### Memoria del proyecto

para el Trabajo de Fin de Grado sobre el manipulador pArm

Javier Alonso Silva Mihai Octavian Stanescu José Alejandro Moya Blanco

Universidad Politécnica de Madrid Ingeniería de Computadores Trabajo de Fin de Grado Tutor: Norberto Cañas de Paz

Madrid, 14 de junio de 2020

# Índice general

| Hi | stori                                                                       | al de versiones                                                                              | 1  |  |  |  |
|----|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----|--|--|--|
| 1. | Mot                                                                         | ivación y objetivos                                                                          | 2  |  |  |  |
|    | 1.1.                                                                        | Estado del arte                                                                              | 2  |  |  |  |
|    |                                                                             | 1.1.1. Desarrollo de la robótica a lo largo de la historia - Revisado por:A - Visto Bueno: A | 2  |  |  |  |
|    |                                                                             | 1.1.2. Los brazos robóticos                                                                  | 5  |  |  |  |
|    |                                                                             | 1.1.3. La actualidad                                                                         | 6  |  |  |  |
|    | 1.2.                                                                        | Motivaciones para el desarrollo del proyecto                                                 | 6  |  |  |  |
|    | 1.3.                                                                        | Objetivos del proyecto                                                                       | 6  |  |  |  |
|    | 1.4.                                                                        | Metodología                                                                                  | 6  |  |  |  |
| 2. | Explicación de la estructura del proyecto - Revisado por:A - Visto Bueno: A |                                                                                              |    |  |  |  |
|    | 2.1.                                                                        | Matemáticas                                                                                  | 8  |  |  |  |
|    | 2.2.                                                                        | Hardware                                                                                     | 10 |  |  |  |
|    | 2.3.                                                                        | Software                                                                                     | 11 |  |  |  |
| 3. | Dia                                                                         | gramas, requisitos y diseño                                                                  | 12 |  |  |  |
|    | 3.1.                                                                        | Requisitos                                                                                   | 12 |  |  |  |
|    | 3.2.                                                                        | Diagramas y diseño                                                                           | 12 |  |  |  |
| 4. | Las                                                                         | matemáticas del proyecto                                                                     | 13 |  |  |  |
|    | 4.1.                                                                        | Cinemática directa                                                                           | 13 |  |  |  |
|    | 4.2.                                                                        | Cinemática inversa                                                                           | 13 |  |  |  |
|    | 4.3.                                                                        | Funciones jacobianas                                                                         | 13 |  |  |  |

|            | 4.4. | Implementación final realizada                                          | 13 |  |  |  |
|------------|------|-------------------------------------------------------------------------|----|--|--|--|
| <b>5</b> . | Har  | dware                                                                   | 14 |  |  |  |
|            | 5.1. | Impresión en 3D - Revisado por: A - Visto Bueno:                        | 14 |  |  |  |
|            | 5.2. | Microcontrolador utilizado - Revisado por: A - Visto Bueno:             | 16 |  |  |  |
|            | 5.3. | Desarrollo y componentes de la PCB                                      | 17 |  |  |  |
|            | 5.4. | Comunicaciones                                                          | 17 |  |  |  |
|            | 5.5. | Motores empleados (actuadores) - Revisado por:<br>A - Visto Bueno:<br>A | 17 |  |  |  |
| 6.         | Soft | Software 2                                                              |    |  |  |  |
|            | 6.1. | S1                                                                      | 21 |  |  |  |
|            |      | 6.1.1. UI/UX                                                            | 21 |  |  |  |
|            |      | 6.1.2. Protocolo de comunicación                                        | 21 |  |  |  |
|            |      | 6.1.3. Pseudolenguaje de comunicación                                   | 21 |  |  |  |
|            |      | 6.1.4. Logs                                                             | 21 |  |  |  |
|            |      | 6.1.5. Otros                                                            | 21 |  |  |  |
|            | 6.2. | S2                                                                      | 21 |  |  |  |
|            |      | 6.2.1. Protocolo de comunicación                                        | 21 |  |  |  |
|            |      | 6.2.2. Interpretación del pseudo-lenguaje                               | 21 |  |  |  |
|            |      | 6.2.3. Cálculo de movimientos/trayectorias                              | 21 |  |  |  |
|            |      | 6.2.4. Control de los componentes                                       | 21 |  |  |  |
|            |      | 6.2.5. Otros                                                            | 21 |  |  |  |
| 7.         | Cas  | os de estudio                                                           | 22 |  |  |  |
|            | 7.1. | Decisiones tomadas                                                      |    |  |  |  |
|            | 7.2. | Desarrollo de las distintas partes del proyecto                         | 22 |  |  |  |
| 8.         | Cali | dad y pruebas                                                           | 23 |  |  |  |
|            | 8.1. | . Batería de pruebas                                                    |    |  |  |  |
|            | 8.2. | Explicación de las pruebas                                              | 23 |  |  |  |
|            | 8.3. | Resultados esperados   resultados obtenidos                             | 23 |  |  |  |
|            | 8.4  | Reflexión - solución                                                    | 23 |  |  |  |

