לוגיקה הרצאה 6

 $A_1A_{2,}A_3$ אכסיומות

```
MP כלל היסק
                                                                      \underbrace{\alpha,\alpha\to\beta}
                              קבוצה אינדוקטיבית של המשפטים היכחיים
                                                         \alpha סדרת הוכחה עבור
                                                                1 \leq i \leq n לכל
        MP י"י, בסדרה מהקודמים התקבלה או אכסיומה או אכסיומה a_i
                              בסיס X - A_1 \cup A_2 \cup A_3 \cup X קבוצת הנחות
                                                                    MP פעולה
                                                                          X \vdash \alpha
                                  y \vdash \alpha , X \subseteq Y 'אכס', אכס' אכס' אכס'
                                                                   משפט הדדוקציה
A_1,A_2 רק את כלל בה לפחות אכסיומות שיש בה לפחות לכל מערכת הוכחה שיש בה לפחות אכסיומות
                           לכל קבוצת פסוקים X ופסוקים מתקיים:
                                                 X \vdash \alpha \rightarrow \beta \iff X, \alpha \vdash \beta
                                                                              הוכחה:
                                                              X \vdash \alpha \rightarrow \beta נתון
                                                              X, \alpha \vdash \beta הוכחנו
                                                                 X, \alpha \vdash \beta נתון \Leftarrow
                                                              X \vdash \alpha \to \beta צ"ל
                                                                  X, \alpha \vdash \beta 'עס'
                                           a_1, \ldots, a_n קיימת סדרת הוכחה
        a_n=eta ו־ MP ור מכסיומה או מ־X או מיל אכסיומה מ
                                                     1 \leq i \leq n \ a_i נראה לכל
                                                                  X \vdash \alpha \rightarrow a_i
                                                        a_n=eta מסקנה כבור
                                                          X \vdash \alpha \to \beta כנדרש
```

נוכיח באינדוקציה על i בסדרת ההוכחה.

$$X \vdash lpha
ightarrow a_i$$
 נוכיח נוכיח

- אכסיומה a_i .1
 - lpha .2
 - X-ם .3

הוכחה ל 1 של הבסים:

- $.a_1$ אכסיומה .1
- $.a_1 \rightarrow (\alpha \rightarrow a_i) A_1$.2
 - $\alpha \rightarrow a_1 \ MP_{1,2}$.3

 $\vdash \alpha \rightarrow a_1$

 $X \vdash (\alpha \rightarrow a_i)$ מונוטוניות של הוכחה עס' הנחות של

הוכחה ל 2 של הבסיס:

 $\vdash \alpha \to \alpha$ מטרה

 $X \vdash \alpha \to \alpha$ משפט שהוכחנו בשבוע שבר

הוכחה ל 3 של הבסיס:

- $a_1 \; X$ הנחה מ-1.
- $a_1 \rightarrow (\alpha \rightarrow a_1)$.2
- $\alpha \rightarrow a_1 \ MP_{1,2}$.3

$$X \vdash \alpha \rightarrow a_1$$

 a_i נוכיח עבור לכל לכל נניח שהטענה נניח עבור נניח אינדוקציה נניח אינדוקציה

- :1 אפשרות
- אכסיומה a_i .1
 - lpha .2
 - X-ם .3

עבור אפשרות זו ההוכחה זהה.

:2 אפשרות

m,l < i עבור a_m , a_l מ־m,l < i אבור מי

- $a_1 = \delta \rightarrow a_i$.1
 - $a_m = \delta$.2
- $a_i \qquad MP \ a_l, a_m \ .3$

הנחת האינדוקציה

$$X \vdash (\alpha \to (\delta \to a_i))$$
$$X \vdash (\alpha \to \delta)$$

$$lpha
ightarrow (\delta
ightarrow a_i) \; X$$
 עסי. 1

$$(lpha
ightarrow \delta) \; X$$
 עס, .2

$$(((\alpha \to (\delta \to a_i)) \to .3)$$

$$((\alpha \to \delta) \to (\alpha \to a_i))) A_2$$

$$((\alpha \rightarrow \delta) \rightarrow (\alpha \rightarrow a_i)) MP_{1,3}$$
 .4

$$(\alpha \to a_i) MP_{2,4}$$
 .5 $X \vdash (\alpha \to a_i)$

:תרגיל

$$\vdash (\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma))$$
 נוכיח

הוכחה:

$$(\alpha o (\beta o \gamma))$$
 הנחה .1

$$\beta$$
 הנחה 2

$$lpha$$
 הנחנה.3

$$(\beta \rightarrow \gamma) MP_{1,3}$$
 .4

$$\gamma MP_{4,2}$$
 .5

$$(\alpha \to (\beta \to \gamma)), \beta, \gamma \vdash \alpha$$
 (משפט הדדוקציה)
$$(\alpha \to (\beta \to \gamma)), \beta \vdash (\alpha \to \gamma)$$
 (משפט הדוקציה)
$$(\alpha \to (\beta \to \gamma)) \vdash (\beta \to \alpha \to \gamma)$$

$$("") \vdash (\alpha \to (\beta \to \gamma)) \vdash (\beta \to \alpha \to \gamma)$$
$$("") \vdash (\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma))$$

