Enhancing Credit Scoring Models Through Time Series Clustering

Note:
1. Some Code in the Notebook Has Been Modified to Comply with Experian's Data and Privacy Policies.
2. Visualizations Are Attached Separately for Added Clarity.

Experiment 2

1. Import Libraries

```
In [1]: # Importing easy_peas3 for data acquisition and loading
        import easy_peas3
        from easy peas3 import S3
        from easy_peas3 import DerivedDataAssetTags
        # Importing necessary libraries for data manipulation, visualization, and analysis
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # Importing garbage collector to manage memory during runtime
        import gc
        # Importing tgdm for progress bars in Jupyter Notebooks
        from tgdm.autonotebook import tgdm
        # Importing statistical tools
        from scipy.stats import skew
        from math import ceil
        # Importing preprocessing tools from scikit-learn
        from sklearn.preprocessing import Normalizer
        from sklearn.preprocessing import StandardScaler
        from sklearn.pipeline import Pipeline
        from sklearn.compose import ColumnTransformer
        from sklearn.preprocessing import FunctionTransformer
        # Importing clustering algorithm for time series data
        from sklearn.cluster import KMeans
        # Importing t-SNE for dimensionality reduction
        from sklearn.manifold import TSNE
        # Importing tools for model selection and evaluation
        from sklearn.model selection import train test split, StratifiedKFold
        from sklearn.linear model import LogisticRegression
        from sklearn.metrics import accuracy_score, precision_score, recall_score
        from sklearn.metrics import confusion_matrix, classification_report
        from sklearn.metrics import roc_curve, roc_auc_score
        from tabulate import tabulate
        # Setting up warnings to ignore any unnecessary warnings
        import warnings
        warnings.filterwarnings('ignore')
        # Configuring pandas display options for better dataframe visualization
        pd.set option('display.max columns', None)
        pd.set option('future.no silent downcasting', True)
```

2. Data Loading

```
In [3]: # Create an S3 object and connect to the specified project bucket
s3 = S3(project_bucket='**')
bucket = s3.project_bucket()
```

```
In [ ]: # Reading Flag Data from the specified path
        # 'security_classification' indicates the sensitivity level of the data
        # 'subpath' specifies the exact location of the CSV file within the S3 bucket
        # 'low_memory' is set to False to ensure the file is processed without memory optimization concerns
        data_flag = bucket.read_data_assets_csv(
            security classification="**",
            subpath='**',
            low memory=False
In [4]: # Filter the Flag Data to retain only rows where the 'GB_FLAG' column contains 'G' or 'B'
        data_flag = data_flag.loc[data_flag['GB_FLAG'].isin(['G', 'B'])]
        # Create a set of unique IDs from the 'UNIQUEID' column in the filtered Flag Data
        selected_ids = set(data_flag.UNIQUEID.values)
In [5]: # Column names for balance data
        balances = [f'BALANCE_{i+1}' for i in range(72)]
        # Column names for account status data
        statuses = [f'STATUS_{i+1}' for i in range(72)]
        # Column names for monthly payment changes (MMYY)
        monthly payment = [f'MONTHLY PAYMENT CHANGE {i+1}' for i in range(12)]
        monthly_payment_date = [f'MONTHLY_PAYMENT_CHANGE_DT_{i+1}' for i in range(12)]
        # Column names for credit limit changes (MMYY)
        credit limit = [f'CREDIT LIMIT CHANGE {i+1}' for i in range(12)]
        credit_limit_date = [f'CREDIT_LIMIT_CHANGE_DATE_{i+1}' for i in range(12)]
        # Column names for various significant dates related to CAIS accounts (DDMMYY)
        other_dates = ['DATE_INFORMATION_LAST_UPDATED', 'START_DATE', 'SETTLEMENT_DATE']
        # Column names for various static attributes associated with CAIS accounts
        account_values = ['BUREAU_REF_GROUP', 'UNIQUEID', 'NUMBER_OF_MONTHS_HISTORY', 'ACCOUNT_TYPE', 'CURRENT_CREDIT_LIMIT', 'CURRENT_MONTHLY_PAYMENT']
        # Column name for retroactive date
        retro_date = ['RETRO_DATE']
In [ ]: # Define the columns to be included for the project to optimize memory usage
        cols_wanted = (balances + statuses +
                       monthly_payment + monthly_payment_date +
                       credit_limit + credit_limit_date + other_dates +
                       account_values + retro_date)
```

```
In [7]: # Function to downcast data types for memory efficiency
        def downcast_dtypes(df):
            # Identify columns with float64 and int64 data types
            float_cols = [c for c in df if df[c].dtype == "float64"]
            int_cols = [c for c in df if df[c].dtype == "int64"]
            # Downcast float64 to float32 and int64 to int32
            df[float cols] = df[float cols].astype("float32")
            df[int_cols] = df[int_cols].astype("int32")
            return df
        # Initialize an empty DataFrame to store CAIS data
        cais_data = pd.DataFrame()
        # Read the CAIS data in chunks from the specified S3 bucket
        df iter = bucket.read data assets csv(
            security classification="**",
            subpath='**',
            chunksize=300_000,
            iterator=True,
            usecols=cols wanted,
            low_memory=False
        # Print success message
        print("Data successfully read from S3 bucket.")
        # Process each chunk of data
        for i, chunk in tgdm(enumerate(df iter)):
            # Filter rows and downcast data types
            chunk = chunk.loc[(chunk.BUREAU_REF_GROUP == 1) & (chunk.UNIQUEID.isin(selected_ids))]
            chunk = downcast_dtypes(chunk)
            # Append the processed chunk to the main DataFrame
            cais_data = pd.concat([cais_data, chunk])
            # Clear the chunk from memory
            del chunk
            gc.collect()
        # Output the total number of unique IDs and CAIS accounts processed
        total_unique_ids = cais_data.UNIQUEID.nunique()
        total_cais_accounts = len(cais_data)
        print(f'\nTotal UNIQUEIDs: {total_unique_ids}, Total CAIS Accounts: {total_cais_accounts}')
      Data successfully read from S3 bucket.
      0it [00:00, ?it/s]
      ['\nTotal UNIQUEIDs:', 313513, 'Total CAIS Accounts:', 4222024]
In [8]: # Get the shape of the CAIS data
        cais_data.shape
```

