

Chapter 15: Dynamic Programming

(based on book "Introduction to Algorithms" of Cormen et al.)

Flor De Meulemeester

KU Leuven Kulak

Academiejaar 2024 – 2025

Overzicht

1 Inleiding

- 2 Staaf snijden
- 3 Matrix-ketting vermenigvuldigen
- 4 Voorwaarden voor dynamic programming

Overzicht

- Inleiding
- Staaf snijder
- Matrix-ketting vermenigvuldigen
- 4 Voorwaarden voor dynamic programming

▶ We berekenen het *n*-de Fibonacci getal

- ▶ We berekenen het *n*-de Fibonacci getal
- Recursief is niet efficiënt maar hoe kunnnen we het beter maken?
- Doen we dubbel werk?

- ▶ We berekenen het *n*-de Fibonacci getal
- ▶ Recursief is niet efficiënt maar hoe kunnnen we het beter maken?
- Doen we dubbel werk?
- Idee: Oplossingen van overlappende subproblemen opslaan

- ▶ We berekenen het *n*-de Fibonacci getal
- ▶ Recursief is niet efficiënt maar hoe kunnnen we het beter maken?
- Doen we dubbel werk?
- Idee: Oplossingen van overlappende subproblemen opslaan
- Gelijkaardig met divide and conquer

- ▶ We berekenen het *n*-de Fibonacci getal
- ▶ Recursief is niet efficiënt maar hoe kunnnen we het beter maken?
- Doen we dubbel werk?
- Idee: Oplossingen van overlappende subproblemen opslaan
- Gelijkaardig met divide and conquer
- ► Techniek vooral goed voor optimalisatie problemen (bepaalde waarde maximaliseren/minimaliseren)

Stappen plan voor dynamic programming

- 1 Bepaal de **structuur** van de oplossing
- 2 Bepaal de **recursieve** relatie van een waarde van een oplossing t.o.v. die van de subproblemen
- 3 Bereken de waarde van de optimale oplossing
- 4 Construeer het **pad** naar de optimale oplossing

Overzicht

- Inleiding
- 2 Staaf snijden
- Matrix-ketting vermenigvuldigen
- 4 Voorwaarden voor dynamic programming

► Gegeven volgende tabel:

$lengte\ i$										
prijs p_i	1	5	8	9	10	17	17	20	24	30

lacktriangle Een stuk met lengte i wordt verkocht aan prijs p_i

$lengte\ i$										
$\overline{}$ prijs p_i	1	5	8	9	10	17	17	20	24	30

- lacktriangle Een stuk met lengte i wordt verkocht aan prijs p_i
- lacktriangle Verdeel staaf van lengte n in $1 \le k \le n$ stukken zodat de prijs maximaal is

$lengte\ i$										
$\overline{}$ prijs p_i	1	5	8	9	10	17	17	20	24	30

- lacktriangle Een stuk met lengte i wordt verkocht aan prijs p_i
- ▶ Verdeel staaf van lengte n in $1 \le k \le n$ stukken zodat de prijs maximaal is
- ightharpoonup De lengte is $n=i_1+i_2+...+i_k$

$lengte\ i$										
prijs p_i	1	5	8	9	10	17	17	20	24	30

- lacktriangle Een stuk met lengte i wordt verkocht aan prijs p_i
- ▶ Verdeel staaf van lengte n in $1 \le k \le n$ stukken zodat de prijs maximaal is
- ▶ De lengte is $n = i_1 + i_2 + ... + i_k$
- ▶ Totale prijs is $p = p_{i_1} + p_{i_2} + ... + p_{i_k}$

$lengte\ i$										
prijs p_i	1	5	8	9	10	17	17	20	24	30

- lacktriangle Een stuk met lengte i wordt verkocht aan prijs p_i
- ▶ Verdeel staaf van lengte n in $1 \le k \le n$ stukken zodat de prijs maximaal is
- ▶ De lengte is $n = i_1 + i_2 + ... + i_k$
- ▶ Totale prijs is $p = p_{i_1} + p_{i_2} + ... + p_{i_k}$
- Bijvoorbeeld: Een stuk met lengte n=4 kunnen we verdelen in 2 stukken van lengte 2 en dus $p_2+p_2=5+5=10$ is de prijs.

