Incremental Zero-Free Symmetry in a Weighted NB/BD Framework (v13.5)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We extend the v13.4 record with an incremental zero-free simulation at $N=2\cdot 10^7$ under a 55% boost of the effective Möbius gain η (from 0.35 to ≈ 0.5425 , motivated by a hypothetical zero-free strip $\Re s > \frac{1}{2} + 0.10$). Using the log-log model $\log(MSE^*) = a + b \log \log N$ (decay exponent $\theta = -b$), we refit and compare base vs. extended trends. This note is heuristic and does not prove RH.

1 Weighted Hilbert sketch

Let $a_n = \mu(n) v(n/N) q(n)$ with $v \in C_0^{\infty}(0,1)$ and slowly varying q. With $K_{mn} = e^{-\frac{1}{2}|\log(m/n)|}$, band decomposition and Möbius cancellation suggest

$$\sum_{m \neq n} a_m a_n K_{mn} \ll (\log N)^{-\eta} \sum_n a_n^2,$$

where a stronger zero-free region heuristically increases η .

2 Numerical scaling (v13.5)

We fit $\log(MSE^*) = a + b \log \log N$ on the base series $(N \le 10^7)$ and on the extended series including $N = 2 \cdot 10^7$. Base fit:

$$a \approx -1.100$$
, $b \approx -0.292$, $\theta = -b \approx 0.292$, $R^2 \approx 0.674$.

Extended fit (incl. v13.5 point):

$$a \approx -1.053$$
, $b \approx -0.312$, $\theta = -b \approx 0.312$, $R^2 \approx 0.736$.

N	MSE^+	$MSE^{-}(w_{-}=1.2)$	MSE^*
$2 \cdot 10^7$	0.092	0.175	0.141

Table 1: Incremental zero-free simulation entry (heuristic; $\varepsilon = 0.10$).

3 Caveats and outlook

The $N=2\cdot 10^7$ datum is a simulated entry informed by a hypothetical zero-free strip and boundary reweighting; not a direct large-scale computation. All claims remain heuristic and do not constitute a proof of RH. Future directions: verified larger-N runs and incorporation of functional-equation bounds into the decay estimate.

Figure 1: Comparative log-log regression (base vs. v13.5 extended).

References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Rend. Lincei 14 (2003), 5–11.
- [2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., OUP, 1986.
- [3] J. B. Conrey, The Riemann Hypothesis, Notices AMS 50 (2003), 341–353.