Lending Relationships and Optimal Monetary Policy

Zach BethuneUniversity of Virginia

Guillaume Rocheteau

UC-Irvine, Paris II

Tsz-Nga Wong FRB-Richmond

Cathy ZhangPurdue University

LAEF Credibility Conference November 2019

The views expressed here are the authors and not necessarily those of the Federal Reserve Bank of Richmond or the Federal Reserve System

Motivation and Evidence

Two major sources of finances for firms: cash and bank credit

Lending relationships: long-term matches between firms and banks

- benefits to firms: stable funding, insurance (Petersen & Rajan, 1994)
- during banking crises, lending relationships are severed with a slow recovery of lending (Chen, Hanson, Stein, 2017; McCord and Prescott, 2014)

Question: what is the optimal monetary policy response following a destruction of lending relationships?

What We Do

Develop a search model of **corporate finance** and **long-term lending relationships**

- Internal finance: retained earnings held in liquid wealth
- External finance: lines of credit through banking relationships
- Banked and unbanked firms, frictional creation of banking relations
- Monetary policy determines return to liquid wealth

Calibrate model using data on small business finances

- banked firms hold 20% less cash relative to unbanked firms
- banked firms less responsive to changes in user cost of cash
- user cost positively affects measure of bank's profit margin

Optimal Monetary Policy

Study optimal policy following a destruction of lending relationships:

Key policy tradeoff: decrease cost of liquidity

- Promotes self-insurance through internal finance
- Discourages bank entry and creation of lending relationships by reducing banks' profit margin

With commitment: optimal to lower interest rate initially (quantitative easing) with a promise of high future rates (forward guidance)

• optimal path of rates are hump-shaped, overshooting long-run value

Without commitment: optimal to raise rates initially to promote recovery in banking relationships, followed by a gradual reduction

- optimal path of rates lower than under commitment, except for the initial periods
- recovery slower than under commitment

<u>Literature</u>

Relationship Lending Sharpe (1990), Elyasiani and Goldberg (2004)

- Insurance role: Berger and Udell (1992), Corbae and Ritter (2004)
- Monitoring: Diamond (1984), Holmstrom and Tirole (1997)
- Screening with hidden types: Agarwal and Hauswald (2010)
- Dynamic learning: Rajan (1992), Hachem (2011), Bolton et al. (2016)

New Monetarist approach to money, credit, and banking

 Sanches and Williamson (2010), Gu et al. (2014), Rocheteau et al. (2018)

Optimal policy approaches

 Chang (1998), Aruoba and Chugh (2010), Klein, Krusell, and Rios-Rull (2008), Martin (2011, 2013)

Environment

- Discrete time, infinite horizon
- Production economy: productive capital, k, numeraire c, labor h
- Agents:
 - 1 Entrepreneurs (e) produce output using capital
 - Suppliers (s) produce capital using labor
 - 3 Banks (b) finance acquisition of capital
- Entrepreneurs and Banks form long-term bilateral relationships
- Each period has 3 stages:
 - Bank entry, competitive market for capital
 - Pormation of lending relationships, bilateral bank loans
 - **3** Production, competitive market for output, settlement, destruction of lending relationships

Preferences and Technologies

• All agents are risk-neutral with discount factor, $\beta = 1/(1+\rho)$

$$U(c,h)=c-h$$

• Supplier's technology (stage 1)

$$k = h$$

• Entrepreneur's technology (stage 2)

$$y = \epsilon f(k)$$

where $\epsilon = \{0, 1\}$ with probability (i.i.d.) λ

• Social efficiency: $y'(k^*) = 1$

Internal Finance

- Risk-free assets with real return r_{t+1} (policy)
 - Perfectly storable
 - Partial liquidity (→ imperfect self-insurance)
- Acceptability of liquid assets, $\nu \in [0, 1]$.
 - ullet u probability (i.i.d.) assets are accepted in a period
 - 1u probability assets are not accepted
- Partial liquidity captures limitations to internal finance:
 - assets are subject to theft or fraud
 e.g. Sanches and Williamson (2010) or Li, Rocheteau, and Weill (2012)
 - banks generate additional investment opportunities
 e.g. Hachem (2011) or Bolton et al. (2016)
 - takes time to accumulate internal funds
 e.g. Aiyagari (1994) or Rocheteau et al. (2018)

