UNIVERSITY OF JAFFNA FACULTY OF ENGINEERING

MID SEMESTER EXAMINATION- MARCH 2022

MC1020: MATHEMATICS

Writing Time: ONE Hour. Registration Number: 20.../E/...

Instructions

- 1. This is a **closed book** exam.
- 2. This paper contains **20** questions:
- 3. Answer <u>all</u> questions in the space provided.
- 4. Read all the problems first before beginning to answer any of them. Start with the one you feel most comfortable with, and only move on to the next problem when you are certain you have completed it perfectly.
- 5. If you have any doubt as to the interpretation of the wording of a question, make your own decision, but clearly state in the script.
- 6. This examination accounts for 30% of module assessment. Total maximum mark attainable is 100.
- 7. Write your registration number, the module code and the title of the paper in the answer book. Also write your registration number on each additional sheet attached.

1.	$\mathcal{P}(A)$. Set $A = \{1,$	$2, 3$ }. List the elements of \mathcal{P}	ed the power set of A , denoted by A ,	
2.			} is	
3.		ving statements is FALSE? implies that $2 \in A$ and $\{3,4\} \subseteq A$	$\subseteq A$.	
	(b) $\{2, 3, 4\} \in A$ at (c) $A \cap B \supseteq \{2, 3, 4\}$	and $\{2,3\} \in B$ implies that $\{4\}$, $\{4\}$ implies that $\{2,3,4\} \subseteq A$ implies that if $\{2,3\} \cap A = \emptyset$	$\} \subseteq A - B$. and $\{2, 3, 4\} \subseteq B$.	
4.	Let $A = \{x \in \mathbb{R} \text{following is true} ?$	$-3 < x < 2$ and $B = \{x \in \mathbb{R} \}$	$\mathbb{R} x^2 + x - 6 < 0\}.$ Which of the	he
	(a) $A = B$ (b) $A \neq B$	(c) $A \subseteq B$ (d) $B \subseteq A$	(e) None of the above.	
5.	Find the angle bet	ween the vectors $\mathbf{u} = \begin{bmatrix} -\cos t \\ \sin t \\ 0 \end{bmatrix}$	and $\mathbf{v} = \begin{bmatrix} \cos t \\ -\sin t \\ 0 \end{bmatrix}$	
6.	Calculate the area	of the parallelogram whose ed	ges are $\mathbf{P} = \begin{bmatrix} -2\\0\\4 \end{bmatrix}$ and $\mathbf{Q} = \begin{bmatrix} 1\\3\\6 \end{bmatrix}$	

7	Use the wester cross product formula to find (i v i) v i													
1.	Use the vector cross product formula to find $(\mathbf{i} \times \mathbf{j}) \times \mathbf{i}$.													
8.	Given vector \mathbf{u} , which of the following is a projection p in the direction of vector \mathbf{v}													
	(a) $\mathbf{p} = \begin{bmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \end{bmatrix} \mathbf{v}$ (c) $\mathbf{p} = \begin{pmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{v} \cdot \mathbf{v} \end{pmatrix} \mathbf{u}$ (e) None of the above. (b) $\mathbf{p} = \begin{pmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{u} \cdot \mathbf{u} \end{pmatrix} \mathbf{v}$ (d) $\mathbf{p} = \begin{pmatrix} \mathbf{u} \cdot \mathbf{v} \\ \mathbf{u} \cdot \mathbf{u} \end{pmatrix} \mathbf{u}$													
9.	Which of the following are the solutions of the equation $z^3 + n = 0$, where n is a positive real number.													
	(a) $z_1 = n^{\frac{1}{3}} cis(\frac{\pi}{3}), z_2 = n^{\frac{1}{3}} cis(\pi), z_3 = n^{\frac{1}{3}} cis(\frac{2\pi}{3})$ (b) $z_1 = n^{\frac{1}{3}} cis(\frac{\pi}{6}), z_2 = n^{\frac{1}{3}} cis(\pi), z_3 = n^{\frac{1}{3}} cis(\frac{5\pi}{6})$ (c) $z_1 = ncis(\frac{\pi}{3}), z_2 = ncis(\pi), z_3 = ncis(\frac{5\pi}{3})$ (d) $z_1 = n^{\frac{1}{3}} cis(\frac{\pi}{3}), z_2 = n^{\frac{1}{3}} cis(\pi), z_3 = n^{\frac{1}{3}} cis(\frac{5\pi}{3})$ (e) None of the above.													
10.	Find the Cartesian equation of the locus described by $ z+27i =2 z10+2i $. Write your answer in the form $(x+A)^2+(y+B)^2=K$													
11.	Find $Im(z_1.z_2)$ if $z_1 = 3 + 4i$, and $z_2 = 7 - 3i$													
12.	Find all possible values of k that make $u = \frac{k+4i}{1+ki}$ a purely real number													

13.	Τ	'n	е :	fu	n	ct	io	n	f	•	x) :	=	2	2x	-	+	3	i	S	C	n	e	t	О	()ľ	ıe	F	ìi	10	l	it	\mathbf{s}	i	nγ	æ	rs	se	f	u	no	et	ic	n	L (of	J	f.				
			٠.				•		•		•		•		•							•			•								•	•		•		•	•	•					•			•					

14.	. Which one of the following is not a function.														
	(a) $\{(2,3), (3,0), (5,2), (4,4), (5,2), (5$, -	(d) $\{(1,1),($	(2,3), (4,5), (5,4)											
	(b) {(4,1), (5,2), (5,3), (1, (c) {(4,2), (3,4), (5,8), (6,	, ,	(e) None of	the above											
			` '												
15.	Find the domain of the function $h(x) = \frac{x}{x^2 - 9}$.														
16.	Which one of the following	is even function	on?												
	(a) $\sec x \tan x$	(c) $\frac{x}{x^2 - 1}$		(d) $1 - x^4$											
	(b) $x^4 \sin x \cos^2 x$	x^2-1		(e) None of the above.											
17.	Find the slope of the tangent line to the graph of $f(x) = -2x + 3$ at any poin $(x, f(x))$.														
18.	If $Q(K, L) = 2022K^{0.3}L^{0.7}$, find $K\frac{\partial Q}{\partial K} + L\frac{\partial Q}{\partial L}$														
	$\partial K = \partial L$														
19.	Find the tangent plane to the	he elliptic para	aboloid $z = 2x$	$x^2 + y^2$ at any point $(1, 1, 3)$											
	(a) $z = 2x + 2y + 3$	(c) $z = 2x -$	-4y - 3	(e) None of the above.											
	(b) $z = 4x - 2y + 3$	(d) z = 4x +	-2y - 3												
20.	If $u = x^4y + y^2z^3$, where $x =$	$= rse^t, y = rs^2c$	e^{-t} , and $z = r^2$	$r^2 s \sin t$, find the value of $\frac{\partial u}{\partial t}$											
	If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$, find the value of $\frac{\partial u}{\partial s}$ when $r = 2$, $s = 1$, $t = 0$														