Lecture 4 Simple Linear Regression

Outline

- Simple linear regression for population and sample
- Ordinary least square
- Statistical inference in regression
- R^2
- Omitted Variable Bias (OVB)

REMEMBER THIS

Our core statistical model is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- 1. β_1 , the slope, indicates how much change in Y (the dependent variable) is expected if X (the independent variable) increases by one unit.
- **2.** β_0 , the intercept, indicates where the regression line crosses the *Y*-axis. It is the value of *Y* when *X* is zero.
- **3.** β_1 is almost always more interesting than β_0 .

How to move from population to sample?

- We start with some theory where $Y = \beta_0 + \beta_1 X + \varepsilon$
- Through the use of data we get to $Y = \widehat{\beta_0} + \widehat{\beta_1}X + e$
- The first equation is purely theoretical while the second is the empirical counterpart
- How to move from the first equation to the second?
- In other words, how do we get $\widehat{\beta_0}$, $\widehat{\beta_1}$ based on our sample of X,Y?
 - Ordinary Least Squares (OLS)

Notations of simple linear regression(sample)

- Since the population is too big, we use a sample to obtain the estimated regression line:
- Sample analogue: $Y = \widehat{\beta_0} + \widehat{\beta_1}X + e$
- Defining terms:
 - Y, X are actual data
 - $\widehat{\beta_0}$ is the estimate for β_0
 - $\widehat{\beta_1}$ is the estimate for β_1
 - $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are sample statistics, they are also called regression coefficients
 - e is the estimate for ε , it is called the residual term
 - $\widehat{\beta_0} + \widehat{\beta_1}X$ is the predicted value of Y, sometimes we call it \widehat{Y}

How to draw the regression line?

FIGURE 1.2: Weight and Donuts in Springfield

Ordinary least square (OLS)

- Ordinary Least Squares (OLS) is one of the simplest methods of linear regression. The goal of OLS is to closely fit a function with the data. It does so by minimizing the sum of squared residuals from the data.
- So we noticed e is the deviation from actual Y and predicted Y.
 We'd like to find a way to minimize e for every data point
- How about the one minimized

$$\sum e_i = \sum (Y_i - \hat{Y}_i)$$

• How about the one minimized

$$\sum |e_i| = \sum |Y_i - \hat{Y}_i|$$

This is a reasonable candidate but it's not easy to calculate the absolute value.

Interpretation of $\widehat{\beta_0}$, $\widehat{\beta_1}$ and making predictions

- $\widehat{\beta_{1}}$: How mean in Y changes when X changes one unit
- $\widehat{\beta_0}$: The **mean** in Y when X is 0
- Question: why do I have to say **mean** every time?
 - We can also use "predicted value" interchangeably with the word "mean" here
- $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are estimates of β_0 and β_1
- Once we know $\widehat{\beta_0}$ and $\widehat{\beta_1}$, we can write out the regression model as $Y = \widehat{\beta_0} + \widehat{\beta_1}X + e$ or $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1}X$. Now for a given X, we will be able to make prediction about Y.

When does OLS give us true effect?

- $Y = \beta_0 + \beta_1 X + \epsilon$
- ε includes all factors that can explain Y other than X.
- In this example, what are some other factors that can explain age at first marriage other than education?
- If we assume ε is randomly distributed, then β_1 offers true causal relationship of X on Y. But is it likely to be true in real research projects?
- To rephrase, is it likely to be true that all other factors that affects *time to marry* are uncorrelated with *education*?
 - Note: I am not saying *education* is the only factor affecting *time to marry*. There can be other factors as long as they do NOT correlate with education (remember apples vs oranges- more on this later).

Example 1 (numerical variable):

- If X is class size, and Y is student test score. What does -0.04 and 14 mean in regression \hat{Y} =14-0.04X?
 - -0.04: One person increase in class size will decrease <u>average</u> test score by 0.04 unit.
 - 14: if class size is 0, average student test score is 14-It doesn't make much sense in this case.
- What is the predicted test score for a class of 10 students?
 - Plug X=10 into the equation, \hat{Y} =13.6.

