Partielle Ordnung / Halbordnung

Definition 5.1

 \nearrow \sqsubseteq ist antisymmetrisch: $\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_1 \Rightarrow a_1 = a_2$

 \not \sqsubseteq ist transitiv: $\forall a_1, a_2, a_3 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_3 \Rightarrow a_1 \sqsubseteq a_3$

Satz 5.1

 \leq ist eine partielle Ordnung auf $\mathbb N$

Beispiel Partielle Ordnung / Halbordnung

 $\begin{cases} \begin{cases} \begin{cases}$

Teilbarkeitsbeziehung | auf N.

 \nearrow Teilzeichenreihenbeziehung auf A^* definiert durch:

 $w' \sqsubseteq w \Leftrightarrow_{df} \exists w_1, w_2 \in A^*.w_1 \ w' \ w_2 = w$

(Beispiel: w' = "sdf", w = "asdfg")

Quasiordnungen / Präordnung

Definition 5.2

 \nearrow \sqsubseteq ist transitiv: $\forall a_1, a_2, a_3 \in A.a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_3 \Rightarrow a_1 \sqsubseteq a_3$

Beispiel Quasiordnungen / Präordnung

"kleiner oder gleich groß"-Beziehung bei Personen.

🌽 Teilbarkeitsbeziehung | auf ℤ.

Notiz

Eine Quasiordnung $\sqsubseteq \subseteq A \times A$ induziert eine Äquivalenzrelation auf Adurch:

$$a_1 \sim a_2 \Leftrightarrow_{df} a_1 \sqsubseteq a_2 \land a_2 \sqsubseteq a_1$$

$$\not\hspace{-0.4cm}\rlap/ \hspace{0.2cm} \not\hspace{0.2cm} a_1=a_2\Rightarrow a_1\sim a_2$$
 (reflexiv)

Totale Quasiordnung

Definition totale Quasiordnung / Präferenzordnung

Eine Quasiordnung $\subseteq \subseteq A \times A$, in der **alle** Elemente vergleichbar sind, heißt totale Quasiordnung oder auch Präferenzordnung, d.h.:

$$\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \lor a_2 \sqsubseteq a_1$$

Beispiel totale Quasiordnung / Präferenzordnung

Personen nach ihrer Größe geordnet.

 $\slash\hspace{-0.6cm}$ "Weniger mächtig"-Beziehung \le auf Mengensystemen.

Totale Ordnung

Definition totale Ordnung / lineare Ordnung

Eine partielle Ordnung $\sqsubseteq \subseteq A \times A$, in der **alle** Elemente vergleichbar sind, heißt totale Ordnung oder auch lineare Ordnung, d.h.:

$$\forall a_1, a_2 \in A.a_1 \sqsubseteq a_2 \lor a_2 \sqsubseteq a_1$$

Beispiel totale Ordnung / lineare Ordnung

< auf \mathbb{N} .