Softversko inženjerstvo i informacione tehnologij
Diskretna matematika - prvi kolokvijum
Novi Sad, 26. april 2015.

PREZIME I IME:	
	BROJ INDEKSA:

TEORIJA

1. Koliko različitih delilaca ima 4!, računajući i jedinicu?

$$\binom{4}{1} + \binom{3}{2} + \binom{3}{3} = 8$$

2. Koliko ima četvorocifrenih brojeva kojima nikoje dve susedne cifre nisu iste?

3. Koliko rešenja u skupu $\{1,2,\cdots,12\}$ ima jednačina $x+y+z\equiv_3 0?$

4. Koliko ima nizova dužine 6, sačinjenih od jedinice, dve dvojke i tri trojke?

5. Odrediti koeficijent uz x^{2015} u razvoju $(1+x+x^2)^{1007}.$

6. Šta je veće: D_3 ili D_4 ?

7. Odrediti broj celobrojnih, nenegativnih rešenja jednačine x+y+z+t=3.

8. Izračunati S(4,3).

6

9. Rešiti rekurentnu relaciju $a_n=3a_{n-1},$ uz početni uslov $a_0=2.$

10. Postaviti rekurentnu relaciju kojom se rešava sledeći problem: na koliko načina se traka $1 \times n$ može popločati "pločicama" 1×1 i 1×3 ? **Nije potrebno rešavati je!**

- 2. Odrediti koeficijent uz x^6 u razvoju $(x^2 3x + 5)^8$. Nije potrebno računati do kraja!
- 3. Na koliko načina je moguće na 6 stolica u nizu rasporediti 3 dečaka i 3 devojčice, ako dečaci ne smeju da sede jedan
- do drugog?

 4. Na koliko načina se traka $2 \times n$ može popločati "pločicama" 1×2 i 2×2 ? Smatra se da na raspolaganju postoji dovoljno i jednih i drugih.

 fin-i + 2fv-2

 5. Na koliko načina se najkraćim putem može doći od tačke A do tačke B, krećući se po datoj rešetki? i jednih i drugih.

$$\binom{12}{8}$$
 - $\binom{4}{3}\binom{8}{5}$