Subrings

Definition

Let R be a ring. To say that R' is a *subring* of R, denoted $R' \leq R$, means:

- 1). $R' \subseteq R$
- 2). R' is a ring under the induced operations

R' < R means R' is a subring of R but $R' \neq R$.

Theorem: Subring Test

Let R be a (commutative) ring and let S be a non-empty subset of R. S is a (commutative) subring of R iff the following are true:

- 1). $\forall a, b \in S, a b \in S$
- 2). $\forall a, b \in S, ab \in S$

Proof

$$\Rightarrow \text{ Assume } S \leq R \\ \langle S, + \rangle \leq \langle R, + \rangle \\ \text{ Assume } a, b \in S \\ \langle S, + \rangle \text{ is a group so } -b \in S \\ a - b \in S \text{ (closure)} \\ ab \in S \text{ (closure)} \\ \therefore 1 \text{ and } 2 \text{ hold.}$$

$$\iff \text{Assume 1 and 2 hold} \\ \text{By the subgroup test, } \langle S, + \rangle \leq \langle R, + \rangle \\ \langle S, \cdot \rangle \text{ is closed} \\ \text{Associativity is inherited from } R \\ \text{The distributive laws are inherited from } R \\ \therefore S \leq R.$$

Note that proving subrings with unity is more complicated because unity for a subring may differ from unity of its parent ring:

```
\begin{split} \mathbb{Z} \times \mathbb{Z} &\text{ is a ring with unity } (1,1) \\ \mathbb{Z} \times \{0\} &\text{ is a ring with unity } (1,0) \\ \mathbb{Z} \times \{0\} < \mathbb{Z} \times \mathbb{Z}, \text{ but } (1,0) \neq (1,1) \end{split}
```

Theorem

Let R be a ring and let $S = \bigcap_{i \in I} R_i$ where $R_i \leq R$:

$$S \leq R$$

Proof

$$\langle S, + \rangle \leq \langle R, + \rangle$$
 Assume $a, b \in S$ $\forall \, i \in I, a, b \in R_i$ Assume $i \in I$

 $\begin{aligned} a,b &\in R_i \\ \text{By closure, } ab &\in R_i \\ \forall \mathbf{1} &\in I, ab \in R_i \\ ab &\in S \end{aligned}$

 $\therefore S$ is closed under multiplication.

Multiplicative associativity is inherited from ${\cal R}$ The distributive laws are inherited from ${\cal R}$

 $\therefore S \leq R$