Histologie

Evžen Wybitul

Kateřina Krausová

19. května 2019

Obsah

1	Nervové buňky			2
	1.1	Stavba	a CNS a PNS	3
		1.1.1	Neurony	5
		1.1.2	Pomocné nervové buňky	9
		1.1.3	Hematoencefalická bariéra	11
	1.2	Senzoi	rické epitely	11
		1.2.1	Čichový epitel	12
		1.2.2	Sluchový epitel	13
		1.2.3	Zrakový epitel	14
	1.3	Patolo	ogie nervové soustavy	15

1 Nervové buňky

- ontogeneticky i fylogeneticky odvozeny od epitelu
 - některé z nich mají polarizovanou strukturu (ependymální gliové buňky mají řasinky)
- neurony, neuroepiteliální smyslové buňky, gliové buňky
- mnoho rozdílů mezi buňkami, patří zde nejmenší i největší buněčné typy

centrální nervový systém (CNS)

Je tvořen mozkem a míchou (šedá a bílá hmota).

periferní nervový systém (PNS)

Je tvořen nervoveými buňkami a ganglii, dále buňkami vzniklými z neurální lišty.

neurální lišta

Neurální lišta je zbytek neuroepitelu, který zůstane v místě, kde se vchlípila neurální trubice.

Vznikají zde buňky s obrovským diferenciačním a migračním potenciálem: chromafilní buňky, melanocyty, odontoblasty, Schwannovy buňky, neurony senzorické, gangliové, atd. Tyto buňky nezvznikají in situ, ale na liště, a na místo určení se dostanou už naprogramovány.

1.1 Stavba CNS a PNS

V celém nervovém systému je asi 10¹¹ nervových buňek, 3–10 krát více podpůrných gliových buněk a tím pádem 1000-5000 krát více možných propojení neuronů. Nervy jsou zpěvněny třemi obaly, epineuriem, perineuriem a endoneuriem.

Metody zkoumání CNS

- skenovací metody často pracují s izotopy prvků, které mají liché počty neutronů
 - možnost vizualizovat pomocí funkční magnetické rezonance (FMR)
 - dá se zjistit, které oblasti mozku jsou aktivní a neaktivní
 - mozek je možno pozorovat in vivo, např. i to, jak reaguje na konkrétní vzruchy
 - PET (pozitronová emisní tomografie): vychytávání cukru označeného radioaktivní látkou aktivním rostoucím nádorem
- mozek je rozdělen na malé specializované části

Bylo zjištěno, že máme nějak mnoho druhů neuronů na to, jak málo máme genů, které je kódují.Zdá se, že přírody nejspíše využívá triky s exony a introny (alternativní splicing).

Vývoj CNS

- 1. v ontogenezi se tvoří obrovské množství buněk
 - některé projdou programovanou buněčnou smrtí
- 2. nezralé neurony během ontogeneze putují podél radiálních gliových buněk propojujících vnitřní a vnější povrch nervové trubice (délka až 2cm)
- 3. gliové buňky slouží jako pravítko a určují tloušťku vrstev nervových buněk v mozku
- 4. nervové výběžky jsou poté naváděny pomocí chemoatraktantů (např. netrin) a chemorepelentů (např. některé semaforiny, proteiny Slit)
 - přesná diferenciace v konkrétní populaci je dána poziční informací od hormonů
 - rodiny Hox, Pax, Dbx, Irx
 - faktory sonic hedgehog, BMP
 - někdy se jeden výběžek plazí po druhém, který by pak byl tzv. pioneer neuron
- 5. pro přežívá neuronů jsou nutné neurotropiny, např. NGF (nerve growth factor)

Tvorba vrstev pomocí gliových buněk

- 1. první neuroblasty vytvoří vrstvu, která se stabilizuje tvorbou mezibuněčných spojení
- 2. poté se po gliových buňkách posunou nové buňky, projdou stávající vrstvu a vytvoří novou vrstvu atd.
- 3. poslední vrstva přidaných buněk je neokortex, je nejdál od zdroje kmenových buněk

