

USAGE

FIG. 2

FIG. 3

FIG. 4

SOFTWARE KERNEL

FIG. 5

MAPPING HARDWARE MODELS TO RECONFIGURABLE BOARDS

FIG. 6

	F11	F12	F13	F14	F21	F22	F23	F24	F31	F32	F33	F34	F41	F42	F43	F44
F11	1	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0
F12	1	1	1	1	0	1	0	0	0	1	0	0	0	1	0	0
F13	1	1	1	1	0	0	1	0	0	0	1	0	0	0	1	0
F14	1	1	1	1	0	0	0	1	0	0	0	1	0	0	0	1
F21	0	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0
F22	1	1	0	0	1	1	1	1	0	1	0	0	0	1	0	0
F23	0	0	1	0	1	1	1	1	0	0	1	0	0	0	1	0
F24	0	0	0	1	1	1	1	1	0	0	0	1	0	0	0	1
F31	0	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0
F32	1	1	0	0	0	1	0	0	1	1	1	1	0	1	0	0
F33	0	0	1	0	0	0	1	0	1	1	1	1	0	0	1	0
F34	0	0	0	1	0	0	0	1	1	1	1	1	0	0	0	1
F41	0	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1
F42	1	1	0	0	0	1	0	0	0	1	0	0	1	1	1	1
F43	0	0	1	0	0	0	1	0	0	0	1	0	1	1	1	1
F44	0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	1

FIG. 7

FPGA INTERCONNECTION

1/6 of total I/O pins of FPGA for
interconnection

FIG. 8

(A)

(B)

(C)

FIG. 9

FIG. 10

FIG. 11

ADDRESS POINTER INITIALIZATION

FIG. 12

FIG. 13

FIG. 14

FIG. 15

GATED DATA/CLOCK ANALYSIS

FIG. 16

FIG. 17

(A)

(B)

FIG. 18

FIG. 19

DURING EVALUATION

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

HARDWARE START-UP

FIG. 25

```

module register (clock, reset, d, q);
input clock, d, reset;
output q;
reg q;

always@(posedge clock or negedge reset)
  if(!reset)
    q = 0;
  else
    q = d;

endmodule

module example;
  wire d1, d2, d3;
  wire q1, q2, q3;

  reg signin;
  wire signout;
  reg clk, reset;

  register reg1 (clk, reset, d1, q1);
  register reg2 (clk, reset, d2, q2);
  register reg3 (clk, reset, d3, q3);

  assign d1 = signin ^ q3;
  assign d2 = q1 ^ q3;
  assign d3 = q2 ^ q3;
  assign signout = q3;

  // a clock generator
  always
  begin
    clk = 0;
    #5;
    clk = 1;
    #5;
  end

  // a signal generator
  always
  begin
    #10;
    signin = $random;
  end

  // initialization
  initial
  begin
    reset = 0;
    signin = 0;
    #1;
    reset = 1;
    #5;
    $monitor($time, " %b, %b", signin, signout);
    #1000 $finish;
  end
end module

```

FIG. 26

CIRCUIT DIAGRAM

signin signout

reset

FIG. 27

```

module register (clock, reset, d, q);
  input clock, d, reset;
  output q;
  reg q;

  always@(posedge clock or negedge reset)
    if(~reset)
      q = 0
    else
      q = d;

endmodule

module example;
  wire d1, d2, d3;
  wire q1, q2, q3;

```

} Register Definition
900

} wire interconnection info
907

```

  reg signin;           ← Test-bench input -- 908
  wire sigout;          ← Test-bench output -- 909
  reg clk, reset;

```

} Register component
901

```

S1 register reg 1 (clk, reset, d1, q1);
S2 register reg 2 (clk, reset, d2, q2);
S3 register reg 3 (clk, reset, d3, q3);

```

} Combinational component
902

```

S4 assign d1 = signin ^ q3;
S5 assign d2 = q1 ^ 3;
S6 assign d3 = q2 ^ q3;
S7 assign signout = q3;

```

} Clock component
903

S8 { // a clock generator
 always
 begin
 clk = 0;
 #5;
 clk = 1;
 #5;
 end
}

} Test-bench component (Driver)
904

S9 { // a signal generator
 always
 begin
 #10;
 signin = \$random;
 end
}

} Test-bench component (initialization)
905

S10 { // initialization
 initial
 begin
 reset = 0;
 signin = 0;
 #1;
 reset = 1;
 #5;
}

} Test-bench component (monitor)
906

S11 {
 \$monitor(\$time, "%b, %b", signin, signout);
 #1000 \$finish;
}

S12 {
 end
 end module
}

FIG. 28

SIGNAL NETWORK ANALYSIS

FIG. 29

SOFTWARE/HARDWARE PARTITION RESULT

FIG. 30

HARDWARE MODEL

FIG. 31

PARTITION RESULT #1

(IGNORE I/O AND CLOCK EDGE REGISTER) —

FIG. 32

PARTITION RESULT #2

923
921
922

(IGNORE I/O AND CLOCK EDGE REGISTER).

