

PHYC90045 Introduction to Quantum Cor Maths o	f Amplitude Amplification
Similarly,	$Q \left \phi_b \right\rangle = (1 - 2t) \left \phi_b \right\rangle + 2 \sqrt{t(1 - t)} \left \phi_g \right\rangle$
And from previous slide:	$Q\left \phi_{g}\right\rangle = \left(1-2t\right)\left \phi_{g}\right\rangle - 2\sqrt{t(1-t)}\left \phi_{b}\right\rangle$
Q recursive step:	
$Q = \begin{bmatrix} (1 - t)^{-1} \\ 2\sqrt{t(1 - t)^{-1}} \end{bmatrix}$	$\frac{2t)}{-t)} \begin{array}{c} -2\sqrt{t(1-t)} \\ (1-2t) \end{array}$
Compare to a rotation ma	trix: $\sin \theta = \sqrt{t} = g_0$
$R(2\theta) = \bigg[$	$ \cos 2\theta - \sin 2\theta \\ \sin 2\theta - \cos 2\theta $

PHYC90045 Introd	New rotation angle
	$V \otimes U \ket{0} = V \ket{0} \otimes (g_0 \ket{\phi_g} + b_0 \ket{\phi_b})$
	$V\ket{0} = \sqrt{1 - \left(\frac{g_0'}{g_0}\right)^2}\ket{0} + \frac{g_0'}{g_0}\ket{1}$
Gives:	v (90) 90
	$V \otimes U 0\rangle = g_0' 1\rangle \phi_g\rangle + \dots$
initial am be anyth	hoose the plitude to ing value the original Our new "good" states, but now have a preceding "1" on the extra qubit we added
	Choose $\mathbf{g_0}'$ s.t. $i=rac{\pi}{4 heta'}-rac{1}{2}$ is a whole number

IYC90045 Introdu	ction to Quantum Computing	
	Amplitude Amplification is optimal	MELBOUR
Proof in yo	ur textbooks.	
Grover's al	gorithm is optimal in terms of the number of applications of the c	racle.
For many	oracle problems the required number of uses of the oracle scales	like:
	$O(\sqrt{N})$	
	that for a broad range of problems the best speedup we can ach ntum computer is not exponential, but polynomial (which can be icant).	
	ns with identifiable structure, we might hope for more speedup.	

0045 Introduction to Quantum Co	This Week	MELIO
Lecture 7 Introduction to Grogeometric interpre	over's algorithm for amplitude amplifi tation	cation,
Lecture 8 Amplitude Amplific	cation, Succeeding with Certainty, Qua	antum
Lab		
Grover's algorithm		