| 9.        | Demostración                                                          | 24 |
|-----------|-----------------------------------------------------------------------|----|
| 10        | Planificación, costes y tiempo empleado                               | 25 |
|           | 10.1. Diagramas de Gantt                                              | 25 |
|           | 10.2. Sueldos propuestos y costes obtenidos                           | 25 |
|           | 10.3. Coste de los materiales inicial - coste de los materiales final | 25 |
|           | 10.4. Evolución del tiempo empleado                                   | 25 |
|           | 10.5. Contratiempos y tiempo de desarrollo final                      | 25 |
| 11        | .Conclusiones                                                         | 26 |
|           | 11.1. Conclusiones técnicas                                           | 26 |
|           | 11.2. Experiencia personal en el desarrollo del proyecto              | 26 |
|           | 11.3. Conocimientos adquiridos y nuevas competencias                  | 26 |
| <b>12</b> | .Futuras mejoras                                                      | 27 |
|           | 12.1. Desarrollos e implementaciones que no han podido realizarse     | 27 |
|           | 12.2. Ideas propuestas pero no implementadas                          | 27 |
|           | 12.3. Otras                                                           | 27 |
| Bi        | bliografía                                                            | 28 |
| Aı        | nexos                                                                 | 29 |

### Historial de versiones

| Revisión | Fecha      | $\operatorname{Autor}(\operatorname{es})$ | Descripción                   |
|----------|------------|-------------------------------------------|-------------------------------|
| 0.0      | 27.05.2020 | J. Alonso, M. Stanescu, A. Moya           | Comienzo del desarrollo de la |
|          |            |                                           | memoria.                      |

### Motivación y objetivos

#### 1.1. Estado del arte

## 1.1.1. Desarrollo de la robótica a lo largo de la historia - Revisado por: A - Visto Bueno: A

El mundo de la robótica da acceso a resolver una gran variedad de problemas donde el ser humano estaba limitado físicamente: levantar cargas de gran peso, realizar tareas repetitivas durante tiempos prolongados, etc. Además, como bien se sabe, ha permitido el desarrollo de cadenas de producción en masa para poder desarrollar y crear los productos que usamos diariamente, desde el coche hasta el teléfono móvil.

Desde que se empezó a investigar en este campo, el desarrollo de los brazos robóticos ha sido exponencial: se empezó trabajando con pequeños autómatas hasta el desarrollo de la revolución industrial [1].

Los primeros modelos, como se puede ver en la figura 1.1, empezaron intentando hacer representaciones de las manos humanas. En particular, se crearon un flautista y un tamborilero los cuales eran capaces de tocar los respectivos instrumentos utilizando un complejo sistema de cables y engranajes para poder mover los "dedos" de los músicos.



Figura 1.1: flautista y tamborilero de Vaucanson [2].

Siguiendo con esta idea, se fue mejorando y desarrollando el modelo de imitación de las articulaciones y los miembros de los humanos, llegando a construir estructuras más complejas y avanzadas, pensadas en su momento para poder tocar el clavicordio mediante un muñeco, como se muestra en la figura 1.2:



Figura 1.2: en 1774, "lady musician" por Jaquet-Droz [3].

Durante los años siguientes, el proceso se fue refinando hasta el punto de desarrollar un autómata el cual era capaz de jugar al ajedrez, llamado "The Turk" [4], construido en 1769. La estructura comprendía un conjunto de mecanismos los cuales eran controlados por un operador, encargado de realizar los movimientos del brazo izquierdo del autómata.

En la figura 1.3 se puede ver cómo está diseñado el sistema para mover un controlador pantográfico sobre el tablero de juego, controlado por el operador externo antes mencionado:



Figura 1.3: "The Turk", creado por von Kempelen en 1769 [4].

