Diseño y simulación de un procesador cuántico superconductor

 $\label{eq:miguel Casanova} \mbox{Departamento de Electrónica y Circuitos}^1, \mbox{Universidad Simón Bolívar}$

2018 September

 $^{^1\}mathrm{I}$ am no longer a member of this department

Índice general

1.	Intr	oducción	2			
2.	Info	Información cuántica				
	2.1.	Función de onda	3			
		2.1.1. Espacio de Hilbert	5			
	2.2.	Herramientas necesarias	6			
		2.2.1. Delta de Kronecker	6			
		2.2.2. Notación de Dirac	6			
	2.3.	Operadores unitarios	8			
	2.4.	Producto tensorial	8			
		2.4.1. Propiedades	8			
		2.4.2. Nota sobre la notación	8			
	2.5.	Postulados de la mecánica cuántica	9			
	2.6.	Matriz de densidad	9			
		2.6.1. Propiedades	0			
	2.7.	Traza parcial	1			
		2.7.1. Comparación con el producto tensorial	2			
	2.8.	Entrelazamiento	2			
		Computación cuántica	3			
		2.9.1. Qubits	3			
		2.9.2. Esfera de Bloch	3			
		2.9.3. Conmutador y anticonmutador	4			
		2.9.4. Matrices de Pauli	4			
		2.9.5. Compuertas cuánticas	5			
		2.9.6. Conjuntos universales de compuertas cuánticas 1	9			
		2.9.7. Compuertas no cliffordianas 2	0			
		2.9.8. Circuitos cuánticos	0			
		2.9.9. Algoritmos cuánticos	0			
		2 9 10 Criterios de DiVincenzo	n			

	2.10.	Fidelidad	20
	2.11.	Medidas	20
3.	erconductividad 2	21	
	3.1.	Cuantización macroscópica y superconductividad	21
			23
	3.3.	Cuantización del flujo magnético y efecto Josephson	33
		3.3.1. Efecto Josephson	37
	3.4.	Efecto Josephson	41
		3.4.1. Efecto Josephson DC	42
		3.4.2. Efecto Josephson AC	42
	3.5.	Componentes de la corriente en las junciones de Josephson	43
	3.6.	Qubits superconductores	43
	3.7.	Arquetipos de qubits superconductores	45
		3.7.1. Qubit de carga	45
		3.7.2. Qubit de flujo	45
		3.7.3. Qubit de fase	45
	3.8.	Transmones	46
	3.9.	Hamiltonianos multiqubit de transmones	46
		3.9.1. Acoplamiento capacitivo	47
		3.9.2. Acoplamiento por el resonador	47
		3.9.3. Acoplamiento de JJ	47
		3.9.4. Acoplamiento afinable/calibrable	47
	3.10.	Compuertas cuánticas en transmones	47
		1	47
		3.10.2. Pulsos de microondas	48
		1	48
		* * * * * * * * * * * * * * * * * * *	49
		0 1	49
			50
		3.10.7. Compuerta de entrelazamiento	50
		3.10.8. Compuertas compuestas	50
4.	El s	imulador :	51
	4.1.	Parámetros de los sistemas simulados	52
5.	Algo	oritmo de Grover	53
	_		58
			59
		· · · · · · · · · · · · · · · · · · ·	59

6.	Alg	oritmo de Shor	61
	6.1.	Estimación de orden	61
	6.2.	Transformadas integrales	70
		Transformada cuántica de Fourier	70
	6.4.	Estimación de fase	70
	6.5.	Estimación de orden	70
	6.6.	Algoritmo de Shor	70
7.	Goo	ogle PageRank	72
		7.0.1. El algoritmo de remiendo (parcheo) general	75
		7.0.2. Interpretación como una caminata aleatoria	76
		7.0.3. Cuantizando las caminatas aleatorias	77
		7.0.4. Caminata cuántica de Szegedy	78
		7.0.5. PageRank cuántico	79
Α.	Cálo	culos de Hamiltonianos	80
	A.1.	Hamiltoniano de Jaynes-Cummings	80
	A.2.	Hamiltoniano multiquibit	80
		Pulsos de microondas	80
		Régimen rotacional del pulso	81
	A.5.	Efecto del pulso sobre el qubit	83
		Régimen dispersivo	83
		Rotaciones X-Y	85
		Compuerta de entrelazamiento	86
в.	Cálo	culos de matrices de adyacencia	87
c.	Circ	cuitos cuánticos	88

