Software Systems Verification and Validation Lecture 10 - Model checking

Lect. dr. Andreea Vescan

Babeș-Bolyai University Cluj-Napoca

2015-2016

- System verification
 - System verification
 - Software verification techniques
 - Catching software bugs
 - Formal methods
- Model checking
 - Model checking approach
 - Strengths and Weaknesses
- Transition system
 - Transition system
 - Intuitive behavior
 - Example
- 4 Linear-Time Properties
 - Linear-Time Properties
 Lect. dr. Andreea Vescan

System verification
Software verification techniques

Catching software bugs

System verification

- Information and Communication Technology (ICT)
- Correct ICT systems
 - It is all about money.
 - It is all about safety.
- The reliability of the ICT systems is a key issue in the system design process [KB08].
- System verification techniques

System verification

Software verification techniques Catching software bugs Formal methods

Schematic view of an posteriori system verification

Figure: Schematic view of an posteriori system verification

System verification Software verification techniques Catching software bugs Formal methods

Software verification techniques

- Non-formal verification techniques (used in practice): peer reviewing (SSVV Lecture 01) and testing (SSVV Lecture 2-3).
 - Peer review (static technique)
 - Software testing (Dynamic technique)
- Formal verification techniques.
 - Formal methods
 - Model-based simulation
 - Model checking(SSVV Lecture 10- today)
 - Model-based testing
 - Theorem proving (SSVV Lecture 06 and 07)

System verification Software verification techniques Catching software bugs Formal methods

Catching software bugs: the sooner, the better [KB08]

System verification Software verification techniques Catching software bugs Formal methods

Formal methods

- More time and effort spend on verification than on construction - in software/hardware design of complex systems.
- The role of formal methods:
 - To establish system correctness with mathematical rigor.
 - To facilitate the early detection of defects.
- Brands of verification technique:
 - deductive methods the correctness of system is determined by properties in a mathematical theory, using tools as theorem provers and proof checkers
 - model-based techniques: model checking (exhaustive exploration), simulation (restrictive set of scenarios in the model), model-based testings, etc
- Any verification using model-based techniques is only as good as the model of the system.

Model checking approach Strengths and Weaknesses

Model checking

Figure: Schematic view of the model checking approach [KB08]

Model checking approach Strengths and Weaknesses

Characteristics of Model Checking

- Model checking is an automated technique that, given a finite-state model of a system and a formal property, systematically checks whether this property holds for (a given state in) that model.
- The model checking process
 - Modeling phase
 - model the system under consideration
 - formalize the property to be checked.
 - Running phase
 - Analysis phase
 - property satisfied?
 - property violated?

Model checking approach Strengths and Weaknesses

Strengths and Weaknesses of model checking [KB08]

Strengths

- General verification approach
- Supports partial verification
- Provides diagnostic information
- Potential "push-button" technology
- Increasing interest by industry
- Easily integrated in existing development cycles

Weaknesses

- Appropriate to control-intensive applications
- Its applicability is subject to decidability issues
- It verifies a system model
- Checks only stated requirements
- Suffers from the state-space explosion problem
- Requires some expertise

Transition system

- Transition systems used in computer science as models to describe the behavior of the systems.
- Transition systems directed graphs:
 - Nodes represent states;
 - Edges model transitions, i. e. state changes.
- A Transition System (TS) is tuple (S, Act, \rightarrow , I, Ap, L), where
 - S is a set of states.
 - Act is a set of actions,
 - \bullet $\rightarrow \subseteq S \times Act \times S$ is a transition relation,
 - I ⊆ S is a set of initial states,
 - AP is a set of atomic propositions, and
 - $L: S \to 2^{AP}$ is a labeling function.
- TS is called finite if S, Act and AP are finite.

Transition system Intuitive behavior Example

Transition system - remarks

- Intuitive behavior of a transition system
 - Initial state $s_0 \in I$
 - ullet Using the transition relation o the system evolves
 - Current state s, a transition $s \xrightarrow{\alpha} s'$ is selected nondeterministically
 - The selection procedure is repeated and finishes once a state is encountered that has no outgoing transitions.
- The labeling function L relates a set $L(s) \in 2^{AP}$ at atomic propositions to any state s. L(s) intuitively stands for exactly those atomic propositions $a \in AP$ which are satisfied by state s.
- Given that ϕ is a propositional logic formula, then s satisfies the formula ϕ if the evaluation induced by L(s) makes the formula ϕ true.

