MAT. DISCRETA 8

STRUTTURA ALGEBRICA BINARIE

"Pasted image 20250915200403.png" could not be found.

(Interpretazione: il secondo componente è $\frac{2}{7}yv$; questa è la lettura coerente con la traccia stampata.)

Determinare: 1) associatività; 2) commutatività; 3) elemento neutro (se esiste); 4) inverso esplicito di $(\frac{1}{2}, \frac{1}{2})$ (se esiste).

1) Associatività

Calcoliamo $((x,y)\star(u,v))\star(s,t)e(x,y)\star((u,v)\star(s,t))$ e confrontiamoli.

Primo:

$$(x,y)\star(u,v)=(2+x+u,\;rac{2}{7}yv).$$
 Quindi $((x,y)\star(u,v))\star(s,t)=ig(2+(2+x+u)+s,\;rac{2}{7}\cdot(rac{2}{7}yv)\cdot tig)=ig(4+x+u+s,\;(rac{2}{7})^2\;yvtig).$

Secondo:

$$(u,v)\star(s,t)=(2+u+s,\;rac{2}{7}vt),$$
quindi

$$(x,y)\star ((u,v)\star (s,t)) = \left(2+x+(2+u+s),\; rac{2}{7}\cdot y\cdot (rac{2}{7}vt)
ight) = \left(4+x+u+s,\; (rac{2}{7})^2\; yvt
ight).$$

Le due quantità coincidono per ogni (x,y),(u,v),(s,t). Quindi \star è associativa (grazie alla associatività dell'addizione e della moltiplicazione e ai fattori costanti).

2) Commutatività

Verifichiamo:

$$(x,y)\star(u,v)=(2+x+u,\,rac{2}{7}yv)$$

е

$$(u,v)\star (x,y) = (2+u+x,\,rac{2}{7}vy).$$

Poiché x+u=u+x e yv=vy, si ha $(x,y)\star(u,v)=(u,v)\star(x,y)$. Quindi \star è commutativa.

3) Elemento neutro

Cerchiamo
$$e=(e_1,e_2)\in A$$
 tale che per ogni (x,y) $(x,y)\star(e_1,e_2)=(x,y).$

Calcolando:

$$(x,y)\star(e_1,e_2)=(2+x+e_1,\ frac{2}{7}ye_2)\stackrel{!}{=}(x,y).$$

Quindi per tutti gli x serve $2+x+e_1=x\Rightarrow e_1=-2$. Per tutti i y serve $\frac{2}{7}e_2=1\Rightarrow e_2=\frac{7}{2}$.

Quindi l'elemento neutro è

$$e = \left(-2, \, \frac{7}{2}\right).$$

4) Inverso di $\left(\frac{1}{2}, \frac{1}{2}\right)$

Sia\$ a=(\tfrac12,\tfrac12). Cerchiamo\$b = (u, v) con $a \star b = e$. Scriviamo le condizioni:

- Prima componente: $2+\frac{1}{2}+u=-2 \Rightarrow u=-2-\frac{1}{2}-2=-\frac{9}{2}$. (Più chiaramente: $2+1/2+u=-2 \Rightarrow u=-2-1/2=-9/2$.)
- Seconda componente: $\frac{2}{7} \cdot \frac{1}{2} \cdot v = \frac{7}{2} \Rightarrow \frac{1}{7}v = \frac{7}{2} \Rightarrow v = \frac{49}{2}$.

Quindi l'inverso esiste ed è

$$\left[\left(\frac{1}{2}, \frac{1}{2} \right)^{-1} = \left(-\frac{9}{2}, \frac{49}{2} \right) \right]$$

Nota: tutto è in $\mathbb{Q} \times \mathbb{Q}$: le coordinate trovate sono razionali, quindi inverse valide.

PASSO 1 — Chiusura (controllo rapido)

- 1. Prendi $x, u, y, v \in \mathbb{Q}$.
- 2. Prima coordinata: 2 + x + u è somma di razionali \Rightarrow è razionale.
- 3. Seconda coordinata: $\frac{2}{7}yv$ è prodotto di razionali \Rightarrow è razionale.
- 4. Conclusione: $(x,y)*(u,v) \in A$. (Scrivilo in una riga.)

