kumar_chaitanya_finalproject Nov 24, 2024

1 Final Project - Data Mining

2 Using RF and LSTM To Predict Heart Disease

2.1 Goal

The goal of this project is to develop and evaluate machine learning models to solve a classification problem using a publicly available dataset. We aim to compare the performance of two different models—Long Short-Term Memory (LSTM) and Random Forest Classifier—on this dataset. The evaluation will include metrics such as accuracy, precision, recall, F1-score, and ROC-AUC.

2.2 Problem Statement

The classification task involves predicting whether a patient has heart disease based on various medical attributes. The project will leverage machine learning techniques to build predictive models that can assist in early diagnosis.

2.3 Dataset Description

1) Source of Data

Dataset: Heart Disease Dataset

• **Source**: Kaggle Datasets

File Used: heart.csv

2) Dataset Overview

Total Records: 918

Features: 12 attributes, including age, sex, cholesterol levels, resting blood pressure, etc.

• **Target Variable**: HeartDisease (0 = No, 1 = Yes)

3) Data Preprocessing

- Checked for missing values and handled them appropriately.
- Converted categorical data into numerical format using techniques like Label Encoding.
- Standardized the dataset using StandardScaler to normalize feature values, which is particularly important for LSTM models.

```
+ Code + Text All changes saved
  First, we'll mount Google Drive to access the dataset stored there.
[1] from google.colab import drive
       drive.mount('/content/drive')

→ Mounted at /content/drive

  Step 2: Import Libraries
  Let's import all the necessary libraries for data analysis, model building, and evaluation.
\frac{\checkmark}{7s} [2] import pandas as pd
       import numpy as np
       import matplotlib.pyplot as plt
       import seaborn as sns
       from sklearn.model_selection import KFold
       from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, roc_auc_score, roc_curve
       from sklearn.ensemble import RandomForestClassifier
       from sklearn.preprocessing import StandardScaler
       from tensorflow.keras.models import Sequential
       from tensorflow.keras.layers import Dense, LSTM
       from tensorflow.keras.optimizers import Adam
       import tensorflow as tf
                                                                                                                                    ✓ RAM ____
Disk ___
 + Code + Text All changes saved
  Step 3: Load and Preprocess the Dataset
   For this example, I will use the Heart Failure Prediction dataset from Kaggle.

₱ # Load the dataset from Google Drive

        data_path = '/content/drive/MyDrive/heart_csv/heart.csv'
        data = pd.read_csv(data_path)
```

Display the first few rows of the dataset
print("First few rows of the dataset:")

print("\nMissing values in each column:")

print("\nCategorical columns:", categorical_columns)

categorical_columns = data.select_dtypes(include=['object']).columns

Convert categorical columns to numerical using One-Hot Encoding
data = pd.get_dummies(data, columns=categorical_columns, drop_first=True)

print(data.head())

Checking for missing values

print(data.isnull().sum())
Identify categorical columns

```
+ Code + Text All changes saved
  # Splitting features (X) and target (y)
       X = data.drop(columns='HeartDisease')
       y = data['HeartDisease']
       # Standardizing the features (important for LSTM)
       from sklearn.preprocessing import StandardScaler
       scaler = StandardScaler()
       X_scaled = scaler.fit_transform(X)
       # Confirm the transformed data
       print("\nTransformed feature matrix shape:", X_scaled.shape)
       print("Transformed feature matrix sample:\n", X_scaled[:5])
  ₹ First few rows of the dataset:
         Age Sex ChestPainType RestingBP Cholesterol FastingBS RestingECG MaxHR \
          40 M
                                    140
                                                     289
                                                                   0
      1 49 F
                            NAP
                                        160
                                                      180
                                                                          Normal
                                                                                     156
      2 373 48
               M
                            ATA
                                       130
                                                      283
                                                                           ST
                                                                                     98
                                                                   0
               F
                            ASY
                                        138
                                                      214
                                                                   0
                                                                          Normal
                                                                                     108
                           NAP
                                      150
                                                    195
                                                                          Normal
         ExerciseAngina Oldpeak ST_Slope HeartDisease
                           0.0
      A
                      N
                                       Up
      1
                      Ν
                              1.0
                                      Flat
                                                        1
                              0.0
                                       Up
                      Υ
                              1.5
                                      Flat
      3
                                                        1
      4
                      Ν
                              0.0
                                                        0
                                        Up
      Missing values in each column:
 + Code + Text All changes saved
Missing values in each column:
   → Age
       Sex
                         0
       ChestPainType
        RestingBP
       Cholesterol
        FastingBS
        RestingECG
                         0
        MaxHR
                         0
       ExerciseAngina
                         0
        Oldpeak
                         0
       ST_Slope
                         a
        HeartDisease
                         0
        dtype: int64
        Categorical columns: Index(['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina', 'ST_Slope'], dtype='object')
        Transformed feature matrix shape: (918, 15)
        Transformed feature matrix sample:
        [[-1.4331398     0.41090889     0.82507026     -0.55134134     1.38292822     -0.83243239
          0.51595242 2.07517671 -0.53283777 -0.22967867 0.81427482 -0.49044933
          -0.8235563 -1.00218103 1.15067399]
         [-0.47848359 1.49175234 -0.17196105 -0.55134134 0.75415714 0.10566353
          -1.93816322 -0.48188667 1.87674385 -0.22967867 0.81427482 -0.49044933
          -0.8235563 0.99782372 -0.86905588]
         [-1.75135854 -0.12951283 0.7701878 -0.55134134 -1.52513802 -0.83243239 0.51595242 2.07517671 -0.53283777 -0.22967867 -1.22808661 2.03894663
         -0.8235563 -1.00218103 1.15067399]
[-0.5845565 0.30282455 0.13903954 -0.55134134 -1.13215609 0.57471149
          -1.93816322 -0.48188667 -0.53283777 -0.22967867 0.81427482 -0.49044933
          1.21424608 0.99782372 -0.86905588]
          \hbox{ [ 0.05188098 \ 0.95133062 -0.0347549 \ -0.55134134 \ -0.5819814 \ -0.83243239 ] }
```

