- 1. No circuito da figura 1,  $k_a(W/L) = 2mA/V^2$ ,  $V_t = 1 V$ ,  $V_A = 50 V$  e  $I = 500 \mu A$ . Despreze a modulação do comprimento do canal.
  - (a) Sem efectuar cálculos, diga justificando em que região de operação se deve encontrar o transistor para que o circuito funcione correctamente.
  - (b) Das configurações amplificadoras básicas, qual é a que representa a figura? Justifique.
  - (c) Calcule as tensões continuas na gate e entre a gate e a source  $(V_g \in V_{gg})$ .
  - (d) Calcule a tensão contínua no drain do transistor (Vd).
  - (e) Calcule o parâmetro de transcondutância  $g_m$  do transistor.
  - (f) Calcule a resistência equivalente para corrente alternada entre o drain e a source  $(r_0)$ .
  - (g) Desenhe o circuito equivalente para pequenos sinais e calcule o valor de  $v_o$ , sabendo que  $v_i$  é uma sinusóide com  $1 \ mV$  de pico.
  - (h) Será que o circuito é afectado pelo efeito de corpo? Justifique.
  - (i) Desenhe um circuito que implemente a fonte de corrente I da figura. Note que esta fonte de corrente deve estar ligada entre a *source* do transistor e a tensão de -12 V.



- (a) Calcule os valores de  $I_1$  e da tensão no drain de  $Q_1$ .
- (b) Calcule os valores de  $I_2$  e da tensão no drain de  $Q_2$ .
- (c) Como se designa o circuito?
- (d) Qual é o valor máximo que a resistência de 100  $\Omega$  pode ter sem que  $Q_2$  deixe a região de saturação?



- 3. Considere que a expressão booleana  $Y = \overline{[A(B+C)]+D}$  é implementada por um circuito lógico CMOS.
  - (a) Desenhe o circuito da rede de pull-up.
  - (b) Desenhe o circuito da rede de pull-down.



Departamento de Electrónica Industrial 2008-05-02

TESTE C

Electrónica II Duração: 1h00

## NOTA: Deve realizar todos os cálculos com pelo menos 3 algarismos significativos.

1. Considere o transístor da figura 1, em que  $V_t = 1V$ ,  $k_n = 50 \,\mu\text{A}/V^2$ , W/L = 20 e  $V_D = 2V$ .

(a) Calcule a corrente de drain do transistor.

(b) Em que região de operação se encontra o transistor?

(c) Calcule a tensão na source e o valor de Rs.

(d) Será que o transístor é afectado pelo efeito de corpo? Justifique.



2. No circuito da figura 2,  $k_n(W/L) = 500 \mu A/V^2$ ,  $V_A = 100 V$ ,  $V_t = 1 V$ ,  $\gamma = 0.5 \sqrt{V}$  e  $\phi_t = 0.3 V$ .

Despreze a modulação do comprimento do canal.

(a) Desenhe o circuito equivalente para corrente contínua.

(b) Em corrente contínua, calcule as tensões no drain, na source e na gate do trabnsistor.

(c) Desenhe o circuito equivalente para corrente alternada, com o transístor substituído pelo seu modelo equivalente para pequenos sinais.

(d) Calcule a transcondutância g<sub>m</sub>, a resistência de saída r<sub>o</sub> e a transcondutância devida ao efeito de <sub>R<sub>s</sub></sub> = 1/<sub>g</sub> corpo g<sub>mb</sub> do modelo do transístor.

(e) Qual é o valor da impedância de entrada do circuito? Justifique.

(f) Explique como procederia para calcular a impedância de saída do circuito.