Pasaje de Modelo E-R a Modelo Relacional

Pasaje MER a MR **Temario**

- Introducción
- Algoritmo de mapeado ER-a-relacional
 - Entidades fuertes
 - Entidades débiles
 - Relaciones 1:1, 1:N, N:N
 - Atributos compuestos
 - Atributos multivaluados
 - Especialización/generalización
 - Agregación
- Referencias:
 - Fundamentals of Database Systems [E-N], 5ta. Edición, Cap. 7

Pasaje MER a MR **Entidades**

♦ Por cada *entidad* se crea una tabla.

- Por cada atributo simple se crea un atributo en la tabla
- Para cada atributo **estructurado** se crean tantos atributos como "hojas" tenga la estructura.
- Si tiene atributos multivaluados los procesamos más adelante.

♦ ¿Cuál es la *clave primaria*?

 Se selecciona uno de los atributos **determinantes** de la entidad como clave primaria de la tabla.

Pasaje MER a MR **Entidades**

Ejemplo 1:

PERSONAL (cedula, nombre, edad, dirección)

Pasaje MER a MR **Entidades**

Ejemplo 2:

PERSONAL(cedula, nombre, edad, ciudad, calle, numero)

Pasaje MER a MR **Entidades débiles**

Por cada entidad débil se crea una tabla.

- Se procede con los atributos igual que para las entidades.
- Se incluyen como atributos los de la clave primaria de la tabla que representa a la *entidad fuerte*

¿Cuál es la clave primaria?

- La conforman la clave primaria de la tabla que representa a la *entidad fuerte* + atributo/s que representa al *identificador parcial*

Pasaje MER a MR **Entidades débiles**

Ejemplo:

HOSPITALES(<u>nombre</u>, direccion, telefono)
SALAS(<u>nombreHospital</u>, <u>nombreSala</u>, cantCamas)

Pasaje MER a MR **Relaciones N:N**

Para cada relación con cardinalidad N:N se crea una tabla donde:

- Se colocan las *claves primarias* de las tablas que representan a cada una de las entidades participantes.
- Si existen atributos en la relación se tratan como si fueran los de una entidad.

¿Cómo se determina la clave primaria?

 Está formada por los atributos correspondientes a las *claves primarias* de las tablas que representan a las entidades participantes

Pasaje MER a MR Relaciones N:N

Ejemplo:

SALAS (<u>nombre</u>, cant_camas)

PERSONAL (cedula, nombre, ciudad, calle, numero)

TRABAJAN (nombreSala, cedula, entrada, salida)

Pasaje MER a MR **Dependencias de inclusión**

- Es otra restricción sobre el Modelo Relacional
- Establece que la proyección de ciertos atributos de una tabla debe estar incluida en la proyección de otros atributos de otra tabla, o de la misma
- Notación:

$$\Pi_{a1,\ldots,an}(A) \subseteq \Pi_{b1,\ldots,bn}(B)$$

Pasaje MER a MR **Dependencias de inclusión**

- Por cada entidad participante en una relación se agrega una dependencia de inclusión.
- ightharpoonup Sea R la tabla de la relación y Q la tabla de un participante:

$$\Pi_{q_pk}(R) \subseteq \Pi_{q_pk}(Q)$$

- \rightarrow donde q_pk es la clave primaria de Q en R y en Q.
- ullet Si la relación R es total sobre Q, entonces se agrega también la inclusión al revés:

$$\Pi_{q_pk}(Q) \subseteq \Pi_{q_pk}(R)$$

Pasaje MER a MR **Dependencias de inclusión**

Ejemplo:

SALAS (<u>nombre</u>, cant_camas)
PERSONAL (<u>cedula</u>, nombre, ciudad, calle, numero)
TRABAJAN (<u>nombreSala</u>, <u>cedula</u>, entrada, salida)

 $\Pi_{nombreSala}$ (TRABAJAN) $\subseteq \Pi_{nombre}$ (SALAS) Π_{cedula} (TRABAJAN) $\subseteq \Pi_{cedula}$ (PERSONAL) Π_{cedula} (PERSONAL) $\subseteq \Pi_{cedula}$ (TRABAJAN)

Pasaje MER a MR **Relaciones 1:N**

♦ Si la relación es 1:N y total del lado N:

 Se puede representar la relación en la tabla que representa a la entidad con cardinalidad *N*.

♦ ¿Cómo?

- Se agrega a dicha tabla los atributos que son *clave primaria* de la tabla que representa la otra entidad.
- Si la relación tiene atributos simples o estructurados se agregan también.

¿Cómo se determina la clave primaria?

- La *clave primaria* no se modifica.

