Lesson #04 Decision Trees

Table of Contents

- Introduction to Decision Tree
- Splitting Tree (Entropy & Gini)
- Evaluating Classifiers
- Applying Decision Trees
 - Get data
 - Data cleaning & preprocessing
 - Train & Test
 - Hyperparameter tuning
 - Improve

How can a dataset be represented as a tree?

Decision Tree (classification)

Predictors				Target	
Outlook	Temp.	Humidity	Windy	Play Golf	Outlook
Rainy	Hot	High	Falce	No	
Rainy	Hot	High	True	No	
Overoast	Hot	High	Falce	Yes	Sunny Overcast Rainy
Sunny	Mild	High	Falce	Yes	Sunny Overcast Rainy
Sunny	Cool	Normal	False	Yes	
Sunny	Cool	Normal	True	No	
Overoast	Cool	Normal	True	Yes	Windy Yes Humidity
Rainy	Mild	High	False	No	
Rainy	Cool	Normal	Falce	Yes	
Sunny	Mild	Normal	False	Yes	FALSE TRUE High Norma
Rainy	Mild	Normal	True	Yes	
Overoast	Mild	High	True	Yes	
Overoast	Hot	Normal	False	Yes	Yes No No Yes
Sunny	Mild	High	True	No	10 10

Decision Tree (regression)

Predictors			Target						
Outlook	Temp.	Humidity	Windy	Hours Played					
Rainy	Hot	High	Falce	26			Outlook		
Rainy	Hot	High	True	30					
Overoast	Hot	High	Falce	48					
Sunny	Mild	High	Falce	46	Su	nny	Overcast	Rainy	
Sunny	Cool	Normal	Falce	62					
Sunny	Cool	Normal	True	23					
Overoast	Cool	Normal	True	43	·Wi	ndy	46.3	Temp.	
Rainy	Mild	High	Falce	36					- 0
Rainy	Cool	Normal	Falce	38					
Sunny	Mild	Normal	Falce	48	FALSE	TRUE	Cool	Hot	M
Rainy	Mild	Normal	True	48					
Overoast	Mild	High	True	62					
Overoast	Hot	Normal	Falce	44	47.7	26.5	38	27.5	4:
Sunny	Mild	High	True	30					_

@Rishabh Jain

View ALL Data Sets

Machine Learning Repository

Center for Machine Learning and Intelligent Systems

Adult Data Set

Download: Data Folder, Data Set Description

Abstract: Predict whether income exceeds \$50K/yr based on census data. Also known as "Census Income" dataset.

Data Set Characteristics:	Multivariate	Number of Instances:	48842	Area:	Social
Attribute Characteristics:	Categorical, Integer	Number of Attributes:	14	Date Donated	1996-05-01
Associated Tasks:	Classification	Missing Values?	Yes	Number of Web Hits:	1564397

Source:

Donor:

Ronny Kohavi and Barry Becker Data Mining and Visualization Silicon Graphics.

e-mail: ronnyk '@' live.com for questions.

Data Set Information:

Extraction was done by Barry Becker from the 1994 Census database. A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0))

