PSYCH 260

Cellular neuroscience II

Rick O. Gilmore 2021-09-20 15:48:49

Measuring potentials in actual neurons (4:20)

Announcements

- Exam 1 Thursday, 9/23
 - 40 questions
 - No in-person/in-class meeting
 - On Canvas, live at 3:05 PM; open until 10:00 PM

Today's Topics

- Electrical communication in neurons
- The action potential

How do neurons communicate

Types of neural electrical potentials

- Resting potential
- Action potential

Where does the resting potential come from?

- Ions (charged atoms)
- Ion channels
- Separation between charges
- A balance of forces

We are the champIONs, my friend

- Potassium, K^+
- Sodium, Na^+
- Chloride, Cl^-
- Organic anions, A^-

Party On

- Annie (A^-) was having a party.
 - Used to date Nate (Na^+), but now sees Karl (K^+)
- Hired bouncers called
 - "The Channels"
 - Let Karl and friends in or out, keep Nate out
- Annie's friends (A^-) and Karl's (K^+) mostly inside
- Nate and friends (Na^+) mostly outside
- · Claudia (Cl^-) tagging along

Resting potential arises from

- A balance of forces
 - Force of diffusion
 - Electrostatic force
- Forces cause ion flows across membrane
- Ion channels allow ion flow

Ion channels

- Openings in neural membrane
- Selective for specific ions
- Vary in permeability (how readily ions flow)
- Types
 - Passive/leak (always open)
 - Voltage-gated
 - Ligand-gated (chemically-gated)
 - Transporters/pumps

Ion channels

Neuron at rest permeable to K^+

- Passive K^+ channels open
- $[K^+]$ concentration inside >> outside
- K^+ flows out

Force of diffusion

semipermeable membrane

Force of diffusion

Neuron at rest permeable to K^+

- Organic anions (A^-) to large to move outside of cell
- A^- and K^+ largely in balance == no net internal charge
- K^+ outflow creates charge separation: $K^+ < -> A^-$
- Charge separation creates a voltage
- Outside +/inside -
- Voltage build-up stops outflow of K^+

The resting potential

Balance of forces in the neuron at rest

- Force of diffusion
 - K^+ moves from high concentration (inside) to low (outside)

Balance of forces in the neuron at rest

Electrostatic force

- Voltage build-up stops K^+ outflow
- Specific voltage called equilibrium potential for K^++
- K^+ positive, so equilibrium potential negative (w/ respect to outside)
- Equilibrium potential close to neuron resting potential

Equilibrium potential and Nernst equation

$$V_{K} = \frac{RT}{(+1)F} \ln \frac{[K^{+}]_{o}}{[K^{+}]_{i}}$$

Equilibrium potentials calculated under typical conditions

lon	[inside]	[outside]	Voltage
K^+	~150 mM	~4 mM	~ -90 mV
Na^+	~10 mM	~140 mM	~ +55-60 mV
Cl^-	~10 mM	~110 mM	- 65-80 mV

$$V_{K} = \frac{RT}{(+1)F} \ln \frac{[K^{+}]_{o}}{[K^{+}]_{i}}$$

Resting potential $\neq K^+$ equilibrium potential

- Resting potential not just due to K^+
- Other ions flow
- Resting potential == net effects of all ion flows across membrane

Goldman-Hodgkin-Katz equation

$$V_{\rm m} = \frac{RT}{F} \ln \left(\frac{p_{\rm K}[{\rm K}^+]_{\rm o} + p_{\rm Na}[{\rm Na}^+]_{\rm o} + p_{\rm Cl}[{\rm Cl}^-]_{\rm i}}{p_{\rm K}[{\rm K}^+]_{\rm i} + p_{\rm Na}[{\rm Na}^+]_{\rm i} + p_{\rm Cl}[{\rm Cl}^-]_{\rm o}} \right)$$

Na^+ role

- $\cdot Na^+$ concentrated **outside** neuron
- Membrane at rest not very permeable to Na^+
- Some, but not much Na^+ flows in
- Na^+ has equilibrium potential ~ + 60 mV
- Equilibrium potential is positive (with respect to outside)
- · Would need positive interior to keep Na^+ from flowing in

Electrical circuit model

Summary of forces in neuron at rest

Ion	Concentration gradient	Electrostatic force	Permeability
<i>K</i> +	Inside >> Outside	- (pulls K^+ in)	Higher
Na^+	Outside >> Inside	- (pulls Na^+ in)	Lower

What happens if something changes?

- Easier for Karl $[K^+]$ to exit?
- Easier for Nate $[Na^+]$ to enter?
- Some action!

Action potential

Action potential

- Threshold of excitation
- Increase (rising phase/depolarization)
- Peak
 - at positive voltage
- Decline (falling phase/repolarization)
- Return to resting potential (refractory period)

Action potential break-down

Phase	Neuron State
Rise to threshold	+ input makes membrane potential more +
Rising phase	Voltage-gated Na^+ channels open, Na^+ flows in
Peak	Voltage-gated Na^+ channels close and deactivate; voltage-gated K^+ channels open
Falling phase	K^+ flows out
Refractory period	Na^+/K^+ pump restores [Na^+], [K^+]; voltagegated K^+ channels close

What's a Na^+/K^+ pump?

- Enzyme (Na^+/K^+ ATP-ase) embedded in neuron membrane
- Pumps Na^+ and K^+ against concentration gradients
- · Na^+ out; K^+ in
- Uses ATP or chemical energy

Example in another domain

33/41

Refractory periods

- Absolute
 - Cannot generate action potential (AP) no matter the size of the stimulus
 - Voltage-gated Na^+ channels inactivated, reactivate in time.

Refractory periods

- Relative
 - Can generate AP with larg(er) stimulus
 - Some voltage-gated K^+ channels still open
- Refractory periods put 'spaces' between APs

Generating APs

- Axon hillock
 - Portion of soma adjacent to axon
 - Integrates/sums input to soma
- Axon initial segment
 - Umyelinated portion of axon adjacent to soma
 - Voltage-gated Na^+ and K^+ channels exposed
 - If sum of input to soma > threshold, voltagegated Na^+ channels open

Axon hillock, axon initial segment

Axon Hillock" by M.aljar3i - Own work. Licensed under CC BY-SA 3.0 via Commons

Nodes of Ranvier

- Regenerate action potential
- Na^+ and K^+ channels exposed to extracellular environment
- Between Nodes of Ranvier, ions can't move out, so move along
- Nodes of Ranvier -> Action potentials faster & reliable for a given diameter

Main points

- Resting potential maintained by balance of forces (diffusion, electrostatic)
- Action potential generated when balance is altered
 - $[Na^+]$ in: rising phase to + peak
 - $[K^+]$ out: falling phase

Next time

• Exam 1

References