3. Data Pre-Processing

A. Data Formating

Out[8]: (4222024, 230)

```
In [9]: # Standardizing MMYY Date Columns
         for f in monthly_payment_date + credit_limit date:
             cais_data[f] = cais_data[f].apply(lambda x: f'\{int(x):04d\}' if not pd.isnull(x) else x)
         # Print confirmation message
         print("Date columns cleaned successfully.")
        Date columns cleaned successfully.
In [10]: # Converting Dates to Datetime Columns
         # Define date formats for conversion
         date_format_other = '%d%m%y' # Format: day, month, year (two-digit year)
         date_format_retro = '%Y%m%d' # Format: year, month, day (four-digit year)
         # Convert 'RETRO DATE' column to datetime, coercing invalid dates to NaT
         cais data[retro date[0]] = pd.to datetime(cais data[retro date[0]], format=date format retro, errors='coerce')
         # Convert other date columns to datetime, using the other date format
         for f in other_dates:
             cais_data[f] = pd.to_datetime(cais_data[f], format=date_format_other, errors='coerce')
         # Print confirmation message
         print("Date columns cleaned successfully.")
        Date columns cleaned successfully.
In [11]: # Update missing values in 'DATE INFORMATION LAST UPDATED'
         # Set to RETRO_DATE if SETTLEMENT_DATE is also missing; otherwise, use SETTLEMENT_DATE
         cais_data['DATE_INFORMATION_LAST_UPDATED'] = np.where(
             cais data.DATE INFORMATION LAST UPDATED.isna(),
             np.where(cais_data.SETTLEMENT_DATE.isna(), cais_data.RETRO_DATE, cais_data.SETTLEMENT_DATE),
             cais_data.DATE_INFORMATION_LAST_UPDATED
         # Print confirmation message
         print("DATE_INFORMATION_LAST_UPDATED column updated successfully.")
        DATE_INFORMATION_LAST_UPDATED column updated successfully.
In [12]: # Adjust 'START DATE' values if they are later than 'RETRO DATE' by subtracting 100 years
         cais_data.loc[cais_data.START_DATE > cais_data.RETRO_DATE, 'START_DATE'] = \
             cais_data.loc[cais_data.START_DATE > cais_data.RETRO_DATE, 'START_DATE'].apply(lambda d: d.replace(year=d.year - 100))
         # Print confirmation message
         print("START_DATE values modified successfully.")
        START_DATE values modified successfully.
```

```
In [13]: # Clean 'STATUS' columns by replacing specific values and converting to integer type
for s in statuses:
        cais_data.loc[cais_data[s] == 'U', s] = '-1' # Replace 'U' with '-1'
        cais_data.loc[cais_data[s] == 'D', s] = '-2' # Replace 'D' with '-2'
        cais_data.loc[cais_data[s] == '?', s] = '-3' # Replace '?' with '-3'
        cais_data.loc[cais_data[s].isna(), s] = '0' # Replace NaN with '0'
        cais_data[s] = cais_data[s].astype(np.int16) # Convert to integer type

# Print confirmation message
print("Status columns cleaned successfully.")
```

Status columns cleaned successfully.

B. Account Type Segmentation

C. Implementation of Ageing and Monthly Aggregated Time Series Creation

```
def fix_status_balance(a):
   Forward-fills missing status and balance values based on the next month's values.
   Parameters:
   a (pd.Series): Series containing account data including statuses and balances.
   pd.Series: Updated account data with fixed status and balance values.
   m = a.NUMBER_OF_MONTHS_HISTORY
   idx = np.nonzero(a[statuses].values == -3)[0]
   if idx.shape[0] > 0:
       if idx[-1]+1 == m:
           idx = idx[:-1]
       for i in idx[::-1]:
           a[statuses[i]] = a[statuses[i+1]]
           a[balances[i]] = a[balances[i+1]]
   return a
def unpack_events(current_value, acc_df, new_col, values_list, change_dates_list, last_month_date):
   Updates a DataFrame with values based on change events and corresponding dates.
   Parameters:
   current_value (float): The current value to start with.
   acc_df (pd.DataFrame): DataFrame to be updated with change events.
   new_col (str): The column name to update with new values.
   values_list (list): List of values to apply based on change dates.
   change_dates_list (list): List of change dates corresponding to values.
   last_month_date (str): The last month in the historical window.
   Returns:
   pd.DataFrame: Updated DataFrame with unpacked events.
   if pd.isnull(change_dates_list[0]):
       acc_df[new_col] = current_value
       change_dates = []
   else:
       acc_df[new_col] = np.nan
       acc_df.iloc[0, acc_df.columns.get_loc(new_col)] = current_value
       change_dates = change_dates_list[~pd.isnull(change_dates_list)]
       for i, d1 in enumerate(change_dates):
           try:
                d2 = pd.to_datetime(d1, format='%m%y')
           except ValueError:
                try:
                    d2 = pd.to_datetime(d1, format='%d%m%y')
                except ValueError:
                    continue
           d3 = (d2 - one_month_offset).strftime('%Y%m')
           if d3 < last_month_date:</pre>
                break
           acc_df.loc[d3, new_col] = values_list[i]
           current_value = values_list[i]
```

```
acc_df[new_col] = acc_df[new_col].ffill()
    return acc df
def monthly_aggregates(month_df):
    Computes aggregated metrics for a given month's DataFrame.
    month_df (pd.DataFrame): DataFrame containing account data for a single consumer groupby month.
    dict: Aggregated metrics including balance, credit limit, etc.
r = {'M': month df.index.values[0]}
    Def = month_df.Stat.values == 8 # Identify default accounts
    WS = (month_df.Stat.values > 0) & ~Def # Identify non-default accounts but arrears
    r['nb_Acc'] = len(month_df) # Total number of accounts
    r['ArrBal'] = np.sum(month df.Bal.values, where=WS, initial=0) # Sum balances for arrear accounts
    r['DefBal'] = np.sum(month_df.Bal.values, where=Def, initial=0) # Sum balances for default accounts
    r['WSRatio'] = np.mean(month_df.Stat.values > 0) # Ratio of positive statuses
    r['TtlBal'] = np.sum(month_df.Bal.values, initial=0) # Total balance
    r['CLmt'] = r['CLU'] = 0 # Initialize credit limit and utilisation to 0
    # Iterate over the account classes
    for cls in ['C', 'D', 'B']:
        r[f'{cls}Bal'] = 0 # Initialize balance for each account class
        tmp = month df.loc[month df['class'].values == cls] # Filter accounts by class
        n = len(tmp)
        if n > 0:
            r[f'{cls}Bal'] = np.sum(tmp.Bal.values) # Calculate total balance for the class
            if cls == 'C':
                cl = tmp.CLmt.values > 0
                r['CLmt'] = np.sum(tmp.CLmt.values, where=cl, initial=0) # Calculate total credit limit
                # Calculate credit utilization if credit limit and balance are greater than 0, else set it to 0
                r['CLU'] = r['CBal'] / r['CLmt'] if r['CLmt'] > 0 and r['CBal'] > 0 else 0
        return r # Return the aggregated results
TS len = 24 # Number of months for the time series
cus_df = cus_df.copy()
# Assign unique account IDs
cus_df['ACC_ID'] = np.arange(len(cus_df), dtype=np.int16)
# Find the maximum RETRO DATE for historical window
max retro date = cus df.RETRO DATE.max()
# Generate a sequence of historical months
history_months_seq = pd.date_range(start=max_retro_date, periods=TS_len, freq='-1ME').strftime('%Y%m')
# Define output DataFrame
out df = pd.DataFrame()
# Process each account in the DataFrame
for _, acc in cus_df.iterrows():
```

```
update_date = acc.DATE_INFORMATION_LAST_UPDATED
    N = int(acc.NUMBER OF MONTHS HISTORY)
    months_seq = pd.date_range(start=update_date, periods=N, freq='-1ME').strftime('%Y%m')
    if months_seq.intersection(history_months_seq).shape[0] == 0:
        continue
    acc = fix_status_balance(acc)
    acc_df = pd.DataFrame(data={'ACC_ID': acc.ACC_ID,
                                'Stat': acc[statuses[:N]].values,
                                'Bal': acc[balances[:N]].values, 'M': months_seq}).set_index('M')
    acc_df['Bal'] = acc_df['Bal'].astype(np.float32)
    acc_df['Stat'] = acc_df['Stat'].astype(np.float32)
    # Process monthly payment
    if acc.ACCOUNT_TYPE in AccTypes.has_monthly_payment:
        acc_df = unpack_events(acc['CURRENT_MONTHLY_PAYMENT'], acc_df, 'Pym', acc[monthly_payment].values,
                               acc[monthly_payment_date].values, months_seq[-1])
    else:
        acc_df['Pym'] = 0
    # Process credit limit
    if acc.ACCOUNT_TYPE in AccTypes.has_credit_limit:
        acc_df = unpack_events(acc['CURRENT_CREDIT_LIMIT'], acc_df, 'CLmt', acc[credit_limit].values,
                               acc[credit_limit_date].values, months_seq[-1])
    else:
        acc_df['CLmt'] = 0
        acc_df['CLU'] = 0
    # Sort the DataFrame by date
    acc_df.sort_index(inplace=True)
    # Keep only the records within the historical window
    acc_df = acc_df.loc[acc_df.index.isin(history_months_seq)]
    if acc.ACCOUNT TYPE == 15 and np.any(acc df.CLmt.values>20 000):
        continue
   if len(acc_df) == 0:
        continue
   # Add account class and type information
   acc_df['class'] = account_class(acc.ACCOUNT_TYPE)
    acc_df['type'] = acc.ACCOUNT_TYPE
    # Append the account DataFrame to the output DataFrame
    out_df = pd.concat([out_df, acc_df[['ACC_ID', 'Stat', 'Bal', 'CLmt', 'Pym', 'class', 'type']]])
if len(out_df) == 0:
    # Return an empty DataFrame if no data is processed
    return pd.DataFrame(columns=['nb_Acc', 'WSRatio', 'CLmt', 'CBal', 'DBal', 'BBal'])
# Group the output DataFrame by month and calculate aggregates
```

