7) Kultiple polynomial regression
Datalet:
m= no of training scamples
.) M= no of training Scamples .) h = no. of flatures
.) Choosing a different power of a feature
.) Choosing a different power of a feature according to their graph with target variable
1.) XI transaction date: Sin (XI)
2.) $\times 2$ house age: $\times 2^2$ 3.) $\times 3$ distance the rearest to PT station: $1/\times 3$
4.) XY rumber of convenience strenes: Xy
5.) X 5 latitude: X53
6.) × 6 longitude: × 6 3
+) Equations:
.) i refers to one training sample meaning one now
$J_{\chi_{i}} = [S_{in}(\chi_{1}), \chi_{2}^{2}, \underline{L}, \chi_{4}, \chi_{5}^{3}, \chi_{6}^{3}] (1 \times N)$
.) W = [0, 0, 0, 0, 0] (1xn)
$B = 0 \qquad (x)$
$y_i = WQx_i \cdot T + B$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right)^2 \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m} \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m} \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{2m} = \frac{1}{2m} \left(\frac{g_i - g_i}{g_i - g_i} \right) \frac{1}{2m}$$

$$\frac{1}{\int B} \frac{1}{\int g_i} \times \frac{1}{\int B} = \frac{1}{m} \left(g_i - g_i \right)$$

>) Eindings:

- 2-Sucre normalization > thin the Scaling
- .) Phiprocal flature was increasing the loss
- .) Linear regression converges faster
- .) Sin function does not really make a difference
- · Ouadrati Scaling increases the error
- .) traking X5 rasie to komes 4 reduced loss

.) After all these adjustments linear and
polynomial become comparable give same MAE
but polynomial has much higher less than
lists of the hit is to the second of the
linear so I think it is a more generalized
model because still it is giving same MAE