Inventor(s): Batlaw et al Case No: 5729

IN THE CLAIMS

- 1. (Currently Amended) In a two stage process of injection stretch blow molding polypropylene to form a container, wherein a first stage comprises forming a preform article, and a second stage comprises reheating and blow molding the preform article to form a high clarity container, the first stage comprising the steps of:
- (a) providing a chemical composition comprising polypropylene, said chemical composition having a melt flow index in the range of between about 6 and about 50 grams/10 minutes, according to ASTM D 1238;
- (b) injecting said chemical composition into a mold-at a fill rate of greater than about 5 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a closed end connected to a side wall, said side wall having a maximum thickness of less than from about 2 mm to about 4 3.5 mm; and
 - (d) removing said preform article from said mold.
 - 2. (Original) The process of claim 1 further comprising the steps of:
 - (e) reheating said preform article; and
 - (f) stretch blow molding said preform article to form a container.
 - (Canceled)
- (Original) The process of claim 1 wherein said injection step (b) provides said chemical composition into said mold at a fill rate of about 5 - 22 grams/second.

- 5. (Original) The process of claim 1 wherein said chemical composition comprises an ethylene/propylene copolymer.
- 6. (Original) The process of claim 1 wherein said chemical composition further comprises a nucleating agent.
- 7. (Original) The process of claim 6 wherein said nucleating agent comprises a dibenzylidene sorbitol compound (DBS), or a derivative thereof.
- 8. (Original) The process of claim 6 wherein said nucleating agent comprises sodium 1,3-0-2, 4-bis(4-methylbenzylidene) sorbitol and derivatives thereof.
 - 9. (Withdrawn) The process of claim 6 wherein said nucleating agent comprises sodium benzoate and derivatives thereof.
 - 10. (Withdrawn) The process of claim 6 wherein said nucleating agent comprises 1,2-cyclohexanedicarboxylate salts and derivatives thereof.
 - 11. (Withdrawn) The process of claim 6 wherein said nucleating agent comprises aluminum 4-tert-butylbenzonate and derivatives thereof.

- 12. (Withdrawn) The process of claim 6 wherein said nucleating agent comprises metal salt(s) of cyclic phosphoric esters and derivatives thereof.
- 13. (Original) The process of claim 6 wherein said nucleating agent comprises bis(3,4-dialkylbenzylidene) sorbitol acetal or derivatives thereof.
- 14. (Original) The process of claim 6 wherein said nucleating agent comprises 1,3-O-2,4-bis(3,4-dimethylbenzylidene) sorbitol or derivatives thereof.
- 15. (Withdrawn) The process of claim 6 wherein said nucleating agent comprises disodium bicyclo[2.2.1]heptanedicarboxylate or derivatives thereof.
- 16. (Original) The process of claim 1 wherein said chemical composition comprises a at least one species of polypropylene homopolymer.
- 17. (Original) The process of claim 1 wherein said chemical composition comprises a polypropylene random copolymer.
- 18. (Original) The process of claim 1 wherein said chemical composition comprises a polypropylene block copolymer.
 - 19. (Canceled)

Inventor(s): Batlaw et al Case No: 5729 PAGE 06

20. (Original) The process of claim 2 wherein said stretch blow molding step (f) is repeated successively in a manufacturing operation at a rate of container production

of greater than about 900 containers per hour per mold.

21. (Original) The process of claim 2 wherein said stretch blow molding step (f)

is repeated successively in a manufacturing operation at a rate of container production

of at least about 1200 containers per hour per mold.

22. (Original) The process of claim 2 wherein said blow molding step (f) is

repeated successively in a manufacturing operation at a rate of container production of

at least about 1500 containers per hour per mold.

(Withdrawn) A preform article formed by employing the process of claim 1.

(Withdrawn) A container formed by employing the process of claim 2.

25. (Original) The process of claim 2 wherein said container provides a haze to

thickness ratio expressed as a percent haze/mils of less than about 0.05.

26. (Currently Amended) A process for forming a polypropylene preform

article to be used in the manufacture of a high clarity container, said process comprising

the steps of:

5

- (a) providing a chemical composition comprising in part polypropylene, said chemical composition having a melt flow index in the range between about 13 and about 35 grams/10 minutes, according to ASTM D-1238;
- (b) injecting said chemical composition into a mold, at a fill rate of greater than about 5 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a closed end and a side wall, said closed end being adapted for subsequent second stage reheating and stretch blow molding, said side wall of said preform article having a thickness of less than from about 2 mm to about 4 3.5 mm; and
 - (d) removing said preform article from said mold.
 - 27. (Canceled)
- 28. (Withdrawn) The process of claim 26, wherein said chemical composition further comprises a nucleating agent.
- 29. (Withdrawn) The process of claim 28 wherein said nucleating agent is selected from the group of agents consisting of: dibenzylidene sorbitol-containing compounds, sodium benzoate, cyclohexanedicarboxylate salts, aluminum 4-tert-butylbenzoate, metal saits of phosphoric esters, and derivatives thereof.

