Tidying data: extras

Packages

```
library(tidyverse)
```

The pig feed data again

Make longer (as before)

```
# A tibble: 20 x 3
     pig feed weight
   <dbl> <chr>
                <dbl>
       1 feed1
                 60.8
2
       1 feed2
                 68.7
3
       1 feed3
                 92.6
 4
       1 feed4
                 87.9
5
       2 feed1
                 57
6
       2 feed2
                 67.7
7
       2 feed3
                 92.1
8
       2 feed4
                 84.2
9
       3 feed1
                 65
10
       3 feed2
                 74
11
       3 feed3
                 90.2
12
       3 feed4
                 83.1
13
       4 feed1
                 58.6
14
       4 feed2
                 66.3
15
       4 feed3
                 96.5
16
       4 feed4
                 85.7
17
       5 feed1
                 61.7
       5 feed2
18
                 69.8
19
       5 feed3
                 99.1
       5 feed4
20
                 90.3
```

Make wider two ways 1/2

```
pivot_wider is inverse of pivot_longer:
```

```
pigs_longer %>%
   pivot_wider(names_from=feed, values_from=weight)
```

we are back where we started.

Make wider 2/2

Or

Disease presence and absence at two locations

Frequencies of plants observed with and without disease at two locations:

Specie	s Dise	ase present	Dis	Disease absent			
	Location	X Location Y	! Location	X Location Y			
Α	44	12	38	10			
В	28	22	20	18			

This has two rows of headers, so I rewrote the data file:

Species	present_x p	present_y	absent_x	absent_y
A	44	12	38	10
В	28	22	20	18

Read into data frame called prevalence.

A tibble: 2 x 5 Species present_x present_y absent_x absent_y <chr> <dbl> <dbl> <dbl> <dbl> 1 A 44 12 38 10 2 B 28 22 20 18

Lengthen and separate

```
prevalence %>%
    pivot_longer(-Species, names_to = "column",
                values_to = "freq") %>%
    separate(column, into = c("disease", "location"))
# A tibble: 8 x 4
 Species disease location freq
 <chr>
         <chr> <chr> <dbl>
                             44
1 A
         present x
2 A
                             12
        present y
3 A
        absent x
                             38
4 A
         absent y
                            10
5 B
         present x
                            28
6 B
                            22
         present y
7 B
         absent x
                             20
8 B
         absent y
                             18
```

Making longer, the better way

```
prevalence %>%
    pivot_longer(-Species, names_to=c("disease", "location"),
                 names_sep="_", values_to="frequency") %>%
    arrange(Species, location, disease) -> prevalence_longer
  prevalence_longer
# A tibble: 8 x 4
 Species disease location frequency
 <chr> <chr> <chr>
1 A
         absent x
                                 38
2 A
         present x
                                 44
3 A
         absent y
                                 10
4 A
                                 12
         present y
5 B
                                 20
         absent x
6 B
                                 28
         present x
7 B
         absent y
                                 18
                                 22
8 B
         present y
```

Making wider, different ways

9

3 feed1

65

```
prevalence_longer %>%
    pivot_wider(names_from=c(Species, location), values_from=frequency)
# A tibble: 2 x 5
  disease
            A_x
                 A_y B_x
                              В_у
          <dbl> <dbl> <dbl> <dbl>
  <chr>
1 absent
             38
                   10
                         20
                               18
2 present
                               22
             44
                   12
                         28
  prevalence_longer %>%
    pivot_wider(names_from=location, values_from=frequency)
# A tibble: 4 x 4
 Species disease
                      Х
                            у
  <chr>
         <chr>
                  <dbl> <dbl>
1 A
          absent
                     38
                           10
2 A
                     44
         present
                           12
3 B
          absent
                     20
                           18
4 B
                           22
          present
                     28
Interlude
  pigs_longer
# A tibble: 20 x 3
     pig feed weight
   <dbl> <dbl> <dbl>
      1 feed1
                 60.8
 1
 2
      1 feed2
                 68.7
 3
      1 feed3
                 92.6
4
      1 feed4
                 87.9
 5
      2 feed1
                 57
                 67.7
6
      2 feed2
7
      2 feed3
                 92.1
8
      2 feed4
                 84.2
```

```
3 feed2
                74
10
11
      3 feed3
                90.2
12
      3 feed4
                83.1
13
      4 feed1
                58.6
      4 feed2
14
                66.3
15
      4 feed3 96.5
      4 feed4
16
                85.7
      5 feed1
                61.7
17
18
      5 feed2 69.8
19
      5 feed3 99.1
20
      5 feed4 90.3
  pigs_longer %>%
    group_by(feed) %>%
    summarize(weight_mean=mean(weight))
# A tibble: 4 x 2
 feed weight_mean
  <chr>
            <dbl>
1 feed1
             60.6
2 feed2
              69.3
3 feed3
              94.1
4 feed4
              86.2
```

