

(51)Int.Cl.⁶
C 23 C 4/00
// H 05 H 1/30

識別記号 序内整理番号
9014-2G

F I

技術表示箇所

審査請求 未請求 請求項の数1(全5頁)

(21)出願番号 特願平4-143476

(71)出願人 000144393

(22)出願日 平成4年(1992)5月7日

株式会社三社電機製作所

大阪府大阪市東淀川区淡路2丁目14番3号

(72)発明者 四方 邦夫

大阪府大阪市東淀川区淡路2丁目14番3号

株式会社三社電機製作所内

(72)発明者 山地 信幸

大阪府大阪市東淀川区淡路2丁目14番3号

株式会社三社電機製作所内

(72)発明者 岡田 順

大阪府大阪市東淀川区淡路2丁目14番3号

株式会社三社電機製作所内

(74)代理人 弁理士 田中 浩 (外2名)

最終頁に続く

(54)【発明の名称】 粉体供給装置

(57)【要約】

【目的】 粘性を有する粉体を高圧ガスとともに処理して均一な厚みの溶射皮膜の得られる相互に分離した粘性のない粉体をインダクションプラズマ溶射装置に供給する。

【構成】 粉体供給装置の粉体送通管16の中途に、この送通管16に高圧ガスを送る高圧ガス導入管17を並列に嵌め込み、その下方に容量の大きい圧力変換ボックス18を設けて、送通管16から送られる粘性のある粉体2を高圧ガス導入管17から送られた高圧ガスとともに圧力変換ボックス18に送り込み、この圧力変換ボックス18内で高圧ガスを減圧して定圧にするとともに粘性のある粉体を高圧下に攪拌して相互に分離させ、粘性のない粉体として送通管19からキャリアガスとともにインダクションプラズマ溶射装置に供給するようにした。

【特許請求の範囲】

【請求項1】 被溶射物上に溶融粉体を溶射して皮膜を形成するに使用するインダクションプラズマ溶射装置に定量の粉体を供給する粉体供給装置であって、該装置からキャリアガスとともに粉体を上記溶射装置のキャリアガス導入管に導くために供給装置下部に取付けた送通管の中途に高圧ガス導入管を嵌挿し、さらにその下方に高圧ガスを減圧するとともに粉体を相互に分離する圧力変換ボックスを設けたことを特徴とする粉体供給装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】この発明は粘性を有する粉体を高圧ガスとともに攪拌して粘性を排除し、相互に分離した粉体にしてインダクションプラズマ溶射装置に供給する粉体供給装置に関するものである。

【0002】

【従来の技術】インダクションプラズマにて粉体を溶融溶射して被溶射体上にその皮膜を形成するためのインダクションプラズマ溶射装置に粉体を定量供給する粉体供給装置としては、図3に示す装置が用いられている。図において、21は粉体30を取容する貯留ホッパーであり、24はジェットローターである。貯留ホッパー21の下方には複数個の開口した計量マス22を有する計量板23が設けられている。また、ジェットローター24はハウス状の上部25が貯留ホッパー21内に設けられ、その下部26(貯留ホッパー21の下方に伸びていて、その内部は中空である。そして、この中空内部には計量された粉体を溶射装置のキャリアガス導入管(図示せず)へ送る送通管27が設けられており、この送通管27は貯留ホッパー21の下方側面から計量板23の中央部を貫いてジェットローター24の上部25に導かれているキャリアガス導入路31と連通している。貯留ホッパー21は、その下部においてボディ軸受28とジェットローターの下部26にペアリング29にて係止されている。ジェットローター24は図示省略したが、外部の回転装置によって回転するようになっている。

【0003】このような構造の粉体供給装置によって、例えば貯留ホッパー21に粉体30を入れ、約50 r. p. m. の速度でジェットローターを回転させると、粉体30は複数個の開口した計量マス22に入り、ここで貯留ホッパー21の下方のキャリアガス導入路31から圧力2 kg/cm²で2リッター/分のキャリアガスを注入すると、このガスは計量マス22、送通管27を流れ、このガスとともに計量マス22を通過した粉体が運ばれて送通管27の下端からプラズマ溶射装置のキャリアガス導入管へ送られるのである。

【0004】

【発明が解決しようとする課題】しかしながら、上記のような装置からB₂O₃やY₂O₃のような超電導用の粉体を溶射装置に供給しようとすると、これらの超電

導用粉体は粒径が小さく、静電気を帯びて互いにくっつき合う粘性を有しているため、送通管や溶射装置のキャリアガス導入管内で送通している粉体が、この粘性のために相互にくっつき合って大きな粒状となって被溶射体上に溶融、溶射されるために、皮膜は全体に均一な厚みのものが得られず、また超電導用の粉体を用いながら温度や安定性など超電導として要求される特性を備えた皮膜が得られないという問題がある。

