	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_2^{\#1}$ $\sigma_2^{\#1}$		
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0		
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0		
$\sigma_2^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$		

$\omega_{0^+}^{\#1}$		$f_{0+}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\sharp 1}$	
$\omega_{0^+}^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0	
$f_{0}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0	
$f_{0}^{#2} \dagger$	0	0	0	0	
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$	

Source constraints		
SO(3) irreps	#	
$\tau_{0+}^{#2} == 0$	1	
$\tau_{0+}^{\#1}$ - 2 i k $\sigma_{0+}^{\#1}$ == 0	1	
$t_1^{\#2}{}^{\alpha} + 2 i k \sigma_1^{\#2}{}^{\alpha} == 0$	3	
$\tau_{1}^{\#1}{}^{\alpha} := 0$	3	
$\tau_{1+}^{\#1}\alpha\beta+\bar{l}k\sigma_{1+}^{\#2}\alpha\beta==0$	3	
$\tau_{2^+}^{\#1}\alpha\beta - 2ik\sigma_{2^+}^{\#1}\alpha\beta == 0$	2	
Total #:	16	

$\sigma_{0^+}^{\#1}$		$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{#1}$	
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0	
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0	
$\sigma_{0}^{#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2				

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}lphaeta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_1^{\text{\#2}}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp_1} \dagger^{lpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	<u>t₁-2t₃</u> 3 √2	0	$\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} i k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2 k^2 (t_1 + 4 t_3)}{3 (1 + 2 k^2)^2 t_1 t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2 k^2) t_1 t_3}$	0	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\tau_{1}^{\#1} + \alpha \beta = \frac{i \sqrt{2} k(t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1+}^{#2} +^{\alpha\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_{1}} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Massive particle				
$-\frac{1}{r_2} > 0$				
1				
$-\frac{t_2}{r_2} > 0$				
0				
Odd				

(No massless particles)