

The tangent at the origin to the curve represented by the equation $x = a(t-\sin t)$, $y = a(1-\cos t)$ is

- □ x=a
- ☐ y=a
- ☐ x=0
- ☐ y=0

Tag to Revisit

The D.E. (x + y - 5)dx + (x - y + 4)dy is

- Homogeneous
- Linear

Exact

O Non Exact

The equation of tangent to the curve at origin represented by the equation

$$y^2(4-x) = x(x-2)^2$$
 is

Tag to Revisit

The differential equation for the current i in an electric circuit containing resistance 100 ohm and an inductance of 0.5 henry connected in series with battery of 20 volts is (1)

1 Points

$$0.5\frac{\mathrm{di}}{\mathrm{dt}} + 100\mathrm{i} = 0$$

$$\sqrt{0.5 \frac{di}{dt} + 100i} = 20$$

$$100 \frac{di}{dt} + 0.5i = 20$$

$$100\frac{\mathrm{di}}{\mathrm{dt}} + 0.5R = 0$$

If
$$I = \frac{E}{R} (1 - e^{\frac{-Rt}{L}})$$
 & E=500volts R=250 Ω
L=640 H. Then maximum value of I is

13 14 15

Tag to Revisit

The angle between the radius vector & the tangent to the curve

$$\tau = \frac{a}{2}(1 + \cos\theta)$$

13 14 15

Tag to Revisit

The charge Q on the plate of the condenser of capacity C charged through a resistance R by a steady voltage V satisfy the differential equation $R\frac{dQ}{dt} + \frac{Q}{c} = V.$ If Q=0 at t=0 thenQ = CV(1 - CV)

exc). Then maximum current is

□ CV

□ None of these

H 1

□ 0

5 Paletta

Bruss

The G.S. of
$$log \frac{dy}{dx} = ax + by$$

$$ae^{-by}+be^{-ax}+c=0$$

$$2 ae^{-by} + be^{ax} + c = 0$$

$$ae^{by} + be^{ax} + c = 0$$

NONE

Tag to Revisit

Let P is any point on the curve & if $(\frac{dy}{dx})_p > 0$ then

- Tangent makes obtuse angle with x
- Tangent parallel to y-axis
- Tangent makes acute angle with xaxis
- ☐ Tangent parallel to x-axis

The integrating factor of the D.E. $\frac{dy}{dx} = \frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}$

 $\begin{array}{c}
2\sqrt{x} \\
e^{2\sqrt{x}}
\end{array}$

- $e^{-2\sqrt{x}}$

The curve $a^2y^2 = a^2x^2 - x^4$ has

- two asymptotes
- one asymptote
- origin is node
- origin is cusp

The tangents at pole to the polar curve $r = a \cos 2\theta$ are

$$\Box \theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \cdots$$

$$\theta = 0, \pi, 2\pi, 3\pi, \cdots$$

$$\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \dots$$

$$\theta = \frac{\pi}{6}, \frac{3\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \dots$$

The angle ϕ between radius vector and tangent line using $\tan \phi = r \frac{d\theta}{dr}$ for the polar equation $r^2 = a^2 \cos 2\theta$ is equal to

$$\frac{\pi}{4} + 2\theta$$

$$\Box$$
 $\pi + 2\theta$

$$\frac{\pi}{2} + \theta$$

$$\frac{\Box}{2} + 2\ell$$

A steam pipe 20 cm in diameter is protected with covering 6 cm thick for which thermal conductivity k = 0.0003 in steady state. The inner surface of the pipe is at 200°C and outer surface of the covering is at 30°C and differential equation of conduction of heat is $dT = -\frac{Q}{2\pi k} \frac{dx}{x}$. The amount of heat loss Q is

$$-\frac{170 (2\pi k)}{\log (1.6)}$$

The D.E. of orthogonal trajectory of $r=acos\theta$ is $\frac{dr}{r}=cot\theta d\theta$ then orthogonal trajectory is

$$r = ccos\theta$$

$$\circ r = \cos\theta$$

None

The differential equation $(x^3 + 3y^2x)dx(y^3 + 3x^2y) = 0$

- Only Exact
- Exact and Homogeneous
- Only Homogeneous
- None

The integrating factor of the differential equation $(x^4e^x - 2mxy^2)dx + 2mx^2ydy = 0$

The equation of tangent to the curve at origin represented by the equation $y = x(x^2 - 1)$ is

1 Points

The charge flowing through the R-C series cct with no applied E.M.F is

$$Q = e^{\frac{t}{RC}} K \qquad \text{K=constant}$$

None of these

$$Q = e^{\frac{-t}{RC}} K \qquad \text{K=constant}$$

$$Q = e^{-tRC} K \qquad \text{K=constar}$$

The linear form of D.E. $\frac{dy}{dx} = e^{x-y}(e^x - e^y)$ by putting $e^y = v$

$$\frac{dv}{dx} + e^x = e^{2x}$$

$$\sqrt{\frac{dv}{dx} + ve^x} = e^{2x}$$

$$0 \frac{dv}{dx} + ve^x = e^x$$

ONone

The tangent at the origin to the curve represented by the equation

$$x = t^2$$
, $y = t - \frac{t^3}{3}$ is

The equation of tangents to the curve at origin represented by the equation

$$x^{2}(x^{2}-4a^{2})=y^{2}(x^{2}-a^{2})$$
, where $a>0$ is

$$y=2x, y=-2x$$

$$= a, x = -a$$

$$\square$$
 $y=x, y=-x$

3

Asymptote parallel to X-axis to the curve $x^2(x^2 - 4a^2) = y^2(x^2 - a^2)$

 $\pm a$

No Asymptote

a

None of these

The equation of asymptotes parallel to y-axis to the curve represented by

the equation
$$y(1+x^2)=x$$
 is

none of the above

X

$$2\frac{dy}{dx} - ysecx = y^3 tanx$$
 linear form of these equation is

1 Points

$$\frac{du}{dx} + (secx)u = tanx$$

$$\frac{du}{dx} - (secx)u = tanx$$

$$\frac{du}{dx} + (secx)u = -tanx$$

$$\frac{du}{dx} - (secx)u = -tanx$$

1 Points

Becau

Next 5

Tangent at origin to the curve $r = acos3\theta$

CONTRACTOR STREET

- $\frac{\pi}{2} \ , \frac{3\pi}{2} \ , \frac{5\pi}{2} \ , \frac{7\pi}{2} \dots$
- None of these
 - $0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi \dots$
- $\frac{\pi}{6}$, $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$

