Context Free Grammars

$$G = (V, T, P, S)$$

V = (finite) set of variables (or non-terminal symbols)

T = (finite) set of **terminal** symbols

 $P = finite \ subset \ of \ V \times (V \cup T)^* \ called \ productions$

 $S \in V = the start symbol$

A convention on notation

Lower case a,b,c,... symbols in T

Upper case A,B,C,... symbols in V

Lower case u, w, v, z, ... symbols in T^*

Upper case X, Y, Z, \dots symbols in $V \cup T$

Lower case Greek α , β , γ ,... symbols in (VU T)*

Example

$$G = (\{S\}, \{0,1\}, P, S), \text{ where }$$
 V
 T

$$P: S \rightarrow 0S1 \mid e$$
 short hand notation for $\{(S,0S1), (S,e)\} \subseteq V \times (V \cup T)^*$

$$S \Rightarrow_G 0S1 \Rightarrow 0(0S1)1 = 0^2S1^2 \Rightarrow 0^2e1^2 = 0^21^2$$

$$S \Rightarrow_G 0S1 \quad S \Rightarrow_G 0S1 \quad S \Rightarrow_e$$

hence $S \Rightarrow^3 \theta^2 I^2$ is a 3-step derivation

Derivations

Let $\alpha A \beta \in (V \cup T)^*$, with $\alpha, \beta \in (V \cup T)^*$ and $A \in V$ and let $A \rightarrow \gamma$ be a production of a CFG G then:

 $\alpha A \beta \Rightarrow_G \alpha \gamma \beta$ is called a (one step) derivation in G; in a similar manner we have :

 $W \Rightarrow_G^n U$ and $W \Rightarrow_G^* U$ are n-step and finite step derivations in G where each step conforms to the rule for the one step derivation above.

Definition

- The language $L_G(A)$ generated by a nonterminal variable A of a

grammar G is given by : $L_G(A) := \{v \in T^* \mid A \Rightarrow^*_G v\}$

- the language L_G generated by G is $L_G := L_G(S)$, where T and S

denote the set of terminal symbols and the start symbol of $m{G}$

respectively.

For the previous example $L_G = \{0^n 1^n, n \ge 0\}$

3 Examples of CFGs

(1) Regular Expressions over Σ where $\Sigma = {\sigma_1, \sigma_2, ..., \sigma_n}$

$$E \rightarrow \sigma_1 | \sigma_2 \dots | \sigma_n | e | \mathcal{O} | E + E | E \cdot E | E^* | (E)$$

There are n+6 productions with $n = |\Sigma|$ where :

$$V = \{E\}$$
,

$$T = \Sigma \cup \{e, \emptyset, +, ., *, (,)\}$$

P = the n+6 productions above

$$S = E$$

Example of a regular expression derivation with $\Sigma = \{0,1\}$

$$E \Rightarrow^7 \theta.(1+\theta)$$
*

$$E \Rightarrow E.E \Rightarrow 0.E \Rightarrow 0.E^* \Rightarrow 0.(E)^* \Rightarrow 0.(E+E)^* \Rightarrow 0.(1+E)^* \Rightarrow 0.(1+0)^*$$

$$E \rightarrow E.E$$
 $E \rightarrow 0$ $E \rightarrow E^*$ $E \rightarrow (E)$ $E \rightarrow E+E$ $E \rightarrow 1$ $E \rightarrow 0$

(2) Simple Arithmetic Expressions (variables and binary numbers)

Two operations : + and * and numbers and variables that are strings in $x0 \cup x1\{0,1\}*$

(i.e.
$$x_0, x_1, x_2 ...$$
; variables with binary indices)

$$V = \{E, I, J\}$$

 $T = \{0, 1, x, +, *, (,)\}$

$$P = 11$$
 productions given next

$$S = E$$

$$E = (Arithmetic) Expression$$

$$I = Identifier$$
, $J = Identifier$ trailer

Productions:

$$E \rightarrow I \mid E + E \mid E * E \mid (E)$$

$$I \rightarrow x\theta \mid x1J \mid \theta \mid 1J ; J \rightarrow \theta J \mid 1J \mid e$$

