Probability theory II Assignment 2

2021-21116 Taeyoung Chang

Suppose X_n is a martingale w.r.t. \mathcal{G}_n and let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Then $\mathcal{G}_n \supset \mathcal{F}_n$ and X_n is a martingale w.r.t. \mathcal{F}_n .

Proof. Since X_n is a martingale w.r.t \mathcal{G}_n , X_n is integrable. Also, $X_n \in \mathcal{G}_n \quad \forall n \in \mathbb{N}$. Define a sequence of collections $\{A_n\}_n$ as

$$\mathcal{A}_n = \{(X_j \in B) : j = 1, \cdots, n \text{ and } B \in \mathcal{B}(\mathbb{R})\}$$

Then we have $\mathcal{F}_n = \sigma(\mathcal{A}_n) \quad \forall n \in \mathbb{N}$. Take any $B \in \mathcal{B}(\mathbb{R})$ and $j \in \{1, \dots, n\}$. Since $X_n \in \mathcal{G}_n$, we have $(X_j \in B) \in \mathcal{G}_j \subset \mathcal{G}_n$. It implies that $\mathcal{A}_n \subset \mathcal{G}_n \quad \forall n \in \mathbb{N}$. Furthermore, since \mathcal{G}_n is a σ -field, we get $\sigma(\mathcal{A}_n) \subset \mathcal{G}_n \quad \forall n \in \mathbb{N}$. Therefore $\mathcal{F}_n \subset \mathcal{G}_n \quad \forall n \in \mathbb{N}$.

Now we should show that X_n is a martingale w.r.t \mathcal{F}_n . As we said before, X_n is integrable. Also, $X_n \in \mathcal{F}_n \quad \forall n \in \mathbb{N} \text{ by the definition of } \mathcal{F}_n. \text{ Finally, } E[X_{n+1}|\mathcal{F}_n] = X_n \quad \forall n \in \mathbb{N} \text{ since }$

$$E[X_{n+1}|\mathcal{F}_n] = E[E[X_{n+1}|\mathcal{G}_n]|\mathcal{F}_n] \quad :: \quad \mathcal{F}_n \subset \mathcal{G}_n \quad \text{smoothing property}$$

$$= E[X_n|\mathcal{F}_n] \quad :: \quad X_n \text{ is martingale w.r.t } \mathcal{G}_n$$

$$= X_n \quad :: \quad X_n \in \mathcal{F}_n$$

Thus, X_n is a martingale w.r.t \mathcal{F}_n

Remark. If X_n is a martingale then \mathcal{F}_n defined by $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ is the smallest filtration that makes X_n a martingale.

Let X_n , $n \ge 0$, be a submartingale with sup $X_n < \infty$. Let $\xi_n = X_n - X_{n-1}$ and suppose $E(\sup \xi_n^+) < \infty$. Show that X_n converges a.s.

Proof. Take $M \in \mathbb{N}$. Define $N = \inf\{n \in \mathbb{N} \cup \{0\} : X_n > M\}$. Then N is a stopping time.

$$\therefore (N=n) = (X_0 \le M) \cap \dots \cap (X_{n-1} \le M) \cap (X_n > M) \in \mathcal{F}_n \quad \forall n \in \mathbb{N}$$

Consider $X_{N \wedge n}$. Since X_n is a martingale and N is a stopping time, $X_{N \wedge n}$ is also a submartingale.

- i. If n < N $X_{N \wedge n} = X_n \text{ and } X_n \leq M$. Also $X_n^+ \leq M$
- ii. Else, if $n \geq N$ $X_{N \wedge n} = X_N > M$. Note that $X_{N-1} \leq M$ and $\xi_N = X_N - X_{N-1}$. Hence we have $X_N = X_{N-1} + \xi_N \le M + \xi_N^+ \le M + \sup_n \xi_n^+ \quad \forall n \in \mathbb{N} \text{ and also } X_N^+ \le M + \sup_n \xi_n^+ \quad \forall n \in \mathbb{N}$

Combining two cases , we have $X_{N\wedge n}^+ \leq M + \sup_n \xi_n^+ \quad \forall \, n \in \mathbb{N}$. Taking expectation, we have $E[X_{N\wedge n}^+] \leq M + E[\sup_n \xi_n^+] \quad \forall \, n \in \mathbb{N}$.

By taking supremum, we get $\sup_n E[X_{N \wedge n}^+] \leq M + E[\sup_n \xi_n^+]$

Since $E[\sup_n \xi_n^+] < \infty$ by assumption, we have $\sup_n E[X_{N \wedge n}^+] < \infty$. By the submartingale convergence theorem, $X_{N \wedge n}$ converges a.s.

