Введение в статистику

Основные понятия о статистике: медиана, мода, стандартное отклонение, дисперсия. Виды распределений: нормальное, равномерное. Корреляционный анализ данных. Коэффициенты корреляции Пирсона, Кендалла, Спирмена. Пример матрицы корреляций.

Даниил Корбут

Специалист по Анализу Данных

Даниил КорбутDL Researcher
Insilico Medicine, Inc

Окончил бакалавриат ФИВТ МФТИ (Анализ данных) в 2018г Учусь на 2-м курсе магистратуры ФИВТ МФТИ Работал в Statsbot и Яндекс. Алиса.

Сейчас в Insilico Medicine, Inc, занимаюсь генерацией активных молекул и исследованиями старения с помощью DL.

Где применяется статистический анализ?

Компьютерное зрение; Перевод языков; Генетический анализ данных (молекулярная биология); Финансовый анализ данных; Рекомендательные системы; Моделирование физиологических сигналов; в любых табличных данных.

Статистика

Рассматривается выборка из случайной величины X:

$$X^n = (X_1, \dots, X_n),$$

где n — объем выборки. Величины X_1, X_2, \ldots, X_n — независимые одинаково распределенные случайные величины (i.i.d.).

Статистикой $T(X^n)$ называется любая функция от данной выборки.

Основные понятия статистики

```
Среднее значение;
Медиана;
Мода;
Минимум;
Максимум;
Стандартное отклонение;
Корелляция;
Выбросы.
```


Среднее

Часто возникает необходимость оценить не всю функцию распределения, а некоторые ее параметры. Самым важным классом параметров распределения являются **средние**. Нестрогое определение можно сформулировать следующим образом: среднее — это значение, вокруг которого группируются все остальные.

Одним из вариантов уточнения данного определения является матожидание:

$$EX = \left\{egin{aligned} \sum_i a_i p_i, & X-\ ext{дискретна}, \ & +\infty \ \int x \, f(x) \, dx, & X-\ ext{непрерывнa}. \end{aligned}
ight.$$

Квантиль и медиана

Другой характеристикой среднего является медиана. Она определяется с помощью квантиля. **Квантилем** порядка $\alpha \in (0,1)$ называется величина X_{α} такая, что:

$$P(X \leq X_{\alpha}) \geqslant \alpha, \quad P(X \geqslant X_{\alpha}) \geqslant 1 - \alpha.$$

Медиана — это квантиль порядка 0,5:

$$P(X \le \text{med } X) \ge 0.5, \quad P(X \ge \text{med } X) \ge 0.5.$$

Медиана

Возьмите ваши наблюдения:

80, 87, 95, 83, 92

Расположите их в возрастающем порядке:

80, 83, 87, 92, 95

Среднее значение и есть медиана

▼ 80, 83, **87**, 92, 95

Если значений чётное кол-во, то медианой будет среднее арифметическое двух средних значений

89.5 80, 83, **87**, **92**, 95, 98

Мода

Еще одной характеристикой среднего является **мода** — самое вероятное значение случайной величины (в нестрогом смысле):

Пример подсчёта

Выборочная мода оценивается по максимуму оценки плотности распределения.

Показателен следующий пример. Рассматривается выборка из 25 человек, для каждого из которых известен годовой доход. В выборке есть десять человек, годовой доход которых равен двум тысячам долларов, один человек с годовым доходом в три тысячи долларов, и так далее. Один человек получает сорока пять тысяч долларов в год. Среднее арифметическое годовых доходов на этой выборке — 5700 долларов. Здесь медиана составляет 3000 долларов, а мода — 2000.

Пример подсчёта

Необходимо заметить, что все рассматриваемые величины называются «средними». Значит, для оптимистичного отчета по данной выборке можно воспользоваться средним арифметическим, а для пессимистичного — модой.

Стандартное отклонение

Мера отклонения значений выборки от среднего

Дисперсия

Квадрат стандартного отклонения. Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около среднего: если дисперсия маленькая - значения сравнительно близки друг к другу, если большая - далеки друг от друга.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

Нахождение матожидания и дисперсии

Чему равно математическое ожидание и дисперсия случайной величины?

X 2 3 5 6 5 1	X	2	3	5	6	5	1
---------------	---	---	---	---	---	---	---

Математическое ожидание = среднее значение =
$$(2+3+5+6+5+1)/6 = 3.6$$

Дисперсия =
$$1/5$$
 ($(2-3.6)^2 + (3-3.6)^2 + (5-3.6)^2 + (6-3.6)^2 + (5-3.6)^2 + (1-3.6)^2 = 4,632$

Выбросы

Если в данных есть выбросы — значения, которые имеют слишком большое отклонение от среднего значения, — это может негативно повлиять на анализ.

