KØBENHAVNS UNIVERSITET IMF KU-SCIENCE IMF KU-SCIENCE

Tosidet variansanalyse og faktordiagrammer Statistisk Dataanalyse 2

Anders Tolver

Uge 1, torsdag d. 7/9-2017

IMF KU-SCIENCE

Eksempel 3.2: beskrivelse af data

Datasættet fra lærebogens eksempel 3.2 består af målinger af indholdet af organisk stof (organic) i 36 forsøgsenheder (mesh bags).

Forsøgsenhederne stammer både fra behandlet kvæg (Ivermectin) og fra ubehandlet kvæg (control).

Forsøgsenhederne har ligget i jorden i 8, 12 eller 16 uger.

To faktorer: TREAT og TIME

Dagens program

- Den tosidede variansanalysemodel
- Vekselvirkninger mellem to faktorer
- Den additive model i tosidet variansanalyse
- Flerfaktorforsøg
- Faktordiagrammer

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017

IMF KU-SCIENCE

Eksempel 3.2: datasættet

```
## TREAT TIME organic nr TREAT TIME organic
## 1 Ivermectin 8 3028.7 19 Control 8 2425.0
## 2 Ivermectin 8 2805.7 20 Control
## 3 Ivermectin 8 3061.3 21 Control
## 4 Ivermectin 8 3113.4 22 Control
## 5 Ivermectin 8 2938.1 23 Control
## 6 Ivermectin 8 3063.4 24 Control
## 7 Ivermectin 12 2765.0 25 Control 12 2530.6
## 8 Ivermectin 12 2713.7 26 Control 12 2301.2
## 9 Ivermectin 12 2945.7 27 Control 12 2389.8
## 10 Ivermectin 12 2869.3 28 Control 12 2445.2
## 11 Ivermectin 12 2902.0 29 Control 12 2218.5
## 12 Ivermectin 12 2836.6 30 Control 12 2348.1
## 13 Ivermectin 16 2413.3 31 Control 16 1995.0
## 14 Ivermectin 16 2592.6 32 Control 16 2165.2
## 15 Ivermectin 16 2804.7 33 Control 16 1940.9
## 16 Ivermectin 16 2546.5 34 Control 16 2271.8
## 17 Ivermectin 16 2823.7 35 Control 16 2493.8
## 18 Ivermectin 16 2845.2 36 Control 16 2452.8
```


Eksempel 3.2: formål med forsøget

Vi kunne være interesserede i flg. spørgsmål

- Har behandlingen indflydelse på indholdet af organisk stof?
- Hvilket niveau af TREAT giver størst indhold af organisk stof?
- Afhænger indholdet af organisk stof af, hvor længe forsøgsenhederne har ligget i jorden?
- Hvilket niveau af TIME giver størst indhold af organisk stof?
- Afhænger effekten af behandlingen af, hvor længe forsøgshederne har ligget i jorden?
- Hvilken komb. af TREAT og TIME giver det største indhold af organisk stof?

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017 Dias 5/32

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel 3.2: oversigt over faktorer

Faktorerne TREAT og TIME er balancerede. Hvorfor?

Desuden har vi produktfaktoren TREAT×TIME med alle kombinationer af TREAT og TIME.

• Hvor mange forskellige niveauer har

 $TREAT \times TIME?$

• Er TREAT×TIME balanceret ?

Faktorer

KØBENHAVNS UNIVERSITET

Forsøgsenheder: 1,2,..., N.

En faktor inddeler forsøgsenhederne i et antal grupper.

Faktoren knytter en en værdi til hver forsøgsenhed, nemlig niveauet af faktoren for den pågældende forsøgsenhed. Vi skriver F_i .

 $n_i(F)$ er antal forsøgsenh. der er på niveau j af faktoren F.

F kaldes balanceret hvis $n_j(F)$ er ens for alle j, dvs. hvis der er lige mange forsøgsenheder i alle grupper. Skriver så n_F for antallet af forsøgsenheder per niveau.

