Rotations - Example 1

Example

P is an intersection point of circles ω_1 and ω_2 . Construct a line through P intersecting ω_1 and ω_2 at A and B, respectively, such that AP=PB.

Rotations - Example 1

Let rotate ω_2 half turn (180°) or reflect ω_2 over point P. Let A be the other intersection of ω_1 and the image of ω_1 (the dotted circle); and B be the intersection of AP with ω_2 .

Then A, P, B are collinear (why?) and A is on the circumference of the image of ω_2 , thus A is the image of $B: B \to A$, thus AP = BP.

How many solutions?

- **1** If $|\omega_1 \cup \omega_2| = 2$, then we have 1 solution.
- ② If $|\omega_1 \cup \omega_2| = 1$, then we have no solution (why?)
- ① If $|\omega_1 \cup \omega_2| = 0$, and the two radii are the same then we have infinitely many solutions otherwise no solution (why?).

Rotations - Example 2

Example

P is an intersection point of circles ω_1 and ω_2 . Construct a line through P intersecting ω_1 and ω_2 at A and B, respectively, such that AP=2PB.

The idea is if M is the midpoint of AP, then $\angle OMP = 90^{\circ}$ and MP = PB. Thus M is the intersection of ω'_{γ} , the image of ω_{2} and the circle γ diameter $O_{1}P$.

Thus we rotate ω_2 half turn over point P. Then we draw the circle γ diameter O_1P . Their intersection is M. Line through MP intersects ω_1 and ω_2 at A and B respectively.

$$AM \stackrel{OM \perp MP}{=} MP \stackrel{B \rightarrow M}{=} PB \Rightarrow AP = 2PB.$$

Rotations - Example 3

Example

AB and CD are chords of circle ω . J is a point on CD. Find point X on the circumference of ω such that JG=GF, where G and F are intersections of CD with XA and XB, respectively.

The condition GJ = JF give us the idea to **rotate** X **half turn over point** I to X'.

Congruent triangles $\triangle XGJ$ and $\triangle XFJ$ shows that $\angle XGJ = \angle JFX$, thus $FX' \parallel XA$. Furthermore $\angle X'FB = \angle AXB$.

Rotations - Example 3

We rotate A half turn over point I to A'.

Therefore, AXA'X' is a parallelogram.

Rotations - Example 3

 $A'X' \parallel XA$ thus X, F, A' are collinear.

Rotations - Example 3

$$\angle A'FB = 180^{\circ} - \angle F'XB = 180^{\circ} - \angle AXB = 180^{\circ} - \frac{1}{2}\widehat{AB}.$$

Hence, we first construct A', then F is the intersection the arc $\widehat{A'B}$ with measure $180^{\circ} - \frac{1}{2}\widehat{AB}$ (how to construct an arc knowing the measure of the angle subtending it?) with the chord CD. Finally X is the intersection of BF with ω .

Example

n is a positive integer. Let O_1,O_2,\ldots,O_{2n} be points on the plane and AB is an arbitrary segment. Let segment A_1B_1 be obtained from AB by half turn about O_1 , let A_2B_2 be obtained from A_1B_1 by half turn about $O_2,\ldots,$ and finally let $A_{2n}B_{2n}$ be obtained from $A_{2n-1}B_{2n-1}$ by half turn about O_{2n} (see the figure for n=2.)

Show that $AA_{2n} = BB_{2n}$.

First, it is easy to see that the sum of two half turns around O_1 and O_2 is a translation:

$$AA_2 \parallel BB_2 \parallel O_1 O_2$$
 and $AA_2 = BB_2 = 2O_1 O_2$.

Thus, for an even 2n number of translations, their sum is just another translation, hence

$$AA_{2n} = BB_{2n}$$
.

Is the conclusion still true if we have an odd number of translations? Why or why not?

Example

n is a positive odd integer. Let O_1, O_2, \ldots, O_n be points on the plane. Let an arbitrary point A be moved successively by half turns about O_1, O_2, \ldots, O_n and then once again moved successively by half turns about the same points O_1, O_2, \ldots, O_n .

Show that the point A_{2n} , obtained as the result of these 2n half turns, coincides with the point A.

Translations - Example 2

Since the **sum of an odd number of half turns** is **a half turn**, the point A_n , obtained from A by the n successive half turns about the points O_1, O_2, \ldots, O_n can also be obtained from A by a single half turn about some point O.

It is important to note that O depends on O_1, O_2, \ldots, O_n only and not A.

The point A_{2n} is obtained from A_n , by these same n half turns; therefore it can also be obtained from A_n , by the single half turn about the point O. But this means that A_{2n} , coincides with A, because of the two half turns around the same point O.

Is the conclusion still true if we have *n* as **even number**? Why or why not?

Translations - Example 3

Example

 $A_1A_2\ldots A_{2n}$ is a 2n-gon. M_1,M_2,\ldots,M_{2n} are the midpoints of $A_1A_2,A_2A_3,\ldots,A_{2n}A_1$, respectively. Prove that there exists a n-gon whose sides are equal and parallel to the segments $M_1M_2,M_3M_4,\ldots,M_{2n-1}M_{2n}$ and there exists a n-gon whose sides are equal and parallel to the segments $M_2M_3,\ldots,M_{2n-2}M_{2n-1},M_{2n}M_1$.

