

Visualizing Linear Models: An R Bag of Tricks Session 2: Multivariate Models

Michael Friendly SCS Short Course Oct. 2020

Today's topics

Brief review of the GLM & MLM

- Data ellipses
 - sufficient visual summaries

- HE plot framework
 - H & E matrices/ellipses
 - Discriminant/canonical views

Example: Penguins data

2

One-way ANOVA vs. MANOVA

How do means differ? (Assume equal withingroup variances)

Figure 8.1. The simple anova situation, when the differences among the populations are "real." source: Cooley & Lohnes ((1971)

How do centroids differ? How many dimensions?

(Assume equal withingroup variance-covariance matrices)

Figure 8.2. The simple manova situation, when the differences among the populations are "real."

GLM: the design matrix (X)

- In the full GLM, the design matrix (X) may consist of:
 - A constant, 1, for the intercept (usually implicit)
 - Quantitative regressors: age, income, education
 - Transformed regressors: Vage, log(income)
 - Polynomial terms: age², age³, ...
 - Categorical predictors ("factors", class variables): treatment (control, drug A, drug B), sex
 - Interactions: treatment * sex, age * sex

Model formulae in R define y & X:

Univariate linear model

Model

$$\mathbf{y} = \mathbf{X} \mathbf{\beta} + \boldsymbol{\epsilon}_{(n \times 1)} + \boldsymbol{\epsilon}_{(n \times 1)}$$

$$\mathbf{X}_{(n\times q)} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_q)$$

matrix of predictors, factors, ...

Sums of squares

$$SS_{\text{Tot}} = \sum_{i,j} (\hat{y}_{i,j} - \overline{y}_i)^2 + \sum_{i,j} (y_{i,j} - \hat{y}_i)^2$$
$$= SS_H + SS_E$$

Hypothesis tests

$$F = \frac{SS_H / df_H}{SS_E / df_E} = \frac{MS_H}{MS_E}$$

How big is hypothesis variation relative to error variation?

5

Multivariate linear model

Model

$$\mathbf{Y} = \mathbf{X} \mathbf{B} + \mathcal{E}_{(n \times p)} \mathbf{B} + (n \times p) \mathbf{E}_{(n \times p)}$$

 $\mathbf{Y}_{(n \times p)} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_p)$ matrix of *p* responses

Sums of squares & cross-products

$$\mathbf{SSP}_{T} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}') + \hat{\mathcal{E}}'\hat{\mathcal{E}}$$
$$= \mathbf{SSP}_{H} + \mathbf{SSP}_{E} = \mathbf{H} + \mathbf{E}$$

Hypothesis tests

Eigenvalues λ_i, i=1:p of H E⁻¹

Wilks' Λ, Pillai & Hotelling trace, Roy's test

how many dimensions (aspects of responses)?

How big is hypothesis variation relative to error variation?

Ah, but there are up to $s = min(p, df_h)$ dimensions of size

Data ellipsoids

- For a p-dimensional multivariate sample, Y_{N×p}, the sample mean vector, ȳ, and sample covariance matrix, S̄, are minimally sufficient statistics under classical (gaussian) assumptions.
- These can be represented visually by the p-dimensional data ellipsoid, \mathcal{E}_c of size ("radius") c,

$$\mathcal{E}_c(\overline{\mathbf{y}},\mathbf{S}) := \{ \mathbf{y} : (\mathbf{y} - \overline{\mathbf{y}})^T \, \mathbf{S}^{-1} (\mathbf{y} - \overline{\mathbf{y}}) \le c^2 \}$$

- → an ellipsoid centered at the means whose size & shape reflects variances & covariances
- We consider this a minimally sufficient visual summary of multivariate location and scatter.

Data ellipsoids: properties

- Ellipsoid boundary: Mahalanobis $D_M^2(y_i) \sim \chi_n^2$
 - p=2: shadows generalize univariate confidence intervals
 - eccentricity: precision; visual estimate of correlation

The HE plot framework

- Hypothesis-Error (HE) plots
 - Visualize multivariate tests in the MLM
 - Linear hypotheses--- lower-dimensional ellipsoids
 - Extension: HE plot matrices
- Canonical displays
 - low-dimensional multivariate juicers
 - shows data in the space of maximal effects
- Covariance ellipsoids
 - visualize tests of homogeneity of covariance matrices
- For all: robust methods are available or good research projects!

