

Introdução à Regressão Logística

Parte 3 – Inferência para Regressão Logística

Unidade III

Análise de Dados Categorizados

Maria Teresa Leão Costa

Inferência para Regressão Logística

Especificamente, seja G a matriz de derivadas parciais de segunda ordem do log da função de verossimilhança, sendo as derivadas tomadas em relação aos parâmetros:

$$\mathbf{G}_{p \times p} = [g_{ij}]$$
 $i = 0, 1, ..., p - 1; j = 0, 1, ..., p - 1$

Sendo

$$g_{00} = \frac{\partial^2 \log_e L(\beta)}{\partial \beta_0^2}$$
$$g_{01} = \frac{\partial^2 \log_e L(\beta)}{\partial \beta_0 \partial \beta_1}$$

etc.

Inferência para Regressão Logística

- Os procedimentos de inferência dependem de tamanhos de amostra grandes.
- Para amostras grandes, sob condições geralmente aplicáveis, os estimadores de máxima verossimilhança para regressão logística são aproximadamente normalmente distribuídos, com pouco ou nenhum viés, e com aproximadamente variâncias e covariâncias correspondentes que são funções das derivadas parciais de segunda ordem do logaritmo da função de verossimilhança.

Inferência para Regressão Logística

Intervalos de Confiança para β₁

$$b_1 \pm z_{\alpha/2}$$
 (ASE).

■ Intervalo de Confiança para e^{β1}

(efeito multiplicativo sobre a "odds" do aumento de uma unidade em X)

 \rightarrow aplicar e^x aos limites do intervalo para β_1

Inferência para Regressão Logística

Intervalos de Confiança para β₁

$$b_1 \pm z_{\alpha/2}$$
 (ASE).

■ Intervalo de Confiança para e^{β1}

(efeito multiplicativo sobre a "odds" do aumento de uma unidade em X)

 \rightarrow aplicar e^x aos limites do intervalo para β_1

Testes de Significância

$$H_0$$
) $\beta_1 = 0$

$$H_1$$
) $\beta_1 \neq 0$

■ Teste "Z"

$$Z = \frac{b_1}{ASE} \sim N(0,1)$$

$$Z^2 = \left(\frac{b_1}{ASE}\right)^2 \sim \chi^2 \text{ com 1 g.l.}$$

Para tal foi selecionada uma amostra de 173 fêmeas e as seguintes características foram investigadas para cada uma delas:

- X largura da carapaça da fêmea em cm;
- Y se a fêmea tem pelo menos um satélite (1 sim e 0- não)

Probability modeled is v='1'.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Estimated Covariance Matrix				
Parameter	Intercept	x		
Intercept	6.910227	-0.26685		
x	-0.26685	0.01035		

Testing Global Null Hypothesis: BETA=0					
Test	DF	Pr > ChiSq			
Likelihood Ratio	31.3059	1	<.0001		
Score	27.8752	1	<.0001		
Wald	23.8872	1	<.0001		

Analysis of Maximum Likelihood Estimates					
Parameter DF Estimate Standard Wald Chi-Square Pr > Chi:					Pr > ChiSq
Intercept	1	-12.3508	2.6287	22.0749	<.0001
x	1	0.4972	0.1017	23.8872	<.0001

Teste da Razão de Verossimilhança para testar a significância da variável explicativa

A estatística do teste da razão de máxima verossimilhança compara:

• L_0 - o máximo do log da função de verossimilhança quando $\beta_1 = 0$ (isto é, quando $\pi(x)$ é forçado a ser idêntico para todos os valores de x)

com

• L_1 - o máximo do log da função de verossimilhança para β_1 irrestrito (isto é, H_1 é verdadeira).

