Atividade (Vale 50% Prova 1)

Nome: Lucas Bauchspiess

Nome: Rafael Ehlert

1) Expresse as funções na notação Big O, determinando a constante C e no, se possível.

a)
$$f(n) = \frac{n^3}{100} + n^2 + 10n + 3$$

b)
$$f(n) = 10n^2 + 2^n + 4$$

c)
$$f(n) = log_2^n + n + n^2$$

2) Verifique se cada questão abaixo é verdadeira ou falsa e diga por que é falsa ou verdadeira.

a)
$$10^{56}$$
. $n^2 \in O(n^2)$?

b)
$$10^{56}n^2 \in O(n^3)$$
?

c)
$$10^{56}n^2 \in O(n)$$
?

d)
$$2^{n+1} \in O(2^n)$$
?

$$f) n \in O(n^3)$$
?

3) Para as funções abaixo determine: O, θ, Ω , se possível.

a)
$$f(n) = 10n^3 + 5n + n^2$$

$$b) f(n) = n \cdot \log n + \log n$$

$$c) f(n) = 3^x + n^3 + n$$

$$d) f(n) = 2 n + 2500$$

4)) Análise o algoritmo abaixo e identifique o pior caso usando a notação Assintótica.

Exibe_matriz_30[M]

FOR
$$i \leftarrow 1$$
 to comprimento_x{M}

FOR
$$j \leftarrow 1$$
 to comprimento_y{M}

FOR
$$k \leftarrow 1$$
 to comprimento_z[M]

Do descreva (M[i][j][k])

5) Para os pares de funções seguintes indique se é verdadeira ou falsa cada uma das seguintes afirmações: $f(n) \in O(g(n)), f(n) \in \Omega(g(n))$ e $f(n) \in \theta(g(n))$.

Explique sucintamente as suas opções.

a)
$$f(n) = 2n^3 - 10n^2$$
; $g(n) = 25n^2 + 37n$

b)
$$f(n) = 56$$
; $g(n) = log_2^{30}$

c)
$$f(n) = log_3^n$$
; $g(n) = log_2^n$

$$d) f(n) = n^3; g(n) = 3^n$$

$$e) f(n) = n!; g(n) = 2^n$$

Questão 1)

a)

Para a função: $f(n) = \frac{n^3}{100} + n^2 + 10n + 3$, temos:

Termo dominante: $\frac{n^3}{100}$, pois cresce muito mais que os outros, principalmente considerando números muito grandes.

Pela definição do Big O, queremos encontrar constantes C e n_0 tais que (\forall = p/todo):

$$f(n) \le C \cdot g(n) \ \forall \ n \ge n_0$$
. Neste caso, $g(n) = n^3$. Então, $O(f(n)) = O(n^3)$

Ou seja, precisamos garantir que: $\frac{n^3}{100} + n^2 + 10n + 3 \le Cn^3$

Para garantir essa desigualdade, podemos tomar um C suficientemente grande para cobrir todos os termos adicionais. Por exemplo, para $n \ge 10$:

- $n^2 < n^3 \forall n > 10$
- $10n \le n^3 \forall n \ge 10$
- $3 \le n^3 \, \forall \, n \ge 10$

Portanto,
$$\frac{n^3}{100} + n^2 + 10n + 3 \le \frac{n^3}{100} + n^3 + n^3 + n^3 = \frac{n^3}{100} + 3n^3$$

Para um C suficientemente grande, $\frac{n^3}{100} \le Cn^3$

Logo,
$$\frac{n^3}{100} + n^2 + 10n + 3 \le 4n^3$$
, para $n \ge 10$.

A complexidade assintótica da função é ${\it O}(n^3)$ com ${\it C}=4$ e $n_0=10$

b)

Para a função: $f(n) = 10n^2 + 2n + 4$, temos:

Termo dominante: n^2

- $2n < n^2 \forall n > 2$
- $4 \le n^2 \forall n \ge 2$

Portanto, $10n^2 + 2n + 4 \le 10n^2 + n^2 + n^2 = 12n^2$

Logo, a complexidade assintótica da função é $O(n^2)$ com C=12 e $n_0=2$

c)

Para a função: $f(n) = log_2 n + n^2 + 10n + 3$, temos:

Termo dominante: n^2 , pois é maior que n e log_2n cresce muito devagar.

