Automated marketing research using online user

reviews

Contents:

- 1. Introduction
- 2. Approach
- 3. Dataset description
- 4. Methodology
- 5. Evaluation
- 6. References

Problem statement:

Selecting product attributes for market structure analysis

Problem Description

Market Structure Analysis

- Central to marketing
- Key step in
 - Design and development of new products
 - Repositioning of existing products
- Describes substitution and complementary relationship between brands
- Predicts market responses to:
 - Changes in pricing
 - Market strategy
 - Product introduction

Traditional Approach to Market Structure Analysis

- Uses Surveys
- Uses the thought:
 - "All customers perceive all products the same way with difference in attribute evaluation only"
- Little research on how to choose product attributes i.e. keywords
- Voice of Customer not being used for choosing keywords for marketing

Our Approach

Our approach facilitates Market Structure Analysis in 2 ways:

- Selecting attributes based on Voice of Customer
 - Selecting product attributes for marketing on the basis of what customers are concerned about

Augmenting Traditional approaches by providing input

Approach

- Data Collection:
 - Web Page scraping to get user reviews

- Clustering:
 - Term-Document Matrix
 - Clustering of terms based on cosine similarity
 - Using k-means

Correspondence Analysis

Methodology

Screen Scraping

Matrix of Word Vectors

Olympus: Quality of Photos, ..., Battery life (very very good), Only 8 mb Smart media card HP: ..., Only a 4 mb card, virtually no battery life, no AC adapter, Poor zoom capabil

Fuji: Great picture quality, 16 mb, battery life, ...

					2000 400	0.0000.00		-
Brand	Original phrase	Stop-words removed	only	life	mb	card	zoom	
Olympus	Quality of Photos	quality photos						
Olympus	Battery life (very very good)	battery life good		1				
Olympus	Only 8 mb Smart media card	8 mb smart media card inc	1		1	1		
HP	Only a 4MB card	4 mb card			1	1		
HP	Virtually no battery life	virtually battery life		1				
HP	No AC adapter	no ac adapter						
HP	Poor zoom capabilities	zoom capabilities					1	
Fuji	Great picture quality	great picture quality						
Fuji	16 mb	16 mb			1			
Fuji	battery life	battery life		1				

Data Collection:

We collected the online user reviews for digital cameras

Scraping

Web scraping is a technique to automatically access and extract large amounts of information from a website, which can save a huge amount of time and effort.

Beautiful soup:

- It is a python library for pulling out data from Html and xml files
- Beautiful soup parses the document using the best available parser. (we have used html parser).
- Beautiful Soup transforms a complex HTML document into a complex tree of Python objects.

Identifying the useful links:

• Fetch all tags

Use regular expressions to extract links of products

Examples:

- https://www.dpreview.com/samples/2514 555088/canon-rf-24-240mm-f4-6-3-is-sa mple-gallery
- https://www.dpreview.com/articles/50227
 81382/is-the-panasonic-lumix-dc-s1r-right
 -for-you

Extract reviews:

- Iterate over all the links we got .
- Find all elements < div class = 'message >
- Iterate over all div tags and fetch $\langle p \rangle ... \langle p \rangle$

Data Preprocessing

- 1. Convert in lowercase
- 2. Remove stopword
- 3. Remove punctuation
- 4. Remove url
- 5. Stemming

K-means Clustering

- It is partition based algorithm. It is most popular algorithms for text mining.
- It is efficient on the large data.
- ❖ It work on the numerical data.

Elbow Method

It is used to choose optimal no of cluster. This method cannot give you the optimal number of clusters as an exact point, it can give you an optimal range.

Some Clusters:

Correspondence Analysis

Correspondence Analysis

- Multivariate statistical technique
- Geometric approach to categorical data analysis
- Deals with categorical data
- Perceptual maps are plotted for extracted components

Correspondence Analysis process

Contingency table

	Sony	nikon	casio	fuji	canon	kodak	olympus	panasonic
Battery	31	12	2	61	22	2	71	24
Memory	22	14	1	1	3	1	5	1
Size	31	28	4	0	4	4	1	4
Control	4	9	0	11	26	3	20	0
Zoom	58	61	3	7	1	2	8	3
Lens	43	15	2	31	6	62	4	2
Focus	32	6	5	4	2	5	12	5
Flash	6	72	0	10	8	1	0	0
Disk	7	5	3	3	5	0	41	37
Video	82	3	2	12	10	6	1	2
Brightness	8	16	7	7	2	3	7	78
Viewfind	1	2	1	3	0	1	3	3

