

Directorate of Aircraft Maintenance

Aircraft Engineering Division

SAC/LGME-ER-5-111

Engineering Report, No. S-111

NUCLEAR BLAST PROGRAM FOR MINI-CALCULATORS.

9 MAR 1881

Submitted By:

AMES K. STREETT, Colonel, USAF Chief, Aircraft Engineering Division Directorate of Aircraft Maintenance

Prepared By:

FORD P. PATRICK LTC, USAF

Systems Branch

APPROVED: Specific action by organizations or units will not be taken as a result of this report unless requested by HQ SAC under separate cover.

FOR THE COMMANDER

albut A. Returnick

ALBERT G. FETRANICK, Colonel, USAF . Director of Aircraft Maintenance DCS/Logistics

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DDC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. 410063 DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISTRIBUTION

11

>1

SAC/XPES, Offutt AFB, NE 68113
ASD/ENFTV, Wright Patterson AFB OH 45433
ASD/YYEH, Wright Patterson AFB, OH 45433
AFWL/NT, Kirtland AFB, NM 87117
USAFSAM/RZW, Brooks AFB, TX 78235
DNA, Washington DC 20305
Navy Diamond Lab., 2800 Powder Mill Rd, Adelphi, MD 20783
NRL, Washington DC 20375
ESD, Hanscom AFB, MA 01731

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SEC मार्च द्वित्रात्मका पर वि चार्यात्म प्रवर्ग अवन हिन्न REPORT DOCUMENTATION PAGE Engineering Report No. S-111 4 TITLE Fond Subtitle) Nuclear Blast Program for Mini-Calculators RAYFORD P. PATRICK, Lt Colonel, USAF TOTAL DANG OR CANDERS OF MANE, AND ALL DEEDS HO SAC/LOME OFFUTT AFB NE 68113 Program Element 11898 Section of the section tal early to 9 March 1981 HQ SAC/LGME OFFUTT AFB NE 68113 4 MEN TOTAL AND ALLY CHAME & AUDRESS IF WHEREIT FROM COMMING Offices UNCLASSIFIED STATE ON STATE WENT OUT BY BAPART Approved for public release, distribution unlimited. " I IN A "EMEN" out the attent entered in Black 20, it different from Kenny! The same of the sa Nuclear Blast, Nuclear Survivability/Vulnerability, Nuclear Criteria, Nuclear Hardness. See Attached

ABSTRACT

A program has been written for the HP-97 (HP-67) minicomputer to solve the blast wave from a nuclear detonation. The program first determines standard-altitude parameters for the altitude of interest. Using these parameters as input, the program then calculates pressures, temperatures, densities, velocities, and Mach Numbers in front and behind the shock.

Three subroutines allows the user to input (for any altitude) \$82,000 ft) a specific overpressure across the shock, a specific gust velocity behind the blast wave, or a specific dynamic pressure behind the blast wave. Corresponding parameters for each input are calculated.

NUCLEAR BLAST PROGRAM

For Mini-Calculators

Introduction

In the process of performing calculations of the values of the pressures, temperatures, velocities, densities, etc. behind weak shock waves at some distance from a nuclear detonation, it became obvious that hand calculation was tedious and interpolation from graphical results subject to error. Therefore a simple program was developed for use on the HP-97 (or HP-17) mini calculator to perform these operations. This program is described in the following narrative.

Although this simple program is not intended to replace the more sophisticated computer codes available for such computation, it is a valuable tool for first cut analyses. It also has the distinct advantage of being highly portable, and serves as handy reference for use when the detailed data are not immediately available.

Discussion

At distances from any nuclear detonation of interest to the analyst working with airborne systems, the blast wave is relatively weak and amenable to solution via standard fluid mechanical equations. The first step in such a solution is the application of standard fluid dynamical equations used to solve the stationary shock. See Figure 1. The governing equations relating conditions in front of and behind the shock can be obtained from any text on supersonic flow. I used Shapiro*.

