Learn Something Every Day

Implementation of DS

Data Science in Search Engine

Data Science in Finance

Data Science in Transport

Data Science in E-Commerce

Data Science in Health Care

Data Science in Image recognition

Data Science in Airline Routing Planning

Data Science in Gaming

Introduction to DS

Data Science Basic

1. Understand the project objectives and requirements from a business perspective, and then convert this knowledge into a data mining problem definition and a preliminary plan designed to achieve the objectives.

2. Data mining is the process of sorting through large data sets to identify patterns and relationships that can help solve business problems through data analysis

3. Data cleaning is the process of fixing or removing incorrect, corrupted, incorrectly formatted, duplicate, or incomplete data within a dataset

Data Cleaning

DATA CLEANING STEPS

Removing unwanted observations

• Duplicate/ redundant or irrelevant values deletion .

Missing Data handling

Fixing issue of unknown missing values

Structural error solving

 Fixing problems with mislabeled classes, typesin names of features, same attribute with different name etc.

Outliers Management

Unwanted values which are not fiting in datasets.

	#	ld	Name	Birthday	Gender	IsTeacher?	#Students	Country	City	
Γ	1	111	John	31/12/1990	М	0	0	Ireland	Dublin	
Γ	2	222	Mery	15/10/1978	F	1	15	Iceland		← Missing values
Γ	3	333	Alice	19/04/2000	F	0	0	Spain	Madrid	Thisbing voices
Γ	4	444	Mark	01/11/1997	М	0	0	France	Paris	Invalid values
	5	555	Alex	15/03/2000	Α	1	23	Germany	Berlin	involto voltoco
Γ	6	555	Peter	1983-12-01	М	1	10	Italy	Rome	g 'E
	7	777	Calvin	05/05/1995	М	0	0	Italy	Italy	Misfielded values
	8	888	Roxane	03/08/1948	F	0	0	Portugal	Lisbon	Pilatielded voides
ľ	9	999	Anne	05/09/1992	F	0	5	Switzerland	Geneva	L 7; _ / / Ai/ (7) ii / /
	10	101010	Paul	14/11/1992	М	1	26	Ytali	Rome	
Uniqueness Formats Attribute								pendencie	s	Misspellings

4. Data exploration refers to the initial step in data analysis in which data analysts use data visualization and statistical techniques to describe dataset characterizations, such as size, quantity, and accuracy, in order to better understand the nature of the data.

Steps in the Data Analysis Process

Step 1: Decide on the objectives or Pose a Question

Step 2: What to Measure and How to Measures

Step 3: Data Collection

Step 4: Summarizing and Visualizing Data

Step 5: Data Modelling

5. Feature engineering is a machine learning technique that leverages data to create new variables that aren't in the training set.

6. Predictive modeling is a mathematical process used to predict future events or outcomes by analyzing patterns in a given set of input data.

A Confidence Score is a number between 0 and 1 that represents the likelihood that the output of a Machine Learning model is correct and will satisfy a user's request.

7. Data visualization is the practice of translating information into a visual context, such as a map or graph, to make data easier for the human brain to understand and pull insights.

Chart	Visual	X axis	Y axis		Analysis		Example
Scatter plot/Line Plot	****	Continuous	Continuous	-	Understanding linear, non-linear relationship between two variables Trend analysis, change in KPI over time	-	How does heart rate change with age? How sales of a company varied over a period of time?
Bar Graph		Categorical /Discrete Continuous	Continuous	-	How Y (can be any performance indicator) varies across different categories?	-	How sales in 2019 varied for different mobile phone brands? i.e. mobile phone brand is the category and sales is the KPI
Stack Bar Graph		Categorical	Continuous	-	Relative comparison of multiple categories within a category	-	Comparison of revenue generated by Apple, Samsung & Xiaomi across different products like mobile phone, laptops, television, and headsets
Box Plot	βφφ <u>-</u>	Continuous			Outlier detection Analysing data distribution across Median and Inter Quartile Range	-	How different sales figures across a year is distributed?
Pie Chart	Pie Chart Categorical & Continuous				Relative comparison of different categories for one single entity in terms of proportion/percentages		What percentage of Sales in 2019 is constituted by different products under Apple?
Histogram Plot		Continuous	s -	-	How distribution of values of x varies across different range buckets?	-	Distribution of income across income buckets for developing countries

Data Science Tools

Data Science Basics

Modelling in Data Science

Data Science Task

Classification

Clustering

Regression

Association

$$(A, B) \longrightarrow C$$

 $(D, E) \longrightarrow F$
 $(A, E) \longrightarrow G$

Customer 2

Customer 3

Customer n

THANK YOU!