	1	-	BPA5	BPA4	BPA3	BPA2	BPA1	BPA0	-
3 rd parameter	1	↑	1	-	1	-	FPA5	FPA4	FPA3	FPA2	FPA1	FPA0	-
4 th parameter	1	↑	1	-	HB7	HB6	HB5	HB4	HB3	HB2	HB1	HB0	-
5 th parameter	1	↑	1	-	1	-	BPB5	BPB4	BPB3	BPB2	BPB1	BPB0	-
6 th parameter	1	↑	1	-	-	-	FPB5	FPB4	FPB3	FPB2	FPB1	FPB0	-

Display clock condition set. 1st to 4th parameter: Display clock set for full colour display mode. HA [8:0]: Number of clocks during 1H = HA BPA [5:0]: Number of lines for vertical back porch FPA [5:0]: Number of lines for vertical front porch 5th to 8th parameter: Display clock set for 8-colour display mode. HB [8:0]: Number of clocks during 1H = HB BPB [5:0]: Number of lines for vertical back porch FPB [5:0]: Number of lines for vertical front porch By using DISCLK command, frame frequency can be set like below Description fFRA (Hz) = 1 / ((Number of gate + 1 dummy gate + BPA + FPA) * ((HA+1) * 2usec)) for full colour display mode fFRB (Hz) = 1 / ((Number of gate + 1 dummy gate + BPB + FPB) * ((HB+1) * 2usec)) for 8-colour display mode BPA (BPB) and FPA (FPB) are related to the vertical mode TE signal pulse width. TE (vertical mode, high pulse width) = (BFA + FPA+2) * ((HA+1) * 2usec) for full colour display mode TE (vertical mode, high pulse width) = (BFB + FPB+2) * ((HB+1) * 2usec) for 8-colour display mode Restriction Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Register Normal Mode On, Idle Mode On, Sleep Out Yes Availability Partial Mode On, Idle Mode Off, Sleep Out Yes Partial Mode On, Idle Mode On, Sleep Out Yes Sleep In Yes

	Status			Defaul	t Value		
		HA [7:0]	BPA [5:0]	FPA [5:0]	HB [7:0]	BPB [5:0]	FPB [5:0]
	Power On Sequence	23d (17h)	16d (10h)	6d (06h)	28d (1Ch)	16d (10h)	6d (06h)
	S/W Reset	23d (17h)	16d (10h)	6d (06h)	28d (1Ch)	16d (10h)	6d (06h)
	H/W Reset	23d (17h)	16d (10h)	6d (06h)	28d (1Ch)	16d (10h)	6d (06h)
Default	The default frame free $= 1/((321+16+6)*(23))$			gate + 1 du	mmy gate)		
	The default frame fre			ite + 1 dumm	y gate)		
	= 1/((321+16+6)*(28				-		
	Vertical TE signal hig						
	=(16+6+2)*(23+1)*2						
	=(16+6+2)*(28+1)*2	2usec = 1,392	usec (for idl	e mode)			
Flow Chart	3 rd para 4 th para 5 th and 7 th para	2 nd paramet ameter: BPA ameter: FPA 6 th paramet ameter: BPB ameter: FPB	ter: HA [7:0] \[5:0] \[5:0] er: HB [7:0] \[5:0]			Leger Comma Parame Displ Actio Mode Sequen transfe	ter ay n

7.1.43 INVCTR: Inversion Control (B2h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
INVCTR	0	1	1	-	1	0	1	1	0	0	1	0	(B2h)
1 st parameter	1	1	1	-	0	0	0	0	-	NLA2	NLA1	NLA0	-
2 nd parameter	1	↑	1	-	0	0	0	0	-	NLB2	NLB1	NLB0	-

Display inversion mode set

1st parameter: for full colour display mode
 NLA2 to NLA0: line inversion value set
 2nd parameter: for 8 colour display mode
 NLB2 to NLB0: line inversion value set

Description

			т
NLA2	NLA1	NLA0	Inversion
(NLB2)	(NLB1)	(NLB0)	
0	0	0	Frame inversion
0	0	1	1-Line inversion
0	1	0	2-Line inversion
0	1	1	3-Line inversion
1	0	0	4-Line inversion
1	0	1	5-Line inversion
1	1	0	6-Line inversion
1	1	1	7-Line inversion

Restriction

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Chatus	Default	Value
Status	1 st parameter	2 nd parameter
Power On Sequence	01h	00h
S/W Reset	01h	00h
H/W Reset	01h	00h

7.1.44 REGCTR: Regulator Control (C0h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
REGCTR	0	↑	1	-	1	1	0	0	0	0	0	0	(C0h)
1 st parameter	1	↑	1	-	-	VR2	VR1	VR0	-	VS2	VS1	VS0	-

	T			
Description	Regulator voltage cor The 1 st parameter: VR [2:0]: VR regulator of VS [2:0]: VS regulator of VR [2:0] 0 1 2 3 4 5 6	utput control	VS [2:0] 0 1 2 3 4 5 6	VS/VG output VS = 3.00V VS = 3.50V VS = 3.75V VS = 4.00V VS = 4.25V VS = 4.50V VS = 4.75V VS = 5.00V
		VR = 5.00V	1	VS = 5.00V
Restriction				
Register Availability	Normal Mode On, Idl Normal Mode On, Idl Partial Mode On, Idle Partial Mode On, Idle	e Mode Off, Sleep Out e Mode On, Sleep Out e Mode Off, Sleep Out e Mode Off, Sleep Out e Mode On, Sleep Out e In	Y Y Y	ability es es es es es
	Ct/	atus	Defaul	t Value
	310	atus	VR [2:0]	VS [2:0]
Default	Power On	Sequence	3h	5h
		Reset	3h	5h
	H/W	Reset	3h	5h
Flow Chart		REGCTR 1 st parameter		Legend Command Parameter Display Action Mode Sequential transfer

7.1.45 VCOMCTR: VCOML / VCOMH Voltage Control (C1h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
VCOMCTR	0	↑	1	-	1	1	0	0	0	0	0	1	(C1h)
1 st parameter	1	1	1	-	-	-	VCLC5	VCLC4	VCLC3	VCLC2	VCLC1	VCLC0	-
2 nd parameter	1	↑	1	-	-	-	VCHC5	VCHC4	VCHC3	VCHC2	VCHC1	VCHC0	-

NOTE: "-" Don't care

VCOML / VCOMH Voltage Control The 1st parameter: VCOML voltage control (See below table) The 2nd parameter: VCOMH voltage control (See below table) VCOML output voltage VCLC [5:0] VCHC [5:0] VCOMH output voltage VCOML = -2.00 VVCOMH = +2.50 V Description 0 VCOML = -1.95 V 1 VCOMH = +2.55 V 2 VCOML = -1.90 V 2 VCOMH = +2.60 V VCOML = +1.00V VCOMH = +5.50V 60 60 61 ~ 63 Not permitted 61 ~ 63 Not permitted Default value of VCOMH will be fixed to the trimmed value during wafer test. Restriction Status Availability Normal Mode On, Idle Mode Off, Sleep Out Yes Register Normal Mode On, Idle Mode On, Sleep Out Yes Availability Partial Mode On, Idle Mode Off, Sleep Out Yes Partial Mode On, Idle Mode On, Sleep Out Yes Sleep In Yes Status Default Value VCLC [5:0] VCHC [5:0] Power On Sequence 32h See note Default S/W Reset 32h See note H/W Reset 32h See note NOTE: After Wafer level test, the default value of VCHC will be trimmed to fit the target VCOM amplitude. Legend **VCOMCTR** Command Parameter 1st parameter: VCLC [5:0] Display Flow Chart Action parameter: VCHC [5:0] Mode Sequential transfer

7.1.46 GAMCTR1: Set Gamma Correction Characteristics (C8h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
GAMCTR1	0	↑	1	-	1	1	0	0	1	0	0	0	(C8h)
1 st parameter	1	1	1	-			GS102	GS101	GS100	GS112	GS111	GS110	
2 nd parameter	1	1	1	-			GS122	GS121	GS120	GS132	GS131	GS130	
3 rd parameter	1	1	1	-			GS142	GS141	GS140	GS152	GS151	GS150	
4 th parameter	1	↑	1	-			GS162	GS161	GS160	GS172	GS171	GS170	

		P. C.D.	L CONTENT I						
Description		It apply to gamma curve selection by instruction code 26h. 1 st to 4 th parameter: Gamma curve1 adjustment register							
Restriction									
Register Availability	Status Normal Mode On, Idle Mode Normal Mode On, Idle Mode Partial Mode On, Idle Mode Partial Mode On, Idle Mode Sleep In	On, Sleep Out Off, Sleep Out	Availability Yes Yes Yes Yes Yes Yes Yes						
Default	Status Power On Sequence S/W Reset H/W Reset		Default Value GS10[2:0] ~ GS17[2:0] 4/4/4/4/4/4/4 4/4/4/4/4/4/4 4/4/4/4/4/4/4						
Flow Chart	1 st parameter 2 nd parameter		Legend Command Parameter Display Action Mode Sequential transfer						

7.1.47 GAMCTR2: Set Gamma Correction Characteristics (C9h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
GAMCTR2	0	↑	1	-	1	1	0	0	1	0	0	1	(C9h)
1 st parameter	1	↑	1	-			GS202	GS201	GS200	GS212	GS211	GS210	
2 nd parameter	1	↑	1	-			GS222	GS221	GS220	GS232	GS231	GS230	
3 rd parameter	1	1	1	-			GS242	GS241	GS240	GS252	GS251	GS250	
4 th parameter	1	↑	1	-			GS262	GS261	GS260	GS272	GS271	GS270	

Description	Set the gray scale voltage to It apply to gamma curve selection 1st to 4th parameter: Gamma	ection by instructi	
Restriction			
Register Availability	Status Normal Mode On, Idle Mode Normal Mode On, Idle Mode Partial Mode On, Idle Mode Partial Mode On, Idle Mode Sleep In	On, Sleep Out Off, Sleep Out	Availability Yes Yes Yes Yes Yes Yes Yes
Default	Status Power On Sequence S/W Reset H/W Reset		Default Value GS20[2:0] ~ GS27[2:0] 4/4/4/4/4/4/4 4/4/4/4/4/4 4/4/4/4/4/4/
Flow Chart	1 st parameter 2 nd parameter	2	Legend Command Parameter Display Action Mode Sequential transfer

7.1.48 GAMCTR3: Set Gamma Correction Characteristics (CAh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
GAMCTR3	0	↑	1	-	1	1	0	0	1	0	1	0	(CAh)
1 st parameter	1	↑	1	-			GS302	GS301	GS300	GS312	GS311	GS310	
2 nd parameter	1	↑	1	-			GS322	GS321	GS320	GS332	GS331	GS330	
3 rd parameter	1	1	1	-			GS342	GS341	GS340	GS352	GS351	GS350	
4 th parameter	1	↑	1	-			GS362	GS361	GS360	GS372	GS371	GS370	

	Set the gray scale voltage to	adjust the gamn	na characteristics of the TFT panel.		
Description	It apply to gamma curve sele		•		
Description	1 st to 4 th parameter: Gamma	curve3 adjustme	ent register		
Restriction					
	Status		Availability		
	Normal Mode On, Idle Mode	Off, Sleep Out	Yes		
Register	Normal Mode On, Idle Mode	On, Sleep Out	Yes		
Availability	Partial Mode On, Idle Mode		Yes		
	Partial Mode On, Idle Mode	On, Sleep Out	Yes		
	Sleep In		Yes		
	Status		Default Value		
Default	Davies On Converse		GS30[2:0] ~ GS37[2:0]		
Delault	Power On Sequence S/W Reset		4/4/4/4/4/4 4/4/4/4/4/4/4		
	H/W Reset		4/4/4/4/4/4/4		
	11/11/10000	דודודורונו			
Flow Chart	1 st parameter 2 nd parameter	3	Legend Command Parameter Display Action Mode Sequential transfer		

7.1.49 GAMCTR4: Set Gamma Correction Characteristics (CBh)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
GAMCTR4	0	↑	1	-	1	1	0	0	1	0	1	1	(CBh)
1 st parameter	1	↑	1	-			GS402	GS401	GS400	GS412	GS411	GS410	
2 nd parameter	1	↑	1	-			GS422	GS421	GS420	GS432	GS431	GS430	
3 rd parameter	1	1	1	-			GS442	GS441	GS440	GS452	GS451	GS450	
4 th parameter	1	↑	1	-			GS462	GS461	GS460	GS472	GS471	GS470	

	Set the gray scale voltage to	adjust the gamn	na characteristics of the TFT panel.		
Description	It apply to gamma curve sele	ection by instructi	on code 26h.		
Description	1 st to 4 th parameter: Gamma	curve4 adjustme	ent register		
Restriction					
	Status		Availability		
	Normal Mode On, Idle Mode	Off, Sleep Out	Yes		
Register	Normal Mode On, Idle Mode	On, Sleep Out	Yes		
Availability	Partial Mode On, Idle Mode		Yes		
	Partial Mode On, Idle Mode	On, Sleep Out	Yes		
	Sleep In		Yes		
	Status		Default Value		
Default	Barrer Or Or Strawer		GS40[2:0] ~ GS47[2:0]		
Delault	Power On Sequence S/W Reset		4/4/4/4/4/4/4 4/4/4/4/4/4/4		
	H/W Reset		4/4/4/4/4/4/4		
	TI/W Neset	4/4/4/4/4/4			
Flow Chart	1 st parameter 2 nd parameter	4	Legend Command Parameter Display Action Mode Sequential transfer		

7.1.50 EPPGMDB: Write ID2, VCOM Offset Value

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
EPPGMDB	0	↑	1	-	1	1	0	1	0	0	0	0	(D0h)
Parameter	1	↑	1	-	-	-	-	-	-	VCOF82	VCOF81	VCOF80	-
Parameter	1	↑	1	-	-	-	VCOF5	VCOF4	VCOF3	VCOF2	VCOF1	VCOF0	-
Parameter	1	1	1	-	ID26	ID25	ID24	ID23	ID22	ID21	ID20	db_sel	-

NOTE: "-" Don't care

This command is used to write the values of ID2 , VCOM and VCOM8 to internal register. These value is programmed into EEPROM by command "EPPGM(D2h).

