1. Evaluate $\int_0^x \frac{1}{1+e^t} dt$. Does $\int_0^\infty \frac{1}{1+e^t} dt$ exist, and if so, what is it?

Solution. We substitute $t = \log(u)$ and decompose into partial fractions to get

$$\int_0^x \frac{1}{1+e^t} dt = \int_1^{e^x} \frac{1}{1+u} \cdot \frac{1}{u} du = \int_1^{e^x} \left(\frac{1}{u} - \frac{1}{1+u}\right) du.$$

This is equal to

$$\log(u) - \log(1+u)\Big|_{u=1}^{u=e^x} = x - \log(1+e^x) + \log(2).$$

We can rewrite this as

$$\int_0^x \frac{1}{1+e^t} dt = \log(2) - \log\left(\frac{1+e^x}{e^x}\right) = \log(2) - \log(1+e^{-x}),$$

and this converges as $x \to \infty$ to $\int_0^\infty \frac{1}{1+e^t} dt = \log(2)$.

- 2. The prime number theorem says that the number $\pi(n)$ of primes between 1 and n is approximately $\int_2^n \frac{1}{\log(x)} dx$.
 - (a) Prove that this integral equals $\frac{n}{\log(n)} + \int_2^n \frac{1}{(\log x)^2} dx$, up to a constant which does not depend on n.
 - (b) Prove that there is a constant C > 0 such that $\int_2^n \frac{1}{(\log x)^2} dx < \frac{Cn}{(\log n)^2}$ for all sufficiently large n, by splitting the integral up into one with domain $[2, \sqrt{n}]$ and one with domain $[\sqrt{n}, n]$ and estimating each one separately.

Solution. (a) We integrate by parts, using $\frac{d}{dx}(\log x)^{-1} = -\frac{1}{x(\log x)^2}$:

$$\int_{2}^{n} \frac{1}{\log(x)} \left(\frac{d}{dx} x \right) dx = \left. \frac{x}{\log(x)} \right|_{x=2}^{x=n} + \int_{2}^{n} x \cdot \frac{1}{x (\log x)^{2}} dx$$
$$= \frac{n}{\log(n)} - \frac{2}{\log(2)} + \int_{2}^{n} \frac{1}{(\log x)^{2}} dx.$$

(b) We split the domain [2, n] into $[2, \sqrt{n}] \cup [\sqrt{n}, n]$ and write

$$\int_{2}^{n} \frac{1}{(\log x)^{2}} dx = \int_{2}^{\sqrt{n}} \frac{1}{(\log x)^{2}} dx + \int_{\sqrt{n}}^{n} \frac{1}{(\log x)^{2}} dx.$$

On $[2, \sqrt{n}]$ we have $\frac{1}{(\log x)^2} \leq \frac{1}{(\log 2)^2}$, and on $[\sqrt{n}, n]$ we have

$$\frac{1}{(\log x)^2} \le \frac{1}{(\log(\sqrt{n}))^2} = \frac{4}{(\log n)^2},$$

so we combine these bounds to get

$$\int_{2}^{n} \frac{1}{(\log x)^{2}} dx \le \int_{2}^{\sqrt{n}} \frac{1}{(\log 2)^{2}} dx + \int_{\sqrt{n}}^{n} \frac{4}{(\log n)^{2}} dx$$
$$= \frac{\sqrt{n}}{(\log 2)^{2}} + \frac{4(n - \sqrt{n})}{(\log n)^{2}}.$$

We now have

$$\lim_{x \to \infty} \frac{\sqrt{x}}{x/(\log x)^2} = \lim_{x \to \infty} \frac{(\log x)^2}{x^{1/2}} = \lim_{y \to \infty} \frac{y^2}{e^{y/2}} = 0$$

by the substitution $y = \log(x)$, since the power series for e^x shows that $e^{y/2} \ge \frac{(y/2)^3}{3!} = \frac{y^3}{48}$ for all y > 0. It follows that for all large enough n we have $\frac{\sqrt{n}}{(\log 2)^2} < \frac{n}{(\log n)^2}$, and so $\int_2^n \frac{1}{(\log x)^2} dx < \frac{5n}{(\log n)^2}$ for $n \gg 0$.

- 3. Let $f:[0,\infty)\to [0,\infty)$ be uniformly continuous, and suppose that $\int_0^\infty f(x)\,dx$ exists.
 - (a) For each $\epsilon > 0$, prove that there is a $\delta > 0$ such that for all y > 0, if $f(y) \ge \epsilon$ then

$$\int_{y}^{y+\delta} f(t) \, dt \ge \frac{\epsilon \delta}{2}.$$

- (b) Prove that $\lim_{x\to\infty} f(x) = 0$.
- (c) Describe a continuous function $g:[0,\infty)\to[0,\infty)$ such that $\int_0^\infty g(x)\,dx$ exists but $\lim_{x\to\infty}g(x)$ does not. Can you make g differentiable as well?

Solution. (a) Given $\epsilon > 0$, uniform continuity says that there is a $\delta > 0$ such that

$$|y-t| < \delta \implies |f(y) - f(t)| < \frac{\epsilon}{2},$$

so if $f(y) \ge \epsilon$ then $f(t) > f(y) - \frac{\epsilon}{2} \ge \frac{\epsilon}{2}$ for all $t \in [y, y + \delta)$. Then

$$\int_{y}^{y+\delta} f(t) dt \ge \int_{y}^{y+\delta} \frac{\epsilon}{2} dt = \frac{\epsilon \delta}{2}.$$

(b) If $\lim_{x\to\infty} f(x)$ is not zero, then there is some $\epsilon > 0$ and a sequence $x_n \to \infty$ such that $f(x_n) \ge \epsilon$ for all n. Since f is nonnegative, there is a $\delta > 0$ such that for any such x_n we have

$$\int_{x_n}^{\infty} f(t) dt \ge \int_{x_n}^{x_n + \delta} f(t) dt \ge \frac{\epsilon \delta}{2}$$

by part (a).

However, the convergence of $\int_0^\infty f(x) dx$ means that there is some N > 0 such that for all $x \ge N$, we have

$$\left| \left(\lim_{b \to \infty} \int_0^b f(t) \, dt \right) - \int_0^x f(t) \, dt \right| < \frac{\epsilon \delta}{2},$$

hence $\int_x^{\infty} f(t) dt < \frac{\epsilon \delta}{2}$ for all $x \geq N$, and if we take x to be some $x_n \geq N$ then we have a contradiction.

(c) We take a continuous function $h: \mathbb{R} \to [0, \infty)$ satisfying h(x) = 0 for all $x \leq 0$ and all $x \geq 1$, $h(\frac{1}{2}) > 0$, and $\int_0^1 h(x) dx = 1$. Possible examples include

$$h_1(x) = \max(2 - |4x - 2|, 0), \qquad h_2(x) = \begin{cases} ce^{-\frac{1}{x^2} - \frac{1}{(1-x)^2}}, & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

where c > 0 is a constant chosen so that $\int_0^1 h_2(x) dx = 1$. Now we define

$$g(x) = \sum_{n=0}^{\infty} h(2^n(x-2n)),$$

and we find for any even integer $2n \ge 0$ that

$$\int_{2n}^{2n+2} g(x) \, dx = \int_{2n}^{2n+2} h(2^n(x-2n)) = \int_{0}^{2^{n+1}} h(y) \cdot \frac{1}{2^n} \, dy = \frac{1}{2^n}$$

by the substitution $x = \frac{y}{2^n} + 2n$. Since g(x) is nonnegative, the integral $\int_0^t g(t) dt$ is increasing, and it is bounded above by

$$\sum_{n=0}^{\infty} \int_{2n}^{2n+2} g(x) \, dx = \sum_{n=0}^{\infty} \frac{1}{2^n} = 2,$$

so g is integrable, with $\int_0^\infty g(x) dx = 2$. We also know that g is continuous or differentiable iff h is. But $\lim_{x\to\infty} g(x)$ does not exist, because we have

$$g\left(2n + \frac{1}{2^{n+1}}\right) = h\left(\frac{1}{2}\right) > 0$$

for all $n \geq 0$.

