

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to M-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

MATEMATYKA Poziom podstawowy

TEST DIAGNOSTYCZNY

*Symbol arkusza*MMAP-P0-**100**-2312

DATA: **7 grudnia 2023 г.**

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 46

WYPEŁNIA ZESPÓŁ NADZORUJĄCY
Uprawnienia zdającego do:
dostosowania zasad oceniania
dostosowania w zw. z dyskalkulią
nieprzenoszenia zaznaczeń na kartę.
·

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 33 strony (zadania 1–30). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Symbol zamieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi. Ocenie podlegają wyłącznie odpowiedzi zaznaczone na karcie odpowiedzi.
- 4. Odpowiedzi do zadań zamkniętych zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 5. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 6. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 9. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy odpowiednich zadaniach.
- 10. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 11. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\left(3^{-2,4} \cdot 3^{\frac{2}{5}}\right)^{\frac{1}{2}}$ jest równa

- **A.** $\sqrt{3}$
- **B.** $\frac{\sqrt{3}}{3}$ **C.** $\frac{1}{3}$

D. 0,3

Zadanie 2. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\log_2 96 - \log_2 3$ jest równa

A. $\log_2 93$

Więcej arkuszy znajdziesz na stronie: arkusze.pl

- **B.** $\log_2 30$
- **C.** 4

D. 5

Pan Grzegorz wpłacił do banku pewną kwotę na lokatę dwuletnią. Po każdym rocznym okresie oszczędzania bank doliczał odsetki w wysokości 5% od kwoty bieżącego kapitału znajdującego się na lokacie. Po dwóch latach oszczędzania pan Grzegorz odebrał z tego banku wraz z odsetkami kwotę 4851 zł (bez uwzględnienia podatków).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Kwota wpłacona przez pana Grzegorza na tę lokatę była równa

- **A.** 4300 zł
- **B.** 4400 zł
- **C.** 4500 zł
- **D.** 4600 zł

Zadanie 4. (0-1)

Na osi liczbowej zaznaczono przedział.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiór zaznaczony na osi jest zbiorem wszystkich rozwiązań nierówności

A.
$$|x-2| < 5$$

B.
$$|x-2| > 5$$

C.
$$|x-5| < 2$$

D.
$$|x-5| > 2$$

Zadanie 5. (0-2)

Wykaż, że dla każdej liczby całkowitej nieparzystej n liczba $3n^2+4n+1$ jest podzielna przez 4.

Dany jest układ równań
$$\begin{cases} x - 3y + 5 = 0 \\ 2x + y + 3 = 0 \end{cases}$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Rozwiązaniem tego układu równań jest para liczb

A.
$$x = 1$$
 i $y = 2$

B.
$$x = 0$$
 i $y = -3$

C.
$$x = -2$$
 i $y = 1$

D.
$$x = -1$$
 i $y = -1$

Zadanie 7. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Dla każdej liczby rzeczywistej x różnej od (-3) i (-2) wartość wyrażenia $\frac{x+3}{x^2+4x+4} \cdot \frac{x^2+2x}{2x+6}$ jest równa wartości wyrażenia

A.
$$\frac{x}{2}$$

Więcej arkuszy znajdziesz na stronie: arkusze.pl

$$\mathbf{B.} \ \frac{x}{4}$$

c.
$$\frac{x}{2x+4}$$

D.
$$\frac{x^3 + 3x^2}{6x^2 + 24x + 24}$$

Zadanie 8. (0-1)

Dany jest wielomian $W(x) = -3x^3 - x^2 + kx + 1$, gdzie k jest pewną liczbą rzeczywistą. Wiadomo, że wielomian W można zapisać w postaci $W(x) = (x+1) \cdot Q(x)$ dla pewnego wielomianu Q.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba k jest równa

- **A.** 29
- **B.** (-3)
- **C.** 0

D. 3

Zadanie 9. (0-3)

$$2x^3 + 3x^2 = 10x + 15$$

Zapisz obliczenia.

Zadanie 10. (0-1)

Funkcja liniowa f jest określona wzorem $f(x) = -\frac{1}{6}x + \frac{2}{3}$.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Miejscem zerowym funkcji f jest liczba 4 .	Р	F
Punkt przecięcia wykresu funkcji f z osią $0y$ ma współrzędne $\left(0, -\frac{1}{6}\right)$.	Р	F

Zadanie 11.