Prediction task is to determine whether a person makes over 50K a year.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
```

#	Column	Non-Nu	ull Count	Dtype			
0	age	32561	non-null	int64			
1	workclass	32561	non-null	object			
2	fnlwgt	32561	non-null	int64			
3	education	32561	non-null	object			
4	education_num	32561	non-null	int64			
5	marital_status	32561	non-null	object			
6	occupation	32561	non-null	object			
7	relationship	32561	non-null	object			
8	race	32561	non-null	object			
9	sex	32561	non-null	object			
10	capital_gain	32561	non-null	int64			
11	capital_loss	32561	non-null	int64			
12	hours_per_week	32561	non-null	int64			
13	native_country	32561	non-null	object			
14	high_income	32561	non-null	object			
dtypes: int64(6), object(9)							
memory usage: 3.7+ MB							

Cardinality

workclass	9
education	16
marital_status	7
occupation	15
relationship	6
race	5
sex	2
native_country	42
high_income	2
dtype: int64	

<=50K 24720 >50K 7841

Name: high_income, dtype: int64

How can we split the tree?

What income do people make?

Do they work in the Private sector?

Algorithm used in Decision Trees

- 1. ID3 (Entropy)
- 2. Gini Index
- 3. Chi-Square
- 4. Reduction in Variance
 - a. C4.5, pruning

PHASE ONE COMPLETE

Entropy

Entropy is an indicator of how messy your data is.

Why Entropy in Decision Trees?

- The goal is to tidy the data.
- You try to separate your data and group the samples together in the classes they belong to.
- You maximize the purity of the groups as much as possible each time you create a new node of the tree
- Of course, at the end of the tree, you want to have a clear answer.

Mathematical definition of entropy

Suppose a set of N items, these items fall into two categories:

- [+] gain > 50k (k)
- o [-]gain <= 50k (m)</pre>

$$p = rac{k}{N}, q = rac{m}{N} \ Entropy = -p \log p - q \log q$$

Generalization

<=50K 24720 >50K 7841

Name: high_income, dtype: int64

entropy(df.high_income.value_counts(),base=2)
0.7963839552022132

Entropy using the frequency table of two attributes

		High In	come	
		<=50k	>50k	
٨٠٠	<= 37	14421	2260	16681 (51.22%)
Age	> 37	10299	5581	15880 (48.77%)

$$E\left(T|X
ight) = \sum_{c \, \in \, X} rac{|X_c|}{|X|} E(T|X_c)$$

0.7492980618394182

cross = pd.crosstab(data.age <= data.age.median(),</pre> data.high income)

```
high_income <=50K >50K
       age
            10299 5581
   False
                  2260
   True
            14421
```

