Type Author Citation Literature Cutoff Date Full Evaluation Alan L. Nichols, Balraj Singh, Jagdish K. Tuli NDS 113,973 (2012) 15-Apr-2012

 $Q(\beta^{-}) = -9181.1 \ 4$; $S(n) = 12890 \ 16$; $S(p) = 6472.6 \ 11$; $Q(\alpha) = -3364.3 \ 6$ 2012Wa38

Note: Current evaluation has used the following Q record -9181.07 38 12896 16 6472.7 11-3364.3 6 2011AuZZ.

S(2n)=23136.4 7, S(2p)=11272.9 5 (2011AuZZ).

Values in 2003Au03: $Q(\beta^-)=-9171\ 26$, $S(n)=12897\ 19$, $S(p)=6477\ 10$, $Q(\alpha)=-3369\ 10$, $S(2n)=23126\ 15$, $S(2p)=11277\ 10$.

Other reactions:

1997Fo03: 62 Ni(π^+,π^-),E=140-230 MeV, measured $\sigma(\theta)$.

1993Be02: 62 Ni(π^+ , π^-),E=293.4 MeV, measured $\sigma(\theta)$.

1979ShZN: 58 Ni(14 N, 10 B) E=155 MeV, measured $\sigma(\theta)$, DWBA.

1977Gr03: 58 Ni(α ,p) E=6.26-9.12 MeV in steps of 20 keV, excitation functions measured to find resonances of large α width. The spectra show a large number of alpha-particle resonances, but their energies are not listed. Differential cross sections were measured at three angles. No evidence was found for levels with very large α widths; observed α width was concentrated in a small number of states, in qualitative agreement with the predictions of a weak coupling shell model.

1976Ca06: 64 Zn(γ ,2n) E=8-30 MeV; measured σ , GDR width.

1970Co25: 64 Zn(γ ,2n) E=12-40 MeV; measured σ , GDR.

Mass measurement: 2006Er03 (Penning trap method).

Additional information 1.

62Zn Levels

Cross Reference (XREF) Flags

Α	62 Ga ε decay (116.121 ms)	G	⁵⁸ Ni(¹² C, ⁸ Be)	M	61 Ni(3 He,2n γ)
В	40 Ca(28 Si,α2pγ) E=122 MeV	H	⁵⁸ Ni(¹⁶ O, ¹² C)	N	Coulomb excitation
C	40 Ca(28 Si, α 2p γ) E=125 MeV	I	60 Ni(3 He,n)	0	63 Cu(p,2n γ)
D	⁵⁸ Ni(⁶ Li,pnγ)	J	60 Ni(α ,2n γ),(3 He,n γ)	P	64 Zn(p,t)
E	⁵⁸ Ni(⁶ Li,d),(pol ⁶ Li,D)	K	⁶⁰ Ni(¹² C, ¹⁰ Be)		
F	58 Ni(7 Li,t)	L	60 Ni(16 O, 14 C)		

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF
0.0 ^b	0+	9.193 h <i>15</i>	ABCDEFGHIJKLMNOP

Comments

 $%\varepsilon + \%\beta^{+} = 100$ $T_{1/2}$: weighted average of 9.186 h 13 (1982Gr10, from decay curve for two γ rays followed over 8 to 11 half-lives, but no details); 9.231 h 20, 9.23 h 6 (1972Cr02,γ counting, average of measurements for four γ rays of 260, 394, 548 and 597 keV at two different energies of $E(^{3}He)$ beam in $^{64}Zn(^{3}He,X)$ reaction; 9.34 h 4 and 9.39 h 5 at two other beam energies not used in the averaging procedure because of low counting rates and apparent discrepant results); 9.3 h 2 (1967Ro01, γ decay curve, but no details); 9.2 h I (1967An01, from decay curves for several conversion lines, but no other details); 9.13 h 3 (1964Ru06, $\gamma\gamma$ counting method, eight runs, but no other details); 9.3 h 2 $(1954Nu27, \gamma \text{ counting, but no details})$. Others: 8.4 h 2 (1953Ku08,preliminary value from a composite decay curve of several activities produced), 9.33 h (1950Ha65, from positron decay curve), 9.5 h (1948Mi12, from electron counting using GM counter). Reduced χ^2 =1.5. Uncertainty is obtained by multiplying uncertainty of 0.0125 by (reduced χ^2)^{1/2}.

953.84 b 9 2 $^{+}$ 2.93 ps 14 ABCDEFGHIJKLMNOP

 μ =+0.74 20 (2002Ke02,2011StZZ)

 μ : from g factor=+0.37 10 (2002Ke02) using projectile Coulomb excitation in inverse kinematics and transient magnetic fields. Data

Continued on next page (footnotes at end of table)

