kaviyadevi 20106064

In [8]: #to import Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [9]: #to import dataset
 data=pd.read_csv(r"C:\Users\user\Downloads\17_student_marks - 17_student_marks.cs
 data

dat	u										
	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
0	22000	78	87	91	91	88	98	94	100	100	100
1	22001	79	71	81	72	73	68	59	69	59	60
2	22002	66	65	70	74	78	86	87	96	88	82
3	22003	60	58	54	61	54	57	64	62	72	63
4	22004	99	95	96	93	97	89	92	98	91	98
5	22005	41	36	35	28	35	36	27	26	19	22
6	22006	47	50	47	57	62	64	71	75	85	87
7	22007	84	74	70	68	58	59	56	56	64	70
8	22008	74	64	58	57	53	51	47	45	42	43
9	22009	87	81	73	74	71	63	53	45	39	43
10	22010	40	34	37	33	31	35	39	38	40	48
11	22011	91	84	78	74	76	80	80	73	75	7
12	22012	81	83	93	88	89	90	99	99	95	8
13	22013	52	50	42	38	33	30	28	22	12	2
14	22014	63	67	65	74	80	86	95	96	92	8
15	22015	76	82	88	94	85	76	70	60	50	5
16	22016	83	78	71	71	77	72	66	75	66	6
17	22017	55	45	43	38	43	35	44	37	45	3
18	22018	71	67	76	74	64	61	57	64	61	5
19	22019	62	61	53	49	54	59	68	74	65	5
20	22020	44	38	36	34	26	34	39	44	36	4
21	22021	50	56	53	46	41	38	47	39	44	3
22	22022	57	48	40	45	43	36	26	19	9	1:
23	22023	59	56	52	44	50	40	45	46	54	5
24	22024	84	92	89	80	90	80	84	74	68	7
25	22025	74	80	86	87	90	100	95	87	85	7
26	22026	92	84	74	83	93	83	75	82	81	7
27	22027	63	70	74	65	64	55	61	58	48	4
28	22028	78	77	69	76	78	74	67	69	78	6
29	22029	55	58	59	67	71	62	53	61	67	7
30	22030	54	54	48	38	35	45	46	47	41	3
31	22031	84	93	97	89	86	95	100	100	100	99

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10
33	22033	64	61	63	73	63	68	64	58	50	51
34	22034	76	79	73	77	83	86	95	89	90	95
35	22035	78	71	61	55	54	48	41	32	41	40
36	22036	95	89	91	84	89	94	85	91	100	100
37	22037	99	89	79	87	87	81	82	74	64	54
38	22038	82	83	85	86	89	80	88	95	87	93
39	22039	65	56	64	62	58	51	61	68	70	70
40	22040	100	93	92	86	84	76	82	74	79	72
41	22041	78	72	73	79	81	73	71	77	83	92
42	22042	98	100	100	93	94	92	100	100	98	94
43	22043	58	62	67	77	71	63	64	73	83	76
44	22044	96	92	94	100	99	95	98	92	84	84
45	22045	86	87	85	84	85	91	86	82	85	87
46	22046	48	55	46	40	34	29	37	34	39	41
47	22047	56	52	54	47	40	35	43	44	40	39
48	22048	42	44	46	53	62	59	57	53	43	35
49	22049	64	54	49	59	54	55	57	59	63	73
50	22050	50	44	37	29	37	46	53	57	55	61
51	22051	70	60	70	62	67	67	68	67	72	69
52	22052	63	73	70	63	60	67	61	59	52	58
53	22053	92	100	100	100	100	100	92	87	94	100
54	22054	64	55	54	61	63	57	47	37	44	48
55	22055	60	66	68	58	49	47	39	29	39	44
4											
	display to	op 5 ro	WS								

In [10]:

Out[10]:

	Student_ID	Test_1	Test_2	Test_3	Test_4	Test_5	Test_6	Test_7	Test_8	Test_9	Test_10	Те
0	22000	78	87	91	91	88	98	94	100	100	100	
1	22001	79	71	81	72	73	68	59	69	59	60	
2	22002	66	65	70	74	78	86	87	96	88	82	
3	22003	60	58	54	61	54	57	64	62	72	63	
4	22004	99	95	96	93	97	89	92	98	91	98	
4												•