Der findes altid to trivielle inddelinger/faktorer:

Identiske faktor (I): hver forsøgsenhed udgør sin egen gruppe.

Trivielle faktor (0): alle observationer betragtes som een gruppe.

For to faktorer F og G har man produktfaktoren ($F \times G$):

Svarer til at observationerne grupperes efter både F og G samtidig.

 $\begin{array}{lll} \text{Anders Tolver} & -2\text{-sidet ANOVA} & -5D2\ 7/9\text{-}2017 \\ \text{Dias } 6/32 \end{array}$

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel 3.2: 2-sidet ANOVA

Den (fulde) tosidede variansanalysemodel er givet ved

$$M: Y_i = \gamma(\mathtt{TREAT} \times \mathtt{TIME}_i) + e_i,$$

hvor e_1, \ldots, e_{36} er uafhængige og $N(0, \sigma^2)$ -fordelte.

- middelværdi afhænger af værdien af produktfaktoren TREAT×TIME
- samme σ^2 (varians) i alle grupper
- uafhængige og normalfordelte feil

(Dette er blot den ensidede variansanalysemodel med TREAT×TIME som forklarende faktor!)

Eksempel 3.2: 2-sidet ANOVA

Middelværdiparametrene, $\gamma(Iver, 8), \dots, \gamma(Ubeh, 12)$, estimeres ved gruppegennemsnit over relevante forsøgsenheder.

Residualkvadratsum

$$SS_e^{TREAT \times TIME} = \sum_{i=1}^{36} (Y_i - \hat{\gamma}(TREAT \times TIME_i))^2$$

Mean square error el. residual mean square

$$s^2 = \hat{\sigma}^2 = MS_e^{TREAT \times TIME} = \frac{1}{36 - 6}SS_e^{TREAT \times TIME}$$

NB: Normeringen i udtrykket for s^2 skyldes, at der er 36 observationer og 6 grupper givet ved faktoren TREAT × TIME.

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 9/32

IMF KU-SCIENCE

Interaction plots

Data fra eksempel 3.2: Vekselvirkning/additiv model ?

KØBENHAVNS UNIVERSITET

Interaction plots

Grafisk undersøgelse af vekselsvirkning

- For hver kombination of TREAT×TIME udregnes gruppegennemsnit.
- Gruppegennemsnit plottes op mod værdien af faktoren TIME
- Punkter hørende til samme værdi af TREAT forbindes med linjestykker
- Parallelle kurver taler for additiv model
- Systematiske afvigelser mellem kurver tyder på vekselvirkning
- Svært at eftervise vekselvirkning vha. interaction plot, men ...
- hvis et formelt statistisk test viser signifikant vekselvirkning, kan kommandoen interaction.plot bruges til at beskrive årsagen/retningen.

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 10/32

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel 3.2: additiv model

Indledningsvis undersøges om vekselvirkingen kan fjernes så modellen reduceres til den additive model for tosidet variansanalyse

$$H_0: Y_i = \alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i) + e_i,$$

hvor e_1, \ldots, e_N er uafhængige og normalford. $N(0, \sigma^2)$.

Middelværdien i gruppen givet ved $TREAT_i = Ivermectin og$ $TIME_i = 8$ er lig med summen

$$\alpha(\text{Ivermectin}) + \beta(8).$$

Modellen omtales også som den lineære model uden

vekselvirkning.

Eksempel 3.2: hvad udtrykker den additive model?

Ved test for reduktion til den additive model undersøges, om behandlingseffekten (-længden af de blå linjestykker) afhænger af tid!

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

2-sidet ANOVA: reduktion

Vekselvirking: fremgangsmåde afhænger af om vi har flere forsøgsenheder (gentagelser) for hvert niveau af TREAT×TIME gentagelser Test om modellen kan reduceres til den additive model.

ingen gentagelser Formelt test ikke muligt! Grafisk undersøgelse af vekselvirkning ved interaction plot.

Derefter: test for hovedeffekt af TREAT og TIME.

- Hvilke modeller skal fittes?
- Hvilken model, skal der testes mod?

