BRIO: Bringing Order to Abstractive Summarization

- Yixin Liu
1, Pengfei Liu, Dragomir Radev, Graham Neubig (Yale
+ CMU), ACL 2022

Presentation Author MATHIEU Ravaut

Nanyang Technological University

Table of content

- Introduction
- 2 Model
- 3 Experiments
- 4 Conclusion

Current leading neural abstractive summarization approaches rely on the following :

- Sequence-to-sequence model (e.g, BART [2]).
- Pre-training then fine-tuning.
- Training is done with MLE and teacher forcing.
- Inference with auto-regressive decoding.

There are 2 major issues:

- MLE only favors the unique ground-truth, while in practice, there are many suitable summary candidates.
- At inference time, we cannot use teacher forcing, so auto-regressive decoding is employed. This discrepancy between training and inference is known as the **exposure** bias.

BRIO modifies the training objective to go from a **one-point** deterministic distribution assumed by MLE to a **non-deterministic distribution** in the which candidates are sorted by their quality.

The model now has two roles: a *generation* role to produce summary candidates, and an *evaluation* one to rank them.

BRIO belongs to the category of second-stage summarization approaches. Second-stage summarization can be classified into :

- Training with a **new loss**, in an extra fine-tuning round. For example a **contrastive loss**, like ConSum [6] or SeqCo [8].
- Using **guidance**, including outputs from another summarization model. Example: GSum [1].
- Using a **meta-learning** approach like RefSum [3].
- Re-rank candidates, either with a binary classification like SummaReranker [5], or a contrastive loss like SimCLS [4].

BRIO is both in the 1st and 4th categories.

Model: contrastive loss

BRIO proposes to coordinate summaries such that their model log-probability matches their actual quality (as per comparison with the target). A contrastive loss is used:

$$\mathcal{L}_{ctr} = \sum_{i} \sum_{j>i} \max(0, f(S_j) - f(S_i) + \lambda_{ij})$$

where summaries $S_1 \dots S_m$ are sorted in **decreasing ROUGE** order and f is the log-probability assigned by the model :

$$f(S) = \frac{\sum_{t=1}^{l} \log p_{g_{\theta}}(s_t|D, S_{< t}; \theta)}{|S|^{\alpha}}$$

Model: overall loss

Multi-tasking is used to train jointly with the cross-entropy loss (generation) and the contrastive loss (evaluation):

$$\mathcal{L}_{mul} = \mathcal{L}_{xent} + \gamma \mathcal{L}_{ctr}$$

Model: architecture

BRIO is initialized with the fine-tuned BART or PEGASUS [9] (depending on the dataset).

The contrastive loss coefficient γ is tuned on the validation set.

Summary candidates are obtained with **diverse beam search** [7].

Experiments: CNN/DM

Results on CNN/DM (BART-based):

System	R-1	R-2	R-L	
CNNDM				
BART*	44.16	21.28	40.90	
PEGASUS*	44.17	21.47	41.11	
GSum*	45.94	22.32	42.48	
ConSum*	44.53	21.54	41.57	
SeqCo*	45.02	21.80	41.75	
GOLD-p*	45.40	22.01	42.25	
GOLD-s*	44.82	22.09	41.81	
SimCLS*	46.67	22.15	43.54	
$BART^{\ddagger}$	44.29	21.17	41.09	
BRIO-Ctr	47.28^{\dagger}	22.93^{\dagger}	44.15^{\dagger}	
BRIO-Mul	47.78^{\dagger}	23.55^{\dagger}	44.57 [†]	

New SOTA: +0.62 R-1 compared to SummaReranker.

Experiments: XSum

Results on XSum (PEGASUS-based):

	XSun	ı	
BART*	45.14	22.27	37.25
PEGASUS*	47.21	24.56	39.25
GSum*	45.40	21.89	36.67
ConSum*	47.34	24.67	39.40
SeqCo*	45.65	22.41	37.04
$\overline{\text{GOLD-}p^*}$	45.75	22.26	37.30
GOLD-s*	45.85	22.58	37.65
SimCLS*	47.61	24.57	39.44
PEGASUS [‡]	47.46	24.69	39.53
BRIO-Ctr	48.13^{\dagger}	25.13^{\dagger}	39.84^{\dagger}
BRIO-Mul	49.07^{\dagger}	25.59 [†]	40.40^{\dagger}

New SOTA: +0.95 R-1 compared to SummaReranker.

