√itmo di inferenza dei tipi (fase 1)

uca Padovani Linguaggi e Paradigmi di Programmazione

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza. Ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

algoritmo di inferenza del tipo di una λ -espressione

Sommario delle fasi dell'algoritmo

- 1 costruzione dell'**albero sintattico** della λ -espressione
- 2 annotazione dell'albero + generazione dei vincoli
 - variabile di tipo = tipo sconosciuto
 - **espressione di tipo** = tipo (parzialmente) sconosciuto
 - vincolo = relazione di uguaglianza tra tipi espressa nelle regole di tipo
- risoluzione dei vincoli
 - determinare se il sistema ammette almeno una soluzione
 - calcolare la soluzione "più generale", da cui derivare tutte le altre

fase 1: costruzione dell'albero sintattico

ightharpoonup Si rappresenta la λ -espressione come un albero

▶ I nodi interni e le foglie sono opportunamente etichettati

▶ Indichiamo con T[M] l'albero corrispondente alla λ -espressione M

costruzione dell'albero sintattico

esercizi

Costruire l'albero sintattico delle seguenti espressioni:

- $1 (\lambda x.x)$ True
- $2 \lambda x.\lambda y.\lambda z.z x y$
- if True $(\lambda x.x)(\lambda x.\lambda y.y)$

soluzioni

Algoritmo di inferenza dei tipi (fase 2)

Luca Padovala Linguaggi e Paradigmi di Programmazione

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza. Ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

algoritmo di inferenza del tipo di una λ -espressione

Sommario delle fasi dell'algoritmo

- 1 costruzione call'albero sintattico della λ -espressione
- 2 annotazione dell'alber + generazione dei vincoli
 - variabile di tipo = tipo sonosciuto
 - **espressione di tipo** = tipo (arzialmente) sconosciuto
 - vincolo = relazione di uguaglianza tra tipi espressa nelle regole di tipo
- risoluzione dei vincoli
 - determinare se il sistema ammette almeno una soluzione
 - calcolare la soluzione "più generale", da cui derivare tuce le altre

fase 2: annotazione dell'albero e generazione dei vincoli

- ogni nodo dell'albero viene annotato con un'espressione di tipo
- ▶ si procede in modo bottom-up, dalle foglie verso la radice

Variabili di tipo

- Sia $TVar = \{\alpha, \beta, \gamma, ...\}$ un insieme *infinito* di **variabili di tipo**
- $ightharpoonup \alpha$ rappresenta un tipo sconosciuto, ancora da determinare

Sintassi delle espressioni di tipo

$$\begin{array}{cccc} \tau,\sigma & ::= & \alpha & & \text{variabile di tipo} \\ & | & \text{Bool} & & \text{booleani} \\ & | & \tau \to \sigma & & \text{funzioni} \end{array}$$

Un **vincolo** è una coppia di espressioni di tipo scritta come

$$\tau = \sigma$$

annotazione bottom-up e generazione dei vincoli

Albero	Note
$X: \alpha$	lpha è nuova, avendo cura di usare la stessa $lpha$ per
	tutte le occorrenze della stessa x
c:Bool	Altre costanti richiederanno tipi diversi
$ \lambda x : \alpha \to \tau $ $ \uparrow $ $ \tau : \tau $	α è la variabile di tipo usata per annotare \mathbf{x} in \mathbf{T} se \mathbf{x} compare in \mathbf{T} o è nuova altrimenti
$C : \alpha$ $T_1 : \tau$ $T_2 : \sigma$	α è nuova Generare il vincolo $\tau=\sigma ightarrow \alpha$
$ \begin{array}{c c} & @: \tau_2 \\ \hline & T_1: \tau_1 \to \tau_2 & T_2: \sigma \end{array} $	Ottimizzazione facoltativa del caso precedente che evita l'introduzione di una nuova α Generare il vincolo $ au_1 = \sigma$
$ \begin{array}{c c} & \text{if} : \tau_2 \\ \hline & T_1 : \tau_1 & T_2 : \tau_2 & T_3 : \tau_3 \end{array} $	Generare il vincolo $ au_1 = exttt{Bool}$ Generare il vincolo $ au_2 = au_3$

esercizi

Generare i vincoli di tipo per le seguenti espressioni:

- 1 $(\lambda x.x)$ True
- $\lambda f.\lambda x.f(fx)$
- $(\lambda x.x)(\lambda x.x)$ True
- 4 $\lambda x. \lambda y. \lambda z. z x y$
- 5 if True $(\lambda x.x)(\lambda x.\lambda y.y)$

Nota

▶ usiamo l'ottimizzazione per evitare di introdurre una variabile di tipo

Albero annotato

Vincoli generati

$$\qquad \qquad \alpha = \beta \rightarrow \gamma$$

Nota

lacktriangle le due occorrenze di f hanno la stessa annotazione lpha

Albero annotato

Vincoli generati

Nota

le due occorrenze di x hanno annotazioni diverse (α e β) perché sono legate a λ diversi

Albero annotato

Vincoli generati

Vincoli generati

- ▶ Bool = Bool

Note

bisogna introdurre una nuova variabile γ per il λx a destra in quanto quella x non compare altrove

Algoritmo di inferenza dei tipi (fase 3)

