Решение задачи восстановления функции вместе с её производными с помощью операторов Ω_r

Ровачев Вадим Алексеевич

Специальность 010501 «Прикладная математика и информатика»

Научный руководитель: Хромов А.А.

Саратов 2014

Содержание

- 1. Постановка задачи
- ullet 2. Приближающие свойства резольвенты оператора $L_1: y', y(0) = 0$ на отрезке [arepsilon, 1].
- ullet 3. Приближающие свойства резольвенты оператора $L_2: y', y(1) = 0$ на отрезке [0, 1-arepsilon].
- 4. Восстановление функции вместе с её производными
- 5. Заключение
- 6. Список литературы

Постановка задачи

- Постановка задачи восстановления функции. Пусть $u(x) \in C^m[0,1]$ задана приближением $f_\delta(x)$ по метрике пространства $L_2[0,1]$, т.е. $\|f_\delta-u\|_{L_2[0,1]} \leq \delta$. Ставится задача по f_δ и δ найти равномерное приближение u(x). Строится приближение с помощью оператора Ω_r
- Постановка задачи восстановления производной функции. Пусть $u(x) \in C^{k-1}[0,1]$ задана приближением $f_\delta(x)$ по метрике пространства $L_2[0,1]$. Ставится задача по f_δ и δ найти равномерное приближение $u^{(m)}(x), 0 \leq m \leq k-1$. Строится приближение с помощью оператора $D^m \Omega_r^{(k)}$

Формула резольвенты дифференциального оператора первого порядка

Рассмотрим простейший дифференциальный оператор первого порядка $L_1: y^{'}, y(0) = 0$. Обозначим через $R_{\lambda}(L_1)$ его резольвенту, т.е. оператор $R_{\lambda}(L_1) = (L_1 - \lambda E)^{-1}$, где E - единичный оператор, λ - спектральный параметр (числовой параметр, вообще говоря, комплексный). Найдем формулу для резольвенты.

Лемма 1.1. Формула резольвенты дифференциального оператора первого порядка

Для $y(x) = R_{\lambda}(L_1)$ и имеет место формула:

$$y(x) \equiv R_{\lambda}(L_1)u = \int_0^x e^{\lambda(x-t)}u(t)dt. \tag{1}$$

Положим в (7) $\lambda=-r$, где r>0, и рассмотрим операторы $rR_{-r}(L_1)$. Эти операторы имеют вид:

$$\Omega_{1r}u = rR_{-r}(L_1)u = r\int_{0}^{x} e^{-r(x-t)}u(t)dt$$
 (2)

Формула резольвенты в пространствах гладких функций $C^{I}[0,1]$ и формула степеней резольвенты

Рассмотрим операторы

$$D^k R_{-r}(L_1) \equiv (R_{-r}(L_1)u)_x^{(k)} k = 1, ..., I, D^1 \equiv D(Du = u').$$

Лемма 1.3. Формула резольвенты в пространствах гладких функций Операторы $D^k R_{-r}(L_1)$ имеют вид:

$$D^{k}R_{-r}(L_{1})u = u^{(k-1)}(x) - ru^{(k-2)}(x) + r^{2}u^{(k-3)}(x) - \dots + + (-1)^{k-1}r^{k-1}u(x) + (-1)^{k}r^{k}\int_{0}^{x} e^{-r(x-t)}u(t)dt, k = 1, \dots, l.$$
(3)

Лемма 1.5. Формула степеней резольвенты

Операторы $(rR_{-r}(L_1))^k$ имеют вид:

$$(rR_{-r}(L_1))^k u = r^k \int_0^x \frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} u(t) dt.$$
 (4)

