Exercice 1

Déterminer la nature des intégrales impropres suivantes :

1)
$$\int_0^{+\infty} \frac{1}{t^t + t^{1/t}} dt$$

4)
$$\int_0^{\pi/2} \sqrt{\tan(u)} \, \mathrm{d}u$$

7)
$$\int_0^{+\infty} \frac{(1+x)^{1/3} - x^{1/3}}{x^{2/5}} \, \mathrm{d}x$$

$$2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan(x) \, \mathrm{d}x$$

5)
$$\int_0^{+\infty} \frac{\ln(1+t)}{t} \, \mathrm{d}t$$

$$8) \int_0^{+\infty} \frac{\mathrm{d}t}{t - \sin^2(t)\sqrt{t}}$$

3)
$$\int_0^9 \frac{1}{3-\sqrt{9-t}} dt$$

6)
$$\int_0^{+\infty} \frac{e^{-t}}{1 + \tan^2(t)} dt$$

9)
$$\int_0^1 \frac{\mathrm{d}x}{\ln x}$$

Exercice 2

Partie A : séries de Riemann convergentes

1) Soit $\alpha>0$ un réel. Montrer que pour tout $k\in\mathbb{N}^*$ et tout $t\in[k;k+1]$ on a :

$$\frac{1}{(k+1)^{\alpha}} \leq \frac{1}{t^{\alpha}} \leq \frac{1}{k^{\alpha}}$$

et en déduire que

$$\frac{1}{(k+1)^{\alpha}} \le \int_{k}^{k+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \frac{1}{k^{\alpha}}$$

2) En déduire que pour tout entier naturel n non nul :

$$\int_{1}^{n+1} \frac{\mathrm{d}t}{t^{\alpha}} \le \sum_{k=1}^{n} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{n} \frac{\mathrm{d}t}{t^{\alpha}}$$

3) Montrer que $\sum_{k\geq 1} \frac{1}{k^{\alpha}}$ converge si et seulement si $\alpha>1.$

Partie B: deux équivalents

4) En reprenant l'encadrement de la question 2), montrer que

$$\sum_{k=1}^{n} \frac{1}{k} \quad \mathop{\sim}_{n \to \infty} \quad \ln(n)$$

5) Soit $\lambda < 1$. Montrer que de même que

$$\sum_{k=1}^{n} \frac{1}{k^{\lambda}} \quad \underset{n \to \infty}{\sim} \quad \frac{n^{1-\lambda}}{1-\lambda}$$

6) Trouver tous les nombres réels $\alpha, \beta \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}^*, \quad \sum_{k=1}^n k^{\alpha} = \left(\sum_{k=1}^n k\right)^{\beta}$$

Partie C: cas général

7) Montrer que si f est une fonction positive, continue et décroissante sur l'intervalle $[0; +\infty[$, alors pour tout entier naturel n

$$0 \le \int_0^{n+1} f(t) \, \mathrm{d}t \le \sum_{k=0}^n f(k) \le f(0) + \int_0^n f(t) \, \mathrm{d}t$$

- 8) En déduire que la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) dt$ sont de même nature (toutes deux convergentes ou bien toutes deux divergentes).
- 9) Donner un contre exemple d'une fonction positive non monotone f telle que $\sum f(n)$ converge mais $\int_0^{+\infty} f(t) dt$ diverge, et un contre exemple d'une fonction positive non monotone g telle que $\sum g(n)$ diverge mais $\int_0^{+\infty} g(t) dt$ converge.
- 10) En utilisant une comparaison série-intégrale, déterminer $\lim_{a\to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2+a^2}$

Partie D: transformation d'Abel

- 11) Montrer à l'aide d'une intégration par partie que l'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.
- 12) Soit x un réel qui n'est pas un multiple de 2π . Montrer que pour tout entier $n \in \mathbb{N}$,

$$\sum_{k=-n}^{n} e^{ikx} = \frac{\sin\left(\left(n + \frac{1}{2}\right)\right)x}{\sin\left(\frac{x}{2}\right)}$$

