Assignment 2: CS 215 Solutions

Neeraj Dhake 150050022

Rohit Kumar Jena 150050061

20th August 2016

Honor Code:

• We pledge by our honor that we will complete the assignments in a legitimate way and will not provide or recieve any unauthorized help.

Instructions to run code:

- The folder 'code' contains all the code written for the assignment. Here is how we run them. From the MATLAB command line, simply typing partA, partB, partC will run the programs given in Question 7.
- The file frequencyCalc.m calculates the values of $p_{X_1}(x_1)$, $p_{X_2}(x_2)$ and $p_{X_1X_2}(x_1, x_2)$. The inputs required are the two matrices X_1, X_2 .
- The file corCoeff.m,qmi.m, and anotherMeasure.m give the values of Correlation Coefficient, QMI and the custom value. The code is commented so it can understood easily. To be on the safe side, we have written the code for Correlation Coefficient rather than using the default routine.

Solutions:

1. There are 2 random variables X and Y having pdf $f_X(x)$ and $f_Y(y)$ and joint pdf $f_{XY}(x,y)$. To find the cdf and pdf of random variable Z = XY, we take $P(Z \le a)$.

$$P(Z \le a) = P(XY \le a)$$

$$P(XY \le a) = \int \int_A f_{XY}(x, y) \cdot dx \cdot dy$$

Since the function xy = a has discontinuity at x = 0, we have to write two terms, one from $(-\infty, 0)$ and another from $(0, \infty)$ such that,

$$F_Z(a) = P(Z \le a) = \int_{x = -\infty}^{x = 0} \int_{y = \frac{a}{x}}^{y = \infty} f_{XY}(x, y) \cdot dy \cdot dx + \int_{x = 0}^{x = \infty} \int_{y = -\infty}^{y = \frac{a}{x}} f_{XY}(x, y) \cdot dy \cdot dx$$

To find the pdf, we simply differentiate w.r.t. a to get,

$$f_Z(a) = \int_{x = -\infty}^{x = 0} -\frac{1}{x} \cdot f_{XY}(x, \frac{a}{x}) \cdot dx + \int_{x = 0}^{x = \infty} \frac{1}{x} \cdot f_{XY}(x, \frac{a}{x}) \cdot dy \cdot dx$$

Similarly, for $P(X \leq Y)$, we take $X \geq x$ and find $Y \geq X$, hence, we can write in terms of joint probability,

$$P(X \le Y) = \int_{y=x}^{y=\infty} \int_{x=-\infty}^{x=x} f_{XY}(x,y) \cdot dx \cdot dy$$

To find the pdf, we differentiate w.r.t. a to get,

$$p_{XY}(X > y) =$$

For independent variables, we can substitute $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$

$$F_Z(a) = P(Z \le a) = \int_{x = -\infty}^{x = 0} \int_{y = \frac{a}{x}}^{y = \infty} (f_Y(y) \cdot dy) \cdot f_X(x) \cdot dx + \int_{x = 0}^{x = \infty} \int_{y = -\infty}^{y = \frac{a}{x}} (f_Y(y) \cdot dy) \cdot f_X(x) \cdot dx$$

Integrating w.r.t. y first, we get.

$$\implies F_Z(a) = \int_{x = -\infty}^{x = 0} \left(1 - F_Y\left(\frac{a}{x}\right) \right) \cdot f_X(x) \cdot dx + \int_{x = 0}^{x = \infty} F_Y\left(\frac{a}{x}\right) \cdot f_X(x) \cdot dx$$

$$\implies F_Z(a) = F_X(0) + \int_{x=0}^{x=\infty} F_Y\left(\frac{a}{x}\right) \cdot f_X(x) \cdot dx - \int_{x=-\infty}^{x=0} F_Y\left(\frac{a}{x}\right) \cdot f_X(x) \cdot dx$$

For the case $X \leq Y$, substitute $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$ to get,

$$P(X \le Y) = \int_{y=x}^{y=\infty} \int_{x=-\infty}^{x=x} f_X(x) \cdot f_Y(y) \cdot dx \cdot dy$$

$$\implies P(X \le Y) = \int_{x}^{\infty} f_{Y}(y) \cdot dy \cdot \int_{-\infty}^{x} f_{X}(x) \cdot dx$$

$$\implies P(X \le Y) = \int_{-\infty}^{\infty} f_X(x) \cdot (1 - F_Y(x)) \cdot dx$$

Integrating w.r.t. x, we get the final expression.

$$\therefore P(X \le Y) = 1 - E[F_Y(x)]$$

2. $X_1, X_2, ..., X_n$ are n I.I.D. random variables.

Now, $Y_1 = max(X_1, X_2, ..., X_n)$. To provide the CDF of Y_1 , we need to find the probability that Y_1 is less than a.

So, now if we conduct an experiment to determine the value of the random variable X n times, Y_1 will be less than a only if $X_i \leq a$, $\forall i$.

$$P(Y_1 \le a) = P(X_1 \le a)$$
 and $P(X_2 \le a)$ and $P(X_n \le a)$

Since X is an I.I.D. random variable, we can simply multiply the probabilities of the right hand side since the result of one experiment does not affect the result of the other, we have,

$$P(Y_1 \le a) = P(X_1 \le a) * P(X_2 \le a) ... * P(X_n \le a)$$

 $P(Y_1 \le a) = F_X(a) * F_X(a) ... * F_X(a) \text{ (n times)}$
 $P(Y_1 \le a) = (F_X(a))^n$

Hence,

$$F_{Y_1}(a) = (F_X(a))^n$$

... (cdf of Y_1)

