

سرفصل ها :

- تعاريف اوليه
- قوانین فازی
- کاربرد در سیستم های کنترلی
 - کاربرد در سایر فیلدها
- مزایا و معایب سیستم های فازی
 - نیم نگاهی به آینده
 - چند مثال عملی

ارائهدهنده : مهندس مريم بهزادي

محل برگزاری: خیابان ملاصدرا، دانشگاه شیراز، ساختمان مهندسی ۲٫

سالن صدری ۲

لینک ثبت نام

evnd.co/6aPxT

منطق فازی (مریم بهزادی)

تاریخچه منطق فازی

- اولین بار منطق فازی در سال ۱۹۶۵ مطرح شد
- توسط پروفسور لطفی زاده، استاد دانشگاه برکلی
- کاربرد گسترده در سیستمهای کنترلی و هوش مصنوعی
- بیش از ۲۰ سال نادیدهگیری و صرفاً کاربردی در محیط آکادمیک
 - اواسط دهه ۸۰ میلادی به صنعت راه یافت
- اولین پروژه ژاپن با منطق فازی: هدایت و کنترل تمام خودکار قطار زیرزمینی توسط شرکت هیتاچی
 - سپس در تکنولوژی دستگاههای صوتی و تصویری ژاپنی
 - اواسط دهه ۱۹۹۰ میلادی --> کاربرد صنعتی فازی در اروپا

پروفسور لطفی زاده

- لطفعلى رحيماوغلو عسكرزاده (لطفى ع.زاده)
- متولد ۱۲۹۹ در باکو درگذشته ۱۳۹۶ در برکلی
- ریاضیدان، دانشمند کامپیوتر، مهندس برق و استاد علوم رایانه
- مبدع نظریه منطق فازی و شاخههای آن (مجموعههای فازی، الگوریتمهای فازی، کنترل فازی و احتمالات فازی)
 - بیش از ۳۵ دکترای افتخاری از دانشگاههای معتبر جهان
 - یکی از پژوهشگرانی است که دارای بیشترین ارجاع (highly-cited) در
 مقالات علمی دنیاست
- بیش از ۲۰۰ مقاله علمی را به تنهایی در کارنامه علمی خود دارد و در هیئت تحریریه ۵۰ مجله علمی جهان مقام «مشاور» را داراست

ابهام و عدم قطعیت (Uncertainty & Imprecision)

- ایدهآلترین مدل برای استنتاج (انسان یا کامپیوتر)، استنتاج دقیق میباشد.
- اما در دنیای واقعی، اسنتتاج بر اساس اطلاعاتی صورت میگیرد که غیرقطعی و مبهم هستند.

ابهام (Imprecision)

- زمانی که متغیرها با مقادیر غیرقطعی مقداردهی میشوند
 - واژههای کیفی عمدتا دارای عدم قطعیت هستند
 - معمولاً دانش دنیای واقعی با ابهام آمیخته است
 - هوا **خوب** است.
 - على **قدبلند** است.
 - على **چاق** است.
 - على **جذاب** است.
 - على بين ۳۵ تا ۳۵ سال سن دارد.

عدم قطعیت (Uncertainty)

- **اصل عدم قطعیت** توسط هایزنبرگ در سال ۱۹۲۷
- در فیزیک کوانتوم خروجی یک اندازهگیری ایدهآل در سیستم، قطعی نیست.
 - نمی توانیم موقعیت و سرعت دقیق یک ذره را اندازه گیری کنیم.
 - واژههایی که عدم قطعیت را میرسانند
 - من **فکر میکنم** که علی ۸۰ کیلوگرم وزن دارد
 - احتمال دارد که فردا ساعت ۸ صبح به ملاقاتش بروم
 - ممکن است این اتومبیل به سرعت ۲۰۰km/h برسد

عدم قطعیت vs ابهام

- دانش می تواند مبهم ولی قطعی باشد
 - على بلندقد است
- دانش می تواند غیرقطعی ولی واضح باشد
 - فکر میکنم قد علی ۱.۹۰ باشد
- دانش می تواند هم غیرقطعی و هم مبهم باشد
 - فكر مىكنم على **بلندقد** است

چرا عدم قطعیت و ابهام؟؟

• اطلاعات

- ناکافی (در نظر نگرفتن تمام متغیرها، تحلیل ناقص، و ...)
- نامطمئن (عدم اطمینان به اندازهگیریها و تحلیلها، ابزار نادقیق، و ...)
- نویز و تحریف در دادهها (بینایی ماشین، سیستم تشخیص صوت، و ...)

