Ejercicio 1. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \to Y$. Probar que:

- i. f es continua en $x_0 \in X$ si y sólo si para toda sucesión $(x_n)_{n \in \mathbb{N}} \subseteq X$ tal que $x_n \to x_0$, la sucesión $(f(x_n))_{n \in \mathbb{N}} \subseteq Y$ converge $f(x_0)$
- ii. Son equivalentes:
 - (a) f es continua
 - (b) para todo $G \subseteq Y$ abierto, $f^{-1}(G)$ es abierto en X
 - (c) para todo $F \subseteq Y$ cerrado, $f^{-1}(F)$ es cerrado en X

Proof. $i) \Rightarrow 0$ por continuidad sabemos $\exists \delta > 0$ tal que $f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon)$

Luego por convergencia sabemos $\exists n_0 \in \mathbb{N}$ tal que $d(x_n, x_0) \leq \delta \quad \forall n \geq n_0$

Entonces $f(x_n) \in f(B(x_0, \delta)) \subseteq B(f(x_0), \epsilon) \quad \forall n \ge n_0 \text{ por lo que } d(f(x_n), f(x_0)) \le \epsilon$

Ahora esto lo podemos hacer con cualquier ϵ

Finalmente $\forall \epsilon > 0 \quad \exists n_0 \in \mathbb{N} \text{ tal que } d(f(x_n), f(x_0)) \leq \epsilon \quad \forall n \geq n_0$

 \Leftarrow) Supongamos que f no es continua en x_0

Entonces $\exists \epsilon > 0$ tal que para cada $\delta > 0$ $\exists y_{\delta} \ y \ d(y_{\delta}, x_0) \leq \delta$ pero $d(f(y_{\delta}), f(x_0)) > \epsilon$

Si miro $\delta = \frac{1}{n}$ tengo sucesión $x_n = y_\delta$ tal que $x_n \to x_0$. Pero $d(f(x_n), f(x_0)) > \epsilon \quad \forall n \in \mathbb{N}$

Entonces $x_n \to x_0$ pero $f(x_n) \not\to f(x_0)$ lo que es absurdo

ii) Está todo hecho en el apunte teórico

Ejercicio 2. Decidir cuales de las siguientes funciones son continuas:

- 1. $f:(\mathbb{R}^2,d)\to(\mathbb{R},|\cdot|)$ dada por $f(x,y)=x^2+y^2$, donde d representa la métrica euclídea
- 2. $id_{\mathbb{R}^2}: (\mathbb{R}^2, \delta) \to (\mathbb{R}^2, d_{\infty})$, la función identidad donde δ es la métrica discreta
- 3. $id_{\mathbb{R}^2}: (\mathbb{R}^2, d_{\infty}) \to (\mathbb{R}^2, \delta)$
- 4. $i:(\mathbb{E},d) \to (X,d)$ la inclusión, donde $\mathbb{E} \subseteq X$

Proof. 1) Sea $(x_n, y_n) \to (x, y)$ entonces $x_n \to x$ e $y_n \to y$ luego $x_n^2 \to x^2$ e $y_n^2 \to y^2$

Luego $f(x_n, y_n) = x_n^2 + y_n^2 \rightarrow x^2 + y^2 = f(x, y)$ entonces f es continua

2) Sea $(x_n, y_n) \to (x, y)$, por ser discreta la métrica $\exists n_0/(x_n, y_n) = (x, y) \quad \forall n \ge n_0$

Entonces $f(x_n, y_n) = (x, y)$ $\forall n \ge n_0$ por lo tanto $f(x_n, y_n) \to (x, y) = f(x, y)$

Observación esto hubiera funcionado con cualquier métrica en el espacio de llegada, por que las sucesiones que son eventualmente constantes siempre son convergentes

3) Sea $(x_n, y_n) = (\frac{1}{n}, \frac{1}{n})$ sabemos que $(x_n, y_n) \to (0, 0)$.

Sin embargo $f(x_n, y_n) = (x_n, y_n)$ que con la métrica discreta NO converge dado que $(x_n, y_n) \neq (x, y) \quad \forall n \in \mathbb{N}$ entonces $d((x_n, y_n), (x, y)) = 1 \quad \forall n \in \mathbb{N}$

4) Sea $x_n \to x$ es trivial ver que $f(x_n) = x_n \to x = f(x)$

Ejercicio 3. Sean $f, g, h : [0, 1] \to \mathbb{R}$ definidas por:

$$f(x) = 0$$
 si $x \notin \mathbb{Q}$ $f(x) = 1$ si $x \in \mathbb{Q}$

$$g(x) = xf(x)$$

$$h(x) = 0$$
 si $x \notin \mathbb{Q}$, $h(x) = \frac{1}{n}$ si $x = \frac{m}{n}$ con $(m:n) = 1$, $h(x) = 1$ si $x = 0$

Probar que:

- 1. f es discontinua en todo punto
- 2. g sólo es continua en x = 0
- 3. h es continua en $[0,1] \setminus \mathbb{Q}$

Proof. 1) Dado $x \in \mathbb{Q}$ Sea $(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{I}$ tal que $x_n \to x$. Entonces $f(x_n) = 0 \quad \forall n \in \mathbb{N}$

Por lo tanto $f(x_n) \to 0 \neq 1 = f(x)$ entonces f no es continua en $x \in \mathbb{Q}$

Usando el mismo argumento vemos que no es continua en $\mathbb I$ tampoco, por lo tanto no es continua en ningún lado

2) Con sucesiones es facil ver que es continua en el 0.

