Shortest Paths

Shortest Paths

- ▶ Weighted graph G=(V,E) with weight w
 - V: set of vertices
 - E: set of edges directed
 - ▶ w: E→R can be generalized to paths
 - Weight of path $p=\langle v_0,v_1,...,v_k\rangle$: $w(p)=\sum_{1\leq i\leq k}w(v_{i-1},v_i)$
- ► $\delta(u,v)=\min_{p:u \sim v} w(p)$ no path: $\delta(u,v)=\infty$
- Goal: Compute $\delta(u,v)$

Weighted Adjacency Matrix

	1	2	3	4	5
1	О	6	8	-2	8
2	8	0	8	7	8
3	-1	8	O	-3	9
4	8	8	8	О	8
5	8	8	8	8	О

Weighted Adjacency List

Shortest Path Problem

- Single-source shortest paths
- Single-destination shortest paths
- Single-pair shortest path
- All-pairs shortest paths
- Special cases
 - ▶ DAG: Topological sort+DP
 - Unweighted: BFS

Optimal Substructure

▶ Given a weighted, directed graph G=(V,E) with weight function $w: E \rightarrow R$, let $p=\langle v_0,...,v_k \rangle$ be a shortest path from v_0 to v_k and, for any i and j s.t. $0 \le i \le j \le k$, let $p_{i,j}=\langle v_i,...,v_j \rangle$ be the subpath of p from v_i to v_j . Then, $p_{i,j}$ is a shortest path from v_i to v_j .

Proof

- ▶ BWOC, assume the dashed path p' is better than $p_{i,j}$, i.e., $w(p') < w(p_{i,j})$.
- We have $p_{0,i}p'p_{j,k}$ is a path from v_0 to v_k .
- $w(p_{0,i}p'p_{j,k})=w(p_{0,i})+w(p')+w(p_{j,k})$ $< w(p_{0,i})+w(p_{i,j})+w(p_{j,k})=w(p), a contradiction.$

Negative Weight Edges

- The weight can be negative. w(e) < 0
- Cycle: $\langle v_0, v_1, ..., v_k = v_0 \rangle$
- Negative cycle c: $w(c) = \sum_{1 \le i \le k} w(v_{i-1}, v_i) < 0$
- If a graph has negative cycles c and p is a path from u to v s.t. p and c have a no shortest common vertex, then $\delta(u,v)=-\infty$.

Cycles and Shortest Paths

- If $\delta(u,v)$ is finite, then we can always find a shortest path from u to v without a cycle.
 - \blacktriangleright If w(c)<0, then no shortest path.
 - If w(c)>0, then p is not shortest.
 - If w(c)=0, then we can just remove c from p.

Predecessor Subgraph

- Predecessor of v: v.π
- ▶ Predecessor subgraph of G: $G_{\pi}=(V_{\pi},E_{\pi})$
 - $\blacktriangleright V_{\pi}$: depends on problem setting
 - $E_{\pi} = \{(v.\pi, v): v.\pi \neq NIL\}$
- We have seen this before:
 - ▶ BFS tree
 - DFS forest

Shortest-Paths Tree

- Shortest-paths tree rooted s
 - \rightarrow s. π =NIL
 - For reachable $v \neq s$, $v.\pi = u$ if the shortest from s to v is $\langle s,...,u,v \rangle$.
 - For unreachable v, $v.\pi=NIL$
 - $V_{\pi}=V\setminus\{v:v.\pi=NIL\}\cup\{s\}$
- $G_{\pi}=(V_{\pi},E_{\pi})$ is a tree rooted at s
 - Optimal substructure of shortest paths

Shortest-Paths Tree: Rooted at s

SSSP: Initialization

- v.d: shortest-path estimate best so far
- For $v \in V$ $v.\pi = NIL$, $v.d = \infty$ s.d = 0
- This is the common part of relaxation based algorithms

 We only
 - Bellman-Ford algorithm
 - Dijkstra's algorithm

We only apply relaxation after the initialization

SSSP: Relaxation

```
    Relax(u,v,w) (u,v)∈E, w is weight if v.d>u.d+w(u,v)
    v.d=u.d+w(u,v)
    v.π=u
```


Bellman-Ford Algorithm

```
▶ Initialize()
  for i = 1 to |V|-1 do
    for each edge (u,v)∈E do
        Relax(u,v,w)
  for each edge (u,v)∈E do
    if v.d>u.d+w(u,v) then
        output "A negative cycle exists"
```


	S	t	u	V	W	X	У	Z
π	NIL							

	S	t	u	V	W	X	y	Z
π	NIL	S	t	S	V	NIL	NIL	S

	S	t	u	V	W	X	У	Z
π	NIL	S	t	S	V	W	NIL	S

	S	t	u	V	W	X	y	Z
π	NIL	S	t	S	V	W	X	S

Done!

