Oficina: Mapeamento de áreas resilientes a mudanças climáticas nos biomas brasileiros

2023-06-12

Índice

Sí	tese do projeto	4				
	Palavras chave:					
1	Introdução 1.1 Membros da equipe	(
	1.1.1 Equipe TNC Brasil					
	1.1.2 Equipe central por bioma					
	1.1.3 Especialistas convidados					
2	Objetivo	1				
	2.1 Objetivos específicos	1				
	2.2 Produtos previstos	10				
3	Atividades e oficinas previstas	1				
	3.1 Atividades previstas	1				
	3.2 Planejamento das oficinas	1				
4	Introdução 1					
5	Glossário 1					
6	Modelo conceitual e premissas					
7	Metodologia resumida	1!				
	7.1 Regiões eco-geológicas	1				
	7.2 Resiliência	1				
	7.2.1 Diversidade da paisagem	1				
	7.2.2 Conectividade local	18				
	7.2.3 Dados padronizados (Z -scores)	18				
	7.2.4 Resiliência: combinando diversidade da paisagem e conectividade local .	19				
8	Códigos e bases de dados	20				
	8.1 Códigos	20				
	8.1.1 Diversidade da paisagem	2				
	8.1.2 Conectividade local	20				
	8.1.3 Resiliência da paisagem	20				

	8.2	Bases de dados	20	
9	Dive	rsidade da paisagem	21	
10	Cone	ectividade local	22	
11	Resil	iência da paisagem	23	
12	2 Resultados preliminares			
Re	feren	ces	25	

Síntese do projeto

As mudanças climáticas modificam os ambientes naturais e pressionam as espécies a se adaptarem às novas condições ambientais ou alterarem sua distribuição espacial para locais mais adequados climaticamente. A identificação de locais com adequabilidade climática para sustentar a biodiversidade no futuro de mudanças climáticas é imprescindível para o planejamento sistemático de ações de conservação e restauração.

O **objetivo** principal do projeto *Mapeamento de áreas resilientes a mudanças climáticas nos biomas brasileiros* é **mapear sítios resilientes às mudanças climáticas**. O termo *áreas resilientes* indica locais que apresentam condições necessárias para que espécies e processos ecológicos persistam às mudanças climáticas regionais, definidos por sua alta diversidade microclimática, grau de conservação e conectividade.

A **metodologia** proposta para isso combina a diversidade da paisagem, um *proxy* da variabilidade microclimática, com a conectividade local, identificando locais que fornecem condições microclimáticas para o enfrentamento às mudanças climáticas e cujas matrizes da paisagem sejam permeáveis à movimentação das espécies.

- A diversidade da paisagem é baseada na geodiversidade (geomorfologia, geologia, pedologia e hidrologia) do terreno, composta pela variedade de *landforms*, amplitude altitudinal, densidade e quantidade de áreas úmidas e diversidade de solos.
- A conectividade local é baseada na resistência das matrizes da paisagem ao movimento da biodiversidade, combinando o uso do solo e as infraestruturas de energia e transporte existentes (com maior ou menor grau de antropização).

A metodologia desenvolvida segue três premissas básicas:

- 1) a diversidade de espécies é correlacionada com a diversidade da paisagem (geodiversidade);
- 2) em um cenário de mudança climática, espécies se beneficiam de microclimas locais para se manterem na paisagem;
- 3) populações de espécies podem usar microclimas e acompanhar mudanças microclimáticas se as áreas adequadas forem permeáveis e bem conectadas.

Essa análise foi proposta e validada para a América do Norte pela *The Nature Conservancy* (TNC), complementando outras metodologias disponíveis na literatura, uma vez que ela foca nas propriedades do terreno para identificar áreas resilientes. A aplicação da metodologia da

TNC para os biomas brasileiros é um passo importante na identificação de sítios resilientes em ambientes tropicais megadiversos.

Atuando em conjunto com especialistas dos diferentes biomas, em diferentes temáticas de pesquisa, e baseado na literatura disponível, o projeto busca adequar a metodologia original ao contexto dos biomas brasileiros, refinando e adaptando quando necessário.

