# 计算机组成原理实验 2023

同济大学 软件学院

黄杰; 张晶

济事楼 514; 456

<u>huangjie@tongji.edu.cn</u>

jzhang@tongji.edu.cn

#### 实验5: 计数器实验

- 实验目的
  - 理解并掌握集成计数器工作原理
  - 掌握任意进制计数器的设计方法
- 主要实验设备
  - 数字逻辑实验系统
  - 74LSoo 2输入端四与非门
  - 74LS90 异步二-五-十进制计数器
  - 74LS161 同步四位二进制计数器

# 计数器

- 计数器是用来累计电路输入脉冲个数的时序电路。
- 在计数功能的基础上,计数器还可以实现计时、定时、 分频等多种功能
- ·计数器的电路结构中包含有触发器(常用JK类型)。
- 计数器按照脉冲的输入方式可分为同步计数器和异步计数器。

# 同步计数器原理 (了解)

- 同步计数器的时钟脉冲接到所有的触发器CP端, 各个触发器的翻转是同时进行的
- 示例:三位二进制同步减法计数器(JK实现)



# 异步计数器原理(了解)

- 异步计数器的时钟脉冲不是同时接到所有的触发器 CP端,触发器的翻转不是同时进行的,一部分触 发器CP端是来自其他触发器的输出
- 示例:三位二进制异步加法计数器(JK实现)



#### 实验内容1: 74LS90计数器功能验证



#### 74LS90工作原理

- R<sub>o1</sub>、R<sub>o2</sub>为置o端,S<sub>o1</sub>、S<sub>o2</sub>为置o端
- CLKA、 CLKB端为两个计数时钟输入端
- $Q_{\rm D}Q_{\rm C}Q_{\rm R}Q_{\rm A}$ 为输出端(计数序列)
- NC表示空脚
- 清零功能: 当 $R_{01}$ 、 $R_{02}$ 全为1,且 $S_{91}$ 和 $S_{92}$ 不全为1,计数器输出 $Q_{DCBA}$  = **oooo**
- 置9功能: 当 $S_{91}$ 、 $S_{92}$ 全为1,且 $S_{01}$ 和 $S_{02}$ 不全为1,计数器输出 $Q_{DCBA}$  = 1001
- 计数功能: 当S<sub>91</sub>和S<sub>92</sub>不全为1, 且R<sub>01</sub>和R<sub>02</sub>不全为1, 输入脉冲CP时, 计数器开始计数

#### 74LS90逻辑功能表

• 异步二-五-十进制计数器

| Г                                                               |            |            |            |            |                            |                               |                             |         |                            |                            |       |
|-----------------------------------------------------------------|------------|------------|------------|------------|----------------------------|-------------------------------|-----------------------------|---------|----------------------------|----------------------------|-------|
|                                                                 | $S_{9(1)}$ | $S_{9(2)}$ | $R_{0(1)}$ | $R_{0(2)}$ | $CP_1$                     | $CP_2$                        | $Q_{\scriptscriptstyle D}$  | $Q_{C}$ | $Q_{\scriptscriptstyle B}$ | $Q_{\scriptscriptstyle A}$ |       |
|                                                                 | 1          | 1          | 0          | ×          | ×                          | X                             | 1                           | 0       | 0                          | 1                          | ~ 要 o |
|                                                                 | 1          | 1          | ×          | 0          | X                          | X                             | 1                           | 0       | 0                          | 1                          | 置9    |
|                                                                 | 0          | X          | 1          | 1          | X                          | X                             | 0                           | 0       | 0                          | 0                          | 法声    |
|                                                                 | X          | 0          | 1          | 1          | X                          | X                             | 0                           | 0       | 0                          | 0                          |       |
|                                                                 |            |            |            |            | CP                         | 0                             | 二进制(Q <sub>A</sub> )        |         |                            |                            |       |
| $S_{9(1)} \bullet S_{9(2)} = 0$ $R_{0(1)} \bullet R_{0(2)} = 0$ |            |            |            | 0          | CP                         | -                             | 五进制                         | 计数      |                            |                            |       |
|                                                                 |            |            |            | CP         | $Q_{\scriptscriptstyle A}$ | 8421十进制(Q <sub>DCBA</sub> ) \ |                             |         |                            | 川奴                         |       |
|                                                                 |            |            |            |            | $Q_D$                      | CP                            | 5421十进制(Q <sub>ADCB</sub> ) |         |                            |                            | 如何接线  |
|                                                                 |            |            |            |            |                            | ı                             | ı                           |         |                            |                            |       |

