April 27, 2021

Overview I

- Base de Dados
 - Variáveis de Entrada
 - Variável de Saída
- Análise Exploratória dos Dados
 - Descrição Estatística dos Dados
 - Gráficos
- 3 Classificador Ingênuo de Bayes
 - História
- 4 Classificador Ingênuo de Bayes
 - Definição Formal do Teorema de Bayes
 - Tipos de Classificadores Ingênuo de Bayes
 - Vantagens
 - Desvantagens
 - Sobre o Projeto
- 5 Experimentos
 - Experimentos Iniciais

Overview II

- Usando Apenas a Variável Age para Treino
- Usando Apenas Variáveis Numéricas Para Treino

- 6 Análise dos Resultados
 - Resultados Iníciais
 - Perfil Mais Receptivo
 - Perfil Menos Receptivo
 - Categorias exóticas

Base de Dados

Variáveis de Entrada

- age
- job
- marital
- education
- default
- balance
- housing
- loan

- contact
- day
- duration
- month
- campaign
- pdays
- previous
- poutcome

Base de Dados

Variável de Saída

Descrição Estatístisca dos Dados

- count
- unique
- top
- freq
- mean

- std
- min
- 25%
- 50%
- 75%
- max

Gráficos

Figure: Exemplo

Figure: Exemplo2

Gráficos

Figure: Exemplo 3

Figure: Exemplo 4

Gráficos

Figure: Exemplo 5

Figure: Exemplo 6

Gráficos

Figure: Exemplo 7

O que é Naive Bayes

Baseado no Teorema de Bayes, nome em homenagem ao matemático e pastor presbiteriano inglês Thomas Bayes, que formulou uma função probabilística com o ideal de provar a existência de Deus, é um algoritmo de classificação probabilística muito utilizado para aprendizado de máquina (Machine Learning).

Definição Formal do Teorema de Bayes

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{1}$$

- P(A|B): Probabilidade do evento A ocorrer dado que o evento B ocorreu.
- P(B|A): Probabilidade do evento B ocorrer dado que o evento A ocorreu.
- P(A): Probabilidade do evento A ocorrer
- P(B): Probabilidade do evento B ocorrer.

Tipos de Classificadores Ingênuo de Bayes

- Bayes Ingênuo Gaussiano
- Bayes Ingênuo Categórico

Vantagens

- Rápido
- Eficiente
- Lida com múltiplos tidos de dados
- Ignora características irrelevantes

Desvantagens

- Previsão falha em frequência zero
- Ignorar a correlação entre as variáveis

Sobre o Projeto

Experimentos Iniciais

• Precision:

$$\frac{t_p}{t_p + f_p} \tag{2}$$

Accuracy

$$\frac{t_p + t_n}{t_p + t_n + f_p + f_n} \tag{3}$$

Recall Score

$$\frac{t_p}{t_p + f_n} \tag{4}$$

• F1 Score

$$\frac{2 \cdot (precision \cdot recall)}{precision + recall} \tag{5}$$

Experimentos Iniciais

	Categórico	Gaussiano
Precision	0.89	0.84
Accuracy	0.89	0.84
Recall Score	0.89	0.84
F1-Score	0.89	0.84

Table: Relatório de Classificação por Label do Classificador Categórico.

	0	1
Precision	0.93	0.53
Recall Score	0.95	0.43
F1-Score	0.94	0.47

Table: Relatório de Classificação por Label do Classificador Gaussiano

	0	1
Precision	0.89	0.49
Recall Score	1.00	0.03
F1-Score	0.94	0.06

Experimentos Iniciais

Figure: Confusion Matrix do Classificador Categórico

Figure: Confusion Matrix do Classificador Gaussiano

Usando Apenas a Variável Age para Treino

Categórico	Gaussiano
0.88	0.88
0.88	0.88
0.88	0.88
0.88	0.88
	0.88 0.88 0.88

Table: Relatório de Classificação por Label do Classificador Categórico.

	0	1
Precision	0.88	0.50
Recall Score	1.00	0.02
F1-Score	0.94	0.04

Table: Relatório de Classificação por Label do Classificador Gaussiano

	0	1
Precision	0.88	0.48
Recall Score	1.00	0.03
F1-Score	0.94	0.05

Usando Apenas a Variável Age para Treino

Figure: Confusion Matrix do Classificador Categórico

Figure: Confusion Matrix do Classificador Gaussiano

Usando Apenas Variáveis Numéricas Para Treino

Table: Comparação entre o Classificador Categórico e o Gaussiano

	Categórico	Gaussiano	
Precision	0.89	0.89	
Accuracy	0.89	0.89	
Recall Score	0.89	0.89	
F1-Score	0.89	0.89	

Table: Relatório de Classificação por Label do Classificador Categórico.

 0
 1

 Precision
 0.89
 0.63

 Recall Score
 0.99
 0.11

 F1-Score
 0.94
 0.18

Table: Relatório de Classificação por Label do Classificador Gaussiano

	0	1
Precision	0.91	0.53
Recall Score	0.96	0.32
F1-Score 🗗	0.94	4 0.40 ■

Usando Apenas Variáveis Numéricas Para Treino

Figure: Confusion Matrix do Classificador Categórico

Figure: Confusion Matrix do Classificador Gaussiano

Resultados Iniciais

- Classificador Gaussiano vs Classificador Categórico
- Número de Features
- Falsos positivos vs Falsos Negativos

Perfil Mais Receptivo

- Profissão: estudante
- Estado Civil: divorciado
- Credito Pessoal: possui
- Credito de Habitação: não possui
- Tipo de Contato: celular
- Educação: ensino médio
- Mês da Campanha: setembro

Perfil Menos Receptivo

- Profissão: operario
- Estado Civil: casado
- Credito Pessoal: não possui
- Credito de Habitação: possui
- Tipo de Contato: unknown
- Educação: ensino fundamental
- Mês da Campanha: maio

Categorias exóticas

Figure: Categorias mais exóticas