# A Brief Review of Probability

Patrick Lam

Expectation, Variance, and Densities

Important Distributions

Discrete Distributions
Continuous Distributions

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distribution

# Expectation

The expected value of a random variable X is simply the weighted average of all possible values of X.

Discrete Case:

$$E(X) = \sum_{i} x_{i} P(X = x_{i})$$

where P(X = x) is the probability mass function (PMF).

Continuous Case:

$$E(X) = \int_{-\infty}^{\infty} x p(x) dx$$

where p(x) is the probability density function (PDF).

# Expectation of a Function of a Random Variable

Suppose we want to find E[g(X)], where g(X) is any function of X. We can simply weight the values of g(x) by the PDF or PMF of X:

$$E[g(X)] = \sum_{i} g(x_i) P(X = x_i)$$

for discrete random variables and

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x)dx$$

for continuous random variables.

This is sometimes known as the *Law of the Unconscious Statistician* (LOTUS).

#### Variance

The formula for the variance of a random variable is

$$Var(X) = E[(X - E(X))^2]$$

We can find the variance using LOTUS, or we can simplify the formula first.

$$Var(X) = E[(X - E(X))^{2}]$$

$$= E[X^{2} - 2XE(X) + (E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E[E(X)] + E([E(X)]^{2})$$

$$= E(X^{2}) - 2[E(X)]^{2} + [E(X)]^{2}$$

$$= E(X^{2}) - [E(X)]^{2}$$

We can then find the first part with LOTUS.

# Marginal, Conditional, and Joint Densities

$$p(x) = \int p(x,y)dy$$

$$p(x,y) = \int p(x,y,z)dz$$

$$p(x|y) = \frac{p(x,y)}{p(y)}$$

$$p(x|y,z) = \frac{p(x,y,z)}{p(y,z)}$$

$$p(x,y) = p(x|y)p(y)$$

$$= p(y|x)p(x)$$

$$p(x,y,z) = p(x|y,z)p(y|z)p(z)$$

Expectation, Variance, and Densities

Important Distributions

Discrete Distributions
Continuous Distributions

Expectation, Variance, and Densities

Important Distributions
Discrete Distributions
Continuous Distributions

#### The Bernoulli Distribution

$$Y \sim \mathsf{Bernoulli}(\pi)$$

$$y = 0, 1$$

probability of success:  $\pi \in [0,1]$ 

$$p(y|\pi) = \pi^y (1-\pi)^{(1-y)}$$

$$E(Y) = \pi$$

$$Var(Y) = \pi(1-\pi)$$



#### The Binomial Distribution

$$Y \sim \mathsf{Binomial}(n,\pi)$$
  $y = 0,1,\ldots,n$  number of trials:  $n \in \{1,2,\ldots\}$  probability of success:  $\pi \in [0,1]$   $p(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{(n-y)}$   $E(Y) = n\pi$   $\mathsf{Var}(Y) = n\pi(1-\pi)$ 



## The Multinomial Distribution

 $Cov(Y_i, Y_i) = -n\pi_i\pi_i$ 

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$
  $y_j = 0, 1, \dots, n; \quad \sum_{j=1}^k y_j = n$  number of trials:  $n \in \{1, 2, \dots\}$  probability of success for  $j$ :  $\pi_j \in [0, 1]; \quad \sum_{j=1}^k \pi_j = 1$   $p(\mathbf{y}|n, \boldsymbol{\pi}) = \frac{n!}{y_1! y_2! \dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$   $E(Y_j) = n\pi_j$   $\mathsf{Var}(Y_i) = n\pi_i (1 - \pi_i)$ 

#### The Poisson Distribution

$$Y \sim \mathsf{Poisson}(\lambda)$$

$$y = 0, 1, ...$$

expected number of occurrences:  $\lambda > 0$ 

$$p(y|\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

$$E(Y) = \lambda$$

$$Var(Y) = \lambda$$



#### The Geometric Distribution

How many Bernoulli trials until success?