Differentiating w.r.t. a, we get,

$$F'_{Y_1}(a) = f_{Y_1}(a) = \frac{\mathrm{d}(F_X(a))^n}{\mathrm{d}a} = n \cdot (F_X(a))^{n-1} \cdot f_X(a)$$

$$f_{Y_1}(a) = n \cdot (F_X(a))^{n-1} \cdot f_X(a)$$
 ... (pdf of Y_1)

Now, $Y_2 = min(X_1, X_2, ... X_n)$

So, now if we conduct an experiment to determine the value of the random variable X n times, Y_2 will be **more** than a only if $X_i \ge a$, $\forall i$.

$$P(Y_2 \ge a) = P(X_1 \ge a)$$
 and $P(X_2 \ge a)$ and $P(X_n \ge a)$

Since X is an I.I.D. random variable, we can simply multiply the probabilities of the right hand side since the result of one experiment does not affect the result of the other, we have,

$$\Rightarrow P(Y_2 \ge a) = P(X_1 \ge a) * P(X_2 \ge a) \dots * P(X_n \ge a)$$

$$\Rightarrow P(Y_2 \ge a) = (1 - P(X_1 \le a)) * (1 - P(X_2 \le a)) \dots * (1 - P(X_n \le a))$$

$$\Rightarrow P(Y_2 \ge a) = (1 - F_X(a)) * (1 - F_X(a)) \dots * (1 - F_X(a))$$
... (n times)
$$\Rightarrow P(Y_2 \ge a) = (1 - (F_X(a)))^n$$

$$\Rightarrow 1 - F_{Y_2}(a) = (1 - (F_X(a)))^n$$

$$F_{Y_2}(a) = 1 - (1 - (F_X(a)))^n$$
... (cdf of Y_2)

Differentiating w.r.t. a, we get,

$$f_{Y_2}(a) = n \cdot (1 - F_X(a))^{n-1} \cdot f_X(a)$$
 ... (pdf of Y_1)

- 3. Question 3
- 4. Let X and Y be two random independent random variables. For them, we have the following relation,

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

 $\implies E(XY) = E(X) \cdot E(Y)$

Now, we define covariance of X, Y as,

$$cov(X,Y) = E[(X - \mu_X) \cdot (Y - \mu_y)]$$
$$= E[XY - \mu_x Y - \mu_y X + \mu_x \mu_y]$$

Using linearity of the expectation value operator, we get,

$$= E[XY] - E[\mu_x Y] - E[\mu_y X] + E[\mu_x \mu_y]$$

$$= E[XY] - \mu_x \mu_y - \mu_x \mu_y + \mu_x \mu_y$$

$$= E[XY] - E[X] \cdot E[Y]$$

Now since $E[XY] = E[X] \cdot E[Y]$, we have,

$$cov(X,Y) = 0$$

For the converse, we take the following two random variables,

$$X = \begin{cases} 1 & , P(X=1) = 0.5 \\ -1 & , P(X=-1) = 0.5 \end{cases}$$

and

$$Y = \begin{cases} 0.5 & , X = 1 \implies P(Y = 0.5) = 0.5 \\ -0.5 & , X = 1 \implies P(Y = -0.5) = 0.5 \\ 0 & , X = -1 \implies Y = 0 \end{cases}$$

These two random variables are obviously dependent, since if X = 0, we can determine Y, and similarly for X = 1. The covariance of these two variables will be,

$$cov(X,Y) = \frac{\sum (X - \mu_x)(Y - \mu_y)}{(N - 1)\sigma_x \sigma_y} = E[XY] - E[X] \cdot E[Y]$$

Now, we have E[X] = E[Y] = 0, since the probability of X taking any value is equal, and same for Y. Since all the values are centered around 0, we can say the statement without calculating it. We can calculate the value very easily as well.

$$\implies cov(X,Y) = E[XY]$$

Now,

$$E[XY] = 1 * 0.5 + 1 * -0.5 + -1 * 0 = 0$$

$$\implies cov(X, Y) = E[XY] - E[X] \cdot E[Y] = 0 - 0 \cdot 0 = 0$$

 \therefore , X and Y are dependent but have 0 covariance.

- 5. Question 5
- 6. A function g(x) is a convex function. Let X be a random variable with $E[X] = \mu$. Now, let l(x) be the equation of the tangent at $x = \mu$.

$$\implies l(x) = g'(\mu) \cdot (x - \mu) + g(\mu)$$

Now, we have $g(x) \geq l(x), \forall x \in \mathbb{R}$, we can write,

$$\int_{-\infty}^{\infty} g(x) \cdot f_X x \cdot dx \ge \int_{-\infty}^{\infty} l(x) \cdot f_X x \cdot dx$$

$$\implies E[g(X)] \ge E[l(X)]$$

Substitute $l(X) = g'(\mu) \cdot (X - \mu) + g(\mu)$ to get,

$$E[l(X)] = E[g'(\mu) \cdot (X - \mu) + g(\mu)]$$
$$= g'(\mu) \cdot (E[X] - \mu) + g(\mu)$$
$$= l(E[X]) = l(\mu)$$

Now, at $x = \mu$, l(x) = g(x), so we get,

$$E[l(X)] = l(E[X]) = g(E[X])$$
$$\therefore E[g(X)] \ge g(E[X])$$

7. (a) Values computed with unaltered image -

Correlation Coefficient = 0.9841

QMI = 3.9643

Another measure = 51.5729

(b) The code and instructions are provided. The graph is given below.

Figure 1: Correlation Coefficient v/s z

(c) After scrambling the values, we ran the program another time and got the following results -

Correlation Coefficient = -0.0293QMI = 3.8319Another measure = 50.8610

Original values (when image wasn't scrambled) - given in (a)