A estatística do teste é definida por:

$$G^2 = -2 (L_0 - L_1) \sim \chi^2 \text{ com 1 g.l.}$$

Teste da Razão de Verossimilhança Formulação Geral

• A forma geral da estatística do teste da razão de verossimilhança para uma hipótese nula H_o e uma hipótese alternativa H_1 é

$$G^2 = -2 (L_0 - L_1)$$

onde

- L_0 o máximo do logaritmo da função de verossimilhança supondo que H_a é verdadeira
- L₁ o máximo do logaritmo da função de verossimilhança supondo que H, é verdadeira

Sob H_{ϱ} $G^2 \sim \chi^2 \text{ com } \nu \text{ g.l.}$

onde o número de *graus de liberdade* é a diferença entre o número de parâmetros definido para cada hipótese

Number of Observations Read	10
Number of Observations Used	10

Response Profile			
Ordered Value	у	Total Frequency	
1	1	111	
2	0	62	

Probability modeled is y='1'.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfier

Estimated Covariance Matrix					
Parameter	Intercept	х			
Intercept	6.910227	-0.26685			
x	-0.26685	0.01035			

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	227.759	198.453		
sc	230.912	204.759		
-2 Log L	225.759	194.453		

Testing Global Null Hypothesis: BETA=0					
Test Chi-Square DF Pr > ChiSq					
Likelihood Ratio	31.3059	1	<.0001		
Score	27.8752	1	<.0001		
Wald	23.8872	1	<.0001		

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Pr > ChiSq	
Intercept	1	-12.3508	2.6287	22.0749	<.0001
x	1	0.4972	0.1017	23.8872	<.0001

4

Estimação da Probabilidade de sucesso $\pi(x)$

A probabilidade estimada de sucesso, (isto é, de que Y=1), para um valor fixado x de X é dada por:

$$\hat{\pi}_i(x_i) = \frac{\exp(b_0 + b_1 x_i)}{1 + \exp(b_0 + b_1 x_i)}$$

Intervalo de Confiança (1-α) para o valor do logito π * (x):

$$(b_0 + b_1 x_i) \pm z_{a/2}$$
 (ASE)

onde erro padrão de estimativa (ASE) é a raiz quadrada de:

$$V(b_0 + b_1 x_i) = V(b_0) + x_i^2 V(b_1) + 2x_i \operatorname{cov}(b_0, b_1)$$

Number of Observations Read 173
Number of Observations Used 173

Response Profile						
Resp	onse F	rotile				
Ordered Value	у	Total Frequency				
1	1	111				
2	0	62				

Probability modeled is y='1

Estimated Covariance Matrix				
Parameter	Intercept	х		
Intercept	6.910227	-0.26685		
x	-0.26685	0.01035		

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	227.759	198.453	
sc	230.912	204.759	
-2 Log L	225.759	194.453	

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	31.3059	1	<.0001	
Score	27.8752	1	<.0001	
Wald	23.8872	1	<.0001	

Analysis of Maximum Likelihood Estimates					
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	1	-12.3508	2.6287	22.0749	<.0001
x	1	0.4972	0.1017	23.8872	<.0001

 Estime com 95% de confiança a probabilidade de uma fêmea de caranguejo ferradura com largura de carapaça de 26 cm ter satélite.

Avaliação do Modelo

Testes de Adequabilidade de Ajustamento:

H₀) O Modelo de Regressão Logística ajusta-se aos dados.
 H₁) O Modelo não se ajusta

ou de forma equivalente:

$$H_0$$
) $\pi_i = \pi(x_i)$
 H_0) $\pi_i \in (0,1), \qquad i = 1, 2, ..., c.$

- Para cada conjunto distinto i de valores das variáveis explicativas (i = 1, 2, ..., c):
 - f_{1i} _ número de sucessos (Y=1) para n_i repetições do i-ésimo conjunto de valores das variáveis explicativas.
 - $\hat{\pi}_{\scriptscriptstyle i}$ probabilidade de sucesso predita pelo modelo ajustado.

Então $fe_{1i}=n_i\,\hat{\pi}_i$ é o número de sucessos ajustado ou esperado.

Consequentemente,

$$fe_{2i} = n_i (1 - \hat{\pi}_i) = n_i - fe_{1i}$$

é o número de insucessos (Y=0) ajustado ou esperado.

Estatística X² de Pearson

- É recomendável que as frequências esperadas sejam maiores ou igual a 5, e nunca inferiores a 1.
- O teste detecta grandes afastamentos da função resposta logística, mas não é tão sensível para detectar pequenos afastamentos.

