Physics 2311 Physics I (Mechanics)

Equation list for Exam II

Chapter 7 Systems and Environments

Work: $W = F \Delta r \cos \theta = F_{\parallel} \Delta r = \vec{F} \cdot \vec{r}$ (for a constant force)

Work: $W = \int \vec{F} \cdot d\vec{r}$

Force by a spring (Hooke's Law): $F_s = -kx$

Work done by a spring: $W = \frac{1}{2} kx_i^2 - \frac{1}{2} kx_f^2$

 $\text{Work-kinetic energy theorem:} \quad W_{net} \! = \! K_f \! - \! K_i \! = \! \Delta \, K$

Gravitational Potential Energy (near surface of Earth): $U_g = mgy$ (y increases upward, g >0)

Potential Energy of a Spring: $U_s = \frac{1}{2}kx^2$

Work by a conservative force: $W_c = U_i - U_f = -\Delta U$

Mechanical energy: $E_{mech} = K + U$

Potential energy due to any conservative force: $U_f - U_i = -\int_{x_i}^{x_f} \overrightarrow{F}_x dx$

Obtain a force from a potential energy function: $F_x = -\frac{dU}{dx}$

Chapter 8 Conservation of Energy

For a non-isolated system, $\Delta E_{system} = \sum T$

where $\Sigma T = W + Q + T_{MW} + T_{MT} + T_{ET} + T_{ER}$ are transfer energies.

For an isolated system, $\Delta E_{system} = 0$

For an isolated system with only mechanical energy: $\Delta E_{mech} = 0 = \Delta K + \Delta U$

For a non-isolated system with no change in potential energy, and friction and other forces are

present: $\Delta K = \sum W_{other forces} - f_k d$

Internal energy change of a closed system with friction: $\Delta E_{intern} = f_k d$

For an isolated system with changes in potential energy and friction: $\Delta E_{mech} = -f_k d$

For a non-isolated system ...: $\Delta E_{mech} = +\sum W_{other forces} - f_k d$

Power: $P = \frac{dE}{dt}$

Power expended by a force: $P = \vec{F} \cdot \vec{v}$

Average power by a force that did work W: $P_{avg} = \frac{W}{\Lambda t}$

Chapter 9. Linear momentum and collisions

Linear momentum: $\vec{p} = m\vec{v}$

Momentum and force: $\vec{F} = \frac{d\vec{p}}{dt}$

Conservation of momentum: $\vec{p}_{tot} = constant$ or $\Sigma \vec{p}_{i,initial} = \Sigma \vec{p}_{i,final}$

Impulse: $\vec{I} = \Delta \vec{p}$ or $\vec{I} = \int \vec{F}_{net} dt$

Types of collisions (<u>all</u> obey conservation of momentum):

a) elastic: kinetic energy is conserved

b) inelastic: kinetic energy is not conserved

c) perfectly inelastic: kinetic energy is not conserved and particles stick together Center of mass for discrete masses:

$$x_{com} = \frac{\sum m_i x_i}{M_{tot}}$$
 and $y_{com} = \frac{\sum m_i x_i}{M_{tot}}$

Center of mass for continuous, extended masses:

$$\vec{r}_{CM} = \frac{1}{M} \int \vec{r} dm$$

For a system of particles: $\vec{p}_{tot} {=} M_{tot} \vec{v}_{\mathit{CM}}$

$$\vec{p}_{tot} = M_{tot} \vec{\mathsf{v}}_{\mathit{CM}}$$

Chapter 10. Rotation of a Rigid Object

Angular position: $\theta = \frac{S}{r}$ (where s is arclength)

Angular speed: $\omega = \frac{d\theta}{dt}$

Angular acceleration: $\alpha = \frac{d \omega}{dt}$

Relate to translational quantities: $v=r\omega$, $a_t=r\alpha$ and $a_c=\frac{v^2}{r}=r\omega^2$

Angular kinematic equations for constant angular acceleration:

$$\begin{aligned} & \omega_f = \omega_i + \alpha t \\ & \theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2 \\ & \omega_f^2 = \omega_i^2 + 2 \alpha (\theta_f - \theta_i) \\ & \theta_f = \theta_i + \frac{1}{2} (\omega_i - \omega_f) t \end{aligned}$$

Rotational kinetic energy: $K_R = \frac{1}{2}I\omega^2$

Moment of inertia: $I = \sum m_i r_i^2$ (for discrete masses)

Moment of inertia: $I = \int r^2 dm$ (for continuous masses)

Mass density: linear mass density, $~\lambda~$, surface mass density, $~\sigma~$, volume mass density $~\rho~$

 $I = I_{CM} + MD^2$ Parallel-axis theorem:

Torque: $\tau = rF \sin \theta$ Torque: $\tau_{net} = I \alpha$

Total kinetic energy: $K_{tot} = K_{trans} + K_{rot}$ For an object that rolls without slipping:

$$\Delta s = R \Delta \theta$$
$$v_{CM} = R \omega$$

$$a_{CM} = R \alpha$$

Chapter 11 Angular Momentum

 $\vec{\tau} = \vec{r} \times \vec{F}$ Torque as vector cross product:

 $\vec{L} = \vec{r} \times \vec{p}$ Angular momentum of a particle:

 $\sum \vec{\tau} = \frac{d\vec{L}}{dt}$ Relate angular momentum to torque:

Angular momentum of an extended object: $L=I \omega$

Conservation of angular momentum: for a closed system, $\frac{d\vec{L}}{dt} = 0$

Chapter 12 Static Equilibrium and Elasticity

The two conditions of static equilibrium:

- $\sum_{i} \mathbf{\dot{\tau}}_{ext} = 0$ $\sum_{i} \mathbf{\dot{F}}_{ext} = 0$