Índice de figuras

5.1.	Circuito del algoritmo de Grover, k_{max} desconocido	56
5.2.	Interpretación geométrica del operador difusión	58
5.3.	Circuito del algoritmo de Grover.	58
5.4.		59
5.5.		59
5.6.		59
5.7.		60
7.1.	Grafo correspondiente a la matriz de adyacencia (a) de la red	
	E (b) remendada de Google G con $\alpha = \frac{1}{2}$	76

Índice de cuadros

Capítulo 6

Algoritmo de Shor

El algoritmo de Shor es un AC de factorización de enteros. Dado un entero $N=p\times q$, donde p y q son primos, el algoritmo de Shor encuentra p y q en $O((\log(N))^3)$ pasos. El algoritmo clásico más eficiente para factorizar enteros es la cibra general del cuerpo de números y funciona con una complejidad heurística de $O(e^{(\sqrt[3]{\frac{64}{9}}+o(1))(\ln(N))^{\frac{1}{3}}(\ln(\ln(N)))^{\frac{2}{3}}})$. Por su capacidad de factorizar números semiprimos, el algoritmo de Shor es capaz de violar el cifrado RSA y el protocolo Diffie-Hellman de intercambio de llaves, sobre los cuáles se basa virtualmente toda la criptografía actual.

6.1. Estimación de orden

Dado $m \in \mathbb{N}$, se dice que $a, b \in \mathbb{Z}$ son congruentes módulo m si y sólo si $(a-b)/m \in \mathbb{Z}$.

- 1. Se denota por $a \equiv b \mod m$, siendo m el módulo de la congruencia.
- 2. Si m divide a (a-b), ambos a y b tienen el mismo resto al ser divididos por el módulo m.

Ejemplos:

$$23 \equiv 2 \mod 7 \rightarrow 23 = 3 \times 7 + 2$$
$$-6 \equiv 1 \mod 7 \rightarrow -6 = -1 \times 7 + 1$$

Además si $m \in \mathbb{N}$ y $a, b, c, d \in \mathbb{Z}$ tales que:

$$a+c \equiv b+d \mod m$$

 $ac \equiv bd \mod m$

Por definición el orden $x \mod N$ es el menor entero r distinto de cero que satisface $x^r=1 \mod N$

Ejemplo:

Sea
$$x = 4, N = 13 \rightarrow 4^p = 13q + R$$
 $4^p \mod 13 = R$

p	4^p	$4^p = 13q + R$	R
0	1	$4^0 = 13 \times 0 + 1$	1
1	4	$4^1 = 13 \times 0 + 4$	4
2	16	$4^2 = 13 \times 1 + 3$	3
3	64	$4^3 = 13 \times 4 + 12$	12
4	256	$4^4 = 13 \times 19 + 9$	9
5	1024	$4^5 = 13 \times 78 + 10$	10
6	4096	$4^6 = 13 \times 315 + 1$	1
7	16384	$4^7 = 13 \times 1260 + 4$	4
8	65536	$4^8 = 13 \times 5041 + 3$	3
9	262144	$4^9 = 13 \times 20164 + 12$	12
10	1048576	$4^10 = 13 \times 80659 + 9$	9
11	4194304	$4^11 = 13 \times 322638 + 10$	10
12	16777216	$4^12 = 13 \times 1290555 + 1$	1
13	67108864	$4^13 = 13 \times 5162220 + 4$	4
14	268435456	$4^14 = 13 \times 20648881 + 3$	3
15	1073741824	$4^15 = 13 \times 82595524 + 12$	12
16	4294967296	$4^16 = 13 \times 330382099 + 9$	9

Como podemos ver el período es r=6, el cual corresponde al menor r entero distinto de cero para el cual se cumple $4^r = 1 \mod 13$ con r=6

$$\therefore 4^6 = 1 \mod 13$$

* Expansión en fracciones contínues: (Emmanuel Desurvire -; Apéndice R)

Definamos un número real
$$\chi_n = a_0 \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\dots a_n}}}}$$
 con $n \leq N$. Cada

número real en el conjunto $\{x_0, x_1, ..., x_{N-1}, x_N\}$ se denomina un convergente de x_n , mientras que x_n se denomina el n-ésimo convergente de x_n .

Propiedad 1:

El conjunto finito $\{a_0,a_1,a_2,...,a_n\}$ de números reales positivos corresponde a la razón: $x_n=\frac{p_n}{q_n}$, donde los p_n y q_n son definidos como:

$$p_n = a_n p_{n-1} + p_{n-2} \ q_n = a_n q_{n-1} + q_{n-2}$$

con
$$n \ge 2, p_0 = a_0, q_0 = 1, p_1 = 1 + a_0 a_1 y q_1 = a_1, \text{ para } n = 0, 1.$$

Propiedad 2:

Los números reales p_n , q_n son coprimos y satisfacen la relación:

$$q_n p_{n-1} - p_n q_{n-1} = (-1)^n$$

Propiedad 3:

Dado un número racional x, si dos enteros p, q son tales que:

$$\left|\frac{p}{q} - x\right| \le \frac{1}{2q^2}$$

Entonces p/q es un convergente de x.

