

Data Mining in R Approccio non supervisionato ANALISI CLUSTER

2. Metodi gerarchici e distanze

Laura Grassini

Tan, Steinbach, Kumar: Introduction to data mining, 2006, Addison Wesley

http://www-users.cs.umn.edu/~kumar/dmbook/index.php

Indice

- <u>I metodi gerarchici agglomerativi e divisivi</u>
- La logica dei metodi di cluster gerarchici agglomerativi
- La prossimità fra unità e fra cluster
- Variabili numeriche: distanze e indici di distanza
- <u>L'unità di misura e la scala delle variabili</u>
- Variabili categoriche: dissimilarità
- Variabili miste: distanza di Gower

I metodi gerarchici

- **Gerarchici agglomerativi**: da *n* gruppi (quante sono le unità) si arriva progressivamente a raggruppare le unità più prossime in sottogruppi, e a raggruppare i sottogruppi formati in gruppi, fino ad avere un solo gruppo che contiene tutte le unità
- **Gerarchici divisivi**: da un solo gruppo, che contiene tutte le unità, si procede alla progressiva suddivisione delle unità meno prossime fino ad ottenere *n* gruppi ciascuno con una sola unità

Metodo gerarchico agglomerativo con 4 unità e 2 variabili

(a) Dendrogram.

(b) Nested cluster diagram.

Quando un'unità è entrata in un gruppo **non viene** da questo più rimossa. Il metodo gerarchico **non fornisce** il numero dei gruppi. Esso deve essere scelto a posteriori esaminando i risultati.

- 1. Calcola la matrice di prossimità (distanze, similarità, dissimilarità) fra le unità
- 2. Ripeti fino a che non arrivi ad un solo cluster con tutti i dati
 - 3. Unisci («merge») i cluster più prossimi4. Aggiorna la matrice delle prossimità

La logica del raggruppamento gerarchico (1/8)

• Vediamo il funzionamento della cluster gerarchica a partire da una matrice delle distanza fra 6 unità (N.B. la matrice è **simmetrica**).

	U_1	U_2	U_3	U_4	U_5	U_6
U_1	0	3,00	0,30	1,08	1,56	1,49
U_2	3,00	0	5,02	1,76	0,57	0,91
U_3	0,30	5,02	0	1,68	2,78	2,53
U_4	1,08	1,76	1,68	0	0,33	0.15
U_5	1,56	0,57	2,78	0,33	0	0,04
U_6	1,49	0,91	2,53	0,15	0,04	0

• PASSO 1. Si uniscono le unità meno distanti: U₅ e U₆ formano il gruppo G₁

... la logica del raggruppamento gerarchico (2/8)

- **PASSO 2.** Si aggiorna la matrice delle distanze che ora è 5×5 e si uniscono le unità/gruppi meno distanti.
- La distanza minima si ha per le unità U_1 e U_3 che vanno a formare il gruppo G_2

	G ₁	U_1	U_2	U_3	U_4
G ₁	0				
U_1	1.56	0			
U_2	0.91	3.00	0		
U_3	2.78	0.30	5.02	0	
U_4	0.33	71.08	1.76	1.68	0

• Attenzione: queste sono distanze fra unità e gruppo.

... la logica del raggruppamento gerarchico (3/8)

- **PASSO 3.** Si aggiorna la matrice delle distanze che ora è 4×4 e si uniscono le unità/gruppi meno distanti.
- La distanza minima si ha per l'unità U_4 e il gruppo G_1 . L'unità U_4 si unisce al gruppo G_1 e forma il gruppo G_3

	G ₁	G_2	U_2	U_4
G ₁	0			
G_2	2,78	0		
U_2	0,91	5,02	0	
U_4	0,33	1,68	1,76	0

• Attenzione: in questa matrice ci sono distanze fra gruppi e distanze fra unità e gruppi.

- **PASSO 4.** Si aggiorna la matrice delle distanze che ora è 3×3 e si uniscono le unità/gruppi meno distanti.
- L'unità U₂ si unisce al gruppo G₃ e si forma il gruppo G₄

	U_2	G_3	G_2
U_2	0		
G_3	1,76	0	
G_2	5,02	2,78	0

• **PASSO 5.** Si aggiorna la matrice delle distanze che ora è 2×2 e si uniscono i due gruppi rimasti ottenendo un unico gruppo che contiene tutte le unità.

