

(19) World Intellectual Property Organization  
International Bureau



(43) International Publication Date  
10 January 2002 (10.01.2002)

PCT

(10) International Publication Number  
**WO 02/02606 A2**

- (51) International Patent Classification<sup>7</sup>: C07K 14/295, C12N 15/31, A61K 39/118
- (21) International Application Number: PCT/IB01/01445
- (22) International Filing Date: 3 July 2001 (03.07.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- |           |                                |    |
|-----------|--------------------------------|----|
| 0016363.4 | 3 July 2000 (03.07.2000)       | GB |
| 0017047.2 | 11 July 2000 (11.07.2000)      | GB |
| 0017983.8 | 21 July 2000 (21.07.2000)      | GB |
| 0019368.0 | 7 August 2000 (07.08.2000)     | GB |
| 0020440.4 | 18 August 2000 (18.08.2000)    | GB |
| 0022583.9 | 14 September 2000 (14.09.2000) | GB |
| 0027549.5 | 10 November 2000 (10.11.2000)  | GB |
| 0031706.5 | 22 December 2000 (22.12.2000)  | GB |
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RATTI, Giulio [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT). GRANDI, Guido [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (IT).
- (74) Agents: HALLYBONE, Huw, George et al.; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

[Continued on next page]

(54) Title: IMMUNISATION AGAINST *CHLAMYDIA PNEUMONIAE*



(57) Abstract: The published genomic of *Chlamydia pneumoniae* reveals over 1000 putative encoded proteins but does not itself indicate which of these might be useful antigens for immunisation and vaccination or for diagnosis. This difficulty is addressed by the invention, which provides a number of *C. pneumoniae* protein sequences suitable for vaccine production and development and/or for diagnostic purposes.



patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*

**Published:**

- *without international search report and to be republished upon receipt of that report*

**IMMUNISATION AGAINST *CHLAMYDIA PNEUMONIAE***

All documents cited herein are incorporated by reference in their entirety.

**TECHNICAL FIELD**

This invention is in the field of immunisation against chlamydial infection, in particular against  
5 infection by *Chlamydia pneumoniae*.

**BACKGROUND ART**

*Chlamydiae* are obligate intracellular parasites of eukaryotic cells which are responsible for endemic sexually transmitted infections and various other disease syndromes. They occupy an exclusive eubacterial phylogenetic branch, having no close relationship to any other known organisms – they are  
10 classified in their own order (*Chlamydiales*) which contains a single family (*Chlamydiaceae*) which in turn contains a single genus (*Chlamydia*). A particular characteristic of the *Chlamydiae* is their unique life cycle, in which the bacterium alternates between two morphologically distinct forms: an extracellular infective form (elementary bodies, EB) and an intracellular non-infective form (reticulate bodies, RB). The life cycle is completed with the re-organization of RB into EB, which  
15 subsequently leave the disrupted host cell ready to infect further cells.

Four chlamydial species are currently known – *C.trachomatis*, *C.pneumoniae*, *C.pecorum* and  
15 *C.psittaci* [e.g. Raulston (1995) *Mol Microbiol* 15:607-616; Everett (2000) *Vet Microbiol* 75:109-126]. *C.pneumoniae* is closely related to *C.trachomatis*, as the whole genome comparison of at least two isolates from each species has shown [Kalman *et al.* (1999) *Nature Genetics* 21:385-389; Read  
20 *et al.* (2000) *Nucleic Acids Res* 28:1397-406; Stephens *et al.* (1998) *Science* 282:754-759]. Based on surface reaction with patient immune sera, the current view is that only one serotype of *C.pneumoniae* exists world-wide.

*C.pneumoniae* is a common cause of human respiratory disease. It was first isolated from the conjunctiva of a child in Taiwan in 1965, and was established as a major respiratory pathogen in  
25 1983. In the USA, *C.pneumoniae* causes approximately 10% of community-acquired pneumonia and 5% of pharyngitis, bronchitis, and sinusitis.

More recently, the spectrum of *C.pneumoniae* infections has been extended to include atherosclerosis, coronary heart disease, carotid artery stenosis, myocardial infarction, cerebrovascular disease, aortic aneurysm, claudication, and stroke. The association of *C.pneumoniae* with  
30 atherosclerosis is corroborated by the presence of the organism in atherosclerotic lesions throughout the arterial tree and the near absence of the organism in healthy arterial tissue. *C.pneumoniae* has also been isolated from coronary and carotid atheromatous plaques. The bacterium has also been associated with other acute and chronic respiratory diseases (e.g. otitis media, chronic obstructive pulmonary disease, pulmonary exacerbation of cystic fibrosis) as a result of sero-epidemiologic  
35 observations, case reports, isolation or direct detection of the organism in specimens, and successful

response to anti-chlamydial antibiotics. To determine whether chronic infection plays a role in initiation or progression of disease, intervention studies in humans have been initiated, and animal models of *C.pneumoniae* infection have been developed.

- Considerable knowledge of the epidemiology of *C.pneumoniae* infection has been derived from  
5 serologic studies using the *C.pneumoniae*-specific microimmunofluorescence test. Infection is ubiquitous, and it is estimated that virtually everyone is infected at some point in life, with common re-infection. Antibodies against *C.pneumoniae* are rare in children under the age of 5, except in developing and tropical countries. Antibody prevalence increases rapidly at ages 5 to 14, reaching 50% at the age of 20, and continuing to increase slowly to ~80% by age 70.
- 10 A current hypothesis is that *C.pneumoniae* can persist in an asymptomatic low-grade infection in very large sections of the human population. When this condition occurs, it is believed that the presence of *C.pneumoniae*, and/or the effects of the host reaction to the bacterium, can cause or help progress of cardiovascular illness.

- It is not yet clear whether *C.pneumoniae* is actually a causative agent of cardiovascular disease, or  
15 whether it is just artefactually associated with it. It has been shown, however, that *C.pneumoniae* infection can induce LDL oxidation by human monocytes [Kalayoglu *et al.* (1999) *J. Infect. Dis.* 180:780-90; Kalayoglu *et al.* (1999) *Am. Heart J.* 138:S488-490]. As LDL oxidation products are highly atherogenic, this observation provides a possible mechanism whereby *C.pneumoniae* may cause atherosomatous degeneration. If a causative effect is confirmed, vaccination (prophylactic and  
20 therapeutic) will be universally recommended.

- Genomic sequence information has been published for *C.pneumoniae* [Kalman *et al.* (1999) *supra*; Read *et al.* (2000) *supra*; Shirai *et al.* (2000) *J. Infect. Dis.* 181(Suppl 3):S524-S527; WO99/27105; WO00/27994] and is available from GenBank. Sequencing efforts have not, however, focused on vaccination, and the availability of genomic sequence does not in itself indicate which of the >1000 genes might encode useful antigens for immunisation and vaccination. WO99/27105, for instance, implies that every one of the 1296 ORFs identified in the *C.pneumoniae* strain CM1 genome is a useful vaccine antigen.

- It is thus an object of the present invention to identify antigens useful for vaccine production and development from amongst the many proteins present in *C.pneumoniae*. It is a further object to  
30 identify antigens useful for diagnosis (*e.g.* immunodiagnosis) of *C.pneumoniae*.

## DISCLOSURE OF THE INVENTION

The invention provides proteins comprising the *C.pneumoniae* amino acid sequences disclosed in the examples.

- It also provides proteins comprising sequences which share at least  $x\%$  sequence identity with the  
35 *C.pneumoniae* amino acid sequences disclosed in the examples. Depending on the particular

sequence,  $x$  is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more). These include mutants and allelic variants. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters *gap open penalty*=12 and *gap extension penalty*=1.

The invention further provides proteins comprising fragments of the *C.pneumoniae* amino acid sequences disclosed in the examples. The fragments should comprise at least  $n$  consecutive amino acids from the sequences and, depending on the particular sequence,  $n$  is 7 or more (e.g. 8, 10, 12, 10 14, 16, 18, 20, 30, 40, 50, 75, 100 or more). Preferably the fragments comprise one or more epitope(s) from the sequence. Other preferred fragments omit a signal peptide.

The proteins of the invention can, of course, be prepared by various means (e.g. native expression, recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (e.g. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other *C.pneumoniae* or host cell proteins). Heterologous expression in *E.coli* is a preferred preparative route.

According to a further aspect, the invention provides nucleic acid comprising the *C.pneumoniae* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences which share at least  $x\%$  sequence identity with the *C.pneumoniae* nucleotide sequences disclosed in the examples. Depending on the particular sequence,  $x$  is preferably 50% or more (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more).

Furthermore, the invention provides nucleic acid which can hybridise to the *C.pneumoniae* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (e.g. 65°C in a 0.1xSSC, 0.5% SDS solution).

25 Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least  $n$  consecutive nucleotides from the *C.pneumoniae* sequences and, depending on the particular sequence,  $n$  is 10 or more (e.g. 12, 14, 15, 18, 20, 25, 30, 35, 40, 50, 75, 100, 200, 300 or more).

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

30 It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (e.g. for antisense or probing purposes).

Nucleic acid according to the invention can, of course, be prepared in many ways (e.g. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (e.g. single stranded, double stranded, vectors, probes etc.).

In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.

According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed therewith.

- 5 According to a further aspect, the invention provides immunogenic compositions comprising protein and/or nucleic acid according to the invention. These compositions are suitable for immunisation and vaccination purposes. Vaccines of the invention may be prophylactic or therapeutic, and will typically comprise an antigen which can induce antibodies capable of inhibiting (a) chlamydial adhesion, (b) chlamydial entry, and/or (c) successful replication within the host cell. The vaccines  
10 preferably induce any cell-mediated T-cell responses which are necessary for chlamydial clearance from the host.

The invention also provides nucleic acid or protein according to the invention for use as medicaments (e.g. as vaccines). It also provides the use of nucleic acid or protein according to the invention in the manufacture of a medicament (e.g. a vaccine or an immunogenic composition) for  
15 treating or preventing infection due to *C.pneumoniae*.

The invention also provides a method of treating (e.g. immunising) a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid or protein according to the invention.

According to further aspects, the invention provides various processes.

- 20 A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

- 25 A process for detecting *C.pneumoniae* in a sample is provided, wherein the sample is contacted with an antibody which binds to a protein of the invention .

A summary of standard techniques and procedures which may be employed in order to perform the invention (e.g. to utilise the disclosed sequences for immunisation) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

General

- 30 The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature e.g. Sambrook *Molecular Cloning; A Laboratory Manual*, Second Edition (1989) and Third Edition (2001); *DNA Cloning, Volumes I and ii* (D.N. Glover ed. 1985); *Oligonucleotide Synthesis* (M.J. Gait ed, 1984); *Nucleic Acid Hybridization* (B.D. Hames & S.J. Higgins eds. 1984); *Transcription and Translation* (B.D. Hames & S.J. Higgins eds. 1984); *Animal Cell Culture* (R.I.  
35

Freshney ed. 1986); *Immobilized Cells and Enzymes* (IRL Press, 1986); B. Perbal, *A Practical Guide to Molecular Cloning* (1984); the *Methods in Enzymology* series (Academic Press, Inc.), especially volumes 154 & 155; *Gene Transfer Vectors for Mammalian Cells* (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), *Immunochemical Methods in Cell and Molecular Biology* (Academic Press, London); Scopes, (1987) *Protein Purification: Principles and Practice*, Second Edition (Springer-Verlag, N.Y.), and *Handbook of Experimental Immunology, Volumes I-IV* (D.M. Weir and C. C. Blackwell eds 1986).

5 Standard abbreviations for nucleotides and amino acids are used in this specification.

Definitions

10 A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

15 The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Chlamydial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been  
20 assembled in a single protein in an arrangement not found in nature.

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

25 A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (e.g. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination,  
30 has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (e.g. see US patent 5,753,235).

Expression systems

The Chlamydial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

5 Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at 10 which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In *Molecular Cloning: A Laboratory Manual*, 2nd ed.].

15 Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallothionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive 20 cells.

25 The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) *Science* 236:1237; Alberts et al. (1989) *Molecular Biology of the Cell*, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range. Examples include the SV40 early gene enhancer [Dijkema et al. (1985) *EMBO J.* 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. 30 (1982) *PNAS USA* 79:6777] and from human cytomegalovirus [Boshart et al. (1985) *Cell* 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) *Trends Genet.* 2:215; Maniatis et al. (1987) *Science* 236:1237].

35 A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader

fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus tripartite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

- 5 Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) *Cell* 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In *Transcription and splicing* (ed. B.D. Hames and D.M. Glover); Proudfoot 10 (1989) *Trends Biochem. Sci.* 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In *Molecular Cloning: A Laboratory Manual*].

- Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription 15 termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing 20 the replication systems of papovaviruses, such as SV40 [Gluzman (1981) *Cell* 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian 25 cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) *Mol. Cell. Biol.* 9:946] and pHEBO [Shimizu et al. (1986) *Mol. Cell. Biol.* 6:1074].

- The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene-mediated transfection, protoplast fusion, 30 electroporation, encapsulation of polynucleotide(s) in liposomes, direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g. Hep G2), and a number of other cell lines.

35 ii. Baculovirus Systems

- The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus genome, and a convenient restriction site 40 for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence

homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral

5 genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit). These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) 10 (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its 15 owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

20 Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) *Ann. Rev. 25 Microbiol.*, 42:177) and a prokaryotic ampicillin-resistance (*amp*) gene and origin of replication for selection and propagation in *E. coli*.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region 30 which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful 35 promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, 40 such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals

for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human  $\alpha$ -interferon, Maeda et al., (1985), *Nature* 315:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol.* 8:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene* 58:273; and human glucocerebrosidase, Martin et al., (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus -- usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays* 4:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between ~1% and ~5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 $\mu$ m in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus)

or absence (indicative of recombinant virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers & Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, *inter alia*: *Aedes aegypti*, *Autographa californica*, *Bombyx mori*, *Drosophila melanogaster*, *Spodoptera frugiperda*, and *Trichoplusia ni* (WO 89/046699; Carbonell et al., (1985) *J. Virol.* 56:153; Wright (1986) *Nature* 321:718; Smith et al., (1983) *Mol. Cell. Biol.* 3:2156; and see generally, Fraser, et al. (1989) *In Vitro Cell. Dev. Biol.* 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, e.g. Summers and Smith *supra*.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, e.g. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, e.g. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

25      iii. Plant Systems

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., *Nucleic Acids Research* 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, *Gibberellins*: in: *Advanced Plant Physiology*, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Repr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet.*, 202:179-185, 1985. The genetic material may also be

transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera *Fragaria*, *Lotus*, *Medicago*, *Onobrychis*, *Trifolium*, *Trigonella*, *Vigna*, *Citrus*, *Linum*, *Geranium*, *Manihot*, *Daucus*, *Arabidopsis*, *Brassica*, *Raphanus*, *Sinapis*, *Atropa*, *Capsicum*, *Datura*, *Hyoscyamus*, *Lycopersicon*, *Nicotiana*, *Solanum*, *Petunia*, *Digitalis*, *Majorana*, *Cichorium*, *Helianthus*, *Lactuca*, *Bromus*, *Asparagus*, *Antirrhinum*, *Hererocallis*, *Nemesia*, *Pelargonium*, *Panicum*, *Pennisetum*, *Ranunculus*, *Senecio*, *Salpiglossis*, *Cucumis*, *Browalia*, *Glycine*, *Lolium*, *Zea*, *Triticum*, *Sorghum*, and *Datura*.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in *Escherichia coli* (*E. coli*) [Raibaud *et al.* (1984) *Annu. Rev. Genet.* 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (*lac*) [Chang *et al.* (1977) *Nature* 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (*trp*) [Goeddel *et al.* (1980) *Nuc. Acids Res.* 8:4057; Yelverton *et al.* (1981) *Nucl. Acids Res.* 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-lactamase (*bla*) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In *Interferon* 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake *et al.* (1981) *Nature* 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene* 25:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci.* 80:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier *et al.* (1986) *J. Mol. Biol.* 189:113; Tabor *et al.* (1985) *Proc. Natl. Acad. Sci.* 82:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine *et al.* (1975) *Nature* 254:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' end of *E. coli* 16S rRNA [Steitz *et al.* (1979) "Genetic signals and nucleotide sequences in messenger RNA." In *Biological*

*Regulation and Development: Gene Expression* (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook *et al.* (1989) "Expression of cloned genes in Escherichia coli." In *Molecular Cloning: A Laboratory Manual*].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* or *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai *et al.* (1984) *Nature* 309:810]. Fusion proteins can also be made with sequences from the *lacZ* [Jia *et al.* (1987) *Gene* 60:197], *trpE* [Allen *et al.* (1987) *J. Biotechnol.* 5:93; Makoff *et al.* (1989) *J. Gen. Microbiol.* 135:11], and *Chey* [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (e.g. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller *et al.* (1989) *Bio/Technology* 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J.* 3:2437] and the *E. coli* alkaline phosphatase signal sequence (*phoA*) [Oka *et al.* (1985) *Proc. Natl. Acad. Sci.* 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various *Bacillus* strains can be used to secrete heterologous proteins from *B. subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription. Examples include transcription termination sequences derived from genes with strong promoters, such as the *trp* gene in *E. coli* as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A-0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies *et al.* (1978) *Annu. Rev. Microbiol.* 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, *inter alia*, the following bacteria: *Bacillus subtilis* [Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], *Escherichia coli* [Shimatake *et al.* (1981) *Nature* 292:128; Amann *et al.* (1985) *Gene* 40:183; Studier *et al.* (1986) *J. Mol. Biol.* 189:113; EP-A-0 036 776, EP-A-0 136 829 and EP-A-0 136 907], *Streptococcus cremoris* [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655]; *Streptococcus lividans* [Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655], *Streptomyces lividans* [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with  $\text{CaCl}_2$  or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See e.g. [Masson *et al.* (1989) *FEMS Microbiol. Lett.* 60:273; Palva *et al.* (1982) *Proc. Natl. Acad. Sci. USA* 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, *Bacillus*], [Miller *et al.* (1988) *Proc. Natl. Acad. Sci.* 85:856; Wang *et al.* (1990) *J. Bacteriol.* 172:949, *Campylobacter*], [Cohen *et al.* (1973) *Proc. Natl. Acad. Sci.* 69:2110; Dower *et al.* (1988) *Nucleic Acids Res.* 16:6127; Kushner (1978) "An improved method for transformation of *Escherichia coli* with *ColE1*-derived plasmids. In *Genetic*

Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel *et al.* (1970) *J. Mol. Biol.* 53:159; Taketo (1988) *Biochim. Biophys. Acta* 949:318; Escherichia], [Chassy *et al.* (1987) *FEMS Microbiol. Lett.* 44:173 Lactobacillus]; [Fiedler *et al.* (1988) *Anal. Biochem* 170:38, Pseudomonas]; [Augustin *et al.* (1990) *FEMS Microbiol. Lett.* 66:203, *Staphylococcus*],  
5 [Barany *et al.* (1980) *J. Bacteriol.* 144:698; Harlander (1987) "Transformation of *Streptococcus lactis* by electroporation, in: *Streptococcal Genetics* (ed. J. Ferretti and R. Curtiss III); Perry *et al.* (1981) *Infect. Immun.* 32:1295; Powell *et al.* (1988) *Appl. Environ. Microbiol.* 54:655; Somkuti *et al.* (1987) *Proc. 4th Evr. Cong. Biotechnology* 1:412, *Streptococcus*].

v. Yeast Expression

10 Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (e.g. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may  
15 also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

20 Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:1].

25 In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the *ADH2*,  
30 *GAL4*, *GAL10*, OR *PHO5* genes, combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, *inter alia*, [Cohen *et al.* (1980) *Proc. Natl. Acad. Sci. USA* 77:1078; Henikoff *et al.* (1981) *Nature* 283:835; Hollenberg *et al.* (1981) *Curr. Topics Microbiol. Immunol.* 96:119;  
35 Hollenberg *et al.* (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast *Saccharomyces cerevisiae*," in: *Plasmids of Medical, Environmental and Commercial Importance* (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon *et al.* (1980) *Gene* 11:163; Panthier *et al.* (1980) *Curr. Genet.* 2:109;].

A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always

be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast 5 protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See e.g. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin 10 region that preferably retains a site for a processing enzyme (e.g. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (e.g. WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric 15 DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the 20 genes for invertase (EP-A-0012873; JPO 62,096,086) and A-factor (US patent 4,588,684). Alternatively, leaders of non-yeast origin exist, such as an interferon leader, that also provide for secretion in yeast (EP-A-0060057).

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which 25 contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (e.g. see WO 89/02463.)

Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the 30 translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.

Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression 35 constructs are often maintained in a replicon, such as an extrachromosomal element (e.g. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein *et al.* (1979) *Gene* 8:17-24], pCI1 [Brake *et al.* (1984) *Proc. Natl. Acad. Sci USA* 81:4642-4646], and YRp17 [Stinchcomb *et al.* (1982) *J. Mol. Biol.* 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy 40

number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See e.g. Brake *et al.*, *supra*.

- 5 Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver *et al.* (1983) *Methods in Enzymol.* 101:228-245]. An integrating vector may be  
10 directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver *et al.*, *supra*. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine *et al.* (1983) *Proc. Natl. Acad. Sci. USA* 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the  
15 expression construct in the vector, which can result in the stable integration of only the expression construct.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as *ADE2*, *HIS4*, *LEU2*, *TRP1*, and *ALG7*, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of *CUP1* allows yeast to grow in the presence of copper ions [Butt *et al.* (1987) *Microbiol. Rev.* 51:351].

20 Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.  
25

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, *inter alia*, the following yeasts: *Candida albicans* [Kurtz, *et al.* (1986) *Mol. Cell. Biol.* 6:142], *Candida maltosa* [Kunze, *et al.* (1985) *J. Basic Microbiol.* 25:141], *Hansenula polymorpha* [Gleeson, *et al.* (1986) *J. Gen. Microbiol.* 132:3459; Roggenkamp *et al.* (1986) *Mol. Gen. Genet.* 202:302], *Kluyveromyces fragilis* [Das, *et al.* (1984) *J. Bacteriol.* 158:1165], *Kluyveromyces lactis* [De Louvencourt *et al.* (1983) *J. Bacteriol.* 154:737; Van den Berg *et al.* (1990) *Bio/Technology* 8:135], *Pichia guillermondii* [Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141], *Pichia pastoris* [Cregg, *et al.* (1985) *Mol. Cell. Biol.* 5:3376; US Patent Nos. 4,837,148 and 4,929,555],  
30 *Saccharomyces cerevisiae* [Hinnen *et al.* (1978) *Proc. Natl. Acad. Sci. USA* 75:1929; Ito *et al.* (1983) *J. Bacteriol.* 153:163], *Schizosaccharomyces pombe* [Beach and Nurse (1981) *Nature* 300:706], and *Yarrowia lipolytica* [Davidow, *et al.* (1985) *Curr. Genet.* 10:380471 Gaillardin, *et al.* (1985) *Curr. Genet.* 10:49].

40 Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See e.g. [Kurtz *et al.* (1986) *Mol. Cell. Biol.* 6:142; Kunze *et al.* (1985) *J. Basic Microbiol.* 25:141; *Candida*]; [Gleeson *et al.* (1986) *J. Gen. Microbiol.* 132:3459;

Roggencamp et al. (1986) *Mol. Gen. Genet.* 202:302; Hansenula]; [Das et al. (1984) *J. Bacteriol.* 158:1165; De Louvencourt et al. (1983) *J. Bacteriol.* 154:1165; Van den Berg et al. (1990) *BioTechnology* 8:135; Kluyveromyces]; [Cregg et al. (1985) *Mol. Cell. Biol.* 5:3376; Kunze et al. (1985) *J. Basic Microbiol.* 25:141; US Patents 4,837,148 & 4,929,555; Pichia]; [Hinnen et al. (1978) *Proc. Natl. Acad. Sci. USA* 75:1929; Ito et al. 5 (1983) *J. Bacteriol.* 153:163 Saccharomyces]; [Beach & Nurse (1981) *Nature* 300:706; Schizosaccharomyces]; [Davidow et al. (1985) *Curr. Genet.* 10:39; Gaillardin et al. (1985) *Curr. Genet.* 10:49; Yarrowia].

#### Pharmaceutical Compositions

Pharmaceutical compositions can comprise polypeptides and/or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, 10 or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject 15 will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 20 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and 25 which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, 30 hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering 35 substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

Delivery Methods

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

- 5 Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (e.g. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

- 10 Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are 15 typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. 20 pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59<sup>TM</sup> (WO 90/14837; Chapter 10 in 25 *Vaccine design: the subunit and adjuvant approach*, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to 30 generate a larger particle size emulsion, and (c) Ribi<sup>TM</sup> adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphoryl lipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox<sup>TM</sup>); (3) saponin adjuvants, such as Stimulon<sup>TM</sup> (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (e.g. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that 35 act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59<sup>TM</sup> are preferred.

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (*e.g.* the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (*e.g.* nonhuman primate, primate, *etc.*), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, *e.g.* by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (*e.g.* WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [*e.g.* Robinson & Torres (1997) *Seminars in Immunology* 9:271-283; Donnelly *et al.* (1997) *Annu Rev Immunol* 15:617-648; see later herein].

#### Gene Delivery Vehicles

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence *in vivo* can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) *Cancer Gene Therapy* 1:51-64; Kimura (1994) *Human Gene Therapy* 5:845-852; Connelly (1995) *Human Gene Therapy* 6:185-193; and Kaplitt (1994) *Nature Genetics* 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses e.g. MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses,

5 Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

10 These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

15 Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (e.g. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

20 Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. 25 VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, 30 WO90/02806, WO90/07936, WO94/03622, WO93/25698, WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) *Cancer Res* 53:3860-3864; Vile (1993) *Cancer Res* 53:962-967; Ram (1993) *Cancer Res* 53 (1993) 83-88; Takamiya (1992) *J Neurosci Res* 33:493-503; Baba (1993) *J Neurosurg* 79:729-735; Mann (1983) *Cell* 33:153; Cane (1984) *Proc Natl Acad Sci* 81:6349; and Miller (1990) 35 *Human Gene Therapy* 1.

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See, for example, Berkner (1988) *Biotechniques* 6:616 and Rosenfeld (1991) *Science* 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, 40 WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671,

WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) *Hum. Gene Ther.* 3:147-154 may be employed. The gene delivery vehicles of the invention also include 5 adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the 10 remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of 15 which are disclosed in Nahreini (1993) *Gene* 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) *J. Virol.* 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is 20 SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) *Human Gene Therapy* 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are 25 herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar), pHHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 & WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those 30 deposited with ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in 35 US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

40 DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems.

Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, *Nature* 339 (1989) 385 and Sabin (1973) *J. Biol. Standardization*

- 5 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) *J Cell Biochem* L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) *Proc Natl Acad Sci* 86:317; Flexner (1989) *Ann NY Acad Sci* 569:86, Flexner (1990) *Vaccine* 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) *Nature* 277:108 and Madzak (1992) *J Gen Virol* 73:1533;
- 10 influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) *Proc Natl Acad Sci* 87:3802-3805; Enami & Palese (1991) *J Virol* 65:2711-2713 and Luytjes (1989) *Cell* 59:110, (see also McMichael (1983) *NEJ Med* 309:13, and Yap (1978) *Nature* 273:238 and *Nature* (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) *J. Virol.* 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) *Proc Soc Exp Biol Med* 121:190.

- 25 Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9, 1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

- 35 Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the 5 endosome and release of the DNA into the cytoplasm.

- Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as 10 polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al* (1994) *Proc. Natl. Acad. Sci. USA* 91(24):11581-11585. 15 Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033
- 20 Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) *Biochem Biophys Acta* 600:1; Bayer (1979) *Biochem Biophys Acta* 550:464; Rivnay (1987) *Meth Enzymol* 149:119; Wang (1987) *Proc Natl Acad Sci* 84:7851; Plant (1989) *Anal Biochem* 176:420.
- 25 A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

#### Delivery Methods

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the 30 subject; (2) delivered *ex vivo*, to cells derived from the subject; or (3) *in vitro* for recombinant protein expression. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary 35 administration, suppositories, and transdermal or transcutaneous applications (e.g. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the *ex vivo* delivery and reimplantation of transformed cells into a subject are known in the art and described in e.g. WO93/14778. Examples of cells useful in *ex vivo* applications include, for example, stem cells, particularly hematopoietic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both *ex vivo* and *in vitro* applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

5    Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A. Polypeptides

One example are polypeptides which include, without limitation: asialoglycosidase (ASOR); transferrin; 10    asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

15    B. Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

C. Polyalkylenes, Polysaccharides, etc.

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred 20    embodiment, the polyalkylene glycol is polyethylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

D. Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to 25    delivery to the subject or to cells derived therefrom.

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 35:265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy]propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See,

also, Felgner *supra*). Other commercially available liposomes include transfetace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphosphatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the 10 DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See e.g. Straubinger (1983) *Meth. Immunol.* 101:512-527; Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; Papahadjopoulos (1975) *Biochim. Biophys. Acta* 394:483; Wilson (1979) *Cell* 17:77; Deamer & 15 Bangham (1976) *Biochim. Biophys. Acta* 443:629; Ostro (1977) *Biochem. Biophys. Res. Commun.* 76:836; Fraley (1979) *Proc. Natl. Acad. Sci. USA* 76:3348; Enoch & Strittmatter (1979) *Proc. Natl. Acad. Sci. USA* 76:145; Fraley (1980) *J. Biol. Chem.* (1980) 255:10431; Szoka & Papahadjopoulos (1978) *Proc. Natl. Acad. Sci. USA* 75:145; and Schaefer-Ridder (1982) *Science* 215:166.

20 E.Lipoproteins

In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of 25 lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

30 A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, & E, over time these lipoproteins lose A and acquire C and E apoproteins. VLDL comprises A, B, C, & E apoproteins, LDL comprises apoprotein B; HDL comprises apoproteins A, C, & E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) *Annu Rev. Biochem* 54:699; Law (1986) *Adv. Exp Med. Biol.* 151:162; Chen (1986) *J Biol Chem* 261:12918; Kane (1980) 35 *Proc Natl Acad Sci USA* 77:2465; and Utermann (1984) *Hum Genet* 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in *Meth. Enzymol.* 128 (1986). The composition of the lipids are chosen to aid in

conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol. (supra)*; Pitas (1980) *J. Biochem.* 255:5454-5460 and Mahey (1979) *J Clin.*

5 *Invest* 64:743-750. Lipoproteins can also be produced by *in vitro* or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) *Annu Rev Biophys Chem* 15:403 and Radding (1958) *Biochim Biophys Acta* 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Technologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann *et al.* PCT/US97/14465.

10 **F.Polycationic Agents**

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have

15 both *in vitro*, *ex vivo*, and *in vivo* applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA

20 binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic acid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and putrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. Lipofectin™, and lipofectAMINE™ are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

**Nucleic Acid Hybridisation**

30 "Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] vol.2, chapt.9, pp.9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1 $\mu$ g for a plasmid or phage digest to 10<sup>-9</sup> to 10<sup>-8</sup> g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 $\mu$ g of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10<sup>8</sup> cpm/ $\mu$ g. For a single-copy mammalian gene a conservative approach would start with 10 $\mu$ g of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10<sup>8</sup> cpm/ $\mu$ g, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

$$T_m = 81 + 16.6(\log_{10}C_i) + 0.4[\%(G + C)] - 0.6(\%\text{formamide}) - 600/n - 1.5(\%\text{mismatch}).$$

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) *Anal. Biochem.* 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and

reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

Nucleic Acid Probe Assays

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Chlamydial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Chlamydial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Chlamydial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Chlamydial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Chlamydial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Chlamydial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably  $\geq 30$  nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci *et al.* [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea *et al.* [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated e.g. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase *in vivo* half-life, alter RNA affinity, increase nuclease resistance etc. [e.g. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [e.g. see Corey (1997) TIBTECH 15:224-229; Buchardt *et al.* (1993) TIBTECH 11:384-386].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 & 4,683,202. Two 'primers' hybridize with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its

complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Chlamydial sequence.

A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase,

5 they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Chlamydial sequence (or its complement).

Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook *et al* [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The

10 solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected. Typically, the probe is labelled with a radioactive moiety.

## BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1-189 show data pertaining to examples 1-189.

Figure 190 shows a representative 2D gel of proteins in elementary bodies.

15 Figure 191 shows an alignment of sequences in five (six) proteins of the invention.

## EXAMPLES

The examples indicate *C.pneumoniae* proteins, together with evidence to support the view that the proteins are useful antigens for vaccine production and development or for diagnostic purposes. This evidence takes the form of:

- 20 • Computer prediction based on sequence information from CWL029 strain (*e.g.* using the PSORT algorithm available from [www.psort.nibb.ac.jp](http://www.psort.nibb.ac.jp)).
- Data on recombinant expression and purification of the proteins cloned from IOL207 strain.
- Western blots to demonstrate immunoreactivity in serum (typically a blot of an EB extract of *C.pneumoniae* strain FB/96 stained with mouse antiserum against the recombinant protein).
- 25 • FACS analysis of *C.pneumoniae* bacteria or purified EBs to confirm accessibility of the antigen to the immune system (see also table III).
- An indication if the protein was identified by MALDI-TOF from a 2D gel electrophoresis map of proteins from purified elementary bodies from strain FB/96. This confirms that the protein is expressed *in vivo* (see also table V).
- 30 Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *i.e.* the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies e.g. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (e.g. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

- 5 In particular, the following methods (A) to (O) were used to express, purify and biochemically characterise the proteins of the invention:

#### **CLONING OF CPN ORFs FOR EXPRESSION IN *E.COLI***

ORFs of *Chlamydia pneumoniae* (Cpn) were cloned in such a way as to potentially obtain three different kind of proteins:

- 10 a) proteins having an hexa-histidine tag at the C-terminus (cpn-His)  
 b) proteins having a GST fusion partner at the N-terminus (Gst-cpn)  
 c) proteins having both hexa-histidine tag at the C-terminus and GST at the N-terminus (GST/His fusion; NH<sub>2</sub>-GST-cpn-(His)<sub>6</sub>-COOH)

The type a) proteins were obtained upon cloning in the pET21b+ (Novagen). The type b) and c) 15 proteins were obtained upon cloning in modified pGEX-KG vectors [Guan & Dixon (1991) *Anal. Biochem.* 192:262]. For instance pGEX-KG was modified to obtain pGEX-NN, then by modifying pGEX-NN to obtain pGEX-NNH. The Gst-cpn and Gst-cpn-His proteins were obtained in pGEX-NN and pGEX-NNH respectively.

The modified versions of pGEX-KG vector were made with the aim of allowing the cloning of 20 single amplification products in all three vectors after only one double restriction enzyme digestion and to minimise the presence of extraneous amino acids in the final recombinant proteins.

#### **(A) Construction of pGEX-NN and pGEX-NNH expression vectors**

Two couples of complementary oligodeoxyribonucleotides were synthesised using the DNA 25 synthesiser ABI394 (Perkin Elmer) and the reagents from Cruachem (Glasgow, Scotland). Equimolar amounts of the oligo pairs (50 ng each oligo) were annealed in T4 DNA ligase buffer (New England Biolabs) for 10 min in a final volume of 50µl and then were left to cool slowly at room temperature. With the described procedure he following DNA linkers were obtained:

##### gexNN linker:

30 NdeI NheI XmaI EcoRI NcoI SalI XbaI SacI NotI  
 GATCCC ATATGGCTAGCCGGGGAAATT CGTCCATGGAGTGACTGACTCGAGTGATCGAGCT CCTGAGCGGCCGATGAA  
 GGTATACCGATCGGGCCCTTAAGCAGGTACCTCACTCAGCTGACTGAGCTCACTAGCTCGAGGACTCGCCGGTACTTCGA

##### gexNNH linker:

35 HindIII NotI XbaI --Hexa-Histidine--  
 TCGACAAGCTTGC GGCGCACTCGAGCATCACC ATCACC ATCACTGAT  
 GTTCGAACGCCGGCTGAGCACGTAGAGGTAGTGGTAGT GACTATCGA

The plasmid pGEX-KG was digested with BamHI and HindIII and 100 ng were ligated overnight at 16 °C to the linker gexNN with a molar ratio of 3:1 linker/plasmid using 200 units of T4 DNA ligase

(New england Biolabs). After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NN plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

The new plasmid pGEX-NN was digested with SalI and HindIII and ligated to the linker gexNNH.

- 5 After transformation of the ligation product in *E. coli* DH5, a clone containing the pGEX-NNH plasmid, having the correct linker, was selected by means of restriction enzyme analysis and DNA sequencing.

#### (B) Chromosomal DNA preparation

The chromosomal DNA of elementary bodies (EB) of *C.pneumoniae* strain 10L-207 was prepared by

- 10 adding 1.5 ml of lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 0,6 % SDS, 100 µg/ml Proteinase K, pH 8) to 450 µl EB suspension (400.000/µl) and incubating overnight at 37 °C. After sequential extraction with phenol, phenol-chloroform, and chloroform, the DNA was precipitated with 0,3 M sodium acetate, pH 5,2 and 2 volumes of absolute ethanol. The DNA pellet was washed with 70 % ethanol. After solubilization with distilled water and treatment with 20 µg/ml RNase A  
15 for 1 hour at RT, the DNA was extracted again with phenol-chloroform, alcohol precipitated and suspended with 300 µl 1 mM Tris-HCl pH 8,5. The DNA concentration was evaluated by measuring OD<sub>260</sub> of the sample.

#### (C) Oligonucleotide design

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF

- 20 using the sequence of *C.pneumoniae* strain CWL029. Any predicted signal peptide were omitted, by deducing the 5' end amplification primer sequence immediately downstream from the predicted leader sequence. For most ORFs, the 5' tail of the primers (table I) included only one restriction enzyme recognition site (NdeI, or NheI, or SpeI depending on the gene's own restriction pattern); the 3' primer tails (tableI) included a XhoI or a NotI or a HindIII restriction site.

|      | 5' tails           |         | 3' tails               |
|------|--------------------|---------|------------------------|
| NdeI | 5' GTGCGTCATATG 3' | XhoI    | 5' GCGTCTCGAG 3'       |
| NheI | 5' GTGCGTGCTAGC 3' | NotI    | 5' ACTCGCTAGCGGCCGC 3' |
| SpeI | 5' GTGCGTACTAGT 3' | HindIII | 5' GCGTAAGCTT 3'       |

25 **Table I.** Oligonucleotide tails of the primers used to amplify Cpn genes.

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridized to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the primers which was determined as described [(Breslauer *et al.* (1986) PNAS USA 83:3746-50]. The average melting temperature of the selected oligos was 50-55°C for the hybridizing region alone and 65-75°C for the whole oligos. Table II shows the forward and reverse primers used for each amplification.

**(D) Amplification**

The standard PCR protocol was as follow: 50 ng genomic DNA were used as template in the presence of 0,2  $\mu$ M each primer, 200  $\mu$ M each dNTP, 1,5 mM MgCl<sub>2</sub>, 1x PCR buffer minus Mg (Gibco-BRL), and 2 units of Taq DNA polymerase (Platinum Taq, Gibco-BRL) in a final volume of

- 5 100  $\mu$ l. Each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridizing temperature the one of the oligos excluding the restriction enzyme tail, followed by 25 cycles performed according to the hybridization temperature of the whole lenght primers. The standard cycles were as follow:

denaturation : 94 °C, 2 min

10

denaturation: 94 °C, 30 seconds  
hybridization: 51 °C, 50 seconds } 5 cycles  
elongation: 72 °C, 1 min or 2 min and 40 sec

15

denaturation: 94 °C, 30 seconds  
hybridization: 70 °C, 50 seconds } 25 cycles  
elongation: 72 °C, 1 min or 2 min and 40 sec

72 °C, 7 min

20 4 °C

The elongation time was 1 min for ORFs shorter than 2000 bp, and 2 min and 40 seconds for ORFs longer than 2000 bp. The amplifications were performed using a Gene Amp PCR system 9600 (Perkin Elmer).

- 25 To check the amplification results, 4  $\mu$ l of each PCR product was loaded onto 1-1.5 agarose gel and the size of amplified fragments compared with DNA molecular weight standards (DNA markers III or IX, Roche). The PCR products were loaded on agarose gel and after electrophoresis the right size bands were excised from the gel. The DNA was purified from the agarose using the Gel Extraction Kit (Qiagen) following the instruction of the manufacturer. The final elution volume of the DNA was  
30 50  $\mu$ l TE (10 mM Tris-HCl, 1 mM EDTA, pH 8). One  $\mu$ l of each purified DNA was loaded onto agarose gel to evaluate the yield.

**(E) Digestion of PCR fragments**

One-two  $\mu$ g of purified PCR product were double digested overnight at 37 °C with the appropriate restriction enzymes (60 units of each enzyme) using the appropriate restriction buffer in 100  $\mu$ l final volume. The restriction enzymes and the digestion buffers were from New England Biolabs. After

35

purification of the digested DNA (PCR purification Kit, Qiagen) and elution with 30 µl TE, 1 µl was subjected to agarose gel electrophoresis to evaluate the yield in comparison to titrated molecular weight standards (DNA markers III or IX, Roche).

**(F) Digestion of the cloning vectors (pET21b+, pGEX-NN, and pGEX-NNH)**

5 10 µg of plasmid was double digested with 100 units of each restriction enzyme in 400 µl reaction volume in the presence of appropriate buffer by overnight incubation at 37 °C. After electrophoresis on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen Qiaex II Gel Extraction Kit and the DNA was eluted with 50 µl TE. The DNA concentration was evaluated by measuring OD<sub>260</sub> of the sample.

10 **(G) Cloning**

75ng of the appropriately digested and purified vectors and the digested and purified fragments corresponding to each ORF, were ligated in final volumes of 10-20 µl with a molar ratio of 1:1 fragment/vector, using 400 units T4 DNA ligase (New England Biolabs) in the presence of the buffer supplied by the manufacturer. The reactions were incubated overnight at 16 °C.

15 Transformation in *E. coli* DH5 competent cells was performed as follow: the ligation reaction was mixed with 200 µl of competent DH5 cells and incubated on ice for 30 min and then at 42 °C for 90 seconds. After cooling on ice, 0.8 ml LB was added and the cells were incubated for 45 min at 37 °C under shaking. 100 and 900 µl of cell suspensions were plated on separate plates of agar LB 100 µg/ml Ampicillin and the plates were incubated overnight at 37 °C. The screening of the 20 transformants was done by growing randomly chosen clones in 6 ml LB 100 µg/ml Ampicillin, by extracting the DNA using the Qiagen Qiaprep Spin Miniprep Kit following the manufacturer instructions, and by digesting 2 µl of plasmid minipreparation with the restriction enzymes specific for the restriction cloning sites. After agarose gel electrophoresis of the digested plasmid mini-preparations, positive clones were chosen on the basis of the correct size of the restriction fragments, 25 as evaluated by comparison with appropriate molecular weight markers (DNA markers III or IX, Roche).

**(H) Expression**

1 µl of each right plasmid mini-preparation was transformed in 200 µl of competent *E. coli* strain suitable for expression of the recombinant protein. All pET21b+ recombinant plasmids were 30 transformed in BL21 DE3 (Novagen) *E. coli* cells, whilst all pGEX-NN and all pGEX-NNH recombinant plasmids were transformed in BL21 cells (Novagen). After plating transformation mixtures on LB/Amp agar plates and incubation overnight at 37 °C, single colonies were inoculated in 3 ml LB 100 µg/ml Ampicillin and grown at 37 °C overnight. 70 µl of the overnight culture was inoculated in 2 ml LB/Amp and grown at 37 °C until OD<sub>600</sub> of the pET clones reached the 0,4-0,8 35 value or until OD<sub>600</sub> of the pGEX clones reached the 0,8-1 value. Protein expression was then

induced by adding IPTG (Isopropil  $\beta$ -D thio-galacto-piranoside) to the mini-cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 3 hours incubation at 37 °C the final OD<sub>600</sub> was checked and the cultures were cooled on ice. After centrifugation of 0.5 ml culture, the cell pellet was suspended in 50  $\mu$ l of protein Loading Sample Buffer (60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% w/v Bromophenol Blue, 100 mM DTT) and incubated at 100 °C for 5 min. A volume of boiled sample corresponding to 0.1 OD<sub>600</sub> culture was analysed by SDS-PAGE and Coomassie Blue staining to verify the presence of induced protein band.

## PURIFICATION OF THE RECOMBINANT PROTEINS

Single colonies were inoculated in 25 ml LB 100  $\mu$ g/ml Ampicillin and grown at 37 °C overnight. The overnight culture was inoculated in 500 ml LB/Amp and grown under shaking at 25 °C until OD<sub>600</sub> 0,4-0,8 value for the pET clones, or until OD<sub>600</sub> 0,8-1 value for the pGEX clones. Protein expression was then induced by adding IPTG to the cultures. pET clones were induced using 1 mM IPTG, whilst pGEX clones were induced using 0.2 mM IPTG. After 4 hours incubation at 25 °C the final OD<sub>600</sub> was checked and the cultures were cooled on ice. After centrifugation at 6000 rpm (JA10 rotor, Beckman), the cell pellet was processed for purification or frozen at -20 °C.

### (I) Procedure for the purification of soluble His-tagged proteins from *E.coli*

1. Transfer the pellets from -20°C to ice bath and reconstitute with 10 ml 50 mM NaHPO<sub>4</sub> buffer, 300 mM NaCl, pH 8,0, pass in 40-50 ml centrifugation tubes and break the cells as per the following outline:
2. Break the pellets in the French Press performing three passages with in-line washing.
3. Centrifuge at about 30-40000 x g per 15-20 min. If possible use rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.)
4. Equilibrate the Poly-Prep columns with 1 ml Fast Flow Chelating Sepharose resin with 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
5. Store the centrifugation pellet at -20°C, and load the supernatant in the columns.
6. Collect the flow through.
7. Wash the columns with 10 ml (2 ml + 2 ml + 4 ml) 50 mM phosphate buffer, 300 mM NaCl, pH 8,0.
- 30 8. Wash again with 10 ml 20 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0.
9. Elute the proteins bound to the columns with 4,5 ml (1,5 ml + 1,5 ml + 1,5 ml) 250 mM imidazole buffer, 50 mM phosphate, 300 mM NaCl, pH 8,0 and collect the 3 corresponding fractions of ~1,5 ml each. Add to each tube 15  $\mu$ l DTT 200 mM (final concentration 2 mM)

-37-

10. Measure the protein concentration of the first two fractions with the Bradford method, collect a 10 µg aliquot of proteins from each sample and analyse by SDS-PAGE. (N.B.: should the sample be too diluted, load 21 µl + 7 µl loading buffer).
11. Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.
- 5 12. For immunisation prepare 4-5 aliquots of 100 µg each in 0,5 ml in 40% glycerol. The dilution buffer is the above elution buffer, plus 2 mM DTT. Store the aliquots at -20°C until immunisation.

#### (J) Purification of His-tagged proteins from Inclusion bodies

Purifications were carried out essentially according the following protocol:

- 10 1. Bacteria are collected from 500 ml cultures by centrifugation. If required store bacterial pellets at -20°C. For extraction, resuspend each bacterial pellet in 10 ml 50 mM TRIS-HCl buffer, pH 8,5 on an ice bath.
2. Disrupt the resuspended bacteria with a French Press, performing two passages.
3. Centrifuge at 35000 x g for 15 min and collect the pellets. Use a Beckman rotor JA 25.50 (21000 rpm, 15 min.) or JA-20 (18000 rpm, 15 min.).
- 15 4. Dissolve the centrifugation pellets with 50 mM TRIS-HCl, 1 mM TCEP {Tris(2-carboxyethyl)-phosphine hydrochloride, Pierce} , 6M guanidium chloride, pH 8,5. Stir for ~ 10 min. with a magnetic bar.
5. Centrifuge as described above, and collect the supernatant..
- 20 6. Prepare an adequate number of Poly-Prep (Bio-Rad) columns containing 1 ml of Fast Flow Chelating Sepharose (Pharmacia) saturated with Nichel according to manufacturer recommendations.. Wash the columns twice with 5 ml of H<sub>2</sub>O and equilibrate with 50 mM TRIS-HCl, 1 mM TCEP, 6M guanidinium chloride, pH 8,5.
7. Load the supernatants from step 5 onto the columns, and wash with 5 ml of 50 mM TRIS-Hcl buffer, 1 mM TCEP, 6M urea, pH 8,5
- 25 8. Wash the columns with 10 ml of 20 mM imidazole, 50 mM TRIS-HCl , 6M urea, 1 mM TCEP, pH 8,5. Collect and set aside the first 5 ml for possible further controls.
9. Elute the proteins bound to the columns with 4,5 ml of a buffer containing 250 mM imidazole, 50 mM TRIS-HCl, 6M urea, 1 mM TCEP, pH 8,5. Add the elution buffer in three 1,5 ml aliquots, and collect the corresponding 3 fractions. Add to each fraction 15 µl DTT (final concentration 2 mM) .
- 30 10. Measure eluted protein concentration with the Bradford method, and analyze aliquots of ca 10 µg of protein by SDS-PAGE.
11. Store proteins at -20°C in 40% (v/v) glycerol, 50 mM TRIS-HCl, 2M urea, 0.5 M arginine, 2 mM DTT, 0.3 mM TCEP, 83.3 mM imidazole, pH 8,5
- 35

**(K) Procedure for the purification of GST-fusion proteins from *E.coli***

1. Transfer the bacterial pellets from -20°C to an ice bath and resuspend with 7,5 ml PBS, pH 7,4 to which a mixture of protease inhibitors (CØMPLETE™ - Boehringer Mannheim, 1 tablet every 25 ml of buffer) has been added. Transfer to 40-50 ml centrifugation tubes and sonicate according to the following procedure:
  - a) Position the probe at about 0,5 cm from the bottom of the tube
  - b) Block the tube with the clamp
  - c) Dip the tube in an ice bath
  - d) Set the sonicator as follows: Timer → Hold, Duty Cycle → 55, Out. Control → 6.
  - e) perform 5 cycles of 10 impulses at a time lapse of 1 minute (i.e. one cycle = 10 impulses + ~45" hold; b. 10 impulses + ~45" hold; c. 10 impulses + ~45" hold; d. 10 impulses + ~45" hold; e. 10 impulses + ~45" hold)
10. Centrifuge at about 30-40000 x g for 15-20 min. E.g.: use rotor Beckman JA 25.50 at 21000 rpm, for 15 min.
15. Store the centrifugation pellets at -20°C, and load the supernatants on the chromatography columns, as follows
20. Equilibrate the Poly-Prep (Bio-Rad) columns with 0,5 ml ( $\cong$ 1 ml suspension) of Glutathione-Sepharose 4B resin, wash with 2 ml (1 + 1) H<sub>2</sub>O, and then with 10 ml (2 + 4 + 4) PBS, pH 7,4.
25. Load the supernatants on the columns and discard the flow through.
30. Wash the columns with 10 ml (2 + 4 + 4) PBS, pH 7,4.
- Elute the proteins bound to the columns with 4,5 ml of 50 mM TRIS buffer, 10 mM reduced glutathione, pH 8,0, adding 1,5 ml + 1,5 ml + 1,5 ml and collecting the respective 3 fractions of ~1,5 ml each.
- Measure the protein concentration of the first two fractions with the Bradford method, analyse a 10 µg aliquot of proteins from each sample by SDS-PAGE. (N.B.: if the sample is too diluted load 21 µl (+ 7 µl loading buffer).
- Store the collected fractions at +4°C while waiting for the results of the SDS-PAGE analysis.
- For each protein destined to the immunisation prepare 4-5 aliquots of 100 µg each in 0,5 ml of 40% glycerol. The dilution buffer is 50 mM TRIS.HCl, 2 mM DTT, pH 8,0. Store the aliquots at -20°C until immunisation..

**SEROLOGY****(L) Protocol of immunization**

1. Groups of four CD1 female mice aged between 6 and 7 weeks were immunized with 20 µg of recombinant protein resuspended in 100 µl.

2. Four mice for each group received 3 doses with a 14 days interval schedule.
3. Immunization was performed through intra-peritoneal injection of the protein with an equal volume of Complete Freund's Adjuvant (CFA) for the first dose and Incomplete Freund's Adjuvant (IFA) for the following two doses.
5. 4. Sera were collected before each immunization. Mice were sacrificed 14 days after the third immunization and the collected sera were pooled and stored at -20°C.

**(M) Western blot analysis of Cpn elementary body proteins with mouse sera**

Aliquots of elementary bodies containing approximately 4 µg of proteins, mixed with SDS loading buffer (1x: 60 mM TRIS-HCl pH 6.8, 5% w/v SDS, 10% v/v glycerin, 0.1% Bromophenol Blue, 100 mM DTT) and boiled 5 minutes at 95° C, were loaded on a 12% SDS-PAGE gel. The gel was run using a SDS-PAGE running buffer containing 250 mM TRIS, 2.5 mM Glycine and 0.1 %SDS. The gel was electroblotted onto nitrocellulose membrane at 200 mA for 30 minutes. The membrane was blocked for 30 minutes with PBS, 3% skimmed milk powder and incubated O/N at 4° C with the appropriate dilution (1/100) of the sera. After washing twice with PBS + 0.1% Tween (Sigma) the membrane was incubated for 2 hours with peroxidase-conjugated secondary anti-mouse antibody (Sigma) diluted 1:3000. The nitrocellulose was washed twice for 10 minutes with PBS + 0.1% Tween-20 and once with PBS and thereafter developed by Opti-4CN Substrate Kit (Biorad).

Lanes shown in Western blots are: (P) = pre-immune control serum; (I) = immune serum.

**(N) FACS analysis of *Chlamydia pneumoniae* elementary bodies with mouse sera**

20. 1.  $2 \times 10^5$  Elementary Bodies (EB)/well were washed with 200 µl of PBS-0.1%BSA in a 96 wells U bottom plate and centrifuged for 10 min. at 1200rpm, at 4°C.
2. The supernatant was discarded and the E.B. resuspended in 10 µl of PBS-0.1%BSA.
3. 10µl mouse sera diluted in PBS-0.1%BSA were added to the E.B. suspension to a final dilution of 1:400, and incubated on ice for 30 min.
25. 4. EB were washed by adding 180µl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm, 4°C.
5. The supernatant was discarded and the E.B. resuspended in 10 l of PBS-0.1%BSA.
6. 10µl of a goat anti-mouse IgG, F(ab')<sub>2</sub> fragment specific-R-Phycoerythrin-conjugated (Jackson Immunoresearch Laboratories Inc., cat.N°115-116-072) was added to the EB suspension to a final dilution of 1:100, and incubated on ice for 30 min. in the dark.
30. 7. EB were washed by adding 180µl PBS-0.1%BSA and centrifuged for 10min. at 1200rpm, 4°C.
8. The supernatant was discarded and the E.B. resuspended in 150 µl of PBS-0.1%BSA.
9. E.B. suspension was passed through a cytometric chamber of a FACS Calibur (Becton Dickinson, Mountain View, CA USA) and 10.000 events were acquired.

10. Data were analysed using Cell Quest Software (Becton Dickinson, Mountain View, CA USA) by drawing a morphological dot plot (using forward and side scatter parameters) on E.B. signals. An histogram plot was then created on FL2 intensity of fluorescence log scale recalling the morphological region of EB.
- 5 NB: the results of FACS depend not only on the extent of accessibility of the native antigens but also on the quality of the antibodies elicited by the recombinant antigens, which may have structures with a variable degree of correct folding as compared with the native protein structures. Therefore, even if a FACS assay appears negative this does not necessarily mean that the protein is not abundant or accessible on the surface. PorB antigen, for instance, gave negative results in FACS but is a surface-exposed neutralising antigen [Kubo & Stephens (2000) *Mol. Microbiol.* 38:772-780].
- 10

(O) Mass Spectrometry analysis of two-dimensional electrophoretic protein maps

Gradient purified EBs from strain FB/96 were solubilized at a final concentration of 5.5mg/ml with immobiline rehydration buffer (7M urea, 2M thiourea, 2% (w/v) CHAPS, 2% (w/v) ASB 14 [Chevallet *et al.* (1998) *Electrophor.* 19:1901-9], 2% (v/v) C.A 3-10NL (Amersham Pharmacia Biotech), 2 mM tributyl phosphine, 65 mM DTT). Samples (250µg protein) were adsorbed overnight on Immobiline DryStrips (7 cm, pH 3-10 non linear). Electrophocusing was performed in a IPGphor Isoelectric Focusing Unit (Amersham Pharmacia Biotech). Before PAGE separation, the focused strips were incubated in 4M urea, 2M thiourea, 30% (v/v) glycerol, 2% (w/v) SDS, 5mM tributyl phosphine 2.5%(w/v) acrylamide, 50mM Tris-HCl pH 8.8, as described [Herbert *et al.* (1998) *Electrophor.* 19:845-51]. SDS-PAGE was performed on linear 9-16% acrylamide gradients. Gels were stained with colloidal Coomassie (Novex, San Diego) [Doherty *et al.* (1998) *Electrophor.* 19:355-63]. Stained gels were scanned with a Personal Densitometer SI (Molecular Dynamics) at 8 bits and 50µm per pixel. Map images were annotated with the software Image Master 2D Elite, version 3.10 (Amersham Pharmacia Biotech). Protein spots were excised from the gel, using an Ettan 25 Spot picker (Amersham Pharmacia Biotech), and dried in a vacuum centrifuge. In-gel digestion of samples for mass spectrometry and extraction of peptides were performed as described by Wilm *et al.* [*Nature* (1996) 379:466-9]. Samples were desalted with a ZIP TIP (Millipore), eluted with a saturated solution of alpha-cyano-4-hydroxycinnamic acid in 50% acetonitrile, 0.1% TFA and directly loaded onto a SCOUT 381 multiprobe plate (Bruker). Spectra were acquired on a Bruker Biflex II MALDI-TOF. Spectra were calibrated using a combination of known standard peptides, located in spots adjacent to the samples. Resulting values for monoisotopic peaks were used for database searches using the computer program Mascot ([www.matrixscience.com](http://www.matrixscience.com)). All searches were performed using an error of 200-500ppm as constraint. A representative gel is shown in Figure 190.

30

**Example 1**

- 35 The following *C.pneumoniae* protein (PID 4376552) was expressed <SEQ ID 1; cp6552>:

1 MKKKLSLLVG LIFVLSSCHK EDAQNKRIV ASPTPHAEELL ESLQEEAKDL

-41-

5       51   GIKLKILPVD DYRIPNRLLL DKQVDANYFQ HQAFLDDECE RYDCKGELVV  
 101    101   IAKVHLEPQA IYSKKHSSLE RLKSQKKLTI AIPVDRTNAQ RALHLLEECG  
 151    151   LIVCKGPANL NMTAKDVCGK ENRSINILEV SAPLLVGSLP DVDAAVIPGN  
 201    201   FAIAANLSPK KDSLCLLEDLS VSKYTNLVVI RSEDVGSPKM IKLQKLFQSP  
 251    251   SVQHFFDTKY HGNILTMTQD NG\*

5       A predicted signal peptide is highlighted.

The cp6552 nucleotide sequence <SEQ ID 2> is:

10      1   ATGAAAAAAA AATTATCATT ACTTGTAGGT TTAATTTTG TTTTGGATTC  
 51    51   TTGCCATAAG GAAGATGCTC AGAATAAAAT ACGTATTGTA GCCAGTCCGA  
 101   101   CACCTCATGC GGAATTATTG GAGAGTTAC AGGAAGAGGC TAAAGATCTT  
 151   151   GGAATCAAGC TGAAAATACT TCCAGTAGAT GATTATCGTA TTCCTAATCG  
 201   201   TTTGCTTTTG GATAAACAAAG TAGATGCAA TTACTTTCAA CATCAAGCTT  
 251   251   TTCTTGATGA CGAATGCGAG CGTTATGATT GTAAGGGTGA ATTAGTTGTT  
 301   301   ATCGCTAAAG TTCATTGGA ACCTCAAGCA ATTTATTCTA AGAAACATTC  
 351   351   TTCTTTAGAG CGCTTAAAAAA GCCAGAAGAA ACTGACTATA GCGATTCTG  
 401   401   TGGATCGTAC GAATGCTCAG CGTGTCTAC ACTTGTAGA AGAGTGCAGGA  
 451   451   CTCATTTGTT GCAGGAGGCC TGCTAATTAA ATATGACAG CTAAGATGT  
 501   501   CTGTGGGAAA GAAAATAGAA GTATCAACAT ATTAGAGGTG TCAGCTCCTC  
 551   551   TTCTTGTCGG ATCTCTTCCT GACGTTGATG CTGCTGTCAT TCCTGGAAAT  
 601   601   TTTGCTATAG CAGCAAACCT TTCTCCAAAG AAAGATAGTC TTTGTTTAGA  
 651   651   GGATCTTTCG GTATCTAAGT ATACAAACCT TGTGTCATT CGTTCTGAAG  
 701   701   ACGTAGGTTTC TCCTAAAATG ATAAAATTAC AGAACGCTGTT TCAATCTCCT  
 751   751   TCTGTACAAAC ATTTTTGTA TACAAAATAT CATGGAAATA TTTGACAAT  
 801   801   GACTCAAGAC AATGGTTAG

25       The PSORT algorithm predicts an inner membrane location (0.127).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 1A, and also as a GST-fusion. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 1B) and for FACS analysis (Figure 1C).

The cp6552 protein was also identified in the 2D-PAGE experiment (Cpn0278).

30       These experiments show that cp6552 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## Example 2

The following *C.pneumoniae* protein (PID 4376736) was expressed <SEQ ID 3; cp6736>:

35      1   MKTTSIRKFLI STTLAPCFAS TAFTVEVIMP SENFDGSSGK IFPYTTLSDP  
 51    51   RGTCIFSGD LYIANLDNAI SRTSSSCFSN RAGALQILGK GGVFSFLNIR  
 101   101   SSADGAAISS VITQNPELCP LSFSGFSQMI FDNCESLTSD TSASNVIPHA  
 151   151   SAIYATTPML FTNNDSILFQ YNRSAGFGAA IRGTSITIEN TKKSSLFNGN  
 201   201   GSISNGGALT GSAAINLINN SAPVIFSTNA TGIYGGAIYL TGGSMLTSGN  
 251   251   LSGVLFVNNS SRSGGAIYAN GNVTFSNNSD LTFQNNNTASP QNSLPAPTTP  
 301   301   PTPPAVTPLL GYGGAIFCTP PATPPPPTGVS LTISGENSVT FLENIASEQG  
 351   351   GALYGKKISI DSNKSTIIFLQ NTAGKGGAIA IPESGELSLS ANQGDILFNK  
 401   401   NLSITSGTPT RNSIHFGKDA KFATLGATQG YTLYFYDPIT SDDLSAASAA  
 451   451   ATVVVNPKAS ADGAYSGTIV FSGETLTATE AATPANATST LNQKLELEGG  
 501   501   TLALRNGATT NVHNFTQDEK SVVIMDAGTT LATTNGANNT DGAITLNKLV  
 551   551   INLDSLGDGTK AAVVNQVQSTN GALTISGTLG LVKNSQDCCD NHGMFNKDLQ  
 601   601   QVPILELKAT SNTVTTDFS LGTNGYQQSP YGYQGTWEFT IDTTTHTVTG  
 651   651   NWKKTGYLPH PERLAPLIPN SLWANVIDLR AVSQASAADG EDVPGKQLSI  
 701   701   TGITNFFFHAN HTGDARSYRH MGGGYLINTY TRITPDAALS LGFGQLFTKS  
 751   751   KDYLVLGHGS NVYFATVYNS ITKSLFGSSR FFSGGTSRVFT YSRSENEKVKT  
 801   801   SYTKLPKGRC SWSNNCWLGE LEGNLPITLS SRILNLQII PFVKAEVAYA  
 851   851   THGGIQENTP EGRIFGHGHL LNVAVPGVVR FGKNSHNRPD FYTIIVAYAP  
 901   901   DYYRHNPDCC TTLPINGATW TSIGNNLTRS TLLVQASSHT SVNDVLEIFG  
 951   951   HCGCDIRRTS RQYTLDIGSK LRF\*

A predicted signal peptide is highlighted.

The cp6736 nucleotide sequence <SEQ ID 4> is:

|    |      |                                                          |
|----|------|----------------------------------------------------------|
|    | 1    | ATGAAAACGT CTATTCTGAA GTTCTTAATT TCTACCACAC TGGGCCATG    |
|    | 51   | TTTGCTTCAC ACAGCGTTA CTGTAGAAGT TATCATGCCT TCCGAGAACT    |
| 5  | 101  | TTGATGGATC GAGTGGGAAG ATTTTCCTT ACACAACACT TTCTGATCCT    |
|    | 151  | AGAGGGACAC TCTGTATTTT TTCAGGGGAT CTCTACATTG CGAATCTTGA   |
|    | 201  | TAATGCCATA TCCAGAACCT CTTCCAGTTG CTTTAGCAAT AGGGCGGGAG   |
|    | 251  | CACTACAAAT CTTAGGAAAA GGTGGGGTTT TCTCTTCTT AAATATCCGT    |
| 10 | 301  | TCTTCAGCTG ACGGAGCCGC GATTAGTAGT GTAATCACCC AAAATCCTGA   |
|    | 351  | ACTATGTCCC TTGAGTTTT CAGGATTAG TCAGATGATC TTCGATAACT     |
|    | 401  | GTGAATCTTT GACTTCAGAT ACCTCAGCGA GTAAATGTCAT ACCTCACCGA  |
|    | 451  | TCGGCGATTT ACGCTACAAC GCCCATGCTC TTTCACAAACA ATGACTCCAT  |
| 15 | 501  | ACTATTCCAA TACAACCGTT CTGCAGGATT TGGAGCTGCC ATTGAGGCA    |
|    | 551  | CAAGCATCAC AATAGAAAAT ACGAAAAGA GCCTTCTCTT TAATGGTAAT    |
|    | 601  | GGATCCATCT CTAATGGAGG GGCCCTCACG GGATCTGCAG CGATCAACCT   |
|    | 651  | CATCAACAAT AGCCCTCCTG TGATTTCTC AACGAATGCT ACAGGGATCT    |
|    | 701  | ATGGTGGGGC TATTTACCTT ACCGGAGGAT CTATGCTCAC CTCTGGGAAC   |
|    | 751  | CTCTCAGGAG TCTTGTTCGT TAATAATAGC TCGCGCTCAG GAGGGCCTAT   |
| 20 | 801  | CTATGCTAAC GGAAATGTCA CATTTCTAA TAACAGCGAC CTGACTTTCC    |
|    | 851  | AAAACAATAC AGCATCTCCA CAAAATCCT TACCTGCACC TACACCTCCA    |
|    | 901  | CCTACACCAC CAGCAGTCAC TCCTTGTAA GGATATGGAG GCGCCATCTT    |
|    | 951  | CTGTACTCCT CCAGCTACCC CCCCACCAAC AGGTGTTAGC CTGACTATAT   |
|    | 1001 | CTGGAGAAAA CAGCGTTACA TTCCTAGAAA ACATTGCCCTC CGAACAAAGGA |
|    | 1051 | GGAGCCCTCT ATGGAAAAA GATCTCTATA GATTCTAATA AATCTACAAT    |
| 25 | 1101 | ATTCTTGGA AATACAGCTG GAAAAGGAGG CGCTATTGCT ATTCCCGAAT    |
|    | 1151 | CTGGGGAGCT CTCTCTATCC GCAAATCAAG GTGATATCCT CTTAACAAAG   |
|    | 1201 | AACCTCAGCA TCACTAGTGG GACACCTACT CGCAATAGTA TTCACTTCGG   |
|    | 1251 | AAAAGATGCC AAGTTGCCA CTCTAGGAGC TACGCAAGGC TATAACCTAT    |
| 30 | 1301 | ACTTCTATGA TCCGATTACA TCTGATGATT TATCTGCTGC ATCCGCAGCC   |
|    | 1351 | GCTACTGTGG TCGTCAATCC CAAAGCCAGT GCAGATGGTG CGTATTTCAGG  |
|    | 1401 | GACTATTGTC TTTTCAGGAG AAACCCCTCAC TGCTACCGAA GCAGCAACCC  |
|    | 1451 | CTGCAAATGC TACATCTACA TTAAACCAAA AGCTAGAACT TGAAGGCGGT   |
|    | 1501 | ACTCTCGCTT TAAGAAACGG TGCTACCTTA AATGTTCTATA ACTTCACGCA  |
|    | 1551 | AGATGAAAAG TCCGTCGTCA TCATGGATGC AGGGACCACA TTAGCAACTA   |
| 35 | 1601 | CAAATGGAGC TAATAATACT GACGGTGCTA TCACCTTAAA CAAGCTTGTA   |
|    | 1651 | ATCAATCTGG ATTCTTGGA TGGCACTAAA GCGGCTGTGCG TTAATGTCGA   |
|    | 1701 | GAGTACCAAT GGAGCTCTCA CTATATCCGG AACTTTAGGA CTTGTGAAAAA  |
|    | 1751 | ACTCTCAAGA TTGCTGTGAC AACCACGGGA TGTTTAATAA AGATTTCAG    |
|    | 1801 | CAAGTTCCGA TTTAGAACT CAAAGCGACT TCAAATACTG TAACCACTAC    |
| 40 | 1851 | GGACTTCAGT CTCGGCACAA ACGGCTATCA GCAATCTCCC TATGGGTATC   |
|    | 1901 | AAGGAACCTG GGAGTTTACCA ATAGACACGA CAACCCATAC GGTACAGGA   |
|    | 1951 | AATTGGAAAA AAACCGGTTA TCTTCCTCAT CCGGAGCGTC TTGCTCCCCCT  |
|    | 2001 | CATTCTTAAT AGCCTATGGG CAAACGTCTA AGATTTACGA GCTGTAAGTC   |
|    | 2051 | AAGCGTCAGC AGCTGATGGC GAAGATGTCC CTGGGAAGCA ACTGAGCATC   |
| 45 | 2101 | ACAGGAATTA CAAATTCTT CCATGCGAAT CATAACCGGTG ATGCACCGCAG  |
|    | 2151 | CTACCGCCAT ATGGGTGGAG GCTACCTCAT CAATACCTAC ACACGCATCA   |
|    | 2201 | CTCCAGATGC TCGTTAAGT CTAGGTTTTG GACAGCTGTT TACAAATCT     |
|    | 2251 | AAGGATTACC TCGTAGGTCA CGGTCAATTCT AACGTTTATT TCGCTACAGT  |
|    | 2301 | ATACTCTAAC ATCACCAAGT CTCTGTTGG ATCATCGAGA TTCTCTCAG     |
|    | 2351 | GAGGCACTTC TCGAGTTACC TATAGCCGTA GCAATGAGAA AGTAAAGACT   |
| 50 | 2401 | TCATATACAA AATTGCTAA AGGGCGCTGC TCTTGGAGTA ACAATTGCTG    |
|    | 2451 | GTAGGAGAA CTCGAAGGGAA ACCTCCCCAT CACTCTCTCT TCTCGCATCT   |
|    | 2501 | TAAACCTCAA GCAGATCATT CCCTTGTAA AAGCTGAAGT TGCTTACGCG    |
|    | 2551 | ACTCATGGGG GCATCCAAGA AAATACCCCC GAGGGGAGGA TTTTGGACA    |
| 55 | 2601 | CGGTCATCTA CTCAACGTT CAGTTCCCGT AGGGCTCCGC TTTGGTAAAAA   |
|    | 2651 | ATTCTCATAA TCGACCAAGAT TTTTACACTA TAATCGTAGC CTATGCTCCT  |
|    | 2701 | GATGTCTATC GTCACAATCC TGATTGCGAT ACGACATTAC CTATTAATGG   |
|    | 2751 | AGCTACGTGG ACCTCTATAG GGAATAATCT AACCGAGAACT ACTTTGCTAG  |
|    | 2801 | TACAAGCATC CAGCCATACT TCAGTAAATG ATGTTCTAGA GATCTCGGG    |
| 60 | 2851 | CACTGTGGAT GTGATATCG CAGAACCTCC CGTCAATATA CTCTAGATAT    |
|    | 2901 | AGGAAGCAAA TTACGATTTT AA                                 |

The PSORT algorithm predicts an outer membrane location (0.917).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 2A, and also as a GST-fusion. Both proteins were used to immunise mice, whose sera were used in a Western blot (Figure 2B) and for FACS analysis (Figure 2C).

The cp6736 protein was also identified in the 2D-PAGE experiment (Cpn0453) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6736 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 3

The following *C.pneumoniae* protein (PID 4376751) was expressed <SEQ ID 5; cp6751>:

|    |     |                                                            |
|----|-----|------------------------------------------------------------|
| 10 | 1   | <b>MRFFCFGMLL PFTFVLANEGLQLPLETYITLSPEYQAAPOVGFTHNQNQD</b> |
|    | 51  | LAIVGNHNDFI LDYKYYRSN GGALTCKNLL ISENIGNVFF EKNVCPNSGG     |
|    | 101 | AIYAAQNCI SKNQNYAFTT NLVSDNPTAT AGSLLGGALF AINCSTNNL       |
|    | 151 | GQGTFVDNLALNKGGALYTE TNLSIKDNKG PIIIKQNRL NSDSLGGGIY       |
|    | 201 | SQNSLNIEGN SGAIQITSSNS SGSGGGIFST QTLTISSNKK LIEISENSAF    |
| 15 | 251 | ANNYGSNFNP GGGGLTTFC TILMNREGVL FNNNQSOSNG GAIHAKSIII      |
|    | 301 | KENGPVYFLN NTATRGALL NLSAGSGNGS FILSADNGDI IFNNNTASKH      |
|    | 351 | ALNPPYRNAI HSTPNMNLQI GARPGYRVLF YDPIEHELPSSFPILFNFET      |
|    | 401 | GHTGTIVLFSG EHVNQNFTDE MNFFSYLRNT SELRQGVLAEDGAGLACYK      |
|    | 451 | FFQRGGTLLL GQGAVITTAG TIPTPSSTPT TVGSTITLNH IAIDLPSILS     |
| 20 | 501 | FQAQAPKIWI YPTKTGSTYT EDSNPTITIS GTLTLRNSNN EDPYDSDLDS     |
|    | 551 | HSLEKVPLLY IVDVAAQKIN SSQLDLSTLN SGEHYGYQGI WSTYWVETTT     |
|    | 601 | ITNPTSLLGA NTKHKLLIYAN WSPLGYRPHP ERRGEFITNA LWQSAYTALA    |
|    | 651 | GLHSLSSWDE EKGHAASLQIG IGLLIVHQDKD NGFKGFRSHM TGYSATTEAT   |
|    | 701 | SSQSPNFSLG FAQFFSKAKE HESQNSTSSH HYFSGMCIEN TLFKEWIRLS     |
| 25 | 751 | VSLAYMFTSE HTHTMYQGLL EGNSQGSFHN HTLAGALSCV FLPQPHGESL     |
|    | 801 | QIYPFITALA IRGNLAAFQE SGDharefsl HRPLTDVSLP VGIRASWKNH     |
|    | 851 | HRVPLVWLTE ISYRSTLYRQ DPELHSKLLI SQGTWTTQAT PVTYNALGIK     |
|    | 901 | VKNTMQVFPK VTLSLDYSA ISSSTLSHYL NVASRMRF*                  |

A predicted signal peptide is highlighted.

30 The cp6751 nucleotide sequence <SEQ ID'6> is:

|    |      |                                                         |
|----|------|---------------------------------------------------------|
| 30 | 1    | ATGCGCTTTT TTTGCTTCGG AATGTTGCTT CCTTTTACTT TTGTATTGGC  |
|    | 51   | TAATGAAGGT CTCCAACCTTC CTTTGGAGAC CTATATTACA TTAAGTCCTG |
|    | 101  | AATATCAAGC AGCCCCTCAA GTAGGGTTTA CTCATAACCA AAATCAAGAT  |
|    | 151  | CTCGCAATTG TCGGGAAATCA CAATGATTTTC ATCTTGACT ATAAGTACTA |
|    | 201  | TCGGTCGAAT GGAGGTGCTC TTACCTGTAA GAATCTTCG ATCTCTGAAA   |
|    | 251  | ATATAGGAA TGTCTCTTT GAGAAGAATG TCTGTCCCAA TTCTGGCGGG    |
|    | 301  | GCAATTATG CTGCTAAAAA TTGCACGATC TCCAAGAAC AGAACTATGC    |
|    | 351  | ATTACTACA AACTGGTCT CTGACAATCC TACAGCCACT GCGGGATCAC    |
|    | 401  | TATTGGGTGG AGCTCTCTTT GCCATAAATT GCTCTATTAC TAATAACCTA  |
|    | 451  | GGACAGGGAA CTTTCGTGA CAATCTCGCT TAAATAAGG GGGGTGCCCT    |
|    | 501  | CTATACTGAG ACGAACTTAT CTATTAAGA CAATAAAAGGC CCGATCATAA  |
|    | 551  | TCAAGCAGAA TCGGGCACTA AATTGGACA GTT TAGGAGG AGGGATTAT   |
|    | 601  | AGTGGGAACT CTCTAAATAT AGAGGGAAAT TCTGGAGCTA TACAGATCAC  |
| 45 | 651  | AAGCAACTCT TCAGGATCTG GGGGAGGCAT ATTTCTACC CAAACACTCA   |
|    | 701  | CGATCTCTC GAATAAAAAA CTCATAGAAA TCAGTAAAAA TTCCCGCTTC   |
|    | 751  | GCAAATAACT ATGGATCGAA CTTCAATCCA GGAGGAGGAG GTCTTACTAC  |
|    | 801  | CACCTTTGC ACGATATTGA ACAACCGAGA AGGGGTACTC TTTAACAAATA  |
|    | 851  | ACCAAAGCCA GAGCAACGGT GGAGCCATTC ATGCAAATC TATCATTATC   |
|    | 901  | AAAGAAAATG GTCCGTATA CTTTTTAAAT AACACTGCAA CTCGGGGAGG   |
|    | 951  | GGCTCTCCTC AACTTATCAG CAGGTTCTGG AAACGGAAGC TTCATCTTAT  |
| 50 | 1001 | CTGCAGATAA TGGAGATATT ATCTTTAAC AATAATACGGC CTCCAAGCAT  |
|    | 1051 | GCCCTCAATC CTCCATACAG AAACGCCATT CACTCGACTC CTAATATGAA  |
|    | 1101 | TCTGCAAATA GGAGCCCGTC CCGGCTATCG AGTGCTGTT TATGATCCCA   |
|    | 1151 | TAGAACATGA GCTCCCTTCC TCCCTCCCCA TACTCTTAA TTTCGAAACC   |
| 55 | 1201 | GGTCATACAG GTACAGTTTT ATTTCAGGG GAACATGTAC ACCAGAACTT   |

1251 TACCGATGAA ATGAATTCTT TTTCTTATTT AAGGAACACT TCGGAACACT  
 1301 GTCAGGAGT CTTGCTGTT GAAGATGGTG CGGGGCTGGC CTGCTATAAG  
 1351 TTCTTCCAAC GAGGAGGCAC TCTACTTCTA GGTCAAGGTG CGGTGATCAC  
 1401 GACAGCAGGA ACGATTCCA CACCATCTC AACACCAACG ACAGTAGGAA  
 1451 GTACTATAAC TTTAAATCAC ATTGCCATTG ACCTTCCTTC TATTCTTCT  
 1501 TTTCAAGCTC AGGCTCCAAA AATTGGATT TACCCACAA AAACAGGATC  
 1551 TACCTATACT GAAGATTCCA ACCCGACAAT CACAATCTCA GGAACCTCTCA  
 1601 CCTTACGCAA CAGCAACAAAC GAAGATCCCT ACGATAGTCT GGATCTCTCG  
 1651 CACTCTCTTG AGAAAGTCC CCTCTTTAT ATTGTCGATG TCGCTGCACA  
 1701 AAAAATTAAC TCTTCGCAAC TGGATCTATC CACATTAAT TCTGGCGAAC  
 1751 ACTATGGGTA TCAAGGCATC TGGTCGACCT ATTGGGTAGA AACTACAACA  
 1801 ATCACGAACC CTACATCTCT ACTAGGCGCG AATAACAAAC ACAAGCTGCT  
 1851 CTATGCAAAC TGGTCTCTC TAGGCTACCG TCCTCATCCC GAACGTCGAG  
 1901 GAGAATTCAAT TACGAATGCC TTGTCGCAAT CGGCATATAAC GGCTCTTGCA  
 1951 GGACTCCACT CCCTCTCTC CTGGGATGAA GAGAAGGGTC ATGCAGCTTC  
 2001 CCTACAAGGC ATTGGTCTTC TGTTTCATCA AAAAGACAAA AACGGTTTA  
 2051 AGGGATTCG TAGTCATATG ACAGGTTATA GTGCTACAC CGAACGCAACC  
 2101 TCTTCTCAAA GTCCGAATT CTCTTAGGA TTTGTCAGT TCTTCTCCAA  
 2151 AGCTAAAGAA CATGAATCTC AAAATAGCAC GTCCTCTCAC CACTATTCT  
 2201 CTGGAATGTG CATAGAAAAT ACTCTCTCA AAGAGTGGAT ACGTCTATCT  
 2251 GTGTCTCTTG CTTATATGTT TACCTCGGAA CATAACCCATA CAATGTATCA  
 2301 GGGTCTCTG GAAGGGAACT CTCAGGGATC TTTCCACAAAC CATAACCTTAG  
 2351 CAGGGGCTCT CTCCTGTGTT TTCTTACCTC AACCTCACGG CGAGTCCCTG  
 2401 CAGATCTATC CCTTTATAC TGCCTTAGCC ATCCGAGGAA ATCTTGCTGC  
 2451 GTTTCAAGAA TCTGGAGACC ATGCTCGGAA ATTTTCCCTA CACCGCCCCC  
 2501 TAACGGACGT CTCCCTCCCT GTAGGAATCC GCGCTCTTG GAAGAACAC  
 2551 CACCGAGTTTC CCCTAGTCTG GCTCACAGAA ATTTCTATC GCTCTACTCT  
 2601 CTATAGGCAA GATCCTGAAC TCCACAGAA ATTACTGATT AGCCAAGGTA  
 2651 CGTGGACGAC GCAGGCCACT CCTGTGACCT ACAAATGCTTT AGGGATCAAA  
 2701 GTGAAAAATAA CCATGCAGGT GTTCTCTAAA GTCACTCTCT CCTTAGATTA  
 2751 CTCTGCGGAT ATTTCTCTC CCACGCTGAG TCACTACTTA AACGTGGCGA  
 2801 GTAGAATGAG ATTTTAA

The PSORT algorithm predicts an outer membrane location (0.923).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 3A, 35 and also in his-tagged form. The GST-fusion recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 3B) and for FACS analysis (Figure 3C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6751 is a surface-exposed and immunoaccessible protein, and that it 40 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 4

The following *C.pneumoniae* protein (PID 4376752) was expressed <SEQ ID 7; cp6752>:

1 MFGMTPAVYS LQTDLSLEKFA LERDEEFRTS FPLLLDSLSTL TGFSPIITTFV  
 51 GNRHNSSQDI VLSNYKSIDN ILLLWTSAGG AVSCNNFLLS NVEDHAFFSK  
 101 NLAIGTGGAI ACQGACTITK NRGLIIFSN RGLNNASTGG ETRGGAIACN  
 151 GDFTISQNQG TFYFVNNSVN NWGGALSTNG HCRIQSNRAP LLFFNNNTAPS  
 201 GGGALRSENT TISDNTRPIY FKNNCGNNNG AIQTSVTVAI KNNSGSVIFN  
 251 NNTALSGSIN SGNGSGGAIY TTNLSIDDNP GTILFNNNNYC IRDGGAICTQ  
 301 FLTIKNSGHV YFTNNQGNWG GALMLLQDST CLLFAEQQNI AFQNNEVFLT  
 351 TFGRYNAIHC TPNSNLQLGA NKGYTTAFFD PIEHQHPTTN PLIFNPANAH  
 401 QGTILFSSAY IPEASDYENN FISSSKNTSE LRNGVLSIED RAGWQFYKFT  
 451 QKGGILKLGH AASIAATTANS ETPSTSVGSQ VIIINNLAINL PSILAKGKAP  
 501 TLWIRPLQSS APFTEDNNPT ITLSGPLTLL NEENRDPYDS IDLSEPLQNI  
 551 HLLSLSDVTA RHINTDNFHP ESLNATEHYG YQGIWSPYWW ETITTTNNAS  
 601 IETANTLYRA LYANWTPFLGY KVNPEYQGDL ATTPLWQSFH TMFSLLRSYN  
 651 RTGDSDIERP FLEIQGIADG LFVHQNSIPG APGFRIQSTG YSLQASSETS

-45-

701 LHQKISLGFA QFFTRTKEIG SSNNVSAHNT VSSLYVELPW FQEAFATSTV  
 751 LAYGYGDHHL HSLHPSHQEQQ AEGTCYSHTL AAAIGCSFPW QOKSYLHLSP  
 801 FVQAIAIRSH QTAFEEIGDN PRKFVSQKPF YNLTLPLGIQ GKWLQSKFHVP  
 851 TEWTLELSYQ PVLYQQNPQI GVTLLASGGS WDILGHNYVR NALGYKVHNQ  
 901 TALFRSLLDLF LDYQGSVSSS TSTHHLQAGS TLKF\*

5 The cp6752 nucleotide sequence <SEQ ID 8> is:

|    |      |              |             |             |             |             |
|----|------|--------------|-------------|-------------|-------------|-------------|
|    | 1    | ATGTTCGGGGA  | TGACTCCTGC  | AGTGTATACT  | TTACAAACGG  | ACTCCCTTGA  |
|    | 51   | AAAGTTTGCT   | TTAGAGAGGG  | ATGAAGAGTT  | TCGTACGAGC  | TTTCCTCTCT  |
| 10 | 101  | TAGACTCTCT   | CTCCACTCTT  | ACAGGATTTT  | CTCCAATAAC  | TACGTTTGT   |
|    | 151  | GGAATAGAC    | ATAAATCCTC  | TCAAGACATT  | GTACTTTCTA  | ACTACAAGTC  |
|    | 201  | TATTGATAAAC  | ATCCCTCTTC  | TTGGACATC   | GGCTGGGGGA  | GCTGTGTCT   |
|    | 251  | GTAATAATTT   | CTTATTATCA  | AATGTTGAAG  | ACCATGCCTT  | CTTCAGTAAA  |
|    | 301  | AATCTCGCGA   | TTGGGACTGG  | AGGCCGCGATT | GCTTGCAGG   | GAGCCGTGAC  |
|    | 351  | AATCACGAA    | AATAGAGGAC  | CCCTTATTTT  | TTTCAGCAA   | CGAGGTCTTA  |
| 15 | 401  | ACAATGCGAG   | TACAGGAGGA  | GAAACTCGTG  | GGGGTGGGAT  | TGCCTGTAAT  |
|    | 451  | GGAGACTTC    | CGATTTCTCA  | AAATCAAGGG  | ACTTTCTACT  | TTGTCACACAA |
|    | 501  | TTCCGTCAAC   | AACTGGGGAG  | GAGCCCTCTC  | CACCAATGGA  | CACTGCCGCA  |
|    | 551  | TCCAAAGCAA   | CAGGGCACCT  | CTACTCTTTT  | TTAACATAC   | AGCCCCTAGT  |
| 20 | 601  | GGAGGGGGTG   | CGCTTCGTAG  | TGAAAATACA  | ACGATCTCTG  | ATAACACGCG  |
|    | 651  | TCCTATTTAT   | TTTAAGAAC   | ACTGTGGGAA  | CAATGGGGG   | GCCATTCAAA  |
|    | 701  | CAAGCGTTAC   | TGTTGCGATA  | AAAAATAACT  | CCGGGTGGT   | GATTTTCAT   |
|    | 751  | AACAACACAG   | CGTTATCTGG  | TTCGATAAT   | TCAGGAAATG  | GTTCAAGGAG  |
|    | 801  | GGCGATTTAT   | ACAACAAACC  | TATCCATAGA  | CGATAACCCCT | GGAACATATT  |
|    | 851  | TTTTCAATAA   | TAACTACTGC  | ATTGCGGATG  | GCGGAGCTAT  | CTGTACACAA  |
| 25 | 901  | TTTTTGACAA   | TCAAAATAG   | TGGCCACGTA  | TATTTTCACCA | ACAATCAAGG  |
|    | 951  | AAACTGGGGG   | GGTGCTCTTA  | TGCTCCTACA  | GGACAGCACC  | TGCCTACTCT  |
|    | 1001 | TCGCGGAACA   | AGGAAATATC  | GCATTTCAA   | ATAATGAGGT  | TTTCCTCACC  |
|    | 1051 | ACATTTGGTA   | GATACAACGC  | CATACATTGT  | ACACCAAAATA | GCAACATTACA |
|    | 1101 | ACTTGGAGCT   | AATAAGGGT   | ATACGACTGC  | TTTTTTGAT   | CCTATAGAAC  |
| 30 | 1151 | ACCAACATCC   | AACTACAAAT  | CCTCTAATCT  | TTAATCCAA   | TGCGAACCAT  |
|    | 1201 | CAGGGAACGA   | TCTTATTTTC  | TTCAGCCTAT  | ATCCCAGAAG  | CTTCTGACTA  |
|    | 1251 | CGAAAATAAT   | TTCATTAGCA  | GCTGAAAAAA  | TACCTCTGAA  | CTTCGCAATG  |
|    | 1301 | GTGTCTCTC    | TATCGAGGAT  | CGTGCAGGAT  | GGCAATTCTA  | TAAGTTCACT  |
|    | 1351 | CAAAAGGAG    | GTATCCTAA   | ATTAGGGCAT  | GCGGCGAGTA  | TTGCAACAAAC |
| 35 | 1401 | TGCCAACTCT   | GAGACTCCAT  | CAACTAGTGT  | AGGCTCCAG   | GTCATCATT   |
|    | 1451 | ATAACCTTG    | GATTAACCTC  | CCCTCGATCT  | TAGCAAAAGG  | AAAAGCTCCT  |
|    | 1501 | ACCTTGTGGA   | TCCGTCTCT   | ACAATCTAGT  | GCTCCTTTCA  | CAGAGGACAA  |
|    | 1551 | TAACCCCTACA  | ATTACTTTAT  | CAGGTCTCT   | GACACTCTTA  | AATGAGGAAA  |
|    | 1601 | ACCGCGATCC   | CTACGACAGT  | ATAGATCTCT  | CTGAGCCTTT  | ACAAAACATT  |
| 40 | 1651 | CATCTCTTPT   | CTTATCGGA   | TGTAACAGCA  | CGTCATATCA  | ATACCGATAA  |
|    | 1701 | CTTTCATCCT   | GAAAGCTTAA  | ATGCGACTGA  | GCATTACGGT  | TATCAAGGCA  |
|    | 1751 | TCTGGTCTCC   | TTATTGGGT   | GAGACGATAA  | CAACAAACAA  | TAACGCTTCT  |
|    | 1801 | ATAGAGACGG   | CAAACACCCCT | CTACAGAGCT  | CTGTATGCCA  | ATTGGACTCC  |
|    | 1851 | CTTAGGATAT   | AAGGTCAATC  | CTGAATACCA  | AGGAGATCTT  | GCTACGACTC  |
| 45 | 1901 | CCCTATGGCA   | ATCCTTCAT   | ACTATGTTCT  | CTCTTAAAG   | AAGTTATAAT  |
|    | 1951 | CGAACTGGTG   | ATTCTGATAT  | CGAGAGGCT   | TTCTTAGAAA  | TTCAAGGGAT  |
|    | 2001 | TGCCGACGGC   | CTCTTTGTT   | ATCAAAATAG  | CATCCCCGGG  | GCTCCAGGAT  |
|    | 2051 | TCCGTATCCA   | ATCTACAGGG  | TATTCTTAC   | AAGCATCTC   | CGAAACTTCT  |
|    | 2101 | TTACATCAGA   | AAATCTCTT   | AGGTTTGCA   | CAGTTCTCA   | CCCGCACTAA  |
| 50 | 2151 | AGAAATCGGA   | TCAAGCAACA  | ACGTCTCGGC  | TCACAATACA  | GTCTCTTCAC  |
|    | 2201 | TTTATGTTGA   | GCTTCCGTGG  | TTCCAAGAGG  | CCTTTGCAAC  | ATCCACAGTG  |
|    | 2251 | TTAGCGTATG   | GCTATGGGG   | CCATCACCTC  | CACAGCCTAC  | ATCCCTCACA  |
|    | 2301 | TCAAGAACAG   | GCAGAAGGGG  | CGTGTATAG   | CCATACATTA  | GCAGCAGCTA  |
|    | 2351 | TCGGCTGTT    | TTTCCCTTGG  | CAACAGAAAT  | CCTATCTCA   | CCTCAGCCCG  |
| 55 | 2401 | TTCGTTCAGG   | CAATTGCAAT  | ACGTTCTCAC  | CAAACAGCGT  | TCGAAGAGAT  |
|    | 2451 | TGGTGAACAAT  | CCCCGAAAGT  | TTGTCTCTCA  | AAAGCCTTTC  | TATAATCTGA  |
|    | 2501 | CCTTACCTCT   | AGGAATCCAA  | GGAAAATGGC  | AGTCAAAATT  | CCACGTACCT  |
|    | 2551 | ACAGAACATGGA | CTCTAGAACT  | TTCTTACCAA  | CCGGTACTCT  | ATCAACAAAA  |
|    | 2601 | TCCCCAAATC   | GGTGTACGC   | TACTTGCAG   | CGGAGGTTCC  | TGGGATATCC  |
| 60 | 2651 | TAGGCCATAA   | CTATGTTCGC  | AATGCTTTAG  | GGTACAAGT   | CCACAATCAA  |
|    | 2701 | ACTGCGCTCT   | TCCGTCTCT   | CGATCTATT   | TTGGATTACC  | AAGGATCGGT  |
|    | 2751 | CTCCTCCTCG   | ACATCTACGC  | ACCATCTCCA  | AGCAGGAAGT  | ACCTTAAAT   |
|    | 2801 | TCTAA        |             |             |             |             |

The PSORT algorithm predicts a cytoplasmic location (0.138).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 4A, and also as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (4B) and the his-tagged protein was used for FACS analysis (4C).

The cp6752 protein was also identified in the 2D-PAGE experiment (Cpn0467).

- 5 These experiments show that cp6752 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 5

The following *C.pneumoniae* protein (PID 4376850) was expressed <SEQ ID 9; cp6850>:

10        1    MKRAVLIAAM FCGVVSLSSC CRIVDCCFED PCAPSSCNPC EVIRKKERSC  
             51    GGNACGSYVP SCSNPGCGSTE CNSQSPQVKG CTSPDGRCRQ \*

A predicted signal peptide is highlighted.

The cp6850 nucleotide sequence <SEQ ID 10> is:

15        1    ATGAAGAAAG CTGTTTTAAC TGCTGCAATG TTTTGTGGAG TAGTTAGCTT  
             51    AAGTAGCTGC TGCCGCATTG TAGATTGTG TTTTGAGGAT CCTTGCGCAC  
             101    CCTCTTCATTG CAATCCTGT GAAGTAATAA GAAAAAAAAGA AAGATCTTGC  
             151    GCGGTTAATG CTTGTGGTC CTACGTTCCCT TCTTGTTCATA ATCCATGTGG  
             201    TTCAACAGAG TGTAACTCTC AAAGCCCACA AGTTAAAGGT TGTACATCAC  
             251    CTGATGGCAG ATGCAAACAG TAA

The PSORT algorithm predicts an inner membrane location (0.329).

- 20 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 5A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 5B) and for FACS analysis (Figure 5B). A his-tagged protein was also expressed.

These experiments show that cp6850 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

25 **Example 6**

The following *C.pneumoniae* protein (PID 4376900) was expressed <SEQ ID 11; cp6900>:

30        1    MKIKFSWKVN FLICLLAVGL IFFGCSRVRK EVLVGRDATW FPKQFGIYTS  
             51    DTNAFLNDLV SEINYKENLN INIVNQDWHL LFENLDDKKT QGAFTSVLPT  
             101    LEMLEHYQFS DPILLTGTVL VVAQDSPYQS IEDLKGRRLIG VYKFDSSVLV  
             151    AQNIPDAVIS LYQHVPIALE ALTSNCYDAL LAPVIEVTAL IETAYKGRLK  
             201    IISKPLNADG LRLAILKGTN GDLLEGFNAG LVKTRRSRGKY DAIKQRYRLP

The cp6900 nucleotide sequence <SEQ ID 12> is:

35        1    GTGAAGATAA AATTTCTTG GAAAGTAAAT TTTTTAATAT GTTTACTGGC  
             51    TGTGGGACTG ATCTTTTCG GGTGCTCTCG AGTAAAAAGA GAAGTTCTCG  
             101    TAGGTCGTGA TGCCACCTGG TTTCCAAAAC AATTCGGCAT TTATACATCC  
             151    GATACCAACG CATTTTAAAG CGATCTTGTG TCTGAGATTA ACTATAAAGA  
             201    GAATCTAAAT ATTAATATTG TAAATCAAGA TTGGGTGCAT CTCTTTGAGA  
             251    ATTTAGATGA TAAAAAGACC CAAGGAGCAT TTACATCTGT ATTGCTCTACT  
             301    CTTGAGATGC TCGAACACTA TCAATTTCCT GATCCCATT TACTCACAGG  
             351    TCTCTGTCCCTT GTCGTCGCTC AAGACTCTCC TTACCAATCT ATAGAGGATC  
             401    TTAAAGGTGCG TCTTATTGGT GTGTATAAGT TTGACTCTTC AGTTCTTGTG  
             451    GCTCAAAATA TCCCTGACGC TGTGATTAGC CTCTACCAAC ATGTTCCAAT  
             501    AGCATTGGAA GCCTTAACAT CGAATTGTTA CGACGCTCTT CTAGCTCCTG  
             551    TAATTGAAGT GACCGCGCTA ATAGAAACAG CATATAAAGG AAGACTGAAA  
             601    ATTATTTCAA AACCTTAAAG CGCAGATGGT TTGGGGCTTG CAATACTGAA

-47-

651 AGGGACAAAC GGAGATTTGC TTGAAGGGTT TAACGCAGGA CTTGTGAAAA  
 701 CACGACGCTC AGGAAAATAC GATGCTATAA AACAGCGGTA TCGTCTTCCC  
 751 TAA

The PSORT algorithm predicts an inner membrane location (0.452).

- 5 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 6A. The recombinant protein was used to immunise mice, whose sera were used for FACS analysis (Figure 6B). A his-tagged protein was also expressed.

The cp6900 protein was also identified in the 2D-PAGE experiment (Cpn0604).

- 10 These experiments show that cp6900 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 7

The following *C.pneumoniae* protein (PID 4377033) was expressed <SEQ ID 13; cp7033>:

1 MVNPIGPGPI DETERTPPAD LSAQGLEASA ANKSAEAQRI AGAEAKPKES  
 51 KTDSSVERWSI LRSAVNALMS LADKLGIASS NSSSSSTSRSVA DVDSSTTATAP  
 101 TPPPPPTFDDY KTQQAQTAYDT IFTSTSLADI QAALVSLQDA VTNIKDSTAAT  
 151 DEETAIAAAEW ETKNADAVKV GAQITELAKY ASDNQAIILDS LGKLTSDLL  
 201 QAALLQSVAN NNKAAELLKE MQDNPVVPVGK TPAIAQSLVD QTDATATQIE  
 251 KDGNAIRDAY FAGQNASGAV ENAKSNNNS NIDSAAIA TAKTQIAEAQ  
 301 KKFPDPSPILQ EAEQMVIIQAE KDLKNIKPAD GSDVPNPGTT VGGSKQQGSS  
 351 IGSIRVSMILL DDAENETASI LMSGFRQMIH MFNTENPDSQ AAQQELAAQA  
 401 RAAKAAGDDS AAAALADAQK ALEAALGKAG QQQGILNALG QIASAAVVSA  
 451 GVPAAASSI GSSVKQLYKT SKSTGSDYKT QISAGYDAYK SINDAYGRAR  
 501 NDATRDVINN VSTPALTRSV PRARTEARGP EKTDQALARV ISGNNSRTLGD  
 551 VYSQVSALQS VMQIIQSNPQ ANNEEIROQL TSAVTKPPQF GYPYVQLSND  
 601 STQKFIAKLE SLFAEGSRTA AEIKALSFET NSLFIQQVLV NIGSLYSGYL  
 651 Q\*

The cp7033 nucleotide sequence <SEQ ID 14> is:

1 ATGGTTAACATC CTATTGGTCC AGGTCCCTATA GACGAAACAG AACGCCACACC  
 51 TCCCGCAGAT CTTTCTGCTC AAGGATTGGA GCGGAGTGCA GCAAATAAGA  
 101 GTGCGGAAGC TCAAAGATA GCAGGTGCGG AAGCTAAGCC TAAAGAATCT  
 151 AAGACCGATT CTGTAGAGCG ATGGAGCATC TTGCGTTCTG CAGTGAATGC  
 201 TCTCATGAGT CTGGCAGATA AGCTGGGTAT TGCTTCTAGT AACAGCTCGT  
 251 CTTCTACTAG CAGATCTGCA GACGTGGACT CAACGACAGC GACCCACCT  
 301 ACGCCCTCC CACCCACCGTT TGATGATTAT AAGACTCAAG CGCAAACAGC  
 351 TTACGATACT ATCTTTACCT CAACATCACT AGCTGACATA CAGGCTGCTT  
 401 TGGTGAGCCT CCAGGATGCT GTCACTAATA TAAAGGATAC AGCGGCTACT  
 451 GATGAGGAAA CCGCAATCGC TGCGGAGTGG GAAACTAAGA ATGCCGATGC  
 501 AGTTAAAGTT GGCAGCAGAA TTACAGAATT AGCGAAATAT GCTTCGGATA  
 551 ACCAAGCGAT TCTTGACTCT TTAGGTAAAC TGACTTCCCT CGACCTCTTA  
 601 CAGGCTGCTC TTCTCAACATC TGTAGCAAAC AATAACAAAG CAGCTGAGCT  
 651 TCTTAAAGAG ATGCAAGATA ACCCAGTAGT CCCAGGGAAA ACGCCTGCAA  
 701 TTGCTCAATC TTTAGTTGAT CAGACAGATG CTACAGCCAC ACAGATAGAG  
 751 AAAGATGGAA ATGCGATTAG GGATGCATAT TTTGCAGGAC AGAACGCTAG  
 801 TGGAGCTGTA GAAAATGCTA AATCTAATAA CAGTATAAGC AACATAGATT  
 851 CAGCTAAAGC AGCAATCGCT ACTGCTAAGA CACAAATAGC TGAAGCTCAG  
 901 AAAAAGTTCC CCGACTCTCC AATTCTCAA GAAGCGGAAAC AAATGGTAAT  
 951 ACAGGCTGAG AAAGATCTTA AAAATATCAA ACCTGCAGAT GGTTCTGATG  
 1001 TTCCAATCC AGGAACCTACA GTTGGAGGCT CCAAGCAACA AGGAAGTAGT  
 1051 ATTGGTAGTA TTCGTTGTTTC CATGCTGTTA GATGATGCTG AAAATGAGAC  
 1101 CGCTTCCATT TTGATGTCG GGTTTCTGCA GATGATTCAAC ATGTTCAATA  
 1151 CGGAAAATCC TGATTCTCAA GCTGCCAAC AGGAGCTCGC AGCACAAGCT  
 1201 AGAGCAGCGA AAGCCGCTGG AGATGACAGT GCTGCTGCAG CGCTGGCAGA  
 1251 TGCTCAGAAA GCTTTAGAAG CGGCTCTAGG TAAAGCTGGG CAACAAACAGG  
 1301 GCATACTCAA TGCTTTAGGA CAGATCGCTT CTGCTGCTGT TGTGAGCGCA  
 1351 GGAGTTCCCTC CCGCTGCAGC AAGTTCTATA GGGTCATCTG TAAAACAGCT  
 1401 TTACAAGAGACC TCAAAATCTA CAGGTTCTGA TTATAAAACA CAGATATCAG

5           1451 CAGGTTATGA TGCTTACAAA TCCATCAATG ATGCCTATGG TAGGGCACGA  
          1501 AATGATGCGA CTCGTGATGT GATAAACAAAT GTAAAGTACCC CCGCTCTCAC  
          1551 ACGATCCGTT CCTAGAGCAC GAACAGAAC TCGAGGACCA GAAAAAACAG  
          1601 ATCAAGCCCT CGCTAGGGTG ATTTCTGGCA ATAGCAGAAC TCTTGGAGAT  
          1651 GTCTATAGTC AAGTTTCGGC ACTACAATCT GTAAATGCAGA TCATCCAGTC  
          1701 GAATCCTCAA GCGAATAATG AGGAGATCG ACAAAAGCTT ACATCGGCAG  
          1751 TGACAAAGCC TCCACAGTT GGCTATCCTT ATGTGCAACT TTCTAATGAC  
          1801 TCTACACAGA AGTCATAGC TAAATTAGAA AGTTTGTGCT CTGAAGGATC  
          1851 TAGGACAGCA GCTGAAATAA AAGCACTTTC CTTTGAAACG AACTCCTTGT  
          1901 TTATTCAGCA GGTGCTGGTC AATATCGGCT CTCTATATTC TGGTTATCTC  
          1951 CAATAA

The PSORT algorithm predicts a cytoplasmic location (0.272).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 7A. A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose  
 15 sera were used for FACS (Figure 7B) and Western blot (7C) analyses.

The cp7033 protein was also identified in the 2D-PAGE experiment (Cpn0728) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7033 a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 20 Example 8

The following *C.pneumoniae* protein (PID 6172321) was expressed <SEQ ID 15; cp0017>:

25           1 MGIKGTGIIIV WVDDATAKTK NATLTWTKTG YKPNPERQGP LVPNSLWGSF  
          51 VDVRSIQSLM DRSTSSLSSS TNLWVSGIAD FLHEDQKGNO RSYRHSSAGY  
          101 ALGGGFTTAS ENFFNFACFCQ LFGYDKDHLY AKNHHTHVYAG AMSYRHLGES  
          151 KTLAKILSGN SDSLPFVFNA RFAYGHTDNM MTTKYTGSP VKGSGWNDAP  
          201 GIECGGAIPV VASGRRSWVD THTPFLNLEM IYAHQNDFKE NGTEGRSRFQS  
          251 EDLFNLAVPV GIKFEKFSDK STYDLSIAYV PDVIRNDPGC TTTLMVSGDS  
          301 WSTCGTSLSR QALLVRAGNH HAFASNFEVF SQFEVELRGS SRSYAIDLGG  
          351 RFGF\*

30           The cp0017 nucleotide sequence <SEQ ID 16> is:

35           1 ATGGGTATCA AGGGAACCTGG AATAATTGTT TGGGTCGACG ATGCAACTGCG  
          51 AAAAACAAAAA AATGCTAACCT TAACCTTGGAC TAAAACAGGA TACAAGCCGA  
          101 ATCCAGAACG TCAGGGACCT TTGGTTCCCA ATAGCCTGTG GGGTTCTTTT  
          151 GTCGATGTCC GCTCCATTCA GAGCCTCATG GACCGGAGCA CAAGTTCGTT  
          201 ATCTTCGTCA ACAAAATTGTT GGGTATCAGG AATCGCGGAC TTTTTGCATG  
          251 AAGATCAGAA AGGAAACCAA CGTAGTTATC GTCAATTCTAG CGCGGGTTAT  
          301 GCATTAGGAG GAGGATTCTT CACGGCTTCT GAAAATTCT TTAATTTCGC  
          351 TTTTTGTCACT CTTTTGGCT ACGACAAGGA CCATCTGTG GCTAAGAACCC  
          401 ATACCCATGT ATATGCAGGG GCAATGAGTT ACCGACACCT CGGAGAGTCT  
          451 AAGACCCCTCG CTAAGATTTT GTCAAGGAAAT TCTGACTCCC TACCTTTGT  
          501 CTTCATGCT CGGTTTGCTT ATGCCATAC CGACAATAAC ATGACCACAA  
          551 AGTACACTGG CTATTCTCCT GTTAAGGGAA GCTGGGGAAA TGATGCCTTC  
          601 GGTATAGAAT GTGGAGGAGC TATCCCCGTA GTTGCTTCAG GACGTCGGTC  
          651 TTGGGTGGAT ACCCACACGC CATTCTAAA CCTAGAGATG ATCTATGCAC  
          701 ATCAGAATGA CTTTAAGGAA AACGGCACAG AAGGCCGTTT TTTCCAAAGT  
          751 GAAGACCTCT TCAATCTAGC GGTCTCTGTA GGGATAAAAT TTGAGAAATT  
          801 CTCCGATAAG TCTACGTATG ATCTCTCCAT AGCTTACGTT CCCGATGTGA  
          851 TTGCGTAATGA TCCAGGCTGC ACGACAACTC TTATGGTTT TGGGGATTCT  
          901 TGGTCGACAT GTGGTACAAG CTTGTCTAGA CAAGCTCTTC TTGTCAGTGC  
          951 TGGAAATCAT CATGCCTTG CTTCAAACCT TGAAGTTTC AGTCAGTTG  
          1001 AAGTCGAGTT GCGAGGTTCT TCTCGTAGCT ATGCTATCGA TCTTGGAGGA  
          1051 AGATTCCGGAT TTTAA

This sequence is frame-shifted with respect to cp0016.

The PSORT algorithm predicts a cytoplasmic location (0.075).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 8A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 8B) and for FACS analysis (Figure 8C). A his-tagged protein was also expressed.

- 5 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0017 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 9

- 10 The following *C.pneumoniae* protein (PID 6172315) was expressed <SEQ ID 17; cp0014>:

```

1  MKSSFPKFVF STFAIFFPLSM IATETVLDSS ASFDGNKNGN FSVRESQEDA
51  GTTYLFKGKV TLENIPGTGT AITKSCFNNT KGDLTFTGNG NSLLFQTVDA
101 GTVAGAAVNS SVVDKSTTFI GFSSLSFIAS PGSSITTGKG AVSCSTGSL
151 LTKMSVCSSA KTFQRIMAVL SPQKLFH*

```

- 15 The cp0014 nucleotide sequence <SEQ ID 18> is:

```

1  ATGAAGTCCTT CTTTCCCCAA GTTTGTATTT TCTACATTG CTATTTTCCC
51  TTTGTCTATG ATTGCTACCG AGACAGTTT GGATTCAAGT GCGAGTTTCG
101 ATGGGAATAA AAATGGTAAT TTTTCAGTTC GTGAGAGTCA GGAAGATGCT
151 GGAACACTACCT ACCTATTAA GGGAAATGTC ACTCTAGAAA ATATTCCCTGG
20  201 AACAGGCACA GCAATCACAA AAAGCTGTT TAACAACACT AAGGGCGATT
251 TGACTTTACAC AGGTAACGGG AACTCTCTAT TGTTCCAAAC GGTGGATGCA
301 GGGACTGTAG CAGGGCTGC TGTTAACAGC AGCGTGGTAG ATAAATCTAC
351 CACGTTTATA GGGTTTCTT CGCTATCTTT TATTGCGTCT CCTGGAAGTT
401 CGATAACTAC CGGCAAAGGA GCCGTTAGCT GCTCTACGGG TAGCTTGAGT
451 TTGACAAAAAA TGTCAGTTTG CTCITTCAGCA AAAACTTTTC AACGGATAAT
501 GGCGGTGCTA TCACCGCAAA AACTCTTCA TTAA

```

This protein is frame-shifted with respect to cp0015.

The PSORT algorithm predicts an inner membrane location (0.047).

- 30 The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 9A. A GST-fusion was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in an immunoassay (Figure 9B) and for FACS analysis (Figure 9C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments suggest that cp0014 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 10

- The following *C.pneumoniae* protein (PID 6172317) was expressed <SEQ ID 19; cp0015>:

```

1  MSALFSENTS SKKGGAIQTS DALTITGNQG EVSFSDNTSS DSGAAIFTEA
51  SVTISNNNAKV SFIDNKVTGA SSSTTGDMMSG GAICAYKTST DTKVTLTGNQ
101 MLLFSNNST TAGGAIYVKK LELASGLTL FSRNSVNGGT APKGGAIIAIE
151 DSGELSLSAD SGDIVFLGNT VTSTTPGTNR SSIDLGTSAK MTALRSAAGR

```

-50-

5           201 AIYFYDPITT GSSTTVTDVL KVNETPADSA LOYTGNIIIFT GEKLSSETAA  
          251 DSKNLTSKLL QPVTLGGT SLKHGVTLQT QAFTQQADSR LEMDVGTITLE  
          301 PADTSTINNL VINISSIDGA KKAKIETKAT SKNLTLSGTI TLLDPGTIFY  
          351 ENHSLRNPQS YDILELKASG TVTSTAVTPD PIMGEKFHYG YQGTWGPIVW  
          401 GTGASTTATF NWTKTGIPN PERIGSLVPN SLWNAFIDIS SLHYLMETAN  
          451 EGLQGDRAFW CAGLSNFHK DSTKTRRGFR HLSGGYVIGG NLHTCSDKIL  
          501 SAAFCQLFGR DRDYFVAKNQ GTVYGGTLYY QHNETYISLP CKLRPCSLSY  
          551 VPTEIPVLFS GNLSYTHTDN DLKTKYTTYP TVKGSGWNDS FALEFGGRAP  
          601 ICLDESALFE QYMPFMKLQF VYAHQEGFKE QGTEAREFGS SRLVNLLALPI  
          651 GIRFDKESDC QDATYNLTG YTVDLVRSNP DCTTTLRISG DSWKTFGTNL  
          701 ARQALVLRAG NHFCFNSNFE AFSQSFELR GSSRNVNVDL GAKYQF\*

This sequence is frame-shifted with respect to cp0014.

The cp0015 nucleotide sequence <SEQ ID 20> is:

15           1 ATGTCAGCTC TGTTTCTGA AAATACCTCC TCAAAGAAAAG GCGGAGCCAT  
          51 TCAGACTTCC GATGCCCTTA CCATTACTGG AAACCAAGGG GAAGTCTCTT  
          101 TTTCTGACAA TACTTCTCG GATTCTGGAG CTGCAATTTC TACAGAACCC  
          151 TCGGTGACTA TTTCTAAATA TGCTAAAGTT TCCTTTATTG ACAATAAGGT  
          201 CACAGGAGCG AGCTCCTCAA CAACGGGGGA TATGTCAGGA GGTGCTATCT  
          251 GTGCTTATAA AACTAGTACA GATACTAAGG TCACCCCTCAC TGGAAATCAG  
          301 ATGTTACTCT TCAGCAACAA TACATCGACA ACAGCGGGAG GAGCTATCTA  
          351 TGTGAAAAG CTCGAACCTGG CTTCCGGAGG ACTTACCCCTA TTCAGTAGAA  
          401 ATAGTGTCAA TGGAGGTACA GCTCCTAAAG GTGGAGCCAT AGCTATCGAA  
          451 GATAGTGGGG ATTGAGTT ATCCGCCGAT AGTGGTGACA TTGTCTTTTT  
          501 AGGGAATACA GTCACTTCTA CTACTCCCTGG GACGAATAGA AGTAGTATCG  
          551 ACTTAGGAAC GAGTGCAAAG ATGACAGCTT TGCGTCTGC TGCTGGTAGA  
          601 GCCATCTACT TCTATGATCC CATAACTACA GGATCATCCA CAACAGTTAC  
          651 AGATGTCTTA AAAGTTAATG AGACTCCGGC AGATTCTGCA CTACAATATA  
          701 CAGGGAACAT CATCTTCACA GGAGAAAAGT TATCAGAGAC AGAGGCCGCA  
          751 GATTCTAAAA ATCTTACTTC GAAGCTACTA CAGCCTGTAA CTCTTTCTAGG  
          801 AGGTAACCTA TCTTTAAAAC ATGGAGTGAC TCTGCAGACT CAGGCATTCA  
          851 CTCAACAGGC AGATTCTCGT CTCGAATATGG ACCTGAGAAC TACTCTAGAA  
          901 CCTGCTGATA CTAGCACCAT AAACAATTTC GTCTTAACA TCAGTTCTAT  
          951 AGACGGTGCA AAGAAGGCAA AAATAGAAAAC CAAAGCTACG TCAAAAAATC  
          1001 TGACTTTATC TGGAACCCATC ACTTTATTGG ACCCGACGGG CACGTTTTAT  
          1051 GAAAATCATA GTTTAAGAAA TCCTCAGTCC TACGACATCT TAGAGCTCAA  
          1101 AGCTTCTGGA ACTGTAACAA GCACCGCAGT GACTCCAGAT CCTATAATGG  
          1151 GTGAGAAATT CCATTACGGC TATCAGGGAA CTTGGGGCCC ATTGTTGG  
          1201 GGGACAGGGG CTTCTACGGC TGCAACCTTC AACTGGACTA AAACTGGCTA  
          1251 TATTCTTAAT CCCGAGCGTA TCGGCCTCTTT AGTCCCTAAT AGCTTATGGA  
          40       1301 ATGCATTATAG ATGATATTAGC TCTCTCCATT ATCTTATGGA GACTGCAAAC  
          1351 GAAGGGTTGC AGGGAGACCG TGCTTTTTGG TGTGCTGGAT TATCTAACTT  
          1401 CTTCCATAAG GATAGTACAA AAACACGACG CGGGTTTCGC CATTGAGTG  
          1451 GCGGTTATGT CATAGGAGGA AACCTACATA CTTGTTCA TAAGATTCTT  
          1501 AGTGCTGCAT TTGTCAGCT CTTTGGAAAGA GATAGAGACT ACTTTGTAGC  
          45       1551 TAAAGATCAA GGTACAGTCT ACGGAGGAAC TCTCTATTAC CAGCACAACG  
          1601 AAACCTATAT CTCTCTTCT TGCAAACATAC GGCCTTGTC GTGCTTTAT  
          1651 GTTCCTACAG AGATTCTCGT TCTCTTTCA GGAAACCTTA GCTACACCCA  
          1701 TACGGATAAC GATCTGAAAA CCAAGTATAC AACATATCT ACTGTTAAAG  
          1751 GAAGCTGGGG GAATGATAGT TTCGCTTTAG AATTGGTGG AAGAGCTCCG  
          50       1801 ATTTGCTTAG ATGAAAGTGC TCTATTGAG CAGTACATGC CCTTCATGAA  
          1851 ATTGCAAGTT GTCTATGCAC ATCAGGAAGG TTTTAAAGAA CAGGGAACAG  
          1901 AAGCTCGTGA ATTGGAAGT AGCCGTCTTG TGAATCTTC CTTACCTATC  
          1951 GGGATCCGAT TTGATAAGGA ATCAGACTGC CAAGATGCAA CGTACAATCT  
          2001 AACTCTTGGT TATACTGTCG ATCTTGTTCG TAGTAACCCC GACTGTACGA  
          2051 CAAACACTGCG ATTAGCGGT GATTCTTGGA AAACCTTCGG TACGAATTG  
          2101 GCAAGACAAG CTTTAGCTC TCGTGCAGGG AACCATTTT GCTTTAACTC  
          2151 AAATTTGAA GCCTTTAGCC AATTCTCTTT TGAATTGCGT GGGTCATCTC  
          2201 GCAATTACAA TGTAGACTTA GGAGCAAAAT ACCAATTCTA A

The PSORT algorithm predicts a cytoplasmic location (0.274).

