

<u>MACHINE LEARNING – WORKSHEET</u> (<u>CLUSTERING</u>)

Q1 to Q12 have only one correct answer. Choose the correct option to answer your question.

- 1. Movie Recommendation systems are an example of:
 - 1. Classification
 - 2. Clustering
 - 3. Reinforcement Learning
 - 4. Regression

Options:

- a. 2 Only
- b. 1 and 2
- c. 1 and 3
- d. 2 and 3
- e. 1, 2 and 3
- f. 1, 2, 3 and 4
- **2.** Sentiment Analysis is an example of:
 - 1. Regression
 - 2. Classification
 - 3. Clustering
 - 4. Reinforcement Learning

Options:

- a. 1 Only
- b. 1 and 2
- c. 1 and 3
- d. 1, 2 and 3
- e. 1, 2 and 4
- f. 1, 2, 3 and 4
- **3.** Can decision trees be used for performing clustering?
 - a. True
 - b. False
- **4.** Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis, given less than desirable number of data points:
 - a. Capping and flooring of variables
 - b. Removal of outliers

Options:

- a. 1 only
- b. 2 only
- c. 1 and 2
- d. None of the above

WORKSHEET

- **5.** What is the minimum no. of variables/ features required to perform clustering? a. 0
 - b. 1
 - c. 2
 - d. 3
- **6.** For two runs of K-Mean clustering is it expected to get same clustering results?
 - a. Yes
 - b. No
- 7. Is it possible that Assignment of observations to clusters does not change between successive iterations in K-Means
 - a. Yes
 - b. No
 - c. Can't say
 - d. None of these
- **8.** Which of the following can act as possible termination conditions in K-Means?
 - 1. For a fixed number of iterations.
 - 2. Assignment of observations to clusters does not change between iterations. Except for cases with a bad local minimum.
 - 3. Centroids do not change between successive iterations.
 - 4. Terminate when RSS falls below a threshold.

Options:

- a. 1, 3 and 4
- b. 1, 2 and 3
- c. 1, 2 and 4
- d. . All of the above
- **9.** Which of the following can act as possible termination conditions in K-Means?
 - 1. K- Means clustering algorithm
 - 2. Agglomerative clustering algorithm
 - 3. Expectation-Maximization clustering algorithm
 - 4. Diverse clustering algorithm

Options:

- a. 1 only
- b. 2 and 3
- c. 2 and 4
- d. 1 and 3
- e. 1,2 and 4
- f. All of the above
- **10.** Which of the following algorithms is most sensitive to outliers?
 - a. K-means clustering algorithm
 - b. K-medians clustering algorithm
 - c. K-modes clustering algorithm
 - d. K-medoids clustering algorithm

FLIP ROBO

WORKSHEET

- **11.** How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning):
 - 1. Creating different models for different cluster groups.
 - 2. Creating an input feature for cluster ids as an ordinal variable.
 - 3. Creating an input feature for cluster centroids as a continuous variable.
 - 4. Creating an input feature for cluster size as a continuous variable.

Options:

- a. 1 only
- b. 1 and 2
- c. 1 and 4
- d. 3 only
- e. 2 and 4
- f. All of the above
- **12.** What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a. Proximity function used
 - b. of data points used
 - c. of variables used
 - d. B and c only
 - e. All of the above

Q13 to Q15 are subjective answers type questions, Answers them in their own words briefly

- **13.** Is K sensitive to outliers?
- **14.** Why is K means better?
- **15.** Is K means a deterministic algorithm?