D. Combined Data Statistics

Out[11]: (311418, 244)

```
In [11]: # Fill missing values in 'combined_data' with 0
    combined_data.fillna(0, inplace=True)

# Merge 'combined_data' with 'data_flag' on 'UNIQUEID', using a left join
    combined_data = pd.merge(combined_data, data_flag, on='UNIQUEID', how='left')

# Filter to keep only rows where 'GB_FLAG' is not NaN
    combined_data = combined_data.loc[~combined_data.GB_FLAG.isna()]

# Create 'target' column: 1 where 'GB_FLAG' is 'B', otherwise 0
    combined_data['target'] = np.int16(combined_data.GB_FLAG == 'B')

# Remove 'cais_data' and 'data_flag' from memory
    del cais_data, data_flag

# Run garbage collection to free up memory
    gc.collect()

# Print the shape of the cleaned 'combined_data' DataFrame
    print(combined_data.shape)
```

E. Creation of Segments/Subsequences from Time Series for Each Consumer

```
In [12]: # List of attributes to calculate for each month
         monthly_attributes = ['TtlBal', 'CLmt', 'CLU', 'DBal', 'CBal', 'BBal', 'ArrBal', 'DefBal', 'WSRatio', 'nb_Acc']
         # Parameters for time series segmentation
         time_series_length = 24  # Total number of months in the time series
         segment_length = 6 # Length of each time series segment
         step size = 3 # Step size for sliding window
         # Generate column names for each time series segment
         time_series_columns = []
         for month in range(segment length):
             for feature in monthly_attributes:
                 time_series_columns.append(f'{feature}_{month}')
         # Generate column names for scaled features
         scaled time series columns = [f'{feature} scaled' for feature in time series columns]
         # Create a mapping from segment index to columns in that segment
         map_time_series_columns = {}
         for segment, index in enumerate(range(0, time_series_length - segment_length + 1, step_size)):
             columns = [f'{feature}_{j}' for j in range(index, index + segment_length) for feature in monthly_attributes]
             map time series columns[segment] = columns
         # Extract unique IDs, target values, and GB_FLAG from the original DataFrame
         temp_id = combined_data.UNIQUEID.values
         temp_target = combined_data.target.values
         temp_GB_Flag = combined_data.GB_FLAG.values
         # Initialize an empty DataFrame to store segmented time series data
         segmented_time_series_data = pd.DataFrame()
         # Populate the DataFrame with segmented time series data
         for segment, columns in map_time_series_columns.items():
             temp_time_series = combined_data[columns].copy()
             temp_time_series.columns = time_series_columns
             temp time series['UNIQUEID'] = temp id
             temp time series['target'] = temp target
             temp_time_series['GB_FLAG'] = temp_GB_Flag
             temp_time_series['Segment'] = segment
             segmented_time_series_data = pd.concat([segmented_time_series_data, temp_time_series], ignore_index=True)
         # Clean up temporary variables to free up memory
         del temp_GB_Flag, temp_target
         qc.collect()
Out[12]: 0
In [13]: # Segmented Data shape
```

