Topology Qual Workshop Day 4: Counterexamples

Warm-up Problems:

- For a set $A \subset X$, \overline{A} is defined to be the intersection of all closed sets containing A. Using this definition, show: $x \in \overline{A}$ if and only if every open set U containing x intersects A.
- Let $f: X \to Y$ be a continuous, bijective, open map. Show that f is a homeomorphism. [Open map can be replaced with closed map and the same result holds.]
- Provide an example of a topological space where open sets are compact. Then find an infinite set with a Hausdorff topology where open sets are compact.
- (1) (June '09 # 2A) For a topological space X and $y \in X$, the path component P_y of X containing y is the largest path-connected subset with $y \in P_y \subseteq X$.
 - (a) Show that this concept is well defined (that is, show that every point y is contained in a largest path-connected subset).
 - (b) Give an example of a space and a point $y \in X$ so that P_y is neither an open nor a closed subset of X.
- (2) (June '08 # A1) Let A be a subset of a topological space X, and let B be a subset of a topological space Y. Let $X \times Y$ be the product space, and let $\operatorname{int}_Z(C)$ denote the interior of the set C in the space Z. Prove or give a counterexample to $\operatorname{int}_{X\times Y}(A\times B)=\operatorname{int}_X(A)\times\operatorname{int}_Y(B)$.
- (3) (Jan '04 # A3) Let (X, τ) be a Hausdorff space and let $\tau' = \{U \subseteq X : X \setminus U \subseteq X \text{ is compact}\} \cup \{\emptyset\}$. Show that τ' is a topology on X and is coarser than τ . Show that, in general, they need not be equal.
- (4) Let X be a compact space. If $X = A \cup B$ with both A and B Hausdorff, must X be Hausdorff?

Tips: The following are common places to look for counterexamples:

- Flea and Comb (Differentiates Connected and Path Connected)
- Comb (Sans the flea) (Differentiates Path Connected and Locally Path Connected)
- Topologists Sine Curve (Differentiates Connected and Path Connected)
- 2 or 3 point sets (Especially useful if you assume your space must be compact)
- Any space with the Discrete Topology
- Any space with the Indiscrete Topology

Topology Qual Workshop Day 4: Assorted Problems

- (1) (June '10 # A1) Let X be a topological space and let $f, g: X \to \mathbb{R}$ be continuous functions.
 - (a) Show that the set $L=\{p\in X: f(p)\leq g(p)\}$ is a closed subset of X.
 - (b) Show that the function $h: X \to \mathbb{R}$ given by $h = \min\{f(p), g(p)\}$ is continuous.
- (2) (June '08 # A3)
 - (a) Prove that a map $f: X \to Y$ between topological spaces is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.
 - (b) Prove that if f is continuous and $f(\overline{A})$ closed for some $A \subseteq X$, then $f(\overline{A}) = \overline{f(A)}$
- (3) (Jan '08 # B8) Suppose that X is an arbitrary topological space and Y is a compact space. Consider the projection map $\pi: X \times Y \to X$ defined by $\pi(x,y) = x$. Prove that if $X \times Y$ has the product topology, then π is a closed map.

(4) (June '04 # A2) Let X be the unit sphere in \mathbb{R}^3 and define an equivalence relation on X by

$$(x, y, z) \sim (x', y', z') \Leftrightarrow z = z'$$

Let $Z = X/\sim$ be the quotient space under this equivalence relation, with the quotient topology. Show that Z is homeomorphic to the interval [-1,1].