Ordinary Differential Equations

Form a differential equation whose general solution is

i)
$$y = ae^{-2x} + be^{-3x}$$
 (Ans: $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0$)
ii) $y = e^x(A\cos x + B\sin x)$ (Ans: $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$)

Solve the differential equations-

1.
$$\frac{dy}{dx} = \frac{x \sin x}{2e^y \sinh y}$$
 (Ans: $\frac{e^{2y}}{2} - y + x\cos x - \sin x = C$)

2.
$$\frac{dy}{dx} = \sin(x+y) + \cos(x+y) \qquad (\text{Ans: log}[1 + \tan(\frac{x+y}{2})] - \mathbf{x} = \mathbf{C})$$

3.
$$\frac{dy}{dx} = \frac{x^3 - y^3}{yx^2}$$
4. $(x + y \cot \frac{x}{y}) dy - y dx = 0$
(Ans: $cy = e^{\frac{-x^3}{3y^3}}$)
5. $dy \tan y - 2xy - y$

4.
$$(x + y \cot \frac{x}{y})dy - y dx = 0$$
 (Ans: $y \cos \frac{x}{y} = C$)

5.
$$\frac{dy}{dx} = \frac{\tan y - 2xy - y}{x^2 - x \tan^2 y + \sec^2 y}$$
 (Ans: x.tany - xy - x²y - tany = C)

6.
$$y \log y \, dx + (x - \log y) dy = 0$$
 (Ans: $2x \log y - (\log y)^2 = C$)

7.
$$(2y + y^4)dx + (2y^4 + xy^3 - 4x)dy = 0$$
 (Ans: $xy + \frac{x}{y^2} + y^2 = C$)

8.
$$x\cos x \frac{dy}{dx} + (\cos x - x\sin x)y = 1$$
 (Ans: $xy\cos x - x = C$)

9.
$$\frac{dy}{dx} - xy = -y^3 e^{x^2}$$
 (Ans: $\frac{e^{x^2}}{y^2} = 2x + C$)

10.
$$(y-2x^3)dx - x(1-xy)dx = 0$$
 (Ans: $\frac{y}{x} + x^2 - \frac{y^2}{2} = C$)

11.
$$(x^2y - 2xy^2)dx = (x^3 - 3x^2y)dy$$
 Ans: $\frac{x}{y} - 2\log x + 3\log y = C$

12.
$$ye^{y}dx = (y^{3} + 2xe^{y})dy$$
 (Ans: $\frac{x}{y^{2}} + e^{-y} = C$)

13.
$$\sin y \frac{dy}{dx} - \cos x (2\cos y - \sin^2 x) y = 0$$

(Ans: $4\cos y = 2\sin^2 x + 2\sin x = 1 = Ce^{-2\sin x}$)

14.
$$\cos y - x \sin y \frac{dy}{dx} = \sec^2 x$$
 (Ans: $x \cos y = t anx + C$)

15.
$$\left(xy^2 - e^{\frac{1}{x^3}}\right)dx + x^2 \ y \ dy = 0$$
 (Ans: $\frac{3y^2}{x^2} - 2e^{-x^{-3}} = C$)

APPLICATIONS OF DIFFERENTIAL EQUATIONS

Orthogonal Trajectories

- 13. Find the orthogonal trajectories of the family of $y^2 = 4ax$. (Ans: $2x^2 + y^2 = C$)
- 14. Find the orthogonal trajectory of the family of ellipses $\frac{1}{2}x^2 + y^2 = C$, where C > 0 (Ans: $x^2 = ky$)

[Ref: Kreyszig, page-36]

- 15. Find the orthogonal trajectory of the family of $r = a \cos \theta$. (Ans: $r = C \sin \theta$)
- 16. Find the orthogonal trajectory of the family of $r = a (1 \cos \theta)$. (Ans: $r = C(1 + \cos \theta)$)
- 17. Find the orthogonal trajectory of the family of $e^x + e^{-y} = c$. (Ans: $e^y e^{-x} = C$)

Electric Circuits

- 20. An electric circuit contains an inductance of 0.5 henry and a resistance of 10 ohms in series with electro motive force of 20 volts. Find the current at any time t, it is zero at t=0. (Ans: $\frac{1}{5}(1 e^{-200t})$)
- 21. A circuit consist of resistance R ohms and condenser C farads connected to constant electromotive force E, if $\frac{q}{C}$ is the voltage of condenser at time t after closing the circuit. Show that the voltage at time t, is $E\left(1 e^{-\frac{t}{RC}}\right)$. Also find current flowing into the circuit.
- 22. The charge Q on the plate of a condenser of capacity C' charged through a resistance R' by steady voltage V' satisfies the differential equation $R\frac{dQ}{dt} + \frac{Q}{C} = V$. If Q = 0 at t = 0 then show that $Q = CV \left[1 e^{-t/RC}\right]$. Find the current flowing into the plate. (Ans: $i = \frac{V}{R} e^{-\frac{t}{RC}}$)
- 23. Find the current i in the circuit having resistance R and condenser of capacity C in series with emf E sin ωt .
- 24. The equation of L-R circuit is given by $L\frac{dI}{dt}$. + RI = 10 sin t .If I=0, at t = 0, express I as a function of t. (Ans: $I = \frac{10}{\sqrt{R^2 + L^2}} \left[\sin(t \emptyset) + \sin \emptyset \ e^{\frac{-Rt}{L}} \right]$)

