# Modelling electromagnetic problems in the presence of cased wells

Lindsey J. Heagy<sup>1</sup>, Rowan Cockett<sup>1</sup>, Douglas W. Oldenburg<sup>1</sup> and Michael Wilt<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>University of British Columbia Geophysical Inversion Facility

<sup>&</sup>lt;sup>2</sup>GroundMetrics

### Why?

# Electrical conductivity can be a diagnostic physical property

- e.g. Monitoring applications
  - CO<sub>2</sub> sequestration
  - Locating missed pay
  - Enhanced Oil Recovery
    - ie. water floods
  - Hydraulic fracturing



Source: http://www.oil-price.net/en/articles/novel-crude-oil-recovery.php

### Why?

Electrical conductivity can be a diagnostic physical property

- e.g. Monitoring applications
  - o CO<sub>2</sub> sequestration
  - Locating missed pay
  - Enhanced Oil Recovery
    - ie. water floods
  - Hydraulic fracturing
- EM sensitive to conductivity
- Inversion: characterize conductivity distribution



#### Why?

Electrical conductivity can be a diagnostic physical property

- e.g. Monitoring applications
  - CO<sub>2</sub> sequestration
  - Locating missed pay
  - Enhanced Oil Recovery
    - ie. water floods
  - Hydraulic fracturing
- EM sensitive to conductivity
- Inversion: characterize conductivity distribution



#### Steel casing in EM

#### **Physical Properties**

- highly conductive
- significant (variable) magnetic permeability
- Significant impact on signals

#### Geometry

- cylindrical
- thin compared to length
- Numerically challenging



#### Overview

**Motivation:** How do we characterize 3D conductivity distributions in settings with steel cased wells?









#### Electromagnetics: Maxwell's Equations

### Maxwell's Equations (frequency domain, quasi-static)

$$\nabla \times \mathbf{E} + i\omega \mathbf{B} = 0$$
$$\nabla \times \mathbf{H} - \mathbf{J} = \mathbf{q}$$

#### Constitutive Relations

$$\mathbf{J} = \sigma \mathbf{E}$$
$$\mathbf{B} = \mu \mathbf{H}$$

#### Fields

E electric field

H magnetic field

#### Fluxes

J current density

**B** magnetic flux density

Physical Properties

 $\sigma$  electrical conductivity

 $\mu$  magnetic permeability

#### Finite Volume Forward Modelling





#### Two Formulations of Maxwell





### Cylindrical mesh







### Primary: Cylindrical Symmetry - Dipole



### Primary: Cylindrical Symmetry - Dipole



#### Two Formulations of Maxwell





### Modelling the casing



### Modelling the casing: Source types



### Impact of magnetic permeability:



10<sup>-13</sup>





#### Impact of magnetic permeability:



 $J_x$  imag

1e-13







### Impact of magnetic permeability:







#### Impact of Variable Magnetic Permeability



#### Variable Magnetic Permeability



#### Modelling with 3D geology

#### What we have done

- cylindrically symmetric
- variable  $\sigma$   $\mu$



- Steel casing has a significant impact on the signal
  - conductivity and magnetic permeability



#### Modelling with 3D geology

#### What we have done

- cylindrically symmetric
- variable  $\sigma$ ,  $\mu$



#### Want to model geologic structures

- 3 dimensional
- variable  $\sigma$



?

Fields from casing, 3D Earth

### Modelling with 3D geology: Primary Secondary



### Modelling with 3D geology: Primary Secondary



### Primary-Secondary: 3D geology (magnetic dipole)



### Primary-Secondary: 3D geology (magnetic dipole)



### Approaching the Inverse Problem



### Approaching the Inverse Problem



 $\nabla \times \mathbf{E}_{\mathbf{p}} + i\omega \mathbf{B}_{\mathbf{p}} = 0$ 

 $\nabla \times \mu_p^{-1} \mathbf{B}_{\mathbf{p}} - \sigma_p \mathbf{E}_{\mathbf{p}} = \mathbf{q}$ 