4. Let $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$.

- (a) Prove that this improper integral converges for all t > 0. (In how many ways is it improper?)
- (b) Compute $\Gamma(1)$.
- (c) Prove that $\Gamma(n+1) = n\Gamma(n)$ for all integers $n \ge 1$, and deduce that $\Gamma(n+1) = n!$ for all n > 0.

Solution. (a) This integral is improper in two ways: the upper limit is ∞ , and when t < 1 the integrand $x^{t-1}e^{-x}$ is unbounded as $x \downarrow 0$. Thus we write

$$\Gamma(t) = \int_0^1 x^{t-1} e^{-x} dx + \int_1^\infty x^{t-1} e^{-x} dx$$

and ask for each of these integrals to exist individually. Since the integrand $x^{t-1}e^{-x}$ is positive, the two integrals

$$\int_a^1 x^{t-1}e^{-x} dx \quad \text{and} \quad \int_1^\infty x^{t-1}e^{-x} dx$$

both increase as $a \downarrow 0$ and $b \to \infty$ respectively, so it suffices to show that they are bounded above independently of $a \in (0,1]$ and $b \in [1,\infty)$.

For the first integral, we have $e^{-x} \le 1$ for $0 \le x \le 1$, and so given a > 0 we have

$$\int_{a}^{1} x^{t-1} e^{-x} dx \le \int_{a}^{1} x^{t-1} dx = \left. \frac{x^{t}}{t} \right|_{x=a}^{x=1} = \frac{1 - a^{t}}{t}.$$

This is bounded above by $\frac{1}{t}$ since t > 0, so the improper integral exists.

For the second integral, we have $x^{t-1} \leq e^{x/2}$ for all sufficiently large x; in fact, it suffices to take $x \geq 2^t \cdot t!$, since then

$$e^{x/2} \ge \frac{(x/2)^t}{t!} = \frac{x^t}{2^t \cdot t!} \ge x^{t-1}.$$

So we write $N = 2^t \cdot t!$ for convenience and bound this integral by

$$\int_{1}^{b} x^{t-1}e^{-x} dx = \int_{1}^{N} x^{t-1}e^{-x} dx + \int_{N}^{b} x^{t-1}e^{-x} dx$$

$$\leq \int_{1}^{N} x^{t-1}e^{-x} dx + \int_{N}^{b} e^{-x/2} dx$$

$$= \int_{1}^{N} x^{t-1}e^{-x} dx + (-2e^{-x/2})\Big|_{x=N}^{x=b}$$

$$= -2e^{-b/2} + \left(\int_{1}^{N} x^{t-1}e^{-x} dx + 2e^{-N/2}\right).$$

Thus $\int_1^b x^{t-1}e^{-x} dx$ is bounded above by the terms in parentheses, and so this improper integral exists as well.

(b) We have

$$\Gamma(1) = \int_0^\infty e^{-x} \, dx = \lim_{b \to \infty} \int_0^b e^{-x} \, dx$$
$$= \lim_{b \to \infty} -e^{-x} \Big|_{x=0}^{x=b}$$
$$= \lim_{b \to \infty} (1 - e^{-b}) = 1.$$

(c) We integrate by parts: given $n \ge 1$ and b > 0, we have

$$\int_0^b x^n e^{-x} dx = \int_0^b x^n \frac{d}{dx} \left(-e^{-x} \right) dx$$
$$= -x^n e^{-x} \Big|_{x=0}^{x=b} - \int_0^b (nx^{n-1})(-e^{-x}) dx$$
$$= -\frac{b^n}{e^b} + t \int_0^b x^{n-1} e^{-x} dx.$$

Taking limits as $b \to \infty$ and using the algebra of limits gives us $\Gamma(n+1) = n\Gamma(n)$, since $\lim_{b\to\infty} \frac{b^n}{e^b} = 0$.

