

Data Structure and Algorithms [CO2003]

Chapter 8 - Heap

Lecturer: Duc Dung Nguyen, PhD. Contact: nddung@hcmut.edu.vn

Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Heap Definition
- 2. Heap Structure
- 3. Basic Heap Algorithms
- 4. Heap Data Structure
- 5. Heap Algorithms
- 6. Heap Applications

Outcomes

- L.O.4.1 List some applications of Heap.
- L.O.4.2 Depict heap structure and relate it to array.
- L.O.4.3 List necessary methods supplied for heap structure, and describe them using pseudocode.
- L.O.4.4 Depict the working steps of methods that maintain the characteristics of heap structure for the cases of adding/removing elements to/from heap.

Outcomes

- L.O.4.5 Implement heap using C/C++.
- L.O.4.6 Analyze the complexity and develop experiment (program) to evaluate methods supplied for heap structures.
- L.O.8.4 Develop recursive implementations for methods supplied for the following structures: list, tree, heap, searching, and graphs.
- L.O.1.2 Analyze algorithms and use Big-O notation to characterize the computational complexity of algorithms composed by using the following control structures: sequence, branching, and iteration (not recursion).

Heap Definition

Definition

A heap (max-heap) is a binary tree structure with the following properties:

- 1. The tree is complete or nearly complete.
- 2. The key value of each node is greater than or equal to the key value in each of its descendents.

Heap Definition

Definition

A min-heap is a binary tree structure with the following properties:

- 1. The tree is complete or nearly complete.
- 2. The key value of each node is less than or equal to the key value in each of its descendents.

Heap trees

Invalid Heaps

(a) Not nearly complete (rule 1)

(c) Root not largest (rule 2)

(b) Not nearly complete (rule 1)

(d) Subtree 10 not a heap (rule 2)

Basic Heap Algorithms

The reheapUp operation repairs a "broken" heap by floating the last element up the tree until it is in its correct location in the heap.

ReheapDown

The reheapDown operation repairs a "broken" heap by pushing the root down the tree until it is in its correct location in the heap.

Heap Data Structure

Properties of Heaps

- A complete or nearly complete binary tree.
- If the height is h, the number of nodes N is between 2^{h-1} and 2^h-1 .
- Complete tree: $N = 2^h 1$ when last level is full.
- Nearly complete: All nodes in the last level are on the left.
- → Heap can be represented in an array.

Heap in arrays

(a) Heap in its logical form

(b) Heap in an array

Heap Data Structure

The relationship between a node and its children is fixed and can be calculated:

- 1. For a node located at index i, its children are found at
 - Left child: 2i+1
 - Right child: 2i + 2
- 2. The parent of a node located at index i is located at $\lfloor (i-1)/2 \rfloor$.
- 3. Given the index for a left child, j, its right sibling, if any, is found at j + 1. Conversely, given the index for a right child, k, its left sibling, which must exist, is found at k 1.
- 4. Given the size, N, of a complete heap, the location of the first leaf is $\lfloor N/2 \rfloor$.
- 5. Given the location of the first leaf element, the location of the last nonleaf element is 1 less.

ReheapUp Algorithm

Algorithm reheapUp(ref heap <array>, val position <integer>) Reestablishes heap by moving data in position up to its correct location.

Pre: All data in the heap above this position satisfy key value order of a heap, except the data in position

Post: Data in position has been moved up to its correct location.

ReheapUp Algorithm

ReheapDown Algorithm

Algorithm reheapDown(ref heap <array>, val position <integer>, val lastPosition <integer>)

Reestablishes heap by moving data in position down to its correct location.

Pre: All data in the subtree of position satisfy key value order of a heap, except the data in position

lastPosition is an index to the last element in heap

Post: Data in position has been moved down to its correct location.

ReheapDown Algorithm


```
leftChild = position * 2 + 1
rightChild = position * 2 + 2
if leftChild <= lastPosition then
   if (rightChild <= lastPosition) AND (heap[rightChild].key > heap[leftChild].key then
       largeChild = rightChild
   else
     largeChild = leftChild
   end
   if heap[largeChild].key > heap[position].key then
       swap(largeChild, position)
       reheapDown(heap, largeChild, lastPosition)
   end
end
return
End reheapDown
```

Build a Heap

- Given a filled array of elements in random order, to build the heap we need to rearrange the data so that each node in the heap is greater than its children.
- We begin by dividing the array into two parts, the left being a heap and the right being data to be inserted into the heap. Note the "wall" between the first and second parts.
- At the beginning the root (the first node) is the only node in the heap and the rest of the array are data to be inserted.
- Each iteration of the insertion algorithm uses reheap up to insert the next element into the heap and moves the wall separating the elements one position to the right.

