Programación Numérica para Geofísica PNG

Andrés Sepúlveda

Departamento de Geofísica Universidad de Concepción

25/05/2020

1/29

Anuncios

- Dudas, consultas, quejas, alabanzas, ...
- Hoy: Gráficos Básicos

- En Octave/Matlab los gráficos son presentados en un objeto que se llama figure, el cual puede tener varios elementos.
- Por defecto se grafica en figure(1).
- Si queremos tener dos ventanas de gráficos en paralelo, podemos hacer:

```
figure(1)
    plot(x,y,'-*')
figure(2)
    plot(x,z,'-o')
```

 También podemos poner varios gráficos en una misma ventana, usando la función subplot

```
subplot(2,1,1);
    plot(x,y,'-*')
subplot(2,1,2);
    plot(x,z,'-o')
```

 En subplot(A,B,n) se crea una ventana con A filas, B columnas, y se grafica la n-ésima subventana de un total de A*B

Números Aleatorios

Para practicar, graficaremos matrices o vectores de números aleatorios. Hay varias formas de generar números aleatorios, los más usados son:

• Matriz Aleatoria / Vector Aleatorio (Normal o Gaussiano)

```
r = randn(5);
rv = randn(5,1);
```

Matriz Aleatoria / Vector Aleatorio (Uniforme)

```
ru = rand(10,1)
```

2020-1

Comparamos ambos

subplot

```
figure(3)
subplot(2,2,1); r1 = rand(10,1);
hist(r1); title('U: 10 elementos')
subplot(2,2,2); r2 = rand(10000,1);
hist(r2); title('U: 10000 elementos')
subplot(2,2,3); r3 = randn(10,1);
hist(r3); title('G: 10 elementos')
subplot(2,2,4); r4 = randn(10000,1);
hist(r4); title('G: 10000 elementos')
```

• Ojo con hist()
 figure(3)
 subplot(2,1,1); r1 = randn(10000,1);
 hist(r1); title(' 10 divisiones')

subplot(2,1,2); r2 = randn(10000,1);
 hist(r2,100); title(' 100 divisiones')

Polyfit - Recta y más

Es MUY común querer ajustar una recta entre dos variables.

• La solución ya programada:

Los valores ajustados

$$y2 = polyval(p,x)$$

• El error del ajuste

$$error = y2 - y$$

¿Qué falta?

2020-1

8 / 29

Interpolación

Hay múltiples formas de interpolar datos:

```
x = 0:2*pi;
v = sin(x);
xi = 0:0.1:2*pi;
v_n = interp1(x, y, xi, "nearest");
y_l = interp1(x, y, xi, "linear");
y_p = interp1(x, y, xi, "pchip");
y_c = interp1(x, y, xi, "cubic");
y_s = interp1(x, y, xi, "spline");
plot(x, y, "*", xi, y_n, "-", xi, y_l, "-", ...
    xi, y_p, "-", xi, y_c, "-",xi, y_s, "-");
xlabel("x ->"):
vlabel("y ->");
legend("Dat", "Cercanos", "Lineal", "Pchip", "Cubica", "Spline");
print("-dpng", "Distintas_interpolaciones.png");
```


¿Se ve bien?

Para PPT

```
plot(x, y, "*", 'LineWidth',6, xi, y_n, "-", ...
'LineWidth',6, xi, y_l, "-", 'LineWidth',6, ...
xi, y_p, "-", 'LineWidth',6, xi, y_c, "-",
'LineWidth',6,xi, y_s, "-", 'LineWidth',6);
xlabel("x ->", 'FontSize',14);
ylabel("y ->", 'FontSize',14);
legend("Datos", "Cercanos", "Lineal", "Pchip", "Cubica", "Spline");
set (gca, "FontSize", 14)
```

Barra de errores

errorbar

En lo posible, hay que representar la incerteza asociada a las mediciones y/o resultados.

```
X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
errorbar(X,Y,E)
```

errorbar

errorbar - PPT

Manejo de ejes y símbolos

Es posible incluir letras griegas o símbolos

```
x = -pi:.1:pi;
y = \sin(x);
p = plot(x,y);
set(gca,'XTick',-pi:pi/2:pi);
% Matlab
% set(gca,'XTickLabel', '-pi','-pi/2','0','pi/2','pi');
% Octave
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'});
xlabel('-\pi \leq \Theta \leq \pi');
vlabel('sin(\Theta)');
                          % Ojo con simbolos griegos
title('Plot of sin(\Theta)');
text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...
'HorizontalAlignment', 'left');
set(p,'Color','red','LineWidth',2); % cambio color
                                    % y ancho de línea
```

Ejes y Símbolos

Ejes y Símbolos

Dos ejes Y

```
x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');
set(get(AX(1),'Ylabel'),'String','Decaimiento lento');
set(get(AX(2),'Ylabel'),'String','Decaimiento rapido');
xlabel('Time (\musec)');
title('Tasas de decaimiento multiple');
set(H1,'LineStyle','-');
set(H2,'LineStyle',':');
```


Polar

```
t = 0:.01:2*pi;
polar(t,sin(2*t).*cos(2*t),'-r')
```

Gráfico Polar

Chascón

Muy útil para representar series de tiempo de vectores.

```
theta = (-90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);
```

feather

Vectores 2D

```
[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^ 2 - Y.^ 2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
colormap;
```

Gráfico quiver

2020-1

26 / 29

Función box

Agrega o elimina el marco

```
[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^ 2 - Y.^ 2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
colormap;
box off
```

box

Gráficos Más comunes

box	errorbar	loglog
plot	plot3	plotyy
polar	semilogx	semilogy
compass	feather	quiver
quiver3	hist	

Recuerde que es obligatorio poner título al gráfico, describir cada eje (con sus unidades, si corresponde), y las variables graficadas (usando **legend**).

Use símbolos para identificar cada punto que es graficado, e.g. plot(x,y,'-*')