Premesse

> Totale limitatezza

Sia (Y, d) uno spazio metrico.

Sia $A \subseteq Y$.

A si dice totalmente limitato quando

$$orall arepsilon>0, \ \exists A_1,\ldots,A_n\subseteq A: igcup_{i=1}^n A_i=A \wedge \operatorname{diam}(A_i)$$

Ovviamente, la totale limitatezza implica la limitatezza.

> Caratterizzazione della compattezza di uno spazio metrico

Sia (Y, d) uno spazio metrico.

Sono equivalenti le seguenti affermazioni:

- 1. X è compatto;
- 2. X è sequenzialmente compatto;
- 3. X è completo e totalmente limitato.

> Convenzione: Estremi inferiore e superiore dell'insieme vuoto

Si pone per convenzione $\inf(\varnothing) = +\infty$ e $\sup(\varnothing) = -\infty$.

> Notazione: Insieme delle funzioni limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

 $\mathcal{B}(X,Y)$ denota l'insieme delle funzioni limitate da X in Y.

> Metrica uniforme

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\mathcal{F} \subseteq \mathcal{B}(X,Y)$.

Si definisce la **metrica uniforme** su $\mathcal F$ come la metrica ho_d (si dimostra che è una metrica) definita ponendo

$$ho_d(f,g) = \sup_{x \in X} d(f(x),g(x))$$
 per ogni $f,g \in \mathcal{F}$.

Una successione $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathcal{B}(X,Y)$ converge convergente a f secondo ρ_d se e solo se $f_n\stackrel{\mathrm{unif.}}{\longrightarrow} f$.

> Limite uniforme di una successione di funzioni limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathcal{B}(X,Y)$ una successione convergente a f secondo ρ_d , cioè tale che $f_n\stackrel{\mathrm{unif.}}{\longrightarrow} f$.

Allora, $f \in \mathcal{B}(X,Y)$.

\rightarrow Notazione: $\mathcal{F}(A)$

Siano X e Y due insiemi non vuoti.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Sia $A \subseteq X$.

Si pone $\mathcal{F}(A) = \{f(x) \mid x \in A, f \in \mathcal{F}\}.$

Misura di non compattezza secondo Kuratowski

₩ Definizione: Misura di non compattezza secondo Kuratowski

Sia (Y, d) uno spazio metrico.

Sia $A \subseteq Y$ non vuoto.

$$\operatorname{Sia} \, \alpha(A) = \inf \bigg\{ \varepsilon > 0 : \exists A_1, \dots, A_n \subseteq A : \bigcup_{i=1}^n A_i = A \wedge \operatorname{diam}(A_i) < \varepsilon \ \forall i \in \{1, \dots, n\} \bigg\}.$$

 $\alpha(A)$ prende il nome di misura di non compattezza secondo Kuratowski.

Q Osservazione

 $\alpha(A) \geq 0$; in particolare:

• $\alpha(A) = 0$ se e solo se A è totalmente limitato;

• $\alpha(A) < +\infty$ (ossia l'insieme di cui α è l'estremo inferiore è non vuoto) se e solo se A è limitato.

A livello intuitivo, la misura di non compattezza è indice di quanto un insieme in uno spazio metrico si discosta dall'essere compatto.

Infatti, un insieme compatto in uno spazio metrico è totalmente limitato, dunque ha misura nulla secondo Kuratowski.

Totale limitatezza di una funzione

Definizione: Oscillazione di una funzione a valori in uno spazio metrico

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

Si dice **oscillazione** di f su $A \subseteq X$ il valore diam(f(A)).

Essa si denota con $\omega_f(A)$.

₩ Definizione: Funzione totalmente limitata

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

f si dice totalmente limitata quando la sua immagine f(X) è totalmente limitata.

L'insieme delle funzioni $f: X \to Y$ totalmente limitate si denota con TB(X,Y).

Q Osservazione

Si ha $TB(X,Y) \subseteq \mathcal{B}(X,Y)$; allora, esso è spazio metrico con la metrica uniforme ρ_d .

La totale limitatezza di una funzione può essere caratterizzata nel seguente modo:

Proposizione 4.1: Caratterizzazione della totale limitatezza di una funzione

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $f: X \to Y$ una funzione.

