Dose Finding via Multi Arm Bandits: A Review

Riddhiman Bhattacharya

Department of Biostatistics **Duke University**

October 4, 2024

Adaptive Clinical Trials

Figure: Schematic of a traditional clinical trial design with fixed sample size, and an adaptive design with pre-specified review(s) and adaptation(s)

- Can make clinical trials more flexible.
- Are often more efficient, informative and ethical than fixed design trials.

Dose Escalation Models

Dose escalation in phasel/II of clinical trials entails finding maxmimum tolerated dose (MTD) among increasing dose levels.

- Depending on toxic effects observed currently, decision is taken whether to escalate the dose or not.
- ► Has high prevalence in toxic treatments- e.g. chaemotheraphy in cancer trials, etc.

Dose Escalation Models

Introduction

- K dose levels chosen by physicians via preliminiary experiments.
- \triangleright p_k -toxicity probability, unknown.
- \triangleright θ -pre-specified target toxicity probability. Usually between .2 and .35 for clinical trials.
- $MTD=k^* = \operatorname{argmin}_{k \in \{1,2,3,\cdots,K\}} |\theta p_k|.$
- Implicit Assumption: efficacy increasing with toxicity.

MTD: Background

- MTD identification proceeds sequentially.
- At round t a dose $D_t \in \{1, 2, \dots, K\}$ is selected and administered to a patient for whom a toxicity response is observed.

Main Results

- \triangleright A binary outcome X_t is revealed indicating toxicity or not- $X_t = 1$ implies toxicity and $X_t = 0$ implies not.
- For fixed design trials nCRM, BOIN, mTP, etc are used for dose finding.

MTD in Adaptive Clinical Trials

- Key difference between fixed designs and adaptive-sampling scheme.
- Fixed designs- random sample gives inferential findings.
- Adaptive designs-sampling and inference/learning happens in a balanced manner based on data history.
- Reinforcement learning tailor made in adaptive setting.

Introduction

Reinforcement Learning

Introduction

Figure: RL Illustration

- Person/agent interacts with environment to know more about it.
- Two types of Reinforcement Learning- Online Learning and Offline Learning-focus on online.
- ► Two different approaches: MDPs and bandits- focus on bandits.

Thompson Sampling

First algorithm for bandits is Thompson sampling, 1933.

Main Results

- Thompson showed empirical findings.
- Bayesian approach to bandits.
- Positives- known theory and more stable than UCB (recent work by Jeevi eta al.).
- Negatives-mostly intractable posteriors leading to approximate sampling (recent work by Michael Jordan's group).

Thompson Sampling

```
Input: Bayesian bandit environment (\mathcal{E}, \mathcal{B}(\mathcal{E}), Q, P).
```

for:
$$t = 1, 2, \dots, n$$
 do

Sample
$$\nu_t \sim Q(\cdot \mid A_1, X_1, \cdots, A_{t-1}, X_{t-1})$$

Choose
$$A_t = \operatorname{argmax}_{i \in [k]} \mu_i(\nu_t)$$
.

end for

Introduction

Algorithm 1: Thompson Sampling Algorithm

Key idea: Given data, sample from posterior and take action which maximizes the average posterior reward given the sample.

Thompson Sampling: Example

Input: Bayesian bandit environment $(\mathcal{E}, \mathcal{B}(\mathcal{E}), Q, P)$.

for: $t = 1, 2, \dots, n$ do

for: $k = 1, 2, \dots, K$ do

Sample $\hat{\theta}_k \sim \text{beta}(\alpha_k, \beta_k)$ (some hyper-parameters for the k-th

arm.

end for

Choose $A_t = \operatorname{argmax}_k \hat{\theta}_k$.

Pull A_t to get reward r_{A_t} .

Update: $(\alpha_{A_t}, \beta_{A_t}) \leftarrow (\alpha_{A_t} + r_{A_t}, \beta_{A_t} + 1 - r_{A_t}).$

Algorithm 2: Thompson Sampling: Bernoulli Bandit

Bernoulli bandit where at each stage we sample the success probability of each arm and sample the reward from the arm with the highest success probability.

Regret of Thompson Sampling

- Thompson Sampling begets two regrets-frequentist and Bayesian.
- The frequentist regret

$$R_n(\pi,\eta) = n\mu^* - \sum_{t=1}^T \mathbb{E}\left[X_t\right]$$

- -bandit instance dependent.
- The Bayesian bandit regret is given as

$$\mathsf{BR}_{n}(\pi,Q) = \int_{\mathcal{E}} R_{n}(\pi,\eta) dQ(\eta)$$

-average over the bandit instance.

Bandit Model for MTD

- ▶ At round t select dose $D_t \in \{1, 2, 3, \dots, K\}$.
- A binary outcome X_t is revealed where $X_t = 1$ implies toxicity and is 0 o.w.
- $ightharpoonup X_t \sim \operatorname{Ber}(p_{D_t})$, independent of previous observations.
- $ightharpoonup N_k(t) = \sum_{s=1}^t \mathbf{1}_{\{D_s = k\}}$ number of times dose k is selected.

Bandit Model for MTD

- Prior distribution on $\mathbf{p} = (p_1, p_2, \dots, p_K)$ is $\Pi^0 = \prod_{i=1}^K \pi_k^0$ with $\pi_k^0 = \text{Unif}([0, 1])$.
- lacktriangle Generate a dose at each time instance $orall k heta_k(t)\sim \pi_k^t$
- $D_{t+1} = \arg\min_{k} |\theta_k(t) \theta|.$

▶ Under an identifiability condition for the optimal dose one has

$$\mathbb{E}[N_k(n)] \leq O(\log n).$$

Main Results

Further, one has

$$\lim\inf_{n\to\infty}\frac{\mathbb{E}[N_k(n)]}{\log n}\geq\frac{1}{kl(p_k,d_k^*)}$$

where d_k^* is the gap and p_k is the toxicity probability.

Finally,

$$\mathbb{P}\left(\hat{k}_n \neq k^*\right) = O(\log n).$$

Key Takeaways

- Thompson Sampling works well in dose escalation model adaptive designs.
- Produces sub-linear regret. Tight bound.
- Correct dose estimated at end of trial with high probability.