Note that if $N = \infty$ then $X_{N \wedge n} = X_n \quad \forall n \in \mathbb{N}$. Hence X_n converges a.s. on $(N = \infty)$

We have taken arbitrary $M \in \mathbb{N}$ for defining a stopping time N. Hence we can write it as N_M to emphasize that it depends on the value of M. Then for each $M \in \mathbb{N}$, we have

$$(N_M = \infty) = (X_n \le M \quad \forall n \in \mathbb{N}) = \left(\sup_n X_n \le M\right)$$

Therefore $P\Big(\sup_n X_n \leq M\Big) = P(N_M = \infty) \quad \forall \ M \in \mathbb{N}$. Observe that $\Big(\sup_n X_n \leq M\Big)$ is increasing sequence of events w.r.t M. i.e. $\Big(\sup_n X_n \leq M\Big) \subset \Big(\sup_n X_n \leq M+1\Big) \quad \forall \ M \in \mathbb{N}$. Thus $(N_M = \infty)$ is also increasing sequence of events w.r.t M By assumption $\sup_n X_n < \infty$ a.s.,

$$1 = P\left(\sup_{n} X_{n} < \infty\right) = P\left(\bigcup_{M \in \mathbb{N}} \left(\sup_{n} X_{n} \le M\right)\right) = \lim_{M \to \infty} P\left(\sup_{n} X_{n} \le M\right)$$

due to continuity from below of probability measure. Combining the results above, we have

$$1 = \lim_{M \to \infty} P(N_M = \infty) = P\left(\bigcup_{M \in \mathbb{N}} \left(N_M = \infty\right)\right)$$

Let $C = \left(\bigcup_{M \in \mathbb{N}} \left(N_M = \infty\right)\right)$. Since X_n converges a.s. on $\left(N_M = \infty\right)$ for every $M \in \mathbb{N}$, we have X_n converges a.s. on C with P(C) = 1. Therefore X_n converges a.s.

4.2.7 Suppose $y_n > -1$ for all n and $\sum |y_n| < \infty$. Show that $\prod_{m=1}^{\infty} (1 + y_m)$ exists.

Proof. We shall use the result $|\log(1+x)| \le |x-x^2| \quad \forall |x| \le \frac{1}{2} \quad \cdots (*)$ by the visual result of graphing device (Desmos).

From the assumption $\sum_n |y_n| < \infty$, we have $y_n \to 0$ as $n \to \infty$. Thus $\exists M \in \mathbb{N}$ s.t.

 $|y_n| \leq \frac{1}{2} \quad \forall \ n \geq M$ which implies $y_n^2 \leq \frac{1}{4} \quad \forall \ n \geq M$. Since $\sum_n \left(\frac{1}{4}\right)^n$ converges, $\sum_n y_n^2$ also converges by the comparison test. Now take $N \in \mathbb{N}$ s.t. $N \geq M$ and observe that

$$\left| \sum_{n>N} \log(1+y_n) \right| \le \sum_{n>N} |\log(1+y_n)| \le \sum_{n>N} |y_n - y_n^2| \le \sum_{n>N} |y_n| + \sum_{n>N} y_n^2 \longrightarrow 0 \quad \text{as} \quad N \to \infty$$

The second inequality comes from the two fact : $|y_n| \le \frac{1}{2} \quad \forall \ n \ge M$ and the inequality (*). The convergence to zero is derived from the fact that $\sum_n |y_n|$ and $\sum_n y_n^2$ are both convergent series and the tail part of the convergent series tends to zero.

Therefore $\sum_n \log(1+y_n)$ converges to a finite number and $\prod_n (1+y_n) = \exp(\sum_n \log(1+y_n))$ also converges to a finite number

4.2.8 Let X_n and Y_n be positive integrable and adapted to \mathcal{F}_n . Suppose

$$E(X_{n+1}|\mathcal{F}_n) \leq (1+Y_n)X_n$$

with $\sum Y_n < \infty$ a.s. Prove that X_n converges a.s. to a finite limit by finding a closely related supermartingale to which Theorem 4.2.12 can be applied.

Proof. We shall define a nonnegative supermartingale to utilize supermartingale convergence thm.

$$W_n := \frac{X_n}{\prod_{m=1}^{n-1} (1 + Y_m)}$$

Since X_n and Y_n are positive, W_n is also positive. Also, $X_n \in \mathcal{F}_n$ and $\prod_{m=1}^{n-1} (1+Y_m) \in \mathcal{F}_{n-1} \subset \mathcal{F}_n$, we have $W_n \in \mathcal{F}_n \quad \forall \, n \in \mathbb{N}$. Note that $(1+Y_n) > 1$ so that $\prod_{m=1}^n (1+Y_m) > 1 \quad \forall \, n \in \mathbb{N}$

$$E(W_n) = E\left[\frac{X_n}{\prod_{m=1}^{n-1} (1 + Y_m)}\right] \le E[X_n] < \infty \quad \forall n \in \mathbb{N}$$

The last inequality $E(X_n) < \infty$ comes from the assumption that X_n is integrable. Thus W_n is integrable. To show W_n is a supermartingale, it suffices to show that $E[W_{n+1}|\mathcal{F}_n] \leq W_n$

$$E[W_{n+1}|\mathcal{F}_n] = E\left[\frac{X_{n+1}}{\prod_{m=1}^{n}(1+Y_m)}|\mathcal{F}_n\right]$$

$$= \frac{1}{\prod_{m=1}^{n}(1+Y_m)}E[X_{n+1}|\mathcal{F}_n] \quad \because \frac{1}{\prod_{m=1}^{n}(1+Y_m)} \in \mathcal{F}_n$$

$$\leq \frac{1}{\prod_{m=1}^{n}(1+Y_m)}(1+Y_n)X_n \quad \because \text{ By assumption } E[X_{n+1}|\mathcal{F}_n] \leq (1+Y_n)X_n$$

