Localization of low-energy states for semiclassical Toeplitz Operators

Alix Deleporte Advisor : Nalini Anantharaman

Institut de Recherche Mathématique Avancée Université de Strasbourg

December 8, 2016

Classical mechanics	Quantum mechanics
Symplectic manifold M	Hilbert Space H
Function $\mathfrak{a}\in C^\infty(M,\mathbb{R})$	$ Self-adjoint\ operator\ A\in L(H) $
Hamiltonien flow of a	Flow of e ^{itA/ħ}
Poisson Bracket	Lie Bracket

Classical mechanics	Quantum mechanics
Symplectic manifold M	Hilbert Space H
Function $\mathfrak{a}\in C^\infty(M,\mathbb{R})$	Self-adjoint operator $A \in L(H)$
Hamiltonien flow of a	Flow of e ^{itA/ħ}
Poisson Bracket	Lie Bracket

- Quantization: for a given classical model, how to construct an associated quantum model?
- Semiclassics : the quantum model is \hbar -dependent. What can be said in the $\hbar \to 0$ limit ?

• Quantum spins: triplet of self-adjoint matrices $S_x, S_y, S_z \in M_{2S+1}(\mathbb{C})$, with

$$[S_a, S_b] = \frac{i}{S} \epsilon_{abc} S_c.$$

■ For $S = \frac{1}{2}$, one finds the Pauli matrices

$$S_x = \frac{1}{2} \left(\begin{smallmatrix} 0 & & 1 \\ 1 & & 0 \end{smallmatrix} \right) \ S_y = \frac{1}{2} \left(\begin{smallmatrix} 0 & & i \\ -i & & 0 \end{smallmatrix} \right) \ S_z = \frac{1}{2} \left(\begin{smallmatrix} 1 & & 0 \\ 0 & & -1 \end{smallmatrix} \right).$$

• Quantum spins: triplet of self-adjoint matrices $S_x, S_u, S_z \in M_{2S+1}(\mathbb{C})$, with

$$[S_a, S_b] = \frac{i}{S} \epsilon_{abc} S_c.$$

• For $S = \frac{1}{2}$, one finds the Pauli matrices

$$S_x = rac{1}{2} \left(egin{smallmatrix} 0 & 1 \ 1 & 0 \end{smallmatrix}
ight) \ S_y = rac{1}{2} \left(egin{smallmatrix} 0 & i \ -i & 0 \end{smallmatrix}
ight) \ S_z = rac{1}{2} \left(egin{smallmatrix} 1 & 0 \ 0 & -1 \end{smallmatrix}
ight).$$

■ For any finite graph G, we wish to study the following operator acting on $(\mathbb{C}^{2S+1})^{\otimes |G|}$:

$$H = \sum_{e \sim f} S_{x,e} S_{x,f} + S_{y,e} S_{y,f} + S_{z,e} S_{z,f}$$

as
$$S \to +\infty$$
.

Plan

- 1 Toeplitz operators on Bargmann spaces
 - Bargmann spaces
 - Definition
 - Semiclassical properties
- 2 Generalization to Kähler manifolds
 - Hardy spaces
 - Semiclassical properties
 - An example: the sphere
- 3 The smallest eigenvalue
 - Wells
 - Miniwells
 - Conjectures

Bargmann spaces

The Bargmann spaces are L^2 spaces of holomorphic functions on \mathbb{C}^n , with a weight.

$$B_{\mathbf{N}}(\mathbb{C}^n) = \left\{z \mapsto \exp\left(-\frac{N}{2}|z|^2\right) f(z) \text{, f holomorphic}\right\} \cap L^2(\mathbb{C}^n)$$

Those are closed subspaces of $L^2(\mathbb{C}^n)$.

The Szegő projector

Let Π_N be the orthogonal projector from $L^2(\mathbb{C}^n)$ onto $B_N(\mathbb{C}^n)$. Π_N . It admits a Schwartz kernel:

$$\Pi_{\mathbf{N}}(z,w) = \frac{\mathbf{N}^{\mathbf{n}}}{\pi^{\mathbf{n}}} \exp \left[\mathbf{N}(-\frac{1}{2}|z-w|^2 + \mathrm{i}\Im(z\cdot\overline{w})) \right].$$

As $N\to +\infty$, the kernel is exponentially decreasing far from the diagonal. The typical interaction scale is $N^{-1/2}$.

