Question:

Consider the following CFG, in which terminals are in bold-face:

```
stmt\_seq 	o stmt\_seq; stmt \mid stmt
stmt 	o if\_stmt \mid assign\_stmt
if\_stmt 	o \mathbf{if} exp then stmt\_seq end \mid
\mathbf{if} exp then stmt\_seq else stmt\_seq end assign\_stmt 	o \mathbf{id} = exp
exp 	o 0 \mid 1 \mid \mathbf{int} \mid \mathbf{id}
```

- 1. Calculate First & Follow sets for every non-terminal. Then deduce without making an LL(1) table, is the above CFG suitable for LL(1) parsing? Make an LL(1) table.
- 2. Modify the above CFG suitable for predictive parsing. Repeat the above with the modified CGF.

Solution:

Re-writing the grammar:

$stmt_seq \rightarrow stmt_seq \; ; \; stmt$	1
$stmt_seq \rightarrow stmt$	2
$stmt o if_stmt$	3
$stmt o assign_stmt$	4
$if_stmt \rightarrow \mathbf{if} \ exp \ \mathbf{then} \ stmt_seq \ \mathbf{end}$	5
$if_stmt \rightarrow \mathbf{if}\ exp\ \mathbf{then}\ stmt_seq\ \mathbf{else}\ stmt_seq\ \mathbf{end}$	6
$assign_stmt \to \mathbf{id} = exp$	7
exp o 0	8
exp o 1	9
$exp o \mathbf{int}$	10
$exp o \mathbf{id}$	11

FIRST									
Grammar-rule	Pass 1	Pass 2	Pass 3						
$stmt_seq \rightarrow stmt_seq$; $stmt$									
$stmt_seq \to stmt$			{ if, id }						
$stmt \rightarrow if_stmt$		{ if }							

$stmt \rightarrow assign_stmt$		{ if, id }	
$\mathrm{if_stmt} o \mathbf{if} \; \mathrm{exp} \ \mathbf{then} \; \mathrm{stmt_seq} \ \mathbf{end}$	{ if }		
$egin{aligned} & ext{if} & ext{stmt} ightarrow ext{if} & ext{exp} \ & ext{then} & ext{stmt} brace ext{seq} \ & ext{else} & ext{stmt} brace ext{seq} \ & ext{end} \end{aligned}$	{ if }		
$assign_stmt \rightarrow id = exp$	{ id }		
$\exp o 0$	{ 0 }		
$\exp o 1$	{ 0, 1 }		
$\exp \to \mathbf{int}$	{ 0, 1, int }		
$\exp \to \mathbf{id}$	{ 0, 1, int, id }		

FOLLOW								
Grammar-rule	Pass 1	Pass 2						
$stmt_seq \rightarrow stmt_seq$; $stmt$	$egin{aligned} & ext{stmt_seq} = \{ \; \$ \; , \; ; \} \ & ext{stmt} = \{ \; \$, \; ; \; \} \end{aligned}$	$\mathrm{stmt} = \{ \text{ \$, ;, end, else } \}$						
$stmt_seq \to stmt$								
$stmt \rightarrow if_stmt$	$\mathrm{if_stmt} = \{~\$,~;~\}$	$if_stmt = \{ \; \$, \; ;, end, else \; \}$						
$stmt \rightarrow assign_stmt$	$assign_stmt = \{ \$, ; \}$	$assign_stmt = \{ \; \$, \; ;, \; end, \; else \; \}$						
$egin{aligned} ext{if_stmt} & o ext{if exp} \\ ext{then stmt_seq} \\ ext{end} \end{aligned}$	$\begin{array}{l} \exp = \{ \text{ then } \} \\ \mathrm{stmt_seq} = \{ \text{ \$, ;, end} \} \end{array}$							
$egin{aligned} & ext{if} & ext{stmt} ightarrow ext{if} & ext{exp} \ & ext{then} & ext{stmt} ext{seq} \ & ext{else} & ext{stmt} ext{seq} \ & ext{end} \end{aligned}$	$\begin{aligned} & \exp = \{ \text{ then } \} \\ & \text{stmt_seq} = \{ \$, ;, \text{end, else} \} \end{aligned}$							
$assign_stmt \rightarrow id = exp$	$\exp = \{ \text{ then, \$, ; } \}$	$\exp = \{ \text{ then, \$, ;, end, else } \}$						

If we look at the production

$$if_stmt \rightarrow \mathbf{if} \ exp \ \mathbf{then} \ stmt_seq \ \mathbf{end} \ |$$

$$\mathbf{if} \ exp \ \mathbf{then} \ stmt_seq \ \mathbf{else} \ stmt_seq \ \mathbf{end}$$

It can be viewed as

$$A \to \alpha_1 \mid \alpha_2$$

where $First(\alpha_1) = \{ if \} \text{ and } First(\alpha_2) = \{ if \} \text{ which violates the rule that }$

A grammar is **LL(1)** if for every production $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$, $First(\alpha_i) \cap First(\alpha_j)$ is empty for all i and j, $1 \le i, j \le n, i \ne j$.