VCOM Offset Control

1st Parameter: VCOM offset control(8color)

VCOF8 [2:0]	VCLC (Internal)	VCHC (Internal)
0(default)	VCLC	VCHC
1	VCLC-3	VCHC-3
2	VCLC-2	VCHC-2
3	VCLC-1	VCHC-1
4	VCLC	VCHC
5	VCLC+1	VCHC+1
6	VCLC+2	VCHC+1
7	VCLC+3	VCHC+3

2nd Parameter: VCOM offset control

Description

VCOF [5:0]	VCLC (Internal)	VCHC (Internal)
0(default)	VCLC	VCHC
1	VCLC-31	VCHC-31
:	:	:
31	VCLC-1	VCHC-1
32	VCLC	VCHC
33	VCLC+1	VCHC+1
:	i :	:
63	VCLC+31	VCHC+31

NOTE: If VCLC (Internal) or VCHC (Internal) is less than 0, it becomes 0.

If VCLC (Internal) or VCHC (Internal) is larger than 31, it becomes 31.

The VCOF[5:0] is stored in EEPROM to fit contrast.

3rd Parameter: ID2[6:0]

Write 7-bit LCD module/driver version ID to save it to EEPROM.

3rd Parameter: db sel

"0" = Using the EEPROM data for making VCOMH & VCOML.

"1" = Using the internal register values written by EPPGMDB for VCOMH & VCOML.

The following drawing shows how to use "db_sel" to fix the VCOF and the VCOF8.

Register

Availability

Yes

Yes

Yes

Yes

Yes

Normal Mode On, Idle Mode Off, Sleep Out

Normal Mode On, Idle Mode On, Sleep Out

Partial Mode On, Idle Mode Off, Sleep Out

Partial Mode On, Idle Mode On, Sleep Out

Sleep In

	Status		Dof	ault Value	
	Status	VCOF8[2:0] VCOF[5:0]		ID2	db_sel
Default	Power On Sequence	0	0	Not Fixed (80 ~ FFh)	0
	S/W Reset	0	0	Not Fixed (80 ~ FFh)	0
	H/W Reset	0	0	Not Fixed (80 ~ FFh)	0
Flow Chart	Send 1 st parameter Send 2 nd parameter Send 3 rd parameter	フ フ フ		Legend Command Parameter Display Action Mode Sequential transfer	

7.1.51 EPERASE: EPROM Erase (D1h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
EPERASE	0	1	1	-	1	1	0	1	0	0	0	1	(D1h)
Parameter	No Par	ameter											

	T	
Description	EEPROM data erase.	
	It will be necessary to wait more than 150msec a	after EEPROM erase start .
Restriction	Refer to 7.3.3&7.3.4 EEPROM access flow.	
	EPERASE should be excuted in Sleep-in mode.	
	Otatua	A *I = L *IPf
	Status	Availability No
Pogiator	Normal Mode On, Idle Mode Off, Sleep Out	-
Register	Normal Mode On, Idle Mode On, Sleep Out	No No
Availability	Partial Mode On, Idle Mode Off, Sleep Out	No No
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	res
	Status	Default Value
Default	Power On Sequence	Disable
	S/W Reset	Disable
	H/W Reset	Disable
Flow Chart	EPERASE	Legend Command Display Action Mode Sequential transfer

7.1.52 EPPROG: EPROM Program (D2h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
EPPROG	0	↑	1	-	1	1	0	1	0	0	1	0	(D2h)
Parameter	No Par	ameter											

F	T	
Description	EEPROM data program.	
	It will be necessary to wait more than 100msec a	fter EEPROM program start .
Restriction	Refer to 6.3.3&6.3.4 EEPROM access flow.	
	EEPROG should be excuted in Sleep-in mode.	
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	No
Register	Normal Mode On, Idle Mode On, Sleep Out	No
Availability	Partial Mode On, Idle Mode Off, Sleep Out	No
, wanasinty	Partial Mode On, Idle Mode On, Sleep Out	No
	Sleep In	Yes
	Status	Default Value
	Power On Sequence	Disable
Default	S/W Reset	Disable
	H/W Reset	Disable
	EPPROG	<u> </u>
		Legend
		Command
		Oisplay)
Flow Chart		Action
Flow Chart		
		Mode
	+	Sequential
		transfer
		i'

7.1.53 EPRDVRF: EPROM Read Verify (D3h)

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
EPRDVRF	0	↑	1	-	1	1	0	1	0	0	1	1	(D3h)
Parameter	1	1	1	-	-	-	-	-	READ	PGM VF	ERVF	0	

	register.	, then EEPROM data are normally read to Internal
Description	will be executed by using the internal ref	then the read verification for the programmed data ference voltage(VDD1). This mode is to read the ne more serious condition than normal read mode.
	verification will be executed by using the ex	1, then the read verification for the erased data sternal reference voltage.(ME_CMP). This mode is under the more serious condition than normal read
Restriction	It will be necessary to wait more than 100usec a Refer to 7.3.3&6.3.4 EEPROM access flow.	fter EEPROM read start .
	Status	Availability
	Normal Mode On, Idle Mode Off, Sleep Out	Yes
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes
	Partial Mode On, Idle Mode On, Sleep Out	Yes
	Sleep In	Yes
	Chatria	Default Value
	Status Power On Sequence	Default Value
Default	S/W Reset	Disable Disable
	H/W Reset	Disable
Flow Chart	EPREAD	Legend Command Display Action
		Mode Sequential transfer

7.1.54 RDVCOF: VCOM offset registers bits Read Back (D9h)

Inst / Para	DC	WR B	RD B	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
RDVCOF	0	1	1	-	1	1	0	1	1	0	0	1	(D9h)
Dummy Read	1	1	1	-	-	-	-	-	-	-	-	-	Dummy
2'nd Parameter	1	1	1	-	1	ı	RVCOF5	RVCOF4	RVCOF3	RVCOF2	RVCOF1	RVCOF0	
3'rd Parameter	1	1	1	-	-	-	-	-	-	RVCOF82	RVCOF81	RVCOF80	

	This read 6-bit VCOM register offset value and The 1 st parameter is dummy data	additional 4-bit VCOM offset value. (refer to 6.1.	60)
Description	The 1 parameter is duffiny data The 2 nd parameter RVCOF[5:0]: range 0d ~ 63	24	
Description	The 2 nd parameter RVCOF[5.0]: range $0 \sim 60$.	ou .	
	The 2 parameter RVCOF8[2:0]: range 0 ~ 7.		
Restriction			
	Status	Availability	
	Normal Mode On, Idle Mode Off, Sleep Out	Yes	
Register	Normal Mode On, Idle Mode On, Sleep Out	Yes	
Availability	Partial Mode On, Idle Mode Off, Sleep Out	Yes	
	Partial Mode On, Idle Mode On, Sleep Out	Yes	
	Sleep In	Yes	
	Status	Default Value	
		RVCOF[5:0], RVCOF8[2:0]	
Default	Power On Sequence	-	
	S/W Reset	-	
	H/W Reset	-	
Flow Chart	RDVCOF Send 2 nd parameter	Parallel I/F Mode RDVCOF Host Driver Display Action Mode Send 2 nd parameter	er er
	Send 3" parameter	Sequentia transfer	,

7.1.55 LEDCTRL: Write the configuration for LED driver

Inst / Para	DC	WRB	RDB	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	(Code)
EPPGMDB	0	↑	1	-	1	1	1	0	1	1	1	1	(EFh)
Parameter	1	↑	1	-	-	-	-	-	-	-	-	TYPE	-
Parameter	1	↑	1	-	0	ADR2	ADR1	ADR0	DB3	DB2	DB1	DB0	-
Parameter	1	1	1	-	0	PER3	PER2	PER1	PER0	0	0	0	-

NOTE: "-" Don't care

This command is used to configure the LED driver control

1st Parameter: TYPE

"0": When LDS285 controls LED Driver type with pwm pulse contol.

"1" : When LDS285 controls LED Driver LDS8816 with 1-wire digital interface.

Description

2nd Parameter: ADR[2:0], DB[3:0]

When TYPE = 1, LDS285 write DB[3:0] to ADDR[2:0] register in LDS8861.

(Please refer to Section 6.4 and the specification for LDS8861)

3rd Parameter: PER[3:0]

When TYPE = 0, PER[3:0] decide the period of PWM pulse which is sent through LCD_CNT.

(Please refer to Section 6.4)

Restriction

Register Availability

Status	Availability
Normal Mode On, Idle Mode Off, Sleep Out	Yes
Normal Mode On, Idle Mode On, Sleep Out	Yes
Partial Mode On, Idle Mode Off, Sleep Out	Yes
Partial Mode On, Idle Mode On, Sleep Out	Yes
Sleep In	Yes

Default

Status	Default Value							
	TYPE	ADR[2:0]	DB[3:0]	PER[3:0]				
Power On Sequence	0	0	Eh	0				
S/W Reset	0	0	Eh	0				
H/W Reset	0	0	Eh	0				

7.2 RESET TABLE (DEFAULT VALUE) (TBD)

Item	After Power On	After Hardware Reset	After Software Reset
DDRAM	Random	No Change	No Change
Sleep In/Out	In	In	ln
Display On/Off	Off	Off	Off
Display mode (normal/partial)	Normal	Normal	Normal
Display Inversion On/Off	Off	Off	Off
Display Idle Mode On/Off	Off	Off	Off
Column: Start Address (XS)	0000h	0000h	0000h
Column: End Address (XE)	00EFh	00EFh	007Fh (239d) (when MV=0) 009Fh (319d) (when MV=1)
Row: Start Address (YS)	0000h	0000h	0000h
Row: End Address (YE)	013Fh	013FFh	009Fh (319d) (when MV=0) 007Fh (239d) (when MV=1)
Brightness Control Value *3)	FFh	FFh	FFh
Gamma setting	GC0	GC0	GC0
Partial: Start Address (PSL)	0000h	0000h	0000h
Partial: End Address (PEL)	013Fh	013Fh	013Fh
Tearing: On/Off	Off	Off	Off
Tearing Effect Mode *4)	0 (Mode1)	0 (Mode1)	0 (Mode1)
Memory Data Access Control (MY/MX/MV/ML/RGB)	0/0/0/0/0	0/0/0/0/0	No Change
Interface Pixel Color Format	7 (24-Bit/Pixel)	7 (24-Bit/Pixel)	No Change
RDDPM	08h	08h	08h
RDDMADCTR	00h	00h	No Change
RDDCOLMOD	7 (24-Bit/Pixel)	7 (24-Bit/Pixel)	No Change
RDDIM	00h	00h	00h
RDDSM	00h	00h	00h
RDDSDR	00h	00h	00h
ID1	TBD	TBD	TBD
ID2	TBD	TBD	TBD
ID3	TBD	TBD	TBD

Notes:

- 1. There will be no abnormal visible effects on the display when S/W or H/W Reset is applied.
- 2. Powered-On Reset finishes within 10µs after both VDD1_IO, VDD1 & VDD2 are applied.
- 3. Brightness conrol value is related with the command "WRDISBV(51h).
- 4. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only.

7.3 INSTRUCTION SETUP FLOW

7.3.1 Initializing with the Built-in Power Supply Circuits (TBD)

Fig. 7.3.1 Initializing with the built-in power supply circuits

The initializing sequence does not have any effect on the display. The display is in its normal background color during the initialization.

7.3.2 Power OFF Sequence (TBD)

Fig. 7.3.2 Power OFF sequence

7.3.3 EEPROM Access Sequence for Initialization (Data Clear)

7.3.4 EEPROM Access Sequence for program (Data write) (TBD)

8 SPECIFICATIONS

8.1 ABSOLUTE MAXIMUM RATINGS

(Vss = 0V)

Item	Symbol	Value	Unit
Supply voltage (1)	VDD1	- 0.3 ~ + 2.0	V
Supply voltage (2)	VDD2	- 0.3 ~ + 3.6	V
Drive Supply Voltage	VGH – VGL	- 0.3 ~ + 28.0	V
Logic input voltage range	Vin	- 0.3 ~ VDD1 + 0.3	V
Logic output voltage range	Vo	- 0.3 ~ VDD1 + 0.3	V
Operating temperature range	TOPR	- 30 ~ + 75	°C
Storage temperature range	Tstg	- 55 ~ + 125	°C

NOTE: If the absolute maximum rating of even is one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings

8.2 ESD PROTECTION LEVEL

Table 8.2.1 ESD models.