Desde entonces, la robótica ha evolucionado y crecido de manera exponencial. Por una parte, debidas las distintas guerras que han habido en los últimos 200 años, se ha dado un gran impulso a la industria encargada de crear distintos dispositivos con fines de defensa y ataque. En particular, se potenciaron mucho los desarrollos de dispositivos por control remoto, destacando el diseño de Nicola Tesla en 1898 de un barco completamente automatizado, controlado por control remoto y sumergible, como se puede ver en la figura 1.4:



Figura 1.4: barco a control remoto de Nicola Tesla, en 1898 [5].

Por otro lado, dada la cantidad de bajas de las Primera y Segunda Guerras Mundiales, se empezaron a desarrollar robots que permitieran sustituir a los militares en el campo de batalla, destacando en este campo el robot "Elektro", creado por la compañía Westinghouse. Dicho robot supuso un gran éxito en la industria de los robots y armamentística, pudiendo moverse completamente, disparar armas, mover elementos faciales para "expresar emociones" e inclusive poder comunicarse.

En la figura 1.5, se puede ver a la izquierda la primera versión "Alpha" y, a la derecha, la versión mejorada "Elektro":



Figura 1.5: "Alpha", el primer robot diseñado con fines militares y su posterior evolución, "Elektro".

Toda esta evolución ha acabado dando a la época actual, en donde tenemos robots sofisticados y con distintos actuadores, pudiendo interactuar con muchísimos elementos de nuestro entorno y trabajar en distintas fases de producción de cadenas de montaje en serie. Además, se trabaja continuamente para que cada vez los robots puedan realizar más tareas de los humanos, mejorando cada vez más los "end-effectors" (controladores del final de los extremos del brazo). En la figura 1.6 se puede ver cómo robots medianamente antiguos (del 2005) ya podían realizar diversas actividades, como interactuar con las personas o tocar un instrumento.



Figura 1.6: exposición mundial del 2005 en Japón [6].

#### 1.1.2. Los brazos robóticos

Con los avances actuales, el mundo de la robótica ha evolucionado a un nuevo nivel: con la inclusión de los transistores en lugar de las válvulas de vacío se han podido desarrollar circuitos integrados que manejan de manera mucho más sofisticada el control del brazo robótico.

En 1962, la empresa "Unimate" introdujo su primer brazo robótico de carácter industrial. Aproximadamente, se vendieron 8500 unidades. Este hito es importante en tanto a que se valoraron por primera vez los grados de libertad que debían de tener los brazos robóticos.

Estos planteamientos derivaron en distintos robots famosos que incluso siguen en activo hoy día. En 1969, Victor Scheinman, de la Universidad de Standford, desarrolló un brazo robótico que funcionaba alimentado por la electricidad y que se podía mover en los seis ejes, el cual se llamó "el brazo de Standford". De forma paralela, Marvin Minsky, del MIT, desarrolló un brazo robótico para la investigación naval, para exploración submarina. En particular, el brazo tenía veinte grados de libertad ya que el brazo funcionaba mediante electricidad impulsando sistemas hidráulicos. Más tarde, Scheinman continuó desarrollando brazos robóticos, creando el "Programmable Universal Machine for Assembly", más conocido como PUMA.

En la actualidad, los brazos robóticos se desarrollan y diseñan para seguir la estructura física del cuerpo humano (ver figura 1.7).



Figura 1.7: grados de libertad de un brazo robótico y estructura del cuerpo humano [1].

De esta estructura anterior, se deducen las siguientes partes:

- Articulación del hombro: dispone de tres grados de libertad que permiten subir y bajar, ir a la izquierda y derecha, y rotar sobre sí mismo.
- Articulación del codo: el codo permite extender, contraer y reorientar tanto la muñeca como la mano. Por lo general, se estima la extensión del codo en unos 150°.
- La muñeca: compone el último elemento del brazo robótico antes de llegar al "endeffector". Es de los elementos más importantes debido a su gran capacidad de movimiento en las tres dimensiones. Sin esta articulación, el brazo robótico se asemejaría en funcionalidad a un robot pantográfico. Cada vez más, las articulaciones de la muñeca se vuelven complejas y sofisticadas. La muñeca humana, por ejemplo, puede moverse 45°desde el centro, pero se reduce mucho la capacidad de rotación de la misma. En la actualidad se está investigando cómo poder mejorar la relación de movimientos para permitir una mayor movilidad, pero las singularidades siguen siendo un gran problema. Por ejemplo, el robot quirúrgico da Vinci, pese a lo avanzado que pueda parecer, tiene problemas de bloqueo de las muñecas del mismo cuando se acerca a posiciones singulares.
- La mano: supone un "end-effector" diferenciado que define el propóstio y la capacidad del brazo robótico. La mano es una herramienta capaz de realizar múltiples acciones muy variadas entre sí. Actualmente, se sigue investigando de forma activa sobre ello para intentar implementar controles sensoriales, de presión y de movimiento en los "end-effector" de los robots.