- 60       The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 10A.  
         The recombinant protein was used to immunise mice, whose sera were used in a Western blot  
         (Figure 10B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp0015 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 11

The following *C.pneumoniae* protein (PID 6172325) was expressed <SEQ ID 21; cp0019>:

```

5      1 LQDSQDYSFV KLSPGAGGTI ITQDASQKPL EVAPSRPHYG YQGHWNVQVI
      51 PGTGTQPSQA NLEWVRTGYL PNPERQGSLV PNSLGWSFVD QRAIQEIMVN
     101 SSQILCQERG VWGAGIANFL HRDKINEHGY RHSGVGVLVG VGTHAFSDAT
     151 INAAFCQLFS RDKDYVVSKN HGTSYSGVVF LEDTLEFRSP QGFYTDSSSE
     201 ACCNQVVTID MQLSYSHRNN DMKTKYTTYP EAQGSWANDV FGLEFGATTY
     251 YYPNSTFLFD YYSPFLLQC TYAHQEDFKE TGGEVRHFTS GDLFNLAVPI
     301 GVKFERFSDC KRGSYELTLA YVPDVIRKDP KSTATLASGA TWSTHGNNL
     351 RQGLQLRLGN HCLINPGIEV FSHGATELRG SSRNNYNINLG GKYRF*

```

This sequence is frame-shifted with respect to cp0018.

The cp0019 nucleotide sequence <SEQ ID 22> is:

```

15     1 TTGCAAGACT CTCAGACTA TAGCTTGTA AAGTTATCTC CAGGAGCGGG
      51 AGGGACTATA ATTACTCAAG ATGCTTCTCA GAAGCCTCTT GAAGTAGCTC
     101 CTTCTAGACC ACATTTATGGC TATCAAGGAC ATTGGAATGT GCAAGTCATC
     151 CCAGGAACGG GAACTCAACC GAGCCAGGCA AATTTAGAAT GGGTGCAGAC
     201 AGGATACCTT CCGAATCCCAG AACGGCAAGG ATCTTATGTT CCCAATAGCC
     251 TGTGGGGTTTC TTTTGTGAT CAGCGTGCTA TCCAAGAAAT CATGGTAAAT
     301 AGTAGCCAAA TCTTATGTCA GGAACGGGGAG GTCTGGGGAG CTGGAATTGC
     351 TAATTTCCTA CATAGAGATA AAATTAATGA GCACGGCTAT CGCCATAGCG
     401 GTGTCGGTTA TCTTGTTGGGA GTTGGCACTC ATGCTTTTTC TGATGCTACG
     451 ATAATGCGG CTTTTGCCA GCTCTTCAGT AGAGATAAAG ACTACGTAGT
     501 ATCCAAAAAT CATGGAACTA GCTACTCAGG GGCGTATTCTT CTTGAGGATA
     551 CCCTAGAGTT TAGAAGTCCA CAGGGATTCT ATACTGATAG CTCCCTCAGAA
     601 GCTTGCTGTA ACCAAGTCGT CACTATAGAT ATGCAGTTGT CTTACAGCCA
     651 TAGAAATAAT GATATGAAAAA CCAAATACAC GACATATCCA GAAGCTCAGG
     701 GATCTTGGGC AAATGATGTT TTTGGTCTTG AGTTGGAGC GACTACATAC
     751 TACTACCCCTA ACAGTACTTT TTTATTGAT TACTACTCTC CGTTTCTCAG
     801 GCTGCAGTGC ACCTATGCTC ACCAGGAAGA CTTCAAAGAG ACAGGAGGTG
     851 AGGTTCGTCA CTTTACTAGC GGAGATCTTT TCAATTTCAG AGTTCCATT
     901 GGCCTGAAGT TTGAGAGATT TTCAGACTGT AAAAGGGGAT CTTATGAACT
     951 TACCCCTTGCT TATGTTCTG ATGTGATTG CAAAGATCCC AAGAGCACGG
    1001 CAACATTGGC TAGTGGAGCT ACCTGGAGCA CCCACGGAAA CAATCTCTCC
    1051 AGACAAGGGAT TACAACGTGC TTTAGGGAAC CACTGTCTCA TAAATCCTGG
    1101 AATTGAGGTG TTCAGTCACG GAGCTATTGA ATTGCGGGGA TCCTCTCGTA
    1151 ATTATAACAT CAATCTCGGG GGTAAATACC GATTTTAA

```

The PSORT algorithm predicts a cytoplasmic location (0.189).

40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 11A. This protein was used to immunise mice, whose sera were used in a Western blot (Figure 11B) and an immunoblot assay (Figure 11C). A his-tagged protein was also expressed.

These experiments show that cp0019 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 12

The following *C.pneumoniae* protein (PID 4376466) was expressed <SEQ ID 23; cp6466>:

```

50     1 MRKISVGICL TILLSLSVVL QGCKESSHSS TSRGELAINI RDEPRSLDPR
      51 QVRLLSEISL VKHIYEGLVQ ENNLSGNIEP ALAEDYSISSL DGLTYTFKLK
     101 SAFWSNGDPL TAEDFIESWK QVATQEVSIGI YAFALNPIKN VRKIQEGHLS
     151 IDHFGVHSPN ESTLTVVLTES PTSHFLKLLA LPVFFPVHKS QRTLQSKSLP
     201 IASGAFYPKN IKQKQWIKLS KNPHYYNQSQ VETKTITIHF IPDANTAAKL

```

5  
251 FNQGKLNWQG PPWGERIPQE TLSNLQSKGH LHSFDVAGTS WLTFNINKFP  
301 LNNMKLREAL ASALDKEALV STIFLGRAKT ADHLLPTNIH SYPEHQKQEM  
351 AQRQAYAKKL FKEALEELQI TAKDLEHLNL IFFVSSSASS LLVQLIREQW  
401 KESLGFAIPI VGKEFALLQA DLSSGNFSLA TGGWFADFAD PMAFLTIFAY  
451 PSGVPPYAIN HKDFLEILQN IEQEQDHQKR SELVSQASLY LETFHJIIEPI  
501 YHDAFQFAMN KKLSNLGVSP TGVVDFRYAK EN\*

A predicted signal peptide is highlighted.

The cp6466 nucleotide sequence <SEQ ID 24> is:

10  
1 ATCGCGCAAGA TATCAGTGGG AATCTGTATC ACCATTCTCC TTAGCCTCTC  
51 CGTAGTCCTC CAAGGCTGCA AGGAGTCCAG TCACCTCTCT ACATCTCGGG  
101 GAGAACTCGC TATTAATATA AGAGATGAAC CCCGTTCTTT AGATCCAAGA  
151 CAAGTGCAGC TTCTTCAGA AATCAGCCTT GTCAAACATA TCTATGAGGG  
201 ATTAGTTCAA GAAAATAATC TTTCAGGAAA TATAGAGCCT GCTCTTGCAG  
251 AAGACTACTC TCTTTCTCG GACGGACTCA CTTATACTTT TAAACTGAAA  
15  
301 TCAGCTTTTG GGAGTAATGG CGACCCCTTA ACAGCTGAAG ACTTTATAGA  
351 ATCTTGGAAA CAAGTAGCTA CTCAAGAAGT CTCAGGAATC TATGCTTTG  
401 CCTTGAATCC AATTAAAAAT GTACGAAAGA TCCAAGAGGG ACACCTCTCC  
451 ATAGACCATT TTGGAGTGCA CTCTCCTAAT GAATCTACAC TTGTTGTTAC  
20  
501 CCTTGAATCC CCAACCTCGC ATTCTTAAA ACTTTTAGCT CTTCCAGTCT  
551 TTTTCCCCGT TCATAAAATCT CAAAGAACCC TGCAATCCAA ATCTCTACCT  
601 ATAGCAAGCG GAGCTTTCTA TCCTAAAAAT ATCAAACAAA ACAATGGAT  
651 AAAACTCTCA AAAAACCCCTC ACTACTATAA TCAAAGTCAG GTGAAACTA  
701 AAACGATTAC GATTCACTTC ATTCCCGATG CAAACACAGC AGCAAAACTA  
751 TTTAATCAGG GAAAACCTCAA TTGGCAAGGA CCTCCTTGGG GAGAACGCAT  
25  
801 TCCTCAAGAA ACCCTATCCA ATTACAGTC TAAGGGGCAC TTACACTCTT  
851 TTGATGTCGC AGGAACCTCA TGGCTCACCT TCAATATCAA TAAATTCCCC  
901 CTCAACAAATA TGAAGCTTAG AGAACCTTA GCATCAGCCT TAGATAAGGA  
951 AGCTCTTGTGTC TCAACTATAT TCTTAGGCCG TGCAAAACT GCCGATCATC  
30  
1001 TCTTACCTAC AAATATTCTAT AGCTATCCCG AACATCAAA ACAAGAGATG  
1051 GCACAACGCG AAGCTTACGC TAAAAAAACTC TTTAAAGAAG CTTTAAAGAAG  
1101 ACTCCAAATC ACTGCTAAAG ATCTCGAACAA TCTTAATCTT ATCTTTCCCG  
1151 TTCTCTCGTC AGCAAGTTCT TTACTAGTCC AACTTATACG AGAACAGTGG  
1201 AAAGAAAGTT TAGGGTTTCGC TATCCTTATT GTCGGAAAGG AATTGCTCT  
1251 TCTCCAAGCA GACCTATCTT CAGGGAACCTT CTCTTTAGCT ACAGGAGGAT  
35  
1301 GGTTCGCGAGA CTTTGCTGAT CCTATGGCAT TTCTAACGAT CTTTGCTTAT  
1351 CCATCAGGAG TTCCCTCTTA TGCAATCAAC CATAAGGACT TCCTAGAAAT  
1401 TCTACAAAAC ATAGAACAAAG AGCAAGATCA CCAAAACGC TCAGGATTAG  
1451 TGTCGCAAGC TTCTCTTAC CTAGAGACCT TTCATATTAT TGAGCCGATC  
1501 TACCAACGACG CATTTCATT TGCTATGAAT AAAAAACTTT CTAATCTAGG  
40  
1551 AGTCTCACCA ACAGGAGTTG TGGACTTCCG TTATGCTAAG GAAAATTAG

The PSORT algorithm predicts that the protein is an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified both as a GST-fusion product and a His-tag fusion product. Purification of the protein as a GST-fusion product is shown in Figure 12A. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 45 12B and 12C). FACS analysis was also performed.

These experiments show that cp6466 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 13

The following *C.pneumoniae* protein (PID 4376468) was expressed <SEQ ID 25; cp6468>:

50  
1 MFSRWITLFL LFISLTGCSS YSSKHQKSLI IPIHDDPVAF SPEQAKRAMD  
51 LSIAQLLFDG LTRETHRESN DLELAIASRY TVSEDFCSYT FFIKDSALWS  
101 DGTPTITSEDI RNAWEYAQEN SPHIQIFQGL NFSTPSSNAI TIHLDSPNPD  
151 FPKLLAFTPAP AIFKPENPKL FSGPYTLVEY FPGHNIHLKK NPNEYDYHCV  
201 SINSIKLLII PDIYTAIHLI NRGKVDWVGQ PWHQGIPWEL HKQSQYHYYT  
55  
251 YPVEGAFWLC LNTKSPHLND LQNRHRRLATC IDKRSIIIEEA LQGTQQPAET

-53-

301 LSRGAPQPNQ YKKQKPLTPQ EKLVLVTPSD ILRCQRIAEI LKEQWKAAGI  
 351 DLILEGLEYH LFVNKRKVQD YAIATQTGVA YYPGANLISE EDKLLQNFEI  
 401 IPIYYLSYDY LTQDFIEGVI YNASGAVDLK YTYFP\*

A predicted signal peptide is highlighted.

5 The cp6468 nucleotide sequence <SEQ ID 26> is:

|      |                                                           |
|------|-----------------------------------------------------------|
| 1    | ATGTTTCAC GATGGATCAC CCTCTTTTA TTATTCATTA GCCTTACTGG      |
| 51   | ATGCTCCTCC TACTCTCAA AACATAAACAA ATCTTTAATT ATTCCCATAC    |
| 101  | ATGACGACCC TGTAGCTTT TCTCCTGAAC AAGCAAAACG GGCCATGGAC     |
| 151  | CTTTCTATTG CCCAACTCT TTTTGATGGT CTGACTAGAG AAACCTCATCG    |
| 201  | CGAATCCAAT GATTGGAAT TAGCGATTGC CAGTCGCTAT ACAGTCCTCG     |
| 251  | AAGACTTTG CTCTTATACG TTCTTATCA AAGACAGCGC TTTATGGAGC      |
| 301  | GACGGAACAC CAATCACCTC CGAAGATATC CGTAACGCTT GGGAGTATGC    |
| 351  | ACAGGAGAAC TCTCCCCACA TACAGATCTT CCAAGGACTT AACTCTCAA     |
| 401  | CTCCTTCATC AAATGCAATT ACGATTCTAC TCGACTCGCC CAACCCCGAT    |
| 451  | TTCCCTAAGC TTCTTGCCCTT TCCTGCATTG GCTATCTTA ACCAGAAAA     |
| 501  | CCCGAAGCTC TTTAGGGCTC CGTATACTCT TGTAGAGTAT TTCCCAGGGC    |
| 551  | ATAACATTCA TTTAAAGAAA AACCTTAAC ATTACGACTA CCACTGGCTC     |
| 601  | TCCATCAACT CCATCAAAC GCTCATTATT CCTGATATAT ATACAGCCAT     |
| 651  | CCACCTCTA AACAGAGGCA AGGTGGACTG GGTAGGACAA CCCTGGCATC     |
| 701  | AAGGGATTC TTGGGAGCTC CATAAAACAA CGCAATATCA CTACTACACC     |
| 751  | TATCCTGTAG AAGGTGCCCTT CTGGCTTTGT CTAATACAA AATCCCCACA    |
| 801  | CTTAAATGAT CTTCAAAACAA GACATAGACT CGCTACTTGT ATTGATAAAC   |
| 851  | GTCTCTATCAT TGAAGAAGCT CTTCAAGGAA CCCAACAAACC AGCGGAAACAA |
| 901  | CTGTCGGAG GAGCTCCACA ACCAAATCAA TATAAAAAC AAAAGCCTCT      |
| 951  | AACTCCACAA GAAAAACTCG TGCTTACCTA TCCCTCAGAT ATTCTAAGAT    |
| 1001 | GCCAACGCAT AGCAGAAATC TTAAAGGAAC AATGGAAAGC TGCTGGAATA    |
| 1051 | GATTAAATCC TTGAAGGACT CGAAATACCAT CTGTTTGTAA ACAAAACGAAA  |
| 1101 | AGTCCAAGAC TACGCCATAG CAACACAGAC TGGAGTTGCT TATTACCCAG    |
| 1151 | GAGCAAATCT AATTCTGAA GAAGACAAGC TCCTGCAAAA CTTTGAGATT     |
| 1201 | ATCCCGATCT ACTATCTGAG CTATGACTAT CTCACTCAAG ATTTTATAGA    |
| 1251 | GGGAGTAATC TATAATGCTT CTGGAGCTGT AGATCTCAAA TATACCTATT    |
| 1301 | TCCCCCTAG                                                 |

The PSORT algorithm predicts that this protein is an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 13A.

35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 13B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6468 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 14

40 The following *C.pneumoniae* protein (PID 4376469) was expressed <SEQ ID 27; cp6469>:

|     |                                                         |
|-----|---------------------------------------------------------|
| 1   | MKMHLRKPTL KSLIPNLLFL LLTLSSCSKQ KQEPLGKHLV IAMSHDLADL  |
| 51  | DPRNAYLSRD ASLAKALYEG LTRETDQGIA LALAESYTLS KDHKVYTFKL  |
| 101 | RPSVWSDGTP LTAYDFEksi KQLYFEEFSP SIHTLLGVIK NSSAIHNAQK  |
| 151 | SLETLGQAK DDLTLVITLQ QPFPYFLTLI ARPVFSPVHH TLRESYKKGT   |
| 201 | PPSTYISNGP FVLKKHEHQY YLILEKNPHY YDHESVKLDR VTLKIIIPDAS |
| 251 | TATKLFKSks IDWIGSPWSA PISMEDQKVL SQEKILTYSV SSTTLIYNL   |
| 301 | QKPLIQNKAL RKAIAHAIDR KSILRLVPSG QEAVTLVPPN LSQQLNLQKEI |
| 351 | STEEROTKAR AYFQEAKETL SEKELAELSI LYPIDSSNSS IIIAQEIQRQL |
| 401 | KDTLGLKIKI QGMeyHCFLK KRRQGDFFIA TGGWIAEVVS PVAFLSILGN  |
| 451 | PRDLTQWRNS DYEKTLKLY LPHAYKENLK RAEMIIEEET PIIPLYHGKY   |
| 501 | IYAIHPKIQN TFGSLLGHTD LKNIDILS*                         |

A predicted signal peptide is highlighted.

The cp6469 nucleotide sequence <SEQ ID 28> is:

1 ATGAAGATGC ATAGGCTTAA ACCTACCTTA AAAAGTCTGA TCCCTAATCT  
 51 TCTTTCTTA TTGCTCACTC TTTCAAGCTG CTCAAAGCAA AAACAAAGAAC  
 101 CCTTAGAAAA ACATCTCGTT ATTGGCATGA GCCATGATCT CGCCGACCTA  
 151 GATCCTCGCA ATGCCATTG AAGCAGAGAT GCTTCCCTAG CAAAAGCCCT  
 201 CTATGAAGGA CTGACAAGAG AAACGTATCA AGGAATCGCA CTGGCTTGT  
 251 CAGAAAGTTA TACCCGTCA AAAGATCATCA AGGTCTATAC CTTTAAACTC  
 301 AGACCTTCTG TGTTGAGCGA TGGCACTCCA CTCACGTGTT ATGACTTTGA  
 351 AAAATCTATA AAACAACGT ACTTCGAAGA ATTTTCACCT TCCATACATA  
 401 CTTTACTCGG CGTGATTAAGG AATTCTTCGG CAATCCACAA TGCTCAAAAA  
 451 TCTCTGGAAA CTCTGGGAT ACAGGAAAA GATGATCTA CTTTGGTGT  
 501 TACCCCTAGAG CAACCTTCCC CATACTTTCT CACACTTATC GCTCGCCCCG  
 551 TATTCTCCCC TGTTCATCAC ACCCTTAGGG AATCCTATAA GAAAGGAACA  
 601 CCCCCATCCA CATAACATCTC CAATGGGCC TTTGTCTTAA AAAAACATGA  
 651 ACACCAAAAC TACTTAATT TAGAAAAAAA TCCTCACTAC TATGATCATG  
 701 AATCAGTAAA GTTAGACCGA GTCACCTTAA AAATTATCCC AGACGCCCTCC  
 751 ACAGCCACGA AACTTTCAA AAGTAAATCT ATAGATTGGA TTGGCTCACC  
 801 TTGGAGCGCT CCGATATCTA ACGAAGACCA AAAAGTCTC TCCCAAGAAA  
 851 AGATTCTTAC CTATTCTGTT TCAAGCACCACCCCTCTTAT CTATAACCTG  
 901 CAAAAACCTC TAATACAAAAA TAAAGCCCTC AGGAAAGCCA TTGCTCATGC  
 951 TATTGATAGA AAATCTATCT TAAGACTCGT GCCTTCAGGA CAAGAAGCTG  
 1001 TAACTCTAGT TCCCCCAAAT CTTTCACAAAC TCAATCTTCA AAAAGAGATC  
 1051 TCAACAGAAG AACGACAAAC AAAAGCCAGA GCATATTTC AAGAAGCTAA  
 1101 AGAAACACTT TCTGAAAAAG AACTCGCAGA ACTCAGCAGC CTCTATCCTA  
 1151 TAGATTCCCTC GAATTCCCTC ATCATAGCTC AAGAAATCCA AAGACAACCTT  
 1201 AAAGATAACCT TAGGATTGAA AATCAAAATC CAAGGCATGG AGTACCACTG  
 1251 CTTTTTAAAG AAACGTCGTC AAGGAGATTT CTTCATAGCG ACAGGAGGAT  
 1301 GGATTGCGGA ATACGTAAGC CCCGTAGCCT TCCTATCTAT TCTAGGCAAC  
 1351 CCCAGAGACC TCACACATG GAGAACAGT GATTACGAAA AGACTTTAGA  
 1401 GAAACTCTAT CTCCCTCATG CCTACAAAGA GAATTAAAAA CGCGCAGAAA  
 1451 TGATAATAGA AGAAGAAACC CCGGATTATCC CCCTGTATCA CGGCAAATAT  
 1501 ATTACGCTA TACATCTAA AATCCAGAAT ACATTCGGAT CTCTTCTAGG  
 1551 CCACACAGAT CTCAAAATA TCGATATCTT AAGTTAG

The PSORT algorithm predicts a periplasmic location (0.934).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 14A.

35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 14B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6469 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 15

40 The following *C.pneumoniae* protein (PID 4376602) was expressed <SEQ ID 29; cp6602>:

1 MAASGGTGGL GGTQGVNLAA VEAAAAKADA AEVVVASQEGS EMNMIQQSQD  
 51 LTNPAAATRT KKKEEKFQTL ESRKKGEAGK AEKKSESTEE KPDTDLADKY  
 101 ASGNSEISGQ ELRGLRDAIG DDASPEDILA LVQEIKDPA LQSTALDYLV  
 151 QTPPPSQGKL KEALIQARNT HTEQFGRTAI GAKNILFASQ EYADQLNVSP  
 201 SGLRSLYLEV TGDTHTCDQL LSMIQLDRYTY QDMAIVSSFL MKGMATELKR  
 251 QGPYVPSAQL QVLMTETRNL QAVLTSYDF ESRVPILLDS LKAEGIQTPS  
 301 DLNFVKVAES YHKIINDKFP TASKVEREVR NLIGDDVDSS TGVLNLFFSA  
 351 LRQTSRSLFS SADKRQQLGA MIANALDAVN INNEDYPKAS DFPKPYPWS\*

The cp6602 nucleotide sequence <SEQ ID 30> is:

50 1 ATGGCAGCAT CAGGAGGCAC AGGTGGTTA GGAGGCACTC AGGGTGTCAA  
 51 CCTTGCAGCT GTAGAAGCTG CAGCTGCAAA AGCAGATGCA GCAGAAGTTG  
 101 TAGCCAGCCA AGAAGGTTCT GAGATGAACA TGATTCAACA ATCTCAGGAC  
 151 CTGACAAATC CCGCAGCAGC AACACGCACG AAAAAGGAGG AAGAGAAGTT  
 201 TCAAACCTCA GAATCTCGGA AAAAAGGAGA AGCTGGAAG GCTGAGAAAAA  
 251 AATCTGAATC TACAGAAGAG AAGCCTGACA CAGATCTTGC TGATAAGTAT  
 301 GCTTCTGGGA ATTCTGAAT CTCTGGTCAA GAACTTCGGC GCCTGCGTGA  
 351 TGCAATAGGA GACGATGCTT CTCCAGAAGA CATTCTTGCT CTTGTACAAG

401 AGAAAATTAA AGACCCAGCT CTGCAATCCA CAGCTTGGA CTACCTGGTT  
 451 CAAACGACTC CACCCTCCC AGGTAAATTAA AAAGAACGCG TTATCCAAGC  
 501 AAGGAATACT CATA CGGAGC AATT CGGACG AACTGCTATT GGTGCGAAAAA  
 551 ACATCTTATT TGCCCTCTCAA GAATATGCAG ACCAACTGAA TGTTTCTCCT  
 601 TCAGGGCTTC GCTCTTGTA CTTAGAAGTG ACTGGAGACA CACATACCTG  
 651 TGATCAGCTA CTTTCTATGC TTCAAGACCG CTATACCTAC CAAGATATGG  
 701 CTATTGTCAG CTCCCTTCTA ATGAAAGGA TGGCAACAGA ATTAAAAAGG  
 751 CAGGGTCCCT ACGTACCCAG TGCGCAACTA CAAGTTCTCA TGACAGAAAC  
 801 TCGTAACCTG CAAGCAGTTC TTACCTCGTA CGATTACTTT GAAAGTCGCG  
 851 TTCCCTATTTT ACTCGATAGC TTAAAAGCTG AGGGAACTCCA AACTCCTTCT  
 901 GATCTAAACT TTGTGAAGGT AGCTGAGTCC TACCATAAAA TCATTAACGA  
 951 TAAGTTCCCA ACAGCATCTA AAGTAGAACG AGAAGTCGCG AATCTCATAG  
 1001 GAGACGATGT TGATTCTGTG ACCGGTGTCT TGAACCTATT CTTTTCTGCT  
 1051 TTACGTCAAA CGTCGTACG CCTTTTCTCT TCAGCAGACA AACGTCAGCA  
 1101 ATTAGGAGCT ATGATTGCTA ATGCTTTAGA TGCTGTAAAT ATAACAAATG  
 1151 AAGATTATCC CAAAGCATCA GACTTCCCTA AACCTATCC TTGGTCATGA

The PSORT algorithm predicts a cytoplasmic location (0.080).

The protein was expressed in *E.coli* and purified as both a His-tag and a GST-fusion product, as shown in Figure 15A. The recombinant proteins were used to immunise mice, whose sera were used 20 in a Western blot (Figure 15B) and for FACS analysis (Figure 15C).

The cp6602 protein was also identified in the 2D-PAGE experiment (Cpn0324).

These experiments show that cp6602 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 16

25 The following *C.pneumoniae* protein (PID 4376727) was expressed <SEQ ID 31; cp6727>:

1 MKYSLPWLLT SSALVFSLHP LMAANTDLSS SDNYENGSSG SAAFTAKETS  
 51 DASGTTTYTLT SDVSITNVSA ITPADKSCFT NTGGALSFVG ADHSLVLQTI  
 101 ALTHDGAAIN NTNTALSFSG FSSLLIDSAP ATGTSGGKGA ICVTNTEGGT  
 151 ATFTDNASVT LQKNTSEKDG AAVSAYSIDL AKTTTAALLD QNTSTKNGGA  
 201 LCSTANTTVQ GNNSGTVTFSS NTATDKGGGI YSKEDDSLTD ANTGVVTFKS  
 251 NTAKTGGAWS SDDNLALTGN TQVLFQENKT TGSAAQANNP EGCGBAACCY  
 301 LATATDKTGL AISQNQEMSF TSNTTTTANGG AYAITKCTLD GNTTLTFDQN  
 351 TATAGCGGAI YTTETEDFLSK GSTGTVTFST NTAKTGGALY SKGNSSLTGN  
 401 TNLLFSGNKA TGPSNSSANQ ECGGGAILAF IDSGSVSDKT GLSIANNQEV  
 451 SLTSNAATVS GGAIYATKCT LTGNGNSLTFD GNTAGTSGGA IYTETEDFTL  
 501 TGSTGTVTF SNTAKTGGAL YSKGNNSLSG NTNLFSGNK ATGPSNSSAN  
 551 QEGCGGAILS FLESASVSTK KGLWIEDNEN VSLSGNTATV SGAIYATKC  
 601 ALHGNTTLTF DGNTAETAGG AIYTETEDFT LTGSTGTVTF STNTAKTAGA  
 651 LHTKGNTSFT KNKALVFSGN SATATATTTT DQEKGCGAIL CNISESDIAT  
 701 KSLTLTENES LSFINNTAKR SGGGIYAPKC VISGSESINF DGNTAETSGG  
 751 AIYSKNLISI ANGPV SFTNN SGGKGGAIYI ADSGELSLEA IDGDITFSGN  
 801 RATEGTSTPN SIHLGAGAKI TKLAAAPGHT IYFYDPITME APASGGTIEE  
 851 LVINPVVKAI VPPPQPKNGP IASVPVVPVA PANPNTGTIV FSSGKLPSQD  
 901 ASIPANTTTI LNQKINLAGG NVVKEGATL QVYSFTQYPD STVFM DAGTT  
 951 LETTTTNNNT GSIDLKNLNV NLDA LDGKRM ITIAVNSTSG GLKISGDLKF  
 1001 HNNEGSFYDN PGLKANLNLP FLDLSSTS GT VNLDDFNPPIP SSMAAPDYGY  
 1051 QGSWTLVPKV GAGGKVTLVA EWQALGYTPK PELRATLVPN SLWNAYVNIH  
 1101 SIQOEIATAM SDAPSHPGIW IGGIGNAFHQ DKQKENAGFR LISRGYIVGG  
 1151 SMITTPQEYTF AVAFSQLFGK SKDYVVSDIK SQVYAGSLCA QSSYVIPLHS  
 1201 SLRRHVLSKV LPELPGETPL VLHGQVSYGR NHNNMTTKLA NNTQGKSDWD  
 1251 SHSFAVEVGG SLPVDLNRYR LTSYSPYVKL QVVSVNQKGF QEVAADPRIF  
 1301 DASHLVNVSI PMGLTFKHES AKPPSALLLT LGYAVDAYRD HPHCLTSLTN  
 1351 GTSWSTFATN LSRQAFFAEA SGHLKLLHGL DCFASGSCEL RSSSRSYNAN  
 1401 CGTRYSF\*

55 A predicted signal peptide is highlighted.

The cp6727 nucleotide sequence <SEQ ID 32> is:

|    |      |                                                          |
|----|------|----------------------------------------------------------|
|    | 1    | ATGAAATATT CTTTACCTTG GCTACATTACC TCTTCGGCTT TAGTTTTCTC  |
|    | 51   | CCTACATCCA CTAATGGCTG CTAACACGGA TCTCTCATCA TCCGATAACT   |
| 5  | 101  | ATGAAAATGG TAGTAGTGGT AGCCGAGCAT TCACTGCCAA GGAAACTTCG   |
|    | 151  | GATGCTTCAG GAACTACCTA CACTCTCACT AGCGATGTT CTATTACGAA    |
|    | 201  | TGTATCTGCA ATTACTCTG CAGATAAAAG CTGTTTACA AACACAGGAG     |
|    | 251  | GAGCATTGAG TTTTGTGGA GCTGATCACT CATTGGTTCT GCAAACCATA    |
| 10 | 301  | GCGCTTACGC ATGATGGTC TGCAATTAAAC AATACCAACA CAGCTTTTC    |
|    | 351  | TTTCTCAGGA TTCTCGTCAC TCTTAACTCGA CTCAGCTCCA GCAACAGGAA  |
| 15 | 401  | CTTCGGGGCG CAAGGGTGCT ATTGTGTGA CAAAATACAGA GGGAGGTTACT  |
|    | 451  | GCGACTTTA CTGACAAATGC CAGTGTCACT CTCCAAAAAA ATACTTCAGA   |
|    | 501  | AAAAGATGGA GCTGCAGTTT CTGCCTACAG CATCGATCTT GCTAAAGACTA  |
|    | 551  | CGACAGCGC TCTCTTAGAT CAAAATACTA GCACAAAAAA TGGCGGGGCC    |
| 20 | 601  | CTCTGTAGTA CAGCAAACAC TACAGTCCAA GGAAACTCAG GAACGGTGAC   |
|    | 651  | CTTCTCCTCA AATACTGCTA CAGATAAAAGG TGGGGGGATC TACTCAAAG   |
|    | 701  | AAAAGGATAG CACGCTAGAT GCCAATACAG GAGTCGTTAC CTTCAAATCT   |
|    | 751  | AATACTGCAA AGACGGGGGG TGCTTGGAGC TCTGATGACA ATCTTGCTCT   |
|    | 801  | TACCGGCAAC ACTCAAGTAC TTTTCAGGA AAATAAAACA ACCGGCTCAG    |
| 25 | 851  | CAGCACAGG AAATAACCCG GAAGGTTGTG GTGGGGCAAT CTGTTGTTAT    |
|    | 901  | CTTGCTACAG CAACAGACAA AACTGGATTA GCCATTTCTC AGAATCAAGA   |
|    | 951  | AATGAGCTTC ACTAGTAATA CAACAACCTGC GAATGGTGGA GCGATCTACG  |
|    | 1001 | CTACTAAATG TACTCTGGAT GGAAACACAA CTCTTACCTT CGATCAGAAT   |
|    | 1051 | ACTGCGACAG CAGGATGTGG CGGAGCTATC TATACAGAAA CTGAAGATT    |
| 30 | 1101 | TTCTCTTAAAG GGAAGTACGG GAACCGTGAC CTTCAGCACA AATACAGCAA  |
|    | 1151 | AGACAGGGGG CGCCTTATAT TCTAAAGGAA ACAGCTCGT GACTGGAAAT    |
|    | 1201 | ACCAACCTGC TCTTTTCAGG GAACAAAGCT ACGGGGCCGA GTAATTCTTC   |
|    | 1251 | AGCAAATCAA GAGGGTTGCG GTGGGGCAAT CCTAGCCTT ATTGATTCA     |
|    | 1301 | GATCCGTAAG CGATAAAACA GGACTATCGA TTGCAAACAA CCAAGAACGTC  |
|    | 1351 | AGCCTCACTA GTAATGCTGC AACAGTAAGT GGTGGTGGA TCTATGCTAC    |
| 35 | 1401 | CAAATGTACT CTAACTGGAA ACGGCTCCCT GACCTTGAC GGCAATACTG    |
|    | 1451 | CTGGAACCTTC AGGAGGGCG ATCTATACAG AACTGAAGA TTTTACTCTT    |
|    | 1501 | ACAGGAAGTA CAGGAACCGT GACCTTCAGC ACAAAATACAG CAAAGACAGG  |
|    | 1551 | CGGCGCCTTA TATTCTAAAG GCAACAACCTC TCTGTCTGT AATACCAACC   |
|    | 1601 | TGCTCTTTTC AGGGAAACAAA GCTACGGGCC CGAGTAATTC TTCAGCAAAT  |
| 40 | 1651 | CAAGAGGGTT GCGGTGGGC AATCCTATCG TTTCTTGAGT CAGCATCTGT    |
|    | 1701 | AAGTACTAAA AAAGGACTCT GGATTGAAGA TAACGAAAAC GTGAGTCTCT   |
|    | 1751 | CTGGTAATAC TGCAACAGTA AGTGGCGGTG CGATCTATGC GACCAAGTGT   |
|    | 1801 | GCTCTGCATG GAAACACGAC TCTTACCTT GATGGCAATA CTGCCGAAAC    |
|    | 1851 | TGCAAGGAGGA GCGATCTTC CAGAAACCGA AGATTTACT CTTACGGGAA    |
| 45 | 1901 | GTACGGGAAC CGTGACCTTC AGCACAAATA CAGCAAAGAC AGCAGGGCT    |
|    | 1951 | CTACACTA AAGGAAATAC TTCTTTACC AAAAATAAGG CTCTTGATT       |
|    | 2001 | TTCTGGGAAAT TCAGCAACAG CAACAGCAAC AACAACCTACA GATCAAGAAG |
|    | 2051 | GTGTGGTGG AGCGATCTC TGTAATATCT CAGAGTCTGA CATAGCTACA     |
|    | 2101 | AAAAGCTTAA CTCTTACTGA AAATGAGAGT TTAAGTTCA TTAACAATAC    |
| 50 | 2151 | GGCAAAAAGA AGTGGTGGTG GTATTTATGC TCCTAACTGT GTAATCTCAG   |
|    | 2201 | GCAGTGAATC CATAAAACTTT GATGGCAATA CTGCTGAAAC TTCTGGAGGA  |
|    | 2251 | GGGATTTATT CGAAAACCT TTGATTACA GCTAACGGTC CTGCTCTCTT     |
|    | 2301 | TACCAATAAT TCTGGAGGCA AGGGAGGCGC CATTATATA GCCGATAGCG    |
|    | 2351 | GAGAACTTTC CTTAGAGGCT ATTGATGGGG ATATTACTTT CTCAGGGAAC   |
| 55 | 2401 | CGAGCGACTG AGGAAACCTTC AACTCCCCAAC TCGATCCATT TAGGTGCAGG |
|    | 2451 | GGCTAAGATC ACTAAGCTTG CAGCAGCTCC TGGTCATACG ATTTATTTT    |
|    | 2501 | ATGATCCTAT TACGATGGAA GCTCCTGCAT CTGGAGGAAC AATAGAGGAG   |
|    | 2551 | TTAGTCATCA ATCCTGTGT CAAAGCTATT GTTCCCTCTC CCCAACAAA     |
|    | 2601 | AAATGGTCCT ATAGCTCAG TGCCTGTAGT CCCTGTAGCA CCTGCAAACC    |
| 60 | 2651 | CAAACACGGG AACTATAGTA TTTCTTCTG GAAAACCTCC CAGTCAGAAT    |
|    | 2701 | GCCTCGATTC CTGCAAATAC TACCAACATA CTGAACCGAGA AGATCAAAC   |
|    | 2751 | AGCAGGAGGA AATGTCGTTT TAAAAGAAGG AGCCACCCCTA CAAGTATATT  |
|    | 2801 | CCTTCACACA GCAGCCTGAT TCTACAGTAT TCATGGATGC AGGAACGACC   |
|    | 2851 | TTAGAGACCA CGACAACCAA CAATACAGAT GGCAGCATCG ATCTAAAGAA   |
| 65 | 2901 | TCTCTCTGTA AATCTGGATG CTTTAGATGG CAAGCGTATG ATAACGATTG   |
|    | 2951 | CCGTAAACAG CACAAGTGGG GGATTTAAAAA TCTCAGGGGA TCTGAAATT   |
|    | 3001 | CATAACAAATG AAGGAAGTTT CTATGACAAT CCTGGGTGAA AAGCAAAC    |
|    | 3051 | AAATCTTCTC TTCTTAGATC TTTCTTCTAC TTCAGGAAC GTAAATTTAG    |
|    | 3101 | ACGACTTCAGA TCCGATTCCT TCTAGCATGG CTGCTCCGGAA TTATGGGTAT |
|    | 3151 | CAAGGGAGTT GGACTCTGGT TCCTAAAGTA GGAGCTGGAG GGAAGGTGAC   |
|    | 3201 | TTTGGTCGCG GAATGGCAAG CGTTAGGATA CACTCCTAAA CCAGAGCTTC   |
|    | 3251 | GTGCGACTTT AGTTCTTAAT AGCCTTGGGAA ATGCTTATGT AAACATCCAT  |

5           3301 TCTATACAGC AGGAGATCGC CACTGCATG TCGGACGCTC CCTCACATCC  
          3351 AGGGATTGAG ATTGGAGGTA TTGGCAACGC CTTCCATCAA GACAAGCAAA  
          3401 AGGAAAATGAG AGGATTCCGT TTGATTCCA GAGGTATATA TGTTGGTGGC  
          3451 AGCATGACCA CCCCTCAAGA ATATACCTT GCTGTTGCAT TCAGCCAATC  
          3501 CTTTGGCAAA TCTAAGGATT ACGTAGTC CCGATATTAAA TCTCAAGTCT  
          3551 ATGCAGGATC TCTCTGTGCT CAGAGCTCTT ATGTCATTCC CCTGCATAGC  
          3601 TCATTACGTC GCCACGTCT CTCTAAGGTC CTTCCAGAGC TCCCAGGAGA  
          3651 AACTCCCCCTT GTTCTCCATG GTCAAGTTTC CTATGGAAGA AACCAACATA  
          3701 ATATGACGAC AAAGCTTGCG AACAACACAC AAGGGAAATC AGACTGGGAC  
          3751 AGCCATAGCT TCGCTGTGA AGTCGGTGGT TCTCTTCTG TAGATCTAAA  
          3801 CTACAGATAC CTTACCAAGCT ACTCTCCCTA TGTGAAACTC CAAGTTGTGA  
          3851 GTGTAATCA AAAAGGATTC CAAGAGGTTG CTGCTGATCC ACGTATCTT  
          3901 GACGCTAGCC ATCTGGTCAA CGTGTCTATC CCTATGGGAC TCACCTTCAA  
          3951 ACACGAATCA GCAAAAGCCCC CCAGTGTCTT GCTTCTTACT TTAGGTTACG  
          4001 CTGTAGATGC TTACCGGGAT CACCCCTCACT GCCTGACCTC CTTAACAAAT  
          4051 GGCACCTCGT GGTCTACGTT TGCTACAAAC TTATCACGAC AAGCTTCTT  
          4101 TGCTGAGGCT TCTGGACATC TGAAGTTACT TCATGGTCTT GACTGCTTCG  
          4151 CTTCTGGAAG TTGTGAACGT CGCAGTCCT CAAGAAGCTA TAATGCAAAC  
          4201 TGTGGAACTC GTTATTCTTT CTAA

20         The PSORT algorithm predicts an outer membrane location (0.915).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 16A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 16B) and for FACS analysis (Figure 16C). A GST-fusion protein was also expressed.

The cp6727 protein was also identified in the 2D-PAGE experiment (Cpn0444).

25         These experiments show that cp6727 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 17

The following *C.pneumoniae* protein (PID 4376731) was expressed <SEQ ID 33; cp6731>:

30           1 MKSSLHWFLI SSSLALPLSL NFSAAVVE INLGPTNSFS GPGTYTPPAQ  
          51 TTNADGTYIN LTGDVSITNA GSPTALTASC FKETTGTLF QGHGYQFLQQ  
          101 NIDAGANCTF TNTAANKLLS FSGFSYLSLI QTNNATTGTG AIKSTGACSI  
          151 QSNYSCYFGQ NFSNDNGGAL QGSISLSLN PNLTFAKNKA TQKGALYST  
          201 GGITINNTLN SASFSENAA NNGGAIYTEA SSFISSNKA SFINNSVTAT  
          251 SATGGAIYCS STSAPKPVLT LSDNGELNFI GNTAITSGGA IYTDNLVLSS  
          301 GGPFLFKNNNS AIDTAAPLGG AIAIADSGSL SLSALGGDIT FEGNTVVKG  
          351 SSSQTTRNS INIGNTNAKI VQLRASQGNT IIFYDPITTS ITAALSDALN  
          401 LNGPDLAGNP AYQGTIVFSC EKLSEAAEADNLKSTIQQ PLTIAGGQLS  
          451 LKSGVTLVAK SFSQSPGSTL LMDAGTTLET ADGITINNLV LNVDSLKETK  
          501 KATLKATQAS QTVTLSGSL LVDPSGNVYE DVSWNNPQVF SCLTLTADDP  
          551 ANIHITDLAA DPLEKNPPIHW GYQGNWALSW QEDTATKSATLWTWKTGY  
          601 NPNPERRGTL VANTLWGSFV DVRSIQQLVA TKVRQSQETR GIWCEGISNF  
          651 FHKDSTKINK GFRHISAGYV VGATTTLASD NLITAACFQL FGKDRDHFIN  
          701 KNRASAYAAS LHLQHLATLS SPSLLRYLPG SESEQPVLFD AQISYTIYSKN  
          751 TMKTYYTQAP KGESSWYNDG CALELASSLP HTALSHEGLF HAYFPPIKVE  
          801 ASYIHQDSFK ERNTTLVRSF DSGDLINSV PIGITFERFS RNERASYEAT  
          851 VIYVADVYRK NPDCTTALLI NNNTSWKTTGT NLSRQAGIGR AGIFYAFSPN  
          901 LEVTSNLSME IRGSSRSYNA DLGGKFQF\*

A predicted signal peptide is highlighted.

The cp6731 nucleotide sequence <SEQ ID 34> is:

50           1 ATGAAATCCT CTCTTCATTG GTTTTTAATC TCGTCATCTT TAGCACTTCC  
          51 CTTGTCACTA AATTTCCTCTG CGTTGCTGC TGTTGTTGAA ATCAATCTAG  
          101 GACCTACCAA TAGCTTCTCT GGACCAGGAA CCTACACTCC TCCAGCCCAA  
          151 ACAACAAATG CAGATGGAAC TATCTATAAT CTAACAGGGG ATGTCCTCAAT  
          201 CACCAATGCA GGATCTCCGA CAGCTCTAAC CGCTTCCTGC TTTAAAGAAA

|    |      |              |              |             |             |             |
|----|------|--------------|--------------|-------------|-------------|-------------|
|    | 251  | CTACTGGGAA   | TCTTTCTTTC   | CAAGGCCACG  | GCTACCAATT  | TCTCCCTACAA |
| 5  | 301  | AATATCGATG   | CGGGAGCGAA   | CTGTACCTTT  | ACCAATAACAG | CTGCAAATAA  |
|    | 351  | GCTTCTCTCC   | TTTCAGGAT    | TCTCCTATTT  | GTCACTAATA  | CAAACCACGA  |
|    | 401  | ATGCTTACAC   | AGGAACAGGA   | GCCATCAAGT  | CCACAGGAGC  | TTGTTCTATT  |
|    | 451  | CAGTCGAACT   | ATAGTTGCTA   | CTTTGGCCAA  | AACTTTCTA   | ATGACAATGG  |
| 10 | 501  | AGGCGCCCTC   | CAAGGCAGCT   | CTATCAGTCT  | ATCGCTAAC   | CCCAACCTAA  |
|    | 551  | CGTTGCCAA    | AAACAAAGCA   | ACGCCAAAAG  | GGGGTGCCCT  | CTATTCCACG  |
|    | 601  | GGAGGGATTA   | CAATTAACAA   | TACGTTAAAC  | TCAGCATCAT  | TTTCTGAAAAA |
| 15 | 651  | TACCGCGGCG   | AAACATGGCG   | GAGCCATTAA  | CACGGAAGCT  | AGCAGTTTTA  |
|    | 701  | TTAGCAGCAA   | CAAAGCAATT   | AGCTTTATAA  | ACAATAGTGT  | GACCGCAACC  |
|    | 751  | TCAGCTACAG   | GGGGAGCCAT   | TTACTGTAGT  | AGTACATCAG  | CCCCCAAACC  |
|    | 801  | AGTCTTAACT   | CTATCAGACA   | ACGGGAACT   | GAACCTTATA  | GGAAATACAG  |
|    | 851  | CAATTACTAG   | TGGTGGGGCG   | ATTTATACTG  | ACAATCTAGT  | TCTTTCTCT   |
| 20 | 901  | GGAGGACCTA   | CGCTTTTAA    | AAACAACCTCT | GCTATAGATA  | CTGCAGCTCC  |
|    | 951  | CTAGGAGGA    | GCAATTGCGA   | TTGCTGACTC  | TGGATCTTIG  | AGTCTTTCGG  |
|    | 1001 | CTCTGGTGG    | AGACATCACT   | TTGAAGGAA   | ACACAGTAGT  | CAAAGGAGCT  |
|    | 1051 | TCTTCGAGTC   | AGACCACACTAC | CAGAAATTCT  | ATTAACATCG  | GAAACACCAA  |
|    | 1101 | TGCTAAGATT   | GTACAGCTGC   | GAGCCTCTCA  | AGGCAAAACT  | ATCTACTTCT  |
|    | 1151 | ATGATCCTAT   | AAACAACTAGC  | ATCACTGCAG  | CTCTCTCAGA  | TGCTCTAAC   |
| 25 | 1201 | TTAAATGGTC   | CTGACCTTGC   | AGGGAATCCT  | GCATATCAAG  | GAACCATCGT  |
|    | 1251 | ATTTTCTGGG   | GAGAAGCTCT   | CGGAAGCAGA  | AGCTGCAGAA  | GCTGATAATC  |
|    | 1301 | TCAAATCTAC   | AATTCAAGCAA  | CCTCTAACTC  | TTGCGGGAGG  | GCAACTCTCT  |
|    | 1351 | CTTAAATCAG   | GAGTCACCTCT  | AGTGCTAAG   | TCCCTTTCGC  | AATCTCCGGG  |
|    | 1401 | CTCTACCCCTC  | CTCATGGATG   | CAGGGACCAC  | ATTAGAAACC  | GCTGATGGGA  |
|    | 1451 | TCACTATCAA   | TAATCTTGT    | CTCAATGTAG  | ATTCCTTAAA  | AGAGACCAAG  |
|    | 1501 | AAGGCTACGC   | AAAAAGCAAC   | ACAAGCAAGT  | CAGACAGTCA  | CTTTATCTGG  |
|    | 1551 | ATCGCTCTC    | CTTGCTAGATC  | CTTCTGGAAA  | TGTCTACGAA  | GATGTCCTTT  |
| 30 | 1601 | GGAAATAACCC  | TCAAGTCTT    | TCTGTCTCA   | CTCTTACTGC  | TGACGACCCC  |
|    | 1651 | GCGAATATTTC  | ACATCACAGA   | CTTAGCTGCT  | GATCCCCTAG  | AAAAAAATCC  |
|    | 1701 | TATCCATTGG   | GGATACCAAG   | GGATTGGGC   | ATTATCTTGG  | CAAGAGGATA  |
|    | 1751 | CTGCGACTAA   | ATCCAAGCA    | GCGACTCTTA  | CCTGGACAAA  | AACAGGATAC  |
|    | 1801 | AATCCGAATC   | CTGAGCGTCG   | TGGAACCTTA  | GTTGCTAAC   | CGCTATGGGG  |
|    | 1851 | ATCCTTTGTT   | GATGTGCGCT   | CCATACAACA  | GCTTGTAGCC  | ACTAAAGTAC  |
| 35 | 1901 | GCCAATCTCA   | AGAAAACCTGC  | GGCATCTGGT  | GTGAAGGGAT  | CTCGAACITC  |
|    | 1951 | TTC CATAAAAG | ATAGCAGCAA   | GATAAAATAA  | GGTTTTCGCC  | ACATAAGTGC  |
|    | 2001 | AGGTTATGTT   | GTAGGAGCGA   | CTACAACATT  | AGCTTCTGAT  | AATCTTATCA  |
|    | 2051 | CTGCAGCCCT   | CTGCCAATT    | TTGGGAAAG   | ATAGAGATCA  | CTTTATAAAT  |
|    | 2101 | AAAAATAGAG   | CTTCTGCCA    | TGCAGCTCT   | CTCCATCTCC  | AGCATCTAGC  |
| 40 | 2151 | GACCTTGTCT   | TCTCCAAGCT   | TGTTACGCTA  | CCTTCCTGG   | TCTGAAAGTG  |
|    | 2201 | AGCAGCCTGT   | CCTCTTTGAT   | GTCAGATCA   | GCTATATCTA  | TAGTAAAAAT  |
|    | 2251 | ACTATGAAAA   | CCTATTACAC   | CCAAGCACCA  | AAGGGAGAGA  | GCTCGTGGTA  |
|    | 2301 | TAATGACGGT   | TGCGCTCTGG   | AACTTGCAG   | CTCCCTACCA  | CACACTGCTT  |
|    | 2351 | TAAGCCATGA   | GGGTCTCTTC   | CACCGTATT   | TTCTTTCTAT  | CAAAGTAGAA  |
| 45 | 2401 | GCTCTCTAAC   | AAACATAACCT  | CGTGGAAAAC  | TACAGGAACG  | AATCTCTCAA  |
|    | 2451 | ACGATCTTTC   | GATAGCGGTG   | ATTTAATTAA  | CGTCTCTGTG  | CCTATTGGAA  |
|    | 2501 | TTACCTTCGA   | GAGATTCTCG   | AGAAACGAGC  | GTGCGTCTTA  | CGAAGCTACT  |
|    | 2551 | GTCATCTACG   | TTGCCGATGT   | CTATCGTAAG  | AATCCTGACT  | GCACGACAGC  |
|    | 2601 | TCTCTAAC     | AAACATAACCT  | CGTGGAAAAC  | TACAGGAACG  | AATCTCTCAA  |
| 50 | 2651 | GACAAGCTGG   | TATCGGAAGA   | GCAGGGATCT  | TTTATGCCCT  | CTCTCCAAAT  |
|    | 2701 | CTTGAGGTCA   | CAAGTAACCT   | ATCTATGGAA  | ATTCTGTGGAT | CTTCACGCAG  |
|    | 2751 | CTACAATGCA   | GATCTGGAG    | GTAAGTTCCA  | GTTCTAA     |             |

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 17A. A GST-fusion protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 17B; his-tag) and for FACS analysis (Figure 17C; his-tag and GST-fusion).

The GST-fusion protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis. Less cross-reactivity was seen with the his-fusion.

These experiments show that cp6731 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 18

The following *C.pneumoniae* protein (PID 4376737) was expressed <SEQ ID 35; cp6737>:

|    |     |             |             |             |             |            |
|----|-----|-------------|-------------|-------------|-------------|------------|
| 5  | 1   | MPLSFKSSSE  | CLLAICLCSAS | CAFAETRLGG  | NFVPPITNQG  | EEILLTSDFV |
|    | 51  | CSNFLGASFS  | SSFINSSSNL  | SLIGKGLSLT  | FTSCQAPTN   | NYALLSAAET |
|    | 101 | LTFKNFSSIN  | FTGNQSTGLG  | GLIYGKDIVF  | QSIKDLIFTT  | NRVAYSPASV |
|    | 151 | TTSATPAITT  | VITGASALQP  | TDSLTVENIS  | QSIKFFGMIA  | NFGSAISSSP |
| 10 | 201 | TAVVKFINNT  | ATMSFSHNFT  | SSGGVIYGG   | SSLLFENMSG  | CIIFTANSVC |
|    | 251 | NSLKGVTTPSS | GTYALGSGGA  | ICIPTGTTEL  | KNNQGKCTFS  | YNGTPNDAGA |
|    | 301 | IYAETCNIVG  | NQGALLLDSN  | TAARNGGAIC  | AKVLNIQGRG  | PIEFSRNRAE |
|    | 351 | KGGAIFIGPS  | VGDPAKQTST  | LTLASEGDI   | AFQGNMLNTK  | PGIRNAITVE |
|    | 401 | AGGEIVSLSA  | QGGSRLVFYD  | PITHSLPTTS  | PSNKDITINA  | NGASGSVVFT |
| 15 | 451 | SKGLSSTELL  | LPANTTTILL  | GTVKIASGEL  | KITDNAVVNV  | LGFATQGSGQ |
|    | 501 | LTLGSGGTLG  | LATPTGAPAA  | VDFTIGKLA   | DPPFSFLKRDF | VSASVNAGTK |
|    | 551 | NVTLTGALVL  | DEHDVTDLYD  | MVSLQTPVAI  | PIAVFKGATV  | TKTGFDPGEI |
|    | 601 | ATPPSHYGYQG | KWSYTWSRPL  | LIPAPDGFP   | GGPSPSANTL  | YAVWNSDTLV |
| 20 | 651 | RSTYILDPER  | YGEIVSNSLW  | ISFLGNQAFS  | DILQDVLLID  | HPLSITAKA  |
|    | 701 | LGAYVEHTPR  | QHEGFSGRY   | GGYQAALSMN  | YTDHTTLGLS  | FGQLYGKTNA |
|    | 751 | NPYDSRCSEQ  | MYLLSFFGQF  | PIVTQKSEAL  | ISWKAAYGYS  | KNHLNTTYLR |
|    | 801 | PDKAPKSQGQ  | WHNNSYVLI   | SAEPFFLNW   | LLTRPLAQAW  | DLSGFISAER |
|    | 851 | LGGWQSKFTE  | TGDLQRFSR   | GKGVNVSLPI  | GCSSQWFTP   | KKAPSTLTIK |
|    | 901 | LAYKPDYRV   | NPHNIVTVVS  | NQUESTSISGA | NLRRHGLFVQ  | IHDVVDLTED |
|    | 951 | TQ AFLNYTFD | GKNGFTNHVR  | STGLKSTF*   |             |            |

25 A predicted signal peptide is highlighted.

The cp6737 nucleotide sequence <SEQ ID 36> is:

|    |      |             |             |               |             |             |
|----|------|-------------|-------------|---------------|-------------|-------------|
| 30 | 1    | ATGCCTCTTT  | CTTTCAAATC  | TTCATCTTT     | TGTCTACTTG  | CCTGTTATG   |
|    | 51   | TAGTCAAGT   | TGGCGTTTG   | CTGAGACTAG    | ACTCGGAGGG  | AACTTTGTT   |
|    | 101  | CTCCAATTAC  | GAATCAGGGT  | GAAGAGATCT    | TACTCACTTC  | AGATTTGTT   |
|    | 151  | TGTTCAAACT  | TCTTGGGGC   | GAGTTTTCA     | AGTTCTTTA   | TCAATAGTT   |
|    | 201  | CAGCAATCTC  | TCCCTTATTAG | GGAAAGGCC     | TTCTTAAACG  | TTTACCTCTT  |
|    | 251  | GTCAAGCTCC  | TACAAATAGT  | AACTATGCGC    | TACTTTCTGC  | CGCAGAGACT  |
|    | 301  | CTGACCTTCA  | AGAATTTC    | TTCTATAAAC    | TTTACAGGG   | ACCAATCGAC  |
|    | 351  | AGGACTTGGC  | GGCCTCATCT  | ACGGAAAAGA    | TATTGTTTC   | CAATCTATCA  |
| 35 | 401  | AAGATTTGAT  | CTTCACTACG  | AACC GTTG     | CCTATTCTCC  | AGCATTCTGTA |
|    | 451  | ACTACGTCGG  | CAACTCCCGC  | AATCACTACA    | GTAAC TACAG | GAGCCTCTGC  |
|    | 501  | TCTCCAACCT  | ACAGACTCAC  | TCACTGTCGA    | AAACATATCC  | CAATCGATCA  |
|    | 551  | AGTTTTTGG   | GAACCTTGCC  | AACTTCGGCT    | CTGCAATTAG  | CAGTTCTCCC  |
| 40 | 601  | ACGGCAGTCG  | TTAAATTCA   | CAATAACACC    | GCTACCATGA  | GCTTCTCCC   |
|    | 651  | TAACTTTACT  | TCGTCAGGAG  | GCGCGTGT      | TTATGGAGGA  | AGCTCTCTCC  |
|    | 701  | TTTTGAAAAA  | CAATTCTGGA  | TGCATCATCT    | TCACCGCAA   | CTCCGTGTG   |
|    | 751  | AACAGCTTAA  | AAGGCGTCAC  | CCCTTCATCA    | GGAACCTATG  | CTTTAGGAAG  |
|    | 801  | TGGCGGAGCC  | ATCTGCATCC  | CTACGGGAAC    | TTTCAATTAA  | AAAACAATC   |
| 45 | 851  | AGGGGAAGTG  | CACCTCTCT   | TATAATGGTA    | CACCAAATGA  | TGCGGGTGC   |
|    | 901  | ATCTACGCCG  | AAACCTGCAA  | CATCGTAGGG    | AACCAGGG    | CCTTGCTCCT  |
|    | 951  | AGATAGCAAC  | ACTGCAGCGA  | GAATGGCGG     | AGCCATCTGT  | GCTAAAGTGC  |
|    | 1001 | TCAAATATTCA | AGGACGCGGT  | CCTATTGAA     | TCTCTAGAAA  | CCGCGCGGAG  |
|    | 1051 | AAGGGTGGAG  | CTATTTTCAT  | AGGCCCTCT     | GTTGGAGACC  | CTGCGAAGCA  |
| 50 | 1101 | AACATCGACA  | CTTACGATT   | TGGCTTCCGA    | AGGTGATATT  | CGCGTCCAAG  |
|    | 1151 | GAAACATGCT  | CAATACAAAAA | CCTGGAATCC    | GCAATGCCAT  | CACTGTAGAA  |
|    | 1201 | GCAGGGGGAG  | AGATTCGTG   | TCTATCTGCA    | CAAGGAGGCT  | CACGTCTTGT  |
|    | 1251 | ATTTTATGAT  | CCCATTACAC  | ATAGCCTCCC    | AACCACAAGT  | CCGTCTAATA  |
|    | 1301 | AAGACATTAC  | AATCAACGCT  | AA TGGCGCTT   | CAGGATCTGT  | AGTCTTTACA  |
|    | 1351 | AGTAAGGGAC  | TCTCCTCTAC  | AGA ACTCCTG   | TTGCGCTGCCA | ACACGACAAC  |
|    | 1401 | TATACTTCTA  | GGAACAGTC   | AGATCGCTAG    | TGGAGAACTG  | AAGATTACTG  |
|    | 1451 | ACAATGCGGT  | TGTCAATGTT  | CTTGGCTTCG    | CTACTCAGGG  | CTCAGGTCA   |
| 55 | 1501 | CTTACCCCTGG | GCTCTGGAGG  | AA CCTT TAGGG | CTGGCAACAC  | CCACGGGAGC  |
|    | 1551 | ACCTGCGCT   | GTAGACTTTA  | CGATTGGAAA    | GTTAGCATTC  | GATCCTTTTT  |
|    | 1601 | CCTTCCTAAA  | AAGAGATTT   | GTTTCAGCAT    | CAGTAAATGC  | AGGCACAAAAA |
| 60 | 1651 | AACGTCACTT  | TAACAGGAGC  | TCTGGTTCTT    | GATGAACATG  | ACGTTACAGA  |

1701 TCTTTATGAT ATGGTGTCA TACAAACTCC AGTAGCAATT CCTATCGCTG  
 1751 TTTTCAAAGG AGCAACCGTT ACTAAGACAG GATTCCTGA TGGGGAGATT  
 1801 GCGACTCCAA GCCACTACGG CTACCAAGGA AAGTGGTCCT ACACATGGTC  
 1851 CCGTCCCCCTG TTAATTCCAG CTCCGTATGG AGGATTTCTC GGAGGTCCCT  
 1901 CTCCCTAGCGC AAATACTCTC TATGCTGTAT GGAATTCAAGA CACTCTCGTG  
 1951 CGTTCTACCT ATATCTTAGA TCCCAGCGT TACGGAGAAA TTGTCAGCAA  
 2001 CAGCTTATGG ATTTCCTCT TAGGAATCA CGCATTCTCT GATATTCTCC  
 2051 AAGATGTTCT TTTGATAGAT CATCCCAGGT TGTCATAAC CGCGAAAGCT  
 2101 TAGGAGCCT ATGTCGAACA CACACCAAGA CAAGGACATG AGGGCTTTTC  
 2151 AGGTCGCTAT GGAGGCTACC AAGCTGCGCT ATCTATGAAC TACACGGACC  
 2201 ACAACTACGTT AGGACTTCTT TTCCGGCAGC TTTATGGAAA AACTAACGCC  
 2251 AACCCCTACG ATTACACGTTG CTCAGAACAA ATGTATTTCAC TCTCGTTCTT  
 2301 TGGTCAATTG CCTATCGTG CTCAAAAGAG CGAGGCCTTA ATTCCTGGAA  
 2351 AAGCAGCTTA TGGTTATTCC AAAAATCACC TAAATACAC CTACCTCAGA  
 2401 CCTGACAAAG CTCCAAAATC TCAAGGGCAA TGGCATAACA ATAGTTACTA  
 2451 TGGTCTTATT TCTGCAGAAC ATCCCTTCCTT AAACCTGGGTG CTTCTTACAA  
 2501 GACCTCTGGC TCAAGCTGG GATCTTTCAG GTTTTATTTC CGCAGAAATTC  
 2551 CTAGGTGGTT GGCAAAGTAA GTTCACAGAA ACTGGAGATC TGCAACGTAG  
 2601 CTTTAGTAGA GGTAAAGGGT ACAATGTTTC CCTACCGATA GGATGTTCTT  
 2651 CTCATGGTT CACACCATT AAGAAGGCTC CTTCTACACT GACCACCAA  
 2701 CTTGCCTACA AGCCTGATAT CTATCGTGTCA AACCCTCACA ATATTGTGAC  
 2751 TGTGCTCTCA AACCAAGAGA GCACCTCGAT CTCAGGAGCA AATCTACGCC  
 2801 GCCACGGTTT GTTGTACAA ATCCATGATG TAGTAGATCT CACCGAGGAC  
 2851 ACTCAGGCCT TTCTAAACTA TACCTTGAC GGGAAAAATG GATTACAAA  
 2901 CCACCGAGTG TCTACAGGAC TAAAATCCAC ATTTTAA

The PSORT algorithm predicts an outer membrane location (0.940).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 18A. The recombinant protein was used to immunise mice, whose sera were used in an immunoblot analysis blot (Figure 18B) and for FACS analysis (Figure 18C). A his-tagged protein was also expressed.

The cp6737 protein was also identified in the 2D-PAGE experiment (Cpn0454) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6737 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 35 Example 19

The following *C.pneumoniae* protein (PID 4377090) was expressed <SEQ ID 37; cp7090>:

1 **MNIHSLWKLC TLLALLALPA** CSLSPNYGWE DSCNTCHHTR RKKPSSFGFV  
 51 PLYTEEDFNP NFTFGEYDSK EEKQYKSSQV AAFRNITFAT DSYTIKGEEN  
 101 LAILTNLVHY MKKNPKATLY IEGHTDERGA ASYNLALGAR RANAIKEHLR  
 151 KQGISADRLS TISYGKEHPL NSGHNELAWQ QRNRTEFKIH AR\*

A predicted signal peptide is highlighted.

The cp7090 nucleotide sequence <SEQ ID 38> is:

1 ATGAATATAC ATTCCCTATG GAAACTTTGT ACTTTATTGG CTTTACTTG  
 51 ATTGCCAGCA TGTAGCCTTT CCCCTAATTA TGGCTGGAG GATTCCTGTA  
 101 ATACATGCCA TCATACAAGA CGAAAAAAGC CTTCTTCTTT TGGCTTTGTT  
 151 CCTCTCTATA CCGAAGAGGA CTTTAACCCCT AATTTTACCT TCGGTGAGTA  
 201 TGATTCCAAA GAAGAAAAAC AATACAAGTC AAGCCAAGTT GCAGCATTT  
 251 GTAATATCAC CTTTGCTACA GACAGCTATA CAATTAAAGG TGAAGAGAAC  
 301 CTTGCGATTG TCACGAACCTT GGTCACTAC ATGAAGAAAA ACCCGAAAGC  
 351 TACACTGTAC ATTGAAGGGC ATACTGACGA GCGTGGAGCT GCATCCTATA  
 401 ACCTTGCTTT AGGAGCACGA CGAGCCAATG CGATTAAGA GCATCTCCGA  
 451 AAGCAGGGAA TCTCTGCAGA TCGTCTATCT ACTATTCCCT ACGGAAAAGA

501 ACATCCTTTA AATTGGGAC ACAACGAAC AGCATGGCAA CAAAATGCC  
 551 GTACAGAGTT TAAGATTCA GCACGCTAA

The PSORT algorithm predicts an outer membrane location (0.790).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 19A.

- 5 A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 19B) and for FACS analysis.

These experiments show that cp7090 is useful immunogen. These properties are not evident from the sequence alone.

### Example 20

- 10 The following *C.pneumoniae* protein (PID 4377091) was expressed <SEQ ID 39; cp7091>:

1 **MLRQLCFQVF FFCFASLVYA** EELEVVRSE HITLPIEVSC QTDTKDPKIQ  
 51 KYLSSLTEIF CKDIALGDCL QPTAASKESS SPLAISLRlh VPQLSVVLLQ  
 101 SSKTPQTLCs FTISQNLSD RQKIHHADT VHYALTGIPG ISAGKIVFAL  
 151 SSLGKDQKLK QGELWTTDYD GKNLAPLTTE CSLSITPKWV GVGSNFPYLY  
 201 VSYKYGVPKI FLGSLNTEG KKVLPLKGNO LMPTFSPRKK LLAFVADTYG  
 251 NPDLFIQPFS LTSGPMGRPR RLLNENFGTQ GNPSFNPEGS QLVFISNKDG  
 301 RPRLYIMSLD PEPOQAPRLLT KKYNRSSCPA WSPDGKKIAF CSVIKGVRQI  
 351 CIYDLSSGED YQLTTSPTNK ESPSWAIDSR HLVFSAGNAE ESELYLISLV  
 401 TKKTNKIAIG VGEKRFPSWG AFPQQPIKRT L\*

- 20 A predicted signal peptide is highlighted.

The cp7091 nucleotide sequence <SEQ ID 40> is:

1 ATGTTACGGC AACTATGCTT CCAAGTTTT TTCTTTTGCT TCGCATCGCT  
 51 AGTCTATGCT GAAGAATTAG AAGTGTGTTGT CCGTTCCGAA CATATCACGC  
 101 TCCCTATTGA GGTCTCTTCG CAGACCGATA CGAAAGATCC AAAAATACAG  
 151 AAATACCTCA GCTCGCTAAC GGAGATATTT TGCAAGGACA TTGCCCTTAGG  
 201 AGATTGTCTA CAACCCACAG CGGCTTCTAA AGAATCGCTA TCTCCTTTAG  
 251 CAATATCTTT ACGGTTGCAT GTACCTCAGC TATCTGTAGT GCTTTTACAG  
 301 TCTTCAAAAA CTCCTCAAC CTTATGTTCT TTTACTATTT CTCAAATCT  
 351 TTCTGTAGAT CGTCAAAAAA TCCATCACGC TGCTGATACA GTTCATTACG  
 401 CCCTCACAGG GATTCCTGGA ATCAGTGCTG GGAAAATTGT TTTTGTCTA  
 451 AGTTCTTTAG GAAAAGATCA AAAGCTCAAG CAAGGAGAAT TATGGACTAC  
 501 AGATTACGAT GGGAAAACC TCGCCCCCTT AACCAACAGAA TGTTCGCTCT  
 551 CTATAACTCC AAAATGGGT GGTGTGGGAT CAAATTTCCT CTATCTCTAT  
 601 GTTTCTGTATA AGTATGGTGT GCCTAAAAATT TTTCTTGGTT CCCTAGAGAA  
 651 CACTGAAGGT AAAAAAGTCC TTCCGTTAAA AGGCAACCAA CTCATGCCA  
 701 CGTTTCTC AAGAAAAAAAG CTTTAGCTT TCGTTGCTGA TACGTATGGA  
 751 AATCTGATT TATTTATTCA ACCGTTCTCA CTAACCTCAG GACCTATGGG  
 801 TCGCCCACGT CGCCTCCCTA ATGAGAATTG CGGGACTCAA GGGAAATCCCT  
 851 CCTTCAACCC TGAAGGATCC CAGCTTGTCT TTATATCGAA CAAAGACGGC  
 901 CGTCCCGCGTC TTTATATTAT GTCCCTCGAT CCTGAACCCC AAGCACCTCG  
 951 CTTGCTGACA AAAAAATACA GAAATAGCAG TTGCCCCGCA TGGTCTCCAG  
 1001 ATGGTAAAAA AATAGCCTTC TGCTCTGTAA TTAAAGGGT GCGACAAATT  
 1051 TGTATTTACG ATCTCTCCCT TGGAGAGGAT TACCAACTCA CTACGTCTCC  
 1101 CACAAATAAA GAGAGTCCTT CTTGGGCTAT AGACAGCCGT CATCTGTCT  
 1151 TTAGTGCAGGG GAATGCTGAA GAATCAGAGT TATATTTAAT CAGTCTAGTC  
 1201 ACCAAAAAAA CTAACAAAT TGCTATAGGA GTAGGAGAAA AACGGTTCCC  
 1251 CTCCCTGGGGT GCTTCCCTC AGCAACCGAT AAAGAGAACAA CTATGA

The PSORT algorithm predicts an inner membrane location (0.109).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 20A.

- 50 A his-tagged protein was also expressed. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 20B) and for FACS analysis.

These experiments show that cp7091 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 21

The following *C.pneumoniae* protein (PID 4376260) was expressed <SEQ ID 41; cp6260>:

```

5      1  MRFSLCGFPL VFSFTLLSVF DTSILSATTIS LTPEDSFHGD SQNAERSYNV
      51  QAGDVYSLTG DVSI SVNVDNS ALNKACFNVT SGSVTFAGNH HGLYFNNI
10     101 GTTKEGAVLC CQDPQATARF SGFSTLSFIQ SPGDIKEQGC LYSKNALML
15     151 NNYVVRFEQN QS GTKGGAIIS GANVTIVGNY DSVSFYQNAAA TFGGAIHSSG
20     201 PLQIAVNQAE IRFAQNTAKN GSGGALYSDG DIDIDQNAYV LFRENEALTT
25     251 AIGKGGAVCC LPTSGSSTPV PIVTFSDNKQ LVFERNH SIM GGGAIYARKL
30     301 SISSGGPTLF INNISYANSQ NLGGAI AIDT GGEISLSAEK GTITFQGNRT
35     351 SLPFLNGIHL LQNAKFLKLQ ARNGYSIEFY DPITSEADGS TQLNINGDPK
40     401 NKEYTGTILF SGEKS LANDP RDKFKSTIPQN VNLSAGYLVI KEGAETVSK
45     451 FTQSPGSHLV LDLGTKL IAS KEDIAITGLA IDIDSLSSSS TAAVIKANTA
50     501 NKQISVTDI ELISPTGNAY EDLRRMRNSQT FPILLSLEPGA GGSVTVTAGD
55     551 FLPVSPHYGF QGNWKLA WIG TGNKVGEFFW DKINYKPRPE KEGNLVPNIL
60     601 WGNADVRSL MQVQETHASS LQTDRLGLWID GIGNFFFHVA SEDNIRYRHN
65     651 SGGYVLSVNN EITPKHYTSM AFSQLFSRDK DYAVSNNEYR MYLGSYLYQY
70     701 TTSLGNIFRY ASRNPNVNVG ILSRRFLQNP LMIFHFLCAY GHATNDMKT
75     751 YANFPVMKNS WRNNCWAIEC GGSMPLLVE NGRLFQGAIP FMKLQLVYAY
80     801 QGDFKETTAD GRRFSNGSLT SISVPLGIRF EKLALSQDVL YDFSF SYIPD
85     851 IFRKDPSCA ALVISGDSWL VPAAHVSRHA FVGSGTGRYH FNDYTELLCR
90     901 GSIECRPHAR NYNINC GSKF RF*

```

A predicted signal peptide is highlighted.

25 The cp6260 nucleotide sequence <SEQ ID 42> is:

```

1  ATGC GATT TT CGCT CTGCGG ATT CCTCTCTA GTT TTTT CTT TTACATTGCT
5  51  CTCAGTCTTC GACACTT CTT TGAGT GCTAC TACGATT TCT TTAACCCAG
10  101 AAGATAGTT TCATGGAGAT AGTCAGAATG CAGAACGTT TTATAATGTT
15  151 CAAGCTGGGG ATGTCTATAG CCTTACTGGT GATGTC TCAA TATCTAACGT
20  201 CGATAACTCT GCATTAATAA AAGCCTGCTT CAATGTGACC TCAGGAAGTG
25  251 TGACGTT CGC AGGAAATCAT CATGGTTAT ATTTAATAA TATTCCTCA
30  301 GGAAC TACAA AGGAAGGGC TGTACTTTGT TGCCAAGATC CTCAAGAAC
35  351 GGCACGTT TCTGGTTCT CCACGCTCTC TTTTATTCAAG AGCCCCGGAG
40  401 ATATTAAAGA ACAGGGATGT CTCTATTCAA AAAATGCACT TATGCTCTTA
45  451 AACAA TTATG TAGT GCGTTT TGAACAAA CAAAGTAAGA CTAAAGGCGG
50  501 AGCTATTAGT GGGCGGAATG TTACTATAGT AGGCAACTAC GATTCCGTCT
55  551 CTTTCTATCA GAATGCAGCC ACTTTTGGAG GTGCTATCCA TTCTTCAGGT
60  601 CCCCTACAGA TTGCAGTAAA TCAGGCAGAG ATAAGATTG CACAAAATAC
65  651 TGCCAAGAAT GGTTCTGGAG CGGCCTTGTA CTCCGATGGT GATATTGATA
70  701 TTGATCAGAA TGCTTATGTT CTATTCGAG AAAATGAGGC ATTGACTACT
75  751 GCTATAGGTA AGGGAGGGC TGTCTGTTGT CTTCCCAC TT CAGGAAGTAG
80  801 TACTCCAGTT CCTATTGTA CTTTCTCTGA CAATAAACAG TTAGTCTTTG
85  851 AAAGAAACCA TTCCATAATG GGTGGCGGAG CCATTATGC TAGGAAACTT
90  901 AGCATCTCTT CAGGAGGTCC TACTCTATT ATCAATAATA TATCATATGC
95  951 AAATTCGCAA AATT TAGGTG GAGCTATTGC CATTGATACT GGAGGGGAGA
100 1001 TCAGTTTATC AGCAGAGAAA GGAACAATTA CATTCCAAGG AAACCGGACG
105 1051 AGCTTACCGT TTTGGAATGG CATCCATCTT TTACAAAATG CTAAATTCCCT
110 1101 GAAATTACAG GCGAGAAATG GATACTCTAT AGAATT TAT GATCCTATT
115 1151 CTTCTGAAGC AGATGGTCT ACCCAATTGA ATATCAACGG AGATCCTAAA
120 1201 AATAAAAGAGT ACACAGGGAC CATACTCTT TCTGGAGAAA AGAGTCTAGC
125 1251 AAACGATCCT AGGGATT TTA AATCTACAT CCTCTCAGAAC GTCAACCTGT
130 1301 CTGCAGGATA CTTAGTTATT AAAGAGGGGG CGGAAGTCAC AGTTTCAAAA
135 1351 TTCACCGAGT CTCCAGGATC GCATTAGTT TTAGATTAG GAACCAAAC
140 1401 GATAGCCTCT AAGGAAGACA TTGCCATCAC AGGCCTCGCG ATAGATATAG
145 1451 ATAGCTTAAG CTCATCCTCA ACAGCAGCTG TTATTAAGC AAACACCGCA
150 1501 AATAAAACAGA TATCCGTGAC GGACTCTATA GAACCTATCT CGCCTACTGG
155 1551 CAATGCCAT TGAAGATCTCA GAATGAGAAA TTCACAGACG TTCCCTCTGC
160 1601 TCTCTTTAGA GCCTGGAGCC GGGGGTAGTG TGACTGTAAC TGCTGGAGAT
165 1651 TTCC TACCGG TAAGTCCCCA TTATGGTTT CAAGGCAATT GGAAATTAGC
170 1701 TTGGACAGGA ACTGGAAACA AAGTTGGAGA ATTCTCTGG GATAAAATAA

```

1751 ATTATAAGCC TAGACCTGAA AAAGAAGGAA ATTTAGTTCC TAATATCTTG  
 1801 TGGGGGAATG CTGTAGATGT CAGATCCTTA ATGCAGGTTC AAGAGACCCA  
 1851 TGCATCGAGC TTACAGACAG ATCGAGGGCT GTGGATCGAT GGAATTGGGA  
 1901 ATTTCTTCCA TGTATCTGCC TCCGAAGACA ATATAAGGT ACGTCATAAC  
 1951 AGCGGTGGAT ATGTTCTATC TGAAATAAT GAGATCACAC CTAAGCACTA  
 2001 TACTTCGATG GCATTTCCC AACCTTTAG TAGAGACAAG GACTATGCGG  
 2051 TTTCCAACAA CGAACATACAGA ATGTAATTAG GATCGTATCT CTATCAATAT  
 2101 ACAACCTCCC TAGGGAAATAT TTTCCGTAT GCTTCGCGTA ACCCTAATGT  
 2151 AAACGTCGGG ATTCTCTCAA GAAGGTTTCTC TCAAATCCT CTTATGATTT  
 2201 TTCATTTTT GTGTGCTTAT GGTATGCCA CCAATGATAT GAAAACAGAC  
 2251 TACCGCAAATT TCCCTATGGT GAAAAACAGC TGGAGAAACA ATTGTTGGGC  
 2301 TATAGAGTGC GGAGGGAGCA TGCCCTCTATT GGTATTGAG AACGGAAGAC  
 2351 TTTCCAAGG TGCCATCCC TTTATGAAAC TACAATTAGT TTATGCTTAT  
 2401 CAGGGAGATT TCAAAGAGAC GACTGCAGAT GGCGTAGAT TTAGTAATGG  
 2451 GAGTTTAACA TCGATTCTG TACCTCTAGG CATAKGCTT GAGAACGCTGG  
 2501 CACTTTCTCA GGATGTACTC TATGACTTTA GTTTCTCTA TATTCTGTAT  
 2551 ATTTTCCGTA AGGATCCCTC ATGTGAAGCT GCTCTGGTGA TTAGCGGAGA  
 2601 CTCCTGGCTT GTTCCGGCAG CACACGTATC AAGACATGCT TTTGTAGGGA  
 2651 GTGGAACGGG TCGGTATCAC TTTAACGACT ATACTGAGCT CTTATGTCGA  
 2701 GGAAGTATAAG AATGCCGCC CCATGCTAGG AATTATAATA TAAACTGTGG  
 2751 AAGCAAATT CGTTTTAG

The PSORT algorithm predicts an outer membrane location (0.921).

The protein was expressed in *E.coli* and purified both as a his-tag and GST-fusion product. The GST-fusion is shown in Figure 21A. This recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 21B) and for FACS analysis (Figure 21C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6260 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 30 Example 22

The following *C.pneumoniae* protein (PID 4376456) was expressed <SEQ ID 43; cp6456>:

1 MSSPVNNTPS APNIPIPAPT TPGIPTTKPR SSFIEKVIIIV AKYILFAIAA  
 51 TSGALGTILG LSGALTPGIG IALLVIFVFVS MVLLGLILKD SISGGEERRL  
 101 REEVSRFTSE NQRLTIVITTT LETEVKDLKA AKDQLTLEIE AFRNENGNLK  
 151 TTAEDLEEQQV SKLSEQEAL ERINQLIQAN AGDAQEISSE LKKLISGWDS  
 201 KVVEQINTSI QALKVLLGQE WVQEAQTHVK AMQEIQALQ AEILGMHQS  
 251 TALQKSVENL LVQDQALTRV VGGLESENK LSQACSLRQ EIEKLAQHET  
 301 SLQQRIDAML AQEQNLAEQV TALEKMKQEA QKAESEFIAC VRDRTFGRRE  
 351 TPPPTTPVVE GDESQEEDEG GTPPPVSPQSS PVDRATGDQ \*

### 40 The cp6456 nucleotide sequence <SEQ ID 44> is:

1 ATGTCATCTC CTGAAATAA CACACCCTCA GCACCAAACA TTCCAATACC  
 51 AGCGCCCACG ACTCCAGGT A TCCCTACAAC AAAACCTCGT TCTAGTTCA  
 101 TTGAAAAGGT TATCATGTG GCTAAGTACA TACTATTGTC AATTGCGAGCC  
 151 ACATCAGGAG CACTCGGAAC AATTCTAGGT CTATCTGGAG CGCTAACCCC  
 201 AGGAATAGGT ATTGCCCTTC TTGTTATCTT TTTGTTTCT ATGGTGCTTT  
 251 TAGGTTTAAT CCTTAAAGAT TCTATAAGTG GAGGAGAAGA ACGCAGGCTC  
 301 AGAGAAGAGG TCTCTCGATT TACAAGTGAG AATCAACGGT TGACAGTCAT  
 351 AACCCACAACA CTTGAGACTG AAGTAAAGGA TTTAAAGCA GCTAAAGATC  
 401 AACTTACACT TGAAATCGAA GCATTTAGAA ATGAAACGG TAATTAAAAA  
 451 ACAACTGCTG AGGACTTAGA AGAGCAGGTT TCTAAACTTA GCGAACAAATT  
 501 AGAAGCACTA GAGCGAATTA ATCAACTTAT CCAAGCAAAC GCTGGAGATG  
 551 CTCAAGAAAT TTGCTCTGAA CTAAGAAAT TAATAAGCGG TTGGGATTCC  
 601 AAAGTTGTTG AACAGATAAA TACTTCTATT CAAGCATGTA AAGTGTATT  
 651 GGGTCAAGAG TGGGTGCAAG AGGCTCAAAC ACACGTTAAA GCAATGCAAG  
 701 AGCAAATTCA AGCATTGCAA GCTGAAATTTC TAGGAATGCA CAATCAATCT

5           751 ACAGCATTGC AAAAGTCAGT TGAGAATCTA TTAGTACAAG ATCAAGCTCT  
          801 AACAAAGAGTA CTAGGTGAGT TGTAGAGTC TGAGAACAAAG CTAAGCCAAG  
          851 CTITGTTCTGC GCTACGTCAA GAAATAGAAA AGTTGGCCCA ACATGAAACA  
          901 TCTTTGCAAC AACGTATTGA TGCATGCTA GCCCAAGAGC AAAATTGGC  
          951 AGAGCAGGTC ACAGGCCCTG AAAAAATGAA ACAAGAACGCT CAGAAGGCTG  
 1001 AGTCCGAGTT CATTGCTTGT GTACGTGATC GAACCTTCGG ACGTCGTGAA  
 1051 ACACCTCAC CAACAACACC TGAGTTGAA GGATGATGAAA GTCAAGAAGA  
 1101 AGACGAAGGA GGTACTCCCC CAGTATCACA ACCATCTTCA CCCGTAGATA  
 1151 GAGCAACAGG AGATGGTCAG TAA

10      The PSORT algorithm predicts inner membrane (0.127).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 22A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 22B) and for FACS analysis (Figure 22C). A his-tag protein was also expressed.

15      These experiments show that cp6456 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 23

The following *C.pneumoniae* protein (PID 4376729) was expressed <SEQ ID 45; cp6729>:

20      1 MKIPLHKLLL SSTLVTPILL SIATYGDAS LSPTDSFDGA GGSTFTPKST  
          51 ADANGTNYVL SGNVYINDAG KGTALTGCCF TETTGDLTFT GKGYSFSFNT  
          101 VDAGSNAGAA ASTTADKALT FTGFSNLSFI AAPGTTVASG KSTLSSAGAL  
          151 NLTDNGTILF SQNVSNEANN NGGAITTAKTL SISGNTSSIT FTSNSAKKLG  
          201 GAIYSSAAAS ISGNTGQLVF MNNKGETGGG ALGFEASSSI TQNSSLFFSG  
          251 NTATDAAGKG GAIYCEKTGE TPTLTISGNK SLTFAENSSV TQGGAICAHG  
          301 LDLSAAGPTL FSNNRCCNTA AGKGGAAIA DSGSLSLSAN QGDITFLGNT  
          351 LTSTSAPTST RNAIYLGSAA KITNLRAAQG QSIYFYDPIA SNTTCASDVL  
          401 TINQPDSNSP LDYSGTIVFS GEKLSADEAK AADNFTSILK QPLALASGTL  
          451 ALKGNVELDV NGFTQTEGST LLMQPGTKLK ADTEAISLTK LVVDLSALEG  
          501 NKSVISIETAG ANKTITLTSP LVFQDSSGNF YESHTINQAF TQPLUVFTAA  
          551 TAASDIYIDA LLTSPVQTPE PHYGYQGHWE ATWADTSTAK SGTMTWVTG  
          601 YNPNPERRAS VVPDSLWASF TDIRTLQQIM TSQANSIYQQ RGLWASGTAN  
          651 FFHKDKSGTN QAFRHKSYGY IVGGSAEDFS ENIFSVAFQC LFGKDKDLF  
          701 VENTSHNYLA SLYLQHRAFL GGLPMPSFGS ITDMLDIPL ILNAQLSYSY  
          751 TKNDMDTRYT SYPEAQGSWT NNSGALELGG SLALYLPKEA PFFQGYFPFL  
          801 KFQAVYSRQQ NFKESGAEAR AFDDGDLVNC SIPVGIRLEK ISEDEKNNFE  
          851 ISLAYIGDVTY RKNPRSRSTSL MVSGASWTSK CKNLARQAFL ASAGSHLTL  
          901 PHVELSGEAA YELRGSAHIY NVDCGLRYSF \*

A predicted signal peptide is highlighted.

The cp6729 nucleotide sequence <SEQ ID 46> is:

40      1 ATGAAAATAC CCTTGACCAA ACTCCTGATC TCTTCGACTC TTGTCACTCC  
          51 CATTCTATTG AGCATTGCAA CTTACGGAGC AGATGCTTCT TTATCCCCTA  
          101 CAGATAGCTT TGATGGAGCG GGCGGCTCTA CATTACTCC AAAATCTACA  
          151 GCAGATGCCA ATGGAACGAA CTATGTCTTA TCAGGAAATG TCTATATAAA  
          201 CGATGCTGGG AAAGGCACAG CTTAACAGG CTGCTGCTTT ACAGAAACTA  
          251 CGGGTGATCT GACATTACT GGAAAGGGAT ACTCATTTC ATTCAACACG  
          301 GTAGATGCGG GTTCGAATGC AGGAGCTGCG GCAAGCACAA CTGCTGATAA  
          351 AGCCCTAACAA TTCACAGGAT TTTCTAACCT TCCCTTCATT GCAGCTCCTG  
          401 GAACTACAGT TGCTTCAGGA AAAAGTACTT TAAGTTCTGC AGGAGCCTTA  
          451 AATCTTACCG ATAATGGAAC GATTCCTTT AGCCAAAACG TCTCCAATGA  
          501 AGCTAAATAAC AATGGGGAG CGATCACCAC AAAAATCTTT TCTATTCTG  
          551 GGAATACCTC TTCTATAAACC TTCACTAGTA ATAGCGCAA AAAATTAGGT  
          601 GGAGCGATCT ATAGCTCTGC GGCTGCAAGT ATTCAGGAA ACACCGCCA  
          651 GTTAGTCTTT ATGAATAATA AAGGAGAAAC TGGGGGTGGG GCTCTGGGCT  
          701 TTGAAGCCAG CTCCTCGATT ACTCAAAATA GCTCCCTTT CTTCTCTGGA  
          751 AACACTGCAA CAGATGCTGC AGGCAAGGGC GGGGCCATT ATTGTGAAAA  
          801 AACAGGAGAG ACTCCTACTC TTACTATCTC TGGAAATAAA AGTCTGACCT  
          851 TCGCCGAGAA CTCTTCAGTA ACTCAAGGCG GAGCAATCTG TGCCCATGGT

|    |      |                                                          |
|----|------|----------------------------------------------------------|
|    | 901  | CTAGATCTT CCGCTGCTGG CCCTACCCCTA TTTTCAAATA ATAGATGC GG  |
|    | 951  | GAACACAGCT GCAGGCAAGG CGGGCGCTAT TGCAATTGCC GACTCTGGAT   |
| 5  | 1001 | CTTAAAGTCT CTCTGCAAAT CAAGGAGACA TCACGTTCT TGGCAACACT    |
|    | 1051 | CTAACCTCAA CCTCCGCGCC AACATCGACA CGGAATGCTA TCTACCTGGG   |
|    | 1101 | ATCGTCAGCA AAAATTACGA ACTTAAGGGC AGCCCCAAGGC CAATCTATCT  |
|    | 1151 | ATTCTATGA TCCGATTGCA TCTAACACCA CAGGAGCTC AGACGTTCTG     |
|    | 1201 | ACCATCAACC AACCGGATAG CAACTCGCT TTAGATTATT CAGGAACGAT    |
|    | 1251 | TGTATTTCT GGGGAAAAGC TCTCTGAGA TGAGCGAAA GCTGCTGATA      |
| 10 | 1301 | ACTTCACATC TATTTAAAG CAACCATTTG CTCTAGCCTC TGGAACCTTA    |
|    | 1351 | GCACCTCAAAG GAAATGTCGA GTTAGATGTC AATGGTTCA CACAGACTGA   |
|    | 1401 | AGGCTCTACA CTCCCTCATGC ACCAGGAAC AAAGCTCAA GCAGATACTG    |
|    | 1451 | AAGCTATCAG TCTTACCAAA CTTGTCGTTG ATCTTCTGC CTTAGAGGGA    |
|    | 1501 | AATAAGAGTG TGTCCATTGA AACAGCAGGA GCCAACAAAA CTATAACTCT   |
| 15 | 1551 | AACCTCTCCT CTTGTTTCC AAGATAGTAG CGGCAATT TT TATGAAAGCC   |
|    | 1601 | ATACGATAAA CCAAGCCTTC ACGCAGCCTT TGGTGGTATT CACTGCTGCT   |
|    | 1651 | ACTGCTGCTA GCGATATT TA TATCGATGCG CTTCTCACCT CTCCAGTACA  |
|    | 1701 | AACTCCAGAA CCTCATTACG GGTATCAGGG ACATTGGGAA GCCACCTGGG   |
|    | 1751 | CAGACACATC AACTGCAAA TCAGGAAC TA TGACTTGGGT AACTACGGGC   |
| 20 | 1801 | TACAACCCCTA ATCCGTAGCG TAGAGCTTCC GTAGTTCCCG ATTCAATTATG |
|    | 1851 | GGCATCCTTT ACTGACATTC GCACTCTACA GCAGATCATG ACATCTCAAG   |
|    | 1901 | CGAATAGTAT CTATCAGCAA CGAGGACTCT GGGCATCAGG AACTGCGAAT   |
|    | 1951 | TTCTTCCATA AGGATAAAATC AGGAACTAAC CAAGCATTCC GACATAAAAG  |
|    | 2001 | CTACGGCTAT ATTGTTGGAG GAAGTGTGCTGA AGATTTTCT GAAAATATCT  |
| 25 | 2051 | TCAGTGTAGC TTTCTGCCAG CTCTCGGTA AAGATAAAAGA CCTGTTTATA   |
|    | 2101 | GTGAAAATA CCTCTCATAA CTATTAGCG TCGCTATACC TGCAACATCG     |
|    | 2151 | AGCATTCCCTA GGAGGACTTC CCATGCCCTC ATTGGAAGT ATCACCGACA   |
|    | 2201 | TGCTGAAAGA TATTCCCTC ATTGGAATG CCCAGCTAAG CTACAGCTAC     |
|    | 2251 | ACTAAAAATG ATATGGATAC TCGCTATACT TCCTATCCTG AAGCTCAAGG   |
| 30 | 2301 | CTCTTGGGACC AATAACTCTG GGGCTCTAGA GCTCGGAGGA TCTCTGGCTC  |
|    | 2351 | TATATCTCCC TAAAGAAGCA CCGTTCTTCC AGGGATATT CCCCTCTTA     |
|    | 2401 | AAGTTCCAGG CAGTCTACAG CGCCAACAA AACTTTAAAG AGAGTGGCGC    |
|    | 2451 | TGAAGCCCGT GCTTTGATG ATGGAGACCT AGTGAAGTGC TCTATCCTG     |
|    | 2501 | TCGGCATTCTG GTTAGAAAAA ATCTCCGAAG ATGAAAAAAA TAATTTCGAG  |
| 35 | 2551 | ATTTCTCTAG CCTACATTGG TGATGTTGAT CGTAAAAATC CCCGTTCGCG   |
|    | 2601 | TACTTCTCTA ATGGTCAGTG GACCTCTTG GACTTCGCTA TGTAACACC     |
|    | 2651 | TCGCACGACA AGCCTCTTA GCAAGTGTG GAAGCCATCT GACTCTCTCC     |
|    | 2701 | CCTCATGTAG AACTCTCTGG GGAAGCTGCT TATGAGCTC GTGGCTCAGC    |
|    | 2751 | ACACATCTAC AATGTAGATT GTGGCTAAG ATACTCATTC TAG           |

The PSORT algorithm predicts outer membrane (0.927).

- 40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 23A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 23B) and for FACS analysis (Figure 23C). A his-tag protein was also expressed.

The cp6729 protein was also identified in the 2D-PAGE experiment (Cpn0446) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

- 45 These experiments show that cp6729 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 24

The following *C.pneumoniae* protein (PID 4376849) was expressed <SEQ ID 47; cp6849>:

|    |     |                                                         |
|----|-----|---------------------------------------------------------|
| 50 | 1   | MSKLIRRVT VLALTSMASC FASGGIEAAV AESLITKIVA SAETKPAPVP   |
|    | 51  | MTAKKVRLLVR RNKQPVEQKS RGAFCDKEFY PCEEGRCQPV EAQQESCYGR |
|    | 101 | LYSVKVNDDC NVEICQSVPY YATVGSPYPI EILAIGKKDC VDVVITQQLP  |
|    | 151 | CEAEFVSSDP ETTPTSDGKL VKIDRLGAG DKCKITVVVK PLKEGCCFTA   |
|    | 201 | ATVCACPELR SYTKCGQPAI CIKQEGPDCA CLRPCVCYKI EVVNIGSAIA  |
|    | 251 | RNVTVDNPVP DGYSHASGQR VLSFNLDMDR PGDKKVFTVE FCPQRRQQT   |
| 55 | 301 | NVATVTVYCGG HKCSANVTTV VNEPCVQVNI SGADWSYVCK PVEYSISVSN |
|    | 351 | PGDLVLHDVV IQDTLPMSGVT VLEAPGGEIC CNKVVWRIKE MCPGETLQFK |

-66-

401 LVVKAQVPGR FTNQVAVTSE SNCGTCTSCA ETTTHWKGLA ATHMCVLDTN  
 451 DPICVGENTV YRICVTNRGS AEDTNVSLIL KFSKELQPIA SSGPTKGTIS  
 501 GNTVVFDALP KLGSKESVEF SVTLKGIAPG DARGEAILSS DTLTSPVSDT  
 551 ENTHVY\*

- 5 A predicted signal peptide is highlighted.

The cp6849 nucleotide sequence <SEQ ID 48> is:

1 ATGTCCAAAC TCATCAGACG AGTAGTTACG GTCCCTGGCG TAACGAGTAT  
 51 GCGCAGTTGC TTTGCCAGCG GGGGTATAGA GGCGCTGTA GCAGAGTC  
 101 TGATTACTAA GATCGTCGCT AGTGCAGAAA CAAAGCCAGC ACCTGTTCT  
 151 ATGACAGCGA AGAAGGTTAG ACTTGTCCGT AGAAATAAAC AACCAAGTTGA  
 201 ACAAAAAAGC CGTGGTGCTT TTTGTGATAA AGAATTTTAT CCCTGTGAAG  
 251 AGGGACGATG TCAACCTGTA GAGGCTCAGC AAGAGTCTTG CTACGGAAGA  
 301 TTGTTATTCTG TAAAAGTAAA CGATGATTGC AACGTAGAAA TTTGCCAGTC  
 351 CGTTCCAGAA TAGCTACTG TAGGATCTCC TTACCCCTATT GAAATCCTTG  
 401 CTATAGGCAA AAAAGATTGT GTTGATGTTG TGATTACACA ACAGCTACCT  
 451 TCGAAGCTG AATTCTGAAG CAGTGATCCA GAAACAACTC CTACAAGTGA  
 501 TGGGAAATTG GTCTGGAAAA TCGATCGCCT GGGTGCAGGA GATAAAATGCA  
 551 AAATTACTGT ATGGGTAAAA CCTCTTAAAG AAGGTTGCTG CTTCACAGCT  
 601 GCTACTGTAT GTGCTTGCCC AGAGCTCCGT TCTTATACTA AATGCGGTCA  
 651 ACCAGCCATT TGTATTAAGC AAGAAGGACC TGACTGTGCT TGCCTAAAGAT  
 701 GCCCTGTATG CTACAAAATC GAAGTAGTGA ACACAGGATC TGCTATTGCC  
 751 CGTAACGTAACCTGTAGATAA TCCCTGTTCCC GATGGCTATT CTCATGCATC  
 801 TGGTCAAAGA GTTCTCTCTT TTAACTTAGG AGACATGAGA CCTGGCGATA  
 851 AAAAGGTATT TACAGTTGAG TTCTGCCCTC AAAGAAGAGG TCAAATCACT  
 901 AACGTTGCTA CTGTAACCTA CTGCGGTGGA CACAAATGTT CTGCAAATGT  
 951 AACTACAGTT GTTAATGAGC CTTGTGTACA AGTAAATATC TCTGGTGCTG  
 1001 ATTGGTCTTA CGTATGTAAA CCTGTGGAGT ACTCTATCTC AGTATCGAAT  
 1051 CCTGGAGACT TGGTTCTTCA TGATGTGCTG ATCCAAGATA CACTCCCTTC  
 1101 TGGTGTACAGTCA GTACTCGAAG CTCCCTGGTGG AGAGATCTGC TGTAAATAAG  
 1151 TTGTTTGGCG TATTAAAGAA ATGTGCCAG GAGAAACCT CCAGTTTAAA  
 1201 CTTGTAGTGA AAGCTCAAGT TCCCTGGAAGA TTCACAAATC AAGTTGCAGT  
 1251 AACTAGTGAG TCTAACTGCG GAACATGTAC ATCTTGCGCA GAAACAAACAA  
 1301 CACATTGGAA AGGTCTTGCA GCTACCCATA TGTGCGTATT AGACACAAAT  
 1351 GATCCTATCT GTGTAGGAGA AAATACTGTC TATCGTATCT GTGTAACCAA  
 1401 CCGTGGTTCTG GCTGAAGATA CTAACGTATC TTTAATCTTG AAGTTCTCAA  
 1451 AAGAAACTTCA GCCAATAGCT TCTTCAGGTC CAAACTAAAGG AACGATTTC  
 1501 GGTAAATACCG TTGTTTTCGA CGCTTTACCT AAACCTGGTT CTAAGGAATC  
 1551 TGAGAGTTT TCTGTACCT TGAAAGGTAT TGCTCCCGGA GATGCTCGCG  
 1601 GCGAAGCTAT TCTTTCTTCT GATACACTGA CTTCACCAAGT ATCAGACACA  
 1651 GAAAATACCC ACGTGTATTA A

The PSORT algorithm predicts periplasmic space (0.93).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 24A, and also as a his-tag protein. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 24B) and for FACS analysis (Figure 24C).

- 45 The cp6849 protein was also identified in the 2D-PAGE experiment (Cpn0557).

These experiments show that cp6849 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 25

The following *C.pneumoniae* protein (PID 4376273) was expressed <SEQ ID 49; cp6273>:

50 1 MGLFHLTFLFG LLLCSLPISL VAKFPESVGH KILYISTQST QQALATYLEA  
 51 LDAYGDHDFF VLRKIGEDYL KQSIHSSDPQ TRKSTIIGAG LAGSSEALDV  
 101 LSQAMETADP LQQLLVLSAV SGHLGKTSDD LLFKALASPY PViRLEAAYR  
 151 LANLKNKTVI DHLHSFIHKL PEEIQCLSAA IFLRLETEES DAYIRDLLAA  
 201 KKSAAIRSATA LQIGEYQQKR FLPTLRLNLLT SASPQDQEAI LYALGKLKD

-67-

5           251 QSYVNIKKQL QKPDVDVTLA AAOALIALGK EEDALPVKK QALEERPRAL  
           301 YALRHLPSERI GIPIALPIFL KTKNSEAKLN VALALLELGC DTPKLLEYIT  
           351 ERLVQPHYNE TLALSFSKGR TLQNWKRVNI IVPQDPQERE RLLSSTTRGLE  
           401 EQILTFLFRL PKEAYLPCY KLLASQKTQL ATTAISFLSH TSHQEALDLL  
           451 FQAAKLPGEF IIRAYADLAI YNLTKDPEKK RSLHDYAKKL IQETLLFVDT  
           501 ENQRPHPSMP YLRYQVTPES RTKLMLDILE TLATSKSS ED IRLLIQLMTE  
           551 GDAKNFPVLA GLLIKIVE\*

A predicted signal peptide is highlighted.

The cp6273 nucleotide sequence <SEQ ID 50> is:

10           1 ATGGGACTAT TCCATCTAAC TCTCTTGGA CTTTTATTGT GTAGTCCTCC  
           51 CATTTCCTT GTTGCTAAAT TCCCTGAGTC TGTAGGTCAT AAGATCCTTT  
           101 ATATAAGTAC GCAATCTACA CAGCAGGCC TAGCAACATA TCTGGAAGCT  
           151 CTAGATGCCT ACGGTGATCA TGACTTCTTC GTTTTAAGAA AAATCGGAGA  
           201 AGACTATCTC AAGCAAAGCA TCCACTCCTC AGATCCGAA ACTAGAAAAAA  
           251 GCACCATCAT TGGAGCAGGC CTGGCGGGAT CTTCAGAACG CTTGGACGTG  
           301 CTCTCCCAAG CTATGAAAC TGCAAGACCCC CTGCAGCAGC TACTGGTTT  
           351 ATCGGCAGTC TCAGGACATC TTGGGAAAC TTCTGAGCAC TTACTGTTA  
           401 AAGCTTTAGC ATCTCCCTAT CCTGTCATCC GCTTAGAACG CGCCTATAGA  
           451 CTTGCTAATT TGAAGAACAC TAAAGTCATT GATCATCTAC ATTCTTTCAT  
           501 TCATAAGCTT CCCGAAGAAA TCCAATGCCT ATCTGCGCA ATATTCCTAC  
           551 GCTTGGAGAC TGAAGAATCT GATGCTTATA TTCGGGATCT CTTAGCTGCC  
           601 AAGAAAAGCG CGATTCCGGAG TGCCACAGCT TTGCAGATCG GAGAATACCA  
           651 ACAAAAACGC TTTCTCCGA CACTTAGGAA TTGCTAAGC AGTGCCTCTC  
           701 CTCAAGATCA AGAAGCTATT CTTTATGCTT TAGGGAAGCT TAAGGATGGT  
           751 CAGAGCTACT ACAATATAAA AAAGCAATTG CAGAACGCTG ATGTTGGATGT  
           801 CACTTTAGCA GCAGCTCAAG CTTTAATTGC TTGGGGAAA GAAGAGGACG  
           851 CTCTTCCCGT GATAAAAAG CAAGCACTTG AGGAGCGGCC TCGAGCCCTG  
           901 TATGCCCTAC GGCATCTACC CTCTGAGATA GGGATTCCGA TTGCCCCGCC  
           951 GATATTCTCA AAAACTAAGA ACAGCGAACG CAAGTTGAAT GTAGCTTTAG  
           1001 CTCTCTTCTAGA GTTAGGGTGT GACACCCCTA AACTACTGGA ATACATTACC  
           1051 GAAAGGCTTG TCCAACCACA TTATAATGAG ACTCTAGGCT TGAGTTCTC  
           1101 TAAGGGGCGT ACTTTACAAA ATTGGAAGCG GGTGAACATC ATAGTCCCTC  
           1151 AAAGATCCCCA GGAGAGGGAA AGGTTGCTCT CCACAAACCG AGGTCTTGAA  
           1201 GAGCAGATCC TTACGTTTCT CTTCCGCCCTA CCTAAAGAAG CTTACCTCCC  
           1251 CTGTATTTAT AAGCTTTTGG CGAGTCAGAA AACTCAGCTT GCCACTACTG  
           1301 CGATTTCTTT TTAAAGTCAC ACCTCACATC AGGAAGCCTT AGATCTACTT  
           1351 TTCCAAAGCTG CGAAGCTTCC TGGAGAACCT ATCATCCGCG CCTATGCAGA  
           1401 TCTTGCCTATT TATAATCTCA CCAAAGATCC TGAAAAAAA CGTTCTCTCC  
           1451 ATGATTATGC AAAAAGCTA ATTCAAGGAAA CCTTGTATT TGTGGACACG  
           1501 GAAAACCAAA GACCCCATCC CAGCATGCC TATCTACGTT ATCAGGTAC  
           1551 CCCAGAAAGC CGTACGAAGC TCATGTTGGA TATTCTAGAG ACACATAGCCA  
           1601 CCTCGAAGTC TTCCGAAGAT ATCCGTTTAT TGATACAACT GATGACGGAA  
           1651 GGAGATGCAA AAAATTCTCC AGTCCTTGCA GGCTTACTCA TAAAAATTGT  
           1701 GGAGTAA

45         The PSORT algorithm predicts a periplasmic location (0.922).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 25A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 25B) and for FACS analysis (Figure 25C).

This protein also showed good cross-reactivity with human sera, including sera from patients with 50 pneumonitis.

These experiments show that cp6273 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 26

The following *C.pneumoniae* protein (PID 4376735) was expressed <SEQ ID 51; cp6735>:

5           1   MTILRNFLTC SALFLALPAA AQVVLHESD GYNGAINNKS LEPKITCYPE  
       51   GTSYIFLDDV RISNVKHDQE DAGVFINRSG NLFFMGNRCN FTFHNLMTEG  
      101   FGAAISNRVG DTTLTLNSNFs YLAFTSAPLL PQGQGAIYSL GSVMIEENSEE  
      151   VTFCGNYSSW SGAAIYTPYL LGSKASRPSV NLSGNRYLVF RDNVSQGYGG  
      201   AISTHNLTLT TRGPSCFENN HAYHDVNSNG GAIAIAPGGS ISISVKSGDL  
      251   IFKGNTASQD GNTIHNSIHL QSGAQFKNLR AVSESGVYFY DPISHSESHK  
      301   ITDLVINAPE GKETYEGTIS FSGLCLEDDHE VCAENLTSTI LQDVTLAGGT  
      351   LSLSDGVTLQ LHSFKQEAASS TLTMSPGTTL LCSGDARVQN LHILIEDTDN  
      401   FVPVRIRAED KDALVSLEKL KVAFEAYWSV YDFPQFKEAF TIPLLELLGP  
      451   SFDSLLLGET TLERTQVITE NDAVRGFWSL SWEYPPSLD KDRRIPTKK  
      501   TVFLTWNPEI TSTP\*

A predicted signal peptide is highlighted.

The cp6735 nucleotide sequence <SEQ ID 52> is:

15           1   ATGACCATAAC TTGAAATTTC TCTTACCTGC TC GGCTTTAT TCCTCGCTCT  
      51   CCCTGCAGCA GCACAAGTTG TATATCTTC TGAAAGTGAT GGTTATAACG  
      101   GTGCTATCAA TAATAAAAGC TTAGAACCTA AAATTACCTG TTATCCAGAA  
      151   GGAACCTTCTT ACATCTTTCT AGATGACGTG AGGATTTCGA ACGTTAACCA  
      201   TGATCAAGAA GATGCTGGGG TTTTATAAA TCGATCTGGG AATCTTTTTT  
      251   TCATGGGCAA CCGTTGCAAC TTCACTTTTC ACAACCTTAT GACCGAGGGT  
      301   TTTGGCGCTG CCATTTGCAA CCGCGTTGGA GACACCACTC TCACTCTCTC  
      351   TAATTTTCT TACTTAGCGT TCACCTCAGC ACCTCTACTA CCTCAAGGAC  
      401   AAGGAGCGAT TTATAGTCTT GGTTCGGTGA TGATCGAAAA TAGTGAGGAA  
      451   GTGACTTTCT GTGGGAACTA CTCTTCGTGG AGTGGAGCTG CGATTATAC  
      501   TCCCTACCTT TTAGGTTCTA AGGCGAGTCG TCCCTCAGTA AATCTCAGCG  
      551   GGAACCGCTA CCTGGTGTAG AGAGACAATG TGAGCCAAGG TTATGGCGGC  
      601   GCCATATCTA CCCACAATCT CACACTCACG ACTCGAGGAC CTTCGTGTGTTT  
      651   TGAAAATAAT CATGCTTATC ATGACGTGAA TAGTAATGGA GGAGCCATTG  
      701   CCATTGCTCC TGGAGGATCG ATCTCTATAT CCGTGAAAAG CGGAGATCTC  
      751   ATCTTCAAAG GAAATACAGC ATCACAAAGAC GGAAATACAA TACACAAC  
      801   CATCCATCTG CAATCTGGAG CACAGTTAA GAACTCTACGT GCTGTTTCAG  
      851   AATCCGGAGT TTATTTCTAT GATCCTATAA GCCATAGCGA GTCGCATAAA  
      901   ATTACAGATC TTGTAATCAA TGCTCCGTGAA GGAAAGGAAA CTTATGAAGG  
      951   AACAAATTAGC TTCTCAGGAC TATGCCCTGGA TGATCATGAA GTTTGTGCGG  
      1001   AAAATCTTAC TTCCACAAATC CTACAAGATG TCACATTAGC AGGAGGAAC  
      1051   CTCTCTCTAT CGGATGGGT TACCTTGCAA CTGCATTCTT TTAAGCAGGA  
      1101   AGCAAGCTCT ACGCTTACTA TGTCTCCAGG AACCACTCTG CTCTGCTCAG  
      1151   GAGATGCTCC GTTCTCAGGAC ATGGCACATCC TGATTGAGA TACCGACAAC  
      1201   TTTGTTCCTG TAAGGATTGCG CGCCGAGGAC AAGGATGCTC TTGACTTCATT  
      1251   AGAAAAAAACTT AAAGTTGCCT TTGAGGCTTA TTGGTCCGTC TATGACTTT  
      1301   CTCAATTAA GGAAGCCTTT ACGATTCCCTC TTCTTGAAC TCTAGGGCCT  
      1351   TCTTTTGACA GTCTTCTCCT AGGGGAGACC ACTTTGGAGA GAACCCAAGT  
      1401   CACAACAGAG AATGACGCCG TTGAGGTTT CTGGTCCCTA AGCTGGGAAG  
      1451   AGTACCCCCC TTCTCTGGAT AAAGACAGAA GGATCACACC AACTAAGAAA  
      1501   ACTGTTTCC TCACTTGGAA TCCTGAGATC ACTTCTACGC CATAA

45   The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 26A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 26B).

These experiments show that cp6735 is a surface-exposed and immunoaccessible protein, and that it 50 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 27

The following *C.pneumoniae* protein (PID 4376784) was expressed <SEQ ID 53; cp6784>:

55           1   MNRRKARWVV ALFAMTALIS VGCCPWSQAK SRCSIDKYIP VVNRLLEVC  
      51   LPEAENVEDL IESSSAWLT PEERFSGELV SICQVKDEHA FYNDLSSLHM  
      101   TQAVPVSYSAT YDCAVVFGGP LPALRQLDF LVREWQRGVR FKKIVFLC  
      151   RGRYQSIEEQ EHFFDSRYNP FPTEENWESG NRVTIPSSEEE IAKFVWMQML

-69-

201 LPRAWRDSTS GVRVTFLAK PEENRVVANR KDTLLLFRSY QEAFFGRVLF  
 251 VSSQPIFIGLD ACRVGQFFKG ESYDLAGPGF AQGVLKHYWA PRICLHTLAE  
 301 WLKETNGCLN ISEGCFG\*

A predicted signal peptide is highlighted.

- 5 The cp6784 nucleotide sequence <SEQ ID 54> is:

1 ATGAATAGAA GAAAAGCAAG ATGGGTAGTG GCATTGTTTCG CAATGACGGC  
 51 GCTCAATTCT GTTGGGTGTT GTCCTTGGTC ACAAGCGAAA TCAAGATGTT  
 101 CTATTGATAA GTATATTCTC GTAGTCATC GTTACTAGA AGTTTGTGGA  
 151 CTTCCCTGAAG CTGAGAAATGT TGAGGATTAA ATCGAGTCCT CGTCTGCTTG  
 201 GGTACTGACT CCTGAAGAAC GTTTTCTGG AGAGTTAGTC TCTATCTGTC  
 251 AGGTTAAAGA TGAGCATGCT TTCTATAAACG ATTGTCTTT ATTACATATG  
 301 ACTCAGGCTG TGCCCTCGTA TTCTGCAACG TATGATTGTC CTGTAAGTTT  
 351 TGGCGGGCCT TTGCCAGCGC TAGTCAGCG CTTAGATTT TTGGTGCAGAG  
 401 AGTGGCAGCG TGGCGTGCAGC TTTAAGAAAAA TCCTTTCTG ATGTGGAGAG  
 451 CGAGGGCGCT ATCAGTCAT TGAAGAACAA GAGCATTTCT TTGATTCTCG  
 501 GTACAATCTT TTCCCTACTG AAGAGAACATG GGAATCTGGT AACCGAGTTA  
 551 CTCCCTCTTC TGAAGAACAG ATTGCCAAT TTGTTGGAT GCAAATGCTT  
 601 TTACCTAGAG CATGGCGAGA TAGTACTTCG GGAGTCAGAG TGACATTTCT  
 651 TCTAGCAAAG CCAGAGGAAA ATCGTGTGGT TGCGAATCGT AAGGACACCT  
 701 TACTTTTATT CCGTTCTTAT CAAGAACCGT TTCCGGGACG CGTGTATTT  
 751 GTAAGTAGTC AACCCTTTAT CGGTTTAGAT GCTTGCAGGG TCGGGCAGTT  
 801 TTCAAAGGG GAAAGCTATG ATCTTGCTGG ACCTGGATTT GCTCAAGGAG  
 851 TCTTGAAAGTA TCATTGGGCT CCAAGGATTT GTCTACATAC TTTAGCGGAA  
 901 TGGTTAAAGG AAACGAACGG CTGCTTAAAT ATTCAGAGG GTTGTGTTGG  
 951 ATGA

The PSORT algorithm predicts a periplasmic location (0.894).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 27A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 27B). The GST-fusion product was used for FACS analysis (Figure 27C).