* A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow. Ronald Press, N.Y. 1953

$$P_{1}$$
 T_{1}
 M_{2}
 T_{2}
 $M_{1} > 1.0 > M_{2}$
 S_{1}
 S_{1}
 S_{2}
 S_{2}
 S_{3}
 S_{4}
 S_{4}
 S_{5}
 S_{4}
 S_{5}
 S_{5}
 S_{6}
 S_{7}
 S_{7}
 S_{8}
 S_{7}
 S_{8}
 S_{8}

Figure 1. Flow parameters for a stationary shock wave

After solving the stationary shock problem, I then transformed the problem into a moving shock, or blast wave problem by allowing the shock to move with a speed such that its Mach number was equal to M₁. This system uses primed variables and is depicted in Figure 2.

$$P_{1}' = P_{1} \qquad q_{1}' = 0$$

$$T_{1}' = T_{1} \qquad M_{1}' = 0$$

$$S_{1}' = S_{1}$$

$$V_{1}' = 0$$

$$C_{2}' = C_{2}$$

$$M_{3} + O(K)$$

$$M_{2}' = \frac{V_{2}}{C_{2}} = \frac{V_{1} - V_{2}}{C_{2}} = \frac{C_{1}}{C_{2}} M_{1} - M_{2}$$

$$S_{1}' = S_{1}$$

$$V_{1}' = 0$$

$$C_{1}' = C_{1} \qquad \text{Figure 2} \qquad \text{Flow parameters for moving shock in}$$

Figure 2. Flow parameters for moving shock in terms of stationary shock solution.

As depicted in Figure 2, the stationary shock solution provides all the data needed to solve the blast wave problem. The parameters of most interest to the nuclear survivability/vulnerability analyst are V_2 ' (the gust velocity), the overpressure, $(P_2' - P_1' = P_2 - P_1)$ and the dynamic pressure, q_2 '.

The program incorporating the colution of the blast wave is listed in the Appendix B and detailed operating instructions are contained in Appendix A. The "guts" of the program is subroutine B, which solves the stationary shock then utilizes that solution to solve the blast wave (moving shock) for any selected altitude and overpressure. Subroutines C and D accept gust velocity and dynamic pressure inputs respectively and iterate back through the basic part of subroutine B until the calculated quantity is within the acceptable tolerance of the input.

Subroutine A is the corneratone of the program. It contains analytical expressions describing the variation of the standard atmosphere with altitude as presented in Dommasch.* For the specified altitude these equations are solved, resulting in ratios of the values of the parameter of interest at altitude to the see level standard value. Multiplication of these ratios by the pertinent see level standard results in the desired value at altitude. These values are stored and also used in subsequent calculations. Note that because of program step limitations, the program was separated into two parts. Part 1 is pertinent for the troposphere (b\leq 36,000 feet) while part 2 is accurate in the stratosphere (36,000 \leq \leq 82,000) where the temperature is constant with altitude.

CONCLUSION

The program presented herein should prove to be a valuable tool to analysts dealing with weak blast waves of any type, but should prove of particular interest to nuclear survivability/vulnerability analysts in government and industry.

*D. O. Dommasch, S.S. Sherby, and T.F. Connolly, Airplane Aerodynamics, Pitman Publishing Corp. N.Y. 1961.

Appendix A

OPERATING INSTRUCTIONS

NUCLEAR BLAST PROGRAM

I. Subroutine A, Calculation of Ambient Atmospheric Parameters.

Upon loading the program, the first step must be the utilization of Subroutine A to calculate the ambient static pressure and temperature at the altitude of interest. The other subroutines use these parameters, and will not function unless the calculations are made. Note: Load Part 1 if altitude of interest is 36,000 feet or less, load Part 2 if the altitude of interest is between 36,000 and 82,000 feet.

PRESS A - This step clears all registers and sets up the program.

ENTER ALTITUDE - Altitude is in feet.

PRESS R/S - Calculation requires a few seconds. When the altitude is displayed, calculations are complete. Secondary registers contain results of the calculations.

•	SECONDARY REGISTERS										
	0	1	2	3	4	5	6	7	8	9	
	(T/To)	5 (P/Po)	(9/9c)	T	P (Fsia)	(1 mgr/H3)	C (5+1sec)	-	_	h (500 t)	
	*	(P/Po)	or (5(10)	(0R)	P (Psia)	(slugs/A3)			_	(seet)	

To recall these parameters, press f, then PZS. Use RCL for register of interest. Prove to use of other subroutines either restore the original configuration (f, PZS) or restart program.