Experiments: NYT

Results on NYT (BART-based):

	NYT	•	
BART [‡]	55.78	36.61	52.60
BRIO-Ctr	55.98	36.54	52.51
BRIO-Mul	57.75 [†]	38.64^{\dagger}	54.54 [†]

New SOTA: +1.46 R-1 compared to SimCLS.

Experiments: few-shot

Few-shot results: 100 samples on CNN/DM, 1k on XSum

Dataset	System	R-1	R-2	R-L
CNNDM	BART	44.29	21.17	41.09
	BRIO-Few	45.81	21.91	42.61
XSum	PEGASUS	47.46	24.69	39.53
	BRIO-Few	47.95	24.89	39.71

100 samples is enough to significantly improve on SOTA base models BART or PEGASUS.

Experiments: beam width

On CNN/DM:

Beams	BART		BART BRIO-Mul	
	R-1	R-2	R-1	R-2
4	44.29	21.17	47.78	23.55
10	43.83	20.76	47.98	23.81
20	43.53	20.49	48.07	23.92
50	43.06	20.05	48.18	24.01
100	42.79	19.76	48.23	24.09

Scaling the beam width leads to even greater gains : +0.45 R-1 when going from 4 to 100 (100 requires huge GPU RAM though).

Experiments: beam width

It's also possible to iterate rounds of fine-tuning with BRIO, then generating new candidates (assumed to be better than before), then fine-tuning with BRIO again, etc.

On CNN/DM, +0.23 R-1 with two rounds:

System	R-1	R-2	R-L
BART BRIO-Mul	44.29 47.78	21.17 23.55	41.09 44.57
BRIO-Loop	48.01 [†]	23.80 [†]	44.67 [†]

Experiments: other metrics

When ranking candidates with BERTScore [10]:

System	R-1	R-2	R-L	BS
BART	44.29	21.17	41.09	27.38
BRIO-Mul (R)	47.78	23.55	44.57	32.11
BRIO-Mul (B)	47.53	23.22	44.37	32.59

Leads to a greater BERTScore result (as expected).

Experiments: abstractiveness

Novel n-grams (on CNN/DM):

System	Unigram	Bigram
Reference	.1110	.4865
BART BRIO-Mul	.0101 .0262	.0924 .2381

Much more abstractive than the base BART.

Experiments: abstractiveness

Is the model able to rank candidates in the correct order? Correlations between probabilities assigned to candidates and candidate ROUGE:

	Own	PEGASUS
BART	.0470	.1205
BRIO-Mul	.1839 [†]	.2768 [†]

Own means candidates generated by the model (BART), **PEGASUS** are candidates generated by another PEGASUS model.

Conclusion

- New second-stage summarization fine-tuning objective.
- Multi-tasking: traditional cross-entropy + contrastive loss to learn the summary candidate order (coordination).
 - Contrastive loss the same as in SimCLS (shared co-authors).
 - BRIO re-uses the base summarization model (BART or PEGASUS) it's a unified second-stage fine-tuning.
- SOTA ROUGE on 3 datasets.
 - Only news datasets though.
- Several other desirable properties :
 - Good few-shot behavior.
 - High abstractiveness.
 - Optimizing other metrics for re-ranking works too.
 - Scalable with multiple rounds of fine-tuning, greater beam width.

- [1] Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao Jiang, and Graham Neubig. Gsum: A general framework for guided neural abstractive summarization. arXiv preprint arXiv:2010.08014, 2020.
- [2] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.
- [3] Yixin Liu, Zi-Yi Dou, and Pengfei Liu. Refsum: Refactoring neural summarization. arXiv preprint arXiv:2104.07210, 2021.
- [4] Yixin Liu and Pengfei Liu. Simcls: A simple framework for contrastive learning of abstractive summarization. arXiv preprint arXiv:2106.01890, 2021.

- [5] Mathieu Ravaut, Shafiq Joty, and Nancy F Chen. Summareranker: A multi-task mixture-of-experts re-ranking framework for abstractive summarization. arXiv preprint arXiv:2203.06569, 2022.
- [6] Shichao Sun and Wenjie Li. Alleviating exposure bias via contrastive learning for abstractive text summarization. arXiv preprint arXiv:2108.11846, 2021.
- [7] Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv Batra. Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:1610.02424, 2016.
- [8] Shusheng Xu, Xingxing Zhang, Yi Wu, and Furu Wei. Sequence level contrastive learning for text summarization. arXiv preprint arXiv:2109.03481, 2021.

- [9] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In *International Conference* on Machine Learning, pages 11328–11339. PMLR, 2020.
- [10] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint arXiv:1904.09675, 2019.