Thermodynamic uncertainty relation in superconducting junctions

David Christian Ohnmacht, Wolfgang Belzig, Juan Carlos Cuevas, Rosa López, Jong Soo Lim, **Kun Woo Kim**

3. September 2024

SFB 1432

Universität Konstanz

Universidad Autónoma de Madrid

Thermodynamic uncertainty relation in superconducting junctions

David Christian Ohnmacht,
Wolfgang Belzig,
Juan Carlos Cuevas,
Rosa López,
Jong Soo Lim,
Kun Woo Kim

- 1) Superconducting junctions heavily break the thermodynamic uncertainty relation (TUR) in <u>realistic setups</u>
- 2) Breaking of TUR is rooted in competition of different transport processes

What's special about superconducting junctions? (NN)

What's special about superconducting junctions? (NS)

What's special about superconducting junctions? (NS)

What's special about superconducting junctions? (NS)

What's special about superconducting junctions? (SS)

What's special about superconducting junctions? (SS)

What is Full counting statistics (FCS)?

Theoretical framework computing (average) current, shot noise (variance of current) and charge resolved currents

L.S. Levitov and G.B. Lesovik, JETP Lett. **58**, 230 (1993) Yu. V. Nazarov, Ann. Phys. (Berlin) **8,** SI-193 (1999) W. Belzig and Yu.V. Nazarov, Phys. Rev. Lett. **87**, 197006 (2001)

What is Full counting statistics (FCS)?

Theoretical framework computing (average) current, shot noise (variance of current) and charge resolved currents

L.S. Levitov and G.B. Lesovik, JETP Lett. **58**, 230 (1993) Yu. V. Nazarov, Ann. Phys. (Berlin) **8**, SI-193 (1999) W. Belzig and Yu.V. Nazarov, Phys. Rev. Lett. **87**, 197006 (2001)

Example: Superconductor-Superconductor (SS) contact

J. C. Cuevas and W. Belzig, Phys. Rev. Lett. 91, 187001 (2003)

What is Full counting statistics (FCS)?

Theoretical framework computing (average) current, shot noise (variance of current) and charge resolved currents

L.S. Levitov and G.B. Lesovik, JETP Lett. **58**, 230 (1993) Yu. V. Nazarov, Ann. Phys. (Berlin) **8,** SI-193 (1999) W. Belzig and Yu.V. Nazarov, Phys. Rev. Lett. **87**, 197006 (2001)

Example: Superconductor-Superconductor (SS) contact

J. C. Cuevas and W. Belzig, Phys. Rev. Lett. 91, 187001 (2003)

Example: Superconductor-Superconductor (SS) contact

Current and noise in FCS

Current

$$I = \int_{-\infty}^{\infty} \frac{dE}{h} \left(\sum_{n=-\infty}^{\infty} np_n \right) = \sum_{n=-\infty}^{\infty} I_n$$

Noise

$$S = \int_{-\infty}^{\infty} \frac{dE}{h} \left[\sum_{n=-\infty}^{\infty} n^2 p_n - \left(\sum_{n=-\infty}^{\infty} n p_n \right)^2 \right]$$

For NN junction

$$I = \int_{-\infty}^{\infty} \frac{dE}{h} p_1 - p_{-1} = I_1 - I_{-1}$$

For NS junction

$$I = \int_{-\infty}^{\infty} \frac{dE}{h} p_1 - p_{-1} + 2p_2 - 2p_{-2}$$

For SS junction

$$I = \int_{-\infty}^{\infty} \frac{dE}{h} p_1 - p_{-1} = I_1 - I_{-1} \qquad I = \int_{-\infty}^{\infty} \frac{dE}{h} p_1 - p_{-1} + 2p_2 - 2p_{-2} \qquad I = \int_{-\infty}^{\infty} \frac{dE}{h} p_1 - p_{-1} + 2p_2 - 2p_{-2} + 3p_3 - 3p_{-3} + \dots$$

QP transferring 1 charge

QP transferring 1 charge

AR transferring 2 charge

QP transferring 1 charge

AR transferring 2 charge

MAR transferring n charges

What is Thermodynamic uncertainty relation (TUR)?

