

## A Meta-Analysis of Thyroid Cancer Gene Expression Profiling Studies Identifies **Important Diagnostic Biomarkers**

## Obi L Griffith<sup>1</sup>, Adrienne Melck<sup>2</sup>, Sam M Wiseman<sup>2,3</sup>, and Steven JM Jones<sup>1</sup>

Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency;
 Department of Surgery, University of British Columbia;
 Genetic Pathology Evaluation Center, Prostate Research Center of Vancouver General Hospital & British Columbia Cancer Agency

**British Columbia Cancer Agency** Vancouver, British Columbia, Canada

# Genome Sciences Centre



method of large-scale gen expression analysis that

cognoscion analysis has cognoscion analysis consumer of agreement of a

cDNA Microarrays

## 1. Abstract

Introduction: An estimated 4-7% of the population will develop a clinically significant thyroid nodule during their lifetime. In as much as one third of these cases pre-operative diagnoses by needle biopaye are inconclusive. In many cases, a patient will undergo a diagnostic surgery for what ultimately proves to be a benign lesion. Thus, there is a clear through the contractive of the contractive surgery for what ultimately proves to be a benign lesion. Thus, there is a clear The recent development of high throughput molecular analytic techniques should allow the rapid evaluation of new diagnostic markers. However, researchers are faced with an overwhelming number of potential markers from numerous expression profiling studies. To address this challenge, we have carried out a systematic and comprehensive meta-analysis of potential thyroid cancer boundaries from 21 published studies.

Methods: For each of the 21 studies, the following information was recorded whe Methods: For each of the 21 studies, the following information was recorded wherever possible. Unique identifier (proble-plagecession); gene namedescription; gene symbol; comparison conditions, sample numbers for each condition; full change; direction of change; and Tubined ID. Clean excession, probe iden SAGE tags were unspeed to a sanotation files, and the DiscoverySpace SAGE tag mapping tool respectively. A houristic ranking system was deviced that considered the number of comparisons in agreement, total number of samples, average fold change and direction of change. Significance was assessed by random permutation tests. An analysis using gene lists produced from re-analyzed raw image files (ensuring standard methods) for a subset of the studies was performed to assess our method.

Results: In all weeking analysis groups considered encorp for one, we identified goess the were reported in multiple studies at significant level (pc10:05). Considering the 'cancer versus non-cancer' group as an example, a total of 755 genes were reported from 21 comparasons and of these, 107 genes were reported more than once with a consistent fold-analysis of microarrays re-analyzed directly from raw image files found some differences but a highly significant concordance with our method (p-value = 6.42 Feb.).

but a highly significant conordance with our method (p-value = 6.47E-68).

Conclusions A common criticism of molecular profiling studies is a lack of agreement between studies. However, looking at a larger number of published studies, we find that the same genes are repeatedly reported and with a consistent direction of change. These overcome the issues of noise and error typically associated with such expression experiments. In some cases these markers have already undergone extensive validation experiments. In some cases these markers have already undergone extensive validation speciments are profit of the contract of the contraction of the contract of the con

## 2. Methods



| Gene List 1 MET SERPINA1 TIF5 TIMP1 FN1 | SERI<br>TIB<br>FI | List 2<br>ET<br>PINAT<br>JP1<br>N7<br>JFA | Gene List 3<br>MET<br>SERPINA1<br>TFF3<br>FN1<br>EPS8 |
|-----------------------------------------|-------------------|-------------------------------------------|-------------------------------------------------------|
|                                         |                   |                                           |                                                       |
| Gene                                    | Overtap           | Samples                                   | Fold-change                                           |
| MET                                     | 3                 | 122                                       | 4.5                                                   |
| BERPINA1                                | 3                 | 122                                       | 3.4                                                   |
| FN1                                     | 3                 | 109                                       | 4.3                                                   |
| TFF3                                    | 2                 | 87                                        | 0.5                                                   |
| TIMPI                                   | 2                 | 87.                                       | 5.3                                                   |
| TGFA                                    | -1                | 24                                        | 2.6                                                   |
| EDISE                                   |                   |                                           | 3.0                                                   |

Fig. 1: (1) Lists of differentially expressed published studies. Each study consists of one or more comparisons between pairs and the control of the control

able 1: Lists all abbreviations used to escribe the samples and conditions impared in the various studies.