Toeplitz operators

Definition

Let $h \in C^{\infty}(\mathbb{C}^n)$ a smooth bounded function, and $N \in \mathbb{N}$. We denote by $T_N(h)$ the Toeplitz operator associated to h:

$$\begin{split} T_N(h) : B_N(\mathbb{C}^n) & \mapsto & B_N(\mathbb{C}^n) \\ u & \mapsto & \Pi_N(hu). \end{split}$$

If h is not bounded, we can construct $T_N(h)$ as an unbounded operator on $B_N(\mathbb{C}^n)$.

The mapping $h \mapsto T_N(h)$ is linear and adjoint-preserving. If h is real-valued, then $T_N(h)$ is formally self-adjoint.

■ There holds $T_N(1) = 1$, and if h is holomorphic, then $T_N(h) = h$; for instance $T_N(z_i) = z_i$.

- There holds $T_N(1) = 1$, and if h is holomorphic, then $T_N(h) = h$; for instance $T_N(z_i) = z_i$.
- Moreover $T_N(\overline{z}_i) = N^{-1} \partial_i$.

- There holds $T_N(1) = 1$, and if h is holomorphic, then $T_N(h) = h$; for instance $T_N(z_i) = z_i$.
- Moreover $T_N(\bar{z}_i) = N^{-1} \partial_i$.
- $\text{ If } h: z \mapsto \overline{z}^\alpha z^\beta \text{, then } \mathsf{T}_\mathsf{N}(h) = \mathsf{N}^{-|\alpha|} \vartheta^\alpha z^\beta.$

- There holds $T_N(1) = 1$, and if h is holomorphic, then $T_N(h) = h$; for instance $T_N(z_i) = z_i$.
- Moreover $T_N(\overline{z}_i) = N^{-1} \partial_i$.
- $\text{ If } h: z \mapsto \overline{z}^\alpha z^\beta \text{, then } \mathsf{T}_N(h) = \mathsf{N}^{-|\alpha|} \vartheta^\alpha z^\beta.$
- If q is a definite quadratic form on \mathbb{R}^{2n} , then $T_N(q)$ has a compact resolvent. The first eigenvalue $\mu_N(q) = N^{-1}\mu_1(q)$ is positive.

$$\mu_1(q) = \mathsf{min}\,\mathsf{Sp}(\mathsf{Op}_1^W(q)) + \frac{1}{2}\,\mathsf{tr}(q)$$

Composition and bracket

Proposition

Leta and b two smooth bounded functions on \mathbb{C}^n . Then there is a sequence $(c_i)_{i\in\mathbb{N}}$ of smooth bounded functions on \mathbb{C}^n , with $c_0=\mathfrak{a}\mathfrak{b}$ so that, as $N\to +\infty$, there holds:

$$T_N(a)T_N(b) = T_N(c_0) + N^{-1}T_N(c_1) + N^{-2}T_N(c_2) + \dots$$

Composition and bracket

Proposition

Let α and b two smooth bounded functions on \mathbb{C}^n . Then there is a sequence $(c_i)_{i\in\mathbb{N}}$ of smooth bounded functions on \mathbb{C}^n , with $c_0=\alpha b$ so that, as $N\to +\infty$, there holds:

$$T_N(a)T_N(b) = T_N(c_0) + N^{-1}T_N(c_1) + N^{-2}T_N(c_2) + \dots$$

In particular,

$$[T_N(\mathfrak{a}),T_N(\mathfrak{b})]=\frac{i}{N}T_N(\{\mathfrak{a},\mathfrak{b}\})+O(N^{-2}).$$

Plan

- 1 Toeplitz operators on Bargmann spaces
 - Bargmann spaces
 - Definition
 - Semiclassical properties
- 2 Generalization to Kähler manifolds
 - Hardy spaces
 - Semiclassical properties
 - An example: the sphere
- 3 The smallest eigenvalue
 - Wells
 - Miniwells
 - Conjectures

- We wish to generalize Bargmann spaces to other complex manifolds.
- As previously, without a good choice of a weight, the outcome is trivial.

- We wish to generalize Bargmann spaces to other complex manifolds.
- As previously, without a good choice of a weight, the outcome is trivial.
- Instead of considering weighted spaces, we will consider spaces of holomorphic sections.

Notations

- M is a compact Kähler manifold, with symplectic form ω .
- L is a complex line bundle on M, endowed with a hermitian structure h, so that the curvature of the Chern connexion is ω .
- $N \geqslant 1$ is an integer.

