Московский Физико-Технический Институт (государственный университет)

Работа 5.2.1

Цель работы:

Методом электронного возбуждения измерить энергию первого уровня атома гелия в динамическом и статическом режимах

Описание работы

Опыт Франка-Герца подтверждает существование дискретных уровней энергии атомов. Разреженный одноатомный газ заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия.

- энергия электрона недостаточна, чтобы возбудить/ионизировать атом -> ynpyzoe cmonkhosehue, электрон не теряет энергию
- при большой разности потенциалов энергия электрона достаточна для возбуждения атомов -> *неупругое столкновение*, кинетическая энергия передаётся одному из атомных электронов, в результате чего происходит:
 - **возбуждение** переход одного из атомных электронов на свободный энергетический уровень
 - ионизация отрыв электрона от атома

Рис. 1: Схема опыта Франка и Герца

Рис. 2: Схематический вид зависимости тока коллектора от напряжения на аноде

Объясним вид зависимости тока коллектора (измеряется микроамперметром) от напряжения на аноде. При увеличении потенциала анода ток в лампе сначала растёт (зависимость, подобная ВАХ вакуумного диода). Когда энергия электронов становится достаточной для возбуждения атомов, ток коллектора резко уменьшается. Это происходит потому, что при неупругих соударениях с атомами электроны теряют свою энергию и не могут преодолеть задерживающее напряжение (около 1 В) между анодом и коллектором. При дальнейшем увеличении потенциала ток коллектора вновь возрастает: электроны, испытавшие неупругие соударения, при дальнейшем движении к аноду успевают набрать

энергию, достаточную для преодоления задерживающего потенциала. Следующее замедление роста тока происходит в момент, когда часть электронов неупруго сталкивается с атомами два раза. Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния, равные энергии первого возбуждённого состояния.

1 Экспериментальная установка

Рис. 3: Схема экспериментальной установки

На рис.3 обозначены:

- А амперметр
- Б7-4 стабилизированный источник питания (подаёт напряжение накала)
- K_1 тумблер для включения в цепь источника Б7-4
- Б5-10 выпрямитель (подаёт на анод ускоряющее напряжение)
- \bullet Pi_3 потенциометр, регулирующий величину ускоряющего напряжения
- ullet V_1 вольтметр, измеряющий величину ускоряющего напряжения
- 4,5 В батарея КБСЛ источник задерживающего потенциала

- \bullet Pi_2 потенциометр, регулирующий величину задерживающего потенциала
- ullet V_2 вольтметр, измеряющий величину задерживающего потенциала
- \bullet μA микроамперметр регистрирует ток в цепи коллектора
- \bullet K_3 ключ, переключающий схему из статического режима в динамический
- Т понижающий трансформатор подаёт ускоряющий потенциал при динамическом режиме
- - нагрузочный резистор

2 Выполнение работы

2.1 Динамический метод

- 1. Подготовим приборы к работе, поставим переключатель режима в положение "Динамич."
- 2. Добьёмся с помощью регуляторов на осциллографе чёткой картины на экране
- 3. При максимальном ускоряющем напряжении измерим на экране расстояние между максимумами и между минимумами осциллограммы. Измерения проведём при трёх значениях задерживающего напряжения: 4, 6 и 8 В. Результаты измерений занесём в таблицу 1. Фотографии полученных осциллограмм приведём на рисунках 4-6.

Задерж. напряже-	V_{max_1}	V_{max_2}	V_{min_1}	V_{min_2}	Погрешность	$\triangle V_{max}$	$\triangle V_{min}$
ние							
4 B	-3 B	11 B	0 B	18 B	1 B	14 B	18 B
6 B	-6 B	8 B	-3 B	17 B	1 B	14 B	20 B
8 B	-9 B	5 B	-5 B	15 B	1 B	14 B	20 B

4. Определим значение энергии первого возбуждённого состояния атома гелия.

