Probability - Session 5

Covariance, correlation and the CLT

Elizabeth Williamson with thanks to Jennifer Rogers

Foundations of Medical Statistics

Session objectives

By the end of this session you should be able to:

- define joint, marginal and conditional distributions for continuous random variables
- explain the concepts of covariance and correlation
- state the Central Limit Theorem and describe its implications
- describe the key properties of the multivariate normal distribution

Outline

Joint continuous distributions

Covariance and correlation

The Central Limit Theorem

The multivariate normal distribution

Summary

Joint probability distributions for continuous random variables

- Previously we introduced the ideas of joint and marginal discrete distributions.
- ► These definitions extend to the case of *continuous* distributions as follows.

Joint density function

- ▶ Suppose X and Y are continuous random variables.
- ▶ Their **joint density function** f(x, y) is defined such that:

$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) \, dy \, dx.$$

► The joint density function must satisfy:

$$f(x,y) \geq 0 \text{ for all } x,y$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dy \, dx = 1.$$

Marginal distributions

► The marginal density function of one variable can be obtained from the joint density function:

$$f(x) = \int_{-\infty}^{\infty} f(x, y) \ dy.$$

The cumulative distribution function (CDF)

► The (joint) cumulative distribution function for (*X*, *Y*) is defined by:

$$F(x,y) = P(X \le x \text{ and } Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du.$$

Joint distribution

- Can consider joint distributions of mixtures of continuous and discrete random variables.
- Can make corresponding definitions for these joint distributions.
- Details not covered here.

Independence

► Two continuous random variables *X* and *Y* are **independent** if and only if:

$$f(x,y) = f(x)f(y)$$
 for all x, y

▶ Joint density can be factorized into product of marginals.

Outline

Joint continuous distributions

Covariance and correlation

The Central Limit Theorem

The multivariate normal distribution

Summary

- Previously we derived the variance of a sum of independent random variables X + Y.
- ▶ Now suppose *X* and *Y* are *not* independent. Then:

$$Var(X + Y) = E(\{(X + Y) - E(X + Y)\}^2)$$

- Previously we derived the variance of a sum of independent random variables X + Y.
- ▶ Now suppose X and Y are not independent. Then:

$$Var(X + Y) = E(\{(X + Y) - E(X + Y)\}^{2})$$

= $E(\{(X + Y) - (E(X) + E(Y))\}^{2})$

- Previously we derived the variance of a sum of independent random variables X + Y.
- ▶ Now suppose X and Y are not independent. Then:

$$Var(X + Y) = E(\{(X + Y) - E(X + Y)\}^{2})$$

$$= E(\{(X + Y) - (E(X) + E(Y))\}^{2})$$

$$= E(\{(X - E(X)) + (Y - E(Y))\}^{2})$$

- Previously we derived the variance of a sum of independent random variables X + Y.
- ▶ Now suppose X and Y are not independent. Then:

$$Var(X + Y) = E (\{(X + Y) - E(X + Y)\}^{2})$$

$$= E (\{(X + Y) - (E(X) + E(Y))\}^{2})$$

$$= E (\{(X - E(X)) + (Y - E(Y))\}^{2})$$

$$= E((X - E(X))^{2} + (Y - E(Y))^{2} + 2(X - E(X))(Y - E(Y)))$$

- ▶ Previously we derived the variance of a sum of independent random variables X + Y.
- ▶ Now suppose X and Y are not independent. Then:

$$Var(X + Y) = E(\{(X + Y) - E(X + Y)\}^{2})$$

$$= E(\{(X + Y) - (E(X) + E(Y))\}^{2})$$

$$= E(\{(X - E(X)) + (Y - E(Y))\}^{2})$$

$$= E((X - E(X))^{2} + (Y - E(Y))^{2}$$

$$+2(X - E(X))(Y - E(Y)))$$

$$= Var(X) + Var(Y) + 2E((X - E(X))(Y - E(Y))).$$

So if we do not assume X and Y are independent:

$$Var(X + Y) = Var(X) + Var(Y) + 2E((X - E(X))(Y - E(Y)))$$

We define the covariance between X and Y as:

$$Cov(X,Y) = E\left((X - E(X))(Y - E(Y))\right).$$

Then:

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y),$$

- ▶ Covariance measures the magnitude of linear association between X and Y.
- ► Recall Cov(X, Y) = E((X E(X))(Y E(Y))).
- ightharpoonup Cov(X, Y) > 0 when
 - if X E(X) is positive then Y E(Y) tends to be positive,
- ► Cov(X, Y) < 0 when</p>
 - if X E(X) is positive then Y E(Y) tends to be negative.