- $log_2 n \le n^2 \forall n \ge 10$
- $n \le n^2 \ \forall \ n \ge 10$
- $3 \le n^3 \ \forall \ n \ge 10$

Portanto, $log_2 n + n + n^2 \le n^2 + n^2 + n^2 = 3n^2$

Logo, a complexidade assintótica da função é $O(n^2)$ com C=3 e $n_0=10$

Questão 2)

a) VERDADEIRO

Tomando: $f(n) = 10^{56} \cdot n^2 e g(n) = n^2$

$$C = 10^{56} e n_0 \ge 1$$

$$10^{56} \cdot n^2 \le 10^{56} \cdot n^2$$

b) VERDADEIRO

Tomando: $f(n) = 10^{56} \cdot n^2$ e $g(n) = n^3$

$$\frac{10^{56}n^2}{n^3} = 10^{56} \cdot \frac{1}{n^3}$$

$$C = 10^{56} e n_0 \ge 1$$

$$10^{56} \cdot n^2 \le 10^{56} \cdot n^2$$

c) FALSO

Tomando: $10^{56} \cdot n^2 \le Cn$

Dividindo por n: $10^{56} \cdot n \leq \mathit{Cn}$

Mas para $n \to \infty$, $10^{56}n$ cresce indefinidamente, enquanto C é uma constante fixa. Isso é um absurdo, então a afirmação é falsa.

d) VERDADEIRO

$$2^{n+1} = 2 \cdot 2^n$$

$$C = 2 e n_0 \ge 1$$

$$2^{n+1} = 2 \cdot 2^n \ \forall \ n \ge 1$$

e) VERDADEIRO

$$\frac{n}{n^3} = \frac{1}{n^2}$$

$$C = 1 e n_0 \ge 1$$

$$n \leq n^3 \forall n \geq 1$$

Questão 3)

a)

Passo 1: Determinar O(f(n))

O termo de maior ordem é $10n^3$. A constante 10 pode ser ignorada na notação assintótica. Portanto: $f(n)=O(n^3)$

Passo 2: Determinar $\Omega(f(n))$

Para $n\geq 1$, temos $5n\geq 0$ e $n^2\geq 0$. Logo, $10n^3+n^2+5n\geq 10n^3$. Portanto, escolhendo C=10 e $n_0=1$, a condição da notação Big Omega é satisfeita. Como f(n) é tanto $O(n^3)$ quanto $\Omega(n^3)$, ela é $\theta(n^3)$.

Passo 3: Determinar $\theta(f(n))$

Como o termo dominante de $f(n)=10n^3$ e os outros termos $5n\ e\ n^2$ crescem mais lentamente, podemos dizer que a função cresce na mesma ordem de n^3 .

b)

Passo 1: Determinar O(f(n))

 $O(n \cdot \log n)$ Sim, $f(n) \in O(n \cdot \log n)$. Para $n \ge 2$, temos $\log n \le n \cdot \log n$. Portanto, $n \log n + \log n \le n \log n + n \log n = 2n \log n$. Escolhendo C = 2 e n = 2, a condição para Big O é satisfeita.

Passo 2: Determinar $\Omega(f(n))$

Para $n \ge 2$, temos $\log n > 0$. Portanto, $n \log n + \log n \ge n \log n = 2n \log n$. Escolhendo C = 1 e $n_0 = 2$, a condição para Ω é satisfeita.

Passo 3: Determinar $\theta(f(n))$

Como f(n) é tanto $O(n \cdot \log n)$ quanto $\Omega(n \cdot \log n)$, ela é $\theta(n \cdot \log n)$.

c)

Passo 1: Determinar O(f(n))

O termo dominante aqui é 3^n , já que o crescimento exponencial supera o crescimento polinomial $(n^3 e n)$ para valores suficientemente grandes de n.

Podemos dizer que existe uma constante C>0, C=3 um valor $n_0=4$ tal que para todo $n\geq n_0$ temos $f(n)\leq C\cdot 3^n$

Passo 2: Determinar $\Omega(f(n))$

Encontrar C > 0 e n_0 tal que $\forall n \ge n_0$ tenhamos:

 $3^n + n^2 + n \ge C \cdot 3^n$. Pegando C = 1 e $n_0 = 1$. Portanto, $f(n) = \Omega(n)$

Passo 3: Determinar $\theta(f(n))$: Como f(n) é tanto $O(3^n)$ quanto $\Omega(3^n)$, ela é $\theta(3^n)$.

d)

Passo 1: Determinar O(f(n))

A função f(n) é O(n). Isso porque o crescimento da função é limitado superiormente por um múltiplo constante de n. Podemos encontrar um C>0 e um n_0 tal que $\forall~n>n_0$, tenhamos $2n~+~2500 \leq C \cdot n$. Então, se $n_0=2500$, $\forall~n_0\geq 2500$, teremos $2n~+~2500 \leq 3n$. Portanto, f(n)=O(n). C=3 e $n_0=2500$

Passo 2: Determinar $\Omega(f(n))$

A função f(n) também é $\Omega(n)$. Isso significa que o crescimento da função é limitado inferiormente por um múltiplo constante de n. Precisamos encontrar C>0 e n_0 tal que $\forall~n\geq n_0$, tenhamos $2n+2500\leq C\cdot n$. Pegando C=1 e $n_0=1$ $2n+2500\geq 2n\geq n$

Então, podemos escolher $n_0=1$. Portanto, $f(n)=\Omega(n)$ C=1 e $n_0=1$.