Model	Test Condition	Protection Level	Unit
Human Body Model	C = 100 pF, R = 1.5 k Ω	> 2000	V
Machine Model	$C = 200 \text{ pF}, R = 0.0 \Omega$	> 200	V

8.3 LATCH-UP PROTECTION LEVEL

The device will not latch up at trigger current levels less than ± 100 mA.

8.4 LIGHT SENSITIVITY

The operation of the IC will not be materially altered by incident light.

8.5 MAXIMUM SERIES RESISTANCE

The driver will operate in 'Chip on Glass' applications with series resistances (due to ITO track resistance). Voltages are specified at module I/O assuming maximum values as in *Table 7.5.1*.

Table 8.5.1 Maximum series resistance on module.

Name	Туре	Maximum Series Resistance	Unit
VDD1	Power supply	10	Ω
VDD2	Power supply	10	Ω
VSS	Power supply	10	Ω
OSC	Input	100	Ω
SRGB, SINV, SMX, SMY, VGLX4, FRM, EXTC, PSEL	Input	100	Ω
TGS, TEST2, TEST3			
P68, BS2, BS1, BS0	Input	100	Ω
RESB	Input	100	Ω
CSB (!SCE)	Input	100	Ω
DC (SCL)	Input	100	Ω
WRB	Input	100	Ω
RDB	Input	100	Ω
TE, VSYNCO	Output	100	Ω
D15 to D0	Input / Output	100	Ω
D23 to D16, VDO DCK, ENABLE, VSYNC, HSYNC	Input	100	Ω
VGH	Capacitor connection	10	Ω
VGL	Capacitor connection	10	Ω
VCOMH,VCOML	Capacitor connection	10	Ω
VR	Capacitor connection	10	Ω
VS	Capacitor connection	10	Ω
VREG_DC	Capacitor connection	5	Ω
VDC1	Booster1 Power Supply	5	Ω
C1P, C1M	Capacitor connection	10	Ω
C2P, C2M	Capacitor connection	10	Ω
C3P, C3M	Capacitor connection	10	Ω
C4P, C4M	Capacitor connection	10	Ω
C5P, C5M	Capacitor connection	10	Ω
C6P, C6M	Capacitor connection	10	Ω

8.6 DC CHARACTERISTICS

8.6.1 Basic Characteristics

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.3V to 2.9V, Ta = -30 to $70^{\circ}C$)

Parameter	Symbol	Conditions Related Pins		MIN	TYP	MAX	Unit
Power & Operating Voltage	ges						
I/O interface Voltage	V DD1IO	-	*2) VDD1_IO,VDD1	1.65	1.8/2.75	3.3	
Logic Operating voltage	VDD1	PSEL=0	*2) VDD1	1.65	1.8	1.95	
Analog Operating voltage	VDD2	-	*2) VDD2	2.3	2.75	3.3	V
Gate Drive High Voltage1	VGH		*3) VGH	9	16.0	20.0	
Gate Drive Low Voltage1	VGL		*3) VGL	-15	-12.0	-6.0	
Drive Supply Voltage1	VGH-VGL		*3) VGH, VGL	15	28.0	30	
Input / Output							
High level input voltage	VIH		*1) *2)	0.7VDD1	-	VDD1	
Low level input voltage	VIL	-	*1) *2)	Vss	-	0.3VDD1	
High level output voltage	Voн	Iон = -1.0mA	*2) D17 to D0,	0.8VDD1	-	VDD1	V
Low level output voltage	Vol	IOL = +1.0mA	TE, TEST1	Vss	-	0.2VDD1	
Input leakage current	liL	VIN = VDD1 or VSS	*1) *2)	-1.0	-	+1.0	μΑ
Oscillator frequency	fosc	-	-	450	500	550	kHz
Booster							
AVDD boost voltage1	AVDD1	IAVDD=1mA, dual-type, X2	*3) AVDD	1.9*VDD2	-	2.0*VDD2	
AVDD boost voltage2	AVDD2	IAVDD=1mA, single-type, X2	*3) AVDD	1.8*VDD2	-	2.0*VDD	
AVDD boost voltage3	AVDD3	IAVDD=1mA, single-type, X3	*3) AVDD	2.7*VREG_ DC		3.0*VREG_ DC	V
VGH boost voltage	VGH	IGH=300uA, 4*VR	*3) VGH	3.6*VR	-	4.0*VR	V
VGL boost voltage	VGL	IGL=-300uA, -3*VR	*3) VGL	-2*VR	-	-1.8*VR	
VCL boost voltage VCL IcL=-300uA, -1*V _{DD2}		*3) VCL	-1*VDD2	-	-0.9*VDD2		
VS output voltage	VS	Default, No load	*3) VS	3.00	4.2	6.00	
VR output voltage	VR	Default, No load	*3) VR	3.00	4.00	5.00	

NOTE: *1) SRGB, SINV, SMX, SMY, DCK, ENABLE, VSYNC, HSYNC, OSC, P68, ,BS2, BS1, BS0, CSB, RESB, DC, WRB, RDB, D23 to D0 pins

*2) *3) When the measurement are performed with LCD module, Measurement Points are like below

167

Parameter	Symbol	Conditions	Related Pins	MIN	TYP	MAX	Unit
VCOM Generator					•		•
VCOM amplitude	VCOMA	No load	VCOMH				V
VCOM amplitude	VCOIVIA	No load	VCOML				V
VCOM output high resistance	Rvсомн	VCOM output = High Ivcoм = 1mA	VCOM	-	200	TBD	
VCOM output low resistance	RVCOML	VCOM output = Low IVCOM = 1mA	VCOM		200	TBD	Ω
Source Driver							
Gray scale resistance	Rgray	Rap~Rjp, Ran~Rjn, R0~R62 of gray voltage generator	S1 to S720	0.7*Rx	Rx	1.3*Rx	Ω
*1) *2)	Ivosh	VS=3.75V, VSO=V0 at positive, VOUT=V0-2V	S1 to S720	1	-200	-100	μА
Drive output current	IvosL	VS=3.75V, VSO=V0 at negative, VOUT=V0-2V	S1 to S720	100	200	-	μА
		VSS1+1.0 ~ VS-1.0	S1 to S720	-	±10	±20	mV
Output voltage deviation	Dvos	VSS1+0.1V ~ VSS1+1.0 VS-1.0 ~ VS-0.1V	S1 to S720	-	±30	±50	mV
Output voltage range	Vos	-	S1 to S720	0.1	-	VS-0.1	V
Gate Driver		•			•		•
*3) Output ON resistance	Rong	Ta = 25°C	G1 to G320	-	2	3	kΩ

NOTE:

- 1) Vso is the output voltage of source output pins S1 to S720.
- 2) Vout is the applied voltage to source output pins S1 to S720
- 3) Resistance value when -0.1[mA] is applied during the ON status of the gate output pin G1 to G320.

 $Ron[kQ] = \Delta V[V] / 0.1[mA]$ (ΔV : Voltage change when -0.1[mA] is applied in the on status.)

8.6.2 Current Consumption

					Memory Data	(Current co	onsumptio	
Host	Mode of operation	Frame	Inversion	Imaga	Access Control	Тур	ical	Worst case	
I/F	wode or operation	Frequency	Mode Image		(MY:MX:MV)	VDD2	VDD1	VDD2	VDD1
					(IVIY:IVIX:IVIV)	(mA)	(mA)	(mA)	(mA)
	Normal Made On		TBD	Note 1	X;X;X	TBD	TBD	TBD	TBD
	- Normal Mode On - Partial Mode Off		TBD	Note 2	X;X;X	TBD	TBD	TBD	TBD
	- Idle Mode Off	60Hz	TBD	Note 3	X;X;X	TBD	TBD	TBD	TBD
	- Sleep Out Mode		TBD	Note 4	X;X;X	TBD	TBD	TBD	TBD
-	- Sicep Gat Wode		TBD	Note 5	X;X;X	TBD	TBD	TBD	TBD
NOT active	- Normal Mode On - Partial Mode Off - Idle Mode On - Sleep Out Mode	60Hz	TBD	Note 5	X;X;X	TBD	TBD	TBD	TBD
Host interface NOT	- Normal Mode Off - Partial Mode On (32 lines) - Idle Mode Off - Sleep Out Mode	60Hz	TBD	Grey Levels	X;X;X	TBD	TBD	TBD	TBD
유	- Normal Mode Off - Partial Mode On (32 lines)	60Hz	TBD	Note 6	X;X;X	TBD	TBD	TBD	TBD
	- Idle Mode On - Sleep Out Mode	00112	TBD	Note 7	X;X;X	TBD	TBD	TBD	TBD
	- Sleep In Mode	N/A	N/A	N/A	X;X;X	0.0	0.002 0.010		10
					0;0;0	TBD	TBD	TBD	TBD
				262k Colors	0;0;1	TBD	TBD	TBD	TBD
				NOTE 8	0;1;0	TBD	TBD	TBD	TBD
					0;1;1	TBD	TBD	TBD	TBD
o S					1;0;0	TBD	TBD	TBD	TBD
į				CPU Access	1;0;1	TBD	TBD	TBD	TBD
a O	- Normal Mode On			@ 15fps	1;1;0	TBD	TBD	TBD	TBD
ac	- Partial Mode Off	60Hz	TBD		1;1;1	TBD	TBD	TBD	TBD
erf	- Normal Mode On - Partial Mode Off - Idle Mode Off - Sleep Out Mode	00112	100		0;0;0	TBD	TBD	TBD	TBD
i.				262k Colors	0;0;1	TBD	TBD	TBD	TBD
ost				NOTE 8	0;1;0	TBD	TBD	TBD	TBD
ヹ					0;1;1	TBD	TBD	TBD	TBD
					1;0;0	TBD	TBD	TBD	TBD
				CPU Access	1;0;1	TBD	TBD	TBD	TBD
				@ 25fps	1;1;0	TBD	TBD	TBD	TBD
					1;1;1	TBD	TBD	TBD	TBD

NOTE: X Do not care

1. All pixels black

2. Checker board one by one

3. Checker board 4 by 4

4. Grey-scale from top to bottom

5. 20% Black, 80%White

6. Black & White Checker board 8 by 8.

7. Absolute Worst Case Patterns: Defined by Display Supplier

8. Absolute Worst Case Patterns and Sequences: Defined by Display Supplier

9. Absolute worst case VDD current is less than TBD mA in the case of CPU access is inactive, Normal Mode On, Partial Mode Off, Idle Mode Off, Sleep Out mode.

10. Absolute worst case VDD1_IOI current is less than TBD mA in the case of CPU access is inactive, Normal Mode On, Partial Mode Off, Idle Mode Off, Sleep Out mode.

11. Inrush currents are not included in current consumption values

169

Typical Case:

VDD2 = 2.75V VDD1 = 1.8V

Worst Case:

 $T_A = -30 \text{ to} 70^{\circ}\text{C}$

VDD2 = 2.5V to 2.9VVDD1 = 1.65V to 1.95V

Includes Process Variance.

 $T_A = 25^{\circ}C$

8.7 AC CHARACTERISTICS(TBD)

8.7.1 Parallel Interface Characteristics (8080-series MPU)

Fig. 8.7.1 Parallel Interface characteristics (8080-series MPU)

(Vss=0V, Vdd1=1.65V to 1.95V, Vdd2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
DC	t _{AST}	Address setup time	10	-	ns	_
ВС	t _{AHT}	Address hold time (Write/Read)	10	-	113	
	t _{CHW}	Chip select "H" pulse width	0	-		
	t _{CS}	Chip select setup time (Write)	35	-		
CSB	t _{RCS}	Chip select setup time (Read ID)	45	-	ns	_
005	t _{RCSFM}	Chip select setup time (Read FM)	355	-	110	
	tcsf	Chip select wait time (Write/Read)	10	-		
	tcsH	Chip select hold time	10	-		
	t _{WC}	Write cycle	100	-		
WRB	t _{WRH}	Control pulse "H" duration	35	-	ns	-
	t _{WRL}	Control pulse "L" duration	35	-		
	t _{RC}	Read cycle (ID)	160	-		
RDB (ID)	t _{RDH}	Control pulse "H" duration (ID)	90	-	ns	When read ID data
	t _{RDL}	Control pulse "L" duration (ID)	45	-		
	t _{RCFM}	Read cycle (FM)	450	-		
RDB (FM)	t _{RDHFM}	Control pulse "H" duration (FM)	90	-	ns	When read from DDRAM
	t _{RDLFM}	Control pulse "L" duration (FM)	355	-		
	t _{DST}	Data setup time	10	-		
	t _{DHT}	Data hold time	10	-		For maximum C _L =30pF
D17 to D0	t _{RAT}	Read access time (ID)	-	40	ns	For minimum C ₁ =8pF
	t _{RATFM}	Read access time (FM)	-	340		
	todh	Output disable time	20	80		

NOTE: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 30% and 70% of VDD1 for Input signals. For output, see Section

