

The Past and Future of GIL

Jiayuan Zhang

• Full-Stack Developer at IQIYI.Inc

- Full-Stack Developer at IQIYI.Inc
- Python, JavaScript, Lisp and (Rust)

- Full-Stack Developer at IQIYI.Inc
- Python, JavaScript, Lisp and (Rust)
- Open source contributor, werkzeug, requests, doom-emacs, etc.

- Full-Stack Developer at IQIYI.Inc
- Python, JavaScript, Lisp and (Rust)
- Open source contributor, werkzeug, requests, doom-emacs, etc.
- Coding with Emacs, organizing my life with org-mode

• What is GIL

- What is GIL
- How GIL works

- What is GIL
- How GIL works
- Remove GIL

- What is GIL
- How GIL works
- Remove GIL
- The future

Part I

```
1 # single_threaded.py
 2 import time
 3 from threading import Thread
 4
 5 \text{ COUNT} = 50000000
 6
   def countdown(n):
      while n > 0:
 8
          n = 1
10
11 start = time.time()
12 countdown(COUNT)
13 end = time.time()
14
15 print('Time taken in seconds -', end - start)
```

- 1 \$ python single_threaded.py
- 2 Time taken in seconds 6.20024037361145

```
1 # multi threaded.py
 2 import time
 3 from threading import Thread
 5 \text{ COUNT} = 50000000
   def countdown(n):
       while n > 0:
           n = 1
10
11 t1 = Thread(target=countdown, args=(COUNT//2,))
12 t2 = Thread(target=countdown, args=(COUNT//2,))
13
14 start = time.time()
15 t1.start()
16 t2.start()
17 t1.join()
18 t2.join()
19 end = time.time()
20
21 print('Time taken in seconds -', end - start)
```

- 1 \$ python multi_threaded.py
- 2 Time taken in seconds 6.924342632293701

```
1 $ python single_threaded.py
2 Time taken in seconds - 6.20024037361145
```

```
1 $ python multi_threaded.py
2 Time taken in seconds - 6.924342632293701
```

• Global Interpreter Lock

- Global Interpreter Lock
- Mutex, pthread (Linux) or win thread (Windows), controlled by OS

- Global Interpreter Lock
- Mutex, pthread (Linux) or win thread (Windows), controlled by OS
- Allows only one thread to execute Python code at any point in time

- Global Interpreter Lock
- Mutex, pthread (Linux) or win thread (Windows), controlled by OS
- Allows only one thread to execute Python code at any point in time
- Bottleneck in CPU-bound and multi-threaded code

What is GIL in Depth

What is GIL in Depth

• Is Python thread safe?

What is GIL in Depth

- Is Python thread safe?
- "Lock" on what?

```
1 L.append(x)
 2 L1.extend(L2)
 3 x = L[i]
 4 \times = L.pop()
 5 L1[i:j] = L2
 6 L.sort()
 7 x = y
 8 \text{ x.field} = y
 9 D[x] = y
10 D1.update(D2)
11 D.keys()
```

```
1 L.append(x)
2 L1.extend(L2)
3 x = L[i]
4 x = L.pop()
5 L1[i:j] = L2
6 L.sort()
7 x = y
8 x.field = y
9 D[x] = y
10 D1.update(D2)
11 D.keys()
```

```
1 i = i+1
2 L.append(L[-1])
3 L[i] = L[j]
4 D[x] = D[x] + 1
```

```
1 L.append(x)
2 L1.extend(L2)
3 x = L[i]
4 x = L.pop()
5 L1[i:j] = L2
6 L.sort()
7 x = y
8 x.field = y
9 D[x] = y
10 D1.update(D2)
11 D.keys()
```

```
1 i = i+1
2 L.append(L[-1])
3 L[i] = L[j]
4 D[x] = D[x] + 1
```

Safe

```
1 L.append(x)
2 L1.extend(L2)
3 x = L[i]
4 x = L.pop()
5 L1[i:j] = L2
6 L.sort()
7 x = y
8 x.field = y
9 D[x] = y
10 D1.update(D2)
11 D.keys()
```

```
1 i = i+1
2 L.append(L[-1])
3 L[i] = L[j]
4 D[x] = D[x] + 1
```

Safe Not Safe

```
1 L.append(x)
2 L1.extend(L2)
3 x = L[i]
4 x = L.pop()
5 L1[i:j] = L2
6 L.sort()
7 x = y
8 x.field = y
9 D[x] = y
10 D1.update(D2)
11 D.keys()
```

```
1 i = i+1
2 L.append(L[-1])
3 L[i] = L[j]
4 D[x] = D[x] + 1
```

Safe Not Safe

Why?