PARSE TABLE											
M[A, a]	if	\mathbf{id}	0	1	int	else	end	;	\$	then	=
$\operatorname{stmt} \operatorname{\underline{\hspace{1pt}-seq}}$	$\frac{1}{2}$	1 2									
stmt	3	4									
if_stmt	5 6										
$assign_stmt$		7									
exp		11	8	9	10						

Modifying Grammar:

Left Recursion Removal:

$$stmt_seq \rightarrow stmt_seq ; stmt \mid stmt$$
 (a)

In this case grammar-rule is of form

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_n \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_m$$

then left recursion is removed by modifying grammar-rule to

$$A \to \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_m A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_n A' \mid \epsilon$$

so the grammar-rule (a) is modified to

$$stmt_seq \rightarrow stmt \ stmt_seq'$$

 $stmt_seq' \rightarrow ; \ stmt \ stmt_seq' \mid \epsilon$

Left Factoring:

$$if_stmt \rightarrow \mathbf{if} \ exp \ \mathbf{then} \ stmt_seq \ \mathbf{end} \ |$$

$$\mathbf{if} \ exp \ \mathbf{then} \ stmt_seq \ \mathbf{else} \ stmt_seq \ \mathbf{end}$$
 (b)

In this case grammar-rule is of form

$$A \to \alpha\beta \mid \alpha\gamma$$

then left factoring is handled by modifying the grammar-rule to

$$A \to \alpha A'$$
$$A' \to \beta \mid \gamma$$

so the grammar-rule (b) is modified to

$$if_stmt \rightarrow \mathbf{if}\ exp\ \mathbf{then}\ stmt_seq\ if_stmt'$$
 $if_stmt' \rightarrow \mathbf{end}\ |\ \mathbf{else}\ stmt_seq\ \mathbf{end}$

Re-writing the modified grammar:

$stmt_seq \rightarrow stmt \ stmt_seq'$	1
$stmt_seq' \rightarrow ; stmt \ stmt_seq'$	2
$stmt_seq' \to \epsilon$	3
$stmt o if_stmt$	4
$stmt \rightarrow assign_stmt$	5
$if_stmt \rightarrow \mathbf{if}\ exp\ \mathbf{then}\ stmt_seq\ if_stmt'$	6
$if_stmt' o \mathbf{end}$	7
$if_stmt' \rightarrow \mathbf{else}\ stmt_seq\ \mathbf{end}$	8
$assign_stmt \to \mathbf{id} = exp$	9
exp o 0	10
exp o 1	11
$exp o \mathbf{int}$	12
$exp o \mathbf{id}$	13

FIRST									
Grammar-rule	Pass 1	Pass 2	Pass 3						
$stmt_seq \to stmt\ stmt_seq'$			{ if, id }						
$stmt_seq' \rightarrow ; stmt stmt_seq'$	{;}								
$\mathrm{stmt_seq'} \to \epsilon$	$\{\;;,\epsilon\;\}$								
$stmt \rightarrow if_stmt$		{ if }							
$stmt \rightarrow assign_stmt$		{ if, id }							
$if_stmt \rightarrow if exp$ $then stmt_seq$ if_stmt'	{ if }								
$\mathrm{if_stmt'} o \mathbf{end}$	{ end }								
$\begin{array}{c} \mathrm{if_stmt'} \rightarrow \mathbf{else} \\ \mathrm{stmt_seq} \ \mathbf{end} \end{array}$	{ end, else }								
$assign_stmt \to \mathbf{id} = exp$	{ id }								
$\exp o 0$	{ 0 }								
$\exp o 1$	{ 0, 1 }								
$\exp o\mathbf{int}$	{ 0, 1, int }								
$\exp \to \mathbf{id}$	{ 0, 1, int, id }								

FOLLOW								
Grammar-rule	Pass 1	Pass 2						
$stmt_seq \to stmt\ stmt_seq'$	$stmt_seq = \{ \$ \} $ $stmt = \{ ;, \$ \} $ $stmt_seq' = \{ \$ \} $	$\begin{array}{l} \mathrm{stmt} = \{ \; ; , \; \$, \; \mathrm{end}, \; \mathrm{else} \; \} \\ \mathrm{stmt_seq'} = \{ \; \$, \; \mathrm{end}, \; \mathrm{else} \; \} \end{array}$						
$stmt_seq' \rightarrow ; stmt stmt_seq'$								
$stmt \to if_stmt$	$\mathrm{if_stmt} = \{\;;,\$\}$	$if_stmt = \{ \ ;, \ \$ \ end, \ else \ \}$						
$stmt \rightarrow assign_stmt$	$assign_stmt = \{ \ ;, \ \$ \ \}$	$assign_stmt = \{ \; ; , \; \$ \; end, \; else \; \}$						
$ if_stmt \rightarrow if exp $ $ then stmt_seq $ $ if_stmt' $	$\begin{array}{c} \exp = \{ \text{ then} \} \\ \operatorname{stmt_seq} = \{ \$, \text{ end, else } \} \\ \operatorname{if_stmt'} = \{ \; ;, \$ \; \} \end{array}$	$if_stmt' = \{ \ ;, \$, end, else \}$						

$\begin{array}{c} \mathrm{if_stmt'} \rightarrow \mathbf{else} \\ \mathrm{stmt_seq} \ \mathbf{end} \end{array}$		
$assign_stmt \rightarrow id = exp$	$\exp = \{ \text{ then, } ;, \$ \ \}$	$\exp = \{ \text{ then, };, \$ \text{ end, else } \}$

	PARSE TABLE										
M[A, a]	if	id	0	1	int	else	end	;	\$	then	=
$\operatorname{stmt}_\operatorname{seq}$	1	1									
$\operatorname{stmt} \operatorname{\underline{\hspace{1pt}-seq'}}$						3	3	2	3		
stmt	4	5									
$_{ m if_stmt}$	6										
if_stmt'						8	7				
$assign_stmt$		9									
exp		13	10	11	12						