Den additive model: Estimation

Residualkvadratsum

$$SS_e^{ ext{TREAT}+ ext{TIME}} = \sum_{i=1}^N (Y_i - (\hat{lpha}(ext{TREAT}_i) + \hat{eta}(ext{TIME}_i)))^2$$

Mean square error eller residual mean square

$$s^2 = \hat{\sigma}^2 = MS_e^{ ext{TREAT} + ext{TIME}} = rac{1}{N-k-m+1}SS_e^{ ext{TREAT} + ext{TIME}}$$

Angiver variansestimat under den additive model.

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel 3.2: R

I R udføres test for vekselvirkning som følger ...

```
model1<-lm(data$organic~data$TIME:data$TREAT)
modelad<-lm(data$organic~data$TIME+data$TREAT)
anova(modelad,model1)</pre>
```

Analysis of Variance Table

```
Model 1: data$organic ~ data$TIME + data$TREAT
Model 2: data$organic ~ data$TIME:data$TREAT
Res.Df RSS Df Sum of Sq F Pr(>F)
1 32 664410
2 30 656742 2 7668 0.1751 0.8402
```

Testet godkendes → ingen vekselvirkning

Tilsvarende analyser viser, at TREAT og TIME har marginal effekt!

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

IMF KU-SCIENCE

Eksempel 3.2: variansanalyseskema

Ved brug af R udskrifter udfyldes skemaerne

Model	Fakt.	Mv.	SS_e	df _e
1	$\mathtt{TREAT} \times \mathtt{TIME}$	$\gamma(\mathtt{TREAT} \times \mathtt{TIME}_i)$	656742	30
2	$\mathtt{TREAT} + \mathtt{TIME}$	$\alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i)$	664410	32
3a	TIME	$eta(\mathtt{TIME}_i)$	2395959	33
3b	TREAT	$\alpha(\mathtt{TREAT}_i)$	1432502	34
Test	Faktor	F	df	р
2 vs 1	$TREAT \times TIME$	0.1751	2	0.84
3a vs 2	TREAT	83.397	1	0
3b vs 2	TIME	18.497	2	0

NB: Input til skema findes f.x. ved at køre summary og deviance

> summary(modelad)

[... part of output ...]

Residual standard error: 144.1 on 32 degrees of freedom

> deviance(modelad)

[1] 664410

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017

Dias 17/32

IMF KU-SCIENCE

Additive model: parametrisering

Struktur: gennemsnit givet ved TREAT × TIME ligger på parallelle kurver.

Punkternes beliggenhed kan beskrives ved kun 4 parametre, men parametriseringen afhænger af, hvordan modellen fittes i R.

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 19/32

KØBENHAVNS UNIVERSITET

Additive model: konklusioner I

Slutmodel (additiv model for 2-sidet ANOVA)

$$Y_i = \alpha(\mathtt{TREAT}_i) + \beta(\mathtt{TIME}_i) + e_i,$$

hvor $e_1, \ldots, e_{36} \sim N(0, \sigma^2)$ er uafhængige.

Parameterestimater (kan) angives således

$$\hat{\alpha}(\text{Ubeh}) + \hat{\beta}(8) = 2583.29$$
 $\hat{\alpha}(\text{Iver}) - \hat{\alpha}(\text{Ubeh}) = 438.63$ $\hat{\beta}(12) - \hat{\beta}(8) = -197.13$ $\hat{\beta}(16) - \hat{\beta}(8) = -357.15$

NB: For additiv model angives parameterestimater ofte ved angivelse af estimat for en referencegruppe (-her bruges (TREAT, TIME) = (Ubeh, 8)) samt forskellene til referencegruppen.

Variansestimat $s^2 = \hat{\sigma}^2 = 144.1^2$.

