

Rafbók

Rafeindafræði 12. hefti CB BJT-magnari Sigurður Örn Kristjánsson Bergsteinn Baldursson

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Fræðsluskrifstofu rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Fræðsluskrifstofu rafiðnaðarins.

Höfundar eru Sigurður Örn Kristjánsson og Bergsteinn Baldursson. Umbrot í rafbók, uppsetning og teikning Bára Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Sigurðar Arnar sigurdurorn@gmail.com og Báru Halldórsdóttur á netfangið bara@rafmennt.is

Efnisyfirlit

1. Sameiginlega base-tengdur magnari	3
2. Spennumögnun	4
3. Inngangsmótstaða $R_{inn} = Z_{inn}$	4
4. Útgangsmótstaða $R_{ ext{ iny út}} = Z_{ ext{ iny út}}$ base-tengds magnara	5
5. Straummögnun	5
6. Aflmögnun	5
7. Dæmi 1	7
8. Mælingar á CB magnara	8
8.1 Framkvæmd 1	8
8.2 Framkvæmd 2	9
8.3 Framkvæmd 3	9
8.4 Framkvæmd 4	9
8.5 Framkvæmd 5	9
8.6 Framkvæmd 6	10
8.7 Framkvæmd 7	10
8.8 Framkvæmd 8	11
9. Hvernig mæli ég mögnun	12
10. Hvernig mæli ég fasvik	13
11. Hvernig mæli ég inngangsmótstöðu magnara	14
12. Hvernig mæli ég útgangsmótstöðu magnara	15

1. Sameiginlega base-tengdur magnari

Sameiginlega tengdur base-magnari (common-base (CB)) hefur mikla spennumögnun A_u en straummögnun A_i sem er 1. Þar sem hann hefur lága inngangsmótstöðu er hann notaður í þeim tilvikum þar sem lá inngangsmótstaða er nauðsynleg. Til dæmis í loftnetsmögnurum. Eftir lestur þessa kafla átt þú að vera fær um að:

- skilja og geta greint virkni sameiginlega base-tengdum magnara (CB)
- skýrt ac og dc jafngildislínurit
- skýrt dc og ac vinnslu magnarans
- fundið spennumögnun hans
- fundið inngangsmótstöðu magnarans
- fundið útgangsmótstöðu magnarans
- fundið aflmögnun

Hefðbundinn (CB) base-tengdur magnari er sýndur á *mynd 1a*. Base er sameiginlegur (*Common*) þar sem riðstraumslega er base-tengdur jörð í gegn um þéttinn C_1 . Inngangsmerkið U_{inn} er tengt emitter í gegn um þéttinn C_2 og útgangsmerkið er tengt á álagið R_L í gegn um þéttinn C_3 .

Mynd 1a.
Sameiginlega base-tengdur magnari.

Mynd 1b.
DC-jafngildismynd.

Mynd 1c. ac jafngildismynd.

2. Spennumögnun

Spennumögnun magnara sem tengdur er með sameiginlegan base er:

$$A_u = \frac{U_{\text{ú}t}}{U_{inn}} = \frac{U_c}{U_e} = \frac{I_c \cdot (R_C//R_L)}{I_e \cdot (r'_e//R_E)}$$

$$par sem I_c \cong I_e \Rightarrow$$

$$A_{u} = \frac{I_{g} \cdot (R_{C}//R_{L})}{I_{g} \cdot (r_{e}'/R_{E})} = \frac{(R_{C}//R_{L})}{(r_{e}'/R_{E})}$$

 $ef \; R_E \gg r'_e \Longrightarrow ver \eth ur \; spennum \ddot{o} gnun \; A_u$

$$A_u = \frac{(R_C//R_L)}{r'_{\varrho}}$$

3. Inngangsmótstaða R_{inn} = Z_{inn}

Inngangsmótstaðan $Z_{inn} = R_{inn}$ sem sést inn í emitter (sjá mynd 1c) er:

$$R_{inn} = Z_{inn} = \frac{U_{inn}}{I_{inn}} = \frac{U_e}{I_e} = \frac{I_e \cdot (r'_e//R_E)}{I_e} = (r'_e//R_E)$$

 R_E er oftast miklu hærri en r^{\prime}_e svo nálgunin $R_E\gg r^{\prime}_E\Longrightarrow$

$$R_{inn} = Z_{inn} \cong r'_e$$

4. Útgangsmótstaða R_{út} = Z_{út} base-tengds magnara

Útgangsmótstaðan $Z_{\text{út}} = R_{\text{út}}$ sem sést inn í collector (sjá mynd 1c) er:

$$Z_{\acute{\mathbf{u}}t} = R_{\acute{\mathbf{u}}t} = \frac{U_{\acute{\mathbf{u}}t}}{I_C} = R_C$$