Sea $x \neq 0$ con $x \in \mathbb{Q}$ entonces tomamos $(x_n)_n \subseteq \mathbb{I}$ tal que $x_n \to x$

$$g(x_n) = x_n f(x_n) = x_n.0 = 0 \quad \forall n \in \mathbb{N} \text{ entonces } g(x_n) \to 0 \neq x = x.1 = x f(x) = g(x)$$

Con un argumento análogo vemos que tampoco es continua en $x \neq 0$ $x \in \mathbb{I}$

3) h restringida a $[0,1]\setminus\mathbb{Q}$ es una función constantemente 0. Así que es trivialmente continua en todo punto

Ejercicio 4. Probar que un espacio métrico de X es discreto si y sólo si toda función de X en un espacio métrico arbitrario es continua

 $Proof. \Rightarrow$) Sea X discreto sabemos que toda sucesión $(x_n)_n \subseteq X$ convergente es eventualmente constante, por ende $f(x_n)$ es eventualmente constante y por ende convergente sin importar la métrica del espacio de llegada de f

 \Leftarrow) Sea $id: X \to (\mathbb{E}, \delta)$ continua. Sea $a_n \to a$ entonces $f(a_n) \to f(a)$ pero como la imagen tiene la métrica discreta $\exists n \in \mathbb{N} \quad f(a_n) = f(a) \quad \forall n \geq n_0$. Ahora nuestra función es la identidad, esto nos dice que $a_n = a \quad \forall n \geq n_0$. O en otras palabras que todas sucesión convergente es a partir de algún momento constante, y esto sucede SOLO en espacios métricos discretos, por ende X es discreto

Ejercicio 5. (Métricas topológicamente equivalentes)

1. Supongamos que existen constantes $c_1, c_2 \in \mathbb{R}_{>0}$ tales que

$$d_1(x,y) \le c_1 d_2(x,y) \le c_2 d_1(x,y)$$

para todo $x, y \in X$. Probar que d_1 y d_2 son topológicamente equivalentes.

- 2. Probar que dos métricas d_1 y d_2 son topológicamente equivalentes si y sólo si la función identidad $id_X: (X, d_1) \to (X, d_2)$ es homeomorfismo.
- 3. Probar que en \mathbb{R}^n todas las métricas d_p con $1 \leq p \leq \infty$ son topológicamente equivalentes.

4. Consideremos en \mathbb{R} la métrica

$$d'(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

Probar que es topológicamente equivalente a la métrica usual d(x,y) = |x-y|

Proof. i) Sea $y \in B_2(x,r)$ entonces $d_2(x,y) < r$ entonces $c_1d_2(x,y) < c_1r$

Pero entonces por hipótesis $d_1(x,y) \le c_1 d_2(x,y) < c_1 r$

Por lo tanto $y \in B_1(x, r')$ con $r' = c_1 r$. Luego $B_2(x, r) \subseteq B_1(x, r')$

La otra inclusión es análoga

 $(ii) \Rightarrow$) Sabemos que X tiene los mismos abiertos con ambas métricas.

Sea $A \subseteq (X, d_1)$ abierto entonces $id^{-1}(A) = A$ que es abierto en (X, d_2) entonces $id^{-1}(A)$ es abierto

Y esto pasa tambien con la función inversa id^{-1} . Por ende ambas son continuas.

- \Leftarrow) Sean id continua entonces sea A abierto de (X, d_2) sabemos que $id^{-1}(A) = A$ tiene que ser abierto de (X, d_1) y lo mismo con la inversa, por ende cualquier abierto con una métrica lo es con la otra, entonces son topológicamente equivalentes
 - iii) Veamos que d_p es equivalente a d_{∞}

Sabemos que $d_p(x, y)^p = \sum_{i=1}^n |x_i - y_i|^p \le n \sup |x_i - y_i|^p = n d_{\infty}(x, y)^p$

Luego $d_p(x,y) \leq \sqrt{n} d_{\infty}(x,y)$

Por otro lado $|x_i - y_i|^p \le \sum_{i=0}^n |x_i - y_i|^p$ entonces $\sup |x_i - y_i|^p \le \sum_{i=0}^n |x_i - y_i|^p$

Luego $d_{\infty}(x,y)^p \le d_p(x,y)^p$ por lo tanto $d_{\infty}(x,y) \le d_p(x,y)$

Juntando todo $d_{\infty}(x,y) \leq d_{p}(x,y) \leq \sqrt{n}d_{\infty}(x,y)$

Por lo tanto d_p es equivalente d_{∞} y esta última es equivalente a d_1

Ejercicio 6. Consierando \mathbb{R}^n con la métrica euclídea, probar que:

i.
$$A = \{(x,y) \in \mathbb{R}^2 : x^2 + ysen(e^x - 1) = -2\}$$
 es cerrado

ii.
$$B = \{(x,y,z) \in \mathbb{R}^3 : -1 \leq x^3 - 3y^4 + z - 2 \leq 3\}$$
es cerrado

iii.
$$C = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : 3 < x_1 - x_2\}$$
 es abierto

Mencione otras dos métricas para las cuales siguen valiendo estas afirmaciones

Proof. i) Sea $f(x,y) = x^2 + ysen(e^x - 1)$ tenemos que f es continua por ser suma y mulitplicación de continuas

Entonces como $\{-1\}$ es cerrado con la métrica euclídea por lo tanto $f^{-1}(\{-1\}) = B$ tiene que ser cerrado

- ii) Lo mismo con preimagen del $\left[-1,3\right]$
- $iii) \ f((x_1,x_2,x_3,x_4,x_5)) = x_1 x_2$ es claramente continua

por lo tanto como $(3, +\infty)$ es abierto, entonces $f^{-1}((3, +\infty)) = C$ es abierto

Ejercicio 7. Consideremos las funciones $E, I : C([0,1]) \to \mathbb{R}$ definidas por:

$$E(f) = f(0) e I(f) = \int_0^1 f(x) dx$$

П

- 1. Demostrar que si utilizamos en C([0,1]) la distancia d_{∞} ambas resultan continuas.
- 2. Demostrar que si en cambio utilizamos en C([0,1]) la distancia d_1 , I es una función continua pero E no lo és
- 3. Analizar si es posible que una función $F: C([0,1]) \to \mathbb{R}$ sea continua para la distancia d_1 pero no para d_{∞}

Proof. 1) Sea $\epsilon > 0$ entonces $|E(f), E(g)| \le |f(0) - g(0)| \le \sup_{t \in [0,1]} |f(t) - g(t)| = d_{\infty}(f,g)$. Tomemos $\delta = \epsilon$ luego $d_{\infty}(f,g) < \delta$ implica $d(E(f),E(g)) = |E(f) - E(g)| < \delta = \epsilon$ $|I(f) - I(g)| = |\int f(x)dx - \int g(x)dx| \le \int |f(x) - g(x)|dx \le \int \sup |f(t) - g(t)|dx$ Además $\int \sup |f(t) - g(t)| dx = \int d_{\infty}(f, g) = d_{\infty}(f, g)$ Si tomamos $d_{\infty}(f,g) < \delta = \epsilon$ tenemos $d(I(f),I(g)) < \int d_{\infty}(f,g) = \int \epsilon = \epsilon.(1-0) = \epsilon$

