

Using gem5 for Design Space Explorations

Bine Brank (FZJ), Dirk Pleiter (KTH)

Outline

- Methodological introduction
- Model construction and model parameter tuning
- Selected results
- Summary and conclusions

Methodological Introduction

Definitions of the Term Model

• D. Hestenes (1986):

"A model is a surrogate object, a conceptual representation of a real thing. The models in physics are mathematical models, which is to say that physical properties are represented by quantitative variables of the model"

B. Thalheim (2020):

- "A model is a well-formed, adequate, and dependable instrument that represents origins and that functions in utilisation scenarios"
- "Models are used in various utilisation scenarios such as construction of systems, verification, optimization, explanation, and documentation"

System versus Model

- Referential analogy: Empirical observations and measurements determine an analogy between a system and a model
- Conceptional analogy: Structural similarities between different models
- Material analogy: Relation of structures of different systems

[Hestenes, 2006]

Conceptional World Material World

Modified Approach

- Instead of creating a model for System 1, use empirical observations and measurements for a Model 2 that is reasonable similar to Model 1
 - Target scenario: Explore relation of architectural parameters and application performance
- Introduce systematic changes in Model 2 = architectural exploration

Conceptional
World

Material
World

System 1

Model 2

Hypothetical

System 2

Methodology

- Select reference architecture
- Model construction
 - Configure gem5 model according to reference architecture selecting components represent the reference system well
- Model parameter tuning
 - Fix parameters according to technical specification or tune parameters based using micro-benchmarks
 - Due to use of simplified sub-models for certain system components, effective parameter values need to be chosen
- Select configurations and applications for architecture exploration

Model Construction and Model Parameter Tuning

Implementation of the Methodology

- Reference architecture: AWS Graviton 2
 - Focus on a single core
- Model construction: Choice of gem5 components
 - O3CPU model, modified Arm_O3_v7 core
 - Classic memory system, tagged pre-fetcher at L2, L3 via crossbar
- Micro-benchmarks
 - STREAM, Tinymembench, NAS Parallel Benchmarks
- Model modifications
 - Support for SVE

Model Parameter Tuning: Tinymembench

Model Parameter Tuning: NPB

Selected Results

GROMACS: Force Calculation Non-bonded Atoms

 GROMACS implements a modified Verlet algorithm that is optimised for SIMD architectures

Current SIMD-implementations:

Number of SVE Pipelines and SVE Width

 $N_{\text{SVE}} = 2$, variable $b_{\text{SVE}} = 128$, 256, 512

Constant $N_{SVE} \times b_{SVE} = 512$

4xM versus 2xMM for $N_{SVE} = 2$

- Stalls due to full re-order buffer or full register files are performance relevant
 - For fixed SVE width the number of full invents for 2xMM is larger compared to 2xM
 - For fixed implementation the number of full register events decreased for larger SVE width
- Number of cache-line refills
 - Increases for 2xMM compared 4xM
 - Decreases for larger SVE width
 - Note increased capacity of the register file

GPAW

- Focus here: Discretised Laplace operator (bmgs_fd kernel)
 - Memory-bound kernel
- Compiler auto-vectorises inner-most loop
 - Compiler generates gather load instructions
- Outer-loop vectorisation needs to be done manually
 - Use of intrinsics (including instructions for gather loads)

```
10 Z(bmgs fd)(const bmgsstencil* s, const T* a, T* b)
11 {
       /* Skip the leading halo area. */
       a += (s->i[0] + s->i[1] + s->i[2]) / 2;
       for (int i0 = 0; i0 < s->n[0]; i0++) {
           for (int i1 = 0: i1 < s->n[1]: i1++) {
17 #ifdef OPENMP
18 #pragma omp simd
19 #endif
               for (int i2 = 0; i2 < s - n[2]; i2++) {
                    int i = i2
                          + i1 * (s->j[2] + s->n[2])
                          + i0 * (s->j[1] + s->n[1] * (s->j[2] + s->n[2]));
                   int j = i2 + i1 * s - > n[2] + i0 * s - > n[1] * s - > n[2];
                   T x = 0.0:
                   for (int c = 0; c < s->ncoefs; c++)
                       x += a[i + s->offsets[c]] * s->coefs[c];
29
30
31
                   b[j] = x;
```

2022-11-14 16

GPAW Performance

- Measured effective bandwidth far below STREAM performance
- Inner-loop vectorisation (Bf-1)
 - Pipeline blocked by a nonpipelined horizontal reduction instruction
- Outer-loop vectorisation (Bf-2)
 - Id/st pipeline throughput limitation (74% busy for SVE-512)

Summary and Conclusions

Summary and Conclusions

- Model theoretical review of our use of architecture simulations improves understanding of the results
- gem5 simulations provide information not only for hardware developer but, in particular, for application developers
 - Feedback for application developers
 - GROMACS
 - Good SIMD scaling: parallel efficiency of 68% comparing SVE-128 and SVE-512
 - Need for more ILP to exploit 4x SVE-128 pipelines
 - GPAW: Improve data-layout to reduce the number of Id/st micro-instructions
 - Feedback for hardware developers
 - GROMACS: Reduce stalls due to full ROB and/or register files
 - GPAW: Improve performance of scatter/gather instructions

Acknowledgements

Work has in part been performed on resources provided by the Open Edge and HPC Initiative

 OEHI provides access to a 30 node HPC cluster with Kunpeng 920 processors

http://www.openedgehpcinitiative.org/