Тест 1

A1	Сторона куба равна 1 км. Найдите объем куба. Ответ приведите в мм ³ .	1) 10 ⁶ ; 2) 10 ⁹ ; 3) 10 ¹² ; 4) 10 ¹⁵ ; 5) 10 ¹⁸ .	
A2	На клетчатой бумаге с размером клет- ки 1×1 изображен параллелограмм $ABCD$. Найдите его площадь.	1) 30; 3) 27; 5) 24.	2) 28; 4) 26;
A3	Найдите значение выражения 3,1 + 1,08 : 1,2.	1) 3,9; 3) 3,19; 5) 12,1.	2) 3,96; 4) 4;
A4	3 кг огурцов стоят столько же, сколько 5 кг помидоров, а 3 кг помидоров — столько же, сколько 2 кг перцев. На сколько процентов килограмм перцев дешевле килограмма огурцов?	1) 15;	2) 12; 4) 9;
A5	Укажите номер n -го члена арифметической прогрессии (a_n) , у которой $a_3 = 11$: 1) $a_n = 3n - 1$; 2) $a_{n3} = 3n + 3$; 3) $a_n = 5 - 2n$; 4) $a_n = 4n - 1$; 5) $a_n = 5n - 3$.	1) 1; 3) 3; 5) 5.	2) 2; 4) 4;
A6	Запишите значение выражения $\frac{1,2\cdot 10^3}{4\cdot 10^{-2}\cdot 300}$ в виде степени числа 10.	1) 10 ⁻² ; 3) 10 ⁰ ; 5) 10 ² .	2) 10 ⁻¹ ; 4) 10 ¹ ;
A7	Известно, что $\frac{a}{b} = \frac{3}{2}$. Найдите значение выражения $\frac{4a^2 - 6ab + 5b^2}{8a^2 - 2ab - 5b^2}.$	1) $\frac{1}{2}$; 3) 2; 5) $-\frac{1}{2}$.	2) 1; 4) 5;
A8	Основания равнобедренной трапеции равны 24 и 10. Центр окружности, описанной около трапеции, лежит внутри трапеции, радиус окружности равен 13. Найдите высоту трапеции.	1) 14;	2) 15; 4) 17;
A9	Найдите значение выражения log ₂₇ (log ₁₂₅ 5).	1) 1; 3) 3; 5) $-\frac{1}{3}$.	2) -1 ; 4) $\frac{1}{3}$;

4.10	TT		
A10	На координатной плоскости	1) 3; 3) $\frac{24}{\sqrt{65}}$;	2) $2\sqrt{2}$;
	изображен треугольник ABC B	$\frac{24}{}$.	4) $\sqrt{10}$.
	с вершинами в узлах сетки. Найлите расстояние от точки А	$\sqrt{65}$,	7) (10,
	Timight programme of 19 had it		
	до прямои, содержащей сторону	5) $\frac{15}{\sqrt{26}}$.	
	BC, предварительно вычислив A	√26	
	площадь ΔABC .		
A11	Найдите значение выражения cos75°.	$1) \frac{\sqrt{6} - \sqrt{2}}{4};$	
		$\frac{1}{4}$;	
		2) $\frac{\sqrt{6} + \sqrt{2}}{4}$;	
		$3) \frac{\sqrt{6} - \sqrt{3}}{4};$	
		$\frac{3}{4}$;	
		$4) \frac{\sqrt{6-1}}{};$	
		4	
		$\sqrt{6}$	
		$4) \frac{\sqrt{6} - 1}{4};$ $5) \frac{\sqrt{6}}{4}.$	
A12	В правильной четырехугольной пирамиде SABCD сто-	1) 20;	2) 24;
	рона основания равна 8 , точка M лежит на стороне SC ,	3) 25;	4) 28;
	причем $MS = 3$, $MC = 5$. Найдите периметр сечения пи-	5) 30.	.) = 0,
	рамиды плоскостью, проходящей через точки A, D и M .		
A13	Найдите количество целых решений неравенства	1) 7;	2) 6;
	$x^{2} - \left(2\sqrt{3} - \sqrt{6}\right)x - 6\sqrt{2} \le 0.$	3) 5;	4) 4;
	$\left \begin{array}{ccc} x & -\left(2\sqrt{3} - \sqrt{6}\right)x - 6\sqrt{2} \leq 0 \end{array} \right $		
A14	Около треугольника АВС описана окружность с диа-	5) 3. 1) 4;	2) 3;
	метром $\overrightarrow{AD} = 6$. Найдите длину стороны \overrightarrow{AC} , если $\overrightarrow{AB} = 0$	3) $3\sqrt{2}$;	
	$= 3 \text{ M } \angle BAD : \angle CAD = 2:1.$	5) 5, 5.	7) 3 (3 ,
A15		1) –21;	2) 17.
AIS		(3) -21, (3) -27;	
	$\frac{x^2+6x-7}{ x+4 } < 0$.	5)-27, $5)-20.$	4) –23;
	x+4	<i>5)</i> –20.	
A16	Бетонный шар весит 500 кг. Сколько килограммов бу-	1) 1000;	2) 2000;
	дет весить шар радиусом вдвое больше, сделанный из	3) 4000;	4) 8000;
	такого же бетона?	5) 16 000.	, ,
A17	Найдите сумму наименьшего и наибольшего значений	1) 0;	2) 2;
	функции $y = -2x^2 + 4x + 3$ на отрезке [-1; 2].	3) 8;	4) 5;
		5) 3.	, ,
A18	Объем прямоугольного паралле-		2) 12
	лепипеда $ABCDA_1B_1C_1D_1$ равен 12.	1) 2;	2) $\frac{12}{5}$; 4) 4;
	Найдите объем треугольной пира- A_1	3) 3;	4) 4:
	миды AD_1CB_1 .	5) 4,5.	',' ',
		, i,J.	
1	A^{2} B		

Часть В

B1		-(x-4)(x+2) на множестве действительных предложений А—В подберите окончание 1—6, ние.
	А) Наибольшее значение функции	1) –8;
	равно	2) –9;
	Б) Ордината точки пересечения	3) 4;

графика функции с осью ординат равна...

В) Сумма координат вершины па-

В) Сумма координат вершины параболы равна...

3) 4;

4) 8;

5) 10;

6) 9.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б1B6**.

В2. На рисунке изображена часть графика четной функции y = f(x) для $x \le 0$, заданной на промежутке [–4; 4]. Выберите утверждения, которые являются верными.

1	График функции $y = f(x)$ симметричен относительно начала координат.
2	Уравнение $f(x) = 4$ имеет четыре корня.
3	Уравнение $f(x) = 0$ имеет два корня.
4	Уравнение $f(x) = -3$ имеет два корня.
5	Функция $y = f(x)$ убывает на промежутке [2; 4].
6	Функция $y = f(x)$ положительна на промежутке [0; 4].

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 126.

В3. Найдите наименьшее пятизначное число, кратное 15, у которого произведение цифр равно 60.

В4. Найдите сумму корней уравнения $(x^2 - 5x - 4)^2 - 3(x^3 - 5x^2 - 4x) + 2x^2 = 0$.

B5. Найдите сумму корней или корень, если он единственный, уравнения $x^2 + 10 = x \left(2\sqrt{3x + 10} - 3 \right)$.

- **В6.** Найдите значение выражения 23x+11y, если $\begin{cases} 7x+2y-3z=4, \\ 2x+5y+10z=10. \end{cases}$
- **В7.** Найдите наименьшее целое решение неравенства $3^{(x+2)^2} + 1 \ge 3^{x^2-1} + 3 \cdot 81^{x+1}$.
- **В8.** Найдите сумму корней (в градусах) уравнения $\sin^2\left(3x \frac{\pi}{6}\right) = \frac{1}{2}$, принадлежащих промежутку [-90° ; 90°].
- **В9.** Найдите утроенное произведение корней уравнения $\log_x 9x^2 \cdot \log_9^2 x = 1$.
- **В10.** В основании прямой треугольной призмы $ABCA_1B_1C_1$ лежит равнобедренный треугольник ABC. Известно, что AB = BC = 10, AC = 12, $AA_1 = 7$. Точка K середина ребра A_1B_1 , точка $M \in AC$ и AM: MC = 1:3. Найдите значение выражения $144\sin^2\alpha$, где α угол между прямой KM и плоскостью ABC. В ответ запишите значение выражения $144\sin^2\alpha$.
- **В11.** Найдите сумму целых корней уравнения $|x^2 + 3x 10| + |x^2 + 7x + 10| = |4x + 20|$.
- **В12.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 16, а боковое ребро равно $4\sqrt{3}$. На ребрах AB и B_1C_1 отмечены точки K и L соответственно, причем $AK = B_1L = 6$. Точка M середина ребра A_1C_1 . Найдите квадрат расстояния от точки C_1 до плоскости, которая проходит через точки K и L и параллельна прямой AC.

Тест 2

A1 A2	Представьте 13 %; 127 %; 100 %; 50 %; 150 % в виде обыкновенных дробей и в ответ выпишите неправильные дроби. На клетчатой бумаге с размером клетки 1 × 1 изображен прямоугольный тре-	1) 1,27; 1; 2) $\frac{13}{100}$; $\frac{1}{2}$; 3) 1,27; 1,5; 4) $\frac{127}{100}$; $\frac{3}{2}$; 5) $\frac{127}{100}$; 1; $\frac{3}{2}$ 1) $2\sqrt{3}$; 3) 4;	
	угольник ABC . Найдите длину гипотенузы AB . (AB проходит через центр окружности.)	5) $\frac{5\sqrt{3}}{2}$.	
A3	Найдите значение выражения $4\frac{6}{25} - 0, 3 \cdot 1\frac{3}{5}$.	1) 4; 3) 3,64; 5) 3 \frac{24}{25}. 1) 30;	4) 3,52;
A4	7 пакетов молока дешевле пачки масла на 2 %. На сколько процентов 10 таких же пакетов молока дороже пачки масла?	3) 35; 5) 40.	2) 32; 4) 36;
A5	Найдите сумму первых семи членов геометрической прогрессии $\frac{2}{9}$; $-\frac{2}{3}$; 2;	1) $120\frac{1}{9}$; 3) $121\frac{5}{9}$; 5) $122\frac{1}{9}$.	
A6	Найдите значение выражения $\frac{12^{24}}{2^{34} \cdot 6^{15} \cdot 3^8}$.	1) 6; 3) 2; 5) 1.	2) 3; 4) 1,5;
A7	Найдите результат разложения на множители выражения $3a^2 - 2ab - b^2 - a + b$.	1) $(a-b)(a+b)(a+b)(a+b)$,
		3) $(a-b)(3a$ 4) $(a+b)(3a$	+b-1);
		5) $(a-b)(3a$	
A8	Основания равнобедренной трапеции равны 24 и 10. Центр окружности, описанной около трапеции, лежит вне трапеции, а радиус окружности равен 13. Найдите высоту трапеции.	1) 5; 3) 8; 5) 4.	2) 7; 4) 6;

