Belt Velocity Initialization

Zhan Wang

14 September 2012

Contents

1	Inp	1, 0, 0	3
	1.1		3
	1.2	±	3
	1.3	How to calculate v_0 when $M_O = 0$	3
2	Inp	ut situation: ω_O, M_I, F_{C_I}	4
	2.1		4
	2.2		4
	2.3		5
	2.4		5
3	Inn	ut situation: $\omega_I, \omega_O, F_{C_O}$	5
J		Condition	
	3.2		5
	3.3		5
	0.0	now to calculate v_0 when $m_0 \neq 0$	J
4	_		6
	4.1		6
	4.2	How to calculate v_0 when $M_O = 0$	6
	4.3	How to calculate v_0 when $M_O \neq 0$	6
5	Inp	ut situation: ω_I , M_O , F_{C_I}	6
	5.1		6
	5.2	How to calculate v_0 when $M_O = 0$	6
	5.3	· ·	6
6	_		7
	6.1		7
	6.2		7
	6.3	How to calculate v_0 when $M_O \neq 0$	7
7	Inp	ut situation: ω_I , M_I , F_{C_I}	7
	7.1^{-2}	Condition	7
	7.2	How to calculate v_0 when $M_O = 0$	7
	7.3		7

A	Futl	ther Simplifiction															٤												
	A.1	Φ_O																											8
	A.2	F_{C_C}																											ξ
	A.3	Φ_I																											٤
	A.4	F_{C}																											۶

Input situation: ω_I , M_O , F_{C_O} 1

Condition 1.1

Input parameters: ω_I , M_O , F_{C_O}

Unknowns: ω_O , v_0

Simplification 1.2

From 2.216 we can get

$$(L_{O_{in}} - K) e^{\mu^* \Phi_O} = \frac{M_O}{r_O} + (L_{O_{in}} - K)$$
(1)

For equation 2.214, we can substitute $(L_{O_{in}} - K) e^{\mu^* \Phi_O}$ by (1) and then insert equation 2.218. So

$$r_I \omega_I = \frac{v_0 M_O}{E A r_O} + r_O \omega_O \tag{2}$$

From 2.216 we also can get

$$(L_{O_{in}} - K) \left(e^{\mu^* \Phi_O} - 1 \right) = \frac{M_O}{r_O} \tag{3}$$

From 2.218 and the formula of K we can get

$$\frac{(L_{O_{in}} - K)}{EA} = \frac{r_O \omega_O}{v_0} - \frac{EA}{EA - m^* v_0^2} \tag{4}$$

For equation 2.217, we can substitute $(L_{O_{in}} - K) (e^{\mu^* \Phi_O} - 1)$ by (3) and $(L_{O_{in}} - K) / EA$ by (4), then insert 2.218. So we get

$$2F_{C_O}\tan(\delta_0) = \left(EA - m^*v_0^2\right) \left[2\varphi \left(\frac{r_O\omega_O}{v_0} - 1\right) + \frac{M_O}{\mu^*r_OEA} - \left(\frac{r_O\omega_O}{v_0} - \frac{EA}{EA - m^*v_0^2}\right)\Phi_O\right] - 2m^*v_0^2\varphi$$
(5)

Then we can solve equations (2) and (5) with unknowns ω_O and v_0 with the starting vaulue provided by 2.219 and 2.220.

How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O$, $F_{C_O} \neq 0$, $L_{O_{in}} \neq 0$ Insert $\Phi_O = 0$ and 2.219 in to 2.217 and simplify it, we can get

$$r_I \omega_I \varphi m^* v_0^2 + (F_{C_O} \tan(\delta_0) + E A \varphi) v_0 - E A r_I \omega_I \varphi = 0$$
(6)

And as $v_0 \ge 0$, solving the quadratic equation in v_0 (6), we can get v_0 descripted in 2.220.

2 Input situation: ω_O , M_I , F_{C_I}

2.1 Condition

Input parameters: ω_O , M_I , F_{C_I} Unknowns: ω_I , v_0

2.2 Basic formulas

From 2.214, we can get

$$L_{I_{in}} = \frac{EAr_I\omega_I}{v_0} - EA \ . \tag{7}$$

By 2.211 and the relationship of $L_{I_{out}}$ and $L_{I_{in}}$ we can get

$$L_{I_{out}} - L_{I_{in}} = [L_{I_{in}} - K]e^{-\mu^* \Phi_I} + K - L_{I_{in}}$$

= $(L_{I_{in}} - K)(e^{-\mu^* \Phi_I} - 1).$ (8)

As the longitudinal force decreases from $L_{I_{in}}$ from $L_{I_{out}}$, we choose the negative sign when using the formula 2.211.