170

7.7.6.1

Fig. 8.7.2 Chip select timing

Fig. 8.7.3 Write to read and read to write timing

8.7.2 Parallel Interface Characteristics (6800-series MPU)

Fig. 8.7.4 Parallel Interface characteristics (6800-series MPU)

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$)

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
DC	t _{AST}	Address setup time	10	-	nc	
DC	t _{AHT}	Address hold time (Write/Read)	10	-	ns	
	t _{CHW}	Chip select "H" pulse width	0	-		
	tcs	Chip select setup time (Write)	35	-		
CSB	t _{RCS}	Chip select setup time (Read ID)	45	-	ns	_
COD	t _{RCSFM}	Chip select setup time (Read FM)	355	-	113	
	tcsf	Chip select wait time (Write/Read)	10	-		
	tcsH	Chip select hold time	10	-		
	t _{WC}	Write cycle	100	-		
WRB	t _{WRH}	Control pulse "H" duration	35	-	ns	
	t _{WRL}	Control pulse "L" duration	35	-		
	t _{RC}	Read cycle (ID)	160	-		
RDB (ID)	t _{RDH}	Control pulse "H" duration (ID)	90	-	ns	When read ID data
	t _{RDL}	Control pulse "L" duration (ID)	45	-		
	t _{RCFM}	Read cycle (FM)	450	-		
RDB (FM)	t _{RDHFM}	Control pulse "H" duration (FM)	90	-	ns	When read from DDRAM
	t _{RDLFM}	Control pulse "L" duration (FM)	355	-		
	t _{DST}	Data setup time	10	-		
	t _{DHT}	Data hold time	10	-		For maximum C _L =30pF
D17 to D0	t _{RAT}	Read access time (ID)	-	40	ns	For minimum C ₁ =8pF
	t _{RATFM}	Read access time (FM)	-	340		1 31 11111111111 SL-OPI
	todh	Output disable time	20	80		

NOTE: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 30% and 70% of VDD1_IO for Input signals. For output, see Section 7.7.6.1

172

8.7.3 Serial Interface Characteristics (3-Pin Serial)

Fig. 8.7.5 3-pin serial interface characteristics

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Serial clock cycle (Write) SCL "H" pulse width (Write) SCL "L" pulse width (Write)	t _{SCYCW} t _{SHW} t _{SLW}	SCL	100 35 35		-	ns
Data setup time (Write) Data hold time (Write)	t _{SDS} t _{SDH}	SDA	30 30		-	ns
Serial clock cycle (Read) SCL "H" pulse width (Read) SCL "L" pulse width (Read)	t _{SCYCR} t _{SHR} t _{SLR}	SCL	150 60 60			ns
Access rime	t _{ACC}	SDA For maximum C _L =30pF For minimum C _L =8pF	10		50	ns
Output disable time	t _{OH}	SDA For maximum C _L =30pF For minimum C _L =8pF	15		50	ns
SCL to Chip select	t _{scc}	!SCE	15			ns
SCEB "H" pulse width	t _{CHW}	!SCE	45			ns
Chip select setup time Chip select hold time	t _{CSS} t _{CSH}	!SCE	60 65		-	ns

NOTE: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 30% and 70% of VDD1 for Input signals. For output, see Section 7.7.6.2

8.7.4 Serial Interface Characteristics (4-Pin Serial)

Fig. 8.7.6 4-pin serial interface characteristics

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$)

Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Serial clock cycle (Write) SCL "H" pulse width (Write) SCL "L" pulse width (Write)	t _{SCYCW} t _{SHW} t _{SLW}	SCL	100 35 35		-	ns
Data setup time (Write) Data hold time (Write)	t _{SDS} t _{SDH}	SDA	30 30		-	ns
DC setup time DC hold time	t _{DCS} t _{DCH}	DC	30 30		-	ns
Serial clock cycle (Read) SCL "H" pulse width (Read) SCL "L" pulse width (Read)	tscycr t _{SHR} t _{SLR}	SCL	150 60 60			ns
Access rime	t _{ACC}	SDA For maximum C _L =30pF For minimum C _L =8pF	10		50	ns
Output disable time	tон	SDA For maximum C _L =30pF For minimum C _L =8pF	15		50	ns
SCL to Chip select	t _{scc}	!SCE	15			ns
SCEB "H" pulse width	t _{CHW}	!SCE	45			ns
Chip select setup time Chip select hold time	t _{CSS} t _{CSH}	!SCE	60 65		-	ns

NOTE: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

Logic high and low levels are specified as 30% and 70% of VDD1 for Input signals. For output, see Section 7.7.6.2

8.7.5 RGB Interface Characteristics

Fig. 8.7.7 RGB Interface characteristics

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$)

Symbol	Parameter	Conditions	Related Pins	MIN	TYP	MAX	Unit
t _{DCYC} t _{DLW} t _{CHW}	DCK cycle time DCK Low time DCK High time	-	DCK	TBD TBD TBD	-	-	ns
t _{DDS} t _{DDH}	RGB Data setup time RGB Data hold time	-	DCK, D23-D1, VD0	20 20	-	-	ns
t _{DCSS} t _{DCSH}	ENABLE setup time ENABLE hold Time	-	ENABLE	150 150	-	-	ns
t _{DSYN}	SYNC setup time	-	DCK, HSYNC, VSYNC	20	-	-	ns

NOTE: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.

8.7.6 Reset Input Timing

Fig. 8.7.8 Reset input timing

(VSS=0V, VDD1=1.65V to 1.95V, VDD2=2.5V to 2.9V, Ta = -30 to $75^{\circ}C$)

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESB	10	-	-	-	μS
	*2) Poset complete time	-	-	-	5	When reset applied during Sleep In mode	ms
t _{REST}	*2) Reset complete time	-		-	120	When reset applied during Sleep Out mode	ms

NOTE:

1) Spike due to an electrostatic discharge on RESB line does not cause irregular system reset according to the table below.

RESB Pulse	Action
Shorter than 5 µs	Reset Rejected
Longer than 10µs	Reset
Between 5 µs and 10 µs	Reset Start

- 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out —mode. The display remains the blank state in Sleep In —mode) and then return to Default condition for H/W reset.
- 3) During Reset Complete Time, ID2 and VCOMOF value in OTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESB.
- 4) Spike Rejection also applies during a valid reset pulse as shown below:

5) It is necessary to wait 5msec after releasing RESB before sending commands. Also Sleep Out command cannot be sent for 120msec.

178

8.7.7 Measurement Conditions

8.7.7.1 t_{RATFM} , t_{ODH} Measurement Condition

Measurement Condition Set-up

NOTE: Capacitances and resistances of the oscilloscope's probe must be included externals components in these measurements

Minimum Value Measurement

Maximum Value Measurement

8.7.7.2 t_{ACC} , t_{OH} Measurement Condition

Measurement Condition Set-up

NOTE: Capacitances and resistances of the oscilloscope's probe must be included externals components in these measurements

Minimum Value Measurement

Maximum Value Measurement

9 REFERENCE APPLICATIONS

9.1 MICROPROCESSOR INTERFACE

9.1.1 Interfacing with 3-Pin Serial Mode (P68 = "L", BS2="L", BS1 = "L", BS0 = "L")

Fig. 9.1.1 Interfacing with 3-Pin Serial Mode

9.1.2 Interfacing with 4-Pin Serial Mode (P68 = "H", BS2="L", BS1 = "L", BS0 = "L")

Fig. 9.1.2 Interfacing with 4-Pin Serial Mode

9.1.3 Interfacing with 8080-series MPU 8-Bit Bus (P68 = "L", BS2="L", BS1 = "L", BS0 = "H")

Fig. 9.1.3 Interfacing with 8-bit 8080-series

9.1.4 Interfacing with 6800-series MPU 8-Bit Bus (P68 = "H", BS2="L", BS1 = "L", BS0 = "H")

Fig. 9.1.4 Interfacing with 8-bit 6800-series

9.1.5 Interfacing with 8080-series MPU 9-Bit Bus (P68 = "L", BS2="H", BS1 = "L", BS0 = "L")

Fig. 9.1.5 Interfacing with 8-bit 8080-series

9.1.6 Interfacing with 6800-series MPU 9-Bit Bus (P68 = "H", BS2="H", BS1 = "L", BS0 = "L")

Fig. 9.1.6 Interfacing with 8-bit 6800-series

9.1.7 Interfacing with 8080-series MPU 16-Bit Bus (P68 = "L", BS2="L", BS1 = "H", BS0 = "H")

Fig. 9.1.7 Interfacing with 16-bit 8080-series

9.1.8 Interfacing with 6800-series MPU 16-Bit Bus (P68 = "H", BS2="L", BS1 = "H", BS0 = "H")

Fig. 9.1.8 Interfacing with 16-bit 6800-series

186

9.1.9 Interfacing with 8080-series MPU 18-Bit Bus (P68 = "L", BS2="H", BS1 = "H", BS0 = "L")

Fig. 9.1.9 Interfacing with 18-bit 8080-series

9.1.10 Interfacing with 6800-series MPU 18-Bit Bus (P68 = "H", BS2="H", BS1 = "H", BS0 = "L")

Fig. 9.1.10 Interfacing with 18-bit 6800-series

9.2 CONNECTIONS WITH LCD PANEL

9.2.1 One Layer Connection for Gate output

9.2.2 Two Layer Connection for Gate output

9.3 EXAMPLE CONNECTION WITH PANEL (CASE11)

(1,1) 240 x 320 Panel Viewing Area (240,320) (240,320) (240,320) (DS285 Bumps Up

SMX = VSS SMY = VSS SRGB = VSS

9.4 CONNECTION EXAMPLE WITH EXTERNAL COMPONENTS

9.4.1 Application Circuit Example

NOTE: 1) To use extended command set like EEPROM program, EXTC should be connected to VDD1 and External voltage should be appled to ME_CMP pad, so, EXTC and ME_CMP should have probing point for mass production.

9.5 EXTERNAL COMPONENTS CONNECTION

Pad Name	Connection	Typical capacitance value
VCOMH	Connect to Capacitor (Max 6V): VCOMH(+) (-)VSS	1.0 uF
VCOML	Connect to Capacitor (Max 3V): VCOML(-) (+)VSS	1.0 uF
VGL	Connect to Capacitor (Max 12V): VGL(-) (+)VSS	1.0 uF
VCL	Connect to Capacitor (Max 5V): VCL(-) (+)VSS	1.0 uF
VSS1_R	Connect to VSS(GND)	
VSS1	Connect to VSS(GND)	
VSS2	Connect to VSS(GND)	
VSS2_DC	Connect to VSS(GND)	
VDD1_R	Connect to VDD1	
VDD2_DC	Connect to VDD2	
VGH	Connect to Capacitor (Max 16V): VGH(+) (-)VSS	1.0 uF
C6+, C6-	Connect to Capacitor (Max 5V): C6+(+) (-)C6-	1.0 uF
C5+, C5-	Connect to Capacitor (Max 7V): C5+(+) (-)C5-	1.0 uF
C4+, C4-	Connect to Capacitor (Max 7V): C4+(+) (-)C4-	1.0 uF
C3+, C3-	Connect to Capacitor (Max 7V): C3+(+) (-)C3-	1.0 uF
C2+, C2-	Connect to Capacitor (Max 5V): C2+(+) (-)C2-	2.2 uF
C1+, C1-	Connect to Capacitor (Max 5V): C1+(+) (-)C1-	2.2 uF
VDC1	Connect to VDD2(in case of x3 avdd3 mode, Connect to VREG_DC)	
VREG_DC	Connect to Capacitor (Max 2.6V): VREG_DC(+) (-)VSS	2.2 uF
AVDD	Connect to Capacitor (Max 6V): AVDD(+) (-)VSS	2.2 uF
VR	Connect to Capacitor (Max 6V): VR(+) (-)VSS	1.0 uF
VS	Connect to Capacitor (Max 6V): VS(+) (-)VSS	1.0 uF
VDD1	When "PSEL = Low" VDDI (Digital Power)	
	When "PSEL = High"	
	Connect to Capacitor (Max 5V): VDD1 (R)(+) (-)VSS	2.2 uF
VGL	Connect to Shottky Diode between VSS	VF = 0.3V / 50mA
AVDD	Connect to Shottky Diode between VDD2	VF = 0.3V / 50mA
VS	Connect to Shottky Diode between VDD2	VF = 0.3V / 50mA

10 CHIP INFORMATION

10.1 CHIP OVERVIEW

NOTE:

^{*} Chip Size = 22,000 x 1140 (Excluding Scribe Lane)

^{*} Chip Thickness = $410 \pm 12 \mu m$

^{*} Bump height = $15 \pm 3 \mu m$ (chip to chip), less than $2 \mu m$ (pad to pad in one chip)

10.2 BUMP INFORMATION

10.2.1 Source / Gate / VCOM / Gate control / Output side dummy Pad Format

Item	Symbol	Size
item	Cyrribor	Source / Gate / VCOM / Gate control / / Output side dummy pad
Pad pitch	Α	20um
Bump width	В	21 um
Bump length	С	100 um
Bump to Bump gap1 (Vertical)	D	25 um
Bump to Bump gap2 (Horizontal)	Е	19 um
Bump area	B*C	2100 um ²
Chip boundary to Bump edge	F	8.5 um

