

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 04 May 2023 1 of 10

Sample Information

Patient Name: 黃水猛 Gender: Male ID No.: Q101716369 History No.: 49328883

Age: 74

Ordering Doctor: DOC8147L 邱士育

Ordering REQ.: 0CKFHTD Signing in Date: 2023/05/04

Path No.: M112-00090 **MP No.:** F23028

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S112-13273F Percentage of tumor cells: 50%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	5
Clinical Trials Summary	8
Alert Details	8

Report Highlights

- 1 Relevant Biomarkers
- 3 Therapies Available
- 7 Clinical Trials

Relevant Non-Small Cell Lung Cancer Variants

Gene	Finding	Gene	Finding	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	ERBB2 exon 20 insertion	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	None detected			

Date: 04 May 2023 2 of 10

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IA	ERBB2 exon 20 insertion	trastuzumab deruxtecan 1	trastuzumab	7
	erb-b2 receptor tyrosine kinase 2 Allele Frequency: 40.88%	ado-trastuzumab emtansine		

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Prevalent cancer biomarkers without relevant evidence based on included data sources MYC amplification

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA	Sequence varia	ants						
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
ERBB2	p.(G778_P780dup)	c.2339_2340insGGG CTCCCC	COSM12555	chr17:37881001	40.88%	NM_004448.3	nonframeshift Insertion	1969

Copy Number Variations		
Gene	Locus	Copy Number

Biomarker Descriptions

ERBB2 (erb-b2 receptor tyrosine kinase 2)

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor (HER) family. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family¹. All ERBB/HER proteins encode transmembrane receptor tyrosine kinases. However, ERBB2/HER2 is an orphan receptor with no known ligand. ERBB2 preferentially binds other ligand bound ERBB/HER family members to form hetero-dimers resulting in the activation of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which promote cell proliferation, differentiation, and survival². Recurrent focal amplification of the ERBB2 gene leads to increased expression in several cancer types. ERBB2 overexpression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and activation without ligand binding³.4.5.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-20% of breast, esophageal, and gastric cancers, 5-10% of bladder, cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers^{6,7,8,9,10,11,12,13}. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types^{13,14,15}. In breast, bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include in-frame exon 20 insertions, particularly Y772_A775dup.

Potential relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987 led to the development of trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2^{16,17}. Trastuzumab¹⁸ was FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for HER2-positive breast cancer including pertuzumab¹⁹ (2012), a humanized monoclonal antibody that inhibits HER2 dimerization, and ado-trastuzumab emtansine²⁰ (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer²¹. In addition to monoclonal antibodies, the small molecule inhibitor lapatinib²², with specificity for both EGFR and ERBB2, was FDA approved (2007)

Biomarker Descriptions (continued)

