TERMODINÁMICA

Nombre	Grupo
Nonible	Grupo

Problema – 1 (4 puntos)

Se conoce como factor de flujo de una turbina (FF) a la relación

$$FF = \frac{m}{\sqrt{\left(\frac{p}{v}\right)}}$$

donde "m" es el flujo másico a la entrada a dicha turbina y "p" y "v" son, respectivamente, la presión absoluta y el volumen específico del fluido (vapor en este caso) también en las condiciones de entrada a la misma.

En el esquema de la figura, representativo de un ciclo Rankine regenerativo, el factor de flujo de la turbina de alta presión es igual a 0.0182 m² mientras que el factor de flujo de la turbina de baja presión es igual a 0.0277 m². A la turbina de alta el vapor entra en condiciones de 30 bara y 400°C y la presión a la salida de la misma es de 15 bara. La turbina de baja tiene un rendimiento adiabático-isentrópico del 85% y descarga al condensador, a una presión de 0.1 bara.

El desaireador es un calentador de mezcla, del que el agua de alimentación sale en condiciones de líquido saturado. El agua de alimentación abandona el condensador como líquido saturado. Las bombas del ciclo se suponen adiabáticas e ideales (rendimiento isentrópico 100%).

Se asume que no existen pérdidas de presión en tuberías ni en la caldera y se pide rellenar los valores necesarios de la tabla adjunta para poder responder a las siguientes preguntas:

- Caudal de vapor que sale de la caldera y, consecuentemente, pasa por la turbina de alta presión. [1 pt]
- Caudal de vapor que pasa por la turbina de baja presión y caudal de extracción al desaireador. [3 pt]
- Rendimiento adiabático isentrópico de la turbina de alta presión. [1 pt]
- Calor rechazado en el condensador. [1 pt]
- Potencia neta del ciclo, potencia aportada en la caldera y rendimiento del ciclo. [1 pt]
- Caudal de agua de circulación (refrigeración del condensador), sabiendo que entra al condensador a 25°C y sale 35°C (1). Entropía generada en este equipo. [2 pt]

Punto	m (kg/s)	P (bara)	T (ºC)	v (m3/kg)	h (kJ/kg)	s (kJ/kg-K)
1		30	400			
2		15				
3		15				
4		0.1				
5						
6						
7						
8						
9		15				
10		5	25			
11		5	35			

Propiedades de saturación (líquido-vapor)

P	Т	$v_{\rm f}$	V_{g}	u_f	$\mathbf{u}_{\mathbf{g}}$	$h_{\rm f}$	h_{g}	s_f	$S_{ m g}$
bara	°C	m ³ /kg	m ³ /kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg-K	kJ/kg-K
30.00	233.86	0.001217	0.066664	1004.72	2603.27	1008.37	2803.26	2.6456	6.1858
15.00	198.30	0.001154	0.131702	842.986	2593.46	844.717	2791.01	2.3147	6.4431
5.000	151.84	0.001093	0.374804	639.639	2560.71	640.185	2748.11	1.8606	6.8206
0.100	45.808	0.001010	14.670558	191.802	2437.18	191.812	2583.89	0.6492	8.1489
0.056	35.000	0.001006	25.207820	146.639	2422.70	146.645	2564.58	0.5052	8.3518
0.032	25.000	0.001003	43.34139	104.835	2409.16	104.838	2546.54	0.3673	8.5568

	Propiedades del vapor sobrecalentado											
	Presión (bara)					Presión (bara)			Presión (bara)			
	0.1					15				30		
Т	V	u	h	S	V	u	h	S	V	u	h	S
ºC	m³/kg	kJ/kg	kJ/kg	kJ/kg-K	m³/kg	kJ/kg	kJ/kg	kJ/kg-K	m³/kg	kJ/kg	kJ/kg	kJ/kg-K
250	24.1365	2736.08	2977.45	9.1014	0.15200	2695.96	2923.96	6.7111	0.07062	2644.68	2856.55	6.2893
275	25.2913	2773.99	3026.90	9.1938	0.16099	2740.52	2982.00	6.8195	0.07612	2700.27	2928.62	6.4239
300	26.4460	2812.27	3076.73	9.2827	0.16970	2783.72	3038.27	6.9199	0.08118	2750.82	2994.35	6.5412
325	27.6005	2850.94	3126.94	9.3684	0.17821	2826.14	3093.46	7.0142	0.08596	2798.49	3056.37	6.6471
350	28.7550	2889.99	3177.54	9.4513	0.18658	2868.16	3148.03	7.1035	0.09056	2844.40	3116.06	6.7449
375	29.9093	2929.45	3228.54	9.5315	0.19484	2910.01	3202.27	7.1889	0.09502	2889.24	3174.28	6.8365
400	31.0636	2969.30	3279.94	9.6093	0.20301	2951.85	3256.37	7.2708	0.09938	2933.44	3231.57	6.9233
425	32.2178	3009.56	3331.74	9.6849	0.21112	2993.78	3310.46	7.3497	0.10366	2977.30	3288.28	7.0060