【0005】この発明は、従来の粉体供給装置にて超電

導用の粘性のある粉体をプラズマ溶射装置に送通する場合の上記の問題点を解消するべく検討の結果、得られたものである。

【0006】

【課題を解決するための手段】即ち、この発明は被溶射物上に溶融粉体を溶射して皮膜を形成するに使用するインダクションプラズマ溶射装置に定量の粉体を供給する粉体供給装置であって、該装置からキャリアガスとともに粉体を上記溶射装置のキャリアガス導入管に導くために供給装置下部に取付けた送通管の中間に高圧ガス導入管を嵌挿し、さらにその下方に高圧ガスを減圧するとともに粉体を相互に分離する圧力変換ボックスを設けた粉体供給装置を提供するものである。

【0007】

【作用】この発明は、キャリアガスとともに粘性を有する粉体をプラズマ溶射装置のキャリアガス導入管に導くための粉体供給装置下部の送通路の中間に高圧ガスを該送通路に導入する高圧ガス導入管を嵌挿し、さらにその下方に導入した高圧ガスを一定圧まで減圧する容量の大きい圧力変換ボックスを設けたものであって、これによって供給装置から送通管にて送られてくる粘性のある粉体をその途中で高圧ガス導入管から導入した高圧ガスとともに圧力変換ボックスに入れ、高圧ガスを一定圧に減圧するとともに、該ボックスに入った粘性のある粉体を攪拌して相互に分離させ、粘性を排除した粉体としてプラズマ溶射装置に導くものである。

【0008】この圧力変換ボックスの容量は、同ボックス内で減圧されたキャリアガスと相互に分離されて粘性を取り除いた粉体が同ボックスから送通管に送られる量と同等であればよい。また、高圧ガス導入管から送通路に流入させる高圧ガスとしては2~10気圧程度のものを線速10 m/sで送ればよい。

【0009】

【実施例】以下、この発明の粉体供給装置について図に基づいて詳細に説明する。図1はこの発明の粉体供給装置の一実施例を示す断面図である。図において、1はサーボモータ等のモータ5によって回転する回転軸4の上方に設けられた天部が開放されている粉体貯留ホッパーである。この貯留ホッパー1は、その下方で回転軸4に接し、軸受6と軸受アーリング7、ボルト8によって囲まれている。3は回転軸4により回転するロータである。

り、このロータ3の直上には若干の間隙をもってスキー
ジー9が設けられ、その下方に第1粉体受けホッパー1
0と第2粉体受けホッパー11が接連して設けられてお
り、これらのホッパーには回転するロータ3上の粉体が
スキー9にて掻き落とされて導かれる。

【0010】12はこの装置の主要部、即ち貯留ホッパー
1、ロータ3、スキー9、第1および第2の粉体
受けホッパー10、11等を外部から遮蔽する外ケース
であり、これらを囲んで気密性を保つように取り付けら
れている。13はキャリアガスを外ケース12内に供給す
るキャリアガス導入管であり、該導入管の外ケース1
2内における先端14は開放されている。また、15は
第2粉体受けホッパー11の下端の歯手であり、この歯
手15に送通管16が接続されている。そして送通管
16の中途には該送通管16に高圧ガスを入れる高圧ガ
ス導入管17、17と並んで前記されており、その下方
には圧力変換ボックス18が設けられている。

【0011】この圧力変換ボックス18は高圧ガス導入
管17から導入した高圧ガスを一定圧に変換する容量を
有し、かつ、キャリアガスで同ボックス18内に運ばれ
た粘性のある粉体を同ボックス内で高圧下に搅拌して相
互に分離させて粘性のない粉体とする機能を有してい
る。19は圧力変換ボックス内上記のように調整した
キャリアガスと粘性のない粉体を溶射装置のキャリアガ
ス導入管に導くための送通管である。