10.2.2 Input / Input side dummy Pad Format

Item	Symbol	Size
item	Syllibol	Input / Input side dummy pad
Pad pitch	Α	70 um
Bump width	В	50 um
Bump length	С	80 um
Bump to Bump gap (Horizontal)	Е	20 um
Bump area	B*C	4000 um ²
Chip boundary to Bump edge	F	12.5 um

10.3 PAD COORDINATES

Table 10.3.1 Pad Center Coordinates

able 10.3.1	rau Center Coordii	iiales					
No	Name	X	Υ	No	Name	Χ	Υ
1	DUMMY	-10885	-517.5	51	DUMMY	-7175	-517.5
2	DUMMY	-10815	-517.5	52	SMX	-7105	-517.5
3	DUMMY	-10745	-517.5	53	D<7>	-7035	-517.5
4	DUMMY	-10465	-517.5	54	D<6>	-6965	-517.5
5	PADA<0>	-10395	-517.5	55	D<5>	-6895	-517.5
6	PADA<1>	-10325	-517.5	56	D<4>	-6825	-517.5
7	PADB<1>	-10255	-517.5	57	D<3>	-6755	-517.5
8	ME CMP	-10185	-517.5	58	D<2>	-6685	-517.5
9	ME_CMP	-10115	-517.5	59	D<1>	-6615	-517.5
10	ME_CMP	-10045	-517.5	60	D<0>	-6545	-517.5
11	ME_CMP	-9975	-517.5	61	SINV	-6475	-517.5
12	ME_VME5	-9905	-517.5	62	LED CNT	-6405	-517.5
13	ME_VME5	-9835		63	RDB	-6335	
14	D<23>	-9655 -9765	-517.5 -517.5	64	WRB	-6265	-517.5 -517.5
15	D<23>	-9695	-517.5 -517.5	65	DC	-6265 -6195	-517.5 -517.5
					CSB		
16	D<21>	-9625	-517.5	66		-6125	-517.5
17	D<20>	-9555	-517.5	67	D_VDD1IO	-6055	-517.5
18	D<19>	-9485	-517.5	68	DUMMY	-5985	-517.5
19	D<18>	-9415	-517.5	69	FRM	-5915	-517.5
20	VSYNCO	-9345	-517.5	70	TE	-5845	-517.5
21	DUMMY	-9275	-517.5	71	TEST2	-5775	-517.5
22	OSC	-9205	-517.5	72	TEST3	-5705	-517.5
23	TGS	-9135	-517.5	73	TEST1	-5635	-517.5
24	D_VDD1IO	-9065	-517.5	74	TEST4	-5565	-517.5
25	D_VSS1	-8995	-517.5	75	DUMMY	-5495	-517.5
26	P68	-8925	-517.5	76	DUMMY	-5425	-517.5
27	EXTC	-8855	-517.5	77	DUMMY	-5355	-517.5
28	BS0	-8785	-517.5	78	DUMMY	-5285	-517.5
29	BS1	-8715	-517.5	79	DUMMY	-5215	-517.5
30	BS2	-8645	-517.5	80	PSEL	-5145	-517.5
31	SRGB	-8575	-517.5	81	DUMMY	-5075	-517.5
32	DUMMY	-8505	-517.5	82	DUMMY	-5005	-517.5
33	DUMMY	-8435	-517.5	83	DUMMY	-4935	-517.5
34	VD0	-8365	-517.5	84	DUMMY	-4865	-517.5
35	RSB	-8295	-517.5	85	DUMMY	-4795	-517.5
36	VSYNC	-8225	-517.5	86	VSS2	-4725	-517.5
37	HSYNC	-8155	-517.5	87	VSS2	-4655	-517.5
38	DCK	-8085	-517.5	88	VSS2	-4585	-517.5
39	ENABLE	-8015	-517.5	89	VSS2	-4515	-517.5
40	D<17>	-7945	-517.5	90	VSS2	-4445	-517.5
41	D<16>	-7875	-517.5	91	VSS2	-4375	-517.5
42	D<15>	-7805	-517.5	92	VSS2	-4305	-517.5
43	D<14>	-7735	-517.5	93	VSS2	-4235	-517.5
44	D<13>	-7665	-517.5	94	VSS2	-4165	-517.5
45	D<12>	-7595	-517.5	95	VDD2	-4095	-517.5
46	D<11>	-7525	-517.5	96	VDD2	-4025	-517.5
47	D<10>	-7455	-517.5	97	VDD2	-3955	-517.5
48	D<9>	-7385	-517.5	98	VDD2	-3885	-517.5
49	D<9>	-7365 -7315	-517.5 -517.5	99	VDD2	-3815	-517.5 -517.5
50	SMY	-7315 -7245	-517.5	100	VDD2	-3745	-517.5
50	SIVIT	-1240	-517.5	100	V D D Z	-3143	-517.5

No	Name	Х	Υ	No	Name	Х	Υ
101	VDD2	-3675	-517.5	151	VDD1	-175	-517.5
102	VDD1_IO	-3605	-517.5	152	VDD1	-105	-517.5
103	VDD1 IO	-3535	-517.5	153	VDD1	-35	-517.5
104	VDD1 IO	-3465	-517.5	154	VDD1	35	-517.5
105	VDD1_IO	-3395	-517.5	155	VDD1	105	-517.5
106	VDD1_IO	-3325	-517.5	156	VDD1	175	-517.5
107	VDD1_IO	-3255	-517.5	157	VDD1	245	-517.5
108	VDD1_IO	-3185	-517.5	158	VDD1	315	-517.5
109	VS VS	-3115	-517.5	159	VDD1	385	-517.5
110	VS	-3045	-517.5	160	VDD1	455	-517.5
111	VS	-2975	-517.5	161	VDD1_R	525	-517.5
112	VS	-2905	-517.5	162	VDD1_R	595	-517.5
113	VS	-2835	-517.5	163	VDD1_R	665	-517.5
114	VS	-2765	-517.5	164	VDD1_R	735	-517.5
115	VS	-2695	-517.5	165	VSS1_R	805	-517.5
116	VS	-2625	-517.5	166	VSS1_R	875	-517.5
117	VDD1_R	-2555	-517.5	167	VSS1_R	945	-517.5
118	VDD1_R	-2485	-517.5	168	VSS1_R	1015	-517.5
119	VDD1_R	-2415	-517.5	169	VSS1_R	1085	-517.5
120	VDD1_R	-2345	-517.5	170	VSS1_R	1155	-517.5
121	VDD1_R	-2275	-517.5	171	VSS1_R	1225	-517.5
122	VDD1_R	-2205	-517.5	172	VSS1_R	1295	-517.5
123	VDD1_R	-2135	-517.5	173	VSS1_R	1365	-517.5
124	VDD1_R	-2065	-517.5	174	VSS1_R	1435	-517.5
125	VDD1_R	-1995	-517.5	175	VCOM	1505	-517.5
126	VSS1_R	-1925	-517.5	176	VCOM	1575	-517.5
127	VSS1_R	-1855	-517.5	177	VCOM	1645	-517.5
128	VSS1_R	-1785	-517.5	178	VCOM	1715	-517.5
129	VSS1_R	-1715	-517.5	179	VCOM	1785	-517.5
130	VSS1_R	-1645	-517.5	180	VCOM	1855	-517.5
131	VSS1_R	-1575	-517.5	181	VCOMH	1925	-517.5
132	VSS1_R	-1505	-517.5	182	VCOMH	1995	-517.5
133	VSS1 R	-1435	-517.5	183	VCOMH	2065	-517.5
134	VSS1_R	-1365	-517.5	184	VCOMH	2135	-517.5
135	VSS1_R	-1295	-517.5	185	VCOMH	2205	-517.5
136	VSS1_R	-1225	-517.5	186	VCOMH	2275	-517.5
137	VSS1_R	-1155	-517.5	187	VCOML	2345	-517.5
138	VSS1	-1085	-517.5	188	VCOML	2415	-517.5
139	VSS1	-1015	-517.5	189	VCOML	2485	-517.5
140	VSS1	-945	-517.5	190	VCOML	2555	-517.5
141	VSS1	-875	-517.5	191	VCOML	2625	-517.5
142	VSS1	-805	-517.5	192	VCOML	2695	-517.5
143	VSS1	-735	-517.5	193	VR	2765	-517.5
144	VSS1	-665	-517.5	194	VR	2835	-517.5
145	VSS1	-595	-517.5	195	VR	2905	-517.5
146	VSS1	-525	-517.5	196	VR	2975	-517.5
147	VSS1	-455	-517.5	197	VR	3045	-517.5
148	VSS1	-385	-517.5	198	VR	3115	-517.5
149	VDD1	-315	-517.5	199	VR	3185	-517.5
150	VDD1	-245	-517.5	200	VR	3255	-517.5

No	Name	Х	Υ	No	Name	Х	Y
201	VCL	3325	-517.5	251	VSS2	6825	-517.5
202	VCL	3395	-517.5	252	VGL	6895	-517.5
203	VCL	3465	-517.5	253	VGL	6965	-517.5
204	VGH	3535	-517.5	254	VGL	7035	-517.5
205	VGH	3605	-517.5	255	VGL	7105	-517.5
206	VGH	3675	-517.5	256	VGL	7175	-517.5
207	AVDD	3745	-517.5	257	VGL	7245	-517.5
208	AVDD	3815	-517.5	258	VGL	7315	-517.5
209	AVDD	3885	-517.5	259	VGL	7385	-517.5
210	AVDD	3955	-517.5	260	VGL	7455	-517.5
211	AVDD	4025	-517.5	261	VGL	7525	-517.5
212	AVDD	4095	-517.5	262	VGL	7595	-517.5
213	AVDD	4165	-517.5	263	VGL	7665	-517.5
214	VREG DC	4235	-517.5	264	VSS2	7735	-517.5
215	VREG DC	4305	-517.5	265	VSS2	7805	-517.5
216	VREG DC	4375	-517.5	266	VSS2	7875	-517.5
217	VDC1	4445	-517.5	267	VSS2_DC	7945	-517.5
218	VDC1	4515	-517.5	268	VSS2_DC	8015	-517.5
219	VDC1	4585	-517.5	269	VSS2 DC	8085	-517.5
220	VDC1	4655	-517.5	270	VSS2_DC	8155	-517.5
221	VDC1	4725	-517.5	271	VSS2_DC	8225	-517.5
222	VDD2	4795	-517.5	272	VSS2_DC	8295	-517.5
223	VDD2	4865	-517.5	273	DUMMY	8365	-517.5
224	VDD2	4935	-517.5	274	C6M	8435	-517.5
225	VDD2	5005	-517.5	275	C6M	8505	-517.5
226	VDD2_DC	5075	-517.5	276	C6M	8575	-517.5
227	VDD2_DC	5145	-517.5	277	DUMMY	8645	-517.5
228	VDD2_DC	5215	-517.5	278	C6P	8715	-517.5
229	VDD2_DC	5285	-517.5	279	C6P	8785	-517.5
230	VDD2_DC	5355	-517.5	280	C6P	8855	-517.5
231	C1M	5425	-517.5	281	DUMMY	8925	-517.5
232	C1M	5495	-517.5	282	C3M	8995	-517.5
233	C1M	5565	-517.5	283	C3M	9065	-517.5
234	C1M	5635	-517.5	284	C3M	9135	-517.5
235	C1M	5705	-517.5	285	C3P	9205	-517.5
236	C1P	5775	-517.5	286	C3P	9275	-517.5
237	C1P	5845	-517.5	287	C3P	9345	-517.5
238	C1P	5915	-517.5	288	C4M	9415	-517.5
239	C1P	5985	-517.5	289	C4M	9485	-517.5
240	C1P	6055	-517.5	290	C4M	9555	-517.5
241	C2M	6125	-517.5	291	C4P	9625	-517.5
242	C2M	6195	-517.5	292	C4P	9695	-517.5
243	C2M	6265	-517.5	293	C4P	9765	-517.5
244	C2M	6335	-517.5	294	C5M	9835	-517.5
245	C2M	6405	-517.5	295	C5M	9905	-517.5
246	C2P	6475	-517.5	296	C5M	9975	-517.5
247	C2P	6545	-517.5	297	C5P	10045	-517.5
248	C2P	6615	-517.5	298	C5P	10115	-517.5
249	C2P	6685	-517.5	299	C5P	10185	-517.5
250	C2P	6755	-517.5	300	PADA<2>	10255	-517.5

