

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра системного анализа

Курсовая работа

«Динамические системы и биоматематика»

Студент 315 группы Н. Ю. Заварзин

Преподаватель аспирант В. В. Абрамова

Содержание

1	Исс	ледование динамической системы с непрерывным временем	2
	1.1	Постановка задачи	2
	1.2	Биологическая интерпретация	3
	1.3	Введение безразмерных переменных	3
	1.4	Неподвижные точки	4
	1.5	Устойчивость неподвижных точек	5
		1.5.1 $\alpha > 1$	6
		1.5.2 $\alpha < 1$	6
		1.5.3 $\alpha = 1$	9
		1.5.4 Замечание к случаю $\alpha > 1$	9
	1.6	Параметрический и фазовый портреты	10
	1.7	Предельные циклы	12
	1.8	Интерпретация результатов	13

Исследование динамической системы с непрерывным временем

1.1 Постановка задачи

Задана динамическая система

$$\begin{cases} \dot{u}(t) = a - bu(t) - c \frac{u(t)v(t)}{A + u(t)}, \\ \dot{v}(t) = d \frac{u(t)v(t)}{1 + u(t)} q(t) - ev(t), \\ \dot{q}(t) = R - f q(t). \end{cases}$$
(1)

Здесь a, b, c, d, e, f, A, R > 0. Система рассматривается в \mathbb{R}^3_+ . Необходимо:

- 1. Дать биологическую интерпретацию характеристик системы.
- 2. Ввести новые безразмерные переменные, максимально уменьшив число входящих параметров. Выбрать два свободных параметра.
- Найти неподвижные точки системы и исследовать их характер в зависимости от значений параметров. Результаты исследования представить в виде параметрического портрета системы.
- 4. Для каждой характерной области параметрического портрета построить фазовый портрет. Дать характеристику поведения системы в каждом из этих случаев.
- 5. Исследовать возможность возникновения предельного цикла. В положительном случае найти соответствующее первое ляпуновское число. Исследовать характер предельного цикла (устойчивый, неустойчивый, полуустойчивый).
- 6. Дать биологическую интерпретацию полученным результатам.

1.2 Биологическая интерпретация

Рассматриваемая система (1) представляет собой математическую модель процесса очистки сточных вод. Биохимический процесс окисления загрязнения трактуется как "поедание" его микроорганизмами активного ила, при этом загрязнитель рассматривается как "жертва", а биологически активный ил как "хищник". Определим смысловую характеристику заданных параметров:

- u(t) концентрация загрязнения воды.
- v(t) плотность биомассы активного ила.
- \bullet q(t) концентрация кислорода.
- а интенсивность выбросов.
- -bu(t) естественный распад загрязнения.
- \bullet c, d некоторые положительные константы.
- -ev(t) убывание массы активного ила в воде.
- f коэффициент диссипации.
- А постоянная трофической функции.
- \bullet R величина притока кислорода в систему в единицу времени.
- $h(u,v)=\frac{cuv}{A+u}$ и $f(u,v)=\frac{duv}{1+u}$ трофические функции, характеризующие процесс очистки загрязнителя илом.

1.3 Введение безразмерных переменных

В системе используется 8 параметров. Для упрощения анализа введём новые, безразмерные переменные, которые позволят сократить число параметров. Обозначим

$$\tau = Tt,$$

$$u = BP(\tau) \Rightarrow \dot{u} = BT\dot{P},$$

$$v = CE(\tau) \Rightarrow \dot{v} = CT\dot{E},$$

$$q = DQ(\tau) \Rightarrow \dot{q} = DT\dot{Q}$$

и подставим эти выражения в (1):

$$\begin{cases} BT\dot{P}(\tau) = a - bBP(\tau) - c\frac{BP(\tau) \cdot CE(\tau)}{A + BP(\tau)}, \\ CT\dot{E}(\tau) = d\frac{BP(\tau) \cdot CE(\tau) \cdot DQ(\tau)}{1 + BP(\tau)} - eCE(\tau), \\ DT\dot{Q}(\tau) = R - fDQ(\tau). \end{cases}$$
 (2)