A9	Расположите числа в порядке возрастания: 1024; $8\frac{8}{3}$;	1) 1024; $8\frac{8}{3}$; $(0,125)^{-2,5}$;
	$(0,125)^{-2,5}$.	2) 1024; $(0,125)^{-2,5}$; $8\frac{8}{3}$;
		3) $(0.125)^{-2.5}$; $8\frac{8}{3}$; 1024;
		4) $(0.125)^{-2.5}$; 1024; $8\frac{8}{3}$;
		5) $8\frac{8}{3}$; 1024; $(0,125)^{-2,5}$.
A10	Укажите номер рисунка, на котором изображен эскиз графика функции $y = (x+1)^2 - 2$:	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
	1) 2) 3) 4) 5) $y \downarrow 0 x y \downarrow 0 x y$	
A11	Найдите значение выражения sin18°cos36°.	1) $\frac{1}{4}$; 2) $\frac{\sqrt{3}}{4}$;
		3) $\frac{1}{2}$; 4) $\frac{\sqrt{3}}{2}$; 5) 1.
A12	В правильной треугольной пирамиде SABC сторона ос-	1) 16; 2) 18;
	нования равна 10, боковое ребро $SA = 12$. Найдите пе-	3) 20; 4) 22;
	риметр сечения пирамиды плоскостью, проходящей	5) 24.
	через середины ребер SA , SC и BC .	
A13	Найдите наименьшее целое положительное решение	1) 1; 2) 3;
	неравенства $(\sqrt{3}-2)x^2-(5\sqrt{3}-10)x+4\sqrt{3}-8<0$.	3) 4; 4) 5;
A14	Биссектрисы углов <i>А</i> и <i>В</i> параллелограмма <i>АВСD</i> пере-	5) 6. 1) 5; 2) 4,5;
AIT	секаются в точке E , $AB = 6$. Найдите радиус окружно-	3) 4; 4) 3;
	сти, описанной около треугольника АВЕ.	5) $\sqrt{6}$.
A15	Найдите сумму двух наименьших натуральных реше-	1) 3; 2) 4;
		3) 5; 4) 6;
	ний неравенства $\left \frac{x^2 - 5x + 4}{x^2 - 4} \right \le 1.$	5) 7.
A16	Найдите объем многогранника, вершинами которого	1) 12; 2) 16;
	являются точки A , B , C , A_1 , B_1 , C_1 правильной тре-	3) 18; 4) 24;
	угольной призмы, площадь основания которой равна 4,	5) 32.
A 17	а боковое ребро — 9. $\Phi_{\text{NNWYMA}} = ax + b$ другатая матуай, аз графук прохо	1) 2, 2) 2.
A17	Функция $y = ax + b$ является четной, ее график прохо-	1) 3; 2) -2; 3) -4; 4) 4;
	дит через точку $A(-2; 3)$. Найдите значение функции при $x = -4$.	5) 2.
	при и	J, 2.

A18	В сосуде, имеющем форму конуса, уро-	1) 228;
	вень жидкости достигает $\frac{2}{3}$ высоты,	2) 304; 3) 361;
	объем жидкости равен 152 мл. Найдите, сколько миллиметров жидкости надо долить, чтобы наполнить сосуд полностью.	4) 382; 5) 412.

Часть В

B 1	Функция задана формулой $f(x) = x^2 - 6x - 9$ на множестве действительных чисел R .				
	Для начала каждого из предложений А—В подберите окончание 1—6, чтобы получилось верное утверждение.				
		T			
	А) Наименьшее значение функции	1) 6;	2) 0;		
	равно	3) -6;	4) –9;		
	Б) Сумма нулей функции равна	5) 9;	6) –18.		
	В) Ордината точки пересечения гра-				
	фика функции с осью Оу равна				
Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность					

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б1B2**.

В2. Выберите утверждения, которые являются свойствами функции $y = \sin x$, заданной на промежутке [-1; 2].

1	Множество (область) значений функции — отрезок [-1; 1].
2	Наименьшее значение функции равно –sin1.
3	Функция является четной.
4	Наибольшее значение функции равно 1.
5	Функция возрастает на промежутке [-1; 1].
6	Функция положительна на промежутке [-1; 2].

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 156.

В3. Найдите наибольшее четырехзначное число, кратное 75, все цифры которого различны и нечетны.

В4. Найдите произведение корней уравнения
$$\frac{2x^2+x+2}{4x^2+5x-14} = \frac{2x^2+x-6}{4x^2+5x-10}.$$

В5. Найдите сумму корней уравнения
$$\sqrt{x^2-1}-(2x-8)\sqrt{x+1}-5\sqrt{x-1}+10x-40=0$$
.

В6. Найдите значение выражения $x_0^2 + y_0^2$, где x_0 , y_0 — решение системы уравнений $\begin{cases} 13x - 8y = 2, \\ 11x + 7y = 54. \end{cases}$

- **В7.** Найдите сумму натуральных решений неравенства $\left(\sqrt{6} \sqrt{5}\right)^{\frac{6-x}{x}} \le \left(\sqrt{6} + \sqrt{5}\right)^{-x}$.
- **В8.** Найдите сумму корней (в градусах) уравнения $2\cos^2\left(\frac{3\pi}{2} \frac{x}{2}\right) + \sin\left(\frac{5\pi}{2} 2x\right) = 0$, принадлежащих промежутку (–90°; 180°).
- **В9.** Найдите произведение квадратов корней уравнения $\log_{\frac{x}{2}} x^2 14 \log_{16x} x^2 + 40 \log_{4x} \sqrt{x} = 0$.
- **В10.** Основанием правильной треугольной пирамиды SABC является треугольник ABC со стороной 12. Ребро SA перпендикулярно грани SBC. Через вершину S и середины ребер AC и BC точки E и F соответственно проведена плоскость SEF. Найдите значение выражения $9\sin^2\alpha$, где α угол между плоскостями SEF и ASB.
- **В11.** Найдите сумму корней уравнения $(|x-4|+2)^3+2|x-4|=9$.
- **В12.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 32, а боковое ребро равно $4\sqrt{3}$. На ребрах AB и B_1C_1 отмечены точки K и L соответственно, причем AK = 2, $B_1L = 28$. Точка M середина ребра A_1C_1 . Найдите объем пирамиды, вершиной которой является точка M, а основанием сечение данной призмы плоскостью, проходящей через точки K и L и параллельной прямой AC.

Тест 3

A1	Найдите HOД(72; 162) · HOК(72; 162).	1) 1296; 2) 1452; 3) 11 664; 4) 10 242;
		5) 9936.
A2	На клетчатой бумаге с размером клетки 1×1 изображен угол AOB . Найдите $\sin \angle AOB$.	1) $\frac{2}{\sqrt{5}}$; 2) $\frac{3}{2\sqrt{5}}$; 3) $\frac{1}{\sqrt{5}}$; 4) $\frac{2}{3\sqrt{5}}$; 5) $\frac{4}{3\sqrt{5}}$.
A3	Найдите x из пропорции $1\frac{3}{5}$: $x = 2\frac{1}{3}$: $5\frac{5}{6}$.	1) 3; 2) 4; 3) $\frac{5}{3}$; 4) $\frac{7}{3}$; 5) $\frac{8}{3}$.
A4	Цена на электрический чайник была повышена на 15 % и составила 34 р. 50 к. Сколько рублей стоил чайник до повышения цены?	1) 24; 2) 25; 3) 28; 4) 30; 5) 32.
A5	Укажите формулу для нахождения <i>n</i> -го члена арифметической прогрессии 1; 7; 13; 19;	1) $a_1 = 6n + 1$; 2) $a_2 = 6n - 1$; 3) $a_3 = n + 6$; 4) $a_4 = 6n - 5$; 5) $a_5 = -6n + 7$.
A6	Найдите значение выражения $\frac{\left(6^{-3}\right)^2 \cdot 4^4 \cdot \left(2^{-1}\right)^4}{\left(6^{-4}\right)^2 \cdot 12^3 \cdot 3^{-1}} .$	1) $\frac{16}{81}$; 2) $\frac{81}{16}$; 3) 1; 4) 2; 5) 3.
A7	Найдите результат сокращения дроби $\frac{\left(x^2+3x\right)^2-2x^2-6x-8}{x^4-5x^2+4}.$	1) $\frac{x-4}{x+2}$; 2) $\frac{x-8}{x-2}$; 3) $\frac{x+4}{x-2}$; 4) $\frac{x+4}{x+2}$; 5) $\frac{x-4}{x-2}$.
A8	Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 13, а одна из диагоналей ромба равна 52. Найдите градусную меру тупого угла ромба.	
A9	Расположите в порядке возрастания: $\log_{0,4}0,5$; $\log_{0,5}0,4$; 1.	1) log _{0,4} 0,5; log _{0,5} 0,4; 1; 2) log _{0,4} 0,5; 1; log _{0,5} 0,4; 3) 1; log _{0,4} 0,5; log _{0,5} 0,4; 4) 1; log _{0,5} 0,4; log _{0,4} 0,5; 5) log _{0,5} 0,4; log _{0,4} 0,5; 1.

A10	Выберите утверждение, которое не является свойством функции $y = f(x)$, заданной графиком на промежутке $[-6; 6]$.	1) Функция четной; 2) функция и нуля; 3) наибольш ние функции 4) наименьш ние функции 5) функция и отрицательн на промежут	имеет три тее значе- и равно 3; пее значе- и равно –3; принимает ые значения
A11	Найдите значение выражения $\sin^4 \frac{\pi}{8} + \cos^4 \frac{7\pi}{8}$.	1) 0,125; 3) 0,5; 5) 1.	2) 0,25; 4) 0,75;
A12	В прямоугольном параллелепипеде $ABCDA_1B_1C_1D_1$ стороны основания $AB=12$, $AD=15$, боковое ребро равно 12, точка $M\in A_1D_1$ и $A_1M:MD_1=2:1$. Найдите периметр сечения плоскостью, проходящей через точки D и M .		2) 50; 4) 56;
A13	Найдите сумму целых значений x , принадлежащих отрезку $[-5; 5]$ и удовлетворяющих условию $\begin{bmatrix} x \le -1, \\ x \ge 4. \end{bmatrix}$	1) -6; 3) 0; 5) 8.	2) 9; 4) 3;
A14	Основание равнобедренного треугольника равно 24, а радиус окружности, описанной около него, равен 13. Найдите боковую сторону треугольника.	1) $8\sqrt{3}$; 3) $6\sqrt{5}$; 5) 10.	2) $4\sqrt{13}$; 4) $9\sqrt{2}$;
A15	Найдите сумму наименьшего положительного и наименьшего отрицательного целых решений неравенства $ x-4 (x+2) \ge 4x$.	1) -3; 3) -1; 5) 4.	2) -2; 4) 3;
A16	В цилиндрическом сосуде уровень жидкости достигает 98 см. Найдите, на какой высоте будет находиться уровень жидкости, если ее перелить во второй цилиндрический сосуд, диаметр которого в 7 раз больше диаметра первого. Ответ приведите в миллиметрах.	1) 20; 3) 140; 5) 70.	2) 200; 4) 1400;
A17	Функция $y = ax + b$ является нечетной, ее график проходит через точку $A(-2; 4)$. Найдите значение функции при $x = 3$.	1) 3; 3) 6; 5) –4.	2) -3; 4) -6;
A18	В кубе $ABCDA_1B_1C_1D_1$ точки E , F , E_1 , F_1 являются серединами ребер AB , AD , A_1B_1 , A_1D_1 соответственно. Объем призмы, отсеченной от куба плоскостью EFF_1 , равен 14. Найдите объем куба.	1) 56;	2) 84; 4) 126;

Часть В

B1 Установите соответствие между каждым уравнением А—В и количеством его корней 1—6.

