CLIPPERS UNIT-2

transistor clippers:

here circuit diagram is shown below,

consider input voltage is sufficient to drive the transistor from cutoff to saturation(through active region).

Assume that if $\ V_i < V_A$, transistor is in cutoff region

And if $V_i > V_B$, transistor is in saturation region

And also if $V_A \!\!< V_i < V_B$, transistor is in active region.

We know for the given circuit $V_{\text{o}} = V_{\text{CC}}$ - $I_{\text{C}} R_{\text{C}}$

CLIPPERS UNIT-2

Case(i): if $V_i < V_A$, transistor is in cutoff region.

So
$$I_C = 0$$
 mA then $V_0 = V_{CC}$

Here signal below the level V_A is clipped.

Case(ii): if $V_i > V_A$, transistor is in saturation region.

So
$$I_C = V_{CC} - V_{CE(sat)} / R_C$$
 then $V_o = V_{CE(sat)}$

Here signal above the level V_B is clipped

Case(iii): if $V_A < V_i < V_B$, transistor is in active region We know in active region output follows input but With 180 degrees phase shift.

Emitter coupled clipper: to get zero phase shift between input and output voltage waveforms there is a need of emitter coupled clipper.

(b)

Circuit diagram for emitter coupled clipper is shown below,

Operation:

Assume that due to the biasing voltages (V_{CC} , V_{BB2} , $-V_{EE}$) net current flowing through the resistor Re is constant.

Means $I = I_1 + I_2 = constant$ (in the absence of input signal)

Then $V_E = I R_e - V_{EE}$ is also constant (positive). And we know $V_o = V_{CC} - I_{C2}R_C$

Case(i): if V_i is small(negative), then Q1 is in

cutoff region(OFF) And Q2 is in active region(ON)

so here I_2 is maximum and I_1 is negligible. Then I_{C2} is high so V_o is constant low voltage.

Case(ii): if V_i increases ,both transistors are in active region.

Then output follows input.

$$V_o = V_i$$

In this region, I₁ will increase and I₂ will decrease

So as V_i increases V_o is also increases.

K.Chiranjeevi, Asst. Prof, ECE Dept, GMRIT

CLIPPERS UNIT-2

Case(iii): if V_i is large value, Q2 is in cutoff region(OFF) And Q1 is in active region(ON)

so here I_1 is maximum and I_2 is negligible. Then I_{C2} is low so V_o is constant high voltage.

Transfer characteristics:

EXPRESSION FOR ΔV_i :

from the transfer characteristics , $\Delta V_i = V_{iu}$ - V_{il} -----(1)

by applying KVL to the input and output loops of above circuit diagram, $V_i - V_1 + V_{EE}$ I Re = 0 -----(2)

 $V_{BB2} - V_2 + V_{EE}$ - I Re = 0 -----(3) , where V_1 and V_2 are voltage across the emitter junctions of both the transistors.

From equations (2) &(3), $V_i = V_{BB2} + V_1 - V_2 - (4)$

From Ebers and moll equation voltage across the emitter junction is,

Where α_I is inverted common base current gain I_{EO} is emitter junction reverse saturation current

Generally , I $_{E}$ is approximately equals to I_{C} , now equation (5) will becomes (by neglecting 1, because I_{E} is large)

$$V_E = \eta V_T \ln \left[- \left[I_E \left(1 + \alpha_I \right) / I_{EO} \right] \right]$$

Now for Q1 ,
$$V_1 = \eta V_T ln \left[- \left[I_1 \left(1 + \alpha_I \right) / I_{EO} \right] \right]$$

And for Q2,
$$V_2 = \eta V_T \ln \left[- \left[I_2 \left(1 + \alpha_I \right) / I_{EO} \right] \right]$$

K.Chiranjeevi, Asst. Prof, ECE Dept, GMRIT

CLIPPERS UNIT-2

So
$$V_1 - V_2 = \eta V_T \ln [I_1 / I_2]$$

From equation (4) , V_i = V_{BB2} + ηV_T ln [I $_1$ / I $_2$] ------(6)

We know if $V_i=V_{iu}\,$, then Q1 ON and Q2 OFF . here I_1 will dominates I_2 So consider $I_1=0.9~I\,$ and $\,$ $I_2=0.1~I\,$

From equation(6) , $V_{iu} = V_{BB2} + \eta V_T ln$ [9]

Similarly, if $V_i = V_{i1}\,$, then Q1 OFF and Q2 ON . here I_2 will dominates I_1 So consider $I_2 = 0.9~I\,$ and $\,$ $I_1 = 0.1~I\,$

Then $V_{il} = V_{BB2} + \eta V_T \ln [1/9]$

From equation(1) , ΔV_i = 4.4 ηV_T