k-Nearest Neighbors

고태훈 (taehoonko@dm.snu.ac.kr)

k-nearest neighbors (k-NN)

- ❖ k-nearest neighbors (k-최근접 이웃) algorithm
 - ▶ 목표: 특정 포인트에 가장 가까운 k개의 이웃 포인트들을 참조하여 그 포인트의 출력변수 Y를 예측하는 알고리즘
 - One of the simplest machine learning algorithms
 - No explicit training or model
 - Can be used both for classification and regression

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

k-NN classification: Example

Classify a new instance to the nearest neighbor's class

k-NN classification: Example

Classify a new instance to the 3 nearest neighbors' class

k-NN: Inference

- Given training data (X, Y)
 - X: Input variables
 - Y: Output variable

In computer science, this new point is called a "query point"

- lacktriangle Suppose there is a new point Q
 - ► For *i* in range(1,number of training points)
 - Compute distance $d(X_i, Q)$
 - ▶ Compute set I containing indices for the k smallest distances $d(X_i, Q)$
 - ▶ **Return** \hat{y} corresponding to the new point Q using $\{y_i \text{ for } i \in I\}$

How to measure the distance d(X,Q)

training point: $X = (x_1, x_2, L, x_p)^T$

query point: $Q = (q_1, q_2, L, q_n)^T$

Minkovski distance with order p

$$d(X,Q) = \left(\sum_{i=1}^{p} |x_{i} - q_{i}|^{p}\right)^{\frac{1}{p}}$$

▶ When p = 2, it is the Euclidean distance.

$$d(X,Q) = \left(\sum_{i=1}^{p} |x_i - q_i|^2\right)^{\frac{1}{2}} = \sqrt{(x_1 - q_1)^2 + L + (x_p - q_p)^2}$$

= 1

$$p = 2^{0.5}$$

= 1.414

$$p = 2^1$$
$$= 2$$

$$p = 2^{1.5}$$

= 2.828

$$p=2^2$$

$$p - 2 = 4$$

<Minkovski distance>

How to measure the distance d(X, Q)

= How to measure the similarity sim(X, Q)

training point: $X = (x_1, x_2, L, x_p)^T$ query point: $Q = (q_1, q_2, L, q_p)^T$

Cosine similarity

- Bounded between -1 and 1
- ▶ Bounded between 0 and 1 if X and Q are nonnegative

$$sim(X,Q) = \cos\theta = \frac{XgQ}{\|X\|\|Q\|} = \frac{\sum_{i=1}^{p} x_i q_i}{\sqrt{\sum_{i=1}^{p} x_i^2} \sqrt{\sum_{i=1}^{p} q_i^2}}$$

$$\cos 0 = 1$$

$$\cos 90^{\circ} = 0$$

How to measure the distance d(X, Q)

= How to measure the similarity sim(X, Q)

training point:
$$X = (x_1, x_2, L, x_p)^T$$

query point: $Q = (q_1, q_2, L, q_p)^T$

- Pearson's correlation coefficient
 - Bounded between -1 and 1
 - Equal to cosine similarity with zero-centered X and Q

$$sim(X,Q) = r(X,Q) = \frac{\sum_{i=1}^{p} (x_i - \overline{x})(q_i - \overline{q})}{\sqrt{\sum_{i=1}^{p} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{p} (q_i - \overline{q})^2}}$$

언제 cosine similarity가 좋은가?

Document - term matrix

- ▶ 유클리디언 거리보다 코사인 유사도가 더 좋을 수 있다.
- ▶ 예제: 문서1,2,3에 대해 각 단어가 포함된 수를 count
 - ▶ 유클리디언 거리의 경우
 - d(문서1, 문서2) = $\sqrt{3}$
 - d(문서3, 문서2) = $\sqrt{2}$
 - 코사인 유사도의 경우

- sim	(문서	1, 문시	12)) = 1
-------	-----	-------	-----	-------

- sim(문서3, 문서2) = $\sqrt{3}$
- 유클리디언 거리를 쓰는 경우, 문서2에 가장 가까운 것은 문서3
- 코사인 유사도를 쓰는 경우, 문서2에 가장 가까운 것은 문서1

	단어1	단어2	단어3
문서1	2	2	2
문서2	1	1	1
문서3	0	0	1

How to represent distance in terms of similarity

distance = 1 - similarity

- ▶ cosine similarity는 -1과 1사이의 값을 갖는다.
- ▶ 1 cosine similarity는 0과 2사이의 값을 갖고 거리 척도 로 쓰일 수 있다.