2) De la misma forma que antes es facil ver que si $d_1(f,g) < \epsilon$ entonces $|I(f) - I(g)| < \epsilon$ Ahora para E sea $h: \mathbb{R} \to \mathbb{R}$ dada por $f_n(t) = (1-t)^n$ tenemos que $d_1(f_n, 0) = \int_0^1 (1-t)^n$

$$\int (1-t)^n = \int_0^1 \frac{(t-\frac{t^2}{2})^{n+1}}{n+1} = \frac{\frac{1}{2}^{n+1}}{n+1} = \frac{1}{(n+1)2^{n+1}} \to 0 \text{ por ende } f_n \text{ converge a 0 (la función 0)}$$
Para $F(f)$

Pero $E(f_n) \stackrel{\text{i.i.}}{=} 1 \quad \forall n \in \mathbb{N} \text{ por lo tanto } E(f_n) \to 1 \neq 0 = E(0)$

3) No es posible.

Sea F continua con d_1 entonces dado $\epsilon > 0$ existe $\delta > 0$ tal que $F(B_1(f, \delta)) \subseteq B_{\mathbb{R}}(F(f), \epsilon)$. Ahora tomemos la bola pero en distancia infinito. Sea $g \in B_{\infty}(f, \delta)$

Luego $d_1(f,g) = \int |f(x) - g(x)| dx \le \sup_{x \in [0,1]} |f(x) - g(x)| = d_{\infty}(f,g) < \delta$

Por lo tanto $g \in B_1(f, \delta)$ entonces $B_{\infty}(f, \delta) \subseteq B_1(f, \delta)$

Luego $F(B_{\infty}(f,\delta)) \subseteq F(B_1(f,\delta)) \subseteq B_{\mathbb{R}}(F(f),\epsilon)$

Entonces F es continua con d_{∞}

Ejercicio 8. Sean X, Y espacios métricos y sea $f: X \to Y$ una función continua. Probar que el gráfico de f, definido por

$$G(f) = \{(x, f(x)) \in X \times Y : x \in X\}$$

es cerrado en $X \times Y$ ¿Es cierta la afirmación recíproca?

Proof. Sea $(p_n)_n \subseteq G(f)$ tal que $p_n \to p$ queremos ver que $p \in G(f)$

Sabemos que $d_G((x_1, x_2), (y_1, y_2)) = d_X(x_1, y_1) + d_Y(x_2, y_2)$

 $p_n = (x_n, f(x_n)) \to p = (x, y).$

Por lo tanto $d_X(x_n, x) \leq d_X(x_n, x) + d_Y(f(x_n), y) = d_G(p_n, p)$

También $d_Y(f(x_n), y) \leq d_Y(f(x_n), y) + d_X(x_n, x) = d_G(p_n, p)$

Usando limite en ambas desigualdades tenemos $d_X(x_n, x) \to 0$ y $d_Y(f(x_n), y) \to 0$

Pero entonces como f es continua y $x_n \to x$ tenemos que $f(x_n) \to f(x)$ por lo tanto f(x) = y

Finalmente p=(x,f(x)) por lo tanto $p\in G(f)$. Entonces toda sucesión convergente de G(f) converge en G(f)

Por lo tanto G(f) es cerrado

La recíproca no vale, por ejempl con $f(x) = \frac{1}{x}$ y f(0) = 0, esta tiene como grafico a $\mathbb{R} \times \mathbb{R}$ que es cerrado por ser producto de cerrados, pero sin embargo no es continua

Ejercicio 9. Sea $f:(X,d)\to (Y,d')$ una función. Analizar la validez de las siguientes afirmaciones:

- i. Si $X = \bigcup_{i \in I} U_i$, con cada U_i abierto y $f|_{U_i}$ continua para todo $i \in I$ entonces $f: X \to Y$ continua
- ii. Si $X = \bigcup_{i \in I} F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para todo $i \in I$ entonces $f: X \to Y$ continua
- iii. Si $X = \bigcup_{i=1}^m F_i$, con cada F_i cerrado y $f|_{F_i}$ continua para cada $i = 1, \ldots, m$ entonces $f: X \to Y$ continua
- iv. Si $X = \bigcup_{i=1}^{m} X_i$, y $f|_{X_i}$ continua para cada i = 1, ..., m entonces $f: X \to Y$ continua

Proof. i) Sea V abierto de Y tenemos que:

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap \bigcup_{i \in I} U_i = \bigcup_{i \in I} f^{-1}(V) \cap U_i = \bigcup_{i \in I} f|_{U_i}^{-1}(V)$$

Por continuidad de la función restringida, $f|_{U_i}^{-1}(V)$ es abierto de U_i para cada $i \in I$ Pero U_i es abierto de X para cada $i \in I$ entonces estos abiertos lo son de X también , luego unión de estos abiertos es abierto de X

Por lo tanto $f^{-1}(V)$ es abierto de X entonces f es continua

ii) Sea f cualquier discontinua, ahora dado $X = \bigcup_{x \in X} \{x\}$ es un cubrimiento de cerrados Y además $f|_{\{x\}} : \{x\} \to Y$ es continua para cualquier $x \in X$ esto es facíl de ver dado que $\{x\}$ es abierto y cerrado en $\{x\}$ y $\{\emptyset\}$ también es abierto y cerrado en $\{x\}$ y estos dos son las únicas posibles preimagenes dadas por $f|_{\{x\}}$ de Y. Por lo tanto para cualquier abierto de Y su preimágen será abierta y lo mismo para cualquier cerrado de Y

Pero entonces f cumple las hipótesis , pero no es continua. Entonces la afirmación es falsa

iii) Siguiendo la idea del i). Sea V cerrado

$$f^{-1}(V) = f^{-1}(V) \cap X = f^{-1}(V) \cap \bigcup_{i=1}^{m} F_i = \bigcup_{i=1}^{m} f^{-1}(V) \cap F_i = \bigcup_{i=1}^{m} f|_{F_i}^{-1}(V)$$

