Answers to Problem Set 8

Ishan Pranav MATH-UA 120 Discrete Mathematics

due December 8, 2023

These are to be written up and turned in to Gradescope.

Assigned Problems

1.

- (a) Find $d = \gcd(29341, 1739)$, and integers x and y such that 29341x + 1739y = d.
- (b) Prove that 7 cannot be expressed as an integral linear combination of 29341 and 1739.

Answer.

```
(a) Let d = \gcd(29341, 1739). Observe d = \gcd(29341, 1739)= \gcd(1739, 29341 \mod 1739) \qquad (\text{note } 29341 - 16 \cdot 1739 = 1517)= \gcd(1517, 1739 \mod 1517) \qquad (\text{note } 1739 - 1 \cdot 1517 = 222)= \gcd(222, 1739 \mod 222) \qquad (\text{note } 1517 - 6 \cdot 222 = 185)= \gcd(185, 222 \mod 185) \qquad (\text{note } 222 - 1 \cdot 185 = 37)= \gcd(37, 185 \mod 37) \qquad (\text{note } 185 - 5 \cdot 37 = 0)= 37.
```

Consider 37 = 29341x + 1739y. Observe

$$0 \cdot 29341 + 1 \cdot 1739 = 1739$$
$$1 \cdot 29341 - 16 \cdot 1739 = 1517$$
$$-1 \cdot 29341 + 17 \cdot 1739 = 222$$
$$7 \cdot 29341 - 118 \cdot 1739 = 185$$
$$29341x + 1739y = 37.$$

Thus x = -8 and y = 135 is a possible solution.

(b) Claim. 7 cannot be expressed as an integral linear combination of 29341 and 1739.

Proof. Assume, for the sake of contradiction, that 7 can be expressed as an integral linear combination of 29341 and 1739. Note gcd(29341, 1739) = 37 is the smallest positive integer expressible as a linear combination of 29341 $\in \mathbb{Z}$ and 1739 $\in \mathbb{Z}$. However, $7 \in \mathbb{Z}$ and 0 < 7 < 37, which is a contradiction. Ergo our assumption is false: 7 is not expressible as a linear combination of 29341 and 1739.

2.

- (a) Disprove: There exist integers a and b such that a+b=100 and $\gcd(a,b)=8$
- (b) Prove: There exist infinitely many pairs of integers (a,b) such that a+b=87 and gcd(a,b)=3.

Answer.

(a) LEMMA.

Claim. There do not exist $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ where a+b=100 and $\gcd(a,b)=8$.

Proof. Assume, for the sake of contradiction, there exist $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ where a+b=100 and $\gcd(a,b)=8$. Since $\gcd(a,b)=8$, we know $8 \mid a$ and $8 \mid b$. Thus there exist $k_1 \in \mathbb{Z}$ and $k_2 \in \mathbb{Z}$ where $a=8k_1$ and $b=8k_2$. Observe

$$a + b = 8k_1 + 8k_2$$
$$= 8(k_1 + k_2)$$
$$= 100.$$

There exists $(k_1 + k_2) \in \mathbb{Z}$ where $100 = 8(k_1 + k_2)$. Thus $8 \mid (a + b)$. However, a + b = 100 and, of course, $8 \nmid 100$. This is a contradiction. Thus our assumption is false: There do not exist $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ where a + b = 100.

PROPOSITION.

Claim. Disprove: There exist integers a and b such that a+b=100 and $\gcd(a,b)=8$.

Proof. The claim is false by lemma.

(b) Claim. There exist infinitely many pairs of integers (a, b) such that a + b = 87 and gcd(a, b) = 3.

Proof. Let $X = \{x \in \mathbb{Z} : 29 \nmid x\}.$

Let $Y = \{(a, b) \in \mathbb{Z}^2 : a + b = 87 \text{ and } \gcd(a, b) = 3\}.$

Let f be the relation $\{(x, (3x, 87 - 3x)) : x \in X\}$.

(Function) Let $(x_0, y_1), (x_0, y_2) \in f$. Then $y_1 = (3x_0, 87 - 3x_0)$ and $y_2 = (3x_0, 87 - 3x_0)$. Thus $y_1 = y_2$. Therefore f is a function.

(Domain) Note dom f = X by construction.

(Image) Let $(x, (a, b)) \in f$. Note also $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ so $(a, b) \in \mathbb{Z}^2$. Note

$$(a + b) = (3x + (87 - 3x)) = 87.$$

Note also

$$\gcd(a,b) = \gcd(3x,87 - 3x) = \gcd(3x,3(29 - x)).$$

Since $x \in X$, we have $x \in \mathbb{Z}$. Since a = 3x, we have $3 \mid a$. Since there exists $(29 - x) \in \mathbb{Z}$ where

$$b = (87 - 3x) = 3(29 - x)$$

we have $3 \mid b$. Therefore, 3 is a common divisor of a and b.