More on covariance

- ▶ *Y* and *X* below appear to be related/associated, yet their covariance is zero.
- ▶ This is because covariance measures the magnitude of linear association, and here the association is non-linear, and is such that the linear association is zero.

ightharpoonup Cov(X,X) = Var(X).

- ightharpoonup Cov(X,X) = Var(X).
- $\quad \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X).$

- ightharpoonup Cov(X,X) = Var(X).
- $\quad \mathsf{Cov}(X,Y) = \mathsf{Cov}(Y,X).$
- Cov(aX, bY) = abCov(X, Y).

- ightharpoonup Cov(X,X) = Var(X).
- ightharpoonup Cov(X,Y) = Cov(Y,X).
- Cov(aX, bY) = abCov(X, Y).
- Cov(aR + bS, cX + dY) = acCov(R, X) + adCov(R, Y)+ bcCov(S, X) + bdCov(S, Y).
- Cov(aX + bY, cX + dY) = acVar(X) + bdVar(Y) + (ad + bc)Cov(X, Y).
- Cov(X + Y, X Y) = Var(X) Var(Y).

- ightharpoonup Cov(X,X) = Var(X).
- ightharpoonup Cov(X,Y) = Cov(Y,X).
- Cov(aX, bY) = abCov(X, Y).
- Cov(aR + bS, cX + dY) = acCov(R, X) + adCov(R, Y)+ bcCov(S, X) + bdCov(S, Y).
- Cov(aX + bY, cX + dY) = acVar(X) + bdVar(Y) + (ad + bc)Cov(X, Y).
- Cov(X+Y,X-Y) = Var(X) Var(Y).
- If X and Y are independent, Cov(X, Y) = 0 (but **not** vice-versa!).

$$Cov(X,X) = E((X - E(X))(X - E(X)))$$

$$Cov(X,X) = E((X - E(X))(X - E(X)))$$

= $E(X^2 - 2XE(X) + E(X)^2)$

$$Cov(X,X) = E((X - E(X))(X - E(X)))$$

= $E(X^2 - 2XE(X) + E(X)^2)$
= $E(X^2) - 2E(X)^2 + E(X)^2$

$$Cov(X,X) = E((X - E(X))(X - E(X)))$$

$$= E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(X)^{2} + E(X)^{2}$$

$$= Var(X).$$

Correlation

- Cov(X, Y) depends on the scale/magnitude of variability of X and Y.
- ► Correlation is a standardized version of covariance, which lies between -1 and 1:

$$Corr(X, Y) = \frac{Cov(X, Y)}{SD(X)SD(Y)} = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}.$$

- ▶ Corr(X, Y) = 1 or -1:
 - means X and Y are perfectly correlated.
 - does not necessarily mean X and Y are equal.
 - ▶ It means Y = aX + b for some constants a and b.
 - e.g. Y = 2X have correlation 1, but are not equal.
- Possible for two variables to be dependent (associated) but have zero correlation.

Correlation - some examples

Correlation - some examples

Outline

Joint continuous distributions

Covariance and correlation

The Central Limit Theorem

The multivariate normal distribution

Summary

Sampling distribution of the mean

- Suppose that:
 - we draw a random sample of size n from a population $(X_1, X_2, ..., X_n)$
 - the X's are independent and identically distributed (i.i.d.)
 - $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$
- Define the sample mean

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- We know that $E(\bar{X}_n) = \mu$ and $Var(\bar{X}_n) = \sigma^2/n$ (Practical 4).
- ▶ We often want to make inferences about the mean (Inference)
- ▶ To do this, it is useful to know distribution of \bar{X}_n in repeated sampling

The Central Limit Theorem (CLT)

- ▶ The CLT is a hugely important theorem in statistics.
- ▶ It plays a central role in large sample theory.