Sono equivalenti i seguenti fatti:

- 1. f è totalmente limitata;
- 2. Per ogni $\varepsilon>0$, esiste $X_1,\ldots,X_n\subseteq X$ con $\bigcup_{i=1}^n X_i=X$, tali che $\omega_f(X_i)<\varepsilon$ per ogni $i\in\{1,\ldots,n\}$.

\bigcirc Dimostrazione (1. \Rightarrow 2.)

Si supponga f totalmente limitata.

Si fissi $\varepsilon > 0$.

Per totale limitatezza di f, esistono $Y_1,\ldots,Y_n\subseteq f(X)$ con $\bigcup_{i=1}^nY_i=f(X)$ tali che $\operatorname{diam}(Y_i)<arepsilon$ per ogni $i\in\{1,\ldots,n\}$.

Posto
$$X_i=f^{-1}(Y_i),$$
 si ha $\bigcup\limits_{i=1}^n X_i=X$ e $f(X_i)=f(f^{-1}(Y_i))\subseteq Y_i.$

Allora, $\omega_f(X_i) = \operatorname{diam}(f(X_i)) \leq \operatorname{diam}(Y_i) < arepsilon$ per ogni $i \in \{1, \dots, n\}$.

\triangleright Dimostrazione (2. \Rightarrow 1.)

Si supponga verificata la condizione 2.

Si fissi $\varepsilon > 0$.

Per ipotesi, esistono
$$X_1,\ldots,X_n\subseteq X$$
 con $\bigcup_{i=1}^n X_i=X$ tali che $\omega_f(X_i) per ogni $i\in\{1,\ldots,n\}$.$

Posto
$$Y_i=f(X_i)$$
, si ha $\bigcup\limits_{i=1}^nY_i=Y$ e $\operatorname{diam}(Y_i)=\operatorname{diam}(f(X_i))=\omega_f(X_i) per ogni $i\in\{1,\ldots,n\}$.$

Equi-limitatezza e equi-totale limitatezza

$\mbox{\it \#}$ Definizione: Famiglia di funzioni equi-limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Le funzioni in \mathcal{F} si dicono equi-limitate quando $\mathcal{F}(X)$ è limitato in (Y, d).

Osservazione

sia $y_0 \in Y$.

Le funzioni in $\mathcal F$ sono equi-limitate se e solo se esiste M>0 tale che $f(X)\in B(y_0,M)$ per ogni $f\in\mathcal F$.

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-limitate.

Allora, $\mathcal{F} \subseteq \mathcal{B}(X,Y)$.

₩ Definizione: Famiglia di funzioni equi-totalmente limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y.

Le funzioni in ${\mathcal F}$ si dicono **equi-totalmente limitate** quando

$$orall arepsilon>0,\;\exists X_1,\ldots,X_n\subseteq X:\quad igcup_{i=1}^n X_i=X\quad \wedge\quad orall i\in\{1,\ldots,n\},\; orall f\in\mathcal{F},\; \omega_f(X_i)$$

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia \mathcal{F} una famiglia di funzioni da X in Y, equi-totalmente limitate.

Allora, $\mathcal{F} \subseteq TB(X,Y)$ per la [Proposizione 4.1].

Q Osservazione

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Sia ${\mathcal F}$ una famiglia di funzioni da X in Y, equi-totalmente limitate.

Non è detto che esse siano equi-limitate.

Ad esempio, posto (Y, d) pari a \mathbb{R} con la metrica euclidea, si consideri $\mathcal{F} = \{f_k \mid k \in \mathbb{R}\}$, dove f_k è definita ponendo $f_k(x) = k$ per ogni $x \in X$.

Le sue funzioni sono equi-totalmente limitate in quanto $\omega_f(X)=0$ per ogni $f\in\mathcal{F}.$

Tuttavia, $\mathcal{F}(X) = \mathbb{R}$, che non è limitato.

La seguente proposizione fornisce una formula per la misura di non compattezza di certe famiglie di funzioni equi-totalmente limitate:

🖹 Teorema 4.2: Misura di non compattezza di insiemi limitati di funzioni equi-tot. limitate

Sia X un insieme non vuoto.

Sia (Y, d) uno spazio metrico.

Si consideri lo spazio TB(X,Y) con la metrica uniforme ρ_d .

Sia $\mathcal{F} \subseteq TB(X,Y)$ un insieme tale che:

- 1. \mathcal{F} sia limitato in TB(X,Y) rispetto a ρ_d ;
- 2. Le funzioni in $\mathcal F$ siano equi-totalmente limitate.