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 18/32

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Additive model: parametrisering 1

modelad<-lm(data\$organic~data\$TREAT+data\$TIME) summary (modelad)

```
Estimate Std. Error t value
## (Intercept)
                       2583.2944 48.03102 53.783871 5.933454e-33
## data$TREATIvermectin 438.6278 48.03102 9.132176 1.990792e-10
## data$TIME12
                       -197.1333 58.82575 -3.351140 2.076990e-03
## data$TIME16
                       -357.1500
                                  58.82575 -6.071321 8.831140e-07
```


Gruppegennemsnit for additive model

Anders Tolver - 2-sidet ANOVA - SD2 7/9-2017 Dias 20/32

Tid / uger

Additive model: parametrisering 2

modelad2<-lm(data\$organic~data\$TREAT+data\$TIME-1)</pre> summary(modelad2)

##		Estimate	Std.	Error	t value	Pr(> t)
##	data\$TREATControl	2583.2944	48	.03102	53.783871	5.933454e-33
##	data\$TREATIvermectin	3021.9222	48	.03102	62.916047	4.108697e-35
##	data\$TIME12	-197.1333	58	.82575	-3.351140	2.076990e-03
##	data\$TIME16	-357.1500	58	. 82575	-6.071321	8.831140e-07

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

Additive model: konf.interval / LSD

Udregn fraktil i t-fordeling: $t = t_{0.975,N-m-k+1}$, hvor k = |TREAT| = 2, m = |TIME| = 3, $N = k \cdot m \cdot n = 2 \cdot 3 \cdot 6$ (antal forsøg).

Et 95 %-konf. int. for $\alpha(a) + \beta(b)$ er

$$\hat{\alpha}(a) + \hat{\beta}(b) \pm t \cdot s \sqrt{\frac{k+m-1}{N}}$$

Least significant difference (LSD) for

Faktor	Kontrast	LSD
Α	$\alpha(a_j) - \alpha(a_{j'})$	$t \cdot s \sqrt{\frac{2k}{N}}$
В	$\beta(b_j) - \beta(b_{j'})$	$t \cdot s \sqrt{\frac{2m}{N}}$

Additive model: parametrisering 3

modelad3<-lm(data\$organic~data\$TIME+data\$TREAT-1) summary(modelad3)

#:	#	Estimate	Std. Error	t value	Pr(> t)
#1	# data\$TIME8	2583.2944	48.03102	53.783871	5.933454e-33
#1	# data\$TIME12	2386.1611	48.03102	49.679579	7.307952e-32
#1	# data\$TIME16	2226.1444	48.03102	46.348052	6.540890e-31
#:	# data\$TREATIvermectin	438.6278	48.03102	9.132176	1.990792e-10

Gruppegennemsnit for additive model

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Additive model: konklusioner II

Variansestimat og relevant t-fraktil

$$t = t_{0.975.32} = 2.0369$$
 $s = \hat{\sigma} = 144.1$

Estimater for enkeltgrupper

	TIME					
TREAT	8	12	16			
Ivermectin	3022	2825	2665			
Control	2583	2386	2226			

Konf.interval gruppeestimat:
$$\pm t \cdot s \sqrt{\frac{k+m-1}{N}} = \pm 97.8$$

$$LSD$$
-værdier: $LSD_{TREAT} = 97.8$ $LSD_{TIME} = 119.8$

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

KØBENHAVNS UNIVERSITET 1MF KU-SCIENCE

Eksempel 3.2: resultater af forsøget

Hvordan skal vi besvare vores spørgsmål?

- Har behandlingen indflydelse på indholdet af organisk stof?
- Hvilket niveau af TREAT giver størst indhold af organisk stof?
- Afhænger indholdet af organisk stof af, hvor længe forsøgsenhederne har ligget i jorden?
- Hvilket niveau af TIME giver størst indhold af organisk stof?
- Afhænger effekten af behandlingen af, hvor længe forsøgshederne har ligget i jorden?
- Hvilken komb. af TREAT og TIME giver det største indhold af organisk stof?

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017 Dias 25/32

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel: balanceret tofaktorforsøg

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Flerfaktorforsøg: faktordiagrammer

Faktordiagrammer benyttes til at skabe sig overblik over strukturen i et forsøgsdesign.

