Information Retrieval

Web Search: Page Rank

Dr. Iqra Safder

Course Schedule

Page Rank Algorithm

- PageRank is a "vote", by all the other pages on the Web, about how important a page is.
- A link to a page counts as a vote of support
- The original PageRank algorithm was designed by Lawrence Page and Sergey Brin.

How Page Rank is Calculated

- The rank of a document is given by the rank of those documents which link to it.
- The PR of each page depends on the PR of the pages pointing to it.
- **B**ut we won't know what PR those pages have until the pages pointing to them have their PR calculated and so on.

Inbound, Outbound and Dangling Links

- Inbound link for a web page always increases that page's PageRank.
- An important aspect of outbound links is the lack of them on web pages.
- When a web page has no outbound links, its PageRank cannot be distributed to other pages.
- Lawrence Page and Sergey Brin characterise links to those pages as dangling links.

Dangling Links

Page Rank Initialization

Initially Page Rank (PR) for all the web pages = 1

The PageRank theory holds that an imaginary surfer who is randomly clicking on links will eventually stop clicking.

The probability, at any step, that the person will continue is a damping factor *d*. Various studies have tested different damping factors, but it is generally assumed that the damping factor will be set around 0.85

Damping Factor = d= 0.85

$$PR(A) = (1-d) + d(PR(Ti)/C(Ti) + ... + PR(Tn)/C(Tn))$$

Page Rank of A & B

■ Initially Page Rank (PR) for all the web pages = 1

$$PR(A) = (1-d) + d(PR(Ti)/C(Ti) + ... + PR(Tn)/C(Tn))$$

$$PR(A) = (1-d) + d [PR(C) / C(C)]$$

$$= (1-0.85) + 0.85 [1/1]$$

$$= 0.15 + 0.85 [1]$$

$$= 0.15 + 0.85$$

$$= 1$$

$$PR(B) = (1-d) + d [PR(A) / C(A)]$$

$$= (1-0.85) + 0.85 [(1) / 2]$$

$$= 0.15 + 0.85 [0.5]$$

$$= 0.15 + 0.425$$

$$= 0.575$$

Page Rank of C

Initially Page Rank (PR) for all the web pages = 1

$$PR(A) = (1-d) + d(PR(Ti)/C(Ti) + ... + PR(Tn)/C(Tn))$$

Iterations

■ Initially Page Rank (PR) for all the web pages = 1

$$PR(A) = (1-d) + d(PR(Ti)/C(Ti) + ... + PR(Tn)/C(Tn))$$

Iteration	A	В	С	
0	1	1	1	
1	1	0.575	1.06375	
2	1.0541875	0.5980296875	1.06354922	

Page Rank using Matrix

• Initially Page Rank (PR) for all the web pages = 1

Matrix Representation

• Teleport Factor = 0.8

	A	В	С	D	Е	F
A	0	1/2	1/2	0	0	0
В	1/4	0	0	1/4	1/4	1/4
С	1/2	0	0	0	0	1/2
D	0	0	0	0	0	0
Е	0	0	0	0	0	0
F	0	0	0	0	0	0

Matrix Transpose

• Teleport Factor = 0.8

 M^T

	A	В	С	D	Е	F
A	0	1/4	1/2	0	0	0
В	1/2	0	0	0	0	0
С	1/2	0	0	0	0	0
D	0	1/4	0	0	0	0
Е	0	1/4	0	0	0	0
F	0	1/4	1/2	0	0	0

• Teleport Factor = 0.8

1/4

1/4

Inbound, Outbound and Dangling Links

0.3

$$M^3 =$$

Next Generation Search Engines

- More specialized/customized (vertical search engines)
 - Special group of users (community engines, e.g., Citeseer)
 - Personalized (better understanding of users)
 - Special genre/domain (better understanding of documents)
- Learning over time (evolving)
- Integration of search, navigation, and recommendation/filtering (full-fledged information management)
- Beyond search to support tasks (e.g., shopping)
- Many opportunities for innovations!

The Data-User-Service (DUS) Triangle

Lawyers
Scientists
Online shoppers

•••

•••

Data

Web pages
News articles
Blog articles
Literature
Email

• • •

Users

Search
Browsing
Mining
Task support

• • •

Services

Future Intelligent Information Systems

