빅데이터 통계분석 final project

소프트웨어융합전공 2015682 이보경

1. READ TRAIN DATA

```
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("final").getOrCreate()
    spark.conf.set("spark.sql.execution.arrow.pyspark.enabled","true")

part1 = spark.read.parquet("hdfs://localhost:9000/finalDB/Partial1.parquet")
    part2 = spark.read.parquet("hdfs://localhost:9000/finalDB/Partial2.parquet")
    part3 = spark.read.option('header', 'true').csv("hdfs://localhost:9000/finalDB/Partial3.csv", inferSchema=True)
    part4 = spark.read.parquet("hdfs://localhost:9000/finalDB/Partial4.parquet")
    part5 = spark.read.option('header', 'true').csv("hdfs://localhost:9000/finalDB/Partial5.csv")
    part1.show()
```

++		+			+	++
ID	X1	X2	X3	X4	X5	Y
+	+	+		·	+	++
P1000002	A3	0.1972	6.563	8.4542	Group3	27612.3830690663
P1000007	A1	-0.9084	10.491	9.8017	Group2	9150.26570738822
P1000030	A3	0.3164	11.341	14.8871	Group2	76579.6846859015
P1000046	A2	0.7928	11.831	8.7676	Group2	51189.603726392
P1000060	A1	0.4274	17.689	10.6112	Group2	148313.339805297
P1000064	A1	-1.5066	19.845	9.7027	Group2	61074.026560969
P1000083	A1	1.1936	3.574	7.8773	Group1	50632.088794274
P1000084	A2	-1.1741	4.27	10.4408	Group2	3065.22776267054
P1000087	A1	-0.3164	3.105	13.7127	Group1	6159.11438564402
P1000129	A2	-0.4274	-0.509	null	Group2	159393.020826127
				•		

part3.show 	()					
ID	X1	X2	X3	X4	X5	Y
						83223.5089882021 40440.0400000001
P5296777	Α2	-1.7123	3.661	9.493	Group2	43143
	A2		18.933	12.1682	Group2	7572.07919410697 5895.67818712711
P5296792 P5296797						591.379519815538 84390.077175249
P5296801 P5296804						22383.329163738 387864.997228424
						314654.491913031

2. COMBINE & toPandas

-0.6068

4 P1006412 A4 0.7677

-7.772 13.1339 Group2

2.398 10.2349 Group2

5.0 Age3

5.0 Age5

12.10124

```
Sdata = part1.union(part2)
                                                              IDI X11
                                                                         X2 l
                                                                                X3 |
                                                                                              Х5
                                                                                                                   X6|
Sdata = Sdata.union(part3)
                                                                 A4 | -0.4945 | 24.935 | 10.6905 | Group 2 | 8680.83289773887 | 5.0 | Age 4 |
                                                                 A4| 1.7582| 8.017| 9.9748|Group2|815078.562414822|null|Age5|
Sdata = Sdata.join(part4, ['ID'], 'inner')
                                                                 A3 | -0.9239 | 11.739 | 7.2338 | Group 1 | 106371.230243878 | 6.0 | Age 6 |
                                                       |P1006134| A1|-0.6068|-7.772|13.1339|Group2|10852.2018059725| 5.0|Age3| 9.29497|114|
                                                                 A4| 0.7677| 2.398|10.2349|Group2| 34034.552569579| 5.0|Age5|12.10124|
Sdata = Sdata.unionByName(part5)
                                                       only showing top 5 rows
Sdata.show(5)
                                                                                                     data2 = data.copy()
data = Sdata.toPandas()
                                                                                                     test2 = test.copy()
data = data[['ID', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7', 'X8', 'X9', 'X10', 'Y']]
data.head()
                                                                                                 DATA1
                                                                                                   - 범주형 변수 결측치 제거
         ID X1
                  X2
                        X3
                               X4
                                      X5
                                           X6
                                                        X8 X9
                                                X7
                                                                 X10
                                                                                                      MinMaxScaler 이용
   P1000342 A4 -0.4945 24.935 10.6905 Group2
                                           5.0 Age4
                                                     12.075 102
                                                                 Male 8680.83289773887
                            9.9748 Group2
                      8.017
                                         None Age5
                                                    9.96618
                                                                     815078.562414822
                                                                                                DATA2
 2 P1005777 A3 -0.9239 11.739
                            7.2338 Group1
                                                            85 Female 106371.230243878
                                           6.0 Age6
                                                                                                   - 범주형 변수 최빈값 대체
```

10852.2018059725

34034.552569579

91 Female

- StandartdScaler 이용

3. DATA TYPE

```
root
|-- ID: string (nullable = true)
|-- X1: string (nullable = true)
|-- X2: double (nullable = true)
|-- X3: double (nullable = true)
|-- X4: double (nullable = true)
|-- X5: string (nullable = true)
|-- Y: double (nullable = true)

part4.printSchema()

root
```

```
oot
|-- ID: string (nullable = true)
|-- X6: double (nullable = true)
|-- X7: string (nullable = true)
|-- X8: double (nullable = true)
|-- X9: short (nullable = true)
|-- X10: string (nullable = true)
```

```
part1
Part2 part4
part3
part5
```

```
Ist = ['X2', 'X3', 'X4', 'X6', 'X8', 'Y']

for col in Ist:
    data[col] = data[col].replace('NA', -999)
    data[col] = data[col].astype('double')
    data[col] = data[col].replace(-999, np.nan)

data['X9'] = data['X9'].astype('short')
```

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1100000 entries, 0 to 1099999 Data columns (total 12 columns): Column Non-Null Count Dtype 1100000 non-null object 1095186 non-null obiect 1100000 non-null float64 1100000 non-null float64 1059405 non-null float64 1099062 non-null object 1015249 non-null float64 Х7 1100000 non-null object 1100000 non-null float64 Х9 1100000 non-null int16 10 X10 1078024 non-null object 1100000 non-null float64 dtypes: float64(6), int16(1), object(5) memory usage: 94.4+ MB

