Segmentation by Thresholding

- Use a threshold to separate a whole image into two parts.
- Thresholding is a method of separating pixels into "classes" based on their values.
- The threshold is usually determined from the histogram. For example, for binary segmentation, we can choose the half-way point between the two main peaks.

Segmentation by Thresholding

When appropriate, multiple thresholds can be used to separate the image into more than two parts.

Histograms with two and three peaks:

Example (3 peaks):

Automatic Selection of Thresholds

- (Basic Global Algorithm) in textbook
- Start with a threshold T that is the average gray level of the image.
- In each iteration:
 - Compute m_1 and m_2 , the average gray levels for those pixels with gray levels above and below T, respectively.
 - Replace T with $(m_1+m_2)/2$.
 - When the change of T between iterations is below some small predefined tolerance, terminate the iteration.
- This version is for single-threshold (two-region) cases. It can also be extended to more thresholds.
- This is a special case of clustering based segmentation, to be discussed later.

Otsu's Method

The concept of the **separability** between two distributions:

Good separability:

Not-so-good separability

One way to quantify separability: σ_B^2/σ_G^2

Otsu's Method: Select a threshold that, when used to separate the pixel values into two groups, gives the maximum separability.

Otsu's Method

Otsu's Method automatically select a threshold to maximize separability:

For each possible threshold, compute the gray-level separability of the two regions:

$$\eta(k) = \frac{\sigma_B^2(k)}{\sigma_G^2} = \frac{P_I(k)[m_I(k) - m_G]^2 + P_2(k)[m_2(k) - m_G]^2}{\sigma_G^2}$$

 \blacksquare Select the threshold level (k) that maximizes the separability.

Automatic Selection of Thresholds

Basic global algorithm

Otsu's method

Automatic Selection of Thresholds

Otsu's method with two thresholds (3 regions):

$$\eta(k_1, k_2) = \frac{\sigma_B^2(k_1, k_2)}{\sigma_G^2} = \frac{\sum_{j=1}^3 P_j(k_1, k_2) [m_j(k_1, k_2) - m_G]^2}{\sigma_G^2}$$

Adaptive Thresholding

In some situations, thresholds need to be selected locally, not globally. The most common cause is the variation of illumination.

An example of segmentation error that results from global thresholding:

Basic global algorithm

Otsu's method

Adaptive Thresholding

The same image, with different thresholds for the 6 regions:

Adaptive Thresholding

global threshold

and stay of ser sew Jackson of the other p if tookly Donelson for the Sum of two thousas and paid the tweether wher the and by their present alien enfeoff and con row his heirs as w traits or paralle

local threshold

Indrinty six between stockley of Know and stay of Tennessy Indrew Jackson of the January Said Stockley Donelson for a stay Braid the two thousand hand paid the tweet the where rath and we there presents and alien enteroff and Confir Jackson has heirs and a certain traits or parallof La sandarres on thousandarre

Ludring Six between Stockley of Kny and Black of Fernesse Ludrew Jackson of the Court day and Blookley Donelson for a Land paid the two thousand hand paid the tweight where hath and by theif presents but alien enfeoff and Confer Jackson his heirs and a candary of La pandary of La pandary of La

Thresholding by Similarity

Example with skin color segmentation:

Model of Caucasians

similarity

Model of blacks

thresholding

Clustering is a class of algorithms that group unorganized data into meaningful "clusters".

- In image segmentation, we can consider the pixels as units of data, and group them into clusters using one of the many available clustering algorithms.
- Each cluster consists of a set of clusters.
- We will show some examples with minimal details about the various clustering algorithms.

K-means clustering: A very common type of clustering algorithms with a predefined number (K) of clusters.

- The result images are shown with the mean colors of the clusters.
- The "basic global algorithm" for automatic threshold selection is just 2-means clustering with gray-scale images.

K-means clustering (more examples):

Related clustering algorithms with mixed (overlapped) clusters: expectation-maximization, and fuzzy c-means.

DBSCAN: A popular density-based clustering algorithm that does not require a predefined number of clusters.

- Graph-cut based image segmentation:
 - Treat pixels as vertices in a graph.
 - One edge per pair of adjacent pixels.
 - Edge weight = Pixel similarity
 - Find the min-cut of the graph.
 - Popular for interactive segmentation with manually assigned sources and sinks.

Graph-cut based image segmentation: Some examples:

https://www.datasciencecentral.com/profiles/blogs/interactive-image-segmentation-with-graph-cut-in-python

Superpixels

- With so many pixels in an image, the segmentation algorithms naturally take a lot of computation.
- Superpixels is a representation of image with the unit being homogeneous small regions.
- Superpixels are generated with clustering algorithms.

Superpixels

- Since each superpixel needs to be a connected set of pixels, distances among pixels are considered in the clustering process (in addition to pixel values).
- Two main factors affecting superpixel results:
 - Relative importance of pixel values and locations.
 - Parameter controlling the size of number of superpixels.
- Superpixels usually result in over-segmentation of the image. Postprocessing can then be applied to the superpixels (such as superpixel merging, or interactive graph cut, etc.).

SLIC Superpixels

- SLIC is probably the most well-known superpixel algorithms.
- SLIC is based on k-means, with k being the number of superpixels.
- Each pixel is defined by five values: three for color (usually RGB) and two for location.

https://www.epfl.ch/labs/ivrl/research/slic-superpixels/