UNCLASSIFIED AD 414693

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

PREPARATION OF POROUS NITROCELLULOSE FOR A TRAVELING CHARGE GUN

James E. Cole Carl R. Ruth

BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

DDC AVAILABILITY NOTICE Qualified requestors may obtain copies of this report from DDC.

The findings in this report are not to be construed as an official Department of the Army position.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1485.

JUNE 1963

PREPARATION OF POROUS NITROCELLULOSE FOR A TRAVELING CHARGE GUN

James E. Cole Carl R. Ruth

Interior Ballistics Laboratory

RDT & E Project No. 1M010501A004

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1485

JCole/CRuth/mec Aberdeen Proving Ground, Md. June 1963

PREPARATION OF POROUS NITROCELLULOSE FOR A TRAVELING CHARGE GUN

ABSTRACT

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Hardware refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different compressional forces. A description is given of the assembling of the hardware and inhibiting the propellant.

TABLE OF CONTENTS

																																			Page
ABS	STRACT					•			•	•		•	•	•		•	•	•	•	•			•	•	•	•	•		•	•		•	•		3
IN	roduc	ľΊ	ON	•					•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•		•		•	•	•	•	٠	7
PRO	OPELLA	ľW	P	RE.	PA	RA	ľΤΊ	[0]	N	•	•		•	•	•	•	•			•	•	•	•		•	•	•	•		•	•	•	•	•	7
TR/	AVELIN	IG	СН	AR	GE	I	PRE	īP.	AF	CA3	CIC	NC	•		•		•	•	•	•	•			•	•	•		٠	٠	•	•	•	-	•	7
DIS	SCUSSI	10.	٠.				. •		•	•	•	•	•	-	•	•	•	•	•	•	•						•	•	•	•	•	•	•	٠	8
COI	NCLUSI	10	s.			•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•			•	•	•	•				•	10
ACF	CNOWLE	DC	EM	EN	rs					•	•	•	•		•	•	•		•		•	•				•	•	•			•	•	•	•	10
BTI	RT.TOGR	AF	ΉΥ			_								_			_	_	_		_				_	_		_							11

INTRODUCTION

Various porous propellants for use in a traveling charge gun have been investigated by the Ballistic Research Laboratories. 1,2,3 Recently Cole and Adams described a process 4 for the preparation of porous propellants in the density range 0.8 to 1.3 g/cc. Their objective was to produce porous propellants having a narrow density gradient over the length of the round. Since then a porous nitrocellulose propellant has been formed for traveling charge rounds with a wide density gradient. These rounds have a length of four inches, an outer diameter of 0.575", and a density variation of 0.9 ± 0.05 g/cc at the one end to 1.2 ± 0.05 g/cc at the other end. For firing as a traveling charge, an inhibitor coating is applied to the porous propellant.

PROPELLANT PREPARATION

The procedures used to prepare the propellant (Military Grade Nitrocellulose 13.15N) were essentially the same as described in an earlier BRL Report. The significant differences in the preparation procedure were the loading and pressing of the nitrocellulose into the mold. The loading of the material into the mold was achieved with the aid of a specially constructed eight-inch riser fitted to the top of a six inch mold (Fig. 1). This riser enabled the nitrocellulose to be added in one large unit instead of in several increments. A torque wrench on the arbor press enabled the operator to apply and repeat any specific compressive force when preparing the propellant. A constant load was applied to a consolidating ram during curing in order to achieve the density-gradient required in the round (Fig. 2).

TRAVELING CHARGE PREPARATION

After the propellant was prepared it was glued to an aluminum projectile and inhibited to form a traveling charge projectile (projectile, propellant and inhibitor). The inhibitors examined were an organosol of a double base propellant (M-8); a liquid plastic; and an aluminum sleeve.

The initial step in inhibiting a traveling charge with the M-8 or liquid plastic was the fastening of an aluminum projectile to the propellant. Next a dip coating of a solvent solution of M-8 was used to inhibit the propellant. The M-8 inhibited round was then cured by partial room temperature evaporation of the solvent and a final cure for ten hours in a 40°C oven.

A potting process was used for propellant inhibited with liquid plastic. After potting the propellant into molds containing the liquid plastic, the assembly was placed in a 25° C oven to cure the liquid plastic by polymerization. The sample cured in two hours.

The pre-fabricated aluminum sleeve inhibitors had the correct outside diameter. It was, therefore, necessary only to use a solvent solution of M-8 and pot the porous propellant into these aluminum sleeves.