4. DROP DUPLICATES

ID 기준 중복되는 행 제거

```
data.shape
(1100000, 12)

data = data.drop_duplicates(['ID'], keep='first', ignore_index=True)

df_id = data[['ID']]

data.shape
(1000000, 12)
```

5. TEST DATA

```
testX = spark.read.option('header', 'true').csv("hdfs://localhost:9000/finalDB/TestX.csv")
testY = spark.read.option('header', 'true').csv("hdfs://localhost:9000/finalDB/TestY.csv")

testX = testX.toPandas()
testY = testY.toPandas()

test = pd.merge(testX, testY, on=['ID'], how='right')
test
```

	ID	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10	Y
0	P9920380	A2	0.2921	17.636	10.6735	Group2	6	Age2	10.81764	113	Female	13441.9471005922
1	P9619726	A2	1.0492	23.758	13.1427	Group2	5	Age2	11.0113	96	Male	37465.0559510013
2	P9851405	A4	0.6842	26.687	6.7143	Group2	6	Age3	8.65085	109	Female	345725.74044955
3	P9764914	A 3	-0.6416	12.955	11.5501	Group2	6	Age4	10.52249	125	Male	23663.0498937355
4	P9615948	A2	1.1395	20.243	10.3386	Group2	5	Age4	8.39666	86	Male	1608375.72917404
48595	P9599067	A1	1.6197	-4.713	11.1224	Group2	5	Age3	7.56934	88	Female	887727.955459428
48596	P9851235	A 3	0.1437	8.867	12.6313	Group3	5	Age1	9.84248	121	NA	9297.56648520998
48597	P9658431	A1	-0.9883	14.446	NA	Group1	5	Age4	9.43371	139	Male	31485.7594803602
48598	P9661211	A1	0.358	21.694	8.4582	Group3	5	Age2	10.90353	123	Male	21720.4420341918
48599	P9609076	A2	1.3599	-4.464	11.3768	Group1	6	Age3	7.71662	88	Female	548630.745246185

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48600 entries, 0 to 48599
Data columns (total 12 columns):

2000	001411110	(coca, in ooran	
#	Column	Non-Null Count	Dtype
0	ID	48600 non-null	object
1	X1	48600 non-null	object
2	X2	48600 non-null	float64
3	Х3	48600 non-null	float64
4	X4	46742 non-null	float64
5	Х5	48600 non-null	object
6	Х6	44818 non-null	float64
7	Х7	48600 non-null	object
8	Х8	48600 non-null	float64
9	Х9	48600 non-null	int16
10	X10	48600 non-null	object
11	Υ	48600 non-null	object
dtyp	es: floa [.]	t64(5), int16(1)	i, object(6)
memo	rv usade	: 4 2+ MR	

memory usage: 4.2+ MB

6. MISSING VALUES

data.is	sna().s	um()
ID	0	
X1	4814	
X2	0	
Х3	0	
X4	36868	
Х5	938	
Х6	76994	
Х7	0	
X8	0	
Х9	0	
X10	21976	
Υ	0	
dtype:	int64	

```
test.isna().sum()
       1858
Х5
       3782
Х9
X10
dtype: int64
```

6-1. CATEGORICAL

```
numeric = data.select_dtypes(include = np.number).columns.tolist()
categoric = data.select_dtypes(exclude = np.number).columns.tolist()
```

DATA1) dropna()

```
for col in categoric:
for col in categoric:
                                                               test[col] = test[col].replace('NA', np.nan)
    data[col] = data[col].replace('NA', np.nan)
                                                               print(col, ": ", test[col].isna().sum())
    print(col, ": ", data[col].isna().sum())
ID : 0
                                                           ID : 0
                                                           X1 : 477
X1: 9620
X5 : 1899
                                                           X5 : 104
                                                           X10 : 1303
X10 : 27427
                                                           test.dropna(subset=categoric, inplace=True)
data.dropna(subset=categoric, inplace=True)
```

6-1. CATEGORICAL

DATA2) fillna()

```
      for col in categoric:
      data2[col] = data2[col].replace('NA', np.nan)
      test2[col] = test2

      print(col, ": ", data[col].isna().sum())
      ID : 0

      X1 : 4814
      X1 : 477

      X5 : 938
      X5 : 104

      X7 : 0
      X7 : 0

      X10 : 21976
      X10 : 1303

        test2['X1'].fillna(data2["X1"].mode()[0], inplace=True)
        data2['X5'].fillna(data2["X5"].mode()[0], inplace=True)
        test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['X5'].fillna(test2['
```

data2['X10'].fillna(data2["X10"].mode()[0], inplace=True)

```
ID: 0
X1: 477
X5: 104
X7: 0
X10: 1303

test2['X1'].fillna(test2["X1"].mode()[0], inplace=True)
test2['X5'].fillna(test2["X5"].mode()[0], inplace=True)
```

test2['X10'].fillna(test2["X10"].mode()[0], inplace=True)

test2[col] = test2[col].replace('NA', np.nan)

print(col, ": ", test2[col].isna().sum())

6-2. NUMERIC

- 딱히 이상치는 없어 보이고,
- 행 사이의 연관이 없어 확률 대체로 결측치 처리
- + KNNImputer 무한로딩 오류

```
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
imputer = IterativeImputer(random state = 0)
imputer.set output(transform = 'pandas')
         IterativeImputer
IterativeImputer(random_state=0)
data[numeric] = imputer.fit transform(data[numeric])
data2[numeric] = imputer.fit_transform(data[numeric])
test[numeric] = imputer.fit transform(test[numeric])
test2[numeric] = imputer.fit transform(test2[numeric])
```

```
data.isna().sum()
                            test.isna().sum()
                                    0
       0
ΙD
X1
                                    0
Х4
Х6
Χ7
Х8
Х9
X10
                            X10
dtype: int64
                            dtype: int64
data2.isna().sum()
                            test2.isna().sum()
ΙD
       0
                                    0
Х1
                            Х1
                                    0
ХЗ
                            ХЗ
                                    0
                            Х4
Х7
                                    0
Х8
                                    0
Х9
X10
                            X10
                                    0
dtype: int64
                            dtype: int64
```

7. X, Y SPLIT

```
trainX = data.drop(['ID', 'Y'], axis=1)
trainY = data.Y
trainX2 = data2.drop(['ID', 'Y'], axis=1)
trainY2 = data2.Y
print(trainX.shape)
print(trainY.shape)
(961376, 10)
(961376.)
testX = test.drop(['ID', 'Y'], axis=1)
testY = test.Y
testX2 = test2.drop(['ID', 'Y'], axis=1)
testY2 = test2.Y
print(testX.shape)
print(testY.shape)
(46730, 10)
(46730,)
```

8. SCALING

```
tnumeric = ['X2', 'X3', 'X4', 'X6', 'X8', 'X9']
tcategoric = ['X1', 'X5', 'X7', 'X10']
```

DATA1) MinMaxScaler()

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(trainX[tnumeric])
```

```
trainX[tnumeric] = scaler.transform(trainX[tnumeric])
testX[tnumeric] = scaler.fit_transform(testX[tnumeric])
```

trainX.describe()

	X2	Х3	X4	X6	X8	Х9
count	961376.000	961376.000	961376.000	961376.000	961376.000	961376.000
mean	0.520	0.492	0.469	0.500	0.474	0.507
std	0.102	0.107	0.103	0.100	0.095	0.104
min	0.000	0.000	0.000	0.000	0.000	0.000
25%	0.451	0.420	0.402	0.400	0.410	0.438
50%	0.520	0.492	0.469	0.500	0.474	0.505
75%	0.589	0.564	0.536	0.600	0.539	0.578
max	1.000	1.000	1.000	1.000	1.000	1.000
testY	describe()					

testX.describe()

	X2	Х3	X4	X6	X8	Х9
count	46730.000	46730.000	46730.000	46730.000	46730.000	46730.000
mean	0.506	0.503	0.493	0.556	0.499	0.510
std	0.120	0.125	0.123	0.111	0.118	0.120
min	0.000	0.000	0.000	0.000	0.000	0.000
25%	0.425	0.418	0.412	0.444	0.420	0.431
50%	0.506	0.503	0.493	0.556	0.499	0.509
75%	0.587	0.588	0.574	0.667	0.578	0.593
max	1.000	1.000	1.000	1.000	1.000	1.000

8. SCALING

DATA2) StandardScaler()

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler()
```

```
trainX2[tnumeric] = ss.fit_transform(trainX2[tnumeric])
testX2[tnumeric] = ss.fit_transform(testX2[tnumeric])
```

trainX2.describe()

	X2	Х3	X4	X6	X8	Х9
count	1000000.000	1000000.000	1000000.000	1000000.000	1000000.000	1000000.000
mean	0.000	0.000	0.000	-0.000	-0.000	0.000
std	1.000	1.000	1.000	1.000	1.000	1.000
min	-5.088	-4.619	-4.569	-4.999	-4.973	-4.866
25%	-0.674	-0.674	-0.657	-1.001	-0.676	-0.665
50%	0.000	-0.000	0.000	-0.002	0.000	-0.015
75%	0.675	0.675	0.658	0.998	0.675	0.686
max	5.126	4.763	5.174	4.996	5.513	4.737

testX2.describe()

	X2	Х3	X4	X6	X8	Х9
count	48600.000	48600.000	48600.000	48600.000	48600.000	48600.000
mean	-0.000	0.000	0.000	0.000	-0.000	0.000
std	1.000	1.000	1.000	1.000	1.000	1.000
min	-4.222	-4.018	-3.990	-5.009	-4.222	-4.258
25%	-0.676	-0.680	-0.658	-1.005	-0.670	-0.661
50%	-0.000	-0.001	-0.001	-0.004	0.004	-0.011
75%	0.674	0.675	0.656	0.997	0.670	0.688
max	4.118	3.995	4.095	3.999	4.243	4.085

9. DUMMIES

DATA1) X1, X5: 가변수처리, X7: label encoding, X10: 0과 1로

- 카테고리가 너무 많은 변수를 가변수 처리하면 데이터의 cardinality가 증가하여 성능이 떨어질 수 있음

```
trainX['X1'].value_counts()
                                                    trainX['X5'].value counts()
                                                    Х5
      240440
                                                    Group2
                                                              657257
     240378
                                                              152200
                                                    Group1
     240311
                                                    Group3
                                                              151919
      240247
                                                    Name: count, dtype: int64
Name: count, dtype: int64
trainX['X1'] = trainX['X1'].astype('category')
                                                    trainX['X5'] = trainX['X5'].astype('category')
x1 = pd.get_dummies(trainX['X1'])
                                                    x5 = pd.get_dummies(trainX['X5'])
x1 = x1 * 1
                                                    x5 = x5*1
x1.
                                                    х5
```

	A1	A2	A3	A4
0	0	0	0	1
1	0	0	0	1
2	0	0	1	0
3	1	0	0	0
4	0	0	0	1

	Group1	Group2	Group3
0	0	1	0
1	0	1	0
2	1	0	0
3	0	1	0
4	0	1	0

2.026 1.109 -0.002 2 0.181 0.686

1000000 rows x 15 columns

9. DUMMIES

DATA2) X1, X5: 가변수처리, X7: label encoding, X10: 0과 1로

- DATA1과 동일하게 처리

```
trainX2['X1'] = trainX2['X1'].astype('category')
x1 = pd.get_dummies(trainX2['X1'])
x1 = x1*1
trainX2['X5'] = trainX2['X5'].astvpe('category')
x5 = pd.get_dummies(trainX2['X5'])
x5 = x5*1
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
encoder.fit(trainX2['X7'])
trainX2['X7'] = encoder.transform(trainX2['X7'])
trainX2 = trainX2.drop(['X1', 'X5'], axis=1)
trainX2 = pd.concat([trainX2, x1], axis=1)
trainX2 = pd.concat([trainX2, x5], axis=1)
```

	X2	Х3	X4	X6	X7	X8	Х9	X10	A 1	A2	А3	Α4	Group1	Group2	Group3
0	-0.495	1.494	0.351	-0.002	3	2.075	0.235	0	0	0	0	1	0	1	0
1	1.756	-0.198	-0.014	0.000	4	-0.034	-0.465	1	0	0	0	1	0	1	0
2	-0.924	0.174	-1.409	0.998	5	-0.405	-0.615	1	0	0	1	0	1	0	0
3	-0.607	-1.777	1.595	-0.002	2	-0.705	0.836	0	1	0	0	0	0	1	0
4	0.766	-0.760	0.119	-0.002	4	2.101	-0.315	1	0	0	0	1	0	1	0
999995	0.200	0.563	-0.840	1.997	1	0.362	-0.815	1	0	0	1	0	0	1	0
999996	-0.640	-0.611	-0.014	-2.000	5	-0.859	-1.065	0	0	0	1	0	0	1	0
999997	-1.558	-0.503	0.972	-1.001	2	-1.179	1.086	1	0	0	0	1	0	0	1
999998	-0.636	-1.640	1.147	-0.002	2	0.195	0.235	0	0	0	0	1	0	1	0
999999	-1.378	2.026	1.109	-0.002	2	0.181	0.686	0	0	1	0	0	0	1	0

1000000 rows × 15 columns

9. DUMMIES

DATA3) X1, X5, X7: 가변수처리, X10: 0과 1로

```
trainX['X7'] = trainX['X7'].astype('category')
x7 = pd.get_dummies(trainX['X7'])
\times 7 = \times 7 \times 1
×7
 999998 0 0 1 0 0 0
961376 rows × 6 columns
trainX = trainX.drop('X7', axis=1)
trainX = pd.concat([trainX, x7], axis=1)
```

		X2	Х3	X4	X6	X8	Х9	X10	A1	A2	A3	A4	Group1	Group2	Group3	0	1	2	3	4	5
	0	0.470	0.652	0.505	0.500	0.672	0.531	0	0	0	0	1	0	1	0	0	0	0	1	0	0
	1	0.700	0.471	0.468	0.500	0.471	0.458	1	0	0	0	1	0	1	0	0	0	0	0	1	0
	2	0.426	0.511	0.324	0.600	0.436	0.443	1	0	0	1	0	1	0	0	0	0	0	0	0	1
	3	0.458	0.303	0.633	0.500	0.407	0.594	0	1	0	0	0	0	1	0	0	0	1	0	0	0
	4	0.599	0.411	0.481	0.500	0.675	0.474	1	0	0	0	1	0	1	0	0	0	0	0	1	0
99	9995	0.541	0.552	0.383	0.700	0.509	0.422	1	0	0	1	0	0	1	0	0	1	0	0	0	0
99	9996	0.455	0.427	0.468	0.300	0.392	0.396	0	0	0	1	0	0	1	0	0	0	0	0	0	1
99	9997	0.361	0.439	0.569	0.400	0.362	0.620	1	0	0	0	1	0	0	1	0	0	1	0	0	0
99	9998	0.455	0.318	0.587	0.500	0.493	0.531	0	0	0	0	1	0	1	0	0	0	1	0	0	0
99	9999	0.379	0.708	0.583	0.500	0.492	0.578	0	0	1	0	0	0	1	0	0	0	1	0	0	0

961376 rows × 20 columns

10. VISUALIZATION

```
figure, ax_list = plt.subplots(nrows=1, ncols=4)
figure.set_size_inches(12,5)

cols = ['X2', 'X3', 'X7', 'X8']

for i in range(4):
    col = cols[i]
    sns.violinplot(data=trainX, y=col, showfliers=True, ax=ax_list[i])
    ax_list[i].set_title(f"distribution '{col}'")

# 是至가 고르기 때문에 로그 변환 X
```


10-1. Y-VISUALIZATION


```
numeric = ['X2', 'X3', 'X4', 'X6', 'X8', 'X9', 'Y']
for col in numeric:
    print('{:15}'.format(col),
           'Skewness: {:05,2f}'.format(data[col].skew())
          'Kurtosis: {:06.2f}'.format(data[col].kurt())
Х2
                                    Kurtosis: -00.00
                Skewness: 00.00
                Skewness: -0.00
                                    Kurtosis: -00.00
                                    Kurtosis: -00.01
                Skewness: -0.00
                Skewness: 00.00
                                    Kurtosis: -00.00
                Skewness: 00.00
                                    Kurtosis: -00.00
                Skewness: -0.00
                                     Kurtosis: -00.00
                Skewness: 182.92
                                     Kurtosis: 78437.10
```

Y(target)의 왜도와 첨도가 매우 큼 (한 쪽으로 몰려있음)

-> 로그 변환

```
trainY_log = np.log1p(trainY)
```

```
trainY_log
           9.068988
          13.611041
          11.574700
           9.292215
          10.435161
999995
           8.863625
999996
          11.985615
999997
           9.485059
999998
           8.499563
999999
           9.187542
Name: Y, Length: 961376, dtype: float64
```


11. RESIDUAL CHECK

```
model = sm.OLS(list(trainY), sm.add_constant(trainX))
results = model.fit()
print(results.summary())
```

