Due: July 12, 2021

Section 15.1

Exercise 1. Calculate the iterated integral $\int_0^1 \int_0^2 y e^{y-x} dx dy$.

Exercise 2. Calculate the double integral $\iint_R \frac{x}{1+xy} dA$, $R = [0,1] \times [0,1]$.

Written Homework: Module 7

Due: July 12, 2021

Exercise 3. Find the average value of the function $f(x,y) = e^y \sqrt{x + e^y}$ over the rectangle $R = [0,3] \times [0,1]$.

Section 15.2

Exercise 4. Set up the iterated integrals for both orders of integration for the integral $\iint_D y^2 e^{xy} dA$, where D is the region bounded by y = x, y = 3 and x = 0. Then evaluate the double integral using the easier order and explain why it is easier.

Exercise 5. Find the volume of the solid in the first octant under the plane z = x + y, above the surface z = xy, and enclosed by the surfaces x = 0, y = 0 and $x^2 + y^2 = 4$ by subtracting two volumes.

Exercise 6. Sketch the region of integration and change the order of integration for the iterated integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-y^2}} f(x,y) \ dx \ dy$.

Section 15.3

Exercise 7. Evaluate the integral $\iint_D \cos \sqrt{x^2 + y^2} dA$, where D is the disk with center at the origin and radius 3, by changing to polar coordinates.

Exercise 8. Use a double integral to find the area of the region enclosed by both of the cardioids $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$.

Written Homework: Module 7

Due: July 12, 2021

Exercise 9. Use polar coordinates to find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$.

Section 15.4

Exercise 10. Find the mass and center of mass of the lamina that occupies the region D bounded by y = x + 2 and $y = x^2$ with density function $\rho(x, y) = kx^2$.

Due: July 12, 2021

Exercise 11. A lamina occupies the region inside the circle $x^2 + y^2 = 2y$ but outside the circle $x^2 + y^2 = 1$. Find the center of mass if the density at any point is inversely proportional to its distance from the origin.

Exercise 12. A lamina with constant density $\rho(x,y)=\rho$ occupies the region under the curve $y=\sin x$ from x=0 to $x=\pi$. Find the moments of inertia I_x and I_y and the radii of gyration $\overline{\overline{x}},\overline{\overline{y}}.$

Section 15.5

Exercise 13. Find the area of the surface of the part of the cylinder $x^2 + z^2 = 4$ that lies above the square with vertices (0,0), (2,0), (0,2), (2,2).

Exercise 14. Find the area of the surface $z = \frac{2}{3}(x^{\frac{3}{2}} + y^{\frac{3}{2}})$ over the region $D = \{(x,y)|0 \le x \le 1, 0 \le x \le 2\}$.

Due: July 12, 2021

Exercise 15. Use midpoint rule for double integrals with m=n=2 to estimate the area of the surface $z=xy+x^2+y^2,\,0\leq x\leq 4,0\leq y\leq 4.$