Міністерство освіти і науки України Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

Звіт Про виконання лабораторної роботи № 6

На тему:

«Розв'язування перевизначених систем лінійних алгебраїчних рівнянь»

Лектор: доц. каф. ПЗ Мельник Н. Б. Виконала: ст. гр. ПЗ-18 Юшкевич А.І. Прийняв: проф. каф. ПЗ Гавриш В.І. « ... » ... 2023 р.

 $\Sigma =$ _____

Тема: розв'язування перевизначених систем лінійних алгебраїчних рівнянь.

Мета: ознайомлення на практиці з методами розв'язування перевизначених систем лінійних алгебраїчних рівнянь.

Завдання

Варіант 22

Розв'язати перевизначену систему лінійних алгебраїчних рівнянь методом найменших квадратів. Отриману відповідну нормальну систему розв'язати методом квадратного кореня.

Код програмної реалізації подано у додатку.

22.
$$A = \begin{pmatrix} 24,67 & 3,24 & 5,45 & 4,13 \\ 4,46 & 34,86 & 3,12 & -2,43 \\ 3,87 & 6,54 & 45,44 & 3,45 \\ 2,45 & 4,25 & 5,45 & 32,72 \end{pmatrix}, \quad B = \begin{pmatrix} 80,41 \\ 85,44 \\ 187,84 \\ 152,86 \end{pmatrix},$$

Метод найменших квадратів для розв'язування перевизначених СЛАР Розглянемо систему лінійних алгебраїчних рівнянь, у якій кількість рівнянь ϵ більшою за кількість невідомих

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n, \end{cases}$$
 (рис. 1)

де n > m.

Знайдемо розв'язок системи $x_1, x_2, ..., x_m$ наближено, але щоб він задовольняв усі рівняння системи (рис. 1), а саме

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m - b_1 = \varepsilon_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m - b_2 = \varepsilon_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m - b_n = \varepsilon_n. \end{cases}$$
 (puc. 2)

Розв'язок системи (рис. 2) будемо знаходити з використанням умови мінімізації суми квадратів відхилень, тобто з умов мінімізації функції

$$S(x_1, x_2, ..., x_m) = \sum_{j=1}^{m} \varepsilon_i^2$$
 (puc. 3)

і вимагатимемо, щоб виконувалась умова

$$\sum_{i=1}^{m} \varepsilon_i^2 \to \min.$$
 (puc. 4)

Проведемо деякі перетворення над системою (рис. 2), використовуючи умову (рис. 4). Розглянемо функцію

$$S(x_1, x_2, ..., x_m) = \sum_{i=1}^n \left(\sum_{j=1}^m a_{ij} x_j - b_j \right)^2.$$
 (puc. 5)

Необхідною умовою мінімуму функції від багатьох змінних ϵ рівність нулеві її частинних похідних. Використаємо цей факт і продиференціюємо функцію (рис. 5) за змінними і х (i =1,m). У результаті отримаємо

$$\frac{\partial S}{\partial x_k} = 2\sum_{i=1}^n a_{ik} \left(\sum_{j=1}^m a_{ij} x_j - b_j \right), \qquad k = \overline{1, m}.$$
(puc. 6)

Прирівнявши вирази (рис. 6) до нуля, отримаємо нормальну систему рівнянь

$$\sum_{i=1}^{n} a_{ik} \left(\sum_{j=1}^{m} a_{ij} x_{j} - b_{j} \right) = 0, \qquad k = \overline{1, m},$$
(рис. 7)

в якій кількість рівнянь системи дорівнює кількості невідомих. Нормальні системи лінійних алгебраїчних рівнянь характеризуються тим, що матриці їх коефіцієнтів завжди ε симетричними, а діагональні елементи - додатніми.

Систему (рис. 7) розв'язують довільними прямими або ітераційними методами. Якщо матриця коефіцієнтів системи рівнянь (рис. 7) ϵ додатньо визначеною (визначник матриці ϵ більшим за нуль), то рекомендують для її розв'язування використовувати метод квадратного кореня.

Запишемо систему лінійних алгебраїчних рівнянь (рис. 1) у матричному вигляді

$$AX = B$$
.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix},$$
 (рис. 8)

де A - матриця коефіцієнтів системи розмірності $m \times n$, X — матриця-стовпець невідомих розмірності $m \times 1$, B - матриця-стовпець вільних членів системи розмірності $m \times 1$.

