Proiectare logică

Curs 11

Metode de proiectare a circuitelor secvențiale sincrone cu intrări asincrone

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

Cuprins

- Sinteza unui automat (circuit secvențial sincron) de răspuns la telefon
 - cu bistabile
 - porți logice
 - decodificatoare
 - multiplexoare
 - cu numărătoare

Enunțul problemei

Să se realizeze un automat (circuit secvențial sincron) de răspuns la telefon cu următoarele facilități:

- permite configurarea numărului de apeluri sonore după care se pornește automatul;
- comandă redarea unui mesaj înregistrat;
- comandă înregistrarea mesajului apelantului;
- își încheie funcționalitatea în următoarele condiții:
 - după înregistrarea mesajului apelantului;
 - când apelantul închide;
 - când destinatarul răspunde la telefon.

Schema bloc

Este stabilită de proiectant și conține automatul împreună cu periferice necesare.

Tel (Telephone) – telefon

- Ring (sonerie) indicator apel sonor (1 activ, 0
 inactiv) va decrementa CNT;
- EC (End Call) indicator apelantul a închis;
- PU (Pick Up) indicator destinatarul a răspuns;

CNT (Counter) – numărător binar invers

- Zero indicator valoare 0000 în numărător;
- PL (Parallel Load) încărcare valoare $D_3D_2D_1D_0$;

Player – unitate de redare audio

- SP (Start Play) comandă pornire redare mesaj;
- EP (End Play) indicator finalizare redare mesaj;
- dacă EC = 1 SAU PU = 1 => oprire imediată redare (EP = 1).

Recorder – unitate de înregistrare audio

- SR (Start Record) comandă pornire înregistrare
- ER (End Record) indicator finalizare înregistrare când EC = 1 sau PU = 1

Schema bloc

Este stabilită de proiectant și conține automatul împreună cu periferice necesare.

Automat – circuit secvențial sincron

- RST [IN] resetare asincronă
- Start [IN] indicator asincron de pornire
- Init [OUT] comandă de inițializare a numărătorului
- SP (Start Play) [OUT] comandă pornire redare mesaj
- EP (End Play) [IN] indicator asincron finalizare redare mesaj
- SR (Start Record) [OUT] comandă pornire înregistrare
- ER (End Record) [IN] indicator asincron finalizare înregistrare

1. Descrierea funcționării

- RST [IN] resetare asincronă
- Start [IN] indicator asincron de pornire
- Init [OUT] comandă de inițializare a numărătorului invers la o valoare
- SP (Start Play) [OUT] comandă pornire redare mesaj
- EP (End Play) [IN] indicator asincron finalizare redare mesaj
- SR (Start Record) [OUT] comandă pornire înregistrare
- ER (End Record) [IN] indicator asincron finalizare înregistrare

Organigrama

- Intrare sincronă: se modifică imediat după frontul ascendent al CLK.
- Intrare asincronă: se poate modifica la orice moment de timp T.
- Efectul la bistabile apare la $T_0=T+\Delta_0$, $T_1=T+\Delta_1$, unde Δ_0 , Δ_1 = întârzieri pe circuit.
- Dacă T_0 după front și T_1 înainte de front => stare greșită (eroare).

Soluție - codificarea adiacentă a stărilor

Se codifică stările de după decizie cu coduri adiacente (diferă prin 1 bit) => intrarea asincronă va afecta cel mult 1 bistabil (bit) de stare.

Metoda: Când apar **intrări asincrone** calea de ieșire a acestora trebuie să conțină **maxim 2 stări** care se vor codifica **adiacent**.

^{*}Dacă >2 stări => se introduc stări noi pentru a satisface constrângerea.

Introducerea unei stări noi – exemplu de caz

Obs: Variabila asincronă y_1 are 3 stări pe calea de ieșire: B, C, D.

Regula: maxim 2 stări.

Soluție: Se introduce o stare adițională **B'** => B și **B'** vor avea codificare adiacentă.

Soluție alternativă

Implementarea cu numărător sincron (are intrările D; independente de y).

Obs: Nu se impune regula de codificare adiacentă.

2. Codificarea stărilor

- Există 6 stări A, ..., F => codificare pe **3 biți**: Q_2 , Q_1 , Q_0 variabile de stare
- A este starea de reset => A = 000
- Când apar intrări asincrone stările pe calea de ieșire se codifică adiacent:
 - Se poate folosi diagrama Karnaugh a variabilelor de stare pentru a asocia coduri adiacente stărilor;
 - Stările adiacente se asociază celulelor vecine pe axe.

