Operating System Midterm (Spring, 2021.), Department of IoT, Soonchunhyang University.

모든 문제지에 학번과 이름을 기재하세요.

Please make sure to write down your student ID number and your name.

Questions (total 30 points)

- 1. 운영체제의 역할에 대해, 각 역할과 그에 알맞는 설명을 연결하세요.
 - 1. 제어 서비스 향상 (a)
 - 2. 편리성 (b)
 - 3. 효율성 (c)
 - (a) 메일 전송, 파일 시스템 검사, 서버 작업 등 높은 수준의 서비스를 처리하는 응용 프로그램을 제어하고 다양한 사용자에게서 컴퓨터 시스템을 보호하려고 입출력을 제어하며 데이터를 관리
 - (b) 하드웨어 및 사용자, 응용 프로그램, 시스템 프로그램 사이에서 인터페이스를 제공
 - (c) 프로세서, 메모리, 입출력장치, 통신장치 등 컴퓨터 자 원을 효과적으로 활용하려고 조정·관리
- 2. 경쟁 상태 (race condition)에 대한 다음 설명 중 틀린 것은?
 - (a) 여러 프로세스가 동시에 공유 데이터에 접근하게 되었을 때, 접근 순서에 따라 실행의 결과가 달라질 수있다.
 - (b) 공유 변수를 임계 영역으로 설정하여 상호배제하는 방법으로 해결할 수 있다.
 - (c) 시스템의 효율이 감소하는 경우 심각하게 고려하지 않 아도 무방하다.
 - (d) 프로그램의 코드가 기계어적인 측면에서 원자화 (atomic)되지 않아서 발생한다.
- 3. 다음 자원의 종류에 대해, 교착 상태를 유발할 수 있는 자원의 경우를 고르시오.
 - (a) 선점이 불가능한 자원
 - (b) 동시에 사용할 수 있는 자원
 - (c) 재사용이 불가능한 자원
 - (d) 블럭 단위로 할당할 수 있는 자원
- 4. 교착 상태는 하나 이상의 프로세스가 더 이상 계속할 수 없는 어떤 특정 사건을 기다리고 있는 상태를 말한다. 여기서 특정 사건의 의미로 가장 적당한 것은?
 - (a) 자원의 할당과 해제
 - (b) 자원의 요구
 - (c) 무한 연기
 - (d) 자원의 점유 및 대기(보류)
- 5. 데커 알고리즘에 대한 설명 중 옳지 않은 것은?

- (a) 교착 상태가 발생하지 않음을 보장한다.
- (b) 프로세스가 임계 영역에 들어가는 것이 무한정 지연될 수 있다.
- (c) 공유 데이터를 처리할 때 상호배제를 보장한다.
- (d) 별도의 특수 명령어 없이 순수하게 소프트웨어적으로 해결된다.
- 6. 모니터에 대한 설명으로 옳지 않은 것은?
 - (a) 한 순간에 프로세스 2개 이상이 모니터에 들어갈 수 있다.
 - (b) 모니터의 경계에서 상호배제를 시행한다.
 - (c) 모니터 외부의 프로세스는 모내티 내부 데이터에 접근 할 수 없다.
 - (d) 특정 공유 자원이나 한 그룹의 공유 자원을 할당하는 데 필요한 데이터와 프로시저를 포함하는 병행성 구조이다.
- 7. 컴퓨터 내부에서 하드웨어를 물리적으로 연결하여 프로세서 메모리 사이의 정보 전송에 사용하는 통로는 무엇인가요?
 - (a) 시스템 버스
 - (b) 레지스터
 - (c) 블록
 - (d) 보조기억장치
 - (e) 캐시메모리
- 8. 다음 중 병행 프로세스에 대한 설명으로 틀린 것은?
 - (a) 프로세서 하나가 여러 프로세스를 동시에 실행하여 시 스템 효율을 높일 수 있다.
 - (b) 메모리 자원을 공유하여 사용할 수 있다.
 - (c) 시스템의 신뢰도를 향상시킬 수 있다.
 - (d) 상호배제 문제를 고려할 필요가 있다.
- 9. 한 프로세스가 공유 메모리나 공유 파일을 사용할 때, 다른 프로세스들이 사용하지 못하도록 하는 제어 방법은 무엇인 가요?
 - (a) 데드락 (deadlock)
 - (b) 상호배제 (mutual exclusion)
 - (c) 인터럽트 (interrupt)