Out[13]: (2179926, 64)

F. Data Partitioning

segmented_time_series_data.shape

```
In [16]: # Split unique IDs into training and testing sets, with 75% of the data as the test set
         train_ids, test_ids = train_test_split(
             temp_id,
                                       # Array of unique IDs
             test size=0.75.
                                       # Proportion of data to be used for the test set
             stratify=combined_data['target'], # Ensure that the distribution of target values is similar in both sets
             random_state=217
                                      # Seed for reproducibility
         # Create the training dataset by selecting rows with training IDs
         cluster_train = segmented_time_series_data[segmented_time_series_data['UNIQUEID'].isin(train_ids)]
         # Create the testing dataset by selecting rows with testing IDs
         cluster_test = segmented_time_series_data[segmented_time_series_data['UNIQUEID'].isin(test_ids)]
         # Clean up memory by running garbage collection
         gc.collect()
         # Output the shapes of the training and testing datasets
         cluster_train.shape, cluster_test.shape
Out[16]: ((544978, 64), (1634948, 64))
         G. Time-Series Feature Scaling
 In []: # Define a lambda function to filter column names based on specified keywords
         get_cols = lambda l1, l2: [f for f in l1 if np.any([x in f for x in l2])]
         # Set up a ColumnTransformer to apply logarithmic transformations to selected columns
         ct = ColumnTransformer(transformers=[
             # Apply log transformation to specific columns
             ('LogTransform1', FunctionTransformer(lambda x: np.log(1 + x)),
              get_cols(time_series_columns, ['TtlBal', 'CLmt', 'DBal', 'CBal', 'BBal', 'ArrBal', 'DefBal'])),
             # Apply scaled log transformation to 'CLU' column
             ('LogTransform2', FunctionTransformer(lambda x: np.log(1 + 100 * x)),
              get_cols(time_series_columns, ['CLU']))
```

4. Time-Series Clustering

], remainder='passthrough')

scaler = Pipeline([
 ('CT', ct),

])

Create a pipeline to first apply the ColumnTransformer, then standardize and normalize the data

('StanScale', StandardScaler()), # Standardize features (mean=0, variance=1)

('Norm', Normalizer()) # Normalize each sample to unit norm

Apply the ColumnTransformer for logarithmic transformations

cluster_train.loc[:, scaled_time_series_columns] = scaler.fit_transform(cluster_train[time_series_columns])

cluster test.loc[:, scaled time series columns] = scaler.transform(cluster test[time series columns])

A. Time-Series Clustering and Visualizations

Transform and scale the training dataset

Apply the same transformations to the test dataset

```
In [19]: | # Define sample rate and number of clusters
         sample rate = 0.0005
         K = 20
         # Initialize KMeans clustering model
         km_model = KMeans(n_clusters=K, max_iter=300, n_init=10, tol=0.0001, random_state=616)
         # Fit KMeans model and assign cluster labels to training data
         cluster train['cluster label'] = np.int16(km model.fit predict(cluster train[TS cols scaled]))
         # Retrieve cluster centroids for training data
         centroids_train = km_model.cluster_centers_
         # Predict cluster labels for test data
         cluster_test['cluster_label'] = np.int16(km_model.predict(cluster_test[TS_cols_scaled]))
         # Define columns for distances to each cluster centroid
         cluster_dist_cols = [f'cluster{i}_dist' for i in range(K)]
         # Compute and assign distances from each test sample to cluster centroids
         cluster test[cluster dist cols] = km model.transform(cluster test[TS cols scaled].values)
         # Sample subsets of training and test data
         tmp1 = cluster_train.sample(int(len(cluster_train) * sample_rate)) # Sample training data
         tmp1['holdout'] = 0 # Indicate training data
         tmp2 = cluster test.sample(int(len(cluster test) * sample rate)) # Sample test data
         tmp2['holdout'] = 1 # Indicate test data
         # Combine sampled training and test data into a single DataFrame
         tmp1 = pd.concat([tmp1, tmp2])
         # Apply t-SNE for dimensionality reduction to 2D
         tmp1[['x', 'y']] = TSNE(n_components=2, init='random', random_state=217).fit_transform(tmp1[scaled_time_series_columns])
         # Create a figure with 3 rows and 2 columns for subplots
         fig, ax = plt.subplots(3, 2, figsize=(12, 12))
         # Scatter plot for training data clusters
         sns.scatterplot(data=tmp1[tmp1.holdout == 0], x='x', y='y', hue='cluster_label', palette='Set2', hue_order=list(range(K)), legend=False, ax=ax[0, 0])
         ax[0, 0].set_title('Clustering Training Data')
         # Scatter plot for test data clusters
         sns.scatterplot(data=tmp1[tmp1.holdout == 1], x='x', y='y', hue='cluster_label', palette='Set2', hue_order=list(range(K)), ax=ax[0, 1])
         ax[0, 1].set title('Clustering Holdout Data')
         ax[0, 1].get_legend().set_title('Cluster Labels')
         sns.move_legend(ax[0, 1], 'upper left', ncol=2, bbox_to_anchor=(1, 1))
         # Scatter plot for GB FLAG in training data
         sns.scatterplot(data=tmp1[tmp1.holdout == 0], x='x', y='y', hue='GB_FLAG', palette='Set2', hue_order=['G', 'B'], legend=False, ax=ax[1, 0])
         ax[1, 0].set_title('GB_FLAG Training Data')
         # Scatter plot for GB FLAG in test data
```

```
sns.scatterplot(data=tmp1[tmp1.holdout == 1], x='x', y='y', hue='GB_FLAG', palette='Set2', hue_order=['G', 'B'], ax=ax[1, 1])
ax[1, 1].set_title('GB_FLAG Holdout Data')
ax[1, 1].get_legend().set_title('G/B Flag')
sns.move_legend(ax[1, 1], 'upper left', bbox_to_anchor=(1, 1))
# Histogram of G/B proportions for training data
sns.histplot(data=cluster_train, x='cluster_label', hue='GB_FLAG', palette='Set2', discrete=True, element='bars', multiple="stack", stat='proportion', hue_order=['G', 'area to be a continuous proportion of the continuou
ax[2, 0].set_title('G/B Proportions Training Data')
ax[2, 0].set(xlabel='Cluster Labels', ylabel='G/B Proportions')
# Histogram of G/B proportions for test data
sns.histplot(data=cluster_test, x='cluster_label', hue='GB_FLAG', palette='Set2', discrete=True, element='bars', multiple="stack", stat='proportion', hue_order=['G', 'B']
ax[2, 1].set_title('G/B Proportions Holdout Data')
ax[2, 1].get_legend().set_title('G/B Flag')
sns.move_legend(ax[2, 1], 'upper left', bbox_to_anchor=(1, 1))
# Adjust layout and display the plot
plt.tight_layout()
plt.show()
                                                           Clustering Training Data
                                                                                                                                                                                                                                               Clustering Holdout Data
```



```
In [21]: # Group by 'cluster_label' in cluster_test and calculate the mean and count of 'target'
    result = cluster_test.groupby('cluster_label', as_index=False).agg({'target': ['mean', 'count']})

# Flatten MultiIndex columns and rename them for clarity
    result.columns = ['Cluster Label', 'Bad Proportion', 'Cluster Proportion']

# Normalize 'Cluster Proportion' to represent the proportion of each cluster in the dataset
    result['Cluster Proportion'] /= result['Cluster Proportion'].sum()

# Display the resulting DataFrame
    result
```