⁶²Zn produced and identified in deuteron and ³He bombardment of Cu (1948Mi12), who also measured half-life.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
				reanalyzed in 2010Mo14 with the same result of $g=+0.37$ 10.
				J^{π} : E2 γ to 0^{+} . $T_{1/2}$: from evaluation by 2011PrZZ, based on mean lifetime
				measurements of 4.2 ps 7 (2007St16), 4.3 ps 3 (2002Ke02),
1004 676 11	2+	2.6242	ADODE W WAND	4.2 ps 3 (1981Wa09) and 2.5 ps $+10-20$ (1977BrYO).
1804.67 ^c 11 2186.06 ^b 13	2 ⁺ 4 ⁺	2.63 ps 42	ABCDE H JKLMNOP	J^{π} : E2 γ to 0^+ .
2180.00° 13	4	0.53 ps +24-14	BCDE GH JK MNOP	J^{π} : ΔJ=2, E2 γ to 0 ⁺ . $T_{1/2}$: other: 1.0 ps 7 from (α ,2n γ).
2341.95 23	0_{+}		A E H M P	XREF: E(2360).
J				J^{π} : $L(p,t)=L(^{6}Li,d)=0$.
2384.50 ^d 15	3+	1.7 ps 11	CD IJ MNO	J^{π} : $\Delta J=1$, M1+E2 γ to 2 ⁺ ; not 1 from excitation function.
2743.60 ^c 15	4+	2.36 ps 21	BCDE H J M OP	$T_{1/2}$: >0.7 ps from DSAM, <2.8 ps from RDM, ⁵⁸ Ni(⁶ Li,pnγ). J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; ΔJ =0, M1+E2 γ to 4 ⁺ ; L(p,t)=4.
2803.14 <i>17</i>	2+	0.146 [@] ps 21	A E H LM P	XREF: E(2840).
		1		J^{π} : $L(^{6}Li,d)=L(p,t)=2$.
				$T_{1/2}$: DSA in (3 He,2n γ).
				E(level): identified as one component of one-phonon mixed-symmetry 2 ⁺ state (2010Al28).
2884.05 25	2+	0.132 [@] ps 21	M P	J^{π} : $\gamma \gamma(\theta)$ in (³ He,2n γ); L(p,t)=(2).
		1		$T_{1/2}$: DSA in (3 He, 2 n γ).
				E(level): identified as second component of one-phonon
3042.9? 8	(0^+)		A	mixed-symmetry 2 ⁺ state (2010Al28).
3060 10	2+		P	J^{π} : L(p,t)=2.
3160 10	(2^{+})		I P	J^{π} : L(³ He,n)=2+(3). L(p,t)=2 for doublet.
3181.2 <i>4</i> 3209.86 <i>21</i>	(1 ⁺) 4 ⁺	0.250 [@] ps 35	A CD GH kLM	E(lavel), 2010A128 identify the 2200 41 state as a good
3209.80 21	4	0.230 ps 33	CD GH KLN	E(level): 2010Al28 identify the 3209 4+ state as a good candidate for a two-phonon mixed symmetry state. However,
				non-observation of expected transition to the one-phonon
				mixed symmetry 2 ⁺ state at 2803 keV does not allow a confirmed identification of such an excitation.
				J^{π} : from $\gamma\gamma(\theta)$ (2010Al28). $J^{\pi}=3^{-}$ is ruled out since such an
				adoption would give a large quadrupole (M2) admixture for
3223.5 4	3(-)		E M P	1023.7γ which is inconsistent with RUL. XREF: E(3190).
3223.3 4	3` /		E M P	J^{π} : L(p,t)=3 for 3216 6 group; L(6 Li,d)=3 if the 3190 level
				corresponds to 3223 level.
3310 50	(4^{+})		k	J^{π} : based on systematic trends and shell-model calculation (1990Bo27).
3374.2 <i>3</i>	(1-)		A P	J^{π} : L(p,t)=(1).
3470 10	2+		E P	$J^{\pi}: L(p,t)=2.$
3586.55 ^d 23	(5^{+})	0.63 ps +63-21	CDE J M O	XREF: E(3540).
3590 10	(2 ⁺)		Р	J^{π} : $\gamma(\theta)$ and excit function, (6 Li,pn γ). J^{π} : L(p,t)=(2).
3640 <i>10</i>	2+		E P	XREF: E(3680).
1.		6		J^{π} : L(p,t)=2.
3707.60 ^b 24	6+	0.250 [@] ps 35	BCD J M O	J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ .
				$T_{1/2}$: from DSAM in (3 He,2n γ). Others: 0.17 ps +14–7 from (α ,2n γ); 0.25 ps +17–7 in (6 Li,pn γ).
3730 10	$(3^-,4^+)$ 2^+		P	J^{π} : L(p,t)=(3,4).
3830 10	2+		P	J^{π} : $L(p,t)=2$.
				E(level): not the same as 3840 level seen in (⁶ Li,d) with L=1; evaluators assume 3840 is same as 3870 <i>30</i> L=1 level in
				Cvaruators assume 30+0 is same as 30/0 30 L=1 ievel iii

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				(³ He,n).
3870 20	1-		E HI	J^{π} : $L(^{3}He,n)=L(^{6}Li,d)=1$.
3920 10	$(3^-,4^+)$		Р .	J^{π} : L(p,t)=(3,4).
3960.5 <i>4</i>	(1 ⁺) 0 ⁺		A EG M P	$I\pi$, $I(x,t)=0$
4008.4 7 4021.6 5	(1^+)		EG MP	J^{π} : $L(p,t)=0$.
4040 20	(1^{-})		E	J^{π} : L(⁶ Li,d)=(1).
4043.20 ^e 24	(5)	0.270 [@] ps 42	CD HIJKLM O	XREF: K(4170).
1013.20 21	(3)	0.270 ps 72	CD HISKEH O	J^{π} : 3,5 from $\gamma(\theta)$, linear polarization; 5 from excitation
				function in (6 Li,pn γ); π =– from L(6 Li,d); gammas to 4 $^+$
				states.
				$T_{1/2}$: from DSAM in (³ He,2n γ). Other: 0.69 ps +14-49 in
4000 10	(4+)		_	$(^{6}\text{Li},\text{pn}\gamma).$
4090 <i>10</i> 4217.6 <i>8</i>	(4^+) (3^-)		P M P	J^{π} : L(p,t)=(4). J^{π} : L(p,t)=(3).
4330 20	(2^{+})		P	J^{π} : L(p,t)=(2).
4347.86 ^c 24	6^{+a}	0.48 [@] ps 13	BCD M	$T_{1/2}$: from DSAM in (³ He,2n γ). Other: 0.28 ps +28–14 in
		1		$(^6\text{Li},\text{pn}\gamma)$.
4380 20	(4^{+})		P	J^{π} : L(p,t)=(4).
4448.0 <i>3</i>	(1^+)		A P	6-1 -
4515 20	6+		E H k P	J^{π} : L(6Li,d)=6.
4535.4? <i>8</i> 4600	(7-)		C M k	J^{π} : systematic trends (1990Bo27).
4620 20	(0^{+})		н Р	J^{π} : L(p,t)=(0).
4680 10	4+		P	J^{π} : $L(p,t)=4$.
4810 30	$(2^+,3^-)$		P	J^{π} : L(p,t)=(2,3).
4860 <i>30</i> 4895.3 <i>4</i>	$(3^-,4^+)$		P A P	J^{π} : L(p,t)=(3,4).
4904.7 ^e 3	(1^+) $(7^-)^a$	8.3 ps <i>35</i>	BCD J M O	$T_{1/2}$: other: 0.7 ps +7-3 from $(\alpha, 2n\gamma)$.
4910 30	(2^{+})	0.5 ps 55	E P	XREF: E(4960).
				J^{π} : L(p,t)=(2).
5050 30	(2^{+})		G P	J^{π} : L(p,t)=(2).
5090 20	$\frac{1^{-}}{(7)^{-a}}$	2.1 14	E P	J^{π} : L(⁶ Li,d)=1.
5123.5 4	(/)	2.1 ps <i>14</i>	D K M	XREF: K(5190). T _{1/2} : <3.5 ps from RDM, >0.7 ps from DSAM in
				⁵⁸ Ni(⁶ Li,pnγ).
				J^{π} : 3,5,7 from $\gamma(\theta)$ and $\gamma(\text{lin pol})$; yrast population
				disfavors 3; transition strength arguments (RUL) restrict
				parity to be the same as that of 4042; 7 ⁻ supported by
5131.0 ^f 4	(6 ⁻) ^a	>0.7 ps	CD M	shell-model calculations (1990Bo27).
$5131.0^{3} 4$ $5143.3^{d} 5$		-	CD M	
5143.3 5	$(7)^{+a}$ (1^+)	0.42 ps +21-14	CD M A P	
5240 20	(0^{+})		P P	J^{π} : L(p,t)=(0).
5340 <mark>&</mark> <i>30</i>	0+		E I	J^{π} : L(³ He,n)=0.
5370 20	(4^{+})		H P	J^{π} : L(p,t)=(4).
5470			E	
5481.5 ^b 6	(8^{+})	0.28 ps +14-7	CD M	
5560 20			P	
5700 ^{&} 30 5920.8? 17	(1±)		ΗI	
5920.8? 17 6081.6 ^e 5	(1 ⁺) (9 ⁻)	3.9 ps <i>32</i>	A BCD	J^{π} : (7,9) from $\gamma(\theta)$, linear polarization and excitation
0001.0	()	5.5 ps 52	202	. (,,,, from /(), finear polarization and exertation

E(level) [†]	$J^{\pi \ddagger}$		XREF	_	Comments
				Т	function in (6 Li,pn γ); same parity as that of 4904 level. $_{1/2}$: 0.7 ps $<$ T $_{1/2}$ $<$ 7 ps from RDM and DSA, 58 Ni(6 Li,pn γ).
6113.7 ^f 6 6300 50	(8 ⁻) (8 ⁺)	BCD	K		: systematic trends (1990Bo27).
6400 6629.5 <i>21</i>		D	I H		
7200 7400	(11-)			P P	
7422.5 ^e 7 7422.7 ^f 8	(11^{-}) (10^{-})	BCD BC		J"	$: \Delta J=2, Q \gamma \text{ to } (9).$
7500.0^{b} 9	(10^{+})	С			
7540 <i>50</i>	(8 ⁺)		K	\mathbf{J}^{π}	: from shell-model calculations (1990Bo27).
7629.7 9	, ,	C			
7701.5? 12		С			
7976.1 ^{<i>i</i>} 7 8300 <i>50</i>	(9 ⁺) (6 ⁺)	ВС	K	J^{π}	: from shell-model calculations (1990Bo27).
8437.2 ^j 8	(10^{+})	BC			
9024.7^{f} 8	(12-)	В			
9048.6 ⁱ 7 9214.0 ^e 8	(11^+)	BC			
9465.2 ^j 8	(13^{-}) (12^{+})	BC BC			
9800	(12)	БС		P	
9823.7 ^k 10	(12^+)	В			
9960.4 ⁱ 8	(13^+)	В			
10247.4 ^g 8 10300	(11^{+})	С		P	
10316.4 10	(13^+)	С		1	
10375.1 ^j 8	(14^{+})	ВС			
10635.8 <mark>h</mark> 8	(12^{+})	С			
10725.9 ^f 10	(14^{-})	В			
10800	(12+)			P	
11182.8 ^g 8 11546.8 ^k 9	(13^+)	С			
11546.8 9 11651.6 8	(14^+) (13^-)	B			
11051.0 8 11755.8 ^h 9	(13^{+})	BC C			
11733.8 <i>j</i> 11788.3 <i>i</i> 11	(14°) (15^{+})	В			
11961.6 ^j 9	(16^+)	BC			
12329.3 ^m 8	(14^{-})	BC			
12536.78 9	(15^+)	C			
12812.9 10	(15 ⁻)	BC			
12993.0 ^l 8	(15^{-})	BC			
13156.3 ^k 10 13236.6 ^h 9	(16^+)	В			
13236.6 ⁿ 9 13400	(16^{+})	С		P	
13726.7 ^m 8	(16^{-})	BC			
14125.5 ⁸ 9	(17^{+})	C			
14445.8 <i>9</i> 14541.8 <i>l</i> 8	(17^{-})	BC BC			
14541.8° 8 14646.3 <i>12</i>	(17^{-}) (16^{+})	BC BC			
1.0.0.0	(10)	_			