for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In 2017, the FDA approved the use of neratinib²³, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. In 2020, the FDA approved neratinib23 in combination with capecitabine for HER2-positive advanced or metastatic patients after two or more prior HER2-directed therapies. Also in 2020, the TKI irbinitinib²⁴ was FDA approved for HER2 overexpressing or amplified breast cancer in combination with trastuzumab and capecitabine. In 2021, the PD-1 blocking antibody, pembrolizumab, in combination with trastuzumab, fluoropyrimidine- and platinumbased chemotherapy, was approved for HER2 amplified gastric or gastroesophageal (GEJ) adenocarcinoma in the first line²⁵. The vaccine, nelipepimut-S²⁶, was granted fast-track designation by the FDA (2016) in patients with low to intermediate HER2 expressing (IHC score 1+ or 2+) breast cancer. In 2018 fast-track designation was granted to the monoclonal antibody margetuximab²⁷ in patients with ERBB2 positive breast cancer previously treated with an anti-HER2 therapy. In 2019, fast track designation was granted to the HER2-targeting antibody drug conjugate, amcenestrant²⁸, for HER2-positive advanced or metastatic breast cancer after one or more prior anti-HER2 based regimens. Additionally, in 2019, the novel bispecific antibody, zanidatamab²⁹, received fast-track designation in combination with standard chemotherapy for patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA) and breakthrough therapy designation (2020) as a monotherapy for patients with HER2-amplified biliary tract cancer³⁰. In 2020, BDTX-189³¹ received fast-track designation for adult patients with solid tumors harboring an allosteric human ERBB2 mutation or exon 20 insertion, and the humanized anti-HER2 antibody drug conjugate disitamab vedotin received breakthrough designation for adult patients with HER2-positive urothelial cancer after previous platinum-chemotherapy treatment³². In 2021, the antibody-drug conjugate ARX788³³ received fast-track designation as a monotherapy for advanced or metastatic HER2-positive breast cancer that have progressed on one or more anti-HER2 regimens. Additionally, in 2021, fast track designation was granted to HER2 targeted chimeric antigen receptor macrophage (CAR-M), CT-050834, for HER2-overexpressing solid tumors. Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and ongoing clinical studies^{35,36,37,38,39}. ERBB2 kinase domain mutations R896G and V659E both showed response to afatinib in two NSCLC case studies^{40,41}. Additionally, acquired HER2 mutations in estrogen receptor-positive (ER+) breast cancer have been shown to confer resistance to hormone therapy⁴². However, this was shown to be overcome by neratinib in combination with therapies targeting ER42.

MYC (MYC proto-oncogene, bHLH transcription factor)

Background: The MYC gene encodes the MYC proto-oncogene (c-MYC), a basic helix-loop-helix transcription factor that regulates the expression of numerous genes that control cell cycle progression, apoptosis, metabolic pathways, and cellular transformation^{43,44,45,46}. MYC is part of the MYC oncogene family that includes related transcription factors MYCN and MYCL that regulate transcription in 10-15% of promoter regions⁴⁷. MYC functions as a heterodimer in complex with the transcription factor MAX^{44,48}.

Alterations and prevalence: Recurrent somatic alterations are observed in both solid and hematological cancers. Recurrent somatic mutations in MYC, including codon T58, are infrequent and hypothesized to increase the stability of the MYC protein^{49,50}. MYC gene amplification is particularly common in diverse solid tumors. MYC amplification is observed in 30% of serous ovarian cancer, 20% of uterine serous carcinoma, 15% of esophageal and breast cancers, and is common (1-10%) in numerous other cancer types^{13,51,52}. MYC is the target of the t(8;14)(q24;32) chromosomal translocation in Burkitt's lymphoma that places MYC coding sequences adjacent to immunoglobulin region regulatory sequences, which results in increased MYC expression^{53,54}.

Potential relevance: B-cell lymphoma with MYC translocations that co-occur with BCL2 or BCL6 are referred to as double hit lymphoma, while co-occurrence with BCL2 and BCL6 rearrangements is referred to as triple-hit lymphoma^{55,56}. MYC translocations are also indicative of high risk for multiple myeloma⁵⁷. Currently, no therapies are approved for MYC aberrations. Due to the high frequency of somatic MYC alterations in cancer, many approaches are being investigated in clinical trials including strategies to disrupt complex formation with MAX, including inhibition of MYC expression and synthetic lethality associated with MYC overexpression^{43,58,59,60}.

Relevant Therapy Summary

In this cancer type	O In other cancer type	In this cancer	type and other car	ncer types	✗ No eviden	ce
ERBB2 exon 20	insertion					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
trastuzumab deruxte	can	•		×		×
ado-trastuzumab em	tansine	×	•	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

4 of 10

Date: 04 May 2023

Relevant Therapy Summary (continued)

In this cancer type

O In other cancer type

In this cancer type and other cancer types

× No evidence

ERBB2 exon 20 insertion (continued)					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
trastuzumab	×	×	×	0	×
trastuzumab deruxtecan, pembrolizumab, chemotherapy	×	×	×	×	(III)
ABT-101	×	×	×	×	(I/II)
sunvozertinib	×	×	×	×	(/)
BAY-2927088	×	×	×	×	(1)
SAR-443216	×	×	×	×	(1)
SHR-A1811	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 04 May 2023 5 of 10

Relevant Therapy Details

Current FDA Information

In this cancer type

In this cancer type and other cancer types

FDA information is current as of 2023-03-15. For the most up-to-date information, search www.fda.gov.

