

BAYESIAN NETWORK META-ANALYSIS: WHAT, HOW, AND WHY?

Ben Vandermeer March 6, 2008

Special Thanks

- Keith Abrams
- Tony Ades
- Nichola Cooper
- Alex Sutton
- Nicky Welton

Workshop Summary

- Introduction to Bayesian Methods
- Bayesian Approaches to Meta-Analysis
- Gibbs Sampling
- Indirect Comparisons (frequentist)
- Mixed Treatment Comparisons
- Examples

Bayes' Theorem

Simple Manipulation of Conditional Probabilities

$$P(A \text{ and } B) = P(A|B)P(B) = P(B|A)P(A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A')P(A')}$$
BIG SKY

Bayes' Theorem

- Example with diagnostic testing:
- If the prevalence of a disease in a population is 1 in a 1000, and a specific test has a 99% chance of being correct (positive or negative), what is the probability a patient has the disease after testing positive?

Bayes' Theorem

$$P(D \mid +ve) = \frac{P(+ve \mid D)P(D)}{P(+ve \mid D)P(D) + P(+ve \mid D')P(D')}$$

$$P(D \mid +ve) = \frac{(.99)(.001)}{(.99)(.001) + (.01)(.999)} = 0.09 = 9\%$$
BIG SKY

General Bayesian Formulation

- Want to estimate some parameter θ given data y.
- Frequentist statistical methods do this by using the data to find "best" estimate of θ by some manipulation of the data.
- This estimate will have desirable properties such as unbiasedness and low variance.
 BIG SKY

General Bayesian Formulation

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$
$$p(\theta \mid y) \propto L(y \mid \theta)p(\theta)$$

Posterio € Likelihood (Data)*Prior

Prior Distributions

- Vague or Non-informative
 - Contain Little Information Relative to Likelihood
- Scentical
 - Centred at no difference with a specified probability of showing a difference
- Enthusiastic
 - Initially favour one side
- Subjective
 - Elicited from experts or groups
- Based on previous evidence/studies
 - Adjusted and/or down-weighted for potential biases.

Example of Bayesian Formulation

- Previous experience suggests success rate of an intervention is between 20% and 60%.
- Prior ~ Beta (a=9.2, β=13.8) mean=0.4, SD=0.1.
- Data: Observe 15 successes out of 20.
- Posterior: Beta(α =24.2, β =18.8) Posterior mean = 0.56.

Fundamental Differences Between Bayesian and Frequentist Formulations

- Prior Distribution
- Bayesian analysis treats unknown parameters as random variables, while frequentist analysis treats them as fixed but unknown quantities. (semantics?).

Review: Frequentist Methods of Meta-analysis

- Parameters are estimated on the study level first (i.e. parameter estimate with standard error).
- Studies are combined by weighting each by inverse variance (or other method) plus perhaps a function of between study variance (random effects).

Bayesian Approaches to Meta-Analysis

- Models are created using Bayesian methods.
- Prior distributions are specified for parameters and study results act as data for the likelihood.
- Parameters are defined by joint posterior distributions combined with prior distributions.

BIG SKY

Example: Fixed Effects Model

 $Y_i \sim Normal (d, V_i)$ d ~ Normal (0, 10⁵) (vague prior)

■ The distribution of the assumed common mean difference of the studies (d) is derived from a vague prior and the study data.

BIG SKY

Example: Random Effects Model

 $Y_i \sim Normal (\delta_i, V_i)$

 $\delta_i \sim \text{Normal } (d, \tau^2)$

d, $\tau^2 \sim$ prior distributions

- Same as fixed effects, except each study is now allowed to have a different mean difference, that is presumably randomly distributed around a common study level mean.
- Note: Watch specification of prior distribution for between studies variance (τ²).

Advantages of Bayesian Methods

- Can make direct probability statements.
- All evidence regarding a specific problem can be taken into account.
- Predictive statements can be easily made.
- Elicitation of prior belief forces investigators into more careful consideration.
- RE meta-analyses "borrow strength" from one another.
- Decision theoretic framework allows for easy accounting of cost/utilities in making decisions.

Disadvantages of Bayesian Methods

- Use of prior beliefs undermines objectivity
- Elicitation of priors is non-trivial with few guidelines.
- Computationally complex to implement and time consuming to perform.
- Software limitations.

Differences from Frequentist Meta-analysis

- Effects of prior distribution
- Between study variance (τ^2) treated as random variable rather than constant in Bayesian analysis (random effects only).
- Study level estimates are "shrunk" towards overall mean due to borrowing of information across studies.
 BIG SKY

Implementation: Gibbs Sampling

- Direct computation of posterior distributions is usually not feasible.
- By sampling from full conditional distributions we can get estimates of marginal (unconditional) distributions.
- This is known as Gibbs sampling—a Markov Chain Monte Carlo simulation.