W kartezjańskim układzie współrzędnych (x,y) przedstawiono fragment wykresu funkcji kwadratowej f (zobacz rysunek). Wierzchołek paraboli, która jest wykresem funkcji f, oraz punkty przecięcia paraboli z osiami układu współrzędnych mają współrzędne całkowite.

Zadanie 11.1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiorem wartości funkcji $\,f\,$ jest przedział

A.
$$(-\infty, -2]$$

B.
$$(-\infty, 4]$$

C.
$$[-2, +\infty)$$

D.
$$[4, +∞)$$

Zadanie 11.2. (0-1)

Zapisz poniżej w postaci przedziału zbiór wszystkich argumentów, dla których funkcja f przyjmuje wartości ujemne.

В	ruc	lno	pis														

11.3. 0–1–2

Zadanie 11.3. (0-2)

Uzupełnij zdanie. Wybierz <u>dwie</u> właściwe odpowiedzi spośród oznaczonych literami A–F i wpisz te litery w wykropkowanych miejscach.

Wzór funkcji f można przedstawić w postaci: oraz

A.
$$f(x) = \frac{1}{2}(x-2)(x-6)$$

B.
$$f(x) = \frac{1}{2}(x-4)^2 - 2$$

C.
$$f(x) = 2(x-2)(x-6)$$

D.
$$f(x) = \frac{1}{2}(x+4)^2 - 2$$

E.
$$f(x) = 2(x+2)(x+6)$$

F.
$$f(x) = 2(x+4)^2 - 2$$

Zadanie 11.4. (0-1)

Funkcja kwadratowa g jest określona za pomocą funkcji f (zobacz rysunek na stronie 11) następująco: g(x) = f(x+1). Na jednym z rysunków A–D przedstawiono, w kartezjańskim układzie współrzędnych (x,y), fragment wykresu funkcji y=g(x).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Fragment wykresu funkcji y = g(x) przedstawiono na rysunku

A.

В.

C.

D.

Zadanie 12. (0-1)

Proces stygnięcia naparu z ziół w otoczeniu o stałej temperaturze $22\,^{\circ}\text{C}$ opisuje funkcja wykładnicza $T(x)=78\cdot 2^{-0.05x}+22$, gdzie T(x) to temperatura naparu wyrażona w stopniach Celsjusza (°C) po x minutach liczonych od momentu x=0, w którym zioła zalano wrzątkiem.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Temperatura naparu po 20 minutach od momentu zalania ziół wrzątkiem jest równa

- **A.** 22 °C
- **B.** 39 °C
- **C.** 78 °C
- **D.** 61 °C

Zadanie 13. (0-1)

Ciąg arytmetyczny (a_n) jest określony dla każdej liczby naturalnej $n \ge 1$. W tym ciągu $a_2 = 4$ oraz $a_3 = 9$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Szósty wyraz ciągu (a_n) jest równy

- **A.** 24
- **B.** 29
- **C.** 36
- **D.** 69

Zadanie 14. (0–1)

Ciąg (a_n) jest określony dla każdej liczby naturalnej $n \geq 1$. Suma n początkowych wyrazów tego ciągu jest określona wzorem $S_n = 4 \cdot (2^n - 1)$ dla każdej liczby naturalnej $n \geq 1$.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Pierwszy wyraz ciągu (a_n) jest równy 4 .	Р	F
Drugi wyraz ciągu (a_n) jest równy 12 .	P	F

Zadanie 15. (0–1)

Trzywyrazowy ciąg (1-2a,12,48) jest geometryczny.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba *a* jest równa

- **A.** (-1)
- **B.** 3

C. 4

D. 12,5

Zadanie 16. (0-2)

Dane są dwa kąty o miarach α oraz β , spełniające warunki:

$$\alpha \in (0^{\circ}, 180^{\circ}) \text{ i } \operatorname{tg} \alpha = -\frac{2}{3} \operatorname{oraz} \beta \in (0^{\circ}, 180^{\circ}) \operatorname{i} \operatorname{cos} \beta = \frac{1}{\sqrt{10}}.$$

Na rysunkach A–F w kartezjańskim układzie współrzędnych (x,y) zaznaczono różne kąty – w tym kąt o mierze α oraz kąt o mierze β . Jedno z ramion każdego z tych kątów pokrywa się z dodatnią półosią ∂x , a drugie przechodzi przez jeden z punktów o współrzędnych całkowitych: A lub B, lub C, lub D, lub E, lub F.