II. Subroutine B - Calculation of Gust Velocity (given an Overpressure).

This subroutine accepts an overpressure (in psi) and solves the blast wave. The gust velocity is displayed at the completion of the calculations. (Recall that Subroutine A must be exercised at least once prior to use of this subroutine. The results of the subroutine are pertinent only for the last altitude entered in Subroutine A.)

PRESS B Initializes subroutine

ENTER OVERPRESSURE in psi. Recall overpressure = P2 - P1.

PRESS R/S After calculations are complete, gust velocity is displayed.

At the point the user has several options. If the gust velocity corresponding to the selected overpressure for a different altitude is desired, press A, enter the new sititude, press R/S, then exercise subroutine B again. If various overpressure/gust velocity pairs are desired for the selected altitude, it is not necessary to recalculate the atmospheric parameters, press B, then enter the overpressure. The corresponding gust is displayed.

III. Subroutine C. Calculation of Overpressure (given a gust velocity).

This subroutine accepts a gust velocity (in feet/second) and calculates the corresponding overpressure via iteration through the basic solution incorporated in subroutine B. This subroutine may be exercised immediately after the altitude computations, or the completion of any of the other subroutines.

PRESS C

Initializes subroutine

ENTER GUST VELOCITY

feet/second

PRESS R/S

Several iterations may be necessary for

convergence. After the calculations are complete,

the overpressure is displayed.

If other gust velocity/overpressure pairs are desired for the <u>same</u> altitude, simply repeat the above steps. If a new altitude is desired, subroutine A must be reaccomplished prior to initialization of subroutine C.

IV. Subroutine D. Calculation of the Overpressure and Gust Velocity (given a dynamic pressure).

This subroutine accepts a dynamic pressure in psi and calculates the corresponding overpressure and gust velocity via interation. This subroutine may be exercised immediately after the completion of subroutine A, or upon completion of any of the other subroutines.

PRESS D

Initializes subroutine.

ENTER DYNAMIC PRESSURE

in psi. NOTE. A maximum of 3 places after the

decimal will be tolerated --- otherwise program

cycles endlessly.

PRESS R/S

Several iterations may be required for

convergence after calculations are complete,

overpressure is displayed.

PRESS R/S

Gust velocity is displayed.

V. Miscellaneous Notes

1. If the program cycles endlessly, or if an error is indicated in the display, press A twice to clear.

2. The exercise of autroptimes B, C, and D results in much data being generated. In each case, only one (or two for D) parameters are displayed, but other shock water solutions are stored and may be recalled, if they are needed. The register contents are depicted below. Variable labels are from figures 1 and 2.

PRIMARY REGISTERS

Α	В	C	ņ	E	1	2	3	4	5	6	7	8	9	0
P. (PS14)	(Usi)	7. (98)	M,2	(M ₂ ² −	74,	第一	5/5; -	/c,	1/V, -	M.,	1/2/ (5t/sæ	g' (psi)	(F+)	-