Notations

- M is a compact Kähler manifold, with symplectic form ω .
- L is a complex line bundle on M, endowed with a hermitian structure h, so that the curvature of the Chern connexion is ω .
- $N \ge 1$ is an integer.

Then if s is a (continuous) section of $L^{\otimes N}$, one can compute

$$\|s\|_{L^2} := \int_M h_N(s(m)) \frac{\omega^{\wedge n}}{n!}.$$

By completion, one defines the Hilbert space of square-integrable sections of $L^{\otimes N}$.

Hardy spaces

Definition

The N-equivariant Hardy space is the space $H_N(M,L)$ of L^2 and holomorphic sections of $L^{\otimes N}$.

This space is finite-dimensional, the dimension is polynomial in N (Riemann-Roch).

Hardy spaces

Definition

The N-equivariant Hardy space is the space $H_N(M,L)$ of L^2 and holomorphic sections of $L^{\otimes N}$.

This space is finite-dimensional, the dimension is polynomial in N (Riemann-Roch).

Definition

The Szegő projector S_N is the orthogonal projector from $L^2(M,L^{\otimes N})$ onto $H_N(M,L)$.

It always admits a Schwartz kernel (as a section of $L^{\otimes N}\boxtimes L^{\otimes -N}$) because $H_N(M,L)$ is finite-dimensional.

Toeplitz operators

Definition

Let $h \in C^{\infty}(M)$ a smooth function, and $N \in \mathbb{N}$. We denote by $T_N(h)$ the Toeplitz operator associated with h:

$$T_N(h): H_N(M, L) \mapsto H_N(M, L)$$

 $u \mapsto S_N(hu).$

 $T_N(h)$ acts on a finite-dimensional space, and it is symmetric when h is real-valued.

Toeplitz operators

Definition

Let $h \in C^{\infty}(M)$ a smooth function, and $N \in \mathbb{N}$. We denote by $T_N(h)$ the Toeplitz operator associated with h:

$$T_N(h): H_N(M, L) \mapsto H_N(M, L)$$

 $u \mapsto S_N(hu).$

 $T_N(h)$ acts on a finite-dimensional space, and it is symmetric when h is real-valued.

Observe that, for any $u, v \in H_N(M, L)$, there holds

$$\langle \mathbf{u}, \mathsf{T}_{\mathsf{N}}(\mathsf{h}) \mathbf{v} \rangle = \langle \mathsf{u}, \mathsf{h} \mathsf{v} \rangle.$$

Asymptotics for the Szegő projector

Proposition (Boutet-Sjostrand 74)

For every $\varepsilon > 0$ and $k \in \mathbb{N}$ there exists C such that, for every $N \in \mathbb{N}$:

$$d(x,y) > \epsilon \Rightarrow |S_N(x,y)| \leqslant CN^{-k}$$

Asymptotics for the Szegő projector

Proposition (Boutet-Sjostrand 74)

For every $\varepsilon > 0$ and $k \in \mathbb{N}$ there exists C such that, for every $N \in \mathbb{N}$:

$$d(x,y) > \epsilon \Rightarrow |S_N(x,y)| \leqslant CN^{-k}$$

Proposition (Charles 00, Zelditch 02, Ma 06)

In a convenient system of local coordinates, near any point of the diagonal, there holds:

$$S_{N}(z,w) \simeq \Pi_{N}(z,w) \left[1 + \sum_{k=1}^{K} N^{-k/2} b_{k}(\sqrt{N}z, \sqrt{N}w) \right]$$

Composition and bracket

Proposition (Charles 00, Schlichenmaier 02)

Let α and b two smooth functions on M. Then there is a sequence $(c_i)_{i\in\mathbb{N}}$ of smooth functions on M, with $c_0=\alpha b$, such that, as $N\to +\infty$, there holds:

$$T_N(a)T_N(b) = T_N(c_0) + N^{-1}T_N(c_1) + N^{-2}T_N(c_2) + \dots$$

In particular,

$$[T_N(\mathfrak{a}),T_N(\mathfrak{b})]=\frac{i}{N}T_N(\{\mathfrak{a},\mathfrak{b}\})+O(N^{-2}).$$

Hardy spaces on the sphere

- $H_N(\mathbb{CP}^1, L)$ corresponds to the the set of meromorphic functions on the sphere, with one pole of order at most N.
- Hence $H_N(\mathbb{CP}^1, L) \simeq \mathbb{C}_N[X]$, with dimension N+1.
- One Hilbert base is:

$$e_{k,N}(X) = \frac{\binom{k}{N}^{1/2}}{N} X^k.$$

Coordinate functions

- There are three coordinate functions on the sphere: x, y and z.
- The Toeplitz quantizations of these three functions are the spin operators, with $S = \frac{N}{2}$.

