QA(O)A: How to exploit symmetries?

Boris Tsvelikhovskiy University of California, Riverside

Joint work with

Ilya Safro (University of Delaware) and Yuri Alexeev (Argonne National Laboratory)

> References to our preprints: https://arxiv.org/abs/2309.13787 https://arxiv.org/abs/2405.07211

The problem

Let $\mathbb{D}^n := \{0, 1, \dots, d-1\}^n$ be the set of *n*-element strings and \mathcal{S} the group of permutations of these d^n elements.

Goal: given a function $F: \mathbb{D}^n \to \mathbb{R}$, find the elements in \mathbb{D}^n on which it attains min (max) values.

The symmetries: level 1

If a permutation $g \in \mathcal{S}$ is 'undetectable' by F, i.e. F(g(x)) = F(x) for any $x \in \mathbb{D}^n$, then g is called a **symmetry** of F.

Such symmetries form a subgroup $G \subseteq \mathcal{S}$. The set \mathbb{D}^n can be written as a disjoint union of G-orbits:

$$\mathbb{D}^n = \bigsqcup_{j=1}^m \mathcal{O}_j.$$

If the strings x and y are in the same G-orbit, then F(x) = F(y).

Classical → quantum

Let W be a vector space of dimension d^n with basis indexed by elements of \mathbb{D}^n , $standard\ basis$.

The Hamiltonian H_F is said to **represent** a function $F: \mathbb{D}^n \to \mathbb{R}$ if it satisfies $H_F(v_x) = F(x)v_x$ for any $x \in \mathbb{D}^n$.

- $\bullet \ \mathbb{D}^n \leadsto W$
- $F \leadsto \text{linear operator } H_F \text{ acting on } W$
- Minima of F on $\mathbb{D}^n \leadsto$ lowest energy states of H_F in W.

QAOA

QAOA: a closer look

While the Hamiltonian $\mathbf{H}_{\mathbf{P}}$, which encodes the objective function, is uniquely determined by the classical problem, there is some flexibility in selecting the mixer Hamiltonian.

The most common choice of mixer Hamiltonian is $B = \sum_{0 \le j \le \ell-1} X_j$.

The ground state for this mixer is the uniform superposition state $|\xi\rangle = |++...+\rangle$.

In many optimization problems, the objective function exhibits invariance under the action of the symmetric group $S_d = W(U_d)$, which acts collectively on all qudits as follows:

$$\sigma(x_1, x_2, \dots, x_n) := (\sigma(x_1), \sigma(x_2), \dots, \sigma(x_n)).$$

The standard mixer Hamiltonian does not exhibit commutativity with the entire symmetric group S_d , but only with a noticeably smaller subgroup. With this in mind, we explore an alternative mixer Hamiltonian, H_M , which maintains commutativity with the action of the whole group.

A concrete application

Consider the problem of coloring the vertices (edges) of a graph. A coloring is considered *proper* if no adjacent vertices (edges sharing a vertex) have the same color.

A concrete application

We will focus on the edge coloring problem. To each edge $e \in E$, one associates ℓ bits $e_0, e_1, \ldots, e_{\ell-1}$, the values of which uniquely determine its color.

The function χ_c is defined as follows:

$$\chi_c(c') := \begin{cases} 1, & \text{if } c'_i \equiv c_i \text{ for all } i \in \{1, \dots, \ell\} \\ 0, & \text{otherwise} \end{cases}$$

This function serves as the characteristic function of a color: it has value 1 on color c and 0 on all other colors.

The objective function $F_{\Gamma}(C) := \sum_{e \bullet f} \sum_{c \in \mathfrak{C}} \chi_c(C(e)) \chi_c(C(f))$ computes the number of adjacent edges of coinciding color.

Remark

A coloring C is proper if and only if $F_{\Gamma}(C) = 0$.

Examples

We would like to showcase a performance **comparison between two versions of QAOA** (standard and the newly proposed one) in determining appropriate edge colorings for the graph. Both algorithms are configured iteratively with a depth parameter of p=9. Through over 50 independent trials for each scenario, we observe statistically significant differences in mean values at the 1.5% significance level, with the new variant consistently demonstrating lower means. Moreover, we note considerably lower median and minimal values in the experiments utilizing the newly introduced mixer Hamiltonian compared to the classical one.

Graph 1 (4 colors)

	Mean	Median	Min	Energy < 1
QAOA	0.9696	0.9316	0.4814	33/56
$QAOA_{new}$	0.7437	0.7388	0.3691	51/56

t-test p-value is $3.053993311768478 \cdot 10^{-7}$

Graph 2 (4 colors)

	Mean	Median	Min	Energy < 1
QAOA	1.2495	1.2417	0.6533	11/56
$QAOA_{new}$	0.9344	0.8857	0.3691	35/56

t-test p-value is 1.9806919304846427 $\cdot\,10^{-6}$

Graph 3 (8 colors)

	Mean	Median	Min
QAOA	0.8726	0.8569	0.502
$QAOA_{new}$	0.5227	0.5073	0.17

t-test p-value is $1.2230598272375008 \cdot 10^{-8}$

The symmetries: level 2

The action of G on the set \mathbb{D}^n extends to an action on W.