Определим $T=e,\,B=rac{a}{e},\,C=rac{e}{c},\,D=rac{e^2}{da},$ тогда получим

$$\begin{cases} \dot{P}(\tau) = 1 - \alpha P(\tau) - \frac{P(\tau)E(\tau)}{A + BP(\tau)}, \\ \dot{E}(\tau) = \frac{P(\tau)E(\tau)Q(\tau)}{1 + BP(\tau)} - E(\tau), \\ \dot{Q}(\tau) = \beta - \gamma Q(\tau), \end{cases}$$
(3)

где
$$\alpha=\frac{b}{e}>0,\, \beta=\frac{dRa}{e^3}>0,\, \gamma=\frac{f}{e}>0.$$

Таким образом мы уменьшили количество наших параметров с 8 до 5.

1.4 Неподвижные точки

$$\dot{x}_i = f_i(x_1, \dots, x_n), i = \overline{1, n}, (x_1, \dots, x_n) \in D \subseteq \mathbb{R}^n, f = (f_1, \dots, f_n). \tag{4}$$

Определение 1. Точка $x_0 \in \mathbb{R}^n$ называется неподвижной точкой динамической системы (4), если $f(x_0) = 0$.

Найдём неподвижные точки итоговой системы (3). Для этого потребуется решить следующую систему:

$$\begin{cases} 0 = 1 - \alpha P(\tau) - \frac{P(\tau)E(\tau)}{A + BP(\tau)}, \\ 0 = \frac{P(\tau)E(\tau)Q(\tau)}{1 + BP(\tau)} - E(\tau), \\ 0 = \beta - \gamma Q(\tau), \end{cases}$$

Из третьего уравнения можно сразу получить, что $Q(\tau) = \frac{\beta}{\gamma}$. Это выражение можно подставить во второе уравнение и вынести $E(\tau)$ за скобки:

$$\begin{cases} 0 = 1 - \alpha P(\tau) - \frac{P(\tau)E(\tau)}{A + BP(\tau)}, \\ 0 = E(\tau) \left(\frac{P(\tau) \cdot \frac{\beta}{\gamma}}{1 + BP(\tau)} - 1 \right), \\ Q(\tau) = \frac{\beta}{\gamma}. \end{cases}$$

- Если $E(\tau)=0$, то из первого уравнения получим $P(\tau)=\frac{1}{\alpha}$.
- Если $E(\tau) \neq 0$, то для $P(\tau)$ имеем

$$\frac{P(\tau) \cdot \frac{\beta}{\gamma}}{1 + BP(\tau)} = 1 \Rightarrow P(\tau) = \frac{1}{\frac{\beta}{\gamma} - B},$$

при $\frac{\beta}{\gamma}=B$ решений нет. Подставим последнее выражение в первое уравнение системы, в результате

$$E(\tau) = \frac{(1 - \alpha P(\tau))(A + BP(\tau))}{P(\tau)} = \frac{(\beta - B\gamma - \alpha\gamma)(A\beta - AB\gamma + B\gamma)}{\gamma(\beta - B\gamma)}.$$

Таким образом, у системы (3) две особые точки:

$$M = \left(\frac{1}{\alpha}, 0, \frac{\beta}{\gamma}\right), \quad N = \left(\frac{\gamma}{\beta - B\gamma}, \frac{(\beta - B\gamma - \alpha\gamma)(A\beta - AB\gamma + B\gamma)}{\gamma(\beta - B\gamma)}, \frac{\beta}{\gamma}\right).$$

Зафиксируем $\beta=2,\,\gamma=1,\,B=1.$ Тогда неподвижные точки примут вид

$$M = \left(\frac{1}{\alpha}, 0, 2\right), \quad N = (1, (1-\alpha)(A+1), 2).$$

Однако из-за того, что мы рассматриваем систему в \mathbb{R}^3_+ , то окончательно получим:

- $\alpha < 1 \Rightarrow$ две неподвижные точки M, N.
- $\alpha = 1 \Rightarrow$ точки M и N совпадают и равны (1,0,2).
- $\alpha > 1 \Rightarrow$ система имеет единственное положение равновесия M.

