Enhancing Relational Understanding in CLIP Leveraging HNC

Wen Wen

Research Question

Cos similarity score of image and caption:

Pos: "The trees are behind the fence."

→ViT-B/32: **0.1833**

Neg: "The trees are in front of the fence."

→ViT-B/32: **0.1907**

 \rightarrow Margin(pos-neg): -0.0073

CILP cannot handle relations in images well.

Hard Negative Caption(HNC) Dataset

For each scene graph, this pipeline is run through to generate hard negative captions.

Combine Contrastive Learning with HNC

Blue part: Contrastive learning for CLIP

Red Part: Additional HNC part

Loss Function

$$\begin{split} \mathcal{L}_{i} &= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp \left(\frac{\text{sim}(I_{i}, T_{i})}{\tau}\right)}{\exp \left(\frac{\text{sim}(I_{i}, T_{i})}{\tau}\right) + \sum_{j \neq i} \exp \left(\frac{\text{sim}(I_{i}, T_{j})}{\tau}\right) + \alpha \exp \left(\frac{\text{sim}(I_{i}, T_{i}^{\text{HNC}})}{\tau}\right) + \sum_{j \neq i} \exp \left(\frac{\text{sim}(I_{i}, T_{j}^{\text{HNC}})}{\tau}\right)}{\exp \left(\frac{\text{sim}(T_{i}, I_{i})}{\tau}\right)} \\ \mathcal{L}_{t} &= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\exp \left(\frac{\text{sim}(T_{i}, I_{i})}{\tau}\right)}{\exp \left(\frac{\text{sim}(T_{i}, I_{j})}{\tau}\right)} + \sum_{j \neq i} \exp \left(\frac{\text{sim}(T_{i}, I_{j})}{\tau}\right)}{\exp \left(\frac{\text{sim}(T_{i}, I_{j})}{\tau}\right)} \end{split}$$

Evaluation method

- Positive capture and image cosine similarity score
- Hard negative caption and image cosine similarity score
- Margin: pos-hard neg
- Random negative and image cosine similarity score
- Measure the margin -> pos/hnc >= Threshold
- Threshold =[1, 1.1, 1.2, 1.5, 2, 3]

Avg_Pos	Avg_Neg	Margin	Avg_Ra	threshold	threshold_	threshold_	threshold_	threshold	threshold
			nd_Neg	_1	1.1	1.2	1.5	_2	_3
0.2471	0.2449	0.0022	0.1817	0.5393	0.1161	0.0459	0.0000	0.0000	0.0000

Scores on HNC test dataset for Vit-B/32

Data Preprocessing

- One image has multiple positive captions and relative hard negative captions.
- For contrastive learning, it's important to remove the repeated image path in each batch.
- Otherwise, repeated positive captions can be treated as random negative captions for that image to influence training

Data Preprocessing

Training parameters

Mode	Token Embedding	Text Encoder	Text Projection	Visual Encoder	Vision Projection
text_encoder	True	True	True	_	-
vision_encoder	_	_	_	True	True
full_encoder	True	True	True	True	True
last_encoder	-	True (last block)	-	True (last block)	-

 Margin doesn't get improved during training when only train vision encoder or last encoder

During training:

Positive score-> larger Random negative score -> smaller Hard negative score -> larger then smaller

The test dataset score for fine-tuned model

Because the hard negative captions still contain a lot of image information. So HNC scores are higher than random negative scores.