$$= \frac{1}{\prod_{m=1}^{n-1}(1+Y_m)}X_n = W_n$$

Therefore, W_n is a nonnegative supermartingale. By supermartingale convergence thm, $W_n \to W$ a.s. for some integrable r.v. W. Note that

$$X_n = W_n \prod_{m=1}^{n-1} (1 + Y_m)$$

Since $Y_n > 0$ and $\sum_n Y_n < \infty$ a.s. by the assumption, we can apply the result of the previous exercise so that $\prod_n (1+Y_n)$ converges a.s. In other words, $\prod_n (1+Y_n) \to Z$ a.s. for some r.v. Z. Then we can conclude that $X_n \to WZ$ a.s. Note that Z is finite by the result of the previous exercise and W is finite a.s. since it is nonnegative and integrable. Hence WZ is finite a.s.

4.3.1 Give an example of a martingale X_n with $\sup_n |X_n| < \infty$ and $P(X_n = a \text{ i.o.}) = 1$ for a = -1, 0, 1. This example shows that it is not enough to have $\sup |X_{n+1} - X_n| < \infty$ in Theorem 4.3.1.

Proof. Let $\{U_n\}_n$ be i.i.d random sequence with $U_1 \sim Unif(0,1)$ and $\mathcal{F}_n := \sigma(U_1, \dots, U_n)$ Let $X_0 = 0$ and define X_n for each $n \in \mathbb{N}$ as below:

$$X_{n+1} = \begin{cases} \begin{cases} 1 & \text{if } U_{n+1} \ge \frac{1}{2} \\ -1 & \text{if } U_{n+1} < \frac{1}{2} \end{cases} & \text{if } X_n = 0 \\ \begin{cases} 0 & \text{if } U_{n+1} \ge \frac{1}{n^2} \\ n^2 X_n & \text{if } U_{n+1} < \frac{1}{n^2} \end{cases} & \text{if } X_n \ne 0 \end{cases}$$

Note that $P(U_n < \frac{1}{n^2}) = \frac{1}{n^2} \quad \forall \, n \in \mathbb{N} \text{ and } \sum_n P(U_n < \frac{1}{n^2}) = \sum_n \frac{1}{n^2} < \infty$. By Borel Cantelli lemma, this implies that $P(U_{n+1} < \frac{1}{n^2} \ i.o.) = 0$ In other words,

$$P(U_{n+1} \ge \frac{1}{n^2} \text{ all but finitely many n}) = 1$$

Let $B=(U_{n+1}\geq \frac{1}{n^2}$ all but finitely many n). Then P(B)=1 and for each $\omega\in B$, there is large enough N s.t. sequence $X_N,X_{N+1},X_{N+2},\cdots$ is given by $0,\pm 1,0,\pm 1,\cdots$.

Hence $\omega \in (X_n=1 \ i.o.) \cap (X_n=-1 \ i.o.) \cap (X_n=0 \ i.o.)$ whenever $\omega \in B$. Since P(B)=1, we have $P(X_n=a \ i.o.)=1$ for a=-1,1,0

Also, since $|X_n| \leq (n!)^2 \quad \forall n \in \mathbb{N}$ and $|X_n| \leq 1$ for large enough n a.s. we have $\sup_n |X_n| < \infty$. By this X_n is integrable. Also $X_n \in \mathcal{F}_n$. To show X_n is a martingale, it suffices to show that $E[X_{n+1}|\mathcal{F}_n] = X_n$

$$E[X_{n+1}|\mathcal{F}_n] = E[X_{n+1}I(X_n = 0) + X_{n+1}I(X_n \neq 0)|\mathcal{F}_n]$$

$$= E[X_{n+1}I(X_n = 0)|\mathcal{F}_n] + E[X_{n+1}I(X_n \neq 0)|\mathcal{F}_n]$$

$$= I(X_n = 0)E[X_{n+1}|\mathcal{F}_n] + I(X_n \neq 0)E[X_{n+1}|\mathcal{F}_n]$$

$$= I(X_n = 0)\{\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (-1)\} + I(X_n \neq 0)\{(1 - \frac{1}{n^2}) \cdot 0 + \frac{1}{n^2} \cdot n^2 X_n\}$$

$$= 0 \cdot I(X_n = 0) + X_n \cdot I(X_n \neq 0) = X_n$$

Therefore X_n is a martingale w.r.t \mathcal{F}_n

4.3.3 Let X_n and Y_n be positive integrable and adapted to \mathcal{F}_n . Suppose $E(X_{n+1}|\mathcal{F}_n) \le X_n + Y_n$, with $\sum_{m=1}^{k} Y_m < \infty$ a.s. Prove that X_n converges a.s. to a finite limit. Hint: Let $N = \inf_k \sum_{m=1}^k Y_m > M$, and stop your supermartingale at time N.