Heat Conduction

- 23. A steam pipe 20 cm in diameter is protected with a covering 6 cm thick for which the coefficient of thermal conductivity is k = 0.0003 cal/cm in steady state. Find the heat lost per hour through a meter length of the pipe, if the inner surface of the pipe is at 200 °C and the outer surface of the covering is at 30 °C. (Ans: q=245443.3861)
- 24. A long hollow pipe has an inner diameter of 10 cm and outer diameter of 20 cm the inner surface is kept at 200 °C and outer surface at 50 °C. The thermal conductivity is 0.12. How much heat is lost per minute from a portion of the pipe 20 m long and also find temperature at distance x=7.5 cm from the centre of pipe. (Ans: T=113 C)

Tracing of Curve

Trace the following curves

- 1) $y^2(2a-x)=x^3$
- **2)** $(x^2 + y^2)x = (x^2 y^2)$
- **3)** $xy^2 = a^2(a-x)$
- **4)** $x^2y^2 = a^2(y^2 x^2)$
- **5)** $(x^2 + a^2)y^2 = a^2x^2$
- **6)** $(x^2 + 4a^2)y = 8a^3$
- **7)** x = a(t + sint), y = a(1 cost)
- **8)** x = a(t sint), y = a(1 cost)
- **9)** x = a(t + sint), y = a(1 + cost)
- $10) r^2 = a^2 cos 2\theta$
- $11) r = a \cos 2\theta$
- $12) r = a \cos 5\theta$
- $13) r = a (1 \cos \theta)$
- $14) r = a \sin 2\theta$
- $15) r = 2 \sin 5\theta$

F.Y. B. Tech. Mathematics-II (SCI105A) Practice Problems

Reduction Formulae, Beta and Gamma

1. Evaluate
$$\int_0^{\pi} x \sin^5 x \cos^8 x \, dx$$

Ans.
$$\frac{8\pi}{1287}$$

2. Evaluate
$$\int_0^{2a} x^3 (2ax - x^2)^{\frac{3}{2}} dx$$

Ans.
$$\frac{9\pi a^7}{16}$$

3. Find the reduction formula for $\int_0^{\frac{\pi}{3}} \cos^n x \ dx$ and using it evaluate $\int_0^{\frac{\pi}{3}} \cos^6 x \ dx$.

Ans.
$$I_n = \frac{\sqrt{3}}{n2^n} + \frac{n-1}{n} I_{n-2}$$
 , $\frac{3\sqrt{3}}{32} + \frac{5\pi}{48}$

4. If $I_n = \int_0^{\frac{\pi}{4}} \frac{\sin(2n-1)x}{\sin x} dx$ then prove that $n(I_{n+1} - I_n) = \sin\frac{n\pi}{2}$ and hence find I_3 .

Ans.
$$1 + \frac{\pi}{4}$$

5. If $I_n = \int_0^\infty e^{-x} \sin^n x \, dx$, Obtain the relation between I_n and I_{n-2} .

Ans.
$$I_n = \frac{n(n-1)}{n^2+1}I_{n-2}$$

6. Evaluate
$$\int_0^\infty x^7 e^{-2x^2} dx$$

7. Evaluate
$$\int_{0}^{\infty} 3^{-4x^2} dx$$

8. Evaluate
$$\int_0^\infty \frac{x^4}{4^x} dx$$

9. Evaluate
$$\int_0^1 \frac{dx}{\sqrt{-\log x}}$$

10.Evaluate
$$\int_0^1 x^3 (\log x)^4 dx$$

11. Show that
$$\int_0^1 \frac{dx}{\sqrt[3]{1-x^3}} = \frac{2\pi}{3\sqrt{3}}$$

12.Show that
$$\int_0^\infty \frac{x^6 - x^3}{(1 + x^3)^5} x^2 dx = 0$$

13.Evaluate
$$\int_3^7 (x-3)^{\frac{1}{4}} (7-x)^{\frac{1}{4}} dx$$

14.Prove that
$$\int_0^\infty \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$$

15. Show that
$$\int_0^{\frac{\pi}{2}} \sqrt{\tan \theta} \ d\theta \int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} \ d\theta = \frac{\pi^2}{2}$$
.

Ans.
$$\frac{\sqrt{\pi}}{4\sqrt{\log 3}}$$

Ans.
$$\frac{24}{(\log 4)^5}$$

Ans.
$$\sqrt{\pi}$$

Ans.
$$\frac{3}{128}$$

Ans.
$$\frac{2}{3\sqrt{3}} \left(\gamma \left(\frac{1}{4} \right) \right)^2$$

Differentiation Under Integral Sign (DUIS)

1. Show that
$$\int_0^1 \frac{x^a - 1}{\log x} = \log(a + 1)$$
, $a \ge 0$

2. Show that
$$\int_0^\infty \frac{e^{-x} - e^{-ax}}{x \sec x} dx = \frac{1}{2} \log(\frac{a^2 + 1}{2})$$

3. Find
$$\int_0^\infty \frac{e^{-ax}sinmx}{x} dx$$
 and hence evaluate $\int_0^\infty \frac{sinx}{x} dx$

4. Prove that
$$\int_0^\infty \frac{1-\cos ax}{x^2} dx = \frac{\pi a}{2}$$

5. If
$$y = \int_0^x f(t) sina(x-t) dt$$
 then show that $\frac{d^2y}{dx^2} + a^2y = af(x)$

6. If
$$\emptyset(a) = \int_a^{a^2} \frac{\sin ax}{x} dx$$
 then find $\frac{d\emptyset}{da}$

7. Verify the DUIS rule for the $\int_a^{a^2} logax dx$

Error Function

1. Prove that
$$erfc(-x) + erfc(x) = 2$$

2. Show that
$$\int_a^b e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \left[\operatorname{erf}(b) - \operatorname{erf}(a) \right]$$

3. Find
$$\frac{d}{dx}erfc(ax^n)$$

4. Prove that $\operatorname{erf}(x)$ is an odd function. Deduce that $\operatorname{erf} c(-x) - \operatorname{erf}(x) = 1$

5. Show that
$$\int_0^\infty e^{-st} \operatorname{erf}(\sqrt{t}) dt = \frac{1}{s\sqrt{s+1}}$$

6. Show that
$$\int_0^\infty e^{-(x+a)^2} dx = \frac{\sqrt{\pi}}{2} [1 - \text{erf}(a)]$$

7. Show that
$$\frac{d}{dt}\operatorname{erf}(\sqrt{t}) = \frac{e^{-t}}{\sqrt{\pi t}}$$
 and hence evaluate $\int_0^\infty e^{-t}\operatorname{erf}(\sqrt{t})\,dt$.