Pasaje MER a MR **Relaciones 1:N**

Ejemplo:

SALAS (<u>nombre</u>, cant_camas)
PERSONAL (<u>cedula</u>, nombre, ciudad, calle, numero, **nombreSala, entrada, salida**)

 $\Pi_{nombre Sala}$ (PERSONAL) $\subseteq \Pi_{nombre}$ (SALAS)

Pasaje MER a MR **Atributos multivaluados**

- Por cada atributo multivaluado (ya sea de entidad o de relación) se crea una tabla.
 - Se crea un atributo para el *multivaluado*.
 - Se agregan atributos que representan la *clave primaria* de la tabla que modela la entidad o relación a la cual pertenece el *multivaluado*

- ¿Cómo se determina la clave primaria?
 - La clave está formada por todos sus atributos

Pasaje MER a MR **Atributos multivaluados**

Ejemplo:

PERSONAL (<u>cedula</u>, nombre, edad, ciudad, calle, numero) **TELEFONOS (<u>cedula</u>, telefono**)

 Π_{cedula} (TELEFONOS) $\subseteq \Pi_{cedula}$ (PERSONAL)

Pasaje MER a MR **Agregaciones**

- **♦** Recordemos que en el *MER*, el operador de *agregación* transforma a las relaciones en entidades.
- Esa entidad obtenida a través de la *agregación*, se puede relacionar con otras entidades.

Pasaje MER a MR **Agregaciones**

Ejemplo:

- En este caso las parejas de la relación TRABAJAN se relacionan con TAREAS.
 - ¿Cómo se identifican las parejas de *TRABAJAN*?

Pasaje MER a MR **Agregaciones**

Ejemplo:

TRABAJAN (<u>nombreSala</u>, <u>cédula</u>, h_entrada, h_salida) TAREAS (<u>nombre</u>, descripción) **REALIZAN (<u>nombreTarea</u>, nombreSala, cédula)**

$$\Pi_{nombre Tarea}$$
 (REALIZAN) $\subseteq \Pi_{nombre}$ (TAREAS) $\Pi_{nombre Sala, c\'edula}$ (REALIZAN) $\subseteq \Pi_{nombre Sala, c\'edula}$ (TRABAJAN)

Pasaje MER a MR Categorizaciones

- Existen diferentes situaciones para considerar.
- Dependiendo del caso, se puede realizar el pasaje al Modelo Relacional de distintas formas.

Pasaje MER a MR Categorizaciones (1)

- Una tabla para la superentidad
- Una tabla por cada subentidad con referencia a la superentidad.

PERSONAL (<u>cédula</u>, nombre, ciudad, calle, número)
MEDICOS (<u>cédulaPersonal</u>, especialidad)
ENFERMEROS (<u>cédulaPersonal</u>)
ADMINISTRATIVOS (<u>cédulaPersonal</u>, antiqüedad)

Funciona siempre

 $\Pi_{c\acute{e}dulaPersonal}$ (MEDICOS) $\subseteq \Pi_{c\acute{e}dula}$ (PERSONAL) $\Pi_{c\acute{e}dulaPersonal}$ (ENFERMEROS) $\subseteq \Pi_{c\acute{e}dula}$ (PERSONAL) $\Pi_{c\acute{e}dulaPersonal}$ (ADMINISTRATIVOS) $\subseteq \Pi_{c\acute{e}dula}$ (PERSONAL)

Pasaje MER a MR Categorizaciones (2)

Una tabla por cada subentidad.

MEDICOS(<u>cédula</u>, nombre, ciudad, calle, numero, especialidad)

ENFERMEROS (<u>cédula</u>, nombre, ciudad, calle, numero)

ADMINISTRATIVOS (<u>cédula</u>, nombre, ciudad, calle, numero, antigüedad)

- Funciona sólo si la categorización es total
 - Personal = Médicos \cup Enfermeros \cup Administrativos
- En categorizaciones solapadas, pueden aparecen duplicados

Pasaje MER a MR Categorizaciones (3)

Una tabla con los atributos de la *superentidad*, los de las subentidades y un atributo de tipo.

PERSONAL(cédula, nombre, ciudad, calle, número, especialidad, antiquedad, tipo)

Funciona sólo si la categorización es disjunta, y aún si es no total

 $M\'{e}dicos \cap Enfermeros = \emptyset$

- $M\acute{e}dicos \cap Administrativos = \emptyset$ *Enfermeros* \cap *Administrativos* = \emptyset
- Puede generar nulos
- Hay que mantener consistente el tipo con los valores de los otros atributos

Pasaje MER a MR Categorizaciones (4)

Una tabla con los atributos de la superentidad, los de las subentidades y un atributo booleano por cada subentidad

PERSONAL(<u>cédula</u>, nombre, ciudad, calle, numero, especialidad, antigüedad, esMedico, esEnfermero, esAdministrativo)

- Funciona si la categorización es disjunta, o no
- Puede generar nulos
- Hay que mantener consistente el tipo con los valores de los otros atributos