Table 2: A total of 34 comparisons were available from 21 studies, utilizing at east 10 different expression platforms. Lower to the comparison was a compared to the comparison of the comparison as provided. Only genes that could be mapped to a common identifier were used our subsequent overlap analyses (see hardysen of the comparison of the could be mapped to a common identifier were used our subsequent overlap analyses (see hardyses effects).

| ACL    | Anaplastic thyroid cancer cell line                          |
|--------|--------------------------------------------------------------|
| AFTN   | Autonomously functioning thyroid nodules                     |
| ATC    | Anaplastic thyroid cancer                                    |
| CTN    | Cold thyroid nodule                                          |
| FA     | Follicular adenoma                                           |
| FCL    | Follicular carcinoma cell line                               |
| FTC    | Follicular thyroid carcinoma                                 |
| FVPTC  | Folicular variant papillary carcinoma                        |
| GT     | Goiter                                                       |
| HCC    | Hurthle cell carcinoma                                       |
| HN     | Hyperplastic nodule                                          |
| M      | Metastatic                                                   |
| MACL   | Anaplastic thyroid cancer cell line with metastatic capacity |
| Norm   | Normal                                                       |
| PCL    | Papillary carcinoma cell line                                |
| PTC    | Papillary thyroid carcinoma                                  |
| TCVPTC | Tall-cell variant PTC                                        |
| CCL.   | Undifferentiated carcinoma cell line                         |

## 3. Thyroid cancer expression data

|                        |                          |          | Compari                       |                              |                 |
|------------------------|--------------------------|----------|-------------------------------|------------------------------|-----------------|
| Study                  | Platform                 | Genes/   | 0 100 1                       | Up-/down                     |                 |
|                        |                          | features | (No. samples)                 | Condition 2<br>(No. samples) | - p - u - u - u |
|                        | Atlas cDNA               |          |                               |                              |                 |
| Chen et al. 2001       | (Clontech)               | 588      | M (1)                         | FTC (1)                      | 18/40           |
| Arnaldi et al. 2005    | Custom cDNA              | 1807     | FCL(1)                        | Norm (1)                     | 9/20            |
|                        |                          |          | PCL(1)                        | Norm (1)                     | 1/8             |
| Armaidi et di. 2000    |                          |          | UCL(1)                        | Norm (1)                     | 1/7             |
|                        |                          |          | FCL(1), PCL(1), UCL(1)        | Norm (1)                     | 3/6             |
| Huang et al. 2001      | Affymetrix HG-<br>U95A   | 12558    | PTC (8)                       | Norm (8)                     | 24/27           |
| Aldred et al. 2004     | Affymetrix HG-           |          | FTC (9)                       | PTC(6), Norm(13)             | 142/0           |
| Alureu et al. 2004     | U95A                     |          | PTC (6)                       | FTC(9), Norm(13)             | 0/68            |
| Cerutti et al. 2004    | SAGE                     | N/A      | FA(1)                         | FTC(1), Norm(1)              | 5/0             |
| Cerutti ei di. 2004    |                          | 14/74    | FTC(1)                        | FA(1), Norm(1)               | 12/0            |
| Eszlinger et al. 2001  | Atlas cDNA<br>(Clontech) | 588      | AFTN(3), CTN(3)               | Norm(6)                      | 0/16            |
| Finley et al. 2004     | Affymetrix HG-<br>U95A   | 12558    | PTC(7), FVPTC(7)              | FA(14), HN(7)                | 48/85           |
| Zou et al. 2004        | Atlas cancer<br>array    | 1176     | MACL(1)                       | ACL(1)                       | 43/21           |
| Weber et al. 2005      | Affymetrix HG-<br>U133A  | 22283    | FA(12)                        | FTC(12)                      | 12/84           |
| Hawthorne et al. 2004  | Affymetrix HG-<br>U95A   |          | GT(6)                         | Norm(6)                      | 1/7             |
|                        |                          | 12558    | PTC(8)                        | GT(6)                        | 10/28           |
|                        |                          |          | PTC(8)                        | Norm(8)                      | 4/4             |
| Onda et al. 2004       | Amersham<br>custom cDNA  | 27648    | ACL(11), ATC(10)              | Norm(10)                     | 31/56           |
|                        | Atlas cancer<br>cDNA     | 1176     | PTC(18)                       | Norm(3)                      | 12/9            |
| Barden et al. 2003     | Affymetrix HG-<br>U95A   | 12558    | FTC(9)                        | FA(10)                       | 59/45           |
| Yano et al. 2004       | Amersham<br>custom cDNA  | 3968     | PTC(7)                        | Norm(7)                      | 54/0            |
|                        |                          | 5760     | FTC(3)                        | FA(4)                        | 12/31           |
| Chevillard et al. 2004 |                          |          | FVPTC(3)                      | PTC(2)                       | 123/16          |
| Mazzanti et al. 2004   | Hs-UniGem2<br>cDNA       | 10000    | PTC(17), FVPTC(15)            | FA(16), HN(15)               | 5/41            |
|                        |                          |          | FTC(1)                        | ATC(1)                       | 3/10            |
|                        |                          |          | FTC(1)                        | FA(1)                        | 4/1             |
| m 1 . / 0000           | SAGE                     | N/A      | Norm(1)                       | FA(1)                        | 6/0             |
| Takano et al. 2000     |                          |          | PTC(1)                        | ATC(1)                       | 2/11            |
|                        |                          |          | PTC(1)                        | FA(1)                        | 7/0             |
|                        |                          |          | PTC(1)                        | FTC(1)                       | 2/1             |
| Finley et al. 2004     | Affymetrix HG-<br>U95A   | 12558    | FTC(9), PTC(11),<br>FVPTC(13) | FA(16), HN(10)               | 50/55           |
| Pauws et al. 2004      | SAGE                     | N/A      | FVPTC(1)                      | Norm(1)                      | 33/9            |
| Jarzab et al. 2005     | Affymetrix HG-<br>U133A  | 22283    | PTC(16)                       | Norm(16)                     | 75/27           |
| Giordano et al. 2005   | Affymetrix HG-<br>U133A  | 22283    | PTC(51)                       | Norm(4)                      | 90/151          |
| 21 studies             | 10 platforms             |          | 34 comparisons (473 samples)  |                              | 1785            |

