Relace

Osnova

- Relace ekvivalence
- Relace uspořádání

Relace ekvivalence

Definice

Ekvivalence na množině A je relace R na množině A, která je

reflexivní

$$(\forall x \in A) \Rightarrow [x, x] \in R$$

symetrická

$$(\forall x, y \in A)[x, y] \in R \Rightarrow [y, x] \in R$$

tranzitivní

$$(\forall x, y, z \in A)[x, y] \in R \land [y, z] \in R \Rightarrow [x, z] \in R$$

Relace ekvivalence

Příklad

Rovnoběžnost přímek

Nechť A je množina všech přímek v rovině.

Relace R je definována předpisem $[a,b] \in R \Leftrightarrow a,b$ jsou rovnoběžky.

Dokažte, že R je ekvivalence.

Relace ekvivalence

Příklad

Kongruence modulo p

- Kongruence modulo p (p je celé číslo) je relace = definovaná na množině celých čísel Z:

Dokažte, že \equiv je relace ekvivalence.

- $(\forall x \in Z)x \equiv x$, tedy $p \mid (x x)$ reflexivnost
- $(\forall x, y \in Z)x \equiv y \Rightarrow y \equiv x$, tedy $x y = k \cdot p \Rightarrow y x = (-k) \cdot p$ symetrie
- $(\forall x, y, z \in Z)x \equiv y \land y \equiv z \Rightarrow x \equiv z, \text{tedy}$ $x - y = k \cdot p \land y - z = l \cdot p, (k, l, p \in Z) \Rightarrow$ x - z = (x - y) + (y - z) = kp + lp = (k + l)p tranzitivita

Rozklad množiny na třídy

Definice

Nechť A,I jsou množiny (I je indexová množina). Soubor podmnožin $\{A_i; i \in I\}$ množiny A je rozklad množiny A, jestliže množiny A_i jsou neprázdné, navzájem disjunktní a jejich sjednocením je celá množina A. Množiny A_i nazýváme třídy rozkladu $\{A_i; i \in I\}$.

Relace ekvivalence na množině *A* jednoznačně odpovídají rozkladům na množině *A*.

Rozklad množiny na třídy

Příklad

Relace $x \equiv y \pmod{p}$ je ekvivalence.

Každá z *p* tříd této ekvivalence je tvořena všemi čísly, která při dělení číslem *p* dávají stejný zbytek.

Tyto třídy se označují zbytkové třídy modulo p.

Rozklad množiny na třídy

Příklad

Nechť na množině celých čísel Z je definována ekvivalence \sim následovně:

$$(x \sim y) \Leftrightarrow (\exists k \in Z)(y = x + 4k).$$

Popište rozklad množiny Z na třídy.

Zbytky po dělení čtyřmi.

Rozklad množiny na třídy

Příklad

Nechť na množině $Z \setminus \{0\}$ je definována relace R: $(xRy) \Leftrightarrow x \cdot y > 0$.

Dokažte, že R je relace ekvivalence a popište rozklad množiny $Z \setminus \{0\}$ na třídy.

- Relace je reflexivní, symetrická, tranzitivní.
- Rozklad: Z⁺, Z⁻.