Ahora cada uno de estos $f|_{F_i}^{-1}(V)$ es cerrado de F_i respectivamente, pero F_i es cerrado de X por lo tanto cada uno era entonces cerrado de X luego tengo $f^{-1}(V) = \bigcup_{i=1}^m f|_{F_i}^{-1}(V)$ únion finita de cerrados de X por lo tanto es cerrado. Entonces f es continua

iv) Si tomamos el siguiente cubrimiento $X=(-\infty,0]\cup(0,+\infty)$

Sea $f: X \to Y$ dada por:

$$f(x) = \begin{cases} 0 & x \le 0 \\ 1 & x > 0 \end{cases}$$

Esta es discontinua, pero si miro A abierto que no contiene al 0 entonces $f|_{(-\infty,0]}^{-1}(A) = \{\emptyset\}$ que es abierto. Si miro A abierto que contiene al cero $f|_{(-\infty,0]}^{-1}(A) = (-\infty,0]$ que es abierto de $(-\infty,0]$ por ende $f|_{(-\infty,0]}$ es continua. Y algo similar se puede ver para el otro intervalo.

Una mas facil es usar $f(x) = 0 \quad \forall x \in X$.

Ejercicio 10. Sea (X, d) un espacio métrico y sea $f: X \to \mathbb{R}$. Probar que f es continua si y sólo si para todo $\alpha \in \mathbb{R}$, los conjuntos $A = \{x \in X : f(x) < \alpha\}$ y $B = \{x \in X : f(x) > \alpha\}$ son abiertos

Proof. \Rightarrow) Sea f continua, luego preimagen de abierto es abierto, entonces $A = f^{-1}((-\infty, \alpha))$ es abierto, lo mismo pasa con B

 \Leftarrow) Cualquier abierto A en \mathbb{R} lo podemos escribir como $A = (f(x) - \epsilon, f(x) + \epsilon)$. Luego tomando $\alpha = f(x) + \epsilon$ y otro $\alpha = f(x) - \epsilon$

 $\{y \in X : f(y) < f(x) + \epsilon\} \cap \{y \in X : f(x) - \epsilon < f(y)\}$ por hipótesis es intersección de abiertos entonces es abierto , pero esta intersección es claramente la preimagen de A. Entonces para cualquier abierto A su preimagen por f es abierta, por lo tanto f es continua

Ejercicio 11. Sea (X,d) un espácio métrico y sea A un subconjunto de X. Probar que la función $d_A: X \to \mathbb{R}$ definida por $d_A(x) = d(x,A) = \inf_{a \in A} d(x,a)$ es (uniformemente) continua

Proof. Sabemos por práctica pasada $|f(x) - f(y)| = |d_A(x) - d_A(y)| \le d(x, y)$ Dado $\epsilon > 0$ puedo tomar $\delta = \epsilon$ y eso me implica $f(B(x, \delta)) \subseteq B(f(x), \epsilon) \quad \forall x \in X$ Por lo tanto $d_A(x)$ es uniformemente continua

Ejercicio 12. Teorema de Urysohn. Sea (X, d) un espacio métrico y sean A, B cerrados disjuntos de X

1. Probar que existe una función $f: X \to \mathbb{R}$ continua tal que:

$$f|_A \equiv 0$$
 $f|_B \equiv 1$ y $0 \le f(x) \le 1$ $\forall x \in X$

Sugerencia: Considerar la función $f(x) = \frac{d_A(x)}{d_A(x) + d_B(x)}$

2. Deducir que existen abiertos $U,V\subseteq X$ disjuntos tales que $A\subseteq U$ y $B\subseteq V$

Proof. 1) La sugerencia sirve , es continua por ser division y suma de continuas y el denominador nunca es 0 por que A y B son disjuntos y además son cerrados entonces la única forma de que $d_A(x) = 0 = d_B(x)$ es que $x \in A \cap B$

2) Sea
$$U = f^{-1}((-\infty, \frac{1}{2}))$$
 y $V = f^{-1}((\frac{1}{2}, +\infty))$ y $A \subseteq f^{-1}(0) \subseteq f^{-1}((-\infty, \frac{1}{2})) = U$ Lo mismo pasa con V

Ejercicio 13. Consideremos en \mathbb{Z} y \mathbb{Q} la métrica inducida por la usual de \mathbb{R} . Sea $f : \mathbb{Z} \to \mathbb{Q}$ una función.

- 1. Probar que f es continua. ¿ Sigue valiendo si f toma valores irracionales?
- 2. Suponiendo que f es biyectiva ¿puede ser un homemorfismo?

Proof. i) En \mathbb{Z} todo subconjunto es abierto y cerrado a la vez, considerando esto la preimagen de cualquier conjunto será un conjunto de \mathbb{Z} por lo tanto preimagen de cualquier abierto será abierto (y cerrado)

Esto vale para cualquer espacio de llegada , dado que $\mathbb Z$ sigue teniendo las mismas características

ii) La inversa de f es $f^{-1}:\mathbb{Q}\to\mathbb{Z}$ tiene como espacio de llegada un espacio discreto , por lo tanto todo en este espacio es abierto y cerrado , pero entonces necesito que toda preimagen sea abierta y cerrada para tener continuidad

Y esto sucede si el espacio de salida es discreto tambien, o si la preimagen de cualquier cosa es TODO el espacio de salida, o lo que es lo mismo si la función es constante. Ahora si fuera constante no sería una biyección, y $\mathbb Q$ no es discreto con la métrica usual , asi que no es posible tener un homemorfismo entre estos dos espacios con estas métricas

Ejercicio 14. Sea (X, d) un espacio métrico, y sea $\Delta : X \to X \times X$ la aplicación diagonal definida por $\Delta(x) = (x, x)$. Probar que

- 1. Δ es un homemorfismo entre X y $\{(x,x):x\in X\}\subseteq X\times X$
- 2. $\Delta(x)$ es cerrado en $X \times X$

Proof. i) Si usamos la distancia orgánica en $X \times X$ dada por d((x,x),(y,y)) = d(x,y) + d(x,y) Luego dado $\epsilon > 0$