DISCUSSION

Initial studies indicated that the density-gradient, and especially the density of the top and bottom one-inch pieces of a round, was due to the compressional forces applied during both packing and curing. The table illustrates this effect on the density-gradient for a propellant round. When increment loading was used the density-gradient changed irregularly at the increment junctions. Elimination of weak, irregular density connections between successive increment pressings has been attained by using an eightinch riser which enables the nitrocellulose to be added in one increment.

The propellant, used for the aluminum inhibited or plastic inhibited traveling charges, was 0.575 inches in diameter before it was inhibited and 0.625 inches after the inhibitor was applied. To use M-8 to inhibit rounds, it was necessary to start with 0.600 inch diameter propellant in order to obtain the required 0.625 inch diameter end product. Figure 4 illustrates the problem encountered when additional M-8 coatings were applied to previously dried coatings. A maximum of 0.025 inch thickness of M-8 inhibitor could be applied to the outside of the traveling charge projectile because of a softening effect of successive coatings of the M-8 inhibitor on the previously dried coatings. The liquid plastic (Fig. 3) fulfilled all requirements for a coating, except for the undesirable residue left in the gun after firing. It was superior to the M-8 coating because of its ease of handling, ease of application, and fast curing to a hard translucent solid. The prefabricated aluminum sleeve inhibitors were used as potting containers for the porous propellant.

The performance of the porous propellant and the inhibitors tested will be published as part of a report on the traveling charge gun.

EFFECT OF COMPRESSION AND CURE WEIGHT ON THE DENSITY-GRADIENT IN A FOUR-INCH PIECE OF POROUS HITROCELLULOSE

	4 (top)	66*0	1.10	1.25	1.33	1.21	1.27	1.26	1.20	1.25	
t one inch sections	3	0.93	96.0	1.15	1.22	1.22	1.27	1.19	1.10	1.17	_
Density c/cc for adjacent one inch sections	CJ.	0.77	0.74	99.0	1.17	1.21	1.19	1.17	1.13	1.11	
Dens	1 (bottom)	0.58	0.65	0.59	0.95	0.59	0.87	0.89	0.92	0.85	
Constitution of the state of	ouring weight	10	10	20	30	10	10	10	15	15	
	compression 1bs/in ²	98	98	160	524	22 ¹ +	196	361	196	961	

CONCLUSIONS

Porous nitrocellulose propellant was formed into pieces 4" x 0.575" with a density variation of 0.9 gm/cc at one end to 1.2 g/cc at the other end. Increment loading, resulting in poor segment bonds was avoided by using a long loading riser on the mold. Techniques were developed to apply effective inhibitors to traveling charge propellant.

ACKNOWLEDGEMENTS

The authors wish to thank Mr. Horace Smith for his evaluation of the porous propellant and traveling charge rounds; Mr. Ernest Adams for designing the hardware; and Mr. Paul Brown for assisting in the preparation of the propellant.

James E. Cole
JAMES E. COLE

CARL R. RUTH

CARL R. RUTH

BIBLIOGRAPHY

- 1. Vest, D. C. An Experimental Traveling Charge Gun. BRL Report No. 773, 1951.
- 2. Baer, P. B. Application of Porous Propellant to the Traveling Charge Gun. BRL Technical Note No. 1219, 1958.
- 3. Vest, D. C., and Vinti, J. P. A Theory of Fast Burning Propellants and Applications to the Traveling Charge Gun. Bulletin of the 9th Meeting of JANAF Solid Propellant Group.
- 4. Cole, J. E. and Adams, E. C. A Process for the Preparation of Nitro-cellulose Propellants in the Density Range of 0.8 to 1.3 g/cc. BRL Technical Note No. 1487.

Figure 1. Mold assembly with compacting ram.

Figure 2. Mold assembly ready for curing.

