Bookmark

Show all steps: (

ON

A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 6EI

Problem Recall that V_n is the multiplicative group of all the invertible elements in \mathbb{Z}_n . If V_n happens to be cyclic, say $V_n = \langle m \rangle$, then any integer $a \equiv m \pmod{n}$ is called a *primitive root* of n. Let p > 2 be a prime. Prove that every primitive root of p is a quadratic nonresidue, modulo p. (HINT: Suppose a primitive root α is a residue; then every power of a is a residue.) Step-by-step solution **Step 1** of 3 Here, objective is to prove that, every primitive root of p is a quadratic non residue modulo pComment **Step 2** of 3 Primitive root of *n*: V_n is the multiplicative group of all the invertible elements in Z_n . If V_n happens to be cyclic $V_n = m$. Then any integer $a = m \pmod{n}$ is called a primitive root of n. Comment

Step 3 of 3

Consider p > 2 and p be a prime.

Then,
$$p-1 > \frac{(p-1)}{2}$$
; \forall primes p

Consider a is a primitive root and quadratic residue modulo p

Then,

$$\operatorname{ord}_{p} a = p - 1$$

Euler's criterion states that,

$$a^{(p-1)/2} = 1 \bmod p$$

But the above condition is impossible. Since

$$p-1 > \frac{(p-1)}{2}$$
; \forall primes p

Therefore,

Every quadratic non residue mod p is a primitive root of p for p > 2 and p be a prime.

Hence, proved

Comment