pumping lemma per CFL

La forma normale di Chomsky (CNF) per le CFG prevede che tutte le produzioni siano:

A -> a, con a in T

A-> BC, con B e C variabili

non c'è ε!!

Teorema. Per ogni CFG G, esiste una CFG G' in CNF tale che $L(G')=L(G)-\{\epsilon\}$

ripuliamo la CFG

- --dai simboli inutili
- --dalle produzioni unitarie, i.e. A->B
- --dalla ε

un simbolo X è <u>utile</u> per una CFG se $S=>* \alpha X \beta =>* w$

un simbolo è generatore se X =>* w

è raggiungibile se $S = * \alpha X \beta$

prima di eliminano i non generatori e poi i non raggiungibili restano solo i simboli utili

esempio:

S-> AB | a

 $A \rightarrow b$

non generatori : B

resta S -> a e A -> b

ma A è diventato non raggiungibile, quindi

resta

S -> a

Attenzione all'ordine

Teorema 7.2 data la CFG G, costruiamo G1 in 2 passi:

- Otteniamo G2 da G eliminando da G le variabili non generatrici e le produzioni in cui queste variabili compaiono
- 2) Otteniamo G1 da G2 eliminando da G2 i simboli non raggiungibili
- G1 contiene tutti e soli i simboli utili di G e quindi L(G1)=L(G)

Dimostrazione: (1) butta variabili e produzioni che non generano (2) butta variabili e produzioni che non sono raggiungibili da S, mai variabili utili

calcolo dei simboli generatori ∏:

-base: i simboli terminali sono generatori, $\prod = T$ -induzione: aggiungiamo a \prod tutte le variabili X t.c. esiste $X \rightarrow \alpha$ in cui α ha solo simboli in \prod

fino a quando ∏ cresce

Calcolo dei simboli raggiungibili

Base: R contiene S

Induzione: Aggiungere ad R i simboli in β tale che A-> β per A in R

Nello stesso modo:

calcolo dell'insieme Z dei simboli che producono ϵ

base: $X \rightarrow \epsilon$ mettiamo X in Z

induzione: aggiungiamo a Z ogni Y tale che

Y-> α con i simboli di α tutti in Z

Per una qualsiasi CFG G possiamo costruire G' t.c. $L(G')=L(G)-\{\epsilon\}$ e senza ϵ -produzioni

Idea della costruzione di G':

Prendiamo una qualsiasi produzione p di G, A->X1...Xk, se m dei k Xi sono in Z, allora G' ha 2^m produzioni ottenute da p annullando tutti i sottoinsiemi delle m Xi

non si considera m=k, infatti A è in Z

Le produzioni A -> ϵ sono eliminate

Esempio: S-> AB A-> a AA | ε B-> bBB | ε

S-> AB | A | B A->aAA | aA | aA | a B-> bBB | bB | bB | b

Z={A,B,S} quindi G' ha

La forma normale di Chomsky (CNF) per le CFG prevede che tutte le produzioni siano:

A -> a, con a in T

A-> BC, con B e C variabili

Teorema 7.17.

Negli alberi di derivazione di una CFG in CNF è vero che se il cammino più lungo è di lunghezza n, allora il prodotto w è t.c. $|w| <= 2^{n-1}$

Dimostrazione: per induzione su n **Base**: n=1 l'albero consiste della radice e di una foglia etichettata con un terminale Prodotto w = foglia quindi $|w|=1=2^{1-1}$ Induzione: altezza n. La radice usa A->BC B e C sono radici di alberi di altezza al massimo n-1,

quindi i loro prodotti, per ipotesi induttiva, sono di lunghezza al più 2^{n-2} , e $2 * 2^{n-2} = 2^{n-1}$

Conseguenza:

se m è il numero delle variabili della grammatica in CNF: un albero con prodotto w t.c. $|w|=2^m$ deve avere un cammino di lunghezza >= m+1

e allora su quel cammino almeno una variabile ripete

Quindi nel seguito $n = 2^m$

$$z = uvwxy$$

 $con |vwx| <= n e vx != \varepsilon$

In z = uvwxy deve essere vero che $|vwx| \le n$ e $vx != \varepsilon$:

Perché l'altezza di A' è \leq m+1 (infatti in un albero di questa altezza c'è ripetizione) e quindi il suo prodotto xwx ha lunghezza \leq 2^m=n

Inoltre il cammino da A' a A'' è costruito con produzione X->BC e ogni nonterminale deve produrre qualche terminale (per la CNF) e quindi |vx|>0

Basta ora osservare che dall'albero della figura precedente possiamo generare un numero infinito di alberi che sono tutti della grammatica di partenza:

- --in A' possiamo incollare l'albero con radice A'', ottenendo l'albero con prodotto uwy
- --possiamo incollare in A'' l'albero con radice A', ottenendo il prodotto uv²wx²y
- --dall'albero appena costruito, potremmo di nuovo incollare in A'' l'albero con radice A' ottenendo il prodotto uv³wx³y
- --in questo modo possiamo ottenere alberi di derivazione con prodotto uviwxiy per qualsiasi i>=0.

Il pumping Lemma serve (tra l'altro) a dimostrare che certi linguaggi non sono CF

Esempio: $L=\{0^n1^n2^n \mid n>0\}$ non è CF

Per il pumping lemma, esiste n tale che ogni z più lunga di n è z=uvwxy. Scegliamo z= 0ⁿ1ⁿ2ⁿ sappiamo che |vwx | <= n e quindi o contiene degli 0 o contiene dei 2, ma non entrambi.

Supponiamo che vwx contenga 0 e non 2. Quindi ripetendo v e x (non entrambi vuoti) aumento il n. di 0 e/o 1 mantenendo inalterato il n. di 2 e quindi otterrei una stringa che non è nel linguaggio L.