Fundamental classical bound on entropy production concerning precision/uncertainty

A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101 (2015)

T. R. Gingrich, et. al., Phys. Rev. Lett. 116, 120601 (2016).

J. M. Horowitz and T. R. Gingrich, Nat. Phys. 16, 15 (2020)

Joule Heating

$$\dot{\Sigma} = IV/T$$

I: current

V: voltage

T: Temperature

TUR

$$\frac{S}{I^2} \dot{\Sigma} \ge 2k_{\rm B}$$

S: current fluctuations

 $k_{\rm B}$: Boltzmann constant

Rewritten TUR

$$\mathcal{F} \equiv \frac{S}{I} - \frac{2k_{\rm B}T}{V} \ge 0$$

F: TUR-breaking coefficient

Units

e=1

e: elementary charge

Thermodynamic uncertainty relation (NN)

What happens in the NN case?

B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018)

$$\mathcal{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E) f(E) (1 - f(E)) \left[1 - 6\tau(E) f(E) (1 - f(E)) \right] + \mathcal{O}(V^2)$$

f(E): Fermi function at equilibrium

 $\tau(E)$: energy dependent transmission

1)
$$\tau = \text{const.}$$

⇒ TUR can't be broken!

2)
$$\tau = \tau(E) \leftrightarrow \text{resonant}$$

$$\frac{\tau_1}{\tau_2} > \frac{2}{3}$$
 $\tau_n \equiv \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E)^n$

- ⇒ Transmission must be energy dependent!
- ⇒ Transmission must be large!

Breaking TUR in experiment

H. M. Friedman, et. al. Thermodynamic uncertainty relation in atomic-scale quantum conductors, PRB 101, 195423 (2020)

Thermodynamic uncertainty relation (NN)

What happens in the NN case?

B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018)

$$\mathcal{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E) f(E) (1 - f(E)) \left[1 - 6\tau(E) f(E) (1 - f(E)) \right] + \mathcal{O}(V^2)$$

f(E): Fermi function at equilibrium

 $\tau(E)$: energy dependent transmission

1)
$$\tau = \text{const.}$$

⇒ TUR can't be broken!

2)
$$\tau = \tau(E) \leftrightarrow \text{resonant}$$

$$\frac{\tau_1}{\tau_2} > \frac{2}{3} \qquad \tau_n \equiv \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E)^n$$

- ⇒ Transmission must be energy dependent!
- ⇒ Transmission must be large!

Thermodynamic uncertainty relation (NN)

What happens in the NN case?

B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018)

$$\mathcal{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E) f(E) (1 - f(E)) \left[1 - 6\tau(E) f(E) (1 - f(E)) \right] + \mathcal{O}(V^2)$$

$$= \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} \qquad p_1^{\text{eq}}(E) \qquad \left[1 - 6p_1^{\text{eq}}(E) \right] \qquad + \mathcal{O}(V^2)$$

f(E): Fermi function at equilibrium

 $\tau(E)$: energy dependent transmission

1)
$$\tau = \text{const.}$$

⇒ TUR can't be broken!

2)
$$\tau = \tau(E) \leftrightarrow \text{resonant}$$

$$\frac{\tau_1}{\tau_2} > \frac{2}{3} \qquad \tau_n \equiv \int_{-\infty}^{\infty} \frac{dE}{h} \tau(E)^n$$

- ⇒ Transmission must be energy dependent!
- ⇒ Transmission must be large!

Meaning of probabilities

What happens in the NN case?

B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018)

$$\mathscr{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} p_1^{\text{eq}}(E) \left[1 - 6p_1^{\text{eq}}(E) \right] + \mathscr{O}(V^2) = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} C_{\text{neq}} + \mathscr{O}(V^2)$$

$$V = 0.1; k_{\rm B}T = 1; \beta V = 0.1$$

Meaning of probabilities

What happens in the NN case?

