Regular Expressions

A regular expression is an expression that consists of sets and regular operations, which are used for pattern recognition and can be used to represent regular languages. Specifically, a regular expression over Σ is defined as

- 1. $\mathbf{a} \in \Sigma$, ε , and \emptyset are regular expressions.
- 2. If P and Q are regular expressions, then $P \cup Q$, $P \circ Q$ and P^* are regular expressions.

and it has the following properties and shorthands

- The order of precedence of its operations in descending order is parentheses, star, concatenation, and union.
- The regular expression a where $a \in \Sigma$ is the shorthand for $\{a\}$.
- The regular expression AB is the shorthand for $A \circ B$ where A and B are regular expressions.
- The regular expression Σ is shorthand for the union of all the symbols in the alphabet.
- $\emptyset^* = \varepsilon$.
- $R \circ \emptyset = \emptyset$ where R is a regular expression.
- $R \circ \varepsilon = R$ where R is a regular expression.
- The regular expression $R^+ = R \circ R^*$ where R is a regular expression and + is the derived operator.
- The regular expression $R^? = R \cup \varepsilon$ where R is a regular expression and ? is the derived operator.

Example:

Some examples of regular expressions and their meaning are:

```
0^*10^* = \left\{w: w \text{ has exactly one 1}\right\} \Sigma^*1\Sigma^* = \left\{w: w \text{ has at least one 1}\right\} \Sigma\Sigma\Sigma = \left\{w: \left|w\right| = 3\right\} \Sigma^*010\Sigma^* = \left\{w: w \text{ contains the substring 010}\right\} \Sigma(\Sigma\Sigma)^* = \left\{w: w \text{ contains an odd number of symbols}\right\}
```