MA3203 - Problem sheet 4

Problem 1. Let $\Lambda = k\Gamma$ for a field k, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

Find the projective covers and the kernel of the projective covers of the following representations :

- (1) $k \xrightarrow{0} k \xrightarrow{0} 0$.
- (2) $k \xrightarrow{1} k \xrightarrow{0} k$.
- (3) $k^2 \xrightarrow{(1\ 0)} k \xrightarrow{(1\ 1)} k^2$.

Problem 2. Given $\Lambda = k\Gamma/\langle \rho \rangle$ for a field k, where Γ is the quiver:

$$1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

and the relations $\rho = \{\beta \alpha\}$. Find the projective covers and the kernel of the projective covers of the following representations:

- $(1) \quad k \xrightarrow{1} k \xrightarrow{0} k^2.$
- $(2) \quad k \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} k^2 \xrightarrow{(1 \ 0)} k \ .$
- $(3) \quad 0 \xrightarrow{\quad 0 \quad} k^2 \xrightarrow[\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}]{\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}} k \ .$

Problem 3. Let $f: A \to B$ and $g: B \to C$ be two essential epimorphisms of left Λ -modules. Show that gf is an essential epimorphism.

Problem 4. Let (Γ, ρ) be a quiver with relations such that $J^t \subseteq \langle \rho \rangle \subseteq J^2$ for some $t \geq 2$. Let $\Lambda = k\Gamma/\langle \rho \rangle$. Let $F \colon \operatorname{mod} \Lambda \to \operatorname{Rep}(\Gamma, \rho)$ be the equivalence defined in the lectures. Show that M in $\operatorname{mod} \Lambda$ is indecomposable if and only if F(M) is.

Problem 5.

(i) Consider the following commutative diagram with exact rows in Mod Λ :

$$0 \longrightarrow A \longrightarrow B \longrightarrow C$$

$$\downarrow^g \qquad \downarrow^h$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C'$$

Show that there exists a unique $f \colon A \to A'$ such that the diagram is commutative. Also show that if g and h are isomorphisms, then f is also an isomorphism.

(ii) Consider now the following commutative diagram with exact rows in Mod Λ :

$$\begin{array}{cccc} A & \longrightarrow B & \longrightarrow C & \longrightarrow 0 \\ \downarrow^f & & \downarrow^g \\ A' & \longrightarrow B' & \longrightarrow C' & \longrightarrow 0 \end{array}$$

Show that there exists a unique $h:C\to C'$ such that the diagram is commutative. Also show that if f and g are isomorphisms, then h is also an isomorphism.

Problem 6. Let Λ be an artin algebra, M a finitely generated Λ -module and P an indecomposable projective Λ -module.

Show that $\operatorname{Hom}_{\Lambda}(P,M) \neq (0)$ if and only if $P/\mathfrak{r}P$ is a composition factor of M.

Problem 7. Let Λ be an artin algebra and S a simple Λ -module. Let e be a primitive idempotent in Λ .

Show that there is a projective cover $\Lambda e \longrightarrow S$ if and only if $eS \neq 0$.