A) $\cos x = \frac{\pi}{3}$;

1) один;

 $\mathbf{b)} \ 2x - 4 = 2(x - 2);$

2) два;

3) три;

B) $2x^4 - 1 = 0$.

- 4) четыре;
- 5) нет корней;
- 6) бесконечно много.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: А2Б2В1.

B2. На рисунке изображены графики функции $y = ax^2 + bx + c$. Установите соответствие между графиками и знаками коэффициентов b и c.

- 1) b > 0, c > 0;
- 2) b > 0, c < 0;
- 3) b < 0, c > 0;
- 4) b < 0, c < 0.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв. Например: **A1Б2В3Г4**.

- **В3.** Найдите количество целых решений неравенства $\left(\frac{x}{2} + \frac{5}{8} \frac{15}{88 + 32x}\right)^2 \le 1$.
- В4. Найдите наименьшее четырехзначное число, которое в 3 раза меньше четвертой степени некоторого натурального числа.
- В5. Найдите сумму корней или корень, если он единственный, уравнения $\sqrt{x+7+6\sqrt{x-2}} + \sqrt{x+10-6\sqrt{x+1}} = 5.$
- **В6.** Найдите значение выражения x_0y_0 , где x_0 , y_0 решение системы уравнений $\left\{ \frac{3x^2 + 7xy + 2y^2}{3x^2 - 5xy - 2y^2} = -\frac{1}{2}, \right.$ 13x + 10y = 4.
- **В7.** Найдите наибольшее целое решение неравенства $0,25^{\frac{x+3}{x-2}} \cdot 30^x \cdot x^{-2} \le \frac{16^{-\frac{x+3}{x-2}} \cdot 15^x}{2^{2}}$.

- **B8.** Найдите наименьший положительный корень (в градусах) уравнения $2-6\sin x\cos x + \cos(5\pi-4x) = 0$.
- **В9.** Найдите произведение количества корней на меньший корень уравнения $3\log_2(x+3)^2+6=2\log_2(3\sqrt{2}-x)^3+2\log_2(x+3\sqrt{2})^3$.
- **В10.** В основании четырехугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами $AB = \sqrt{11}$, $BC = 2\sqrt{3}$. Длины боковых ребер пирамиды SA = 5, SB = 6, $SD = \sqrt{37}$. Найдите значение выражения $12\sin^2\alpha$, где α угол между прямой SC и плоскостью ASB.
- **В11.** Найдите сумму целых решений неравенства $3^{-|x-2|} \cdot \log_5 (4x x^2 + 1) \ge 1$.
- **В12.** В правильной треугольной пирамиде SABC сторона основания AB = 60, а боковое ребро SA = 37. Точки M и N середины ребер SA и SB соответственно. Найдите квадрат расстояния от вершины A до плоскости, проходящей через прямую MN и перпендикулярную плоскости основания пирамиды.

Тест 4

A1	Скорость велосипедиста равна 14 км/ч, что составляет	1) 30;	2) 35;
	$\frac{2}{7}$ скорости мотоциклиста. На сколько километров	3) 28; 5) 45.	4) 42;
	в час скорость мотоциклиста больше скорости велоси-	3) 13.	
	педиста?		
A2	Отрезки <i>АВ</i> и <i>CD</i> — диаметры	1) 72°;	2) 60°;
	окружности с центром O . Угол ABD C	3) 54°;	4) 36°;
	равен 72°. Найдите градусную меру угла <i>AOC</i> .	5) 18°.	
	y and he c.		
	$A \searrow D$		
4.2		1) 1	0) 1.76
A3	Найдите значение выражения $\frac{6,3^2+1,7^2+12,6\cdot1,7}{50}$.	1) 1; 3) 1,28;	2) 1,56; 4) 2;
	50	5) 2,56.	7) 2,
A4	Юбка дороже блузки на 30 % и дешевле платья на	1) 52;	2) 50;
	22 %. На сколько процентов блузка дешевле платья?	3) 48;	4) 45;
4.5	1	5) 40.	2) 16
A5	Числовая последовательность (a_n) задана формулой n -го члена $a_n = 4n^2 - 12n + 9$. Какое из чисел 4, 16, 19,	1) 4; 3) 19;	2) 16; 4) 20;
	$u_n = 4n - 12n + 9$. Какое из чисел 4, 10, 19, 20, 25 является членом этой последовательности?	5) 25.	4) 20,
A6		1	2) 1
	Найдите значение выражения $\frac{\sqrt[9]{3} \cdot 3^2 \cdot \sqrt[18]{3}}{\sqrt[12]{9} \cdot \sqrt[4]{81}}$.	$1)\frac{1}{9};$	2) $\frac{1}{3}$;
	V 7 V V 01	3) 1;	4) 3;
		5) 9.	2) 4
A7	Найдите значение выражения $\sqrt{18-a^2}-\sqrt{12-a^2}$, если	1) 6; 3) 3;	2) 4; 4) 2;
	$\sqrt{18-a^2} + \sqrt{12-a^2} = 6.$	5) 1.	4) 2,
A8	В треугольнике ABC $\angle A = 45^{\circ}$, $\angle C = 67^{\circ}$. Найдите	1) 9°;	2) 10°;
	градусную меру угла между биссектрисой и высотой,	3) 11°;	4) 12°;
4.0	проведенными из вершины угла С.	5) 13°.	<u> </u>
A9	Расположите в порядке возрастания: $\sqrt{2}$; $\sqrt[3]{4}$; $\sqrt[4]{5}$.	1) $\sqrt{2}$; $\sqrt[3]{4}$;	
		2) $\sqrt{2}$; $\sqrt[4]{5}$;	
		3) $\sqrt[3]{4}$; $\sqrt{2}$;	
		4) $\sqrt[3]{4}$; $\sqrt[4]{5}$;	
		5) $\sqrt[4]{5}$; $\sqrt[3]{4}$;	
A10	Найдите площадь треугольника, ограниченного графи-	1) 0,25;	
	ками функций $2x - 3y = 3$, $2x + y = 7$ и осью абсцисс.	5) 2	4) 1,5;
A11	Найдите значение выражения	1) 1;	2) -1;
	$\cos 0, 3\pi \cdot \sin 0, 2\pi + \cos 8, 2\pi \cdot \sin 0, 7\pi$	3) 0;	4) 0,5;
		5) -0,5.	

	-		
A12	В прямой треугольной призме $ABCA_1B_1C_1$ в основании лежит равнобедренный треугольник ABC , $AB = BC = 10$, $AC = 16$, боковое ребро $AA_1 = 12$. Точка K — середина ребра A_1B_1 . Найдите периметр сечения призмы плоскостью, проходящей через точки A , C и K .	1) 40; 3) 48; 5) 52.	2) 46; 4) 50;
A13	Найдите сумму целых решений двойного неравенства $-0, 2 < 2, 5 - 1, 2x \le 3, 7$.	1) 0; 3) -1; 5) -2.	2) 1; 4) 2;
A14	Найдите площадь трапеции $ABCD$, изображенной на рисунке. $B = 24 C C C C$	1) 200; 3) 240; 5) 300.	2) 250; 4) 320;
A15	Найдите сумму наибольшего положительного и наименьшего отрицательного целых решений неравенства $ 5x-9 \ge x^2 - 5x$.	1) -4; 3) 4; 5) 6.	2) -3; 4) 5;
A16	Найдите объем конуса, высота которого равна 6, а угол при вершине осевого сечения равен 60°.	 1) 12π; 3) 15π; 5) 27π. 	2) 18π;4) 24π;
A17	Функция $y = f(x)$ определена на промежутке [-6; 6] и является четной. На промежутке [-6; 0] она задана формулой $y = 3 - x + 3 $. Выберите номер формулы, которая задает функцию на промежутке [0; 6].	1) $y = 3 + x - 2 $ 2) $y = 3 - x - 3 $ 3) $y = 3 + x + 3 $ 4) $y = x + 3 $ 5) $y = x - 3 $	3 ; -3 ; -3;
A18	В правильной треугольной призме $ABCA_1B_1C_1$ точки M , K , N — середины ребер AB , BC , BB_1 соответственно. Объем призмы $ABCA_1B_1C_1$ равен 144. Найдите объем пирамиды $MBKN$.	1) 6; 3) 12; 5) 24.	2) 8; 4) 18;

Часть В

Для начала каждого из предложений А—В подбилось верное утверждение.	верите окончание 1—6, чтобы полу-
А) Расстояние от вершины параболы, заданной	1) -3;
уравнением $y = (x - 5)^2 - 12$, до начала координат равно	2) 3;
Б) Сумма координат вершины параболы, за-	3) 0;
данной уравнением $y = x^2 - 6x + 9$, равна В) Если $y = a$ — уравнение прямой, на которой	4) 5;
лежит вершина параболы, заданной уравнени-	5) 9;
ем $y = x^2 - 4x + 9$, то значение <i>a</i> равно	6) 13.
	чилось верное утверждение. А) Расстояние от вершины параболы, заданной уравнением $y = (x - 5)^2 - 12$, до начала координат равно Б) Сумма координат вершины параболы, заданной уравнением $y = x^2 - 6x + 9$, равна В) Если $y = a$ — уравнение прямой, на которой

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A2Б2B3**.

В2. Каждому из четырех неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами А—Г и их решениями 1—4.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б2B3Г4**.

- **В3.** Найдите количество целых решений неравенства $\cfrac{\frac{1}{x}-1}{1-\cfrac{1}{x-6}} \ge 0$.
- **В4.** Если смешать 29-процентный раствор кислоты и 33-процентный раствор той же кислоты и добавить 10 кг чистой воды, то получится 19-процентный раствор кислоты. Если вместо 10 кг воды добавить 10 кг 50-процентного раствора той же кислоты, то получится 39-процентный раствор кислоты. Сколько килограммов 29-процентного раствора использовали для получения смеси?
- **B5.** Найдите сумму корней или корень, если он единственный, уравнения $\sqrt{x^2-6x+7}-\sqrt{49-x^2}=\sqrt{x^2-9x+14}$.
- **В6.** Найдите значение выражения $x_1x_2+y_1y_2$, где x_1 , y_1 и x_2 , y_2 решения системы уравнений $\begin{cases} x^2-4y^2=4y+1,\\ 5x-8y=-5. \end{cases}$
- **B7.** Найдите сумму корней или корень, если он единственный, уравнения $9 \cdot 2^{x^2+6} 2^{2x^2-5x+13} = 4 \cdot 2^{5x}$.
- **B8.** Найдите сумму наименьшего положительного и наибольшего отрицательного корней (в градусах) уравнения $\sin^2 x \left(1 + \sqrt{3}\right) \sin x \cos x + \sqrt{3} \cos^2 x = 0$.
- **В9.** Найдите наименьшее целое решение неравенства $\frac{1}{\log_{x-3}\!\left(\frac{x}{10}\right)} \ge -1$.
- **B10.** В правильной четырехугольной призме $ABCDA_1B_1C_1D_1$ стороны основания равны 3, а боковое ребро равно 4. На ребре AA_1 отмечена точка E так, что $AE: EA_1 = 1:3$. Найдите значение выражения $18\text{tg}^2\alpha$, где α угол между плоскостями ABC и BED_1 .

