Assignment-9

Ankur Aditya - EE20RESCH11010

Abstract—This document contains the procedure to find the row reduced matrix of a given 3×3 matrix.

Download the python code from

https://github.com/ankuraditya13/EE5609-Assignment9

and latex-file codes from

https://github.com/ankuraditya13/EE5609-Assignment9

1 Problem

Find a row-reduced matrix which is row equivalent to,

$$\mathbf{A} = \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} \tag{1.0.1}$$

2 Solution

Step 1: Performing scaling operation to matrix **A** as $R_1 \leftarrow \frac{1}{i}R_1$ by scaling matrix D_1 given as,

$$\mathbf{D_1} = \begin{pmatrix} \frac{1}{i} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \tag{2.0.1}$$

$$\mathbf{D_1A} = \begin{pmatrix} \frac{1}{i} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} \qquad (2.0.2) \qquad \Longrightarrow \mathbf{A_3} = \mathbf{E_{32}A_2} = \begin{pmatrix} 1 & -1+i & 0 \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\implies \mathbf{D_1 A} = \begin{pmatrix} 1 & -1 + i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$
 (2.0.3)

Step 2: Performing $R_2 \leftarrow R_2 - R_1$ and $R_3 \leftarrow R_3 R_1$ given by elementary matrix $\mathbf{E_{31}E_{21}}$ on equation (2.0.3),

$$\mathbf{E_{31}E_{21}} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} (2.0.4)$$

$$\mathbf{E_{31}E_{21}D_{1}A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} (2.0.5)$$

$$\implies \mathbf{A_1} = \mathbf{E_{31}} \mathbf{E_{21}} \mathbf{D_1} \mathbf{A} = \begin{pmatrix} 1 & -1 + i & 0 \\ 0 & -1 - i & 1 \\ 0 & 1 + i & -1 \end{pmatrix} (2.0.6)$$

Step 3: Performing $R_2 \leftarrow \frac{-1}{1+i}R_2$ given by $\mathbf{D_2}$ on equation (2.0.6),

$$\mathbf{D_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix} (2.0.7)$$

$$\mathbf{D_2A_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 0 & -1-i & 1 \\ 0 & 1+i & -1 \end{pmatrix} (2.0.8)$$

(1.0.1)
$$\Longrightarrow \mathbf{A_2} = \mathbf{D_2} \mathbf{A_1} = \begin{pmatrix} 1 & -1+i & 0 \\ 0 & 1 & \frac{1}{2}(-1+i) \\ 0 & 1+i & -1 \end{pmatrix}$$
 (2.0.9)

Step 4: Performing $R_3 \leftarrow R_3 - (1+i)R_2$ given by $\mathbf{E_{32}}$ on equation (2.0.9),

$$\mathbf{E_{32}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -(1+i) & 1 \end{pmatrix} \tag{2.0.10}$$

$$\mathbf{D_1} = \begin{pmatrix} \frac{1}{i} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.0.1)
$$\mathbf{E_{32}A_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 - i & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 + i & 0 \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 1 + i & -1 \end{pmatrix}$$
 (2.0.11)

$$\implies \mathbf{A_3} = \mathbf{E_{32}} \mathbf{A_2} = \begin{pmatrix} 1 & -1+i & 0 \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix} \quad (2.0.12)$$

Step 5: Performing $R_1 \leftarrow R_1 - (-1 + i)R_2$ given by \mathbf{E}_{12} on equation (2.0.12),

$$\mathbf{E_{12}} = \begin{pmatrix} 1 & 1 - i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{2.0.13}$$

$$\mathbf{E}_{12}\mathbf{A}_{3} = \begin{pmatrix} 1 & 1-i & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0\\ 0 & 1 & \frac{-1+i}{2}\\ 0 & 0 & 1 \end{pmatrix} (2.0.14)$$

$$\implies \mathbf{A_4} = \mathbf{E_{12}A_3} = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.0.15)

Step 6: Performing $R_1 \leftarrow R_1 - iR_3$ and $R_2 \leftarrow R_2 - \frac{-1+i}{2}R_3$ given by $\mathbf{E_{13}E_{23}}$ on equation (2.0.15),

$$\mathbf{E_{13}E_{23}} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix}$$
 (2.0.16)

$$\mathbf{E_{13}E_{23}A_{4}} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix} (2.0.17)$$

$$\implies \mathbf{A_{5}} = \mathbf{E_{13}E_{23}A_{4}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (2.0.18)$$

 \therefore Row-reduced matrix of **A** given by equation (1.0.1) is,

$$\mathbf{A} = \begin{pmatrix} i & -1 - i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} \stackrel{RREF}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$
(2.0.19)