1.5 Устойчивость неподвижных точек

Рассмотрим динамическую систему с непрерывным временем

$$\dot{u} = f(u), \quad u \in U \subseteq \mathbb{R}^n, \quad f: U \to \mathbb{R}^n.$$
 (5)

Пусть u^* — её положение равновесия. Обозначим $\mathcal{J}(u^*)$ матрицу Якоби вектор-функции f(u) в точке u^* . Пусть n_+ , n_0 , n_- — число собственных значений $\mathcal{J}(u^*)$ (с учётом их кратности) с положительной, равной нулю и отрицательной вещественной частью соответственно.

Определение 2. Положение равновесия динамической системы (5) называется гиперболическим, если $n_0 = 0$, то есть не существует собственных значений, расположенных на мнимой оси. Гиперболическое положение равновесия называется гиперболическим седлом, если $n_+n_- \neq 0$.

Теорема 1. (А.М.Ляпунов, А.Пуанкаре). Пусть u^* — гиперболическое положение равновесия (5). Тогда, если $n_+ = 0$, то положение равновесия u^* асимптотически устойчиво, если $n_+ > 0$, то неустойчиво.

Для рассматриваемой системы

$$\begin{cases} \dot{P}(\tau) = 1 - \alpha P(\tau) - \frac{P(\tau)E(\tau)}{A + BP(\tau)}, \\ \dot{E}(\tau) = \frac{P(\tau)E(\tau)Q(\tau)}{1 + BP(\tau)} - E(\tau), \\ \dot{Q}(\tau) = \beta - \gamma Q(\tau), \end{cases} \qquad \alpha, \beta, \gamma, A, B > 0$$

матрица Якоби имеет вид

$$\mathcal{J} = \begin{pmatrix} -\alpha - \frac{AE}{(A+P)^2} & -\frac{P}{A+P} & 0\\ \frac{EQ}{(1+P)^2} & \frac{PQ}{1+P} - 1 & \frac{PE}{1+P}\\ 0 & 0 & -1 \end{pmatrix}.$$

Теперь можно перейти к исследованию найденных точек.

1.5.1 $\alpha > 1$

В этом случае система (3) имеет единственную неподвижную точку $M = \left(\frac{1}{\alpha}, 0, 2\right)$. Вычислим значение матрицы Якоби в ней:

$$\mathcal{J}(M) = \begin{pmatrix} -\alpha & -\frac{1}{A\alpha + 1} & 0\\ 0 & \frac{1-\alpha}{1+\alpha} & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Откуда несложно найти её собственные значения: $\lambda_1 = -\alpha$, $\lambda_2 = \frac{1-\alpha}{1+\alpha}$, $\lambda_3 = -1$. Из ограничения $\alpha > 1$ получаем, что все собственные значения отрицательные, следовательно, точка M — устойчивый узел.

1.5.2 $\alpha < 1$

В этом случае в системе имеются две неподвижные точки: $M = \left(\frac{1}{\alpha}, 0, 2\right), N = (1, (1-\alpha)(A+1), 2)$. Устойчивость точки M уже была рассмотрена в предыдущем пункте. Стоит отметить лишь то, что при текущих ограничениях собственное значение

 $\lambda_2 = \frac{1-\alpha}{1+\alpha} > 0$, а значит, точка M будет неустойчивой. Перейдём к анализу точки N.