HE plot framework: Trivial example

Two groups of middle-school students are taught algebra by instructors using different methods, and then tested on:

- **BM**: basic math problems (7 * 23 2 * 9 = ?)
- WP: word problems ("a train travels at 23 mph for 7 hours, but for 2 hours ...")

Do the groups differ on (BM, WP) by a multivariate test? If so, how ???

9

Why do multivariate tests?

Could do univariate ANOVAs (or t-tests) on each response variable (BM, WP)

```
> Anova(lm(BM ~ group, data=mathscore))
Anova Table (Type II tests)

Response: BM
Sum Sq Df F value Pr(>F)
group 1302 1 4.24 0.066 . Residuals 3071 10

> Anova(lm(WP ~ group, data=mathscore))
Anova Table (Type II tests)

Response: WP
Sum Sq Df F value Pr(>F)
group 4408 1 10.4 0.009 **
Residuals 4217 10
```

From this, might conclude that:

- Groups don't differ on Basic Math score *
- Groups are significantly different on Word problems ✓

Multivariate tests:

- Do not require correcting for multiple tests (e.g., Bonferroni)
- Combine evidence from multiple response variables ("pooling strength")
- Show how the multivariate responses are jointly related to the predictors
 - How many aspects (dimensions?)

Why do multivariate tests?

Overall test is highly significant:

- · Combines the evidence for all predictors
- · Takes response correlations into account

Visual test of significance (Roy's test)

 The H ellipse projects outside the E ellipse iff the effect is significant.

HE plot provides an interpretation:

- Group 1 > Group 2 on Basic Math, but worse on Word Problems
- Group 2 > Group 1 on Word Problems, but worse on Basic Math
- BM & WP are + correlated w/in groups

HE plot framework: Visual overview

The data ellipsoid is a sufficient visual summary for multivariate location & scatter, just as $(\overline{\nu}, \mathbf{S})$ are sufficient for $(\mu, \mathbf{\Sigma})$

$Data \rightarrow Data \ ellipses \rightarrow HE \ plot$

- Differences between group means are shown by the H ellipsoid—data ellipsoid
 of the fitted values (w/ 1 df, degenerates to a line)
 - Direction shows relation of groups to response variables
 - Size shows "how big is H relative to E"
- Variation within groups is reflected in the **E** ellipsoid-- data ellipsoid of the residuals

15

- Direction: residual (partial) correlation between BM & WP
- Size/shape: residual variance

The H ellipse

- The **H** ellipse is the data ellipse of the fitted values (group means, here)
 - The **H** matrix is the sum of squares and crossproducts of the fitted values, corrected for the grand mean

$$\mathbf{H} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\mathbf{y}')$$

The E ellipse

- The **E** ellipse is the data ellipse of the residuals
 - What you get when you subtract the group means from all observations, shifting them to the grand means.
 - E matrix called the "within-group pooled covariance matrix"

$$\mathbf{E} = (\hat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}) = \hat{\mathcal{E}}'\hat{\mathcal{E}}$$

17

H & E in numbers

The **H** and **E** matrices are calculated in the car::Anova() function and saved as the SSP and SSPE components, used in the statistical tests.

Direct calculation: $\mathbf{H} = (\hat{\mathbf{Y}}'\hat{\mathbf{Y}} - n\overline{\mathbf{y}}\overline{\mathbf{y}}')$

H & E in numbers

```
> (E <- math.aov$SSPE)

BM WP

BM 3070.8 2808.3

WP 2808.3 4216.7
```

Direct calculation:

$$\mathbf{E} = (\hat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\hat{\mathbf{Y}} - \overline{\mathbf{Y}}) = \hat{\mathcal{E}}'\hat{\mathcal{E}}$$

>	resids	
	BM	WP
1	11.667	6.667
2	-8.333	-3.333
3	1.667	-3.333
4	21.667	36.667
5	-28.333	-23.333
6	1.667	-13.333
7	2.500	-1.667
8	32.500	28.333
9	-7.500	-31.667
10	2.500	8.333
11	-17.500	-11.667
12	-12.500	8.333

Discriminant analysis

- MANOVA and linear discriminant analysis (LDA) are intimately related and differ mainly in perspective:
 - MANOVA: Do means of groups on 2+ responses differ?
 - LDA: Find weighted sums of responses that best discriminate groups
- In both cases,
 - Group differences are represented by the H matrix; residuals: E matrix
 - Test statistics based on eigenvalues of HE⁻¹
 - Discriminant weights are eigenvectors of HE⁻¹

