Malek Ghozzi 3DNI1

Exercice:

1. Consider the training examples shown in Table 3.5 for a binary classification problem.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	\mathbf{M}	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	\mathbf{M}	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

a. Compute the Gini index for the overall collection of training examples.

Gini_index =
$$1 - \sum_{i=0}^{c-1} P_i(t)^2$$

= $1 - P(C_0)^2 - P(C_1)^2$
= $1 - 1/4 - 1/4$
= $1/2$

Malek Ghozzi 3DNI1

b. Compute the Gini index for Gender the attribute.

	M	F
CO	6	4
C1	4	6

Gini_index(M) =
$$1 - P(C_0)^2 - P(C_1)^2$$

= $1 - (6/10)^2 - (4/10)^2$
= 0.28

Gini_index(F) =
$$1 - P(C_0)^2 - P(C_1)^2$$

= $1 - (4/10)^2 - (6/10)^2$
= 0.28

c. Compute the Gini index for Car_Type the attribute using multiway split.

	Family	Sports	Luxury
CO	1	8	1
C1	3	0	7
	4	8	8

Gini_index(Family) =
$$1 - P(C_0)^2 - P(C_1)^2$$

= $1 - (1/4)^2 - (3/4)^2$
= 0.375

Gini_index(Luxury) =
$$1 - (1/8)^2 - (7/8)^2$$

= 0.218

d. Compute the Gini index for the attribute using multiway

	Small	Meduim	Large	Extra_Large
CO	3	3	2	2
C1	2	4	2	2
	5	7	4	4

Gini_index(Small) =
$$1 - (3/5)^2 - (2/5)^2$$

= 0.48

Gini_index(Meduim) =
$$1 - (3/7)^2 - (4/7)^2$$

= 0.489

Gini_index(Large) =
$$1 - (2/4)^2 - (2/4)^2$$

= 0.5

Gini_index(Extra_Large) =
$$1 - (2/4)^2 - (2/4)^2$$

= 0.5

e. the better attribute is Car_Type.

Malek Ghozzi 3DNI1

f. The Custumer_Id should not be used as the attribute test condition even through it has the lowest Gini , because it doesn't represent any new information , there is not a changeable numbers