Asumamos como ejemplo:

$$\phi = 711/413 = 1,72154963680387$$

$$\phi = 711/413 = 1,72154963680387$$
 Entonces:
$$\phi = 711/413 = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1$$

Supongamos que solo queremos 6 decimales de precisión, es decir sea $\ddot{\phi} = 1,721549$, tal que:

$$|\epsilon = |\phi - \tilde{\phi}| = 3,69910^{-7}$$

Si expandimos ϕ al igual que ϕ , encontramos que con sólo 7 a_n encontramos ϕ (ver tabla R1).

Por otro lado, $\frac{p_7}{q_7} \Longrightarrow \frac{711}{413}$ da la definición de ϕ . * Algoritmo de factorización de Shor

El algoritmo de factorización de Shor permite factorizar números los cuales se pueden descomponer en un producto único de números primos.

Dicho número N es un entero no-primo de L bits.

En un ordenador cuántico el algoritmo de Shor tendrá un tiempo de corrida del orden $O((L^3))$ (polinómico) y en un ordenador clásico es del $O(e^{[L^{1/3}(logL)^{2/3}]})$ (exponencial), mostrando así que el algorimo de Shor es capaz de factorizar números muy grandes en tiempos polinómicos.

En dicho algoritmo se conjugan:

1. Aritmética modular ;- Clásico 2. Paralelismo cuántico ;- Cuántico 3. Transformada cuántica de Fourier ;- Cuántico

El algoritmo consiste en dos etapas:

- 1) Una reducción del problema de descomponer en factores al problema de encontrar el orden
- 2) Un algoritmo cuántico para solucionar el problema de encontrar el período.

El algoritmo de Shor fue publicado en: P.W. Shor SIAM I. Comput. 26, 1484-1509 (1997(

Siguiendo el esquema de Emmanuel Desuvire Classical and Quantum Information Theory: An Introduction for the Telecom Scientist".

La parte cuántica del algoritmo de Shor la podemos dividir en 2 partes:

1) El algoritmo de estimación de fase 2) El algoritmo de determinación de orden

Entonces:

* Estimación de fase:

Asumamos que tenemos un operador U, con autoestados $|u\rangle$ de dimensión L, y con autovalore complejos dessconocidos $\lambda_{\phi} = e^{2i\pi\phi}$, donde ϕ es un número real tal que $0 \le \phi \le 1$, a ser determinado.

Asumamos también que somos capaces de construir una familia de operadores controlled – U^p , donde $p = 2^0, 2^1, 2^2, ..., 2^{k-1}$

El circuito cuántico del algoritmo de estimación de fase viene expresado en dos etapas, a las que llamaremos "front-endz "back-end".

Analicemos la etapa front-end:

Recordemos que:

Analicemos la compuerta $CU^p \equiv controlled - U^p gate$:

$$U|u\rangle=e^{2i\pi\phi}\ U^p|u\rangle=e^{2i\pi p\phi}\ H|0\rangle=|0\rangle+|1\rangle$$
 (Sin $1\sqrt{2}$ por los momentos)

$$CU^{p}((|0\rangle + |1\rangle) \otimes |u\rangle = |0\rangle \otimes |u\rangle + |1\rangle \otimes U^{p} |u\rangle = |0\rangle \otimes |u\rangle + |1\rangle e^{2i\pi p\phi} |u\rangle = (|0\rangle + e^{2ip\pi\phi}) \otimes |u\rangle$$

$$\therefore CU^p((|0\rangle + |1\rangle) \otimes |u\rangle) = (|0\rangle + e^{2i\pi p\phi} |1\rangle) \otimes |u\rangle$$

