Chapter 2	Configuration Space
Chapter 3	Rigid-Body Motions
Chapter 4	Forward Kinematics
Chapter 5	Velocity Kinematics and Statics
Chapter 6	Inverse Kinematics
Chapter 7	Kinematics of Closed Chains
Chapter 8	Dynamics of Open Chains
Chapter 9	Trajectory Generation
Chapter 10	Motion Planning
Chapter 11	Robot Control
	11.1 Control System Overview
	11.2 Error Dynamics
Chapter 12	Grasping and Manipulation
Chapter 13	Wheeled Mobile Robots

Example control objectives:

- motion control
- force control
- hybrid motion-force control
- impedance control

Control system block diagram:

Simplified block diagram:

Also assuming continuous-time (not discrete-time) control.

For motion control,

reference: $\theta_d(t)$

actual: $\theta(t)$

error: $\theta_e(t) = \theta_d(t) - \theta(t)$

Unit step error response:

 $\theta_e(t)$ starting from $\theta_e(0) = 1$

Steady-state error response: $e_{\rm ss}$

Transient error response:

overshoot, settling time

System dynamics, feedback controllers, and error response are often modeled by linear ordinary differential equations.

The simplest linear ODE exhibiting overshoot is second order, e.g.,

$$\begin{split} \mathfrak{m}\ddot{\theta}_e + b\dot{\theta}_e + k\theta_e &= f \\ \text{or, if } f &= 0, \\ \ddot{\theta}_e + \frac{b}{\mathfrak{m}}\dot{\theta}_e + \frac{k}{\mathfrak{m}}\theta_e &= 0 \end{split}$$

k and b depend on the control law

A more general p^{th} -order linear ODE:

$$a_{p}\theta_{e}^{(p)} + a_{p-1}\theta_{e}^{(p-1)} + \cdots + a_{2}\ddot{\theta}_{e} + a_{1}\dot{\theta}_{e} + a_{0}\theta_{e} = c \quad \text{nonhomogenous}$$

$$a_{p}\theta_{e}^{(p)} + a_{p-1}\theta_{e}^{(p-1)} + \cdots + a_{2}\ddot{\theta}_{e} + a_{1}\dot{\theta}_{e} + a_{0}\theta_{e} = 0 \quad \text{homogeneous}$$

$$\theta_{e}^{(p)} + a'_{p-1}\theta_{e}^{(p-1)} + \cdots + a'_{2}\ddot{\theta}_{e} + a'_{1}\dot{\theta}_{e} + a'_{0}\theta_{e} = 0$$

$$\theta_{e}^{(p)} = -a'_{p-1}\theta_{e}^{(p-1)} - \cdots - a'_{2}\ddot{\theta}_{e} - a'_{1}\dot{\theta}_{e} - a'_{0}\theta_{e}$$

Defining a state vector $x = (x_1, x_2, ..., x_p)$, you can write the p^{th} -order ODE as p first-order ODEs (a vector ODE).

$$\dot{x}(t) = Ax(t) \to x(t) = e^{At}x(0)$$

If Re(s) < 0 for all eigenvalues s of A, then the error dynamics are **stable** (the error decays to zero).

The eigenvalues are the roots of the characteristic equation

$$\det(sI - A) = s^p + a'_{p-1}s^{p-1} + \dots + a'_2s^2 + a'_1s + a'_0 = 0$$

Necessary conditions for stability: each $a'_i > 0$.

These necessary conditions are also **sufficient** for first- and second-order systems.

Types of control for the following tasks:

- Shaking hands with a human
- Erasing a whiteboard
- Spray painting
- Back massage
- Pushing an object across the floor with a mobile robot
- Opening a refrigerator door
- Inserting a peg in a hole
- Polishing with a polishing wheel
- Folding laundry

If the error dynamics characteristic equation is (s+3+2j)(s+3-2j)(s-2)=0, does the error converge to zero?

Note: if $x_1 = \text{error}$ and $x = (x_1, x_2, x_3)$, then $\dot{x} = Ax$, where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 26 & -1 & -4 \end{bmatrix}$$

You can choose a control law to be a virtual spring, a virtual damper, a virtual spring plus damper, or nothing. Which of these could stabilize an actuated pendulum with viscous friction to the upright configuration? To a horizontal configuration? To the downward configuration? Describe the transient and steady-state error response for each.