- **В11.** Найдите значение выражения $2x_0 + 3y_0$, где x_0 , y_0 решение неравенства $2^y 2\cos x + \sqrt{y x^2 1} \le 0$.
- **B12.** Основанием пирамиды SABC является треугольник со сторонами $AB=20,\ AC=29,\ BC=21.$ Грани SAB и SABC перпендикулярны плоскости основания, а грань SBC составляет с ней угол 60° . Найдите объем V пирамиды. В ответ запишите значение $\sqrt{3}V$.

Тест 5

A1	В три вагона погрузили 100 т груза. Во второй вагон	1) 63;	2) 60;
	погрузили в 3 раза больше, чем в первый, а в тре-	3) 54;	4) 57;
	тий — на 5 т больше, чем в первый. Сколько тонн	5) 51.	
	груза погрузили во второй вагон?		
A2	На клетчатой бумаге с размером клетки 1×1 изображен равнобедренный треугольник	1) $\frac{4\sqrt{3}}{3}$; 3) $3\sqrt{3}$; 5) $6\sqrt{3}$.	2) $2\sqrt{3}$;
	АВС. Найдите радиус вписан- ной в него окружности.	3) $3\sqrt{3}$;	4) $\frac{8\sqrt{3}}{3}$;
		5) $6\sqrt{3}$.	
A3	Найдите сумму простых делителей числа 210.	1) 49;	2) 21;
		3) 19;	4) 18;
		5) 17.	
A4	Точка M — середина стороны BC прямоугольника	1) 20;	2) 40;
	ABCD. Отрезки AM и BD пересекаются в точке O . На	3) 50;	4) 60;
	сколько процентов площадь треугольника ВОМ	5) 75.	
	меньше площади треугольника АОО?		
A5	В геометрической прогрессии с положительными	1) 5;	2) 6;
	членами $b_4 \cdot b_5 = 49$. Найдите седьмой член прогрес-	3) 7;	4) 8;
	сии.	5) 9.	
A6	Найдите значение выражения $\frac{\sqrt[40]{5} \cdot \sqrt[24]{5^{12} \cdot 5^{13}}}{\frac{1.5}{5}}$.	1) $\frac{1}{5}$;	2) 1;
	\ \{\sqrt{3}\}	3) 5;	4) 25;
		5) 125.	
A7	Найдите результат разложения на множители выра-	1) $(a-b-3)$	(a-2b-4);
	жения $a^2 + 2b^2 - 3ab - 7a + 10b + 12$.	2) $(a+b-3)$	
		3) $(a-b-4)$	(a-2b-3);
		4) $(a-b+3)$	
		5) $(a+b+3)$	(a-2b-4).
A8	В треугольнике ABC $BC = \sqrt{3}$, $AC = 3$, $\angle B = 60^{\circ}$. Найдите длину стороны AB .	1) $\sqrt{3}$;	2) $\frac{3}{2}$;
		3) $2\sqrt{3}$;	4) 1:
A9	. 17π	5) 2. 1) а; б; в;	2) а; в; б;
	Расположите в порядке возрастания: a) $\sin \frac{17\pi}{7}$;	3) б; a; в;	4) б; в; a;
	6) $\sin \frac{17\pi}{3}$; B) $\sin \frac{17\pi}{21}$.	5) в; б; а.	, , , ,
	3 , 5) 311 21		

A10	Укажите номер функции, графиком которой является парабола, изображенная на рисунке.	1) $y = 2x^{2} - 4x + 1$; 2) $y = x^{2} - 2x + 2$; 3) $y = x^{2} - 2x + 1$; 4) $y = x^{2} - 4x + 2$; 5) $y = 2x^{2} - 4x + 2$.
A11	Найдите значение (в радианах) угла $\arccos\left(\cos\frac{6\pi}{5}\right)$.	1) $\frac{6\pi}{5}$; 2) $-\frac{4\pi}{5}$; 3) $\frac{\pi}{5}$; 4) $-\frac{\pi}{5}$; 5) $\frac{4\pi}{5}$.
A12	В четырехугольной пирамиде $SABCD$ площадь основания $ABCD$ равна 90, точка $M \in SA$ и $SM : MA = 1 : 2$. Найдите площадь сечения пирамиды плоскостью, проходящей через точку M и параллельной плоскости основания.	1) 45; 2) 30; 3) 22,5; 4) 10; 5) 15.
A13	Найдите сумму целых решений неравенства $(3-\sqrt{10})(3x+7)>0$, принадлежащих промежутку $(-6; 6)$.	1) -14; 2) -12; 3) 0; 4) 12; 5) 18.
A14	Основания прямоугольной трапеции равны 9 и 17, а диагональ является биссектрисой ее тупого угла. Найдите площадь трапеции.	1) 169; 2) 182; 3) 195; 4) 208; 5) 221.
A15	Найдите сумму целых решений неравенства $ 2x+1 \le 3-x$.	1) -10; 2) -9; 3) -8; 4) -7; 5) -6.
A16	Объем конуса равен 304. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.	1) 32; 2) 36; 3) 38; 4) 76; 5) 152.
A17	График функции $y = 4x^2 + bx + c$ касается оси абсцисс и пересекает ось ординат в точке $A(0; 1)$. Найдите значение функции при $x = 3$.	1) 25; 2) 16; 3) 12; 4) 9; 5) 8.
A18	В правильной треугольной призме $ABCA_1B_1C_1$ точки M и K — середины ребер AB и BC соответственно. Объем пирамиды $MBKB_1$ равен 12. Найдите объем призмы $ABCA_1B_1C_1$.	1) 72; 2) 96; 3) 120; 4) 144; 5) 192.

Часть В

B1	В1 Для начала каждого из предложений А—В подберите окончание 1—6, чтобы г чилось верное утверждение.			
	А) Множеством значений функции $y = 2^{\sqrt{x}+2} - 3$ является промежуток	1) $\left(-\infty; -5\right];$ 2) $\left[1; +\infty\right);$		
$y = 2^{3/2} - 3$ является промежуток 2) $[1; +\infty);$ 5) Множеством значений функции		$2) [1; +\infty);$		
	$y = \log_{\frac{1}{2}}(x^2 + 8) - 2$ является промежу-	3) [2; 3];		
	ток	$4) \left[-\frac{1}{2}; \frac{3}{2} \right];$		
	В) Множеством значений функции			
	$y = \frac{1}{2}\sin x + \frac{3}{2}$ является промежуток	$5) \left\lfloor \frac{1}{2}; 2 \right\rfloor;$		
		$6) \left(-\infty; -3\right].$		

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б2B1**.

B2. На прямой отмечены числа m и n:

Каждому из четырех чисел в левом столбце соответствует отрезок в правом столбце, которому оно принадлежит. Установите соответствие между числами A— Γ и отрезками 1—4.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б2B3Г4**.

- **В3.** Найдите количество целых решений неравенства $(x^2 3x + 1)(x^2 3x 3) \le 5$.
- **В4.** В доме, в котором живет Илья, 9 этажей и несколько подъездов. На каждом этаже находится по 4 квартиры. Илья живет в квартире № 263. Укажите номер этажа, на котором живет Илья.

19

В5. Найдите сумму корней уравнения $\sqrt{|x-4|+1} = (|x-4|+2)^2 - 5$.

B6. Найдите значение выражения $x_0^2 + y_0^2$, где x_0 , y_0 — решение системы уравнений $\begin{cases} 5x - 3y = 4, \\ 5x^2 + 12xy - 9y^2 = 32. \end{cases}$

- **B7.** Найдите сумму корней или корень, если он единственный, уравнения $4 \cdot 3^x + 3\sqrt{6^x} 27 \cdot 2^{x-1} = 0$.
- **В8.** Найдите сумму наименьшего положительного и наибольшего отрицательного корней (в градусах) уравнения $(2\sin 2x \cos 2x)(1 + \cos 2x) = \sin^2 2x$.
- **В9.** Найдите количество целых решений неравенства $\log_{2-x}(x+2) \cdot \log_{x+3}(3-x) \le 0$.
- **В10.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 3, а боковые ребра равны 1, D середина ребра CC_1 . Найдите значение выражения $18 \operatorname{tg} \alpha$, где α угол между плоскостями ABC и ADB_1 .
- **В11.** Найдите значение выражения $\frac{x_0 + y_0}{x_0 y_0}$, где x_0 , y_0 решение уравнения $\frac{x+1}{\sqrt{x}} + \frac{4(y-1)\sqrt[3]{y-1} + 4}{\sqrt[3]{(y-1)^2}} = 10$.
- **В12.** Основанием пирамиды является прямоугольный треугольник с катетами, равными 18 и 24. Каждое боковое ребро равно 25. Пирамида пересечена плоскостью, параллельной плоскости основания и делящей боковое ребро пополам. Найдите объем полученной усеченной пирамиды.

Тест 6

A1	Учащиеся трех школ посадили деревья. Первая школа посадила 0,4 всех деревьев, вторая — 0,24	1) 90; 3) 94;	2) 96; 4) 80;
	всех деревьев. Сколько деревьев посадили уча-	5) 85.	4) 80,
	щиеся третьей школы, если известно, что первая	,	
4.2	школа посадила 100 деревьев?	1) 26	2) 27
A2	На клетчатой бумаге с размером клетки 1×1 B C	1) 26; 3) 28;	2) 27; 4) 30;
	изображена трапеция	5) 32.	1) 50,
	<i>ABCD</i> . Найдите ее		
	площадь. A		
A3	Найдите значение выражения $1\frac{2}{25}+1,4\cdot\frac{3}{35}$.	1) 1,24;	2) 1,2;
	25 55	3) $1\frac{7}{25}$;	4) $1\frac{14}{25}$;
		25 5) 1 16	25
A4	₂ / ₁₈ = ₂ / ₃₂	$ \begin{array}{c} 25 \\ 5) 1,16. \\ 1) \frac{7}{6}; \\ 3) \frac{1}{6}; \end{array} $	7
	Найдите значение выражения $\frac{\left \sqrt{18}-\sqrt{32}\right }{\sqrt{2}+\sqrt{50}}$.	$\frac{1}{6}$;	$(2) -\frac{1}{6};$
	$\sqrt{2} + \sqrt{50}$	3) $\frac{1}{6}$;	4) $-\frac{1}{2}$.
		6,	6,
		5) $\frac{4}{3}$.	
A5	Найдите результат разложения на множители вы-	,	$(x^2 - 2x + 6)$.
120	ражения $(x^2 + x + 6)^2 + 3x(x^2 + x + 6) - 18x^2$.	`	$(x^2-3x+6);$
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$	(x+1)(x+1)	$(6)(x^2-2x+6);$
		` / `	$+3)(x^2-2x+6);$
		4) $(x-1)(x-1)$	$(6)(x^2+2x+6);$
		5) $(x-2)(x-1)$	$-3)(x^2+2x+6).$
A6	Острые углы прямоугольного треугольника рав-	1) 19°;	2) 20°;
	ны 67° и 23°. Найдите градусную меру угла между биссектрисой и медианой, проведенными из	3) 21°; 5) 23°.	4) 22°;
	вершины прямого угла.	3) 23 .	
A7	Найдите значение выражения $\log_{2+\sqrt{3}} (7-4\sqrt{3})$.	1) 1;	2) 2;
	2+43	$3) \frac{1}{2};$	4) –1;
		_	·
A8	На координатной плос-	5) -2. 1) <i>A</i> , <i>B</i> ;	2) A, C;
	кости заданы четыре точ-	3) A, D;	4) B, C;
	ки А, В, С, D. Укажите	5) <i>B</i> , <i>D</i> .	
	две из них, которые не лежат на окружности $1 + B$		
	$(x+2)^2 + (y-1)^2 = 9$.		