Plan

- 1 Toeplitz operators on Bargmann spaces
 - Bargmann spaces
 - Definition
 - Semiclassical properties
- 2 Generalization to Kähler manifolds
 - Hardy spaces
 - Semiclassical properties
 - An example: the sphere
- 3 The smallest eigenvalue
 - Wells
 - Miniwells
 - Conjectures

A priori localization

- In the classical model, in order to minimize the energy, one picks any point where the energy is minimal.
- What happens for an eigenvector associated with the smallest eigenvalue of $T_N(h)$, as $N \to +\infty$?

Proposition (Charles 00)

An eigenvector with minimal eigenvalue is uniformly $O(N^{-\infty})$ outside any fixed neighbourhood of $\{h = \min(h)\}$.

Can we get a more precise result?

A priori localization

- In the classical model, in order to minimize the energy, one picks any point where the energy is minimal.
- What happens for an eigenvector associated with the smallest eigenvalue of $T_N(h)$, as $N \to +\infty$?

Proposition (D. 16)

If the minimal set is non-degenerate, then for every $\delta \in [0,1/2),$ an eigenvector with minimal eigenvalue is uniformly $O(N^{-\infty})$ outside a neighbourhood of $\{h=min(h)\}$ with size $N^{-\delta}.$

Proof for localization speed

Let (\mathfrak{u}_N) be a sequence of unit eigenfunctions with minimal energy (λ_N) . Assume $\min(\mathfrak{h})=0$. We prove by induction on k that

$$\langle \mathfrak{u}_n, \mathfrak{h}^k \mathfrak{u}_n \rangle = O(N^{-k}).$$

Proof for localization speed

Let (u_N) be a sequence of unit eigenfunctions with minimal energy (λ_N) . Assume $\min(h)=0$. We prove by induction on k that

$$\langle u_n, h^k u_n \rangle = O(N^{-k}).$$

■ Hard part: k = 1 (test $T_N(h)$ against a coherent state centred on a minimal point).

Proof for localization speed

Let (u_N) be a sequence of unit eigenfunctions with minimal energy $(\lambda_N).$ Assume min(h)=0.

We prove by induction on k that

$$\langle u_n, h^k u_n \rangle = O(N^{-k}).$$

- Hard part: k = 1 (test $T_N(h)$ against a coherent state centred on a minimal point).
- Easy part: induction.

$$\langle u_n, h \star h u_n \rangle = \lambda_N^2 + O(N^{-\infty}),$$

where
$$h\star h=h^2+N^{-1}c_1(h,h)+O(N^{-2}).$$
 Now $c_1(h,h)\leqslant Ch.$

Case of several wells

What can be said if h is minimal on non-degenerate critical points?

Case of several wells

What can be said if h is minimal on non-degenerate critical points?

Theorem (D. 16)

The eigenvectors of minimal eigenvalue concentrate only on "minimal" points. Eigenvectors and eigenvalue have an asymptotical expansion.

Case of several wells

What can be said if h is minimal on non-degenerate critical points?

Theorem (D. 16)

The eigenvectors of minimal eigenvalue concentrate only on "minimal" points. Eigenvectors and eigenvalue have an asymptotical expansion.

What is minimized? The μ_1 of the hessian at this point.

Case of wells: idea of proof

- By making more precise the previous argument, we have a lower bound for the first eigenvalue.
- The upper bound and a spectral gap are obtained by N^{-K} -quasimode for fixed K.

We remark that the quasimodes are exponentially localized, but this does not imply that the true eigenfunction is also localized.

Case of submanifold wells

- What can be said if h is minimal on a submanifold, with non-degenerate transverse hessian?
- \blacksquare \Rightarrow Same conclusion. (D.)

As N grows, the state concentrates on the miniwell and is more and more squeezed.

Miniwells in physics

It really happens in physics! For instance, with antiferromagnetic spins on a triangle graph.

It is conjectured that the minimal configurations are planar, in some cases.

Conjectures

Exponential Localization For now we only have $O(N^{-\infty})$ estimates for localisation. Can we hope for $O(\exp(-cN))$ estimates ?

Thermodynamical limit Instead of considering a fixed manifold M, we look at a particular symbol on M^n , and we let $n \to +\infty$. What is the behaviour vis-à-vis the semiclassical limit?

These two questions should be linked with each other.