诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《2008 级大学物理(II) 期末试卷 A 卷》试卷

注意事项: 1. 考前请将密封线内各项信息填写清楚:

- 2. 所有答案请直接答在答题纸上;
- 3. 考试形式: 闭卷:
- 4. 本试卷共 25 题,满分 100 分,考试时间 120 分钟。

考试时间: 2010年1月18日9: 00-----11: 00

一、选择题(共30分)

1. (本题 3 分)

在电荷为-Q的点电荷A的静电场中,将另一电荷为q的 点电荷 B 从 a 点移到 b 点. a、b 两点距离点电荷 A 的距离 分别为 r_1 和 r_2 ,如图所示.则移动过程中电场力做的功为

(A)
$$\frac{-Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (B) $\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$.

$$4\pi\varepsilon_0 \left(\begin{array}{cc} r_1 & r_2 \end{array} \right)$$

$$(D) = -qQ$$

(C)
$$\frac{-qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$
. (D) $\frac{-qQ}{4\pi\varepsilon_0(r_2 - r_1)}$

2. (本题3分)

一"无限大"均匀带电平面 A, 其附近放一与它平行的有一定厚度的 不带电的"无限大"平面导体板B,如图所示。已知A上的电荷面密度 为 $+\sigma$, 则在导体板 B 的两个表面 1 和 2 上的感生电荷面密度为:

(C)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = -\frac{1}{2}\sigma$.

(D) $\sigma_1 = -\sigma$, $\sigma_2 = 0$.

3. (本题 3 分)

在静电场中,作闭合曲面 S,若有 $\oint \bar{D} \cdot \mathbf{d} \, \bar{S} = 0$ (式中 \bar{D} 为电位移矢量),则 S 面内必定

Г

]

- (A) 既无自由电荷,也无束缚电荷.
- (B) 没有自由电荷.
- (C) 自由电荷和束缚电荷的代数和为零.
- (D) 自由电荷的代数和为零.

4. (本题 3 分)

一个通有电流 I 的导体,厚度为 D,横截面积为 S, 放置在磁感强度为 B 的匀强磁场中, 磁场方向垂直于导 体的侧表面,如图所示. 现测得导体上下两面电势差为V, 则此导体的霍尔系数等于

(B)
$$\frac{IBV}{DS}$$
.

(C)
$$\frac{VS}{IBD}$$
.

(D)
$$\frac{IVS}{RD}$$
.

(E)
$$\frac{VD}{IR}$$
.

5. (本题 3 分)

两个同心圆线圈,大圆半径为R,通有电流 I_1 ;小圆半径为r,通有电 流 I_2 ,方向如图. 若 $r \ll R$ (大线圈在小线圈处产生的磁场近似为均匀磁场), 当它们处在同一平面内时小线圈所受磁力矩的大小为

(A)
$$\frac{\mu_0 \pi I_1 I_2 r^2}{2R}$$
. (B) $\frac{\mu_0 I_1 I_2 r^2}{2R}$. (C) $\frac{\mu_0 \pi I_1 I_2 R^2}{2r}$. (D) 0.

(B)
$$\frac{\mu_0 I_1 I_2 r^2}{2R}$$
.

(C)
$$\frac{\mu_0 \pi I_1 I_2 R^2}{2r}$$

6. (本题 3 分)

如图所示,两个线圈 P和 Q 并联地接到一电动势恒定的电源 上.线圈 P的自感和电阻分别是线圈 Q的两倍,线圈 P和 Q之间的 互感可忽略不计. 当达到稳定状态后,线圈P的磁场能量与Q的磁 场能量的比值是

- (A) 4. (B) 2. (C) 1. (D) $\frac{1}{2}$. [

7. (本题 3 分)

把一个静止质量为 m_0 的粒子,由静止加速到 v = 0.6c (c 为真空中光速) 需作的功等于

(A) $0.18m_0c^2$.

(B) $0.25 m_0 c^2$.

(C) $0.36m_0c^2$.

(D) $1.25 m_0 c^2$.

