

SEQUENCE LISTING

<110> Ben-Sasson Shmuel A.

<120> SHORT PEPTIDES WHICH SELECTIVELY
MODULATE THE ACTIVITY OF SERINE/THREONINE KINASES

<130> 1242.1015-009

<150> US 08/861,338
<151> 1997-05-21

<160> 68

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 20

<212> PRT

<213> Unknown

<220>

<223> RAF

<400> 1

Tyr Glu Leu Met Thr Gly Glu Leu Pro Tyr Ser His Ile Asn Asn Arg
1 5 10 15
Asp Gln Ile Ile
20.

<210> 2

<211> 20

<212> PRT

<213> Unknown

<220>

<223> CAPK

<400> 2

Tyr Glu Met Ala Ala Gly Tyr Pro Pro Phe Phe Ala Asp Gln Pro Ile
1 5 10 15
Gln Ile Tyr Glu
20.

<210> 3

<211> 20

<212> PRT

<213> Unknown

<220>

<223> PKC

<400> 3

Tyr Glu Met Leu Ala Gly Gln Pro Pro Phe Asp Gly Glu Asp Glu Asp
1 5 10 15
Glu Leu Phe Gln
20.

<210> 4
<211> 20
<212> PRT
<213> Unknown

<220>
<223> bARK1.2

<400> 4
Phe Lys Leu Ile Arg Gly His Ser Pro Phe Arg Gln His Lys Thr Lys
1 5 10 15
Asp Lys His Glu
20

<210> 5
<211> 20
<212> PRT
<213> Unknown

<220>
<223> CaMK

<400> 5
Tyr Ile Leu Leu Val Gly Tyr Pro Pro Phe Trp Asp Glu Asp Gln His
1 5 10 15
Arg Leu Tyr Gln
20

<210> 6
<211> 20
<212> PRT
<213> Unknown

<220>
<223> POLO

<400> 6
Tyr Thr Leu Leu Val Gly Lys Pro Pro Phe Glu Thr Ser Cys Leu Lys
1 5 10 15
Glu Thr Tyr Leu
20

<210> 7
<211> 20
<212> PRT
<213> Unknown

<220>
<223> Akt/PKB

<400> 7
Tyr Glu Met Met Cys Gly Arg Leu Pro Phe Tyr Asn Gln Asp His Glu
1 5 10 15
Arg Leu Phe Glu
20

<210> 8
<211> 20

<212> PRT
<213> Unknown

<220>
<223> GRK1

<400> 8
Tyr Glu Met Ile Ala Ala Arg Gly Pro Phe Arg Ala Arg Gly Glu Lys
1 5 10 15
Val Glu Asn Lys
20

<210> 9
<211> 20
<212> PRT
<213> Unknown

<220>
<223> GRK4

<400> 9
Tyr Glu Met Ile Gln Gly His Ser Pro Phe Lys Lys Tyr Lys Glu Lys
1 5 10 15
Val Lys Trp Glu
20

<210> 10
<211> 20
<212> PRT
<213> Unknown

<220>
<223> GRK5

<400> 10
Tyr Glu Met Ile Glu Gly Gln Ser Pro Phe Arg Gly Arg Lys Glu Lys
1 5 10 15
Val Lys Arg Glu
20

<210> 11
<211> 20
<212> PRT
<213> Unknown

<220>
<223> GRK6

<400> 11
Tyr Glu Met Ile Ala Gly Gln Ser Pro Phe Gln Gln Arg Lys Lys Lys
1 5 10 15
Ile Lys Arg Glu
20

<210> 12
<211> 20
<212> PRT
<213> Unknown

<220>
<223> GSK3

<400> 12
Ala Glu Leu Leu Leu Gly Gln Pro Ile Phe Pro Gly Asp Ser Gly Val
1 5 10 15
Asp Gln Leu Val
20

<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> HJ38

<400> 13
Val Met Thr Gly Gln Leu Pro Phe
1 5

<210> 14
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 5 is benzylester

<221> AMIDATION
<222> (0)...(8)

<223> HJ41

<400> 14
Val Met Thr Gly Glu Leu Pro Phe
1 5

<210> 15
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 9 is benzylester

<221> AMIDATION
<222> (0)...(9)

