README

Overview

The code in this replication package constructs the analysis file from the Delgado, Garcia-Suaza and Sant'Anna (2021) using R and Stata. The simulation results for the Monte Carlo simulations are generated using the simulation/KMDR-sim-main.R file, whereas the application/run-all.R generates all the results for the empirical application.

Data Availability and Provenance Statements

Statement about Rights

- ☑ I certify that the author(s) of the manuscript have legitimate access to and permission to use the data used in this manuscript.
- ☑ I certify that the author(s) of the manuscript have documented permission to redistribute/publish the data contained within this replication package.

Summary of Availability

V	All data are publicly available.
	Some data cannot be made publicly available.
	No data can be made publicly available.

Details on Data Source

This paper uses data from Survey of Income and Program Participation (SIPP) for the period spanning 1985-2000, analyzed by Chetty (2008). Data can be downloaded from https://rajchetty.com/wp-content/uploads/2021/04/Chetty_UI_stata_code.zip. A copy of the raw data and Chetty's replication files is provided is provided as part of this archive at data/Chetty2008/SIPP. A copy of the processed (merged) data is available at data/raw.

Datafile: data/raw/SIPP_durations.dta

Computational requirements

Software Requirements

- Stata (code was last run with version 17)
 - the program "application/00-data-process.do" will create the data we use in the application. Make sure to set up the absolute path of the data/raw folder in line 10.
- R 4.1.0
 - $-\ \mathtt{here}\ 1.0.1$
 - $\ \mathtt{haven} \ 2.4.3$
 - survival 3.2-11

- matrixStats 0.61.0
- ggplot2 3.3.5
- gridExtra 2.3
- ggthemes 4.2.4
- latex2exp 0.9.0
- glue 1.4.2
- RColorBrewer 1.1-2
- patchwork 1.1.1
- utils 4.1.0
- foreach 1.5.1
- doRNG 1.8.2
- doSNOW 1.0.19
- icenReg 2.0.15
- TransModel 2.1
- readr 2.1.0
- taRifx 1.0.6.2

All programs were run on a Windows 11 machine.

Controlled Randomness

- Random seed for the Monte Carlo simulations is set at line 13 of program simulations/KMDR-sim-main.R

Memory and Runtime Requirements

Summary Approximate time needed to reproduce the analyses on a standard 2021 desktop machine:

- \square <10 minutes
- \square 10-60 minutes
- **∠** 1-8 hours
- □ 8-24 hours
- \square 1-3 days
- \square 3-14 days
- $\square > 14 \text{ days}$
- □ Not feasible to run on a desktop machine, as described below.

Details The code was last run on a 24-core Intel-based Desktop with Windows 11 and 32 GB of RAM. Computation for the empirical application took 3 hours and 22 minutes. Computation for the Monte Carlo simulations took 58 minutes.

Description of programs/code

- Programs in application will extract the dataset and generate all results for the empirical application. The file application/run-all.R will run all the R programs.
 - The Stata file application/00-data-process.do generate variables and labels for the variables we use in the application. It saves the processed data, data//processed/sipp-processed.dta.
 - The R file application/01-R-prep.R prepare data for the replication, and load all functions into environment. It also generates the relevant subsets of the data for the analysis.
 - The R file application/02-pooled.R estimates the Kaplan-Meier distribution regressions and the Cox-Proportional hazard model using the pooled dataset.
 - The R file application/03-pooled.R estimates the Kaplan-Meier distribution regressions and the Cox-Proportional hazard model using the subsets of the data depending on whether households are above or below the net liquid wealth median.
 - The R file application/04-mortgage.R estimates the Kaplan-Meier distribution regressions and the Cox-Proportional hazard model using the subsets of the data depending on whether households have a mortgage or not.
 - The R file application/05-hyp_tests.R test whether the Kaplan-Meier distribution regression coefficients are constant across elapsed duration. This is the slowest portion of the code, which takes around 3 hours to run. If not interested, please comment it out.
 - The R file application/06-plots.R generates figure 1 (figures/ub-adme-baseline.pdf), figure 2 (figures/ub-adme-liquidity.pdf), and figure 3 (figures/ub-adme-het-liquidity.pdf) of the paper.
- Programs in simulations will generate all results for the Monte Carlo simulations. The file simulations/KMDR-sim-main.R will run all the R programs and generate all results.
 - The folder simulations/aux_functions contain auxiliary functions called by the file KMDR-sim-main.R. It contains the function that generate the DGP (dgps-sim.R), the script to compute all computations in each Monte Carlo setup (simulations.R), and the files that script that summarize all results (table_dgp1.R, table_dgp2.R, and table_dgp3.R). The file that generate Table 1 in the paper is table_dgp3.R; this table coincides with Table 4 in the Online Appendix.
 - The folder simulations/results contain all csv outputs generated by the simulations.
 - The folder simulations/tables contain summaries of the Monte Carlo results. The results for Table 1 in the paper can be found in

table_dgp3_summary.txt; this table coincides with Table 4 in the Online Appendix.

Instructions to Replicators

- Edit line 10 of the Stata do-file "application/00-data-process.do" to adjust the default absolute path of the data/raw.
- To replicate the empirical application results, we recommend you to have R Studio installed in your computer. Once that is installed, open the R project file KMDR.Rproj, and then run the program application/run-all.R to run all steps in sequence.
- To replicate the Monte Carlo simulations results, open the R project file KMDR.Rproj (if that is not already open), and then run the program application/run-all.R to run all steps in sequence.

List of tables and programs

The provided code reproduces:

- ☑ All numbers provided in text in the paper
- All tables and figures in the paper
- □ Selected tables and figures in the paper, as explained and justified below.

Figure/Table #	Program	Line Number	Output File
Table 1	simulations/KMDR-sim-main.R	76	simulations/tables/table_dgp3_summary.txt
Table 2	simulations/KMDR-sim-main.R	74	simulations/tables/table_dgp1_summary.txt
Table 3	simulations/KMDR-sim-main.R	75	simulations/tables/table_dgp2_summary.txt
Table 4	simulations/KMDR-sim-main.R	76	simulations/tables/table_dgp3_summary.txt
Figure 1	application/06-plots.R	369	figures/ub-adme-baseline.pdf
Figure 2	application/06-plots.R	378	figures/ub-adme-liquidity.pdf
Figure 3	application/06-plots.R	386	figures/ub-adme-het-liquidity.pdf

References

U.S. Census Bureau. Survey of Income and Program Participation (SIPP), 1985-2000. https://www.census.gov/programs-surveys/sipp.html.

Chetty, R. (2008). Moral Hazard versus Liquidity and Optimal Unemployment Insurance. *Journal of Political Economy* 116, 173–234.

Chetty, R. (2008). Moral Hazard versus Liquidity and Optimal Unemployment Insurance - Replication package. *Journal of Political Economy* 116, 173–234. Available at https://rajchetty.com/wp-content/uploads/2021/04/Chetty_UI_s tata_code.zip (last accessed: Jan 26 2022).

Delgado, M., García-Suaza, A. and Sant'Anna, P. H. C. (2022). Distribution Regression in Duration Analysis: an Application to Unemployment Spells. *Econometrics Journal* Forthcoming.