$$\mathcal{J}(N) = \begin{pmatrix} -\frac{A+\alpha}{A+1} & -\frac{1}{A+1} & 0\\ \frac{(1-\alpha)(A+1)}{2} & 0 & \frac{(1-\alpha)(A+1)}{2}\\ 0 & 0 & -1 \end{pmatrix}$$

$$|\mathcal{J}(N) - \lambda I| = \begin{vmatrix} -\frac{A+\alpha}{A+1} - \lambda & -\frac{1}{A+1} & 0\\ \frac{(1-\alpha)(A+1)}{2} & -\lambda & \frac{(1-\alpha)(A+1)}{2}\\ 0 & 0 & -1-\lambda \end{vmatrix} =$$

$$= -(1+\lambda) \cdot \begin{vmatrix} -\frac{A+\alpha}{A+1} - \lambda & -\frac{1}{A+1} \\ \frac{(1-\alpha)(A+1)}{2} & -\lambda \end{vmatrix} = -(1+\lambda) \cdot \left(\lambda^2 + \lambda \left(\frac{A+\alpha}{A+1}\right) + \frac{1-\alpha}{2}\right)$$

Откуда $\lambda_1=-1,$ а $\lambda_{2,3}$ — решения уравнения

$$\lambda^2 + \lambda \left(\frac{A+\alpha}{A+1} \right) + \frac{1-\alpha}{2} = 0.$$

Дискриминант которого

$$D = \left(\frac{A+\alpha}{A+1}\right)^2 - 2(1-\alpha) = \frac{(A+\alpha)^2 - (2-2\alpha)(A+1)^2}{(A+1)^2}.$$

А корни:

$$\lambda_{2,3} = \frac{1}{2} \cdot \left(-\left(\frac{A+\alpha}{A+1}\right) \pm \sqrt{D} \right). \tag{6}$$

Знак дискриминанта совпадает со знаком числителя. Будем рассматривать D как функцию $\alpha(A)$. Найдём нули числителя:

$$(A + \alpha)^2 - (2 - 2\alpha)(A + 1)^2 = (A^2 + 2A\alpha + \alpha^2) - (2A^2 + 4A + 2) + (2\alpha A^2 + 4\alpha A + 2\alpha) =$$

$$= \alpha^2 + \alpha(2A^2 + 6A + 2) - (A^2 + 4A + 2) \Rightarrow$$

$$\Rightarrow \alpha_{1,2} = -(A^2 + 3A + 1) \pm (A + 1)\sqrt{(A + 1)(A + 3)}.$$

Исходя из того, что значения α должны быть положительными, нам подходит лишь один корень $\alpha = -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)}$, докажем это.

$$A^{2} + 3A + 1 = 0 \Leftrightarrow A_{1,2} = \frac{-3 \pm \sqrt{5}}{2} < 0,$$

поэтому корень с минусом нам не интересен. Обозначим

$$g(A) = -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)} \Rightarrow$$

$$\Rightarrow g'(A) = -(2A + 3) + \sqrt{(A + 1)(A + 3)} + \frac{(A + 1)(A + 2)}{\sqrt{(A + 1)(A + 3)}} =$$

$$= \frac{(A + 1)(A + 3) + (A + 1)(A + 2) - (A + 1)\sqrt{(A + 1)(A + 3)} - (A + 2)\sqrt{(A + 1)(A + 3)}}{\sqrt{(A + 1)(A + 3)}} \Leftrightarrow$$

$$\Leftrightarrow g'(A) = \frac{\left(\sqrt{(A + 1)(A + 3)} - (A + 2)\right)\left(\sqrt{(A + 1)(A + 3)} - (A + 1)\right)}{\sqrt{(A + 1)(A + 3)}},$$

что как легко заметить всегда меньше 0. При этом

$$\lim_{A \to +\infty} g(A) = \lim_{A \to +\infty} \left\{ (A+1)^2 \cdot \sqrt{1 + \frac{2}{A+1}} - (A^2 + 3A + 1) \right\} =$$

$$= \lim_{A \to +\infty} \left\{ (A+1)^2 \cdot \left(1 + \frac{1}{A+1} - \frac{1}{(A+1)^2} \cdot \frac{1}{2} + \tilde{o}\left(\frac{1}{A^2}\right) \right) - (A^2 + 3A + 1) \right\} = \frac{1}{2},$$

а значит такой $\alpha > \frac{1}{2} > 0$ для всех допустимых A.