5. Straummögnun

Straummögnun magnarans er skilgreind sem:

$$A_i = rac{I_{cute{u}t}}{I_{inn}} = rac{I_c}{I_e}$$
 þar sem $I_c \cong I_e$ verður $A_i \cong 1$

6. Aflmögnun

Þar sem straummögnun er um það bil 1 í sameiginlega tengdum base-magnara verður aflmögnun magnarans:

$$A_p = A_i \cdot A_u = 1 \cdot A_u = A_u$$

Sýnidæmi:

Finndu inngangs- og útgangsmótstöðu, spennu-, straum - og aflmögnun fyrir magnarann á *mynd 2*.

Gefið er að R_C = 2,2 $k\Omega$, U_{CC} = 10V, R_1 = 56 $k\Omega$, R_2 = 12 $k\Omega$, R_E = 1 $k\Omega$, R_L = 10 $k\Omega$, C_1 = C_3 = 1 μ F, C2=470 μ F og transistor 2N3904 með h_{FE} = 250.

Mynd 2. CB-tengdur magnari.

Lausn:

$$\begin{split} U_B &= \frac{R_2}{R_1 + R_2} \cdot U_{CC} = \frac{56k\Omega}{12k\Omega + 56k\Omega} \cdot 10 = 1,76V \\ U_E &= U_B - U_{BE} = 1,76V - 0,7V = 1,06V \\ I_E &= \frac{U_E}{R_E} = \frac{1,06V}{1k\Omega} = 1,06mA \end{split}$$

Inngangsmótstaðan

$$R_{inn} = Z_{inn} = r'_e = \frac{25mV}{I_E} = \frac{25mV}{1,06mA} = 23,6\Omega$$

Útgangsmótstaðan

$$R_{\acute{\mathrm{u}}t} = Z_{\acute{\mathrm{u}}t} = R_C = 2.2k\Omega$$

Spennumögnun

$$A_u = \frac{(R_C//R_L)}{r'_e} = \frac{(2,2k\Omega//10k\Omega)}{23,6\Omega} = 76,3$$

Straummögnun

$$A_i \cong 1$$

Aflmögnun

$$A_p = A_i \cdot A_u = 1 \cdot 76,3 = 76,3$$

7. Dæmi 1

Mynd 3. CB magnari.

Finndu eftirfarandi fyrir magnarann á mynd 3. $R_L = \infty$

- a) $Z_{inn} = R_{inn}$
- b) $Z_{\acute{u}t} = R_{\acute{u}t}$
- c) A_u
- $_{d)}$ A_{i}
- e) A_p

8. Mælingar á CB magnara

Tilgangur:

Skoða magnarastig í SB/CB tengingu með tilliti til að bera saman reiknaðar og mældar lykilstærðir kerfisins.

Efni:

Sveifluvaki, sveiflusjá, spennugjafi, spennumælir og íhlutir samkvæmt mynd 4.

Tengimynd:

8.1 Framkvæmd 1

Tengið rásina og mælið jafnspennurnar U_C, U_B og U_E þegar spennugjafinn U_{inn} er frátengdur.

 $U_B =$

 $U_E =$

 $U_C =$

Reiknið til samanburðar jafnspennurnar U_C, U_B og U_E (sýnið útreikninga).

 $U_B =$

 $U_E =$

 $U_C =$

8.2 Framkvæmd 2

Mælið jafnspennurnar U_{CE} , U_{BE} og U_{CB} þegar spennugjafinn U_{inn} er frátengdur.

 $U_{CE} =$

 $U_{BE} =$

 $U_{CB} =$

Reiknið til samanburðar jafnspennurnar U_{CE}, U_{BE} og U_{CE} (Sýnið útreikninga).

 $U_{CE} =$

 $U_{BE} =$

 $U_{CB} =$

8.3 Framkvæmd 3

Mælið spennumögnunina A_u við 1 Khz og $U_{inn} = 7,07 \text{mV}_{rms}$

 $A_{\rm U} =$

 $A_U(dB) =$

Reiknið til samanburðar spennumögnunina A_u (sýnið útreikninga).

 $A_U =$

 $A_U(dB) =$

8.4 Framkvæmd 4

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 1kHz?

 $\theta =$

8.5 Framkvæmd 5

Mælið hvert sé fasvik milli inn- og útmerkis magnarans við 100Hz?