#### 1.1.3. La actualidad

#### 1.2. Motivaciones para el desarrollo del proyecto

#### 1.3. Objetivos del proyecto

#### 1.4. Metodología

# Explicación de la estructura del proyecto - Revisado por: A - Visto Bueno: A

En este apartado se detalla cual es la estructura del proyecto y la memoria, así como los principales bloques que componen el desarrollo y construcción del brazo robótico.

El diseño y construcción de un brazo robótico es un proceso multidisciplinar en el que se deben emplear diversas áreas del conocimiento. Desde un primer momento, este proyecto se postuló como un proyecto completo de ingeniería, y es precisamente por eso que el proyecto está dividido en varios bloques, los cuales desempeñan una función clave en el desarrollo correcto del mismo.

El proyecto está divido en tres grandes bloques: modelo matemático, elementos hardware y elementos software. Cada una de estas partes se encuentra a su vez subdivida en diferentes partes o hitos, sin embargo, no es necesario describirlos con tanta precisión por el momento para poder comprender la estructura completa del proyecto.

Cabe destacar que, desde un punto de vista de ingeniería, a cada uno de los grandes bloques anteriormente mencionados se le puede asociar una función dentro del proyecto:

- El modelo matemático es la parte mas teórica del proyecto y su función es la de aportar una base formal y lógica que permita realizar cálculos sobre la cinemática del brazo robot. Este bloque se encuentra ubicado en el apartado 4 de la memoria.
- Los elementos hardware del proyecto constituyen la realidad física del brazo robótico y están estrictamente relacionados con la construcción del mismo, así como con el control de los actuadores y demás elementos hardware a nivel físico. Este bloque se encuentra ubicado en el apartado 5 de la memoria.
- Los elementos software del proyecto constituyen el principal mecanismo para implementar el modelo matemático y la lógica de funcionamiento del sistema completo, a través de la programación de los elementos hardware. Este bloque se encuentra ubicado en el apartado 6 de la memoria.

En cada uno de los bloques anteriores, ya sean hardware o software y requieran construc-

ción física o implementación mediante programación, se incluye la realización de pruebas de funcionamiento así como las revisiones pertinentes.

Es importante remarcar que, debido a la complejidad del sistema, el mismo esta divido en dos subsistemas que aglutinan funcionalidades vitales para el correcto funcionamiento del manipulador robótico:

- El sistema uno o S1 esta formado por la aplicación gráfica de usuario que se utiliza para controlar manualmente los movimientos del robot. Este subsistema es un elemento software íntegramente y está descrito en el apartado 6.1 de la memoria.
- El sistema dos o S2 esta formado por la estructura física del manipulador, los actuadores y la placa de circuito impreso de control. Este subsistema combina elementos hardware y software, así como conceptos del modelo matemático. Los elementos software se describen en el apartado 6.2 de la memoria, mientras que los elementos hardware se describen en el apartado 5 de la memoria.

A continuación, se describen de forma detallada todos los bloques descritos anteriormente y a su vez, se mencionan las principales subdivisiones de cada uno de ellos.

#### 2.1. Matemáticas

Los modelos matemáticos aplicados a proyectos de manipuladores robóticos son usados principalmente para realizar cálculos relacionados con los aspectos cinemáticos y dinámicos de los mismos.

Los aspectos cinemáticos de un manipulador robótico describen como es el movimiento y las trayectorias del mismo sin tener en cuenta las fuerzas que lo afectan, mientras que, los aspectos dinámicos describen como se ve afectado dicho movimiento en función de las fuerzas que actúan sobre el.

Ambos aspectos anteriormente mencionados deben de ser descritos mediante un modelo matemático que permita realizar cálculos sobre los movimientos del manipulador.

En este proyecto, se ha llevado a cabo únicamente el modelo cinemático, dado que debido a las características físicas del prototipo a construir, es decir, velocidades de desplazamiento, peso de las articulaciones o masa máxima de carga; se ha concluido que el modelo dinámico no aportaría demasiada información útil para llevar a cabo el control del manipulador. Cabe destacar que, el modelo dinámico suele presentar una complejidad mucho mas elevada que el modelo cinemático en términos matemáticos y por ello se ha desechado la posibilidad de llevarlo a cabo.