	G_4	G_2
G ₄	0	
G ₂	5,02	0

... la logica del raggruppamento gerarchico (6/8)

... la logica del raggruppamento gerarchico. Riepilogo dell'aggregazione: lo screeplot (7/8)

Linità/arunni formati	M. aruppi	Distanza
Unità/gruppi formati	N. gruppi	di unione
$U_1, U_2, U_3, U_4, U_5, U_6$	6	0,00
G_1 :{ U_5 , U_6 }, U_1 , U_2 , U_3 , U_4	5	0,04
G_1 :{ U_5 , U_6 }, G_2 :{ U_1 , U_3 }, U_2 , U_4	4	0,30
G_3 :{ $G_1 U_4$ }, G_2, U_2	3	0,33
$G_2, G_4:\{G_3, U_2\}$	2	1,76
G_5 :{ G_2 , G_4 }	1	5,02

Lo scree plot Suggerisce il numero dei gruppi in corrispondenza del **gomito.** In questo caso: **3** gruppi.

N.B. Più aggrego i gruppi e maggiore è la distanza di unione (cioè vado ad unire gruppi sempre più eterogenei fra loro e quindi formo gruppi sempre più eterogeni al loro interno)

Unità/gruppi formati	N. gruppi	Distanza
Office/gruppi formati	i v. gruppi	di unione
$U_1, U_2, U_3, U_4, U_5, U_6$	6	0,00
G_1 :{ U_5 , U_6 }, U_1 , U_2 , U_3 , U_4	5	0,04
G_1 :{ U_5 , U_6 }, G_2 :{ U_1 , U_3 }, U_2 , U_4	4	0,30
$G_3:\{G_1U_4\},G_2,U_2$	3	0,33
$G_2, G_4: \{G_3, U_2\}$	2	1,76
G_5 :{ G_2 , G_4 }	1	5,02

La cluster gerarchica non ci fornisce direttamente la composizione dei gruppi o il numero dei gruppi (cioè la **partizione**). Si deve decidere dove fare il **pruning** (potatura)

N.B. Più taglio in alto (minore numero di gruppi) e più eterogenei al loro interno sono i gruppi che vado a formare

Metodi gerarchici: la prossimità fra coppie di unità

Per raggruppare le unità *meno diverse* è necessario stabilire una misura di **prossimità** (o distanza ecc.) fra unità sulla base delle *p* variabili

Se le *p* variabili sono **quantitative** si parla di **distanze** o di **indici di distanza** fra unità altrimenti si parla di **similarità** o **dissimilarità**

La prossimità (o distanza, similarità, dissimilarità) fra le unità U_i e U_j è:

$$d_{ij} = d(U_i, U_j) = d(\underline{x}_i, \underline{x}_j)$$

dove \underline{x}_i e \underline{x}_i sono le righe i e j della tradizionale matrice dei dati unità \times variabili.

Metodi gerarchici: le prossimità fra coppie di cluster

Man mano che l'agglomerazione procede, si uniscono non solo singole unità fra loro ma unità a cluster, e anche cluster fra loro.

Occorre definire che cosa si intende per prossimità fra cluster.

Vediamo 4 approcci

- a) Single link
- b) Complete link
- c) Group average
- d) Prototype based (prossimità rispetto a un punto «centrale»)

- (b) MAX (complete link.)
- (c) Group average.

Metodi gerarchici: le prossimità fra cluster. Usiamo per il momento il concetto di distanza

- a) Single link: la distanza fra cluster è la **distanza minima** fra due unità una del primo cluster e una dell'altro
- b) Complete link: la distanza fra cluster è la distanza minima fra due unità una del primo cluster e una dell'altro
- c) Group average: la distanza fra cluster è la **media delle distanze** fra le unità del primo cluster e quelle dell'altro
- d) Ward's method: ogni cluster è rappresentato da un centroide (punto con coordinate le medie di gruppo) e la distanza fra due cluster è la distanza fra i rispettivi centroidi (prototipi)

Quale metodo gerarchico?

- Non c'è un criterio generale
- I metodi gerarchici si differenziano per come si calcola la distanza fra cluster
- I metodi single link, complete link, group average, sono basati sulle distanze fra unità, in ogni stadio dell'aggregazione
- I metodi come il WARD, introducono un oggetto nuovo, il centroide, e calcolano le distanza fra questi.

I metodi, single link e complete link, sono i più *puri*, perché basano comunque la distanza fra cluster su distanze fra unità (le più vicine per il single link, le più lontane per il complete link)

Distanze e indici di distanza: proprietà

$$d_{ij} = d(U_i, U_j) = d(\underline{x}_i, \underline{x}_j)$$

1. Identità: $d_{ij}=0$ se e solo se $\underline{x}_i=\underline{x}_j$ 2. Non negatività: $d_{ij}\geq 0$

3. Simmetria: $d_{ij} = d_{ji}$

4. Triangolarità: $d_{ij} \leq d_{ik} + d_{kj}$

	U_1	U_2	• • •	U_j	• • •	Un
U_1	0	d_{12}	• • •	d_{Ij}	• • •	d_{In}
U_2		0	• • •	d_{2j}	• • •	
• • •	•••	• • •	•••	•••	• • •	• • •
Ui			•••	d_{ij}	•••	d_{in}
• • •					•••	•••
U _n						0