 $\theta =$

8.6 Framkvæmd 6

Mælið inngangsriðstraumsmótstöðu (inngangsimpedans) $Z_{inn} = R_{inn}$ magnarans.

$$Z_{inn} =$$

Reiknið til samanburðar inngangsriðstraumsmótstöðu (inngangsimpedans) Z_{inn} = R_{inn} magnarans.

$$Z_{inn} =$$

8.7 Framkvæmd 7

Mælið útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}} = R_{\text{út}}$ magnarans.

$$Z_{\text{út}} =$$

Reiknið til samanburðar útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{\'ut}} = R_{\text{\'ut}}$ magnarans.

$$Z_{\text{út}} =$$

8.8 Framkvæmd 8

Metið niðurstöður mælinga og leitið að verulegum frávikum milli mældra og reiknaðra stærða og skýrið. (Ef innan við 5% frávik er milli reiknaðra og mældra stærða teljast svörin rétt).

Jöfnur sem gilda fyrir SB tengdan magnara.

<u>DC jöfnur</u>	<u>ac jöfnur</u>
$U_B = \frac{R_2}{R_1 + R_2} \cdot U_{CC}$	$r'_e = \frac{25mV}{I_E}$
$U_E = U_B - U_{BE}$	$R_{inn} = Z_{in} \cong \frac{1}{40 \cdot I_E} = r'$
$U_C = U_{CC} - I_C \cdot R_C$	$R_{in} = Z_{in} = R_C$
$I_C \cong I_E = \frac{U_E}{R_E}$	$A_u = \frac{U_{\acute{\mathrm{u}}t}}{U_{inn}} \cong \frac{(R_C//R_L)}{r'_e}$
$U_{CE} = U_C - U_E$	$A_u(dB) = 20 \cdot log(A_u)$
$U_{BE} = U_B - U_E$	
$U_{CB} = U_C - U_B$	

9. Hvernig mæli ég mögnun

Tengdu sveiflusjá eins og mynd 5 sýnir.

Stilltu U_{inn} þannig að merkið $U_{\acute{u}t}$ sé óbjagað. Mældu U_{inn} og $U_{\acute{u}t}$ með sveiflusjá t.d. með því að ýta á *Autoscale* og *quick meas* takkana.

Ýttu þá á takka merktan *Source 1*(CH1) og veldu *Peak-Peak* og ýttu síðan á takka merktan *Source 2* (CH2) og veldu *Peak-Peak*.

Mynd 5.

Lestu spennurnar og reiknaðu síðan mögnunina sem $A_u = \frac{U_{\text{ú}t}}{U_{inn}} =$

10. Hvernig mæli ég fasvik

Mynd 6.

Mældu tímann á milli rauðu mælistrikanna á $mynd\ 6$ og gefðu honum heitið dt. Finndu sveiflutíma bylgjunnar milli bláu strikanna og gefðu henni heitið T.

Reiknaðu síðan fasvikið sem
$$\theta = \frac{dt}{T} \cdot 360^{\circ} =$$

11. Hvernig mæli ég inngangsmótstöðu magnara

Mynd 7.

Settu þekkta mótstöðu (Rx) inn í rásina eins og sýnt er á *mynd 7*. Veldu mótstöðuna þannig að það verði örugglega marktækur mismunur á spennunni U_1 og U_{inn} . Mældu síðan með sveiflusjá t.d. eins og sýnt er á *mynd 7*, spennurnar U_1 og U_{inn} og notaðu meðfylgjandi jöfnu til að finna $R_{inn} = Z_{inn}$.

$$Z_{inn} = R_{inn} = \left[\frac{U_{inn}}{U_1 - U_{inn}}\right] \cdot R_x$$

12. Hvernig mæli ég útgangsmótstöðu magnara

Mynd 8.

Settu þekkta mótstöðu $(Rx) = R_L$ inn í rásina eins og sýnt er á mynd 8. Veldu mótstöðuna þannig að það verði örugglega marktækur mismunur á spennunni $U_{\text{út}}$ þegar álagið er tengt eða frátengt og að merkið sé óbjagað. Mældu með sveiflusjá spennuna $U_{\text{út}}$ með álagið tengt. Mældu síðan spennuna $U_{\text{út}}$ þegar mótstaðan R_X er frátengd og gefðu þeirri spennu nafnið $U_{\text{út}}$ hegar. Notaðu meðfylgjandi jöfnu til að finna $R_{\text{út}} = Z_{\text{út}}$.

$$Z_{\acute{\mathbf{u}}t} = R_{\acute{\mathbf{u}}t} = \left[\frac{U_{\acute{\mathbf{u}}t_{t\acute{\mathbf{o}}mgang}} - U_{\acute{\mathbf{u}}t}}{U_{\acute{\mathbf{u}}t}} \right] \cdot R_{x}$$