- Q1 Band diagrams of a MOS capacitor for three different values of the gate voltage V_G are shown in figure 1. V_t is its threshold voltage. All the variables shown in figure 1 have their usual meanings. [40 pts]
 - [Q1.1] Based on the information provided in figure 1, find out whether V_G larger or smaller than V_t for each of the three cases. Briefly explain your answer. [15 pts]
 - [Q1.2] Find out the values of electron density and hole density at x=0 and x=60 nm for each of the three cases. Assume that N_C = N_V = 10^{25} /m³, kT=25 meV, E_G = 1.1 eV (all variables have their usual meaning). [25 pts]

Figure 1: Band diagrams of a MOS capacitor at different gate voltages.

01.1) The	Difference	in volume	Bone and formi love
a) "S.4"	66 eV. Giva .522 eV : Diff	tat invias	sic E and Fermi E race Difat => Vy > Vz
b) Since	En-Ei	= 14 eV ((.466 => Vq < VT
			is => Vg < Vt

Goodnotes

Q2 In class, we have derived an expression for the threshold voltage V_t in an n-type MOSFET. How does V_t change if the following parameters are increased. [30 pts]

Q2.1 Acceptor doping density, N_a .

Q2.2 Oxide thickness, t_{ox} .

Q2.1 Dielectric constant of oxide, ϵ_{ox} .

Q2.1)	Given Faut	V _t =	2240+	24 Eo Esi 2Na 4s
	Ve & Na	=> ine	voly Na	Cox
A 2 1)	will (inclore	V. _E	
(X 2. c/	C _{0x} = &	o Eor	=) ag	tox 1, Cox V
	(0)	tox	1	
	as Cor			
Q2.3)	By Q2.	2 , as	Eox	s Cox 1 => V1 J

Q3 Consider an n-type MOSFET with $N_A=7\times10^{18}$ m³. The gate length of the MOSFET $L=2~\mu\text{m}$, width $W=12~\mu\text{m}$ and the oxide thickness $t_{ox} = 8 \text{ nm}$. Take $N_C = N_V = 10^{25} \text{ m}^{-3}$, $E_G = 1.12 \text{ eV}$, $n_i = 1.5 \times 10^{16} \text{ m}^{-3}$, kT=0.026 eV, vacuum permittivity $\varepsilon_{\circ}=8.854\times10^{-12}$ F/m, dielectric constant of oxide $\varepsilon_{ox}=4$, dielectric constant of silicon $\varepsilon_{Si}=12$, electron mobility $\mu_n = 230 \times 10^{-4} \text{ m}^2/\text{Vs}$, hole mobility $\mu_p = 83 \times 10^{-4} \text{ m}^2/\text{Vs}$.

Calculate $\phi_B = |E_F - E_i|/q$, the oxide capacitance C_{ox} , the maximum

ith Goodnotes