Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

æ	
2	
CKF	
7	
C	ì
0	١
-	
2	
oraficzny	
٥)
£	
Ë	
0	Ų
$\overline{\zeta}$	
123	
\sim	_

UZUPEŁNIA UCZEŃ

KOD UCZNIA PESEL		miejsce	
		miejsce na naklejkę z kodem	

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

MATEMATYKA

Instrukcja dla ucznia

- 1. Sprawdź, czy zestaw zadań zawiera 13 stron (zadania 1–23). Ewentualny brak stron lub inne usterki zgłoś nauczycielowi.
- 2. Na tej stronie wpisz swój kod, numer PESEL i przyklej naklejkę z kodem.
- 3. Na karcie odpowiedzi wpisz swój kod i numer PESEL, wypełnij matrycę znaków oraz przyklej naklejkę z kodem.
- 4. Czytaj uważnie wszystkie teksty i zadania. Wykonuj zadania zgodnie z poleceniami.
- 5. Rozwiązania zadań zapisuj długopisem lub piórem z czarnym tuszem/atramentem. Nie używaj korektora.
- 6. W arkuszu znajdują się różne typy zadań. Rozwiązania zadań od 1. do 20. zaznaczaj na karcie odpowiedzi w następujący sposób:
 - wybierz jedną z podanych odpowiedzi i zamaluj kratkę z odpowiadającą jej literą, np. gdy wybrałeś odpowiedź A:

• wybierz właściwą odpowiedź i zamaluj kratkę z odpowiednimi literami, np. gdy wybrałeś odpowiedź FP lub NT:

• do informacji oznaczonych właściwą literą dobierz informacje oznaczone liczbą lub literą i zamaluj odpowiednią kratkę, np. gdy wybierasz literę B i liczbę 1 lub litery NB:

7. Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, <u>błędne zaznaczenie otocz kółkiem</u> i <u>zaznacz inną odpowiedź</u>, np.

- 8. Rozwiązania zadań od 21. do 23. zapisz czytelnie i starannie w wyznaczonych miejscach. Pomyłki przekreślaj.
- 9. Rozwiązując zadania, możesz wykorzystać miejsce opatrzone napisem **Brudnopis**. Zapisy w brudnopisie nie będą sprawdzane i oceniane.

Powodzenia!

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

dysleksja

KWIECIEŃ 2014

Czas pracy: 90 minut

GM-M1-142

Informacja do zadań 1. i 2.

Promocja w zakładzie optycznym jest związana z wiekiem klienta i polega na tym, że klient otrzymuje tyle procent zniżki, ile ma lat.

Zadanie 1. (0–1)

Cena okularów bez promocji wynosi 240 zł. Ile zapłaci za te okulary klient, który ma 35 lat? Wybierz odpowiedź spośród podanych.

A. 84 zł

B. 132 zł

C. 156 zł

D. 205 zł

Zadanie 2. (0–1)

Okulary bez promocji kosztują 450 zł, a klient zgodnie z obowiązującą promocją może je kupić za 288 zł. Ile lat ma ten klient? Wybierz odpowiedź spośród podanych.

A. 64

B. 56

C. 44

D. 36

Zadanie 3. (0–1)

Sześć maszyn produkuje pewną partię jednakowych butelek z tworzywa sztucznego przez 4 godziny. Każda z maszyn pracuje z taką samą stałą wydajnością.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Przez 8 godzin taką samą partię butelek wykonają 3 takie maszyny.	P	F
Połowę partii takich butelek 6 maszyn wykona przez 2 godziny.	P	F

Zadanie 4. (0–1)

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczbą większą od $\frac{1}{3}$ jest

A.
$$\frac{300}{900}$$

B.
$$\frac{300}{900-1}$$

C.
$$\frac{300}{900+1}$$

B.
$$\frac{300}{900-1}$$
 C. $\frac{300}{900+1}$ **D.** $\frac{300-1}{900}$

Zadanie 5. (0–1)

Dane są liczby: 3, 3⁴, 3¹².