$$\overline{V_{max}} = 14 \text{ B}$$
 $\overline{V_{min}} = 19.3 \text{ B}$

Погрешности определения средних значений определим, используя формулу

$$\sigma_{V_1}^2 = \sigma_{V_4}^2 + \sigma_{V_6}^2 + \sigma_{V_8}^2$$
 - погрешность прибора $\sigma_{V_2} = \sqrt{\frac{1}{6}\sum (V_i - \overline{V})^2}$ - погрешность среднего значения $\sigma_{V_1} = 1.7~\mathrm{B}$ $\sigma_{V_{max_2}} = 0~\mathrm{B}$ $\sigma_{V_{min_2}} = 0.5~\mathrm{B}$

В итоге получаем:

$$\overline{V_{max}} = 14.0 \pm 1.7 \; \mathrm{B} \qquad \quad \overline{V_{min}} = 19.3 \pm 1.8 \; \mathrm{B}$$

Среднее значение первого возбуждённого состояния атома гелия по результатам эксперимента:

Рис. 4: Осциллограмма при задерживающем напряжении 4 В

Рис. 5: Осциллограмма при задерживающем напряжении 6 В

Рис. 6: Осциллограмма при задерживающем напряжении 8 B

 $V_{exp} = 16.7 \pm 2.5 \; {
m эB} \; ($ относительная погрешность составляет 14%)

При этом табличное значение данной величины составляет

$$V_{th} = 21.6 \ \mathrm{эB}$$

С учётом погрешности, экспериментальные данные немного отличаются от теоретических. Это может быть обусловлено низкой точностью измерений, так как на сетке осциллографа плохо видно, на каком делении лежит максимум или минимум графика. Также максимум и мунимумы в таком масштабе выглядят пологими, следовательно мы не можем точно определить, где именно находится максимум или минимум. Из-за этого мы получаем погрешность измерений, которую становится тяжело учесть. В качестве решения этой проблемы мы можем увеличить погрешность измерения с 1 до 2 вольт, но в таком случае и погрешность итогового значения увеличится в 2 раза, что приведет к очень низкой точности измерения, да и увеличение погрешности только из-за того, что значение не сошлось с табличным, может наоборот испортить значения измерений.

2.2 Статический метод

- 1. Переведём переключатель режима в положение «Статич.», установим максимальный ток накала
- 2. Снимем зависимость коллекторного тока от анодного напряжения $I_k = f(V_a)$ для значений задерживающего напряжения 4, 6 и 8 В. Результаты измерений занесём в таблицы 2-4 (рисунки 7-9).

V, B	0,03	3,41	4,58	5,64	6,31	6,79	7,31	7,93	8,86	9,8	10,87	13,55	16,82	17,4	18,9
I, MKA	8,4	64,7	89	111,3	124,5	136	147	163	185	209	237	310	395	409	443
V, B	20,5	22,45	22,59	24,2	25,4	26,1	27,9	29,3	33,29	34,2	35,8	35,97	36,4	38,1	38,9
I, MKA	472	497	498	506	437	456	509	560	674	700	729	734	731	739	734
V, B	39,18	40,1	41,2	42,2	43,1	44,8	46	46,2	46,7	48,6	54,3	64,7	71,4		
I, MKA	736	719	701	689	683	678	681	689	685	700	764	841	859		

Рис. 7: Значения коллекторного тока и анодного напряжения, задерживающее напряжение 4 В

V, B	7,8	11,3	15	18,7	22	22,4	23,03	23,16	23,4	23,9	24,5	24,7
I, MKA	120	205	309	397	459	465	472	496	476	479	478	307
V, B	25,3	26,51	28,5	30,7	32	32,3	34,1	34,8	35,5	35,6	36,2	37,5
I, MKA	289	297	370	446	443	497	526	546	560	588	570	580
V, B	38,4	39,2	40,3	41,7	44,1	46,2	49	54,6	59,6	63,7	68,5	71,4
I, MKA	582	579	589	567	534	519	520	568	616	628	625	627

Рис. 8: Значения коллекторного тока и анодного напряжения, задерживающее напряжение 6 B

V, B	0,03	8,5	11,3	14,2	17,1	18,8	21,4	24,2	24,8	25,1	25,5	27	28,3
I, MKA	8,4	85,8	155,5	235	312	354	412	444	445	443	195	189	203
V, B	30,5	31,8	33,1	33,5	34,2	35,3	36,1	36,8	37,5	38,4	39,3	39,4	41
I, MKA	283	321	361	390	397	429	441	467	455	463	461	477	443
V, B	42,8	43,4	44,1	45,1	46,2	47,4	49,4	54	55,3	60,5	65,3	71,3	
I, MKA	437	429	420	403	386	374	364	385	399	435	439	425	