<223> J42

<400> 15
Met Leu Leu Gly Arg Pro Pro Phe Glu
1 5

<210> 16
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> J43

<400> 16
Met Leu Leu Gly Lys Pro Pro Phe
1 5

<210> 17
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 9 is benzylester

<221> AMIDATION
<222> (0)...(9)

<223> J43.1

<400> 17
Met Leu Leu Gly Lys Pro Pro Phe Glu
1 5

<210> 18
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 7 is benzylester

<221> AMIDATION
<222> (0)...(9)

<223> J45

<400> 18
Leu Gly Arg Pro Pro Phe Glu Thr Ser
1 5

<210> 19
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 9 is benzylester

<221> AMIDATION
<222> (0)...(11)

<223> J46

<400> 19
Met Leu Leu Gly Arg Pro Pro Phe Glu Thr Ser
1 5 10

<210> 20
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> J47

<400> 20
Gly Arg Leu Pro Phe Phe Asn
1 5

<210> 21
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 1 is benzylester

<221> AMIDATION
<222> (0)...(11)

<223> J48

<400> 21
Glu Met Met Ser Gly Arg Leu Pro Phe Phe Asn
1 5 10

<210> 22
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> J29

<400> 22
Leu Leu Leu Gly Gln Pro Ile Phe Pro Gly
1 5 10

<210> 23
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(11)

<223> ACTRIIA

<400> 23
Gly Gly Pro Val Asp Glu Tyr Met Leu Pro Phe
1 5 10

<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(11)

<223> ALK1

<400> 24
Gly Gly Ile Val Glu Asp Tyr Arg Pro Pro Phe
1 5 10

<210> 25
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(11)

<223> ALK3

<400> 25
Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr
1 5 10

<210> 26
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(12)

<223> ALK4

<400> 26
Gly Gly Gln Val His Glu Glu Tyr Gln Leu Pro Tyr
1 5 10

<210> 27
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(11)

<223> TGFbRII

<400> 27
Gly Gly Glu Val Lys Asp Tyr Glu Pro Pro Phe
1 5 10

<210> 28
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> ATK1/Racca

<400> 28
Gly Met Met Ser Gly Arg Leu Pro
1 5

<210> 29
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(6)

<223> cAPKa

<400> 29
Met Ala Ala Gly Tyr Pro
1 5

<210> 30
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> cAPKa

<400> 30
Met Ala Ala Gly Tyr Pro Pro Phe Phe
1 5

<210> 31
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> CDK2

<400> 31
Gly Met Val Thr Arg Arg Ala Leu Phe
1 5

<210> 32
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> CDK4

<400> 32
Gly Met Phe Arg Arg Lys Pro Leu Phe
1 5

<210> 33
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> Chk1

<400> 33
Met Leu Ala Gly Glu Leu Pro Trp Asp
1 5

<210> 34
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> Chk1

<400> 34
Gly Met Leu Ala Gly Glu Leu Pro
1 5

<210> 35
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> Chk1

<400> 35
Gly Met Leu Ala Gly Glu Leu
1 5

<210> 36
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> Chk1

<400> 36
Gly Met Leu Ala Gly Glu Leu Pro Trp Asp
1 5 10

<210> 37
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(11)

<223> DAPK

<400> 37
Ile Leu Leu Ser Gly Ala Ser Pro Phe Leu Gly
1 5 10

<210> 38
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> GSK3b

<400> 38
Gly Leu Leu Leu Gly Gln Pro Ile
1 5

<210> 39
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> lak1

<400> 39
Phe Leu Val Gly Met Pro Pro Phe
1 5

<210> 40
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> lak1

<400> 40
Gly Phe Leu Val Gly Met Pro Pro
1 5

<210> 41
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> lak1

<400> 41
Gly Phe Leu Val Gly Met Pro
1 5

<210> 42
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> lak1

<400> 42
Gly Phe Leu Val Gly Met Pro Pro Phe Glu
1 5 10

<210> 43
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> IKK-1

<400> 43
Gly Ile Ala Gly Tyr Arg Pro Phe Leu
1 5

<210> 44
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> IKK-2

<400> 44
Ile Thr Gly Phe Arg Pro Phe Leu
1 5

<210> 45
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> IKK-2

<400> 45
Gly Ile Thr Gly Phe Arg Pro Phe Leu
1 5

<210> 46
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)
<223> position 5 is benzylester