Estatística X² de Pearson

• Y_{ij} observações independentes e observações repetidas de um ou mais níveis da variável explicativa.

A estatística do teste é

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=0}^{1} \frac{(f_{ji} - f e_{ji})^{2}}{f e_{ji}}$$

que sob a hipótese H_0 , tem distribuição aproximadamente Qui-quadrado com c-k graus de liberdade quando n grande e k < c.

k - número de parâmetros do modelo

c - número conjuntos de valores distintos das variáveis explicativas

Estatística G² do Teste da Razão de Verossimilhança

Modelo Completo:

$$E(Y_{ij}) = \pi_i$$
 $j = 1, 2, ..., c$

onde π_j é a probabilidade de sucesso para cada valor distinto de X, j=1,2,...,c.

O modelo completo no caso da regressão logística é usualmente chamado de *modelo saturado*.

■ Modelo Restrito (sob *H*₀):

$$E[Y_{ij}] = \pi(x) = \frac{exp(\beta_0 + \beta_1 x)}{1 + exp(\beta_0 + \beta_1 x)}$$

Estatística do Teste:

Considerando a estatística do teste da razão de verossimilhança:

$$G^{2} = -2 \ln \left(\frac{L(R)}{L(F)} \right) = -2 \left[\ln \left(L(R) \right) - \ln \left(L(F) \right) \right]$$

•As estimativas de máxima verossimilhança para as c probabilidades , π_j modelo completo são dadas pelas proporções amostrais:

$$p_j = \frac{Y_{.j}}{n_j} \qquad j = 1, 2, \dots, c$$

 $\hat{\pi}_{j}$ estimativa de π_{j} pelo modelo reduzido para cada Xj, j-1,2,..., c,

OIID — IE

Teste de Hosmer e Lameshow

 Construir as classes com base nos percentis das probabilidades estimadas;

O uso de c =10 grupos resulta no primeiro grupo formado pelos pares de freqüências observadas e estimadas com n/10 menores valores de probabilidades estimadas, isto é, tendo o primeiro decil de probabilidades preditas; o segundo grupo tendo o segundo decil de probabilidades preditas, e assim por diante.

• Construir as classes com base em valores fixados das probabilidades estimadas:

O uso de c=10 grupos resulta em pontos de corte definidos nos valores $k/10,\ k=1,\ 2,\ ...,\ 9$ e os grupos contêm todos os pares de freqüências observadas e estimadas com valores de probabilidades estimadas entre pontos de corte adjacentes.

Assim a estatística do teste é dada por:

$$G^{2} = -2 \sum_{j=1}^{c} \left[Y_{j} \ln \left(\frac{\widehat{\pi}_{j}}{p_{j}} \right) + \left(n_{j} - Y_{j} \right) \ln \left(\frac{1 - \widehat{\pi}_{j}}{1 - p_{j}} \right) \right]$$

ou então,

$$G^{2} = -2 \sum_{j=1}^{c} \left[Y_{j} \ln \left(\frac{\widehat{Y}_{j}}{Y_{j}} \right) + \left(n_{j} - Y_{j} \right) \ln \left(\frac{n_{j} - \widehat{Y}_{j}}{n_{j} - Y_{j}} \right) \right]$$

que sob a hipótese H_0 , tem distribuição aproximadamente Qui-quadrado com c-k graus de liberdade quando n_j for grande e k < c

k - número de parâmetros do modelo

c - número conjuntos de valores distintos das variáveis

Partition for the Hosmer and Lemeshow Test					
		y = 1		y = 0	
Group	Total	Observed	Expected	Observed	Expected
1	19	5	5.39	14	13.61
2	18	8	7.62	10	10.38
3	17	11	8.62	6	8.38
4	17	8	9.92	9	7.08
5	16	11	10.10	5	5.90
6	18	11	12.30	7	5.70
7	16	12	12.06	4	3.94
8	16	12	12.90	4	3.10
9	16	13	13.69	3	2.31
10	20	20	18.41	0	1.59

Hosmer and Lemeshow Goodness-of-Fit Test				
Chi-Square	DF	Pr > ChiSq		
5.2465	8	0.7309		