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
14832.3 12	(16^+)	В	20474.9 ^P 11	(21^{-})	В
15041.8 ⁿ 11	(16^{+})	В	20858.9 ⁿ 16	(22^{+})	В
15049.6 ^h 9	(18^{+})	С	21042.0 ^l 11	(23-)	ВС
15295.5 ^k 13	(18^{+})	В	21617.5° 11	(22^{-})	BC
15415.6 ^m 8	(18^{-})	BC	21853.8 ^q 17	(22^{+})	В
15482.7 9 <i>16</i>	(16^{+})	В	22784.4 ^p 12	(23^{-})	В
15705.8 <i>14</i>	(19^{-})	C	23185.7 ^m 14	(24^{-})	BC
16372.9 <mark>8</mark> 9	(19^+)	C	23344.0 ⁿ 19	(24^{+})	В
16374.6 ^l 9	(19^{-})	BC	24057.0° 14	(24^{-})	BC
16574.8? P 15	(17^{-})	В	24469.8 <mark>9</mark> 20	(24^{+})	В
16717.2 10	(18^{+})	В	25349.4 ^p 16	(25^{-})	В
16807		В	26176.1 ⁿ 21	(26^+)	В
16818.5 ⁿ 11	(18^{+})	В	26746.8° 17	(26^{-})	BC
17350.7 9 12	(18^{+})	В	27318.9 9 22	(26^+)	В
17365.8 <i>11</i>	(18^{-})	В	28165.5 ^p 19	(27^{-})	В
17408.6° 10	(18^{-})	BC	29475.2 ⁿ 24	(28^{+})	В
17480.5 ^m 9	(20^{-})	BC	29686.0° 21	(28^{-})	BC
17509.7 <i>14</i>	(18^{-})	В	30437.0 <mark>9</mark> 24	(28^{+})	В
17590.7 <mark>h</mark> 11	(20^+)	C	31216.6 ^p 21	(29^{-})	В
18416.8 <i>P</i> 12	(19^{-})	В	32922° 3	(30^{-})	BC
18504.6 ^l 9	(21^{-})	BC	33362 ⁿ 3	(30^+)	В
18678.9 ⁿ 12	(20^+)	В	33800 ^q 3	(30^+)	В
19400.7 ⁰ 9	(20^{-})	BC	34603.7 ^p 24	(31^{-})	В
19478.7 9 <i>13</i>	(20^{+})	В	36501° 3	(32^{-})	В
19507.7 <mark>8</mark> 15	(21^{+})	C	38369 <i>P</i> 3	(33^{-})	В
19602.4 <i>15</i>		В	40459° 3	(34^{-})	В
19679.7 ^m 10	(22^{-})	BC	42521? P 3	(35 ⁻)	В

 $^{^{\}dagger}$ From least-squares fit to the E γ data of gamma-ray studies. Others are from particle data, averages taken when values of comparable precision are available.

[‡] For levels populated in high-spin studies; assignments above J=8 are based on $\gamma\gamma(\theta)$ (DCO) data for selected transitions, band assignments, and comparisons with cranked-shell model calculations. Since full details of most high-spin studies are not available, no separate arguments for J^{π} assignments are given in this evaluation.

[#] From DSA and/or RDM in ⁵⁸Ni(⁶Li,pnγ) and (³He,2nγ), except as noted.

[@] Values from DSAM in (3 He,2n γ) are effective half-lives, thus should be considered as upper limits. The Be(λ)(W.u.) deduced from these half-lives should be considered as lower limits.

[&]amp; From ⁶⁰Ni(³He,n).

^a From $\gamma(\theta)$, excitation, transition strength, linear polarization in ⁵⁸Ni(⁶Li,pn γ).

^b Band(A): g.s. band.

^c Band(B): $K^{\pi} = 2^{+}, \alpha = 0$.

^d Band(b): $K^{\pi} = 2^{+}, \alpha = 1$.

^e Band(C): $K^{\pi}=3^{-}, \alpha=1$.

f Band(c): $K^{\pi}=3^{-}$.α=0.

