Approximating Gaussian Processes with \mathcal{H}^2 -matrices

Steffen Börm¹ Jochen Garcke²

¹Max Planck Institute for Mathematics in the Sciences

²Technische Universität Berlin and Matheon

Outline

- Gaussian Processes
- 2 Hierarchical matrices
- \mathfrak{I}^2 -matrix
- 4 Results

Regression Problem Setup

consider a given set of data (the training set)

$$S = \{(\underline{x}_i, y_i) \in \mathbb{R}^d \times \mathbb{R}\}_{i=1}^N$$

- <u>x</u>_i data points in feature space
- y_i associated response variable
- data obtained by sampling a function f with additional independent Gaussian noise e_i of variance σ^2 , i.e., $y_i = f(\underline{x}_i) + e_i$
- recover function f from given data as well as possible

Gaussian Processes

- we assume a Gaussian process prior on $f(\underline{x})$,
- meaning that values $f(\underline{x})$ on points $\{\underline{x}_i\}_{i=1}^N$ are jointly Gaussian distributed with zero mean and covariance matrix \mathcal{K}
- kernel (or covariance) function $k(\cdot,\cdot)$ defines \mathcal{K} via $\mathcal{K}_{i,j}=k(\underline{x}_i,\underline{x}_j)$.
- typical kernel: Gaussian RBF $k(\underline{x}, y) = e^{-\|\underline{x} \underline{y}\|^2/w}$
- representer theorem: solution $f(\underline{x})$ is weighted combination of kernel functions on training points \underline{x}_i

$$f(\underline{x}) = \sum_{i=1}^{N} \alpha_i k(\underline{x}_i, \underline{x}),$$

minimised least squares error on data points

Computing Gaussian Processes

representer theorem:

$$f(\underline{x}) = \sum_{i=1}^{N} \alpha_i k(\underline{x}_i, \underline{x}),$$

ullet coefficient vector α is the solution of the linear equation system

$$(\mathcal{K} + \sigma^2 \mathcal{I})\alpha = \mathbf{y},$$

(\mathcal{I} denotes the unit matrix)

- full $N \times N$ matrix $\rightarrow \mathcal{O}(N^2)$ complexity, unfeasible for large data
- approximation needed
 - use subset in computational core $\to \mathcal{O}(M^2 \cdot N)$, see [Rasmussen.Williams:06] and [Quinonero-Candela.Rasmussen:05]
 - use iterative solver with approximation of matrix vector product $K\alpha$ (references in the paper)

Hierarchical matrices

- data sparse approximation of kernel matrix
- $\mathcal{O}(Nm \log N)$ for storage, (local rank) m controls accuracy
- operations like matrix-vector product, matrix multiplication or inversion can now be computed efficiently
- ullet efficient computation of ${\cal H}$ -matrix approximation needed
- H-matrix approach developed for efficient treatment of dense matrix arising from discretization of integral operators
- efficient computation for 2D, 3D problems exists
- strongly related to fast multipole, panel clustering, fast gauss transform

1D Model Problem

in the following we present the underlying ideas in one dimension

we look at blocks in the (permuted) matrix whose corresponding subregions have a certain 1D-distance

- employ Taylor-expansion to approximate kernel
- note: Taylor-expansion only used for explanation, but not in algorithm

Panel clustering

Degenerate approximation: If k is sufficiently smooth in a subdomain $\tau \times \varrho$, we can approximate by a Taylor series:

$$ilde{k}(x,y) := \sum_{\nu=0}^{m-1} \frac{(x-x_{\tau})^{\nu}}{\nu!} \frac{\partial^{\nu} k}{\partial x^{\nu}}(x_{\tau},y) \qquad (x \in \tau, y \in \varrho)$$

Factorization: For $i, j \in \mathcal{I}$ with $x_i \in \tau$ and $x_j \in \varrho$ we find

$$\begin{split} \mathcal{K}_{ij} &= k(x_i, x_j) \approx \tilde{k}(x_i, x_j) = \sum_{\nu=0}^{m-1} \underbrace{\frac{(x_i - x_\tau)^{\nu}}{\nu!}}_{=(A_{\tau,\varrho})_{i\nu}} \underbrace{\frac{\partial^{\nu} k}{\partial x^{\nu}} (x_\tau, x_j)}_{=(B_{\tau,\varrho})_{j\nu}} \\ &= \sum_{\nu=0}^{m-1} (A_{\tau,\varrho})_{i\nu} (B_{\tau,\varrho})_{j\nu} \end{split}$$

