Random Variables,
Probability Distributions, &
Maximum Likelihood

Topics

- Review Bernoulli and Binomial distribution
- Random Variables and their expected values
- Introduce 3 examples
 - Click-through rates in online advertizing
 - Simple genetics model for a population
 - Classification of spam, fraud, etc.
- · Likelihood function

Probability Distributions

Binomial(n,p) Distribution

- n trials
- p chance of success on a trial
- · trials are independent
- Observe the number of successes

$$\mathbb{P}(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

 $\binom{n}{k}$ is n!/k!(n-k)!

Other Distributions

- Geometric(p)
 - Repeat independent trials with chance p of success until the first success
- Poisson(lambda)
 - Count for rare events
- Hypergeometric(n, N, M)
 - Draw n times without replacement from a population of N where M units in the population have a trait. Count those in sample with the trait

Summarize a Distribution

- Recall, we summarize a data distribution with its average (center) and spread (SD)
- We can similarly summarize a probability distribution with its expected value and SD

$$E(X) = \sum_{i=1}^{m} x_i p_i$$

$$Var(X) = \sum_{i=1}^{m} (x_i - E(X))^2 p_i$$

$$SD(X) = \sqrt{Var(X)}$$

Bernoulli(p)

$$E(B) = 0(1 - p) + 1p = p$$

$$Var(B) = (0 - p)^{2} (1 - p) + (1 - p)^{2} p$$

 $Var(B) = p(1 - p)$

Gambling Problem

- Recall the pot has \$64 in it
- Sam won 2 rounds and Andrew won 1
- W = Sam's winnings
- What is W's distribution?
- What is E(W)?

Sam's Winnings

W= winnings

w	0	64
P(w)	1/4	3/4

$$E(W) = 0*1/4 + 64*3/4 = 48$$

Does this distribution look familiar? W = 64B

Properties of Expected Value

$$E(aX+b) = aE(X) + b$$

$$E(aX+b) = \sum_{i=1}^{m} (ax_i + b)p_i$$

$$E(X+Y) = E(X) + E(Y)$$

Properties of Variance

$$Var(aX + b) = a^{2}Var(X)$$

$$Var(aX + b) = \sum_{i=1}^{m} (ax_{i} + b - (aE(x) + b))^{2} p_{i}$$

$$Var(X + Y) = Var(X) + Var(Y), \text{ if independent}$$

Click-Through Rates in Online Advertizing

Example from Xueri Wang et al

• An online experiment

- Visitors to a page are randomly selected to see a version of the page with a particular ad
- We are interested in the how successful the ad is in getting visitors to "click-through" to the advertisers page

Probability Model?

- What is a reasonable model for this process?
- What assumptions are you making?

Probability Model

- · Visitors act independently
- Visitors have the same chance of clicking through to the site
- · Any others?

Can you provide a Probability Distribution that captures this process?

Results

Model:

X = Number of click-throughs in 1000 views

X ~ Binomial(1000, p)

In 1000 views, 25 click-throughs occurred

What is your estimate for p? Why?

X ~Binomial(n,p) distribution

- $X = B_1 + B_2 + ... + B_n$ where B_i Bernoulli(p)
- $E(B_i) = p$
- $E(X) = E(B_1 + ... + B_n) = np$
- Observe X (sum of 1000 Bernoulli) to be 25
- Avg of 1000 Bernoulli should be close to E(X)
- p_hat = 25/1000
- This approach is called the Method of Moments (an average is a moment)

An Alternative Approach

- Consider the chance of 25 successes if p=0.01 $P(X=25\,|\,p=0.01)=C\,0.01^{25}0.99^{1000\cdot25}$
- Consider the chance of 25 successes if p=0.02 $P(X = 25 | p=0.02) = C \cdot 0.02^{25} \cdot 0.98^{1000-25}$
- Consider the chance of 25 successes if p=0.025 $P(X=25\,|\,p=0.025)=C~0.025^{25}0.975^{1000-25}$
- Consider the chance of 25 successes if p=0.05 $P(X = 25 | p=0.05) = C \cdot 0.05^{25} \cdot 0.95^{1000-25}$

Likelihood

• These quantities, e.g., C $0.05^{25}0.95^{1000-25}$, can be viewed as a function of p given the data $L(p) = C p^{25}(1-p)^{1000-25}$

Find the p that maximizes this quantity and use it to estimate p. It has the highest likelihood for the data.