Рис. 9: Значения коллекторного тока и анодного напряжения, задерживающее напряжение 8 В

- 3. Перенесем полученные значения на график:
- 4. Воспользуемся методом из динамического метода и определим энергию первого возбуждения атом гелия. Занесем данные в таблицу 2:

Задерж. напряже-	V_{max_1}	V_{max_2}	V_{min_1}	V_{min_2}	Погрешность	$\triangle V_{max}$	$\triangle V_{min}$
ние							
4 B	24.2	39.2	25.4	44.8	0.1 B	15 B	19.4
	В	В	В	В			В
6 B	23.9	38.4	25.3	46.2	0.1 B	14.5B	20.9
	В	В	В	В			В
8 B	24.8	38.4	27 B	49.4	0.1 B	13.6	22.4
	В	В		В		В	В

5. Определим значение энергии первого возбуждённого состояния атома гелия.

Рис. 10: Вольт-амперная характеристика трёхэлектродной вакуумной лампы при значении запирающего напряжения в 4 В

Рис. 11: Вольт-амперная характеристика трёхэлектродной вакуумной лампы при значении запирающего напряжения в 6 В

Рис. 12: Вольт-амперная характеристика трёхэлектродной вакуумной лампы при значении запирающего напряжения в 8 В

$$\overline{V_{max}} = 14.4 \text{ B}$$
 $\overline{V_{min}} = 20.9 \text{ B}$

Погрешности определения средних значений определим, используя формулу

$$\sigma_{V_1}^2 = \sigma_{V_4}^2 + \sigma_{V_6}^2 + \sigma_{V_8}^2$$
 - погрешность прибора $\sigma_{V_2} = \sqrt{\frac{1}{6}\sum (V_i - \overline{V})^2}$ - погрешность среднего значения $\sigma_{V_1} = 0.2~\mathrm{B}$ $\sigma_{V_{max_2}} = 0.4~\mathrm{B}$ $\sigma_{V_{min_2}} = 0.9~\mathrm{B}$

В итоге получаем:

$$\overline{V_{max}} = 14.4 \pm 0.5 \text{ B} \qquad \overline{V_{min}} = 20.9 \pm 0.9 \text{ B}$$

Среднее значение первого возбуждённого состояния атома гелия по результатам эксперимента:

 $V_{exp} = 17.7 \pm 1.1 \; {
m 9B} \; ({
m относительная} \; {
m погрешность} \; {
m cоставляет} \; 6\%)$

Работа 5.2.1 3 B B B O II

При этом табличное значение данной величины составляет

$$V_{th} = 21.6 \text{ } \text{9B}$$

С учётом погрешности, экспериментальные данные немного отличаются от теоретических. Это может быть обусловлено недостаточным количеством измерений в местах максимумови минимумов напряжения. Для решения данной проблемы нужна установка в наш прибор ручки регулировки с более высокой чувствительностью, так как имеющаяся ручка при небольшом повороте уже значительно увеличивает напряжение (порядка 1 Вольта).

3 Вывод

В ходе работы был воспроизведён опыт Франка-Герца, подтверждающий наличие дискретных уровней возбуждения атомов. Вольт-амперная характеристика трёхэлектродной вакуумной лампы была измерена двумя способами - динамическим и статическим. По этим ВАХ были экспериментально определены потенциалы возбуждения атомов гелия (одноатомный газ, заполняющий лампу).

$$V_{exp_d} = 16.7 \pm 2.5 \text{ pB}$$

 $V_{exp_s} = 17.7 \pm 1.1 \text{ pB}$
 $V_{th} = 21.6 \text{ pB}$

Видим, что результаты совпадают между собой в пределах погрешности, но немного отличаются от табличного значения. Статический метод оказался более точным, чем динамический.

Стоит отметить, что при наличии более совершенной установки можно выполнить более точные измерения ВАХ, тем самым определив потенциалы возбуждения других дискретных уровней, а также потенциалы ионизации.