Semiconductor Physics Documentation

Y.G

CONTENTS

1	Inde	X	1
	1.1	Basic physics of semiconductors	1
	1.2	Basic equations	1
	1.3	MIS structure	2
	1.4	Bipolar transistor	3
	1.5	MOSFET	3

CHAPTER

ONE

INDEX

1.1 Basic physics of semiconductors

1.1.1 Strain calculation

1.1.2 Band theory

1.2 Basic equations

In this section, we introduce some basic equations related to semiconductor devices.

Index

Basic equations

Poisson equation

Current-density equations

Continuity equations

1.2.1 Poisson equation

The electrostatic potential can be calculated with the corresponding charge distribution with Poisson equation.

where $"_s$ is the dielectric permittivity and $"_s = 11:9"_0$ for Si. is the electrostatic potential. The electric charge density in a semiconductor is given by the summation of the electron charge density n, the hole charge density p, and the ionized impurity doping density D. Therefore,

$$= q(n p+D); (1.2)$$

where q is the elementary charge. Note that D consists of the ionized acceptor and donor type impurity densities, which mean $D = N_A - N_D$.

Thus, (1.1) can be expressed as following,

$$\Gamma^2 = \frac{q(n + N_A N_D)}{s}$$
 (1.3)

The left side can be rewritten in the orthogonal coordinate system,

$$\Gamma^{2}\left(x;y;z\right) = \frac{@}{@\hat{x}} + \frac{@}{@\hat{y}} + \frac{@}{@\hat{z}}:$$
(1.4)