45 min, Friday July 21st
Topics on the Midterni;
graphing (shifts, features on graphs)
· limits (elementary and L'Hopital),
· limit definition of the derivate
derivatives (polynomials, frigonometry, product rule, chain rule, quotient nde),
"linear approximation,
implicit differentiations
related rates,
extreme value problems,
optimization problems.
Summary Questions: (* questions are less likely to be tested)
(* auestions will only appear in bonnes)
Summary Questions: (* questions are less likely to be tested) (** questions will only appear in bonuses) 1) Suppose f(x) is graphed. How are the following functions
1) Suppose f(x) is graphed. How are the following functions modified
a) f(x+a), f(x)+a, f(ax), af(x), f(-x), -f(x)
$\not \supset b$) $f^{-1}(x)$
2) Consider the following terms
e removable discontinuity (hole). impo discontinuity vertical assumble
essential discontinuity havitantal assumptate. Corner cusp
removable discontinuity (hole), jump discontinuity, vertical asymptote essential discontinuity, horizontal asymptote, corner, cusp local maximum, local minimum, vertical tangent
· Station and Doint (horizontal tangent). Stationagues inflection point
Stationary point (horizon tal tangent), stationary inflection point a) Sketch a picture of each situation
* b) Define each term via limits and derivatives
(UNIN WAY NEED HIS THE CITED INVITING)
Cyon may need the one sided versions) 3) Find the following derivatives
a) O , I , X , X^2 , X^3 , X^4

$$y = -2f(x+1)$$

$$-2$$

$$-1$$

$$-1$$

$$2$$

3) (20 pts) Fill in the missing parts of this proof that
$$f'(a) = 4a$$
 where $f(x) = 2x^{2J}$

$$f'(\alpha) = \lim_{X \to \alpha} \frac{2x^2 - 2a^2}{X - \alpha}$$

=
$$\lim_{x\to a} \frac{2(x-a)(x+a)}{x-a}$$

=
$$\lim_{x\to a} 2(x+a)$$

be cause X+a is a Continuous function we may evaluate the limit directly = 4 a

4)(10 pts) Find at
$$tan(t+4) = sec^{2}(t+4)$$

5) (10 pts) Find
$$\frac{d}{dx} \ln(x)e^{x} = \frac{1}{x}e^{x} + \ln(x)e^{x}$$

6) (10 pts) Find
$$\frac{d}{du} \frac{1}{u^2+1} = -\frac{2u}{(u^2+1)^2}$$

7) (30 pts) Recall the following formula
Volume of a sphere: V= \frac{4}{3} \tau \tau^3.

Suppose a spherical ballon is being filled. The vadics
is increasing at a rate 4 mm/s (millimeters per second).

Suppose the ballon currently has radius 50 mm.
How fast is the volume of the ballon increasing?

8) (30 pts) Fill in the following proof that
$$\lim_{\infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

 $\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = \lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{1}{3} = \lim_{x \to \infty} \frac{1}{3} = \lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{1}{2}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3^{x} + x} = 0$$

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

Apply L'Hopitals Rule ($\frac{2}{3}$ case)

$$\lim_{x \to \infty} \frac{2^{x} + x}{3$$

$(0) (40 pts) Suppose it costs$ $(C(x) = 1 + \frac{9}{x+1} + x$
thousand dollars for Pear Inc. to produce a laptop where x is number of millions of laptops that Pear Inc produces. Find the number of laptops Pear Inc should produce to minimize the cost of a laptop.
million laptops
Il Bonus) (20 pts) Find $\frac{dy}{dx}$ for the curve $x^3 + y^3 = 1$. Your answer may depend on x and y .
12 Bonus) (10 pfs) Find $\csc(x^2 + \frac{1}{x^2})'$