Proof. We want to define a supermartingale. Define W_n as below:

$$W_n := X_n - \sum_{m=1}^{n-1} Y_m \qquad \forall \, n \in \mathbb{N}$$

We shall show that W_n is a supermartingale w.r.t \mathcal{F}_n . First, since $X_n \in \mathcal{F}_n$ and $\sum_{m=1}^{n-1} Y_m \in \mathcal{F}_{n-1} \subset \mathcal{F}_n$, we have $W_n \in \mathcal{F}_n \quad \forall n \in \mathbb{N}$ Second, $E|W_n| \le E|X_n| + \sum_{m=1}^{n-1} E|Y_m|$ and X_n , Y_n are all integrable so that $E|W_n| < \infty$ For showing W_n is a supermartingale, it suffices to show that $E[W_{n+1}|\mathcal{F}_n] \le W_n$

$$E[W_{n+1}|\mathcal{F}_n] = E\left[X_{n+1} - \sum_{m=1}^n Y_m \middle| \mathcal{F}_n\right] = E[X_{n+1}|\mathcal{F}_n] - \sum_{m=1}^n Y_m$$

$$\leq X_n + Y_n - \sum_{m=1}^n Y_m \quad \therefore \quad E[X_{n+1}|\mathcal{F}_n] \leq X_n + Y_n \quad \text{by assumption}$$

$$= X_n - \sum_{m=1}^{n-1} Y_m = W_n$$

Therefore, W_n is a supermartingale.

Take $M \in \mathbb{N}$ and define $N = \inf\{n \in \mathbb{N} : \sum_{m=1}^{n} Y_m > M\}$. Then N is a stopping time.

$$\therefore (N=n) = (\sum_{m=1}^{n-1} Y_m \le M) \cap (\sum_{m=1}^n Y_m > M) \in \mathcal{F}_n \quad \forall n \in \mathbb{N}$$

Since W_n is a supermartingale and N is a stopping time, $W_{N \wedge n}$ is a supermartingale.

$$W_{N \wedge n} = X_{N \wedge n} - \sum_{m=1}^{(N \wedge n)-1} Y_m$$

$$\geq X_{N \wedge n} - M \quad \therefore \sum_{m=1}^{(N \wedge n)-1} Y_m \leq \sum_{m=1}^{N-1} Y_m \leq M$$

$$W_{N \wedge n} + M \geq X_{N \wedge n} > 0$$

We have used the assumption that X_n and Y_n are positive.

Thus $W_{N\wedge n}+M$ is nonnegative supermartingale. By supermartingale convergence thm, $W_{N\wedge n}+M$ converges a.s. to an integrable random variable. It implies that $W_{N\wedge n}\to W$ a.s. for some integrable r.v. W. Note that if $N=\infty$ then $W_{N\wedge n}=W_n$ $\forall\,n\in\mathbb{N}$ so that $W_n\to W$ a.s. on $(N=\infty)$ We have taken arbitrary $M\in\mathbb{N}$ for defining a stopping time N. Hence we can write it as N_M to emphasize that it depends on the value of M. Then for each $M\in\mathbb{N}$, we have

$$(N_M = \infty) = (\sum_{m=1}^n Y_m \le M \quad \forall n \in \mathbb{N}) = \left(\sum_n Y_n \le M\right)$$

Therefore $P\Big(\sum_n Y_n \leq M\Big) = P(N_M = \infty) \quad \forall \ M \in \mathbb{N}$. Observe that $\Big(\sum_n Y_n \leq M\Big)$ is increasing sequence of events w.r.t M. i.e. $\Big(\sum_n Y_n \leq M\Big) \subset \Big(\sum_n Y_n \leq M+1\Big) \quad \forall \ M \in \mathbb{N}$. Thus $(N_M = \infty)$ is also increasing sequence of events w.r.t M By assumption $\sum_n Y_n < \infty$ a.s.,

$$1 = P\left(\sum_{n} Y_n < \infty\right) = P\left(\bigcup_{M \in \mathbb{N}} \left(\sum_{n} Y_n \le M\right)\right) = \lim_{M \to \infty} P\left(\sum_{n} Y_n \le M\right)$$

due to continuity from below of probability measure. Combining the results above, we have

$$1 = \lim_{M \to \infty} P(N_M = \infty) = P\left(\bigcup_{M \in \mathbb{N}} \left(N_M = \infty\right)\right)$$

Let $C = \left(\bigcup_{M \in \mathbb{N}} \left(N_M = \infty\right)\right)$. Since $W_n \to W$ a.s. on $(N_M = \infty)$ for every $M \in \mathbb{N}$, we have $W_n \to W$ a.s. on C with P(C) = 1. Therefore $W_n \to W$ a.s. with W being integrable. Since $X_n = W_n + \sum_{m=1}^{n-1} Y_m$, $X_n \to X$ a.s. where $X = W + \sum_n Y_n$ with W and $\sum_n Y_n$ being finite a.s. Therefore X_n converges a.s. to a finite limit X

4.3.4 Let $p_m \in [0,1)$. Use the Borel-Cantelli lemmas to show that

$$\prod_{m=1}^{\infty} (1 - p_m) = 0 \quad \text{if and only if} \quad \sum_{m=1}^{\infty} p_m = \infty.$$

