Obliczenia

Pomiary

Najmniejsza działka skali linijki wykorzystanej do zmierzenia różnicy poziomów Δh wynosi 1 mm. Przeważnie przyjmuje się, że dokładność jest równa najmniejszej działce skali, jednak skorygowaliśmy tę ocenę w górę i subiektywnie oceniliśmy dokładność $\Delta \Delta h$ jako równą 1 cm. W naszej ocenie uwzględniliśmy sposób odczytu z podziałki. Dokładne zmierzenie różnicy poziomów było trudne, ponieważ odczyt w dużym stopniu zależał od tego pod jakim kątem spojrzało się na linijkę, co skutkowało dużą rozbieżnością pomiarów.

$$\Delta \Delta h = 1 \text{ cm}$$

$$u_b(\Delta h) = \frac{\Delta \Delta h}{\sqrt{3}}$$

$$u_b(\Delta h) \approx 0.58 \text{ cm}$$

Najmniejsza działka skali menzurki wykorzystanej do zmierzenia objętości V_i wynosi $50~\mathrm{ml}$. Przeważnie przyjmuje się, że dokładność jest równa najmniejszej działce skali, jednak skorygowaliśmy tę ocenę w dół i subiektywnie oceniliśmy dokładność ΔV jako równą $10~\mathrm{ml}$. W naszej ocenie uwzględniliśmy sposób odczytu z menzurki. Patrząc na menzurkę, można było dokładniej ocenić objętość wody niż najmniejsza działka skali.

$$\Delta V = 10 \text{ ml} = 10 \text{ cm}^3$$

$$u_b(V) = \frac{\Delta V}{\sqrt{3}}$$

$$u_h(V) \approx 5.8 \text{ cm}^3$$

Czas t_i mierzony był z użyciem stopera sterowanego przez jednego z nas. Błąd pomiaru samego stopera jest pomijalny, ale niepewność typu B pomiaru czasu ręcznie sterowanym stoperem musi uwzględniać refleks. Przyjęliśmy dokładność Δt jako równą 0.5 s.

$$\Delta t = 0.5 \text{ s}$$

$$u_b(t) = \frac{\Delta t}{\sqrt{3}}$$

$$u_b(t) \approx 0.29 \text{ s}$$

Dokładność pomiaru temperatury w laboratorium oceniamy jako 1 K. Jest to więcej niż najmniejsza działka skali użytego termometru. W naszej ocenie uwzględniliśmy, że temperatura mogła zmieniać się podczas eksperymentu.

$$\Delta T = 1 \text{ K}$$

$$u(T) = \frac{\Delta T}{\sqrt{3}}$$

$$u_b(T) \approx 0.58 \text{ K}$$

Dokładność pomiaru ciśnienia w laboratorium oceniamy jako 5 hPa. Jest to więcej niż najmniejsza soli allio I dani la i działka skali użytego barometru. W naszej ocenie uwzględniliśmy to, że ciśnienie mogło zmieniać się podczas eksperymentu.

$$\Delta p_0 = 5 \text{ hPa}$$

$$u(p_0) = \frac{\Delta p_0}{\sqrt{3}}$$

$$u(p_0) \approx 2.9 \text{ hPa}$$

	temperatura <i>T</i> , °C	22					
	ciśnienie p_0 , hPa	973					
i	V_i , cm ³	różnica poziomów Δh_i , cm	czas wypływu t_i , s				
1	150	5.0	51.31				
2	250	5.5	84.60				
3	350	5.5	117.50				
4	150	5.8	48.61				
5	250	5.5	80.11				
6	350	5.6	112.13				
7	150	6.5	46.21				
8	250	6.0	77.27				
9	350	6.0	107.73				
10	150	7.0	46.82				
11	250	7.0	77.47				
12	350	6.8	109.05				

