第一章 特征值与特征向量

1.1 特征值与特征向量的计算

特征值与特征值向量的性质

- (1) 不同特征值的特征向量线性无关
- (2) 不同特征值的特征向量之和不是特征向量
- (3) k重特征值有k个线性无关的特征向量
- (4) 设 A 的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 则 $\sum_{i=1}^n \lambda_i = tr(A), \prod_{i=1}^n \lambda_i = |A|$

推论1上,下,主对角矩阵特征值为主对角线元素

推论 2 $aA + bE(a \neq 0)$ 不可逆时, $\lambda = -\frac{b}{a}$ 必然为 A 的一个特征值

(5) 若 r(A) = 1 则 $A = \alpha \beta^T$, 其中 α, β 是 n 维非零列向量, 则 A 的特征值为

$$\lambda_1 = tr(A) = \alpha^T \beta = \beta^T \alpha, \lambda_2 = \dots = \lambda_n = 0$$

当 $tr(A) \neq 0$ 时, $\lambda_1 = tr(A)$, $\alpha_1 = \alpha, \lambda_2 \dots, \lambda_n = 0$, 其特征向量解 $\beta^T x = 0$ 其线性无关的解即为特征向量 $\alpha_2 \dots \alpha_n$

当 tr(A) = 0 时 $\lambda_1 = \ldots = \lambda_n = 0$ 此时只有 n-1 个线性无关的特征向量. 综上秩为 1 矩阵能相似对角化 $\iff tr(A) \neq 0$

(6) 设 α 为矩阵 A 属于特征值 λ 的特征值向量则, 有

A	f(A)	A^{-1}	A^*	A^T	$P^{-1}AP$
λ	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	λ
α	α	α	α	???	$P^{-1}\alpha$

f(A) 可以推广为 $+/-, kA, A^n, A^{-1}, A^*$

求特征值与特征值向量

- (1) 利用特征的定义 $(A\alpha = \lambda \alpha (\alpha \neq 0))$ 或性质 (上述六条)
- (2) 特征方程组法 (两大步)
 - (1) $|A \lambda E| = 0$ 可以求出 A 的 n 个特征值
 - (2) $(A \lambda_i E)x = 0$, 可以解出特征值 λ_i 对应的线性无关的特征向量 $(n r(A \lambda_i E) \uparrow)$

1. 设

求 A 的特征值与特征向量。

特征方程法

当
$$\lambda_1 = -2$$
 时候, 解 $(A + 2E)x = 0 \implies \alpha_1 = (-1, 1, 1, 1)^T$

当 $\lambda_1=-2, \lambda_2=\lambda_3=\lambda_4=2$ 时, 解 (A-2E)x=0 解出其线性无关的特征向量为

$$\alpha_2 = (1, 1, 0, 0)^T, \alpha_3 = (1, 0, 1, 0)^T, \alpha_4 = (1, 0, 0, 1)^T$$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} -1\\1\\1\\1\\1 \end{pmatrix} (1, -1, -1, -1) + 2E$$

由性质 5 和 6 可以立即确认 A 的特征值为 $\lambda_1 = tr(B) + 2, \lambda_2 = \ldots = \lambda_4 = 0 + 2$ 且 $\alpha_1 = \alpha$ 其余特征向量解 $\beta x = 0$ 结果和上面一样.

2. (2003, 数一) 设
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
 , $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $B = P^{-1}A^*P$ 求 $B + 2E$ 的特征值与特征向量。

特征方程法

$$egin{aligned} \Re |A-\lambda E| = \begin{vmatrix} 3-\lambda & 2 & 2 \\ 2 & 3-\lambda & 2 \\ 2 & 2 & 3-\lambda \end{vmatrix} = (7-\lambda)(1-\lambda^2) = 0$$
 可知 $\lambda_1 = 7, \lambda_2 = \lambda_3 = 1$

当 $\lambda_1 = 7$ 解 (A - 7E)x = 0 可以解出 $\alpha_1 = (1, 1, 1)^T$

当 $\lambda_2=\lambda_3=2$ 时,解 (A-2E)x=0 可以解出线性无关的特征向量为 $\alpha_2=(-1,1,0)^T,\alpha_3=(-1,0,1)^T$

分解为秩为1

可以将A分解为

$$A = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} (1, 1, 1) + E$$

根据性质 5.6 容易得出和上述一样的答案.

$$A^* \dots, 1, \dots, \alpha_1$$

$$A^* \dots, 7, \dots, \alpha_2, \alpha_3$$

$$B \dots, 1, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

$$B \dots, 7, \dots, P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$$

此时求解上述三个特征向量也有三种不同的解法

- (1) 直接求 p^{-1}
- (2) 联立 $(P \mid \alpha_1, \alpha_2, \alpha_3)$
- (3) 观察题设可知 P 是初等矩阵之积, 且很容易写出即

$$P = E(23(1))E(1,2) \implies P^{-1} = E(1,2)E(23(-1))$$

这个方法需要观察题目,不是很通用;虽然所有可逆矩阵都可以分解为初等矩阵,但并非所有都好写出来.

$$B + 2E, \dots, 3, \dots, P^{-1}\alpha_1 = (0, 1, 1)^T$$

$$B + 2E, \dots, 9, \dots, P^{-1}\alpha_2 = (1, -1, 0)^T, P^{-1}\alpha_3 = (-1, -1, 1)^T$$

