2三角函數的圖形

1. 三角函數的圖形:

函數	部分圖形	定義域與值域	週期
$y = \sin x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	定義域: \mathbb{R} 值域: $\{y \in \mathbb{R} -1 \le y \le 1\}$	2π
$y = \cos x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	定義域: \mathbb{R} 值域: $\{y \in \mathbb{R} -1 \le y \le 1\}$	2π
$y = \tan x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	定義域: $\left\{x \in \mathbb{R} \middle x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z} \right\}$ 值域: \mathbb{R}	π

2. 週期的改變:

已知 $a \cdot b$ 為非零常數, $c \cdot d$ 為常數。

$$(1)$$
若 $f(x)$ 的週期為 T ,則 $f(bx)$ 的週期為 $\frac{T}{|b|}$ 。

$$(2) y = a \sin(bx+c)+d \cdot y = a \cos(bx+c)+d$$
的週期為 $\frac{2\pi}{|b|}$ 。

(3)
$$y = a \tan(bx+c)+d$$
 的週期為 $\frac{\pi}{|b|}$ 。

3. 平移和伸縮:

- (1) 三角函數之圖形的平移:將 $y = \sin x$ 平移成 $y = \sin(x-h) + k$, h > 0 ⇒往右平移 h 單位, h < 0 ⇒往左平移 |h| 單位; k > 0 ⇒往上平移 k 單位, k < 0 ⇒往下平移 |k| 單位。
- (2) 三角函數之圖形的伸縮: $y = a\sin(bx)$, a > 0 、 b > 0, 振幅變為 $y = \sin x$ 圖形振幅的 a 倍,週期變為 $y = \sin x$ 圖形週期的 $\frac{1}{h}$ 倍。

觀念是非題 試判斷下列敘述對或錯。(每題2分,共10分)

- (\bigcirc) **1.** 若 f(x) 的週期為T ,則 af(x) 的週期仍為T ,其中 a 為非零常數。
 - 解 平移、往鉛直方向伸縮皆不改變週期。
- (\times) **2.** 若 f(x) 的週期為T,則 f(bx) 的週期為 $b\times T$,其中b 為非零常數。
 - 解 f(bx)的週期應為 $\frac{T}{|b|}$
- (\bigcirc) **3.** $y = \tan x$ 的圖形對稱於原點。
 - 解 將 $y = \tan x$ 的圖形畫出來後可知對稱於原點。
- (\times) **4.** 已知 $y = \sin x$ 的週期為 2π ,因此 $y = |\sin x|$ 的週期亦為 2π 。
 - M 描點畫圖後,可得 $y = |\sin x|$ 的週期為 π 。
- (\bigcirc) **5.** 已知 $y = \sin x$ 為週期函數,則 $y = \sin x + |\sin x|$ 為週期函數。
 - 解 $y = \sin x + |\sin x|$ 的圖形分段討論如下:

 - $(2) \pi \le x < 2\pi \Rightarrow y = \sin x + (-\sin x) = 0$

且每 2π 會重複相同圖形,可知其週期為 2π 。

一、填充題(每題7分,共70分)

- **1.** 下列選項何者為真? (B)(C)(D) 。(多選題)
 - $(A) y = \sin 2x$ 的週期為 2π
 - (B) $y = 1 + \sin 2x$ 的週期與 $y = \sin 2x$ 相同
 - (C) $y=1+\sin 2x$ 的最大值為2,最小值為0

(D)
$$y = \sin\left(x + \frac{\pi}{3}\right)$$
 之週期為 2π

(E)
$$y = \sin\left(x + \frac{\pi}{3}\right)$$
的圖形是將 $y = \sin x$ 的圖形向右移 $\frac{\pi}{3}$ 單位而得。

- **解** (A)×:週期為 $\frac{2\pi}{2}$ = π 。
 - (B)○:將 $y = \sin 2x$ 的圖形向上平移1單位,可得 $y = 1 + \sin 2x$ 的圖形,不改變週期。
 - (C) \bigcirc : $-1 \le \sin 2x \le 1 \Rightarrow 0 \le 1 + \sin 2x \le 2$
 - (D)〇:將 $y = \sin x$ 的圖形向左平移 $\frac{\pi}{3}$ 單位,可得 $y = \sin\left(x + \frac{\pi}{3}\right)$ 的圖形,不改變週期 2π 。
 - (E) \times : 將x以 $x+\frac{\pi}{3}$ 代入 \Rightarrow 即由 $y=\sin x$ 的圖形向左平移 $\frac{\pi}{3}$ 單位而得。 故選(B)(C)(D)。
- **2.** 函數 $f(x) = -2\sin 3x$, 請問下列選項何者為真? (A)(B)(C)(D) 。(多選題)

$$(A)-2 \le f(x) \le 2$$
 $(B) f(x) 在 x = \frac{\pi}{6}$ 時有最小值 $(C) f(x)$ 的週期為 $\frac{2\pi}{3}$