Solve for:  $E_p \ B_p$ 

Interpolate to compute source

Invert for 3D conductivity :  $\sigma$ 

$$\nabla \times \mathbf{E_s} + i\omega \mathbf{B_s} = 0$$

$$\nabla \times \mu^{-1} \mathbf{B_s} - \sigma \mathbf{E_s} = \tilde{\mathbf{q}}$$

$$\tilde{\mathbf{q}} = (\mathbf{\sigma} - \sigma_p) \mathbf{E}_{\mathbf{p}}$$





Model dependence on RHS

→ need to include in sensitivities

#### Generalizing

- Time domain EM
  - similar approach can be applied
- Non-symmetric settings:
  - deviated or horizontal wells
  - source outside of casing





Source: http://docs.simpeg.xyz/en/latest/api\_Mesh.html

#### Summary

**Motivation:** How do we characterize 3D conductivity distributions in settings with steel cased wells?









### Thank you!

#### Thanks to:

developers of SimPEG and simpegEM



UBC GIF



#### References:

2109–2122.
Cockett, R., S. Kang, A. Heagy L., Pidlisecky, and D. Oldenburg, 2015, SimPEG: An open-source framework for simulation and

parameter estimation in geophysical applications (submitted): Computers and Geoscience.

Commer, M., G. M. Hoversten, and E. S. Um, 2015, Transient-electromagnetic finite-difference time-domain earth modeling over

Gao, G., D. Alumbaugh, P. Zhang, H. Zhang, C. Levesque, R. Rosthal, J. Liu, A. Abubakar, and T. Habashy, 2008, Practical

Brill, T. M., J. L. Le Calvez, C. Demichel, E. Nichols, and F. Zapata Bermudez, 2012, Electromagnetic casing inspection tool for corrosion evaluation: Society of Petroleum Engineers - International Petroleum Technology Conference 2012, IPTC 2012, 3,

steel infrastructure: GEOPHYSICS, 80, E147–E162.

Cuevas, N., 2012, Casing Effect in Borehole-surface (Surface-borehole) EM Fields: 74th EAGE Conference and Exhibition Ex-

panded Abstracts, 4–7.

———, 2014a, Energizing a Bipole Casing Electromagnetic Source - Sensitivity Analysis: , 16–19.

——, 2014a, Energizing a Bipole Casing Electromagnetic Source - Sensitivity Analysis: , 16–1

Cuevas, N. H., 2014b, Analytical solutions of EM fields due to a dipolar source inside an infinite casing: GEOPHYSICS, 79, E231–E241.

implications of nonlinear inversion for cross-well electromagnetic data collected in cased-wells: 2008 SEG Annual Meeting, 9-14 November, Las Vegas, Nevada, 299–303.

Haber, E., 2015, Computational Methods in Geophysical Electromagnetics: Mathematics in Industry.

Hoversten, G., M. Commer, E. Haber, and C. Schwarzbach, 2014, Hydro-frac Monitoring Using Ground Time-domain EM: 76th

EAGE Conference and Exhibition, 76–78.

Kang, S., R. Cockett, and L. J. Heagy, 2015, simpegEM online documentation available at http://simpegem.rtfd.org.

Kang, S., R. Cockett, and L. J. Heagy, 2015, simpegEM online documentation available at http://simpegem.rtfd.org.

Liu, H., Z. Wang, and Z. He, 2008, Electromagnetic Modeling by the Volume Integral Equation Method: 70th EAGE Conference and Exhibition: Expanded Abstracts, 9–12.

Marsala, A. F., M. Al-buali, Z. Ali, M. S. Ma, Z. He, T. Biyan, G. Zhao, and T. He, 2011, First Borehole to Surface Electromagnetic Survey in KSA: Reservoir Mapping and Monitoring at a New Scale: SPE Ann. Tech. Conf. and Exhib., SPE 146348.

Marsala, A. F., A. D. Hibbs, and H. F. Morrison, 2014, Evaluation of Borehole Casing Sources for Electromagnetic Imaging of Deep Formations: Presented at the International Petroleum Technology Conference.

Marsala, A. F., S. Ruwaili, S. M. Ma, Z. Ali, M. Buali, S. Aramco, J. M. Donadille, S. Crary, and M. W. Schlumberger, 2008, Crosswell Electromagnetic Tomography: from Resistivity Mapping to Interwell Fluid Distribution: Distribution, 1–6.