Now the claim that $\Gamma(n+1) = n!$ follows by induction: we have already proved it when n = 0, meaning that $\Gamma(1) = 1 = 0!$, and if $\Gamma(k+1) = k!$ for some integer $k \ge 1$ then this identity proves that

$$\Gamma(k+2) = (k+1)\Gamma(k+1) = (k+1) \cdot k! = (k+1)!$$

as desired.

Remark: In fact, we have $\Gamma(t+1) = t\Gamma(t)$ for all real t > 0 by the same argument, though if t < 1 then we have to be careful about taking limits on the right side because $x^{t-1}e^{-t}$ is unbounded as $x \downarrow 0$.

- 5. (*) Let $f:[a,b]\to\mathbb{R}$ be continuous, with f''(x) continuous and bounded on (a,b).
 - (a) Use integration by parts twice to prove that

$$\int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) dx = \int_{a}^{b} f(x) dx - (b-a) \left(\frac{f(a) + f(b)}{2}\right).$$

(b) If $|f''(x)| \leq M$ for all $x \in (a, b)$, prove that

$$\left| \int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) \, dx \right| \le \frac{M(b-a)^{3}}{12}.$$

In other words, $\int_a^b f(x) dx$ is the area of the trapezium shown at right, up to an error of at most $\frac{M(b-a)^3}{12}$. (Hint: check that $(x-a)(x-b) \leq 0$ on [a,b], and compute that $\int_a^b (x-a)(x-b) dx = -\frac{(b-a)^3}{6}$.)

(c) Apply this to $f(x) = \log(x)$ to show that

$$\int_{1}^{n} \log(x) \, dx = \sum_{k=1}^{n-1} \left(\frac{\log(k) + \log(k+1)}{2} + e_k \right),$$

where $|e_k| \leq \frac{1}{12k^2}$ for all k.

(d) Evaluate both the integral and the sum from part (c) to show that there is some constant C > 0 such that

$$\left| \log(n!) - \log\left(\frac{n^{n+1/2}}{e^{n-1}}\right) \right| < C$$

for all n, or equivalently if $C_1 = e^{1-C}$ and $C_2 = e^{1+C}$ then

$$C_1\sqrt{n}\left(\frac{n}{e}\right)^n \le n! < C_2\sqrt{n}\left(\frac{n}{e}\right)^n.$$

Solution. (a) We integrate by parts once to get

$$\int_{a}^{b} \frac{(x-a)(x-b)}{2} f''(x) dx = \frac{(x-a)(x-b)}{2} f'(x) \Big|_{x=a}^{x=b} - \int_{a}^{b} \left(x - \frac{a+b}{2}\right) f'(x) dx$$
$$= \int_{a}^{b} \left(\frac{a+b}{2} - x\right) f'(x) dx,$$

and then a second time to get

$$\int_{a}^{b} \left(\frac{a+b}{2} - x \right) f'(x) \, dx = \left(\frac{a+b}{2} - x \right) f(x) \Big|_{x=a}^{x=b} - \int_{a}^{b} (-1)f(x) \, dx$$
$$= \frac{a-b}{2} f(b) - \frac{b-a}{2} f(a) + \int_{a}^{b} f(x) \, dx,$$

which we rearrange slightly to get the desired answer.