(D)
$$y = f(x)$$
 的圖形對稱於直線 $x = \frac{\pi}{2}$ (E) $f(2) < 0$ 。

【聯考(修)】

(A) (A) () : 因為 $-1 \le \sin 3x \le 1 \Rightarrow -2 \le -2 \sin 3x \le 2$ 。

(B)
$$\bigcirc$$
: $f\left(\frac{\pi}{6}\right) = -2\sin\frac{\pi}{2} = -2$ \circ

- (C)〇:週期為 $\frac{2\pi}{3}$ 。
- (D)〇:由圖可知正確。
- (E) \times : $f(2) = -2\sin 6 > 0$ (因為6弳為第四象限角)。

故選(A)(B)(C)(D)。

10 單元2 三角函數的圖形

3. 右圖為 $y = f(x) = a \sin bx + c$ 在某個週期內的圖形,且 $a \cdot b \cdot c$ 為常數, a > 0 , b > 0 。

解 由圖可知振幅為1(且a>0),故a=1。

週期為
$$\frac{2\pi}{|b|} = \pi \Rightarrow b = \pm 2 \ (且 b > 0)$$
,故 $b = 2$ 。

 $f(0) = 1 \times \sin 0 + c = 3 \Rightarrow c = 3$

- **4.** 已知函數 $f(x) = -4\sin\left(x + \frac{\pi}{6}\right) 1$,當 $0 \le x \le \pi$ 時, f(x)的最大值為 a,最小值為 b則數對 (a,b) = (1,-5)。
- - ② f(x)的最大值為a=1,最小值為b=-5,所以數對(a,b)=(1,-5)。
- **5.** 將 $y = \cos x$ 的圖形根據下列條件伸縮、平移,寫出變換後的圖形。
 - (1) 先以y軸為基準線,水平伸縮為原來的 $\frac{1}{2}$ 倍,再往右平移 $\frac{\pi}{3}$ 單位,可得新圖形 $y = \cos(ax b)$,其中a > 0, $0 < b < \pi$,則數對 $(a,b) = \left(2, \frac{2\pi}{3}\right)$ 。(3分)
 - (2) 先往右平移 $\frac{\pi}{3}$ 單位,再以y軸為基準線,水平伸縮為原來的 $\frac{1}{2}$ 倍,可得新圖形 $y = \cos(ax b)$,其中a > 0, $0 < b < \pi$,則數對 $(a,b) = \left(2, \frac{\pi}{3}\right)$ 。(4分)
- 解 (1) $y = \cos x \frac{x + \sin x}{\frac{1}{2} + \cos x} y = \cos 2x \frac{2\pi}{3} + \cos x = \cos 2 \left(x \frac{\pi}{3} \right) = \cos \left(2x \frac{2\pi}{3} \right)$, 故 $(a,b) = \left(2, \frac{2\pi}{3} \right)$ 。
 - (2) $y = \cos x \frac{2\pi}{3}$ (2) $y = \cos \left(x \frac{\pi}{3}\right) \frac{x}{2}$ (2) $y = \cos \left(2x \frac{\pi}{3}\right)$, 故 $(a,b) = \left(2, \frac{\pi}{3}\right)$ 。

- 試比較 tan1、tan2、tan3的大小關係: tan1>tan3>tan2 (由大到小)。
- 解 由圖形可知:
 - (1) $\tan 1 > 0$; $\tan 2 < 0$, $\tan 3 < 0$
 - ② 其中 tan 3 > tan 2。

故 tan 1 > tan 3 > tan 2。

- 7. $au 0 \le x \le 4\pi$ 的範圍內,求方程式 $\sin x \ge \frac{1}{2}$ 的解為 $\frac{\pi}{6} \le x \le \frac{5\pi}{6}$ 或 $\frac{13\pi}{6} \le x \le \frac{17\pi}{6}$ 。

 (I) 先將 $\begin{cases} y = \sin x \\ y = \frac{1}{2} \end{cases}$ 的圖形畫出來,如右圖所示

兩圖形相交於 $x = \frac{\pi}{6}$ 或 $\frac{5\pi}{6}$ 或 $\frac{13\pi}{6}$ 或 $\frac{17\pi}{6}$ 之處。

由圖可知共有5個實根。

設 $a = \sin(\pi^2)$, 試問下列哪個選項是對的? (C) 。(單選題)

(A)
$$-1 < a \le -\frac{\sqrt{3}}{2}$$
 (B) $-\frac{\sqrt{3}}{2} < a \le -\frac{1}{2}$ (C) $-\frac{1}{2} < a < 0$ (D) $\frac{1}{2} < a \le \frac{\sqrt{3}}{2}$ (E) $\frac{\sqrt{3}}{2} < a \le 1$