Tomamos $\delta = \frac{\epsilon}{2}$ entonces $d((x,x),(y,y)) = 2d(x,y) < 2\delta = \epsilon$. Entonces la aplicación es uniformemente continua haciendo algo muy similar vemos que la inversa también es uniformemente continua (solo hay que pasar dividiendo el 2 y tomar $\delta = 2\epsilon$)

ii) Sea $(x_n, x_n) \to (x, x)$ tal que $(x_n, x_n)_n \subseteq X \times X$ Supongamos que $(x, x) \notin X \times X$

Pero entonces tengo $(x_n)_n \subseteq X$ con $x_n \to x$ y $x \notin X$ lo que es absurdo, porque X es todo el espacio métrico, si algo converge tiene que converger en X

Otra forma de verlo es que $\Delta(X)$ es el grafico de la función $id: X \to X$ y los gráficos son cerrados

Ejercicio 15. Sean (X,d) e (Y,d') espacio métrico. Una aplicación $f:X\to Y$ se dice abierta si f(A) es abierto para todo abierto $A\subseteq X$ y se dice $\operatorname{cerrada}$ si f(F) es cerrado para todo cerrado $F\subseteq X$

- i. Suponiendo que f es biyectiva, probar que f es abierta (cerrada) si y sólo si f^{-1} es continua.
- ii. Dar un ejemplo de una función de \mathbb{R} en \mathbb{R} continua que no sea abierta
- iii. Dar un ejemplo de una función de \mathbb{R} en \mathbb{R} continua que no sea cerrada
- iv. Mostrar con un ejemplo que una función puede ser biyectiva, abierta y cerrada , pero no continua

Proof. $i) \Rightarrow$) Llamemos $g = f^{-1}$ con $g: Y \to X$ por comodida. Supongamos que g no es continua, entonces existe un abierto en $A \subseteq X$ tal que $g^{-1}(A) \subseteq Y$ no es abierto.

Pero $g^{-1}=(f^{-1})^{-1}=f$ entonces $g^{-1}(A)=f(A)$ por lo tanto tenemos un abierto $A\subseteq X$ tal que f(A) no es abierto , esto es absurdo

 \Leftarrow) Como g es continua, para todo $A \subseteq X$ abierto $g^{-1}(A) = f(A) \subseteq Y$ abierto Esto nos dice que $A \subseteq X$ abierto entonces f(A) es abierto

Acá se usó biyectividad para asegurar que existia f^{-1}

Observación interesante, toda función de \mathbb{R} a \mathbb{R} biyectiva, con la métrica usual tiene inversa continua, por ende toda función biyectiva de \mathbb{R} a \mathbb{R} es abierta (y cerrada)

- ii) $f:(\mathbb{R},d_1)\to(\mathbb{R},d_1)$ tal que f(x)=1 (o cualquier constante) luego $f(\mathbb{R})=\{1\}$, entonces \mathbb{R} es abierto de \mathbb{R} pero $f(\mathbb{R})=\{1\}$ no es abierto de \mathbb{R} . Por ende f no es abierta (cerrada)
 - iii) $f(t) = e^t$ es continua, \mathbb{R} es cerrado pero $f(\mathbb{R}) = (0, +\infty)$ no es cerrado
- iv) Sea $id:(\mathbb{R},d_1)\to(\mathbb{R},\delta)$ donde δ es la distancia discreta, esta función NO continua, es biyectiva, su inversa es continua, (el dominio de su inversa es discreto) entonces por i) es abierta (cerrada).

Ejercicio 16. Sean (X, d) e (Y, d') espacios métricos y sea $f: X \to Y$ una función.

- 1. Probar que f es continua si y sólo si $f(\overline{E}) \subseteq \overline{f(E)}$ para todo subconjunto $E \subseteq X$ Mostrar con un ejemplo que la inclusión puede ser estricta.
- 2. Probar que fes continua y cerrada si y sólo si $f(\overline{E})=\overline{f(E)}$ para todo subconjunto $E\subseteq X$

Proof. 1) \Rightarrow) Sea $y \in f(\overline{E})$ entonces $\exists x \in \overline{E}$ tal que f(x) = y

Como $x \in \overline{E}$ existe $(x_n)_n \subseteq E$ con $x_n \neq x$ tal que $x_n \to x$

Entonces $(f(x_n))_n \subseteq f(E)$ con $f(x_n) \neq f(x)$

Por continuidad de f tenemos $f(x_n) \to f(x) = y$. Por lo tanto $y \in \overline{f(E)}$

Si tomamos $id: (\mathbb{R}, \delta) \to (\mathbb{R}, d_1)$ sabemos que es continua y $id(\overline{\mathbb{Q}}) = id(\mathbb{Q}) = \mathbb{Q}$ que esta contenido estrictamente en $id(\mathbb{Q}) = \overline{\mathbb{Q}} = \mathbb{R}$

(=)

2) \Rightarrow) Sabemos por el 1) que $f(\overline{E}) \subseteq \overline{f(E)}$ por otro lado sabemos $f(E) \subseteq f(\overline{E})$

Pero f(E) es cerrado y como la clausura de f(E) es el menor cerrado que contiene a f(E) entonces $\overline{f(E)} \subseteq f(\overline{E})$. Luego $f(\overline{E}) = \overline{f(E)}$

Observación f(E) seguro está contenido en $f(\overline{E})$ para que esto no se cumpla necesitamos que $f(E) = f(\overline{E})$ que esto es lo que usamos en el contra ejemplo de arriba. $id(\mathbb{Q}) = id(\overline{\mathbb{Q}})$

Ejercicio 17. Un subconjunto D de un espacio métrico X se dice denso si $\overline{D} = X$

- 1. Sean (X, d) e (Y, d') espacios métricos y sea $D \subseteq X$ denso. Sean $f, g: X \to Y$ funciones continuas. Probar que si $f|_D = g|_D$, entonces f = g
- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua tal que f(x+y) = f(x) + f(y) para todo $x, y \in \mathbb{Q}$. Probar que existe $\alpha \in \mathbb{R}$ tal que $f(x) = \alpha x$ para todo $x \in \mathbb{R}$

Proof. 1) Sea $x \in X$ como D es denso en X entonces existe $(x_n)_n \subseteq D$ tal que $x_n \to x$ Por continuidad sabemos que $f(x_n) \to f(x)$ y $g(x_n) \to g(x)$. Luego por hipótesis sabemos

que $f|_D = g|_D$ entonces $f(x_n) = g(x_n)$, pero entonces $f(x_n)$ y $g(x_n)$ tienden a lo mismo por lo tanto f(x) = g(x)