Obliczenie współczynnika lepkości powietrza

$$\eta_i = \frac{\pi r^4 \rho_w g}{8lV_i} \Delta h_i t_i$$

$$r = 0.4 \text{ mm} = 0.0004 \text{ m}$$

$$\rho_w = 997 \; \frac{\text{kg}}{\text{m}^3}$$

$$g = 9.81 \, \frac{\mathrm{m}}{\mathrm{s}^2}$$

$$l = 10 \text{ cm} = 0.1 \text{ m}$$

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$g = 9.81 \frac{1}{s^2}$$

$$l = 10 \text{ cm} = 0.1 \text{ m}$$
Niepewność współczynnika lepkości powietrza z prawa propagacji niepewności
$$u(y) = \sqrt{\sum_{i=1}^k \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(\rho_w) = \sqrt{\left(\frac{\partial \rho_w}{\partial \Delta h_i} u(\Delta h_i)\right)^2 + \left(\frac{\partial \rho_w}{\partial t_i} u(t_i)\right)^2 + \left(\frac{\partial \rho_w}{\partial V_i} u(V_i)\right)^2}$$

$$=\sqrt{\left(\frac{\pi r^4 \rho_w g}{8lV_i}t_i \cdot u(\Delta h_i)\right)^2 + \left(\frac{\pi r^4 \rho_w g}{8lV_i}\Delta h_i \cdot u(t_i)\right)^2 + \left(-\frac{\pi r^4 \rho_w g}{8lV_i^2}\Delta h_i t_i \cdot u(V_i)\right)^2}$$

i	V_i , m ³	Δh_i , m	t_i , s	η_i , $\mu Pa \cdot s$	$u_b(V_i)$, m ³	$u_b(\Delta h_i)$, m	$u_b(t_i)$, s	$u(\eta_i)$, μ Pa · s
1	0.00015	0.050	51.31	16.82				2.05
2	0.00025	0.055	84.60	18.30				1.97
3	0.00035	0.055	117.5	18.16		0.0058	0.29	1.93
4	0.00015	0.058	48.61	18.48				1.98
5	0.00025	0.055	80.11	17.33				1.86
6	0.00035	0.056	112.1	17.64	$5.8 \cdot 10^{-6}$			1.84
7	0.00015	0.065	46.21	19.69	5.8 · 10			1.91
8	0.00025	0.060	77.27	18.23				1.81
9	0.00035	0.060	107.7	18.16				1.77
10	0.00015	0.070	46.82	21.48				1.96
11	0.00025	0.070	77.47	21.33				1.83
12	0.00035	0.068	109.1	20.83				1.80

Średnią ważoną współczynnika lepkości powietrza obliczyliśmy korzystając ze wzoru:

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i w_i}{\sum_{i=1}^{N} w_i}, \quad \text{gdzie} \quad w_i = \frac{1}{u^2(x_i)}, \quad u(\bar{x}) = \sqrt{\frac{1}{\sum_{i=1}^{N} w_i}}$$

dla naszych danych:

$$\bar{\eta} = \frac{\sum_{i=1}^{12} \eta_i w_i}{\sum_{i=1}^{12} w_i}, \quad \text{gdzie} \quad w_i = \frac{1}{u^2(\eta_i)}, \quad u(\bar{\eta}) = \sqrt{\frac{1}{\sum_{i=1}^{12} w_i}}$$

$$\bar{\eta} = 18.90 \; \mu \text{Pa} \cdot \text{s}$$

$$u(\bar{\eta}) = 0.54 \; \mu \text{Pa} \cdot \text{s}$$
 Zapis skrócony:
$$\bar{\eta} = 18.90(54) \; \mu \text{Pa} \cdot \text{s}$$
 Gęstość powietrza
$$\rho_p = \frac{M}{V} = \frac{p_0 \mu}{RT},$$
 gdzie
$$\mu = 28.87 \cdot 10^{-3} \; \frac{\text{kg}}{\text{mol}} \; \text{-masa molowa powietrza},$$

$$\bar{\eta} = 18.90 \, \mu \text{Pa} \cdot \text{s}$$

$$u(\bar{\eta}) = 0.54 \,\mu\text{Pa} \cdot \text{s}$$

Zapis skrócony:

$$\bar{\eta} = 18.90(54) \,\mu\text{Pa}\cdot\text{s}$$

Gęstość powietrza

$$\rho_p = \frac{M}{V} = \frac{p_0 \mu}{RT}$$

gdzie

$$\mu = 28.87 \cdot 10^{-3} \ \frac{\text{kg}}{\text{mol}}$$
 - masa molowa powietrza,