Analicemos ahora el producto tensorial a la salida de dos compuertas

$$CU^{p} \text{ recordemos que } p = \{2^{0}, 2^{1}, ..., 2^{k-1}\}, \text{ entonces:} \\ (|0\rangle + e^{2i\pi^{2}^{1}\phi} |1\rangle) \otimes (|0\rangle + e^{2i\phi^{2}^{0}\phi} |1\rangle) = |0\rangle |0\rangle + e^{2i\pi^{2}^{0}\phi} |0\rangle |1\rangle + e^{2i\pi^{2}^{1}p} |1\rangle |0\rangle + e^{2\pi i(2^{1}+2^{0})\phi} |1\rangle |1\rangle = e^{2i\pi^{0}\phi} |0\rangle + e^{2i\pi^{1}\phi} |1\rangle + e^{2i\pi^{2}\phi} |2\rangle + e^{2i\pi^{3}\phi} |3\rangle$$

donde
$$|00\rangle \equiv |0\rangle$$
; $|01\rangle \equiv |1\rangle$; $|10\rangle \equiv |2\rangle$; $|11\rangle \equiv |3\rangle$;

es decir: $|ij\rangle \equiv |i2^0+j2^1\rangle$ con i,j = 0,1 si generalizamos: $|ijk...n\rangle = |i2^0+j2^1+k2^2+...+n2^{n-1}\rangle$

$$\therefore (|0\rangle + e^{2i\pi 2^{1}}) \otimes (|0\rangle + e^{2i\pi 2^{0}\phi} |1\rangle) = \sum_{k=0}^{3} e^{2i\pi k\phi} |k\rangle$$

Todo número puede ser representado en forma binaria:
$$0 \le \phi \le 1 \implies \phi \equiv 0\phi_1\phi_2\phi_3... \implies \phi = \frac{\phi_1}{2} + \frac{\phi_2}{4} + \frac{\phi_3}{8} + ... + \frac{\phi_k}{2^k} + ...$$

para bits
$$\phi_i = 0, 1 \to \phi_1 = 0$$
 $y \phi_2 = 1$ $y \phi_2 = 1$ $y \phi_3 = 0$ $y \phi_4 = 0$ $y \phi_2 = 1$ $y \phi_3 = 0$ $y \phi_4 = 0$ $y \phi_5 = 0$ $y \phi_6 =$

Los términos dentro de los { } son enteros. Definamos entonces:

$$\Omega_{m} = \sum_{l=1}^{m} \frac{\phi_{k-m+l}}{2^{l}}$$
tal que:
$$e^{2i\pi 2^{k-1}\phi} = e^{2i\phi\Omega_{1}}e^{2i\pi(\frac{\phi_{k+1}}{4} + \dots)} e^{2i\pi 2^{k-2}\phi} = e^{2i\phi\Omega_{2}}e^{2i\pi(\frac{\phi_{k+1}}{8} + \dots)} \dots e^{2i\pi 2^{0}\phi} = e^{2i\phi\Omega_{k}}e^{2i\pi(\frac{\phi_{k+1}}{2^{k+1}} + \dots)}$$

Consideremos el caso en el cual ϕ es definido exactamente por k bits tal que $\phi_{k+1} = \phi_{k+2} = \dots = 0$

Dejando de lado el qubit $|u\rangle$ la salida del primer registro es:

$$\frac{1}{2^{k/2}}(|0\rangle + e^{2i\pi\Omega_1}|1\rangle) \otimes (|0\rangle + e^{2i\pi\Omega_2}) \otimes \dots \otimes (|0\rangle + e^{2i\pi\Omega_k}|1\rangle)$$

Como podemos recordar
$$QFT |n\rangle = \frac{1}{2^{k/2}} (|0\rangle_1 + e^{2i\pi\Omega_1} |1\rangle_1) \otimes (|0\rangle_2 + e^{2i\pi\Omega_2} |1\rangle_2) \otimes ... \otimes (|0\rangle_k + e^{2i\pi\Omega_k} |1\rangle_k)$$

Siendo:
$$1 \le m \le k \to |m\rangle = \frac{1}{2^{m/2}}(|0\rangle_m + e^{2i\pi\Omega_m}|1\rangle_m)$$

$$con \Omega_m = \sum_{l=1}^m \frac{n_{k-m+l}}{2}$$

Encontrando así que $\frac{1}{2^{k/2}}(|0\rangle + e^{2i\pi\Omega_1}|1\rangle) \otimes (|0\rangle + e^{2i\pi\Omega_2}|1\rangle) \otimes ... \otimes (|0\rangle + e^{2i\pi\Omega_2}|1\rangle)$ $e^{2i\pi\Omega_k} |1\rangle$

Es la transformada cuántica de Fourier de nuestro estado $|\phi\rangle$ obtenida con las compuertas $Controlled - U^p$.

Al ket $|\phi\rangle$ lo podemos recuperar haciendo la transformada inversa de Fourier.

Consideremos ahora el módulo del circuito cuántico "back-end"

El módulo back-end del circuito cuántico de Shor consiste en realizar la transformada cuántica inversa de Fourier y hacer medidas sobre los k qubits encontrando así los $\phi_1, \phi_2, ..., \phi_k$.

