DATA COLLECTION

```
In [1]: # import libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

```
In [2]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\17_student_marks.csv")
sd
```

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
0	22000	78	87	91	91	88	98	94	100	100	100
1	22001	79	71	81	72	73	68	59	69	59	60
2	22002	66	65	70	74	78	86	87	96	88	82
3	22003	60	58	54	61	54	57	64	62	72	63
4	22004	99	95	96	93	97	89	92	98	91	98
5	22005	41	36	35	28	35	36	27	26	19	22
6	22006	47	50	47	57	62	64	71	75	85	87
7	22007	84	74	70	68	58	59	56	56	64	70
8	22008	74	64	58	57	53	51	47	45	42	43
9	22009	87	81	73	74	71	63	53	45	39	43
10	22010	40	34	37	33	31	35	39	38	40	48
11	22011	91	84	78	74	76	80	80	73	75	71
12	22012	81	83	93	88	89	90	99	99	95	85
13	22013	52	50	42	38	33	30	28	22	12	20
14	22014	63	67	65	74	80	86	95	96	92	83
15	22015	76	82	88	94	85	76	70	60	50	58
16	22016	83	78	71	71	77	72	66	75	66	61
17	22017	55	45	43	38	43	35	44	37	45	37
18	22018	71	67	76	74	64	61	57	64	61	51
19	22019	62	61	53	49	54	59	68	74	65	55
20	22020	44	38	36	34	26	34	39	44	36	45
21	22021	50	56	53	46	41	38	47	39	44	36
22	22022	57	48	40	45	43	36	26	19	9	12
23	22023	59	56	52	44	50	40	45	46	54	57
24	22024	84	92	89	80	90	80	84	74	68	73
25	22025	74	80	86	87	90	100	95	87	85	79
26	22026	92	84	74	83	93	83	75	82	81	73
27	22027	63	70	74	65	64	55	61	58	48	46
28	22028	78	77	69	76	78	74	67	69	78	68
29	22029	55	58	59	67	71	62	53	61	67	76
30	22030	54	54	48	38	35	45	46	47	41	37
31	22031	84	93	97	89	86	95	100	100	100	99
32	22032	95	100	94	100	98	99	100	90	80	84
33	22033	64	61	63	73	63	68	64	58	50	51
34	22034	76	79	73	77	83	86	95	89	90	95

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
35	22035	78	71	61	55	54	48	41	32	41	40
36	22036	95	89	91	84	89	94	85	91	100	100
37	22037	99	89	79	87	87	81	82	74	64	54
38	22038	82	83	85	86	89	80	88	95	87	93
39	22039	65	56	64	62	58	51	61	68	70	70
40	22040	100	93	92	86	84	76	82	74	79	72
41	22041	78	72	73	79	81	73	71	77	83	92
42	22042	98	100	100	93	94	92	100	100	98	94
43	22043	58	62	67	77	71	63	64	73	83	76
44	22044	96	92	94	100	99	95	98	92	84	84
45	22045	86	87	85	84	85	91	86	82	85	87
46	22046	48	55	46	40	34	29	37	34	39	41
47	22047	56	52	54	47	40	35	43	44	40	39
48	22048	42	44	46	53	62	59	57	53	43	35
49	22049	64	54	49	59	54	55	57	59	63	73
50	22050	50	44	37	29	37	46	53	57	55	61
51	22051	70	60	70	62	67	67	68	67	72	69
52	22052	63	73	70	63	60	67	61	59	52	58
53	22053	92	100	100	100	100	100	92	87	94	100
54	22054	64	55	54	61	63	57	47	37	44	48
55	22055	60	66	68	58	49	47	39	29	39	44

```
In [3]: # to display top 10 rows
sd.head(10)
```

Out[3]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	T
0	22000	78	87	91	91	88	98	94	100	100	100	_
1	22001	79	71	81	72	73	68	59	69	59	60	
2	22002	66	65	70	74	78	86	87	96	88	82	
3	22003	60	58	54	61	54	57	64	62	72	63	
4	22004	99	95	96	93	97	89	92	98	91	98	
5	22005	41	36	35	28	35	36	27	26	19	22	
6	22006	47	50	47	57	62	64	71	75	85	87	
7	22007	84	74	70	68	58	59	56	56	64	70	
8	22008	74	64	58	57	53	51	47	45	42	43	
9	22009	87	81	73	74	71	63	53	45	39	43	
4.0		_	_	_	_	_	_	_	_		•	,

DATA CLEANING AND PRE_PROCESSING

In [4]: sd.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 56 entries, 0 to 55
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Student_ID	56 non-null	int64
1	Test_1	56 non-null	int64
2	Test_2	56 non-null	int64
3	Test_3	56 non-null	int64
4	Test_4	56 non-null	int64
5	Test_5	56 non-null	int64
6	Test_6	56 non-null	int64
7	Test_7	56 non-null	int64
8	Test_8	56 non-null	int64
9	Test_9	56 non-null	int64
10	Test_10	56 non-null	int64
11	Test_11	56 non-null	int64
12	Test_12	56 non-null	int64

dtypes: int64(13) memory usage: 5.8 KB

