Formulário MDIO 2020/2021

1 Relax4

1.1 Formato do input

n
m
org dst custo cap (m vezes)
vert (n vezes)

- n: número de vértices
- m: número de arcos do grafo
- org: vértice de origem do arco
- dst: vértice de destino
- custo: custo de transporte
- cap: capacidade do arco
- vert: oferta/procura no vértice, positivo e negativo respetivamente

2 Transportes: Introdução

2.1 Modelo geral

• Dado um grafo G = (V, A), pretende-se:

$$\begin{aligned} & \min & & \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \text{suj. a} & & -\sum_{(i,j) \in A} x_{ij} + \sum_{(j,i) \in A} x_{ji} = b_j, \ \forall j \in V \\ & & 0 \leq x_{ij} \leq u_{ij}, \ \forall (i,j) \in A \end{aligned} \tag{1}$$

Variáveis de decisão:

• $x_{ij:}$ fluxo de *um único tipo de entidades* no arco orientado (i,j);

Dados

- c_{ij} : custo unitário de transporte no arco orientado (i,j);
- ullet $b_{j:}$ oferta (valor positivo) ou procura (valor negativo) no vértice j;
- u_{ij} : capacidade do arco orientado (i,j).
- Restrições (1) designam-se por restrições de conservação de fluxo.
- Restrições (2) designam-se por restrições de capacidade.

2.2 Caracterização das soluções básicas

A uma base podemos associar uma árvore (grafo com vértices não orientados) que suporta todos os vértices.

2.2.1 Propriedades da árvore de suporte de um grafo G = (V, A)

- é um grafo ligado (existe um caminho entre cada par de vértices)
- · sem ciclos
- com |A| = |V| 1 (número de arcos = número de vértices 1)

2.3 Método dos multiplicadores

- 1. Fixar o valor de qualquer multiplicador em 0
- 2. Arcos básicos: $c_{ij} = u_i u_j$
- 3. Arcos não-básicos: $\delta_{ij} = c_{ij} (u_i u_j)$

2.4 Pivô

Qual o valor máximo de θ ? $\theta_{max} = min\{10, 40\} = 10$

3 Transportes: Grafos Bipartidos

Um grafo G = (V, A) é bipartido se o conjunto de vértices V puder ser dividido em dois conjuntos disjuntos, V_1 e V_2 (i.e., $V1 \cup V2 = V, V1 \cap V2 = \emptyset$), de tal modo que todos os arcos $(i, j) \in A$ tenham origem num vértice $i \in V_1$ e destino num vértice $j \in V_2$.

3.1 Representações

	<i>x</i> ₁₁	<i>X</i> ₁₂	<i>x</i> ₁₃	<i>X</i> 21	<i>x</i> ₂₂	X23	<i>X</i> 31	X32	X33		
origem 1	1	1	1							=	a_1
origem 2				1	1	1				=	a_2
origem 3							1	1	1	=	a_3
destino 1	-1			-1			-1			= -	$-b_1$
destino 2		-1			-1			-1		= -	$-b_{2}$
destino 3			-1			-1			-1	= -	- <i>b</i> 3
min	c ₁₁	c ₁₂	c ₁₃	c ₂₁	c ₂₂	c ₂₃	c ₃₁	c ₃₂	C33		

3.2 Solução inicial

3.2.1 Método do canto NW

- Colocar a maior quantidade possível na casa mais a NW
 ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- 2. Cortar a linha ou a coluna (ou ambas)
- 3. Repetir se ainda houver uma casa

3.2.2 Método do canto NW

- Colocar a maior quantidade possível na casa com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - · ou ambas.
- 2. Cortar a linha ou a coluna (ou ambas)
- 3. Repetir se ainda houver uma casa

3.2.3 Seleção da variável básica com valor 0 (quando faltar uma var. básica)

- Nem todas as variáveis podem ser escolhidas!
- No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

 Os arcos associados às variáveis formam um ciclo (i.e., as colunas do modelo de PL são linearmente dependentes, e portanto não formam uma base)

3.3 Pivô

• A variável x_{AF} entra na base e x_{AE} sai da base.

4 Transportes: Redes sem capacidades

...(nada?)

5 Transportes: Redes com capacidades

5.1 Caracterização das soluções básicas

Iguais às referidas no 2.2, mas agora as variáveis no limite superior são também consideradas como não-básicas, para além das iguais a 0.

Uma variável não-básica é atrativa quando:

- $x_{ij} = 0$ (variável aumenta de valor) e $\delta_{ij} < 0$
- $x_{ij} = u_{ij}$ (variável decrementa de valor) e $\delta_{ij} > 0$

5.2 Transformações

5.2.1 Capacidade num vértice

5.2.2 Limite inferior num arco

6 Programação Inteira: Modelos

6.1 Expressões lógicas

Expressão lógica	Restrição binária			
$a \Rightarrow b$	a≤b			
$\overline{b} \Rightarrow \overline{a}$	$(1-b) \le (1-a)$			
$\overline{b} \Rightarrow \overline{a}$	$a \leq b$			
$a \Rightarrow \overline{b}$	$a+b \le 1$			
$b \Rightarrow \overline{a}$	$a+b \leq 1$			
$\stackrel{\bullet}{a}\stackrel{\bullet}{\lor} b$ (ou exclusivo)	a + b = 1			
seleccionar <i>exactamente</i> uma das opções	$a+b+\ldots+z=1$			
seleccionar, <i>no máximo.</i> uma das opções	$a+b+\ldots+z\leq 1$			
$a.b \Rightarrow c$	$a+b-1 \le c$			

7 Programação Inteira: Planos de corte

. . .

8 Programação Inteira: Partição e avaliação