We call L(p) the likelihood

Likelihood

 $L(p) = C p^{25} (1-p)^{1000-25}$

It is often easier to maximize the log of the likelihood function:

log(L(p)) = C + 25log(p) + (1000-25)log(1-p)We can differentiate the log-likelihood and set to 0 to solve for p

Maximize the Log-Likelihood

log(L(p)) = C + 25log(p) + (1000-25)log(1-p)

Differentiate wrt p:

25/p - (1000-25)/(1-p)

Set to 0 and solve for p: 0 = (1-p)25 - p(1000-25)

p_hat = 25/1000

Simple Genetics Example

On the Board

Spam Detection

Spam

- Spam appears in our email, comments on blogs, reviews on Yelp, etc.
- We can develop detectors to help us programmatically identify spam
- In the case of email, Spam Assassin provided 9000 email messages that are hand-classified as spam or ham

Email Corpus

- Later in the semester we will discuss how to build classifiers
- We look at a simple example today
- From the 9000 email messages we determined
 - whether or not the subject line starts Re:
 - the percentage of capital letters in the email

Re: in the subject line of the email

What are we assuming to answer this question?

New email has a similar distribution of Re: within spam and ham as the corpus

We have enough data to accurately estimate this probability

Prop(spam|Re:) = prop(spam and Re:)/prop(Re:)

= 750/1250 = 0.6

A new email arrives.

- It has an Re: in the subject line and fewer than 20% of the letters are capitalized
- What is the chance it is spam?
- Can we answer this question?

P(spam | Re: and <20% caps)

		ham	spam	
Re:	<20			
	20-30			
	>30			
No Re:	<20			
	20-30			
	>30			
		6000	3000	9000

P(spam|Re; and <20%)= P(spam & Re: & <20%)/

P(Re: & <20%) = 50/2050

P(spam | Re: and <20% caps)

		ham	spam	
Re:	<20	2000	50	2050
	20-30	300	100	400
	>30	100	150	250
No Re:	<20	2000	700	2700
	20-30	1200	1400	2600
	>30	400	600	1000
		6000	3000	9000

In practice

- We have many features X₁, X₂, ..., X_m
- We observe x₁, x₂, ..., x_m
- We want P(spam | x₁, x₂, ..., x_m)
- Building a probability model is quite complex
- We don't have enough data to estimate the joint distribution of m random variables

P(spam | x₁, x₂, ..., x_m)

= P(spam and $\mathbf{x}_1,\,\mathbf{x}_2$, ..., \mathbf{x}_{m}) / P($\mathbf{x}_1,\,\mathbf{x}_2$, ..., \mathbf{x}_{m})

Why? Definition of conditional probability

= $P(spam)P(x_1, x_2, ..., x_m | spam) / P(x_1, x_2, ..., x_m)$ Why?

Bayes Rule P(A|B) = P(A)P(B|A)/P(B)

Naively assume independence

$$\begin{split} & P(\text{spam} | \textbf{x}_1, \textbf{x}_2, ..., \textbf{x}_m) \\ & = P(\text{spam}) P(\textbf{x}_1, \textbf{x}_2, ..., \textbf{x}_m | \text{spam}) / P(\textbf{x}_1, \textbf{x}_2, ..., \textbf{x}_m) \\ & = P(\text{spam}) P(\textbf{x}_1 | \text{spam}) * ... * P(\textbf{x}_m | \text{spam}) / P(\textbf{x}_1, \textbf{x}_2, ..., \textbf{x}_m) \end{split}$$

Naïve Bayes Estimation of P(spam $| x_1, x_2, ..., x_m$)

Computational Considerations

Take log to turn product of small probabilities into sums

$$\begin{split} Log(P(spam)) &= log(P(spam)) + \Sigma log(P(x_i | spam)) \\ &- log(P(x_1, x_2, ..., x_m)) \end{split}$$

Examine the likelihood ratio, $\label{eq:logP} \mbox{Log(P(spam)/P(ham))}$ We don't need to compute $\mbox{P(}x_1, x_2, ..., x_m \mbox{)}$

Take Aways

- Named probability distributions are defined in terms of parameters
- Given the data, we maximize the likelihood of the data over the possible parameter values
- In practice,
 - We might not be able to analytically solve for the parameters
 - We might not have the complete data
 - Computational considerations can be important for accuracy and efficiency