Матричне рівняння (рис. 8) помножимо на транспоновану матрицю A^T до матриці A . У результаті отримаємо матричне рівняння

$$\overrightarrow{NX} = C$$
 (puc. 9)

де N – матриця коефіцієнтів нормальної системи

$$N = A^{T} A, (puc. 10)$$

С -стовпець вільних членів

$$C = A^T B. (рис. 11)$$

Розв'язавши нормальну систему лінійних алгебраїчних рівнянь, отримаємо її точний розв'язок (якщо використано прямі методи) або наближений розв'язок (якщо використано ітераційні методи). Отриманий розв'язок буде наближеним для СЛАР (рис. 1).

Метод квадратного кореня

Якщо матриця невироджена та симетрична, то ми можемо розкласти \ddot{i} на добуток матриць $A = LDL^T$, де L — одинична нижня <u>трикутна матриця</u>; D — <u>діагональна</u> матриця.

Отримаємо систему:

$$LDL^{T} * x = b$$

Розв'язок отримаємо послідовно розв'язавши дві трикутні СЛАР:

LD *
$$y = b Ta$$

$$L^T * x = y$$
.

Порівняно з загальнішими методами (метод Гауса чи <u>LU-розклад матриці</u>) він стійкіший і потребує вдвічі менше арифметичних операцій.

```
Результат виконання завдання
```

Рис. 12. Результат обчислення СЛАР методом найменших квадратів

Висновки

У результаті виконання лабораторної роботи створено обчислювальний алгоритм, за допомогою мови C++, для розв'язування перевизначеної системи лінійних алгебраїчних рівнянь методом найменших квадратів для заданої системи лінійних алгебраїчних рівнянь.

Додаток

LeastSquares.h:

```
#pragma once
#include <iostream>
#include <vector>

using namespace std;

class LeastSquares
{
  public:
        LeastSquares() = delete;

        template <class T>
        LeastSquares(const T matrix, const size_t num_of_variables, const size_t num of equations, const vector<double> free terms);
```

```
vector<double> Find();
private:
      vector<vector<double>> m matrix;
      vector<double> m free terms;
      size t m num of variables;
      size t m num of equation;
      template <typename T>
      vector<vector<double>> CopyMatrix(const T matrix, const size t
num of variables, const size t num of equasions) const;
      vector<vector<double>> TranspondMatrix(const vector<vector<double>> matrix)
const;
      vector<vector<double>> MultiplyMatrixes(const vector<vector<double>>
first matrix, const vector<vector<double>> second matrix) const;
      vector<double> MultiplyMatrixAndColumn(const vector<vector<double>> matrix,
const vector<double> column) const;
      double FindDeterminant(const vector<vector<double>> matrix) const;
      vector<vector<double>> SplitMatrixIntoToTransponded(const
vector<vector<double>> matrix) const;
      vector<double> GetY(const vector<vector<double>> matrix, const
vector<double> new free terms) const;
      vector<double> GetX(const vector<vector<double>> matrix, const
vector<double> y) const;
} ;
template <typename T>
vector<vector<double>> LeastSquares::CopyMatrix(const T matrix, const size t
num of variables, const size t num of equasions) const {
      vector<vector<double>> new vector(num of equasions,
vector<double>(num of variables));
      do {
            if (new vector.empty())
                  break;
            for (int i = 0; i < num_of_equasions; i++) {</pre>
                  for (int j = 0; j < num of variables; <math>j++) {
                        new_vector[i][j] = matrix[i][j];
      } while (false);
      return new vector;
template <class T>
LeastSquares::LeastSquares(const T matrix, const size t num of variables, const
size t num of equations, const vector<double> free terms) {
      this->m num of equation = num of equations;
      this->m num of variables = num of variables;
      this->m matrix = CopyMatrix(matrix, num of variables, num of equations);
      this->m free terms = free terms;
```

```
#include "LeastSquares.h"
int main()
      const double result accuracy = 0.0001;
      const size t num of equations{ 5 };
      const size t num of variables{ 3 };
      double matrix[num of equations][num of variables] ={{ 1, 3, -2},
      \{-1, 2, 1\},\
      \{3, -2, -2\},
      \{3, 1, -3\},\
      \{1, -1, -7\}\};
      vector<double> free terms{ -5, 1, -5, 1, 5 };
      LeastSquares ls(matrix, num of variables, num of equations, free terms);
      vector<double> result = ls.Find();
      cout << "Initial matrix:\n\n";</pre>
      for (int i = 0; i < num of equations; i++) {</pre>
             for (int j = 0; j < num of variables; j++) {</pre>
                    if (matrix[i][j] >= 0)
                          cout << " ";
                    cout << matrix[i][j] << "\t";</pre>
             cout << "\t";
             if (free_terms[i] >= 0)
                    cout << " ";
             cout << free_terms[i] << endl;</pre>
      cout << "\n\n";</pre>
      cout << "Result:\n\n";</pre>
      for (int i = 0; i < result.size(); i++) {</pre>
             cout << "x" << i + 1 << ": " << result[i] << "\n";</pre>
      cout << endl;</pre>
```