16. 0–1–2 Uzupełnij tabelę. Wpisz w każdą pustą komórkę tabeli właściwą odpowiedź, wybraną spośród oznaczonych literami A–F.

16.1.	Kąt α jest zaznaczony na rysunku	
16.2.	Kąt eta jest zaznaczony na rysunku	

A.

В.

C.

D.

E.

F.

Zadanie 17. (0-1)

Kąt α jest ostry oraz $\sin \alpha = \frac{\sqrt{5}}{3}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Tangens kąta α jest równy

A.
$$\frac{\sqrt{5}}{2}$$

B.
$$\frac{2}{3}$$

c.
$$\frac{2\sqrt{5}}{5}$$

D.
$$\frac{3\sqrt{5}}{5}$$

0000 Zadanie 18. (0-1)

W kartezjańskim układzie współrzędnych (x,y) dana jest prosta l o równaniu $y = \frac{3}{2}x - \frac{15}{2}$. Prosta k jest prostopadła do prostej l i przechodzi przez punkt P = (6,0).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prosta k ma równanie

A.
$$y = \frac{3}{2}x + 6$$

B.
$$y = -\frac{2}{3}x + 6$$

C.
$$y = \frac{3}{2}x - 9$$

D.
$$y = -\frac{2}{3}x + 4$$

Zadanie 19. (0-1) 0000/

W kartezjańskim układzie współrzędnych (x, y) dane są proste k oraz l o równaniach

$$k: y = -\frac{1}{2}x - 7$$

$$l: \ y = (2m - 1)x + 13$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Proste k oraz l są równoległe, gdy

A.
$$m = \left(-\frac{1}{2}\right)$$
 B. $m = \frac{1}{4}$ **C.** $m = \frac{3}{2}$ **D.** $m = 2$

B.
$$m = \frac{1}{4}$$

C.
$$m = \frac{3}{2}$$

D.
$$m = 2$$

Zadanie 20. (0-1)

W kartezjańskim układzie współrzędnych (x,y) dany jest okrąg \mathcal{O} o środku w punkcie S=(4,-2). Okrąg \mathcal{O} jest styczny do osi $\mathcal{O}x$ układu współrzędnych.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Okrąg \mathcal{O} jest określony równaniem

A.
$$(x-4)^2 + (y+2)^2 = 4$$

B.
$$(x-4)^2 + (y+2)^2 = 2$$

C.
$$(x+4)^2 + (y-2)^2 = 4$$

D.
$$(x+4)^2 + (y-2)^2 = 2$$

Zadanie 21. (0-1)

W kartezjańskim układzie współrzędnych (x,y) punkty K=(-7,-2) oraz L=(-1,4) są wierzchołkami trójkąta równobocznego KLM.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Pole trójkąta KLM jest równe

- **A.** $17\sqrt{2}$
- **B.** $17\sqrt{3}$
- **C.** $18\sqrt{2}$
- **D.** $18\sqrt{3}$

Zadanie 22. (0-1)

Punkty A, B oraz C leżą na okręgu o środku w punkcie O. Prosta k jest styczna do tego okręgu w punkcie A i tworzy z cięciwą AB kąt o mierze 32° . Ponadto odcinek AC jest średnicą tego okręgu (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Miara kąta rozwartego BOC jest równa

- A. 148°
- **B.** 116°
- **C.** 154°
- **D.** 122°

Zadanie 23. (0-1)

W rombie ABCD dłuższa przekątna AC ma długość 12 i tworzy z bokiem AB kąt o mierze 30° (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Pole rombu ABCD jest równe

- **A.** 24
- **B.** 36
- **C.** $24\sqrt{3}$
- **D.** $36\sqrt{2}$

0-1-2

Zadanie 24. (0-2)

Dany jest okrąg \mathcal{O} o środku w punkcie S. Średnica AB tego okręgu przecina cięciwę CD w punkcie P (zobacz rysunek). Ponadto: |PB|=4, |PC|=8 oraz |PD|=5.

