

مدرس: محمد معین مهدویان شاد سال تحصیلی ۵۱-۵۰۰

مقدمه

- آشنایی با محیط ISE و تشکیل پروژه جدید
 - بررسی ساختار کد VHDL
 - نوشتن اولین کد VHDL
 - پیادهسازی یک مدار ماژولار در کد VHDL
 - شبیه سازی و بررسی صحت عملکرد مدار

آشنایی با محیط ISE

ساختار کد VHDL

Libraries & Packages

Entity

Architecture

```
library IEEE;
use IEEE.STANDARD.ALL;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;
use IEEE.STD_NUMERIC.ALL;

7
8
9
10
11
```


ساختار کد VHDL

Libraries & Packages

Entity

Architecture

INTEGER

BOOLEAN

STD_LOGIC

STD_LOGIC_Vector

UNSIGNED

SIGNED

BIT

BIT_VECTOR

-2³¹-1~2³¹

False, True

'U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-'

'0', '1'

Architecture

ترکیبی

• خروجیهای مدار تنها به ورودیهای همان لحظه وابسته است.

ترتيبي

• خروجیهای مدار علاوه بر ورودیهای همان لحظه، به ورودی لحظات قبل نیز وابسته است.

Architecture

```
architecture Behavioral of main vhdl is
                                                          تعریف سیگنالها، کامپوننتها و ...
begin
                                                                              بدنه کد ترکیبی
process(
begin
end process;
end Behavioral;
```


روند کار در محیط ISE

تعریف پروژه جدید ایجاد فایل vhd.

تنظیم مشخصات تراشه FPGA

کد نویسی

دیباگ و شبیهسازی

طراحی مدارات به صورت ماژولار

استفاده از ماژولهایی که از قبل ایجاد کردهایم برای ساخت مدارات بزرگتر:

- خلاصه شدن کد
- سادەتر شدن روند طراحی مدار
 - سهولت در عیبیابی کد
 - تطبیقپذیری بیشتر مدار

طراحی مدارات به صورت ماژولار

طراحی مدارات به صورت ماژولار

ایجاد فایل vhd.

تعریف پروژه جدید

اضافه نمودن زیرمارول (های) مورد نظر

ایجاد قالب نمونهسازی

تخصیص دهی پورتها

شبیهسازی

• اطمینان از صحت عملکرد مدار

نوشتن کد TESTBENCH


```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY test IS
END test;
ARCHITECTURE behavior OF test IS
       -- Component Declaration for the Unit Under Test (UUT)
       COMPONENT FA 1
       PORT (
               A : IN std logic;
               B : IN std logic;
               Cin : IN std logic;
               S : OUT std logic;
               Cout : OUT std logic );
       END COMPONENT;
       --Inputs
       signal A : std logic := '0';
       signal B : std logic := '0';
       signal Cin : std logic := '0';
```


BEGIN


```
--Inputs
signal A : std logic := '0';
signal B : std logic := '0';
signal Cin : std logic := '0';
signal S : std logic;
signal Cout : std logic;
-- appropriate port name
constant <clock> period : time := 10 ns;
-- Instantiate the Unit Under Test (UUT)
uut: FA 1 PORT MAP (
       A \Rightarrow A
       B => B,
       Cin => Cin,
       S => S
       Cout => Cout );
```



```
<clock> process :process
begin
       <clock> <= '0';</pre>
        wait for <clock>_period/2;
       <clock> <= '1';</pre>
       wait for <clock> period/2;
end process;
stim proc: process
begin
        -- hold reset state for 100 ns.
       wait for 100 ns;
        wait for <clock>_period*10;
        -- insert stimulus here
       A <= '1';
        B <= '1';
        Cin <= '1';
```


END;

begin

```
-- hold reset state for 100 ns
wait for 100 ns;
wait for <clock>_period*10;
-- insert stimulus here
A <= '1';
B <= '1';
Cin <= '1';
wait;
end process;</pre>
```


تابع	عمل	Selector (OPCODE)				
		Cin	So	SI	SY	S۳
انتقال	F = A	۰	۰	•	0	•
افزایش	F = A + 1	1	•	•	0	0
جمع	F = A + B	۰	1	•	0	•
Cinجمع با	F = A + B + 1	1	1	•	0	0
Bتفریق با	$F = A + \overline{B}$	۰	۰	1	0	•
تفريق	$F = A + \overline{B} + 1$	1	•	1	0	•
Aکاهش	F = A - 1	1	1	1	0	•
AND	F = A ^ B	X	•	•	1	•
OR	F = A ∨ B	X	1	•	1	•
XOR	F = A ⊕ B	X	•	1	1	0
متمم A	$F = \overline{A}$	X	1	1	1	•
شیفت A به راست	F = shr A	X	X	X	•	1
شیفت A به چپ	F = shl A	X	X	X	1	1

