PSY9511: Seminar 4

Testing, resampling, and splitting

Esten H. Leonardsen 26.10.23

Outline

- 1. Coding tips
 - · Loops
 - Functions
- 2. Performance metrics
- 3. Strategies for model evaluation
 - · Training and validation split
 - (Stratification)
 - (Leave-one-out cross-validation)
 - · Cross-validation
 - Bootstrap
 - Model comparison
- 4. Strategies for model selection and evaluation
 - Train/validation/test split
 - · Nested cross-validation

Coding tips

Coding tips

```
In[1]:
    import numpy as np
    import pandas as pd

df = pd.read_csv('Auto.csv')
    df = df.replace('?', np.nan)
    train = df.iloc(:200].copy()
    test = df.iloc(:200].copy()

test['cylinders'] = (test['cylinders'] - train['cylinders'].mean()) / train['cylinders'].std()
    train['cylinders'] = (train['cylinders'] - train['cylinders'].mean()) / train['cylinders'].std()
    test['weight'] = (test['weight'] - train['weight'].mean()) / train['weight'].std()
    train['weight'] = (train['weight'] - train['weight'].mean()) / train['weight'].std()
    test['year'] = (test['wear'] - train['year'].mean()) / train['wear'].std()
    train['year'] = (train['year'] - train['year'].mean()) / train['year'].std()
```


Coding tips: Live coding

Live coding

Coding tips: Python

return train, test

for column in ['cylinders', 'displacement', 'weight']:
 train. test = standardize(train. test. column=column)

```
In[1]:
         import numpy as np
         import pandas as pd
         df = pd.read csv('Auto.csv')
         df = df.replace('?', np.nan)
         train = df.iloc[:200].copy()
         test = df.iloc[300:].copv()
         test['cylinders'] = (test['cylinders'] - train['cylinders'].mean()) / train['cylinders'].std()
         train['cvlinders'] = (train['cvlinders'] - train['cvlinders'].mean()) / train['cvlinders'].std()
         test['weight'] = (test['weight'] - train['weight'].mean()) / train['weight'].std()
         train['weight'] = (train['weight'] - train['weight'].mean()) / train['weight'].std()
         test['vear'] = (test['vear'] - train['vear'].mean()) / train['vear'].std()
         train['year'] = (train['year'] - train['year'].mean()) / train['year'].std()
In[2]:
         import numpy as np
         import pandas as pd
         df = pd.read csv('Auto.csv')
         df = df.replace('?', np.nan)
         train = df.iloc[:200].copy()
         test = df.iloc[300:].copv()
         def standardize(train: pd.DataFrame, test: pd.DataFrame, column: str):
             train = train.copy()
             test = test.copv()
             test[column] = (test[column] - train[column].mean()) / train[column].std()
```


Coding tips: R

```
data <- read.csv('Auto.csv')
data[] <- lappty(data, function(x) replace(x, x == '?', NA))

train <- data[1:200,]
test <- data[200:nrow(data),]

test$\text{c- data[200:nrow(data),}]

test$\text{c- data[200:nrow(data),}]

test$\text{c- data[200:nrow(data),}]

test$\text{vlinders} <- (train$\text{c- lirain$\text{cylinders} - mean(train$\text{cylinders})) / sd(train$\text{cylinders})

train$\text{cylinders} <- (train$\text{cylinders} - mean(train$\text{weight})) / sd(train$\text{weight})

train$\text{weight} <- (train$\text{weight} - mean(train$\text{weight})) / sd(train$\text{weight})

train$\text{set}\text{cylinders} - mean(train$\text{weight}) / sd(train$\text{weight})

train$\text{year} <- (train$\text{year} - mean(train$\text{year})) / sd(train$\text{year})

train$\text{year} <- (train$\text{year} - mean(train$\text{year})) / sd(train$\text{year})</pre>
```

```
data <- read.csv('~/Downloads/Auto.csv')
data[] <- lappty(data, function(x) replace(x, x == '?', NA))

train <- data[1:208,]
test <- data[200:nrow(data),]

standardize <- function(train, test, column)
train <- copy(train)
test <- copy(test)

test[,column] <- (test[column] - mean(train[,column])) / sd(train[,column])
train(,column] <- (train[column] - mean(train[,column])) / sd(train[,column]))
return(list(train=train, test=test))

for (column in c('cylinders', 'weight', 'year'))
result <- standardize(train, test, column)
train <- resultstrain
test <- resultstrain</pre>
```

Coding tips: Minimal, complete scripts

Ctrl+Shift+Enter

Performance metrics

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

Mean squared error (MSE)

