Spektralsequenzen

© M Tim Baumann, http://timbaumann.info/uni-spicker

Sei \mathcal{A} im Folgenden eine abelsche Kategorie.

Def. Eine (homologische) Spektralsequenz (SS) besteht aus

- Objekten $E_{p,q}^r \in \text{Ob}(\mathcal{A})$ für alle $p,q \in \mathbb{Z}$ und $r \geq 1$,
- Morphismen $d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$ mit $d_{p-r,q+r-1}^r \circ d_{p,q}^r = 0$
- und Isos $\alpha: H_{p,q}(E^r) := \ker(d_{p,q}^r) / \operatorname{im}(d_{p+r,q-r+1}^r) \xrightarrow{\cong} E_{p,q}^{r+1}$

Sprechweise. • Die Morphismen $d_{p,q}^r$ heißen **Differentiale**.

• Die Gesamtheit $E^r := \{E^r_{p,q}\}_{p,q}$ mit $r \in \mathbb{N}$ fest heißt r-te Seite.

Bem. Man stellt Seiten in einem 2-dim Raster dar:

Bem. Bei einer kohomologischen Spektralsequenz sind die Indizes vertauscht und die Differentiale laufen $d_r^{p,q}:E_r^{p,q}\to E_r^{p+r,q-r+1}$.

Def. Eine Spektralsequenz **konvergiert**, falls für alle $p,q\in\mathbb{Z}$ ein $R\in\mathbb{N}$ existiert, sodass für alle $r\geq R$ die Differentiale von und nach $E_{p,q}^r$ null sind und damit $E_{p,q}^\infty:=E_{p,q}^R\cong E_{p,q}^{R+1}\cong E_{p,q}^{R+2}\ldots$ Der **Grenzwert** der SS ist die Unendlich-Seite $E^\infty:=\{E_{p,q}^\infty\}_{p,q}$.

Notation. $E^r \Rightarrow E^{\infty}$

Def. Eine SS degeneriert auf Seite R, wenn $d_{p,q}^r = 0$ für alle $r \ge R$.

Bem. Das entspricht der gleichmäßigen Konv. aus der Analysis. Bem. Viele Spektralsequenzen leben im ersten Quadranten, d. h. $E^r_{p,q}=0$ wenn p<0 oder q<0. Das impliziert, dass für $p,\,q$ fest und r groß alle Differentiale von und nach $E^r_{p,q}$ aus dem ersten Quadranten heraus- oder hineinführen und damit Null sind.

Def. Ein <code>exaktes Pärchen</code> in $\mathcal A$ ist gegeben durch Objekte E^3 $A,E\in \text{Ob}(\mathcal A)$ und Morphismen wie folgt

sodass das Dreieck an jeder Ecke exakt ist.

Bem. Für das Differential $d := j \circ k : E \to E$ gilt $d^2 = 0$.

Def. Sei ein exaktes Pärchen wie oben gegeben. Dann gibt es ein **abgeleitetes Pärchen**

Lem. Das abgeleitete Pärchen eines exakten Pärchens ist exakt.

Bem. Man erhält nun aus einem exakten Pärchen eine Spektralsequenz (im nachfolgenden Sinne) durch iteriertes Ableiten.

Bem. Man kann auch die r-te Seite als einzelnes Obj. E^r auffassen. Dann ist eine **Spektralsequenz** gegeben durch Objekte E^r , $r \ge 1$, Differentiale $d^r: E^r \to E_r$ mit $d^r \circ d^r = 0$ und Isomorphismen $\alpha^r: H(E^r) \coloneqq \ker(d^r) / \operatorname{im}(d^r) \to E^{r+1}$.

Def. Eine **Filtrierung** eines A-Moduls M ist eine aufsteigende Folge ... $\subseteq F_pM \subseteq F_{p+1}M \subseteq ...$ von Untermodulen von M mit $p \in \mathbb{Z}$, sodass $0 = \cap_p F_pM$ und $M = \cup_p F_pM$.