Q2

Execution Data:

Trial 1

\$\to\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./

dfa 6 100000000; ./dfa 7 100000000

true

319.472

false

627.526

false

432.758

false

337.176

false

275.345

false

230.219

true

200.501

false

177.511

Trial 2

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

true

321.113

true

627.780

false

433.112

false

341.884

false

271.554

true

229.434

false

198.549

false

175.249

Trial 3

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

true

319.511

false

641.172

false

433.447

true

325.951

true

267.673

false

227.426

false

198.340

true

176.075

Trial 4

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

true

318.977

true

632.274

false

432.029

false

330.969

false

276.102

false

237.341

false

199.617

true

179.904

Trial 5

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

false

328.095

false

633.366

false

434.637

false

326.655

false

272.936

true

229.945

false

198.277

false

175.159

Trial 6

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

false

318.743

false

625.672

false

429.904

false

336.326

true

265.931

false

226.370

false

196.291

false

181.485

Trial 7

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

true

315.443

true

643.992

false 436.045 false 348.972 true 271.084 false 231.360 false 197.263 false 185.026 **Trial 8** └─\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000 true 312.980 true 624.904 true 428.035 true 339.341 true 275.658 false 226.107 false 197.290 true 178,449 **Trial 9** └─\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000 false 316.233 true 629.612 false

442.186 false 331.183

false

271.749

false

229.454

true

200.946

true

176.915

Trial 10

__\$./dfa 0 100000000; ./dfa 1 100000000; ./dfa 2 100000000; ./dfa 3 100000000; ./dfa 4 100000000; ./dfa 5 100000000; ./dfa 6 100000000; ./dfa 7 100000000

false

315.371

false

641.976

false

428.387

true

332.295

false

271.650

true

226.358

false

200.340

false

179.329

Table:

Speedup in 10 Trials for t = 0,1,2,3,4,5,6,7, n = 100000000											
Optimistic Thread Count (t)	Speedup (Sequential at t=0 is baseline = 1)										
	Trial 1	Trial 2	Trial 3	Trial 4	Trial 5	Trial 6	Trial 7	Trial 8	Trial 9	Trial 10	Average
0	1	1	1	1	1	1	1	1	1	1	1
1	0.509	0.512	0.498	0.504	0.518	0.509	0.49	0.501	0.502	0.491	0.7355
2	0.738	0.741	0.737	0.738	0.755	0.741	0.723	0.731	0.715	0.736	0.9512
3	0.947	0.939	0.98	0.964	1.004	0.948	0.904	0.922	0.955	0.949	1.1717
4	1.16	1.183	1.194	1.155	1.202	1.199	1.164	1.135	1.164	1.161	1.1717
5	1.388	1.4	1.405	1.344	1.427	1.408	1.363	1.384	1.378	1.393	1.389
6	1.593	1.617	1.611	1.598	1.655	1.624	1.599	1.586	1.574	1.574	1.6031
7	1.8	1.832	1.815	1.773	1.873	1.756	1.705	1.754	1.787	1.759	1.7854

<u>Graph:</u> Data graphically shows average speedup. Benefit from multithreading observed for t >=4.

Optimistic Threads vs Average Speedup