- + Widely used
- + Intuitive
- + Penalizes large errors
- ? Interpretation
- Depends on scale

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

Root mean squared error (RMSE)

- + Intuitive
- + Penalizes large errors
- + More interpretable than MSE, total loss ≈ individual loss
- Depends on scale

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

Mean absolute error (MAE)

- + More interpretable than MSE/RMSE, total loss = average error
- Feels a bit off
- Depends on scale

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \bar{\hat{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \bar{\hat{y}})^2}}$$

$$\frac{\sum\limits_{i=1}^{n}(y_{i}-\bar{y})(\hat{y}_{i}-\bar{\hat{y}})}{\sqrt{\sum\limits_{i=1}^{n}(y_{i}-\bar{y})^{2}\sum\limits_{i=1}^{n}(\hat{y}_{i}-\bar{\hat{y}})^{2}}}$$

Pearson correlation coefficient (r)

- + Scale independent
- Captures linear correlation
- Does not care about whether the predictions are close to the true values

$$1 - \frac{\sum\limits_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

$$1 - \frac{\sum\limits_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum\limits_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

Proportion of variance explained (r^2)

- + Scale independent
- + Interpretable
- Captures linear correlation
- Does not care about whether the predictions are close to the true values

TN	
	TP

$$\frac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{TN} + \mathit{FP} + \mathit{FN}}$$

$$\frac{TP+TN}{TP+TN+FP+FN}$$

Accuracy

- + Interpretable
- Does not account for imbalanced classes
- Does not account for different costs of misclassification

$$\frac{TP}{TP+FN}$$

$$\frac{TP}{TP+FN}$$

True positive rate (sensitivity)

- + Interpretable, calculates the proportion of cases that are detected
- + Useful when the cost of false negatives is high (Population-wide screening for severe disease)

$$\frac{TN}{TN+FP}$$

True negative rate (specificity)

- + Interpretable, calculates the proportion of controls that are detected
- Useful when the cost of false positives is high (Intrusive treatment of rare and mild conditions)

$$\frac{TP}{TP+FP}$$

$$\frac{TP}{TP+FP}$$

Positive predictive value (PPV, precision)

- + Interpretable, calculates the proportion of predicted cases that are actually cases
- Useful when the cost of false positives is high (Selection of participants for expensive clinical trials)

$$\frac{\frac{TP}{TP+FN} + \frac{TN}{TN+FP}}{2}$$

$$\frac{\frac{TP}{TP+FN} + \frac{TN}{TN+FP}}{2}$$

Balanced accuracy

- + Interpretable, behaves similarly to regular accuracy.
- + Takes into account imbalanced classes

threshold	TPR	FPR

threshold	TPR	FPR
0	1	1
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

Performance metrics: Summary

- There is a range of metrics that can be used, each capturing a different aspect of a model's performance
- If possible, (it is my personal preference to) evaluate a model using a different metric than the one that was used for training
- It is good practice to report more than one metric
- For regression, MAE provides a good, intuitive summary of model performance
- For classification, AUC is a widely used metric that is easy to interpret, handles class imbalance (to some degree), and is not reliant on the choice of classification threshold

Strategies for model evaluation

Model evaluation: Rationale

Statistical inference:

Goal: In-sample quantification

Predictive modelling:

Goal: Out-of-sample generalization

In the validation set approach we split the dataset into two subsets (commonly $\sim 80\%/20\%$), use the first for training the model and the second to test its performance.

- + Accurate estimate of out-of-sample error
- + Simple
- Variable results depending on the exact split
- Only uses a subset of data for training models
- Gives a point estimate of the error, without confidence intervals

Stratification:

Ensuring all folds of the dataset are similar with respect to some given characteristics.

Dataset

```
In[1]: df = ...
```



```
In[1]: df = ...
```



```
In[1]: df = ...
    train = df.iloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]
```



```
In[1]:     df = ...
     df = df.sort_values(['sex', 'age'])
```


Model evaluation: Stratification

Stratification:

Ensuring all folds of the dataset are similar with respect to some given characteristics.

- Helps alleviate the risk of training performance >> validation performance
- · Always stratify on target variable first
- Also good idea to stratify on other core characteristics, e.g. sex and age

Fits *n* models for *n* datapoints, each leaving a single datapoint out for testing.

- + Uses all data to train models
- + Not dependent on arbitrary data splits
- + Unbiased (with regards to the full dataset)
- Computationally expensive
- Effectively gives a point estimate of the error
- All models are going to be trained on > 99% overlapping data
 - \rightarrow highly correlated

Fits k models for n > k datapoints, each leaving n/k datapoints out for testing.