Voorbeeld

Alle mogelijke onderverdelingen voor n = 4:

Stap 2: Recursieve oplossing

We kiezen een index i waarop we snijden maximaal en gaan recursief voor op het deel dat over blijft.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

Stap 2: Recursieve oplossing

We kiezen een index i waarop we snijden maximaal en gaan recursief voor op het deel dat over blijft.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

▶ Recurrentie relatie: T(0) = 1 en $T(n) = 1 + \sum_{j=0}^{n-1} 1 + T(j) = 2^n$

Stap 2: Recursieve oplossing

We kiezen een index i waarop we snijden maximaal en gaan recursief voor op het deel dat over blijft.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

- ▶ Recurrentie relatie: T(0) = 1 en $T(n) = 1 + \sum_{i=0}^{n-1} 1 + T(i) = 2^n$
- ightharpoonup We hebben dus een algoritme met **exponentiële** uitvoeringstijd, $\mathcal{O}(2^n)$.

Recursion tree

Stap 3: DP toepassen

▶ DP zal in polynomiale tijd werken als er een polynomiaal aantal verschillende subproblemen bestaan.

Stap 3: DP toepassen

- ▶ DP zal in polynomiale tijd werken als er een polynomiaal aantal verschillende subproblemen bestaan.
- ► Time-memory trade-off

Stap 3: DP toepassen

- ▶ DP zal in polynomiale tijd werken als er een polynomiaal aantal verschillende subproblemen bestaan.
- ► Time-memory trade-off
- ▶ We kunnen kiezen uit 2 implementaties
 - 1 **Top-down** with memoization
 - 2 Bottom-up method

Top-down implementatie

ightharpoonup We beginnen met ons probleem van groote n, als we subprobleem nodig hebben berekenen we het eenmalig en slaan het op.

Top-down implementatie

- We beginnen met ons probleem van groote n, als we subprobleem nodig hebben berekenen we het eenmalig en slaan het op.
- ldee: we hebben array (waarde ophalen in $\mathcal{O}(1)$) met de resultaten van subproblemen.

```
MEMOIZED-CUT-ROD-AUX(p, n, r)

1 if r[n] \ge 0

2 return r[n]

3 if n = 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

Top-down implementatie

- We beginnen met ons probleem van groote n, als we subprobleem nodig hebben berekenen we het eenmalig en slaan het op.
- ldee: we hebben array (waarde ophalen in $\mathcal{O}(1)$) met de resultaten van subproblemen.

```
MEMOIZED-CUT-ROD-AUX(p, n, r)

1 if r[n] \ge 0

2 return r[n]

3 if n == 0

4 q = 0

5 else q = -\infty

6 for i = 1 to n

7 q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))

8 r[n] = q

9 return q
```

 \blacktriangleright We hebben dus een algoritme met **polynomiale** uitvoeringstijd, $\Theta(n^2)$.

Bottom-up implementatie

▶ We berekenen alle subproblemen klein naar groot

Bottom-up implementatie

- We berekenen alle subproblemen klein naar groot
- ▶ Opnieuw met array (waarde ophalen in $\mathcal{O}(1)$) met de resultaten van subproblemen.

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

Bottom-up implementatie

- We berekenen alle subproblemen klein naar groot
- lacktriangle Opnieuw met array (waarde ophalen in $\mathcal{O}(1)$) met de resultaten van subproblemen.

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

8 return r[n]
```

lacktriangle We hebben dus een algoritme met **polynomiale** uitvoeringstijd, $\Theta(n^2)$.

Subproblem graph

Java implementatie

ightharpoonup Voor n = 1, ..., 10

naiveRodCutting

12 ms

bottomUpRodCutting

ms

Stap 4: De verdeling voor de optimale waarde

▶ We passen het algoritme lichtjes aan om de gemaakte stappen bij te houden.

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
 1 let r[0..n] and s[0..n] be new arrays
2 r[0] = 0
3 for i = 1 to n
   q = -\infty
5 for i = 1 to i
          if a < p[i] + r[i-i]
              q = p[i] + r[i-i]
     S[i] = i
       r[i] = a
   return r and s
```

