Contents

1	Animals and Environments Introduction Homeostasis Physiology and Time	2 3 3
2	Molecules and Cells in Animal Physiology Cell Membranes	4 4
3	Genomics and Proteomics	5
4	Physiological Development	6
5	Transport of Solutes and Water	7
27	Water and Salt Physiology: Mechanisms	8
7	Nutrition, Feeding, and Digestion	9

1 Animals and Environments

Introduction

- ▶ What is physiology?
 - Form and function of organisms; the study of how organisms work.
- ▷ Central questions of physiology: mechanism and origin.
 - Mechanism:
 - refers to the components of living organisms and understanding how components interact to enable the organism to function.
 - o Origin:
 - asks why a mechanism exists, or what is the mechanistic adaptive significance of the mechanism.
 - Mechanism and adaptive significance are distinct concepts; knowing about one doesn't necessarily mean you know anything about the other.
- ▶ Krogh's principle:
 - "For such a large number of problems there will be some animal of choice or a few such animals on which it can be most conveniently studied."
- ▶ Krogh's principle central to disciplines that rely on the *comparative method*. The key take away: there is unity in diversity; many organisms are very much alike at the most fundamental levels.
- Physiology subdisciplines:
 - Mechanistic: emphasizes the mechanisms by which organisms perform their life functions.
 - Evolutionary: emphasizes evolutionary origins and the adaptive significance of traits.
 - Comparative: emphasizes the way in which diverse phylogenetic groups resemble and differ from each other.
 - Environmental: emphasizes the ways in which physiology and ecology interact.
 - Integrative: emphasizes the importance of all levels of organization, from genes to proteins and tissues to organs in order to better understand whole physiological systems.

Homeostasis

 \triangleright

Physiology and Time

2 Molecules and Cells in Animal Physiology

Cell Membranes

 \triangleright

Enzyme Fundamentals

3 Genomics and Proteomics

4 Physiological Development

5 Transport of Solutes and Water

27 Water and Salt Physiology: Mechanisms

7 Nutrition, Feeding, and Digestion