Claims:

Please amend the claims as follows:

1. (Withdrawn) In a curable composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound which absorbs light at wavelengths of less than about 300 nm in said composition, said light attenuating compound comprising:

carbon atoms C_1 and C_2 double-bonded to one another and carbon atoms C_3 and C_4 double-bonded to one another and wherein C_3 is bonded to C_2 so as to form conjugated double bonds;

an EWG bonded to carbon atom C₁; and

an EDG bonded to carbon atom C_4 , said EDG including a moiety selected from the group consisting of H_3CO , OH, and R_1 -O-, wherein R_1 is non-aromatic and is selected from the group consisting of hydrogen, acyclic and cyclic alkyls, and heteroalkyls.

2. (Canceled)

3. (Currently Amended) The composition of claim + 45, wherein the polymer binder comprises a backbone, and said light attenuating compound is bonded to said backbone.

Docket No. 27615-CNT2

- 4. (Currently Amended) The composition of claim ± 45, wherein said light attenuating compound is bonded to a linkage unit and said linkage unit is bonded to the polymer binder.
- 5. (Original) The composition of claim 4, wherein said linkage unit comprises a moiety selected from the group consisting of cyclic alkyls, acyclic alkyls, acyclic heteroalkyls, and cyclic heteroalkyls.
- 6. (Withdrawn) The composition of claim 1, wherein said light attenuating compound includes a moiety selected from the group consisting of COOH, OH, CONH₂, CONHR', CH₂X, and mixtures thereof, wherein R' is selected from the group consisting of hydrogen, alkyls, and heteroalkyls, and wherein X is a halogen.
- 7. (Withdrawn) The composition of claim 1, wherein after curing, said composition has an etch rate of at least about 4000 Å/minute when utilizing an etchant gas comprising a mixture of HBr and O_2 .
- 8. (Withdrawn) The composition of claim 1, wherein the EWG includes a moiety selected from the group consisting of carbonyl, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.

- 9. (Withdrawn) The composition of claim 1, further including a second EWG, said second EWG being bonded to C₄.
- 10. (Withdrawn) The composition of claim 9, wherein the second EWG includes a moiety selected from the group consisting of carbonyl, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.

11. (Original) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)
$$R_{1} \qquad R_{2} \qquad R_{1} \qquad R_{2} \qquad R_{1} \qquad R_{2} \qquad (I)$$

$$R_{1} \qquad EWG \qquad R_{1} \qquad EWG \qquad Structure B$$

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- in structure A, where EWG and R_2 do not form a cyclic unit: EWG is a non-aromatic electron-withdrawing group; and R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or

heteroalkyl, or an electron-withdrawing group; and

• in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

EDG
$$R_2$$
 EDG R_2 Or R_1 EWG (II)

Structure A Structure B

- R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl
 or heteroalkyl;
- EDG is an electron-donating group;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

 R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and

• in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$R_2$$

$$EWG \qquad (X)$$

where: R₂ is non-aromatic and is individually hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and EWG is a non-aromatic electron-withdrawing group; and

where: R₂ is non-aromatic and is individually hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and EWG is a non-aromatic electron-withdrawing group;

- (b) olefinic moieties of (I), (II), and mixtures thereof; and
- (c) mixtures of (a) and (b),

wherein at least one of R_1 and R_2 of said light attenuating compound is bonded to the polymer binder.

12. (Original) The composition of claim 11, wherein the EWG of said light attenuating compound is bonded to the polymer binder.

- 13. (Original) The composition of claim 11, wherein the polymer binder comprises a backbone, and said light attenuating compound is bonded to said backbone.
- 14. (Original) The composition of claim 13, wherein the EWG of said light attenuating compound is bonded to said backbone.
- 15. (Original) The composition of claim 11, wherein said light attenuating compound is bonded to a linkage unit and said linkage unit is bonded to the polymer binder.
- 16. (Original) The composition of claim 15, wherein said linkage unit comprises a moiety selected from the group consisting of cyclic alkyls, acyclic alkyls, acyclic heteroalkyls, and cyclic heteroalkyls.
- 17. (Original) The composition of claim 11, wherein the EWG of said light attenuating compound is selected from the group consisting of carbonyl, cyano, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.
- 18. (Original) The composition of claim 11, wherein each of R_1 and R_2 of said light attenuating compound is individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls.