O **produto** principal resultante desse projeto é um mapa de áreas resilientes e conectadas para o Brasil, que permite identificar áreas com potencial de sustentar animais e plantas em um clima sob mudanças. Além disso, estão previstos ainda a prepararação de um relatório técnico sobre o projeto, uma documentação reproduzível das análises e ao menos um artigo científico.

Palayras chave:

Resiliência climática, mudanças climáticas, conectividade, paisagem, geodiversidade, conservação, biodiversidade.

1 Introdução

O projeto Mapeamento de áreas resilientes a mudanças climáticas nos biomas brasileiros é coordenado por The Nature Conservancy Brasil e a primeira oficina com especialistas de cada bioma será realizada virtualmente nos dias **13 e 15 de junho de 2023**.

O projeto procura mapear sítios resilientes a mudanças climáticas e áreas importantes para manutenção ou restabelecimento da conectividade entre eles, identificando locais que seriam mais adequados a persistir e se adaptar às futuras mudanças no clima. O produto principal do projeto é um mapa de áreas resilientes a mudanças climáticas para o Brasil.

1.1 Membros da equipe

1.1.1 Equipe TNC Brasil

- Edenise Garcia (diretora de ciências)
- Milena Rosenfield (coordenadora técnica)
- Mário Barroso (especialista SIG)
- José Fronza (especialista SIG/dados)
- Clícia Barata (especialista SIG)

1.1.2 Equipe central por bioma

- Amazônia: Ana Albernaz, Luciano Querido (Museu Paraense Emílio Goeldi)
- Caatinga: Eduardo Venticinque, Marina Antongiovanni (Universidade Federal do Rio Grande do Norte)
- Cerrado: Levi Carina Terribile, Lucas Jardim (Universidade Federal do Jataí)
- Mata Atlântica: Leandro Tambosi, Andrea Sánchez-Tapia (Universidade Federal do ABC)
- Pampa: Milena Rosenfield, Mário Barroso, José Fronza (The Nature Conservancy Brasil)
- Pantanal: Letícia Couto Garcia, Alisson Ribeiro (Universidade Federal do Mato Grosso do Sul)

1.1.3 Especialistas convidados

Bioma	Pesquisador(a)	Instituição	Cidade
Amazônia	Ane A. C. Alencar	IPAM	Brasília
Amazônia	Cintia Cornelius Frische	UFAM	Manaus
Amazônia	Fernanda Werneck	INPA	Manaus
Amazônia	Flávia Costa	INPA	Manaus
Amazônia	Ima Vieira	Museu Goeldi	Belém
Amazônia	Liana O. Anderson	CEMADEN	São José dos Campos
Amazônia	Marcos Adami	INPE	São José dos Campos
Caatinga	Adrian Garda	UFRN	Natal
Caatinga	Camile Lugarini	ICMBio	Juazeiro
Caatinga	Carlos R. S. D. da Fonseca	UFRN	Natal
Caatinga	Cláudia B. Campos	ICMBio	Juazeiro
Caatinga	Eugenia Cordero Schmidt	IUCN	João Pessoa
Caatinga	Felipe P. L. de Melo	UFPE	Recife
Caatinga	Marcelo F. Moro	UFC	Fortaleza
Cerrado	Alessandro R. de Morais	IF Rio Verde	Rio Verde
Cerrado	Beatriz S. Marimon	UNEMAT	Nova Xavantina
Cerrado	Gustavo Vasquez	Embrapa Solos	Rio de Janeiro
Cerrado	Karla Maria Silva de Faria	UFG	Goiânia
Cerrado	Luisa Carvalheiro	UFG	Goiânia
Cerrado	Manuel E. Ferreira	UFG	Goiânia
Cerrado	Paulo de Marco	UFG	Goiânia
Cerrado	Priscila L. de A. Silva	\mathbf{UFMT}	Cuiabá
Cerrado	Rafael Loyola	IIS	Rio de Janeiro
Cerrado	Vania R. Pivello	USP	São Paulo
Mata Atlântica	Andreza Neri	UFV	Viçosa
Mata Atlântica	Camila Rezende	FBDS	Rio de Janeiro