A9	Имеется два сплава. Первый содержит 25 % серебра, второй — 30 % серебра. Из этих двух сплавов получили третий сплав массой 150 г, содержащий 28 % серебра. Найдите, на сколько граммов масса первого сплава меньше массы	1) 20; 3) 25; 5) 32.	2) 24; 4) 30;
	второго.		
A10	Найдите значение (в градусах) угла arcsin(sin110°).	1) 110°; 3) -70°; 5) -20°.	2) 70°; 4) 20°;
A11	В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 12, боковое ребро — $\sqrt{22}$, точки M и K — середины ребер AB и BC соответственно. Найдите расстояние между прямыми MK и A_1C_1 .	1) 6; 3) 8; 5) 10.	2) 7; 4) 9;
A12	Найдите сумму коэффициентов приведенного квадратного уравнения с рациональными коэффициентами, если один из его корней равен $3-2\sqrt{3}$.	1) -8; 3) -4; 5) 3.	2) -9; 4) 4;
A13	Большая боковая сторона прямоугольной трапеции равна 28, а острый угол — 45°. Найдите площадь трапеции, если в нее можно вписать окружность.	1) $32 \cdot (1 + \sqrt{2})$ 2) 96; 3) $32 \cdot (1 + \sqrt{3})$ 4) $16 \cdot (4 + \sqrt{2})$ 5) $16 \cdot (3 + 2\sqrt{3})$); ·);
A14	Найдите сумму корней уравнения $ x-5 + x-1 =10$.	1) -3; 3) 3; 5) 8.	2) 1; 4) 6;
A15	Укажите номер графика функции, который на промежутке (0; 1) лежит выше других.	5) 8. 1) $y = x^3$; 3) $y = x $; 5) $y = \frac{1}{x}$.	2) $y = x^2$; 4) $y = \sqrt{x}$;
A16	Площадь поверхности куба равна 8. Найдите площадь поверхности куба, ребро которого в 15 раз больше ребра заданного куба.	1) 120; 3) 1200; 5) 3600.	, ,
A17	Функция $y = f(x)$ определена на промежутке $[-5; 5]$ и является нечетной. На промежутке $[-5; 0]$ она задается формулой $y = 4 - (x+2)^2$. Укажите номер формулы, которая задает функцию на промежутке $[0; 5]$.	1) $y = 4 + (x + 1)$ 2) $y = (x-2)^{2}$ 3) $y = (x+2)^{2}$ 4) $y = 4 - (x-2)^{2}$ 5) $y = (x-2)^{2}$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix}$; $\begin{pmatrix} 2 \\ -4 \end{pmatrix}$; $\begin{pmatrix} -2 \\ 2 \end{pmatrix}$;
A18	Цилиндр и конус имеют общее основание, вершина конуса совпадает с центром верхнего основания цилиндра. Площадь боковой поверхности конуса равна $y = 41\sqrt{2}$. Найдите площадь боковой поверхности цилиндра.	· ·	2) 82; 4) 61,5;

Часть В

B1	Для начала каждого из предложени чилось верное утверждение.	й А—В подберите окончание 1—6, чтобы полу-
	А) Тангенс угла наклона прямой,	1) 2,5;
	заданной уравнением $2y + 5x = 2$,	2) 15;
	равен	3) 17;
	Б) Площадь треугольника, ограниченного осями координат и пря-	4) -0,4;
	мой, заданной уравнением $y = -5x + 5$, равна	5) -2,5;
	В) Расстояние между точками пе-	6) 5.
	ресечения прямой, заданной урав-	
	нением $2y + 3,75x = 30$, с осями	
0	координат равно	who active year and approximate was a superior was a

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б6B1**.

В2. Выберите утверждения, которые являются свойствами функции $y = \cos x$, заданной на промежутке [-2; 2].

1	Наименьшее значение функции равно -cos ² .
2	Множество (область) значений функции равно [-1; 1].
3	Функция является четной.
4	Функция возрастает на промежутке [-2; 2].
5	Функция убывает на промежутке [0; 2].
6	Функция положительна на промежутке [0; 2].

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 135.

- **В3.** Точка M середина стороны BC прямоугольника ABCD. Отрезки AM и BD пересекаются в точке O. На сколько процентов площадь $\triangle ABD$ больше площади $\triangle BOM$?
- **В4.** Три целых числа, среднее из которых равно 4, составляют геометрическую прогрессию. Если среднее число увеличить на 1, то полученные числа составят арифметическую прогрессию. Найдите сумму этих чисел.
- **В5.** Найдите сумму корней уравнения $(x^2 6x + 8)(x^2 4x + 3) = 24$.
- **В6.** Найдите сумму корней или корень S, если он единственный, уравнения $\sqrt{12x-3} = 10 27x$. В ответ запишите значение 3S.
- **В7.** Найдите наибольшее целое решение неравенства $5^{x+2} + 5^{x+1} 5^x < 3^{\frac{x}{2}+1} 3^{\frac{x}{2}} 3^{\frac{x}{2}-1}$.

- **В8.** Найдите наибольший отрицательный корень (в градусах) уравнения $2\cos^2\left(2x+\frac{\pi}{3}\right)+3\cos^2\left(x+\frac{\pi}{6}\right)=5$.
- **В9.** Найдите сумму корней уравнения $2\log_4^2 x = \log_2 x \cdot \log_2 \left(\sqrt{2x+1} 1 \right)$.
- **В10.** В правильной четырехугольной пирамиде SABCD все ребра равны 1. Найдите значение выражения $12\sin\alpha$, где α угол между плоскостью SAD и плоскостью, проходящей через точку B перпендикулярно прямой AS.
- **В11.** Найдите сумму целых решений неравенства $\frac{3-|x-5|-|2-x|}{|x-3|+|1-x|-2} \ge 0$.
- **В12.** В шар вписана пирамида, основанием которой является прямоугольник с диагональю 10. Каждое боковое ребро пирамиды составляет с основанием угол 30°. Найдите радиус R шара. В ответ запишите значение $2\sqrt{3}R$.

Тест 7

А1 Длина прямоуг	ольника в 3 раза больше ширины.	1) 36; 2) 40;
Найдите перим	Найдите периметр прямоугольника, если его площадь	
равна 108.		5) 56.
А2 Длина дуги А	$4C$ равна $\frac{4}{15}$ длины	B 1) 24°; 2) 48°;
длина дуги 2	15 ATMINI	3) 36°; 4) 54°;
	айдите градусную ме- /	/\\ 5) 96°.
ру угла АВС.	$\langle \dot{o}/$	
		\/
		$\mathcal{I}_{\mathcal{C}}$
	\widetilde{A}	
А3 Найдите остато	ок от деления числа 100 357 953 на 9.	
		3) 4; 4) 5;
1.4	W ()	5) 6.
	ской прогрессии (ап) известно, что	
$+ u_8 = 24$. Наид	ите шестой член этой прогрессии.	3) 6; 4) 7;
A5	12 14 00	5) 8.
Найдите значен	ние выражения $\frac{\sqrt{1,2\cdot\sqrt{1,4\cdot\sqrt{0,8}}}}{\sqrt{0,42\cdot\sqrt{0,2}}}$.	
	$\sqrt{0,42}\cdot\sqrt{0,2}$	$3) \frac{1}{2};$ 4) 4;
		$5)\frac{1}{4}$.
А6 Найдите резули	ьтат разложения на множители выра	аже- 1) $(10x-3)(5x+3)$;
ния $2(5x-1)^2$ +	-7(5x-1)-4.	2) $(10x+3)(5x-3)$;
	,	
		3) $(2x-3)(7x+3)$;
		4) $(2x+3)(7x-3)$;
		5) $(5x-1)(5x+3)$.
	е ABC проведены высота BH и меди	
BM. Найдите B	$^{2}H \cdot BM$, если $AB = 1$, $BC = 2$, $AM = B$	
10	1 12	5) 3.
А8 Найдите значен	ние выражения $\frac{\log_2 12}{1-2} - \log_2^2 6$.	1) -2; 2) 2;
	$\log_3 2$	$\begin{vmatrix} 3 \\ -1 \end{vmatrix}$; 4) 1;
A0 II		5) log ₂ 3.
_	ой плоскости за- ек A, B, C, D, E .	1) A; 2) B; 3) C; 4) D;
	соторая пежит на	$\begin{array}{c c} & & & & & & & \\ \hline & & & & & \\ \hline & & & &$
параболе $y = 2$.		J) D.
$\int_{0}^{\infty} \frac{1}{y} dx = 2.$	D^{1+}	
	0 1	X

A10	Расстояние между городами A и B равно 600 км. Из города A в город B выехал автобус, а через 2 ч со скоростью 90 км/ч выехал автомобиль, догнал автобус и повернул обратно. Когда он вернулся в A , автобус прибыл в B . Определите скорость (в километрах в час) автобуса.	1) 50; 3) 70; 5) 80.	2) 60; 4) 75;
A11	Найдите $\sin\frac{\alpha}{2}$, если $\sin\alpha=\frac{3}{5}$, $\alpha\in\left(\frac{\pi}{2};\pi\right)$.	1) $\frac{\sqrt{10}}{10}$; 2) $-\frac{\sqrt{10}}{10}$; 3) $\frac{3\sqrt{10}}{10}$; 4) $-\frac{3\sqrt{10}}{10}$; 5) $\frac{\sqrt{5}}{5}$.	
A12	В правильной четырехугольной пирамиде $SABCD$ все ребра равны 12, точки M и K — середины ребер SD и SC . Найдите расстояние между прямыми MK и AB .	1) $6\sqrt{2}$; 3) $3\sqrt{11}$; 5) $6\sqrt{5}$.	2) $3\sqrt{10}$; 4) $6\sqrt{3}$;
A13	Найдите произведение корней уравнения $ (0,3x^2+0,6x-0,9)^2 = 0,09x^2-0,9x+2,25 . $	1) -8; 3) -1,44; 5) 2,25.	2) -4,8; 4) -2,4;
A14	Диагонали равнобедренной трапеции перпендикулярны. Найдите площадь трапеции, если ее большее основание равно 12, а меньшее — 6.	1) 64; 3) 81; 5) 144.	2) 72; 4) 108;
A15	Найдите произведение количества корней на больший корень уравнения $x^2 + 3x + x + 3 = 0$.	1) -3; 3) -1; 5) 3.	2) -2; 4) 0;
A16	Найдите объем многогранника, вершинами которого являются вершины A , B , D , A_1 прямоугольного параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB = 5$, $AD = 6$, $AA_1 = 2$.	1) 5; 3) 15; 5) 30.	2) 10; 4) 20;
A17	Функция $y = 3x^2 + bx + c$ является четной и проходит через точку $A(-1; -3)$. Найдите произведение нулей функции.	1) -2; 3) -3; 5) 0.	2) -6; 4) -4;
A18	Шар вписан в цилиндр. Площадь поверхности шара равна 78. Найдите площадь полной поверхности цилиндра.	1) 117; 3) 126; 5) 156.	2) 104; 4) 144;

Часть В

В1 Для начала каждого из предложений А—В подберите окончание 1—6, чтобы получилось верное утверждение.

