Applying the Klein-Gordon Theory to Gravitation

Modelling Newtonian gravitation as a classical scalar field theory obeying Klein-Gordon structure

Siddhartha Bhattacharjee

1B Mathematical Physics University of Waterloo

SASMS, Feb 10, 2023

Table of Contents

Towards Classical Field Theory

Formal Analogies Between the Gravitational and Electrostatic

Forces

Classical Mechanics

Classical Field Theory

Towards Classical Field Theory

The Inverse Square Law

Gravitational force:

$$F_m = -G \frac{Mm}{r^2}$$

Electrostatic force:

$$F_e = \frac{1}{4\pi\epsilon_0} \frac{Q_e q_e}{r^2}$$

Magnetic force:

$$F_b = \frac{\mu_0}{4\pi} \frac{Q_b q_b}{r^2}$$

Formal Analogies Between the Gravitational and Electrostatic Forces

	Gravitation	Static electricity
	Glavitation	, , ,
Newton's second law	$a' = -\partial' V$	$E' = -\partial' \phi$
	$-\vec{\nabla}V$	$-\vec{ abla}\phi$
	3	3
Gauss' law	$\sum \nabla_i a^i = -4\pi G \rho_m$	$\sum abla_i E^i = rac{1}{\epsilon_0} ho_e$
	i=1	i=1
	$ec{ abla} \cdot ec{a}$	$\vec{ abla}\cdot \vec{a}$
	3	3
Poisson's equation	$\sum \nabla_i \partial^i V = 4\pi G \rho_m$	$\sum abla_i \partial^i \phi = -rac{1}{\epsilon_0} ho_{e}$
	i=1	i=1
	$\nabla^2 V$	$\nabla^2 \phi$

Lagrangian Mechanics

Nature 'selects' the unique on-shell trajectory q(t) given the boundary conditions $(t_1, Q(t_1))$ and $(t_2, Q(t_2))$ for a system.

$$\underbrace{\frac{Q\left(t\right)}{\text{Off-shell}}}_{\text{Off-shell}} = \underbrace{\frac{q\left(t\right)}{\text{On-shell}}}_{\text{Variation}} + \underbrace{\frac{\delta q\left(t\right)}{\text{Variation}}}_{\text{Variation}}$$

Each trajectory Q(t) between the endpoints is associated with a corresponding number called the action.

$$S[Q(t)](t_1,t_2) = \int_{t_1}^{t_2} dt L(Q(t),\dot{Q}(t),t)$$

The integrand $L\left(Q\left(t\right),\dot{Q}\left(t\right),t\right)$ is known as the Lagrangian of the system being modelled and encodes the dynamics of the system.

▶ In general, the action S maps Q(t) to a real number determined by the above integral. Therefore, it is a functional, i.e. a higher-order function which takes in infinite values of the form $\{(t, Q(t)) : t \in \mathbb{R}\}$ and spits out a real.

$$S: \begin{cases} \mathbb{R}^{\mathbb{R}} & \to \mathbb{R} \\ \frac{Q(t)}{Q(t)} & \mapsto \int_{t_1}^{t_2} dt \ L\left(\frac{Q(t)}{Q(t)}, \dot{Q}(t), t\right) \end{cases}$$

Principle of Stationary Action

Lagrange's principle of stationary action

Suppose we vary q(t) about its on-shell evolution as, $q(t) \rightarrow q(t) + \delta q(t)$. Then, the variation in the action satisfies,

$$\delta S \in \mathcal{O}\left(\delta q^2\right)$$

Corollary (First-order approximation)

For very small $\delta q(t)$ i.e.,

$$\forall \, \delta q(t) = \lim_{\epsilon \to 0} \epsilon \eta(t) : \eta(t_1) = \eta(t_2) = 0 :$$

$$\delta S \in \mathcal{O}\left(\epsilon^2 \eta(t)\right) = \{0\}$$

$$\implies \boxed{\delta S = 0}$$

Euler-Lagrange Equation

Lemma (Fundamental lemma of calculus of variations)

The former is possible if and only if the latter is,

$$\forall \, \delta \mathbf{q} : \int_{t_1}^{t_2} dt \, \delta \mathbf{q} \, f\left(\mathbf{q}, \dot{\mathbf{q}}, t\right) = 0$$

$$\iff \forall \, t \in (t_1, t_2) : f\left(\mathbf{q}, \dot{\mathbf{q}}, t\right) = 0$$

Theorem

An on-shell q(t) obeying the principle of stationary action for a given $L(q, \dot{q}, t)$ must also obey the Euler-Lagrange equation of motion:

$$\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = \frac{dp}{dt}$$
Generalized force Conjugate momentum

Proof.

