NOMBRES COMPLEXES (JE SAIS FAIRE)

1 L'ENSEMBLE C DES NOMBRES COMPLEXES

- Exprimer pour tout $z \in \mathbb{C}$: Re(iz), Im(iz) et Re(z^2) en fonction de Re(z) et Im(z).
 - \bigcirc Je sais exprimer Re(zz') et Im(zz') en fonction des parties réelle et imaginaire de z et z'.
- Déterminer la forme algébrique du nombre complexe $\frac{2-i}{3-7i}$.

 \bigcirc Je sais énoncer les propriétés usuelles du module, dont l'inégalité triangulaire généralisée. Je sais qu'un module au carré est souvent plus intéressant qu'un module en vertu de la relation de factorisation : $|z|^2 = z\overline{z}$.

Exprimer $|z+1|^2$ en fonction de |z| et Re(z) pour tout $z \in \mathbb{C}$.

 \bigcirc Je sais calculer sous forme algébrique les racines carrées d'un nombre complexe et résoudre les équations du second degré à coefficients complexes. Je sais que la notation \sqrt{z} n'a de sens que si z est un réel positif.

Résoudre l'équation : $z^2 - z = i - 1$ d'inconnue $z \in \mathbb{C}$.

2 AUTOUR DE L'EXPONENTIELLE COMPLEXE

- Donner de tête les solutions des équations : $e^{i\theta} = 1$, $e^{i\theta} = i$ et $e^{i\theta} = \frac{1-i}{\sqrt{2}}$ d'inconnue $\theta \in \mathbb{R}$.
 - Substitution Je sais énoncer les formules d'Euler et Moivre. Je sais linéariser et dé-linéariser les expressions trigonométriques.
- Donner un argument des nombres complexes : -7, 5i, $i + \sqrt{3}$ et $\frac{i}{1+i}$.

Solution Je sais exprimer x et y en fonction de r et θ dans le cas où : $x + iy = re^{i\theta}$, ainsi que r et θ en fonction de x et y.

- Donner un argument de -1 + 2i sous la forme d'une arctangente, puis d'un arccosinus, puis d'un arcsinus.
- Proposer des valeurs de c et φ pour lesquelles pour tout $\theta \in \mathbb{R}$: $3\cos\theta + 4\sin\theta = c\cos(\theta + \varphi)$. On proposera φ sous la forme d'une arctangente.

Je sais mettre en œuvre la technique de l'angle moitié et je sais l'utiliser pour factoriser les expressions : $\cos x + \cos y$, $\sin x - \sin y$...

- \bigcirc Je sais factoriser les sommes du genre : $\sum_{k=0}^{n} \sin(kx + y)$.
- $\$ Je sais définir e^z pour tout $z \in \mathbb{C}$ et je sais calculer le module et un argument d'une telle exponentielle.
- Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$: $e^z = i$ et $e^z = 1 + 2i$.

a Je sais définir l'ensemble \mathbb{U}_n et décrire ses éléments. Je sais calculer les racines $n^{\text{èmes}}$ d'un nombre complexe donné sous forme trigonométrique. Je sais que la notation $\sqrt[n]{z}$ n'a de sens que si z est un réel positif.

- Je sais définir le nombre complexe j et énoncer ses propriétés usuelles.
- 10 Déterminer les racines cubiques de 8i.
- Exprimer en fonction de j les nombres : j^{32} et $(3j^2 + j + 1)(j + 2)$.

3 Interprétation géométrique des nombres complexes

s Je sais décrire géométriquement le passage d'un nombre complexe z aux nombres complexes z+u, λz avec $\lambda \in \mathbb{R}$ et $e^{i\theta}z$, et plus généralement az+b.

- Décrire géométriquement les transformations : $z \mapsto iz$ et $z \mapsto 3 2iz$.
- Déterminer pour tout $z \in \mathbb{C}$ l'image z' de z par la rotation de centre 2+3i et d'angle de mesure $-\frac{\pi}{2}$.