Luca Padovani Linguaggi e Paradigmi di Pagrammazione

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza. Ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

algoritmo di inferenza del tipo di una λ -espressione

Sommario delle fas. dell'algoritmo

- 1 costruzione dell'albero sintattico della λ -espressione
- 2 annotazione dell'albero + generazione dei vincoli
 - variabile di tipo = tipo scono ciuto
 - espressione di tipo = tipo (parzia mente) sconosciuto
 - vincolo = relazione di uguaglianza tra tipi espressa nelle regole di tipo
- risoluzione dei vincoli
 - determinare se il sistema ammette almeno una solizione
 - calcolare la soluzione "più generale", da cui derivare tutte le altre

sistemi di equazioni e soluzioni

la fase di generazione dei vincoli produce un sistema

$$\{\tau_i = \sigma_i\}_{1 \le i \le n}$$

- ora bisogna determinare se questo sistema ammette una soluzione
- se sì, vogliamo determinare qual è la soluzione più generale

Definizione (sostituzione)

Una **sostituzione** θ è una funzione da variabili di tipo a espressioni di tipo. Scriviamo $\theta(\tau)$ per l'espressione ottenuta da τ sostituendo ogni α con $\theta(\alpha)$.

Definizione (soluzione)

Dato un sistema di vincoli $\{\tau_i = \sigma_i\}_{1 \leq i \leq n}$ e una sostituzione θ diciamo che θ è **soluzione** (o **unificatore**) del sistema se $\theta(\tau_i) = \theta(\sigma_i)$ per ogni $1 \leq i \leq n$. Diciamo inoltre che θ è l'**unificatore più generale** del sistema se ogni soluzione del sistema è ottenibile componendo θ con un'altra sostituzione.

algoritmo di risoluzione

Applicare le trasformazioni seguenti fino a quando è possibile:

Se c'è un vincolo	е	allora
$\overline{\tau = \tau}$	_	eliminare il vincolo
$\tau = \alpha$	au non è una variabile	rimpiazzare il vincolo
		$\cos \alpha = au$
$ \tau \to \tau' = \sigma \to \sigma' $	_	rimpiazzare il vincolo
		$\operatorname{con} \tau = \sigma \operatorname{e} \tau' = \sigma'$
$ au o\sigma={ t Bool}$	_	🙎 l'algoritmo fallisce
${\tt O}{\tt Bool} = \tau \to \sigma$		(type error)
$\alpha = \tau$	$\alpha eq \tau$ ma	🙎 l'algoritmo fallisce
	lpha compare in $ au$	(occur check)
$\alpha = \tau$	lpha non compare in $ au$	sostituire $lpha$ con $ au$ in tutti gli
	lpha compare altrove	altri vincoli ($lpha= au$ rimane)

- ▶ l'ordine in cui si applicano le trasformazioni non è importante
- ▶ nessuna trasformazione applicabile ⇒ algoritmo ha successo

proprietà dell'algoritmo

Applicando l'algoritmo di risoluzione a un sistema iniziale di vincoli

$$\{\tau_i = \sigma_i\}_{1 \le i \le n}$$

si ha che:

- 1 Prima o poi l'algoritmo fallisce o ha successo.
- 2 Se l'algoritmo fallisce, allora il sistema iniziale è insoddisfacibile.
- 3 Se l'algoritmo ha successo, allora:
 - il sistema finale ha la forma $\{\alpha_i = \rho_i\}_{1 \leq i \leq m}$ in cui ciascuna α_i compare una sola volta nel sistema
 - la sostituzione $\theta \stackrel{\text{def}}{=} \{\alpha_i \mapsto \rho_i\}_{1 \le i \le m}$ è l'unificatore più generale del sistema iniziale, in particolare $\theta(\tau_i) = \theta(\sigma_i)$ per ogni $1 \le i \le n$

esempi

$$\alpha = \beta \to \gamma
\alpha = \gamma \to \delta$$

$$\alpha = \beta \to \gamma$$

$$\beta \to \gamma = \gamma \to \delta$$

$$\begin{array}{c} \alpha = \beta \rightarrow \gamma \\ \beta = \gamma \\ \gamma = \delta \end{array}$$

$$\alpha = \gamma \to \gamma
\beta = \gamma
\gamma = \delta$$

$$\alpha = \delta \to \delta$$
$$\beta = \delta$$
$$\gamma = \delta$$

$$\begin{array}{ll} \bullet & \alpha = \beta \to \beta \\ \alpha = \mathtt{Bool} \to \gamma \end{array}$$

$$\alpha = \beta \to \beta$$

$$\beta \to \beta = \mathrm{Bool} \to \gamma$$

$$\begin{array}{c} \alpha = \beta \rightarrow \beta \\ \beta = \texttt{Bool} \\ \beta = \gamma \end{array}$$

$$\begin{array}{l} \alpha = \operatorname{Bool} \to \operatorname{Bool} \\ \beta = \operatorname{Bool} \end{array}$$

$$ightharpoonup$$
 Bool $=\gamma$

$$\begin{array}{l} \alpha = \operatorname{Bool} \to \operatorname{Bool} \\ \beta = \operatorname{Bool} \\ \gamma = \operatorname{Bool} \end{array}$$

Il simbolo ▶ indica il vincolo che innesca la trasformazione

esercizi

Applicare l'algoritmo di inferenza dei tipi ai seguenti termini e determinarne, se possibile, il tipo più generale:

- 1 $(\lambda x.(\lambda y.x y) y) z$
- $(\lambda x.\lambda y.x y y) (\lambda a.a) b$
- $3 \lambda x.x z (\lambda y.x y)$
- 4 $\lambda x.\lambda y.\lambda z.(x z) (y z)$
- $(\lambda x. \lambda y. y x) (\lambda x. \lambda y. x y)$