- 30 The cp6784 protein was also identified in the 2D-PAGE experiment (Cpn0498).

These experiments show that cp6784 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 28

The following *C.pneumoniae* protein (PID 4376960) was expressed <SEQ ID 55; cp6960>:

35 1 MNRRWNLVLA TVALALSVAS CDVRSKDKDK DQGSLVEYKD NKDTNDIELS  
 51 51 DNQKLSRTFG HLLARQLRKS EDMFFDIAEV AKGLQAEVLC KSAPLTETEY  
 101 EEKMAEVQKL VFEKKSKENL SIAEKFLKEN SKNAGVVEVQ PSKLQYKIIK  
 151 EGAGKAISGK PSALLHYKGS FINGQVFSSS EGNNEPILLP LGQTIPGFAL  
 201 GMQGMKEGET RVLYIHPDLA YGTAGQLPPN SLLIFEINLI QASADEVAAV  
 40 251 PQEGQNQE\*

A predicted signal peptide is highlighted.

The cp6960 nucleotide sequence <SEQ ID 56> is:

45 1 ATGAACAGAC GGTGGAATTT AGTTTTAGCA ACAGTAGCTC TGGCACTCTC  
 51 51 CGTCGCTTCT GTGTGACGTAC GGTCTAAGGA TAAAGACAAAG GATCAGGGGT  
 101 101 CGTTAGTGGG ATATAAAAGAT AACAAAGATA CCAATGACAT AGAATTATCC  
 151 151 GATAATCAA AGTTATCCAG AACATTTGGT CATTATTTAG CACGCCAATT  
 201 201 ACGCAAGTCA GAAGATATGT TTTTTGATAT TGCAGAAAGTG GCTAAGGGGT  
 251 251 TGCAGGGGAA ATTGGTTGT AAAAGTGCTC CTTTAACAGA AACAGAGTAT  
 301 301 GAAGAAAAAA TGGCTGAAGT ACAGAAAGTTG GTTTTTGAAA AAAAATCAA  
 351 351 AGAAAATCTT TCATTGGCAG AAAAATCTT AAAAGAAAAT AGCAAGAACG  
 401 401 CTGGTGTGTT TGAAGTCAA CCAAGTAAAT TGCAATACAA AATTATTA

451 GAAGGTGCAG GGAAAGCAAT TTCAAGTAAA CCTTCAGCTC TATTGCACTA  
 501 CAAGGGTTCC TTCATCAATG GCCAAGTATT TAGCAGTTCA GAAGGCAACA  
 551 ATGAGCCTAT CTTGCTTCCT CTAGGCCAAA CAATTCTGG TTTTGCTTTA  
 601 GGTATGCAGG GCATGAAAGA AGGAGAAACT CGAGTTCTCT ACATCCATCC  
 651 TGATCTTGCT TACGGAACCG CAGGACAAC TCCCTCAAAC TCTTTATTAA  
 701 TTTTGAAAT TAACTTGATT CAGGCTTCAG CAGATGAAGT TGCTGCTGTA  
 751 CCCCAAGAAG GAAATCAAGG TGAATGA

The PSORT algorithm predicts periplasmic space location (0.930).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 28A. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 28B) and for FACS analysis (Figure 28C).

The cp6960 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6960 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 15 Example 29

The following *C.pneumoniae* protein (PID 4376968) was expressed <SEQ ID 57; cp6968>:

1 MKFLLYVPLL LVLVSTGCDA KPVSFEPFSG KLSTQRFEPQ HSAEYFSQG  
 51 QEFLKKGNFR KALLCFGIIIT HHFPRDILRN QAQYLIGVCY FTQDHPDLDAD  
 101 KAFASYLQLP DAEYSEELFQ MKYAIQAQRFA QGKRKRICRL EGFPKLMNAD  
 151 EDALRIYDEI LTAFPSKD LG AQALYSKAAL LIVKNDLTEA TKTLKKLTQ  
 201 FPLHILSSEA FVRLSEIYLO QAKKEPHNLQ YLHFAKLNEE AMKKQHPNHP  
 251 LNEVVSANVG AMREHYARGL YATGRFYEK KKAEEAANIYY RTAITNYPDT  
 301 LLVAKCQKRL DRISKHTS\*

A predicted signal peptide is highlighted.

25 The cp6968 nucleotide sequence <SEQ ID 58> is:

1 ATGAAATTC TATTATACGT TCCACTTCCTT CTIGTTCTCG TATCTACGGG  
 51 GTGCGATGCA AAACCTGTTT CTTTGAGCC CTTTCAGGA AAGCTTCCA  
 101 CCCAGCGTT TGAGCCTCAG CACTCTGCTG AAGAATATT TTCTCAGGG  
 151 CAGGAATTCT TAAAAAAAGG AAATTCAGA AAAGCTTAC TATGCTTGG  
 201 ATCATTTACG CATCACCTCC CTAGGGACAT CTTGGTAAT CAACGACAGT  
 251 ATCTTATAGG AGTCTGTTAC TTCACGCAGG ATCACCCAGA TTTAGCAGAC  
 301 AAGGCATTG CATCTTACTT ACAACTTCCT GATGCGGAGT ACTCTGAAGA  
 351 GTTGTTCAG ATGAAATATG CGATTGCTCA AAGATTTGCT CAAGGGAAGC  
 401 GTAAACGGAT TTGTCGATTA GAGGGCTTCC CAAAACTAAT GAATGCTGAT  
 451 GAAGATGCGC TACGCATTTA TGACGAGATT CTAACAGCGT TTCTTAGTAA  
 501 AGACTTAGGA GCTCAGGCC TCTATAGTAA AGCTGCGTTA CTTATTGTAA  
 551 AAAACGATCT TACAGAAGCC ACCAAAACCT TAAAAAAACT CACGTTACAA  
 601 TTTCCTCTAC ATATTTTATC TTCAGAGGCC TTTGTACGTT TATCGGAAAT  
 651 CTATTTACAG CAAGCTAAGA AAGAGCCTCA CAATCTTCAA TATCTTCATT  
 701 TTGCAAAGCT TAATGAAGAG GCAATGAAAA AGCACCATCC TAACCACATCCT  
 751 CTGAATGAGG TTGTTTCTGC TAATGTTGGA GCTATGGGG AACATTATGC  
 801 TCGAGGTTTG TATGCCACAG GTCGTTTCTA TGAGAAGAAG AAAAAAGCCG  
 851 AGGCTGCGAA TATCTATTAC CGCACTGCGA TTACAAACTA CCCAGACACT  
 901 TTATTAGTGG CTAAATGTCA AAAGCGTCTA GATAGAATAT CTAAGCATAAC  
 951 TTCCCTAA

The PSORT algorithm predicts an inner membrane location (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 29A. The recombinant GST-fusion was used to immunise mice, whose sera were used in a Western blot (Figure 29B) and for FACS analysis (Figure 29C).

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6968 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 5 Example 30

The following *C.pneumoniae* protein (PID 4376998) was expressed <SEQ ID 59; cp6998>:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 1 <b>MKLLKSALL SAAFAGSVGS LQALPVGNPS DPSLLIDGTI WEGAAGDPCD</b><br>51    PCATWCDAIS LRAGFYGDYV FDRILKVDAP KTFSMGAKPT GSAAANYTTA<br>101    VDRPNPAYNK HLHDAEWFNTN AGFIALNIWD RFDVFCTLGA SNGYIRGNST<br>151    AFNLVGLFGV KGTTVNANEL PNVSLNSNGVV ELYTDTSFSW SVGARGALWE<br>201    CGCATLGAEF QYAQS PKPKVE ELNVICNVSQ FSVNPKGYK GVAFPLPTDA<br>251    GVATATGKTS ATINYHEWQV GASLSYRLNS LPVYIGVQWS RATFDADNIR<br>301    IAQPKLPTAV LNLTAWNPSL LGNATALSTT DSFSDFMQIV SCQINKFKSR<br>351    KACGVTVGAT LVDADKWSLT AEARLINERA AHVSGQFR* |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

15 A predicted signal peptide is highlighted.

The cp6998 nucleotide sequence <SEQ ID 60> is:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 1    ATGAAAAAAC TCTTAAAGTC GGCCTTATTAA TCCGCCGCAT TTGCTGGTTTC<br>51    TGTTGGCTCC TTACAAGCCT TGCCCTGAGG GAACCCCTCT GATCCAAGCT<br>101    TATTAATTGA TGGTACAATA TGGGAAGGTG CTGCAGGAGA TCCTTGCGAT<br>151    CCTTGCGCTA CTTGGTGCAG CGCTATTAGC TTACGTGCTG GATTITACGG<br>201    AGACTATGTT TTCGACCGTA TCTTAAAAGT AGATGCACCT AAAACATTTT<br>251    CTATGGGAGC CAAGCCTACT CGATCCGCTG CTGCAAACTA TACTACTGCC<br>301    GTAGATAGAC CTAACCCGGC CTACAATAAG CATTACACG ATGCAGAGTG<br>351    GTTCACTAAT GCAGGCTTCA TTGCGCTTAAA CATTGGGAT CGCTTTGATG<br>401    TTTTCTGTAC TTTAGGAGCT TCTAATGGTT ACATTAGAGG AAACCTCTACA<br>451    GCGTTCAATC TCGTTGGTTT ATTCCGGAGTT AAAGGTACTA CTGTAAATGC<br>501    AAATGAACTA CCAAACGTTT CTTTAAGTAA CGGAGTTGTT GAACTTTACA<br>-551    CAGACACCTC TTTCTCTGG AGCGTAGGCG CTCGTGGAGC CTTATGGAA<br>601    TGCGGTTGTG CAACTTGGG AGCTGAATTCA CAATATGCAC AGTCCAAACC<br>651    TAAAGTTGAA GAACTTAATG TGATCTGTAA CGTATCGCAA TTCTCTGTAA<br>701    ACAAAACCAA GGGCTATAAA GGCCTTGCTT TCCCCTTGCC AACAGACGCT<br>751    GGCCTAGCAA CAGCTACTGG AACAAAGTC GCGACCATCA ATTATCATGA<br>801    ATGGCAAGTA GGAGCCTCTC TATCTTACAG ACTAAACTCT TTAGTGCCT<br>851    ACATTGGAGT ACAATGGTCT CGAGCAACTT TTGATGCTGA TAACATCCGC<br>901    ATTGCTCAGC CAAAACTACC TACAGCTGTT TAAACTTAA CTGCATGGAA<br>951    CCCCTCTTTA CTAGGAAATG CCAACAGCACT GTCTACTACT GATTGTTCT<br>1001    CAGACTTCAT GCAAATTGTT TCCTGTCAAGA TCAACAAGTT TAAATCTAGA<br>1051    AAAGCTTGTG GAGTTACTGT AGGAGCTACT TTAGTTGATG CTGATAAATG<br>1101    GTCACTTACT GCAGAAGCTC GTTTAATTAA CGAGAGAGCT GCTCACGTAT<br>1151    CTGGTCAGTT CAGATTCTAA |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The PSORT algorithm predicts an outer membrane location (0.707).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 30A) and as a his-tag product. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 30B) and for FACS analysis (Figure 30C).

45 The cp6998 protein was also identified in the 2D-PAGE experiment (Cpn0695) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6998 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 31**

The following *C.pneumoniae* protein (PID 4377102) was expressed <SEQ ID 61; cp7102>:

|    |                                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 5  | 1 <b>MKHTFTKRVL FFFFFLVIPIP LLLLNLVVGF FSFSAAKANL VQVLHTRATN</b><br>51    LSIEFEKKLT IHKLFLDRLA NTLALKSYAS PSAE PYAQAY NEMM ALSNTD |
|    | 101    FSLCLIDPFD GSVRTKNP GD PFIRYLKQHP EMKKKLSAAV GKAFLLTIPG<br>151    KPLLHYLLLV EDVASWDSTT TSGLLVSFYP MSFLQKDLFQ SLHITKGNIC    |
|    | 201    LVNKYGEVLF CAQDSESSFV FSLDLPNLPQ FQARSPSAIE IEKASGILGG<br>251    ENLITVSI NK KRYLGLVLNK IPIQGTYTLS LPVPVSDLIQS ALKVPLNICF   |
| 10 | 301    FYVLAFLLMW WIFSKINTKL NKPLQELTFC MEEAWRGHNH VRFEPQPYGY<br>351    EFNELGNIFN CTLLLLLNSI EKADIDYHSG EKLQKELGIL SSLQSALLSP     |
|    | 401    DFPTFPKVTF SSQHLRRRQL SGHFNGWTVQ DGGDTLLGII GLAGDIGLPS<br>451    YLYALSARSRL FLAYASSDVS LQKISKDTAD SFSKTTEGNE AVVAMTFIKY    |
|    | 501    VEKDRSLELL SLSEGAPTMF LQRGESFVR PLETHQALQP GDRLICLTGG<br>551    EDILKYFSQL PIEELLKDPL NPLNTENLID SLTMMLNNET EHSADGTLTI      |
| 15 | 601    LSFS*                                                                                                                       |

A predicted signal peptide is highlighted.

The cp7102 nucleotide sequence <SEQ ID 62> is:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 1    ATGAAACATA CCTTTACCAA GCGTGTCTA TTTTTTTCT TTTTAGTGAT<br>51    TCCCATTCCC CTACTCCTCA ATCTTATGGT CGTAGGTTTT TTCTCATTTT<br>101    CTGCCGCTAA AGCAAATTAA GTACAGGTCC TCCATACCCG TGCTACGAAC<br>151    TTAAGTATAG AATTGAAAAA AAAACTGACG ATACACAAGC TTTTCCTCGA<br>201    TAGACTTGCC AACACATTAG CCTTAAAATC CTATGCATCT CCTCTGTGAG<br>251    AGCCCTATGC ACAGGCATAC AATGAGATGA TGGCACTCTC CAATACAGAC<br>301    TTTTCCTTAT GCCTTATAGA TCCCTTGTAT GGATCTGTAA GGACGAAAAAA<br>351    TCCTGGAGAC CCTTTCATTC GCTATCTAAA ACAGCATCTT GAAATGAAGA<br>401    AAAAGCTATC CGCAGCTGTA GGGAAAGCCT TTTTATTGAC CATTCCAGGT<br>451    AAACCACTTT TACATTATCT TATTCTAGTT GAAGATGTCG CATCTGGGA<br>501    TTCTACAACG ACTTCAGGAC TGCTTGTAAAG TTTCTATCCC ATGTCCTTTT<br>551    TACAGAAAGA TTTATTCCAA TCCTTACACA TCACCAAAGG AAATATCTGC<br>601    CTTGTAATAA AGTATGGCGA GGTCCCTCTTC TGTCCTCAGG ACAGTGAATC<br>651    TTCTTTGTAA TTTTCTCTAG ATCTCCCTAA TTTACCGAA TTCCAAGCAA<br>701    GAAGCCCCCTC TGCCATAGAA ATTGAGAAAG CTTCTGGAAT TCTTGGTGGG<br>751    GAGAACCTAA TCACAGTGAG TATCAACAAG AAACGCTACC TAGGATTGGT<br>801    ACTGAATAAA ATTCCATATCC AAGGGACCTA CACTCTATCT TTAGTTCCAG<br>851    TTTCTGATCT CATCCAATCC GCCTTGAAAG TTCCCTCTCAA TATTGTTTT<br>901    TTCTATGTAC TTGCTTCCCT CCTCATGTGG TGGATTTCT CTAAGATCAA<br>951    CACCAAACCTT AACAAAGCTC TTCAAGAACT GACCTTCTGT ATGGAAGCTG<br>1001    CCTGGCGAGG AAACCATAAC GTGAGGTTTG AACCCCAGCC TTACGGTTAT<br>1051    GAATTCAATG AACTAGGAAA TATTTCAAT TGCACTCTCC TACTCTTATT<br>1101    GAATTCCATT GAGAAAGCAG ATATCGATTA CCATTCAGGC GAAAAATTAC<br>1151    AAAAAGAATT AGGGATTTA TCTTCACTAC AAAGTGGCTT ACTAAGTCCG<br>1201    GATTTCCCTAA CGTCCCCCTAA AGTTACCTTT AGTTCCCAAC ATCTCCGGAG<br>1251    AAGGCAACTT TCCGGTCATT TTAATGGTTG GACAGTTCAA GATGGTGGCG<br>1301    ATACCCTTTT AGGGATCATA GGGCTCGCTG GCGATATTGG TCTTCCCTCC<br>1351    TATCTCTATG CTTTATCCGC ACGGAGTCTT TTTCTTGCCCT ATGCTTCCCTC<br>1401    GGACGTTTCG TTACAAAAAA TCAGCAAGGA TACTGCCGAC AGCTTCTCAA<br>1451    AAACAACAGA AGGCAATGAG GCTGTAGTG CTATGACTTT CATTAAATAT<br>1501    CTAGAAAAAG ATCGATCTCT AGAGCTCCTC TCGTTAACGCG AGGGAGCTCC<br>1551    TACCATGTTT CTACAAACGAG GAGAACATTTT CGTACGTCCTC CCCTTAGAGA<br>1601    CTCACCAAGC TCTACAGCCT GGAGATCGGT TGATCTGCCCT CACTGGAGGA<br>1651    GAAGACATCC TCAAGTACTT TTCTCAGCTT CCTATTGAAG AGCTCTTAAA<br>1701    AGATCCTTTA AACCCCTCTAA ATACAGAGAA TCTTATTGAT TCTCTAACCA<br>1751    TGATGTTAAA CAACGAAACC GAACATTCTG CAGATGGAAC TCTGACCAC<br>1801    CTTTCATTTT CATAA |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

55    The PSORT algorithm predicts an inner membrane location (0.338).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 31A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 31B).

These experiments show that cp7102 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 32

The following *C.pneumoniae* protein (PID 4377106) was expressed <SEQ ID 63; cp7106>:

```

5      1 MKDLGTLGGT SSTAKTVSPD GKVIMGRSQI ADGSWHAFMC HTDFSSNNVL
      51 FDLDNTYKTL RENGRQLNSI FNQNMMQLQR ASDHEFTTEFG RSNIALGAGL
     101 YVNALQNLPS NLAAQYFGIA YKIRPKYRLG VFLDHNFSSH VPNNFNVSHN
     151 RLWMGAFIGW QDSDALGSSV KVSFGYGKQK ATITREQLEN TEAGSGESHF
    201 EGVAAQIEGR YGKSLGGHVR VQPFLGLQFV HITRKEYTEN AVQFPVHYDP
    251 IDYSTGVVYL GIGSHIALVD SLHVGTRMGM EQNFAAH TDR FSGSIASIGN
    301 FVFEKLVDVTH TRAFAEMRVN YELPYLQSLN LILRVNQQPL QGVMGFSSDL
    351 RYALGF*

```

The cp7106 nucleotide sequence <SEQ ID 64> is:

```

15     1 ATGAAAGATT TGGGGACTCT TGGGGGTACC TCTTCTACAG CAAAAACAGT
      51 GTCCCCAGAT GGTAAAGTGA TCATGGTAG ATCACAAATT GCTGATGGCA
     101 GTTGGCACGC ATTTATGTGT CATA CGGATT TCTCCTCTAA TAATGTACTC
     151 TTTGATCTCG ATAATACGTA TAAA ACTCTA AGAGAAAAATG GCCGTCAGCT
     201 AAATTCCATA TTCAACCTAC AAAATATGAT GTTACAGAGA GCCTCAGATC
     251 ATGAGTTCAC AGAGTTTGGG AGGAGTAACA TCGCTCTTGG TGCCGGGCTT
     301 TATGTGAATG CCTTGAGAAA TCTCCCTAGC AATTTAGCAG CACAATATTT
     351 TGGAAATCGCA TACAAAATAC GTCC TAAATAA TCGTTTGGGG GTGTTTTGG
     401 ACCATAATTT CAGCTCCCAC GTTCC TAAATAA ATTTAACGT AAGCCACAAT
     451 AGACTCTGGA TGGGAGCCTT TATTGGATGG CAGGATTCTG ATGCTCTAGG
     501 ATCTAGTGTCA AAGGTGTCTT TCGGATATGG AAAACAAAAA GCCACGATTA
     551 CAAGAGAGCA ATTAGAGAA ACAGAAGCCG GGAGTGGGG AAGCCATTTC
     601 GAAGGGGTCG CTGCTCAGAT AGAAGGGCGG TATGGTAAGA GCCTCGGAGG
     651 ACATGTCAGG GTCCAGCCTT TCCTAGGACT GCAGTTTGT CACATTACAA
     701 GGAAAGAATA TACCGAAAAT GCAGTGCAAT TTCCTGTACA CTATGATCCT
     751 ATAGACTATT CTACAGGTGT AGTGTATTTA GGAATTGGAT CTCATATTGC
     801 ACTTGTAGAT TCTTTACATG TAGGCACACG CATGGGAATG GAGCAAAACT
     851 TTGCGAGCCA TACGGACAGG TTCTCAGGAT CTATAGCGTC TATTGGAAAC
     901 TTTGTGTITG AAAAGCTGA TGTGACTCAC ACAAGGGCAT TTGCGGAAAT
     951 GCGGTGTCAAC TATGAGCTTC CCTATCTACA GTCTCTGAAT CTTATTCTAC
    1001 GAGTTAATCA ACAGCCTCTA CAAGGGGTTA TGGGATTTC CAGTGATCTT
    1051 AGGTATGCCT TAGGATTCTA A

```

The PSORT algorithm predicts a cytoplasmic location (0.224).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 32A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 32B) and for FACS analysis (Figure 32C).

This protein also showed very good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7106 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 33

The following *C.pneumoniae* protein (PID 4377228) was expressed <SEQ ID 65; cp7228>:

```

1      1 MTAVLILTSF PSEESARSLSA RHLITERLAS CVHVFPKGTS TYLWEGLCE
      51 SEEHHIQIKS IDIRFSEICL AIQEFSGYEV PEVLLFPIEN GDPRYLNWL
     101 ILSYPEKPPL SD*

```

The cp7228 nucleotide sequence <SEQ ID 66> is:

```

5      1 ATGACTGCTG TTCTTATTCT TACATCTTC CCTTCGGAGG AAAGTGCCTG
      51 CTCCTTAGCT AGACATCTGA TTACAGAGCG TCTTGCTTCC TGTGTGCATG
     101 TATTCCCTAA AGGCACATCG ACATATCTAT GGGAAAGGCAA GCTATGTGAG
     151 TCTGAAGAAC ATCATATAACA AATCAAATCG ATAGACATAC GCTTCTCGGA
     201 AATTTGTCTT GCTATTCAAG AGTTCTCTGG CTATGAGGTT CCTGAAGTCT
     251 TACTATTTC TATTGAAAAT GGGGATCCGA GGTACTTGAA TTGGTTAACG
     301 ATTCTCAGCT ATCCAGAGAA GCCTCCGCTT TCAGATTAG

```

The PSORT algorithm predicts an inner membrane location (0.040).

- 10 The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product, as shown in Figure 33A (his-tag = left-hand arrow, GST = right-hand arrow). The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 33B) and FACS analysis.

These experiments show that cp7228 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### 15 Example 34

The following *C.pneumoniae* protein (PID 4377170) was expressed <SEQ ID 67; cp7170>:

```

20      1 MNSKMLKHLL LATLSFSMFF GIVSSPAVYA LGAGNPAAPV LPGVNPEQTG
      51 WCAFQLCNST DLFAALAGSL KFGFYGDYVF SESAHITNVP VITSVTTSGT
     101 GTTPPTITSTT KNVDFDLNNNS SISSSCVFAT IALQETSPAA IPLLIDIAFTA
     151 RVGGGLKQYYR LPLNAYRDFT SNPLNAESEV TDGLIEVQSD YGIVWGLSLQ
     201 KVLWKDGVSF VGVSADYRHG SSPINYIIVY NKKANPEIYFD ATDGNLNSYKE
     251 WSASIGISTY LNDYVLPYAS VSIGNTSRKA PSDSFTTELEK QFTNFKFIR
     301 KITNFDRVNF CFGTTCCISN NFYYSVGRW GYQRRAINITS GLQF*

```

A predicted signal peptide is highlighted.

- 25 The cp7170 nucleotide sequence <SEQ ID 68> is:

```

30      1 ATGAATAGCA AGATGCTAAA ACATTTACGT TTAGCCAACCC TTTCCCTCTC
      51 TATGTTCTTC GGGATTGTAT CTTCTCCCGC AGTATATGCC CTAGGGGCTG
     101 GAAACCCCTGC AGCTCCAGTA CTCCCAGGTG TGAATCCTGA GCAAACGGGA
     151 TGGTGTGCCT TCCAACCTTG TAATAGTTAC GATCTTTTG CTGCTCTTGC
     201 AGGAAGCCTC AAATTTGGGT TCTATGGAGA TTATGTCCTC TCAGAAAAGTG
     251 CCCATATTAC CAATGTCCT GTCATTAACCT CCGTTACGAC TTCAGGCACA
     301 GGAACAAACGC CAACCATTAC CTCTACAAC TAAAACGTAG ACTTTGATCT
     351 TAACAAACAGC TCCATCAGCT CGAGCTGTGT TTTTGCAACC ATAGCTCTAC
     401 AGGAAACATC CCCAGCTGCC ATTCCCCCTT TAGATATAGC CTTCACTGCA
     451 CGTGTCCGGAG GACTTAAGCA GTACTACCAGC CTCCTCTCA ATGCTTACAG
     501 AGACTTCACT TCAAATCCTT TAAATGCAGA ATCTGAAGTT ACAGATGGTC
     551 TCATTGAAGT CCAGTCAGAC TATGGAATTG TCTGGGGTCT GAGTTTACAA
     601 AAAGTATTGT GGAAAGATGG AGTGTCTTT GTAGGGGTGA GCGCTGACTA
     651 CCGTCACGGT TCCAGTCCCA TCAACTATAT CATCGTTAC AACAAAGCCA
     701 ACCCCGAGAT CTATTCGAT GCTACTGATG GAAACCTAAG CTATAAAGAA
     751 TGGTCTGCAA GCATCGGCAT CTCTACGTAT CTTAATGACT ATGTGCTTCC
     801 CTATGCATCC GTATCTATAG GAAATACTTC AAGAAAAAGCT CCTTCTGATA
     851 GCTTCACAGA ACTCGAAAAG CAATTACGA ATTTTAAATT TAAAATTGCT
     901 AAAATCACAA ACTTCGACAG AGTAAACTTC TGCTTCGGAA CTACCTGCTG
     951 CATCTCAAAT AACTTCTACT ATAGTGTAGA AGGCCGTTGG GGATATCAGC
    1001 GTGCTATCAA CATTACGTCA GGTCTGCAGT TTTAG

```

The PSORT algorithm predicts a bacterial outer membrane location (0.936).

- The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified GST-fusion product is shown in Figure 34A. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (34B) and for FACS analysis (34C).

The cp7170 protein was also identified in the 2D-PAGE experiment (Cpn0854).

These experiments show that cp7170 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 35

- 5 The following *C.pneumoniae* protein (PID 4377072) was expressed <SEQ ID 69; cp7072>:

```

1  MDIKLFLCLF LCSSLIAMSP IYGKTDYEK LTLTGINIID RNGLSETICS
51 KEKLKYTKV DFLAPQPYQK VMRMYKNKRG DNVSLTAYH TNGQIKQYLE
101 CLNNRAYGRY REWHVNGNIK IQAEVIGGIA DLHPSAESGW LFDQTTFAYN
151 DEGILEAAIV YEKGLLEGSS VYYHTNGNIW KECPYHKGP QGKFLTYTSS
201 GKLLKEQNYQ QGKRHGLSIR YSEDSEEDVL AWEEYHEGRL LKAELYDPQT
251 HEIYATIHEG NGIQAIYGYK AVIETRAFYR GEPYGVKTRF DNSGTQIVQT
301 YNLLQGAKHG EEEFFYPETG KPKLLLWHE GILNGIVKTW YPGGTLESCK
351 ELVNNKKSGL LTIYYPEGQI MATEEYDNDL LIKGEYFRPG DRHPYSKIDR
401 GCGTAVFFSS AGTITKKIPY QDGKPLLN*

```

- 15 A predicted signal peptide is highlighted.

The cp7072 nucleotide sequence <SEQ ID 70> is:

```

1  ATGGATATAA AAAAACCTCTT TTGCTTATTT CTATGTTCTT CTCTAATTGC
51  CATGAGTCCC ATTATGGGA AAACAGGTGA CTATGAGAAA CTCACCCCTTA
101 CAGGGATCAA TATCATTGAT AGAAACGGCC TGTCAGAAAC TATTTGCTCT
151 AAAGAGAACG TAAAGAAATA CACCAAGGTA GACTTCTTG CTCCCCAGCC
201 CTATCAAAG GTCATGAGGA TGTAAAAAA CAAACGCGGA GATAACGTTT
251 CTTGTTAAC AGCCTATCAC ACTAACGGGC AAATTAAAGCA GTACCTGGAG
301 TGTCATCAAATCCTTA TGGAAGATAT CGTGAATGGC ACGTCAACGG
351 GAATATCAAATCCTGA AGGTTATCGG AGGTATTGCG GATCTTCATC
401 CCTCAGCAGA GTCTGGCTGG CTATTTGATC AACTACATT TGCCTATAAT
451 GATGAAGGTA TCTTAGAAGC CGCTATCGTC TATGAAAAAG GGCTGCTCGA
501 AGGATCTTCG GTGTATTACC ATACTAATGG GAATATTGG AAAGAGTGTG
551 CCTATCATAA GGGAGTTCCCT CAAGGTAAT TCCTGACATA CACATCTTCG
601 GGGAAACTGC TCAAAGAACAA GAATTACCAA CAAGGCAAA GACACGGTCT
651 TTGATTTCGC TACAGCGAAG ATTCCGAAGA AGATGTTTTA GCCTGGGAAG
701 AATATCATGA GGGACGACTC CTAAAAGCAG AGTACTTACA TCCTCAAAC
751 CACGAAATCT ATGCGACTAT ACACGAAGGG AACGGCATTG AAGCAATCTA
801 CGGCAAGTAT GCGTTATAG AACTAGGGC ATTTTACCGA GGGGAACCTT
851 ATGGAAAAGT TACCAAGATTC GACAACCTCG GAACACAGAT TGTCCAAACG
901 TATAACCTTT TGCAAGGCAGC GAAGCACCGA GAAGAATTTC TCTTTTATCC
951 TGAGACAGGG AAACCCAAGC TGCTTCTTAA TTGGCATGAA GGAATTTTAA
1001 ATGGGATAGT AAAAACCTGG TATCCCGGAG GAACCTTACA AAGTTGTAAA
1051 GAACTCGTAA ATAACAAAAA ATCCGGTTA CTGACCATT ACTACCCTGA
1101 AGGACAGATC ATGGCGACCG AAGAGTATGA TAATGATCTT CTAATTAAAG
1151 GAGAGTACTT CCGCCCTGGA GACCGTCATC CCTACTCTAA AATAGATCGT
1201 GGTGTGGGA CTGCACTATT TTTCTCGTCG GCGGGAACTA TTACTAAAAA
1251 AATCCCCTAT CAGGACGGCA AACCTTTGCT CAACTAG

```

The PSORT algorithm predicts a periplasmic location (0.688).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 35A) and as a GST-fusion product (Figure 35B). The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 35C) and for FACS analysis.

These experiments show that cp7072 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 36

- 50 The following *C.pneumoniae* protein (PID 4376879) was expressed <SEQ ID 71; cp6879>:

5            1 MATPAQKSPT FQDPSFVREL GSHPVFSPL TLEERGEMAI ARVQQCGWNH  
       51 TIVKVSLIIL ALLTILGGGL LVGLLPAVPM FIGTGLIALG AVIFALALIL  
       101 CLYDSQGLPE ELPPVPEPQQ IQIEDLRNET REVLEGTLLE VLLKDRDAKD  
       151 PAVPQVVVDC EKRLGMLDRK LRREEEILYR STAHLKDEER YEFLLLELEM  
       201 RSLVADRLEF NRRSYERFVQ GIMTVRSEEG EKEISRLQDL ISLQQQTVDQ  
       251 LRSRIDDEQK RCWTALQRIN QSQKDIQRAH DREASQRACE GTEMIDCAERQ  
       301 QLEKDLRQL KSMQEWEIEMR GTIHQQEKAW RKQNAKLERL QEDLRLTGIA  
       351 FDEQSLFYRE YKEKYLSQKL DMQKILQEVN AEKSEKACLE SLVHDYEKQL  
       401 EQKDANLKKA AAVWEEEELGK QQQEDYEQTQ EIRRLSTFIL EYQDSLREAE  
       451 KVEKDFQELQ QRYSRQLEEK QVKKEKILEES MNHFADLFK AQKENMAYKK  
       501 KLADELEGAAA PTEIGEDDDW VLTDASLSQ KKIRELVEEN QELLKALAFK  
       551 SNELTQLVAD AVEAEKEISK LREHIEEQKE GLRALDKMHA QAIKDCEAAQ  
       601 RKCCDLESLL SPVREDAGMR FELEVELQRL QEENAQLRAE VERLEQEQQFQ  
       651 G\*

15      The cp6879 nucleotide sequence <SEQ ID 72> is:

20            1 ATGGCAACAC CCGCTCAAAA ATCCCCTACA TTTCAAGATC CTAGTTTTGT  
       51 AAGAGAGCTA GGCAGTAACC ACCCTGTCTT TTCCCCGCTA ACGCTTGAGG  
       101 AAAGAGGGGA GATGGCAATA GCTCGAGTC AGCAGTGTGG ATGGAATCAT  
       151 ACAATTGTTA AGGTAAGTCT TATTATTCTT GCTCTTCTTA CTATTTTAGG  
       201 GGGAGGATTA CTCGTAGGAT TGCTGCCAGC AGTTCCATG TTTATTGGAA  
       251 CAGGTCTGAT TGCTTTGGGA GCCGTTATAT TTGCTTTGGC TTTGATTTTA  
       301 TGCTTTATG ATTCTCAGGG CCTTCCTGAG GAACTCCCTC CGGTTCTGA  
       351 ACCACAACAA ATTCAAGATTG AAGATTTAAG AAACGAGACC AGAGAAGTTC  
       401 TTGAAGGGAC TCTTTTAGAG GTTCTCTTAA AGGATAGAGA CGCTAAGGAC  
       451 CCTGCGGTGC CCCAGGTGGT TGTAGACTGT GAAAAGCGTC TTGGAATGTT  
       501 GGATCGTAAG CTGCGACGTG AAGAGGAGAT TCTGTATCGC TCGACGGCCC  
       551 ATCTAAAGA CGAGGAAAGG TATGAGTTCT TGCTGGAGCT CTTGGAAATG  
       601 CGTAGTCTGG TTGCGGATCG GCTAGAATT AACCCTAGAA GTTATGAGCG  
       651 ATTGTTCAA GGAATTATGA CAGTTAGATC AGAGGAGGG GAAAAAGAGA  
       701 TTCTCGTCT ACAAGATCTA ATCAGTTGC ACCAGCAGAC GGTGCAAGAT  
       751 TTAAGGAGTC GGATCGATGA CGAGCAGAAC AGATGCTGGA CGGCTTTACA  
       801 ACGTATTAAAC CAATCTCAGA AGGATATACA ACGGGCTCAT GATCGCGAGG  
       851 CTCGCAGCG TGCCTGTGAG GGCACAGAGA TGGATTGTGC AGAACGCCAG  
       901 CAACTGGAGA AGGATTTAAG GAGACAGCTG AAATCTATGC AGGAGTGGAT  
       951 TGAGATGAGG GGCACAATCC ATCAACAAGA GAAGGCTTGG CGTAAGCAGA  
       1001 ATGCCAAATT AGAAAGATTA CAAGAGGATC TGAGACTTAC TGGGATTGCT  
       1051 TTTGACGAAC AATCTCTGTT CTATCGCGAA TATAAAAGAGA AATATCTGAG  
       1101 TCAGAAACTA GATATGCAAAG AGATTTTACA GGAAGTCAAC GCAGAGAAAA  
       1151 GTGAGAAGGC TTGCTTAGAG AGTCTGGTCC ATGACTATGA GAAGCAGCTC  
       1201 GAAACAAAAG ATGCTAATCT GAAGAAAGCA GCAGCTGTTT GGGAAAGAAGA  
       1251 ATTAGGGAAAG CAGCAACAGG AAGACTACGA ACAAAACCAA GAAATTAGAC  
       1301 GTCTGAGTAC ATTCAATTCTT GAGTACCAAGG ACAGTCTGCC TGAGGCAGAA  
       1351 AAAGTTGAGA AAGATTCCA AGAGCTACAA CAAAGGTATA GCCGTCTCA  
       1401 AGAGGAGAAA CAGGTAAAAG AAAAATCTT AGAAGAAAGT ATGAATCATT  
       1451 TTGCGGATCT CTTTGAGAAG GCTCAAAAGG AAAACATGGC CTACAAGAAG  
       1501 AAGTTAGAGG .ATTTAGAGGG TGCCGCTGCT CCTACTGAGA TCGGTGAGGA  
       1551 CGATGACTGG GTACTCACAG ATTCTGCTTC TCTCAGCCAG AAGAAGATCC  
       1601 GCGAACTCGT GGAAGAGAAAT CAAGAACTCC TGAAAGCACT TGCATTTAAA  
       1651 TCTAACGAAT TGACTCAACT GGTGCGGAT GCTGTAGAAG CTGAAAAGA  
       1701 AATCAGCAAG CTTCGAGAAC ACATAGAAGA GCAGAAAGAA GGATTACGAG  
       1751 CTTTGATAA GATGCATGCA CAAGCGATCA AAGATTGCGA AGCTGCTCAG  
       1801 AGAAAATGCT GTGACCTTGA GAGCCTTCTC TCTCCTGTTG GAGAAGATGC  
       1851 TGGAAATGAGA TTTGAGCTAG AGGTCGAGCT TCAAAGATTG CAAGAAGAAA  
       1901 ATGCACAGCT TAGAGCGGAG GTTGAAGAC TAGAGCAAGA GCAATTCAA  
       1951 GGATAA

The PSORT algorithm predicts an inner membrane location (0.646).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product.

The purified GST-fusion product is shown in Figure 36A. The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 36B) and for FACS analysis.

60      These experiments show that cp6879 is useful immunogen. These properties are not evident from the sequence alone.

**Example 37**

The following *C.pneumoniae* protein (PID 4376767) was expressed <SEQ ID 73; cp6767>:

```

5   1 MIKQIGRFFR AFIFIMPLSL TSCESKIDRN RIWIVGNTNAT YPPFEYVDAQ
    51 GEVVGFIDL AKAISEKLGK QLEVREFAFD ALILNLKKHR IDAILAGMSI
   101 TPSRQEIAL LPYYGDEVQE LMVVSRSLE TPVLPLTQYS SVAVQTGTFQ
   151 EHYLLSQPGI CVRSFDSTLE VIMEVRYGKS PVAVLEPSVG RVVLKDFPNL
   201 VATRLELPPE CWVLGCGLGV AKDRPEEIQT IQQAITDLKS EGVIQSLTKK
   251 WQLSEVAYE*

```

The cp6767 nucleotide sequence <SEQ ID 74> is:

```

10  1 ATGATAAAAC AAATAGGCCG TTTTTTTAGA GCATTTATTT TTATAATGCC
    51 TTATCTTTA ACAAGTTGT AGTCTAAAAT CGATCGAAAT CGCATCTGGA
   101 TTGTTAGGTAC GAATGCTACA TATCCTCCTT TTGAGTATGT GGATGCTCAG
   151 GGGGAAGTTG TAGGTTTCGA TATAGATTG GCAAAGGCAA TTAGTGAAAAA
   201 ACTTGGCAAG CAATTGGAAG TTAGAGAATT CGCTTTCGAT GCTTTAATTT
   251 TAAATTTAAA AAAACATCGT ATCGATGCAA TTTTAGCAGG AATGTCCATT
   301 ACTCCTTCGC GTCAGAAGGA AATCGCCCTG CTTCCCTATT ATGGCGATGA
   351 GGTTCAAGAG CTGATGGTGG TTTCTAAGCG GTCTTAGAG ACCCCTGTGC
   401 TTCCCCCTAAC ACAGTATTCT TCTGTTGCTG TTCAGACAGG AACGTTTCAG
   451 GAGCATTATC TTTTATCTCA GCCCGGAATT TGTGTCGTT CTTTTGATAG
   501 CACCTTGGAG GTGATTATGG AAGTCGTTA TGGGAAATCT CCGGTTGCCG
   551 TTCTAGAACCC CTCGGTAGGA CGTGTGTTTC TTAAAGACTT CCCTAATCTT
   601 GTGCAACAA GATTAGAGCT CCCTCCTGAA TGTGGGGTGT TGGGCTGTGG
   651 TCTCGGGCGTA GCTAAAGATC GTCCCTGAAGA AATACAAACG ATTCAACAAG
   701 CGATTACAGA TTTAAAGAGC GAAGGGGTGA TTCAATCTT AACCAAGAAA
   751 TGGCAACTTT CTGAAGTTGC TTACGAATAG

```

The PSORT algorithm predicts an inner membrane location (0.083).

The protein was expressed in *E.coli* and purified as a his-tag product and as a GST-fusion product. The purified his-tag product is shown in Figure 37A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 37B) and for FACS analysis (Figure 37C). The GST-fusion was also used in a Western blot (Figure 37D).

The cp6767 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6767 is a useful immunogen. These properties are not evident from the sequence alone.

**Example 38**

The following *C.pneumoniae* protein (PID 4376717) was expressed <SEQ ID 75; cp6717>:

```

40  1 MMSRLRFRLA ALGIFFILLV PNSVSAKTIV ASDKEKVGVL VYDNSVEAFQ
    51 QILDCIDHAN FYVELCPCMT GGRTLKEMVD HLEARMDLVP ELCSYIIIQP
   101 TFTDAEDQKL LKALKERHPN RFFYVFTGCP PSTSILAPNV IEMHIKLSII
   151 DGKYCILGGT NFEEFMCTPG DEVPEKVDNP RLFVSGVRRP LAFRDQDIML
   201 RSTAFGLQLR EYHKQFAMW DYYAHMMWF DNPEQFAGAC PPLTLEQAE
   251 TVFPGFDFKHE DLVLVDSKKI RIVLGGPHDK QPNPVTQEYL KLIQGARSSV
   301 KLAHMYFIPK DELLNALVDV SHNHGVHLSL ITNGCHELSP AITGPYAWGN
   351 RINYFALLYG KRYPLWKKWF CEKLKPYERV SIYEFIAIWET QLHKKCMIID
   401 DEIFVIGSYN FGKKSDAFDY ESIVVIESPE VAAKANKVFN KDIGLSIPVS
   451 HGDIFSWYFH SVHHTLGHHLQ LTYPMA*

```

A predicted signal peptide is highlighted.

The cp6717 nucleotide sequence <SEQ ID 76> is:

5           1 ATGATGAGTC GGTTGCCTT TCGCTTGGCA GCTCTGGAA TATTTTTAT  
      51 TTTGCTGGTT CCTAATTCTG TTTCAGCAAA GACAATCGTA GCTTCAGACA  
     101 AGGAGAAGGT TGGAGTTCTT GTTATGACA ATAGTGTAGA GGCCTTCAA  
    151 CAGATATTGG ATTGCATAGA TCATGCAAAT TTTTATGTAG AACTGTGTCC  
   201 CTGCATGACA GGAGGCCAA CGCTTAAAGA GATGGTAGAT CACCTCGAGG  
   251 CTCGTATGGA TCTGGTCCA GAGCTCTGTA GCTATATCAT TATCCAACCC  
   301 ACGTTTACCG ATGCTGAAGA CCAAAATTA CTCAAAGCTC TCAAAGAACG  
   351 TCATCCCAAC CGGTTTCT ACGBTTTAC AGGGTGCCCA CCCTCAACAA  
   401 GCATCCTCGC TCCTAATGTC ATTGAAATGC ATATCAAAT TTCTATCATC  
   451 GATGGGAAAT ATTGTATTT AGGTGGTACC AATTTGAAG AGTTTATGTG  
   501 CACTCCAGGG GATGAGGTT CTGAGAAAGT GGATAACCCA CGTTTATTG  
   551 TCACTGGAGT GCGTCGGCCC CTAGCATTTG GTGATCAGGA TATCATGTTG  
   601 CGTTCTACAG CATTGGTTT GCAGCTCAGA GAAGAATATC ATAAGCAATT  
   651 TGCTATGTGG GACTACTATG CACATCATAT GTGGTTCATT GATAATCCTG  
   701 AACAGTTGC AGGCCCTGT CCTTCACTGA CTTTAGAACAA AGCCGAGGAG  
   751 ACAGTATTTC CTGGATTGAA CAAACATGAA GATCTTGTTC TTGTCGACTC  
   801 TTCCAAGATC AGGATAGTT TAGGTGGTCC CCACGATAAG CAACCCAAATC  
   851 CTGTGACTCA AGAATATTG AAACCTTATCC AGGGAGCTAG ATCTTCTGTG  
   901 AAGCTTGCTC ACATGTATTT CATCCCTAAAG GACGAGCTT TAAATGCTCT  
   951 TGTGACGTT TCTCATATAAC ACGGTGTCA TCTGAGTTA ATTACGAACG  
 1001 GCTGTCATGA ATTAAGTCTT CGAACATTACAG GACCCTATGC TTGGGGAAAC  
 1051 CGTATTAACAT ATTCGCCTT GCTCTATGGG AAACGGTATC CTCTTGGAA  
 1101 AAAATGGTTT TGCAGAAAGC TAAAACCTTA TGAGCGGGTT TCTATTATG  
 1151 AGTTTGCTAT TTGGGAAACG CAGTTGCACA AGAAGTGTAT GATTATCGAT  
 1201 GATGAAATTG TTGTGATCGG AAGTTATAAT TTTGGAAAGA AAAGTGTGATC  
 1251 CTTGATTAC GAAAGTATTG TAGTTATCGA ATCTCCAGAA GTCGCTGCAA  
 1301 AAGCTAACAA AGTCTTCAAT AAAGATATCG GATGTCGAT TCCTGTAAGT  
 1351 CATGGCACA TTTCTCTTG GTATTTCAT TCCGTACACC ACACTTGGG  
 1401 ACATTGCACTGACCTATA TGCCAGCCTA G

30   The PSORT algorithm predicts a periplasmic location (0.939).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 38A), as a his-tagged protein, and as a GST/his fusion product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 38B) and for FACS analysis.

These experiments show that cp6717 is a useful immunogen. These properties are not evident from  
 35   the sequence alone.

### Example 39

The following *C.pneumoniae* protein (PID 4376577) was expressed <SEQ ID 77; cp6577>:

40           1 MKKLLFSTFL LVLGSTSAAH ANLGYVNLKR CLEESDLGKK ETEELEAMKQ  
      51 QFVKNAEKIE EELTSIYNLQ QDEDYMESLS DSASEELRKK FEDLSGEYNA  
   101 YQSQYYQSIN QSNVKRIQKL IQEVKIAAES VRSKEKLEAI LNEEAFLAIA  
   151 PGTDKTTEII AILNESFKKQ N\*

A predicted signal peptide is highlighted.

The cp6577 nucleotide sequence <SEQ ID 78> is:

45           1 ATGAAAAAAT TATTATTTTC TACATTTCTT CTGTTTTAG GATCAACAAG  
      51 CGCAGCTCAT GCAAATTAG GCTATGTTAA TTTAAAGCGA TGTCTTGAAG  
   101 AATCCGATCT AGGTAAAAAG GAAACTGAAG AATTGGAAGC TATGAAACAG  
   151 CAGTTGTAA AAAATGCTGA GAAAATAGAA GAAGAACTCA CTTCTATTAA  
   201 TAATAAGTTG CAAGATGAAG ATTACATGGA AAGCCTATCG GATTCTGCCT  
   251 CTGAAGAGTT GCGAAAGAAA TTCAAGATC TTTCAAGGAGA GTACAATGCG  
   301 TACCACTCTC AGTACTATCA ATCTATCAAT CAAAGTAATG TAAAACGCAT  
   351 TCAAAAACCT ATTCAAGAAG TAAAATAGC TGCAAGATCA GTGCGGTCCA  
   401 AAGAAAAACT AGAAGCTATC CTTAATGAAG AAGCTGTCTT AGCAATAGCA  
   451 CCTGGGACTG ATAAAACAC CGAAATTATT GCTATTCTTA ACGAATCTTT  
   501 CAAAAAACAA AACTAG

55   The PSORT algorithm predicts a periplasmic space location (0.932).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 39A) and as a GST-fusion product (Figure 39B). The recombinant GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 39C) and for FACS analysis.

The cp6577 protein was also identified in the 2D-PAGE experiment.

- 5 These experiments show that cp6577 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 40

The following *C.pneumoniae* protein (PID 4376446) was expressed <SEQ ID 79; cp6446>:

```

1  MKQPMMSLIFS SVCLGLGLGS LSSCNQKPSW NYHNTSTSEE FFVHGNGKSVS
51  QLPHYPSAFR TTQIFSEEHN DPYVVAKTDE ESRKIWREIH KNLKIKGSYI
101  PISTYGSLMH PKSAALTAKT YRPHPIWING YERSFNIDTG KYLKNGSRRR
151  TSHDGPKNRA VLNLIKSSGR RCNAIGLEMT EEDFVIARR EGVYSLYPVE
201  VCSPYPOGNPF VIAVAYWIADE SACSKEVLPV KGYYSLVWES VSSSDSLNAF
251  GDSFAEDYLR STFLANGTSI LCVHESYKKV PPQP*
```

- 15 A predicted signal peptide is highlighted.

The cp6446 nucleotide sequence <SEQ ID 80> is:

```

1  ATGAAACAGC CCATGTCTCT TATCTTTCA AGTGTATGTT TAGGATTAGG
51  TCTTGGATCT CTTTCCTCCT GTAATCAAAA GCCCTCTTGG AATTATCACA
101  ACACCTAAC GAGCGAAGAAA TTCTTTGTT ATGGAAATAA GAGTGTTCG
151  CAACTGCCTC ATTATCCCTC TGCAATTTCGT ACGACTCAA TCTTTCTGA
201  AGAGCACAAT GATCCTTATG TCGTAGCTAA GACTGATGAA GAGTCTCGTA
251  AAATTTGGAG AGAAATCCAT AAAATCTCA AAATCAAAGG TTCTTACATT
301  CCCATATCGA CTTATGGAAG TCTGATGCAC CCAAAATCAG CAGCTCTTAC
351  ATTAAAAACG TATCGTCCAC ATCCTATTG GATAAAATGGA TACGAGCGTT
401  CTTTTAATAT AGACACAGGA AAGTACTTAA AAAACGGAAG TCGCCGTAGA
451  ACTTCTCACG ATGGTCCGAA AAATCGAGCT GTACTGAATC TCATTAATC
501  TTCGGGACGA CGCTGTAATG CTATAGGCCT TGAGATGACA GAAGAAGACT
551  TTGTAATAGC TAGAAGGCGA GAAGGTGTTT ATAGCCTGTA TCCCCTTGAA
601  GTGTGCTCGT ATCCCTCAGGG GAATCCTTTT GTCATTGCTT ATGCCCTGGAT
651  TGCAGATGAG AGTGCTTGCT CAAAGAGGT CCTACCTGTA AAAGGGTACT
701  ATCTTTAGT CTGGGAAAGC GTTTCTTCCT CTGATTCTCT GAATGCTTTT
751  GGAGATTCCCT TTGCAGAGGA CTACCTCAGA AGCACGTTT TAGCAAACGG
801  AACTTCTATA CTCTGTGTT ATGAAAGCTA TAAGAAAGTT CCTCCTCAGC
851  CCTAA
```

- 35 The PSORT algorithm predicts an inner membrane location (0.177).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion product. The GST-fusion product is shown in Figure 40A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 40B) and for FACS analysis.

- 40 These experiments show that cp6446 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 41

The following *C.pneumoniae* protein (PID 4377108) was expressed <SEQ ID 81; cp7108>:

```

1  MSKKIKVLGH LTLCTLFRGV LCAAALSNIG YASTSQESPY QKSIEDWKGY
51  TFTDLELLSK EGWSEAHAVS GNNSRIVGAS GAGQGSVTAV IWESHLIKHL
101  GTLGGEASSA EGISKDGEVV VGWSDTREGY THAFVFDGRD MKDLGTLGAT
151  YSVARGVSGD GSIIIVGVSAT ARGEDYGWQV GVVKWEKGKIK QLKLLPQGLW
```

201 SEANAISEDG TVIVGRGEIS RNHIVAVKWN KNAVYSLGTL GGSVASAEAI  
 251 SANGKIVVGW STTNNGETHA FMHKDETMHD LGTLGGGF SV ATGVSA DGRA  
 301 IVGFSAVKTG EIHAFYYAEG EMEDLTTLGG EEARVFDI SS EGNDIIGSIK  
 351 TDAGAERAYL FHIHK\*

- 5 A predicted signal peptide is highlighted.

The cp7108 nucleotide sequence <SEQ ID 82> is:

1 ATGAGTAAGA AGATAAAAGGT TCTAGGTCAT TTGACGCTCT GCACTCTGTT  
 51 TAGAGGAGTG CTGTGTCAG CGGCCCTTTC CAACATAGGA TATGCGAGTA  
 101 CTTCTCAGGA ATCACCATAT CAGAAAGTCTA TAGAAGACTG GAAAGGGTAT  
 151 ACCTTTACAG ATCTTGAGTT ACTGAGTAAG GAAGGGTGGT CTGAAGCTCA  
 201 TGCAGTTCTC GGAAATGGCA GTAGAATTGT AGGAGCTTCG GGAGCTGGCC  
 251 AAGGTAGTGT GACTGCTGTC ATATGGGAAA GTCAACCTGAT AAAACATCTC  
 301 GGCACCTTCTAG GTGGCGAGGC TTCACTTGCA GAGGGAAATT CAAAGGATGG  
 351 AGAGGTGGTC GTTGGGTGGT CAGATACTAG AGAGGGATAT ACTCATGCCT  
 401 TTGTCCTTCGA CGGTAGAGAT ATGAAAGATC TCCTGACTCT AGGAGCTACC  
 451 TATTCTGTAG CAAGGGGTGT TTCTGGAGAT GGTAGTATCA TCGTAGGAGT  
 501 CTCTGCAACT GCTCGTGGAG AGGATTACGG ATGGCAAGTT GGTGTCAAGT  
 551 GGGAAAAAGG GAAAATCAA CAATTGAAGT TGTTGCCTCA AGGTCCTCTGG  
 601 TCTGAGGCGA ATGCAATCTC TGAGGGATGGT ACCTGATGGT TCGGGAGAGG  
 651 GGAAATCTCT CGCAATCACA TCGTTGCTGT AAAATGGAAT AAAATGCTG  
 701 TGTATAGTTT GGGGACTCTC GGAGGTAGTG TCGCTTCAGC AGAGGCTATA  
 751 TCGGCAAATG GGAAAGTAAT TGTAGGATGG TCCACGACTA ATAATGGTGA  
 801 GACTCATGCC TTTATGCACA AAGATGAGAC AATGCACGAT CTCGGCACTC  
 851 TAGGAGGAGG TTTTCTGTGTC GCAACTGGAG TTTCTGCTGA TGGGAGAGCC  
 901 ATCGTAGGAT TTTCAGCAGT GAAGACCGGA GAAATTCTG CTTTTTACTA  
 951 TGCAGAAGGA GAAATGGAGG ATTTAACAAAC TTTGGGAGGG GAAGAAGCTC  
 1001 GAGTGTTCGA CATATCTAGC GAAGGAAACG ATATCATTGG CTCTATAAAA  
 1051 ACTGACGCTG GAGCTGAACG CGCCTATCTG TTCCATATAC ATAAATAA

The PSORT algorithm predicts an outer membrane location (0.921).

- 30 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 41A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 41B) and for FACS analysis (Figure 41C). A his-tagged protein was also expressed.

The cp7108 protein was also identified in the 2D-PAGE experiment.

- 35 These experiments show that cp7108 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 42

The following *C.pneumoniae* protein (PID 4377287) was expressed <SEQ ID 83; cp7287>:

1 **MVAKKTVRSY RSSFSHSVIV AILSAGIAFE AKSLHSSELD LGVFNKQFEE**  
 51 HSAHVEEAQT SVLKGSVPN PSQKESEKVL YTQVPLTQGS SGESLDLADA  
 101 NFLEHFQHLF EETTVFGIDQ KLWSDLDTR NFSQPTQEPD TSNAVSEKIS  
 151 SDTKENRKDL ETEDPSKKSG LKEVSSDLPK SPETAVAAIS EDLEISENIS  
 201 ARDPLQGLAF FYKNTSSQSI SEKDSSFQGI IFSGSGANS LGFENLKAPK  
 251 SGAAVYSDRD IVFENLVKGL SFISCESLED GSAAGVNIVV THCGDVTLTD  
 301 CATGLDLEAL RLVKDFSRGG AVFTARNHEV QNNILAGGILS VVGNGKAIIVV  
 351 EKNSAEKSNG GAFACGSFVY SNNENTALWK ENQALSGGAI SSASDIDIQG  
 401 NCSAIEFSGN QSLIALGEHI GLTDFVGGGA LAAQGTLTLR NNAVQCVKN  
 451 TSKTHGGAIL AGTVIDLNETI SEVAFKQNTA ALTGGALSAN DKVIIANNFG  
 501 EILFEQNEVR NHGGAIYCGC RSNPKLEQKD SGENINIIGN SGAITFLKNK  
 551 ASVLEVMTQA EDYAGGGALW GHNVLLDSNS GNIQFIGNIG GSTFWIGEYV  
 601 GGGAILSTDRT VTISNNSGDV VFKGNGQCL AQKYVAPQET APVESDASST  
 651 NKDEKSLNAC SHGDHYPPKT VEEEVPPSSL EEHPVVSSTD IRGGGAILAQ  
 701 HIFITDNTGN LRFSGNLGGG EESSTVGDLA IVGGGALLST NEVNVCNQN  
 751 VVFSDNVTSN GCDSGGAILA KKVDISANHS VEFVSNSGSK FGGAVCALNE  
 801 SVNITDNGSA VSFSKNTRL GGAGVAAPQG SVTICGNQGN IAFKENFVFG

851 SENQRSGGGA IIANSVNIQ DNAGDILFVS NSTGSYGGAI FVGSLVASEG  
 901 SNPRTLTITG NSGDILFAKN STQTAASLSE KDSFGGGAIY TQNLKIVKNA  
 951 GNVSFYGNRA PSGAGVQIAD GGTVCLEAFG GDILFEGININ FDGSFNIAHL  
 1001 CGNDSKIVEL SAVQDKNIIF QDAITYEENT IRGLPDKDVS PLSAPSLIFN  
 1051 SKPQDDSAQH HEGTIRFSRG VSKIPQIAAI QEGTLALSQN AELWLAGLKQ  
 1101 ETGSSIVLSA GSILRIFDSQ VDSSAPLPTE NKEETLVASG VQINMSSPTP  
 1151 NKDKAVDTPV LADIISITVD LSSFVPEQDG TLPLPPEIII PKGTKLHSNA  
 1201 IDLKIIDPTN VGYENHALLS SHKDIPLISL KTAEGMTGTP TADASLSNIK  
 1251 IDVSLPSITP ATYGHGVWS ESKMEDGRLLV VGWQPTGYKL NPEKQGALVL  
 1301 NNWLWSHYTDL RALKQEFAH HTIAQRMELD FSTNVWGSGL GVVEDCQNIG  
 1351 EFDGFKHHLT GYALGLDTQL VEDFLIGGCF SQFFGKTESQ SYKAKNDVKS  
 1401 YMGAAYAGIL AGPWLIKCAF VYGNINNDLT TDYGTLGIST GSWIGKGFI  
 1451 GTSIDYRYIV NPPRFISAIV STVVPFVEAE YVRIDLPEIS EQGKEVRTFQ  
 1501 KTRFENVAIP FGFALEHAYS RGSRRAEVNSV QLAYFDVYR KGPVSLITLK  
 1551 DAAYSWKSYG VDIPCKAWKA RLSNNTEWNS YLSTYLAFLNY EWREDLIAYD  
 1601 FNNGIRIIIF\*

A predicted signal peptide is highlighted.

The cp7287 nucleotide sequence <SEQ ID 84> is:

1 ATGGTAGCGA AAAAACAGT ACGATCTTAT AGGTCTTCAT TTTCTCATTC  
 20 51 CGTAATAGTA GCAATATTGT CAGCAGGCAT TGCTTTGAA GCACATTCCCT  
 101 TACACAGCTC AGAACTAGAT TTAGGTGTAT TCAATAAACAA GTTTGAGGAA  
 151 CATTCTGCTC ATGTTGAAGA GGCTCAAACA TCTGTTTAA AGGGATCAGA  
 201 TCCGTAAAT CCCCTCTCAGA AAGAATCCGA GAAGGTTTG TACACTCAAG  
 25 251 TGCCTCTTAC CCAAGGAAGC TCTGGAGAGA GTTGGATCT CGCCGATGCT  
 301 AATTCTTCTAG AGCATTTCAGA GCATCTTTT GAAGAGACTA CAGTATTGG  
 351 TATCGATCAA AAGCTGGTT GGTCAGATT AGATACTAGG AATTTCCTCC  
 401 AACCCACTCA AGAACCTGAT ACAAGTAATG CTGTAAGTGA GAAAATCTCC  
 451 TCAGATACCA AAGAGAATAG AAAAGACCTA GAGACTGAAG ATCCTTCAAA  
 501 AAAAAGTGGC CTTAAAGAAG TTCATCAGA TCTCCCTAAA AGTCTGAAA  
 551 CTGCAGTAGC AGCTATTCTC AAAGATCTTG AAATCTCAGA AAACATTCA  
 601 GCAAGAGATC CTCTTCAGGG TTTAGCATTT TTTTATAAAA ATACATCTTC  
 651 TCAGTCTATC TCTGAAAAGG ATTCTTCATT TCAAGGAATT ATCTTTCTG  
 701 GTTCAGGAGC TAATTCAAGGG CTAGGTTTG AAAATCTAA GGCGCCGAAA  
 751 TCTGGGGCTG CAGTTTATTG TGATCGAGAT ATTGTTTTG AAAATCTTGT  
 801 TAAAGGATTG AGTTTTATAT CTITGTGAATC TTTAGAAGAT GGCTCTGCCG  
 851 CAGGTGTAAA CATTGTGTG ACCCATTTGTG GTGATGAAAC TCTCACTGAT  
 901 TGTGCCACTG GTTGTAGACCT TGAAGCTTTA CGTCTGGTTA AAGATTTTC  
 951 TCGTGGAGGA GCTGTTTCA CTGCTCCCAA CCATGAAGTG CAAAATAACC  
 1001 TTGCTAGGTGG AATTCTATCC GTTGTAGGCA ATAAAGGAGC TATTGTTGTA  
 1051 GAGAAAAATA GTGCTGAGAGA GTCCTAATGGA GGAGCTTTG CTTGCCGAAG  
 1101 TTTTGTCTTAC AGTAAACAAACG AAAACACCCG CTTGTGGAAA GAAAATCAAG  
 1151 CATTATCAGG AGGAGCCATA TCCTCAGCAA GTGATATTGA TATTCAAGGG  
 1201 AACTGTAGCG CTATTGAATT TTCAGGAAAC CAGTCTCTAA TTGCTCTGG  
 1251 AGAGCATATA GGGCTTACAG ATTGTAGG TGGAGGAGCT TTAGCTGCTC  
 1301 AAGGGACGCT TACCTTAAGA AATAATGCAG TAGTGCAATG TGTAAAAAC  
 1351 ACTTCTAAAAA CACATGGTGG AGCTATTCTA GCAGGTACTG TTGATCTCAA  
 1401 CGAAACAATT AGCGAAGTTG CCTTTAAGCA GAATACAGCA GCTCTAACTG  
 1451 GAGGTGCTTT AAGTGCCTAAT GATAAGGTTA TAATTGCAAA TAACCTTGG  
 1501 GAAAATTCTTT TTGAGCAAAA CGAAGTGTGAGG AATCACGGAG GAGCCATT  
 1551 TTGTGGATGT CGATCTAATC CTAAGTTAGA ACAAAAGGAT TCTGGAGAGA  
 1601 ACATCAATAT TATTGAAAC TCCGGAGCTA TCACTTTTT AAAAATAAG  
 1651 GCTTCTGTT TAGAAGTGT GACACAAGCT GAAGATTATG CTGGTGGAGG  
 1701 CGCTTTATGG GGGCATAATG TTCTTCTAGA TTCCAATAGT GGGAAATATT  
 1751 AATTATAGG AAATATAGGT GGAAGTACCT TCTGGATAGG AGAATATGTC  
 1801 GGTGGTGGTG CGATTCTCTC TACTGTAGA GTGACAATT CTAATAACTC  
 1851 TGGAGATGTT GTTTTAAAG GAAACAAAGG CCAATGCTTT GCTCAAAAT  
 1901 ATGTAGCTCC TCAAGAAACA GCTCCCGTGG AATCAGATGC TTCATCTACA  
 1951 AATAAAGACG AGAAGAGCCT TAATGCTTGT AGTCATGGAG ATCATTATCC  
 2001 TCCTAAAATC GTAGAAGAGG AAGTGCACC TTCAATTGTTA GAAGAACATC  
 2051 CTGTTGTTTC TTCGACAGAT ATTGTGGTG GTGGGGCCAT TCTAGCTCAA  
 2101 CATATCTTTA TTACAGATAA TACAGGAAAT CTGAGATTCT CTGGAAACCT  
 2151 TGGTGGTGGT GAAGAGTCTT CTACTGTGG TGATTTAGCT ATCGTAGGAG  
 2201 GAGGTGCTTT GCTTTCTACT AATGAAGTTA ATGTTTGAG TAACCAAAAT  
 2251 GTTGTGTTTT CTGATAACGT GACTTCAAAT GGTTGTGATT CAGGGGGAGC  
 2301 TATTTTAGCT AAAAAGTAG ATATCTCCGC GAACCACCTCG GTTGAATTG

|    |      |             |            |             |            |             |
|----|------|-------------|------------|-------------|------------|-------------|
|    | 2351 | TCTCTAATGG  | TTCAGGGAAA | TTCGGTGGTG  | CCGTTTGC   | TTAAACGAA   |
| 5  | 2401 | TCAGTAAACA  | TTACGGACAA | TGGCTCGGCA  | GTATCATTCT | CTAAAAATAG  |
|    | 2451 | AACACGTCTT  | GGCGGTGCTG | GAGTGCAGC   | TCCTCAAGGC | TCTGTAACGA  |
|    | 2501 | TTTGTGGAAA  | TCAGGGAAAC | ATAGCATT    | AAGAGAACTT | TGTTTTG     |
|    | 2551 | TCTGAAAATC  | AAAGATCAGG | TGGAGGAGCT  | ATCATTGCTA | ACTCTCTGT   |
|    | 2601 | AAATATTCA   | GATAACGCAG | GAGATATCCT  | ATTTGTAAGT | AACTCTACGG  |
|    | 2651 | GATCTTATGG  | AGGTGCTATT | TTTGTAGGAT  | CTTGGTTGC  | TTCTGAAGGC  |
| 10 | 2701 | AGCACACCCAC | GAACGCTTAC | AATTACAGGC  | AACAGTGGGG | ATATCCTATT  |
|    | 2751 | TGCTAAAAT   | AGCACGCAA  | CAGCCGCTTC  | TTTATCAGAA | AAAGATTCCT  |
|    | 2801 | TTGGTGGAGG  | GGCCATCTAT | ACACAAAACC  | TCAAAATTGT | AAAGAATGCA  |
|    | 2851 | GGGAACGTTT  | CTTCTATGG  | CAACAGAGCT  | CCTAGTGGTG | CTGGTGTCCA  |
|    | 2901 | AATTGCAGAC  | GGAGGAAC   | TTTGTAGA    | GGCTTTGGA  | GGAGATATCT  |
|    | 2951 | TATTTGAAGG  | GAATATCA   | TTTGATGGGA  | GTTTCAATGC | GATTCACTTA  |
| 15 | 3001 | TGCGGAATG   | ACTCAAAAT  | CGTAGAGCTT  | TCTGCTGTT  | AAGATAAAA   |
|    | 3051 | TATTATTTTC  | CAAGATGCAA | TTACTTATGA  | AGAGAACACA | ATTCTG      |
|    | 3101 | TGCCAGATAA  | AGATGTCAGT | CCTTTAAGTG  | CCCCTTCATT | AATTTTAAC   |
|    | 3151 | TCCAAGGCCAC | AAGATGACAG | CGCTCAACAT  | CATGAAGGGA | CGATACGGTT  |
| 20 | 3201 | TTCTCGAGGG  | GTATCTAAA  | TTCCCTCAGAT | TGCTGCTATA | CAAGAGGGAA  |
|    | 3251 | CCTTAGCTTT  | ATCACAAAC  | GCAGAGCTT   | GGTTGGCAGG | ACTTAAACAG  |
|    | 3301 | GAAACAGGAA  | GTTCTATCGT | ATTGTC      | GGATCTATTC | TCCGTATTT   |
|    | 3351 | TGATTCCCAG  | GTTGATAGCA | GTGCCCTCT   | TCCTACAGAA | AATAAAGAGG  |
|    | 3401 | AGACTCTTGT  | TTCTGCCGGA | GTTCAAATT   | ACATGAGCTC | TCCTACACCC  |
| 25 | 3451 | AATAAAGATA  | AAGCTGTAGA | TACTCCAGTA  | CTTGCAGATA | TCATAAGTAT  |
|    | 3501 | TACTGTAGAT  | TTGTCTTCAT | TTGTTCC     | GCAAGACGGA | ACTCTCCTC   |
|    | 3551 | TTCCTCC     | AATTATCATT | CCTAAGGGAA  | CAAATTACA  | TTCTAATGCC  |
|    | 3601 | ATAGATCTT   | AGATTATAGA | TCCTACCA    | GTGGGATATG | AAAATCATGC  |
|    | 3651 | TCTTCTAAGT  | TCTCATAAAG | ATATTCCATT  | AATTCTCTT  | AAGACAGCGG  |
| 30 | 3701 | AAGGAATGAC  | AGGGACCC   | ACAGCAGATG  | TTCTCTATC  | TAATATAAA   |
|    | 3751 | ATAGATGTAT  | CTTTACCTTC | GATCACACCA  | GCAACGTATG | GTCACACAGG  |
|    | 3801 | AGTTGGTCT   | GAAAGTAAA  | TGGAAGATGG  | AAGACTTGTA | GTCGGTTGGC  |
|    | 3851 | AACCTACGGG  | ATATAAGTTA | AATCCTGAGA  | AGCAAGGGC  | TCTAGTTTG   |
|    | 3901 | AATAATCTCT  | GGAGTCATTA | TACAGATCTT  | AGAGCTCTA  | AGCAGGAGAT  |
|    | 3951 | CTTGCTCAT   | CATACGATAG | CTCAAAGAA   | GGAGTTAGAT | TTCTCGACAA  |
| 35 | 4001 | ATGTCTGGGG  | ATCAGGATTA | GGTGTGTTG   | AAGATTGTC  | GAACATCGGA  |
|    | 4051 | GAGTTTGATG  | GGTTCAAACA | TCATCTCACA  | GGGTATGCC  | TAGGCTTGGA  |
|    | 4101 | TACACAACTA  | GTGAGACT   | TCTTAATTGG  | AGGATGTTTC | TCACAGTCT   |
|    | 4151 | TTGGTAAAAC  | TGAAAGCCAA | TCCTACAAAG  | CTAAGAACGA | TGTGAAGAGT  |
|    | 4201 | TATATGGGAG  | CTGCTTATGC | GGGGATTTA   | GCAGGTCC   | GGTTAATAAA  |
| 40 | 4251 | AGGAGCTTT   | GTTPACGGTA | ATATAAACAA  | CGATTGACT  | ACAGATTACG  |
|    | 4301 | GTACTTTAGG  | TATTTCACAA | GGTCATGG    | TAGGAAAAGG | GTTTATGCC   |
|    | 4351 | GGCACAAAGCA | TTGATTACCG | CTATATTGTA  | AATCTCGAC  | GGTTTATATC  |
|    | 4401 | GGCAATCGTA  | TCCACAGTGG | TTCCCTTTG   | AGAAGCCGAG | TATGTCGTA   |
|    | 4451 | TAGATCTTCC  | AGAATTTAGC | GAACAGGGTA  | AAGAGGTAG  | AACGTTCCAA  |
| 45 | 4501 | AAAATCTCGT  | TTGAGAATGT | CGCCATTCC   | TTTGGATTG  | CTTTAGAACAA |
|    | 4551 | TGCTTATTCCG | CGTGGCTCAC | GTGCTGAAGT  | GAACAGTGT  | CAGCTTGCTT  |
|    | 4601 | ACGTCTTGT   | TGTATATCGT | AAGGGACCTG  | TCTCTTGT   | TACACTCAAG  |
|    | 4651 | GATGCTGCTT  | ATTCTGGAA  | GAGTTATGGG  | GTAGATATTC | CTTGAAAGC   |
|    | 4701 | TTGGAAGGCT  | CGCTTGAGCA | ATAATACGGA  | ATGGAATTCA | TATTTAAGTA  |
|    | 4751 | CGTATTAGC   | GTTTAATTAT | GAATGGAGAG  | AAGATCTGAT | AGCTTATGAC  |
| 50 | 4801 | TTCAATGGTG  | GTATCCGTAT | TATTTCTAG   |            |             |

The PSORT algorithm predicts an inner membrane location (0.106).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 42A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 42B) and for FACS analysis (Figure 42C). A his-tagged protein was also expressed.

55 The cp7287 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7287 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 43**

The following *C.pneumoniae* protein (PID 4377105) was expressed <SEQ ID 85; cp7105>:

```

 1  MSLYQKWWNS QLKSLCYST VAALIFMIPS QESFADSLID LNLGLDPSVE
 51  CLSGDGAFSV GYFTKAGSTP VEYQPFKYDV SKKTFILSV ETANQSGYAY
 101  GISYDGTITV GTCISLGAKY NGAKWSADGT LTPLTGITGG TSHTEARAIS
 151  KDTQVIEGFS YDASGQPKAV QWASGATTVT QLADISGGSR SSYAYAISDD
 201  GTIIVGSMES TITRKTTAVK WVNNVPTYLG TLGGDASTGL YISGDGTVIV
 251  GAANTATVTN GNQESHAYMY KDNQMKD*

```

The cp7105 nucleotide sequence <SEQ ID 86> is:

```

10      1  GTGAGTCTAT ATCAAAAATG GTGGAACAGT CAGTTAAAGA AGAGCCTCTG
      51  CTATTCGACT GTTGCTGCTC TAATATTTAT GATTCCTTCT CAAGAATCCT
      101  TTGCAGATAG TCTTATAGAT TTAATTTAG GTTTAGATCC TTCGGTCGAA
      151  TGTCTGTCAG GAGATGGTGC ATTTCCTGTT GGGTATTTA CTAAGGGCGGG
      201  ATCGACTCCC GTAGAACATC AGCCGTTAA ATACGACGTA TCTAAGAAGA
      251  CATTCAACAAT CCTTTCCGT ACAAACGGCAA ATCAGAGCGG CTATGCTTAC
      301  GGAATCTCCT ACGATGGCAC GATCACTGTA GGAACGTGTA GCCTAGGTGC
      351  AGGAAAATAT AACGGGCCAA AATGGAGTGC GGATGGCACT TTAACACCCT
      401  TAACTGGAAT CACGGGGGG ACGTACACATA CGGAAGCGCG TGCGATTCT
      451  AAGGATACTC AGGTGATCGA GGGTTCTCA TATGATGCTT CAGGGCAACC
      501  CAAGGCTGTG CAGTGGCAA GCGGAGCGAC TACAGTAACA CAATTAGCAG
      551  ATATTCAGG AGGCTCTAA AGCTCTTATG CGTATGCTAT ATCTGATGAT
      601  GGCACGATTA TTGTTGGTC TATGGAGAGC ACGATAACAA GGAAAACATC
      651  AGCTGTAAAA TGGGTAATA ATGTTCTAC GTATCTGGGA ACCTTAGGAG
      701  GAGATGCTTC TACAGGTCTT TATAATTCCTG GAGACGGCAC CGTGATTGTA
      751  GGTGCGGCAA ATACAGCAAC TGTAACCAAT GGGAAATCAGG AATCCACCGC
      801  CTATATGTAT AAAGATAACC AAATGAAAGA TTGA

```

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 43A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 43B) and for FACS analysis (Figure 43C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7105 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 44**

The following *C.pneumoniae* protein (PID 4376802) was expressed <SEQ ID 87; cp6802>:

```

 1  MSNQLQPCIS LGCVSYINSF PLSQLIKRN DIRCVLAPPA DLLNLILLIEGK
 51  LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPT FFNSPQPRIA
 101  ATLESRSSIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG
 151  DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM
 201  EEAQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK
 251  FREYYGTLQ* QARL*

```

A predicted signal peptide is highlighted.

The cp6802 nucleotide sequence <SEQ ID 88> is:

```

45      1  ATGTCTAACCC AACTCCAGCC ATGTATAAGC TTAGGCTGGG TAAGTTATAT
      51  TAATTCCTTT CCGCTGTCCC TACAACTCAT AAAAAGAAAC GATATTCGCT
      101  GTGTTCTTGC TCCCCCTGCA GACCTCCTCA ACTTGCTAAT CGAAGGGAAA
      151  CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCTC ATAACCTTGGG
      201  GTATGTCCCC GGCTTTGGAA TTGAGCAAA CCAACGTATC CTCAGTGTAA

```

251 ACCTCTATGC AGCTCCCACT TTCTTTAACT CACCGCAACC TCGGATTGCC  
 301 GCAAACTTAG AAAGTCGCTC CTCTATAGGA CTCTTAAAG TGCTTTGTCG  
 351 TCATCTCTGG CGCATCCAA CCTCTCATAT CCTAAGATTC ATAACATCAA  
 401 AAGTACTCAG ACAAAACCCCT GAAAATTATG ATGGCCTCCT CCTAATCGGA  
 451 GATGCAGCGC TACAACATCC TGTACTTCCT GGATTTGTAA CCTATGACCT  
 501 TGCCTCGGGG TGGTATGATC TTACAAAGCT ACCTTTTGTA TTTGCTCTTC  
 551 TTCTACACAG CACCTCTGG AAAGAACATC CCCTACCCAA CCTTGCATG  
 601 GAAGAAGGCC TCCAACAGTT CGAACATTC CCCGAAGAAG TCCTTAAAGA  
 651 AGCTCATCAA CATACAGGTC TGCCCCCTTC TCTTCCTCAA GAATACTATG  
 701 CCCTATGCCA GTACCGTCTA GGAGAAGAAC ACTACGAAAG CTTTGAAAAAA  
 751 TTCCGGGAAT ATTATGAAAC CCTCTACCAA CAAGCCGAC TGTAA

The PSORT algorithm predicts an inner membrane location (0.060).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 44A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 44B) and for FACS analysis (Figure 44C). A his-tagged protein was also expressed.

These experiments show that cp6802 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 45

The following *C.pneumoniae* protein (PID 4376390) was expressed <SEQ ID 89; cp6390>:

20        1 **MVFSYYCMGL FFFSGAISSC GLLVSLGVGL GLSVLGVLLL LLAGLLLLFKI**  
           51 **QSMI**REVPKA PDLLDLEDAS ERLRVKASRS LASLPKEISQ LESYIRSAAN  
           101 DLNTIKTWPH KDQRLVETVS RKLERLAAAQ NYMISELCEI SEILEEEEHH  
           151 LILAQESLEW IGKSLFSTFL DMESFLNLSH LSEVRPYLAV NDPRLLEITE  
           201 ESWEVVSHFI NVTSAFKKAQ ILFKNNEHSR MKKKLESVQE LLETFIYKSL  
           251 KRSYRELGCL SEKMRIIHND PLFPWVQDQQ KYAHAKNEFG EIARCLEEFE  
           301 KTFFWLDEEC AISYMDCWDF LNESIQNKKS RVDRDYISTK KIALKDRART  
           351 YAKVLLLEENP TTEGKIDLQD AQRAYERQSQ EFYTLEHTET KVRLEALQOC  
           401 FSDLREATNV RQVRFTNSEN ANDLKESFEK IDKERVRYQK EQRLYWETID  
           451 RNEQELREEI GESLRLQNRR KGAGRAGYDAG RLKGLLRQWK KNLRDVEAHL  
           501 EDATMDFEHE VSKSELCSVRL ARLEVLEEE MDMSPKVADI EELLSYEERC  
           551 ILPIRENLER AYLQYNKCSE ILSKAKFFF EDEQLLVSEA NLREVGAQLK  
           601 QVQGKCQERA QKFAIFEKHI QEQLIKEQ VRSFDLAGVG FLKSELLSIA  
           651 CNLYIKAVVK ESIPVDVPCM QLYYYSYEDN EAVVRNRLLN MTERYQNFKR  
           701 SINSIQFNND VLLRDPVYQP EGHETRLKER ELQETTLCK KLKVAQDRLS  
           751 ELESRLSRR

A predicted signal peptide is highlighted.

The cp6390 nucleotide sequence <SEQ ID 90> is:

40        1 TTGGTATTCT CATACTATTG CATGGGATTA TTTTTTTCT CTGGAGCTAT  
           51 TTCTAGTTGT GGTCTTTAG TGTCTCTAGG AGTTGGTTA GGACTTAGTG  
           101 TTTAGGAGT ACTTTTACTT CTCTTAGCAG GTCTTTGCT TTTAAGATC  
           151 CAAAGTATGC TTGAGAGGT GCCTAAGGCT CCTGATCTAT TAGATTTAGA  
           201 AGATGCAAGT GAACGGCTTA GAGTAAAGGC TAGCCGTTCT TTAGCAAGCC  
           251 TCCCAGAGGA AATCAGTCAG CTAGAGAGCT ACATTCGTC TGCAAGCTAAT  
           301 GATCTAAATA CAATTAAGAC TTGGCCGCAT AAAGATCAA GACTCGTCGA  
           351 GACCCTGTCA CGAAAATTAG AGCGTCTGGC AGCTGCTCAA AACTATATGA  
           401 TTCTGAACT CTGCGAGATT AGTGAGATTG TTGAGGAAGA GGAGCATCAT  
           451 CTAATTTGG CTCAGGAATC TCTAGAATGG ATAGGTAAGA GTCTATTTTC  
           501 TACCTTTCTG GACATGGAACT CTTTTTTAAA TTGAGCCAT CTATCTGAAG  
           551 TGGTCCCGTA CTTAGCTGTA AATGATCCTA GATTATTAGA AATTACCGAA  
           601 GAATCTTGGG AAGTAGTGTAG TCATTTCTATA AATGTAACGT CTGCTTTAA  
           651 GAAAGCTCAG ATTCTTTTA AGAACACAACGA ACATTCTCGG ATGAAAGAAGA  
           701 AGTTAGAAAG TGTTCAAGAG TTACTGGAAA CATTATTTA TAAGAGTTTA  
           751 AAGAGAAGTT ATCGAGAATT AGGATGCTTA AGTGAAAAGA TGAGAATCAT  
           801 TCACGACAAT CCTCTCTTCC CTTGGGTGCA AGATCAGCAG AAGTATGCTC  
           851 ATGCTAAGAA TGAATTGGG GAGATTGCGC GGTGTTAGA GGAGTTGAA  
           901 AAGACGTTCT TCTGGTTGGA TGAGGAGTGT GCTATTTCTT ACATGGACTG

951 TTGGGATTTT CTAAATGAGT CTATTCAGAA TAAGAAGTCC AGAGTAGATC  
 1001 GAGATTATAT ATCCACGAAG AAAATTGCAT TAAAGGATAG AGCCCGCACT  
 1051 TATGCTAAGG TTCTTTAGA AGAGAACCG ACTACAGAGG GTAAAATAGA  
 1101 TTTGCAAGAC GCTCAAAGAG CCTTGAGCG TCAAAGTCAG GAGTTTATA  
 1151 CACTAGAGCA TACGGAACAA AAGGTGAGAC TAGAAGCACT TCAACAGTGC  
 1201 TTCTCGGATC TTAGGGAGGC GACGAACGTA AGGCAAGTTA GGTTTACAA  
 1251 TTCTGAAAAT GCGAATGATT TAAAGGAGAG TTTCGAGAAG ATAGATAAAAG  
 1301 AGCGTGTGCG ATATCAAAAA GAGCAAAGGC TCTATTGGGA AACAAATAGAT  
 1351 CGCAATGAGC AAGAGCTAG GGAAGAGATT GGGGAGTCGC TTCGTTTACA  
 1401 AAATCGGAGA AAAGGGTATA GGGCTGGATA TGATGCTGGG CGTTTAAAG  
 1451 GTTGTGCG TCAGTGGAA AAAATCTCC GCGATGTGGA AGCCCACCTT  
 1501 GAAGATGCAA CTATGGATT TGACCATGAA GTAAGCAAGA GCGAATTGTG  
 1551 CAGTGTGCG GCGAGGCTCG AGGTCTAGA AGAAGAGCTG ATGGATATGT  
 1601 CTCCTAAAGT TGCGGATATA GAAGAGTTGT TGTCTATGA AGAGCGTTGT  
 1651 ATTCTTCTA TTAGGGAAA TTAGAAAAGG GCATACCTCC AATATAATAA  
 1701 GTGTTCTGAA ATTTTATCCA AGGCAAAGTT CTTCTTCCG GAAGACGAGC  
 1751 AATTGCTAGT TTCGGAAAGCG AATCTAAGAG AGGTGGGTGC CCAGTTAAA  
 1801 CAAGTACAGG GAAAATGTCAGAGAGGAGGCC CAAAAGTTCG CAATATTGAG  
 1851 AAAGCATATT CAGGAGCAGA AAAGCCTTAT TAAAGAGCAA GTGCCGAGTT  
 1901 TTGATCTAGC GGGAGTTGGG TTTTAAAGA GTGAGCTTCT TAGTATTGCT  
 1951 TGTAAACCTT ATATAAAAGGC GGTGTTAAAG GAGTCTATAC CAGTTGATGT  
 2001 GCCTTGTATG CAGTTATATT ATAGTTATTA CGAAGATAAT GAAGCTGTAG  
 2051 TGCGAAACCG CCTTTAAAT ATGACGGAGA GGTATCAAAA TTTTAAAGG  
 2101 AGTTTGAATT CCATACAATT TAATGGTGCAG GTTCTTTAC GGGATCCGGT  
 2151 CTATCAACCT GAAGGTCATG AGACCAGGCT AAAGGAACGG GAGCTACAAG  
 2201 AAACAACCTT GTCTTGTAAAG AAATTAAAAG TGGCTCAAGA TCGTCTTCT  
 2251 GAATTAGAGT CAAGGCTGTC TAGGAGATAG

The PSORT algorithm predicts a periplasmic location (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 45A.

30 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 45B) and for FACS analysis (Figure 45C). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6390 is a surface-exposed and immunoaccessible protein, and that it 35 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 46

The following *C.pneumoniae* protein (PID 4376272) was expressed <SEQ ID 91; cp6272>:

1 MKRCFLFLAS FVLMGSSADA LTHQEAVKKK NSYLSHFKSV SGIVTIEDGV  
 51 LNIHNNLRIQ ANKVYVENTV GQSLKLVAHG NVMVNRYAKT LVCDYLEYYE  
 101 DTDSCLLTNG RFAMYPWFLG GSMITLTPET IVIRKGYIST SEGPKKDLCL  
 151 SGDYLEYSSD SLLSIGKTTL RVCRIPIFL PPFSIMPMEI PKPPINFRGG  
 201 TGGFLGSYLG MSYSPISRKH FSSTFFLDSF FKHGVMGMFN LHCSQKQVPE  
 251 NVFNMKSYA HRLAIDMAEA HDRYRLHGDF CFTHKHVNFS GEYHILSDSWE  
 301 TVADIFPNNF MLKNTGPTRV DCTWNNDNYFE GYLTSVKVN SFQANQELP  
 351 YLTLRQYPIS IYNTGVYLEN IVECGYLNFA FSDHIVGENF SSLRLAARPK  
 401 LHKTVPPLIG TLSSTLGSSL IYYSDVPEIS SRHSQLSAKL QLDYRFLLHK  
 451 SYIQRRHIIE PFVTFITETR PLAKNEDHYI FSIQDAFHSL NLLKAGIDTS  
 501 VLSKTNPRFP RIHAKLWPTH ILSMNTESKPT FPKTACELSL PFGKKNTVSL  
 551 DAEWIWKKHC WDHMNIRWEW IGNNDNVAMTL ESLHRSKYSI IKCDRENFIL  
 601 DVSRPIDQLL DSPLSDHRNL ILGKLFVRPH PCWNYRLSLR YGWHRQDTPN  
 651 YLEYQMILGT KIFEHWQLYG VYERREADSR FFFFILKLDKP KKPPF\*

A predicted signal peptide is highlighted.

The cp6272 nucleotide sequence <SEQ ID 92> is:

1 ATGAAACGTT GCTTCTTATT TCTAGCTTCC TTTGTTCTTA TGGGTTCCCTC

5            51 AGCTGATGCT TTGACTCATC AAGAGGCTGT GAAAAAGAAA AACTCCTATC  
 101        101 TTAGTCACTT TAAGAGTGT TCTGGGATTG TGACCATCGA AGATGGGTA  
 151        151 TTGAATATCC ATAACAACCT GCGGATACAA GCCAATAAG TGTATGTAGA  
 201        201 AAATACTGTG GGTCAAAAGCC TGAAGCTTGT CGCACATGGC AATGTTATGG  
 251        251 TGAACATAG GGCAAAAACC CTAGTTGTG ATTACCTAGA GTATTACGAA  
 301        301 GATACAGACT CTTGTCTTCT TACTAATGGA AGATTCGCGA TGTATCCTTG  
 351        351 GTTCTAGGG GGGTCTATGA TCACCTAAC CCCAGAAACC ATAGTCATTIC  
 401        401 GGAAGGGATA TATCTCTACC TCCGAGGGTC CCAAAAAAGA CCTGTGCCTC  
 451        451 TCCGGAGATT ACCTGGAATA TTCTTCAGAT AGTCTCTTT CTATAGGGAA  
 501        501 GACAACATTA AGGGTGTGTC GCATTCGAT ACTTTCTTA CCTCCATTTT  
 551        551 CTATCATGCC TATGGAGATC CCTAAGCCTC CGATAAAACTT TCGAGGAGGA  
 601        601 ACAGGAGGAT TTCTGGGATC CTATTGGGG ATGAGCTACT CGCCGATTTC  
 651        651 TAGGAAGCAT TTCTCCTCGA CATTTCTT GGATAGCTTT TTCAAGCATG  
 701        701 GCGTCGGCAT GGGATTCAAC CTCCATTGTG CCTCGAAGCA GGTTCTGAG  
 751        751 AATGCTTCA ATATGAAAAG CTATTATGCC CACCGCCTTG CTATCGATAT  
 801        801 GGCAGAAGCT CATGATCGCT ATCGCCTACA CGGAGATTTC TGCTTCACGC  
 851        851 ATAAGCATGT AAATTTTCT GGAGAATACC ATCTCAGCGA TAGTTGGAA  
 901        901 ACTGTTGCTG ACATTTCCC CAACAACCTC ATGTTGAAA ATACAGGCC  
 951        951 CACACGTGTC GATTGCACTT GGAATGACAA CTATTTGAA GGTTATCTCA  
 1001        1001 CCTCTTCTGT TAAGGTAAC TCTTCCAAA ATGCCAACCA AGAGCTCCCT  
 1051        1051 TATTTAACAT TAAGGCAGTA CCCGATTTC ATTTATAATA CGGGAGTGTA  
 1101        1101 CCTTGAAAAC ATCGTAGAAT GTGGGTATTT AACTTTGCT TTTAGCGATC  
 1151        1151 ATATCGTTGG CGAGAATTTC TCTTCACTAC GTCTGCTGC GCGCCCTAAG  
 1201        1201 CTCCATAAAAA CTGTGCTCT ACCTATAGGA ACGCTCTCT CCACCCCTAGG  
 1251        1251 GAGTTCTCTG ATTTACTATA GCGATGTTCC TGAGATCTCC TCGGCCATA  
 1301        1301 GTCAGCTTTC CGCGAAGCTA CAACTGATT ATCGCTTTCT ATTACATAAG  
 1351        1351 TCCTACATTC AAAGACGCCA TATTATAGAG CGGTTCGTTA CTTTCATTAC  
 1401        1401 AGAGACTCGT CCTCTAGCTA AGAATGAAGA TCATTATATC TTTTCTATTTC  
 1451        1451 AAGATGCCTT TCACTCCTTA AACCTCTGA AAGCGGGTAT AGATAACCTCG  
 1501        1501 GTACTGAGTA AGACTAACCC TCGATTCCCG AGAATCCATG CGAAGCTGTG  
 1551        1551 GACTACCCAC ATCTTGAGCA ATACAGAAAG CAAACCCACG TTTCCAAAAA  
 1601        1601 CTGCATGCGA GCTATCTCTA CCTTTGGAA AGAAAATAC AGTCTCCTTA  
 1651        1651 GATGCTGAAT GGATTTGGAA AAAGCACTGT TGGGATCACA TGAACATACG  
 1701        1701 TTGGGAGTGG ATCGGAAATG ACAATGTGGC TATGACTCTA GAATCCCTGC  
 1751        1751 ATAGAAGCAA ATACAGCCTG ATTAAGTGTG ACAGGGAGAA CTTCATTTTA  
 1801        1801 GATGTCAGCC GTCCCATTGA CCAGCTTTA GACTCCCCCTC TCTCTGATCA  
 1851        1851 TAGGAATCTC ATTTTAGGGA AATTATTGT ACGACCTCAT CCCTGTGTTGGA  
 1901        1901 ATTACCGCTT ATCCTTACGC TATGGCTGGC ATCGCCAGGA CACTCCGAAC  
 1951        1951 TACCTAGAAT ACCAGATGAT TCTAGGGACG AAGATCTTCG AACATTGGCA  
 2001        2001 GCTCTATGGG GTGTATGAAC GCCGAGAAGC AGATAGTCGA TTTTTCTTCT  
 2051        2051 TCTTAAAGCT CGACAAACCT AAAAAACCTC CCTTCTAA

The PSORT algorithm predicts an outer membrane location (0.48).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 46A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for

FACS analysis (Figure 46B). A his-tagged protein was also expressed.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6272 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 50 Example 47

The following *C.pneumoniae* protein (PID 4377111) was expressed <SEQ ID 93; cp7111>:

5        1 MFEAVIADIQ AREILDERSGY PTLHVKVTTG TGSGVGEARVP SGASTGKKEA  
 55        51 LEFRDTDSPR YQGKGVLQAV KNVKEILFPL VKGCSVYEQS LIDSLMMDS  
 101        101 GSPNKETLGA NAILGVSLAT AHAAAATLRR PLYRYLGGCF ACSLPCPMNN  
 151        151 LINGGMHAQN GLEFQEFLR PIGASSIKEA VNMGADVFHT LKKLLHERGL  
 201        201 STGVCDEGGF APNLASNEEA LELLLAIKEK AGFTPGKDLS LALDCAASSF

251 YNVKTGTYDG RHYEEQIAIL SNLCDRYPID SIEDGLAED YDGWALLTEV  
 301 LGEKVQIVGD DLFVTNPRLI LEGISNGLAN SVLIKPNQIG TLTETVYAIK  
 351 LAQMAGYTTI ISHRSGETTD TTIADLAVAF NAGQIKTGSL SRSERVAKYN  
 401 RLMEIEELG SEAIFTDSNV FSYEDSEE\*

5 A predicted signal peptide is highlighted.

The cp7111 nucleotide sequence <SEQ ID 94> is:

1 ATGTTTGAAG CTGTCATTGC CGATATCCAG GCTAGGGAAA TCTTGGATTG  
 51 TCGCGGGTAT CCCACTTAC ATGTTAAAGT AACCACTAGC ACAGGTTCTG  
 101 TTGGAGAACG TCAGGTTCCCT TCAGGAGCAT CCACAGGGAA AAAAGAAGCC  
 151 TTAGAGTTTC GTGATACAGA TTCTCCTCGT TATCAAGGCA AAGGGGTTTT  
 201 GCAAGCTGTAA AAAAACGTAA AAGAAATTCT TTTTCCCCCTC GTCAAGGGAT  
 251 GTAGTGTATA TGAGCAATCC TTAATTGATT CTCTGATGAT GGATTCTGAC  
 301 GGCTCTCCGA ACAAAAGAAAC TCTAGGGGCC AATGCTATT TAGGAGTCTC  
 351 TCTAGCTACA GCACATGCAG CAGCAGCAAC ACTACGCAGA CCTCTGTATC  
 401 GTTATTAGG AGGGTGTGTT GCCTGCAGTC TTCCCTGTCC TATGATGAAT  
 451 CTGATCAATG GAGGCATGCA TGCCGATAAC GGCTTGGAGT TCCAAGAATT  
 501 TATGATCCGT CCTATTGGAG CCTCTTCCAT CAAAGAAGCT GTCAACATGG  
 551 GTGCTGACGT TTTTCATACT TTGAAAAAAAT TACTCCATGA AAGAGGCTTA  
 601 TCTACTGGAG TGGGTGACGA AGGAGGCTTC GCCCGAATC TTGCTTCTAA  
 651 TGAAGAAGCT CTAGAGCTCC TATTGCTGGC TATTGAAAAA GCAGGCTTTA  
 701 CTCCAGGAAA AGATATATCG CTAGCCTTAG ACTGCGCAGC ATCCTCATTC  
 751 TATAACGTAA AAACAGGCAC GTATGATGGG AGGCACTATG AAGAGCAAAT  
 801 CGCAATCCTT TCTAATTAT GTGATCGCTA TCCTATAGAC TCCATAGAAG  
 851 ATGGTCTTGC TGAAGAAGAC TATGACGGGT GGGCCTTGTGTT AACTGAAGTT  
 901 CTGGAGAGAA AAGTACAGAT TGTGGGTGAT GACCTATTG TTACAATCC  
 951 GGAATTAAATA TTAGAGGGTA TTAGCAATGG ATTAGCGAAC TCTGTGTTGA  
 1001 TAAACACAAA TCAGATAGGG ACCGTTACTG AAACAGTGTAA TGCTATCAAG  
 1051 CTGCGCAAA TGGCTGGCTA TACTACAATT ATTTCATC GCTCAGGAGA  
 1101 AACTACGGAC ACTACGATTG CAGATCTTGC TGTTGCCTTC AACGCCGGTC  
 1151 AAATCAAAAC AGGCTCTTA TCACGTTCTG AGCGTGTGTC AAAATACAAT  
 1201 AGACTCATGG AAATTGAAGA AGAGCTTGGAA TCCGAAGCAA TTTTCACAGA  
 1251 TTCTAATGTA TTTCTTAC GAGGATTCT GAGGAATAG

The PSORT algorithm predicts an inner membrane location (0.100).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 47A.

35 The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 47B) and for FACS analysis (Figure 47C). A his-tagged protein was also expressed.

The cp7111 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7111 is a surface-exposed and immunoaccessible protein, and that it 40 is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 48

The following *C.pneumoniae* protein (PID 4455886) was expressed <SEQ ID 95; cp0010>:

1 MKSQFSWLVL SSTLACFTSC STVFAATAEN IGPDSFDGS TNTGTYTPKN  
 51 TTTGIDYTLT GDITLQLNLD SAALTKGCF DTTELSFAG KGYSLFLNI  
 101 KSSAEGAALS VTTDKNLSLT GFSSLTFLAA PSSVITTPSG KGAVKCGDL  
 151 TFDNNNGTILF KQDYCEENG AISTKNLSLK NSTGSISFEG NKSSATGKKG  
 201 GAICATGTVD ITNNNTAPTLF SNNIAEAAGG AINSTGNCTI TGNTSLVFSE  
 251 NSVTATAGNG GALSGDADVT ISGNQSVTF GSQAVANGGA IYAKKLTLAS  
 301 GGGGVSPFLT IIVQGTTAGN GGAISILAAG ECLSLAEAGD ITFNGNAIVA  
 351 TPPQTTRKNS IDIGSTAKIT NLRAISGHSI FFYDPITANT AADSTDTLNL  
 401 NKADAGNSTD YSGSIVFSGE KLSDEDEAKVA DNLTSTLKQP VTLTAGNLVL  
 451 KRGVTLDTKG FTQTAGSSVI MDAGTTLKAS TEEVTLTGLS IPVDSLGEVK  
 501 KVIAASAAS KNVALSGPIL LLDNQGNAYE NHDLGKTQDF SFVQLSALGT

551 ATTTDVPAVP TVATPTHYGY QGTWGMTWVD DTASTPKTKT ATLAWTNTGY  
 601 LPNPERQGPL VPNSLWGGSFS DIQAIQGVIE RSALTLCSDR GFWAAGVANF  
 651 LDKDKKGEKR KYRHKSGGYA IGGAAQTCSE NLISFAFCQL FGSDKDFLVA  
 701 KNHTDTYAGA FYIQHITECS GFIGCLLDKL PGSWSHKPLV LEGQLAYSHV  
 751 SNDLKTKYTA YPEVKGSWGN NAFNMMLGAS SHSYPEYLHC FDTYAPYIKL  
 801 NLTYIRQDSF SEKGTEGRSRF DDSNLFNLSL PIGVKFEKFS DCNDFSYDLT  
 851 LSYVPDLIRN DPKCTIALVI SGASWETYAN NLARQALQVR AGSHYAFSPM  
 901 FEVLGQFVFE VRGSSRIYNV DLGGKFQF\*

A predicted signal peptide is highlighted.

10 The cp0010 nucleotide sequence <SEQ ID 96> is:

|    |      |                                                           |
|----|------|-----------------------------------------------------------|
|    | 1    | ATGAAATCGC AATTTCCTG GTTAGTGCTC TCTTCGACAT TGGCATGTTT     |
|    | 51   | TACTAGTTGT TCCACTGTTT TTGCTGCAAC TGCTGAAAAT ATAGGCCCT     |
| 15 | 101  | CTGATAGCTT TGACGGAAGT ACTAACACAG GCACCTATAC TCCTAAAAAT    |
|    | 151  | ACGACTACTG GAATAGACTA TACTCTGACA GGAGATATAA CTCTGCAAAA    |
|    | 201  | CCTTGGGGAT TCGGCAGCTT TAACGAAGGG TTGTTTTCT GACACTACGG     |
|    | 251  | AATCTTTAAG CTTTGGCCGGT AAGGGGTACT CACTTCTT TTTAAATATT     |
|    | 301  | AAGTCTAGTG CTGAAGGCCG AGCACTTTCT GTTACAACCTG ATAAAAATCT   |
|    | 351  | GTCGCTAACAA GGATTTTCGA GTCTTACTTT CTTAGCGGGC CCATCATCGG   |
| 20 | 401  | TAATCACAAAC CCCCTCAGGA AAAGGTGCAG TTAAATGTGG AGGGGATCTT   |
|    | 451  | ACATTTGATA ACAATGGAAC TATTTTATTAA AAACAAGATT ACTGTGAGGA   |
|    | 501  | AAATGGCGGA GCCATTCTA CCAAGAATCT TTCTTGAAG AACAGCACGG      |
|    | 551  | GATCGATTTTC TTTTGAAGGG AATAAATCGA GCGCAACAGG GAAAAAAAGGT  |
|    | 601  | GGGGCTATTT GTGCTACTGG TACTGTAGAT ATTACAAATA ATACGGCTCC    |
| 25 | 651  | TACCCCTCTTC TCGAACAAATA TTGCTGAAGC TGCAAGGTGGA GCTATAAATA |
|    | 701  | GCACAGGAAA CTGTACAATT ACAGGGAAATA CGTCTCTTGT ATTTCTGAA    |
|    | 751  | AATAGTGTGA CAGCGACCAGC AGGAAATGGA GGAGCTCTT CTGGAGATGC    |
|    | 801  | CGATGTTTACCA ATATCTGGGA ATCAGAGTGT AACTTTCTCA GGAAACCAAG  |
|    | 851  | CTGTAGCTAA TGGCGGGAGCC ATTATATGCTA AGAAGCTTAC ACTGGCTTCC  |
| 30 | 901  | GGGGGGGGGGG CGGTATCTCC TTTCTAAACA ATAaTAGTCC AAGGTACCC    |
|    | 951  | TGCAGGTAAT GGTGGAGCCA TTTCTATACT GGCAGCTGGA GAGTGTAGTC    |
|    | 1001 | TTTCAGCAGA AGCAGGGGAC ATTACCTTCA ATGGGAATGC CATTGTTGCA    |
|    | 1051 | ACTACACCAC AAACCTACAA AAGAAATTCT ATTGACATAG GATCTACTGC    |
|    | 1101 | AAAGATCACG AATTTACGTG CAATATCTGG GCATAGCATC TTTTCTACG     |
| 35 | 1151 | ATCCGATTAC TGCTAACACG GCTGCGGATT CTACAGATAC TTTAAATCTC    |
|    | 1201 | AATAAGGCTG ATGCAGGTA TAGTACAGAT TATAGTGGGT CGATTGTTTT     |
|    | 1251 | TTCCTGGTAA AAGCTCTCTG AAGATGAAGC AAAAGTTGCA GACAACCTCA    |
|    | 1301 | CTCTACGCT GAAGCAGCCT GTAACCTAA TGCAGGAAA TTTAGTACTT       |
|    | 1351 | AAACGTGGTG TCACTCTCGA TACGAAAGGC TTACTCAGA CCGCGGGTTC     |
| 40 | 1401 | CTCTGTTATT ATGGATGCGG GCACAACGTT AAAAGCAAGT ACAGAGGAGG    |
|    | 1451 | TCACTTTAAC AGGTCTTCC ATTCTCTGTAG ACTCTTTAGG CGAGGGTAAG    |
|    | 1501 | AAAGTTGTAA TTGCTGCTTC TGCAAGCAAGT AAAATGTAG CCCTTGTG      |
|    | 1551 | TCCGATTCTT CTTTGGATA ACCAAGGGAA TGCTTATGAA AATCACGACT     |
|    | 1601 | TAGGAAAAAAC TCAAGACTTT TCATTTGTGC AGCTCTCTGC TCTGGGTACT   |
| 45 | 1651 | GCAACAACTA CAGATGTTCC AGCGGTTCT ACAGTAGCAA CTCCTACGCA     |
|    | 1701 | CTATGGGTAT CAAGGTACTT GGGGAATGAC TTGGGTTGAT GATACCGCAA    |
|    | 1751 | GCACTCCAAA GACTAACACA GCGACATTAG CTTGGACCAA TACAGGCTAC    |
|    | 1801 | CTTCCGAATC CTGAGCGTCA AGGACCTTA GTTCCAATAA GCCTTGGGG      |
|    | 1851 | ATCTTTTCA GACATCCAAG CGATTCAAGG TGTCAATAGAG AGAAGTGCTT    |
| 50 | 1901 | TGACTCTTTG TTCAGATCGA GGCTTCTGGG CTGCGGGAGT CGCCAATTTC    |
|    | 1951 | TTAGATAAAAG ATAAGAAAGG GGAAAAACGC AAATACCGTC ATAAATCTGG   |
|    | 2001 | TGGATATGCT ATCGGAGGTG CAGCGCAAAC TTGTTCTGAA AACTTAATTA    |
|    | 2051 | GCTTTGCCTT TTGCCAACTC TTTGGTAGCG ATAAAGATTT CTTAGTCGCT    |
|    | 2101 | AAAAATCATA CTGATACCTA TGCAAGGAGCC TTCTATATCC AACACATTAC   |
| 55 | 2151 | AGAATGTAGT GGGTCATAG TTGTCCTCT AGATAAAACTT CCTGGCTCTT     |
|    | 2201 | GGAGTCATAA ACCCTCGTT TTAGAAGGGC AGCTCGCTTA TAGCCACGTC     |
|    | 2251 | AGTAATGATC TGAAGACAAA GTATACTGCG TATCCTGAGG TGAAAGGTT     |
|    | 2301 | TTGGGGGAAT AATGCTTTA ACATGATGTT GGGAGCTCT TCTCATTCTT      |
|    | 2351 | ATCCTGAATA CCTGCATTGT TTGATACCT ATGCTCCATA CATCAAAC       |
| 60 | 2401 | AATCTGACCT ATATAACCTCA GGACAGCTTC TCGGAGAAAG GTACACAGG    |
|    | 2451 | AAGATCTTTT GATGACAGCA ACCTCTCAA TTATCTTGT CCTATAGGGG      |
|    | 2501 | TGAAGTTTGA GAAGTTCTCT GATTGTAATG ACTTTCTTA TGATCTGACT     |
|    | 2551 | TTATCCTATG TTCTGTATCT TATCCGCAAT GATCCCCAAT GCACTACAGC    |
|    | 2601 | ACTTGTAAATC AGCGGAGCCT CTTGGGAAAC TTATGCCAAAT AACTTAGCAC  |
|    | 2651 | GACAGGCCCTT GCAAGTGCCT GCAGGCAGTC ACTACGCCCTT CTCTCCTATG  |
| 65 | 2701 | TTTGAAGTGC TCGGCCAGTT TGTCTTTGAA GTTCGTGGAT CCTCACGGAT    |

2751 TTATAATGTA GATCTTGGGG GTAAGTTCCA ATTCTAG

The PSORT algorithm predicts an outer membrane location (0.922).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 48A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot

5 (Figure 48B) and for FACS analysis (Figure 48C). A his-tagged protein was also expressed.

The cp0010 protein was also identified in the 2D-PAGE experiment and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp0010 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 10 Example 49

The following *C.pneumoniae* protein (PID 4376296) was expressed <SEQ ID 97; cp6296>:

|     |                                                        |
|-----|--------------------------------------------------------|
| 1   | MEEVSEYLQQ VENQLESCSK RLTKMETFAL GVRLEAKEEI ESIILSDVVN |
| 51  | RFEVLCRDIE DMLSRVEEIE RMLRMAELPL LPIKEALTKA FVQHNSCKEK |
| 101 | LTKVEPYFKE SPAYLTSEER LQSLNQTLQR AYKESQKVSG LESEVRACRE |
| 151 | QLKDQVRQFE TQGVSLIKEE ILFVTSTFRT KFSYHSFRLH VPCMRLYEEY |
| 201 | YDDIDLERTR ARWMAMSERY RDAFQAFQEM LKEGLVEEAQ ALRETEYWLY |
| 251 | REERKSKKH*                                             |

The cp6296 nucleotide sequence <SEQ ID 98> is:

|     |                                                          |
|-----|----------------------------------------------------------|
| 1   | ATGGAGGAGG TGTCTGAGTA TCTTCAGCAA GTAGAAAATC AGTTGGAATC   |
| 51  | CTGTTCCAAG CGATTAACCA AGATGGAAAC TTTTGCCCTTA GGTGTGAGGT  |
| 101 | TGGAAGCTAA AGAAGAGATA GAGTCTATCA TACTTTCTGA TGTAGTGAAC   |
| 151 | CGTTTGAGG TTTTATGTAG AGATATTGAA GATATGCTAT CTCGAGTCGA    |
| 201 | GGAGATAGAG CGGATGTTAC GTATGGCGGA GCTTCCTCTA CTTCCCTATAA  |
| 251 | AAGAACGCGCT TACCAAGGCT TTTGTACAAC ATAACAGCTG TAAAGAGAAG  |
| 301 | TTAACCAAGG TAGAGCCTTA CTTTAAAGAG AGCCCTGCAT ATCTAACTAG   |
| 351 | TGAAGAGCGA TTGCAGAGTT TGAATCAGAC TTTACAACGT GCGTACAAAG   |
| 401 | AGTCCCCAAA GGTTTCAGGT TTAGAATCGG AAGTGGAGAGC CTGTCGAGAG  |
| 451 | CAGCTTAAAG ATCAAGTAAG ACAGTTTGAA ACTCAAGGGAG TGAGCTTGAT  |
| 501 | AAAAGAAGAG ATTCTCTTTG TGACTAGTAC CTTTAGAACT AAATTAGCT    |
| 551 | ATCATTCCATT TCGATTACAT GTTCCCTTGCA TGAGGTTGTA TGAGGAGTAT |
| 601 | TATGATGACA TTGATCTAGA GAGAACTCGA GCTCGATGGA TGGCGATGTC   |
| 651 | TGAGAGGTAT AGAGATGCTT TTCAGGCATT CCAGGAGATG TTGAAGGAAG   |
| 701 | GCTTAGTGA AGAAGCTCAG GCTCTTAGAG AAACCGAGTA CTGGTTATAT    |
| 751 | CGAGAGGAGA GAAAGAGTAA AAAGAAACAT TGA                     |

35 The PSORT algorithm predicts a cytoplasmic location (0.523).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 49A.

The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 49B) and for FACS analysis (Figure 49C). A his-tagged protein was also expressed.

These experiments show that cp6296 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 40 Example 50

The following *C.pneumoniae* protein (PID 4376664) was expressed <SEQ ID 99; cp6664>:

|     |                                                         |
|-----|---------------------------------------------------------|
| 1   | MVLFHQAQASG RNRVKADAIV LPFWHKDAK NAASFEAEFE PSYLPALENF  |
| 51  | QGKTGEIELL YSSPKAKEKR IVLLGLGKNE ELTSDVVVFQT YATLTRVLRK |
| 101 | AKCSTVNIIL PTISELRLSA EEFLVGLSSG ILSLNYYDPR YNKVDRNLET  |

151 PLSKVTVIGI VPKMADAIFR KEAAIFEGVY LTRDLVNRNA DEITPKKLAE  
 201 VALNLGKEFP SIDTKVLGKD AIAKEKMGLL LAVSKGSCVD PHFIVVRYQG  
 251 RPKSKDHTVL IGKGVTFDSC GLDLKPGKSM LTMKEDMAGG ATVLGILSAL  
 301 AVLELPINVT GIIPATENAI DGASYKMGDV YVGMSGSLVE ICSTDAEGR  
 351 ILADAITYAL KYCKPTRIID FATLTGAMVV SLGEEVAGFF SNNDVLAEDL  
 401 LEASAETSEP LWRLPLVKKY DKTLMHSIAD MKNLGSNRAG AITAALFLQR  
 451 FLEESSVAWA HLDIAGTAYH EKEEDRYPKY ASGFGVRSIL YYLENSLSK\*

The cp6664 nucleotide sequence <SEQ ID 100> is:

1 GTGGTTTTAT TTCATGCTCA AGCCTCTGGG CGTAATCGTG TTAAGGCAGA  
 10 51 TGCTATAGTC CTGCCCTTT GGCATTAA GGATGCAAAA AATGCAGCTT  
 101 CTTTGAAAGC CGAGTTTGA CCCTCGTATC TCCCCGCTT AGAAAACCTT  
 15 151 CAAGGAAAAA CCGGGGAGAT TGAACTCCTT TATAGTAGTC CTAAAGCTAA  
 201 GGAAAAAACGC ATTGTCTCT TAGGCTTAGG GAAAAATGAA GAGCTCACCT  
 251 CTGATGTGT TTTCCAAACC TATGCGACAC TAATCGTGT CTTACGTAAA  
 301 GCAAAGTGTG CCACAGTCAA TATCATCTTA CCTACAATT CTGAATTGCG  
 351 GCTTCTGCG GAAGAATTCT TAGTGGGGTT GTCCTCAGGA ATTTTGTAT  
 401 TAAACTATGA CTACCCACGT TATAATAAGG TAGATCGTAA TCTTGAAACT  
 451 CCTCTTCTA AAGTCACCGT TATCGGTATC GTTCCCAAA TGGCGGATGC  
 501 TATCTTCTAGG AAAGAACAG CCATTTCGA AGGCGTATAT CTCACTCGAG  
 551 ATCTTGTGAA CAGGAATGCT GATGAAATTAA CCCCTAAGAA ATTGGCAGAG  
 601 GTTGCTCTGA ATCTGGGAAA AGAGTTCCCT AGTATTGATA CTAAGGTCTT  
 651 GGGAAAAGAT GCCATCGCCA AAGAGAAAAT GGGACTCCCA TTGGCTGT  
 701 CCAAGGGTTC TTGTGTTGGAT CCACACTTTA TCCTTGTCCG TTATCAAGGA  
 751 CGTCCTAAGT CTAAAGATCA CACCGTCTTG ATAGGAAAG GGGTCACTTT  
 801 TGACTCTGGA GTTTAGACC TCAAGCCTGG AAAATCCATG CTTACTATGA  
 851 AAGAAGACAT GGCAGGTGGG GCTACAGTC TCAGGGATTCT CTCGGCGTTA  
 901 GCAGTTTAG AGCTTCCTAT AAATGTCACG GGGATCATTC CTGCTACAGA  
 951 GAATGCTATC GATGGCCCT CCTATAAAAT GGGAGATGTC TATGTAGGAA  
 1001 TGTCGGGGCT TTCTGTTGAG ATTGTAGTA CCGATGCTGA GGGACGTCTT  
 1051 ATCCTCGCTG ATGCGATTAC ATATGCTTA AAATATTGTA AACCGACACG  
 1101 TATTATAGAT TTTGCAACTC TAACAGGAGC TATGGTAGTC TCTCTAGGAG  
 1151 AAGAGGTTGC AGGTTCTTT TCCAATAACG ATGTTTTAGC TGAAGATCTT  
 1201 TTAGAGGCGT CAGCCGAAAC CTCCGAGCCG TTATGGAGAC TTCCCTCTAGT  
 1251 TAAGAAGTAT GATAAAACAT TGCAATTCTGA TATTGCTGAT ATGAAAATC  
 1301 TAGGCAGTAA CCGTGCAGGG GCTATTACAG CAGCATTATT CTTGCAGAGA  
 1351 TTTTTGGAAG AATCTTCGGT AGCTTGGGCA CATCTTGATA TTGCAGGTAC  
 1401 TGCAATATCAT GAAAAAGAAG AAGACCCTTA TCCAAAATAT GCTTCAGGTT  
 1451 TTGGTGTTCG TTCTATTCTT TATTACTTAG AAAATAGTCT TTCTAAAGTAG

The PSORT algorithm predicts an inner membrane location (0.268).

