Supplementary Information

Substantial blue carbon sequestration in the world's largest seagrass meadow

Chuancheng Fu^{1,2,3},*, Sofia Frappi^{1,2,3}, Michelle Nicole Havlik^{1,2,3}, Wells Howe⁴, S. David Harris⁴, Elisa Laiolo^{1,2,3}, Austin J. Gallagher⁴, Pere Masqué^{5,6}, Carlos M. Duarte^{1,2,3}

- ¹ Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- ² Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- ³ Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
- ⁴ Beneath The Waves, Herndon, VA 20172, USA.
- ⁵ International Atomic Energy Agency (IAEA). Marine Environmental Laboratories, Quai Antoine 1er 98000, Monaco.
- ⁶ School of Natural Sciences, Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA 6027, Australia

^{*}Corresponding author. Chuancheng Fu, chuancheng.fu@kaust.edu.sa.

Supplementary Table 1. Location, main features and number of sediment cores of the sampled seagrass meadows in The Bahamas.

Site name	Latitude	Longitude	Seagrass species	Seagrass density	N C _{org} cores	N ²¹⁰ Pb cores
S1	-75.70761	23.49614	Thalassia testudinum	Moderate	2	1
S2	-75.80477	23.53387	T. testudinum+ Syringodium filiforme	Moderate	2	1
S3	-75.86002	23.58456	T. testudinum	Moderate	2	1
S4	-75.75391	23.51049	T. testudinum	Dense	2	
S5	-76.07485	23.74173	T. testudinum	Dense	2	1
S6	-76.04701	23.73557	T. testudinum	Moderate	2	1
S7	-76.10755	23.76910	T. testudinum	Moderate	1	1
S8	-76.12758	23.78310	T. testudinum	Dense	1	1
S9	-76.02600	23.72511	T. testudinum	Moderate	1	1
S10	-76.03386	23.72584	T. testudinum	Sparse	1	1

Supplementary Table 2. Summary of previously reported sediment C_{org} stocks and accumulation rates in carbonate seagrass meadows (Mean±SE).

Location	Seagrass species	Corg stock	CAR	Reference
		Mg C ha ⁻¹	g C m ⁻² yr ⁻¹	
The Bahamas	Thalassia testudinum, Syringodium filiforme	63.3	22.5	This study
Florida Bay, USA	T. testudinum, Halodule wrightii	175.0 ± 10.2	140*	Howard et al., 2018
Mexico Bay	S. filiforme, H. wrightii, T. testudinum	130±17	30.7 ± 2.8	Ruiz-Fernandez et al., 2020
Southeastern Brazil	H. wrightii, Halophila decipiens, Halodule emarginata	67.6 ± 14.7		Howard et al., 2018
Abu Dhabi, UAE	Halodula uninervis, Halophila ovalis, Halophila stipulacea	49.1 ± 7.0		Campbell et al., 2015
Arabian Gulf	H. uninervis, H. ovalis, H. stipulacea	76.2 ± 5.9	9.0±12.0	Cusack et al., 2018
D 10 0 1' A 1'	H. uninervis, H. ovalis, H. stipulacea, T. testudinum, Enhalus acoroides,	34±3	6.8±1.7	Serrano et al., 2016
Red Sea, Saudi Arabia	Thalassodendrum ciliatum			
South China Sea, China	H. ovalis, Zostera japonica, Halophila beccarii	109.5±23.8	45	Fu et al., 2021
Shark Bay, Australia	Posidonia oceanica, Amphibolis antarctica	128±7	46±13	Arias-Ortiz et al., 2018
Great Barrier Reef, Australia	H. Ovalis, H. Decipiens, H. Spinulosa, H. uninervis, T. hemprichii	11±5		York et al., 2018
Madagascar	E. acoroides, Cymodocea rotundata/serrulata, T. hemprichii, T. ciliatum	86±11	no recent net accumulation	Asplund et al., 2021
Cl 1 1		77	138±38	Kennedy et al., 2022; Duarte
Global		77		et al., 2013

Corg, organic carbon; CAR, organic carbon accumulation rate.