Python Source Code (.py files)

Python Source Code (.py files)

Python Interpreter

Result

Python Source Code (.py files)

Python Source Code (.py files)

"Lock" on What?

"Lock" on What?

"Lock" on What?


```
Is `number += 1` thread safe?
```

```
Is `number += 1` thread safe?
```

```
1 from dis import dis
2
3 dis(lambda x: x+1)
```

```
1 1 0 LOAD_FAST ←— GIL 0 (x)
2 2 LOAD_CONST ←— GIL 1 (1)
3 4 BINARY_ADD ←— GIL
4 6 RETURN_VALUE ←— GIL
```

Not Thread Safe!!!

Not Thread Safe!!!

Part II

How GIL works?

I/O Bound Module

I/O Bound Module

Thread 1	
OS	
Thread 2	

Thread 1	
OS	
Thread 2	

When a thread is running, it holds the GIL

- When a thread is running, it holds the GIL
- GiL released on I/O (read, write, send, recv, etc.)

Thread 1	•••••••••••••••••••••••••••••••••••••••
OS	
Thread 2	

Thread 1	
OS	
Thread 2	

CPU bound threads that never perform I/O are handled as a special case

- CPU bound threads that never perform I/O are handled as a special case
- A "check" occurs every 100 "ticks"

• The operating system has a priority queue of threads/processes ready to run

- The operating system has a priority queue of threads/processes ready to run
- Signaled threads simply enter that queue

- The operating system has a priority queue of threads/processes ready to run
- Signaled threads simply enter that queue
- The operating system then runs the process or thread with the highest priority

- The operating system has a priority queue of threads/processes ready to run
- Signaled threads simply enter that queue
- The operating system then runs the process or thread with the highest priority
- It may or may not be the signaled thread

Hundreds to thousands of checks might occur before a thread context switch

When thread 2 wakes up, the GIL is already gone

• It aims to fix thread thrashing

- It aims to fix thread thrashing
- Current thread will voluntarily release the GIL if it runs out of TIMEOUTs

- It aims to fix thread thrashing
- Current thread will voluntarily release the GIL if it runs out of TIMEOUTs
- If other thread acquire the GIL, the current thread will release the GIL after
 5ms

- It aims to fix thread thrashing
- Current thread will voluntarily release the GIL if it runs out of TIMEOUTs
- If other thread acquire the GIL, the current thread will release the GIL after
 5ms
- A thread runs until `gil_drop_request` gets set to 1

But, the GIL is still there...

Part III

Remove GIL?

• There was no multi-core computer when Python was created

- There was no multi-core computer when Python was created
- Python is designed to be easy-to-use, so you don't need to care about the memory stuff

- There was no multi-core computer when Python was created
- Python is designed to be easy-to-use, so you don't need to care about the memory stuff
- GIL prevents deadlocks (as there is only one lock)

- There was no multi-core computer when Python was created
- Python is designed to be easy-to-use, so you don't need to care about the memory stuff
- GIL prevents deadlocks (as there is only one lock)
- GIL provides a performance increase to single-threaded programs as only one lock needs to be managed

- There was no multi-core computer when Python was created
- Python is designed to be easy-to-use, so you don't need to care about the memory stuff
- GIL prevents deadlocks (as there is only one lock)
- GIL provides a performance increase to single-threaded programs as only one lock needs to be managed
- CPython uses Reference Counting

1. Reference Counting

- 1. Reference Counting
- 2. Globals and statics in the interpreter

- 1. Reference Counting
- 2. Globals and statics in the interpreter
- 3. The C extension parallelism and reentrancy issues need to be handled as do places in the code where atomicity is required

- 1. Reference Counting
- 2. Globals and statics in the interpreter
- 3. The C extension parallelism and reentrancy issues need to be handled as do places in the code where atomicity is required
- 4. You can't breaking all of the C extensions

- 1. Reference Counting
- 2. Globals and statics in the interpreter
- 3. The C extension parallelism and reentrancy issues need to be handled as do places in the code where atomicity is required
- 4. You can't breaking all of the C extensions
 - I'd welcome a set of patches into Py3k only if the performance for a single-threaded program (and for a multi-threaded but I/O-bound program) does not decrease.
 - -- Guido van Rossum

Related Works

Related Works

• 1995, Greg Stein, a fork of Python 1.5

Related Works

- 1995, Greg Stein, a fork of Python 1.5
- Larry Hastings' Gilectomy (on hold)

Related Works

- 1995, Greg Stein, a fork of Python 1.5
- Larry Hastings' Gilectomy (on hold)
- Many other implementations...

