# Cálculo Diferencial e Integral en Varias Variables

#### Mauro Polenta Mora

## Ejercicio 8

## Consigna

Sea  $\{z_1,\dots,z_8\}$  el conjunto de raíces octavas de  $2^8,$  es decir,  $z_k^8=2^8$  para  $k=1,\dots,8.$ Determinar cuáles afirmaciones son verdaderas y cuáles falsas:

- 1.  $z_i = 2$  para todo  $i = 1, \dots, 8$
- 2. Existen al menos dos raíces  $z_j,\ z_k$  tales que  $z_j=-z_k$
- 3. Existen al menos dos raíces  $z_l,\ z_m$  tales que  $\bar{z}_l=z_m$
- 4. Se cumple que  $z_1 z_2 \cdots z_8 = 2^8$

## Resolución

Antes de empezar a evaluar las afirmaciones, hallemos las raíces octavas de  $2^8$ .

Sea  $z = re^{i\theta}$ , entonces tenemos que:

• 
$$(re^{i\theta})^8 = 2^8$$

De donde derivamos las siguientes ecuaciones:

- $r^8 = 2^8 \rightarrow r = 2$  y,  $8\theta = 2k\pi \rightarrow \theta = \frac{k\pi}{4}$  con  $k \in \mathbb{Z}$

Entonces las raíces octavas de 2<sup>8</sup> son las siguientes:

- $z_0 = 2$
- $z_1 = 2e^{i\frac{\pi}{4}}$
- $z_2 = 2e^{i\frac{\pi}{2}} = 2i$
- $z_3 = 2e^{i\frac{3\pi}{4}}$
- $z_4 = 2e^{i\pi} = -2$
- $z_5 = 2e^{i\frac{5\pi}{4}}$
- $z_6 = 2e^{i\frac{3\pi}{2}} = -2i$
- $z_7 = 2e^{i\frac{7\pi}{4}}$

### Afirmación 1

•  $z_i=2$  para todo  $i=1,\ldots,8$ 

Claramente FALSO.

## Afirmación 2

- Existen al menos dos raíces  $z_j,\ z_k$  tales que  $z_j=-z_k$ 

Esto es VERDADERO, pues  $z_0=2$  y  $z_4=-2\,$ 

## Afirmación 3

- Existen al menos dos raíces  $z_l,\ z_m$ tales que  $\bar{z}_l=z_m$ 

Esto es VERDADERO, pues  $z_2=2i$  y  $z_6=-2i.\,$ 

### Afirmación 4

- Se cumple que  $z_1z_2\cdots z_8=2^8$ 

Para esto habría que verificar que la suma de argumentos de las raíces sea  $0 + 2k\pi$  para algún  $k \in \mathbb{Z}$ , verifiquemos:

$$\sum_{i=0}^{7} \frac{i\pi}{4} = \frac{28\pi}{4} = 7\pi$$

Como el argumento no es  $0 + 2k\pi$  para algún  $k \in \mathbb{Z}$  podemos afirmar que el resultado no es real. Por lo tanto esta afirmación es FALSA.