582206 Laskennan mallit, syksy 2012

7. harjoitusten malliratkaisut

Juhana Laurinharju ja Jani Rahkola

- 1. Esitä pinoautomaatti seuraaville kielille.
 - (a) Kaikki palindromit aakkostosta $\Sigma = \{a, b, c\}$.
 - (b) $\{a^i b^j \mid 0 \le i \le j\}$ missä $\Sigma = \{a, b, c\}$
 - (c) $\{a^ib^jc^k \mid j=i+k\}$ missä $\Sigma=\{a,b,c\}$
 - (d) Kaikki aakkoston $\Sigma = \{0,1\}$ merkkijonot joissa nollia on kaksi kertaa niin paljon kuin ykkösiä.
- 2. Tarkastellaan kielioppia

$$S \to S + T \mid T$$
$$T \to T * F \mid F$$
$$F \to (S) \mid a$$

Muodosta merkkijonon s = (a + a) * a jäsennyspuu tämän kieliopin mukaisesti.

Etsi jäsennyspuusta jokin juuresta lehteen johtava polku, jolla sama muuttuja esiintyy kahdessa solmussa. Muodosta tämän perusteella toistuvuusominaisuuden todistuksen ideaa mukaillen jokin merkkijonon s jako osiin s = uvxyz, joilla merkkijono uv^ixy^iz kuuluu tarkasteltavaan kieleen kaikilla $i \in N$.

3. Olkoon A aakkoston $\{0,1\}$ kieli, joka koostuu niistä merkkijonoista, joissa on sama määrä nollia ja ykkösiä. Tällä kielellä on kontekstiton kielioppi

$$S \rightarrow SS \mid 0S1 \mid 1S0 \mid \varepsilon$$

- (a) Kielen A eräs toistuvuuspituus on 4. Esitä kieleen A kuuluvalle merkkijonolle s = 001101 kaikki eri tavat jakaa se osiin s = uvxyz toistuvuusominaisuuden ehdot toteuttavalla tavalla (lause 2.30; Sipser Theorem 2.34; tässä siis p = 4).
- (b) Onko kielellä A pienempiä toistuvuuspituuksia kuin 4? Perustele.
- 4. (a) Koostukoon aakkoston $\{a,b,c\}$ kieli A merkkijonoista, joissa on yhtä monta a-, b- ja c- merkkiä. Osoita, että A ei ole yhteydetön.
 - (b) Osoita, että kieli $\{0^n1^n0^n1^n \mid n \in \mathbb{N}\}$ ei ole yhteydetön.
- 5. Anna yhteydetön kielioppi, joka tuottaa kielen $\{a^ib^jc^k\mid i=2j \text{ tai }j=2k\}$. Muodosta apulauseen 2.21 mukaisesti kieliopistasi pinoautomaatti, joka tunnistaa saman kielen.
- 6. Tee alla olevasta pinoautomaatista Apulauseen 2.27 mukaisesti kielioppi.

7. (a) Osoita, että jos A on yhteydetön ja B säännöllinen kieli, niin $A \cap B$ on yhteydetön.

Vihje: muodosta pinoautomaatin ja äärellisen automaatin leikkausautomaatti samaan tapaan kuin Jyrkin luentojen lauseessa 1.1 (luentomateriaalin sivut 48–50).

Olkoon A yhteydetön kieli ja $M_A = (Q_A, \Sigma, \Gamma, \delta_A, q_{A0}, F_A)$ automaatti joka tunnistaa kielen A. Olkoon B säännöllinen kieli ja $M_B = (Q_B, \Sigma, \delta_B, q_{B0}, F_B)$ deterministinen automaatti joka tunnistaa kielen B.

Väite. Kieli $A \cap B$ on säännöllinen.

Todistus. Leikkauksen tunnistava automaatti luodaan samankaltaisella menetelmällä kuin säännöllisten kielten tapauksessa. Ero säännöllisten kielten tapaukseen on siirtymäfunktion $\delta_{A\cap B}$ määrrittelyssä.

Muodostetaan siis automaatti

$$M_{A\cap B} = (Q_A \times Q_B, \Sigma, \Gamma, \delta_{A\cap B}, (q_{A0}, q_{B0}), F_A \times F_B)$$

missä siirtymäfunktio $\delta_{A \cap B}$ on määritelty seuraavasti.

$$\delta_{A \cap B}((q_i, p_i), a, t) = \begin{cases} \{((q_j, p_i), s) \mid \delta_A(q_i, \varepsilon, t) = (q_j, s)\} & \text{kun } a = \varepsilon \\ \{((q_j, p_j), s) \mid \delta_B(q_i, a) = q_j \text{ ja } \delta_A(p_i, a, t) = (p_j, s)\} & \text{muulloin} \end{cases}$$

Automaatin tilajoukko on siis karteesinen tulo alkuperäisten automaattien tiloista. Kaikki uuden automaatin tilat ovat siis muotoa (q,p) missä $q \in Q_A$ ja $p \in Q_B$. Siirtymät noudattavat parin ensimmäisen alkion kohdalla automaatin M_A siirtymäfunktiota ja toisen alkion kohdalla automaatin M_B siirtymäfunktiota. Pinon käsittely noudattaa aina automaatin M_A siirtymäfunktiota, sillä automaatissa M_B ei ole pinoa.

$$\begin{array}{ccc}
 & a, t \to s \\
 & & \downarrow \\
 &$$

Pinoautomaatti M_A on epädeterministinen, mutta M_B ei. Pinoautomaatin epädeterminististen siirtymien kohdalla uudessa automaatissa tilaparin jälkimmäinen alkio ei muutu. Ensimmäinen alkio noudattaa pinoautomaatin M_A siirtymäfunktiota.

$$\overbrace{\left(q_{i}\right) \xrightarrow{\varepsilon, t \to s}} \overbrace{\left(q_{j}, p_{i}\right)} \xrightarrow{\varepsilon, t \to s} \overbrace{\left(q_{j}, p_{i}\right)}$$

Nyt luotu automaatti $M_{A\cap B}$ hyväksyy merkkijonon w jos ja vain jos M_A ja M_B hyväksyvät merkkijonon w. Siis $M_{A\cap B}$ tunnistaa kielen $A\cap B$.

(b) Tiedetään, että kieli L on yhteydetön ja R säännöllinen. Voidaanko tästä päätellä, että L-R on yhteydetön? Entä R-L? Perustele.

Väite. Olkoon L yhteydetön ja R säännöllinen kieli. Nyt L-R on yhteydetön.

Todistus. Joukko-opista tiedämme, että $L-R=L\cap \overline{R}$. Lisäksi tiedämme, että säännölliset kielet ovat suljettuja komplementin suhteen. Nyt siis edellisen kohdan nojalla $L\cap \overline{R}$ on yhteydetön, ja siten myös L-R on yhteydetön.

Toinen suunta ei päde yleisesti. Koska yhteydettömät kielet eivät ole suljettuja komplementin suhteen, on olemassa yhteydetön kieli jonka komplementti ei ole yhteydetön. Olkoon L jokin tällainen kieli. Olkoon nyt $R=\Sigma^*$ joka tunnetusti säännöllinen. Nyt siis L on yhteydetön ja R säännöllinen, mutta $R-L=\Sigma^*-L=\overline{L}$ joka oletuksen mukaan ei ole yhteydetön.