

Mahindra University Hyderabad

Ecole Centrale School of Engineering End-semester Examination (2023 Batch), May 2025

Program: B. Tech.

Branch: CM

Year: II

Semester: Spring

Subject: Functional Analysis (MA2212)

Date: 28/05/2025

Start Time: 10:00 AM

Time Duration: 3 Hours

Max. Marks: 100

Instructions:

1. All questions are compulsory.

2. Complete all parts of a question together; do not split them across different sections of the answer sheet.

Q 1:

20 marks

(i) Define a norm. Prove that the function $\|\cdot\|_p:\ell^p\to\mathbb{R}$ defined by

$$||x||_p = \left(\sum_{j=1}^{\infty} |x_j|^p\right)^{\frac{1}{p}}, \quad \forall \ x = (x_1, x_2, \ldots) \in \ell^p$$

is a norm on ℓ^p for $1 \le p < \infty$.

[10 marks]

(ii) Define the Schauder basis in a normed linear space $(X, \|\cdot\|)$. Show that the sequence (e_n) , where $e_n = (\delta_{nj})$, is a Schauder basis for $(\ell^2, \|\cdot\|_2)$, where

$$||x||_2 = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{1/2}, \quad \forall \ x = (x_1, x_2, \ldots) \in \ell^2.$$

[10 marks]

Q 2:

20 marks

(i) Consider the sequence of functions $f_n(t) := \sqrt{2n+1} t^n$ in C[0,1], defined for $t \in [0,1]$ and $n \in \mathbb{N}$. Prove that

 $||f_n||_2 = 1$ and $||f_n||_1 \to 0$ as $n \to \infty$,

where

$$||f||_p = \left(\int_0^1 |f(t)|^p dt\right)^{1/p}$$
 for $1 \le p < \infty$.

[10 marks]

P.T.O.

(ii) Define a convex set and a compact set in a normed linear space $(X, \|\cdot\|)$. Show that the closed unit ball

$$\bar{B}(0;1) = \{x = (x_1, x_2, \ldots) \in \ell^1 \mid ||x||_1 \le 1\}$$

is convex in ℓ^1 , but not compact where

$$||x||_1 = \sum_{n=1}^{\infty} |x_n|, \quad \forall \ x = (x_1, x_2, \ldots) \in \ell^1.$$

[10 marks]

Q 3:

20 marks

(i) Let $X = [\sqrt{3}, \infty)$ be a metric space with the usual metric d(x, y) = |x - y|. Consider the mapping $T: X \to X$ defined by

$$T(x) = \frac{1}{2}\left(x + \frac{3}{x}\right)$$
, for all $x \in X$.

(a) State the Banach fixed point theorem.

[2 marks]

(b) Determine whether T is a contraction mapping.

[6 marks]

- (c) Use the Banach fixed point theorem to determine whether T has a fixed point in X or not. [2 marks]
- (ii) Consider the set CL(X,Y) of all continuous (bounded) linear operators from a normed space X to a normed space Y. That is, if $T \in CL(X,Y)$, then there exists a constant M > 0 such that

$$||Tx||_Y \le M||x||_X$$
 for all $x \in X$.

Then:

[10 marks]

(a) Prove that $||T|| \leq M$, where the operator norm $||\cdot||$ is defined by

$$||T|| := \sup\{||Tx||_Y : x \in X, ||x||_X \le 1\}.$$

(b) Show that

$$\|Tx\|_Y \le \|T\| \, \|x\|_X \quad \text{for all } x \in X.$$

Q 4:

20 marks

(i) Show that the right shift operator $R: \ell^1 \to \ell^1$, defined by

$$R(a_1, a_2, a_3, \dots) := (0, a_1, a_2, \dots), \text{ for } (a_n)_{n \in \mathbb{N}} \in \ell^1,$$

is a bounded linear operator on $(\ell^1, ||\cdot||_1)$.

[4 marks]

P.T.O.

(ii) Define a functional $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x) = x_1 a_1 + x_2 a_2 + x_3 a_3,$$

where $a = (a_1, a_2, a_3) \in \mathbb{R}^3$ is a fixed vector and $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Show that f is a linear, bounded functional on $(\mathbb{R}^3, \|\cdot\|_2)$, where

$$||x||_2 = (x_1^2 + x_2^2 + x_3^2)^{1/2}, \quad \forall \ x = (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Also compute ||f|| for a = (3, 0, 4).

[10 marks]

(iii) Let $P_n[a, b]$ denote the vector space of all real polynomials of degree at most n. Let $x_0, x_1, x_2, \ldots, x_n$ be (n+1) distinct fixed points in the interval [a, b]. Define a function $\langle \cdot, \cdot \rangle : P_n[a, b] \times P_n[a, b] \to \mathbb{R}$ by

$$\langle p, q \rangle = \sum_{i=0}^{n} p(x_i) q(x_i), \quad \forall p, q \in P_n[a, b].$$

Verify that $\langle \cdot, \cdot \rangle$ defines an inner product on $P_n[a, b]$.

[6 marks]

Q 5:

20 marks

(i) State the parallelogram equality, and show that every inner product space satisfies it.

[6 marks]

(ii) What is a Hilbert space? Show that the space C[a, b], equipped with the norm

$$||x||_{\infty} = \max_{t \in [a,b]} |x(t)|,$$

is not an inner product space, and hence not a Hilbert space.

[8 marks]

(iii) Prove that in an inner product space, if $x_n \to x$ and $y_n \to y$, then

$$\langle x_n, y_n \rangle \to \langle x, y \rangle.$$

[6 marks]