Seguidamente consideremos ahora el caso más general en el cual $2^k\phi$ no es un entero.

Fron-end
$$|0\rangle^{\otimes k} \otimes |u\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2i\pi k\phi} |k\rangle \otimes |u\rangle$$

Back-end $QFT_1^{\dagger}(\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2i\pi k\phi} |k\rangle \otimes |u\rangle) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2ik\phi} QFT^{\dagger} |k\rangle \otimes |u\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2i\pi k\phi} (\frac{1}{2^{k/2}} \sum_{n=0}^{N-1} e^{-2\pi i \frac{kn}{N}} |n\rangle) |u\rangle = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} e^{-2\pi i \frac{kn}{N}} e^{2ipik\phi} |n\rangle \otimes |u\rangle = \frac{1}{N} \sum_{n=0}^{N-1} (\sum_{k=0}^{N-1} (e^{2i\pi(\phi - \frac{n}{N})})^k) |n\rangle \otimes |u\rangle$

$$|u\rangle$$

$$\therefore (QFT^{\dagger} \otimes \mathbb{1})(\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2i\pi k\phi} |k\rangle \otimes |u\rangle) = \frac{1}{N} \sum_{n=0}^{N-1} (\frac{1 - e^{2i\pi(\phi - \frac{n}{N})N}}{1 - e^{2i\pi(\phi - \frac{n}{N})}}) |n\rangle \otimes |u\rangle$$

La probabilidad de medir n a la salida del registro será

$$p(n) = |\langle u| \otimes \langle n|\psi_{output}\rangle|^2$$

$$p(n) = \frac{1}{N^2} \left| \frac{1 - e^{2i\pi(\phi - \frac{n}{N})N}}{1 - e^{2i\pi(\phi - \frac{n}{N})}} \right|^2$$

$$\therefore p(n) = \frac{1}{N^2} \frac{\sin^2(\pi(\phi - \frac{n}{N})N)}{\sin^2(\pi(\phi - \frac{n}{N}))}$$

La medida de n
 con probabilidad asociada p(n), corresponde a la estimación de fase $\tilde{\phi}=n/N$. La probabilidad es máxima cuando $\delta=\phi-\tilde{\phi}$ es mínima.

$$p(n) = \frac{1}{N^2} \frac{\sin^2(\pi(\phi - \frac{n}{N})N)}{\sin^2(\pi(\phi - \frac{n}{N}))}$$
 si N es grande \rightarrow

La probabilidad p(n) decae rápidamente a cero cuando el error δ se aleja del mínimo.

Entonces:

.) La medida tiene la maor probabilidad de dar la aproximación más cercana al estado ϕ . .) El circuito de salida es de la forma $\left|\tilde{\phi}\right\rangle|u\rangle$, donde $\left|\tilde{\phi}\right\rangle$ es una superposición de estados, los cuales al medirlos dan una buena aproximación de ϕ .

* Estimación de orden:

Analicemos como la estimación de fase hace posible determinr r, el orden de x mód N, con alta probabilidad y precisión.

Primero necesitamos introducir el operador U y sus correspondientes autovectores y autovalores.

Asumamos que dados dos enteros x y N que satisfacen que x¡N, siendo x coprimo de M, es decir mcd(x,M)=1, existe un operador $U_{x,N}$ que actúa sobre el qubit $|y\rangle \equiv \{|0\rangle, |1\rangle\}$, tal que:

$$U_{x,N} |y\rangle = |xy \mod N\rangle$$

Asumamos $\{|u_s\rangle\}_{s=0,1,\dots,r-1}$ el conjunto de r
 autoestados de U, asociados con los autovalores $e^{i2\pi s/r}$ tal que
 $U\,|u_s\rangle=e^{2i\pi s/r}\,|u_s\rangle$ en el cual la fase es $\phi_s=s/r$ con $0\leq\phi_s\leq1$

Tales autoestados $|u_s\rangle$ se definen acorde a: $|u_s\rangle=\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}e^{\frac{-2i\pi ks}{r}}\left|x^k\right|$ mód $N\rangle$, siendo r a determinar.