Proof. Define a random sequence $\{X_n\}_n$ such that $X_n \stackrel{ind}{\sim} \mathrm{Bern}(p_n) \quad \forall n \in \mathbb{N}$. Using this random sequence, we can write that

$$\prod_{n} (1 - p_n) = P(X_n = 0 \quad \forall n \in \mathbb{N})$$

(\Leftarrow) Suppose $\sum_n p_n = \infty$. Then $\sum_n P(X_n = 1) = \infty$. Since X_n 's are independent, we can apply Borel Cantelli lemma so that $P(X_n = 1 \ i.o.) = 1$. Thus $P(X_n = 0 \ \text{all but finitely many } n) = 0$. Since $(X_n = 0 \ \forall n \in \mathbb{N}) \subset (X_n = 0 \ \text{all but finitely many } n)$, we have $P(X_n = 0 \ \forall n \in \mathbb{N}) = 0$. Therefore $\prod_n (1 - p_n) = 0$

(⇒) Suppose $\sum_n p_n < \infty$. Since the tail part of the convergent series tends to zero, we have large N s.t. $\sum_{n>N} p_n < 1$ so that $1 - \sum_{n>N} p_n > 0$

$$P(X_n = 0 \quad \forall n > N) = P\left(\bigcap_{n > N} (X_n = 0)\right) = 1 - P\left(\bigcup_{n > N} (X_n = 1)\right)$$

$$\ge 1 - \sum_{n > N} P(X_n = 1) = 1 - \sum_{n > N} p_n > 0$$

$$P(X_n = 0 \quad \forall n \in \mathbb{N}) = P(X_1 = 0)P(X_2 = 0) \cdots P(X_N = 0)P(X_n = 0 \quad \forall n > N)$$

 $= (1-p_1)(1-p_2)\cdots(1-p_N)P(X_n=0 \quad \forall \ n>N)>0 \quad \because p_n<1 \ \forall \ n \ \text{is assumed}$ Thus $\prod_n (1-p_n)>0$. As a result, $\sum_n p_n<\infty$ implies $\prod_n (1-p_n)>0$. By contrapositive, we have

Thus $\prod_n (1-p_n) > 0$. As a result, $\sum_n p_n < \infty$ implies $\prod_n (1-p_n) > 0$. By contrapositive, we have the right direction proved.

Remark. Notice that for the left direction, we have not taken advantage of assumption $p_n < 1 \quad \forall n$

4.3.5 Show $\sum_{n=2}^{\infty} P(A_n | \cap_{m=1}^{n-1} A_m^c) = \infty$ implies $P(\cap_{m=1}^{\infty} A_m^c) = 0$.

Proof. Define $p_1 = P(A_1)$ and $p_n = P(A_n | \bigcap_{m=1}^{n-1} A_m^C) \quad \forall n \in \mathbb{N}$. By assumption, we have $\sum_n p_n = \infty$. From the previous exercise, we get $\prod_n (1 - p_n) = 0 \quad \cdots (*)$ $1 - p_1 = P(A_1^C)$. What about $1 - p_n$ for each n > 1?

$$1 - p_n = 1 - P\left(A_n \middle| \bigcap_{m=1}^{n-1} A_m^C\right) = 1 - E\left[I_{A_n}\middle| \bigcap_{m=1}^{n-1} A_m^C\right] = P\left(A_n^c\middle| \bigcap_{m=1}^{n-1} A_m^C\right)$$

$$= E\left[1 - I_{A_n}\middle| \bigcap_{m=1}^{n-1} A_m^C\right] = E\left[I_{A_n^C}\middle| \bigcap_{m=1}^{n-1} A_m^C\right] = P\left(A_n^c\middle| \bigcap_{m=1}^{n-1} A_m^C\right) = \frac{P\left(\bigcap_{m=1}^n A_m^C\right)}{P\left(\bigcap_{m=1}^{n-1} A_m^C\right)}$$

Therefore, for each $n \in \mathbb{N}$, we can calculate $\sum_{m=1}^{n} (1-p_m)$ as below:

$$\prod_{m=1}^{n} (1 - p_m) = P(A_1^C) \frac{P(A_1^C \cap A_2^C)}{P(A_1^C)} \frac{P(A_1^C \cap A_2^C \cap A_3^C)}{P(A_1^C \cap A_2^C)} \cdots \frac{P(\bigcap_{m=1}^{n} A_m^C)}{P(\bigcap_{m=1}^{n-1} A_m^C)} = P(\bigcap_{m=1}^{n} A_m^C)$$

Therefore, using continuity from above of probability measure, we have

$$\prod_{n} (1 - p_n) = \lim_{n \to \infty} \prod_{m=1}^{n} (1 - p_m) = \lim_{n \to \infty} P\left(\bigcap_{m=1}^{n} A_m^C\right) = P\left(\bigcap_{n} A_n^C\right)$$

By (*) above, we have $P(\bigcap_n A_n^C) = 0$

Show that if $j \le k$, then $E(X_j; N = j) \le E(X_k; N = j)$ and sum over j to get a second proof of $EX_N \leq EX_k$.