8. Show that
$$\int_0^t \operatorname{erf}(ax) dx + \int_0^t \operatorname{erf} c(ax) dx = t$$
.

F.Y. B. Tech. Mathematics-II (SCI105A) Practice Problems

Double Integral and Applications

1.
$$\int_{1}^{2} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} 2x^2 y^2 dx dy$$
 (Ans: $\frac{856}{945}$)

2.
$$\iint \sqrt{4x^2 - y^2} dx dy \text{ over the area of triangle } y = 0, y = x \& x = 1$$

$$\text{Ans: } \frac{1}{3} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2} \right)$$

3.
$$\iint_R xy \sqrt{1-x-y} \, dx dy$$
 over the region $x \ge 0$, $y \ge 0 \& x+y \le 1$ (Ans: $\frac{16}{945}$)

4. Evaluate
$$\iint_R x^2 + y^2 dxdy$$
 over area of triangle whose vertices are $(0,1)$ $(1,1) \& (1,2)$. (Ans: $\frac{7}{6}$)

5. Show that
$$\int_0^a \int_0^{a-\sqrt{a^2-y^2}} \frac{xyiog(x+a)}{(x-a)^2} dxdy = \frac{a^2}{8} (2log a + 1)$$

6. Evaluate by changing the order

I)
$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx dy$$
 (Ans: $\frac{3}{8}$)
II) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \frac{e^{y}}{(e^{y}+1)\sqrt{1-x^{2}-y^{2}}} dx dy$ (Ans: $\frac{\pi}{2} \log \left(\frac{e+1}{2}\right)$

7. Express the following integral as a single integral

$$\int_{0}^{1} \int_{0}^{y} f(x, y) dx dy + \int_{1}^{\infty} \int_{0}^{\frac{1}{y}} f(x, y) dx dy$$
 (Ans:
$$\int_{0}^{1} \int_{x}^{\frac{1}{x}} f(x, y) dx dy$$
)

8. Evaluate

I)
$$\int_0^{\frac{a}{\sqrt{2}}} \int_0^{\sqrt{a^2 - y^2}} \ln(x^2 + y^2) \, dx dy$$
 (Ans: $\frac{\pi}{2} \left[\frac{a^2}{2} log a - \frac{a^2}{4} \right]$)

II) $\int_0^{\frac{a}{\sqrt{2}}} \int_x^{\sqrt{a^2 - x^2}} \frac{x}{\sqrt{x^2 + y^2}} \, dx dy$ (Ans: $\frac{a^2}{2} \left(1 - \frac{1}{\sqrt{2}} \right)$)

9. Evaluate over one loop of
$$r^2 = a^2 cos 2\theta$$
 $\iint_R \frac{rdrd\theta}{\sqrt{a^2 + r^2}}$ (Ans: $2a(1 - \frac{\pi}{4})$)

10. Find area bounded by curve y^2 $(2a - x) = x^3$ & its Asymptote (Ans: $3\pi a^2$)

11. Find area of cardioid
$$r = a(1 + cos\theta)$$
 (Ans: $\frac{3\pi a^2}{2}$)

12. Find area bounded by curve $y^2x = 16(4 - x)$ & its Asymptote. (Ans:16 π)

13.Find area bounded by curves
$$y^2 = 4x \& 2x - y - 4 = 0$$
 (Ans: 9)

14. Find area bounded by curves $y^2 = x & x^2 = -8y$ (Ans: $\frac{8}{3}$)

15. Evaluate
$$\int_0^{\frac{\pi}{2}} \int_0^y \cos 2y \sqrt{1 - a^2 \sin^2 x} \ dxdy$$
 (Ans: $\frac{1}{3a^2} [(1 - a^2)^{\frac{3}{2}} - 1)$

Triple Integral and Applications

- 1. Evaluate $\iiint xyz \ dx \ dy \ dz$ Over positive octant of a sphere $x^2 + y^2 + z^2 = a^2$.

 Ans: $\frac{a^6}{48}$
- 2. Evaluate $\int_{0}^{2} \int_{0}^{y} \int_{x-y}^{x+y} (x+y+z) dz dx dy$ Ans: 16
- 3. Evaluate $\iiint x^2yz$ dxdydz throughout the volume bounded by planes x = 0, y = 0, z = 0 and $\frac{x}{2} y + z = 1$. Ans: $\frac{8}{2520}$
- 4. Evaluate $\iiint \frac{z^2 dx dy dz}{x^2 + y^2 + z^2}$ over the volume of sphere $x^2 + y^2 + z^2 = 2$ Ans: $\frac{8\pi\sqrt{2}}{9}$
- 5. Evaluate $\iiint z^2 dx dy dz$ over the volume bounded by the cylinder $x^2 + y^2 = a^2$ and the paraboloid $x^2 + y^2 = z$ and the plane z = 0. Ans: $\frac{\pi a^8}{12}$
- 6. Evaluate $\int_0^{\pi/2} \int_0^{a \sin \theta} \int_0^{(a^2 r^2)/a} r dz dr d\theta$ Ans: $\frac{5a^3}{64}$
- 7. Evaluate $\iiint \sqrt{1 \frac{x^2}{4} \frac{y^2}{9} \frac{z^2}{64}} dxdydz throughout the volume of Ellipsoid <math display="block">\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{64} = 1.$ Ans: $12\pi^2$
- 8. Evaluate $\iiint (x^2 + y^2 + z^2)^{3/2} dx dy dz$ Over the hemisphere defined by $x^2 + y^2 + z^2 = 9$ $z \ge 0$.
- 9. Calculate the volume of the solid bounded by the following surfaces $z=0,\ x^2+y^2=1,\ x+y+z=3$.
- 10. Find by triple integration the volume of region bounded by paraboloid $az = x^2 + y^2$ and the cylinder $x^2 + y^2 = r^2$. Ans: $\frac{\pi r^4}{2a}$
- 11.A cylindrical hole of radius 4 is bored through a sphere of radius 6. Find the volume of the remaining solid.