40 The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 50A), as a his-tagged protein, and as a GST/His fusion. The proteins were used to immunise mice, whose sera were used in Western blot Western blot (50B) and FACS (50C) analyses.

The cp6664 protein was also identified in the 2D-PAGE experiment (Cpn0385) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

45 These experiments show that cp6664 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 51

The following *C.pneumoniae* protein (PID 4376696) was expressed <SEQ ID 101; cp6696>:

50 1 MTLIFVIIIV WCNAFLIKLC VIMGLQSRLQ HCIEVSQNSN FDSQVKQFIY  
 51 ACQDKTLRQS VLKIFRYHPL LKIHDIAARAV YLLMALEEDE DLGLSFLNVQ  
 101 QYPSGAVELF SCGGFPWKGL PYPAEHAEFG LLLLQIAEFY EESQAYVSKM  
 151 SHFQQALFDH QGSVFPSSLWS QENSRLLKEK TTLSQSFLFQ LGMQIHPEYS  
 201 LEDPALGFWM QRTRSSSAFV AASGCQSSLG AYSSGDVGVI AYGPCSGDIS  
 251 DCYYFGCCGI AKEFVCQKSH QTTEISFLTS TGKPHPRNTG FSYLRDSYVH  
 301 LPIRCKITIS DKQYRVHAAL AEATSAMTF5 IFCKGKNCQV VDGPRLRSCS

-91-

351 LDSYKGPGND IMILGENDAI NIVSASPyme IFALQGKEKF WNADFLINIP  
 401 YKEEGVMLIF EKKVTSEKGR FFTKMN\*

A predicted signal peptide is highlighted.

The cp6696 nucleotide sequence <SEQ ID 102> is:

```

5      1 TTGACTCTAA TTTTGTTAT TATTATCGTT TGGTGCATG CTTTCTGAT
      51 CAAATTGTGC GTGATAATGG GGCTGCAATC CAGGTTACAA CATTGTATAG
     101 AAGTGTCCA GAATTCGAAC TTTGATTAC AAGTAAAACA GTTTATCTAT
     151 GCGTGCAGA ATAAGACATT AAGGCAGTCT GTACTCAAGA TTTTCCGCTA
    201 CCATCCTTTA CTAAAAATTC ATGATATTGC TCAGGCCGTC TATCTTTGA
    251 TGGCCTTAGA AGAAGGGAG GATTAGGCT TAAGCTTTT AAATGTACAG
    301 CAGTACCCCT CAGGTGCTGT AGAACATGTT TCTTGTGGGG GATTTCCCTG
    351 GAAAGGATTA CCTTATCCTG CAGAACATGC GGAATTGGC CTACTCCGT
    401 TACAGATCGC AGAGTTTAT AGAGAGAGTC AGGCATACGT CTCTAAAATG
    451 AGTCATTTTC AACAGGCCT CTTTGATCAC CAAGGGAGCG TCTTCCCTC
   15 501 TCTCTGGAGC CAGGAGAATC CTCGACTCC AAAAGAAAAG ACAACTCTTA
   551 GCCAATCGTT TCTCTTCAA TTAGGAATGC AAATTCAACC AGAATACAGT
   601 CTTGAGGATC CTGCACTAGG GTTCTGGATG CAAAGAACGC GTTCTTCATC
   651 CGCTTTGTGTA GCGCCTTCAG GATGCAAAG TAGCTTGGGA GCGTATTCC
   701 CAGGGGATGT CGGTGTTATC GCTTATGGAC CTTGCTCTGG AGACATTAGT
   751 GATTGTTATT ATTTTGGATG TTGTTGGAATC GCTAAAGAGT TCGTGTGCCA
   801 AAAATCTCAC CAAACTACAG AGATTTCTTT TCTCACCTCT ACAGGAAAGC
   851 CTCATCCCAG AAATACGGGA TTTTCTTACCC TTGAGATTC CTATGTACAT
   901 CTGCCGATCC GCTGTAAGAT CACTATTCC GACAAGCAAT ATCGCGTGCA
   951 CGCTGCGTTG GCTGAGGGCA CCTCTGCCAT GACGTTTCT ATTTCTGTA
  25 1001 AGGGGAAGAA TTGTCAGGTT GTTGACGGCC CTCGCTTGGC CTCCTGTTCC
  1051 CTAGATTCTT ATAAAGGTCC CGGAAACGAC ATTATGATTC TTGGGGAAAAA
  1101 TGACGCAATC AACATTGTT CTGCAAGTCC CTATATGGAA ATTTTGCTT
  1151 TGCAAGGCAA AGAAAAATTG TGGAAATGCAG ACTTTTGAT TAATATTCC
  1201 TACAAAGAAG AGGGCGTCAT GTTAATTGTTT GAAAAAAAAG TGACCTCTGA
  30 1251 GAAAGGAAGA TTCTTTACGA AGATGAATTA A

```

The PSORT algorithm predicts an inner membrane location (0.463).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 51A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 51B) and for FACS analysis (Figure 51C). A his-tagged protein was also expressed.

35 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6696 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 52

40 The following *C.pneumoniae* protein (PID 4376790) was expressed <SEQ ID 103; cp6790>:

```

1 MSEHKKSSKI IGIDLGTNS CVSVMEGGQA KVITSSEGTR TPPSIVAFKG
51 NEKLVGIPAK RQAVTNPEKT LGSTKRFIGR KYSEVASEIQ TVPYTVTSGS
101 KGDAVFEVDG KQYTPEEIGA QILMKMKETA EAYLGETVTE AVITVPAYFN
151 DSQRASTKDA GRIAGLDVKR IIPEPTAAAL AYGIDKVGDK KIAVFDLGGG
201 TFDISILEIG DGVFEVLSTN GDTLLGGDDF DEVIIKWMIE EFKKQEGIDL
251 SKDNMALQRL KDAAEKAKIE LSGVSSTEIN QPFITMDAQG PKHLALTLTR
301 AQFEKLAASL IERTKSPCIK ALSDAKLSAK DIDDVLLVGG MSRMPAVQET
351 VKELFGKEPN KGVPDDEVVA IGAAIQGGVL GGEVKDVLLL DVIPLSLGIE
401 TLGGVMTTLV ERNTTIPTQK KQIFSTAADN QPAVTIVVLO GERPMKDKN
451 EIGRFDLTDI PPAPRGHPQI EVSFIDANG IFHVSAKDVA SGKEQKIRIE
501 ASSGLQEDEI QRMVRDAEIN KEEDKKRREA SDAKNEADSM IFRAEKAIKD
551 YKEQIPELTV KEIEERIENV RNALKDDAPI EKIKEVTELD SKHMQKIGES
601 MQSQSASAAA SSAANAKGGP NINTEDLKKH SFSTKPPSNN GSSEDHIEEA

```

651 DVEIIDNDDK\*

The cp6790 nucleotide sequence <SEQ ID 104> is:

```

5      1 ATGAGTGAAC ACAAAAATC AAGCAAATT ATAGGTATAG ACTTAGGCAC
      51 AACAAACTCC TCGGTATCTG TTATGGAAGG AGGACAAGCT AAAGTAATTA
     101 CATCATCCGA AGGAACAAGA ACCACGCCAT CGATCGTTGC CTTCAAAGGT
     151 AATGAGAAAT TAGTGGGAT TCCAGCAAA CGTCAAGCAG TGACAAATCC
    201 AGAAAAAAACT CTCGGCTCTA CAAAACGCTT TATTGGCCGT AAGTACTCTG
    251 AAGTAGCTTC GGAAATCCAA ACCGTTCCCTT ATACAGTCAC CTCCGGATCT
    301 AAAGGTGATG CCGTTTCGA AGTTGATGGC AAACAATACA CTCCAGAAGA
    351 AATTGGCGCA CAAATCTTAA TGAAAATGAA AGAGACAGCA GAAGCTTATC
    401 TAGGCGAAAC TGTCACAGAA GCAGTGATCA CCGTCCCCGC ATACTTCAAT
    451 GATTCTCAAC GAGCATCCAC AAAAGATGCT GGACGCATTG CAGGTCTAGA
    501 TGTAAAACGT ATCATTCCAG AACCTACCAGC AGCAGCTCTT GCCTACGGAA
    551 TCGATAAAAGT CGGTGATAAAA AAAATCGCTG TCTTCGACCT TGGTGGAGGA
    601 ACTTTTGATA TCTCCATCCT AGAAATCGGT GATGGCGTCT TCGAAGTTCT
    651 ATCTACAAAT GGAGATACTC TCCTCGGTGG AGACGACTTT GATGAAGTCA
    701 TTATCAAATG GATGATCGAA GAATTCAAAA ACAAGAAAGG CATTGATCTT
    751 AGCAAAGATA ATATGGCCTT ACAAAAGACTT AAAGATGCTG CTGAGAAAGC
    801 AAAAATAGAA CTTTCAGGAG TCTCTTCCAC AGAAATCAAT CAGCCATTCA
    851 TCACAATGGG TGCAACAAGG CCTAAACACC TTGCATTGAC ACTCACACGT
    901 GCGCAATTCC AGAAACTCGC AGCCTCTCTA ATCGAAAGAA CAAAATCTCC
    951 ATGCATCAAAGA GCACTCAGTG ACGCAAAGT TTCCGCTAAG GATATCGATG
   1001 ATGTTCTCTT AGTTGGAGGT ATGTCAGAA TGCCCGCAGT GCAAGAAACT
   1051 GTAAAAGAAC TCTTCGGCAA AGAGCCTAAT AAAGGAGTC ACCCCGACGA
   1101 AGTTGTTGCT ATTGGAGCCG CAATTCAAGG TGGTGTCTT GCGGAGAAAG
   1151 TTAAGGATGT TCTACTCTCA GACGTATCTC CCCTATCTCT GGTATCGAA
   1201 ACTCTAGGAG GCGTCATGAC GACTCTGGTA GAGAGAAATA CTACAATCCC
   1251 TACACAGAAA AAACAAATCT TCTCCACAGC TGCTGATAAC CAGCCTGCAG
   1301 TTACCATCGT AGTTCTCCAA GGAGAGCGTC CCATGGCCAA AGATAACAAG
   1351 GAAATCGGAA GATTCGATCT TACAGATATC CCTCCGGCTC CTCGAGGCCA
   1401 TCCTCAAATC GAAGTCTCCT TCGATATCGA TGCAAAACGGA ATTTCATG
   1451 TCTCAGCTAA AGATGTTGCC AGCGGTAAAG AACAGAAAAT TCGTATCGAA
   1501 GCAAGCTCAG GACTTCAGA AGATGAAATC CAAAGAATGG TTCGAGATGC
   1551 CGAAATTAAAT AAGGAAGAAG ATAAAAAAAGC TCGTGAAGCT TCAGATGCTA
   1601 AAAATGAAGC CGATAGCATG ATCTTCAGAG CCGAAAAAGC TAITAAAGAT
   1651 TATAAGGAGC AAATTCTGA AACTTTAGTT AAAGAAATCG AAGAGCGAAT
   1701 CGAAAACGTG CGCAACGCAC TCAAAGATGA CGCTCCTATT GAAAAAAATTA
   1751 AAGAGGTTAC TGAAGACCTA AGCAAGCATA TGCAAAAAAT TGGAGAGTCT
   1801 ATGCAATCGC AGTCTGCATC AGCAGCAGCA TCATCGGCAG CCAATGCTAA
   1851 AGGTGGACCT AACATCAATA CAGAAGATTT GAAAAAAACAT AGTTTCAGTA
   1901 CGAAGCCTCC TTCAAATAAC GGTTCTTCAG AAGACCATAT CGAAGAAGCT
   1951 GATGTAGAAA TTATTGATAA CGACGATAAG TAA

```

The PSORT algorithm predicts an inner membrane location (0.151).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 52A) and a his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 52B) and FACS (Figure 52C) analyses.

The cp6790 protein was also identified in the 2D-PAGE experiment (Cpn0503).

These experiments show that cp6790 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 50 Example 53

The following *C.pneumoniae* protein (PID 4376878) was expressed <SEQ ID 105; cp6878>:

```

55      1 MNVPDSKNLH PPAYELLEIK ARITQSYKEA SAILTAIPDG ILLSETGHF
      51 LICNSQAREI LGIDENLEIL NRSFTDVLPD TCLGFSIQEA LESLKVPKTL
     101 RLSLCESKE KEVELFIRKN EISGYLFIQI RDRSDYKOLE NAIERYKNIA
     151 ELGKMTATLA HEIRNPLSGI VGFASILKKE ISSPRHQRLM SSIISGTRSL
     201 NNLVSSMLEY TKSQPLNLKI INLQDFFSSL IPILLSVSFPN CKFVREGAQP

```

251 LFRSIDPDRM NSVWNLVKN AVETGNSPIT LTLHTSGDIS VTNPGTIPSE  
 301 IMDKLFTPFF TTKREGNGLG LAEAQKIIRL HGGDIQLKTS DSAVSFFIII  
 351 PELLAALPK E RAAS\*

The cp6878 nucleotide sequence <SEQ ID 106> is:

5       1 ATGAACGTCC CTGATTCCAA GAACCTCCAT CCTCCCTGCAT ACGAAACTCCT  
      51 AGAGATCAAG GCTCCCATCA CACAATCTTA TAAAGAAGCG AGTGCTATAAC  
 101 TGACAGCGAT TCCCTGATGGT ATCCTATTAC TTTCTGAAAC AGGACACTTT  
 151 CTTATCTGCA ATTACAAAGC ACGTGAAATT CTAGGAATTG ATGAAAATCT  
 201 AGAAAATTCTT AATAGATCCT TTACCGATGT TCTCCCGAT ACGTGTCTTG  
 251 GATTTTCAT TCAAGAGGCT CTTGAATCTC TAAAAGTCCC TAAAAGTCTT  
 301 AGACTCTCTC TCTGTAAAAGA ATCTAAAGAA AAAGAAGTGG AACTCTTCAT  
 351 CCGTAAAAAC GAGATCAGTG GATACCTGTT TATCCAATC CGCGATCGGT  
 401 CCGACTATAA ACAACTAGAA AACGCTATAG AAAGATATAA AAATATCGCA  
 451 GAACTTGGGA AAATGACGGC TACCCTAGCT CACGAAATCC GCAATCCGCT  
 501 AAGTGGAAATC GTTGGATTTG CCTCTATCCT AAAGAAAGAG ATTTCCCTCTC  
 551 CTCGCCACCA ACGAATGCTC TCCTCAATCA TCTCCGGCAC AAGGTCTCTA  
 601 AATAACCTTG TCTCTTCTAT GTTGAATAT ACAAAATCAC AACCGTTGAA  
 651 CCTAAAGATT ATAAATTTCAG AAGACTTCTT CTCTCTCTT ATCCCTCTGC  
 701 TCTCCGTCTC TTTCCCGAAT TGCAAGTTG TAAGAGAGGG CGCACAAACCT  
 751 CTATTCAAGAT CTATAGATCC TGATCGGATG AACAGTGTG TTTGGAACCT  
 801 AGTAAAAAT GCTGTAGAAA CAGGGAACTC TCCGATCACT CTGACCCCTGC  
 851 ATACATCGGG AGACATCTCG GTAACGAACC CGGGAAACGAT TCCTTCCGAG  
 901 ATCATGGACA AGCTCTTCAC TCCATTCTC ACAACAAAGA GAGAGGGAAA  
 951 TGGTTTGGGA CTTGCTGAAG CTCAAAAT TATAAGACTC CATGGAGGAG  
 20     1001 ATATCCAATT AAAAACAAAGC GACTCCGCG TTAGCTTCTT CATAATCATC  
      1051 CCCGAACCTTC TAGCGGCCCT ACCCAAAGAA AGAGCCGCTA G

The PSORT algorithm predicts an inner membrane location (0.204).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 53A) and as a GST-fusion product. The recombinant GST-fusion protein was used to immunise mice, whose sera were 30 used in a Western blot (Figure 53B) and for FACS analysis.

These experiments show that cp6878 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 54

The following *C.pneumoniae* protein (PID 4377224) was expressed <SEQ ID 107; cp7224>:

35      1 MMKKIRKVAL AVGGSGGHIV PALSVKEAFS REGIDVLLLG KGLKNHPSLQ  
      51 QGISYREIPS GLPTVLNPPIK IMSRTLSLCS GYLKARKELK IFDPDLVIGF  
 101 GSYHSLPVLL AGLSHKIPLF LHEQNLVPGK VNQLFSRYAR GIGVNFSPTV  
 151 KHFRCPAEEV FLPKRFSFLG SPMMKRCTNH TPTICVVGGS QGAQILNTCV  
 201 PQALVVKLVNK YPNMYVHHIV GPKSDVMKVQ HVYNRGEVLC CVKPFEEQLL  
 40      251 DVLLAADLVI SRAGATILEE ILWAKVPGIL IPYPGAYGHQ EVNAKFFVDV  
      301 LEGGTMILEK ELTEKLLVEK VTFALDSHNR EKQRNSLAAY SQQRSTKTFH  
      351 AFICECL\*

The cp7224 nucleotide sequence <SEQ ID 108> is:

45      1 ATGATGAAGA AAATTCGAAA AGTAGCCTTG GCTGTAGGAG GTTCAGGAGG  
      51 CCACATTGTC CCAGCTCTCT CGGTAAAGGA AGCTTTTTCT CGTGAAGGAA  
 101 TAGACGTATT ACTACTAGGG AAAGGTCTCA AGAACCATCC TTCTTTGCAA  
 151 CAGGGAATCA GCTATCGGA AATCCCTCA GGACTTCCTA CAGTCCTTAA  
 201 TCCCATAAAAG ATCATGAGCA GGACCCCTTC TCTATGTTCA GGATAACCTGA  
 251 AAGCAAGAAA GGAACCTAAA ATTTCGACCC CTGACCTGGT CATAGGATTT  
 50      301 GGGAGCTACC ACTCTCTTCC CGTGTGCTC GCAGGACTGT CCCATAAAAT  
      351 TCCCTTATTCT CTACACGAAC AAAATCTAGT TCCTGGAAA GTAATCAAT  
      401 TGTTTTCCCG CTATGTCGA GGTATTGGAG TGAATTCTC CCCCCCTTA  
      451 AAACACTTCC GCTGCCCG AGAAGAGGTC TTCCCTCCTA AACGAAGCTT  
      501 CTCTCTTAGGA AGCCCTATGA TGAAGCGATG TACAAATCAT ACCCCTACAA  
 55      551 TCTGTGTTGT TGGAGGTCT CAGGGAGCAC AGATATTAAG TACTTGTGTT  
      601 CCCCCAGCTC TTGTCAAGCT AGTCAATAAG TACCCAAATA TGTACGTCCA

651 TCATATTGTA GGACCTAAAA GTGATGTTAT GAAGGTGCAA CATGTTACA  
 701 ATCGTGGAGA GGTCCCTGTC TGTGTGAAGC CGTTCGAAGA GCAACTCCTA  
 751 GATGTCTTGC TTGCCGAGA TTTGGTCATC AGTAGGGCAG GAGCCACAAT  
 801 TTAGAAGAA ATTCTTTGGG CAAAAGTTCC CGGAATTATA ATTCCCTATC  
 851 CAGGAGCTTA TGGACATCAG GAAGTTAATG CTAAATTCTT TGTAGACGTC  
 901 TTAGAAGGGG GAACTATGAT CCTAGAAAAA GAATTAACAG AGAAGCTATT  
 951 AGTAGAAAAA GTAACGTTG CTTAGACTC CCATAACAGA GAAAACAAC  
 1001 GCAATTCCCT AGCGGCGTAT AGTCAGCAAA GGTCAACAAA AACATTCCAT  
 1051 GCATTCATTT GTGAATGCTT ATAG

- 10 The PSORT algorithm predicts an inner membrane location (0.164).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 54A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 54B) and for FACS analysis (Figure 54C). A his-tagged protein was also expressed.

- 15 This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7224 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 55

The following *C.pneumoniae* protein (PID 4377140) was expressed <SEQ ID 109; cp7140>:

20      1 **MVRSSISFCL FFLMTLICCT SCNSRSLIVH GLPGREANEI VVLLVSKGVVA**  
 51      51 **AQKLPQAAAAA** TAGAATEQMW DIAVPSAQIT EALAILNQAG LPRMKGTSSL  
 101     101 DLFAKQGLVP SELQEKIRYQ EGLSEQMAST IRKMDGVVDA SVQISFTTEN  
 151     151 EDNLPLTASV YIKHRGVLND PNSIMVSKIK RLIASAVPGL VPENVSVVSD  
 201     201 RAAYSGITIN GPWGLTEEID YVSVWGIILA KSSLTKFRLI FYVLILILFV  
 25      251 ISCGLLWVIW KTHTLIMTMG GTKGFFNPTP YTNALEAKK AEGAADKEK  
 301     301 KEDADSQGES KNAETSDKDS SDKDAPEGSN EIEGA\*

A predicted signal peptide is highlighted.

The cp7140 nucleotide sequence <SEQ ID 110> is:

30      1 ATGGTTCGTC GATCTATTTTC TTTTTGCTTG TTCTTTCTAA TGACATTGCT  
 51      51 GTGCTGTACA AGCTGTAAACA GCAGGTCTCT AATTGTGCAC GGTCTTCCTG  
 101     101 GCAGAGAACG GAATGAGATT GTGGTCTTT TGGTAAGCAA AGGGGTGGCT  
 151     151 GCACAAAAT TGCCTCAAGC TGCGAGGGCT ACAGCCGGAG CAGCTACTGA  
 201     201 GCAAATGTGG GATATCGCGG TTCCGTCAAGC ACAAAATCACA GAGGCCCTTG  
 251     251 CCATTCTAAA TCAAGCGGGT CTTCCACGTA TGAAAGGGAC AAGCCTGTTA  
 301     301 GATCTTTTTG CAAAACAAGG TCTTGTCTT TCCGAGCTTC AGGAAAAAAAT  
 35      351 CCGTTATCAA GAAGGCTTAT CAGAACAGAT GGCCTCTACG ATTAGAAAAA  
 401     401 TGGATGGCGT TGTGATGCC TCAGTACAGA TTTCCTTCAC TACAGAAAAT  
 451     451 GAAGATAATC TTCCCTTAAC AGCCTCTGTG TATATTAAGC ATCGAGGGT  
 501     501 TTTGGACAAT CCGAACAGCA TTATGGTTTC CAAAATTAAG CGCCTTATTG  
 551     551 CAAGTGTGT TCCAGGACTT GTGCCAGAGA ACGTCTCTGT AGTGAGCGAT  
 601     601 CGCGCAGCTT ATAGTGATAT TACAATTAAT GGTCTTGGG GATTAACAGA  
 651     651 AGAAATCGAT TATGTTCTG TTTGGGGTAT TATTCTGCG AAGTCTTCGC  
 701     701 TCACCAAATT CCGTCTCATT TTTATGTCT TGATTCTCAT TTTATTTGTT  
 751     751 ATTCTTGTG GTCTCCTTTG GGTCAATTGG AAAACTCATA CTCTCATTAT  
 801     801 GACTATGGGA CGTACAAAAG GGTCTTCAA CCCTACACCA TATACAAAGA  
 851     851 ATGCCCTTGGGA AGCCAAGAAA GCCGAGGGAG CAGCTGCTGA CAAAGAGAAA  
 901     901 AAAGAAGATG CAGATTCAAA GGGGGAAAGC AAAATGCCG AAACCAGTGA  
 951     951 TAAAGACTCT AGTGATAAAAG ATGCTCCAGA AGGAAGCAAT GAAATTGAGG  
 1001   1001 GTGCTTAG

- 50 The PSORT algorithm predicts an inner membrane location (0.650).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 55A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 55B) and for FACS analysis (Figure 55C). A his-tagged protein was also expressed.

These experiments show that cp7140 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 56

The following *C.pneumoniae* protein (PID 4377306) was expressed <SEQ ID 111; cp7306>:

|    |                                                                 |
|----|-----------------------------------------------------------------|
| 10 | 1 <b>MITKQLRSWL AVLVGSSLLA</b> LPLSGQAVGK KESRVSELPQ DVLLKEISGG |
|    | 51    FSKVATKATEP AVVYIESFPK SQAVENTPSPG RRGPYENPFD YFNDEFFNRF  |
|    | 101    FGLPSQREKP QSKEAVRGTG FLVSPDGYIV TNNHHVEDTG KIHVTLHDGQ   |
|    | 151    KYPATVIGLDPKTDLAVIKI KSQNLPYLSF GNSDHLKVGD WAIAGNPG      |
|    | 201    LQATVTVGVI SAKGRNQLHI ADFEDFIQTD AAINPGNSGG PLLNIDGQVI   |
|    | 251    GVNTAIVSGS GGYIGIGFAI PSLMANRIID QLIRDGQVTR GFLGVTLQPI   |
| 15 | 301    DAEALAAKYKL EKVY GALVTD VVKGSPADKA GLKQEDVIIA YNGKEVDSL  |
|    | 351    MPRNAVSLMN PDTRIVLKVV REGKVIEIPV TVSQAPKEDG MSALQRVGIR   |
|    | 401    VQNLTPETAK KLGIAPETKG ILIISVEPGS VAASSGIAPG QLILAVNRQK   |
|    | 451    VSSIEDLNRT LKDSNNENIL LMVSQGDVIR FIALKPEE*               |

A predicted signal peptide is highlighted.

The cp7306 nucleotide sequence <SEQ ID 112> is:

|    |                                                                 |
|----|-----------------------------------------------------------------|
| 20 | 1    ATGATAACTA AGCAATTGCG TTCGGGCTA GCTGTACTTG TTGGTTCAAG      |
|    | 51    TCTGCTAGCT CTTCTTAT CAGGGCAAGC TGTCGGGAAA AAAGAACATCTC    |
|    | 101    GAGTTCCGA GCTGCCTCAA GACGTTCTTC TTAAAGAGAT CTCGGGAGGG    |
|    | 151    TTTCTAAGG TCGCTACCAA GGCAGACTCCC GCTGTTGTGT ACATAGAAAG   |
|    | 201    TTTCCCAAAG AGCCAGGCTG TAACACATCC TTCTCCTGGA CGCCGTGGC    |
| 25 | 251    CTTATGAAAAA TCCTTTTGAT TATTTAATG ATGAGTTTT CAATCGTTT     |
|    | 301    TTTGGTCTAC CTTCACAGAG GGAAAAACCT CAAAGTAAG AGGCGGTTCG    |
|    | 351    AGGAACAGGT TTCCCTAGTAT CTCCAGATGG CTATATTGTG ACTAATAACC  |
|    | 401    ATGTTGTCGA AGATACAGGT AAGATTCAAG TAACTCTICA TGATGGCAA    |
| 30 | 451    AAGTACCCAG CAACTGTAAT CGGACTCGAT CCTAAAACAG ACCTTGCAGT   |
|    | 501    CATTAAAATT AAATCCCCAA ACCTCCCGTA TCTTTCTTTT GGAAACTCCG   |
|    | 551    ACCACTTAAA AGTCGGAGAT TGGCAATTG CAATTGGAAA TCCCTCGGT     |
|    | 601    CTTCAAGCTA CGGTACCGT AGGTGTCATC AGTGTCAAAG GAAGAAATCA    |
|    | 651    ACTCCACATT GCAGATTTG AAGATTTAT TCAGACAGAT GCTGGATTA      |
|    | 701    ATCCAGGCAA CTCTGGAGGC CCTCTTCTAA ATATGATGG ACAGGTCATC    |
| 35 | 751    GGTGTTAATA CTGCCATTGT CAGTGGTAGT GGTGGCTATA TTGGAATCGG   |
|    | 801    GTTTCGATT CCTAGCCTTA TGGCAAATAG AATCATAGAT CAGCTGATTC    |
|    | 851    GTGATGGTCA AGTTACCGA GGATTCTTAG GAGTGTACTT ACAACCTATA    |
|    | 901    GATGCGGAAC TCGCTGTTG CTACAAACTC GAAAAGTTT ATGGCGCTTT     |
|    | 951    AGTCACAGAT GTTGTAAAG GATCTCCAGC AGATAAAAGCA GGGCTAAAAC   |
| 40 | 1001    AAGAAGATGT GATCATTGCT TATAATGGGA AAGAAGTCGA TTCACTGAGT  |
|    | 1051    ATGTTCCGTA ATGCTGTTTC TTTAATGAAT CCAGATACAC GTATTGTTCT  |
|    | 1101    AAAGGTAGTT CGTGAAGGAA AGTTATCGA AATACCCGTG ACAGTTTCTC   |
|    | 1151    AAGCTCCAAA AGAAGATGGA ATGTCGGCTT TACAGCGTGT GGGATCCGT   |
|    | 1201    GTGCAAAACC TAACTCCTGA AACTGCTAAG AAGCTGGAA TTGCTCCAGA   |
| 45 | 1251    GACTAAAGGC ATTTTGATTA TAAGTGTGTA ACCAGGGTCT GTAGCAGCTT  |
|    | 1301    CTTCAAGGAAT TGCTCCTGGT CAGCTGATCC TTGCTGTGAA TAGACAAAAA |
|    | 1351    GTATCTTCGA TTGAAGATCT GAATAGAACG TTAAAGATT CTAACAATGA   |
|    | 1401    GAATATTCTT CTTATGGTTT CTCAAGGAGA TGTTATTCCG TTCATTGCC   |
|    | 1451    TGAAACCTGA AGAATAA                                      |

50    The PSORT algorithm predicts a periplasmic location (0.923).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 56A) and as a GST-fusion product (Figure 56B). The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 56C) and for FACS (Figure 56D) analyses.

The cp7306 protein was also identified in the 2D-PAGE experiment (Cpn0979) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp7306 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 5 Example 57

The following *C.pneumoniae* protein (PID 4377132) was expressed <SEQ ID 113; cp7132>:

```

1 MCNSTIAMKKQ KRGFVLMELL MSFTLIALLL GTLGFWYRKI YTVQKQKERI
51 YNFYIEESRA YKQLRTLFSM SLSSSYEEPG SLFSLIFDRG VYRDPKLAGA
101 VRASLHHDTK DQRLELRICN IKDQSYFETQ RLLSHVTHVV LSFQRNPDPDE
151 KLPETIALTI TREPKAYPPR TLTYQFAVGK*

```

A predicted signal peptide is highlighted.

The cp7132 nucleotide sequence <SEQ ID 114> is:

```

1 ATGTGTAACT CTATAGCTAT GAAAAAGCAA AAGCGTGGCT TTGTGCTTAT
51 GGAATTACTC ATGTCGTTCA CTCTAATTGC TTTGTTATTA GGGACTTTAG
101 GATTTTGGTA TCGGAAATT TATACTGTAC AAAAGCAAAA AGAACGTATT
151 TATAACTTTT ATATCGAAGA AAGCCGAGCC TACAAGCAGC TCAGAACCCCT
201 GTTTAGCATG TCCTTGTCCT CATCTTACGA GGAGCCTGGA TCATTATTTT
251 CTTTAATCTT TGATCGGGGT GTTATCGAG ATCCTAACGCT GGCAGGTGCG
301 GTACGAGCTT CTCTCCATCA TGACACCAAG GATCAGAGAT TGGAACCTCG
351 TATTTGTAAT ATTAAGGATC AGTCTTACTT TGAAACACAG CGACTGCTCT
401 CCCACGTGAC CCATGTTGTA CTTCCCTTCC AGAGAAATCC TGATCCTGAA
451 AAACCTCCCTG AAACAATTGC TTTAACTATA ACACGGGAAC CTAAGCATA
501 TCCTCCAAGG ACGTTAACAT ACCAATTGTC GGTTGGGAAA TAA

```

The PSORT algorithm predicts a periplasmic location (0.915).

25 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 57A) or as a GST-fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 57B) and FACS (Figure 57C) analyses.

These experiments show that cp7132 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 30 Example 58

The following *C.pneumoniae* protein (PID 4376733) was expressed <SEQ ID 115; cp6733>:

```

1 MKTSIPWVLV SSVLAFSCHL QSLANEELLS PDDSFNGNID SGTFTPCKTSA
51 TTYSLTGDFV FYEPGKGTPQ SDSCFKQTTD NLTFLGNGHS LTFGFIDAGT
101 HAGAAAASTTA NKNLTFSGFS LLSDFDSSPST TVITFGQGTLs SAGGVNLENI
151 RKLVVAGNFS TADGGAIKGA SFLLTGTSGD ALFSNNSSST KGGAIATTAG
201 ARIANNTGYV RFLSNIASTS GGAIDDEGTS ILSMNKFLYF EGNAAKTTGG
251 AICNTKASGS PELIISNNKT LIFASNVAET SGGAIAHAKL ALSSGGFTEF
301 LRNNVSSATP KGGAIISIDAS GELSLSAETG NITFVRNTLT TTGSTDTPKR
351 NAINIGNSNGK FTELRAAKNH TIFFYDPITS EGTSSDVLIK NNGSAGALNP
401 YQGTILFSGE TLTADELKVA DNLKSSFTQP VSLSGGKLLL QKGVTLESTS
451 FSQEAGSLLG MDSGTTLSTT AGSITITNLG INVDSLGLKQ PVSLTAKGAS
501 NKVIVSGKLN LIDIEGNIYE SHMFSHDQLF SLLKITVDAD VDTNVDISSL
551 IPVPAEDPNS EYGFQGQWNV NWTTDTATNT KEATATWTKT GFVPSPERKS
601 ALVCNTLWGV FTDIRSLQQL VEIGATGMEH KQGFVWSSMT NFLHKTGDEN
651 RKGRFRHTSGG YVIGGSAHTP KDDLFTFAFC HLFARDKDCF IAHNNSRTYG
701 GTLFFKHSHT LQPQNYRLG RAKFSESAIE KFPREIPLAL DVQVSFSHSD
751 NRMETHYTSI PESEGWSNE CIAGGIGLDL PFVLSNPHPPL FKTFIPQMVK
801 EMVYVSQNSF FESSSDGRGF SIGRLLNLSI PVGAKFVQGD IGDSYTYDLS

```

-97-

851 GFFVSDVYRN NPQSTATLVM SPDSWKIRGG NLSRQAFLLR GSNNYVYNSN  
 901 CELFGHYAME LRGSSRNYNV DVGTKLRF\*

A predicted signal peptide is highlighted.

The cp6733 nucleotide sequence <SEQ ID 116> is:

|    |      |                                                         |
|----|------|---------------------------------------------------------|
| 5  | 1    | ATGAAGACTT CGATTCCCTG GGTTTAGTT TCCTCCGTGT TAGCTTCCTC   |
|    | 51   | ATGTCACCTA CAGTCACTAG CTAAACGAGGA ACTTTTATCA CCTGATGATA |
|    | 101  | GCTTTAATGG AAATATCGAT TCAGGAACGT TTACTCCAAA AACTTCAGCC  |
|    | 151  | ACAACATATT CTCTAACAGG AGATGTCTTC TTTTACGAGC CTGGAAAAGG  |
| 10 | 201  | CACTCCCTTA TCTGACAGTT GTTTAACGCA AACACGGAC AATCTTACCT   |
|    | 251  | TCTTGGGAA CGGTCTAGC TTAACGTTTG GCTTTATAGA TGCTGGCACT    |
|    | 301  | CATGCAGGTG CTGCTGCATC TACAACAGCA ATAAGAACAT TTACCTTCCTC |
|    | 351  | AGGGTTTCC TTACTGAGTT TTGATTCCCTC TCCTAGCACA ACGGTTACTA  |
|    | 401  | CAGGTCAAGG AACGCTTTCC TCAGCAGGAG GCGTAAATT AGAAAATATT   |
|    | 451  | CGTAAACTTG TAGTTGCTGG GAATTTCCTT ACTGCAGATG GTGGAGCTAT  |
| 15 | 501  | CAAAGGAGCG TCTTTCCCTT TAACTGGCAC TTCTGGAGAT GCTCTTTTA   |
|    | 551  | GTAACAACTC TTCATCAACA AAGGGAGGAG CAATTGCTAC TACAGCAGGC  |
|    | 601  | GCTCGCATAG CAAATAACAC AGGTTATGTT AGATTCCAT CTAACATAGC   |
|    | 651  | GCTCTACGTCA GGAGGCCCTA TCGATGATGA AGGCACGTCG ATACTATCGA |
| 20 | 701  | ACAACAAATT TCTATATTTT GAAGGGAATG CAGCGAAAAC TACTGGCGGT  |
|    | 751  | GCGATCTGCA ACACCAAGGC GAGTGGATCT CCTGAACCTGA TAATCTCTAA |
|    | 801  | CAATAAGACT CTGATCTTGT CTTCAAAACGT AGCAGAAACA AGCGGTGGCG |
|    | 851  | CCATCCATGC TAAAAAGCTA GCCCTTCCT CTGGAGGCTT TACAGAGTTT   |
|    | 901  | CTACGAAATA ATGTCTCATC AGCAACTCCT AAGGGGGGTG CTATCAGCAT  |
|    | 951  | CGATGCCCTCA GGAGAGCTCA GTCTTCTGC AGAGACAGGA AACATTACCT  |
| 25 | 1001 | TTGTAAGAAA TACCCTTACA ACAACCGGAA GTACCGATAC TCCTAAACGT  |
|    | 1051 | AATGCGATCA ACATAGGAAG TAACGGGAAA TTACCGGAAT TACGGGCTGC  |
|    | 1101 | TAAAAATCAT ACAATTTCCT TCTATGATCC CATCACTTC TCAAAACCT    |
|    | 1151 | CATCAGACGT ATTGAAGATA AATAACGGCT CTGGGGAGGC TCTCAATCCA  |
| 30 | 1201 | TATCAAGGAA CGATTCTATT TTCTGGAGAA ACCCTAACAG CAGATGAAC   |
|    | 1251 | TAAAGTTGCT GACAATTAA AATCTTCATT CACGCAGCCA GTCTCCCTAT   |
|    | 1301 | CCGGAGGAAA GTTATTGCTA CAAAAGGGAG TCACTTTAGA GAGCACGAGC  |
|    | 1351 | TTCTCTCAAG AGGCCGGTTC TCTCCTCGGC ATGGATTCAAG GAACGACATT |
|    | 1401 | ATCAACTACA GCTGGGAGTA TTACAATCAC GAACCTAGGA ATCAATGTTG  |
|    | 1451 | ACTCTTCTAGG TCTTAAGCAG CCCGTCAGCC TAACAGCAA AGGTGCTCA   |
| 35 | 1501 | ATAAAAGTGA TCGTATCTGG GAAGCTCAAC CTGATTGATA TTGAAGGGAA  |
|    | 1551 | CATTATGAA AGTCATATGT TCAGCCATGA CCAGCTCTC TCTCTATTAA    |
|    | 1601 | AAATCACGGT TGATGCTGAT GTTGATACTA ACGTTGACAT CAGCAGCCTT  |
|    | 1651 | ATCCCTGTTCTGCTGAGGA TCCTAATTCA GAATACGGAT TCCAAGGACA    |
|    | 1701 | ATGGAATGTT AATTGGACTA CGGATACAGC TACAAATACA AAAGAGGCCA  |
| 40 | 1751 | CGGCAACTTG GACCAAAACA GGATTGTTCC CCAGCCCCGA AAGAAAATCT  |
|    | 1801 | GCGTTAGTAT GCAATACCCCT ATGGGGAGTC TTACTGACA TTGCTCTCT   |
|    | 1851 | GCAACAGCTT GTAGAGATCG GCGCAACTGG TATGGAACAC AAACAAGGTT  |
|    | 1901 | TCTGGGTTTC CTCCATGACG AACTTCCTGC ATAAGACTGG AGATGAAAAT  |
|    | 1951 | CGCAAAGGCT TCCGTACATC CTCTGGAGGC TACGTACATG GTGGAAAGTGC |
| 45 | 2001 | TCACACTCCT AAAGACGACC TATTACCTT TGCGTTCTGC CATCTCTTG    |
|    | 2051 | CTAGAGACAA AGATTGTTT ATCGCTACAA ACAACTCTAG AACCTACGGT   |
|    | 2101 | GGAACCTTAT TCTTCAGCA CTCTCATACC CTACAACCCC AAAACTATTT   |
|    | 2151 | GAGATTAGGA AGAGCAAAGT TTTCTGAATC AGCTATAGAA AAATCCCTA   |
| 50 | 2201 | GGGAAATTCC CCTAGCTTGC GATGTCCAAG TTGCTTCAG CCATTCAGAC   |
|    | 2251 | AACCGTATGG AAACGCACTA TACCTCATTG CCAGAACCG AAGGTTCTTG   |
|    | 2301 | GAGCAACGAG TGTATAGCTG GTGGTATCGG CCTAGACCTT CCTTTGTTTC  |
|    | 2351 | TTCCAACCC ACATCCTCTT TTCAAGACCT TCATTCCACA GATGAAAGTC   |
|    | 2401 | GAAATGGTTT ATGTATCACA AAATAGCTTC TTCGAAAGCT CTAGTGATGG  |
|    | 2451 | CCGTGGTTT AGTATTGGAA GGCTGTTAA CCTCTCGATT CCTGTGGGTG    |
| 55 | 2501 | CGAAATTCGT GCAGGGGAT ATCGGAGATT CCTACACCTA TGATCTCTCA   |
|    | 2551 | GGATTCTTTG TTTCCGATGT CTATCGTAAC AATCCCCAAT CTACAGCGAC  |
|    | 2601 | TCTTGTGATG AGCCCCAGACT CTTGGAAAAT TCGCGGTGGC AATCTTCAA  |
|    | 2651 | GACAGGCATT TTTACTGAGG GGTAGCAACA ACTACGTCTA CAACTCCAAT  |
|    | 2701 | TGTGAGCTCT CGGGACATTA CGCTATGGAA CTCCGTGGAT CTTCAAGGAA  |
| 60 | 2751 | CTACAATGTA GATGTTGGTA CCAAACCTCG ATTCTAG                |

The PSORT algorithm predicts an outer membrane location (0.924).

The protein was expressed in *E.coli* and purified as a his-tag product, as shown in Figure 58A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 58B) and for FACS (Figure 58C) analyses. A GST-fusion protein was also expressed.

The cp6733 protein was also identified in the 2D-PAGE experiment (Cpn0451).

- 5 These experiments show that cp6733 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 59

The following *C.pneumoniae* protein (PID 4376814) was expressed <SEQ ID 117; cp6814>:

|    |                                                                                                                                                                                                                                                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 1 MHDALLSILA IQELDIKMR LMRVKKEHQK ELAKVQSLKS DIRRKVQEKE<br>51 LEMENLKTQI RDGENRIQEI SEQINKLENO QAAVKKMDEF NALTQEMITTA<br>101 NKERRSLEHQ LSDLMDKQAG GEDLIVSLKE SLASTENSS VIEKEIFESI<br>151 KKINEEGKAL LEQRTELKHA TNPELLSIYE RLLNNKKDRV VVPIENRVC<br>201 GCHIVLTPQH ENLVRKKDRL IFCEHCSRIL YWQESQVNAQ ENSTAKRRRR<br>251 RAAV* |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

- 15 The cp6814 nucleotide sequence <SEQ ID 118> is:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 1 ATGCATGACG CACTTCTAAG CATTTGGCT ATTCAAGAGC TTGATATTAA<br>51 AATGATTCGC CTTATGCGCG TAAAGAAAGA ACATCAGAAA GAATTGGCTA<br>101 AAGTCCAATC TTTAAAAAGT GATATTCGTA GAAAAGTTCA GGAAAAAGAA<br>151 CTCGAAATGG AGAATTTGAA AACTCAAATT CGAGATGGAG AGAATCGCAT<br>201 CCAAGAGAGT TCTGAACAAA TCAATAAATT AGAAAATCAG CAAGCTGCTG<br>251 TAAAAAAAAT GGATGAGTTT AACGCTCTTA CCCAAGAAAT GACTACAGCA<br>301 AACAAAAGAAC GTCGCTCTTT AGAGCACCAG CTTAGCGATC TCATGGATAA<br>351 GCAAGCTGGA GGCAGAACCC TTATTGTCTC TCTAAAAGAA AGCTTAGCTT<br>401 CTACAGAAAA TAGTAGCAGT GTCATTGAAA AAGAAATTTC TGAAAGCATE<br>451 AAAAGAGATTA ATGAAGAAGG CAAAGCTTTC CTTGAACAAAC GGACAGAGTT<br>501 AAAGCATGCG ACGAATCCCG AACTACTCAG CATCTATGAG CGTCTATTAA<br>551 ACAATAAAAAA AGATCGCGTT GTGTTCTCTA TTGAAAATCG TGTCTGCAGT<br>601 GTTGTCTATA TTGTTCTAAC TCCTCAACAC GAAAATCTTG TAAGAAAGAA<br>651 AGACCCGACTC ATTTTTGCG AACATTGCTC TCGAATTCTC TATTGGCAAG<br>701 AATCCCAAGT CAATGCTCAG GAAAATTCCA CAGCAAAACG TCGTCGTCGT<br>751 CGCGCAGCTG TATAA |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The PSORT algorithm predicts an inner membrane location (0.070).

- The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 59A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 59B) and FACS (Figure 59C) analyses.

These experiments show that cp6814 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 60

The following *C.pneumoniae* protein (PID 4376830) was expressed <SEQ ID 119; cp6830>:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 | 1 MKWLFPATAVF AAVLPALTAF GDPASVEIST SHTGSGDPTS DAALTGFTQS<br>51 STETDGTTYT IVGDTFFSTF TNIPPVVTP DANDSSSNSS KGGSSSSGAT<br>101 SLIRCSSNLHS DFDFTKDSVL DLYHLFFPSA SNTLNPAILLS SSSSGGSSSS<br>151 SSSSSSGSAS AVVAADPKGG AAFYSNEANG TLTFTTDSGN PGSLTLQNLK<br>201 MTGDGAIYS KGPLVFTGLK NLTFITGNESQ KSGGAAYTEG ALTTQAIVEA<br>251 VTFTGNTSAG QGGAIYVKEA TLFNALDSLK FEKNTSGQAG GGIYTESTLT<br>301 ISNITKSIEF ISNKASVPAP APEPTSPAPS SLINSTTIDT STLQTRAASA<br>351 TPAVAPVAAV TPPTPISTQET AGNGGAIYAK QGISISTFKD LTFKSNSASV |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

851 GFFVSDVYRN NPQSTATLVM SPD SWKIRGG NLSRQAFLLR GSNNYVYNSN  
 901 CELFGHYAME LRGSSRNYNV DVG TKLRF\*

A predicted signal peptide is highlighted.

The cp6733 nucleotide sequence <SEQ ID 116> is:

|    |      |             |             |             |             |             |
|----|------|-------------|-------------|-------------|-------------|-------------|
| 5  | 1    | ATGAAGACTT  | CGATTCCCTTG | GGTTTTAGTT  | TCCTCCGTGT  | TAGCTTTCTC  |
|    | 51   | ATGTCACCTA  | CAGTCACTAG  | CTAACGAGGA  | ACTTTTATCA  | CCTGATGATA  |
| 10 | 101  | GCTTTAATGG  | AAATATCGAT  | TCAGGAACGT  | TTACTCAGAA  | AACTTCAGCC  |
|    | 151  | ACAAACATATT | CTCTAACAGG  | AGATGTCTTC  | TTTACGAGC   | CTGGAAAAGG  |
|    | 201  | CACTCCCTTA  | TCTGACAGTT  | GTTTTAAGCA  | AACCACGGAC  | AATCTTACCT  |
| 10 | 251  | TCTTGGGGAA  | CGGTCACTAGC | TTAACGTTTG  | GCTTTATAGA  | TGCTGGCACT  |
|    | 301  | CATGCCAGGTG | CTGCTGCATC  | TACAACAGCA  | AATAAGAAC   | TTACCTTCTC  |
|    | 351  | AGGGTTTTCC  | TTACTGAGTT  | TTGATTCCCTC | TCCTAGCACA  | ACGGTTACTA  |
|    | 401  | CAGGTCAGGG  | AACGCTTCC   | TCAGCAGGAG  | GCGTAAATT   | AGAAAATATT  |
| 15 | 451  | CGTAAACCTG  | TAGTTGCTGG  | GAATTTTCT   | ACTGCAGATG  | GTGGAGCTAT  |
|    | 501  | CAAAGGAGCG  | TCTTCCCTT   | TAACTGGCAC  | TTCTGGAGAT  | GCTCTTTTA   |
|    | 551  | GTAACAACTC  | TTCATCAACA  | AAGGGAGGAG  | CAATTGCTAC  | TACAGCAGGC  |
|    | 601  | GCTCGCATAG  | CAAATAACAC  | AGGTTATGTT  | AGATTCCAT   | CTAACATAGC  |
|    | 651  | GTCTACGTCA  | GGAGGCGCTA  | TCGATGATGA  | AGGCACGTCG  | ATACTATCGA  |
| 20 | 701  | ACAACAAATT  | TCTATATTTT  | GAAGGGAATG  | CAGCGAAAAC  | TACTGGCGGT  |
|    | 751  | GCGATCTGCA  | ACACCAAGGC  | GAGTGGATCT  | CCTGAACGTG  | TAATCTCTAA  |
|    | 801  | CAATAAGACT  | CTGATCTTG   | CTTCAAACGT  | AGCAGAAACA  | AGCGGTGGCG  |
|    | 851  | CCATCCATGC  | TAAAAAGCTA  | GCCCTTCCCT  | CTGGAGGCTT  | TACAGAGTTT  |
|    | 901  | CTACGAAATA  | ATGTCTCATC  | AGCAACTCCT  | AAGGGGGGTG  | CTATCAGCAT  |
|    | 951  | CGATGCCTCA  | GGAGAGCTCA  | GTCTTCTG    | AGAGACAGGA  | AACATTACCT  |
| 25 | 1001 | TTGTAAGAAA  | TACCCTTACA  | ACAACCGGAA  | GTACCGATAC  | TCCTAAACGT  |
|    | 1051 | AATGCGATCA  | ACATAGGAAG  | TAACGGGAAA  | TTACACGGAAT | TACGGGCTGC  |
|    | 1101 | TAAAAATCAT  | ACAATTCT    | TCTATGATCC  | CATCACTTCA  | GAAGGAACCT  |
|    | 1151 | CATCAGACGT  | ATTGAAAGATA | AATAACGGCT  | CTGCGGGAGC  | TCTCAATCCA  |
|    | 1201 | TATCAAGGAA  | CGATTCTATT  | TTCTGGAGAA  | ACCCCTAACAG | CAGATGAAC   |
| 30 | 1251 | TAAAGTTGCT  | GACAATTAA   | AATCTTCATT  | CACCGAGCCA  | GTCTCCCTAT  |
|    | 1301 | CCGGAGGAAA  | GTATTGCTA   | CAAAAGGGAG  | TCACCTTAA   | GAGCACGAGC  |
|    | 1351 | TTCTCTCAAG  | AGGCCGGTTC  | TCTCCTCGGC  | ATGGATTTCAG | GAACGACATT  |
|    | 1401 | ATCAACTACA  | GCTGGGAGTA  | TTACAATCAC  | GAACCTAGGA  | ATCAATGTTG  |
| 35 | 1451 | ACTCCTTAGG  | TCTTAAGCAG  | CCCAGTCAGCC | TAACAGAAA   | AGGTGCTTCA  |
|    | 1501 | ATAAAAGTGA  | TCGTATCTGG  | GAAGCTAAC   | CTGATTGATA  | TTGAAGGGAA  |
|    | 1551 | CATTATGAA   | AGTCATATGT  | TCAGCCATGA  | CCAGCTCTC   | TCTCTATTAA  |
|    | 1601 | AAATCACGGT  | TGATGCTGAT  | GTGATACTA   | ACGTTGACAT  | CAGCAGCCTT  |
|    | 1651 | ATCCCTGTT   | CTGCTGAGGA  | TCTTAATTCA  | GAATACGGAT  | TCCAAGGACA  |
| 40 | 1701 | ATGGAATGTT  | AATTGGACTA  | CGGATACAGC  | TACAAATACA  | AAAGAGGCCA  |
|    | 1751 | CGGCAACTTG  | GACCAAAACA  | GGATTGTTTC  | CCAGCCCCGA  | AAGAAAATCT  |
|    | 1801 | GCGTTAGTAT  | GCAATACCT   | ATGGGGAGTC  | TTTACTGACA  | TTCGCTCTCT  |
|    | 1851 | GCAACAGCTT  | GTAGAGATCG  | GCGCAACTGG  | TATGGAACAC  | AAACAAGGTT  |
|    | 1901 | TCTGGGTTTC  | CTCCATGACG  | AACTTCCTGC  | ATAAGACTGG  | AGATGAAAAT  |
| 45 | 1951 | CGCAAAGGCT  | TCCGTACATAC | CTCTGGAGGC  | TACGTACATG  | GTGGAAAGTGC |
|    | 2001 | TCACACTCCT  | AAAGACGACC  | TATTTACCTT  | TCCGTTCTGC  | CATCTCTTG   |
|    | 2051 | CTAGAGACAA  | AGATTGTTT   | ATCGCTACCA  | ACAACCTCTAG | AACCTACGGT  |
|    | 2101 | GGAACCTTAT  | TCTTCAAGCA  | CTCTCATACC  | CTACAACCCC  | AAAACATATT  |
|    | 2151 | GAGATTAGGA  | AGAGCAAAGT  | TTTCTGAATC  | AGCTATAGAA  | AAATCCCTA   |
| 50 | 2201 | GGGAAATTCC  | CCTAGCCTTG  | GATGTCCAAG  | TTTCGTTCTAG | CCATTCAGAC  |
|    | 2251 | AACCGTATGG  | AAACGCACTA  | TACCTCATTT  | CCAGAACCCG  | AAGGTTCTTG  |
|    | 2301 | GAGCAACGAG  | TGTATAGCTG  | GTGGTATCGG  | CCTAGACCTT  | CCTTTGTTTC  |
|    | 2351 | TTTCCAACCC  | ACATCCTCTT  | TTCAAGACCT  | TCATTCCACA  | GATGAAAGTC  |
|    | 2401 | GAAATGGTTT  | ATGTATCAC   | AAATAGCTTC  | TTCGAAAGCT  | CTAGTGATGG  |
| 55 | 2451 | CCGTGGTTTT  | AGTATTGGAA  | GGCTGCTTAA  | CCTCTCGATT  | CCTGTGGGTG  |
|    | 2501 | CGAAATTCTGT | GCAGGGGGAT  | ATCGGAGATT  | CCTACACCTA  | TGATCTCTCA  |
|    | 2551 | GGATTCTTTG  | TTTCCGATGT  | CTATCGTAAC  | AATCCCCAAT  | CTACAGCGAC  |
|    | 2601 | TCTTGTGATG  | AGCCCAGACT  | CTTGGAAAAT  | TCGCGGTGGC  | AATCTTCAA   |
|    | 2651 | GACAGGCATT  | TTTACTGAGG  | GGTAGCAACA  | ACTACGTCTA  | CAACTCCAAT  |
|    | 2701 | TGTGAGCTCT  | TCGGACATTA  | CGCTATGGAA  | CTCCGTGGAT  | CTTCAAGGAA  |
| 60 | 2751 | CTACAATGTG  | GATGTTGGTA  | CCAAACTCCG  | ATTCTAG     |             |

The PSORT algorithm predicts an outer membrane location (0.924).

|    |      |                                                          |
|----|------|----------------------------------------------------------|
|    | 1801 | TACGTTACTA AAACCTTCCA GTGTTCCGAT TCTCATGCC TCCAGTTAC     |
| 5  | 1851 | TAGTAATAAA GCAGCAGATG AAGGCGGGG CCTGTATTGT GGTGACGATG    |
|    | 1901 | TCACGCTAAC GAACCTGACA GGGAAAACAC TATTTCAAGA GAATAGCAGT   |
|    | 1951 | GAGAAACATG GAGGTGGCT CTCTCTGCC TCAGGAAAAT CTCTGACTAT     |
|    | 2001 | GACATCGTTA GAGAGCTTCT GCTTAAATGC AAATACAGCA AAGGAAAACG   |
|    | 2051 | GAGGCGGTGC GAATGTCCCT GAAAATATTG TACTCACCTT CACCTATACT   |
|    | 2101 | CCCACTCCAA ATGAACCTGC GCCTGTGCAG CAGCCCGTGT ATGGAGAAC    |
| 10 | 2151 | TCTTGTACT GGAAATACAG CCACAAAAAG TGGTGGGGC ATTTACACGA     |
|    | 2201 | AAAATGCGGC CTTCTCAAT TTATCTCTG TAACTTTGTA TCAAAATACC     |
|    | 2251 | TCTTCAGAAA ATGGTGGTGC CTTACTTACC CAAAAAGCTG CAGATAAAAAC  |
|    | 2301 | GGACTGTTCT TTICACCTATA TTACAAATGT CAATATCAC C ACAATACAG  |
|    | 2351 | CTACAGGAAA TGGTGGGGC ATTGCTGGGG GAAAAGCACA TTTCGATCGC    |
| 15 | 2401 | ATTGATAATC TTACAGTCCA AAGCAACCA GCAAAGAAAG GTGGTGGGGT    |
|    | 2451 | TTATCTTGAA GATGCCCTCA TCCGGAAA GGTATTACA GGTTCTGTCT      |
|    | 2501 | CACAAAATAC AGCTACAGAA AGTGGTGGGG GTATCTACGC TAAGGATATT   |
|    | 2551 | CAACTACAAG CTCTACCTGG AAGCTTCACA ATTACCGATA ATAAAGTCGA   |
|    | 2601 | AACTAGTCTT ACTACTAGCA CTAATTATA TGGTGGGGC ATCTATTCCA     |
|    | 2651 | GTGGAGCTGT CACGCTAAC AATATATCTG GAACCTTGG CATTACAGGA     |
| 20 | 2701 | AACTCTGTIA TCAATACAGC GACATCCCAG GATGCAGATA TACAAGGTGG   |
|    | 2751 | GGGCATTAT GCAACCCAGT CTCTCTCAAT AAATCAATGT AATACACCCA    |
|    | 2801 | TTCTATTTAG CAACAACTCT GCTGCCACTA AAAAACATC AACAAACAAAG   |
|    | 2851 | CAAATTGCTG GTGGGGCTAT CTTCTCCGCT GCAGTAACTA TCGAGAATAA   |
|    | 2901 | CTCTCAGCCC ATTATTTCT TAAATAATT CGCAAAGTCG GAAGCAACTA     |
| 25 | 2951 | CAGCAGCAAC TGCAGGAAAT AAAGATAGCT GTGGAGGAGC CATTGCAGCT   |
|    | 3001 | AACTCTGTIA CTTTAACAAA TAACCCCTGAA ATAACCTTA AAGGAAATTA   |
|    | 3051 | TGCAGAAACT GGAGGAGCGA TTGGCTGTAT TGATCTTAAT AATGGCTCAC   |
|    | 3101 | CTCCCCGTAA AGTCTCTATT GCAGACAACG GTTCTGTCT TTTCAAGAC     |
|    | 3151 | AACTCTGCGT TAAATCCGG AGGGCCTATC TATGGAGAGA CTATCGATAT    |
| 30 | 3201 | CTCCAGGACA GGTGCGACTT TCATCGGTAA CTCTCAAAA CATGATGGAA    |
|    | 3251 | GTGCAATTTC CTGTTCAACA GCCCTAACCTC TTGCGCCAAA CTCCCAACTT  |
|    | 3301 | ATCTTGAAA ACAATAAGGT TACGGAAACC ACAGCCACTA CAAAAGCTTC    |
|    | 3351 | CATAAAATAAT TTAGGAGCTG CAATTATGG AAATAATGAG ACTAGTGACG   |
|    | 3401 | TCACTATCTC TTTATCAGCT GAGAATGGAA GTATTTCTT TAAAAACAAAT   |
| 35 | 3451 | CTATGCACAG CAACAAACAA ATACTGCAGT ATTGCTGGAA ACGTAAAATT   |
|    | 3501 | TACAGCAATA GAAGCTTCAG CAGGGAAAGC TATATCTTC TATGATGCG     |
|    | 3551 | TTAACGTTTC CACCAAAGAA ACAATGCTC AAGAGCTAAA ATAAATGAA     |
|    | 3601 | AAAGCGACAA GTACAGGAAC GATTCTATT TCTGGGGAAC TTCACGAAAA    |
|    | 3651 | TAATCCTAT ATTCCACAGA AAGTCACTTT CGCACATGGG AATCTCATTC    |
| 40 | 3701 | TAGGTAAAAA TGCAGAACTT AGCGTAGTTT CCTTTACCCA ATCTCCAGGC   |
|    | 3751 | ACCACAATCA CTATGGGCC AGGATCGGTT CTTTCCAACC ATAGCAAAGA    |
|    | 3801 | AGCAGGAGGA ATCGCTATAA ACAATGTCAT CATTGATTT AGTGAATCG     |
|    | 3851 | TTCTCTACTAA AGATAATGCA ACAGTAGCTC CACCCACTCT TAAATTAGTA  |
|    | 3901 | TCGAGAACTA ATGCAGATAG TAAAGATAAG ATTGATATTA CAGGAACGT    |
| 45 | 3951 | GACTCTCTA GATCCTAATG GCAACTTATA TCAAAATTCT TATCTTGGTG    |
|    | 4001 | AAGACCGCGA TATCACTCTT TTCAATATAG ACAATTCTGC AAGTGGGGCA   |
|    | 4051 | GTACAGGCC CGAATGTCAC CCTCAAGGG AATTAGGAG CTAAAAAAGG      |
|    | 4101 | ATATTAGGA ACCTGGAATT TGGATCCAAA TTCTCGGGT TCAAAATTA      |
|    | 4151 | TTCTAAAATG GACCTTGAC AAATACCTGC GCTGGCCCTA CATCCCTAGA    |
| 50 | 4201 | GACAACCACT TCTACATCAA CTCTATTGG GGAGCACAAA ACTCTTAGT     |
|    | 4251 | GACTGTGAAA CAAGGGATCT TAGGGAACAT GTTGAACAAAT GCAAGGTTG   |
|    | 4301 | AAGATCCTGC TTTCAACAAAC TTCTGGGCTT CGGCTATAGG ATCTTCCCT   |
|    | 4351 | AGGAAAGAAG TATCTCGAAA TTCTGACTCA TTACACTATC ATGGCAGAGG   |
|    | 4401 | CTATACCGCT GCTGTGGATG CCAAACCTCG CCAAGAATT TTCTTAGGAG    |
| 55 | 4451 | CTGCCCTTCAG TCAGGTTTTT GGTCACGCC AGTCTGAATA TCACCTTGAC   |
|    | 4501 | AACTATAAGC ATAAAGGCTC AGGTCACTCT ACACAAGCAT CTCTTTATGC   |
|    | 4551 | TGGCAATATTC TTCTATTTC CTGCGATACG GTCTCGGCCT ATTCTATTCC   |
|    | 4601 | AAGGTGTGGC GACCTATGGT TATATGCAAC ATGACACCCAC AACCTACTAT  |
|    | 4651 | CCTTCTATTG AAGAAAAAAA TATGGCAAC TGGGATAGCA TTGCTGGTT     |
| 60 | 4701 | ATTGATCTG CGTTTCAGTG TGGATCTAA AGAACCTCAA CCTCACTCTA     |
|    | 4751 | CAGCAAGGCT TACCTTCTAT ACAGAAGCTG AGTATACCAAG AATTGCCAG   |
|    | 4801 | GAGAAATTCA CAGAGCTAGA CTATGATCCT AGATCTTCT CTGCATGCTC    |
|    | 4851 | TTATGGAAAC TTAGCAATTCTC CTACTGGATT CTCTGTAGAC GGAGCATTAG |
|    | 4901 | CTTGGCGTGA GATTATTCTA TATAATAAAAG TATCAGCTGC GTACCTCCCT  |
| 65 | 4951 | GTGATTCTCA GGAATAATCC AAAAGCGACC TATGAAGTTC TCTCTACAAA   |
|    | 5001 | AGAAAAGGGC AACGTAGTCA ACGTTCTCCC TACAAGAAC GCAGCTCGTG    |
|    | 5051 | CAGAGGTGAG CTCTCAAATT TATCTTGAA GTTACTGGAC ACTCTACGGC    |
|    | 5101 | ACGTATACTA TTGATGCTTC AATGAATACT TTAGTGCAAA TGGCCAACCG   |
|    | 5151 | AGGGATCCGG TTTGTATTCT AG                                 |

401 DATLTVDSSST IGESGGAIFA ADSIQIQQCT GTTLFSGNTA NKSGGGIYAV  
 451 GQVTLEDIAN LKMTNNTCKG EGGAIYTKKA LTINNGAILT TFSGNTSTDN  
 501 GGAIFAVGGI TLSLDLVEVRF SKNKTGNNSA PITKAASNTA PVVSSSTTAA  
 551 SPAVPAAAAA PVTNAAKGGA LYSTEGLTVS GITSLSFEN NECQNQGGGA  
 601 YVTKTFQCSL SHRLQFTSNK AADEGGGLYC GDDVTLTNLT GKTLFQENSS  
 651 EKHGGGLSLA SGKSLTMTSL ESFCLNANTA KENGGGANVP ENIVLTFTYT  
 701 PTPNEPAPVQ QPVYGEALVT GNTATKSGGG IYTKNAAFSN LSSVTFDQNT  
 751 SSENGGALLT QKAADKTDCS FTYITNVNIT NNTATGNGGG IAGGKAHFDR  
 801 IDNLTVQSNO AKKGGGVYLE DALILEKVIT GSVSQNTATE SGGGIYAKDI  
 851 QLQALPGSFT ITDNKVTDSL TTSTNLYGGG IYSSGAVTLT NISGTFGITG  
 901 NSVINTATSQ DADIQGGGIY ATTSLSINQC NTPILFSNNS AATKKTSTTK  
 951 QIAGGAIFSA AVTIENNSQP IIFLNNSAKS EATTAATAGN KDSCCGAIAA  
 1001 NSVTLTNNPE ITFKGNYAET GGAIGCIDLT NGSPPRKVSI ADNGSVLFQD  
 1051 NSALNRGGAI YGETIDISRT GATFIGNSSK HDGSAICCST ALTLAPNSQL  
 1101 IFENNKVTTET TATTKASINN LGAAIYGNNE TSDVTISLSA ENGSIFFKNN  
 1151 LCTATNKYCS IAGNVKFTAI EASAGKAISF YDAVNVTKE TNAQELKLNE  
 1201 KATSTGTLIF SGELHENKSY IPQKVTFAHG NLILKGNAEL SVVSFTQSPG  
 1251 TTITMGPGSV LSNHSKEAGG IAINNVIIDF SEIVPTKDNE TVAPP TLKLV  
 1301 SRTNADSKDK IDITGTVTLL DPNGNLYQNS YLGEDRDITL FNIDNSASGA  
 1351 VTATNVTLQG NLGAKKGYLG TWNLDPNSSG SKIILKWTFD KYLRWPYIPR  
 1401 DHNFYINSIW GAQNSLVTVK QGILGNMLNN ARFEDPAFNN FWASAIGSFL  
 1451 RKEVSRNSDS FTYHGRGYTA AVDAKPRQEF ILGAAFSQVF GHAESEYHLD  
 1501 NYKHKGSGHS TQASLYAGNI FYFPAIRSRP ILFGQVATYG YMQHDTTYY  
 1551 PSIEEKNMAN WDSIAWLFDL RFSDLKEPQ PHSTARLTFF TEAEYTRIRQ  
 1601 EKFTELDYDP RSFSACSYGN LAIPTGFSD GALAWREIIIL YNKVSAAYLP  
 1651 VILRNNPKAT YEVLSTKEKG NVVNVLPTRN AARAEVSSQI YLGSYWTLYG  
 1701 TYTIDASMNT LVQMANGGIR FV\*

A predicted signal peptide is highlighted.

The cp6830 nucleotide sequence <SEQ ID 120> is:

30            1 ATGAAGTGGC TACCAGCTAC AGCTGTTTT GCTGCCGTAC TCCCCGCACT  
 51            51 AACAGCCTTC GGAGATCCCG CGTCTGTTGA AATAAGTACC AGCCATACAG  
 101          101 GATCCGGGGA TCCTACAAGC GACGCTGCCT TAACAGGATT TACACAAAGT  
 151          151 TCCACAGAAA CTGACGGTAC TACCTATACC ATTGTCCGGTG ATATCACCTT  
 201          201 CTCTACTTTT ACGAATATTCT CTGTTCCCGT AGTAACCTCA GACCCAACG  
 251          251 ATAGTTCCAG CAATAGCTCT AAAGGAGGAA GTAGCAGTAG TGGAGCTACA  
 301          301 TCTCTAAATCC GATCCTCAAA CCTACACTCC GATTTTGATT TTACAAAAGA  
 351          351 TAGCGTGTATC GACCTCTATC ACCCTTTCTT TCCCTCAGCT TCAAATACTC  
 401          401 TCAATCCTGC ACTCCTTTCT TCCAGTAGCA GCGGTGGATC CTCGAGCAGC  
 451          451 ATAGCTCCT CATCATCTGG AAGTGCATCT GCTGTTGTTG CTGGGGACCC  
 501          501 AAAAGGAGGC GCTGCCTTT ATAGTAACGA GGCTAACCGGA ACTTTAACCT  
 551          551 TCACTACAGA CTCTGGAAAT CCCGGCTCCC TGACTCTTCA GAATCTAAA  
 601          601 ATGACCGGAG ATGGAGCCGC CATCTACTCG AAGGGTCCCT TAGTATTAC  
 651          651 TGGTTTAAAAA AATCTAACCT TTACAGGAAA TGAATCTCG AAATCTGGAG  
 701          701 GTGCTGCCCTA TACTGAAGGC GCACTCACAA CACAAGCAAT CGTTGAAGCC  
 751          751 GTAACTTTTA CTGGCAACAC CTGGCAGGG CAAGGAGGCG CTATCTATGT  
 801          801 TAAAGAAGCT ACCCTATTCA ATGCTCTAGA CAGCCTAAA TTTGAAAAAAA  
 851          851 ACACCTCTGG GCAAGCTGGT GGTGGAATCT ATACAGAGTC TACGCTCACA  
 901          901 ATCTCGAACAA TCACAAAATC TATTGAATT TCTCTAAATA AAGCTCTGT  
 951          951 CCCTGCCCTC GCTCCTGAGC CCACCTCTCC GGCTCCAAGT AGCTTAATAA  
 1001        1001 ATTCTACAAC GATCGATACC TCGACTCTCC AAACCCGAGC AGCATCCGCA  
 1051        1051 ACTCCAGCAG TGGCTCTGT TGCTGCCGTAA CTCCAACAC CAATCTCTAC  
 1101        1101 TCAAGAGACC GCAGGAAATG GAGGCCTAT CTATGCTAAA CAAGGTATTT  
 1151        1151 CGATATCCAC GTTTAAAGAT CTGACCTTCA AGTCTAACCTC TGCATCGGT  
 1201        1201 GATGCCACCC TTACTGTCGA TTCTAGCACT ATTGGAGAAT CTGGAGGTGC  
 1251        1251 TATCTTGCA GCAGACTCTA TACAAATCCA ACAGTGCACG GGAACCACCT  
 1301        1301 TATTCACTGG CAATACTGCC AATAAGTCTG GTGGGGGTAT TTACGCTGT  
 1351        1351 GGACAAGTCA CCCTAGAAGA TATAGCGAAT CTGAAGATGA CCAACAACAC  
 1401        1401 CTGTAAAGGT GAAGGTGGAG CCATCTACAC TAAAAAGGCT TTAACATATCA  
 1451        1451 ACAACGGTGC CATTCTCACT ACATTTCTG GAAATACATC GACAGATAAT  
 1501        1501 GGTGGGGCTA TTTTGTGT AGGTGGCATC ACTCTCTCTG ATCTTGTAGA  
 1551        1551 AGTCCGCTTT AGTAAAAATA AGACCGGAAA TTATTCCGCT CCTATTACCA  
 1601        1601 AAGCGGCTAG CAACACAGCT CCTGTAGTTT CTAGCTCTAC AACTGCTGCA  
 1651        1651 TCTCCTGCGG TCCCTGCTGC CGCTGCAGCA CCTGTTACAA ACGCAGCAAA  
 1701        1701 AGGAGGGGCT TTATATAGTA CAGAAGGACT GACTGTATCT GGAATCACAT  
 1751        1751 CGATATTGTC GTTTGAAAAC AACGAATGCC AGAATCAAGG AGGTGGGGCT

**Example 62**

The following *C.pneumoniae* protein (PID 4377101) was expressed <SEQ ID 123; cp7101>:

|    |     |                                                          |
|----|-----|----------------------------------------------------------|
| 5  | 1   | MYSCYSKGIS HNYLLHPMSR LDIFVFDLSI ANQDQNLLEE IFCSEDTVLF   |
|    | 51  | KAYRTTALQS PLAAKNLNIA RKVANYILAD NGEIDTVKLV EAIHHLSQCT   |
|    | 101 | YPLGPHRHNE AQDREHLLKM LKALKENPKL KESIKTLFVP SYSTIQNLIR   |
|    | 151 | HTLALNPQTI LSTIHVROAA LTALFTYLRO DVGSCFATAP AILIHQEYPE   |
|    | 201 | RFLKDLDNDLI SSGKLSRIVN QREJAVPINL SGCIGELFKP LRILDLYPDP  |
|    | 251 | LVKLSSSPGL KKAFSAANLI ETLGDSEAQI QQLLSHQYLM QKLQNVHETL   |
| 10 | 301 | TANDIIKSTL LHYYQLQUEST VRAIFFKEGL FSKEQVAFST QHPRELSEIQ  |
|    | 351 | RVYHYLHAYE EAKSAFIHDT QNPLLKAWEY TLATLADASQ PTISNHIRLA   |
|    | 401 | LGWKSEDPHS LVSLVTHFVE EEVENIRILV QCCEQTYHEA RSQLEYIEGR   |
|    | 451 | MRNPLNNQDS QILTMHDHMRF RQELNKALYE WDSAQEKAKK FLHLPEFLLS  |
|    | 501 | FYTQKQIPLYF RSSYDAFIQE FAHLYANAPA GFRILFTHGR THPNNTWSPIY |
| 15 | 551 | SINEFIRFLS EFFTSTESEL LGKHAVINLE KETSRLVHN1 TAMLHT'DVFQ  |
|    | 601 | EALLTRILEA YQLPVPPSIL NHLDQLSQTP WVVVSGGTVD TLLLDDYFESS  |
|    | 651 | EPLTLTEKHP ENPHELAAFY ADAALKDLPTG IKSYLEEGSH SLLSSSPTHV  |
|    | 701 | FSIIAGSPLF REAWDNDWYS YTWL RDVWVK QHQDFLQDTI LPQLSIYAFI  |
|    | 751 | ENFCNKYALQ HVVHDFHDFC SDHSLTLPFL YDKGSRFLSS LFTKDVTVAL   |
| 20 | 801 | IYIRRLLYLM VREVVPVSEQ QLPEVLDNVS SYLGIISSRIT YEKFRLSLIEE |
|    | 851 | TIPKMTLLSS ADLRHITYKGL LMQSYQK1YT EEDTYLRITT AMRHNNLAYP  |
|    | 901 | APLLFAFDSNW PSIYFGFILN PGTEIDLWK FNYAGLQQQP LDNIQELFAT   |
|    | 951 | SRPWTLYANP IDYGMPPPG YRSRLPKEFF *                        |

The cp7101 nucleotide sequence <SEQ ID 124> is:

|    |      |                                                         |
|----|------|---------------------------------------------------------|
| 25 | 1    | ATGTATTCTGT GTTACAGCAA AGGAATATCC CATAACTATC TTCTACATCC |
|    | 51   | TATGTCACGT TTGGATATT TTGTTTCGA TTCTCTGATC GCAAACCAGG    |
|    | 101  | ATCAAAATCT TCTTGAGGAA ATTTCTGTT CTGAAGACAC AGTTTTATTT   |
|    | 151  | AAAGCCTACC GTACTACGGC TCTACAATCC CCTCTAGCTG CTAAGAACCT  |
|    | 201  | AAATATCGCC CGTAAAGTCG CAAATTATAT CTTAGCTGAC AATGGGGAAA  |
|    | 251  | TCGATACAGT AAAGCTTGTC GAAGCCATTC ACCATCTCTC ACAATGTACC  |
| 30 | 301  | TATCCTTTAG GGCCTCATCG CCATAATGAA GCTCAAGATC GTGAACACCT  |
|    | 351  | CCTTAAAATG CTAAAAGCTC TAAAGGAAAA TCCTAAATTA AAAGAAAGCA  |
|    | 401  | TCAAAACTCT CTITGTCCTC TCATACTCTA CAATCCAAA CCTAATTCCG   |
|    | 451  | CATACACTAG CATTGAATCC ACAGACAATT CTCTCTACGA TTCATGTGCG  |
| 35 | 501  | TCAAGCAGCA CTCACAGCGC TCTTCACCTA CCTTCGGCAA GATGTAGGTT  |
|    | 551  | CCTGTTTGC TACGGCTCCT GCCATTCTCA TTCACCAAGA ATATCCAGAA   |
|    | 601  | CGATTCCTTA AAGATCTAA TGATCTATT AGCAGTGGCA AACTCTCTAG    |
|    | 651  | AATCGTAAC CAAAGGGAAA TTGCGGTTCC TATAAACCTT TCGGGATGCA   |
|    | 701  | TTGGAGAGCT ATTCAAGCCT TTAAGGATTG TAGATCTTTA TCCTGATCCT  |
| 40 | 751  | CTGGTTAACG TCTCCTCATC TCCAGGACTC AAAAAGCCT TTTCTGCTGC   |
|    | 801  | CAATCTTATT GAAACTCTTG GGGATTCTGA AGCACAAATC CAACAGTTGC  |
|    | 851  | TCTCGCATCA ATATTGATG CAAAAACTAC AAAATGTCCA TGAGACCTTA   |
|    | 901  | ACTGCTAACG ACATTATCAA ATCGACACCTT CTGCACTACT ATCAGCTCCA |
|    | 951  | AGAAAGTACT GTACGAGCTA TTTCTTCAA AGAAGGGTG TTCAGCAAAG    |
| 45 | 1001 | AACAAGTGGC ATTCTCGACG CAACACCCCCA GAGAGCTCTC AGAAATACAA |
|    | 1051 | CGGGTATACC ACTACTACA TGCCTATGAA GAAGCAAAAT CTGCTTTAT    |
|    | 1101 | CCATGACACT CAAAATCCCT TACTGAAAGC CTGGGAGTAT ACTTAGCGA   |
|    | 1151 | CTCTTGGGAA TGCTAGCCAA CCTACCATCT CAAACCATAT CCGCCTTGCC  |
|    | 1201 | TTAGGATGGA AAAGTGAAGA CCCTCACAGT CTTGTATCTC TAGTTACACA  |
| 50 | 1251 | CTTGTGAA GAGGAAGTAG AAAACATCCG AATTCTAGTC CAACAATGTG    |
|    | 1301 | AACAGACCTA TCACGAAGCA CGCTCCCAAC TAGAATATAT TGAAGGGCGG  |
|    | 1351 | ATGCGCAACC CACTAAATAA TCAAGACAGT CAGATTGTA CGATGGATCA   |
|    | 1401 | CATGCGCTTC CGTCAAGAAC TCAATAAAGC TCTTATGAG TGGGATAGTG   |
|    | 1451 | CTCAAGAAAA GGAAAGAAA TTTCTACATC TTCTGAATT CTTACTTCT     |
| 55 | 1501 | TTCTATACAA AGCAATTCC CTTATACATT CGTAGTTCTT ACGATGCCCT   |
|    | 1551 | CATTCAAGAA TTTGCTCATC TCTATGCTAA TGCTCCCGCT GGCTTCCGTA  |
|    | 1601 | TTCTTTTCAc GCATGGACGC ACCCATCCGA ACACATGGTC CCCCATCTAT  |
|    | 1651 | TCGATTAATG AATTATACG TTTCTTTCT GAATTCTCTA CCTCCACAGA    |
|    | 1701 | GTCAGAACTT CTGGGAAAC ATGCCGTGAT CAATTAGAG AAAGAAACAT    |
|    | 1751 | CTCGGCTCGT CCACAAACATC ACTGCCATGC TACACACGGA TGTTTCAA   |
| 60 | 1801 | GAAGCTCTCC TTACAAGAAT TTAGAAGCC TATCAGCTTC CTGTCCTCC    |
|    | 1851 | CTCCATCTTA AACCACTTAG ATCAGCTGTC ACAAACCCCC TGGGTTATG   |
|    | 1901 | TTCTGGAGG AACAGTGGAC ACTCTCTTT TGGATTATTT TGAAAGCTCA    |
|    | 1951 | GAACCTCTGA CACTTACAGA AAAGCATCTC GAAAATCCTC ATGAGCTTGC  |
|    | 2001 | AGCTTTCTAC GCAGACGCC TTAAAGATCT CCCTACAGGA ATTAAAAGTT   |

The PSORT algorithm predicts an outer membrane location (0.926).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 60A) or his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in Western blot (Figure 60B) and FACS (Figure 60C) analyses.

- 5 The cp6830 protein was also identified in the 2D-PAGE experiment (Cpn0540) and showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

These experiments show that cp6830 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 61

- 10 The following *C.pneumoniae* protein (PID 4376854) was expressed <SEQ ID 121; cp6854>:

```

1  MSIAIAREQY AAIIDMHPKP SIAMFSSEQA RTSWEKRQAH PYLYRLLEII
51  WGVVKFLLGL IFFIPLGLFW VLQKICQNFI LLGAGGWIFR PICRDSNLLR
101 QAYAARLFSA SFQDHVSSVR RVCLQYDEVF IDGLELRLPN AKPDRWMLIS
151 NGNSDCLEYR TVLQEKEWDI FRIAEEESQSN ILIFNYPGVM KSQGNITRNN
201 VVKSYQACVRY LRLDEPAGPQ ARQIVAYGYS LGASVQAEAL SKEIADGSDS
251 VRWFVVKDRG ARSTGAVAKQ FIGSLGVWLA NLTHWNINSE KRSKDLHCP
301 LFTIYGKDSQG NLIGDGLFKK ETCFAAPFLD PKNLEECSGK KIPVAQTGLR
351 HDHILSDDVI KEVAGHQRH FDN*

```

The cp6854 nucleotide sequence <SEQ ID 122> is:

```

20   1  ATGTCAATAG CTATTGCAAG GGAACAATAC GCAGCTATAT TGGATATGCA
      51  TCCTAAACCT TCGATGCCA TGTTTCTTC GGAGCAGGCG AGAACTTCTT
      101 GGGAGAAACG ACAGGCTCAT CCTTACCTTT ATCGTCTTCT TGAGATCATA
      151 TGGGGTGTTC TGAAATTCT TCTCGGCTTA ATCTTCTTTA TTCCCTTGGG
      201 TCTTTCTGG GTCCCTTCAGA AGATATGTCA GAATTTTATT CTTCTTGGTG
      251 CAGGAGGGTG GATTTTTAGA CCCATATGCA GGGACTCTAA TTTATTGCGA
      301 CAAGCTTACG CCGCGCGTCT TTTCTCCGCT TCATTCCAAG ATCATGTCTC
      351 CTCTGTGCGA AGGGTTTGCT TACAGTATGA CGAGGTCTTT ATTGACGGAT
      401 TGGAGTTACG TCTTCCCAAT GCTAAGCCAG ATCGATGGAT GTTAATCTCC
      451 AATGGAAACT CCGATTGCTT AGAGTATAGG ACAGTGCTGC AAGGGGAAAA
      501 GGACTGGATA TTCCGTATTG CTGAAGAGTC TCAATCCAAC ATTTAATCT
      551 TCAATTACCC AGGAGTCATG AAGAGCCAAG GGAATATAAC AAGAAACAAT
      601 GTAGTCAAAT CTTATCAAGC ATGCGTACGC TATCTTAGAG ATGAACCCGC
      651 AGGACCTCAG GCGCGTCAAA TCGTTGCTTA TGGCTATTCT TTAGGAGCTA
      701 GTGTTCAAGC CGAACCATTA AGTAAAGAGA TCGCAGACGG AAGTGATAGC
      751 GTCCGTGTTAGT TTGTCGTAA AGATCGAGGA GCTCGCTCTA CAGGAGCCGT
      801 TGCTAAACAG TTTATTGGAA GTCTAGGAGT TTGGCTGGCG AATCTTACCC
      851 ATTGGAATAT TAATTCTGAA AAGAGAAGCA AGGACTTGCA TTGCCCAGAA
      901 CTCTTATTT ATGGCAAGGA TTCCCAAGGT AATCTTATCG GGGATGGATT
      951 GTTCAAAAAAA GAGACGTGCT TCGCAGCACC ATTTTTAGAT CCTAAAAACT
      1001 TGGAAAGAGTG TTCAGGGAAAG AAAATCCCTG TAGCTCAGAC CGGTCTAAGA
      1051 CACGATCATC TCCCTTCCGA TGATGTGATT AAAGAAGTTG CAGGTCTAT
      1101 TCAAAGACAT TTGATAATT A

```

The PSORT algorithm predicts an inner membrane location (0.461).

The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 61A.

- 45 The recombinant protein was used to immunise mice, whose sera were used in Western blot (Figure 61B) and FACS (Figure 61C) analyses. A his-tagged protein was also expressed.

These experiments show that cp6854 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5           651 TTCTATAATT GTAGGAACCA TGGTAGACGT GTCATGGAGA AATACCGCAG  
 701 TACAATGGAT CGGGGATCAG CTCCTCTGTTA TTGGGACTTT AGGAGGAAC  
 751 ACTTCTGTTG CTAGTGCAT CTCAACAGAT GGCACGTGTA TTGTAGGAGG  
 801 TTCTGAAAAT GCAGATTCTC AGACTCATGC CTATGCTTAT AAAAACGGTG  
 851 TTATGAGCGA TATAGGGACC CTCGGAGGTT TTTATTCTTT AGCACATGCA  
 901 GTATCTTCAG ATGGTTCTGT GATTGTAGGA GTATCCACGA ACTCTGAGCA  
 951 TAGATATCAT GCATTCCAAT ATGCTGATGG ACAGATGGTA GATTITAGGAA  
 1001 CTTTAGGAGG GCCTGAATCT TATGCTCAAG GTGTTGCTGG AGATGGAAAG  
 1051 GTAATTGTGG GTAGAGCACA AGTACCATCT GGAGATTGGC ATGCGTTCT  
 1101 ATGTCCTTC CAAGCTCCGA GCCCTGCTCC TGTCATGGG GGAAGCACTG  
 1151 TCGTAACTAG CCAGAACCTCA CGTGGAAATGG TAGATATCAA TGCTACGTAC  
 1201 TCCCTTTGA AAAATAGCCA ACAACAACTA CAAAGATTGC TTATCCAGCA  
 1251 TAGTGCAAAAA GTTGAAGATG TATCCTCAGG AGCACCATCT TTTACAAGTG  
 1301 TGAAGGGTGC GATCTCAAAA CAGAGCCCTG CAGTGCAAAA TGATGTACAG  
 1351 AAAGGGACGT TTTTAAGTTA CGGTTCCCAA GTTCATGGAA ACGTGCAGAA  
 1401 TCAGCAATTG CTCACAGGAG CTTTTATGGA CTGGAAACTC GCTTCAGCTC  
 1451 CTAATGCGG CTTTAAAGTA GCTCTCCACT ATGGCTCTCA AGATGCTCTC  
 1501 GTAGAACGTG CAGCTCTTCC TTACACAGAA CAAGGCTTAG GAAGCAGTGT  
 20           1551 CTTGTCAGGT TTTGGAGGAC AAGTTCAAGG ACGCTATGAC TTTAATTAG  
 1601 GAGAAACTGT TGTTCGCAA CCCTTTATGG GCATTCAAGT TCTCCACCTA  
 1651 AGTAGAGAAG GGTATTCTGA GAAGAATGTT CGATTTCCTG TAAGCTATGA  
 1701 TTCTGTAGCC TACTCACCAG CTACTAGCTT TATGGGTGCG CATGTATTTG  
 1751 CCTCCCTAAG CCCTAAAATG AGTACAGCAG CAACTTTAGG TGTGGAGAGA  
 25           1801 GATCTGAATT CACATATAGA TGAATTAAAG GGATCCGTCT CTGCTATGGG  
 1851 AAACTTTGTG TTGGAAAATT CTACAGTGAG TGTTTTAAGA CCTTTTGCTT  
 1901 CTCTTGCTAT GTACTATGAC GTAAGACAAC AGCAACTCGT GACGTTGTCA  
 1951 GTAGTTATGA ATCAACAACC CTTAACAGGC ACACTAAGCT TAGTAAGCCA  
 2001 AAGTAGCTAT AATCTTAGCT TCTAA

The PSORT algorithm predicts an inner membrane location (0.100).

30           The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 63A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 63B) and FACS (Figure 63C) analyses.

These experiments show that cp7107 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 35          Example 64

The following *C.pneumoniae* protein (PID 4376467) was expressed <SEQ ID 127; cp6467>:

1          MLRFFAVFIS TLWLITSGCS PSQSSKGIFV VNMKEMPRSL DPGKTRLIAD  
 51        QTLMRHLYEG LVEEHQSQNGE IKPALAESYT ISEDGTRYTF KIKNIILWSNG  
 40        101 DPLTAQDFVS SWKEILKEDA SSVLYAFLP IKNARAIFDD TESPENLGV  
 151 ALDKRHLEIQ LETPCAHFLH FLTLPIFFPV HETLRNYSSTS FEEMPITCGA  
 201 FRPVSLEKGL RLHILEKNPMY HNKSRVKLHK IIVQFISNAN TAAILFKHKK  
 251 LDWQGPPWGE PIPPEISASL HQDDQLFSLP GASTTWLLFN IQKKPWNNAK  
 301 LRKALSLAID KDMILTKVVYQ GLAEPTDHIL HPRLYPGTYP ERKRQNERIL  
 351 EAQQLFEEAL DELQMTREDL EKETLTFSFT SFSYGRICQM LREQWKKVLK  
 45        401 FTIPIVGQEF FTIQKNFLEG NYSLTVNQWT AAFIDPMSYL MIFANPGGIS  
 451 PYHLQDSHFQ TLLIKITQEH KKHLRNQLI EALDYLEHCH ILEPLCHPNL  
 501 RIALNKNIKN FNLFVRRTSD FRFIEKL\*

A predicted signal peptide is highlighted.

The cp6467 nucleotide sequence <SEQ ID 128> is:

50        1 ATGCTCCGTT TCTTCGGTGT ATTATATCA ACTCTTTGGC TCATTACCTC  
 51 AGGATGTTCC CCATCCCAAT CCTCTAAAGG AATTTTTGTG GTAAATATGA  
 101 AGGAAATGCC ACGCTCCCTG GATCCTGGAA AAACTCGTCT CATTGCAGAC  
 151 CAAACTCTAA TGCCTCATCT ATATGAAGGA CTCGTCGAAG AACATTCCCA  
 201 AAATGGAGAG ATTAAACCAG CCCTTGCAGA AAGCTACACC ATCTCCGAAG  
 251 ACGGGACTCG GTACACATT AAAATCAAAA ACATCCTTG GAGTAACGGA  
 301 GACCCCTCTGA CAGCTCAAGA CTTGTCCTCC TCTTGGAAAGG AAATCCTAAA

5           2051 ATCTAGAAGA AGGATCCCAC TCTCTACTTA GCTCATCACC CACCCACGTT  
          2101 TTCTCTATAA TCGCAGGATC TCCTTATTT CGGGAAAGCTT GGGATAATGA  
          2151 TTGGTACAGC TATACTGGC TTCGTGATGT CTGGGTGAAA CAACACCAAG  
          2201 ATTTCCCTCA AGATACTATA TTACCTCAGC TAAGTATCTA TGCTTCATA  
          2251 GAGAATTTTT GTAAACAAATA TGCTTGCAA CATGTAGTTC ATGACTTC  
          2301 TGATTTCTGC TCCGACCACT CCTTGACTCT TCCGGAGCTC TATGACAAAG  
          2351 GATCGCGTTT TCTAAGCTCC TTATTCACCA AAGATAAGAC CGTAGCTCTT  
          2401 ATCTATATAC GCGCTCTCT CTACCTTATG GTCCGTGAAG TCCCTTATGT  
          2451 TTCAAGAACAA CAGCTTCAG AAGTCTTACA TAACGTCTCT TCATATCTCG  
 10           2501 GGATTTCTC TCGTATTAC TATGAGAAAT TCCGCTCCCT GATAGAGGAA  
          2551 ACCATCCCTA AAATGACCTT ACTCTCCTCA GCAGACCTGA GGCATATCTA  
          2601 TAAAGGTCTC CTCATGCAA GTTATCAAAA GATCTACACC GAAGAAAGATA  
          2651 CGTACCTCCG CCTCACCAACG GCAATGAGGC ATCATAATCT TGCCTATCCC  
          2701 GCTCCTTGC TCTTGAGA CAGTAACTGG CCTTCTATTT ATTTGGATT  
          2751 CATCCTAAAT CCAGGAACCA CAGAGATCGA TCTTGGAAA TTAACTATG  
          2801 CAGGGCTGCA AGGACAGCCT CTTGACAATA TCCAGGAGCT GTTCGCAACG  
          2851 TCAAGACCCCT GGACCCCTCA TGCAAATCT ATAGATTATG GCATGCCACC  
          2901 GCCTCCAGGC TACCGCAGCC GCCTCCCTAA AGAATTTTC TAG

The PSORT algorithm predicts a cytoplasmic location (0.206).

20         The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 62A) or his-tagged product. The proteins were used to immunise mice, whose sera were used in Western blot (Figure 62B) and FACS (Figure 62C) analyses.

This protein also showed good cross-reactivity with human sera, including sera from patients with pneumonitis.

25         These experiments show that cp7101 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 63

The following *C.pneumoniae* protein (PID 4377107) was expressed <SEQ ID 125; cp7107>:

30           1 MSIVRNSALP LPCLSRSETF KKVRSHMKFM KVLTPWIYRK DLWVTAFLLT  
          51 AIPGSFAHTL VDIAGEPRHA AQATGVSGDG KIVIGMKVPD DPFAITVGFO  
          101 YIDGHLQPLE AVRPOCSVYP NGITPDGTVI VGTNYAIGMG SVAVKWVNKG  
          151 VSELPMLPDT LDVSASAVERA ALPDTLQVLSVYK QVLSVYK QVLSVYK  
          201 SLPDAMNACV NGISSLGDSII VGTMVDVSWR NTAVQWIGDQ LSVIGTLGGT  
          251 TSVASAISTD GTVIVGGSEN ADSQTHAYAY KNGVMSDIGT LGGFYSLAHA  
          301 VSSDGSVIVG VSTNSEHRYH AFQYADGQMV DLGTLGGPES YAQGVSGDGK  
          351 VIVGRAQVPS GDWHAFLCPF QAPSPAPVHG GSTVVTTSQNP RGMVDINATY  
          401 SSLKNSQQQL QRLLIQHSAK VESVSSGAPS FTSVKGAIISK QSPAVQNDVQ  
          451 KGTFLSYRSQ VHGNVQNQQL LTGAFMDWKL ASAPKCGFKV ALHYGSQDAL  
          501 VERAALPYTE QGLGSSVLSG FGGQVQGRYD FNLGETVVLQ PFMGIQVLHL  
          551 SREGYSEKNV RFPVSYDSVA YSAATSFMGA HVFASLSPKM STAATLGVER  
          601 DLNSHIDEFK GSVSAMGNFV LENSTVSLR PFASLAMYD VRQQQLVTL  
          651 VVMNQQPLTG TLSLVSQSSY NLSF\*

The cp7107 nucleotide sequence <SEQ ID 126> is:

45           1 ATGAGTATAG TCAGAAATTC TGCATTGCCA CTTCCGTGTT TAAGCAGATC  
          51 CGAAACCTTT AAAAAAGTTA GGTGCGATAT GAAATTATG AAAGTCCTTA  
          101 CTCATGGAT TTATCGAAA GATCTTGGG TAACAGCATT CTTACTGACA  
          151 GCAATTCCAG GATCTTGTGC ACATACTCTT GTTGATATAG CAGGAGAAC  
          201 TCGGCATGCT GCTCAAGCAA CAGGAGTTTC TGGAGATGGT AAAATTGTTA  
          251 TAGGAATGAA AGTTCCGGAT GATCCTTTG CTATAACTGT AGGATTCAA  
          301 TATATTGATG GGCATTGCA ACCCTTAGAG GCAGTACGTC CTCAATGCTC  
          351 TGTATACCTT AATGGTATAA CCCCGGACGG AACGGTTATT GTGGGTACAA  
          401 ACTATGCCAT CGGGATGGGT AGTGTGCTG TGAAATGGGT AAATGGCAAG  
          451 GTTTCTGAAT TTCCCATGCT CCCTGACACC CTCGATTCTG TAGCATCGGC  
          501 AGTTTCTGCA GATGGAAGAG TGATTGGAGG GAATGAAAT ATAAATCTTG  
          551 GCGCTTCTGT TGCTGTAAA TGGGAGGACG ACGTGATTAC ACAACTTC  
          601 TCTCTTCTG ATGCTATGAA TGCTTGTGTT AACGGAATT CTTCAGATGG

601 GAAGTTGTTG CCAGAGTTGA GGGCTATGTT TGTGCTAACT ACTCGTAG

The PSORT algorithm predicts an inner membrane location (0.149).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 65A) and as a GST-fusion product (Figure 65B). The recombinant protein was used to immunise mice, whose sera were  
5 used in a Western blot (Figure 65C) and for FACS analysis.

These experiments show that cp6679 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 66

The following *C.pneumoniae* protein (PID 4376890) was expressed <SEQ ID 131; cp6890>:

|    |                                                             |           |
|----|-------------------------------------------------------------|-----------|
| 10 | 1 MKQOLLFCCVCFAMSCSAYAS PRRQDPSVMK ETFRNNYGI                | VSGQEWKRG |
|    | 51 SDGTITKVLIK NGATLHEVYS GGLLHGEITL TFPHTTALDV VQIYDQGRLV  |           |
|    | 101 SRKTFVNGI PSQEELFNE D GTFVLTRWP NNDSDTITKP YFIETTYQGH   |           |
|    | 151 VIEGSYTSFVN GKYSSSIHNG EGVRSVFSSN NILLSEETFN EGVMVKYTTF |           |
| 15 | 201 YPNRDPEST HYQNQPHGL RLTYLQGGIP NTIEEWRYGF QDGTTIVFKN    |           |
|    | 251 GCKTSEIAYV KGVKEGLELR YNEQEIVAAE VSWRNDFLHG ERKIYAGGIQ  |           |
|    | 301 KHEWYYRGRS VSKAKFERLN AAG*                              |           |

A predicted signal peptide is highlighted.

The ep6890 nucleotide sequence <SEQ ID 132> is:

|    |                                                             |      |
|----|-------------------------------------------------------------|------|
| 20 | 1 ATGAAACAAT TACTTTCTG TGTTTGGCTA TTTGCTATGT CATGTCTGC      |      |
|    | 51 TTACGCATCC CCACGACGAC AAGATCCTTC TGTTATGAAG GAAACATTCC   |      |
|    | 101 GAAATAATTA TGGCATTATT GTTTCCGGTC AAGAATGGGT AAAGCGTGGT  |      |
|    | 151 TCTGACGGCA CCATCACCAA AGTACTCAAA AATGGAGCTA CCCTGCATGA  |      |
|    | 201 AGTTTATTCT GGAGGCCCTCC TTCATGGGGA AATTACCTTA ACCTTTC    | CCCC |
| 25 | 251 ATACACACAGC ATTGGACGTT GTTCAAATCT ATGATCAAGG TAGACTCGTT |      |
|    | 301 TCTCGCAAAA CCTTTTTTGT GAACGGTCTT CCATCTCAAG AAGAGCTGTT  |      |
|    | 351 CAATGAAGAT GGCACGTTTG TCCTCACACG ATGGCCGGAC AACAAACGACA |      |
|    | 401 GTGATACCAT CACAAAGCCT TACTTCATAG AAACGACATA TCAAGGGCAT  |      |
|    | 451 GTCATAGAAC GAAGTTATAC TTCCCTTTAAT GGGAAATACT CCTCATCCAT |      |
| 30 | 501 CCACAATGGG GAGGGAGTTTC GTTCTGTGTT CTCTCCAAT AACATCCTTC  |      |
|    | 551 TTTCTGAAGA GACCTTCAT GAAGGTGTCA TGGTGAATA TACCACATTC    |      |
|    | 601 TATCCGAATC CGGATCCCAG ATCGATTACT CATTATCAAAT ATGGACAGCC |      |
|    | 651 TCACGGCTTA CGGCTAACAT ATCTACAAGG TGGCATCCCC AATACGATAG  |      |
|    | 701 AGGAGTGGCG TTATGGCTTT CAAGACGGAA CGACCATCGT ATTTAAAAAT  |      |
| 35 | 751 GGTGTAAAGA CATCTGAGAT CGCTTATGTT AAGGGAGTGA AAGAAGGTTT  |      |
|    | 801 AGAAACTGCGC TACAATGAAC AGGAAATTGT AGCTGAAGAA GTTCTTGCG  |      |
|    | 851 GTAATGATTT TCTGCATGGA GAACGTAAGA TCTATGCTGG AGGAATCCAA  |      |
|    | 901 AAGCATGAAT GGTATTACCG CGGGAGATCT GTATCTAAAG CCAAATTGCA  |      |
|    | 951 GCGGCTAAAT GCTGCAGGAT AG                                |      |

The PSORT algorithm predicts an outer membrane location (0.940).

40 The protein was expressed in *E.coli* and purified as a GST-fusion product, as shown in Figure 66A. The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 66B) and for FACS analysis. A his-tagged protein was also expressed.

These experiments show that cp6890 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 67

The following *C.pneumoniae* protein (PID 6172323) was expressed <SEQ ID 133; cp0018>:

5           351 GGAAGATGCG TCCTCCGTAT ATCTCTATGC GTTTTACCT ATCAAAATG  
 401 CTCGGGCAAT CTTTGATGAT ACTGAGTCTC CAGAAAATCT AGGAGTCCGA  
 451 GCTTAGATA AGCGTCATCT CGAAATTCTAG TTAGAAACTC CCTGCGCGCA  
 501 TTCCCTACAT TTCTTGACTC TTCTTATTCTT TTTCCTGTT CATGAAACTC  
 551 TGCGAAACTA TAGCACCTCT TTTGAAGAGA TGCCCATTAC CTGCGGTGCT  
 601 TTCCGCCCTG TGTCTCTAGA AAAAGGCCCTG AGACTCCATC TAGAGAAAAA  
 651 CCCTATGTAC CATAATAAAA GCCGTGTGAA ACTACATAAA ATTATTGTAC  
 701 AGTTTATCTC AAACGCTAAC ACTGCAGCCA TTCTATTCAA ACATAAGAAA  
 751 TTAGATTGGC AAGGACCTCC TTGGGGAGAA CCTATCCCTC CAGAAATCTC  
 10          801 AGCTTCTCTA CATCAAGATG ACCAGCTCTT TTCTCTTCCG GGCGCTTCGA  
 851 CTACATGGTT ACTCTTTAAT ATACAAAAAA AACCTTGAA CAATGCTAAA  
 901 TTACGCAAGG CATTGAGCCT TGCAATAGAC AAAGATATGT TAACCAAAGT  
 951 GGTATACCAA GGTCTTGAG AACCTACAGA TCATATCCTA CATCCAAGAC  
 15          1001 TTATCCAGG GACCTATCCC GAACGGAAA GACAAAACGA AAGAATTCTT  
 1051 GAGGCTCAAC AACTCTTGA AGAAGCTCTA GACGAACCTTC AAATGACACG  
 1101 CGAAGATCTA GAAAAGGAAA CTTGACTTT CTCAACCTTT TCTTTTCTT  
 1151 ACGGAAGGAT TTGCCAAATG CTAAGAGAAC AATGGAAGAA AGTCTTAAA  
 1201 TTTACTATCC CTATAGTAGG CCAAGAGTTT TTCACAATAC AAAAAAAACTT  
 1251 CCTAGAGGGG AACTATTCCC TAACCCTGAA CCAATGGACC GCAGCATTTA  
 20          1301 TTGATCCGAT GTCTTATCTC ATGATCTTG CCAATCCTGG AGGAATTCTC  
 1351 CCCTATCACC TCCAAGATTC ACACTTCAA ACTCTCTCA TAAAGATCAC  
 1401 TCAAGAACAT AAAAAACACC TACGAAATCA GCTTATTATT GAAGCCCTTG  
 1451 ACTATTTAGA ACACGTAC ATTCTCGAAC CACTATGTCA TCCAAATCTT  
 1501 CGAATTGCTT TGAACAAAAA CATTAAAAAC TTTAATCTT TTGTTCGACG  
 25          1551 AACCTCAGAC TTTCGTTTTA TAGAAAAACT ATAG

The PSORT algorithm predicts an outer membrane lipoprotein (0.790).

The protein was expressed in *E.coli* and purified as a his-tag product and a GST-fusion protein, as shown in Figure 64A. The recombinant his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 64B). The recombinant GST-fusion protein was also used to immunise mice, whose sera were used in a Western blot (Figure 64C) and for FACS analysis (Figure 64D).

These experiments show that cp6467 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 65

35          The following *C.pneumoniae* protein (PID 4376679) was expressed <SEQ ID 129; cp6679>:

1          MRKMLVLLAS LGLLSPTLSS CTHLGSSGSY HPKLYTSGSK TKGVIAMLPV  
 51        FHRPGKSLEP LPWNLQGEFT EEIISKRFYAS EKVFLIKHNA SPQTVSQFYA  
 101       PIANRLPETI IEQFLPAEFI VATELLEQKT GKEAGVDSVT ASVRVRVF DI  
 151       RHHKIALIYQ EIIIECSQPLT TLVNDYHRYG WNSKHFDSTP MGLMHSLRF  
 40        201 EVVARVEGYV CANYS\*

A predicted signal peptide is highlighted.

The cp6679 nucleotide sequence <SEQ ID 130> is:

45          1 ATGCGAAAAA TGTTGGTATT ATTGGCATCT TTAGGACTTC TATCCCCAAC  
 51 CCTATCCAGC TGCACCTCACT TAGGCTCTTC AGGAAGTTAT CATCCTAACG  
 101 TATACACTTC AGGGAGCAAA ACTAAAGGTG TGATTGCCAT GCTTCCCTGTA  
 151 TTTCATCGCC CAGGAAAGAG TCTGAAACCT TTACCTTGGA ACCTCCAAGG  
 201 AGAATTACT GAAGAGATCA GCAGAAAGTT TTATGCTTCG GAAAAGGTCT  
 251 TCCTGATCAA GCACAATGCT TCACCTCAGA CAGTCTCTCA GTTCTATGCT  
 301 CCGATTGCGA ATCGTCTACC CGAAACAATT ATTGAGCAAT TTCTCCCTGC  
 351 AGAATTCACTT GTTGCTACAG AACTGTTAGA ACAAAAGACA GGGAAAGAAG  
 401 CAGGTGTCGA TTCTGTAACA GCGCTGTAC GTGTTGCGGT TTTTGATATC  
 451 CGTCATCATA AAATAGCTCT CATTATCAA GAGATTATCG AATGCAGCCA  
 50        501 GCCTTTAACCT ACCCTAGTCA ATGATTATCA TCGCTATGGC TGGAACTCAA  
 551 AACATTTTGA TTCAACGCCG ATGGGTTAA TGCAATAGCCG TCTTTCCGC

301 DDIDEESIRL QQAEAAALAR LPEEMSAFEG YIKVVESHLE NMKSLPYDGH  
 351 GLEEKTQHQI RVVRSSLKAM VPEFLDIRRI FEEEEEFFLS ARKRLIDLAT  
 401 TLVERKILTE QLERNNLRKA FSYLYQDSIF KKIIDNFEKL AWKFMILSKS  
 451 ICRFTIIFEN HEHGVAKSLL HKNAVLLEKV IYRSLQKSYR DIGMSSAKMK  
 501 ILHGNPFFSL EDNKKTIMKE HAEMLESLSS YRKVFLALSD ENVVDTPSDP  
 551 KKWDLSGIPC RDALSEISRD EQWQKKAHLK HQESLYTQAR DRLTDQSSKE  
 601 NQKELEKAEQ EYISSWERVK KFEIERVQER IRAIQKLYPN ILEREEETTG  
 651 QETVTPTVQG TTASSDLTDI LGRIEVSSRE DNQNQESCVK VLRSHEVEMS  
 701 WEVKQEYGPK KKEFQDQMGS LERFFTEHIE ELEVLFQKDYS KHLFSYFKVN  
 751 NKKEVQYAKF RLKVLESDEL GILAQTESAE SLLTQEELPI LATRGALEKA  
 801 VFKGSLCCAL ASKAKPYFEE DPRFQDSDTQ LRALTTLRQE AKASLEEEIK  
 851 RFSNLENDIA EERRLLKESK QTFERAGLGV LREIAVESTY DLRSLTNTWE  
 901 GTPESEKVYF SMYLNYYNEE KRRAKTRLVE MTQRYRDFKM ALEAMQFNEE  
 951 ALLQEELSIQ APSE\*

15 A predicted signal peptide is highlighted.

The cp6262 nucleotide sequence <SEQ ID 136> is:

1 ATGAGGAAAC TTCTGTATTCT TGCGATCGTT CTCATAGCTT TGAGCATTAT  
 51 TTTGATTGCA GGTGGTGTGG TATTGCTTAC TGTAGCGATC CCTGGATTAA  
 101 GTTCAGTCAT TTCTTCCCCG GCAGGGATGG GTGCCCTGTGC TTTGGGATGT  
 151 GTGATGCTTG CTTTAGGGAT CGATGTTCTT CTGAAGAAC GAGAAGTCCC  
 201 TATAGTTCTC GCATCTGTAA CTACGACACC AGGAACCTGGC AGCCCTAGAA  
 251 GTGGTATTTTC TATTTCAGGA GCTGATAGCA CCATACGTC TCTTCCTACG  
 301 TATCTCTTGG ACGAGGGACA TCCACAATCC ATGAGGAAAC TTCTGTATTCT  
 351 TGGCATCGTT CTCATAGTTT TTAGCATTAT TTGATTGCA AGTGGTGTGG  
 401 TATTGCTTAC TGTAGCGATC CCTGGATTAA GTTCAGTCAT TTCTTCCCCG  
 451 GCAGGGATGG GTGCCCTGTGC TTTGGGATGT GTGATGCTTG CTTTAGGGAT  
 501 CGATGTTCTT CTGAAGAAC GAGAAGTCCC TATAGTTCTC GCATCTGTAA  
 551 CTACGACACC AGGAACCTGGC AGCCCTAGAA GTGGTATTTTC TATTTCAGGA  
 601 GCTGATAGCA CCATACGTT TCTTCCTACG TATCCCTTGG ACGAGGGACA  
 651 TCCACAATCC ATGAGGAAAC TTCTGTATTCT TGCGATCGTT CTCATAGTTT  
 701 TTAGCATTAT TTGATTGCA AGTGGTGTGG TATTGCTTAC TGTAGCGATC  
 751 CCTGGATTAA GCTCGATCAT TTCTTCCCCA GCGGAGATGG GTGCCCTGTGC  
 801 TTGGGATGT GTGATGCTTG CTTGGGGAT CGACGTTCTT CTGAAGAAC  
 851 GAGAAGTCCC TATAGTAGTT CCCGCACCTA TTCCCTGAAGA AGTCGTCATA  
 901 GATGATATAG ATGAAGAGAG TATACGGCTG CAGCAGGAAG CTGAAGCCGC  
 951 TTTAGCAAGA CTTCCCTGAG AGATGAGTGC ATTGAAAGGT TACATAAAAG  
 1001 TTGTCGAGAG TCATTTGGAG AACATGAAAA GGCTGCCTTA TGATGGTCAT  
 1051 GGCGCTAGAAG AGAAAACGAA ACATCAGATA AGAGTCGTC GATCTTCTTT  
 1101 GAAGGCTATG GTTCCAGAAT TTTAGATAT CAGAAGAATT TTTGAAGAAG  
 1151 AAGAGTTCTT TTTCTCTCA GCTCGCAAC GACTTATAGA TTTAGCTACT  
 1201 ACTTTAGTAG AGAGAAAAAT TTTAACAGAG CAACTTGAGC GCAATAATTT  
 1251 AAGGAAAGCG TTTTCTTATT TATATCAGGA CTCAATTTTT AAAAAAATTA  
 1301 TTGATAACTT CGAGAAGTTA GCATGGAAAT TTATGATTTT GAGTAAATCA  
 1351 ATTGTCGAT TTACAATTAT TTTGAAAAT CATGAACATG GTGAGCAA  
 1401 GAGCCTGTTA CACAAGAATG CAGTGTACT GGAGAAGGTA ATCTATAGGA  
 1451 GTTGTGCAAA AAGCTATAGA GATATAGGCA TGTGATCTGC AAAGATGAAA  
 1501 ATCTTGCAAG GCAACCCCTT TTCTCTTTG GAAGATAATA AAAAGACGAT  
 1551 AATGAAAGAA CACGCAGAGA TGCTTGAAG TCTCAGTAGC TATAGGAAGG  
 1601 TATTTTTAGC TCTATCTGAT GAGAACGTT TAGATACACC TAGCGATCCA  
 1651 AAGAAATGGG ATTTGTCAGG AATCCCTGT AGGGACGCGT TGTCTGAGAT  
 1701 TTCTCGTGT GAAACAGTGGC AGAAGAAAGC ACATCTAAAG CATCAAGAGT  
 1751 CCCTCTATAC GCAAGCTAGG GATCGTTAA CAGACCAGAG CTCTAAAGAA  
 1801 AATCAGAAAG AGTTAGAGAA AGCTGAACAA GAGTACATAT CTTCTTGGGA  
 1851 ACGGGTTAAA AAATTGAGA TTGAGAGAGT ACAGGAGAGG ATACGGGCAA  
 1901 TTCAAAAGCT TTATCCTAAT ATCCTCGAGA GAGAAGAAGA AACACAGGT  
 1951 CAGGAGACTG TGACTCCAAC TGTTCAAGGG ACGACGGCTT CATCCGATTT  
 2001 AACAGATATT TTAGGAAGAA TAGAGGTCTC CAGTAGGGAG GATAATCAGA  
 2051 ATCAAGAGTC TTGTGTAAGA GTCTTAAGAA GTCATGAGGT AGAAATGAGC  
 2101 TGGGAAGTCA AACAAAGAGTA TGGCCCTAAG AAAAAAGAAT TTCAGGATCA  
 2151 AATGGGTTCT TTAGAGAGGT TTTTACAGA GCATATTGAA GAGTTAGAAG  
 2201 TATTACAGAA GGACTACTCT AACACATTGT CTTATTAA AAGTAAAC  
 2251 AATAAGAAAG AGGTTCAATA TGCGAAGTTT AGCTTGAAGG TTTAGAGTC  
 2301 AGATTTAGAA GGGATTCTAG CTCAGACTGA GAGTGCAG AGTCTGTTAA  
 2351 CTCAAGAAGA ACTTCCGATT CTTGCAACTC GGGGAGCCTT AGAGAAAGCT  
 2401 GTTTCAAGAAG GGAGTCATG TTGCGCGCTA GCAAGCAAAG CAAACCCCTA

5           1 MKTSVSMILLA LLCSGASSIV LHAATTPLNP EDGFIGEGNT NTFSPKSTTD  
       51 AAGTTYSLTG EVLYIDPGKG GSITGTCFVE TAGDLTFLGN GNTLKFLSVD  
      101 AGANIAVAHV QGSKNLNSFTD FLSLVITESP KSAVTIGKGS LVSLGAVQLQ  
      151 DINTLVLTSN ASVEDGGVIK GNSCLIQGIK NSAIFGQNTS SKKGGAIISTT  
      201 QGLTIENNLG TLKFNEMKAV TSGGALDLGA ASTFTANHEL IFSQNKTSGN  
      251 AANGGAINCS GDLTFTDNTS LLLQENSTMQ DGGALCSTGT ISITGSDSIN  
      301 VIGNTSGQKG GAISAASLKI LGQQGGALFS NNVVTHATPL GGAIFINTGG  
      351 SLQLFTQGGD IVFEGNQVTT TAPNATTKRN VIHLESTAKW TGLAASQGNA  
 10       401 IYFYDPITTN DTGASDMLRI NEVSANQKLS GSIVFSGERL STAEEAIAENL  
      451 TSRINQPVTL VEGSLVLKQG VTLITQGFSQ EPESTLLLTL GTSL\*

A predicted signal peptide is highlighted.

