

Review of Dictionaries

- Remember that dictionaries are defined as a series of key:data pairs.
- This means that individual pieces of data are accessed using a **key** instead of their relative position in the dictionary.

A Simple Diagram of a Dictionary

address		
Number	Street	City
		Amborstviow

The name of the dictionary is *address* and it contains three keys:data pairs:

- Number -> 18
- Street -> Fairfield Boulevard
- City -> Amherstview

Lists of Dictionaries

- A list contains a number elements identified with a subscript (index) which contain data.
- Instead of one piece of data, each element in a list can contain a dictionary containing multiple key:value pairs.

	Number	Street	City
	1233	King Street	Kingston
	Number	Street	City
	18	Fairfield Boulevard	Amherstview
2	Number	Street	City
	423-A	Carter Crescent	Bath
3	Number	Street	City
	77	Dawson Road	Kingston

- For example, given our list on the previous slide, the following Python command: addresses [2] ["Street"] = "Carter Crescent"
 - -the **name** of the list is *addresses*
 - the **element** is addresses [2] -> pronounced "addresses sub 2"
 - the subscript or index is 2
 - the data assigned to the addresses [2] a dictionary with three keys.
 - the key (field) of the dictionary in the element is "Street"
 - the **data** assigned to the key Street in the element *addresses* [2] is *Carter Crescent*

Program to Create a Lists of Dictionaries