Algoritmi e Strutture Dati (Mod. B)

Algoritmi su grafi Ricerca in ampiezza (Breadth-First Search)

Definizione del problema

Attraversamento di un grafo

Dato un grafo $G=\langle V,E\rangle$ ed un vertice s di V (detto sorgente), esplorare ogni vertice raggiungibile nel grafo dal vertice s

Definizione del problema

Attraversamentodi un grafo

Dato un grafo $G=\langle V,E\rangle$ ed un vertice s di V (detto sorgente), esplorare ogni vertice raggiungibile nel grafo dal vertice s

Definizione del problema

Attraversamentodi un grafo

Dato un grafo $G=\langle V,E\rangle$ ed un vertice s di V (detto sorgente), esplorare ogni vertice raggiungibile nel grafo dal vertice s

F è l'unico vertice non raggiungibile

Algoritmo BFS per alberi

Nel nostro algoritmo generico per i grafi, come operazione di "visita" di un vertice useremo la memorizzazione di quale sia il "padre" (o avo immediato) del vertice durante la BFS.

Coda:{}

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda,v)

Decoda(u)

Coda:{F}

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

for each v Î Adiac(u)
 do pred[v] = u
 Accoda(Coda, v)
Decoda(u)

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

Coda:{A,C,F,F,H,A,F,C,E}

u = D

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

Coda: {F,F,H,A,F,C,E,B,D,B,E,D}

u = C

for each $v \hat{I}$ Adiac(u)

do pred[v] = uAccoda(Coda, v)

Decoda(u)

Coda: {F,F,H,A,F,C,E,B,D,B,E,D,B,I,D}

u = F

Algoritmo BFS I: problema

- È necessario ricordarsi dei nodi che abbiamo già visitato per non rivisitarli nuovamente.
- Dobbiamo distinguere tra i vertici non visitati, quelli visitati e quelli processati.

Algoritmo BFS I: problema

- È necessario ricordarsi dei nodi che abbiamo già visitato per non rivisitarli nuovamente.
- Dobbiamo distinguere tra i vertici non visitati, quelli visitati e quelli processati
 - un vertice è stato visitato se è comparso nella coda
 - un vertice è stato non visitato se non è mai comparso nella coda
 - un vertice è stato *processato* se è comparso in coda ma non è più in coda (tutti i vertici ad esso adiacenti sono già stati visitati).

Algoritmo BFS II: soluzione

- Per distinguere tra i vertici non visitati, quelli visitati, e quelli processati coloreremo
 - ogni vertice visitato di grigio
 - ogni vertice non visitato di bianco
 - ogni vertice processato di nero

Algoritmo BFS II: soluzione

- Per distinguere tra i vertici non visitati, quelli visitati, e quelli processati coloreremo
 - ogni vertice *visitato* di grigio
 - ogni vertice non visitato di bianco
 - ogni vertice processato di nero
- Vengono accodati solo i vertici che non sono ancora stati visitati (cioè bianchi)
- I vertici in coda saranno i vertici visitati e non ancora processati (cioè grigi)
- I vertici già *visitati* o *processati* non vengono più visitati.

Coda:{F}

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v) Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$ E

Coda:{F}

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v)Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$

Coda:{F,B,I,D}

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v) Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$ M E

Coda:{B,I,D}

Coda: {B,I,D,C,A}

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v)Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$ M

U = B

Coda:{B,I,D,C,A}

Coda:{I,D,C,A}

u = I

Coda:{I,D,C,A,H}

u = I

Coda:{D,I,C,A,H}

u = I

Coda: {D,C,A,H,E}

Coda: $\{D,C,A,H,E\}$ D A F C E

Coda:{C,A,H,E}

u = C

Coda:{C,A,H,E}

u = C

Coda: {A,H,E,G}

u = A

Coda:{H,E,G}

u = E

Coda:{E,G}

u = H

Coda:{G}

Coda:{G}

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v)Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$ M

u = G

for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio pred[v] = uAccoda(Coda, v)Decoda(Coda,u); colore[u]= Nero $s = \mathbf{F}$ M