The equality of torques are

$$M_O = r_O(L_{O_{out}} - L_{O_{in}}) \tag{9}$$

$$M_I = r_I (L_{I_{out}} - L_{I_{in}})$$

= $r_I (L_{I_{in}} - K) (e^{-\mu^* \Phi_I} - 1)$. (10)

As $L_{O_{in}} = L_{I_{out}}$ and $L_{O_{out}} = L_{I_{in}}$, we can get

$$M_O = -M_I \frac{r_O}{r_I} \ . \tag{11}$$

And the axial equality of force on the input pulley is

$$F_{C_{I}} = \int_{\varphi_{I}} S' d\theta$$

$$= \int_{\varphi_{I}} \frac{L(EA - m^{*}v_{0}^{2}) - m^{*}v_{0}^{2}EA}{2\tan(\delta_{0})EA} d\theta$$

$$= \frac{EA - m^{*}v_{0}^{2}}{2\tan(\delta_{0})EA} \left[\int_{-(\pi-\varphi)}^{\pi-\varphi-\Phi_{I}} Ld\theta + \int_{\pi-\varphi-\Phi_{I}}^{\pi-\varphi} Ld\theta \right] - \frac{m^{*}v_{0}^{2}(\pi-\varphi)}{\tan(\delta_{0})}$$

$$= \frac{EA - m^{*}v_{0}^{2}}{2\tan(\delta_{0})EA} \left[L_{I_{in}}(2\pi - 2\varphi - \Phi_{I}) + \int_{\pi-\varphi-\Phi_{I}}^{\pi-\varphi} \left((L_{I_{in}} - K)e^{-\mu^{*}(\theta-(\pi-\varphi-\Phi_{I}))} + K \right) d\theta \right] - \frac{m^{*}v_{0}^{2}(\pi-\varphi)}{\tan(\delta_{0})}$$

$$= \frac{EA - m^{*}v_{0}^{2}}{2\tan(\delta_{0})EA} \left[L_{I_{in}}(2\pi - 2\varphi - \Phi_{I}) + \left| \left((L_{I_{in}} - K) \frac{1}{-\mu^{*}}e^{\mu^{*}(\pi-\varphi-\Phi_{I}-\theta)} + K\theta \right) \right|_{\pi-\varphi-\Phi_{I}}^{\pi-\varphi} \right] - \frac{m^{*}v_{0}^{2}(\pi-\varphi)}{\tan(\delta_{0})}$$

$$= \frac{EA - m^{*}v_{0}^{2}}{2\tan(\delta_{0})EA} \left[2L_{I_{in}}(\pi-\varphi) + (L_{I_{in}} - K) \left(\frac{e^{-\mu^{*}\Phi_{I}} - 1}{-\mu^{*}} - \Phi_{I} \right) \right] - \frac{m^{*}v_{0}^{2}(\pi-\varphi)}{\tan(\delta_{0})}.$$

$$(12)$$

Equation (12) can be simplified the same way as (5). So we get

$$2F_{C_I}\tan(\delta_0) = \left(EA - m^*v_0^2\right) \left[2(\pi - \varphi)\left(\frac{r_I\omega_I}{v_0} - 1\right) + \frac{M_I}{(-\mu^*)r_IEA} - \left(\frac{r_I\omega_I}{v_0} - \frac{EA}{EA - m^*v_0^2}\right)\Phi_I\right] - 2m^*v_0^2(\pi - \varphi)$$
(13)

2.3 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_I} \neq 0, L_{I_{in}} \neq 0$

Insert $\Phi_O = 0$ and 2.219 in to (12) and simplify it, we can get

$$r_O \omega_O(\pi - \varphi) m^* v_0^2 + (F_{C_I} \tan(\delta_0) + EA(\pi - \varphi)) v_0 - EAr_O \omega_O(\pi - \varphi) = 0$$

$$\tag{14}$$

And as $v_0 \ge 0$, solving the equation (14),we can get

$$v_{0} = \frac{\sqrt{(F_{C_{I}} \tan(\theta_{0}) + EA(\pi - \varphi))^{2} + 4EAm^{*}r_{O}^{2}\omega_{O}^{2}(\pi - \varphi)^{2}} - EA(\pi - \varphi) - F_{C_{I}} \tan(\delta_{0})}{2m^{*}r_{O}\omega_{O}(\pi - \varphi)}$$
(15)

