THE PREDICTED-UPDATES DYNAMIC MODEL: Offline to Fully-Dynamic Transformations

Auanquan C. Liu Yale University quanquan.lin@yale.edu

Vaidehi Srinivas Northwestern University Vaidehi@u.northwestern.edu

COLT '24 Session 4D-1 Wed. Jul. 03, 14:30

DYNAMIC ALGORITHMS WITH PREDICTIONS

Large gap between fully-dynamic and offline-dynamic runtine for some problems

Ex. Triconnectivity

 $O(n^{2/3})$

fully-dynamic update time

O(T polylog n) Offline-dynamic runtime for Tupolates Via Slick divide-and-conquer algorithm

- [?] Can we use <u>predictions</u> of future events to lift fast divide-and-conquer algorithms to the fully-dynamic setting?
- A Yes! Can simultaneously achieve
 - 1 Consistency: offline performace for high quality predictions
 - 2) Robustness: No worse than fully dynamic Performance for low quality preds.
- 3 Graceful degradation: performance deteriorates
 gracefully with prediction error

Same framework also lifts <u>encremental</u> and decremental algorithms to fully-dynamic setting.

APPUCATIONS

Our framework gives improved runtimes with predictions to many well-studied problems, out of the box.

Problem	Best Fully Dynamic Runtimes		New Predicted-Update Runtimes (Theorems 6.4 to 6.6)	
Planar Digraph APSP	$\widetilde{O}\left(n^{2/3} ight)$	[FR06, Kle05]	$\widetilde{O}(\sqrt{n})$	[DGWN22]
Triconnectivity	$O(n^{2/3})$	[GIS99]	$\widetilde{O}\left(1 ight)$	[HR20, PSS17]
k-Edge Connectivity	$n^{o(1)}$	[JS22]	$\widetilde{O}(1)$	[CDK ⁺ 21]
Dynamic DFS Tree	$\widetilde{O}\left(\sqrt{mn} ight)$	[BCCK19]	$\widetilde{O}\left(n ight)$	[BCCK19, CDW ⁺ 18]
Minimum Spanning Forest	$\widetilde{O}(1)$	[HDLT01]	$\widetilde{O}(1)$	[Epp94]
APSP	$\left(rac{256}{k^2} ight)^{4/k}$ -Approx $\widetilde{O}\left(n^k ight)$ update $\widetilde{O}(n^{k/8})$ query	[FGNS23]	$(2r-1)^k$ -Approx $\widetilde{O}\left(m^{1/(k+1)}n^{k/r} ight)$	$[{ m CGH^+20}]$
AP Maxflow/Mincut	$O(\log(n)\log\log n)$ -Approx $\widetilde{O}\left(n^{2/3+o(1)} ight)$	[CGH ⁺ 20]	$O\left(\log^{8k}(n)\right)$ -Approx. $\widetilde{O}\left(n^{2/(k+1)}\right)$	[Gor19, GHS19]
MCF	$(1+arepsilon)$ -Approx $\widetilde{O}(1)$ update $\widetilde{O}(n)$ query	[CGH ⁺ 20]	$O(\log^{8k}(n))$ -Approx. $\widetilde{O}\left(n^{2/(k+1)}\right)$ update $\widetilde{O}(P^2)$ query	[Gor19, GHS19]
Strongly Connected Components	$\Omega(m^{1-\varepsilon})$ query or update	[AW14]	$\widetilde{O}(m)$	[Rod13]
Uniform Sparsest Cut	$2^{O(\log^{5/6}(n))}$ -Approx $2^{O(\log^{5/6}(n))}$ update $O(\log^{1/6}(n))$ query	[GRST21]	$O\left(\log^{8k}(n)\right)$ -Approx $\widetilde{O}\left(n^{2/(k+1)} ight)$ $O(1)$ query	[Gor19, GHS19]
Submodular Max	$1/4 ext{-Approx} \ \widetilde{O}(k^2)$	[DFL ⁺ 23]	$\widetilde{O}\left(\mathrm{poly}(k)\right)$	$[\mathrm{FLN}^+22]$

KESULTS

Informal Theorem: Given offline divide-and-conquer algorithm to compute $f(\cdot)$ that does $\delta(T)$ work, and fully-dynamic alg. B,

we can design a predicted-updates algorithm that does total work

O (min { T+ || pred. error || 1, T. update time (B) }).

KEY TECHNICAL IDEA

Kandomly Splitting recuesive subproblems ensues effects of prediction errors stay local.

Small errors only require fixing a small subtree of the divide-and-conquer, in expectation.

FUTURE DIRECTIONS

- Better dependency on prediction error?
- Make this deterministic or robust to adaptive adversaries
- Worst-case vs. amortized bounds
- Better dynamic subroutines for static problems