Intrare	Calea de
asincronă	ieșire
Start	B, C
EP	D, E
ER	F. A

Q_2 Q_1 Q_0	00	01	11	10
0	Α	В	С	D
1	F			E

• Codul unei stări este dat de $Q_2Q_1Q_0 =>$ A=000, B=001, C=011, D=010, E=110, F=100

2. Codificarea stărilor, 3. Reducerea numărului de stări

RST 000 001 Śtar 011 SP 010 110 SR 100 ER

4. Implementarea registrului de stări interne

Registrul de stări se implementează cu 3 bistabile D flip-flop.

5. Determinarea funcțiilor de excitație secundară

- Se realizează Diagrama Karnaugh a stării viitoare $(Q_2Q_1Q_0)^{t+1}$ în funcție de starea curentă $(Q_2Q_1Q_0)^t$.
 - -> se obțin funcțiile de excitație secundară: $\mathbf{D}_i = \mathbf{Q}_i^{t+1}$

5. Determinarea funcțiilor de excitație secundară

Metodă de realizare a Diagramei Karnaugh pentru stări pe baza organigramei

- Fiecare celulă a diagramei corespunde unei stări -> codul stării dă poziția în diagramă.
- În interiorul fiecărei celule se introduc:
 - X-uri dacă starea nu apare în organigramă;
 - Valoarea stărilor următoare stării curente astfel:
 - 1. Un bit care nu variază în toate stările următoare celei curente se păstrează cu valoarea respectivă;
 - 2. Un bit care variază se înlocuiește cu variabila nenegată dacă valorile sale sunt identice cu ale variabilei, în caz contrar se înlocuiește cu variabila negată.

$(\mathbf{Q}_2\mathbf{Q}_1\mathbf{Q}_0)^{t+1}:$	Q_2^t Q_1^t Q_0^t	00	01	11	10
	0	001	OStart1	010	EP10
	1	ER00	XXX	XXX	100

!Verificare!

5. Determinarea funcțiilor de excitație secundară

- 1. Se descompune Diagrama Karnaugh în diagrame pentru fiecare intrare D_i .
- 2. Dacă se implementează cu porți logice se minimizează fiecare diagramă.

$(\mathbf{Q}_2\mathbf{Q}_1\mathbf{Q}_0)^{t+1}:$	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
	0	001	0Start1	010	EP10
	1	ER00	XXX	XXX	100
$0^t 0^t$	20 01	11	10		1

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
D_2 :	0	0	0	0	EP
	1	ĒR	X	X	1

_	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
D_1 :	0	0	Start	1	1
	1	0	X	Х	0

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
D_0 :	0	1	1	0	0
	1	0	X	Χ	0

5. Determinarea funcțiilor de excitație secundară

D ₂ :	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
	0	0	0	0	EP
	1	ER	Χ	Χ	1

Minimizarea funcțiilor cu expresii înglobate la FDM

- 1. Se înlocuiesc expresiile înglobate cu 0 în diagramă. Se fac grupări maximale de 1 și se rețin termenii rezultați.
- 2. Se înlocuiește 1 cu X în diagramă. Se fac grupări maximale, care să conțină toate expresiile înglobate cel puțin o dată. O grupare nu are voie să conțină 2 expresii înglobate diferite, dar poate conține aceeași expresie de mai multe ori. Pentru fiecare grupare se efectuează conjuncție (ȘI) între expresia înglobată și termenul rezultat.
- 3. Se efectuează SAU peste rezultatele obținute la pașii anteriori: $\mathbf{D}_2 = \mathbf{Q}_2^t \cdot \mathbf{Q}_1^t + \mathbf{Q}_2^t \cdot \overline{\mathbf{ER}} + \mathbf{Q}_1^t \cdot \overline{\mathbf{Q}_0^t} \cdot \mathbf{EP}$.

Q_2^t Q_1^t Q_0^t	00	01	11	10
0	0	0	0	0
1	0	X	X	1

$$Q_2^t \cdot Q_1^t$$

$Q_2^t Q_1^t Q_0^t$	00	01	11	10
0	0	0	0	EP
1	ER	X	Χ	X

$$Q_2^t \cdot \overline{ER} \quad Q_1^t \cdot \overline{Q_0^t} \cdot EP$$

5. Determinarea funcțiilor de excitație secundară

D ₁ :	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
	0	0	Start	1	1
	1	0	X	Χ	0

Minimizarea funcțiilor cu expresii înglobate la FDM

- 1. Se înlocuiesc expresiile înglobate cu 0 în diagramă. Se fac grupări maximale de 1 și se rețin termenii rezultați.
- 2. Se înlocuiește 1 cu X în diagramă. Se fac grupări maximale, care să conțină toate expresiile înglobate cel puțin o dată. O grupare nu are voie să conțină 2 expresii înglobate diferite, dar poate conține aceeași expresie de mai multe ori. Pentru fiecare grupare se efectuează conjuncție (ȘI) între expresia înglobată și termenul rezultat.