- 19. (Original) The composition of claim 11, wherein said light attenuating compound comprises a moiety selected from the group consisting of COOH, OH, CONH₂, CONHR', CH₂X, and mixtures thereof, wherein each R' is individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls, and wherein X is a halogen.
- 20. (Original) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)

$$R_1$$
 R_1
 R_2
 R_1
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 EWG
(III)

Structure A Structure B

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

 R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group;

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$R_1$$
 R_1
 R_1
 EWG
 (IV)

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl; and
- EWG is a non-aromatic electron-withdrawing group;

EDG
$$R_1$$
 R_2 or R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_1 R_2 R_2 R_2 R_1 R_2 R_2 R_2 R_1 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_2 R_3 R_4 R_5 R_5

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- EDG is an electron-donating group;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group other than cyano groups, and R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; or

EWG is a cyano group, and R_2 is non-aromatic and is hydrogen, or an acyclic or cyclic alkyl or heteroalkyl; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

(IX)

where EWG is a non-aromatic electron-withdrawing group;

- (b) diolefinic moieties of (III), (IV), (V), and mixtures thereof; and
- (c) mixtures of (a) and (b),

wherein at least one of R_1 and R_2 of said light attenuating compound is bonded to the polymer binder.

- 21. (Original) The composition of claim 20, wherein the polymer binder comprises a backbone, and said light attenuating compound is bonded to said backbone.
- 22. (Original) The composition of claim 20, wherein said light attenuating compound is bonded to a linkage unit and said linkage unit is bonded to the polymer binder.
- 23. (Original) The composition of claim 22, wherein said linkage unit comprises a moiety selected from the group consisting of cyclic alkyls, acyclic alkyls, acyclic heteroalkyls, and cyclic heteroalkyls.
- 24. (Original) The composition of claim 20, wherein the EWG of said light attenuating compound is selected from the group consisting of carbonyl, cyano, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.

- 25. (Original) The composition of claim 20, wherein each of R_1 and R_2 of said light attenuating compound is individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls.
- 26. (Original) The composition of claim 25, wherein each of R_1 and R_2 of said light attenuating compound is individually selected from the group consisting of cyclic alkyls and acyclic alkyls.
- 27. (Original) The composition of claim 20, wherein said light attenuating compound comprises a moiety selected from the group consisting of COOH, OH, CONH₂, CONHR', CH₂X, and mixtures thereof, wherein R' is individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls, and wherein X is a halogen.
- 28. (Withdrawn) A composition useful for absorbing light comprising a compound including a structural formula selected from the group consisting of compounds of:

(a)

EDG
$$R_1$$
 R_2 or R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_3 R_4 R_4 R_5 R_5

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- EDG is an electron-donating group, where each of R_x and R_y is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group other than cyano groups, and R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; or

EWG is a cyano group, and R₂ is non-aromatic and is hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

(b)

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- each R_3 is individually R_1 or

where each R_1 is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl, and where the (*) represents the double-bonded carbon atom (1) or (4);

- each EWG is a non-aromatic electron-withdrawing group;
- each R₂ is non-aromatic and is individually hydrogen, an acyclic or cyclic
 alkyl or heteroalkyl, or an electron-withdrawing group;
- R₄ is a divalent, non-aromatic-containing bridging group; and
- (1)-(4) refer to the respective double-bonded carbon atoms;

(c)

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- each R₂ is non-aromatic and is individually hydrogen, an acyclic or cyclic
 alkyl or heteroalkyl, or an electron-withdrawing group;
- each R₃ is individually an EDG, or

where each R_1 is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl; EDG is an electron-donating; and where the (*) represents the double-bonded carbon atom (1) or (4);

- R₄ is a divalent, non-aromatic-containing bridging group;
- each EWG is a non-aromatic electron-withdrawing group; and
- (1) (4) refer to the respective double-bonded carbon atoms;

(d)

$$R_3$$
 R_2 R_1 R_3 R_2 R_1 R_3 R_4 R_1 R_2 R_2 R_4 R_4 R_4 R_5 R_2 R_4 R_5 R_5 R_5 R_5 R_6 R_6 R_6 R_6 R_7 R_8 R_9 R_9

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- where each R₃ is individually an EWG,

• in structure A where R_3 is an EWG or structure C:

each EWG is a non-aromatic electron-withdrawing group other than cyano groups, and each R_2 is non-aromatic and is individually hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; or

EWG is a cyano group, and each R_2 is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;

