

4. Hacheur dévolteur sur charge E

- L'inductance (source de courant) est un élément d'interconnexion entre les deux sources de tension que sont l'alimentation et la batterie. Si on enlève l'inductance, on connecte directement l'alimentation de 12 v sur la batterie de 5 V, ce qui provoquera des destructions de matériel.
- b. $R \ll L\omega$
- c. Loi des mailles : $\left\{ \begin{array}{l} v_e = v_{K1} + v_{K2} \\ v_{K2} = v_L + v_s \end{array} \right. \text{, avec} \left\{ \begin{array}{l} v_e = U \\ v_s = E \end{array} \right. \text{d'où} : \left\{ \begin{array}{l} v_{K1} + v_{K2} = U \\ v_{K2} = v_L + E \end{array} \right.$ $\begin{array}{ll} \text{Pour } t \in [0, \alpha T[: & \text{K1 ferm\'e, donc } v_{K1} = 0, v_{K2} = U, v_L = U - E \\ \text{Pour } t \in [\alpha T, T[: & \text{K2 ferm\'e, donc } v_{K2} = 0, v_{K1} = U, v_L = -E \end{array}$
- d. $\langle v_L \rangle = \frac{1}{T} [(U E) \times \alpha T + (-E) \times (1 \alpha) T] = \alpha U E$ Par ailleurs : $\langle v_L \rangle = \frac{1}{T} \int_0^T L \cdot \frac{di}{dt} \cdot dt = \frac{L}{T} [i(t)]_0^T = 0$ car i(0) = i(T) en régime périodique On en déduit que α U - E = 0 et donc $\alpha = \frac{E}{U}$ a.n : $\alpha = \frac{5}{12} = 0.42$
- e. On calcule le courant à partir de la relation $v_L = L.\frac{di}{dt}$ Pour $t \in [0, \alpha T[: L.\frac{di}{dt} = U E, \text{d'où } i(t) = \frac{U E}{L} t + i_0 \qquad \text{car } i(0) = i_0$ Pour $t \in [\alpha T, T[: L.\frac{di}{dt} = -E, \text{d'où } i(t) = \frac{-E}{L} t + K \quad \text{où } K \text{ est une constante à déterminer}$ Le courant traverse l'inductance, il est donc continu et $i(\alpha T^-) = i(\alpha T^+)$

On en déduit : $\frac{U-E}{L} \alpha T + i_0 = \frac{-E}{L} \alpha T + K$, d'où $K = i_0 + \frac{U}{L} \alpha T$

Si on exprime le courant uniquement en fonction de U et α , on obtient :

Pour
$$t \in [0, \alpha T[:$$
 $i(t) = \frac{(1-\alpha)U}{L} t + i_0$
Pour $t \in [\alpha T, T[:$ $i(t) = \frac{-\alpha U}{L} t + i_0 + \frac{U}{L} \alpha T$ $\text{nb}: i(T^-) = i_0$, la périodicité est vérifiée

- f. $i_{\alpha} = i(\alpha T) = \frac{\alpha(1-\alpha)U}{L}T + i_0$, d'où l'ondulation de courant $\Delta i = \frac{\alpha(1-\alpha)U}{L}T = \frac{\alpha(1-\alpha)U}{Lf}$ Pour obtenir une ondulation donnée, il faut choisir une valeur d'inductance $L = \frac{\alpha(1-\alpha)U}{\Delta i f}$ a.n: $L = \frac{\frac{E}{U} \left(1 - \frac{E}{U}\right) U}{A^{\frac{1}{2}} f} = \frac{\frac{5}{12} \left(1 - \frac{5}{12}\right) 12}{\frac{1}{2} \left(1 - \frac{5}{12}\right) 12} = 1,45 \times 10^{-3} H$
- Voir chronogrammes pages suivantes
- L'analyse des chronogrammes montre que pour K1, on a 2 états possibles : passant direct et bloqué direct Cela correspond à la caractéristique d'un transistor. Pour K2, les 2 états possibles sont passant inverse et bloqué direct. Cela nécessite une diode montée en inverse.

=> diode en inverse

Pour s'entraîner : Hacheur boost

- Le condensateur filtre la tension de sortie. Sa capacité est très grande, de façon à maintenir une tension de sortie à peu près constante.
- L'étude se fait toujours suivant la même démarche : écrire la loi des mailles pour déterminer les tensions sur chaque intervalle de temps - calculer le courant à partir de la tension aux bornes de l'inductance.

