微分中值定理 1

1 微分中值定理

1.1 费马引理

f(x) 在 $U(x_0 \delta)$ 有定义,并在 x_0 可导,如果 $f(x_0)$ 是极大 (小) 值,则 f'(x) = 0

1.2 罗尔定理

如果 f(x) 满足:

- 1、在 [a b] 上连续
- 2、在 (a b) 内可导
- 3, f(a) = f(b)

则在 (a b) 内至少有一点 ξ ,使 $f'(\xi) = 0$

1.3 拉格朗日中值定理

如果 f(x) 满足:

- 1、在 [a b] 上连续
- 2、在 (a b) 内可导

则在 $(a\ b)$ 内至少有一点 ξ ,使 $\frac{f(b)-f(a)}{b-a}=f^{'}(\xi)$

若函数 f(x) 在区间 I 上连续,在 I 内可导且导数恒为 0,则 f(x) 在 I 上是一个常数

洛必达法则

2

当
$$x > 0$$
 时, $\frac{x}{1+x} < ln(1+x) < x$

1.4 柯西中值定理

若 f(x) 和 F(x) 满足:

- 1、在 [a b] 上连续
- 2、在 (a b) 内可导
- 3, $\forall x \in (a\ b)\ F'(x) \neq 0$

则在
$$(a\ b)$$
 内至少有一点 ξ ,使 $\frac{f(b-f(a))}{F(b)-F(a)} = \frac{f^{'}(\xi)}{F^{'}(\xi)}$

2 洛必达法则

若满足:

- 1、求 $\frac{0}{0}$ 型或 \approx 型的极限
- 2、 $\lim_{x\to a} \frac{f'(x)}{F'(x)}$ 存在或为 ∞

则
$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}$$

2.1 重要的等价

- 1、 当 $x \to 0$ 时, $x \sin x \sim \frac{1}{6}x^3$
- $2 \cdot \sin(\arcsin x) = x$
- 4、 当 $x \to 0$ 时, $\tan x x \sim \frac{1}{3}x^3$
- 5、 当 $x \to 0$ 时, $x \arctan x \sim \frac{1}{3}x^3$

泰勒公式

- 6、 当 $x \to +\infty$ 时, $lnx << x^n$
- 8、当 $x \to +\infty$ 时,对数函数 << 幂函数 << 指数函数

3 泰勒公式

泰勒公式 1

如果 f(x) 在 x_0 处有 n 阶导数,则对 $\forall x \in U(x_0 \delta)$,有 $f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o[(x - x_0)^n]$ * 其中 $f(x_0) = f(x_0)^n$ * $f(x_0) = f(x_0)^n$ * 其中 $f(x_0) = f(x_0)^n$ * $f(x_0) = f(x_0)^n$

* 其中 $o[(x-x_0)^n]$ 叫做佩亚诺余项

泰勒公式 2

如果 f(x) 在 $U(x_0 \delta)$ 内有 n+1 阶导数,则对 $\forall x \in U(x_0 \delta)$,有 $f(x) = f(x_0) + f^{'}(x_0)(x-x_0) + \frac{f^{''}(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ * 其中 $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$ 叫做拉格朗日余项

3.1 重要的麦克劳林公式

若 $x_0 = 0$,则上述泰勒公式又叫麦克劳林公式

1.
$$e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + o(x^3)$$

导数与函数的单调性 4

2.
$$\sin x = x - \frac{1}{3!}x^3 + o(x^3)$$

3. $\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^4)$
4. $\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + o(x^3)$
5. $(1+x)^a = 1 + ax + \frac{a(a-1)}{2!}x^2 + o(x^2)$

4 导数与函数的单调性

- 一阶导大于 0,则函数单调增
- 一阶导小于 0,则函数单调减

驻点:导数为0的点

只有驻点和不可导的点才能成为单调区间的分界点

5 导数与曲线的凹凸性

- 二阶导大于 0,则曲线是凹的
- 二阶导小于 0,则曲线是凸的

拐点:连续曲线凹与凸的分界点

拐点的二阶导为0或不存在

5.1 拐点的第一判别法

若在 $\mathring{U}(x_0)$ 内二阶可导,则:

导数与极值 5

1、f''(x) 在 x_0 两侧变号,则 $(x_0 f(x_0))$ 是拐点

 $2 \cdot f''(x)$ 在 x_0 两侧不变号,则 $(x_0 f(x_0))$ 不是拐点

5.2 拐点的第二判别法

若 $f^{''}(x_0) = 0$,则: 1、 $f^{'''}(x_0) \neq 0$,则 $(x_0 f(x_0))$ 是拐点 2、 $f^{'''}(x_0) = 0$,则没有结论

凹曲线的切线在曲线下面 凸曲线的切线在曲线上面

6 导数与极值

极值点的一阶导为 0 或不存在

6.1 极值点的第一判别法

1、f'(x) 在 x_0 两侧变号,则 $(x_0 f(x_0))$ 是极值点 f'(x) 由正变负,则 $f(x_0)$ 是极大值 f'(x) 由负变正,则 $f(x_0)$ 是极小值 2、f'(x) 在 x_0 两侧不变号,则 $(x_0 f(x_0))$ 不是极值点

6.2 极值点的第二判别法

若 $f'(x_0) = 0$,则: 1、 $f''(x_0) \neq 0$,则 $(x_0 f(x_0))$ 是极值点 $f''(x_0) > 0$,则 $f(x_0)$ 是极小值 导数与最值

$$f''(x_0) < 0$$
,则 $f(x_0)$ 是极大值 $2 \cdot f''(x_0) = 0$,则没有结论

若 $f'(x_0)$ 到 $f^{(n-1)}(x_0)$ 都为 0,且 $f^{(n)} \neq 0$,则:

- 1、若 n 为奇数,则 $f(x_0)$ 不是极值
- 2、若 n 为偶数,则 $f(x_0)$ 是极值 $f^{(n)}(x_0) > 0$,则 $f(x_0)$ 是极小值 $f^{(n)}(x_0) < 0$,则 $f(x_0)$ 是极大值

7 导数与最值

连续函数在闭区间内必由最值

求最值:

- 1、求出 f(x) 在 $(a \ b)$ 内的所有驻点和不可导的点
- 2、计算 f(x) 在驻点,不可导的点和端点 a 和 b 处的函数值
- 3、比较这些函数值,最大的为最大值,最小的为最小值

若连续函数 f(x) 在 $(a\ b)$ 内有唯一的极值点 x_0 ,则这个点就是最值点

8 渐近线

$$x=a$$
 是铅直渐近线 $\Leftrightarrow \lim_{x \to a^+} f(x) = \infty$ 或 $\lim_{x \to a^-} f(x) = \infty$

当
$$x \to +\infty$$
 时, $y = b$ 是水平渐近线 $\Leftrightarrow \lim_{x \to +\infty} f(x) = b$

当 $x\to +\infty$ 时, y=kx+b 是斜渐近线 $\Leftrightarrow \lim_{x\to +\infty} \frac{f(x)}{x}=k\neq 0$,且 $\lim_{x\to +\infty} [f(x)-kx]=b$

9 曲率

若曲线由直角坐标方程 y=y(x) 给出,则曲率 $k=\frac{|y^{''}|}{(1+y^{'2})^{\frac{3}{2}}}$

若曲线由参数方程 $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ 给出,则曲率 $k = \frac{|y''x' - y'x''|}{(x^{'2} + y^{'2})^{\frac{3}{2}}}$

曲率半径 $R = \frac{1}{K}$