- 13) En déduire qu'il existe $M \in \mathbb{R}$ tel que pour tout $n \in \mathbb{N}^*$, $\left| \sum_{k=1}^n \sin k \right| \leq M$.
- 14) On pose $S_n = \sum_{k=1}^n \sin k$, et $S_0 = 0$. En utilisant le fait que $\forall n \in \mathbb{N}^*$, $\sin n = S_n S_{n-1}$ Montrer que pour tout entier naturel n non nul:

$$\sum_{k=1}^{n} \frac{\sin k}{k} = \frac{S_n}{n} + \sum_{k=1}^{n} S_k \left(\frac{1}{k} - \frac{1}{k+1} \right)$$

15) En déduire la nature de la série de terme général $\frac{\sin n}{n}$.

(D'après ESCP voie ECS 2013) Pour toutes fonctions f et g continues sur \mathbb{R} et telles que pour tout réel x, $\int_{-\infty}^{+\infty} |f(t)g(x-t)| \, \mathrm{d}t \text{ converge, on note } \forall x \in \mathbb{R}, \ (f \star g)(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) \, \mathrm{d}t. \text{ La fonction } f \star g \text{ ainsi définie s'appelle le produit de convolution de } f \text{ et } g.$

- 1) On suppose dans cette question que $\int_{-\infty}^{+\infty} |f(t)| dt$ converge et que g est bornée sur \mathbb{R} . Montrer que $f \star g$ est définie et bornée sur \mathbb{R} .
- 2) On suppose dans cette question que $\int_{-\infty}^{+\infty} |f(t)|^2 dt$ et $\int_{-\infty}^{+\infty} |g(t)|^2 dt$ convergent. Montrer que $f \star g$ est définie et bornée sur \mathbb{R} .
- 3) Pour tout $n \in \mathbb{N}^*$, on pose $\lambda_n = \int_{-1}^1 (1-t^2)^n dt$ et

$$\forall t \in \mathbb{R}, \quad h_n(t) = \begin{cases} & \frac{(1-t^2)^n}{\lambda_n} & \text{si } t \in [-1;1] \\ & 0 & \text{sinon} \end{cases}$$

- a) Montrer à l'aide du changement de variable $t = \cos \theta$ que $\lambda_n = 2 \int_0^{\pi/2} (\sin \theta)^{2n+1} d\theta$. On admet que $\lambda_n \sim \sqrt{\frac{\pi}{n}}$ lorsque n tend vers $+\infty$
- b) Montrer que $\int_{-\infty}^{+\infty} h_n(t) dt = 1$.
- c) Montrer que pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \int_{-\infty}^{-\varepsilon} h_n(t) dt = \lim_{n \to +\infty} \int_{\varepsilon}^{+\infty} h_n(t) dt = 0$$

d) Déterminer pour tout réel x, $\lim_{n\to+\infty} (f\star h_n)(x)$ pour f continue et bornée sur \mathbb{R} .

Le coin de Khûbes

Exercice 4

(D'après ESCP 2024)

Soient 0 < a < b des réels et $f: \mathbb{R}^* \to \mathbb{R}$ définie pour tout $x \neq 0$ par :

$$f(x) = \int_{ax}^{bx} \frac{\sin t}{t^2} \, \mathrm{d}t$$

- 1) Justifier que f est dérivable sur \mathbb{R}^* et calcule sa dérivée f'
- 2) Montrer que pour tout t > 0, on a :

$$\frac{1}{t} - \frac{t}{6} \le \frac{\sin t}{t^2} \le \frac{1}{t}$$

- 3) En déduire que f admet un prolongement par continuité en 0. Dans la question suivante, on note encore f la fonction ainsi prolongée.
- 4) f est-elle de classe C^1 ?

