Homework 28 Section 6.4

Mark Petersen

Exercises: 2,3,4,5,6

07/31/2020

Exercise 1. (Q2): Decide whether each proposition is true or false, providing a short justification or counterexample as

a) If $\sum_{n=1}^{\infty} g_n$ converges uniformly, then (g_n) converges uniformly to zero *Proof:* Let $s_k = \sum_{n=1}^k g_n$ denote the series of partial sums, then given an $\epsilon > 0$, there exists a N such that whenever

$$|s_n(x) - g(x)| < \epsilon$$

for all x. This implies that

$$\left| \sum_{k=n+1}^{\infty} g_k(x) \right| < \epsilon.$$

Since ϵ can be made arbitrarily small, this implies that $(g_n) \to 0$ as $n \to \infty$ and thus converges uniformly. b) If $0 \le f_n(x) \le g_n(x)$ and $\sum_{n=1}^\infty g_n$ converges uniformly, then $\sum_{n=1}^\infty f_n$ converges uniformly. Proof: True. Since $\sum_{n=1}^\infty g_n$ converges uniformly, we know by the Cauchy Criterion for uniform converges that

$$|f_{m+1}(x) + \dots + f_n| \le |g_{m+1}(x) + \dots + g_n(x)| \le \epsilon$$

, thus $\sum_{n=1}^{\infty} f_n$ converges.

c) If $\sum_{n=1}^{\infty} f_n$ converges uniformly on A, then there exist a constants M_n such that $|f_n(x)| \leq M_n$ for all $x \in A$ and $\sum_{n=1}^{\infty} M_n$ converges.

Disproof: Let $f_n = (-1)^n \frac{1}{n}x$ where $x \in [0,1]$, then f_n converges uniformly on A; however $M_n \ge \frac{1}{n}$ which is the harmonic series and does not converge

Exercise 2. (Q3): Complete the following

a) Show that

$$g(x) = \sum_{n=0}^{\infty} \frac{\cos(2^n x)}{2^n}$$

is continuous on all of \mathbb{R} .

Proof: Let $g_n = \frac{\cos(2^n x)}{2^n}$, which is continuous by the Algebraic Continuity Theorem. By showing that $\sum g_n$ converges uniformly on \mathbb{R} , we prove that g(x) is continuous by the Term-by-term continuity Theorem. We note that

$$|g_n| = \left| \frac{\cos(2^n x)}{2^n} \right| \le \frac{1}{2^n},$$

where $\frac{1}{2^n}$ is a geometric series that converges to $\frac{1}{1-\frac{1}{2}}=2$. Thus by the Weierstrass M-test, $\sum_{n=0}^{\infty}g_n$ converges uniformly, thus q(x) is continuous.

- b) The function g was cited in Section 5.4 as an example of a continuous nowhere differentiable function. What happens if we try to use Theorem 6.4.3 to explore whether g is differentiable?
 - a) We first note that

$$g'_n(x) = \frac{-\sin(2^n x) 2^n}{2^n}$$
$$= -\sin(2^n x)$$

which does not converge point wise on all of R, thus it cannot converge uniformly. Therefore, theorem 6.4.3 cannot apply to it.

Exercise 3. (Q4): Define

$$g(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(1+x^{2n})}.$$

Find the values of x where the series converges and show that we get a continuous function on this set. Let $g\left(x\right)=\sum_{n=0}^{\infty}g_{n}\left(x\right)$ with $g_{n}\left(x\right)=\frac{x^{2n}}{(1+x^{2n})}$. In order for $g\left(x\right)$ to converge, we need $(g_{n})\to0$ as $n\to\infty$. This only occurs when |x|<1. When |x|<1 we get the inequality

$$g_n(x) \le \frac{1}{1 + x^{2n}}$$
$$\le \frac{1}{x^{2n}},$$

where $\frac{1}{x^{2n}}$ is a geometric series. Since $\sum \frac{1}{x^{2n}}$ converges, then by the Weierstrass M-test, the series $\sum g_n$ converges uniformly. Thus g(x) is a continuous function.

Exercise 4. (Q5): Complete the following

a) Prove that

$$h(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \frac{x^4}{16} + \cdots$$

is continuous on [-1,1]. Proof: Let $h\left(x\right)=\sum_{n=1}^{\infty}h_{n}\left(x\right)$ with $h_{n}\left(x\right)=\frac{x^{n}}{n^{2}}.$ On the interval [-1,1],

$$|h_n(x)| \le \frac{1}{n^2}.$$

This the series $\sum \frac{1}{n^2}$ converges, by the Weierstrass M-Test, the series $\sum_{n=1}^{\infty} h_n(x)$ converges uniformly, and since $h_n(x)$ is continuous, the function h(x) is continuous.

b) The series

$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n} = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$$

converges for every x in the half-open interval [-1,1) but does not converge when x=1. For a fixed $x_0 \in (-1,1)$, explain how we can still use the Weierstrass M-Test to prove that f is continuous at x_0 .

Proof: On the interval A = [-1,0), the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges according to the Alternating series test. On the set $B = \{0\}$, the series $\sum_{n=1}^{\infty} \frac{x^n}{n} = 0$ which converges to 0. On the open interval C = (-1,1), then

$$\left|\frac{x^n}{n}\right| \le |x^n| \,.$$

Since $\sum |x^n|$ is a geometric series and |x| < 1, the series converges. Then by the Weierstrass M-Test, the series $\sum_{n=1}^{\infty} \frac{x^n}{n}$ converges uniformly on the interval C and thus f is continuous on the interval C.

Exercise 5. (Q6): Let

$$f(x) = \frac{1}{x} - \frac{1}{x+1} + \frac{1}{x+2} - \frac{1}{x+3} + \frac{1}{x+4} - \cdots$$

Show f is defined for all x > 0. Is f continuous on $(0, \infty)$? How about differentiable?

Proof: Let $f(x) = \sum_{n=0}^{\infty} f_n(x)$ with $f_n(x) = (-1)^{n+1} \frac{1}{x+n}$. This series converges by the alternating series test. The

$$f'_{n}(x) = (-1)^{n} \frac{1}{(x+n)^{2}}.$$

Since $\left|f_{n}^{'}\left(x\right)\right| \leq \frac{1}{n^{2}}$ and the series $\sum \frac{1}{n^{2}}$ converges, then $\sum f_{n}^{'}\left(x\right)$ converges uniformly to some function $g'\left(x\right)$ according to the Weierstrass M-Test. Therefore, according to the term-by-term differentiability theorem, $\sum_{n=0}^{\infty} f_n(x)$ converges uniformly to f(x) and f'(x) = g'(x).