quantized spectrum:

$$\hat{S}_{0}(\mathbf{k}) = \tau^{z} \qquad \hat{Q}_{0} = \sum_{\mathbf{k}} d_{\mathbf{k}}^{\dagger} \hat{S}_{0}(\mathbf{k}) d_{\mathbf{k}}$$

$$\hat{S}_{1}(\mathbf{k}) = \cos k_{z} \tau^{z} + \sin k_{z} \tau^{x} \qquad \hat{Q}_{1} = \sum_{\mathbf{k}} d_{\mathbf{k}}^{\dagger} \hat{S}_{1}(\mathbf{k}) d_{\mathbf{k}}.$$
(10)

The first is the usual U(1) symmetry, while the second is composed of Kitaev Majorana chains [16] along z-axis wires. These generators do not commute, instead they generate an infinite-dimensional Lie algebra known as the Onsager algebra, introduced in [17]. This algebra has recently appeared in the study of the 1+1D chiral anomaly on the lattice [18, 19], and offers another route to defining exact symmetries on the lattice giving anomalous symmetries in the IR.

We can actually write a Hamiltonian that has this symmetry and two Weyl nodes, which in the BdG formalism above (using the $d_{\mathbf{k}}^{\dagger}$ basis) is

$$h_{\text{double Weyl}}^{\text{BdG}}(\mathbf{k}) = \mathbb{1}_{\tau} \otimes \frac{1}{2} \left[\sin k_x \sigma^x + \sin k_y \sigma^z + \left[\cos k_z - \cos K + m(\mathbf{k}) \right] \sigma^y \right] ,$$
(11)

where the identity in the τ basis ensures it has both U(1) symmetries, K is a parameter, and $m(\mathbf{k})$ is the same as in (3). This model is a magnetic Weyl semimetal model that has the two Weyl nodes at $\mathbf{k} = \pm \mathbf{K}$ where $\mathbf{K} = (0, 0, K)$. Let's linearize around the Weyl nodes. We get

$$h_l^{\text{BdG}} = \mathbb{1}_{\tau} \otimes \frac{1}{2} (k_x \sigma^x + k_y \sigma^z - \sin K \ k_z \sigma^y). \tag{12}$$

This shows that for $K \neq 0, \pi$, the two Weyl nodes have an opposite handedness. To figure out the effect of $\hat{S}_1(\mathbf{k})$ at low energy, we can also linearize it, and obtain

$$\hat{S}_{1,K}(\mathbf{k}) = \cos K \ \tau^z + \sin K \ \tau^x. \tag{13}$$

The important feature for $K \neq 0, \pi$ is that the second term is non-zero.

Thus, together with $\hat{S}_0 = \tau^z$, these generate an su(2) algebra acting on the low energy theory. Note that τ^x acts by exchanging particles at \mathbf{K} with holes at $-\mathbf{K}$. Thus, it is convenient to apply a charge conjugation the right-handed Weyl fermion, to give a low energy theory in terms of two left-handed Weyl fermions, now with op-posite charge w.r.t. τ^z rotations. τ^x rotations meanwhile act by a flavor rotation exchanging the two Weyl fermions. Thus, our symmetry generators \hat{Q}_0 , \hat{Q}_1 correspond to two su(2) generators in the flavor symmetry of the low energy, at an angle of K. For $K \neq 0, \pi$, they thus generate the whole chiral symmetry.

We can demonstrate that this symmetry protects the gapless Weyl points. To do so, we must break translation symmetry, since otherwise z-axis translations also

act as a discrete axial symmetry and help to stabilize the Weyl nodes [12, 13]. To analyze translation-symmetry breaking, we consider an extended basis $e_{\bf k} \equiv (c_{\bf k-K}, c_{-\bf k+K}^{\dagger}, c_{\bf k+K}, c_{-\bf k-K}^{\dagger})^T$ (we suppress the spin component). Hamiltonians in this basis may couple states at $\bf k$ with $\bf k+2K$ but are automatically \hat{Q}_0 preserving. In this basis the symmetry action of \hat{Q}_1 becomes

$$U(1)_{\hat{Q}_1} : \delta e_{\mathbf{k}} = i(\cos k_z \cos K \ \tau^z + \sin k_z \sin K \ \eta^z \tau^z + \sin k_z \cos K \ \tau^x - \cos k_z \sin K \ \eta^z \tau^x) e_{\mathbf{k}},$$

$$(14)$$

which prohibits all mass terms except $m_j(\mathbf{k})\eta^z\sigma^j$. However, these terms always commute with at least one term in the original Hamiltonian, so the result is a shift in the gapless modes rather than a gap. At a large enough pertubation, we can move the modes until K=0 or π , where the symmetry generators are aligned and no longer generate the whole SU(2) symmetry. At these special points, we will be able to open a symmetric gap.

IV. TIME REVERSAL SYMMETRIC SINGLE WEYL FERMION IN 3+1D

So far, we have considered time-reversal breaking models. We can also construct time-reversal invariant models, at the cost of making the symmetry generator slightly more not-on-site. As long as $S(\mathbf{k})$ is a smooth function of the momentum, then the charge density in real space will be a sum of terms with faster-than-polynomial decay. Such "almost-local" operators share many properties with local operators, while being closed under Hamiltonian evolution generated by such terms [20, 21]. This will allow us to employ bump functions and partitions of unity in momentum space.

To construct a time-reversal invariant model with a single protected Weyl fermion, we begin with a model on a cubic lattice with eight Weyl nodes. We use the BdG formalism with the basis $d_{\bf k}^{\dagger} \equiv (c_{{\bf k}\uparrow}^{\dagger}, c_{{\bf k}\downarrow}^{\dagger}, c_{-{\bf k}\uparrow}, c_{-{\bf k}\downarrow})$ used above, giving the Hamiltonian

$$h_8^{\text{BdG}}(\mathbf{k}) = \frac{1}{2} \left[\sin k_x \sigma^x + \sin k_y \sigma^z + \sin k_z \tau^z \sigma^y \right]. \quad (15)$$

This model has Weyl nodes at all eight time-reversal-invariant-momentum (TRIM) points of the Brillouin zone, as well as a time-reversal symmetry $\Theta = i\sigma^y \mathcal{K}$, where \mathcal{K} is complex conjugation, satisfying $\Theta^2 = -1$.

We will now add a U(1) symmetry-breaking term that will gap out all Weyl nodes except the one at $\mathbf{k} = \mathbf{0}$. In order to facilitate our discussion, let us first define a bump function B(k) given by

$$B(\mathbf{k}, w) = \begin{cases} e^{-\frac{w^2}{|\mathbf{k}|^2 - w^2}} & \text{for } |\mathbf{k}| < w \\ 0 & \text{for } |\mathbf{k}| \ge w \end{cases}$$
(16)