3. Model Selection and Implementation

1) Model 1: Random Forest Classifier

Reason for Selection

Random Forest is an ensemble model known for its robustness and ability to handle high-dimensional data. It is efficient for binary classification problems.

2) Model 2: Long Short-Term Memory (LSTM)

Reason for Selection

LSTM is a type of Recurrent Neural Network (RNN) well-suited for sequence classification and time-series data. It captures long-term dependencies and is effective for complex datasets.

3) Implementation Details

Data Splitting and Cross-Validation

We used **k-fold cross-validation** (k=5) to evaluate model performance, ensuring that each data point is used for both training and testing.

Step 4: Implementing k-Fold Cross-Validation

We'll set up k-fold cross-validation with 5 splits.

```
(5] # Define k-fold cross-validation
kf = KFold(n_splits=5, shuffle=True, random_state=42)
```

Random Forest Implementation

Step 5: Model 1 - Random Forest Classifier

We'll implement a Random Forest classifier and evaluate it using k-fold cross-validation.

```
for train_index, test_index in kf.split(X_scaled):
    # Splitting data into training and testing sets
    X_train, X_test = X_scaled[train_index], X_scaled[test_index]
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Initialize and train the Random Forest model
    rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
    rf_model.fit(X_train, y_train)

# Make predictions
    y_pred = rf_model.predict(X_test)
    y_pred_proba = rf_model.predict_proba(X_test)[:, 1]
```

```
# Evaluate model performance
        accuracy = accuracy_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred)
        recall = recall_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred)
        roc_auc = roc_auc_score(y_test, y_pred_proba)
        metrics_rf.append([accuracy, precision, recall, f1, roc_auc])
    # Convert to DataFrame for easy viewing
    metrics_rf_df = pd.DataFrame(metrics_rf, columns=['Accuracy', 'Precision', 'Recall', 'F1-Score', 'ROC AUC'])
    print("Random Forest Performance:\n", metrics_rf_df.mean())

→ Random Forest Performance:
    Accuracy 0.870331
Precision 0.867210
                 0.905575
    F1-Score
ROC AUC
                 0.885091
                 0.929521
    dtype: float64
```

