結構化機器學習模型及其應用 第一次報告

系所:應數所大數據組

學生:張格恩

學號:7106053112

Representation

C ₁₁	<i>c</i> ₁₂	c ₂₁	c ₂₂	a_1	b_1	a_2	b_2
E	2	А	C	1	0	6	2
5	В	6	3	1	0	6	2

a_1	.5	b_{15}	a_{16}	b_{16}
	4	4	Е	Е
	4	4	Е	Е

Feature(x):

$$x = [a_1, b_1, ..., a_{10}, b_{10}, a_{13}, b_{13}, ..., a_{16}, b_{16}]$$
 (28 Dim) , $a_i, b_i = 0 \sim E \quad \forall i$
 $x \longrightarrow [x_1, x_2, ..., x_{111}, x_{112}]$ (112 Dim) , $x_i = 0$ or 1 $\forall i$

Label(
$$y = [y_1, y_2]$$
):
 $y = [y_1, y_2] = [c_{11}, c_{12}, c_{21}, c_{22}] \longrightarrow y = 16 \text{ bit}(000 \cdots 000 \sim 111 \cdots 111)$
 $y \longrightarrow (y_0, y_1, ..., y_{14}, y_{15}) \quad y_i = 0 \text{ or } 1 \forall i = 0 \sim 15$

Representation

Feature(x):

$$x = [a_1, b_1, ..., a_{10}, b_{10}, a_{13}, b_{13}, ..., a_{16}, b_{16}]$$
 (28 Dim) , a_i , $b_i = 0 \sim E \quad \forall i$
 $x \longrightarrow [x_1, x_2, ..., x_{111}, x_{112}]$ (112 Dim) , $x_i = 0$ or 1 $\forall i$

Reason:

- (1)增加bit of feature的相關性
- (2)降低feature distribution的variance

ex: 在Neural Network裡

$$x^{1} = [F, 1, 6] \longrightarrow w_{1} \times 15 + w_{2} \times 1 + w_{3} \times 6$$

 $x^{1} \longrightarrow x_{new}^{1} = [1, 1, 1, 1, ..., 0, 1, 1, 0] \longrightarrow w_{1} \times 1 + w_{2} \times 1 + \cdots + w_{11} \times 1 + w_{12} \times 0$

Representation

Label(
$$y = [y_1, y_2]$$
):
 $y = [y_1, y_2] = [c_{11}, c_{12}, c_{21}, c_{22}] \longrightarrow y = 16 \text{ bit}(000 \cdots 000 \sim 111 \cdots 111)$
 $y \longrightarrow (y_0, y_1, ..., y_{14}, y_{15}) \quad y_i = 0 \text{ or } 1 \forall i = 0 \sim 15$

Reason:

Assume y_i are less relevant to each i, let problem(classification:65536) simplify 16 problem(classification:0/1)

二、Model

1. Neural Network(NN) for y(classification: $y = [c_{11}, c_{12}, c_{21}, c_{22}]$)

二、Model

2. Neural Network(NN) for each y_i (classification: $y_i = 0/1$)

feature(x):
$$x = [x_1, x_2, ..., x_{111}, x_{112}]$$
 (112 Dim) , $x_i = 0$ or 1 $\forall i = 1 \sim 112$ label(y): $y_i = 0$ or 1 for each $i = 0 \sim 15$

二、Model

2. Neural Network(NN) for each y_i (classification: $y_i = 0/1$)

 Y_i : the true label for y_i (i bit)

 \hat{Y}_i : the output of NN model for y_i (i bit)

C: the matrix, values are 1

Loss function: $L(W) = -Tr(Y_i^T \log(\hat{Y}_i)) - Tr((C - Y_i)^T \log(C - \hat{Y}_i))$

三、Result

Accuracy of Total test($y = [y_1, y_2] = [c_{11}, c_{12}, c_{21}, c_{22}]$): 0.8587

Label	Acc(NN)	Label	Acc(NN)
$0 \operatorname{bit}(y_0)$	0.9999	8 bit(y_8)	0.9636
1 bit(y_1)	0.9999	9 bit(y_9)	0.9613
$2 \operatorname{bit}(y_2)$	0.9997	10 bit(y_{10})	0.9744
$3 \operatorname{bit}(y_3)$	0.9999	11 bit(y_{11})	0.9747
4 bit(y_4)	0.9999	12 bit(y_{12})	0.9805
5 bit(y_5)	0.9987	13 bit(y_{13})	0.9967
6 bit(y_6)	0.9998	14 bit(y_{14})	0.9908
7 bit (y_7)	0.9995	15 bit(y_{15})	0.9997

THE END

感謝聆聽