

IIC1253 — Matemáticas Discretas

Tarea 3 – Respuesta Pregunta 1

Pregunta 1

Sea A un conjunto no vacío. Una relación binaria $R \subseteq A \times A$ se dice Euleriana si cada vez que $(a,b) \in R$ y $(a,c) \in R$, entonces se tiene que $(b,c) \in R$.

- 1. Sea T una relación refleja y simétrica. Demuestre que T es Euclideana si, y solo si, T es transitiva.
 - Para probar esto...
- 2. Sea T una relación refleja. Demuestre que T es simétrica y transitiva si, y solo si, T es 1 Euclideana.

Para esto tomamos....

IIC1253 — Matemáticas Discretas

Tarea 3 – Respuesta Pregunta 2

Pregunta 2

Considere el conjunto \mathcal{N} de todos los subconjuntos no-vacíos y finitos de \mathbb{N} . Formalmente $\mathcal{N}=\{S\subseteq\mathbb{N}|S\text{ es finito y }S\neq\emptyset\}$. Para todo $C\in\mathcal{N}$, se define $\min(C)$ como el mínimo en C según el orden \leq en \mathbb{N} . Se define la relación $R\subseteq\mathcal{N}\times\mathcal{N}$ tal que $(A,B)\in R$ si, y solo si, si $A\neq B$, entonces:

$$\min\left((A \cup B) - (A \cap B)\right) \in A$$

Es decir, $(A,B) \in R$ con $A \neq B$ si el mínimo de los elementos que no tienen en común A y B pertenece a A. Por ejemplo , $A = \{1,2,4,7,8\}$ y $B = \{1,2,6,8,10\}$ cumplen que $(A,B) \in R$ dado que min $((A \cup B) - (A \cap B)) = \min(\{4,6,7,10\}) = 4$ y $4 \in A$.

1. Demuestre que R es refleja, antisimétrica y conexa.

Para demostrar esto tenemos que

2. Demuestre que R es transitiva.

Para demostrar esta parte

En otras palabra, R es un orden total para el conjunto \mathcal{N} .