Relación

Es un conjunto de pares ordenados, es un conjunto de tuplas.

Exótico a recordar:

Sea R una relación, si aRa entonces esto es por que $R \subset A \times A$. De igual modo si aRb entonces $R \subset A \times B$.

Properties of Relations

We introduce special terms to describe relations.

Definition 14.7 (**Properties of relations**) Let R be a relation defined on a set A.

- If for all $x \in A$ we have x R x, we call R reflexive.
- If for all $x \in A$ we have $x \not R x$, we call R irreflexive.
- If for all $x, y \in A$ we have $x R y \Longrightarrow y R x$, we call R symmetric.
- If for all $x, y \in A$ we have $(x R y \land y R x) \Longrightarrow x = y$, we call R antisymmetric.
- If for all $x, y, z \in A$ we have $(x R y \land y R z) \Longrightarrow x R z$, we call R transitive.

Relación de equivalencia

Una relación es de equivalencia si es reflexiva, simetrica y transitiva.

Se denota por ejemplo $a \sim b$ y se lee **a** es equivalente a **b**.

ei:

Verifique si la siguiente relación es de equivalencia:

- sea R una relación en los numeros reales tal que aRb sii a-b es un entero.
- \Rightarrow es reflexiva? aRa, tenemos entonces: a-a=0, $0\in\mathbb{Z}$. Por lo tanto es reflexiva.
- ightarrow es simetrica? $aRb \rightarrow bRa$, así si a-b=c, $c \in \mathbb{Z}$, entonces b-a=-(a-b)=-c, y además $-c \in \mathbb{Z}$, por lo tanto también es simética.
- ightarrow es transitiva? $(aRb) \wedge (bRc) \rightarrow aRc$, por hipotesis tenemos $a-b=d,\ d\in \mathbb{Z}$, también hay que $b-c=e, e\in \mathbb{Z}$.

a=b+d y c=b-e, entonces:

$$a-c=(b+d)-(b-e)$$

$$=d+e=f,f\in\mathbb{Z}$$

entonces dado que se cumplen las 3, la relación aRb, es de equivalencia.

Congruencia módulo N

sea $n \in \mathbb{Z}^+$, decimos que x e y son congruentes módulo n, y se escribe:

$$x \equiv y \pmod{n}$$

Esto no es más que (x-y) es un múltiplo de n. en notación: n|(x-y).

Una afirmación importante es que \equiv (congruencia módulo n) en el conjunto de los enteros:

1. es la congruencia módulo n **reflexiva**? Debemos verificar que xRx o lo que es lo mismo $x \equiv x$.

tenemos (x-x)=0, no es difícil notar que n|0 por lo tanto es reflexiva.

2. es la congruencia módulo n **simétrica**? $x \equiv y \rightarrow y \equiv x$.

Partiendo de n|(x-y), tenemos entoces que existe un entero z tal que $n \cdot z = (x-y)$, si ahora hacemos $n \cdot -z$ vemos que esto es: (y-x). puesto que z era entero tenemos que la congruencia módulo n es simética en el conjunto de los enteros.

3. es la congruencia módulo n **transitiva**? $(x \equiv y) \land (y \equiv z) \rightarrow x \equiv z$.

Partiendo de n|(x-y) y n|(y-z) , entonces $n\cdot w$ y $n\cdot k$ son (x-y) y (y-z) respectivamente, donde $w,k\in\mathbb{Z}.$

Ahora

$$x - z = x - z + 0$$
 $= x - z + y - y = (x - y) + (y - z)$
 $= (n \cdot w) + (n \cdot z)$
 $= n(w + z)$

dado que $w,z\in\mathbb{Z}$ tenemos que la operación módulo es transitiva.

Finalmente tenemos que la operación cumple reflexividad, simetría y transitividad. Por lo que cumple con la relación de equivalencia.