- А) Графики функций $y = x^2$, y = |x|, $y = -\cos x$...
- Б) Графики функций y = 2x, $y = x^3$, $y = \sin x$...
- В) Графики функций $y = \sqrt{x+1}$, $y = \log_2(x+2)$, $y = 2^x$...
- 1) симметричны относительно начала координат;
- 2) симметричны относительно оси Оу;
- 3) возрастают на промежутке [-1; 0] и убывают на промежутке [0; 1];
- 4) убывают на промежутке [-1; 0] и возрастают на промежутке [0; 1];
- 5) возрастают на промежутке [-1; 1];
- 6) не имеют осей и точек симметрии.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A12Б13B35**.

В2. Каждому из четырех неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами A— Γ и их решениями 1—4.

A)
$$\frac{x-3}{x-6} > 0$$
;

$$\mathbf{b}) (x-3)^2 (x-6) < 0;$$

B)
$$(x-3)(x-6) < 0$$
;

$$\Gamma) \frac{\left(x-6\right)^2}{x-3} > 0.$$

1)
$$x \in (3; 6) \cup (6; +\infty);$$

2)
$$x \in (-\infty; 3) \cup (3; 6);$$

3)
$$x \in (3, 6)$$
;

4)
$$x \in (-\infty; 3) \cup (6; +\infty)$$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б2B4Г3**.

В3. В треугольнике ABC медианы AD и BE пересекаются в точке O. На сколько процентов площадь $\triangle ABE$ больше площади $\triangle BOD$?

В4. Найдите сумму натуральных решений неравенства $\frac{\left(2-\left(x+1\right)^2\right)\left(x-4\right)^2}{x\left(x^2-x-6\right)} \geq 0.$

B5. Найдите произведение количества корней на их сумму уравнения $\sqrt{5x-5} + \sqrt{10x-5} = \sqrt{15x-10}$.

В6. Пусть
$$(x; y)$$
 — решение системы уравнений
$$\begin{cases} 2\left(\frac{x^2}{y^2} + \frac{y^2}{x^2}\right) = 5\left(\frac{x}{y} + \frac{y}{x}\right) - 6. \\ 7x - 5y - 2 = 0. \end{cases}$$
 Найдите зна-

чение выражения $x^2 + y^2$.

- **B7.** Найдите сумму корней или корень, если он единственный, уравнения $5 \cdot \frac{x+1}{x-3} 115 \cdot \frac{x-1}{x-3} + 320 = 0$.
- **B8.** Найдите сумму наименьшего положительного и наибольшего отрицательного корней (в градусах) уравнения $\sin x + \sin 2x + \sin 3x = 0$.
- **В9.** Найдите наибольшее целое решение неравенства $9\log_{(x-4)^2} 16 \le 6 \log_4 (x-3)^2$.
- **B10.** В кубе $ABCDA_1B_1C_1D_1$ ребро равно 4. На ребре BB_1 отмечена точка K так, что KB=3. Через точки K и C_1 проведена плоскость, параллельная прямой BD_1 . Найдите значение выражения $9\text{tg}^2\alpha$, где α угол между построенной плоскостью и плоскостью BB_1C_1C .
- **В11.** Найдите сумму целых решений неравенства $(|2x+5|-|x-2|)(|x|-3) \le 0$.
- **B12.** Сторона основания правильной треугольной пирамиды равна $4\sqrt{3}$. Сфера радиуса $\frac{4\sqrt{3}}{3}$ касается плоскости каждой боковой грани в точке, лежащей на стороне основания пирамиды. Найдите объем пирамиды.

Тест 8

Часть А

A1	Найдите делимое, если неполное частное равно 17,	1) 612;	2) 599;
AI	делитель — 36, остаток — 13.	3) 586;	4) 638;
	Делитель — 30, остаток — 13.	,	4) 036,
A2	II.	5) 625.	2) 20 5.
AZ	На клетчатой бумаге с размером	1) 21,5;	2) 20,3;
	клетки 1×1 изображен четырех-	3) 17,5;	4) 18,5;
	угольник $ABCD$. Найдите его B	5) 19,5.	
	площадь.		
4.2	50 7	70 7	
A3	Расположите числа $\frac{59}{32}$; $1\frac{7}{8}$; 1,9 в порядке возраста-	$1)\frac{59}{32}; 1\frac{7}{8}; 1$,9;
	32 8	32 0	
	ния.	2) $\frac{59}{32}$; 1,9; 1	<u>7</u> .
		32, 1,5, 1	8
		2 7 59	0
		3) $1\frac{7}{8}$; $\frac{59}{32}$; 1	.,9;
		7	59
		4) $1\frac{7}{8}$; 1,9; $\frac{5}{3}$	$\frac{1}{2}$;
		0 2	12
		5) 1,9; $\frac{59}{32}$; 1 1) 9;	$\frac{7}{9}$.
A 4	D	32	8
A4	В понедельник акции компании подорожали на неко-	1) 9;	
	торое число процентов, а во вторник подешевели на	3) 20;	4) 25;
	то же самое число процентов. В результате они стали	5) 30.	
	стоить на 9% дешевле, чем при открытии торгов		
	в понедельник. На сколько процентов подорожали		
A 5	акции компании в понедельник?	1) [5]	<u> </u>
A5	Упростите выражение $\sqrt{6+2\sqrt{5}-\sqrt{13+\sqrt{48}}}$.	1) $\sqrt{3}-1$; 3) $2\sqrt{3}-1$;	2) $\sqrt{3}+1$;
	The state of the s	3) $2\sqrt{3}-1$;	4) $2\sqrt{3}+1$;
		5) $2+\sqrt{3}$.	
A6	Найдите результат сокращения дроби		$\frac{3a+7}{}$
110	6ab - 21b - 4a + 14	1) $\frac{3a-7}{6a+2}$;	2) $\frac{3a+7}{6a-2}$;
	$\frac{6ab + 2b + 4b + 8a - 2}{12ab + 3b - 8a - 2}$.		
	12a0 + 30 - 8a - 2	3) $\frac{2a-7}{1}$;	4) $\frac{2a+7}{4}$;
		4a+1	4a-1
		5) $\frac{3a-14}{6}$.	
		6a-1	
A7	Четырехугольник <i>АВСD</i> вписан В	1) 63°;	2) 65°;
	в окружность. Угол АВС равен	3) 67°;	4) 69°;
	132°, угол <i>ABD</i> равен 61°.	5) 71°.	
	Найдите градусную меру угла		
	CAD.		

A8	Найдите значение выражения $lg125$, если $lg2 = a$.	1) 3 <i>a</i> ;	2) 3 – 3 <i>a</i> ;
		3) $1 - 3a$;	4) $\frac{3}{-}$;
			и
		$\frac{3}{1-a}$.	
A9	На координатной плоскости заданы четыре точки $A, B, C,$	$5) \frac{3}{1-a}.$ $1) A, B;$ $3) A, D;$	2) A, C; 4) B, C;
	D. Выберите из них две, ко-	(5) B, D.	., _ , _ ,
	торые лежат на прямой, про-ходящей через начало коор-		
	$\frac{1}{x}$ динат.		
A10	Первый и второй насосы наполняют бассейн за 10 мин, второй и третий — за 15 мин, а первый		2) 6; 4) 8;
	и третий — за 18 мин. За сколько минут эти три насо-	5) 9.	1) 0,
	са заполнят бассейн, работая вместе?		
A11	Найдите $\sin \alpha$, если $\operatorname{tg} \alpha = \frac{4}{3}$, $\alpha \in \left(3\pi; \frac{7\pi}{2}\right)$.	1) $-\frac{4}{}$:	$\frac{4}{2}$;
	$\frac{1}{3}, \frac{3}{3}, \frac{3}{3}, \frac{3}{2}$	5 3	, 5 , 3
		$(3) -\frac{5}{5};$	4) $\frac{5}{5}$;
		1) $-\frac{4}{5}$; 3) $-\frac{3}{5}$; 5) $\frac{3}{4}$.	
A12	В правильной четырехугольной пирамиде все ребра	1) 1;	2) $\sqrt{2}$;
	равны 10. Найдите тангенс угла между апофемой и плоскостью основания.		4) 2;
		$5) \frac{\sqrt{3}}{3}$.	
A13	Найдите произведение корней уравнения	1) 0;	2) 4;
	$3x^2 - 9x + 7 = 3 \cdot \frac{4}{7} \left(\frac{4}{7} - 3 \right) + 7$.	$3) \frac{24}{7};$	4) $\frac{59}{7}$;
		$5) \frac{68}{49}$.	
A14	Точка касания окружности, вписанной в прямо-	49 1) 80;	2) 84;
	угольный треугольник, делит его гипотенузу на от-	3) 96;	4) 108;
A15	резки длиной 8 и 12. Найдите площадь треугольника. Найдите произведение количества корней на мень-	5) 144. 1) –4;	2) –2;
	ший корень уравнения $ x^2 + 2x - 1 = 2x$.	3) 2; 5) 4.	4) 3;
A16	Около конуса описана сфера, которая содержит	1) 12π;	2) 24π;
	окружность основания конуса, его вершину, а центр сферы совпадает с центром основания конуса. Обра-	,	4) 48π ;
	зующая конуса равна $3\sqrt{2}$. Найдите площадь поверх-	5) 1211.	
	ности сферы.		

A17	Функция $y = f(x)$ определена на промежутке $[-7; 7]$ и является четной. На промежутке $[0; 7]$ она задана формулой $y = (x - 4)^2 - 9$. Выберите утверждение, которое не является свойством функции $y = f(x)$.	1) Наибольшее значение функции равно 7; 2) наименьшее значение функции равно –9; 3) функция принимает отрицательные значения на промежутке (–7; –1); 4) функция возрастает на промежутке [–2; 0]; 5) функция принимает положительные значения на промежутке [1; 7].
A18	$ABCA_1B_1C_1$ — правильная треугольная призма со стороной основания, равной 24, и боковым ребром, равным $\sqrt{22}$. Точки M и N — соответственно середины ребер AB и BC , $K ∈ A_1B_1$ и $A_1K : A_1B_1 = 3 : 4$. Найдите площадь фигуры, полученной в результате сечения призмы $ABCA_1B_1C_1$ плоскостью, проходящей через точки M , N , K .	1) 54; 2) 63; 3) 68; 4) 72; 5) 84.

Часть В

Установите соответствие между каждым уравнением А—В и количеством его к ней 1—6. А) $2 x +3=0$;		
B) $2\sqrt{x} - 0 = 2(x - 3);$	3) три;	
B) $\log_2 x^2 = 4$ 4) четыре;		
5) нет корней;6) бесконечно много.		

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A2Б2B1**.

B2. На рисунке изображены графики функции $y = ax^2 + bx + c$. Установите соответствие между графиками и знаками коэффициентов a и b.

- 1) a > 0, b > 0;
- 2) a > 0, b < 0;
- 3) a < 0, b > 0;
- 4) a < 0, b < 0.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв. Например: **A4Б3B2Г1**.

