Name: Bassem Elsawy

ID: 610739

R-1.1 Graph the functions 12n, $6n \log n$, n 2, n 3, and 2n using logarithmic scale for the xand y-axes; that is, if the function value <math>f(n) is y, plot this as a point with x-coordinate at $\log n$ and y-coordinate at $\log y$.

Solution:

R-1.2 Algorithm A uses 10n log n operations, while algorithm B uses n^2 operations. Determine the value n0 such that A is better than B for $n \ge n0$.

Solution:						
	-,,-	*				• • • •
	For n	= 100				
	10-10	7n = 10	* 100	*10	- 10	000
	$n^2 = ($	100)2=	10000			
	For	$n_{c} > 10$	0. A			
	1 4					
				V 4		•
R-1.6 Ord	er the follow	ving list of fund	ctions by th	ne big-O n	otation.	
Solution:						
	The second second					

R-1.10 Give a big-O characterization, in terms of n, of the running time of the Loop1 method below:

Solution:

R-1.14 Perform a similar analysis for method Loop5 below:

Solution:

Prove: $log_b x^a = alog_b x$
Solution:
Assume,
Z=alog X
Raising with b on both sides:
be babys - (babys)
or, b = (x)
Taking log on both sides,
logb(b2) = logb(x)
or, z-log(x)a
06 06 100 V - lag Va