► CLT:

"If you draw a sample of size n from a population and calculate the sample mean, \bar{X}_n , the sampling distribution of \bar{X}_n tends to a normal distribution as $n \to \infty$ ".

- ▶ CLT tells us that the distribution of \bar{X}_n is normal, when n is sufficiently large, irrespective of what distribution the individual X_i s follow.
- ▶ This holds even if the X_is have a discrete distribution.

Illustration: The Central Limit Theorem

- ▶ Suppose we are interested in estimating the mean of *X*
- ▶ Suppose the population distribution of *X* is:

Illustration: The Central Limit Theorem

- ▶ Suppose we repeatedly take a random sample of size n from the population, and calculate the mean $\bar{X} = \sum_{i=1}^{n} X_i/n$.
- ▶ Here is an example of a histogram of these \bar{X} s, with n=3

Distribution of \bar{X}_n for different n

As *n* increases,

▶ the distribution of \bar{X}_n appears to become more symmetric, less skewed, and shaped more like a normal distribution.

The CLT: Distribution of \bar{X}_n

If samples are i.i.d, with $E(X) = \mu$ and $Var(X) = \sigma^2$, the Central Limit Theorem says that:

► As *n* increases,

$$\bar{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

An alternative formulation, as n increases,

$$\sum_{i=1}^n X_i \sim N(n\mu, n\sigma^2),$$

- Note: this theorem does **not** assume normality of the original distribution of X.
- Mhat becomes normal is the distribution (in repeated sampling) of the sample mean \bar{X}_n .

An application of the CLT: normal approximation to the Binomial

There are many applications of the CLT. For example,

- ▶ Suppose we have $X \sim Bin(n, \pi)$ with large n.
- ▶ Difficult to calculate P(X = x) unless x is small or close to n
- Solution:
 - ▶ Think of X as the sum of n Bernoulli trials
 - Apply the CLT.
- The CLT says that for large n,

$$X \sim N(n\pi, n\pi(1-\pi))$$

Caution:

this only works well if n > 20 and $n\pi > 5$ and $n(1 - \pi) > 5$.

An application of the CLT: normal approximation to the Poisson

- ▶ Suppose $X \sim Po(\mu)$, over an interval t. Can we use the CLT to approximate the Poisson by the normal?
- ► Consider dividing the time *t* into *n* equal length intervals. Then the number of events in the *i*th interval is Poisson:

$$X_i \sim Po\left(\frac{\mu}{n}\right),$$

with $E(X_i) = \mu/n$ and $Var(X) = \mu/n$.

► The original X can then be viewed as the sum of the X_i, and we can apply the CLT:

$$X = \sum_{i=1}^{n} X_i \sim N\left(\frac{n\mu}{n}, \frac{n\mu}{n}\right) = N(\mu, \mu),$$

▶ **Caution**: this approximation works well when $\mu > 10$.

Continuity corrections

- If we approximate a discrete distribution by the normal, we should usually use a continuity correction.
- ▶ i.e. if we want to find P(X = 15), and use a normal approximation, we should calculate $P(14.5 \le X \le 15.5)$.

Outline

Joint continuous distributions

Covariance and correlation

The Central Limit Theorem

The multivariate normal distribution

Summary

Two random variables

Suppose we have a two random variables X_1 and X_2 , with

$$E(X_1) = \mu_1, \quad Var(X_1) = \sigma_1^2, E(X_2) = \mu_2, \quad Var(X_2) = \sigma_2^2,$$

and
$$Corr(X_1, X_2) = \rho$$
, so $Cov(X_1, X_2) = \rho \sigma_1 \sigma_2 = \sigma_{12}$.

In matrix notation, we can write $\mathbf{X} = (X_1, X_2)^T$, i.e.

