Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Лабораторная работа №1

"Исследование влияния элементов подстройки транзисторного УРЧ на форму АЧХ." по дисциплине "Устройства приема и преобразования сигналов"

Выполнили студенты группы РЛ6-81 Филимонов С.В.

Преподаватель Мещереков В.Д.

Исследуемая схема, собранна в САПР Multisim 14.1, представлена на рис 2.

Рис. 2 - Входной каскад транзисторного УРЧ.

Она состоит из трёх частей:

1) Входной каскад (рис. 3). Эммитерный повторитель на транзисторе Q1, служащий для электрической развязки входной цепи и дальнейшей схемы усиления, и схема предусиления на транзисторе Q2. Рабочие точки транзисторов устанавливаются с помощью подстроечного резистора R8 для транзистора Q1 и с помощью подстроечного резистора R1 и R2 для транзистора Q2.

Рис. 4 - Осцилограммы входного каскада(R8 = 95% R1 = 75% R2 = 10%).

Рис. 7 - Осцилограмма УРЧ.

- 1) Ранее для каждой части схемы привели осцилограммы транзисторов Q1, Q2, Q3.
- 2) Построим АЧХ, меняя начальную частоту генератора V1 (6 кГц) от 100 Гц до 100 кГц. По полученные значения для начала занесем в таблицу 1, а после построим график АЧХ. Значения амплитуды выходного сигнала будем брать с осциллографа XSC2 (визуально).

Таблица 1.

F(V1), кГц	0.1	0.2	0.5	0.8	1	2	5	8	15	25	50	75	100
Амплитула, В	2.98	2.93	2.93	2.94	2.93	2.94	7.82	9.12	8.84	6.34	3.03	2.95	2.94

Рис. 7 - АЧХ.

Из измерений следует, фильтр пропускает сигнал в заданном диапазон. Ввиду большой выборки есть искажение восприятие графика.

3) Рассчитаем полосно-пропускающий фильтр с частотой f= $20~\kappa\Gamma u$. Пусть L = 10~ м Γ н, тогда:

$$f_p = \frac{1}{2\pi\sqrt{LC}} = > C = \frac{1}{4\pi^2 L f_p^2} = \frac{1}{4\pi^2 \cdot 100 \cdot 10^{-3} \cdot 40 \cdot 10^6} \approx 6.34 \cdot 10^{-9} \Phi$$

Из ряда E24 самый ближаший с номиналом 6.2 п Φ , будем за расчет брать его. Резистор возьмем номиналом 2 к Θ м.

ВЫВОД

В ходе проведенного исследования были достигнуты все поставленные цели. Была изучена принципиальная схема и физические процессы, происходящие в усилителе высокой частоты (УВЧ), а также его основные характеристики и параметры. Была освоена методика измерения и расчета качественных показателей усилителя, а также приобретены навыки моделирования в САПР Multisim при исследовании высокочастотных каскадов.