controls = (dlumber, Plumber) Explicit implementation of "controls" Easy & recommended (for now) has assigned = (dNumber, SSN) is managed by = (d.Number, SSN, startdate) works = (SSN, Phumber, hour) supervisor = (SSU_up, SSU_down) dependent of = (SSN, frame) Relational Schema DEPARTMENT = (dlumber, dlame) DEPT_20C = (dlumber, dloc) FMPLOYTE = (SSIV, ename, address, salary, birthdate, sex) DEPENDENT = (frame, SSN, relationship, birthdate, sex) EMPLOYET Relational Algebra perators symbol = 6 (sigma) SELECT suntax = 6< selection condition > (R) ere selection condition is boolean expression on the attributes of P R = relational algebra expression Use relational algebra to select all employees with salary > 30 at of EMPLOYEE relation R+6 (EMPLOYEE) <salary > 30 >

Use RA to select all emp having name = Ice and salary > 20 RX-6 (EMPLOYEE) <ename = Ece > AND < salary > 20> R2 6 (EMPLOYEE) L'ename=Ece> (salary > 20 >) Cardinatity = number of tople | | 6 (R) | < | R | Degree = number of attribute degree (EMPLOYEE) = 4 SELECT operator does not change the degree Card (EMPLOYEE) = 4 (Tuples, rans) | EMPLOYEE | = 4 Card (R1) = 2 Card (R2) = 1 PROJECT symbol = TT Syntax = TT (R)list attribute Use RA to select (e.id, salary) attribute out of EMPLOYEE R2 < TT (EMPLOYEE) degree = 2 < e.id, salary > card = 4

Use BA to project EUPLOYEE over solary Ru < TT (EMPLOYEE) degree (Ru) = 1 $card(l_y) = 3$ diplicate saying Use LA to retrieve all info of female employees RESULT & 6 (EMPLOYEE) card (Result) = 3 degree (Result) = 5 Use RA to retrieve all info of employee howing frame = Ece $R_2 \leftarrow 6 (EMPLOYEE)$ card $(R_2) = 2$ <fname = Ece > degree (P2) = 5 Use RA to retrieve all into of employees having frame = Fee and salony > 50 R3 & 6 (EMPLOYEE) cord(R3) = 2 < frame = Ece > AND < salary > 50 > degree (P3) = 5 Use RA to retrieve frame and salary of all employees Ry < TT (EMPLOYEE) degree (Ry) = 2 <frame, salary> cord (Ru) = 4

Use RA to retrieve frame and salary of female employees Temp $1 \leftarrow 6$ (EUPLOYEE) degree = 5 $\langle sex=F \rangle$ cord = 3 RS & TT (6 (EMPROYEE) $R_5 \in TT$ (Temp1) degree = 2 < fname, salary > card = 3<frame, salary > UNION, INTERSECTION and MINUS Syntax: RUS, ROS, R-S R and S must be union compatible. They must have same number of attribute. $R(A_1, A_2, ..., A_n)$ $\begin{cases} n = m & dom(A_1) = dom(B_1) \end{cases}$ S(B1,B2,...,Bn)) \ \(= 1... Kitoptaki Brnek degree (STUDENT)=2 degree (INSTRUCTOR)=2 card (STUDENT) = 7 card (INSTRUCTOR) = 5 T = STUDENT U INSTRUCTOR degree (T)=2 card(T) = 10Company Database omegi Retrieve the SSIV of all employees who either work in DNOS or directly supervise an employee from DNOS DEPTS_EMP < 5 (EMPLOYEE) degree (DEPTS_EMP) = 10 card (DEPTS_EMP)=4

.....

and the same of th

SSN_DEPTSJEMP < TT (DEPTSJEMP) degree = 1
<SSN> COrd=4

SSN_SUPERVISE < TT (DEPTS_EMP) degree = 1

<sper-ssn> card = 2

R = SSN- DEPTS_EMP U SSN-SUPERVISE

Cartesian troduct

Syntax: RxS

Semantic: $Q = R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_n)$

Q (A1, A2, An, B1, B2, Bn)

degree (Q) = degree (R) + degree (S)

If IRI=nr and ISI=ns then |Q|=nr xns

Use RA to retrieve the name of the female dependent of each employee together with "frame" and "I name" of employee

FEH_DEP + TT (SEX=F) degree = 2

<pre

Temp + FEM_DEP x EMPLOYEE degree = 10+2=12 card = 8 x 4

fesult < TT (6 (TEMP))

Result < TT (6 (TEMP))

degree = 3 < Frame, Lname, Dependent-name > card = 4

| reflexive relationship = (SSIO, SuperSSIO) | Date No |
|--|-------------------------------------|
| Use RA query to retrieve the 11 | came of all employees working in |
| DNO = 5. TEMP < 6 (EMPLOYEE) de DNO = 5 co | egrec (TEMP) = 10
and (TEMP) = 4 |
| $R \in TT (TEMP)$ degree = LName card = 4 | |
| Use RA query to retrieve PName o | |
| R < TT (6 (PROJECT) Procention = Stafford Prome | degree = 1 $card = 2$ |
| Use RA query to retrieve the SSM
Research Department | V of the manager of the |
| Temp < 6 (DEPARTMENT) Drawe = Research | degree = 4
card = 1 |
| $R \in TT$ (Temp) degree = 1 | L |
| Use RA query to retrieve the FNO
Research Department. | ime of the manager of the |
| SSN_ Mng_Res < TT (Temp) Mgr_SSN | |
| All & EMPLOYEE X SSN-Mng-Res | degree (A11) = 11 |

Interesting-All & 6 (All)

SSN = Mgr_SSN

All & Interesting All

Result < TT (Interesting All)

Interesting All & EUP DA SSN SSW = Mgc SSN

FName

Use RA to retrieve the FName of employees who works less than

30 hours in at least 1 project

less-than_30 < 6 (works-ON)

degree (less_thon_30)=3

Hors < 30

card (less_than_30)=12

ESSN_less_30 < TT (less_than_30) degree (ESSN_less_30)=1

ESSN

eard (ESSN_less_30)=7

Temp1 = IMPLOYEE X ESSN_less_30 degree (Temp1) = 11

cord (Temp1) = 56

Temp 2 < 6 (Temp 1)

degree (Temp2) = 11

ESSN = SSN

card (Temp2) = 7

Result < TT (Temp2) degree (Result) =1

FName

card (Result) = 6

EMPLOYEE M. ESSN. less. 30

ESSN = SSN

functional Dependency: It is a constraint between 2 sets of

attributes.

Partial Dependency => . yoofuin

Phymber Hus