Complexity

- ▶ Initialization: O(|V|)
- First loop: O(|V||E|)
- ▶ Second loop: O(|E|)
- ▶ Total: O(|V||E|)

Special Case: No Negative Edges

- If G has no negative edges, then we can solve SSSP by Dijkstra's algorithm in
 - $ightharpoonup O(|V|^2)$ Array
 - Extract-Min: O(n)
 - ▶ Decrease-Key: O(1)
 - ▶ O(|E|log|V|) Binary heap
 - Extract-Min: O(logn)
 - Decrease-Key: O(logn)

Dijkstra's Algorithm

```
Initialize()
 S=\emptyset
              vertex with minimum d first
 PQ=V
 while PQ≠∅
    u=Q.extractMin() O(|V|) times
    S=S\cup\{u\}
    for each edge (u,v)∈E do
       Relax(u,v,w) Decrease-key\timesO(|E|)
```


	S	t	u	V	W	X	y	Z
π	NIL	S	t	S	NIL	NIL	NIL	S

	S	t	u	V	W	X	y	Z
π	NIL	S	t	u	Z	NIL	NIL	S

	S	t	u	V	W	X	y	Z
π	NIL	S	t	u	V	W	NIL	S

	S	t	u	V	W	X	y	Z
π	NIL	S	t	u	V	W	X	S

	S	t	u	V	W	X	y	Z
π	NIL	S	t	u	V	W	X	S

Done

All-Pairs Shortest Paths

- Solve $\delta(u,v)$ for all $u,v \in V$.
- ▶ Run Bellman-Ford for every v∈V:
 - $O(|V|^2|E|)=O(|V|^4)$
- ▶ Run Dijkstra's algorithm for every v∈V:
 - $ightharpoonup O(|V|^3)$ Array
 - O(|V||E|log|V|) Binary heap
 - O(|V|²log|V|+|V||E|) Fibonacci heap

Floyd-Warshall

- G=(V,E) where $V=\{v_1,...,v_n\}$
- Dynamic programming
- Subproblem:
 - ▶ Dⁱ(u,v) is the minimum length of paths from u to v which only pass vertices in {v₁,...,v_i}.
 - \rightarrow Dⁱ(v,v)=0
 - ▶ $D^{o}(u,v)=w(u,v)$ $w(u,v)=\infty$ if $u\neq v$ and $(u,v)\notin E$
 - $\rightarrow D^{i}(u,v)=min(D^{i-1}(u,v),D^{i-1}(u,v_{i})+D^{i-1}(v_{i},v))$
 - \rightarrow Dⁿ(u,v)= δ (u,v)

Floyd-Warshall

```
\begin{array}{l} \bullet D^o = W \\ \text{for } i = 1 \text{ to } n \\ \text{for } u \in V \\ \text{for } v \in V \\ D^i(u,v) = \min(D^{i-1}(u,v),D^{i-1}(u,v_i) + D^{i-1}(v_i,v)) \\ \text{return } D^n \end{array}
```

- Predecessor
 - ▶ $\Pi^{o}(u,v)=u$ if $u\neq v$ and $(u,v)\in E$.
 - ▶ $\Pi^{o}(u,v)=NIL \text{ if } u=v \text{ or } (u,v)\notin E.$
 - $\Pi^{i}(u,v)=\Pi^{i-1}(u,v) \text{ if } D^{i}(u,v)=D^{i-1}(u,v)$
 - $\Pi^{i}(u,v)=\Pi^{i-1}(v_{i},v) \text{ if } D^{i}(u,v)\neq D^{i-1}(u,v)$

Correctness

p does not contain a cycle.

- Let p be the shortest path from u to v which only pass vertices in $\{v_1,...,v_i\}$. $w(p)=D^i(u,v)$
 - ▶ Case 1: p does not pass v_i . So $w(p)=D^{i-1}(u,v)$.
 - ▶ Case 2: p passes v_i . $w(p)=D^{i-1}(u,v_i)+D^{i-1}(v_i,v)$.