Теперь можно указать значения $\lambda_{2,3}$ в явном виде:

ullet при $\alpha = -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)}$ собственные значения равны

$$\lambda_2 = \lambda_3 = -\left(\frac{A+\alpha}{2(A+1)}\right) = -\left(\frac{-(A+1)^2 + (A+1)\sqrt{(A+1)(A+3)}}{2(A+1)}\right) =$$
$$= -\frac{1}{2} \cdot (A+1)\left(\sqrt{\left(\frac{A+3}{A+1}\right)} - 1\right) < 0.$$

По теореме Ляпунова-Пуанкаре неподвижная точка асимптотически устойчива.

• при $0 < \alpha < -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)}$ наш D = -S, где S > 0. В таком случае $\lambda_{2,3}$ — комплексносопряженные числа

$$\lambda_{2,3} = \frac{1}{2} \cdot \left(-\left(\frac{A+\alpha}{A+1}\right) \pm i\sqrt{S}\right),$$

с отрицательной вещественной частью, что означает асимптотическую устойчивость точки.

• для $\alpha > -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)}$ собственное значение $\lambda_3 < 0$ (исходя из (6)). Выясним знак λ_2 . Для этого проведём сравнение $\left(\frac{A + \alpha}{A + 1}\right) \vee \sqrt{D}$. Левая часть и подкоренное выражение положительны, поэтому их можно возвести в квадрат,

получим:

$$\left(\frac{A+\alpha}{A+1}\right)^2 \vee \left(\frac{A+\alpha}{A+1}\right)^2 - 2(1-\alpha) \Leftrightarrow 1 > \alpha,$$

в результате можно сделать вывод о том, что $\lambda_2 < 0$ и точка N асимптотически устойчива.

1.5.3 $\alpha = 1$

В такой конфигурации параметров точки M и N совпадают и равны (1,0,2). Обозначим эту точку за N и вычислим матрицу Якоби в ней

$$\mathcal{J}(N) = \begin{pmatrix} -1 & -\frac{1}{A+1} & 0\\ 0 & 0 & 0\\ 0 & 0 & -1 \end{pmatrix},$$

откуда $\lambda_1 = -1, \; \lambda_2 = 0, \; \lambda_3 = -1.$ Отсюда видно, что данная неподвижная точка негиперболическая. Система структурно неустойчива, и при малом изменении параметра может происходить перестройка фазового портрета. То есть в окрестности точки N есть траектории, которые она притягивает, а есть траектории, которые она отталкивает. Более подробное исследование нельзя провести линейными методами.

Замечание к случаю $\alpha > 1$ 1.5.4

В реальности система (3) имеет вторую неподвижную точку $N=(1,\ (1-\alpha)(A+1),\ 2),$ которая хоть и не лежит в \mathbb{R}^3_+ , но тем не менее влияет на вид траекторий. Поэтому определим характер её устойчивости. Якобиан, как и раньше

$$|\mathcal{J}(N) - \lambda I| = -(1+\lambda) \cdot \left(\lambda^2 + \lambda \left(\frac{A+\alpha}{A+1}\right) + \frac{1-\alpha}{2}\right).$$

Формула для собственных значений также остаётся неизменной:

$$\lambda_{2,3} = \frac{1}{2} \cdot \left(-\left(\frac{A+\alpha}{A+1}\right) \pm \sqrt{D} \right),$$

 $\lambda_1 = -1$,

где
$$D = \frac{\alpha^2 + \alpha(2A^2 + 6A + 2) - (A^2 + 4A + 2)}{(A+1)^2}.$$

где $D=\frac{\alpha^2+\alpha(2A^2+6A+2)-(A^2+4A+2)}{(A+1)^2}.$ В то же время мы показали, что g(A) убывает, $g(0)=\sqrt{3}-1,$ а значит, возможен только случай $\alpha > -(A^2 + 3A + 1) + (A + 1)\sqrt{(A + 1)(A + 3)}$ (ведь у нас $\alpha > 1$). Здесь собственное значение $\lambda_3 < 0$, исходя из (6). Из проведённого ранее сравнения $\left(\frac{A+\alpha}{A+1}\right) \vee \sqrt{D} \Leftrightarrow 1 \vee \alpha$, поэтому $\lambda_2 > 0$ и особая точка неустойчива.

