

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

THE IA-32 PLATFORM

SEC204

Overview

- Introduction
- Core componentssignment Project Exam Help

Summary

https://tutorcs.com

WeChat: cstutorcs

Assignment Project Exam Help

https://tutorcs.com

BIG AND LITTLE ENDIAN

Endianness was introduced by Danny Cohen
in 1980. It comes from Swift's Gulliver's
Travels (1726). Assignment Project Exam Help

Value: 0 x 1 2 3 4 5 6 7 8

Big Endian

- Big Endian 0x12345678 stored as is.
 - Network traffic is Bihtphan.//tutorcs.com
 - Most architectures (PowerPC, ARM, SPARC, MIPS) are either Big Endian by default or can be configured as either Wiendamt: CStutorcs
- Little Endian 0x12345678 stored in RAM "little end" first. The least significant byte of a word or larger is stored in the lowest address. E.g. 0x78563412
 - Intel (IA-32) is Little Endian

1 2 3 4 5 6 7 8

Little Endian

7 8 5 6 3 4 1 2

ENDIANESS

BIG AND LITTLE ENDIAN ACTIVITY

 Use an ASCII to Hex converter to type a message "HELLO WORLD!"

• https://www.AssignmentoRveoject Examber/ascii-to-hex.html

https://tutorcs.com

- Use an online Hex converter to see how this is represented in the converter to see how environments
 - https://www.scadacore.com/tools/program ming-calculators/online-hex-converter/
 - https://hexed.it/

ASCII	Hex	ASCII	HEX
Space	20	M	4D
!	21	N	4E
A	41	0	4F
m He	24p	Р	50
С	43	Q	51
D	44	R	52
E	45	S	53
F	46	Т	54
G	47	U	55
Н	48	V	56
I	49	W	57
J	4A	Χ	58
K	4B	Υ	59
L	4C	Z	5A

INSTRUCTION CODE HANDLING

- As processor runs, it reads instruction codes that are stored in memory
- As each instruction is detoded any require Project Example data is also copied from memory
- To differentiate between instructions and data, special pointers are used tutorcs.com
 - Instruction Pointer keeps track which instructions have already been processed and which is next to be processed
 - **Data Pointer** shows where the data area in memory starts.
- The Instruction Pointer moves from lower to higher addresses, whereas the Data pointer moves from higher to lower addresses

Instruction Pointer

55

89

ES

83

EC

INSTRUCTION CODE FORMAT

Instructions in the IA-32 family are variable-length and consist of 4 main parts

- [](Optional) Instruction prefix: Modify opcode behaviour. Up to 4 prefixes, each 1 byte long
- Project Exame Helpmed
- [] (Optional) Modifier: Define what registers or memory locations are involved in the function
- (Optional) Data element: used by the function. It could be an actual static numerical value or a memory address
 WeChat: cstutorcs

INSTRUCTION CODE EXAMPLE*

https://tutorosocom

- 2 C7: Opcode. Move a value to remary location torcs
- 2 45 FC: Modifier. The memory location is -4 Bytes (FC) from the memory location pointed to by the value in the EBP register (value 45).
- ② **01 00 00 00: Data element**. The integer value 00 00 00 01 to be placed in that memory location. (Note the little endian notation)

^{*} There is no expectation you will be able to decode this instruction by yourself. This is only shown as an example.

OPCODE MNEMONICS

We could just about decode MARIE instructions (fixed length and format). How would you feel about having to decode IA

Assignmenip Project? Exam Help

Lets be grateful for opcode mnemonics https://tutorcs.com

WeChat: cstutorcs						push	%ebp			
89 E5			mov	%esp,	%ebp					
83	ЕC	08						sub	\$0x8,	%esp
С7	45	FC	01	00	00	00		movl	\$0x1,	-4(%ebp)
83	ЕC	0 C						sub	\$0xc,	%esp
6A	00							push	\$0x0	
E8	D1	F3	FF	FF				call	804834	18

Assignment Project Exam Help OUESTIONS?