^{*}Calculated based on sediment Corg density from Howard et al., (2018) and sediment accretion rate from Cheng et al., (2012).

Supplementary Table 3. Seagrass density, coverage, and a photographic example of the sampling site in The Bahamas.

Seagrass density	Seagrass coverage	Sampling site	Photo example
Dense	> 70%	S4, S5, S8	
Moderate	30-70 %	S1, S2, S3, S6, S7, S9	
Sparse	<30%	S10	

Photo credit: Cristina Mittermeier for Beneath The Waves (first photo) and Wilson Haynes (second and third photos) for Beneath The Waves.

Copyright: Beneath The Waves.

Supplementary Table 4. δ^{13} C and C/N molar ratio of the Bahamian seagrasses, cyanobacteria, macroalgae, epiphytes, phytoplankton and mangroves.

Endmember	Species/sample type	δ^{13} C (‰)	C/N molar ratio	Reference
Seagrass	T. testudinum	-8.11	45.36	
fragment	1. 0030000000000000000000000000000000000	0.11	10.00	This study
nagment	T. testudinum	-7.81	50.02	
	S. filiforme	-6.74	48.68	
	S. filiforme	-6.65	48.46	
	T. testudinum	-6.80	39.81	
	T. testudinum	-6.49	43.83	
	T. testudinum	-5.41	43.41	
	T. testudinum	-5.45	35.49	
	T. testudinum	-5.40	38.64	
	T. testudinum	-5.40	40.08	
	T. testudinum	-6.19	40.28	
	T. testudinum	-5.59	52.49	
	T. testudinum	-6.78	41.45	
	T. testudinum	-5.19	58.99	
	T. testudinum	-5.46	34.20	
	Median	-6.19	43.41	
	SD	0.92	6.69	
G 1	G 1	10.7		Stoner and Waite
Cyanobacteria	Cyanobacterial mat	-18.7		1991
			10.00	Yannarell et al.,
	Cyanobacterial mat		12.23	2007
	Cyanobacterial extracellular			D 1 . 1 200
	polymeric secretions		6.3	Decho et al., 200
			3.6	
			8.1	
			2.4	
			7.1	
	Median	-18.7	6.70	
	SD	0.5*	5.93	
Macroalgae	Penicillus	-10.2		Kieckbusch et al.
Macroalgae	1 enicitus	-10.2		2004
	Halimeda	-6.8		
	Batophora oerstedii	-13.3		
		-13.9		
	Laurenica spp.	-11.1		
		-11.2		
	Cladophoropis membrabacea	-11.4		
	Gracilaria compressa	-14.8		
	Batophora oearstedii	-13.3		

	Sargassum pteropleuron	-16.6		
	n 1 1	-		C'II: 4 1 2010
	Red algae	21.08 ± 11.24		Gillis et al., 2018
		-11.13±5.88		
	Green algae	-10.97±5.19		
		-8.63±4.53		
	Macroalgae	-14.2		O'Farrell et al.,
	Macroaigae	-14.2		2014
	Algae turf	-11.8		
	Lobophora sp.	-14.1		Shipley et al., 2018
	Sargassum sp.	-16.71		
	Sargassum hystrix		14.0	Lapointe et al., 1992
	Lobophora variegata		49.9	
	Codium isthmocladum		14.4	
	Bryopsis pennata		7.7	
	Microdictyon marinum		24.4	
	Hypnea musciformis		19.6	
	Laurencia intricata		21.8	
	Digenea simplex		17.7	
	Laurencia intricata		17.4	
	Cladophora catenata		22.5	
	Laurencia intricata		16.3	
	Digenea simplex		38.1	
	Laurencia intricata		35.2	
	Microdictyon marinum		24.5	
	Cladophora catenata		28.8	
	Laurencia intricata		30.3	
	Digenea simplex		47.4	
	Microdictyon marinum		44.4	
	Cladophora catenata		34.6	
	Laurencia intricata		33.4	
	Laurencia intricata		21.1	
	Laurencia intricate		19.6	
Epiphyte	T. testudinum epiphytes	-10.5		Kieckbusch et al., 2004
	<i>m</i> !	15.5		Stoner and Waite,
	T. testudinum epiphytes	-15.7		1991
		-15.6		
phytoplankton		-16.4±3.3		O'Farrell et al., 2014