2) Proponemos $\alpha=f(1)$ ahora mostremos que
 $f(n)=\alpha n$

```
Por inducción (n = 1) vale por que f(1) = f(1).1 = \alpha.1
     (n \Rightarrow n+1) Por hipótesis del ejercicio f(n+1) = f(n) + f(1)
     Por hipótesis inductiva f(n) + f(1) = \alpha n + \alpha = \alpha(n+1) entonces f(n+1) = \alpha(n+1)
     Esto vale para todo n \in \mathbb{N}
     Ahora tomemos n > m entonces f(m) = f(n + (m - n)) = f(n) + f(m - n)
     Pero entonces f(m-n) = f(m) - f(n) = \alpha m - \alpha n = \alpha (m-n)
     Ahora como a cualquier z \in \mathbb{Z} tal que z \neq 0 lo podemos escribir como una resta de
m,n\in\mathbb{N} tal que m\neq n tenemos que vale para cualquier z\in\mathbb{Z}
     f(1) = f(1+0) = f(1) + f(0) entonces 0 = f(0)
    Ahora fijemos z \in \mathbb{Z} y mostremos que f(\frac{z}{2^m}) = \alpha \frac{z}{2^m} \quad \forall m \in \mathbb{N}_0
    Por inducción, el caso n=0 sabemos que se cumple por que f(\frac{z}{20})=f(z)=\alpha z
     (n \Rightarrow n+1) Tenemos f(\frac{z}{2^n}) = f(\frac{z}{2^{n+1}} + \frac{z}{2^{n+1}}) = f(\frac{z}{2^{n+1}}) + f(\frac{z}{2^{n+1}}) = 2f(\frac{z}{2^{n+1}})
    Entonces f(\frac{z}{2^{n+1}}) = f(\frac{z}{2^n}) \cdot \frac{1}{2} = \alpha \frac{z}{2^n} \cdot \frac{1}{2} = \alpha \frac{z}{2^{n+1}}
Luego consideramos D = \{\frac{z}{2^n} : z \in \mathbb{Z}, n \in \mathbb{N}\} y g : \mathbb{R} \to \mathbb{R} dada por g(x) = \alpha x
     Sabemos que estas funciones coninciden en D que es denso en \mathbb R
     Entonces f(x) = g(x) \quad \forall x \in \mathbb{R}
```

Ejercicio 18. Sean (X, d) e (Y, d') espacios métricos. Consideramos en $X \times Y$ la métrica d_{∞}

1. Probar que las proyecciones $\pi_1: X \times Y \to X$ y $\pi_2: X \times Y \to Y$ son continuas y abiertas.

Mostrar con un ejemplo que pueden no ser cerradas

2. Sea (E, δ) un espacio métrico y sea $f: E \to X \times Y$ una aplicación. Probar que f es continua si y sólo si $f_1 = \pi_1 \circ f$ y $f_2 = \pi_2 \circ f$ lo son

Proof. Probemos la uniformidad continua:

```
d_X(\pi_1((x_1,y_1)),\pi_2((x_2,y_2)))=d_X(x_1,x_2)\leq \sup\{d_X(x_1,x_2),d_Y(y_1,y_2)\}=d_\infty((x_1,y_1),(x_2,y_2)) entonces \pi_1 es uniformemente continua.
```

Un razonamiento similar nos lleva a probar que π_2 es uniformemente continua también Veamos que f es abierta

Sea $U \subseteq X \times Y$ abierto queremos ver que $\pi_1(U)$ es abierto. Ahora tomemos un $(x, y) \in U$ Sabemos que existe $\epsilon > 0$ tal que $B_{\epsilon}(x, y) \subseteq U$ entonces $\pi_1(B_{\epsilon}(x, y)) \subseteq \pi_1(U)$

Sea $x' \in B_{\epsilon}(x) \subseteq X$ entonces $d_{\infty}((x',y),(x,y)) = \sup\{d(x',x),d(y,y)\} = d(x',x) < \epsilon$

Pero entonces $(x',y) \in B_{\epsilon}(x,y)$ por lo tanto $x' = \pi_1(x',y) \in \pi_1(B_{\epsilon}(x,y)) \subseteq \pi_1(U)$

Por lo tanto $\forall x' \in B_{\epsilon}(x)$ se da que $x' \in \pi_1(U)$

Entonces $B_{\epsilon}(x) \subseteq \pi_1(U)$ y esto vale para cualquier $(x,y) \in U$ entonces vale para cualquier $x \in \pi_1(U)$ luego $\pi_1(U)$ es abierto

Finalmente dado U abierto tenemos que $\pi_1(U)$ es abierto

Contraejemplo: Tomemos $F = \{(x, y) \in \mathbb{R} \times \mathbb{R} : xy = 1\}$ es cerrado, el único punto que podría ser de acumulación pero que no esté en F es el (0,0) pero es facil ver que no puede existir una sucesión en F que converga al (0,0) pero $\pi_1(F)$ no es cerrado por que es $\mathbb{R} \setminus \{0\}$

