Suppose that $X_1, X_2, ..., X_n$ is a random sample from a distribution with pdf $f(x; \theta)$.

Let (9) be the parameter space.

Consider testing

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta \setminus \Theta_0$

$$H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta \setminus \Theta_0$$

• Let $\widehat{\theta}$ be the maximum likelihood estimator for θ .

• Let $\hat{\theta}_0$ be restricted MLE.

 $\widehat{\theta}_0$ is the MLE for θ if we assume that H_0 is true.

$$H_0: \theta \leq \theta_0$$
 vs $H_1: \theta > \theta_0$

$$H_0: \theta \ge \theta_0$$
 vs $H_1: \theta < \theta_0$

$$H_0: \theta \leq \theta_0$$
 vs $H_1: \theta > \theta_0$

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta > \theta_0$

Definition:

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a distribution with pdf $f(x; \theta)$.

Consider testing

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$$

Let $L(\theta)$ be a likelihood function.

The generalized likelihood ratio (GLR)

is
$$\lambda(\overrightarrow{X}) = \frac{L(\widehat{\theta}_0)}{L(\widehat{\theta})}$$

Definition:

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a distribution with pdf $f(x; \theta)$.

Consider testing

$$H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$$

Let $L(\theta)$ be a likelihood function.

The generalized likelihood ratio test (GLRT) says to reject H_0 , in favor of H_1 , if

$$\lambda(X) \leq c$$

Example:

Suppose that $X_1, X_2, ..., X_n$ is a random sample from the continuous Pareto distribution with pdf

$$f(x; \gamma) = \begin{cases} \frac{\gamma}{(1+x)^{\gamma+1}}, & x > 0\\ 0, & \text{otherwise} \end{cases}$$

Here, $\gamma > 0$ is a parameter.

Find the GLRT of size α for

$$H_0: \gamma = \gamma_0 \text{ vs } H_1: \gamma \neq \gamma_0$$

A likelihood is

$$L(\gamma) = \frac{\gamma^n}{\left[\prod_{i=1}^n (1 + x_i)\right]^{\gamma+1}}$$

The MLE for γ is

$$\hat{\gamma} = \frac{n}{\sum_{i=1}^{n} \ln(1 + X_i)}$$

• The restricted MLE for γ is

$$\hat{\gamma}_0 = \gamma_0$$

The GLR is

$$\lambda(\overline{X}) = \frac{L(\widehat{\gamma}_0)}{L(\widehat{\gamma})}$$

• The form of the test is to reject H_0 , in favor of H_1 , if $\lambda(\overrightarrow{X}) \leq c$, where c is determined by solving

$$P(\lambda(\overline{X}) \le c; \gamma_0) = \alpha$$

or, equivalently

$$P(g(\overline{X}) ? c_1; \gamma_0) = \alpha$$

Yuck!