$$\delta S = 0 \quad \text{[Principle of stationary action]}$$

$$\delta \int_{t_1}^{t_2} dt \, L\left(q, \dot{q}, t\right) = 0$$

$$\int_{t_1}^{t_2} dt \, \delta L\left(q, \dot{q}, t\right) = 0 \quad \text{[Additivity of variations]}$$

$$\int_{t_1}^{t_2} dt \left[\delta q \frac{\partial L}{\partial q} + \delta \dot{q} \frac{\partial L}{\partial \dot{q}} + \mathcal{M} \frac{\partial L}{\partial t} \right] = 0 \quad \text{[Chain rule for variations]}$$

$$\int_{t_1}^{t_2} dt \left[\delta q \frac{\partial L}{\partial q} + (\dot{\delta q}) \frac{\partial L}{\partial \dot{q}} \right] = 0 \quad \text{[Commutativity of derivatives]}$$

$$\int_{t_1}^{t_2} dt \, \delta q \frac{\partial L}{\partial q} + \int_{t_1}^{t_2} dt \, (\dot{\delta q}) \frac{\partial L}{\partial \dot{q}} = 0$$

Proof.

$$\int_{t_{1}}^{t_{2}} dt \, \delta q \frac{\partial L}{\partial q} + \frac{\partial L}{\partial \dot{q}} \int_{t_{1}}^{t_{2}} dt \, (\dot{\delta q}) - \int_{t_{1}}^{t_{2}} dt \, \left[\int dt \, (\dot{\delta q}) \right] \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$
[Integration by parts]
$$\int_{t_{1}}^{t_{2}} dt \, \delta q \frac{\partial L}{\partial q} + \frac{\partial L}{\partial \dot{q}} [\delta q]_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} dt \, \delta q \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

$$[\delta q \, (t_{1}) = \delta q \, (t_{2})]$$

$$\forall \, \delta q : \int_{t_{1}}^{t_{2}} dt \, \delta q \, \left(\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) = 0$$

$$\iff \frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

$$\iff \frac{\partial L}{\partial q} - \frac{dp}{dt} = 0 \quad \Box$$

[Fundamental lemma of the calculus of variations]

Noether's Theorem

Theorem (Noether's first theorem)

If the action S[q(t)] remains invariant under perturbations of the following form,

$$q \rightarrow q + \delta q$$

then the following quantity is conserved,

$$j = p \, \delta q$$
$$\frac{dj}{dt} = 0$$

Proof.

$$\begin{split} \delta L &= \frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \\ &= \dot{p} \delta q + p \delta \dot{q} \qquad \text{[Euler-Lagrange equation]} \\ &= \frac{d}{dt} \left(p \delta q \right) \\ \text{But } \delta L &= 0 \\ \implies \frac{d}{dt} \left(p \delta q \right) &= 0 \end{split}$$

Example

If $S\left[q\left(t\right)\right]$ is symmetric (i.e. conserved) under a small time-independent translation $q \to q + \epsilon$, we obtain the invariant $j = p\epsilon$. Since $\frac{dj}{dt} = 0$, $\frac{d\epsilon}{dt} = 0$, we get $\frac{dp}{dt} = 0$.

Classical Mechanics

The Lagrangian for classical mechanics is of the form,

$$L(q, \dot{q}, t) = T(\dot{q}) - V(q)$$

$$= \frac{1}{2} mg \dot{q}^2 - V(q)$$

$$= \frac{1}{2} mv^2 - V(q)$$

► The equation of motion obtained by applying the Euler-Lagrange equation to the above Lagrangian is,

$$\frac{d}{dt}(mv) + \frac{\partial V}{\partial q} = 0$$

This is Newton's second law. If the entire system concerned is symmetric under small translations on q, we have $\frac{\partial V}{\partial q}=0$ implying $\frac{d}{dt}(mv)=0$. This is Newton's third law.

Classical Field Theory

- A classical field is a tensor field on spacetime (which is a pseudo-Riemannian manifold obeying dynamical field equations such as the Einstein field equations). Therefore, a classical field is some rank (p,q) tensor $\phi^{\mu_1\dots\mu_p}_{(1,\dots,\mu_q)}(x^\alpha)$ at each point x^α in space and time with $\alpha\in(0,1,2,3)$.
- ► A classical field obeys the following principles:
 - 1. Principle of stationary action
 - 2. Local Lorentz invariance
 - 3. Locality
 - 4. Gauge invariance
- ▶ The simplest classical field theory is that of rank (0,0) tensor fields i.e. scalar fields $\phi(x^{\alpha})$, in a flat spacetime \mathcal{M} . We will study such fields in the following slides.