Build a Heap

Build a Heap

Algorithm buildHeap(ref heap <array>, val size <integer>) Given an array, rearrange data so that they form a heap.

Pre: heap is array containing data in nonheap order size is number of elements in array

Post: array is now a heap.

- To insert a node, we need to locate the first empty leaf in the array.
- We find it immediately after the last node in the tree, which is given as a parameter.
- To insert a node, we move the new data to the first empty leaf and reheap up.

Algorithm insertHeap(ref heap <array>, ref last <integer>, val data <dataType>) Inserts data into heap.

Pre: heap is a valid heap structure
last is reference parameter to last node in heap
data contains data to be inserted

Post: data have been inserted into heap.

Return true if successful; false if array full


```
if heap full then
    return false
end
last = last + 1
heap[last] = data
reheapUp(heap, last)
return true
End insertHeap
```


- When deleting a node from a heap, the most common and meaningful logic is to delete the root.
- After it has been deleted, the heap is thus left without a root.
- To reestablish the heap, we move the data in the last heap node to the root and reheap down.

Algorithm deleteHeap(ref heap <array>, ref last <integer>, ref dataOut <dataType>) Deletes root of heap and passes data back to caller.

Pre: heap is a valid heap structure
last is reference parameter to last node
dataOut is reference parameter for output data

Post: root deleted and heap rebuilt root data placed in dataOut

Return true if successful; false if array empty


```
if heap empty then
    return false
end
dataOut = heap[0]
heap[0] = heap[last]
last = last - 1
reheapDown(heap, 0, last)
return true
End deleteHeap
```

Complexity of Binary Heap Operations

- ReheapUp: $O(\log_2 n)$
- ReheapDown: $O(\log_2 n)$
- Build a Heap: $O(n \log_2 n)$
- Insert a Node into a Heap: $O(\log_2 n)$
- ullet Delete a Node from a Heap: $O(\log_2 n)$

Heap Applications

Three common applications of heaps are:

- 1. selection algorithms,
- 2. priority queues,
- 3. and sorting.

We discuss heap sorting in Chapter 10 and selection algorithms and priority queues here.

Problem

Determining the k^{th} element in an unsorted list.

Two solutions:

- 1. Sort the list and select the element at location k. The complexity of a simple sorting algorithm is $O(n^2)$.
- 2. Create a heap and delete k-1 elements from the heap, leaving the desired element at the top. The complexity is $O(n\log_2 n)$.

Rather than simply discarding the elements at the top of the heap, a better solution would be to place the deleted element at the end of the heap and reduce the heap size by 1. After the k^{th} element has been processed, the temporarily removed elements can then be inserted into the heap.

Algorithm selectK(ref heap <array>, ref k <integer>, ref last <integer>) Select the k-th largest element from a list.

Pre: heap is an array implementation of a heap ${\tt k}$ is the ordinal of the element desired last is reference parameter to last element

Post: k-th largest value returned


```
if k > last + 1 then
   return 0
end
i = 1
originalSize = last + 1
while i < k \text{ do}
   temp = heap[0]
   deleteHeap(heap, last, dataOut)
   heap[last + 1] = temp
   i = i + 1
end
```



```
// Desired element is now at top of heap
holdOut = heap[0]
// Reconstruct heap
while last < originalSize do
   last = last + 1
   reheapUp(heap, last)
end
return holdOut
End selectK
```

Priority Queues

The heap is an excellent structure to use for a priority queue.

Example

Assume that we have a priority queue with three priorities: high (3), medium (2), and low (1). Of the first five customers who arrive, the second and the fifth are high-priority customers, the third is medium priority, and the first and the fourth are low priority.

Arrival	Priority	Priority
1	low	1999 (1 & (1000 - 1)
2	high	3998 (3 & (1000 - 2)
3	medium	2997 (2 & (1000 - 3)
4	low	1996 (1 & (1000 - 4)
5	high	3995 (3 & (1000 - 5)

Priority Queues

The customers are served according to their priority and within equal priorities, according to their arrival. Thus we see that customer 2 (3998) is served first, followed by customer 5 (3995), customer 3 (2997), customer 1 (1999), and customer 4 (1996).

(a) Insert customers

Priority Queues

(b) Process customers