Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-226. Вариант 4

- 1. Пусть $z=2\sqrt{3}+2i$. Вычислить значение $\sqrt[6]{z^2}$, для которого число $\frac{\sqrt[6]{z^2}}{\frac{3\sqrt{3}}{2}+\frac{3i}{2}}$ имеет аргумент $\frac{11\pi}{9}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-9+3i) + y(-4-3i) = -99 - 103i \\ x(6+6i) + y(2+2i) = -2 + 134i \end{cases}$$

- 3. Найти корни многочлена $3x^6 6x^5 42x^4 + 594x^3 1545x^2 6000x + 43500$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = 2 5i$, $x_2 = 4 + 2i$, $x_3 = -5$.
- 4. Даны 3 комплексных числа: -16-15i, -24-26i, 7+17i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -1 \sqrt{3}i$, $z_2 = \sqrt{3} i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi,\pi])$:

$$\begin{cases} |z-4| < 2\\ |arg(z+4i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-11, 1, -6), b = (0, -3, -9), c = (-1, 1, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(3,-8,7) и плоскость P:-10x+10y+16z+226=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-10, 1, -6), $M_1(2, 11, -13)$, $M_2(112, 1, -13)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -14x + 10y - 4z + 132 = 0\\ -16x - y - 20z + 303 = 0 \end{cases} \qquad L_2: \begin{cases} 2x + 11y + 16z - 1314 = 0\\ 2x - 9y - 4z + 546 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.