Nervové spoje

- různé neurální populace se aktivují při různých úkolech
 - např. při rozlišování hranatých a kulatých věcí
- dynamická struktura, která se "drátuje" v průběhu života
- součástí správného rozvoje CNS je i apoptóza
- neurony, které nejsou za prvních pár týdnů prenatálního života použity, podléhají buněčné smrti

neurons

first-born neurons

layers of cortical neurons

dividing progenitor cell

radial glial cell

Obrázek 1.1: Znázornění postupného růstu vrstev podle gliových buněk

- místům v mozku, která byla původně určena jako nefunkční či prázdná, bývá pomocí FMR přiřazena funkce
- podobně jsou i v rámci postnatálního života posilovány spoje, které jsou často používány
 - naopak nepoužívané spoje slábnou a zanikají
 - je důležité dávat dítěti (alespoň do sedmi let života) co nejvíce různých vjemů
 - příkladem může být absolutní hudební sluch, který silně souvisí s typem vjemů, kterým je dítě vystavováno
 - * v Asii desetkrát vyšší incidence absolutního sluchu než u nás, snad kvůli tonálním jazykům
 - $\ast\,$ je s ním spijený jen jeden gen, který avšak způsobuje i nízkou hodnotu IQ
- tato plasticita mozku během života zaniká
 - netvoří se nové spoje, pouze se posilují a zeslabují ty stávající

Poznámka

mikrochimérismus

Buňky myšátek během gravidity osidlují tělo matky, což se dá pozorovat na myšátkách GFP-tagovaného samce a netagované samice.

1.1.1 Neurony

- schopné sčítat a odčítat signály z jiných neuronů, integrovat je, a pak vyslat signál
- jsou v podstatě zodpovědné za to, že myslíme
- neurony jdou připravit z kmenových buněk pomocí kyseliny retinové
 - na vytváření jednotlivých neurálních populací jsou potřeba ještědalší růstové faktory

Dendrity

- většina neuronů mnoho dendritů
- větví se, co dendrit, to možnost napojit se na individuální nervovou buňku
 - např. Purkyněho buňky mohou integrovat až 200 000 signálů
- při větvení se tenč
- zesilují se, nebo zeslabují, podle toho, jak jsou používány
 - buňka umí do dendritu transportovat proteiny, snad i lokalizovanou translaci
 - tento proces nejspíše stojí za dlouhodobou pamětí

Axony

- většina neuronů jeden axon, vzácně 0
- větví se, má ale konstantní šířku
- 1mm 1m na délku
- vyrůstají z místa zvaného axonální kónus
 - tam se provádějí všechny výpočt
 - jde o to, jestli je překročen akční potenciál
- plazmatická membrána axo, lemmaobsahuje axoplazmu
- úsek mezi kónem a počátkem myelinové pochvy se nazývá iniciální segment
 - jsou zde unikátní iontové kanály kontrolující generování nervového vzruchu

mohou být myelinizované i nemyelinizované

Molecular fence

- v aixonálním výběžku jsou jiné iontové kanály než dendritech
- zajišťují diferenciaci na úrovni membrány
- buňka je díky ní polarizovaná
- brání průchodu signalizace zpět do dendritu
- pro správnou funkci NS je nezbytná dostředivá a odstředivá signalizace právě na základě membránových domén

Nervová zakončení

aktivační zakončení

Extracelulárně snižují polaritu nebo koncentraci sodných iontů a zvyšují potenciální vybuzení neuronu k vypálení signálu.

Způsobují malou depolarizaci na postsynaptické membráně, otevírají gated kationtové kanály.

Ve spojení především s neurotransmitery acetylcholinem a glutamátem.

inhibiční zakončení

Způsobují malé hyperpolarizace, otevírají Cl^- a K^+ kanály. Ovlivňují prostorovou a časovou sumaci signálů. Rozhodují o tom, jestli bude či nebude na neuronu postsynaptický potenciál.

