Les Tris par comparaison

Yann Strozecki yann.strozecki@uvsq.fr

Octobre 2016

- ► Comment calculer la médiane ou les quantiles d'un ensemble de nombres ?
- ► Construction d'un dictionnaire ou d'un annuaire?

- ► Comment calculer la médiane ou les quantiles d'un ensemble de nombres ?
- ► Construction d'un dictionnaire ou d'un annuaire?
- ► Comment éliminer les doublons dans un tableau?

- ► Comment calculer la médiane ou les quantiles d'un ensemble de nombres ?
- ► Construction d'un dictionnaire ou d'un annuaire?
- ► Comment éliminer les doublons dans un tableau?
- Trouver la différence minimum entre deux entiers quelconque dans un tableau.

- ► Comment calculer la médiane ou les quantiles d'un ensemble de nombres ?
- ► Construction d'un dictionnaire ou d'un annuaire?
- ► Comment éliminer les doublons dans un tableau?
- ► Trouver la différence minimum entre deux entiers quelconque dans un tableau.

Le tri c'est à dire ordonner les éléments d'un structure linéaire (tableau, liste) en ordre croissant.

- ► Comment calculer la médiane ou les quantiles d'un ensemble de nombres ?
- ► Construction d'un dictionnaire ou d'un annuaire?
- ► Comment éliminer les doublons dans un tableau?
- ► Trouver la différence minimum entre deux entiers quelconque dans un tableau.

Le tri c'est à dire ordonner les éléments d'un structure linéaire (tableau, liste) en ordre croissant.

Les tris par comparaison

Données

- ightharpoonup Collection de TailleMax valeurs du même type rangées dans un tableau T
- ► Un opérateur de comparaison implémentant un ordre, par exemple ≤

But

Ré-ordonner les valeurs de T de telle sorte que :

$$T[i] \leq T[i+1], \forall i \in \{1 \dots TailleMax - 1\}$$

Quelques algorithmes de tris

- ▶ Le tri par insertion
- ► Le tri par sélection
- ► Le tri à bulles (par permutation)
- ▶ Le tri fusion
- ► Le tri rapide (Quicksort)

Le tri par insertion

Principe Général

A tout moment le tableau T est séparé en 2 parties :

- $ightharpoonup T[1] \dots T[TailleCourante]$: Partie déjà triée du tableau
- ▶ T[TailleCourante + 1] ... T[TailleMax] : Partie non triée du tableau.

Le tri par insertion (2)

Une Etape

- Prendre un élément non encore trié;
- L'insérer à sa place dans l'ensemble des éléments triés.

Le tri par insertion (3)

Algorithme 1 Tri par insertion

```
TriInsertion(T: tableau d'entiers, Taille Max: entier)

    ∇ariables Locales

    TC, i, p, temp : entiers
 Début
 pour TC de 1 à TailleMax - 1 faire
    temp \leftarrow T[TC+1]
    p \leftarrow 1
       tant que T[p] < temp faire
           p \leftarrow p + 1
       fin tant que
     Chercher la position p
       pour i de TC en décroissant à p faire
           T[i+1] \leftarrow T[i]
                                                      Décaler les éléments
       fin pour
    T[p] \leftarrow temp
 fin pour
 Fin
```

Le tri par insertion (4)

Complexité pour *n* éléments

- ▶ Le corps de la boucle est exécuté n-1 fois
- ▶ Une itération :
 - ightharpoonup Recherche de la position : p
 - \blacktriangleright Décalage des éléments : TC-p
 - ightharpoonup Total : TC
- Au total :

$$\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

La complexité du tri par insertion est en $O(n^2)$.

8 4 3 5 7 2 1 6

1 2 3 4 5 6 7 8

Le tri par permutation (tri à bulles)

Principe général

- Si deux éléments voisins ne sont pas ordonnés correctement, on les échange.
- Deux parties dans le tableau :
 - Une partie avec des éléments triés
 - Une partie avec des éléments non triés
- Les éléments de la partie triée sont inférieurs aux éléments de la partie non triée.

