Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №1

3x - 2y + 4z = 7Если $(x_0; y_0; z_0)$ – решение системы $\begin{cases} 2x + y - 5z = 0 \\ -x - 3y + 2z = 5 \end{cases}$ значение выражения $x_0 - 3z_0$ равно:

1

Задание №2

Если
$$A = \begin{pmatrix} 2 & 4 \\ 3 & -1 \\ 5 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 0 & 4 \\ 2 & 4 & -3 \end{pmatrix}$, то $A \cdot B$ равно

$$\begin{pmatrix} 2 & 16 & -4 \\ -11 & -4 & 15 \\ -19 & -8 & 26 \end{pmatrix} \qquad \begin{pmatrix} -6 & 8 \\ 0 & -4 \\ 20 & 6 \end{pmatrix} \qquad \begin{pmatrix} -6 & 0 & 20 \\ 8 & -4 & 6 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ -6 & 10 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 8 \\ 0 & -4 \\ 20 & 6 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 0 & 20 \\ 8 & -4 & 6 \end{pmatrix}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} -3 & 1 & 0 \\ 4 & 2 & -5 \\ 3 & -1 & -2 \end{pmatrix}$, pacположенный на пересечении третьей строки и первого столбца.

- -10 10 $-\frac{1}{2}$ $-\frac{3}{5}$ $-\frac{1}{4}$

Задание №4

Если $\vec{a} = \{-7, 32\}, \vec{b} = \{2, 3\}, \vec{c} = \{3, -4\}$, то разложение вектора \vec{a} по базису \vec{b} , \vec{c} ($\vec{a} = \alpha \vec{b} + \beta \vec{c}$) имеет вид:

$$\vec{a} = -4\vec{b} + 5\vec{c} \qquad \vec{a} = 4\vec{b} - 5\vec{c} \qquad \vec{a} = 2\vec{b} + \vec{c} \qquad \vec{a} = \vec{b} - \vec{c}$$

$$\vec{a} = 4\vec{b} - 5\vec{c}$$

$$\vec{a} = 2\vec{b} + \vec{c}$$

$$\vec{a} = \vec{b} - \vec{c}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Точка A(-1; -2; 5) — начало вектора $\vec{a} = \{1; 3; -5\}$. Координаты точки B — конца вектора \vec{a} , имеют вид:

$$(0; -5; 10)$$

$$(0;-5;10)$$
 $(0;1;0)$ $(-2;-5;10)$ $(2;5;-10)$

$$(2;5;-10)$$

Задание №6

Косинус угла между векторами $2\vec{a} - \vec{b}$ и \vec{c} , где $\vec{a} = \{-2; 5; 4\}$, $\vec{b} = \{-1, 0, 3\}, \vec{c} = \{4, 0, 2\}, \text{ равен:}$

$$-\frac{1}{\sqrt{670}}$$

$$-\frac{20}{\sqrt{660}}$$

$$-\frac{92}{\sqrt{13534}}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Площадь параллелограмма ABCD: A(2;0;0), B(-3;1;4), C(1;1;3), D(2;-1;3), составляет:

23

18

27

√138

Задание №8

Объём параллелепипеда, построенного на векторах $\vec{a} = \{-1; -3; 2\}, \vec{b} = \{1; 2; 4\}, \vec{c} = \{-1; -3; 0\},$ составляет:

2

<u>22</u>

3

62

10

Вариант № 11

Осталось сделать

Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Осталось

мин.

Задание №9

Сумма собственных значений матрицы $\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$ равна:

8

5

6

10

24

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания