Some Alternative Models for Genomic Evaluations

Haplotype Alleles Have Higher LD

SNP1 has LD=0 with QTL allele

Haplotype Alleles Have Higher LD

Animal	SNP1	QTL	SNP2
1	0	Q	0
2	0	q	1
3	1	q	0
4	1	Q	1

SNP1 has LD=0 with QTL allele SNP2 has LD=0 with QTL allele

Haplotype Alleles Have Higher LD

Animal	SNP1	QTL	SNP2	Haplotype
1	0	Q	0	"00"
2	0	q	1	"01"
3	1	q	0	"10"
4	1	Q	1	"11"

SNP1 has LD=0 with QTL allele SNP2 has LD=0 with QTL allele

Haplotype alleles perfectly capture QTL alleles

- but at expense of requiring additional degrees of freedom

SNP Models Spuriously Predict Haplotypes NOT in Training

Real Effects		SNP2=0		SNP2=2
SNP1=	:0	"00" Q=+5		"01" q=+10
SNP1=	:1	"10" q=+10		"11"=Absent
Training	Paternal Allel	e Maternal Allele	Pŀ	nenotype

Training	Paternal Allele	Maternal Allele	Phenotype
1	"00"	"00"	10
2	"00"	"01"	15
3	"01"	"01"	20
4	"10"	"00"	15
5	"10"	"01"	20
6	"10"	"10"	20

(Large Sample) Solutions - mu=10.98 SNP1=2.95 SNP2=4.46

SNP Models Spuriously Predict Haplotypes NOT in Training

Real Effects	SNP2=0	SNP2=2
SNP1=0	"00" Q=+5	"01" q=+10
SNP1=1	"10" q=+10	"11"=Absent

Training	Paternal Allele	Maternal Allele	Phenotype	Prediction
1	"00"	"00"	10	11.0
2	"00"	"01"	15	15.4
3	"01"	"01"	20	19.9
4	"10"	"00"	15	13.9
5	"10"	"01"	20	18.4
6	"10"	"10"	20	21.3

(Large Sample) Solutions – mu=10.98 SNP1=2.95 SNP2=4.46

All Predictions are within 2 units of the true values

SNP Models Spuriously Predict Haplotypes NOT in Training

Real Effects	SNP2=0	SNP2=2
SNP1=0	"00" Q=+5	"01" q=+10
SNP1=1	"10" q=+10	"11"=Now Present

Now the validation includes a haplotype allele missing in training

Validation	Paternal Allele	Maternal Allele	Phenotype "11"=q=5	Prediction
7	"00"	"11"	5+5=10	18.4
8	"10"	"11"	10+5=15	21.3
9	"01"	"11"	10+5=15	22.9
10	"11"	"11"	5+5=10	25.8

Now all predictions are biased upwards! all off by at least 6 units and up to 16 units if "11"=q

SNP Models Spuriously Predict Haplotypes NOT in Training

Real Effects	SNP2=0	SNP2=2
SNP1=0	"00" Q=+5	"01" q=+10
SNP1=1	"10" q=+10	"11"=Now Present

Now the validation includes a haplotype allele missing in training

Validation	Paternal Allele	Maternal Allele	Phenotype "11"=q=5	Phenotype "11"=Q=10	Prediction
7	"00"	"11"	5+5=10	5+10=15	18.4
8	"10"	"11"	10+5=15	10+10=20	21.3
9	"01"	"11"	10+5=15	10+10=20	22.9
10	"11"	"11"	5+5=10	5+10=15	25.8

Now all predictions are biased upwards!
all off by at least 6 units and up to 16 units if "11"=q
And off by 1 to 10.8 units if "11"=Q

The worst prediction is for animals homozygous for the allele missing in training

Conclusions - There are good reasons to fit:

- Common haplotype alleles
 - They can capture more LD with QTL than SNP sets that do not include the causal mutations
 - The model means that alleles seen for the first time in validation will be recognized as unknown and predicted to be "average" rather than possibly extreme
- And SNP alleles (as well), particularly if these include possible causal mutations as they could fit the causal mutation with 1 degree of freedom
 - · assuming a mixture model