DATA CLEANING AND PREPROCESSING

```
In [11]:
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 56 entries, 0 to 55
          Data columns (total 13 columns):
                Column
                             Non-Null Count
                                              Dtype
                _ _ _ _ _ _
                                              ----
           0
               Student ID
                            56 non-null
                                              int64
               Test_1
                             56 non-null
                                              int64
           1
           2
               Test 2
                             56 non-null
                                              int64
           3
                             56 non-null
                                              int64
               Test_3
           4
               Test_4
                             56 non-null
                                              int64
           5
               Test 5
                             56 non-null
                                              int64
           6
                             56 non-null
               Test 6
                                              int64
           7
               Test 7
                             56 non-null
                                              int64
           8
               Test 8
                             56 non-null
                                              int64
           9
               Test 9
                             56 non-null
                                              int64
           10
               Test_10
                             56 non-null
                                              int64
               Test 11
                             56 non-null
           11
                                              int64
               Test 12
                             56 non-null
                                              int64
           12
          dtypes: int64(13)
          memory usage: 5.8 KB
In [12]:
          #to display summary of statistics(here to know min max value)
          data.describe()
Out[12]:
                   Student_ID
                                  Test_1
                                             Test_2
                                                        Test_3
                                                                   Test_4
                                                                             Test_5
                                                                                        Test_6
                               56.000000
           count
                    56.000000
                                          56.000000
                                                     56.000000
                                                                56.000000
                                                                           56.000000
                                                                                     56.000000
                                                                                                56.
           mean
                 22027.500000
                               70.750000
                                          69.196429
                                                     68.089286
                                                                67.446429
                                                                          67.303571
                                                                                     66.000000
                                                                                                66.
                                                                                                21.
                    16.309506
                               17.009356
                                          17.712266
                                                     18.838333
                                                                19.807179
                                                                          20.746890
                                                                                     21.054043
             std
             min
                 22000.000000
                               40.000000
                                          34.000000
                                                     35.000000
                                                                28.000000
                                                                          26.000000
                                                                                     29.000000
                                                                                                26.
                 22013.750000
            25%
                               57.750000
                                          55.750000
                                                     53.000000
                                                                54.500000
                                                                          53.750000
                                                                                     50.250000
                                                                                                47.
            50%
                 22027.500000
                               70.500000
                                          68.500000
                                                     70.000000
                                                                71.500000
                                                                          69.000000
                                                                                     65.500000
                                                                                                64.
            75%
                 22041,250000
                               84.000000
                                          83.250000
                                                     85.000000
                                                                84.000000
                                                                          85,250000
                                                                                     83.750000
                                                                                                85.
            max 22055.000000
                                                                          100.000000
                                                                                    100.000000
                              100.000000
                                         100.000000
                                                    100.000000
                                                               100.000000
                                                                                               100.
          #to display the column heading
In [13]:
          data.columns
Out[13]: Index(['Student_ID', 'Test_1', 'Test_2', 'Test_3', 'Test_4', 'Test_5',
                  'Test 12'],
                dtype='object')
```

EDA and DATA VISUALIZATION

#here there is no missing values (identified through info() 5000 data are describ

In [14]:

In [15]: sns.pairplot(data)

Out[15]: <seaborn.axisgrid.PairGrid at 0x2d43ed75b80>

In [16]: sns.distplot(data['Test_4'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Futur eWarning: `distplot` is a deprecated function and will be removed in a future v ersion. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

warnings.warn(msg, FutureWarning)

Out[16]: <AxesSubplot:xlabel='Test_4', ylabel='Density'>


```
In [18]: sns.heatmap(df.corr())
```

Out[18]: <AxesSubplot:>

TRAINING MODEL

```
In [20]: #to split my dataset into training and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Out[21]: LinearRegression()

```
In [22]: #to find intercept
print(lr.intercept_)
```

-2.6769079920018015

```
In [23]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[23]:

	Co-efficient
Test_1	0.046660
Test_2	- 0.067793
Test_3	0.525472
Test_5	0.604055
Test_6	0.072533
Test_7	-0.065354
Test_8	0.016157
Test_9	-0.162277
Test_10	0.164011
Test_11	-0.215633
Test_12	0.108564

```
In [24]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[24]: <matplotlib.collections.PathCollection at 0x2d44758c520>


```
In [25]: print(lr.score(x_test,y_test))
```

0.8967435385045454

RIDGE AND LASSO REGRESSION

```
In [26]: from sklearn.linear_model import Ridge,Lasso
```

```
In [27]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[27]: Ridge(alpha=10)
In [28]: |rr.score(x_test,y_test)
Out[28]: 0.897499374214318
In [29]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[29]: Lasso(alpha=10)
In [30]: |la.score(x_test,y_test)
Out[30]: 0.9243095080416224
In [31]: | from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[31]: ElasticNet()
In [32]: |print(en.coef_)
                                  [ 0.
                      -0.
                      -0.1231021
                                  0.12211951 -0.16209891 0.0688766
In [33]: print(en.predict(x_test))
         [87.59200292 69.76737582 39.42626598 66.33363362 73.8425228 78.21852642
          90.06266182 84.84473919 43.16119103 49.54429992 50.20019417 59.2223302
          88.28004464 32.48517096 51.74592178 50.02078405 98.79459505]
In [34]: |print(en.score(x_test,y_test))
         0.8989655173494705
In [35]: from sklearn import metrics
In [36]: print("Mean Absolute error", metrics.mean_absolute_error(y_test, prediction))
         Mean Absolute error 4.590927167288157
In [37]: print("Mean Squared error", metrics.mean_squared_error(y_test, prediction))
         Mean Squared error 34.506237156775164
In [38]: print("Root Mean Absolute error", np.sqrt(metrics.mean_squared_error(y_test, predic
         Root Mean Absolute error 5.874200980284481
```

In []:	
In []:	