1 Review

Recall that for the *log likelihood* $l(\theta; x) = \log p_{\theta}(x)$, we defined the *score* $\nabla_{\theta} l(\theta; x)$.

$$1 = \int p_{\theta}(x)d\mu(x) = \int e^{l(\theta;x)}d\mu(x) \tag{1.1}$$

$$\frac{\partial}{\partial \theta_j} \implies 0 = \int \frac{\partial}{\partial \theta_j} l(\theta; x) e^{l(\theta; x)} d\mu(x) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta_j} l(\theta; x) \right]$$
 (1.2)

$$\frac{\partial}{\partial \theta_i} \implies 0 = \int \frac{\partial^2}{\partial \theta_i \partial \theta_j} l(\theta; x) e^{l(\theta; x)} + \frac{\partial}{\partial \theta_i} l(\theta; x) \frac{\partial}{\partial \theta_j} l(\theta; x) e^{l(\theta; x)} d\mu(x) \tag{1.3}$$

$$= -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} l(\theta; x) \right] = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta_i} l(\theta; x) \frac{\partial}{\partial \theta_j} l(\theta; x) \right]$$
(1.4)

$$= \operatorname{Cov}_{\theta} \left(\frac{\partial}{\partial \theta_{i}} l(\theta; x), \frac{\partial}{\partial \theta_{j}} l(\theta; x) \right)$$
(1.5)

In 1 variable

$$\implies -\mathbb{E}_{\theta}[l''(\theta;x)] = \operatorname{Var}_{\theta}(l'(\theta;x)) = \underbrace{J(\theta)}_{\text{Fisher information}}$$
(1.6)

The CRLB: If $\hat{\theta}$ unbiased, $Var(\hat{\theta}) \ge 1/J(\theta)$. We showed that for exponential families

t for exponential families

$$\sqrt{n}(\hat{\theta} - \theta) \Rightarrow N(0, J_1(\theta)^{-1}) \tag{1.7}$$

$$\therefore \hat{\theta} \approx N(\theta, (nJ_1(\theta)^{-1}) = N(\theta, J(\theta)^{-1})$$
(1.8)

Can we show this generally for MLEs?

2 Asymptotic distribution of MLE

Setup: $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p_{\theta}(x)$, "smooth" in θ . Then under some conditions

$$\hat{\theta} \approx N(\theta, (nI(\theta))^{-1}) \tag{2.1}$$

as long as $\hat{\theta}$ is consistent.

Proof. "Part worth remembering". Let θ_0 denote the true value. Then

$$\frac{1}{\sqrt{n}}l'(\theta_0; x) = \frac{1}{\sqrt{n}} \sum_{i} l'(\theta_0; x_i) \Rightarrow N(0, J_1(\theta_0))$$
 (2.2)

$$\frac{1}{n}l'(\theta_0; x) \xrightarrow{p} -J_1(\theta_0) \text{ by WLLN}$$
 (2.3)

Do a Taylor expansion on $l'(\hat{\theta}; x)$

$$0 = \underbrace{l'(\hat{\theta}_{j}; x)}_{\hat{\theta} \text{ MLE}} = l'(\theta_{0}; x) + (\hat{\theta} - \theta_{0})l''(\theta_{0}; x) + H.O.T.$$
 (2.4)

so $\sqrt{n}(\hat{\theta} - \theta_0) \approx \frac{\frac{1}{\sqrt{n}} l'(\theta_0; x)}{-\frac{1}{n} l''(\theta_0; x)} \Rightarrow N(0, J_1(\theta_0)^{-1})$ by Slutsky's theorem.

Figure 1: Taylor expansion to second term is a best quadratic approximation at $\theta = \theta_0$

TODO for completing the proof:

- (a) Need to control H.O.T. (higher order terms)
- (b) Need asymptotic consistency

Example 2.1 (Gaussian).

 $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} N(\theta_0, \sigma^2)$ (2.5)

$$l(\theta; x) = n\bar{X}_n \frac{\theta}{\sigma^2} - n \frac{\theta^2}{2\sigma^2} - h(x)$$
 (2.6)

$$l'(\theta; x) = \frac{n}{\sigma^2} (\bar{X} - \theta) \sim N(0, \frac{n}{\sigma^2})$$
 (2.7)

So

$$J_1(\theta) = \sigma^{-2}, \qquad l''(\theta; x) = -\frac{n}{\sigma^2}$$
 (2.8)

and the polynomial approximation (in the Taylor series expansion) holds exactly

$$\sqrt{n}(\hat{\theta} - \theta_0) \Rightarrow N(0, \sigma^2) \tag{2.9}$$

Now let's do it for real.

