## Practice Problems 4: Sequences Hints and Answers

1. (a) 
$$a_n = n^2 + 1$$

(b) 
$$a_n = \frac{n(n+1)}{2} - 1$$

(c) 
$$a_n = \frac{(n+2)(n+3)}{2} + 2$$

(d) 
$$a_n = (n+1)! - 1$$
 (where  $n! = 1 \cdot 2 \cdot 3 \cdots n$ )

2. (a) 
$$F_n = F_{n-1} + F_{n-2}$$
 with  $F_0 = 0$  and  $F_1 = 1$ .

(b) 
$$0, 1, 2, 4, 7, 12, 20, \dots$$

(c) 
$$F_0 + F_1 + \dots + F_n = F_{n+2} - 1$$

3. 
$$3, 10, 24, 52, 108, \ldots$$
 The recursive definition for  $10, 24, 52, \ldots$  is  $a_n = 2a_{n-1} + 4$  with  $a_1 = 10$ .

4. 
$$-1, -1, 1, 5, 11, 19, ...$$
 Thus the sequence  $0, 2, 6, 12, 20, ...$  has closed formula  $a_n = (n+1)^2 - 3(n+1) + 2$ .

(b) 
$$a_n = 8 + 6(n-1)$$

6. (a) 
$$n+2$$
 terms.

(b) 
$$6n + 1$$
.

(c) 
$$\frac{(6n+8)(n+2)}{2}$$

8. 
$$\frac{5-5\cdot3^{21}}{-2}$$

9. 
$$\frac{1 + \frac{2^{31}}{3^{31}}}{5/3}$$

10. For arithmetic: 
$$x = 55/3$$
,  $y = 29/3$ . For geometric:  $x = 9$  and  $y = 3$ .

11. (a) 
$$\sum_{k=1}^{n} 2k$$

(b) 
$$\sum_{k=1}^{107} (1 + 4(k-1))$$

(c) 
$$\sum_{k=1}^{50} \frac{1}{k}$$

(d) 
$$\prod_{k=1}^{n} 2k$$

(e) 
$$\prod_{k=1}^{100} \frac{k}{k+1}$$

12. (a) 
$$\sum_{k=1}^{100} (3+4k) = 7+11+15+\dots+403$$

(b) 
$$\sum_{k=0}^{n} 2^k = 1 + 2 + 4 + 8 + \dots + 2^n$$

(c) 
$$\sum_{k=2}^{50} \frac{1}{(k^2 - 1)} = 1 + \frac{1}{3} + \frac{1}{8} + \frac{1}{15} + \dots + \frac{1}{2499}$$

(d) 
$$\prod_{k=2}^{100} \frac{k^2}{(k^2 - 1)} = \frac{4}{3} \cdot \frac{9}{8} \cdot \frac{16}{15} \cdots \frac{10000}{9999}$$

(e) 
$$\prod_{k=0}^{n} (2+3k) = (2)(5)(8)(11)(14)\cdots(2+3n)$$

- 13. (a) Hint: third differences are constant, so  $a_n = an^3 + bn^2 + cn + d$ . Use the terms of the sequence to solve for a, b, c, and d.
  - (b)  $a_n = n^2 n$
- 14. No. The sequence of differences is the same as the original sequence so no differences will be constant.
- 15. 171 and 341.  $a_n = a_{n-1} + 2a_{n-2}$  with  $a_0 = 3$  and  $a_1 = 5$ . Closed formula:  $a_n = \frac{8}{3}2^n + \frac{1}{3}(-1)^n$
- 16. By telescoping or iteration.  $a_n = 3 + 2^{n+1}$
- 17. We claim  $a_n = 4^n$  works. Plug it in:  $4^n = 3(4^{n-1}) + 4(4^{n-2})$ . This works just simplify the right hand side.
- 18. By the Characteristic Root Technique.  $a_n = 4^n + (-1)^n$ .
- 19.  $a_n = \frac{13}{5}4^n + \frac{12}{5}(-1)^n$
- 20. The general solution is  $a_n = a + bn$  where a and b depend on the initial conditions.
  - (a)  $a_n = 1 + n$
  - (b) For example, we could have  $a_0 = 21$  and  $a_1 = 22$ .
  - (c) For every x take  $a_0 = x 9$  and  $a_1 = x 8$ .
- 21.  $a_n = \frac{19}{7}(-2)^n + \frac{9}{7}5^n$