Tri par permutation (2)

Algorithme 2 Tri par permutation

```
 \begin{aligned} & \text{TriPermutation}(T: \text{tableau d'entiers}, \, TailleMax: \text{entier}) \\ & \triangleright \textit{Variables Locales} \\ & i, TC: \text{entiers} \\ & \text{Début} \\ & \text{pour } TC \text{ de 2 à TailleMax faire} \\ & \text{pour i de TailleMax en décroissant à TC faire} \\ & \text{si } \text{T[i-1]} > \text{T[i] faire} \\ & \text{T[i-1]} \leftrightarrow \text{T[i]} \\ & \text{fin si} \end{aligned}  fin pour
```

Tri par permutation (3)

Complexité pour n éléments

- ▶ Boucle externe : n-2 fois
- ▶ Boucle interne : TailleMax TC fois
- ► Total : $\frac{(n-1)(n-2)}{2}$

La complexité du tri par permutation est en $O(n^2)$.

TC 1 8 4 3 2 5 7 6

TC 1 2 8 4 3 5 7

TC 1 2 8 4 3 5 6 7

TC \(\psi \) 1 2 8 4 3 5 6 7

TC \(\psi \) 1 2 8 4 3 5 6 7

TC ↓ 1 2 8 3 4 5 6 7

TC \(\psi \) 1 2 3 8 4 5 6

TC 1 2 3 4 8 5 6 7

TC ↓ 1 | 2 | 3 | 4 | 5 | 6 | 8 | 7

TC ↓ 1 2 3 4 5 6 7 8

Complexité minimale pour un tri

On a donné deux algorithmes simples pour le tri mais peut on en trouver avec une meilleure complexité?

Les bornes inférieures de complexité sont dures à prouver et requièrent un modèle précis.

Complexité minimale pour un tri

On a donné deux algorithmes simples pour le tri mais peut on en trouver avec une meilleure complexité?

Les bornes inférieures de complexité sont dures à prouver et requièrent un modèle précis.

lci on suppose qu'on sait comparer deux objets en temps constant mais on ne sait pas faire d'autre opération sur les objets à trier.

Complexité minimale pour un tri

On a donné deux algorithmes simples pour le tri mais peut on en trouver avec une meilleure complexité?

Les bornes inférieures de complexité sont dures à prouver et requièrent un modèle précis.

lci on suppose qu'on sait comparer deux objets en temps constant mais on ne sait pas faire d'autre opération sur les objets à trier.

Arbre de comparaison

Le fonctionnement d'un algorithme de tri par comparaison sur toutes les entrées de taille n fixée peut être décrit par un arbre de comparaison.

- Ses noeuds internes sont étiquetés par des pairs d'entiers (i,j)
- Ses feuilles sont étiquetées par des permutations
- ▶ Ses arêtes gauches sont étiquetées par ≤ et celles de droite par >

Un noeud (i,j) correspond à la comparaison de l'élément i avec l'élément j. On suit l'arête en fonction du résultat de cette comparaison.

On abstrait les opérations d'écriture dans le tableau.

Illustration tirée du Cormen

Borne inférieure de complexité

Theorem

Tout tri par comparaison requiert au moins $\Omega(n \log n)$ comparaisons.

La démonstration se base sur les trois faits suivants :

- \blacktriangleright le nombre de permutations de taille n est n!
- un arbre binaire de hauteur h a au plus 2^h feuilles
- ▶ la formule de Stirling : $\log(n!) = O(n \log n)$

Peut-on trouver un tri dont la complexité est $O(n \log n)$?

Borne inférieure de complexité

Theorem

Tout tri par comparaison requiert au moins $\Omega(n \log n)$ comparaisons.

La démonstration se base sur les trois faits suivants :

- \blacktriangleright le nombre de permutations de taille n est n!
- un arbre binaire de hauteur h a au plus 2^h feuilles
- ▶ la formule de Stirling : $\log(n!) = O(n \log n)$

Peut-on trouver un tri dont la complexité est $O(n \log n)$?