

Motivation

Asymmetric / Public-Key Encryption (Confidentiality)

Digital Signature (Authenticity)

Solution

- Certificates (X.509)
- Public Key Infrastructure (PKI) / Web of Trust

Certificates (X.509)

A certificate binds a public key to a principal.

A certificate is a signed statement:

"This public key belongs to person/website/system X."

Common Name (CN)

CN: www.compass-security.com

Wildcard CN: *.wikipedia.com

Wildcard CNs should generally be avoided. Multiple DNS names can be specified in Subject Alternative Name (SAN).

Subject Alternative Name (SAN)

A *list* that includes one or many of the following items:

- DNS name
- Email address
- IP address
- URIs

SAN is a good alternative to wildcard CN

Issuer

How can you trust the signature of a certificate?

Public Key Infrastructure (PKI)

SSL/TLS (e.g. websites) S/MIME (email encryption)

Web of Trust

PGP (email encryption)

Public Key Infrastructure (PKI)

CA Hierarchy

compass-security.com ______16

Certification Path Example

Root certificate is *preinstalled* in browser or operating system.

Chrome Root Certificate Store

Windows Root Certificate Store

PKI Threats

Certificate Revocation

Certificate Revocation List (CRL)

Periodically updated list of revoked certificates

Online Certificate Status Protocol (OCSP)

Protocol for obtaining certificate revocation information

OCSP Stapling

OCSP Stapling attaches a cryptographically signed statement that certificate is still valid during the TLS handshake.

The "Must Staple" certificate extension should be set.

Certificate Transparency

Certificate Transparency allows to detect

- mistakenly or fraudulently issued certificates
- rogue or compromised CAs

Goals:

- Make it impossible (or at least very difficult) for a CA to issue a SSL certificate for a domain without the certificate being **visible to the owner** of that domain.
- Provide an open auditing and monitoring system that lets any domain owner or CA determine whether certificates have been mistakenly or maliciously issued.
- Protect users (as much as possible) from being duped by certificates that were mistakenly or maliciously issued.

Certificate Transparency - Components

Certificate Logs

Monitors

Auditors

Certificate transparency search:

https://transparencyreport.google.com/https/certificates

Additional information:

https://www.certificate-transparency.org/what-is-ct