Euclidean distance

- ▶ 가장 널리 쓰이는 거리 지표
- ▶ 입력변수값의 scaling이 반드시 필요
 - ex) Income varies 10,000-1,000,000 while height varies 1.5-1.8 meters
 - Normalization or Standardization!
- ▶ 입력변수의 수가 많아지면(즉, 포인트의 차원이 커지면) 거리가 증가하는 측면이 있음

Cosine similarity and Pearson's correlation coefficient

- ▶ 입력변수 간의 scale 차이가 영향을 미치지 않음
- ▶ 데이터가 Sparse matrix (희소행렬) 인 경우, Euclidean distance보다 더 나은 선택이 될 수 있음
 - ex) Document-term matrix for text mining

k-NN: How to select k

❖ 여러 개의 k값을 시도하여 가장 성능이 좋은 k를 선정

- ▶ 검증데이터(Test set)을 이용하여 여러 개의 k값에 대한 예측 성능을 확인
 - 예측성능: Predictive performance (for classification or regression)
- ▶ k가 너무 작으면, 과적합(over-fitting)할 수 있으며 지역적인 노이즈 에 민감할 수 있음
- ▶ k가 너무 크면, 지역적인 데이터 구조를 잘 반영하지 못할 수 있음

k-NN: How to select k

k-NN: How to classify a new point

Majority voting vs. Weighted voting

- Majority voting
 - Classify a new point as the majority class
- Weighted voting
 - Assign 'weight' to the contribution of the neighbors.
 - Common weighting scheme
 - distance between a new point and $i^{
 m th}$ neighbor: d_i

- weight for
$$i^{\text{th}}$$
 neighbor : $w_i = \frac{1/d_i}{\sum_{j=1}^k (\frac{1}{d_j})}$

- Sum of weights:
$$\sum_{i=1}^k w_i = 1$$

k-NN: How to classify a new point

Example 1: k=5

For a new point

Q

Neighbor	Class	Distance	1/distance	Weight
N1	М	1	1.00	0.44
N2	F	2	0.50	0.22
N3	М	3	0.33	0.15
N4	F	4	0.25	0.11
N5	F	5	0.20	80.0

- ► Majority voting: $P(\hat{Y} = M) = \frac{2}{5} = 0.4$, $P(\hat{Y} = F) = 1 0.4 = 0.6$
- ▶ Weighted voting: $P(\hat{Y} = M) = 0.44 + 0.15 = 0.59$, $P(\hat{Y} = F) = 1 0.59 = 0.41$
- Q is classified as F by the majority voting, while classified as M by the weighted voting

k-NN: How to classify a new point

- Example 2: Considering the cut-off value with k = 5
 - Assume that $N(C_M) = 100$, $N(C_F) = 400$

For a new point

Q

Neighbor	Class
N1	М
N2	F
N3	М
N4	F
N5	F

Majority voting P(X=M)=0.4

- ▶ If the cut-off is set to 0.5 (assuming equal class distribution), then Q is classified as F.
- ▶ If the cut-off is set to 0.2 (proportion of M among the people), then Q is classified as M.

k-NN: How to predict of output value of a new point

- Simple average vs. Weighted average
- Example 1: k=5

For a new point

Q

Neighbor	BFS	Distance	1/distance	Weight
N1	15.4	1	1.00	0.44
N2	17.2	2	0.50	0.22
N3	12.3	3	0.33	0.15
N4	11.5	4	0.25	0.11
N5	10.9	5	0.20	0.08

Simple average

: BFS of Q = (15.4+17.2+12.3+11.5+10.9)/5 = 13.46

Weighted average

: BFS of Q = 0.44*15.4+0.22*17.2+0.15*12.3+0.11*11.5+0.08*10.9 = 14.54

k-NN: Pros and Cons

Pros

- ▶ Simple and powerful. No need for tuning complex parameters to build a model.
- No training involved ("lazy"). New training examples can be added easily.

k-NN: Pros and Cons

Cons

- Expensive and slow: O(md), m= # examples, d= # dimensions
 - To determine the nearest neighbor of a new point x, must compute the distance to all m training examples. Runtime performance is slow, but can be improved.
 - Pre-sort training examples into fast data structures
 - Compute only an approximate distance
 - Remove redundant data (condensing)