DEPARTMENT OF COMPUTER SCIENCE AND ENGG. NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI.

END SEMESTER EXAMINATION CSPC35 Principles of Cryptography

Time: 2 hours 10/05/21

	ANSWER ALL THE QUESTIONS	
	MAX: 30 Ma	arks
1.		
	congruent to 9794 modulo 73.	(2)
	(b) Find out the gcd (400,60) and the values of s and t using the Exten	ded
	Euclidean algorithm.	(2)
	(c) State and explain the CRT and its applications.	(2)
2.	(a) Given a one-time pad version of the Vigenère cipher scheme, where the	he
	key is a stream of random numbers between 0 and 26. For example, if	the
	key is 3 19 5, then the first letter of plaintext is encrypted with a shift	t of
	3letters, the second with a shift of 19 letters, the third with a shift of	
	letters, and so on.	
	(i). Encrypt the plaintext sendmoremoney with the key stream $9\ 0\ 1$	7
	23 15 21 14 11 11 2 8 9.	(2)
	(ii). Using the ciphertext produced in part a, find a key so that the cip	her
	Text decrypts to the plaintext cashnotneeded.	(2)
	(b) With appropriate diagrams, explain the working of any two types of	
	PRNG highlighting their merits and demerits.	(2)

- 3.(a) Why does the round key generator need a parity drop permutation? **(2)**
 - (b) Find out whether GF (17) is a valid Galois field. (1.5)
 - (c) Given the plaintext {000102030405060708090A0B0C0D0E0F} and the key {01010101010101010101010101010101}, Find out the,
 - (i) original contents of **State**, displayed as a 4 x 4 matrix.

(iii) value of **State** after SubBytes. (iv) value of **State** after ShiftRows. (v) value of **State** after MixColumns (2.5)4.(a) What is a trap door one way function? What are its properties? **(2)** (b) In an RSA system, the public key of a given user is e = 31, n = 3599. What is the private key of this user? **(2)** (c) Suppose q=2579 and $\alpha=2$. α Is a primitive element modulo q. Let $X_B=7$. Suppose Alice wishes to send the message M=1299 to Bob. Let k=853 is the random integer she chooses. Show the steps in El Gamal algorithm. (2) **(2)** 5.(a) Distinguish between HMAC and CMAC. (b) It is possible to use a hash function to construct a block cipher with a structure similar to DES? Justify your answer. **(2)** (c) DSA specifies that if the signature generation process results in a value of s = 0, a new value of k should be generated and the signature should be recalculated. Why? **(2)**

(ii) value of **State** after initial AddRoundKey.