FIG. 33

LOGIC PATCHING

FIG. 34

(A)

(B)

FIG. 35

(C)

(D)

FIG. 35

I/O PIN OVERVIEW OF FPGA LOGIC DEVICE

FPGA : 10K130V, 10K250V with 599-pin PGA package

425 Interconnect I/O pins

45 Dedicated I/O pins:

GCLK, FD_BUS[31..0], F_RD, F_WR,
DATA_XSFR, SHIFTIN, SHIFTOUT,
SPACE[2..0], EVAL, EV_REQ_N,
DEV_OE, DEV_CLR_N

FIG. 36

FPGA INTERCONNECT BUSES

FIG. 37

BOARD CONNECTION - SIDE VIEW

DUAL-BOARD
CONFIGURATION

FIG. 38(A)

SIX BOARD
CONFIGURATION

FIG. 38(B)

SIX-BOARD CONFIGURATION
DIRECT-NEIGHBOR AND ONE-HOP FPGA ARRAY – X TORUS, Y MESH

FIG. 39

FPGA ARRAY CONNECTION BETWEEN BOARDS

FIG. 40(A)

FIG. 40(B)

FIG. 41(A)

FIG. 41(B)

FIG. 41(C)

FIG. 41(D)

FIG. 41(E)

FIG. 41(F)

FIG. 42

- 1840 2x30 Header, SMD, component side
- 1841 2x30 Receptacle, SMD, solder side
- 1842 2x45, 2x30 Header, thru hole, component side
- 1843 2x45, 2x30 Receptacle, thru hole, solder side
- 1844 R-pack, SMD, component side
- 1845 R-pack, SMD, solder side

FIG. 43

TWO-BOARD CONFIGURATION
DIRECT-NEIGHBOR AND ONE-HOP FPGA ARRAY – X TORUS, Y MESH

FIG. 44

FIG. 45

FIG. 46

FIG. 47

SIMULATION SERVER ARCHITECTURE

CONFIDENTIAL - SOURCE CODE

FIG. 48

FIG. 49

JOB SWAPPER

FIG. 50

FIG. 51

PRIORITY I { JOB A
 JOB B

PRIORITY II { JOB C
 JOB D

TIME-SHARED HARDWARE USAGE:

FIG. 52

FIG. 53

COMMUNICATION HANDSHAKE PROTOCOL

FIG. 54

FIG. 55

FIG. 56

FIG. 57

MEMFSM - Memory Finite State Machine in CTRL_FPGA unit

FIG. 58

EVALFSM - EVAL

Finite State Machine in each FPGA logic device

FIG. 59

MEMORY READ DATA DOUBLE BUFFER

FIG. 60

SIMULATION WRITE/READ CYCLE

FIG. 61

SIMULATION DATA TRANSFER TIMING

FIG. 62

SIMULATION DATA TRANSFER TIMING

FIG. 63

Typical User Design of PCI Add-on Cards

FIG. 64

Typical Hardware/Software Co-Verification

FIG. 65

Typical Co-Verification by Using Emulator

: running time at emulation speed

The rest of the target system is running at full speed.

FIG. 66

SIMULATION

FIG. 67

CO-VERIFICATION WITHOUT EXTERNAL I/O

FIG. 68

CO-VERIFICATION WITH EXTERNAL I/O

FIG. 69

CONTROL OF DATA-IN CYCLE

FIG. 70

CONTROL OF DATA-OUT CYCLE

CONTROLLER FOR DATA-OUT CYCLE

FIG. 71

CONTROL OF DATA-IN CYCLE

FIG. 72

CONTROL OF DATA-OUT CYCLE

FIG. 73

FIG. 74

SHIFT REGISTER

FIG. 75(A)

HOLD TIME ASSUMPTION FOR SHIFT REGISTER

FIG. 75(B)

MULTIPLE FPGA MAPPING FOR SHIFT REGISTER

HOLD TIME VIOLATION BY LONG CLOCK SKEW

FIG. 76(B)

CLOCK GLITCH PROBLEM

FIG. 77(A)

FIG. 77(B)

TIMING ADJUSTMENT BY ADDING DELAY

(Prior Art)

FIG. 78

GLOBAL RETIMING

Legend

▷ Controlled by the global reference clock.

▨ FSM and I/O registers for retiming control.

(Prior Art)

FIG. 79

TIGF LATCH

Original Latch

FIG. 80(A)

TIGF Latch

FIG. 80(B)

TIGF DFF

Original DFF

FIG. 81(A)

TIGF DFF and Edge Detector

FIG. 81(B)

GLOBAL TRIGGER SIGNAL

FIG. 82

RCC System

FIG. 83

FIG. 84