Desde un punto de vista técnico, el modelo cinemático de un manipulador robótico expresa cual es la posición del extremo del mismo con respecto al tiempo y en función de la posición de las articulaciones del mismo. Normalmente, los brazos robóticos se pueden describir matemáticamente mediante el concepto de cadena cinemática:



Figura 2.1: Ejemplo de cadena cinemática

Tal y como se puede apreciar en la imagen anterior, las articulaciones pueden rotar y permiten la movilidad de cada uno de los segmentos del manipulador. Dado que estas articulaciones rotan, su posición se expresa numéricamente mediante unidades angulares. El concepto de cadena cinemática hace referencia a que, dado que cada una de las articulaciones esta unida a la siguiente mediante un segmento, se genera una cadena de movimientos en la que la posición espacial de cada una de las articulaciones se ve afectada por la posición angular de las anteriores.

Aplicando este principio, el modelo cinemático expresa matemáticamente la posición cartesiana del extremo del robot en función de las coordenadas angulares de las articulaciones. Existen pues dos perspectivas del modelo cinemático:

- El modelo de cinemática directa expresa la posición espacial del extremo del manipulador en función de las coordenadas angulares de las articulaciones.
- El modelo de cinemática inversa expresa las coordenadas angulares de las articulaciones en función de las coordenadas cartesianas del extremo del manipulador.



Figura 2.2: Diagrama del modelo cinemático

En conclusión, el modelo matemático conforma la base teórica y formal que permite realizar el estudio de los movimientos del manipulador y es por ello que representa un bloque crucial dentro del proyecto.

#### 2.2. Hardware

Los elementos hardware conforman la implementación física del manipulador y de todos los componentes empleados para controlarlo.

En términos generales, el hardware usado en el proyecto se descompone en diferentes elementos:

- Impresión 3D de la estructura física del manipulador.
- Motores empleados en el manipulador.
- Desarrollo de la placa de circuito impreso de control y microcontrolador empleado.
- Comunicaciones entre los diferentes subsistemas.

En primer lugar, la impresión 3D es la tecnología seleccionada para la fabricación de la estructura física del manipulador debido a su bajo coste y accesibilidad. Esta parte del proyecto se centra en llevar a cabo la fabricación y construcción de la estructura física del manipulador, así como su ensamblado y testeo. Este apartado se ubica en el apartado 5.1 de la memoria.

En segundo lugar, la elección de los motores que dotan de movilidad a la estructura es una decisión crucial y que depende principalmente de cuales sean las características físicas del manipulador, así como de las tareas que se quieran realizar con el mismo. Existen numerosas opciones en cuanto a motores, por ejemplo, motores DC, servomotores, motores paso a paso, etc. Este apartado se ubica en el apartado 5.5 de la memoria.

En tercer lugar, el desarrollo de la PCB de control y elección del microcontrolador representan la parte más importante dentro del bloque hardware del proyecto. El objetivo principal de esta parte del proyecto es llevar a cabo el diseño y construcción de una PCB personalizada,

adaptada especialmente a los actuadores y microcontrolador usados para llevar a cabo el control del movimiento del manipulador. Se considera que esta PCB representa uno de los elementos hardware esenciales para el correcto desarrollo del proyecto. Este apartado se ubica en el apartado 5.3 de la memoria.

En último lugar, el diseño e implementación de los canales de comunicación y protocolos necesarios para comunicar los dos subsistemas principales requiere desarrollo hardware y software de forma equitativa, además, también representa uno de los elementos cruciales del proyecto. Este apartado se ubica en el apartado 5.4 de la memoria.

#### 2.3. Software

Los elementos software del proyecto abordan los siguientes aspectos:

- Desarrollo de la aplicación de control del brazo robótico, implementada mediante una interfaz gráfica de usuario para garantizar su accesibilidad y facilidad de uso. Esta implementación se lleva a cabo en S1.
- Programación del microcontrolador e implementación del modelo matemático en la práctica con el objetivo de controlar los movimientos del brazo robótico. Esta implementación se lleva a cabo en S2.

En primer lugar, mediante el desarrollo de la aplicación de usuario se busca ofrecer una forma de controlar los movimientos del robot de forma fácil y accesible, para ello se ha desarrollado una interfaz de usuario que se ejecuta en un ordenador auxiliar. Desde esta aplicación el usuario puede controlar los movimientos del robot, además de monitorizar el estado del mismo. Las órdenes dadas por el usuario desde esta aplicación son enviadas al microcontrolador para su realización mediante los canales de comunicación mencionados anteriormente. Este desarrollo se ha llevado a cabo mediante el lenguaje de programación Python. Este apartado se ubica en el apartado 6.1 de la memoria.