<221> AMIDATION
<222> (0)...(6)

<223> ILK

<400> 46
Leu Val Thr Arg Glu Val
1 5

<210> 47
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(9)

<223> ILK

<400> 47
Gly Leu Val Thr Arg Glu Val Pro Phe
1 5

<210> 48
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION

<222> (0) . . . (7)

<223> ILK

<400> 48

Gly Leu Val Thr Arg Glu Val
1 5

<210> 49

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<221> MYRISTATE

<222> (1) . . . (0)

<221> AMIDATION

<222> (0) . . . (6)

<223> MARK1

<400> 49

Gly Leu Val Ser Gly Ser
1 5

<210> 50

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> MYRISTATE

<222> (1) . . . (0)

<221> AMIDATION

<222> (0) . . . (8)

<223> MARK1

<400> 50

Gly Leu Val Ser Gly Ser Leu Pro
1 5

<210> 51

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<221> ACETYLATION

<222> (1) . . . (0)

<221> AMIDATION
<222> (0)...(8)

<223> PKCb

<400> 51
Met Leu Ala Gly Gln Ala Pro Phe
1 5

<210> 52
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> PKCb

<400> 52
Gly Met Leu Ala Gly Gln Ala Pro
1 5

<210> 53
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> PKCb

<400> 53
Gly Met Leu Ala Gly Gln Ala
1 5

<210> 54
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> PKcb

<400> 54
Gly Met Leu Ala Gly Gln Ala Pro Phe Glu
1 5 10

<210> 55
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> ACETYLATION
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> Plk

<400> 55
Leu Leu Val Gly Lys Pro Pro Phe
1 5

<210> 56
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> Plk

<400> 56
Gly Leu Leu Val Gly Lys Pro Pro
1 5

<210> 57
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<223> position 10 is benzylester

<221> AMIDATION
<222> (0)...(10)

<223> SNK

<400> 57

Gly Met Leu Leu Gly Arg Pro Pro Phe Glu
1 5 10

<210> 58
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<223> SNK

<400> 58

Gly Met Leu Leu Gly Arg Pro Pro
1 5

<210> 59
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> Braf

<400> 59

Gly Leu Met Thr Gly Gln Leu
1 5

<210> 60
<211> 10
<212> PRT
<213> Artificial Sequence

<220>

<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> Braf

<400> 60
Gly Leu Met Thr Gly Gln Leu Pro Tyr Ser
1 5 10

<210> 61
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<223> cRaf

<400> 61
Gly Leu Met Thr Gly Glu Leu
1 5

<210> 62
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(10)

<223> cRaf

<400> 62
Gly Leu Met Thr Gly Glu Leu Pro Tyr Ser
1 5 10

<210> 63
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Akt1/Raca

<221> AMIDATION
<222> (0)...(6)

<400> 63
Met Cys Gly Arg Leu Pro
1 5

<210> 64
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Akt1/Raca

<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(8)

<400> 64
Gly Met Met Cys Gly Arg Leu Pro
1 5

<210> 65
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> bARK1

<221> MYRISTATE
<222> (1)...(0)

<221> AMIDATION
<222> (0)...(7)

<400> 65
Gly Leu Leu Arg Gly His Ser
1 5

<210> 66
<211> 11
<212> PRT
<213> Artificial Sequence

<221> AMIDATION
<222> (0)...(11)

<220>
<223> ALK1
Stearate at position 1

<400> 66
Gly Gly Ile Val Glu Asp Tyr Arg Pro Pro Phe
1 5 10

<210> 67
<211> 11
<212> PRT
<213> Artificial Sequence

<220>
<223> ALK3
Stearate at position 1

<221> AMIDATION
<222> (0) ... (11)

<400> 67
Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr
1 5 10

<210> 68
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> ILK
Stearate at position 1

<221> AMIDATION
<222> (0) ... (9)

<400> 68
Gly Leu Val Thr Arg Glu Val Pro Phe
1 5