ERBB2 exon 20 insertion

trastuzumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer Label as of: 2022-11-04 Variant class: ERBB2 G778_P780dup

mutation

Indications and usage:

ENHERTU® is a HER2-directed antibody and topoisomerase inhibitor conjugate indicated for the treatment of:

- adult patients with unresectable or metastatic HER2-positive breast cancer who have received a prior anti-HER2-based regimen either:
 - in the metastatic setting, or
 - in the neoadjuvant or adjuvant setting and have developed disease recurrence during or within six months of completing therapy.
- adult patients with unresectable or metastatic HER2-low (IHC 1+ or IHC 2+/ISH-) breast cancer, as determined by an FDA-approved test, who have received a prior chemotherapy in the metastatic setting or developed disease recurrence during or within 6 months of completing adjuvant chemotherapy.
- adult patients with unresectable or metastatic non-small cell lung cancer (NSCLC) whose tumors have activating HER2 (ERBB2) mutations, as detected by an FDA-approved test, and who have received a prior systemic therapy.
 - This indication is approved under accelerated approval based on objective response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.
- adult patients with locally advanced or metastatic HER2-positive gastric or gastroesophageal junction adenocarcinoma who
 have received a prior trastuzumab-based regimen.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139s024lbl.pdf

Date: 04 May 2023 6 of 10

Current NCCN Information

In this cancer type Ir

O In other cancer type

In this cancer type and other cancer types

NCCN information is current as of 2023-03-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

ERBB2 exon 20 insertion

ado-trastuzumab emtansine

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 G778_P780dup mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Not otherwise specified (NOS), Squamous Cell; Advanced, Metastatic, Progression (Subsequent therapy); Other recommended intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

trastuzumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 G778_P780dup mutation

NCCN Recommendation category: 2A

Population segment (Line of therapy):

 Adenocarcinoma, Large Cell, Not otherwise specified (NOS), Squamous Cell; Advanced, Metastatic, Progression (Subsequent therapy); Preferred intervention

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2023]

Date: 04 May 2023 7 of 10

Current ESMO Information

In this cancer type
In other cancer type
In this cancer type and other cancer types

ESMO information is current as of 2023-03-01. For the most up-to-date information, search www.esmo.org.

ERBB2 exon 20 insertion

trastuzumab deruxtecan

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 G778_P780dup mutation

ESMO Level of Evidence/Grade of Recommendation: III / B

Population segment (Line of therapy):

Advanced, Metastatic, Unresectable (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Oncogene-addicted Metastatic Non-Small-Cell Lung Cancer [Annals of Oncology (2023), doi: https://doi.org/10.1016/j.annonc.2022.12.009 (pre-proof)]

O trastuzumab

Cancer type: Cholangiocarcinoma, Gallbladder Variant class: ERBB2 mutation

Carcinoma

ESMO Level of Evidence/Grade of Recommendation: III / A

Population segment (Line of therapy):

Progression (Second-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Biliary Cancer [Annals of Oncology (2022), doi: https://doi.org/10.1016/j.annonc.2022.10.506]

Date: 04 May 2023 8 of 10

Clinical Trials in Taiwan region:

Clinical Trials Summary

ERBB2 exon 20 insertion

NCT ID	Title	Phase
NCT05532696	A Phase Ib/II, Open-Label, Multicenter Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Antitumor Activity of ABT-101 in Patients With Advanced Solid Tumors and HER2 Exon 20 Insertions Mutated Non-Small Cell Lung Cancer	1/11
NCT03974022	A Phase I/II, Open-Label, Multicenter Study to Assess the Safety, Tolerability, Pharmacokinetics and Anti-tumor Efficacy of DZD9008 in Patients With Advanced Non-Small Cell Lung Cancer (NSCLC) with EGFR or HER2 Mutation	1/11
NCT05099172	An Open Label, First-in-human Study of BAY 2927088 in Participants With Advanced Non-small Cell Lung Cancer (NSCLC) Harboring an EGFR and/or HER2 Mutation	I
NCT05048797	An Open-label, Randomized, Multicenter, Phase III Study to Assess the Efficacy and Safety of Trastuzumab Deruxtecan as First-line Treatment of Unresectable, Locally Advanced, or Metastatic NSCLC Harboring HER2 Exon 19 or 20 Mutations (DESTINY-Lung04)	Ш
NCT05013554	A Phase I/Ib Open-label, First-in-human, Single Agent, Dose Escalation and Expansion Study for the Evaluation of Safety, Pharmacokinetics, Pharmacodynamics, and Anti-tumor Activity of SAR443216 in Participants with Relapsed/Refractory HER2 Expressing Solid Tumors.	I
NCT04589845	Tumor-Agnostic Precision Immunooncology and Somatic Targeting Rational for You (TAPISTRY) Phase II Platform Trial	II
NCT04446260	A Phase I Multi-Country, Multi-Center, Open-Label Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Efficacy of SHR-A1811 in HER2 Expressing or Mutated Advanced Malignant Solid Tumor Subjects	I

Alerts Informed By Public Data Sources

Current FDA Information

A Fast Track

FDA information is current as of 2023-03-15. For the most up-to-date information, search www.fda.gov.

ERBB2 exon 20 insertion

♣ BDTX-189

Cancer type: Solid Tumor

Variant class: ERBB2 exon 20 insertion

Supporting Statement:

The FDA has granted Fast Track Designation to BDTX-189 for solid tumors harboring a HER2 mutation or an EGFR or HER2 exon 20 insertion after progression on prior therapy.

https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fasttrack-designation-fda

Date: 04 May 2023

References

- King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6.
 PMID: 2992089
- Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 3. Di et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178-82. PMID: 2885917
- 4. Hudziak et al. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 1987 Oct;84(20):7159-63. PMID: 2890160
- 5. Lonardo et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992-1003. PMID: 1983208
- Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 8. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- Donna et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7.
 PMID: 22810696
- 10. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 11. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. PMID: 21720365
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 14. Petrelli et al. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. Breast Cancer Res. Treat. 2017 Nov;166(2):339-349. PMID: 28762010
- 15. Bose et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7. PMID: 23220880
- 16. Hudis. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007 Jul 5;357(1):39-51. PMID: 17611206
- 17. Slamon et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177-82. PMID: 3798106
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103792s5345lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125409s124lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125427s111lbl.pdf
- 21. NCCN Guidelines® NCCN-Breast Cancer [Version 2.2023]
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/022059s031lbl.pdf
- 23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208051s009lbl.pdf
- 24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213411s004lbl.pdf
- 25. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/125514s128lbl.pdf
- 26. https://www.globenewswire.com/news-release/2016/06/01/845166/0/en/Galena-Biopharma-Receives-Fast-Track-Designation-for-NeuVax-nelipepimut-S-PRESENT-Clinical-Trial.html
- $27. \quad https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761150s000lbl.pdf$
- 28. https://www.prnewswire.com/news-releases/fda-grants-arx788-fast-track-designation-for-her2-positive-metastatic-breast-cancer-301199951.html
- 29. https://www.targetedonc.com/view/her2targeted-antibody-zw25-earns-fda-fast-track-designation-in-gea
- 30. https://www.targetedonc.com/view/fda-grants-breakthrough-designation-to-zanidatamab-for-her2-amplified-biliary-tract-cancer
- 31. https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fast-track-designation-fda

Date: 04 May 2023

References (continued)