• دانش

- ابهام و عدم قطعیت
- تناقض (سردرد می تواند ناشی از سرماخوردگی **باشد/نباشد)**

• دنیای واقعی

- محیط غیرقطعی (non-deterministic)
 - نحوه نمایش اطلاعات
- انتخاب روش اشتباه برای نمایش دانش
 - قدرت پایین ابزار در نمایش تصویری

منطق فازی چیست؟

- روشی برای استنتاج مبتنی بر استنتاج انسان
 - نوعی از منطق چند ارزشی
 - تقریب زدن به جای دقیق بودن
 - کاربردی در محیطهای مبهم و غیرقطعی
 - پراستفاده در محیطهای دنیای واقعی
 - در تضاد با تئوریهای سنتی
 - منطق بولی شامل مجموعه {۰٫۱
- منطق فازی شامل درجهای از درست بودن بین [۱-۰]

منطق فازی چیست؟

مجموعه سنتی در مقابل مجموعه فازی

Sets Theory

Classical Set: An element either belongs or does not belong to a sets that have been defined.

Fuzzy Set: An element belongs partially or gradually to the sets that have been defined.

تابع عضویت (Membership Function)

• تابع عضویت درواقع نموداری است که مشخص میکند یک داده ورودی با چه درجهای (درجه عضویت عددی بین ۰ و ۱) به هر مجموعه متعلق است.

تابع عضویت

(Membership Function)

- تنها شرط تابع عضویت:
- عددی بین ٥ و ا

• تابع عضویت، نمودار دلخواهی است که به ما از نظر ساده کردن سیستم، سرعت، کارایی و آسودگی کمک میکند.

- - $\mu_{x}(A)$ •

انواع تابع عضویت

(Membership Function Types)

فازی vs احتمال (Fuzzy vs Probability)

- هر دو در یک محدوده کار میکنند [0.0 0.0]
 - در تئوری احتمال
- ۲۰٪ احتمال دارد که رضا پیر باشد، ۸۰٪ احتمال دارد که رضا پیر نباشد
 - در تئوری فازی
- رضا قطعاً پیر نیست. چون درجه عضویت رضا به این مجموعه ۰.۲ میباشد
 - در مجموعههای قطعی ------ مرز مشخص
 - در مجموعههای فازی ------ مرز غیرقطعی
 - در احتمالات ------

قوانین فازی

- معمولاً شامل مجموعهای از قوانین **اگر-آنگاه**
- این قوانین توسط خبره تعیین میشوند یا با گرفتن بازخورد از محیط توسط سیستم یاد گرفته میشوند
 - مثال کنترلر دما:
 - اگر دما خیلی سرد است آنگاه فن را خاموش کن
 - اگر دما سرد است آنگاه سرعت فن را کم کن
 - اگر دما طبیعی است آنگاه همین سرعت را برای فن حفظ کن
 - اگر دما زیاد است آنگاه سرعت فن را بالا ببر

معماری یک سیستم فازی

معماری یک سیستم فازی

- ۴ بخش اصلی برای طراحی و پیادهسازی یک سیستم فازی
 - فازىسازى (Fuzzification)
 - پایگاه قواعد (Rule Base)
 - موتور استنتاج فازی (Fuzzy Inference Engine)
 - دفازیسازی (Defuzzification)