8. (本题 3 分)

粒子在一维无限深方势阱中运动, 图为粒子处于某一能态上 的波函数 $\psi(x)$ 的曲线. 粒子出现概率最大的位置为

- (A) a/2.
- (B) a/6, 5a/6.
- (C) a/6, a/2, 5a/6.
- (D) 0, a/3, 2a/3, a.

9. (本题 3 分)

在原子的 K 壳层中,电子可能具有的四个量子数 (n, l, m_l, m_s) 是

(1)
$$(1, 1, 0, \frac{1}{2})$$
. (2) $(1, 0, 0, \frac{1}{2})$.

(2)
$$(1, 0, 0, \frac{1}{2})$$

(3)
$$(2, 1, 0, -\frac{1}{2})$$

(3)
$$(2, 1, 0, -\frac{1}{2})$$
. (4) $(1, 0, 0, -\frac{1}{2})$.

《2008 级大学物理(II)期末试卷 A 卷》试卷第 2 页 共 8 页

以上四种取值中,哪些是正确的? (A) 只有(1)、(3)是正确的. (B) 只有(2)、(4)是正确的. (C) 只有(2)、(3)、(4)是正确的. (D) 全部是正确的.	[]
10. (本题 3 分) 根据量子力学原理,氢原子中,电子的轨道角动量 L 的最小值为 (A) 0. (B) \hbar . (C) $\hbar/2$. (D) $\sqrt{2}\hbar$.	[P]
二、填空题(共30分)		
11. (本题 3 分) 已知某静电场的电势函数 $U=6x-6x^2y-7y^2$ (SI). 由场强与电 (2, 3, 0)处的电场强度 $\vec{E}=$ \vec{i} + \vec{j} +		
12. (本题 3 分) 电荷分别为 q_1 , q_2 , q_3 的三个点电荷分别位于同一圆周的三个点上,如图所示. 设无穷远处为电势零点,圆半径为 R ,则 b 点处的电势 $U=$	q_1	q_2 Q q_3
13. (本题 3 分) 一平行板电容器两极板间电压为 U ,两板间距为 d ,其间充满相对介电常量为 ε 。的各向同性均匀电介质,则电介质中的电场能量密度 $w=$		b
14. $($ 本题 3 $分)$	> I	a
15. (本题 3 分)		
16. (本题 3 分) 图示一充电后的平行板电容器, A 板带正电, B 板带负电. 当将开关 K 合上放电时, AB 板之间的电场方向为, 位移电流的方向为。 (按图上所标 x 轴正、负方向来回答).	A + + + +	$ \begin{array}{c c} B \\ - \\ - \\ \hline R \end{array} $ $ X = X = X = X = X = X = X = X = X = X =$
17. (本题 3 分) 在 S 系中的 x 轴上相隔为 Δx 处有两只同步的钟 A 和 B ,读数相也有一只同样的钟 A' ,设 S' 系相对于 S 系的运动速度为 v ,沿 x 和遇时,刚好两钟的读数均为零。那么,当 A' 钟与 B 钟相遇时,不是一个,此时在 S' 系中 A' 钟的读数是————————————————————————————————————	同. 在 <i>S'</i> 由方向, 且	系的 x' 轴上 .当 A' 与 A 相

18. (本题 3 分)

如图所示,一频率为 ν 的入射光子与初始静止的自由电子发生碰撞和散射. 如果散射光子的频率为 ν' ,反冲电子的动量为p,则在与入射光子平行的方向上的动量守恒定律的分量形式为

19. (本题 3 分)

氢原子由定态 l 跃迁到定态 k 可发射一个光子. 已知定态 l 的电离能为 0.85 eV,又知从基态使氢原子激发到定态 k 所需能量为 10.2 eV,则在上述跃迁中氢原子所发射的光子的能量为 eV.

20. (本题 3 分)

在电子单缝衍射实验中,若缝宽为 a=0.1 nm $(1 \text{ nm} = 10^9 \text{ m})$,电子束垂直射在单缝面上,则衍射的电子横向动量的最小不确定量 $\Delta p = _______N \cdot s$.

