Easy strategies in complex games

Finite memory strategies in POMDPs with long-run average objective

K. Chatterjee¹ R. Saona¹ B. Ziliotto²

¹IST Austria

²CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Reward G_m

$$egin{aligned} v_{\infty}(
ho_1) &\coloneqq \sup_{\sigma \in \Sigma} \mathbb{E}^{
ho_1}_{\sigma} \left(\liminf_{n o \infty} rac{1}{n} \sum_{m=1}^n G_m
ight) \ &= \lim_{n o \infty} \sup_{\sigma \in \Sigma} \mathbb{E}^{
ho_1}_{\sigma} \left(rac{1}{n} \sum_{m=1}^n G_m
ight) \ &= \lim_{\lambda o 0^+} \sup_{\sigma \in \Sigma} \mathbb{E}^{
ho_1}_{\sigma} \left(\sum_{m=1}^\infty \lambda (1-\lambda)^{m-1} G_m
ight) \ &= \liminf_{n o \infty} \sup_{\sigma \in \Sigma} \mathbb{E}^{
ho_1}_{\sigma} \left(rac{1}{n} \sum_{m=1}^n G_m
ight) \end{aligned}$$

Model
Previous results
About POMDPs

Characterizations of the value function Approximately optimal strategies Importance of POMDPs

Approximation.

$$|\underline{v} - v_{\infty}(p_1)| \le \varepsilon$$
. undecidable

This is impossible.

Lower bound.

Upper bound.

$$(v_n) \nearrow v_{\infty}(p_1).$$

 $(v_n) \searrow v_{\infty}(p_1).$

Our result.

This is impossible.

Continuity(?).

$$v_{\infty}(p_1) = F(\text{rewards}, \text{transitions})$$
.

Continuous with respect to rewards and <u>lower semi-continuous</u> with respect to transitions.

Property. We need to recall the first signal to play ε -optimally.

Continuity.

$$v_{\infty}(p_1) = F(\text{rewards}, \underline{\text{transitions}})$$
.

Is v_{∞} continuous with respect to transitions?

Belief partition.

$$v_{\infty}(p_1) = \sup_{\sigma \in ???} \mathbb{E}_{\sigma}^{p_1} \left(\liminf_{n \to \infty} \frac{1}{n} \sum_{m=1}^n G_m \right) .$$

Do belief partition strategies have this property?