Advancd Algorithmic Analysis

Value Iteration

- $||B^kQ_1 B^kQ_2||_{\infty} \le \gamma^k ||Q_1 Q_2||_{\infty}$
 - k-step value iteration is kind of like a super contraction mapping
- The greedy policy optimal in some reasonable amount of time
 - for some $t^* < \infty$ polynomial in $|S|, |A|, R_{\max} = \max_{a,s} |R(s,a)|, \frac{1}{1-\gamma}$, bits of precision of transition function such that $\pi(s) = \arg\max_a Q_{t^*}(s,a)$ is optimal
 - o consequence of Cramer's Rule
- If the difference in consecutive value functions approximations is than some ϵ , the max difference between the value produced by the corresponding policy and the optimal value function is $<\frac{2\epsilon\gamma}{1-\gamma}$
- Notice that for both of the above, γ being small is good (effective horizon is $\sim \frac{1}{1-\gamma}$), but this makes agent myopic.
 - Isbell: there is a trade-off between effective horizon and time to convergence in value iteration

Linear Programming

- The only way to solve MDPs in polynomial time is with linear programming
 - linear prog = optimization framework in which you can give linear contraints and linear objective function to get solution in polynomial time
- Bellman is mostly linear, but max is not
 - \circ Why is max non-linear: $\max(x,x_0)=x_0, \max(y,x_0)=x_0$ does not imply $\max(x+y,x_0)=x_0$
 - Resolution: "Primal" representation of a linear program for solving MDPs:
 - lacktriangleq minimize $\sum_s v_s$
 - ullet orall s, a $v_s \geq R(s,a) + \gamma \sum_{s'} T(s,a,s') v_{s'}$

Policy Iteration

- Defn
 - 1. Initialize: $orall s \; Q_0(s) = 0$ Loop:
 - 2. Policy improvement: $orall s \; \pi_t(s) = rg \max_a Q_t(s,a) \; (t \geq 0)$
 - 3. Policy evaluation: $Q_{t+1} = Q^{\pi_t}$
- Convergence to optimal value function is exact and complete in finite time
- Converges at least as fast as VI

- Open question: convergence time?
- Policy iteration does not get stuck in local optima!