## 4. Overlap analysis results

| Overlap analysis group      | Condition             | Condition      | #  | # genes       | p-value  |  |
|-----------------------------|-----------------------|----------------|----|---------------|----------|--|
|                             | set 1                 |                |    | (multi-study) |          |  |
| Cancer vs. non-cancer       | ACL, ATC, FCL, FTC,   | AFTN, CTN, FA, | 21 | 755 (107)     | < 0.0001 |  |
|                             | FVPTC, HCC, M, MACL,  | GT, HN, Norm   |    |               |          |  |
|                             | PCL, PTC, TCVPTC, UCL |                |    |               |          |  |
| Cancer vs. normal           | ACL, ATC, FCL, FTC,   | Norm           | 12 | 478 (53)      | < 0.0001 |  |
|                             | FVPTC, HCC, M, MACL,  |                | l  |               |          |  |
|                             | PCL, PTC, TCVPTC, UCL |                |    |               |          |  |
| Cancer vs. benign           | ACL, ATC, FCL, FTC,   | AFTN, CTN, FA, | 8  | 332 (38)      | < 0.0001 |  |
|                             | FVPTC, HCC, M, MACL,  | GT, HN         | l  |               |          |  |
|                             | PCL, PTC, TCVPTC, UCL |                |    |               |          |  |
| Normal vs. benign           | Norm                  | AFTN, CTN, FA, | 3  | 19(1)         | 0.0113   |  |
| _                           |                       | GT, HN         |    |               |          |  |
| PTC vs. non-cancer          | FVPTC, PCL, PTC,      | AFTN, CTN, FA, | 12 | 503 (82)      | < 0.0001 |  |
|                             | TCVPTC                | GT, HN, Norm   |    |               |          |  |
| PTC vs. normal              | FVPTC, PCL, PTC,      | Norm           | 8  | 369 (49)      | < 0.0001 |  |
|                             | TCVPTC                |                |    |               |          |  |
| PTC vs. benign              | FVPTC, PCL, PTC,      | AFTN, CTN, FA, | 4  | 183 (13)      | < 0.0001 |  |
| _                           | TCVPTC                | GT, HN         | l  |               |          |  |
| PTC vs. other               | FVPTC, PCL, PTC,      | Any other      | 15 | 528 (107)     | < 0.0001 |  |
|                             | TCVPTC                |                | l  |               |          |  |
| FTC vs. FA                  | FTC                   | FA             | 6  | 222 (3)       | 0.0455   |  |
| FTC vs. other               | FTC, FCL              | Any other      | 10 | 403 (15)      | 0.0003   |  |
| Aggressive cancer vs. other | ACL, ATC, M, MACL     | Any other      | 4  | 145 (4)       | 0.0402   |  |
| ATC vs. other               | ACL, ATC, MACL        | Any other      | 3  | 91 (6)        | < 0.0001 |  |
| Affy re-processed           | PTC. FTC              | Norm, FA       | 5  | 1317 (179)    | < 0.0001 |  |



Table 3: Each overlap analysis group defines an artificial group of comparisons for which gene overlap was analyzed. In all groups considered except for one, we reported in two or more studies. For example, the "cancer vs. non-cancer" group displainable included all comparisons of the comparison of Table 3: Each overlap analysis group

Fig. 2: 107 genes were found in multiple studies for the cancer versus non-cancer analysis with overlap of two to six, much more than expected by chance.

