

ETF3231/5231 Business forecasting

Week 11: Dynamic Regression

https://bf.numbat.space/

Outline

- 1 Regression with ARIMA errors
- 2 Dynamic harmonic regression
- 3 Stochastic and deterministic trends

Outline

- 1 Regression with ARIMA errors
- 2 Dynamic harmonic regression
- 3 Stochastic and deterministic trends

Regression with ARIMA errors

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t is WN.
- Now we want to allow ε_t to be autocorrelated.

Regression with ARIMA errors

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables $x_{1,t}, \ldots, x_{k,t}$.
- In regression, we assume that ε_t is WN.
- Now we want to allow ε_t to be autocorrelated.

Example: ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$

$$(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$$

where ε_t is white noise.

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t, \quad \text{region}$$

$$(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t, \quad \text{inneration}$$

Residuals and errors

Example: η_t = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t, \qquad \text{regree for}$$

$$(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t, \qquad \text{in nevalue}$$

- Be careful in distinguishing η_t from ε_t .
- Only the errors ε_t are assumed to be white noise.
- In ordinary regression, η_t is assumed to be white noise and so

$$\eta_t = \varepsilon_t$$
. — if we had no dynamics.

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- \mathfrak{p} -values for coefficients usually too small ("spurious regression' ').
- AIC of fitted models misleading.

6

Benove of interence

Estimation

If we minimize $\sum \eta_t^2$ (by using ordinary regression):

- Estimated coefficients $\hat{\beta}_0, \dots, \hat{\beta}_k$ are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- p-values for coefficients usually too small ("spurious regression' ').
- AIC of fitted models misleading.
 - Minimizing $\sum \varepsilon_t^2$ avoids these problems.
 - Maximizing likelihood similar to minimizing $\sum \varepsilon_t^2$.

Stationarity (Start with the simpler case)

Regression with ARMA errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$

where η_t is an ARMA process.

- All variables in the model must be stationary.
- If we estimate the model while any of these are non-stationary, the estimated coefficients can be incorrect.

 Conficients

 Conficients
- Difference variables until all stationary.
- If necessary, apply same differencing to all variables. (See example that)

Stationarity

Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$

$$(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$$

Stationarity

Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$

$$(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$$

Equivalent to model with ARIMA(1,0,1) errors

$$y_t' = \underline{\beta_1} x_{1,t}' + \dots + \underline{\beta_k} x_{k,t}' + \eta_t', \quad \text{intercoefficients stay}$$

$$(1 - \phi_1 B) \eta_t' = (1 + \theta_1 B) \varepsilon_t, \quad \text{the same}.$$

where
$$y'_t = y_t - y_{t-1}$$
, $x'_{t,i} = x_{t,i} - x_{t-1,i}$ and $\eta'_t = \eta_t - \eta_{t-1}$.

R will take core of this

Regression with ARIMA errors

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Original data

$$\begin{aligned} \mathbf{y}_t &= \beta_0 + \beta_1 \mathbf{x}_{1,t} + \dots + \beta_k \mathbf{x}_{k,t} + \eta_t \\ \text{where} \quad \phi(\mathbf{B}) (1 - \mathbf{B}) \partial_{\eta_t} &= \theta(\mathbf{B}) \varepsilon_t \end{aligned}$$

After differencing all variables

$$\begin{aligned} y_t' &= \beta_1 x_{1,t}' + \dots + \beta_k x_{k,t}' + \eta_t'. \\ \text{where } \phi(B) \eta_t' &= \theta(B) \varepsilon_t, \\ y_t' &= (1-B)^{0} y_t, \quad x_{i,t}' = (1-B)^{0} x_{i,t}, \quad \text{and } \eta_t' = (1-B)^{0} \eta_t \end{aligned}$$

Regression with ARIMA errors

- In R, we can specify an ARIMA(p, d, q) for the errors, and d levels of differencing will be applied to all variables ($y, x_{1,t}, \ldots, x_{k,t}$) during estimation.
- Check that ε_t series looks like white noise.
- AICc can be calculated for final model. _ still cannot campone for models with different d
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AICc value. we write model in Green but it is estimated in differences (if required)