(普朗克常量 $h=6.63\times 10^{-34} \text{ J} \cdot s$)

三、计算题(共40分)

21. (本题 10 分)

一个细玻璃棒被弯成半径为 R 的半圆形,沿其上半部分均匀分布有电荷+Q,沿其下半部分均匀分布有电荷-Q,如图所示.试求圆心 Q 处的电场强度.

22. (本题 10 分)

一根同轴线由半径为 R_1 的实心长金属导线和套在它外面的半径为 R_3 的同轴导体圆筒组成. R_1 与 R_2 之间充满磁导率为 μ 的各向同性均匀非铁磁介质, R_2 与 R_3 之间真空,如图. 传导电流 I 沿实心导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的. 求同轴线内外的磁感强度大小 B 的分布.

23. (本题 10 分)

如图所示,一根长为 L 的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转. O_1O_2 在离细杆 a 端 L/5 处.若已知地磁场在竖直方向的分量为

 \bar{B} . 求 ab 两端间的电势差 $U_a - U_b$.

24. (本题 5 分)

已知 μ 子的静止能量为 105.7 MeV,平均寿命为 2.2×10⁻⁸ s. 试求动能为 150 MeV 的 μ 子的速度 v是多少? 平均寿命 τ 是多少?

25. (本题 5 分)

能量为 15 eV 的光子,被处于基态的氢原子吸收,使氢原子电离发射一个光电子,求此光电子的德布罗意波长.不考虑相对论效应。

(电子的质量 m_e =9.11×10⁻³¹ kg,普朗克常量 h =6.63×10⁻³⁴ J·s,1 eV =1.60×10⁻¹⁹ J)

2008 级大学物理 2 试卷解答

一、选择题(共30分)

C, B, D, E, D; D, B, C, B, A

二、填空题(共30分)

12.
$$\frac{1}{8\pi\varepsilon_0 R} \left(\sqrt{2}q_1 + q_2 + \sqrt{2}q_3 \right)$$
 3 \Re

13.
$$\frac{1}{2}\varepsilon_0\varepsilon_r(U^2/d^2)$$
 3分

$$14. \quad B = \frac{3\mu_0 I}{8\pi a}$$
 3 \(\frac{\partial}{2}\)

15.
$$\frac{1}{2}rdB/dt$$
 3 \Re

17.
$$\Delta x/v$$
 1 分 $(\Delta x/v)\sqrt{1-(v/c)^2}$ 2 分

18.
$$\frac{hv}{c} = \frac{(hv'\cos\phi)}{c} + p\cos\theta$$
 3 \(\frac{h}{c}\)

20.
$$1.06 \times 10^{-24}$$
 (或 6.63×10^{-24} 或 0.53×10^{-24} 或 3.32×10^{-24})

3分

根据 $\Delta y \Delta p_y \geq \hbar$, 或 $\Delta y \Delta p_y \geq h$, 或 $\Delta y \Delta p_y \geq \frac{1}{2} \hbar$, 或 $\Delta y \Delta p_y \geq \frac{1}{2} h$, 可得以上答案.

三、计算题(共40分)

21.解:把所有电荷都当作正电荷处理. 在 θ 处取微小电荷 $dq = \lambda dl = 2Qd\theta/\pi$ 1分

它在 O 处产生场强

E生场强
$$dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{Q}{2\pi^2\varepsilon_0 R^2} d\theta \qquad \qquad 2 \, \text{分} \qquad \frac{dq^+}{d\theta}$$

接 θ 角变化,将 dE 分解成二个分量:

$$dE_x = dE \sin \theta = \frac{Q}{2\pi^2 \varepsilon_0 R^2} \sin \theta d\theta \qquad 1 \, \text{$\frac{1}{2}$}$$

$$dE_{y} = -dE\cos\theta = -\frac{Q}{2\pi^{2}\varepsilon_{0}R^{2}}\cos\theta d\theta \qquad 1 \, \text{f}$$