Example for arithmetic expressions

$$E \Rightarrow^{13} x1*(x0+11)$$
 in ordinary notation: $x_1 \cdot (x_0 + 3)$

 $E \Rightarrow E * E \Rightarrow I * E \Rightarrow x1J * E \Rightarrow x1e * E \Rightarrow^2 x1 * (E + E) \Rightarrow x1 * (I + E) \Rightarrow x1 * (x0 + E) \Rightarrow x1 * (x0 + I)) \Rightarrow x1 * (x0 + IJ) \Rightarrow^2 x$

(3) The Grammar of Balanced Parentheses

$$V = \{E\}$$
 $T = \{(,)\}$
 $P = the 3 productions below$
 $S = E$
 $P:$
 $E \rightarrow EE \mid (E) \mid e$

Example

$$E\Rightarrow^*(()())()$$

Every production $A \to X_1 X_2 \dots X_k$ where each $X_j \in V \cup T$, corresponds to an **ordered tree** of height 1 as shown below

Terminology on ordered trees: root, order, children, siblings, parent, descendants, ancestors, leaves, internal nodes ...

Recursive definition of ordered trees

Basis: an ordered tree T of depth 1 with a root node r and ordered sequence of children (leaf) nodes $(n_1, ..., n_k)$ is an **ordered tree**.

Induction: Let S be an ordered tree with a root node r and ordered sequence of leaf nodes $(m_1, ..., m_p)$; let T be an ordered tree of depth 1 with a root node t and children nodes $(n_1, ..., n_k)$ then for any $0 \le j \le p$, S' is an ordered tree obtained from S by replacing the leaf node m_j of S by T; so that the new ordered leaf nodes of S' are $(m_1, ..., m_{j-1}, n_1, ..., n_k, m_{j+1}, ...m_p)$ and t is an internal node replacing m_j .

For a tree T of depth one the root node t is the parent and an ancestor of the children nodes $(n_1, ..., n_k)$; and the children nodes are called siblings of each other and descendants of the root node t.

For S' defined as above all nodes of S retain the **ancestor** and **descendant** relations in S'; every ancestor of the replaced node m_j is an ancestor of all the newly added nodes $(n_1, ..., n_k)$ as well as the root node t; and if m_j was a descendant of a node n in n then n and the nodes n, ..., n, n, are descendants of the node n; etc.

S to S'

Ordered leaves of $S \longrightarrow m1 \ m2 \ m3 \ a2 \ b3 \ m4 \ m5 \ b5$ Ordered leaves of $S' \longrightarrow m1 \ m2 \ m3 \ a2 \ b3 \ n1 \ n2 \ m5 \ b5$

In S: a3 ancestor of m4 and m4 descendant of a3

In S': a3 ancestor of t,n1,n2; t,n1,n2 descendants of a3

Derivations and Parse Trees

Consider the derivation $S \Rightarrow_G^* \omega \in T^*$; then for each step of the derivation a production of a non-terminal is used until all symbols are terminals as in ω .

The parse tree is obtained by replacing each non-terminal corresponding to the production used—starting from S — by the production tree of that non-terminal.

Order on the leaves of the parse tree is the induced order of the children in the productions (every pair of nodes have a unique common youngest ancestor whose corresponding children set the order!)

Leftmost (lm) and Rightmost (rm) derivations

Definition A derivation is called a **leftmost** (**rightmost**) **derivation** if at each step of the derivation a production is applied to **the** nonterminal at the **leftmost** (**rightmost**) position of the string

Theorem For every derivation $A \Rightarrow * \omega$ of a variable A there is a **leftmost** (**rightmost**) derivation shown $A \Rightarrow *_{lm} \omega$ ($A \Rightarrow *_{rm} \omega$) with the same parse tree as the original derivation.