14

15

16

17

18

JE SAIS REPÉRER ET CORRIGER UNE ERREUR

Corriger, partout où c'est nécessaire, le calcul ou raisonnement suivant.

On cherche à résoudre l'équation : $\operatorname{Re}(z^3) = 1 + \operatorname{Im}(z^3)$ d'inconnue $z \in \mathbb{C}$. Pour tout $z \in \mathbb{C}$:

$$\operatorname{Re}(z^{3}) = 1 + \operatorname{Im}(z^{3}) \qquad \Longleftrightarrow \qquad \frac{z^{3} + \overline{z}^{3}}{2} = 1 + \frac{z^{3} - \overline{z}^{3}}{2} \qquad \Longleftrightarrow \qquad \overline{z}^{3} = 1$$

$$\Longleftrightarrow \qquad \overline{z} = 1 \qquad \Longleftrightarrow \qquad z = 1.$$

$$\Rightarrow \qquad \overline{z} = 1 \qquad \iff \qquad z = 1$$

Pour tout
$$\theta \in \mathbb{R}$$
: $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{e^{i\theta} - e^{-i\theta}}{e^{i\theta} + e^{-i\theta}} = \frac{e^{2i\theta} - 1}{e^{2i\theta} + 1} = \frac{\left(e^{2i\theta} - 1\right)\left(e^{-2i\theta} - 1\right)}{\left|e^{2i\theta} + 1\right|^2} = \frac{2 - e^{2i\theta} - e^{-2i\theta}}{\left|e^{i\theta}\left(e^{i\theta} + e^{-i\theta}\right)\right|^2}$
$$= \frac{\left(1 - \cos(2\theta)\right)}{2\cos^2 \theta}.$$

Pour tous
$$n \ge 2$$
 et $x \in \mathbb{R}$: $\sum_{k=1}^{n} \cos^{2} \frac{k\pi}{n} = \sum_{k=1}^{n} \text{Re}\left(e^{\frac{2ik\pi}{n}}\right) = \text{Re}\left(\sum_{k=1}^{n} e^{\frac{2ik\pi}{n}}\right)$.
Or: $\frac{2\pi}{n} \in]0, \pi[$, donc: $e^{\frac{2i\pi}{n}} \ne 1$, donc: $\sum_{k=1}^{n} \cos^{2} \frac{k\pi}{n} = \text{Re}\left(\frac{e^{2ik\pi} - 1}{e^{\frac{2ik\pi}{n}} - 1}\right)^{e^{2i\pi} = 1} \text{Re}(0) = 0$.

On cherche l'ensemble des
$$z \in \mathbb{C} \setminus \{i\}$$
 pour lesquels : $\frac{z^2}{z-i} \in \mathbb{R}$. Pour tout $z \in \mathbb{C} \setminus \{i\}$:

$$\frac{z^2}{z-i} \in \mathbb{R} \qquad \Longleftrightarrow \qquad \frac{\operatorname{Im}(z^2)}{\operatorname{Im}(z)-1} = 0 \qquad \Longleftrightarrow \qquad \frac{2 \operatorname{Re}(z) \operatorname{Im}(z)}{\operatorname{Im}(z)-1} = 0$$
$$\iff \qquad \operatorname{Re}(z) = 0 \quad \text{ou} \quad \operatorname{Im}(z) = 0.$$

L'ensemble cherché est ainsi la réunion des droites d'équation : x = 0 et y = 0.

On cherche les racines carrées de 3-4i. Pour tout $a, b \in \mathbb{R}$:

Les racines carrées de 3-4i sont donc : $\sqrt{14}-i\sqrt{11}$ et son conjugué.

5 CORRECTION DES EXERCICES

Pour tout $z \in \mathbb{C}$: $\operatorname{Re}(\mathrm{i}z) = -\operatorname{Im}(z)$, $\operatorname{Im}(\mathrm{i}z) = \operatorname{Re}(z)$ et $\operatorname{Re}(z^2) = \operatorname{Re}(z)^2 - \operatorname{Im}(z)^2$.