2.4 How to calculate v_0 when $M_O \neq 0$

If $M_O \neq 0$, it is necessarily $\Phi_I = \Phi_O$ and $L_{O_{in}} \neq K$. So

$$\Phi_I = -\frac{1}{\mu^*} \ln \left[\frac{M_I}{r_I(L_{I_{in}} - K)} + 1 \right] \tag{16}$$

is only defined for $M_I \ge r_I(K - L_{I_{in}})$. With the help of Equation (11), Equation (2) and Equation (13) only depend on ω_I , v_0 . They can be solved by NEWTON method with starting values from the $M_O = 0$ case.

3 Input situation: ω_I , ω_O , F_{C_O}

3.1 Condition

Input parameters: ω_I , ω_O , F_{C_O}

Unknowns: M_O , v_0

3.2 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_O} \neq 0, L_{O_{in}} \neq 0$

If $\omega_O/\omega_I = r_I/r_O$, it means that the output torque $M_O = 0$. Then we can get v_0 by 2.220.

3.3 How to calculate v_0 when $M_O \neq 0$

If $\omega_O/\omega_I \neq r_I/r_O$, it means that the output torque $M_O \neq 0$. We can solve equations (2) and (5) in unknowns M_O and v_0 . We can choose 2.220 as the starting value of v_0 . From (2), we can get:

$$M_O = \frac{(r_I \omega_I - r_O \omega_O) r_O E A}{v_0}.$$
 (17)

By inserting the starting value of v_0 in to (17), we can get the starting value for M_O .

4 Input situation: ω_I , ω_O , F_{C_I}

4.1 Condition

Input parameters: ω_I , ω_O , F_{C_I}

Unknowns: M_I , v_0

4.2 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_I} \neq 0, L_{I_{in}} \neq 0$

If $\omega_O/\omega_I = r_I/r_O$, it means that the output torque $M_O = 0$. Then we can get v_0 by (15).

4.3 How to calculate v_0 when $M_O \neq 0$

If $\omega_O/\omega_I \neq r_I/r_O$, it means that the output torque $M_O \neq 0$. With the help of Equation (11), (2) can be writen in the form of

$$r_I \omega_I = -\frac{v_0 M_I}{E A r_I} + r_O \omega_O. \tag{18}$$

we can solve equations (18) and (13) in unknowns M_I and v_0 . We can choose (15) as the starting value of v_0 .

From (18), we can get:

$$M_I = -\frac{(r_I \omega_I - r_O \omega_O) r_I E A}{v_0}. (19)$$

By inserting the starting value of v_0 in to (19), we can get the starting value for M_I .

5 Input situation: ω_I , M_O , F_{C_I}

5.1 Condition

Input parameters: ω_I , M_O , F_{C_I}

Unknowns: ω_O , v_0

5.2 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_I} \neq 0, L_{I_{in}} \neq 0$

If the output torque $M_O=0$, then we can get v_0 by (15).

5.3 How to calculate v_0 when $M_O \neq 0$

From equation (11), we can get

$$M_I = -M_O \frac{r_I}{r_O} \ . \tag{20}$$

If the output torque $M_O \neq 0$. With the help of Equation (20), we can solve equations (2) and (13) with unknowns ω_O and v_0 . We can choose (15) as the starting value of v_0 . From (2), we can get:

$$\omega_O = \frac{r_I \omega_I}{r_O} - \frac{v_0 M_O}{r_I r_O E A} \tag{21}$$

By inserting the starting value of v_0 in to (21), we can get the starting value for ω_O .

6 Input situation: ω_I , M_I , F_{C_O}

6.1 Condition

Input parameters: ω_I , M_I , F_{CO} Unknowns: ω_O , v_0

6.2 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_O} \neq 0, L_{O_{in}} \neq 0$

If the input torque $M_I = 0$, it means that the output torque $M_O = 0$. Then we can get v_0 by 2.220.

