IT in AEC Industry 4.0 IOT-NIMBUS

n-Blocks & nBlocksStudio A Modular Low-Power Low-Code IoT Platform

Nikolaos Chalikias
Nimbus Center
MTU
nikolaos.chalikias@mtu.ie

Contents

- IoT Hardware development in Nimbus
- n-Blocks Hardware Platform
 - Motivation
 - Concepts
 - Modularity
 - Some use cases
- nBlocksStudio Firmware Development Platform
 - Concepts
 - Workflow
 - Examples
- Summary

Embedded Hardware

PCB schematic and layout for rapid prototyping, proof of concept, preproduction prototypes

Simulation

Assembly, testing and verification.

Firmware

Communication protocols

Interface modules (SPI, UART, I2C, Smart GPIO...)

RF, Sensors, Remote Monitoring and Telemetry

Proximity, based on GPS, BLE and Wi-Fi.

Non-Blocking and Real time

```
Pumout facick(p21);
NOTE PRO RESET CTR(VOTE)
   LPC_TIM2->TCR = 2;
   LPC_TIM2->TCR = 1;
MT P30 GET_CTR(VOTES)
    return LPC_TIM2-STC: // Read the counter value
rold P30 INIT CTR(void)
   LPC_SC=>PCONP |= 1 << 22;
   LPC_TIM2->CCR = 8;
out Puts SETCLK(int div)
```

System Integration

THINGSBOARD

NODERED ®
IBM SERVER

TIN
LORAWAN
SERVER

SENSOR
NODE

Interfacing the hardware and software components

System testing strategy

Validation of system-level functions throughout the integration process

Collaboration with Nimbus/CIT Software and Mechanical-design groups

Product Design

Overall system Architecture

Mechanical enclosure designs

Small form factor designs

www.n-Blocks.net

n-Blocks

Home Our Story n-Blocks Forum Contact Privacy Policy

n-Blocks Modular Platform for IoT Devices

n-Blocks: Motivation

- 1. Provide an IoT proof of concept platform that offers an easy roadmap towards
 - 1. Commercial products
 - 2. Nimbus client's projects
- 2. Provide more flexibility than off-the-shelf technology
- 3. Compatibility with mainstream firmware development platforms
- 4. Re-use hardware/firmware
- 5. Reduce development time
- 6. Align development with ARM Cortex, Low Power & WSN
- 7. Build Background IP on hardware and firmware via standardization.....OR.......

HOW TO AVOID THE FUTURE DEVELOPERS TO TREAT OUR CURRENT WORK LIKE THIS HOW TO TRANSFORM OUR DAILY DEVELOPMENT TO BACKGROUND-IP

n-Blocks: Modular IoT Design Principles

n-Blocks: HW Modularity

Standalone Host Board: Wireless with sensors

Example: n-PRO-20 WiFi / Host Sensor board

 Running on a 3 year battery life setup, on a low cost off-theshelf indoor sensor enclosure

Standalone Host Board: Wireless with Sensors

Example: LoRa Sensor

 Running LoRaWAN on a 10 year battery life setup, on a low cost off-the-shelf indoor sensor enclosure

Application Board + Host Board

- Example: 3D printer / CNC / Robot controller
- Application board, with Host MCU board, tested on a MegaDelta Robot

n-Blocks: Wireless Sensor modularity

- Example: Feature-rich LoRa sensor
 - n-PRO-MBSEN Peripheral board VOC sensing, Magnetic contact, NFC, PIR motion, Sounder, expansion socket
 (120 pin) and AAA battery holder with low cost wall-mount indoors-sensor enclosure
 - n-PRO-40 LoRaWAN/sensors board
 - n-PRO-SEN1 peripheral board with ultra-low-power-I2C environmental sensors to expand sensing capabilities of a host node

n-Blocks: Modular Lab Rig

Use Case – Fats, Oils and Grease Monitor

- Blockages of waste pipes big problem in urban areas
- Monitoring system can help to detect blockages early
- Preventative maintenance of pipes

Use Case – Wireless Building Management

- Deployment of wireless sensors in Kalvino library in Torino, Italy
- Prototype development as part of FP7 Tribute project

Use Case – Environmental Monitoring

- Demonstrate deployment in the wild
 - Multiple sensors, processing, wireless communications with backup
 - Energy harvesting

Environmental Monitoring

River Liffey Deployment

Sensors:
Depth
Turbidity WaterTemp
Air Temp
Humidity Tilt
Vibrations Light
Position Flow
Compass

Comms: 3G, LoRa

nBlocksStudio: Introduction

nBlocksStudio

- Graphical-Diagrammatic programming environment
- Aim allow users to develop applications without writing code
- Uses the Flow Based Design paradigm
- Function-Nodes connected with Wires

Code

- Autogenerated code runs in a soft-real-time system
- Underlying layer: Kernel and Event driven tasks
- Contribution server

Function Blocks

Concepts

- 1. Node
- 2. Flow
- 3. Connection
- 4. Design
- 5. Translation
- 6. Compilation

Workflow

Example: Optical Scanner Controller

Example: seven-segment Display

Example: Simple motion automation

Example: Simple 2.4GHz Link

TRANSMITTER

Example: Simple LoRa Link

Example: Counter to OLED display

Example: Ultrasonic Range finder

Example: Simple Stepping-Motor

Summary

- n-Blocks: A modular low power IoT Hardware platform
 - Uses Standardized Form-factor, Connectors, Interfaces
 - Sensor focused, Powered by ARM Cortex Microcontrollers
 - Applied to real Projects
 - No Cables: Reduces complexity and time to Higher TRL
- nBlocksStudio: A flow-based / function-blocks programming environment, for microcontrollers.
 - Uses Function Blocks. Controlled by events and messages
 - Design driven, Powered by C++ classes and abstractions
 - Applied to real Projects and reference designs:
 - No Code: Reduces drastically development time