1) De acordo com Vieira (2006), um mecanismo reconhecedor para uma linguagem formal permite validar as palavras pertencentes à uma linguagem. Com base nas definições de autômatos vista em sala, **FAÇA** um Autômato Finito Determinístico (AFD) para a seguinte linguagem: L =  $\{a^nb^{2m}c^pd^q \mid n \ge 0, \ m \ge 0, \ p \ge 0, \ q \ge 0\}$  e **APRESENTE** a descrição formal completa do autômato —

## **ATIVIDADE EASY EXERCÍCIO 2**



 $\Sigma = \{a,b,c,d\} E = \{q0,q1,q2,q3,q4\} i = q0, F = \{q0,q2,q3,q4\}$ 

|    | а  | b  | С  | d  |
|----|----|----|----|----|
| q0 | q0 | q1 | q3 | q4 |
| q1 |    | q2 |    |    |
| q2 |    | q1 | q3 | q4 |
| q3 |    |    | q3 | q4 |
| q4 |    |    |    | q4 |

2) De acordo com a Hierarquia de Chomsky, uma linguagem regular é reconhecida por um autômato finito e gerada por meio de uma gramática regular. Com base nestas definições e no conteúdo visto durante o bimestre, **ELABORE** um Autômato Finito Determinístico (AFD) para a seguinte linguagem:  $L = \{wx \mid w \in \{a,b\}^* \mid w\mid_a \text{ é impar e } |w|_b \text{ é impar e } x \in \{c,d\}^* \mid w\mid_c \text{ é impar e } |w|_d \text{ é impar } \}$ 



3) Um Autômato Finito Determinístico permite reconhecer palavras a partir de uma linguagem regular. **ANALISE** o autômato abaixo, **IDENTIFIQUE** a linguagem reconhecida pelo Autômato Finito Determinístico abaixo e **APRESENTE** a expressão da linguagem



L =  $\{w \in \{0,1\}^* / w \text{ \'e m\'ultiplo de 6}\}$ 

4) Um Autômato Finito Determinístico mínimo é aquele que contém a menor quantidade de estados possíveis para uma linguagem regular (Menezes, 2010). Com base no algoritmo de minimização de autômato visto em sala, **ANALISE** o autômato abaixo e **APRESENTE** a descrição formal do autômato minimizado – **RESOLVIDO EM SALA (SIMILAR)** 

OBS: a tabela triangular do algoritmo de minimização deve ser apresentada em sua resposta



| q5 | χ   | X   | X<br>q2 | X<br>a3 | (X) |
|----|-----|-----|---------|---------|-----|
| q4 | Χ   | Χ   | Χ       | Χ       |     |
| q3 | (X) | (X) |         |         | _   |
| q2 | (X) | (X) |         | _       |     |
| q1 | (X) |     | _       |         |     |

$$\Sigma = \{a,b\} E = \{q0,q1,q23,q4,q5\} i = q0, F = \{q4,q5\}$$

|     | а   | b   |
|-----|-----|-----|
| q0  | q0  | q1  |
| q1  | q23 | q23 |
| q23 | q5  | q4  |
| q4  | q23 | q4  |
| q5  | q4  | q23 |

5) Para linguagens livres de contexto, o mecanismo reconhecedor destas linguagens utiliza-se de uma pilha durante o seu processamento. Com base nas definições de Autômato com Pilha (AP) vistas em aula, **ELABORE** um AP para a seguinte linguagem:  $L = \{cwc / w \in \{a,b\}^* / |w|_a = |w|_b\}$  e **APRESENTE** a sua descrição formal completa **ATIVIDADE EASY EXERCÍCIO 4** 



$$\Sigma = \{a,b,c\} E = \{q0,q1,q2\} i = q0, BASE = Z, \Gamma = \{Z,X,Y\}$$

## **Transições**

| q0,c,Z = q1,Z  | $q1,b,X = q1,\lambda$ |
|----------------|-----------------------|
| q1,a,Z = q1,XZ | $q1,a,Y = q1,\lambda$ |
| q1,b,Z = q1,YZ | q1,b,Y = q1,YY        |
| q1,a,X = q1,XX | $q1,c,Z=q2,\lambda$   |

6) Em uma transição de um autômato com pilha (AP), um símbolo do alfabeto é processado, o topo da pilha é retirado e zero ou mais símbolos podem ser inseridos na pilha (Hopcroft, 2002). Com base nos conceitos de autômato com pilha, **FAÇA** um AP para a seguinte linguagem  $L = \{ab^nab^na / n \ge 0\}$  **LISTA DE EXERCÍCIOS AP - L2 (SIMILAR)** 



7) Entre os mecanismos reconhecedores de linguagens formais podemos construir autômatos finitos, autômatos com pilha e Máquinas de Turing. Com base nas definições de Máquina de Turing Reconhecedoras vistas em sala, **ELABORE** uma MT que reconheça a linguagem  $L = \{a^nb^nc^nd^n / n > 0 \text{ e n é par}\}$  **LISTA DE EXERCÍCIOS MT RECONHECEDORA - L16 (SIMILAR)** 



8) Uma Máquina de Turing transdutora pode ser utilizada para realizar a computação de qualquer tarefa em um computador (Sipser, 2005). **FAÇA** uma Máquina de Turing transdutora que tenha como entrada um número binário qualquer e gere como saída o número binário incrementado em duas unidades, por exemplo para o valor de entrada 101, deve ser gerado a saída 111. Para valores de entrada 1010 deve ser gerado a saída 1100 e assim sucessivamente para qualquer número binário **LISTA DE EXERCÍCIOS TRANSDUTORA - L4\* (SIMILAR)** 



- 9) O algoritmo de minimização de AFD é executado analisando pares de estados buscando encontrar a equivalência entre dois estados, sendo que esta equivalência representa que os mesmos podem ser unificados em um só estado (Vieira, 2006). De acordo com o algoritmo o que é um estado equivalente em relação à minimização de AFDs? **ANALISE** as afirmações abaixo e **ASSINALE** a alternativa correta
- a. Um estado que não tem nenhuma transição de saída.
- b. Dois estados que possuem o mesmo símbolo inicial.
- c. Estados que possuem o mesmo conjunto de estados alcançáveis.
- d. Estados que têm o mesmo número de transições de entrada.
- e. Um estado que não possui transições vazias (lambda)
- 10) O maior poder computacional é descrito por uma Máquina de Turing em comparação aos autômatos finitos e autômato com pilha (Menezes, 2010). Sobre as máquinas, **ANALISE** as afirmações abaixo e **ASSINALE** a alternativa que apresenta o que significa dizer que uma Máquina de Turing reconhecedora aceita uma entrada?
- a. A máquina encontrou um resultado de computação correto.
- b. A máquina não encontrou nenhum estado de aceitação durante sua execução.
- c. A máquina rejeitou a entrada após processá-la.
- d. A máquina entrou em um loop infinito durante sua execução.
- e. A máquina concluiu seu processamento e parou em estado final