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Iloczyn tych liczb jest równy

$$A. 3^{16}$$

B.
$$3^{17}$$

$$\mathbf{C.}\,3^{48}$$

D.
$$3^{49}$$

Zadanie 6. (0–1)

W zawodach sportowych każdy zawodnik miał pokonać trasę składającą się z trzech części. Pierwszą część trasy zawodnik przejechał na rowerze, drugą część – prowadzącą przez jezioro – przepłynął, a trzecią – przebiegł. Na rysunku przedstawiono schemat tej trasy.

Na podstawie informacji wybierz zdanie prawdziwe.

- A. Cała trasa miała długość 50 km.
- **B.** Zawodnik przebiegł 8 km.
- C. Odległość, którą zawodnik przebiegł, była o 4 km większa od odległości, którą przepłynął.
- **D.** Odległość, którą zawodnik przejechał na rowerze, była 5 razy większa od odległości, którą przebiegł.

Zadanie 7. (0–1)

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Liczba $\sqrt{120}$ znajduje się na osi liczbowej między

- **A.** 10 i 11
- **B.** 11 i 12
- **C.** 12 i 20
- **D.** 30 i 40

Zadanie 8. (0–1)

Rozwinięcie dziesiętne ułamka $\frac{51}{370}$ jest równe 0,1(378).

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Na pięćdziesiątym miejscu po przecinku tego rozwinięcia znajduje się cyfra

- **A.** 1
- **B.** 3
- **C.** 7
- **D.** 8

Informacja do zadań 9. i 10.

Na rysunkach przedstawiono kształt i sposób układania płytek oraz niektóre wymiary w centymetrach.

Zadanie 9. (0–1)

Ułożono wzór z 5 płytek, jak na rysunku.

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Odcinek x ma długość

A. 20 cm

B. 22 cm

C. 26 cm

D. 30 cm

Zadanie 10. (0–1)

Które wyrażenie algebraiczne opisuje długość analogicznego do x odcinka dla wzoru złożonego z n płytek? Wybierz odpowiedź spośród podanych.

A. 6*n*

B. 6n-4 **C.** 4n-2 **D.** 4n+2

Zadanie 11. (0-1)

Prędkość średnia piechura na trasie 10 km wyniosła $5 \frac{\text{km}}{\text{h}}$, a prędkość średnia rowerzysty na tej samej trasie była równa $20 \frac{\text{km}}{\text{h}}$.

O ile minut więcej zajęło pokonanie tej trasy piechurowi niż rowerzyście? Wybierz odpowiedź spośród podanych.

A. 30 minut

B. 60 minut

C. 90 minut

D. 120 minut

Zadanie 12. (0-1)

Piechur szed 1 z punktu 2 do punktu 2 ze sta 1 4 prędkością. Część trasy przeszed 1 4 wzd 1 4 wzd 2 5 prostej, a część – po 1 4 wzd 2 6 (patrz rysunek).

Na którym z poniższych wykresów zilustrowano, jak zmieniała się odległość piechura od punktu *B*? Wybierz odpowiedź spośród podanych.

Zadanie 13. (0–1)

W prostokątnym układzie współrzędnych przedstawiono wykres funkcji.

Które z poniższych zdań jest fałszywe?

Wybierz odpowiedź spośród podanych.

- A. Dla argumentu 2 wartość funkcji jest równa 3.
- **B.** Funkcja przyjmuje wartość 0 dla argumentu 1.
- C. Wartość funkcji jest równa –2 dla argumentu –3.
- **D.** Dla argumentów większych od −1 wartości funkcji są dodatnie.

Zadanie 14. (0–1)

Rzucamy jeden raz sześcienną kostką do gry. Oznaczmy przez p_2 prawdopodobieństwo wyrzucenia liczby podzielnej przez 2, a przez p_3 – prawdopodobieństwo wyrzucenia liczby podzielnej przez 3.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba p_2 jest mniejsza od liczby p_3 .	P	F
Liczby p_2 i p_3 są mniejsze od $\frac{1}{6}$.	P	F

Zadanie 15. (0–1)

Ola codziennie, przez tydzień, odczytywała o 7 rano temperaturę powietrza. Oto podane (w °C) wyniki jej pomiarów: -2, 3, 4, 0, -3, 2, 3.