La matrice delle distanze (o degli indici di distanza) fra coppie di unità è **simmetrica**

Distanza

Indice

distanza

di

Distanza euclidea e distanza Manhattan (city block): rappresentazione grafica con p=2

Euclidea

$$D(U_i, U_j) = D(\underline{x}_i, \underline{x}_j) = \sqrt{\sum_{k=1}^p (x_{ik} - x_{jk})^2}$$

Manhattan

$$D_{M}\left(U_{i},U_{j}\right)=D_{M}\left(\underline{x}_{i},\underline{x}_{j}\right)=\sum_{k=1}^{p}\left|x_{ik}-x_{jk}\right|$$

Il quadrato della distanza euclidea è una distanza o è un indice di distanza?

Distanze in R (funzione dist())


```
"euclidean"
```

"maximum" massima distanza fra le componenti dei vettori delle due unità

"manhattan"

"canberra": $\sum_{k=1}^{p} \frac{|x_{ik}-x_{jk}|}{|x_{ik}|+|x_{jk}|}$; questo metodo è riferito a valori non negativi come ad es. conteggi (R usa il valore assoluto al denominatore per evitare distanze negative se la formula è usata con valori negativi). "binary": il metodo è riferito a record binary 0/1. E' la proporzione di "solo 1" sul numero di "almeno 1".

"minkowski": $\left(\sum_{k=1}^{p}(x_{ik}-x_{jk})^{p}\right)^{\frac{1}{p}}$ (con p=2 è la distanza euclidea)

```
## distanza binary e canberra
x <- c(0, 1, 1, 1, 1)
y <- c(1, 1, 1, 0, 1)
dist(rbind(x, y), method = "binary")
dist(rbind(x, y), method = "canberra")
dist(rbind(x, y), method = "minkowski",p=2)
dist(rbind(x, y)) # euclidea è il default con dati numerici</pre>
```

Unità di misura e scala delle variabili

- le funzioni di distanza non hanno senso se applicate a variabili espresse in diversa unità di misura (es. Kg e metri)
- attenzione a quando le variabili hanno scala diversa pur essendo misurate con la stessa unità di misura (es. lunghezza del naso e altezza della persona, espresse in mm.) → diverso peso delle variabili

E' necessario procedere ad una normalizzazione (standardizzazione)

La scala delle variabili

• Su due individui abbiamo misurato lunghezza del naso (in cm.) e altezza (in cm.)

•
$$\underline{x}_i$$
:(3.7,160) x_j :(4.1,180)

$$D^{2}(\underline{x}_{i}, \underline{x}_{i}) = (3.7 - 4.1)^{2} + (160 - 180)^{2} = 0.16 + 400$$

La distanza è determinata dall'altezza

- Possibile soluzione: normalizzazione/standardizzazione dei valori.
- ATTENZIONE: si possono generare inversioni nelle distanze fra unità

Metodi di normalizzazione delle variabili

- Standardizzazione tradizionale: $y = \frac{x media(x)}{deviazione \ standard(x)}$
- Ampiezza massima unitaria: $y = \frac{x}{MAX(x)}$
- Deviazione standard unitaria: $y = \frac{x}{deviazione\ standard(x)}$
- Intervallo [-1, 1]: $y = \frac{x}{MAX(x) min(x)}$
- Intervallo [0, 1]: $y = \frac{x \min(x)}{MAX(x) \min(x)}$

La normalizzazione non basta: variabili correlate e misure di distanza

- Se sono presenti variabili **molto correlate**, gli aspetti descritti da tali variabili saranno *sovrarappresentati* nel calcolo della distanza e avranno quindi maggior importanza nell'analisi cluster.
- La correlazione ha anche conseguenze sulla **forma dei gruppi** (v. oltre) che diventano difficili da individuare.
- **Possibile soluzione**: applicazione dell'ACP (ricorda di valutare se dobbiamo standardizzare le variabili) e impiego delle CP standardizzate nell'analisi cluster.