The cp0018 nucleotide sequence <SEQ ID 134> is:

15       1 ATGAAGACTT CAGTTCTAT GTTGTTGGCC CTGCTTTGCT CGGGGGCTAG  
      51 CTTCTATTGTA CTCCCATGCCG CAACCACTCC ACTAAATCCT GAAGATGGGT  
      101 TTATTGGGGA GGGCAATACA AATACTTTTT CTCCGAAATC TACAACGGAT  
      151 GCTGCAGGAA CTACCTACTC TCTCACAGGA GAGGTTCTGT ATATAGATCC  
      201 GGGGAAAGGT GGTTCAATT A CAGGAACCTTG CTTTGTAGAA ACTGCTGGCG  
      251 ATCTTACATT TTTAGGTAAT GGAAATACCC TAAAGTTCCCT GTCGGTAGAT  
      301 GCAGGGTCTA ATATCGCGGT TGCTCATGTA CAAGGAAGTA AGAATTAAAG  
      351 CTTCACAGAT TTCCCTTCTC TGGTGATCAC AGAACATCCA AAATCCGCTG  
      401 TTACTACAGG AAAAGGTAGC CTAGTCAGTT TAGGTGCAGT CCAACTGCAA  
      451 GATATAAAACA CTCTAGTTCT TACAAAGCAAT GCCTCTGTCG AAGATGGTGG  
      501 CGTGATTAAA GGAAACTCCT GCTTGATTCA GGGAAATCAA AATAGTGCGA  
      551 TTTTGGACAA AAATACATCT TCGAAAAAAAG GAGGGGCGAT CTCCACGACT  
      601 CAAGGACTTA CCATAGAGAA TAACTTAGGG ACGCTAAAGT TCAATGAAAA  
      651 CAAAGCAGTG ACCTCAGGAG GCGCCTTAGA TTTAGGAGCC GCGTCTACAT  
      701 TCACTGCGAA CCATGAGTTG ATATTTTCAC AAAATAAGAC TTCTGGAAAT  
      751 GCTGCAAATG GCGGAGCCAT AAATTGCTCA GGGGACCTTA CATTACTGA  
      801 TAACACTTCT TTGTTACTTC AAGAAAATAG CACAATGCAG GATGGTGGAG  
      851 CTTTGTGTAG CACAGGAACC ATAAGCATTA CCGGTAGTGA TTCTATCAAT  
      901 GTGATAGGAA ATACTPTCAGG ACAAAAAGGA GGAGCGATT CTGCAGCTTC  
      951 TCTCAAGATT TTGGGAGGGC AGGGAGGCAG TCTCTTTCT AATAACGTAG  
      1001 TGACTCATGC CACCCCTCTA GGAGGTGCCA TTTTTATCAA CACAGGAGGA  
      1051 TCCTTGCAGC TCTTCACTCA AGGAGGGGAT ATCGTATTTCG AGGGGAATCA  
      1101 GGTCACTACA ACAGCTCCAA ATGCTACCAC TAAGAGAAA GTAATTCCACC  
      1151 TCGAGAGCAG CGCGAAGTGG ACGGGACTTG CTGCAAGTCA AGGTAACGCT  
      1201 ATCTATTCT ATGATCCCAT TACCAAC GATAACGGAG CAACCGATAAA  
      1251 CTACGTATC AATGAGGTC A GTGCAAATCA AAAGCTCTCG GGATCTATAG  
      1301 TATTTTCTGG AGAGAGATTG TCGACAGCAG AAAGCTATAGC TGAAAATCTT  
      1351 ACTTCGAGGA TCAACCAGCC TGTCACTTTA GTAGAGGGGA GCTTAGTACT  
      1401 TAAACAGGGG GTGACCTTGA TCACACAAGG ATTCTCCAG GAGCCAGAAT  
      1451 CCACGCTTCT TTTGGATCTG GGGACCTCAT TATAA

The PSORT algorithm predicts outer membrane (0.935).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 67A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 45 67B) and for FACS analysis.

These experiments show that cp0018 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 68

50       The following *C.pneumoniae* protein (PID 4376262) was expressed <SEQ ID 135; cp6262>:

55       1 MRKLRLILAIV LIALSIIILIA GGVVLLTVAI PGLSSVISSP AGMGACALGC  
      51 VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG ADSTIRSLPT  
      101 YLLDEGHPQS MRKLRLILAIV LIVFSIILIA SGVVLLTVAI PGLSSVISSP  
      151 AGMGACALGC VMLALGIDVL LKKREVPIVL ASVTTTPGTG SPRSGISISG  
      201 ADSTIRSLPT YPLDEGHPQS MRKLRLILAIV LIVFSIILIA SGVVLLTVAI  
      251 PGLSSIISSP AEMGACALGC VMLALGIDVL LKKREVPIVV PAPIPEEVVI

-110-

1401 AAAGCTTGC TCTCTACGTC TTGATGAAAA AGAGTTATTA CAAAAAGAAA  
 1451 TCAAGAAAGA GGAATTATC CAAAAGAAC AACAAAGGCA TGCAGATAGA  
 1501 TCACGTACATA CTACGTATCA AAAGCTACGA ATTGCTGAAG AGCTTGCTCT  
 1551 TGAGCTGAAG AAGAAAATCT AA

- 5 The PSORT algorithm predicts cytoplasmic location (0.412).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 69A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 69B) and for FACS analysis.

These experiments show that cp6269 is a surface-exposed and immunoaccessible protein, and that it  
 10 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 70

The following *C.pneumoniae* protein (PID 4376270) was expressed <SEQ ID 139; cp6270>:

1 MKIPLRFLLI SLVPTLSMSN LLGAATTEEL SASNSFDGTT STTSFSSKTS  
 5 SATDGTNYVF KDSVVIENVP KTGETQSTSC FKNDAAAGDLNFLGGGF SFT  
 10 FSNIDATTAS GAAIGSEAAN KTVTLSGFSA LSFLKSPAST VTNGLGINV  
 15 KGNLSLLDND KVLIQDNFST GDGGAINCAG SLKIANNKSL SFIGNSSSTR  
 20 GGAIIHTKNLT LSSGGETLFO GNTAPTAAGK GGAIAIAIDSG TLSISGDSD  
 25 IIFEGNTIGA TGTVSHSAID LGTSAKITAL RAAQGHTIYF YDPITVTGST  
 30 SVADALNINS PDTGDNKEYT GTIVFSGEKL TEAEAKDEKN RTSKLLQNVA  
 35 FKNGTVVLKG DVVLSANGFS QDANSKLIIMD LGTSLVANTE SIELTNLEIN  
 40 IDSRLRNGKKI KLSAATAQKD IRIDRPVLA ISDESFYQNG FLNEDHSYDG  
 45 ILELDAGKDI VISADSRSID AVQSPYGYQG KWTINWSTD KKATVSWAKQ  
 50 SFNPTAEQEA PLVPNLLWGS FIDVRSFQNF IELGTEGAPY EKRFWVAGIS  
 55 NVLHRSGREN QRKFRHVSGG AVVGASTRMP GGDTLSLGFA QLFARDKDYF  
 60 MNTNFAKTYA GSLRLQHDAS LYSVVSILLG EGGLREILLP YVSKTLPCSF  
 65 YGQLSYGHTD HRMKTESLPP PPPTLSTDHT SWGGYVWAGE LGTRVAVENT  
 70 SGRRGFFQEYT PFVKVQAVYA RQDSFVELGA ISRDFSDSHL VNLAIPLGIK  
 75 LEKRAEAEQYY HVVAMYSPDV CRSNPKCTTT LLSNQGSWKT KGSNLARQAG  
 80 IVQASGFRSL GAAAELFGNF GFEWRGSSRS YNVDAGSKIK F\*

- 30 A predicted signal peptide is highlighted.

The cp6270 nucleotide sequence <SEQ ID 140> is:

1 ATGAAGATTC CACTCCGCTT TTTATTGATA TCATTAGTAC CTACGCCCTTC  
 5 TATGTCGAAT TTAAATTAGGAG CTGCTACTAC CGAAGAGTTA TCGGCTAGCA  
 10 ATAGCTTCGA TGGAACTACA TCAACAAACAA GCTTTCTAG TAAAACATCA  
 15 TCGGCTACAG ATGGCACCAA TTATGTTTT AAAGATTCTG TAGTTATAGA  
 20 AAATGTACCC AAAACAGGGG AAACTCAGTC TACTAGTTGT TTTAAAAATG  
 25 ACGCTGCAGC TGGAGATCTA AATTCTTAG GAGGGGGATT TTCTTTCACA  
 30 TTTAGCAATA TCGATGCAAC CACGGCTCT GGAGCTGCTA TTGGAAGTGA  
 35 AGCAGCTAAT AAGACAGTCA CGTTATCAGG ATTTCCGCA CTTTCTTTTC  
 40 TAAATCCCC AGCAAGTACA GTGACTAATG GATTGGGAGC TATCAATGTT  
 45 AAAGGGAAATT TAAGCCTATT GGATAATGAT AAGGTATTGA TTCAGGACAA  
 50 TTTCTCAACA GGAGATGGCG GAGCAATTAA TTGTGCAGGC TCCTTGAAGA  
 55 TCGCAAACAA TAAGTCCCTT TCTTTATTG GAAATAGTTC TTCAACACGT  
 60 GCGGGAGCGA TTCATACCAA AACCTCACA CTATCTCTG GTGGGGAAAC  
 65 TCTATTTCAG GGGAAATACAG CGCCTACGGC TGCTGGTAAA GGAGGGTGC  
 70 TCGCGATTGC AGACTCTGGC ACCCTATCCA TTTCTGGAGA CAGTGGCGAC  
 75 ATTATCTTTG AAGGCAATAC GATAGGAGCT ACAGGAACCG TCTCTCATAG  
 80 TGTATTGAT TTAGGAAC TCGCTAAAGAT AACTGCGTTA CGTGCCTGC  
 85 AAGGACATAC GATATACTTT TATGATCCGA TTACTGTAAC AGGATCGACA  
 90 TCTGTTGCTG ATGCTCTCAA TATTAATAGC CCTGATACTG GAGATAACAA  
 95 AGAGTATACG GGAACCTAG TCTTTCTGG AGAGAAGCTC ACGGAGGGCAG  
 100 AAGCTAAAGA TGAGAAGAAC CGCACTTCTA AATTACTTCA AAATGTTGCT  
 105 TTAAAAATG GGACTGTAGT TTAAAGGTT GATGTCGTT TAAGTGC  
 110 CGGTTCTCT CAGGATGCAA ACTCTAAGGT GATTATGGAT TTAGGGACGT  
 115 CGTTGGTTGC AACACCGAA AGTATCGAGT TAACGAATT GGAAATTAAT  
 120 ATAGACTCTC TCAGGAACGG GAAAAAGATA AAACCTCAGTG CTGCCACAGC

5  
2451 TTTTGAAGAG GATCCCAGAT TCCAAGATT TGATACGAA TTGCGAGCTC  
2501 TGACTCTAAG GTTACAGGGAG GCTAAGGCAGA GCCTGGAAAGA AGAGATAAAG  
2551 AGATTTCAA ATCTTGAGAA CGATAITGCA GAGGAAAGAC GCCTTCTTAA  
2601 AGAGAGCAAG CAGACGTTG AAAGAGCAGG TTTAGGGTT CTCCGAGAAA  
2651 TTGCACTCGA GTCTACTTAT GATTGCGTT CCTTAACAAA TACATGGAA  
2701 GGGACCCCAAG AGAGTGAGAA GGTCTATTAA AGCATGTATC TTAATTATTA  
2751 CAACGAAGAG AACCGTAGGG CTAAAACAAG ATTGGTTGAA ATGACACAGA  
2801 GGTATAGAGA TTTTAAAATG GCCTTGGAG CTATGCAGTT TAATGAAGAA  
2851 GCCCTTTGC AAGAGGAAC CTCTATTCAA GCTCCCAGTG AATAA

10 The PSORT algorithm predicts inner membrane (0.660).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 68A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 68B) and for FACS analysis.

15 These experiments show that cp6262 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 69

The following *C.pneumoniae* protein (PID 4376269) was expressed <SEQ ID 137; cp6269>:

20  
1 MYQENLRLL RLLYNSVQKS YADRLFSYEK TKMVHDTPLI PWEEDKEKCA  
51 EAEKAFLQQ KILLDYGKSI FWLNENDEIN LNDPWSWGLN TVRTRKVQFQE  
101 VDDSERWNHK VLIQKLEDDY EKLLEESSKE STEANKKLLS DLVDRLED  
151 TKFFLKKQEE VETRVKDLRA RYGGTVDPKQ DTEAKKKVEL EASLETFLDS  
201 IESELVQCLE DQDIYWKEQD VKDLARTQEL EEQDIEAKRE EAAEDLRSLN  
251 ERLKKSKTML DRAKWHIENA EDSITWWTSQ IEMKDMKARL KILKEDITSV  
301 LPEIDEIETC LSLEELPLLT TRELLTKSYL KFKICSETLL KMTSVFENNI  
351 YVQEYEVOLQ NLGFKLQGIS QRFGKKQDDF ANLEEQVALQ KKRLRELTQN  
401 FEIQQFNFMK EDFKAAAKDL YIRSTAEQKM NFDVPCMELF RRYHEEVNKP  
451 LLELMYNCAD SYRDAKKKLC SLRLDEKELL QKEIKKEEFY QKKQQRHADR  
501 SRHTTYQKLR IAEELALELK KKI\*

The cp6269 nucleotide sequence <SEQ ID 138> is:

30  
1 ATGTACCAGG AGAACCTAAG ATTGTTGGAA AGGCTTCCTT ATAATAGTGT  
51 TCAAAAGAGC TATGCGGATC GGCTGTTTC CTATGAAAAG ACAAAAGATGG  
101 TGCACGATAC TCCGCTGATT CCTTGGGAAG AGGATAAGGA AAAATGTGCT  
151 GAAGCTGAGA AAGCTTCTT AGAGCAACAG AAGATTCTCC TAGATTATGG  
201 AAAATCTATC TTTTGGCTGA ATGAGAACGA TGAGATCAAT TTAAACGATC  
251 CTTGGAGTTG GGGCTTAAT ACGGTGAGGA CTAGGAAAGT ATTCCAAGAG  
301 GTTGACGACA GTGAACGTTG GAATCATTAAG GTACTCATTC AAAAACTCGA  
351 GGACGATTAT GAGAAACCTTC TAGAGGAAAG TTCAAAAGAG TCTACTGAAG  
401 CAAATAAGAA GCTTTATCT GACTTÀGTAG ATCGTCTTGA AGATGCTAAG  
451 ACAAAATTTT TCCTGAAGAA ACAGGAGGAG GTGGAGACTC GCGTTAAGGA  
501 TCTTAGAGCT CGATATGGAG GCACAGTAGA TCCTAACGAG GATACGGAAG  
551 CTAAGAACAA AGTCGAATTG GAGGCTAGCT TAGAAACCTT TTTAGATTCC  
601 ATCGAATCAG AGCTAGTACA GTGTTTAGAA GATCAAGATA TATATTGGAA  
651 AGAACAGGAT GTCAAAGATC TAGCACGTAC GCAAGAGCTC GAGGAACAAG  
701 ATATTGAAGC GAAGAGGGAA GAAGCTGCCG AAGACCTAAG AAGTCTTAAT  
751 GAGCGTTAA AGAACGCTAA AACTATGTTA GATAGGGCTA AATGGCATAT  
801 TGAAGATGCT GAGGACAGTA TTACCTGGTG GACTAGTCAG ATAGAAATGA  
851 AGGATATGAA AGCAAGACTG AAGATCTTAA AAGAAGATAT AACAAAGTGT  
901 CTACCTGAAA TAGATGAGAT TGAAACGTGT TTAAGCTTAG AGGAGCTTCC  
951 TTGCTTACG ACCAGGAAC TCTTAACTAA GTCTTACCTA AAGTTAAGA  
1001 TTGTTCCGA AACACTATTA AAAATGACTT CTGTTGTTGA GAACAATATC  
1051 TATGTTCAAGG AGTACGAGGT TCAGCTGCAA AATCTAGGGT TTAAGTTACA  
1101 AGGTATATCT CAGAGATTG AAAGAAAACA AGACGATTTT GCGAATCTAG  
1151 AGGAACAGGT TGCTTGCAG AAGAAACGAC TCAGAGAGCT CACTCAGAAT  
1201 TTGAAATAC AAGGATTCAA TTTCATGAAA GAAGATTAA AGGCAGCCGC  
1251 TAAAGATCTT TATATAAGAA GTACAGCTGA ACAAAAGATG AACTTTGATG  
1301 TGCTTGCAT GGAGCTCTC CGTAGGTATC ATGAGGGAGGT CAACAAAGCCG  
1351 CTCTTGTAGT TGATGTACAA TTGTGCAGAC AGTTATAGAG ATGCTAAGAA

701 TAAAAAGCGA ATTTCTTATT TCCACAACCT TTATAGATAC GGCCAACCCC  
 751 TTCTAA

The PSORT algorithm predicts cytoplasmic (0.158).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 71A). The

5 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 71B) and for FACS analysis.

These experiments show that cp6402 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 72

10 The following *C.pneumoniae* protein (PID 4376520) was expressed <SEQ ID 143; cp6520>:

1 MKHYLSFPSPS ADFFSKQGAI ETQVLFGERV LVKGSTCYAY SQLFHINELLW  
 51 KPYPGHSFRS TLVPCTPEFH IHPNVSVVSV DAFLDPWGIP LPFGTLLHVN  
 101 SQNTVIFPKD ILNHMNTIWG SGTPQCDPRH LRRLNYNFNA ELLIKDADLL  
 15 151 LNFPLYVWGGR SVHESLEKPG VDCSGFINIL YQAQGYNVPR NAADQYADCH  
 201 WISSFENLPS GGLIFLYPK EKRISHVMLK QDSSTLIHAS GGGKKVEYFI  
 251 LEQDGKFLLDS TYLFFRNNQR GRAFFGIPRK RKAFL\*

The cp6520 nucleotide sequence <SEQ ID 144> is:

1 ATGAAACACT ACCTATCATT TTCTCCCTCT GCTGATTTTT TCTCTAAACA  
 51 GGGTGCTATT GAAACTCAAG TCCTTTTGG AGAGCGCGTC TTAGTCAAAG  
 101 GGAGCACCTG CTATGCATAT TCCCAATTAT TCCACAATGA GCTGTTATGG  
 151 AAGCCCTATC CAGGTCTAG CTTTCGTTCT ACCCTAGTCC CCTGCACTCC  
 201 TGAATTTCAT ATCCATCCAA ATGTTTCTGT GGTTTCTGTG GATGCATTTT  
 251 TAGATCCTTG GGGGATCCCT CTTCCCTTTG GAACTTTACT CCATGTGAAT  
 301 TCTCAAAATA CCGTTATTTT CCCTAAGGAT ATTCTCAATC ATATGAACAC  
 351 CATCTGGGGC TCCGGCACAC CTCAATGCGA TCCTAGACAT CTACGTCGTC  
 401 TAAATTATAA CTTCTTTGCT GAACTTTAA TTAAAGACGC AGACCTTTA  
 451 CTGAACCTTC CCTATGTATG GGGAGGACGG TCTGTACACG AAAGTCTGGA  
 501 AAAGCCGGGT GTTGATTGTT CGGGATTTAT CAATATCCTT TACCAGGCAC  
 551 AGGGATACAA CGTCCCTAGA AACGCTGCAG ATCAATATGC GGATTGTCAT  
 601 TGGATCTCTA GCTTTGAGAA CCTTCCTTCT GGTGGGTTAA TATTCTTTA  
 651 CCCTAAAGAA GAAAAGCGTA TTTCTCATGT TATGTTGAAA CAGGATAGTT  
 701 CCACCCCTCAT TCATGCTTCT GGTGGAGGGAA AAAAGTGGAA GTATTTCATT  
 751 TTAGAACAAAG ATGGGAAGTT TTTAGATTG ACTTATCTAT TTTTAGAAA  
 801 TAATCAGAGG GGACGGGCAT TTTTGGGAT CCCTAGAAA AGAAAAGCCT  
 851 TTCTGTAA

The PSORT algorithm predicts cytoplasmic (0.265).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 72A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 72B) and for FACS analysis.

40 These experiments show that cp6520 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 73

The following *C.pneumoniae* protein (PID 4376567) was expressed <SEQ ID 145; cp6567>:

1 MTSPIPFQSS GDASFLAEQP QQLPSTSESQ LVTQLLTMMK HTQALSETVL  
 51 QQQRDRRLPTA SIIILQVGGAP TGGAGAPFQP GPADDHHHPI PPPVVPAQIE  
 101 TEITTIIRSEL QLMRSTLQQS TKGARTGVLV VTAILMTISL LAIIIIILAV  
 151 LGFTGVLPQV ALLMQGETNL IWAMVSGSII CFIALIGTLG LILTMNKNTPL

1251 TCAGAAAGAT ATTCGTATAG ATCGCCTGT TGTACTGGCA ATTAGCGATG  
 1301 AGAGTTTTA TCAAAATGGC TTTTGATGAG AGGACCATTC CTATGATGGG  
 1351 ATTCTTGAGT TAGATGCTGG GAAAGACATC GTGATTTCTG CAGATTCTCG  
 1401 CAGTATAGAT GCTGTACAAT CTCGTATGG CTATCAGGGA AAGTGGACGA  
 1451 TCAATTGGTC TACTGTATGAT AAGAAAGCTA CGGTTTCTG GGCAGAACAG  
 1501 AGTTTTAATC CCACTGCTGA GCAGGGAGGCT CCGTTAGTTC CTAATCTTCT  
 1551 TTGGGGTTCT TTTATAGATG TTGCTTCCTT CCAGAATTTC ATAGAGCTAG  
 1601 GTACTGAAGG TGCTCCCTAC GAAAAGAGAT TTTGGGTTGC AGGCATTTC  
 1651 AATGTTTGC ATAGGAGCGG TCGTGAAAAT CAAAGGAAAT TCCGTCATGT  
 1701 GAGTGGAGGT GCTGTAGTAG GTGCTAGCAC GAGGATGCGG GGTGGTGATA  
 1751 CCTTGCTCTC GGCTTTGCT CAGCTCTTG CGGGTGACAA AGACTACTTT  
 1801 ATGAATACCA ATTCGCAAA GACCTACGCA GGATCTTAC GTTTGCAGCA  
 1851 CGATGCTTCC CTATACTCTG TGGTGAGTAT CCTTTAGGA GAGGGAGGAC  
 1901 TCCGCCAGAT CCTGTTGCCT TATGTTTCCA AGACTCTGCC GTGCTCTTC  
 1951 TATGGGCAGC TTAGCTACGG CCATACGGAT CATCGCATGA AGACCGAGTC  
 2001 TCTACCCCCC CCCCCCCCAGA CGCTCTCGAC GGATCATACT TCTTGGGGAG  
 2051 GATATGTCG GGCTGGAGAG CTGGGAACTC GAGTTGCTGT TAAAAATACC  
 2101 AGCGGCAGAG GATTTTCCA AGAGTACACT CCATTTGTA AAGTCCAAGC  
 2151 TGTTTACGCT CGCCAAAGATA GCTTTGTAGA ACTAGGAGCT ATCAGTCGTG  
 2201 ATTTTAGTGA TTCGCATCTT TATAACCTTG CGATTCTCT TGGAAATCAAG  
 2251 TTAGAGAAAC GGTTTGAGA GCAATATTAT CATGTTGTTAG CGATGTATTG  
 2301 TCCAGATGTT TGTGTTAGTA ACCCCAAATG TACGACTACC CTACTTTCCA  
 2351 ACCAAGGGAG TTGGAAGACC AAAGGTTCGA ACTTAGCAAG ACAGGCTGGT  
 2401 ATTGTTCAAGG CCTCAGGTTT TCGATCTTG GGAGCTGCAG CAGAGCTTTT  
 2451 CGGGAACTTT GGCTTTGAAT GGCGGGGATC TTCTCGTAGC TATAATGTAG  
 2501 ATGCGGGTAG CAAAATCAA TTTAG

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 70A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 70B).

The cp6270 protein was also identified in the 2D-PAGE experiment (Cpn0013).

These experiments show that cp6270 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 71

35 The following *C.pneumoniae* protein (PID 4376402) was expressed <SEQ ID 141; cp6402>:

1 MNVADLLSHL ETLLSSKIFQ DYGPNGLQVG DPQTPVKKIA VAVTADLETI  
 51 KQAVAAEANV LIVHHGIFWK GMPPYPIITGMI HKRIQLLIEH NIQLIAYHLP  
 101 LDAHPTLGNN WRVALDLNWH DLKPFGSSLP YLGVQGSFSP IDIDSFIDLL  
 151 SOYYQAPLKG SALGGPSRVS SAALISGGAY RELSSAATSQ VDCFITGNFD  
 201 EPAWSTALES NINFLAFGHT ATEKVGPKSL AEHLKSEFPI STTFIDTANP  
 251 F\*

The cp6402 nucleotide sequence <SEQ ID 142> is:

1 ATGAATGTTG CGGATCTCCT TTCTCATCTT GAGACTCTTC TCTCATCAA  
 51 AATATTTCAAG GATTATGGAC CCAACGGACT TCAAGTTGGA GATCCCCAAA  
 101 CTCGGTAAA GAAAATCGCT GTTGCAGTTA CCGCAGATCT AGAAACCATA  
 151 AAACAAGCTG TTGCGGGCAGA AGCAAACGTT CTCATTGTTAC ACCACGGAAT  
 201 TTTTTGGAAA GGTATGCCCT ATCCTATTAC CGGCATGATC CATAAGCGCA  
 251 TCCAATTACT AATAGAACAC AATATCCAC TCATTGCCCTA CCACCTTCCT  
 301 TTGGATGCTC ACCCTACCTT AGGAAATAAC TGGAGAGTTG CCCTGGATCT  
 351 AAATTGGCAT GACTTGAAAGC CCTTGGTTTC TCCCTCCCT TATTTAGGAG  
 401 TCGAAGGCTC TTCTCTCCCT ATCGATATAG ATTCTTTCAT TGACCTGTTA  
 451 TCTCAATATT ACCAAGCTCC CCTAAAAGGA TCTGCGCTTGG GCGGGCCCTC  
 501 TAGAGTCTCC TCAGCAGCTC TGATCTCAGG AGGAGCTTAT AGAGAACTCT  
 551 CTCGGCAGC CACGTCCCAA GTCGATTGCT CTCATCACAGG AAATTTGAT  
 601 GAAACCTGCAT GGTCGACAGC TCTAGAAAGC AATATCAACT TCCTAGCATT  
 651 TGGACATACA GCCACAGAAA AAGTAGGTCC AAAATCTCTT GCAGAGCATC

5           651 TACAAGTTGG TTTACTGGAG CTGGACTCTA TCACCCAGAT ATTGTTGAAC  
 701 AAGATAGCTT GGCAATTACG AATTACCTAC ATAATAACGG GTACGCTGAT  
 751 GCTATAGTCA ACTCTCACTA TGACCTTGAC GACAAAGGGA ATATTCTTCT  
 801 TTACATGGAT ATTGATCGAG GGTGCGATA TACCTTAGGA CACGTCCTATA  
 851 TCCAAGGGTT TGAGGTTTTG CCAAAACGCC TTATAGAAAA GCAATCCCAA  
 901 GTCGGCCCCA ATGATCTTTA TTGCCCCGAT AAAATATGGG ATGGGGCTCA  
 951 TAAGATCAA CAAACTATG CAAAGTATGG CTACATCAAT ACCAATGTAG  
 1001 ACGTTCTCTT CATCCCTCAC GCAACCCGCC CTATTTATGA TGTAACCTTAT  
 1051 GAGGTAAGTG AAGGGTCTCC TTATAAAGTT GGGTTAATTAA AAATTACTGG  
 1101 GAATACCCAT ACAAAATCTG ACGTTATTTT ACACGAAACC AGTCTCTTCC  
 1151 CAGGAGATAC ATTCAATCGC TTAAAGCTAG AAGATACTGA GCAACGTTA  
 1201 AGAAAATACAG GCTACTTCA AAGCGTTAGT GTCTATACAG TTCGTTCTCA  
 1251 ACTTGATCCT ATGGGCAATG CGGATCAATA CCGAGATATT TTTGTAGAAG  
 1301 TCAAAGAAC AACAAACAGGA AACTTAGGCT TATTCTTAGG ATTTAGTTCT  
 1351 CTGACAATC TTTTGAGG AATTGAACTA TCTGAAAGTA ATTTTGATCT  
 1401 ATTGGAGCT AGAAATATAT TTCTAAAGG TTTTCGTTGT CTAAGAGGCG  
 1451 GTGGAGAAC A TCTATTCTTA AAAGCCAATC TCAGGGACAA AGTCACAGAC  
 1501 TATACTTGA AGTGGACCAA ACCTCATTTT CTAAACACTC CTTGGATTTT  
 1551 AGGAATTGAA TTAGATAAT CAATTAACAG AGCATTATCT AAAGATTATG  
 1601 CTGTCCAAAC CTATGGGGGG AACGTCAGCA CAACGTATAT CTTGAACGAA  
 1651 CACCTGAAAT ACGGTCTATT TTATCGAGGA AGTCAAACGA GTTTACATGA  
 1701 AAAACGTAAG TTCCCTCTAG GGCCAAATAT AGACAGCAAT AAAGGATTTG  
 1751 TCTCTGCTGC AGGTGTCAAC TTGAATTACG ATTCTGTAGA TAGTCCCTAGA  
 1801 ACTCCAACTA CAGGGATTG CGGGGGGGTG ACTTTGAGG TTTCTGGTTT  
 1851 GGGAGGAAC TATCATTAA CAAAACCTC TTAAACAGC TCTATCTATA  
 1901 GAAAACCTAC GCGTAAAGGT ATTTTAAAAA TCAAAGGGGA AGCTCAATT  
 1951 ATAAACCCCT ATAGCAATAC TACAGCTGAA GGAGTTCTG TCAGTGAGCG  
 2001 CTTCTTCTA GGTGGAGAGA CTACAGTTCG GGGATATAAA TCCTTTATTA  
 2051 TCGGTCCAAA ATACTCTGCT ACAGAACCTC AGGGAGGAAC CTCTTCGCTC  
 2101 CTTATTTCAAGAGTTCA ATACCCCTCTC ATCAGACAAAC CTAATATTAG  
 2151 TGCCTTTGTA TTCTTAGACT CAGGTTTTGT CGGTTTACAA GAGTATAAGA  
 2201 TTTCGTTAAA AGATCTACGT AGTAGTGCTG GATTTGGTCT GCGCTTCGAT  
 2251 GTAATGAATA ATGTTCTGT TATGTTAGGA TTTGGTTGGC CCTTCCGTCC  
 2301 AACCGAGACT TTGAATGGAG AAAAAATTGA TGTATCTAG CGATTCTTCT  
 2351 TTGCTTTAGG GGGCATGTTCA TAA

The PSORT algorithm predicts outer membrane (0.7658).

The protein was expressed in *E.coli* and purified as GST-fusion (Figure 74A), his-tag and his-tag/GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 74B) and for FACS analysis (Figure 74C).

40 The cp6576 protein was also identified in the 2D-PAGE experiment (Cpn0300).

These experiments show that cp6576 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 75

The following *C.pneumoniae* protein (PID 4376607) was expressed <SEQ ID 149; cp6607>:

45           1 MNKRQDKLKLK ICVIISTLIL VGIFARAPRG DTFKTFLKSE EAIYSNQCN  
 51 EDRMKILCDA IEHADEEIFL RIYNLSEPKI QQLSLTRQAQA KNKVTIYYQK  
 101 FKIPQILKQA SNVTLVEQPP AGRKLMHQKA LSIDKKDAWL GSANYTNLSL  
 151 RLDNNNLILGM HSSELCDLII TNTSGDFSIK DQTGKYFVLP QDRKIAIQAV  
 201 LEKIOTAQKT IQVAMFALTH SEIIQALHQA KQRGIHVDDII IDRSHSKLTF  
 251 KQLRQLNINK DFVSINTAPC TLHHKFAVID NKTLLAGSIN WSKGRFSLND  
 301 ESLIILENLT KQQNQKLRMI WKDLAKHSEH PTVDDEEKEI IEKSLPVEEQ  
 351 EAA\*

A predicted signal peptide is highlighted.

The cp6607 nucleotide sequence <SEQ ID 150> is:

201 PAS\*

The cp6567 nucleotide sequence <SEQ ID 146> is:

```

5      1 ATGACCTCAC CGATCCCC TTCAAGTCTAGT GGCGATGCCT CTTTCCTTGC
      51 CGAGCAGCCA CAGCAACTCC CGTCTACTTC TGAATCTCAG CTAGTAACTC
     101 AATTGCTAAC CATGATGAAG CATACTCAAG CATTATCCGA AACGGTTCTT
     151 CAACAACAAAC GCGATCGATT ACCAACCGCA TCTATTATCC TTCAAGTAGG
    201 AGGAGCTCCT ACAGGAGGAG CGGGTGCCTC TTTTCAACCA GGACCGGCAG
    251 ATGATCATCA TCATCCCATA CCGCCGCCCTG TTGTACCAGC TCAAATAGAA
    301 ACAGAAATCA CCACTATAAG ATCCGAGTTA CAGCTCATGC GATCTACTCT
    351 ACAACAAAGC ACAAAAGGAG CTCGTACAGG AGTTCTAGTG GTTACTGCAA
    401 TCTTAATGAC GATCTCCCTA TTGGCTATTAA TTATCATAAT ACTAGCTGTG
    451 CTGGATTAA CGGGCGCTCT GCCTCAAGTA GCCTTATTGA TGCAAGGGTGA
    501 AACAAATCTG ATTTGGGCTA TGGTGAGCGG TTCTATTATT TGCTTTATTG
    551 CGCTAATTGG AACTCTAGGA TTAATTAA CAAATAAGAA CACGCCCTCA
   601 CCGGCTTCTT AA

```

The PSORT algorithm predicts inner membrane (0.694).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 73A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 73B) and for FACS analysis.

20 These experiments show that cp6567 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 74

The following *C.pneumoniae* protein (PID 4376576) was expressed <SEQ ID 147; cp6576>:

```

25      1 MLIMRNKVIL QISILALIQT PLTLFSTEKV KEGHVVVDSI TIITEGENAS
      51 NKHPLPKLKT RSGALFSQLD FDEDLRILAK EYDSVEPKVE FSEGKTNIAL
     101 HLLAKPSIRN IHISGNQVVP EHKLKTLQI YRNDLFEREK FLKGQLDDLR
     151 YYLKRGYFAS SVDYSLEHNQ EKGHIDVLIK INEGPGKIK QLTFSGISRS
     201 EKSDIQEFIG TKQHSTTSW FTGAGLYHPD IVEQDSLAIT NYLHNNGYAD
     251 AIVNSHYDLD DKGNILLYMD IDRGSRVTLG HVHIQGFEVL PKRLIEKQSQ
     301 VGPNDLYCPD KIWDGAHKIK QTYAKGYIN TNVDVLFIPH ATRPIYDVY
     351 EVSEGSPYKV GLIKITGNTH TKSDVILHET SLFPGDTFNR LKLEDTEQRL
     401 RNTGYFQSVS VYTVRSQLDP MGNADQYRDI FVEVKETTG NLGLFLGFSS
     451 LDNLFGGIEL SESNFDFLFGA RNIFSKGFRC LRGGGEHLFL KANFGDKVTD
     501 YTLKWTKPHF LNTPWILGIE LDKSINRALS KDYAVQTYGG NVSTTYILNE
     551 HLKYGLFYRG SQTSLHEKRK FLLGPNIDSN KGFVSAAGVN LNYDSVDSPR
     601 TPTTGIRGGV TFEVSGLGGT YHFTKLSLNS SIYRKLTRKG ILKIKGEAQF
     651 IKPYSNTTAE GVPVSERFFL GGETTVRGYK SFIIGPKYSA TEPOQGLSSL
     701 LISEEFAQYPL IRQPNISAFV FLDSGFVGLO EYKISLKDLR SSAGFGLRFD
     751 VMNNVPVMLG FGWPFRPTET LNGEKIDVSQ RFFFALGGMF *

```

40 A predicted signal peptide is highlighted.

The cp6576 nucleotide sequence <SEQ ID 148> is:

```

45      1 ATGCTCATCA TCGAAATAA AGTTATCTTG CAAATATCTA TTCTAGCGTT
      51 AATCCAAACC CCTTTAACCTT TATTTTCTAC TGAAAAAGTT AAAGAAGGCC
     101 ATGTGGTGGT AGACTCTATC ACAATCATAA CGGAAGGAGA AAATGCTTCA
     151 AATAAACATC CCTTACCCAA ATTAAAGACC AGAAGTGGGG CTCTTTTTTC
     201 TCAATTAGAT TTTGATGAAG ACTTGAGAAT TCTAGCTAAA GAATACGACT
     251 CTGTTGAGCC TAAAGTAGAA TTTTCTGAAG GGAAACTAA CATAGCCCTT
     301 CACCTAATAG CTAAACCCCTC AATTCGAAAT ATTCAATATCT CAGGAAATCA
     351 AGTCGTTCCCT GAACATAAAA TTCTTAAAC CCTACAAATT TACCGTAATG
     401 ATCTCTTGA ACGAGAAAAA TTTCTTAAGG GTCTTGATGA TCTAAGAACG
     451 TATTATCTCA AGCGAGGATA TTTCGCATCC AGTGTAGACT ACAGTCTGGA
     501 ACACAATCAA GAAAAGGTC ACATCGATGT TTTAATTAAA ATCAATGAAG
     551 GTCCTTGCAG GAAAATTAAA CAGCTTACGT TCTCAGGAAT CTCTCGATCA
     601 GAAAATCAG ATATCCAAGA ATTATTCAA ACCAAGCAGC ACTCTACAC

```

951 ATTAGGAGGG GTGGCTCTTG AATGTCAAAG ATGA

The PSORT algorithm predicts inner membrane (0.168).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 76A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 76B) and for 5 FACS analysis.

The cp6624 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6624 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 77

10 The following *C.pneumoniae* protein (PID 4376728) was expressed <SEQ ID 153; cp6728>:

|     |                                                         |
|-----|---------------------------------------------------------|
| 1   | MKSSVSWLFF SSIPLFSSLS IVAAEVTLDS SNNSYDGNSNG TTFTVFSTTD |
| 51  | AAAGTTYSLL SDVSFQNAGA LGIPLASGCF LEAGGDLTFQ GNQHALKFQF  |
| 101 | INAGSSAGTV ASTSAADKNL LFNFDSRLSI ISCPSSLSP TGQCALKSVD   |
| 151 | NLSLTGNSQI IFTQNFSSDN GGVINTKNFL LSGTSQFASF SRNQAFTGKQ  |
| 201 | GGVVYATGTI TIENSPGIVS FSQNLAKGSG GALYSTDNCs ITDNFQVIFD  |
| 251 | GNSAWEAAQA QGGAICCTT DKTVTLTGNK NLSFTNNNTAL TYGGAISGLK  |
| 301 | VSIISAGGPTL FQSNISGSSA GQGGGGAINI ASAGELALSA TSGDITFNMM |
| 351 | QVTNGSTSTR NAINIIDTAK VTSIRAATGQ SIYFYDPITN PGTAASTDTL  |
| 401 | NLNLDANSE IEYGGAIIVS GEKLSPTKEA IAANVTSTIR QPAVLARGDL   |
| 451 | VLRDGVTVTF KDLTQSPGSR ILMDGGTTLS AKEANLSSLNG LAVNLSSLDG |
| 501 | TNKAALKTEA ADKNISLSGT IALIDTEGSF YEHNLKSAS TYPILLELTTA  |
| 551 | GANGTITLGA LSTLTLQEPE THYGYQGNWQ LSWANATSSK IGSINWTRTG  |
| 601 | YIPSPERKSN LPLNSLWGNF IDIRSINQLI ETKSSGEFFE RELWLSGIAN  |
| 651 | FFYRDSMPTR HGFRHISGGY ALGITATTTPA EDQLTFAFCQ LFARDRNHIT |
| 701 | GKNHGDTYGA SLYFHHTEGL FDIANFLWGK ATRAPWVLSE ISQIIPLSFD  |
| 751 | AKFSYLHTDN HMKTYYTDNS IIKGSRNDA FCADLGASLP FVISVPYLLK   |
| 801 | EVEPFVKVQY IYAHQQDFYE RHAEGRAFNK SELINVEIPI GVTFERDSKS  |
| 851 | EKGTYDLTLM YILDAYRRNP KCQTSLIASD ANWMAYGTNL ARQGFSVRAA  |
| 901 | NHFQVNPHME IFGQFAFEVR SSSRNYNTNL GSKFCF*                |

30 The cp6728 nucleotide sequence <SEQ ID 154> is:

|      |                                                          |
|------|----------------------------------------------------------|
| 1    | ATGAAGTCCT CTGTCTCTTG GTTGTCTTT TCTTCAATCC CGCTCTTTTC    |
| 51   | ATCGCTCTCT ATAGTCGGC CAGAGGTGAC CTTAGATAGC AGCAATAATA    |
| 101  | GCTATGATGG ATCTAACCGA ACTACCTTC CCGTCTTTTC CACTACGGAC    |
| 151  | GCTGCTGCAG GAACTACCTA TTCCCTACTT TCCGACGTAT CCTTCAAAA    |
| 201  | TGCAGGGGCT TTAGGAATT CCTTAGCCTC AGGATGCTTC CTAGAACCGG    |
| 251  | GCGCGATCT TACTTCCA GGAAATCAAC ATGCACTGAA GTTGCATTT       |
| 301  | ATCAATGCGG GCTCTAGCGC TGGAACTGTA GCCAGTACCT CAGCAGCAGA   |
| 351  | TAAGAATCTT CTCTTTAATG ATTTTCTAG ACTCTCTATT ATCTCTTGTC    |
| 401  | CCTCTCTTCT TCTCTCTCCT ACTGGACAAT GTGCTTTAAA ATCTGTGGGG   |
| 451  | AATCTATCTC TAACTGGCAA TTCCCAAATT ATATTTACTC AGAACCTCTC   |
| 501  | GTCAGATAAC GGCGGTGTTA TCAATACGAA AAACCTCTTA TTATCAGGGA   |
| 551  | CATCTCAGTT TCGCAGCTTT TCGAGAAACC AAGCCTTCAC AGGGAAAGCAA  |
| 601  | GGCGGTGTTAG TTTACGCTAC AGGAACCTATA ACTATCGAGA ACAGCCCTGG |
| 651  | GATAGTTTCC TTCTCTCAA ACCTAGCGAA AGGATCTGGC GGTGCTCTGT    |
| 701  | ACAGCACTGA CAACTGTTG ATTACAGATA ACTTTCAAGT GATCTTGAC     |
| 751  | GGCAATAGTG CTTGGGAAGC CGCTCAAGCT CAGGGCGGGG CTATTGTTG    |
| 801  | CACTACGACA GATAAAACAG TGACTCTTAC TGGGAACAAA AACCTCTCTT   |
| 851  | TCACAAAATAA TACAGCATTC ACATATGGCG GAGGCCATCTC TGGACTCAAG |
| 901  | GTCAGTATTG CCGCTGGAGG TCCTACTCTA TTTCAAAGTA ATATCTCAGG   |
| 951  | AAGTAGCGCC GGTCAAGGGAG GAGGAGGAGC GATCAATATA GCATCTGCTG  |
| 1001 | GGGAACCTCGC TCTCTCTGCT ACTTCTGGAG ATATTACCTT CAATAACAAAC |
| 1051 | CAAGTCACCA ACGGAAGCAC AAGTACAAGA AACGCAATAA ATATCATTGA   |
| 1101 | TACCGCTAAA GTCACATCGA TAGGAGCTGC TACGGGGCAA TCTATCTATT   |
| 1151 | TCTATGATCC CATCACAAAT CCAGGAACCG CAGCTTCTAC CGACACATTG   |
| 1201 | AACTTAAACT TAGCAGATGC GAACAGTGTAG ATCGAGTATG GGGGTGCGAT  |
| 1251 | TGTCTTTCT GGAGAAAAGC TTTCCCCTAC AGAAAAAGCA ATCGCTGCAA    |

5

```

1 ATGAATAAAA GACAAAAAGA TAAATTAAAA ATCTGTGTTA TTATTAGCAC
51 GTTGATTTA GTAGGAATTT TTGCAAGAGC TCCTCGTGGT GACACTTTA
101 AGACTTTTTT AAAGTCTGAA GAAGCTATCA TCTACTCAA TCAATGCAAT
151 GAGGACATGC GTAAAATCT ATGCCATGCT ATAGAACACG CTGATGAAGA
201 GATCTTCCTA CGTATTIATA ACCTCTCAGA ACCCAAGATC CAACAGAGTT
251 TAACTCGACA AGCTCAAGCA AAAAACAAAG TTACGATCTA CTATCAAAAAA
301 TTAAATTC CCCAAATCTT AAACCAAGCC AGCAATGTA CTTTAGTCGA
351 GCAACCTCCA GCAGGGCGTA AACTGATGCA TCAAAAGCT CTTTCATAG
401 ATAAGAAAGA TGCTTGGCTA GGATCTGCGA ACTACACCAA TCTTCTCTA
451 CGTTAGATA ATAATCTCAT TCTAGGAATG CATAGCTCGG AGCTCTGTGA
501 TCTCATATC ACAAAATACCT CTGGAGACTT TTCTATAAAG GATCAAACAG
551 GAAAGTATT TGTTCTCCT CAAGATCGTA AAATTGCAAT ACAAGCTGTA
601 CTCGAAAAAA TCCAGACAGC TCAGAAAACC ATCCAAGTTG CTATGTTGC
651 TCTGACCCAC TCGGAGAGTT TTCAAGCCTT ACATCAAGCA AAACAAACGAG
701 GAATCCATGT AGATATTATC ATTGATAGAA GTCATAGCAA ACTTACTTTT
751 AAGCAATTAC GACAATTAAA TATCAATAAA GACTTTGTTT CTATAAATAC
801 CGCACCCCTGT ACTCTTCACC ATAAGTTTG AGTTATAGAT AATAAAACTC
851 TACTTGCAGG ATCTATAAAAT TGGTCTAAAG GAAGATTCTC CTTAAATGAT
901 GAAAGCTTGA TCATACTGGA AACCTGACC AAACAAACAA ATCAGAAACT
951 TCGAATGATT TGGAAAGATC TAGCTAAGCA TTCAGAACAT CCTACAGTAG
1001 ACAGATGAAGA AAAAGAAATT ATAGAAAAAA GTCTTCCAGT AGAAGAGCAA
1051 GAAGCAGCGT GA

```

The PSORT algorithm predicts periplasmic (0.934).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 75A) and also as a  
25 GST-fusion. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 75B) and for FACS analysis.

These experiments show that cp6607 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 76

30 The following *C.pneumoniae* protein (PID 4376624) was expressed <SEQ ID 151; cp6624>:

35

```

1 MDAKMGYIFK VMRWIFCFVA CGITFGCTNS GFQNANSRPC ILSMNRMIHD
51 CVERVVGPNRL ATAVLIKGSN DPHAYEMVKD DKDKIAGSAV IFCNGLGLEH
101 TLSLRKHLEN NPNSVKLGER LIARGAFVPL EEDGICDPHI WMDLSIWKEA
151 VIEITEVLIE KFPEWSAEFK ANSEELVCEM SILD SWAKQC LSTIPENLRY
201 LVSGHNAFSY FTRRYLATPE EVASGAWRSR CISPEGLSPE AQISVRDIMA
251 VVDYINEHDV SVVFPEDTLN QDALKKIVSS LKKSHLVRLA QKPLYSNDNV
301 DNYFSTFKHN VCLITEELGG VALECQR*

```

The cp6624 nucleotide sequence <SEQ ID 152> is:

40

```

1 ATGGATGCGA AAATGGGATA TATATTAAA GTGATGCGTT GGATTTCCTG
51 TTTCTGGCA TGTGGTATAA CTTTTGGATG TACCAATTCT GGGTTTCAGA
101 ATGCAAATTC ACCTCCTTGT ATACTATCCA TGAATCCCAT GATTCTATGAT
151 TGTGTTAAA GAGTCGTGGG GAATAGGCTT GCTACCGCTG TTTTGATCAA
201 AGGATCCTTA GACCCCTCATG CGTATGAGAT GGTTAAAGGG GATAAGGACA
251 AGATTGCTGG AAGTGCCTGA ATTCTTGATG ACGGCCCTGGG TCTTGAGCAT
301 ACATTAAGTT TCGGGAAGCA TTAGAAAAT AATCCCATAA GTGTCAGTT
351 AGGGGAGCGG TTGATAGCGC GTGGGGCCCTT TGTTCCTCTA GAAGAAGACG
401 GTATTTGCGA TCCTCATATC TGGATGGATC TTTCTATTG GAAGGAAGCT
451 GTCATAGAAA TTACAGAAGT TCTCATTGAA AAGTCCCTG AATGGTCTGC
501 TGAATTAAA GCAAATAGTG AGGAACCTGT TTGTGAAATG TCTATTTCAG
551 ATTCTTGGGC GAAACAAATGC TTGAGCACAA TCCCTGAAA TTTACGGTAT
601 CTTGTCTCAG GTCATAATGC GTTCAGTTAC TTTACACGTC GCTATTTCAGC
651 TACTCCTGAA GAAGTGGCTT CCGGAGCATG GAGGTCTCGT TGTATTTCCTC
701 CTGAGGGTCT ATCTCCAGAA GCTCAAATCA GTGTTCGTGA TATTATGGCG
751 GTTGTAGATT ATATTAATGA GCATGATGTC AGTGTGGTTT TCCCTGAGGA
801 TACTCTGAAC CAAGATGCGT TGAAAAAAAT TGTTCCTCT CTGAAGAAAA
851 GTCATTTAGT TCGTCTAGCT CAAAACCCT TGTATAGTGA TAATGTGGAC
901 GACAATTATT TTAGCACCTT TAAACATAAT GTCTGCCTTA TCACAGAAGA

```

1 ATGTTCGTAA TGAAAAAACT TGTCCGTCTA TGCCTAGTTC TTCTTTCTTT  
 51 ACTTCCGAAT CTATTATTTT CTTCGGATCT TTTACGAGAA GAGGCCATCA  
 101 AAAAGATGAT GGACAAGCTG ATCGAGTATC ATGTCGATGC TCAAGAGGTT  
 151 TCTACGGATA TACTCTCGCG TTCTTTATCT AGTTACATTC AATCTTTGAA  
 201 TCCTCATAAA TCTTATCTTT CAAACCAAGA GGTTGCAGTT TTTCTACAGT  
 251 CTCGGGAAAC AAAGAACAGT CTCTTAAAGA ATTATAAGGC AGGCAACTTT  
 301 GCTATTTATC GCAACATCAA TCAATTAAATT CATGAGAGTA TTCTTCGTGC  
 351 CAGGCAGTGG AGAAACGAAT GGGTTAAAGA TCCAAAAGAG CTTGTATTGG  
 401 AGGCATCCTC ATATCAGATA TCGAAGCAAC CTATGCAATG GAGCAAATCT  
 451 TTAGACGAAG TGAAGCAGAG ACAACGCGCT CTACTCCTTT CCTATCTTTC  
 501 TTACATCTT GCTGGAGCTT CTTCTCTCG TTATGAGGGT AAAGAAGAGC  
 551 AGCTTGCTGC TCTGTGTCTA CGTCAAATCG AGAACCATGA GAATGTATAT  
 601 TTAGGTATCA ACGATCATGG TGTGCTATG GATCGGGATG AAGAAGCCTA  
 651 CCAATTCCAT ATCCGTGTTG TTAAAGCTTT AGCTCATAGC TTAGATGCAC  
 701 ATACGGCGTA TTTCAGTAAG GACGAAGCGT TGGCGATGCG AATCCAACTA  
 751 GAAAAAGGCA TGTGTGGAAT TGGTGTGTT CTGAAGGAAG ATATTGATGG  
 801 AGTTGTTGTT AGAGAAATCA TTCTGGGGG ACCTGCGGCT AAATCTGGGG  
 851 ATCTTCAGCT TGGAGATATC ATCTATCGGG TGGATGGCAA CGATATCGAG  
 901 CATCTTCTT TCCGCGGTGT TTTAGATTGT TTACGTGGAG GTCATGGCTC  
 951 TACTGTAGTC TTAGATATCC ATCGTGGGG AAGCGATCAT ACGATCGCCT  
 1001 TGAGAAGGGGA GAAAATCCTT TTAGAAGACC GTCGTGTGGA TGTTTCCSTAT  
 1051 GAGCCTTATG GAGATGGTGT GATGGGGAAA GTTACGTTAC ATTCTTTTTA  
 1101 TGAAGGAGAA AATCAGGTTT CTAGTGAACA AGATCTACGT CGAGCGATTG  
 1151 AGGGATTAAA GGAGAAGAAC CTTCTTGGAT TAGTTTAGA TATCCGAGAA  
 1201 AATACGGGTG GATTTTATC TCAAGCGATC AAAGTTCTG GTTTATTAT  
 1251 GACCAATGGC GTTGTGTTG TATCTCGCTA TGCTGATGGT ACCATGAAGT  
 1301 GCTACCGCAC AGTATCTCCT AAAAAATTCT ATGATGGTCC TTTGGCTATT  
 1351 TTAGTATCTA AAAGTCCGC ATCAGCAGCG GAGATTGTAG CACAAACTCT  
 1401 CCAAGATTAT GGAGTTGCTT TAGTTGTTGG AGATGAGCAG ACCTATGGGA  
 1451 AGGGAACGAT TCAGCATCAA ACAATTACTG GAGATGCCCTC TCAGGACGAT  
 1501 TGTGTTAAGG TTACTGTAGG GAAATATTAT TCCCCTCTG GGAAATCGAC  
 1551 TCAACTTCAG GGAGTAAAAT CCGATATTTC AATTCCTTCT CTCTATGCTG  
 1601 AAGATCGTCT AGGAGAGCGT TTCTTAGAGC ATCCCTTACG TGCAAGATTGC  
 1651 TGTGATAATG TACTTCACGA TCCTCTCACG GACTTGGATA CTCAAACACG  
 1701 TCCTGGTTT CAAAAAATACT ATCTTCCCTAA TCTACAAAAG CAAGAGACTC  
 1751 TTGGAGAGA GATGCTACCT CAGCTTACGA AAAACAGTGA GCAAAGGCTT  
 1801 TCTGAGAATT CGAATTTCGA GGCATTTTG TCGCAGATAA AATCATCTGA  
 1851 AAAAAACGGAC CTATCCTATG GTTCCAATGA TTACAATTG GAAGAGTCGA  
 1901 TAAACATTTT GAAGGACATG ATTTTATTAC AACAGTGTAG AAAATAA

40 The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 78A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 78B) and for FACS analysis.

45 These experiments show that cp6847 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 79

The following *C.pneumoniae* protein (PID 4376969) was expressed <SEQ ID 157; cp6969>:

1 MRLFSLGLTI LFFSLALSSC CGYSILNSPY HLSSLGKSL QERIFIAPIK  
 51 EDPHGQLCSA LTYELSKRSF AISGRSSCAG YTLKVELLNG IDKNIGFTYA  
 101 PNKLGDKTHR HFIVSNEGRL SLSAKVQLIN NDTQEVLIDQ CVARESVDFD  
 151 FEPDLGTTANA HEFALQFEM HSEAIKSARR ILSIRLAETI AQQVYYDLF\*

A predicted signal peptide is highlighted.

The cp6969 nucleotide sequence <SEQ ID 158> is:

1 ATGAGATTGT TTTCTTCTAGG CACGATTTAT CTTTTTTTTT CTCTAGCACT  
 51 TTCGTCATGC TGTGGTTACT CTATTTAAA CAGCCCCGTAT CACTTATCGT  
 101 CTTTAGGTAA GTCTTTATTA CAGGAAAGAA TTTTCATTGC TCCCATAAAA

1301 ACGTCACCTC TACTATCCGA CAAACCTGCAG TATTAGCGCG GGGAGATCTT  
 1351 GTACTTCGTG ATGGAGTCAC CGTAACCTTC AAGGATCTGA CTCAAAGTCC  
 1401 AGGATCCCGC ATCTTAATGG ATGGGGGGAC TACACTTAGT GCTAAAGAGG  
 1451 CAAATCTTTG CCTTAATGGC TTAGCAGTAA ATCTCTCCTC TTTAGATGGA  
 1501 ACCAACAAAGG CAGCTTTAAA AACAGAACGCT GCAGATAAAA ATATCAGCCT  
 1551 ATCGGGAAACG ATTGCGCTTA TTGACACCGA AGGGTCATTC TATGAGAATC  
 1601 ATAACTTAAA AAGTGCTAGT ACCTATCCTC TTCTTGAAC TACCACCGCA  
 1651 GGAGCCAACG GAACGATTAC TCTGGGAGCT CTTTCTACCC TGACTCTTCA  
 1701 AGAACCTGAA ACCCACTACG GGTATCAAGG AAACCTGGCAG TTGTCTTGGG  
 1751 CAAATGCAAC ATCCCTAAAA ATAGGAAGCA TCAACTGGAC CCGTACAGGA  
 1801 TACATTCTA GTCCCTGAGAG AAAAAGTAAT CTCCCTCTAA ATAGCTTATG  
 1851 GGGAAACTTT ATAGATATAC GCTCGATCAA TCAGCTTATA GAAACCAAGT  
 1901 CCAGTGGGA GCCTTTGAG CGTAGCTAT GGCTTTCAGG AATTGCGAAT  
 1951 TTCTTCTATA GAGATTCTAT GCCCACCCGC CATGGTTTCC GCCATATCAG  
 2001 CGGGGGTTAT GCACTAGGGA TCACAGCAAC AACTCCTGCC GAGGATCAGC  
 2051 TTACTTTTGC CTTCTGCCAG CTCTTGCTA GAGATCGCAA TCATATTACA  
 2101 GGTAAAGAAC CACGGAGATAC TTACGGTGCC TCCTTGTATT TCCACCATAC  
 2151 AGAAGGGCTC TTGACATCG CCAATTCTCT CTGGGGAAAA GCAACCCGAG  
 2201 CTCCCTGGGT GCTCTCTGAG ATCTCCCAGA TCATTCTTT ATCGTTCGAT  
 2251 GCTAAATTCA GTTATCTCCA TACAGACAAC CACATGAAGA CATATTATAC  
 2301 CGATAACTCT ATCATCAAGG GTTCTTGGAG AAACGATGCC TTCTGTGCG  
 2351 ATCTTGGAGC TAGCCTGCCT TTTGTTATTT CCGTTCCGTA TCTTCTGAAA  
 2401 GAAGTCGAAC CTTTGTCAA AGTACAGTAT ATCTATGCCG ATCAGCAAGA  
 2451 CTTCTACGAG CGTCATGCTG AAGGACGCGC TTTCATAAAA AGCGAGCTTA  
 2501 TCAACGTAGA GATTCTATA GGCGTCACCT TCGAAAGAGA CTCAAAATCA  
 2551 GAAAAGGGAA CTTACGATCT TACTCTTATG TATATACTCG ATGCTTACCG  
 2601 ACGCAATCCT AAATGTCAA CTTCCCTAA AGCTAGCGAT GCTAACTGGA  
 2651 TGGCCTATGG TACCAACCTC GCACGACAAG GTTTTCTGT TCGTGCTGCG  
 2701 AACCATTTCC AAGTGAACCC CCACATGGAA ATCTTCGGTC AATTGCTTT  
 2751 TGAAGTACGA AGTTCTTCAC GAAATTATAA TACAAACCTA GGCTCTAAGT  
 2801 TTGTTTCTA G

The PSORT algorithm predicts inner membrane (0.187).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 77A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 77B) and for FACS analysis.

The cp6728 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp6728 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 78

40 The following *C.pneumoniae* protein (PID 4376847) was expressed <SEQ ID 155; cp6847>:

1 MFVMKKLVRL CVVLLSLLPN VLFFSDLLRE EGIKKMDKL IEYHVDAQEV  
 51 STDILSRSLN SYIQSFDPHK SYLSNQEVAV FLQSPETKKR LLKNYKAGNF  
 101 AIYRNINQLI HESILRARQW RNEWVKNPKE LVLEASSYQI SKQPMQWSKS  
 151 LDEVVKQRQA LLLSYLSLHL AGASSSSRYEG KEEQLAALCL RQIENHENVY  
 201 LGINDHGVM DRDEEAYQFH IRVVKALAHs LDAHTAYFSK DEALAMRIQL  
 251 EKGMCIGVV LKEDIDGVVV REIIPGGPAA KSGDLQLGDI IYRVDGKDIE  
 301 HLSFRGVLDL RLRGGHGSTVV LDIHRGESDH TIALRREKIL LEDRRVDVSY  
 351 EPYGDGVIGK VTLHSFYEGE NQVSSEQDLR RAIQGLKEKN LLGLVLDIRE  
 401 NTGGFLSQAI KVSGLFMTNG VVVVSRYADG TMKCYRTVSP KKFYDGPLAI  
 451 LVSKSSASAA EIVAQTLQDY GVALVVGDEQ TYKGTIQHQ TITGDASQDD  
 501 CFKVTVGKYY SPSGKSTQLO GVKS DILIPS LYAE DRLGER FLEHPLPADC  
 551 CDNVLHDPLT DLDTQTRPWF QKYLYPNLQK QETLWREMLP QLTKNSEQR  
 601 SENSNFQAF SQIKSSEKTD LSYGSNDLQL EESINILKDM ILLQOCR\*

A predicted signal peptide is highlighted.

55 The cp6847 nucleotide sequence <SEQ ID 156> is:

-120-

These experiments show that cp7109 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 81

The following *C.pneumoniae* protein (PID 4377110) was expressed <SEQ ID 161; cp7110>:

```

5      1 MAAIKQILRS MLSQSSLWMV LFSLYSLSGY CYVITDKPED DFHSSSAVKW
      51 DHWGKTTLRS LSNKKASAKA VSGIGATTVG FIKDTWSRTY AVRWNWYWGTK
     101 ELPPTSSWVKK SKATGISSDG SIIAGIVENE LSQSFAVTWK NNEMYLLPST
     151 WAVQSKAYGI SSDGSVIVGS AKDAWSRTFA VKWTGHEAQV LPVGWAVKSV
    10  201 ANSVSANGSI IVGSVQDASG ILYAVKWEGRN TITHLGTLGG YSAIAKAVSN
    251 NGKVIVGRSE TYYGEVHAF C HKNGVMSDLG TLGGSYSAAK GVSATGKVIV
     301 GMSTTANGKL HAFKYVGGRM IDLGEYSWKE ACANAVSIDG EIIVGVQSE*

```

A predicted signal peptide is highlighted.

The cp7110 nucleotide sequence <SEQ ID 162> is:

```

15     1 ATGGCAGCTA TAAAACAAAT TTTACGTTCT ATGCTATCTC AGAGTAGCTT
      51 ATGGATGGTC CTATTTCTAT TATATTCTCT ATCTGGTTAT TGCTATGTAA
     101 TTACAGACAA ACCAGAACAT GACTTCCATT CTTCATCCGC AGTAAAATGG
     151 GATCATTGGGG GAAAGACAAAC TCTCTCAAGA TTATCAAATA AAAAAGCCTC
     201 TGCAAAAGCT GTTTCAGGAA CTGGTGCTAC AACTGTCGGC TTTATAAAAG
     251 ACACCTGGTC TCGAACATAC GCAGTAAGAT GGAATTATG GGGGACCAAA
    20  301 GAACTCCCTA CCAGCTCATG GGTTAAAAAA TCAAAAGCAA CAGGAATCTC
     351 CTCTGATGGGG TCTATAATCG CGGGGATTGT CGAGAAATGAG CTTTCTCAAA
     401 GTTTCGCGAGT CACATGGAAA ACAATGAAA TGTATTGCT CCCTTCCACA
     451 TGGGCAGTGC AATCTAAAGC GTATGGAATT TCTTCTGATG GCTCTGTTAT
    25  501 TGTAGGGAGT GCTAAGGATG CTTGGTCGCG AACTTTCGCT GTGAAGTGG
     551 CGGGACACGA GGCTCAGGTG TTACCAGTAG GCTGGGCTGT CAAATCTGTA
     601 GCGAATTCTG TATCTGCCAA TGGATCTATA ATTGTAGGGT CTGTACAAGA
     651 CGCCTCTGGG ATTCTTTATG CTGTAAAGTG GGAAGGGAAC ACTATTACAC
     701 ATCTAGGAAC TTTAGGAGGC TATTCTGCCA TTGCAAAAGC TGTATCCAAT
     751 AATGGCAAGG TCATTGTAAG GAGATCCGAA ACATATTATG GAGAGGTCCA
    30  801 TGCTTTCTGT CATAAGAATG CGCTCATGTC AGACCTCGGC ACCCTCGGAG
     851 GATCTTATTG TGCAGCTAAG GGAGTCTCTG CAACTGGAAA AGTTATTGTC
     901 GGTATGTCCA CAACAGCAAA TGGGAAATTG CATGCCCTTA AATATGTCGG
     951 TGGAAAGAATG ATCGACTTAG GAGAGTATAG CTGGAAAGAA GCCTGTGCAA
    1001 ACGCTGTTTC TATTGATGGA GAAATTATTG TTGGAGTCGA ATCAGAAATAA

```

35 The PSORT algorithm predicts outer membrane (0.827).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 81A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 81B) and for FACS analysis.

40 These experiments show that cp7110 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

Figure 191 shows a schematic representation of the structural relationships between of cp7105, cp7106, cp7107, cp7108, cp7109 and cp7110, each of which is identified herein. These six proteins may be grouped in a new family of related outer membrane-associated proteins. These proteins have a repeat structure in common (cf. the pmp family).

### Example 82

The following *C.pneumoniae* protein (PID 4377127) was expressed <SEQ ID 163; cp7127>:

```

1 MVFFRNSLLH LVALSGMLCC SSGVALTIAE KMASLEHSGR GADDYEGMAS

```

151 GAAGATCCTC ATGGTCAGCT CTGCTCAGCT CTAACATTATG AGCTTAGTAA  
 201 GCGTTCTTT GCTATCTCTG GAAGGAGTTC TTGCGCAGGC TATACTCTTA  
 251 AAGTAGAGCT TCTGAATGGT ATTGACAAGA ATATAGGTTT TACGTATGCC  
 301 CCAAATAAAC TCGGAGATAA GACTCACAGG CATTATAG TCTCTAATGA  
 351 AGGCAGACTA TCACTATCTG CAAAAGTACA GCTTATCAAT AATGACACTC  
 401 AAGAAGTCCT TATAGACCAA TGTGTTGCTC GAGAGTCTGT AGACTTTGAC  
 451 TTTGAGCCCTG ACTTAAAGAAC AGCAAAACGCT CATGAATTG CTTTAGGCCA  
 501 ATTTGAAATG CATAGTGAAG CCATAAAAAG TGCTCGCCGT ATACTATCTA  
 551 TACGCCCTAGC CGAGACGATT GCTCAACAGG TATACTATGA CCTTTTTGTA

- 10 The PSORT algorithm predicts inner membrane (0.126).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 79A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 79B) and for FACS analysis.

- 15 These experiments show that cp6969 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 80

The following *C.pneumoniae* protein (PID 4377109) was expressed <SEQ ID 159; cp7109>:

1 MKKTCCQNYR SIGVVFSVVL FVLTTQTLFA GHFIDIGTSG LYSWARGVSG  
 51 DGRVVVGYEG GNAFKYVDGE KFLLEGLVPR SEALVFKASY DGSVIIGISD  
 101 QDPSCRAVKW VNGALVDLGI FSEGMSFAE GVSSDGKTIV GCLYSDDTET  
 151 NFAVKWDETG MVVLPNLPED RHSCAWDASE DGSVIVGDAM GSEEIAKAVY  
 201 WKDGEQHLLS NIPGAKRSSA HAVSKDGSFI VGEFISEENE VHAFVYHNGV  
 251 IKDIGTLGGD YSVATGVSRD GKVIVGHSTR TDGEYRAFKY VDGRMIDLGT  
 301 LGGSASFAFG VSDDGKTIVG KFETELGECH AFYLDD\*

- 25 A predicted signal peptide is highlighted.

The cp7109 nucleotide sequence <SEQ ID 160> is:

1 ATGAAAAAGA CATGTTGCCA AAATTACAGA TCGATAGGGC TTGTGTTCTC  
 51 TGTGGTACTT TTCGTTCTTA CAACACAGAC GCTGTTGCA GGACATTTTA  
 101 TTGATATTGG AACTTCTGGA TTATATTCTT GGGCTCGAGG TGTATCTGGA  
 151 GATGGCCGCG TTGTCGTAGG TTATGAAGGT GGCAATGCAT TTAAATATGT  
 201 TGATGGTGAG AAATTTCTGT TAGAAGGTTT GGTCCCGAGA TCCGAGGCCT  
 251 TGGTATTAA AGCTTCTTAT GATGGCTCTG TAATTATAGG AATCTCGGAT  
 301 CAAGATCCGT CTTGCCGCG TGTGAAGTGG GTAAACGGTG CACTTGTGA  
 351 TCTTGAATA TTTTCTGAGG GAATGCAATC TTTTGCAGAG GGTGTTCCA  
 401 GTGATGGAAA GACGATTGTA GGGTGCCTAT ATAGTGATGA TACAGAGACA  
 451 AACTTTGCTG TGAAGTGGGA TGAAACAGGA ATGGTTGTC TCCCTAACTT  
 501 ACCAGAAGAT CGACATTCTT GCGCTTGGGA TGCCTCTGAA GATGGCTCTG  
 551 TGATTGTAGG GGACGCCATG GGTAGCGAGG AAATTGCCAA GGCAGTGTAC  
 601 TGGAAGGACG GTGAACAACA TCTGTTTCT AATATCCCAG GAGCTAAAG  
 651 ATCGTCAGCA CATGCAGTT CTAAAGATGG ATCTTTTATC GTAGGGAGT  
 701 TCATCAGTGA AGAAAATGAA GTTCATGCCT TTGTTTATCA CAACGGTGT  
 751 ATCAAAGATA TCGGGACTTT AGGAGGAGAT TACTCTGTAG CAACTGGAGT  
 801 TTCTAGGGAT GGTAAGGTCA TCGTGGTCA TTCTACAAGA ACAGATGGTG  
 851 AATACCGTGC ATTTAAATAT GTGGATGGAA GAATGATAGA TTTGGGACT  
 901 TTAGGAGGTT CAGCATCTT TGCTTTGGT GTTTCTGACG ATGGCAAAAC  
 951 AACCGTAGGA AAATTTGAAA CAGAGCTAGG AGAATGTCA GCCTTATCT  
 1001 ACCTTGATGA TTAG

The PSORT algorithm predicts outer membrane (0.887).

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 80A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 80B) and for FACS analysis.

-122-

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 82A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 82B) and for FACS analysis.

These experiments show that cp7127 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 83

The following *C.pneumoniae* protein (PID 4377133) was expressed <SEQ ID 165; cp7133>:

```

1  MOPFIFTLLE LTSLVSLVAF DAANARKRCA CAQTIERGEN FFSIKRSACA
51 EIEYQEKSRRH ASAIERISKD KGKVTPKQIA KVATKKQRY RLLQVPPFSRP
101 PNSRNYLVA LLSEPPECYS DTASWYAIFI RLLRRAYVDT GNVPPGSEYAA
151 IANALISNKQ EILERGAQLG PDVIETLTLP EEQAEIFYKM LKGSSNSQSL
201 LNFLHYEEKS LGHCKLNLIF MDPLLLEAVL DHPDAYRETS LLRDGIWEAV
251 KRQEHAIQEH GQAAALELFK TRTDFRLELR DKMQLLLSRY DLLPLLNKKM
301 FDYTLGSAGD YLFLVDPDTK AISRCRCPSK SIKL

```

15 A predicted signal peptide is highlighted.

The cp7133 nucleotide sequence <SEQ ID 166> is:

```

1  ATGCAACCTT TTATCTTAC TTTACTGTGC TTGACATCCTT TGGTTCTTT
51 AGTCGCCCTT GATGCTGCGA ATGCTCGTAA ACGTTGTGCC TGTGCTCAAA
101 CTATAGAACG TGGAGAGAAC TTCTTTTCCA TAAAACGCTC TGCTTGTGCT
151 GAAATCGAAT ATCAAGAAAAA ATCTCGCCAC GCCTCAGCAA TTGAAAGAAT
201 CTCAAAAGAT AAAGGCAAG TCACTCCAAA GCAGATTGCG AAAGTAGCTA
251 CTAAGAAAAA GCAAAGATAC CGTTTATTGC AGGTTCCCTT TTCAAGGCCT
301 CCGAATAACT CAAGGTATAA CCTCTATGCT TTGCTTAGTG AACCTCCCGA
351 ATGCTATAGC GATACAGCAT CATGGTATGC TATTTTATT CGGTTACTTC
401 GACGTGCTTA TGTAGACACG GGAAATGTAC CTCCCTGGATC TGAGTATGCC
451 ATCGCTAATG CTTTGATAAG TAACAAACAA GAGATTTAG AGAGGGGAGC
501 GCAGCTTGGG CCCGATGTTA TTGAAACTCT AACATTGCCT GAGGAACAAG
551 CCGAGATTTT TTATAAAATG CTCAAAGGGT CGTCAAACTC TCAGTCGCTA
601 CTGAATTTC TGCATTATGA AGAGAAAAGC TTAGGCCACT GTAAAGCTAAA
651 TCTGATCTTC ATGGATCCCC TACTGTTAGA AGCTGTTCTA GATCATCCCG
701 ATGCTTATAG GGAAACGTCG CTCCCTGCGCG ATGGCATTG GGAAGCGGTG
751 AAGCGTCAAG AACATGCCAT CCAAGAACAT GGCCAGGCAG CTGCTTTGGA
801 GCTTTTTAAA ACACGCCACCG ACTTCCGCCT GGAGCTGCGA GATAAGATGC
851 AGTTACTTCT AAGTCGATAC GATTTGCTCC CCTTATTAAA TAAAAAAATG
901 TTCGACTACA CCTTAGGAAG TGCCGGAGAT TACTTATTG TGTTAGACCC
951 AGATACTAAG GCAATTCTC GATGTCGCTG CCCTCAAAG AGTATTAAAT
1001 TATAA

```

The PSORT algorithm predicts outer membrane (0.92).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 83A) and also in  
40 his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 83B) and for FACS analysis.

These experiments show that cp7133 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 84

45 The following *C.pneumoniae* protein (PID 4377222) was expressed <SEQ ID 167; cp7222>:

```

1  MNRRDMVITA VVVNAILLVA LFVTTSKRIGV KDYDEGFRNF ASSKVTQAVV
51 SEEKVIEKPV VAEVPSRPIA KETLAAQFIE SKPVIVTTPP VPVVSETPEV

```

-121-

5           51 FNANMREYSL QLSKLYEEAR KLRASGTEDE ALWKDLIRRI GEVRGYLREI  
      101 EELWAAEIRE KGGNLEDYAL WNHPETTIYN LVTDYGTEDS IYLIHQEIGA  
      151 IKIATLSKFV VPKESFEDCL TQILSRLGIG VRQVNSWIKE LYMMRKEGCS  
      201 VAGVFSSRKD LEALPETAYI GFVLNSNVDA HTNQHVLKKF INPETTHVDV  
      251 IAGRIVWIFGS AGEVGELLKI YNFVQSESIR QEYRVIPLTQ IDPGEMISIL  
      301 NAAFREDLTK DVSEESLGLR VVPLQYQGRS LFLSGTAALV QQALTIREL  
      351 EEEGIENPTDK TVFWYVNKHQS DPQELAALLS QVHDVFSGEN KASVGAADGC  
      401 GSQLNASIQQI DTTVSSSAKD GSVKYGNFIA DSKTGTLIMV VEKEVLPRIQ  
      451 MLLKKLDVPK KMVRIEVLF ERKLAHEQKS GLNLLRLGEE VCKKGCSPSV  
      501 SWAGGTGILE FLFKGSTGSS IVPGYDLAYQ FLMAQEDVRI NASPSVVTMN  
      551 QTPARIAAVD EMSIAVSSDK DKAQYNRAQY GIMIKMLPVI NVGEEDGKSY  
      601 ITLETDTIFD TTGKNHDDR P DVTRRNITNK VRIADGETVI IGGLRCKQMS  
      651 DSHDGIPFLG DIPGIGKLFG MSSTSDSLTE MFVFTPKIL ENPVHQERK  
      701 EEALLSSRPG EREEYYQALA ASEAAARAHH KKLEMFPASG VSLSQVERQE  
      751 YDGC\*

A predicted signal peptide is highlighted.

The cp7127 nucleotide sequence <SEQ ID 164> is:

20           1 ATGGTTTTTT TCCGTAATT C TTTACTGCAT TTAGTTGCC TATCCGAAT  
      51 GCTCTGTTGT TCTTCTGGAG TGGCTTTAAC GATAGCCGAG AAGATGGCTT  
      101 CTTTAGAGCA CTCGGGGAGA GGAGCAGACG ATTATGAGGG GATGGCTTCG  
      151 TTTAATGCCA ATATGAGGG GTATAGCCTT CAGCTGAGCA AGTTGTATGA  
      201 GGAAGCACGA AAGCTACCGC CTTCTGGAAC TGAGGATGAA GCTCTGTGGA  
      251 AGGACTTAAT TCGACGGATT GGTGAGGTGC GAGGCTATCT TCGAGAGATC  
      301 GAGGAGCTTT GGGCTGCAGA AATTCTGTGAG AAAGGGGGCA ATCTCGAGGA  
      351 CTACGCCCTC TGGAATCACC CAGAGACTAC GATTTACAAT CTTGTTACCG  
      401 ATTACGGAAC CGAAGACTCT ATTATTGTA TTCCCTCAAGA AATCGGAGCG  
      451 ATTAAAATCG CAACCTTATC GAAATTGTA GTTCCCTAAAG AGTCTTTCGA  
      501 AGACTGTCTC ACTCAGATCC TATCTCGCTT AGGTATTGGC GTGCGTCAGG  
      551 TCAATTCTTG GATTAAGGAA CTTTATATGA TGCGTAAGGA GGGCTGCAGT  
      601 GTTGCTGGAG TTTTTCTTC CAGAAAAGAT TTAGAGGCAG TCCCCAGAAC  
      651 AGCCTATATT GTTTTTGTAT TGAATTGCAA CGTAGATGCG CATACCAATC  
      701 AACATGTCTT AAAAAAGTC ATTAAACCTG AAACAACGCA TGTAGATGTG  
      751 ATTGCAAGGAC GTGTGTGCGAT TTTTGGTTCT GCGGGGGAAAG TCGGGAGCT  
      801 TCTGAAGATT TATAATTTCG TGCAGTCGGA GAGCATACTG CAAGAGTATC  
      851 GGGTGAATTCC CTTAACTAAG ATCGATCCAG GGGAGATGAT TTCCATTCTC  
      901 AACGCAGCAT TTCGTGAGGA TCTGACTAAA GATGTTAGTG AAGAATCTTT  
      951 AGGCCCTCGT GTAGTTCCCT TACAGTATCA AGGGGGTTTCG TTGTTTTAA  
      1001 GTGGAACCGC GGCCTTGTG CAGCAAGCGC TGACTCTCAT TCGAGAGCTT  
      1051 GAAGAAGGGG TTGAGAACCC TACGGATAAA ACAGTATTG GGTATAACGT  
      1101 CAAGCACTCC GATCCCCAAG AGTTGGCGGC ATTGCTTCTC CAAGTCATG  
      1151 ATGCTTCTC TGGCAGAAT AAGGCGAGTG TCGGAGCTGC AGATGGATGT  
      1201 GGGTCGCAAT TAAATGCCCTC GATCCAAATT GATACTACAG TAAGTCTTC  
      1251 TCGCAAAGAT GGCTCAGTGA AGTACGGAAA CTTCATCGCG GATTCTAAGA  
      1301 CAGGAACCTCT GATTATGGTG GTTGAGAAAG AAGTTCTTC ACgtATTCAg  
      1351 ATGCTACTTA AGAAACTAGA TGTCCTAAA AAGATGGTCC GTATCGAGGT  
      1401 GCTGTTATTG GAAAGAAAAT TGGCACATGA GCAGAAATCT GGGTTAAATC  
      1451 TTCTACGTCT TGGTGAGGAA CTTTGTAAAAA AAGGGTGCAG TCCTCTGTG  
      1501 TCTTGGGCCG GGGGTACTGG CATACTAGAA TTTTTATTTA AAGGAAGTAC  
      1551 GGGATCTTCG ATAGTTCCGT GTTATGATCT CGCCTATCAA TTTTTATGG  
      1601 CTCAGAGGA CGTTCCGATT AATGCGAGTC CTTCTGTAGT TACTATGAAC  
      1651 CAAACCCCAG CACGGATTGC TGTGTTGAT GAAATGTCAA TAGCCGTGTC  
      1701 TTCAGATAAA GATAAAGCGC AATACAATCG TGCGCAGTAC GGTATCATGA  
      1751 TAAAAATGCT CCCCGTAATT AATGTGGGAG AGGAAGACGG AAAAGTTAC  
      1801 ATTACTTTAG AGACAGACAT CACCTTGTGAT ACTACGGGAA AAAATCATGA  
      1851 TGATCGTCT GATGTTACAA GGGCTAATAT TACTAATAAG GTGCCATTG  
      1901 CTGACGGAGA GACTGTGATT ATTGGAGGTT TGCGTTGCAA ACAGATGTCA  
      1951 GATTCTCATG ATGGCATTCC TTTCCCTGGA GACATTCTG GTATAGGGAA  
      2001 GTTATTGGA ATGAGTTCCA CATCAGACAG TCTCACGGAG ATGTTGTAT  
      2051 TTATCACTCC GAAGATCCTA GAAAATCCTG TAGAGCAACA AGAACGTAAA  
      2101 GAAGAAGCTT TACTCTCTC GCGCCCTGGA GAGAGAGAAG AATACTATCA  
      2151 GGCTTCTGAGCA GCTAGTGTAGG CTGCGACAG AGCAGCTCAT AAAAATTAG  
      2201 AGATGTTCCC GGCATCAGGA GTATCTTTAT CTCAGGTAGA GAGGCAAGAA  
      2251 TACGATGGCT GCTAG

The PSORT algorithm predicts periplasmic (0.920).

-124-

401 CCTATGCTAT TGGAGGACTC GCTGCAAAC GCCTGAATGG GTATTCTGGA  
 451 TCATCGAAAA TCTTCGTTGC CGAAGCCGAT GAAAGTGTG GGTCTTTAAA  
 501 GCACTACACT CCCCCTGCAG TAGTCATTAC AAATATAGAT AATGAACATT  
 551 TGAATAATTA CGCTGGAAAT CTTGATAACC TGTTTCAGGT AATCCAGGAC  
 601 TTCTCTAGAA AAGAACAGA TCTCAATAAG GTATTCTATA ACGGGGATTG  
 651 TCTTATTTTG AAAGGAAATG TCCAAGGGAT TTCTTATGGA TATTACCCAG  
 701 AATGTCAATT GCATATCGTT TCCTATAATC AAAAGGCATG GCAATCTCAC  
 751 TTTCTCTTTA CCCTTTTAGG CCAGGAGTAT CAAGACATG AGCTCAATCT  
 801 CCCTGGACAA CATAACGCTG CAAATGCAGC AGCAGCCTGT GGAGTTGCTC  
 851 TTACCTTGTG CATAGACATA AACATCATTC GAAAAGCTCT CAAAAAAATTG  
 901 TCGGGAGTTC ATCGACGTCT AGAAAGAAAA AATATATCCG AAAGCTTCT  
 951 TTTCTTAGAA GATTATGCTC ATCATCCTGT AGAGGTTGCA CATAACCTGC  
 1001 GCTCTGTGCG TGATGCTGTG GGTTTGCAGA GAGTCATCGC AATTTTCAG  
 1051 CCACATCGAT TCTCTCGTT AGAAGAGTGC TTACAAACCT TCCCCAAAGC  
 1101 TTCTCAAGAA GCTGATGAAG TCATACTTAC AGATGTCTAT AGTGCCTGGAG  
 1151 AAAGTCTTAG AGAGTCTATC ATTCTTCCG ACCTTGCAGA ACAGATTCTG  
 1201 AAGTCTTCTT ATGTCCATTG TTGTTATGTT CCCATGGAG ACATCGTAGA  
 1251 TTATCTACGA AACTACATTG GCATTCATGA TGTCGTGTT TCTCTAGGAG  
 1301 CTGGAAATAT CTATACTATT GGAGAGGCTT TAAAAGACTT TAACCTAAA  
 1351 AAATTATCCA TAGGACTCGT CTGTGGAGGG AAATCTTGC G AACACGATAT  
 1401 TTCTCTACTT TCTGCTCAAC ATGTCCTAA ATATATTCT CCTGAATTCT  
 1451 ATGATGTGAG TTACTTCATC ATAATCGTC AGGGCTTATG GAGAACAGGA  
 1501 AAGGATTTTC CTCATCTTAT TGAGAGACT CAAGGGGATT CGCCACTTT  
 1551 TTCTGAAATC GCTTCAGCTT TAGCAAAAGT CGACTGTTG TTTCCCGTGC  
 1601 TCCATGGCCC ATTTGGAGAG GATGGTACGA TCCAGGGATT TTTTGAATC  
 1651 TTAGGAAAAC CTTATGCCGG ACCCTCACTA TCTTTAGCAG CAACTGCAAT  
 1701 GGATAAGCTG TTAACAAAAC GAATTGCATC AGCAGTGGGT GTPCCGTGAG  
 1751 TCCCTTACCA ACCTTAAAT CTCTGTTCT GGAAACGCAA TCCACAACTA  
 1801 TGTATTTCAGA ATCTTATAGA GACATTTCT TTCCCTATGA TTGTAAAAC  
 1851 TGCACATTTG GGATCTAGTA TTGGGATATT TTAGTCCGT GATAAAGAGG  
 1901 AATTACAAGA AAAGATCTCA GAAGCATTTC TATATGACAC GGATGTGTTT  
 1951 GTGGAGGAAA GTCGCTTAGG GTCTCGTGA ATCGAAGTGT CCTGTATCGG  
 2001 CCATTCTTCT AGCTGGTATT GTATGGCAGG GCCTAATGAA CGCTGTGGTG  
 2051 CTAGTGGTT TATTGATTAT CAAGAGAAAT ATGGATTG TGCGATAGAT  
 2101 TGCGBAAAGA TCTCTTTGTA TTTACAGCTC TCACAAGAAT CTTTAGATTG  
 2151 TGTAGAGAA CTTGCAGAGC GTGTCTACCG AGCAATGCAA GGAAAAGGTT  
 2201 CAGCTCGAAT AGATTTTTC TTGGATGAAG AGGGGAATTA TTGGTTGTCA  
 2251 GAGGTCAATC CTATTCCAGG AATGACAGCA GCTAGCCCAT TTTTACAAGC  
 2301 TTTTGTTCAC GCAGGATGGA CGCAAGAAC AATTGTAGAT CACTTTATTA  
 2351 TAGATGCTCT ACATAAGTTT GATAAGCAGC AGACTATCGA ACAGGCATTC  
 2401 ACTAAAGAAC AAGATTAGT TAAAAGATAA

The PSORT algorithm predicts inner membrane (0.16).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 85A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 85B) and for FACS analysis.

These experiments show that cp7225 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 86

The following *C.pneumoniae* protein (PID 4377248) was expressed <SEQ ID 171; cp7248>:

50 1 MKFWLOGCAF VGCLLLTLPC CAARRRASGE NLQQTRPIAA ANLQWESYAE  
 51 51 ALEHSKQDHK PICLFFTGSW WCMWCIMQD QILQSSEFKH FAGVHLHMVE  
 101 101 VDFPQKNHQEP EEQRQKNQEL KAQYKVTGFP ELVFIDAEKG QLARMGFEPG  
 151 151 GGAAYVSKVK SALKLR\*

A predicted signal peptide is highlighted.

55 The cp7248 nucleotide sequence <SEQ ID 172> is:

1 ATGAAATTTT GGTTGCAAGG ATGTGCTTTT GTCGGGTTGTC TGCTATTGAC

-123-

101 PTVAVPPQPV RETVKEEQAP YATVVVKGD FLERIARANH TTVAKLMQIN  
 151 DLTTTQLKIG QVIKVPTSQD VSNEKTPQTO TANPENYYIV QEGDSPWTIA  
 201 LRNHIRLDDL LKMNDLDEYK ARRLKPGDQL RIR\*

A predicted signal peptide is highlighted.

- 5 The cp7222 nucleotide sequence <SEQ ID 168> is:

1 ATGAATCGTA GAGACATGGT AATAACAGCT GTCGTAGTGA ATGCTATATT  
 51 GCTTGTGGCT CTTTCGCTCA CATCAAAGCG TATTGGCGTC AAGGACTATG  
 101 ACGAGGGATT CCGTAATTTC GCTCTAGCA AGGTTACACA AGCAGTAGTT  
 151 TCAGAAGAAA AAGTCATAGA AAAGCCTGTA GTCGCAGAAG TGCCCTAGCCG  
 201 TCCTATCGCT AAAGAGACTC TAGCTGCACA GTTATTGAA AGTAAGCCGG  
 251 TTATTGTAAAC CACACCACCC GTGCCCTGTTG TTAGCGAAC CCCAGAAGTG  
 301 CCTACTGTGG CAGTTCCGCC TCAGCCTGTT CGTGAGACAG TAAAAGAGGA  
 351 ACAAGCTCCT TATGCTACTG TTGAGTGA AAAAGGAGAT TTTCTCGAAC  
 401 GCATTGCGAG AGCAAATCAT ACTACCGTTG CAAAATTGAT GCAGATCAAT  
 451 GATCTTACCA CCACCCAAC TAAAATTGGT CAGGTCATCA AAGTCCCTAC  
 501 GTCTCAAGAT GTCAGCAACG AAAAAACTCC TCAAACACAG ACCGCAAACC  
 551 CTGAAAATTA TTATATCGTC CAAGAAGGGG ATAGCCCTG GACAATAGCA  
 601 TTGCGTAACC ATATTGATT GGATGATTG CTAAAATGA ATGATCTCGA  
 651 TGAATATAAA GCCCGCGCC TTAAGCCTGG AGATCAGTTG CGCATACGTT  
 701 GA

The PSORT algorithm predicts periplasmic (0.935).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 84A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 84B) and for FACS analysis.

- 25 These experiments show that cp7222 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 85

The following *C.pneumoniae* protein (PID 4377225) was expressed <SEQ ID 169; cp7225>:

30 1 MKGTPQYHFI GIGGIGMSAL AHILLDRGYE VSGSDLYESY TIESLKAKGA  
 51 RCFSGHDSSH VPHDAVVVYS SSIAPDNVEY LTAIQRSSRL LHRAELLSQL  
 101 MEGYESILVS GSHGKTGTSS LIRAIHQEAQ KDPDSAIGGL AANCLNGYSG  
 151 SSKIFVAEAD ESDGSLKHYT PRAVVITNID NEHLNNYAGN LDNLVQVIQD  
 201 FSRKVTDLNK VFYNGDCPIL KGNVQGISYVG YSPECQLHIV SYNQKAWQSH  
 251 FSFTFLGQEY QDIELNLPGQ HNAANAAAAC GVALTFGIDI NIIRKALKKF  
 301 SGVHRRLERK NISESFLFLE DYAHHPVEVA HTLRSVRDAV GLRRVIAIFQ  
 351 PHFRFSRLEEC LQTFPKAFQE ADEVILTDVY SAGESPRESI ILSDLAEQIR  
 401 KSSYVHCCYV PHGDIVDYLR NYIRIHDCVCV SLGAGNIYTI GEALKDFNPK  
 451 KLSIGLVCVG KSCEHDISLL SAQHVKSYIS PEFYDVSYFI INRQGLWRTG  
 501 KDFPHLIEET QGDSPSSEI ASALAKVDCL FPVLHGPFGE DGTIQGFFEI  
 551 LGKPYAGPSL SLAATAMDNL LTKRIASAVG VPVVPYQPLN LCFWKRNPEL  
 601 CIQNLIETFS FPMIVKTAHL GSSIGIFLVR DKEELQEKS EAFLYDTDVF  
 651 VEESRLGSRE IEVSCIGHSS SWYCMAGPNE RCGASGFIDY QEKYGFDGID  
 701 CAKISFDLQL SQESLDCVRE LAERVYRAMQ GKGSARIDFF LDEEGNYWLS  
 751 EVNPPIPMTA ASPFLQAFVH AGWTQEQQIVD HFIIDLHKF DKQQTIEQAF  
 801 TKEQDLVKR\*

The cp7225 nucleotide sequence <SEQ ID 170> is:

50 1 ATGAAGGGAA CTCCTCAGTA TCATTTTATC GGTATCGGTG GTATAGGAAT  
 51 GAGCGCTTTA GCTCATATTG TGCTTGATCG TGGCTATGAG GTCTCTGGAA  
 101 GCGACTTATA TGAAAGCTAT ACGATCGAAA GCCTGAAAGC TAAAGGTGCG  
 151 AGGTGTTCT CAGGCCATGA TTCCTCCCAT GTTCCTCATG ATGCCGTGCG  
 201 TGTTTATAGC TCAAGTATAG CCCCTGATAA TGAGAGTAT CTTACCGCTA  
 251 TTCAAAGATC ATCACGTCTT CTTCATAGAG CAGAGCTTT GAGTCAGCTT  
 301 ATGGAGGGTT ATGAAAGCAT TCTGGTTCA GGAAGCCATG GGAAGACAGG  
 351 GACCTCATCT CTAATTCGAG CGATTTTCCA GGAAGCTAG AAAGATCCCT

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 87A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 87B) and for FACS analysis.

These experiments show that cp7249 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 88

The following *C.pneumoniae* protein (PID 4377261) was expressed <SEQ ID 175; cp7261>:

|    |                                                         |
|----|---------------------------------------------------------|
| 10 | MLPISILLFY VILGCL SAYI ADKKKRN VIG WFFAGAFFGF IGLVVLLLP |
|    | SRRNALEKPQ NDPFDNSDLF DDLKKSLAGN DEIPSSGDLQ EIVIDTEKWF  |
|    | YLNKDRENVG PISFEELVVL LKGKTYPEEI WWKKGMKD W QRVKDVPSLQ  |
|    | 151 QALKEASK*                                           |

The cp7261 nucleotide sequence <SEQ ID 176> is:

|    |                                                            |
|----|------------------------------------------------------------|
| 15 | 1 ATGCTCCCTA TTTCGATT TT ATTATTTTAT GTGATTCTAG GTTGTCTATC  |
|    | 51 TGCCTACATA GCAGATAAAGA AAAAACGAAA TGTTATTGGC TGGTTTTTG  |
|    | 101 CAGGAGCATT TTTTGGATT ATTGGTCTAG TTGTCCTTCT TCTTCCTCCT  |
|    | 151 TCTCGTCGAA ACGCTTTAGA AAAGCCACAA AACGATCCTT TTGATAACTC |
|    | 201 CGATCTTTT GATGATTG AAAAAAGTT AGCAGGTAAT GACGAGATAC     |
|    | 251 CCTCATCGGG ACATCTCAA GAAATCGTTA TCGATACAGA GAAGTGGTTT  |
| 20 | 301 TATTTAAATA AAGATAGAGA AAACGTAGGT CCGATATCTT TTGAGGAGTT |
|    | 351 GGTCTGACTT TTAAAGGGAA AAACGTATCC AGAAGAAATT TGGGTATGGA |
|    | 401 AAAAGGGAAT GAAAGATG G CAACGAGTGA AGGATGTTCC ATCACTACAA |
|    | 451 CAGGTTTGA AAGAACATC AAAATAA                            |

The PSORT algorithm predicts inner membrane (0.848).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 88A). The  
25 recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure  
88B) and for FACS analysis.

These experiments show that cp7261 is a surface-exposed and immunoaccessible protein, and that it  
is a useful immunogen. These properties are not evident from the sequence alone.

### Example 89

30 The following *C.pneumoniae* protein (PID 4377305) was expressed <SEQ ID 177; cp7305>:

|    |                                                                   |
|----|-------------------------------------------------------------------|
| 35 | 1 MEVYSFH PAV RTSFQHRVMA ALDAWFFLGG HRLKVVS LDS CNSGWAYQEL        |
|    | 51 VSISTTEKVL KLLSYLLVPI VIIALLIRCL LHSNFRIDVE KERWLKIREL         |
|    | 101 GIDIESCKLP SSYVNQVSSF IWFEKDKSKR PRIDVDYHTL HSKDWVVFP I       |
|    | 151 VFQKIPKTSR FS YWFQS QKET RKR DYVRNML DHVIGYL TSE GG EWILQYISK |
|    | 201 TSYQSATS LDP ERV LQY CLT DNQ ELQ GEV Q RLLNEESATK SSGDKEVLLS  |
|    | 251 HVSDII CQC W WPKFLEV IQS PAFIEELV EEE VSGKLNLDFL CLEKANTLDQ   |
|    | 301 ELRNSLLRAV VHHGSEGVDI KKVGAGLIY TEAIQLQIPF SRS*               |

The cp7305 nucleotide sequence <SEQ ID 178> is:

|    |                                                             |
|----|-------------------------------------------------------------|
| 40 | 1 ATGGAAGTTT ATAGTTTCA CCCTGCGGTA AGGACTTCGT TTCAGCACCG     |
|    | 51 TGTAAATGGCA GCACTAGATG CTTGGTTTT TCTAGGAGGG CACCGTTAA    |
|    | 101 AAGTAGTTTC TCTAGATAGT TGTA ACTCAG GTTGGCGTA TCAAGAACTT  |
|    | 151 GTGTCTATTT CAACGACAGA AAAAGTCTTG AAACTACTCT CTTACCTACT  |
|    | 201 CGTACCGATT GTCATAATAG CTC TGTAAAT TCGTTGTCTT TTACATAGCA |
|    | 251 ATTTTAGGAT AGACGTAGAG AAGGAACGTT GGTTAAAAT AAGGGAGTTA   |
| 45 | 301 GGAATTGATA TAGAAAGCTG CAAACTCCCC AGTTCTTATG TAAACCAGGT  |
|    | 351 TTCCTCGTTT ATTTGGTTG AAAAGATAA ATCCAAACGG CCACGTATTG    |
|    | 401 ATGTAGATTA TCATACGCTA CATAGCAAAG ACTGGGTAGT TTTCCCTATC  |

5           51 TTTACCTTGT TGTGCTGCAC GAAGACGTGC TTCTGGAGAA AATTGCAAC  
          101 AAACTCGTCC TATAGCAGCT GCAAATCTAC AATGGGAGAG CTATGCAGAA  
          151 GCTCTTGAAAC ATTCTAAACA AGATCACAAA CCTATTGTC TTTTCTTAC  
          201 AGGATCAGAC TGGTGTATGT GGTGCATAAA AATGCAAGAC CAGATTTGC  
          251 AAAGCTCTGA GTTAAAGCAT TTTGGGGTG TGCATCTGCA TATGGTTGAA  
          301 GTTGATTTCC CCCAAAGAA TCATCAACCT GAAGAGCAGC GCCAAAAAAA  
          351 TCAAGAACTG AAAGCTCAAT ATAAAGTTAC AGGATTCCCC GAACTGGTCT  
          401 TCATAGATGC AGAAGGAAAA CAGCTTGCTC GCATGGGATT TGAGCCTGGT  
          451 GGTGGAGCTG CTTACGTAAG CAAGGTGAAG TCTGCTCTTA AACTACGTTA  
          501 A

10          The PSORT algorithm predicts periplasmic (0.932).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 86A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 86B) and for FACS analysis.

15          The cp7248 protein was also identified in the 2D-PAGE experiment.

These experiments show that cp7248 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 87

The following *C.pneumoniae* protein (PID 4377249) was expressed <SEQ ID 173; cp7249>:

20         1 MIPSPPTPINF RDDTILETDP KPSLIMFSSK KTEIASERRK AHPTLFKVLG  
          51 TIWNIVKFII SIILFLPLAL LWVLLKKTCQF FILPSSIISQ SMSKTAVALR  
          101 RMTFLSHIKQ LLSLKEISAA DRVVIQYDDL VVDSLAIKIP HALPHRWILY  
          151 SOGNGLMEN LFDRGDSSLH QLAKATGSNL LVFNYPGIMS SKGEAKRENL  
          201 VKSYQACVRY LRDEETGPKA NQIIAFGYSL GTSVQAAALD REVTDGSDGT  
          251 SWIVVKDRGP RSLADVANQI CKPIASAIIK LVGWNIDSVK PSERLRCPEI  
          301 FIYNSNHDQE LISDGLFERE NCVATPFLEL PEVKTSGTKI PIPERDLLHL  
          351 NPLSPNVVDR LAAVISNYLD SENRKSQQPD \*

The cp7249 nucleotide sequence <SEQ ID 174> is:

30         1 ATGATCCCAT CCCCTACCCCC AATAAACTTT CGTGATGATA CGATTCTAGA  
          51 GACGGATCCA AAGCCGTCTT TAATCATGTT CTCTTCAAAA AAAACAGAGA  
          101 TAGCTTCTGA AAGACGGAAG GCCCCATCCCCA CCTTATTATAA AGTTCTAGGA  
          151 ACCGATTGGA ATATTGTGAA GTTTATTATC TCAATCATTC TGTTCTTCC  
          201 CTTAGCGTTA TTGTGGGTAC TCAAGAAAAC CTGTCAGTTT TTCATTCTCC  
          251 CATCTTCTAT CATATCTCAG AGCATGTCAA AACAGCTGT GGCAATTCCG  
          301 CGAATGACCT TTCTGTCCCA TATTAACCAA CTCTTAAGCC TTAAGGAAAT  
          351 CTCAGCTGCC GATCGTGTGG TTATACAATA TGACGATTG GTGGTTGATA  
          401 GCTTAGCTAT AAAGATACCT CATGCTCTTC CCCACAGGTG GATTCTTTAT  
          451 TCTCAAGGAA ACTCTGGATT GATGGAAAAC CTGTTCGATC GGGCGATTG  
          501 CTCTCTACAC CAGCTAGCCA AAGCAACCGG CTCGAATCTT CTTGTGTTCA  
          551 ACTATCCTGG AATTATGTCC AGCAAAAGGAG AAGCGAACG AGAAAATCTG  
          601 GTTAAATCGT ATCAGGGCATG CGTACGCTAC CTACGAGATG AAGAGACAGG  
          651 TCCTAAAGCC AATCAAATCA TAGCTTTCGG ATACTCTTG GGAACTAGTG  
          701 TCCAAGCTGC TGCTCTAGAT CGTGAGGTCA CTGATGGCAG TGATGGAACG  
          751 TCATGGATTG TTGTAAAAGA TCGGGGCCCT CGCTCTCTAG CAGATGTCGC  
          801 GAATCAAATT TGTAAGCCCA TAGCTTCCGC GATTATAAAA CTCGTTGGTT  
          851 GGAACATAGA CTCTGTGAAA CCTAGCGAAA GATTGCGTTG TCCCGAAATT  
          901 TTCAATTCTACA ACTCTAAATCA TGATCAAGAA CTCAATTAGCG ACGGCCTCTT  
          951 CGAAAGAGAA AATTGCGTAG CAACACCTTT TCTAGAGCTT CCTGAAGTAA  
          1001 AACCTCGGG GACTAAAATT CCTATACCCG AAAGGGATCT TCTCCATCTA  
          1051 AATCCTCTCA GTCCAAATGT AGTAGACAGA TTAGCAGCAG TGATCTCTAA  
          1101 TTATTTAGAT TCTGAAAACA GAAAGTCTCA GCAACCTGAT TAA

The PSORT algorithm predicts inner membrane (0.571).

5

```

1051 CATTGGAAA AAGAGACTGA TGCTTGATT ATTGATCAGA CCCATAATCC
1101 TGGAGGCAGT GTTTCTATC TCTATTGTT ACTATCTATG TTAACAGATC
1151 ATCCCTTAGA TACTCCTAAA CATAGAATGA TTTTCACTCA GGATGAAGTC
1201 AGCTCGGCTT TGCACTGGCA AGATCTACTA GAAGATGCTC TCACAGATGA
1251 GCAGGCAGTT GCGGTGCTAG GGGAAACTAT GGAAGGATAT TGCACTGGATA
1301 TGCATGCTGT AGCCTCTCTT CAAAACCTCT CTCAGAGTGT CCTTTCTTCC
1351 TGGGTTTCAG GTGATATTAA CCTTCAAAAA CCTATGCCCT TGCTAGGATT
1401 TGCACAGGTT CGACCTCATC CTAAACATCA ATATACTAAA CCTTTGTTTA
1451 TGGTGTAGA CGAGGATGAC TTCTCTGTG GAGATTTAGC GCCTGCAATT
1501 TTGAAGGATA ATGGCCGCGC TACTCTCATC GGAAAGCCA CAGCAGGAGC
1551 TGGAGGTTT GTATTCCAAAG TCACCTTCCC TAACCGTTCT GGAATTAAAG
1601 GTCTTCTTT AACAGGATCT TTAGCTGTTA GGAAAGATGG TGAGTTTATT
1651 GAAAACCTAG GAGTGGCTCC TCATATTGAT TTAGGATTAA CCTCCAGGGA
1701 TTGCAAAC TCCAGGTTA CTGATTACGT TGAGGCAGTG AAAACTATAG
1751 TTTAACCTTC TTGCTCTGAG AACGCTAAGA AGAGTGAAGA GCAGACTTCT
1801 CCGCAAGAGA CGCCTGAAGT TATTCGAGTC TCTTATCCCA CAACGACTTC
1851 TGCTTCGTAA

```

The PSORT algorithm predicts periplasmic space (0.2497).

20 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 90A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 90B) and for FACS analysis.

These experiments show that cp7347 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 91

25 The following *C.pneumoniae* protein (PID 4377353) was expressed <SEQ ID 181; cp7353>:

30

```

1 MNMPVPSAVP SANITLKEDS STVSTASGIL KTATGEVLVS CTALEGSSST
51 DALISLALGQ IILATQQELL LQSTNVHQLL FLPPEVVELE IQVV DLLVQL
101 EHAETITSEP QETQTQSRSE QTLPPQQSSK QSALSPRSLK PEISDSKQQQ
151 ALQTPKDSAV RKHSEAPSPE TQARASLSQA SSSSQRSLPP QESAPERPLL
201 EQQKASSFSP LSQFSAEKQK EALTTSKSHE LYKERDQDRQ QREQHDRKHD
251 QEEDAEEKKK KKKRGLGVEA VAEEPGENLD IAALIFSDQM RPPAEETSKK
301 ETTFKKLPS PMSVFSRFIP SKNPLSVGSS IHGPIQTPKV ENVFLRFMKL
351 MARILGQAEA EANEELYMRVK QRTDDVDTLT VLISKINNEK KDIDWSENEE
401 MKALLNRAKE IGVTIIDKEKY TWTEEEKRLL KENVQMRKEN MEKITQMERT
451 DMQRHLQEIS QCHQARSNVL KLLKELMDTF IYNLRP*

```

The cp7353 nucleotide sequence <SEQ ID 182> is:

40

```

1 ATGAATATGC CTGTTCCCTTC TGCAGTTCCC TCTGCCAAATA TAACTCTAAA
51 AGAACAGACAGC TCAACAGTTT CCACAGCCTC TGGAAATATTA AAGACTGCAA
101 CAGGTGAAGT CTTAGCTCTCT TGTACAGCGC TAGAAGGAAG CTCTTCTACA
151 GATGCTTTAA TTAGCTTAGC TTTAGGACAA ATCATTCTTG CGACCCAACA
201 AGAACCTGCTC TTACAAAGCA CAAATGTTCA TCAACTCCTC TTCCCTCCCTC
251 CTGAAGTTGT AGAATTAGAA ATCCAAGTTG TTGACTTGCT AGTGAATTG
301 GAAACATGCGAG AGACAATCAC AAGTGAACCA CAAGAAACAC AAACGCAAAG
351 TAGGAGTGTAG CAGACCCCTCC CTCAACAAAG CAGCAGTAAA CAATCTGCTC
401 TCTCCCCACAG CTCCTTAAAAA CCTGAAATTCTT CTGATTCTAA ACAACAGCAA
451 GCTCTTCAAA CACCAAAAGA CTC TGCTGTAA AGAAAACACA CGGAAGCACC
501 GTCACCTGAG ACACAAAGCTC GCGCTTCCCTT ATCTCAGGCA AGCTCAAGTT
551 CTCAGAGATC CTTACCTCCG CAAGAAAGTG CGCCAGAAAG AACACTATTA
601 GAAACAACAAA AAGCAAGCTC CTTCTCTCCT CTATCCCAGT TCTCTGCAGA
651 GAAACAAAAA GAGGCCCTGA CGACCTCAAA ATCTCATGAA CTCTATAAAG
701 AACCGCAGTC AGATCGCCAA CAAAGAGAGC AGCACGACAG AAAGCACGAT
751 CAGGAAGAAG ACGCTGAATC TAAAAAGAAA AAGAAGAAAC GTGGTCTCGG
801 TGTAGAGGCA GTCGCTGAGG AACCCGGAGA AAATCTAGAT ATTGCCGCTT
851 TAATCTTCTC AGATCAAATG CGACCTCCCTG CTGAAGAAC TTCTAAAAAA
901 GAAACGACAT TCAAAAGAA GCTACCTCT CCAATGTCTG TGTTTAGCAG
951 ATTCACTCCCT AGTAAGAATC CGTATCTGT AGGCTCTCA ATACACGGGC
1001 CTATACAAAC TCCAAAAGTA GAAAATGTGT TCTTAAGGTT CATGAAGCTC

```

5           451 GTTTTCAGA AAATTCCAAA GACCTCGCGT TTCAGTTATT GGTTCTCACA  
           501 AAAAGAAACA AGGAAGAGGG ATTATGTGAG AAATATGCTG GACCACGTCA  
           551 TTGGTTATCT AACGTCAGAA GGTGGGAGT GGTTGCAGTA TATATCGAAA  
           601 ACCTCTTATC AAAGCGCTAC TTCCCTGGAT CCTGAAAGAG TTCTTCATA  
           651 TTGCTTAACT GATAACCAGG AGCTCCAGGG AGAAGTGCAA CGTTTGCTTA  
           701 ATGAGGAGAG TGCGACCAAA AGCTCTGGGG ATAAGGAAGT TTTGTTAAGT  
           751 CATGTATCTG ACATTATTTG CCAGTCITGG TGGCCAAGT TTCTTGAAAGT  
           801 TATACAATCT CCGGCCTTA TTGAAGAAATT AGTAGAAGAA GTGAGTGGTA  
           851 AACTTAATTT AGATTTTTA TGCCTAGAAA AGGCTAATAC ATTAGATCAG  
           901 GAGTTGAGAA ACAGTCTCT AAGAGCAGTC GTACACCACG GTTCTGAAGG  
           951 AGTTGATATT AAGAAAGTTG GTGCCGGCCT CAATTATTAT ACGGAAGCTA  
 10          1001 TTCAATTACA GATTCCCTTC TCAAGGAGTT AA

The PSORT algorithm predicts inner membrane (0.508).

15         The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 89A) and also as a double GST/his fusion. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 89B) and for FACS analysis.

These experiments show that cp7305 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 90

20         The following *C.pneumoniae* protein (PID 4377347) was expressed <SEQ ID 179; cp7347>:

25          1 MKKGKLGATV FGLLFTSSVA GFSKDLTKDN AYQDLNVIEH LISLKYAPLP  
           51 WKELLFGWDL SQQTQQARLQ LVLEEKPTTN YCQKVLSNYV RSLNDYHAGI  
           101 TFYRTESEAYI PYVLKLSEDG HVFVVVDVQTS QGDIYLGDEI LEVDGMGIRE  
           151 AIESLRFGRG SATDYSAAVR SLTSRSAAFG DAVPSGIAML KLRRPSSLIR  
           201 STPVRWRWRYTP EHIGDFSLVA PLIPEHKPQL PTQSCVLFRS GVNSQSSSSS  
           251 LFSSYMPVYF WEELRVQNQKQ RFDSNHHIGS RNGFLPTFGP ILWEQDKGPY  
           301 RSYIFKAKDS QGNPHRJIGFL RISSYVWTDL EGLEEDHKDS PWELFGEIID  
           351 HLEKETDALI IDQTHNPGGS VFYLYSLLSM LTDHPLDTPK HRMIIFTQDEV  
           401 SSALHWQDLL EDVFTDEQAV AVLGETMEGY CMDFMHAVASL QNFSQSVLSS  
           451 WVSGDINLSK PMPLLGFQAQV RPHPKHQYTK PLFMLIDEDD PSCGDLAPAI  
           501 LKDNGRATLI GKPTAGAGGF VFQVTFPNRS GIKGLSLTGS LAVRKDGIFI  
           551 ENLGVAPHID LGFTSRDLQT SRFTDYVEAV KTIVLTSLSE NAKKSEEQTS  
           601 PQETPEVIRV SYPTTTSAS\*

A predicted signal peptide is highlighted.

35         The cp7347 nucleotide sequence <SEQ ID 180> is:

40          1 ATGAAAAAAAG GGAAATTAGG AGCCATAGTT TTTGGCCTTC TATTTACAAG  
           51 TAGTGTGCT GGTTTTCTA AGGATTGAC TAAAGACAAC GCTTATCAAG  
           101 ATTTAAATGT CATAGAGCAT TTAATATCGT TAAAATATGC TCCTTTACCA  
           151 TCGAAGGAAC TATTATTG TGCGGATTAA TCTCAGCAA CACAGCAAGC  
           201 TCGCTTGCAA CTGGTCTTAG AAGAAAAACC AACAAACCAAC TACTGCCAGA  
           251 AGGTACTCTC TAACTACGTG AGATCATTAA ACGATTATCA TGCAGGGATT  
           301 ACGTTTTATC GTACTGAAAG TGCGTATATC CCTTACGTAT TGAAGTTAAC  
           351 TGAAGATGGT CATGTCTTTG TAGTCGACGT ACAGACTAGC CAAGGGGATA  
           401 TTTACTTAGG GGATGAAATC CTTGAAGTAG ATGGAATGGG GATTCTGAG  
           451 GCTATCGAAA GCCTTCGCTT TGGACGAGGG AGTGCCACAG ACTATTCTGC  
           501 TGCAGTTCGT TCCTTGACAT CGCGTTCCGC CGCTTTGGA GATGCGGTTC  
           551 CTTCAGGAAT TGCCATGTTG AAACCTCGCC GACCCAGTGG TTTGATCCGT  
           601 TCGACACCGG TCCGTTGGCG TTATACTCCA GAGCATATCG GAGATTTTC  
           651 TTTAGTTGCT CCTTTGATTC CTGAAACATAA ACCTCAATTAA CCTACACAAA  
           701 GTTGTGTGCT ATTCCGTTCC GGGGTAAATT CACAGTCCTTC TAGTAGCTCT  
           751 TTATTCAGTT CCTACATGGT GCCTTATTC TGGGAAGAAT TGCGGGTTCA  
           801 AAATAAGCAG CGTTTTGACA GTAATCACCA TATAGGGAGC CGTAATGGAT  
           851 TTTTACCTAC GTTGGTCC ATTCTTTGGG AACAAAGACAA GGGGCCCTAT  
           901 CGTTCCCTATA TCTTTAAAGC AAAAGATTCT CAGGGCAATC CCCATCGCAT  
           951 AGGATTTTTA AGAATTCTT CTTATGTTG GACTGATTAA GAAGGACTTG  
 55          1001 AAGAGGATCA TAAGGATAGT CCTTGGGAGC TCTTGGAGA GATCATCGAT

**Example 93**

The following *C.pneumoniae* protein (PID 4376424) was expressed <SEQ ID 185; cp6424>:

```

5   1 MMHNIVVLSE EPGRSAFLGR TAFFPNKYPI AQGGVGIPST IGNLFTIWC
  51 51 FYFYRAATPQ SDHPDGCIFI LLERLKELGA GFFYCDLRES NTTGFTLFFE
  101 101 GSNKGVLKNH LFIRDE*

```

The cp6424 nucleotide sequence <SEQ ID 186> is:

```

10  1 ATGATGCCACA ATATTGTGTC TCTTAGTGAG GAACCTGGAC GAAGCGCTTT
  51 51 TCTTGGTAGG ACGGCATTT TCCCTAAATA GTATCCAATA GCTCAGGGTG
  101 101 GTGTTGGAAT ACCATCTACA ATAGGCAATC TCTTTACTAT ATGGTACTGT
  151 151 TTCTATTTTT ATAGAGCTGC AACTCCACAA TCTGATCATC CTGACGGATG
  201 201 TGCGTTTATT CTACTAGAAA GGCTTAAGGA GCTCGGTGCA GGGTTCTTTT
  251 251 ATTGTGATCT TCGTGAGTCC AATACCACTG GCTTTACTCT TTTTTTGAA
  301 301 GGCTCCAATA AAGGTGTGTT AAAGAACAC TTGTTTATTA GAGATGAGTA
  351 351 A

```

15 The PSORT algorithm predicts cytoplasm (0.2502).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 93A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 93B) and for FACS analyses (Figure 93C; GST-fusion).

