EXPERIMENT NO. 10 DETERMINATION OF MAGNETIC MOMENT OF A SHORT BAR MAGNET (DIPOLE) USING A DEFLECTION MAGNETOMETER

Aim: To calculate the magnetic moment of a given magnet using the deflection magnetometer. Apparatus: Deflection magnetometer, bar magnets, meter scale.

Diagram:

Theory:

Tangent law:

Consider a bar magnet(dipole) with magnetic moment M in a region where there are two perpendicular horizontal magnetic fields, an external field B and the horizontal component of the earth's field BH . If no external field B is present, the bar magnet will align along $B_{H^{\star}}$. Due to field B the magnet experiences a torque, which deflects it from its original position by an angle θ . Then we have the relation $B = B_H \tan \theta$.

Deflection Magnetometer:

It consists of large compass, with a small magnetic needle pivoted at the centre of a circular scale so that the needle is free to rotate in a horizontal plane. A large aluminium pointer is rigidly fixed perpendicular to the magnetic needle. The circular scale is graduated in degrees $(0^{\circ}-0^{\circ})$ and $(90^{\circ}-90^{\circ})$ readings are marked at the ends of two perpendicular diameters. The compass box is placed at the centre of a wooden board one meter long. The wooden board has a millimetre scale along its axis such that the zero of the scale is at the centre of the compass box.

Tan A position

In Tan-A position (figure 10.1), prior to placement of magnet, the compass box rotated so that the (0°-0°) line is parallel to the arm of the magnetometer. Then the magnetometer as a whole is rotated till pointer reads $(0^{\circ}-0^{\circ})$. The bar magnet is placed horizontally on the arm of the deflection magnetometer (parallel to the arm) so that the deflection on the aluminium pointer is θ^0

Since the magnet is a dipole and placed on the axis its magnetic induction B at a distance 'd' from the centre of the magnetometer $(0^{0} - 0^{0})$ to the centre of the dipole is given as

$$B_{axis} = \frac{\mu_0}{4\pi} \frac{2md}{(d^2 - l^2)^2}$$

Where 2l is the length of the magnet. For a short magnetic dipole

$$I << d$$

$$B_{axis} = \frac{\mu o}{4\pi} \frac{2M}{d^3}$$

By Tangent Law

$$B_{axis} = B_{ii} \tan \theta$$
 , $B_{ii} \tan \theta = \frac{\mu o}{4\pi} \frac{2M}{d^3}$

$$M = \frac{B_{_H} \tan \theta}{\frac{2\mu_0}{4\pi}} \quad d^3 \quad \text{since } \frac{\mu_0}{4\pi} = 10^{-7}$$

$$M = \frac{B_{_H} \tan \theta}{2 \times 10^{.7}} d^3$$

Procedure:

- 1. The bar magnet is placed at the same height as the magnetic needle is tan A position.
- 2. The other magnetic materials should be kept as far away as possible from the magnetometer.
- 3. The distance of the magnet should be adjusted so that the pointer points at 45°-45°.
- The distance should be noted as d₁.
- 5. The same magnet should be placed by reversing its position (that means if it was N-S previously it should now be placed as S-N and vice versa). The distance should be noted as d₂.
- The experiment should be repeated with another bar magnet.

Observation table:

Calculations:

Obs. No.	Magnet no	Distance d ₁	Distance d ₂	Mean d	$M = \frac{B_H \tan \theta}{2 \times 10^{-7}} d^3$
1	M.	(3	18.0	18-2 16:5	.0.9585
2	M.	16	1.8	16.513	0.7475
sult: Magnetic moment of Magnet 1 =			15°51 15 286°0	10.075	re)
Magn	etic moment o	of Magnet 2 = _	0.745	(F) 1	one before keeping m

Check that setting of magnetometer in TanA position is properly done before keeping magnet on its arms.

Additional Experiment you can do:

Tan B position

In this position (figure below), prior to placement of the magnet, the compass box alone is rotated so that the (90°-90°) line is parallel to the arm of the magnetometer. Then the magnetometer as whole is rotated so that the pointer reads (0°-0°). Finally the, magnet is placed horizontally perpendicular to the arm of the magnetometer and distance d' is adjusted to get a reading θ on the pointer.

Diagram:

Procedure:

Repeat the above procedure for Tan B position.

Observation table:

Obs. No.	Magnet no	Distance d ₁	Distance d ₂	Mean d	$M = \frac{B_H \tan \theta}{10^{-7}} d^3$
1	M ₁				
2	M ₂				

Calculations:

$$m = 344900$$
 2×10^{-3}
 $10.17813.17 \times 10^{2}$
 $10.1883.17 \times 10^{2}$

1.	Magnetic moment of Magnet 1 = Magnetic moment of Magnet 2 =						
-	Multiple-choice Questions						
1.	Magnetic pole strength of a short magnetic dipole of length 4 cm and magnetic moment 10						
	Am² is						
	Questions						
	Explain what is Tan A and Tan B position of Deflection magnetometer.						
	5 DID (60 DO 70 DID 1						
	- 0 mg//g/						
	de l'Ected magnet to meter and passallel to the magnetic lines						
	V F + 100 (10 (11 (10))						
	metre						
.,							
2.	How will you measure the reading of θ in a deflection magnetometer if the pointer is adjusted to 90-90 instead of 0-0 while doing initial adjustment?						
	· de Flaction magnis metre bar type						
****	angles time bas electrometre eight songle with little electrod tranguet Destre turved to the centre A big gluminium red is a readity set persondicular to the termis the needle						
****	ekant rangle With 11++1e.						
	electore d Mangnet Destre turved to						
	the centre.						
****	h big gluminium seeg in g						
¥4.1	11 - 100015 the models						
****	around measured in the						
****	derrease						
Г	Remark and sign of teacher:						
	Remark and sign of teacher;						

Result: