MATIGO EXAMINATIONS BOARD

P510/1 PHYSICS MARKING GUIDE 2023 PAPER 1

	PAPER I	
Qn	Answer	Marks
1(a)(i)	Law of conservation of linear momentum states that for a system of colliding bodies, their total linear momentum remains constant in a given direction provided no external force of act on them	01
(ii)	Work energy theorem states that the work done by the net force acting on a body is equal to the change in its kinetic energy.	01
(b)	Elastic collision: is the type of collision in which all kinetic energy and momentum of colliding bodies are conserved. While Inelastic collision: Is the type of collision in which only momentum of colliding bodies is conserved but not kinetic energy.	
(c)	$\begin{array}{c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	

	(ii) By Lami's theorem	
	$\frac{T}{\sin 90^{\circ}} = \frac{R}{\sin(72 + 90)} = \frac{W}{\sin(18 + 9)}$ $\frac{T}{\sin 90} = \frac{520}{\sin 108}$ $T = \frac{520Sin90^{\circ}}{Sin108^{\circ}}$ $T = 546.8N$ Alternatively	
	Using a right angled triangle. $\frac{T}{Sin90^{\circ}} = \frac{W}{Sin72^{\circ}} = \frac{R}{Sin18^{\circ}}$	
	$\frac{T}{Sin90^{\circ}} = \frac{520}{Sin72}$ $520sin90^{\circ}$	
	$T = \frac{520sin90^{\circ}}{Sin72^{\circ}}$ $T = 546.76N$ Alternatively	
	$TCos18^{\circ} = 520$ $T = \frac{520}{cos18}$	
(:::)	T = 546.76N	
(iii)	$\frac{R}{Sin18} = \frac{546.8}{Sin90} = \frac{520}{Sin72}$	
	$R = \frac{520Sin18}{Sin72}$ $R = 169.0N$	

	Alternatively	
	TCos72 = R	
	546.8Cos72 = R $R = 168.97N$	
(iv)	Since these forces are coplanar, and the body must stay in mechanical equilibrium, the 3 forces must remain	
(17)	proportional to each other. Hence an increase in the angle at constant weight must cause an increase in the tension.	
(d)(i)	tension,	
(4)(1)	$Tsin\theta = \frac{mv^2}{r}$	
	$Tcos\theta=mg$	
	$tan\theta = \frac{v^2}{rg}$	
	$tan\theta = \frac{(2)^2}{1 \times 9.81}$ $\theta = 22.18^{\circ}$	
	$\theta = 22.18^{\circ}$	
	$22.18 \qquad 0.5m$	
	$sin22.18 = \frac{r}{0.5}$	
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
	$r = 0.189$ $v^2 = rgtan\theta$	
	$v = \sqrt{rgtan\theta}$	

	$v = \sqrt{0.189 \times 9.81 tan 22.18}$	
	$v = 0.869 ms^{-1} \text{ or } 0.87 ms^{-1}$	
(ii)	$T = \frac{2\pi r}{v}$ $T = \frac{2 \times 3.14 \times 0.189}{0.869} = 1.37s$	
2(a)	Newton's law of gravitation states that the force of attraction between two bodies in the universe is directly proportional to the product of their masses and inversely proportional to the square of distance between them.	
	Hence From	
	Hence From $F = \frac{Gm_1m_2}{r^2}$ $G = \frac{Fr^2}{m_1m_2}$ $[G] = \frac{[F][r^2]}{[m_1m_2]}$ $[G] = \frac{MLT^{-2}L^2}{M^2}$ $[G] = M^{-1}L^3T^{-2}$	
(b)	Relationship between acceleration due to gravity g and mean distance from centre of earth	
	(i) Inside he earth	
	⇒ Consider the earth to be a uniform sphere of uniform density for a body at a point h metre from, the surface of earth measured towards the centre of the earth (inside the earth)	

 \Rightarrow At point P, at a radius r, effective mass M_E so $M_E^I g^I = \frac{GM_E^I M}{r^2}$

$$m = \frac{r^2 g^l}{r^2} \dots \dots \dots \dots (ii)$$
Dividing (ii) by (i)
$$\frac{m}{M_E} = \frac{r^2 g^l}{r_E^2 g}$$

$$\frac{g^l}{g} = \frac{r}{r_E}$$

$$\therefore g^l = \frac{gr}{r_E}$$

Alternatively

On earth's surface
$$mg = \frac{GM_em}{r_e^2},$$

$$M_e = \frac{gr_2^2}{G}$$

$$mg^l = \frac{GM_e^lm}{r^2}$$

$$M_e^l = \frac{g^lr^2}{G}$$

$$mass = v \times \rho$$

$$M_e = \frac{4}{3}\pi r_e^3 \rho$$

$$M_e^l = \frac{4}{3}\pi r^3 \rho$$

$$\frac{M_e^l}{M_e} = \frac{\frac{4}{3}\pi r^3 \rho}{\frac{4}{3}\pi r_e^3 \rho} = \frac{\frac{g^lr^2}{G}}{\frac{gr_e^2}{G}}$$

$$\left(\frac{r}{r_e}\right)^3 = \frac{g^l}{g}\left(\frac{r}{r_e}\right)^2$$

$$\frac{r}{r_e} = \frac{g^l}{g}$$

$$g^l = \frac{gr}{r_e}$$

Hence $g^I \propto r$ for a point inside the earth

(ii) Outside

For an object of mass m placed at a height h above the surface of earth where acceleration due to gravity is g^{l}

$$mg^{I} = \frac{GM_{E}m}{r^{2}}.....(i)$$

$$but \operatorname{gr}_{E}^{2} = GM_{E}...(ii)$$

Dividing (i) by (ii)

$$\frac{g^I}{a} = \frac{r_E^2}{r^2}$$

$$g^I = \frac{gr_E^2}{r^2}$$

Since r_E and g are constants

$$g^I \propto \frac{1}{r^2}$$

(iii)

	Inside earth $g^l \propto \frac{1}{r^2}$ above earth's surface r	
(c)(i)	Escape velocity. Is the minimum velocity with which a body is projected from the earth's surface so it escape from earth's gravitational pull never to return.	
(ii)	$W_{m} = \frac{1}{6}W_{E}$ $mg' = \frac{1}{6}mg, g' = \frac{1}{6}g$ $V = \sqrt{2g'r_{m}}$ $Kinetic \ lost = PE \ gained$ $\frac{1}{2}mv^{2} = 0\frac{GMM_{m}}{r_{m}}$ $V_{esc} = \sqrt{\frac{2GM_{m}}{r_{m}}}$ $V_{esc} = \sqrt{\frac{2\times 9.8 \times 1.75 \times 10^{6}}{6}}$ $V_{esc} = 8730.9ms^{-1}$	
(d)	Gravitational force of attraction between two bodies of ordinary mass is not noticeable because;	

	Of its relatively weak strength compared to other forces and our typical distances from large masses like	
	those of planets.	
	Of the very small value of the gravitational constant G, So the gravitational force between bodies of	
	ordinary mass is extremely small.	
3(a)	S.H.C is the periodic motion of a body whose acceleration is directly proportional to the displacement from a	
	fixed point and is directed towards the fixed point.	
(b)(i)	For $l_1 = 0.4m \ l_2 = 0.6m$	
	$T = 2\pi \sqrt{\frac{l}{g}}$	
	· ·	
	they will be in step again after a time	
	$T = \left(\frac{T_1 \times T_2}{T_1}\right)$	
	$T_2 - T_1 $	
	$T = \left(\frac{T_1 \times T_2}{T_2 - T_1}\right)$ $T_1 = 2\pi \sqrt{\frac{0.4}{9.81}}$	
	$T_1 = 2\pi \left \frac{1}{9.81} \right $	
	T 2 /0.041	
	$I_1 = 2\pi\sqrt{0.041s}$	
	$_{T}$ $_{2}$ 0.6	
	$T_{1} = 2\pi\sqrt{0.041}s$ $T_{2} = 2\pi\sqrt{\frac{0.6}{9.81}}$	
	$T_2 = 2\pi\sqrt{0.061}s$	
	$(2\pi\sqrt{0.041})(2\pi\sqrt{0.061})$	
	$T = \frac{(2\pi\sqrt{0.041})(2\pi\sqrt{0.001})}{(2\pi\sqrt{0.041})}$	
	$T = \frac{(2\pi\sqrt{0.041})(2\pi\sqrt{0.061})}{(2\pi\sqrt{0.061} - 2\pi\sqrt{0.041})}$	
	4. 2./0.003504	
	$T = \frac{4\pi^2 \sqrt{0.002501}}{20000000000000000000000000000000000$	
	$2\pi(0.044)$	
	$T = 2\pi (1.126)$	
	$T = \frac{4\pi^2 \sqrt{0.002501}}{2\pi (0.044)}$ $T = 2\pi (1.126)$ $T = 7.074$	
b(ii)	To find frequencies and oscillations	
D(11)		
	$T_1 = 2\pi \left \frac{l}{l} \right $	
	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g$	
	$T_1 = 2\pi \sqrt{\frac{l}{g}}$	

	$T_1 = 2\pi \sqrt{\frac{0.4}{9.81}} = 1.264s$ $T_2 = 2\pi \sqrt{\frac{0.6}{9.81}} = 1.549s$ $Lcm \ of \ periods = 1.264 \times 1.549$ $= 7.808s$ $In \ this \ time \ pendulum \ 1, \ Oscillations = \frac{7.808}{1.264}$ $= 6.17$ $\approx 6 \ Oscillations$ $pendulum \ 2, \ Oscillations = \frac{7.808}{1.549}$ $= 5.04$	
3(c)	≈ 5 Oscillations × 5 Oscillations	01
9(0)	 Pistons in petrol engine Pendulum clock Strings in musical instruments 	VI
3(d)(i)	Hooke's law: The extension of a stretched elastic material is directly proportional to the applied force provided the elastic limit is not exceeded.	01
(ii)	$l = 1.5m$ $F = 250,000N$ Since the cross-sectional area of the rod is small $(0.002m^2)$, when a large stretching force $(250000N)$ is applied the force is distributed over this small cross sectional area. This results into higher stress value since stress = $\frac{force}{cross\ sectional\ area} = \frac{F}{A} = \frac{250,000}{0.002} = 125,000KNm^{-2}$ As the force applied at the ends of rod is transmitted through it. It thins out x-sectional area/ reduces much further where breaking occurs hence stress increases.	05
3(e)(i)	Static friction is a force that opposes the tendency of a body to slide over another and dynamic friction is the force that opposes the relative motion between 2 surfaces which are already.	02

	1	
	$P_2 - P_1 = \frac{1}{2} \times 1.28(120^2 - 115^2)$	
	$P_{2} - P_{1} = \frac{1}{2} \times 1.28(120^{2} - 115^{2})$ $Lift force, F = (P_{2} - P_{1})A$ $= \frac{1}{2} \times 1.28(120^{2} - 115^{2}) \times 15$	
	$=\frac{1}{2} \times 1.28(120^2 - 115^2) \times 15$	
	= 11280N	
	— 11200IV	
(d)(i)	Bernoulli's principle.	01
	It states that for a non-viscous incompressible fluid flowing steadily, the sum of the pressure plus the potential energy per unit volume plus kinetic energy per unit volume is constant at all points on a stream line.	
(ii)	Application	03
	Bunsen burner: the gas passes through a narrow jet at high speed creating a low pressure region. Atmospheric pressure then pushes air in through the hole towards the region of low pressure and the mixture flows up the tube to burn at the top.	
(:::)	Candidate may also explain action of carburetor, spinning ball, Aero lift or suction effect	0.5
(iii)	Blowing air over it, makes the air on top to move at <u>high</u> speed than the little air that flows <u>beneath the paper</u> . By Bernoulli's principle the pressure below the paper <u>exceeds that on top</u> . This pressure difference produces	O 5
	the resultant force called lift upwards force which keeps it horizontal but above the ground.	
	SECTION B	
5(a)(i)	Black body radiation. This is the radiation emitted by black body radiator being a characteristic of its	01
	temperature and independent on the nature of its surface.	
(ii)	$\frac{d\theta}{dt} = -K(\theta - \theta_R)$ $\frac{d\theta}{dt} \Rightarrow Rate \ of \ cooling \ of \ a \ body$ $(\theta - \theta_R) \Rightarrow Excess temperature \ over \ sounding$	
	$\frac{a\theta}{b}$ \Rightarrow Rate of cooling of a body	
	$(\theta - \theta_p) \Rightarrow Excess temperature over sounding$	
	$\theta_R \Rightarrow Sorrounding \ temperature$	
	$K \Rightarrow constant$	
(b)(i)	$P = 80W$ $\frac{Q}{t} = KA\left(\frac{T_2 - T_1}{l}\right)$ $and \frac{Q}{t} = MC(\theta_1 - \theta_2), M = \frac{m}{t}$ $80 = \frac{K(10 \times 10^{-4})(48^{\circ} - 28^{\circ})}{10 \times 10^{-2}}, where l = (15 - 5)cm$	03
	and $\frac{Q}{t} = MC(\theta_1 - \theta_2), M = \frac{m}{t}$	
	$80 = \frac{K(10 \times 10^{-4})(48^{\circ} - 28^{\circ})}{10 \times 10^{-2}}, where \ l = (15 - 5)cm$	

	$K = \frac{80 \times 10^2}{20}$	
	$K = 400Wm^{-1}K^{-1}$	
(b)(ii)	$\frac{Q}{t} = MC(\Delta\theta)$ $80 = M(4200 \times 5)$	03
	$M = \frac{80}{4200 \times 5} kgs^{-1}$ $M = \frac{80 \times 1000 \times 60}{4200 \times 5}$	
	$M = \frac{80 \times 1000 \times 60}{1000 \times 60}$	
	$M = 4200 \times 5$ $M = 228.57 gmin^{-1}$	
b(iii)	$\frac{Q}{t} = KA\left(\frac{T_2 - T_0}{l}\right), l \text{ is entire length}$ $80 = \frac{400 \times (10 \times 10^{-4})(48 - T_0)}{20 \times 10^{-2}}$ $\frac{80 \times 20 \times 10^{-2}}{400 \times (10 \times 10^{-4})} = 48 - T_0$	03
	$80 = \frac{400 \times (10 \times 10^{-4})(48 - 7_0)}{100}$	
	20×10^{-2} 80 × 20 × 10 ⁻²	
	$\frac{1}{400 \times (10 \times 10^{-4})} = 48 - 7_0$	
	$40 = 48 - T_0 T_0 = 48 - 40$	
	$T_0 = 8$ °C	
(c)(i)	Specific heat capacity is the quantity of heat required to change the temperature of 1kg mass of a substance by	02
	1°C or 1 K . SI unit Joules per Kilogram per Kelvin ($Kg^{-1}K^{-1}$)	
(c)(ii)	Experiment S.H.C by electrical method	any four
		well labelled
		parts
		0.00
		4
		06

	• Should measure the value of the property at ice point, steam point X_0 and X_{100} respectively • Measure the value of the property at unknown temperature θ such as X_θ • The unknown temperature, $\theta = \left(\frac{X_\theta - X_0}{X_{100} - X_0}\right) \times 100^{\circ}\text{C}$	
6(c)(i)	$E = A\theta + B\theta^{2}$ $2 \begin{vmatrix} 4.28 = 100A + 10000B \\ 9.29 = 200A + 40000B \\ 0.73 = 20000B \\ A = 0.03915 \\ B = 0.0000365$	04
(ii)	$B\theta^2 + A\theta \le 0.01$ $0.0000365\theta^2 + 0.03915\theta - 0.01 \le 0$ $Range: -0.51 \le \theta \le 0.50$	
(d)	$R_{t} = (1 + 8000bt - bt^{2})$ $At t = 0, R_{t=0} = R_{0}$ $At t = 100^{\circ}\text{C}, R_{t=100} = (1 + 800000b - 10000b)R_{0}$ $At t = 400^{\circ}\text{C}, R_{t=400} = (1 + 3200000b - 160000b)R_{0}$ $\theta = \left(\frac{R_{t=\theta} - R_{t=0}}{R_{t=100} - R_{t=0}}\right) \times 100^{\circ}\text{C}$ $\theta = \left(\frac{[(1 + 3200000b - 160000b) - 1]}{[(1 + 800000b - 10000b) - 1]}\right) \times 100^{\circ}\text{C}$ $\theta = \frac{3040000b \times 100}{790000b}$ $\theta = 384.8^{\circ}\text{C}$	
7(a)(i)	Saturated vapour is the vapour which is dynamic equilibrium with its own liquid while unsaturated vapour is the vapour which is not in dynamic equilibrium with its own liquid.	01
(ii)	A $P_{sv} = 11.2mmHg at 15^{\circ}\text{C}, l = 10cm$	05
	<u> </u>	

	T	
	$At 15^{\circ}C, P_a + P_{sv} = P_{atm}$	
	$P_a = P_{atm} - P_{sv}$ $P_a = 760 - 11.2$	
	$P_a^a = 748.8mmHg$	
	$At \ 40^{\circ}\text{C}, P_a = 760 - 45.0$	
	P = 715mmHa	
	$P_1V_1 P_2V_2$	
	$\overline{T_1} = \overline{T_2}$	
	But V = Al X	
	$P_1l_1 P_2l_2$	
	$\frac{1}{T_1} = \frac{1}{T_2} \bigvee \bigvee \bigvee$	
	$\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}$ $But V = Al$ $\frac{P_{1}l_{1}}{T_{1}} = \frac{P_{2}l_{2}}{T_{2}}$ $\frac{748.8 \times 10}{288} = \frac{715l_{2}}{313}$	
	${288} = {313}$	
	$l_2 = 11.58cm$	
	$l_2 \approx 11.4cm$	
(c)(i)	Dalton's laws states that the total pressure of a mixture of gases that do not react chemically is the sum of	01
	partial pressure of the constituent gases.	
(ii)	Recall	
	$P = \frac{1}{3}\rho C^{-2}$	
	Since $\rho = \frac{Nm}{v}$ where m is mass of one molecule	
	$PV = \frac{1}{3}Nmc^{-2}$	
	3PV	
	$PV = \frac{1}{3}Nmc^{-2}$ $N = \frac{3PV}{mc^{-2}}$ If the gas has 2 someonets 100.2	
	If the gas has 2 components $\sqrt[4]{\&}$ 2 $\sqrt{\ }$	
	$N = \frac{3P_1V}{and N} = \frac{3P_2V}{and N}$	
	If the gas has 2 components $1 \& 2$ $N_1 = \frac{3P_1V}{m_1c_1^{-2}} \text{ and } N_2 = \frac{3P_2V}{m_2c_2^{-2}}$	
	$N = N_1 + N_2$	
	$\frac{3PV}{2} = \frac{3P_1V}{2} + \frac{3P_2V}{2}$	
	$\frac{3PV}{mc^{-2}} = \frac{3P_1V}{m_1c_1^{-2}} + \frac{3P_2V}{m_2c_2^{-2}}$	
	At constant temperature	
	$\frac{1}{2}mc^{-2} = \frac{1}{2}m_1c_1^{-2} = \frac{1}{2}m_2c_2^{-2}$	
	$\frac{2^{m_1} - 2^{m_1} - 2^{m_2}}{2}$	

	, , , , , , , , , , , , , , , , , , ,	
	Hence $P = P_1 + P_2$	
	V	
(d)	$P_1 = 760mmHg$	
	$P_2 = (2 \times 760) mmHg$	
	V = Constant	
	$T_1 = 273 K$	
	$T_2 = X$	
	$P_1 \stackrel{\checkmark}{-} P_2$	
	$T_{1} = 273K$ $T_{2} = 7$ $\frac{P_{1}}{T_{1}} = \frac{P_{2}}{T_{2}}$ $T_{2} = \frac{P_{2}T_{1}}{P_{1}}$	
	$P_2 \tilde{T}_1$	
	$T_2 = {P_1}$	
	$T_2 = \frac{2 \times 760 \times 273}{760}$ $T_2 = 546K$	
	$T_2 = \frac{1}{760}$	
	$T_2 = 546K$	
	$But \sqrt{\overline{c^2}} = \sqrt{\frac{3P}{\rho}} \dots \dots (i)$	
	$\int \rho \cdots \cdots \rho$	
	$\left \frac{c_1^2}{c_1} - \left \frac{T_1}{c_1}\right \right $	
	$\sqrt{\frac{\overline{c_1^2}}{\overline{c_2^2}}} = \sqrt{\frac{T_1}{T_2}} \dots \dots \dots (ii)$	
	$ \overline{c_1^2} - 273 $	
	$\sqrt{\overline{c_2^2}} = \sqrt{546}$	
	$\begin{vmatrix} c_1^2 & 1 \end{vmatrix}$	
	$\sqrt{\frac{\overline{c_2}}{c_2}} = \sqrt{2}$	
	$ c_1^2 $ 1	
	$\sqrt{\frac{\overline{c_1^2}}{\overline{c_2^2}}} = \sqrt{\frac{273}{546}}$ $\sqrt{\frac{\overline{c_1^2}}{\overline{c_2^2}}} = \frac{1}{\sqrt{2}}$ $\sqrt{\frac{\overline{c_1^2}}{\overline{c_2^2}}} = \frac{1}{\sqrt{2}}$	
	$\sqrt{c_2}$	
	$\overline{C^2} = \left \frac{3P}{2} \right But \rho = \frac{P \times R.M.M}{PT}$	
	$\overline{C^2} = \sqrt{\frac{3P}{\rho}} But \rho = \frac{P \times R.M.M}{RT}$	

(ii)	Fission • If a nucleus of high mass number and of low B.e per nucleon is split into two lighter nuclei, there is an	
	increase in B.e per nucleon. The total mass of lighter nuclei is less than the mass of the heavy nucleus.	
	The mass difference accounts for the energy released, this process is called fission	
	Fusion	
	• If two light nuclei of low binding energy per nucleon are joined to form a heavier nucleus is less than the total mass of the lighter nuclei. The difference in mass accounts for energy released. This process is	
() ()	called fusion.	0.1
(c)(i)	4 = x + 1 $x = 3$	01
(ii)	5 = y + 1	01
(iii)	y = 4 $235 + 1 = z + 92 + 3$	01
(111)	z = 236 - 95	01
	z = 141	
(d)(i)	Photo electric emission is the liberation of electrons from a clean metal surface when it's exposed by	01
	electromagnetic radiation of short wavelength of high enough frequency).	
(ii)	$hf - hf_0 = eV_s = \frac{1}{2}mu^2$, Where $W_0 = hf_0$ $hf = w_0 + K.e_{max}$ $K.e_{max} = maximum\ kinetic$ $f - frequency\ of\ incident\ radiation$	02
	$hf - W_0 = eV$ $K.e_{max} = maximum kinetic$	
	f - frequency of incident radiation Energy of electrons emitted	
	h = n lank' sconstant	
	$W_0 - work \ function$ $f = frequency \ of \ incident$	
	V_s – stopping potential	
(***)	e − electronic charge ✓	
(iii)	The anode A is made negative with respect to the cathode and cathode c made positive with respect to the anode.	
	• A beam of radiation of known frequency $f \ge f_0$ is directed on to a photocathode through a colour filter.	
	The ammeter connected in series with photo current due to emitted electrons	
	• The potential divider is varied (adjusted) until the ammeter registers zero reading, the voltmeter	
	connected across registers the stopping potential V_s .	
	• The procedure is repeated with other frequencies f of the radiation and values of V and F are tabulated	
	in a suitable table.	
	• A graph of V_s against f is plotted.	
	A straight line graph shows that Einstein's equation is verified	

	• The slope, S is found and plank's constant h is got from $h = es$ where e is the electronic charge. Filter Radiations Wolfmeter Rheostart Bettery	
9(a)(i)	Radio isotope refers to radioactive atoms of the same element having the same atomic number (number of protons) but different atomic mass (number of neutrons)	01
(ii)	Radioactive decay is described as spontaneous because ho particular pattern is followed and cannot be	01
(b)	$\frac{dm}{dt} = -\gamma M$ $\int \frac{dM}{M} = -\int \gamma dt$ $\ln M = -\gamma t + c$ $if \ t = 0, M = M_0$ $In \ M_0 = 0 + c$ $\therefore c = \ln M_0$ $\ln M = -\gamma t + \ln M_0$ $\ln M - \ln M_0 = -\gamma t$ $\ln \left(\frac{M}{M_0}\right) = -\gamma t$ $\frac{M}{M_0} = e^{\gamma t}$	

	$M = M_0 e^{-\gamma t}$	
(c)(i)	$t_{\frac{1}{2}} = 80 years$	01
	The statement means that the sample of the radioactive element takes 80 years to reduce (decay) to half of its	
	original value.	
(ii)	$At t_1, M = \frac{1}{2}M_0$	
	$At \ t_{\frac{1}{2}}, M = \frac{1}{2}M_0$ $ln\left(\frac{\frac{1}{2}M_0}{M_0}\right) = \gamma t_{\frac{1}{2}}$ $\frac{ln2}{\gamma} = t_{\frac{1}{2}}$	
	γ $\frac{1}{2}$ where γ is decay constant	
(iii)	$t_1 = 29200$	
	$t_{\frac{1}{2}} = 29200$ $A = \frac{20}{100} A_0, t = ?$ $A = A_0 e^{-\gamma t}$ $\frac{\ln 5}{\gamma} = t$ $But t_{\frac{1}{2}} = \frac{\ln 2}{\gamma}$ $\gamma = \frac{\ln 2}{29200}$ $T = \left(\frac{\ln 5}{\ln 2}\right) (29200)$ $T = 67800.3 days$ $T = \frac{1}{20A_0} = A_0 e^{-\lambda t}$ $\frac{1}{100} = A_0 e^$	
(d)(i)	• When ionizing radiation enters the G.M tube either through the window or cylindrical cathode walls, argon atoms are ionised	
	• The electrons move very fast to the anode ad the positive ions drift to the cathode.	
	When the electrons reach the anode, a discharge occurs and a current flows in the external circuit.	

	Between B and C the count rate is almost constant. A full avalanche is obtained along the entire length of the	
	anode and all particles whatever their genergy produce detectable pulses.	
	Beyond C, the count rate increase rapidly with voltage due to incomplete quenching. One incident ionizing	
	particle may start a whole train of pulses.	
10(a)	Bohr model is one with a small centrally positive nucleus with electrons revolving around it only in certain	03
	allowed circular orbits and while in these orbits they do not emit radiations.	
	Electromagnetic radiations are emitted when an electron makes a transition between two orbits	
(b)	n √ ∞	
	F	
	n = 5	
	n=4	
	n = 3	
	paschen series	
	${n} = 2$	
	Balmer series	
	- $+$ $+$ $+$ $+$ $+$ $ n=1$	
	Lyman series	
(c)	Show that	
	$_{m}$ $_{m}$ $^{2}h^{2}\varepsilon_{0}$	
	$r = \frac{n^2h^2\varepsilon_0}{\pi me^2}$ For circular motion, $\frac{mV^2}{r} = \frac{e^2}{4\pi\varepsilon_0 r^2}$	
	For circular motion $\frac{mV^2}{mV} = \frac{e^2}{mV}$	
	$r = \frac{1}{4\pi\varepsilon_0 r^2}$	
	e^2	
	$mv = \frac{1}{4\pi\varepsilon_0 r}$	
	$mV^{2} = \frac{e^{2}}{4\pi\varepsilon_{0}r}$ $\frac{1}{2}mV^{2} = \frac{e^{2}}{8\pi\varepsilon_{0}r}$	
	$\frac{1}{2}mv^2 = \frac{1}{8\pi\varepsilon_0 r}$	
	e^2	
	$KE = \frac{e^2}{8\pi\varepsilon_0 r} \dots \dots \dots \dots (i)$	

	From Bohrs assumptions	
	$mVr = \frac{nh}{r}$	
	$2\pi n^2h^2$	
	From Bohrs assumptions $mVr = \frac{nh}{2\pi}$ $m^2V^2r^2 = \frac{n^2h^2}{4\pi^2}$ $mV^2 = \frac{n^2h^2}{4\pi^2mr^2}$ $\frac{1}{2}mV^2 = \frac{n^2h^2}{8\pi^2mr^2} \dots \dots \dots \dots \dots \dots (ii)$ $K.E = \frac{n^2h^2}{8\pi^2mr^2}$ Comparing (i) and (ii) $\frac{e^2}{8\pi\varepsilon_0r} = \frac{n^2h^2}{8\pi^2mr^2}$	
	$mV^2 = \frac{n^2h^2}{\sqrt{1-2}}$	
	$1 \qquad n^2h^2 \qquad \qquad$	
	$\frac{1}{2}mV^2 = \frac{1}{8\pi^2 mr^2} \dots \dots$	
	$K.E = \frac{n^2h^2}{\Omega - 2mm^2}$	
	Comparing (i) and (ii)	
	$\frac{e^2}{8\pi\varepsilon_0 r} = \frac{n^2 h^2}{8\pi^2 m r^2}$ $r = \frac{n^2 h^2 \varepsilon_0}{\pi m e^2}$	
	$8\pi\varepsilon_0 r 8\pi^2 m r^2$	
	$r = \frac{n + \epsilon_0}{\pi m e^2}$	
	As required	
(d)(i)	Electron Volt. Is the kinetic energy gained by electron in being accelerated through a potential difference of one	
	Volt.	
	Or Minimum amount of energy required to accelerate an electron through a p.d of 1V	
(ii)	Energy of an electron at rest outside the atom is taken as zero (V) and work has to be done to remove the	
(:::)	electron to infinity since its bound to the nucleus.	
(iii)	Transition A not mentioned in question. $hC = hC$	
	$E_B - E_A = \frac{hC}{\lambda}$	
	$(-1.503.40) \times 1.6 \times 10^{-19} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{9}}{1}$	
	$(-1.503.40) \times 1.6 \times 10^{-19} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$ $\lambda = 6.51 \times 10^{-7} m$ Visible region	
	igvee Visible region $igvee$	
(iv)	For ionisation	

END