Allora,
$$lpha(\mathcal{F}) = \sup_{x \in X} lpha(\mathcal{F}(x)) = lpha(\mathcal{F}(X)).$$

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in \mathcal{F} , esistono $X_1, \ldots, X_n \subseteq X$ con $\bigcup_{i=1}^n X_1 = X$, per cui $\omega_f(X_i) < \frac{\varepsilon}{3}$ per ogni $i \in \{1, \ldots, n\}$ e per ogni $f \in \mathcal{F}$.

Per definizione di $\alpha(\mathcal{F})$, che è finito in quanto \mathcal{F} è limitato, dalla seconda proprietà dell'estremo inferiore segue che esistono $\mathcal{F}_1, \ldots, \mathcal{F}_m \subseteq \mathcal{F}$ con $\bigcup_{j=1}^m \mathcal{F}_j = \mathcal{F}$, per cui $\operatorname{diam}_{\rho_d}(\mathcal{F}_j) < \alpha(\mathcal{F}) + \frac{\varepsilon}{3}$ per ogni $j \in \{1, \ldots, m\}$.

Si considerino gli insiemi $\mathcal{F}_j(X_i)$ al variare di $i \in \{1, ..., n\}$ e $j \in \{1, ..., m\}$;

si ha
$$igcup_{i=1}^nigcup_{j=1}^m\mathcal{F}_j(X_i)=\mathcal{F}(X).$$

Si stimi $\operatorname{diam}(\mathcal{F}_i(X_i))$ per ogni $i \in \{1, \dots, n\}$ e per ogni $j \in \{1, \dots, m\}$.

Siano $y_1, y_2 \in \mathcal{F}_j(X_i)$.

Per definizione di $\mathcal{F}_j(X_i)$, si ha $y_1=f(x_1)$ e $y_2=g(x_2)$, con $f,g\in\mathcal{F}_j$ e $x_1,x_2\in X_i$.

Si ha la seguente catena di disuguaglianze:

$$d(y_1, y_2) = d(f(x_1), g(x_2))$$

 $\leq d(f(x_1),g(x_1)) + d(g(x_1),g(x_2))$ Disuguaglianza triangolare

$$\leq
ho_d(f,g) + d(g(x_1),g(x_2))$$
 In quanto $ho_d(f,g) = \sup_{x \in X} d(f(x),g(x))$

$$In quanto $ho_d(f,g)\leq \mathrm{diam}_{
ho_d}(\mathcal{F}_j) e $d(g(x_1),g(x_2))\leq \omega_f(X_i)<rac{arepsilon}{3}$$$$

Dunque, si ha $\operatorname{diam}(\mathcal{F}_j(X_i)) \leq \alpha(\mathcal{F}) + \frac{2\varepsilon}{3} < \alpha(\mathcal{F}) + \varepsilon$ per ogni $i \in \{1, \ldots, n\}$ e $j \in \{1, \ldots, m\}$.

Allora, la famiglia $\{\mathcal{F}_j(X_i) \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,m\}\}$ è un ricoprimento finito di $\mathcal{F}(X)$ costituito da insiemi di diametro minore di $\alpha(\mathcal{F}) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) + \varepsilon$ per definizione di $\alpha(\mathcal{F}(X))$.

Segue $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F})$ per arbitrarietà di $\varepsilon > 0$.

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in \mathcal{F} , esistono $X_1, \ldots, X_n \subseteq X$ con $\bigcup_{i=1}^m X_i = X$, per cui $\omega_f(X_i) < \frac{\varepsilon}{4}$ per ogni $i \in \{1, \ldots, n\}$ e per ogni $f \in \mathcal{F}$.

Per definizione di $\alpha(\mathcal{F}(X))$, che è finito in quanto $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) < +\infty$ per la disuguaglianza provata prima, dalla seconda proprietà dell'estremo inferiore segue che esistono $Y_1, \ldots, Y_k \subseteq \mathcal{F}(X)$ con $\bigcup_{j=1}^k Y_j = \mathcal{F}(X)$, per cui diam $(Y_i) < \alpha(\mathcal{F}(X)) + \frac{\varepsilon}{4}$ per ogni $j \in \{1, \ldots, k\}$.

Si supponga senza perdere di generalità che Y_1,\ldots,Y_k siano a due a due disgiunti; infatti, in caso contrario basta considerare $\tilde{Y}_1,\ldots,\tilde{Y}_k$ definiti ponendo $\tilde{Y}_j=Y_j\setminus\bigcup_{h=1}^{j-1}Y_h$ per ogni $j\in\{1,\ldots,k\}$.