External Finance

- Rule out direct external finance (no trade credit):
 - Entrepreneurs lack commitment, private trading histories
 - Suppliers have no enforcement power

- Banks possess commitment power and can enforce debt repayment
 - 1 Supply loans (capital) L to entrepreneurs
 - 2 Issue short-term liabilities to suppliers to purchase capital
 - **3** Operating costs $\psi(L)$
 - $\psi'(L) > 0$, $\psi''(L) > 0$, $\psi(0) = \psi'(0) = 0$

Long-term Lending Relationships

Frictional formation of relationships

- Bank entry at cost $\zeta > 0$
- Random matching:
 - Ratio of (unmatched) banks to entrepreneurs θ_t
 - Entrepreneur's matching probability $\alpha(\theta_t)$
 - Bank matching probability $\alpha^b = \alpha(\theta_t)/\theta_t$
 - $\alpha(0) = 0, \alpha'(0) = 1, \alpha(\infty) = 1, \alpha'(\infty) = 0$
- Exogenous destruction rate $\delta > 0$

Measure of entrepreneurs in a banking relationships, ℓ_t

$$\ell_{t+1} = (1 - \delta)\ell_t + \alpha(\theta_t)(1 - \ell_t)$$

Suppliers

- Produce capital in stage 1, redeem IOUs and consume in stage 3
 - no incentive to accumulate assets

• Production decision, given price of capital q_t

$$\max_{k \ge 0} -k + q_t k$$

• Capital market is active iff $q_t = 1$.

Unbanked Entrepreneurs

Stage 1: current holdings of liquid assets m_t

$$\begin{aligned} U_t^e(m_t) = & \mathbb{E}[V_t^e(\omega_t)] \\ s.t. & \omega_t = m_t + \chi_t \max_{k_t < m_t} [y(k_t) - k_t] \end{aligned}$$

 $\chi_t = 1$ with probability $\lambda \nu$

Stage 2: current wealth ω

$$V_t^e(\omega) = (1 - \alpha)W_t^e(\omega) + \alpha_t X_t^e(\omega)$$

Stage 3: current wealth ω

$$W_t^e(\omega) = \max_{m_{t+1} \ge 0} \omega - \frac{m_{t+1}}{1 + r_{t+1}} + \beta U_{t+1}^e(m_{t+1})$$

Unbanked Entrepreneurs, cont.

Substitute: expected profits of unbanked entrepreneur π^u_t

$$\pi_t^u(s_t) \equiv \max_{m_t \geq 0} \left\{ -s_t m_t + \lambda \nu \max_{k_t \leq m_t} [y(k_t) - k_t] \right\}$$

where $s_t = rac{
ho - r_t}{1 + r_t}$ is spread between liquid and illiquid assets

Unbanked liquidity demand:

$$s_t = \lambda \nu [y'(m_t^u) - 1]$$

Take-away: $\uparrow r_t$, $\downarrow s_t$, improves ability to self-insure

- as $r_t o
 ho$, liquidity is costless $m_t^u o k^*$
- · still limited by acceptability friction

Banked Entrepreneurs

Lending contract (stage 2): list $\langle \Phi_t, \{L_{t+\tau}\}_{\tau=0}^{\infty} \rangle$

- Φ_t discounted sum of payments to bank over the relationship
- $L_{t+\tau}$ contingent intra-period loans

Many payoff-equivalent ways to implement Φ_t

- ullet $\phi_{t+ au}$ non-contingent payments every period
- loan $L_{t+\tau} = k_{t+\tau}^b d_{t+\tau}$ with access to liquidity
- loan $L_{t+ au} = \hat{k}$ with no access to liquidity

Choice of liquid wealth (stage 3):

$$\max_{m_t^b \geq 0} \left\{ -s_t m_t^b - \beta \phi_t + \beta \lambda \nu \left[y(k_t^b) - k_t^b \right] + \beta \lambda (1 - \nu) \left[y(\hat{k}) - \hat{k} \right] \right\}$$

