Week 2 Practice Quiz

Practice Quiz, 5 questions

✓ Congratulations! You passed!

Next Item

Practice Quiz, 5 questions

Read the following scenario and then, from the choices that follow, choose the correct set of hypotheses for the scenario:

Since 2008, chain restaurants in California have been required to display calorie counts of each menu item. Prior to menus displaying calorie counts, the average calorie intake of diners at a restaurant was 1100 calories. After calorie counts started to be displayed on menus, a nutritionist collected data on the number of calories consumed at this restaurant from a random sample of diners. Do these data provide convincing evidence of a difference in the average calorie intake of a diners at this restaurant?

 $H_0: \bar{x} = 1100 H_A: \bar{x} < 1100$ $H_0: \mu = 1100 H_A: \mu \neq 1100$

Correct

This question refers to the following learning objective(s):

- Always construct hypotheses about population parameters (e.g. population mean, μ) and not the sample statistics (e.g. sample mean, \bar{x}). Note that the population parameter is unknown while the sample statistic is measured using the observed data and hence there is no point in hypothesizing about it.
- Define the null value as the value the parameter is set to equal in the null hypothesis.
- Note that the alternative hypothesis might be one-sided (μ < or > the null value) or two-sided ($\mu \neq$ the null value), and the choice depends on the research question.

 $H_0: \mu = 1100 H_A: \mu > 1100$

Practice Quiz, 5 questions

stions Which	of the following is the correct definition of the p-value?	
	P(H_0 true H_A false)	
\bigcirc	P(observed or more extreme sample statistic $\mid H_0$ true)	
Defii a sar	question refers to the following learning objective(s): ne a p-value as the conditional probability of obtaining mple statistic at least as extreme as the one observed in that the null hypothesis is true.	
p-value = P(observed or more extreme sample statistic \mid H_0 true)		
Define a p-value as the conditional probability of obtaining a sample statistic at least as extreme as the one observed given that the null hypothesis is true.		
	P(H_0 true \mid observed data)	
	P(H_0 true)	

Practice Quiz, 5 questions

One-sided alternative hypotheses a	re phrased in terms of:
------------------------------------	-------------------------

\bigcirc	< or >

Correct

This question refers to the following learning objective(s): Note that the alternative hypothesis might be one-sided ($\mu <$ or > the null value) or two-sided ($\mu \neq$ the null value), and the choice depends on the research question.

\bigcirc	≈ or =
\bigcirc	≤or≥

Week 2 Practice Quiz

Practice Quiz, 5 questions

ations		
A Type 2 error occurs when the null hypothesis is		
not rejected when it is false		
Correct		
This question refers to the following learning objective(s): Note that the conclusion of a hypothesis test might be erroneous regardless of the decision we make.		
 Define a Type 1 error as rejecting the null hypothesis when the null hypothesis is actually true. 		
 Define a Type 2 error as failing to reject the null hypothesis when the alternative hypothesis is actually true. 		
rejected when it is false		
rejected when it is faise		
not rejected when it is true		
rejected when it is true		
1/1		
points		
5. True / False: Decreasing the significance level ($lpha$) will increase the		
probability of making a Type 1 error.		
probability of making a type i citor.		
True		

Week 2 Practice Quiz

Practice Q 1/2 5 qu sijons