Per ogni $i \in \{1, \ldots, n\}$, si fissi $x_i \in X_i$.

Per ogni $f \in \mathcal{F}$, sia $\varphi_f : \{1, \ldots, n\} \to \{1, \ldots, k\}$ l'applicazione definita ponendo $\varphi_f(i) = j$, dove j è l'unico indice in $\{1, \ldots, k\}$ tale che $f(x_i) \in Y_j$ (esso è unico in quanto Y_1, \ldots, Y_k sono stati supposti a due a due disgiunti).

Si introduca in \mathcal{F} la relazione \sim definita ponendo $f \sim g$ quando $\varphi_f = \varphi_g$, che è di equivalenza.

Allora, la relazione in questione induce una partizione di \mathcal{F} indotta dalle classi di equivalenza; tali classi sono in numero finito, in quanto l'insieme quoziente \mathcal{F}/\sim è in corrispondenza biunivoca con un sottoinsieme delle funzioni da $\{1,\ldots,n\}$ a $\{1,\ldots,k\}$, che ha cardinalità finita (pari a k^n).

Siano dunque $\mathcal{F}_1, \dots, \mathcal{F}_m$ tali classi di equivalenza.

Si stimi $\operatorname{diam}(\mathcal{F}_p)$ per ogni $p \in \{1, \dots, m\}$.

Siano $f, g \in \mathcal{F}_p$.

Sia $x \in X$, e sia $i \in \{1, \ldots, n\}$ per cui $x \in X_i$ (che esiste perché X_1, \ldots, X_n ricoprono X).

Si ha

 $d(f(x), g(x)) \le d(f(x), f(x_i)) + d(f(x_i), g(x_i)) + d(g(x_i), g(x))$ Disuguaglianza triangolare applicata due volte

 $<\omega_f(X_i)+\operatorname{diam}(Y_i)+\omega_g(X_i)$

Le maggiorazioni del primo e del terzo addendo seguono dal fatto che $x, x_i \in X_i$

La maggiorazione del secondo segue dal fatto che

 $f,g\in {\mathcal F}_p$, dunque $f\sim g$ e quindi esiste

 $j \in \{1,\ldots,k\}$ per cui $f(x_i),g(x_i) \in Y_i$

 $0<rac{arepsilon}{4}+lpha(\mathcal{F}(X))+rac{arepsilon}{4}+rac{arepsilon}{4}=lpha(\mathcal{F}(X))+rac{3arepsilon}{4}$

Per costruzione di X_i e Y_i

Dunque, si ha diam $(\mathcal{F}_p) \leq \alpha(\mathcal{F}(X)) + \frac{3\varepsilon}{4} < \alpha(\mathcal{F}(X)) + \varepsilon$ per ogni $p \in \{1, \ldots, m\}$.

Allora, la famiglia $\{\mathcal{F}_p \mid p \in \{1, \dots, m\}\}$ è un ricoprimento finito di $\mathcal{F}(X)$ costituito da insiemi di diametro minore di $\alpha(\mathcal{F}(X)) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F}) + \varepsilon$ per definizione di $\alpha(\mathcal{F}(X))$.

Segue $\alpha(\mathcal{F}(X)) \leq \alpha(\mathcal{F})$ per arbitrarietà di $\varepsilon > 0$.

Dimostrazione: $\alpha(\mathcal{F}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x)) \leq \alpha(\mathcal{F}(X))$

È evidente che $\sup_{x \in X} \alpha(\mathcal{F}(x)) \le \alpha(\mathcal{F}(X))$; infatti, $\mathcal{F}(x) \subseteq \mathcal{F}(X)$ per ogni $x \in X$, da cui segue che $\alpha(\mathcal{F}(x)) \le \alpha(\mathcal{F}(X))$ per ogni $x \in X$.

Si provi ora $\sup_{x \in X} \alpha(\mathcal{F}(x)) \ge \alpha(\mathcal{F})$.

Sia $\varepsilon > 0$.

Per equi-totale limitatezza delle funzioni in \mathcal{F} , esistono $X_1, \ldots, X_n \subseteq X$ con $\bigcup_{i=1}^m X_i = X$, per cui $\omega_f(X_i) < \frac{\varepsilon}{4}$ per ogni $i \in \{1, \ldots, n\}$ e per ogni $f \in \mathcal{F}$.

