Interrogation d'une base de données

Objectif(s):

• Être capable de **savoir interroger** une base de données via des requêtes **SQL** de type « SELECT ».

Base de données de travail

On considère le schéma relationnel suivant d'une base de données :

- Client (<u>id</u>, nom, anneeNaiss, ville) l'identifiant, le nom, l'année de naissance et la ville du client.
- Fournisseur (<u>id</u>, nom, age, ville) l'identifiant, le nom, l'âge, ainsi que la ville du fournisseur.
- Produit (<u>label</u>, <u>idF</u>, prix) le nom d'un produit, fourni par un fournisseur donné, selon un certain prix.
- Commande (num, idC, labelP, qte) le numéro de la commande, pour un client et un produit donnés, concernant une quantité donnée.

B les clés primaires sont soulignées.

Les extensions de ces relations sont présentées ci-dessous :

id	nom	age	ville
1	Abounayan	52	92190 Meudon
2	Cima	37	44150 Nantes
3	Preblocs	48	92230 Gennevilliers
4	Samaco	61	75018 Paris
5	Damasco	29	49100 Angers

Table Fournisseur

id	nom	anneeNaiss	ville
1	Jean	1965	75006 Paris
2	Paul	1958	75003 Paris
3	Vincent	1954	94200 Evry
4	Pierre	1950	92400 Courbevoie
5	Daniel	1963	44000 Nantes

Table **Client**

label	idF	*	prix
sable		1	300
briques		1	1500
parpaing		1	1150
sable		2	350
tuiles		3	1200
parpaing		3	1300
briques		4	1500
ciment		4	1300
parpaing		4	1450
briques		5	1450
tuiles		5	1100

num 🔺	idC	labelP	quantite
1	1	briques	5
1	1	ciment	10
2	2	briques	12
2	2	sable	9
2	2	parpaing	15
3	3	sable	17
4	4	briques	8
4	4	tuiles	17
5	5	parpaing	10
5	5	ciment	14
6	5	briques	21
7	2	ciment	12
8	4	parpaing	8
9	1	tuiles	15

Table **Produit**

Table **Commande**

Partie 1: Reverse engineering

Quel modèle E/A (modèle logique « plus facilement » compréhensible par l'humain) a pu permettre d'arriver à ce schéma relationnel ?

Dessinez sur papier ce modèle Entité/Association?

Interrogation de la base de données

Partie 2: Requêtes SQL

CREER LA BASE DE DONNEES S6_MVC_BTP et les tables Client, Fournisseur, Produit et commande

INSERER LES VALEURS DANS LES TABLES COMME SPECIFIEES DANS L'INTRODUCTION

Récupérez (affichez)

- 1. Toutes les informations sur les clients.
- 2. Toutes les informations « utiles à l'utilisateur » sur les clients, *i.e.* sans l'identifiant (servant à lier les relations).
- 3. Le nom des clients dont l'âge est supérieur à 50
- 4. La liste des produits (leur label), sans doublon!

- 5. *Idem*, mais cette fois la liste est triée par ordre alphabétique décroissant
- 6. Les commandes avec une quantité entre 8 et 18 inclus.
 - a. Une version avec le mot-clé BETWEEN
 - b. Une version sans
- 7. Le nom et la ville des clients dont le nom commence par 'P'.
- 8. Le nom des fournisseurs situés à PARIS.
- 9. L'identifiant Fournisseur et le prix associés des "briques" et des "parpaing".
 - Une version sans le mot-clé IN
 - Une version avec le mot-clé IN
- 10. La liste des noms des clients avec ce qu'ils ont commandé (label + quantité des produits).
 - Version avec jointure (pas de produit cartésien)
- 11. Le produit cartésien entre les clients et les produits (*i.e.* toutes les combinaisons possibles d'un achat par un client), on affichera le nom des clients ainsi que le label produit.

Constatez le nombre de réponses (*i.e.* nombre de lignes du résultat) par rapport à la requête précédente !

- 12. La liste, triée par ordre alphabétique, des noms des clients qui commandent le produit "briques".
 - 13. Le nom des fournisseurs qui vendent des "briques" ou des "parpaing".
 - a. Une version avec jointure
 - b. Une version avec requête imbriquée
 - Attention : aucun produit cartésien

Constatez que l'ordre d'affichage (et donc l'ordre de traitement) n'est pas le même!

- 13. Le nom des produits fournis par des fournisseurs parisiens (intra-muros uniquement).
 - En 3 versions différentes (jointure, produit cartésien et requête imbriquée)
- 14. Les nom et adresse des clients ayant commandé des briques, tel que la quantité commandée soit comprise entre 10 et 15.
- 15. Le nom des fournisseurs, le nom des produits et leur coût, correspondant pour tous les fournisseurs proposant au moins un produit commandé par Jean.
 - Attention : utilisez la chaîne "Jean" dans la requête, et pas directement son id (non nécessairement connu).
- 16. *Idem*, mais on souhaite cette fois que le résultat affiche le nom des fournisseurs trié dans l'ordre alphabétique descendant et pour chaque fournisseur le nom des produits dans l'ordre ascendant.

- 17. Le nom et le coût moyen des produits.
- 18. Le nom des produits proposés et leur coût moyen lorsque celui-ci est supérieur à 1200.
- 20. Le nom des produits dont le coût est inférieur au coût moyen de tous les produits.
- 21. Le nom des produits proposés et leur coût moyen pour les produits fournis par au moins 3 fournisseurs.