 $\frac{2-i}{3+7i} = \frac{13}{58} + \frac{11}{58} i.$

Pour tout $z \in \mathbb{C}$: $|z+1|^2 = (z+1)(\overline{z}+1) = z\overline{z} + z + \overline{z} + 1 = |z|^2 + 2\text{Re}(z) + 1$.

Discriminant : -3 + 4i. Racines carrées du discriminant : $\pm (1 + 2i)$. Solutions de l'équation : -i et 1 + i.

Pour tout $\theta \in \mathbb{R}$: $e^{i\theta} = 1 \iff \theta \equiv 0 \ [2\pi] \iff \theta \in 2\pi\mathbb{Z}$ puis: $e^{i\theta} = i \iff \theta \equiv \frac{\pi}{2} \ [2\pi] \iff \theta \in \frac{\pi}{2} + 2\pi\mathbb{Z}$,

et enfin: $e^{i\theta} = \frac{1-i}{\sqrt{2}} \iff e^{i\theta} = e^{-\frac{i\pi}{4}} \iff \theta \equiv -\frac{\pi}{4} \ [2\pi] \iff \theta \in -\frac{\pi}{4} + 2\pi\mathbb{Z}$.

 $arg(-7) = \pi, \quad arg(5i) = \frac{\pi}{2}, \quad arg\left(i + \sqrt{3}\right) = \frac{\pi}{6} \quad \text{et} \quad arg\left(\frac{i}{1+i}\right) \equiv arg(i) - arg(1+i) \equiv \frac{\pi}{2} - \frac{\pi}{4} \equiv \frac{\pi}{4} \left[2\pi\right].$

arg $(-1+2i) \equiv \pi + Arctan \frac{2}{-1} [2\pi] \equiv \pi - Arctan 2 [2\pi].$

Le nombre -1+2i possède un argument θ dans $\left[\frac{\pi}{2},\pi\right]\subset [0,\pi]$, pour lequel : $\cos\theta=\frac{-1}{\sqrt{(-1)^2+2^2}}=-\frac{1}{\sqrt{5}}$. A fortiori : $\arg(-1+2i)\equiv \arccos\left(-\frac{1}{\sqrt{5}}\right)[2\pi]$.

Le nombre -1+2i ne possède en revanche pas d'argument dans $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, mais par contre : $\pi-\theta\in\left[0,\frac{\pi}{2}\right]\subset\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. L'égalité : $\sin(\pi-\theta)=\sin\theta=\frac{2}{\sqrt{(-1)^2+2^2}}=\frac{2}{\sqrt{5}}$ montre alors que : $\arg(-1+2i)\equiv\pi-\arcsin\frac{2}{\sqrt{5}}$ $[2\pi]$.

Pour tout $\theta \in \mathbb{R}$: $3\cos\theta + 4\sin\theta = \sqrt{3^2 + 4^2}\left(\frac{3}{\sqrt{3^2 + 4^2}}\cos\theta + \frac{4}{\sqrt{3^2 + 4^2}}\sin\theta\right) = 5\left(\frac{3}{5}\cos\theta + \frac{4}{5}\sin\theta\right)$. Nous cherchons donc un réel φ pour lequel : $\cos\varphi = \frac{3}{5}$ et $\sin\varphi = -\frac{4}{5}$, i.e. : $e^{i\varphi} = \frac{3-4i}{5}$. Comme : $\frac{3}{5} > 0$, on peut choisir : $\varphi = \arctan\frac{-4}{3} = -\arctan\frac{4}{3}$. Enfin, pour tout $\theta \in \mathbb{R}$:

 $3\cos\theta + 4\sin\theta = 5\left(\cos\left(\arctan\frac{4}{3}\right)\cos\theta + \sin\left(\arctan\frac{4}{3}\right)\sin\theta\right) = 5\cos\left(\theta - \arctan\frac{4}{3}\right).$

