PRA2 Luis Francisco Mas Fernández 2022-12-20 data <- read.csv('worldometer_coronavirus_daily_data.csv', stringsAsFactors = TRUE)</pre> colnames(data) <- c('Date', 'Country', 'Cumulative total cases', 'Daily new cases', 'Active cases', 'Cumulative t</pre> otal deaths', 'Daily new deaths') total_deaths <- aggregate(data\$`Cumulative total deaths`, by = list(data\$Country), max)</pre> total_cases <- aggregate(data\$`Cumulative total cases`, by = list(data\$Country), max)</pre> total global <- merge(total cases, total deaths, by = 'Group.1')</pre> colnames(total global) <- c('Country' , 'Cumulative total cases', 'Cumulative total deaths')</pre> total <- total_global[total_global\$`Cumulative total cases` > 6000000,] colnames(total) <- c('Country' , 'Cumulative total cases', 'Cumulative total deaths')</pre> # Load required R packages library(tidyverse) ## Warning: package 'tidyverse' was built under R version 4.2.2 ## -- Attaching packages ----——— tidyverse 1.3.2 — ## **J** ggplot2 3.4.0 **J** purrr 0.3.5 ## \checkmark tibble 3.1.8 \checkmark dplyr 1.0.10 ## **√** tidyr 1.2.1 **√** stringr 1.5.0 ## **√** readr 2.1.3 **√** forcats 0.5.2 ## Warning: package 'ggplot2' was built under R version 4.2.2 ## Warning: package 'tibble' was built under R version 4.2.2 ## Warning: package 'tidyr' was built under R version 4.2.2 ## Warning: package 'readr' was built under R version 4.2.2 ## Warning: package 'purrr' was built under R version 4.2.2 ## Warning: package 'dplyr' was built under R version 4.2.2 ## Warning: package 'forcats' was built under R version 4.2.2 ## — Conflicts — — tidyverse_conflicts() — ## X dplyr::filter() masks stats::filter() ## X dplyr::lag() masks stats::lag() library(highcharter) ## Warning: package 'highcharter' was built under R version 4.2.2 ## Registered S3 method overwritten by 'quantmod': ## method ## as.zoo.data.frame zoo ## Highcharts (www.highcharts.com) is a Highsoft software product which is ## not free for commercial and Governmental use library(ggplot2) # Set highcharter options options(highcharter.theme = hc_theme_smpl(tooltip = list(valueDecimals = 2))) highchart() %>% hc_title(text = "Cases and Deaths per country") %>% hc_xAxis(categories = total\$Country, title = 'Country') %>% hc yAxis multiples(create axis(naxis = 2, heights = c(2, 1))) %>% hc_add_series(total\$`Cumulative total cases` , yAxis = 0, name = 'Cases') %>% hc_add_series(total\$`Cumulative total deaths`, yAxis = 1, name = 'Deaths') %>% hc_legend(align = "left", verticalAlign = "middle", layout = "vertical" Cases and Deaths per country 100M 75M — Cases — Deaths 1 500k 1 000k 500k highchart() %>% hc_title(text = "Cases vs. Deaths per country") %>% hc_xAxis(categories = total\$Country, title = 'Country') %>% hc_add_series(total\$`Cumulative total cases`, name = 'Cases') %>% hc_add_series(total\$`Cumulative total deaths`, name = 'Deaths') %>% hc_legend(align = "left", verticalAlign = "middle", layout = "vertical" Cases vs. Deaths per country 80M 60M CasesDeaths A continuación seleccionamos los 6 países con más casos para nuestra próxima visualización: total <- total %>% # Top N highest values by group arrange(desc(`Cumulative total cases`)) head(total) **Cumulative total cases Cumulative total deaths** Country <fct> <dbl> <dbl> 1 USA 84209473 1026646 2 India 43121599 524214 3 Brazil 30682094 664920 4 France 29160802 147257 5 Germany 25774509 137907 6 UK 22159805 176708 6 rows data_series <- na.omit(data[data\$Country %in% c('USA', 'India', 'Brazil', 'France', 'Germany', 'UK'),])</pre> data_series\$Population <- as.numeric(ifelse(data_series\$Country == 'USA', 331900000,</pre> ifelse(data_series\$Country == 'UK', 67330000, ifelse(data_series\$Country == 'India', 1393000000, ifelse(data_series\$Country == 'Brazil', 214000000, ifelse(data_series\$Country == 'France', 67500000, ifelse(data_series\$Country == 'Germany', 83130000, 0))))))) data_series\$`Cumulative total cases by population` = data_series\$`Cumulative total cases` / data_series\$Populatio data_series\$`Cumulative total deaths by population %` = data_series\$`Cumulative total deaths` / data_series\$Popul data_series\$`Daily new cases by population` = data_series\$`Daily new cases` / data_series\$Population data_series\$`Daily new deaths by population %` = data_series\$`Daily new deaths` / data_series\$Population*100 hc1 <- data series %>% hchart('line', hcaes(x = Date, y = `Cumulative total cases`, group = Country)) %>% hc title(text = "Cumulative cases per country") %>% hc legend(align = "left", verticalAlign = "middle", layout = "vertical" hc2 <- data_series %>% hchart('line', hcaes(x = Date, y = `Cumulative total cases by population`, group = Country)) %>% hc title(text = "Cumulative total cases / population per country ") %>% hc_legend(align = "left", verticalAlign = "middle", layout = "vertical" par(mfrow=c(2,1))hc1 **Cumulative cases per country** 100M 80M 60M — Brazil — France Germany India 40M — UK — USA 20M hc2 Cumulative total cases / population per country 0.5 Brazil — France — Germany — India — ÜК — USA hc3 <- data series %>% hchart('line', hcaes(x = Date, y = `Cumulative total deaths`, group = Country)) %>% hc title(text = "Cumulative deaths per country") %>% hc_legend(align = "left", verticalAlign = "middle", layout = "vertical" hc4 <- data_series %>% hchart('line', hcaes(x = Date, y = `Cumulative total deaths by population %`, group = Country)) %>% hc title(text = "Cumulative total deaths over population percentage per country") %>% hc legend(align = "left", verticalAlign = "middle", layout = "vertical" par(mfrow=c(2,1))hc3 **Cumulative deaths per country** 1 200k 1 000k 800k — Brazil — France 600k Germany — India — UK — USA 400k 200k hc4

Cumulative total deaths over population percentage per country

0.35

0.3

600k

s`*100

6 Indonesia

6 rows

total_global <- total_global %>%

arrange(desc(`Death rate percentage`))

Country	Cumulative total cases	Cumulative total deaths	Death rate percentag
<fct></fct>	<dbl></dbl>	<dpl></dpl>	<db< th=""></db<>
l Peru	3571919	213023	5.9638
? Mexico	5745652	324465	5.6471
Bulgaria	1161504	37045	3.1893
1 Tunisia	1041197	28575	2.7444
5 South Africa	3887449	100753	2

_	ories = total_global\$ total_global\$`Death r) %>%	
hc_legend(
align = "lef	-",			
verticalAlig	n = "middle",			
layout = "ve	rtical"			
)				

Porcentaje mortalidad/caso en aquellos países con más de un millón de casos acumulados