- in structure B and in structure A where R₃ is structure D, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom; and
- each EDG is an electron-donating group;
- R₄ is a divalent, non-aromatic-containing bridging group; and
- (1) (4) refer to the respective double-bonded carbon atoms.
- 29. (Withdrawn) The composition of claim 28, wherein each EWG comprises a group individually selected from the group consisting of carbonyl, cyano, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.
- 30. (Withdrawn) The composition of claim 28, wherein each R_1 and R_2 comprises a group individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls.
- 31. (Withdrawn) The composition of claim 30, wherein each R_1 and R_2 comprises a group individually selected from the group consisting of non-aromatic cyclic alkyls and acyclic alkyls.
- 32. (Withdrawn) The composition of claim 30, wherein each R_1 and R_2 comprises a group individually selected from the group consisting of conjugated alkyls and conjugated heteroalkyls.

- 33. (Withdrawn) The composition of claim 28, wherein each EDG comprises a group individually selected from the group consisting of H₃CO, OH, and R₁-O-, wherein R₁ is non-aromatic and is selected from the group consisting of hydrogen, acyclic and cyclic alkyls, and heteroalkyls.
- 34. (Withdrawn) In a curable composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound which absorbs light at wavelengths of less than about 300 nm in said composition, said light attenuating compound comprising:

carbon atoms C_1 and C_2 double-bonded to one another and carbon atoms C_3 and C_4 double-bonded to one another and wherein C_3 is bonded to C_2 so as to form conjugated double bonds;

an EWG bonded to carbon atom C_1 ; an EDG bonded to carbon atom C_4 ; and a second EWG bonded to carbon atom C_4 .

35. (Withdrawn) The composition of claim 34, wherein the second EWG includes a moiety selected from the group consisting of carbonyl, carboxyl, carboxamido, sulfonyl, and non-aromatic heterocyclic groups.

36. (Original) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)

$$R_1$$
 EWG
 R_1
 EWG
 R_1
 EWG
 R_1
 EWG
 R_1
 EWG
 R_1
 EWG
 R_1
 EWG
 R_2
 EWG
 R_1
 EWG
 R_2
 EWG
 R_1
 EWG

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or
heteroalkyl, or an electron-withdrawing group; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and:

a C=O or a C=N attached to a carbon atom at least two carbon atoms away

from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

where:

- R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- EDG is an electron-donating group;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$R_2$$
 EWG
 (X)

where: R₂ is non-aromatic and is individually hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and EWG is a non-aromatic electron-withdrawing group; and

where: R_2 is non-aromatic and is individually hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and EWG is a non-aromatic electron-withdrawing group;

- (b) olefinic moieties of (I), (II), and mixtures thereof; and
- (c) mixtures of (a) and (b),

wherein said polymer binder comprises a backbone, and at least one of R_1 and R_2 of said light attenuating compound is bonded to the polymer binder backbone.

37. (Withdrawn) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)

$$R_1$$
 EWG R_1 EWG R_1 EWG (I)

where:

- each R₁ is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

where:

- R₁ is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls;
- EDG is an electron-donating group;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$R_2$$
 (X)

where: R_2 is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls; and EWG is a non-aromatic electron-withdrawing group; and

where: R₂ is non-aromatic and is individually selected from the group consisting of cyclic alkyls and acyclic alkyls; and EWG is a non-aromatic electron-withdrawing group;

- (b) olefinic moieties of (I), (II), and mixtures thereof; and
- (c) mixtures of (a) and (b).

38. (Withdrawn) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)

EDG
$$R_2$$
 or R_2 EWG R_1 EWG EWG Structure A Structure B (II)

where:

- R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl
 or heteroalkyl;
- EDG is an electron-donating group and comprises a group selected from the group consisting of H_3CO , OH, R_1 -O-, and R_xR_yN groups, wherein each of R_x and R_y being non-aromatic and individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; and

- in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;
- (b) olefinic moieties of (II); and
- (c) mixtures of (a) and (b).
- 39. (Original) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)
$$R_1$$
 R_2 or R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_3 R_4 R_5 R_5

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group; and

R₂ is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group;

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$\begin{array}{c|c} EWG & R_1 \\ \hline R_1 & R_1 \\ \hline R_1 & EWG \end{array} \hspace{1cm} (IV)$$

where:

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic
 alkyl or heteroalkyl; and
- EWG is a non-aromatic electron-withdrawing group;

EDG
$$R_1$$
 R_2 or R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_5

- each R₁ is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- EDG is an electron-donating group;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group other than cyano groups, and R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group; or

EWG is a cyano group, and R₂ is non-aromatic and is hydrogen, or an acyclic or cyclic alkyl or heteroalkyl; and

in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;

$$R_1$$
 R_1 R_1 R_1 R_1

where EWG is a non-aromatic electron-withdrawing group;

- (b) diolefinic moieties of (III), (IV), (V), and mixtures thereof; and
- (c) mixtures of (a) and (b),

wherein said polymer binder comprises a backbone, and at least one of R_1 and R_2 of said light attenuating compound is bonded to the polymer binder backbone.