Tasks:

- Relationship between Attributes
- Relationship between Brands
- Relationship between Attribute and Brands
- Representing these relationships in a low dimensional space

Table

	BD	D	DM	FI	нм	Р	s	w	Total
A1	150	137	207	91	76	210	185	20	1076
A2	142	139	200	120	105	221	185	29	1141
A3	146	130	193	114	87	205	148	20	1043
A4	57	68	269	260	87	159	239	42	1181
Total	495	474	869	585	355	795	757	111	4441

Correspondence Matrix

	BD	D	DM	FI	нм	Р	s	w	Row mass
A1	0.034	0.031	0.047	0.020	0.017	0.047	0.042	0.005	0.242
A2	0.032	0.031	0.045	0.027	0.024	0.050	0.042	0.007	0.257
A3	0.033	0.029	0.043	0.026	0.020	0.046	0.033	0.005	0.235
A4	0.013	0.015	0.061	0.059	0.020	0.036	0.054	0.009	0.266
Col. Mass	0.111	0.107	0.196	0.132	0.080	0.179	0.170	0.025	1.000

$$z_{ij} = x_{ij}/N$$

Row Profiles

$$z_{ij} = z_{ij} / Rowmass[i]$$

Row Profile

- 1. $z_{ij} = x_{ij}/N$
 - Z = Correspondence Matrix
- 2. $z_{ii} = z_{ii}/Rowmass[i]$; where Rowmass[i]=Rowsum[i]/N
 - N= Total sum
 - X_{ii}= ijth element in contingency table

Resulting matrix can be used to find similarity/ dissimilarity between attributes

Correspondence Matrix

	BD	D	DM	FI	нм	Р	s	w	Row mass
A1	0.034	0.031	0.047	0.020	0.017	0.047	0.042	0.005	0.242
A2	0.032	0.031	0.045	0.027	0.024	0.050	0.042	0.007	0.257
A3	0.033	0.029	0.043	0.026	0.020	0.046	0.033	0.005	0.235
A4	0.013	0.015	0.061	0.059	0.020	0.036	0.054	0.009	0.266
Col. Mass	0.111	0.107	0.196	0.132	0.080	0.179	0.170	0.025	1.000

$$z_{ij} = x_{ij}/N$$

Column Profiles

$$z_{ij} = z_{ij}/Column_mass[j]$$

Column Profile

- Relationship between Brands
- ➤ Column Profile
- 1. $z_{ij} = x_{ij}/N$
- 2. $z_{ij} = z_{ij} / ColumnMass[j]$; where ColumnMass[j] = Columnsum[j] / N

N= Total sum

 $x_{ij} = ij^{th}$ element in contingency table

Resulting matrix can be used to find similarity/dissimilarity between Brands

Relationship between attribute and brand: Weighted χ^2 Distance

$$D = (D_r^{-1})^{1/2} (Z - rc^T) (D_c^{-1})^{1/2}$$

 $Z = m \times n$ Correspondence matrix

 $r = m \times 1$ Rowmass vector

c= n x 1 Columnmass vector

 $D_r = m \times m \operatorname{diag}(r) \operatorname{matrix}$

 $D_c = n \times n \operatorname{diag}(c) \operatorname{matrix}$

Interpretation

- The vectors **r** and **c** give the marginal probabilities of being the row and column classes, respectively, while **Z** gives the joint probability distribution of rows and columns.
- **Z-rc**^T gives deviation from independence.
- **D**: chi-squared statistic, yielded from summing the deviations, squared and appropriately scaled.

If independent=> Z-rc = 0

If there is some non-zero distance=> attribute and brands are not independent

Reducing Dimensions: SVD

 $D = U\Sigma V^{T}$: Doing SVD of chi-sq distance matrix

Find U

Obtain row(Attribute) PCs: $P = (D_r^{-1})^{1/2}UD$

Obtain column(Brand) PCs : $Q = (D_c^{-1})^{1/2}VD$

	PC1	PC2
A1		
A2		
B1		
B2		

Perceptual Map

Implemented using FactoMineR and factoextra in R

CA factor map

Scree plot

References

• Automated Marketing Research Using Online Customer Reviews THOMAS Y.

LEE and ERIC T. BRADLOW

- https://www.crummy.com/software/BeautifulSoup/bs4/doc/
- https://en.wikipedia.org/wiki/Correspondence_analysis