Transistores de efeito de campo (FET)

Classificação dos transistores

Transistor de Efeito de Campo: JFET

N-channel JFET

P-channel JFET

Funcionamento do JFET

Funcionamento do JFET

Transistor de Efeito de Campo: JFET

Curvas características do JFET

Figure 7.2 Characteristic voltage-current curves for typical N-channel J-FET.

Curvas características do JFET

Efeito da temperatura sobre as características do JFET

Efeito da temperatura sobre a curva característica I_C vs. V_G do JFET.

Circuito de polarização do JFET

Ganho de tensão do amplificador JFET

Changing the input voltage by

$$\Delta V_{in}$$

Alters the drain-source current by

$$\Delta I = g\Delta V_{in}$$

This changes the output voltage by an amount

$$\Delta V_{out} = -R \times \Delta I = -gR\Delta V_{in}$$

By taking the out/input voltage ratio we get a value

$$A_v = \frac{\Delta V_{out}}{\Delta V_{in}} = -gR$$

Transistor de Efeito de Campo: JFET

Entrada de Corrente

O JFET é um aplificador de tensão controlada.

Saída de Corrente

Estrutura de um canal N JFET

O canal possui portadores para que se possa conduzir da fonte para o dreno.

Uma tensão de gatilho negativa pode empurrar os portadores do canal e desligar o JFET.

Isto é conhecido como um dispositivo de modo depleção.

Família de curvas características de um canal N de dreno JFET

É possível fazer transistores de efeito de campo de potência também.

Polarização de gatilhos potencializa o canal e liga o dispositivo.

Família de curvas características de um dreno MOSFET em modo de intensificação

Aplicação de JFET: fonte de corrente

JFET com o fonte de corrente constante: (a) circuito básico; (b) adição de R_S para corrigir efeito de temperatura; (c) referência de tensão de baixo ruído usando JFET canal P.

Transistor de Efeito de Campo: JFET

Curva característica do JFET

Transistor de Efeito de Campo de Óxido Metálico: MOSFET

Transistor de efeito de campo de porta isolada ou FET óxido metálico semicondutor

MOSFET

MakeAGIF.com

MOSFET

Dispositivo semicondutor de quatro terminais: Gate (G), Source (S), Dreno (D) e Substrato ou Body (B), controla a corrente I_{DS} por meio da tensão V_{GS} .

MOSFET

Funcionamento do MOSFET

Modos de operação do MOSFET

Curvas características

Curva de transferência

(a) Curvas I-V características e (b) curva de transferência (para V_{DS} = 10 V) para um NMOSFET que tanto pode ser usado no modo de depleção quanto no modo de enriquecimento.

Curvas características do CMOSFET

Figure 9.5 Typical pair of 'complimentary' power MOSFETs.

O MOSFET como Amplificador

MOSFET de potência

Portas lógicas e circuitos digitais

Porta lógica OU

Portas lógicas e circuitos digitais

O transistor como chave: portas lógicas e circuitos digitais

O transistor como chave: portas lógicas e circuitos digitais

Circuitos com transistor: amplificador e porta lógica

Transistores FET complementares: CMOS

Par complementar de MOSFETs canal N e canal P = CMOS

Transistor CMOS: porta lógica inversora

Parâmetros operacionais:

$$V_{DD} = 3 \text{ a } 15 \text{ V}$$
 $P_{d} = 0.3 \text{ mW},$
 $\tau_{d} = 200 \text{ ns},$
 $V_{NM} = 0.4 \text{ V}_{DD}$

Estado lógico "1" $V_o \cong V_{DD}$ Estado lógico "0" $V_o = 0 V$.

Transistores MOSFET: memória RAM

Comparação de circuitos chave com transistor: bipolar (BJT) e JFET

SWITCH	ВЈТ	JFET
OFF or open		
No current	No collector current	No drain current
Full voltage across terminals	Full supply voltage between collector and emitter	Full supply voltage between drain and source
ON or closed		
Full current	Full circuit current	Full circuit current
No voltage across terminals	Collector to emitter voltage is 0 V	Drain to source voltage is 0 V

Comparação de transistores: bipolar (BJT) vs. FET

Características	BJT	FET
Impedância de entrada	<	>
Sensibilidade à temperatura	>	<
Controle de corrente de saída.	>	<
Ganho de tensão	>	<
Estabilidade	<	>
Tamanho	>	<

Comparação de transistores: bipolar (BJT), JFET e MOSFET

Corrente de polarização e impedância de entrada

	Bipolar	JFET	MOS
I_b	5μA	30pA	1pA
r _{in}	5kΩ	1GΩ	25GΩ

Símbolos FET

Amplificador BJT x FET

Um diodo zener deve ser colocado no terminal gate do MOSFET se a tensão no gate vindo da fonte for maior que 20V.

Amplificador BJT x FET

BJT PNP

PMOSFET