20 These experiments show that cp6424 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 94**

The following *C.pneumoniae* protein (PID 4376449) was expressed <SEQ ID 187; cp6449>:

```

25  1 VASETYPSQI LHAQREVRDA YFNQADCHPA RANQILEAKK ICLLDVYHTN
  51 51 HYSVFTFCVD NYPNLRFTFV SSKNNEMLN SNPLDNVLVE AMVRRTHARN
  101 101 LLAACKIRNI EVPRVVGLDL RSGILISKLE LKQPQFQS LT EDFVNHSNTNQ
  151 151 EEARVHQKHV LLISLILLCK QAVLESFQEKRSS*

```

The cp6449 nucleotide sequence <SEQ ID 188> is:

```

30  1 GTGGCGTCTG AAACGTATCC TTCTCAGATA TTGCACGCTC AGAGGGAAGT
  51 51 ACGTGATGCC TATTTAAC T AAGCGGATTG CCATCCTGCT CGGGCTAAC
  101 101 AGATTCTCGA GGCTAAGAAA ATCTGTTTAT TAGATGTTA TCATACTAA
  151 151 CATTATTCCG TATTTACTTT TTGTGTAGAT AATTATCCGA ATCTCCGCTT
  201 201 TACATTTGTA TCTTCAAAAA ACAATGAGAT GAATGGCTTA TCTAATCCTC
  251 251 TAGATAATGT TCTTGTAGAG GCTATGGTAC GTAGAACACA TGCAAGAAC
  301 301 CTACTTGCAG CGTGTAAAT TCGAAATATT GAGGTTCCAA GGGTTGTTGG
  351 351 GCTTGACCTA AGATCTGGGA TACTCATTTG GAAACTAGAA TTGAAGCAAC
  401 401 CTCAGTTCCA AAGTTAAACA GAAGACTTCG TAAATCATTC CACAAATCAG
  451 451 GAAAGAAGCTC GCGTCCATCA AAAGCATGTG TTGCTAATT CTTTAATT
  501 501 ACTTGCAAG CAGGCCGTT TGGAAATCATT CCAGGAAAAA AAGCGATCCT
  551 551 CTAA

```

40 The PSORT algorithm predicts inner membrane (0.2084).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 94A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figure 94B) and for FACS analyses (Figure 94C; GST-fusion).

45 These experiments show that cp6449 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5  
1051 ATGGCAAGAA TCTTAGGCCA AGCCGAAGCC GAAGCTAATG AACTCTACAT  
1101 GCGAGTCAAA CAACGTACCG ATGATGTAGA CACACTCACA GTCCTTATCT  
1151 CTAAGATCAA TAATGAAAAG AAAGACATTG ATTGGAGTGA AAATGAAGAG  
1201 ATGAAAGCTC TTTTAAATCG AGCTAAAGAG ATTGGAGTCA CTATAGACAA  
1251 AGAAAAATAT ACTTGACAG AAGAGGAAAA AAGACTTCTA AAAGAGAATG  
1301 TCCAAATGCG CAAAGAGAAT ATGGAGAAAA TCACTCAAAT GGAAAGGACG  
1351 GACATGCAAA GGCACCTCCA AGAGATTCT CAATGTCATC AAGCGCGCTC  
1401 TAATGTATTG AAGTATTG AAGAACTTAT GGACACCTTC ATTTACAACC  
1451 TACGCCCTA A

10 The PSORT algorithm predicts cytoplasm (0.1308).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 91A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 91B) and for FACS analysis.

15 These experiments show that cp7353 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 92

The following *C.pneumoniae* protein (PID 4377408) was expressed <SEQ ID 183; cp7408>:

20  
1 MLKIQKKRMC VSVVITVGAI VGFFNSADAA PKKKKIPIQI LYSFTKVSSY  
51 LKNEDASTIF CVDVDRGLLQ HRYLGSPGWQ ETRRRQLFKS LENQSYGNER  
101 LGEETLAIDI FRNKECLESE IPEQMEAILA NSSALVLGIS SFGITGIPAT  
151 LHSLLRQNLS FQKRSIASES FLLKIDSAPS DASVFYKGVL FRGETAIVDA  
201 LSQLFAQQLDL SPKKIIFLGE DPEVVAQVGS ACIGWGMNFL GLVYYPAQES  
251 LFSYVHPYST ATELQEAQQL QVISDEVAQL TLNALPKMN\*

The cp7408 nucleotide sequence <SEQ ID 184> is:

25  
1 ATGTTGAAAA TCCAGAAAAA AAGAATGTGT GTCAGCGTAG TCATCACGGT  
51 AGGCGCCATA GTGGGGTTTT TCAATTCTGC AGACGCAGCA CCAAAGAAAA  
101 AGAAGATCCC TATACAGATT CTCTACTCCT TTACTAAAGT CTCTTCCTAT  
151 TTAAAAAACG AAGACGCAAG TACTATATTT TGCGTCGATG TGGATCGTGG  
201 ACTTCTCCAG CATCGGTATT TAGGTAGTCC AGGATGGCAG GAAACCAGAC  
251 GTCGGCAGTT ATTTAAATCC TTAGAAAATC AATCATACGG CAACGAACGT  
30 301 TTAGGAGAAG AAACTCTTGC TATTGATATT TTCAGGAACA AAGAGTGCTT  
35 351 GGAGAGCGAG ATCCCAGAGC AGATGGAAGC TATCCTTGCA AATTCTCGG  
40 401 CCTTGGTCTT AGGCATCTCT TCTTTGGGA TCACAGGAAT TCCTGCGACT  
451 TTGCGATGTT TGCTTCGACA GAATCTATCT TTCCAAAAAC GCTCTATAGC  
501 ATCGGAGAGC TTCTTTTAA AGATCGATAG TGCCCCCTCA GATGCTCTG  
551 TTTTTTATAA AGGCGTGCTT TTCCCGGGAG AGACTGCGAT CGTGGATGCG  
601 TTAAGCCAAT TATTTGCCA GCTCGATCTT TCTCCTAAAA AAATTATCTT  
651 TCTAGGAGAA GACCCCTGAGG TCGTTCAAGC TGTTGGGTCT GCTTGTATAG  
701 GTTGGGGCAT GAACTTTTA GGCCTGGTAT ACTATCCTGC TCAAGAAAGC  
751 CTTTTTCTT ATGTTCATCC TTACTCTACA GCAACGGAGC TCCAAGAAGC  
801 ACAGGGTTTA CAAGTAATT CAGATGAAGT CGCACAGCTT ACTTTAAACG  
851 CTCTTCCGAA AATGAATTAA

The PSORT algorithm predicts inner membrane (0.123).

45 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 92A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 92B) and for FACS analysis.

These experiments show that cp7408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

These experiments show that cp6506 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 97

The following *C.pneumoniae* protein (PID 4376882) was expressed <SEQ ID 193; cp6882>:

```

5      1  MSLLNLPPSQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV RQRLLSFLMH
      51 KLNYPKKLII IEKELKTLFP LLMRKGTLLIP KRRPDILIT PPTYTDAQGN
     101 THNLGDPKPL LLIECKALAV NQNALKQLLS YNYSIGATCI AMAGKHSQVS
     151 ALFPNPKTQTL DFYPGLPEYS QLLNYFISLN L*

```

The cp6882 nucleotide sequence <SEQ ID 194> is:

```

10     1  ATGTCCTTAT TGAACCTTCC CTCAAGCCAG GATTCTGCAT CTGAGGACTC
      51 CACATCGCAA TCTCAAATCT TCGATCCCAT TAGAAATCGG GAGTTAGTTT
     101 CTAECTCCGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCCT CCTAATGCAT
     151 AAGCTGAACT ACCCTAAAGAA ACTCATCATC ATAGAAAAG AACTCAAAAC
     201 TCTTTTTCCCT CTGCTTATGC GTAAAGGAAC CCTAATCCCA AAACGCCGCC
     251 CAGATATTCT CATCATCACT CCCCCACAT ACACAGACGC ACAGGGAAAC
     301 ACTCACAACC TAGGCGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
     351 CTTAGCCGTA AACCAAAATG CACTCAAACA ACTCCTTAGC TATAACTACT
     401 CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
     451 GCTCTCTTCA ATCCAAAAAC ACAAACTCTT GATTTTATC CTGGCCTCCC
     501 AGAGTATTCC CAACTCCTAA ACTACTTTAT TTCTTTAAC TTATAG

```

The PSORT algorithm predicts cytoplasm (0.362).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 97A). The protein was used to immunise mice, whose sera were used in a Western blot (Figure 97B) and for FACS analysis (Figure 97C).

25 These experiments show that cp6882 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 98

The following *C.pneumoniae* protein (PID 4376979) was expressed <SEQ ID 195; cp6979>:

```

30     1  MSVNPSGN SK NDLWITGAHD QHPDVKEESGV TSANLGSHRV TASGGRQGLL
      51 ARIKEAVTGF FSRMSFRSG APRGSQQPSA PSADTVRSPL PGGDARATEG
     101 AGRNLLIKKGY QPGMKVTIPQ VPGGQAQRSS GSTTLKPTRP APPPKTGGT
     151 NAKRPATHGK GPAPQPQPKT GTNAKRAATH GKGPAPQPPK GILKQPGQSG
     201 TSGKKRVSWS DED*

```

The cp6979 nucleotide sequence <SEQ ID 196> is:

```

35     1  ATGTCGTGTTA ATCCATCAGG AAATTCCAAG AACGATCTCT GGATTACGGG
      51 AGCTCATGAT CAGCATCCCG ATGTTAAAGA ATCCGGGGTT ACAAGTGCTA
     101 ACCTAGGAAG TCATAGAGTG ACTGCCTCAG GAGGACGCCA AGGGTTATTA
     151 GCACGAATCA AAGAACGAGT AACCGGGTTT TTTAGTCGGA TGAGCTTCTT
     201 CAGATCGGGA GCTCCAAGAG GTAGCCAACA ACCCTCTGCT CCATCTGCAG
     251 ATACTGTACG TAGCCGTTG CGGGGAGGGG ATGCTCGCCG TACCGAGGG
     301 GCTGGTAGGA ACTTAATTAA AAAAGGGTAC CAACCCAGGGA TGAAAGTCAC
     351 TATCCCACAG GTTCCTGGAG GAGGGGCCCA ACGTTCATCA GGTAGCACGA
     401 CACTAAAGCC TACCGTCCG GCACCCCCAC CTCCCTAAAAC GGGTGGAACT
     451 AATGCAAAAC GTCCGGCAAC GCACGGGAAG GGTCCAGCAC CCCAGCCTCC
     501 TAAAACAGGT GGGACCAATG CTAAGCGCGC AGCAACGCAT GGGAAAGGTC
     551 CAGCACCTCA ACCTCTTAAG GGCATTTGA AACAGCCTGG GCAGTCTGGG
     601 ACTTCAGGAA AGAAGCGTGT CAGCTGGTCT GACGAAGATT AA

```

The PSORT algorithm predicts cytoplasm (0.360).

**Example 95**

The following *C.pneumoniae* protein (PID 4376495) was expressed <SEQ ID 189; cp6495>:

MRELNAFELTQPEEYRNRWVLMPCLKCRFCRTQHAKVWSYRCVHEASLYEKNCFLTLTYDDKHL PQYGSILVKLHLQLFLKR  
LRKMISPHKIRYFECGAYGTLQRPHYHLLS

- 5 The cp6495 nucleotide sequence <SEQ ID 190> is:

TTGCGAGAATTAAATGCTTTGAATTAACTCAACCTGAAGAGTATCGAAACCGTTGGGTGGATGCCCTGTCTTAAGTGT  
CGTTTTGTAGAACGCAACATGCAAAGCTGGTCTATCGTTGTCCATGAAGCTTCCTTGATGAGAAAAATTGTTT  
CTTACTTTGACTTATGATGATAAGCATTACCTCAGTATGGTTGTGGTAAAGCTGCATTACAGCTGTTCTTAAGAGA  
TTAAGAAAGATGATTCTCCTCATAAAATTGTTATTTGAATGTGGTGCATGGAACCAAATTACAAGACCTCATTAT  
10 CATCTACTTTTATCATGA

The PSORT algorithm predicts cytoplasmic (0.280).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 95A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 95B) and for FACS analysis (Figure 95C).

- 15 These experiments show that cp6495 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 96**

The following *C.pneumoniae* protein (PID 4376506) was expressed <SEQ ID 191; cp6506>:

20 1 MRRFLFLILS SLPLVAFSAD NFTILEEKQS PLSRVSIIFA LPGVTPVSFD  
51 51 GNCPIPWFSH SKKTLEGQRI YYSGDSFGKY FVVSALWPNK VSSAVVACNM  
101 101 ILKHRVDLIL IIGSCYSRSQ DSRGFSVLVS KGYINYDADV RPFFERFEIP  
151 151 DIKKSVFATS EVHREAILRG GEEFISTHKQ EIEELLKTHG YLKSTTKTEH  
201 201 TLMEGLVATG ESFAMSRNYF LSLQKLYPEI HGFDSVSGAV SQVCYEYSIP  
251 251 CLGVNILLPH PLESRSNEDW KHLQSEASKI YMDTLLKSVL KELCSSH\*

- 25 The cp6506 nucleotide sequence <SEQ ID 192> is:

1 1 ATGCGTCGTT TTCTGTTCT TATTCTTAGC TCTCTTCCTT TGGTCGCATT  
51 51 CTCTGCTGAT AATTTCACTA TTCTAGAAGA AAAACAGAGT CCTTTAACGTC  
101 101 GTGTAAGTAT TATTTTGCT TTACCTGGGG TTACTCCCGT TTCTTTGAT  
151 151 GGTAAATTGTC CTATTCCTTG GTTTCTCAT AGTAAAAAGA CTCTAGAGGG  
201 201 ACAGAGAATT TATTACTCTG GCGACTCCTT TGGGAAATAC TTTGTAGTTT  
251 251 CTGCTCTTTG GCCTAATAAA GTTCTTCAG CTGTTGTGGC TTGTAATATG  
30 301 ATTCTTAAAC ATCGAGTGGA TCTTATTCTA ATTATAGGCT CGTGTACTC  
351 351 TAGGTCTCAA GATAGCCGTT TTGGCAGCGT CTTAGTTCT AAAGGCTACA  
401 401 TTAATTATGA TGCAGATGTG AGGCCTTTCT TTGAAAGATT TGAGATTCCA  
35 451 GACATTAAAA AGAGTGTGTT TGCAACCAGT GAGGTTCATC GGGAGGCAAT  
501 501 TCTTCGTGGA GGCAGAGT TTATTTCTAC CCATAAACAA GAAATCGAAG  
551 551 AGCTTTGAA GACTCATGGG TATTTGAAAT CAACAACCAA AACGGAGCAC  
601 601 ACCTTAATGG AAGGTTTGGT TGCTACAGGC GAGTCCTTCG CGATGTCGCG  
651 651 AAACTATTCTT CTTCCCTTAC AAAAATTGTA TCCAGAGATT CATGGTTTTG  
40 701 701 ATAGTGTCA CGGCGCTGTT TCTCAGGTAT GCTATGAATA TAGCATTCCCT  
751 751 TGTGTTAGGTG TGAATATCCT TCTCCCTCAT CCTTTAGAAT CACGGAGTAA  
801 801 CGAGGATTGG AAGCATCTTC AAAGTGAGGC AAGTAAAATT TATATGGATA  
851 851 CCTTGCTCAA GAGTGTATTA AAAGAACTCT GTTCTTCTCA TTAA

The PSORT algorithm predicts periplasmic space (0.571).

- 45 The protein was expressed in *E.coli* and purified as his-tag (Figure 96A) and GST-fusion (Figure 96B) products. The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 96C) and for FACS analysis (Figure 96D).

251 AATGTTATAAC CCGATTGAA GATGGCACAA TTTTTTATGA ATGCGATTAG

The PSORT algorithm predicts inner membrane (0.143).

The protein was expressed in *E.coli* and purified as a GST-fusion (Figure 100A) and a his-tag product. The proteins were used to immunise mice, whose sera were used in a Western blot (Figure 5 100B) and for FACS analysis (Figure 100C).

These experiments show that cp7355 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 101

The following *C.pneumoniae* protein (PID 4377380) was expressed <SEQ ID 201; cp7380>:

|    |                                                             |
|----|-------------------------------------------------------------|
| 10 | 1 VHYCERTLDP KYILKIALKL RQSLSLFFQN SQSLQRAYST PYSYYRIILQ    |
|    | 51 KENKEKQALA RHKCISILEF FKNNLLFVHLL SLSKNQREGC STDMAVVSTP  |
|    | 101 FFNRNLWYRL LSSRFSLWKS YCPRFFLDYL EAFFGLLSDFL DHQAVIKFFE |
|    | 151 LETHFSYYPV SGFVAPHQYL SLLQDRYFPPI ASVMRTLDKD NFSLTPDLIH |
| 15 | 201 DLLGHVPWLL HPSFSEFFIN MGRLFTKVIE KVQALPSKKQ RIQTLQSNLI  |
|    | 251 AIVRCFWFTV ESGLIENHEG RKAYGAVLIS SPQELGHAFI DNVRVLPLEL  |
|    | 301 DQIIRLPFNT STPQETLFSI RHFDELVELT SKLEWMLDQG LLESIPLYNQ  |
|    | 351 EKYLSGFEVL CQ*                                          |

The cp7380 nucleotide sequence <SEQ ID 202> is:

|    |                                                              |
|----|--------------------------------------------------------------|
| 20 | 1 GTGCACTACT CGCAGAGAAC CCTGGACCCA AAGTATATTTC TGAAGATTGC    |
|    | 51 TCTAAAGCTG AGACAATCAC TTTCCCTGTT CTTCCAGAAC AGCCAATCAC    |
|    | 101 TCCAACGTGC ATACTCGACC CCATATTCCCT ACTACCGAAT CATTCTACAA  |
|    | 151 AAGGAAAATA AAGAGAAGCA AGCTTTAGCT CGACACAAAT GCATTTCTAT   |
|    | 201 TTTAGAATTTC TTCAAAAATCT TACTCTTTGT TCATCTCTG TCATTATCAA  |
| 25 | 251 AGAATCAAAG GGAAGGTTGC TCCACTGATA TGGCTGTTGT AAGCACTCCC   |
|    | 301 TTTTTTAATC GGAATTATATG GTATCGACTC CTTTCCCTCAC GGTTTTCTCT |
|    | 351 ATGGAAAAGC TATTGTCCAA GATTTTTCT TGATTACTTA GAAGCTTTCG    |
|    | 401 GTCTCCCTTC TGATTTCTTA GACCATCAAG CAGTCATTAA ATTCTTCGAA   |
|    | 451 TTAGAAACAC ATTTTCCTA TTATCCCGTT TCAGGATTG TAGCTCCCCA     |
| 30 | 501 TCAAATCTTG TCTCTGTTGC AGGACCGTTA CTTTCCCAT GCCTCTGTAA    |
|    | 551 TCGGAACTCT CGATAAAGAT AATTCTCCT TAACTCCTGA TCTCATCCAT    |
|    | 601 GACCTTTTAG GGCACGTGCC TTGGCTTCTA CATCCCTCAT TTTCTGAATT   |
|    | 651 TTCATCAAAC ATGGGAAGAC TCTTCACTAA AGTCATAGAA AAAGTACAAG   |
|    | 701 CTCTTCCCTAG TAAAAAACAA CGCATACAAA CCCTACAAAG CAATCTGATC  |
| 35 | 751 GCTATTGTC GCTGCTTTG GTTACTGTT GAAAGCGGAC TTATTGAAAA      |
|    | 801 CCATGAAGGA AGAAAAGCAT ATGGAGCCGT TCTTATCAGT TCTCCTCAGG   |
|    | 851 AACTTGGACA CGCTTTCATT GATAACGTAC GTGTTCTCCC TTTAGAATTG   |
|    | 901 GATCAGATTA TTCTGCTTCC CTTCATACA TCAAACCTCAC AAGAGACTTT   |
|    | 951 ATTTTCAATA AGACATTTG ATGAACTGGT AGAAACTCACT TCAAATTAG    |
| 40 | 1001 AATGGATGCT CGACCAAGGT CTGTTAGAAT CAATTCCCT TTACAATCAA   |
|    | 1051 GAGAAATATC TTTCTGGTT TGAGGTACTT TGCCAATGA               |

The PSORT algorithm predicts inner membrane (0.1362).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 101A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 101B) and for FACS analysis (Figure 101C).

45 These experiments show that cp7380 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 102

The following *C.pneumoniae* protein (PID 4376904) was expressed <SEQ ID 203; cp6904>:

-133-

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 98A). The GST-fusion protein was used to immunise mice, whose sera were used in a Western blot (Figure 98B) and for FACS analysis (Figure 98C).

These experiments show that cp6979 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 99

The following *C.pneumoniae* protein (PID 4377028) was expressed <SEQ ID 197; cp7028>:

```

10      1 MLLGFLCDCP CASWQCAA VA NCYDSVFMSR PEHKPNIP YI TKATRRGLRM
      51 KTLAYLASLK DARQLAYDFL KDPGSLARLA KALIAPKEAL QEGNLFFYGC
      101 SNIEDILEEM RRPHRILLG FSYCQKPKAC PEGRFNDACR YDPSHPTCAS
      151 CSIGTMMRLN ARRYTTVIIP TFIDIAKHLH TLKKRYPGYQ ILFAVTACEL
      201 SLKMFQDYAS VMNLKGVGIR LTGRICNTFK AFKLAERGVK PGVTILEEDG
      251 FEVLAIRILTE YSSAPFPRDF CEIH*

```

The cp7028 nucleotide sequence <SEQ ID 198> is:

```

15      1 ATGCTTCTAG GGTTTTGTG TGACTGCC C TGTGCTTCGT GGCAGTGTGC
      51 GGCCTTGCT AATTGTTATG ATTCCGTATT TATGCTAGA CCAGAGCACA
      101 AACCTAATAT TCCTTATATT ACTAAAGCTA CAAGACGGG TCTGCGTATG
      151 AAGACGCTTG CTTATCTGGC CTCTTTAAA GATGCTAGAC AGCTTGCCTA
      201 TGATTTCTG AAAGATCCTG GTTCTTTAGC TCGGTTAGCT AAGGCTTGA
      251 TAGCTCCTAA GGAGGCCCTA CAGGAGGGCA ACCTATTTT TTATGGCTGT
      301 AGTAATATTG AGGATATTT AGAGGAGATG CGTCGTCCTC ATAGAATCCT
      351 TTTGTTAGGA TTTTCTTATT GTCAAAAGCC TAAGGCATGT CCTGAAGGGC
      401 GTTTCAATGA TGCTTGTGG TATGATCCTT CACATCCTAC ATGTGCCTCA
      451 TGTTCTATAG GGACCATGAT GCGGCTGAAT GCTCGTAGAT ACACTACTGT
      501 GATCATCCCT ACATTTATAG ATATCGCAA ACATTTACAC ACTTTAAAAAA
      551 AGCGCTACCC TGGATATCAA ATTCTCTTTG CAGTTACTGC TTGTGAACCTT
      601 TCCTTAAAAA TGTTGGAGA TTATGCCTCC GAAATGAACT TAAAGGGTGT
      651 GGGCATCAGA CTCACAGGAC GTATTTGCAA TACATTTAAG GCATTAAAT
      701 TAGCTGAGCG AGGAGTCAA CCAGGAGTCA CTATCCTAGA AGAAGATGGC
      751 TTTGAGGTAT TAGCAAGGAT TCTTACAGAA TACAGTAGCG CTCCTTTCCC
      801 TAGAGACTTT TGTGAGATCC ATTAG

```

The PSORT algorithm predicts cytoplasm (0.1453).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 99A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 99B) and for FACS analysis (Figure 99C).

These experiments show that cp7028 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 100

The following *C.pneumoniae* protein (PID 4377355) was expressed <SEQ ID 199; cp7355>:

```

40      1 MKVVTLSII FFATYCASEL SAVTVVAVPL SEAPGKIQVR PVVGLQFQEE
      51 QGSVPYSFYY PYDYGYYYPE TYGYTKNTGQ ESRECYTRFE DGTIFYECD*

```

The cp7355 nucleotide sequence <SEQ ID 200> is:

```

45      1 ATGAAGAAAG TCGTAACACT ATCCATTATA TTTTTCGCAA CGTATTGTGC
      51 ATCAGAGCTT AGTGTGTAA CTGTAGTGGC TGTGCTTAA TCAGAGGCTC
      101 CAGGGAAAGAT TCAAGTCGT CCCGTCGTG GTCTGCAATT TCAAGAAGAA
      151 CAGGGTTCTG TGCCCTATAG TTTTTATTAT CCTTATGACT ATGGGTATTA
      201 CTATCCAGAG ACTTATGGCT ATACTAAAAA TACAGGTCAA GAAAGTCGCG

```

-136-

```

1  LNFAKIDHNH LYLTCGLDG VACPILSTDC LPNYSEKASH EVLVYSKFRG
51  ISGEPESR LAT SGNDTYY SIV SLPIGLRYEV TSPSGRHDFN IDMHVAPKIG
101  AVLSHGTREA KEIPGSSKDY AFFSLTARES LMISEKLAMT FQVSEVIQNC
151  YSQCKVTKT NLKEQYRHL S HNTGFELSVK SAF*

```

- 5 The cp7387 nucleotide sequence <SEQ ID 208> is:

```

1  TTGAATTTG CAAAGATG A TCACAATCAT CTCTACCTTA CATGTTGGG
51  AGATCTTGGT GTAGCTTGC C CTATACTTT TACAGATTGT CTACCTAATT
101  ATAGCGAGAA AGCATCTC AT GAGGTTCTT TTTATAGTAA ATTTAGATGC
151  ATTTCTGGAG AGCCATCTCG ACTTGCAACT TCAGGAAATG ACACATATTA
10  201  TTCTATAGTA AGTTTACCTA TAGGACTCCG TTACGAAGTG ACTTCACCCT
251  CAGGACGTCA TGATTTCAAT ATTGATATGC ATGTAGCTCC AAAGATAGGT
301  GCAGTACTCT CTCATGGAAC ACGAGAGGCT AAAGAGATCC CAGGATCTC
351  AAAAGACTAT GCATTTTTA GCTTGACTGC TAGAGAAAGT TTAATGATTT
401  CTGAAAAGCT TGCGATGACT TTCCAAGTTA GCGAAGTTAT TCAGAATTGT
451  TATTCACAAT GTACTAAAGT AACGAAAAC AATTAAAAG AACAGTATAG
501  GCACTTATCC CACAATACAG GGTTGAGTT AAGCGTCAAG TCTGCATTCT
551  AA

```

The PSORT algorithm predicts inner membrane (0.043).

20 The protein was expressed in *E.coli* and purified as a his-tagged-fusion product (Figure 104A) and also as a GST-fusion (Figure 104B). The recombinant proteins were used to immunise mice, whose sera were used in a Western blot and for FACS analysis (Figure 104C; his-tagged).

These experiments show that cp7387 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 105

- 25 The following *C.pneumoniae* protein (PID 4376281) was expressed <SEQ ID 209; cp6281>:

```

1  MFLQFFHPIV FSDQSLSFLP YLGKSSGIIE KCSNIVEHYL HLGGDTSVII
51  TGVSGATFLS VDHALPIKS EKIIKILSYI LILPLILALF IKIVLRIILF
101  FKYRGLILDV KKEDLKKTLT PDQENLSLPL PSPTTLKKIH ALHILVRSGK
151  TYNELIQEGF SFTKITDLGQ APSPKQDIFG SYNSLLPNFY FHSLVSPNI
30  201  SGEERALNYH KEQQEEMAVK LKTMQACSFV FRSLHLPsmQ TKDKKAGFGL
251  LTFFFpwKIYP L*

```

The cp6281 nucleotide sequence <SEQ ID 210> is:

```

1  ATGTTTCTTC AGTTTTTCA TCCTATAGTC TTCTCGGATC AGTCCTTATC
51  TTTTCTTCCT TACCTAGGAA AAAGCTCTGG CATTATTGAA AAATGTTCCA
101  ATATCGTTGA ACACATTTA CATTTGGGAG GAGACACTTC TGTTATCATC
151  ACAGGAGTTT CTGGAGCTAC CTTTCTATCT GTTGATCATG CCCTCCCAAT
201  CTCGAAATCT GAAAAAAATAA TAAAAAATTCT CTCCTATATT TTAATTCTTC
251  CTCTGATTCT AGCTCTCTT ATTAAAGATCG TTTTACGCAT TATCTTATT
301  TTCAAGTATC GTGGTCTAAT CCTAGATGTT AAGAAGGAGG ATTTGAAAAA
351  AACACTTACA CCTGACCAAG AAAACCTCAG TCTTCCTTA CCATCTCCTA
401  CAACATTAAA GAAAATTCT GCGCTACACA TTTTAGTGC G TTCTGGAAAA
451  ACCTATAACG AGCTTATACA AGAAGGGTT TCTTCACTA AAATCACAGA
501  TCTTGGTCAA GCTCCTTCAC CAAAGCAAGA TATTGGCTTC TCTTATAATT
45  551  CCCCTCTCCC TAACCTCTAT TTTCATTCT TGGTATCTGT TCCAAATATT
601  TCAGGCGAGG AACGGGCTCT TAATTATCAT AAAGAACAC AAGAGGAAAT
651  GGCTGTTAAA TTAAAAACAA TGCAAGCGTG TTCTTTGTC TTCCGATCCC
701  TGCAATTACCA TTCAATGCAA ACGAAGGACA AAAAGGCTGG ATTTGGACTA
751  CTGACGTTT TCCCTTGGAA AATCTACCCCC CTATAA

```

The PSORT algorithm predicts inner membrane (0.5373).

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 105A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 105B) and for FACS analysis.

5        1 MMNYEDAKLR GQAVAILYQI GAIKFGKHIL ASGEETPLVV DMRLVISSPE  
       51 VLQTVATLIW RLRPSFNSSL LCGVPYALT LATSISLKYN IPMVLRRKEL  
       101 QNVDPDSAIK VEGLFTPQQT CLVINDMVSS GKSIIETAVA LEENGLVVRE  
       151 ALVFLDERRKE ACQPLGPQGI KVSSVFTVPT LIKALIAYGK LSSGDLTLAN  
       201 KISEILEIES \*

The cp6904 nucleotide sequence <SEQ ID 204> is:

10        1 ATGATGAAC TACGAAGATGC AAAATTACGC GGTCAAGCTG TAGCAATTCT  
       51 ATACCAAATC GGAGCTATAA AGTCGGAAA ACATATTCTC GCTAGCGGAG  
       101 AAGAAAATCC TCTGTATGTA GATATGCGTC TTGTGATCTC CTCTCCAGAA  
       151 GTTCTCCAGA CAGTGGCAAC TCTTATTGCG CGCTCCGCC CCTCATTCAA  
       201 TAGTAGCTTA CTCTGCGGAG TCCCTTATAC TGCTCTAACCT CTAGCAACCT  
       251 CGATCTCTTT AAAATATAAC ATCCCTATGG TATTGCGAAG GAAGGAATTA  
       301 CAGAATGTAG ACCCTCGGA CGCTATTAAA GTAGAAGGGT TATTACTCC  
       351 AGGACAAAAT TGTTTAGTCA TCAATGATAT GGTTCCCTCA GGAAAATCTA  
       401 TAATAGAGAC AGCAGTCGCA CTGGAAGAAA ATGGTCTGGT AGTTCGTGAA  
       451 GCATTGGTAT TCTTAGATCG TAGAAAAGAA CGTGTCAAC CACTTGGTCC  
       501 ACAGGAAATA AAAGTCAGTT CGGTATTTAC TGTACCCACT CTGATAAAAG  
       551 CTTTGATCGC TTATGGGAAG CTAAGCAGTG GTGATCTAAC CCTGGCAAAC  
       601 AAAATTCCCG AAAATTCTAGA AATTGAATCT TAA

20 The PSORT algorithm predicts cytoplasm (0.0358).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 102A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 102B) and for FACS analysis.

The cp6904 protein was also identified in the 2D-PAGE experiment.

25 These experiments show that cp6904 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 103

The following *C.pneumoniae* protein (PID 4376964) was expressed <SEQ ID 205; cp6964>:

30        1 MKKLIALIGI FLVPIKGNTN KEHDHAHATVL KAARAKYNLF FVQDVFPVHE  
       51 VIEPISPDCV VHYEGWV\*

The cp6964 nucleotide sequence <SEQ ID 206> is:

35        1 ATGAAAAAAAT TGATTGCTTT GATAGGGATA TTTCTTGTTC CAATAAAAGG  
       51 AAATACCAAT AAGGAACACG ACGCTCACGC GACTGTTTTA AAAGCGGCCA  
       101 GAGCAAAGTA TAATTGTTTC TTTGTTCAAGG ATGTTTTCCC TGTACACGAA  
       151 GTTATCGAGC CTATTTCTCC CGATTGCCTG GTACATTATG AAGGGTGGGT  
       201 TTGA

The PSORT algorithm predicts inner membrane (0.091).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 103A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a 40 Western blot (Figure 103B) and for FACS analysis (Figure 103C).

These experiments show that cp6964 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 104

The following *C.pneumoniae* protein (PID 4377387) was expressed <SEQ ID 207; cp7387>:

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 108A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 108B) and for FACS analysis.

These experiments show that cp7400 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 109

The following *C.pneumoniae* protein (PID 4376395) was expressed <SEQ ID 217; cp6395>:

```

10      1 MENAMSSSFV YNGPSWILKT SVAQEVFKKH GKGIQVLLST SVMLFIGLGV
      51 CAFIFPQYLI VFVLTIALLM LAISLVLFL L IRSVRSSMVD RLWCSEKGYA
      101 LHQHENGPFL DVKRVQQILL RSPYIKVRAL WPSGDIPEDP SQAAVLLLSP
      151 WTPFSSSVDVE ALLPSPQEKE GKYIDPVLPK LSRIERVSSL VFLSAFTLDD
      201 LNEQGVNPLM NNEEFLFFIN KKAREHGIQD LKHEIMSSLE KTGVPLDPSM
      251 SFQVSQAMFS VYRYLQRQL TTSELRCFHL LSCFKGDVVH CLASFENPKD
      301 LADSDFLEAC KNVEWGEFIS ACEKALLKNP QGISIKDLKQ FLVR*

```

15 The cp6395 nucleotide sequence <SEQ ID 218> is:

```

20      1 ATGGAGAACATC CTATGTCATC ATCGTTTGTG TATAATGGGC CTTCGTGGAT
      51 TTTAAAAACG TCAGTAGCTC AGGAGGTATT TAAAAAGCAC GGTAAAGGGGA
      101 TTCAAGGTTCT CTTAAAGTACT TCAGTGATGC TTTTTATAGG TCTTGGAGTC
      151 TGTGCCTTTA TATTTCCTCA ATATCTGATT GTTTTGTGTT TGACTATAGC
      201 TTTGCTTATG CTCGCTATAA GCTTGGTATT GTTTCTCTTA ATACGTTCTG
      251 TACGCTCTC AATGGTAGAT CGTTTGTGGT GTTCTGAAAA AGGATATGCT
      301 CTTCATCAAC ATGAGAACCGG GCCCTTTTG GATGTAAGC GTGTACAGCA
      351 AATTCTTCTA AGATCACCCCT ATATCAAAGT CGGGCTTTA TGGCCGTCTG
      401 GAGATATCCC TGAGGATCCT TCACAAGCTG CGGTTCTATT ACTTTCTCCT
      451 TGGACTTTCT TTTCATCCGT GGATGTAGAG GCTTTATTAC CGAGTCCTCA
      501 AGAAAAGGAG GGTAAAGTATA TAGATCCTGT GCTGCCCTAAG TTGCTCTAGGA
      551 TAGAGAGAGT CTCACTTTA GTGTTTTGAG GTGCATTAC TTTGGATGAC
      601 TAAACGAAC AGGGAGTC A TCCTTGATG AATAATGAGG AATTTTATT
      651 TTTTATAAAAT AAGAAAGC GTGAGCATGG GATTCAAGGAT TAAACACAG
      701 AGATTATGTC TTCAAGTAAAG AAAACAGGAG TGCCATTAGA CCCCTCAATG
      751 AGTTTCAAG TTTCAAAAGC GATGTTTTCT GTATATCGCT ACTTGAGACA
      801 AAGGGATTTA ACGACTTCAG AATTAAGATG TTTTCACCTC TTAAGTTGTT
      851 TAAAGGGGA TGTGGTTCAT TGTGGTTCTT CATTGAAAA CCCTAAAGAT
      901 TTAGCAGATT CTGACTTTT AGAAGCTTGT AAGAACGTGG AATGGGGTGA
      951 GTTTATTCG GCATGTGAGA AGGCTTTT AAAGAATCCG CAAGGAATT
      1001 CCATTAAGGA TCTAAACAA TTTTGTGA GGTAA

```

The PSORT algorithm predicts inner membrane (0.6307).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 109A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure  
40 109B) and for FACS analysis.

These experiments show that cp6395 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 110

The following *C.pneumoniae* protein (PID 4376396) was expressed <SEQ ID 219; cp6396>:

```

45      1 MIEFAFPVHT SVTADRIEDR MACRMNKLST LAITSLCVLI SSVCIMIGL
      51 CISGTVGTYA FVVGIIIFSVL ALVACVFFLY FFYFSSEEFK CASSQEFRFL
      101 PIPAVVPSALR SYEYISQDAI NDVIKDTMQL STLSSLLDPE AFFLEFPYFN
      151 SLIVNHSMKE ADRLSREAFL ILLGEITWKD CETKILPWLK DPNIITPDDFW
      201 KLLKDHFDLK DFKKRIATWI RKAYPEIRLP KKHCILDKSIY KGCKKFLLS

```

These experiments show that cp6281 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 106 and  
Example 107**

- 5 The following *C.pneumoniae* protein (PID 4376306) was expressed <SEQ ID 211; cp6306>:

```
1 MGNHETYIHP GVLPSHQAQD VSRSTVYPSR SFIMRRMLMG WNFNRVPSKS
51 SEQLMDGHRI PLIFFGKHHP TISILNVNRF SWLSIFYNGE RGF*
```

The cp6306 nucleotide sequence <SEQ ID 212> is:

```
10 1 ATGGGAAACC ATGAGACCTA TATACATCCA GGAGTGCTCC CGAGTAGTCA
    51 TGCTCAGGAT GTTAGCAGAT CTACAGTTTA CCCCAGTCGA AGTTTTATCA
    101 TGAGACGTAT GCTCATGGGC TGGAAATTCA ATCGTGTTC CTCGAAGAGC
    151 TCCGAGCAGT TAATGGATGG TCATCGCATA CCTCTTATAT TTTTGGGAA
    201 GCATCATCCT ACTATATCTA TTTAAATGT CAATAGATT TCTTGGCTCT
    251 CCATTTTTTA CAATGGAGAA AGGGGGTTTT GA
```

- 15 The PSORT algorithm predicts cytoplasm (0.167).

The following *C.pneumoniae* protein (PID 4376434) was also expressed <SEQ ID 213; cp6434>:

```
1 MSESINRSIH LEASTPFFIK LTNLCESRLV KITSLVISLL ALVGAGVTLV
51 VLFVAGILPL LPVLILEIIL ITVLVLLFCL VLEPYLIEKP SKIKELPKVD
101 ELSVVETDST L*
```

- 20 The cp6434 nucleotide sequence <SEQ ID 214> is:

```
25 1 ATGTCTGAAA GTATTAAACAG AAGCATTCA TTAGAACGCT CTACACCATT
    51 TTTTATAAAAA TTAACGAATC TCTGTGAAAG TAGATTAGTT AAGATCACTT
    101 CTCTTGTTAT TTCTCTATTAA GCTTTAGTGG GTGCGGGAGT CACTCTGTG
    151 GTTTTATTTG TAGCTGGGAT CCTTCCTTTA CTTCCCTGTAC TCATCTTACA
    201 AATTATTTTA ATAACCGTCC TTGTCTTGCT TTTTTGTTTG GTATTGGAAC
    251 CTTATTTAAT AGAAAAAACCT AGTAAAATAA AGGAACCTACC TAAAGTAGAC
    301 GAGCTATCTG TAGTAGAAC GGACAGTACT CTTTAA
```

The PSORT algorithm predicts inner membrane (0.6859).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 106A; 6306 = lanes 2-4; 6434 = lanes 8-10). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 106B & 107) and for FACS analysis.

These experiments show that cp6306 & cp6434 are surface-exposed and immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from the sequences alone.

**Example 108**

- 35 The following *C.pneumoniae* protein (PID 4377400) was expressed <SEQ ID 215; cp7400>:

```
1 MRVMRFFCLF FLGFLGSFHC VAEDKGVDLF GVWDDNQITE CDDSYMTEGR
51 EEVEKVVDA
```

The cp7400 nucleotide sequence <SEQ ID 216> is:

```
40 1 GTGAGAGTTA TGAGATTTTT TTGTCTATTT TTTCTTGCGGT TCCTAGGATC
    51 TTTTCATTGT GTTGCTGAAG ACAAGGGCGT GGATTTATTT GGAGTCTGGG
    101 ACGATAACCA AATTACAGAG TGTGACGATA GTTACATGAC AGAGGGTCGT
    151 GAAGAGGTTG AAAAGGTAGT GGACGCTTAG
```

The PSORT algorithm predicts periplasmic space (0.924).

-140-

```

5   751 AACTACCACT CAAAATTCTT TGCTAGTGGT AGTTATGACT TTATTGCAA
    801 GCCCCTATTG GAACAAACAA ATGTAGACGG CTACTATTG GAGTTGATC
    851 ATGAGCGTTC TGGAGACTTC TCTCCTCTCA CCTTCATTTC TGGAGAAAAA
    901 ACTGTCCTGCT TAGGTCTTGT TACCAAGCAA ACCCCTACAC TTGAAAATAA
    951 GGATGAGGTC ATTGCTCGCA TACATCAAGC AGCAGACTAC CTGCCCTTGG
   1001 AAAGACTCTC TCTAAGTCCA CAGTGTGGTT TTGCTTCATG TGAAATAGGA
   1051 AATAAAATTAA CAGAAGAAGA GCAATGGGCT AAAGTTGCTC TAGTAAAAGA
   1101 AATTTCGAA GAAGTTTGGG AATAA

```

The PSORT algorithm predicts cytoplasm (0.2171).

- 10 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 111A) and also as a his-tagged product. The his-tag protein was used to immunise mice, whose sera were used in a Western blot (Figure 111B) and for FACS analysis.

These experiments show that cp6408 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 15 Example 112

The following *C.pneumoniae* protein (PID 4376430) was expressed <SEQ ID 223; cp6430>:

```

20   1 MKLYSISSDV DTPWIFQLMS KVDSYFLFLLG NRIKVVSIVM QEPNLIIGKV
    51 ENVRISTIVK ILKILSFLIF PLILIALALH YFLHAKYANH LLVSKILER
    101 PQYVPIPGRS GDTASHYKLT TLVPVSQKNL QAMGSNPLEV EAALRTTKPS
    151 FFCVPAKYRQ IIISSHGIRF SLDLEQLADD INLDSVSWPT EYLNSTMDFC
    201 SKADKRVIQVNQLRTGTYI NSVGKRSLLK FMLQHLFIDG ITQENPEALP
    251 NNTSGRLTLF PSVRYIYSHF TPQNPTIWPO VFFRQGPLDE DRGGGFIELE
    301 QLQELGVRF P ICPSQGPDPNP NFQGFQGIRI YWEDSYQPNA EV*

```

The cp6430 nucleotide sequence <SEQ ID 224> is:

```

25   1 ATGAAACCTTT ATAGCATCTC TTTCAGATGTA GATACACCTT GGATATTTCA
    51 GCTTATGTCA AAGGTAGATT CTTATCTTTT CTTAGGCGGG AATAGAATCA
    101 AGTTTGTATC TATAGTATG CAAGAACCTA ACTTAATTAT TGGAAAAGTA
    151 GAAAACGTTG GGATCTCCAC AATAGTGAAA ATATTAAAGA TTTTATCCTT
    201 CTTAATCTTC CCTCTGATTT TAATCGCTTT AGCCCTACAC TATTCTTCTAC
    251 ATGCTAAATA TGCTAATCAC TTACTTGTAT CTAAGATTAA AGAAAAGAGCT
    301 CCTCAGTATG TGCCTATTCC TGGTCGTTCA GGAGACACGG CGTCTCATTA
    351 TAAATTAACA ACATTGGTTC CAGTATCCCA AAAAATCTA CAAGCTATGG
    401 GATCAAATCC TCTAGAAGTT GAAGCGGCTC TTCGAACCTAC AAAACCTCT
    451 TTTTCTGTG TACCTGCAAAT ACCCGTCAG ATTATAATT CAAGTCACGG
    501 CATTGCTTT TCTTTAGATC TTGAACAACT TGCTGATGAC ATTAATTTAG
    551 ATTGGGTTTC CTGGCCTACG GAGTATCTTA ACTCTACTAT GGATTTTGCG
    601 AGCAAGGCAG ATAAACCGTGT TATACAGAAAT GTACAAATC TGCGGACAGG
    651 AACTTACATA AATTCTGTAG GAAAGCGTAG CCTTTTAAAAA TTTCATGTTAC
    701 AGCACCTATT TATTGATGGG ATCACACAAAG AAAACCTGA AGCCCTTCCT
    751 AACAAATACAT CTGGAAAGACT GACTCTATT CCTAGTGTTC GTTATATCTA
    801 TTCTCATTTT ACTCCACAAA ATCCCTACAAAT ATGGCCGCAA GTCTTTTCA
    851 GACAAGGTCC TCTAGATGAA GATCGAGGAG GAGGATTGAG GATCTTAGAG
    901 CAATTACAAG AGTTAGGAGT TAGGTTTCCA ATTGCCCCCT CTCAAGGACC
    951 AGACAATCCT AATTTCAGG GTTTCAAGG GATTCTGTAC TATTGGGAAG
   1001 ATTCCCTATCA ACCCAATAAG GAGGTTAA

```

The PSORT algorithm predicts inner membrane (0.5140).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 112A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 112B) and for FACS analysis.

- 50 These experiments show that cp6430 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

-139-

251 ENDVQYQRLL HKVCYFSGEF PAMVLGLGSE VPMVLGLPKV PKDLTWEMFM  
 301 ENMPVLLQSK REGHWKISLE DVASL\*

The cp6396 nucleotide sequence <SEQ ID 220> is:

```

 5   1 ATGATCGAGT TTGCTTTGT TCCTCATACC TCCGTGACAG CGGATCGGAT
 51  TGAGGATCGC ATGGCCTGTC GCATGAACAA GTTGTCTACT TTAGCAATT
100 101 CAAGTCTTG TGTATTGATC AGTCAGTTT GTATTATGAT TGGGATTTA
150 151 TGCATTTCTG GAACGGTTGG GACCTATGCA TTTGTTGAG GAATTATTT
200 201 TTCTGTGCTT GCTTGGTAG CATGTGTTTT CTTTCTTAT TTCTTTATT
250 251 TTTCTTCTGA GGAATTAAAG TGTGCTTCTT CGCAGGAGTT TCGTTTTTG
300 301 CCTATACCAAG CTGTTGGTTTC TGCATTGCGT TCCTATGAAT ACATTTCTCA
350 351 GGACGCTATC AATGACGTTA TAAAAGATAC GATGCAGTTG TCTACCCCTT
400 401 CTTCTCTTT AGATCCCGAA GCTTTTTCT TAGAATTTC TTTATTTAAC
450 451 TCTTGATAG TGAATCATTC GATGAAGGAA GCGGATCGTT TGTCTCGAGA
500 501 GGCTTTTTTG ATTTTATTAG GTGAGATTAC TTGGAAGGAT TGTGAAACAA
550 551 AAATTTGCC ATGGTTGAAA GATCCTAATA TCACTCCTGA TGATTTCTGG
600 601 AAGCTATTAA AAGACCATT CGATTTAAAG GACTTAAGA AGAGGATCGC
650 651 CACTTGGATA CGGAAGGCCT ATCCAGAAAT TAGATTACCG AAGAACGATT
700 701 GTT TAGATAA GTCTATCTAT AAGGGGTGTT GTAAGTTTT ATTACTTCT
750 751 GAGAATGATG TGCAATATCA GAGGTTATTAA CATAAGGTCT GTTATTTCTC
800 801 TGGGGAGTTT CCTGCCATGG TTTAGGTTT GGGAAAGTAA GTGCCTATGG
850 851 TGT TAGGACT CCCTAAGGTT CCCAAGGATC TTACCTGGGA GATGTTTATG
900 901 GAAAATATGC CTGTTCTTCT GCAAAGCAAA AGAGAGGGC ATTGGAAAAT
950 951 CTCCCTGGAA GACGTAGCCT CTCTTAA

```

The PSORT algorithm predicts inner membrane (0.6095).

- 25 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 110A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 110B) and for FACS analysis.

These experiments show that cp6396 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 30 Example 111

The following *C.pneumoniae* protein (PID 4376408) was expressed <SEQ ID 221; cp6408>:

```

 1 MNTSLKRPLK SHFDVVGSFL RPEHLKKTRE SLKEGSISLD QLMQIEDIAI
 51 QDLIKKQKAA GLSFITDGEF RRATWHYDFM WGFHGVGHHR ATEGVFFDGE
35 101 RAMIDDTYL DKISVSHHPF VDHFKFVKAL EDEFITAKQT LPAPAQFLKQ
151 MIFPNNIEVT RKFYPTNQEL IEDIVAGYRK VIRDLYDAGC RYLQLDDCTR
201 GGLVDPRVCS WYGIDEKGLQ DLIQQQYLLIN NLLVIADRPPD LVVNLHVCRG
251 NYHSKFFASG SYDFIAKPLF EQTNVDGYYL EFDHERSGDF SPLTFISGEK
301 TVCLGLVTSK TPTLENKDEV IARIHQAADY LPLERLSLSP QCGFASCEIG
351 NKLTEEEQWA KVALVKEISE EVWK*

```

- 40 The cp6408 nucleotide sequence <SEQ ID 222> is:

```

 1 ATGAATACTT CACTAAAAAG ACCTCTGAAA TCTCATTTG ATGTTGTCGG
 51 TAGTTTTTTG CGTCCTGAGC ATTTAAAAAA AACTAGAGAA AGCCTAAAG
100 101 AAGGCTCTAT TTCTCTAGAT CAACTCATGC AAATTGAGGA TATCGCTATC
150 151 CAAGATTGAA TCAAAAAACA AAAAGCAGCA GGTCTTCTT TTATTACTGA
200 201 TGGAGAATTG CGCAGAGCTA CGTGGCATTAA CGACTTCATG TGGGGTTTC
250 251 ATGGCGTAGG TCACCACAGA GCTACAGAAG GAGTTTTCTT TGATGGAGAA
300 301 CGCGCTATGA TCGATGATAC CTATCTGACA GACAAGATCT CTGTATCTCA
350 351 CCACCCATTT GTGGATCACT TAAATTGTT AAAAGCTCTA GAAGATGAAT
400 401 TTACGACTGC AAAGCAAAT CTTCTGCAC CGGCACAGTT TTTAAAGCAG
450 451 ATGATCTTCC CTAATAATAT AGAGGTCACA CGTAAATTCT ATCCTACAA
500 501 TCAGGAGCTA ATTGAAGATA TTGTTGCAGG TTATCGTAA GTCATCGCG
550 551 ATCTTTATGA TGCTGGCTGC CGCTATCTCC AATTAGATGA CTGTACTCGG
600 601 GGAGGTTTAG TAGACCCTCG AGTCTGTTCG TGGTATGGTA TCGATGAAAA
650 651 AGGTCTTCAA GATCTGATTC AACAAATATCT TCTGATTAAT AATCTTGTAA
700 701 TTGCGAGATCG TCCCCGATGAT CTAGTCGTTA ATTTACATGT ATGCCGTGGG

```

201 CAAGGCTCCA CATTAGATC CTGAAATCTA TAAACTTGGC ATTCCAATTC  
 251 TAGCTATTTG CTATGGCATG CAGCTTATGG CTAGAGATTT TGGAGGGACT  
 301 GTAAGCCCTG GTGTAGGAGA ATTGGAATAT ACGCCCATCC ATCTGTATCC  
 351 TTGTGAGCTC TTCAACACACA TCGTCGACTG CGAATCTCTA GACACAGAGA  
 401 TTCGGATGAG CCATCGGGAT CATGTTACGA CAATTCCCTGA AGGATTAAAT  
 451 GTAATCGCAT CCACCTCACCA ATGCCGATC TCAGGAATAG AAAATACCAA  
 501 ACAACGGTTG TACGGGCTGC AATTTCATCC CGAGGTTCT GACTCCACTC  
 551 CAACGGAAA TAAGATTCTA GAAACTTTTG TTCAAGAGAT CTGTTCTGCT  
 601 CCCACACTAT GGAATCCCTT GTATATTCAAG CAAGACCTTG TAAGTAAAAT  
 651 TCAAGATACC GTTATTGAAG TATTGATGA AGTCGCTCAG TCATTAGACG  
 701 TACAATGGTT AGCTCAAGGA ACCATCTACT CAGATGTTAT TGAGTCCCTCA  
 751 CGCTCTGGAC ATGCCCTCGA AGTAATAAAA TCACATCATA ATGTAGGGGG  
 801 GCTTCCAAAA AATCTTAAGC TGAAGTTAGT CGAGCCCTTA CGTTATTAT  
 851 TAAAGATGA AGTCGAATT TTAGGAGAAG CCCTAGGACT TTCTAGCTAT  
 901 CTCTGGACCA GGCATCCCTT TCCCTGGACCT GGCTTGACAA TTCTGTGAT  
 951 TGGAGAGATC CTTCTGAAAT ATCTAGCCAT TTTACGACGG GCGGACCTCA  
 1001 TCTTTATAGA AGAGCTTAGG AAAGCAAAAC TCTACGATAA AATAAGCCAA  
 1051 GCCTTGCCTC TATTCTTCC TATAAAATCA GTATCTGAA AAGGAGATTG  
 1101 TAGAAGCTAT GGTTATACCA TAGCATTACG TGCTGTAGAA TCTACAGATT  
 1151 TCATGACAGG ACGATGGCC TACCTTCCAT GCGATGTTCT CAGTTCTGC  
 1201 TCATCGCGAA TTATTAATGA AATACCCGAG GTAAGCCGAG TGGTCTATGA  
 1251 TATTCTGAC AAGCCACCAAG CAACTATAGA ATGGGAATAG

The PSORT algorithm predicts cytoplasm (0.0481).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 114A) and also as  
 25 a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used  
 in a Western blot (Figure 114B) and for FACS analysis.

These experiments show that cp6440 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 115

30 The following *C.pneumoniae* protein (PID 4376475) was expressed <SEQ ID 229; cp6475>:

1 MNTYTFSPTL QKSFSLFLLE KLD SYFFF GG TRTQILVITP TNIRLAAKKR  
 51 GCKVSTIEKI IKISLFSILLP LVIIA FILRY FLHKKFDKQF LCIPKVISNE  
 101 DEALLGSRPQ AVEKAVREIS PAFFSIPRKY QLIRIDTPKD DAPSILFPIG  
 151 IEEILKDLCI DTLKQSNLFL KREMDFLGHP EEKALFDSC SIEKDQEWSMS  
 201 LESKLLITH FLKYL FVSGI EQLNPGFNPE NGRGYFSEIS TAKIHFHQHG  
 251 RYGPPIRSSGP IMKEI\*

The cp6475 nucleotide sequence <SEQ ID 230> is:

1 ATGAATACCT ATACCTTCTC TCCTACACTT CAGAAAAGCT TCAGCCTATT  
 51 TCTTTAGAA AAATTAGACT CTTACTTTTT CTTGGAGGG ACTCGTACAC  
 101 AAATCTTAGT CATCACACCA ACCAATATTA GATTAGCAGC TAAAAAAAGA  
 151 GGGTGTAGG TTCTACTAT AGAAAAGATA ATCAAGATCC TCTCTTTAT  
 201 CCTGCTGCC C TAGTTATCA TTGCCCTTAT ACCTCGCTAT TTCTTACATA  
 251 AGAAATTCTGA TAAACAGTTTC TTGTGTATCC CAAAAGTCAT TTCTAACGAA  
 301 GACGAAGCTC TTCTTGATC TAGACCACAA GCAGTTGAAA AAGCAGTTCG  
 351 AGAAAATATCT CCAGCCTCTC TCTCTATACC AAGAAAATAC CAACTTATTA  
 401 GAATCGACAC TCCTAAAGAT GACGCTCCCT CAATCCTTT CCCTATAGGC  
 451 ATAGAGATCA TTCTCAAAGA TTTATGTATT GATACACTCA AGCAATCTAA  
 501 TCTTTTCTT AAAAGAGAAA TGGATTCTT AGGTCTACCA GAAGAAAAAG  
 551 CATTATTCTGA CTCGATATGT TCTATAGAAA AAGATCAAGA ATGGATGAGC  
 601 TTGGAAAGTA AAAAACCTTTT AATCACGCA TTCCTAAAGT ATCTCTTTGT  
 651 CTCTGGAATC GAACAACTAA ATCCAGGCTT TAACCCAGAG AATGGCCGTG  
 701 GGTATTTTTC AGAAATAAGT ACAGCAAAGA TCCATTTCA TCAGCACGGT  
 751 CGATATGGGC CAATCCGTTT TTGGGACCC ATCATGAAGG AAATATAAA

The PSORT algorithm predicts inner membrane (0.5373).

**Example 113**

The following *C.pneumoniae* protein (PID 4376439) was expressed <SEQ ID 225; cp6439>:

|   |                                                              |            |
|---|--------------------------------------------------------------|------------|
| 5 | 1   MSYDTLFKNL EKEDSVHKIC NEIFALVPRL NTIACTEAI               | KNLPKADIHV |
|   | 51   HLPGTITPQL AWILGVKNGF LKWNSWNTN HRLSPKNPH KQYSNIFRNF    |            |
|   | 101   QDICHEKDPM LSVLQYNILN YDFNSFDRVM ATVQGHRFPP GGIQNEEDLL |            |
|   | 151   LIFNNYLQOC LDDTIVYTEV QQNIRLAHVL YPSLPEKHAR MKFYQILYRA |            |
|   | 201   SQTFSKHGIT LRFLNCFNKT FAPQINTQEP AQEAQVWLQE VDSTFPGLFV |            |
|   | 251   GIQSAGSESA PGACPKRAS GYRNAYDSGF GCEAHAGEGI ETRTIFSSAK  |            |
|   | 301   VNPEGLIEIT RVTFSSLRK QPSSLPIRVT CQLG*                  |            |

10   The cp6439 nucleotide sequence <SEQ ID 226> is:

|    |                                                              |  |
|----|--------------------------------------------------------------|--|
| 15 | 1   ATGTCTTATG ATACGTTATT CAAGAATCTT GAAAAGGAAG ATTCTGTACA   |  |
|    | 51   TAAGATATGC AATGAGATCT TTGCAATTAGT ACCACGACTC AATACAATCG |  |
|    | 101   CTTGACCGA AGCTATCATC AAAAACCTCC CCAAAGCAGA TATCCATGTA  |  |
|    | 151   CACCTTCCTG GGACCTAAC ACCTCAATT A GCTGGATT TAGGTGTGAA   |  |
|    | 201   AAATGGGTTT TTAAAATGGT CTATAATTCT TTGGACCAAT CATCGATTAC |  |
|    | 251   TTCTCCTAA GAATCCTCAT AAACAATACT CCAATATTTT CCGAAACTTT  |  |
|    | 301   CAAGATATCT GTCACGAAAA GGATCCGGAT TAAAGTGTAT TACAATATAA |  |
|    | 351   TATCTTAAAT TAGGATTTTA ATAGCTTTGA TAGAGTGTAT GCTACAGTAC |  |
|    | 401   AAGGACATCG CTTTCTCCT GGAGGAATCC AAAATGAAGA AGACCTTCCTT |  |
|    | 451   CTCATTTCA ATAACATATCT CCAGCAATGT CTGGACGATA CTATCGTGTA |  |
|    | 501   TACTGAAGTA CAACAAAATA TCCGCCCTTGC CCATGTTTG TATCCTTCAT |  |
|    | 551   TACCTGAAAA GCACGCCCGT ATGAAGTTTT ATCAAATCTT GTATCGTGCT |  |
|    | 601   TCGCAAACGT TTTCAAAACA CGGGATTACT TTACGATTTT TAAACTGCTT |  |
|    | 651   CAATAAAACA TTTGCTCCAC AAATAAACAC ACAAGAACCT GCCCAAGAAG |  |
|    | 701   CTGTTCAATG GCTCCAAGAG GTTGATTCTA CATTTCCTGG TCTATTTGTA |  |
|    | 751   GGGATACAAT CCGCAGGATC AGAATCTGCG CCCGGAGCCT GTCCTAAGCG |  |
|    | 801   ATTAGCTTCT GGATATAGAA ATGCTTATGA CTCAGGGTTT GGTTGTGAAG |  |
|    | 851   CTCATGCTGG AGAAGGCATA GAGACCGGA CTATTTTTC GTCAGCTAAG   |  |
|    | 901   GTAATCCAG AGGGATTGAT CGAGATAACC CGAGTGACTT TCTCGTCTCT  |  |
|    | 951   TAAACGAAAA CAGCCATCTA GTTTACCCAT AAGAGTTACT TGCCAGTTAG |  |
|    | 1001   GATAA                                                 |  |

The PSORT algorithm predicts cytoplasm (0.1628).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 113A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 113B) and for FACS analysis.

These experiments show that cp6439 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 114**

The following *C.pneumoniae* protein (PID 4376440) was expressed <SEQ ID 227; cp6440>:

|    |                                                               |  |
|----|---------------------------------------------------------------|--|
| 40 | 1   LQSARRHLNT IFILDGFSQL TYVLAKQVRK LFVYCEVLPW NISVQCLKER    |  |
|    | 51   APLGIILSGG PHSVYENKAP HLDPEIYKLG IPIILAICYGM QLMARDFGGT  |  |
|    | 101   VSPGVGEFGY TPIHLYPCEL FKHIVDCESL DTEIRMASHRD HVTTIPEGFN |  |
|    | 151   VIASTSQCSI SGIENTKQRL YGLQFHPEVS DSTPTGNKIL ETFVQEICSA  |  |
|    | 201   PTLWNPLYIQ QDLVSKIQDT VIEVFDEVAQ SLDVQWLAQG TIYSDVIESS  |  |
|    | 251   RSGHASEVIK SHHNVGGLPK NLKLKLVEPL RYLFKDEVRI LGEALGLSSY  |  |
|    | 301   LLDRHPFPGP GLTIRVIGEI LPEYLAILRR ADLIFIEELR KAKLYDKISQ  |  |
|    | 351   AFALFLPIKS VSVKGDCRSY GYTIALRAVE STDFMTGRWA YLPCDVLSQC  |  |
|    | 401   SSRIINEIPE VSRVVYDISD KPPATIEW*                         |  |

The cp6440 nucleotide sequence <SEQ ID 228> is:

|    |                                                                |  |
|----|----------------------------------------------------------------|--|
| 50 | 1   TTGCAGAGTG CAAGGAGACA TTTGAACACC ATATTTATTCT TAGATTTTGG    |  |
|    | 51   ATCTCAATAT ACTTATGTTAGT TAGCAAAGCA AGTGCAGGAAG TTATTTGTAT |  |
|    | 101   ATTGCGAAGT TCTTCCCTGG AATATCTCTG TGCAATGTTT AAAAGAAAGA   |  |
|    | 151   GCGCCTTGG GGATCATTCT CTCAGGAGGT CCTCACTCTG TCTATGAAAA    |  |

-144-

351 ALLVRKLQFR GAIKSAYFEK LTEIEKELRS LQDVVIKSLEL ELIHKIKDIV  
 401 TEET\*

The cp6486 nucleotide sequence <SEQ ID 234> is:

```

  1 GTGGTGGTTG TCGCTTATT TATCCTGGG ATTTCTTT TATCTGGTTC
  5 51 TCTGCATTC CTTGTTCAT ACGCTTGCAG AGTTCTTTA GGAGCGGCGC
 10 101 TTCCCATACT TTGCATAGGT CTTGTTTAT TGGCTGTAGC TCTTATTGTT
 15 151 TTCTTATGTC ACAAACACAA GACTCGTAA GATTTAGATT ATTATGATCA
 20 201 AGATTTAGAT TCTTGGTGA TTCATAAGAA AGAGATCCCC AATGACATCT
 25 251 CTGAGTTGCG GGTAACATTT GAAAAGTGC AAAATCTGTT TCAGTCCAT
 30 301 ACGAAAGATT TCTCTGATCT AAGCCAAGAG CTTCAAGGTA AATTATATCAA
 35 351 TTGCATGGAG AAATGGCTAA CTTTAAAGA CGAAGTGACT AAATTCTTA
 40 401 TTGTTGAGA TAGATTTTA GAAACCAGAA GAAATTTCAC CACTTTGGA
 45 451 GAACAGGTTA AAGGGATCCA AAGCAATATT TTTGATTTGC ATGAGGAAAA
 50 501 GTCTTCATTA TATTTAGAAT TGTATAGGCT TAGGAAAGAC CTCCAAGTTC
 55 551 TATTAATTTT TTTTCTGTC CCCCCAGGTA TACTCAAGGT AGATTATGAT
 60 601 GAAATTGAGG CTATCAAAGG TCTGTTTATA AGATTAACCT CTAGATTAGA
 65 651 TAAGCTTGAT GTGAAAGCTC AGGAACGTAA GAAGTTCATT AATGAAATGA
 70 701 GTAGGAAATT TAAAGAAGTA GAGAAAGCTT TTGATATTGT CGATAGGGCA
 75 751 ACAAAAAAGC TTATGGATAG AGCCAAGAAA GAAAGTCCGG CACGTCTTT
 80 801 CATGGGTAGA ACTGAGTCTC TCTTAGAAAT GAAAAAAAT GAAGAAGCCC
 85 851 TTAAAAATCA GGGGCTAGAT CCTGAAAATC TTTCCCATCC TGAACCTTT
 90 901 AGTCCGTATC AACAGCTTT AATTGAAAT TATTTAAATA GCGAAATAGT
 95 951 TCTGCATCAT TATGAGTTCC TTATTTCTGG AACAGTAAC TCTGGCCTAA
 100 1001 CTCTTGAAGA ATGTGAAAAT CGAATGAGGG CGGGCTCTAC TGGGTTGAAAC
 105 1051 GCCCTTCTGG TCGTAAAGCT CCAGTCAGA GGTGCTATAA AATCTGCGTA
 110 1101 TTTTGAAAAA CTCACAGAGA TTGAAAAGA GTTACGATCA CTTCAAGACG
 115 1151 TAATAAAGTC ATTGGAACTA GAACTGATCC ATAAGATAAA AGATATAGTG
 120 1201 ACAGAAGAAA CTTAG

```

The PSORT algorithm predicts inner membrane (0.7474).

30 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 117A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 117B) and for FACS analysis.

These experiments show that cp6486 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 35 Example 118

The following *C.pneumoniae* protein (PID 4376526) was expressed <SEQ ID 235; cp6526>:

```

  1 MSPFKKIVNRLLCYISFQKE SRTLPIIIRE PRMTTKSLS FNSVISKNKI
  5 51 HFIISLGCSRNLVDSEVMIGI LLKAGYESTN EIEDADYLIL NTC AFLKSAR
 10 101 DEAKDYLDHL IDVKKENAKI IVTGCMTSNH KDELKPWMSH IHYLLGSGDV
 15 151 ENILSAIESR ESGEKISAKS YIEMGEVPRQ LSTPKHYAYL KVAEGCRKRC
 20 201 AFCIIPSIKG KLRSKPLDQI LKEFRILVNK SVKEILLIAQ DLGDYGKDLS
 25 251 TD RSSQLES LHELLKEPGD YWLRLMLYLYP DEVSDGIIDL MQSNPKLLPY
 30 301 VDIPLQHIND RILKQMRRTT SREQILGFLE KLRAKVPQVY IRSVIVGFP
 35 351 GETQEEOFQEL ADFIGEGWID NLGIFLYSQE ANTPAAELPD QIPEKVKESR
 40 401 LKILSQIQKR NVDKHNQKLI GEKIEAVIDN YHPETNLLLT ARFYGQAPEV
 45 451 DPCIIIVNEAK LVSHFGERCF IEITGTAGYD LVGRVVKKSQ NQALLKTSKA
 50 501 *

```

The cp6526 nucleotide sequence <SEQ ID 236> is:

```

  1 ATGAGTCCTT TTAAGAAAAT AGTAAATCGC TTACTATGCT ATATTCTTT
  5 51 TCAAAAAGAA TCAAGAACTC TCCCAATCAT TATTAGAGAA CCTAGGATGA
 10 101 CAACAAAAAG TTTAGGATCT TTCAATTCAAG TTATTTCCA AAATAAAATT
 15 151 CATTTTATTA GTTGGGATG CTCTCGGAAC CTTGAGATA GCGAAGTCAT
 20 201 GCTAGGCATT CTTCTTAAGG CAGTTACGA GTCTACTAAT GAAATTGAAG
 25 251 ATGCTGACTA TTTAATTAA AATACCTGTG CGTTTTAAA AAGTGTAGA
 30 301 GATGAAGCTA AAGATTATCT AGACCATCTA ATTGATGTAA AAAAGAGAA

```

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 115A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 115B) and for FACS analysis.

These experiments show that cp6475 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 116

The following *C.pneumoniae* protein (PID 4376482) was expressed <SEQ ID 231; cp6482>:

|    |     |            |            |            |            |            |
|----|-----|------------|------------|------------|------------|------------|
| 10 | 1   | MLVELEALKR | EFAHLKDQKP | TSDQEITSLY | QCLDHLEFVL | LGLGQDKFLK |
|    | 51  | ATEDEDVLFE | SQKAIDAWNA | LLTKARDVLG | LDIGAIYQT  | IEFLGAYLSK |
|    | 101 | VNRRAFCIAS | EIHFLKTAIR | DLNAYYLLDF | RWPLCKIEEF | VDWGNDCVEI |
|    | 151 | AKRKLCIFEK | ETKELNESLL | REEHAMEKCS | IQDLQRKLSD | IIIELHDVSL |
|    | 201 | FCFSKTPSQE | EYQKDCLYQS | RLRYLLLHYE | YTLLCKTSTD | FQEQRARKEE |
|    | 251 | FIREKFSLLE | LEKGIKQTKE | LEFAIAKSKL | ERGCLVMRKY | EAAAKHSLDS |
|    | 301 | MFEEETVKSP | RKDTE*     |            |            |            |

15 The cp6482 nucleotide sequence <SEQ ID 232> is:

|    |     |             |            |            |            |            |
|----|-----|-------------|------------|------------|------------|------------|
| 20 | 1   | ATGCTAGTAG  | AGTTAGAGGC | TCTTAAAAGA | GAGTTTGCGC | ATTTAAAAGA |
|    | 51  | CCAGAACCG   | ACAAGTGACC | AAGAGATCAC | TTCACTTTAT | CAATGTTGG  |
|    | 101 | ATCATCTTGA  | ATT CGTTTA | CTCGGGCTGG | GCCAGGACAA | ATTTTTAAAG |
|    | 151 | GCTACGGAAG  | ATGAAGATGT | GCTTTTTGAG | TCTCAAAAAG | CAATCGATGC |
|    | 201 | GTGGAATGCT  | TTATTGACAA | AAGCCAGAGA | TGTTTTAGGT | CTTGGGGACA |
|    | 251 | TAGGTGCTAT  | CTATCAGACT | ATAGAATTCT | TGGGTGCCCA | TTTATCAAAA |
|    | 301 | GTGAATCGGA  | GGGCTTTTG  | TATTGCTTCG | GAGATACATT | TTCTAAAAAC |
|    | 351 | AGCAATCGA   | GATTGAATG  | CATATTACCT | GTTAGATTTT | AGATGGCCTC |
|    | 401 | TTTGAAGAT   | AGAAGAGTTT | GTGGATTGGG | GAATGATG   | TGTTGAAATA |
| 25 | 451 | GCAAAAGGAA  | AGCTATGCAC | TTTTGAAAAA | GAAACCAAGG | AGCTCAATGA |
|    | 501 | GAGCCCTCTT  | AGAGAGGAGC | ATGCCATGGA | GAAATGCTCG | ATTCAAGATC |
|    | 551 | TGCAAAGGAA  | ACTTAGGCAC | ATTATTATTG | AATTGCATGA | TGTTTCTCTT |
|    | 601 | TTTGTGTTT   | CTAAGACTCC | CAGTCAAGAG | GAGTATCAA  | AGGATTGTTT |
|    | 651 | GTATCAATCA  | CGATTGAGGT | ACTTATTGTT | GCTGTATGAG | TATACATTGT |
| 30 | 701 | TATGTAAGAC  | ATCCACAGAT | TTCAAGAGC  | AGGCTAGGGC | TAAAGAGGAG |
|    | 751 | TTCATTTAGGG | AGAAAATTCA | CCTTCTAGAG | CTCGAAAAGG | GAATAAAACA |
|    | 801 | AACTAAAGAG  | CTTGAGTTT  | CAATTGCTAA | AAGTAAGTTA | GAACGGGGCT |
|    | 851 | GTTTAGTTAT  | GAGGAAGTAT | GAAGCTGCCG | CTAAACATAG | TTTAGATTCT |
|    | 901 | ATGTTCGAAG  | AAGAAACTGT | GAAGTCGCCG | CGGAAAGACA | CAGAATAA   |

35 The PSORT algorithm predicts cytoplasm (0.4607).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 116A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 116B) and for FACS analysis.

These experiments show that cp6482 is a surface-exposed and immunoaccessible protein, and that it  
40 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 117

The following *C.pneumoniae* protein (PID 4376486) was expressed <SEQ ID 233; cp6486>:

|    |     |            |            |            |            |             |
|----|-----|------------|------------|------------|------------|-------------|
| 45 | 1   | VVVVALFILG | IFFLSGSLAF | LVHTSCGVLL | GAALPILCIG | LVLLAVALIV  |
|    | 51  | FLCHKHKTRO | DLDYYDQDLD | SLVIHKKEIP | NDISELRVT  | EKLQLNLFQFH |
|    | 101 | TKDFSDLSQE | LQGKFINCME | KWLTLDEDEV | KFLIVRDRFL | ETRRNFTTFG  |
|    | 151 | EQVKGIQSNI | FDLHEEKSSL | YLELYRLRKD | LQVLLNNFL  | PPGILKVVDYD |
|    | 201 | EIEAIKGLFI | RLTSRLDKLD | VKAQERKKFI | NEMSREFKEV | EKAFDIVDRA  |
|    | 251 | TKKLMDRAKK | ESPARLFMGR | TESLLEMKKN | EEALKNQGLD | PENLSHPELF  |
|    | 301 | SPYQQLLILN | YLNSEIVLHH | YEFLISGTVT | SGLTLEECE  | RMRAASTGLN  |

The PSORT algorithm predicts cytoplasm (0.1668).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 119A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 119B) and for FACS analysis.

- 5 These experiments show that cp6528 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 120

The following *C.pneumoniae* protein (PID 4376627) was expressed <SEQ ID 239; cp6627>:

```

10      1 MKCSPLTLVP HIFLKNDCEC HRSCSLKIRT IARLILGLVL ALVSALSFVF
      51 LAAPISYAIAG GTLALAAIVI LITLTVVALL AKSKVLPPIPNE LQKIIYNR
     101 PKEVFYFVKT HSLTVNELKI FINCWKS GTD LPPNLHKKAE AFGIDILKSI
     151 DLTLFPEFEE ILLQNCPFLYW LSHFIDKTES VAGEIGLNKT QKVYGLLGPL
     201 AFHKGYTTIE HSYTRPILLT ISESQYKFY SKASKNQWDS PSVKKTC EEI
     251 FKELPHNMIF RKDVQGISQF LFLLFFSHGIT WEQAQMQLI NPDNWKMLCQ
     301 FDKAGGHCSM ATFGGFLNTE TNMFDPVSSN YEPPTVNFMTW KELKVLLEKV
     351 KESPMHPASA LVQKICVNNT HHQNLKRWQ FVRNTSSQWT SSLPQYAFHA
     401 QTYKLEKKIE SSLPIRSSL*

```

The cp6627 nucleotide sequence <SEQ ID 240> is:

```

20      1 ATGAAGTGTA GTCCTTAAC ACTAGTTCCC CATATATT TT TAAAAAATGA
      51 CTGCGAATGT CATAGATCTT GTTCTTTAAA ATTAGGACA ATTGCCGAC
     101 TCATTCTTGG GCTTGTTCTA GCTCTTGT TA GCGCACTTTC TTTTGTMTTC
     151 CTTGCTGCGC CGATTAGCTA TGCTATTGGA GGAACATTAG CTTTAGCCGC
     201 TATCGTAATC TTGATTATAA CGCTAGTCGT AGCACTGCTA GCTAAATCAA
     251 AGGTTCTGCC CATCCCCAAC GAACCTCAGA AGATTATT TA CAATCGCTAT
     301 CCTAAAGAACG TCTTTTATTT CGTGAAAACA CACTCCCTGA CTGTTAACGA
     351 ATTAAAAATA TTATTAATT GCTGGAAAAG CGGTACAGAC CTGCCTCCGA
     401 ATTACATAAA AAAAGCAGAG GCTTCGGGA TCGATATTCT AAAATCTATA
     451 GATTTAACCC TGTTTCCAGA GTTCAAGAG ATTCTTCTTC AAAACTGCC
     501 GTTATACTGG CTCTCCCTT TTATAGACAA AACTGAATCT GTTGTGGGG
     551 AAATCGGATT AAATAAAACA CAAAAAGTTT ATGGTTTACT TGGGCCCTTA
     601 GCGTTTCATA AAGGATATAC AACTATTTT CACTCTTATA CACGCCCTCT
     651 ACTAACATTA ATCTCAGAAT CACAGTATAA GTTCCCTATAT AGTAAAGCGT
     701 CTAAGAACATCA ATGGGATTCT CCTTCTGTGA AAAAACCTG CGAAGAAATA
     751 TTCAGGAAC TCCCCCACAA TATGATTTT CGGAAGGATG TTCAAGGAAT
     801 CTCACAATTTC TTATTTCTTT TCTTTCTCA TGGTATCACT TGGGAACAGG
     851 CTCAGATGAT TCAACTTATA AACCTCTGATA ATTGGAAAAT GTTGTGTCA
     901 TTTGATAAAAG CAGGAGGCCA CTGTTCCATG GCAACATTTG GAGGCTTTT
     951 GAATACTGAA ACAAAATATGT TCGATCCAGT ATCCTCTAAC TATGAACCTA
    1001 CAGTGAACCT CATGACGTGG AAAAGAATTGA AGGTTTTACT AGAGAAAAGTA
    1051 AAAGAAAGTC CTATGCACCC AGCGAGTGCT CTTGTTCTAGA AGATATGCGT
    1101 AAATACAACG CACCATCAAA ATCTGTTAAA ACGATGGCAA TTTGTTCTGA
    1151 ATACGAGTTC ACAATGGACA TCAAGCTTAC CTCAGTATGC TTTCCACGCC
    1201 CAAACCTACA AACTAGAGAA AAAATAGAA AGCAGTCTCC CTATACGATC
    1251 TTCCCTATAA

```

- 45 The PSORT algorithm predicts inner membrane (0.7198).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 120A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 120B) and for FACS analysis.

- These experiments show that cp6627 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5           351 CGCTAAAATT ATTGTAAC TG GATGCATGAC TTCCAACCAC AAAGATGAGC  
           401 TTAAACCCCTG GATGTCACAC ATCCATTACC TACTAGGTTC TGGGGATGTT  
           451 GAGAATATTG TTTCTGCTAT TGAGTCTCGT GAATCTGGAG AAAAAATCTC  
           501 TGCAGAACAGT TACATTGAGA TGGGAGAAGT TCCAAGACAG CTTTCCACAC  
           551 CAAAACACTA TGCCTATTGA AAAGTTGCTG AGGGCTGTAG AAAACGTTGT  
           601 GCTTTTGTA TTATTCCTTC CATTAAAGGA AAGCTCCGCA GCAAACCTCT  
           651 CGATCAAATT CTTAAAGAAT TCCCACATCCT TGTAAACAAG AGTGTGAAAG  
           701 AGATTATATT GATAGCTCAA GACCTAGGAG ATTATGGAAA GGATCTCTCT  
           751 ACAGACCGCA GTTCGCGACT AGAACACTA TTACATGAGT TACTGAAAGA  
           801 GCCTGGGTGAT TATTGGCTGC GGATGTTGTA TTATATCCT GATGAAGTGA  
           851 GTGATGGCAT TATAGATCTT ATGCAATCTA ATCCCCAAACT TCTTCCTAT  
           901 GTAGATATTG CCTTACAGCA CATTAAACGAC CGTATTTAA AGCAAATGCG  
           951 AAGAACGACT TCTAGGGAGC AAATCCTAGG ATTCCCTAGAA AAATTACGTG  
 10           1001 CCAAGGTTCC TCAGGTCTAT ATCCGTTCTT CTGTTATTGT GGGTTTCCCC  
           1051 GGTGAAACTC AGGAAGAATT CCAGGAGTTA GCTGATTTA TTGGTGAGGG  
           1101 TTGGATTGAT AATCTCGGAA TTTTCTTGTA CTCTCAAGAA GCGAATACCC  
           1151 CGGCAGCAGA ACTCCCTGAC CAGATACCAG AAAAAGTTAA AGAATCGAGG  
 15           1201 TTGAAAATTG TATCTCAAAAT TCAGAACACG AATGTGGATA AACATAATCA  
           1251 GAAGCTCATT GGGGAAAAAA TAGAACAGT TATTGATAAC TATCATCCTG  
           1301 AAACGAATCT TTTACTCACT GCAAGGTTCT ATGGACAAGC TCCTGAAAGTG  
           1351 GACCCCTTGTA TTATTGTAAGA TGAGGCGAAG CTTGTTTCTC ATTTTGGAGA  
           1401 AAGATGCTTT ATAGAAATCA CAGGGACTGC TGGTTACGAC CTTGTAGGGC  
           1451 GTGTTGTAAGA AAAATCTCAG AACCAAGCTT TGCTAAAAAC TAGCAAAGCT  
           1501 TAG

25         The PSORT algorithm predicts cytoplasm (0.1296).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 118A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 118B) and for FACS analysis.

30         These experiments show that cp6526 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 119

The following *C.pneumoniae* protein (PID 4376528) was expressed <SEQ ID 237; cp6528>:

35           1 MKNNINNNEC YFKLDSTVDG DLLAANLKTG DTQAGQGISST ETFSVQGNAT  
           51 FKDQVSATGL TSGTTYNLNA QNFTSSQISI DFKNRNLSCN ALPKEDCDPV  
           101 PANYVRSPEY FFCSKPLIGD FDFNSGESYL PLTGSEYTLQ QSRNWNSIFR  
           151 FIGWKQSTRE LTVGGNTAIQ FLAAGTYIVS FTVGKRWGN NGWGGAIYIN  
           201 NGLGQVQCES TIYSGGGYAT IGLTGTISYR ASVDVAPNPN DPNASDRYRA  
           251 GIFYLSNGGS SAGIGNYSFS LLYPYPDDRG\*

The cp6528 nucleotide sequence <SEQ ID 238> is:

40           1 ATGAAAAACAA ATATTAATAA TAATGAGTGC TATTTTAAAT TAGACTCAAC  
           51 TGTAGATGGT GATTGTTAG CAGCCAATCT CAAGACCTTT GATAACACAGG  
           101 CCCAAGGAAT CTCATCGACT GAAACATTCTT CTGTTCAAGGG GAATGCAACA  
           151 TTAAAGATC AAGTTTCAGC AACTGGATTA ACTTCAGGGAA CTACTTATAAA  
           201 TTAAATGCA CAAAACCTTA CTTCCCTCCCA AATCTCTATA GATTTTAAAA  
           251 ATAATCGTCT GAGTAATTGT GCATTGCCAA AAGAAGACTG CGATCCGGTG  
           301 CCAGCGAATT ATGTCGTT CCCCCAATAT TTTTCTGTT CCAAGCCTCT  
           351 GATCGGAGAT TTTGATTGTTA ACTCAGGGGA ATCTTATTG CCTCTGACTG  
           401 GTTCGGAATA TACTCTATAT CAGTCACGTG ATGTAATAG TATATTTCGT  
           451 TTATAGGAT GGAAGCAAG TACACGAGAA TTAACGTAG GGGGAAATAC  
           501 TGGCATAACAA TTTCTGCCAG CAGGAACCTA TATCGTTCA TTTACTGTTG  
           551 GTAAACGGTG GGGATGGAAT ATGGTTGGG GAGGAGGCOAT TTATATCAAT  
           601 AATGGTTTAG GACAAGTCCA ATGTGAAAGC ACGATTTATA GTGGTGGAGG  
           651 GTATGCAACA ATAGGTACAC TGGGGACCTC AATATATAGA GCCTCTGTAG  
           701 ATGTAGCTCC TAATCCTAAAT GATCCGAATG CTTCGGATCG CTATAGAGCG  
           751 GGTATTTCT ATCTCAGTAA CGGTGGTTCT AGTGCAGGTA TAGGGAATTA  
           801 CTCCCTTTCT CTTCTCTATT ATCCGGACGA TAGAGGGTAG

-148-

351 TEEEQWKKIA FVKEIAKEIW G\*

The cp6732 nucleotide sequence &lt;SEQ ID 244&gt; is:

|    |      |             |             |             |             |             |
|----|------|-------------|-------------|-------------|-------------|-------------|
|    | 1    | ATGGAAATGA  | TGAGCCCATT  | CCAAACACCT  | GAGCAATGTC  | ATTTTGATGT  |
| 5  | 51   | TGTGGGAAGT  | TTCTTACGTC  | CTGAAAAGTCT | TACACGAGCA  | CGCTCTGATT  |
|    | 101  | TTGAAGAAGG  | AAGAATTGTC  | TATGAGCAGA  | TGCGAGTTGT  | CGAAGATGCT  |
|    | 151  | GCTATTGCGTA | ATCTCATAAA  | AAAGCAAACA  | GAAGCAGGTC  | TTATCTTTT   |
|    | 201  | TACTGATGGG  | GAATTCCGTA  | GGTATAGTTG  | GGATTTCGAC  | TTTATGTGGG  |
| 10 | 251  | GATTCCATGG  | CGTGGATCGT  | CGCAGGGACT  | CTAATGACCC  | TGAAATTGGA  |
|    | 301  | GTGTATCTTA  | AAGATAAAAAT | CTCCGTATCA  | AAACATCCGT  | TTATAGAACAA |
|    | 351  | TTTCGAGTTT  | GTCAAAACCT  | TTGAGAAGGG  | AAATGCAAA   | GCAAAACAAA  |
| 15 | 401  | CGATTCCCTTC | TCCATCACAA  | TTTTTCCATG  | AGATGATT    | TGCTCTAAT   |
|    | 451  | CTGAAAAATA  | CTCGGAAGTT  | TTATCCTACG  | AATCAAGAGC  | TAATTGATGA  |
|    | 501  | TATTGTCTTT  | TATTATCGCC  | AAGTCATCCA  | AGATCTTTAT  | GCTGCAGGTT  |
|    | 551  | GTCGTAATTT  | GCAGTTGGAC  | GATTGTGCTT  | GGTGTGCGCT  | CTTGGATATA  |
| 20 | 601  | CGAGCGCCTT  | CTTGGTATGG  | TGTTGATTCT  | CATGACAGGT  | TGCAGGAAAT  |
|    | 651  | TTTAGAACAG  | TTTTTATGGA  | TCCATAAFTT  | AGTGTGAAAG  | GATAGACCCG  |
|    | 701  | AGGATCTTTT  | TGTAAGTCTG  | CATGCTGTC   | GTGGTGATTA  | TCAGGCCGAG  |
|    | 751  | TTTTCTCTA   | GACGAGCTTA  | TGATTCTATA  | GAGGAGCCCTT | TATTIGCTAA  |
|    | 801  | GACCGATGTC  | GATAGTTATC  | ACTATTATTG  | GGCTCTTGAT  | GATAAGTATT  |
|    | 851  | CAGGAGGTC   | TGAGCCTTA   | GCTTACGTCT  | CTGGAGAGAA  | ACACGCTCTGC |
| 25 | 901  | TTGGGATGTA  | TCTCCAGCAA  | CCATTCTTGT  | ATTGAAGATC  | GAGATGCTGT  |
|    | 951  | GGTTTCTCGT  | ATTATGAAG   | CTGGAGCTA   | CATTCCCTTA  | GAGAGACTTT  |
|    | 1001 | CTTGAGGCC   | GCAATGTGGG  | TTTGCTTCTT  | GTGAGGGAGA  | CCATAGAATG  |
|    | 1051 | ACTGAAGAAG  | AACAGTGGAA  | GAAGATCGCC  | TTTGTGAAAG  | AGATTGCTAA  |
|    | 1101 | AGAGATCTGG  | GGATAA      |             |             |             |

The PSORT algorithm predicts cytoplasm (0.2196).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 122A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 122B) and for FACS analysis.

30 These experiments show that cp6732 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 123

The following *C.pneumoniae* protein (PID 4376738) was expressed <SEQ ID 245; cp6738>:

|    |     |            |            |            |            |            |
|----|-----|------------|------------|------------|------------|------------|
| 35 | 1   | VWLRFLLLVS | YDEKEKDVVV | VCNHSEPNIL | GLPPEAVSQL | IEELSDEGYS |
|    | 51  | YLNVVRCDSL | GETTVQQRLL | LNADEGRSMT | VVISLPEGH  | PDIRNLQLAS |
|    | 101 | ERIFVSREKE | AADAYASGCK | VVAFDDEHLP | WVSSHIAYAE | EIREKQEQT  |
|    | 151 | QGSLTEEQLG | ALLCNTVSTE | KNLAFALDAV | IKQSVWRFRN | PDLFAYERE  |
|    | 201 | LEASVTDALW | SYVSNLDMP  | YTSSQGIVIE | DSSIVRTSQE | HTLIVNCAAF |
|    | 251 | DKLASQIEFL | CPSDVLPISG | KDPLISDDDE | EELNPKVSSA | ADSKDKT*   |

40 The cp6738 nucleotide sequence <SEQ ID 246> is:

|    |     |            |             |            |             |             |
|----|-----|------------|-------------|------------|-------------|-------------|
| 45 | 1   | GTGTGGCTGC | GCTTTTACT   | TTTAGTGTCC | TATGATGAGA  | AGGAGAAAGA  |
|    | 51  | CGTAGTTGTC | GTTTGTAATC  | ATTCTGAACC | TAATATCCTC  | GGCCTGCCTC  |
|    | 101 | CTGAAGCAGT | CTCTCAGCTT  | ATTGAAGAGC | TTAGCGATGA  | AGGCTATAGC  |
|    | 151 | TATCTGAATG | TAGTGCCTTG  | TGAICTCTCC | GGGGAGACTA  | CGGTCAACA   |
|    | 201 | ACGTCTGCTA | TTGAATGCCG  | ATGAAGGGAG | ATCTATGACG  | GTGGTGATCT  |
|    | 251 | CAGAGCTTCC | TGAAGGGCAC  | CCCGATATT  | GAATTTGCA   | GTTGGCATCC  |
|    | 301 | GAAAGAATT  | TTGTTTCTCG  | TGAAAAAGAA | GCTGCTGATG  | CCTATGCTTC  |
|    | 351 | AGGATGTA   | GTGGTCGCTT  | TCGATGATGA | GCATCTCCCT  | TGGGCTCCA   |
| 50 | 401 | GTCATATTGC | CTACGCCAG   | GAGATCAGAG | AGAAACAAAGA | ACAAACAAATG |
|    | 451 | CAAGGGTCTT | TAATCTGAAGA | GCAGTTAGGA | GCACTCCTCT  | GCAACACAGT  |
|    | 501 | CTCCACAGAG | AAAAATCTAG  | CCTTTGCTCT | AGACGCCGTG  | ATAAAACAGT  |
|    | 551 | CTGTGTGGAG | ATTCCCGAAT  | CCGGATCTTT | TTGCTTATGA  | GAGAGAAGCT  |
|    | 601 | CTAGAGGCTT | CAGAACAGA   | TGCTTTAGTA | TCTTACGTTT  | CAAATTAGA   |
|    | 651 | CATGATACCG | TACACAAGTT  | CTCAGGGCAT | AGTCATAGAA  | GATAGTAGTA  |
| 55 | 701 | TCGTCCGTAC | CTCTCAAGAG  | CATACACTCA | TTGTGAACTG  | TGCAGCATTC  |

**Example 121**

The following *C.pneumoniae* protein (PID 4376629) was expressed <SEQ ID 241; cp6629>:

```

5      1  MSNITSPVIQ NNRSCNYFE LKNSTTIHV ISAILLCGAL IAFCLVAAPV
      51  SYILSGALLG LGLLIALIGV ILGIKKITPM ISSKEQVFPO ELVNRIRAHY
     101  PKFVSDFVSE AKPNLKDLIS FIDLNLQHNS EVGSSTNYNV SEELQQKIDT
     151  FEGIARLKNE VRTASLKRLE SAASSRPLFP SLPKILQKVF PFFWLGEFIS
     201  AGSKVVELHR VKKIGGSLEE DLSDYIKPEM LPTYWLIPLD FRPTNSSILN
     251  LHTLVLARVL TRDVFQHLKY AALNGEWNLN HSDLNTMKQQ LFAKYHAAYQ
     301  SYKHLSQPSL QEDEFYNLL CIFKHRYSWK QMSLIKTVPA DLWENLCCLT
     351  LDHTGRPQDM EFASLIGLTLY TQGLIHKES AFLSSLTLLS LDQFKTIRRQ
     401  STNIAMFLEN LATHNSTFRS LPPITVHPLK RSVFSQPEED ESSILLIG*

```

The cp6629 nucleotide sequence <SEQ ID 242> is:

```

15     1  ATGAGTAATA TAACCTCGCC AGTTATTCAA AATAATCGCT CTTGTAATTA
      51  TTATTTTGAA TTAAAGAATT CAACCACTAT TCATATTGTT ATCAGTGCCA
     101  TCTTACTCTG CGGAGCTTTG ATAGCTTTCT TGTTGTGTAGC AGCTCTGTT
     151  TCCTATATTTC TAAGTGGCGC ATTGTTAGGA TTAGGATTAT TAATAGCCTT
     201  GATTGGTGTG ATTTTAGGAA TAAAAAAAAT CACGCCTATG ATTCATCAA
     251  AAGAACAAAGT ATTCCCCCAA GAACCTGTAA ATAGAACATAG GGCGCACTAT
     301  CCTAAATTTG TCTCTGATTT TGTTTCAGAA GCTAAACCAA ATCTTAAAGA
     351  TCTCATAAGT TTTATTGATC TTCTAAATCA ATTGCACTCT GAAGTTGGAT
     401  CATCTACAAA TTACAACGTA TCTGAAGAAC TACAACAGAA AATAGATACG
     451  TTCGAGGGTA TCGCACGCTT AAAAATGAA GTCCGTACTG CTTCTCTTAA
     501  AAGACTTGAA AGCGCTGCTT CTTCGGTCC CCTCTTCCCC TCTTACCAA
     551  AAATCTTACA AAAGGTATTT CCATTTTCTT GGTAGGAGA GTTTATTTCT
     601  GCAGGCAGCA AGGTTGTAGA GCTCCATCGA GTTAAGAAAA TTGGAGGCAG
     651  CCTCGAAGAA GACCTTAGTG ATTATATAAA ACCAGAGATG CTTCCTACCT
     701  ATGGTTGTAT TCCTTTAGAT TTTAGACCAA CAAATCCCTC TATTCTAAAT
     751  CTACACACAT TAGTTTAGC TAGAGTCTTA ACTCGTGTATG TTTTCAACA
     801  TCTTAAGTAT GCAGCATTAA ATGGCGAGTG GAACCTGAAT CATACTGATC
     851  TAAATACTAT GAAACAGCAG CTCTTGCTA AATATCATGC GGCATATCAA
     901  TCCTATAAAC ATCTATCTCA ACCCTCTCTT CAAGAGGATG AATTCTATAA
     951  CCTGCTCTTG TGTATTTTA AGCATAGGTA CTCGTGGAAG CAGATGTCCT
    1001  TAATAAAAAC AGTCCCAGCT GATTATGGG AAAACCTCTG TTGCTTGACT
    1051  TTAGACCATA CAGGACGACC CCAAGACATG GAATTTGCCT CTCTAATTGG
    1101  TACTCTCTAC ACACAAGGCC TAATTCTAA AGAAAGCGAA GCATTCTTT
    1151  CTTCATTGAC ACTCCTTAGT TTAGATCAGT TTAAACAGAT CCGTCGTCAG
    1201  TCAACCAATA TAGCGATGTT CCTTGAGAAT TTAGCAACTC ATAATCCAC
    1251  CTTTAGAAGC TTACCACCA TAACAGTCCA TCCACTCAAG AGAACCGTCT
    1301  TCTCCCAACC TGAAGAAGAC GAGTCCTCCC TGCTGATAGG TTAG

```

40 The PSORT algorithm predicts inner membrane (0.5776).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 121A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 121B) and for FACS analysis.

45 These experiments show that cp6629 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 122**

The following *C.pneumoniae* protein (PID 4376732) was expressed <SEQ ID 243; cp6732>:

```

50     1  MEMMSPFQQP EQCHFDVVGS FLRPESLTRA RSDFEEGRIV YEQMRVVEDA
      51  AIRNLIKKQT EAGLIFFTGD EFRRYSWDFD FMWGFHGVD RRDSNDPEIG
     101  VYLKDKISVS KHPFIEHFEF VKTFEKGNAK AKQTIPSPSQ FFHEMIFAPN
     151  LKNTRKFYPT NQELIDDIVF YYRQVIQDLY AAGCRNLQLD DCAWCRLLDI
     201  RAPSWSYGVDS HDRLQEILOQ FLWIHNLMVK DRPEDLFVSL HVCRGDYQAE
     251  FFSRRRAYDSI EEPLFAKTDV DSYHYYWALD DKYSGGAEPL AYVSGEKHVC
     301  LGЛИSSNHSC IEDRDAVSR IYEAAASYIPL ERLSLSPQCG FASCEGDHRM

```

These experiments show that cp6739 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 125

The following *C.pneumoniae* protein (PID 4376741) was expressed <SEQ ID 249; cp6741>:

|    |                                                             |
|----|-------------------------------------------------------------|
| 5  | 1 MASCLSAWFS IVREHFYRAF DFSLPFCARI TEFVLGVVIKG IPVGHIIVG    |
|    | 51 IEWLVSRYLE SFVTKPTFVS DVVSLLKTEK VAGRDHIARV VETLKRQRVA   |
|    | 101 VAPEDEDKVKH GKIPVHPFGG IQPVEVLTLY PEVQDATLGL AFSKIRNRVR |
|    | 151 QAYLQAPRK LQKIYIIGND MNPFEVDDFL HLARLCNETQ RLYPDATISL   |
|    | 201 YLTASGGRNA MDKKNRKLLS DCELNPKIAC LDFNQGDVVK QATCDCWMVY  |
|    | 251 HGENDQGTLM QIQEELEKSG EETPWIHVQ KPLSQSLWDF SPFSSLEMKG   |
| 10 | 301 DKEKALEYSE LEKEQLYSRL VYVGERSSVL SLGFGDSRSRG ILMDPKRVHA |
|    | 351 PLSEGHHYCHS VLADLENPGQ QKTILAAFLN PKELSSTILQ PISLNLILNS |
|    | 401 KTYLRQHFGE FERMRSRDRN VVVVCDSSWW GTDWKEEPSF QHFIMELECR  |
|    | 451 GYSHFNIFAF RSNSMCVEER RILNESSQEK AFTMIFCEDS VSQGDIRCLH  |
| 15 | 501 LASEGMLCGK ECYAVDVYTS GCANFMMEEV LTLERESNLW NRKHGLWKRE  |
|    | 551 VRKQKQEAAL DQDESEIYVC NQLTAQQNFA CS*                    |

The cp6741 nucleotide sequence <SEQ ID 250> is:

|    |                                                               |
|----|---------------------------------------------------------------|
| 20 | 1 ATGGCTTCTT GTTTATCTGC CTGGTTTTCT ATAGTTCTGT AGCACCTTTA      |
|    | 51 TCGAGCCTTT GATTTTCTT TGCCGTTTG TGCTCGTATT ACGGAATTG        |
|    | 101 TATTAGGGGT CATCAAGGGG ATCCCTGTTG TGGGTACAT TATTGTTGGG     |
|    | 151 ATAGAGTGGC TCGTTCTAG GTATTTAGAG AGTTTCGTGA CCAAGCCGAC     |
|    | 201 ATTGTCCTCT GATGTGGTGA GTCTTCTGAA AACAGAGAAA GTTGTGGTC     |
|    | 251 GCGATCACAT TGCTCGTGA GTGGAGACTT TGAAGAGGCA GAGAGTCGCT     |
|    | 301 GTGGCTCCTG AAGATGAGGA TAAGGTCCAT GGGAAAGATTC CTGTGCATCC   |
| 25 | 351 TTTCGGGGGA ATCCAACCTG TAGAAGTTCT CACTCTCAT CCCGAAGTTTC    |
|    | 401 AAGATGCAAC GTTAGGGCTT GCCTTCTCTA AAATTCGTAA TCGTGTAAAGA   |
|    | 451 CAGGCGTATT TGCAAGCTCC ACGGCCAAAA CTGAGAGAAA TTTACATCAT    |
|    | 501 AGGAAACAGAT ATGAATCCTT TTGAAGTTGA CGACTCTTG CATCTAGCCC    |
|    | 551 GTCTCTGTAA TGAAACTCAA AGACTCTATC CTGAGGCTAC GATTTCCTA     |
| 30 | 601 TATCTAACAG CTTCTGGTGG TCGCAATGCT ATGGACAAAAA AGAATCGGAA   |
|    | 651 GTTACTTAGT GATTGCGAAC TAAACCCCAA GATTGCTTGT TTGGACTTTA    |
|    | 701 ATCAGGGTGA TGTAGTCAAA CAAGCAACTT GTGACTGTTG GATGGTGTAT    |
|    | 751 CATGGGGAGA ATGATCAAGG TACGTTGAAT CAGATTCAAGG AAGAGTTAGA   |
|    | 801 AAAGTCAGGG GAGGAACCC CTTGGATTCA TGTGGGGCAA AAGCCTCTTT     |
| 35 | 851 CACAATCCTT GTGGGATTTC TCTCCATTTT CATCTTGGT GATGAAGGGAA    |
|    | 901 GATAAAAGAGA AAGCTCTAGA GTACTCTGAA TTAGAAAAAG AACAGCTATA   |
|    | 951 TTCTCGATTG GTATACGTAG GAGAGCGCTC TTCGGTTCTT AGTTTGGGGT    |
|    | 1001 TTGGAGATAG TCGGTCAAGGG ATCTTGATGG ACCCAAAACG GGTGCATGCT  |
| 40 | 1051 CCCTTATCTG AAGGGCATT A TTGTCAATTCC TACCTTGCAG ACTTAGAAAA |
|    | 1101 TCCC GGTTA CAAAAAACAA TTTAGCGGC ATTTCTGAAT CCTAAGGAGT    |
|    | 1151 TGAGCAGTAC CATACTGCAA CCTATATCTC TAAATCTTAT CTTAAATAGC   |
|    | 1201 AAAACTTACT TAAGGCAGCA CTTGGCTTT TTGAGAGGA TGAGCAGAAG     |
|    | 1251 TGATCGCAAT GTGGTTGTCG TTGTATGTGA TTCTGGTGG GGTACCGACT    |
|    | 1301 GGAAGGAGGA GCCAAGCTTC CAACACTTTA TTATGGAGCT AGAGTGTGCA   |
| 45 | 1351 GGGTATTCGC ACTTCATAT TTTGCCCTT AGATCTAATA GCATGTGTGT     |
|    | 1401 AGAAGAACGT AGGATCTTAA ATGAAAGTTC TCAAGAGAAA GCCTTACCA    |
|    | 1451 TGATTTCTG TGAGGATTCA GTATCTCAAG GAGATATCCG CTGTTGCAT     |
|    | 1501 TTGGCGTCTG AAGGAATGCT TTGTGGTAAA GAGTGTATG CTGTCGATGT    |
|    | 1551 CTATACGTCA GGATGCGCGA ACTTTATGAT GGAAGAAGTC TTAACCTTGG   |
| 50 | 1601 AGCGAGAACATC TAATCTGTGG AATAGAAAGC ATGGTCTTGT GAAAAGAGAA |
|    | 1651 GTTAGAAAAAC AGAAACAAAGA AGCTGCTTTG GATCAAGACG AGAGCGAGAT |
|    | 1701 TTACGTTGT AATCAGCTGA CGCGCAACA GAACTCGCT TGTCTTGA        |

The PSORT algorithm predicts inner membrane (0.2869).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 125A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 125B) and for FACS analysis.

751 GATAAGTTAG CGAGCCAAAT AGAGTTCTTA TGCCCCAGTG ACGTGGTGC  
 801 CATTTCCTGGT AAAGACCCT TGATTTCTGA TGATGAGGAT GAGGAACGTGA  
 851 ATCCTAAAGT TTCATCTGCT GCAGACTCTA AAGATAAAAC CTAG

The PSORT algorithm predicts cytoplasm (0.1587).

- 5 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 123A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 123B) and for FACS analysis.

These experiments show that cp6738 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

10 Example 124

The following *C.pneumoniae* protein (PID 4376739) was expressed <SEQ ID 247; cp6739>:

1 MTHCLHGWF S VVRHHFVQAF NFSRPLYSRI THFALGVIKA IPIVGHLVMG  
 51 VDWLISHCFE RGVSHPGFPS DIAPILKVEK JAGRDHISRI ENQLKSLRK  
 15 IEVEDLDKVH GQYQENPYAD MASSEVLKLD KGVHVSELGK AFSRVNRIT  
 151 RSYSYAPTPQ LDSIAIVGID LVSPEEQENL VRLANEVIQL YPKSKTTLYL  
 201 LIDFNKEWVG DISSDKEKQL RSLGLHSEVQ CLSVLEPQGA EGEDTKHFDL  
 251 MVGCYGKD SY LREGKILQQA LGTSLGTVPW VNVMHTLPSR YRSRLSLPIN  
 301 TEKDKTELYK EISRTHHQLH TLGMGLGAQD SGLLLDRQRL HAPLSQGSCH  
 351 HSYLADLTHE ELKILLFSAF VDAKNISKKE LREVSLNFAN DTSVECGCAF  
 20 401 YF\*

The cp6739 nucleotide sequence <SEQ ID 248> is:

1 ATGACTCAT T GCTTACATGG TTGGTTTTCT GTAGTCGTC ATCACTTTGT  
 51 GCAGGCGTTT AATTCTCA C GTCCTTTATA TTCTCGAATT ACCCACTTCG  
 101 CTTTAGGGGT GATTAAGGCC ATCCCCATTG TAGGGCATCT TGTTATGGGA  
 151 GTCGATTGGT TGATCTCTCA TTGCTTCGAG AGGGGAGTCT CACACCTGG  
 201 GTTCCCTTC GATATTGCTC CTATACTGAA AGTAGAAAAG ATCGCGGGCC  
 251 GAGATCATAT TTCTAGAAC GAAAATCAGC TAAAGAGCCT TAGGAAAAGT  
 301 ATCGAGGTTG AAGATCTAGA TAAAGTCCAC GGGCAATATC AAGAGAATCC  
 351 TTATGCAGAT ATGGCCTCTA GTGAGGTTCT TAAACTCGAT AAGGGAGTTC  
 401 ATGTTAGCGA GCTTGGCAAA GCCTTTCTA GAGTTCGCAA TCGCATCACC  
 451 AGATCCTATA GTTATGCCCT TACTCCTCAG TTGGACTCTA TAGCTATTGT  
 501 TGGTATAGAT CTCGTCA GTCAGAACAGA AGAGAATTAA GTACGCTTGG  
 551 CGAATGAGGT CATTCAACTC TATCCAAAT CAAAGACAAC TCTATATCTT  
 601 CTTATCGATT TTAATAAGGA GTGGGTAGGG GATATCTCCT CTGATAAGGA  
 651 AAAACAGCTC CGTTCTCTAG GTCTACATTC TGAAGTCAG TGTCTTCCG  
 701 TCTTGGAAAC TCAGGGTGCC GAGGGCGAAG ATACGAAACA CTTTGACCTT  
 751 ATGGTCGGCT GTTATGGAA GGATTCTTAC TTAAGGGAGG GTAAAATT  
 801 ACAGCAGGCC CTAGGGACTT CGTTAGGTAC TGTTCCCTGG GTGAATGTTA  
 851 TGCACACATT GCCATCTAGG TATAGATCTC GGCTTCCCTT ACCTATAAAAT  
 901 ACCGAAAAGG ATAAGACAGA GCTTTATAAA GAGATTTCCTC GTACACACCA  
 951 TCAGTTGCAT ACTTTGGAA TGGGACTTGG AGCCCAGGAT TCAGGATTGC  
 1001 TCTTAGACCG GCAACGACTC CATGCTCCTT TATCTCAAGG GTCTCACTGC  
 1051 CATTCCCTATC TTGCGAGATCT CACCCATGAA GAGCTGAAAA TTTTGTATT  
 1101 TTCAGCATTG GTGGATGCTA AGAACATAAG TAAGAAAGAG CTTCGTGAGG  
 1151 TATCTCTAAA TTTTGCTAAC GATACTTCGG TAGAGTGTGG CTGCGCTTTT  
 1201 TACTTTTAG

The PSORT algorithm predicts inner membrane (0.2190).

- 50 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 124A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 124B) and for FACS analysis.

The PSORT algorithm predicts inner membrane (0.2338).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 126A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 126B) and for FACS analysis.

- 5 These experiments show that cp6742 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 127

The following *C.pneumoniae* protein (PID 4376744) was expressed <SEQ ID 253; cp6744>:

|    |                                                                                                                                                                                                                                                                                                                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 1 VIQHLLNFAL EETPSISVQY QEQEKLSPCD HSPEIGKKR WNKLESFSTY<br>51 CSLFMSVKDH YKLNLGIQNS LSGWLLDPYR VCAPLSSPYS CPSYLLDLQN<br>101 KELRRSLLST FLDPKNLTSE TFRSVSINFG NSSFGQRWSE FLSRVLHDEK<br>151 EKHVAVVCND AKLLEEGLSP EALSILLEDL RESGYSYLNI LSVSPEGVSK<br>201 VQERQILRRD LQGRSFTVMI TDPLPLGSEDI RSLQLASDRI LVSSSLDAAD<br>251 ACASGCKVLV YENPNASWAQ ELENFYKQVE RRR* |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

- 15 The cp6744 nucleotide sequence <SEQ ID 254> is:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 1 GTGATACAAAC ATCTTCTAAA CTTTGCTCTA GAAGAGACCC CTTCCATTTC<br>51 CGTGCAATAAC CAAGAACAAAG AGAACGCTCTC TCCGTGCGAT CATTCCCCAG<br>101 AAATAGGTA AAAGAAAAAGA TGGAATAAGC TGGAATCCTT CTCCACGTAT<br>151 TGGTCTCTGT TTATGTCGTG TAAGGATCAT TATAAGCTGA ATCTAGGAAT<br>201 TCAGAAATTCC CTGTCAGGGT GGCTTCTGGA TCCCTATAGG GTTTGCAGCGC<br>251 CTTTATCTTC ACCGTACTCG TGTCCTTCCT ATCTTTAGA TTTGCAAAAC<br>301 AAAGAGCTAC GTCGTTCCCT TCTGTCAACG TTTCTAGACC CTAAAAATCT<br>351 CACTAGCGAA ACATTCGTT CTGTCCTCTAT AAACCTTGGC AACTCTTCGT<br>401 TTGGACAGAG ATGGTCAGAG TTTCTATCTC GTGTTCTGCA CGACGGAGAAA<br>451 GAAAAGCACG TAGCTGTTGT TTGTAATGAT GCAAAACTTC TGGAAGAAGG<br>501 ATTGTCCCCA GAGGCATTGT CTCTATTAGA AGAACGACTTA AGAGAACATCAG<br>551 GGTATTTCGTA TCTAAACATT CTCTCGGTGA GCCCCGAAGG AGTCCTCCAAG<br>601 GTTCAGGAAC GTCAGATTCT AAGGCGAGAT CTCCAAGGAC GGTCCCTTAC<br>651 TGTCACTGATT ACAGATCTTC CTMTAGGTAG CGAACGATATC CGTAGTTTAC<br>701 AATTAGCCTC GGATAGGATT TTAGTCTCCA GTTCTCTTGA TGCCGCCGAT<br>751 GCATGTGCTT CGGGATGTAAGTCTTAGTC TACGAAAATC CAAATGCATC<br>801 CTGGGCTCAG GAATTGGAGA ACTTCTACAA ACAAGTTGAG AGAAGAAGG<br>851 AG |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The PSORT algorithm predicts cytoplasm (0.3833).

- 35 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 127A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 127B) and for FACS analysis.