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

which has expectation and variance (covariance matrix)

$$E(\mathbf{X}) = \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \qquad Var(\mathbf{X}) = \mathbf{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$$

Example: systolic and diastolic blood pressure

Suppose we are interested in the relationship between systolic blood pressure (SBP) and diastolic blood pressure (DBP).

- ▶ SBP has a mean of 130, and standard deviation of 15
- ▶ DBP has a mean of 90, and standard deviation of 10.
- ▶ The correlation between *SBP* and *DBP* is 0.75.

Then if
$$\mathbf{X} = (SBP, DBP)^T$$
,

$$E(\mathbf{X}) = \mu = \begin{pmatrix} 130 \\ 90 \end{pmatrix}, \quad Var(\mathbf{X}) = \mathbf{\Sigma} = \begin{pmatrix} 225 & 112.5 \\ 112.5 & 100 \end{pmatrix}$$

The bivariate normal PDF

We say that ${f X}$ follows a bivariate normal distribution, or ${f X} \sim {\it N}(\mu, {f \Sigma})$, if

$$f(x_1, x_2) = \frac{exp\left(\frac{-z}{2(1-\rho^2)}\right)}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

with

$$z = \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1\sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$$

The bivariate normal PDF

A bivariate normal probability density function looks like this:

Conditional and marginal distributions

If $\mathbf{X} = (X_1, X_2)^T$ follows a bivariate normal distribution:

▶ The marginal distributions of the two variables are normal

$$X_1 \sim N(\mu_1, \sigma_1^2), \qquad X_1 \sim N(\mu_2, \sigma_2^2)$$

▶ The conditional distribution of X_1 given X_2 is normal, with

$$E(X_1|X_2) = \mu_1 + \frac{\rho\sigma_1}{\sigma_2}(X_2 - \mu_2),$$

and

$$Var(X_1|X_2) = \sigma_1^2(1-\rho^2)$$

(And X_2 given X_1 is similarly normal)

Example: systolic and diastolic blood pressure

Suppose systolic and diastolic blood pressure follow a bivariate normal distribution.

What is the conditional distribution of systolic blood pressure given diastolic blood pressure?

▶ The conditional expectation is:

$$E(SBP|DBP) = 130 + \frac{0.75 \times 15}{10}(DBP - 90)$$

► E.g. Among people with diastolic blood pressure of 95

$$E(SBP|DBP=95)=136.$$

The conditional variance is equal to:

$$Var(SBP|DBP) = 15^2(1-0.75^2) = 98.4.$$

► The conditional standard deviation (9.92) is less than the marginal standard deviation (15).

The multivariate normal

Suppose we have *n* random variables, $\mathbf{X} = (X_1, ..., X_n)^T$

 ${\bf X}$ follows a multivariate normal (MVN) distribution if its joint density function is

$$f(\mathbf{x}) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp(-(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})/2)$$

- μ is a vector of means: $E(X) = \mu$.
- ightharpoonup Σ is an $n \times n$ covariance matrix: $Var(\mathbf{X}) = Σ$.

For a MVN distribution:

- All marginal distributions are also normal
- All conditional distributions are also normal (multivariate if more than one variable).

Outline

Joint continuous distributions

Covariance and correlation

The Central Limit Theorem

The multivariate normal distribution

Summary

Summary

- We have looked at how joint, marginal and conditional distributions are defined for continuous random variables.
- We have described the definitions and meanings of covariance and correlation.
- Covariance and correlation are measures of linear association only.
- The Central Limit Theorem is of critical importance for inferential methods, and is also useful in some settings for approximating distributions by the normal.
- Introduced the multivariate normal distribution, and some of its properties.

Overview of Probability

- ▶ Session 1
 - Probability as a concept
 - Axioms of probability
 - Conditional probabilities and independence
- Session 2
 - Bayes theorem
 - Random variables
 - Expectation and variance of random variables
- Session 3
 - Discrete probability distributions
 - Combinatorics
 - Binomial and Poisson distributions

Session 4

- Continuous probability distributions and density functions
- Continuous distributions, including the normal
- Session 5
 - Joint distributions
 - Covariance and correlation
 - The Central Limit Theorem