Project 1: Analytics and Data Science

DA 420

Marjorie Blanco

Anscombe Quartet

```
# Read Anscombe data
anscombe <- read.csv("data/Anscombe.csv")
kable(anscombe)</pre>
```

Observation	x1	v1	x2	y2	x3	y3	x4	y4
	21.1	J =	11.2	J =	210	,,,	11.1	
1	10	8.04	10	9.14	10	7.46	8	6.58
2	8	6.95	8	8.14	8	6.77	8	5.76
3	13	7.58	13	8.74	13	12.74	8	7.71
4	9	8.81	9	8.77	9	7.11	8	8.84
5	11	8.33	11	9.26	11	7.81	8	8.47
6	14	9.96	14	8.10	14	8.84	8	7.04
7	6	7.24	6	6.13	6	6.08	8	5.25
8	4	4.26	4	3.10	4	5.39	19	12.50
9	12	10.84	12	9.13	12	8.15	8	5.56
10	7	4.82	7	7.26	7	6.42	8	7.91
11	5	5.68	5	4.74	5	5.73	8	6.89

Descriptive statistics

```
# calculate the mean and standard deviation
kable(anscombe %>% select(-Observation) %>%
    summarise_all(funs( mean(.), sd(.))) %>%
gather())
```

key	value
x1_mean	9.000000
y1_mean	7.500909
$x2$ _mean	9.000000
y2_mean	7.500909
x3_mean	9.000000
y3_mean	7.500000
x4_mean	9.000000
y4_mean	7.500909
$x1_sd$	3.316625
$y1_sd$	2.031568
$x2_sd$	3.316625
$y2_sd$	2.031657

key	value
x3_sd	3.316625
$y3_sd$	2.030424
$x4_sd$	3.316625
$y4_sd$	2.030578

Linear Model

```
fit.model <- lm(y1~x1, anscombe)</pre>
summary(fit.model)
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
## Residuals:
##
       Min
                 1Q Median
                                   3Q
                                           Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.0001
                         1.1247 2.667 0.02573 *
                                   4.241 0.00217 **
                0.5001
                           0.1179
## x1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
anscombe$x1_1 <- anscombe$x1</pre>
anscombe$y1_1 <- fit.model$fitted.values - fit.model$residuals</pre>
fit.model <- lm(y2~x2, anscombe)
summary(fit.model)
##
## Call:
## lm(formula = y2 ~ x2, data = anscombe)
##
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 3.001
                        1.125 2.667 0.02576 *
                            0.118 4.239 0.00218 **
## x2
                 0.500
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
anscombe$x2_1 <- anscombe$x2</pre>
anscombe$y2_1 <- fit.model$fitted.values - fit.model$residuals</pre>
fit.model <- lm(y3~x3, anscombe)
summary(fit.model)
##
## Call:
## lm(formula = y3 ~ x3, data = anscombe)
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025
                        1.1245 2.670 0.02562 *
## x3
                0.4997
                           0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
anscombe$x3_1 <- anscombe$x3</pre>
anscombe$y3_1 <- fit.model$fitted.values - fit.model$residuals</pre>
fit.model <-lm(y4~x4, anscombe)
summary(fit.model)
##
## lm(formula = y4 ~ x4, data = anscombe)
##
## Residuals:
   Min
          1Q Median
                           3Q
                                 Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017
                        1.1239 2.671 0.02559 *
## x4
                           0.1178 4.243 0.00216 **
                0.4999
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
```

```
anscombe$x4_1 <- anscombe$x4
anscombe$y4_1 <- fit.model$fitted.values - fit.model$residuals</pre>
```

Original Plots

```
# 2x2 row with 2 margin
par(mfrow=c(2,2), mar=c(2, 2, 2, 2))
plot(anscombe$x1, anscombe$y1, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y1~anscombe$x1))
title("Set I")
plot(anscombe$x2, anscombe$y2, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y2~anscombe$x2))
title("Set II")
plot(anscombe$x3, anscombe$y3, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y3~anscombe$x3))
title("Set III")
plot(anscombe$x4, anscombe$y4, <math>xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y4~anscombe$x4))
title("Set IV")
```


Modified Anscombe Quartet

To modify the original data while keeping the mean and standard deviation unchaged I fliped the dependent variable on the linear regression line. The expected impact is that the $\beta 0$ (intercept) and $\beta 1$ will not change. The mean and standard deviation for the explantory variables will not change.