Per ogni $i \in \{1, ..., n\}$, si fissi $x_i \in X_i$ e si consideri $\mathcal{F}(x_i)$;

per definizione di $\alpha(\mathcal{F}(x_i))$, che è finito in quanto $\alpha(\mathcal{F}(x_i)) \leq \alpha(\mathcal{F}(X)) < +\infty$ per la disuguaglianza provata prima, dalla seconda proprietà dell'estremo inferiore segue che

esistono
$$Y_{i,1},\ldots,Y_{i,k_i}\subseteq\mathcal{F}(x_i)$$
 tali che $igcup_{j=1}^{k_i}Y_{i,j}=\mathcal{F}(x_i)$ e $\mathrm{diam}(Y_{i,j}) per ogni $j\in\{1,\ldots,k_i\}$.$

Sia
$$\mathcal{F}_{i,j}=\{f\in\mathcal{F}:f(x_i)\in Y_{i,j}\mid i\in\{1,\ldots,n\},j\in\{1,\ldots,k_i\}\}; ext{ si ha } igcup_{i=1}^nigcup_{j=1}^{k_i}\mathcal{F}_{i,j}=\mathcal{F}.$$

Si stimi $\operatorname{diam}(\mathcal{F}_{i,j})$ per ogni $i \in \{1,\ldots,n\}$ e per ogni $j \in \{1,\ldots,k_i\}$.

Siano $f, g \in \mathcal{F}_{i,j}$.

Sia $x \in X$, e sia $i \in \{1, \ldots, n\}$ per cui $x \in X_i$ (che esiste perché X_1, \ldots, X_n ricoprono X).

Si ha

$$egin{split} d(f(x),g(x)) & \leq d(f(x),f(x_i)) + d(f(x_i),g(x_i)) + d(g(x_i),g(x)) \ & \leq \omega_f(X_i) + \mathrm{diam}(Y_{i,j}) + \omega_f(X_i) \end{split}$$

Disuguaglianza triangolare applicata due volte

Le maggiorazioni del primo e del terzo addendo seguono dal fatto che $x, x_i \in X_i$

La maggiorazione del secondo segue dal fatto che $f(x_i), g(x_i) \in Y_{i,j}$

$$<rac{arepsilon}{4}+lpha(\mathcal{F}(x_i))+rac{arepsilon}{4}+rac{arepsilon}{4}=lpha(\mathcal{F}(x_i))+rac{3arepsilon}{4}$$
 Per costruzione di X_i e $Y_{i,j}$ $\leq \sup_{x\in X}lpha(\mathcal{F}(x))+rac{3arepsilon}{4}$ Per definizione di $\sup_{x\in X}lpha(\mathcal{F}(x))$

Dunque, si ha $\operatorname{diam}(\mathcal{F}_{i,j}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x)) + \frac{3\varepsilon}{4} < \sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$ per ogni $i \in \{1, \dots, n\}$ e per ogni $j \in \{1, \dots, k_i\}$.

Allora, la famiglia $\{\mathcal{F}_{i,j} \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,k_i\}\}$ è un ricoprimento finito di \mathcal{F} costituito da insiemi di diametro minore di $\sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$.

Pertanto, $\alpha(\mathcal{F}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x)) + \varepsilon$ per definizione di $\alpha(\mathcal{F})$.

Segue $\alpha(\mathcal{F}) \leq \sup_{x \in X} \alpha(\mathcal{F}(x))$ per arbitrarietà di $\varepsilon > 0$.

Proposizione 4.3: Equivalenza della totale limitatezza di un insieme di funzioni totalmente limitate

Sia $X \neq \emptyset$.

Sia (Y, d) uno spazio metrico.

Sia $\mathcal{F} \subseteq TB(X,Y)$.

Le seguenti asserzioni sono equivalenti:

- 1. \mathcal{F} è totalmente limitato in $(TB(X,Y), \rho_d)$.
- 2. Le funzioni in \mathcal{F} sono equi-totalmente limitate, e $\mathcal{F}(X)$ è totalmente limitato in (Y, d).
- 3. Le funzioni in $\mathcal F$ sono equi-totalmente limitate, e $\mathcal F(x)$ è totalmente limitato in (Y,d) per ogni $x\in X$.