$$Y \sim \text{Geometric}(\pi)$$

$$y = 1, 2, 3, \dots$$

probability of success:  $\pi \in [0,1]$ 

$$p(y|\pi) = (1-\pi)^{(y-1)}\pi$$

$$E(Y) = \frac{1}{\pi}$$

$$Var(Y) = \frac{1-\pi}{\pi^2}$$



Expectation, Variance, and Densities

Important Distributions

Discrete Distributions

Continuous Distributions

### The Univariate Normal Distribution

$$Y \sim \text{Normal}(\mu, \sigma^2)$$

$$y \in \mathbb{R}$$

 $\text{mean: } \mu \in \mathbb{R}$ 

variance:  $\sigma^2 > 0$ 

$$p(y|\mu,\sigma^2) = rac{\exp\left(-rac{(y-\mu)^2}{2\sigma^2}
ight)}{\sigma\sqrt{2\pi}}$$

$$E(Y) = \mu$$

$$Var(Y) = \sigma^2$$



## The Multivariate Normal Distribution

$$Y \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\mathbf{y} \in \mathbb{R}^k$$

mean vector:  $\mu \in \mathbb{R}^k$ 

variance-covariance matrix:  $\Sigma$  positive definite  $k \times k$  matrix

$$p(\mathbf{y}|\boldsymbol{\mu},\boldsymbol{\pi}) = (2\pi)^{-k/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y}-\boldsymbol{\mu})\right)$$

$$E(Y) = \mu$$

$$\mathsf{Var}(Y) = \mathbf{\Sigma}$$

## The Uniform Distribution

$$Y \sim \mathsf{Uniform}(\alpha, \beta)$$

$$y \in [\alpha, \beta]$$

Interval: 
$$[\alpha, \beta]$$
;  $\beta > \alpha$ 

$$p(y|\alpha,\beta) = \frac{1}{\beta-\alpha}$$

$$E(Y) = \frac{\alpha + \beta}{2}$$

$$Var(Y) = \frac{(\beta - \alpha)^2}{12}$$

#### The Beta Distribution

$$Y \sim \text{Beta}(\alpha, \beta)$$

$$y \in [0,1]$$

shape parameters:

$$\alpha > 0$$
;  $\beta > 0$ 

$$p(y|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{(\alpha-1)} (1-y)^{(\beta-1)}$$

$$E(Y) = \frac{\alpha}{\alpha + \beta}$$

$$Var(Y) = \frac{\alpha\beta}{(\alpha+\beta)^2)\alpha+\beta+1)}$$



#### The Gamma Distribution

$$Y \sim \mathsf{Gamma}(\alpha, \beta)$$

shape parameter:  $\alpha > 0$  inverse scale parameter:  $\beta > 0$ 

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{(\alpha-1)} \exp(-\beta y)$$

$$E(Y) = \frac{\alpha}{\beta}$$

$$Var(Y) = \frac{\alpha}{\beta^2}$$



#### The Inverse Gamma Distribution

Distribution of the Inverse of a Gamma Distribution: If  $X \sim \text{Gamma}(\alpha, \beta)$ , then  $\frac{1}{X} \sim \text{Invgamma}(\alpha, \beta)$ .

$$Y \sim \text{Invgamma}(\alpha, \beta)$$

shape parameter:  $\alpha > 0$  scale parameter:  $\beta > 0$ 

$$p(y|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{-(\alpha+1)} e^{-\frac{\beta}{y}}$$

$$E(Y) = \frac{\beta}{\alpha - 1}$$
 for  $\alpha > 1$ 

$$Var(Y) = \frac{\beta^2}{(\alpha-1)^2(\alpha-2)}$$
 for  $\alpha > 2$ 



# The Dirichlet Distribution

$$Y \sim \mathsf{Dirichlet}(\alpha_1, \ldots, \alpha_k)$$

$$y_j \in [0,1]; \sum_{i=1}^k y_i = 1$$

$$\alpha$$
 parameters:  $\alpha_j > 0$ ;  $\sum_{j=1}^k \alpha_j \equiv \alpha_0$ 

$$p(\mathbf{y}|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} y_1^{\alpha_1 - 1} \dots y_k^{\alpha_k - 1}$$

$$E(Y_j) = \frac{\alpha_j}{\alpha_0}$$

$$\operatorname{\sf Var}(Y_j) = rac{lpha_j(lpha_0 - lpha_j)}{lpha_0^2(lpha_0 + 1)}$$

$$Cov(Y_i, Y_j) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$