Introduction to Real Analysis

ROB 501 Necmiye Ozay

- (SVD quick wrap up)
- Open balls and closed balls
- Open and closed sets

Unitarily invariant norms in Rmxn are s.t. for any onthogonal Metrix & 11A11-11QA11

Singular Value Decomposition

SVD Theorem: Any $m \times n$ real matrix A can be factored as

$$A = U\Sigma V^{\top}$$

where

 AA^{\top} and $A^{\top}A$.

 $U = m \times m$ orthogonal matrix

 $V = n \times n$ orthogonal matrix

 $\Sigma = m \times n$ rectangular diagonal matrix and diag (Σ) = $[\sigma_1, \ \sigma_2, \ \cdots, \ \sigma_p]$ satisfies $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$ where $p = \min(m, n)$. Moreover, the columns of U are eigenvectors of AA^{\top} , the columns of V are eigenvectors of $A^{\top}A$, and the $(\sigma_i)^2$ are eigenvalues of both

AAT-USVTVETUT=UEETUT ATA - VETEUT For spectral norm

Fact: Suppose that rank(A) = r, so that σ_r is the smallest non-zero singular value. Then

- (i) if an $n \times m$ matrix E satisfies $||E|| < \sigma_r$, then $\operatorname{rank}(A+E) \ge r$.
- (ii) there exists E with $||E|| = \sigma_r$ and rank(A + E) < r.
- (iii) In fact, for $E = -\sigma_r u_r v_r^{\top}$, rank(A + E) = r 1.
- (iv) Moreover, for $E = -\sigma_r u_r v_r^{\top} \sigma_{r-1} u_{r-1} v_{r-1}^{\top}$, rank(A + E) = r 2.

Corollary: Suppose A is square and invertible. Then σ_r measures the distance from A to the nearest singular matrix.

assume m<n

 $Cank(A) = \# of \qquad A = U\Sigma V^{\top} = \sum_{i=1}^{m} \sigma_{i} u_{i} v_{i}^{\top}$ $convec \qquad cinsules \qquad E = A - A$ $convec \qquad values \qquad min \qquad 1$ $||A - \widehat{A}||_{E} = \max_{\substack{n \neq 1 \\ ||A| = 1}} ||A \times ||_{2}$

Best low rank approximation for any unitarily invariant matrix norm, e.g., Frobenius norm, matrix

2-norm (aka spectral norm).

given rank(A) =
$$\cap$$
 $= \min_{E \in S, k} |E||$
 $= \sup_{E \in S, k} |E||$
 $= \sup_{E \in S, k} |E||$
 $= \sup_{E \in S, k} |E||$

$$A = \sigma_1 U_1 V_1^T + \dots + \sigma_m U_m V_m^T$$

$$A f E = \sigma_1 U_1 V_1^T + \dots + \sigma_{m-1} U_{m-1} V_{m-1}$$

$$\|Ax\|_2$$

$$\|Ax\|_2 = \max_{\|x\|_2 = 1} \|Ax\|_2 = \sup_{\|x\|_2 = 1} \|Ax\|_2$$

Intro to Real Analysis

Let
$$(X, \mathbb{R}, \mathbb{H} \cdot \mathbb{H})$$
 be a normed space. We will use $\mathcal{F} = \mathbb{R}$ in this course, so will simply write $(X, \mathbb{H} \cdot \mathbb{H})$.

Recall: a) $\forall x, y \in X$, $d(x, y) = \mathbb{H} \times -y \mathbb{H}$

b) $\forall x \in X$ and $\forall S \subset X$

$$d(x, S) := \inf_{y \in S} d(x, y) = \inf_{y \in S} \mathbb{H} \times -y \mathbb{H}$$

Remarks: (i) $d(x, S) = 0 \iff \forall E > 0$, $\exists y \in S$ s.t. $\mathbb{H} \times -y \mathbb{H} \times \mathbb{H} \times \mathbb{H}$

*

(a) $d(x, S) = 0 \iff \forall E > 0$, $\exists y \in S$ s.t. $\mathbb{H} \times -y \mathbb{H} \times \mathbb{H} \times$

2 $d(x,s) > 0 \iff \exists \epsilon > 0$, $\forall y \in s \mid ||x-y|| \geqslant \epsilon$ Open and closed sets Def: Let x. EX, and a ER, a>0. Then, the open ball of radius a about xo is the $B_{\alpha}(x_{o}) = \begin{cases} x \in X \mid ||x-x_{o}|| \leq \alpha \end{cases}$ set The actual shape. Depends on the norm. Nepends on the norm.
If we use "IIX-x₀II ≤ a" in the del.
If we use "IIX-x₀II ≤ a" in we get a closed ball. Examples: $B_1(0)$ in $(R^2, ||\cdot||)$ $B_{\alpha}^{c}(x)$ $(\mathbb{R}^2, \mathbb{I} \cdot \mathbb{I}_2)$ Ba(x) boundary is polyded of not included $(\mathbb{R}^2, \|\cdot\|_{\mathfrak{B}})$ $(\mathbb{R}^2, \mathbb{N} \cdot \mathbb{N}_1)$

Important observerions:

(a) $d(x, S) = 0 \iff \forall E > 0$, $\exists y \in S$, $\|x - y\| < E$ (b) $d(x, S) = 0 \iff \forall E > 0$, $\exists y \in S$,

Def. Let PCX be a subset

(a) $p \in P$ is an interior point of P if $\exists E > O$ $B_{E}(p) \subset P$.

(EX:1) Take
$$P_1 = [1,2]$$
 $1 \in P_1$ but is not an interior point. (any boll around interior point.

 $1.00016P_1$ is an interior point.

 $1.00016P_1$ is called the interior of P_2 is called the interior of P_3 is called the interior of P_3 .

Ex (cont) 1) $P_1^0 = (1,2)$
 $1.00016P_1$ is an interior point of P_3^0 is called the interior of P_3^0 is called the interior of P_3^0 .

Ex (cont) 1) $P_1^0 = (1,2)$
 $1.00016P_1$ is an interior point.

 $1.00016P_1$ is an interior point.

$p^{\circ} = \{ x \in X \mid d(x, np) > 03 \} \leftarrow \text{most useful}$ $def_{n}. af$

Methal I to show Pis open:

Take
$$x \in P \iff O < x < 1$$

let $E = \min \begin{cases} \frac{x}{2}, \frac{1-x}{2} \end{cases}$

let $E = \min \begin{cases} \frac{x}{2}, \frac{1-x}{2} \end{cases}$

(by definition of P we have P)

$$\therefore \ \beta_{\epsilon}(x) \subset P \Longrightarrow x \in P^{\circ}$$

(since this is true for all pCP) $XEP = P^{\circ}$

Method 2 to show P is open: P = (0,1), $P = (-\infty, 0] \cup [1,\infty)$ $X \in P \quad J(x, (-\infty, 0]) = x > 0$

$$x \in P$$
 $J(x, (-\infty, 0]) = x > 0$
 $J(x, [1, \infty)) = 1 - x > 0$

$$\therefore d(x, \sim P) = \min_{x \in \mathbb{R}} \{x, 1 - x\} > 0$$

:.
$$x \in P \leftarrow J(x, \sim P) > 0$$
 :: P is open

(a)
$$\times$$
 is a closure point of P if $\forall E > O$, $\exists y \in P$, $||x-y|| < E$ (i.e. $d(x, P) = O$)

(b) The closure of P, denoted
$$\overline{P}$$
, is $\overline{P} := \{ x \in X \mid x \text{ is a closure point of } P \}$

$$= \{ x \in X \mid A(x, P) = 0 \}$$

$$= \{ x \in X \mid A(x, P) = 0 \}$$
Def: P is closed if $P = \overline{P}$.

Ex: (1) Is P = [0,1) a closed set? Not closed because $1 \notin P$, d(1,P) = 0, $=> 1 \in P$ $=> P \neq P$.

 $\bar{P} = [0, 1]$

2) Is P=Q (set of rational numbers) closed?

Exercises

Some facts:

- Arbitrary unions of open sets are open
- Finite intersections of open sets are open
- Arbitrary intersections of closed sets are closed
- Finite unions of closed sets are closed

$$V = Z \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A V = A V$$

$$A \not= \begin{bmatrix} 1 \\ 1 \end{bmatrix} = A \not= \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{array}{c|c}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

exact ness

consolined as alined as al

 $\begin{array}{c} (1,t) \\ (t,t) \\ (t^2,t^2) \\ (sin \Pi t, sin \Pi t) \end{array}$ = \begin{align*}
\frac{\fir}{\fir}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fracc}\fr

rank (M) < min (rank(A), rank(B)) rank (B) = (ank (BT) Sin(R(A)) = on Assume dep. €> Jx,,x2 at least one non-zero $\alpha_{1}(v_{1}^{1}+v_{2})+\alpha_{2}(v_{1}^{1}-v_{2})=0$ s.t. $(x_1+x_2)v_1+(x_1-x_2)v_2=0$

need to show $d_1 + d_2$ or $d_1 - d_2$ is NOA-Zeca let's assume zesa $x, +x_2 = x, -x_2 = 0$ $X_1 = 0$, $X_2 = 0$ is non-zera v's are lin. Jep.