Bioma	Pesquisador(a)	Instituição	Cidade
Mata Atlântica	Danilo Neves	UFMG	Belo Horizonte
Mata Atlântica	Gerd Sparovek	ESALQ	Piracicaba
Mata Atlântica	Kátia M. de B. Ferraz	USP	São Paulo
Mata Atlântica	Maíra Benchimol	UESC	Ilhéus
Mata Atlântica	Márcia Marques	UFPR	Curitiba
Mata Atlântica	Mariana M. Vale	UFRJ	Rio de Janeiro
Mata Atlântica	Ricardo Dobrovolski	UFBA	Salvador
Mata Atlântica	Rita Portela	UFRJ	Rio de Janeiro
Pampa	Alexandre J. D. Krob	Inst. Curicaca	Porto Alegre
Pampa	Eduardo Vélez Martin	UFRGS	Porto Alegre
Pampa	Fernando Becker	UFRGS	Porto Alegre
Pampa	Gerhard E. Overbeck	UFRGS	Porto Alegre
Pampa	Heinrich Hasenack	UFRGS	Porto Alegre
Pampa	Márcio Borges Martins	UFRGS	Porto Alegre
Pampa	Sandra C. Müller	UFRGS	Porto Alegre
Pantanal	Angélica Guerra	IHP	Corumbá
Pantanal	Antônio C. Paranhos Filho	UFMS	Campo Grande
Pantanal	Camila Leonardo Mioto	UFR	Rondonópolis
Pantanal	Cátia N. da Cunha	UFMT	Cuiabá
Pantanal	Fabio de O. Roque	UFMS	Campo Grande
Pantanal	Geraldo A. Damasceno Júnior	UFMS	Campo Grande
Pantanal	Mario Luis Assine	Unesp	Rio Claro
Pantanal	Renata Libonati	UFRJ	Rio de Janeiro
Pantanal	Thadeu Sobral de Souza	UFMT	Cuiabá

2 Objetivo

O objetivo principal do projeto é mapear sítios resilientes a mudanças climáticas e conectados entre si, identificando locais que seriam mais adequados a sustentar a biodiversidade em um futuro de mudanças no clima.

2.1 Objetivos específicos

O objetivo geral do estudo pode ser detalhado em dois objetivos específicos:

- Aplicar a metodologia de mapeamento de sítios resilientes, proposta e validada para a região da América do Norte, para o Brasil, conduzindo as análises de diversidade da paisagem e de conectividade local;
- Refinar e adaptar a metodologia proposta, com base em discussões com especialistas no tema que atuam na região de estudo, produzindo um mapa de áreas resilientes para o Brasil.

2.2 Produtos previstos

3 Atividades e oficinas previstas

- 3.1 Atividades previstas
- 3.2 Planejamento das oficinas

4 Introdução

5 Glossário

6 Modelo conceitual e premissas

7 Metodologia resumida

A metodologia proposta para identificar os sítios resilientes às mudanças climáticas (Anderson et al. 2014, 2016a, Anderson et al. 2016b, e Anderson et al. 2023) envolve a divisão do espaço geográfico em regiões eco-geológicas, que são similares na sua geologia, geomorfologia, vulnerabilidade ao intemperismo, formação de solos e biodiversidade. Dentro de cada região são mapeadas a diversidade da paisagem e a conectividade local, que posteriomente, compõem a resiliência da paisagem. Os sítios com maior resiliência, possuem alto potencial de abrigar a biodiversidade num cenário de mudanças climáticas e estão conectados entre si (Anderson et al. 2014), permitindo a migração da biodiversidade para essas localidades.

Figura 1. Fluxograma da análise de resiliência da paisagem.