Coda:{}

u = G

```
BSF(G:grafo, s:vertice)
  for each vertice u \hat{I} V(G) - \{s\}
     do colore[u] = Bianco
                                         Inizializzazione
        pred[u] = Nil
  colore[s] = Grigio
  pred[s] = Nil
  Coda = \{s\}
  while Coda 1 Ø
     do\ u = Testa[Coda]
        for each v \hat{I} Adiac(u)
             do if colore[v] = Bianco
                                               Accodamento
                  then colore[v] = Grigio
                                               dei soli nodi
                        pred[v] = u
                                                non visitati
                        Accoda(Coda, v)
        Decoda (Coda)
        colore[u] = Nero
```

Algoritmo BFS II: complessità

```
BSF(G:grafo, s:vertice)
  for each vertice u \hat{I} V(G) - \{s\}
     do colore[u] = Bianco
                                               O(/V/)
        pred[u] = Nil
  colore[s] = Grigio
  pred[s] = Nil
  Coda = \{s\}
  while Coda 1 \phi
     do\ u = Testa[Coda]
         for each v \hat{I} Adiac(u)
                                                   O(|E_{..}|)
             do if colore[v] = Bianco
                                                E,, = lunghezza
                   then colore[v] = Grigio
                                                della lista di
                         pred[v] = u
                                                adiacenza di u
                         Accoda(Coda, v)
         Decoda (Coda)
         colore[u] = Nero
```

Algoritmo BFS II: complessità

```
BSF(G:grafo, s:vertice)
  for each vertice u \hat{I} V(G) - \{s\}
     do colore[u] = Bianco
                                               O(/V/)
        pred[u] = Nil
  colore[s] = Grigio
  pred[s] = Nil
  Coda = \{s\}
  while Coda 1 Ø
     do\ u = Testa[Coda]
         for each v \hat{I} Adiac(u)
                                                  O(|E|)
             do if colore[v] = Bianco
                                               E = dimensione
                   then colore[v] = Grigio
                                               delle liste di
                         pred[v] = u
                                               adiacenza.
                         Accoda(Coda, v)
                                               Numero di archi
        Decoda (Coda)
         colore[u] = Nero
```

Algoritmo BFS II: complessità

L'algoritmo di visita in *Breadth-First* impiega *tempo* proporzionale alla *somma* del *numero di vertici* e del *numero di archi* (dimensione delle liste di adiacenza).

$$T(V,E) = O(|V|+|E|)$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

Definizione del problema

Attraversamento di un grafo

Dato un grafo $G=\langle V,E\rangle$ ed un vertice s di V (detto sorgente), esplorare ogni vertice raggiungibile nel grafo dal vertice s

Calcolare, inoltre, la distanza da s di tutti i vertici raggiungibili

Definizione del problema

Attraversamento di un grafo

Dato un grafo $G=\langle V,E\rangle$ ed un vertice s di V (detto sorgente), esplorare ogni vertice raggiungibile nel grafo dal vertice s

Calcolare, inoltre, la distanza da s di tutti i vertici raggiungibili


```
BSF(G:grafo, s:vertice)
  for each vertice u Î V(G) - {s}
     do colore[u] = Bianco
                                         Inizializzazione
        dist[u] = \infty
        pred[u] = Nil
  colore[s] = Grigio
  pred[s] = Nil
  dist[s] = 0
  Coda = \{s\}
  while Coda 1 \emptyset
                                                 Aggiorna-
     do\ u = Testa[Coda]
                                                 mento delle
        for each v \hat{I} Adiac(u)
                                                 distanze
             do if colore[v] = Bianco
                  then colore[v] = Grigio
                        dist[v] = dist[u] + 1
                        pred[v] = u
                        Accoda (Coda, v)
        Decoda (Coda)
        colore[u] = Nero
```