Détermination des tensions :

Loi des mailles :
$$\begin{cases} v_e = v_L + v_{K1} \\ v_{K1} = v_{K2} + v_s \end{cases} \text{ avec} \\ \begin{cases} v_e = V_e \\ v_s = V_s \end{cases} \text{ d'où} : \\ \begin{cases} v_L + v_{K1} = V_e \\ v_{K1} = v_{K2} + V_s \end{cases} \end{cases}$$
 Pour $t \in [0, \alpha T[:$ K1 fermé, donc $v_{K1} = 0$, $v_{K2} = -V_s$, $v_L = V_e$ Pour $t \in [\alpha T, T[:]]$ K2 fermé, donc $v_{K2} = 0$, $v_{K1} = V_s$, $v_L = V_e - V_s$

Pour
$$t \in [0, \alpha T]$$
: K1 fermé, donc $v_{K1} = 0$, $v_{K2} = -V_s$, $v_L = V_e$

Pour
$$t \in [\alpha T, T[:$$
 K2 fermé, donc $v_{K2} = 0, v_{K1} = V_s, v_L = V_e - V_e$

Détermination du rapport de transformation :

On exprime $\langle v_L \rangle$ de deux manières pour obtenir une relation entre α , V_e et V_s

$$\langle v_L \rangle = \frac{1}{\tau} \left[V_e \times \alpha T + (V_e - V_s) \times (1 - \alpha) T \right] = V_e - (1 - \alpha) \times V_s$$

$$\begin{split} \langle v_L \rangle &= \frac{1}{T} \left[V_e \times \alpha T + (V_e - V_s) \times (1 - \alpha) \, T \right] = V_e - (1 - \alpha) \times V_s \\ \text{Par ailleurs} : \langle v_L \rangle &= \frac{1}{T} \int_0^T L . \frac{di}{dt} . \, dt = \frac{L}{T} \left[i(t) \right]_0^T = 0 \text{ car } i(0) = i(T) \text{ en régime périodique} \end{split}$$

On en déduit que $V_e-(1-\alpha) imes V_s=0$, d'où $rac{V_s}{V_e}=rac{1}{1-\alpha}$

 $\frac{V_s}{V_o}$ > 1, donc V_s > V_e , d'où l'appellation de hacheur « survolteur » ou « hacheur boost »

Détermination du courant :

$$\begin{split} v_L(t) &= L.\frac{di}{dt}(\mathbf{t}) & \text{i est continu et p\'eriodique, donc } i(0) = i(T) = i_0, \\ \text{Pour } t \in [0, \alpha T[: & L.\frac{di}{dt} = V_e, \text{donc} : i(t) = \frac{V_e}{L}t + i_0 \\ \text{Pour } t \in [\alpha T, T[: & L.\frac{di}{dt} = V_e - V_s, \text{donc} : i(t) = \frac{V_e - V_s}{L}(t - T) + i_0 \end{split}$$

Pour
$$t \in [0, \alpha T[: L.\frac{di}{dt} = V_e, donc: i(t) = \frac{V_e}{L}t + i_0$$

Pour
$$t \in [\alpha T, T[: L.\frac{di}{dt} = V_e - V_s, donc: i(t) = \frac{V_e - V_s}{L}(t - T) + i_0$$

c. Pour
$$\alpha = 0.5$$
, $\frac{V_s}{V_a} = \frac{1}{1-\alpha} = 2$

Chronogrammes tracés avec les valeurs arbitraires suivantes :

$$V_e = 10 \ V - V_s = 20 \ A \ i_0 = 1.8 \ A - i_0 = 2.2 \ A$$

d.
$$i_{\alpha}=i(\alpha T)=\frac{V_{e}}{L}\alpha T+i_{0}$$
, d'où l'ondulation de courant $\Delta i=\frac{\alpha\,V_{e}}{L}\,T=\frac{\alpha\,V_{e}}{Lf}$

L'analyse des chronogrammes montre que pour K1, on a 2 états possibles : passant direct et bloqué direct Cela correspond à la caractéristique d'un transistor. Pour K2, les 2 états possibles sont passant direct et bloqué inverse. Cela correspond à la caractéristique d'une diode.

Interrupteur K1 :
$$v_{K1} = \text{transistor}$$
 Interrupteur K2 : $v_{K2} = \text{diod}$

f.
$$i_S = \frac{v_S}{R} = \frac{V_e}{R(1-\alpha)}$$

Côté sortie :
$$P = \langle v_s. i_s \rangle = \frac{V_e^2}{R(1-\alpha)^2}$$

Côté entrée :
$$P = \langle v_e, i_e \rangle = \langle V_e, i_e \rangle = V_e, \langle i_e \rangle$$

Il n'y a pas de pertes dans le convertisseur, donc la puissance en sortie est égale à la puissance en entrée, donc $\langle i_e \rangle = \frac{V_e}{R(1-\alpha)^2}$.

On remarque que
$$\frac{\langle i_e \rangle}{\langle i_s \rangle} = \frac{V_s}{V_e} = \frac{1}{1-\alpha}$$