2) \Rightarrow) supongamos f_1 no es continua , pero como π_1 es continua , y f_1 es composición de esta con f entonces para que f_1 no sea continua f no tiene que ser continua, absurdo, de la misma forma vemos que f_2 es continua.

```
\Leftarrow) Tenemos que \pi_1 \circ f y \pi_2 \circ f son continuas
Entonces dado \epsilon > 0 existe \delta_1 tal que f_1(B_{\delta_1}(x,y)) \subseteq B_{\frac{\epsilon}{2}}(f_1(x,y))
Y existe \delta_2 > 0 tal que f_2(B_{\delta_2}(x,y)) \subseteq B_{\frac{\epsilon}{2}}(f_2(x,y))
Equivalentemente \pi_1(f(B_{\delta_1}(x,y))) \subseteq B_{\frac{\epsilon}{2}}(\tilde{\pi}_1(f(x,y))) también \pi_2(f(B_{\delta_2}(x,y))) \subseteq B_{\frac{\epsilon}{2}}(\pi_2(f(x,y)))
Tomando \delta = \min\{\delta_1, \delta_2\} tendriamos ambas inclusiones entonces
Dado (x', y') \in B_{\delta}(x, y) entonces \pi_i(f(x', y')) \in \pi_i(f(B_{\delta}(x, y))) \subseteq B_{\frac{\epsilon}{2}}(\pi_i(f(x, y)))
Luego tenemos \pi_1(f(x',y')) \in B_{\frac{\epsilon}{2}}(\pi_1(f(x,y))) también \pi_2(f(x',y')) \in B_{\frac{\epsilon}{2}}(\pi_2(f(x,y)))
Luego tenemos d(\pi_1(f(x',y')), \pi_1(f(x,y))) < \frac{\epsilon}{2} también d(\pi_2(f(x',y')), \pi_2(f(x,y))) < \frac{\epsilon}{2}
Juntando esto último dado (x', y') \in B_{\delta}(x, y) entonces f(x', y') \in f(B_{\delta}(x, y))
Luego d_{\infty}(f(x,y), f(x',y')) = \sup\{d_X(f_1(x',y'), f_1(x,y)), d_Y(f_2(x',y'), f_2(x,y))\}
Y esto último es menor o igual que si sumaramos d_X(f_1(x',y'),f_1(x,y))+d_Y(f_2(x',y'),f_2(x,y))
Que es igual a d_X(\pi_1(f(x',y')), \pi_1(f(x,y))) + d_Y(\pi_2(f(x',y')), \pi_2(f(x,y))) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
Entonces para cualquier (x', y') \in B_{\delta}(x, y) sucede que f(x', y') \in B_{\epsilon}(f(x, y))
Finalmente f(B_{\delta}(x,y)) \subseteq B_{\epsilon}(f(x,y)) por lo tanto f es continua
O si nó , \forall (x',y') tal que d((x',y'),(x,y)) \leq \delta tenemos d(f(x',y'),f(x,y)) \leq \epsilon
```

Ejercicio 19. Sea (X,d) un espacio métrico y sea $f:X\to\mathbb{R}$ una función. Se dice que f es semicontinua inferiormente (respectivamente superiormente) en $x_0\in X$ si para todo $\epsilon>0$ existe $\delta>0$ tal que

$$d(x, x_0) < \delta \Rightarrow f(x_0) - \epsilon < f(x)$$
 (respectivemente. $f(x_0) + \epsilon > f(x)$).

- i. f es continua en x_0 si y sólo si f es semicontinua inferiormente y superiormente en x_0
- ii. f es semicontinua inferiormente si y sólo si $f^{-1}(\alpha, +\infty)$ es abierto para todo $\alpha \in \mathbb{R}$
- iii. f es semicontinua superiormente si y sólo si $f^{-1}(-\infty,\alpha)$ es abierto para todo $\alpha \in \mathbb{R}$
- iv. si $A \subseteq X$ y $X_A : X \to \mathbb{R}$ es su función característica, entonces X_A es semicontinua inferiormente (resp. superiormente) si y sólo si A es abierto (resp. cerrado)
- i) f es continua en $x_0 \iff (\forall \epsilon \text{ existe } \delta > 0 \text{ tal que } \forall x \in X \text{ que cumple } d(x, x_0) < \delta \implies f(x_0) \epsilon < f(x) \text{ y } f(x_0) + \epsilon > f(x) \text{ que es lo mismo a } |f(x_0) f(x)| < \epsilon \text{ o lo mismo } d(f(x), f(x_0)) < \epsilon)$

Observación para la vuelta tenemos dos deltas y usamos el mínimo de ambos.

 $(ii) \Rightarrow$) Sea $x \in f^{-1}(\alpha, +\infty)$ entonces $f(x) > \alpha$ por lo tanto $f(x) - \alpha > 0$

Dado $\epsilon = f(x) - \alpha$ y dado que f es semicontinua, sabemos que existe $\delta > 0$ tal que si $y \in B_{\delta}(x)$ entonces $f(x) - \epsilon < f(y)$ pero entonces $f(y) > \alpha$ por lo tanto $y \in f^{-1}(\alpha, +\infty)$

Entonces para cualquier $x \in f^{-1}(\alpha, +\infty)$ tenemos que $B_{\delta}(x) \subseteq f^{-1}(\alpha, +\infty)$ por lo tanto este úlitmo es abierto

 \Leftarrow) Sea $\alpha = f(x) - \epsilon$ Sabemos que $f^{-1}(f(x) - \epsilon, +\infty)$ es abierto entonces existe $\delta > 0$ tal que $B_{\delta}(x) \subseteq f^{-1}(f(x) - \epsilon, +\infty)$

Tomemos $y \in X$ tal que $d(x, y) < \delta$ tenemos que $y \in B_{\delta}(x)$ por lo tanto $f(y) \in f(B_{\delta}(x))$ Por lo tanto $f(y) \in f(f^{-1}(f(x) - \epsilon, +\infty)) = (f(x) - \epsilon, +\infty)$

Entonces para todo $\epsilon > 0$ existe un $\delta > 0$ tal que si $d(y, x) < \delta$ entonces $f(x) - \epsilon < f(y)$ Y esto vale para cualquier $x \in X$ que tomemos, luego f es semicontinua inferiormente iv > 0 Sea $f = X_A$ ahora

$$f^{-1}(\alpha, +\infty) = \begin{cases} \mathbb{R} & \alpha < 0 \\ A & 0 \le \alpha < 1 \\ \emptyset & 1 \le \alpha \end{cases}$$

Ahora para que f sea semicontinua inferiormente necesitamos que $f^{-1}(\alpha, +\infty)$ sea abierto para todo $\alpha \in \mathbb{R}$. Sabemos que \mathbb{R} y \emptyset son abiertos entonces

f es semicontinua inferiormente \iff A es abierto

Para semicontinua superiormente usamos

$$f^{-1}(-\infty, \alpha) = \begin{cases} \emptyset & \alpha \le 0 \\ \mathbb{R} \setminus A & 0 < \alpha \le 1 \\ \mathbb{R} & 1 < \alpha \end{cases}$$

Tiene que ser abierto. Entonces $\mathbb{R} \setminus A$ tiene que ser abierto y es abierto $\iff A$ es cerrado

Ejercicio 20. Sean (X,d) e (Y,d') espacios métricos y sea $f:X\to Y$ una función que satisface:

$$d'(f(x_1), f(x_2)) \le cd(x_1, x_2)$$

para todo $x_1, x_2 \in X$, donde $c \geq 0$. Probar que f es uniformemente continua.