-13.9

benthic algae		-14.4±2.1		O'Farrell et al., 2014
	Median	-13.60	24.40	
	SD	3.27	11.60	
Mangrove	Avicennia germinans	-26.04		Shipley et al., 2018
	Rhizophora mangle	-26.32		
	Laguncularia racemosa	-26.45		
	Rhizophora mamgle (detritus)	-27.90		Kieckbusch et al., 2004
	Rhizophora mangle (senescent)	-27.70		
	Rhizophora mangle (blades)	-28.20		
*	Rhizophora mangle (Leaf)	-29.8	52.40	Vane et al., 2013
*	Rhizophora mangle (Stem)	-28.5	82.30	
*	Avicennia germinans (Leaf)	-28.5	23.10	
*	Avicennia germinans			
·	(Pneumatophores)	-26.6	53.60	
*	Avicennia germinans (Stem)	-26.7	114.50	
*	Laguncularia racemose (Leaf)	-27.9	30.00	
*	Laguncularia racemose			
·	(Pneumatophores)	-24.2	90.70	
*	Laguncularia racemosa (Stem)	-25.6	77.60	
	Median	-27.20	65.60	
	SD	1.45	31.25	

^{*}Note: We assumed standard deviation (SD) = 0.5 to reflect similar variability of the isotopic signatures for the replicated sources of C_{org} (Röhr et al., 2018).

Since the C/N ratio of the Bahamian mangroves was not available in published literature, we used the C/N from Puerto Rico mangroves as a proxy, with also their δ^{13} C values included.

Supplementary Figure 1. Sediment dry bulk density depth profiles of the Bahamian seagrass meadows. Data are mean values \pm standard error (SE).

Supplementary Figure 2. Concentration profiles of total and excess ²¹⁰Pb and ²²⁶Ra in the Bahamian seagrass sediment cores.

