Lecture 1 Introduction

Introduction to Database

Outline

- Understand the reasons of using a database
- Know the topics covered in this class
- Know the preliminary of database
- Know the data model and data schema

Purpose of database

CS211 – Introduction to Database

To store data using file system

- University info
 - Instructors, students, departments, course offerings
- File Processing System: store data in files
- What to store and how to store?
- Single file
 - Store all the information in a single list
 - Structure of a node: Instructor ID, instructor Name, studentID, studentName, departmentID for instructor, departmentID for student ...
- Multiple files
 - Instructor file, student file, department file, course file, course enrollment file
 - Instructor file: Instructor ID, instructor Name, department ID ...

To store data using file system

- How to interact with the data?
 - Read, write, update
- Applications are needed
 - Query: return the average scores of courses
 - Add new students, instructors and courses
 - Course enrollment for students
 - Generate class rosters
 - Generate transcripts
 - ...

- Considering the application code for
 - Adding a new student
 - Input the student info and write it in the file or
 - Checking duplicate first to avoid repeat writing
 - Update the course name "DB" as "database"
 - Just update "DB" in course file or
 - Search all files containing course name DB and update it

Course file

cs211 DB database cs385 Machine learning

Student file

0001 Amy Choo 20 CS 0002 John Yeo 21 CS 0002 John Yeo 21 CS

Course enrolment file

0001 cs211 DB database0002 cs385 Machine learning0001 cs385 Machine learning

- Considering the application code for
 - Deleting a student
 - Just delete the student from student file or
 - Search all files containing the student and delete its related information

Student file

0001 Amy Choo 20 CS 0002 John Yeo 21 CS

Course enrolment file

0001 cs211 DB 0002 cs385 Machine learning 0001 cs385 Machine learning

- Considering the application code for
 - Displaying students and enrolled class
 - Display all the data from enrollment file, but
 - Student name is missing

Difficulty in accessing data

Course enrolment file

0001 cs211 DB 0002 cs385 Machine learning 0001 cs385 Machine learning

- Solution 1, coding for searching in student file
- E.g. get 0001 from course enrollment file,
- search the name of student with ID 0001
- return the name Amy Choo

Student file

0001 Amy Choo 20 CS 0002 John Yeo 21 CS

- Considering the application code for
 - Displaying students and enrolled class
 - Display all the data from enrollment file, but
 - Student name is missing

Course enrollment file

0001 cs211 DB 0002 cs385 Machine learning 0001 cs385 Machine learning

Solution 2, add student name into the course enrollment file

Course enrollment file

0001 Amy Choo cs211 DB0002 John Yeo cs385 Machine learning -0001 Amy Choo cs385 Machine learning

Redundancy, Keeping Integrity

Student file

0001 Amy Choo 20 CS 0002 John Yeo 21 CS

Purpose of database

- To store data
- To provide organizational structure for data
- To provide a mechanism for querying, creating, modifying and deleting data
- To provide functionalities such as keeping consistency, easily accessing data, keeping integrity, supporting concurrent-accessing, security etc.…

Topics covered in this class

CS211 – Introduction to Database

Data Modeling

Database Design

SQL

Transaction Indexing Concurrency etc.

No-SQL Database

- What is No-SQL?
 - Not only SQL or Non-SQL
 - NoSQL databases are databases that store data in a format other than relational tables
- Why No-SQL?
 - Huge amounts of data came in all shapes and sizes.
 - It makes data Management using Relational DB become nearly impossible.
 - NoSQL databases allow developers to store huge amounts of unstructured data, giving them a lot of flexibility.

SQL vs No-SQL

• Student in relational databases

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

Student in key-value databases

sID:"123", sName:"Amy",GAP:3.9 etc.

Topics

- SQL
 - Relational algebra, relational model
 - Basic SQL (create, insert, select, update, delete)
 - Advanced SQL(aggregation, create view)
 - Integrity (create trigger)
 - Embedded SQL

- Data modelling & design
 - ER model
 - Functional dependencies
 - Normal form
- Transaction
 - Transaction
 - Isolation level
 - Indexing
- NoSQL
 - Data Model
 - MongoDB Document
 - Data manipulation and design

Database – A Preliminary Understanding

CS211 – Introduction to Database

Database

Everything over DB - Support Query and Analysis

- Database
 - Collection of related data
 - Storage place for data
 - Get information from

Database, table

Students

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

Table

 an arrangement of words, numbers, or signs, or combination of them, as in parallel columns, to exhibits a set of facts or relations in a definite, compact, and comprehensive form

Webster's Dictionary of the English Language

Table and relation

- E.F.Codd, basing on the understanding of table,
 - Proposed: relation, relational model
 - They are the theoretical basis for relational databases and relational database management systems

What's inside a table?

