

Validation of Soft Classifiers for Cells and Tissues

Claudia Beleites^{1,2}, Christoph Krafft², Jürgen Popp^{2,3}, and Valter Sergo¹

- 1 CENMAT and Dept. of Industrial and Information Engineering, University of Trieste/Italy
- 2 Institute of Photonic Technology, Jena/Germany
- 3 Institute of Physical Chemistry and Abbe Center of Photonics, University Jena/Germany

Soft Classifiers

with continuous class membership $\in [0, 1]$ model

- uncertainty/probability
- (dis)agreement of panel of pathologists
- probability of sample belonging to class
- mixtures
- samples between classes
- e.g. currently undergoing de-differentiation
- mixtures of cells

Soft prediction: common, e.g. posterior probabilities

Soft training: available, e.g. Beleites et. al., ABC, 400, 2801ff.

Soft validation: needed

borderline cases target of new diagnostics.

Sensitivity Specificity Positive Predictive Value Predictive Value

Soft Confusion Matrix \mathcal{Z}

- \bullet for hard $r_i, p_i \in \{0,1\}$ use classical AND: $\mathcal{Z}_{i,j} = r_i \wedge p_i$
- $\mbox{-}$ generalizations for soft $r_i, p_i \in [0,1]$

	strong AND	product AND	weak AND
$\begin{array}{l} r_i = 0.5 \\ p_i = 0.8 \end{array}$			
$\mathcal{Z}_{i,j} =$	$\max(\mathbf{r_i} + \mathbf{p_j} - 1, 0)$	$r_i \cdot p_j$	$\min(\mathbf{r_i}, \mathbf{p_j})$
=	0.3	0.4	0.8
scenario	worst case	expected	best case

• calibration-like: weighted mean absolute error (wMAE) and weighted root mean square error (wRMSE) wMAE \leq wRMSE \leq $\sqrt{\text{wMAE}}$

Example: Grading of Astrocytoma Tissues

Aim: grading of ambiguous tissue regions

Data set: Raman maps of bulk samples in moist chamber

Classifier: logistic regression

Validation: 125×8 -fold cross validation (patient-wise splitting)

Validation Results

Classicial validation: "hardening" predictions of unambiguous samples

weak ■, product ▲, and strong ● AND.
Unambiguous samples only +.

1 - wMAE \bullet , 1 - wRMSE \blacksquare , and lower bound of 1 - wRMSE, 1 - $\sqrt{\text{wMAE}}$ \circ .

Soft validation:

- Soft performance more sensitive for slight errors than classical measures
- Many samples partially A^oII ~> large difference between weak and strong AND
- wRMSE close to wMAE: many samples with slight deviations

Implementation

Implementation: Package softclassval

Homepage: softclassval.r-forge.r-project.org

License: GPL 3

Contact: Claudia.Beleites@ipht-jena.de

Acknowledgements

Financial support by the Associazione per i Bambini Chirurgici del IRCCS Burlo Garofolo Trieste and of the European Union via the EFRE and TMBWK (Project: B714-07037) is highly acknowledged.

Conclusions

- Samples with partial class membership can be used for validation.
- For unambiguous samples, no hardening is required
- Soft performance more sensitive than classical hard performance
- Soft operators for worst case, best case, expected performance as well as calibration-type operators.
- Available as package softclassval