Search for Supersymmetry in opposite-sign same-flavour dilepton events with the CMS detector in proton-proton collisions at

$$\sqrt{s}=8$$
 TeV

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von
Jan-Frederik Schulte, M.Sc.
aus Münster

Prof. Dr. Lutz Feld Prof. Dr. Michael Krämer

Termin der mündlichen Prüfung: xx.xx.2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Zusammenfassung

Abstract

Contents

	Zusammenfassung	
1	Introduction	1
2	The Standard Model and its extension to Supersymmetry 2.1 The Standard Model of particle physics	3 3 3 3
3	Experimental setup 3.1 The CERN Large Hadron Collider	5
4	Data analysis and event selection 4.1 Trigger and event processing 4.2 Object reconstruction 4.3 Datasets 4.4 Event selection	7 7 7 7
5	Estimation of Standard Model backgrounds 5.1 Flavour-symmetric backgrounds	9 9 9
6	Results 6.1 Result of the counting experiment 6.2 Result of the search for a kinematic edge	11 11 11
7	Interpretation in simplified models 7.1 Simplified Models for Supersymmetric Signatures	13 13 13 13
8	Outlook to LHC Run II	15
a	Conclusion	17

1 Introduction

2 The Standard Model and its extension to Supersymmetry

- 2.1 The Standard Model of particle physics
- 2.2 Motivation for extending the Standard Model and Supersymmetry
- 2.3 Production of lepton pairs in supersymmetric models
- 2.4 Kinematic edges in the dilepton invariant mass spectrum

3 Experimental setup

- 3.1 The CERN Large Hadron Collider
- 3.2 The CMS detector
- 3.3 Data acquisition and event reconstruction

4 Data analysis and event selection

- 4.1 Trigger and event processing
- 4.2 Object reconstruction
- 4.3 Datasets
- 4.4 Event selection

5 Estimation of Standard Model backgrounds

- 5.1 Flavour-symmetric backgrounds
- 5.2 Backgrounds containing a Z boson
- 5.3 Investigation of possible further backgrounds
- 5.4 Search for a kinematic edge with a fit

6 Results

- 6.1 Result of the counting experiment
- 6.2 Result of the search for a kinematic edge

7 Interpretation in simplified models

- 7.1 Simplified Models for Supersymmetric Signatures
- 7.2 The T6bblledge and T6bbslepton model
- 7.3 Interpretation of the counting experiment in simplified models

8 Outlook to LHC Run II

9 Conclusion