Literature Review: Physics-based Al How have PINNs impacted the physics-based AI field?

Resource: Physics-Based Deep Learning Book

- Maintained by Thuerey Group (Physics-based Simulation Group) at the Technical University of Munich
- 200-pg document summarizing several techniques for deep learning for physics
- Extensive coverage of using equation residuals for training NNs (PINN approach)
- https://arxiv.org/pdf/2109.05237.pdf
- https://physicsbaseddeeplearning.org/intro.html

Review: "Learning **Motion Primitives Automata for Autonomous Driving** Applications"

Review: "Learning Motion Primitives Automata for Autonomous Driving Applications"

- Motion planning for autonomous machines
 - o selecting "primitives" to inform future actions taken by machine
- Traditional approaches for selecting primitives
 - o learning from only data, learning via demonstration, numerical approximation etc.
 - Authors use PINNs to propose greater efficiency

PINN Approach

- Learning primitives from dataset and dynamical models for maneuver automation (MA)
 - Develop a PINN model
- This has applications in autonomous robot systems and self-driving cars
- Learning 2 types of primitives
 - Trim primitives controlled relative equilibria
 - Maneuver primitives controlled trajectories starting and ending on trims (connects two trim prims)

Simulation

- CommonRoad Benchmark
- Generate a MA as a directed graph
- Experiment with several "robots" (models) with varying properties
 - o PINN architecture combines training data and dynamical laws for learning primitives
- This approach outperforms comparable "handcrafted" agents, demonstrating plausibility for improved autonomous driving performance

Review: "Efficient
Modeling of Morphing
Wing Flight Using Neural
Networks and Cubature
Rules"

Review: "Efficient Modeling of Morphing Wing Flight Using Neural Networks and Cubature Rules"

- Micro aerial vehicles (MAVs) small unmanned aerial vehicles
 - May be inspired by insects

Motion of MAVs

- Case: "Morphing" MAVs complex dynamics, wings constituting large part of mass
 - o Dependence on Coriolis force, gravity, inertia, etc.
- Goal estimate complex robotic models through machine learning techniques

Aerobat

- A morphing MAV inspired by bats
- Developed in a Northeastern project
- Some components are difficult to model
 - We can't fit traditional dynamics

PINNs

- Use PINNs to capture dynamics of MAVs
 - o Increased accuracy and efficiency in modeling of robot-environment interactions

Simulation Results

Review: "On Learning the Dynamical Response of Nonlinear Control Systems with Deep **Operator Networks**"

Review: "On Learning the Dynamical Response of Nonlinear Control Systems with Deep Operator Networks"

- DeepONet Usage
- Tasks such as control, optimization, etc. are expensive for complex nonlinear systems
- Use DeepONet to learn operator mappings
 - o Favorable given DeepONet's promising performance on such complex equations
- Paper Objectives
 - A deep learning framework for mapping current state of control system and control input to the next state
 - Simulate a system's response to control input

Method

- Use DeepONet to learn operators from data, then make predictions for future states of control systems
- Benchmark explicit RK scheme

Experiments

- Common control tasks, frequently used in RL control
- Predator-prey with control
- Pendulum swing-up
- Cart-pole

$$\dot{x}_1 = x_1 - x_1 x_2 + u(t)$$

$$\dot{x}_2 = -x_2 + x_1 x_2.$$

$$\ddot{\theta}\left(\frac{1}{4}ml^2 + I\right) + \frac{1}{2}mlg\sin\theta = u(t) - b\dot{\theta},$$

$$\ddot{\theta} = \frac{g\sin\theta + \cos\theta \left(\frac{-u(t) - m_p l\dot{\theta}^2 \sin\theta}{m_c + m_p}\right)}{l\left(\frac{4}{3} - \frac{m_p \cos^2\theta}{m_c + m_p}\right)}$$
$$\ddot{p} = \frac{u(t) - b\dot{p} + m_p l(\dot{\theta}^2 \sin\theta - \ddot{\theta}\cos\theta)}{m_c + m_p}.$$

$$m_c + m_p$$

Lotka-Volterra

Pendulum Swing-Up

Cart-Pole

Areas to look

- DeepONets/PINNs for particular problems in mathematics/physics
 - Fluid dynamics, chaotic differential equations
- DeepONets/PINNs for robotics and control theory
 - PINNs have allowed for better performance in physics-informed learning tasks since their release