EXERCICE 1 (Cours)

Donner (et prouver) le résultat sur l'unicité de l'inverse.

Exercice 2 (Cours)

Donner (et prouver) le résultat concernant l'intersection de sous-groupes.

Exercice 3 (Cours)

Donner (et prouver) le résultat concernant l'image directe et l'image réciproque d'un sous-groupe par un morphisme de groupe.

Exercice 4

Pour tous $x, y \in]-1, 1[$, on pose

$$x \oplus y = \frac{x+y}{1+xy}.$$

- 1. Montrer que \oplus est une loi de composition interne sur]-1,1[.
- 2. Montrer que $(]-1,1[,\oplus)$ est un groupe commutatif.

Exercice 5

Pour tous $(x, y), (x', y') \in \mathbb{R}^* \times \mathbb{R}$, on pose

$$(x,y) \star (x',y') = (xx',xy'+y).$$

- 1. Montrer que $(\mathbb{R}^* \times \mathbb{R}, \star)$ est un groupe. Est-il abélien?
- 2. Simplifier $(y, n)^n$ pour tous $(x, y) \in \mathbb{R}^* \times \mathbb{R}$ et $n \in \mathbb{N}$.

Exercice 6

Soit (G,\cdot) un groupe, H un sous-groupe de G, et $a\in G$. Montrer que l'ensemble

$$aHa^{-1} = \{aha^{-1} \mid h \in H\}$$

est un sous groupe de G.

Exercice 7

Soit (G, +) un groupe abélien, d'élément neutre noté 0. On dit que $x \in G$ est un élément de torsion de G s'il existe $n \in \mathbb{N}$ tel que

$$nx = 0.$$

Démontrer que l'ensemble des éléments de torsion de G est un sous-groupe de G.

Exercice 8

Montrer que $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$ est un corps.

Exercice 9

Soit $(A, +, \cdot)$ un anneau. On dit que A est un anneau de Boole si, pour tout $x \in A$, on a

$$x^2 = x$$
.

Supposons que A est un tel anneau.

- 1. Démontrer que, pour tout $x \in A$, on a x = -x.
- 2. Démontrer que A est commutatif.

Exercice 10

Soit $(A, +, \cdot)$ un anneau commutatif. On dit qu'un élément $x \in A$ est nilpotent s'il existe un entier $n \ge 0$ tel que

$$x^n = 0.$$

On fixe x et y deux éléments nilpotents de A.

- 1. Montrer que xy est nilpotent.
- 2. Montrer que x + y est nilpotent.
- 3. Montrer que $1_A x$ est inversible.
- 4. On ne suppose plus que A est commutatif. Soit $a, b \in A$ tels que ab soit nilpotent. Montrer que ba est nilpotent.

Exercice 11

Soit l'ensemble des rationnels à dénominateur impair

$$A = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, \, \exists k \in \mathbb{N}, \, n = 2k + 1 \right\}.$$

- 1. Démontrer que A est un anneau.
- 2. Quels sont ses éléments inversibles ?

Exercice 12

Soit $(A, +, \cdot)$ un anneau. On appelle *caractéristique* de A l'ordre de 1_A dans le groupe additif (A, +). Dans la suite, on supposera que A admet une caractéristique finie $n \in \mathbb{N}$.

- 1. Démontrer que, pour tout $x \in A$, on a nx = 0
- 2. Démontrer que si A est intègre, alors n est un nombre premier.
- 3. Démontrer que si A est intègre et commutatif, alors $x \mapsto x^n$ est un morphisme d'anneau.