Haplotypes Detected from 50K

- Average 1Mb window contains about 20 SNP
- There are >1 million haplotypes possible per window
- Many of the observed haplotypes are only seen once
 - Result of a genotyping error
 - Maternally inherited alleles tracing to maternal founders
- Common haplotypes (seen at least 1% time) average from 15-20 variants per 1 Mb window
- Its not possible to reliably estimate rare haplotypes (seen <1% time)
- But most animals carry numerous rare haplotypes

Birthweight Predictions

Validation breed	Size	50K SNP		
vanuation breed	Size	SNP	1Mbp	$500 \mathrm{Kbp}$
AAN, across	1905	0.27	0.274	0.296
CHA, across	1044	0.198	0.309	0.263
GVH, across	1214	0.201	0.151	0.175
HER, across	1000	0.251	0.259	0.277
HER, within	1000	0.787	0.779	0.798
HER, multi	1000	0.666	0.661	0.674
SIM, across	1000	0.319	0.33	0.363
SIM, within	1000	0.674	0.67	0.679
SIM, multi	1000	0.629	0.601	0.623
SIMX, across	772	0.392	0.391	0.394
SIMX, within	772	0.395	0.402	0.399
SIMX, multi	772	0.486	0.493	0.486
GVHX, across	369	0.137	0.16	0.152

Correlations between genomic prediction and DEPD

Birthweight predictions

Validation breed	Size	50K SNP		
vandation breed	Size	SNP	1Mbp	$500 \mathrm{Kbp}$
AAN, across	1905	0.502	0.516	0.607
CHA, across	1044	0.483	0.92	0.641
GVH, across	1214	0.571	0.591	0.535
HER, across	1000	0.65	1.124	0.863
HER, within	1000	1.206	1.231	1.226
HER, multi	1000	1.099	1.153	1.126
SIM, across	1000	1.076	1.241	1.149
SIM, within	1000	1.085	1.182	1.133
SIM, multi	1000	1.044	1.017	1.029
SIMX, across	772	1.028	1.082	1.007
SIMX, within	772	0.851	0.87	0.859
SIMX, multi	772	1.036	1.096	1.037
GVHX, across	369	0.345	0.5	0.39

Regressions of DEPD on genomic prediction

Haplotype Models

- Did not markedly improve the accuracy of prediction across breeds
- Did not markedly reduce the bias even in prediction across breeds
- Similar results were obtained using imputed 700K markers and resultant haplotypes, and for different window sizes
 - But narrower (than 1 Mb) windows were usually better

"Hybrid" Mixed Model Equations

$$\begin{bmatrix} X'X & X'ZM & X_n'Z_n \\ M'Z'X & M'Z'ZM + \phi & M_n'Z_n'Z_n \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn}\lambda \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_n \end{bmatrix}$$

$$where \ X = \begin{bmatrix} X_n \\ X_g \end{bmatrix}, Z = \begin{bmatrix} Z_n & 0 \\ 0 & Z_g \end{bmatrix}, M = \begin{bmatrix} M_n \\ M_g \end{bmatrix} = \begin{bmatrix} A_{ng}A_{gg}^{-1}M_g \\ M_g \end{bmatrix}, y = \begin{bmatrix} y_n \\ y_g \end{bmatrix}$$

$$\widehat{u_n} = M_n \widehat{\alpha} + \widehat{\varepsilon_n}$$

NB Single-Step GBLUP
is a special case of the above
(but in this equivalent model no inversion is needed)

$$M_n = A_{ng} A_{gg}^{-1} M_g$$

An extension to the single-step hybrid model

- with additional polygenic effect to capture variation not captured by markers
 - Allows models comparable to SS-GBLUP where

$$\begin{bmatrix} y_n \\ y_g \end{bmatrix} = \begin{bmatrix} X_n \\ X_g \end{bmatrix} b + \begin{bmatrix} Z_n & 0 \\ 0 & Z_g \end{bmatrix} \begin{bmatrix} A_{ng} A_{gg}^{-1} M_g \\ M_g \end{bmatrix} \alpha_d + \begin{bmatrix} Z_n & 0 \\ 0 & Z_g \end{bmatrix} a_d + \begin{bmatrix} Z_n \\ 0 \end{bmatrix} \boldsymbol{\varepsilon}_{nd} + \begin{bmatrix} e_n \\ e_g \end{bmatrix}$$

