

Near Real-time Failover Model for Continuous Inter-Domain Communication

Sebastian Aguirre, Yoshiyuki Kido, Susumu Date, Shinji Shimojo

Contents

- Background
- Implementation
- Demonstration
- Conclusions
- Future Plan

- Motivation = continuous inter-domain communication
 - Increase availability between Autonomous Systems with redundancy

- Border Gateway Protocol Failover between Internet domains
 - Based on Keepalive and Hold timers
 - seconds to recover

■ Not all available next hops are considered

■ Traffic from all applications is forwarded to the same next-hop

- Near Real-time
 - Process the communication interruption as soon as possible
 - Stream processing
 - Per-event processing of records as soon as they become available

- High availability
 - Multiple "valid" next-hops
 - **BGP Monitoring Protocol** (RFC 7854) = learn all possible next-hops to reach a network
- Define Services
 - Steer packet flows of specific applications
 - <u>SDN/OpenFlow</u> configure the flow tables of network devices

- How processing connectivity failure events as a stream of data enables continuous inter-domain communication?
 - Processing = update data-plane
 - Scalability
 - update time vs. available next-hops
 - Packet forwarding correctness
 - Next-hops should be valid according to BGP

Implementation

- Transit Network
 - Bridges a connection between two or more networks (e.g. Tier-2 ISP)

Implementation

- Separate control and data planes
 - BGP routing as SDN application
- Traffic Engineering module
 - Handles failover process
 - Override BGP flow rules
- BMP Collector
 - Learns valid BGP routes
 - Publishes BGP Updates
- Message Broker
 - Intermediary

Demo

- Paket generation Mausezahn
 - G.711 codec Real Time Protocol
 - 20 ms segment size, 160 bytes
 - UDP port 30000
- Testbed Topology
 - GNS3 Network Software Emulator

Demo #1 - Connectivity Failure

- Data-plane port shutdown
- Convergence Time
 - 4 valid next-hops (Round-robin selection)
 - Packet loss

Demo #1 - Connectivity Failure

- Average communication loss ≈ 807.79 ms
 - ∘ Packet drop = 40

Demo #2 - BGP Update

- Packet forwarding correctness
 - Route withdrawals MUST redirect traffic back to valid BGP next-hops

Demo #2 - BGP Update

- Average communication loss ≈ 526.21 ms
 - ∘ Packet drop = 26
- BGP route withdrawal and traffic redirection ≈ 21.30 ms
 - Invalid forwarding = 1 packet

Preliminary Conclusions and Future Plans

- Failover time driven by stream processing is faster than the minimum configurable value of the BGP Hold Timer.
 - Simulation of complex inter-domain network topologies

- The stream processing task introduces incorrect packet forwarding.
 - Increase number of flows and BGP route table

Thanks!