- 30. (Original) The process of claim 28 wherein said nucleating agent comprises 1,3-O-2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) or derivatives thereof.
- 31. (Withdrawn) The process of claim 28 wherein said nucleating agent comprises disodium bicyclo[2.2.1]heptanedicarboxylate or derivatives thereof.
- 32. (Original) The process of claim 26 wherein said injection step provides said chemical composition into said mold at a fill rate of about 5 22 grams/second.
 - 33. (Canceled)
 - 34. (Canceled)
- 35. (Original) The process of claim 26 wherein said fill rate in said step (b) is about 5-11 g/s and said preform side wall thickness is about 2 mm.
- 36. (Original) The process of claim 26 wherein said fill rate in said step (b) is about 5-13 g/s and said preform side wall thickness is about 3 mm.
- 37. (Original) The process of claim 26 wherein said fill rate in said step (b) is about 5-17 g/s and said preform side wall thickness is about 4 mm.

Inventor(s): Batlaw et al

Case No: 5729

38. (Withdrawn) The preform article formed by the process of claim 26.

- 39. (Original) The process of claim 26, further comprising the steps of:
- (e) reheating said preform article; and
- (f) stretch blow molding said preform article to form a container.
- 40. (Withdrawn) The container formed by employing the process of claim 39.
- 41. (Original) A process comprising the steps of:
- (a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes, according to ASTM D 1238;
- (b) injecting said chemical composition into a mold at a fill rate of greater than about 5 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a side wall thickness of about 2 mm; and
 - (d) removing said preform article from said mold.
 - 42. (Original) The process of claim 41 wherein further comprising the steps of:
 - (e) reheating said preform article; and
 - (f) stretch blow molding said preform article to form a container.
 - 43. (Withdrawn) A preform article formed using the process of claim 41.

- 44. (Withdrawn) A container formed using the process of claim 42.
- 45. (Original) A process comprising the steps of:
- (a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes, according to ASTM D 1238;
- (b) injecting said chemical composition into a mold at a fill rate of greater than about 5 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a side wall thickness of about 3 mm; and
 - (d) removing said preform article from said mold.
 - 46. (Original) The process of claim 45 wherein further comprising the steps of:
 - (e) reheating said preform article; and
 - (f) stretch blow molding said preform article to form a container.
 - 47. (Withdrawn) A preform article formed using the process of claim 45.
 - 48. (Withdrawn) A container formed using the process of claim 46.

- 49. (Currently Amended) A process for making a perform, wherein said perform may may be adapted for manufacture of a high clarity polypropylene container.

 Said process comprising the steps of:
- (a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes, according to ASTM D 1238;
- (b) injecting said chemical composition into a mold at a fill rate of greater than about 5 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a side wall thickness of about 2 to about 4 mm; and
 - (d) removing said preform article from said mold.
- 50. (Withdrawn) The process of claim 49 wherein further comprising the steps of:
 - (e) reheating said preform article; and
 - (f) stretch blow molding said preform article to form a container.
 - 51. (Withdrawn) A preform article formed using the process of claim 49.
 - 52. (Withdrawn) A container formed using the process of claim 50.

12/12/2005 17:34 8645031999 MILLIKEN LEGAL PAGE 12

USPTO Customer No. 25280 Inventor(s): Batlaw et al Serial No: 10/764,234 Case No: 5729

53. (Withdrawn) A process comprising the steps of:

(a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes, according to ASTM D 1238, said chemical composition further comprising a nucleating agent, said nucleating agent comprising at least in part 1,3-O-2,4-bis(3,4-

(b) injecting said chemical composition into a mold at a fill rate of between about 5 and about 22 grams of chemical composition per second;

(c) forming said chemical composition into a preform article, said preform article

having a side wall thickness of between about 2 mm and about 4 mm; and

(d) removing said preform article from said mold.

dimethylbenzylidene) sorbitol (DMDBS) or derivatives thereof;

54. (Withdrawn) A preform article formed according to the process of claim 53.

55. (Withdrawn) The process of claim 53 wherein further comprising the steps of:

(e) reheating said preform article; and

(f) stretch blow molding said preform article to form a container.

56. (Canceled)

Inventor(s): Batlaw et al Case No: 5729

57. (Original) A process comprising the steps of:

- (a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes according to ASTM D 1238, said chemical composition further comprising a nucleating agent, said nucleating agent comprising at least in part a p-methyl substituted benzaldehyde sorbitol compound or derivatives thereof;
- (b) injecting said chemical composition into a mold-at a fill rate of between about5 and about 22 grams of chemical composition per second;
- (c) forming said chemical composition into a preform article, said preform article having a wall thickness of between about 2 mm and about 4 mm; and
 - (d) removing said preform article from said mold.
 - 58. (Original) A preform article formed according to the process of claim 57.
 - 59. (Original) A process comprising the steps of:
- (a) providing a chemical composition comprising polypropylene, said chemical composition having an MFI in the range of between about 13 and about 35 grams/10 minutes, according to ASTM D 1238, said chemical composition further comprising a nucleating agent, said nucleating agent comprising at least in part disodium bicyclo[2.2.1]heptanedicarboxylate or derivatives thereof;
- (b) injecting said chemical composition into a mold, at a fill rate of between about5 and about 22 grams of chemical composition per second;

USPTO Customer No. 25280

Scrial No: 10/764,234

Inventor(s): Batlaw et al Case No: 5729

(c) forming said chemical composition into a preform article, said preform article

having a wall thickness of between about 2 mm and about 4 mm; and

- (d) removing said preform article from said mold.
- 60. (Original) A preform article formed according to the process of claim 59.
- 61. (Original) The process of claim 59 wherein further comprising the steps of:
- (e) reheating said preform article; and
- (f) stretch blow molding said preform article to form a container.
- 62. (Original) A container formed according to the process of claim 61.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.