Appendix B

PROGRAM LISTING

I Part l											
ØØ1	*LBLA	21 11	\$ 27	Υ×	31	Ø 53	Ø	ØØ			
ØØ2	RCL9	36 Ø9	Ø 28	STO2	35 Ø2	Ø 54	Ø	ØØ			
ØØ3	CLRG	16-53	Ø 29	ROLØ	36 ØØ	¢ 55	2	Ø 2			
Ø Ø 4	P S	16-51	Ø3Ø	5	Ø 5	Ø56	3	Ø3			
ØØ5	CLRG	16-53	Ø31	•	-62	Ø57	7	Ø 7			
ØØG	R/S	51	Ø32	2	Ø2	ø58	8	Ø 8			
ØØ7	STO9	35 Ø9	Ø33	5	Ø5	Ø59	x	- 35			
ØØ8	6	Ø6	Ø34	6	Ø6	Ø6Ø	STO5	35 Ø5			
ØØ9	•	-62	Ø35	1	Ø1	Ø 61	RCL3	36 Ø3			
Ø1Ø	8	Ø8	Ø36	Υ×	31	Ø 62	x	54			
Ø11	7	Ø 7	Ø37	stol	35 Ø1	Ø63	4	Ø 4			
Ø12	5	Ø5	Ø38	RCLØ	36 ØØ	Ø 64	9	ø9			
Ø13	EEX	-23	ø39	5	Ø 5	Ø65	x	-35			
Ø14	6	Ø6	Ø4Ø	1	Ø1	Ø 66	ST06	35 Ø6			
Ø15	CHS	-22	Ø41	8	Ø8	Ø67	RCL3	36 Ø3			
Ø16	x	-35	Ø42	x	-35	Ø68	STOC	35 13			
Ø17	CHS	-22	Ø43	STO3	?5 Ø3	Ø69	RCL4	36 Ø 4			
Ø18	1	Ø1	9 44	RCL1	36 Ø1	Ø7Ø	STOA	35 11			
Ø19	+	-55	Ø45	1	Ø1	Ø71	RCL9	36 Ø9			
Ø2Ø	STOØ	35 ØØ	\$ 46	4	Ø 4	Ø72	P S	16-51			
Ø21	4	ø 4	Ø 47	•	-62	Ø73	STO9	35 Ø 9			
Ø22	•	-62	Ø 48	7	Ø 7	Ø 74	*LBLB	21 12			
Ø23	2	Ø 2	Ø 49	x	-35	Ø75	R/S	51			
Ø24	5	Ø 5	Ø5Ø	sto4	35 Ø4	⊈ 76	STOE	35 12			
Ø25	6	Ø6	Ø51	RCL2	36 Ø2	Ø77	*LBL2	21 92			
Ø 26	1	Ø1	9 52	•	-62	Ø 78	RCLA	36 11			

Ø 79	;	55	1 Ø 8		-62	137	×	-35
Ø8Ø	STOD	35 14	1Ø9	2	Ø2	138	RCLE	36 15
Ø 81	RCLA	36 11	110	×	-35	139	x	54
Ø82	•	-24	111	1	Ø1	140	-	-45
Ø83	STO2	35 Ø2	112	+	-55	1.41	ST06	35 Ø6
Ø84	2	Ø2	113	ST01	35 Ø1	142	RCLC	36 13
Ø85	•	 62	114.	RCLD	36 14	143	RCL1	36 Ø1
Ø86	4	Ø 4	115	•	-62	144	×	-35
Ø87	×	~35	116	2	Ø2	145	x	54
Ø88	•	62	117	×	-35	146	4	Ø 4
Ø89	4	Ø4	118	1	Ø1	147	9	Ø 9
Ø9Ø	+	~55	119	+	-55	148	×	~3 5
Ø91	2	Ø2	120	RCL1	36 Ø1	149	RCL6	36 Ø6
Ø92		-62	121		-24	150	×	-3 5
Ø93	8	Ø8	122	stol	35 Ø1	151	STO7	35 Ø7
Ø94	÷	-24	123	RCL2	36 Ø2	152	RCLA	36 11
Ø95	STOD	35 14	124	RCL1	36 Ø1	153	RCLB	36 12
Ø96	5	' Ø5	125	:	- 24	154	+	-55
Ø 97	+	55	126	STO3	35 Ø3	155	ROL6	36 ∮ 6
Ø98	STOE	35 15	127	RCL1	36 Ø1	156	x²	53
Ø9 9	7	Ø7	128	x	54	157	x	-35
100	RCLD	36 14	129	STO4	35 Ø4	158	•	-62
1Ø1	x	-35	13Ø	RCL3	36 Ø 3	159	7	∮ 7
192	1	Ø1	131	1/ X	52	16 \$	×	-35
1Ø3	-	-45	132	STO5	35 Ø5	161	STO8	35 ∮ 8
194	RC	36 15	133	RCL4	36 Ø4	162	RCL#	36 Ø Ø
1Ø5	÷	-24	134	1/X	52	163	X =Ø ?	16-42
196	1/X	52	135	RCLD	36 14	164	GSBo 23	16 15
107	STOE	35 15	138	x	54	165	RCLI	36 46