Dagens gennemgående eksempel indholder 3 egentlige faktorer

TREAT, TIME, TREAT \times TIME

samt de trivielle faktorer

I,0

Bemærk, at TREAT × TIME er finere end både TREAT og TIME.

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel: balanceret tofaktorforsøg

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Eksempel: balanceret tofaktorforsøg

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

Antallet af df tilføjes i nederste højre hjørne, ved fra antallet af niveauer at fratrække df for grovere faktorer.

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Øvelse (hjemme eller senere!)

Der indgår ofte flere faktorer i et eksperiment...

Vækstforsøg med 16 planter i fire vækstkamre under forskellige gødnings- og lysforhold. Planternes vækst er målt.

	Lys 1				Lys 2			
	Kamı	mer 1	Kammer 2		Kammer 3		Kammer 4	
Gødning	4.70	5.14	4.49	4.42	4.42	4.80	4.81	4.95
Ingen gødning	5.28	4.28	4.50	4.30	4.61	4.68	4.77	5.11

- Hvad er forsøgsenhederne og hvor mange er der?
- Hvad er de relevante faktorer, og hvad er deres niveauer?
- Er faktorerne balancerede? Angiv n_F for de balancerede faktorer.

Eksempel: balanceret tofaktorforsøg

Der tegnes pile fra finere faktorer til grovere. Fineste faktor (-enhedsfaktoren I) placeres til venstre på tegningen.

Antallet af niveauer skrives i øverste højre hjørne.

Antallet af df tilføjes i nederste højre hjørne, ved fra antallet af niveauer at fratrække df for grovere faktorer.

Ex: Ud for TREAT × TIME skrives 6-1-2-1=2!

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017 Dias 27/32

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Flere faktorer

Er der noget "særligt" ved faktorerne kammer og lys?

To faktorer F og G.

F er finere end G — eller F er "nested indenfor" G — hvis

- G-grupperne kan fås ved at slå F-grupper sammen
- "hvis vi kender F, så kender vi også G"

De to udsagn siger det samme!

Vi siger også G er grovere end F, og vi skriver $G \leq F$ eller $F \geq G$.

KØBENHAVNS UNIVERSITET IMF KU-SCIENCE

Trefaktorforsøg

Fra noternes eksempel 2.2.

	Lys1				Lys2			
	Kar	nmer 1	Kammer 2		Kammer 3		Kammer 4	
Gødning	*	*	*	*	*	*	*	*
Ingen gødning	*	*	*	*	*	*	*	*

Faktorer: G (Gødning), K (Kammer) og L (Lys)

Bemærk: K er finere end L!

Vekselvirkninger: $G \times K$, $G \times L$, $(K \times L = K)$

Trivielle faktorer: I, 0

Lad os forsøge at tegne det tilhørende faktordiagram.

 $\begin{array}{lll} {\sf Anders\ Tolver-2-sidet\ ANOVA-SD2\ 7/9-2017} \\ {\sf Dias\ 30/32} \end{array}$

KØBENHAVNS UNIVERSITET

IMF KU-SCIENCE

Spørgsmål: overvejes hjemme!

- Opskriv alle interessante hypoteser ved et tofaktorforsøg
- I hvilken rækkefølge skal modellen reduceres ved et tofaktorforsøg?
- Hvornår kan man teste for vekselvirkning i et tofaktorforsøg?
- Hvordan skal man fortolke parameterestimaterne fra R-udskriften ved den additive model?
- Hvordan beregnes frihedsgradsantallet (DF) for et faktordiagram?

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017 Dias 32/32

KØBENHAVNS UNIVERSITET IMF KU-SCIENCE

Trefaktorforsøg

Tilhørende statistiske model:

$$Y_i = \gamma(G \times K_i) + e_i, \quad e_i \sim N(0, \sigma^2).$$

G: Gødning

K: Kammer

L: Lys

NB: Vi sætter [..] omkring faktorer som ikke indgår i den systematiske del af modellen!

Anders Tolver — 2-sidet ANOVA — SD2 7/9-2017 Dias 31/32