Dimostrazione

In virtù del teorema precedente, basta mostrare che, se \mathcal{F} è totalmente limitato in TB(X,Y) rispetto a ρ_d , allora le sue funzioni sono equi-totalmente limitate.

Sia $\varepsilon > 0$.

Essendo \mathcal{F} totalmente limitato per ipotesi, esistono $\mathcal{F}_1, \ldots, \mathcal{F}_n \subseteq \mathcal{F}$ con $\bigcup_{i=1}^n \mathcal{F}_i = \mathcal{F}$, tali che diam $(\mathcal{F}_i) < \frac{\varepsilon}{4}$ per ogni $i \in \{1, \ldots, n\}$.

Per ogni $i \in \{1, \ldots, n\}$, sia $f_i \in \mathcal{F}_i$.

Essendo $\mathcal{F}_i \subseteq \mathcal{F} \subseteq TB(X,Y)$, f_i è totalmente limitata per ogni $i \in \{1,\ldots,n\}$.

Allora, esistono $X_{i,1},\ldots,X_{i,k_i}\subseteq X$ con $\bigcup_{j=1}^{k_i}X_{i,j}=X$ tali che $\omega_{f_i}(X_{i,j})<rac{arepsilon}{4}$ per ogni $j\in\{1,\ldots,k_i\}$.

Sia
$$\mathcal{D}=\prod_{i=1}^n\{1,\ldots,k_i\}=\{(j_1,\ldots,j_n)\in\mathbb{N}^n: orall i\in\{1,\ldots,n\},\ j_i\leq k_i\}.$$

Si considerino gli insiemi non vuoti del tipo $X_{1,j_1}\cap X_{2,j_2}\cap\cdots\cap X_{n,j_n}$ al variare di $(j_1,\ldots,j_n)\in\mathcal{D}$;

si osserva intanto che questi ricoprono X, in quanto $\bigcup_{j=1}^{k_i} X_{i,j} = X$ per ogni $i \in \{1, \dots, n\}$ per costruzione.

Si vuole studiare l'oscillazione di una qualsiasi funzione $f \in \mathcal{F}$, sugli insiemi $X_{1,j_1} \cap \cdots \cap X_{n,j_n}$ al variare di $(j_1,\ldots,j_n) \in \mathcal{D}$.

Siano dunque $x, y \in X_{1,j_1} \cap \cdots \cap X_{n,j_n}$; sia $f \in \mathcal{F}$, e sia i tale che $f \in \mathcal{F}_i$.

Si ha la seguente catena di disuguaglianze:

$$egin{split} d(f(x),f(y)) & \leq d(f(x),f_i(x)) + d(f_i(x),f_i(y)) + d(f_i(y),f(y)) \ & \leq
ho_d(f,f_i) + \omega_{f_i}(X_{1,i_1} \cap \cdots \cap X_{n,i_n}) +
ho_d(f,f_i) \end{split}$$

Disuguaglianza triangolare applicata due volte

Le maggiorazioni del primo e del terzo addendo seguono dalla definizione di $ho_d(f,f_i)$

La maggiorazione del secondo segue dal fatto che $x,y\in X_{1,j_1}\cap\cdots\cap X_{n,j_n}$

$$<rac{arepsilon}{4}+rac{arepsilon}{4}+rac{arepsilon}{4}=rac{3arepsilon}{4}$$
 Segue dal fatto che $ho_d(f,f_i)\leq ext{diam}(\mathcal{F}_i)<rac{arepsilon}{4}$ e $\omega_{f_i}(X_{1,j_1}\cap\cdots\cap X_{n,j_n})\leq \omega_{f_i}(X_{i,j_i})<rac{arepsilon}{4}$

Dunque, $\omega_f(X_{1,j_1}\cap\cdots\cap X_{n,j_n})\leq rac{3arepsilon}{4}<arepsilon$ per ogni $f\in\mathcal{F}$ e per ogni $(j_1,\ldots,j_n)\in\mathcal{D}$.

Allora, la famiglia $\{X_{1,j_1} \cap X_{2,j_2} \cap \cdots \cap X_{n,j_n} \mid (j_1,\ldots,j_n) \in \mathcal{D}\}$ è un ricoprimento finito di X costituito da insiemi su cui l'oscillazione di una qualsiasi funzione in \mathcal{F} è minore di ε .

Segue che le funzioni in ${\mathcal F}$ sono equi-totalmente limitate per arbitrarietà di ${\varepsilon}>0.$