Wybierz odpowiedź, w której podano poprawne wartości średniej arytmetycznej, mediany i amplitudy (różnica między wartością najwyższą i wartością najniższą) zanotowanych temperatur.

	Średnia arytmetyczna (°C)	Mediana (°C)	Amplituda (°C)
A.	7	0	1
В.	1	0	7
C.	7	2	1
D.	1	2	7

Zadanie 16. (0–1)

Na rysunku przedstawiono prostokąt, którego wymiary są opisane za pomocą wyrażeń.

Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub ${\bf F}$ – jeśli jest fałszywe.

Jeden z boków prostokąta ma długość 8.	P	F
Obwód prostokąta jest równy 20.	P	F

Zadanie 17. (0-1)

Szymon wykonał szkielet prostopadłościanu. Układał i sklejał ze sobą kolejno drewniane klocki sześcienne o krawędzi 4 cm wzdłuż <u>każdej</u> krawędzi prostopadłościennego pudełka o wymiarach: 36 cm, 28 cm, 20 cm. Na rysunku przedstawiono część wykonanego szkieletu.

Ile klocków łącznie zużył Szymon na wykonanie <u>całego</u> szkieletu? Wybierz odpowiedź spośród podanych.

A. 84

B. 76

C. 68

D. 60

Zadanie 18. (0–1)

Na rysunku przedstawiono graniastosłup prosty i jego wymiary.

Dokończ zdanie tak, aby otrzymać zdanie prawdziwe.

Objętość tego graniastosłupa jest równa

A.
$$9\sqrt{6}$$

B.
$$18\sqrt{2}$$
 C. $18\sqrt{6}$ **D.** $36\sqrt{2}$

C.
$$18\sqrt{6}$$

D.
$$36\sqrt{2}$$

Zadanie 19. (0–1)

Maciek rysuje siatkę ostrosłupa prawidłowego, którego podstawą jest kwadrat o środku w punkcie O i boku długości 8.

Czy trójkat ABW o bokach długości odpowiednio: 8, 5, 5 może być ścianą boczną takiego ostrosłupa? Wybierz odpowiedź T (tak) lub N (nie) i jej uzasadnienie spośród zdań A-C.

Т		A.	trójkąt ABW jest równoramienny.
	ponieważ	В.	odległość <i>OE</i> jest mniejsza niż wysokość <i>EW</i> trójkąta <i>ABW</i> .
N C. odleg		C.	odległość <i>OE</i> jest większa niż wysokość <i>EW</i> trójkąta <i>ABW</i> .

Zadanie 20. (0–1)

Dane są kula o środku w punkcie O i promieniu r oraz walec o promieniu podstawy r i wysokości r.

Na podstawie informacji wybierz zdanie prawdziwe.

A. Objętość kuli jest równa objętości walca.

B. Objętość kuli jest 2 razy większa od objętości walca.

C. Objętość walca stanowi $\frac{3}{4}$ objętości kuli.

D. Objętość walca jest 3 razy mniejsza od objętości kuli.

Zadanie 21. (0–3)

Cena godziny korzystania z basenu wynosi 12 zł. Można jednak kupić miesięczną kartę rabatową za 50 złotych, upoważniającą do obniżki cen, i wtedy za pierwsze 10 godzin pływania płaci się 8 złotych za godzinę, a za każdą następną godzinę – 9 złotych. Wojtek kupił kartę rabatową i korzystał z basenu przez 16 godzin. Czy zakup karty był dla Wojtka opłacalny? Zapisz obliczenia.

Zadanie 22. (0–2) Uzasadnij, że trójkąty prostokątne *ABC* i *KLM* przedstawione na rysunku są podobne.

Zadanie 23. (0-3)

Z sześcianu zbudowanego z 64 małych sześcianów o krawędzi 1 cm usunięto z każdego narożnika po jednym małym sześcianie (patrz rysunek). Oblicz pole powierzchni powstałej bryły i porównaj je z polem powierzchni dużego sześcianu. Zapisz obliczenia.

Brudnopis