- **В3.** Три числа, сумма которых равна 7, составляют возрастающую геометрическую прогрессию. Если бы большее из этих чисел было на единицу меньше, то числа составили бы арифметическую прогрессию. Сколько членов арифметической прогрессии надо взять, чтобы их сумма была равна 120?
- **В4.** Найдите произведение различных корней уравнения $(x^2 6x)^2 2(x 3)^2 = 81$.
- **В5.** Найдите сумму корней уравнения $2x^2\sqrt{x^2-3x}+3x\sqrt{x^2-3x}=2\sqrt{x^2-3x}$.
- **В6.** Пусть (x; y) решение системы уравнений $\begin{cases} x^2 + 10y^2 6xy 10y + 4x + 5 = 0. \\ 4x 19y = -1. \end{cases}$ Найдите значение выражения 2x + y.
- **В7.** Найдите произведение корней уравнения $\left(\sqrt[4]{2-\sqrt{3}}\right)^x + \left(\sqrt[4]{2+\sqrt{3}}\right)^x = 4$.
- **B8.** Найдите сумму наименьшего положительного и наибольшего отрицательного корней (в градусах) уравнения $\sqrt{3} \sin x \operatorname{tg} x + \operatorname{tg} x \sin x = \sqrt{3}$.
- **В9.** Найдите наименьшее целое решение неравенства $\log_{|x+1|}^2 (x+1)^4 + \log_2 (x+1)^2 \le 22$.
- **В10.** Дан куб $ABCDA_1B_1C_1D_1$. Найдите значение выражения $18\text{tg}^2\alpha$, где α угол между прямой AC_1 и плоскостью BCC_1 .
- **В11.** Найдите сумму целых решений неравенства $|x-4|(|x-2|+2|x+1|) \le 15(x-4)$.
- **В12.** Шар касается боковой поверхности прямого кругового конуса по окружности его основания. Угол между образующей конуса и его высотой равен 30° . Площадь боковой поверхности конуса равна 54π . Найдите радиус шара.

Тест 9

A1	Сколько осей симметрии имеет квадрат?	1) 0;	/ /
		3) 4; 5) бесконечн	4) 6;
A2	На клетчатой бумаге с раз-	1) $2\sqrt{3}$;	
	мером клетки 1×1 изображен B	3) 3,5;	
	треугольник АВС. Найдите ра-	5/5,5,	4) 3\(\gamma\)
	диус описанной около него окружности.	5) $\frac{5\sqrt{3}}{3}$.	
	окружности.	3	
	A		
A3	(17 3) 5	1) 5:	2) 4.75:
	Найдите значение выражения $\left(\frac{17}{35} + \frac{3}{8}\right) : \frac{5}{28}$.	1) 5; 3) 4,56;	4) 4,82;
	(35 0) 20	5) 5,24.	
A4	В геометрической прогрессии (b_n) первый член равен 3, а шестой член равен 96. Найдите, сколько	1) 8; 3) 10;	2) 9; 4) 11;
	членов геометрической прогрессии надо взять, что-	5) 10,	4) 11,
	бы их сумма была равна 6141.	() 12.	
A5	Избавьтесь от иррациональности в знаменателе	1) $\sqrt[3]{4} \cdot \sqrt[6]{9}$;	2) $\sqrt[6]{4} \cdot \sqrt[3]{3}$;
	дроби $\frac{6}{\sqrt[4]{8} \cdot \sqrt[3]{6}}$.	3) $\sqrt[6]{2} \cdot \sqrt[3]{9}$;	4) $\sqrt[6]{32} \cdot \sqrt[3]{3}$;
	1	5) $\sqrt[6]{16} \cdot \sqrt[3]{9}$	
A6	Найдите результат сокращения дроби $\frac{3a^2 + 5a - 2}{2a^2 + 3a - 2}$.	_	$a-\frac{1}{a}$
	Паидите результат сокращения дроой $\frac{1}{2a^2+3a-2}$.	$1)\frac{3}{2};$	2) $\frac{3}{1}$;
		2	$a-\frac{1}{2}$
			1
		3a+1	$a + \frac{1}{3}$
		$\frac{3}{2a+1}$;	4) $\frac{3}{a+\frac{1}{a+1}}$;
			2
		$\frac{3a-1}{2}$.	
A7	Прямая, касающаяся окружности в точке С, парал-	2a-1 1) 3;	2) 3,125;
11/	лельна хорде АВ. Найдите радиус окружности, если	3) 3,25;	4) 3,375;
	AC = 5, AB = 6.	5) 3,5.	
Α Ω	Hogawa syrayayya syrayayya a a a a a a a a a a a a a a a a	1) 0.	2) 15.
A8	Найдите значение выражения a^a , если $b^a = 81$, $a^c = 5$, $b^c = 3$.	1) 9; 3) 25;	2) 15; 4) 45;
		5) 75.	
	•		

	n	_	1
A9	Запишите уравнение прямой, параллельной прямой $2y - 3x = 1$ и проходящей через точку $A(3; 4)$.	1) $y = \frac{3}{2}x + 1$,
		$2) \ \ y = \frac{3}{2}x - 1;$;
		3) $y = -\frac{3}{2}x +$	$\frac{1}{2}$;
		4) $y = \frac{3}{2}x - \frac{1}{2}$;
		$5) \ \ y = -\frac{3}{2}x - $ $1) \ 3500;$	$\frac{1}{2}$.
A10	Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 4,3 км от места отправления. Один идет со скоростью 4 км/ч, а другой — со скоростью 4,6 км/ч. Дойдя до опушки, второй человек с той же скоростью возвращается обратно. На каком расстоянии (в метрах) от точки отправления произойдет их встреча?		2) 3600; 4) 3900;
A11	Найдите $\cos \alpha$, если $\sin \alpha = -\frac{\sqrt{7}}{4}$, $\alpha \in \left(-\frac{5\pi}{2}; -2\pi\right)$.	1) $\frac{1}{4}$; 3) $\frac{3}{4}$;	2) $-\frac{1}{4}$; 4) $-\frac{3}{4}$;
		5) $\frac{\sqrt{3}}{4}$. 1) $\frac{\sqrt{3}}{2}$;	
A12	В правильной треугольной пирамиде сторона осно-	$\sqrt{3}$	2) 1
	вания равна 6, а боковое ребро — $2\sqrt{6}$. Найдите	$\frac{1}{2}$;	2) 1;
	тангенс угла между апофемой и плоскостью основания.	3) $\sqrt{3}$; 5) 3.	4) 2;
A13	Найдите $x_1^2 + x_2^2$, где x_1 и x_2 — корни уравнения		2) 1,8;
	$0.1x^2 - 0.2x - 0.7 = 0.$	3) 14; 5) 18.	4) 15;
A14	В выпуклом многоугольнике 54 диагонали. Найдите сумму углов этого многоугольника.	1) 1440°; 3) 1800°; 5) 2160°.	2) 1620°; 4) 1980°;
A15	Найдите сумму корней или корень, если он единственный, уравнения $ x-2 =2x+3$.	4	2) $-\frac{2}{3}$;
		$\begin{vmatrix} 3 & -\frac{1}{3} \\ 5 & \frac{1}{6} \end{vmatrix}$	4) 0;
A 1 C	Han of an rotopore serve 14- process of		2) 42:
A16	Шар, объем которого равен 14π , вписан в куб. Найдите объем куба.	1) 28; 3) 56; 5) 98.	2) 42; 4) 84;
A17	Найдите сумму наименьшего и наибольшего значений функции $y = 4 + 3\sin^2 x - 2\cos^2 x$.	1) 5; 3) 7; 5) 11.	2) 9; 4) 4;
		,	

А18 $ABCA_1B_1C_1$ — правильная треугольная призма, ребра основания которой равны 24, а боковые ребра равны 8. Точка E лежит на медиане B_1M основания $A_1B_1C_1$ призмы так, что $B_1E:EM=3:1$, K — середина ребра AB , $D \in AA_1$, $AA_1=A_1D$. Найдите периметр сечения, полученного в результате пересечения призмы $ABCA_1B_1C_1$ плоскостью, проходящей через точки K , D , E .	1) $40 + 20\sqrt{3}$; 2) 0; 3) $30 + 20\sqrt{3}$; 4) 50; 5) $18\sqrt{2} + 12\sqrt{3}$.
--	---

Часть В

B1	Для начала каждого из предложений А—В подберите окончание 1—6, чтобы полу чилось верное утверждение.		
	A) Функция $y = -(x-3)(x+1)$ 1) $(-\infty; 3];$		
	возрастает на промежутке	2) $[2; +\infty);$	
Б) Функция $y = -2(x-3)^2 + 8$ положительна на промежутке 3) $(-\infty; 1];$		3) (−∞;1];	
	В) Множеством значений функции	4) (1; 5);	
$y = x^2 - 4x + 6$ является промежу- ток 5) $[6; +\infty);$		$5) \left[6; +\infty\right);$	
		6) (-1; 3).	

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б1B6**.

В2. На координатной прямой отмечены точки А, Б, В, Г.

Известно, что m = 1,6, n = -0,1. Каждой из точек в левом столбце соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.

1) A	1) $2m + n$;
2) Б	$2) \frac{1}{m} + n;$
3) B	m
4) Γ	3) -mn;
	4) $n^2 - m^2$.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б4B2Г3**.

- **В3.** В треугольнике ABC точка D середина AC, точка $E \in BC$ и BE : EC = 1 : 2. Отрезки AE и BD пересекаются в точке O. На сколько процентов площадь $\triangle AOD$ больше площади треугольника BOE?
- **В4.** Найдите сумму целых решений неравенства $\frac{(x-2)(x+1)^2}{-x} \ge 0$.
- **В5.** Найдите произведение меньшего корня на число корней уравнения $(x+4)(x+1)-3\sqrt{x^2+5x+2}=6$.
- **В6.** Найдите площадь фигуры, ограниченной прямыми y-2x+6=0, 5y-2x-10=0 и осями координат.
- **В7.** Найдите наименьшее целое решение неравенства $36^x + 30^x 2 \cdot 25^x > 0$.
- **В8.** Найдите сумму корней (в градусах) уравнения $\cos\left(\frac{\pi}{6} \frac{x}{2}\right) = -\frac{1}{2}$, принадлежащих промежутку [-90° ; 360°].
- **В9.** Найдите произведение количества корней на больший корень уравнения $\frac{1}{8} \Big(\log_2 \big(x 2 \big)^4 \Big)^2 = \frac{\lg \big(2 x \big)}{\lg 2} \cdot 2^{\log_2 \sqrt{3}} \, .$
- **B10.** В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания $AB=8\sqrt{3}$, а боковое ребро $AA_1=5$. Найдите значение выражения $5\text{tg}\alpha$, где α угол между плоскостями BCA_1 и BB_1C_1 .
- **B11.** Найдите сумму корней или корень, если он единственный, уравнения $\log_2 ||x-3|-5| = -(|x-3|-3)^2 + 5$.
- **В12.** Две правильные треугольные пирамиды имеют общую высоту. Вершина каждой пирамиды лежит в центре основания другой, боковые ребра одной пирамиды пересекают боковые ребра другой, боковое ребро первой пирамиды, равное 8, образует с высотой угол 60° , а боковое ребро второй пирамиды образует с высотой угол 30° . Найдите значение выражения $3\sqrt{3}V$, где V— объем общей части пирамиды.