7.1 Regiões eco-geológicas

As regiões eco-geológicas são agrupamentos dos domínios geológicos e ecoregiões, que descrevem as variações geológicas e geomorfológicas promotoras da formação das paisagens, das redes de drenagem, da pedologia e que atuam como base de sustentação da biodiversidade que evoluiu nessas regiões, representadas pelas ecoregiões. O mapeamento das áreas resilientes às mudanças climáticas dentro das regiões eco-geológicas permite a identificação de locais que suportarão a biodiversidade pelos parâmetros locais, sem o enviesamento para regiões com mais variação de elevação e formas de relevo.

Os domínios geológicos são grupos de litoestratigrafia semelhantes em relação ao posicionamento tectônico, nível crustal, classe de rocha, expressão geomorfológica, entre outros [...]. Os domínios geológicos agrupam unidades geológicas, que são agrupamentos de rochas. Portanto, os diferentes domínios geológicos descrevem variações no tipo de rocha, potencial de sofrer intemperismo e idade geológica. As ecoregiões são regionalizações biogeográficas abaixo hierarquicamente dos domínios biogeográficos e biomas, representando agrupamentos espaciais da biodiversidade, numa escala regional, sustentando seus processos ecológicos principais [Olson et al . 2001; Dinerstein et al 2017 (veja material suplementar)]. A integração dos domínios geológicos e ecoregiões foram realizadas pela transformação dos polígonos dos domínios geológicos e ecoregiões em rasters, que são posteriormente combinados como a seguinte equação:

$$Regies\ eco-geolgicas = (Ecoregies) + (100 \times Domnio\ Geolgico)$$

Desta forma, os valores do raster final estão no formato \mathbf{GGEE} , onde as duas primeiras unidades (\mathbf{GG}) representam os domínios geológicos e as duas últimas unidades (\mathbf{EE}) as ecoregiões.

7.2 Resiliência

A segunda etapa consiste nas estimativas de resiliência dos sítios. Para estimar a resiliência de um sítio, é necessário estimar a **diversidade da paisagem** e a **conectividade local** para cada célula de 90 m. O resultado dessas análises é combinado para então estimar o valor de resiliência para cada local.

7.2.1 Diversidade da paisagem

A diversidade da paisagem está relacionada à variedade de microclimas em um determinado local. A análise de diversidade da paisagem resume informações relacionadas à (a) variedade de *landforms*, (b) amplitude altitudinal, (c) índice de áreas úmidas (*wetlands*) e (d) diversidade de solos.

7.2.1.1 Variedade de landforms

A variedade de *landforms* diz respeito à variedade das formas do relevo criados pela topografia. Sua avaliação é baseada em um modelo de *landforms*, derivado de um modelo digital de elevação (DEM) com resolução de 90 m, que classifica a superfície em diversas categorias, como por exemplo:

- precipícios e áreas íngremes (cliff e steep slope)
- topos de montanha e divisores de águas (summit/ridge-top)
- vertentes norte e sul, que determinam se uma vertente é quente ou fria, especialmente em latitudes maiores, (warm/cool side slope)
- colinas (flat hill top e gentle slope hilltop)
- áreas planas de terras baixas (dry flat), entre outros.

A classificação de landforms é baseada na em índices de inclinação do relevo, orientação da vertente, posição topográfica e acúmulo de umidade(slope, aspect, land position e moisture accumulation), que correspondem aos locais com diferenças em umidade, radiação e deposição. A variedade de landforms é calculada como a quantidade de landforms dentro de uma área circular, de 450 metros de raio, no entorno de cada célula de 90 m.

7.2.1.2 Amplitude altitudinal

A amplitude altitudinal é determinada a partir do DEM, calculando a amplitude em uma área circular, de 450 m de raio, no entorno de cada célula de 90 m. A amplitude altitudinal considerada no estudo corresponde ao componente não correlacionado com a diversidade de landforms (os resíduos de uma regressão linear simples (Ordinary Linear Squares)).

7.2.1.3 Índice de áreas úmidas

Para áreas planas, nas quais a variedade de landforms e a amplitude altitudinal não permitem discriminar a variação microclimática, a densidade e quantidade de áreas úmidas captura a variação microclimática. A densidade e quantidade de áreas úmidas é resumido no índice de áreas úmidas, que é obtido pela média das densidade de areas úmidas dentro de áreas circulares de 450 metros de raio (escala local) e 1170 metros de raio (escala regional), em cada célula de 90 m. Essa densidade é combinada com a quantidade de áreas úmidas (wetland patchiness) em áreas circular de 1170 metros de raio, formando o índice de áreas úmidas.

