582206 Laskennan mallit, syksy 2012

- 7. harjoitusten malliratkaisut Juhana Laurinharju ja Jani Rahkola
 - 1. Esitä pinoautomaatti seuraaville kielille.
 - (a) Kaikki palindromit aakkostosta $\Sigma = \{a, b, c\}$.

(b) $\left\{a^ib^j\mid 0\leq i\leq j\right\}$ missä $\Sigma=\left\{a,b,c\right\}$

(c) $\left\{a^ib^jc^k\mid j=i+k\right\}$ missä $\Sigma=\{a,b,c\}$

- (d) Kaikki aakkoston $\Sigma = \{0,1\}$ merkkijonot joissa nollia on kaksi kertaa niin paljon kuin ykkösiä.
- 2. Tarkastellaan kielioppia

$$S \rightarrow S + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (S) \mid a$$

Muodosta merkkijonon s=(a+a)*a jäsennyspuu tämän kieliopin mukaisesti.

Etsi jäsennyspuusta jokin juuresta lehteen johtava polku, jolla sama muuttuja esiintyy kahdessa solmussa. Muodosta tämän perusteella toistuvuusominaisuuden todistuksen ideaa mukaillen jokin merkkijonon s jako osiin s=uvxyz, joilla merkkijono uv^ixy^iz kuuluu tarkasteltavaan kieleen kaikilla $i\in N$.

3. Olkoon A aakkoston $\{0,1\}$ kieli, joka koostuu niistä merkkijonoista, joissa on sama määrä nollia ja ykkösiä. Tällä kielellä on kontekstiton kielioppi

$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \varepsilon$$

(a) Kielen A eräs toistuvuuspituus on 4. Esitä kieleen A kuuluvalle merkkijonolle s = 001101 kaikki eri tavat jakaa se osiin s = uvxyz toistuvuusominaisuuden ehdot toteuttavalla tavalla (lause 2.30; Sipser Theorem 2.34; tässä siis p = 4).

u	v	x	y	z
·	· · · · · · · · · · · · · · · · · · ·		0011	01
		0	01	101
	0		011	01
	0	0	1	101
	0	01	1	01
	00		11	01
	001		1	01
	0011			01
0			01	101
0			0110	1
0		01	10	1
0	0		1	101
0	0		110	1
0	0	1	1	01
0	01			101
0	01		10	1
0	01	1		01
0	01	10		1
0	011		0	1
0	0110			1
00		1	10	1
00		11	01	
00	1	1	0	1
001			10	1
001		1	01	
001	1		0	1
001	10			1
001	10	1		
0011			01	
0011	0		1	
0011	01			
Vhtoones 31 ohdot täyttävää jal				

Yhteensä 31 ehdot täyttävää jakoa.

- (b) Onko kielellä A pienempiä toistuvuuspituuksia kuin 4? Perustele.
- 4. (a) Koostukoon aakkoston $\{a,b,c\}$ kieli A merkkijonoista, joissa on yhtä monta a-, b- ja c- merkkiä. Osoita, että A ei ole yhteydetön.
 - (b) Osoita, että kieli $\{0^n1^n0^n1^n\mid n\in\mathbb{N}\}$ ei ole yhteydetön.
- 5. Anna yhteydetön kielioppi, joka tuottaa kielen $\{a^ib^jc^k\mid i=2j \text{ tai }j=2k\}$. Muodosta apulauseen 2.21 mukaisesti kieliopistasi pinoautomaatti, joka tunnistaa saman kielen.
- 6. Tee alla olevasta pinoautomaatista Apulauseen 2.27 mukaisesti kielioppi.

- 7. (a) Osoita, että jos A on yhteydetön ja B säännöllinen kieli, niin $A \cap B$ on yhteydetön. Vihje: muodosta pinoautomaatin ja äärellisen automaatin leikkausautomaatti samaan tapaan kuin Jyrkin luentojen lauseessa 1.1 (luentomateriaalin sivut 48–50).
 - (b) Tiedetään, että kieli L on yhteydetön ja R säännöllinen. Voidaanko tästä päätellä, että L-R on yhteydetön? Entä R-L? Perustele.