\sim		. г	$\overline{}$	-	٦.	
111	117	г I	- /	1		
U	u	L I		ж.		

	Cluster Label	Bad Proportion	Cluster Proportion
0	0	0.102520	0.035164
1	1	0.053994	0.062620
2	2	0.017763	0.041147
3	3	0.058165	0.038308
4	4	0.235599	0.051221
5	5	0.021673	0.067619
6	6	0.036003	0.020896
7	7	0.056467	0.099848
8	8	0.103612	0.046972
9	9	0.245502	0.020534
10	10	0.080729	0.051808
11	11	0.606938	0.028526
12	12	0.154613	0.053196
13	13	0.304339	0.017875
14	14	0.070579	0.081686
15	15	0.759871	0.029030
16	16	0.585900	0.029055
17	17	0.676923	0.030910
18	18	0.246124	0.128109
19	19	0.014264	0.065477

B. Creation of Distance Features Between All Segments and Cluster Labels for Each Consumer

```
columns = cluster_dist_cols + ['cluster_label']
         # Select and rename relevant columns for the first data segment
         distance_data = cluster_test.loc[cluster_test.Segment == 0, ['UNIQUEID', 'target', 'GB_FLAG'] + columns]
         distance_data.rename(columns=rename_segment_columns(0, columns), inplace=True)
         # Merge distance data across all segments
         for segment in range(1, len(map_time_series_columns)):
             distance_data = distance_data.merge(
                 cluster_test.loc[cluster_test.Segment == segment, ['UNIQUEID'] + columns].rename(columns=rename_segment_columns(segment, columns)),
                 on='UNIQUEID', how='left')
         # List of all distance feature names
         distance_features = []
         for segment in range(len(map_time_series_columns)):
             for column in cluster_dist_cols:
                 distance_features.append(f'S{segment}_{column}')
In [23]: # Shape of distance data
         distance_data.shape
```

5. Consumer Journey and Transition Visualization

Out[23]: (233564, 150)

In []: # Function to rename columns for each data segment

Columns for distance data and cluster labels

rename_segment_columns = lambda segment, columns: {column: f'S{segment}_{column}' for column in columns}

A. Analysis of Unique Cluster Movement Among Consumers

```
In [8]: # Extract cluster labels for each segment from the distance_data DataFrame
        cluster_labels = distance_data.filter(regex='S[0-9]+_cluster_label')
        # Count the number of unique clusters each person belongs to
        num_unique_clusters = cluster_labels.nunique(axis=1)
        # Calculate the average number of unique clusters across all individuals
        average_unique_clusters = num_unique_clusters.mean()
        print(f'Average number of unique clusters: {average unique clusters}')
        # Count the number of people with each unique number of clusters
        cluster_counts = num_unique_clusters.value_counts().sort_index()
        # Calculate the proportion of people with each unique number of clusters
        proportions = cluster counts / cluster counts.sum()
        # Create a figure with two subplots for visualizing the clustering results
        fig, axs = plt.subplots(2, figsize=(10, 12))
        # Plot the number of people with each unique cluster count
        axs[0].bar(cluster_counts.index, cluster_counts, color='skyblue')
        axs[0].set_title('Number of People with Unique Clusters')
        axs[0].set_xlabel('Number of Unique Clusters')
        axs[0].set ylabel('Number of People')
        # Annotate bars with their values
        for p in axs[0].patches:
            axs[0].annotate(str(p.get_height()),
                            (p.get_x() + p.get_width() / 2., p.get_height()),
                            ha='center', va='center', xytext=(0, 10),
                            textcoords='offset points')
        # Plot the proportion of people with each unique cluster count
        axs[1].bar(proportions.index, proportions, color='lightgreen')
        axs[1].set_title('Proportion of People with Unique Clusters')
        axs[1].set xlabel('Number of Unique Clusters')
        axs[1].set_ylabel('Proportion')
        # Annotate bars with their percentage values
        for p in axs[1].patches:
            percentage = '{:.2f}%'.format(100 * p.get_height())
            axs[1].annotate(percentage,
                            (p.get_x() + p.get_width() / 2, p.get_height()),
                            ha='center', va='center', xytext=(0, 10),
                            textcoords='offset points')
        # Adjust layout and display the plot
        plt.tight layout()
        plt.show()
```

Average number of unique clusters: 2.0124933637033102

Number of People with Unique Clusters

Proportion of People with Unique Clusters

B. Analysis of G/B Flag Across Unique Cluster Movement Among Consumers

```
In [9]: # Extract 'GB_FLAG' column for good/bad flags
        good_bad_flags = distance_data['GB_FLAG']
        # Create a DataFrame containing the number of unique clusters and corresponding good/bad flags
        df = pd.DataFrame({
            'num_unique_clusters': num_unique_clusters,
            'good_bad_flag': good_bad_flags
        })
        # Count occurrences of good and bad flags for each unique cluster count
        flag_counts = df.groupby(['num_unique_clusters', 'good_bad_flag']).size().unstack(fill_value=0)
        # Calculate the proportion of each flag type within each unique cluster count
        flag_proportions = flag_counts.divide(flag_counts.sum(axis=1), axis=0)
        # Plot the proportion of good and bad flags for each unique cluster count
        # Reorder columns to switch the colors in the stacked bar plot
        ax = flag_proportions[flag_proportions.columns[::-1]].plot(kind='bar', stacked=True)
        # Set plot title and axis labels
        plt.title('Proportion of Good and Bad Flags for Different Unique Cluster Counts')
        plt.xlabel('Number of Unique Clusters')
        plt.ylabel('Proportion')
        # Annotate each bar with its proportion value
        for p in ax.patches:
            width, height = p.get_width(), p.get_height()
            x, y = p.get_xy()
            ax.text(x + width / 2,
                    y + height / 2,
                    '{:.1f}%'.format(height * 100),
                    horizontalalignment='center',
                    verticalalignment='center')
        # Adjust layout for better readability and display the plot
        plt.tight_layout()
        plt.show()
```


