MANE 6520 - Fluid Mechanics

unknown functions.

Homework #3 - Thursday, 12 October 2023, due Thursday 19 October

Consider two stationary parallel plates shown. The flow is 2-D, steady, thin, incompressible (with density ρ) and the fluid is Newtonian (constant viscosity μ). The impermeable upper surface slides horizontally at velocity V_x . Fluid passes upwards through the porous lower plate at constant uniform velocity V_y . The length is L, the gap height is $H \ll L$ (thin film) and the width is W into the paper. The pressure is p_0 across the inlet. The inlet velocity at x=0 across the gap $0 \le y \le H$ varies according to $V_x = V_x(y/H)$. Gravity does not play a role. Consider the parameters mentioned in this paragraph to be known and constant. The no-slip conditions are in force. The velocity in the x-direction is $V_x = A(x)y^2 + B(x)y + C(x)$, where A, B, and C are presently

- 1) Find the velocity v_x in terms of y and the known parameters.
- 2) Find the velocity v_y in terms of y and the known parameters.
- 3) For these parameters, what conditions must be met to discard the inertia terms of the Navier Stokes equations?
- 4) Find the pressure p(x) in terms of the known parameters, with negligible inertia and a thin film.
- 5) Find the force on the fluid at the upper surface \mathbf{F}_2 in terms of the known parameters.
- 6) Find the mass flow rate out of the right-side open surface \dot{m}_L in terms of the known parameters.
- 7) Find the mass flow rate out of the top-side porous surface \dot{m}_H in terms of the known parameters.
- 8) For H = 5 mm, L = 50 mm, W = 100 m, $V_x = 10$ mm/s, $V_y = 1$ mm/s, $p_0 = 1000$ Pa, $\rho = 800$ kg/m³, and $\mu = 50$ mPa-s; shown that discarding inertia is valid.
- 9) For these parameter values, find the numerical answer to part 5. Check units.
- 10) For these parameter values, plot the pressure p(x) for $0 \le x \le L$,