(b) The triangle inequality for integrals says that

$$\left| \int_a^b \frac{(x-a)(x-b)}{2} f''(x) \, dx \right| \le \int_a^b \left| \frac{(x-a)(x-b)}{2} f''(x) \right| \, dx$$

$$\le \int_a^b \left| \frac{(x-a)(x-b)}{2} \right| \cdot M \, dx$$

$$= M \int_a^b -\frac{1}{2} (x-a)(x-b) \, dx,$$

since $\left|\frac{(x-a)(x-b)}{2}\right| = -\frac{(x-a)(x-b)}{2}$ for $x \in [a,b]$. We evaluate

$$\int_{a}^{b} (x^{2} - (a+b)x + ab) dx = \frac{x^{3}}{3} - (a+b)\frac{x^{2}}{2} + abx \Big|_{x=a}^{x=b}$$

$$= \frac{b^{3} - a^{3}}{3} - (a+b)\frac{b^{2} - a^{2}}{2} + ab(b-a)$$

$$= (b-a)\left(\frac{b^{2} + ab + a^{2}}{3} - \frac{b^{2} + 2ab + a^{2}}{2} + ab\right)$$

$$= (b-a)\left(-\frac{b^{2}}{6} + \frac{ab}{3} - \frac{a^{2}}{6}\right)$$

$$= -\frac{b-a}{6}(b^{2} - 2ab + a^{2}) = -\frac{(b-a)^{3}}{6},$$

and so the upper bound above becomes $-\frac{M}{2}\left(-\frac{(b-a)^3}{6}\right) = \frac{M(b-a)^3}{12}$.

(c) We have $f''(x) = -\frac{1}{x^2}$, so $|f''(x)| \leq \frac{1}{k^2}$ on the interval [k, k+1]. Thus

$$e_k = \int_k^{k+1} \log(x) \, dx - ((k+1) - k) \left(\frac{\log(k) + \log(k+1)}{2} \right)$$

satisfies $|e_k| \leq \frac{1}{k^2} \left(\frac{((k+1)-k)^3}{12} \right) = \frac{1}{12k^2}$. We sum over $1 \leq k \leq n-1$ to get

$$\int_{1}^{n} \log(x) \, dx = \sum_{k=1}^{n-1} \left(\frac{\log(k) + \log(k+1)}{2} + e_k \right)$$

as claimed.

(d) On the one hand, we can evaluate the integral explicitly as

$$\int_{1}^{n} \log(x) \, dx = x \log(x) - x \Big|_{x=1}^{n} = n \log(n) - (n-1).$$

On the other hand, if we let $E = \sum_{k=1}^{n} e_k$ then the sum can be rearranged as

$$\sum_{k=1}^{n-1} \left(\frac{\log(k) + \log(k+1)}{2} + e_k \right) = \sum_{k=1}^{n-1} \frac{\log(k)}{2} + \sum_{k=1}^{n-1} \frac{\log(k+1)}{2} + \sum_{k=1}^{n-1} e_k$$
$$= \left(\frac{\log(n!)}{2} - \frac{\log(n)}{2} \right) + \frac{\log(n!)}{2} + E$$
$$= \log(n!) - \frac{\log(n)}{2} + E.$$

We equate the two sides to get

$$n\log(n) - (n-1) = \log(n!) - \frac{\log(n)}{2} + E,$$

or equivalently

$$\log(n!) = \left(n + \frac{1}{2}\right) \log(n) - (n-1) - E$$
$$= \log\left(\frac{n^{n+1/2}}{e^{n-1}}\right) - E,$$

and so
$$\left|\log(n!) - \log\left(\frac{n^{n+1/2}}{e^{n-1}}\right)\right| \leq |E|$$
. Since $|E| \leq \sum_{k=1}^{n-1} \frac{1}{12k^2} < \frac{1}{12} \sum_{k=1}^{\infty} \frac{1}{k^2}$, or equivalently $|E| \leq \frac{\zeta(2)}{12}$, the left side is bounded above for all n . Remark: on the last problem sheet we saw that $\zeta(s) < \frac{s}{s-1}$ for all $s > 1$, so $\zeta(2) < 2$ and hence $|E| < \frac{1}{6}$. Thus we have

$$0.8464 < e^{-E} \le \frac{n!}{n^{n+1/2}/e^{n-1}} \le e^E < 1.1814$$

for all n, and these bounds can be further improved if we know that $\zeta(2) = \frac{\pi^2}{6}$.