Actions of G and H_P on W commute:

$$H_P(g(w)) = g(H_P(w)) \ \forall w \in W, \ \forall g \in G.$$

According to the G-action, W can be written as a direct sum of subspaces:

$$W = \bigoplus W_i.$$

The decomposition is preserved by H_P :

$$H_P(W_i) \subseteq W_i$$
.

Here one of the subspaces is the **subspace** of *G*-invariants:

$$W^G = \{ w \in W \mid g(w) = w, \, \forall g \in G \}.$$

Figure: Decomposition of $W = V^{\otimes n}$

Where does QAOA 'live'?

Remark

Notice that the uniform superposition $|\xi\rangle = |++...+\rangle$ is inside W^G for any $G \subseteq \mathcal{S}$.

Suppose we employ a QAOA with the initial state $|\xi\rangle$, and the objective function has a group of symmetries G. If the mixer Hamiltonian commutes with G, then the algorithm will operate within the subspace W^G prior to the final measurement.

In case $G = S_d$ acts as described before, we have $\dim(W^G) \approx \frac{d^n}{d!}$.

Where does QAOA 'live'?

Question

Is it possible to pick an initial state and mixer Hamiltonian so that QAOA 'runs' in a different $W_i \neq W^G$?

If there exists a mixer Hamiltonian $H_{M,i}$ that meets the following criteria:

- the lowest energy eigenspace of $H_{M,i}$ is one-dimensional and is spanned by $|\xi_i\rangle \in W_i$,
- $H_{M,i}$ preserves the direct sum decomposition of W (suffices to commute with G-action),

then one can establish a reduced QAOA with the same problem Hamiltonian H_P , mixer Hamiltonian $H_{M,i}$ and initial state $|\xi_i\rangle$. Thus defined QAOA operates within the subspace W_i prior to the final measurement.

Where does QAOA 'live'?

However, there is something to keep in mind...

Remark

The Perron-Frobenius theorem states that for a non-negative, irreducible matrix (in the standard basis), the Perron-Frobenius vector is a linear combination of all basis vectors with positive coefficients. Consequently, the conventional argument for ensuring the convergence of QAOA as $\mathbf{p} \to \infty$ to an optimal classical solution is **not applicable** unless the initial state is a superposition of all classical states with **positive amplitudes**.

Among the subspaces W_i , the only subspace containing vectors that satisfy the condition of positive amplitudes across all classical states is W^G .

We would like to summarize the arguments in favor of choosing the reduced QAOA on the subspace of invariants $W^G \subseteq W$ over any other W_i , when considering COPs with classical symmetry groups that include S_d .

We would like to summarize the arguments in favor of choosing the reduced QAOA on the subspace of invariants $W^G \subseteq W$ over any other W_i , when considering COPs with classical symmetry groups that include S_d .

• The subspace W_0 has the smallest dimension for a sufficiently large number of qudits, n.

We would like to summarize the arguments in favor of choosing the reduced QAOA on the subspace of invariants $W^G \subseteq W$ over any other W_i , when considering COPs with classical symmetry groups that include S_d .

- The subspace W_0 has the smallest dimension for a sufficiently large number of qudits, n.
- ② It is impossible to ensure the convergence of reduced $QAOA_i$ (operating on W_i) as the number of iterations p approaches infinity with the help of P-F Theorem for any other W_i .

We would like to summarize the arguments in favor of choosing the reduced QAOA on the subspace of invariants $W^G \subseteq W$ over any other W_i , when considering COPs with classical symmetry groups that include S_d .

- The subspace W_0 has the smallest dimension for a sufficiently large number of qudits, n.
- ② It is impossible to ensure the convergence of reduced $QAOA_i$ (operating on W_i) as the number of iterations p approaches infinity with the help of P-F Theorem for any other W_i .
- **3** The uniform superposition $\xi = |++...+\rangle$, which is used as the initial vector in the standard QAOA resides in W^G .

However, there might be hope for other W_i 's

Graph	Mean energy	Median energy	Min energy	Share of outcomes with $E < 1$
Γ_1, W	0.726	0.7056	0.3584	41/50
Γ_1, W^G	0.5692	0.4673	0.1923	47/50
Γ_1, W_1	0.5726	0.5142	0.1621	47/50
Γ_2, W	0.9696	0.9316	0.4814	33/56
Γ_2, W^G	0.7437	0.7388	0.3691	51/56
Γ_2, W_1	0.8688	0.7148	0.3964	47/56
Γ_3, W	1.2495	1.2417	0.6533	11/56
Γ_3, W^G	0.9344	0.8857	0.3691	35/56
Γ_3, W_1	0.7334	0.6763	0.2598	50/56
Γ_4, W	1.4857	1.5313	0.7382	6/56
Γ_4, W^G	1.1959	1.1074	0.5117	21/56
Γ_4, W_1	1.2415	1.1489	0.4395	20/56
Γ_5, W	1.3469	1.3066	0.6162	14/50
Γ_5, W^G	0.9149	0.9507	0.3516	30/50
Γ_5, W_1	0.94123	0.9375	0.2939	27/50

Reduced QAOA energy for edge coloring with p = 9 (on W, W^G and W_1)