Electronic Circuits for Mechatronics (ELCT 609)

Spring 2021

Lecture 5: BJT Amplifiers Theory

Course Instructor: Dr. Eman Azab

 We want to implement an analog voltage amplifier using BJT

Objective

- What are the Specifications of an Ideal Voltage Amp.?
 - Infinite Input Resistance: R_{in}
 (Thevinen at the Input Port)
 - Infinite Voltage Gain: A_{vo}
 - Finite Output Resistance (Short Circuit): R_{out} (Thevinen at the Output Port)

$$A_{v} = \frac{v_{out}}{v_{sig}}$$

$$A_{v} = A_{vo} \frac{R_{in}}{R_{sig} + R_{in}} \frac{R_{L}}{R_{out} + R_{L}}$$

Important Notes

 BJT Amplifiers deals with DC, AC and instantaneous signals, Thus we need to have different symbols to distinguish between them

Type of Signal	Signal Symbol	Example
DC Signals	Capital Letter and Subscript	V_{BE}, V_{CE}, I_{C}
AC Signals (Small Signals)	Small Letter and Subscript	V_{be} , V_{ce} , i_c
Instantaneous (Large Signals)	Small Letter and Capital Subscript	V_{BE},V_{CE},i_{C}

- Voltage Amplifier using BJT
 - Assume that we have instantaneous input and output voltage signal v_1 and v_2

$$v_{
m BE} = v_{
m I}$$

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

$$v_{
m BE} = v_{
m I}$$

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

$$v_{
m BE} = v_{
m I}$$

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

$$v_{
m BE} = v_{
m I}$$

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

Voltage Amplifier using BJT (Cont.)

$$v_{
m BE} = v_{
m I}$$

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

For Active Mode ONLY

$$i_{\rm C} = I_{\rm S} \exp\left(\frac{v_{\rm I}}{V_{\rm T}}\right)$$

Voltage Amplifier using BJT (cont.)

$$v_{\rm O} = V_{\rm CC} - i_{\rm C} R_{\rm C}$$

1. Cutoff Mode

$$0 \le v_{\rm I} \le 0.5$$
 $v_{\rm O} = V_{\rm CC}$

$$v_{\rm O} = V_{\rm CC}$$

2. Active Mode

$$0.5 \le v_{\rm I} \le v_{\rm BE,sat}$$

$$v_0 > v_{\rm CE,sat}$$

$$v_{\rm O} = V_{\rm CC} - I_{\rm S} R_{\rm C} \exp\left(\frac{v_{\rm I}}{V_{\rm T}}\right)$$

3. Saturation Mode

$$v_{\rm I} \ge v_{\rm BE,sat}$$

$$v_{\rm O} = V_{\rm CE,sat}$$

- We can easily separate DC and AC Signals (Superposition)
 - Under the assumption that the AC signal amplitude is very small, such that the transistor's mode will remain the same for the complete cycle
- BJT must work in Active Mode to avoid signal distortion
- DC Sources are used to set the DC Operating point to Active mode
- Input terminals of the amplifier are Base/Emitter
- Output terminals of the amplifier are Collector/Emitter
- Equivalent Circuit for Small Signal Analysis can be derived

$$v_{\rm BE} = V_{\rm BE} + v_{be}$$
 $i_{\rm C} = I_{\rm S} \exp$

$$i_{\rm C} = I_{\rm S} \exp\left(\frac{V_{\rm BE} + v_{be}}{V_{\rm T}}\right)$$

BJT Small Signal Model Derivation

■ Assume BJT is in active mode & v_{be} << V_T

$$i_{\rm C} = I_{\rm S} \exp\left(\frac{V_{\rm BE} + v_{be}}{V_{\rm T}}\right)$$

$$i_{\rm C} = I_{\rm S} \exp\left(\frac{V_{\rm BE}}{V_{\rm T}}\right) \exp\left(\frac{v_{be}}{V_{\rm T}}\right)$$

$$i_{\rm C} \cong I_{\rm C} \left(1 + \frac{v_{be}}{V_{\rm T}} \right)$$

$$g_{\rm m} = \frac{\partial i_{\rm C}}{\partial v_{he}} = \frac{I_{\rm C}}{V_{\rm T}}$$

$$i_{\rm c} = g_{\rm m} v_{be} = \beta i_{\rm b}$$

BJT Small Signal Model Derivation

 We can place a resistance between Base and Emitter to have a path for the base current

$$i_{\rm c} = g_{\rm m} v_{be} = \beta i_{\rm b}$$
 $r_{\rm \pi} =$

$$r_{\pi} = \frac{v_{be}}{i_{b}} = \frac{\beta}{g_{m}} = \frac{V_{T}}{I_{B}}$$

BJT Small Signal Model Derivation

Note: Early effect can be taken into consideration (if V_A is given)

$$r_{\rm o} = \frac{V_{\rm A}}{I_{\rm C}}$$

- Defined the Ideal voltage amplifier specs
- Defined Linear Amplifiers
- We learned the theory of small signal BJT-based voltage amplifiers