^g Band(D): K^{π} =(11⁺), α =1. High-j valence configuration= $\pi f_{7/2}^{-1} \pi g_{9/2}^1 \nu g_{9/2}^1$ gives maximum (terminating) spin of 21⁺ with remaining three valence neutrons in $f_{5/2}p_{3/2}$ orbits. Experimental Q(intrinsic) from Doppler-shift data decrease from 1.0 2 (J=15) to 0.25 5 (for J=21) as the spin increases (1998Sv01).

^h Band(d): $K^{\pi}=(11^{+}), \alpha=0$. See comments for $\alpha=1$ signature partner.

ⁱ Band(E): $K^{\pi} = (9^{+}), \alpha = 1$.

⁶²Zn Levels (continued)

$\gamma(^{62}Zn)$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	δ#	Comments
953.84	2+	953.8 <i>1</i>	100	$0.0 0^{+}$	E2		B(E2)(W.u.)=16.8 8 (2011PrZZ)
1804.67	2+	850.8 <i>1</i>	100 5	953.84 2+	M1+E2	-3.6 + 7 - 10	B(M1)(W.u.)=0.00057 23;
							B(E2)(W.u.)=18 4
							δ: from (3 He,2nγ). Others: $-1.2 + 4-5$ from 63 Cu(p,2nγ), $-5.1 + 29-34$ from
							(⁶ Li,pnγ).
		1804.8 2	70 <i>6</i>	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.32 6
2186.06	4+	1232.2 <i>I</i>	100	953.84 2+	E2		B(E2)(W.u.)=26 +7-12
2341.95	0+	1388.3 <i>3</i>	100	953.84 2+			
2384.50	3 ⁺	579.8 2	64 7	1804.67 2+	M1+E2	-1.9 + 3 - 5	B(M1)(W.u.)=0.006 4; B(E2)(W.u.)=110 70
		1430.7 2	100 6	953.84 2+	M1+E2	-0.5 1	B(M1)(W.u.)=0.0022 15;
							B(E2)(W.u.)=0.5 4
							δ : +3.4 +9-6 (³ He,2n γ).
2743.60	4+	359.1 2	11 3	2384.50 3+	M1+E2	-0.32 22	B(M1)(W.u.)=0.010 4; B(E2)(W.u.)=15 +19-15
		557.5 2	100 4	2186.06 4+	M1+E2	-0.35 3	B(M1)(W.u.)=0.025 3; B(E2)(W.u.)=17
		938.9 2	79 10	1804.67 2+	E2		B(E2)(W.u.)=9.3 16 Mult.: δ (M3/E2)=-0.13 +11-5.
		1789.7 9	2 1	953.84 2 ⁺			V(u)(1.00) = 0.13 + 11 - 3.
2803.14	2+	998.4 <i>4</i>	9 2	1804.67 2 ⁺	(M1+E2)		
2005.11.	-	1849.2 ^{&} 2	100‡ 7	953.84 2+	(M1(+E2))	+0.03 16	B(M1)(W.u.)=0.020 4;
		1049.2 2	100. /	955.04 2	(WII(+E2))	+0.03 10	B(E2)(W.u.)=0.01 +10-1
		2803.0 ^{&} 5	8 [‡] 5	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.11 7
		2803.0	8, 3	0.0	[E2]		E_{γ} : from ⁶² Ga decay only.
2884.05	2+	1079.4 <i>4</i>	5 2	1804.67 2 ⁺	[M1+E2]		E_{γ} : from ${}^{\circ}$ -Ga decay only.
2004.03	2						D. G. C.
		1930.1 ^{&} 4	100‡ 7	953.84 2+	(M1(+E2))	-0.32 +30-36	B(M1)(W.u.)=0.020 5; B(E2)(W.u.)=1.0 +17-10
		$(2884.0 \frac{\&}{5})$	<2 [‡]	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.014 + 15-14
3042.9?	(0^+)	2089.0 ^a 8	100	953.84 2+			
3181.2	(1^+)	2227.2 4	100 4	953.84 2+			
		3181.3 6	16.0 <i>19</i>	$0.0 0^{+}$			
3209.86	4+	(325.7)	<2	2884.05 2+	[E2]		
		(406.7)	<2	$2803.14 \ 2^{+}$	[E2]		
		1023.7 ^{&} 2	100 [‡] 5	2186.06 4+	(M1(+E2))	+0.01 18	B(M1)(W.u.)=0.058 <i>10</i> ; B(E2)(W.u.)=0.01 +35-1
		2256.5 ^{&} 8	40 [‡] 8	953.84 2 ⁺	[E2]		B(E2)(W.u.)=0.75 19
3223.5	3(-)	2269.6 4	100	953.84 2 ⁺	D(+Q)	-0.10 19	_ (/(/
5225.5	5	2207.0 1	100	755.01 2	2(10)	0.10 17	
						_	

^j Band(e): $K^{\pi} = (9^+), \alpha = 0$.

^k Band(F): Band based on (12⁺).

¹ Band(g): Band based on $(13^{-}), \alpha=1$.

^m Band(G): Band based on $(14^{-}), \alpha=0$.

ⁿ Band(H): Well-deformed band based on 16⁺. Percent population=2. Possible configuration=[22,02].

^o Band(I): SD-1 band,α=0. Possible configurations=[22,23] or [22,13]; former is preferred. Band intensity ≈1%; Q(transition)=2.7 +7-5 (1997Sv02), corresponding to $β_2$ =0.45 +10-7. Probable configuration= $vf_{7/2}^{-2}vg_{9/2}^{+2}$ with possible contribution from configuration= $vf_{7/2}^{-2}vg_{9/2}^{+3}$ (1997Sv02).