166	X = ∅? 16 42	196	RCLB	36 12
167	GSB3 23 Ø3	197	*LBLD	21 14
168	RCL7 36 Ø7	198	R/S	51
169	*LBLC 21 13	199	STOI	35 46
170	R/S 51	200	RCLB	36 12
171	STOØ 35 ØØ	2Ø1	x=Ø ?	16-43
172	RCL7 36 Ø7	2Ø2	2	Ø 2
173	x=Ø? 16-42	2Ø3	STOB	35 12
174	GSBe 23 16 15	2\$4	GSB2	23 Ø2
175	2 Ø2	2Ø5	*LBL3	21 Ø3
176	STOB 35 12	2Ø6	RCLI	36 46
177	1 Ø1	2017	RCL8	36 Ø8
178	ø øø	2Ø8	DSP3	-63 Ø3
179	2 Ø2	2Ø9	RND	16 24
18Ø	STO7 35 Ø7	210	X= Y?	16-33
181	*LBLe 21 16 15	211	GSB5	23 Ø5
182	RCLØ 36 ØØ	212	•	-24
183	INT 16 34	213	X	54
184	RCL7 36 Ø7	214	RCLB	36 12
185	INT 16 34	215	x	-35
186	X=Y? 16-33	216	STOB	35 12
187	GSBa 23 16 11	217	GSB2	23 Ø2
188	÷ -24	218	*LBL5	21 Ø5
189	RCLB 36 12	219	Ø	90
19∅	x -35	220	STOI	35 46
191	STOB 35 12	221	RCLB	36 12
192	GSB2 23 Ø2	222	R/S	51
193	*LBLa 21 16 11	223	RCL7	36 Ø7
194	Ø ØØ	224	R/S	51
195	STOØ 35 ØØ			

II Pa	Il Part 2									
ØØ1	*1.BTA	21 11	Ø27	5	Ø 5	Ø 53	x	-35		
ØØ2	RCL9	36 Ø9	ø28	3	Ø 3	Ø54	STO2	35 Ø2		
ØØ3	CLRG	16-53	Ø2 9		-62	Ø 55	•	-62		
ØØ4	P S	16-51	Ø3Ø	3	Ø3	Ø56	Ø	ØØ		
ØØ5	CLRG	16-53	· Ø31	•	-24	Ø 57	Ø	ØØ		
ØØ6	K/S	51	Ø32	8	33	Ø58	2	Ø2		
ØØ 7	STO9	35 Ø9	Ø33	ST07	35 Ø7	Ø59	3	ØЗ		
ØØ 8	3	(93	Ø34	•	-62	Ø6 Ø	7	Ø7		
ØØ9	6	Ø6 **	Ø35	2.	Ø2	Ø 61	. 7	Ø 7		
ØlØ	EEX	23	Ø36	2	Ø2 .	Ø62	×	-35		
Ø11	3	Ø3	Ø37	3	Ø3	Ø63	STO5	35 Ø5		
Ø12	\$0T8	35 Ø8	Ø38	4	Ø4	Ø64	ROL3	36 Ø3		
Ø13	X <u><</u> Y?	16 - 35	Ø39	x	-35	Ø65	STOC	35 13		
Ø14	GSB9	23 Ø9	Ø4Ø	stol	35 Ø1	Ø86	ROL4	36 6 4		
Ø15	Ø	ØØ	941	1	Ø1	9 67	STOA	35 11		
Ø 16	:	3 <i>h</i> .	Ø42	4	Ø 4	Ø68	ROL9	36 Ø9		
Ø17	LBL9	21 Ø9	Ø43	•	-62	Ø69	P/S	16-51		
Ø 18	3	Ø 3	Ø44	7	Ø 7 '	Ø7Ø	STO9	35 Ø9		
Ø 19	9	Øy	Ø45	x	-35		Remai	nder		
Ø 2Ø	Ø	ØØ	Ø46	ST04	35 Ø4		Program			
Ø21	sT03	35 Ø3	647	ROL7	36 Ø7					
Ø22	ROL8	36 Ø8	ø48	•	-62	,	73	s tical		
Ø 23	ROL9	36 Ø 9	Ø 49	2	Ø 2		lden	tical		
Ø24	~	- 45	Ø5Ø	9	9 9		7	0		
Ø25	ROL3	36 Ø3	Ø51.	7 .	Ø7		Par	† 1.		
Ø26	÷	-24	Ø52	1	01		•			