

evaluation

Foundation Ark: Accruing and Reusing Knowledge for Superior and Robust Performance

DongAo Ma¹, Jiaxuan Pang¹, Michael B. Gotway², Jianming Liang¹

¹ Arizona State University ² Mayo Clinic

Background: Achieving expert-level performance by deep learning demands massive annotated data for training. Google CXR-FM (Foundation Model) was trained with 821,544 labeled chest X-rays.

Motivation: Numerous datasets are available in medical imaging but individually small and heterogeneous in expert annotations. Aggregating public datasets costs nearly nothing but enlarges data size, diversifies patient populations and accrues knowledge from diverse experts.

Challenge: Label Heterogeneity

Vision: Powerful and robust Foundation Models trained from numerous public (small or big)

datasets. We develop open Foundation Models from numerous public datasets using their heterogeneous expert annotations

Ark trains foundation models with numerous public datasets by Accruing knowledge (from heterogeneous labels)

- 1. into Student via Cyclic Pretraining
 - from Student to bolster cyclic pretraining

Properties of Ark:

- Knowledge-centric
- Label-agnostic
- Task-scalable
- Annotation-heterogeneous
- Application-versatile

	Code	Task	Usage ³
	1.CXPT	14 thoracic diagnoses classification	P F L
4	2.NIHC	14 thoracic diseases classification	P F L
5	3.RSNA	Lung opacity, abnormality classification	P F L
5	4.VINC	6 thoracic diagnoses classification	P F L
3 (5.NIHS	Tuberculosis classification	P F L
	6.MMIC	14 thoracic diagnoses classification	P
	7.NIHM	Lungs segmentation	F
	8.JSRT	Lungs, heart, clavicles segmentation	F
	9.VINR	20 ribs segmentation	F
	10.SIIM	Pneumothorax classification	L
	* The usage of each dataset in our experiments is denoted with P for pretraining, F for finetuning, L for linear probing, and B for bias study.		

Ark's performance is inspiring: It encourages researchers to share codes and datasets for creating open foundation models, accelerating open science, democratizing deep learning for imaging

Result 1: Ark outperforms SOTA fully/self-supervised methods Result 2: Ark provides generalizable representations for organ/bones segmentation tasks on various thoracic disease classification tasks 8.JSRT_{Clavicle} 7.NIHM 8.JSRT_{Heart} 1.CXPT 4.VINC 5.NIHS 8.JSRT_{Lung} 9.VINR Initialization Pretraining 2.NIHC 3.RSNA 83.39 ± 0.84 77.04 ± 0.34 70.02 ± 0.42 78.49 ± 1.00 96.32 ± 0.18 96.32 ± 0.10 92.35 ± 0.20 85.56 ± 0.71 56.46 ± 0.62 Random 92.52 ± 4.98 87.80 ± 0.42 81.73 ± 0.14 73.44 ± 0.46 90.35 ± 0.31 93.35 ± 0.77 97.23 ± 0.09 97.13 ± 0.07 92.58 ± 0.29 86.94 ± 0.69 62.40 ± 0.80 Supervised ImageNet 88.16 ± 0.31 81.95 ± 0.15 94.12 ± 0.96 97.12 ± 0.14 93.53 ± 0.11 87.18 ± 0.63 61.64 ± 0.69 SimMIM ImageNet 73.66 ± 0.34 90.24 ± 0.35 96.90 ± 0.08 IN-->CXR (926K) 74.09 ± 0.39 63.46 ± 0.89 SimMIM 88.37 ± 0.40 83.04 ± 0.15 91.71 ± 1.04 95.76 ± 1.79 97.10 ± 0.40 96.93 ± 0.12 93.75 ± 0.36 88.87 ± 1.06 90.01±0.35 63.96±0.30 82.87 ± 0.13 74.73 ± 0.59 94.67 ± 0.33 98.92 ± 0.21 97.65 ± 0.17 94.16 ± 0.66 Ark-5 IN-->CXR (335K) 88.73 ± 0.20 97.41 ± 0.04 Ark-6 IN-->CXR (704K) 89.14±0.22 74.76±0.35 98.99±0.16 97.68±0.03 94.62±0.16 63.70 ± 0.23 83.05±0.09 95.07±0.16 97.48±0.08 90.05±0.15

Gender bias is characterized by a significant drop in performance when training and test data are of the opposite gender, compared to when they are of the same

gender. Each green circle indicates a lung disease with gender bias by CXR-FM, while Ark exhibits a more robust performance, showing no significant difference.