OLS Regression Results

Dep. Variable:	У	R-squared:	0.056
Model:	OLS	Adj. R-squared:	0.056
Method:	Least Squares	F-statistic:	4404.
Date:	Wed, 21 Jun 2023	Prob (F-statistic):	0.00
Time:	09:17:03	Log-Likelihood:	-1.5512e+07
No. Observations:	961376	AIC:	3.102e+07
Df Residuals:	961362	BIC:	3.102e+07
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-1.313e+16	2.74e+17	-0.048	0.962	-5.5e+17	5.23e+17
X2	3.835e+06	2.46e+04	156.103	0.000	3.79e+06	3.88e+06
Х3	1.042e+06	2.36e+04	44.207	0.000	9.96e+05	1.09e+06
X4	-3.118e+04	2.45e+04	-1.274	0.203	-7.91e+04	1.68e+04
X6	3957.9485	2.51e+04	0.158	0.875	-4.52e+04	5.32e+04
X7	2.261e+05	1674.157	135.074	0.000	2.23e+05	2.29e+05
X8	-2.897e+06	2.63e+04	-109.988	0.000	-2.95e+06	-2.85e+06
X9	4.972e+05	2.41e+04	20.613	0.000	4.5e+05	5.44e+05
X10	3519.4242	5022.953	0.701	0.484	-6325.395	1.34e+04
A1	-1.276e+14	2.66e+15	-0.048	0.962	-5.34e+15	5.09e+15
A2	-1.276e+14	2.66e+15	-0.048	0.962	-5.34e+15	5.09e+15
АЗ	-1.276e+14	2.66e+15	-0.048	0.962	-5.34e+15	5.09e+15
Α4	-1.276e+14	2.66e+15	-0.048	0.962	−5.34e+15	5.09e+15
Group1	1.326e+16	2.76e+17	0.048	0.962	−5.28e+17	5.55e+17
Group2	1.326e+16	2.76e+17	0.048	0.962	−5.28e+17	5.55e+17
Group3	1.326e+16	2.76e+17	0.048	0.962	-5.28e+17	5.55e+17

4719140.970 Durbin-Watson:

90155.487

0.000 Jarque-Bera (JB):

Prob(JB):

Cond. No.

325571321424171.062

Omnibus:

Kurtosis:

Prob(Omnibus):

|t| >= 2 & p-value <= 0.05

DATA1, 모든 컬럼으로 확인

- X2, X3, X7, X8, X9 유의한 것으로 판단

11. RESIDUAL CHECK

```
model = sm.OLS(list(trainY2), sm.add_constant(trainX2))
results = model.fit()
print(results.summary())
```

OLS Regression Results

Dep. Variable:	У	R-squared:	0.056
Model:	OLS	Adj. R-squared:	0.056
Method:	Least Squares	F-statistic:	4594.
Date:	Wed, 21 Jun 2023	Prob (F-statistic):	0.00
Time:	09:17:35	Log-Likelihood:	-1.6134e+07
No. Observations:	1000000	AIC:	3.227e+07
Df Residuals:	999986	BIC:	3.227e+07
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	3.082e+16	3.05e+17	0.101	0.919	-5.66e+17	6.28e+17
X2	3.93e+05	2464.926	159.438	0.000	3.88e+05	3.98e+05
Х3	1.108e+05	2460.896	45.018	0.000	1.06e+05	1.16e+05
X4	-3394.8684	2490.684	-1.363	0.173	-8276.525	1486.788
X6	-1187.3799	2496.240	-0.476	0.634	-6079.927	3705.167
X7	2.26e+05	1640.595	137.784	0.000	2.23e+05	2.29e+05
X8	-2.758e+05	2463.541	-111.947	0.000	-2.81e+05	−2.71e+05
X9	5.207e+04	2463.901	21.133	0.000	4.72e+04	5.69e+04
X10	4318.4234	4922.701	0.877	0.380	-5329.905	1.4e+04
A1	-3.301e+16	3.26e+17	-0.101	0.919	-6.73e+17	6.07e+17
A2	-3.301e+16	3.26e+17	-0.101	0.919	-6.73e+17	6.07e+17
A3	-3.301e+16	3.26e+17	-0.101	0.919	-6.73e+17	6.07e+17
Α4	-3.301e+16	3.26e+17	-0.101	0.919	-6.73e+17	6.07e+17
Group1	2.182e+15	2.16e+16	0.101	0.919	-4.01e+16	4.45e+16
Group2	2.182e+15	2.16e+16	0.101	0.919	-4.01e+16	4.45e+16
Group3	2.182e+15	2.16e+16	0.101	0.919	-4.01e+16	4.45e+16

Durbin-Watson:

Prob(JB):

87301.076 Cond. No.

Jarque-Bera (JB):

1.96e+15

Omnibus:

Kurtosis:

Skew:

Prob(Omnibus):

|t| >= 2 & p-value <= 0.05

DATA2, 모든 컬럼으로 확인

- X2, X3, X7, X8, X9 유의한 것으로 판단

11. RESIDUAL CHECK

```
model = sm.OLS(trainY_log, sm.add_constant(trainX))
results = model.fit()
print(results.summary())

OLS Regression Results
```

0.976 Dep. Variable: R-squared: Model: Adj. R-squared: 0.976 Least Squares F-statistic: Method: 2.264e+06 Date: Thu, 22 Jun 2023 Prob (F-statistic): 0.00 20:17:21 Log-Likelihood: -2.7244e+05 No. Observations: 961376 AIC: 5.449e+05 Df Residuals: 961358 BIC: 5.451e+05

Df Model: 17 Covariance Type: nonrobust

Skew:

Kurtosis:

-0.004

8.504

Prob(JB):

Cond. No.