Exercise 1 (Do on your own)

• Assume you are interested in knowing whether higher educated parents usually have higher educated children. You run a regression of children's highest grades completed on their father's highest grades completed. A regression result shows \hat{Y} =5.1+0.2X. How would you interpret the coefficients? What is the average highest grades completed for a child whose father's highest grade completed is 5?

Example 2 (categorical variable)

- What if X is categorical variable such as gender?
- We will have to define X=0 if male; X=1 if female. Assume the research questions is how gender may affect wage
- What does 2800 and -300 mean in linear regression \hat{Y} =2800-300X?
- $\hat{Y}_{male} = 2800 300 * 0 = 2800$
 - Average (or predicted) wage for male is 2800
- $\hat{Y}_{female} = 2800-300*1=2500$
- -300=2500-2800= \hat{Y}_{female} — \hat{Y}_{male} : The difference in **average** wage between female and male. Negative sign means female on average has a lower wage

Exercise 2 (categorical variable: Do yourself)

• After estimating whether having health insurance will increase number of doctor visit, you get a regression results: \hat{Y} =4.2+0.09X. Interpret $\widehat{\beta_0}$ and $\widehat{\beta_1}$

Statistical inference in regression

- So far we've been focused on the economic significance- β . Now let's talk about statistical significance
- Why do we need statistical inference in regression?
 - We know the mean of one sample may not be representative of the population mean-because of standard error
 - Same idea here: the $\widehat{\beta_0}$ and $\widehat{\beta_1}$ from one sample may not be representative of true population parameters β_0 and β_1
 - With different samples we will have different $\widehat{\beta_0}$ and $\widehat{\beta_1}$. So $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are random variables and follow sampling distributions.
 - We need to incorporate the idea of standard error of $\hat{\beta}$ (sampling variability) in statistical inference
- We can use p-value and confidence interval approach to perform hypothesis test of β

Statistical inference in regression

Years of	Age at first
schooling(X)	marriage(Y)
16	25
14	30
18	26
10	22
12	29
12	33
16	32
8	24
7	27
18	35
12	19
8	18
16	29
9	21
10	18
16	35
8	20
9	23
16	27
12	23

- $Y=\beta_0 + \beta_1 X + \varepsilon$
- We are interested in finding a relationship between X and Y
- What is my null hypothesis?
 - Ho: $\beta_1 = 0$
 - Ha: $β_1$ ≠0
- If we later reject H₀, β_1 is not zero. It means we identify a relationship between X and Y (with certain confidence)
- If we fail to reject H_0 , β_1 can be zero. It means we fail to identify a relationship between X and Y (with certain confidence)
- Note: 1) we usually care less about β_0
 - 2) STATA will provide the estimate and statistical inference output, but we need to know what's happening behind.

Example (p-value approach)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Years of schooling (X)	0.9598	0.2680	3.5812	0.0021	0.3967	1.5229			
Intercept	13.9463	3.4443	4.0491	0.0008	6.7102	21.1825			
$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X \Rightarrow \hat{Y} = 13.9463 + 0.9598X$									

- Hypothesis test:
 - Ho: $\beta_1 = 0$
 - Ha:β₁≠0
 - $t^* = \frac{\widehat{\beta}_1 0}{\widehat{se(\beta_1)}} = \frac{\widehat{\beta}_1}{\widehat{se(\beta_1)}} = \frac{0.9598}{0.2680} = 3.5813$ (recall previously we used the formula for $t^* = \frac{\overline{X} \mu}{se}$)
 - degree of freedom d.f. =n-k-1, where k is number of independent variables.
 - So d.f.=20-1-1=18, p(t>t*) for d.f=18 is 0.0011 P-value=2P(t>t*)= 0.0022<0.05 (α)
 - Reject H₀⇒There is a relationship between education and age at first marriage
 - Compare our calculation with software output

Steps for performing test of significance on regression coefficients

- Step1: set up Ho, Ha
 - Ho: $\beta_1 = 0$
 - Ha:β₁≠0
- Step2: calculate t-stat
 - $t^* = \frac{\widehat{\beta}_1}{\widehat{se}}$ ($\widehat{\beta_1}$, \widehat{se} are information estimated from our sample)
- Step3: translate t* into p-value using t-table
- Step4: compare p-value with α . If p< α , reject H₀, $\beta_1 \neq 0$. There is a relationship between X and Y.

