Santa Clara University 2020 Spring Final Exam

Course	COEN279/AMTH377	Name	Juy Joshi		
Department	Computer Engineering	Student ID	00001599322		
Lecturer	Yuan Wang	Data/Time	2020/06/12, 2:00pm - 4:00pm		
Format		open-book,			
Note	No discussion. No cell phone, no internet				

- 1. Multiple choices (5 questions, 4points each, 20 points total)
 - (1) The lower bound of all comparison sort is
 - _a. Ω(nlogn)
 - b. $\Omega(n^2)$
 - c. Ω(n)
 - d. O(1)
 - (2) The complexity of counting sort is:
 - a. $\Theta(nlog^n)$
 - b. Θ(n²)
 - -c. Θ(n)
 - d. $\Theta(1)$
 - (3). The formula (n-1)*(n-5) in terms of big O notation is: a. O(1)

 - b. O(log n) c. O(n)
 - _d. O(n2)
 - (4). The complexity of the following program

return m

is:

- a. O(n)
- b. O(n2)
- JC. O(1)
 - d. O(m)
- (5) The complexity of the following algorithm:

for
$$i = 1$$
 to n

for j = i to n

print(i * j)

is:

- a. O(n)
- b. O(n2)
- c. O(i'j)
- d. O(nlogⁿ)

- 2. True or False (10 questions, 2 points each, 20 points total)
 - (1) A sort technique is said to be stable when the original relative order of records with equal keys are retained after sorting. True
 - (2) Dynamic Programming and Greedy algorithms are two techniques that can be used interchangeably. False
 - (3) Dynamic programming improve the efficiency over brute force method by introducing more memory usage. Two-
 - (4) Greedy algorithms is used to solve optimization problems. Truc
 - (5) All NP-complete problems are NP-hard problems Tyne
 - (6) Since we are able to find NP complete problems, we know for sure that NP != P False
 - (7) If problem A is reducible to problem B, that means problem B is easier than problem A. False
 - (8) For any problem X, if we can find a NP-complete problem C, and C is reducible to X, then X is also NP-complete problem. Twe
 - (9) If algorithm has a best case complexity $\Theta(m)$ and a worse case complexity $\Theta(n)$, then the complexity of the algorithm is $\Theta(m)$ False.
 - (10) NP-hard are problems not in NP. Tzuc

Aus - 3	input -> 15,6,7,8,93 for Munix Chain Mulpiplication					
mutrix	AI AZ A3 AU					
dimension	5×6 6×7 7×8 8×9					
	0 210 490 850					
2	210 490 850					
3	768					
4	701					
	<u>O</u>					
	We need to use below education to ralificate					
2	entry in above table,					
	$M[i,j] = min \left\{ 0, i+i=j \right\}$					
	min {M[i,K]+M[K+1,i]+P=1*Px*P;} if ic					
	MC1 n2 mm 2					
	M(1,2) = M(1,1) + M(2,2) + 5*6*7 = 210					
	M(2,3) = M(2,2) + M(3,3) + 6 * 7 * 8 = 336					
	M(3,4) = M(3,3)+ M(4,4)+7*8*9=504					
	M(1,3) - (M(1,1) + M(1,2) + M(1,2)					
	M[1,3] = min { M[1,1] + M[2,3] + 5*6*8 = 576 [M[1,2] + M[3,3] + 5*7*8 = 490 (k=2)					
	M(2,4) = min \ M(2,2) + M(2,2) + (*] + 0 = 0.30					
	$M(2,4) = \min \left\{ M(2,2) + M(3,4) + 6 * 7 * 9 = 882 \right\}$ $M(2,3) + M(4,4) + 6 * 8 * 9 = 768 (k=3)$					
	1- +68 (K=3)					
	M(1,4)=min / M(1,1)+M(2,4)+5*6*9=1038					
	M[1,2] + M(3,h) + 5 * 7 * 9 = 1029					
	(n(1,3)+m(4,4)+5*8*9=850 (k=3)					
1						

	We	(un	Construct	Solution	thble	us per	be10 w,
13	2	3	4		9		
1	1	2	3				
2		2	3			2000	
3			3				
						х	
						N	
			i i				, -
			,				
				-			
		-					
		and the second					

4. [15 points] Fibonacci number is defined like this:

$$F(n) = \begin{cases} 0 & \text{for } n = 0\\ 1 & \text{for } n = 1\\ F(n-1) + F(n-2) & \text{for } n > 1 \end{cases}$$

so, for example, F(6) = 8 (because up to position 6, all Fibonacci numbers are: 0 1 1 2 3 5 8)

The straight forward top down recursive algorithm to calculate fibonacci number is:

```
int FibTopDown(int n) {
    if(n==0) return 1;
    if(n==1) return 1;

fib[n] = fibTopDown(n-1) + fibTopDown(n-2);
    return fib[n];
}
```

This problem can be solved using dynamic programming algorithm. Add the memoization to this recursive algorithm.

```
int Fib TorDown (intn. int Jookup []) {

if (n==0) {

Jookup [n]=n;

Jookup [n]=n;

Jookup [n]=n;

Jookup [n] is Null {

Jookup [n] = Fib TorDown (n-1, Jookup) +

Fib TorDown (n-2, Jookup);

Jookup [n];

Jookup [n];

Jookup [n];
```

Ans-5	Independent Set Problem
	Here the decision Problem is does the graph has a independent Set of size 3?
	Proof!
(1)	Independent Set & NP given a solution, we can verity it in Polynomial time
(2)	A NPromplete Problem UJEVE run be reduced to Independent set problem
	(LIQUE & Independent Set. first Independent Set
	X+ CLIQUE X+ CLIQUE Independent
	of CLIQUE SC+ X & CLIQUE
	fix) of Independent Set
	those edges that are not in given grach to
	$\begin{cases} 3,13^* \\ 2 \\ 2 \\ 3 \\ 43 \\ 43 \\ 43 \\ 43 \\ 43 \\ $
	CLIQUE Independent Set

	graph has a Independent Set of size 3. and has a clidue of size 4.
0	there is a Independent Set of Size 3 then there must be 7 vertices in the graph because, Independent Set Size = V-Size of Clique
3	= 7-4=3. F is polynomial function.
	Broof is done!
	in other words, (LIQUE ran be solved by using Indefendent Set Problem algorithm.
	Therefore, Independent Set Problem. is NP-lomplete Problem.
I	