Package 'pros'

December 16, 2018	
Title Penalized Regression on Steroids	
Version 0.1	
Author Austin David Brown <pre></pre>	
Maintainer Austin David Brown Srow5079@umn.edu>	
Description This is a project for STAT8053 at the University of Minnesota. Please see the README on github for compiler flags to improve performance.	
Depends R (>= $3.5.0$)	
SystemRequirements C++11	
License GPL-2	
Encoding UTF-8	
LazyData true	
RoxygenNote 6.1.1	
predict.cv_pros	1 2 3 3
Index	5
cv.pros Cross-validation	_
Description The cv.pros function is used for K-fold cross-validation. Usage	
cv.pros(X, y, K_fold = 10, alpha = c(1, 0, 0, 0, 0, 0),	

```
cv.pros(X, y, K_fold = 10, alpha = c(1, 0, 0, 0, 0, 0),
  lambdas = c(), step_size, algorithm = "proximal_gradient_cd",
  max_iter = 10000, tolerance = 10^(-8), random_seed = 0)
```

2 predict.cv_pros

Arguments

X is an $n \times m$ -dimensional matrix of the data. y is an $n \times m$ -dimensional matrix of the data. K_fold is the number of folds in cross-validation.

alpha is a 6-dimensional vector of the convex combination corresponding to the pe-

nalization:

α₁ is the l¹ penalty.
α₂ is the l² penalty.
α₃ is the l⁴ penalty.
α₄ is the l⁶ penalty.
α₅ is the l⁸ penalty.

• α_6 is the l^{10} penalty.

lambdas is a vector of dual penalization values to be evaluated.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion.
random_seed is the random seed used in the algorithms.

Value

A class cv_pros

predict.cv_pros Cross-validation Prediction

Description

The prediction function for cv.pros.

Usage

```
## S3 method for class 'cv_pros'
predict(object, X_new, ...)
```

Arguments

object an object of class cv_pros

X_new is an $n \times m$ -dimensional matrix of the data. ... Other parameters (this is required by R)

Value

A vector of prediction values.

predict.pros 3

References

Zou, Hui. "Regularization and variable selection via the elastic net." (2004).

Examples

```
n = 1000
X1 <- rnorm(n)
X2 <- rnorm(n)
y = 3 + 5 * X1 + 0 * X2
X = matrix(c(X1, X2), ncol = 2)
cv = cv.pros(X, y, step_size = .001)
predict(cv, X)</pre>
```

predict.pros

Pros Prediction

Description

The prediction function for pros.

Usage

```
## S3 method for class 'pros'
predict(object, X, ...)
```

Arguments

object an object of class pros

X is an $n \times m$ -dimensional matrix of the data.

... Other parameters (this is required by R)

Value

A vector of prediction values.

pros

Pros

Description

The pros function is used to fit a single regression model with a specified penalization.

Usage

```
pros(X, y, alpha = c(1, 0, 0, 0, 0, 0), lambda, step_size,
  algorithm = "proximal_gradient_cd", max_iter = 10000,
  tolerance = 10^(-8), random_seed = 0)
```

4 pros

Arguments

X is an $n \times m$ -dimensional matrix of the data. y is an $n \times m$ -dimensional matrix of the data. alpha is a 6-dimensional vector of the convex combination corresponding to the penalization:

α₁ is the l¹ penalty.
α₂ is the l² penalty.

• α_3 is the l^4 penalty.

• α_4 is the l^6 penalty.

• α_5 is the l^8 penalty.

• α_6 is the l^{10} penalty.

lambda is the Lagrangian dual penalization parameter.

step_size is a tuning parameter defining the step size. Larger values are more aggressive

and smaller values are less aggressive.

algorithm is the optimization algorithm

• proximal_gradient_cd uses proximal gradient coordinate descent.

• subgradient_cd uses subgradient coordinate descent.

max_iter is the maximum iterations the algorithm will run regardless of convergence.

tolerance is the accuracy of the stopping criterion. random_seed is the random seed used in the algorithms.

Value

A class pros

References

Zou, Hui. "Regularization and variable selection via the elastic net." (2004).

Examples

```
n = 1000
X1 <- rnorm(n)
X2 <- rnorm(n)
y = 3 + 5 * X1 + 0 * X2
X = matrix(c(X1, X2), ncol = 2)
fit = pros(X, y, lambda = 2, step_size = .001)
predict(fit, X)</pre>
```

Index

```
cv.pros, 1
predict.cv_pros, 2
predict.pros, 3
pros, 3
```