## **SPH3U 7.5 Nuclear Fusion**

## 1. Mass-energy equivalence



Determine the energy released when a deuterium atom (D) fuses with a tritium atom (T) to form helium, according to the nuclear reaction equation below. Use the given masses.

$$^{2}_{1}H + ^{3}_{1}H \rightarrow ^{4}_{2}He + ^{1}_{0}n + energy$$
 $m_{D} = 2.014 \ 10 \ u$ 
 $m_{He} = 4.002 \ 60 \ u$ 
 $m_{T} = 3.016 \ 05 \ u$ 
 $m_{T} = 1.008 \ 67 \ u$ 
 $m_{T} = 0.01888 \ u$ 

## 2. Controlled nuclear fusion

| Proton-proton chain:              | 4 (!H) = 4 He +2 (+1 e) + energy.<br>= happens in the sun. |
|-----------------------------------|------------------------------------------------------------|
| Production of elements:           | stors fuse particles together to create higher elements.   |
| Carbon-nitrogen-<br>oxygen cycle: | 12 C = 13 N = 16 C = 14 N = 15 0 = 18 C + (4 He)           |
| Magnetic confinement:             | in fusion, the substance (plasma) is very hot              |
| The ITER Project:                 | experimental fusion reactor.                               |

**Homework:** page 347: #1-3, 5-6