 BIG SKY

Gibbs Sampling

$$\begin{aligned} (\theta_1 &| \theta_2^0, \theta_2^0 \cdots \theta_p^0, x) &\sim [-,-] \implies \theta_1^1 \\ (\theta_2 &| \theta_1^1, \theta_2^0 \cdots \theta_p^0, x) &\sim [-,-] \implies \theta_2^1 \\ \vdots &&\vdots \\ (\theta_p &| \theta_2^1, \theta_3^1 \cdots \theta_{p-1}^1, x) &\sim [-,-] \implies \theta_p^1 \\ \vdots &&\vdots \\ \theta_p &= (\theta_1^1 \cdots \theta_1^n) \\ \vdots &&\vdots \\ \theta_p &= (\theta_1^1 \cdots \theta_p^n) \end{aligned}$$

Indirect Comparisons (Bucher et al)

- When no or little direct evidence is available for comparing two interventions, they can be compared indirectly using the methods of Bucher et al.
- This method preserves the randomisation preserves idea inherent in meta-analysis that we should compare directly only with SKY studies.

Basic Formulation

- No direct evidence comparing A with B, yet estimate of A-B (d_{AB}) is desired.
- Direct evidence exists comparing A with C (d_{AB}) as well as evidence comparing B with C (d_{BC}).
- $\mathbf{d}_{AB} = \mathbf{d}_{AC} \mathbf{d}_{BC}$
- $Var(d_{AB}) = Var(d_{AC}) + Var(d_{BC})$

	Example								
		,	٠.	··		41	10 min 1 11		
	٠.				2		100.11		
/ · · · ·			٠.		4.4		(9, 9)		
						:	: * *		
	*;				4	' '	11 1 19.		
		'	•		<u>-</u> -		1 1 1 1 1 1		
••.					•		1.196.39		
						- ; ;	' '		
					:	٠٠.			
						:			
						;	and the second		
			•						
	and the second				▼				
							BIG SKY		

. 6.1	:	: .:	Comment of	1000	,.	Company of the
et June 11 to 1		:			•	
		Ċ				
			.4 .	**		
				44		4.0
				5		
			4 4 4 4 4		. •	
1.9			• • •			1 1 1 1 1
1.	'	•		₹.		
		٠.			•	
. 7, 3			· · · · ·	•	:	
100 00 000 00		٠.		•		

Example

- Indirect estimate of benzos versus non-benzos can be obtained through their respective direct comparisons with placebo:
- diff = 2.81 (-4.91, 10.52) (using variance formula to compute 95% CI).
- Confidence interval wider than either direct comparison.
 BIG SKY

Combining

■ Indirect evidence can also be combined with direct evidence.

Bayesian Network Meta-Analysis (or Mixed Treatment Comparison)

- Also known as mixed treatment comparison (MTC).
- What is it?
- When can/should it be used?
- How do we perform it?

What is MTC?

- Generalisation of meta-analysis.
- Direct and indirect evidence are combined using Bayesian metaanalysis formulations.
- Accommodates any number of interventions as long as all interventions are connected in a network of studies.

When Can It Be Used?

■ When all interventions are connected in network of studies:

Eg. if we have 7 interventions (A, B, C, D, E, F, G) and we have the following sets of pairwise studies: AB, AC, BC, CD, EF, EG, FG; we can only do an MTC on the A, B, C, D group and E, F, G groups separately, since there is no connecting link **BIG SKY**

How is it performed?

- Method sets one treatment as a reference and compares all other treatments to this reference. These are basic parameters and are given prior distributions.
- All other contrasts can be defined as functional parameters of the base parameters.

Formulation

Four treatments A, B, C, and D. A is baseline treatment:

$$d_{AB}$$
, d_{AC} , $d_{AD} \sim N(0,10000)$

$$d_{BC} = d_{AC} - d_{AB}$$
$$d_{BD} = d_{AD} - d_{AB}$$

$$d_{CD} = d_{AD} - d_{AC}$$

BIG SKY

Advantages

- Easily incorporates multi-arm trials.
- Easy to incorporate cost-effectiveness into analysis.
- Easy to compute rank statistics.

Disadvantages

- More assumptions required.
- Between studies variance can be difficult to prioritize (random effects only).

BIG SKY

Example: Procedural Sedation

- Four interventions: Midazolam, Etomidate, Propofol and Ketofol.
- 6 trials: M vs E (2 trials)

M vs E vs P

M vs P

E vs P

P vs K

Example 2 Meditation Review

15 interventions:

- 1. No Intevention
- 2. Education
- Yoga
- 4. Relaxation Response
- 5. Transcendental Meditation
- 6. Buddhist Meditation
- 7. Biofeedback

- 8. PMR
- 9. Tai Chi
- 10. MBCT
- 11. Mantra Meditation
- 12. Rest/Relaxation
- 13. Yoga + Biofeedback
- 14. Waiting List
- 15.Qi Gong

23 studies ■ 1 vs 3 2 vs 4 ■ 1 vs 3 vs 6 ■ 2 vs 5 (3 studies) ■ 1 vs 3 vs 8 2 vs 5 vs 8 (2 studies) ■ 1 vs 3 vs 13 ■ 3 vs 12 ■ 4 vs 7 (2 studies) ■ 1 vs 5 4 vs 7 vs 14 ■ 1 vs 9 ■ 1 vs 10 ■ 12 vs 13 ■ 14 vs 15 (2 studies) ■ 1 vs 11 ■ 2 vs 3 (2 studies)

