

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

Skrivtid: 08:00-13:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer

Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Del A på tentamen utgörs av de tre första uppgifterna. Till antalet erhållna poäng från del A adderas dina bonuspoäng. Poängsumman på del A kan dock som högst bli 12 poäng. Bonuspoängen beräknas automatiskt. Antal bonuspoäng framgår från resultatsidan.

De tre följande uppgifterna utgör del B och de tre sista uppgifterna del C, som främst är till för de högre betygen.

Betygsgränserna vid tentamen kommer att ges av

Betyg	Α	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det innebär speciellt att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Lösningar som allvarligt brister i dessa avseenden bedöms med högst två poäng.

2

DEL A

1. Linjen L_1 ges av

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$$

och linjen L_2 ges av

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 3 \end{bmatrix} + s \begin{bmatrix} 1 \\ 5 \\ 1 \end{bmatrix}$$

- (a) Bestäm i parameterform det plan Π som är parallellt med linjen L_1 och innehåller linjen L_2 . (2 p)
- (b) Bestäm avståndet mellan linjerna L_1 och L_2 . (2 p)
- 2. Vi har matrisen

$$A = \left[\begin{array}{rrr} 5 & 6 & 0 \\ -3 & -4 & 0 \\ 3 & 3 & -1 \end{array} \right].$$

- (a) Bestäm alla egenvektorer till egenvärdena -1 och 2. (3 p)
- (b) Varför är matrisen A diagonaliserbar? (1 p)
- 3. Den kvadratiska formen Q på \mathbb{R}^2 ges av

$$Q(\vec{x}) = x_1^2 + x_1 x_2 + x_2^2.$$

- (a) Ange den symmetriska matris A som uppfyller $Q(\vec{x}) = \vec{x}^T A \vec{x}$. (1 p)
- (b) Avgör om Q är positivt definit, negativt definit, positivt semidefinit, negativt semidefinit eller indefinit. (3 p)

3

DEL B

4. Låt $T_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som har standardmatris

$$A = \begin{bmatrix} -1 & 3 \\ 2 & -6 \end{bmatrix}.$$

- (a) Låt L vara linjen som ges av 2x-3y=-11. Visa att T_A avbildar L på en linje $T_A(L)$.
- (b) Hitta en linje L' så att $T_A(L')$ är en punkt. Ange ekvation för L'. (2 p)
- 5. I \mathbb{R}^4 har vi följande fyra vektorer

$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -1 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} -3 \\ 2 \\ -3 \\ 3 \end{bmatrix} \quad \text{och} \quad \vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Vektorrummet $V = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$.

- (a) Visa att $\beta = \{\vec{u}, \vec{v}\}$ är en ortogonal bas för V.
- (b) Vi har basen $\gamma = \{\vec{v}, \vec{w}\}$ för V. Bestäm koordinatvektorn till $\operatorname{Proj}_V(\vec{x})$ i basen γ . (3 p)
- 6. Låt A vara en symmetrisk 3×3 -matris. Anta att dess karakteristiska polynom har en enkel rot $\lambda_1=2$ med motsvarande egenvektor $\vec{v}_1=\begin{bmatrix} 1\\1\\-1\end{bmatrix}$ och en dubbelrot $\lambda_2=-2$.

(a) Låt
$$\vec{w} = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$
. Beräkna $A^5 \vec{w}$

(b) Bestäm matrisen A. (2 p)

DEL C

7. Planen P_1 och P_2 i \mathbb{R}^3 ges av ekvationerna:

$$P_1: \ x-y+z=5 \qquad P_2: \ 2x+2z=-8$$
 Linjen L är $\begin{bmatrix}1\\3\\0\end{bmatrix}+t\begin{bmatrix}2\\0\\4\end{bmatrix}$, godtyckliga tal t . Linjen L speglas genom P_1 till en linje L' . Avgör om L' skär planet P_2 . (4 **p**)

8. Låt

$$\beta = \{\cos(x), \sin(x), \cos(2x), \sin(2x), \dots, \cos(10x), \sin(10x)\}.$$

Mängden β bildar en bas för ett delrum V av vektorrummet av reellvärda funktioner av en variabel x. Derivationsavbildningen $D\colon V\longrightarrow V$ är den linjära avbildning som skickar en vektor f(x) i V till

$$D(f(x)) = \frac{df}{dx},$$

dess derivata.

- (a) Hitta matrisrepresentationen till D i basen β . (2 p)
- (b) Avgör om avbildningen D är diagonaliserbar. (2 \mathbf{p})
- 9. Låt A och P vara 3×3 -matriser, där P är inverterbar.
 - (a) Visa att $tr(A) = tr(P^{-1}AP)$, där tr betecknar spåret av matrisen. (2 p)
 - (b) Antag att A är diagonaliserbar och uppfyller följande tre villkor

$$tr(A) = 0,$$

 $tr(A^2) = 14,$
 $tr(A^3) = -18.$

Beräkna $\det(A)$. (2 p)