$$R = 8.31 \frac{J}{\text{mol} \cdot \text{K}}$$
 - uniwersalna stała gazowa

$$T = 22 \, ^{\circ}\text{C} = 295.15 \, \text{K}$$

$$p_0 = 973 \text{ hPa}$$

$$\rho_p = 1.1453 \; \frac{\text{kg}}{\text{m}^3}$$

Niepewność standardowa gęstości powietrza z prawa propagacji niepewności

$$u(\rho_p) = \sqrt{\left(\frac{\partial \rho_p}{\partial T}u(T)\right)^2 + \left(\frac{\partial \rho_p}{\partial p_0}u(p_0)\right)^2} = \sqrt{\left(-\frac{p_0\mu}{RT^2} \cdot u(T)\right)^2 + \left(\frac{\mu}{RT} \cdot u(p_0)\right)^2}$$

$$u_h(T) \approx 0.58 \text{ K}$$

$$u(p_0) \approx 2.9 \text{ hPa}$$

$$u(\rho_p) = 0.0041 \frac{\text{kg}}{\text{m}^3}$$

Zapis skrócony:

$$\rho_p = 1.1453(41) \frac{\text{kg}}{\text{m}^3}$$

Średnia arytmetyczna prędkości cząsteczek powietrza

$$v = \sqrt{\frac{8RT}{\pi\mu}}$$

$$v = 465.12 \frac{\text{m}}{\text{s}^2}$$

Niepewność standardowa średniej arytmetycznej prędkości cząsteczek powietrza z prawa propagacji niepewności

niepewności
$$u(v) = \sqrt{\left(\frac{\partial v}{\partial T}u(T)\right)^2} = \sqrt{\left(\frac{\frac{8R}{\pi\mu}}{2\sqrt{T}} \cdot u(T)\right)^2} = \sqrt{\left(\sqrt{\frac{2R}{\pi\mu}T} \cdot u(T)\right)^2}$$

$$u(v) = 0.46 \frac{m}{c^2}$$

$$u(v) = 0.46 \; \frac{\mathrm{m}}{\mathrm{s}^2}$$

Zapis skrócony

$$v = 465.12(46) \frac{\text{m}}{\text{s}^2}$$

Długość średniej drogi swobodnej cząsteczek powietrza

$$\lambda = \frac{3\eta}{\rho_n v}$$

$$\lambda = 0.00032622 \text{ m} = 0.32622 \text{ mm}$$

Niepewność standardowa długości średniej drogi swobodnej cząsteczek powietrza z prawa propagacji niepewności

$$u(\lambda) = \sqrt{\left(\frac{\partial \lambda}{\partial \eta} u(\eta)\right)^2 + \left(\frac{\partial \lambda}{\partial \rho_p} u(\rho_p)\right)^2 + \left(\frac{\partial \lambda}{\partial v} u(v)\right)^2}$$
$$= \sqrt{\left(\frac{3}{\rho_p v} \cdot u(\eta)\right)^2 + \left(-\frac{3\eta}{\rho_p^2 v} \cdot u(\rho_p)\right)^2 + \left(-\frac{3\eta}{\rho_p v^2} \cdot u(v)\right)^2}$$

$$u(\lambda) = 0.00000011 \,\mathrm{m} = 0.00011 \,\mathrm{mm}$$

Zapis skrócony:

$$\lambda = 0.32622(11) \text{ mm}$$

Średnica efektywna cząsteczek powietrza

$$d = \sqrt{\frac{kT}{\sqrt{2}\pi\lambda p_0}},$$

gdzie $k=1.38\cdot 10^{-23}\, \frac{\mathrm{J}}{\mathrm{K}}$ - stała Boltzmanna

$$d = 5.374 \cdot 10^{-12} \text{ m}$$

Niepewność standardowa średnicy efektywnej cząsteczek powietrza z prawa propagacji niepewności

$$u(d) = \sqrt{\left(\frac{\partial d}{\partial \lambda}u(\lambda)\right)^{2} + \left(\frac{\partial d}{\partial p_{0}}u(p_{0})\right)^{2} + \left(\frac{\partial d}{\partial T}u(T)\right)^{2}}$$