```
In [5]: # to display summary of statistics
         sd.describe()
Out[5]:
                   Student_ID
                                   Test_1
                                               Test_2
                                                          Test_3
                                                                      Test_4
                                                                                 Test_5
                                                                                             Test_6
                    56.000000
                                56.000000
                                            56.000000
                                                       56.000000
                                                                   56.000000
                                                                              56.000000
                                                                                          56.000000
                                                                                                      5
           count
           mean 22027.500000
                                70.750000
                                            69.196429
                                                       68.089286
                                                                   67.446429
                                                                              67.303571
                                                                                          66.000000
                                                                                                      6
                    16.309506
                                17.009356
                                            17.712266
                                                                   19.807179
                                                                              20.746890
                                                                                          21.054043
                                                                                                     2
                                                       18.838333
             std
                                                                                                      2
            min 22000.000000
                                40.000000
                                                       35.000000
                                                                   28.000000
                                                                              26.000000
                                                                                          29.000000
                                            34.000000
            25%
                 22013.750000
                                57.750000
                                            55.750000
                                                       53.000000
                                                                   54.500000
                                                                              53.750000
                                                                                          50.250000
                                                                                                     4
            50%
                 22027.500000
                                                                                                     6
                                70.500000
                                            68.500000
                                                       70.000000
                                                                   71.500000
                                                                              69.000000
                                                                                          65.500000
                 22041.250000
                                84.000000
                                            83.250000
                                                       85.000000
                                                                   84.000000
                                                                              85.250000
                                                                                          83.750000
                                                                                                     8
                                                                             100.000000
            max 22055.000000
                               100.000000
                                          100.000000
                                                      100.000000
                                                                  100.000000
                                                                                         100.000000
                                                                                                    10
         #to display colums heading
In [9]:
         sd.columns
Out[9]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                  'Test_6', 'Test_7', 'Test_8', 'Test_9', 'Test_10', 'Test_11',
                  'Test_12'],
                 dtype='object')
```

EDA and visualization

In [7]: sns.pairplot(sd)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1c4655b2070>

In [10]: sns.distplot(sd['Test_1'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]: <AxesSubplot:xlabel='Test_1', ylabel='Density'>

In [11]: sns.heatmap(sd.corr())

Out[11]: <AxesSubplot:>

TO TRAIN THE MODEL _MODEL BUILDING

we are goint train Liner Regression model; we need to split out the data into two varibles x and y where x is independent on x (output) and y is dependent on x(output) adress coloumn as it is not required our model

```
In [13]: x= sd1[['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
               y=sd1['Test_12']
In [14]: # To split my dataset into training data and test data
        from sklearn .model_selection import train_test split
        x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [15]: from sklearn.linear_model import LinearRegression
        lr=LinearRegression()
        lr.fit(x_train,y_train)
Out[15]: LinearRegression()
In [16]: from sklearn.linear model import LinearRegression
        lr=LinearRegression()
        lr.fit(x_train,y_train)
Out[16]: LinearRegression()
In [17]: | print(lr.intercept )
        -1067.9800814640657
In [18]: coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
        coeff
Out[18]:
                  Co-efficient
```

	OO-emclem
Student_ID	0.049016
Test_1	0.022612
Test_2	-0.630477
Test_3	0.159145
Test_4	0.331810
Test_5	0.079308
Test_6	-0.242181
Test_7	0.166347
Test_8	0.007428
Test_9	0.099074
Test_10	0.137687
Test 11	0.735462

```
In [19]: | prediction = lr.predict(x_test)
         plt.scatter(y_test,prediction)
Out[19]: <matplotlib.collections.PathCollection at 0x1c46f56ebb0>
          100
           90
           80
           70
           60
           50
           40
           30
           20
                   30
                        40
                             50
                                   60
                                        70
                                              80
                                                   90
                                                        100
In [20]: |print(lr.score(x_test,y_test))
         0.9359993165040615
In [21]: |lr.score(x_train,y_train)
Out[21]: 0.9595830452197583
In [22]: from sklearn.linear_model import Ridge,Lasso
In [23]: dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[23]: Ridge(alpha=10)
In [24]: |dr.score(x_test,y_test)
Out[24]: 0.9361201741818267
In [25]: | dr.score(x_train,y_train)
Out[25]: 0.9595739899397453
In [26]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[26]: Lasso(alpha=10)
In [27]: la.score(x_test,y_test)
Out[27]: 0.9366775254078809
```

In [28]:	<pre>la.score(x_train,y_train)</pre>
Out[28]:	0.9407360812535738
In []:	
In []:	