 $[^]p$ Band(i): SD-2 band, α =1. Possible configurations=[22,23] or [22,13]; former is preferred.

^q Band(J): SD-3 band, α =0. Possible configurations=[22,22] or [22,24].

γ ⁽⁶²Zn) (continued)</sup>

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	Comments
3374.2	(1-)	1032.0 5	20 17	2341.95 0+			
		1569.8 <i>4</i>	100 17	1804.67 2+			
		3373.5 8	60 13	$0.0 0^{+}$			
3586.55	(5 ⁺)	843.0 <i>3</i>	97 8	2743.60 4+	M1+E2	-2.5 +10-33	B(M1)(W.u.)=0.004 +3-4; B(E2)(W.u.)=61 +23-61
		1202.1 <i>3</i> 1400	100 5	2384.50 3 ⁺ 2186.06 4 ⁺	E2		B(E2)(W.u.)=12 +5-12
3707.60	6+	1521.5 <mark>&</mark> <i>3</i>	100 [‡]	2186.06 4+	E2		B(E2)(W.u.)=19 3
3960.5	(1^{+})	1156.7 <i>4</i>	54 <i>14</i>	2803.14 2+			
		1619.2 <i>4</i>	100 <i>14</i>	2341.95 0+			
4008.4	0+	2203.7 7	100	1804.67 2 ⁺			
4021.6	(1^{+})	1679.3 6	5.4 34	2341.95 0+			
		3068.1 8	10.7 27	953.84 2+			
		4021.7 8	100 7	0.0 0+			
4043.20	$(5)^{-}$	833.2 ^{&} 3	18 [‡] 8	3209.86 4+	[E1]		B(E1)(W.u.)=0.00031 15
		1299.4 <mark>&</mark>	41 [‡] 6	2743.60 4+	(E1)		B(E1)(W.u.)=0.00019 5
		1857.5 <mark>&</mark> 4	100 [‡] 5	2186.06 4+	(E1)		B(E1)(W.u.)=0.00016 3
4217.6	(3^{-})	2031.5 7	100	2186.06 4+			
4347.86	6+	640.3 2	13 5	3707.60 6 ⁺	[M1+E2]		
		761.7 <i>6</i>	<5	3586.55 (5+	[M1+E2]		
		1604.2 <mark>&</mark> 3	100 [‡] 6	2743.60 4+	E2		B(E2)(W.u.)=6.6 19
4448.0	(1^{+})	1644.7 <i>5</i>	19 5	2803.14 2+			
		2105.9 4	56 6	2341.95 0+			
		2643.9 6	24 5	1804.67 2+			
		3493.9 7	53 6	953.84 2+			
4525 49		4447.8 9	100 7	$0.0 0^{+}$			
4535.4? 4895.3	(1^+)	2349.3 8 2092.5 <i>4</i>	100 100 <i>13</i>	2186.06 4 ⁺ 2803.14 2 ⁺			
4093.3	(1)	3089.0 10	19 8	1804.67 2 ⁺			
		4894.4 10	89 11	$0.0 0^{+}$			
4904.7	(7^{-})	370 ^a	0, 11	4535.4?			
	, ,	557.2 5	56 10	4347.86 6+	[E1]		B(E1)(W.u.)=0.00010 5
		861.5 <i>3</i>	14 2	4043.20 (5)	[E2]		B(E2)(W.u.)=0.8 4
		1196.9 <i>5</i>	100 4	3707.60 6+	(E1(+M2))	-0.01 <i>13</i>	B(E1)(W.u.)=1.8×10 ⁻⁵ 8; B(M2)(W.u.)=0.006 +149-6
5123.5	$(7)^{-}$	1080.3 <i>3</i>	100	4043.20 (5)			B(E2)(W.u.)=13 9
5131.0	(6-)	1087.8 <i>3</i>	100	4043.20 (5)		-4.7 26	B(M1)(W.u.)<0.0022; B(E2)(W.u.)<37
5143.3	$(7)^{+}$	795.6 6	23 3	4347.86 6+	[M1+E2]		D(F2)(W) 9 + 2 5
5011.5	(1^+)	1556.7 5	100 6	3586.55 (5 ⁺	(E2)		B(E2)(W.u.)=8 +3-5
5211.5	(1)	2408.3 <i>7</i> 2869.8 <i>7</i>	25 8 33 8	2803.14 2 ⁺ 2341.95 0 ⁺			
		4256.6 9	57 8	953.84 2 ⁺			
		5211.5 11	100 <i>I</i>	$0.0 0^{+}$			
5481.5	(8^{+})	1773.7 6	100	3707.60 6 ⁺	[E2]		B(E2)(W.u.)=7.9 +20-40
5920.8?	(1^{+})	5920.5 <mark>a</mark> 17	100	$0.0 0^{+}$			
6081.6	(9^{-})	1176.9 <i>4</i>	100	4904.7 (7-	(E2)		B(E2)(W.u.)=4 4
6113.7	(8^{-})	983		5131.0 (6)		
		1208.7 7		4904.7 (7			
6629.5	(11=)	1506.0 20	100	5123.5 (7)			
7422.5	(11^{-})	1341.5 6	100	6081.6 (9			
7422.7	(10^{-})	1309 1341		6113.7 (8 ⁻ 6081.6 (9 ⁻			
7500.0	(10^+)	2018		5481.5 (8+			
7629.7	(10)	1548		6081.6 (9			
				- \	•		