Theorem 2.2 (Keener 9.14). Let $X_1, ..., X_n \sim p_{\theta}(x)$. Suppose we have a dominated family $\mathcal{P} = \{p_{\theta} : \theta \in \Theta \subset \mathbb{R}\}$ and the following conditions hold:

Twice-diff log-likelihood $\forall \theta \in \Theta, x \in \mathcal{X} \text{ st } p_{\theta}(x) > 0, l(\theta; x) = \log p_{\theta}(x) \text{ has 2 continuous derivatives wrt } \theta$

Fisher information $\mathbb{E}_{\theta}l'(\theta;x) = 0$ and $Var_{\theta}(l'(\theta;x)) = -\mathbb{E}l''(\theta;x) = J(\theta)$

"Tame" 2nd derivative $\forall \theta \in \Theta^{\circ}$, $\exists \varepsilon > 0 \ st \ \mathbb{E}_{\theta} \sup_{\tilde{\theta} \in [\theta - \varepsilon, \theta + \varepsilon]} l''(\theta; x) < \infty$

MLE is consistent $\forall \theta \in \Theta$, $\hat{\theta}_n = \arg \max_{\theta} p_{\theta}(x) \xrightarrow{p} \theta$

Then $\forall \theta \in \Theta^{\circ}$

$$\sqrt{n}(\hat{\theta}_n - \theta) \Rightarrow N(0, J_1(\theta)^{-1}) \tag{2.10}$$

First, a technical lemma:

Lemma 2.3. Suppose $X_n \Rightarrow X$, $P(B_n) \to 1$ as $n \to \infty$. Let Z_n be arbitrary RVs. Then

$$\tilde{X}_n = X_n 1_{B_n} + Z_n 1_{B_n^c} \Rightarrow X \tag{2.11}$$

Proof of lemma. Fix $\varepsilon > 0$.

$$P(|Z_n 1_{B_n^c} > \varepsilon) \le P(B_n^c) \to 0 \tag{2.12}$$

$$P(|1_{B_n} - 1| > \varepsilon) \le P(B_n^c) \to 0$$
 (2.13)

$$\therefore Z_n 1_{B_n^c} \xrightarrow{P} 0 \text{ and } 1_{B_n} \xrightarrow{P} 1 \tag{2.14}$$

so by Slutsky $\tilde{X} \Rightarrow X$.

Proof of theorem. Fix $\theta \in \Theta^{\circ}$. Choose $\varepsilon > 0$ for which

(a)
$$[\theta - \varepsilon, \theta + \varepsilon] \subset \Theta^{\circ}$$

(b)
$$\mathbb{E} \sup_{\tilde{\theta} \in [\theta - \varepsilon, \theta + \varepsilon]} l''(\theta; x) < \infty$$

If $B_n = \{|\hat{\theta} - \theta| < \varepsilon\}$ then $P(B_n) \to 1$.

On B_n ,

$$0 = l'(\hat{\theta}_n; x) = l'(\theta; x) + (\hat{\theta}_n - \theta)l''(\tilde{\theta}_n; x)$$
(2.15)

where (by Taylor's theorem) $\tilde{\theta}_n$ is between θ and θ_n , so $\tilde{\theta} \in [\theta_0 - \varepsilon, \theta_0 + \varepsilon]$ and therefore

$$\sqrt{n}(\hat{\theta}_n - \theta) = \frac{\frac{1}{\sqrt{n}}l'(\theta; x)}{\frac{1}{n}l''(\hat{\theta}_n; x)}$$
(2.16)

By CLT, the numerator $\Rightarrow N(0, J_1(\theta))$.

Want denominator $\xrightarrow{P} J_1(\theta)$. If $\hat{\theta}_n \xrightarrow{P} \theta$ (i.e. MLE is consistent, assumed), then $\tilde{\theta} \xrightarrow{P} \theta$.