Test data scores and comparison

Model	Avg_Pos	Avg_Neg	Margin	Avg_Rand_Neg	t_1	t_1.1	t_1.2	t_1.5	t_2	t_3
CLIP	0.2471	0.2449	0.0022	0.1817	0.5393	0.1161	0.0459	0.0000	0.0000	0.0000
HNC_L2_vision	0.3661	0.3584	0.0077	0.0115	0.4982	0.2273	0.1439	0.0762	0.0314	0.0169
HNC_L2_text	0.0386	0.0150	0.0236	-0.2713	0.4268	0.3265	0.2696	0.1959	0.1258	0.0713
HNC_L2_last	0.4479	0.4376	0.0103	0.0182	0.526	0.2588	0.1753	0.0943	0.0508	0.0302
HNC_L2_full	0.3080	0.2902	0.0178	0.0158	0.4389	0.3362	0.2805	0.1850	0.1149	0.0701

Here, T_1 means threshold = 1

L2 regularization vs KL divergence

$$\operatorname{Reg}_{L2} = \sum_{i} (\theta_i - \theta_i^{(CLIP)})^2$$

$$s_j = rac{\expig(s_j/Tig)}{\sum_k \expig(s_k/Tig)}, \quad t_j = rac{\expig(t_j/Tig)}{\sum_k \expig(t_k/Tig)},$$
 $D_{ ext{KL}}(t\,\|\,s) = \sum_{j=1}^{2B} t_j\,\lograc{t_j}{s_j},$

L2 regularization vs KL divergence

Model	Avg_Pos	Avg_Neg	Margin	Avg_Rand_Neg	t_1	t_1.1	t_1.2	t_1.5	t_2	t_3
CLIP	0.2471	0.2449	0.0022	0.1817	0.5393	0.1161	0.0459	0.0000	0.0000	0.0000
HNC_L2_full	0.3080	0.2902	0.0178	0.0158	0.4389	0.3362	0.2805	0.1850	0.1149	0.0701
HNC_KL_ful	0.3959	0.3741	0.0218	0.0211	0.4958	0.3482	0.2769	0.1850	0.1125	0.0556

Loss function2: HNC+DPO

$$\max_{\pi_{\theta}} E_{x \sim D, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x,y)] - \beta D_{\mathrm{KL}} [\pi_{\theta}(y \mid x) \| \pi_{\mathrm{ref}}(y \mid x)]$$

$$p(y_1 > y_2) = \frac{e^{r(x,y_1)}}{e^{r(x,y_1)} + e^{r(x,y_2)}}$$

$$\mathcal{L}_{\mathrm{DPO}}(\theta) = -E_{(x,y^+,y^-)\sim D} \left[\log \sigma \left(\beta \left[\log \frac{\pi_{\theta}(y^+ \mid x)}{\pi_{\mathrm{ref}}(y^+ \mid x)} - \log \frac{\pi_{\theta}(y^- \mid x)}{\pi_{\mathrm{ref}}(y^- \mid x)} \right] \right) \right]$$

Scoring function: logit_scale × cosine_similarity

Average over generated responses: Expectation → **Empirical mean**

$$\mathcal{L}_{\text{DPOCLIP}} = -\frac{1}{B} \sum_{i=1}^{B} \log \sigma \Big(\beta \Big[\big(r_{\theta}(x_i, y_i^+) - r_{\text{ref}}(x_i, y_i^+) \big) - \big(r_{\theta}(x_i, y_i^-) - r_{\text{ref}}(x_i, y_i^-) \big) \Big] \Big)$$

HNC+DPO

- Only using DPO (Ldpoclip)
- DPO + contrastive loss (L= LDPOCLIP + Lcontrastive)
- DPO + contrastive loss, using L2 regularization instead of KL divergence

Model	Avg_Pos	Avg_Neg	Margin	Avg_Rand_Neg	t_1	t_1.1	t_1.2	t_1.5	t_2	t_3
CLIP	0.2471	0.2449	0.0022	0.1817	0.5393	0.1161	0.0459	0.0000	0.0000	0.0000
DPO_KL_full	0.3735	0.2559	0.1176	0.6572	0.3591	0.0387	0.0278	0.0109	0.0036	0.0036
C_DPO_KL_full	0.3861	0.3737	0.0125	0.0124	0.4692	0.3083	0.2563	0.1596	0.1016	0.0496
C_DPO_L2_full	0.3901	0.3749	0.0152	0.0195	0.4752	0.3144	0.2455	0.1584	0.1004	0.0508

