Original Demo

Wednesday, 12 October 2022 11:24 pm

EXAMPLE 8-6

Two 25.4 by 101.6 mm 1018 cold-rolled steel bars are butt-spliced with two 12.7 by 101.6 mm 1018 cold-rolled splice plates using four M20 \times 1.5 mm grade 5 bolts as depicted in Figure 8–26. For a design factor of $n_d=1.5$ estimate the static load F that can be carried if the bolts lose preload.

Table A-20 (Members)

Area of splice plates are half	
Area of spice plates are half hose of centerbars	
F/2 F	
$\sigma_{cg} = \frac{F}{A}$ $\sigma_{sp} = \frac{F/z}{A/z} = \frac{F}{A}$	
CB A/2	
7	
. For forces associated with splice plates, me	
forces and areas will be more of centre plate	_5
CV TO THE TOTAL OF	_

Talle 8-11 (Bolt)

Sur = 440 MPa Sy = 370 MPa

			4 Tensile	5 Yield			
UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	Strength, MPa (kpsi)	Elongation in 2 in, %	Reduction in Area, %	Brinell Hardnes
G10060	1006	HR	300 (43)	170 (24)	30	55	86
		CD	330 (48)	280 (41)	20	45	95
G10100	1010	HR	320 (47)	180 (26)	28	50	95
		CD	370 (53)	300 (44)	20	40	105
G10150	1015	HR	340 (50)	190 (27.5)	28	50	101
		CD	390 (56)	320 (47)	18	40	111
G10180	1018	HR	400 (58)	220 (32)	25	50	116
		CD	440 (64)	370 (54)	15	40	126
G10200	1020	HR	380 (55)	210 (30)	25	50	111
		CD	470 (68)	390 (57)	15	40	131
G10300	1030	HR	470 (68)	260 (37.5)	20	42	137
		CD	520 (76)	440 (64)	12	35	149
G10350	1035	HR	500 (72)	270 (39.5)	18	40	143
		CD	550 (80)	460 (67)	12	35	163
G10400	1040	HR	520 (76)	290 (42)	18	40	149
		CD	590 (85)	490 (71)	12	35	170
G10450	1045	HR	570 (82)	310 (45)	16	40	163
		CD	630 (91)	530 (77)	12	35	179
G10500	1050	HR	620 (90)	340 (49.5)	15	35	179
		CD	690 (100)	580 (84)	10	30	197
G10600	1060	HR	680 (98)	370 (54)	12	30	201
G10800	0801	HR	770 (112)	420 (61.5)	10	25	229
G10950	1095	HR	830 (120)	460 (66)	10	25	248

Property Class	Size Ronge, Inclusive	Minimum Proof Strength, ⁷ MPa	Minimum Tensile Strength, ¹ MPa	Minimum Yield Strength, [†] MPa	Material	Head Marking
4.6	MS-M36	225	400	240	Low or modum carbon	(.)
4.8	M1.6-M16	310	420	340	Low or median carbon	(11)
5.8	M5-M24	360	520	420	Low or medien curbon	(11)
6.3	M05-M36	600	830	660	Medium curbon, QAT	(iii)
9.3	M1.6-M16	650	900	720	Medium carbon, Q&T	(··)
191.9	MS-M36	X30	3040	940	Low-carbon martenoite. Q&T	(10.3)
12.9	M1.6-M36	970	1229	1100	Alley, Q&T	(12.0)

Case 1: Bearing stress in bolts

For an M20 bolt

Sp = 600 M Pa

Sut = 830 M Pa

Sut = 640 M Pa

Case 2: Shear shows at Bolts
All bolts active will occur at shear plane

to It me bolt hurads do not extend into me shear planes

for 4 thanks

Shear shess formula

because of 4 shanks

A= XΠα2 - παι

Shear stress to yield strength relationship (uon Mises (riteria)

nevetore:

$$F = \frac{0.57754}{74}$$

$$F = \frac{0.57754}{74} (7d^{4})$$

$$= \frac{0.57754}{74} (160) (1120)$$

= 319035N

Case 3: Bearing smess in members

Design tactivi

Beging shess equation

Equate (4) and (6):

$$F = \frac{F}{ctd} = \frac{(S_{1})_{min}}{m_{1}}$$

$$F = \frac{(S_{1})_{min}}{n_{2}} = \frac{(2td)}{n_{3}}$$

$$= \frac{(250)(2)(254)(20)}{1.5}$$

$$= 250.6(1)N$$

$$F = 250.6(1)N$$

Call 4: Edge furring of a member at 2 margin boths.
- This taillure is avoided by spacing the rivers at least 1.5 diameters away from the edge

- Should be avoided in his case but can be countated

Equate 6 and 1

Case 5: Tensile failure of members

Rearrange for F

=448597.867 N

menetore:

F bear mem = 250.61 kN

minimum torce required to exceed allow while shess

Fantar mem = 413. 21 kN

F + 448. 597 IN

Cross-sectional area