What if summary is more than one number?

```
eg. quartiles:
```

```
5 feed3 92.1
6 feed3 96.5
7 feed4 84.2
8 feed4 87.9
```

this also works

```
pigs_longer %>%
    group_by(feed) %>%
    summarize(r=list(quantile(weight, c(0.25, 0.75)))) %>%
    unnest(r)
# A tibble: 8 x 2
 feed
  <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
7 feed4 84.2
8 feed4 87.9
or, even better, use enframe:
```

```
quantile(pigs_longer$weight, c(0.25, 0.75))
  25%
          75%
65.975 90.225
  enframe(quantile(pigs_longer$weight, c(0.25, 0.75)))
# A tibble: 2 x 2
 name value
  <chr> <dbl>
1 25%
        66.0
2 75%
        90.2
```

A nice look

Run this one line at a time to see how it works:

```
pigs_longer %>%
    group_by(feed) %>%
    summarize(r=list(enframe(quantile(weight, c(0.25, 0.75))))) %>%
    unnest(r) %>%
    pivot_wider(names_from=name, values_from=value)

# A tibble: 4 x 3
    feed `25%` `75%`
    <chr> <dbl> <dbl>
1 feed1 58.6 61.7
2 feed2 67.7 69.8
3 feed3 92.1 96.5
4 feed4 84.2 87.9
```

A hairy one

18 people receive one of three treatments. At 3 different times (pre, post, followup) two variables y and z are measured on each person:

# /	A tibble: 1	18 x 8						
	id	treatment	pre_y	post_y	fu_y	pre_z	post_z	fu_z
	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	A.1	A	3	13	9	0	0	9
2	A.2	A	0	14	10	6	6	3
3	A.3	A	4	6	17	8	2	6
4	A.4	A	7	7	13	7	6	4
5	A.5	A	3	12	11	6	12	6
6	A.6	A	10	14	8	13	3	8
7	B.1	В	9	11	17	8	11	27
8	B.2	В	4	16	13	9	3	26
9	B.3	В	8	10	9	12	0	18
10	B.4	В	5	9	13	3	0	14
11	B.5	В	0	15	11	3	0	25
12	B.6	В	4	11	14	4	2	9
13	Control.1	Control	10	12	15	4	3	7
14	Control.2	Control	2	8	12	8	7	20
15	Control.3	Control	4	9	10	2	0	10

```
16 Control.4 Control
                           10
                                   8
                                         8
                                               5
                                                       8
                                                            14
17 Control.5 Control
                           11
                                  11
                                                1
                                                       0
                                                            11
                                        11
18 Control.6 Control
                            1
                                   5
                                        15
                                                            10
```

Attempt 1

```
repmes %>% pivot_longer(contains("_"),
                            names_to=c("time", "var"),
                            names_sep="_"
                             )
# A tibble: 108 x 5
   id
         treatment time var
                                 value
   <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
1 A.1
         Α
                    pre
                          У
                                     3
2 A.1
         Α
                    post y
                                    13
3 A.1
                                     9
         Α
                    fu
                          у
                                     0
4 A.1
         Α
                    pre
                          z
5 A.1
                                     0
                    post z
         Α
6 A.1
         Α
                    fu
                          z
                                     9
7 A.2
                                     0
         Α
                    pre
                          У
8 A.2
                    post y
                                    14
         Α
```

У

z

fu

pre

This is too long! We wanted a column called y and a column called z, but they have been pivoted-longer too.

10

6

Attempt 2

9 A.2

10 A.2

Α

Α

i 98 more rows

```
# A tibble: 54 \times 5
   id
         treatment time
                             У
                                   z
   <chr> <chr>
                  <chr> <dbl> <dbl>
 1 A.1
        Α
                  pre
                             3
 2 A.1
                  post
                            13
                                   0
        Α
 3 A.1
                  fu
                             9
                                   9
        Α
 4 A.2
                                   6
        Α
                  pre
                            0
 5 A.2
        Α
                  post
                            14
                                   6
 6 A.2
        Α
                  fu
                            10
                                   3
 7 A.3
                             4
                                   8
        Α
                  pre
8 A.3
                                   2
                  post
                            6
        Α
9 A.3
                  fu
                            17
                                   6
         Α
10 A.4
                            7
                                   7
                   pre
# i 44 more rows
```

This has done what we wanted.

make a graph

A so-called spaghetti plot. The three measurements for each person are joined by lines, and the lines are coloured by treatment.

or do the plot with means

On average, the two real treatments go up and level off, but the control group is very different.