No	Name	Х	Υ	No	Name	Х	Y
301	DUMMY	10325	-517.5	351	G<79>	9790	511.5
302	DUMMY	10395	-517.5	352	G<81>	9770	386.5
303	DUMMY	10465	-517.5	353	G<83>	9750	511.5
304	DUMMY	10745	-517.5	354	G<85>	9730	386.5
305	DUMMY	10815	-517.5	355	G<87>	9710	511.5
306	DUMMY	10885	-517.5	356	G<89>	9690	386.5
307	DUMMY	10670	511.5	357	G<91>	9670	511.5
308	DUMMY	10650	386.5	358	G<93>	9650	386.5
309	DUMMY	10630	511.5	359	G<95>	9630	511.5
310	DUMMY	10610	386.5	360	G<97>	9610	386.5
311	DUMMY	10590	511.5	361	G<99>	9590	511.5
312	G<1>	10570	386.5	362	G<101>	9570	386.5
313	G<3>	10570	511.5	363	G<103>	9550	511.5
314	G<5>	10530	386.5	364	G<105>	9530	386.5
315	G<7>	10510	511.5	365	G<103>	9510	511.5
316	G<9>	10490	386.5	366	G<107>	9490	386.5
317	G<11>	10470	511.5	367	G<111>	9470	511.5
318	G<13>	10470	386.5	368	G<113>	9450	386.5
319	G<15>	10430	511.5	369	G<115>	9430	511.5
320	G<17>	10410	386.5	370	G<117>	9410	386.5
321	G<19>	10390	511.5	371	G<119>	9390	511.5
322	G<21>	10370	386.5	372	G<121>	9370	386.5
323	G<23>	10370	511.5	373	G<123>	9350	511.5
324	G<25>	10330	386.5	374	G<125>	9330	386.5
325	G<27>	10330	511.5	375	G<127>	9310	511.5
326	G<29>	10290	386.5	376	G<129>	9290	386.5
327	G<31>	10270	511.5	377	G<131>	9270	511.5
328	G<33>	10250	386.5	378	G<133>	9250	386.5
329	G<35>	10230	511.5	379	G<135>	9230	511.5
330	G<37>	10210	386.5	380	G<137>	9210	386.5
331	G<39>	10190	511.5	381	G<139>	9190	511.5
332	G<41>	10170	386.5	382	G<141>	9170	386.5
333	G<43>	10150	511.5	383	G<143>	9150	511.5
334	G<45>	10130	386.5	384	G<145>	9130	386.5
335	G<47>	10110	511.5	385	G<147>	9110	511.5
336	G<49>	10090	386.5	386	G<149>	9090	386.5
337	G<51>	10070	511.5	387	G<151>	9070	511.5
338	G<53>	10050	386.5	388	G<153>	9050	386.5
339	G<55>	10030	511.5	389	G<155>	9030	511.5
340	G<57>	10010	386.5	390	G<157>	9010	386.5
341	G<59>	9990	511.5	391	G<159>	8990	511.5
342	G<61>	9970	386.5	392	G<161>	8970	386.5
343	G<63>	9950	511.5	393	G<163>	8950	511.5
344	G<65>	9930	386.5	394	G<165>	8930	386.5
345	G<67>	9910	511.5	395	G<167>	8910	511.5
346	G<69>	9890	386.5	396	G<169>	8890	386.5
347	G<71>	9870	511.5	397	G<171>	8870	511.5
348	G<73>	9850	386.5	398	G<173>	8850	386.5
349	G<75>	9830	511.5	399	G<175>	8830	511.5
350	G<77>	9810	386.5	400	G<177>	8810	386.5

No	Name	Х	Y	No	Name	Х	Y
401	G<179>	8790	511.5	451	G<279>	7790	511.5
402	G<181>	8770	386.5	452	G<281>	7770	386.5
403	G<183>	8750	511.5	453	G<283>	7750	511.5
404	G<185>	8730	386.5	454	G<285>	7730	386.5
405	G<187>	8710	511.5	455	G<287>	7710	511.5
406	G<189>	8690	386.5	456	G<289>	7690	386.5
407	G<191>	8670	511.5	457	G<291>	7670	511.5
408	G<193>	8650	386.5	458	G<293>	7650	386.5
409	G<195>	8630	511.5	459	G<295>	7630	511.5
410	G<197>	8610	386.5	460	G<297>	7610	386.5
411	G<199>	8590	511.5	461	G<299>	7590	511.5
412	G<201>	8570	386.5	462	G<301>	7570	386.5
413	G<203>	8550	511.5	463	G<303>	7550	511.5
414	G<205>	8530	386.5	464	G<305>	7530	386.5
415	G<207>	8510	511.5	465	G<307>	7510	511.5
416	G<209>	8490	386.5	466	G<309>	7490	386.5
417	G<211>	8470	511.5	467	G<311>	7470	511.5
418	G<213>	8450	386.5	468	G<313>	7450	386.5
419	G<215>	8430	511.5	469	G<315>	7430	511.5
420	G<217>	8410	386.5	470	G<317>	7410	386.5
421	G<219>	8390	511.5	471	G<319>	7390	511.5
422	G<221>	8370	386.5	472	DUMMY	7370	386.5
423	G<223>	8350	511.5	473	DUMMY	7350	511.5
424	G<225>	8330	386.5	474	DUMMY	7130	511.5
425	G<227>	8310	511.5	475	S<720>	7110	386.5
426	G<229>	8290	386.5	476	S<719>	7090	511.5
427	G<231>	8270	511.5	477	S<718>	7070	386.5
428	G<233>	8250	386.5	478	S<717>	7050	511.5
429	G<235>	8230	511.5	479	S<716>	7030	386.5
430	G<237>	8210	386.5	480	S<715>	7010	511.5
431	G<239>	8190	511.5	481	S<714>	6990	386.5
432	G<241>	8170	386.5	482	S<713>	6970	511.5
433	G<243>	8150	511.5	483	S<712>	6950	386.5
434	G<245>	8130	386.5	484	S<711>	6930	511.5
435	G<247>	8110	511.5	485	S<710>	6910	386.5
436	G<249>	8090	386.5	486	S<709>	6890	511.5
437	G<251>	8070	511.5	487	S<708>	6870	386.5
438	G<253>	8050	386.5	488	S<707>	6850	511.5
439	G<255>	8030	511.5	489	S<706>	6830	386.5
440	G<257>	8010	386.5	490	S<705>	6810	511.5
441	G<259>	7990	511.5	491	S<704>	6790	386.5
442	G<261>	7970	386.5	492	S<703>	6770	511.5
443	G<263>	7950	511.5	493	S<702>	6750	386.5
444	G<265>	7930	386.5	494	S<701>	6730	511.5
445	G<267>	7910	511.5	495	S<700>	6710	386.5
446	G<269>	7890	386.5	496	S<699>	6690	511.5
447	G<271>	7870	511.5	497	S<698>	6670	386.5
448	G<273>	7850	386.5	498	S<697>	6650	511.5
449	G<275>	7830	511.5	499	S<696>	6630	386.5
450	G<277>	7810	386.5	500	S<695>	6610	511.5

No	Name	Х	Υ	No	Name	Х	Y
501	S<694>	6590	386.5	551	S<644>	5590	386.5
502	S<693>	6570	511.5	552	S<643>	5570	511.5
503	S<692>	6550	386.5	553	S<642>	5550	386.5
504	S<691>	6530	511.5	554	S<641>	5530	511.5
505	S<690>	6510	386.5	555	S<640>	5510	386.5
506	S<689>	6490	511.5	556	S<639>	5490	511.5
507	S<688>	6470	386.5	557	S<638>	5470	386.5
508	S<687>	6450	511.5	558	S<637>	5450	511.5
509	S<686>	6430	386.5	559	S<636>	5430	386.5
510	S<685>	6410	511.5	560	S<635>	5410	511.5
511	S<684>	6390	386.5	561	S<634>	5390	386.5
512	S<683>	6370	511.5	562	S<633>	5370	511.5
513	S<682>	6350	386.5	563	S<632>	5350	386.5
514	S<681>	6330	511.5	564	S<631>	5330	511.5
515	S<680>	6310	386.5	565	S<630>	5310	386.5
516	S<679>	6290	511.5	566	S<629>	5290	511.5
517	S<678>	6270	386.5	567	S<628>	5270	386.5
518	S<677>	6250	511.5	568	S<627>	5250	511.5
519	S<676>	6230	386.5	569	S<626>	5230	386.5
520	S<675>	6210	511.5	570	S<625>	5210	511.5
521	S<674>	6190	386.5	571	S<624>	5190	386.5
522	S<673>	6170	511.5	572	S<623>	5170	511.5
523	S<672>	6150	386.5	573	S<622>	5150	386.5
524	S<671>	6130	511.5	574	S<621>	5130	511.5
525	S<670>	6110	386.5	575	S<620>	5110	386.5
526	S<669>	6090	511.5	576	S<619>	5090	511.5
527	S<668>	6070	386.5	577	S<618>	5070	386.5
528	S<667>	6050	511.5	578	S<617>	5050	511.5
529	S<666>	6030	386.5	579	S<616>	5030	386.5
530	S<665>	6010	511.5	580	S<615>	5010	511.5
531	S<664>	5990	386.5	581	S<614>	4990	386.5
532	S<663>	5970	511.5	582	S<613>	4970	511.5
533	S<662>	5950	386.5	583	S<612>	4950	386.5
534	S<661>	5930	511.5	584	S<611>	4930	511.5
535	S<660>	5910	386.5	585	S<610>	4910	386.5
536	S<659>	5890	511.5	586	S<609>	4890	511.5
537	S<658>	5870	386.5	587	S<608>	4870	386.5
538	S<657>	5850	511.5	588	S<607>	4850	511.5
539	S<656>	5830	386.5	589	S<606>	4830	386.5
540	S<655>	5810	511.5	590	S<605>	4810	511.5
541	S<654>	5790	386.5	591	S<604>	4790	386.5
542	S<653>	5770	511.5	592	S<603>	4770	511.5
543	S<652>	5750	386.5	593	S<602>	4750	386.5
544	S<651>	5730	511.5	594	S<601>	4730	511.5
545	S<650>	5710	386.5	595	S<600>	4710	386.5
546	S<649>	5690	511.5	596	S<599>	4690	511.5
547	S<648>	5670	386.5	597	S<598>	4670	386.5
548	S<647>	5650	511.5	598	S<597>	4650	511.5
549	S<646>	5630	386.5	599	S<596>	4630	386.5
550	S<645>	5610	511.5	600	S<595>	4610	511.5

No	Name	Х	Υ	No	Name	Х	Y
601	S<594>	4590	386.5	651	S<544>	3590	386.5
602	S<593>	4570	511.5	652	S<543>	3570	511.5
603	S<592>	4550	386.5	653	S<542>	3550	386.5
604	S<591>	4530	511.5	654	S<541>	3530	511.5
605	S<590>	4510	386.5	655	S<540>	3510	386.5
606	S<589>	4490	511.5	656	S<539>	3490	511.5
607	S<588>	4470	386.5	657	S<538>	3470	386.5
608	S<587>	4450	511.5	658	S<537>	3450	511.5
609	S<586>	4430	386.5	659	S<536>	3430	386.5
610	S<585>	4410	511.5	660	S<535>	3410	511.5
611	S<584>	4390	386.5	661	S<534>	3390	386.5
612	S<583>	4370	511.5	662	S<533>	3370	511.5
613	S<582>	4350	386.5	663	S<532>	3350	386.5
614	S<581>	4330	511.5	664	S<531>	3330	511.5
615	S<580>	4310	386.5	665	S<530>	3310	386.5
616	S<579>	4290	511.5	666	S<529>	3290	511.5
617	S<578>	4270	386.5	667	S<528>	3270	386.5
618	S<577>	4250	511.5	668	S<527>	3250	511.5
619	S<576>	4230	386.5	669	S<526>	3230	386.5
620	S<575>	4210	511.5	670	S<525>	3210	511.5
621	S<574>	4190	386.5	671	S<524>	3190	386.5
622	S<573>	4170	511.5	672	S<523>	3170	511.5
623	S<572>	4150	386.5	673	S<522>	3150	386.5
624	S<571>	4130	511.5	674	S<521>	3130	511.5
625	S<570>	4110	386.5	675	S<520>	3110	386.5
626	S<569>	4090	511.5	676	S<519>	3090	511.5
627	S<568>	4070	386.5	677	S<518>	3070	386.5
628	S<567>	4050	511.5	678	S<517>	3050	511.5
629	S<566>	4030	386.5	679	S<516>	3030	386.5
630	S<565>	4010	511.5	680	S<515>	3010	511.5
631	S<564>	3990	386.5	681	S<514>	2990	386.5
632	S<563>	3970	511.5	682	S<513>	2970	511.5
633	S<562>	3950	386.5	683	S<512>	2950	386.5
634	S<561>	3930	511.5	684	S<511>	2930	511.5
635	S<560>	3910	386.5	685	S<510>	2910	386.5
636	S<559>	3890	511.5	686	S<509>	2890	511.5
637	S<558>	3870	386.5	687	S<508>	2870	386.5
638	S<557>	3850	511.5	688	S<507>	2850	511.5
639	S<556>	3830	386.5	689	S<506>	2830	386.5
640	S<555>	3810	511.5	690	S<505>	2810	511.5
641	S<554>	3790	386.5	691	S<504>	2790	386.5
642	S<553>	3770	511.5	692	S<503>	2770	511.5
643	S<552>	3750	386.5	693	S<502>	2750	386.5
644	S<551>	3730	511.5	694	S<501>	2730	511.5
645	S<550>	3710	386.5	695	S<500>	2710	386.5
646	S<549>	3690	511.5	696	S<499>	2690	511.5
647	S<548>	3670	386.5	697	S<498>	2670	386.5
648	S<547>	3650	511.5	698	S<497>	2650	511.5
649	S<546>	3630	386.5	699	S<496>	2630	386.5
650	S<545>	3610	511.5	700	S<495>	2610	511.5