13

Example

$$(1) A \Rightarrow^* w$$

$$(2) A \Rightarrow_{lm} * w$$

(3)
$$A \Rightarrow_{rm} * w$$

(4) There is a parse tree with root A and yield w

$$(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$$

How to obtain a derivation from a parse tree by using induction on depth of the parse tree. (assume original depth of the tree is n)

Step 1: Start from the root A and move to the children X_1 to X_k $(A \Rightarrow X_1 ... X_k)$

Step 2: If all X_j are terminals done; else note that each X_j is a subtree of depth at most n-1, hence by induction hypothesis there is a derivation $X_j \Rightarrow *w_j \in T^*$ for each j. Use these derivations on any desired order on each X_j to obtain a desired derivation

Remark If the derivations on X_j are made from **left to right** (**right to left**) on X_j we obtain **leftmost** (**rightmost**) derivation together with the appropriate induction assumption.

How to obtain a parse tree from a derivation by using induction on the steps of the derivation (assume original derivation steps is n)

Step 1: Start from variable A and move to the next step of the derivation where $A \Rightarrow X_1 ... X_k$

Step 2: Set the root of the parse tree as A; set each X_j as either an internal node if X_j is a variable and a leaf if X_j is a terminal. For each variable X_j the subtrees to be placed under these internal nodes follow from the induction hypothesis since their derivations have n-1 steps or less

CS 302 Spring 2021

HTML Example

- 1. Char $\rightarrow a|A|...$
- 2. Text $\rightarrow e | Char Text$
- 3. $Doc \rightarrow e|Element Doc$

- 4. Element \rightarrow Text | Doc |<P> Doc | List | |...
- 5. ListItem \rightarrow Doc
- 6. List $\rightarrow e \mid ListItem \ List$

V = (Char, Doc, Text, Element, ListItem, List, ...); T = (A-z, , , , , , <P>)

HTML

Program

```
< P >
```

 This is a warning :

<*OT>*

 Study hard.

 Do your homework.

< P >

Else you will fail!

This is a warning:

1. Study hard.

Output of execution

2. Do your homework.

Else you will fail!

19

Ambiguity in Grammars and Languages

Example: a + a * a

Definition A Grammar G is called unambiguous if for every $w \in L_G$ there corresponds a unique parse tree. Else it is called ambiguous .

The problem of determining whether a given grammar G

is ambiguous or not is an undecidable problem!

CS 302 Spring 2021

Disambiguation = Removing ambiguity

Example

Setting priority of * over +

$$E \rightarrow E + E$$

$$E \rightarrow T \mid E+T$$

$$E \rightarrow T \mid E+T$$
 ----- E (expression) + is protected

$$E \rightarrow E*E$$

$$T \rightarrow F \mid T * F$$

$$T \rightarrow F \mid T^*F \longrightarrow T \text{ (term) * of factors}$$

$$E \rightarrow (E)$$

$$F \to I | (E)$$

$$F \rightarrow I \mid (E)$$
 ----- F (factor) is protected

$$E \rightarrow I$$

$$I \rightarrow a$$

$$I \rightarrow a$$

$$I \rightarrow a$$

$$E+E*E$$
?

$$= a+a*a$$

Inherent Ambiguity (of CFLs)

$$L = \{ a^n b^n c^m d^m \mid n \ge 1, m \ge 1 \} \cup \{ a^n b^m c^m d^n \mid n \ge 1, m \ge 1 \}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow aAb \mid ab$$

$$B \rightarrow cBd \mid cd$$

$$C \rightarrow aCd \mid aD \mid d$$

$$D \rightarrow bDc \mid bc$$

Two parse trees for abcd

Intuitively a string $a^k b^k c^k d^k$ will have 2 (leftmost derivations) parse trees