Wrong Evaluation Metric

- 1. Emotional and Psychological Burden
- 2. Financial Burden
- 3. Possible Health Deterioration due to Unrequired Treatment

Potential Death

Classification

Regression

Emergency Vs Non-Emergency Classification

Non – Emergency(0) = 1361

Emergency (1) = 991

Emergency Vs Non-Emergency Classification

Non – Emergency(0) = 1361

Emergency (1) = 991

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Accuracy

Balanced Dataset, Equal Importance to Positive and Negative Errors

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Y N

Pedicted A N = 0 PP = 0

Accuracy = 99.5 %

Recall

Ability of a model to find all the data points of interest(Fraud in this case)

$$recall = \frac{TP}{TP + FN}$$

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Υ

Ν

Predicted

N

TP = 0

FP = 0

TN = 10000

Accuracy = 99.5 %

$$recall = \frac{TP}{TP + FN} = 0$$

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Υ

Ν

Accuracy = 0.5 %

$$recall = \frac{TP}{TP + FN} = 1$$

Precision

Proportion of Data points that the model says relevant are actually relevant.

$$precision = \frac{TP}{TP + FP}$$

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Υ

Ν

Accuracy = 0.5 %

$$precision = \frac{TP}{TP + FP} = 5/1005$$

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Υ

Ν

Accuracy = 99.5 %

$$precision = \frac{TP}{TP + FP}$$
 = 0

Fraud Detection

No Fraud(0) = 1000

Fraud(1) = 5

Actual

Υ

Ν

Predicted N TP = 1 FP = 0 TN = 10000

Accuracy = 99.6 %

$$precision = \frac{TP}{TP + FP}$$
 = 1

F1-Score

Equal Importance of False Positives and False Negatives.

$$F1 = 2.\frac{precision.recall}{precision + recall}$$

$$precision = \frac{TP}{TP + FP}$$
 $recall = \frac{TP}{TP + FN}$

$$recall = \frac{TP}{TP + FN}$$

AUC-ROC

When you want to increase your True Positive Rate as well as decrease your False positive Rate.

TPR (sensitivity) =
$$\frac{TP}{TP + FN}$$

FPR (1-specificity) =
$$\frac{FP}{TN + FP}$$

Black and White

G	ra	У
---	----	---

Actual	Predicted
0	1
0	0
1	0
1	1

Actual	Predicted
0	0.2
0	0.7
1	0.8
1	0.5

Log-Loss

Penalize model in exponential form on the basis of the confidence of the model.

log loss

LogLoss =
$$-\frac{1}{n} \sum_{i=1}^{n} [y_i \log(y_i^2) + (1 - y_i) \log(1 - y_i^2)]$$

Thank You

Actual	Predicted
50	49
40	42
20	22
40	43
42	38
36	33
23	26
233	231

Difference
1
-2
-2
-3
4
3
-3
2

Absolute Difference
1
2
2
3
4
3
3
2

MAE

- 1. Equal weight to Over Prediction and Under Prediction (Direction of Prediction)
- 2. Penalty in Proportion to Prediction Values.

Actual	Predicted
50	49
40	42
20	22
40	43
42	38
36	33
23	26
233	533

Error	
1	
-2	
-2	
-3	
4	
3	
-3	
-300	

Absolute Error
1
2
2
3
4
3
3
300

-302

318

Actual	Predicted
50	49
40	42
20	22
40	43
42	38
36	33
23	26
233	533

Difference
1
-2
-2
-3
4
3
-3
-300

Squared Error
1
4
4
9
16
9
9
90000

-302

90052

RMSE

- 1. Not affected by Over Prediction or Under Prediction (Direction of Prediction)
- 2. Larger Errors to be penalized much heavier than Smaller Errors

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$
 $-\frac{1}{4} + \frac{1}{-3} - \frac{1}{-3}$

Movie Genres	Person 1	Person 2	Person 3
Horror	7	4	5
Comedy	2	1	9
Sci-Fi	9	5	2
Adventure	8	4	6
Crime	6	2	3
Drama	3	1	8
War	7	2	4
Western	2	1	7

Cosine Similarity

Similarity between shape of Prediction and Actual is Important rather than the difference between them.

$$\frac{\sum_{j=1}^{n} y_{j} \widehat{y}_{j}}{\sqrt{\frac{1}{n} \sum_{j=1}^{n} y_{j}^{2}} \sqrt{\frac{1}{n} \sum_{j=1}^{n} \widehat{y}_{j}^{2}}}$$

Optimising Evaluation Metric – Loss Functions

Evaluation Metrics

Loss Functions

Accuracy

Precision

Recall

F1-score

Log Loss

Binary Cross - Entropy

Categorical Cross - Entropy

Optimising Evaluation Metric – Loss Functions

Evaluation Metrics

Loss Functions

MAE

mean_absolute_ error

RMSE

mean_squared_ error

Cosine Similarity

cosine_proximity

Thank You