No	Name	Χ	Υ	No	Name	X	Υ
701	S<494>	2590	386.5	751	S<444>	1590	386.5
702	S<493>	2570	511.5	752	S<443>	1570	511.5
703	S<492>	2550	386.5	753	S<442>	1550	386.5
704	S<491>	2530	511.5	754	S<441>	1530	511.5
705	S<490>	2510	386.5	755	S<440>	1510	386.5
706	S<489>	2490	511.5	756	S<439>	1490	511.5
707	S<488>	2470	386.5	757	S<438>	1470	386.5
708	S<487>	2450	511.5	758	S<437>	1450	511.5
709	S<486>	2430	386.5	759	S<436>	1430	386.5
710	S<485>	2410	511.5	760	S<435>	1410	511.5
711	S<484>	2390	386.5	761	S<434>	1390	386.5
712	S<483>	2370	511.5	762	S<433>	1370	511.5
713	S<482>	2350	386.5	763	S<432>	1350	386.5
714	S<481>	2330	511.5	764	S<431>	1330	511.5
715	S<480>	2310	386.5	765	S<430>	1310	386.5
716	S<479>	2290	511.5	766	S<429>	1290	511.5
717	S<478>	2270	386.5	767	S<428>	1270	386.5
718	S<477>	2250	511.5	768	S<427>	1250	511.5
719	S<476>	2230	386.5	769	S<426>	1230	386.5
720	S<475>	2210	511.5	770	S<425>	1210	511.5
721	S<474>	2190	386.5	771	S<424>	1190	386.5
722	S<473>	2170	511.5	772	S<423>	1170	511.5
723	S<472>	2150	386.5	773	S<422>	1150	386.5
724	S<471>	2130	511.5	774	S<421>	1130	511.5
725	S<470>	2110	386.5	775	S<420>	1110	386.5
726	S<469>	2090	511.5	776	S<419>	1090	511.5
727	S<468>	2070	386.5	777	S<418>	1070	386.5
728	S<467>	2050	511.5	778	S<417>	1050	511.5
729	S<466>	2030	386.5	779	S<416>	1030	386.5
730	S<465>	2010	511.5	780	S<415>	1010	511.5
731	S<464>	1990	386.5	781	S<414>	990	386.5
732	S<463>	1970	511.5	782	S<413>	970	511.5
733	S<462>	1950	386.5	783	S<412>	950	386.5
734	S<461>	1930	511.5	784	S<411>	930	511.5
735	S<460>	1910	386.5	785	S<410>	910	386.5
736	S<459>	1890	511.5	786	S<409>	890	511.5
737	S<458>	1870	386.5 511.5	787 788	S<408> S<407>	870 850	386.5 511.5
738 739	S<457> S<456>	1850 1830	511.5 386.5	789	S<407>	830	386.5
740	S<456>	1810	511.5	789	S<405>	810	511.5
740	S<455>	1790	386.5	790 791	S<405>	790	386.5
741	0 4-0	1790	511.5		0 100		511.5
743	S<453> S<452>	1750	386.5	792 793	S<403> S<402>	770 750	386.5
744	S<451>	1730	511.5	794	S<401>	730	511.5
745	S<450>	1710	386.5	795	S<400>	710	386.5
746	S<449>	1690	511.5	796	S<399>	690	511.5
747	S<448>	1670	386.5	797	S<398>	670	386.5
748	S<447>	1650	511.5	798	S<397>	650	511.5
749	S<446>	1630	386.5	799	S<396>	630	386.5
750	S<445>	1610	511.5	800	S<395>	610	511.5

No	Name	Х	Y	No	Name	Х	Υ
801	S<394>	590	386.5	851	S<344>	-410	386.5
802	S<393>	570	511.5	852	S<343>	-430	511.5
803	S<392>	550	386.5	853	S<342>	-450	386.5
804	S<391>	530	511.5	854	S<341>	-470	511.5
805	S<390>	510	386.5	855	S<340>	-490	386.5
806	S<389>	490	511.5	856	S<339>	-510	511.5
807	S<388>	470	386.5	857	S<338>	-530	386.5
808	S<387>	450	511.5	858	S<337>	-550	511.5
809	S<386>	430	386.5	859	S<336>	-570	386.5
810	S<385>	410	511.5	860	S<335>	-590	511.5
811	S<384>	390	386.5	861	S<334>	-610	386.5
812	S<383>	370	511.5	862	S<333>	-630	511.5
813	S<382>	350	386.5	863	S<332>	-650	386.5
814	S<381>	330	511.5	864	S<331>	-670	511.5
815	S<380>	310	386.5	865	S<330>	-690	386.5
816	S<379>	290	511.5	866	S<329>	-710	511.5
817	S<378>	270	386.5	867	S<328>	-730	386.5
818	S<377>	250	511.5	868	S<327>	-750	511.5
819	S<376>	230	386.5	869	S<326>	-770	386.5
820	S<375>	210	511.5	870	S<325>	-790	511.5
821	S<374>	190	386.5	871	S<324>	-810	386.5
822	S<373>	170	511.5	872	S<323>	-830	511.5
823	S<372>	150	386.5	873	S<322>	-850	386.5
824	S<371>	130	511.5	874	S<321>	-870	511.5
825	S<370>	110	386.5	875	S<320>	-890	386.5
826	S<369>	90	511.5	876	S<319>	-910	511.5
827	S<368>	70	386.5	877	S<318>	-930	386.5
828	S<367>	50	511.5	878	S<317>	-950	511.5
829	S<366>	30	386.5	879	S<316>	-970	386.5
830	S<365>	10	511.5	880	S<315>	-990	511.5
831	S<364>	-10	386.5	881	S<314>	-1010	386.5
832	S<363>	-30	511.5	882	S<313>	-1030	511.5
833	S<362>	-50	386.5	883	S<312>	-1050	386.5
834	S<361>	-70	511.5	884	S<311>	-1070	511.5
835	S<360>	-90	386.5	885	S<310>	-1090	386.5
836	S<359>	-110	511.5	886	S<309>	-1110	511.5
837	S<358>	-130	386.5	887	S<308>	-1130	386.5
838	S<357>	-150	511.5	888	S<307>	-1150	511.5
839	S<356>	-170	386.5	889	S<306>	-1170	386.5
840	S<355>	-190	511.5	890	S<305>	-1190	511.5
841	S<354>	-210	386.5	891	S<304>	-1210	386.5
842	S<353>	-230	511.5	892	S<303>	-1230	511.5
843	S<352>	-250	386.5	893	S<302>	-1250	386.5
844	S<351>	-270	511.5	894	S<301>	-1270	511.5
845	S<350>	-290	386.5	895	S<300>	-1290	386.5
846	S<349>	-310	511.5	896	S<299>	-1310	511.5
847	S<348>	-330	386.5	897	S<298>	-1330	386.5
848	S<347>	-350	511.5	898	S<297>	-1350	511.5
849	S<346>	-370	386.5	899	S<296>	-1370	386.5
850	S<345>	-390	511.5	900	S<295>	-1390	511.5

No	Name	X	Y	No	Name	Х	Y
901	S<294>	-1410	386.5	951	S<244>	-2410	386.5
902	S<293>	-1430	511.5	952	S<243>	-2430	511.5
903	S<292>	-1450	386.5	953	S<242>	-2450	386.5
904	S<291>	-1470	511.5	954	S<241>	-2470	511.5
905	S<290>	-1490	386.5	955	S<240>	-2490	386.5
906	S<289>	-1510	511.5	956	S<239>	-2510	511.5
907	S<288>	-1530	386.5	957	S<238>	-2530	386.5
908	S<287>	-1550	511.5	958	S<237>	-2550	511.5
909	S<286>	-1570	386.5	959	S<236>	-2570	386.5
910	S<285>	-1590	511.5	960	S<235>	-2590	511.5
911	S<284>	-1610	386.5	961	S<234>	-2610	386.5
912	S<283>	-1630	511.5	962	S<233>	-2630	511.5
913	S<282>	-1650	386.5	963	S<232>	-2650	386.5
914	S<281>	-1670	511.5	964	S<231>	-2670	511.5
915	S<280>	-1690	386.5	965	S<230>	-2690	386.5
916	S<279>	-1710	511.5	966	S<229>	-2710	511.5
917	S<278>	-1730	386.5	967	S<228>	-2730	386.5
918	S<277>	-1750	511.5	968	S<227>	-2750	511.5
919	S<276>	-1770	386.5	969	S<226>	-2770	386.5
920	S<275>	-1790	511.5	970	S<225>	-2790	511.5
921	S<274>	-1810	386.5	971	S<224>	-2810	386.5
922	S<273>	-1830	511.5	972	S<223>	-2830	511.5
923	S<272>	-1850	386.5	973	S<222>	-2850	386.5
924	S<271>	-1870	511.5	974	S<221>	-2870	511.5
925	S<270>	-1890	386.5	975	S<220>	-2890	386.5
926	S<269>	-1910	511.5	976	S<219>	-2910	511.5
927	S<268>	-1930	386.5	977	S<218>	-2930	386.5
928	S<267>	-1950	511.5	978	S<217>	-2950	511.5
929	S<266>	-1970	386.5	979	S<216>	-2970	386.5
930	S<265>	-1990	511.5	980	S<215>	-2990	511.5
931	S<264>	-2010	386.5	981	S<214>	-3010	386.5
932	S<263>	-2030	511.5	982	S<213>	-3030	511.5
933	S<262>	-2050	386.5	983	S<212>	-3050	386.5
934	S<261>	-2070	511.5	984	S<211>	-3070	511.5
935	S<260>	-2090	386.5	985	S<210>	-3090	386.5
936	S<259>	-2110	511.5	986	S<209>	-3110	511.5
937	S<258>	-2130	386.5	987	S<208>	-3130	386.5
938	S<257>	-2150	511.5	988	S<207>	-3150	511.5
939	S<256>	-2170	386.5	989	S<206>	-3170	386.5
940	S<255>	-2190	511.5	990	S<205>	-3190	511.5
941	S<254>	-2210	386.5	991	S<204>	-3210	386.5
942	S<253>	-2230	511.5	992	S<203>	-3230	511.5
943	S<252>	-2250	386.5	993	S<202>	-3250	386.5
944	S<251>	-2270	511.5	994	S<201>	-3270	511.5
945	S<250>	-2290	386.5	995	S<200>	-3290	386.5
946	S<249>	-2310	511.5	996	S<199>	-3310	511.5
947	S<248>	-2330	386.5	997	S<198>	-3330	386.5
948	S<247>	-2350	511.5	998	S<197>	-3350	511.5
949	S<246>	-2370	386.5	999	S<196>	-3370	386.5
950	S<245>	-2390	511.5	1000	S<195>	-3390	511.5

No	Name	Х	Υ	No	Name	Х	Υ
1001	S<194>	-3410	386.5	1051	S<144>	-4410	386.5
1002	S<193>	-3430	511.5	1052	S<143>	-4430	511.5
1002	S<192>	-3450	386.5	1053	S<142>	-4450	386.5
1003	S<191>	-3470	511.5	1054	S<142>	-4470	511.5
1004		-3490		1054		-4490	
	S<190>		386.5		S<140>		386.5
1006	S<189>	-3510	511.5	1056	S<139>	-4510 4520	511.5
1007	S<188>	-3530	386.5	1057	S<138>	-4530	386.5
1008	S<187>	-3550	511.5	1058	S<137>	-4550	511.5
1009	S<186>	-3570	386.5	1059	S<136>	-4570	386.5
1010	S<185>	-3590	511.5	1060	S<135>	-4590	511.5
1011	S<184>	-3610	386.5	1061	S<134>	-4610	386.5
1012	S<183>	-3630	511.5	1062	S<133>	-4630	511.5
1013	S<182>	-3650	386.5	1063	S<132>	-4650	386.5
1014	S<181>	-3670	511.5	1064	S<131>	-4670	511.5
1015	S<180>	-3690	386.5	1065	S<130>	-4690	386.5
1016	S<179>	-3710	511.5	1066	S<129>	-4710	511.5
1017	S<178>	-3730	386.5	1067	S<128>	-4730	386.5
1018	S<177>	-3750	511.5	1068	S<127>	-4750	511.5
1019	S<176>	-3770	386.5	1069	S<126>	-4770	386.5
1020	S<175>	-3790	511.5	1070	S<125>	-4790	511.5
1021	S<174>	-3810	386.5	1071	S<124>	-4810	386.5
1022	S<173>	-3830	511.5	1072	S<123>	-4830	511.5
1023	S<172>	-3850	386.5	1073	S<122>	-4850	386.5
1024	S<171>	-3870	511.5	1074	S<121>	-4870	511.5
1025	S<170>	-3890	386.5	1075	S<120>	-4890	386.5
1026	S<169>	-3910	511.5	1076	S<119>	-4910	511.5
1027	S<168>	-3930	386.5	1077	S<118>	-4930	386.5
1028	S<167>	-3950	511.5	1078	S<117>	-4950	511.5
1029	S<166>	-3970	386.5	1079	S<116>	-4970	386.5
1030	S<165>	-3990	511.5	1080	S<115>	-4990	511.5
1031	S<164>	-4010	386.5	1081	S<114>	-5010	386.5
1032	S<163>	-4030	511.5	1082	S<113>	-5030	511.5
1033	S<162>	-4050	386.5	1083	S<112>	-5050	386.5
1034	S<161>	-4070	511.5	1084	S<111>	-5070	511.5
1035	S<160>	-4090	386.5	1085	S<110>	-5090	386.5
1036	S<159>	-4110	511.5	1086	S<109>	-5110	511.5
1037	S<158>	-4130	386.5	1087	S<108>	-5130	386.5
1038	S<157>	-4150	511.5	1088	S<107>	-5150	511.5
1039	S<156>	-4170	386.5	1089	S<106>	-5170	386.5
1040	S<155>	-4190	511.5	1090	S<105>	-5190	511.5
1041	S<154>	-4210	386.5	1091	S<104>	-5210	386.5
1042	S<153>	-4230	511.5	1092	S<103>	-5230	511.5
1043	S<152>	-4250	386.5	1093	S<102>	-5250	386.5
1044	S<151>	-4270	511.5	1094	S<101>	-5270	511.5
1045	S<150>	-4290	386.5	1095	S<100>	-5290	386.5
1046	S<149>	-4310	511.5	1096	S<99>	-5310	511.5
1047	S<148>	-4330	386.5	1097	S<98>	-5330	386.5
1048	S<147>	-4350	511.5	1098	S<97>	-5350	511.5
1049	S<146>	-4370	386.5	1099	S<96>	-5370	386.5
1050	S<145>	-4390	511.5	1100	S<95>	-5390	511.5