```
0.4877 * entropy(cross.iloc[0],base=2) + 0.5122 \
  * entropy(cross.iloc[1],base=2)
```


Information Gain

$$IG(T,X) = E(T) - E(T|X)$$

Information Gain from X on T

The information gain is based on the decrease in entropy after a dataset is split on an attribute.

Constructing a decision tree is all about finding attribute that returns the **highest information gain** (i.e., the most homogeneous branches).

$$Gini(x) = 1 - \sum_{i=1}^{c} P(x_i)^2$$

$$Entropy(x) = -\sum_{i=1}^{c} P(x_i) \log_b P(x_i)$$

Gini index or Entropy is the criterion for calculating **Information Gain**. Both of them are measures of impurity of a node.

from sklearn.tree import plot_tree

Evaluating Classifiers

A classier is only as good as the metric used to evaluate it

Predicted Values

$$precision = rac{TP}{(TP + FP)}$$

$$precision = rac{TN}{(TN + FN)}$$

Threshold Metrics are those that quantify the classification prediction errors

$$Accuracy = \frac{TP + TN}{TP + TN + FN + FP}$$

$$TPR = \frac{\text{#true positives}}{\text{#true positives} + \text{#false negatives}}$$
Recall

$$TNR = \frac{\text{#true negatives}}{\text{#true negatives} + \text{#false positives}}$$

$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix

	<pre>classification_report(y_test,predict)</pre>					
	pre	ecision	recall f1	-score	support	
accuracy connely test amodist	0	0.86	0.95	0.90	4945	
<pre>accuracy_score(y_test, predict) 0.8432366037156457</pre>	1	0.77	0.50	0.60	1568	
	accuracy			0.84	6513	
	macro avg	0.81	0.73	0.75	6513	
	weighted avg	0.84	0.84	0.83	6513	
conficient matrix/v test modist	confucion matrix/v too	عمد المحمد علي		-: <u></u> -	univ/mondiat v toat	
<pre>confusion_matrix(y_test,predict) array([[4712, 233],</pre>	<pre>confusion_matrix(y_tes label</pre>	.s=[1,0])	, contu	sion_mat	rix(predict,y_test, labels=[1,0])	
[788, 780]])	array([[780, 788],	/	array	([[780,	- · - ·	
	[233, 4712]])		[788, 4712]])			

from sklearn.metrics import plot_confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay

Additional Threshold Metrics

$$G ext{-}mean = \sqrt{rac{TP}{TP + FN} imes rac{TN}{TN + FP}}$$

$$Fbeta ext{-}measure = rac{(1+eta^2) imes Precision imes Recall}{eta^2 imes Precision + Recall}$$

$$\beta == \begin{cases} 0.5, & \text{more weight on precision, less weight on recall} \\ 1, & \text{balance the weight on precision and recall} \\ 2, & \text{less weight on precision, more weight on recall} \end{cases}$$

Ranking Metrics for Classifier Evaluation

- Rank metrics are more concerned with evaluating classifiers based on how effective they are at separating classes.
- These metrics require that a classifier predicts a score or a probability of class membership. Therefore, instead of a simple positive or negative prediction, the score introduces a level of granularity.

Receiver Operating Characteristic (ROC)

TPR (measure the impact of True Positive)

FPR = 1 - TNR (measure the impact of False Positive)

Probabilistic Metrics for Classifier Evaluation

Probabilistic metrics are designed specially to quantify the uncertainty in a classier's predictions. These are useful for problems where we are less interested in incorrect vs. correct class predictions and more interested in the uncertainty the model has in predictions and penalizing those predictions that are wrong but highly condent.

Cross-entropy

$$LogLoss = -\left((1-y) imes \log\left(1-\hat{y}\right) + y imes \log\hat{y}\right)$$

The score summarizes the average difference between two probability distributions. A perfect classifier has a log loss of 0.0, with worse values being positive up to infinity.

The score can be generalized to multiple classes by simply adding the terms:

$$LogLoss = -\sum_{c \in C} y_c imes \log \hat{y_c}$$

Brier Score

Another popular score for predicted probabilities is the Brier score. The benefit of the Brier score is that it is **focused on the positive class**, which for <u>imbalanced classification is the minority class</u>. This makes it more preferable than log loss, which is focused on the entire probability distribution.

$$Brier_Score = rac{1}{N} imes \sum_{i=1}^{N} (\hat{y_i} - y_i)^2$$

scikit-learn 0.23

Applying Decision Trees

sklearn.tree.DecisionTreeClassifier

class sklearn.tree. DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0)

[source]

sklearn.tree.DecisionTreeRegressor

class sklearn.tree. DecisionTreeRegressor(*, criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort='deprecated', ccp_alpha=0.0)

[source]

A general ML workflow

A general ML workflow

- 1. Load Libraries
- 2. Get data, including EDA
- 3. Clean, prepare and manipulate data (feature engineering)
- 4. Modeling (train and test)
- 5. Algorithm Tuning
- 6. Finalizing the Model

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.neighbors import LocalOutlierFactor from sklearn.model selection import train test split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import OneHotEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.pipeline import Pipeline from sklearn.model selection import StratifiedKFold from sklearn.tree import DecisionTreeClassifier from sklearn.model selection import GridSearchCV from sklearn.metrics import accuracy score from sklearn.metrics import classification report from sklearn.metrics import confusion matrix from sklearn.metrics import plot confusion matrix from sklearn.metrics import ConfusionMatrixDisplay from sklearn.tree import plot tree import joblib

Load Libraries

Multi-level Donut Chart

Angular Gauge

Dot Plot

Pie Chart

Sociogram

Proportional Area Chart (Circle)

Waterfall Chart

Phase Diagram

Cycle Diagram

Population Pyramid

Boxplot

EXPLORATORY DATA ANALYSIS (EDA)

1000 - 10

fig, ax = plt.subplots(1,1,figsize=(12,12))
income.hist(ax=ax)
plt.show()

Overview of Data Cleaning

df.drop_duplicates()
df.duplicated()

from sklearn.neighbors import LocalOutlierFactor
from sklearn.ensemble import IsolationForest

from sklearn.impute import SimpleImputer from sklearn.impute import KNNImputer

Overview of Data Variable Types

	age	workclass	fnlwgt	education	education_num	marital_status	occupation	relationship	race	sex	high_income
0	39	State-gov	77516	Bachelors	13	Never-married	Adm-clerical	Not-in-family	White	Male	<=50K
1	50	Self-emp-not-inc	83311	Bachelors	13	Married-civ-spouse	Exec-managerial	Husband	White	Male	<=50K
2	38	Private	215646	HS-grad	9	Divorced	Handlers-cleaners	Not-in-family	White	Male	<=50K
3	53	Private	234721	11th	7	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	<=50K
4	28	Private	338409	Bachelors	13	Married-civ-spouse	Prof-specialty	Wife	Black	Female	<=50K

47

Overview of Data Transforms