1.6 Параметрический и фазовый портреты

Рис. 1: Параметрический портрет системы

В области I система (3) имеет единственную устойчивую точку M. В областях II и III у нас асимптотически устойчивая точка N и неустойчивая M. На прямой $\alpha=1$ они сливаются в одну.

Рис. 2: Фазовый портрет системы, при $\alpha=2,\,A=2.$ Соответствует области I.

Как видно из графика (см. рис. 2), векторное поле по всем направлениям указывает в сторону точки $M=(0.5,\ 0,\ 2),$ что подтверждает её асимптотическую устойчивость.

Рис. 3: Фазовый портрет системы, при $\alpha=0.75,\,A=1.$ Соответствует области II.

Векторное поле на представленной иллюстрации (рис. 3) как бы закручивается к

"зелёной" точке $N=(1,\ 0.5,\ 2)$ в осях OP и OE (говорит о том, что мы имеем асимптотически устойчивый фокус в проекции на (P,E)), а также "стрелочки" смотрят на N вдоль оси OQ, всё вместе это отражает асимптотическую устойчивость точки вцелом. Для $M=\left(\frac{4}{3},\ 0,\ 2\right)$ вдоль оси OE векторное поле "убегает" от точки, что неудивительно, ведь мы имеем $\lambda_2=\frac{1-\alpha}{1+\alpha}=\frac{1}{7}>0$.

Рис. 4: Фазовый портрет системы, при $\alpha = 0.5$, A = 1. Соответствует области III.

Из нашего анализа мы знаем, что точка M=(2,0,2) для данного примера, будет неустойчива по E, так как $\lambda_2>0$, что отчётливо подтверждается фазовым портретом системы (по OE поле смотрит от "красной" точки). $N=(1,\ 1,\ 2)$ же оказывается в "центре внимания" и соответствует асимптотически устойчивому узлу (см. рис. 4).

1.7 Предельные циклы

Рассмотрим динамическую систему с непрерывным временем

$$\dot{u} = f(u), \quad u \in U \subseteq \mathbb{R}^n, \quad f: U \to \mathbb{R}^n.$$
 (7)

Определение 3. Решение u(t) задачи (7) называется периодическим с периодом T > 0, если u(t+T) = u(t), для любого t, период T — наименьшее из таких чисел, для которых выполняется последнее равенство.

Определение 4. Замкнутая траектория $\gamma(u_0)$ системы (7) называется предельным циклом, если в окрестности этой траектории нет других периодических орбит.

Определение 5. Бифуркация положения равновесия, соответствующая появлению собственных значений $\lambda_{1,2} = \pm i w_0, w_0 > 0$, называется бифуркацией Пуанкаре-Андронова-Хопфа или бифуркацией рождения цикла.

При исследовании неподвижных точек системы (3) было показано, что ни при каких значениях параметров α и A матрица Якоби не имела собственных значений, подходящих под определение предельного цикла. Поэтому система (3) предельных циклов не имеет.

1.8 Интерпретация результатов

На основании проведенного теоретического исследования можно сказать, что возможно два существенных случая. В обоих из них наступает стабилизация системы. Причём если воды загрязняются так быстро, что загрязнитель не успевает разлагаться, то с помощью активного ила концентрация загрязнений всегда устанавливается на одном уровне (области II, III на рисунке 1). Во втором случае концентрация ила стремится к нулевому значению, но концентрация загрязнений не увеличиваетя за счёт природного распада (соответствует области I, рисунок 1).

Список литературы

- [1] Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. 2011.
- [2] Абрамова В. В. Лекции по динамическим системам и биоматематике. 2023.