Since every integer can be expressed as a product of integer divisors, and because every pair of integers has a common divisor, there exist $k_1, k_2, k_3 \in \mathbb{Z}$ where $x = k_1 k_2$ and $(29 - x) = k_1 k_3$. Note

$$(x - (29 - x)) = (k_1k_2 - k_1k_3) = k_1(k_2 - k_3).$$

So $k_1 \mid (x-(29-x))$. Since (x-(29-x))=(2x-29), we have $k_1 \mid (2x-29)$. Note $k_1 \mid x$, so $k_1 \mid 2x$. So it must be that $k_1 \mid 29$. However, since 29 is prime, $k_1=1$ or $k_1=29$. But since $x \in X$, we have $29 \nmid x$. Thus $k_1 \neq 29$. Therefore $k_1=1$. The only common divisor between x and (29-x) is 1. Thus $\gcd(x,29-x)=1$. Since a=3x and b=3(29-x), the common divisors of a and b are 1 and 3. Since 1<3, we have $\gcd(a,b)=3$.

Since, $(a,b) \in \mathbb{Z}^2$ with a+b=87 and $\gcd(a,b)=3$, we have $(a,b) \in Y$. Therefore im $f \subseteq Y$.

(Injective) Let $x_1, x_2 \in X$. Suppose $f(x_1) = f(x_2)$. Then $(3x_1, 87 - 3x_1) = (3x_2, 87 - 3x_2)$. Since $3x_1 = 3x_2$, we have $x_1 = x_2$. Therefore f is injective.

(Surjective) Let $(a',b') \in Y$. Note $3 \mid a'$. We can construct $x' = \frac{a'}{3} \in \mathbb{Z}$ where f(x') = (a',b'). So im f = Y. Therefore f is surjective.

Hence, $f: X \to Y$ is bijective. Note X is an infinite set. Since f is bijective, Y is an infinite set. Ergo there are infinitely many pairs of integers (a, b) where a + b = 87 and gcd(a, b) = 3.

3.

- (a) Let $a, b, c \in \mathbb{Z}$ such that a and b are relatively prime. Prove that if $a \mid c$ and $b \mid c$, then $(ab) \mid c$.
- (b) Explain why part (a) is false if a and b are not relatively prime.

Answer.

(a) Claim. Let $a, b, c \in \mathbb{Z}$ where a and b are relatively prime. If $a \mid c$ and $b \mid c$, then $ab \mid c$.

Proof. Let $a, b, c \in \mathbb{Z}$ where a and b are relatively prime. Suppose $a \mid c$ and $b \mid c$. Since a and b are relatively prime, $\gcd(a, b) = 1$. Since $\gcd(a, b) = 1$ is the smallest positive integer of which a and b can be expressed as an integer linear combination, there exist $x, y \in \mathbb{Z}$ where ax + by = 1. Since $a \mid c$, there exists $k_1 \in \mathbb{Z}$ where $c = ak_1$. Since $b \mid c$, there exists $k_2 \in \mathbb{Z}$ where $c = bk_2$. Observe

$$ax + by = 1$$

$$c(ax + by) = c$$

$$cax + cby = c$$

$$bk_2ax + ak_1by = c$$

$$ab(k_2x + k_1y) = c.$$

There exists $(k_2x + k_1y) \in \mathbb{Z}$ where $c = (k_2x + k_1y)ab$. Hence, $ab \mid c$. \square

(b) Let $a, b, c \in \mathbb{Z}$ where $a \mid c$ and $b \mid c$ where a and b are not relatively prime. If a and b are not relatively prime, then there exist cases where ab > c, and thus, $ab \nmid c$. We know c can be expressed as a product of n prime factors where q_i represents a unique prime factor and a_i represents its count for $i \in \mathbb{N}$ where $i \leq n$:

$$c = \prod_{i=1}^{n} q_i^{a_i}.$$

If a and b are not relatively prime then, letting $d = \gcd(a, b)$, we have d > 1. This means that a and b share at least one prime factor. There exists $q^* \in \mathbb{Z}$ where $q^* \mid a$ and $q^* \mid b$ and q^* is prime.

Now there exist $k_1, k_2 \in \mathbb{Z}$ where $a = k_1 q^*$ and $b = k_2 q^*$. Since $a \mid c$, we have $k_1 q^* \mid c$. Since $b \mid c$, we have $k_2 q^* \mid c$. Thus $k_1 k_2 q^* \mid c$. However, we have no guarantee that $k_1 k_2 (q^*)^2 \mid c$. That is, we do not know if there is more than one instance of q^* in the prime factorization of c. Thus we cannot be certain that $ab \mid c$.

Using this technique, we can construct a counterexample. Consider $4, 6, 12 \in \mathbb{Z}$. Note $4 \mid 12$ and $6 \mid 12$. Note also $\gcd(4,6) = 2$, so 4 and 6 are not relatively prime. However, $4 \cdot 6 = 24$ and of course $24 \nmid 12$. Hence disproven.

4

4. Consider the following graph G.

- (a) Write out the ordered pair G = (V, E).
- (b) What is the order of G?
- (c) What is the size of G?
- (d) What is N(b)?
- (e) What is $d_G(c)$?
- (f) What is $\Delta(G)$?
- (g) What is $\delta(G)$?
- (h) What elements are the vertex a adjacent to?
- (i) What elements are the vertex f incident with?
- (j) Is G regular? Briefly explain why or why not.