γ (62Zn) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$
7701.5?		279		7422.5 (11-)
7976.1	(9^+)	1862		6113.7 (8 ⁻)
7770.1	()	1894		6081.6 (9 ⁻)
		2833		5143.3 (7)+
8437.2	(10^+)	2355		6081.6 (9 ⁻)
9024.7	(12^{-})	1602		7422.7 (10 ⁻)
7021.7	(12)	1603		7422.5 (11 ⁻)
9048.6	(11^{+})	611		8437.2 (10 ⁺)
70.10.0	(11)	1072		7976.1 (9 ⁺)
		1626		7422.5 (11 ⁻)
9214.0	(13^{-})	1791		7422.5 (11 ⁻)
9465.2	(12^{+})	416		9048.6 (11+)
	()	1028		8437.2 (10 ⁺)
		2043		7422.5 (11 ⁻)
9823.7	(12^+)	2402		7422.5 (11 ⁻)
9960.4	(13^{+})	495		9465.2 (12 ⁺)
	(-)	911		9048.6 (11+)
		936		9024.7 (12 ⁻)
10247.4	(11^{+})	2747		7500.0 (10 ⁺)
10316.4	(13+)	851		9465.2 (12+)
	` /	1268		9048.6 (11+)
10375.1	(14^{+})	415		9960.4 (13+)
	. ,	910		9465.2 (12+)
		1160.8 <i>4</i>		9214.0 (13-)
10635.8	(12^{+})	388.3 <i>3</i>		10247.4 (11+)
		3006		7629.7
		3213		7422.5 (11 ⁻)
10725.9	(14^{-})	1512		9214.0 (13-)
		1701		9024.7 (12-)
11182.8	(13^{+})	546.9 <i>3</i>	100 6	10635.8 (12+)
		935.5 5	24 2	$10247.4 (11^{+})$
11546.8	(14^{+})	1724		9823.7 (12+)
		2333		9214.0 (13 ⁻)
11651.6	(13^{-})	2627		9024.7 (12 ⁻)
		4229		7422.5 (11 ⁻)
11755.8	(14^{+})	573.1 <i>3</i>	100 6	$11182.8 (13^+)$
		1119.8 <i>4</i>	64 <i>4</i>	$10635.8 (12^+)$
11788.3	(15^{+})	1827		9960.4 (13 ⁺)
11961.6	(16^{+})	1586		$10375.1 \ (14^+)$
12329.3	(14^{-})	677.7 <i>4</i>	100 10	11651.6 (13 ⁻)
		3116		9214.0 (13 ⁻)
		3305		9024.7 (12 ⁻)
12536.7	(15^+)	780.6 <i>3</i>	100 7	11755.8 (14 ⁺)
		1353.8 5	68 5	11182.8 (13+)
12812.9	(15^{-})	2437		10375.1 (14+)
12993.0	(15^{-})	663.6 <i>3</i>	100 7	12329.3 (14 ⁻)
		1342.0 10	95 23	11651.6 (13 ⁻)
101560	(1.54)	1447		11546.8 (14+)
13156.3	(16^+)	1610	00 /	11546.8 (14 ⁺)
13236.6	(16^{+})	699.6 3	88 6	12536.7 (15+)
12726 7	(16=)	1481.2 4	100 6	11755.8 (14 ⁺)
13726.7	(16^{-})	733.6 <i>3</i> 913	100 8	12993.0 (15 ⁻) 12812.9 (15 ⁻)
		913 1397.6 <i>4</i>	76.6	
14125.5	(17^{+})	888.7 <i>3</i>	76 <i>6</i> 100 <i>6</i>	12329.3 (14 ⁻) 13236.6 (16 ⁺)
17123.3	(1/)	000.7 3	100 0	13230.0 (10)

