Experimental design - an introduction

T. Neeman

October 2022

Experimental Design

What is Experimental Design?

Why is Experimental Design Important?

- local controls
- how to assign treatments to samples? (blocking/randomisation)
- how many samples? (replication)

Assigning treatments to samples

Assigning treatments to samples: Vaccine Challenge Study

Assigning treatments to samples: Vaccine Challenge Study - by Cage?

Results of Vaccine Challenge Study: Im(score~Treatment)

Question: Evidence of a Vaccine effect, or a Cage effect?

What have we learned about experimental design so far?

- Cage is confounded with treatment.
- Cannot separate out the Cage effect from the Treatment effect.

Conclusion: We need to think harder about how to assign treatments to samples.

Goal: separate out Treatment Effects from effects from other factors

Why is Experimental Design Important?

▶ Designing experiment in advance saves time and energy in analysis

Good experimental design makes analysis more robust and convincing

Assigning treatments to samples: Seed Germination Study

Good ideas in Experimental Design

- Samples are BLOCKED into homogeneous groups
- ► Treatment RANDOMISED within each block
- One sample per treatment within block

Treatments are compared within blocks.

Treatment effects are averaged across blocks.

Analysing Complete Randomised Block Experiment

Analysing Complete Randomised Block Experiment

Exploratory Analysis

Include Experimental Design in analysis: Shelf absent

```
library(car)
Anova(lm(Percent~Species*Treat, data = dat4), type = 2)
## Anova Table (Type II tests)
##
## Response: Percent
##
                Sum Sq Df F value Pr(>F)
## Species 128.00 1 0.9366 0.3523
## Treat
        488.44 2 1.7870 0.2093
## Species:Treat 65.33 2 0.2390 0.7911
## Residuals 1640.00 12
```

Include Experimental Design in analysis: Shelf as Fixed Effect

```
Anova(lm(Percent~Species*Treat + Shelf, data = dat4), type = 2)
## Anova Table (Type II tests)
##
## Response: Percent
##
                Sum Sq Df F value Pr(>F)
## Species 128.00 1 10.9819 0.0078277 **
## Treat 488.44 2 20.9533 0.0002654 ***
## Shelf 1523.44 2 65.3527 1.813e-06 ***
## Species:Treat 65.33 2 2.8027 0.1080523
## Residuals 116.56 10
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Include Experimental Design in analysis: Shelf as Random Effect

```
library(lmerTest)
anova(lmer(Percent~Species*Treat + (1|Shelf), data = dat4))
## Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
##
          128.00 128.000 1 10 10.9819 0.0078277 **
## Species
## Treat 488.44 244.222 2 10 20.9533 0.0002654 ***
## Species:Treat 65.33 32.667 2 10 2.8027 0.1080523
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Summary so far

- ► In this example, Block = Shelf
- ► Treatments are compared within blocks
- Blocking: More power to see treatment effects
- Good experimental design: maximize information about treatment effects

Key ideas in Experimental design

<u>Block</u>: group of samples that are similar biologically and exposed to similar environmental conditions.

Randomisation: Samples within a block are randomised to different treatments.

Block effects can be separated from Treatment effects

Example: Greenhouse experiment

Response:

► Plant dry mass (g)

Experimental factors

- Nutrients (4 levels)
- ► Species (3 levels)

- ► table within greenhouse
- position on table
- tray
- position on tray

Example: Animal experiment (mice)

Response:

► Tumour size (*mm*²)

Experimental factors

- Drug A (Yes/No)
- ▶ Diet (2 levels)

- litter
- cage

Example: Multi-centre clinical trial (Chronic Fatigue)

Response:

► Chronic Fatigue Score (0-100) at 6 months

Experimental factors

Drug X (vs placebo)

- centre
- risk factors
- patient

Example: lab experiment (96 well plate): Testing chemotherapies on cancer cell line

Response:

► Cell density (OD)

Experimental factors

- Drug A (Yes/No)
- Drug B (High/low/none)

- plate
- position on plate

Example: lab experiment (96 well plate)

Example: lab experiment (96 well plate)

Example: lab experiment (96 well plate)

Blocks in Time and Space- Playback experiments

Birds communicating danger: Alarm calls / fleeing behaviour

Response

Bird flees (Yes/No)

Experimental factor

► Alarm call (5 levels)

Potential blocking factors

- bird
- order of alarm call

Blocks in Time and Space - Playback experiments

Each bird (1-5) receives playback calls (A - E) in different order: BIRD

		1	2	3	4	5
ORDER	1	В	D	Е	С	Α
	2	Α	С	D	В	Е
		С	Е	A C	D	В
	4	Е	В	С	Α	D
	5	D	Α	В	Е	С

Summary for today's lecture

- Experimental design matters for all biological experiments
- ► BLOCKING and RANDOMISATION cornerstones of good experimental design
- ▶ BLOCK first; RANDOMISE treatments within blocks
- ▶ Before you start collecting data, discuss your experimental design with colleagues.

Friday activity

APPLYING PRINCIPLES OF EXPERIMENTAL DESIGN