 Ans: $\frac{4\pi}{3}(20)^{3/2}$
- 12. Find the volume bounded by coordinate planes and the plane $lx + my + nz = 1 \ . \qquad \qquad \text{Ans: } \frac{1}{6mln}$
- 13. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.

 Ans: 16π
- 14. Find the volume bounded by $y^2 = x$, $x^2 = y$ and the planes z = 0, x + y + z = 1. Ans: $\frac{1}{30}$
- 15. Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 4y$, the paraboloid $x^2 + y^2 = 2z$ and the plane z = 0 Ans: 12π

Fourier series

- Q.1) Find the Fourier series expansion for f(x) = a(2 x) in the interval $0 \le x \le 2$
- Q.2) Find Fourier series for $f(x) = x + x^2$ in the interval $-\pi < x < \pi$ and $f(x) = f(x + 2\pi)$ hence show that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2}$...
- Q.3) Find Fourier series for $f(x) = \frac{\pi^2}{12} \frac{x^2}{4} in(-\pi, \pi)$.
- Q.4) Obtain Fourier series expansion for $f(x) = 2 \frac{x^2}{2}$, $0 \le x \le 2$.
- Q.5) Find the Fourier series expansion for $f(x) = \frac{1}{2}(\pi x)$ in the interval $0 \le x \le 2\pi$.
- Q.8) Find the Fourier series of the function $f(x) = \begin{cases} -1; & -\pi < x < 0 \\ 1, & 0 < x < \pi \end{cases}$ where $(x) = f(x + 2\pi)$.
- Q.9) Determine the Fourier series for the following function

$$f(x) = \begin{cases} 0 & -\pi < x < 0\\ \sin x & 0 < x < \pi \end{cases}$$

- Q.10) Expand the function $f(x) = x \sin x$, as a Fourier series in the interval $-\pi < x < \pi$. Hence deduce that $\frac{\pi 2}{4} = \frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \frac{1}{7.9} + \cdots$
- Q.11) Expand the function $f(x) = x \cos x$, as a Fourier series in the interval $-\pi < x < \pi$.

F.Y. B. Tech. Mathematics-II (SCI105A) Practice Problems

Harmonic Analysis

Q.12) Determine the first two harmonics of the Fourier series for the following values:

x^0	0	30	60	90	120	150	180	210	240	270	300	330
y	2.34	3.01	3.68	4.15	3.69	2.20	0.83	0.51	0.88	1.09	1.19	1.64

Express T as a Fourier series up to first two harmonics.

Q.15) Obtain the constant term and the coefficient of the first harmonic in the

Fourier series of f(x) as given in the following table

X	0	1	2	3	4	5
f(x)	9	18	24	28	26	20

Q.N.	Question	ANS					
1	Fourier coefficient 'a ₀ ' in the Fourier series expansion of $f(x) = e^{-x}$; $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$ is	A					
	a) $\frac{1}{\pi}(1 - e^{-2\pi})$ b) $\frac{1}{2\pi}(1 - e^{2\pi})$ c) $\frac{2}{\pi}(e^{-2\pi} - 1)$ d) $\frac{1}{\pi}(1 + e^{2\pi})$						
2	Fourier coefficient a_0 in the Fourier series expansion of $f(x) = \left(\frac{\pi - x}{2}\right)^2$; $0 \le x \le 2\pi$ and						
	f(x+2\pi) = f(x) is a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{6}$ c) 0 d) $\frac{\pi}{6}$						
3	$f(x) = x, -\pi \le x \le \pi$ and period is 2π the fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then fourier coefficient b_1 is	A					
	a) 2 b) -1 c) 0 d) $\frac{2}{\pi}$						
4	$f(x) = \begin{cases} 1, & -1 < x < 0 \\ \cos \pi x, & 0 < x < 1 \end{cases}$ and period is 2 the fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x), \text{ then fourier coefficient } a_0 \text{ is}$	С					
	a) 2 b) -1 c) 1 d) $\frac{2}{\pi}$						
5	$f(x) = x - x^3$, $-2 < x < 2$ and period is 4.the fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x)$, then fourier coefficient a_0 is $a_0 = a_0 = a_0$.	В					
6	For the half range cosine series of $f(x) = \sin x$, $0 \le x < \pi$ and period is 2π the fourier series	D					
	is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx)$ fourier coefficient a_0 is						
	a) 4 b) 2 c) $\frac{2}{\pi}$ d) $\frac{4}{\pi}$						
7	The value of b_1 in Harmonic analysis of y for the following tabulated data is:	C					
	x 0 60 120 180 240 300 360						
	y 1.0 1.4 1.9 1.7 1.5 1.2 1.0						
	Sin x 0 0.866 0.866 0 -0.866 0						
	a) 0.0989 b) 0.3464 c) 0.1732 d) 0.6932						
8	a) 0.0989 b) 0.3464 c) 0.1732 d) 0.6932 The value of the constant term in the fourier series of $f(x) = e^{-x}$ in $0 \le x \le 2\pi$,	В					
	$f(x+2\pi) = f(x) \text{ is}$						
	a) $\frac{1}{\pi} (1 - e^{-2\pi})$ b) $\frac{1}{2\pi} (1 - e^{-2\pi})$ c) $1 - e^{-2\pi}$ d) $2(1 - e^{-2\pi})$						
9	The value of the constant term in the fourier series of $f(x) = x \sin x$ in $0 \le x \le 2\pi$, is	D					
	a) -2 b) 2 c) $-\frac{1}{2}$ d) -1						