LSTM Model Implementation

Step 6: Model 2 - LSTM for Sequence Classification

Next, we'll reshape the data for LSTM and evaluate it using k-fold cross-validation.

```
7  # Reshape the data for LSTM (samples, timesteps, features)
    X_lstm = X_scaled.reshape(X_scaled.shape[0], 1, X_scaled.shape[1])

metrics_lstm = []

for train_index, test_index in kf.split(X_lstm):
    # Splitting data into training and testing sets
    X_train, X_test = X_lstm[train_index], X_lstm[test_index]
    y_train, y_test = y.iloc[train_index], y.iloc[test_index]

# Build LSTM Model
    lstm_model = Sequential()
    lstm_model.add(LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2]), activation='relu'))
    lstm_model.add(Dense(1, activation='sigmoid'))

lstm_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    lstm_model.fit(X_train, y_train, epochs=10, batch_size=16, verbose=0)
```

```
# Make predictions
        y_pred_proba = lstm_model.predict(X_test).flatten()
        y pred = (y pred proba > 0.5).astype(int)
        # Evaluate model performance
         accuracy = accuracy_score(y_test, y_pred)
         precision = precision_score(y_test, y_pred)
         recall = recall_score(y_test, y_pred)
         f1 = f1_score(y_test, y_pred)
         roc_auc = roc_auc_score(y_test, y_pred_proba)
        metrics lstm.append([accuracy, precision, recall, f1, roc auc])
    # Convert to DataFrame for easy viewing
     metrics_lstm_df = pd.DataFrame(metrics_lstm, columns=['Accuracy', 'Precision', 'Recall', 'F1-Score', 'ROC AUC'])
    print("LSTM Performance:\n", metrics_lstm_df.mean())
🚌 /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input shape`/`input dim` argument to a layer. When using Sec
     /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sec
  🚌 /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sec
        usr/local/l1b/pyunons...
super().__init__(**kwargs)
______0s 30ms/step
      /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sec
      super().__init__(**kwargs)
6/6 ______ 0s 32ms/step
      /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sec
      Super().__init__(**kwargs)

WARNING:tensorflow:5 out of the last 13 calls to <function TensorFlowTrainer.make_predict_function.<locals>.one_step_on_data_distributed at 0x786b4c016050> triggr
                              — 0s 33ms/step
      /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sec
        super().__init__(**kwargs)
      WARNING:tensorflow:5 out of the last 13 calls to <function TensorFlowTrainer.make_predict_function.<locals>.one_step_on_data_distributed at 0x786b3fe7c0d0> trigge

    Os 35ms/step

      //usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Secsuper().__init__(**kwargs)
      LSTM Performance:
                     0.870325
       Accuracy
                  0.869805
      Precision
      Recall
                   0.903769
      F1-Score
                   0.884920
      ROC AUC
                   0.935169
      dtype: float64
```

Step 7: Visualize the Performance Metrics

Let's visualize the performance metrics for both models using bar plots.

```
# Visualizing the metrics
fig, ax = plt.subplots(1, 2, figsize=(12, 5))

# Random Forest Metrics
metrics_rf_df.mean().plot(kind='bar', ax=ax[0], color='skyblue')
ax[0].set_title("Random Forest Performance")
ax[0].set_ylim(0, 1)
ax[0].set_ylabel('Score')

# LSTM Metrics
metrics_lstm_df.mean().plot(kind='bar', ax=ax[1], color='orange')
ax[1].set_title("LSTM Performance")
ax[1].set_ylim(0, 1)
ax[1].set_ylabel('Score')

plt.tight_layout()
plt.show()
```


4. Results and Performance Evaluation

1) Performance Metrics

Model	Accuracy	Precision	Recall	F1-Score	ROC-AUC
Random Forest	0.87	0.86	0.90	0.88	0.92
LSTM	0.87	0.86	0.90	0.88	0.93

2) Confusion Matrix and ROC Curve

+ Code + Text All changes saved

```
Step 8: Confusion Matrix and ROC Curve
```

```
_{1s}^{\checkmark} [10] # If X_test was reshaped for LSTM, reshape it back to 2D for RandomForest
        if len(X_test.shape) == 3:
            X_test_rf = X_test.reshape(X_test.shape[0], -1) # Convert to 2D
            X_test_rf = X_test
        # Confusion Matrix for Random Forest
        rf_y_pred = rf_model.predict(X_test_rf)
        sns.heatmap(confusion_matrix(y_test, rf_y_pred), annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix - Random Forest')
        plt.xlabel('Predicted')
        plt.ylabel('Actual')
        plt.show()
        \# ROC Curve for LSTM
        fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
        plt.plot(fpr, tpr, label=f'ROC AUC = {roc_auc:.2f}')
        plt.plot([0, 1], [0, 1], linestyle='--')
        plt.title('ROC Curve - LSTM')
        plt.xlabel('False Positive Rate')
        plt.ylabel('True Positive Rate')
        plt.legend()
        plt.show()
```


5. Conclusion

1) Summary of Findings

• Random Forest performed well, with high precision and a balanced recall, making it suitable for use cases where both false positives and false negatives are critical.

• LSTM, on the other hand, showed slightly better performance, especially in terms of ROC-AUC, indicating a stronger ability to differentiate between classes.

2) Future Work

- Explore additional models such as Support Vector Machines (SVM) and Gradient Boosting.
- Apply hyperparameter tuning to further optimize model performance.
- Test the models on other datasets to assess their generalization capabilities.

GitHub Link - https://github.com/ack446/CS-634-Data-Mining-Final-Term-Project