Нейронные сети

Ксемидов Борис Сергеевич

Chillers

30 апреля, 2020

Математическая модель нейрона

Нейрон можно представить в следующем виде:

$$y = \sigma(wx - b)$$

$$w = (w_1, w_2, ..., w_n), x = (x_1, x_2, ..., x_n)$$

Функции активации

Существуют множество функций активации, вот некоторые из них:

- $\sigma(x) = \frac{e^{z_i}}{\sum_k e^{z_k}}$ softmax;
- $\sigma(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ гиперболический тангенс;
- $\sigma(x) = x$ линейная.

Архитектуры нейронных сетей

Архитектур нейронных сетей существует большое множество, наиболее популярными и известными из них являются:

- прямого распространения (персептрон, многослойный персептрон);
- сверточные;
- рекуррентные.

Функции ошибки

Для оценки ошибки предсказания нейронной сети на данных существуют функции ошибки:

- $Q(x, w, y) = \frac{1}{n}(a(w, x) y)^2$ MSE (mean square error);
- $Q(x, w, y) = \frac{1}{n} \sqrt{(a(w, x) y)^2}$ RMSE (root mean square error).

Нейронная сеть прямого распространения

Обозначения

Синие нейроны - входные, красные - скрытые, зеленые - выходные.

Рисунок: Пример многослойного персептрона

Обучение многослойного персептрона

Обучение многослойного персептрона производится с помощью алгоритма обратного распространения ошибки.

Пусть выбрана MSE: $Q(x, w, y) = \frac{1}{n} (a(w, x) - y)^2$.

Тогда для алгоритма обратного распространения ошибки необходимо продифференцировать её по весам:

$$\nabla w = -\mu \frac{\partial Q}{\partial w}, \mu \in R$$

Для распространения ошибок по скрытым слоям:

$$\nabla \delta = \frac{\partial Q}{\partial x}$$

Алгоритм обратного распространения ошибки

Алгоритм обратного распространения ошибки:

- правка весов;
- посчитать величину ошибки для следующего слоя;
- распространить ошибку на следующий слой.

Обучение нейронной сети

Эпоха

Весь датасет прошел через нейронную сеть в прямом и обратном направлении только один раз.

Батч

Часть датасета выбранного размера.

Итерация

Прохождение батча в прямом и обратном направлении только один раз.

Проблемы обучения сетей

Существуют следующие проблемы обучения нейронных сетей:

- паралич сети;
- локальные минимумы.

Паралич сети

Рисунок: Сигмоида

Проблема локального минимума

Рисунок: Метод градиентного спуска

Проблемы многослойного персептрона

Существуют следующие проблемы многослойного персептрона:

- затухающие градиенты;
- взрывные градиенты.

Свертка

Основа сверточных сетей - фильтры, производящие операции свертки.

Рисунок: Свертка изображения

Ядро

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Рисунок: Пример обученного ядра

MaxPooling

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4	7	112	37
112	100	25	12			

Рисунок: Пример подвыборки

Сверточные нейронные сети

Рисунок: CNN

GAN

Генеративно-состязательные сети предназначены для создания сущностей, похожих на объекты из реального мира.

- GAN состоит из:
 - дискриминатора;
 - генератора.

Дискриминатор

Дискриминатор предназначен для классификации поддельных изображений, генерируемых генератором, и настоящих. Представляется в виде сверточной нейронной сети.

Генератор

Генератор моделирует распределение отдельных классов. Представляется в виде "обратной" сверточной нейронной сети.

Архитектура GAN

Автоэнкодер

Рисунок: Автоэнкодер

Виды нейронных сетей

Рисунок: Типы нейронных сетей

Реккурентные нейронные сети

RNN предназначены для обработки последовательностей.

LSTM

Отличие RNN от LSTM заключается в фильтрах. Существуют три фильтра:

- фильтр забывания (что забыть);
- слой входного фильтра (что добавить);
- слой выходного фильтра (выделение требуемой информации).

LSTM

Рисунок: Архитектура LSTM

Спасибо за внимание!