CS 181 HW8 2021 CS181

YIQIAO JIN

TOTAL POINTS

12 / 12

QUESTION 1

1 Two left-most reductions in CFG 4 / 4

- √ 0 pts Perfectly correct
 - 1.5 pts One of your reductions is wrong
 - 3 pts Both of your reductions are wrong
 - 1 pts Reduction is correct, but one of your

reductions is not left-most

- 2 pts Reduction is correct, but both of your reductions are not left-most
 - 4 pts Did not answer this question

QUESTION 2

TM (mixed) Construction 8 pts

2.1 a. Procdure 6/6

- √ + 6 pts Correct
 - + 4 pts Partially correct
 - + 2 pts Attempted
 - + 5 pts Almost Correct
 - + 0 pts Not attempted

2.2 b. Brief explanation 2/2

- √ + 2 pts Correct
 - + 1 pts Attempted, partially correct
 - + 0 pts Not attempted or wrong

Homework 8

Name: Yiqiao Jin UID: 305107551

1

The grammar is ambiguous. The string baabba can be reduced in two different ways using this grammar:

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto B\underline{A}\underline{A}bba \mapsto \underline{B}\underline{C}bba \mapsto A\underline{b}ba \mapsto AB\underline{b}a \mapsto ABB\underline{a} \mapsto AB\underline{B}\underline{A} \mapsto AB\underline{S} \mapsto AB \mapsto S$

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto BAA\underline{b}ba \mapsto BA\underline{A}\underline{b}ba \mapsto BA\underline{b}a \mapsto BA\underline{b}a \mapsto BAB\underline{a} \mapsto B$

There are more than 2 possible reductions. For example, a slightly modified version of 1 gives:

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto B\underline{AA}bba \mapsto \underline{BC}bba \mapsto A\underline{b}ba \mapsto AB\underline{b}a \mapsto \underline{ABB}a \mapsto \underline{AD}a \mapsto B\underline{a} \mapsto \underline{BA} \mapsto S$

2

a

Let M_A be a TM decider for L_A (Recursive language). Let M_P be a TM recognizer for L_P (R.E. language).

We can construct a **Universal Turing Machine** M for the union of languages $L_P \cup L_A$.

We use the M to simulate M_A on a given input string w for L_A :

- ullet If M_A halts and accepts, M halts and accepts
- If M_A halts and rejects, we use M to simulate M_P on w

Note that, since M_A is a decider, it must always halt on its input (instead of entering infinite loops), and either accept or reject.

Similarly, we can use M to simulate M_P on a given input string w for L_P :

• If M_P halts and accepts, M halts and accepts

1 Two left-most reductions in CFG 4/4

√ - 0 pts Perfectly correct

- 1.5 pts One of your reductions is wrong
- 3 pts Both of your reductions are wrong
- 1 pts Reduction is correct, but one of your reductions is not left-most
- 2 pts Reduction is correct, but both of your reductions are not left-most
- 4 pts Did not answer this question

Homework 8

Name: Yiqiao Jin UID: 305107551

1

The grammar is ambiguous. The string baabba can be reduced in two different ways using this grammar:

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto B\underline{A}\underline{A}bba \mapsto \underline{B}\underline{C}bba \mapsto A\underline{b}ba \mapsto AB\underline{b}a \mapsto ABB\underline{a} \mapsto AB\underline{B}\underline{A} \mapsto AB\underline{S} \mapsto AB \mapsto S$

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto BAA\underline{b}ba \mapsto BA\underline{A}\underline{b}ba \mapsto BA\underline{b}a \mapsto BA\underline{b}a \mapsto BAB\underline{a} \mapsto B$

There are more than 2 possible reductions. For example, a slightly modified version of 1 gives:

 $\underline{b}aabba \mapsto B\underline{a}abba \mapsto BA\underline{a}bba \mapsto B\underline{AA}bba \mapsto \underline{BC}bba \mapsto A\underline{b}ba \mapsto AB\underline{b}a \mapsto \underline{ABB}a \mapsto \underline{AD}a \mapsto B\underline{a} \mapsto \underline{BA} \mapsto S$

2

a

Let M_A be a TM decider for L_A (Recursive language). Let M_P be a TM recognizer for L_P (R.E. language).

We can construct a **Universal Turing Machine** M for the union of languages $L_P \cup L_A$.

We use the M to simulate M_A on a given input string w for L_A :

- ullet If M_A halts and accepts, M halts and accepts
- If M_A halts and rejects, we use M to simulate M_P on w

Note that, since M_A is a decider, it must always halt on its input (instead of entering infinite loops), and either accept or reject.

Similarly, we can use M to simulate M_P on a given input string w for L_P :

• If M_P halts and accepts, M halts and accepts

- If M_P halts and rejects, M halts and rejects
- If M_P does not halt, this means the input string cannot be accepted. So M does not halt, either. It continuously runs as M_P does.

This way, M may fail to halt on some inputs in $L_P \cup L_A$. This means $L_P \cup L_A$ is Recursively Enumerable.

A picture for this **Universal Turing Machine**:

b

In order to decide whether w is in $L_P \cup L_A$, we need to let M simulate M_P in cases that w is not in L_A in our first step, which means that it can receive any strings as M_P receives. However, L_P is Recursively Enumerable but not necessarily Recursive. This means M_P does not always halt on its inputs and can only **recognize** (instead of **decide**) strings that belong to L_P . Similarly, M may not halt on its inputs. So M is a Turing Machine Procedure (but not an Algorithm) that recognizes the union $L_P \cup L_A$.

2.1 a. Procdure 6 / 6

- √ + 6 pts Correct
 - + 4 pts Partially correct
 - + 2 pts Attempted
 - + 5 pts Almost Correct
 - + **0 pts** Not attempted

2.2 b. Brief explanation 2/2

- √ + 2 pts Correct
 - + 1 pts Attempted, partially correct
 - + O pts Not attempted or wrong