数值实验报告 I

实验名称	上札	上机实践题 1.1、1.2 题			实验时间	2021 年 9 月 11 日	
姓名	孙百乐	班级	本研 AI2001	学号	2007010218	成绩	

一、实验目的内容

上机实践题 1.1 和 1.2

二、题目描述

1.上机实践题 1.1

分别用公式 $f_1(x) = x(\sqrt{x+1} - \sqrt{x})$ 和 $f_2(x) = x/(\sqrt{x+1} + \sqrt{x})$ 计算 f(1) 和 $f(10^{10})$ 的值,并与准确值 f(1) = 0.414213562, $f(10^{10}) = 50000$ 作比较,说明误差大小及原因。

2.上机实践题 1.2

对于积分:

$$I_n = \int_0^1 \frac{x^n}{x+5} dx, n = 0,1,2....$$

- (1) 证明递推关系, $I_n = -5I_{n-1} + \frac{1}{n}, n = 1,2,3...$, $I_0 = \ln 1.2$
- (2) 用上述递推关系计算 $I_1, I_2, ..., I_{20}$ 观察数值结果是否合理并说明原因。

三、程序代码

1. 上机实践题 1.1

```
In [1]: import math def funl(x):
    return x*(math. sqrt(x+1)-math. sqrt(x))
    def fun2(x):
        return x/(math. sqrt(x+1)+math. sqrt(x))
    y1 = 0.414213562
    y2 = 50000

In [2]: print(f"funl(1)={funl(1)}, 误差大小{funl(1)-y1}; fun2(1)={fun2(1)}, 误差大小{fun2(1)-y1}")
    print(f"funl(10**10)={funl(10**10)}, 误差大小{funl(10**10)-y2}; fun2(10**10)={fun2(10**10)}, 误差大小{fun2(10**10)-y2}")
```

2. 上机实践题 1.2

```
In [1]: import math from scipy import integrate

In [2]: def f(x): return x**n/(x+5)

In [3]: def In(n): return integrate quad(f, 0, 1)

In [5]: I = math.log(1.2) for n in range(20): n = n+1 I = -5*I+1/n print(f"在现分中, I [n]={I n(n) [0]}") print(f"在现分中, I [n]={I n(n) [0]}") print(f"***10)
```

四、数值结果

1. 上机实践题 1.1

fun1(1)=0.41421356237309515, 误差大小3.730951658731385e-10; fun2(1)=0.4142135623730951, 误差大小3.730951103619873e-10 fun1(10**10)=49999.94416721165, 误差大小-0.05583278834819794; fun2(10**10)=49999.99998750005, 误差大小-1.2499949662014842e-06

2. 上机实践题 1.2

在递推中, I1=0.08839221603022707 在积分中, I1=0.08839221603022687 在递推中, 12=0.05803891984886467 在积分中, I2=0.05803891984886565 在递推中, I3=0.04313873408900998 在积分中, I3=0.04313873408900506 在递推中, I4=0.03430632955495011 在积分中, I4=0.034306329554974715 在递推中, I5=0.02846835222524946 在积分中, I5=0.028468352225126427 ***** 在递推中,16=0.024324905540419356 在积分中, I6=0.02432490554103456 ****** 在递推中,17=0.02123261515504607 在积分中, 17=0.021232615151970065 ***** 在递推中,18=0.018836924224769652 在积分中, I8=0.018836924240149672 在递推中,19=0.016926489987262844 在积分中,19=0.01692648991036278 在递推中, I10=0.015367550063685786 在积分中, I10=0.015367550448186112 ***** 在递推中,I11=0.01407134059066198 在积分中, I11=0.014071338668160361 在递推中, I12=0.012976630380023432 在积分中, I12=0.012976639992531552 ***** 在递推中,I13=0.012039925022959766 在积分中, I13=0.012039876960419183 在递推中,I14=0.011228946313772595 在积分中, I14=0.011229186626475532 在递推中, I15=0.010521935097803692 在积分中,I15=0.010520733534289037 在递推中, I16=0.00989032451098154 在积分中, I16=0.009896332328554842 ***** 在递推中, I17=0.009371906856857001 在积分中, I17=0.009341867768990519 ****** 在递推中, I18=0.008696021271270546 在积分中, I18=0.008846216710602975 在递推中,119=0.009151472591015689

五、结果分析

1.上机实践题 1.1

在积分中, I19=0.008400495394353568

当 x 较小时,两函数都没有很大误差。但 x 较大时,误差较大,f2 更接近准确值。

误差分析: 当 x 很大时, f1 中出现"两近似数相减"的情况,会损失很多有效数字,因此误差较大。

2.上机实践题 1.2

递推式计算结果与积分计算结果数值非常接近。因此可以认为数值计算结果是合理的。

学习了 语言编	心得体会 · 计算方法,才知道原来计算机算出来的数不一定就是准确的。 · 程基础,学会了用 Python 做数值计算并验证数学公式的正确 「以把代码写的更简洁优雅,得出更准确的结论。		
教 师 评 语	指导教师:	年月	日