E0 270 Machine Learning

Due: 11.59 pm, April 17, 2017; Total: 100 Mark

Assignment 3

Submission Instructions

- 1. Please submit the assignment 3 on submission page linked from the course webpage as a single pdf file.
- 2. No hard copy submission is permitted. You can either submit a scanned copy of your handwritten solutions or solution typset using latex.
- 3. Code for question 5 b should be included in the report(as text). Dont submit separately.
- 4. Use the pdf submission link in the assignment submission page to submit your pdf.
- 5. Upon multiple submissions till the deadline, the most recent submission will overwrite the previous one.
- 6. Questions about the assignment can be posted on the group email if or directed to the TAs {annervaz.km, aadirupa.saha} @csa.iisc.ernet.in, sharmistha@grad.cds.iisc.ac.in.

Questions

- 1. Compute the bias and variance of the importance sampling estimator.
- 2. Let U be a uniformly distributed random variable in [0,1]. Let F_X be the distribution function of a random variable X with density p. Assume that F_X be invertible. Show that $F_X^{-1}(U)$ has density p.
- 3. Let q be p be two probability densities. Consider the following sampling scheme:

$$X \sim q$$

$$U \sim Uniform[0,1]$$

If U < p(X)/q(X), then X is accepted, else X is rejected. What is the marginal distribution of drawing a sample using this scheme.

- 4. Let p be the distribution from which we have to generate samples. Let $p(x) = \frac{\tilde{p}(x)}{Z}$, where \tilde{p} is the unnormalized probability distribution. We perform rejection sampling using \tilde{p} rather than p as follows:
 - (a) Find a distribution q and a constant K, such that $Kq(x) \geq \tilde{p}(x)$ for all x.
 - (b) Sample $U \sim Uniform[0, Kq(x)]$.
 - (c) Sample $X \sim q(x)$
 - (d) If $U < \tilde{p}(X)$, accept the point, else reject it.

Find the marginal distribution of X.

5. A restricted Boltzmann machine defines a joint distribution over $\{0,1\}^d \times \{0,1\}^m$. Two boolean random vectors X and H are said to be distributed as a restricted Boltzmann machine if for any x in $\{0,1\}^d$ and h in $\{0,1\}^m$, the joint probability distribution of X and H has the form

$$p(X = x, H = h) = \frac{\exp\left(\sum_{i=1}^{d} \sum_{j=1}^{m} x_i h_j w_{ij}\right)}{Z},$$
(1)

where Z is the normalizing constant.

- (a) Derive the conditional distributions: $p(X_i = x_i | X_{-i} = x_{-i}, H = h)$ and $p(H_j = h_j | X = x, H_{-j} = h_{-j})$.
- (b) Implement a Gibbs sampler for a restricted Boltzmann machine, with d=10 and m=20 using either Matlab or Python.
- 6. Explain the similarities and dissimilarities between Long Short Term Memory(LSTM) and Gated Recurrent Unit(GRU) architectures.