

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

к лабораторной работе №5

По курсу: «Моделирование»

Тема: «Определение вероятности отказа»

Студентка ИУ7-75Б Оберган Т.М Вариант 14

Преподаватель Рудаков И.В.

Оглавление

Задание	. 3
Аналитическая часть	. 4
Переменные и уравнения имитационной модели	
Листинг	
Результаты работы	
300 заявок	
1000 заявок	
3000 заявок	
Вывол	

Задание

В информационный центр приходят клиенты через интервал времени 10 +-2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 +- 5; 40 +- 10; 40 +- 20. Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

Для выполнения поставленного задания необходимо создать концептуальную модель в терминах СМО, определить эндогенные и экзогенные переменные и уравнения модели. За единицу системного времени выбрать 0,01 минуты.

Аналитическая часть

В процессе взаимодействия клиентов с информационным центром возможно:

- 1) Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
 - 2) Режим отказа в обслуживании клиента, когда все операторы заняты.

Переменные и уравнения имитационной модели

Эндогенные переменные: время обработки задания і-ым оператором, время решения этого задания і-ым компьютером.

Экзогенные переменные: число обслуженных клиентов и число клиентов, получивших отказ.

$$P_{om\kappa} = \frac{C_{om\kappa}}{C_{om\kappa} + C_{o\textit{fccn}}}$$

Листинг

Листинг 1 – функция обработки инкремента шага по времени

```
def one_step(generator, operators, processors, request_info, generate_new=True):
           # Обновление генератора
21
           if generate_new:
               request = generator.upd_time(unit_of_time)
22
               if request:
23
                   request_info['generated'] += 1
24
25
                   i_operator = pick_operator(operators)
                   if i_operator == -1: # все операторы заняты
26
                       request_info['lost'] += 1
27
                   else:
28
                       operators[i_operator].accept_request(request)
29
30
           # Обновление операторов
31
32
           for cur_operator in operators:
33
               cur_operator.upd_time(unit_of_time)
34
35
           # Обновление компьютеров
           for cur_processor in processors:
36
               res = cur_processor.upd_time(unit_of_time)
37
               if res == 'req fin': # заявка была обработана
38
39
                   request_info['processed'] += 1
```

Листинг 2 – циклы, обеспечивающие пошаговую работу системы

```
44
      def modeling(generator, operators, processors, total_incoming_requests):
45
           request_info = {'generated': 0, 'lost': 0, 'processed': 0}
           # Пока не сгенерируется нужное число заявок
47
           while request_info['generated'] < total_incoming_requests:</pre>
48
               one_step(generator, operators, processors, request_info)
50
51
           # Пока все сгенерированные заявки не пройдут систему
           while request_info['lost'] + request_info['processed'] < total_incoming_requests:</pre>
53
               one_step(generator, operators, processors, request_info, False)
54
           return request_info
55
```

Листинг 3 – задание входных параметров и получение результата

```
def main():
59
          client_generator = Generator(EvenDistribution(8, 12))
           first_queue = []
61
           second_queue = []
62
63
          operators = [
               Operator(first_queue, EvenDistribution(15, 25)), # самый производительный
65
               Operator(first_queue, EvenDistribution(30, 50)),
66
              Operator(second_queue, EvenDistribution(20, 60)) # наименее производительный
67
          ]
69
70
          processors = [
71
               Processor(first_queue, EvenDistribution(15, 15)), # poвно 15 минут
               Processor(second_queue, EvenDistribution(30, 30)) # pobho 30 минут
72
73
74
75
          total_requests = 300
76
77
          t_start = time()
78
          res = modeling(client_generator, operators, processors, total_requests)
79
          print('time seconds', time() - t_start)
80
          for key in res.keys():
81
             print(key, res[key])
82
          print('lost', res['lost'] / total_requests)
84
```

Результаты работы

300 заявок

time seconds 0.5375847816467285

generated 300

lost 66

processed 234 lost 0.22

1000 заявок

time seconds 1.8780181407928467

generated 1000

lost 212

processed 788 lost 0.212

3000 заявок

time seconds 5.603071212768555

generated 3000

lost 649

processed 2351

lost 0.21633333333333333

Вывод

При 300 заявках, процент потерянных заявок в данной системе равен 22%.