Nonparametric Estimation of Hawkes Causality

Massil Achab † , Emmanuel Bacry † , Stéphane Gaïffas † , Iacopo Mastromatteo * and Jean-François Muzy †,‡

† Ecole Polytechnique, * Capital Fund Management, ‡ Université de Corse

Summary

We propose a new method to measure causal relaships between nodes (users) based on their activity timestamps. We answer to the question *How many events of type j does an event of type i cause?*

Introduction

A temporal point process is a collection of points $Z = \{\tau_1, \tau_2, \ldots\}$ randomly located on \mathbb{R}^+ . Another representation is based on the counting process $N_t = \sum_{\tau \in Z} \mathbb{1}_{\tau \leq t}$.

Figure 1: Example of multivariate point process

The vector of stochastic intensities $\lambda_t = [\lambda_t^1 \cdots \lambda_t^D]^{\top}$ associated with the multivariate counting process N_t is defined as

$$\lambda_t^i = \lim_{dt \to 0} \frac{\mathbb{P}(N_{t+dt}^i - N_t^i = 1 | \mathcal{F}_t)}{dt}.$$

 N_t is called a **Hawkes point process** if the stochastic intensities can be written as

$$\lambda_t^i = \mu^i + \sum_{j=1}^D \sum_{\tau_i \in Z^j} \phi^{ij} (t - \tau_j),$$

where $\mu^i \in \mathbb{R}^+$ is an exogenous intensity and ϕ^{ij} are positive, integrable and causal (with support in \mathbb{R}^+) functions called *kernels* encoding the impact of an action by j on the activity of i.

Hawkes Causality

Instead of trying to estimate the kernels ϕ^{ij} , we focus on the direct estimation of their *integrals*:

$$g^{ij} = \int_0^{+\infty} \phi^{ij}(u) du. \tag{1}$$

The matrix G can be seen as a weighted adjacency matrix. Using Hawkes process representation as a Poisson cluster process [1], we introduce the counting function $N_t^{i \leftarrow j}$ that counts the number of events of i whose direct ancestor is an event of j. We know that

$$\mathbb{E}[dN_t^{i \leftarrow j}] = g^{ij}\mathbb{E}[dN_t^j] = g^{ij}\Lambda^j dt. \tag{2}$$

We refer to learning the kernels' integrals as uncovering Hawkes causality since each integral encodes the number of events directly caused from a node to another node, as described at Eq. (2). This is also linked to Granger causality (see the paper for more details).

Integrated Cumulants

A general formula for the cumulants of Hawkes processes is provided in [2] (cumulants are centered moments, up to the third order). The integrals of these cumulants are related to $\mathbf{R} = (\mathbf{I} - \mathbf{G})^{-1}$. For the purpose of our method, we only need to consider cumulants up to the third order.

$$\Lambda^{i} = \sum_{m=1}^{D} R^{im} \mu^{m} \tag{3}$$

$$C^{ij} = \sum_{m=1}^{D} \Lambda^m R^{im} R^{jm} \tag{4}$$

$$S^{ijk} = \sum_{m=1}^{D} (R^{im}R^{jm}C^{km} + R^{im}C^{jm}R^{km} + C^{im}R^{jm}R^{km} - 2\Lambda^{m}R^{im}R^{jm}R^{km}).$$
 (5)

We designed asymptotically unbiased estimators of the integrated cumulants above, see the paper for details.

Nonparametric Estimation

To recover G, we minimize the following criterion using SGD:

$$\mathcal{L}(\mathbf{R}) = (1 - \kappa) ||\mathbf{S}_{\mathbf{c}}(\mathbf{R}) - \widehat{\mathbf{S}}_{\mathbf{c}}||_{2}^{2} + \kappa ||\mathbf{C}(\mathbf{R}) - \widehat{\mathbf{C}}||_{2}^{2},$$
(6)

Our method is called **NPHC** (for Nonparametric Hawkes Cumulants).

Consistency of NPHC

Suppose that (N_t) is observed on \mathbb{R}^+ and assume that

- $\cdot g_0(\mathbf{R}) = 0$ if and only if $\mathbf{R} = \mathbf{R}_0$;
- $\mathbf{R} \in \Theta$, which is a compact set;
- the spectral radius of the kernel norm matrix satisfies $||\boldsymbol{G}_0|| < 1$;
- $\bullet H_T \to \infty \text{ and } H_T^2/T \to 0.$

Then

$$\widehat{\boldsymbol{G}}_T = \boldsymbol{I} - \left(\arg\min_{\boldsymbol{R}\in\Theta} \mathcal{L}_T(\boldsymbol{R})\right)^{-1} \stackrel{\mathbb{P}}{\longrightarrow} \boldsymbol{G}_0.$$

Results

We consider the following 8-dimensional point process, already introduced in [3], which models the dynamic of an order book:

$$N_t = (P_t^+, P_t^-, T_t^a, T_t^b, L_t^a, L_t^b, C_t^a, C_t^b)$$

Each dimension counts the number of events before t:

- P^+ (P^-): upwards (downward) mid-price move triggered by any order.
- T^a (T^b): market order at the ask (bid) that does not move the price.
- $L^a\left(L^b\right)$: limit order at the ask (bid) that does not move the price.
- C^a (C^b): cancel order at the ask (bid) that does not move the price.

Figure 2: Estimated $\widehat{m{G}}$ on DAX order book data.

References

- [1] A. G. Hawkes and D. Oakes.
 - A cluster process representation of a self-exciting process.
 - Journal of Applied Probability, pages 493–503, 1974.
- [2] S. Jovanović, J. Hertz, and S. Rotter. Cumulants of hawkes point processes. *Physical Review E*, 91(4):042802, 2015.
- [3] E. Bacry, T. Jaisson, and J.-F. Muzy. Estimation of slowly decreasing hawkes kernels: application to high-frequency order book dynamics. Quantitative Finance, 16(8):1179–1201, 2016.

Acknowledgements

This research benefited from the support of the École Polytechnique fund raising - Data Science Initiative.

The authors want to thank Marcello Rambaldi for fruitful discussions on order book data's experiments.