- (d) 임계영역 (critical section)
- 10. 상호배제에 대한 설명 중 틀린 것은?
 - (a) 병행 프로세스에 대해, 특정 프로세스가 공유 자원을 사용할 때 다른 프로세스들이 동일한 일을 수행할 수 없도록 하는 방법이다.
 - (b) 다수의 프로세스가 공유 데이터를 동시에 읽어도 문제 가 되지 않는다.
 - (c) 프로세스의 속도나 프로세서의 수에 영향을 받지 않는 다.
 - (d) 실행중인 모든 프로세스는 상호배제를 위해 다른 프로 세스의 접근을 차단할 수 있다.
- 11. 상호배제를 올바르게 구현하는 요구 조건에 대한 설명으로 틀린 것은?
 - (a) 2개 이상의 프로세스의 공유 데이터에 접근하여 동시 에 수행할 수 있어야 한다.
 - (b) 임계 영역 밖에 있는 프로세스가 다른 프로세스의 임계 영역 진입을 막아서는 안된다.
 - (c) 어떤 프로세스도 임계 영역으로 진입하는 것을 무한정 연기해서는 안된다.
 - (d) 임계 영역은 특정 프로세스가 독점할 수 없다.
- 12. 세마포 (semaphore) 에 대한 설명 중 틀린 것은?
 - (a) 상호배제 문제를 해결하는데 사용한다.
 - (b) 세마포 변수 S는 자연수의 값만 가질 수 있다.
 - (c) 여러 프로세스가 동시에 세마포 변수 S를 수정하지 못 한다.
 - (d) 세마포 변수를 연산하는 도중에 인터럽트해서는 안된 다.
- 13. 병행 프로세스의 상호배제 문제를 소프트웨어적으로 해결할 경우에 대한 설명으로 옳지 않은 것은?
 - (a) 두개의 프로세스가 존재하는 상황에서만 사용 가능
 - (b) 속도가 상대적으로 느림
 - (c) 구현이 복잡함
 - (d) 바쁜 대기 (busy waiting) 문제가 발생할 수 있음
- 14. 다음 프로세스와 자원의 상태에 대해, 안정 순서 (safe sequence)는 무엇인가요?

프로세스	현재 사용량(t ₀ 시간)	최대 사용량
P_0	2	7
P ₁	1	8
P ₂	2	4
P ₃	2	10
여분 자원 수		3

- (a) $P2 \rightarrow P0 \rightarrow P1 \rightarrow P3$
- (b) $P0 \rightarrow P1 \rightarrow P2 \rightarrow P3$
- (c) $P3 \rightarrow P1 \rightarrow P0 \rightarrow P2$
- (d) $P3 \rightarrow P2 \rightarrow P1 \rightarrow P0$

- (e) $P1 \rightarrow P2 \rightarrow P0 \rightarrow P3$
- 15. 단일 구조 운영체제의 특징을 모두 고르세요.
 - (a) 시스템 자원의 효율적 관리
 - (b) 수정, 유지보수 어려움
 - (c) 작은 문제로 시스템에 심각한 영향
 - (d) 성능 낮음
 - (e) 시스템 검증, 오류 수정 용이
- 16. 계층 구조 운영체제의 특징을 모두 고르세요.
 - (a) 시스템 자원의 효율적 관리
 - (b) 수정, 유지보수 어려움
 - (c) 작은 문제로 시스템에 심각한 영향
 - (d) 성능 낮음
 - (e) 시스템 검증, 오류 수정 용이
- 17. 임계 영역을 구현한 다음의 예시는 임계 영역의 조건 중 어떤 조건을 만족시키지 못하는지 고르세요.