## 74LS90 逻辑原理图



蓝色虚框: 1个JK触发器实现2进制计数,接CP0

红色虚框: 3个JK触发器实现5进制计数,接CP1

= PIN NUMBERS

V<sub>CC</sub> = PIN 5

GND = PIN 10

#### 实验内容2: 74LS161计数器功能验证

• 同步四位二进制计数器



#### 74LS161工作原理

- 4个控制端: CR(1)、LD(9)、EP(7)、ET(10)
- 当复位端CR=o时,输出 $Q_{DCBA}$ 全为零,实现异步清零功能(复位功能)
- 当CR=1时,预置数控制端LD=0,且 CP在上升沿时,  $Q_{DCBA}=DCBA$ ,实现同步预置数功能
- 当CR=LD=1且EP·ET=o时,输出Q<sub>DCBA</sub>保持不变,处于 保持状态
- 当CR=LD=EP=ET=1, CP上升沿实现自然二进制计数功能

#### 74LS161逻辑功能表

• 同步四位二进制计数器

| CR | LD | EP | ET | СР       | $Q_{\mathrm{D}}$ | $Q_{C}$                   | $Q_B$ | Q <sub>A</sub> |
|----|----|----|----|----------|------------------|---------------------------|-------|----------------|
| 0  | X  | X  | ×  | ×        | 0                | 0                         | 0     | 0              |
| 1  | 0  | ×  | X  | <b>↑</b> | D                | C                         | В     | A              |
| 1  | 1  | 0  | X  | X        | $Q_{D}$          | $\mathbf{Q}_{\mathbf{C}}$ | $Q_B$ | $Q_{A}$        |
| 1  | 1  | ×  | 0  | X        | $Q_{D}$          | $\mathbf{Q}_{\mathbf{C}}$ | $Q_B$ | $Q_{A}$        |
| 1  | 1  | 1  | 1  | <b>↑</b> |                  | 计                         | 数     |                |

异步清零

同步预置数

保持

计数

#### 实验内容3: 构成任意进制计数器

- 3种常用的计数器进制构建方法
  - 反馈清零法
  - 反馈置数法
  - 级联法(用于构造更大进制的计数器)

# 反馈清零法

- 利用芯片的复位端和门电路逻辑,跳越M-N个状态, 从而获得N进制计数器
- 计数器的清零方式分为异步和同步两种
- 电路"异步"和"同步"的概念(了解)
  - "异步"输入信号和时钟信号无关,是指输入信号 变为有效状态时,器件状态就立即发生改变
  - "同步"输入信号和时钟信号有关,将输入信号和时钟信号进行"与"或者"与非"处理后,器件状态才会改变。

# 反馈清零法

- 在电路内部, 异步清零的清零信号直接到达清零端。
- 同步清零需等到清零信号和有效时钟信号同时具备 时再到达清零端。
- 同步清零的优点:可以保证电路状态在时钟周期内不会发生改变。
- 因此,对于N进制计数器
- 对于异步清零,要在第N次脉冲计数时进行清零操作
  - 74LS90和74LS161芯片都是异步清零
- 对于同步清零,则要在第N-1次脉冲计数时进行清 零操作(提前准备好有效信号)

## 反馈清零法示例1

• 74LS90构成六进制计数器

• 74LS90是异步清零,采用0110状态对R01和R02位

清零



## 反馈清零法示例2

- 74LS161构成十进制计数器
- 74LS161也是异步清零,采用1010状态对CR位清零



# 反馈置数法

- 本方法仅适用于具有同步预置数功能的计数器(74LS90无此功能)
- 在计数过程中,将其输出的某一个状态通过门电路逻辑处理,产生一个控制信号反馈至预置数控制端,在下一个CP脉冲作用后,计数器就会把预置数输入端的状态置入输出端。
- 预置数控制信号消失后,计数器就从被置入的状态开始重新计数。
- 也可以在计数到1111状态时产生进位信号,反馈到预置数控制端实现反馈置数。

#### 反馈置数法示例1

- 74LS161构成七进制计数器
- 74LS161是同步置数,采用0110状态对LD置数



# 反馈置数法示例2

- 74LS161构成九进制计数器
- 直接利用进位端对LD反馈置数o111



# 级联法

- 适用于计数器进制M < 欲构成的进制N
- 先将多片计数器级联,组成最大计数值>N的计数器,然后采用前述清零或置数的方法实现模M计数器
- 通常在级联后,再采用反馈清零法

# 级联法示例1

- 74LS161构成二十四进制计数器
- 在0001 1000 (二进制24) 反馈清零



## 级联法示例2

- 74LS90构成二十四进制计数器
- 在0010 0100 (BCD码24) 反馈清零



# 计数器实验

- 本实验报告要点
  - 用74LS90芯片分别实现二、五进制和8421/5421十进制计数器的实验接线示意图,74LS90逻辑功能表
  - 74LS161的逻辑功能表
  - 试构成36进制计数器(用74LS161或90芯片都可以),
     画出电路原理图,并阐述其工作原理,鼓励多做几种方案。
  - 实验小结

## 设计实验准备

- 复习掌握之前学过的芯片
- 了解并安装NI电路辅助设计软件(仅供学习使用)

