CS 4072 - Topics in CS Process Mining

Lecture # 23

May 24, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

Today's Topics

- Conformance Checking
 - ► Token-based replay: a quick recap
 - ► Sequence Alignment

Approaches for Conformance Checking

Model and Log Fitness

Token-based replay: recap

Let the trace $\sigma_2' = \langle a,d,e \rangle$ and, WF-net N₃:

$$fitness(\sigma_2, N_3) = \frac{1}{2} \left(1 - \frac{2}{5} \right) + \frac{1}{2} \left(1 - \frac{2}{5} \right) = 0.6$$

Token-based replay: recap

Frequency	Reference	Trace
455	σ_1	$\langle a,c,d,e,h \rangle$
191	σ_2	$\langle a,b,d,e,g \rangle$
177	σ_3	$\langle a,d,c,e,h angle$
144	σ_4	$\langle a, b, d, e, h \rangle$ N ₂
111	σ_5	$\langle a,c,d,e,g angle$
82	σ_6	$\langle a,d,c,e,g \rangle$
56	σ_7	$\langle a,d,b,e,h \rangle$
47	σ_8	$\langle a,c,d,e,f,d,b,e,h \rangle$ start register p1 exam request casu.
38	σ_9	$\langle a, d, b, e, g \rangle$
33	σ_{10}	$\langle a,c \rangle$
14	σ_{11}	(a,c) fit $a \circ a \circ a \circ (I \circ a) = 1$
11	σ_{12}	$fitness(L_{full},N_1)=1$
9	σ_{13}	(a,a)
8	σ_{14}	$\int_{a,a}^{a,a} fitness(L_{full}, N_2) = 0.9504$
5	σ_{15}	(a,a) fittee agg (I NI) \cap 0.501
3	σ_{16}	(a,d) $Tuness(L_{full}, N_2) = 0.9304$
2	σ_{17}	(a,a) $\int uu = \int uu =$
2	σ_{18}	$\int_{a.a}^{a.a} fitness(L_{full}, N_3) = 0.8797$
1	σ_{19}	(a,a) (C,A) (A,B) (A,B) (A,B) (A,B) (A,B)
1	σ_{20}	(a, a, f) = (1, f) (1
1	<i>σ</i> 21	(a.a) $f(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)(t)($
Process Mining	Spring 2022	$fitness(L_{full}, N_4) = 1$

Question

- Consider the model generated by the Alpha algorithm
- Compute fitness using missing and remaining tokens (a.k.a. token-based replay)
- Share your findings

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

Model generated by Alpha algorithm

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

Process Mining | Spring 2022

-

Token-based replay

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

Token-based replay

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

Overall log fitness
$$fitness(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)$$

$$L = [\langle a, b, d, e, f \rangle^{10}, \langle a, c, e, d, f \rangle^{10}]$$

p = 2*10*6 =120, c = 2*10*7=140, r=2*10*0=0, m=2*10*1=20

$$\frac{1}{2}\left(1 - \frac{20}{140}\right) + \frac{1}{2}\left(1 - \frac{0}{120}\right) = \frac{13}{14} \approx 0.93$$

Findings

- ► The model is not sound!
 - ▶ In fact there is no firing sequence leading to the target marking.
 - ▶ Difficult to interpret the conformance results for an unsound model. Hence, we need a 'relaxed notion of soundness'.

Question

- Consider the model generated by the Alpha algorithm
- Compute fitness using missing and remaining tokens (a.k.a. token-based replay)
- Share your findings

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

Model generated by Alpha algorithm

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

Token-based replay

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

$$p = 5, c = 5, r=0, m=0$$

Token-based replay

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

$$p = 4$$
, $c = 4$, $r=1$, $m=1$

Overall log fitness
$$fitness(L, N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N, \sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N, \sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N, \sigma}} \right)$$

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

$$\frac{1}{2}\left(1 - \frac{30}{220}\right) + \frac{1}{2}\left(1 - \frac{30}{220}\right) = \frac{19}{22} \approx 0.86$$

Our findings: the second trace cannot be replayed as it has missing and remaining tokens

Redundant places impact on fitness

Does the redundant places impact the fitness of a log?

$$L_{11} = [\langle a, b, c \rangle^{20}, \langle a, c \rangle^{30}]$$

Redundant places impact on fitness

Redundant places increase the fitness of a log

$$L_{11} = [\langle a,b,c\rangle^{20}, \langle a,c\rangle^{30}]$$

$$\frac{1}{2} \left(1 - \frac{30}{220}\right) + \frac{1}{2} \left(1 - \frac{30}{220}\right) = \frac{19}{22} \approx 0.86$$

$$L_{11} = [\langle a,b,c\rangle^{20},\langle a,c\rangle^{30}] \quad \underbrace{\bullet}_{\text{start}} \quad \underbrace{\bullet}_{\text{p1}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{end}} \quad \underbrace{\bullet}_{\text{p2}} \quad \underbrace{\bullet}_{\text{p2}$$

$$\frac{1}{2} \left(1 - \frac{30}{170} \right) + \frac{1}{2} \left(1 - \frac{30}{170} \right) = \frac{14}{17} \approx 0.82$$

Process Mining | Spring 2022

18

Redundant places impact on fitness

This can go very high even if we add many redundant places

Process Mining | Spring 2022

19

Aligning the model and observed behavior

Requirements for an ideal conformance checking

- Conformance checking should not impose restrictions on the process notation (e.g., silent transitions and duplicate transitions should be possible).
- Two semantically equivalent models should have the same conformance value.
- Should provide a "closest matching path" through the process model for any trace in the event log.
 - Also required for performance analysis!
 - Beyond the analysis of replay fitness (advanced diagnostics, precision, generalization, etc.)

Alignments were introduced to overcome the limitations of token-based replay.

▶ The objective is to find the *optimal* sequence alignment between two traces.

► Consider a trace: $\sigma = \langle a, d, b, e, h \rangle$ and model N_1

$$\gamma_1 = \frac{|a|d|b|e|h|}{|a|d|b|e|h|}$$

A possible alignment

Trace log

Model path from initial to end

All activities in the trace and model match perfectly

- ► Consider a trace: $\sigma = \langle a, d, b, e, h \rangle$ and model N_2
- Followings are the possible alignments

$$\gamma_{2b} = \frac{|a| \gg |d| \ b \ |e| \ h}{|a| \ c \ |d| \gg |e| \ h} \qquad \gamma_{2c} = \frac{|a| \ d \ |b| \gg |e| \ h}{|a| \gg |b| \ d \ |e| \ h}$$

- ► Consider a trace: $\sigma = \langle a, d, b, e, h \rangle$ and model N_3
- Followings are the possible alignments

$$\gamma_{3a} = \frac{|a| \gg |d| b |e| h|}{|a| c |d| \gg |e| h|}$$

$$\gamma_{3b} = \begin{vmatrix} a & d \gg b & |e|h \\ a & d & c \gg |e|h \end{vmatrix}$$

$$\gamma_{3a} = \frac{|a| \gg |d| b |e| h|}{|a| c |d| \gg |e| h|} \qquad \gamma_{3b} = \frac{|a| d |\gg |b| |e| h|}{|a| d |c| \gg |e| h|} \qquad \gamma_{3c} = \frac{|a| d |b| \gg |e| h|}{|a| d |\gg |c| |e| h|}$$

- ► Consider a trace: $\sigma = \langle a, d, b, e, h \rangle$ and model N_4
- ► Following is the only possible alignment

$$\gamma_4 = \frac{|a|d|b|e|h}{|a|d|b|e|h}$$

Reading Material

► Chapter 8: Aalst