Metodi Matematici della Fisica

Istituzioni di Fisica Teorica Lezione 3

Lezione 3

- ► Teoremi di Cauchy e di Morera
- Rappresentazione integrale di Cauchy
- Funzioni analitiche
- Zeri e punti singolari di funzioni

Teoremi di Cauchy e di Morera

Teorema di Cauchy: Se f è olomorfa in un dominio \mathcal{D} e γ è una curva di Jordan tutta contenuta in \mathcal{D} allora l'integrale di f lungo γ si annulla:

$$\oint_{\gamma} f(z)dz = 0. \tag{1}$$

Teorema di Morera: Se f è continua in un insieme connesso A e l'integrale $\oint_{\gamma} f(z)dz = 0$ si annulla per ogni curva chiusa γ allora la funzione è olomorfa in A.

Rappresentazione integrale di Cauchy

Se f è olomorfa in un dominio \mathcal{D} e γ è una curva di Jordan tutta contenuta in \mathcal{D} allora vale la seguente rappresentazione integrale di Cauchy:

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(w)}{w - z} dw \tag{2}$$

Di conseguenza, esistono tutte le derivate di f(z) che possono essere scritte come:

$$\frac{d^n}{dz^n}f(z) = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw \tag{3}$$

e la funzione f è sviluppabile in serie di Taylor. Questo implica che ogni funzione olomorfa è anche analitica.

Calcolare al variare di $a \in \mathbb{C}$

$$I(a) = \frac{1}{2\pi i} \oint_{\gamma} \frac{1}{(z-a)^m} dz \quad m = 1, 2, \dots$$
 (4)

dove γ è un circonferenza di raggio R centrata nell'origine e percorsa in senso antiorario.

Calcolare al variare di $R \in \mathbb{R}$ (R > 0) il seguente integrale:

$$I(R) = \oint_{\gamma_R} \frac{e^{-w}}{w - \pi i/2} dw$$
 (5)

dove γ_R è la curva (percorsa in senso antiorario) che delimita la regione

$$A=\{z\in\mathbb{C}:|\mathrm{Re}(z)|\leq R\ ,\ |\mathrm{Im}(z)|\leq R\}.$$

Calcolare il seguente integrale

$$I = \oint_{\gamma} \frac{1}{2z^2 + 3z - 2} dz \tag{6}$$

dove γ è la circonferenza di raggio uno centrata nell'origine (percorsa in senso antiorario). [$2\mathrm{i}\pi/5$]

Calcolare il seguente integrale (se possibile, con la rappresentazione integrale di Cauchy)

$$I = \oint_{\gamma} \frac{e^{iz}}{z(z-\pi)} dz \tag{7}$$

per ognuno dei seguenti casi (tutte le circonferenze sono centrate in zero e percorse in senso antiorario)

- 1. γ è data dall'unione delle due circonferenze che formano il bordo di un anello il cui raggio minore vale 1 e il cui raggio maggiore vale 3; [-4i]
- 2. γ è data dall'unione delle due circonferenze che formano il bordo di un anello il cui raggio minore vale 1 e il cui raggio maggiore vale 4; [-6i]
- 3. γ è la circonferenza di raggio R con $R > \pi$; [-4i]
- 4. γ è la circonferenza di raggio R con $R < \pi$. [-2i]