En segundo lugar, la programación del microcontrolador representa una parte esencial del proyecto, ya que toda la lógica de funcionamiento y control de los actuadores del brazo robótico se lleva a cabo en el mismo. Es por ello que la labor principal del microcontrolador es orquestar el funcionamiento de los actuadores, así como de realizar el computo necesario para transformar las ordenes del usuario en movimientos consecuentes del brazo robótico. La programación del microcontrolador se ha llevado a cabo mediante el lenguaje C. Este apartado se ubica en el apartado 6.2 de la memoria.

### Diagramas, requisitos y diseño

- 3.1. Requisitos
- 3.2. Diagramas y diseño

### Las matemáticas del proyecto

- 4.1. Cinemática directa
- 4.2. Cinemática inversa
- 4.3. Funciones jacobianas
- 4.4. Implementación final realizada

#### Hardware

#### 5.1. Impresión en 3D - Revisado por: A - Visto Bueno:

Las razones por las cuales se toma la decisión de fabricar la estructura del brazo mediante impresión 3D se detallan a continuación:

- Cumplir con el requisito de replicabilidad y asequibilidad: Una de las bases del proyecto es que pueda ser reproducible a bajo coste tanto de recursos como de tiempo. Se decide por tanto construir la estructura física del brazo mediante técnicas de impresión 3D ya que están altamente extendidas y son cada vez mas asequibles.
- Características físicas del material: El plástico utilizado para la impresión es ligero y suficientemente resistente para soportar las cargas para las que esta pensado el manipulador.
- Disponibilidad de impresora 3D: Dado que la universidad es capaz de proveer al equipo con una impresora 3D funcional, los costes del proyecto se abaratan si la estructura es realizada con los medios de los que la universidad ya dispone.
- Simplificar el proceso de mejora y personalización: Debido a la naturaleza OpenSoftware y OpenHardware del proyecto se espera que las personas interesadas puedan contribuir a el mejorándolo y/o personalizándolo. La impresión 3D facilita estas acciones.

La impresora que la Universidad pone a disposición del equipo de trabajo es la Ultimaker 3 Extended la cual es capaz de imprimir en una alta variedad de materiales. El equipo ha considerado los siguientes materiales:

 Ultimaker Nylon: Este material es un tipo de poliamida basada en PA6/66. Presenta una absorción de humedad reducida así como una capacidad considerable de resistencia ante tensiones mecánicas. También presenta un bajo coeficiente de fricción. • CPE+: Este material presenta una alta estabilidad dimensional, con buena resistencia al impacto y a la temperatura. Debido a su alta solidez y su estabilidad dimensional ofrece un buen rendimiento mecánico y gran resistencia al desgaste.

Debido a la naturaleza del proyecto el equipo ha decidido emplear materiales con alta resistencia mecánica y los anteriormente mencionados cumplen con dicha característica.

Aprovechando la licencia GPL 3.0 se ha recuperado el modelo 3D proporcionado por UFactory como punto de partida. A partir de este modelo se han impreso las piezas que hemos decidido conservar para nuestro proyecto.



Figura 5.1: Concepto inicial del brazo robótico

Las herramientas que han sido empleadas para visualizar y modificar el modelo y posteriormente imprimir las piezas han sido respectivamente FreeCAD y Slic3r.



Figura 5.2: Herramientas utilizadas

El flujo de trabajo que se ha seguido desde el modelo 3D hasta la impresión de una pieza ha sido el siguiente.



Figura 5.3: Flujo de trabajo de la impresión 3D

La estructura del brazo es pantográfica, lo que permite controlar todas las articulaciones mediante motores ubicados en la base. Esto es de especial importancia ya que hace posible que las articulaciones finales no carguen con el peso de los motores permitiendo emplear materiales como el plástico para la construcción de la estructura y además dando capacidad al brazo para levantar cargas mas pesadas.

# 5.2. Microcontrolador utilizado - Revisado por: A - Visto Bueno:

Para el desarrollo del la placa que conforma el S2 se ha empleado un microcontrolador ds-PIC33EP512GM604. Los motivos por los cuales se ha usado este modelo de DSP son los siguientes:

- En primera instancia, a la cantidad y a la precisión de los PWM que este ofrece, ya que son suficientes para poder controlar todos los motores y además su precisión permite generar una señal adecuada para controlar cada uno de los motores.
- Por otro lado, debido a la naturaleza de los cálculos que se deben realizar para convertir posiciones cartesianas a ángulos y viceversa, el DSP facilita el calculo de las diferentes operaciones matriciales que permiten esta conversión.
- Otro aspecto importante es la posibilidad de almacenar hasta 512KB de memoria de programa.
- Por ultimo se ha elegido un DSP Microchip debido a que todos los integrantes del grupo de desarrollo tiene experiencia previa con este fabricante. Además, dicho fabricante proporciona documentación extensa sobre sus productos.