C. Heatmap of Consumer Transition and Default Transition

```
In [10]: # Extract cluster label columns and create pairs of consecutive labels
         cluster_labels = sorted([f for f in distance_data.columns if 'label' in f])
         labels_pairs = list(zip(cluster_labels[:-1], cluster_labels[1:]))
         # Initialize an empty DataFrame for storing cluster transitions
         trans_df = pd.DataFrame()
         # Concatenate data for each pair of consecutive cluster labels
         for c1, c2 in labels_pairs:
             # Extract relevant columns, rename them for clarity, and append to trans_df
             trans_df = pd.concat([trans_df, distance_data[[c1, c2, 'target']].rename(columns={c1: 'C0', c2: 'C1'})])
         # Compute the frequency of transitions between clusters
         trans_counts = pd.crosstab(index=trans_df.C0, columns=trans_df.C1)
         # Calculate transition probabilities by normalizing the transition counts
         trans_probs = trans_counts.div(trans_counts.sum(axis=1), axis=0)
         # Create a figure with two subplots
         fig, axes = plt.subplots(1, 2, figsize=(15, 7))
         # Plot transition probabilities as a heatmap
         sns.heatmap(
             trans_probs * 100,
             annot=True,
             fmt='.1f',
```

```
annot_kws={'fontsize': 9},
    cbar_kws={'orientation': 'horizontal', 'pad': 0.04, 'aspect': 40},
   linecolor='maroon',
    cbar=True,
    cmap='flare',
   linewidth=.01,
    ax=axes[0]
axes[0].set_title('Cluster Transition Probabilities')
axes[0].set_xlabel('To Cluster')
axes[0].set_ylabel('From Cluster')
axes[0].xaxis.tick_top()
# Compute mean default probability for transitions between clusters
trans_probs = pd.crosstab(index=trans_df.C0, columns=trans_df.C1, values=trans_df.target, aggfunc='mean')
# Plot transition default probabilities as a heatmap
sns.heatmap(
   trans_probs * 100,
    annot=True,
    fmt='.1f',
    cbar=True,
    cmap='flare',
   linewidth=.01,
    cbar_kws={'location': 'bottom', 'pad': 0.04, 'aspect': 40},
   linecolor='maroon',
    annot_kws={'fontsize': 9},
   ax=axes[1]
axes[1].set_title('Cluster Transition Default Probability')
axes[1].set_xlabel('To Cluster')
axes[1].set_ylabel('From Cluster')
axes[1].xaxis.tick_top()
# Adjust layout to fit subplots nicely
plt.tight_layout()
plt.show()
```


D. Network Graph

```
In [40]: # Initialize a directed graph
         G = nx.DiGraph()
         # Add nodes for each unique cluster
         for cluster in transition_probabilities.index:
             default_rate = default_rates_df.loc[cluster].mean()
             proportion = proportions_df.loc[cluster].mean() * 300
             # Add the node to the graph with size and color attributes
             G.add_node(cluster, size=proportion, color=default_rate, label=f"Cluster {cluster}")
         # Add edges between clusters with non-zero transition probabilities
         for source_cluster in transition_probabilities.index:
             for target_cluster in transition_probabilities.columns:
                 prob = transition_probabilities.loc[source_cluster, target_cluster]
                 if prob > 5.0: # Filter out edges with very small probabilities
                     # Add an edge with the transition probability as the weight
                     G.add_edge(source_cluster, target_cluster, weight=prob.round(2))
         # Create a plot
         fig, ax = plt.subplots(figsize=(30, 26))
```

```
# Position nodes using spring layout with increased 'k' parameter for better spacing
pos = nx.spring_layout(G, seed=616, k=7)
# Extract node colors and sizes from node attributes
node colors = [G.nodes[node]['color'] for node in G]
node sizes = [G.nodes[node]['size'] for node in G]
# Draw the graph
nodes = nx.draw(G, pos, with_labels=True, node_color=node_colors, node_size=node_sizes,
                cmap=plt.colormaps.get_cmap('flare'), font_size=10, ax=ax)
# Add a colorbar for default rates
sm = plt.cm.ScalarMappable(cmap=plt.cm.magma, norm=mcolors.Normalize(vmin=min(node_colors), vmax=max(node_colors)))
fig.colorbar(sm, orientation='vertical', shrink=0.5, label='Default Rate', ax=ax)
# Separate edges into categories: curved, straight, and same-node edges
curved edges = [edge for edge in G.edges() if reversed(edge) in G.edges()]
straight_edges = [edge for edge in G.edges() if edge not in curved_edges and edge[0] != edge[1]]
same_node_edges = [(u, v) for u, v in G.edges() if u == v]
# Draw edges
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=straight_edges)
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=same_node_edges)
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=straight_edges)
# Draw curved edges with a specified arc radius
arc rad = 0.25
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=curved_edges, connectionstyle=f'arc3, rad = {arc_rad}')
# Retrieve edge weights for labels
edge_weights = nx.get_edge_attributes(G, 'weight')
curved_edge_labels = {edge: edge_weights[edge] for edge in curved_edges}
straight_edge_labels = {edge: edge_weights[edge] for edge in straight_edges}
same_node_labels = {edge: edge_weights[edge] for edge in same_node_edges}
# Draw edge labels
my nx.my draw networkx edge labels(G, pos, ax=ax, edge labels=curved edge labels, rotate=False, rad=arc rad)
nx.draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=straight_edge_labels, rotate=False)
nx.draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=same_node_labels, rotate=False)
# Set plot title
plt.title("Transition Probability Graph - With Default Rate and Node Size based on Proportion (All Clusters)")
# Show plot
plt.show()
```

Transition Probability Graph - With Defualt Rate and Node Size based on Proportion (All Clusters)

