Unemployment Analysis with Python

Importing required libraries

Checking and cleaning the dataset

In [5]: ► data

Out[5]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude
0	Andhra Pradesh	31- 01- 2020	М	5.48	16635535	41.02	South	15.9129
1	Andhra Pradesh	29- 02- 2020	М	5.83	16545652	40.90	South	15.9129
2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129
3	Andhra Pradesh	30- 04- 2020	М	20.51	11336911	33.10	South	15.9129
4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129
	•••							•••
262	West Bengal	30- 06- 2020	M	7.29	30726310	40.39	East	22.9868
263	West Bengal	31- 07- 2020	М	6.83	35372506	46.17	East	22.9868
264	West Bengal	31- 08- 2020	М	14.87	33298644	47.48	East	22.9868
265	West Bengal	30- 09- 2020	М	9.35	35707239	47.73	East	22.9868
266	West Bengal	31- 10- 2020	М	9.98	33962549	45.63	East	22.9868
267 rows × 9 columns								

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 267 entries, 0 to 266
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Region	267 non-null	object
1	Date	267 non-null	object
2	Frequency	267 non-null	object
3	Estimated Unemployment Rate (%)	267 non-null	float64
4	Estimated Employed	267 non-null	int64
5	Estimated Labour Participation Rate (%)	267 non-null	float64
6	Region.1	267 non-null	object
7	longitude	267 non-null	float64
8	latitude	267 non-null	float64

dtypes: float64(4), int64(1), object(4)

memory usage: 18.9+ KB

In [8]: ▶ data.shape

Out[8]: (267, 9)

In [9]: ▶ data.describe()

- 1	-	
/ Ni i 🛨	ıu	
out		

	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
count	267.000000	2.670000e+02	267.000000	267.000000	267.000000
mean	12.236929	1.396211e+07	41.681573	22.826048	80.532425
std	10.803283	1.336632e+07	7.845419	6.270731	5.831738
min	0.500000	1.175420e+05	16.770000	10.850500	71.192400
25%	4.845000	2.838930e+06	37.265000	18.112400	76.085600
50%	9.650000	9.732417e+06	40.390000	23.610200	79.019300
75%	16.755000	2.187869e+07	44.055000	27.278400	85.279900
max	75.850000	5.943376e+07	69.690000	33.778200	92.937600

Let's see if this dataset contains missing values or not:

```
In [10]:
          ▶ print(data.isnull().sum())
                                                         0
             Region
              Date
                                                         0
              Frequency
                                                         0
              Estimated Unemployment Rate (%)
                                                         0
              Estimated Employed
                                                         0
              Estimated Labour Participation Rate (%)
                                                         0
             Region.1
                                                         0
             longitude
                                                         0
             latitude
                                                         0
             dtype: int64
         data.columns= ["States","Date","Frequency",
In [15]:
              "Estimated Unemployment Rate",
              "Estimated Employed",
              "Estimated Labour Participation Rate",
              "Region","longitude","latitude"]
```

Heatmap

```
In [20]: # Plot the heatmap
plt.style.use('seaborn-whitegrid')
plt.figure(figsize=(12, 10))
sns.heatmap(numeric_data.corr())
plt.show()
```


Unemployment Rate Analysis: Data Visualization

Now let's see the unemployment rate according to different regions of India:

Now let's create a dashboard to analyze the unemployment rate of each Indian state by region. For this, I'll use a sunburst plot:

```
In [25]: # Get color palette
    color = sns.color_palette()

# Count occurrences of each region
    cnt_srs = data.Region.value_counts()

# Create barplot
    plt.figure(figsize=(12,8))
    sns.barplot(x=cnt_srs.index, y=cnt_srs.values, alpha=0.8, color=color[4])

# Set Labels and title
    plt.ylabel('Number of Occurrences', fontsize=12)
    plt.xlabel('States', fontsize=12)
    plt.title('Count of States', fontsize=15)
    plt.xticks(rotation='vertical')

# Show plot
    plt.show()
```


take the mean of rate Region by Region

```
In [28]:  # Get color palette
    color = sns.color_palette()

# Group data and calculate mean unemployment rate
    grouped_df = data.groupby(["Region"])["Estimated Unemployment Rate"].mean()

# Create point plot
    plt.figure(figsize=(12,8))
    sns.pointplot(x=grouped_df['Region'], y=grouped_df['Estimated Unemployment

# Set labels and title
    plt.ylabel('Mean Rate', fontsize=12)
    plt.xlabel('States', fontsize=12)
    plt.title('Mean Estimated Unemployment Rate by Region', fontsize=15)
    plt.xticks(rotation='vertical')

# Show plot
    plt.show()
```


see the number of unique Region

See exact numbers

Estimated	Unemployment	Rate
-----------	--------------	------

Region	
North	15.889620
East	13.916000
Northeast	10.950263
South	10.454667
West	8.239000

Calculate which models has highest yearly fluncations

East Region which East has the highest yearly fluncation. North Region which North has the highest yearly fluncation. Northeast Region which Northeast has the highest yearly fluncation. South Region which South has the highest yearly fluncation. West Region which West has the highest yearly fluncation.

Conclusions:

- So this is how you can analyze the unemployment rate by using the Python programming language.
- Unemployment is measured by the unemployment rate which is the number of people who are unemployed as a percentage of the total labour force.
- East Region which East has the highest yearly fluncation.
- North Region which North has the highest yearly fluncation.
- Northeast Region which Northeast has the highest yearly fluncation.
- South Region which South has the highest yearly fluncation.
- West Region which West has the highest yearly fluncation.