Ejercicio de la pagina 100

Ejercicio de la pagina 100 de libro de Barrientos

4.1.2. Algoritmo de Denavit-Hartenberg para la obtención del modelo cinemático directo

- **D-H 1**. Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- **D-H 2**. Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n.
- **D-H** 3. Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento.
 - **D-H 4.** Para i de 0 a n-1 situar el eje \mathbf{z}_i sobre el eje de la articulación i+1.
- **D-H 5**. Situar el origen del sistema de la base $\{S_0\}$ en cualquier punto del eje \mathbf{z}_0 . Los ejes \mathbf{x}_0 e \mathbf{y}_0 se situarán de modo que formen un sistema dextrógiro con \mathbf{z}_0 .
- **D-H** 6. Para i de 1 a n-1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje \mathbf{z}_i con la línea normal común a \mathbf{z}_{i-1} y \mathbf{z}_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1.
 - D-H 7. Situar x_i en la línea normal común a z_{i-1} v z_i.

- **D-H 8.** Situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .
- **D-H 9.** Situar el sistema $\{S_n\}$ en el extremo del robot de modo que \mathbf{z}_n coincida con la dirección de \mathbf{z}_{n-1} y \mathbf{x}_n sea normal a \mathbf{z}_{n-1} y \mathbf{z}_n .
- **D-H 10**. Obtener θ_i como el ángulo que hay que girar en torno a \mathbf{z}_{i-1} para que \mathbf{x}_{i-1} y \mathbf{x}_i queden paralelos.
- **D-H 11**. Obtener d_i como la distancia, medida a lo largo de \mathbf{z}_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que \mathbf{x}_i y \mathbf{x}_{i-1} quedasen alineados.
- **DH 12**. Obtener a_i como la distancia medida a lo largo de \mathbf{x}_i (que ahora coincidiría con \mathbf{x}_{i-1}) que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.
- **DH 13**. Obtener α_i como el ángulo que habría que girar entorno a \mathbf{x}_i (que ahora coincidiría con \mathbf{x}_{i-1}), para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.
 - **DH 14.** Obtener las matrices de transformación ⁱ⁻¹A_i definidas en [4.7].
- **DH 15.** Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot $\mathbf{T} = {}^{0}\mathbf{A}_{1}, {}^{1}\mathbf{A}_{2}... {}^{n-1}\mathbf{A}_{n}$.

DH 16. La matriz T define la orientación (submatriz de rotación) y posición (submatriz de traslación) del extremo referido a la base en función de las n coordenadas articulares.

Figura 4.3. Parámetros D-H para un eslabón giratorio.

Los cuatro parámetros de D-H (θ_i , d_i , a_i , α_i) dependen únicamente de las características geométricas de cada eslabón y de las articulaciones que le unen con el anterior y siguiente. En concreto estos representan (Figura 4.3):

- θ_i Es el ángulo que forman los ejes \mathbf{x}_{i-1} y \mathbf{x}_i medido en un plano perpendicular al eje \mathbf{z}_{i-1} , utilizando la regla de la mano derecha. Se trata de un parámetro variable en articulaciones giratorias.
- d_i Es la distancia a lo largo del eje \mathbf{z}_{i-1} desde el origen del sistema de coordenadas (i-1)ésimo hasta la intersección del eje \mathbf{z}_{i-1} con el eje \mathbf{x}_i . Se trata de un parámetro variable en articulaciones prismáticas.
- Es la distancia a lo largo del eje \mathbf{x}_i que va desde la intersección del eje \mathbf{z}_{i-1} con el eje \mathbf{x}_i hasta el origen del sistema i-ésimo, en el caso de articulaciones giratorias. En el caso de articulaciones prismáticas, se calcula como la distancia más corta entre los ejes \mathbf{z}_{i-1} y \mathbf{z}_i .
- α_i Es el ángulo de separación del eje \mathbf{z}_{i-1} y el eje \mathbf{z}_i , medido en un plano perpendicular al eje \mathbf{x}_i , utilizando la regla de la mano derecha.

Una vez obtenidos los parámetros D-H, el cálculo de las relaciones entre los eslabones consecutivos del robot es inmediato, ya que vienen dadas por las matrices A, que se calculan según la expresión general [4.7]. Las relaciones entre eslabones no consecutivos vienen dadas por las matrices T que, como ya se comentó anteriormente, se obtienen como producto de un conjunto de matrices A.

Obtenida la matriz **T**, ésta expresará la orientación (submatriz (3 x 3) de rotación) y posición (submatriz (3 x 1) de traslación) del extremo del robot en función de sus coordenadas articulares, con lo que quedará resuelto el problema cinemático directo.

Tabla 4.1. Parámetros D-H para el robot cilíndrico de la Figura 4.4.

The state of the s				
Articulación	θ	d	a	α
1	q_1	l_1	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	1_	0	0

Este ejemplo se encuentra resuelto en Matlab en el programa :

Ejercicio_de_barrientos.m

que acompaña esta entrega