5.04

6. Classification - Logistic Regression

```
In [23]: # Function to calculate the average of lists element—wise
         def avg_list(Ls, f=np.mean):
             n = range(len(Ls[0]))
             return [f([l[i] for l in Ls]) for i in n]
         # Initialize lists to store feature importance and test AUC scores
         feature importance = []
         score_test = []
         # Logistic Regression parameters
         param = {
             'C': 0.5,
             'class_weight': 'balanced',
             'solver': 'sag',
             'penalty': 'l2',
             'max_iter': 100,
             'n_jobs': -1
         # DataFrame to store predictions and actual values
         results = pd.DataFrame()
         # Cross-validation setup with 10 folds
         kfold = StratifiedKFold(n_splits=10, random_state=251, shuffle=True)
         # Perform cross-validation
         for i, (itrain, itest) in enumerate(kfold.split(X=np.zeros(len(distance_data)), y=distance_data.target)):
             # Split data into training and testing sets
             train = distance_data.iloc[itrain]
             test = distance_data.iloc[itest]
             # Standardize features
             scaler = StandardScaler()
             train[distance features] = scaler.fit transform(train[distance features])
             test[distance_features] = scaler.transform(test[distance_features])
             # Initialize and train the Logistic Regression model
             model = LogisticRegression(**param)
             model.fit(train[distance_features], train.target)
             # Predict probabilities and store results
             t = model.predict_proba(test[distance_features])[:, 1]
             results = pd.concat([results, pd.DataFrame({'pred_target': t, 'target': test.target.values, 'fold': i})])
```

```
# Compute and store performance metrics
             score_test.append(roc_auc_score(y_true=test.target, y_score=t))
             feature_importance.append([model.intercept_[0]] + list(model.coef_[0]))
             # Print AUC scores for the current fold
             print(['Test AUC:', score_test[-1], '- Train AUC:', roc_auc_score(y_true=train.target, y_score=model.predict_proba(train[distance_features])[:, 1])])
         # Output mean and standard deviation of AUC scores, and Gini coefficient
         mean_score = np.mean(score_test)
         print(['Mean score:', mean_score, 'StD:', np.std(score_test), 'Gini', 2 * mean_score - 1])
         # Clean up memory
         del test, train
         gc.collect()
       Test AUC: 0.90449 - Train AUC: 0.91957
       Test AUC: 0.91409 - Train AUC: 0.91844
       Test AUC: 0.90999 - Train AUC: 0.91883
       Test AUC: 0.91331 - Train AUC: 0.91821
       Test AUC: 0.93036 - Train AUC: 0.91640
       Test AUC: 0.91248 - Train AUC: 0.91858
       Test AUC: 0.92633 - Train AUC: 0.91700
       Test AUC: 0.91012 - Train AUC: 0.91875
       Test AUC: 0.91487 - Train AUC: 0.91814
       Test AUC: 0.91111 - Train AUC: 0.91877
       Mean score: 0.91472 StD: 0.00740 Gini 0.82943
Out[23]: 56
In [29]: def results_report(y_true, y_pred_prob, plab='Pos', nlab='Neg', report_title='Model Performance Report',
                           w=None, model_name=None, prob_threshold=0.5):
             Generate a performance report for a classification model including confusion matrix, ROC curve, and metrics.
             Parameters:
             - y_true: Array-like of true labels
             - y_pred_prob: Array-like of predicted probabilities
             - plab: Label for positive class (default 'Pos')
            - nlab: Label for negative class (default 'Neg')
             - report_title: Title of the report (default 'Model Performance Report')
             - w: Optional sample weights (default None)
             - model_name: Optional model name for logging metrics (default None)
             - prob_threshold: Threshold for converting probabilities to binary predictions (default 0.5)
             # Print the report title
                                           -----')
             print(f'-----
             # Convert predicted probabilities to binary predictions
            y_pred = np.int8(y_pred_prob >= prob_threshold)
             # Create a figure for the plots
             fig = plt.figure(figsize=(10, 3.5))
             # Plot the normalized confusion matrix
             plt.subplot(1, 2, 1)
             mc = confusion_matrix(y_true, y_pred)
```

```
mc = mc.astype(float)
    mc[0, :] /= (len(y_true) - sum(y_true)) # Normalize negative class
    mc[1, :] /= sum(y_true) # Normalize positive class
    heatmap = sns.heatmap(mc, annot=True, annot_kws={'size': 12}, fmt='0.4f')
    heatmap.yaxis.set ticklabels([nlab, plab], rotation=90, ha='right', fontsize=12)
    heatmap.xaxis.set_ticklabels([nlab, plab], rotation=0, ha='right', fontsize=12)
    plt.ylabel('True label', fontsize=12)
    plt.xlabel('Predicted label', fontsize=12)
    # Plot the ROC curve
    plt.subplot(1, 2, 2)
    fpr, tpr, _ = roc_curve(y_true, y_pred_prob, sample_weight=w)
    roc_auc = auc(fpr, tpr)
    print(f'Accuracy: {accuracy_score(y_true, y_pred, sample_weight=w):.5f}', end='\t')
    print(f'Precision: {precision_score(y_true, y_pred, sample_weight=w):.5f}', end='\t')
    print(f'Recall: {recall_score(y_true, y_pred, sample_weight=w):.5f}', end='\t')
    print(f'F1 Score: {f1_score(y_true, y_pred, sample_weight=w):.5f}', end='\t')
    print(f'AUC: {roc_auc:.5f}', end='\t')
    print(f'Gini Coefficient: {(2 * roc_auc - 1):.5f}')
    # Log metrics if a model name is provided
    if model_name:
        logvalue(f'{model_name}_auc', roc_auc)
        logvalue(f'{model_name}_gini', 2 * roc_auc - 1)
    # Plot the ROC curve
    plt.title('ROC Curve', fontsize=12)
    plt.plot(fpr, tpr, 'b', label=f'AUC = {roc_auc:.4f}')
    plt.plot([0, 1], [0, 1], 'r--') # Diagonal line
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate (Sensitivity)', fontsize=12)
    plt.xlabel('False Positive Rate (1-Specificity)', fontsize=12)
    plt.legend(loc='lower right', fontsize=12)
    plt.tight_layout()
    plt.show()
# Example call to the function
results_report(results.target, results.pred_target, plab='Bad', nlab='Good',
               report_title='Model Performance Report', prob_threshold=0.5)
```


