Exam 1

Fri., 26.11.2021, 14:00-15:30, Zoom

Example	Ex. 1	Ex. 2	Ex. 3	Ex. 4	Ex. 5
max. Points	6	5	6	9	4

Good luck!

1. a) Consider matrices $M \in \mathbb{R}^{2\times 2}$. Lower triangular matrices are characterized by the condition $M_{12} = 0$.

Show that the space of real lower triangular matrices $M \in \mathbb{R}^{2\times 2}$ is a vector space. Give a basis for this space.

b) Consider the space V of polynomials of degree 4 that have no real zeros, i.e.,

$$V := \{ p \in P_4 : p(x) \neq 0 \ \forall x \in \mathbb{R} \}.$$

Is this space a vector space? Explain your answer.

2. Consider the function

$$f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$

Argue that the function is differentiable for every $(x, y) \neq (0, 0)$ and compute the partial derivatives of f. Do the partial derivatives at (0, 0) exist?

Does every directional derivative of f exist?

3. a) Is the vector field

$$\psi = \begin{pmatrix} -y^2 \sin x + 3x^2 \\ 2y \cos x - \exp(y) \end{pmatrix}$$

a gradient field. If so, compute a scalar potential for this vector field.

b) With ψ from above, compute the value of the line integral

$$\int_C \psi \ ds,$$

where C is a curve starting at (0,0) going along the parabola $y=x^2$ to the point (1,1), then going to a straight line to (1,0) and finally going along a half circle in the lower half plane (i.e. y < 0) to the point (-1,0).

- 4. a) Formulate Gauss theorem.
 - b) Sketch the region V covered by the cone $x^2 + y^2 = z^2$, $z \in [0, 1]$. Compute the (outer) normal vector to both surfaces.
 - c) Verify the theorem for V by computing both the volume and surface and integrals for the vector field

$$\psi = \begin{pmatrix} x+y\\ -x\\ 2xz \end{pmatrix}.$$

hint: $\int_0^{2\pi} \sin t \cos t dt = 0.$

- 5. Answer the following questions (Simply write true/false on your sheet).
 - a) A function $f: \mathbb{R}^2 \to \mathbb{R}$
 - 1. is totally differentiable, if all partial derivatives exist.
 - 2. has all directional derivatives, if it is totally differentiable.
 - 3. is Riemann integrable, if it is continuous.
 - 4. has a finite integral, if it is bounded.
 - b) Which of the following vector identities hold? (ψ vector field, ϕ scalar function)
 - 1. $\operatorname{curl}(\nabla \phi) = 0$.
 - 2. $\nabla \operatorname{div} \psi = \Delta \psi$.
 - 3. $\operatorname{div}(\phi\psi) = \phi \operatorname{div}(\psi) + \nabla \phi \cdot \psi$.
 - c) A line integral $\oint_C \psi \cdot ds$ over a closed curve $C \subset \mathbb{R}^2$ for a continuously differentiable vector field ψ is zero,
 - 1. always.
 - 2. if, $\operatorname{curl} \psi = 0$.
 - 3. if, there exists a scalar potential for ψ .
 - 4. if, $\frac{\partial \psi_1}{\partial y} = \frac{\partial \psi_2}{\partial x}$ and the region bounded by C is simply connected.