Znesnadňují signalizaci buňkám, kde se zrovna vylijí.

Ve spojení především s neurotransmitery GABA a glycinem.

V reálu záleží na tom, jak se posčítají hyperpolarizace a depolarizace.

Funkce svalů

- motorický neuron musí dostat dostatečné množství aktivačních signálů
- sval samotný už nic neřeší a pokud dostane signál, prostě se stáhne
- akční potenciál je pořád stejně velký, jak rychle se má sval stáhnout pozná z
 frekvence, ve které dostává signály

Schopnost regenerace

META Na toto byl v přednášce kladen velký důraz.

Naproti obecné představě jsou nervové buňky schopny určité regenerace.

Průběh poškození axonu

- 1. Ve zdravém neuronu spojeném se svalem je jádro uprostřed a je v něm mnoho Nisslových substancí.
- 2. Když je axon přerušen, jádro se posune na periferii neuronu a počet Nisslových substancí je velice sníží. Část nervového vlákna, která je nyní spojená jen se svalem, degeneruje a je odklizena makrofágy.
- Denervovaná svalová buňka atrofuje. Schwannovy buňky proliferují, tvoří silný kabel roustoucí ze svalové buňky.
- 4. Axon dorůstá a snaží se spojit a prorůst Schannovými buňkami.
 - Když se mu to povede, sval je opět inervovaný, obnoví se jeho síla i funkce a neuron se vrátí do původního stavu.
 - Když se mu to nepovede, růst axonu je neorganizovaný, sval dál atrofuje.
 Po překročení určité doby je sval už nenávratně poškozen.

Poznámka Nisslova substance (Nissl body) je granulární hmota v somě neuronu složená z endoplazmatického retikula obklopeného volnými ribozomy.

Axony málokdy najdou přesně tu správnou myelinovou pochvu a přesně to správné místo, kde původně vedly—jednotlivé svaly mají po regeneraci po zranění nejprve špatnou koordinaci a mozek se musí přeučovat, což trvá měsíce až roky.

U myši jsou schopna se zahojit i poranění páteře; při poraněních páteře u člověka je ale problém s tím, že je informační zmatek přerušených axonů obrovský, navíc axony by musely prorůst mnohem dál než u myši.

Léčba přerušených nervových spojů

- k léčení se snažíme využít i kmenové buňky
- stárnutí je spojeno s neurodegenerací, vymírají konkrétní populace nervových buněk
 - např. u Parkinsonovy choroby to jsou dopaminergní neurony v corpora nigra
- existují snahy diferencovat určité populace nervových buněk in vitro
- regenerace je ale omezenejší než u běžných epitelů
 - nejsilnější je regenerace v bulbus olfactorius (čichovém bulbu) a v hippokampu, který je plastický i v dospělosti

Příklady regenerace

- lze ji pozorovat u pacientů trpícími vážnými, život ohrožujícími epileptickými záchvaty
 - odstraní se velká část mozku s epileptickým ložiskem
 - původní práci této části zastane druhá hemisféra
- Phineas Gage
 - hlavou mu proletěla tyč
 - obnovila se mu skvěle řeč i hybnost
- víme, kde v myším mozku sídlí kmenové buňky

1.1.2 Pomocné nervové buňky

Mají základ z neurální trubice, v PNS z neurální lišty. Někdy označované jako gliové buňky.

oligodendrocyty

Tvoří myelinové pochvy axonů v CNS. Mohou se podílet na myelinizaci více než 1 axonu.

Podobnou úlohu zastávají v PNS Schwannovy buňky. Každ Schwannova buňka však může vytvářet pouze jeden segment myelinové pochvy na jenom axonu.

astrocyty

Dělají strukturní a funkční podporu neuronům, ustanovují extracelulární homeostázi K^+ a H^+ .