Do	1	2	3	4	5
1	О	6	8	-2	8
2	8	О	8	-9	8
3	-1	8	O	-1	8
4	8	8	8	О	8
5	8	8	9	8	О

\prod_{0}	1	2	3	4	5
1	NIL	1	NIL	1	NIL
2	NIL	NIL	NIL	2	NIL
3	3	NIL	NIL	3	NIL
4	NIL	NIL	NIL	NIL	4
5	NIL	NIL	5	NIL	NIL

D^1	1	2	3	4	5
1	О	6	8	-2	8
2	8	О	8	-9	8
3	-1	5	O	-3	8
4	8	8	8	О	8
5	8	8	9	8	O

\prod^1	1	2	3	4	5
1	NIL	1	NIL	1	NIL
2	NIL	NIL	NIL	2	NIL
3	3	1	NIL	1	NIL
4	NIL	NIL	NIL	NIL	4
5	NIL	NIL	5	NIL	NIL

D^2	1	2	3	4	5
1	О	6	8	-3	8
2	8	О	8	-9	8
3	-1	5	0	-4	8
4	8	8	8	О	8
5	8	8	9	8	О

\prod^2	1	2	3	4	5
1	NIL	1	NIL	2	NIL
2	NIL	NIL	NIL	2	NIL
3	3	1	NIL	2	NIL
4	NIL	NIL	NIL	NIL	4
5	NIL	NIL	5	NIL	NIL

D_3	1	2	3	4	5
1	О	6	8	-3	8
2	8	О	8	-9	8
3	-1	5	0	-4	8
4	8	8	8	О	8
5	8	14	9	5	O

$\prod_{i=1}^{3}$	1	2	3	4	5
1	NIL	1	NIL	2	NIL
2	NIL	NIL	NIL	2	NIL
3	3	1	NIL	2	NIL
4	NIL	NIL	NIL	NIL	4
5	3	1	5	2	NIL

D ⁴	1	2	3	4	5
1	О	6	8	-3	5
2	8	О	8	-9	-1
3	-1	5	0	-4	4
4	8	8	8	О	8
5	8	14	9	5	O

\prod^4	1	2	3	4	5
1	NIL	1	NIL	2	4
2	NIL	NIL	NIL	2	4
3	3	1	NIL	2	4
4	NIL	NIL	NIL	NIL	4
5	3	1	5	2	NIL

D^5	1	2	3	4	5
1	О	6	14	-3	5
2	ħ	О	8	-9	-1
3	-1	5	О	-4	4
4	16	22	17	О	8
5	8	14	9	5	О

\prod^5	1	2	3	4	5
1	NIL	1	5	2	4
2	3	NIL	5	2	4
3	3	1	NIL	2	4
4	3	1	5	NIL	4
5	3	1	5	2	NIL

Complexity

- Time: $\Theta(|V|^3)$
 - $\bullet \Theta(|V|^3)$ subproblems
 - \bullet $\Theta(1)$ -time for each subproblem
- Space: $\Theta(|V|^3)$
 - ▶ D^i takes $\Theta(|V|^2)$
 - \triangleright Do,...,Dn take $\Theta(|V|^3)$
 - Can be reduce to $\Theta(|V|^2)$
 - Use only D and Π .

Improvement: Space Complexity

```
\begin{array}{l} \blacktriangleright D=W \\ \Pi=\Pi^o \\ \text{for } i=1 \text{ to } n \\ \text{for } u{\in}V \\ \text{for } v{\in}V \\ \text{if } D(u,v){>}D(u,v_i){+}D(v_i,v) \\ D(u,v){=}D(u,v_i){+}D(v_i,v) \\ \Pi(u,v){=}\Pi(v_i,v) \\ \text{return } D \end{array}
```

The Difference

- The new one might use $D^i(u,v_i)/D^i(v_i,v)$ instead of $D^{i-1}(u,v_i)/D^{i-1}(v_i,v)$.
- ▶ But $D^{i-1}(u,v_i)=D^i(u,v_i)$, $D^{i-1}(v_i,v)=D^i(v_i,v)$.

$$\begin{array}{c} v_{i} \longrightarrow v_{\langle i} \longrightarrow v$$