<실험10. 전기회로의 응용 실험 결과보고서>

5조 201910906 이학민 / 201910892 박명세 / 202211021 이명희

A. 최대전력 전달 조건

|표 10-1| 직렬회로에서의 파라미터 측정

	R_l , [k Ω]	R_L , [k Ω]	V_S , [V]	I_L , [mA]	V_L , [V]
정격값	1.0	2.0	10.0	3.333	6.667
측정값	0.9884	1.968	10.02	3.373	6.686
오차율, [%]	1.160	1.600	0.200	1.200	0.285

|표 10-2| 직렬회로에서의 전력 계산

	전력 계산 공식 및 계산 과정	계산 전력값 [mW]
$P_{L}(R_{L}$ 에서의 소비전력)	(a) $V_L \times I_L = 3.373 \times 6.686$	22.5519
	(b) $V_L^2/R_L = 6.686^2/1.968$	22.7147
	(c) $I_L^2 \times R_L = 3.373^2 \times 1.968$	22.3902
P_S (전압원에서의 생산전력)	$10 \times I_L = 10 \times 3.373$	33.7300

|표 10-3| 최대전력 전송 회로 실험 데이터

R_l , [k Ω]	R_L , [k Ω]	$R_l + R_L$, [k Ω]	I_L , [mA]	P_L , [mW]	P_S , [mW]
	0.003	1.003	9.918	0.295	98.662
	1.019	2.019	4.912	24.586	48.714
	2.314	3.314	3.006	20.909	29.945
	3.119	4.119	2.414	18.176	24.003
1.00	4.144	5.144	1.933	15.484	19.220
	5.302	6.302	1.579	13.219	15.712
	6.518	7.518	1.322	11.391	13.139
	7.638	8.638	1.150	10.101	11.424
	8.793	9.793	1.014	9.041	10.069
	9.904	10.904	0.909	8.183	9.010

|그림 10-6| 최대전력 전달 조건을 찾기 위한 엑셀 그래프

B. 평형 브릿지 회로

|표 10-4| 미지의 저항값 계산 1

	D	R_3	가변저항기	미지의 저항값	미지의 저항값
	R_1		R_2	계산, R_x	측정, R_x
정격값, [kΩ]	1.0	2.0		R_1R_2	1 022
측정값, [kΩ]	0.986	1.968	3.901	$\frac{12}{R_3} = 1.954$	1.933
오차율, [%]	1.400	1.600		1.0	086

|표 10-5| 미지의 저항값 계산 2

	R ₁ , [표 10-4]의 R ₃	R ₃ , [표 10-4]의 R ₁	가변저항기 R_2	미지의 저항값 계산, $R_{\scriptscriptstyle X}$	미지의 저항값 측정, R_{x}
정격값, [kΩ]	2.0	1.0		R_1R_2	1 000
측정값, [kΩ]	1.968	0.986	0.975	$\frac{1}{R_3} = 1.946$	1.933
오차율, [%]	1.600	1.400		0.6	673

<실험 결과 검토>

이명희 :

실험 A을 통해 P_S 는 합성 저항이 커질수록 작아지고 P_L 은 R_L = R_l 일 때 최대 전력이 된다는 것을 확인할 수 있었다.

또한 실험 B에서 가변저항 R_2 를 조절하여 R_1 : R_x = R_3 : R_2 가 되도록 만들었다. 그 결과 $\frac{6R_2}{R_2+R_3}=\frac{6R_x}{R_1+R_x}$ 이 되므로 노드B, D 사이의 전압을 측정하여 0이 됨을 확인하였고 비례식을 통해 R_x 의 값을 구할 수 있었다.

박명세 :

소스가 부하에 전력을 전달할 때 소스 저항과 부하 저항 사이에 전압 분해가 발생하는데 이때 전압과 전류 사이의 적절한 균형이 필요하다.

전력이 최대가 되려면 소스 저항과 부하 저항이 같아야 하고, 이는 실험 A에서 R_L 값이 $1 \text{k}\Omega$ 일 때 전력이 최대가 되는 것을 확인하여 알 수 있었다

이학민 :

부하에 최대전력이 전달되기 위해서는 부하 저항의 값이 선로 저항의 값과 일치해야 함을 실험을 통해 알 수 있었다. 휘스톤 브릿지 실험도 진행하였는데, 휘스톤 브릿지의 특성을 나타내는 식을 직접 유도해 보았고 현장에서는 어떻게 활용되고 있는지에 대해 정리하였다.

휘스톤 브릿지 추가 설명