HWY ECEYOB

GOWTHAMY

Part ! :-HMM Forward - Backward Algorithm codes submitted :- 1) HMM. Py Functions :-Forward algorithm: - returns a T* in-states materia Backward algorithm: - returns a 11 Forward -Back bard algorithm; deturns a verified with ICA4 solutions.

Part 2: - HMM model

observations

(or) eminissions

THE LITTLE

Frank Lines

0.00				0
2)				
,	Verify Horn-Py and use it for inference.			
	result.	D, D, C, C,	A, B]	
	P(St/F, F, F, Ft):- allpha			
	P(Ettyler, Enlst): - Beta			
, i	P(4/E, -En) :- Gamma			
	For most likely sequence only			
	21 Pha (df)	Reta (Pet)	Cramma ()	4) Mostliky state
t=1	0.5	9.34 e-5	0.435	PD C
t=2	0.42394	0.000614	0.487	
6 23	0.542	0.00495	0.568	C
t=4	0.474	0.0424	0.429	C
425	0-792	0.215	0.802	A
126	0.679		67677	B
			j.	

Factor Graphs & Belief Propagation

Problem ! :-P(Y)=12 MX->fA(M) fA 2 is the normalization factor (420,1) Mx > fA(N) = 0 [0.6×0.7] 20 =) mx->fa(x) = 0.42 Since P(Y) & is given by eq in (1). For Y=0 :- FA=0 0.3 P(4=0)= 0.15x0.3+0.45x0.4

= 0.204

= 0.036 + 0.168

Similarly for
$$y=1$$
: $f_A = \begin{bmatrix} 0.12 \\ 0.12 \end{bmatrix}$

$$P(y=1) = y \quad 7 \quad \begin{bmatrix} 0.12 \\ 0.12 \end{bmatrix} \begin{bmatrix} 0.12 \\ 0.12 \end{bmatrix}$$

$$= 0.12 \times 0.12 \quad 4 \quad 0.42 \times 0.2$$

$$= 0.096$$

$$= 0.096$$

$$= 0.096$$

$$= 0.3$$

$$= 0.12 \quad 4 \quad 0.084$$

$$= 0.096$$

$$= 0.3$$

$$= 0.204 \quad 0.096$$

$$= 0.3$$

$$= 0.68$$

$$= 0.32$$

Problem f(x1, x2, x3, x1, x5, x6) = f1(x1, x4) f(x1, x3, x6) f3 (X2, X4, X5) fa(X1) Marginal of My f(x1) = { f(x1, x2, x3, x4, x5, x6) X2 M3 X4 X5 X6 f(x1) = \(\xi_1 \times_4 \) \(\xi_1 \times_4 \) \(\xi_2 \times_4 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_4 \times_5 \) \(\xi_1 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_4 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_4 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_4 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_5 \) \(\xi_2 \times_5 \) \(\xi_1 \times_5 \) \(\xi_2 \times_5 \) \(\xi_1 \times_5 \times_5 \) \(\xi_2 \times_5 \times_5 \) \(\xi_1 \times_5 \times_ Xx, 73 x4, 75, X6 f(x1) = fy(x1) & f1(x1, x4) f2(x1, x3, x6) f3(x2, x1, x5) X57X6

