

Aula - 05

- Heurísticas e problemas difíceis
- C++/Struct
- Início do projeto

Resolução de problemas

© 2000 Randy Glasbergen. www.glasbergen.com

"THE COMPUTER SAYS I NEED TO UPGRADE MY BRAIN TO BE COMPATIBLE WITH ITS NEW SOFTWARE."

- Problemas difíceis aparecem em muitas áreas
 - Pesquisa operacional (logística, produção, etc.)
 - Machine Learning
 - Marketing
 - Planejamento Urbano Mobilidade

Insper

Resolução de Problemas - Otimização

- Função objetivo
 - o Algo que queremos maximizar ou minimizar
- Restrições
 - Definem quais possíveis soluções são válidas
- Muitas classes de problemas:
 - Programação Linear / Inteira
 - Programação não-linear
 - Otimização combinatória

Otimização combinatória

- Tem por objetivo selecionar um objeto com melhor função objetivo dentre uma coleção finita
- Não tem derivada
- Não tem vizinhança
- Coleção não é densa
- Técnicas tradicionais de cálculo e otimização não funcionam, pois nosso problema é discreto

Nosso problema: A mochila binária

Insper

www.insper.edu.br

Quais escolhas podem ser feitas?

Qual é a função objetivo?

• Quais são as restrições?

- Quais escolhas podem ser feitas?
 - Quais produtos pegar?
- Qual é a função objetivo?
 - Maximizar valor os objetos capturados
- Quais são as restrições?
 - Peso dos objetos não pode exceder a capacidade da mochila

Na animação ao lado, 50 itens são colocados em uma mochila. Cada item tem um valor (o número no item) e um peso (aproximadamente proporcional à área do item). A mochila é tem capacidade de 850, e nosso objetivo é encontrar o conjunto de itens que irão maximizar o valor total sem exceder a capacidade.

Fonte: https://developers.google.com/optimization/bin/knapsack

Como resolver esse problema?

- Algumas opções:
 - Tentar tudo e ver qual é melhor
 - Pegar o mais caro primeiro
 - o Pegar o mais leve primeiro
- É possível resolver de maneira eficiente?

Como resolver esse problema?

- Algumas opções:
 - Tentar tudo e ver qual é melhor
 - Pegar o mais caro primeiro
 - o Pegar o mais leve primeiro
- É possível resolver de maneira eficiente?
 NÃO

Heurística

- "truque" usado para resolver um problema rapidamente
- Por velocidade, sacrificamos ao menos um entre:
 - Otimalidade
 - Corretude
 - Precisão
 - Exatidão

Heurística

 Uma boa heurística é suficiente para obter resultados aproximados ou ganhos de curto prazo

Processo:

- Explorar alguma propriedade do problema
- Dividir em partes menores, que podem ser resolvidas rapidamente e combinar os resultados

Heurística para a mochila

- Algumas opções:
- Pegar o mais caro primeiro
- Pegar o mais leve primeiro

Atividade prática

Resolvendo a mochila binária

Sua missão: implementar as duas heurísticas e comparar seus resultados

Dica: C++ Struct

Uma boa abordagem para modelar uma mochila que é fazer uso de vector. Além disso, os itens (que possuem peso e valor) podem ser criados como structs em c++

```
ConsoleApplication2
                                           (Global Scope)
         #include <iostream>
        using namespace std; 2
       ⊟struct Person 3
            int citizenship; 5
            int age; 6
 11
 12
 13
 14
       □int main(void) { 8
 15
 16
 17
            struct Person p; 9
 19
            p.citizenship = 1; 10
 20
            p.age = 27; 111
 21
 22
            cout << "Person citizenship: " << p.citizenship << endl; 12</pre>
 23
 24
            cout << "Person age: " << p.age << endl; 13
 25
            return 0; 14
 27
```


Dica: C++ Struct

Uma boa abordagem para modelar uma mochila que é fazer uso de vector. Além disso, os itens (que possuem peso e valor) podem ser criados como structs em c++

Discussão

- Qual a complexidade computacional das abordagens?
- Quando uma é melhor que a outra?
- Alguma consegue obter o melhor valor possível?

Obrigado