ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object Detection

Rebbapragada V C Sairam, Monish Keswani, Uttaran Sinha, Nishit Shah, Vineeth N Balasubramanian {ai20resch13001, monish.keswani, cs17mtech11003, cs18mtech11020, vineethnb}@iith.ac.in Indian Institute of Technology, Hyderabad

WAIKOLOA HAWAII JAN 3-7 - 2023

AIM

To solve the severe size-imbalance problem in drone-based aerial image datasets

Size-imbalance - natural vs aerial image datasets

Effect of neighbourhood

Trainadon		Tested on	
Trained on	Small	Medium	Large
Small	33.78	26.87	1.81
Medium	7.01	46.01	15.26
Large	2.56	23.58	38.91

Performance of baseline on different size bins of HRSC2016 dataset

Datasets:

HRSC2016, DOTA_v1.0, DOTA_v1.5 & VisDrone

Evaluation metrics:

- For HRSC2016, VisDrone:
 mAP = mean(APs@[.5:.05:.9])
- For DOTA datasets:mAP = mean(class-wise APs@50)

Results

Trained on	Method	mAP
HRSC2016	ReDet Ours + ReDet	70.41 72.42
DOTA_v1.0	ReDet Ours + ReDet	76.15 77.14
DOTA_v1.5	ReDet Ours + ReDet	66.86 68.71
VisDrone	ReDet Ours + ReDet	18.80 20.32

Performance comparison – Baseline vs our model on four different aerial object datasets

Trained	Method	Tested on		
on		small	med	Large
HRSC2016	ReDet Ours + ReDet	17.93 20.79	29.58 29.97	38.91 38.01
DOTA_1.0	ReDet Ours + ReDet	09.74 11.81		52.4452.24
DOTA_1.5	ReDet Ours + ReDet	08.32 10.65		43.56 43.52
DOTA_1.0	S2aNet Ours + S2aNet	10.64 12.48		47.43 47.85

Performance comparison – Baseline vs our model on small, medium and large sized objects

Contributions

- Novel architecture-agnostic loss reweighting strategy
- First such loss based approach in this domain
- Simple yet effective pipeline based on well-known modules
- Key observations around the ordinality of object size might be useful in other settings with ordinal categories
- Extensive experiments on multiple aerial image datasets

Loss re-weighting strategy

Size-balanced loss based on the size of the objects in each class:

$$L_{ours} = w_{ys} * L_{reg}(\hat{b}, b)$$

 w_{ys} - weight for an object of size s and class y

Gaussian Amplification: To add the context of size neighbourhood

$$B^c = (b_1^c, b_2^c, \dots, b_m^c)$$

$$K_w = (K_{-\frac{w}{2}}, \dots, K_{-1}, K_0, K_1, \dots, K_{\frac{w}{2}})$$

 ${m B}^c$ - size distribution of class c, ${m K}_w$ - Discrete gaussian kernel of width w

$$GA(b_k^c) = \sum_{i=-w/2}^{w/2} k_i * b_{k+i}^c$$

 $m{b}_{k}^{c}$ - size bin in consideration, $m{k}_{i}$ - corresponding kernel entry

Effective number of objects of size s and class y: $E_{ys}=\frac{1-\beta^{\binom{n}{\sqrt{GA(n_{ys})}}}}{1-\beta}$ Our loss function is given by : $L_{ours}=L_C+w_{ys}*L_R$ where $w_{ys}=1-1/E_{ys}$

Top: Baseline fails to detect few objects

Top: Baseline predicts many false positives **Bottom**: Our model reduces FPs because of the effective ARUBA loss