

- Describing large-scale processor activity.
- ► To discuss digital systems of this scale and level of complexity we need a number of descriptive tools.
- ▶ For example:
 - a) Circuit schematics highlight the circuit components and their connectivity.

When the system is synchronous we normally omit the clock

specification.

CSU22022, 2nd Lecture, Dr. Manzke, Page: 4

- Source Register
- Destination Register
- Operation to be applied
- Condition or control function under which the transfer will

occur.

▶ We assume synchronous operation and omit the clock

Operation

K1: R2 <- R1

Control Function

Source Register

Destination Register

CSU22022, 2nd Lecture, Dr. Manzke, Page: 5

Building Register-Transfer Statements

	12 41-	
Symbol(s)	Description	Examples
Letters and Numerals	Denote Registers	AR, DR, R2, IR 10 10 10 10 10 10 10 10 10 10 10 10 10
Parentheses	Denote sections of Registers	R2(9), AR(2),R1(7:0)
Arrow	Denotes data transfer	R1<-R2 IR<-DR
Comma	Separates simultaneous transfers	R1<-R2, R3<-AR
Square brackets	s Denote memory addressing	DR<-M[AR] /* a read M[AR]<-DR /* a write

CSU22022, 2nd Lecture, Dr. Manzke, Page: 6

Micro-Operation

- A micro-operation is an operation which can be accomplished within a small number of gate propagation delays upon data stored in adjacent registers and memory.
- Those commonly encountered in digital systems divide naturally into four groups
 - Transfer or identity micro-ops copy data, e.g. R1<-R2, DR<-M[AR]</p>
 - Arithmetic micro-ops provide the elements of arithmetic, e.g. R0<-R1+R2
 - ► Logic micro-0ps provide per bit opearation, e.g. R1<-R2 or R2
 - Shift micro-ops provide bit rotations, e.g. R1<-sr R2, R0<- rol R1</p>

Conditioned use of CLA

By conditioning what arrives at A,B,C_i we can achieve:

CSU22022, 2nd Lecture, Dr. Manzke, Page: 12

