High School Assignment

K Vivek Kumar

28 March 2022

1 2018-ICSE-10th board-Problem: 8(b)

<u>Problem:</u> If the mean of the following distribution is 24, find the value of 'a'.

Marks	0-10	10-20	20-30	30-40	40-50
Number of students	7	a	8	10	5

Solution: Given, the mean of the following distribution is, m = 24.

We know that,

$$mean(m) = \frac{\sum f_i x_i}{\sum f_i} \tag{1}$$

This can also be written as

$$mean(m) = \frac{\vec{f}^T \vec{x}}{\vec{1}^T \vec{f}}$$
 (2)

As per the question,

Intervals	Frequency (f_i)	Mid-Value (x_i)
0-10	7	5
10-20	a	15
20-30	8	25
30-40	10	35
40-50	5	45

Therefore, from the above table we can

deduce the following vectors,

$$\vec{f} = \begin{bmatrix} 7 \\ a \\ 8 \\ 10 \\ 5 \end{bmatrix}; \vec{x} = \begin{bmatrix} 5 \\ 15 \\ 25 \\ 35 \\ 45 \end{bmatrix}$$

To find the value of 'a', we can simplify the equation (2),

$$mean(m) = \frac{\vec{f}^T \vec{x}(\text{without 'a'}) + \vec{f}^T \vec{x}(\text{with 'a'})}{\vec{1}^T \vec{f}(\text{without 'a'}) + \vec{1}^T \vec{f}(\text{with 'a'})}$$

Taking the dot product,

$$\vec{f}^T \vec{x}$$
 (without 'a') = $\begin{bmatrix} 7 \\ 8 \\ 10 \\ 5 \end{bmatrix}$. $\begin{bmatrix} 5 \\ 25 \\ 35 \\ 45 \end{bmatrix}$ = $[35+200+350+225]$.

$$\vec{f}^T \vec{x}$$
(with 'a') = $[a] \cdot [15] = [15a]$.

$$\vec{1}^T \vec{x}$$
 (without 'a') = $\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$. $\begin{bmatrix} 7\\8\\10\\5 \end{bmatrix}$ = $[7+8+10+5]$.

$$\vec{1}^T \vec{x}$$
 (with 'a') = $\begin{bmatrix} 1 \end{bmatrix}$. $\begin{bmatrix} a \end{bmatrix}$ = $\begin{bmatrix} a \end{bmatrix}$.

On substituting the following above values in the equation, we get

$$mean(m) = \frac{[35 + 200 + 350 + 225] + [15a]}{[7 + 8 + 10 + 5] + [a]}$$

$$mean(m) = \frac{810 + 15a}{30 + a}$$
$$24(30 + a) = 810 + 15a$$
$$720 + 24a = 810 + 15a$$
$$9a = 90$$
$$a = 10$$

Therefore, the required value (a) is .