Atividades aula 13

LCD - TFT

Prof. Rafael Corsi Ferrão 02 de junho de 2016

1.1 Realize um estudo sobre os displays de 7 segmentos, descrevendo sua funcionalidade.

O display de 7 segmentos é um componente bastante útil na visualização de dados principalmente numéricos, já que exibe algarismos que são programados a partir de combinação do acendimento dos leds (segmentos). Pode ser utilizado também para visualização de algumas letras do alfabeto, porém sem a garantia de uma boa definição. Uma das vantagens de sua utilização é a padronização de sua arquitetura entre os diversos fabricantes, o que facilita o projeto de um circuito de acionamento do display.

- 1.2 Suponha que gostaríamos de utilizar 4 displays de 7 segmentos em um projeto e estamos utilizando para prototipagem a placa de desenvolvimento usada no curso (SAM4S-EK2), descreva com detalhes qual seria a forma correta de conectar esses displays no microcontrolador.
- Liste quantos pinos seriam utilizados
- Quais periféricos seriam utilizados

Utilize diagrama de blocos/esquemático para descrever a utilização.

Para a utilização de múltiplos SSDs (displays de sete segmentos), 4 neste caso, de forma a otimizar a quantidade de pinos, podemos utilizar 12 pinos do PIO A por exemplo. Neste caso, usaríamos 4 pinos como seleção de display, e os outros 8 como os acionamentos de cada segmento e o ponto, e então assumindo uma alta frequência para a exibição, dando o efeito de que os quatro displays estão ligados ao mesmo tempo.

1.3 Pinos/Controlador

- Quantos pinos são utilizados no kit SAM4S-EK2 para interface entre o microcontrolador e LCD
- Liste os pinos e descreva suas funções

Existem 18 pinos referentes ao LCD na placa utilizada no curso, os quais podem ser verificados na tabela abaixo (pino 2 ao pino 19).

Estes pinos são responsáveis pela comunicação entre o processador e o LCD, permitindo assim que imagens sejam exibidas no periférico.

Table 4-13. LCD Connector J8 Signal Descriptions

Pin	Mnemonic	Pin	Mnemonic
1	3.3V	2	LCD_DB17 (PC7)
3	LCD_DB16 (PC6)	4	LCD_DB15 (PC5)
5	LCD_DB14 (PC4)	6	LCD_DB13 (PC3)
7	LCD_DB12 (PC2)	8	LCD_DB11 (PC1)
9	LCD_DB10 (PC0)	10	LCD_DB09 (NC)
11	LCD_DB08 (NC)	12	LCD_DB07
13	LCD_DB06 (NC)	14	LCD_DB05 (NC)
15	LCD_DB04 (NC)	16	LCD_DB03 (NC)
17	LCD_DB02 (NC)	18	LCD_DB01 (NC)
19	LCD_DB00 (NC)	20	3.3V
21	RD (PC11)	22	WR (PC8)
23	RS (PC19)	24	CS (PC15)
25	RESET	26	IM0
27	IM1	28	GND
29	LED-A	30	LED-K1
31	LED-K2	32	LED-K3
33	LED-K4	34	YUP
35	Y DOWN	36	X RIGHT
37	X LEFT	38	NC
39	GND		

1.4SMC

Descreva as funcionalidades desse periférico.

O SMC é o periférico responsável pela comunicação com memórias externas ou então periféricos externos, como o LCD por exemplo. É possível, através de programação, configurar como o SMC será utilizado de acordo com a necessidade e o periférico à ser controlado por ele.