6.3 How to calculate v_0 when $M_O \neq 0$

If the input torque $M_I \neq 0$. With the help of Equation (11), we can solve equations (2) and (5) in unknowns ω_O and v_0 . We can choose 2.220 and (21) as the starting value of v_0 and ω_O .

7 Input situation: ω_I , M_I , F_{C_I}

7.1 Condition

Input parameters: ω_I , M_I , F_{C_I} Unknowns: ω_O , v_0

7.2 How to calculate v_0 when $M_O = 0$

Condition: $\Phi_I = \Phi_O, F_{C_I} \neq 0, L_{I_{in}} \neq 0$

If the input torque $M_I = 0$, it means that the output torque $M_O = 0$. Then we can get v_0 by (15).

7.3 How to calculate v_0 when $M_O \neq 0$

If the input torque $M_I \neq 0$, it means that the output torque $M_O \neq 0$. We can solve equations (18) and (13) with unknowns ω_O and v_0 . We can choose (15) and (21) as the starting value of v_0 and ω_O .

A Futher Simplification

$\mathbf{A.1} \quad \Phi_O$

Insert (17) and (4) in to 2.221, we can get

$$\Phi_{O} = \frac{1}{\mu^{*}} \ln \left[\frac{\frac{(r_{I}\omega_{I} - r_{O}\omega_{O})r_{O}EA}{v_{0}}}{r_{O}EA(\frac{r_{O}\omega_{O}}{v_{0}} - \frac{EA}{EA - m^{*}v_{0}^{2}})} + 1 \right] = \frac{1}{\mu^{*}} \ln \left[\frac{r_{I}\omega_{I}(EA - m^{*}v_{0}^{2}) - EAv_{0}}{r_{O}\omega_{O}(EA - m^{*}v_{0}^{2}) - EAv_{0}} \right]$$
(22)

$\mathbf{A.2}$ F_{C_O}

Insert (17) and (22) in to (5), we can get

$$2F_{C_O} \tan(\delta_0) = \left(EA - m^* v_0^2\right) \left[2\varphi \left(\frac{r_O \omega_O}{v_0} - 1\right) + \frac{r_I \omega_I - r_O \omega_O}{\mu^* v_0} - \left(\frac{r_O \omega_O}{v_0} - \frac{EA}{EA - m^* v_0^2}\right) \frac{1}{\mu^*} \ln \left[\frac{r_I \omega_I (EA - m^* v_0^2) - EA v_0}{r_O \omega_O (EA - m^* v_0^2) - EA v_0}\right]\right] - 2m^* v_0^2 \varphi$$
(23)

$\mathbf{A.3} \quad \Phi_I$

From (7) and the formula of K we can get

$$(L_{O_{in}} - K) = \frac{r_I \omega_I}{v_0} - \frac{EA}{EA - m^* v_0^2} EA$$
 (24)

Insert (19) and (??) in to 2.221, we can get

$$\Phi_{I} = \frac{1}{-\mu^{*}} \ln \left[-\frac{\frac{(r_{I}\omega_{I} - r_{O}\omega_{O})r_{I}EA}{v_{0}}}{r_{I}EA(\frac{r_{I}\omega_{I}}{v_{0}} - \frac{EA}{EA - m^{*}v_{0}^{2}})} + 1 \right] = \frac{1}{-\mu^{*}} \ln \left[\frac{r_{O}\omega_{O}(EA - m^{*}v_{0}^{2}) - EAv_{0}}{r_{I}\omega_{I}(EA - m^{*}v_{0}^{2}) - EAv_{0}} \right]$$
(25)

A.4 F_{C_I}

Insert (19) and 25 in to (13), we can get

$$2F_{C_I} \tan(\delta_0) = \left(EA - m^* v_0^2\right) \left[2(\pi - \varphi) \left(\frac{r_I \omega_I}{v_0} - 1\right) + \frac{r_O \omega_O - r_I \omega_I}{-\mu^* v_0} - \left(\frac{r_I \omega_I}{v_0} - \frac{EA}{EA - m^* v_0^2}\right) \frac{1}{-\mu^*} \ln \left[\frac{r_O \omega_O (EA - m^* v_0^2) - EAv_0}{r_I \omega_I (EA - m^* v_0^2) - EAv_0}\right]\right] - 2m^* v_0^2 (\pi - \varphi)$$
(26)