- (a) 상호배제
- (b) 진행
- (c) 한정 대기
- 18. 프로세스가 자원을 사용하는 정상적인 작동 순서는?
 - (a) 요청 사용 해제
 - (b) 요청 해제 사용
 - (c) 사용 요청 해제
 - (d) 해제 요청 사용
- 19. 프로세스가 메모리 할당을 받고 프로세서를 점유하여 명령 어가 실행되던 중 입출력 신호가 발생하여 프로세서를 반납 했을 때 이루어지는 상태 변화는 무엇인가요?
 - (a) 준비 상태
 - (b) 중단된 준비 상태
 - (c) 실행 상태
 - (d) 대기 상태
 - (e) 중단된 대기 상태
- 20. 프로세스가 메모리를 할당받은 뒤, 프로세서를 할당받기 위해 기다리는 상태는 무엇인가요?
 - (a) 준비 상태
 - (b) 중단된 준비 상태
 - (c) 실행 상태
 - (d) 대기 상태
 - (e) 중단된 대기 상태
- 21. 현대 컴퓨팅 시스템에서, 메모리를 계층적으로 구성하는 이 유를 설명하세요. 효율성

- 22. 교착 상태를 해결할 수 있는 방법 중 하나인 교착 상태 예방 은, 교착 상태의 발생을 원천적으로 방지할 수 있다는 장점 이 있습니다. 교착 상태 예방의 단점은 어떤 것이 있나요? 현실적으로 어렵거나, 자원의 낭비가 심함
- 23. 교착 상태를 회피할 수 있는 알고리즘 중 하나인 "은행가 알고리즘"과, "교착 상태 탐지 알고리즘"의 가장 큰 차이점 은 무엇인지 설명하세요. 은행가: 최종 자원요구량, 탐지: 현시점의 자원요구량
- 24. 다익스트라 알고리즘이 데커, 피터슨의 알고리즘과 달리 다수의 프로세스 환경에서도 사용될 수 있는 이유는 무엇인가요? 턴을 확인하고, 적극적으로 빼앗아오는 시스템

- 25. 바쁜 대기 (busy waiting) 의 개념에 대해 설명하고, 이를 피할 수 있는 방법을 설명하세요. 부분)반복적으로 프로세서를 점유하게 됨. 부분)세마포어나 모니터 사용
- 26. 스레드를 사용할 때의 장점을 설명하세요. 맥락 교환으로 인한 오버헤드 감소, 자원효율성 증가
- 27. 시스템 호출 인터페이스 (system call interface)가 실제로 어떻게 사용될 수 있는지 예를 들어 설명하세요. 운영체제의 영역인 저장 등의 기능을 어플리케이션이 사용하고자 하는 경우 사용
- 28. 캐시 메모리의 캐시 히트 확률을 높이는 두 가지 방법을 쓰고 각각에 대해 설명하세요. 공간적 지역성: 인접 주소를 참조 할 확률이 큼, 시간적 지역성: 다음 액세스에 동일한 주소 참조할 가능성 높음
- 29. 프로세스와 프로그램의 차이에 대해 설명하세요. <mark>프로그램</mark> 이 메모리에 적재되면 프로세스
- 30. 다음 할당 그래프에서, 시스템이 교착상태인지 아닌지 설명 하세요. 교착상태라면 왜 교착상태인지, 그렇지 않다면 어떤 과정을 통해 교착상태가 아니게 되는지 설명하세요. 교착상 태 아님. P2 또는 P4가 자원을 해제하면 P1와 P3에게 자원 을 할당할 수 있다.