Example (confidence interval approach)

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Years of schooling(X)	0.9598	0.2680	3.5812	0.0021	0.3967	1.5229
Intercept	13.9463	3.4443	4.0491	0.0008	6.7102	21.1825

Confidence interval:

- Formula for the CI= $\hat{\beta}_1 \pm t_{\frac{\alpha}{2}}$ *se (recall previously CI= $\bar{X} \pm t_{\frac{\alpha}{2}}$ * se)
- Find $t_{\frac{\alpha}{2}}$ for α =0.05 and d.f.=18. $t_{\frac{\alpha}{2}}$ =2.101 Margin of error: m= $t_{\frac{\alpha}{2}}$ * se= 2.101 * 0.2680=0.5631
- $CI = \hat{\beta}_1 \pm m = 0.9598 \pm 0.5631 = (0.3967, 1.5229)$
- 95% of time the true relationship between X and Y will fall within the interval (0.3967,1.5229). Since 0 does not fall within this interval, we reject the null hypothesis and conclude there is a statistically significant relationship between X and Y

Exercise (p-value approach: Do yourself)

• Suppose we are interested in whether higher GDP can predict higher life expectancy, we ran a regression of life expectancy on GDP. The regression output is listed below:

	Coefficients	standard error	t Stat	P-value	Lower 95%	Upper 95%
GDP	0.0005	0.0006	0.8333	0.4242	-0.0008	0.0018
Intercep	t 63.3158	0.8629	73.3786	0.0000	61.6104	65.0212

- Write out the estimated regression.
- Manually perform test of significance on the coefficient for GDP using p-value approach (use d.f.=12, $\alpha = 0.05$). Compare your t-stat and P-value with the STATA output

Exercise (Do yourself and ask questions if needed)

• Suppose we are interested in whether higher GDP can predict higher life expectancy. So I ran a regression of life expectancy on GDP. The regression output is listed below:

	Coefficients	standard error	t Stat	P-value	Lower 95%	Upper 95%
GDP	0.0005	0.0006	0.8333	0.4242	-0.0008	0.0018
Intercep	t 63.3158	0.8629	73.3786	0.0000	61.6104	65.0212

- Manually perform test of significance on coefficient for GDP using confidence interval approach (use d.f.=12, $\alpha = 0.05$). Compare your CI with the STATA output. Is the conclusion consistent with the previous exercise?
- Do you think there is strong evidence that there is positive correlation between GDP and life expectancy? Why or why not?

Read STATA output

- Model: Health= β_0 + β_1 Age+ ϵ
- codes: reg phstat age_yrs
- (reg: command of regression; phstat: physical status-dependent variable; age_yrs: age measured in years-independent variable)
- note: phstat is an index ranging from 1-5. 1 means excellent health,
 and 5 means worst health

STATA Output

What does coefficient of age_yrs mean?

	MS 1.927847 28555624	1	Number of obs F(1, 46948) Prob > F	= = =	46950 476.00
			Prob > F		476.00
				=	
46948 1.	28555624				0.0000
			R-squared	=	0.0100
			Adj R-squared	=	0.0100
46949 1.	29856274		Root MSE	=	1.1338
Std. Err	·. t	P> t	[95% Conf.	Int	erval]
	21.82	0.000	.018037		215977
	.0009083		.0009083 21.82 0.000 .0579778 24.60 0.000		

Coefficients and statistical inference

Variance decomposition

- It's the top left panel of STATA output
- Variance decomposition:

$$\sum_{i} (Y_i - \overline{Y})^2 = \sum_{i} (\hat{Y}_i - \overline{Y})^2 + \sum_{i} e_i^2$$
TSS = ESS + RSS