Oblicz promień okręgu \mathcal{O} . Zapisz obliczenia.

Zadanie 25. (0-1)

Dany jest sześcian ABCDEFGH o krawędzi długości 5. Wewnątrz sześcianu znajduje się punkt P (zobacz rysunek).

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Suma odległości punktu P od wszystkich <u>ścian</u> sześcianu ABCDEFGH jest równa

A. 15

B. 20

C. 25

D. 30

Zadanie 26. (0-3)

Objętość ostrosłupa prawidłowego czworokątnego jest równa 384. Wysokość ściany bocznej tego ostrosłupa tworzy z płaszczyzną podstawy kąt o mierze $\,\alpha\,$ taki, że tg $\,\alpha=\frac{4}{3}\,$ (zobacz rysunek).

Oblicz wysokość ściany bocznej tego ostrosłupa. Zapisz obliczenia.

0–1–

Zadanie 27. (0-2)

E-dowód ma zapisany na pierwszej stronie specjalny sześciocyfrowy numer CAN, który zabezpiecza go przed odczytaniem danych przez osoby nieuprawnione.

Oblicz, ile jest wszystkich sześciocyfrowych numerów CAN o <u>różnych cyfrach</u>, spełniających warunek: trzy pierwsze cyfry są kolejnymi wyrazami ciągu arytmetycznego o różnicy (-3). Zapisz obliczenia.

Zadanie 28. (0–1)

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb wyrzuconych oczek jest liczbą nieparzystą, jest równe

- **A.** $\frac{1}{2}$
- **B.** $\frac{1}{5}$
- **c**. $\frac{1}{4}$
- **D.** $\frac{3}{4}$

Zadanie 29.

W hurtowni owoców wyselekcjonowane jabłko spełnia normę jakości, gdy jego masa (po zaokrągleniu do pełnych dekagramów) mieści się w przedziale [19 dag, 21 dag]. Pobrano próbę kontrolną liczącą 50 jabłek i następnie zważono każde z nich. Na poniższym wykresie słupkowym przedstawiono rozkład masy jabłek w badanej próbie. Na osi poziomej podano – wyrażoną w dekagramach – masę jabłka (w zaokrągleniu do pełnych dekagramów), a na osi pionowej przedstawiono liczbę jabłek o określonej masie.

Zadanie 29.1. (0-1)

Spośród 50 zważonych jabłek z pobranej próby kontrolnej losujemy jedno jabłko.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Prawdopodobieństwo zdarzenia polegającego na tym, że wylosowane jabłko spełnia normę jakości, jest równe

A. $\frac{3}{7}$

B. $\frac{5}{7}$

c. $\frac{18}{25}$

D. $\frac{9}{10}$

Zadanie 29.2. (0-1)

Dokończ zdanie tak, aby było prawdziwe. Wybierz odpowiedź A albo B oraz jej uzasadnienie 1., 2. albo 3.

Dominanta masy 50 zważonych jabłek (w zaokrągleniu do pełnych dekagramów) z pobranej próby kontrolnej jest równa

A.	20 dag,	- ponieważ	1. ta masa jest największa w tej próbie.						
			- ponieważ	ponieważ	ponieważ	ponieważ	2.	iloczyn tej masy i liczby jabłek o takiej masie jest największy w tej próbie.	
B.	23 dag,		3.	ta masa występuje najliczniej w tej próbie.					

Zadanie 30. (0-4)

Zgodnie z założeniem architekta okno na poddaszu ma mieć kształt trapezu równoramiennego, który nie jest równoległobokiem. Dłuższa podstawa trapezu ma mieć długość 12 dm, a suma długości krótszej podstawy i wysokości tego trapezu ma być równa 18 dm.

Oblicz, jaką długość powinna mieć krótsza podstawa tego trapezu, tak aby pole powierzchni okna było największe. Oblicz to pole. Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom podstawowy

Formula 2023

MATEMATYKA Poziom podstawowy Formula 2023

MATEMATYKA Poziom podstawowy

Formula 2023