Funkce

- odstiňují synapse
- pomáhají vzruch vést, ale i ho zastavit
- dlouhé výběžky astrocytů slouží nervovým buňkám při jejich migraci do cílové struktury jako vodící struktury
- snižují hladinu draslíku a zvyšují hladinu sodíku v synapsi
- čistí extracelulární prostředí v mozku po proběhlých nervových vzruších

Za jejich přítomnosti také dochází k vychytávání neurotransmiterů a k jejich transformaci; např. glutamát -> glutamin, který není neurotransmiterem. Glutamin oté předají presynaptickému neuronu. To se děje proto, aby k nervovým vzruchům mohlo docházet častěji.

Stavba

- diferenciace podléhá růstovým faktorům
 - NGF (nerve growth factor), BDGF (brain derived GF), GDNF (glial cell derived GF)
- propojeny gap junctions
- různé výběžky plní různé úkoly
 - nějaké výběžky obalují kapiláry a účastní se hematoencefalytické bariéry

mikroglie

Imunokompetentní, mají podobnou funkci jako markofágy.

ependymové buňky

Pokrývají vnitřní dutiny CNS (trubice v míše a mozkové komory). Mají epiteloidní uspořádání a řasinky (povrch je velmi podobný epitelu dýchací trubic).

Jsou všude tam, kde je v CNS tekutina, kterou uvádějí v cirkulaci svými řasinkami.

By Neuron-with-oligodendrocyte-and-myelin-sheath.svg: *Complete-neuron-cell-diagram-en.svg: LadyofHatsderivative work: Andrew c (talk) - Neuron-with-oligodendrocyte-and-myelin-sheath.svg, Public Domain, link

Pro gliové buňky je základním zdrojem energie glukóza, kterou anaerobně štěpí na laktát. Kyslík je štřen pro neurony, kde je potřeba pro přenos nervových vzruchů.

Myelinizace

- panožka Schwannovy buňky nebo oligodendrocytu se několikrát obtočí kolem výběžku
- výsledná vtsva má výborné elektrické vlastnosti
- nabohaceny komplexní glykolipidy, sfingolipidy, gangliosidy
- mnoho axonů není myelinizovaných, musí ale být odstíněné
 - invaginace na periferii, vchlípení do těla oligodendrocytu; vzniká mezaxon
 - v jednom kanálku může být i více axonů

1.1.3 Hematoencefalická bariéra

- odděluje mozek od zbytku těla a je běžně pro buňky neprůchodná
- propouští kmenové buňky, pokud je v mozku indukováno poškození
 - minimálně u myší, na kterých byl tento experiment proveden
 - pronikají přes ni kmenové buňky neznámého původu
 - zajištění regenerace poměrně velké části nervové tkáně
 - diferenciace v nervové buňky i různé typy gliových buněk

Na obrázku lze pozorovat výběžky astrocytů, které k sobě těsně doléhají. Samotná kapilára je pak z endoteliálních buněk, které jsou spojeny přes tight junctions.

Obrázek 1.3: Schematický obrázek hematoencefalické bariéry

By Ben Brahim Mohammed - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid

Stavba

- endoteliání kapilární buňka je obklopena výběžky astrocytů
- všechny mezery mezi endoteliáními buňkami uzavřeny přes tight junctions
- kromě imunitních buněk by nemělo nic projít
- téměř vše, co se dostane k neuronům, prochází přes astrocyty

1.2 Senzorické epitely

- buňky na pomezí epitelu a nervové buňky
 - historicky je od ektodermu odvozena celá nervová soustava i senzorické tkáně čichové, zrakové i sluchové
- mají apikální (detekční) a bazální (synaptický) konec

1.2.1 Čichový epitel

Obrázek 1.4: Schéma čichového epitelu

- jako jedna z mála neurosenzorických struktur se během života mění
- zde se skupina buněk se diferencuje v čichové (viz obrázek výše)
 - cilie jsou nepohyblivé, obsahují čichové receptory