$$= \sqrt{\left(-\frac{2^{\frac{3}{4}}\sqrt{\frac{kT}{p_{0}\lambda}}}{4\sqrt{\pi}\lambda} \cdot u(\lambda)\right)^{2} + \left(-\frac{2^{\frac{3}{4}}\sqrt{\frac{kT}{p_{0}\lambda}}}{4\sqrt{\pi}p_{0}} \cdot u(p_{0})\right)^{2} + \left(\frac{2^{\frac{3}{4}}\sqrt{\frac{kT}{p_{0}\lambda}}}{4\sqrt{\pi}T} \cdot u(T)\right)^{2}}$$

$$u(d) = 9.63 \cdot 10^{-15} \,\mathrm{m}$$

Zapis skrócony:

$$d = 5.37(96) \cdot 10^{-12} \text{ m}$$

Obliczenie liczby Reynoldsa

Liczba Reynoldsa dla każdej trójki danych V_i , Δh_i i t_i :

$$Re_i = \frac{\rho_p v_p r}{\eta}, \quad v_p = \frac{V_i}{\pi r^2 t_i},$$

gdzie v_p - prędkość przepływu powietrza przez rurkę kapilarną

$$Re_{kr} = 1160$$

i	V_i , m ³	Δh_i , m	t_i , s	$η_i$, μPa · s	$v_p, \frac{m}{s}$	Re_i	$Re_i < Re_{kr}$	11/1/2
1	0.00015	0.050	51.31	16.82	5.816	158.4	Prawda	
2	0.00025	0.055	84.60	18.30	5.879	147.2	Prawda	',0\'
3	0.00035	0.055	117.5	18.16	5.926	149.5	Prawda	VIO.
4	0.00015	0.058	48.61	18.48	6.139	152.2	Prawda	
5	0.00025	0.055	80.11	17.33	6.208	164.1	Prawda	
6	0.00035	0.056	112.1	17.64	6.210	161.3	Prawda	
7	0.00015	0.065	46.21	19.69	6.458	150.3	Prawda	
8	0.00025	0.060	77.27	18.23	6.437	161.7	Prawda	
9	0.00035	0.060	107.7	18.16	6.463	163.1	Prawda	
10	0.00015	0.070	46.82	21.48	6.374	135.9	Prawda	
11	0.00025	0.070	77.47	21.33	6.420	137.9	Prawda	
12	0.00035	0.068	109.1	20.83	6.385	140.4	Prawda	

Jem'w Collins of the W każdym przepływie $Re_i < Re_{kr}$, zatem wszystkie przepływy były laminarne.

$$Re_{cm} = 151.8$$

Zestawienie wyników końcowych

średnia ważona współczynnika lepkości powietrza	$\bar{\eta}=18.90(54)~\mu ext{Pa}\cdot ext{s}$
gęstość powietrza	$\rho_p = 1.1453(41) \frac{\text{kg}}{\text{m}^3}$
średnia arytmetyczna prędkości cząsteczek powietrza	$v = 465.12(46) \frac{\text{m}}{\text{s}^2}$
długość średniej drogi swobodnej cząsteczek powietrza	$\lambda = 0.32622(11) \text{ mm}$
średnica efektywna cząsteczek powietrza	$d = 5.37(96) \cdot 10^{-12} \mathrm{m}$
liczba Reynoldsa	$Re_{sr} = 151.8$

Wnioski

Uzyskane przez nas wartości η , ρ_p , v i Re_{sr} są zbliżone do tych, które zazwyczaj są podawane, co wskazuje na to, że doświadczenie zostało przeprowadzone poprawnie. Otrzymane niepewności gęstości powietrza $u(\rho_p)$, średniej arytmetycznej prędkości cząsteczek powietrza u(v) i długości średniej drogi swobodnej cząsteczek powietrza $u(\lambda)$ wydają się zbyt małe, jednak nie udało się znaleźć błędu w obliczeniach. Dla każdego pomiaru przepływ był laminarny. Przeprowadzone doświadczenie pokazuje, że za pomocą stosunkowo prostego układu pomiarowego można wyznaczyć współczynnik lepkości powietrza dla temperatury i ciśnienia panujących w laboratorium. Lepkość jest ważna w projektowaniu systemów wentylacyjnych i klimatyzacyjnych, gdzie lepkość powietrza wpływa na efektywność przepływu gazu. Jest też ważna w aerodynamice, pomagając w analizie przepływu powietrza wokół obiektów. Doświadczenie podkreśla znaczenie dokładnych pomiarów i obliczeń w nauce i technice.