Примеры случайных величин (равномерное распределение)

Ярким примером непрерывной случайной величины, распределённой **равномерно**, является время ожидания перехода дороги со светофором без секунд.

Примеры случайных величин (нормальное распределение)

Ярким примером непрерывной случайной величины, распределённой **нормально**, является время прихода на работу, если вы всегда старайтесь приходить в офис, например, около 12:00.

```
> X — время прихода на работу
> X \sim N(\mu, \sigma^2)
нормальное
(Гауссово)
распределение
```

Сумма слабо зависимых случайных факторов

Распределение роста

nttps://www.coursera.org/learn/mathematics-and-python

Примеры непрерывных случайных величин (нормальное распределение)

 $oldsymbol{X}$ – время прихода на работу $oldsymbol{X} \sim N(\mu, \sigma^2)$

$$X \sim N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Нормализация данных

Часто данные перед анализом необходимо нормализовать.

Корреляция

Корреляция (от лат. correlatio .cooтношение, взаимосвязь.), или корреляционная зависимость, — статистическая взаимосвязь двух или более случайных величин.

Примеры неожиданной корреляции

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

Примеры неожиданной корреляции

Age of Miss America

correlates with

Murders by steam, hot vapours and hot objects

tylervigen.com

Примеры неожиданной корреляции

People who drowned after falling out of a fishing boat

correlates with

Marriage rate in Kentucky

Финансовый анализ данных

Предсказание колебания цены на акции фирмы. Анализ корелляции необходим для анализа соотношения двух компаний.

Корреляция Пирсона

$$r_{xy} = \frac{\sum_{i=1}^{m} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x})^2 \sum_{i=1}^{m} (y_i - \overline{y})^2}} = \frac{\cos v(x, y)}{\sqrt{s_x^2 s_y^2}},$$

Корреляция Пирсона

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Корреляция Спирмена

Предназначены для определения взаимосвязи между ранговыми Переменными (проверка на нормальность не требуется).

- 1. Сопоставить каждому из признаков их порядковый номер (ранг) по возрастанию или по убыванию.
- 2. Определить разности рангов каждой пары сопоставляемых значенмй (d)
- 3. Возвести в квадрат каждую разность и суммировать полученные результаты.
- 4. Вычислить коэффициент коррялции рангов по формуле:

$$ho=1-rac{6\cdot\sum d^2}{n(n^2-1)}$$

Или использовать библиотеку statistics: scipy.stats.spearmanr(x, y)

http://medstatistic.ru/theory/spirmen.html

Корреляция Кендалла

Аналог корреляции Спирмена.

$$\tau = \frac{n_c - n_d}{\frac{1}{2}n(n-1)}$$

Nc - число совпадений Nd - число инверсий.

scipy.stats.kendalltau(x, y)

Сравнение коэффициентов Спирмена и Кендалла

Слева - корреляция Кендалла, справа - корреляция Спирмена

http://www.machinelearning.ru/wiki/index.php?title=Коэффициент_корреляции_Кенделла

Сравнение коэффициентов Пирсона и Спирмена

https://support.minitab.com/en-us/minitab-express/1/help-and-how-to/modeling-statistics/regression/supporting-topics/basics/a-comparison-of-the-pearson-and-spearman-correlation-methods/

Матрица корреляций

Для статистического анализа играет наиважнейшую роль. Строим матрицу корреляций для того, чтобы определить, насколько 2 случайные величины зависят друг от друга.

$$S = \left(egin{array}{cc} s_x & 0 \ 0 & s_y \end{array}
ight)$$

Sx — дисперсия переменной х (среднеквадратичное значение) Sy — дисперсия переменной у

Матрица корреляций

Для статистического анализа играет наиважнейшую роль. Строим матрицу корреляций для того, чтобы определить, насколько 2 случайные величины зависят друг от друга.

$$S = \left(egin{array}{cc} s_x & 0 \ 0 & s_y \end{array}
ight)$$

Sx — дисперсия переменной x

Если 2 случайные величины зависимы друг от друга, то матрица корреляций принимает вид:

$$C = \left(egin{array}{ccc} \sigma(x,x) & \sigma(x,y) \ \sigma(y,x) & \sigma(y,y) \end{array}
ight) \qquad \qquad
ho_{X,\ Y} = rac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}}$$

Матрица корреляций

Спасибо за внимание!