对各分量分别积分,积分时考虑到一半是负电荷

$$E_x = \frac{Q}{2\pi^2 \varepsilon_0 R^2} \left[\int_0^{\pi/2} \sin\theta \, d\theta - \int_{\pi/2}^{\pi} \sin\theta \, d\theta \right] = 0$$
 2 \(\frac{\partial}{2}\)

$$E_{y} = \frac{-Q}{2\pi^{2} \varepsilon_{0} R^{2}} \left[\int_{0}^{\pi/2} \cos\theta \, d\theta - \int_{\pi/2}^{\pi} \cos\theta \, d\theta \right] = -\frac{Q}{\pi^{2} \varepsilon_{0} R^{2}}$$
 2 \(\frac{\parallel{T}}{\tau}

《2008级大学物理 (II) 期末试卷 A 卷》试卷第 6 页 共 8 页

所以
$$\vec{E} = E_x \vec{i} + E_y \vec{j} = \frac{-Q}{\pi^2 \varepsilon_0 R^2} \vec{j}$$
 1分

22. 解:由安培环路定理:
$$\oint \vec{H} \cdot d\vec{l} = \sum I_i$$
 2 分

 $0 < r < R_1 \boxtimes \text{ig}$: $2\pi r H = Ir^2 / R_1^2$

$$H = \frac{Ir}{2\pi R_1^2}, \qquad B = \frac{\mu_0 Ir}{2\pi R_1^2}$$
 3 \(\frac{1}{2}\)

 $R_1 < r < R_2$ 区域: $2\pi r H = I$

$$H = \frac{I}{2\pi r} \,, \qquad B = \frac{\mu I}{2\pi r}$$
 2 \(\frac{\pi}{2}\)

2分

 $R_2 < r < R_3$ 区域:

$$B = \frac{\mu_0 I}{2\pi r}$$

 $r > R_3$ 区域: H = 0, B = 0

23. 解: \overline{Ob} 间的动生电动势:

$$\varepsilon_1 = \int_0^{4L/5} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_0^{4L/5} \omega B l \, dl = \frac{1}{2} \omega B (\frac{4}{5}L)^2 = \frac{16}{50} \omega B L^2$$
 4 \(\frac{1}{2}\)

b 点电势高于 O 点.

Oa 间的动生电动势:

$$\varepsilon_2 = \int_0^{L/5} (\vec{\mathbf{v}} \times \vec{B}) \cdot d\vec{l} = \int_0^{L/5} \omega B l \, dl = \frac{1}{2} \omega B (\frac{1}{5} L)^2 = \frac{1}{50} \omega B L^2$$
 4 \mathcal{D}

a 点电势高于 O 点.

$$\therefore \qquad U_a - U_b = \varepsilon_2 - \varepsilon_1 = \frac{1}{50} \omega B L^2 - \frac{16}{50} \omega B L^2 = -\frac{15}{50} \omega B L^2 = -\frac{3}{10} \omega B L^2 \qquad 2 \, \text{ }$$

24. 解:据相对论动能公式
$$E_K = mc^2 - m_0c^2$$
 1分

得
$$E_K = m_0 c^2 \left(\frac{1}{\sqrt{1 - (v/c)^2}} - 1\right)$$
 即 $\frac{1}{\sqrt{1 - (v/c)^2}} - 1 = \frac{E_K}{m_0 c^2} = 1.419$ 解得 $v = 0.91c$ 2分

平均寿命为
$$\tau = \frac{\tau_0}{\sqrt{1 - (v/c)^2}} = 5.31 \times 10^{-8} \text{ s}$$
 2分

25. 解:远离核的光电子动能为

$$E_K = \frac{1}{2}m_e v^2 = 15 - 13.6 = 1.4 \text{ eV}$$

$$v = \sqrt{\frac{2E_K}{m_e}} = 7.0 \times 10^5 \text{ m/s}$$
2 分

光电子的德布罗意波长为

$$\lambda = \frac{h}{p} = \frac{h}{m_e v} = 1.04 \times 10^{-9} \text{ m} = 10.4 \text{ Å}$$
 3 $\%$

《2008 级大学物理(II) 期末试卷 A 卷》试卷第 7 页 共 8 页