Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №2 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів розгалуження»

Варіант 18

Виконав студент	<u> </u>
Перевірив	(прізвище, ім'я, по батькові)

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 18

 $3a\partial a a$. Задане дійсне число х. Послідовність $a_1, a_2, ..., a_n$ утворена за законом $a_n = x_n : (2n)!$, n = 1, 2

Отримати суму $a_1+a_2+...+a_k$, де k - найменше ціле число, що задовольняє двом умовам: $k>10, \mid a_k\mid <10^{-5}$.

- 1. *Постановка задачі*. Результатом розв'язку даної задачі сума послідовності, яка задовільнює умовам, написаних вище.
- 2. Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Константа послідовності	Дійсний	X	Початкове дане
Елемент послідовності	Дійсний	a	Проміжне значення
Лічильник циклу	Дійсний	n	Проміжне значення
Сума послідовності	Дійсний	sum	Результат

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення елемента послідовності.

Крок 3. Деталізуємо дію перевірки на відповідність умові, та добавлення елемента до суммі sum.

3. Псевдокод алгоритму.

Крок 1

початок

Введення х

Обчислення елемента послідовності

Перевірка на відповідність умові

<u>Добавлення елемента до суммі sum</u>

```
Виведення sum
кінець
Крок 2
початок
Введення х
sum, n := \{0, 1\}
\underline{a} := x / factorial(2n)
Перевірка на відповідність умові
Добавлення його до суммі sum
Виведення sum
кінець
Крок 3
початок
Введення х
sum, n := \{0, 1\}
\underline{a} := x / factorial(2n)
якщо (a < 10) і (a > 10^-5):
   \underline{\text{sum}} += \underline{a}
інакше:
   повторити:
      \underline{sum} += \underline{a}
      \underline{\mathbf{a}} = x / factorial(2n)
      n++
   поки (a < 10) i (a > 10^-5)
   все повторити
```

все якщо

кінець

Виведення sum

4.Блок-схема алгоритму

5. Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних:

Блок		Дія
	Початок	Початок
1	Введення: x = 3	Введення: x = 3
2	sum = 0	
3	n = 1	
4	AGAIN:	
5	a = x / (2n)!	
6	a < 10 && a > 10^-5 : TAK	a < 10 && a > 10^-5 : HI
7		n += 1
8		goto Again
9	Виведення sum	Виведення sum
	Кінець	Кінець

6.Висновки. На цій лабораторній роботі я досліджував логіку операторів повторення дій. Навчився зображати їх у вигляді блок схеми і на мові псевдкода. Також я придбав практичні навки використання операторів повторення дій в ході складання даної лабораторної роботи.