These experiments show that cp6744 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 128

The following *C.pneumoniae* protein (PID 4376745) was expressed <SEQ ID 255; cp6745>:

|    |                                                                                                                                                                                                                                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45 | 1 VACPSISSLWF TVVRQHFVNA FDFTHPVCSR ITNFALGIK AIPVLGHIVM<br>51 GIEWLISWIP RHTVRHGMFT SDVSSAIKVE QTRGHNCLAP LEAYLSSLRV<br>101 PISQEDLGKV HGRTPEDPFV DITPTEIVQL LPDEELSTVD EALQGVRSRL<br>151 TYAYRSVEKP MIQDLALVGF GLRDSADLIN FVRLANGVQN HYPHTKVKLY<br>201 LAKNLADVWD CEISEEEKGQ LRALGLDPKI ESISLTSAGL PSVPEVATVD<br>251 FMITCYGKDQ EVQDP* |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

These experiments show that cp6741 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 126

The following *C.pneumoniae* protein (PID 4376742) was expressed <SEQ ID 251; cp6742>:

|    |                                                             |
|----|-------------------------------------------------------------|
| 5  | 1 LFVSNFIFFV VMPPIPYISSW ISTVRQHFVK AFDFSRPFC S RVTNFALGVI  |
|    | 51 KAIPIVGHIV MGMEWLVSSC VAGIIITRSSF TSDVQIVKT EKALGRDHIS   |
|    | 101 RVAEILQRER GTITPENQDK VHGFVPCPF GRLKSEETLK LKPGEREGLT   |
|    | 151 DTVFSPIRTR VTRAYLQAPR PEIRTISIVG SKLXTPQDF S QFVSLANETQ |
|    | 201 RLHPEALVCL YLTGLNRESQ MCDTTAEEKK QYLHNSGLDS RIQCKDSKED  |
| 10 | 251 DAGSPENPEL WIGYYSREQQ HNIIDQYIQQ CLGKSADPIP WIHVTEDETKD |
|    | 301 FYYPPNFTSY SHTRQSTDPT SPPRLPESEG DKDSLYGQLS RSYHHEYMLG  |
|    | 351 LGLKPEDAGL LMDPDRIYAP LSQGHYCHSY LADIENEDLR TLVLSPFLDP  |
|    | 401 GNLSSEDLRP VAFNIARLPL ELDLSFFRLV AGQQEGRNIV TLAHGTPRPE  |
| 15 | 451 DLDPDSMNIL TRRLQMSGYS YLNIFSYKSR KMIVKERQFF GDRSEGKSFT  |
|    | 501 LILFEDPISA ADFRCLQLAA EGMVAKDLP S VADICASGCS CIQFSEMQSP |
|    | 551 QAIEYRQWEA RVEDEAGEEA REPVIYSQDQ LSSMLTTQQN FVFSILDAAVK |
|    | 601 QAIWRFRSKG LLTMRKA LG EEFILTAIFSY LGSQERNENM GKRTTEEHEV |
|    | 651 VISFEELDRM VQVLPAEVPA DSGNDPTRPV PNPDNSPDSS QNEGS*      |

The cp6742 nucleotide sequence <SEQ ID 252> is:

|    |                                                               |
|----|---------------------------------------------------------------|
| 20 | 1 TTGTTTGTTT CTAATTTTAT TTTTTTTGTT GTTATGCCAA TTCCCTATAT      |
|    | 51 TTCTTCTTGG ATTTCCTACCG TTCGACAGCA TTTTGTAAAG GCGTTTGATT    |
|    | 101 TCTCTCGTCC CTTTTGTTCT AGGGTTACGA ATTTTGCTT AGGGGTCATC     |
|    | 151 AAGGCCATCC CTATTGTTAG ACATATTGTC ATGGGGATGG AGTGGTTAGT    |
|    | 201 TTCTTCCTGT GTTGCGGGGA TTATTACTAG GTCTCCCTT ACCTCAGATG     |
| 25 | 251 TCGTTCAAGAT TGTAAAAGACT GAGAACCGT TAGGTGAGA TCATATATCT    |
|    | 301 CGAGTGGCGG AGATATTGCA AAGAGAAAGG GGGACCATAA CTCCTGAGAA    |
|    | 351 TCAAGATAAG GTGCATGGGA AGTTTCTGT CTGTCCTTT GGTGTTAA        |
|    | 401 AATCCGAGGA AACTTTAAAA CTAAAGCCGG GAGAAAGAGA GGGAACTTTA    |
|    | 451 GATACTGTAT TTTCTCCGAT TCGCACGCG GTGACTCGTG CGTACTTACA     |
| 30 | 501 GGGCCCCCGA CCCGAAATAC GTACGATTTC TATTGTTGGGT TCGAAACTTA   |
|    | 551 AAACCTCTCA AGATTTCTCG CAATTGTGA GTCTCGCGAA TGAAACGCAG     |
|    | 601 AGACTGCATC CTGAAGCGTT AGTTGTCTG TATTGACAG GCTTGAATCG      |
|    | 651 CGAATCTCA G ATGTGCCATA CAACTACTGC AGAGAAGAAG CAGTACCTAC   |
| 35 | 701 ATAACTCAGG TCTCGACTCT AGAAATCCAGT GCAAAGACAG TAAAGAAGAC   |
|    | 751 GACGCTGGCT CTCCCTGAAAA TCCCGAACCTT TGGATTGGCT ATTATTACAG  |
|    | 801 AGAGCAACAG CATAATATAG ACGGGCAGTA TATTCAAGCAG TGTCTAGGG    |
|    | 851 AGAGTGCAGA TCCAATTCCCT TGGATTCATG TTACTGAAGA CACAAAGGAT   |
|    | 901 TTTTATTACCA CACCAAACCTT TACTTCATAC TCACATACAA GACAATCTAC  |
| 40 | 951 AGACCCAACA TCGCCACCAA GACTCCCTGA AAGTGAGGGG GATAAGGATT    |
|    | 1001 CCTTGTACGG ACAACTGAGT CGATCGTATC ACCATGAGTA TATGTTGGT    |
|    | 1051 TTGGGATTAA AACCAAGAGGA TGCAAGACTC CTGATGGACC CGGATAGAAT  |
|    | 1101 CTATGCTCCT CTATCCCAAG GGCATTATTG TCATTCCCTAC CTTGCGGATA  |
|    | 1151 TAGAAAATGA GGATCTACGA ACTTTAGTCC TTTCGCCTT CCTAGATCCT    |
| 45 | 1201 GGCATCTTA GTAGCGAGGA TCTTCGTCT GTAGCATTCA ATATCGCTAG     |
|    | 1251 ATTGCCATTA GAATTGGACT CGTTATTTTT CCGCCTTGT GCGGGTCAGC    |
|    | 1301 AAGAAGGGAG AAACATAGTT ACCCTTGCCC ACAGGAACCTCC TCGTCCAGAA |
|    | 1351 GATCTTGATC CTGACTCAAT GAACATTCTG ACCAGAAGAT TACAAATGTC   |
|    | 1401 TGGATATAGC TATTTGAACA TTTTCTCTA TAAATCACGG AAAATGATTG    |
|    | 1451 TAAAAGAACG TCAGTTCTTT GGAGATCGTT CTGAAGGGAA GTCTTTACA    |
| 50 | 1501 TTGATCTTAT TTGAGGATCC CATTAGTGCA GCAGATTTC GTTGTTTGCA    |
|    | 1551 GCTAGCTGCA GAAGGTATGG TTGCTAAGGA TCTCCCCAGC GTAGCAGATA   |
|    | 1601 TTGATGCTCCT TGGATCTTCC TGCATTCTAG TTTCTGAGAT GCAGAGTCCT  |
|    | 1651 CAGGCTATTG AATATAGACA ATGGGAGGCA CGTGTGAAAG ATGAAGCAGG   |
|    | 1701 AGAAGAACCC AGAGAACAG TAATTATTC TCAGGATCAA TTGAGCAGCA     |
| 55 | 1751 TGCTCACTAC ACAACAGAAT TTGATTTTT CTCTAGATGC TGTGGTAAA     |
|    | 1801 CAGGCGATCT GGAGATTCCG TTGCAAGAGT CTTCTTACTA TGGAAAGAAA   |
|    | 1851 GGCACTAGGC GAGGAGTTCT TAACTGCGAT ATTTTCCTAT TTAGGGAGTC   |
|    | 1901 AGGAGCGTAA TGAGAATATG GGGAAAGAA CTACCGAAGA ACATGAGGTC    |
|    | 1951 GTTATCAGCT TCGAAGAGCT AGATCGCATG GTGCAAGTCC TCCCAGCCGA   |
| 60 | 2001 AGTCCCTGCA GATTCAAGGCA ATGATCCTAC GCGTCCCGTT CCTAATCCAG  |
|    | 2051 ATAGTAACCC TGATTCCTCG CAAAATGAAG GCAGTTAG                |

1101 TGATGAAGAT GTTCCCTCTA CCTCTGAGGA TCCTTCAGAT GATCATCCTT  
 1151 CGGATCTTGA AGACTCTTAA

The PSORT algorithm predicts inner membrane (0.1447).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 129A) and also as  
 5 a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used  
 in a Western blot (Figure 129B) and for FACS analysis.

These experiments show that cp6747 is a surface-exposed and immunoaccessible protein, and that it  
 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 130

- 10 The following *C.pneumoniae* protein (PID 4376756) was expressed <SEQ ID 259; cp6756>:

1 MASGIGGGSS LGKIPPKDNG DRSPSPPKG ELGSHEISLP PQEHGEEGAS  
 51 GSSHIIHSSSS FLPEDQESQS SSSAASSPGF FSRVRSGVDR ALKSFGNFFS  
 101 AEESTSQARET RQAFVRLSKT ITADERRDVD SSSAAATEAR VAEDASVSGE  
 151 NPSQGPVPETS SGPEPQRLFS LPSVKKQSGL GRLVQTVRDR IVLPSGAPPT  
 201 DSEPLSLYEL NLRLSSLRQE LSDIQSNQDL TPEEKAEATV TIQQLIQITE  
 251 FQCGYMEATQ SSVSLAEARF KGVEITSDEIN SLCSELTDPE LQELMSDGDS  
 301 LQNLLDETAD DLEAALSHTR LSFSLDDNPT PIDNNPTLIS QEEPIYEEIG  
 351 GAADPQR TRE NWSTRLWNQI REALVSSLGM ILSILGSILH RLRIARHAAA  
 401 EAVGRCC TCR GEECTSSEED SMSVGSPSEI DETERTGSPH DVPRRN GSPR  
 451 EDSPLMNA LV GWAHKHGAKT KESSESSTPE ISISAPIVRG WSQDSSVSFI  
 501 VMEDDHIFYD VPRRKDGTYD VPSSPRWSPA RELEEDVFGD YEVPI TS AEP  
 551 SKDKNIYMT P RLATPAIYDL PSRP GSSGSS RSPSSDRVRS SSPNRRGVPL  
 601 PPVPSPAMSE EGSIYEDMSG ASGAGESDYE DMSRSPSPRG DLDEPIYANT  
 651 PEDNPFTQRN IDRILQERSG GASASPVEPI YDEIPWIHGR PPATLPRPEN  
 701 TLTNVSLRVS PGFGP EVRAA LLSESVSAVM VEAESIVPPT EPGDGESEYL  
 751 EPLGGLVATT KILLQKGWPR GESNA\*

The cp6756 nucleotide sequence <SEQ ID 260> is:

1 ATGGCATCAG GAATCGGAGG ATCTAGTGG A TTAGGAAAGA TTCCACCTAA  
 51 AGATAATGGG GATAGAAC GTC GATCGCCCTC TCCTAAGGG A GAACTTGGCA  
 101 GCCACGAGAT TTCCCTGCCT CCTCAAGAAC ATGGAGAGGA AGGAGCTTCA  
 151 GGATCTTCGC ATATACATAG CAGTTCTCT TTTCTACCAAG AAGATCAGGA  
 201 GTCTCAGAGC TCTTCTTCGG CAGCTTCTAG CCCGGGATTT TTTTCTCGCG  
 251 TACGTTCTGG GGTAGACAGG GCCTTAAAT CATTGGCAA CTTTTTTTCC  
 301 GCAGAGTCTA CGAGTCAAGC GCGTGAAACG CGACAAGCTT TTGTTAGATT  
 351 ATCAAAAACC ATCACCGCGG ATGAGAGACG GGATGTCGAT TCATCAAGTG  
 401 CTGCTGCTAC AGAAGCCCGA GTGGCAGAGG ACGCGAGTGT TTCAGGCAGA  
 451 AATCCTTCTC AGGGGGTCTC AGAAACCTCT TCTGGACCA AACCTCAGCG  
 501 TTTATTTCTC CTTCTTCAG TAAAAAAACA GAGCGGTTTG GGTGCGGTTGG  
 551 TACAGACAGT TCGCGATCGC ATAGTACTTC CTAGTGGGGC TCCACCTACA  
 601 GACAGCGAGC CTTTAAGTCT CTACGAGCTA AACCTCCGTT TGAGTAGTTT  
 651 ACCTCAGGAG CTCTCTGACA TACAAAGTAA TGATCAGTGTG ACTCCAGAGG  
 701 AAAAAGCAGA AGCCACAGTT ACCATACAAAC AGCTGATCCA AATTACAGAA  
 751 TTCCAAATGCG GCTATATGG A GGCAACACAA TCTTCGGTAT CTCTAGCAGA  
 801 AGCTCGTTT AAGGGGTAG AAACTAGTGA TGAGATCAAT TCCCTCTGTT  
 851 CAGAACTGAC AGATCCTGAG CTTCAAGAAC TCATGAGTGA TGGAGACTCT  
 901 CTTCAAAACC TATTAGATGA GACTGCCGAC GATTTAGAAG CTGCTTTGTC  
 951 CCATACTCGA TTGAGTTTT CTTTAGACGA TAATCCAAT CCGATAGACA  
 1001 ATAATCCAAC TCTGATTTCT CAAGAAGAGC CTATTTATGA GGAAATCGGA  
 1051 GGAGCTGCAG ATCCCTCAAAG AACCTGGGAA AACTGGTCTA CAAGATTATG  
 1101 GAATCAGATT CGCGAGGCTC TGGTTCTCT TTTAGGAATG ATTTTAAGCA  
 1151 TTCTAGGGTC CATCTTCGAC AGGTGCGTA TTGCTCGTCA TGCAGCTGCT  
 1201 GAAGCAGTGG GTCGTTGTTG CACGTGCCGA GGAGAAGAGT GTACTCTTC  
 1251 TGAAGAGGAC TCGATGTCGG TGGGGTCTCC TTCAGAAATT GATGAAACTG  
 1301 AAAGAACGGG CTCTCCCAT GACGTTCCAC GCAGAAATGG AAGTCCACGT  
 1351 GAAGATTCTC CATTGATGAA TGCCTTAGTA GGATGGGCAC ATAAGCACGG  
 1401 TGCTAAAACC AAGGAGAGTT CAGAATCAAG TACCCCCGAA ATTTCGATT  
 1451 CTGCTCCCCT AGTGGAGAGGT TGGAGTCAAG ACAGTCCGT CAGTTTATT

The cp6745 nucleotide sequence <SEQ ID 256> is:

```

      1  GTGGCTTGTC CAAGTATTC TTCTTGGTTT ACTGTCGTTG GACAGCATT
      51  TGTAAACGCC TTTGATTTCA CCCATCCCCT TTGTTCTCGG ATTACAAATT
     101  TTGCTTTGGG GATCATTAAG GCAATTCCCG TATTAGGACA CATTGTCATG
     151  GGAATCGAGT GGTTGATTTC CTGGATTCCC AGACACACCG TTGTCATGG
    201  AATGTTTACT TCTGATGTC CTAGTGCTAT TAAAGTAGAA CAAACACGGG
    251  GTCATAATTG TTTAGCTCCC CTAGAAGCCT ATTTAAGTAG CTTGAGAGTC
    301  CCCATTTCCC AAGAAGATCT AGGCAGAAGTA CACGGGAGAA CCCCCAGAAGA
    351  TCCCTTCGTA GATATCACAC CCACAGAAAT TGTCCAACCT CTCCCTGATG
   10  401  AAGAACTCTC TACTGTAGAT GAGGCACTGC AAGGCCTCG TAGTAGGTTA
   451  ACCTATGCCT ATAGGTCCT AGAGAAACCT ATGATTCAAG ATCTTGCTCT
   501  TGTGGGTTTT GGTCTCCGAG ATTCCTGCGGA CCTCTAAAT TTGTCGCGTC
   551  TTGCTAATGG CGTGAGAAT CACTATCCC ATACTAAAGT GAAGCTCTAT
   601  TTAGCGAAGA ACTTGGCAGA TGTCTGGGAC TGTAAAATT CTGAAGAGGA
   651  AAAAGGGCAA CTCCGAGCTC TAGGTTTAAAG CCCTAAAATA GAGAGTATAT
   701  CCCTTACGAG TGCAGGTCTT CCTTCAGTGC CAGAAGTCGC TACTGTCGAT
   751  TTTATGATTA CCTGTTACGG GAAAGATCAG GAAGTCCAAG ATCCCTAG

```

The PSORT algorithm predicts inner membrane (0.2253).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 128A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 128B) and for FACS analysis.

These experiments show that cp6745 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 129

25 The following *C.pneumoniae* protein (PID 4376747) was expressed <SEQ ID 257; cp6747>:

```

      1  MMKQGVGQDA KELYTFLSRG NEHYQPCLWF SLEELGFLF DEKMLCAPLS
      51  EDHYCHSYLV DLVDQHLKDL ILSMFLDPQN ISAGELLKVS INVGDSFSPL
     101  QQKDFLMSVL RDETGNVVV VFKGVLSLPA TQVCKLVEEL NSKDYSYLN
     151  FSCHGDSSPQ LLFRKELEG TSGRYFTVICA LYLGDTDMRS LQLASERIMV
    201  SREFDLVDAY AARCKLLKID HTNWRPGTFS RHADFADAVD VSAGFNSREF
    251  KLITQANQGI LESGELPLPS KTFWEGFLAF CDRVTVTRHF IPMLDAAIKQ
    301  AVWTHKHPSL IDKECEALDL KTQCLPSIVS YLEYVTSNSHE KTSKGPFIQK
    351  EIIADCSPLIK EALFPGSDED VPSTSEDPSD DHPSDLED*

```

The cp6747 nucleotide sequence <SEQ ID 258> is:

```

      1  ATGATGAAAC AAGGAGTCGG GCAGGATGCT AAAGAGCTAT ACACATTTCT
      51  ATCTCGTGGG AATGAGCATT ACCAACCGTG TCTATGGTTC AGTCTCGAAG
     101  AGGAACCTCGG ATTCCCTTTTC GATGAAAAAA TGCTCTCGCG CCCCTCTATCT
     151  GAGGATCACT ATTGCCACTC GTATCTGTA GATCTAGTGG ATCAACATTT
    201  AAAGGATTAA ATATTATCGA TGTGTTTAAAG TCCTCAGAAT ATCTCAGCAG
    251  GAGAACTCCT CAAGGTCTCT ATAAACGTTG GAGATTCTTT TTCTCCTCTA
    301  CAACAGAAAG ATTCCTCTC GATGGTCTTA CGTGATGAAA CGGGAAAAAA
    351  CGTCGTCGTG GTTTTAAAG GAGTTCTCTC CTTACCCGCA ACCCAAGTCT
    401  GCACAAATTAGT AGAGGAATTG AACTCTAAGG ACTACTCCTA CCTCAATATA
    451  TTTTCTTGTG ACGGAGATAG TAGTCCTCAG CTTTTATTCC GTAAGGAATT
    501  AGAGGAAACT TCAGGGCGTT ATTTTACAGT GATTTGCGCT TTATATCTAG
    551  GGGATACAGA CATCGCTAGT TTACAACCTTG CTTCTGAAAG GATCATGGTC
    601  TCTAGAGAGT TTGATCTTGT AGATGCCTAT GCTGCAAGAT GCAAGCTCTT
    651  GAAAATCGAT CATAACAAATT GGAGACCTGG AACTTTCACT CGCACGCCG
    701  ATTTCGCAGA TGCTGTAGAC GTATCAGCAG GATTTAACTC AAGAGAATT
    751  AAAACTGATTA CGCAGGCGAA TCAAGGGATC CTAGAGTCTG GAGAACTCCC
    801  GCTCCCTTCA AAAACCTTCT GGGAGGATT CTTAGCATTC TGTGATCGAG
    851  TGACTGTAC GAGACACTTC ATTCCTTGT TAGACGCCGC TATAAAGCAA
    901  GCGGTATGGA CTCATAAAACA TCCCAAGCTTG ATAGATAAAAG AGTGTGAAGC
    951  CCTAGACTTG AAAACACAGT GCTTGCCATC TATCGTATCG TACCTTGAAT
   1001  ATGTCACAAA CTCTCACGAA AAAACATCGA AAGGCCGTT CATACAAAAA
   1051  GAGATTATCG CAGACTGTTC TCCTCTTAAA GAGGCCTCT TCCCAGGTTC

```

```

1101 TACAGAGGTG CTTGTTGAGA AAGTAACGGG GCAGGTTGCT ACGGGTCACT
1151 CTCCCTTATTG TGAAAAGGTT TCTTTCCCTG TTGTAGGAAC GGTAGCTATC
1201 AACACTCTAG TTTCTGTGCG TCTTGATAGG GTAGAGGAAG AAGGGCTGAT
1251 TGGGGAGATT GTATGA

```

5 The PSORT algorithm predicts inner membrane (0.1574).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 131A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 131B) and for FACS analysis.

These experiments show that cp6761 is a surface-exposed and immunoaccessible protein, and that it  
10 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 132

The following *C.pneumoniae* protein (PID 4376766) was expressed <SEQ ID 263; cp6766>:

```

1 MATSVPVTSS TSVGEANSSN ERFTERTSRM YYAALVLGAL SCLIFIAMIV
15 51 IFPVQVGLWAV VLGFALGCLL LSLAIVFAVS GLVLGKTLEP SREATPPEIV
101 101 AQKEWTTQQD VLGNHEYWRSE LISLFLRGDL HESLIVDSKD RSLDIDQSLQ
151 NILKLEPLST TLSLLKKDCV HINIILHLVR QWNLLGVDSL PEVTAHAEEL
201 201 LLFLFLIEEQQY SPDILKLIRY GDALQATSPL MDWADSGSFS VDADGVFSCR
251 251 REECSPEDAL AQFDLLLALE NPDRRFLKDS FLTYIWSSSF FEKFLHRHLE
301 301 SLQRKLPETA IDVARYEAQI QTFLSRYFQK LDLINAMSLL WGYNCAEGEK
351 351 CYESANQRQLD NLFIIAFSSV PAMKRLFDKY GSVVVRVDRRQ IREQILSNTE
401 401 ILENESGFLC SLYEYPLSYL IDWAVLDDCV RGTEISLEDQ ADYTVCLQGL
451 451 DSMSLQSFASR LQSGQKVLPN RDVLSEQAAV MLVHGLAAQG VSFQGLKALM
501 501 YLTAVPQRMW LGALPLFESF PVFNRMKFEL GESLGD*

```

The cp6766 nucleotide sequence <SEQ ID 264> is:

```

25 1 ATGGCAACCT CTGTTCCCTGT AACTTCATCT ACTTCTGTAG GAGAGGCTAA
    51 CTCCTCCAAC GAAAGATTG CTGAACGAAC ATCGCGAATG TATTACGCAG
    101 CTTTAGTCCT AGGGGCTTTG AGCTGTTAA TTTTTTATTGC TATGATTGTC
    151 ATTTTCCCAC AGGTGCGGATT GTGGGCTGTG GTCCCTCGGGT TTGCTCTTGG
    201 ATGTTTACTT TTAAGCTTAG CTATCGTTT TGCTGTCCTC GGTCTCGTTT
    251 TAGGCAAGAC TTTAGAACCT AGTCGAGAAG CGACTCCTCC AGAAATTGTT
    301 GCGCAAAGG AGTGGACTAC ACAACAAGAT GTCTTAGGGA ATGAGTATTG
    351 GCGTTCCGAG TTGATTTCCT TGTCTTACG AGGGGATCTC CACGAATCTC
    401 TGATTGTTGA TTCTAAGGAT CGATCTTTAG ATATTGATCA GAGTTTACAA
    451 AATATATTGA AACTTGAGCC CCTATCTACG ACACTTTCGC TGTTAAAGAA
    501 AGATTGTCAC CACATCAATA TCATTTTACA TTTAGTGAGA CAGTGGAACT
    551 TACTGGGAGT GGATCTTAGT CCTGAAGTCA CTGCGCACGC CGAGGAACCT
    601 CTACTCTTT TGATAGAAGA GCAGTATTAC TCTCCTGATA TTTGAAATT
    651 GATTGCTAC GGAGATGCTT TACAAGCAAC GTCTCCTTTG ATGGATTGGG
    701 CAGATTTCAGG TTCCCTTAGT GTAGACGCAG ACGGGGTATT TAGCTGTCGC
    751 AGAGAAGAAAT GTTCTCCTGA GGATGCTTTG GCGCAATTG ATCTCTTTT
    801 GCGCITGGAA AATCCCAGACA GACGCTCTT AAAGGATCT TTTCTTACCT
    851 ACATTTGGTC GTCTTCATTT TTGAGAAGT TTTTACATCG CCATCTAGAG
    901 AGCTTGCAAA GAAAGCTCCC AGAGACAGCG ATCGATGTCG CCCGCTATGA
    951 AGCACAAATA CAAACATTT TCTCTCGCTA TTTTCAGAAG CTCGATTGA
    1001 TAAAACGCAAT GTCTCTAGAT TGCGGATATA ACTGTGCTGA GGGAGAAAAAA
    1051 TGTTATGAGA GCGCAAATCA AAGATTAGAC AACCTATTTA TTGCTTTTTC
    1101 TTCTTCTGTG CCTGCTATGA AGCGGCTCTT TGACAAATAT GGTTCTGTGG
    1151 TACGGGTAGA TCGTAGGCAG ATTCTGTGAGC AGATTCTTC GAACACTGAA
    1201 ATCTTAGAAA ATGAGTCAGG GTCTCTCTGC AGTTTGATG AATATCCTTT
    1251 ATCCTATTG ATAGATTGGG CTGTTTGCT AGACTGTGTT CGCGGTACCG
    1301 AAATCTCTCT AGAAGATCAG GCCGATTACA CGGTTGTTT GCAAGGCTTG
    1351 GATTCTATGT TATCTCAATT TGCGAGTCGT TTACAGTCTG GACAAAAAGT
    1401 ATTGAATCCT AGAGATGTTT TAAGTGAACA GGCTGCGGTT ATGCTTGTTC
    1451 ATGGCTTGGC AGCACAGGGC GTGTCGTTTC AAGGATTGAA AGCTTTGATG
    1501 TATTGACAG CCGTTCCCCA AAGAATGTGG TTAGGAGCAT TGCCCTTATT
    1551 TGAATCTTT CCTGTCCTTA ATCGGATGAA AGAATTCTT GGGGAATCTC
    1601 TGGGAGACTA G

```

5           1501 GTTATGGAAG ATGATCATAT TTTCTATGAT GTTCCTCGTA GAAAAGATGG  
          1551 AATCTATGAC GTTCCTAGTT CCCCTAGATG GAGTCCTGCG CGAGAGTTGG  
          1601 AAGAGGATGT TTTGGAGAT TATGAAGTTC CTATAACCTC TGCTGAACCA  
          1651 TCTAAAGACA AGAACATCTA CATGACACCT AGATTAGCAA CCTCTGCTAT  
          1701 CTATGATCTT CCTTCACGTC CAGGATCGTC TCCAAGCTCA CGTTCTCCGT  
          1751 CTCAGATCG CGTACGAAGC AGTCACCAA ATAGACGGGG TGTGCCTCTT  
          1801 CCTCCAGITC CTTCACCTGC TATGAGTGAG GAGGGGAGCA TTTATGAGGA  
          1851 TATGAGCGGT GCTTCAGGTG CAGGTAAAG TGATTATGAA GATATGAGCC  
          1901 GTCCCCCTC TCCTAGAGGC GACTGGATG AACCCATATA TGCTAATACT  
          1951 CCTCAAGATA ATCCATTAC TCAGAGAAAT ATAGATAGAA TTTTACAGGA  
          2001 GAGGTCAAGGC GGTGCTTCGG CTTCTCTGT AGAGCCTATT TATGATGAGA  
          2051 TCCCCTGGAT TCATGGCAGG CCCCTGCTA CACTCCAAG ACCCGAGAAT  
          2101 ACATTGACTA ATGTTTCGCT TAGAGTGAGC CCAGGGTTTC GACCAGAAGT  
          2151 AAGAGCCGCT TTGCTTAGCG AGAGCGTGAG TGCTGTTATG GTCGAAGCAG  
          2201 AGAGTATTGT TCCTCCAACA GAGCCGGGGG ACGGAGAAATC AGAATATCTA  
          2251 GAGCCCTTAG GGGGACTTGT AGCTACAACG AAAATCTTAC TACAAAAAGG  
          2301 ATGGCCTCGT GGAGAGTCGA ATGCTTAG

The PSORT algorithm predicts inner membrane (0.3994).

20         The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 130A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 130B) and for FACS analysis.

These experiments show that cp6756 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 131

25         The following *C.pneumoniae* protein (PID 4376761) was expressed <SEQ ID 261; cp6761>:

1         1 MVAEVKGTF KLVCLGCRVN QYEVQAYRDQ LTILGYQEVL DSEIPADLCI  
        51         51 INTCAVTASA ESSGRHAVRQ LCRQNPTAHI VVTGCLGESD KEFFASLDRQ  
        101         101 CTLVSNKEKS RLIEKIFSVD TTFPEFKIHS FEKRSRAFIK VQDG CNSFCS  
        151         151 YCIIPYLRGR SVSRPAEKIL AEIAGVVDQG YREVIAGIN VGDYCDGERS  
        201         201 LASLIEQVDR IPGIERIRIS SIDPDDITED LHRAITSSRH TCPSSH LVLQ  
        251         251 SGSNSILKRM NRKYSRGDFL DCVEKFFRASD PRYAFTTDVI VGFPGESDQD  
        301         301 FEDTLRIIED VGFIKVHSFP FSARRRTKAY TFDNQIPNQV IYERKKYLAE  
        351         351 VAKRVGQKEM MKRLGETTEV LVEKVTGQVA TGHSPYFEKV SFPVVGTVAI  
        401         401 NTLVSVRLDR VEEEGLIGEI V\*

35         The cp6761 nucleotide sequence <SEQ ID 262> is:

1         1 ATGACGGTTG CGGAAGTC AAGAACATTT AAGCTGGTCT GTPTAGGCTG  
        51         51 TCGGGTGAAT CAGTATGAGG TCCAAGCATA TCGCGACCAAG TTGACTATCT  
        101         101 TAGGTTACCA AGAGGTCCTG GATTCTGAAA TCCCTGCAGA TTTATGCATA  
        151         151 ATCAATACGT GTGCTGTCAC AGCTTCTGCT GAGAGTTCCG GTCGTACAG  
        201         201 TGTGCGTCAG TTATGTCGT AAGAACCTAC AGCACATATT GTTGTACAG  
        251         251 GTTGTGTTGGG GGAATCTGAC AAAGAGTTT TTGCTCTTT GGATCGGCAA  
        301         301 TGCACACTTG TTTCCAATAA AGAAAAATCC CGACTTATAG AAAAAATTTT  
        351         351 TTCCCTATGAT ACGACCTTCC CTGAGTTCAA GATCCATAGT TTTGAGGGAA  
        401         401 AGTCTCGAGC TTTTATTAAA GTTCAAGATG GCTGTAATTG TTTTGCTCG  
        451         451 TACTGCATTA TTCTTATTG GCGGGGGCGT CGGTTTCTC GTCTGCTGA  
        501         501 GAAGATTTA GCTGAAATCG CAGGGGTTGT AGACCAAGGA TATCGCGAAG  
        551         551 TTGTAATTGC AGGAATTAAAT GTTGGAGATT ATTGCGATGG AGAGCGTTCA  
        601         601 TTAGCCTCTT TGATTGAACA GGTGGACCGG ATTCCCTGGAA TTGAGAGGAT  
        651         651 TCGAATTTC CTTATAGATC CTGATGATAT CACTGAAGAT CTGCAACCGTG  
        701         701 CCATCACCTC ATCGCGTCAC ACTTGTCTT CGTCACACCT TGTTCTTCAA  
        751         751 TCGGGGTCGA ATTCAATTAA AAAGAGAATG AACCGGAAGT ATTCTCGCGG  
        801         801 AGATTTTTA GATTGTGAG AGAAGTTCCG TGCTTCTGAT CCTCGCTATG  
        851         851 CCTTTACTAC AGATGTGATT GTCGGATTTC CTGGAGAGAG TGATCAAGAT  
        901         901 TTTGAAGATA CTTTGAGAAT TATTGAAGAT GTAGGCTTTA TTAAAGTGCA  
        951         951 TAGTTTCCCT TTCAGTGCTC GTCGCTGTAC TAAGGCATAT ACTTTTGATA  
        1001         1001 ATCAGATTCC CAATCAGGTG ATCTATGAGA GGAAGAAGTA TCTTGCTGAG  
        1051         1051 GTTGCTAAGA GGGTAGGCCA GAAAGAGATG ATGAAGCGTT TAGGAGAGAC

5            1 ATGTCATCAC TACTGAGCTG CGGAAGAATA GAGCCGACTC GGGTTACCTG  
       51 TAGCTTAAAG ACGTATCTTG AGGATACGAG TCAGAACAG TTGAGCACAC  
       101 GTCTAGTTCG GGCAAGTGTGTC ATCTTTTAT GCGCATTGTT GATCATTTG  
       151 GTTTGTGTGG CCCTCTCTAG TTGATTCCA AGCATTATGG CCTTGGCGAC  
       201 CTCTTTACG GTAATGGGGT TAATTCTTT TGTGATGTCA CTTCTGGTG  
       251 ACGTTGCAAT TATAAGTTAT CTTACTTATA GCACGTGTTAC GAGTTACCGG  
       301 CAAAATAAGA GAGCTTTGAG GATTCACAAG CCCGCTCGCT CCGTTTACTA  
       351 CGAGGGGGTC CGCCATTGGG ATTAGGACG ATCATCTTA GGCACAGGGC  
       401 AGATTCCAT AGTAAGGACG TTATTCTCTC CATTTCAGAA CCATGGTCTT  
       451 AACCATGCCT TAGCTGCTAA AATTTCCTA TTTATGGAGC ATTCAGCCC  
       501 TGAGCCACCG AACGAGCTT TGGTGGATTG GGCGCTGTTG ATTGGGATT  
       551 TTAGGCCTCA CGTCAGTTCT TTGCTGTTG TTATGAAAA ACAAGGGTCA  
       601 TCGCTGAGGA CTAAGGAAGG CAATACGATT TGTGAGGCTT TCCGCTCTGA  
       651 TTACGACGCC CATTTGCTA TGGTAGATTG CTACCGGTG ATCCACTCTA  
       701 AGTTGATTAGAGAAAATG GGATGAGAA ATATCGATAT CATTCCGAGT  
       751 GTCATGGTTC GTGAAGAGATTA TCCTAGCCGT CCTGGGGAGG GCTATCGCGA  
       801 AGGCCTATTA CGTATGTATG GTGGCAAGGG GGCTCTGTGA

The PSORT algorithm predicts inner membrane (0.711).

20           The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 134A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 134B) and for FACS analysis.

These experiments show that cp6805 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 135

25           The following *C.pneumoniae* protein (PID 4376813) was expressed <SEQ ID 269; cp6813>:

1 MSGPSRTESS QVSVL SYVPR DKEIAPKKQF TIAKISTLAI LASLALGALV  
       51 AGISLTIVLQ NPVLFLALLIT TALFSVVTFL VYHQMTSKVS SNWQKVLEQN  
       101 FKPLGKAWQE KNVDCYSNEM QFYNNHLNPK FKVAIQTDAS QPFQPTFLTG  
       151 LRVIEKNQST GIIFNPVGPT NLIDNTATNL STILYSTLKD KSVWDTCKQR  
       201 EGGPAKGEDP FSPTEVRRVK LPNEALDQTF NLNLSSAEKK SILPTFLGHV  
       251 CGPKSEELPN QQEYYRQALL AYENCLKAII ESHAAIVALP LFTSVYEVPP  
       301 EEEILPKEGTF YWDNQTQAFK KRALLDAIQN TALRPQRSL LVILQDPFNT  
       351 IESQSRSSEE\*

The cp6813 nucleotide sequence <SEQ ID 270> is:

35           1 ATGTCAGGAC CCTCACGTAC TGAGAGCTCT CAAGTTCTG TACTATCCTA  
       51 TGTGCCTCGG GATAAAAGAAA TTGCTCCTAA AAAACAGTT ACCATAGCAA  
       101 AAATATCCAC TCTTCAACATC CTAGCTTCTT TAGCTTTAGG AGCTTTGGTG  
       151 GCTGGAATCT CTTAACGAT AGTATTAGGG AACCTGTAT TTTTGGCTCT  
       201 TCTCATTACC ACGGCCCTCT TCTCAGTTGT AACCTTCTTA GTCTACCACC  
       251 AAATGACCTC AAAGGTATCT TCTAACTGGC AGAAAGTTCT AGAGAAAAC  
       301 TTCAAGCCTT TGGAAAAGC GTGCAAGAA AAAAACGTTAG ACTGCTACTC  
       351 AAACGAGATC CAATTTTACA ATAATCACCT GAACCTTAAG TTCAAGGTAG  
       401 CGATACAAAC AGATGCGTCT CAACCATTTG AGCCTACTTT CTTAACTGGA  
       451 CTTAGAGTGA TCGAAAAAAA TCAATCCACA GGATCATCT TTAATCCCCT  
       501 AGGCCCAACG AATCTGATCG ACAACACTGC AACGAACCTC TCTACTATCC  
       551 TTACTCCAC CCTAAAAGAT AAAAGCGTGT GGATACATG CAAGCAACGC  
       601 GAAGGGGGTC CCGCAAAGG AGAAGACCCC TTTTCCCTA CCGAAGTGAG  
       651 AGTAGTAAAA CTTCCAAACG AAGCTCTAGA TCAAACTTT AATCTAAATT  
       701 TAAGCTCTGC AGAAAAGAAA AGTATTCTTC CGACCTTTT AGGCCACGTA  
       751 TGCAGCCCTA AATCTGAAGA GTTACCAAT CAGCAAGAAT ATTATGCCA  
       801 AGCTTTACTA GCGTACGAGA ACTGCCTTAA AGCAGCTATA GAAAGTCATG  
       851 CAGCAATCGT TGCTCTCCCT CTCTTTACTT CGGTCTATGA AGTGCCTCCA  
       901 GAAGAGATTC TTCCTAAAGA AGGCACCTTC TATTGGGACA ACCAAACTCA  
       951 AGCGTTTGC AAACGCGCTT TATTGGACGC TATTCAAAT ACGGCCCTAC  
       1001 GCTATCCTCA AAGATCTTTA CTTGTTATAC TCCAAGATCC TTTTAATACT  
       1051 ATAGAATCAC AAAGTCGTTC TGAGGAGTAA

-157-

The PSORT algorithm predicts inner membrane (0.6158).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 132A) and also as a his-tagged product. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 132B) and for FACS analysis.

- 5 These experiments show that cp6766 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 133

The following *C.pneumoniae* protein (PID 4376804) was expressed <SEQ ID 265; cp6804>:

```

10      1  MSNQLQPCIS LGCVSYINSF PLSLQLIKRN DIRCVLAPPA DLLNLILLIEGK
          51 LDVALTSSLG AISHNLGYVP GFGIAANQRI LSVNLYAAPT FFNSPQPRIA
          101 ATLESRSSIG LLKVLCRHLW RIPTPHILRF ITTKVLRQTP ENYDGLLLIG
          151 DAALQHPVLP GFVTYDLASG WYDLTKLPFV FALLLHSTSW KEHPLPNLAM
          201 EEALQQFESS PEEVLKEAHQ HTGLPPSLLQ EYYALCQYRL GEEHYESFEK
          251 FREYYGTLQ QARL

```

- 15 The cp6804 nucleotide sequence <SEQ ID 266> is:

```

20      1  ATGTCTAACCC AACTCCAGCC ATGTATAAGC TTAGGCTGCG TAAGTTATAT
          51 TAATTCCCTT CCGCTGTCCC TACAACTCAT AAAAAGAAAC GATATTCGCT
          101 GTGTTCTTGC TCCCCCTGCA GACCCTCCTCA ACTTGCTAAT CGAAGGGAAA
          151 CTCGATGTTG CTTTGACCTC ATCCCTAGGA GCTATCTCTC ATAACCTTGGG
          201 GTATGTCCCC GGCTTTGGAA TTGCAGCAAA CCAACGTATC CTCAGTGTAA
          251 ACCCTCTATGC AGCTCCCCTC TTCTTTAACT CACCGCAACC TCGGATTGCC
          301 GCAACTTTAG AAAGTCGCTC CTCTATAGGA CTCTTAAAG TGCTTTGTCG
          351 TCATCTCTGG CGCATCCCAA CTCCCTCATAT CCTAAGATTC ATAACCTACAA
          401 AAGTACTCAG ACAAAACCCCT GAAAATTATG ATGGCCTCCT CCTAACCGGA
          451 GATGCAGCGC TACAACATCC TGTACTTCCT GGATTTGTAA CCTATGACCT
          501 TGCCTCGGGG TGGTATGATC TTACAAAGCT ACCTTTTGTA TTTGCTCTTC
          551 TTCTACACAG CACCTCTTGG AAAGAACATC CCCTACCCAA CCTTGCGATG
          601 GAAGAAGCCC TCCAACAGTT CGAATCTTCA CCCGAAGAAG TCCTTAAAGA
          651 AGCTCATCAA CATAACAGGTC TGCCCCCTTC TCTTCTTCAA GAATACTATG
          701 CCCTATGCCA GTACCGTCTA GGAGAAGAAC ACTACGAAAG CTTTGAAAAAA
          751 TTCCGGGAAT ATTATGGAAC CCTCTACCAA CAAGCCGAC TGTAA

```

The PSORT algorithm predicts inner membrane (0.060).

- The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 133A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 35 133B) and for FACS analysis.

These experiments show that cp6804 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 134

The following *C.pneumoniae* protein (PID 4376805) was expressed <SEQ ID 267; cp6805>:

```

40      1  MSSLLSCGRI EPTRVTCMSL TYLEDTSQNQ LSTRLVRAASV IFLCALLIIL
          51 VCVVALSSSLIP SIMALATSFT VMGLLIFVMS LLGDVAIIISY LTYSTVTSYR
          101 QNKRAFEIHK PARSVYYEGV RHWDLGRSSL GTGEIPIVRT LFSPFQNHLG
          151 NHALAAKIFL FMEHFSPEPP NEPLVDWACL IRDFRPHVSS LCFVIEKQGS
          201 SLRTKEGNTI CEAFRSDYDA HFAMVDCYRL IHSKLIIEKM GLKNIDIIPS
          251 VMVREDYPSR PGEGYREGLL RMYGGKGAL*

```

- The cp6805 nucleotide sequence <SEQ ID 268> is:

201 CIGFFGINGI CSTFLMLTNP RSRRDRWRNL RIMVLCYRSL GSGMNLFDLS  
 251 NNRMAARRH VTSCTVALYA MVTLFGWTV A IQDALQYGF SVRDAFYRYC  
 301 LRHRYCLTQR NEDSLQTTGT RFQVTRTHLE DQQMVASI LN LSVFGLFFGF  
 351 VGLMTTFGGL EISPSCRWDA ANNRTVGIF\*

- 5 The cp7201 nucleotide sequence <SEQ ID 274> is:

1 GTGCTCGTTG GTATCTGTCC TTCTCTATAT CCAGAACATC CTCGCTCCTT  
 51 TTATTATCGT GTTTCTGGAG ATATAGGCTC CCGATTGAC GATAGAGGAT  
 101 TTGTAAACTC TGGAGTCGAA ACCCTGCCAT ACTCTTCAGG CAGCTTG  
 151 ATTGTTTGGA TCTCGTTTAC GGATCCCACA TTTAATTTCG CTATCGTAAA  
 201 TACCTTTATG CGAACTGCAG GGATCAATGA AGTCTCTAGA CCCATGACAC  
 251 AAGATACAGA AACTTCATTG ATAGAAATGA GAGACCTAAG TGAACAAACAA  
 301 GAAGCGAATA ACACAGATT C TTAGAGCAA GAAGAGAGCT TAATGGGTAT  
 351 TGTAGGACAT ACTGTGGGAG GAGTTCCAT GACCCTGAC TCCAGTCAA  
 401 ATATCTTTA TCGTATAACAA ACACTTCTGG GACTGCCAGA GACTCTTGCA  
 451 GAAGCTGAAG AAAATCCTAC CTTCCCAAAT TCTACTATAG ATAGCCTTG  
 501 AGAAATAATG ATGAACCTCG TAAGGATCTC TGATGCTGTC TCTATTTCT  
 551 GGATTTTCC TATCGTAGAT ACTACATATA ATGGAGTTT ATTAGCCGTC  
 601 TGATCGGCT TCTTCGGAAT CAATGGGATT TGTTCCACGT TCCTTATGCT  
 651 TACGAATCCA CGCTCTCGTC GAGATAGAT GAGGAATTAA CGCATCATGG  
 701 TTCTTGTCA TCGTTCTTTCG GGAAGCGGAA TGAATCTCTT TGATCTTAGC  
 751 AATAATGTGC GCATGGCAGC ACGTAGGCAT GTGACATCAT GTACAGTAGC  
 801 TCTCTATGCT ATGGTCACTC TATTGGATG GACAGTAGCA ATACAAGATG  
 851 CTTTGCATAA TGGTTTCCCT AGCGTTCGGG ATGCCTCTCA TAGATATTGC  
 901 TTACGCCACA GATATTGCTT AACTCAAAGA AACGAAGACT CTCTGCAAAC  
 951 TACAGGAACG CGCTTTCAGG TTACCCGTAC ACATCTAGAA GATCAACAGA  
 1001 TGGTGGCTTC TATTTGAAT TTGAGTGT TTGGGCTCTT TTTGGATTC  
 1051 GTAGGGCTAA TGACCACGTT TGGAGGATTA GAAATCTCAC CATCTGTGCG  
 1101 GTGGGATGCA GCAAATAACC GAACGGTAGG TATTTTTAG

The PSORT algorithm predicts inner membrane (0.3102).

- 30 The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 137A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 137B) and for FACS analysis.

These experiments show that cp7201 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### 35 Example 138

The following *C.pneumoniae* protein (PID 4377251) was expressed <SEQ ID 275; cp7251>:

1 MAPIHGSNAF VEDILHSHPS PQATYFSSTR AQKLHEFKDR HPVLTRIASV  
 51 IIKIFKVLIQG LIILPLGIW LCQLCTNSI LPSKNLLKIF KKQPNTKTLK  
 40 101 TNYLHALQDY SSKNRVASM RVPILQDNVL IDTLEICLSQ APTNRWMLIS  
 151 LGSDCSLEEI ACKEIFDSWQ RFAKLIGANI LVYNYPGVMS STGSSLKDL  
 201 ASAAHNICTRY LKDKEQGPAG KEITIYGYSL GGLIQAEALR DQKIVANDDT  
 251 TWIAVKDRCP LFISPEGFHS CRRIGKLVAR LFGWGTKAVE RSQDLPCL EI  
 301 FLYPTDSLRR STVRQNLLA PELTLAHAIK NSPYVQNKEF IEVRLSSDID  
 351 PIDS KTRVAL ATPILKKLS\*

- 45 The cp7251 nucleotide sequence <SEQ ID 276> is:

1 ATGGCTCCAA TTCACGGAAG TAATGCGTTT GTTGAGGATA TTTTACATTC  
 51 CCACCCCTCT CCACAAGCGA CTTATTTTC TTCAACACGC GCCCAAAAAC  
 101 TTCACTGAGTT TAAAGACAGG CATCCCGTGC TTACACGGAT TGCTTCTGTA  
 151 ATTATTAAAAA TTTTTAAAGT TCTGATAGGG CTGATCATCC TTCCCTTAGG  
 201 AATCTACTGG CTATGTCAAA CGCTTGTAC AAAACTCGATT CTCCCTTCCA  
 251 AGAATTTTATT AAAAATTTC AAGAAGCAAC CCAACACTAA AACCTTAAAA  
 301 ACTAATTATT TGCATGCTTT GCAAGATTAT TCCTCGAAAA ACCGGCGTTGC  
 351 TTCCATGAGA CGAGTTCTA TCCTCCAGGA TAATGTTCTC ATCGACACTT  
 401 TGGAAATATG CCTTTCACAA GCACCTACGA ATCGTTGGAT GCTCATTTCT  
 451 TTAGGAAGTG ACTGTAGCTT GGAAGAAATC GCTGTAAAGG AGATCTTTGA

The PSORT algorithm predicts inner membrane (0.4291).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 135A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 135B) and for FACS analysis.

- 5 These experiments show that cp6813 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 136

The following *C.pneumoniae* protein (PID 4376844) was expressed <SEQ ID 271; cp6844>:

|    |                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 1 MWRVVLRFI IFLIGRAVFP LRASESFSWE TSTCLTVLGI PFIDIIILTTN<br>51 EDFVAQCGLQ IGTISSTNNAA KIKEIFLIYK EKFPEASISF KRKEPLNLSQ<br>101 SHLSDLGILC MRNGETYAEQ MANKENGPAL KQPKDRLVVL RCPNQPDPLL<br>151 YSEKEAEKGII ETNTCLCNQG YTLLDGQLIL YGDSIEKFLK ETKRKNHNTL<br>201 VDLCDSQVVT TFLGRFWSSL NYVQVLFNSE DSAKILAGIP DLAQATQLLS<br>251 HTVPLLFIYT NDSIHIEQG KESSFTYNQD LTEPILGFLF GYINRGSMEY<br>301 CFNCAQSSLG ET* |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The cp6844 nucleotide sequence <SEQ ID 272> is:

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20 | 1 ATGTGGCGCG TTGTCCTCAG ATTCCCTTATA ATTTTTATCT TGGGAAGAGC<br>51 CGTCTTCCCT CTAAGAGCTT CAGAAAGCTT CTCTGGGAA ACATCGACCT<br>101 GTTTAACAGT GCTAGGGATT CCTTTCATAG ATATTATCCT CACAACGAAT<br>151 GAGGACTTTG TTGCCAGTG CGGCCTGCAA ATAGGAACCA TTTCTTCGAC<br>201 TAATAACGCA AAAATAAAAG AAATTTTTT GATATATAAG GAAAAATTTC<br>251 CAGAAGCCTC TATCAGTTTC AAACGAAAAG AACCTCTAAA CCTTCCCAC<br>301 TCCCACATCTCT CCGATTTAGG TATTTTATGT ATCGTAACG GAGAAACTTA<br>351 CGCTGAGGGGA ATGGCAAATA AAGAAAACGG ACCCGCTCTA AAACAACCCA<br>401 AGGATCTAAG ATTAGTTTTA CGTTGTCCTA ACCAACCGA TACCCGCTC<br>451 TACTCGGAAA AAGAACGAGA AAAGGGCATA GAAACAAATA CTTGCCTATG<br>501 CAATCAGGGGA TACACACTCC TGGATGGGCA ATTGATTCTC TACGGGGATA<br>551 GTATAGAAAA GTTTCTGAAA GAGACCAAAA GAAAGAATAA CCACACGCTT<br>601 GTTGATCTTT GTGACTCACA AGTCGTGACC ACGTTCCCTCG GTCGCTTTG<br>651 GTCTCTTCTA AACTACGTTT CAGTTCTTT CCTATCTGAA GACTCCGCTA<br>701 AAATTCTTGC GGGCATCCCA GACCTAGCTC AAGCTACGCA ATTGCTTTCC<br>751 CACACCGTAC CTPTGCTTT TATTTATACC AACGATTCTA TTCACATCAT<br>801 AGAACAAAGGC AAAGAAAAGTA GTTTTACCTA TAACCAAGAT TTAACAGAGC<br>851 CCATTTAGG ATTTCTCTTT GGTTACATAA ATCGCGGCTC TATGGAATAC<br>901 TGCTTTAATT GTGCACAGTC TTCATTAGGA GAAACCTAA |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

The PSORT algorithm predicts inner membrane (0.1786).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 136A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 136B) and for FACS analysis.

- 40 These experiments show that cp6844 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 137

The following *C.pneumoniae* protein (PID 4377201) was expressed <SEQ ID 273; cp7201>:

|    |                                                                                                                                                                                                                                                     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45 | 1 VLVGICPSLY PEHPRSFYYR VSGDIGSRFD DRGFVNNSGVE TLPYSSGSFG<br>51 IFWISFTDPT FNFAIVNTFM RTAGINEVSR PMTQDTETSL IEMRDLSEQQ<br>101 EANNTDSLEQ EESLMGIVGH TVGGVSMVT SSPNIFYRIQ TLLGLPETLA<br>151 EAEEENPTFPN STIDSLAEIM MNLVRISDAV SIFWIFFPIVD TTYNGVLLAV |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

1251 CGTCTTTAAA TCCATGCAAA AAGCAGATCC AGAAACCAAA GCTTTAATCC  
 1301 GTGAGTTGC TCTAGATATA TTATATGCAT CCTTACGGCT TCCTCAA  
 1351 TCCGCTCAT A CCGAGGTCTT TTCTACACTC TTAATGGACC CAGAGACCTA  
 1401 TGAACCTAAT AAAGCTTGTA TCGCCTACTT GCTCTATGTA TTAAAGATCA  
 1451 TCGAAGTATA A

5

The PSORT algorithm predicts inner membrane (0.5989).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 139A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 139B) and for FACS analysis.

- 10 These experiments show that cp7288 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 140

The following *C.pneumoniae* protein (PID 4377359) was expressed <SEQ ID 279; cp7359>:

15    1 MPGVSSSPPL SPVIVRERVP SSSGSDLIQP HAVLKISILIL FALVTLIGIV  
       51 LVVLSSALGA LPSLVLTSGC CIAIAVGLIG LGILVTRLIL STIRKVDAMG  
       101 YDAAVKEEQY LSRIRELESE NREIRDRNRA VEDQCAHLSE ENKDLRDPEY  
       151 LHGMTERLIA SLEIENQALV AENILLKDWN ASLSRDFRAY KQKFPLGAE  
       201 PWKEDIACIM EQNLFLKPEC IAMVKSLPLE TQLRLFLYPKG FQSLVNRFAP  
       251 RSRFFQTPKY EYNRSRNENED GKVAAVCARL KKEFFSAVLG ACSYEELGGI  
       301 CERAVALKET LPLPEAVYDT LVQEFPNLLT AESLWKEWCF YSYPYLRPYL  
       351 SVDYCKRLFV QLFEELCLKL FTGSPEDQA LVRLFSYYRN HIPAVLASFG  
       401 LPPPETGGSV FVLLPKQENL LWSQIEVLAT RYLKDTFVRN SEWTGSFEMM  
       451 FSYNEMCKEI SEGRIRFAED YETRHSEEFP PSPLSEECEG EEEFLPPCSEE  
       501 EVSVLERPDL DVDSMWVWHP PVPKGPL\*

- 25 The cp7359 nucleotide sequence <SEQ ID 280> is:

30    1 ATGCCAGGTT CTGTGTCATC ACCTCCTTG TCTCCTGAA TTGTCCTGTGA  
       51 AAGGGTCCCA TCCTCTTCAG GATCCGACCT CATACAGCCT CATGCTGTTT  
       101 TAAAGATCTC CATCCTAATT TTTGCGCTTG TGACAATTAGGTT AGGAATTGTT  
       151 CTTGTAGTGT TGTCTAGTGC TTTAGGAGCT CTTCCCTAGTT TAGTTTGAC  
       201 GGTTCCTGGT TGTATTGCAA TAGCTGTAGG CCTGATTGGT TTAGGGATTTC  
       251 TTGTCACACG GCTGATTCTC TCTACGATCA GAAAAGTAGA TGCCATGGGT  
       301 TATGATGCTG CGGTCAAAGA AGAGCAGTAT TTGTCACGTA TCAGAGAATT  
       351 AGAGTCTGAA AATAGAGAGA TTAGAGATAG AAATCGTGC GTCGAAGATC  
       401 AGTGTGCCA TTTATCCGAA GAGAACAAAGG ACCTTACGGGA TCCCCAATAT  
       451 CTACATGGAA TGACTGAAAG GCTCATTGCG AGCTTAGAAA TAGAGAATCA  
       501 AGCTCTCGTA GCTGAGAACAA TTCTCTCAA AGACTGGAAT GCAAGCCTAT  
       551 CTAGAGATTG CCGCGCATAT AACAAAAAT TTCCCTCTGG GGCATTAGAA  
       601 CCCTGGAAAG AAGATATTGC ATGTATCATG GAACAAAATC TCTTTTAA  
       651 ACCGGAATGT ATCGCGATGG TTAAGTCTCT TCCATTAGAG ACGCAACGGC  
       701 TGTTCCTTATA TCCAAAAGGA TTTCAGTCTT TAGTTAATCG ATTGCTCCG  
       751 CGCTCTCGCT TTTTCCAGAC TCCAAAAGTAT GAATATAACA GTAGGAATGA  
       801 AAATGAGGAC GGAAAGGTAG CCGCAGTGTG CGCCCGTTG AAAAAGAAT  
       851 TCTTCAGTGC TGTTCCTAGGA GCCTGTAGTT AGCAAGAACT AGGGGGCATT  
       901 TGTGAAAGAG CAGTAGCACT TAAAGAGACG TTGCAATTGC CTGAAGCTGT  
       951 CTATGATACC CTAGTTCAAG AGTCCCCAA TCTTCCTACT GCTGAGAGTT  
       1001 TATGGAAAGA ATGGTGCCTTC TATTCCTATC CCTACCTTCG TCCCTATCTT  
       1051 TCTGTGGATT ACTGTAAGAG GTTATTGTA CAACTTTTG AGGAACCTCG  
       1101 CCTAAAGCTT TTTACAACGG GATCTCCAGA AGACCAAGCT TTGGTTCGCC  
       1151 TTTTCTCTTA CTATAGGAAT CATATTCCCG CAGTCTTGGC CTCATTGGT  
       1201 TTGCCCCCGC CTGAGACAGG GGGGTCTGTA TTGTTATTGC TACCAAAACA  
       1251 AGAAAACCTT CTTTGAGTC AAATTGAGGT GCTGGCTACA AGGTATCTCA  
       1301 AAGATACCTT CGTGAGAAC TCAGAATGGA CGGGCTCTT CGAGATGATG  
       1351 TTTTCTTATA ACGAGATGTG TAAGGAGATC TCCGAAGGAA GGATTCGTTT  
       1401 TGCTGAAGAC TATGAAACGA GGCATTCCGA AGAATTCCCT CCTTCCCCTC  
       1451 TCTCTGAAGA AGGAGAGGGC GAAGAATTCC TTCCCTCCTG CTCTGAAGAA  
       1501 GAGGTTTCGG TTCTTGAGCG CCCAGATCTA GATGTAGACT CTATGTGGGT  
       1551 CTGGCATCCCG CCGGTCCCTA AGGGACCTCT TTAA

55

-161-

5           501 TTCTGGCAA AGATTTGCCA AGTGTGATAGG GGCCAATATA CTCGTTTATA  
       551 ACTACCCCCG AGTCATGTCC AGCACAGGG GCAGCAGCCT AAAGGACCTA  
       601 GCATCAGCTC ATAATATTG TACAAGATAC CTTAAAGATA AAGAACAGGG  
       651 CCCCTGGAGCA AAAGAAAATCA TTACCTATGG GTACTCCCTA GGAGGTTTGA  
       701 TACAAGCAGA AGCATTGCGA GACCAGAAGA TTGTTGCAAA CGATGATACT  
       751 ACTTGGATAG CAGTCAAAGA TAGGTGTCCT CTCTTTATAT CTCCAGAAGG  
       801 TTTCCACAGT TGCAGACGCA TAGGAAAGCT AGTAGCTCGT CTTTTTGGCT  
       851 GGGGGACCAA AGCCGTAGAG AGAACGCAAG ACCTTCCCTG CCTAGAAAATT  
       901 TTTCTCTATC CTACGGATTC CTTACGAAGA TCAACAGTCA GACAGAACAA  
       951 GCTCTTAGCA CCTGAACCTA CTCTCGCTCA TGCGATAAAA AATAGTCCCT  
 10           1001 ATGTTCAAAA TAAAGAATT ATAGAAGTAC GATTATCGTC TGATATCGAT  
       1051 CCCATCGACA GCAAAACAAG AGTGGCTCTT GCCACACCAA TTTTGAAAAAA  
       1101 GCTCTCTTAG

The PSORT algorithm predicts inner membrane (0.4545).

- 15          The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 138A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 138B) and for FACS analysis.

These experiments show that cp7251 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

## 20          Example 139

The following *C.pneumoniae* protein (PID 4377288) was expressed <SEQ ID 277; cp7288>:

25           1 MHMSNPISLF SPAELIAKYN LIPKTSPIPP RRTELIILEE NACQTRLTNV  
       51 AQVLHPSSLF SMSKKILNPC GCSGGPLCWV ILNLILAFIT SVLFILLPV  
       101 NLIVAGLRLF MPLPPKKIVE DLSEPTTEET NEVIQPFI A LQALLFEDNK  
       151 LRSFKIVEQS VGKAPLPNPF LNRLVAISPQ ESQEAMRKIP DLCSQLKKVL  
       201 KSLGVLTPEW KHMLKYFEGL KNEHDSNPDK KTFPILIKLL IEALTGKSSL  
       251 PKTPSTKEKM QAALFIASSC KTCKPTWGEV ITRSLNRLLS IANEGDNQLL  
       301 IWVQEKFERE LMSIQDGDDA EEEYRFAAQHQH GERYTAIEQ VLRNESAAKL  
       351 QWHVINTMKF FHGKNLGLVT EHLQDTLGL TLRQTTVDTH QGREDAADLSA  
 30           401 ALFLNKYLNS GNQLVNSVFK SMQKADPETK ALIREFALDI LYASLRLPQT  
       451 SAHTEVFSTL LMDPETYEPM KACIAYLLYV LKIEL\*

The cp7288 nucleotide sequence <SEQ ID 278> is:

35           1 ATGCATATGT CTAACCCCAT CTCTTTGTTT TCCCCTGCAG AGTTAATAGC  
       51 AAAGTACAAT TTAATTCCAA AAACCTCGCC GATTTATCCT CGGAGGACGG  
       101 AACTTATTAT CTTGGAAGAA AATGCGTGTG AAACACGCT AACCAAACGTG  
       151 GCTCAGGTCC TACATCCCTC TAGCCTATTG AGTATGTCAA AAAAATACT  
       201 GAATCCCTG GGGTGCTCTG GTGGTCCCTT ATGTTGGGTG ATTCTCAACA  
       251 TCCTAGCATT TATTATTACT TCAGTACTGT TTATCATCT TTTACCGGTG  
       301 AATCTCATCG TAGCAGGTCT TCGTCTCTC ATGCCCTCTC CCCCTAAAAA  
       351 AATCGTAGAG GATTTAAGTG AACCTACTAC TGAAGAAACG AATGAGGTCA  
       401 TTCAACCCCTT CATTTCGCT TTGCAAGCGT TGCTTTTGA GGATAACAAA  
       451 CTTCGCTCTT TTAAAATTGT TGAACAAAGT GTAGGCAAAG CACCCCTTACC  
       501 TAATCCCTTT TTAAATAGAC TAGTAGCAAT TTCGCCGCAA GAAAGCCAAG  
       551 AAGCCATGCG GAAGATTCCG GATCTATGCT CACAAGTAA AAAAGTATTA  
       601 AAGTCTCTAG GCGTGCTAAC TCCAGAAATGG AAGCACATGC TGAAGTACTT  
       651 TGAGGGACTG AAAAACGAAAC ATGATAGTAA TCCTGATAAA AAGACGTTCC  
       701 CAATATTGAT CAAGCTCCTC ATAGAAGCTC TTACTGGAAA GTCCTCTTAA  
       751 CCCAAAATC CTAGTACAAA GGAAAAAATG CAAGCGGCCT TATTTATTGCA  
       801 AAGTTCTTGC AAGACTTGTG AGCCGACTTG GGGAGAAGTC ATAACCAGAT  
       851 CTCTTAACAG ACTCTATAGT ATAGCTAATG AAGGAGACAA TCAGCTTCTG  
       901 ATTTGGGTTT AAGAGTTAA AGAACGAGAG CTGATGTCCA TCCAAGATGG  
       951 TGATGATGCT GAAGAGTATC GGTGTCGGC TCAGCAACAC GGTGAGCGTT  
 50           1001 ACACAGAGGC AATAGAACAA GTTCTACGAA ACGAGTCAGC AGCCAAACTA  
       1051 CAATGGCATG TGATCAACAC TATGAAATTG TTCCATGGGA AAAATCTCGG  
       1101 TCTAGTTACA GAACACCTAC AAGATACTCT CGGCGCCCTA ACTTTACGTC  
       1151 AAACTACAGT GGACACACAT CAAGGCAGAG AAGACGCTGA TTTGTCAGCT  
       1201 GCTCTTTTCC TAAATAAGTA TTAAATTCT GGAAATCAAC TTGTTAATAG

**Example 142**

The following *C.pneumoniae* protein (PID 4377377) was expressed <SEQ ID 283; cp7377>:

```

5      1 MREETVSWSL EDIREIYHTP VFELIHKANA ILRSNFLHSE LQTCYLISIK
      51 TGGCVEDCAY CAQSSRYHTH VTPPEPMMKIV DVVERAKRAV ELGATRVCLG
     101 AAWRNAKDDR YFDRVLAMVK SITDLGAEV C CALGMLSEEQ AKKLYDAGLY
     151 AYNHNLDSSP EFYETIITTR SYEDRLNLLD VVNKGSGISTC CGGIVGMGES
     201 EEDRIKLLHV LATRDHIPES VPVNLLWPID GTPLODQPPI SFWEVLRTIA
     251 TARVVFPNSM VRLAAGRAFL TVEQQTLCFL AGANSIFYGD KLLTVENNDI
     301 DEDAEMIKLL GLIPRPSFGI ERGNPCYANN S*

```

10 The cp7377 nucleotide sequence <SEQ ID 284> is:

```

1      1 ATGCGTGAAG AAACTGTATC CTGGTCATTA GAAGACATCC GCGAAATTIA
      51 TCACACTCCC GTATTTGAGC TGATTCAAA AGCCAATGCC ATATTGCGTA
     101 GTAATTTCTT CCATTCAGAA CTGCAGACTT GCTATCTGAT TTGATTAAA
     151 ACTGGTGGAT GCGTTGAAGA TTGCGCCTAC TGTGCCAAT CTTCCGCTA
     201 TCATACCCAC GTCACACCAG AACCTATGAT GAAAATTGTA GACGTTGTGG
     251 AAAGGGCAAA ACGTGCTGTA GAGCTAGGCG CCACTCGTGT GTGCTTGGG
     301 GCTGCCTGGC GCAATGCTAA GGACGATCGA TACTTTGATA GAGTCCTCGC
     351 TATGGTGAAGA AGTATCACAG ATCTCGGAGC CGAGGTTGTG TGTGCTTAG
     401 GCATGCTCTC CGAAGAGCAA GCTAAAAAAC TGTATGATGC AGGACTTTAT
     451 GCCTACAATC ATAATTAGA CTCTTCTCCG GAATTCTATG AACTATAAT
     501 CACAACACGT TCTTATGAAAG ATGCCCTCAA CACTCTTGAT GTAGTAAATA
     551 AATCTGGCAT TAGTACATGC TGCGGTGGTA TTGTAGGTAT GGGAGAATCT
     601 GAAGAAGACC GTATAAAGCT TCTTCATGTT CTTGCAACAA GAGATCATAT
     651 CCCAGAATCC GTACCTGTA ATTACTTTG GCGGATTGAC GGCACGCCCTT
     701 TGCAAGACCA GCCTCCGATT TCTTCTGGG AAGTCTTGC AACCATAGCA
     751 ACGGCACGGG TTGTTTCCC CAGATCCATG GTACGACTTG CTGCAGGACG
     801 CGCTTTCCCTC ACAGTAGAAC AACAAACCTT ATGTTTCTA GCCGGTGCCA
     851 ACTCCATATT CTATGGAGAT AAACCTGTTGA CTGTAGAAAA CAATGATATA
     901 GATGAAGATG CTGAAATGAT CAAACTTTA GGCTTAATCC CTCGCCCTTC
     951 ATTGGAATA GAAAGAGGTA ACCCATGTTA TGCCAACAAAT TCCTAA

```

The PSORT algorithm predicts cytoplasm (0.2926).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 142A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 142B) and for FACS analysis.

35 These experiments show that cp7377 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

**Example 143**

The following *C.pneumoniae* protein (PID 4377407) was expressed <SEQ ID 285; cp7407>:

```

40     1 MVCNNNSWFR MCGNFNCEWV EVTTTEETTR QSASDISEEA GSSGGAAPIT
      51 TQPTKITKVE KRVQFNNTAQG DESTIHMIE AGEVLDLSILS HRRTQGCTEY
     101 CYDSYATGCG QRCGSFGR LI CGTYKACCLD REDNQVAGLV HECEQTHGPI
     151 AVALAAKTMG LNLMELVEKN TILSEEQKNE FRQHCSEAKT QLYGTMQSLS
     201 QNFFLEGVNS IRERGLDDSL VQAVLFSIAT RSWEKTISE EASGTSSASN
     251 STRIPACYIL NTSPLTTSR SCGRSDARRP SSVGAEPOYV AKKYNDNGMA
     301 RQLGKIQVTN LKTGDFSA LG PFGLLLIVKML NSFLLSASQS TSSILKHTGG
     351 EICYTCPNFR DIVVLLMLAI GYCPANTDET SVVDIHMIDD PIMTIFYRLQ
     401 YSYRTGKTS A SFLKKKPSLV RQESLDCPTP AESVPLMSSL EEEDENEDDD
     451 EDGNLAYQQR ILECSGHLQT LFLGIKINKE *

```

The cp7407 nucleotide sequence <SEQ ID 286> is:

```

50     1 ATGGTTTGCC CAAATAATC TTGGTTCAAGA ATGTGTGGAA ATTTCAACTG
      51 CGAATGGTT GAAGTAACAA CAACAGAAGA AACAAACGCGG CAATCGGCTT
     101 CAGATATAAG CGAAGAAAGCT GGTCGAGTG GAGGAGCTGC TCCTATAACT
     151 ACGCAACCTA CTAAAATTAC AAAAGTAGAG AAACGTGTCC AATTAAATAC

```

The PSORT algorithm predicts inner membrane (0.7453).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 140A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 140B) and for FACS analysis.

- 5 These experiments show that cp7359 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 141

The following *C.pneumoniae* protein (PID 4377374) was expressed <SEQ ID 281; cp7374>:

```

10      1 MDKQSSGNSG CIWHPFTQSA LDSTPIKIVR GEGAYLYAES GTRYLDAISS
      51 WWCNLHGHGH PYITKKLCEQ AQKLEHVIFA NFTHEPALEL VSKLAPLLPE
     101 GLERFFFSDN GSTSIEIAMK IAVQYYNNQN KAKSHFVGLS NAYHGDTFGA
     151 MSIAGTSPTT VPFDLFLPS STIAAPYYGK EELAIAQAKT VFSESNIAAF
     201 IYEPLLQGAG GMLMYNPEGI KEILKLAKHY GVLCIADEIL TGFGRGPLF
     251 ASEFTDIPPD IIICLSKGLTG GYLPLALTWT TKEIHDAFVS QDRMKALLHG
     301 HTFTGNPLGC SAALASLDLT LSPECLQQQRQ MIERCHQEFO EAH GSLWQRC
     351 EVLGTVLAID YPAEATGYFS QYRDHLNRFF LERGVLLRPL GNTLYVLPPY
     401 CIQEEDLRII YSHLQDALCL QPQ*

```

The cp7374 nucleotide sequence <SEQ ID 282> is:

```

20      1 ATGGACAAGC AATCATCAGG GAATTCAAGGG TGTATCTGGC ACCCCTTCAC
      51 TCAATCTGCA TTAGATTCTA CACCCATAAA GATTGTAAGG GGAGAAGGTG
     101 CTTACCTCTA TGCGGAATCA GGAACAAGAT ATCTTGATGC GATATCTTCA
     151 TGGTGGTGC ACCTCCACGG TCATGGGCAT CCCTACATTA CAAAAAAATT
     201 ATGTGAGCAA GCACAGAACT TAGAACATGT GATCTTCGCA AATTTCACCC
     251 ATGAACCGGC TCTAGAGCTC GTATCGAAAC TCGCTCCCT CCTTCCTGAA
     301 GGTCTAGAAC GTTTCTTTT CTCTGACAAC GGATCAACGT CTATCGAAAT
     351 AGCAATGAAA ATTGCTGTGC AATATTACTA CAATCAAAAC AAGGCTAAGA
     401 GCCATTTTGT TGGACTCAGC AATGCCATTC ACGGAGATAC ATTTGGAGCT
     451 ATGTCGATAG CTGGCACGAG CCCTACTACA GTTCCCTTTC ATGATCTTTT
     501 TCTTCCTTCC AGTACAATTG CTGCTCCCTA TTATGGCAAG GAAGAGCTTG
     551 CCATTGCCCA AGCAAAACAA GTCTTTCTG AAAGCAATAT CGCAGCGTTT
     601 ATCTATGAGC CGCTTATGCA AGGTGCTGGA GGGATGTAA TGTATAATCC
     651 CGAAGGCCCTA AAGGAGATTC TCAAGCTTGC CAAGCATCAC GGGGTTCTCT
     701 GTATTGCTGA TGAAATCTT ACTGGCTTTG GCGGTACGGG TCCACTGTTT
     751 GCTTCTGAAT TTACAGACAT TCCTCCTGAC ATTATCTGTC TTTCTAAAGG
     801 TCTTACAGGA GGCTATCTCC CTCTAGCCTT GACAGTAACC ACTAAAGAAA
     851 TTCATGATGC CTTTGTCTCC CAAGATCGGA TGAAGGCCT GCTTCATGGC
     901 CATACTTCA CAGGAATCC TTTAGGCTGT AGTGTGCC CTCGCTTCTTT
     951 GGATCTCACC CTATCTCCAG AATGCCATCA ACAAAAGGCAA ATGATAGAAC
    1001 GGTGTCTACA AGAGTTCAA GAAGCTCATG GTTCCCTATG GCAACGGTGT
    1051 GAGGTTCTGG GCACGGTACT CGCTCTAGAT TACCCCTGCAG AAGCTACAGG
    1101 ATATTTTCTA CAATATAGAG ACCATCTCAA TCGCTTTTTC TTAGAACGTG
    1151 GAGTCCTTCTC TCGTCCTTAA GGGAACACAC TGTATGTGCT GCCCCCCTAC
    1201 TGTATCCAAG AAGAAGATCT CCGGATTATT TATTCTCACC TACAGGATGC
    1251 CCTATGTCTA CAACACAGT AA

```

- 45 The PSORT algorithm predicts cytoplasm (0.2930).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 141A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 141B) and for FACS analysis.

- These experiments show that cp7374 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

These experiments show that cp6432 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 145

The following *C.pneumoniae* protein (PID 4376433) was expressed <SEQ ID 289; cp6433>:

```

5   1 MNWVPKTIDH VDPESEIDIR KVVSCYKLIK ECQPEFRSLI SELLGVIRCG
    51 LRLLKRSKYQ EQARTVSDED APLFCLTRSY YQDGYLTPLR AGPRDLINHY
   101 IHLRRRENPK HFFSPKHPCY YARLAFNESV CVYRELFDIE RLTKMYVEGD
   151 YSKEQEKNLQ AILSFVKTLG EGKDFLIEHK DTDLIGRGFT DVFCT*

```

The cp6433 nucleotide sequence <SEQ ID 290> is:

```

10  1 ATGAATTGGG TTCCAAAAAC AATAGACCAT GTAGATCCAG AATCAGAGAT
    51 AGATATACTG AAAGTCGCT CCTGCTATAA GTTGATAAAA GAATGTCAAC
   101 CTGAATTTCG ATCTCTTATA AGTGAATTAC TAGGAGTGAT TCGGTGTGGC
   151 TTAAGACTAT TAAACGTTA TAAGTATCAA GAACAGGCTA GAACTGTATC
   201 TGATGAAGAT GCACCTCTTT TCTGCCTGAC TCGTTCTTAT TATCAAGATG
   251 GTTATCTCAC GCCATTAAGA GCAGGACCTC GTGATCTTAT AAATCACTAT
   301 ATACACTTGC GTCGCCGAGA GAATCCTAAG CATTTCCTCA GTCCTAAGCA
   351 TCCATGTTAT TATGCTCGAT TGGCTTTAA TGAGTCAGTG TGTGTCTATA
   401 GAGAACTCTT TGATATAGAG CGACTTACAA AAATGTATGT CGAGGGTGAT
   451 TATTCTAAAG ACAAAGAGAA AACCTACAG GCTATTCTTA GTTTGTGAA
   501 AACTCTAGAT GAAGGAAAGG ACTTTCTTAT TGAACATAAA GATACCGATC
   551 TCATTGGGAG AGGTTTACT GATGTGTTCT GCACTTAA

```

The PSORT algorithm predicts cytoplasm (0.4068).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 145A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 145B) and for FACS analysis.

These experiments show that cp6433 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 146

The following *C.pneumoniae* protein (PID 4376643) was expressed <SEQ ID 291; cp6643>:

```

30  1 MGYLPVSATD VLFESPAAPL INSANTQNQK LIELKGKQQA ESSPRTITSV
    51 ILEVLLVIGC CLIVLSSLAI RPALQFTLET GHPAIAVLA VSGTILLVAV
   101 IIIFCFCLAIV PFAAKKTYKY VKTVDDYASW HSHQQPTPLG TIFSGIVYAE
   151 SQAQL*

```

The cp6643 nucleotide sequence <SEQ ID 292> is:

```

35  1 ATGGGATATC TTCCAGTATC TGCTACGGAC GTTCTTTTG AAAGTCCAGC
    51 CGCTCCCTTA ATCAATAGCG CAAACACACA AAATCAGAAA CTCATAGAAC
   101 TCAAGGGGAA GCAGCAAGCT GAGTCTCTC CACGGACAAT CACTTCTGTC
   151 ATATTGGAAG TTCTCCTAGT GATCGGATGC TGCCCTCATAG TTCTTAGTTT
   201 ATTGGCAATC CGCCCTGCTC TGCAATTACAC TCTAGAAACT GGACATCCAG
   251 CTGCCATTGC AGTCCTTGCT GTCTCAGGAA CAATTCTATT GGTGGCTGTT
   301 ATCATCTTGT TTTGCTTCT AGCAGCTGTG CCATTCGCTG CTAAGAAAAC
   351 TTATAAAATAT GTTAAGACGG TTGATGACTA TGCTTCTTGG CATTCTCATC
   401 AGCAAACACC GACCCTAGGC ACTATCTTTT CAGGTATCGT CTATGCAGAA
   451 TCCCAGGCAGC AATTATAG

```

45 The PSORT algorithm predicts inner membrane (0.6859).

5  
10  
15  
20  
25

```

201 TGCTCAAGGT GATGAAAGTA CAATACACAT GATCCAAGAA GCAGGAGAAT
251 TGGTAGACTC CATTCTATCA CATAGACGAA CGCAAGGATG TACAGAGTAT
301 TGTTATGACA GTTACGCAAC TGGATGTGGT CAGCGTTGCG GATCTTTGG
351 AAGACTCATT TGTGGAACGT ATAAAGCGTG TTGCTTAGAC AGAGAGGATA
401 ATCAGGTTGC TGGACTTGT CATGAATGCG AACAGACCCA TGGTCCATT
451 GCCGTTGCTT TAGCTGCTAA AACTATGGC CTCAACTTAA TGGAACTTGT
501 AGAAAAAAAC ACTATTITGT CTGAAGAACAA GAAAAATGAA TTTAGACAGC
551 ATTGCTCGGA AGCTAAAACC CAACTCTATG GAACGATGCA GAGCCTTTCT
601 CAAAACCTTT TCCTTGAAGG AGTCAACAGC ATTAGAGAAC GCGGTCTAGA
651 CGATTCACTA GTCCAAGCCG TGCTAAGCTT TATTGCTACA AGGTCTTGGG
701 AAAAATCAT AGAATCAGAC GAAGCCTCAG GAACATCTTC TGCTCTAAT
751 TCTACACGCA TTCCCTGCGT CTATATCTTA AATACGAGCC CCTTAACGAC
801 GTCACGCCA TCCTGTGGAT CAAGAGATGC GCGACGCCA TCTTCAGTCG
851 GTGCAGAGCC CCAGTACGTA GCAAAAAAAT ACAATGACAA TGGCATGGCC
901 AGACAATTAG GAAAAATCCA AGTCACCAAT CTAAAAACAG GAGATTTTC
951 AGCTTTAGGT CCTTTGGTC TCCTGATTGT GAAAATGCTG AATAGCTTTC
1001 TCTTATCTGC ATCACAAAGC ACATCTCTA TTCTAAAGCA CACAGGTGGA
1051 GAAATATGTT ATACGTGCCA AAATTITCGT GATATGCTG TTTTATTGAT
1101 GTTAGCGATT GGCTATTGCC CTGCAAATAC CGATGAGACA TCTGTCGTAG
1151 ATATAACACAT GATAGATGAT CCGATTATGA CCATCTCTA TCGACTACAA
1201 TACAGCTATA GAACAGGGAA AACTTCAGCA TCGTTTTAA AAAAGAAACC
1251 CTCATTAGTA AGACAGGGAA GTCTTGATTG TCCTACCCCT GCAGAATCTG
1301 TCCCTCTCAT GTCAAGTCTC GAAGAAGAAG ATGAAAATGA AGATGATGAT
1351 GAGGATGGGA ATTTGGCGTA TCAACAGCGT ATCCTTGAAT GCTCGGGTCA
1401 TTACAAACT CTATTTTAG GGATAAAAAT AAACAAAGAA TAA

```

The PSORT algorithm predicts inner membrane (0.1319).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 143A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 143B) and for FACS analysis.

30 These experiments show that cp7407 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone:

#### Example 144

The following *C.pneumoniae* protein (PID 4376432) was expressed <SEQ ID 287; cp6432>:

35  
51  
101  
151

```

1 MTRSTIESSD SLCSRFSQK LSVQTLKNLC ESRLMKITSV VIAFLTLIVG
51 GALIALAGGG VLSFPLGLIL GSVLVLFSSI YLVSCCKFT LKEMTMTCV
101 KSKINIWFKEK QRNKDIKCAL ENPDLFGENK RNVGNRSARN QLEMILHETD
151 GIILKRYMKG AKMYFYL*

```

The cp6432 nucleotide sequence <SEQ ID 288> is:

40  
45  
50

```

1 ATGACTAGAA GTACTATTGA AAGCAGTGAT TCGCTATGCT CAAGGTCTTT
51 TTCTCAAAAAA TTAAGTGTCC AGACATTAAA AAATCTCTGT GAAAGTAGAT
101 TAATGAAGAT CACTTCTCTT GTGATTGCTT TCCTAACTCT AATTGTTGGGG
151 GGTGCTCTTA TAGCTTTAGC AGGAGGGGGG GTTCTTTCTT TCCCTCTTGG
201 GCTAATCTTA GGAAGCGTAC TCGTTTGTT TTCTCTATC TATTTAGTCT
251 CTTGTTGTAATTTTACT TTAAAAGAGA TGACAATGAC CTGTAGTGTC
301 AAATCTAAAAA TCAATATATG GTTGAAAAG CAACGAAACA AAGACATCGA
351 AAAGGCATTA GAGAATCCAG ATCTCTTTGG AGAAAATAAG AGAAAATGTTG
401 GAAATCGTTC GGCAAGAAAT CAACTAGAAA TGATCTTACA CGAGACTGAC
451 GGAATTATTT TGAAAAGATA TATGAAAGGA GCTAAAATGT ACTTTTATTT
501 ATGA

```

50 The PSORT algorithm predicts inner membrane (0.5394).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 144A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 144B) and for FACS analysis.

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 148A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 148B) and for FACS analysis.

These experiments show that cp7253 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 149

The following *C.pneumoniae* protein (PID 4376264) was expressed <SEQ ID 297; cp6264>:

|    |                                                                  |
|----|------------------------------------------------------------------|
| 10 | 1    VISGLLFLLV RREVPTVRSE EIPRGVSVT P SEEPALEKAQ KEPETKKILD     |
|    | 51    RLPKELDQLD TYIQEVFA CL ERLKDPKYED RGLLTEAKEK LRVFDVVEKD    |
|    | 101    MMSEFLDIQR VLNEEAYYVE HCQDPLENIA YEIFSSQELR DYYCAGVCGY    |
|    | 151    LPSGDARAD R LKRSVKEVMD RFMRVTWKS W EASVMLDH SY GVARELFKKA |
|    | 201    VGVL EESV YK ILFKSYRDAF YECEKAKIQR DGRFKWL*               |

The cp6264 nucleotide sequence <SEQ ID 298> is:

|    |                                                                 |
|----|-----------------------------------------------------------------|
| 15 | 1    GTGATTTCCGG GACTTCTATT CCTTCTAGTA AGACGAGAGG TTCCGACAGT    |
|    | 51    ACGTTCA GAGAG AAAATTCCCA GAGGGGTTTC TGTGACCCCT TCTGAAGAGC |
|    | 101    CTGCTCTAGA GAAGGC TCAA AAAGAACCGG AGACAAAGAA AATTTAGAT   |
|    | 151    CGGTTGCCGA AGGAATTGGA TCAGTTAGAT ACGTATATTC AGGAAGTGTT   |
|    | 201    TGCATGTTA GAGAGGCTGA AGGATCCTAA GTACGAAGAT CGAGGTCTTT    |
|    | 251    TAACAGAGGC GAAGGAGAAA CTTCGAGTT TGACGTTGT TGAGAAAGAT     |
|    | 301    ATGATGTCAG AGTTTTTAGA CATA CAAACGA GTGTTGAATG AGGAAGCATA |
|    | 351    TTATGTAGAA CATTGTCAG ATCCCCTAGA GAATATAGCC TACGAGATTT    |
|    | 401    TCTCTTCCCA AGAGCTTCGT GATTA CACT GTGCAGGGGT GTGTGGGTAT   |
|    | 451    TTGCCTTCTG GGGATGCTCG AGCGGATCGA TAAAGAGAT CAGTTAAGGA    |
|    | 501    GGTAAATGGAT CGCTTTATGA GGGTGACCTG GAAATCTTGG GAGGCATCAG  |
|    | 551    TCATGTTGG A TCATAGCTAT GGGGTAGCGC GAGAGTTATT CAAGAAGGCA  |
|    | 601    GTAGGAGTAC TAGAGGAGAG TGTCTATAAA ATTCTGTTA AGAGCTATAG    |
|    | 651    AGATGCGTTT TATGAATGTG AGAAGGCAA GATCCAGAGG GATGGCGTT     |
|    | 701    TCAAATGGTT ATAG                                          |

The PSORT algorithm predicts cytoplasm (0.2817).

30 The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 149A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 149B) and for FACS analysis.

These experiments show that cp6264 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 150

The following *C.pneumoniae* protein (PID 4376266) was expressed <SEQ ID 299; cp6266>:

|    |                                                                |
|----|----------------------------------------------------------------|
| 40 | 1    MLLLISGALF LTLCGIPGLSA AISFGLGIGL SALGGVLMIS GLLCLLVKRE   |
|    | 51    IPTVRPEEIP EGVSLAPSEE PALQAAQKTL AQLPKELDQL DTDIQEVFAC   |
|    | 101    LRKLKD SKYE SRSFLNDAKK ELRVFDVVE DTLSEIFELR QIVAQEGWDL  |
|    | 151    NFLINGGRSL MMTAESES LDFHVS KRLGY LPSGDV RGEG LKKSAKEIVA |
|    | 201    RLMSLHCEIH KVAVAFDRNS YAMA EKAFAK ALGALEESVY RSLTQSYRDK |
|    | 251    FLESERAKIP WNGHITWLRD DAKSGCAEKK LGMP RVGRN LGKQSFG*    |

The cp6266 nucleotide sequence <SEQ ID 300> is:

|    |                                                               |
|----|---------------------------------------------------------------|
| 45 | 1    ATGCTCTTAC TGATTTCA GG AGCTCTCTT CTGACGTTAG GGATTCCAGG   |
|    | 51    ATTGAGTGC A GCAATTCTT TTGGATTAGG CATCGGTCTC TCCCGCATTAG |
|    | 101    GAGGAGTGCT GATGATTTCG GGACTACTAT GTCTTTAGT AAAACGAGAG  |
|    | 151    ATTCCGACAG TACGACCAGA AGAAATTCCCT GAAGGGTTT CGCTGGCTCC |

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 146A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 146B) and for FACS analysis.

These experiments show that cp6643 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### Example 147

The following *C.pneumoniae* protein (PID 4376722) was expressed <SEQ ID 293; cp6722>:

|    |                                                              |
|----|--------------------------------------------------------------|
| 10 | 1   VSSTLNGVFP SSLPEESADL FITNKEIVAL GEKGNVFLTH SIPMHIAAIT   |
|    | 51   ILVIVALAGI AIIICLGCVSQ SILLIAVGIV LTILTLCLQ ALVGFIKFIR  |
|    | 101   QLPQQLHTTV QFIREKIRPE SSLQLVTNAQ RKTTQDTLKL YEELCDLSQK |
|    | 151   EFKLQSTLYQ KRFELSHKNE KTNQN*                           |

The cp6722 nucleotide sequence <SEQ ID 294> is:

|    |                                                                |
|----|----------------------------------------------------------------|
| 15 | 1   GTGTCTAGTA CTTTAAACGG GGTATTTCCC TCATCCCTTC CGGAAGAGTC     |
|    | 51   TGCTGATTTA TTCATTACGA ATAAGGAGAT CGTAGCTTTG GGGGAGAAGG    |
|    | 101   GCAATGTTTT TCTCACCCAC TCCATTCCCTA TGCATATTGC TGCGATTACG  |
|    | 151   ATCTTAGTGA TTGTAGCTCT TGCTGGAATC GCTATTATCT GTTTGGTTG    |
|    | 201   CTATAGCCAA AGCATTCTGT TGATTGCCGT TGGCATTTGTT CTTACTATTT  |
|    | 251   TGACTCTTCT CTGCCTACAA GCCTTGGTAG GATTTATTAA ATTCACTCCGG  |
| 20 | 301   CAGCTCCCTC AGCAGCTCCA TACGACAGTA CAATTTATCA GGGAGAAGAT   |
|    | 351   TCGACCTGAA TCCTCTCTAC AGCTTGTAAC CAATGCCACAG AGAAAAAACCA |
|    | 401   CTCAAAGATAC GCTAAAGTTA TACGAAGAAC TCTGCGACCT CTCACAAAAAA |
|    | 451   GAGTTCAAAAC TCCAATCAAC TCTTATCAA AAACGTTTTG AGCTTCTCA    |
|    | 501   CAAGAATGAA AAGACAAATC AAAACTAG                           |

The PSORT algorithm predicts inner membrane (0.6668).

25 The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 147A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 147B) and for FACS analysis.

These experiments show that cp6722 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

#### 30 Example 148

The following *C.pneumoniae* protein (PID 4377253) was expressed <SEQ ID 295; cp7253>:

|    |                                                               |
|----|---------------------------------------------------------------|
| 35 | 1   MSELAPCSTG LQMVPHTQVH HALDTRRVIL TIAACLSLIA GIVLVGLGAA    |
|    | 51   AILPLSLFGVI GGMILILFSS IALIYLYKKK REVHQIALEP LPREMISKDQS |
|    | 101   IIDFVKTRDY ASLEKKATFA YTHHTHYDGS MVFYREIPRF MLGSYLALRK  |
|    | 151   DMDRQALF*                                               |

The cp7253 nucleotide sequence <SEQ ID 296> is:

|    |                                                              |
|----|--------------------------------------------------------------|
| 40 | 1   ATGAGCGAGC TCGCCCCCTG CTCGACAGGA TTGCAGATGG TCCCCCATAC   |
|    | 51   GCAGGTCCAT CATGCCCTTG ATACCGGGAG AGTCATTCTA ACGATAAGCCG |
|    | 101   CCTGTCTGTC TTTAATTGCA GGAATCGTGT TGGTTGGCTT AGGTGCTGCA |
|    | 151   GCAATCCTGC CCTCGCTTT TGGAGTCATT GGAGGAATGA TTCTTATTCT  |
|    | 201   GTTTTCTTCG ATGCCCTCA TTTATTTATA CAAGAAAGACA AGGGAGGTGG |
|    | 251   ATCAGATTGC TCTGGAGCCT CTTCTGAGA TGATTTCTAA AGATCAAAGC  |
|    | 301   ATTATAGATT TTGTAAGAC ACGAGACTAT GCATCTTTAG AAAAGAAAGC  |
| 45 | 351   GACCTTTGCT TATACTCATA CTCATTATTA CGATGGAAGC ATGGTCTTCT |
|    | 401   ATAGGGAGAT CCCTAGATTT ATGTTAGGCT CTTATCTCGC GCTTCGCAAA |
|    | 451   GACATGGACC GCCAAGCTCT TTTTGA                           |

The PSORT algorithm predicts inner membrane (0.5394).

The cp6282 nucleotide sequence <SEQ ID 304> is:

```

5   1 ATGTCCTTAT TGAACCTTCC CTCAAGCCAG GATTCTGCAT CTGAGGACTC
    51 CACATCGCAA TCTCAAATCT TCGATCCCCT TAGAAATCGG GAGTTAGTTT
    101 101 CTACTCCCAGA AGAAAAAGTC CGCCAAAGGT TGCTCTCCTT CCTAATGCAT
    151 151 AAGCTGAAC ACCCTAAAGAA ACTCATCATC ATAGAAAAG AACTCAAAAC
    201 201 TCTTTTCCT CTGCTTATGC GTAAAGGAAC CCTAATCCCA AAACGCCGCC
    251 251 CAGATATTCT CATCATCACT CCCCCCACAT ACACAGACGC ACAGGGAAAC
    301 301 ACTCACAACC TAGGCGACCC AAAACCCCTG CTACTTATCG AATGTAAGGC
    351 351 CTTAGCCGTA AACCAAATG CACTCAAACA ACTCCTTAGC TATAACTACT
    401 401 CTATCGGAGC CACCTGCATT GCTATGGCAG GGAAACACTC TCAAGTGTCA
    451 451 GCTCTCTTCA ATCCAAAAC ACAAACTCTT GATTTTTATC CTGGCCTCCC
    501 501 AGAGTATTCC CAACTCCTAA ACTACTTAT TTCTTTAAC TTATAG

```

The PSORT algorithm predicts cytoplasm (0.362).

The following *C.pneumoniae* protein (PID 4377373) was also expressed <SEQ ID 305; cp7373>:

```

15  1 MSTTTVKHFI HTASRWEVPL KEIVASNYWH AQWINTLSFL ENSGAKKISA
    51 SEHPTEVKEE VLKHAEEFRR HGHYLKTQIS RISETSLPDY TSKNLLGGGLL
    101 101 TKYYLHLLDL RTCRVLENEY SLSGQTLKTA AYILVTVYIE LRASELYPLY
    151 151 HDILKEAQSK ITVKSIIILEE QGHLQEMERE LKDLPHGEEL LGYACQFEGE
    201 201 LCLQFVERLE QMIFDPSSSTF TKF*

```

20 The cp7373 nucleotide sequence <SEQ ID 306> is:

```

1  1 ATGTCTACAA CCACAGTAAA ACACTTTATC CACACAGCCT CTCGTTGGGA
    51 GCCCGTTCTC AAAGAGATCG TAGCTTCCAA CTATTGGCAT GCACAATGGA
    101 101 TAAATACCCCT GTCCCTTTA GAAAATAGTG GAGCAAAAAA AATCTCCGCA
    151 151 AGTGAACATC CTACGGAGGT AAAGGAAGAA GTTTTAAAC ATGCTGCTGA
    201 201 AGAAATTCTCGT CATGGTCACT ATCTAAAAAC TCAGATTCT AGAATCTCAG
    251 251 AGACTTCTCT CCCTGACTAT ACATCTAAAA ATCTTCTGGG AGGCTTACTT
    301 301 ACAAAATATT ACCTCCATCT TCTAGATTAA AGGACGTGCC GAGTACTGGA
    351 351 AAATGAATAAC TCCCTATCGG GACAAACGTT AAAAATCGCA GCGTATATTT
    401 401 TAGTTACCTA CGCAATCGAA CTTCGTGCTT CTGAACCTTA TCCTCTGTAT
    451 451 CACGATATTC TGAAAGAAGC TCAAAGTAAA ATAACGGTAA AATCCATTAT
    501 501 CTTAGAAGAG CAAGGCCATC TGCAAGAGAT GGAACGTGAA CTTAAAGATC
    551 551 TCCCCCACGG GGAGGAACTC TTAGGCTATG CTTGCCAATT CGAAGGGGAG
    601 601 CTTTGCTTGC AGTTTGTAGA GAGATTAGAA CAAATGATCT TCGATCCTTC
    651 651 CTCGACTTTT ACAAAAGTTCT AG

```

35 The PSORT algorithm predicts cytoplasm (0.1069).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 152A; 6282 = lanes 8 & 9; 7373 = lanes 2-4). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 152B & 153) and for FACS analysis.

These experiments show that cp6282 & cp7373 are surface-exposed and immunoaccessible proteins 40 and that they are useful immunogens. These properties are not evident from the sequence alone.

Example 154 ,

Example 155 ,

Example 156 ,

Example 157 and

45 Example 158

The following *C.pneumoniae* protein (PID 4376412) was expressed <SEQ ID 307; cp6412>:

```

1  1 MSSSEVVVFQT VHGLGFGLS SKSVVPFKKS LSDAPRVVCS ILVLTGLGLA
    51 51 LVCGIAITCW CVPGVILMGG ICAIVLGAIS LALSLFWLWG LFSNCCGSKR
    101 101 VLPGEGLLRD KLLDGGFSRA APSGMGLPGD GSPrASTPSC LEELQAEIQA
    151 151 VTQAIIDQMSD D*

```

50 The cp6412 nucleotide sequence <SEQ ID 308> is:

201 TTCTGAGGAG CCAGCTCTAC AGGCAGCTCA GAAGACTTTA GCTCAGCTGC  
 251 CTAAGGAATT GGATCAGTTA GATACAGATA TTCAGGAAGT GTTCGCATGT  
 301 TTAAGAAAGC TGAAAGATTG TAAGTATGAA AGTCGAAGTT TTTTAAACGA  
 351 TGCTAAGAAG GAGCTTCGAG TTTTGACTT TGTGGTTGAG GATACCCCTCT  
 401 CGGAGATTTT CGAGTTGCGG CAGATTGTGG CTCAAGAGGG ATGGGATTAA  
 451 AACTTTTGA TCAATGGGG ACAGAACCTC ATGATGACTG CAGAATCTGA  
 501 ATCGCTTGAT TTGTTTCATG TATCGAAGCG GCTAGGGTAT TTACCTTCIG  
 551 GGGATGTTG AGGGGAGGGG TTAAAGAAAT CTGCGAAGGA GATAGTCGCT  
 601 CGTTTGATGA GCTTGCATTG CGAGATTCA C AAGGTGGCGG TAGCGTTTGA  
 651 TAGGAATTCC TATGCCATGG CAGAAAAGGC GTTTCGAAA GCGTTGGAG  
 701 CTTTAAAGA GAGTGTGTAT CGGAGTCTGA CGCAGAGTTA TAGAGATAAA  
 751 TTTTGGAGA GCGAGAGGGC AAAGATCCC TGGAAATGGC ATATAACCTG  
 801 GTTAAGAGAT GATGCGAAGA GTGGGTGTGC TGAAAAGAAG CTCGGGATGC  
 851 CGAGGAACGT TGGAAAGAAAT TTAGGAAAGC AGTCTTTGG GTAG

15 The PSORT algorithm predicts inner membrane (0.3590).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 150A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 150) and for FACS analysis.

These experiments show that cp6266 is a surface-exposed and immunoaccessible protein and that 20 they it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 151

The following *C.pneumoniae* protein (PID 4376895) was expressed <SEQ ID 301; cp6895>:

1 MKIKKSFQYS LCQAKRFQNM LPNHFDPCLQ PVNLQLKQDR LAYGELIILL  
 25 51 SKYQQKTFSS LLKEETCSLN RAKQHLLYKI LRDFNTMQHL RSLGLNGWGE  
 101 101 IPMSPCL\*

The cp6895 nucleotide sequence <SEQ ID 302> is:

1 ATGAAGATTA AAAATCTTT TCAATACAGT TTATGCCAAG CAAAGAGATT  
 51 TCAGAACATG CTGCCAAACC ACTTTGATCC ATGTTTGAG CCAGTGAATT  
 30 101 TACAACCAA ACAAGACAGA TTGGCATACTG GGGAGCTCAT CATATTGCTA  
 151 TCTAAATATC AACAAAAGAC CTTTCCCTCT TTGTTGAAGG AAGAAACATG  
 201 TTCTCTTAAT CGTGCAGAAGC AGCACTTATT GTATAAGATT TTGAGAGATT  
 251 TTAATACTAT GCAGCATCTA AGGTCCCTCG GATTAAATGG TTGGGGAGAG  
 301 ATCCCTATGA GTCCTTGCT CTAA

The PSORT algorithm predicts cytoplasm (0.3264).

35 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 151A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 151B) and for FACS analysis.

These experiments show that cp6895 is a surface-exposed and immunoaccessible protein and that it is a useful immunogen. These properties are not evident from the sequence alone.

40 **Example 152 and**  
**Example 153**

The following *C.pneumoniae* protein (PID 4376282) was expressed <SEQ ID 303; cp6282>:

1 MSLLNLPSQQ DSASEDSTSQ SQIFDPIRNR ELVSTPEEKV RQRLLSFLMH  
 25 51 KLNYPKKLII IEKELKTLFP LLMRKGTLP KRRPDILIIIT PPTYTDAQGN  
 101 101 THNLGDPKPL LLIECKALAV NQNALKQLLS YNYSIGATCI AMAGKHSQVS  
 151 151 ALFPNPKTQTL DFYPGLPEYS QLLNYFISLN L\*

The PSORT algorithm predicts inner membrane (0.5989).

The following *C.pneumoniae* protein (PID 4376654) was also expressed <SEQ ID 315; cp6654>:

```

5      1 MKTKMNSRKK AGQWAIFNSP TPVGSSTLVL AWTPWGYYDK DVQDILERKD
      51 PMSSSLSEKD SKEFLKNLFV DLLENGFTSV HIHAEEAFTP LDHTGKPHFK
     101 RDNVYLPGKL LGALNEAAVQ ANVSADTQFT LFLTQDECNP FHDKKRG*

```

The cp6654 nucleotide sequence <SEQ ID 316> is:

```

10     1 ATGAAAACTA AAATGAACTC TAGAAAAAAA GCAGGTCAAT GGGCAATT
      51 CAATTCTCCCA ACTCCTGGTG TCAGTTCAAC TTTAGTTTA GCATGGACTC
     101 CTTGGGGTTA TTACGACAAG GATGTACAAG ATATCTTAGA AAGAAAAGAT
     151 CCGATGAGCT CTTCGCTTC TGAAAAAGAC TCAAAGGAGT TCTTGAAAAAA
     201 TCTGTTTGTA GATCTCTTAG AAAATGGCTT CACATCAGTA CATATTCACG
     251 CAGAAGAACGC TTTCACTCCT CTTGATCATA CGGGAAACC TCACTTTAAA
     301 AGAGACAATG TGTACTTACCG CGGAAAGTTG TTAGGCGCTT TGAATGAGGC
     351 TGCAGGTACAA GCCAATGTAA GTGCGGATAC TCAATTACA TTGTTCCCTA
     401 CTCAGAGATGA GTGCAATCCT TTTCATGATA AGAAAAGAGG TTAA

```

The PSORT algorithm predicts cytoplasm (0.0730).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 154A; 6412 = lanes 2-3; 6431 = lanes 11-12; 6443 = lanes 5-6; 6496 = lanes 8-9; 6654 = lane 10; markers in lanes 1, 4, 7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 154B, 155, 156, 157 & 158) and for FACS analysis.

These experiments show that cp6412, cp6431, cp6443, cp6496 & cp6654 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from their sequences alone.

#### Example 159 and Example 160

The following *C.pneumoniae* protein (PID 4376477) was expressed <SEQ ID 317; cp6477>:

```

25     1 LLKFFLVCEE LCILTVATHR ALLETPLALS FFKELKTKYV YRAKDILQLH
      51 NYKGFTILNT SPLCS*

```

The cp6477 nucleotide sequence <SEQ ID 318> is:

```

30     1 TTGCTAAAGT TCTTTCTAGT ATGTGAAGAG TTATGTATAC TTACTGTTGC
      51 TACACATAGA GCTCTCTTAG AAAACTCCTTT AGCTCTATCA TTTTTTAAAG
     101 AACCTAAGAC AAAATATGTC TACAGGGCGA AAGACATACT ACAACTACAT
     151 AACTATAAAAG GATTACTAT CCTTAATACA TCACCGTTAT GTTCTTAA

```

The PSORT algorithm predicts inner membrane (0.128).

35 The following *C.pneumoniae* protein (PID 4376435) was also expressed <SEQ ID 319; cp6435>:

```

1      1 LWSHFPRGFF MLPFCPTILL AKPFLNSENY GLERLAATVD SYFDLGQSQI
      51 VFLSKQDQGI TVEELSAKDR KFKPGSMNCT LYTEDPILPA HNSFSNCSDI
     101 QMRTPISPIH *

```

The cp6435 nucleotide sequence <SEQ ID 320> is:

```

40     1 TTGTGGTCGG ATTCCCCAAG AGGATTTTT ATGCTCCCTT TTTGCCCTAC
      51 CATCCTCTT GCTAAACCTT TTTAAATAG CGAGAAATTAC GGCTTAGAAC
     101 GTTTAGCTGC AACCGTAGAT TCTTATTTG ATCTGGGACA GTCTCAAATA
     151 GTCTTCCTAA GCAAACAGGA TCAAGGAATC ACTGTGGAAG AATTGAGTGC
     201 TAAAGATAGG AAATTCAAGC CAGGCTCTAT GAACTGTACA CTGTACACTG
     251 AAGATCCTAT CTTACCTGCT CATAATTCTT TTAGTAATTG CTCTGATATT
     301 CAAATGCGTA CTCCGATTAG CCCTATACAT TAA

```

-171-

5  
1 ATGAGCAGTT CGGAAGTTGT TTTCCAGACA GTTCATGGCC TTGGCTTGG  
51 TGATTGTCT TCAAAAAGTG TTGTCCCTTT TAAGAAAAGT CTTTCGGATG  
101 CGCCCCGTGT TGTGTGCTCG ATTITAGTTTG TGACTCTGGG GTTGGGAGCG  
151 CTTGTTGTG GTATTGCAC TACTTGTGTTGG TGACTCTGGG GAGTTATTTT  
201 AATGGGGGGA ATTTGCCTA TAGTTTAGG TGCAATTCTT TTAGCTTTAA  
251 GTCTATTCTTG GTTGTGGGGT TTATTTCTA ATTGTGTTGG TTCTAAAGAGA  
301 GTTTTACCGG GTGAGGGATT GCTACGGGAT AAGCTTTAG ATGGTGGATT  
351 TTCAAGAGCG GCACCTTCAG GAATGGGACT TCCGGGTGAT GGATCTCCAA  
401 GAGCGTCAAC GCCATCTGCTAGAGAAC TTCAAGCAGA GATACAGGCA  
451 GTTACTCAAG CTATCGATCA GATGTCAGAT GATTGA

The PSORT algorithm predicts inner membrane (0.4864).

The following *C.pneumoniae* protein (PID 4376431) was also expressed <SEQ ID 309; cp6431>:

15  
1 LRAGGSLVTT YPKEGQRLRS PEQLRVLDDL VQSYPNHLHA IEILDCGAIPQ  
51 DLIGATYIIT FADFSTYIILS LRSYQANSPS DDTWGIWFGS IDDPVQAVIS  
101 FLKDHFGLP STLAQDPLLC TNK\*

The cp6431 nucleotide sequence <SEQ ID 310> is:

20  
1 TTGCGAGCAG GAGGTAGTCT TGTTACAACA TACCCTAAGG AAGGTAGAG  
51 ATTGCGCTCC CCAGAACAGT TAAGAGTTCT GGATGATTTA GTGCAAAGCT  
101 ATCCAATCA CCTACATGCG ATTGAACCTTG ATTGTGGTGC AATCCCTCAA  
151 GATTGATCG GAGCCACCTA TATCATCACG TTCGCGATT TTTCCACCTA  
201 TATTCTCTCT TTAAGAAGCT ACCAAGCCAA TTCTCCCTCC GATGATACAT  
251 GGGGGATTTG GTTTGGATCT ATTGACGATC CTGTTCAAGC AGTCATATCA  
301 TTTTAAAAG ATCATGGATT TGCTCTTCCC TCGACCTTAG CTCAAGATCC  
351 TTGCTTTGT ACTAACAAAGT AA

25 The PSORT algorithm predicts cytoplasm (0.2115).

The following *C.pneumoniae* protein (PID 4376443) was also expressed <SEQ ID 311; cp6443>:

30  
1 MIMTTISNSP SPALNPESL IPPPTLVSSG TQTSLAYTIP AQGRRSTLRI  
51 ILDIFIIILG LATIISTFIV IFFLNGLNLL STPSIISSSC LIIVGLLFLI  
101 MGLYFMISSL DQGLVGLLQK ELSQAEEREE EVIQEIEALR GAPRAESPTE  
151 SPSTWL\*

The cp6443 nucleotide sequence <SEQ ID 312> is:

35  
1 ATGATTATGA CTACTATATC TAACTCACCC TCCCCTGCAT TGAATCCGA  
51 ACTTTCCCTT ATTCCTCCAC CAACACTTGT ATCTTCAGGT ACGCAACAT  
101 CTCTAGCTTA TACGATCCCC GCACAAGGAC GAAGATCCAC CCTACGTATT  
151 ATATTAGATA TATTCTATT CATTCTTGGT TTAGCTACGA TCATTCTAC  
201 CTTTATTGTT ATTTCTTT TAAATGGGCT GAACCTTGCTC TCGACCCCCAT  
251 CTATTATCTC TTCGTCATGT TTAATCATTG TTGGATTGCT TTTTTTGATT  
301 ATGGGGTTAT ATTCATGAT CTCGAGTTTG GATCAGGGGC TTGTAGGCCT  
351 TCTGAAAAG GAACTCTCTC AAGCCGAAGA AAGAGAAGAA GAGTATATCC  
401 AGGAAATCGA AGCTTTAAGA GGAGCTCTA GAGCAGAATC TCCCACAGAG  
451 TCTCCTAGTA CCTGGTTATG A

The PSORT algorithm predicts inner membrane (0.5585).

The following *C.pneumoniae* protein (PID 4376496) was also expressed <SEQ ID 313; cp6496>:

45  
1 MLIGRYSSDD QFTEATKNTP TIKLGFRD NLEGLTNPIS EIVSETSSSI  
51 KDSVLRSLPI LGSILGCARL YSTLSTNDPL DETQEKIWHT IFGALETLGL  
101 GILILLFKII FVILHCFHL VIGFCK\*

The cp6496 nucleotide sequence <SEQ ID 314> is:

50  
1 ATGCTAATAG GCAGATACAG TAGTGATGAC CAATTCACTG AAGCAACAAA  
51 AACACACCCA ACCATAATTA AGCTAGGTT TGTTAGAGAT AATCTCGAGG  
101 GATTAACGAA CCCTATCTCT GAAATCGTCT CGGAAACCTC CTCTTCTATT  
151 AAAGATTCCG TTCTTCGCTC TCTTCTATT TTAGGGTCCA TTTTAGGATG  
201 CGCCCGACTT TACAGCACAC TCTCTACAAA TGATCCTCTT GACGAAACTC  
251 AAGAAAAGAT TTGGCACACT ATATTGAGG CCTTAGAAC CTTAGGCTTA  
301 GGGATTCTCA TCCTCTTATT TAAAAATTATT TTTGTTATAT TACACTGCAT  
351 ATTCATCTA GTTATTGGGT TCTGCAAATA A

-174-

5           1 MRPHRKHVSS KSLALKQSAS THVEITTKAF RLSMPLKQLI LEKSDHLPPM  
       51 ETIRVVLTSK KDKLGTEVHV VASHGKEILQ TKVHNANPYT AVINAFKKIR  
 101 TMANKHSNKR KDRTKHDLGL AAKERIAIQ EEQEDRLSNE WLPVEGLDAW  
 151 DSLKTLGYVP ASAKKKISKK KMSIRMLSQD EAIRQLESAA ENFLIFLNEQ  
 201 EHKGQCIYKK HDGNVVLIEP SLKPGFCI\*

The cp6881 nucleotide sequence <SEQ ID 326> is:

10           1 ATGAGACCTC ATCGTAAACA CGTATCATCT AAAAGCTTAG CTTTAAAGCA  
       51 ATCTGCATCA ACTCATGTAG AGATCACAAC AAAAGCCTTT CGTCTCTCTA  
 101 TCCCTCTAAA ACAGCTGATC CTAGAGAAAA GCGACCACCT CCCCCCTATG  
 151 GAAACAATCC GTGTGGTGCT AACCTCTCAT AAAGATAAGC TAGGCACCGA  
 201 GGTGCATGTT GTAGCTTCAT ATGGCAAAGA AATCCTTCAA ACTAAGGTTC  
 251 ATAACGCAAA CCCATACACT GCAGTGATCA ATGCTTTAA GAAAATCCGC  
 301 ACCATGGCAA ATAAGCACTC CAATAAACGT AAAGACAGGA CAAAACATGA  
 351 TCTAGGTCTT GCAGCAAAAG AAGAACGTAT CGCAATACAG GAAGAACAAAG  
 401 AAGATCGCCT TAGCAACGAG TGGCTTCCTG TCGAAGGCCT CGATGCCCTGG  
 451 GATTCTCTAA AAACCTTTGG GTATGTTCCC GCATCAGCGA AAAAGAAGAT  
 501 CTCCAAGAAA AAGATGAGCA TTCTGTATGCT ATCTCAAGAC GAGGCTATCC  
 551 GCCAGCTAGA GTCTGCCGCA GAAAACTTCC TGATCTTCTT GAACGAGCAA  
 601 GAGCATAAAA TCCAATGCAT TTATAAAAAA CATGACGGCA ACTATGTCCT  
 651 TATTGAACCT TCCCTCAAGC CAGGATTCTG CATCTGA

The PSORT algorithm predicts cytoplasm (0.249).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 161A; 6441= lanes 7-9; 6748 = lanes 2-3; 6881 = lanes 4-6). The recombinant protein was used to immunise mice, whose sera were used in Western blots (Figures 161B, 162 & 163) and for FACS analysis.

25 These experiments show that cp6441, cp6748 & cp6881 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

#### **Example 164 and**

#### **Example 165**

#### **Example 166**

The following *C.pneumoniae* protein (PID 4376444) was expressed <SEQ ID 327; cp6444>:

1   MEQPNCVIQD TTTVLYALNS FDPRLSDDTH RLGKQSPLEA ENALGEFIEG  
   51 LDTNSFPLEE VAIPILPGYH PKFYLSFIDR DDQGVHYEVN DGVFLKTVAA  
 101 CIIENSFLTD SMSPELLSEV KEALKR\*

35 The cp6444 nucleotide sequence <SEQ ID 328> is:

40           1 ATGGAGCAAC CCAATTGTGT GATTCAGGAT ACTACAAC TG TTTGTATGC  
       51 CTTAAATAGC TTTGATCCTA GACTTAGTGA TGACACTCAC AGACTTGGGA  
 101 AGCAATCACC TCTTGAGCA GAAAATGCTC TTGGAGAATT TATTGAAGGT  
 151 TTGGATACAA ATAGCTTCC TTTAGAGGAA GTTGCCATTC CCATCCTGCC  
 201 AGGTTATCAC CCTAAGTTTT ATTATATCTT CATAGATAGG GACGATCAAG  
 251 GTGTCCACTA TGAAGTTTA GATGGCGTAT TTTTAAAGAC AGTCGCTGCT  
 301 TGTATTATAG AGAACTCCCTT CTTAACTGAT TCTATGAGCC CGGAGCTTCT  
 351 CAGCGAAGTT AAGGAAGCTC TGAAACGATG A

The PSORT algorithm predicts cytoplasm (0.2031).

45 The following *C.pneumoniae* protein (PID 4376413) was also expressed <SEQ ID 329; cp6413>:

1   MAVQSIKEAV TSAATSVGCV NCSREAIPIAF NTEERATSIA RSVIAIIAV  
   51 VAISLLGLGL VVLAGCCPLG MAAGAITMLL GVALLAWAIL ITLRLNNIPK  
 101 AEIPSPGNNG EPNERNNSATP PLEGGVAGEA GRGGGSPLTQ LDLNSGAGS\*

The cp6413 nucleotide sequence <SEQ ID 330> is:

50           1 ATGGCTGTTA AATCTATAAA AGAAGCCGTA ACATCAGCCG CAACATCAGT

The PSORT algorithm predicts periplasmic space (0.4044).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 159A; 6435 = lanes 2-4; 6477 = lanes 5-7). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 159B & 160) and for FACS analysis.

- 5 These experiments show that cp6477 & cp6435 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequences alone.

**Example 161 and**

**Example 162 and**

**Example 163**

- 10 The following *C.pneumoniae* protein (PID 4376441) was expressed <SEQ ID 321; cp6441>:

```

1  VEAGANVLVI DTAHAHSKGV FQTGLEIKSQ FPQISLVVGN LVTAAAVSL
51 AEIGVDAVKV GIGPGSICTT RIVSGVGYPQ ITAITNVAKA LKNSAVTIA
101 DGRIRYSGDV VKALAAGADC VMLGSLLAGT DEAPGDIVSI DEKLFKRYRG
151 MGSLGAMKQG SADRYFQTQG QKKLVPGGVE GLVAYKGSVH DVLYQILGGI
201 RSGMGYVGAE TLKDLTKAS FVRITESGRA ESHIHNIYKV QPTLNY

```

The cp6441 nucleotide sequence <SEQ ID 322> is:

```

1  GTGGAAGCTG GAGCAAATGT TCTAGTCATT GACACAGCTC ATGCACACTC
51 TAAAGGAGTA TTCCAAACAG TTTTAGAAAT AAAATCCCAG TTCCCACAAA
101 TTTCTTTAGT TGTAGGGAAAT CTTGTTACAG CTGAAGCCGC AGTTTCCTTA
151 GCTGAGATTG GAGTTGACGC TGTAAGGTA GGTATTGGCC CAGGATCTAT
201 CTGTACAACCT AGAACATCGTT CAGGGGTCGG TTATCCACAA ATTACTGCCA
251 TTACAAACGT AGCAAAAGCT CTTAAAAACT CTGCCGTGAC TGTAATTGCT
301 GATGGGAGAA TCCGCTATTG TGGAGATGTG GTAAAAGCAT TAGCAGCAGG
351 ACCAGACTGT GTCATGCTAG GAAGTTTGCT TGCAGGGACT GATGAAGCTC
401 CTGGGGATAT CGTTTCTATC GATGAGAAC TTTTTAAAAG GTACCGCGGC
451 ATGGGATCTT TAGGCGCTAT GAAACAAGGA AGTGCTGACC GGTATTTCA
501 AACACAGGGGA CAGAAAAGC TGGTTCCCTGG GGGAGTTGAA GGACTAGTCG
551 CTTATAAAAGG CTCTGTCCAC GATGTCCTCT ATCAAATTTC AGGAGGAATA
601 CGCTCAGGTA TGGGGTATGT TGGAGCTGAA ACTCTCAAAG ATTTAAAAAC
651 TAAGGCTTCC TTTGTTGCAA TTACTGAATC TGGAAAGAGCT GAAAGTCATA
701 TTCATAATAT TTACAAAGTT CAACCAACCT TAAATTATTA A

```

The PSORT algorithm predicts bacterial inner membrane (0.132).