Wilt, M. J., D. L. Alumbaugh, H. F. Morrison, a. Becker, K. H. Lee, and M. DeszczPan, 1995, Crosswell electromagnetic tomography: System design considerations and field results: Geophysics, 60, 871–885.

Wu, X., and T. M. Habashy, 1994, Influence of steel casings on electromagnetic signals: Geophysics, 59, 378.

#### Using Conductivity Permeability product



# SCRAPS

#### Approaching the Inverse Problem

Inversion model is conductivity

Model dependence on RHS

→ need to include in sensitivities

$$\nabla \times \mathbf{E_s} + i\omega \mathbf{B_s} = 0$$

$$\nabla \times \mu^{-1} \mathbf{B_s} - \sigma \mathbf{E_s} = \tilde{\mathbf{q}}$$

$$\tilde{\mathbf{q}} = (\sigma - \sigma_p) \mathbf{E_p}$$

#### Steps:

- $\circ$  estimate background  $\sigma_p$
- $\circ$  solve for primary fields  $\mathbf{E_p} \ \mathbf{B_p}$
- o compute source term
- o do inv



# Primary-Secondary: 3D geology (magnetic dipole)



# Mimetic Finite Volume Forward Modelling



# Primary: Modelling the Casing

- Finite volume forward simulation
  - staggered grid

| Cell Centers: | Physical Properties |  |
|---------------|---------------------|--|
| Faces:        | Fluxes              |  |
| Edges:        | Fields              |  |

- exploit symmetry: cylindrically symmetric
  - when sources on or in well



| E-B: magnetic source                                        | H-J: electric source                                   |
|-------------------------------------------------------------|--------------------------------------------------------|
| $\nabla \times \vec{E} + i\omega \vec{B} = 0$               | $\nabla \times \rho \vec{J} + i\omega \mu \vec{H} = 0$ |
| $\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{s}$ | $ abla 	imes ec{H} - ec{J} = ec{s} \;  $               |

## Primary: Modelling the Casing

- Finite volume forward simulation
  - staggered grid

| Formulation | cell centers      | edges   | faces       |
|-------------|-------------------|---------|-------------|
| E-B         | $\mu^{-1},\sigma$ | $ec{E}$ | $ \vec{B} $ |
| H-J         | $\mu, \rho$       | $ec{H}$ | $ec{J}$     |



- exploit symmetry: cylindrically symmetric
  - when sources on or in well

| E-B: magnetic source                                        | H-J: electric source                                   |
|-------------------------------------------------------------|--------------------------------------------------------|
| $\nabla \times \vec{E} + i\omega \vec{B} = 0$               | $\nabla \times \rho \vec{J} + i\omega \mu \vec{H} = 0$ |
| $\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{s}$ | $ abla 	imes ec{H} - ec{J} = ec{s}$                    |

#### Electromagnetics in settings with cased wells

#### Why EM?

 Electrical conductivity can be diagnostic

#### Cased Wells

- significant contributor to signal
- challenging features to model
  - geometry
  - conductivity contrast

How do we model in settings with cased wells?

Inverse Problem?



# Primary: Cylindrical Symmetry - Summary





Two Formulations of Maxwell:

| E-B: magnetic source                                        | H-J: electric source                                   |
|-------------------------------------------------------------|--------------------------------------------------------|
| $\nabla \times \vec{E} + i\omega \vec{B} = 0$               | $\nabla \times \rho \vec{J} + i\omega \mu \vec{H} = 0$ |
| $\nabla \times \mu^{-1} \vec{B} - \sigma \vec{E} = \vec{s}$ | $\nabla \times \vec{H} - \vec{J} = \vec{s}$            |

| Formulation | cell centers          | edges   | faces     |
|-------------|-----------------------|---------|-----------|
| E-B         | $\mu^{-1}, \sigma$    | $ec{E}$ | $ec{B}$   |
| H-J         | $\mid \mu, \rho \mid$ | $ec{H}$ | $ ec{J} $ |

# Examples: Surface Electric Src









## Examples: Downhole Magnetic Dipole



## Down hole E src Couple to casing



# Examples: Surface Electric Sc



## Variable Magnetic Permeability



#### Approach: Break up the Problem

#### 1. Primary Problem:

How do we model the casing in a simple background?

#### 2. Secondary Problem:

How do model setting with 3D geologic features?