Transition system Intuitive behavior Example

Beverage Vending Machine

- $S = \{pay, select, soda, beer\}, I = \{pay\}$
- $\bullet \ \textit{Act} = \{\textit{insert_coin}, \textit{get_soda}, \textit{get_bear}, \tau\}$
- Example transitions: pay $\stackrel{insert_coin}{\rightarrow}$ select, beer $\stackrel{get_beer}{\rightarrow}$ pay
- Atomic propositions depends on the properties under consideration. A simple choice to let the state names act as atomic propositions, i. e. L(s) = {s}. "The vending machine only delivers a drink after providing a coin," AP = {paid, drink},

$$L(pav) = \emptyset$$
, $L(soda) = L(beer) =$
Lect. dr. Andreea Vescan

Linear-Time Properties

Linear-Time Properties

- Deadlock
- Safety properties = "nothing bad should happen".
 - The number of inserted coins is always at least the number of dispensed drinks.
- Liveness properties = "something good will happen in the future".

Temporal Logic

Temporal Logic

- Propositional temporal logics [KB08], [Fre10]- extensions of propositional logic by temporal modalities.
- The elementary temporal modalities that are present in most temporal logics include the operators
 - "eventually" (eventually in the future) \Diamond
 - ullet "always" (now and forever in the future \Box
- The nature of time in temporal logics can be either linear or branching.
- The adjective "temporal"
 - specification of the relative order of events;
 - does not support any means to refer to the precise timing of events.

Syntax of LTL LTL temporal modalities Intuitive meaning of temporal modalities LTL semaphore example

Linear-Time Logic

- Construction of LTL formulae in LTL ingredients:
 - atomic propositions $a \in AP$, (stands for the state label a in a transition system)
 - \bullet boolean connectors like conjunction \wedge and negation $\neg,$
 - basic temporal modalities "next" \bigcirc and "until" \bigcup .
- LTL formulae over the set AP of atomic proposition are formed according to the following grammar:

$$\varphi ::= true |a| \varphi_1 \wedge \varphi_2 |\neg \varphi| \bigcirc \varphi |\varphi_1| \bigcup \varphi_2$$
, where $a \in AP$.

Syntax of LTL LTL temporal modalities Intuitive meaning of temporal modalities LTL semaphore example

LTL temporal modalities

- The until operator allows to derive the temporal modalities ◊
 ("eventually", sometimes in the future) and □ ("always",
 from now on forever) as follows:
 - $\Diamond \varphi = \operatorname{true} \bigcup \varphi$.
 - $\Box \varphi = \neg \Diamond \neg \varphi$.
- By combining the temporal modalities ◊ and □, new temporal modalities are obtained:
 - $\Box \Diamond \varphi$ "infinitely often φ ." at any moment j there is a moment i $i \geq j$ at which an a state is visited
 - $\Diamond\Box\varphi$ "eventually forever φ ." from some moment j on, only *a*-states are visited.

Syntax of LTL LTL temporal modalities Intuitive meaning of temporal modalities LTL semaphore example

Intuitive semantics of temporal modalities

Syntax of LTL LTL temporal modalities Intuitive meaning of temporal modalities LTL semaphore example

Semaphore example

- $\Box(\neg(A = green \land B = green))$
 - A and B can not be simultaneously green.
- \Box ($A = yellow \rightarrow A = red$)
 - If A is yellow eventually will become red.
- \Box ($A = yellow \rightarrow \bigcirc (A = red)$)
 - If A is yellow then it will be red into the next state.
- $\Box(\neg(B = green) \bigcup (A = red))$
 - B will not be green until A

Syntax of CTL CTL - state and path formulae CTL semaphore example

CTL

- Construction of CTL formulae:
 - as in LTL by the next-step and until operators,
 - must be not combined with boolean connectives
 - no nesting of temporal modalities is allowed.
- CTL formulae over the set AP of atomic proposition are formed according to the following grammar:
 - $\phi ::= \text{true } |a|\phi_1 \wedge \phi_2|\neg \phi|\exists \phi|\forall \phi$, where $a \in AP$ and φ is a path formula.
- CTL path formulae are formed according to the following grammar:

 $\varphi ::= \bigcirc \phi | \phi_1 \bigcup \phi_2$, where ϕ, ϕ_1 and ϕ_2 are state fromulae.

Syntax of CTL CTL - state and path formulae CTL semaphore example

CTL

- CTL distinguishes between state formulae and path formulae:
 - State formulae express a property of a state.
 - Path formulae express a property of a path, i.e. an infinite sequence of states.
- Temporal PATH operators and
 - \bullet $\bigcirc \phi$ holds for a path if ϕ holds in the next state of the path;
 - $\phi \bigcup \psi$ holds for a path if there is some state along the path for which ψ holds, and ϕ holds in all states prior to that state.
- Path formulae ⇒ state formulae by prefixing them with
 - path quantifier \exists (pronounced "for some path"); $\exists \phi$ holds in a state if there exists some path satisfying ϕ that starts in that state.

Syntax of CTL CTL - state and path formulae CTL semaphore example

Semaphore example

- $\forall \Box (B = yellow \rightarrow \forall \bigcirc (B = red))$.
 - If B is yellow, it will become (sometime in the future) red.

Next lecture

Next lecture

CMM