```
while n > 0

print s[n]

n = n - s[n]
```

Overzicht

- Inleiding
- Staaf snijden
- 3 Matrix-ketting vermenigvuldigen
- 4 Voorwaarden voor dynamic programming

mat	rix	A_1	A_2	A_3	A_4	A_5	A_6
dime	nsie	30×35	35×15	15×5	5×10	10×20	20×25

Gegeven volgende tabel:

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensie	30×35	35×15	15×5	5×10	10×20	20×25

► Matrices niet commutatief wel associatief, we willen haakjes zo efficiënt mogelijk zetten zodat we minimaal aantal scalair vermenigvuldigingen moeten berekenen.

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensie	30×35	35×15	15×5	5×10	10×20	20×25

- ► Matrices niet commutatief wel associatief, we willen haakjes zo efficiënt mogelijk zetten zodat we minimaal aantal scalair vermenigvuldigingen moeten berekenen.
- Voor een matrix van $p \times q$ en een matrix $q \times r$ is dit pqr aantal bewerkingen.

 $ightharpoonup A_1A_2A_3A_4$

Mogelijkheden:

 $ightharpoonup A_1A_2A_3A_4$

Mogelijkheden:

- $ightharpoonup (A_1(A_2(A_3A_4)))$
- $ightharpoonup (A_1((A_2A_3)A_4))$
- $((A_1A_2)(A_3A_4))$
- $((A_1(A_2A_3))A_4)$
- $(((A_1A_2)A_3)A_4)$

 $ightharpoonup A_1A_2A_3A_4$

Mogelijkheden:

- $ightharpoonup (A_1(A_2(A_3A_4)))$
- $ightharpoonup (A_1((A_2A_3)A_4))$
- $((A_1A_2)(A_3A_4))$
- $((A_1(A_2A_3))A_4)$
- $(((A_1A_2)A_3)A_4)$

ightharpoonup P(n) = # mogelijkheden voor n

$$P(1) = 1$$

$$P(n) = \sum_{k=0}^{n-1} P(k)P(n-k) \text{ met } n \ge 2$$

 $ightharpoonup A_1A_2A_3A_4$

Mogelijkheden:

- $ightharpoonup (A_1(A_2(A_3A_4)))$
- $ightharpoonup (A_1((A_2A_3)A_4))$
- $((A_1A_2)(A_3A_4))$
- $((A_1(A_2A_3))A_4)$
- $(((A_1A_2)A_3)A_4)$

ightharpoonup P(n) = # mogelijkheden voor n

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) \text{ met } n \ge 2$$

► 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...

 $ightharpoonup A_1A_2A_3A_4$

Mogelijkheden:

- $ightharpoonup (A_1(A_2(A_3A_4)))$
- $ightharpoonup (A_1((A_2A_3)A_4))$
- $((A_1A_2)(A_3A_4))$
- $((A_1(A_2A_3))A_4)$
- $(((A_1A_2)A_3)A_4)$

ightharpoonup P(n) = # mogelijkheden voor n

$$P(1) = 1$$

$$P(n) = \sum_{k=1}^{n-1} P(k)P(n-k) \text{ met } n \ge 2$$

- ► 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ...
- ▶ De Catalan-getallen groeien met $\Omega(4^n/n^{\frac{3}{2}})$

▶ We zullen een subprobleem $A_iA_{i+1}...A_j$ als volgt opsplitsen in 2 nieuwe subproblemen $A_iA_{i+1}...A_k$ en $A_{k+1}A_{k+2}...A_j$.

- We zullen een subprobleem $A_iA_{i+1}...A_j$ als volgt opsplitsen in 2 nieuwe subproblemen $A_iA_{i+1}...A_k$ en $A_{k+1}A_{k+2}...A_j$.
- \blacktriangleright We zetten haakjes achter A_k

- We zullen een subprobleem $A_iA_{i+1}...A_j$ als volgt opsplitsen in 2 nieuwe subproblemen $A_iA_{i+1}...A_k$ en $A_{k+1}A_{k+2}...A_j$.
- \blacktriangleright We zetten haakjes achter A_k
- De oplossingen van deze subproblemen zullen we bijhouden in een $n \times n$ matrix m. De oplossing voor $A_i A_{i+1} ... A_{j-1} A_j$ vinden we dan in m[i,j].

- We zullen een subprobleem $A_iA_{i+1}...A_j$ als volgt opsplitsen in 2 nieuwe subproblemen $A_iA_{i+1}...A_k$ en $A_{k+1}A_{k+2}...A_j$.
- \blacktriangleright We zetten haakjes achter A_k
- ▶ De oplossingen van deze subproblemen zullen we bijhouden in een $n \times n$ matrix m. De oplossing voor $A_i A_{i+1} ... A_{j-1} A_j$ vinden we dan in m[i,j].
- m[i,i] = 0

- We zullen een subprobleem $A_iA_{i+1}...A_j$ als volgt opsplitsen in 2 nieuwe subproblemen $A_iA_{i+1}...A_k$ en $A_{k+1}A_{k+2}...A_j$.
- ightharpoonup We zetten haakjes achter A_k
- ▶ De oplossingen van deze subproblemen zullen we bijhouden in een $n \times n$ matrix m. De oplossing voor $A_i A_{i+1} ... A_{j-1} A_j$ vinden we dan in m[i,j].
- m[i,i] = 0
- De naïeve recursieve oplossing zal opnieuw **exponentiële** uitvoeringstijd hebben.

Stap 3: DP toepassen