Con las siguientes propiedades:

$$\begin{split} &\frac{1}{\sqrt{r}} \sum_{s=0} r - 1 \left| u_s \right\rangle = \left| 1 \right\rangle \\ &\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{\frac{2i\pi ks}{r}} \left| u_s \right\rangle = \left| x^k \mod N \right\rangle \\ &p(s) = |c_s|^2 = \frac{1}{r} \end{split}$$

El circuito para la estimación de orden es el siguiente:

Entonces:

$$U_{x,y} |y\rangle = |xy \mod N\rangle$$

 $j = 2^0, 2^1, 2^2, ..., 2^{k-1}$

$$CU^{j}(|0\rangle \otimes |1\rangle) = |0\rangle \otimes |1\rangle$$

$$CU^{j}|j\rangle \otimes |1\rangle = |j\rangle \otimes \left| x^{j_{1}2^{k-1}} \mod N \right\rangle \left| x^{j_{2}2^{k-2}} \mod N \right\rangle \dots \left| x^{j_{k}2^{0}} \mod N \right\rangle$$

$$CU^{j}|j\rangle \otimes |1\rangle = |j\rangle \otimes \left| x^{j_{1}2^{k}-1}x^{j_{2}2^{k-2}} \dots x^{j_{k}2^{0}} \mod N \right\rangle$$

$$\therefore CU^{j}|j\rangle \otimes |1\rangle = |j\rangle \otimes |x^{j} \mod N \rangle$$

Con este paso entendido vamos ahora a analizar el circuito para determinar el orden:

1)
$$|\psi_1\rangle = |0\rangle^{\otimes k} \otimes |1\rangle$$

1)
$$|\psi_1\rangle = |0\rangle^{\otimes k} \otimes |1\rangle$$

2) $|psi_2\rangle = \frac{1}{\sqrt{M}}(|0\rangle + |1\rangle)^{\otimes k} \otimes |1\rangle$; $M = 2^k$
 $|psi_2\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} CU^j(|j\rangle \otimes |1\rangle)$

$$|psi_2\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} CU^j (|j\rangle \otimes |1\rangle)$$

3)
$$|\psi_3\rangle = CU^j |\psi_2\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} CU^j (|j\rangle \otimes |1\rangle) = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} (|j\rangle \otimes |x^j \mod N\rangle)$$

Pero ya vimos que: $|x^j \mod N\rangle = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} e^{\frac{2i\pi ks}{r}} |u_s\rangle$

$$\therefore |\psi_3\rangle = \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} |k\rangle \otimes \frac{1}{\sqrt{r}} e^{2i\pi ks/r} |u_s\rangle$$

$$|\psi_3\rangle = \sum_{s=0}^{r-1} \left(\frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} e^{2i\pi ks/r} |k\rangle\right) \otimes \frac{1}{\sqrt{r}} |u_s\rangle$$

4) Aplicamos la transformada inversa de Fourier al primer registro $|\psi_4\rangle =$ $(QFT^{\dagger} \otimes 1) |\psi_3\rangle = \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1} |\tilde{\psi}_s\rangle \otimes |u_s\rangle$

Finalmente: Al medir el primer registro proyectamos la superposición que conforma $|\psi_4\rangle$ en uno de los r estados de $|\psi_s\rangle$

$$p(s) = |(\langle \tilde{\psi}_s | \otimes \langle u_s |) | \psi_4 \rangle|^2 = \frac{1}{r}$$

lo que nos da $\frac{s}{r}$ correspondiendo a la estimación de fase $\tilde{\psi} = \frac{s}{r}$

Posteriormente aplicamos el algoritmo clásico de fracciones continuas y determinamos los co-primos.

Ejemplo:

Determinemos la factorización para N=15.

Asumamos, el número compuesto N=15 (no primo). Tomemos L = log 2N = 9 para el segundo registro (tamaño del target) y pongamos un error de probabilidad grande $\epsilon = 0.25$.

 $k=2L+1+\log_2(2+\frac{1}{2\varepsilon}=11$ (ver libro: tamaño del primer registro de

$$M = 2^k = 2^{11} = 2048$$

tomemos un número x aleatorio entre $[2, N-1] \rightarrow x = 8$ lo cual cumple que m.c.d(8,15) = 1

Pasos cuánticos:

$$\begin{array}{l} .) \ |\psi_1\rangle = |0\rangle^{\otimes k} \otimes |1\rangle \\ .) \ |\psi_2\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} (|j\rangle \otimes |1\rangle) = \frac{1}{\sqrt{2M}} (|0\rangle + |1\rangle + |2\rangle + \ldots + |M-1\rangle) \\ .) \ Aplicamos la compuerta $Controlled-U^j \ |\psi_3\rangle = \frac{1}{\sqrt{M}} |j\rangle \otimes |x^j \mod N\rangle = \frac{1}{\sqrt{M}} \sum_{j=0}^{M-1} |1\rangle \otimes |8^j \mod 15\rangle \\ |\psi_3\rangle = \frac{1}{\sqrt{M}} (|0\rangle |1\rangle + |1\rangle |8\rangle + |2\rangle |4\rangle + |3\rangle |2\rangle + |4\rangle |1\rangle + |5\rangle |8\rangle + |6\rangle |4\rangle + |7\rangle |2\rangle + |8\rangle |1\rangle + |9\rangle |8\rangle + |0\rangle |4\rangle + |1\rangle |2\rangle + ...) \\ |\psi_3\rangle = \frac{1}{\sqrt{M}} (|0\rangle + |4\rangle + |8\rangle + ...) |1\rangle + (|1\rangle + |5\rangle + |9\rangle + ...) |8\rangle + (|2\rangle + |6\rangle + |10\rangle + ...) |4\rangle + (|3\rangle + |7\rangle + |11\rangle + ...) |2\rangle \\ Definamos: |u_1\rangle = \frac{1}{\sqrt{M}} (|0\rangle + |4\rangle + |8\rangle + ...) \\ |u_2\rangle = \frac{1}{\sqrt{M}} (|1\rangle + |5\rangle + |9\rangle + ...) \\ |u_3\rangle = \frac{1}{\sqrt{M}} (|1\rangle + |5\rangle + |9\rangle + ...) \\ |u_4\rangle = \frac{1}{\sqrt{M}} (|3\rangle + |7\rangle + |11\rangle + ...) \\ y \ obtenemos: |\psi_3\rangle = |u_1\rangle \otimes |1\rangle + |u_2\rangle \otimes |8\rangle + |u_3\rangle \otimes |4\rangle + |u_4\rangle \otimes |2\rangle \\ Consideremos el primer registro |u_2\rangle \otimes |8\rangle, es decir |u_2\rangle, y \ apliquemos la QFT^\dagger sobre $6!. \\ QFT^\dagger|u_2\rangle = \frac{1}{\sqrt{M}} QFT^\dagger (|1\rangle + |5\rangle + |9\rangle + |13\rangle + ...) \\ Recordemos que $QFT^\dagger|n\rangle = \frac{1}{\sqrt{M}} QFT^\dagger (|1\rangle + |5\rangle + |9\rangle + |13\rangle + ...) \\ QFT^\dagger|u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} (e^{-\frac{k2i\pi}{M}1} |k\rangle + e^{-\frac{k2i\pi}{M}5} |k\rangle + e^{-\frac{k2i\pi}{M}9} |k\rangle + e^{-\frac{k2i\pi}{M}13} |k\rangle + ...) \\ QFT^\dagger|u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} (e^{-\frac{k2i\pi}{M}1} + e^{-\frac{k2i\pi}{M}5} + e^{-\frac{k2i\pi}{M}9} + e^{-\frac{k2i\pi}{M}13} + ...) |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}1} ((e^{-\frac{k8i\pi}{M}})^0 + (e^{-\frac{k8i\pi}{M}})^1 + (e^{-\frac{k8i\pi}{M}13} + ...) |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \sum_{k=0}^{M-1} (e^{-\frac{k8i\pi}{M}} e^{-\frac{k8i\pi}{M}} |k\rangle + ...) |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \sum_{k=0}^{M-1} \frac{(1-e^{-8i\pi k})}{(1-e^{-8i\pi k})} |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{4iM} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \frac{(1-e^{-8i\pi k})}{\sin(\frac{4\pi k}{M})} |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{4iM} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \frac{(1-e^{-8i\pi k})}{\sin(\frac{4\pi k}{M})} |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{4iM} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \frac{(1-e^{-8i\pi k})}{\sin(\frac{4\pi k}{M})} |k\rangle \\ QFT^\dagger|u_2\rangle = \frac{1}{4iM} \sum_{k=0}^{M-1} e^{-\frac{k2i\pi}{M}} \frac{(1-e^{-8i\pi k})}{\sin(\frac{4\pi k}{M})} |k\rangle \\ QFT^$$

$$QFT^{\dagger} |u_2\rangle = \frac{1}{2M} \sum_{k=0}^{M-1} e^{-k\frac{2\pi i}{M}(2M-1)} \frac{\sin(4\pi k)}{\sin(\frac{4\pi k}{M})} |k\rangle$$

Este resultado se puede reescribir de la forma:

$$QFT^{\dagger} |u_2\rangle = \sum_{k=0}^{M-1} \alpha_k |k\rangle$$

siendo
$$\alpha_k = \frac{1}{2M} e^{-k\frac{2i\pi}{M}(2M-1)} \frac{\sin(4\pi k)}{\sin(k\frac{4\pi}{M})}$$

correspondiendo
$$p(k) = |\langle k|QFT^{\dagger}|u_2\rangle|^2 = |\alpha_k|^2 = \frac{1}{4M^2} \frac{\sin^4(4\pi k)}{\sin^2(\frac{4\pi k}{M})}$$