- na bazální straně jeden axon směřující do mozku
- obklopeny podpůrnými buňkami s podobným významem jako gliové buňky
- senzorické neurony přeživájí 1–2 měsíce
 - poté jsou nahrazeny diferenciací bazálních buněk
- každý senzorický neuron exprimuje jen jeden z několika set čichových receptorů
- když jsou buňky obnovovány, nově vznikající buňka si náhodně vybere jeden receptor
- axony senzorických neuronů se stejným receptorem jsou rozptýleny v čichové sliznici
- axony směřují do stejného glomerulu
 - u myší je v bulbus olfactorius na každé straně 1800 různých glomerolů
 - čím více glomerulů, tím více vůní umíme rozeznat, ale i tím více senzorických neuronů musíme mít
- jak axony nově vznikajících buněk najdou správnou cestu ke glomerulu
 - zdá se, že v tom hrají roli receptory pro čich spřažené s G-proteiny
 - tyto receptory jsou schopny homeotické adheze, tj. dva stejné receptory se "zazipují", ale jiné ne
 - axon putuje po glomerulech, zůstane tam, kde se váže nejsilněji
- existuje mnoho poruch této axonové navigace, lidé ztrácí schopnost kontinuity pachů

Studium navigace axonů se opět provádělo na zelených myškách; zeleně se obarvily jen neurony reagující na jednu konkrétní vůni. Po histologii mozku se ukázalo, že všechny zelené axony míří pouze do dvou míst (glomerulů), jednom na každé hemisféře.

1.2.2 Sluchový epitel

- morfologicky nejpropracovanější tkáň v těle
- hlemýžďová rezonanční struktura vzniká prenatálně
- záleží na tom, v kterém místě hlemýždě dochází k rezonanci s membránami, které obalují prostory vyplněné tekutinou
 - voda je nestlačitelná => přenáší vibrace
- senzorickými buňkami jsou sluchové vláskové buňky

Vláskové buňky

- leží ve struktuře Cortiho orgánu v hlemýždi, mezi podpůrnými buňkami, překryty extracelulární matrix
- převádějí mechanickou deformaci v elektrický signál
- všechny mají stejnou morfologii varhanovitých výběžků, stereocilií
 - stabilizovány aktinovým cytoskeletem
 - podobně jako výběžky na buňkách ve střevě
 - rozměry každé stereocilie pevně dány vzhledem k poloze ve středním uchu, odpovídají frekvencii zvukového podnětu, na který mají reagovat
- neregenerují se
- jsou propojené přes gap junctions konexinem 26

Obrázek 1.5: Schematický obrázek popisující části vnitřního ucha

By Madhero88 - Own work, CC BY-SA 3.0, link

Princip funkce

- 1. zvukové vibrace deformují stereocilia na vláskových buňkách
- 2. otevírají se iontové kanály s mechanickými "vrátky" (mechanically gated ion channels)
 - reálně dochází ke změně konformace iontového kanálu
- 3. vzniká membránový vzruch, který se šíří vláskovou buňkou
- 4. na bazálním konci dojde v synapsi s neuronem k vylití neurotransmiteru

Choroby

- sluch se mění, hlavně ve stáří a hlavně mužům (špatný sluch zvláště ve vyšších frekvencích)
- celá řada poruch je genetického původu
 - mutace v konexinu 26 způsobují hluchotu (jedna z nejčastějších genetických chorob v Evropě)

1.2.3 Zrakový epitel

- fotoreceptory se dělí na tyčinky a čípky
- $\bullet\,$ senzorickou složkou jsou proteiny opsiny (ópsis = zrak) s prostetickou skupinou retinalem
 - retinal je schopný cis-trans izomerizace, když pohltí foton
 - změna konformace retinalu změní tvar opsinu
- není schopný regenerace

[By OpenStax College - Anatomy Physiology, Connexions Web site. author link, Jun 19, 2013., CC BY 3.0, wiki link]

Nejblíže u pigmentovaných epiteliálních buněk je senzorický epitel, poté jsou různé interneurony a gangliové neurony, které vysílají signál do mozku. Apikální vrstvu senzorické složy tvoří brva (či přetvořený bičík).