Note that by 2n half turns around M_1, M_2, \ldots, M_{2n} :

$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots \rightarrow A_{2n} \rightarrow A_1.$$

The sum of two half turns around M_1 and M_2 is a translation $A_1 \to A_3$ with distance $A_1A_3=2M_1M_2$ similarly the sum of two half turns around M_3 and M_4 is a translation $A_3 \to A_5$ with distance $A_3A_4=2M_3M_4$ and so on.

Furthermore after n translations: $A_1 \rightarrow A_1$, therefore the sum of them is an **identity transformation**, thus the n translations form a **close path** and therefore is an n-gon.

Hence, each of the sides is equal and parallel to the segments M_1M_2 , M_3M_4 , ..., $M_{2n-1}M_{2n}$.

Translations - Example 3

Example

 $A_1A_2\ldots A_{2n}$ is a 2n-gon. M_1,M_2,\ldots,M_{2n} are the midpoints of $A_1A_2,A_2A_3,\ldots,A_{2n}A_1$, respectively. Prove that there exists a n-gon whose sides are equal and parallel to the segments $M_1M_2,M_3M_4,\ldots,M_{2n-1}M_{2n}$ and there exists a n-gon whose sides are equal and parallel to the segments $M_2M_3,\ldots,M_{2n-2}M_{2n-1},M_{2n}M_1$.

Note that by 2n half turns around M_1, M_2, \ldots, M_{2n} :

$$A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \cdots \rightarrow A_{2n} \rightarrow A_1.$$

The sum of two half turns around M_1 and M_2 is a translation $A_1 \to A_3$ with distance $A_1A_3=2M_1M_2$ similarly the sum of two half turns around M_3 and M_4 is a translation $A_3 \to A_5$ with distance $A_3A_4=2M_3M_4$ and so on.

Furthermore after n translations: $A_1 \rightarrow A_1$, therefore the sum of them is an **identity transformation**, thus the n translations form a **close path** and therefore is an n-gon.

Hence, each of the sides is equal and parallel to the segments M_1M_2 , M_3M_4 , ..., $M_{2n-1}M_{2n}$.

Rotations - Example 4

Example

Three parallel lines ℓ_1 , ℓ_2 , and ℓ_3 are given. A is a point on the line ℓ_1 .

How can we determine points B and C on ℓ_2 and ℓ_3 , respectively, such that ABC is an equilateral triangle.

Rotations - Example 4

Assume that $\triangle ABC$ is equilateral, then a rotation by 60° about A will carry B to C.

That rotation also carries ℓ_2 (containing B) to ℓ_2' . The intersection of ℓ_2' and ℓ_3 is C.

Rotations - Example 4

Now we know how to do it. Rotate ℓ_2 by 60° about A to obtain ℓ_2' . The intersection of ℓ_2' with ℓ_3 is the position for C. B can be constructed easily as the intersection of circle centred at A radius AC.

Note that there are two different solutions (why?)

Rotations - Example 5

Example

Three concentric circles ω_1 , ω_2 , and ω_3 are given. A is a point on the line ω_1 .

How can we determine points B and C on ω_2 and ω_3 , respectively, such that ABC is an equilateral triangle.

Rotations - Example 4

Pretty much the same as in the solution for the previous example.

Rotate ω_2 by 60° about A to obtain ω_2' . The intersection of ω_2' with ω_3 is the position for C. B can be constructed easily as the intersection of circle centred at A radius AC.

Note that there are at most four different solutions (why?).

Rotations - Example 6

Example

On the sides of an arbitrary triangle ABC, exterior to it, construct isosceles triangles BCA_1 ACB_1 , CAB_1 with angles at the vertices A_1 , B_1 , and C_1 , respectively equal to α , β and γ .

Prove that if $\alpha+\beta+\gamma=360^\circ$, then the angles of the triangle $A_1B_1C_1$ are equal to $\frac{1}{2}\alpha$, $\frac{1}{2}\beta$ and $\frac{1}{2}\gamma$, that is, they do not depend on the shape of the triangle ABC.

Let's take a look at a sum of two rotations:

$$\mathcal{AB} \overset{\mathsf{rotate}(O_1,\alpha)}{\to} \mathcal{A}_1 \mathcal{B}_1 \overset{\mathsf{rotate}(O_2,\beta)}{\to} \mathcal{A}_2 \mathcal{B}_2.$$

It is easy to see that the angle between A_2B_2 and AB is $\alpha+\beta$, thus it is a rotation by the angle $\alpha+\beta$, We need to determine the position of the center of rotation O.