γ (62Zn) (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
14125.5	(17^+)	1589.0 <i>6</i>	79 <i>6</i>	12536.7	(15^+)
14445.8	(17^{-})	719		13726.7	(16^{-})
		1633		12812.9	(15^{-})
		2483		11961.6	(16^{+})
14541.8	(17^{-})	815.0 <i>3</i>	100 8	13726.7	(16^{-})
		1385		13156.3	(16^{+})
		1549.3 5	92 8	12993.0	(15^{-})
		2581		11961.6	(16^{+})
14646.3	(16^{+})	2858		11788.3	(15^{+})
14832.3	(16^{+})	3043		11788.3	(15^{+})
15041.8	(16^{+})	3495		11546.8	(14^{+})
15049.6	(18^{+})	924.1 <i>4</i>	75 6	14125.5	(17^{+})
		1813.0 <i>5</i>	100 6	13236.6	(16^{+})
15295.5	(18^{+})	2140		13156.3	(16^{+})
15415.6	(18^{-})	873.7 <i>3</i>	78 <i>7</i>	14541.8	(17^{-})
		969		14445.8	(17^{-})
4.550.50	40.	1689.2 5	100 7	13726.7	(16^{-})
15705.8	(19^{-})	1260	0.4.70	14445.8	(17^{-})
16372.9	(19^+)	1323.3 6	94 12	15049.6	(18^+)
4 - 2 = 4 -	(40-)	2246.7 8	100 12	14125.5	(17^{+})
16374.6	(19^{-})	959.0 8	81 22	15415.6	(18^{-})
		1833.1 5	100 8	14541.8	(17^{-})
16515.0	(10±)	1928		14445.8	(17^{-})
16717.2	(18^{+})	1675		15041.8	(16^+)
		1884		14832.3	(16^+)
		2071		14646.3	(16^+)
16010.5	(10±)	4757		11961.6	(16^+)
16818.5	(18^{+})	1777		15041.8	(16^{+})
17250 7	(10+)	4856		11961.6	(16^+)
17350.7	(18^{+})	1868 5388		15482.7 11961.6	(16^+) (16^+)
17365.8	(18^{-})	3639		13726.7	(16^{-})
17408.6	(18^{-})	2963		14445.8	(10^{-})
17400.0	(10)	3682 ^a		13726.7	(16^{-})
17480.5	(20^{-})	1105.9 4	48 <i>4</i>	16374.6	(10^{-})
17100.5	(20)	2065.4 6	100 8	15415.6	(18^{-})
17590.7	(20^+)	1217.5 7	33 6	16372.9	(19^+)
17570.7	(20)	2541.4 9	100 11	15049.6	(18^{+})
18416.8	(19^{-})	1842 ^a	100 11	16574.8?	(17^{-})
10.10.0	(1)	3001 ^a		15415.6	(18^{-})
18504.6	(21^{-})	1024.3 4	57 6	17480.5	(20^{-})
	,	2130.3 8	100 11	16374.6	(19^{-})
18678.9	(20^+)	1860		16818.5	(18^{+})
	, ,	1962		16717.2	(18^{+})
19400.7	(20^{-})	1891		17509.7	(18^{-})
		1992.7 <mark>&</mark> <i>12</i>	0.14 [‡] 7	17408.6	(18^{-})
		2035	0.11	17365.8	(18^{-})
		3027		16374.6	(19^{-})
		3983 <mark>&</mark>	≈0.08 [‡]	15415.6	(18-)
19478.7	(20^+)	2127	~0.00	17350.7	(18^+)
12710.1	(20)	4184		17330.7	(18^+)
19507.7	(21^+)	3134.7 12	100	16372.9	(19^+)
19679.7	(21^{-})	1174.6 12	40 20	18504.6	(21^{-})
-/0////	()	2199.5 7	100 8	17480.5	(20^{-})
20474.9	(21^{-})	2058		18416.8	(19^{-})
	` /				. /

$\gamma(^{62}Zn)$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
20474.9	(21^{-})	2994		17480.5	(20^{-})
20858.9	(22^{+})	2180		18678.9	(20^{+})
21042.0	(23^{-})	1362.3 7	56 7	19679.7	(22^{-})
		2537.4 9	100 11	18504.6	(21^{-})
21617.5	(22^{-})	2015		19602.4	
		2215.3 8	0.93 [‡] <i>13</i>	19400.7	(20^{-})
		3115 [@]		18504.6	(21^{-})
21853.8	(22^{+})	2375		19478.7	(20^+)
22784.4	(23^{-})	2309		20474.9	(21^{-})
		3105 ^a		19679.7	(22^{-})
23185.7	(24^{-})	2143.8 <i>12</i>	40 10	21042.0	(23^{-})
		3505.7 <i>14</i>	100 20	19679.7	(22^{-})
23344.0	(24^{+})	2485		20858.9	(22^{+})
24057.0	(24^{-})	2439.5 <mark>&</mark> 9	1.02 [‡] <i>15</i>	21617.5	(22^{-})
24469.8	(24^{+})	2616		21853.8	(22^{+})
25349.4	(25^{-})	2565		22784.4	(23^{-})
26176.1	(26^+)	2832		23344.0	(24^{+})
26746.8	(26^{-})	2689.7 ^{&} 10	0.86 [‡] <i>13</i>	24057.0	(24^{-})
27318.9	(26^+)	2849		24469.8	(24^{+})
28165.5	(27^{-})	2816		25349.4	(25^{-})
29475.2	(28^{+})	3299		26176.1	(26^+)
29686.0	(28^{-})	2939.1 ^{&} <i>12</i>	0.43 [‡] 11	26746.8	(26^{-})
30437.0	(28^{+})	3118		27318.9	(26^+)
31216.6	(29^{-})	3051		28165.5	(27^{-})
32922	(30^{-})	3235.6 ^{&} 14	0.10 [‡] 5	29686.0	(28^{-})
33362	(30^+)	3887		29475.2	(28^{+})
33800	(30^+)	3363		30437.0	(28^{+})
34603.7	(31^{-})	3387		31216.6	(29^{-})
36501	(32^{-})	3579		32922	(30^{-})
38369	(33^{-})	3765		34603.7	(31^{-})
40459	(34^{-})	3958		36501	(32^{-})
42521?	(35^{-})	4152		38369	(33^{-})

[†] Weighted averages of all available data. Intensities are relative branching ratios, unless stated otherwise.

[‡] Relative intensity within the SD-1 band.

[#] From $\gamma(\theta)$ and RUL, 60 Ni(α ,2n γ), 58 Ni(6 Li,pn γ), 61 Ni(3 He,2n γ). @ Level-energy difference=3113.

[&]amp; Be(λ)(W.u.) values should be considered as lower limit since the level half-lives are effective values, not corrected for side

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{62}_{30}{\rm Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{62}_{30}{\rm Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{62}_{30}{
m Zn}_{32}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{62}_{30}{\rm Zn}_{32}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

7 Decay (Uncertain)

 $^{62}_{30}{
m Zn}_{32}$