Discriminant analysis

- For 2 groups,
 - the discriminant axis is the line joining the two group centroids,
 - discriminant scores are the projections of observations on this line.
- MASS:lda() does this analysis

The canonical dimension is Can1 = 0.075 WP - 0.083 BM, a contrast between the two tests

Canonical space

- The HE plot view shows the data in data space
- Easier to see effects by projecting scores to canonical space the best-discriminating axes.
- For a 1 df effect, there is only one canonical dimension
 - Arrows show the relative size & direction of discriminant weights

library(candisc)
mod.can <- candisc(math.mod)
plot(mod.can)</pre>

Penguin data

Data on 3 species of penguins, measured on 3 Antarctic islands

How does penguin "size" differ by species, island, ... ?

>	> library(palmerpengiuns)											
>	> peng <- penguins %>% rename() %>% # clean up names, etc.											
>	peng[sample(1:333, 5),]											
#	A tibble: 5 x 8											
	species	island	bill_length	bill_depth	flipper_length	body_mass	sex	year				
	<fct></fct>	<fct></fct>	<db1></db1>	<db1></db1>	<int></int>	<int></int>	<fct></fct>	<int></int>				
1	Chinstrap	Dream	58	17.8	181	3700	f	2007				
2	Adelie	Torgersen	39.6	17.2	196	3550	f	2008				
3	Gentoo	Biscoe	46.2	14.1	217	4375	f	2009				
4	Chinstrap	Dream	49	19.5	210	3950	m	2008				
5	Gentoo	Biscoe	50.4	15.7	222	5750	m	2009				

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

- Can show multiple variables, but hard for >1 factor.
- · What is the pattern here?

Penguins: Multivariate EDA

Boxplots by grouping variables (factors) are often useful for an initial overview

· Need to reshape data from wide to long format

```
peng_long <- peng %>%
  tidyr::gather(Measure, Size, bill_length:body_mass)

ggplot(peng_long, aes(x=species, y=Size, fill=species)) +
  geom_boxplot() +
  facet_wrap(. ~ Measure, scales="free_y", nrow=1)
```


PCA & Biplots

- For multivariate data, often want to view the data in a low-D space that shows the most total variance
- PCA: finds weighted sums of variables which are:
 - Uncorrelated
 - Account for maximum variance
 - How many dimensions are necessary?
- A biplot is a 2D (or 3D) plot of the largest PCA dimensions
 - Vectors in this plot show the original data variables
 - Points in this plot show the observations
 - Data ellipses here show within group relations

26

PCA

```
> summary(peng.pca)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.657 0.882 0.6072 0.328
Proportion of Variance 0.686 0.195 0.0922 0.027
Cumulative Proportion 0.686 0.881 0.9730 1.000
```

2D: 88.1 % 3D: 97.3 %

See: https://rpubs.com/friendly/penguin-biplots for details

Biplot

```
library(ggbiplot)
ggbiplot(peng.pca, obs.scale = 1, var.scale = 1,
groups = peng$species,
ellipse = TRUE, circle = TRUE) +
scale_color_discrete(name = 'Penguin Species')
```

PC1, PC2 ~ 88.1% of variance

- PC1: largely flipper length & body mass: "penguin size"
- PC2 (& PC1): relates to "bill shape"

Easy to characterize the species in terms of these variables

See: https://rpubs.com/friendly/penguin-biplots

Penguins: MANOVA

Assume the goal is to determine whether/how the penguins differ in size by species