Pour tout $z = x + iy \in \mathbb{C}$ avec $x, y \in \mathbb{R}$: $e^z = i$ \iff $e^x = 1$ et $y \equiv \frac{\pi}{2} [2\pi]$ \iff x = 0 et $\exists k \in \mathbb{Z}/y = \frac{\pi}{2} + 2k\pi$ \iff $\exists k \in \mathbb{Z}/z = \frac{i\pi}{2} + 2ik\pi$

et $e^z = 1 + 2i$ \iff $e^z = \sqrt{5} e^{i\operatorname{Arctan} 2}$ \iff $e^x = \sqrt{5}$ et $y \equiv \operatorname{Arctan} 2 [2\pi]$ \iff $x = \frac{\ln 5}{2}$ et $\exists k \in \mathbb{Z}/y = \operatorname{Arctan} 2 + 2k\pi$ \iff $\exists k \in \mathbb{Z}/z = \frac{\ln 5}{2} + i\operatorname{Arctan} 2 + 2ik\pi$.

 $\boxed{\mathbf{10}} \text{ Pour tout } z \in \mathbb{C}: \quad z^3 = 8\mathrm{i} \quad \Longleftrightarrow \quad z^3 = 2^3 \mathrm{e}^{\frac{\mathrm{i}\pi}{2}} \quad \Longleftrightarrow \quad \exists \ k \in \llbracket 0, 2 \rrbracket / \quad z = 2 \mathrm{e}^{\frac{\mathrm{i}\pi}{6} + \frac{2\mathrm{i}k\pi}{3}} \quad \Longleftrightarrow \quad z \in \left\{ 2\mathrm{e}^{\frac{\mathrm{i}\pi}{6}}, 2\mathrm{e}^{\frac{5\mathrm{i}\pi}{6}}, -2\mathrm{i} \right\}.$

15

- Comme $j^3 = 1$: $j^{32} = j^{3 \times 10 + 2} = j^2$, et comme par ailleurs : $j^2 + j + 1 = 0$, alors : $(3j^2 + j + 1)(j + 2) = 3j^3 + 7j^2 + 3j + 2 = 3 \times 1 + 7(-1 j) + 3j + 2 = -2 4j.$
- L'application $z \mapsto iz = e^{\frac{i\pi}{2}}z$ n'est autre que la rotation de centre 0 et d'angle de mesure $\frac{\pi}{2}$.

 Pour tout $z \in \mathbb{C}$: $3-2iz = z \iff z = \frac{3}{2+i} = \frac{6-3i}{5}$. Comme par ailleur : $-2i = 2e^{-\frac{i\pi}{2}}$, l'application $z \mapsto 3-2iz$ est la similitude de centre $\frac{6-3i}{5}$, de rapport 2 et d'angle de mesure $-\frac{\pi}{2}$.
- Le vecteur d'affixe z-2-3i est « tourné » d'un angle de mesure $-\frac{\pi}{2}$ et devient le vecteur d'affixe z'-2-3i, donc : $z'-2-3i=e^{-\frac{i\pi}{2}} \ (z-2-3i)=-i(z-2-3i). \quad \text{Finalement}: \quad z'=-iz-1+5i.$
- **Première erreur**: Pour tout $z \in \mathbb{C}$: $Im(z) = \frac{z \overline{z}}{2i}$ AVEC UN « i » AU DÉNOMINATEUR! La première équivalence est donc fausse
 - Deuxième erreur : L'équivalence : $\overline{z}^3 = 1 \iff \overline{z} = 1$ est fausse car z est complexe. Il faut ici faire appel aux racines $n^{\text{èmes}}$. En l'occurrence :

$$\overline{z}^3 = 1 \qquad \Longleftrightarrow \qquad z^3 = 1 \qquad \Longleftrightarrow \qquad z \in \mathbb{U}_3 \qquad \Longleftrightarrow \qquad z \in \left\{1, \mathbf{j}, \overline{\mathbf{j}}\right\}.$$