Now, what happen with the centers O_1 and O_2 :

$$O_1 \stackrel{\mathsf{rotate}(O_1,\alpha)}{\to} O_1 \stackrel{\mathsf{rotate}(O_2,\beta)}{\to} O_1' \quad \mathsf{and} \quad O_2'' \stackrel{\mathsf{rotate}(O_1,\alpha)}{\to} O_2 \stackrel{\mathsf{rotate}(O_2,\beta)}{\to} O_2.$$

Therefore O is on both perpendicular bisectors of O_1O_1' and $O_2''O_2$.

Hence,
$$\angle OO_1O_2 = \frac{1}{2}\alpha$$
, $\angle OO_2O_1 = \frac{1}{2}\beta$.

First, point A is taken into itself by the sum of three rotations through the angles β , α , and γ ($\alpha+\beta+\gamma=360^\circ$) about the centers B_1,A_1,C_1 :

$$A \stackrel{\mathsf{rotate}(B_1,\beta)}{\to} C \stackrel{\mathsf{rotate}(A_1,\alpha)}{\to} B \stackrel{\mathsf{rotate}(C_1,\gamma)}{\to} A.$$

Thus, the sum of the these rotations is the identity transformation.

Let C' be the center of the rotation equivalent to the sum of the rotations about B_1 and A_1 . Then it is the rotation through $\alpha + \beta = 360^{\circ} - \gamma$ brings A to B.

However, the rotation about C_1 through γ brings A to B in opposite direction. Since a rotation through an angle θ is the same as the rotation through an angle $360^{\circ} - \theta$ about the same center in the opposite direction, thus $C_1 \equiv C'$.

Therefore $\angle C_1A_1B_1 = \frac{1}{2}\alpha, \angle C_1B_1A_1 = \frac{1}{2}\beta$, and similarly $\angle B_1C_1A_1 = \frac{1}{2}\gamma$.

Symmetry - Example 1

Example

 $\angle MON$ is given, together with two points A and B. Find a point X on the side OM such that the triangle XYZ is isosceles: XY = XZ, where Y and Z are on the points of intersection of XA and XB with ON.

Let B' be the image of B over OM, then:

$$\angle B'XA = \angle B'XB + \angle YXZ, \ \angle B'XB = 2\angle OXZ = 2(\angle XZY - \angle MON) \Rightarrow \angle B'XA = 180^{\circ} - \angle MON.$$

Thus, X is the intersection of OM with the arc constructed on the chord AB', that subtends an angle equal to $180^{\circ} - \angle MON$.

Symmetry - Example 2

Example

Construct a quadrilateral ABCD in which a circle can be inscribed, given the lengths of two adjacent sides AB and AD and the angles at the vertices B and D.

Symmetry - Example 2

The key idea here is that the reflection of CD over the line through A and the center of the circle is a tangent to the circle!

Symmetry - Example 2

First, we start the construction by point A then segment AB, then segment $AD_1 = AD$ where D is on the line AB, same side as B in respect to A.

Second, because $\angle B$ and $\angle D_1 = \angle D$ are known, thus we can construct rays going from B and D_1 .

Finally, we construct a circle tangents to all three lines.

Symmetry - Example 2

The rest is simple, we reflect D' and its ray over the line AO where O is the center of the circle. The reflected ray will intersect the ray from B at C. We are done.

Symmetry - Example 3

Example

A billiard ball bounces off a side of a billiard table in such a manner that the two lines along which it moves before and after hitting the sides are equally inclined to the side. Suppose a billiard table were bordered by n lines $\ell_1,\ell_2,\ldots,\ell_n$. Let A and B be two given points on the billiard table. In what direction should one hit a ball placed at A so that it will bounce consecutively off the lines $\ell_1,\ell_2,\ldots,\ell_n$, and then pass through the point B (see the diagram below, where n=3)?

Symmetry - Example 3

Assume that the problem has been solved, that is, that points $X_1, X_2, ..., X_n$ have been found on the lines $\ell_1, \ell_2, ..., \ell_n$ such that $AX_1X_2 ... X_nB$ is the path of a billiard ball (the case n=3).

It is easy to see that the point X_n , is the point of intersection of the line ℓ_n with the line $X_{n-1}B_n$, where B_n , is the image of B in ℓ_n , that is, the points B_n, X_n, X_{n-1} lie on a line.

But then the point X_{n-1} is the point of intersection of the line ℓ_{n-1} with the $X_{n-2}B_{n-1}$, where B_{n-1} , is the image of B_n in ℓ_{n-1} and so on.

Symmetry - Example 3

Assume that the problem has been solved, that is, that points $X_1, X_2, \dots X_n$ have been found on the lines $\ell_1, \ell_2, \dots, \ell_n$ such that $AX_1X_2 \cdots X_nB$ is the path of a billiard ball (the case n=3).

Here's the construction: Reflect the point B in I_n , obtaining the point B_n ; next reflect B_n in I_{n-1} to obtain B_{n-1} , and so forth, until the image B_1 of the point B_2 , in line ℓ_1 is obtained.

The point X_1 , that determines the direction in which the billiard ball at A must be hit, is obtained as the point of intersection of the line ℓ_1 with the line AB_1 . It is then easy to find the points $X_2, \ldots X_n$ with the aid of the points $B_2, \ldots B_n$ and X_1 .