תרגיל:

$$\vdash (\neg \neg (\alpha \to \alpha)$$
 נוכיח

$$\neg \neg \alpha$$
 הנחה .1

$$(\neg\neg\alpha \to (\neg\alpha \to (\neg\neg\neg\alpha)) \vdash (\neg\alpha \to (\alpha \to \beta)$$
 משפט .2

$$(\neg \alpha \rightarrow \neg \neg \neg \alpha) MP_{1,2}$$
 .3

$$(\underbrace{\neg \alpha}_{\beta} \to \underbrace{\neg \neg \neg \alpha}_{\neg \alpha}) \to (\underbrace{\neg \neg \alpha}_{\alpha} \to \underbrace{\alpha}_{\beta}) A_{3} .4$$

$$(\neg \neg \alpha \rightarrow \alpha) MP_{3,4}$$
 .5

$$\alpha\,MP_{5,1}\,.6$$
 משפט הדדוקציה משפט הדדוקציה
$$\vdash (\neg\neg\alpha \to \alpha)$$

$$\vdash (\neg\neg\alpha \to \alpha)$$

$$A_3: (\neg\beta \to \neg\alpha) \to (\alpha \to \beta)$$
 ...
$$(\neg\alpha) \to (\alpha \to \beta)$$

$$(\neg$$

להוכיח תכונות על מערכת ההוכחה.

משפט נאותות:

$$\models \alpha \iff \vdash \alpha$$

משפט הנאותות החזק:

$$X \vDash \alpha \quad \Leftarrow \quad X \vdash \alpha$$

,v השמה לכל מתקיים $X \vDash \alpha$. $.v \vDash \alpha$ (ק $\beta \in X$ לכל לכל $v \vDash \beta$ (כלומר $v \vDash X$ אם $v \vDash X$

משפט השלמות(החזק):

$$X \vdash \alpha \Leftarrow X \vDash \alpha$$

 $\vdash \alpha \Leftarrow \vDash \alpha$

הוכחה (משפט הנאותות החזק):

$$x \vdash \alpha$$
 נתון $X \vDash \alpha$ צ"ל

 \underline{X} שיכיחים עס' $\underline{\alpha}$ הוכחה באינדוקציית מבנה על הפסוקים

$$a_1,\ldots,\underbrace{a_n}_{lpha}$$
 סדרת ההוכחה

- .X־מ a_1 .1
- אכסיומה a_1 .2

הוכחה:

.X־מ a_1 .1 $X \models a_1$

 $.v \vDash a_1$ אם ורק אם $b \in X$ לכל ע ובפרט $v \vDash A$

אכסיומה a_1 .2

לכל אכסיומה קל לבדוק אכסיומה לכל לכל אכסיומה א $X \vDash a_1$ מסקנה

הנחה האינדוקצייה:

$$X \vDash a_j$$
$$X \vDash a_K$$

Xצעד האינדוקצייה a_i אכסיומה מ־

$$j,k < i$$
 , a_k,a_j מר MP $a_k = \beta$, $a_j = \beta \rightarrow a_i$ $X \vDash \beta \rightarrow a_i$ $X \vDash \beta$

 $X \nvDash a_i$ נניח בשלילה ש

$$v$$
 כלומר קיימת $v \vDash X$ $v \nvDash a_i$

עס' הנחת האינדוקציה

$$v \vDash \beta \to a_i \\ v \vDash \beta$$

 $:\rightarrow$ עס' טבלת האמת של

.סתירה $v \vDash a_i$

משפט הנאותות(החזק לפי אביר היזם):

 $X \vDash \alpha$ אז $X \vdash \alpha$ אם

 $X \nvdash \alpha$ אז $X \nvDash \alpha$ נסמן שקול: אם

הוכחה משפט השלמות:

עקביות של קבוצת פסוקים:

הגדרה 1:

 $X \vdash \neg \alpha$ וגם $X \vdash \alpha$ כך ש
ר α כך פסוק אם לא עקבית היא עקבית מסוקים היא קבוצת היא א <u>:2 הגדרה</u>

 $X \vdash \beta$, פסוק פסוק הינה עקבית מ־X. כלומר, אם לא לא לא הינה עקבית הינה לא לא לא לא לא לא לא הינה עקבית אם לא לא לא לא

דוגמאות לקבוצות לא עקביות:

$$X = \{\alpha, \neg \alpha\}$$
 .1
$$X \vdash \alpha \\ X \vdash \neg \alpha$$

$$X = \{\alpha \to \beta, \alpha, \neg \beta\} \ .2$$

$$X \vdash \neg \beta$$

$$X \vdash \beta$$

משפט:

2 ההגדרות שקולות עבור תחשיב הפסוקים.

הוכחה 1⇒2

 $X \vdash \neg lpha$ נתון: לא קיים X
ot
otag lpha, lpha וגם

1∉2

 $X \nvdash \beta$, קיים פסוק, כלומר, מ־ל פסוק כל פסוק אם אם א הינה עקבית הינה א