Algoritmo BFS III: calcolo distanze

Inizializzazione

```
for each vertice u \in V(G) - \{s\}

do ...

dist[u] = \infty

...

dist[s] = 0
```

Aggiornamento delle distanze

Correttezza di BFS III

- Sia dato un *grafo* $G=\langle V,E\rangle$ (orientato o non) e un vertice sorgente s:
- durante l'esecuzione dell'algoritmo BFS(G,s), vengono esaminati tutti i vertici di V raggiungibili da s;

 Prima di dimostrare la correttezza di BFS, dimostreremo alcune proprietà dei percorsi minimi.

Percorsi minimi

Un *percorso minimo* in un *grafo* $G=\langle V,E\rangle$ tra due vertici s e v è un percorso da s a v che contiene il minimo numero di archi.

Percorsi minimi

Un *percorso minimo* in un *grafo* $G=\langle V,E\rangle$ tra due vertici s e v è un percorso da s a v che contiene il minimo numero di archi.

Percorsi minimi

Un percorso minimo in un grafo $G=\langle V,E\rangle$ tra due vertici s e v è un percorso da s a v che contiene il minimo numero di archi.

La distanza d (s,v) tra due vertici s e v è la lunghezza (numero di archi) di un percorso minimo tra s e v.

Percorsi minimi: proprietà l

Sia $G=\langle V,E\rangle$ un *grafo* (orientato o non) e s un vertice di G. Allora per ogni arco (u,v) di E, vale quanto segue:

 $d(s,v) \pm d(s,u)+1$

Ci sono 2 casi:

- u è raggiungibile da s
- u non è raggiungibile da s
- *u* è raggiungibile da *s*:
 Allora anche *v* lo è.

Il percorso minore da s a v in tal caso non può essere più lungo del percorso minore da s a u seguito dall'arco (v,u), e quindi d (s,v) £ d (s,u) + 1

• u non è raggiungibile da s

Allora d $(s,u)=\infty$, e nuovamente la disuguaglianza vale.

$$\frac{\delta(s,v)}{\delta(s,u)=\infty}$$

Percorsi minimi: proprietà II

Sia $G=\langle V,E\rangle$ un grafo (orientato o non). Supponiamo di eseguire BFS(G,s). Al termine dell'algoritmo, per ogni vertice ν di V, vale:

 $dist[v] ^3 d(s,v)$

Induzione sul *numero di operazioni di inserimento* di vertici in coda.

Ipotesi Induttiva: "per ogni accodamento precedente, vale dist[v] 3 d(s,v) per ogni vartice v".

Passo Base: è quando s viene posto nella coda. Poiché dist[s] = 0 = d(s,s) e $dist[v] = \infty$ d(s,v) per ogni altro vertice v, la tesi è banalmente verificata!

```
BSF(G:grafo, s:vertice)
for each vertice u Î V(G) - {s}
    do colore[u] = Bianco
    dist[u] = ∞
    pred[u] = Nil

dist[s] = 0
Coda = {s}
...
```

Passo Induttivo: un vertice bianco v viene posto in coda scorrendo la lista di adiacenza del vertice u in testa. Per ipotesi induttiva $dist[u]^3 d(s,u)$.

Dall'assegnamento \ e dalla *Proprietà* | risulta che: dist[v] = dist[u] + 1 $\geq d(s,u)+1$ BSF(G:grafo, s:vertice) $\geq d(s,v)$ while Coda 1 ϕ $do\ u = Testa[Coda]$ for each $v \hat{I}$ Adiac(u) do if colore[v] = Bianco then colore[v] = Grigio $dist[v] = dist[u] + 1 \leftarrow$ Accoda (Coda, v) Decoda (Coda)

Percorsi minimi: proprietà III

Sia $G=\langle V,E\rangle$ un *grafo* (orientato o non). Supponiamo di eseguire BFS(G,s) e che in *coda* siano presenti i vertici $[v_1,...,v_n]$ (v_1 è la testa). Allora:

$$dist[v_n] £ dist[v_1] + 1$$
$$dist[v_i] £ dist[v_{i+1}]$$

per ogni $i=1,\ldots,n-1$

Dimostriamo per induzione sul numero di operazioni sulla coda.

