Problema 1. Sean G un grupo $y \in G$. Definimos en G otra operación mediante $a \star b = agb$. Demostrar que con la nueva operación G es un grupo isomorfo al de partida

Solución. Primero veamos que (G, \star) es grupo:

1. Asocitividad. Sea $a, b, c \in G$, entonces

$$(a \star b) \star c = (a \star b)gc = agbgc = ag(b \star c) = a \star (b \star c)$$

2. Elemento neutro. Sea $g^{-1} \in G$, entonces

$$g^{-1} \star a = a \star g^{-1} = agg^{-1} = a$$
.

Luego q^{-1} es el elemento neutro.

3. Elemento inverso. Sea $a \in G$, entonces $(gag)^{-1}$ es el elemento inverso:

$$(gag)^{-1} \star a = a \star (gag)^{-1} = ag(gag)^{-1} = g^{-1}$$

Ahora demostraremos que existe un isomorfismo entre (G,\cdot) y (G,\star) . Sea el homomorfismo dado por

$$\begin{array}{cccc} \phi: & (G,\cdot) & \longrightarrow & (G,\star) \\ & a & \longmapsto & ag^{-1} \ . \end{array}$$

Es homomorfismo ya que

$$\phi(ab) = abq^{-1}aq^{-1}qbq^{-1} = aq^{-1} \star bq^{-1} = \phi(a) \star \phi(b) .$$

Para ver que ϕ es inyectiva calculamos su núcleo. Sea $a \in G$ tal que $f(a) = g^{-1}$, es decir,

$$f(a) = aq^{-1} = q^{-1}$$
.

Esto implica que a=1 y por tanto el núcleo es $\{1\}$ y ϕ es inyectiva. Por último veamos que es sobreyectiva. Sea $a\in G$, entonces el elemento $ag\in G$ satisface

$$f(ag) = agg^{-1} = a .$$

Luego ϕ es sobreyectiva y por tanto es isomorfismo.