FEEDBACK CONTROL

Topics

- Open-loop control
- Feedback control
- · Feedforward control

At the end of this section, students should be able to:

- Start to remember that long-ago undergraduate controls course.
- Draw a control loop including reference, disturbance, and noise.
- Determine closed-loop transfer functions.

James A. Mynderse

MRE 5323 - Feedback Control

1

WHAT IS FEEDBACK CONTROL?

James A. Mynderse

MRE 5323 - Feedback Control

A THERMOSTAT IS A SIMPLE CONTROL SYSTEM.

James A. Mynderse

MRE 5323 - Feedback Control

3

A FLYBALL GOVERNOR IS A PURELY MECHANICAL CONTROL SYSTEM

James A. Mynderse

MRE 5323 - Feedback Control

OTHER EXAMPLES

· Toilet tank level control

James A. Mynderse

MRE 5323 - Feedback Control

TYPICAL FEEDBACK CONTROL SYSTEM Pre-Filter Controller Actuator Plant Actual Desired Output Reference P G Input Η Sensor James A. Mynderse MRE 5323 - Feedback Control

WHY DO WE USE FEEDBACK CONTROL?

James A. Mynderse

MRE 5323 - Feedback Control

7

HOW DO WE DESIGN CONTROLLERS?

- 1. Define problem & performance requirements
- 2. Select actuators & sensors
- 3. Model the process:
- 4. Design controller to meet performance specs
- 5. Simulate control system & redesign if necessary
- 6. Implement control design in hardware & validate
- 7. Redesign if necessary

James A. Mynderse

MRE 5323 - Feedback Control

CASE STUDY: OPEN-LOOP AND CLOSED-LOOP

James A. Mynderse

MRE 5323 - Feedback Control

CONSIDER A GENERAL CONTROL LOOP

Disturbance D(s)Reference Plant R(s)Measurement Noise N(s)James A. Mynderse MRE 5323 – Feedback Control 10

REFERENCE, DISTURBANCE, AND NOISE AFFECT CONTROLLER DESIGN

Desired Condition	TF Component	Requirement on C
$Y_R \to R$	$Y_R(s) = \frac{CP}{1 + CP}R(s)$	
$Y_D \rightarrow 0$	$Y_D(s) = \frac{P}{1 + CP}D(s)$	
$Y_N \to 0$	$Y_N(s) = \frac{-CP}{1 + CP}N(s)$	

James A. Mynderse

MRE 5323 - Feedback Control

11

FEEDBACK PROVIDES A MECHANISM TO COMPENSATE FOR DISTURBANCES

Takeaways

- High-gain feedback essentially approximates plant inversion (the essence of control).
- High-gain proportional control provides good reference tracking and disturbance rejection, but aggravates noise rejection.

How can we reconcile this apparent contradiction?

James A. Mynderse

MRE 5323 - Feedback Control

2

DISTURBANCE FEEDFORWARD CAN CANCEL THE DISTURBANCE EFFECT

James A. Mynderse

MRE 5323 - Feedback Control

COMING UP...

Modeling Physical Systems

- Why we model dynamic systems
- How we model dynamic systems

Case Study: Hard disk drive read/write head

James A. Mynderse

MRE 5323 - Feedback Control

3