TERMODINÁMICA

Nombre	Grupo
	Oi upo

Problema – 1 (4 puntos)

Se conoce como factor de flujo de una turbina (FF) a la relación

$$FF = \frac{m}{\sqrt{\left(\frac{p}{v}\right)}}$$

donde "m" es el flujo másico a la entrada a dicha turbina y "p" y "v" son, respectivamente, la presión absoluta y el volumen específico del fluido (vapor en este caso) también en las condiciones de entrada a la misma.

En el esquema de la figura, representativo de un ciclo Rankine regenerativo, el factor de flujo de la turbina de alta presión es igual a 0.0182 m² mientras que el factor de flujo de la turbina de baja presión es igual a 0.0277 m². A la turbina de alta el vapor entra en condiciones de 30 bara y 400°C y la presión a la salida de la misma es de 15 bara. La turbina de baja tiene un rendimiento adiabático-isentrópico del 85% y descarga al condensador, a una presión de 0.1 bara.

El desaireador es un calentador de mezcla, del que el agua de alimentación sale en condiciones de líquido saturado. El agua de alimentación abandona el condensador como líquido saturado. Las bombas del ciclo se suponen adiabáticas e ideales (rendimiento isentrópico 100%).

Se asume que no existen pérdidas de presión en tuberías ni en la caldera y se pide rellenar los valores necesarios de la tabla adjunta para poder responder a las siguientes preguntas:

- Caudal de vapor que sale de la caldera y, consecuentemente, pasa por la turbina de alta presión. [1 pt]
- Caudal de vapor que pasa por la turbina de baja presión y caudal de extracción al desaireador. [3 pt]
- Rendimiento adiabático isentrópico de la turbina de alta presión. [1 pt]
- Calor rechazado en el condensador. [1 pt]
- Potencia neta del ciclo, potencia aportada en la caldera y rendimiento del ciclo. [1 pt]
- Caudal de agua de circulación (refrigeración del condensador), sabiendo que entra al condensador a 25°C y sale 35°C (1). Entropía generada en este equipo. [2 pt]

Punto	m (kg/s)	P (bara)	T (ºC)	v (m3/kg)	h (kJ/kg)	s (kJ/kg-K)
1	100	30	400	0.09938	3231.57	6.9233
2	00K	15	356.96	0.18888	3163.12	7.1273
3	78.06	15	356.96	0.18888	3/63.12	7.1273
4	78.06	0.1			2393,8	7.55295
5	78.06	0.4	45.8	0.00101	191.812	0.6492
6	78.06	<u> 15</u>			193.317	
7	100	15		0.001154	844.717	
8	100	30			846.448	
9	21.94	15	356.96	0.18888	3/63.12	7.1273
10	4111.46	5	25		104.838	0.3673
11	4111.46	5	35		146.645	0.5052

Zunto 1 $\sqrt{\frac{30\times10^5\text{N}}{\text{m}^2\times0.09938}}$ kg m= 0.0182 m² = 100 kg/s Punto 5: Jalida del condensador: P=0.1 bara; v=0.0010f0 m3/kg; h=191.812 kg Punto 6: Salida de la bomba 1=15 bara. h= 191.812+0.00101 [15-0.1] 100=