- **Première erreur**: Le calcul proposé est valable pour θ dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[+\pi\mathbb{Z}$ et non \mathbb{R} à cause de la fonction tangente.
 - Deuxième erreur : $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$ AVEC UN « i » AU DÉNOMINATEUR ! La deuxième égalité est donc fausse.
 - Troisième erreur : $\frac{1}{e^{2i\theta}+1} = \frac{e^{-2i\theta}+1}{\left|e^{2i\theta}+1\right|^2} \quad car : \quad \overline{e^{2i\theta}+1} = e^{-2i\theta}+1 \neq e^{-2i\theta}-1. \quad \text{La quatrième égalité est donc fausse.}$
- **Première erreur**: En général : $\operatorname{Re}(z^2) \neq \operatorname{Re}(z)^2$, donc ici : $\cos^2 \frac{k\pi}{n} = \left(\cos \frac{k\pi}{n}\right)^2 = \operatorname{Re}\left(e^{\frac{ik\pi}{n}}\right)^2 \neq \operatorname{Re}\left(e^{\frac{2ik\pi}{n}}\right)$.
 - **Deuxième erreur**: Dans le calcul de la somme géométrique à la fin, le premier terme « $e^{\frac{2i\pi}{n}}$ » a été oublié.
 - Troisième erreur : Il n'a aucun sens d'écrire que : $\sum_{k=1}^n e^{\frac{2ik\pi}{n}} = \frac{e^{2ik\pi}-1}{e^{\frac{2ik\pi}{n}}-1}.$ Comment le quotient à droite pourraitil dépendre de k alors que la somme n'en dépend pas ? La raison géométrique de la somme étudiée est : $e^{\frac{2i\pi}{n}}$ et non pas : $e^{\frac{2ik\pi}{n}}$.
- Une seule erreur, mais de taille! En général : $\operatorname{Im}\left(\frac{z'}{z}\right) \neq \frac{\operatorname{Im}(z')}{\operatorname{Im}(z)}$. La première équivalence est donc fausse. Pour calculer la partie imaginaire de $\frac{z^2}{z-i}$, on peut procéder de la manière suivante :

$$\begin{split} \operatorname{Im} \left(\frac{z^2}{z - \mathrm{i}} \right) &= \operatorname{Im} \left(\frac{z^2 \left(\overline{z} + \mathrm{i} \right)}{|z - \mathrm{i}|^2} \right) = \operatorname{Im} \left(\frac{z|z|^2 + \mathrm{i}z^2}{\operatorname{Re}(z)^2 + \left(\operatorname{Im}(z) - 1 \right)^2} \right) = \frac{\operatorname{Im}(z) |z|^2 + \operatorname{Im} \left(\mathrm{i}z^2 \right)}{\operatorname{Re}(z)^2 + \left(\operatorname{Im}(z) - 1 \right)^2} = \frac{\operatorname{Im}(z) |z|^2 + \operatorname{Re} \left(z^2 \right)}{|z|^2 - 2 \operatorname{Im}(z) + 1} \\ &= \frac{\operatorname{Im}(z) |z|^2 + \left(\operatorname{Re}(z)^2 - \operatorname{Im}(z)^2 \right)}{|z|^2 - 2 \operatorname{Im}(z) + 1}. \end{split}$$

Bref, c'est plutôt affreux et il n'est pas si facile de décrire l'ensemble des nombres $z \in \mathbb{C} \setminus \{i\}$ pour lesquels : $\frac{z^2}{z-i} \in \mathbb{R}$!

18

- **Première erreur**: L'équation des modules s'écrit ici : $a^2 + b^2 = |a + ib|^2 = |3 4i| = \sqrt{25} = 5 \neq 25$.
- Deuxième erreur : Malencontreuse erreur dans la conclusion! Les racines carrées de 3-4i sont : $\sqrt{14}-i\sqrt{11}$ et son OPPOSÉ : $-\sqrt{14}+i\sqrt{11}$ et non pas son CONJUGUÉ.