Principle of Stationary Action for Classical Fields

To construct the action for a particle, we integrated its Lagrangian between endpoints in time. A field such as $\phi(x^{\alpha})$, however, lives in space and time. Therefore, its action is a volume integral of a Lagrangian density \mathcal{L} , in a 4-dimensional region of spacetime $\Omega \subset \mathcal{M}$,

$$oxed{S\left[\phi\left(x^{lpha}
ight)
ight] = \int_{\Omega} d^4x \, \mathcal{L}\left(\phi\left(x^{lpha}
ight), \partial_{\mu}\phi\left(x^{lpha}
ight), x^{
u}
ight)}$$

The Lagrangian density is so-called as it looks like a Lagrangian (integrable over some time interval $\Omega^{(1)}$) when integrated over a region of space $\Omega^{(3)}$:

$$L(\phi(x^{\alpha}), \partial_{\mu}\phi(x^{\alpha}), x^{\nu}) = \int_{\Omega^{(3)}} d^{3}x \, \mathcal{L}(\phi(x^{\alpha}), \partial_{\mu}\phi(x^{\alpha}), x^{\nu})$$

$$S[\phi(x^{\alpha})] = \int_{\Omega} d^{4}x \, \mathcal{L}(\phi(x^{\alpha}), \partial_{\mu}\phi(x^{\alpha}), x^{\nu})$$

$$= \int_{\Omega^{(1)}} cdt \, L(\phi(x^{\alpha}), \partial_{\mu}\phi(x^{\alpha}), x^{\nu})$$

► The principle of stationary action for fields states that for small variations $\delta \phi$ of a field ϕ in its on-shell configuration, the action remains stationary,

$$\delta S = 0$$

Euler-Lagrange Equation for Classical Fields

Lemma (Fundamental lemma of multivariable calculus of variations)

$$\forall \, \delta \phi : \int_{\Omega} d^4 x \delta \phi \, f \left(\phi, \partial_{\mu} \phi, x^{\nu} \right) = 0$$

$$\iff \forall \, x^{\alpha} \in \Omega \backslash \partial \Omega : f \left(\phi, \partial_{\mu} \phi, x^{\nu} \right) = 0$$

Einstein summation convention

Dummy indices, i.e. pairs of upper and lower tensor indices, are implicitly summed over.

Example

$$A_\mu B^\mu = \sum_{\mu=0}^3 A_\mu B^\mu$$

Theorem

A field ϕ obeys the principle of stationary action if and only if it also satisfies,

$$\frac{\partial \mathcal{L}}{\partial \phi} = \nabla_{\mu} \underbrace{\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi\right)}}_{\text{Conjugate momentum tensor}} = \nabla_{\mu} \pi^{\mu}$$

Proof.

$$\delta S = 0 \qquad \qquad \text{[Principle of stationary action]}$$

$$\delta \int_\Omega d^4x \, \mathcal{L} = 0$$

$$\int_\Omega d^4x \, \delta \mathcal{L} = 0 \qquad \qquad \text{[Additivity of variations]}$$

$$\int_{\Omega} d^4 x \left[\delta \phi \frac{\partial \mathcal{L}}{\partial \phi} + \delta \left(\partial_{\mu} \phi \right) \underbrace{\frac{\partial \mathcal{L}}{\partial \left(\partial_{\mu} \phi \right)}}_{\pi^{\mu}} + \delta x^{\mu} \partial_{\mu} \mathcal{L} \right] = 0$$

[Multivariable chain rule for variations]

$$\int_{\Omega} d^4x \left[\delta \phi \frac{\partial \mathcal{L}}{\partial \phi} + (\partial_{\mu} \delta \phi) \pi^{\mu} \right] = 0$$

[Commutativity of variations and covariant derivatives]

$$\int_{\Omega} d^4x \, \delta\phi \frac{\partial \mathcal{L}}{\partial \phi} + \pi^{\mu} \underbrace{\int_{\Omega} d^4x \, \partial_{\mu} \delta\phi}_{\text{Constant surface term}} - \int_{\Omega} d^4x \, \left[\int d^4x \, \partial_{\mu} \delta\phi \right] \nabla_{\mu} \pi^{\mu} = 0$$

[Volume integration by parts]

Using Stokes' theorem, the constant surface term can be set to 0. We then find,

$$\begin{split} \int_{\Omega} d^4 x \, \delta \phi \frac{\partial \mathcal{L}}{\partial \phi} - \int_{\Omega} d^4 x \, \delta \phi \, \nabla_{\mu} \pi^{\mu} &= 0 \\ \int_{\Omega} d^4 x \, \delta \phi \left(\frac{\partial \mathcal{L}}{\partial \phi} - \nabla_{\mu} \pi^{\mu} \right) &= 0 \\ \frac{\partial \mathcal{L}}{\partial \phi} - \nabla_{\mu} \pi^{\mu} &= 0 \\ \iff \frac{\partial \mathcal{L}}{\partial \phi} - \nabla_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} &= 0 \quad \Box \end{split}$$

[Fundamental lemma of multivariable calculus of variations]

Noether's Theorem for Classical Fields