LeastSquares.cpp:

```
for (int i = 0; i < matrix.size(); i++) {</pre>
             for (int j = 0; j < matrix[0].size(); j++) {</pre>
                   local column[i] += matrix[i][j] * column[j];
      return local column;
double LeastSquares::FindDeterminant(const vector<vector<double>> matrix) const {
      int index = 0;
      size t matrix size = matrix.size();
      if (matrix.size() == 1)
            return matrix[0][0];
      vector<vector<double>> smaller matrix(matrix size - 1,
vector<double>(matrix size - 1));
      double determinant = 0;
      int column = 0;
      bool wrong k found = false;
      for (int i = 0; i < matrix size; i++)</pre>
            for (int j = 1; j < matrix_size; j++) {</pre>
                   for (int k = 0; k < matrix size; k++) {
                         if (k == index) {
                                wrong k found = true;
                                continue;
                         if (wrong k found)
                                column = k - 1;
                         else
                                column = k;
                         smaller matrix[j - 1][column] = matrix[j][k];
                   wrong k found = false;
            determinant += pow(-1, i) * matrix[0][i] *
FindDeterminant(smaller matrix);
            index++;
      return determinant;
vector<vector<double>> LeastSquares::MultiplyMatrixes(const vector<vector<double>>
first matrix, const vector<vector<double>> second matrix) const {
      vector<vector<double>> multiplication(first matrix.size(),
vector<double>(second matrix[0].size()));
      for (int i = 0; i < first matrix.size(); i++) {</pre>
             for (int j = 0; j < second matrix[0].size(); <math>j++) {
                   multiplication[i][j] = 0;
                   for (int k = 0; k < first_matrix[0].size(); k++) {
                         multiplication[i][j] += first matrix[i][k] *
second matrix[k][j];
      return multiplication;
}
vector<vector<double>> LeastSquares::SplitMatrixIntoToTransponded(const
vector<vector<double>> matrix) const {
```

```
vector<vector<double>> square matrix(matrix.size(),
vector<double>(matrix.size()));
      for (int i = 0; i < matrix.size(); i++) {</pre>
             square matrix[i][i] = matrix[i][i];
             for (int j = 0; j < i; j++) {
                   square matrix[i][i] -= pow(square matrix[j][i], 2);
            square_matrix[i][i] = sqrt(square_matrix[i][i]);
            for (int j = i + 1; j < matrix.size(); j++) {</pre>
                   square matrix[i][j] = matrix[i][j];
                   for (int k = 0; k < i; k++) {
                         square_matrix[i][j] -= square_matrix[k][i] *
square_matrix[k][j];
                   square matrix[i][j] /= square matrix[i][i];
      }
      return square_matrix;
vector<double> LeastSquares::GetY(const vector<vector<double>> matrix, const
vector<double> new free terms) const {
      vector<double> y(matrix.size());
      for (int i = 0; i < matrix.size(); i++) {</pre>
             for (int k = 0; k < i; k++)
                   y[i] += y[k] * matrix[i][k];
            y[i] = (new_free_terms[i] - y[i]) / matrix[i][i];
      return y;
vector<double> LeastSquares::GetX(const vector<vector<double>> matrix, const
vector<double> y) const {
      vector<double> x (matrix.size());
      for (int i = matrix.size() - 1; i >= 0; i--) {
             for (int k = matrix.size() - 1; k > i; k--)
                   x[i] += x[k] * matrix[i][k];
            x[i] = (y[i] - x[i]) / matrix[i][i];
      return x;
vector<double> LeastSquares::Find() {
      vector<vector<double>> transponded matrix = TranspondMatrix(m matrix);
      vector<vector<double>> multiplied = MultiplyMatrixes(transponded matrix,
m matrix);
      vector<double> new free terms = MultiplyMatrixAndColumn(transponded matrix,
m_free_terms);
      if (!FindDeterminant(multiplied)) {
             cout << "Determinant is equal zero, try another method";</pre>
            return vector<double>(multiplied.size());
      }
      vector<vector<double>> splited upper =
SplitMatrixIntoToTransponded(multiplied);
      vector<vector<double>> splited lower = TranspondMatrix(splited upper);
      vector<double> y = GetY(splited lower, new free terms);
```

```
vector<double> x = GetX(splited_upper, y);
return x;
}
```