Como podemos observar para todo entero k=0,1,...,M-1 el número de α_k

es cero, pero para $\frac{4\pi k}{M}=n\pi \to k=n\frac{M}{4}=n2^7=n512,$ n entero

el denominador es cero y
$$\alpha_k$$
 es indeterminado, luego:
$$\lim_{\epsilon \to 0} \frac{\sin^2(4\pi k)}{\sin^2(\frac{4\pi k}{M})} = \lim_{\epsilon \to 0} \frac{\sin^2(4\pi (\frac{nM}{4} + \epsilon))}{\sin^2(\frac{4\pi}{M}(\frac{nM}{4} + \epsilon))} = \lim_{\epsilon \to 0} \frac{\sin^2(nM\pi + 4\pi\epsilon)}{\sin^2(n\pi + \frac{4\pi}{M}\epsilon)} = \lim_{\epsilon \to 0} \frac{\sin^2(4\pi\epsilon)}{\sin^2(\frac{4\pi}{M}\epsilon)} = \lim_{\epsilon \to 0} \frac{\sin^2(4\pi\epsilon)}{\sin^2(\frac{$$

luego: $p(k)_{\text{Máximo}} = \frac{1}{4M^2}M^2 \rightarrow p_{Maximo}(k) = \frac{1}{4}$ En el rango k=0,1,...,M-1 los máximos de p(k) están localizados en:

$$k=0 \rightarrow n=0$$
 $k=512 \rightarrow n=1$ $k=1024 \rightarrow n=2$ $k=1536 \rightarrow n=3$

Al medir obtenemos: $\frac{k_i}{M} = \frac{k_i}{2^k} = \frac{k_i}{2^{13}} = \frac{k_i}{2048}$

las cuatro posibles determinaciones de $\tilde{\phi}$ son:

$$\frac{0}{2048}\Big|_{k_i=0}$$
; $\frac{512}{2048}\Big|_{k_i=512}$; $\frac{1024}{2048}\Big|_{k_i=1024}$; $\frac{1536}{2048}\Big|_{k_i=1536}$;

 $\begin{array}{c} \frac{0}{2048}\big|_{k_i=0}\,;\,\frac{512}{2048}\big|_{k_i=512}\,;\,\frac{1024}{2048}\big|_{k_i=1024}\,;\,\frac{1536}{2048}\big|_{k_i=1536}\,;\\ k_i=0 \text{ no aporta nada } k_1=\frac{512}{2048}=\frac{1}{4} \text{ } \text{ no satisfacen } |\frac{s}{r}-x|\leq \frac{1}{r^2}\\ k_2=\frac{1024}{2048}=\frac{1}{2} \text{ } \text{ } \text{ no satisfacen } |\frac{s}{r}-x|\leq \frac{1}{r^2}\\ k_3=\frac{1536}{2048}=\frac{1}{1+\frac{1}{3}} \end{array}$

ya que
$$\frac{p_0}{1_0} = \frac{0}{1}$$
; $\frac{p_1}{q_1} = \frac{1}{1}$; $\frac{p_2}{q_2} = \frac{3}{4}$ 3 y 4 son co-primos.

La fracción 3/4 es un convergente de ϕ y $r=q_2=4$ es el orden de x

Normalmente se suele asociar con que existen 2 N' y N'' de N=15 tales

$$N' = MCD(x^{r/2} - 1, N) = MCD(63, 15) = 3 N'' = MCD(x^{r/2} + 1, N) = MCD(65, 15) = 5$$

- 6.2. Transformadas integrales
- 6.3. Transformada cuántica de Fourier
- 6.4. Estimación de fase
- 6.5. Estimación de orden
- 6.6. Algoritmo de Shor

Bibliografía

- [1] Rudolf Gross and Achim Marx. Applied superconductivity: Josephson effect and superconducting electronics. Walther-Meißner-Institut, 2005.
- [2] A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. *Nature*, 525:73–76, 2015.
- [3] G. Wendin. Quantum information processing with superconducting circuits: a review. *IOP Science*, 2017.
- [4] Alexandre Blais, Jay Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Quantum-information processing with circuit quantum electrodynamics. *Physical Review A*, 2007.
- [5] Adriano Barenco, Charles H. Bennet, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, Jhon A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. *Physical Review A*, 1995.