$$y = X b + Z \qquad M \qquad \alpha_d + Z \qquad a_d + Z_{_n} \boldsymbol{\varepsilon}_{nd} + e$$

$$\begin{split} \lambda_{a} &= \frac{\sigma_{e}^{2}}{\sigma_{a}^{2}} \\ \sigma_{a}^{2} &= \frac{c\sigma_{g}^{2}}{2\overline{p}\,q\,k\,(1-\pi)} \\ \lambda_{a} &= \frac{2\overline{p}\,q\,k\,(1-\pi)\,\sigma_{e}^{2}}{c\,\sigma_{g}^{2}} \, \text{where } c = \text{proportion of genetic variance accounted for by markers} \\ \lambda_{\epsilon} &= \frac{\sigma_{e}^{2}}{c\,\sigma_{g}^{2}} \\ \lambda_{a} &= \frac{\sigma_{e}^{2}}{(1-c)\,\sigma_{g}^{2}} \end{split}$$

$$y = Xb + ZM\alpha_d + Za_d + Z_n \varepsilon_{nd} + e$$

$$\begin{bmatrix} X'X & X'ZM & X'Z & X'Z_{_n} \\ M'Z'X & M'Z'ZM + I\lambda_{\alpha} & M'Z'Z & M'Z'Z_{_n} \\ Z'X & Z'ZM & Z'Z + A^{-1}\lambda_{a} & Z'Z_{_n} \\ Z_{_n}'X & Z_{_n}'ZM & Z_{_n}'Z & Z_{_n}'Z_{_n} + A^{nn}\lambda_{\varepsilon} \end{bmatrix} \begin{bmatrix} b \\ \alpha_d \\ a_d \\ \varepsilon_{nd} \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z'y \\ Z_{_n}'y \end{bmatrix}$$

Partitioning the "a" part of these equations into "g" and "n" results in the following

$$\begin{bmatrix} X'X & X'ZM & X_n'Z_n & X_g'Z_g & X_n'Z_n \\ M'Z'X & M'Z'ZM + I\lambda_\alpha & M_n'Z_n'Z_n & M_g'Z_g'Z_g & M_n'Z_n'Z_n \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn}\lambda_a & A^{ng}\lambda_a & Z_n'Z_n \\ Z_g'X_g & Z_g'Z_gM_g & A^{gn}\lambda_a & Z_g'Z_g + A^{gg}\lambda_a & 0 \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n & 0 & Z_n'Z_n + A^{nn}\lambda_\varepsilon \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ a_n \\ a_g \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_n \\ Z_g'y_g \\ Z_n'y_n \end{bmatrix}$$

Equivalent (Sparser) Model

$$\begin{bmatrix} X'X & X'ZM & X_n'Z_n & X_g'Z_g & 0 \\ M'Z'X & M'Z'ZM + I\lambda_a & M_n'Z_n'Z_n & M_g'Z_g'Z_g & 0 \\ Z_n'X_n & Z_n'Z_nM_n & Z_n'Z_n + A^{nn}\lambda_a & A^{ng}\lambda_a & -A^{nn}\lambda_a \\ Z_g'X_g & Z_g'Z_gM_g & A^{gn}\lambda_a & Z_g'Z_g + A^{gg}\lambda_a & -A^{gn}\lambda_a \\ 0 & 0 & -A^{nn}\lambda_a & -A^{ng}\lambda_a & A^{nn}(\lambda_\varepsilon + \lambda_a) \end{bmatrix} \begin{bmatrix} b \\ \alpha \\ a_n + \varepsilon_n \\ a_g \\ \varepsilon_n \end{bmatrix} = \begin{bmatrix} X'y \\ M'Z'y \\ Z_n'y_g \\ Z_g'y_g \\ 0 \end{bmatrix}$$

This model is only trivially more difficult than the model without an additional polygenic effect. We are currently using the multi-breed, multi-trait, maternal effects version of this model for IGS and AHA.