- TSS is Total Sum of Squares
 - Measures how spread out Yi is in the sample
- ESS is Explained Sum of Squares
 - Stata calls this Model Sum of Squares
- RSS is the Residual Sum of Squares
 - It's the part that cannot be explained by our model

MS is mean sum of squaresthe SS divided by degree of freedom

Source	SS	df	MS
Model Residual	611.927847 60354.2942	1 46948	611.927847 1.28555624
Total	60966.222	46949	1.29856274

- Total degree of freedom=N-1
- Model degree of freedom=K, where K=number of coefficient excluding the constant term
- Residual degree of freedom= Total-Model

Figure 2.3 Decomposition of the Variance in Y

The variation of Y around its mean $(Y - \overline{Y})$ can be decomposed into two parts: (1) $(\hat{Y}_i - \overline{Y})$, the difference between the estimated value of $Y(\hat{Y})$ and the mean value of Y (\overline{Y}) ; and (2) $(Y_i - \hat{Y}_i)$, the difference between the actual value of Y and the estimated value of Y.

R-square: how well did our line fit the data?

- The most widely used measure of fit is the goodness of fit, R^2
- $\sum_{i} (Y_i \bar{Y})^2 = \sum_{i} (\hat{Y}_i \bar{Y})^2 + \sum_{i} e_i^2$
- TSS = ESS + RSS

•
$$R^2 = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i} e_i^2}{\sum_{i} (Y_i - \bar{Y})^2}$$

- The \mathbb{R}^2 is the ratio of explained variation to total variation
 - The proportion of total variation in Y that our model has captured (with independent variables)
 - We can use R^2 to compare models

Examples of R-square

Figure 2.4 X and Y are not related; in such a case, R^2 would be 0.

Figure 2.6 A perfect fit: all the data points are on the regression line, and the resulting R^2 is 1.

Figure 2.5 A set of data for X and Y that can be "explained" quite well with a regression line $(R^2 = .95)$.

Exercise: compare models using R-square

- Model 1: age and health status
 - reg phstat age_yrs
- Model 2: education and health status
 - reg phstat educ_r1

Source	SS	df	MS	
Model Residual	611.927847 60354.2942	1 46948	611.927847 1.28555624	
Total	60966.222	46949	1.29856274	
Source	SS	d	f MS	
Model Residual	4293.7399 56672.482	_	1 4293.7399 8 1.207133	
Total	60966.22	2 4694	9 1.298562	74

- Manually calculate the R-squares from ESS and RSS
- Interpret what R-square means in each model in words
- Which model is better? Why?
- Does big R-squares necessarily means better models?
- Does big R-square necessarily means big β ?
- Note the total SS are the same in both models, why?

Omitted variable bias

- The error ϵ arises because of factors that influence Y but are not included in the regression function; so, there are always omitted variables.
- Sometimes, the omission of those variables can lead to bias in the OLS estimator.

Omitted Variable Bias

• Suppose we are interested in studying whether getting health insurance makes people healthier?

Model in mind: $Health = \alpha + \beta * Insured + \varepsilon$

- Caveat: people with health insurance might be different from people without health insurance (ex: income). In this case, the selection bias is also called **Omitted Variable Bias**
- It is one of the most important issues in micro-econometrics. Most techniques we will learn later in this course focus on how to overcome this problem
- Recall (when we learned selection bias): naïve comparison is not "apple to apple" comparison-e.g. compare the health status of a person insured with a person not insured.

One potential way to fix Omitted Variable Bias (OVB): add controls in a Multivariate regression

- How can we make apple to apple comparison? In regression analysis, we add in controls.
- Let's compare the health status of insured/uninsured people of the same/ similar ages with similar income.
- $Health = \alpha + \beta Insured + \gamma_1 Age + \gamma_2 Income + \varepsilon$
- Failing to include proper controls results in omitted variable bias.

How to interpret β ?

- A big difference between multiple and single regression model is in the interpretation of the slope coefficients
- Now a slope coefficient indicates the change in the average of the dependent variable associated with a one-unit increase in the explanatory variable holding the other explanatory variables constant or fixed

How to interpret β ?