No	Name	Х	Υ	No	Name	Х	Υ
1101	S<94>	-5410	386.5	1151	S<44>	-6410	386.5
1102	S<93>	-5430	511.5	1152	S<43>	-6430	511.5
1103	S<92>	-5450	386.5	1153	S<42>	-6450	386.5
1104	S<91>	-5470	511.5	1154	S<41>	-6470	511.5
1105	S<90>	-5490	386.5	1155	S<40>	-6490	386.5
1106	S<89>	-5510	511.5	1156	S<39>	-6510	511.5
1107	S<88>	-5530	386.5	1157	S<38>	-6530	386.5
1108	S<87>	-5550	511.5	1158	S<37>	-6550	511.5
1109	S<86>	-5570	386.5	1159	S<36>	-6570	386.5
1110	S<85>	-5590	511.5	1160	S<35>	-6590	511.5
1111	S<84>	-5610	386.5	1161	S<34>	-6610	386.5
1112	S<83>	-5630	511.5	1162	S<33>	-6630	511.5
1113	S<82>	-5650	386.5	1163	S<32>	-6650	386.5
1114	S<81>	-5670	511.5	1164	S<31>	-6670	511.5
1115	S<80>	-5690	386.5	1165	S<30>	-6690	386.5
1116	S<79>	-5710	511.5	1166	S<29>	-6710	511.5
1117	S<78>	-5730	386.5	1167	S<28>	-6730	386.5
1118	S<77>	-5750	511.5	1168	S<27>	-6750	511.5
1119	S<76>	-5770	386.5	1169	S<26>	-6770	386.5
1120	S<75>	-5790	511.5	1170	S<25>	-6790	511.5
1121	S<74>	-5810	386.5	1171	S<24>	-6810	386.5
1122	S<73>	-5830	511.5	1172	S<23>	-6830	511.5
1123	S<72>	-5850	386.5	1173	S<22>	-6850	386.5
1124	S<71>	-5870	511.5	1174	S<21>	-6870	511.5
1125	S<70>	-5890	386.5	1175	S<20>	-6890	386.5
1126	S<69>	-5910	511.5	1176	S<19>	-6910	511.5
1127	S<68>	-5930	386.5	1177	S<18>	-6930	386.5
1128	S<67>	-5950	511.5	1178	S<17>	-6950	511.5
1129	S<66>	-5970	386.5	1179	S<16>	-6970	386.5
1130	S<65>	-5990	511.5	1180	S<15>	-6990	511.5
1131	S<64>	-6010	386.5	1181	S<14>	-7010	386.5
1132	S<63>	-6030	511.5	1182	S<13>	-7030	511.5
1133	S<62>	-6050	386.5	1183	S<12>	-7050	386.5
1134	S<61>	-6070	511.5	1184	S<11>	-7070	511.5
1135	S<60>	-6090	386.5	1185	S<10>	-7090	386.5
1136	S<59>	-6110	511.5	1186	S<9>	-7110	511.5
1137	S<58>	-6130	386.5	1187	S<8>	-7130	386.5
1138	S<57>	-6150	511.5	1188	S<7>	-7150	511.5
1139	S<56>	-6170	386.5	1189	S<6>	-7170	386.5
1140	S<55>	-6190	511.5	1190	S<5>	-7190	511.5
1141	S<54>	-6210	386.5	1191	S<4>	-7210	386.5
1142	S<53>	-6230	511.5	1192	S<3>	-7230	511.5
1143	S<52>	-6250	386.5	1193	S<2>	-7250	386.5
1144	S<51>	-6270	511.5	1194	S<1>	-7270	511.5
1145	S<50>	-6290	386.5	1195	DUMMY	-7290	386.5
1146	S<49>	-6310	511.5	1196	DUMMY	-7350	511.5
1147	S<48>	-6330	386.5	1197	DUMMY	-7370	386.5
1148	S<47>	-6350	511.5	1198	G<320>	-7390	511.5
1149	S<46>	-6370	386.5	1199	G<318>	-7410	386.5
1150	S<45>	-6390	511.5	1200	G<316>	-7430	511.5

No	Name	Х	Y	No	Name	Х	Y
1201	G<314>	-7450	386.5	1251	G<214>	-8450	386.5
1202	G<312>	-7470	511.5	1252	G<212>	-8470	511.5
1203	G<310>	-7490	386.5	1253	G<210>	-8490	386.5
1204	G<308>	-7510	511.5	1254	G<208>	-8510	511.5
1205	G<306>	-7530	386.5	1255	G<206>	-8530	386.5
1206	G<304>	-7550	511.5	1256	G<204>	-8550	511.5
1207	G<302>	-7570	386.5	1257	G<202>	-8570	386.5
1208	G<300>	-7590	511.5	1258	G<200>	-8590	511.5
1209	G<298>	-7610	386.5	1259	G<198>	-8610	386.5
1210	G<296>	-7630	511.5	1260	G<196>	-8630	511.5
1211	G<294>	-7650	386.5	1261	G<194>	-8650	386.5
1212	G<292>	-7670	511.5	1262	G<192>	-8670	511.5
1213	G<290>	-7690	386.5	1263	G<190>	-8690	386.5
1214	G<288>	-7710	511.5	1264	G<188>	-8710	511.5
1215	G<286>	-7730	386.5	1265	G<186>	-8730	386.5
1216	G<284>	-7750	511.5	1266	G<184>	-8750	511.5
1217	G<282>	-7770	386.5	1267	G<182>	-8770	386.5
1218	G<280>	-7790	511.5	1268	G<180>	-8790	511.5
1219	G<278>	-7810	386.5	1269	G<178>	-8810	386.5
1220	G<276>	-7830	511.5	1270	G<176>	-8830	511.5
1221	G<274>	-7850	386.5	1271	G<174>	-8850	386.5
1222	G<272>	-7870	511.5	1272	G<172>	-8870	511.5
1223	G<270>	-7890	386.5	1273	G<170>	-8890	386.5
1224	G<268>	-7910	511.5	1274	G<168>	-8910	511.5
1225	G<266>	-7930	386.5	1275	G<166>	-8930	386.5
1226	G<264>	-7950	511.5	1276	G<164>	-8950	511.5
1227	G<262>	-7970	386.5	1277	G<162>	-8970	386.5
1228	G<260>	-7990	511.5	1278	G<160>	-8990	511.5
1229	G<258>	-8010	386.5	1279	G<158>	-9010	386.5
1230	G<256>	-8030	511.5	1280	G<156>	-9030	511.5
1231	G<254>	-8050	386.5	1281	G<154>	-9050	386.5
1232	G<252>	-8070	511.5	1282	G<152>	-9070	511.5
1233	G<250>	-8090	386.5	1283	G<150>	-9090	386.5
1234	G<248>	-8110	511.5	1284	G<148>	-9110	511.5
1235	G<246>	-8130	386.5	1285	G<146>	-9130	386.5
1236	G<244>	-8150	511.5	1286	G<144>	-9150	511.5
1237	G<242>	-8170	386.5	1287	G<142>	-9170	386.5
1238	G<240>	-8190	511.5	1288	G<140>	-9190	511.5
1239	G<238>	-8210	386.5	1289	G<138>	-9210	386.5
1240	G<236>	-8230	511.5	1290	G<136>	-9230	511.5
1241	G<234>	-8250	386.5	1291	G<134>	-9250	386.5
1242	G<232>	-8270	511.5	1292	G<132>	-9270	511.5
1243	G<230>	-8290	386.5	1293	G<130>	-9290	386.5
1244	G<228>	-8310	511.5	1294	G<128>	-9310	511.5
1245	G<226>	-8330	386.5	1295	G<126>	-9330	386.5
1246	G<224>	-8350	511.5	1296	G<124>	-9350	511.5
1247	G<222>	-8370	386.5	1297	G<122>	-9370	386.5
1248	G<220>	-8390	511.5	1298	G<120>	-9390	511.5
1249	G<218>	-8410	386.5	1299	G<118>	-9410	386.5
1250	G<216>	-8430	511.5	1300	G<116>	-9430	511.5

No	Name	Х	Y	No	Name	Х	Υ
1301	G<114>	-9450	386.5	1351	G<14>	-10450	386.5
1302	G<112>	-9470	511.5	1352	G<12>	-10470	511.5
1303	G<110>	-9490	386.5	1353	G<10>	-10490	386.5
1304	G<108>	-9510	511.5	1354	G<8>	-10510	511.5
1305	G<106>	-9530	386.5	1355	G<6>	-10530	386.5
1306	G<104>	-9550	511.5	1356	G<4>	-10550	511.5
1307	G<104>	-9570	386.5	1357	G<2>	-10570	386.5
1308	G<100>	-9590	511.5	1358	DUMMY	-10590	511.5
1309	G<98>	-9610	386.5	1359	DUMMY	-10610	386.5
1310	G<96>	-9630	511.5	1360	DUMMY	-10630	511.5
1311	G<94>	-9650	386.5	1361	DUMMY	-10650	386.5
1312	G<92>	-9670	511.5	1362	DUMMY	-10670	511.5
1313	G<90>	-9690	386.5	1002	20111111	10070	011.0
1314	G<88>	-9710	511.5	KFY	COG	-10613	-468
1315	G<86>	-9730	386.5		COG	10613	-468
1316	G<84>	-9750	511.5	1,21	 T	10010	100
1317	G<82>	-9770	386.5				
1318	G<80>	-9790	511.5				
1319	G<78>	-9810	386.5				
1320	G<76>	-9830	511.5				
1321	G<74>	-9850	386.5				
1322	G<72>	-9870	511.5				
1323	G<70>	-9890	386.5				
1324	G<68>	-9910	511.5				
1325	G<66>	-9930	386.5				
1326	G<64>	-9950	511.5				
1327	G<62>	-9970	386.5				
1328	G<60>	-9990	511.5				
1329	G<58>	-10010	386.5				
1330	G<56>	-10030	511.5				
1331	G<54>	-10050	386.5				
1332	G<52>	-10070	511.5				
1333	G<50>	-10090	386.5				
1334	G<48>	-10110	511.5				
1335	G<46>	-10130	386.5				
1336	G<44>	-10150	511.5				
1337	G<42>	-10170	386.5				
1338	G<40>	-10190	511.5				
1339	G<38>	-10210	386.5				
1340	G<36>	-10230	511.5				
1341	G<34>	-10250	386.5				
1342	G<32>	-10270	511.5				
1343	G<30>	-10290	386.5				
1344	G<28>	-10310	511.5				
1345	G<26>	-10330	386.5				
1346	G<24>	-10350	511.5				
1347	G<22>	-10370	386.5				
1348	G<20>	-10390	511.5				
1349	G<18>	-10410	386.5				
1350	G<16>	-10430	511.5				

PRODUCT	NOTICE	
FRUDUCI	NOTICE	

No part of this document may be copied or reproduced in any form without the prior written consent of Leadis Technology, Inc.

Leadis makes no representations or warranties with respect to the accuracy or completeness of the contents of this document. Leadis' specifications and product descriptions are subject to change at any time without notice due to product improvements or other reasons. As a result, we recommend that customers contact Leadis for the latest product information before purchasing or using any Leadis product.

These materials are intended as a reference to assist our customers in the selection and application of Leadis products. These materials do not convey any license (express, implied or otherwise) under any intellectual property rights of Leadis or others. Leadis assumes no responsibility for any infringement of patents or other rights of third parties that may result from the use of these materials.

Except as set forth in Leadis' Standard Terms and Conditions of Sale, Leadis assumes no liability, and disclaims any express or implied warranty, relating to its products, including, but not limited to, any implied warranties of merchantability, fitness for a particular purpose or noninfringement. Leadis' products have not been designed, tested or manufactured for use in applications where the failure, malfunction or inaccuracy of the products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of potential hazard.

Please contact Leadis for further details on these materials or the products described herein.

© 2007 LEADIS Technology, Inc. All rights reserved. LEADIS and the LEADIS logo are trademarks of LEADIS Technology, Inc.

