Homework 4

Total: 20 points

Due: Wed 12 Feb 2014 09:30 in class

If a question is taken from the textbook, the refence is given on the right of the page.

1. CHARACTERISTIC EQUATIONS WITH COMPLEX ROOTS

(a) Use Euler's Formula: $e^{ix} = \cos(x) + i\sin(x)$ to rewrite the following complex numbers in the form a + ib.

i. e^{1+2i}	Boyce 3.3 Q1
1. 0	D0ycc 9.9 Q1

ii.
$$e^{2-\frac{\pi}{2}i}$$
 Boyce 3.3 Q4

iii.
$$2^{1-i}$$
 Boyce 3.3 Q5

(b) Give the general solution to the following differential equations:

i.
$$y'' - 2y' + 2y = 0$$
 Boyce 3.3 Q7

ii.
$$y'' + 6y' + 13y = 0$$
 Boyce 3.3 Q11

iii.
$$y'' + 4y' + 6.25y = 0$$
 Boyce 3.3 Q16

(c) Find the solution to each of the following initial value problems. Sketch the graph of the solution and describe its behaviour for increasing t:

i.
$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$ Boyce 3.3 Q17

ii.
$$y'' - 2y' + 5y = 0$$
, $y(\frac{\pi}{2}) = 0$, $y'(\frac{\pi}{2}) = 2$ Boyce 3.3 Q19

iii.
$$y'' + 2y' + 2y = 0$$
, $y(\frac{\pi}{4}) = 2$, $y'(\frac{\pi}{4}) = -2$ Boyce 3.3 Q22

(d) Boyce 3.3 Q34 & 42

An equation of the form

$$t^2 \frac{d^2 y}{dt^2} + \alpha t \frac{dy}{dt} + \beta y = 0, \qquad t > 0.$$

where α and β are real constants, is called an Euler equation.

- i. Let $x=\ln(t)$ and calculate $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$ in terms of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.
- ii. Use the result of part (a) to transform the above differential equation to

$$\frac{d^2y}{dx^2} + (\alpha - 1)\frac{dy}{dx} + \beta y = 0.$$

Observe that this equation has constant coefficients. If $y_1(x)$ and $y_2(x)$ form a fundamental set of solutions to this equation, then $y_1(\ln(t))$ and $y_2(\ln(t))$ form a fundamental set of solutions to the original Euler equation.

iii. Use parts (a) and (b) to find the general solution to

$$t^2y'' + 7ty' + 10y = 0.$$

2. CHARACTERISTIC EQUATIONS WITH EQUAL ROOTS

(a) Find the general solution to the following differential equations:

i.
$$9y'' + 6y' + y = 0$$
 Boyce 3.4 Q2
ii. $y'' - 6y' + 9y = 0$ Boyce 3.4 Q6

(b) Find the solution to each of the following initial value problems. Sketch the graph of the solution and describe its behaviour for increasing t:

i.
$$9y'' - 12y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = -1$ Boyce 3.4 Q11

ii.
$$y'' + 4y' + 4y = 0$$
, $y(-1) = 2$, $y'(-1) = 1$ Boyce 3.4 Q14

Consider the initial value problem

$$y'' - y' + \frac{1}{4}y = 0,$$
 $y(0) = 2,$ $y'(0) = b.$

Find the solution as a function of b, and determine the critical value of b that separates solutions that grow positively from those that eventially grow negatively.

(d) Boyce 3.4 Q24

Consider the Euler equation

$$t^2y'' + 2ty' - 2y = 0, \qquad t > 0.$$

We may use the method detailed earlier in this homework to find the general solution to this equation. However, if we already know a specific solution we may instead use the method of reduction in order to find the DE's general solution.

Given that $y_1(t) = t$ is a solution to this differential equation, use the method of reduction of order to find the general solution to this DE.

3. NONHOMOGENEOUS EQUATIONS

(a) Find the general solution to the following differential equations:

i.
$$y'' - 2y' - 3y = 3e^{2t}$$
 Boyce 3.5 Q1

ii.
$$y'' + 2y' + 5y = 3\sin(2t)$$
 Boyce 3.5 Q2

iii.
$$y'' + 2y' + y = 2e^{-t}$$
 Boyce 3.5 Q8

(b) Boyce 3.5 Q20

Solve the initial value problem

$$y'' + 2y' + 5y = 4e^{-t}\cos(2t),$$
 $y(0) = 1,$ $y'(0) = 0.$