Test set sample 1, type='relation'

Pos:

The trees are behind the fence

Neg:

The trees are in front of the fence

Test set sample 2, type='relation'

Pos:

The chair is in front of the computer desk

Neg:

The couch is in front of the computer desk

Test set sample 3, type='relation'

Pos:

The wall is behind the elephant

Neg:

The wall is behind the trees

Test set samples and relative score

Pos: The trees are behind the fence Neg: The trees are in front of the fence Pos: The chair is in front of the computer desk Neg: The couch is in front of the computer desk Pos: The wall is behind the elephant Neg: The wall is behind the trees

	1_pos	1_neg	1_margin	2_pos	2_neg	2_margin	3_pos	3_neg	3_margin
ViT-B/32	0.1833	0.1907	-0.0073	0.2214	0.2534	-0.0320	0.2343	0.1693	0.0649
HNC_L2_1_text	-0.0925	-0.0930	0.0005	0.0591	0.2440	-0.1849	0.4158	-0.2013	0.6171
HNC_L2_1_vision	0.3240	0.3191	0.0049	0.4709	0.5215	-0.0505	0.1744	0.2239	-0.0494
HNC_L2_1_last	0.1215	0.0958	0.0257	0.6099	0.6699	-0.0601	0.6548	0.4517	0.2031
HNC_L2_1_full	0.2223	0.1902	0.0321	0.5420	0.5254	0.0166	0.5879	0.0791	0.5088
HNC_KL_1_full	0.3765	0.2402	0.1362	0.3577	0.2898	0.0679	0.4258	0.1886	0.2372

Performance using Coco test dataset

Model	Avg_P	Avg_N	Margin	Avg_R	thresh	threshol	threshol	threshol	thresh	thresh
	os	eg		and_N	old_1	d_1.1	d_1.2	d_1.5	old_2	old_3
				eg						
CLIP	0.3046	0.2972	0.0074	0.1498	0.7345	0.0812	0.0116	0.0001	0.0000	0.0000
HNC_L2_1_full	0.5415	0.5098	0.0317	0.0406	0.602	0.321	0.224	0.125	0.061	0.029
HNC_KL_1_full	0.6253	0.6089	0.0165	0.0299	0.616	0.187	0.119	0.041	0.018	0.008

Limitations:

1. Large HNC weight:

- Using larger HNC weight doesn't performance well.
- Using dynamic weight (small at first, increasing the weight during training), better than fixed large weight, but still performance bad.

Limitations:

2. Unstable/bad performance in other 'type" e.g. verify_object_attribute:

	ViT-B/32	HNC_L2_1_full	HNC_KL_1_full
Pos: There is at least one washing machine that is black.	0.2050	0.5151	0.4817
Neg: There is no washing machines that is black.	0.2017	0.5825	0.5205
Margin	0.0033	-0.0674	-0.0388

0.3022

0.1110

0.1912

Explanation of Image-HNC(Code-to-be-released)

Our second-order attributions Visualization Visualization A kid with headphones feeding birds. A kid with headphones feeding birds. A kid with headphones feeding birds.

H W bounding-box

selection

Caption projection

Deer next to a woman with an umbrella.

Deer next to a woman with an umbrella.

Deer next to a woman with an umbrella.

- Explaining Caption-Image Interactions in CLIP models with Second-Order Attributions (Pascal Tilli et al.)
- Image, caption → second-order attribution pipeline → which image patches and which caption tokens drive their similarity score in a CLIP-style dual-encoder→ Visualization

Pos: The trees are behind the fence

Here fine-tuned CLIP is *HNC_KL_1_S_full*

Pos: The **trees** are behind the fence.

Fine-tuned CLIP: "trees"

Pos: The trees are behind the **fence**.

→ Object detection get improved. E.g. trees, fence

Pos: The trees are **behind** the fence.

Fine-tuned CLIP: "behind"

→ For relational words (e.g. behind) can also focus on the right place in image.

Thank you