Panel clustering

Degenerate approximation: If k is sufficiently smooth in a subdomain $\tau \times \rho$, we can approximate by a Taylor series:

$$\tilde{k}(x,y) := \sum_{\nu=0}^{m-1} \frac{(x-x_{\tau})^{\nu}}{\nu!} \frac{\partial^{\nu} k}{\partial x^{\nu}} (x_{\tau},y) \qquad (x \in \tau, y \in \varrho)$$

Factorization: For the sets $\hat{\tau} := \{i : x_i \in \tau\}, \hat{\varrho} := \{j : x_i \in \varrho\}$ we find

$$\mathcal{K}|_{\hat{ au} imes\hat{arrho}}pprox extbf{ extit{A}}_{ au,arrho} extbf{ extit{B}}_{ au,arrho}^{ op}$$

Storage $m(\#\hat{\tau} + \#\hat{\varrho})$ instead of $(\#\hat{\tau})(\#\hat{\varrho})$.

Result: Significant reduction of storage requirements if $m \ll \#\hat{\tau}, \#\hat{\rho}$.

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

 $(\leq 2 \text{ for demonstration purposes})$

Start with $\tau = \varrho = \Omega$. Nothing is admissible.

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

 τ and ϱ are subdivided. Still nothing is admissible.

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

We split the intervals again.

And find an admissible block.

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

We find six admissible blocks on this level.

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

The procedure is repeated...

Goal: Split $\Omega \times \Omega$ into subdomains satisfying the admissibility condition

$$\operatorname{diam}(\tau) \leq 2 \operatorname{dist}(\tau, \varrho)$$

(up to a small remainder).

The procedure is repeated until only a small subdomain remains.

Result: Domain $\Omega \times \Omega$ partitioned into blocks $\tau \times \varrho$.

Clusters $\tau, \varrho \subseteq \Omega$ organized in a cluster tree.

Hierarchical matrix

Idea: Use low-rank approximation in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Standard representation of original matrix \mathcal{K} requires N^2 units of storage.

Hierarchical matrix

Idea: Use low-rank approximation in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Replace admissible block $\mathcal{K}|_{\hat{\tau} \times \hat{\varrho}}$ by low-rank approximation

$$\widetilde{\mathcal{K}}|_{\hat{ au} imes\hat{arrho}}= extbf{A}_{ au,arrho}^{ op} extbf{B}_{ au,arrho}^{ op}.$$

Hierarchical matrix

Idea: Use low-rank approximation in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Replace all admissible blocks by low-rank approximations, leave inadmissible blocks unchanged.

Result: Hierarchical matrix approximation $\widetilde{\mathcal{K}}$ of \mathcal{K} .

Storage requirements: One row of $\widetilde{\mathcal{K}}$ represented by only $\mathcal{O}(m \log N)$ units of storage, total storage requirements $\mathcal{O}(Nm \log N)$.

Second approach: Cross approximation

Observation: If M is a rank 1 matrix and we have pivot indices i^*, j^* with $M_{i^*j^*} \neq 0$, we get the representation

$$M=ab^{ op}, \hspace{1cm} a_i := M_{ij^*}/M_{i^*j^*}, \hspace{1cm} b_j := M_{i^*j}.$$

Idea: If M can be approximated by a rank 1 matrix, we still can find i^*, j^* with $M_{i^*j^*} \neq 0$ and $M \approx ab^{\top}$.

Higher rank: Repeating the procedure for the error matrix yields rank *m* approximation of arbitrary accuracy.

Efficient: If the pivot indices are known, only *m* rows and columns of *M* are required to construct a rank *m* approximation.

Problem: Selection of pivot indices.

Efficient strategies needed.

Provable in certain settings.

For our case it works (but till did not work on a proof)

Uniform hierarchical matrix

Goal: Reduce the storage requirements.