Lending Contract

Determine $\{\phi_{t+\tau}, k_{t+\tau}^b, m_{t+\tau}^b, d_{t+\tau}\}_{t=0}^{\infty}$ using Nash bargaining

• η banks' bargaining power

Entrepreneur's Suprlus:

$$\begin{split} \mathcal{S}_{t}^{e} &= \underbrace{-\phi_{t} + s_{t} \left[m_{t}^{u} - m_{t}^{b} \right]}_{\text{net savings}} + \underbrace{\lambda \nu \left\{ \left[y(k_{t}^{b}) - k_{t}^{b} \right] - \left[y(k_{t}^{u}) - k_{t}^{u} \right] \right\}}_{\text{expected gain, w/ access to internal finance}} \\ &+ \underbrace{\lambda (1 - \nu) \left[y(\hat{k}_{t}^{b}) - \hat{k}_{t}^{b} \right]}_{\text{expected gain, w/o access}} - \left[V_{t}^{e}(0) - W_{t}^{e}(0) \right] + (1 - \delta) \beta \mathcal{S}_{t+1}^{e} \end{split}$$

Bank's Suprlus:

$$\mathcal{S}_t^b = \phi_t - \underbrace{\lambda\nu\psi(k_t^b - d_t) - \lambda(1-\nu)\psi(\hat{k})}_{\text{expected cost of issuing loans}} + \beta(1-\delta)\mathcal{S}_{t+1}^b$$

Optimal Lending Contract

Optimal Lending Contract: $\max [\mathcal{S}_t^b]^{\eta} [\mathcal{S}_t^e]^{1-\eta}$

$$\begin{split} \psi'\left(k_t^b - m_t^b\right) = & y'(k_t^b) - 1 \le \frac{s_t}{\lambda \nu} \\ \psi'(\hat{k}) = & y'(\hat{k}) - 1 \\ \phi_t = & \lambda(1 - \nu)\psi(\hat{k}) + \lambda \nu \psi(k_t^b - m_t^b) + \eta \left[\pi^b(s_t) - \pi^u(s_t)\right] - (1 - \eta)\zeta \theta_t \end{split}$$

Pecking-order of financing means: conditional on m^b

- if $m^b \ge k^*$, then $k^b = k^*$ and L = 0
- if $m^b < k^*$, then $k^b = m^b + { t L}$ where $\psi'({ t L}) = y'({ t L} + m^b) 1$

Additional profits from lending relationship increase with spread

- $\partial [\pi^b(s_t) \pi^u(s_t)]/\partial s_t = m_t^u m_t^b \ge 0$
- pass-through to bank's intermediation fees

Bank Entry and Equilibrium

Free-entry:
$$\zeta = \beta \frac{\alpha(\theta_t)}{\theta_t} \mathcal{S}_{t+1}^b$$

Combine with S_t^b and ϕ_t

$$\frac{\theta_t}{\alpha(\theta_t)} = \frac{\beta \eta [\pi^b(s_{t+1}) - \pi^u(s_{t+1})]}{\zeta} - \beta (1 - \eta)\theta_{t+1} + \beta (1 - \delta) \frac{\theta_{t+1}}{\alpha(\theta_{t+1})}$$

Equilibrium: list $\{\theta_t, \ell_t, m_t^u, m_t^b, k_t^b, \phi_t\}_{t=0}^{\infty}$ such that:

- $\mathbf{0} \ k_t^b, m_t^b, \phi_t$ solve optimal lending contract
- $2 k_t^u$ solve unbanked entrepreneur's problem
- 3 given ℓ_0 , ℓ_{t+1} satisfies

$$\ell_{t+1} = (1 - \delta)\ell_t + \alpha(\theta_t)(1 - \ell_t)$$

Monetary Policy Transmission

Higher spreads incentivize bank entry: if $(\rho + \delta)\zeta < \eta[\pi^b(s) - \pi^u(s)]$

$$\frac{\partial \theta}{\partial s} = \eta \frac{(m^{u} - m^{b})}{\zeta} \left[\frac{(\rho + \delta)[1 - \epsilon(\theta)]}{\alpha(\theta)} + 1 - \eta \right]^{-1} > 0$$

