

Appendix of Claims

1. **(Currently Amended)** A superconducting electric motor comprising:

a rotor assembly including:

~~[at least one]~~ a superconducting winding ~~[which]~~ that, in operation, generates a flux path within the rotor assembly~~[; and]~~,

a laminated support member ~~[which]~~ that supports the ~~[at least one]~~ superconducting winding, and

an induction structure to support induction current for driving the motor in a steady-state induction mode;

the rotor assembly being configured to operate

in a synchronous mode ~~[of operation]~~ at temperatures ~~[wherein]~~ in which the superconducting winding exhibits superconducting characteristics, and

in a steady-state induction mode ~~[of operation]~~ at temperatures ~~[wherein]~~ in which the superconducting winding exhibits non-superconducting characteristics.

2. **(Cancel)** The superconducting electric motor of claim 1 ~~wherein the rotor assembly includes induction structure for carrying current at levels sufficient to allow the steady-state induction mode of operation.~~

3. **(Currently Amended)** The superconducting electric motor of claim 1, wherein the ~~[rotor assembly includes]~~ induction structure is configured to allow the superconducting motor to generate a starting torque ~~[which]~~ that is at least 50% of the rated torque in the steady-state induction mode ~~[of operation]~~.

4. **(Currently Amended)** The superconducting electric motor of claim 3, wherein the [rotor assembly includes] induction structure is configured to allow the superconducting motor to generate a peak torque [which] that is approximately twice the rated torque in the steady-state induction mode [of operation].
5. **(Currently Amended)** The superconducting electric motor of claim 4, wherein [at least] a portion of the induction structure is spaced from the [at least one] superconducting winding by a thermal isolation vacuum region.
6. **(Currently Amended)** The superconducting electric motor of claim 5, wherein said [at least] portion of the induction structure spaced from the [at least one] superconducting winding by a thermal isolation vacuum region includes an electromagnetic shield member.
7. **(Currently Amended)** The superconducting electric motor of claim 6, further comprising a cryostat positioned between the thermal isolation vacuum region and the induction structure.
8. **(Currently Amended)** The superconducting electric motor of claim 6, wherein said electromagnetic shield member includes a conductive, non-magnetic material.
9. **(Currently Amended)** The superconducting electric motor of claim 4, wherein the induction structure includes the laminated support member [which supports the at least one superconducting winding].
10. **(Currently Amended)** The superconducting electric motor of claim 9, wherein the induction structure further includes an electromagnetic shield spaced from the [at least one] superconducting winding by a thermal isolation vacuum region.
11. **(Currently Amended)** The superconducting electric motor of claim 10, wherein the laminated support member includes [a plurality of] laminations[,-each lamination] lying

in a plane parallel to magnetic field flux lines extending through the laminations during operation of the superconducting electric motor.

12. **(Currently Amended)** The superconducting electric motor of claim 1, further comprising:
 - a stator assembly electromagnetically coupled to the rotor assembly; and
 - an adjustable speed drive that provides an electrical signal to the stator assembly.
13. **(Currently Amended)** The superconducting electric motor of claim 12, wherein the adjustable speed drive provides the stator assembly with a signal at a first frequency [~~to the stator~~] to start the superconducting motor in the synchronous mode [~~of operation~~] and provides the stator assembly with a signal at a second frequency[~~, less than the first frequency, to the stator~~] to operate the motor in the steady-state induction mode [~~of operation~~], the second frequency being less than the first frequency.
14. **(Currently Amended)** The superconducting electric motor of claim 1, wherein the superconducting winding includes a high temperature superconductor.
15. **(Currently Amended)** The superconducting electric motor of claim 1, wherein the superconducting winding comprises [~~is~~] a racetrack-shaped winding.
16. **(Currently Amended)** The superconducting electric motor of claim 1, wherein the support member [~~is formed of~~] comprises aluminum.
17. **(Currently Amended)** A superconducting electric motor comprising:
 - a rotor assembly including [~~at least one~~] a superconducting winding [~~comprising~~] having a high-temperature superconductor, the superconducting winding, in operation, generating flux within the rotor assembly, the rotor assembly configured to operate

in a synchronous mode [of operation] at temperatures in which [wherein] the [at least one] superconducting winding exhibits superconducting characteristics, and

in a steady-state induction mode at temperatures [wherein] in which the [at least one] superconducting winding exhibits non-superconducting characteristics;

a cryostat surrounding the rotor assembly to maintain the [at least one] superconducting winding at cryogenic temperatures; and

induction structure[, which] that, during operation, carries current at levels sufficient to allow the motor to operate in the steady-state induction mode [of operation of the superconducting electric motor], the induction structure including:

a laminated support member [which] that supports [the at least one] superconducting winding; and

an electromagnetic shield surrounding the cryostat and the [at least one] superconducting winding.

18. (Currently Amended) The superconducting electric motor of claim 17, further comprising:

a stator assembly electromagnetically coupled to the rotor assembly; and

an adjustable speed drive that provides an electrical signal to the stator assembly.

19. (Currently Amended) The superconducting electric motor of claim 18, wherein the adjustable speed drive provides the stator assembly with a signal at a first frequency [to the stator] to start the superconducting motor in the synchronous mode, [of operation] and provides the stator assembly with a signal at a second frequency[, less than the first

~~frequency,] to [the stator] operate the motor in the steady-state induction mode [of operation], the second frequency being less than the first frequency.~~

20. **(Currently Amended)** The superconducting electric motor of claim 17, wherein the laminated support member includes ~~[a plurality of laminations, each]~~ laminations lying in a plane parallel to magnetic field flux lines extending through the laminations during operation of the superconducting electric motor.
21. **(Currently Amended)** A method of operating ~~[a]~~ the superconducting electric motor of claim 1, ~~[the type including a rotor assembly including at least one superconducting winding which, in operation, generates a flux within the rotor assembly, and a support member which supports the at least one superconducting winding,]~~ the method comprising:

monitoring the temperature of the ~~[at least one]~~ superconducting winding;

operating the superconducting motor in a synchronous mode at ~~[a]~~ temperatures in which ~~[wherein]~~ the ~~[at least one]~~ superconducting winding exhibits superconducting characteristics; and

operating the superconducting motor in a steady-state induction mode at ~~[a]~~ temperatures ~~[wherein]~~ in which the ~~[at least one]~~ superconducting winding exhibits non-superconducting characteristics.

22. **(Currently Amended)** The method of claim 21, wherein operating the superconducting motor in the synchronous mode includes providing an electrical signal to a stator assembly~~[,]~~ electromagnetically coupled to the rotor assembly, the signal having a first frequency; and

wherein operating the superconducting motor in the steady-state induction mode includes providing a signal to the stator assembly at a second frequency, the second frequency being less than the first frequency.