

Universidade Federal de Viçosa Centro de Ciências Exatas

Departamento de Matemática

Gabarito $6^{\underline{a}}$ Lista - MAT 135 - Geometria Analítica e Álgebra Linear

1. (10, -2, 17).

2.
$$\left(\frac{\sqrt{2}}{2}, 3\frac{\sqrt{6}}{2}, 2\sqrt{3}\right)$$
.

3. (b)
$$A' = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 e $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$.

- $(c) \text{ S\~ao as columas de A, respectivamente: } \left(\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right), \\ \left(\frac{1}{2},\frac{1}{2},-\frac{1}{2}\right) \in \left(-\frac{1}{2},\frac{1}{2},\frac{1}{2}\right).$
- (d) (-3, 1, 4).
- 4. (a) Como eles são ortogonais dois a dois e dim $\mathbb{R}^3 = 3$, eles são L.I.

$$(b) A' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -2 & 0 & 1 \end{pmatrix} \qquad e \qquad A = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & -\frac{1}{3} \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

- (c) São as colunas de A, respectivamente: $\left(\frac{1}{6}, \frac{1}{2}, \frac{1}{3}\right)$, $\left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}\right)$ e $\left(-\frac{1}{3}, 0, \frac{1}{3}\right)$.
- $(d) \left(-\frac{11}{6}, \frac{3}{2}, \frac{4}{3}\right).$

5.

- 6. (a) $p(x) = -2x + x^2$, $v_1 = (-1, 1)$ autovetor associado ao autovalor $\lambda_1 = 0$ e $v_2 = (1, 1)$ autovetor associado ao autovalor $\lambda_2 = 2$.
 - (b) $p(x) = 8 6x + x^2$, $v_1 = (1, 1)$ autovetor associado ao autovalor $\lambda_1 = 4$ e $v_2 = (-1, 1)$ autovetor associado ao autovalor $\lambda_2 = 2$.

- (c) $p(x) = -3 2x + x^2$, $v_1 = \left(-\frac{1}{2}, 1\right)$ autovetor associado ao autovalor $\lambda_1 = 3$ e $v_2 = \left(\frac{1}{2}, 1\right)$ autovetor associado ao autovalor $\lambda_2 = -1$.
- (d) $p(x) = -x^3$, $v_1 = (1, 0, 0)$ autovetor associado ao autovalor $\lambda_1 = 0$.
- (e) $p(x) = -(-1+x)(-3+x)(2+x), v_1 = (\frac{3}{4}, \frac{3}{8}, 1)$ autovetor associado ao autovalor $\lambda_1 = 1$,

 $v_2 = \left(0, \frac{5}{2}, 1\right)$ autovetor associado ao autovalor $\lambda_2 = 3$ e $v_3 = (0, 0, 1)$ autovetor associado ao autovalor $\lambda_3 = -2$.

- (f) $p(x)=-2x^2-x^3,$ $v_1=(1,0,1)$ e $v_2=(0,1,0)$ autovetores associados ao autovalor $\lambda_1=0$ e $v_3=(-1,3,1)$ autovetor associado ao autovalor $\lambda_2=-2$.
- 7. (a) $\beta_1 = \{ (-1,1) \} \in \beta_2 = \{ (1,1) \}.$
 - (b) $\beta_1 = \{ (1,1) \} \in \beta_2 = \{ (-1,1) \}.$
 - (c) $\beta_1 = \left\{ \left(-\frac{1}{2}, 1 \right) \right\} \in \beta_2 = \left\{ \left(\frac{1}{2}, 1 \right) \right\}.$
 - (d) $\beta_1 = \{ (1,0,0) \}.$
 - (e) $\beta_1 = \{ (0,0,1) \}, \beta_2 = \left\{ \left(\frac{3}{4}, \frac{3}{8}, 1 \right) \right\} \in \beta_3 = \left\{ \left(0, \frac{5}{2}, 1 \right) \right\}.$
 - $(f) \beta_1 = \{ (1,0,1), (0,1,0) \} e \beta_2 = \{ (-1,3,1) \}.$
- 8. (a) Diagonalizável. $P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$.
- (b) Diagonalizável. $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.
- (c) Diagonalizável. $P = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ & & \\ 1 & 1 \end{pmatrix}$.
- (d) Não diagonalizável.
- $(e) \ \mathrm{Diagonaliz\acute{a}vel}. \ P = \left(\begin{array}{ccc} 0 & \frac{3}{4} & 0 \\ \\ 0 & \frac{3}{8} & \frac{5}{2} \\ \\ 1 & 1 & 1 \end{array}\right).$
- $(f) \text{ Diagonalizável. } P = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 1 & 0 & 1 \end{array} \right).$
- 9. (a) $\lambda_1 = 4$, $\beta_1 = \{ (1,1) \}$ e $\lambda_2 = 3$, $\beta_2 = \{ (1,2) \}$.
 - (b) $\lambda_1 = 6$, $\beta_1 = \{ (3, 2, 3) \}$ e $\lambda_2 = -2$, $\beta_2 = \{ (0, 1, -1), (1, 0, -1) \}$.

10. (a)
$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} e D = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$$
.

(b)
$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} e D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

(b)
$$P = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} e D = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

(c) $P = \begin{pmatrix} 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} e D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

11. $\lambda = -4$.