Simplicity in Composition

Adelbert Chang

Scala World 2017

• A: type (set) of values

• A: type (set) of values

• \oplus : $A \times A \rightarrow A$

- A: type (set) of values
- \oplus : $A \times A \rightarrow A$
- 1_A : identity for \oplus

- A: type (set) of values
- \oplus : $A \times A \rightarrow A$
- 1_A : identity for \oplus

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

 $x = x \oplus 1_A = 1_A \oplus x$

$$(\mathbb{Z},+,0)$$

$$(A \rightarrow A, \circ, a \mapsto a)$$


```
trait Monoid[A] {
  def combine(x: A, y: A): A
  def empty: A
}
```


15 6 7 8

Associative composition allows for modular decomposition and reasoning.

A

F[A]

$$(F[A], F[A]) \Rightarrow F[A]$$

$$(F[A], F[B]) \Rightarrow F[?]$$

$$(F[A], F[B]) \Rightarrow F[(A, B)]$$


```
def zipOption[A, B]
  (oa: Option[A], ob: Option[B]): Option[(A, B)] =
  (oa, ob) match {
    case (Some(a), Some(b)) => Some((a, b))
    case _ => None
}
```



```
def zipFunction[A, B, X]
  (f: X => A, g: X => B): X => (A, B) =
  (x: X) => (f(x), g(x))
```


• $F(_{-})$: type of program

- $F(_{-})$: type of program
- \otimes : $F(A) \times F(B) \rightarrow F((A, B))$

- $F(_{-})$: type of program
- \otimes : $F(A) \times F(B) \rightarrow F((A, B))$
- $\eta: A \to F(A)$

- $F(_{-})$: type of program
- \otimes : $F(A) \times F(B) \rightarrow F((A, B))$
- $\eta: A \to F(A)$

$$fa\otimes (fb\oplus fc)\cong (fa\oplus fb)\oplus fc$$
 $fa\cong fa\otimes \eta_{Unit}\cong \eta_{Unit}\otimes fa$


```
trait Monoidal[F[_]] {
  def zip[A, B](fa: F[A], fb: F[B]): F[(A, B)]
  def pure[A](a: A): F[A]

/*
  def map[A, B](fa: F[A])(f: A => B): F[B]
  */
}
```


$$(F[A], F[B]) \Rightarrow F[(A, B)]$$

F[A]

Composing dependent programs

$$(F[A], A \Rightarrow F[B]) \Rightarrow F[B]$$


```
def flatMapOption[A, B]
  (oa: Option[A], f: A => Option[B]): Option[B] =
  oa match {
    case Some(a) => f(a)
    case None => None
}
```



```
def flatMapList[A, B]
  (la: List[A], f: A => List[B]): List[B] =
  la match {
    case Nil => Nil
    case h :: t => f(h) ++ flatMapList(t, f)
}
```



```
def flatMapFunction[A, B, X]
  (fa: X => A, f: A => (X => B)): X => B =
  (x: X) => f(fa(x))(x)
```


• $F(_{-})$: type of program

- $F(_{-})$: type of program
- (\gg : $F(A) \times A \rightarrow F(B)$) $\rightarrow F(B)$

- $F(_{-})$: type of program
- (\gg : $F(A) \times A \rightarrow F(B)$) \rightarrow F(B)
- $\eta: A \to F(A)$

- $F(_)$: type of program
- (\gg : $F(A) \times A \rightarrow F(B)$) \rightarrow F(B)
- $\eta: A \to F(A)$

$$(fa \gg= f) \gg= g = fa \gg= (f \gg= g)$$

 $fx = \eta(x) \gg= f$
 $fa = fa \gg= \eta$


```
trait Monad[F[_]] {
  def flatMap[A, B](fa: F[A], f: A => F[B]): F[B]
  def pure[A](a: A): F[A]
}
```


A nicer monad

$$(fa \gg= f) \gg= g = fa \gg= (f \gg= g)$$

 $fx = \eta(x) \gg= f$
 $fa = fa \gg= \eta$

A nicer monad

$$f: A \rightarrow F(B)$$

$$g:B\to F(C)$$

$$h:\,C\to F(D)$$

A nicer monad

$$f: A \rightarrow F(B)$$

$$g:B\to F(C)$$

$$h: C \to F(D)$$

$$(f >=> g) >=> h = f >=> (g >=> h)$$

 $f = f >=> \eta = \eta >=> f$

Category theory studies the algebra of composition.

