

Competitive Balance in Football Leagues: Domestic vs International

Aman Sinha, Rohit Agarwal, Utkarsh Bairolia, Vishal Sourav

MathSport | Conference | Asia | 2018

Content

- Problem Description
- Targets
- Factors and Parameters
- Challenges
- Correlation
- Model
- Inferences
- Future Prospects
- References

Problem Description

The overall success of a football event involves both sport and economic success. One of the major factor affecting the success of football event is competitiveness among teams.

"Appropriate measurement of competitive balance is a cornerstone of the economic analysis of professional sports leagues." (Owen P. and King N. 2013)

Higher levels of competitive balance will lead to higher levels of revenue. Quantification/ Measure of competitive balance (competitiveness) can be useful in order to compare and forecast the behaviour of leagues.

Targets

- 1. Our main aim is to capture the seasonal fluctuation in popularity of leagues by comparing it using various competitiveness parameters.
- 2. A model that shows the relative competitiveness among domestic football leagues and international league.

Domestic Leagues: SPL, EPL, Bundesliga, Ligue 1, Serie A

International Leagues: UEFA Champions League

- CH5 (originally known as C5) CH5ICB (originally known as C5ICB)
- HICB
- Upsets
- Relative Entropy Win% Range
- CL5
- CL5ICB
- Standard Ratio
- Standard Win%

• **CH5**- It is the ratio of total points occupied by top 5 clubs and total points of league. It represents the dominance of top 5 clubs in league. Higher the value of CH5, less the competitive balance.

CH5 Ratio=(Total points occupied by top five clubs) / (Total number of points occupied by all clubs)

• **CH5ICB**- It is defined to balance the change in CH5 due to change in number of clubs in league.

CH5 Index of Competitive Balance = [CH5 / (5 / N)]* 100

 H- It represents the inequality between clubs. It reflects the degree of competitiveness among all clubs. Higher the value of H index, less the competitive balance.

 $H=\sum s^2$ where s= club's share of points.

 HICB- It is defined to balance the change in H index due to change in number of clubs in league.

$$HICB = [H / (1 / N)] * 100$$

where N=Number of clubs in league

- **Upsets**-If a lower order club wins against higher order club, it is termed as upsets. Higher the upsets, more the competitiveness.
- Relative Entropy- It is defined to measure the imbalance between clubs.

 Relative Entropy= $-\sum P_i \log_2 P_i / \log_2 N$ where P_i = proportion of league victories of ith club and N is the number of clubs in the league.

 Win% Range- It is defined as the difference between highest winning percentage and lowest winning percentage. Higher the win% range, less the competitive balance.

Win% = (Total points won by a club) / (Total number of games played)* 3
Win% Range = Difference between highest and lowest win%

• **CL5**- It is defined as a measure to calculate the accountancy of bottom 5 clubs in league. Higher the CL5, better the competitive balance.

CL5 = (Total points occupied by bottom 5 clubs)/(Total number of points occupied by all clubs)

• **CL5ICB**- It is defined to balance the change in CL5 due to change in the number of clubs.

CL5ICB=
$$[CL5 / (5 / N)]* 100$$

where N = Number of clubs in the league

- **Standard Ratio** It is the ratio of actual standard ratio to an idealized standard ratio. Higher the ratio, less the competitive balance.
- **Standard Win%** It is the standard deviation of win% in a season. Higher the standard win%, less the imbalance between the clubs and hence less the competitive balance.

Data & Challenges

- The analysed dataset contains the scorecard of different clubs in a particular league.
- The initial set of feature is composed of attributes like Date, HomeTeam,
 AwayTeam, Full Time Home Team Goals, Full Time Away Team Goals, Full
 Time Result, etc.
- Each year is considered as an instance for a league.
- Total points of a club is calculated by awarding 3 points for a win, 1 point to both the club for a tie and 0 points for defeat.

Data & Challenges

• Each year of league is equivalent to an instance so even if we consider data from 1995-2018, there will be only 23 data sets which is not sufficient enough for generalisation of the model.