Supplementary References

- Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P. S., Mueller, U., Kendrick, G. A., ... & Duarte, C. M. (2018).
 A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. *Nature Climate Change*, 8, 338-344.
- Asplund, M. E., Dahl, M., Ismail, R. O., Arias-Ortiz, A., Deyanova, D., Franco, J. N., ... & Gullström, M. (2021). Dynamics and fate of blue carbon in a mangrove–seagrass seascape: influence of landscape configuration and land-use change. *Landscape Ecology*, 36, 1489-1509.
- 3. Campbell, J. E., Lacey, E. A., Decker, R. A., Crooks, S., & Fourqurean, J. W. (2015). Carbon storage in seagrass beds of Abu Dhabi, United Arab emirates. *Estuaries and Coasts*, 38, 242-251.
- 4. Cheng, J., Collins, L. S., & Holmes, C. (2012). Four thousand years of habitat change in Florida Bay, as indicated by benthic foraminifera. *Journal of Foraminiferal Research*, 42, 3-17.
- Cusack, M., Saderne, V., Arias-Ortiz, A., Masque, P., Krishnakumar, P. K., Rabaoui, L., ... & Duarte, C. M. (2018). Organic carbon sequestration and storage in vegetated coastal habitats along the western coast of the Arabian Gulf. *Environmental Research Letters*, 13, 074007.
- 6. Decho, A. W., Visscher, P. T., & Reid, R. P. (2005). Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 219, 71-86.
- 7. Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. *Nature Climate Change*, 3, 961-968.
- 8. Fu, C., Li, Y., Zeng, L., Zhang, H., Tu, C., Zhou, Q., ... & Luo, Y. (2021). Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. *Global Change Biology*, 27, 202-214.
- Gillis, A. J., Ceriani, S. A., Seminoff, J. A., & Fuentes, M. M. (2018). Foraging ecology and diet selection of
 juvenile green turtles in the Bahamas: insights from stable isotope analysis and prey mapping. *Marine Ecology Progress Series*, 599, 225-238.
- Howard, J. L., Creed, J. C., Aguiar, M. V., & Fourqurean, J. W. (2018). CO₂ released by carbonate sediment production in some coastal areas may offset the benefits of seagrass "Blue Carbon" storage. *Limnology and Oceanography*, 63, 160-172.
- Kennedy, H., Pagès, J. F., Lagomasino, D., Arias-Ortiz, A., Colarusso, P., Fourqurean, J. W., ... & Duarte, C. M. (2022). Species traits and geomorphic setting as drivers of global soil carbon stocks in seagrass meadows. Global Biogeochemical Cycles, 36, e2022GB007481.
- 12. Kieckbusch, D. K., Koch, M. S., Serafy, J. E., & Anderson, W. T. (2004). Trophic linkages among primary producers and consumers in fringing mangroves of subtropical lagoons. *Bulletin of Marine Science*, 74, 271-285.
- 13. Lapointe, B. E., Littler, M. M., & Littler, D. S. (1992). Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. *Estuaries*, 15, 75-82.
- 14. O'Farrell, S., Bearhop, S., McGill, R. A., Dahlgren, C. P., Brumbaugh, D. R., & Mumby, P. J. (2014). Habitat and body size effects on the isotopic niche space of invasive lionfish and endangered Nassau grouper. *Ecosphere*, 5, 1-11.
- 15. Röhr, M. E., Holmer, M., Baum, J. K., Björk, M., Boyer, K., Chin, D., ... & Boström, C. (2018). Blue carbon storage capacity of temperate eelgrass (*Zostera marina*) meadows. *Global Biogeochemical Cycles*, 32, 1457-1475.
- Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Cuéllar-Martínez, T., Pérez-Bernal, L. H., Carnero-Bravo, V., Ávila, E., & Cardoso-Mohedano, J. G. (2020). Increasing salinization and organic carbon burial rates in seagrass meadows from an anthropogenically-modified coastal lagoon in southern Gulf of Mexico. *Estuarine, Coastal and Shelf Science*, 242, 106843.

- 17. Serrano, O., Almahasheer, H., Duarte, C. M., & Irigoien, X. (2018). Carbon stocks and accumulation rates in Red Sea seagrass meadows. *Scientific Reports*, 8, 1-13.
- Shipley, O. N., Murchie, K. J., Frisk, M. G., O'Shea, O. R., Winchester, M. M., Brooks, E. J., ... & Power, M. (2018). Trophic niche dynamics of three nearshore benthic predators in The Bahamas. *Hydrobiologia*, 813, 177-188.
- 19. Stoner, A. W., & Waite, J. M. (1991). Trophic biology of Strombus gigas in nursery habitats: diets and food sources in seagrass meadows. *Journal of Molluscan Studies*, 57, 451-460.
- 20. Vane, C. H., Kim, A. W., Moss-Hayes, V., Snape, C. E., Diaz, M. C., Khan, N. S., ... & Horton, B. P. (2013). Degradation of mangrove tissues by arboreal termites (*Nasutitermes acajutlae*) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ¹³C, C/N, alkaline CuO oxidation-GC/MS, and solid-state ¹³C NMR. *Geochemistry, Geophysics, Geosystems*, 14, 3176-3191.
- 21. Yannarell, A. C., Steppe, T. F., & Paerl, H. W. (2007). Disturbance and recovery of microbial community structure and function following Hurricane Frances. *Environmental Microbiology*, 9, 576-583.
- 22. York, P. H., Macreadie, P. I., & Rasheed, M. A. (2018). Blue Carbon stocks of Great Barrier Reef deep-water seagrasses. *Biology Letters*, 14, 20180529.