kable(anscombe %>% select(-(x1:y4)))

Observation	x1_1	y1_1	x2_1	y2_1	x3_1	y3_1	x4_1	y4_1
1	10	7.962000	10	6.861818	10	8.539454	8	7.422
2	8	7.051636	8	5.861818	8	7.230545	8	8.242
3	13	11.422546	13	10.261818	13	6.257818	8	6.292
4	9	6.191818	9	6.231818	9	7.890000	8	5.162
5	11	8.672182	11	7.741818	11	9.188909	8	5.532
6	14	10.042727	14	11.901818	14	11.157273	8	6.962
7	6	4.761273	6	5.871818	6	5.921636	8	8.752
8	4	5.740909	4	6.901818	4	4.612727	19	12.500
9	12	7.162364	12	8.871818	12	9.848364	8	8.442
10	7	8.181454	7	5.741818	7	6.581091	8	6.092
11	5	5.321091	5	6.261818	5	5.272182	8	7.112

Descriptive statistics

```
# calculate the mean and standard deviation
kable(anscombe %>% select(-(Observation:y4)) %>%
    summarise_all(funs( mean(.), sd(.))) %>%
    gather())
```

key	value
x1_1_mean	9.000000
$y1_1_mean$	7.500909
$x2_1_mean$	9.000000
$y2_1_mean$	7.500909
$x3_1_mean$	9.000000
$y3_1_mean$	7.500000
$x4_1_mean$	9.000000
$y4_1_mean$	7.500909
$x1_1_sd$	3.316625
y1_1_sd	2.031568
$x2_1_sd$	3.316625
$y2_1_sd$	2.031657
$x3_1_sd$	3.316625
y3_1_sd	2.030424
$x4_1_sd$	3.316625
y4_1_sd	2.030578

Modified Linear Model

```
fit.model <- lm(y1_1~x1_1, anscombe)
summary(fit.model)</pre>
```

```
##
## Call:
## lm(formula = y1_1 ~ x1_1, data = anscombe)
##
## Residuals:
##
                 1Q
                    Median
## -1.83882 -0.70941 0.04136 0.45577 1.92127
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                3.0001
                         1.1247 2.667 0.02573 *
                          0.1179 4.241 0.00217 **
## x1_1
                0.5001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

```
fit.model \leftarrow lm(y2_1-x2_1, anscombe)
summary(fit.model)
##
## Call:
## lm(formula = y2_1 \sim x2_1, data = anscombe)
## Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -1.2691 -0.9491 -0.1291 0.7609 1.9009
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 3.001
                           1.125 2.667 0.02576 *
                            0.118 4.239 0.00218 **
## x2_1
                 0.500
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
fit.model \leftarrow lm(y3_1~x3_1, anscombe)
summary(fit.model)
##
## Call:
## lm(formula = y3_1 \sim x3_1, data = anscombe)
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -3.2411 -0.1540 0.2303 0.6146 1.1586
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025
                          1.1245
                                   2.670 0.02562 *
                           0.1179 4.239 0.00218 **
## x3_1
                0.4997
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
fit.model <- lm(y4_1-x4_1, anscombe)
summary(fit.model)
##
## Call:
## lm(formula = y4_1 \sim x4_1, data = anscombe)
## Residuals:
```

```
10 Median
                          3Q
## -1.839 -0.809 0.000 0.831 1.751
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017
                       1.1239 2.671 0.02559 *
                0.4999
                          0.1178 4.243 0.00216 **
## x4 1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
                18 on 1 and 9 DF, p-value: 0.002165
## F-statistic:
```

Modified Plots

```
# 2x2 row with 2 margin
par(mfrow=c(2,2), mar=c(2, 2, 2, 2))
plot(anscombe\$x1_1, anscombe\$y1_1, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y1_1~anscombe$x1_1))
title("Set I")
plot(anscombe$x2_1, anscombe$y2_1, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y2_1~anscombe$x2_1))
title("Set II")
plot(anscombe$x3_1, anscombe$y3_1, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y3 1~anscombe$x3 1))
title("Set III")
plot(anscombe$x4_1, anscombe$y4_1, xlim=c(2, 20), ylim=c(2, 14), pch = 19,
    col = "darkblue", cex = 0.3, las = 1, xlab = "", ylab = "")
abline(lm(anscombe$y4_1~anscombe$x4_1))
title("Set IV")
```