Answer.

(a)

$$G = (V, E) = (\{a, b, c, d, e, f, g, h\}, \{a, d\}, \{a, e\}, \{a, f\}, \{b, d\}, \{b, e\}, \{b, f\}, \{b, h\}, \{c, d\}, \{c, e\}, \{c, f\}, \{c, h\}, \{c, g\}\}).$$

An undirected graph is an ordered pair where the first element is the set of vertices and the second element is the set of edges, where each edge is two-element set of vertices.

- (b) The order of G is the number of vertices in G. Thus the order of G is |V|=8.
- (c) The size of G is the number of edges in G. Thus the order of G is |E| = 12.
- (d) The neighborhood of b, N(b), represents the set of vertices adjacent to vertex b. Thus $N(b) = \{d, e, f, h\}$.
- (e) $d_G(c)$ represents the degree of vertex c in G. Thus $d_G(c) = |N(c)| = 5$.

- (f) $\Delta(G)$ represents the maximum degree of G. Thus $\Delta(G) = d_G(c) = 5$.
- (g) $\delta(G)$ represents the minimum degree of G. Thus $\delta(G) = d_G(g) = 1$.
- (h) Vertex a is adjacent to vertices d, e, and f because for graph G = (V, E), we have $a, d, e, f \in V$ and $\{a, d\}, \{a, e\}, \{a, f\} \in E$.
- (i) Vertex f is incident with edges $\{a,f\}$, $\{b,f\}$, and $\{c,f\}$ because for graph G=(V,E), we have $f\in V$ and $\{a,f\},\{b,f\},\{c,f\}\in E$.
- (j) No, G is not regular. In a regular graph (V', E'), there exists a number k where for all vertices $v \in V'$, we have $d_{(V',E')}(v) = k$. Consider $b,c \in G$. Note $d_G(c) = 5$ and $d_G(g) = 1$. However, $5 \neq 1$. Thus G is not regular. Put another way, in a regular graph (V, E), we have $\Delta((V, E)) = \delta((V, E))$. However $(\Delta(G) = 5) \neq (\delta(G) = 1)$. Thus G is not regular.
- 5. Let G = (V, E) be a graph. Prove by induction:
 The sum of the degrees of the vertices in G is twice the number of edges.

Answer. Claim. Let G = (V, E) be a graph. Then

$$\sum_{v \in V} d_G(v) = 2|E|.$$

Proof. Let G = (V, E) be a graph. We will demonstrate $\sum_{v \in V} d_G(v) = 2|E|$ by induction on |E|.

Basis case. Consider a graph $G_0 = (V_0, E_0)$ where $|E_0| = 0$. Since there are no edges in E_0 , for all $v_0 \in V_0$, we have $d_{G_0}(v_0) = 0$. Therefore

$$\sum_{v_0 \in V_0} d_{G_0}(v_0) = \sum_{v_0 \in V_0} 0 = 2(0).$$

Inductive hypothesis. Let $k \in \mathbb{N}$. Consider a graph $G_k = (V_k, E_k)$ where $|E_k| = k$. Assume that

$$\sum_{v \in V_k} d_{G_k}(v) = 2k.$$

Induction step. Consider a graph $G^* = (V^*, E^*)$ where $|E^*| = k + 1$. Note k+1 > 0 so $|E^*| > 0$. Thus $E^* \neq \emptyset$. By omitting an edge $e \in E^*$, we can construct a graph $G' = (V^*, E^* - \{e\})$. Of course

$$|E^* - \{e\}| = ((k+1) - 1) = k.$$

By the induction hypothesis, we have

$$\sum_{v \in V^*} d_{G'}(v) = 2|E^* - \{e\}| = 2k.$$

Recall that $e \in E^*$. There exist vertices $u,v \in V^*$ where $e = \{u,v\}$. Since e is a set, $u \neq v$. Note that $d_{G^*}(u) = d_{G'}(u) + 1$ because in graph G^* , vertex u is connected to vertex v by edge e. Symmetrically, $d_{G^*}(v) = d_{G'}(v) + 1$. Let $W = V^* - \{u,v\}$. The inclusion or omission of e has no effect on the degree of any other vertex $w \in W$. Thus

$$\begin{split} \sum_{v \in V^*} d_{G^*}(v) &= (d_{G^{'}}(u) + 1) + (d_{G^{'}}(v) + 1) + \sum_{w \in W} d_{G^{'}}(w) \\ &= 1 + 1 + d_{G^{'}}(u) + d_{G^{'}}(v) + \sum_{w \in W} d_{G^{'}}(w) \\ &= 1 + 1 + \sum_{v \in V^*} d_{G^{'}}(v) \\ &= 2 + 2k \\ &= 2(k + 1). \end{split}$$

This completes the inductive step.

Hence, by the principle of mathematical induction, for any graph G=(V,E), we have

$$\sum_{v \in V} d_G(v) = 2|E|.$$