Proof. Sea $\epsilon > 0$ puedo tomar $\delta = \frac{\epsilon}{c}$ Entonces $\forall x_1, x_2 \in X$ tq $d(x_1, x_2) < \delta$ tenemos $d'(f(x_1), f(x_2)) \le cd(x_1, x_2) < c\frac{\epsilon}{c} = \epsilon$

Ejercicio 21. a

- 1. Sean (X, d) e (Y, d') espacios métricos, $A \subseteq X$ y $f : X \to Y$ una función. Probar que si existe $\alpha > 0$, $(x_n)_n, (y_n)_n \subseteq A$ sucesiones y $n_0 \in \mathbb{N}$ tales que
 - (a) $d(x_n, y_n) \to 0$ para $n \to \infty$
 - (b) $d'(f(x_n), f(y_n)) \ge \alpha$ para todo $n \ge n_0$ entonces f no es uniformemente continua en A
- 2. Verificar que la función $f(x)=x^2$ no es uniformemente continua en \mathbb{R} ¿Y en $\mathbb{R}_{\leq -\pi}$?
- 3. Verificar que la función $f(x) = sen(\frac{1}{x})$ no es uniformemente continua en (0,1)

Proof. 1) La negación de continuidad uniforme es que existe algún ϵ tal que $\forall \delta > 0$ existe $x,y \in X$ que cumple que $d(x,y) < \delta$ pero $d(f(x),f(y)) > \epsilon$

Por hipótesis dado $\delta > 0$ sabemos que existe $n_{1_{\delta}} \in \mathbb{N}$ tal que $d(x_n, y_n) < \delta \quad \forall n \geq n_{1_{\delta}}$ Por la otra hipótesis tenemos que existe $n_{2_{\delta}} \in \mathbb{N}$ tal que $d(f(x_n), f(y_n)) \geq \alpha \quad \forall n \geq n_{2_{\delta}}$ Entonces si tomamos $n_{0_{\delta}} = \max\{n_{1_{\delta}}, n_{2_{\delta}}\}$

Tenemos que $d(x_n, y_n) < \delta$ pero $d(f(x_n), f(y_n)) \ge \alpha \quad \forall n \ge n_{0_\delta}$

Y para cualquier $\delta > 0$ podemos encontrar dicho $n_{0_{\delta}}$

Entonces si tomamos $\epsilon < \alpha$ sucede que $\forall \delta$ existen $(x_n)_n, (y_n)_n \in X$

Que cumplen que $d(x_n, y_n) < \delta$ pero $d(f(x_n), f(y_n)) \ge \alpha > \epsilon \quad \forall n \ge n_{0_\delta}$

En particular para cada δ tenemos $d(x_{n_{0_{\delta}}},y_{n_{0_{\delta}}})<\delta$ pero $d(f(x_{n_{0_{\delta}}}),f(y_{n_{0_{\delta}}}))\geq\alpha>\epsilon$

Por lo tanto f no es uniformemente continua

2) Sea $x_n = n + \frac{1}{n} y_n = n$ tenemos que $d(x_n, y_n) = |n + \frac{1}{n} - n| = \frac{1}{n} \to 0$ Sin embargo $d(f(x_n), f(y_n)) = d(n^2 + 2 + \frac{1}{n} - n^2) = d(2 + \frac{1}{n}) = |2 + \frac{1}{n}| \to 2$ Entonces x^2 no es uniformemente continua en \mathbb{R}

Ejercicio 22. Sea $f:(X,d)\to (Y,d')$ una función uniformemente continua y sea $(x_n)_n$ una sucesión de Cauchy en X. Probar que $(f(x_n))_n$ es una sucesión de Cauchy en Y

Proof. Como f unif continua

Dado $\epsilon > 0 \; \exists \delta > 0$ tal que todo $x,y \in X$ que cumple $d(x,y) \leq \delta$ implica $d(f(x),f(y)) < \epsilon$ Sea a_n una sucesión de Cauchy , tomando el δ de la uniformidad

Tenemos que $\exists n_0$ tal que $d(x_n, x_m) < \delta \quad \forall n, m \geq n_0$

Pero entonces $d(f(x_n), f(x_m)) < \epsilon \quad \forall n, m \geq n_0$

Y esto lo podemos hacer con cualquier $\epsilon > 0$, por que cualquier $\epsilon > 0$ nos va a dar un δ por uniformidad y este δ nos va a dar un n_0 por Cauchy. Luego este n_0 nos va a asegurar la cercania en la imagen

Por lo tanto $f(x_n)$ es de Cauchy.

Ejercicio 23. Resolver

- i. Dar un ejemplo de una función $f:\mathbb{R} \to \mathbb{R}$ acotada y continua pero no uniformemente continua
- ii. Dar un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ no acotada y uniformemente continua

Proof. a
$$\Box$$

Ejercicio 24. Sea $f:(X,d)\to (Y,d')$ una función uniformente continua, y sean $A,B\subseteq X$ conjuntos no vacíos tales que d(A,B)=0. Probar que d'(f(A),f(B))=0

Proof. Tengo $d(A, B) = \inf\{d(a, b) : a \in A, b \in B\} = 0$ entonces existe una sucesión de distancias que tienden a cero. $d(x_n, y_n) \to 0$

Ahora supongamos que $d'(f(A), f(B)) \neq 0$ entonces $d'(f(A), f(B)) = \alpha > 0$ (No puede ser menor que 0 por que son distancias, toda son mayores o iguales que 0).

Entonces para cualquier par $x_n, y_n \in X$ $d(f(x_n), f(y_n)) \ge \alpha$ si para algun par la distancia fuera menor , entonces el conjunto de distancias tendría una distancia menor que α por lo tanto el ínfimo del conjunto sería menor que α luego $d'(f(A), f(B)) < \alpha$

Pero entonces seguro $d(f(x_n), f(y_n)) \ge \alpha \quad \forall n \in \mathbb{N}$ equivalentemente $d(f(x_n), f(y_n)) \ne 0$ y esto nos dice que f no es uniformemente continua. Lo cual es absurdo, provino de suponer que $d'(f(A), f(B)) \ne 0$