10	If $a_n = \frac{2}{n^2 - 1}$ for $n > 1$, in the fourier series of $f(x) = x \sin x$ in $0 \le x \le 2\pi$, then the value	C					
	of a_1 is						
	a) -2 b) $\frac{2}{n^2-1}$ c) $-\frac{1}{2}$ d) $\frac{1}{2}$						
	n^{2} n^{2} n^{2} n^{2} n^{2} n^{2}						
11	The value of the constant term in the fourier series of	A					
0.000	$f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}, is$	ing v					
	a) $-\frac{\pi}{4}$ b) $-\frac{\pi}{2}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{2}$						
12	$(\cos x; -\pi < x < 0$	D					
	The value of a_n in the fourier series of $f(x) = \begin{cases} \cos x; & -\pi < x < 0 \\ -\cos x; & 0 < x < \pi \end{cases}$						
	$a)\frac{(-1)^n}{n}$ $b)\frac{1}{n}$ $c)\frac{(-1)^n}{n^2-1}$ $d)0$						
	n = 0						
13	The value of b_n in the fourier series of $f(x) = x$ in $-\pi < x < \pi$, is	С					
1997/77	a) 0 b) $\frac{\cos n\pi}{n}$ c) $-\frac{2\cos n\pi}{n}$ d) $-\frac{\cos n\pi}{n}$						
	n n						
14	The Fourier constant ' a_n ' for f (x) = 4 - x^2 in the interval 0 < x < 2 is	A					
	(a) $-\frac{4}{\pi^2 n^2}$ (b) $\frac{4}{\pi n^2}$ (c) $\frac{4}{\pi^2 n^2}$ (d) $\frac{2}{\pi^2 n^2}$						
	R.R. R.R. R.A.						
15	If $f(x)$ =sin ax defined in the interval $(-l, l)$ then value of ' a_n ' is	C					
	$a)\frac{2}{\pi n^2}$ $b)\frac{1}{n^2}$ $c)0$ $d)-\frac{1}{n^2}$						
16	. 0 -2 <r<-1< td=""><td>В</td></r<-1<>	В					
16	The function $f(x) = \begin{cases} 0 & -2 < x < -1 \\ 1 + x & -1 < x < 0 \\ 1 - x & 0 < x < 1 \end{cases}$ Is	Б					
	1-x 00x1 0 1 <x<2< td=""><td></td></x<2<>						
	a)an odd function b) an even function						
	a)an odd function b) an even function c) neither even nor odd function d)cannot be decided						
17	The Fourier constant a_n for $f(x)=x^2$ in the interval $-1 \le x \le 1$ is	A					
	a) $\frac{4(-1)^n}{\pi^2 n^2}$ b) $\frac{4(-1)^{n+1}}{\pi^2 n^2}$ c) $\frac{4}{\pi^2 n^2}$ d) $-\frac{4}{\pi^2 n^2}$						
	$\pi^2 n^2$ $\pi^2 n^2$ $\pi^2 n^2$ $\pi^2 n^2$						
18	If $f(x) = \begin{cases} -x, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$, then $f(x)$ is	A					
	a) Even function b) odd function c) Neither even nor odd d) none of these						
	d) none of these						
19	In fourier series for $f(x) = x$ in the interval $-\pi \le x \le \pi$ which of the following is correct	В					
	a) $a_0 = \pi$, $a_n = \frac{1+(-1)^n}{n}$, $b_n = 0$ b) $a_0 = 0$, $a_n = 0$, $b_n = \frac{-2(-1)^n}{n}$						
	c) $a_0 = \frac{\pi}{2}$, $a_n = \frac{1+(-1)^n}{n}$, $b_n = \frac{-2(-1)^n}{n}$ d) $a_0 = 0$, $a_n = 0$, $b_n = 0$						
	$u_0 - \frac{1}{2}, u_n - \frac{1}{n}, u_n - \frac{1}{n}$						
	<u> </u>						

20	The Fourier constant b_n for $f(x)=2-\frac{x^2}{2}$ in the interval $0 \le x \le 2$ is	В
	a) $\frac{-2}{n\pi}$ b) $\frac{2}{n\pi}$ c) $\frac{2}{\pi^2 n^2}$ d) none of these.	
21	If $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ is discontinuous at $x = 0$. Then value of $f(0)$ is	C
	a) $\pi/2$ b) 0 c) $-\frac{\pi}{2}$ d) π	
22	The function $f(x) = \begin{cases} 0 & -2 < x < -1 \\ 1 + x & -1 < x < 0 \\ 1 - x & 0 < x < 1 \\ 0 & 1 < x < 2 \end{cases}$ Find a_0 a)2 b) 1/4 c) 1/2 d)0	D
23	Which of the following is the half range sine series of $f(x)$ in the interval, $0 \le x \le \pi$? a) $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$ b) $f(x) = \frac{a_0}{2} \sum_{n=1}^{\infty} b_n \sin nx$ c) $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$ d) none of these.	С
24	For the function $f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x - \pi, & \pi < x < 2\pi \end{cases}$ what is the value of a_0 a) $\frac{1}{2}$ b) $-\frac{\pi}{2}$ c) $\frac{\pi}{2}$ d) π	В
25	If $f(x) = e^x$, $-1 \le x \le 1$ then constant term of $f(x)$ in fourier expansion is a) $\frac{e}{2}$ b) $\frac{e-e^{-1}}{2}$ c) $\frac{e+e^{-1}}{2}$ d) $\frac{1+e}{2}$	В
26	If $f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x, & \pi < x < 2\pi \end{cases}$ is discontinuous at $x = 0$ then value of $f(0)$ is a) $-\pi$ b) 0 c) $-\frac{\pi}{2}$ d) π	С
27	If $\sum y = 42, n=6$. $\sum y\cos\theta = -8.5$, $\sum y\cos2\theta = -1.5$, what are the values of a_0 , a_1, a_2 a)7,-2.8,-2.8 b)14,-2.8,1.5 c) 7,-1.5,-2.8 d)none of these	D
28	If $f(x) = x^4$ in (-1,1) then the fourier coefficient b_n is a) $\frac{2^4(-1)^n}{n^3\pi^3}$ b) 6 $\left[\frac{(-1)^n+1}{n^4\pi^4}\right]$ c)0 d)None of these.	С
29	For the function $f(x) = 2x - x^2$, $0 \le x \le 3$ the value of b_n is, a) 0 b) $\frac{-9}{n^2\pi^2}$ c) $\frac{3}{n\pi}$ d) none of these	С
30	In the Fourier expansion of the function $f(x) = \frac{1}{2}(\pi - x)$ in the interval $0 \le x \le 2\pi$ the value of a_n is, a) $\frac{1}{n^2\pi}$ b) $\frac{\pi}{n^2}$ c) 0 d) $\frac{(-1)^n}{n^2\pi}$	С