Approach: Expansion in both variables

$$k(x,y) \approx \sum_{\nu+\mu < m} \frac{\partial^{\nu+\mu} k}{\partial x^{\nu} \partial y^{\mu}} (x_{\tau}, y_{\varrho}) \frac{(x - x_{\tau})^{\nu}}{\nu!} \frac{(y - y_{\varrho})^{\mu}}{\mu!}$$

yields low-rank factorization

$$\mathcal{K}|_{\hat{ au} imes\hat{arrho}}pprox extstyle{V_{ au}}\mathcal{S}_{ au,arrho} extstyle{V_{
ho}^{ op}},$$

$$(V_{\tau})_{i\nu} := rac{(x_i - x_{\tau})^{
u}}{
u!} dx, \qquad (S_{\tau,\varrho})_{\nu\mu} := rac{\partial^{\nu+\mu} k}{\partial x^{
u} \partial y^{\mu}} (x_{\tau}, y_{\varrho}).$$

Important: $V_{ au}$ depends only on one cluster (au).

Only the small matrix $S_{\tau,o} \in \mathbb{R}^{m \times m}$ depends on both clusters.

Idea: Use three-term factorization in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Standard representation of original matrix \mathcal{K} requires N^2 units of storage.

Idea: Use three-term factorization in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Replace admissible block $\mathcal{K}|_{\hat{\tau} \times \hat{\varrho}}$ by low-rank approximation

$$\widetilde{\mathcal{K}}|_{\hat{\tau} \times \hat{\varrho}} = V_{\tau} S_{\tau,\varrho} V_{\varrho}^{\top}.$$

Idea: Use three-term factorization in all admissible blocks $\hat{\tau} \times \hat{\varrho}$.

Replace all admissible blocks by low-rank approximations, leave inadmissible blocks unchanged.

Idea: Use three-term factorization in all admissible blocks $\hat{\tau} \times \hat{\varrho}$. Use nested representation for the cluster basis.

Use transfer matrices $T_{\tau'} \in \mathbb{R}^{k \times k}$ with $V_{\tau}|_{\hat{\tau}' \times k} = V_{\tau'} T_{\tau'}$ for all sons $\tau' \in \operatorname{sons}(\tau)$ to handle cluster basis (V_{τ}) efficiently.

Result: \mathcal{H}^2 -matrix approximation $\widetilde{\mathcal{K}}$ of \mathcal{K} .

Storage requirements: One row of $\widetilde{\mathcal{K}}$ represented by only $\mathcal{O}(m)$ units of storage, total storage requirements $\mathcal{O}(Nm)$.

Numerical Results

- data sets
 - network of simple sensor motes (Intel Lab Data)
 - predict the temperature at a mote from the measurements of neighbouring ones
 - mote22 consists of 30000 training / 2500 test from 2 other motes
 - mote47 has 27000 training / 2000 test from 3 nearby motes
 - helicopter flight project
 - predict yaw rate in next timestep based on 3 measurements
 - heliYaw has 40000 training / 4000 test data in 3 dimensions
- using Gaussian RBF kernel $e^{-\|\underline{x}-\underline{y}\|^2/w}$
- note: Matern family used in paper as well
- hyperparameters w and σ were found using a 2:1 split of the training data for each data set size
- note: \mathcal{H}^2 -matrix approximation can be used for several σ

Numerical Results (Quality, Speedup)

		stored	o.t.fly	(f. both)	\mathcal{H}^2 -matrix				
data set	#data	time	time	error	time	error	KB/N		
mote 22	20000	2183	21050	0.2785	230	0.2787	2.0		
mote 22	30000	n/a	88033	0.2577	494	0.2577	3.7		
mote 47	20000	3800	36674	0.1326	1022	0.1326	16.4		
mote 47	27000	n/a	73000	0.1289	1625	0.1289	17.2		
heliYaw	20000	1091	10781	0.0091	676	0.0092	2.3		
heliYaw	40000	n/a	162789	0.0083	3454	0.0083	6.6		