Forecasting

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

Outline

- 1 Regression with ARIMA errors
- 2 Dynamic harmonic regression
- 3 Stochastic and deterministic trends

```
Dealing with , trend , seasonality

9 dynamics. In thes:

- fourier + piecewise

- piecewise + ARIMA

- fourier + piecewise + ARIMA
```

Dynamic harmonic regression * " Used a lot in a

Combine Fourier terms with ARIMA errors

Advantages

- it allows any length seasonality; * ED presentations for Peninsona nearth (neek (y))
- for data with more than one seasonal period, you can include Fourier terms of different frequencies;
- the seasonal pattern is smooth for small values of K (but more wiggly seasonality can be handled by increasing K);
- the short-term dynamics are easily handled with a simple ARMA error.

* MIX & martch Fourier Conper, ARIMA shorter

Disadvantages

seasonality is assumed to be fixed

```
aus_cafe <- aus_retail %>% filter(

Industry == "Cafes, restaurants and takeaway food services",

year(Month) %in% 2004:2018
) %>% summarise(Turnover = sum(Turnover))

aus_cafe %>% autoplot(Turnover)
```


.model	sigma2	log_lik	AIC	AICc	BIC		
K = 1	0.002	317	-616	-615	-588		
K = 2	0.001	362	-700	-698	-661		
K = 3	0.001	394	-763	-761	-725		
K = 4	0.001	427	-822	-818	-771	T. 2 10111	
K = 5	0.000	474	-919	-917	-875	There are very	
K = 6	0.000	474	-920	-918	-875	dose	

Outline

- 1 Regression with ARIMA errors
- 2 Dynamic harmonic regression
- 3 Stochastic and deterministic trends

Two ways of modelling trend that pre you different results

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process. Hence stationary

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process.

Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARIMA process with d=1. Hence non-statio range

Stochastic & deterministic trends

Deterministic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARMA process.

Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where η_t is ARIMA process with d = 1.

Difference both sides until η_t is stationary: $y_{t-1} = \beta_0 + \beta_1(t-1) + \gamma_{t-1}$

$$y'_{t} = \beta_{1} + \eta'_{t} \implies y'_{t} = y'_{t} + y'_{t} + y'_{t}$$

where η'_t is ARMA process.

```
aus_airpassengers %>%
  autoplot(Passengers) +
  labs(y = "Passengers (millions)",
        title = "Total air passengers")
```


Deterministic trend

```
fit_deterministic <- aus_airpassengers %>%
 model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))
report(fit_deterministic)
                                          stationary ARMA (p.z)
## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
##
## Coefficients:
##
  ar1 trend() intercept
##
  0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## ATC=210 ATCc=211
                    BTC=217
```

Deterministic trend

```
fit_deterministic <- aus_airpassengers %>%
  model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))
report(fit_deterministic)
## Series: Passengers
                                                  v_t = 0.901 + 1.415t + \eta_t
## Model: LM w/ ARIMA(1,0,0) errors
##
                                                  \eta_t = 0.956 \eta_{t-1} + \varepsilon_t
## Coefficients:
                                                  \varepsilon_t \sim \text{NID}(0, 4.343).
##
        ar1 trend() intercept
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## ATC=210 ATCc=211
                        BTC=217
```

Stochastic trend

```
fit_stochastic <- aus_airpassengers %>%
 model(ARIMA(Passengers ~ 1 + pdq(d = 1))) non-stat ARIMA(P, 1, 2)
report(fit_stochastic)
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
##
        constant
##
   1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## ATC=200 ATCc=201
                     BTC=204
```

sigma^2 estimated as 4.271: log likelihood=-98.2

BTC=204

Stochastic trend

s.e. 0.301

ATC=200 ATCc=201

##

```
fit_stochastic <- aus_airpassengers %>%
  model(ARIMA(Passengers \sim 1 + pdq(d = 1)))
report(fit_stochastic)
## Series: Passengers
                                                   y_t - y_{t-1} = 1.419 + \varepsilon_t
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
                                                           \eta_t = \eta_{t-1} + \varepsilon_t
##
   constant
##
   1.419
```


Forecasting with trend

- Point forecasts are almost identical, but prediction intervals differ.
- Stochastic trends have much wider prediction intervals because the errors are non-stationary.
- Be careful of forecasting with deterministic trends too far ahead.