31	If $f(x) = \frac{\pi^2}{2} - \frac{x^2}{4}$, $-\pi \le x \le \pi$ then values of a_n and b_n are						D	
	a) $0, \frac{3}{n\pi}$	b) 0, ($\frac{-1)^{n+1}}{n^2}$	c) $\frac{(-1)^n+1}{n^2-1}$	-,0	$(1)^{\frac{-(-1)^n}{n^2}}, 0$		
32	The following values of y give the displacement in inches of a certain machine part for the rotation x of the flywheel						С	
	x	0	π/6 9.2	$2\pi/6$	$3\pi/6$	$4\pi/6$	$5\pi/6$	
	Y	0	9.2	14.4	17.8	17.3	11.7	
	What is the va a)11.733	alue of a_0 b)1	4.4	c)23.466	d) r	none of these		
33	If $\sin x = \frac{2}{\pi}$	$-\frac{2}{\pi}\sum_{n=2}^{\infty}\frac{1+(n-1)^n}{(n-1)^n}$	$\frac{(n+1)^n}{(n+1)}\cos nx$	for $0 \le x \le \pi$	then which	of the followin	ng correct	A
	If $\sin x = \frac{2}{\pi} - \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1 + (-1)^n}{(n-1)(n+1)} \cos nx$ for $0 \le x \le \pi$ then which of the following correct $a) \frac{1}{2} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \cdots$ $b) \frac{\pi^2}{2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ $c) \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$ d) none of these							
34	If $a_0 = \frac{4\pi^2}{3}$, $a_n = \frac{4(-1)^{n+1}}{n^2}$ are the fourier coefficient of $f(x)$ in $-\pi \le x \le \pi$ then which of the following correct a) $f(x) = \frac{2\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos \frac{n\pi x}{2}$ b) $f(x) = \frac{4\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \sin nx$ c) $f(x) = \frac{2\pi^2}{3} - \sum_{n=1}^{\infty} \frac{4(-1)^n}{n^2} \cos nx$ d) none of these							С
	c) $I(X) = \frac{1}{3}$	$\sum_{n=1}^{\infty} \frac{1}{n^2}$	cos nx	a) none	e of these			
35	If $f(x) = x^2$,	0 < x < 2 the	en in half ran	ge cosine serie	$s \frac{a_0}{2}$ is			C
	a) 4 b) 12 c) $\frac{8}{3}$ d) 8							
36	For the half r which of the fa a) $\frac{\pi^2}{6} = \frac{1}{1^2} - \frac{1}{2^2}$ c) $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2}$	Following state $+\frac{1}{3^2} - \frac{1}{4^2} - \cdots$	ement is corr	b)	$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}$	$\frac{\pi^2}{6}$, $a_n = \frac{1}{n^2}$, b_n $\frac{1}{5^2} + \frac{1}{7^2}$ $\frac{1}{5^2} + \frac{1}{7^2}$	-	С

Q.N.	Question					
1	If $\emptyset(a) = \int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx$, $a > -1$ then by DUIS rule, $\frac{d\emptyset}{da}$ is a) $\frac{e^{-x}}{x} (1 - e^{-ax})$ b) $\int_0^\infty \frac{a}{x} (e^{-(a+1)x}) dx$ c) $\int_0^\infty (e^{-ax}) dx$ d) $\int_0^\infty (e^{-(a+1)x}) dx$					
2	If $\emptyset(a) = \int_0^1 \frac{x^{a-1}}{\log x} dx$, $a \ge 0$ then by DUIS rule, $\frac{d\emptyset}{da}$ is a) $\int_0^1 \frac{x^a \log a}{\log x} dx$ b) $\int_0^1 \frac{ax^{a-1}}{\log x} dx$ c) $\int_0^1 x^a dx$ d) $\frac{x^{a-1}}{\log x}$	С				