.1920

S0 c19 dist

S0 c7 dist -S0 c3 dist -Intercept -

```
In [14]: # Calculate average feature importance and sort along with feature names, including intercept
         fi1 = sorted(zip(avg_list(feature_importance), ['Intercept'] + distance_features), key=lambda x: abs(x[0]))
         fi = [(abs(x), f) for (x, f) in fi1] # Use absolute values for visualization
         # Create a horizontal bar plot
         fig, ax = plt.subplots(figsize=(10, len(distance features)//4))
         # Plot feature importances with error bars representing standard deviation
         ax.barh(range(len(fi)), [x[0] for x in fi], xerr=avg_list(feature_importance, np.std), color=['b' if x[1] >= 0 else 'r' for x in fi])
         ax.set_yticks(range(len(fi)))
         ax.set_yticklabels([x[1] for x in fi], fontsize=15)
         plt.margins(y=0.01)
         # Add labels to the end of each bar
         rects = ax.patches
         labels = ['%0.4f' % x for x, _ in fi]
         for rect, label in zip(rects, labels):
             width = rect.get_width()
             height = rect.get height()
             ax.text(width + 0.003, rect.get_y() + height / 2, label, ha='center', va='center', fontsize=14)
         # Color-code the feature names based on the sign of their importance values
         for i, tick in enumerate(ax.get_yticklabels()):
             tick.set_color('r' if fi1[i][0] < 0 else 'b')
         # Display the plot
         plt.title('Feature Importances with Error Bars', fontsize=16)
         plt.show()
```

3.1856

S1 c17 dist	1.0 9 24
S0 c16 dist	1. 07 70
	1.0 3 38
S1_c19_dist -	
S0_c18_dist -	1. 01 28
S1 ⁻ c16 ⁻ dist +	0. 94 06
S0 ⁻ c15 ⁻ dist -	0. 899 2
S0-c11-dist	0.8 8 78
So c6-dist	0.8 8 54
S0_c17_dist -	0 .876 4
S0 c2 ⁻ dist 	0.8719
S0 c 13 dist -	0. 83 47
ST c2 ⁻ dist-	0. 80 28
S6 ⁻ c6 ⁻ dist -	0. 71 64
S2_c17_dist -	0. 701 9
	0. 65 64
S1_c15_dist -	
S3_c17_dist -	0.6 3 25
S4_c2 ⁻ dist-	0. 630 5
S2 c16 dist -	0.59 98
S4 ⁻ c19 ⁻ dist-	0.57 98
S6 c1 dist	0.5 7 09
S6 c19-dist -	0.5 683
50 C15 dist	0 .564 5
S3_c16_dist -	
S1_c11_dist	0. 547 2
S4 c3 dist	0. 52 28
S1 c18 dist -	0. 52 22
S6 c3 dist	0.506 0
S6-c0-dist	0. 50 54
S6 ⁻ c8 ⁻ dist -	0. 48 00
co co dist	0.478 0
S2_c11_dist -	
S2_c19_dist -	0. 46 92
S0_c12_dist -	0 .462 6
S6 c2 ⁻ dist-	0. 45 97
S0_c8_dist -	0.44 39
S4 ⁻ c6 ⁻ dist -	0 .439 9
S3 c13 dist	0. 42 67
S3 c15 dist	0.4 2 27
35 C15 dist	0.4183
S6_c15_dist -	
S1_c13_dist -	0.4096
S5 ⁻ c14 ⁻ dist -	0. 40 49
S5 c6 dist	0.3 999
S2 c14 ⁻ dist-	0. 38 74
S6 c5 dist -	0 .380 2
S5 ⁻ c7 ⁻ dist -	0. 372 1
	0.3 6 72
S6_c16_dist -	0. 36 59
S4_c5_dist -	0 .358 4
S2 c10 dist	0. 35 55
S5 ⁻ c12 ⁻ dist +	0.35 53
S1 ⁻ c14 ⁻ dist -	0. 330 0
\$6-c17-dist -	0.3144
S3 c11 dist	0.3107
	0.3074
S5 c5 dist	0.3074

S4_c1_dist -	0. 29 98		
S6 ⁻ c4 ⁻ dist - S4 ⁻ c8 ⁻ dist -	0 .290 0 0. 28 97		
S1 ⁻ c4 ⁻ dist - S1 ⁻ c3 ⁻ dist -	0. 28 57 0 .282 8		
S2 c13 dist -	0. 28 11		
S5_c0_dist - S5_c2_dist -	0. 27 50 0. 26 85		
S2 c15 dist -	0. 26 77		
S4_c13_dist - S2_c9_dist -	0. 25 94 0. 25 21		
S3 ⁻ c6 ⁻ dist -	0.247 2		
S2 ⁻ c8 ⁻ dist - S1 ⁻ c9 ⁻ dist -	0. 24 64 0. 244 4		
S0 <i>c</i> 14 [−] dist -	0. 23 84		
S2 c3 ⁻ dist - S6 c12 dist -	0. 22 51 0. 224 3		
S3 c8 dist -	0. 20 94		
S4_c7_dist - S4_c16_dist -	0. 20 89 0. 20 58		
S6 ⁻ c13 ⁻ dist -	0 .205 8 0 .205 3		
S2_c2_dist - S3_c9_dist -	0. 201 8		
S6 c14 ⁻ dist - S0 c5 dist -	0. 20 12 0. 1954		
S4 c10 dist -	0.1948		
S4_c0_dist - S5_c1_dist -	0.1923 0.1896		
S5 c19 dist -	0.18 68		
S2_c6_dist - S3_c19_dist -	0. 18 64 0.17 99		
S6 ⁻ c18 ⁻ dist - S4 ⁻ c14 ⁻ dist -	0. 17 78		
S4 C14 dist - S0 c9 dist -	0.1 7 65 0. 169 1		
S1 ⁻ c8 ⁻ dist +	0. 16 56 0.1 6 41		
S2_c5_dist - S5_c9_dist -	0. 16 30		
S3 ⁻ c7 ⁻ dist - S6 ⁻ c7 ⁻ dist -	0.16 29 0.158 7		
S1_c1_dist -	0.15 63		
S5 ⁻ c4 ⁻ dist - S3 c18 ⁻ dist -	0. 15 54 0 .151 8		
S5 ⁻ c18 ⁻ dist 	0. 150 6		
S5_c8 ⁻ dist - S4_c12 ⁻ dist -	0.14 67 0.145 9		
S5 ⁻ c11 ⁻ dist - S4 c4 ⁻ dist -	0.14 26 0.1 361		
S2 ⁻ c0 ⁻ dist -	0.1 311		
S0 c10 dist - S2 c1 dist -	0.1 3 00 0.1239		
S6 c11 dist -	0.1 1 92 0. 11 70		
SI_c5 ⁻ dist -	V. L L 7 U		

In []: