华侨大学本科考试卷

2017-2018 学年 第二学期 (B)

学院	_课程名称	大学物理(A4)	考试日期	
				
灶夕	去小班级		<u>~</u>	是

题号	_	=	=		总分
得分					

(答案写在答题纸上)

一、选择题(共30分,每题3分)

- **1**. 半径为 R 的圆盘以恒定角速度 $^{\omega}$ 作匀速转动,一质量为 m 的人(相对于圆盘)缓慢地从圆盘中心走到圆盘边缘,圆盘对其所作的功为[___]。
- A. $mR\omega^2$ B. $-mR\omega^2$ C. $\frac{1}{2}mR^2\omega^2$ D. $-\frac{1}{2}mR^2\omega^2$
- **2.** 质点以速度 $v=4+t^2$ m/s 作直线运动,沿质点运动直线作 ox 轴,并已知 t=3s 时, 质点位于 x=9m 处,则该质点的运动方程为 []
- A. x=2t B. $x=4t+t^3/2$ C. $x=4t+t^3/3-12$ D. $x=4t+t^3/3+12$
- 3. 质量之比为 1:2:4 的甲、乙、丙三物体作直线运动。开始时它们的动量相等,且作用于每一个物体上的制动力的大小都相同,方向与各自的速度方向相反,则它们制动距离之比是[]。
- A. 1:2:4 B. 1: $\sqrt{2}$: $\sqrt{4}$ C. 4:2:1 D. $\sqrt{4}$: $\sqrt{2}$:1
- 4. 一质量为^m 的物体拴在长为^f 的轻绳上,绳子的另一端固定在光滑水平桌面上,另一质量为^m 的物体用长^f 的轻绳与^m 相接,二者均在桌面上作角速度为^m 的匀速圆周运动,如图所示。则^f ,^f 两绳上的张力分别为[
- A. $T_1 = m_1 \omega^2 l_1$, $T_2 = m_2 \omega^2 l_2$
- B. $T_1 = m_1 \omega^2 l_1$, $T_2 = m_2 \omega^2 (l_1 + l_2)$
- C. $T_1 = m_1 \omega^2 (l_1 + l_2)$, $T_2 = m_2 \omega^2 l_2$
- D. $T_1 = m_1 \omega^2 l_1 + m_2 \omega^2 (l_1 + l_2)$, $T_2 = m_2 \omega^2 (l_1 + l_2)$
- 5. 一质点在三维力场中运动,已知力场的势能函数为,则该质点受到

$$E_p = -2x^2 + 3xy - 6z$$
 的力为: []。

$$F = x - 3y + 6$$

B.
$$\vec{F} = (3y - 4x)\vec{i} + 3x\vec{j} - 6\vec{k}$$

C.
$$\vec{F} = 3x\vec{i} - 6\vec{j} + (3y - 4x)\vec{k}$$

D.
$$\vec{F} = (4x - 3y)\vec{i} - 3x\vec{j} + 6\vec{k}$$

6. 如图所示,一正电荷+Q 以固定不动的负电荷-q 为中心,在半径 × 为r的圆形轨道上运动。现在两电荷所在的空间加一均匀磁场,使正 电荷圆周运动所在平面与磁场垂直,则在r不变的情况下,正电荷运 动的动能将「

- B. 减小 C. 增加 D. 无法确定 A. 不变
- 7. 在电场中有 A,B 两点,在下述情况下,B 点电势较高的是[
- A. 正电荷由 A 移到 B 时,电场力作正功.
- B. 正电荷由 A 移到 B 时,外力克服电场力作正功.
- C. 负电荷由 A 移到 B 时,外力克服电场力作正功.
- D. 负电荷由 A 移到 B 时,电场力作负功.
- 8. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:「 7
- A. $E_A > E_B > E_C$, $U_A > U_B > U_C$.
- B. $E_A < E_B < E_C$, $U_A < U_B < U_C$.
- C. $E_A > E_B > E_C$, $U_A < U_B < U_C$.
- D. $E_A \leq E_B \leq E_C$, $U_A > U_B > U_C$.

9. 若要使半径为 4cm 的裸铜线表面的磁感强度为 7.0×10-5T,则铜线中需要通过的电 $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m} \cdot \mathrm{A}^{-1}$

流为[](
$$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$$
)

坐标是 x=0 和[1

- A. 0.14A; B. 1.4A; C. 2.8A; D. 14A
- 10. 如图,一个电量为+q,质量为m的质点,以速度V沿 X 轴射入磁感应强度为 B 的均匀磁场中, 磁场方向如图, 其范围从 x=0 延伸到无限远,如果质点在 x=0 和 Y=0 处进 入磁场,则它将以速度 -V 从磁场中某一点出来,这一点

A.
$$y = +\frac{mv}{qB}$$
 B. $y = +\frac{2mv}{qB}$ C. $y = -\frac{2mv}{qB}$ D. $y = -\frac{mv}{qB}$

填空题(30分,每题3分)

- 11. 装有竖直遮风玻璃的汽车,在大雨中以速率 $^{\nu}$ 前进,,雨滴以速率 $^{\nu}$ 竖直下落, 则雨滴以与竖直方向的夹角为() 角度打击遮风玻璃。
- **12**. 一质量为**m**的小球被长为的¹绳子拴住,沿着光滑的圆锥体表面做圆锥摆运动,

圆锥体顶角为 $^{2\theta}$,如果小球角速度为 $^{\alpha}$ ($^{\alpha}$ 比较小),则受到圆锥体表面的支持力 N 为(

13. 一质量为 50 kg 的树木,以 6 km / h 的恒速顺着河道向下游漂动。天上一质量为 10 kg 的天鹅正以 8 km / h 的速率贴着水面向上游飞翔。天鹅试图飞落到树木上,但刚落到树木上尚未立稳时,又以相对于树木 2 km / h 的速率离开了树木向上游飞去。不计河水的阻力,该树木最后的速度大小为(

14. 绕定轴转动的飞轮作匀加速地转动,初始时的角速度 $\alpha_b = 0.5 \, \text{rad/s}$, $t = 9 \, \text{s}$ 时

角速度为 $\omega = 5 \text{ rad/s}$, 则飞轮的角加速度 $\alpha = 0$

t=0 到 t=9 s 时间

内飞轮所转过的角度 θ = ()。

15. A, B 为真空中两个平行的"无限大"均匀带电平面,已知两平面间的电场强度大小为 E₀,两平面外侧电场强度大小都为 E₀/3,方向如图.则 A,B 两平面上的电荷面密度分

别为 $\sigma_A = ($), $\sigma_B = ($).

16.电荷分别为 q_1 , q_2 , q_3 的三个点电荷分别位于同一圆周的三个点上,如图所示. 设无穷远处为电势零点,圆半径为 R,则 b 点处的电势 U=(

17. 如图,通有电流 1的无限长载流直导线与通有电流 2矩形载流线圈 ABCD 在同一平面内,AB 边离长直导线的距离为 a。矩形载流线圈的尺寸如图所示,则 AB 边所受磁场作用力大小为 ()。

18. 无限长导线弯成如图形状,通以电流 I,则 O 点 \vec{B} 的大小是(),方 向为()。

- 19. 设质点的运动方程为 $\vec{r} = R\cos\omega t \vec{i} + R\sin\omega t \vec{j}$ (式中 R, ω 皆为常量),则质点的 $\vec{v} = ($),dv/dt = ().
- 20. 任何带电体的电荷量总是元电荷的整数倍,表明电荷是()的。

三、 计算题(40分)

21.(10 分)一无限长圆柱形铜导体(磁导率 μ_0),半径为 R,通有均匀分布的电流 I,今取一矩形平面(长为 l=1m,宽为 2R),位置如图中画斜线部分所示,求通过该矩形平面的磁通量。

- 23. (10 分) 质量分别为 ^m 和 ^m 的两个木块,用一个劲度系数为 ^k 的轻弹簧联接起来,放在光滑水平面上,且 ^m 紧靠墙壁,如图所示。用外力推木块 ^m 使弹簧压缩 ^{x₀},然后由静止释放。若要使弹簧的最大伸长量 ^{x_{max}} 恰好为弹簧初速压缩量 ^{x₀} 的一半,求 ^m 与 ^m 二者之比。
- 24. (5分) 有一在半径为 R 的圆周上运动的质点,其在圆周上所经历的路程与时间的关系为 $^S=b+ct+dt^2$,其中 b 、 c 、 d 是大于零的常量,求从 $^t=0$ 开始到法向加速度与切向加速度大小相等时所经历的时间,以及常量 b 、 c 、 d 之间应满足的关系。
- **25.** (5 分) 一物体按规律 $x=ct^3$ 在媒质中作直线运动,式中 c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为 k,试求物体由 x=0 运动到 x=l 时,阻力所作的功.