0.00

7.12e+14

|t| >= 2 & p-value <= 0.05

DATA3, 모든 컬럼으로 확인

- X2, X3, X8, X9 유의한 것으로 판단

12. RESIDUAL CHECK ITERATION

DATA1

```
for i in range(10):
    print(f'Iteration {i+1}')

    sample = np.random.choice(train.index, size=1000, replace=False)
    sub = train.loc[sample]

    x = sub.drop('Y', axis=1)
    y = sub.Y

model = sm.OLS(y, sm.add_constant(x))
    results = model.fit()

print('summary')
    print(results.summary())
    print(' ')
    print(' ')
    print(' '-----')
```

```
Iteration '
summary
                             OLS Regression Results
Dep. Variable:
                                                                            0.189
                                         R-squared:
Model:
                                         Adj. R-squared:
                                                                           0.178
                                         F-statistic:
Method:
                         Least Squares
                                                                            17.63
                      Wed, 21 Jun 2023
                                         Prob (F-statistic):
                                                                         4.58e=37
Date:
                                         Log-Likelihood:
                                                                         -15474.
Time:
                              09:18:13
No. Observations:
                                  1000
                                         AIC:
                                                                       3.098e+04
                                         BIC:
Df Residuals:
                                   986
                                                                       3.104e+04
Df Model:
                                    13
Covariance Type:
                                                   P>ItI
                                                              [0.025
                                                                           0.975
                          std err
                  coef
           -7.884e+05
                         3.16e+05
                                      -2.495
                                                   0.013
                                                           -1.41e+06
                                                                       -1.68e+05
const
            3.963e+06
                                       9.904
                                                   0.000
                                                            3.18e+06
                                                                        4.75e+06
                            4e+05
                                                   0.005
                                                                        1.74e+06
            1.023e+06
                         3.65e+05
                                       2.801
                                                            3.06e+05
```

- t-value, p-value 고려한 변수 선택
 - X2, X3, X7, X8, A1-A4, G1-G3

```
col = ['X2', 'X3', 'X7', 'X8', 'A1', 'A2', 'A3', 'A4', 'Group1', 'Group2', 'Group3']
```

21. RESIDUAL CHECK ITERATION

DATA2

```
for i in range(10):
    print(f'Iteration {i+1}')

    sample = np.random.choice(train2.index, size=1000, replace=False)
    sub = train2.loc[sample]

    x = sub.drop('Y', axis=1)
    y = sub.Y

model = sm.OLS(y, sm.add_constant(x))
    results = model.fit()

print('summary')
    print(results.summary())
    print('')
    print(''')
```

col2 = ['X2', 'X3', 'X7', 'X8']

```
Iteration 10
summary
                             OLS Regression Results
Dep. Variable:
                                        R-squared:
                                                                           0.122
Model:
                                         Adi. R-squared:
                                                                           0.111
                         Least Squares
                                        F-statistic:
                                                                           10.57
Method:
                     Wed. 21 Jun 2023
                                        Prob (F-statistic):
Date:
                                                                        2.81e-21
Time:
                              09:18:15
                                        Log-Likelihood:
                                                                         -15795.
                                                                       3.162e+04
No. Observations:
                                  1000
                                         AIC:
Df Residuals:
                                   986
                                         BIC:
                                                                       3.169e+04
Df Model:
Covariance Type:
                             nonrobust
                                                  P>ItI
                                                              [0.025]
                                                                          0.975
                         std err
                  coef
           -1.502e+05
                         8.19e+04
                                      -1.834
                                                  0.067
                                                           -3.11e+05
                                                                        1.05e+04
const
X2
            3 9196+05
                         5 51e+04
                                       7 112
                                                  0.000
                                                            2 84e+05
                                                                           5e±05.
```

- t-value, p-value 고려한 변수 선택
 - X2, X3, X7, X8

```
col2 = ['X2', 'X3', 'X7', 'X8']
```

21. RESIDUAL CHECK ITERATION

DATA3

```
for i in range(10):
    print(f'Iteration {i+1}')

    sample = np.random.choice(train.index, size=1000, replace=False)
    sub = train.loc[sample]

    x = sub.drop('Y', axis=1)
    y = sub.Y

    model = sm.OLS(y, sm.add_constant(x))
    results = model.fit()

    print('summary')
    print(results.summary())
    print(' ')
    print(' ')
    print(' ')
```

```
col3 = ['X2', 'X3', 'X8', 'X9']
'A1', 'A2', 'A3', 'A4',
```

```
[2] The Smallest eigenvalue is 1.14e-25. This might indicate that there are
strong multicollinearity problems or that the design matrix is singular.
Iteration 3
summary
                            OLS Regression Results
Dep. Variable:
                                        R-squared:
                                  OLS Adj. R-squared:
Model:
                                                                         0.112
                       Least Squares F-statistic:
                                                                         8.424
Method:
                     Wed. 21 Jun 2023
                                       Prob (F-statistic):
                                                                      2.33e-20
Date:
                             11:26:14 Log-Likelihood:
                                                                       -15902.
Time:
                                                                     3.184e+04
No. Observations:
                                 1000
                                  982
Df Residuals:
                                        BIC:
                                                                     3.193e+04
Df Model:
                                                             [0.025]
```

DATA3) t-value, p-value 고려한 변수 선택
 X2, X3, X8, A1-A4, G1-G3, 0-5

```
col3 = ['X2', 'X3', 'X8', 'A1', 'A2', 'A3', 'A4', 'Group1', 'Group2', 'Group3', '0', '1', '2', '3', '4', '5']
```

'Group1', 'Group2', 'Group3', '0', '1', '2', '3', '4', '5']

22. VIF

DATA2

'A1'-'A4'

'Group1'-'Group3'

다중공선성 높음 -> 제외

	VIF Factor	features
0	1.000	X2
1	1.000	X3
2	1.000	X4
3	1.000	Xe
4	1.000	X7
5	1.000	X8
6	1.000	XS
7	1.000	X10
8	inf	A1
9	inf	A2
10	inf	A3
11	inf	A4
12	inf	Group1
13	inf	Group2
14	inf	Group3

DATA3

```
from statsmodels.stats.outliers_influence import variance_inflation_factor

vif = pd.DataFrame()

list = []

for i in range(trainX.shape[1]):
    v = variance_inflation_factor(trainX.values, i)
    list.append(v)

vif["VIF Factor"] = list
vif["features"] = trainX.columns
vif
```

0	1.000	X2
1	1.000	Х3
2	1.000	X4
3	1.000	X6
4	1.000	X8
5	1.000	X9
6	1.000	X10
7	1283719225.125	0
8	56092534.597	1
9	2491589103.181	2
10	1856198.008	3
11	2178238520.606	4
12	29324106.362	5
13	18474961.035	A1
14	12658561246.210	A2
15	26144189.282	А3
16	28149867.802	A4
17	144684666924.872	Group1
18	8366738.026	Group2
19	850230677.172	Group3