Формула производной от резольвенты порядка т

Лемма 1.8. Формула производной от резольвенты порядка m Операторы $D^m\Omega^k_{1r}$ и при $k\geq 1, m=0,...,k-1$ имеют вид

$$D^{m}\Omega_{1r}^{k}u=r^{k}\int_{0}^{x}K_{1m}(x,t,k,r)u(t)dt, \qquad (5)$$

где

$$K_{1m}(x,t,k,r) = (-1)^m e^{-r(x-t)} \left[r^m \frac{(x-t)^{k-1}}{(k-1)!} - mr^{m-1} \frac{(x-t)^{k-2}}{(k-2)!} + C_m^2 r^{m-2} \frac{(x-t)^{k-3}}{(k-3)!} + \dots + (-1)^{m-1} C_m^{m-1} r \frac{(x-t)^{k-m}}{(k-m)!} + (-1)^m \frac{(x-t)^{k-m-1}}{(k-m-1)!} \right].$$

$$(6)$$

Формула резольвенты дифференциального оператора первого порядка

Рассмотрим оператор $L_2: y', y(1)=0$, отличающийся от оператора L_1 лишь граничным условием. Обозначим его резольвенту $R_\lambda(L_2)$. Положим $\lambda=r,r>0$ и рассмотрим оператор $-rR_r(L_2)$.

Лемма 2.1. Формула резольвенты дифференциального оператора первого порядка

Для $y(x) = R_{\lambda}(L_2)$ имеет место формула:

$$y(x) \equiv R_{\lambda}(L_2)u = -\int_{-\infty}^{1} e^{\lambda(x-t)}u(t)dt.$$
 (7)

Положим в (1.1) $\lambda-r$, где r>0, и рассмотрим операторы $-rR_r(L_2)$. Очевидно, эти операторы имеют вид:

$$\Omega_{2r}u = -rR_r(L_2)u = r\int_{-\infty}^{1} e^{r(x-t)}u(t)dt$$
 (8)

Формула резольвенты в пространствах гладких функций $C^{I}[0,1]$ и формула степеней резольвенты

Рассмотрим операторы

$$D^k R_r(L_2) u \equiv (R_r(L_2) u)_x^{(k)}, k = 1, ..., I, D^1 \equiv D(Du = u').$$

Лемма 2.3. Формула резольвенты в пространствах гладких функций Операторы $D^k R_r(L_2)$ имеют вид:

$$D^{k}R_{r}(L_{2})u = u^{(k-1)}(x) - ru^{(k-2)}(x) + r^{2}u^{(k-3)}(x) + ... + (-1)^{k-1}r^{k-1}u(x) + (-1)^{k}r^{k}\int_{x}^{1}e^{r(x-t)}u(t)dt.$$

$$(9)$$

Лемма 2.5. Формула степеней резольвенты операторы Ω_{2r}^k имеют вид:

$$\Omega_{2r}^{k} u = r^{k} \int_{x}^{1} \frac{(t-x)^{k-1}}{(k-1)!} e^{r(x-t)} u(t) dt.$$
 (10)

Формула производной от резольвенты порядка т

Лемма 2.8. Формула производной от резольвенты порядка Операторы имеют вид

$$D^{m}\Omega_{2r}^{k}u=r^{k}\int_{x}^{1}K_{2m}(x,t,k,r)u(t)dt, \qquad (11)$$

где

$$K_{2m}(x,t,k,r) = e^{r(x-t)} \left[r^m \frac{(t-x)^{k-1}}{(k-1)!} - mr^{m-1} \frac{(t-x)^{k-2}}{(k-2)!} + C_m^2 r^{m-2} \frac{(t-x)^{k-3}}{(k-3)!} + \dots + (-1)^{m-1} C_m^{m-1} r \frac{(t-x)^{k-m}}{(k-m)!} + + (-1)^m \frac{(t-x)^{k-m-1}}{(k-m-1)!} \right].$$
(12)

Приближение функции и её производных на [0,1] с помощью оператора Ω_r

Рассмотрим оператор Ω_r , являющийся комбинацией операторов Ω_{1r},Ω_{2r} приведённых в лемме 1.1 (4) и лемме 2.1 (7) соответственно.

В силу свойств операторов Ω_{1r} и Ω_{2r} на каждом из отрезков [0,1/2] и [1/2,1] эти операторы дают равномерную сходимость в метрике C[0,1/2] и C[1/2,1] соответственно к любой функции $u(x)\in C[0,1]$.