3.	Se efectuează SAU peste rezultatele obținute la pașii
	anteriori: $\mathbf{D_1} = \overline{\mathbf{Q_2^t}} \cdot \mathbf{Q_1^t} + \mathbf{Q_0^t} \cdot \mathbf{Start}$.

$Q_2^t Q_1^t Q_0^t$	00	01	11	10
0	0	0	1	1
1	0	Χ	Χ	0

$$\overline{\mathbf{Q}_{2}^{t}}\cdot\mathbf{Q}_{1}^{t}$$

$Q_2^t Q_1^t Q_0^t$	00	01	11	10
0	0	Start	X	Х
1	0	X	Χ	0

 $Q_0^t \cdot Start$

5. Determinarea funcțiilor de excitație secundară

5. Determinarea funcțiilor de ieșire

Metodă de realizare a Diagramei Karnaugh pentru ieșiri pe baza organigramei

- Codul stării dă poziția în diagramă.
- În interiorul fiecărei celule se introduce:
 - X dacă starea nu apare în organigramă;
 - 1 dacă ieșirea este asociată stării curente;
 - 0 dacă ieșirea nu este asociată stării curente sau tranzițiilor din ea;
 - variabila nenegată dacă ieșirea este asociată unei tranziții pe 1
 - variabila negată dacă ieșirea este asociată unei tranziții pe 0

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
Init:	0	1	0	0	0
	1	0	×	X	0

	Q_2^t $Q_1^t Q_0^t$	00	01	11	10	
SP:	0	0	0	1	0	
	1	0	Χ	X	0	

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
SR:	0	0	0	0	0
	1	0	Χ	X	1

Init =
$$\overline{\mathbf{Q}_{2}^{t}} \cdot \overline{\mathbf{Q}_{1}^{t}} \cdot \overline{\mathbf{Q}_{0}^{t}}$$

$$\Rightarrow SP = \mathbf{Q}_{1}^{t} \cdot \mathbf{Q}_{0}^{t}$$

$$SR = \mathbf{Q}_{2}^{t} \cdot \mathbf{Q}_{1}^{t}$$

7. Schema circuitului – implementarea funcțiilor de excitație și a ieșirilor cu

porți logice

$$\begin{aligned} & D_2 = \underline{Q_2^t} \cdot Q_1^t + Q_2^t \cdot \overline{ER} + Q_1^t \cdot \overline{Q_0^t} \cdot EP \\ & D_1 = \underline{Q_2^t} \cdot \underline{Q_1^t} + Q_0^t \cdot Start \\ & D_0 = \overline{Q_2^t} \cdot \overline{Q_1^t} \end{aligned}$$

$$Init = \overline{Q_2^t} \cdot \overline{Q_1^t} \cdot \overline{Q_0^t}$$

$$SP = Q_1^t \cdot Q_0^t$$

$$SR = Q_2^t \cdot Q_1^t$$

20

7. Schema circuitului – implementarea funcțiilor de excitație cu MUX și a ieșirilor cu porți logice

- Se alege MUX cu un număr de selecții identic cu numărul de variabile secundare.
- Pe selecțiile MUX se aplică variabilele secundare.
- Pe intrările de date ale MUX se aplică conținutul celulei din Diagrama Karnaugh care corespunde unui cod identic cu indexul intrării.

7. Schema circuitului – implementarea funcțiilor de excitație/ieșire cu DCD

- Se alege DCD cu un număr de intrări identic cu numărul de variabile secundare și ieșirile nenegate. Pe intrările DCD se aplică variabilele secundare.
- DCD implementează la ieșire toți mintermii intrărilor => se aleg ieșirile care corespund celulelor din Diagrama Karnaugh diferite de 0 și X, apoi se aplică ȘI cu conținutul celulei respective dacă este diferit de 1. Pe liniile rezultate se aplică operația SAU.

7. Schema circuitului – implementarea funcțiilor de excitație/ieșire cu DCD

- Se alege DCD cu un număr de intrări identic cu numărul de variabile secundare și ieșirile nenegate. Pe intrările DCD se aplică variabilele secundare.
- DCD implementează la ieșire toți mintermii intrărilor => se aleg ieșirile care corespund celulelor din Diagrama Karnaugh diferite de 0 și X, apoi se aplică ȘI cu conținutul celulei respective dacă este diferit de 1. Pe liniile rezultate se aplică operația SAU.

