MATH 6321 - Theory of functions of a real variable Homework 9

Joel Sleeba

April 14, 2025

1. Solution: Let $f \in L^1(\mathbb{R})$ and $x \in \mathbb{R}$ be a Lebesgue point. Then by the definition, we have

$$\lim_{r \to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - f(y)| \ dm(y) = 0$$

Thus for every $\varepsilon > 0$, there is a $r_{\varepsilon} > 0$ such that for all $r < r_{\varepsilon}$,

$$\frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - f(y)| \ dm(y) < \varepsilon$$

Since $|\int f d\mu| < \int |f| d\mu$, we get

$$\begin{split} \left| f(x) - \frac{1}{m(B_r(x))} \int_{B_r(x)} f(y) \ dm(y) \right| \\ &= \left| \frac{1}{m(B_r(x))} \int_{B_r(x)} f(x) \ dm(y) - \frac{1}{m(B_r(x))} \int_{B_r(x)} f(y) \ dm(y) \right| \\ &\leq \frac{1}{m(B_r(x))} \int_{B_r(x)} |f(x) - f(y)| \ dm(y) \\ &< \varepsilon \end{split}$$

and thus

$$|f(x)| - \left| \frac{1}{m(B_r(x))} \int_{B_r(x)} f(y) \ dm(y) \right| < \varepsilon$$

which gives

$$|f(x)| < \frac{1}{m(B_r(x))} \int_{B_r(x)} |f| dm + \varepsilon$$

Since $\varepsilon > 0$ was chosen arbitrarily, taking $\varepsilon \to 0$ and taking supremum over all r > 0 gives

$$|f(x)| \le \sup_{r>0} \frac{1}{m(B_r(x))} \int_{B_r(x)} |f| \ dm = \mathcal{M}f(x)$$

2. **Solution:** For the sake of contradiction, assume that there exists $c_1 > c_2 > 0$ such that for $A_i := \{x \in \mathbb{R} : |f(x)| \ge c_i\}$, we have $c_i \mu(A_i) = ||f||_1$. Then

$$||f||_1 \ge \int |f|\chi_{A_i} d\mu \ge \int c_i \chi_{A_i} d\mu = c_i \mu(A_i) = ||f||_1$$

Thus

$$\int_{A_i} |f| - c_i \ d\mu = 0 \tag{1}$$

Since $||f||_1, c_i > 0$, by assumption, we see $\mu(A_i) > 0$. Moreover $|f(x)| - c_i > 0$ for all $x \in A_i$ by definition. Thus **Equation 1** forces $|f(x)| = c_i$ almost everywhere in A_i . But since by definition $A_1 \subset A_2$, this gives a contradiction as |f| cannot be a.e equal to c_1 and c_2 simultaneously in A_2 unless $c_1 = c_2$.

3. not finished

Solution: Let $x \in \mathbb{R}$ and $g_x : [x-1, x+1] \to \mathbb{R} : g_x(y) := |f(x)-f(y)|^2$. Note that since $f \in L^2([x-1, x+1])$, by Holder's inequality, $f \in L^1([x-1, x+1])$. Also

$$\int_{[x-1,x+1]} |g_x| \ dm = \int_{[x-1,x+1]} |f(x) - f(y)|^2 \ dm(y)$$

$$\leq \int_{[x-1,x+1]} |f(x)|^2 + 2|f(x)||f(y)| + |f(y)|^2 \ d\mu$$

$$\leq 2|f(x)|^2 + 2|f(x)|||f||_1 + ||f||_2$$

Thus $g_x \in L^1([x-1,x+1])$. Thus almost every $y \in [x-1,x+1]$ is a Lebesgue point of g_x by the Lebesgue differentiation theorem.

4. **Solution:** We know that $\mu(A) := \int_A f \ dm$, defines a measure on \mathbb{R} . By the properties of the measure μ , for any $x < y \in \mathbb{R}$,

$$\int_{(x,y]} f \ dm = \int_{(-\infty,y]} f \ dm - \int_{(-\infty,x]} f \ dm = 0 - 0 = 0$$

Any open interval $(x,y) = \bigcup_{n=1}^{\infty} (x,y-\frac{1}{n})$. By the continuity of the measure μ from below, we get

$$\int_{(x,y)} f \ dm = \lim_{n \to \infty} \int_{(x,y-\frac{1}{n}]} f \ dm = 0$$

Since $f \in L^1(m)$, we know that almost all $x \in \mathbb{R}$ are Lebesgue points of f. That is for almost every $x \in \mathbb{R}$,

$$f(x) = \lim_{r \to 0} \frac{1}{m(B_r(x))} \int_{B_r(x)} f \ dm = \lim_{r \to 0} 0 = 0$$

Thus we are done.