Kleene theorem III

"Every RE can be sepresented by an FA".

How to Cambine.
- Union, Sum, +.

- Concatonation.

- Closure, #

Uman, Sum, +.

82, 82, The 8=81+82 13 also RE. FA, , PAL FA3=FA,+ PAZ

1- Stort by taking both PA's hitial State. En traverse on the respective Inputs. Algorishm:

2- During the process. Any State encountered find the resultant State will be found.

old State transition at a transition at b. Z, = (9,0,00). Z=(92, P1) Z = (91, P1) Z= (9,2, P2) Z= (9,3, P1) Z4=(9,2, PL). Z3+ = (9,3, PE). Z3 = (93, P2) $Z_3^{\dagger} \equiv (q_3, p_1)$ Zut = (9,2, P2) Z4 = (9,2,p1) Zy= (9,2, Pi)

old	Status	transition 'a'
21 = 90	•	Zg= 91
Z2至 Q:	1 .	Z3 = 9,3
Z3 = 9	<i>,</i> 3 .	Z3 Z9,3
Zy+ = (9	1,2,10)	Zst z(92,160,192).
		<u> </u>
Zs t = (92180182)	= (q2,p0,P1,P2).
	• •	Z = (q2, p0, pL)
		· · · · · · · · · · · · · · · · · · ·

fransition (b), $Z_2 \ge Q_1$. $Z_4 = (Q_2, P_0)$ $Z_3 \ge Q_3$. $Z_5 = (Q_2, P_0, P_1)$ $Z_5 = (Q_2, P_0, P_1)$. $Z_5 = (Q_2, P_0, P_1)$.

Praw FA.