7. Schema circuitului – implementarea registrului de stări cu numărător

- Se codifică stările în ordine crescătoare. Starea inițială are codul 000.
- Regulă: Maxim 2 stări viitoare. Dacă o stare are 2 stări viitoare și sunt distincte de ea, atunci una din ele trebuie să aibă codul stării + 1.

Notă: 111+1=000

Codificarea stărilor

7. Schema circuitului – implementarea registrului de stări cu numărător

• Se definește funcția de numărare $f_N(Q_2,Q_1,Q_0)$ care specifică dacă din starea $Q_2Q_1Q_0$ se face tranziție la starea $Q_2Q_1Q_0 + 1$:

$$f_N(Q_2,Q_1,Q_0) = \begin{cases} X, \text{ starea } Q_2Q_1Q_0 \text{ nu există} \\ 0, \text{ nu este cazul} \\ 1, \text{ tranziția este directă (fără decizie)} \\ \text{expresia decizională, tranziția este cu decizie} \end{cases}$$

Se definește funcția de ramificare $f_R(Q_2,Q_1,Q_0)$ care specifică dacă din starea $Q_2Q_1Q_0$ se face o tranziție la alte stări decât $Q_2Q_1Q_0$ sau $Q_2Q_1Q_0 + 1$:

$$f_{R}(Q_{2},Q_{1},Q_{0}) =$$

$$\begin{cases}
X, \text{ starea } Q_{2}Q_{1}Q_{0} \text{ nu există} \\
0, \text{ nu este cazul sau starea } Q_{2}Q_{1}Q_{0} \text{ inexistentă} \\
1, \text{ tranziția este directă (fără decizie)} \\
expresia decizională, tranziția este cu decizie
\end{cases}$$

Se definește funcția stare de ramificare $f_{SR}(Q_2,Q_1,Q_0)$ care specifică starea de ramificare când $f_R \neq 0$ și $f_R \neq X$, altfel nu contează (se pun X-uri).

Q_2	Q_1	Q_0	f_{N}	f_{R}		$f_{\sf SR}$	}	Q_2	Q_1	Q_0	f_{N}	f_R		f_{SR}	<u> </u>	_
			1													
0	0	1	Start	0	X	X	X	1	0	1	0	ER	0	0	0	
0	1	0	1													2.5
0	1	1	EP	0	X	Χ	Χ	1	1	1	X	Χ	X	Χ	Χ	23

7. Schema circuitului – implementarea registrului de stări cu numărător

$\begin{array}{c c} Q_2Q_1Q_0 \\ \hline 0 & 0 & 0 \end{array}$	f_{N}	f_{R}	f_{SR}	Q_2	Q_1	Q_0	f_{N}	f_{R}	f_{SR}
0 0 0	1	0	X X X	1	0	0	1	0	XXX
0 0 1	Start	0	X X X	1	0	1	0	ER	0 0 0
0 1 0	1	0	X X X	1	1	0	X	Χ	XXX
0 1 0 0 1 1	EP	0	$X \times X$	1	1	1	X	X	XXX

- Se implementează f_{N} , f_{R} , f_{SR} cu MUX.
- Pentru 3 variabile de stare Q₂, Q₁, Q₀
 se folosește MUX 8:1 cu 3 selecții.
- Pentru $f_{\rm SR}$ calea de date este pe 3 biți.

Determinarea funcțiilor de ieșire

Obs: Datorită **recodificării** adoptate la implementare cu numărător se refac Diagramele Karnaugh ale funcțiilor de ieșire.

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
Init:	0	1	0	0	0
	1	0	0	X	Χ

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
SP:	0	0	0	0	1
	1	0	0	Χ	Χ

	$Q_2^t Q_1^t Q_0^t$	00	01	11	10
SR:	0	0	0	0	0
	1	1	0	Χ	Χ

7. Schema circuitului – implementarea registrului de stări cu numărător și a ieșirilor cu DCD

SP:							
$Q_2^t Q_1^t Q_0^t$	00	01	11	10			
0	0	0	0	1			
1	0	0	Χ	Χ			

28

Elaborarea organigramelor – rezumat

		Calea de ieșire pentru			
		Intrări sincrone	Intrări asincrone		
Implementarea	Cu bistabile	Oricâte stări viitoare codificate la alegere	Maxim 2 stări viitoare codificate adiacent		
registrului de stări	Cu numărător	atunci una trebuie	are. Dacă 2 stări vitoare, e să fie cea curentă sau rentă+1		

 Notă: Minimizarea este necesară doar la implementarea cu porți logice fundamentale, altfel se folosesc diagrame Karnaugh sau tabele de adevăr.