- A MLM tests all 4 size variables together: ~ species
- Could also use other factors: ~ species + island + sex

```
> peng.mod0 <-lm(cbind(bill_length, bill_depth, flipper_length, body_mass) ~ species,
> Anova(peng.mod0)
Type II MANOVA Tests: Pillai test statistic
        Df test stat approx F num Df den Df Pr(>F)
2 1.64 371 8 656 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Yet, we are left to understand the nature of this effect wrt. the size variables.

See: https://rpubs.com/friendly/penguin-manova for details

31

Penguins: view data ellipses

Data ellipses in 2D provide a good start for pairwise relations

bill depth & length

group means negatively correlated

within group correlation > 0

body mass & flipper length

- group means positively correlated
- within group correlation > 0

HE plot details

- **E** ellipse reflects within-group error (co)variation
 - Size: **E** / df_a set to cover 68%, an analog of $\overline{y} \pm 1$ std
 - Shift to grand mean for direct comparison with H
- **H** ellipse reflects (co)variation of group means
 - effect size scaling, uses H/df_e to put this on the same scale as the E ellipse. Analog of effect size in univariate designs.
 - significance ("evidence") scaling: uses H/λ_a df_e.
 - The **H** ellipse protrudes outside the **E** ellipse somewhere, iff an effect is significant (Roy's largest root test) at $p < \alpha$

Penguins: HE plots

Orientation of the H ellipse reflects negative correlation of the species means: species with larger bill depth have smaller bill length.

E ellipse: within species, larger bill length \rightarrow larger bill depth

heplot(peng.mod0, size="effect")

heplot(peng.mod0, size="evidence")

Contrasts

- In linear models, any effect of df_h > 1 can be partitioned into df_h separate 1 df tests of contrasts
 - If orthogonal, $\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 + \dots \mathbf{H}_{dfh}$ -- accounts for total effect
 - Tested as a linear hypothesis, e.g., $x_1 (x_2 + x_3)/2 = 0$
 - Each **H**_i has rank=1, so appears as a line in HE plots
- Assume we want to compare the species as two contrasts:
 - Do Adelie differ from Chinstrap?
 - Do Gentoo penguins differ from the other two?

Contrasts

Result is very clear:

- Adelie & Chinstrap differ only in bill length
- Gentoo differ from other two longer, but less deep bills.

Both of these are large effects!

33

Other HE plots

- 2D: can plot any pair of responses in data space
- pairs.mlm(): all pairwise 2D views
- heplot3d(): plots in 3D, can rotate, spin, zoom, ...

heplot(peng.mod0, variables=3:4, fill=TRUE, fill.alpha=0.2, size="effect")

Interpretation:

- major axis of the H ellipse measures "penguin size"
- Gentoo are the Big Birds in this story!

HE Pairs plots

The pairs() method for mlm objects gives a all pairwise HE plots in a scatterplot matrix format.

Something new here:

- avg. bill depth is negatively correlated with "size" variables – larger penguin species have smaller bill depths (curvature?)
- correlation of avg. bill depth with body mass nearly -1

heplot3d()

3D HE plots can show other features

heplot3d(peng.mod0, size="effect")

The H ellipsoid here is flat (2D), because the species effect has 2 df

In this 3D view, the 3 species form a triangle, suggesting some further interpretation.

Canonical view

- 4 response variables, but only s=min(q, dfh)=2 dimensions.
 - Here, both dimensions are significant
 - Can1 accounts for 86.5% of between-species variance
 - Can 2 accounts for the rest: 13.5%

```
> library(candisc)
> (peng.can <- candisc(peng.mod0))</pre>
Canonical Discriminant Analysis for species:
  CanRsq Eigenvalue Difference Percent Cumulative
             15.03
                         12.7
                                 86.5
2 0.700
                         12.7
                                           100.0
              2.34
                                 13.5
Test of HO: The canonical correlations in the
current row and all that follow are zero
  LR test stat approx F numDF denDF Pr(> F)
                   516
                           8 654 <2e-16 ***
                           3 328 <2e-16 ***
        0.2997
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

37

Canonical view

The plot() method for candisc objects shows points for observations and vector for variables

plot(peng.can, ellipse = TRUE ...) #plot CAN scores with ellipses

Can1: largely body mass & flipper length, that separate Gentoo from (Adelie, Chinstrap)

Can2: bill length distinguishes Chinstrap from others.

Canonical HE plot

heplot(peng.can, size="effect", fill=c(TRUE, FALSE))

Here is the entire effect of species shown in one HE plot

In CAN space, residuals are uncorrelated: **E** = circle

Size of ${\bf H}$ shows the total effect of species

Variable vectors show how the groups are discriminated.

38

Summary

- MLM just like univariate LM, but for multiple responses
 - Simultaneous tests no need for p-value adjustment
 - Take correlations among responses into account
- Data ellipses
 - Summarize bivariate data to show means, variances, correlation
- HE framework
 - Visualize multivariate tests in the MLM
 - Canonical displays show these results in the 2D (or 3D) space that accounts for largest between-group variance.

