Nickel Mass Distribution of normal Type II Supernovae

Tomás Müller

Instituto de Astrofísica, PUC Millennium Institute of Astrophysics (MAS)

LSST SN Workshop, University of Pittsburgh, Nov. 2016

Alejandro Clocchiatti PUC

Ondrej Pejcha Princeton University

José Luis Prieto UDP

Motivation

Sukhbold et al. 2016

SN Model + Data

(Pejcha & Prieto 2015a,b)

Fits
multicolor light curves
+
Expansion velocity curves (FeII
5169 Å)

Cerro Tololo Supernova Survey
C&T
SOIRS
CATS
+
publicly available SNe

Total of 16 SNe

Results

SN2002gw SN2003bn SN2003hl

Results

SN2002gw SN2003bn SN2003hl

Derived Parameters

Derived Parameters

Theoretical Nickel Mass Distribution

Sukhbold et al. (2016) 1D hydrodynamical models:

Prometeus Hot Bubble (P)

Kepler (K)

IMF lower limit: $9 M_{\odot}$ IMF upper limit: $15 - 30 M_{\odot}$

Neutrino mechanism

Table 8. Explosion Results for the N20 and W18 Engines

	$ m M_{Ni} \ [M_{\odot}]$				E _{expl.} [B]				$M_{\rm remnant} \ [M_{\odot}]$	
Progenitor	N20		W18		N20		W18		N20	W18
	K. P.		K. P.		K. P.		K. P.		Р.	Р.
12.25	0.055	0.089	0.063	0.086	1.44	1.44	1.36	1.36	1.56	1.56
12.5	0.059	0.092	0.059	0.088	1.44	1.44	1.35	1.35	1.58	1.58
12.75	0.062	0.087	0.060	0.082	1.29	1.29	1.20	1.20	1.63	1.64
13.0	0.070	0.094	0.065	0.083	1.32	1.32	1.18	1.18	1.66	1.68
13.1	0.061	0.086	0.058	0.080	1.22	1.22	1.11	1.11	1.59	1.60
13.2	0.061	0.088	0.058	0.082	1.26	1.26	1.14	1.14	1.59	1.60
13.3	0.061	0.086	0.059	0.081	1.22	1.22	1.12	1.12	1.60	1.61
13.4	0.063	0.086	0.061	0.081	1.21	1.21	1.12	1.12	1.61	1.62
13.5	0.064	0.093	0.062	0.087	1.33	1.33	1.23	1.23	1.61	1.62
13.6	0.073	0.104	0.070	0.097	1.51	1.51	1.38	1.38	1.62	1.64
13.7	0.071	0.103	0.068	0.096	1.48	1.48	1.35	1.35	1.63	1.64
13.8	0.072	0.101	0.069	0.096	1.43	1.43	1.33	1.33	1.65	1.66
13.9	0.071	0.097	0.069	0.091	1.36	1.36	1.27	1.27	1.66	1.67
14.0	0.070	0.097	0.068	0.091	1.36	1.36	1.27	1.27	1.67	1.68
14.1	0.069	0.094	0.067	0.089	1.30	1.30	1.24	1.23	1.69	1.69
14.2	0.067	0.090	0.066	0.086	1.25	1.25	1.20	1.19	1.69	1.70
14.3	0.072	0.096	0.068	0.089	1.31	1.31	1.21	1.21	1.70	1.71
14.4	0.070	0.090	0.069	0.088	1.22	1.22	1.19	1.19	1.72	1.72
14.5	0.077	0.089	0.077	0.088	1.09	1.09	1.07	1.07	1.76	1.76
14.6	0.072	0.090	0.071	0.086	1.17	1.17	1.13	1.13	1.75	1.75
14.7	0.079	0.089	0.078	0.086	1.07	1.07	1.01	1.01	1.77	1.78
14.8	0.072	0.085	0.071	0.083	1.07	1.07	1.05	1.05	1.78	1.78
14.9	0.076	0.088	0.075	0.085	1.07	1.07	1.04	1.04	1.78	1.78
15.2	0.070	0.082	0.071	0.079	0.94	0.94	0.83	0.83	1.55	1.57
15.7	0.075	0.086	0.075	0.081	0.95	0.95	0.81	0.81	1.57	1.59
15.8	0.085	0.097	0.074	0.074	1.06	1.06	0.65	0.65	1.56	1.64
15.9	0.079	0.079			0.70	0.70			1.67	
16.0	0.094	0.110	0.075	0.079	1.26	1.26	0.78	0.78	1.54	1.62
16.1	0.075	0.084	0.078	0.087	0.89	0.89	0.97	0.97	1.59	1.59
16.2	0.095	0.111	0.076	0.081	1.23	1.23	0.79	0.79	1.55	1.62
$6^{-16.3}$	0.097	0.113	0.078	0.083	1.23	1.23	0.80	0.80	1.55	1.62

Sukbold et al. 2016

Comparing Models

Summary

- We retrieved known correlations between niquel mass and bolometric luminosity, and nickel mass and explosion energy
- Comparison of observations with neutrino mechanism models (nickel mass)
- The KEPLER model seems to adjust better the observations than the Prometeus Hot Bubble model
- We would like to shed more light into the conclusion by Pejcha & Thompson (2015) and Sukhbold et al. (2015) that there is no single mass below which all stars explode turning into a neutron star and above which black holes form, but rather there is a more complex behavior