Proof. Assume X_n is a submartingale and N is a stopping time w.r.t a filtration \mathcal{F}_n . Suppose $N \leq k$ a.s. for some $k \in \mathbb{N}$. Then

$$X_N = \sum_{j=0}^{k} X_j I(N=j) \ a.s.$$

We shall claim that

$$E[X_iI(N=j)] \le E[X_kI(N=j)] \quad \forall \ j \le k$$

Choose $j \leq k$. Since X_n is a submartingale, $X_j \leq E[X_k|\mathcal{F}_j]$ holds true. For $A_j \in \mathcal{F}_j$,

$$E[X_{j}I_{A_{j}}] = \int_{A_{j}} X_{j} dP \le \int_{A_{j}} E[X_{k}|\mathcal{F}_{j}] dP \quad \therefore X_{j} \le E[X_{k}|\mathcal{F}_{j}]$$

$$= \int_{A_{j}} X_{k} dP \quad \therefore \text{ def. of conditional expectation}$$

$$= E[X_{k}I_{A_{j}}]$$

 $(N=j) \in \mathcal{F}_j$ since N is a stopping time. Therefore, our claim is proved. Using the claim, we can show that

$$E[X_N] = \sum_{j=0}^k E[X_j I(N=j)] \le \sum_{j=0}^k E[X_k I(N=j)] = E[X_k]$$

The last equality holds since $N \leq k$ a.s. implies that $\{(N=0), \cdots, (N=k)\}$ is a partition of Ω in almost sure sense. i.e. $\sum_{j=0}^k I(N=j) = 1$ a.s. Therefore, we have proved that $E[X_N] \leq E[X_k]$

4.4.2 Generalize the proof of Theorem 4.4.1 to show that if X_n is a submartingale and $M \le N$ are stopping times with $P(N \le k) = 1$, then $EX_M \le EX_N$.

Proof. Define $K_n = I(M < n \le N) \quad \forall n \in \mathbb{N}$. Then K_n is predictable since

$$(K_n = 1) = (N \ge n) \cap (M < n) = (N \le n - 1)^C \cap (M \le n - 1) \in \mathcal{F}_{n-1}$$

Then, we can define a process $(K \cdot X)_n$ as below:

$$(K \cdot X)_n = \sum_{j=1}^n K_j (X_j - X_{j-1}) = \sum_{j=1}^n I(M < j \le N) (X_j - X_{j-1})$$

$$= \sum_{j=1}^n I(M + 1 \le j \le N) (X_j - X_{j-1})$$

$$= \sum_{j=(M \land n)+1}^{N \land n} X_j - X_{j-1} = X_{N \land n} - X_{M \land n} \quad \forall n \in \mathbb{N}$$

Define $(K \cdot X)_0 = 0$. Then since X_n is a submartingale and K_n is a predictable sequence, $\{K \cdot X\}_{n \in \mathbb{N} \cup \{0\}}$ is a submartingale. It implies that $\{X_{N \wedge n} - X_{M \wedge n}\}_{n \in \mathbb{N} \cup \{0\}}$ is a submartingale. Note that if Y_n is a martingale then $E[Y_i] \leq E[Y_j]$ whenever $i \leq j$. Plugging in i = 0 and j = k on $X_{N \wedge n} - X_{M \wedge n}$, we have $E[X_0 - X_0] \leq E[X_N - X_M]$ since $M \leq N \leq k$ a.s. Therefore, $0 \leq E[X_N] - E[X_M]$ i.e. $E[X_N] \geq E[X_M]$

4.4.3 Suppose $M \leq N$ are stopping times. If $A \in \mathcal{F}_M$, then

$$L = \begin{cases} M & \text{on } A \\ N & \text{on } A^c \end{cases}$$
 is a stopping time.

Proof. $\mathcal{F}_M = \{A \in \mathcal{F} : A \cap (M = n) \in \mathcal{F}_n \ \forall n \in \mathbb{N}\}$. Take $A \in \mathcal{F}_M$ and define L as above. Choose arbitrary $n \in N$. We want to show that $(L = n) \in \mathcal{F}_n$. Note that

$$(L=n) = ((M=n) \cap A) \bigcup ((N=n) \cap A^C)$$

Since $A \in \mathcal{F}_M$, $(M = n) \cap A \in \mathcal{F}_n$ by definition of \mathcal{F}_M . Observe that since $M \leq N$, $(N = n) = (N = n) \cap (M \leq N)$. Using this equality, we get

$$(N = n) \cap A^{C} = (N = n) \cap (M \le n) \cap A^{C}$$

= $(N = n) \cap \left(\bigcup_{k=1}^{n} \{(M = k) \cap A^{C}\}\right)$

Since $A \in \mathcal{F}_M$ and \mathcal{F}_M is a σ -field, we have $A^C \in \mathcal{F}_M$ so that $(M = k) \cap A^C \in \mathcal{F}_k \ \forall \ k \in \mathbb{N}$. Therefore $\bigcup_{k=1}^n \{(M = k) \cap A^C\} \in \mathcal{F}_n$. Also, since N is a stopping time, $(N = n) \in \mathcal{F}_n$. Thus $(N = n) \cap A^C \in \mathcal{F}_n$ and combining with $(M = n) \cap A \in \mathcal{F}_n$, we have $(L = n) \in \mathcal{F}_n$.

4.4.4 Use the stopping times from the previous exercise to strengthen the conclusion of Exercise 4.4.2 to $X_M \leq E(X_N | \mathcal{F}_M)$.

