

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Linear Basis Function Models (2)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

where $\Phi_{j}(x)$ are known as basis functions.

Linear Basis Function Models (3)

Polynomial basis functions:

$$\phi_j(x) = x^j$$
.

These are global; a small change in x affect all basis functions.

Linear Basis Function Models (4)

Gaussian basis functions:

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

These are local; a small change in x only affect nearby basis functions. M and s control location and scale (width).

Linear Basis Function Models (5)

Sigmoidal basis functions:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

$$\ln p(\mathbf{t}|\mathbf{w},\beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n|\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t}|\mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$

Solving for w, we get

$$\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$$

The Moore-Penrose pseudo-inverse, Φ^{\dagger} .

where

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Sequential Learning

Data items considered one at a time (a.k.a. online learning); use stochastic (sequential) gradient descent:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

This is known as the *least-mean-squares (LMS)* algorithm. Issue: how to choose n?

Regularized Least Squares (1)

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Regularized Least Squares (2)

With a more general regularizer, we have

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic

regularizer.

Multiple Outputs (1)

Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, and targets, $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^T$, we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{T} \boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}.$$

Multiple Outputs (2)

Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

If we consider a single target variable we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^T$, which is identical with the single output case.

The Bias-Variance Decomposition (1)

Recall the expected squared loss,

$$\mathbb{E}[L] = \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

where

$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) dt.$$

$$\begin{aligned}
&\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2} \\
&= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} \\
&= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} \\
&+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}.
\end{aligned}$$

The Bias-Variance Decomposition (2)

Taking the expectation over \$\mathsq\$ yields

$$\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x}) \}^2 \right]$$

$$= \underbrace{\{ \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x}) \}^2}_{\text{(bias)}^2} + \underbrace{\mathbb{E}_{\mathcal{D}} \left[\{ y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}} [y(\mathbf{x}; \mathcal{D})] \}^2 \right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (3)

Thus we can write

expected
$$loss = (bias)^2 + variance + noise$$

where

$$(\text{bias})^{2} = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2} p(\mathbf{x}) d\mathbf{x}$$

$$\text{variance} = \int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2} \right] p(\mathbf{x}) d\mathbf{x}$$

$$\text{noise} = \iint \{h(\mathbf{x}) - t\}^{2} p(\mathbf{x}, t) d\mathbf{x} dt$$

The Bias-Variance Decomposition (4)

Example: 25 data sets from the sinusoidal, varying the degree of regularization.

The Bias-Variance Trade-off

From these plots, we note that an over-regularized model will have a high bias, while an under-regularized model will have a high variance.

Bayesian Linear Regression (1)

Define a conjugate prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_N = \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$

 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

Bayesian Linear Regression (2)

A common choice for the prior is

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

for which

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

 $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

Next we consider an example ...

Bayesian Linear Regression (3)

0 data points observed

Bayesian Linear Regression (4)

1 data point observed

Bayesian Linear Regression (5)

2 data points observed

Bayesian Linear Regression (6)

20 data points observed

Predictive Distribution (1)

Predict t for new values of x by integrating over w:

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

Equivalent Kernel (1)

The predictive mean can be written

$$y(\mathbf{x}, \mathbf{m}_N) = \mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) = \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t}$$

$$= \sum_{n=1}^N \beta \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}_n) t_n$$

$$= \sum_{n=1}^N k(\mathbf{x}, \mathbf{x}_n) t_n.$$
Equivalent kernel or smoother matrix.

This is a weighted sum of the training data target values.

Equivalent Kernel (2)

Equivalent Kernel (3)

Non-local basis functions have local equivalent kernels:

Equivalent Kernel (4)

The kernel as a covariance function: consider

$$cov[y(\mathbf{x}), y(\mathbf{x}')] = cov[\boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{w}, \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}')]$$
$$= \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}}\mathbf{S}_{N}\boldsymbol{\phi}(\mathbf{x}') = \beta^{-1}k(\mathbf{x}, \mathbf{x}').$$

We can avoid the use of basis functions and define the kernel function directly, leading to *Gaussian Processes* (Chapter 6).

Equivalent Kernel (5)

$$\sum_{n=1}^{N} k(\mathbf{x}, \mathbf{x}_n) = 1$$

for all values of x; however, the equivalent kernel may be negative for some values of x.

Like all kernel functions, the equivalent kernel can be expressed as an inner product:

$$k(\mathbf{x}, \mathbf{z}) = \boldsymbol{\psi}(\mathbf{x})^{\mathrm{T}} \boldsymbol{\psi}(\mathbf{z})$$

where
$$\psi(\mathbf{x}) = \beta^{1/2} \mathbf{S}_N^{1/2} \phi(\mathbf{x})$$
.

Bayesian Model Comparison (1)

How do we choose the 'right' model?

$$p(\mathcal{M}_i|\mathcal{D}) \propto p(\mathcal{M}_i)p(\mathcal{D}|\mathcal{M}_i).$$

Posterior

Prior

Model evidence or marginal likelihood

Bayes Factor: ratio of evidence for two models

$$\frac{p(\mathcal{D}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_j)}$$

Bayesian Model Comparison (2)

We can compute the predictive (mixture) distribution

$$p(t|\mathbf{x}, \mathcal{D}) = \sum_{i=1}^{L} p(t|\mathbf{x}, \mathcal{M}_i, \mathcal{D}) p(\mathcal{M}_i|\mathcal{D}).$$

A simpler approximation, known as *model* selection, is to use the model with the highest evidence.

Bayesian Model Comparison (3)

For a model with parameters w, we get the model evidence by marginalizing over w

$$p(\mathcal{D}|\mathcal{M}_i) = \int p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i) p(\mathbf{w}|\mathcal{M}_i) d\mathbf{w}.$$

Note that

$$p(\mathbf{w}|\mathcal{D}, \mathcal{M}_i) = \frac{p(\mathcal{D}|\mathbf{w}, \mathcal{M}_i)p(\mathbf{w}|\mathcal{M}_i)}{p(\mathcal{D}|\mathcal{M}_i)}$$

Bayesian Model Comparison (4)

For a given model with a single parameter, w, consider the approximation

$$p(\mathcal{D}) = \int p(\mathcal{D}|w)p(w) dw$$

$$\simeq p(\mathcal{D}|w_{\text{MAP}}) \frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}$$

where the posterior is assumed to be sharply peaked.

Bayesian Model Comparison (5)

Taking logarithms, we obtain

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|w_{\mathrm{MAP}}) + \ln \left(rac{\Delta w_{\mathrm{posterior}}}{\Delta w_{\mathrm{prior}}}
ight).$$
 Negative

With M parameters, all assumed to have the same ratio $\Delta w_{
m posterior}/\Delta w_{
m prior}$, we get

$$\ln p(\mathcal{D}) \simeq \ln p(\mathcal{D}|\mathbf{w}_{\text{MAP}}) + M \ln \left(\frac{\Delta w_{\text{posterior}}}{\Delta w_{\text{prior}}}\right).$$

Bayesian Model Comparison (6)

Matching data and model complexity