```
x = income.select_dtypes("int64")
y = np.where(data["high income"] == ' <=50K',0,1)</pre>
# standardize the dataset
scaler = MinMaxScaler()
x = scaler.fit_transform(x)
# split into train and test sets
x_train, x_test, y_train, y_test = train_test_split(x,
                                                     test size=0.3,
                                                     random_state=1)
model = DecisionTreeClassifier()
model.fit(x train,y train)
# evaluate the model
yhat = model.predict(x test)
accuracy score(y test,yhat)
0.7723410789231242
```

Wrong

Right way!!!!

```
x = income.select dtypes("int64")
y = np.where(data["high income"] == ' <=50K',0,1)</pre>
# split into train and test sets
x_train, x_test, y_train, y_test = train_test_split(x,
                                                     test size=0.3,
                                                     random state=1)
# standardize the train dataset
scaler = MinMaxScaler()
x train = scaler.fit transform(x train)
x test = scaler.transform(x test)
model = DecisionTreeClassifier()
model.fit(x train,y train)
yhat = model.predict(x_test)
accuracy_score(y_test,yhat)
0.7734670897737742
```

Outlier removal without data leakage

```
# data
x = data.select_dtypes("int64")
y = np.where(data["high_income"] == ' <=50K',0,1)</pre>
x_train, x_test, y_train, y_test = train_test_split(x,
                                                     test_size=0.3,
                                                     random_state=1)
lof = LocalOutlierFactor()
outlier = lof.fit_predict(x_train)
mask = outlier != -1
# select all rows that are not outliers
x_train, y_train = x_train[mask], y_train[mask]
scaler = MinMaxScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
model = DecisionTreeClassifier()
model.fit(x_train,y_train)
# evaluate the model
yhat = model.predict(x_test)
accuracy_score(y_test,yhat)
0.7632306274951377
```


Train and Test

Hyperparameter Tuning

```
# create a pipeline
pipe = Pipeline([("classifier", DecisionTreeClassifier())])
# create a dictionary with the hyperparameters
search space = [{"classifier":[DecisionTreeClassifier()],
                 "classifier criterion": ["gini", "entropy"]},
                {"classifier": [KNeighborsClassifier()],
                 "classifier n neighbors": [5,7]}]
# create grid search
kfold = StratifiedKFold(n splits=10,random state=0,shuffle=True)
# https://scikit-learn.org/stable/modules/model evaluation.html#scoring-parameter
grid = GridSearchCV(estimator=pipe,
                    param grid=search space,
                    cv=kfold,
                    scoring="accuracy",
                    n jobs=-1
# fit grid search
best_model = grid.fit(x_train,y_train)
```


Performance Evaluation

```
0.800610 (0.006070) with: {'classifier': DecisionTreeClassifier(criterion='entropy'), 'classifier__criterion': 'gini'}
0.806520 (0.009790) with: {'classifier': DecisionTreeClassifier(criterion='entropy'), 'classifier__criterion': 'entropy'}
0.781004 (0.006412) with: {'classifier': KNeighborsClassifier(), 'classifier__n_neighbors': 5}
0.790619 (0.006123) with: {'classifier': KNeighborsClassifier(), 'classifier__n_neighbors': 7}
```


	precision	recall	f1-score	support	
0	0.87	0.87	0.87	7410	
1	0.60	0.60	0.60	2352	
accuracy			0.81	9762	
macro avg	0.74	0.74	0.74	9762	
weighted avg	0.81	0.81	0.81	9762	

Knowing when to use decision trees

The main advantages of using decision trees is that they're:

- Easy to interpret
- Relatively fast to fit and make predictions
- Able to handle multiple types of data
- Able to pick up nonlinearities in data, and usually fairly accurate

The main disadvantage of using decision trees is their **tendency to overfit.**

Lesson #04 - Decision Trees.ipynb

- Data Transforms using numerical data
- Hyperparameter tuning (multiples eval. metrics?)
- Analysing overfitting (evalusing train dataset)
- Personalize pipeline
 - Feature selection
- Other models using Ensemble
 - RandomForest?