Proof. Assume X_n is a submartingale and $M \leq N$ are stopping times with $N \leq k$ a.s. Note that $X_M \in \mathcal{F}_M$ by definition of \mathcal{F}_M and $E[X_N | \mathcal{F}_M] \in \mathcal{F}_M$ by definition of conditional expectation. Hence, if we can show

$$\int_{A} X_{M} dP \le \int_{A} E[X_{N} | \mathcal{F}_{M}] dP \quad \forall A \in \mathcal{F}_{M}$$

then $X_M \leq E[X_N | \mathcal{F}_M]$ is proved. Notice that for $A \in \mathcal{F}_M$, we have $\int_A E[X_N | \mathcal{F}_M] dP = \int_A X_N dP$. Thus, it suffices to show that

$$\int_{A} X_{M} dP \le \int_{A} X_{N} dP \quad \forall A \in \mathcal{F}_{M} \quad \cdots (*)$$

Take $A \in \mathcal{F}_M$. To use the result of the previous exercise, define L by

$$L = M \cdot I_A + N \cdot I_{AC}$$

By Exer. 4.4.3 , L is a stopping time. Notice that $L \leq N$ since $M \leq N$. Using Exer. 4.4.2 , we have $E[X_L] \leq E[X_N]$. By the definition of L, we have

$$\begin{split} X_{L} &= X_{M}I_{A} + X_{N}I_{A^{C}} \\ E[X_{L}] &= E[X_{M}I_{A}] + E[X_{N}I_{A^{C}}] \\ E[X_{N}] &= E[X_{N}I_{A}] + E[X_{N}I_{A^{C}}] \\ E[X_{M}I_{A}] + E[X_{N}I_{A^{C}}] &\leq E[X_{N}I_{A}] + E[X_{N}I_{A^{C}}] & :: E[X_{L}] \leq E[X_{N}] \\ E[X_{M}I_{A}] &\leq E[X_{N}I_{A}] \quad \text{i.e.} \quad \int_{A} X_{M} \, dP \leq \int_{A} X_{N} \, dP \end{split}$$

Hence, we have proved (*) holds true. We can conclude that $X_M \leq E[X_N | \mathcal{F}_M]$

4.4.5 Prove the following variant of the conditional variance formula. If $\mathcal{F} \subset \mathcal{G}$, then

$$E(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^2 = E(E[Y|\mathcal{G}])^2 - E(E[Y|\mathcal{F}])^2$$

Proof. We shall take advantage of the fact that for any integrable r.v. X and a σ -field \mathcal{F} , we have $E[E[X|\mathcal{F}]] = E[X]$. Also, we will denote $E^2[X] := \{E(X)\}^2$

$$E[(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^{2}] = E[E[(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^{2}|\mathcal{F}]] = E[Z]$$
where $Z := E[(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^{2}|\mathcal{F}] = E[W|\mathcal{F}]$
with $W := (E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^{2}$

$$W = E^{2}[Y|\mathcal{G}] + E^{2}[Y|\mathcal{F}] - 2E[Y|\mathcal{G}]E[Y|\mathcal{F}]$$
* We shall take $E[\cdot|\mathcal{F}]$

$$E[E^{2}[Y|\mathcal{F}]|\mathcal{F}] = E^{2}[Y|\mathcal{F}] \quad \therefore \quad E^{2}[Y|\mathcal{F}] \in \mathcal{F}$$

$$E[E[Y|\mathcal{G}]E[Y|\mathcal{F}]|\mathcal{F}] = E[Y|\mathcal{F}]E[E[Y|\mathcal{G}]|\mathcal{F}] = E[Y|\mathcal{F}]E[Y|\mathcal{F}] \quad \therefore \quad \mathcal{F} \subset \mathcal{G}$$

$$\Rightarrow Z = E[W|\mathcal{F}] = E[E^{2}[Y|\mathcal{G}]|\mathcal{F}] + E^{2}[Y|\mathcal{F}] - 2E^{2}[Y|\mathcal{F}] = E[E^{2}[Y|\mathcal{G}]|\mathcal{F}] - E^{2}[Y|\mathcal{F}]$$

$$E[Z] = E[E[E^{2}[Y|\mathcal{G}]|\mathcal{F}]] - E[E^{2}[Y|\mathcal{F}]] = E[E^{2}[Y|\mathcal{F}]]$$

Since $E[(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^2] = E[Z]$, we have

$$E[(E[Y|\mathcal{G}] - E[Y|\mathcal{F}])^{2}] = E[E^{2}[Y|\mathcal{G}]] - E[E^{2}[Y|\mathcal{F}]]$$

Suppose in addition to the conditions introduced earlier that $|\xi_m| \leq K$ and let $s_n^2 = \sum_{m \leq n} \sigma_m^2$. Exercise 4.2.2 implies that $S_n^2 - s_n^2$ is a martingale. Use this and Theorem 4.4.1 to conclude

$$P\left(\max_{1\leq m\leq n}|S_m|\leq x\right)\leq (x+K)^2/\operatorname{var}(S_n)$$

