Оглавление

Лекция 2: Базис векторого пространства

18.09.2023

Пусть у - Это конечно мерно пространство

Определение 1. Набор $v_1, v_2, ..., v_n$ называется порождающим для V, если $\forall w \in V \exists \alpha_1, ..., \alpha_n : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Замечание. Если к порождающему набору прибавить вектор, то он останется порождающим. Если убрать векторы из непорождающего набора векторы, то набор останется непорождающим.

Определение 2. $v_1, v_2, ..., v_n$ называется базисом V, если этот набор ЛНЗ и порождающий.

Теорема 1 (О базисе). Следующие определения базиса равносильны:

- 1. ЛНЗ и порождающий набор
- 2. Минимальный порождающий набор (минимальный по включениям)
- 3. Максимальный ЛНЗ набор (максимальный по включениям)
- 4. Порождающий набор $\forall w \in V \exists ! \alpha_1,...,\alpha_2 : w = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$

Доказательство. Цепочка доказательств:

 $1 \to 2$. Дан $v_1,...,v_n$ – ЛНЗ и порождающий набор. Доказать, что он минимальный порождающий.

Допустим, что v_i выкинули, оставшийся набор остался порождающим $\Rightarrow v_i$ – ЛК остальных \Rightarrow ЛЗ.

 $2 \to 4$. Дан $v_1,...,v_n$ – минимальный порождающий набор. Доказать $v_1,...,v_n$ – порождающий с единственностью коэффициентов.

Допустим противное: $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = \beta_1 v_1 + ... + \beta_n v_n$

$$\alpha_i \neq \beta_i$$

$$(\alpha_i - \beta_i)v_i = (\beta_1 - \alpha_1)v_1 + \dots \text{ (без } i\text{-oro)} + (\beta_n - \alpha_n)v_n$$

$$v_i = \frac{\beta_1 - \alpha_1}{\alpha_i - \beta_i} + \dots \text{ (без } i\text{-oro)} + \frac{\beta_n - \alpha_n}{\alpha_i - \beta_i}$$

 v_i – выкинем. В любой ЛК с v_i заменим v_i на выражение выше \Rightarrow набор порождающий. Значит без единственности коэффициентов получаем противоречие с дано

 $4 \to 3$. Дан $v_1,...,v_n$ — порождающий набор с единственностью коэффициентов. Доказать: $v_1,...,v_n$ — максимальный ЛНЗ (ЛНЗ уже доказана)

Допустим противное: $v_1, v_2, ..., v_n; u - ЛНЗ$ набор

$$u = \alpha_1 v_1 + \dots + \alpha_n v_n(\alpha_1, \dots \alpha_n \exists !) \Rightarrow v_1, \dots, v_n, u - \exists !$$

 $3 \to 1$. Дан $v_1,...,v_n$ – максимальный ЛНЗ. Доказать $v_1,...,v_n$ – ЛНЗ и порождающий набор.

$$\forall w \in V \qquad \qquad v_1, v_2, ..., v_n, w - \text{ЛЗ набор} \\ \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n + \beta w = 0 \\ \text{Если } \beta = 0 \Rightarrow \qquad \alpha_1 v_1 + ... + \alpha_n v_n = 0 \\ \text{ не все коэффициенты } = 0 (\alpha_i \neq 0) \\ \Rightarrow v_1, ..., v_n - \text{ЛЗ} \\ \beta \neq 0 \Rightarrow \qquad w = -\frac{\alpha_1}{\beta} v_1 - \frac{\alpha_2}{\beta} v_2 - ... - \frac{\alpha_n}{\beta} v_n$$

Q.E.D. \Box

Замечание. (Следствия) Любую конечную порождающую систему можно сузить до базиса.

Если есть конечный порождающий набор, то любую ЛНЗ систему можно расширить до базиса.

Определение 3. Размерность пространства равна количеству элементов в базисе. (пока нет доказательств корректности)

Оглавление 2

Лемма 1. Система линейных уравнений: $(a_{ij} \in \mathbb{R}; x_i \in \mathbb{R}; 0 \in \mathbb{R})$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Имеет ненулевые решения, если n > k.

Доказательство. Индукция по k. База k=1:

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
 Пусть $a_{11}\neq 0\Rightarrow x_1=-\frac{a_{12}}{a_{11}}x_2-\frac{a_{13}}{a_{11}}x_3-\ldots-\frac{a_{1n}}{a_{11}}x_n$ $\forall x_2,\ldots,x_n:x_1$ выражается через них
$$a_{11}=0\Rightarrow x_1=1;x_2=x_3=\ldots=x_n=0$$

Переход

$$a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=0$$
 $\exists i:a_{1i}\neq 0,$ иначе выкинем предыдущее уравнение $x_i=-rac{a_{11}}{a_{1i}}x_1-\ldots$ (без $i ext{-oro})--rac{a_{1n}}{a_{1i}}x_n$

Подставим выраженное x_i во все остальные уравнения. Уравнений на 1 меньше, переменных на 1 меньше. Q.Е.D. \Box

Теорема 2. Если $v_1,...,v_k$ и $w_1,...,w_n$ базисы $\in V$, то k=n.

Доказательство. $v_1, ..., v_n$ – порождающая система.

$$w_1 = a_{11}v_1 + a_{21}v_2 + a_{31}v_3 + \dots + a_{k1}v_k$$

$$w_2 = a_{12}v_1 + a_{22}v_2 + a_{32}v_3 + \dots + a_{k2}v_k$$

$$\dots$$

$$w_n = a_{1n}v_1 + a_{2n}v_2 + a_{3n}v_3 + \dots + a_{kn}v_k$$

$$x_1 w_1 + x_2 w_2 + \dots + x_n w_n = 0, x_i \in \mathbb{R}$$
 (1)

т.к.
$$w_1,...,w_n$$
 – ЛНЗ \Rightarrow все $x_i=0$

$$x_1(a_{11}v_1 + a_{21}v_2 + \dots + a_{k1}v_k) + x_2(a_{12}v_1 + a_{22}v_2 + \dots + a_{k2}v_k)$$

$$+ \dots + x_n(a_{1n}v_1 + a_{2n}v_2 + \dots + a_{kn}v_k) = 0$$

$$v_1(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n) + v_2(a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n)$$

$$+ \dots + v_k(a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n) = 0$$

 $v_1, v_2, ..., v_k$ – ЛНЗ \Rightarrow все коэффициенты равны 0.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{k1}x_1 + a_{k2}x_2 + \dots + a_{kn}x_n = 0 \end{cases}$$

Если $n>k\Rightarrow \exists$ ненулевые решения \Rightarrow противоречие с (1) и ЛНЗ $w_i\Rightarrow n\le k$. Аналогично $k\le n\Rightarrow n=k$. Q.E.D.