= 193.317 kJ/kg

Dalance energético en el desaireador

mg+ing=100; ing= ing; ing=100-ing

 $\dot{u}_3 = 0.0277 \sqrt{\frac{15 \times 10^5}{v_3}}$; $v_3 = v_2$

ing · luz + ing lus = 100 luz; luz = 844.717 ks/bg

(100 - ii3) ha + ii3 193.317 = 84471.7

 $T = \frac{15 \times 10^{3}}{\sqrt{5}} l_{2} + \frac{15 \times 10^$

 $+ 0.0277 \sqrt{\frac{15\times10^5}{v_2}} \times 193.317 - 84471.7 = 0$

Hay que iterar para obteuer ves he. Como 1=6.9233 y 5g(15 bar)=6.4431 es seguro que

en 2 hay vapor sobrécalentado puesto que 5275,

 $F = \left(100 - \frac{33.925}{\sqrt{v_2}}\right) l_2 + \frac{6558.363}{\sqrt{v_2}} - 84471.7 = 0$

Tabla de vapor sobrecalentado à 15 bar

T= 350+ 375-350 -8191.621 325 0.17821 3093.46 1732.9 = 356.96-1732.9 0.18658 3148.03 350 1/2 = 0.18888 m3/kg 1 4494.6 0.19484 3202.27 liz= 3163.12 kJ/kg

Sa= 7.1273 kJ/kg-K

 $\dot{m}_3 = 0.0277 \sqrt{\frac{15 \times 10^5}{0.18888}} = 78.06 \, \log/3$ mg= 100-m3= 21.94 $5_{25} = 5_1 = 6.9233$ h₂₅ = 3038,27+ 3093.46-3038.27 (6.9-233-6.9199)= = 3040.26 pJ/kg. 7 = 3231.57-3163.12 = 0,3578 Punto 4 545 = 53 = 7.1273 ×45 = 7.1273-0.6492 8.1489-0.6492 Mus = 191.812 + 0.8638 (2583.89-191.82) = 2258.05 $0.85 = 3163.12 - h_4 ; h_4 = 2393.8 | 54 = 0.6492 + 0.9205 | \times 4 = 0.9205 | \times 4.9205 |$ Calor rechazado af condensador = 7.56295 Qc=78.06 [2393.8-191.812] = 171888 kW Calor aportado en caldera h8 = h7 + (30-15) 0.00/15/4×100 = 846.448 &5/kg acaldera = 100 [3231.57-846.448] = 238512 DW Potencias TA 100 (3231.57 - 3163.12) = 6845kW 78.06 (3163.12-2393.8) = 60053 &W TB 117.5 bW 78.06 (193.317-191.812) = . BC 173.1 kw 100 (846,448-844.717) BAA

Potencia heta = 66607,4 KW

Rendiniento def ciclo) = 6660 7,4 = 27.93% Caudaf de agua de circulación: = Rc = 171888 = 146.645-104.838 = = 4111.46 kg/s Entropia generada en el condensador: My 54+ m10 510+ Sque = M555+ M1511 78.06 ° 7.55295 + 4111.46 × 0.3672 + Sgen = 78.06 × 0.6492 + +4111.46×0.5052

Squ = 28.4748 bw/K

Dpto. Ingeniería Mecánica

TERMODINÁMICA

Nombre_____ Grupo____

Problema -2 (3 puntos)

La figura adjunta representa una planta de refrigeración para mantener una "Cámara frigorífica" a baja temperatura. Para ello, un compresor adiabático de rendimiento isentrópico 80% toma aire (1) de la cámara a 100 kPa y -50°C. El aire comprimido cede calor a presión constante al ambiente (foco a 35°C) en el disipador hasta alcanzar (3) 50°C, para pasar así a una turbina adiabática de rendimiento isentrópico 85% que lo expande hasta 100 kPa y -100°C (4).

El calor (Q_C) que entra a la cámara desde el ambiente es de 150 kW.

Tómese el aire como gas perfecto (R = 287 J/kg-K; γ = 1,4).

Determinar:

- a) Presión de impulsión del compresor [2 pt]
- b) Potencia aportada por el motor [2 pt]
- c) Exponente politrópico del aire en la turbina [1 pt]
- d) Potencia disipada por irreversibilidades internas ($\dot{\epsilon}$) en la turbina [2 pt]
- e) Variación de entropía del Universo [3 pt]

a) Turbine

$$\frac{Turbive}{50 - (-100)} = 745 = -126,47C = 146,53K$$

$$\frac{323}{146,53} = \left(\frac{P_3}{100}\right)^{\frac{14-1}{14}} = 5 P_3 = 1590, 25 \text{ kfe}$$

