Daniel Culliver

35-1-4 Atlas zlomků

Každý zlomek v základním tvaru je podíl dvou nesoudělných čísel. Neboli zlomek $\frac{X}{V},$ kde X \nmid Y.

Tedy pro každý Y, musíme vygenerovat Y- $d_{\mathbb{D}_Y}+1$ zlomků, kde $d_{\mathbb{D}_Y}$ je délka množiny \mathbb{D}_Y , která vyjadřuje množinu všech dělitelů čísla Y. Je potřeba přičíst 1, abychom počítali se zlomkem $\frac{1}{Y}$

Zatím vychází, že pro generování zlomků pro jmenovatele Y je potřeba vypsat Y- $d_{\mathbb{D}_Y}+1$ zlomků. Ještě musíme započítat hledání všech dělitelů čísla Y, který využívá algoritmus s časovou komplexitou $\mathcal{O}(Y^{\frac{1}{3}})$. Protože tato komplexita je třetí mocninou Y, zanedbáme ji a budeme dál počítat jen s množstvím operací Y- $d_{\mathbb{D}_Y}+1$, protože roste téměř lineárně.

Kvůli zanedbatelného růstu množiny \mathbb{D}_Y , celé generování zlomků bychom mohli zjednodušit na:

$$\sum_{N=1}^{N} Y = \frac{N(N+1)}{2}$$

Což vychází jako časová komplexita $O(N^2)$.

Tato časová komplexita vychází i kdybychom iterovali přes všechny možnosti a odstranili nevhodné zlomky. Tudíž bych očekával, že rychlejší algoritmus existuje, ale nenapadá mě.

Dobrou zprávou je, že paměťová složitost algoritmu je velmi dobrá. Protože každé Y vyžaduje jenom množinu \mathbb{D} , abychom věděli které čitatele přeskočit, paměťová složitost algoritmu je jenom $O(\max(d_{\mathbb{D}_Y}))$, nebo-li největší velikost množiny \mathbb{D}_Y (Nemusí být nutně \mathbb{D}_N) což bych neočekával že by ani dosáhlo řádu stovek (vzhledem k tomu že časová složitost bude limitujícím faktorem)