Princip funkce v rámci buňky

- 1. retinal změní konformaci
- 2. opsin změní tvar

- 3. aktivují se cGMP fosfodiesterázy, které štěpí cGMP
 - v očních buňkách je jinak vysoká koncentrace cGMP
- 4. otevřou se Ca²⁺ kanály, dojde k hyperpolarizaci membrány
- 5. uzavřou se Na⁺ kanály
- 6. zastaví se bazální signalizace

To, jakým způsobem vidíme, je vlastně negativ: při zachycení fotonu se zastaví/sníží bazální signalizace. To umožňuje rozlišovat jemnější nuance v signálech.

Rodopsiny

- součástí rodiny opsinů, v tyčinkách
- superpozicí tří různý rodopsinů vzniká konkrétní barva
- mutace v jednom rodopsinu zapříčiní to, že člověk nebude schopen rozeznat nějaké barvy od sebe
 - jeden z rodopsinů je vázaný na chromozom X, takže se daltonismus vyskytuje častěji u mužů

Pigmentované epiteliální buňky

- odrážejí a pohlcují světlo, brání osdleskům
- fungují jako makrofágy
 - senzorické buňky se nemohou během života měnit, proto jen vyměňují svůj obsah
 - odštěpují váčky s denaturovanými proteiny a kovalentně modifikovanými lipidy
 - tyto váčky uklízejí právě epiteliální buňky

Choroby

- výše zmíněná barvoslepost
- mutace mitochondriální DNA => ztráta zraku, atrofie očního nervu
 - např. syndrom LHON
 - zrakový nerv a funkce senzorického zrakového epitelu je zřejmě jedna z Achillových pat energetického metabolismu

1.3 Patologie nervové soustavy

Roztroušená skleróza

- autoimunitní onemocnění proti MBP (myelin basic protein)
- destrukce myelinových obalů T-lymfocyty
- nemoc můžeme experimentálně vyvolat u myši
 - např. tím, že přeneseme aktivované T-lymfocyty do těla
- léčba je nákladná

Epilepsie

- způsobená různými úrazy, infekcemi, někdy je dědičná
- jednou z příčin je odumření neuronů a nahrazení gliovými buňkami (tzv. gliová jizva)
- nervová soustava dočasně upadá do stavu pozitivních zpětných vazeb

Parkinsonova choroba

- příčinou je nedostatek dopaminu
- dochází ke svalovým třesům
- v mozku jsou oblastni, kde jsou dopaminergní neurony lokalizovány (substania nigra), často odumírají
- po Alzheimrovi druhá nejčastější choroba

Alzheimrova choroba

- některé proteiny mají narušené odbourávání
 - např. amyloidní protein, tau protein
- v mozku se hromadí plaky neodbouratelné substance, která tlačí, je cytotoxická a způsobuje neurologické patologie

Creutzfeld-Jacobova choroba

- prionové onemocnění
- chyby paměti, změny chování, špatná koordinace, časem slepota, slabost
- dost vzácná
- často se objeví zdánlivě bez příčiny, někdy je ale dědičná, dá se chytit i v rámci kontaktu s nakaženým nervovým systémem (např. při operacích)
- mozek po nakažení začne vypadat jako houba (s děrami)

Nádory CNS

- primární nádory mozku tvoří přibližně 1–2% všech zhoubných nádorů
- nejčastěji děti do pěti let, nebo dospělí od 60 let
- malé množství nádor je dědičně podmíněno
- více než 50% nádorů jsou nádory z buněk podpůrné tkáně, gliomy
 - dělí se na low-grade a high-grade gliomy, podle toho, jak vysoký mají stupeň malignity
- neuroblastom, ganglioneurom, feochromocyton, chemodektom, retinoblastom, oligodendrogliom (druh gliových buněk), astrocytom (druh gliových buněk), meduloblastom, ependymom, meningiom, angioretikulom

Nádory PNS

- neurinom, neurilemon, Schwannom = nádor ze Schwannových buněk
- neurofibrom
- neurogenní sarkom vzácná varianta neurinomu, maligní

20