【0012】上記のような構造のこの発明の粉体供給装
置の動作について述べると、天部が開放している貯留ホ
ッパー1に粘性のある粉体2を充填し、モーター5に接続
した回転軸4を作動してロータ3を定速回転させる。
そして回転するロータ3上の粉体をスキー9にて掻
き落として第1粉体受けホッパー10、第2粉体受けホ
ッパー11へと収容する。この時に外ケースの外部から
内部へ設けたキャリアガス導入管13からキャリアガス
としてアルゴンガスを供給すると、該ガスは外ケース内
の空間を自由に動き、貯留ホッパー1内の粉体2と第1
および第2粉体受けホッパー10、11内にたまっている
粉体3と共に加わるガス圧と同圧とすることができる。
従って、スキー9によって掻き落とされたロータ上の
粉体は自然落下の形で粉体受けホッパーに投入される。
そして投入された粉体はキャリアガスとともに一定の粉
体量として第2粉体受けホッパー下端の歯手15に接続
された送通管16に送られる。

【0013】次いで、送通管16にキャリアガスとともに
送られた粘性のある粉体に、該送通管16の中途に嵌
押して取り付けた高圧ガス導入管17から6気圧の高圧
アルゴンガスを導入し、粉体とともに圧力変換ボックス
18に送り込む。この圧力変換ボックス18は大きな容
量を有しており、送り込まれた高圧ガスをこの圧力変換
ボックス18内で減圧し、一定圧とすることができます。
また粘性を有する粉体もガスとともに高圧で搅拌されて

相互に分離されて粘性のない粉体とすことができる。
そして減圧した定圧のキャリアガスと分離された粘性の
ない粉体が送通管19から溶射装置のキャリアガス導入
管(図示せず)に導かれる。

【0014】かくして、この粉体供給装置を用いれば、
粘性を有する粉体であってもこれを粘性のない粉体とす
ることができる。このような粉体を溶射装置に送る
ならば、溶射装置のアラズマ内で効率よく加熱溶融され
て被溶射体上に所望する均一な厚さの皮膜形成を行なう
ことができる。である。

【0015】図2はこの発明の粉体供給装置の他の実施
例を示す断面図であって、これは図3に示す従来の粉体
供給装置の改良に係るものである。即ち、送通管27の
中途に送通管27に高圧ガスを導く高圧ガス導入管4
1を並列に嵌押し、その下方に圧力変換ボックス42を
設け、さらにその下方に溶射装置のキャリアガス導入管
(図示せず)に接続される送通管43を設けたものであ
る。そしてキャリアガスとともに粘性を有する粉体が送
通管27に送り出された時、高圧ガス導入管41から高
圧のアルゴンガスを導き、粘性を有する粉体とともに圧
力変換ボックス42に送り込む。その後、さきに述べた
図1の場合と同じようにして相互に分離した粘性のない
粉体として定圧のキャリアガスとともに送通管43から
溶射装置のキャリアガス導入管に導かれ、溶射装置内で
加熱溶融されて被溶射体上に溶射され、所望する均一な
厚みの皮膜が形成される。である。

【0016】

【発明の効果】以上説明したように、この発明の粉体供
給装置によれば、キャリアガスとともに粉体を溶射装置
のキャリアガス導入管に送る送通管の中途に高圧ガス導
入管を取付け、その下方に圧力変換ボックスを設けたこ
とにより、高圧ガスとともに圧力変換ボックス内に送ら
れた粘性を有する粉体が該ボックス内で高圧下に搅拌さ
れて相互に分離して粘性のない粉体とすことができる
のであり、このような粘性のない粉体を該ボックス内
で減圧された定圧のキャリアガスとともに溶射装置に定
量供給することができる。

【図面の簡単な説明】

【図1】この発明の粉体供給装置の一実施例を示す断
面図である。

【図2】この発明の粉体供給装置の他の実施例を示す断
面図である。

【図3】従来の粉体供給装置の断面図である。

【符号の説明】

- 1 粉体貯留ホッパー
- 2 粉体
- 3 ロータ
- 4 回転軸
- 5 モータ
- 9 スキー

5

1 0 第1粉体受けホッパー
 1 1 第2粉体受けホッパー
 1 3 キャリアガス導入管
 1 6 送通管
 1 7 高圧ガス導入管
 1 8 圧力変換ボックス
 1 9 送通管

6

2 1 粉体貯留ホッパー
 2 3 計量板
 2 7 送通管
 4 1 高圧ガス導入管
 4 2 圧力変換ボックス
 4 3 送通管

【図1】

【図2】

【図3】

フロントページの続き

(72)発明者 エミリオ 藤原
大阪府大阪市東淀川区淡路2丁目14番3号
株式会社三社電機製作所内

(72)発明者 村田 茂康
大阪府大阪市東淀川区淡路2丁目14番3号
株式会社三社電機製作所内

(72)発明者 橋 秀久
大阪府大阪市東淀川区淡路2丁目14番3号
株式会社三社電機製作所内