- 32. https://www.prnewswire.com/news-releases/remegen-announces-us-fda-has-granted-breakthrough-therapy-designation-for-disitamab-vedotin-rc48-in-urothelial-cancer-301138315.html
- 33. http://ambrx.com/fda-grants-arx788-fast-track-designation-for-her2-positive-metastatic-breast-cancer
- 34. https://www.prnewswire.com/news-releases/carisma-therapeutics-announces-us-food-and-drug-administration-grants-fast-track-designation-to-ct-0508-for-the-treatment-of-patients-with-solid-tumors-301381843.html
- 35. Ma et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017 Oct 1;23(19):5687-5695. PMID: 28679771
- 36. De et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012 Apr;76(1):123-7. PMID: 22325357
- 37. Kris et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015 Jul;26(7):1421-7. PMID: 25899785
- 38. Falchook et al. Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. J Thorac Oncol. 2013 Feb;8(2):e19-20. PMID: 23328556
- 39. David et al. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study. AACR 2017. Abstract CT001
- Lin et al. Response to Afatinib in a Patient with Non-Small Cell Lung Cancer Harboring HER2 R896G Mutation: A Case Report. Onco Targets Ther. 2019;12:10897-10902. PMID: 31849493
- 41. Chang et al. Sustained Partial Response to Afatinib in a Patient With Lung Adenocarcinoma Harboring HER2V659E Mutation. JCO Precis Oncol. 2020 Aug; 912-915. DOI: 10.1200/PO.20.00114
- 42. Nayar et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 2019 Feb;51(2):207-216. PMID: 30531871
- 43. Chen et al. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018 Feb 23;3:5. doi: 10.1038/s41392-018-0008-7. eCollection 2018. PMID: 29527331
- 44. Dang. MYC on the path to cancer. Cell. 2012 Mar 30;149(1):22-35. PMID: 22464321
- 45. Dominguez-Sola et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007 Jul 26;448(7152):445-51. PMID: 17597761
- 46. Wahlström et al. Impact of MYC in regulation of tumor cell metabolism. Biochim. Biophys. Acta. 2015 May;1849(5):563-9. PMID: 25038584
- 47. Dang et al. The c-Myc target gene network. Semin. Cancer Biol. 2006 Aug;16(4):253-64. PMID: 16904903
- 48. Blackwood et al. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 1992 Apr;2(2):227-35. PMID: 1638116
- 49. Chakraborty et al. A common functional consequence of tumor-derived mutations within c-MYC. Oncogene. 2015 Apr 30;34(18):2406-9. PMID: 24998853
- 50. Xu-Monette et al. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma. Clin. Cancer Res. 2016 Jul 15;22(14):3593-605. PMID: 26927665
- 51. Kalkat et al. MYC Deregulation in Primary Human Cancers. Genes (Basel). 2017 May 25;8(6). PMID: 28587062
- 52. Beroukhim et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010 Feb 18;463(7283):899-905. doi: 10.1038/nature08822. PMID: 20164920
- 53. Taub et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7837-41. PMID: 6818551
- 54. Ott et al. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Hematology Am Soc Hematol Educ Program. 2013;2013:575-83. PMID: 24319234
- 55. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 2.2023]
- 56. Beham-Schmid. Aggressive lymphoma 2016: revision of the WHO classification. Memo. 2017;10(4):248-254. PMID: 29250206
- 57. NCCN Guidelines® NCCN-Multiple Myeloma [Version 3.2023]
- 58. Posternak et al. Strategically targeting MYC in cancer. F1000Res. 2016;5. PMID: 27081479
- Carabet et al. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci. 2018 Dec 29;20(1). PMID: 30597997
- Shahbazi et al. The Bromodomain Inhibitor JQ1 and the Histone Deacetylase Inhibitor Panobinostat Synergistically Reduce N-Myc Expression and Induce Anticancer Effects. Clin. Cancer Res. 2016 May 15;22(10):2534-44. PMID: 26733615