Codility_

CodeCheck Report: trainingGGUSM9-M8X

Test Name:

Summary Timeline

Check out Codility training tasks

Tasks Details

CommonPrimeDivisors
Check whether two
numbers have the same
prime divisors.

Task Score

Correctness Performance 100% 100%

100%

Task description

A *prime* is a positive integer X that has exactly two distinct divisors: 1 and X. The first few prime integers are 2, 3, 5, 7, 11 and 13.

A prime D is called a *prime divisor* of a positive integer P if there exists a positive integer K such that D * K = P. For example, 2 and 5 are prime divisors of 20.

You are given two positive integers N and M. The goal is to check whether the sets of prime divisors of integers N and M are exactly the same.

For example, given:

- N = 15 and M = 75, the prime divisors are the same: {3, 5};
- N = 10 and M = 30, the prime divisors aren't the same: {2, 5} is not equal to {2, 3, 5};
- N = 9 and M = 5, the prime divisors aren't the same: {3} is not equal to {5}.

Write a function:

def solution(A, B)

Solution

Programming language used: Python

Total time used: 10 minutes

Effective time used: 10 minutes

Notes: not defined yet

Task timeline

15:27:36 15:37:31

Code: 15:37:31 UTC, py, final, score: 100

you can write to stdout for debugging purpo

1 von 3

that, given two non-empty arrays A and B of Z integers, returns the number of positions K for which the prime divisors of A[K] and B[K] are exactly the same.

For example, given:

```
A[0] = 15 B[0] = 75

A[1] = 10 B[1] = 30

A[2] = 3 B[2] = 5
```

the function should return 1, because only one pair (15, 75) has the same set of prime divisors.

Write an efficient algorithm for the following assumptions:

- Z is an integer within the range [1..6,000];
- each element of arrays A and B is an integer within the range [1..2,147,483,647].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

```
# print("this is a debug message")
2
 3
 4
     def solution(A, B):
 5
         # Implement your solution here
 6
         # pass
 7
         def gcd(a, b):
 8
             if b == 0:
q
                 return a
10
             return gcd(b, a % b)
11
12
         def has_same_prime_divisors(a, b):
13
             gcd_value = gcd(a, b)
14
15
             while a != 1:
                 a_gcd = gcd(a, gcd_value)
16
                 if a_gcd == 1:
17
18
                     break
19
                 a //= a_gcd
20
21
             if a != 1:
                 return False
22
23
24
             while b != 1:
25
                 b_gcd = gcd(b, gcd_value)
                 if b_gcd == 1:
26
27
                      break
28
                 b //= b_gcd
29
30
             return b == 1
31
32
         count = 0
33
         for i in range(len(A)):
34
35
             if has_same_prime_divisors(A[i], B[i]
36
                 count += 1
37
38
         return count
39
40
```

Analysis summary

The solution obtained perfect score.

Analysis

 $\begin{array}{c} \text{O(Z *} \\ \text{log(max(A)} \\ \text{+} \\ \text{max(B))**2)} \end{array}$

expand all	Example tests
example example test	∠ OK
expand all	Correctness tests
extreme extreme test w	✓ OK ith small values
simple_1 simple test wit	✓ OK n small values
simple_2	✓ OK n small values
► primes	✓ OK

2 von 3 18.07.23, 17:38

pow	ers of primes	
>	small_primes small primes	∨ OK
>	small_all_pairs all pairs 1-10, length = 100	√ OK
•	small_random small random test, length =	∨ OK 100
expand all Performance tests		
>	large_all_pairs all pairs 1-70, length = ~5,00	∨ OK
>	large_random large random tests, length =	∨ OK : ~6,000
>	many_factors factorial test	∠ OK
•	many_factors2 factorial test	∨ OK
>	big_powers powers of 2 and 3	∠ OK
•	extreme_maximal extreme test with maximal	✓ OK values

3 von 3