WeChat: cstutorcs

Assignment Project Exam Help

https://tutorcs.com

IA 32 COREVEGIARIONENTS

CORE PARTS OF AN IA-32 PROCESSOR

CONTROL UNIT

- 1. Retrieves instructions from memory
- 2. Decodes instructions for enterption to Exam Help
- 3. Retrieves data from memory as needed
- 4. Stores results as necessary tutorcs.com

WeChat: cstutorcs

- NetBurst functionality speeds up processing by incorporating:
 - Instruction prefetch and decoding pipeline
 - Branch prediction
 - Out-of-order execution
 - Retirement

PIPELINE EXECUTION

- Instruction execution can be divided into stages
- Pipelining makes it possible to start an instruction before completing the execution of Projectus Exam Help

EXECUTION UNIT

- It consists of one or more ALUs for the following functions:
 - Simple-integer operations
 Complex-integer operations

 Project Exam Help

 - Floating-point operations.//tutorcs.com

WeChat: cstutorcs

REGISTERS

• Registers are high speed

TENT Project Example Inside the CPU

- Eight 32-bit general-purpose registers
- Six 16-bit segment registers for handling memory access
- Instruction Pointer (EIP) pointing to the next instruction

GENERAL PURPOSE REGISTERS

SEGMENT REGISTERS, CONTROL REGISTERS

Used to reference memory locations

Used to determine the operating mode of the processor and the characteristics of the executing task

SEGMENT REGISTERS	descript Assignmen	t P	registers
CS	Code Segment https://	tu1	torcs.consystem flags to control microprocessor operating mode
DS	Data Segment		microprocessor operating mode
SS	Stack Segment WeCh	at:	CR1 Not used
ES	Extra segment pointer		CR2 Memory page fault information
PS	Extra segment pointer		CR3 Memory page directory information
GS	Extra segment pointer		CR4 Enable processor features

EFLAGS

Status Flags

Indicate status of ASSI arithmetic and logical operations

Control flags

Control CPU operations

System flags

Control O/S-level operations

FLAGS

VIP = Virtual interrupt pending

ID = ID flag

STATUS FLAGS

- Carry Flag
 - Set when unsigned arithmetic result is out of range Help
- Overflow Flag
 - Set when signed arithmetic result is out of range https://tutorcs.com
- Sign Flag

- Copy of sign bit, set when result is negative
- Zero Flag

- WeChat: cstutorcs
- Set when result is zero
- Auxiliary Carry Flag
 - Set when there is a carry from bit 3 to bit 4
- Parity Flag
 - Set when parity is even
 - Least-significant byte in result contains even number of 1s

ACTIVITY – SPOT THE DIFFERENCES

- Work in pairs
- Compare the MARIE and ARIE a
 - Core Components
 - Instruction Set Architettpre://tutorcs.com
 - Instruction Code Handling
 - Data types WeChat: cstutorcs

ADVANCED FEATURES

- X87 Floating Point unit (FPU)
 - perform floating-point mathemptical exemptions Help
- Multimedia Extensions (MME)
 - Performs complex in legip sint had icoperations often found in multimedia applications. Supports the Intel Single Instruction, Multiple Data (SIMD) execution model WeChat: cstutorcs
- Streaming SIMD extensions (SSE)
 - Enhances performance for complex floating-point arithmetic often used in 3D graphics and motion video
- Hyperthreading
 - Handles multiple program execution threads simultaneously

SUMMARY

- The IA-32 processor consists of the control unit, the execution unit, registers and flags
- The control unit consists mountable registron wather the control unit consists and data
 - Prefetching and decoding ipstructions from memory long before execution improves performance
 - Instructions can also be processed out of order, and results are stored until needed later on WeChat: cstutorcs
- Registers are used as local data storage within a processor
- Instructions are retrieved from memory based on the value of the Instruction Pointer Register.
- The Control Register controls the processor's behaviour
- Instruction Pointer, Data Pointer

SUMMARY

- Little Endian, Big Endian
- Instruction Code Hanglingent Project Exam Help

• Pipeline execution

https://tutorcs.com

Registers

WeChat: cstutorcs

FURTHER READING

- Professional Assembly Language, chapter 2
- http://ecee.colo@assigniment@rat@ratjeotNExmuni/Helpsummary.pdf
- Reference information on A 32. orcs.com http://www.sandpile.org/ We Chat: cstutorcs
- Guide to programming Intel IA32 PC Architecture
 https://www.cs.princeton.edu/courses/archive/fall04/cos3
 18/docs/pc-arch.html