Далее определим по аналогии с (13) в соответствии с леммами 1.5 (5) и 2.5 (8) оператор $\Omega_r^{(k)}$:

$$\Omega_r^{(k)} u = \begin{cases}
\Omega_{2r}^k u \equiv r^k \int_{-\infty}^1 \frac{(t-x)^{k-1}}{(k-1)!} e^{r(x-t)} u(t) dt, x \in [0, 1/2], \\
\Omega_{1r}^k u \equiv r^k \int_{0}^{\infty} \frac{(x-t)^{k-1}}{(k-1)!} e^{-r(x-t)} u(t) dt, x \in [1/2, 1].
\end{cases} (14)$$

А также построим оператор $D^k\Omega_r(D^k=rac{d^k}{dx^k},D'\equiv D)$:

$$D^{k}\Omega_{r}u = \begin{cases} D^{k}\Omega_{2r}u, x \in [0, 1/2], \\ D^{k}\Omega_{1r}u, x \in [1/2, 1], \end{cases} k = 1, 2, \dots$$
 (15)

где в соответствии с леммами 1.3 (5) и 2.3 (8) операторы $D^k\Omega_{1r}u$ и $D^k\Omega_{2r}u$ определены в формулах (3) и (9) соответственно.

Теорема 3.1 Для любой функции $u(x) \in C^{I}[0,1], I \geq 0$ выполняется сходимость:

$$\|D^k\Omega_r u - u^{(k)}\|_{L_\infty[0,1]} \to 0$$
 при $r \to \infty, k = 0, 1, ..., l.$ (16)

Рассмотрим операторы $D^m \Omega_r^{(k)}$ при $k \geq 1, m = 0, ..., k-1$:

$$D^{m}\Omega_{r}^{(k)}u = \begin{cases} D^{m}\Omega_{2r}^{k}u \equiv r^{k} \int_{0}^{1} K_{2m}(x,t,k,r)u(t)dt, x \in [0,1/2], \\ X \times X \\ D^{m}\Omega_{1r}^{k}u \equiv r^{k} \int_{0}^{1} K_{1m}(x,t,k,r)u(t)dt, x \in [1/2,1]. \end{cases}$$
(17)

где $K_{1m}(x,t,k,r)$, $K_{2m}(x,t,k,r)$ определены в формулах (1.22),(2.19) в соответствии с леммами 1.8 (6) и 2.8 (9).

Теорема 3.2 Для любой функции $u(x) \in C^{k-1}[0,1]$ при $k \ge 1, m = 0, ..., k-1$ выполняется сходимость:

$$\|D^m \Omega_r^{(k)} u - u^{(m)}\|_{L_{\infty}[0,1]} \to 0 \text{ при } r \to \infty.$$
 (18)

Задача восстановления функции

Теорема 3.3 Для сходимости

$$\Delta(\delta, \Omega_r, u) \equiv \sup_{f_\delta} \{ \|\Omega_r f_\delta - u\|_{L_\infty[0,1]} : \|f_\delta - u\|_{L_2[0,1]} \le \delta \} \to 0 \text{ при } \delta \to 0$$
(19)

необходимо и достаточно выполенение согласования:

$$r = r(\delta), r(\delta) \to \infty, (r(\delta))^{1/2}\delta \to 0.$$

Задача восстановления производной функции порядка т

Теорема 3.4 Для сходимости

$$\Delta(\delta, D^{m}\Omega_{r}^{(k)}, u) \equiv \sup_{f_{\delta}} \{ \|D^{m}\Omega_{r}^{(k)} f_{\delta} - u^{(m)}\|_{L_{\infty}[0,1]} : \|f_{\delta} - u\|_{L_{2}[0,1]} \le \delta \} \to 0 \text{ при}$$

$$\delta \to 0, k \ge 1, 0 \le m \le k - 1,$$
(20)

необходимо и достаточно выполенение согласования:

$$r = r(\delta), r(\delta) \to \infty, (r(\delta))^{\frac{2m+1}{2}} \delta \to 0.$$