Figure 3. One M-8 and two liquid plastic inhibited traveling-charge rounds

Figure 4. Effect of excess M-8 coatings

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
	<u> </u>		
10	Defense Documentation Center	1	Redstone Scientific Information
	Cameron Station		Center
	Alexandria, Virginia		ATTN: Chief, Document Section
2	Director		U. S. Army Missile Command Redstone Arsenal, Alabama
_	Advanced Research Projects Agency		neds come Ar Benat, Atabama
	ATIN: Advanced Propellant	2	Commanding General
	Chemistry Office	_	U. S. Army Ammunition Command
	The Pentagon, Room 3D159		ATTN: ORDLY-AREL, Engr. Library
	Washington 25, D. C.		Joliet, Illinois
			•
1	Commanding General	1	Commanding General
	U. S. Army Materiel Command		White Sands Missile Range
	ATTN: AMCRD-RP-Bel		ATTN: ORDBS-OM-TL
	Research and Development Directorat	te	New Mexico
	Washington 25, D. C.	1	Commondan
1	Commanding General	_	Commander U. S. Naval Ordnance Laboratory
_	U. S. Army Materiel Command		White Oak
	ATIN: AMCRD-RC		Silver Spring 19, Maryland
	Research and Development Directorat	te	Deliver of and any communication
	Washington 25, D. C.	2	Commanding Officer
			U. S. Naval Propellant Plant
3	Commanding Officer		ATEN: Technical Library
	Picatinny Arsenal		Indian Head, Maryland
	ATTN: Library	•	6
	Dover, New Jersey	2	Commander
1	Commanding Officer		U. S. Naval Ordnance Test Station ATM: Technical Library Branch
-	Radford Arsenal		China Lake, California
	Radford, Virginia		onina zaze, oaziroinia
		1	AFMTC (MTRSS)
1	Commanding Officer	_	Patrick Air Force Base
	Frankford Arsenal		Florida
	ATTM: Propellant and Explosives		
	Section, 1331	2	APGC (PGAPI)
	Philadelphia 37, Pennsylvania		Eglin Air Force Base
,	Companion Office		Florida
1	Commanding Officer Harry Diamond Laboratories	1	Director
	ATM: Technical Information Office	_	National Aeronautics and Space
	Branch 012	•,	Administration
	Washington 25, D. C.		ATM: Library
			Langley Research Center
			Langley Field, Virginia

DISTRIBUTION LIST

No. of Copies	<u>Organization</u>	No. of Copies	Organization
2	6593d Test Group (DGPS, DGS) Edwards Air Force Base California	1	Jet Propulsion Laboratory ATTN: I. E. Newlan, Chief Reports Group 4800 Oak Grove Drive
2	Scientific and Technical Information Facility		Pasadena 3, California
	ATTN: NASA Representative P. O. Box 5700 Bethesda, Maryland	1	Lockheed Propulsion Company ATIN: Librarian P. O. Box 111 Redlands, California
1	U. S. Department of Interior Bureau of Mines ATIN: Reports Librarian Explosives Research Lab. 4800 Forbes Avenue	1	Olin Mathieson Chemical Corporation ATTN: Research Library Marion, Illinois
	Pittsburgh 13, Pennsylvania	1	Rocketdyne A Division of North American
1	Aerojet-General Corporation ATTN: Technical Information Office P. O. Box 1947 Sacramento, California	e	Aviation, Inc. ATIN: Library Solid Propulsion Operations P. O. Box 548 McGregor, Texas
1	Armour Research Foundation of Illinois Institute of Technology ATTN: G. K. Hersh, Chemistry Div. Technology Center Chicago 16, Illinois	1	Rocketdyne ATTN: Library, Dept. 596-306 6633 Canoga Avenue Canoga Park, California
1	Atlantic Research Corporation Shirley Highway and Edsall Road Alexandria, Virginia	1	Roim and Haas Company ATTN: Librarian Redstone Arsenal Research Division Huntsville, Alabama
1	E. I. duPont deNemours and Company ATTN: Mrs. Alice R. Steward Eastern Laboratory Gibbstown, New Jersey	2	Stanford Research Institute ATTN: Code 460 Menlo Park, California
1	Hercules Powder Company ATIN: Library Allegany Ballistics Laboratory P. 0. Box 210 Cumberland, Maryland	1	Thiokol Chemical Corporation ATIN: Librarian Elkton Division Elkton, Maryland

DISTRIBUTION LIST

No. of Copies	Organization
1	United Technology Corporation ATTN: Librarian P. 0. Box 358 Sunnyvale, California
10	Solid Propellant Information Agency Applied Physics Laboratory The Johns Hopkins University Silver Spring, Maryland
10	The Scientific Information Officer Defence Research Staff British Embassy 3100 Massachusetts Avenue, N. W. Washington 8, D. C.
4	Defence Research Member Canadian Joint Staff 2450 Massachusetts Avenue, N. W. Washington 8, D. C.