• Passo Base: Inizialmente (1 operazione sulla coda), quando la coda contiene solo s, la proprietà certamente vale.

Ipotesi Induttiva

Dobbiamo dimostrare che la proprietà vale sia per qualsiasi *operazione di accodamento* o di *estrazione* di un vertice dalla coda.

Denotiamo con $[v_1 \ v_2 \dots \ v_r]$ coda, dove v_1 è la testa.

Supponiamo (ipotesi induttiva) che la proprietà valga dopo la (k-1)-esima operazione sulla coda, che sarà $[v_1 \ v_2 \ ... \ v_r]$. Cioè che valga:

 $dist[v_r]$ £ $dist[v_I] + 1$ $dist[v_i]$ £ $dist[v_{i+1}]$

- Passo Induttivo consideriamo la k-esima operazione
 - 1) quando v_1 viene estratto, v_2 diventa la nuova testa (quando si svuota la proprietà vale banalmente). Allora, poiché si ha $dist[v_1]$ £ $dist[v_2]$, risulta $dist[v_r]$ £ $dist[v_1]+1$ £ $dist[v_2]+1$
 - e il resto delle disuguaglianze resta identico.
 - Quindi la proprietà vale con v_2 come testa

- Passo Induttivo consideriamo la k-esima operazione
 - 2) quando si accoda a $[v_1 \ v_2 \ ... \ v_r]$ il vertice v (nel codice) diventa il nuovo v_{r+1} , $[v_1 \ v_2 \ ... \ v_r \ v_{r+1}]$, mentre il vertice v_1 è il vertice u la cui lista di adiacenza viene esaminata (nel codice). Allora vale $dist[v_{r+1}] = dist[v]$ £ $dist[u] + 1 = dist[v_1] + 1$ e $dist[v_r]$ £ $dist[v_1] + 1 = dist[u] + 1 = dist[v] = dist[v_{r+1}]$

Le altre uguaglianze restano invariate...
... e la proprietà vale!

Correttezza di BFS III

- Sia dato un *grafo* $G=\langle V,E\rangle$ (orientato o non) e un vertice sorgente s:
- durante l'esecuzione dell'algoritmo BFS(G,s), vengono esaminati tutti i vertici di V raggiungibili da s;
- \triangleright al termine dist[v] = d(s,v) per ogni $v \hat{I} V$;
- > se v¹s, uno dei percorsi minimi tra s e v è il percorso minimo da s a pred[v] seguito dall'arco (pred[v],v).

Dimostrazione: consideriamo il caso in cui il vertice v sia raggiungibile da s (vedere sul libro di testo il caso in cui v non è raggiungibile).

- Sia V_k l'insieme dei vertici a distanza (minima) k da s (cioè $V_k = \{v \in V: d(s,v) = k\}$).
- La dimostrazione procede per *induzione su k*, cioè sulla distanza di un nodo v da s.

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

Caso Base: Per k = 0, $V_0 = \{s\}$ (unico vertice a distanza 0 da s):

- l'inizializzazione colora s di grigio;
- dist[s] viene posto a 0;
- s è messo nella coda.

Quindi la tesi è dimostrata per k=0!

