Olimpiada Naţională de Matematică 2007 Etapa judeţeană şi a Municipiului Bucureşti 3 martie 2007 CLASA A X-A

Subiectul 1. Fie numerele reale a,b,c astfel încât $a,b,c\in(1,\infty)$ sau $a,b,c\in(0,1)$. Arătați că

$$\log_a bc + \log_b ca + \log_c ab \ge 4(\log_{ab} c + \log_{bc} a + \log_{ca} b).$$

Subiectul 2. Cele 2n pătrățele ale unui dreptunghi de dimensiuni $2 \times n$ se colorează cu trei culori. Spunem că o anumită colorare are o tăietură dacă pe una din cele n coloane avem două pătrate de aceeași culoare. Să se determine:

- a) numărul colorărilor fără tăieturi;
- b) numărul colorărilor cu o singură tăietură.

Subiectul 3. Fie ABC un triunghi fixat, de laturi BC = a, CA = b, AB = c. Pentru fiecare dreaptă Δ din planul triunghiului notăm cu d_A, d_B, d_C distanțele de la A, B, C la Δ și considerăm expresia

$$E(\Delta) = ad_A^2 + bd_B^2 + cd_C^2.$$

Demonstrați că dacă valoarea lui $E(\Delta)$ este minimă atunci Δ trece prin centrul cercului înscris în triunghi.

Subiectul 4. Fie u, v, w trei numere complexe de modul 1. Arătați că există o alegere a semnelor + și - astfel încât

$$|\pm u \pm v \pm w| \le 1.$$

Timp de lucru 3 ore Toate subiectele sunt obligatorii