## 4. Overlap analysis results (cont'd)

| Gene   | Description                                                                                           | Comp's    | N   | Fold<br>Change |  |
|--------|-------------------------------------------------------------------------------------------------------|-----------|-----|----------------|--|
|        |                                                                                                       | (Up/Down) | l   |                |  |
| MET    | met proto-oncogene (hepatocyte growth factor receptor)                                                | 6/0       | 202 | 3.03           |  |
| TFF3   | trefoil factor 3 (intestinal)                                                                         | 0/6       | 196 | -14.70         |  |
|        | serine (or cysteine) proteinase inhibitor, clade A (alpha-1<br>antiproteinase, antitrypsin), member 1 | 6/0       | 192 | 15.84          |  |
| EPS8   | epidermal growth factor receptor pathway substrate 8                                                  | 5/0       | 186 | 3.15           |  |
| TIMP1  | tissue inhibitor of metalloproteinase 1 (erythroid potentiating<br>activity, collagenase inhibitor)   | 5/0       | 142 | 5.38           |  |
| TGFA   | transforming growth factor, alpha                                                                     | 4/0       | 165 | 4.64           |  |
| QPCT   | glutaminyl-peptide cyclotransferase (glutaminyl cyclase)                                              | 4/0       | 153 | 7.31           |  |
| PROS1  | protein S (alpha)                                                                                     | 4/0       | 149 | 4.32           |  |
| CRABP1 | cellular retinoic acid binding protein 1                                                              | 0/4       | 146 | -11.55         |  |
| FN1    | fibronectin 1                                                                                         | 4/0       | 128 | 7.68           |  |
| FCGBP  | Fc fragment of IgG binding protein                                                                    | 0/4       | 108 | -2.41          |  |
| TPO    | thyroid peroxidase                                                                                    | 0/4       | 91  | -4.69          |  |

Table 4: shows a partial list (genes identified in 4 or more comparisons) from the cancer vs. non-cancer analysis. A complete table for this group and all others are available as supplementary data (www.bcgsc.cu/bioinfo/ge/thyroid/).



Fig 3. A comparison of genes with multi-study evidence based on published lists versus a smaller subset re-analysed from raw microarray data showed a highly significant level of agreement (p-value = 6.4Tk-68). The 107 cancer versus non-cancer multi-study genes (overlap of two or more) showed a concordance of 0.1Ty (= 0.048, showed a concordance of 0.177 (± 0.048, 95% C.I.) with the 179 multi-study genes identified from the re-analysed Affymetrix subset. In total, there were 43 genes identified by both methods.

# HER1 SERPINA1 2.2 0.604 1 N/A

Table 8: Twenty-five markers were stained, scored and analyzed on a tissue microarray consisting of 100 benign and 105 malignant tissue samples (Efolicular, 90 papillary, 3 Hurthic cell, and 6 medular). Light Person Chi-Square or Fishee 8 East test (where the state of the state

## 5. Conclusions and Future work

- Conclusions:

  > A significant number of genee are consistently identified in the literature as
  > A significant number of genee are consistently identified in the literature as
  the significant of the profession markers when raw data is unavailable (as is generally the case).

  The significant of the profession level.

  Preliminary immunohistochemistry analysis on a TMA of over 200 thyroid samples for 25 artibidies shaw promising results. the meta-analysis may facilitate the development of a clinically relevant diagnostic marker panel.

- Future work:

  > Continue validation of putative markers by immunohistochemistry on TMA.

  > Development of a clinically useful classifier for thyroid tissue based on results of TMA.



funding | Natural Sciences and Engineering Council of Canada (OG); Michael Smith Foundation for Health Research (OG, SW, and SJ); Canadian Institutes of Health Research (OG); BC Cancer Foundation

references | 1. Varhol et al, unpublished, <a href="http://www.bcgsc.ca/discoveryspace/">http://www.bcgsc.ca/discoveryspace/</a>; 2. Dennis et al. 2003. <a href="http://david.abcc.ncifcrf.gov/">http://david.abcc.ncifcrf.gov/</a>; 3. Affymetrix, <a href="http://bww.affymetrix.com/support/index.aff">http://www.affymetrix.com/support/index.aff</a>