- + Uses all data to train models
- + Yields multiple estimates of out-of-sample error
- Different choices of k (and exact splits) yields different results
- No longer a single model from which information (e.g. parameter estimates and p-values) can be derived

Fits *x* models with *m* datapoints each, sampled from the original dataset with replacement.

- + Uses all data to train models
- + Provides a smooth distribution of model performance
- Versatile: Can be used for other things, e.g. getting a confidence interval for model parameters
- Different choices of k (and exact splits) yields different results

Model evaluation: Comparison

Why do we want to assess our model?

- 1. We want to show that our model is better than random guessing
- 2. We want to show that our model is better than another model

Model evaluation: Comparison

There is going to be variability to our model's performance (and possibly the baseline).

Is our model significantly better?

Approach 1:

Is the mean of the distribution of performances from our model significantly higher than the point-estimate baseline?

Approach 1:

Is the mean of the distribution of performances from our model significantly higher than the point-estimate baseline?

Approach 1:

Is the mean of the distribution of performances from our model significantly higher than the point-estimate baseline?

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Age	Sex	Feature	Outcome
25	Male	0.53	1
38	Female	-0.76	1
45	Male	0.89	1
33	Female	-0.21	1
29	Male	0.12	1
41	Female	-0.68	0
56	Male	0.45	0
52	Female	-0.32	0
31	Male	0.91	0
48	Female	-0.15	0

Age	Sex	Feature	Outcome
25	Male	0.53	1
38	Female	-0.76	1
45	Male	0.89	1
33	Female	-0.21	1
29	Male	0.12	1
41	Female	-0.68	0
56	Male	0.45	0
52	Female	-0.32	0
31	Male	0.91	0
48	Female	-0.15	0

Age	Sex	Feature	Outcome
25	Male	0.53	1
38	Female	-0.76	0
45	Male	0.89	1
33	Female	-0.21	0
29	Male	0.12	1
41	Female	-0.68	0
56	Male	0.45	1
52	Female	-0.32	0
31	Male	0.91	1
48	Female	-0.15	0

Age	Sex	Feature	Outcome
25	Male	0.53	0
38	Female	-0.76	0
45	Male	0.89	0
33	Female	-0.21	0
29	Male	0.12	0
41	Female	-0.68	1
56	Male	0.45	1
52	Female	-0.32	1
31	Male	0.91	1
48	Female	-0.15	1

Age	Sex	Feature	Outcome
25	Male	0.53	0
38	Female	-0.76	1
45	Male	0.89	0
33	Female	-0.21	0
29	Male	0.12	1
41	Female	-0.68	1
56	Male	0.45	0
52	Female	-0.32	0
31	Male	0.91	1
48	Female	-0.15	1

0.50 → 0.45 0.55

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Approach 3:

Is the mean of the distribution of performances from our model significantly higher than the mean of the distribution of baseline performances?

Fold	Ours	Baseline
1	0.75	0.71
2	0.62	0.55
3	0.58	0.57
4	0.87	0.81
5	0.65	0.63
6	0.98	0.97
7	0.55	0.52
8	0.69	0.52
9	0.91	0.85
10	0.88	0.81

The small gain of our model will disappear in the noise between the folds using a non-paired statistical test. Use a paired test, e.g. Wilcoxon signed-rank test

Model evaluation: Summary

- · Model evaluation should always happen out-of-sample
- If n is big (≥ 10000), a single train/validation split is often sufficient
- For smaller samples, k-fold cross-validation with 5 \leq k \leq 10 is a good trade-off between bias and variance
- The bootstrap is an effective way of getting confidence intervals for model parameters
- We can use the results from cross-validation (or bootstrap) to produce a distribution of performances (although caution the correlation)
- We can use a permutation test to produce a distribution of baseline performances
- · Compare models using Wilcoxon signed-rank test

Model selection and evaluation

Model selection and evaluation

- Model evaluation via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated

Model selection and evaluation

- Model evaluation via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model
- In that case, we have to both choose the best model, and estimate its performance
- If we choose the model based on regular cross-validation, the performance estimate will likely be inflated
- ightarrow We need a more advanced strategy

Model selection and evaluation: Summary

- Whenever a choice is made on the basis of performance in a dataset, the performance of the chosen model on that dataset is going to be biased.
- If n is big (≥ 10000), a single train/validation/test split is often sufficient
- If possible, use nested cross-validation to select the best model and estimate the out-of-sample error

