Lab 4: Time domain convolution

Preamble

Associated Class Notes

This lab supports the materials covered in <u>Chapter 3.5 The Impulse Response and Convolution</u> of the course notes. You may wish to refer to <u>worksheet 8</u> for additional examples to try.

Other formats

This document is available in HTML format for online viewing PDF for printing.

Acknowledgements These everyles have been as

These examples have been adapted from Chapter 6 of <u>Stephen_Karris, Signals_and_Systems: With_MATLAB_Computing_and Simulink_Modeling_(5th_Edition)</u>

Matlab/Simulink Concepts Introduced

In this lab you will:

- Explore convolution with the aid of an interactive MATLAB "app"
- Use the int and heaviside functions from the Symbolic Toolbox to perform symbolic computation of convolution integrals.
- Use laplace and ilaplace to solve convolution problems.
 Use ezplot to plot symbolic functions.
- Ose ezproc to plot symbolic functions

This will be a self-accessed array

Assessment criteria

This will be a self-assessed exercise.

Marks can be claimed according to how many of the parts of Lab Exercises 7 and 8 have been completed.

Detailed marking criteria for this and the other labs and the project are given in the linked Assessment Criteria [Google sheet].

Setup

If you haven't already.

Before you start

If you haven't already, create a suitable folder structure on your file-store for your labs.

I suggest

```
P:\workspace
signals-and-systems-lab
lab01
lab02
lab03
lab04
:
```

Use folder p:\workspace\signals-and-systems-lab\lab04 for this lab.

Preparation Before we start today's lab you will need to download and install the <u>Graphical demonstration of convolution app</u> from the

GitHub respository for this module.

Open and run convolutiondemo.m.

To install, right-click button of link as appropriate and save as to your lab04 folder.

If MATLAB issues a message about the

If MATLAB issues a message about the need to change the working directory or add a folder to the MATLAB path. Accept the choice given.

Lab Exercise 7: Graphical Demonstration of Convolution

Lab Exercises

In this lab exercise we will use the convolutiondemo app demonstrated in class as an aid to understanding and setting up

the convolution integral for various systems including the step-response of an RL circuit.

Set up the convolutiondemo app as described in the notes for the computation of the Convolution Integral for Example 6.4

Part 2

Part 1

from the textbook illustrated below. (Refer to Example 2 in the notes for the MATLAB settings).

Use the tool to confirm the convolution result given by this MATLAB script: exercise7.m.

 $u(t) = u_0(t) - u_0(t-1)$

 $v_2(t)$

Taking the script <u>exercise7.m</u> as a model. Use the <u>convolutiondemo</u> tool as an aid to defining the integration limits needed to find and plot the convolution integral for the example shown below (Example 6.5 from the textbook).

A

Part 3

Repeat the procedure for example 6.6 from the textbook.

Figure 6.31. Circuit for Example 6.7

Note, Parts 2 to 5 should be done in the same Live Script file as the provided Part 1 example. Separate each exercise by titled sections. Don't forget to add explanatory text to document your work.

In this lab exercise we will demonstrate that time-convolution of a system response can be solved in the complex frequency domain using Laplace and Inverse Laplace transforms.

Lab Exercise 8: Using Laplace to Solve Convolution Problems

 $u_0(t)$ (MATLAB heaviside).

• Plot the result using ezplot

• Confirm the result with a Simulink simulation

• Use the inverse Laplace transform function ilaplace to solve the step response of the RC circuit given in exercise 7

Part 4 without convolution. You will need the Laplace transform of the circuit's impulse response h(t) and the unit step

- What to hand in
- Claim

Up to 2 marks can be claimed if you complete Part 2 of Exercise 7, an additional 2 marks for is available for Parts 3 and 4 and 1

additional mark is available for completing Lab Exercise 8.

Submission

You should submit the following to the Lab 04: Time domain convolution Assignment on Canvas.

- Complete the labwork self-assessment claim form and declaration.
 As evidence of completion of Lab Exercise 7, you should upload ex7 2.mlx, ex7 3.mlx, ex7 4.mlx (can be
- sections in one Live Script ex7.mlx).

 3. As evidence of completion of Lab Exercise 8, you should upload ex8.mlx, ex8.slx.

Deadline
The deadline for claims and submission is 4:00 pm, 20th March