Definizione 3.7 (Shift e rescaling) Per ogni segnale $u \in S(-\infty, +\infty), \ \tau \in \mathbb{R}$ e $\omega \neq 0$, il segnale ritardato $S_{\tau}[u]$ e il segnale riscalato $R_{\omega}[u]$ sono dati da

$$S_{\tau}[u](t) := u(t - \tau), \quad R_{\omega}[u](t) := u(\omega t).$$
 (3.17)

Quando il parametro τ è positivo, $S_{\tau}[\cdot]$ trasla il grafico del segnale verso destra:

Figura 3.13: Effetto di $S_1[\cdot]$

Valori negativi di τ corrispondono a traslazioni verso sinistra:

Riscalamenti con $\omega>1$ comportano una "contrazione dei tempi", il segnale viene "trasmesso più velocemente":

Quando 0 < ω < 1 si ottiene una "dilatazione dei tempi", il segnale viene "trasmesso più lentamente":