But discourages investment: if $s_t \leq \lambda \nu \psi'(\hat{k})$

$$\frac{\partial k_t^u}{\partial s_t} = \frac{\partial k_t^b}{\partial s_t} = \lambda \nu y''(k_t^u) < 0$$

Unbanked hold more liquid wealth: if $s_t \leq \lambda \nu \psi'(\hat{k})$

$$m_t^u - m_t^b = \psi'^{-1}(s_t/\lambda\nu)$$

Liquidity demand less elastic for unbanked than banked:

$$\frac{\partial (m_t^u - m_t^b)/(m_t^u - m_t^b)}{\partial s_t/s_t} = \frac{\psi'(m_t^u - m_t^b)}{(m_t^u - m_t^b)\psi''(m_t^u - m_t^b)}$$

Optimal Monetary Response to a

Destruction in Lending Relationships

Overview

Data: 2003 National Survey of Small Business Finances (SSBF)

Target moments important in transmission mechanism:

- share of banked firms, average length of banking relationships
- difference in liquid wealth between banked and unbanked firms
- elasticity of liquid wealth wrt to liquidity spread
 - banked vs unbanked
- bank profitability from small business loans

Unanticipated destruction shock $\ell_0 = (1-z)\ell^*$

- consider different values of z = 10%, 35%, 60%
- corresponding to moments on decline in number of commercial banks (10%), small business loan originations (35%), and U.S. corporate loans (60%)

Time period and functional forms

Time period a month, $(1+\rho)^{12}=1.04$

Functional forms:

- matching function: $\alpha(\theta) = \bar{\alpha} \frac{\theta}{1+\theta}$
- production function: $y(k) = Ay^a$, a = 1/3, set A such that $k^* = 1$
- cost of monitoring loans: $\psi(\mathbf{L}) = B\mathbf{L}^{1+\xi}/(1+\xi)$

Parameters to calibrate: $\bar{\alpha}, \delta, \lambda, s, \nu, B, \xi, \eta, \zeta$

Firm's demand for liquid assets

Liquidity cost, investment, and acceptability: s, λ, ν

- cash-to-sales ratio to proxy for liquid wealth (Mulligan, 1997; Adao and Silva, 2016)
- cash includes demand deposits, money orders, checks, bank drafts, and CDs.
- spread as user cost of MSI-ALL (average 2%)
- high acceptability $\nu = 0.985$

Liquidity demand depends on credit access

Cost of monitoring loans: B, ξ

- average difference in cash between banked and unbanked = 20%
- elasticity of $(m^u m^b)$ to s

$$log(m_{i,t}) = \beta_b D_{i,t} + e_u (1 - D_{i,t}) s_t + e_b D_{i,t} s_t + X_{i,t} + y_t + \epsilon_{i,t}$$

Banks' profitability and the cost of liquid assets

Matching and destruction: $\bar{\alpha}, \delta$

- average length of credit relationship = 8.25 years
- share of banked firms = 68%

Bargaining power: η

• match bank's average Net Interest Margin (NIM) on small business loans =3% from Call Reports

$$\textit{NIM}_t = rac{\phi_t}{\lambda \left[
u(k_t^b - m_t^b) + (1 -
u)\hat{k}
ight]}$$

Parameters

Parameter	Value	Moment	Data	Model
Matching efficiency, $\bar{\alpha}$	0.395	Share of banked firms	0.68	0.68
Destruction, δ	0.01	Length of credit rel.	8.25	8.25
Productivity shock, λ	0.086	Semi-elasticity of m^u to s	-17.1	-17.1
External finance, B	43.93	$(m^u-m^b)/m^u$	0.39	0.39
External finance, ξ	8.00	elas. of $(m^u - m^b)$ to s	0.13	0.13
Bargaining power, η	0.52	Average NIM (%)	3.00	3.00
Bank entry cost, ζ	0.024	Optimal spread	0.20	0.20
Acceptability, $ u$	0.985	exog. set		

Exogenous targeting rules

Suppose policy targets constant interest rate or supply of liquid assets:

- Constant spread, s_t
- Constant supply of liquidity, $M_t = \ell_t m^b(s_t) + (1 \ell_t) m^u(s_t)$

Policy trade-off: between promoting self insurance and recovering lending relationships

Constrained Efficiency

Social Welfare:
$$\mathbb{W}(\ell_0) = \sum_{t=0}^{\infty} \beta^t \mathcal{W}_t$$

$$\mathcal{W}_t = -\underbrace{\zeta \theta_t (1-\ell_t)}_{\text{entry costs}} + \beta \underbrace{(1-\ell_{t+1}) \lambda \nu \left[y(k_{t+1}^u) - k_{t+1}^u \right]}_{\text{unbanked profits}}$$

$$+ \beta \underbrace{\ell_{t+1} \lambda \nu \left[y(k_{t+1}^b) - k_{t+1}^b - \psi(\mathbf{L}_{t+1}) \right]}_{\text{banked profits w/ internal \& external funds}}$$

$$+ \beta \underbrace{\ell_{t+1} \lambda (1-\nu) \left[y(\hat{k}_{t+1}^b) - \hat{k}_{t+1}^b - \psi(k_{t+1}^b) \right]}_{\text{banked profits w/ external funds}}$$

Implementation: equilibrium achieves constrained-efficiency if and only if

- Friedman rule: $s_t = 0$
- Hosios condition: $\epsilon(\theta_t) = \eta$

Optimal Policy under Commitment

Ramsey problem: policymaker chooses $\{s_t\}_{t=1}^{\infty}$ to maximize $\mathbb{W}(\ell_0)$, subject to:

$$heta_t = rac{ar{lpha}eta\eta}{\zeta}[\pi^b(\mathsf{s}_{t+1}) - \pi^u(\mathsf{s}_{t+1})] + eta[1 - \delta - ar{lpha}(1 - \eta)] heta_{t+1} + eta(1 - \delta) - 1$$

Result #1: It is optimal to deviate from the Friedman rule if

$$\frac{\epsilon(\underline{\theta}) - \eta}{1 - \epsilon(\underline{\theta})} > \left[\frac{(1 - \delta)\ell_0}{\alpha(\underline{\theta})(1 - \ell_0)} + 1 \right] \frac{1}{\xi}$$

where $\underline{\theta}$ steady-state tightness at $s_t \equiv 0$.

• if $\eta < \epsilon(\underline{\theta})$, bank entry is inefficiently low at s=0

Optimal Policy under Commitment

Result #2 (forward guidance): policymaker lowers spread close to zero at the onset of the crisis then increases it quickly above the long-run steady state.

Optimal Policy under Commitment

Result #3: optimal policy with commitment is consistent with quantitative easing followed by quantitative tightening.

Optimal Policy without Commitment

Markov problem: Timing

- policymaker sets s_{t+1} in period t at beginning of stage 2
- private sector choses θ_{t+1}, m_{t+1}^u , and m_{t+1}^b
- Markov perfect equilibria

Strategies:

- Policymaker: $m_{t+1}^u = \mathcal{K}(\ell_t)$
- Bank entry: $\theta_t = \Theta(\ell_t, m_{t+1}^u)$

Optimal Policy without Commitment

Result #4: Without commitment, optimal policy consists of <u>raising</u> spread at onset of crisis, then reducing it gradually.

Optimal Policy without Commitment

Result #5: The aggregate supply of liquidity increases initially (for large enough shocks), then overshoots steady-state value.

Welfare Gains from Commitment

Results:

- lack of commitment slows down the recovery with a gain to unbanked entrepreneurs
- welfare gain of commitment ranges from 0.036% to 0.057%
- for large enough shocks, large welfare cost of maintaining constant supply of liquidity

Conclusion

- Lending relationships are a critical source of funds for firms
- Monetary policy impacts the profitability and formation of these relationships
- Presents a trade-off for the policymaker
 - Promote self-insurance through retained earnings held in liquid wealth
 - Promote bank profits and the creation (recovery) of relationships
- Commitment power matters in response to a destruction of relationships
 - Under commitment, lower rates initially but promise high future rates
 - Policy is not time-consistent
 - Without commitment, increase rates initially then gradually decrease them