- The following *C.pneumoniae* protein (PID 4376748) was also expressed <SEQ ID 323; cp6748>:

```

1  LFSEGTLALNL FRIFAPLNRN VTTEYSRARQ PDLHRIAIVY IGVLDSESSK
51 ILERLISYMS CIYSESQMYL RFFMGKVNQ SAVLSKLHVE NLHIRCGFFS
101 EDAVPESEPF DLSIYVHTDR SCPLPTKKRS SSWELOQTVEL PESIYPQSEF
151 LLMRPRMLS*

```

The cp6748 nucleotide sequence <SEQ ID 324> is:

```

1  TTGTTCTCTG AGGGGACAGC TCTAAATTAA TTTCGTATAT TTGCTCCACT
51 ACGCAACCGT GTGACTACAG AATACAGTCG TGCTAGGCAA CCCGACCTAC
101 ATAGAATTGC CATCGTCTAT ATAGGAGTTC TCGATTCAAG AAGTTCCAAG
151 ATCCCTAGAGC GGCTAATCTC TTATATGAGT TGTATCTATT CTGAATGCCA
201 AATGTATTTA AGATTCTTAA TGGGAAGAA TGTAATCAA AGTGCCTGTAC
251 TCTCAAAATT ACATGTAGAA AATCTGCACA TCCGTTGTGG GTTTTCAGC
301 GAGGATGCTG TTCCAGAGAC TGAGCCCTTC GATCTCTCCA TCTACGTGCA
351 CACAGATCGT AGCTGTCTC TCCCTACGAA AAAACGGAGC AGCTCCTGGG
401 AACTCCAAAC TGTAGAACTC CCAGAGTCAA TATATCCACA GTCGGAATTG
451 CTATTGATGA GACCTCGAAT GCTTTCGTAG

```

The PSORT algorithm predicts cytoplasm (0.170).

- 50 The following *C.pneumoniae* protein (PID 4376881) was also expressed <SEQ ID 325; cp6881>:

5  
201 AACAGAGAAG ACCACGACCC GTCATTGGT GCTCTCTATT CGCCATAACG  
251 CCTCTCTTAT TGTAATTCTGT ACGGTTCCCTG GTTCAGCTTC TTGGATCGCT  
301 GCTTGTGTTAG ATCAAGGGCT CAAAGATGAA ATTCTTGAACT CTTTGGCAGG  
351 AGATGACACG ATTTTTGTCA CTCCATAGA TGAAGGGAGG CTCCCATTGT  
401 TGATGGTTTC GATTGCAAAT TTACTGCAAG TTTTCTTGAA TTAA

The PSORT algorithm predicts inner membrane (0.1510).

The following *C.pneumoniae* protein (PID 4376540) was also expressed <SEQ ID 335; cp6540>:

10  
1 MSQCQSSSTS TWEWMKSFVP NWKNPTPLS PIPSEDEFIL AYEPFVLPKT  
51 DPENAQANPP GTSTPNVENG IDDLNPLLQ PNEQNNANNP GTSGSNPTSL  
101 PAPERLPETE ENSQEEEQGS QNNEDLIG\*

The cp6540 nucleotide sequence <SEQ ID 336> is:

15  
1 ATGTCTCAAT GTCAGAGTAG CAGTACATCT ACCTGGGAAT GGATGAAATC  
51 TTTTGTGCCA AACTGGAAGA ATCCAACCTCC CCCCTTATCT CCTATACCTT  
101 CTGAGGACGA ATTTATATTA GCATACGAGC CATTGTTCT ACCGAAAACA  
151 GATCCAGAAA ACGCACAAAGC TAATCCTCCA GGCACATCTA CACCGAATGT  
201 AGAAAACGGG ATCGATGATC TCAACCCCTCT TCTGGGGCAA CCCAACGAAC  
251 AAAACAATGC CAACAATCCA GGAACCTCTG GATCTAATCC TACATCTCTA  
301 CCCGCCCCCG AACGACTCCC TGAAACTGAA GAGAACAGCC AAGAAGAAGA  
351 ACAAGGATCT CAAAATAATG AGGATCTTAT AGGATAA

20 The PSORT algorithm predicts cytoplasm (0.3086).

The following *C.pneumoniae* protein (PID 4376743) was also expressed <SEQ ID 337; cp6743>:

1 LREEGSVSFR EYFRAYMCDK IVAQKNFLFT LDRAVIKQAGW RSQEKLNLFY  
51 VESQALGREI KVSLEYYIQS MVGILGSQRT KKSFKFSVDF TPLEQALQER  
101 CSSDDDEDAT ATSTATGATA SPTDMHEDE\*

25 The cp6743 nucleotide sequence <SEQ ID 338> is:

30  
1 TTGAGAGAAG AAGGTAGTGT TTCTTTCAAGA GAATATTTCA GAGCCTATAT  
51 GTGTGATAAA ATCGTGGCAC AGAAGAACTT CTTATTTACT TTAGACGCTG  
101 TAATTAAACAA GGCCGGTTGG AGATCACAAG AGAAACTCAA TTTATTTAT  
151 GTTGAAAGTC AGGCTTTAGG AAGAGAAATC AAAGTCAGCT TAGAGGAATA  
201 TATTTCAGAGT ATGGTCGGGA TTTTGGGATC TCAGAGAACCC AAGAAAAGCT  
251 TTAAGTTTTTC TGTCGACTTT ACCCCCTTTAG AGCAGGCTCT ACAAGAAAGA  
301 TGCTCTCTG ATGATGACGA AGATGCAACA GCAACTTCGA CCGCTACAGG  
351 GGCAACAGCA TCTCCGACTG ACATGCACGA AGATGAGTAA

The PSORT algorithm predicts cytoplasm (0.2769).

35 The following *C.pneumoniae* protein (PID 4377041) was also expressed <SEQ ID 339; cp7041>:

40  
1 MLMMLMMIIG ITGGSGAGKT TLTQNIKEIF GEDVSVICQD NYYKDRSHYT  
51 PEERANLIWD HPDAFDNDLL ISDIKRLKNN EIVQAPVPDF VLGNRSKTEI  
101 ETIYPSKVIL VEGILVFENQ ELRDLMDIRI FVDTDADDERI LRRMYRDVQE  
151 QGDSVDCIMS RYLSMVKPMH EKFIIEPTRKY ADIIVHGNYR QNVVTNILSQ  
201 KIKNHLENAL ESDETYYMVN SK\*

The cp7041 nucleotide sequence <SEQ ID 340> is:

45  
1 ATGTTGATGA TGCTTATGAT GATTATTGGA ATTACAGGAG GTTCTGGAGC  
51 TGGGAAAACC ACCCTAACCC AAAACATTAA AGAAATTTC GGTGAGGATG  
101 TGAGTGTAT CTGCCAAGAT AATTATTACA AAGATAGATC TCATTATACT  
151 CCTGAAGAAC GTGCCAATT TATTGGGAT CATCCGGACG CCTTTGATAA  
201 TGACTTTATTA ATTTCAAGACA TAAAACGTCT AAAAATAAT GAGATTGTCC  
251 AAGCCCCAGT TTTTGATTTT GTTTAGGTA ATCGATCTAA AACGGAGATA  
301 GAAACGATCT ATCCATCTAA AGTTATTCTT GTTGAAGGTA TTCTGGTCTT  
351 TGAAGATCAA GAACCTAGAG ATCTTATGGA TATTAGGATC TTTGTAGACA  
401 CCGATGCTGA TGAAAGGATA CTACGCCGTA TGGTTCGAGA TGTTCAAGAA  
451 CAAGGAGATA CGCTGGACTG CATCATGTCT CGTTATCTT CTATGGTAAA  
501 GCCTATGCAT GAGAAATTAA TAGAGCCGAC TCGGAAATAT GCTGATATCA  
551 TTGTACATGG AAATTACCGA CAAAACGTAG TAACAAATAT TTTGTCACAG  
601 AAAATTAAAA ATCATTAGA GAATGCCCTG GAAAGCGATG AGACGTATTA  
651 TATGGTCAAC TCTAAGTAA

5           51 AGGATGTGTA AACTGTTCTA GAGAGGCTAT ACCAGCATT AATACAGAGG  
          101 AGAGAGCAAC GAGTATTGCT AGATCTGTTA TAGCAGCTAT CATTGCTGTT  
          151 GTAGCTATCT CCTTACTCGG ACTAGGTCTT GTAGTTCTTG CTGGTTGCTG  
          201 TCCTTTAGGA ATGGCTGCGG GTGCATAAAC AATGCTGCTG GGTGTAGCAT  
          251 TATTAGCTTG GGCAATACTG ATTACTTTGA GACTGCTAA TATAACCTAAG  
          301 GCTGAAATAC CGAGTCAGG GAACAACGGT GAGCCTAATG AAAGAAATTC  
          351 ACGAACTCCT CCTCTAGAGG GTGGTGTTGC AGGAGAACGCC GGTGCGGGCG  
          401 GGGGGTCACC TTTAACCCAA CTTGATCTCA ATTCAAGGGGC GGGAAAGTTAG

The PSORT algorithm predicts inner membrane (0.6180).

- 10         The following *C.pneumoniae* protein (PID 4377391) was also expressed <SEQ ID 331; cp7391>:

1         1 MMLRVIELPL LPIKQALEKA FVQYNSYKAK LTKVEPCFRE SPAYITSEER  
          51 LQSLDQTLER AYKEYQKRFQ EPSRLESEVS GCREHLREQV KQFETQQLDL  
          101 IKEELIFVSD VLFRKVMVSCL VSTVHVPFME FYYEYFELHR LRLRAQWMAN  
          151 AEIYSKVRKA FPEMLKETLE KAKAPREEEY WLCEERKS K EKRLILNKIE  
          201 AAQQRVKDLE PPPIKETGKQ KRKKEYSFFI RLKS\*

The cp7391 nucleotide sequence <SEQ ID 332> is:

20         1 ATGATGCTTC GTGTACATAGA GCTTCCACTA CTTCCTATAA AGCAAGCGTT  
          51 GGAGAAGGCT TTTGTACAAT ATAATAGCTA CAAAGCGAAG TTAACCAAGG  
          101 TAGAACCTTG CTTTAGAGAG AGCCCTGCCT ATATAACTAG CGAACAGCGA  
          151 CTCCAGAGTT TGGATCAGAC TTTAGAACGT GCGTACAAAG AGTACCCAGAA  
          201 GAGATTCCAG GAGCCTTCAC GTTTGGAATC GGAAGTAAGT GGATGTAGAG  
          251 AGCATCTTAG AGAGCAGGTA AAACAATTG AAACCTCAAGG ACTAGACTTG  
          301 ATCAAAGAAG AGCTTATTTT TGTTAGTGAT GTGTTATTCC GAAAATGGT  
          351 CAGTTGCTCA GTGTCGACAG TGCATGTTCC CTTTATGGAG TTTTATTATG  
          401 AGTATTTGAG TTGTCATAGA TTGAGGTTGC GGGCCCAATG GATGGCGAAT  
          451 GCGGAGATT ATAGCAAAGT TAGAAAAGCA TTCCCAGAGA TGTGGAAGGA  
          501 GACCTTAGAA AAAGCTAAGG CTCCCAGAGA AGAAGAGTAT TGGTTACTTT  
          551 GCGAGGAGAG AAAGAGTAAG GAGAAGCGTT TGATTCTCAA CAAGATAGAG  
          601 GCAGCTCAGC AGCGGGTAAA AGATTTAGAA CCTCCTCTA TAAAGAGAC  
          651 AGGGAAACAG AAACGGAAGA AAGAATATTC GTTTTCATT CGATTAAT  
          701 CGTGA

The PSORT algorithm predicts inner membrane (0.1489).

The proteins were expressed in *E.coli* and purified as his-tag and GST-fusion products (Figure 164A; 6444=lanes 11-12; 7391=lanes 2-3; 6413=lanes 4-6). The recombinant protein was used to immunise 35 mice, whose sera were used in Western blots (Figures 164B, 165 & 166) and for FACS analysis.

These experiments show that cp6444, cp6413 & cp7391 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

40         **Example 167**,  
          **Example 168**,  
          **Example 169** and  
          **Example 170**

The following *C.pneumoniae* protein (PID 4376463) was expressed <SEQ ID 333; cp6463>:

45         1 MKKVTIDEA LKEILRLEGA ATQEELCAKL LAQGFATTQS SVSRWLRKIQ  
          51 AVKVAGERGA RYSLPSSTEK TTTRHLVLSI RHNASLIVIR TVPGSASWIA  
          101 ALLDQGLKDE ILGTLAGDDT IFVTPIDEGR LPLLMVSIAN LLQVFID\*

The cp6463 nucleotide sequence <SEQ ID 334> is:

50         1 ATGAAAAAAA AAGTAACATAT AGATGAGGCT TTAAAAGAAA TTTTACGTCT  
          51 TGAAGGAGCG GCAACTCAGG AGGAATTATG TGCAAAACTC TTAGCTCAAG  
          101 GTTTTGCTAC AACCCAGTCG TCTGTATCTC GTTGGCTACG AAAGATTTCAG  
          151 GCTGTAAAGG TTGCTGGAGA CGGTGGTGCT CGTTATTCTT TACCTCTTC

201 TTGGTATACA AGTGACCAAG ATTGGAAAAA ACAAGTGGTT TGA

The PSORT algorithm predicts inner membrane (0.145).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 171A; 6632 = lanes 5-7; 6648 = lanes 8-10; 6497 = lanes 2-4). The recombinant proteins were used to immunise mice,

5 whose sera were used in Western blots (Figures 171B, 172, 173) and for FACS analysis.

These experiments show that cp6632, cp6648 and cp6497 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

**Example 174**,

**Example 175**,

**Example 176**,

**Example 177** and

**Example 178**

The following *C.pneumoniae* protein (PID 4377200) was expressed <SEQ ID 347; cp7200>:

15        1 MPVPIDNSSL NLQEVPESLE DLEQHAEESP THQSAESSSL QLSLASSAIS  
           51 SRVEQLSSLV LGMENSDFSS LRDVPIFSAI YESSTHTPVP TPLVGVGYIN  
           101 GSQSGYYDTQ RESLHLSQLL GSRRVEVVYN QGNFMEASLL NLCPRRPRRD  
           151 PSPISLALLE LWEAFFLEHP PGSTFNPIFF W\*

The cp7200 nucleotide sequence <SEQ ID 348> is:

20        1 ATGCCCGTTC CTATAGATAA TTCCCTCTCGC AACCTACAAG AAGTTCCAGA  
           51 AAGCCTAGAA GACCTCGAAC AACACGCAGA AGAACATCCT ACTCATCAAA  
           101 GTGCAGAAAG CAGTTCTTTG CAACTGTCTC TAGCCTCCTC AGCAATTTCAGA  
           151 AGTAGAGTAG AACAACTATC TTCCCTCGTC TTAGGAATGG AAAATTTCAGA  
           201 TTTCTCCCTCT TTAAGAGACG TTCCCTATCTT CTCAGCTATC TACGAATCTT  
           25    251 CAACACACAC ACCTGTCCCC ACTCCTCTAG TTGGCGTGGG ATATATCAAC  
           301 GGAAGTCAAT CAGGATACTA CGATACACAA AGAGAACATCTC TTCACCTCAG  
           351 CCAATTGTTA GGAAGCGAA GAGITGAAGT TGTCTATAAC CAAGGAAACT  
           401 TCATGGAGGC CTCTTTGCTA AATCTGTGCC CCAGAAGACC TCGAAGAGAT  
           45    451 CCCCTCTCCAA TTTCTTTAGC TCTATTAGAG CTCTGGGAAG CATTTTTTTT  
           501 AGAACACCCCC CCAGGTAGCA CTTTTAATCC AATATTTTTT TGGTAA

The PSORT algorithm predicts cytoplasm (0.3672).

The following *C.pneumoniae* protein (PID 4377235) was also expressed <SEQ ID 349; cp7235>:

35        1 LNFVSTLTGS DFYAPVLEKL EEAFADETTGQ VILFSSSPDF IVHPIAQQLG  
           51 ISSWYASCYR DQSAEQTIYK KCLTGDKKAQ ILSYIKKINQ ARSHTFSDHI  
           101 LDLPFLMLGE EKTVVVRPQGR LKKMAKKYYW NIV\*

The cp7235 nucleotide sequence <SEQ ID 350> is:

40        1 TTGAATTTTG TATCGACTCT GACCGGCTCC GATTTTTATG CTCCTGTTTT  
           51 AGAAAAAACTA GAAGAACGCTT TTGCAGATAC CACAGGACAG GTGATCCTTT  
           101 TTTCTTCITTC TCCAGACTTT ATTGTCCACC CCATAGCGCA GCAACTCGGG  
           151 ATTAGTTCTT GGTATGCGTC GTGTTATCGC GATCAGTCTG CAGAACAGAC  
           201 GATCTATAAA AAATGTCCTA CAGGGGATAA AAAAGCGCAA ATTTTGAGTT  
           251 ATATTAACAA AATTAATCAA GCAAGAAGCC ATACCTCTC CGACCATATT  
           301 TTAGATCTTC CTTTTCTTAT GCTGGGGAGAA GAGAAAACCG TCGTTCGCCC  
           351 TCAGGGACGA CTCAAGAAAA TGGCAAAAAA ATATTACTGG AATATCGTTT  
           401 AA

The PSORT algorithm predicts cytoplasm (0.3214).

The following *C.pneumoniae* protein (PID 4377268) was also expressed <SEQ ID 351; cp7268>:

1 MMHRYFIPLL ALLIFSPSLV RAELOPSEN R KGGWPTQLSC AEGSQLFCKF

The PSORT algorithm predicts inner membrane (0.1022).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 167A; 6463 = lanes 2-4; 6540 = lanes 5-7; 6743 = lanes 8-9; 7041 = lanes 10-11). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 167B, 168, 169 & 170) and for FACS analysis.

These experiments show that cp6463, cp6540, cp6743 & cp7041 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident from the sequence alone.

**Example 171 and  
Example 172 and  
Example 173**

The following *C.pneumoniae* protein (PID 4376632) was expressed <SEQ ID 341; cp6632>:

```

1 VQLFQYMNES GWDWLCDFDS QGEGFQLSRL VGLLHSSWAL YEAKEQFYLP
51 EVSLLTWEEL IEMQLLSKPT KHGVAKDLCN VFEKFHFQRFR QYLGSLDLNQ
101 RFENTFLNYP KYHLDRE*

```

The cp6632 nucleotide sequence <SEQ ID 342> is:

```

1 GTGCAATTAT TTCAATATAT GAATGAGTC GGATGGGATT GGCTTTGTGA
51 TTTTGATTCT CAAGGGCAGG GATTCCAGTT ATCACGTC TGTTGGCTGT
101 TACATTCGTC CTGGGCATTA TACGAAGCAA AAGAGCAATT TTACCTTCCT
151 GAGGTTTCTC TATTGACCTG GGAAGAACTG ATAGAAATGC AGTTATTAAAG
201 CAAACCAACA AAACACGGGG TTGCAAAAGA TCTTTGTAAT GTATTGAAA
251 AACACTTCA AAGGTTPTAGA CAGTACCTAG GTTCCTTAGA TCTAAATCAA
301 AGGTTCGAAA ATACCTTCTT GAATTATCCT AAATACCATT TAGATAGGGA
351 GTGA

```

The PSORT algorithm predicts cytoplasm (0.3627).

The following *C.pneumoniae* protein (PID 4376648) was also expressed <SEQ ID 343; cp6648>:

```

1 MPVSSAPLPT SHRPSSGNLG LMEPNSKALK AKHQDKTTKT IKLLVKILVA
51 ILVIEVLGII AAFFFPGTPP ICLLILGGLI LTTVLCVLLL VIKLALVNKT
101 EGTAAEQQIK RKLSSKSIS*

```

The cp6648 nucleotide sequence <SEQ ID 344> is:

```

1 ATGCCCGTGT CCTCAGCCCC CCTACCCACA AGCCACCGCC CTTCCCTCTGG
51 AAATCTAGGC CTCATGGAAC CAAATTCCAA AGCTCTAAAA GCAAAGCATC
101 AAGATAAAAC GACGAAGACG ATTAAACTTT TAGTTAAAAT CCTTGTTGCC
151 ATTCTAGTAA TAGAAGTTTT AGGAATAATT GCAGCTTCT TTATTCCTGG
201 GACTCCTCCC ATCTGCTTGA TTATCCTAGG AGGCCTTATT CTTACAACAG
251 TACTCTGTGT GCTTCTTCTT GTTATAAACG TTGCCCTTGT AAACAAAACC
301 GAAGGAACAA CTGCTGAACA GCAGATAAAA CGTAAACTCT CTTCTAAAAG
351 TATTCTTAG

```

The PSORT algorithm predicts inner membrane (0.6074).

The following *C.pneumoniae* protein (PID 4376497) was also expressed <SEQ ID 345; cp6497>:

```

1 MKPNSTIIFLE NTKHYPDIFR EGFVRDRHGL MEASDWLLST EITIIRSILG
51 AIPILGNILG AGRLYSVWYT SDEDWKKQVV *

```

The cp6497 nucleotide sequence <SEQ ID 346> is:

```

1 ATGAAGCCAA ATAGTATTAT TTTTTTAGAA AATACTAACG ATTATCCCGA
51 CATCTTCGA GAAGGATTG TTCGTGATCG TCATGGACTA ATGGAAGCCT
101 CGGATTGGTT ACTTTCTACG GAAATTACGA TCATTCGCTC CATTCTGGGA
151 GCTATCCCTA TTTTAGGAAA TATTCTTGGGA GCCGGACGAC TCTATAGCGT

```

|    |      |                                                          |
|----|------|----------------------------------------------------------|
|    | 101  | TAGTTTTGG TATGCTCTTA CTGATTCAG GAGCTCTCTT TCTGACGTTA     |
|    | 151  | GGGATTCCAG GATTGAGTGC AGCAATTCT TTTGGATTAG GCATCGGTCT    |
| 5  | 201  | CTCCGCATTA GGAGGAGTGC TGATGATTTC GGGACTACTA TGTCTTTAG    |
|    | 251  | TAAAACGAGA GATTCCGACA GTACGACCAG AAGAAATTCC TGAAGGGGTT   |
|    | 301  | TCGCTGGCTC CTTCTGAGGA GCCAGCTCA CAGGCAGCTC AGAAGACTTT    |
|    | 351  | AGCTCAGCTG CCTAAGGAAT TGGATCAGTT AGATACAGAT ATTCAAGGAAG  |
|    | 401  | TGTTCCGATG TTAAAGAAAG CTGAAAGATT CTAAGTATGA AAGTCGAAGT   |
|    | 451  | TTTTTAAACG ATGCTAACAA GGAGCTTCGA GTTTTGACT TTGTGGTTGA    |
| 10 | 501  | GGATACCCCTC TCGGAGATTT TCGAGTTGCCG GCAGATTGTG GCTCAAGAGG |
|    | 551  | GATGGGATT AAACCTTTTG ATCAATGGGG GACGAAGCCT CATGATGACT    |
|    | 601  | GCAGAACTCG AATCGCTGA TTGTTTCAT GTATCGAAGC GGCTAGGGTA     |
|    | 651  | TTTACCTCT GGGGATGTC GAGGGGAGGG GTTAAAGAAA TCTGCGAAGG     |
|    | 701  | AGATAGTCGC TCGTTGATG AGCTTGCATT GCGAGATTCA CAAGGTGGCG    |
| 15 | 751  | GTAGCGTTG ATAGGAATT CTTATGCGATG GCAGAAAAGG CGTTTGCAGAA   |
|    | 801  | ACCGTTGGGA GCTTTAGAAG AGAGTGTGTA TCGGAGTCG ACGCAGAGTT    |
|    | 851  | ATAGAGATAA ATTTTGGAG AGCGAGAGGG CGAAGATCCC ATGGAATGGG    |
|    | 901  | CATATAACCT GTTTAAGAGA TGATGCGAAG AGTGGGTGTG CTGAAAAGAA   |
|    | 951  | GCTTCGGGAT GCGGAGGAAC GTTGGAAAGAA ATTTAGGAAA GCAGTCTTTT  |
| 20 | 1001 | GGGTAGAAGA AGACGGGGC TTGACATCA ATAATCTCT TGGAGACTGG      |
|    | 1051 | GGGACAGTGC TTGATCCTTA TAGACAAGAG AGAATGGACG AGATAACGTT   |
|    | 1101 | CCATGAGTTG TATGAAAAAA CTACGTTTT GAAAAGACTG CACAGAAAGT    |
|    | 1151 | GTGCGTTAGC GAAAACAACC TTGAAAAGA AGAGATCTAA AAAGAATTG     |
|    | 1201 | CAGGCAGTCG AGGAGGCCA TGACGTAGG TTGAAATATG TAAGGGATTG     |
| 25 | 1251 | GTATGATCAG GAGTTTCAGA AAGCAGGGGA GAGATTAGAG AAACCTGCATG  |
|    | 1301 | CTTGTATCC TGAGGTTCA GTCTCTATAA GAGAGAACAA AATACAAGAG     |
|    | 1351 | ACCGCCTCTA ATTTAGAGAA AGCCTATGAG GCTATCGAAG AGAACTATCG   |
|    | 1401 | TTGCTGTGTC CGAGAGCAAG AGGACTACTG GAAAGAAGAA GAGAAAAGGG   |
|    | 1451 | AAGCGGAGTT TAGGGAGAGG GGAAACAAGA TTCTTCTCC TGAGGAGCTG    |
| 30 | 1501 | GAAAGTTCTT TGGAGCAATT CGACCATGGT TTGAAAATT TTTCTGAGAA    |
|    | 1551 | ATTAATGGAA TTGGAAGGGC ATATCTAAA ACTTCAGAAA GAAGCCACAG    |
|    | 1601 | CAGAGGTGGA GAATAAAA CTTTCAGATG CAGAGAGCCG CCTTGAGATT     |
|    | 1651 | GTATTGAAAG ATGTCAGGAGA GATGCCCTGT CGAATTGAGG AGATAGAGAA  |
|    | 1701 | GACCGTGCCT ATGGCGGAGC TGCCCCCTACT TCCTACGAAG AAGCGTTTG   |
| 35 | 1751 | AGAAGGCCTG CTCACAAATAT AATAGCTGC CAGAGATGTT GGAGAAGGTG   |
|    | 1801 | AAGCCTTACT GCAAGGAGAG CCTCGCCTAT GTGACTAGCA AAGAGCGTTT   |
|    | 1851 | AGTGAGCTTG GATGAAGATT TACGACGAGC CTACACAGAG TGTCAAGAAGA  |
|    | 1901 | GATTCCAGGG GGATTCGGGT TTGGAGTCGG AAGTAAGAGC CTGTCAGAG    |
|    | 1951 | CAACTGCGAG AGCGGATCCA AGAGTTGAA ACTCAAGGGC TGGACTTGGT    |
| 40 | 2001 | GGAAAAAGAG TTGTTTGTG TGAGTAGTAG ATTAAGAAAT ACAGAGTGC     |
|    | 2051 | ATTGTGTATC TGGTGTAAAG AAAAGAACAC CCTCTGGTAA GAAAGTTTAT   |
|    | 2101 | GCCCAGTATT ATGATGAGAT TTATCGAGTT AGAGTTCAAT CCCGATGGAT   |
|    | 2151 | GACGATGTCT GAGAGATTGA GAGAGGGAGT TCAAGCATGC AACAAAGATGT  |
|    | 2201 | TGAAGGCAGG CCTAACGGAA GAAGATAAGG TTCTTAAAGA AGAAGAGTAT   |
| 45 | 2251 | TGGTTGTACT GAGAGGAGAG AAAAGATAAA GAGAAAACGTT TGGTTGGTAC  |
|    | 2301 | TAAGATAGTA GCAACGCGAGC AGCGAGTTGC AGCATTGAA TCCATAGAAG   |
|    | 2351 | TTCTGAGAT TCCTGAGGCC CCAGAGGAGA AACCGAGTTT GCTGGATAAA    |
|    | 2401 | GGCGGTTCTT TATTTACTCG CGAGGACCAT ACCTAG                  |

The PSORT algorithm predicts inner membrane (0.461).

The proteins were expressed in *E.coli* and purified as his-tag products (Figure 174: 7200=lanes 2-3; 50 7236=lanes 4-5; 7268=lanes 6-8; 7375=lanes 9-10; 7388=lanes 11-12). The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 174, 175, 176, 177 & 178) and for FACS analysis.

These experiments show that cp7200, cp7235, cp7268, cp7375 & cp7388 are surface-exposed and immunoaccessible proteins and that they are useful immunogens. These properties are not evident 55 from the sequence alone.

### Example 179

The following *C.pneumoniae* protein (PID 4376723) was expressed <SEQ ID 357; cp6723>:

51 EAAYNNAIEE GKPGILVFFS ERPTPEFADL TNGSFSLSLTP IAKGFNVVVL  
 101 CGPLISPLDF FHKMDPVILY MGSFLEMFPE VEAVGPRLC YILIDEQGGA  
 151 QCQAVLPLET KN\*

The cp7268 nucleotide sequence <SEQ ID 352> is:

5 1 ATGATGCACC GTTATTTAT TCCTTTATTA GCACCTCTCA TTTCTCTCC  
 51 TTCTTAGTC AGGGCAGAGC TACAACCAAG TGAAACAGA AAAGGGGGGT  
 101 GGCCTACACA ACTTCCCTGT GCAGAAGGTT CGCAACTCTT CTGAAATTC  
 151 GAAGCTGCCT ATAATAATGC AATTGAGGAA GGAAACCTG GGATTTAGT  
 201 CTTTTCTCT GAGCGACCCA CACAGAATT TGCCGACTTA ACGAATGGTT  
 251 CATTCTCTCT CTCTACGCCA ATCGCCAAGG GCTTTAATGT CGTTGTGTTA  
 301 TGCCCCGGGC TTATCAGTCC CTTAGACTTT TTCCACAAA TGGATCCTGT  
 351 GATTCTCTAT ATGGGAAGTT TTCTAGAGAT GTTCCCTGAA GTGGAGGCAG  
 401 TTAGTGGCCC TCGCTTATGT TATATCTAA TAGATGAACA GGTTGGGCT  
 451 CAATGTCAGG CTGTCCTGCC TTTAGAAACA AAGAATTAG

15 The PSORT algorithm predicts inner membrane (0.1235).

The following *C.pneumoniae* protein (PID 4377375) was also expressed <SEQ ID 353; cp7375>:

1 1 MQRIIVGID TGVGKTIVSA ILARALNAEY WKPIQAGNLE NSDSNIVHEL  
 51 SGAYCHPEAY RLHKPLSPHK AAQIDNVSIE ESHICAPKTT SNLIIETSGG  
 101 FLSPCTSKRL QGDVFSSWSC SWIILVSQAYL GSINHTCLTV EAMRSRNLNI  
 151 LGMVNVNGPE DEEHWLTOEI KLPIIGTLAK EKEITKTIIS CYAEQWKEVV  
 201 TSNHQGIQGV SGTPSLNLH\*

The cp7375 nucleotide sequence <SEQ ID 354> is:

1 1 ATGCAACGTA TCATCATTGT AGGAATCGAC ACTGGCGTAG GAAAAACCAT  
 51 TGTCACTGCT ATCCTGCTA GAGCACTTAA CGCAGAACATA TGGAAACCTA  
 101 TACAAGCAGG GAATCTAGAA ATTTCAGATA GCAATATTGT TCATGAGCTA  
 151 TCGGGAGCCT ACTGTCTCC CGAACGTTAT CGATTGCATA AGCCCTTGTC  
 201 TCCACACAAG GCAGCGAAA TCGATAATGT AAGTATCGAA GAGAGTCATA  
 251 TTTGTGCGCC AAAAACAACT TCGAATCTGA TTATTGAGAC TTCAGGAGGA  
 301 TTTTATCCC CCTGCACATC AAAAGACTT CAGGGAGATG TGTGTTCTTC  
 351 TTGGTCATGT TCTTGGATT TAGTGAGCCA AGCATATCTC GGAAGTATCA  
 401 ATCACACCTG TTTAACGGTA GAAGCAATGC GCTCACGAAA CCTCAATATC  
 451 TTAGGTATGG TGGTAAATGG GTATCCAGAG GACGAAGAGC ACTGGCTAAC  
 501 TCAAGAAATC AAGCTTCCCTA TAATCGGGAC TCTTGCCAAG GAAAAAGAAA  
 551 TCACAAAGAC AATCATAAGC TGTATGCCG AACAAATGGAA GGAAGTATGG  
 601 ACAAGCAATC ATCAGGGAAAT TCAGGGTGT A TCTGGCACCC CTTCACTCAA  
 651 TCTGCATTAG

The PSORT algorithm predicts cytoplasm (0.0049).

The following *C.pneumoniae* protein (PID 4377388) was also expressed <SEQ ID 355; cp7388>:

1 1 MQVLLSPQLP PPPQHSVGSI SSPSKLRVLA ITFLVFGMLL LISGALFLTL  
 51 GIPGLSAAIS FGLGIGLSAL GGVLMISGLL CLLVKREIPT VRPEEPIPEGV  
 101 SLAPSEEPAL QAAQKTLAQL PKELDQLDTD IQEVFACLRK LKDSKYESRS  
 151 FLNDAKKELR VFDFVVVEDTL SEIFELRQIV AQEGWDLNFL INGGRSLMMT  
 201 AESESDDLHF VSKRIGLYLPS GDVRGEGLKK SAKEIVARLM SLHCEIHKVA  
 251 VAFDRNSYAM AEKAFAKALG ALEESVYRSL TQSYRDKFLE SERAKIPWNG  
 301 HITWLRDDAK SGCAEKKLRD AEERWKKFRK AVFWVEEDGG FDINNNLLGDW  
 351 GTVLDPYRQE RMDEITFHEL YEKTTFLKRL HRKCALAKTT FEKKRSKKNL  
 401 QAVEEANARR LKYVRDWYDQ EFQKAGERLE KLHALYPEVS VSIRENKIQE  
 451 TRSNLEKAYE AIEENYRCCV REQEDYWKEE EKREAEFRER GNKILSPEEL  
 501 ESSLEQFDHG LKNFSEKLME LEGHILKLQK EATAEVENKI LSDAESRLEI  
 551 VFEDVKEMPC RIEEIEKTLR MAELPLLPTK KAFEKACSQY NSCAEMLEKV  
 601 KPYCKESLAY VTSKERLVSL DEDLRRAYTE CQKRFQGDSG LESEVRACRE  
 651 QLRERIQEFE TQGLDLIVEKE LLCVSSRLRN TECDCVSGVK KEAPPGKKFY  
 701 AQYYDEIYRV RVQSRWMTMS ERLREGVQAC NKMLKAGLSE EDKVLKEEEY  
 751 WLYREERKNK EKRLVGTIV ATQQRVAAFE SIEVPEIPEA PEEKPSLLDK  
 801 ARSLFTREDH T

The cp7388 nucleotide sequence <SEQ ID 356> is:

1 1 ATGCAAGTAC TTCTATCTCC GCAGCTACCC CCCCCCCCCCC AACACTCTGT  
 51 AGGGTCGATT TCTTCTCCAT CTAAACTTCG CGTTTTAGCG ATTACTTTTT

**Example 181 ,**  
**Example 182 ,**  
**Example 183 ,**  
**Example 184 and**  
**5 Example 185**

The following *C.pneumoniae* protein (PID 4376301) was expressed <SEQ ID 361; cp6301>:

```

1  LNQDLQNVYQ ECQKATGLES EVSAYRDHLR EQITEFETQG LDVIKEELLF
51  VSSTLKSMLS YDPLIADIPC MKFYEEYYDG IDKARVQSRW LEKSERYRKA
10  KKGFOEMLKE GLFKEDQALK KAEYRLLREK RMNKEKLIC NKIEAAQQRV
151 QEFGPSDS*

```

The cp6301 nucleotide sequence <SEQ ID 362> is:

```

1  TTGAATCAGG ATTTACAAA TGTATACCAA GAGTGCCAGA AGGCTACAGG
51  TTTAGAACG GAAGTGAGTG CATATAGAGA TCATCTTAGA GAGCAGATCA
10  CAGAGTTGA AACTCAAGGG CTGGACGTGA TAAAAGAAGA ACTTCTTTT
15  151 GTGAGTAGTA CTCTAAAG TAAATTGAGC TATGATCCAT TAATAGCAGA
201 CATTCCCTGT ATGAAGTTT ATGAGGAGTA TTATGATGGC ATTGATAAAG
251 CGAGAGTTCA ATCCCAGTGG CTGGAGAAGT CTGAGAGGTA TAGAAAGGCG
301 AAGAAGGGAT TCCAAGAGAT GCTGAAGGAA GGCCTATTCA AAGAAGATCA
351 GGCTTGAAA AAAGCAGAGT ATAGATTACT TCGAGAGAAG AGAATGAATA
401 AGGAGAAGCT TTTGATTGCA AATAAGATAG AAGCAGCTCA GCAGCGAGTC
451 CAAGAATTG GACCCTCGGA TTCATAA

```

The PSORT algorithm predicts cytoplasm (0.4621).

The following *C.pneumoniae* protein (PID 4376558) was also expressed <SEQ ID 363; cp6558>:

```

1  MNIPAPQVPV IDEPVVNNTS SYGLSLKSSL RPITYLILAI LAIATLMSVL
51  YFCGIISVGT FVLGMLIPLS VCSVLCVAYL FYQQSSIEKT KVFSITSPSV
101 FFSDEDLNLL LGREEDSVSA IDELLKNFPA DDFRRPKMLP YSNFLDEQGR
151 PNESREEDSH TSKIL*

```

The cp6558 nucleotide sequence <SEQ ID 364> is:

```

1  ATGAACATAC CCGCTCCCCA AGTACCAAGTC ATAGATGAGC CTGTAGTGAA
51  CAACACAAGT AGCTATGGTC TTTCATTGAA AAGTAGTTA AGACCGATTA
101 CTTATTGAT TTTAGCTATC TTAGCTATAG CCACACTGAT GTCTGTTCTC
151 TACTTTGTG GCATCATTAG TGTGGGACG TTGTTTTGG GCATGCTGAT
201 CCCCTCTATCG GTCTGCTCTG TTCTTGCCT TGCCATTAA TTCTATCAGC
251 AATCTTCTAT AGAAAAGACT AAGGTCTTT CTATAACCAAG TCCTTCAGTA
301 TTTTCTCTG ATGAGGATCT TAATTACTC TTAGGTGAG AAGAAGATTC
351 AGTGTCTGCA ATTGATGAAC TTCTTAAGAA CTTTCCAGCT GATGATTTC
401 GTAGGCCGAA GATGCTCCT TATTCAAATT TTCTAGATGA GCAGGGAAAGG
451 CCTAATGAGA GTAGGGAAAGA AGACTCTCAT ACTTCCAAGA TCTTATAA

```

The PSORT algorithm predicts inner membrane (0.4630).

40 The following *C.pneumoniae* protein (PID 4376630) was also expressed <SEQ ID 365; cp6630>:

```

1  MSMTIVPHAL FKNHCECHST FPLSSRTIVR IAIASLFCIG ALAALGCLAP
51  PVSYIVGSVL AFIAFVILSL VILALIFGEK KLPPTPRIIP DRFTHVIDEA
101 YGLSISAFVR EQQVTLAEFR QFSTALLCNI SPEEKIKQLP SELRSKVESF
151 GISRLAGDLE KNWNWPIFEDL LSQTCPLYWL QKFISAGDPQ VRDLGVPRE
201 CYGYYWLGPL GYSTAKATIF CKETHHILQQ LTKEDVLLK NKALQEKWDT
251 DEVKAIVERI YTTYTARGTL KTEAGGLTKE TISKELLLS LHGYSFDQLO
301 LITQLPRDAW DWLCFVDNST AYNLQLCALV GALSSQNLLD ESSIDFDVNL
351 GLYVIQDLKE AVQAFSASDE PKKELGKFLL RHLSSVSKRL ESVLRQGLHR
401 IAlehgnara RVYDVNFVTG ARIHRKTSIF FKD*

```

50 The cp6630 nucleotide sequence <SEQ ID 366> is:

```

1  ATGAGCATGA CGATCGTTCC ACATGCTTTA TTTAAAAATC ATTGCGAGTG
51  TCATTCTACC TTTCTTTGA GTTCAAGGAC TATTGTAAGA ATAGCCATTG
101 CCAGCCTCTT TTGTATAGGT GCATTAGCAG CTTTAGGCTG TTTGGCTCCT
151 CCCGTTCTTT ATATMGTGG GAGTGTGTTTA GCTTTTATTG CCTTTGTCAT
201 TCTTCTTTA GTAATTAG CTTGATTT TGGAGAGAAG AAGCTTCCAC

```

-181-

5           1 MATSVAPSPV PESSPLSHAT EVLNLPNAYI TQPHPIPAAP WETFRSKLST  
           51 KHTLCFALTLL LLTLGGTISA GYAGYTGNWI ICGIGLGIIV LTLILALLA  
          101 IPLKNKQTGT KLIDEISQDI SSIKGCFVQR YGLMFSTIKS VHLPELTQN  
          151 QEKTRILNEI EAKKESIQNL ELKITECQNK LAQKQPKRKS SQKSFMRNSIK  
          201 HLSKNPVLIF DC\*

The cp6723 nucleotide sequence <SEQ ID 358> is:

10           1 ATGGCAACTT CCGTAGCCCC ATCACCAAGTC CCCGAGAGCA GCCCTCTCTC  
           51 TCATGCTACA GAAGTTCTCA ATCTTCCTAA TGCTTATATT ACGCAGCCTC  
          101 ATCCGATTCC AGCGGCTCT TGGGAGACCT TTGCTCCAA ACTTTCCACA  
          151 AAGCATAACGC TCTGTTTGC CTAAACACTA CTGTTAACCT TAGGGGGAAC  
          201 GATCTCAGCA GGTTACGCAG GATATACTGG AAACCTGGATC ATCTGTGGCA  
          251 TCGGCTTGGG AATTATCGTA CTCACACTGA TTCTTGCTCT TCTTCAGCA  
          301 ATCCCCTTTA AAAATAAGCA GACAGGAACA AAACCTGATTC ATGAGATATC  
          351 TCAAGACATT TCCTCTATAG GATCAGGATT TGTTCAAGAGA TACGGGTTGA  
          401 TGTTCTCTAC AATTAAAAGC GTGCATCTTC CAGAGCTGAC AACACAAAAT  
          451 CAAGAAAAAA CAAGAATTAA AAATGAAATT GAAGCGAAAA AGGAATCGAT  
          501 CCAAAATCTT GAGCTTTAAA TTACTGAGTG CCAAAACAAAG TTAGCACAGA  
          551 AACAGCCGAA ACGGAAATCA TCTCAGAAAT CATTATGCG TAGTATTAAG  
          601 CACCTCTCCA AGAACCCCTGT AATTGCTTC GATTGCTGA

20 The PSORT algorithm predicts inner membrane (0.6095).

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 179A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 179B) and for FACS analysis.

25 These experiments show that cp6723 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 180

The following *C.pneumoniae* protein (PID 4376749) was expressed <SEQ ID 359; cp6749>:

30           1 MSYYFSLWYL KVQQHFQAAF DFTRSLCSRI SNFALGVIAL LPIIGQLYVG  
           51 LDWLLSRIKK PEFPSDVQI VRVEHVVGHM HRSRVEDILK RQRLSLEPRD  
          101 EGKVHGDLPS APFF\*

The cp6749 nucleotide sequence <SEQ ID 360> is:

35           1 ATGAGTTATT ACTTTCTCT TTGGTATCTG AAGGTGCAAC AGCACTTCA  
           51 AGCAGCATTG GATTTACTC GCTCCCTGTG TTCACGAATT TCTAATTTTG  
          101 CTTTGGGAGT GATTGCATTG CTTCCCTATTA TTGGGCAGTT GTATGTAGGG  
          151 CTGGACTGGC CCCTCTCTAG GATAAAAAAG CCAGAATTTC CTTCCGATGT  
          201 GGATCAGATC GTGCGAGTAG AACACGTCGT GGGTCACGAC CATAGAAGTC  
          251 GAGTTGAAGA TATTCTAAAG AGACAAAGGC TCTCATTAGA GCCTAGAGAC  
          301 GAGGGGAAGG TTCACGGAGA TCTGCCTTC GCTCCTTTT TTTGA

The PSORT algorithm predicts inner membrane (0.2996).

40 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 180A). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 180B) and for FACS analysis.

These experiments show that cp6749 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

5

```

51 CACTAAAAAA AAATCCTGCA GCAACTTTGA TAAGATTCAG TCTCGAATTG
101 TATTGATTAC TGCAATCTT GCTGTCCTTAG TTACTATAGG GACCCTACTT
151 ATTTGGTTTGCA TTTTAATAT TCCGTGTTATC TATTCCTCTA CAGGAATTTC
201 ATTTTATTGCT GTTGTCTTCA GCAACTTTAT CCTTTATAAA CGAGCAACCA
251 CCCTCTTAAA ACCGCGTGCT TGTGGCAAAC ACAAAAGAAAT AAAACCAAAA
301 AGGGTCTCCA CCAACCTACA GTATTCTTCT ATCTCTATCG CAATCAATCG
351 TTCTAAAGAA AACTGGGAAC ACCAACCCAA GGACCTACAG AATCTCCCCG
401 CACCCCTCTGC ATTACTCACA GATAACCCCT ACAGAGATATG GAAAGCTAAA
451 CATTCACTGT TTTCCCTAGT ATCCCTCTA CGGGGAGGCA ATCCAGAAC
501 TCTCTTAAATT TCAGCTTCCG AAAATTAGG AAAGACTCTG TTAATTGAAG
551 AAACCTCGCA AAATGCCCT ATATCCTCCT ACCTAGATAC CACTCCCTCC
601 CCAAAATCCT TGCTCAATGA GGCAATTCAAG GAAACCCAGGG TAGAAATAAA
651 TACAGAACTC CCTGCGGGAG ATTCAAGGAGA ACGTTTATAC TGGCAACCCG
701 ATTCCCGAGG CGCGCTCTTC CTCCCACAAA TACCAACAAAC TCCTGAAGCC
751 ATCTACCAAT ACTACTATGC ACTCTATGTC ACTTATATAC AGACTGCGAT
801 CAATACGAAC ACCCAAATTA TCCAAATCCC TTATACAGC TTGAGGGAGC
851 ATCTCTATTG TAGAGAATTG CCCCCGCAAT CAAGAATGCA ACAATCTTG
901 GCTATGATTAA CAGCAGTAAA ATACATGGCC GAGCTGCACC CAGAATATCC
951 GCTAACTATTG GCTTGTTG AAAGATCCTT AGCCCAACTA CCTCAAGAAA
1001 GTATTGAGGA TCTCTCTTAG

```

The PSORT algorithm predicts inner membrane (0.5288).

The proteins were expressed in *E.coli* and purified as GST-fusion products. The recombinant proteins were used to immunise mice, whose sera were used in Western blots (Figures 181-185) and for FACS analysis.

25 These experiments show that cp6301, cp6558, cp6630, cp6633 and cp6642 are surface-exposed and immunoaccessible proteins, and that they are useful immunogens. These properties are not evident from their sequences alone.

### Example 186

The following *C.pneumoniae* protein (PID 4376389) was expressed <SEQ ID 371; cp6389>:

30

```

1 MSEVKPLFLK NDSFDLATORF QNLINMLQE QAEIYNEYEE KNARVQNEIK
51 EQKDFVKRCL EDFEARGLGV LKEELASLTR DFHDKAKAET SMLIECPCIG
101 FYYSIHQEQQ RQRQERLQKM AERYRDCKQV LEAVQVEQKD MISSRVVVDD
151 SYFEEEKEEQ KVDRNRKKEQD *

```

The cp6389 nucleotide sequence <SEQ ID 372> is:

35

```

1 ATGTCAGAAG TGAAGCCTTT GTTTTAAAG AATGACTCTT TTGATTTGGC
51 AACTCAGAGA TTCCAGAACAT TAATTAACAT GCTACAAGAG CAAGCCGAGA
101 TATATAACGA GTATGAAGAA AAGAATGCTA GGGTTTCAGAA TGAGATTAAG
151 GAGCAAAAGG ACTTTGTGAA AAGATGCATA GAGGACTTTG AAGCCAGAGG
201 ACTGGGGGTG CTAAAAGAAG AGCTTGCATC TTTGACGCGT GATTTCATG
251 ATAAAGCAAA AGCAGAGACT TCTATGCTCA TTGAATGTCC TTGTATTGGT
301 TTTTATTATA GTATTCACTCA GGAGGAACAA AGGCAAAGGC AAGAAAGGCT
351 TCAAAAGATG GCTGAGCGCT ATAGGGACTG TAAACAAAGTC TTGGAGGCTG
401 TCCAGGTGGA GCAGAAAGAT ATGATATCTT CTAGAGTCGT TGTGATGAC
451 AGCTACTTTG AAGAAGAAAA AGAAGAACAA AAGGTGGATA ACAGAAAGAA
501 AGAACACAGGAC TAG

```

The PSORT algorithm predicts cytoplasm (0.3193).

The protein was expressed in *E.coli* and purified as a GST-fusion product (Figure 186A) and also in his-tagged form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 186B) and for FACS analysis.

251 CAACACCAAG AATCATCCT GATAGATTAA CTCACGTGAT AGATGAAGCT  
 301 TATGGCCTTT CAATCTCTGC ATTTGTAAGA GAACAGCAGG TAACATTAGC  
 351 CGAGTTTAGA CAATTTCTCA CTGCCCTGTT GTGTAACATA TCTCCTGAAG  
 401 AGAAAATCAA ACAATTGCCT TCTGAATTGC GAAGTAAAGT AGAGAGTTTT  
 451 GGTATTAGCA GGCTCGCAGG TGAGTTAGAA AAGAATAATT GGCCAATATT  
 501 TGAAGATCTT TTAAGCCAAA CCTGCCGTT ATATTGGCTT CAGAAATTAA  
 551 TATCAGCAGG AGATCCACAA GTTGTAGAG ACCTAGGTGT CCCTAGAGAA  
 601 TGTATGGGT ACTATTGGCT AGGGCCTTG GGATACAGTA CAGCTAAGGC  
 651 TACAATTTT TGTAAAGAGA CGCATCATAT TCTTCAACAA TAAACGAAAG  
 701 AGGACGTTCT TTTATTAAGA AACAAGGCTC TTCAAGAGAA ATGGGATACT  
 751 GATGAAGTCA AAGCAATTGT AGAGCGTATC TACACTACCT ATACGGCACG  
 801 AGGAACCTCA AAGACCGAAG CAGGGGGACT TACAAAAGAG ACAATCAGTA  
 851 AGGAATTGCT ATTGTTGAGC TTGCATGGCT ATTCTTTGA TCAGCTACAG  
 901 CTGATCACTC AACTTCCCTAG AGATGCTTGG GATTGGCTGT GTTTTGTAGA  
 951 TAACAGTACC GCATACAAAC TTCAGCTTG TGCTCTTGTG GGAGCTTTGT  
 1001 CATCCCCAAA TCTTCTGAC GAATCTTCTA TCAGATTTGA TGTAACACTA  
 1051 GGCCCTGTATG TGATTCAGGA TCTAAAGAA GCTGTTCAAG CATTTCCTGC  
 1101 TTCTGATGAG CCAAAGAAAG AACTAGGTAA ATTCTTGTGTA AGGCATTTGA  
 1151 GTTCAGTTTC TAAGCGATTA GAGAGTGTAT TAAGACAGGG TCTTCACAGA  
 1201 ATAGCTCTAG AGCATGGAAA TGCCAGAGCT AGGGTTTATG ACGTCAATT  
 1251 TGTAACAGGA GCTAGAACATTG ATAGGAAGAC GAGTATCTTC TTTAAAGACT  
 1301 AA

The PSORT algorithm predicts inner membrane (0.7092).

The following *C.pneumoniae* protein (PID 4376633) was also expressed <SEQ ID 367; cp6633>:

25           1 MVNIQPVYRN TQVNYSQATQ FSVCQPALSL IIVSVVAAL AIVALVCSQS  
 51            LLSIELGTAL VLVSLILFAS AMFMITYKMRQ EPKEELLIPKK IMELIQEHYP  
 101          SIVVDFIRDQ EVSIYEIHHL ISILNKTNVF DKAPVYIQLQEK LLQFGIEKFK  
 151          DVHPSKLPNF EEILLQHCPL HWLGLRVYPM VSDVTPGTYG YYWCGPLGLY  
 201          ENAPSLFERR SLLLKKISF GEFALEEDGL KKNTWSSSEL VQIRQNLFTR  
 251          YYADKEEVDE AELNADYEQF DSSLHLIFSH KLS\*

The cp6633 nucleotide sequence <SEQ ID 368> is:

35           1 ATGGTTAATA TACAGCCTGT GTATAGGAAT ACCCAAGTCA ACTATAGTCA  
 51            GGCTACCAA TTTTCGGTGT GCCAGCCAGC GCTTAGCCTG ATTATCGTTT  
 101          CTGTTGTTGC TGCTGTACTC GCTATTGTAG CTTTGGTAG CAGTCATCT  
 151          CTTTTATCCA TAGAGTTAGG AACTGCTCTT GTTCTAGTTT CTCTTATTCT  
 201          TTTGCTTCT GCTATGTTA TGATTTATAA GATGAGACAA GAACCTAAGG  
 251          AGTTGCTGAT CCCTAAGAAA ATCATGGAAC TCATCCAAGA ACATTATCCA  
 301          AGTATTGTTG TTGATTTTAT TAGAGATCAG GAGGTTTCCA TTTATGAGAT  
 351          ACATCACTTC ATCTCTATTG TTAATAAGAC GAATGTTTC GACAAAGCAC  
 401          CAGTATATTG ACAAGAAAAA CTCTTACAGT TTGGCATTTGA GAAGTTCAAA  
 451          GATGTACATC CAAGTAAGCT CCCTAATTTC GAAGAAATTG TTCTACAGCA  
 501          TTGCCCATTG CATTGGTTGG GACGTCTGGT ATATCCCCTG GTATCGGATG  
 551          TCACTCCAGG AACCTATGGA TACTATTGGT GTGGTCCTT AGGACTGTAC  
 601          GAGAACGCTC CCTCTCTTT TGAAACGTGCA TCTCTTCTAT TGTTAAAGAA  
 651          AATTAGCTTT GGAGAGTTG CTCTTTTAGA AGATGGTCTC AAGAAAAACA  
 701          CGTGGAGTTG TTCGGAACTC GTTCAAATCA GACAAACCT TTTTACAAGA  
 751          TATTATGCTG ATAAAGAAGA GGTAGATGAA GCAGAGTTAA ACGCTGATTA  
 801          CGAACAGTTT GATTCCCTCC TTCACCTTAT TTTTCTCAC AAGCTCTCTT  
 851          GA

50          The PSORT algorithm predicts inner membrane (0.7283).

The following *C.pneumoniae* protein (PID 4376642) was also expressed <SEQ ID 369; cp6642>:

55           1 MATISPISLT VDHPLVDTKK KSCSNFDKIQ SRILLITAIF AVLVTIGTLL  
 51            IGLLLNIPVI YFLTGISFIA VVLSNFIYK RATLLKPRCA CGKHKEIKPK  
 101          RVSTNLQYSS ISIAINSKE NWEHQPKDLQ NLPPAPSALLT DNPyEIWKAK  
 151          HSLFSLVSLL PGGNPEHLLI SASENLGKTL LIEETSQNAP ISSYVDTPPS  
 201          PKSLLNEAIQ ETRVEINTEL PAGDSGERLY WQPDFRGRVF LPQIPTTPEA  
 251          IYQQYYALVV TYIQTAINN TQIWIPLYS LREHLYSREL PPQSRMQQSL  
 301          AMITAVKYM ELHPEYPLTI ACVERSLAQL PQESIEDLS\*

The cp6642 nucleotide sequence <SEQ ID 370> is:

60           1 ATGGCTACAA TCTCACCCAT ATCTTTAACT GTAGATCATC CCCTAGTAGA

The protein was expressed in *E.coli* and purified as a his-tag product (Figure 188A; lanes 2-3). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 188B) and for FACS analysis.

These experiments show that cp6868 is a surface-exposed and immunoaccessible protein, and that it  
5 is a useful immunogen. These properties are not evident from the sequence alone.

### Example 189

The following *C.pneumoniae* protein (PID 4376894) was expressed <SEQ ID 377; cp6894>:

|    |     |             |             |             |             |             |
|----|-----|-------------|-------------|-------------|-------------|-------------|
| 10 | 1   | MYKRCVLDKI  | LKGIVAGSLI  | LLYWSSDLLE  | RDIKSIGKGV  | RDIQEDIREI  |
|    | 51  | SRVVVKQQTS  | QAIPAAPGVM  | LAPKLRDEA   | FALLFGDPSY  | PNLSSLDPYK  |
|    | 101 | QQTLPPELLGT | NFPHGILRT   | AHVGPENLS   | PFNGFDYVVG  | FYDLCIPS LA |
|    | 151 | SPHVGKYEEF  | SPDLAVKIEE  | HLVEDGSGDK  | EFHIYLPRNV  | FWRPIPDPKAL |
|    | 201 | PKHVQLDEVF  | QRPHPVTAHD  | IKFFYDAVMN  | PYVATMRAVA  | LRSCYEDVVS  |
|    | 251 | VSVENDLKL V | VRWKAHTVIN  | EEGKEERKV L | YSAFSNTLSL  | QPLPRFVYQY  |
|    | 301 | FANGEKIIIED | ENIDTYRTNS  | IWAQNFTMHW  | ANNYIVSCGA  | YYFAGMDDEK  |
| 15 | 351 | IVFSRNPDY   | DPLAALIDKR  | FVFYKESTDS  | LFQDFKTGKI  | DISYLPNQR   |
|    | 401 | DNFYSFMKSS  | AYNKQVAKGG  | AVRETVSADR  | AYTYIGWNCF  | SLFFQSRQVR  |
|    | 451 | CAMNMAIDRE  | RIIEQCLLDQ  | GYTISGPFA S | SSPSYNNQIE  | GWHYSPEEAA  |
|    | 501 | RLLEEEGWID  | TDGDGIREKV  | IDGVIVPFR   | RLCYYVKS VT | AHTIADYVAT  |
| 20 | 551 | ACKEIGIECS  | LLGLDMA DLS | OAFDEKNFDA  | LLMGWCLGIP  | PEDPRALWHS  |
|    | 601 | EGAMEKGSAN  | VVGPHNEEAD  | KIIDRLSYEY  | DLKERNRLYH  | RFHEIIHEEA  |
|    | 651 | PY AFLFSRHC | SLLYKD YVKN | IFVPTHRTDL  | IPEAQDET VN | VTMVWLEKKE  |
|    | 701 | DPCLSTS*    |             |             |             |             |

The cp6894 nucleotide sequence <SEQ ID 378> is:

|    |      |              |             |             |             |             |
|----|------|--------------|-------------|-------------|-------------|-------------|
| 25 | 1    | ATGTATAAAA   | GATGTGTGCT  | AGATAAAATT  | TTAAAGGGGA  | TTGTCGCCGG  |
|    | 51   | TTCTTTAATT   | TTGTTATACT  | GGTCCTCAGA  | CCTACTTGAA  | AGAGACATTA  |
|    | 101  | AGTCGATAAA   | AGGTAACGTA  | AGAGATATT C | AAGAACAT    | TCTGAAATC   |
|    | 151  | TCA CGCGTAG  | TGAAACAACA  | GCAGACATCA  | CAAGCTATCC  | CTGCGGCACC  |
|    | 201  | TGGGGTGATG   | CTCGCTCCTA  | AGCTCGTCAG  | AGACGAAGCT  | TTTGCTCTAC  |
|    | 251  | TCTTTGGAGA   | TCCTAGTTAT  | CCTAATTTAC  | TTTCCCTAGA  | CCCCTATAAA  |
| 30 | 301  | CAGCAGACTC   | TTCCTGA ACT | TCTAGGAACA  | AATTTCACC   | CTCATGGTAT  |
|    | 351  | CCTACGCACT   | GCCCCATGTCG | AAAAACCCGA  | AAATCTGAGC  | CCTTTTAATG  |
|    | 401  | GCTTGATT A   | TGTCGTGGC   | TTTACGATC   | TCTGTATTCC  | TAGTTTAGCT  |
|    | 451  | TCTCCCCACG   | TAGGGAAATA  | CGAAGAATT T | TCTCCAGATC  | TCGCTGTGAA  |
| 35 | 501  | AATAGAAGAA   | CATCTGTTG   | AAGATGGTC   | TGGGGATAAA  | GAGTTTCACA  |
|    | 551  | TCTATCTGAG   | GCCGAATGTT  | TTTGGCGTC   | CTATAGATCC  | TAAGGCCCTT  |
|    | 601  | CCAAAACACG   | TTCAGTTAGA  | CGAAGTATT T | CAACGTCCTC  | ATCCTGTGAC  |
|    | 651  | AGCTCATGAT   | ATTAAGTTT   | TCTACGACGC  | TGTTATGAAC  | CCTTATGTAG  |
|    | 701  | CAACCATGCG   | AGCAGTGGCT  | CTGCGCTCTT  | GTTATGAAGA  | TGTGGTTCT   |
| 40 | 751  | GTC TCA GTAG | AAAACGATT T | AAAATTAGTA  | GTCAGATGGA  | AAGCACACAC  |
|    | 801  | GGTAATCAAT   | GAAGAAGGAA  | AGGAAGAGCG  | CAAAGTGC TC | TACTCTGCAT  |
|    | 851  | TTTCTAATAC   | CTTAAGCTTG  | CAGCCCCCTCC | CTAGATTGT   | ATATCAGTAT  |
|    | 901  | TTTGCTAACG   | GGGAAAAAAT  | CATTGAAGAT  | GAGAATATCG  | ATACCTACCG  |
| 45 | 951  | AACCAATTCC   | ATTTGGCGC   | AAAACCTCAC  | TATGCATTGG  | GCAAACAAC T |
|    | 1001 | ATATTGTAAG   | TTGTGGAGC   | TACTACTTG   | CAGGGATGGA  | TGATGAGAAA  |
|    | 1051 | ATCGTGT TTT  | CTAGAAATCC  | TGACTTCTAT  | GATCCCTCTG  | CGGCTCTTAT  |
|    | 1101 | TGACAAGCGT   | TTCGTCTATT  | TTAAGGAAAG  | CACAGACTCC  | CTATTCCAAG  |
|    | 1151 | ATTTTAAGAC   | AGGGAAAATA  | GACATCTCTT  | ACCTTCACC   | CAACCAAAGA  |
| 50 | 1201 | GATAATTCT    | ATAGTTTAT   | AAAAGCTCC   | GCTTATAACA  | AACAGGTAGC  |
|    | 1251 | TAAGGGAGGA   | GCCGTCCGTG  | AAACAGTCTC  | AGCAGATCGA  | GCATATA CGT |
|    | 1301 | ACATAGGATG   | GAATTGCTTT  | TCATTATTT   | TCCAAAGCCG  | ACAGGTGC GC |
|    | 1351 | TGTGCTATGA   | ACATGGCAAT  | CGATAGAGAG  | AGGATTATCG  | AACAGTGCTT  |
|    | 1401 | GGATGGCCAA   | GGCTATACGA  | TTAGTGGGCC  | TTTGCTCTG   | AGTTCTCCTT  |
|    | 1451 | CTATAATAA    | ACAGATCGA   | GGGTGGCATT  | ATTCTCCAGA  | AGAAGCAGCT  |
| 55 | 1501 | CGTCTCCTGG   | AAGAAGAGGG  | ATGGATAGAT  | ACCGATGGCG  | ATGGAATCCG  |
|    | 1551 | AGAAAAAAGT   | ATCGATGGTG  | TGATTGTCCC  | GTTCCGTTTC  | CGTTTATGCT  |
|    | 1601 | ATTATGTA A   | GAGTGTCA CC | GCTCATACCA  | TTGCAGATTA  | CGTAGCTACT  |
|    | 1651 | GCTTGTAAAG   | AAATCGGAAT  | CGAGTGTAGC  | CTTCTAGGAC  | TAGATATGGC  |
|    | 1701 | CGATCTTCC    | CAAGCTTTG   | ATGAAAAGAA  | TTTCGATGCT  | CTTTTTATGG  |
|    | 1751 | GATGGTGT T   | AGGAATTCC   | CCTGAGGATC  | CTAGGGCTTT  | ATGGCATTCT  |

These experiments show that cp6389 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 187

The following *C.pneumoniae* protein (PID 4376792) was expressed <SEQ ID 373; cp6792>:

```

5      1  VLQEHFFLSE DVITLAQQLL GHKLITTHEG LITSGYIVET EAYRGPDCKA
      51 CHAYNYRKTO RNRAMYIKGG SAYLYRCYGM HHLLNVVTGP EDIPHAVLIR
     101 AILPDQGKEL MIQRQRWRDK PPHLLTNGPG KVCQALGISL ENNRQLNTP
     151 ALYISKEKIS GTLTATARIG IDYAQEYRDV PWRFLLSPED SGKVL*
```

The cp6792 nucleotide sequence <SEQ ID 374> is:

```

10     1  GTGCTACAAG AACATTTTT TCTATCGGAA GATGTAATT CACTAGCGCA
      51 ACAGCTTTA GGACATAAAC TCATCACAAC ACATGAGGGT CTGATAACTT
     101 CAGGTTACAT TGTAGAAACC GAAGCGTATC GTGGCCCTGA TGACAAAGCA
     151 TGCCACGCCT ACAACTACAG AAAAACTCTAG AGGAACAGAG CGATGTACCT
     201 GAAAGGAGGC TCTGCTTACC TCTACCGTTG CTATGGCATG CATCACCTAT
     251 TGAATGTGTC CACTGGACCT GAGGACATT CCCATGCCGT CCTGATCCGG
     301 GCCATCCTTC CTGATCAAGG CAAAGAACTT ATGATCCAAC GCGGCCAATG
     351 GAGAGATAAA CCCCCACACC TTCTCACCAA TGGACCCGGAA AAAGTGTGCCC
     401 AAGCTCTAGG AATCTCTTG GAAAACAATA GGCAACGCCT AAATACCCCA
     451 GCTCTCTATA TCAGCAAAGA AAAAATCTCT GGGACTCTAA CAGCAACTGC
     501 CCGGATCGGC ATCGATTATG CTCAAGAGTA TCGTGATGTC CCATGGAGAT
     551 TTCTCCTATC CCCAGAAAGAT TCGGGAAAAG TTTTATCTTA A
```

The PSORT algorithm predicts cytoplasm (0.180).

The protein was expressed in *E.coli* and purified as a his-tagged product (Figure 187A; lanes 2-4). The recombinant protein was used to immunise mice, whose sera were used in a Western blot (Figure 187B) and for FACS analysis.

These experiments show that cp6792 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 188

The following *C.pneumoniae* protein (PID 4376868) was expressed <SEQ ID 375; cp6868>:

```

30     1  MVETVLHNFQ RYLSKYLYRV FRFPCRKKTF LSSHRVLARP SFPVDYCPGK
      51 IYDLQEYEE LNAQLFQGAL RLQIGWFGRK ATRKGKSVVL GLFHENEQLI
     101 RIHRSLDRQE IPRFFMEYLV YHEMVHSVP REYSLSGRSI FHGKKFKEYE
     151 QRFPLYDRAV AWEKANAYLL RGYKKRVGCGG YGRA*
```

The cp6868 nucleotide sequence <SEQ ID 376> is:

```

35     1  ATGGTTGAAA CAGTACTTCA TAATTTCCAA CGTTATCTGA GCAAGTATCT
      51 CTATAGGGTA TTTCGCTTCC CATGTCGTA AAAGACGTTT CTATCTTCGC
     101 ACAGGGTTCT TGCTCGTCCT TCATTCCCAG TAGACTACTG TCCGGGAAAG
     151 ATCTATGATT TGCAGGAGAT CTATGAGGAA TTGAATGCGC AGTTATTTC
     201 AGGTGCACTG CGTTTACAGA TTGGTTGGTT CGGAAGGAAA GCTACCAGAA
     251 AAGGCAAGAG TGTTGTCTTG GGATTGTTTC ATGAAAATGA ACAGTTAATT
     301 CGAATTCACTC GTTCTTTAGA TCGGCAGGAA ATCCCAAGAT TTTTTATGGA
     351 ATATCTTGTG TATCATGAAA TGGTTCATAG TGTAGTCCT AGAGAGTATT
     401 CTCATCGGG GCGTTCGATT TTTCATGGTA AAAAGTTAA AGAATACGAA
     451 CAACGTTTCC CCTTGTATGA TCGTGCTGTT GCTTGGGAAA AGGCAAACGC
     501 TTATTTATTG CGAGGGTATA AAAAAAGAGT AGGTGGAGGA TATGGCAGGG
     551 CATAG
```

The PSORT algorithm predicts bacterial cytoplasm (0.325).

TABLE II – sequences of the primers used to amplify Cpn genes.

| Orf ID  | N-terminus final primer                     | C-terminus final primer                  |
|---------|---------------------------------------------|------------------------------------------|
| CP0014P | GCGTC CCG GGT CATATG AAGTCTTCTTCCCCA        | GCGT CTC GAG ATGAAAGAGTTTGCG             |
| CP0015P | GCGTCCGGGTCAATATG TCAGCTCTGTTTCTGA          | GCGT CTC GAG GAATTGGTATTTGCTC            |
| CP0016P | GCGTCCGGGTCAATATG GCGATCTCACATTAG           | GCGT CTC GAG GTCCAAGTAAAGTAGCA           |
| CP0017P | GCGT CCG GGT CATATG GGTATCAAGGGAACTG        | GCGT CTC GAG AAATCCGAATCTTCC             |
| CP0019P | GCGTCCGGGTCAATATG CAAGACTCTCAAGACTATAG      | GCGT CTC GAG AAATGGTATTTACCC             |
| CP6260P | GCGTC CCG GGT GCTAGCACTACGATTTCTTAAACC      | GCGT CTC GAG AAAACGAAATTGCTTC            |
| CP6397P | GCGTC CCG GGT CATATG GTTAAACTGCTAAAAATCTATT | GCGT CTC GAG ATGAAAGAAGAGTCCCTCG         |
| CP6456P | GCGTC CCG GGT CATATG TCATCTCTGTAAATAACA     | GCGT CTC GAG CTGACCATCTCTGTT             |
| CP6466P | GCGTC CCG GGT CAT ATG TGCAAGGAGTCCAGT       | GCGT CTC GAG ATTTTCCTTACGATAACG          |
| CP6467P | GCGTC CCG GGT CAT ATG TGTCCCCATCCCAA        | GCGT CTC GAG TAGTTTTCTATAAACGAAAGTCT     |
| CP6468P | GCGTC CCG GGT CAT ATG TGCTCTCTACTCTTC       | GCGT CTC GAG GGGGAAATAGGTATATTGAA        |
| CP6469P | GCGTC CCG GGT CAT ATG AGCTGCTAAAGCAA        | GCGT CTC GAG ACTTAAGATATCGATATTGAA       |
| CP6552P | GCGTC CCG GGT CAT ATG TGCCATAAGGAAGATG      | GCGT CTC GAG ACCATTGTCCTGAGTCAT          |
| CP6567P | GCGTC CCG GGT CAT ATG ACCTCACCGATCCCC       | GCGT CTC GAG AGAACCCGTAGAGGC             |
| CP6576P | GCGTC CCG GGT CAT ATG ACTGAAAAGTTAAAGAAGG   | GCGT CTC GAG GAA CATGCCCTAA              |
| CP6727P | GCGTC CCG GGT CATATGCTACATCCACTAATGGC       | GCGT CTC GAG GAAAGAATAACGAGTTC           |
| CP6729P | GCGTC CCG GGT CAT ATGGCAGATGCTTCTTATC       | GCGT CTC GAG GAATGAGTATCTTAGCC           |
| CP6731P | GCGTC CCG GGT CATATGCCGTGTTGAATCAAT         | GCGTC CAT GGC GGC CGC GAACCTGAACTTACCTCC |
| CP6736P | GCGTC CCG GGT GCT AGCGTAGAAGTTATCATCCCT     | GCGTC CAT GGC GGC CGC AAATCGTAATTGCTTC   |
| CP6737P | GCGT GGA TCC CAT ATG GAGACTAGACTCGGAGG      | GCGT CTC GAG AAATGTGGATTAGTCC            |
| CP6751P | GCGTC CCG GGT GCT AGC AATGAAGGCTCCAACT      | GCGT CTC GAG AAATCTCATTCTACTCGC          |
| CP6752P | GCGTGA ATT CAT ATGTTGGGATGACTCCT            | GCGT CTC GAG GAATTAAAGGTACTCCTG          |
| CP6753P | GCGTC CCG GGT GCT AGCACTCCTACTCTCATAGAG     | GCGT CTC GAG AAACCTAAAGGTGTT             |
| CP6787P | GCGTC CCG GGT CAT ATG ATAAAACAAATAGGCCGT    | GCGT CTC GAG TTCGTAAGCAACTTCAGA          |
| CP6829P | GCGTC CCG GGT CAT ATG AAGCAGATGCGTCTT       | GCGTC CAT GGC GGC CGC GAAACTAAGGGAGAGGC  |
| CP6830P | GCGTC CCG GGT CAT ATG GATCCCCTGCTGTT        | GCGTC CAT GGC GGC CGC GAATACAACCGGATCC   |
| CP6832P | GCGTC CCG GGT CAT ATG CATAAAGTAATAGTTTCATT  | GCGT CTC GAG TAAACTAGAAAAAGTCGTC         |
| CP6848P | GCGTC CCG GGT CAT ATG TCATCAAATCTACATCCC    | GCGT CTC GAG AACCGGAGCTTTTAC             |
| CP6849P | GCGTC CCG GGT GCT AGC AGCGGGGTATAGAG        | GCGT CTC GAG ATACACGTGGGATTTTC           |
| CP6850P | GCGTC CCG GGT CAT ATG TGCCGCATTGAGAT        | GCGT CTC GAG CTGTTGCATCTGCC              |
| CP6854P | GCGTC CCG GGT GCT AGC TCAATAGCTATTGCAAG     | GCGT CTC GAG TTATCGAAATGCTTTG            |
| CP6879P | GCGTC CCG GGT CAT ATG GCAACACCCGCTCAA       | GCGTC CAT GGC GGC CGC TCCTTGAATTGCTCTGC  |
| CP6894P | GCGTC CCG GGT CAT ATG TATAAAAGATGTTGCTAGA   | GCGT CTC GAG GGATGTAACCTAACGACCG         |
| CP6900P | GCGTC CCG GGT CAT ATG AAGATAAAATTTCTTGAAG   | GCGT AAG CTT GGGAAACGATACCG              |
| CP6952P | GCGTC CCG GGT CAT ATG CTCTCGGATCAATATAGG    | GCGT CTC GAG TCAGATTCTTTTTAGC            |
| CP7034P | GCGTC CCG GGT CAT ATG AAAAAACAGGTATATCAATG  | GCGT AAG CTT AAACGCTGAAATTATACC          |
| CP7090P | GCGTC CCG GGT CAT ATG TGTAGCCTTCCCT         | GCGT CTC GAG GCGTGCATGAATCTTA            |
| CP7091P | GCGTC CCG GGT CAT ATG GAAGAATTAGAAGTTGTTG   | GCGT CTC GAG TAGTGTCTCTTATCGGT           |
| CP7170P | GCGTC CCG GGT CAT ATG CTAGGGCTGGAAACC       | GCGT AAG CTT AACTCGAGACCTGACG            |
| CP7228P | GCGTC CCG GGT CAT ATG ACTCTGTTCTTATTCTACA   | GCGT CTC GAG ATCTGAAAGCGGAGG             |
| CP7249P | GCGTC CCG GGT CAT ATG ATCCCCATCCCTTAC       | GCGT CTC GAG ATCAGTTGCTGAGACTT           |
| CP7250P | GCGTC CCG GGT CAT ATG AATCTTCAACAGGTCT      | GCGT CTC GAG ATTTCCTAGAGAGACTCTC         |
| CP0018P | GTGCGT CATATG GCAACCACTCCACTAA              | ACTCGCTA GCGGCCGC TAATGAGGTCCCCAG        |
| CP6270P | GTGCGT CATATG AATTATTAGGAGCTGCT             | ACTCGCTA GCGGCCGC AAATTGATTTGCTACC       |
| CP6735P | GTGCGT CATATG GCAGCACAAAGTTATAT             | ACTCGCTA GCGGCCGC TGGCGTAGAAAGTATC       |
| CP6998P | GTGCGT CATATG TTGCCGTAGGGAAAC               | ACTCGCTA GCGGCCGC GAATCTGAACTGACCA       |
| CP7033P | GTGCGT CATATG GTTAATCTTATGGTCCA             | ACTCGCTA GCGGCCGC TTGGAGATAACCGAAATATA   |
| CP7287P | GTGCGT CATATG TTACACAGCTCAGAACTAGA          | ACTCGCTA GCGGCCGC GAAAATAATACGGATACCA    |
| CP0010P | GTGCGT CATATG GCAACTGCTAAAAATA              | GCGT CTCGAG GAATTGGAACCTACCC             |
| CP0468P | GTGCGT GCTAGC ATTTCCTATGACAAACTCTAT         | GCGT CTCGAG AAATGTGCAATGACTCT            |
| CP6272P | GTGCGT CATATG TTGACTCATCAAGAGGCT            | GCGT CTCGAG GAAGGGAGTTTTAGGT             |
| CP6273P | GTGCGT CATATG ACATATCTGGAAGCTC              | ACTCGCTA GCGGCCGC CTCCACAATTCTATG        |
| CP6362P | GTGCGT CATATG CCCCTTGATATTACTTATTAACA       | GCGT CTCGAG TCGTTCCAATCCA                |
| CP6372P | GTGCGT CATATG AAACAAACATTCCTCTAAATA         | GCGT CTCGAG TTTCTTGTGGTTTCT              |
| CP6390P | GTGCGT CATATG CGAGAGGTGCTTAAG               | ACTCGCTA GCGGCCGC TCTCTTAGACAGCCCTT      |
| CP6402P | GTGCGT CATATG AATGTTGGGATCTCTT              | GCGT CTCGAG GAAGGGGTGCCCCGT              |
| CP6446P | GTGCGT CATATG TGTAAATCAAAGCCCTCTT           | GCGT CTCGAG GGGCTGAGGAGGAAC              |
| CP6520P | GTGCGT GCTAGC AAACACTACCTATCATTTCT          | GCGT CTCGAG CAGAAAGGCTTTCTT              |
| CP6577P | GTGCGT CATATG AATTAGGCTATGTTAATTAA          | GCGT CTCGAG GTTTGTGAAAGA                 |
| CP6602P | GTGCGT CATATG GCAGCATCAGGAGGCA              | GCGT CTCGAG TGACCAAGGATAGGGTTAG          |

5  
 1801 GAAGGGGCTA TGGAAAAGGG TTCAGCGAAT GTTGTAGGTT TCCATAATGA  
 1851 AGAACGCTGAT AAAATCATAG ACAGACTCGAG CTACGAATAC GATCTGAAAG  
 1901 AACGTAATCG CCTGTACCAAC CGTTTCCATG AAATTATTCA TGAGGAAGCT  
 1951 CCTTATGCTT TCTTGTTCTC ACGACATTGT TCCTTACTTT ATAAGGATTA  
 2001 TGAAAAAAAT ATTTTCGTAC CTACACATAG AACAGATTAA ATTCCCTGAAG  
 2051 CTCAGGATGA GACTGTCAAC GTAATATGG TATGGCTTGA GAAGAAGGAG  
 2101 GATCCGTGCT TAAGTACATC CTAA

The PSORT algorithm predicts inner membrane (0.162).

10 The protein was expressed in *E.coli* and purified as a his-tag product (Figure 189A) and also in GST/his form. The recombinant proteins were used to immunise mice, whose sera were used in a Western blot (Figure 189B) and for FACS analysis.

These experiments show that cp6894 is a surface-exposed and immunoaccessible protein, and that it is a useful immunogen. These properties are not evident from the sequence alone.

### Example 190

15 The following *C.pneumoniae* protein (PID 4377193) was identified in the 2D-PAGE experiment <SEQ ID 379; cp7193>:

20  
 1 MKRVVIYKTIF CGLTLLTSLS SCSLDPKGYN LETKNSRDLN QESVILKENR  
 51 ETPSLVVKRLS RRSRRLFARR DQTQKDTLQV QANFKTYAEK ISEQQDERDLS  
 101 FVVSSAAEKS SISLALSQGE IKDALYRIRE VHPLALIEAL AENPALIEGM  
 151 KKMQGRDWIWLNFLTQLSEV FSQAWSQGVI SEEDIAAFAS TLGLDSGTVA  
 201 SIVQGERWPE LVDIVIT\*

A predicted leader peptide is underlined.

The cp7193 nucleotide sequence <SEQ ID 380> is:

25  
 1 ATGAAAAGAG TCATTTATAA AACCATATTT TGCGGGTTAA CTTTACTTAC  
 51 AAGTTTGAGT AGTTGTTCCC TGGATCCTAA AGGATATAAC CTAGAGACAA  
 101 AAAACTCGAG GGACTTAAAT CAAGAGTCTG TTATACTGAA GGAAAACCGT  
 151 GAAACACCTT CTCTTGTAA GAGACTCTCT CGTCGTTCTC GAAGACTCTT  
 201 CGCTCGACGT GATCAAACTC AGAAGGATAC GCTGCAAGTG CAAGCTAACT  
 251 TTAAGACCTA CGCAGAAAAG ATTTCAGAGC AGGACGAAAG AGACCTTTCT  
 30 301 TTTCGTTGTCT CGTCTGCTGC AGAAAAGTCT TCAATTTCGT TAGCTTTGTC  
 351 TCAGGGTGAA ATTAAGGATG CTTTGTACCG TATCCGAGAA GTCCACCCCTC  
 401 TAGCTTTAAT AGAAGCTCTT GCTGAAAACC CTGCCCTTGAT AGAAGGGATG  
 451 AAAAGATGC AAGGCCGTGA TTGGATTTGG AATCTTTCT TAACACAATT  
 501 AAGTGAAGTA TTTTCTCAAG CTTGGTCTCA AGGGGTTATC TCTGAAGAAG  
 551 ATATCGCCGC ATTTGCCCTCC ACCTTAGGTT TGGACTCCGG GACCGTTGCG  
 601 TCCATTGTCC AAGGGGAAAG GTGGCCCGAG CTTGTGGATA TAGTGATAAC  
 651 TAA

The PSORT algorithm predicts periplasmic (0.925).

This shows that cp7193 is an immunoaccessible protein in the EB and that it is a useful immunogen.  
 40 These properties are not evident from the protein's sequence alone.

It will be appreciated that the invention has been described by way of example only and that modifications may be made whilst remaining within the spirit and scope of the invention.

|         |                                      |                                         |
|---------|--------------------------------------|-----------------------------------------|
| CP7342P | GTGCGT CATATG · AAAAAAAAATTATTTCTACT | ACTCGCTA GCGGCCGC CACACTCTGTTCTCTG      |
| CP7347P | GTGCGT CATATG TTTTCTAAGGATTGACTAA    | GCGT CTCGAG CGAACAGAAGTCGT              |
| CP7353P | GTGCGT CATATG AATATGCCCTGTTCTCT      | GCGT CTCGAG GGGGCCCTAGGTTGTA            |
| CP7193P | GTGCGT CATATG TGTTCCCTGGATCCT        | ACTCGCTA GCGGCCGC AGTTATCACTATATCCACAAG |
| CP7248P | GTGCGT GCTAGC CTTGAACATTCTAAACAAGAT  | GCGT CTCGAG ACGTACTTTAAAGAGCAGACT       |
| CP7261P | GTGCGT CATATG TGTCTATCTGCCATACAG     | GCGT CTCGAG TTTTGATGCTCTCTTC            |
| CP7280P | GTGCGT CATATG GACCAGAAAATTGAAAAA     | GCGT CTCGAG AGAGGTCTTCGAGTGC            |
| CP7302P | GTGCGT CATATG AATTTCATTTGAGTAGT      | GCGT CTCGAG AAACAGTTCGATTTGTG           |
| CP7306P | GTGCGT CATATG CTTCCATTATCAGGGCA      | ACTCGCTA GCGGCCGC TTCTTCAGGTTTCAGG      |
| CP7367P | GTGCGT GCTAGC CGTTATGCCGAGGTC        | GCGT CTCGAG TTCTGTCATTTGGTG             |
| CP7408P | GTGCGT CATATG TTGAAAATCCAGAAAAA      | GCGT CTCGAG ATTCAATTTCGGAAGAG           |
| CP7409P | GTGCGT CATATG AGACGTTATCTTTCATGGT    | GCGT CTCGAG CCCCTTGCTCTTTACATAG         |
| CP6733P | GTGCGT ACTAGT TGTCACTTACAGTCAGTAG    | GCGT CTCGAG GAATCGGAGTTGGTA             |
| CP6728P | GTGCGT ACTAGT AAGTCCCTGTCCTCTGG      | GCGT CTCGAG GAAACAAAATTAGAGCCC          |

TABLE III – Proteins with best results in FACS analysis

| cp number | Molecular Weight (kDa) |                | Fusion type |
|-----------|------------------------|----------------|-------------|
|           | Theoretical            | Western Blot   |             |
| 6260      | 97.5                   | 94; 70         | GST         |
| 6270      | 87.5                   | -              | GST         |
| 6272      | 78.0                   | 90             | GST         |
| 6273      | 58.6                   | 74; 64; 50     | GST         |
| 6296      | 31.1                   | -              | GST         |
| 6390      | 88.9                   | 102            | GST         |
| 6456      | 42.5                   | 89; 67, 45     | GST         |
| 6466      | 57.5                   | 59; 56         | His         |
| 6467      | 59.0                   | 67             | GST         |
| 6552      | 28.4                   | 50; 27         | GST         |
| 6576      | 86.0                   | 79; 70; 62; 45 | GST         |
| 6577      | 17.3                   | 12             | GST         |
| 6602      | 43.4                   | 53; 42; 34     | GST         |
| 6664      | 54.5                   | 104; 45        | GST         |
| 6696      | 47.9                   | 95; 53         | GST         |
| 6727      | 130.0-142.9            | 123; 61; 39    | His         |
| 6729      | 94.8                   | multiple bands | GST         |
| 6731      | 95.5                   | 97             | GST         |
| 6733      | 97.1                   | 104            | His         |
| 6736      | 100.1                  | 98; 93; 66; 60 | GST         |
| 6737      | 101.2                  | multiple bands | GST         |
| 6751      | 100.2                  | 95; 71         | GST         |
| 6752      | 102.1                  | 97; 48         | His         |
| 6767      | 29.1                   | 28             | GST         |
| 6784      | 32.9                   | 35             | GST         |
| 6790      | 71.3                   | multiple bands | His         |
| 6802      | 29.7                   | -              | GST         |
| 6814      | 29.6                   | 28             | GST         |

|         |        |        |                        |          |          |                         |
|---------|--------|--------|------------------------|----------|----------|-------------------------|
| CP6607P | GTGCGT | CATATG | CCTCGTGGTGACACTTT      | GCGT     | CTCGAG   | CGCTGCTTCCTGCTC         |
| CP6615P | GTGCGT | CATATG | TGCTCTCAAAAACGACAA     | GCGT     | CTCGAG   | TGAAGAGGCCGCATC         |
| CP6624P | GTGCGT | CATATG | GATGCGAAAATGGGA        | GCGT     | CTCGAG   | TCTTTGACATTCAAGAGC      |
| CP6672P | GTGCGT | CATATG | ATTCCCTACCATGTTAATG    | GCGT     | CTCGAG   | GTCATACAATTCTTATATA     |
| CP6679P | GTGCGT | CATATG | TGCACTCACTTAGGCT       | GCGT     | CTCGAG   | CGAGTAGTTAGGCACAAAC     |
| CP6717P | GTGCGT | GCTAGC | AAGACAATCGTAGCTTC      | ACTCGCTA | GCGGCCGC | GGCTGGCATATAGGT         |
| CP6784P | GTGCGT | GCTAGC | AAATCAAGATGTTCTATTGATA | GCGT     | CTCGAG   | TCCAAAACAACCCCTCT       |
| CP6802P | GTGCGT | CATATG | TGCGTAAGTTATTAATTCTT   | GCGT     | CTCGAG   | CAGTCGGGCTTGTG          |
| CP6847P | GTGCGT | CATATG | TGGATCTTTACGAG         | GCGT     | CTCGAG   | TTTCTACACTGTTGTAATAAA   |
| CP6884P | GTGCGT | CATATG | AATCAGCTGCTTCT         | GCGT     | CTCGAG   | AGAGAAGGTAATTGTACC      |
| CP6886P | GTGCGT | CATATG | TGTCTACTTATTATCTATCTAC | GCGT     | CTCGAG   | TTCAGAAAAATGGCT         |
| CP6890P | GTGCGT | CATATG | TCCCCACGACGACAA        | GCGT     | CTCGAG   | TCTTGACGATTTAGC         |
| CP6960P | GTGCGT | CATATG | TGTGACGTACGGTCTA       | ACTCGCTA | GCGGCCGC | TTCACCTTGATTTCT         |
| CP6968P | GTGCGT | CATATG | TGGATGCAAAC            | ACTCGCTA | GCGGCCGC | GGAAGTATGCTTAGATATT     |
| CP6969P | GTGCGT | CATATG | TGCTGTGGTACTCTATT      | ACTCGCTA | GCGGCCGC | AAAAGGTCATAGTATACCT     |
| CP7005P | GTGCGT | CATATG | AAAATGTGATATTGAACA     | GCGT     | CTCGAG   | CTGAGCTCTATTCTATTAT     |
| CP7072P | GTGCGT | CATATG | CCCATTTATGGAAA         | GCGT     | CTCGAG   | GTTGAGCAAGGTTG          |
| CP7101P | GTGCGT | CATATG | TATTCGTGTACAGAA        | GCGT     | CTCGAG   | GAAAAATTCTTAGGGAG       |
| CP7102P | GTGCGT | CATATG | GCCGCTAAAGCAAAT        | GCGT     | CTCGAG   | TGAAAATGAAAGATGGT       |
| CP7105P | GTGCGT | GCTAGC | AGTCTATATCAAAATGGTG    | GCGT     | CTCGAG   | ATCTTCATTTGGTTATCT      |
| CP7106P | GTGCGT | CATATG | AAAGATTTGGGGACTCT      | GCGT     | CTCGAG   | GAATCCTAAGGCATACCTA     |
| CP7107P | GTGCGT | GCTAGC | AGTATAGTCAGAAATTCTCA   | GCGT     | CTCGAG   | GAAGCTAAGATTATAGCTACTTT |
| CP7108P | GTGCGT | GCTAGC | GCGGCCCTTCCA           | ACTCGCTA | GCGGCCGC | TTTATGTATATGAAACAGATAGG |
| CP7109P | GTGCGT | CATATG | GGACATTTTATTGATATTG    | ACTCGCTA | GCGGCCGC | ATCATCAAGGTAGATAAAG     |
| CP7110P | GTGCGT | CATATG | GGTATTGCTATGTAATTACA   | GCGT     | CTCGAG   | TTCTGATTGGACTCCA        |
| CP7127P | GTGCGT | CATATG | GTGGCTTTAACGATAGC      | ACTCGCTA | GCGGCCGC | GCAGCCATCGTATTC         |
| CP7130P | GTGCGT | CATATG | TTCAATATGCGAGG         | GCGT     | CTCGAG   | CTTCTTATTGAACTTIG       |
| CP7140P | GTGCGT | CATATG | ACAGCCGGAGCAGCT        | GCGT     | CTCGAG   | AGCACCCCTAATTTCATTG     |
| CP7182P | GTGCGT | CATATG | GGATATGTTCTATGTGATC    | GCGT     | CTCGAG   | GCTACTAAATCGAATCGA      |
| CP6262P | GTGCGT | CATATG | ATCCCCTGATTAAGTCA      | ACTCGCTA | GCGGCCGC | TTCACTGGGAGCTTGA        |
| CP6269P | GTGCGT | CATATG | TACCAAGGAAATCTAAGAT    | ACTCGCTA | GCGGCCGC | GATTTCTCTCTCAGCTC       |
| CP6296P | GTGCGT | CATATG | GAGGAGGTGCTGAGTAT      | ACTCGCTA | GCGGCCGC | ATGTTCTTTACTCTTTCT      |
| CP6419P | GTGCGT | CATATG | GCTCCAGTCCTGTGTT       | GCGT     | CTCGAG   | AAAGTGTCTGGAGAAGT       |
| CP6601P | GTGCGT | CATATG | AATAAGCTACTCAATTCTG    | GCGT     | CTCGAG   | GAAAATCTGAATTCTCT       |
| CP6639P | GTGCGT | CATATG | TTAAATTCAAGCAATTCA     | GCGT     | CTCGAG   | AGGAACCTAAACCTCATCT     |
| CP6664P | GTGCGT | GCTAGC | GTTTTATTCATGCTAA       | ACTCGCTA | GCGGCCGC | CTTAAAGAGCTATTTCTAAGTA  |
| CP6696P | GTGCGT | CATATG | TGCGTGATAATGGG         | GCGT     | CTCGAG   | ATTCATCTTGTAAAGAAT      |
| CP6757P | GTGCGT | CATATG | GCAGTTGGTGGCGT         | ACTCGCTA | GCGGCCGC | CTGTCCTCTGGAGC          |
| CP6790P | GTGCGT | GCTAGC | AGTGAAACAAAAAAATCA     | ACTCGCTA | GCGGCCGC | CTTATGTCGTTATCAATA      |
| CP6814P | GTGCGT | CATATG | CATGACGCACCTCTAAG      | GCGT     | CTCGAG   | TACAGCTGGCGA            |
| CP6834P | GTGCGT | CATATG | GTTATGGGAACTTATATCG    | GCGT     | CTCGAG   | TACATTGTTGATTTCAAG      |
| CP6878P | GTGCGT | CATATG | AACGCCCTGATTC          | GCGT     | CTCGAG   | GCTAGCGCTTTC            |
| CP6892P | GTGCGT | CATATG | CAGAACATCTTCT          | ACTCGCTA | GCGGCCGC | TCCTCTTAGGAAATGG        |
| CP6909P | GTGCGT | CATATG | TCCTCTTAGGAAATGG       | GCGT     | CTCGAG   | CAGTGCCAAGTAGGGA        |
| CP7015P | GTGCGT | CATATG | GCAGTACGATTAATTGTTG    | GCGT     | CTCGAG   | TTTATTGTTGCTATTTATATTC  |
| CP7035P | GTGCGT | GCTAGC | AGCAGAAAAGACAATGA      | GCGT     | CTCGAG   | ATTTGAGTGTCTTGCA        |
| CP7073P | GTGCGT | CATATG | ATTACCATAAAATCACGTG    | GCGT     | CTCGAG   | TATCCATCGACTTATAGC      |
| CP7085P | GTGCGT | GCTAGC | TGTATTTCCCTACGTA       | ACTCGCTA | GCGGCCGC | GGATTCCTGCATACTCTG      |
| CP7092P | GTGCGT | CATATG | TCTCTCTTCTAA           | GCGT     | CTCGAG   | GGATTCAATTACTGACCA      |
| CP7093P | GTGCGT | CATATG | AAATACCGCTTACG         | GCGT     | CTCGAG   | ATTCTGAGGGCTACGT        |
| CP7094P | GTGCGT | CATATG | GTACACTTCTCTACAAACCC   | GCGT     | CTCGAG   | TAAGTTGTTGATTCGGTAT     |
| CP7132P | GTGCGT | CATATG | TTGTTATTAGGGACTTTAGGA  | GCGT     | CTCGAG   | TTTCCCAACCGCA           |
| CP7133P | GTGCGT | CATATG | GCTGCGAATGTC           | GCGT     | CTCGAG   | TAATTAAATACTCTTGAAGG    |
| CP7177P | GTGCGT | CATATG | CCTACTCAAGTAAACAGA     | GCGT     | CTCGAG   | AAGTTTATTTACGCACTT      |
| CP7184P | GTGCGT | GCTAGC | CATATAGGATTTGCCA       | GCGT     | CTCGAG   | GTACTTAGCAAGCGAT        |
| CP7206P | GTGCGT | GCTAGC | AAGAAGCTATATCACCTA     | GCGT     | CTCGAG   | CACACCGAGGAAAC          |
| CP7222P | GTGCGT | CATATG | GTAGTTCAAGAAAAAGTC     | GCGT     | CTCGAG   | ACGTATGCCCAACTG         |
| CP7223P | GTGCGT | CATATG | GAAGTATTAGACCGCTCT     | GCGT     | CTCGAG   | CGAGAAAAAGCTTCC         |
| CP7224P | GTGCGT | CATATG | ATGAAGAAAATCGAAA       | ACTCGCTA | GCGGCCGC | TAAGCAATTCAAAATG        |
| CP7225P | GTGCGT | CATATG | CATATTGCTGATCGT        | GCGT     | CTCGAG   | TCTTTAACTAAATCTGTTCTT   |
| CP7303P | GTGCGT | CATATG | CTTGCTTATGTTGATCC      | GCGT     | CTCGAG   | AAAATATACGGAACCTGC      |
| CP7304P | GTGCGT | GCTAGC | GAAGTTATGTTTCCC        | GCGT     | CTCGAG   | TTTTGATTCTTAAGAAG       |
| CP7305P | GTGCGT | CATATG | GAAGTTATGTTTCAACCT     | GCGT     | CTCGAG   | ACTCCCTGAGAAGGGAA       |
| CP7307P | GTGCGT | CATATG | CTTAATCATGCTAAAAGC     | ACTCGCTA | GCGGCCGC | CTCTTTATTTAGGAAGCT      |

**CLAIMS**

1. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105,  
5 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 10 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
2. A protein having 50% or greater sequence identity to a protein according to claim 1.
3. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 97, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 20 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323, 325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 353, 355, 357, 359, 361, 363, 365, 367, 369, 371, 373, 375, & 377.
- 25 4. A nucleic acid molecule which encodes a protein according to any one of claims 1 to 3.
5. A nucleic acid molecule according to claim 4, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 30 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318,

|      |           |                |     |
|------|-----------|----------------|-----|
| 6830 | 177.4     | 174; 91; 13    | GST |
| 6849 | 57.3      | multiple bands | GST |
| 6850 | 7.4-9.4   | 61; 14; 8      | GST |
| 6854 | 42.2      | -              | GST |
| 6878 | 40.4      | -              | GST |
| 6900 | 28.0      | -              | GST |
| 6960 | 25.6      | 75; 35         | GST |
| 6968 | 34.6      | 83; 53; 35     | GST |
| 6998 | 39.3      | multiple bands | GST |
| 7033 | 68.2      | multiple bands | GST |
| 7101 | 113       | 105            | GST |
| 7102 | 63.4      | -              | GST |
| 7105 | 29.2      | 30             | GST |
| 7106 | 39.5      | 72; 46         | GST |
| 7107 | 71.4      | 67; 31         | His |
| 7108 | 35.9      | 35             | GST |
| 7111 | 46.1      | 51             | GST |
| 7132 | 17.9      | 57; 47; 17     | His |
| 7140 | 36.2-29.8 | 50; 38; 34     | GST |
| 7170 | 34.4      | 77; 33         | GST |
| 7224 | 39.4      | 40             | GST |
| 7287 | 167.3     | 180            | GST |
| 7306 | 50.1      | 50             | GST |

TABLE IV – FACS-positive proteins not found in *C.trachomatis*

|        |        |
|--------|--------|
| cp7105 | cp6390 |
| cp7106 | cp6784 |
| cp7107 | cp6296 |
| cp7108 |        |

TABLE V – Proteins identified by MALDI-TOF following 2D electrophoresis

|        |        |        |
|--------|--------|--------|
| cp6270 | cp6733 | cp6900 |
| cp6552 | cp6736 | cp6960 |
| cp6576 | cp6737 | cp6998 |
| cp6577 | cp6752 | cp7033 |
| cp6602 | cp6767 | cp7108 |
| cp6664 | cp6784 | cp7111 |
| cp6727 | cp6790 | cp7170 |
| cp6728 | cp6830 | cp7287 |
| cp6729 | cp6849 | cp7306 |

1/169

**FIGURE 1****FIG. 1A****FIG. 1B****FIG. 1C**

320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.

6. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 98, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256, 258, 260, 262, 264, 266, 268, 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 352, 354, 356, 358, 360, 362, 364, 366, 368, 370, 372, 374, 376, & 378.
7. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 4 to 6.
8. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 4 to 7.
9. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 4 to 8 under high stringency conditions.
- 20 10. A composition comprising a protein or a nucleic acid molecule according to any preceding claim.
11. A composition according to claim 10 being a vaccine composition.
12. A composition according to claim 10 or claim 11 for use as a pharmaceutical.
13. The use of a composition according to claim 10 in the manufacture of a medicament for the treatment or prevention of infection due to *Chlamydia* bacteria, particularly *Chlamydia pneumoniae*.

5

10

15

20

25

3/169

**FIGURE 3****FIG. 3A****FIG. 3B****FIG. 3C**

2/169

**FIGURE 2****FIG. 2A****FIG. 2B****FIG. 2C**

5/169

**FIGURE 5****FIG. 5A****FIG. 5B****FIG. 5C**

4/169

**FIGURE 4****FIG. 4A****FIG. 4B****FIG. 4C**

7/169

**FIGURE 7****FIG. 7A****FIG. 7B****FIG. 7C**

6/169

**FIGURE 6****FIG. 6A****FIG. 6B****FIG. 6C**

9/169

**FIGURE 9****FIG. 9A****FIG. 9B****FIG. 9C**

8/169

**FIGURE 8****FIG. 8A****FIG. 8C****FIG. 8B**

0017-G ST  
0017-G ST

11/169

**FIGURE 11****FIG. 11A****FIG. 11B****FIG. 11C**

10/169

**FIGURE 10****FIG. 10A****FIG. 10B**

13/169

**FIGURE 13****FIG. 13A****FIG. 13B**

12/169

**FIGURE 12****FIG. 12A****FIG. 12B****FIG. 12C**

15/169

**FIGURE 15****FIG. 15A****FIG. 15B****FIG. 15C**

14/169

**FIGURE 14****FIG. 14A****FIG. 14B**

17/169

**FIGURE 17****FIG. 17A****FIG. 17B****FIG. 17C**

16/169

**FIGURE 16****FIG. 16A****FIG. 16B****FIG. 16C**

19/169

**FIGURE 19****FIG. 19A****FIG. 19B**

18/169

**FIGURE 18****FIG. 18A****FIG. 18B****FIG. 18C**

21/169

**FIGURE 21****FIG.  
21A****FIG.  
21B****FIG.  
21C**

20/169

**FIGURE 20****FIG. 20A****FIG. 20B**

23/169

**FIGURE 23****FIG.  
23A****FIG.  
23B****FIG.  
23C**

22/169

**FIGURE 22****FIG.  
22A****FIG.  
22B****FIG.  
22C**

25/169

**FIGURE 25****FIG. 25A****FIG. 25C****FIG. 25B**

24/169

**FIGURE 24****FIG.  
24A****FIG.  
24B****FIG.  
24C**

27/169

**FIGURE 27****FIG. 27A****FIG. 27B****FIG. 27C**

26/169

**FIGURE 26****FIG. 26A****FIG. 26B**

29/169

**FIGURE 29****FIG. 29A****FIG. 29B****FIG. 29C**

28/169

**FIGURE 28****FIG. 28A****FIG. 28B****FIG. 28C**

31/169

**FIGURE 31****FIG. 31A****FIG. 31B**

30/169

**FIGURE 30****FIG. 30A****FIG. 30B****FIG. 30C**

33/169

**FIGURE 33****FIG. 33A****FIG. 33B**

32/169

**FIGURE 32****FIG. 32A****FIG. 32C****FIG. 32B**

35/169

**FIGURE 35****FIG. 35A****FIG. 35B****FIG. 35C**

34/169

**FIGURE 34****FIG. 34A****FIG. 34B****FIG. 34C**

37/169

**FIGURE 37****FIG. 37A****FIG. 37C****FIG. 37B****FIG. 37D**

36/169

**FIGURE 36**

39/169

**FIGURE 39****FIG. 39A****FIG. 39B****FIG.  
39C****FIG.  
39D**

38/169

**FIGURE 38****FIG. 38A****FIG. 38B**

41/169

**FIGURE 41****FIG. 41A****FIG. 41B****FIG. 41C**

40/169

**FIGURE 40****FIG. 40A****FIG. 40B**

43/169

**FIGURE 43****FIG. 43A****FIG. 43B****FIG. 43C**

42/169

**FIGURE 42****FIG. 42A****FIG. 42B****FIG. 42C**

45/169

**FIGURE 45****FIG. 45A****FIG. 45B****FIG. 45C**

44/169

**FIGURE 44****FIG. 44A****FIG. 44B****FIG. 44C**

47/169

**FIGURE 47****FIG. 47A****FIG. 47B****FIG. 47C**

46/169

**FIGURE 46****FIG. 46A****FIG. 46B**

49/169

**FIGURE 49****FIG. 49A****FIG. 49B****FIG. 49C**

48/169

**FIGURE 48****FIG. 48A****FIG. 48B****FIG. 48C**

51/169

**FIGURE 51****FIG. 51A****FIG. 51B****FIG. 51C**

50/169

**FIGURE 50****FIG. 50A****FIG. 50B****FIG. 50C**

53/169

**FIGURE 53****FIG. 53A****FIG. 53B**

52/169

**FIGURE 52****FIG. 52A****FIG. 52B****FIG. 52C**

55/169

**FIGURE 55****FIG. 55A****FIG. 55B****FIG. 55C**

54/169

**FIGURE 54****FIG. 54A****FIG. 54B****FIG. 54C**

57/169

**FIGURE 57**



**FIG. 57A**



**FIG. 57B**



**FIG. 57C**

56/169

**FIGURE 56****FIG. 56A****FIG. 56B****FIG.  
56C****FIG.  
56D**

59/169

**FIGURE 59****FIG. 59A****FIG. 59B****FIG. 59C**

58/169

**FIGURE 58****FIG. 58A****FIG. 58B****FIG. 58C**

61/169

**FIGURE 61****FIG. 61A****FIG. 61B****FIG. 61C**

60/169

**FIGURE 60****FIG. 60A****FIG. 60B****FIG. 60C**

63/169

**FIGURE 63****FIG. 63A****FIG. 63B****FIG. 63C**

62/169

**FIGURE 62****FIG. 62A****FIG. 62C****FIG. 62B**

65/169

**FIGURE 65****FIG. 65A****FIG. 65B****FIG. 65C**

64/169

**FIGURE 64****FIG. 64A****FIG. 64B****FIG. 64C****FIG. 64D**

67/169

**FIGURE 67****FIG. 67A****FIG. 67B**

66/169

**FIGURE 66****FIG. 66A****FIG. 66B**

69/169

**FIGURE 69****FIG. 69A****FIG. 69B**

68/169

**FIGURE 68****FIG. 68A****FIG. 68B**

71/169

**FIGURE 71****FIG. 71A****FIG. 71B**

70/169

**FIGURE 70****FIG. 70A****FIG. 70B**

73/169

**FIGURE 73****FIG. 73A****FIG. 73B**

72/169

**FIGURE 72****FIG. 72A****FIG. 72B**

75/169

**FIGURE 75****FIG. 75A****FIG. 75B**

74/169

**FIGURE 74****FIG. 74A****FIG. 74B****FIG. 74C**

77/169

**FIGURE 77****FIG. 77A****FIG. 77B**

76/169

**FIGURE 76****FIG. 76A****FIG. 76B**

79/169

**FIGURE 79****FIG. 79A****FIG. 79B**

78/169

**FIGURE 78****FIG. 78A****FIG. 78B**

81/169

**FIGURE 81****FIG. 81A****FIG. 81B**

80/169

**FIGURE 80****FIG. 80A****FIG. 80B**

83/169

**FIGURE 83****FIG. 83A****FIG. 83B**

82/169

**FIGURE 82****FIG. 82A****FIG. 82B**

85/169

**FIGURE 85****FIG. 85A****FIG. 85B**

84/169

**FIGURE 84****FIG. 84A****FIG. 84B**

87/169

**FIGURE 87****FIG. 87A****FIG. 87B**

86/169

**FIGURE 86****FIG. 86A****FIG. 86B**

89/169

**FIGURE 89****FIG. 89A****FIG. 89B**

88/169

**FIGURE 88****FIG. 88A****FIG. 88B**

91/169

**FIGURE 91****FIG. 91A****FIG. 91B**

90/169

**FIGURE 90****FIG. 90A****FIG. 90B**

93/169

**FIGURE 93*****FIG. 93A******FIG. 93B******FIG. 93C***

92/169

**FIGURE 92****FIG. 92A**

KDa P.I.

84  
62  
51  
36  
26  
20  
15**FIG. 92B**7408-His  
7408-His

95/169

**FIGURE 95****FIG. 95A****FIG. 95B****FIG. 95C**

94/169

**FIGURE 94****FIG. 94A****FIG. 94B****FIG. 94C**

97/169

**FIGURE 97****FIG. 97A****FIG. 97B****FIG. 97C**

96/169

**FIGURE 96****FIG.  
96A****FIG.  
96B****FIG.  
96C****FIG. 96D**

99/169

**FIGURE 99****FIG. 99A****FIG. 99B****FIG. 99C**

98/169

**FIGURE 98****FIG. 98A****FIG. 98B****FIG. 98C**

101/169

**FIGURE 101****FIG. 101A****FIG. 101B****FIG. 101C**

100/169

**FIGURE 100****FIG. 100A****FIG. 100B****FIG. 100C**

103/169

**FIGURE 103****FIG.  
103A****FIG.  
103C****FIG. 103B**

102/169

**FIGURE 102****FIG. 102A****FIG. 102B**

105/169

**FIGURE 105****FIG. 105A**

KDa P L

115-  
84-  
62-  
51-  
38-

**FIG. 105B**

26-  
20-

6281-G ST  
6281-G ST

104/169

**FIGURE 104****FIG. 104A****FIG. 104B****FIG. 104C**

107/169

**FIGURE 108****FIG. 108A****FIG. 108B**

106/169

**FIGURE 106****FIG. 106A****FIG. 106B**

KDa P I.

**FIGURE 107**

KDa P I.



109/169

**FIGURE 110****FIG. 110A****FIG. 110B**

108/169

**FIGURE 109****FIG. 109A****FIG. 109B**

111/169

**FIGURE 112****FIG. 112A****FIG. 112B**

110/169

**FIGURE 111****FIG. 111A****FIG. 111B**

113/169

**FIGURE 114****FIG. 114A****FIG. 114B**

112/169

**FIGURE 113****FIG. 113A****FIG. 113B**

115/169

**FIGURE 116****FIG. 116A****FIG. 116B**

114/169

**FIGURE 115****FIG. 115A****FIG. 115B**

117/169

**FIGURE 118****FIG. 118A****FIG. 118B**

116/169

**FIGURE 117****FIG. 117A****FIG. 117B**

6486-GST  
6386-GST

119/169

**FIGURE 120****FIG. 120A****FIG. 120B**8627-GST  
6927-GST

118/169

**FIGURE 119****FIG. 119A****FIG. 119B**

121/169

**FIGURE 122****FIG. 122A****FIG. 122B**

6732-GST  
6732-GST

120/169

**FIGURE 121****FIG. 121A**

KDa P |

**FIG. 121B**

123/169

**FIGURE 124****FIG. 124A**

KDa P |

**FIG. 124B**

122/169

**FIGURE 123****FIG. 123A**

kDa P1

115-  
84-  
62-  
51-  
38-

26-  
20-

**FIG. 123B**

6738-GST  
6738-GST

125/169

**FIGURE 126****FIG. 126A**

kDa P F

115-  
84-  
62-  
51-  
38-26-  
20-  
  
6742-GST  
6742-GST**FIG. 126B**

124/169

**FIGURE 125****FIG. 125A****FIG. 125B**

GST  
GST  
6741-6741

127/169

**FIGURE 128****FIG. 128A**

KDa P I

**FIG. 128B**6745-GST  
6745-GST  
6745-GST

126/169

**FIGURE 127****FIG. 127A****FIG. 127B**

129/169

**FIGURE 130****FIG. 130A****FIG. 130B**

128/169

**FIGURE 129****FIG. 129A****FIG. 129B**

131/169

**FIGURE 132****FIG. 132A****FIG. 132B**

130/169

**FIGURE 131****FIG. 131A****FIG. 131B**

133/169

**FIGURE 134****FIG. 134A**

kDa P:

**FIG. 134B**

132/169

**FIGURE 133****FIG. 133A****FIG. 133B**

135/169

**FIGURE 136**



**FIG. 136A**



**FIG. 136B**

134/169

**FIGURE 135****FIG. 135A****FIG. 135B**

137/169

**FIGURE 138****FIG. 138A****FIG. 138B**

136/169

**FIGURE 137****FIG. 137A****FIG. 137B**

139/169

**FIGURE 140****FIG. 140A****FIG. 140B**

138/169

**FIGURE 139****FIG. 139A****FIG. 139B**

141/169

**FIGURE 142****FIG. 142A****FIG. 142B**

140/169

**FIGURE 141****FIG. 141A****FIG. 141B**

143/169

**FIGURE 144****FIG. 144A**

KDa P

**FIG. 144B**

142/169

**FIGURE 143****FIG. 143A****FIG. 143B**

145/169

**FIGURE 146****FIG. 146A****FIG. 146B**

144/169

**FIGURE 145****FIG. 145A**

kDa P |

**FIG. 145B**6433 HS  
6433 HS

147/169

**FIGURE 148****FIG. 148A**

KDa P |

**FIG. 148B**Hs  
7253 Hs  
7253

146/169

**FIGURE 147**



**FIG. 147A**



**FIG. 147B**

149/169

**FIGURE 150****FIG. 150A****FIG. 150B**

KDa P.I.



148/169

**FIGURE 149****FIG. 149A****FIG. 149B**

151/169

**FIGURE 152****FIG. 152A****FIG. 152B**

kDa P I

**FIGURE 153**

kDa P I



150/169

**FIGURE 151****FIG. 151A****FIG. 151B**

KDa P 1



153/169

**FIGURE 156**

P I

**FIGURE 157**

KDa P I

**FIGURE 158**

KDa P I



152/169

**FIGURE 154**



**FIG. 154A**

**FIG. 154B**

KDa P.I.



**FIGURE 155**

kDa P I



155/169

**FIGURE 161****FIG. 161A****FIG. 161B**

kDa P1

**FIGURE 162**

kDa P1

**FIGURE 163**

kDa P1



154/169

**FIGURE 159****FIG. 159A****FIG. 159B**

KDa P I

**FIGURE 160**

KDa P I



157/169

**FIGURE 167****FIG. 167A****FIG. 167B**

KDa P I

6540-His  
6540-GST**FIGURE 168**

KDa P I

6540-His  
6540-GST

156/169

**FIGURE 164****FIG. 164A****FIG. 164B****FIGURE 165****FIGURE 166**

159/169

**FIGURE 171****FIG. 171A****FIG. 171B**

KDa R I

115-  
84-  
62-  
51-  
38-  
26-  
20-

662 His  
662 His

**FIGURE 172**

KDa R I

115-  
84-  
62-  
51-  
38-  
26-  
20-

674 His  
674 His

**FIGURE 173**

KDa P I

115-  
84-  
62-  
51-  
38-  
26-  
20-  
15-  
9-

6497 His  
6497 His

158/169

**FIGURE 169**

KDa P I

115  
84  
62  
51  
38  
26  
206743-G5  
6743-G5**FIGURE 170**

KDa P I

115  
84  
62  
51  
38  
26  
207041-G5  
7041-G5

161/169

**FIGURE 179****FIG. 179A****FIG. 179B**

160/169

**FIGURE 174****FIG. 174A****FIG. 174B**

P.I.

**FIGURE 175**

P.I.

**FIGURE 176**

P.I.

**FIGURE 177**

P.I.

**FIGURE 178**

P.I.



163/169

**FIGURE 181**

KDa P I

**FIGURE 182**

KDa P I

**FIGURE 183**

KDa P I

**FIGURE 184**

KDa P I



162/169

**FIGURE 180****FIG. 180A****FIG. 180B**

165/169

**FIGURE 186****FIG. 186A****FIG. 186B**

164/169

**FIGURE 185**

KDa P I

115-

84-

62-

51-

38-

26-

20-

GST  
GST  
6642 6642  
6643 6643

167/169

**FIGURE 188****FIG. 188A**

kDa P.I.

**FIG. 188B**

166/169

**FIGURE 187****FIG. 187A****FIG. 187B**

169/169

**FIGURE 190****FIGURE 191**

SVIVG . VSTNSEHRYHAFQYADGQMVDLCTMIGCPESYAQGVSGDCK  
 KVIVVG . HSTRTDGEYRAFKYVDGRMIDLCTMIGGSASFAFGVSSDGK  
 KVIVVG . RSETYYGEVHAFCHKNGVMSDLGTLGGSYSAAKGVSATGK  
 KVIVVG . WSTTNNGETHAFMHKDETMHDLCMIGCGGFSVATGVSAADR  
 TIVVGSMESTITRKTTAVKWVNNVPTYLCTLCGDASTGLYISGDGT



168/169

**FIGURE 189****FIG. 189A**

kDa P L

115-  
84-  
62-  
51-  
38-  
26-  
20-115  
84  
62  
51  
38  
26  
20**FIG. 189B**