7.2.1.4 Diversidade de solo

Por fim, em locais com baixa variação de *landforms*, amplitude de elevação e presença de áreas úmidas, a diversidade de solo é usada para identificar variações na paisagem que possam sustentar a variação da biodiversidade.

A combinação dos índices de variedade de *landforms*, amplitude altitudinal, índice de áreas úmidas e diversidade de solos gera a **diversidade da paisagem**. Esse índice pondera a variedade de *landforms* com peso maior, sendo ela o dobro do peso das demais variáveis:

7.2.2 Conectividade local

A conectividade local representa o grau de permeabilidade das matrizes da paisagem (ou reciprocamente o grau de resistência) em torno de cada célula avaliada. A partir de um mapa de uso e cobertura do solo, incluindo a presença de infraestruturas energéticas e de transporte, foi atribuido pesos de resistência de movimento para cada categoria de uso do solo, nos quais áreas naturais apresentam o valor mínimo, e áreas com intervenção antrópica intensa (áreas urbanas), o valor máximo.

As categorias principais de componentes da paisagem foram definidas como:

- áreas naturais (florestas, banhados, campos, etc.),
- áreas agrícolas ou modificadas (incluindo áreas improdutivas não-naturais)
- áreas urbanizadas (de baixa ou alta intensidade).

A conectividade local é a média ponderada das resistências dentro uma vizinhança quadrada de ~2070 m, sendo os pesos um decaimento linear pela distância da célula focal.

7.2.3 Dados padronizados (*Z-scores*)

Antes de calcularmos a resiliência da paisagem, as variáveis (variedade de landforms, amplitude de elevação, índice de áreas úmidas, diversidade de solos e conectividade local) são convertidas para valores de Z (Z-scores), assumindo as médias e desvios padrões das Regiões ecogeológicas. Isso garante a inclusão de condições físicas e ambientais distintas e permite capturar variações na composição da biota associada. Posteriomente, os valores de Z são combinados em diversidade da paisagem, exceto conectividade local.

7.2.4 Resiliência: combinando diversidade da paisagem e conectividade local

Finalmente, a resiliência da paisagem é determinada pela média diversidade da paisagem e valor de Z da conectividade local:

$$Resilincia = \frac{(Diversidade\ da\ paisagem + Conectividade)}{2}$$

8 Códigos e bases de dados

- 8.1 Códigos
- 8.1.1 Diversidade da paisagem
- 8.1.2 Conectividade local
- 8.1.3 Resiliência da paisagem
- 8.2 Bases de dados

9 Diversidade da paisagem

10 Conectividade local

11 Resiliência da paisagem

12 Resultados preliminares

Os resultados preliminares das análises realizadas pela equipe se encontram no website da The $Nature\ Conservancy\ Brasil:\ Mapping\ climate\ resilient\ sites\ in\ Brazil$

References

- Anderson, M. G., M. Clark, A. P. Olivero, A. R. Barnett, K. R. Hall, M. W. Cornett, M. Ahlering, M. Schindel, B. Unnasch, C. Schloss, e D. R. Cameron. 2023. A Resilient and Connected Network of Sites to Sustain Biodiversity under a Changing Climate. Proceedings of the National Academy of Sciences 120:e2204434119.
- Anderson, M. G., M. Clark, e A. O. Sheldon. 2014. Estimating Climate Resilience for Conservation across Geophysical Settings. Conservation Biology 28:959–970.
- Anderson, M. G., M. Clark, e A. O. Sheldon. 2016a. Resilient Sites for Terrestrial Conservation in Eastern North America. Conservation Biology 28:959–970.
- Anderson, M., A. Barnett, M. Clark, J. Prince, S. A. Olivero, e B. Vickery. 2016b. Resilient and Connected Landscapes for Terrestrial Conservation.