Passo 3: Determinar $\theta(f(n))$

Como f(n) é tanto O(n) quanto $\Omega(n)$, ela é $\theta(n)$.

Questão 4)

Análise o algoritmo abaixo e identifique o pior caso usando a notação Assintótica:

```
\begin{aligned} \text{Exibe\_matriz\_30[M]} \\ \text{FOR } i \leftarrow 1 \text{ to comprimento\_x\{M]} \\ \text{FOR } j \leftarrow 1 \text{ to comprimento\_y\{M]} \\ \text{FOR } k \leftarrow 1 \text{ to comprimento\_z[M]} \end{aligned}
```

A complexidade de tempo do algoritmo no pior caso é O(n_x . n_y . n_z)

Questão 5)

Do descreva (M[i][j][k])

Para os pares de funções seguintes indique se é verdadeira ou falsa cada uma das seguintes afirmações: $f(n) \in O(g(n)), f(n) \in \Omega(g(n))$ $e f(n) \in \theta(g(n))$.

a)
$$f(n) = 2n \ 3 - 10n \ 2$$
; $g(n) = 25n \ 2 + 37^{n}$

f(n)∈/O(g(n)): Falso, pois f(n) não é limitada superiormente por g(n). Não existe uma constante c que satisfaça 2n3 −10n2 ≤c·(25n2 +37n) para todo n suficientemente grande.

f(n)∈ $\Omega(g(n))$: Verdadeiro, pois f(n) cresce mais rápido que g(n). Existe uma constante c que satisfaz 2n3 –10n2 ≥c·(25n2+37n) para todo n suficientemente grande.

 $f(n) \in /\Theta(g(n))$: Falso, porque o crescimento de f(n) e g(n) não é idêntico. Eles não crescem na mesma taxa.

b)
$$f(n) = 56$$
; $g(n) = log 2 30$

 $f(n) \in O(g(n))$: Verdadeiro, pois o crescimento de f(n) é no máximo igual ao de g(n). Existe uma constante c tal que $56 \le c \cdot \log 302$ para todo n (já que não dependem de n).

f(n)∈ $\Omega(g(n))$: Verdadeiro, pois f(n) também cresce no mesmo ritmo que g(n) (ambos constantes). Existe uma constante c tal que 56≥c·log302 para todo n.

 $f(n) \in \Theta(g(n))$: Verdadeiro, já que f(n) e g(n) crescem exatamente na mesma taxa (ambas são constantes).

c) f(n) = log 3 n ; g(n) = log 2 n

 $f(n) \in O(g(n))$: Verdadeiro, pois f(n) cresce no máximo tão rápido quanto g(n). Existe uma constante c tal que $log3(n) \le c \cdot log2(n)$ para todo n suficientemente grande.

f(n)∈ $\Omega(g(n))$: Verdadeiro, pois f(n) também cresce no mínimo tão rápido quanto g(n). Existe uma constante c tal que log3(n)≥c·log2(n) para todo n suficientemente grande.

 $f(n) \in \Theta(g(n))$: Verdadeiro, já que f(n) e g(n) têm crescimento idêntico.

d)
$$f(n) = n \ 3$$
; $g(n) = 3 \ n$

 $f(n) \in O(g(n))$: Verdadeiro, pois f(n) cresce mais lentamente que g(n). Existe uma constante c tal que $n3 \le c \cdot 3n$ para todo n suficientemente grande.

f(n)∈ $\Omega(g(n))$: Falso, pois f(n) não cresce no mínimo tão rápido quanto g(n). Não existe uma constante c que satisfaça n3 ≥c·3n para todo n suficientemente grande.

 $f(n) \in \Theta(g(n))$: Falso, pois f(n) e g(n) não têm o mesmo crescimento.

e)
$$f(n) = n!$$
; $g(n) = 2^n$

 $f(n) \in O(g(n))$: Falso, pois f(n) cresce mais rápido que g(n). Não existe uma constante c que satisfaça $n! \le c \cdot 2n$ para todo n suficientemente grande.

 $f(n) \in \Omega(g(n))$: Verdadeiro, pois f(n) cresce no mínimo tão rápido quanto g(n). Existe uma constante c tal que $n! \ge c \cdot 2n$ para todo n suficientemente grande.

 $f(n) \in \Theta(g(n))$: Falso, pois não há crescimento idêntico.