- matrix for N = 20000 can (barely) be stored
- speedups of two orders of magnitude for large data sets
- twice to ten-times the speedup of related work
- storage reduction of more than one order of magnitude
- for helicopter data set from 156.25 down to 6.6, or in total from about 6 GB to about 250 MB

mote22: \mathcal{H}^2 -matrix approximation for 5000 data

difference between full matrix and $\mathcal{H}^2\text{-matrix}$ is $3.79\cdot 10^{-8}$ in the spectral norm

mote 22: study scaling of approaches

- using $w = 2^{-9}$ and $\sigma = 2^{-5}$ for different data set sizes
- compare runtime per iteration for the different values of N
- on-the-fly computation expected $\mathcal{O}(N^2)$ scaling
- stored matrix even worse than $\mathcal{O}(N^2)$ from 10000 to 20000 data
- for \mathcal{H}^2 -matrix scaling is nearly like $\mathcal{O}(Nm\log(N))$

	1000	5000	10000	20000	30000	
time	1.43	22.64	75.0	230.0	427.5	
its	284	688	1111	1599	2025	
time/its	0.00504	0.0329	0.0675	0.144	0.211	
time	1.18	51.15	324.1	2183		
its	284	689	1103	1596	n/a	
time/its	0.00415	0.0742	0.29383	1.368		
time	9.13	565.2	3620.2	21050	60990	
its	284	689	1103	1596	2005	
time/its	0.032	0.82	3.282	13.189	30.42	
	its time/its time its time/its time/its time its	time 1.43 its 284 time/its 0.00504 time 1.18 its 284 time/its 0.00415 time 9.13 its 284	time1.4322.64its284688time/its0.005040.0329time1.1851.15its284689time/its0.004150.0742time9.13565.2its284689	time 1.43 22.64 75.0 its 284 688 1111 time/its 0.00504 0.0329 0.0675 time 1.18 51.15 324.1 its 284 689 1103 time/its 0.00415 0.0742 0.29383 time 9.13 565.2 3620.2 its 284 689 1103	time 1.43 22.64 75.0 230.0 its 284 688 1111 1599 time/its 0.00504 0.0329 0.0675 0.144 time 1.18 51.15 324.1 2183 its 284 689 1103 1596 time/its 0.00415 0.0742 0.29383 1.368 time 9.13 565.2 3620.2 21050 its 284 689 1103 1596	

mote22, different data set sizes using 'optimal' parameters w / σ

#data	w / σ	stored	o.t.fly	error	\mathcal{H}^2	error	KB/N
	$2^{-3}/2^{-6}$						
5000	$2^{-7}/2^{-7}$	30	296	0.318	22.8	0.319	1.1
10000	$2^{-7}/2^{-8}$	811	8502	0.304	76.2	0.307	1.1
20000	$2^{-9}/2^{-5}$	2183	19525	0.279	230.1	0.279	2.0
30000	$2^{-11}/2^{-5}$	n/a	88033	0.258	494.8	0.258	3.7

- 'optimal' w / σ found via 2:1 split of training data
- observe different 'optimal' w / σ found for each data set size \rightarrow need for parameter tuning on large data set
- runtime of \mathcal{H}^2 -matrix starts to make an improvement against stored matrix after 5000 data points
- more data useful for better results

effect of σ on number of iterations

- using the 30000 data of mote22
- results are from 2:1 split using $w = 2^{-8}$ and different σ
- i.e. matrix size is 20000
- ullet observe how number of iterations of GMRES depends on σ

σ	2^{-7}	2^{-6}	2^{-5}	2^{-4}	2^{-3}	2^{-2}	2^{-1}	2^{0}
MAE	0.265	0.263	0.264	0.265	0.268	0.275	0.289	0.320
its	3000	2375	597	179	91	70	55	41

• note: with smaller w the number of iterations usually grows as well

Conclusions

- \mathcal{H}^2 -matrices for approximating Gaussian Processes
- time $\mathcal{O}(Nm\log(N))$, storage $\mathcal{O}(Nm)$
- speedups of up to two orders of magnitude for large data sets
- current work: use coarser H²-matrix for preconditioning
- open question: how to efficiently built \mathcal{H}^2 -matrix in higher dim's
- 0
- HLib available at www.hmatrix.org
- ullet code for GP with \mathcal{H}^2 -matrices available on request

