Claro que sí, ¡me encanta resolver problemas matemáticos!

Para demostrar que la norma P converge a la norma infinita en un espacio vectorial sobre \mathbb{R}^n cuando P tiende a infinito, es necesario demostrar que la tendencia se cumple para cualquier vector $\mathbf{x} \in \mathbb{R}^n$. En otras palabras, debemos mostrar que:

$$\lim_{P\to\infty} \|\mathbf{x}\|_P = \|\mathbf{x}\|_{\infty}$$

Donde $\|\mathbf{x}\|_P$ es la norma P del vector \mathbf{x} y $\|\mathbf{x}\|_{\infty}$ es la norma infinita del vector.

La norma P se define como:

$$\|\mathbf{x}\|_P = \left(\sum_{i=1}^n |x_i|^P\right)^{1/P}$$

Mientras que la norma infinita se define como:

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

Para empezar, notemos que $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{P}$ para cualquier valor de P. Esto es simplemente una aplicación de la desigualdad de Hölder, que establece que para cualquier p, q > 0 tales que $\frac{1}{p} + \frac{1}{q} = 1$, se cumple que:

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} \left(\sum_{i=1}^{n} |b_i|^q\right)^{1/q}$$

Tomando $a_i = |x_i|^{1-p}$ y $b_i = |x_i|^P$, podemos escribir:

$$\|\mathbf{x}\|_{P} = \left(\sum_{i=1}^{n} |x_{i}|^{P}\right)^{1/P} = \left(\sum_{i=1}^{n} |x_{i}|^{P(1-p)}\right)^{1/P} \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

Usando la desigualdad de Hölder con p = P y $q = \frac{P}{P-1}$, obtenemos:

$$\|\mathbf{x}\|_{P} \ge \left(\sum_{i=1}^{n} |x_{i}|^{P(1-p)}\right)^{1/P} |x_{k}|$$

Donde k es el índice para el cual $|x_k| = \|\mathbf{x}\|_{\infty}$. Observamos que $\sum_{i=1}^n |x_i|^{P(1-p)} \to \infty$ cuando $P \to \infty$, ya que el término $|x_k|^{P(1-p)}$ domina sobre los demás términos de la suma. Por lo tanto, tenemos que:

$$\lim_{P \to \infty} \|\mathbf{x}\|_{P} \ge \lim_{P \to \infty} \left(\sum_{i=1}^{n} |x_{i}|^{P(1-p)} \right)^{1/P} |x_{k}| = |x_{k}| = \|\mathbf{x}\|_{\infty}$$

Por otro lado, podemos escribir $\|\mathbf{x}\|_P$ en términos de $\|\mathbf{x}\|_\infty$ como:

$$\|\mathbf{x}\|_P \le n^{1/P} \max_{1 \le i \le n} |x_i| = n^{1/P} \|\mathbf{x}\|_{\infty}$$

Notamos que $\lim_{P\to\infty} n^{1/P} = 1$, por lo cual tenemos que:

$$\lim_{P \to \infty} \|\mathbf{x}\|_P \le \lim_{P \to \infty} n^{1/P} \|\mathbf{x}\|_{\infty} = \|\mathbf{x}\|_{\infty}$$

En conclusión, hemos demostrado que:

$$\lim_{P \to \infty} \|\mathbf{x}\|_P = \|\mathbf{x}\|_{\infty}$$

Para cualquier vector $\mathbf{x} \in \mathbb{R}^n$. Esto prueba que la norma P converge a la norma infinita en un espacio vectorial sobre \mathbb{R}^n cuando P tiende a infinito.