 $a = \sin(\pi^2) = \sin(\pi \times \pi) \approx \sin(3.14\pi) = \sin 1.14\pi$

12 單元 2 三角函數的圖形

- **10.** 在 $0 \le x < 2\pi$ 的範圍內,求不等式 $2\sin^2 x + \cos x 1 < 0$ 之解的範圍為 $\frac{2}{3}\pi < x < \frac{4}{3}\pi$
- 解 ① 原式 \Rightarrow $2(1-\cos^2 x) + \cos x 1 < 0 \Rightarrow 2\cos^2 x \cos x 1 > 0$ $\Rightarrow (2\cos x + 1)(\cos x - 1) > 0 \Rightarrow \cos x > 1$ 或 $\cos x < -\frac{1}{2}$,

 $\underline{(1)} = 1 \le \cos x \le 1$,故 $-1 \le \cos x < -\frac{1}{2}$ 。

② 在 $0 \le x < 2\pi$ 的範圍內,

當
$$\cos x = -\frac{1}{2}$$
 時, $x = \frac{2}{3}\pi$ 或 $\frac{4}{3}\pi$,所以 $\frac{2}{3}\pi < x < \frac{4}{3}\pi$ 。

二、素養混合題(共20分)

第 11 至 13 題為題組

海水的水位受到太陽、月球引力以及地球自轉的影響,造成一種規律的現象,稱為潮汐現象。潮汐與港口的建設有密切的關聯,港口規劃建設時,須掌握潮汐的規律,使漲潮時船隻不會被淹沒;退潮時船隻不會擱淺。下表為某漁港一天時間x(時)與水深y(公尺)的部分關係,且時間x與水深y滿足正弦函數

時間 <i>x</i> (時)	0	2	4	6	8	10	12	14	16
水深y(公尺)	5.0	7.5	5.0	2.5	5.0	7.5	5.0	2.5	5.0

(C) 11. 試問下列各曲線中,何者最接近此正弦函數的圖形?(單選題,6分)

12. 承上題,若上表的時間 x 與水深 y 滿足正弦函數 $y = a\sin(bx+c)+d$,其中 a > 0 , b > 0 且 $0 \le c < \pi$,求序組 (a,b,c,d) = ? (非選擇題,7 分)

- **13.** 為了避免船隻入港時有擱淺的危險,當水深不低於 6.25公尺時,才會安排船隻入港,試問在 0 時到 16 時之間,約有多少小時船隻可以進入港口?(四捨五入取到整數位)(非選擇題,7分)
- 解 11. 已知圖形為正弦函數,且由數據知選(C)。
 - 12. ① 觀察附表可得函數的週期為 8小時,且振幅為 $\frac{7.5-2.5}{2} = \frac{5}{2}$, 又週期 = $\frac{2\pi}{b} = 8 \Rightarrow b = \frac{\pi}{4}$,且振幅 = $a = \frac{5}{2}$,得 $y = \frac{5}{2} \sin\left(\frac{\pi}{4}x + c\right) + d$ 。
 - ② 觀察附表可得 y 的最大值為 7.5 ,又 $\sin\left(\frac{\pi}{4}x+c\right)$ 的最大值為 1 , 故當 $\sin\left(\frac{\pi}{4}x+c\right)=1$ 時 , $y=\frac{5}{2}+d=7.5\Rightarrow d=5$, 將 (0,5) 代入 $y=\frac{5}{2}\sin\left(\frac{\pi}{4}x+c\right)+5\Rightarrow\sin c=0$,因為 $0\le c<\pi$,故 c=0 , 即 $y=\frac{5}{2}\sin\left(\frac{\pi}{4}x\right)+5$,所以 $(a,b,c,d)=\left(\frac{5}{2},\frac{\pi}{4},0,5\right)$ 。
 - 13. 求 $y = \frac{5}{2} \sin\left(\frac{\pi}{4}x\right) + 5$ 與 y = 6.25 兩圖形的交點:

$$\frac{5}{2}\sin\left(\frac{\pi}{4}x\right) + 5 = 6.25 \Rightarrow \sin\left(\frac{\pi}{4}x\right) = \frac{1}{2}$$
$$\Rightarrow \frac{\pi}{4}x = \frac{\pi}{6} , \frac{5\pi}{6} , \frac{13\pi}{6} , \frac{17\pi}{6} , \dots$$
$$\Rightarrow x = \frac{2}{3} , \frac{10}{3} , \frac{26}{3} , \frac{34}{3} , \dots ,$$

故在 0 時到 16 時之間,水深不低於 6.25 公尺的時間約有

$$\left(\frac{10}{3} - \frac{2}{3}\right) + \left(\frac{34}{3} - \frac{26}{3}\right) = \frac{16}{3} \approx 5 \quad (/ \) \Leftrightarrow$$