- Example: Healthi= β_0 + β_1 Educi + β_2 Agei + ϵ_i
- $\widehat{\beta}_1$ =-0.15: Holding age constant, one unit increase in education level is associated with 0.15 unit decrease in average health index. (note here 1=excellent, so it actually increase health)
- Exercise: $\hat{\beta}_2$ =0.07, explain what it means in the context.

Illustration about controls - DV

- We may be interested in discrimination
 - Are women discriminated against and paid less than men?
- We could estimate the following regression
 - $WAGE_i = \beta_0 + \beta_1 FEMALE_i + \varepsilon_i$

Our Regression

. reg wage female

Source	SS	df		MS		Number of obs		526 68.54
Model Residual	828.220467 6332.19382	1 524		220467 843394		F(1, 524) Prob > F R-squared Adj R-squared	=	0.0000 0.1157 0.1140
Total	7160.41429	525	13.6	388844		Root MSE	=	
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Ιn	terval]
female _cons	-2.51183 7.099489	.3034		-8.28 33.81		-3.107878 6.686928		.915782 7.51205

Control for Education

- When we control for other variables, we hold them constant in the regression
- For example, if we want to compare women and men who have the same education, we must control for education
- Our regression becomes
 - $WAGE_i = \beta_0 + \beta_1 FEMALE_i + \beta_2 EDUC_i + \varepsilon_i$

Comparing wages for women and men with same education

. req wage female educ

Source	SS	df		MS		Number of obs		526
Model Residual	1853.25304 5307.16125	2 523		.626518 1475359		F(2, 523) Prob > F R-squared Adj R-squared	=	91.32 0.0000 0.2588 0.2560
Total	7160.41429	525	13.0	5388844		Root MSE		3.1855
wage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval
female educ _cons	-2.273362 .5064521 .6228168	.2790 .0503 .6725	3906	-8.15 10.05 0.93	0.000 0.000 0.355	-2.821547 .4074592 698382		.725176 .605445 .944016

Same education and experience

. reg wage female educ exper

Source	SS	df	MS	Number of obs	=	526
				F(3, 522)	=	77.92
Model	2214.74206	3	738.247353	Prob > F	=	0.0000
Residual	4945.67223	522	9.47446788	R-squared	=	0.3093
				Adj R-squared	=	0.3053
Total	7160.41429	525	13.6388844	Root MSE	=	3.0783

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
female	-2.155517	.2703055	-7.97	0.000	-2.686537	-1.624497
educ	.6025802	.0511174	11.79	0.000	.5021591	.7030012
exper	.0642417	.0104003	6.18	0.000	.0438101	.0846734
_cons	-1.734481	.7536203	-2.30	0.022	-3.214982	2539797

Omitted variable bias

- The bias in the OLS estimator that occurs as a result of an omitted factor is called *omitted variable* bias. For omitted variable bias to occur, the omitted factor "Z" must be:
 - 1. A determinant of Y (i.e. Z is part of ε); and
 - 2. Correlated with the regressor X (i.e. $corr(Z,X) \neq 0$)
- **Both** conditions must hold for the omission of Z to result in omitted variable bias.

Omitted variable bias example

- Consider a model that regresses grade on attendance
 - Study time affects grades: Z is a determinant of Y.
 - Students who attend the class tend to study more: Z is correlated with X.
- Accordingly, our \hat{eta}_1 is biased. What is the direction of this bias?
 - What does the common sense suggest?

Omitted variable bias direction

		Corr(omitted variable,x)	
		positive	negative
Corr(omitted variable,y)	positive	upward bias	downward bias
	negative	downward bias	upward bias

Review for quizzes/exam

- Understand simple linear regression model (difference between population and sample)
- Able to interpret $\widehat{\beta_0}$ and $\widehat{\beta_1}$ and know how to perform test of significance for β_1
- Able to interpret the STATA output of 1) coefficients and statistical inference (bottom panel), 2) variance decomposition (top left panel), and 3) R-square/adjusted R-square (top right panel)
- Understand Omitted variable bias