Correlation

	CH5	СН5ІСВ	CL5	CL5ICB	ні	НІСВ	Relative Entropy	Revenue	Std Ratio	Std Win	Upsets	Win Percentag e Range
CH5	1	0.45	0	-0.40714	0.664286	0.735714	-0.56429	0.042857	0.478571	0.585714	0.028571	0.428571
СН5ІСВ	0.45	1	-0.61429	-0.50714	-0.10714	0.542857	0.207143	0.278571	0.671429	0.514286	-0.3	0.307143
CL5	0	-0.61429	1	0.721429	0.442857	-0.22857	-0.40714	-0.49286	-0.37857	-0.15714	0.35	-0.07143
CL5ICB	-0.40714	-0.50714	0.721429	1	-0.08571	-0.45	0.121429	-0.42857	-0.35714	-0.32143	0.271429	-0.18571
HI	0.664286	-0.10714	0.442857	-0.08571	1	0.607143	-0.86429	-0.23571	0.214286	0.471429	0.271429	0.235714
НІСВ	0.735714	0.542857	-0.22857	-0.45	0.607143	1	-0.44286	0.1	0.742857	0.835714	-0.09286	0.507143
Relative Entropy	-0.56429	0.207143	-0.40714	0.121429	-0.86429	-0.44286	1	0.192857	-0.17857	-0.42857	-0.2	-0.20714
Revenue	0.042857	0.278571	-0.49286	-0.42857	-0.23571	0.1	0.192857	1	0.128571	0.085714	-0.09286	0.021429
Std Ratio	0.478571	0.671429	-0.37857	-0.35714	0.214286	0.742857	-0.17857	0.128571	1	0.885714	-0.13571	0.535714
Std Win	0.585714	0.514286	-0.15714	-0.32143	0.471429	0.835714	-0.42857	0.085714	0.885714	1	-0.13571	0.614286
Upsets	0.028571	-0.3	0.35	0.271429	0.271429	-0.09286	-0.2	-0.09286	-0.13571	-0.13571	1	-0.03571
Win Percentage Range	0.428571	0.307143	-0.07143	-0.18571	0.235714	0.507143	-0.20714	0.021429	0.535714	0.614286	-0.03571	1

MathSport Asia Conference 2018

Model Approach & Selection

- Using the correlation matrix we selected the parameters which were highly correlated with others.
- Linear regression was applied on the datasets using the selected parameters.
- We selected different models on the basis of amount of significance and R-squared value.
- Considering effective revenue as the objective function, we train the model using above parameters and then we compare the findings with revenue.

Various Models

Models	Parameters	P value	Multiple R-squared
Model 1	Std Ratio	6.58E-14	0.951
Model 2	HICB	7.28E-11	0.897
Model 3	Std Ratio	3.45E-05	0.961
	HICB	0.0393	
Model 4	Std Ratio	3.42E-03	0.9622
	HICB	7.22E-02	
	Win% Range	6.09E-01	

CBS= (Coefficient)x(Standard Ratio)

Leagues	Coefficient	Multiple R-squared		
SPL	921.418	0.951		
LIGUE 1	573.624	0.863		
SERIE A	848.089	0.956		
EPL	1513.316	0.893		
BUNDESLIGA	1034.825	0.917		
UEFA Champions League	554.168	0.807		

International Leagues

- The same model is applied for international league (UEFA Champions League)
 and the observed value calculated using model is plotted against the effective
 revenue.
- 2. It is observed from the plot that revenue is not the only factor accountable for competitive balance of a league.

Inferences

- 1. From our model, we can infer which league is more likely to generate the highest revenue among the leagues.
- 2. On the basis of revenue, we can't tell the competitive balance of a league for a particular season.

Future Prospects

- 1. The data can be increased by considering month/ quarter as an instance in order to better generalise the model.
- 2. Our proposed model can be used to define a cost function to quantify competitiveness value.
- 3. Revenue along with some other physical parameters need to be considered in order to study the behaviour of competitiveness among the leagues.

References

- Michie J. and Oughton C. 2004 Competitive Balance in Football: Trends and Effect
- Goossens K. 2006 Competitive Balance in European Football: Comparison by Adapting Measures: National Measure of Seasonal Imbalance and Top 3

Stats and Dataset:

- https://www.statista.com/
- http://www.football-data.co.uk/