3	If $\emptyset(\alpha) = \int_0^\infty \frac{e^{-x} \sin \alpha x}{x} dx$ then by DUIS rule, $\frac{d\emptyset}{d\alpha}$ is	В
	a) $\int_0^\infty e^{-x} \sin \alpha x dx$ b) $\int_0^\infty e^{-x} \cos \alpha x dx$ c) $\int_0^\infty \frac{\alpha e^{-x} \sin \alpha x}{x} dx$ d) $\frac{e^{-x} \sin \alpha x}{x}$	
4	If $\emptyset(a) = \int_0^{\frac{\pi}{2}} \frac{\log(1 + a \sin^2 x)}{\sin^2 x} dx$, $a > 0$, then by DUIS rule, $\frac{d\emptyset}{da}$ is	С
	a) $\int_0^{\frac{\pi}{2}} \frac{2\sin x \cos x}{(1+a\sin^2 x)} dx$ b) $\int_0^{\frac{\pi}{2}} \frac{1}{(1+a\sin^2 x)\sin^2 x} dx$ c) $\int_0^{\frac{\pi}{2}} \frac{1}{1+a\sin^2 x} dx$ d) $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{(1+a\sin^2 x)} dx$	
5	If $\emptyset(a) = \int_a^{a^2} \log(ax) dx$, then by DUIS rule II, $\frac{d\emptyset}{da}$ is	Α
	a) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \log(ax) dx + 2a \log a^{3}$ b) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \log(ax) dx$	
,	c) $\int_a^{a^2} \frac{\partial}{\partial a} \log(ax) dx + 2a \log a^3 - 2\log a$ d) $\int_a^{a^2} \frac{\partial}{\partial a} \log(ax) dx - 2a \log a^3 + 2\log a$	
6	If $\emptyset(a) = \int_0^{a^2} tan^{-1} \left(\frac{x}{a}\right) dx$, then by DUIS rule II, $\frac{d\emptyset}{da}$ is	А
	a) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + 2atan^{-1}a$ b) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx$	
	c) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + a^2 tan^{-1} a$ d) $\int_0^{a^2} \frac{\partial}{\partial a} tan^{-1} \left(\frac{x}{a}\right) dx + a^2 tan^{-1} a - tan^{-1} \left(\frac{x}{a}\right)$	
7	IF $I(a) = \int_a^{a^2} \frac{1}{x+a} dx$, then by DUIS rule II, $\frac{dI}{da}$ is	В
	a) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx - \frac{1}{a^{2}+a} (2a) + \frac{1}{2a}$ b) $\int_{a}^{a^{2}} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx + \frac{1}{a^{2}+a} (2a) - \frac{1}{2a}$	
	c) $\int_a^{a^2} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx - \frac{1}{a^2+a}$ d) $\int_a^{a^2} \frac{\partial}{\partial a} \left(\frac{1}{x+a} \right) dx$	
8	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx$, $a > -1$, given	А
	$\frac{d\phi}{da} = \frac{1}{a+1} is$	
	a)log(a+1) b) $-\frac{1}{(a+1)^2}$ c)log(a+1) + π d) $-\frac{1}{(a+1)^2}$ + 1	
9	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^{\frac{\pi}{2}} \frac{\log{(1 + a \sin^2{x})}}{\sin^2{x}} dx$ with $\frac{d\emptyset}{da} = \frac{\pi}{2} \frac{1}{\sqrt{a+1}}$ is	С
	a) $\pi \sqrt{a+1}$ b) $\pi \sqrt{a+1} + \pi$ c) $\pi \sqrt{a+1} - \pi$ d) $3\pi (a+1)^{\frac{3}{2}} - \pi$	
10	Using DUIS Rule the value of the integral $\emptyset(a) = \int_0^\infty \frac{1-\cos ax}{x^2} dx$, with $\frac{d\emptyset}{da} = \frac{\pi}{2}$ is	В
	a) $\frac{\pi}{2}$ b) $\frac{\pi a}{2}$ c) πa d) $\frac{\pi a}{2} + \frac{\pi}{2}$	
11	If $I(a) = \int_0^1 \frac{x^a - x^b}{\log x} dx$ then the value of $I(a)$ is	В
	a) $\log\left(\frac{a}{b}\right)$ b) $\log\left(\frac{a+1}{b+1}\right)$ c) $\log\left(\frac{b+1}{a+1}\right)$ d) $\log\left(\frac{b}{a}\right)$	

12	If $\operatorname{erf}(\sqrt{t}) = \frac{2}{\sqrt{\pi}} \int_0^{\sqrt{t}} e^{-u^2} du$ then $\frac{d}{dt} \operatorname{erf}(\sqrt{t})$ is $a) \frac{e^{-t}}{2\sqrt{t}} \qquad b) \frac{e^{-t^2}}{\sqrt{\pi t}}$	c) $\frac{e^{-t}}{\sqrt{\pi}}$	d) $\frac{e^{-t}}{\sqrt{\pi t}}$	D
13	$\int_0^t \operatorname{erf}(ax) dx + \int_0^t \operatorname{erf} c(ax) dx = ?$ a) t b) x	c) 0	d) $\frac{t^2}{2}$	А
14	If $\frac{d}{dx} \operatorname{erf}(ax) = \frac{2ae^{-a^2x^2}}{\sqrt{\pi}}$, the value of $\int_0^t \operatorname{erf}(ax) dx$ if $\int_0^t \operatorname{erf}(ax) + \frac{1}{a\sqrt{\pi}} e^{-a^2t^2} - \frac{1}{a\sqrt{\pi}}$ c) $\operatorname{erf}(at) + \frac{1}{a\sqrt{\pi}} e^{-a^2t^2} + \frac{1}{a\sqrt{\pi}}$	s b) t erf(at) $-\frac{1}{a}$ d) t erf(at) $-\frac{1}{a}$	$\frac{\frac{1}{a\sqrt{\pi}}e^{-a^2t^2} - \frac{1}{a\sqrt{\pi}}}{\frac{1}{\sqrt{\pi}}e^{-a^2t^2} + \frac{1}{a\sqrt{\pi}}}$	A
15	The integral for "erf(b)-erf(a)" is, a) $\frac{2}{\sqrt{\pi}} \int_{a}^{b} e^{-t^2} dt$ b) $\sqrt{\frac{2}{\pi}} \int_{a}^{b} e^{-t^2} dt$	c) $\int_{a}^{b} e^{-t^2} dt$	d) none of these	A

Scanned by CamScanner
Scanned with CamScanner

8.1) S'S dxdy. a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{4}$ c) π d) 1 9.2) { Sydodr = --a) Ta2 b) T c) Tra d) 5 9.3) SSexty dx dy = ---9 (e-1)2 b) e-1 c) e d) e 9.4) After changing the order of integration

I= 5'5' exdxdy, the new limits of x & y are of 0 = x < 4, 0 = y < x b) 4 < x < 0, x < y < 0 c) 0 = x < y, 0 < y < 4 d) 0 < x < 1, 0 < y < 4 g.s) After changing the order of integration of I= SS = dxdy the new limits of x fy LOTOEXEY DEYROR PDJOSYEX, OSXCO ich DEXEL MXEARL PORXEL DERES

Scanned with CamScanner
Scanned with CamScanner

8.1) S'S drdy a) The by The ch TI dy 1 9.2) S Sidodr = --a) मुब b) मु ८) मुंब d) 5 9.3) SS exty dx dy= 9) (e-1)2 b) e-1 c) e d) e 9.4) After changing the order of integration

I = S'S' exdxdy, the new limits of x & y are LOT 0 = x = 4, 0 = 4 < 2 by 4 < x < 0, 2 < 4 < 9 < 0 c) 0 = x = 1, 0 = y = 4 d) 0 = x = 1, 0 < y < 4 9.5) After changing the order of integration of I= SS = dxdy the new limits of x fy LATOEXEY DEYROR PDJOEYEX, OEXCOO d) 0 < x < 1, 0 < y < 2 12 C > x 6

Scanned with CamScanner Scanned with CamScanner