Este microcontrolador gracias a que dispone de puertos UART permite recibir las ordenes y los movimientos necesarios desde el S1, por otro lado, el DSP cuenta con un PLL el cual permite aumentar la frecuencia interna del microcontrolador para incrementar la cantidad de operaciones por segundo que este puede hacer. Después de realizar las operaciones este se encargará de generar las señales PWM necesarias para mover los motores de tal manera que el brazo robótico quede en la posición deseada.

#### 5.3. Desarrollo y componentes de la PCB

#### 5.4. Comunicaciones

# 5.5. Motores empleados (actuadores) - Revisado por:A - Visto Bueno: A

En este apartado se describe que tipo de motores se han utilizado, así como las razones que han llevado a utilizar un tipo de motores en lugar de otros.

Dado que en este proyecto se ha planteado la construcción de un manipulador o brazo robótico, los únicos actuadores empleados han sido motores, los cuales dotan de movilidad a la estructura física del brazo.

Cabe destacar que debido a la forma de la estructura física del brazo y dado a que el mismo tiene tres articulaciones móviles, se han empleado tres motores principales en cada una de ellas y un motor auxiliar en el extremo o end-effector del manipulador.

Existen varios tipos de motores eléctricos que pueden ser usados para dotar de movilidad a proyectos de robótica de pequeña escala, sin embargo los principales tipos se pueden aglutinar en las siguientes tres categorías:

Motores de corriente continua: son los motores eléctricos mas sencillos y básicos, debido a esto, realizar el control de la posición angular del eje y su velocidad de rotación es complicado y requiere aplicar técnicas de control de lazo cerrado. Además, el control físico de este tipo de motores se lleva a cabo mediante una señal PWM actuando sobre un puente H.



Figura 5.4: Motor de corriente continua

• Motores paso a paso: se trata de motores eléctricos mas complejos que ofrecen una precisión muy alta en cuanto a posición y velocidad, ya que descomponen su movimiento en pasos de longitud constante. En este tipo de motores se puede realizar control de velocidad y posición del eje del motor mediante técnicas de control de lazo abierto, dado que en este tipo de motores se controla el número de pasos que da el motor, así como cada cuanto tiempo se produce un paso. Este tipo de motores suelen necesitar un driver específico para ser controlados.



Figura 5.5: Motor paso a paso

■ Servomotores: se trata de motores de corriente continua que incorporan un sistema de control de posición de lazo cerrado, por ello, este tipo de motores ofrecen un control muy simple de la posición angular del eje del motor. A través de una señal PWM enviada al motor, se puede establecer una posición consigna que el eje del motor debe cumplir. Estos motores incluyen un sensor de posición o encoder que determina la posición angular del eje del motor y un pequeño microcontrolador que verifica la posición actual del eje en comparación con la posición de consigna establecida, realizando las correcciones necesarias hasta alcanzar dicha posición angular.



Figura 5.6: Servomotor de corriente continua

Tras analizar los diferentes tipos de motores anteriormente expuestos, se ha decidido utilizar servomotores para dotar de movilidad al brazo robótico. Esta decisión se fundamenta en los siguientes motivos:

• Este tipo de motores ofrece un control de posición preciso y simple mediante una señal PWM. A pesar de que dicho control de posición se realiza mediante lazo cerrado internamente dentro del motor, desde un punto de vista externo, no se necesita ningún tipo de realimentación externa, driver adicional o circuito de puente H para controlarlos.



Figura 5.7: Control de posición mediante PWM

- Se trata de motores que se adaptan muy bien para proyectos de robótica de pequeña escala, debido a su bajo coste y sencillez de uso.
- Este tipo de motores está muy extendido en el mercado y existen numerosos modelos con diferentes potencias, tamaños, etc.

Es importante destacar que existen dos tipos de servomotores:

- Servomotores de giro limitado: son aquellos servomotores que tienen un rango de rotación limitado, el cual suele ser normalmente de 180º. Son el tipo de servomotor mas sencillo.
- Servomotores de giro continuo: son aquellos servomotores que tienen rango completo de giro, es decir, pueden realizar giros de 360º.