1.1 特征值与特征向量的计算

3. 设
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -1 & 4 & -2 \\ 1 & -2 & a \end{pmatrix}$$
 的特征方程有一个二重根,求 A 的特征值与特征向量。

转圈化简

解特征方程
$$|A-\lambda E|=$$
 $\begin{vmatrix} 1-\lambda & 2 & 2 \\ -1 & 4-\lambda & -2 \\ 1 & -2 & a-\lambda \end{vmatrix}=0$ 这种三阶的行列,当然可以直接 1 —2 $a-\lambda$

展开那样比较难算. 由于考研不会故意恶心人, 大部分都可以提公因数. 依据此, 对行列式按顺(逆)时间, 选择不含 λ 的数, 化简其余不含 λ 的数, 产生 λ 式子的公因数因此上式可以化简为

$$\begin{vmatrix} 1 - \lambda & 4 - 2\lambda & 2 \\ -1 & 2 - \lambda & -2 \\ 1 & 0 & a - \lambda \end{vmatrix} = (2 - \lambda) \left[\lambda^2 - (a+3)\lambda + 3a - 6 \right]$$

此时讨论二重根的值, 若 $\lambda=2$ 不是其二重根, 对于后面那个二次式必然有 $\Delta=0 \Longrightarrow (a+3)^2+24>0$ 矛盾

故 $\lambda = 2$ 只能是二重根,此时可解出 a = 8 特征值为 $\lambda_1 = \lambda_2 = 2, \lambda_3 = 9$ 分别解 $\begin{cases} (A - 2E)x = 0 \\ (A - 9E)x = 0 \end{cases} \implies \begin{cases} \alpha_1 = (2, 1, 0)^T \\ \alpha_2 = (1, 3, -7)^T \end{cases}$

4. 设 3 阶非零矩阵 A 满足 $A^2 = O$,则 A 的线性无关的特征向量的个数是

A.0 B.1 C.2 D.3

Solution

由 $A^2=O$ 且 $A\neq O$ 可知 r(A)=1, 设 A 的任意特征值为 λ 满足 $\lambda^2=0$ 故 A 的特征值只能是 0 求解 (A-0E)x=0 的基础解系中包含解的个数为 3-r(A)=3-1=2 故 A 的线性无关的特征向量的个数是 2

- 5. 设 $A = \alpha \beta^T + \beta \alpha^T$, 其中 α, β 为 3 维单位列向量,且 $\alpha^T \beta = \frac{1}{3}$, 证明:
 - (I) 0 为 A 的特征值;
 - (II) $\alpha + \beta, \alpha \beta$ 为 A 的特征向量;

6

(III) A可相似对角化。

Solution

1.2 相似的判定与计算

Remark

相似的性质

- (1) 若 $A \sim B$, 则 A, B 具有相同的行列式, 秩, 特征方程, 特征值与迹
- (2) 若 $A \sim B$, 则 $f(A) \sim f(B)$, $A^{-1} \sim B^{-1}$, $AB \sim BA(|A \neq 0|)$, $A^T \sim B^T$, $A^* \sim B^*$
- (3) 若 $A \sim B, B \sim C$ 则 $A \sim C$

1. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
 矩阵 B, A 相似, 则 $r(B-A) + r(B-3E) =$ _____

Solution

2. 设 n 阶矩阵 A,B 相似,满足 $A^2=2E$,则 |AB+A-B-E|=____

Solution

3. (2019, 数一、二、三) 设
$$A = \begin{pmatrix} -2 & -2 & 1 \\ 2 & x & -2 \\ 0 & 0 & -2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & y \end{pmatrix}$$
相似.

- (I) 求 x, y 的值;
- (II) 求可逆矩阵 P,使得 $P^{-1}AP = B$ 。

Solution

1.3 相似对角化的判定与计算

1. (2005, 数一、二) 设 3 阶矩阵 A 的特征值为 1,3,-2, 对应的特征向量分别为 $\alpha_1,\alpha_2,\alpha_3$ 。 若 $P=(\alpha_1,2\alpha_3,-\alpha_2)$ 则 $P^{-1}AP=$ ______。

Solution

2. 设 n 阶方阵 A 满足 $A^2 - 3A + 2E = O$, 证明 A 可相似对角化。

Solution

- 3. (2020, 数一、二、三) 设 A 为 2 阶矩阵, $P=(\alpha,A\alpha)$,其中 α 为非零向量且不是 A 的特征向量。
 - (I) 证明 P 为可逆矩阵;
 - (II) 若 $A^2\alpha + 6A\alpha 10\alpha = 0$, 求 $P^{-1}AP$, 并判断 A 是否相似于对角矩阵。

Solution

1.4 实对称矩阵的计算

12. 设 n 阶实对称矩阵 A 满足 $A^2+A=O,n$ 阶矩阵 B 满足 $B^2+B=E$ 且 r(AB)=2 则 $|A+2E|=__$

Solution

13. (2010, 数二、三) 设 $A=\begin{pmatrix} 0 & -1 & 4 \\ -1 & 3 & a \\ 4 & a & 0 \end{pmatrix}$ 正交矩阵 Q 使得 Q^TAQ 为对角矩阵。若 Q 的 第 1 列为 $\frac{1}{\sqrt{6}}(1,2,1)^T$,求 a,Q。

Solution

- 14. 设 3 阶实对称矩阵 A 满足 $A^2=E$, A+E 的各行元素之和均为零,且 r(A+E)=2。
 - (I) 求 A 的特征值与特征向量;
 - (II) 求矩阵 A。

Solution