$$\dot{m} = \frac{1,00,02(-20+100)}{120} = 5'0899 \text{ KAM}$$

$$c = 110 = 100 + 100$$

$$\dot{M}_{1} = 5' d866 \times 1' 00 n2 (20 + 100) = 720 KM$$

$$\frac{T_{2S}}{223} = \left(\frac{1590,25}{100}\right)^{\frac{14-1}{14}} \Rightarrow T_{2S} = 491,5647 K = 218,567$$

$$\frac{223}{0.8} = \frac{100}{100} =$$

$$W_{M} = W_{C} - W_{T} = \frac{1771}{100} = \left(\frac{1790.25}{100}\right)^{\frac{N_{T}-1}{N_{T}}} = \frac{1.29147}{100}$$

d)
$$-m \int_{3}^{4} v dp = m (cn - cp) (T4-T3) = w_{T} + \tilde{E}_{T}$$

$$C_{V} = \frac{Cp}{r} = 0.7175 \text{ k} \frac{1/kq - k}{1.29147 - 1.4} = -0.26717 \text{ k} \frac{1}{kq - k}$$

$$C_{D} = C_{V} \frac{n - r}{n - 1} = 0.7175 \times \frac{1.29147 - 1}{1.29147 - 1} = -0.26717 \text{ k} \frac{1}{kq - k}$$

$$= (\sqrt{n-1})^{-1}$$

$$= (\sqrt{n-1})$$

$$\frac{dSu}{dz} = \frac{\dot{Q}_{D}}{T_{O}} - \frac{\dot{Q}_{C}}{T_{O}}; \quad \dot{w}_{M} + \dot{Q}_{C} = \dot{Q}_{D} = 0$$

$$= 757, 14 + 150 = 0$$

$$= 707, 14 \times W$$

TERMODINÁMICA

Nombre	Grupo	

Problema -3 (3 puntos)

La figura adjunta representa una bomba de calor (BC) accionada por un motor térmico (MT). El motor térmico se alimenta de un combustible cuya combustión se modela como la cesión de un calor (Q_C) desde un foco a alta temperatura (T_C). El motor cede su calor de refrigeración (Q_M) a la habitación que se pretende calentar (foco a temperatura T_H), mientras que el calor de los gases de escape (Q_E) se disipa al ambiente (foco a temperatura T_O).

La bomba de calor toma su trabajo (W) del motor térmico y aporta calor (Q_B) a la habitación.

Asumiendo que la instalación opera de forma totalmente reversible, determinar el COP del sistema motorbomba a partir de las temperaturas de los focos, es decir:

$$COP = \frac{Q_M + Q_B}{Q_C} = F(T_C, T_H, T_o)$$

Como opera de forme TOTALMENTE veverible:

opens de forma
$$\frac{dSu}{dz} = 0 = \frac{-clc}{Tc} + \frac{dm + dR}{Th} - \frac{do}{To} + \frac{dE}{To}$$
 (1)

El bolance energético a MT y a 13:

belance energético a
$$M = dc - dE - dM$$
 (2)
$$dc = dE + W + dM => W = dC - dE - dM$$
 (3)

$$d_{c} = d_{E} + W + d_{M} \Longrightarrow W = d_{B} - d_{O}$$

$$d_{B} = W + d_{O} \Longrightarrow W = d_{E} - d_{O}$$

$$d_{A} = d_{E} - d_{O}$$

Combinando (2) y (3): $d_c - d_B - d_M = d_E - d_0$

Sustituyendo en (1):

$$\frac{Q_c}{T_c} = \frac{Q_M + Q_R}{T_H} + \frac{Q_c - Q_R}{T_0} - Q_M$$

$$\frac{S}{Tc} = \frac{1}{Tc}$$

$$\frac{1}{Tc} = \frac{1}{Tc}$$

$$\frac{1}{Tc} = \frac{1}{Tc}$$

$$\frac{1}{Tc} = \frac{1}{Tc}$$

$$\frac{1}{Tc} = \frac{1}{Tc}$$

$$QC\left(\frac{1}{TC} - \frac{1}{TO}\right) = \frac{1}{TC}$$

$$\frac{1}{TC} - \frac{1}{TO}$$

$$\frac{1}{TC} - \frac{1}{TO}$$

$$\frac{1}{TC} - \frac{1}{TO}$$

$$\frac{1}{TH} - \frac{TO}{TO}$$

$$= \frac{TH}{TH - TO} \times \left(1 - \frac{TO}{TC}\right)$$