Proof. Let $\{\xi_n\}_{n\in\mathbb{N}}$ be independent random seq. with $E[\xi_i]=0$ and $E[\xi_i^2]=\sigma_i^2<\infty \quad \forall \ i\in\mathbb{N}$ S_n,\mathcal{F}_n and s_n^2 are defined by $S_n=\xi_1+\cdots+\xi_n$, $\mathcal{F}_n=\sigma(\xi_1,\cdots,\xi_n)$ and $s_n^2=Var(S_n)=\sum_{i=1}^n\sigma_i^2$ Especially, $S_0=0,s_0^2=0$ and $\mathcal{F}_0=\{\phi,\Omega\}$. In addition, assume $|\xi_n|\leq K \quad \forall \ n\in\mathbb{N}$ for some K>0 Note that S_n is integrable and $S_n\in\mathcal{F}_n$. Since s_n^2 is finite constant for each $n\in\mathbb{N}$, we have $S_n^2-s_n^2$ is integrable and $S_n^2-s_n^2\in\mathcal{F}_n$. To show $S_n^2-s_n^2$ is a martingale, it suffices to show that $E[S_{n+1}^2-s_{n+1}^2|\mathcal{F}_n]=S_n^2-s_n^2$.

$$E[S_{n+1}^2 - s_{n+1}^2 | \mathcal{F}_n] = E[(S_n + \xi_{n+1})^2 - s_n^2 - \sigma_{n+1}^2 | \mathcal{F}_n] = E[S_n^2 - s_n^2 + \xi_{n+1}^2 - \sigma_{n+1}^2 + 2S_n \xi_{n+1} | \mathcal{F}_n]$$

$$= S_n^2 - s_n^2 + E[\xi_{n+1}^2 - \sigma_{n+1}^2] + 2S_n E[\xi_{n+1}] = S_n^2 - s_n^2$$

Take x>0. Define $A:=\left(\max_{1\leq m\leq n}|S_m|>x\right)$. Note that we want to find the upper bound of $P(A^C)$ in this problem. Let $N=\inf\{m\in\mathbb{N}:|S_m|>x\}$. N is a stopping time since

$$(N=n) = (|S_1| \le x) \cap \cdots \cap (|S_{n-1}| \le x) \cap (|S_n| > x) \in \mathcal{F}_n \quad \forall n \in \mathbb{N}$$

Due to the fact that $S_n^2 - s_n^2$ is a martingale and N is a stopping time, we have $S_{N\wedge n}^2 - s_{N\wedge n}^2$ is also a martingale. Since $N\wedge n\leq n$, we can apply bounded optional stopping theorem.

$$E[S_0^2-s_0^2]=E[S_{N\wedge n}^2-s_{N\wedge n}^2]=E[S_n^2-s_n^2]$$

We will use the left equality, which implies that $E[S_{N \wedge n}^2 - s_{N \wedge n}^2] = 0 \quad \cdots (*)$

- i. On $A = (\max_{1 \le m \le n} |S_m| > x)$ $|S_m| > x$ for some $m \in \{1, \dots, n\}$ so that $N \le n \Rightarrow N \land n = N$ $|S_{N \land n}| = |S_N| = |S_{N-1} + \xi_N| \le |S_{N-1}| + |\xi_N| \le x + K$
- ii. On $A^c = \left(\max_{1 \le m \le n} |S_m| \le x\right)$ $|S_m| > x$ is not attined for all $m \in \{1, \dots, n\}$ so that $N > n \Rightarrow N \land n = n$ $|S_{N \land n}| = |S_n| \le x$

Using (*), we have the following results.

$$0 = E[S_{N \wedge n}^{2} - s_{N \wedge n}^{2}] = E[S_{N \wedge n}^{2} I_{A} + S_{N \wedge n}^{2} I_{A^{C}}] - E[s_{N \wedge n}^{2} I_{A} + s_{N \wedge n}^{2} I_{A^{C}}]$$

$$E[S_{N \wedge n}^{2} I_{A}] \leq E[(x + K)^{2} I_{A}] = (x + K)^{2} P(A)$$

$$E[S_{N \wedge n}^{2} I_{A^{C}}] \leq E[x^{2} I_{A^{C}}] = x^{2} P(A^{C})$$

$$E[s_{N \wedge n}^{2} I_{A}] = E[s_{N}^{2} I_{A}] \geq 0 \quad \sqrt{s_{N}^{2}} \text{ is random } ; \text{ not constant}$$

$$E[s_{N \wedge n}^{2} I_{A^{C}}] = E[s_{n}^{2} I_{A^{C}}] = s_{n}^{2} P(A^{C}) = Var(S_{n}) P(A^{C})$$

$$\Rightarrow 0 = E[S_{N \wedge n}^{2} - s_{N \wedge n}^{2}] \leq (x + K)^{2} P(A) + x^{2} P(A^{C}) - Var(S_{n}) P(A^{C})$$

$$\Rightarrow 0 \leq (x + K)^{2} - \{Var(S_{n}) + (x + K)^{2} - x^{2}\} P(A^{C})$$

$$\Rightarrow (x + K)^{2} \geq \{Var(S_{n}) + (x + K)^{2} - x^{2}\} P(A^{C}) \geq Var(S_{n}) P(A^{C})$$

$$\therefore P(A^{C}) \leq \frac{(x + K)^{2}}{Var(S_{n})}$$

Since $A^C = (\max_{1 \le m \le n} |S_m| \le x)$, we have proved our desired result.