Introduction to Data Science

Lecture 05; February 7th, 2013

Ernst Henle

ErnstHe@UW.edu

Skype: ernst.predixion

Agenda

- Social Interactions
 - LinkedIn (UW Data Science)
 - I request more collaboration on homework assignments
 - What do you think about pairing of students to do homework?
- Homework and Review
 - K-means
 - MATLAB (GNU-Octave)
 - Normalization
 - AWS
- Scripting Exercises
 - Data Clean up in R (MPG data)
 - Clustering of MPG data in MATLAB
 - Clustering of MPG data in Predixion Insight
- Time permitting: Mid Course Review
- Time permitting: Classification in Predixion Insight

Homework: Normalization

- Why is normalization important in K-means clustering?
 - Normalization scales the dimensions so they have similar ranges. Non-normalized clustering would always favor separating the points along the dimension that has the largest range.
- Linear normalization
 - Optional: Offset adjustment (e.g. subtract minimum or mean)
 - Required: Scaling (Divide by range or standard deviation)
 - Range:
 - Xnorm <- (Xorig Xmin) / range
 - Where: range = Xmax Xmin
 - Z-score:
 - Xnorm <- (Xorig Xmean) / $\sqrt{\sigma^2}$
 - here: $\sigma^2 = \frac{\sum (x_i \bar{x})^2}{n-1}$
- Some considerations
 - Outliers may thwart purpose of normalization so outlier removal may be necessary
 - Non-linear and non symmetric distributions may require non-linear normalizations like Log, exp, Square Root, Square

Homework: Category → Binary (1)

Binary Categories

<u>ID</u>	<u>IQ</u>	<u>Parent</u> <u>Income</u>	Moral Support	<u>Gender</u>	<u>College</u> <u>Plans</u>
835	107	40,000	Yes	Female	Applied
016	99	53,000	Yes	Male	Applied
490	105	60,000	No	Male	Did not apply

Homework: Category → Binary (2)

Category

<u>ID</u>	Location	
835	San Mateo	
016	Bellevue	
490	Bellevue	
835	Tacoma	
016	Capitol Hill	
490	Tacoma	

Homework: Category → Binary (3)

Category

<u>ID</u>	<u>Location</u>	
835	San Mateo	
016	Bellevue	
490	Bellevue	
835	Tacoma	
016	Capitol Hill	
490	Tacoma	

Binary

<u>ID</u>	<u>Bellevue</u>	<u>Capitol</u> <u>Hill</u>	<u>Tacoma</u>	<u>San</u> <u>Mateo</u>
835	0	0	0	1
016	1	0	0	0
490	1	0	0	0
835	0	0	1	0
016	0	1	0	0
490	0	0	1	0

Homework: (Un)-Supervised

Training explains the difference between supervised and non-supervised learning. Supervised learning derives patterns from a training set where the answers are given.
 Unsupervised learning does not need to be trained. There are deterministic and non-deterministic examples of both supervised and unsupervised learning.

Homework: MATLAB

```
% Parameters for normalization and denormalization
minPoint = min(points);
maxPoint = max(points);
range = maxPoint - minPoint;
% Normalize points
numberOfPoints = size(points, 1);
% for each point:
% subtract away its minimum and then divide by the range
for (pointNo = 1:numberOfPoints)
  points(pointNo, :) = (points(pointNo, :) - minPoint)./range;
  % y
                           = (x
                                        - m)
end
```

See: SimpleKmeans.m

Scripting Exercise

- R
 - IntroductionToR4.R
 - Clean up data from:
 - http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data-original
 - Relabel Column Values
 - Binarize Categories
 - Write out modified file with predictive columns
- MATLAB
 - KMeansDemo3
 - Read cleaned data file
 - Cluster Data
 - Original space
 - Normalized Space
- View Data in Excel
- Read Data and Cluster using Predixion Insight

Mid Course Review

- Data Flow (DFD)
- Scripting Languages
 - R
 - MATLAB
- Data Preparation
 - Data typing
 - Data coercion
 - Missing Data (Incomplete cases)
 - Outlier recognition and removal
 - Relabeling
 - Normalization
 - Replacing Categories with Boolean columns
- Machine Learning
 - Predictive Analytics Overview
 - K-means in depth
- Social Interactions

Assignment

- 1. Lab 3a and 3b for Predixion Insight. Use AWS and Office 2010 Pro trial version if you need a compatible machine.
 - Make Screen shot of final cost comparison for all methods: Logistic Regression, Neural Net, Naïve Bayes, and Decision Trees. Submit the completed assignment to Catalyst by Monday evening.
- 2. Review terminology in slide titled: "Assignment Terminology"
- 3. Review Relational Model, Relational Algebra, and Calculus
 - http://sentences.com/docs/amd.pdf (Pages 35 to 48 only)
 - http://en.wikipedia.org/wiki/Relational model
 - http://www.youtube.com/watch?v=NvrpuBAMddw

Assignment: Terminology

- Algorithm
- Anomaly detection
- Association
- Attribute
- Binarize Categories
- Binary Column
- Case
- Category Column
- Character Column
- Classification
- Clustering
- Coercion
- Column
- Column Header
- Data
- Data Dimensionality
- Data Frame
- Data Type

- Dataset
- DFD
- Estimation
- Field
- Hypothesis
- Key Column
- Machine Learning
- Market-basket analysis
- MATLAB
- Matrix
- Missing Data
- Model
- Multinomial Column
- Normalization
- Numeric Column
- Observation
- Outcome
- Outlier Removal
- Predictive Analytics

- R
- Rectangular Data
- Relabeling
- Row
- Sparse Multi-Dimensional Matrix
- Standard Deviation
- States
- String
- Supervised Learning
- Supervised Learning
- Support
- Table
- Target Column
- Text Column
- Theory
- Un-structured Data
- Unsupervised Learning
- Z-score