Altra soluzione per variabili correlate: distanza di Mahalanobis

$$(\underline{x}_i - \underline{x}_j)' \Sigma^{-1} (\underline{x}_i - \underline{x}_j)$$

 Σ è la matrice di varianza e covarianza delle p variabili

 Σ_i È il vettore (colonna) delle variabili misurate sull'unità *i*-esima

library(vegan)
dista<-vegdist(mtcars,method="mahalanobis")</pre>

Metodi gerarchici: esempio in R

```
data (mtcars)
# scelgo le variabili (prendo le quantitative)
x<-mtcars[,1:7] # attenzione: diversa unità di misura
cor(x) # attenzione: variabili correlate
## calcolo le CP sulle variabili standardizzate
z<-prcomp(x,center = TRUE, scale. = TRUE)</pre>
dati<-z$x ## prendo le CP che sono ortogonali
## scelgo la misura di prossimità
dista<-(dist(dati))^2 ## quadrato distanza euclidea
## scelgo l'algoritmo: media delle distanze
risultati<-hclust(dista,method='average')
```


Metodi gerarchici: esempio in R (continua)

```
risultati
summary(risultati)
plot(risultati)
### scelgo k=4 gruppi
gruppi<-cutree(risultati,k=4)</pre>
table(gruppi) ## dimensione dei 4 gruppi
## analizzo le variabili orginarie rispetto ai gruppi
## media di gruppo della variabile mpg
tapply(x[,1],gruppi,mean)
boxplot(x[,1]~gruppi)
```

Variabili categoriche: dissimilarità

Una misura di dissimilarità verifica le seguenti proprietà:

1. Identità: $d_{ij} = 0$ se e solo se $\underline{x}_i = \underline{x}_j$

2. Non negatività: $d_{ij} \ge 0$

3. Simmetria: $d_{ij} = d_{ji}$

4. Triangolarità: $d_{ij} \leq d_{ik} + d_{kj}$

Dissimilarità di Jaccard

$$Jaccard = \frac{n_{01} + n_{10}}{n_{01} + n_{10} + n_{11}}$$

V	Y	/
X	0	1
0	1	1
1	1	3

$$Jaccard = \frac{1+1}{1+1+3} = \frac{2}{5} = 0.4$$


```
library (vegan)
library (ade4)
dati<-data.frame(pranzo = c("casa", "casa", "bar", "bar"),</pre>
col = c("rosso","blue","verde","rosso") )
rownames (dati) <-c ("Anna", "Dino", "Pia", "Aldo")
binaria<-acm.disjonctif(dati) # dataset binario</pre>
vegdist(binaria, metric='jaccard')
     Anna Dino Pia
Dino 0.5
Pia 1.0 1.0
Aldo 0.5 1.0 0.5
library(cluster)
daisy(dati) ## riconosce i dati politomici
     Anna Dino Pia
Dino 0.5
Pia 1.0 1.0
Aldo 0.5 1.0 0.5
```


Opera anche con variabili miste (numeriche e politomiche)

1) Si normalizzano le variabili numeriche come segue:

$$x^* = \frac{x - \min(x)}{\max(x) - \min(x)}$$

- 2) Si calcola la **media** della distanza Manhattan per le \boldsymbol{w} variabili \boldsymbol{x}^*
- 3) Si calcola un indice di dissimilarità per le variabili categoriche. \mathbf{R} calcola l'indice tipo Jaccard per le \mathbf{h} variabili politomiche ma si considerano gli (0,0) invece che gli (1,1) e cioè: il contributo di una variabile 0/1 è 0 se la coppia di valori è (1,1), è 1 altrimenti.
- 4) Si calcola la media ponderata dei due tipi di distanza, con pesi w e h.

La funzione daisy():

- non richiede trasformazioni binarie
- riconosce automaticamente quali variabili sono numeriche e quali sono qualitative (factor)

Calcolo distanza di Gower con variabili miste

	pranzo	col	eta	eta*
Anna	casa	rosso	20	0
Dino	casa	blue	20	0
Pia	bar	verde	24	1
Aldo	bar	rosso	21	0.25

```
diss(Anna,Dino) = (0.5\times2+0\times1)/3=1/3=0.3333
diss(Anna, Pia) = (1\times2+1\times1)/3=3/3=1
diss(Anna,Aldo) = (0.5\times2+0.25\times1)/3=1.25/3=0.41667
diss(Dino,Pia) = (1\times2+1\times1)/3=3/3=1
diss(Dino,Aldo) = (1\times2+0.25\times1)/3=2.25/3=0.75
diss(Pia,Aldo) = (0.5\times2+0.75\times1)/3=1.75/3=0.58333
```

Variabile «eta» normalizzata

```
library(cluster)
dati<-data.frame(pranzo = c("casa", "casa", "bar", "bar"),
col = c("rosso", "blue", "verde", "rosso"), eta=c(20,20,24,21))
dista<-daisy(dati,metric="gower")  # calcolo la distanza di Gower</pre>
```


- 1. scelta delle unità;
- 2. scelta delle variabili sulle quali basare il raggruppamento, considerando anche eventuali trasformazioni dei dati;
- 3. scelta dalla misura di prossimità;
- 4. scelta del criterio (o algoritmo) gerarchico e applicazione;
- 5. validazione dei gruppi risultanti \rightarrow la vediamo più avanti
- 6. interpretazione dei gruppi -> la vediamo più avanti