Question number	Scheme	Marks
4 (a)	$A = \frac{1}{2} \times 8 \times 8 \times \sin 60^{\circ} = \left(16\sqrt{3}\right)$	M1
	$48\sqrt{3} = \frac{1}{3} \times 16\sqrt{3} \times h \Rightarrow h = 9 *$	M1
	3	Alcso
(b)		[3] M1
(0)	$BX = \sqrt{9^2 + 8^2} = \sqrt{145}$	1,111
	$\angle BXC = \frac{'145' + '145' - 8^2}{2 \times '\sqrt{145}' \times '\sqrt{145}'} = 38.8025^{\circ} \approx 38.8^{\circ}$	M1A1 [3]
(c)	Let midpoint of <i>BC</i> be <i>M</i> $AM = \sqrt{8^2 - 4^2} = (4\sqrt{3}) \text{ or } MX = \sqrt{145 - 4^2} = (\sqrt{129})$	M1
	$\angle XMA = \tan^{-1}\left(\frac{9}{\sqrt{4\sqrt{3}}}\right) \text{ or } \angle XMA = \sin^{-1}\left(\frac{9}{\sqrt{129}}\right) \text{ or } \angle XMA = \cos^{-1}\left(\frac{\sqrt{4\sqrt{3}}}{\sqrt{129}}\right)$	M1 A1
	= 52.4109° ≈ 52.4°	[3]
	ALT 1 Let midpoint of BC be M	
	$(XA)^{2} = (AM)^{2} + (XM)^{2} - 2(AM)(XM)\cos\theta$	{M1}
	$9^{2} = (8^{2} - 4^{2}) + (8^{2} + 9^{2} - 4^{2}) - 2\sqrt{8^{2} - 4^{2}}\sqrt{8^{2} + 9^{2} - 4^{2}}\cos\theta$	{M1}
	$\theta = 52.4109^{\circ} \approx 52.4^{\circ}$	{A1} [3]
	Total	9 marks
(a)		
M1	Use of $\frac{1}{2}ab\sin C$ (may be implied by $(16\sqrt{3})$	
M1	Use of $\frac{1}{2}$ 'Area of base' × h	
A1 cso (b)	Obtains the given answer with no errors in the working	
M1	Use of $\sqrt{(\text{part }a)^2 + 8^2}$ (may be implied by $\sqrt{145}$)	
M1	Use the cosine rule, either form. If not for angle BXC there must be a complete meth shown for obtaining BXC (follow through their BX)	nod
A1	awrt 38.8°	
(c)		_
M1	Use of Pythagoras' to find the length of AM or MX (may be implied by $4\sqrt{3}$ or $\sqrt{129}$	9)
M1	$\tan^{-1}\left(\frac{9}{\sqrt{4\sqrt{3}}}\right) \text{ or } \sin^{-1}\left(\frac{9}{\sqrt{129}}\right) \text{ or } \cos^{-1}\left(\frac{\sqrt{4\sqrt{3}}}{\sqrt{129}}\right)$	
A1	awrt 52.4°	

ALT	
M1	Use of cosine rule using AX, AM and XM e.g.
	$(XA)^{2} = (AM)^{2} + (XM)^{2} - 2(AM)(XM)\cos\theta$
M1	Correct values substituted into the cosine rule in any form e.g.
	$9^{2} = (8^{2} - 4^{2}) + (8^{2} + 9^{2} - 4^{2}) - 2\sqrt{8^{2} - 4^{2}}\sqrt{8^{2} + 9^{2} - 4^{2}}\cos\theta$
A1	awrt 52.4°