Preparation Propellants - Preparation Mitrocellulose -Processing UNCLASSIFIED Traveling Charge Ab Accession No.
Ballistic Research Laboratories, APC PRAVELING OF POROUS MITHOCELULOSE POR A TRAVELING CHARGE GUN James E. Cole and Carl R. Ruth

3 June RG Memorandum Report No. 1485

NOT & E Project No. 1MO10501A004 UNCLASSIFIED Report

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Bardware artinements are discussed for the loading and pressing of the nitrocellulose. A table is ancluded showing the variation of density with different compressional forces. A decription is given of the assembling of the hardware and tabibiting the propellant.

Preparation Propellants - Preparation Nitrocellulose -UNCLASSIFIED Traveling Charge Processing AD Accession No.
Ballistic Research Laboratories, APG PREPARATION OF POROUS NITROCELLULOSE POR A IRAVELING BRL Memorandum Report No. 1485 June 1963 James E. Cole and Carl R. Ruth

NOT & E Project No. 1MO10501A004 UNCLASSIFIED Report

A method is described for the preparation of porous nitrocellulose propellant with a density-cradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. limithane refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different compressional forces. A description is given of the assembling of the hardware and inhibiting the propellant.

Preparation Propellants - Preparation Mitrocellulose -UNCLASSIFIED Traveling Charge -Accession No.
Ballistic Research Laboratories, APC
PREPARATION OF PONOUS MITMOCELLULOSE POR A TRAVELING
CHANCE GUN Jemes E. Cole and Carl R. Ruth

BKL Memorrandum Report No. 1485 June 1962

Processing

NOT & Freject No. 19010501A004 UNCLASSIFIED Report

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Hardware refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different compressional forces. A description is given of the assembling of the bardware and cabiting the propellant.

Preparation Propellants - Preparation Mitrocellulose -UNCLASSIFIED Traveling Charge -**Processing** AD Accession No.
Ballistic Research Laboratories, APG
PREPARATION OF POROUS NITROCELLULOSE FOR A IRAVELING BRL Memorandum Report No. 1485 June 1963 James E. Cole and Carl R. Ruth CHARGE GUN

NOT & E Project No. 1MO10501A004 UNCLASSIFIED Report

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Bardware refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different compressional forces. A description is given of the assembling of the hardware and inhibiting the propellant.

fraveling Charge Preparation
Propellulus - Preparation
Hitrocellulose Processing UNCLABELITIED AD Accession No.
Delistic Research Laboratories, ANG
PROPRIATOR OF PORCES RITHOCRIMIAGE FOR A TRAVELIES
CHARGE CHR.
Junes E. Cole and Carl R. Buth Mil. Negorandan Report No. 1485 June 1965

MOT & E Project No. 11010501A00h

A method is described for the preparation of porous nitrocallulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Industry a Thismans are discussed for the loading and pressing of the nitrocallulose. A table is included absoring the variation of density with different compressional forces. A description is given of the assembling of the hardware and tableting the propellant.

Preparation Propellants - Preparation Mitrocellulose -UNCLASSIFIED Traveling Charge -Processing ACCESSION NO.

RELIISTIC Research Laboratories, AFG
RELIISTIC Research Laboratories, AFG
CHARGE GUN
James E. Cole and Carl R. Ruth BRL Memorandum Report No. 1485 June 1963 Accession No.

HDT & E Project No. 19010501A004 UNCLASSIFIED Report

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Hardware refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different compressional forces. A description is given of the assembling of the hardware and inhibiting the propellant.

Traveling Charge Proparation
Propalimats - Preparation
Hitrocallulose Processing UNICIABBITIED About 1 in the Second S ML Memorandus Asport No. 1405 June 1963 MDT & S Project No. MCMOSOLACON INCLASSITION Report

A method is described for the proparation of porous mitrocallulose propellant with a desaity-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Enrhance reliments are discussed for the londing and pressing of the mitrocallulose. A table is included shoring the variation of density with different compressional forces. A description is given of the assembling of the bardware and tabletting the propellant.

A method is described for the preparation of porous nitrocellulose propellant with a density-gradient of 0.9 gm/cc at one end to 1.2 gm/cc at the other end. Barbane refinements are discussed for the loading and pressing of the nitrocellulose. A table is included showing the variation of density with different conpressional forces. A description is given of the assembling of the hardware and inhibiting the propellant. Preparation Propellants - Preparation Mitrocellulose -Traveling Charge -AD Accession No.

Ballistic Research Laboratories, AFG

FREFARATION OF POROUS NITROCELLILOSE FOR A TRAVELING

CRARKE GUN

James E. Cole and Carl R. Ruth MfL Memorandum Report No. 1485 June 1965 NOT & E Project No. 1MD10501A00k

UNICLASSIPLED