PASSO 2 — Associatività (dimostrazione completa, LHS = RHS)

Obiettivo: mostrare che per ogni $(x,y),(u,v),(s,t)\in A$

$$((x,y)*(u,v))*(s,t) = (x,y)*((u,v)*(s,t)).$$

LHS — calcolo esplicito

- 1. Calcola A:=(x,y)*(u,v). $A=\left(2+x+u,\,rac{2}{7}yv
 ight)$.
- 2. Calcola A\ast (s,t):

$$A*(s,t)=\Big(2+(2+x+u)+s,\ frac{2}{7}\cdot \left(frac{2}{7}yv
ight)\cdot t\Big).$$

- 3. Semplifica coordinate singolarmente:
 - Prima coordinata: 2 + (2 + x + u) + s = (2 + 2) + x + u + s = 4 + x + u + s.
 - Seconda coordinata: $\frac{2}{7} \cdot \left(\frac{2}{7}yv\right) \cdot t = \left(\frac{2}{7} \cdot \frac{2}{7}\right) \cdot y \cdot v \cdot t = \frac{4}{49} \ yvt.$
- 4. Quindi

LHS =
$$(4 + x + u + s, \frac{4}{49} yvt)$$
.

RHS — calcolo esplicito

1. Calcola B:=(u,v)*(s,t).

$$B = (2 + u + s, \frac{2}{7}vt).$$

2. Calcola (x, y) * B:

$$A(x,y)*B=\Big(2+x+(2+u+s),\;rac{2}{7}\cdot y\cdot ig(rac{2}{7}vtig)\Big).$$

- 3. Semplifica:
 - Prima coordinata: 2 + x + (2 + u + s) = 2 + 2 + x + u + s = 4 + x + u + s.
 - Seconda: $\frac{2}{7} \cdot y \cdot \left(\frac{2}{7}vt\right) = \frac{4}{49}yvt$.
- 4. Quindi

$$RHS = \left(4 + x + u + s, \frac{4}{49}yvt\right).$$

Confronto

LHS = RHS (coordinata per coordinata). Quindi \ast è associativa.

(Scrivi la riga finale: "Perciò ((x,y)*(u,v))*(s,t)=(x,y)*((u,v)*(s,t)) per ogni scelta.")

PASSO 3 — Commutatività (dimostrazione completa)

Mostra che (x, y) * (u, v) = (u, v) * (x, y).

1. Calcola:

$$(x,y)*(u,v) = (2+x+u, \frac{2}{7}yv).$$

$$(u,v)*(x,y)=ig(2+u+x,\ rac{2}{7}vyig).$$

- 2. Confronta le coordinate:
 - 2 + x + u = 2 + u + x perché l'addizione è commutativa.
 - $\frac{2}{7}yv = \frac{2}{7}vy$ perché la moltiplicazione è commutativa.
- Conclusione: \ast è commutativa.

PASSO 4 — Elemento neutro (trovare e=(e_1,e_2))

Vogliamo $e \in A$ tale che per ogni $(x, y) \in A$,

$$(x,y)*e=(x,y).$$

1. Scrivi l'equazione generica:

$$(x,y)*(e_1,e_2)=\left(2+x+e_1,\;rac{2}{7}ye_2
ight)\stackrel{!}{=}(x,y).$$

Quindi dobbiamo avere, per ogni x,y,

$$2 + x + e_1 = x$$
 e $\frac{2}{7}ye_2 = y$.

2. Risolvi la prima equazione:

•
$$2 + x + e_1 = x$$
.

• Sottrai x ambo i membri:
$$2 + e_1 = 0$$
.

• Quindi
$$e_1 = -2$$
.

- 3. Risolvi la seconda equazione (caso generale):
 - $\frac{2}{7}ye_2=y$.
 - Se $y \neq 0$, possiamo dividere per $y: \frac{2}{7}e_2 = 1$.
 - Risolvi per $e_2:e_2=rac{1}{2/7}=1\cdotrac{7}{2}=rac{7}{2}.$ (Dettaglio aritmetico: $rac{1}{2/7}=1\cdotrac{7}{2}=7/2.$)
 - Se y=0, l'equazione è 0=0 e quindi non impone nulla, ma l'identità deve funzionare per TUTTI i y. Dunque deve valere lo stesso valore e_2 che funziona quando $y\neq 0$: $e_2=\frac{7}{2}$.
- 4. Conclusione:

$$e = \left(-2, \ \frac{7}{2}\right).$$

- 5. Verifica rapida (sostituzione):
 - Prima coord.: 2 + x + (-2) = x.
 - Seconda coord.: $\frac{2}{7}y\cdot\frac{7}{2}=\frac{2\cdot7}{7\cdot2}y=1\cdot y=y$. (Mostra i passaggi di moltiplicazione: numeratore $2\cdot7=14$, denominatore $7\cdot2=14,14/14=1$.)

