2.3 逻辑函数的标准表示形式

2.3.1 最小项与最小项表达式

*2.3.2 最大项与最大项表达式

2.3.1 最小项

最小项:n个变量 $X_1X_2...X_n$ 的最小项是n个因子的<mark>乘积</mark>,每个变量都以它的**原变量或非变量的形式在乘积项中出现,且仅出现一次**。一般n个变量的最小项应有 2^n 个。

例如,A、B、C三个逻辑变量的最小项有(2^3)8个,即

 $\overline{A}\overline{B}\overline{C} \cdot \overline{A}\overline{B}C \cdot \overline{A}B\overline{C} \cdot \overline{A}BC \cdot A\overline{B}\overline{C} \cdot A\overline{B}C \cdot AB\overline{C} \cdot ABC \circ$

 $\bar{A}B \setminus \bar{A}B\bar{C}A \setminus A(B+C)$ 等则不是最小项

2.3.1 最小项的性质

A₽	B⇔	C₽	乘积项↔	符号₽	m ₀ ⇔	m_1 ϕ	m ₂ ⇔	m ₃ ₽	<i>m</i> ₄ <i>⇔</i>	<i>m</i> 5⇔	m ₆ ₽	m ₇ ₽ ⁴
0€	0€	0₽	$\overline{A}\overline{B}\overline{C} \Leftrightarrow$	m ₀ ↔	1₽	0₽	0₽	0₽	0₽	0₽	0€	0 42
0€	0 40	1₽	$\overline{A}\overline{B}C \Leftrightarrow$	m ₁ ↔	0₽	1₽	0₽	0₽	0₽	0₽	0€	0 43
0€	1.₽	0⇔	$\overline{A}B\overline{C}$ \Leftrightarrow	m ₂ ↔	0₽	0₽	1₽	0₽	0₽	0€	0€	0↔
0€	1.₽	1 ₽	ĀBC ₽	m ₃ ↔	0₽	0₽	0₽	1₽	0₽	0₽	0€	0↔
1.₽	0€	0⇔	$A\overline{B}\overline{C} \Leftrightarrow$	<i>m</i> ₄ ⇔	0₽	0₽	0₽	0.₽	1₽	0₽	0€	0 ₽ ⁴
1₽	0€	1₽	ABC₽	m ₅ ⇔	0₽	0₽	0₽	0₽	0₽	1₽	0€	0↔
1₽	1.₽	0↔	AB \(\bar{C} \epsilon	m ₆ ⇔	0₽	0₽	0₽	0₽	0₽	0₽	1 ₽	0₽
1€	1 ¢	1 ₽	ABC₽	m ₇ ⇔	0₽	0₽	0₽	0₽	0₽	0₽	0 € ³	1 0

简化表示:用mi表示最小项, m表示最小项, 下标i为最小项号。

性质1:任意一个最小项,只有一组变量取值使其值为1;

性质2:任意两个最小项的乘积为0;

性质3:全体最小项之和为1。

2.3.1 逻辑函数的最小项表达式(逻辑函数的标准形式)

逻辑函数的最小项表达式:

$$L(ABC) = ABC + ABC + \overline{A}BC + ABC$$

- 为"与-或"逻辑表达式
- 在 "与-或" 式中的每个乘积项都是最小项

将
$$L(A,B,C) = AB + \overline{A}C$$
 化成最小项表达式。

$$L(A, B, C) = AB(C + \overline{C}) + \overline{A}(B + \overline{B})C$$

$$= ABC + AB\overline{C} + \overline{A}BC + A\overline{B}C$$

$$= m_7 + m_6 + m_3 + m_5$$

$$= \sum m (7, 6, 3, 5)$$

2.3.1 逻辑函数的最小项表达式

将
$$L(A,B,C) = (AB + \overline{AB} + \overline{C})\overline{AB}$$
 化成最小项表达式。

A)去掉非号
$$L(A, B, C) = \overline{(AB + \overline{AB} + \overline{C})} + AB$$

 $= (\overline{AB} \cdot \overline{\overline{AB}} \cdot C) + AB$
 $= (\overline{A} + \overline{B})(A + B)C + AB$
B)去括号 $= \overline{ABC} + A\overline{BC} + AB$
 $= \overline{ABC} + A\overline{BC} + AB(C + \overline{C})$
 $= \overline{ABC} + A\overline{BC} + ABC + AB\overline{C}$
 $= \overline{ABC} + ABC + ABC + AB\overline{C}$
 $= m_3 + m_5 + m_7 + m_6 = \sum m(3,5,6,7)$

2.3.1 *最大项

$A \circ$	B₽	C₽	求和项↩	符号₽	M_0 ϕ	M_{1}	<i>M</i> ₂ ₽	<i>M</i> ₃ ₽	<i>M</i> ₄ ₽	<i>M</i> ₅ ₽	<i>M</i> ₆ ₽	<i>M</i> ₇ ₽
0 42	0₽	0⇔	A+B+C	M_0	0₽	1₽	1€	1₽	1.0	1.0	1.₽	1.₽
0 42	0⇔	1₽	$A+B+\overline{C}$ 4	M_{1}	1₽	0₽	1₽	1₽	1₽	1₽	1₽	1.₽
0↔	1₽	0⇔	$A + \overline{B} + C$ φ	<i>M</i> ₂ ↔	1₽	1₽	0₽	1₽	1₽	1₽	1₽	1.₽
0↔	1₽	1₽	$A + \overline{B} + \overline{C}$ 4	<i>M</i> ₃ ↔	1₽	1₽	1₽	0₽	1₽	1₽	1₽	1₽
1 ¢	0₽	0₽	$\overline{A} + B + C$	<i>M</i> ₄ ₽	1₽	1₽	1₽	1₽	0₽	1₽	1₽	1₽
1₽	0₽	1₽	$\overline{A} + B + \overline{C}$	<i>M</i> ₅ ↔	1₽	1₽	1€	1₽	1₽	0₽	1₽	1₽
1 ¢	1₽	0₽	$\overline{A} + \overline{B} + C$	<i>M</i> ₆ ₽	1₽	1₽	1€	1₽	1₽	1₽	0⇔	1₽
1.₽	1 ₽	1 ₽	$\overline{A} + \overline{B} + \overline{C}$ φ	<i>M</i> ₇ ⇔	1₽	1 0	1 ₽	1 @	1₽	1 0	1₽	0↔

简化表示:用M_i表示最小项,M表示最大项,下标i为最大项号。

性质1:任意一个最大项,只有一组变量取值使其值为0;

性质2:任意两个最大项之和为1;

性质3:全体最大项之积为0。

2.3.1 *最大项

十进制数 i	ABC	最小项	m_i	最大项	M_i
0	0 0 0	$\overline{A}\overline{B}\overline{C}$	m_0	A+B+C	M_{\circ}
1	0 0 1	$\overline{A}\overline{B}C$	m_1	$A+B+\overline{C}$	M_1
2	0 1 0	$\overline{A}B\overline{C}$	m_2	$A + \overline{B} + C$	M_2
3	0 1 1	$\overline{A}BC$	m_3	$A + \overline{B} + \overline{C}$	M_3
4	100	$A\overline{B}\overline{C}$	m_4	$\overline{A}+B+C$	M_4
5	101	$A\overline{B}C$	m_5	$\overline{A}+B+\overline{C}$	M_5
6	110	$AB\overline{C}$	m_6	$\overline{A} + \overline{B} + C$	M_{6}
7	111	ABC	m_7	$\overline{A} + \overline{B} + \overline{C}$	M_7

$$m_{\rm i} = M_{\rm i}$$

逻辑函数另一种标准形式:最大项的与。