Dado que ninguna de las articulaciones del motores esta diseñada para realizar giros de más de 180º, se han empleado servomotores de giro limitado.

Otro de los datos que es importante clarificar antes de tomar la decisión de que motores van a ser usados en un proyecto de robótica, es la carga máxima que va tener que desplazar el manipulador robótico. Este dato afecta principalmente al diseño de la estructura física del brazo y a la potencia de los motores escogidos, en especial, el torque que ejercen.

Finalmente, el modelo de servomotor elegido para las articulaciones ha sido el *Parallax 900-00005 Standard Servo* el cual tiene las siguientes características técnicas:

- Servomotor de rango limitado de 180º.
- Control mediante señal PWM de 50Hz.

- Alimentación de entre 4V y 6V, utilizando entre 15mA y 200mA. Potencia nominal de 140mA.
- Torque máximo ejercido de  $27N \cdot cm$ , es decir aproximadamente  $2,75Kg \cdot cm$ . Este torque garantiza una carga máxima de unos 80g 100g para el brazo robótico.
- Peso de 44g.
- Dimensiones 406 x 55,8 x 19 mm



Figura 5.8: Servomotor Parallax utilizado

Teniendo en cuenta los datos técnicos anteriores, este modelo de servomotor se adapta perfectamente a las características del brazo robótico que se ha desarrollado, cumpliendo todas la cualidades deseadas para que el funcionamiento del brazo robótico sea correcto.

### Software

- 6.1. S1
- 6.1.1. UI/UX
- 6.1.2. Protocolo de comunicación
- 6.1.3. Pseudolenguaje de comunicación
- 6.1.4. Logs
- 6.1.5. Otros
- 6.2. S2
- 6.2.1. Protocolo de comunicación
- 6.2.2. Interpretación del pseudo-lenguaje
- 6.2.3. Cálculo de movimientos/trayectorias
- 6.2.4. Control de los componentes
- 6.2.5. Otros

### Casos de estudio

- 7.1. Decisiones tomadas
- 7.2. Desarrollo de las distintas partes del proyecto

### Calidad y pruebas

- 8.1. Batería de pruebas
- 8.2. Explicación de las pruebas
- 8.3. Resultados esperados | resultados obtenidos
- 8.4. Reflexión solución

Demostración

### Planificación, costes y tiempo empleado

- 10.1. Diagramas de Gantt
- 10.2. Sueldos propuestos y costes obtenidos
- 10.3. Coste de los materiales inicial coste de los materiales final
- 10.4. Evolución del tiempo empleado
- 10.5. Contratiempos y tiempo de desarrollo final

### Conclusiones

- 11.1. Conclusiones técnicas
- 11.2. Experiencia personal en el desarrollo del proyecto
- 11.3. Conocimientos adquiridos y nuevas competencias

### Futuras mejoras

- 12.1. Desarrollos e implementaciones que no han podido realizarse
- 12.2. Ideas propuestas pero no implementadas
- 12.3. Otras

### Bibliografía

- [1] M. E. Moran, «Evolution of robotic arms,» en, *Journal of Robotic Surgery*, vol. 1, n.º 2, págs. 103-111, jul. de 2007, ISSN: 1863-2491. DOI: 10.1007/s11701-006-0002-x. dirección: https://doi.org/10.1007/s11701-006-0002-x (visitado 01-06-2020).
- [2] J. d. Vaucanson, Le mécanisme du flûteur automate: présenté à Messieurs de l'Académie royale des Sciences: avec la description d'un canard artificiel et aussi celle d'une autre figure également merveilleuse, jouant du tambourin et de la flûte, fr. chez Jacques Guerin, imprimeur-libraire, 1738, Google-Books-ID: UNw6AAAACAAJ.
- [3] Chapuis, Alfred and Droz, Edmond, Automata: A historical and technological study. L'Editions du Griffon, 1958.
- [4] Standage, Tom, The Turk: The life and times of the famous eighteenth-century chess-playing machine. Walker company, 2002.
- [5] Belarmino, J and Moran, ME and Firoozi, F and Capello, S and Kolios, E and Perrotti, M, «Tesla's robot and the dawn of the current era. Society of urology and engineering,» 7.<sup>a</sup> ép., vol. 19, n.<sup>o</sup> J Endourol, A214, 2005.
- [6] —, «An oriental culture of robotics—the coming maelstrom. Society of Urology and Engineering,» 7.ª ép., vol. 19, n.º J Endourol, A119, 2005.

### Anexos