40. (Withdrawn) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety selected from the group consisting of:

(a)
$$EDG \longrightarrow R_1 \qquad EDG \longrightarrow R_1 \qquad R_2 \qquad \text{or} \qquad R_1 \longrightarrow R_2 \qquad \text{(V)}$$
 Structure A Structure B

where:

- each R_1 is non-aromatic and is individually hydrogen, or an acyclic or cyclic alkyl or heteroalkyl;
- EDG is an electron-donating group and comprises a group selected from the group consisting of H_3CO , OH, R_1 -O-, and R_xR_yN groups and each of R_x and R_y ;
- in structure A, where EWG and R₂ do not form a cyclic unit:

EWG is a non-aromatic electron-withdrawing group other than cyano groups, and R_2 is non-aromatic and is hydrogen, an acyclic or cyclic alkyl or heteroalkyl, or an electron-withdrawing group;

or -

EWG is a cyano group, and R₂ is non-aromatic and is hydrogen, or an acyclic or cyclic alkyl or heteroalkyl; and

- in structure B, where EWG and R₂ form a cyclic electron-withdrawing unit, the cyclic unit comprises a C=O, C=S, or a C=N at a first carbon atom, and: a C=O or a C=N attached to a carbon atom at least two carbon atoms away from the first carbon atom; or an O, S, or N as a member of the ring at least two positions away from the first carbon atom;
- (b) diolefinic moieties of (V); and
- (c) mixtures of (a) and (b),

is non-aromatic and individually selected from the group consisting of hydrogen, alkyls, and heteroalkyls.

41. (Original) In a composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound comprising a moiety of

where EWG is a non-aromatic electron-withdrawing group, and EWG is bonded to the polymer binder.

42. (Original) The composition of claim 41, wherein said EWG is bonded to a linkage unit and said linkage unit is bonded to the polymer binder.

43. (Withdrawn) A cured fill layer used during microlithographic processes, said layer being formed by curing a composition including:

a polymer binder dissolved in a solvent system;

a non-aromatic, light attenuating compound which absorbs light at wavelengths of less than about 300 nm and comprises a diolefin including:

carbon atoms C_1 and C_2 double-bonded to one another and an EWG bonded to carbon atom C_1 ; and

carbon atoms C_3 and C_4 double-bonded to one another, wherein C_3 is bonded to C_2 so as to form conjugated double bonds; and

a glycouril-formaldehyde cross-linking agent.

44. (Withdrawn) The combination of:

a substrate for use in microlithographic processes; and

a cured layer adjacent said substrate, said layer being formed by curing a composition including:

a polymer binder dissolved in a solvent system;

a non-aromatic, light attenuating compound which absorbs light at wavelengths of

less than about 300 nm and comprises a diolefin including:

carbon atoms C₁ and C₂ double-bonded to one another and an EWG

bonded to carbon atom C₁; and

carbon atoms C₃ and C₄ double-bonded to one another, wherein C₃ is

bonded to C2 so as to form conjugated double bonds; and

a glycouril-formaldehyde cross-linking agent.

45. (New) In a curable composition for use during microlithographic processes, said composition comprising a polymer binder dissolved in a solvent system, the improvement which comprises a non-aromatic, light attenuating compound which is bonded to the polymer binder and absorbs light at wavelengths of less than about 300 nm in said composition, said light attenuating compound comprising:

carbon atoms C_1 and C_2 double-bonded to one another and carbon atoms C_3 and C_4 double-bonded to one another and wherein C_3 is bonded to C_2 so as to form conjugated double bonds;

an EWG bonded to carbon atom C₁; and

an EDG bonded to carbon atom C_4 , said EDG including a moiety selected from the group consisting of H_3CO , OH, and R_1 -O-, wherein R_1 is non-aromatic and is selected from the group consisting of hydrogen, acyclic and cyclic alkyls, and heteroalkyls.