PASSO 5 — Inverso generale e condizione di invertibilità

Vogliamo per un generico $(x,y)\in A$ trovare (a,b) tale che

$$(x,y)*(a,b)=e=\left(-2,rac{7}{2}
ight).$$

1. Scrivi le equazioni coordinate:

$$2 + x + a = -2,$$
 $\frac{2}{7}yb = \frac{7}{2}.$

- 2. Risolvi la prima:
 - 2 + x + a = -2.
 - Sottrai 2+x da entrambi i membri: a=-2-(2+x)=-2-2-x=-4-x.
- 3. Risolvi la seconda:
 - $\frac{2}{7}yb = \frac{7}{2}$.
 - Se $y=0: LHS=\frac{2}{7}\cdot 0\cdot b=0.RHS=\frac{7}{2}\neq 0.$ Contraddizione \Rightarrow se y=0 non esiste inverso.

• Se $y \neq 0$: dividi entrambi i membri per \$tfrac{2}{7}y: \$ $b = \frac{\frac{7}{2}}{\frac{2}{7}y}$. Esegui la divisione di

frazioni:

$$b = \frac{7}{2} \cdot \frac{7}{2y} = \frac{7 \cdot 7}{2 \cdot 2y} = \frac{49}{4y}.$$

- 4. Conclusione generale:
 - Per (x,y) con $y \neq 0$ l'inverso esiste ed è

$$(x,y)^{-1}=\Bigl(-4-x,\ rac{49}{4y}\Bigr).$$

- Per (x,0) **non esiste** inverso.
- 5. Interpretazione strutturale:
 - A con * è un monoid commutativo (associativo + elemento neutro) su tutto A.
 - L'insieme $G = \mathbb{Q} \times (\mathbb{Q} \setminus \{0\})$ è un **gruppo abeliano** rispetto a * (tutti gli elementi hanno inverso come sopra).
 - Gli elementi con seconda coordinata 0 non sono invertibili → non è gruppo sull'intero
 A.

**PASSO 6 — Inverso specifico di $\left(\frac{1}{2}, \frac{1}{2}\right)$ (tutti i passaggi aritmetici)

Vogliamo (a,b) con:

$$\left(\frac{1}{2},\frac{1}{2}\right)st(a,b)=\left(-2,rac{7}{2}
ight).$$

Prima coordinata

- 1. Scrivi l'equazione: $2 + \frac{1}{2} + a = -2$.
- 2. Calcola $2 + \frac{1}{2}$:
 - Scrivi $2=\frac{4}{2}$.
 - Quindi $2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2}$.
- 3. Quindi $\frac{5}{2}+a=-2$.
- 4. Risolvi per $a : a = -2 \frac{5}{2}$.
 - Scrivi $-2=-\frac{4}{2}$.
 - Quindi $-\frac{4}{2} \frac{5}{2} = -\frac{9}{2}$.
- 5. Quindi $a=-\frac{9}{2}$.

Seconda coordinata

- 1. Scrivi l'equazione: $\frac{2}{7} \cdot \frac{1}{2} \cdot b = \frac{7}{2}$.
- 2. Calcola il coefficiente davanti a b:

•
$$\frac{2}{7} \cdot \frac{1}{2} = \frac{2 \cdot 1}{7 \cdot 2} = \frac{2}{14}$$
.

• Semplifica
$$\frac{2}{14}=\frac{1}{7}(perch\acute{e}2/14=1/7).$$

3. Quindi
$$\frac{1}{7}b = \frac{7}{2}$$
.

4. Moltiplica entrambi i membri per 7:

$$b=7\cdot\frac{7}{2}=\frac{49}{2}.$$

(Dettaglio: $7 \cdot 7 = 49$, quindi 49/2.)

Conclusione

$$\boxed{\left(\frac{1}{2}, \frac{1}{2}\right)^{-1} = \left(-\frac{9}{2}, \frac{49}{2}\right).}$$

Verifica (sostituisci e mostra passaggi)

Calcola

$$\left(\frac{1}{2},\frac{1}{2}\right)*\left(-\frac{9}{2},\frac{49}{2}\right)\left(2+\frac{1}{2}-\frac{9}{2},\frac{2}{7}\cdot\frac{1}{2}\cdot\frac{49}{2}\right).$$

Prima coordinata:

$$\bullet \ \ 2 + \frac{1}{2} - \frac{9}{2} = \frac{4}{2} + \frac{1}{2} - \frac{9}{2} = \frac{4+1-9}{2} = \frac{-4}{2} = -2.$$

Seconda coordinata:

• Calcola
$$\frac{2}{7} \cdot \frac{1}{2} = \frac{1}{7}$$
 (già fatto).

• Quindi
$$\frac{1}{7} \cdot \frac{49}{2} = \frac{49}{14}$$
.

• Semplifica
$$\frac{49}{14} = \frac{49 \div 7}{14 \div 7} = \frac{7}{2}$$
.

Risultato = $\left(-2,\frac{7}{2}\right)$ cioè l'identità: verifica completa.