Тест 10

A1	При пересечении двух прямых образовались четыре угла, сумма двух из которых равна 172°. Найдите	1) 86°; 2) 92°; 3) 108°; 4) 94°;	
	больший из четырех углов.	5) 98°.	
A2	На клетчатой бумаге с размером клетки 1×1 изображен четырехугольник $ABCD$. Найдите его площадь.	1) 27; 2) 30; 3) 32; 4) 33; 5) 36.	
A3	Вычислите $7 \cdot 10^3 + 9 \cdot 10^2 + 8 \cdot 10^1$. Полученное число	1) $8,7 \cdot 10^3$; 2) $0,87 \cdot 10^4$;
	запишите в стандартном виде.	3) $7.98 \cdot 10^3$; 4) $0.798 \cdot 10$	
		5) $79.8 \cdot 10^2$.	
A4	Держатели дисконтной карты магазина получают	1) 54 p.;	
	скидку 8% при покупке товара. Товар стоит 57 р.	2) 53 p. 50 к.;	
	50 к. Сколько заплатит держатель дисконтной карты	3) 52 p.;	
	за этот товар?	4) 52 p. 90 к.;	
A 5	V	5) 51 p. 1) 10; 2) 12;	
A5	Упростите выражение	(a) 10; (b) 12; (c) 13) 14; (d) 16;	
	$\left(\frac{59}{2\sqrt{17}-3} \cdot \frac{26}{\sqrt{17}-2} + 6\sqrt{17}\right) \cdot \left(\sqrt{17}-4\right).$	5) 20.	
A6	Найдите результат сокращения дроби $\frac{a^2-6a+8}{8-0.5a^2}$.	1) $\frac{2(4-a)}{a+2}$; 2) $\frac{2(4+a)}{-a-2}$;
		3) $\frac{2(a-4)}{2-a}$; 4) $\frac{2(2-a)}{a+4}$;
		$5) -\frac{2(a+2)}{a+4}.$	
A7	Внутри параллелограмма АВСО взята произвольная		
	точка M . Известно, что $S_{\triangle ABM} = 6$, $S_{\triangle MCD} = 12$.	3) 30; 4) 32;	
	Найдите площадь параллелограмма.	5) 36.	
A8	Известно, что $\frac{4 \cdot 3^x + 2^x}{5 \cdot 2^x - 7 \cdot 3^x} = 2$. Найдите значение	1) $\frac{3}{7}$; 2) $\frac{4}{7}$;	
	выражения $\frac{4 \cdot 2^x - 5 \cdot 3^x}{3 \cdot 2^x + 3^x}$.	$\begin{bmatrix} 3 & \frac{5}{7} \\ 5 & \frac{8}{7} \end{bmatrix}$ 4) 1;	
		$5) \frac{8}{7}$.	

A9	На координатной плоскости заданы четыре точки A, B, C, D . Выберите из них две, которые лежат на прямой, параллельной прямой $y = 2x - 1$.	1) A, B; 3) A, D; 5) B, D.	2) A, C; 4) B, C;
A10	Две бригады, состоящие из рабочих одинаковой квалификации, одновременно начали выполнять два одинаковых заказа. В первой бригаде было 3 рабочих, а во второй — 9 рабочих. Через 4 дня после начала работы в первую бригаду перешли 7 рабочих из второй бригады. В итоге оба заказа были выполнены одновременно. Найдите, за сколько дней выполнили заказы.	1) 6; 3) 8; 5) 10.	2) 7; 4) 9;
A11	Найдите значение выражения $13\sqrt{3}$ tg (−930°).	1) 39; 3) 13; 5) -1.	2) –39; 4) –13;
A12	В правильной четырехугольной пирамиде $SABCD$ сторона основания равна 12, а боковое ребро равно $6\sqrt{5}$. Найдите косинус угла между противолежащими боковыми гранями.	1) 0; 3) $\frac{\sqrt{2}}{2}$; 5) $\frac{1}{3}$.	2) $\frac{\sqrt{3}}{2}$; 4) $\frac{1}{2}$;
A13	Укажите номер квадратного уравнения, корни которого на 2 меньше корней уравнения $0,2x^2+0,4x-1=0\;.$	1) $0.2x^2 + 1.2$ 2) $0.2x^2 + 1.2$ 3) $0.2x^2 - 1.2$ 4) $0.2x^2 - 1.2$ 5) $0.2x^2 + 1.2$	x-5=0; x+1=0; x-0,6=0;
A14	Точки O_1 и O_2 — центры равных касающихся окружностей $BO_2 \perp O_1O_2$, $AB=10$. Найдите площадь треугольника ABO_2 .	3) 15; 5) 20.	2) 12; 4) 18;
A15	Найдите сумму корней или корень, если он единственный, уравнения $ 2x-1 =2 x-1 $.	1) $\frac{7}{4}$; 3) $\frac{3}{4}$; 5) $\frac{3}{2}$.	2) $\frac{5}{4}$; 4) $\frac{1}{4}$;

A16	Площадь поверхности шара равна 200. Найдите площадь сечения этого шара плоскостью, перпендикулярной диаметру шара и делящей его в отношении 1:4.	1) 16; 3) 50; 5) 128.	2) 25; 4) 32;
A17	Найдите наименьшее значение функции $y = \log_{\frac{1}{2}} (33 - x^2 + 2x)$.	1) -5; 3) -3; 5) 4.	2) -4; 4) 5;
A18	В прямой треугольной призме $ABCA_1B_1C_1$ основанием является прямоугольный треугольник ABC ($\angle C = 90^\circ$). Плоскостью, проходящей через точки $M \in AA_1$ ($AM: MA_1 = 2:1$), $N \in BB_1$ ($BN: NB_1 = 2:1$) и вершину C , отсекли меньшую часть объемом 12. Найдите объем призмы $ABCA_1B_1C_1$.	1) 27; 3) 48; 5) 72.	2) 36; 4) 54;

Часть В

B 1	Функция задана формулой $f(x) = 2x^2 - 4x - 3$ на множестве действительных чисел R .		
	Для начала каждого из предложений А—В подберите его окончание 1—6, чтобы		
	получилось верное утверждение.		
	А) Сумма координат вершины параболы равна 1) –3;		
	Б) Произведение нулей функции равно 2) –1; 3) –1,5;		
	В) Если ось симметрии графика функции зада- 4) -4;		
	ется уравнением $x = a$, то значение a равно	5) 1;	
		6) 2.	
Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность			

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б1B2**.

В2. Каждому из четырех неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами A— Γ и их решениями 1—4.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Например: **A1Б2B3Г4**.

- **В3.** Три числа, сумма которых равна 98, образуют геометрическую прогрессию. В то же время они являются соответственно первым, третьим и седьмым членами арифметической прогрессии, разность которой отлична от нуля. Найдите произведение первого и третьего чисел.
- **В4.** Найдите сумму корней уравнения $\frac{(x-1)^2}{3} + \frac{48}{(x-1)^2} = 10\left(\frac{x-1}{3} \frac{4}{x-1}\right)$.
- **В5.** Найдите корень x_0 уравнения $\frac{\sqrt{x}}{\sqrt{x+1}} + \sqrt{\frac{1+x}{x}} = \frac{5}{2}$. В ответ запишите значение выражения $6x_0$.
- **B6.** Найдите площадь треугольника, ограниченного прямыми 3y-4x+6=0 и 3y+2x-12=0 и осью ординат.
- **В7.** Найдите произведение корней уравнения $25^x 5^{x+2\sqrt{2}} \left(1 + 5^{\sqrt{2}}\right) + 5^{5\sqrt{2}} = 0$.
- **B8.** Найдите сумму двух наименьших положительных корней (в градусах) уравнения $4\sin^2 2x 2\cos^2 2x = \cos 8x$.
- **В9.** Найдите сумму натуральных решений неравенства $\log_{|x|}^2(x^2) + \log_2(x^2) \le 8$.
- **B10.** В правильной треугольной пирамиде SABC с вершиной S все ребра равны 2, точка M середина ребра AB, точка F делит высоту пирамиды SH в отношении 3:1, считая от вершины. Найдите значение выражения $4 \operatorname{tg}^2 \alpha$, где α угол между плоскостями MBF и ABC.
- **В11.** Найдите сумму корней или корень, если он единственный, уравнения $(x+7) \cdot 3^{2x} (9x+65) \cdot 3^x + 18 = 0$.
- **В12.** В правильной четырехугольной пирамиде сторона основания равна 2, а боковое ребро образует с плоскостью основания угол 30°. В эту пирамиду вписан куб так, что четыре его вершины лежат в плоскости основания, а четыре на апофемах пирамиды. Найдите значение выражения $\left(\sqrt{6}+\sqrt{2}\right)a$, где a ребро куба.

Ответы

Тест 1 Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
5	2	4	3	4	5	1	4	4
A10	A11	A12	A13	A14	A15	A16	A17	A18
3	1	3	2	4	2	3	2	4

Часть В

B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А6Б4В5	245	11 625	13	5	22	-1	60	1	1625	-5	60

Тест 2

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
4	3	2	5	3	4	3	2	3
A10	A11	A12	A13	A14	A15	A16	A17	A18
3	1	4	4	4	2	4	1	3

Часть В

B1	B2	В3	B4	B5	B6	B7	B8	В9	B10	B11	B12
А6Б1В4	245	9375	-8	29	13	3	90	8	6	8	232

Тест 3

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
3	1	2	4	4	3	3	2	2
A10	A11	A12	A13	A14	A15	A16	A17	A18
1	4	2	1	2	1	1	4	5

Часть В

B 1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А5Б6В2	А4Б3В2Г1	6	2187	3	-6	1	15	-8	3	2	75

Тест 4

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
2	4	3	5	5	4	5	3	2
A10	A11	A12	A13	A14	A15	A16	A17	A18
3	1	4	4	5	5	4	2	1

Часть В

B 1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А6Б2В4	А2Б3В4Г1	1	5	7	9	5	-75	5	20	3	4200

Тест 5 Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
4	1	5	5	3	3	1	3	4
A10	A11	A12	A13	A14	A15	A16	A17	A18
5	5	4	2	3	1	3	1	4

Часть В

B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А2Б1В3	АЗБ2В4Г1	6	3	8	8	2	-75	1	6	-3	1260

Тест 6

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
1	5	2	3	2	4	5	3	4
A10	A11	A12	A13	A14	A15	A16	A17	A18
2	2	1	1	4	5	4	2	2

Часть В

B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А5Б1В3	235	500	14	5	1	-2	-30	5	12	9	20

Тест 7

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
3	2	5	3	4	1	2	3	1
A10	A11	A12	A13	A14	A15	A16	A17	A18

Часть В

B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А24Б15В56	А4Б2В3Г1	200	7	1	2	4	0	11	17	-20	24

Тест 8

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
5	3	1	5	2	3	5	2	3
A10	A11	A12	A13	A14	A15	A16	A17	A18
5	1	2	5	3	3	3	5	2

Часть В

B 1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
А5Б6В2	А1Б2В4Г3	15	-33	1	-11	-16	60	_9	9	9	6

Тест 9

Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
3	3	4	4	3	5	2	3	4
A10	A11	A12	A13	A14	A15	A16	A17	A18
5	3	4	5	3	3	4	2	4

Часть В

B1	B2	В3	B4	B5	B6	B 7	B8	B9	B10	B11	B12
А3Б4В2	А4Б3В2Г1	200	2	-14	11	1	300	2	12	12	27

Тест 10 Часть А

A1	A2	A3	A4	A5	A6	A7	A8	A9
4	1	3	4	5	4	5	1	3
A10	A11	A12	A13	A14	A15	A16	A17	A18
2	4	4	5	3	3	4	1	4

Часть В

B1	B2	В3	B4	B5	B6	B 7	B8	B9	B10	B11	B12
А4Б3В5	А4Б3В2Г1	784	14	2	9	12	90	9	2	1	2