كاربردهاى منطق فازى

- هوا و فضا (کنترل ارتفاع فضاپیما،کنترل ارتفاع ماهواره، و ...)
 - صنایع خودرو (کنترل سرعت ایده آل، کنترل ترافیک، ...)
- تجارت (سیستمهای تصمیمیار، ارزیابی کارمندان شرکتهای بزرگ، و ...)
- صنایع دفاعی (تشخیص حملههای زیر آ.ب، تشخیص هدف اتوماتیک با استفاده از تصاویر، تصمیمیار در فعالیتهای دریایی، و ...)
- الکترونیک (کنترل دوربینهای امنیتی، تنظیم رطوبت در اتاق، سیستم تهویه هوا، جاروبرقی، ماشین لباسشویی و ...)
 - سیستمهای مالی (مدیریت مالی، پیشبینی بازار بورس، و ...)
 - روانشناسی (تحلیل رفتار انسان، تشخیص مجرم و جلوگیری از وقوع جرم)

كاربردهاى منطق فازي

- تشخیص الگو (تشخیص دست خط، تشخیص صدا، تشخیص چهره، و ...)
- حمل و نقل (کنترل زمانبندی قطار، کنترل شتاب و سرعت، کنترل ترمز و توقف، و ...)
- پزشکی (تشخیص بیماری، کنترل فشار خون در حین بیهوشی، مدلسازی نوروپاتولوژیک در بیماران آلزایمری، تشخیص تصاویر رادیولوژیی در سرطان، و ...)
 - تولید و ساخت (بهبود تولید شیر و پنیر، و ...)
- بخش صنعتی (کنترل حرارت در کوره، کنترل فرایند تصفیه فاضلاب، کنترل تصفیه آب، تحلیل الگو برای تضمین کیفیت صنعتی، و ...)

چند مثال عملی

مزایای FLS

- مشابه استنتاج انسانی عمل میکند
 - دقت بالایی دارد
- کاربردی در خودکارسازی سیستمها
 - پیادهسازی آسان
- توانایی مدلسازی سیستمهای غیرخطی
 - هزینه پایین برای پیادهسازی
- نیاز به آموزش و دادهی آموزشی ندارد (با فرض داشتن قوانین)
- زمانی که داده/قانون جدید به سیستم اضاف میشود، نیاز به آموزش مجدد ندارد
 - استفاده از متغیرهای زبانی (جوان به جای ۲۰)

مزایای FLS

- انعطافیذیری بالا
- ویرایش ساده سیستم فازی صرفاً با افزودن یا تغییر در قوانین
- کار با اطلاعات غیرقطعی، مبهم، تحریف شده و نویزدار به عنوان ورودی
 - درک و پیادهسازی آسان
 - راه حلی ساده برای مسائل پیچیده
 - سادهسازی مفاهیم سنگین ریاضی در استنتاج فازی
- عمدتا پایدار هستند و به تغییر در محیط یا قوانین ناکافی حساس نیستند
- فرایند استنتاج ساده فازی باعث میشود توان محاسباتی کاهش یابد (کاربردی در سیستمهای real-time)
 - زمان توسعه کمتری نسبت به سایر روشهای مرسوم میبرد

معایب FLS

- طبیعتاً بهترین راهحل برای همه مسائل نمیباشد
- روش سیستماتیک یکپارچهای برای طراحی سیستمهای فازی وجود ندارد
- قوانین باید توسط خبره تعیین/تایید شوند که این امر مستلزم تجربه عملی میاشد
 - در مسائل صنعتی با ابعاد بزرگ، تنظیم باید به صورت دستی انجام شود.
- تعادل بین کارایی و پایداری همیشه برقرار نیست. درواقع بخش زیادی از پایداری فازی ناشی از تنظیم دستی قوانین در آن میباشد.
- اگر تعداد پارامترها زیاد باشد، تنظیم دستی کار سخت و خسته کنندهای خواهد بود (راهحل: استفاده از الگوریتمهای یادگیری خودکار)

نیم نگاهی به آینده

"The best way to predict your future is TOCREATE it."

Abraham Lincoln 22 Nov 2012 11:24 am

★ shirazlug_ir

shirazlug.ir