

FACULDADE DE TECNOLOGIA SENAC RIO		
Curso: Análise e Desenvolvimento de Sistemas	Semestre letivo: 2024.1	
Unidade Curricular: Estatística Aplicada	Módulo: 3	
Professor: Agnaldo Cieslak	Data: 04.05.2024	
Competências a serem avaliadas:	Indicadores de Competência:	
 Desenvolver sistemas computacionais aplicando boas práticas de Qualidade de Software 	Aplica as técnicas de tratamento estatístico de dados e informações importantes para o processo de tomada de decisão.	
Aluno: Erick Calazães e Roger Candido	Conceito:	

Tarefa 7 - Medidas estatísticas e tratamento estatísticos de dados agrupados

Em um estudo experimental, realizado em um laboratório de testes, para avaliar o tempo gasto em minutos para realizar a pintura de um componente, foram encontrados os seguintes dados:

5	7	12	7	9	6	4	3	8	13
13	5	7	9	11	5	12	10	4	15
5	16	6	5	5	8	9	5	6	10
9	5	4	9	10	6	6	4	5	6
5	14	15	7	4	26	9	13	8	7
6	4	5	4	5	5	11	8	9	7

Pede-se:

a) Ordenar os dados:

3	4	4	4	4	4	4	4	5	5
5	5	5	5	5	5	5	5	5	5
5	6	6	6	6	6	6	6	7	7
7	7	7	7	8	8	8	8	9	9
9	9	9	9	9	10	10	10	11	11
12	12	13	13	13	14	15	15	16	26

- b) Construir a distribuição de frequência demonstrando os passos necessários e os cálculos. (Referência: Material semana 24/04 a 08/05-revisado).
 - i. Calcular ht

26-3 = 23

ii. Calcular k

 $1+3,3 \log 60 = 6,8678 = ~7$ classes

iii. Calcular hc

 $23/7 = 3,28 = \sim 4$

iv. Verificar k.hc>ht

7*4>23 = 28>24

v. Definir limites de classe

Classe s i	li	Li
1	3	7
2	7	11
3	11	15
4	15	19
5	19	23
6	23	27

vi. Calcular o ponto médio de cada classe (Xi)

i o ponto medio de odda e				
Classes	Xi = (li + Li) /			
	2			
1	6,5			
2	12,5			
3	18,5			
4	24,5			
5	30,5			
6	36,5			

vii. Contar os elementos de cada classe e estabelecer a frequência absoluta (fi)

un o o i u tu	4.000 (1.1)				
Classes	fi				
1	28				
2	20				
3	8				
4	3				
5	0				
6	1				

viii. Calcular os tipos de frequência (%fr, fac, %frc, fad, %frd)

%fr	fac	%frc	fad	%frd
46,67	28	46,67	60	100,00
33,33	48	80,00	32	53,33
13,33	56	93,33	12	20,00
5,00	59	98,33	4	6,67
0,00	59	98,33	1	1,67
1,67	60	100,00	1	1,67

Colocar os valores na tabela padrão abaixo:

			Colocal	US VAIDLE	es na labe	ia paurao a	Daixo.		
Classes i	Li	Li	Tempo (min)	Xi	fi	%fr	fac	fad	%frd
1	3	7		6,5	28	46,67	28	60	100,00
2	7	11	- 	12,5	20	33,33	48	32	53,33
3	11	15	j	18,5	8	13,33	56	12	20,00
4	15	19		24,5	3	5,00	59	4	6,67
5	19	23		30,5	0	0,00	59	1	1,67
6	23	27		36,5	1	1,67	60	1	1,67

c) Após a análise dos resultados, calcular o percentual do tempo de pintura do componente com duração inferior a 10 min;

Classes i	li	Li	%frd
Classe 1	3	7	100
Classe 2	7	11	53,33333

d) Calcular o percentual do tempo de pintura do componente com duração superior a 12 min;

Classes i	li	Li	%frd
Classe 3	11	15	20
Classe 4	15	19	6,666667

e) Construir o histograma com os dados acima. (caso não possua excell ou não tenha domínio, pode ser feito a mão livre com régua);

f) Construa a ogiva de Galton. (caso não possua excell ou não tenha domínio, pode ser feito a mão livre com régua);

g) Considerando que a especificação de tempo de pintura do componente seja menor ou igual a 10min, a que conclusão se pode chegar sobre o experimento?

Classes i	li	Li	%frd
Classe 1	3	7	100
Classe 2	7	11	53,33333

R: Levando em conta um tempo menor ou igual a 10 min, concluímos então que aproximadamente 65% dos resultados atenderam às especificações.