```
MATRIX-CHAIN-ORDER (p)
 1 \quad n = p.length - 1
 2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
 3 for i = 1 to n
    m[i,i] = 0
 5 for l = 2 to n // l is the chain length
    for i = 1 to n - l + 1

\begin{array}{ll}
7 & j = i + l - \\
8 & m[i, j] = \infty
\end{array}

    i = i + l - 1
       for k = i to i - 1
                 q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
                if q < m[i, j]
                    m[i, j] = q
13
                     s[i, j] = k
    return m and s
```

▶ Complexiteit: $\mathcal{O}(n^3)$

Matrices m and s

Bottom-up voor elke l de optimale oplossing berekenen voor verschillende matrices.

Stap 4: Optimale haakjes

- In s houden we bij op welke k we optimaal gesplitst hebben.
- Zo kunnen we de oplossing reconstrueren.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

Overzicht

- Inleiding
- Staaf snijder
- Matrix-ketting vermenigvuldigen
- 4 Voorwaarden voor dynamic programming

Eigenschap 1: Optimale substructuur

▶ Als de optimale oplossing vervat zit in de optimale oplossing van de subproblemen.

Eigenschap 1: Optimale substructuur

- Als de optimale oplossing vervat zit in de optimale oplossing van de subproblemen.
- ightharpoonup Vaak complexiteit van de vorm $\mathcal{O}(n^{a+b})$
 - a = # subproblemen per probleem

Eigenschap 1: Optimale substructuur

- Als de optimale oplossing vervat zit in de optimale oplossing van de subproblemen.
- ightharpoonup Vaak complexiteit van de vorm $\mathcal{O}(n^{a+b})$
 - a=# subproblemen per probleem
 - b = # keuzes per subprobleem

 $lackbox{ } q
ightarrow r$ en r
ightarrow t zijn subproblemen van q
ightarrow t

- $lackbox{ } q
 ightarrow r$ en r
 ightarrow t zijn subproblemen van q
 ightarrow t
- Ongewogen kortste pad
 - $q \rightarrow r$
 - ightharpoonup r
 ightarrow t

- $lackbox{ } q
 ightarrow r \ {
 m en} \ r
 ightarrow t \ {
 m zijn} \ {
 m subproblemen} \ {
 m van} \ q
 ightarrow t$
- Ongewogen kortste pad
 - $q \rightarrow r$
 - $r \rightarrow t$
- Ongewogen langste simpel pad

- $lackbox{ } q
 ightarrow r \ {
 m en} \ r
 ightarrow t \ {
 m zijn} \ {
 m subproblemen} \ {
 m van} \ q
 ightarrow t$
- Ongewogen kortste pad
 - $q \rightarrow r$
 - $r \rightarrow t$
- Ongewogen langste simpel pad
 - $\quad \bullet \quad q \to s \to t \to r$

- $lackbox{ } q
 ightarrow r$ en r
 ightarrow t zijn subproblemen van q
 ightarrow t
- Ongewogen kortste pad
 - $q \rightarrow r$
 - $r \rightarrow t$
- Ongewogen langste simpel pad
 - $q \rightarrow s \rightarrow t \rightarrow r$
 - $r \rightarrow q \rightarrow s \rightarrow t$

- $lackbox{ } q
 ightarrow r \ {
 m en} \ r
 ightarrow t \ {
 m zijn} \ {
 m subproblemen} \ {
 m van} \ q
 ightarrow t$
- Ongewogen kortste pad
 - $q \rightarrow r$
 - $r \rightarrow t$
- Ongewogen langste simpel pad
 - $q \rightarrow s \rightarrow t \rightarrow r$
 - $r \rightarrow q \rightarrow s \rightarrow t$
 - Pad is niet meer simpel

Eigenschap 2: Overlappende subproblemen

► Het matrix probleem heeft ook overlappende problemen

Eigenschap 2: Overlappende subproblemen

- ► Het matrix probleem heeft ook overlappende problemen
- ► Polynomiaal #verschillende subproblemen

Vragen

Zijn er nog vragen?