Rozkład liczb na czynniki.

3 grudnia 2013

Rozkład Fermata

Chcemy rozłożyć liczbę q na czynniki przy pomocy algorytmu Fermata. Algorytm przebiaga następująco:

- 1. Przedstawiamy liczbę q jako $a = 2^k * n$
- 2. Obliczamy x = $\lfloor \sqrt{n} \rfloor$ (gdzie $\lfloor . \rfloor$ to część całkowita liczby np. $\lfloor 1.6 \rfloor = 1$). Jeżeli $\sqrt{n} = \lfloor \sqrt{n} \rfloor$ (jest liczbą całkowitą) to n ma dzielnik x z krotnością 2 $(n=x^2)$. Jeżeli tak nie jest to x=x+1 i przechodzimy do następnego kroku.
- 3. Dopóki x < (n+1)/2 wykonujemy następujące kroki:
 - (a) Obliczamy $y^2 = x^2 n$
 - (b) Jeżeli $y^2 > 0$ i $\left| \sqrt{y^2} \right| = \sqrt{y^2}$ to liczba n ma podzielniki równe y + x, x y
 - (c) Jeżeli nie to x = x + 1

Część pierwsza zadania polega na napisaniu programu, którego wynikiem jest lista pierwszych podzielników danej liczby q z ich krotnościami, np dla q=78 wynikiem będzie lista [2,3,13] z krotnościami [1,1,1] bo $78=2^{1}3^{1}13^{1}$.

Test Lucasa: n- nieparzysta liczba naturalna, b liczba całkowita $2 \le b \le n-1$, $n-1=p_1^{e_1}*...p_n^{e_n}$, gdzie p_n są liczbami pierwszymi. Jeżeli dla każdego p_n zachodzą relacje:

- 1. $b^{n-1} \equiv 1 \pmod{n}$
- 2. $b^{\frac{n-1}{p_n}} \not\equiv 1 \pmod{n}$

to n jest liczbą pierwszą (ponownie skuteczność testu zależy od wyboru liczby b).

Zadanie: korzystając z progarmu rozkładającego liczby na czynniki pierwsze należy zaimplementować podane testy na perwszość liczb.