- Table / relation
 - Relational schema
 - Table name
 - Table format
 - Table content
 - row / tuple / record
 - column / field / attribute
 - Column name
 - value

Student

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

Database: collection of related tables

Database: different types

Image database

Project database

Database System

- DB: DataBase
- DBMS: DataBase Management System
- DBAP: DataBase Application
- DBA: DataBase Administrator
- Computer System: computer, network, os, I/O etc.

Books Management System

System

DataBase Management System

- From user's point of view
 - Database definition: schema definition for tables
 - DDL: Data Definition Language
 - Database manipulation: query/add/delete/update data

Student

- DML: Data Manipulation Language
- Database access control: Authorization
 - DCL: Data Control Language
 - control access to data stored in a database
- Database maintenance
 - App: backup/restore/performance monitoring

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

SQL

• SQL vs. High-level programming language

select sName from student where GPA>3.4

for each tuple if tuple.GPA > 3.4 then printout(tuple.sName) Student

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

Embedded SQL

```
# To connect to MariaDB Server using MariaDB Connector/Python
In [ ]:
            import mariadb
            # Connect to database **information schema**
            conn = mariadb.connect(
                    user="root",  # use your uid
password="root1234",  # use your password
                    host="127.0.0.1", # localhost
                                # default port used by MariaDB
                    port=3306,
                    database="information schema" )
            # Get Cursor for information schema
            cur = conn.cursor()
            # Show databases on the server
            cur.execute("SELECT schema_name FROM schemata")
            for database in cur:
                print(database)
```

DataBase Management System

- From system's point of view
 - Compiler
 - Execution Engine: optimization, query algorithm…
 - Data access and indexing
 - Interaction with the OS File System
 - Concurrency control
 - Transaction Management
 - Recovery: backup, log …
 - Security control
 - Integrity control
 - Data dictionary

Database Architecture

Roles

- End-user, Naïve users Application interface
- Sophisticated users query language, interactive SQL
- Application programmers: Embedded SQL, Concept about transaction
- Database analyzer and designer: data modeling, Concept about normalization
- Database administrator: Database maintenance, Definition for: Security, Integrity, Recovery, Schema, Storage structure and access-method
- Database management system designer and implementor: implementation technique of above
- Specialized users write specialized database applications
- Techniques for special and new database management system e.g. noSQL, XML DB, Multimedia DB

Data Model and Data Schema

CS211 – Introduction to Database

3-Schema Architecture

- External level = user level (Local)
- Conceptual level = logic level (Global)
- Internal level = physical level (Index...)

Schema – organization of data

• The database schema of a database system is its structure

- Schema
 - Describe the structure
 - sID char(8)
 - sName varchar(20)
 - GPA real
 - sizeHS int

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

View/data

3-schema/view, 2 mappings, 2 independences

- Logic data independence
 - Physical data independence

Data Model

data

- Data model: structure of schema
- Relational model
 - Table/Relation
 - Relation Calculation
 - Constrains about table

schema

schema1: student(sID char(8), sName varchar(20), GPA real, sizeHS int)

Table (field1, field2 ··· fieldn)

Relational data model

schema2: college(cName char(8), stat char(5), enrollment int)

sID	sName	GPA	sizeHS
123	Amy	3.9	1000
234	Bob	3.6	1500
345	Craig	3.5	500
456	Doris	3.9	1000
567	Edward	2.9	2000
678	Fay	3.8	200
789	Gary	3.4	800
987	Helen	3.7	800
876	Irene	3.9	400
765	Jay	2.9	1500
654	Amy	3.9	1000
543	Craig	3.4	2000

	cName	stat	enrollment
	Stanford	CA	15000
•	Berkeley	CA	36000
	MIT	MA	10000
	Cornell	NY	21000

3 types of data model

- Relational: table
- Hierarchical: tree
- Network: graph