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

Caso induttivo: per k^3 1

- La coda non è mai vuota fino al termine.
- Una volta inserito un vertice *u* nella coda, né *dist[u]* né *pred[u]* cambiano il loro valore.
- Per il teorema precedente, se i vertici sono inseriti nell'ordine $v_1, v_2, ..., v_r$, la sequenza delle distanze è crescente monotonicamente $(d[v_i] \pounds d[v_{i+1}])$

```
Ipotesi induttiva: per ogni j < k, per ogni v \in V_j, c'è solo un istante in cui l'algoritmo di BFS:
```

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

Caso induttivo:

- Sia ora $v \hat{I} V_k (k^3 1)$.
- Dalla proprietà di monotonicità (Prop. III), dal fatto che $dist[v]^{3}k$ (Prop. II) e dall'*ipotesi induttiva*, segue che v (se viene visitato) deve essere visitato dopo che tutti i vertici nell'insieme V_{k-1} sono stati accodati.
- Poiché d(s,v)=k, esiste un percorso di k-1 archi da s ad un vertice u tale che (u,v) \hat{I} E, e quindi esiste un vertice u \hat{I} V_{k-1} con v adiacente a u.

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

Caso induttivo:

- Supponiamo che u sia il primo dei vertici in V_{k-1} a cui v è adiacente che è stato colorato di grigio (per Hp. Ind. tutti i vertici in V_{k-1} saranno grigi prima che v venga scoperto).
- Quando verrà *esaminata la lista di adiacenza* di u, v verrà scoperto (ciò non accade prima perché v sta in V_k e non è quindi adiacente a vertici in V_j con j < k-1, e u è il primo adiacente di v incontrato per l'ipotesi in alto)

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

Correttezza di BFS III: dimostrazione

Caso induttivo:

- Quindi v viene colorato di grigio da BFS.
- Viene assegnato dist[v] = dist[u]+1 = (k-1)+1=k
- Viene eseguito pred[v]=u e sappiamo (per *ipotesi* induttiva) che $u\hat{I}$ V_{k-1}
- Viene messo v in coda.

Essendo v un vertice arbitrario in V_k , l'ipotesi induttiva è dimostrata per ogni $k^31!$

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\widehat{I}$ V_{j-1}
- •inserisce v nella coda

Correttezza di BFS III: dimostrazione

Quindi, se $v\hat{I}$ V_k , allora certamente pred[v] \hat{I} V_{k-1}

È quindi possibile ottenere il *percorso minimo da s a v* estendendo il percorso minimo da *s a pred[v]* con l'arco (*pred[v]*,*v*).

Ipotesi induttiva: per ogni j < k, per ogni $v \in V_j$, c'è *solo un istante* in cui l'algoritmo di BFS:

- •colora v di grigio
- •assegna *a dist[v]* il valore *j*
- •se v^{-1} s, allora assegna a pred[v] il valore u, per qualche $u\hat{I}$ V_{j-1}
- •inserisce v nella coda

- G' è un sottografo del grafo non orientato sottostante di G
- ν Î V' se e solo se ν è raggiungibile da s
- per ogni $v \hat{I} V'$, il percorso da s a v è minimo

- G' è un sottografo del grafo non orientato sottostante G
- $v \hat{I} V'$ se e solo se v è raggiungibile da s
- per ogni $v \hat{I} V'$, il percorso da s a v è minimo

- G' è un sottografo del grafo non orientato sottostante G
- ν Î V' se e solo se ν è raggiungibile da s
- per ogni $v \hat{I} V'$, il percorso da s a v è minimo

- G' è un sottografo del grafo non orientato sottostante G
- ν Î V' se e solo se ν è raggiungibile da s
- per ogni $v \hat{I} V'$, il percorso da s a v è minimo

- G' è un sottografo del grafo non orientato sottostante G
- ν Î V' se e solo se ν è raggiungibile da s
- per ogni $v \hat{I} V'$, il percorso da s a v è minimo

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

$$V_{pred} = \{ v \hat{\mathbf{I}} \ V : pred[v]^{-1} \mathbf{Nil} \} \cup \{ s \}$$

$$E_{pred} = \{ (pred[v], v) \hat{\mathbf{I}} \; \mathbf{E} : v \hat{\mathbf{I}} \; V_{pred} - \{ \mathbf{s} \} \}$$

• L'algoritmo BFS eseguito su un grafo G=<V,E> costruisce in pred[] il sottografo dei predecessori $G_{pred}=<V_{pred},E_{pred}>$ in modo tale che G_{pred} sia un albero breadth-first di G.

