Tutorial -2 (11/9/2020)

- 1. What is the difference between DFA and NFA. Are all the real-life machines DFA or NFA, and why? Why do we need NFA?
- 2. Why is every DFA an NFA?
- 3. Construct NFA for $\Sigma = \{a,b\}$ that accepts set of all strings which:
 - a. Starts with 'a'
 - b. Ends with 'a'
- 4. Construct NFA for $\Sigma = \{a,b\}$ that accepts set of all strings containing 'a'
- 5. Construct NFA for $\Sigma = \{a,b\}$ that accepts set of all strings that:
 - a. Starts with 'ab'
 - b. Contains 'ab'
 - c. Ends with 'ab'
- 6. While constructing state diagram with minimum states, dead state is compulsory for:
 - a. Only DFA
 - b. Only NFA
 - c. Both NFA and DFA
 - d. Neither DFA nor NFA
- 7. Write a regular expression and the language recognized by the following DFA:

8. Consider the following non-deterministic finite automaton (NFA) over the alphabet $\Sigma = \{0,1\}.$

Give the language recognized by the NFA. Write a regular expression for this language.

- 9. Which one of the following regular expressions represents the set of all binary strings with an odd number of 1's?
 - A. 10*(0*10*10*)*
 - B. ((0 + 1)*1(0 + 1)*1)*10*
 - C. (0*10*10*)*10*
 - D. (0*10*10*)*0*1
- 10. Which of the regular expressions given below represent the following DFA?

- I) 0*1(1+00*1)*
- II) 0*1*1+11*0*1
- III) (0+1)*1
- (A) I and II only (B) I and III only (C) II and III only (D) I, II, and III

Questions to solve within 13/9/2020 (Sunday)

- 1. Write down the regular expression for the set of all strings containing at least two 0's over the alphabet {0,1}.
- 2. Convert given NFA to DFA:

3. Let $L = \{w \in (0 + 1)^* | w \text{ has even number of } |s|, i.e. L \text{ is the set of all bit strings with even number of 1s. Write down the regular expression which represents L. Also draw the DFA for above language.$