It's Hard!!!

• Users with threaded, CPU bound Python code

• Users with threaded, CPU bound Python code

• Users with threaded, CPU bound Python code

Use C extensions!

- Users with threaded, CPU bound Python code
- Basically no one else

Use C extensions!

Other Solutions

- Multi-processing (not recommend)
- C extension modules
 - Rewrite CPU bound code in C (you need to control memory by yourself)
 - Release the GIL around that code
- Corountine

Part IV

The Future

Multiple Interpreters in the Stdlib

- Multiple Interpreters in the Stdlib
- By Eric Snow (to GIL or not to GIL: the Future of Multi-Core CPython)

- Multiple Interpreters in the Stdlib
- By Eric Snow (to GIL or not to GIL: the Future of Multi-Core CPython)
- Will release in CPython 3.9 (maybe)

- Multiple Interpreters in the Stdlib
- By Eric Snow (to GIL or not to GIL: the Future of Multi-Core CPython)
- Will release in CPython 3.9 (maybe)
- CPython has supported multiple interpreters in the same process since version 1.5 (1997) via the C-API

- Multiple Interpreters in the Stdlib
- By Eric Snow (to GIL or not to GIL: the Future of Multi-Core CPython)
- Will release in CPython 3.9 (maybe)
- CPython has supported multiple interpreters in the same process since version 1.5 (1997) via the C-API
- Introduce the stdlib interpreters modules, high-level interface to subinterpreters

- Multiple Interpreters in the Stdlib
- By Eric Snow (to GIL or not to GIL: the Future of Multi-Core CPython)
- Will release in CPython 3.9 (maybe)
- CPython has supported multiple interpreters in the same process since version 1.5 (1997) via the C-API
- Introduce the stdlib interpreters modules, high-level interface to subinterpreters
- Functionality for sharing data between interpreters (channel)

Process

• Sub-interpreter can't access other sub-interpreters' variables

• A mechanism centers around "channels"

- A mechanism centers around "channels"
- Similiar to queues and pipes

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - None

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - None
 - bytes

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - None
 - bytes
 - str

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - None
 - bytes
 - str
 - int

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:

 - NonePEP 3118 buffer objects
 - bytes
 - str
 - int

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - NonePEP 3118 buffer objects
 - bytesPEP 554 channels
 - str
 - int

- A mechanism centers around "channels"
- Similiar to queues and pipes
- Objects are not shared between iterpreters since they are tied to the interpreter in which they were created
- Only the following types will be supported fo sharing:
 - NonePEP 3118 buffer objects
 - bytesPEP 554 channels
 - str
 - Support for other basic types (e.g. bool, float) will be added later

Isolation

- Isolation
 - Each interpreter has its own copy of all modules, classes, functions, and variables

- Isolation
 - Each interpreter has its own copy of all modules, classes, functions, and variables
 - But process-global state remains shared (file descriptors, builtin types...)

- Isolation
 - Each interpreter has its own copy of all modules, classes, functions, and variables
 - But process-global state remains shared (file descriptors, builtin types...)
- Potentially performance

- Isolation
 - Each interpreter has its own copy of all modules, classes, functions, and variables
 - But process-global state remains shared (file descriptors, builtin types...)
- Potentially performance
 - multiprocessing < subinterpreter < threads?</p>

- Isolation
 - Each interpreter has its own copy of all modules, classes, functions, and variables
 - But process-global state remains shared (file descriptors, builtin types...)
- Potentially performance
 - multiprocessing < subinterpreter < threads?</p>
- Provide a direct route to an alternate concurrency mode

• https://github.com/ericsnowcurrently/multi-core-python

- https://github.com/ericsnowcurrently/multi-core-python
- Resolve bugs

- https://github.com/ericsnowcurrently/multi-core-python
- Resolve bugs
- Deal with C globals

- https://github.com/ericsnowcurrently/multi-core-python
- Resolve bugs
- Deal with C globals
- Move some runtime state into the interpreter state

- https://github.com/ericsnowcurrently/multi-core-python
- Resolve bugs
- Deal with C globals
- Move some runtime state into the interpreter state
 - Including the GIL

That's All. Thanks!!!

Contacts

- Homepage: http://jiayuanzhang.com/
- Blog: http://blog.jiayuanzhang.com/
- GitHub: https://github.com/forrestchang
- Twitter: https://twitter.com/tisoga

Wechat (请备注公司/学校 + 姓名)