VIF Factor features

'A1'-'A4'

'Group1'-'Group3'

'0'-'5'

다중공선성 높음

but, 유의한 변수로 판단했기

때문에 우선 유지

23. OLS

DATA1

```
model = sm.OLS(trainY, sm.add constant(trainX[col]))
results = model.fit()
print(results.summary())
                             OLS Regression Results
                                                                            0.056
Dep. Variable:
                                         R-squared:
Model:
                                   OLS
                                         Adi. R-squared:
                                                                           0.056
Method:
                                         F-statistic:
                                                                            6312.
                         Least Squares
                     Wed. 21 Jun 2023
                                         Prob (F-statistic):
Date:
                                                                            0.00
                              11:01:00
Time:
                                         Log-Likelihood:
                                                                     -1.5513e+07
No. Observations:
                                961376
                                         AIC:
                                                                       3.103e+07
                                         BIC:
Df Residuals:
                                961366
                                                                       3.103e+07
Df Model:
Covariance Type:
                             nonrobust
                                                   P>It1
                                                              [0.025]
                                                                          0.975
                  coef
                          std err
           -2.029e+16
                        3.23e+17
                                      -0.063
                                                  0.950
                                                           -6.54e+17
                                                                        6.13e+17
const
Х2
            3.835e+06
                        2.46e+04
                                     156.130
                                                  0.000
                                                            3.79e+06
                                                                        3.88e+06
ХЗ
            1.041e+06
                        2.36e+04
                                      44,161
                                                  0.000
                                                            9.95e+05
                                                                        1.09e+06
Х7
            2.262e+05
                         1674.609
                                     135.062
                                                   0.000
                                                            2.23e+05
                                                                        2.29e+05
Х8
                                                           -2.95e+06
                                                                       -2.85e+06
           -2.897e+06
                        2.63e+04
                                    -109.976
                                                  0.000
Α1
            1.097e+15
                        1.75e+16
                                                           -3.32e+16
                                                                        3.53e+16
                                       0.063
                                                  0.950
                                                                        3.53e+16
Α2
            1.097e+15
                        1.75e+16
                                       0.063
                                                  0.950
                                                           -3.32e+16
                                                                        3.53e+16
ΑЗ
            1.097e+15
                         1.75e+16
                                       0.063
                                                  0.950
                                                           -3.32e+16
                         1.75e+16
                                       0.063
                                                  0.950
                                                           -3.32e+16
                                                                        3.53e+16
Α4
            1.097e+15
                                       0.063
                                                            -5.8e+17
            1.919e+16
                        3.06e+17
                                                  0.950
                                                                        6.18e+17
Group1
                                                  0.950
                                                            -5.8e+17
                                                                        6.18e+17
Group2
            1.919e+16
                        3.06e+17
                                       0.063
            1.919e+16
                        3.06e+17
                                       0.063
                                                   0.950
                                                            -5.8e+17
Group3
                                                                        6.18e+17
Omnibus:
                                         Durbin-Watson:
                           4718284.201
                                                                             1.999
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
                                                              324977040899480.875
Skew:
                               201.485
                                         Prob(JB):
                                                                             0.00
Kurtosis:
                             90073.169
                                         Cond. No.
                                                                         2.17e+15
```

23. OLS

DATA2

```
model = sm.OLS(trainY2, sm.add_constant(trainX2[col2]))
results = model.fit()
print(results.summary())
```

OLS Regression Results								
Dep. Varia Model: Method: Date: Time: No. Obser Df Residu: Df Model: Covarianc	V vations: als:		2023 6:23 0000 9995 4	Adj. F-st Prob	uared: R-squared: atistic: (F-statisti Likelihood:	c):	0.056 0.056 1.481e+04 0.00 -1.6135e+07 3.227e+07 3.227e+07	
	coef	std err		t	P> t	[0.025	0.975]	
const X2 X3 X7 X8	-2.559e+05 3.931e+05 1.107e+05 2.261e+05 -2.758e+05	4781.364 2460.261 2460.266 1640.058 2460.264	159 44	.519 .780 .998 .843 .118	0.000 0.000 0.000 0.000 0.000	-2.65e+05 3.88e+05 1.06e+05 2.23e+05 -2.81e+05	-2.47e+05 3.98e+05 1.16e+05 2.29e+05 -2.71e+05	
Omnibus: Prob(Omnil Skew: Kurtosis:	bus):		.000 .786	Jarq Prob	in-Watson: ue-Bera (JB) (JB): . No.	: 316953	1.998 428054667.562 0.00 6.17	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