• L'algoritmo BFS eseguito su un grafo G=<V,E> costruisce in pred[] il sottografo dei predecessori $G_{pred}=<V_{pred},E_{pred}>$ in modo tale che G_{pred} sia un albero breadth-first di G.

Teorema: L'algoritmo BFS eseguito su un grafo $G=\langle V,E\rangle$ costruisce in pred[] il sottografo dei predecessori $G_{pred}=\langle V_{pred},E_{pred}\rangle$ in modo tale che G_{pred} sia un albero breadth-first di G.

Dimostrazione: BFS assegna pred[v]=u solo se (u,v) Î E e d(s,v)<¥ (solo se v è raggiungibile da s).

Quindi V_{pred} consiste di vertici in V tutti raggiungibili da s

Poiché G_{pred} è un albero, contiene un unico percorso da s ad ogni vertice in V_{pred}

Usando *induttivamente* il *teorema di correttezza* (parte finale), segue che ognuno di questi percorsi è minimo.

Teorema: L'algoritmo BFS eseguito su un grafo $G=\langle V,E\rangle$ costruisce in pred[] il sottografo dei predecessori $G_{pred}=\langle V_{pred},E_{pred}\rangle$ in modo tale che G_{pred} sia un albero breadth-first di G.

Dimostrazione: Usando induttivamente il teorema di correttezza (parte finale), segue che ognuno di questi percorsi è minimo. Induzione sulla distanza k di v da s.

Passo Base: Se k=0 segue banalmente.

Sia dato un *grafo G=\langle V,E \rangle* (orientato o non) e un vertice sorgente *s*:

se v¹s, uno dei percorsi minimi tra s
 e v è il percorso minimo da s a
 pred[v] seguito dall'arco (pred[v],v).

Teorema: L'algoritmo BFS eseguito su un grafo $G=\langle V,E\rangle$ costruisce in pred[] il sottografo dei predecessori $G_{pred}=\langle V_{pred},E_{pred}\rangle$ in modo tale che G_{pred} sia un albero breadth-first di G.

Dimostrazione: Usando induttivamente il teorema di correttezza (parte finale), segue che ognuno di questi percorsi è minimo. Induzione sulla distanza k di v da s.

Passo Induttivo: Il percorso tra s e pred[v] è minimo per induzione

Sia dato un *grafo G=\langle V,E \rangle* (orientato o non) e un vertice sorgente s:

se v¹s, uno dei percorsi minimi tra s
 e v è il percorso minimo da s a
 pred[v] seguito dall'arco (pred[v],v).

Ma allora per il teorema di correttezza lo è anche il percorso da s a pred[v] seguito dall'arco (pred[v],v).

Applicazione di BFS: calcolo del percorso minimo tra due vertici

Definizione del problema:

Dato un grafo G e due vertici s e v, stampare il percorso minimo che congiunge s e v.

Sfruttando le *proprietà* di *BFS* che abbiamo dimostrato fin qui, possiamo facilmente definire un algoritmo che utilizza *BFS* opportunamente e che risolve il problema.

Stampa del percorso minimo

```
Percorso-minimo(G:grafo,s,v:vertice)
   BFS(G,s,pred[])
   Stampa-percorso(G,s,v,pred)
Stampa-percorso(G:grafo,s,v:vertice,pred[]:array)
  if v = s
   then stampa s
    else if pred[v] = NIL
        then stampa "non esiste alcun cammino tra
                     s e v''
        else
             Stampa-percorso(G,s,pred[v],pred)
             print v
```