B. K. Agarwalla and D. Segal, Phys. Rev. B 98, 155438 (2018)

$$\mathscr{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} p_1^{\text{eq}}(E) \left[1 - 6p_1^{\text{eq}}(E) \right] + \mathscr{O}(V^2) = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} C_{\text{neq}} + \mathscr{O}(V^2)$$

$$V = 0.1; k_{\rm B}T = 1; \beta V = 0.1$$

$$V = 0.1; k_B T = 0.1; \beta V = 1$$

Thermodynamic uncertainty relation (General)

Full result for NS, SS, NN with ac bias, ...

$$\mathcal{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} \left\{ \sum_{n=1}^{\infty} n^4 p_n^{\text{eq}}(E) \left[1 - 6p_n^{\text{eq}}(E) \right] - \sum_{m>n=1}^{\infty} 12n^2 m^2 p_n^{\text{eq}}(E) p_m^{\text{eq}}(E) \right\} + \mathcal{O}(V^2)$$

Same as for NN (for n = 1)
but scales with factor n^4 \Rightarrow stronger violations

$$\mathcal{F} = \frac{\beta V}{6G_1} \int_{-\infty}^{\infty} \frac{dE}{h} p_1^{\text{eq}}(E) \left[1 - 6p_1^{\text{eq}}(E) \right] + \mathcal{O}(V^2)$$

Cross-coupling term <u>always</u>
increases chance to break TUR

⇒ multiple processes tend to violate TUR

Promising platform for breaking TUR in experiment

Examples of high transmission single channel contact in superconducting junctions

E. Scheer, et. al., Nature 394, 154 (1998)

C. Cuevas, et.al., Phys. Rev. Lett. 81, 2990 (1998)J. Senkpiel, et. al., Nat. Commun. 3, 1 (2020)

Science **349**, 1199 (2015)

Nature 499, 312 (2013)

Results of TUR-breaking coefficient (NS)

Full numerical result with constant transmission $\tau = \text{const}$.

Results of TUR-breaking coefficient (NS)

Full numerical result

Results of TUR-breaking coefficient (NS+SS)

Full numerical result

Large breaking at low voltages and low temperatures

$$\tau = 1$$
; $k_{\rm B}T = 0.1\Delta$

Conclusion

1) Superconducting junctions break the thermodynamic uncertainty relation in realistic setups

- constant transmission sufficient for wellestablished superconducting junctions (NS or SS)
- 2) Breaking of TUR is rooted in competition of different transport processes
 - Breaking of TUR originates at small temperature at onset of QP tunnelling

david.ohnmacht@uni-konstanz.de

D. C. O., et. al. arXiv:2408.01281 (2024)

D. C. O., et. al. arXiv:2408.01281 (2024)

- 1) Superconducting junctions break the thermodynamic uncertainty relation in realistic setups
- 2) Breaking of TUR is rooted in competition of different transport processes

David Christian Ohnmacht,
Wolfgang Belzig,
Juan Carlos Cuevas,
Rosa López,
Jong Soo Lim,
Kun Woo Kim

david.ohnmacht@uni-konstanz.de

Results of TUR-breaking coefficient (SS)

Results of TUR-breaking coefficient (SS)

Thermodynamic uncertainty relation (NS)

Thermodynamic uncertainty relation (NS)

$$\tau = 1$$
; $k_{\rm B}T = 0.1\Delta$

Breaking TUR in experiment

H. M. Friedman, et. al. Thermodynamic uncertainty relation in atomic-scale quantum conductors, PRB 101, 195423 (2020)

Breaking TUR in experiment

Examples of high transmission single channel contact in superconducting junctions

E. Scheer, et. al., Nature 394, 154 (1998)

J. C. Cuevas, et.al., Phys. Rev. Lett. 81, 2990 (1998)

J. Senkpiel, et. al., Nat. Commun. 3, 1 (2020)

Nature 499, 312 (2013)

Science **349**, 1199 (2015)