23. OLS

DATA3

_

```
model = sm.OLS(trainY_log, sm.add_constant(trainX[col3]))
result_log = model.fit()
# results = np.expm1(result_log)
print(result_log.summary())
                             OLS Regression Results
Dep. Variable:
                                                                           0.976
                                         R-squared:
                                         Adj. R-squared:
Model:
                                   OLS
                                                                           0.976
                        Least Squares
Method:
                                         F-statistic:
                                                                       2.749e+06
Date:
                     Thu, 22 Jun 2023
                                         Prob (F-statistic):
                                                                            0.00
Time:
                              20:26:08
                                         Log-Likelihood:
                                                                     -2.7242e+05
No. Observations:
                                961376
                                        AIC:
                                                                       5.449e+05
Df Residuals:
                                961361
                                         BIC:
                                                                       5.451e+05
Df Model:
                                   14
Covariance Type:
                             nonrobust
                         std err
                                                  P>lt1
                                                              [0.025]
                                                                          0.9751
                  coef
           -1.111e+11
                        1.16e+11
                                      -0.955
                                                  0.339
                                                           -3.39e+11
                                                                        1.17e+11
const
Х2
               1.2669
                            0.000
                                    3865, 422
                                                  0.000
                                                               1.266
                                                                           1.268
ΧЗ
               0.3516
                            0.000
                                    1073.031
                                                  0.000
                                                              0.351
                                                                           0.352
Х8
              -0.8910
                            0.000
                                   -2717.196
                                                  0.000
                                                                          -0.890
                                                              -0.892
Х9
               0.1695
                           0.000
                                     516,765
                                                  0.000
                                                              0.169
                                                                           0.170
A1
           -3.726e+10
                        3.65e+10
                                      -1.020
                                                  0.308
                                                                        3.44e+10
                                                          -1.09e+11
           -3.726e+10
                        3.65e+10
                                      -1.020
                                                  0.308
                                                                        3.44e+10
A2
                                                          -1.09e+11
           -3.726e+10
A3
                        3.65e+10
                                      -1.020
                                                  0.308
                                                          -1.09e+11
                                                                        3.44e+10
           -3.726e+10
                                      -1.020
                                                  0.308
                                                          -1.09e+11
۸4
                        3.65e+10
                                                                        3.44e+10
            9.509e+10
                                       1.235
                                                  0.217
                                                          -5.58e+10
Group1
                         7.7e+10
                                                                        2.46e+11
                                       1.235
                                                  0.217
                                                          -5.58e+10
Group2
            9.509e+10
                         7.7e+10
                                                                        2.46e+11
            9.509e+10
                         7.7e+10
                                       1.235
                                                  0.217
                                                          -5.58e+10
                                                                        2.46e+11
Group3
            5.329e+10
                        4.25e+10
                                       1.255
                                                  0.210
                                                          -2.99e+10
                                                                        1.37e+11
            5.329e+10
                        4.25e+10
                                       1.255
                                                          -2.99e+10
                                                                        1.37e+11
                                                  0.210
            5.329e+10
                                       1.255
                                                          -2.99e+10
                        4.25e+10
                                                  0.210
                                                                        1.37e+11
            5.329e+10
                        4.25e+10
                                       1.255
                                                          -2.99e+10
                                                  0.210
                                                                        1.37e+11
            5.329e+10
                        4.25e+10
                                       1.255
                                                  0.210
                                                          -2.99e+10
                                                                        1.37e+11
            5.329e+10
                        4.25e+10
                                       1.255
                                                  0.210
                                                          -2.99e+10
                                                                        1.37e+11
                                                                           2,001
Omnibus:
                           113174.719
                                         Durbin-Watson:
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
                                                                     1214913.317
                                0.005
                                         Prob(JB):
Skew:
                                                                            0.00
                                 8.507
                                         Cond. No.
                                                                        1.13e+15
Kurtosis:
```

24. LINEAR REGRESSION

```
from sklearn.linear_model import LinearRegression

Ir = LinearRegression(n_jobs=-1)
```

DATA1

```
result = Ir.fit(trainX[col], trainY)
                                                                accuracy = Ir.score(testX[col], testY)
print(result.coef_)
                                                                print(accuracy)
0.08285997452508131
 -5.37707545e+16 -5.37707545e+16 -5.37707545e+16 -5.37707545e+16
 7.70995970e+16 7.70995970e+16 7.70995970e+16]
                                                                print("train: ", Ir.score(trainX[col], trainY))
pred = Ir.predict(testX[col])
                                                                print("test: ". Ir.score(testX[col], testY))
print(pred[0:10])
                                                                train: 0.055791301958747375
[-189500. 171532. 1081572. -129164. 1512708. -62180. -503132.
                                                        47740.
                                                                test: 0.08285997452508131
 -523492.
           8052.1
```

24. LINEAR REGRESSION

DATA2

```
result = Ir.fit(trainX2[col2]. trainY2)
print(result.coef_)
pred = Ir.predict(testX2[col2])
print(pred[0:10])
[ -57459.15345344 253995.11103301 1019039.79533117
                                              57796.13779811
 1422515.13270799 126593.87491142 -240788.90307793 157728.35355784
 -350220.57382104 150110.185966261
accuracy = Ir.score(testX2[col2], testY2)
print(accuracy)
0.08868003008670722
print("train: ", Ir.score(trainX2[col2], trainY2))
print("test: ", Ir.score(testX2[col2], testY2))
train: 0.05592044133893337
test: 0.08868003008670722
```

24. LINEAR REGRESSION

DATA3

- 범주형 자료 결측치 제거
- 수치자료 IterativeImputer로 대체
- StandardScaler
- X1, X5, X7은 가변수 처리,
- X10은 male:0, female:1
- Y로그 변환
- col: X4, X6, X10 제외한 변수

```
result = Ir.fit(trainX[col3], trainY_log)
print(result.coef_)
..69463948e-01
  5.30826377e+10 5.30826377e+10 5.30826377e+10 5.30826377e+10
 -1.89210318e+11 -1.89210318e+11 -1.89210318e+11
  6.02355854e+10 6.02355854e+10 6.02355854e+10 6.02355854e+10
  6.02355854e+101
pred3_log = Ir.predict(testX[col3])
pred3 = np.expm1(pred3_log)
print(pred3[0:10])
   12717.79604216
                  29944.79416213
                                 416064.77212368
                                                  20206.07039693
 1181540,29019616
                   13647.60806653
                                   5568.33266852
                                                  22570.52827246
   3747.32720737
                  22773.260014481
accuracy = Ir.score(testX[col3], testY_log)
print(accuracy)
0.9761505875908276
print("train: ", Ir.score(trainX[col3], trainY_log))
print("test: ", Ir.score(testX[col3], testY_log))
train: 0.9756314428536542
```

test: 0.9761505875908276

25. MSE

DATA1

```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(testY, pred)
print(f'MSE: {mse: .3f}')
```

MSE: 3986494296931.519

DATA2

```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(testY2, pred2)
print(f'MSE: {mse:.3f}')
```

MSE: 3895142425880.727

DATA3

```
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(testY, pred3)
print(f'MSE: {mse:.3f}')
```

MSE: 1542328389766.551