

Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH)

Hauptseminar Rechnerarchitektur und Programmierung

Adapteva Parallella:

Crowd-funded Low-budget Open-source HPC

Tobias Frust (tobias.frust@mailbox.tu-dresden.de)

Tutor: Ronny Brendel (ronny.brendel@tu-dresden.de)

17th July, 2015

Structure

- The Adapteva Parallella Platform
 - Company history of Adapteva
 - Motivation
 - The Parallella board
 - The Epiphany coprocessor
- Implementation of the 1D-FFT with filtering
 - Motivation
 - Implementation details
 - Performance results
- Comparison with current architectures GPUs
- Assessing the Parallella's Potential for HPC

Company history of Adapteva

- Feb 2008: Founded by Andreas Oloffson
 - Goal: 10 times advancement in floating point processing energy efficiency
- Jun 2009: Tapeout of Epiphany-I prototype (65nm)
 - Secured 1.5M US\$ in Series-A funding from Bittware
- May 2011: Sampled Epiphany-III (65nm) product
- Aug 2012: Demonstration of 50 GFLOPS/Watt efficiency at 28nm
- Oct 2012: Launch of Parallella kickstarter project
- Jul 2013: first Parallella boards shipped to Kickstarter backers
- Apr 2014: Completed shipping of all Parallella boards to Kickstarter backers

Parallella Kickstarter Program

- Slogan: "The parallella project will make parallel computing accessible to everyone"
- Kickstarter project gained 898,921\$ from 4,965 backers
- Attributes:
 - Open Access: no NDAs or special access needed
 - Open Source: platform based on free open source development tools and libraries
 - Affordable: Parallella high performance computer at costs below 100\$
- → Close the knowledge gap in parallel programing
- → Democratize access to parallel computing

Motivation for Epiphany multicore architecture

Parallella Board

System overview of Parallella board

High level overview of the Epiphany architecture

Coprocessor to ARM/Intel CPU

25mW per core

Ease To Use

Memory scheme of the Epiphany architecture

Attributes:

- flat 32 bit address space split into 4096 1-MiB chunks
- Each core is assigned his own 1-MiB chunk
 - But has transparent access to memory of any other core
- Optimal performance only if data is placed in local memory banks

GLOBAL SPACE

CORE 63 63

CORE 63 3

CORE 63 2

0xFFF00000

0xFC300000

0xFC200000

0xFC100000

0xFC000000

0x07F00000

0x04300000

0x04200000

0x04100000

0x04000000

0x03F00000

0x00300000

0x00200000

0x00100000

0x00000000

Example: Parallella as a cluster

- Boards can be combined to one cluster
- Gigabit-Ethernet interconnect
- → With thousands of boards put together you can build a supercomputer at low cost

Future ideas for Epiphany architecture

Motivation: Implementation of the 1D-FFT on Epiphany

- Fast Fourier Transform is basic operation for many applications
- Algorithm to compute the discrete fourier transform
- Concrete example: Filtered backprojection as CT-Reconstruction algorithm

Implementation on Parallella

Details of implementation

Data transfer vs calculation time (1 core)

- Data transfer is the main bottleneck
- To increase performance, more calculation per memory transfer is necessary
- Due to Amdahls law speedup cannot exceed 2.5 with 16 cores
- Maximum speedup of 2.9 possible

→TODO: reason

Performance results

Results measured for 500 FFTs of size 256

	1 core	16 cores
Write time	70 ms	72 ms
Computation time	394 ms	25 ms
Read time	146 ms	148 ms
Number of floating point operations	$13,9\cdot 10^6$	$13,9\cdot 10^6$
MFLOP/s in calculation part	35 MFLOP/s	556 MFLOP/s
MFLOP/s in whole program	23 MFLOP/s	57 MFLOP/s
Transfer rate: write	14,6 MByte/s	14,2 MByte/s
Transfer rate: read	7,01 MByte/s	6,9 MByte/s

- Small memory transfer rate to local memory banks
- Read = read + write -> half performance compared to write

Speedup of parallelisable calculation part

Overall Speedup

Comparison with actual architecture - GPUs

- Comparison with Intel Core i7 2600 combined with Nvidia Geforce 750Ti in terms of energy efficiency
- Identical implementation with use of cufft-Library from Nvidia

Peak Performance Single Precision	1,472 TFLOP/s	
Number of Streaming Multiprocessors (SMs)	5	
Number of cuda cores	640	
Memory Bandwidth	86,4 GByte/s	
Architecture	Maxwell	
Memory bus interface	128 Bit	
Manufacturing Process	TSMC 28nm	
Thermal Design Power (TDP)	60 Watt	
Launch Date	02/18/14	
Die size	148 mm ²	

Comparison of Parallella with GeForce 750 Ti

To stay fair comparison in terms of energy efficieny and chip area

