MAT 185 Lecture Notes

Hei Shing Cheung Linear Algebra, Winter 2024

MAT 185

1 Vector Space

Definition 1.0.1 (Vector Space in \mathbb{R}). A vectors space, V, over \mathbb{R} is a collection of **object** $\mathbf{v} \in V$ s.t. the follow axioms are followed

1. Addition Axioms

- (a) Closure Under Addition: $\mathbf{x}, \mathbf{y} \in V \implies \mathbf{x} + \mathbf{y} \in V$
- (b) Associativity of Addition: $x, y, z \in V \implies (x + y) + z = x + (y + z)$
- (c) Existence of Additive Identity: $\exists \mathbf{0} \in V \text{ such that } \mathbf{x} \in V \implies \mathbf{x} + \mathbf{0} = \mathbf{x}$
- (d) Existence of Additive Inverse: $\forall \mathbf{x} \in V, \exists -\mathbf{x} \in V \text{ such that } \mathbf{x} + -\mathbf{x} = \mathbf{0}$

2. Scalar Multiplication Axioms

- (a) Closure Under Scalar Multiplication: $\forall \mathbf{x} \in V \text{ and } \forall \alpha \in \mathbb{R}, \ \alpha \mathbf{x} \in V$
- (b) Associativity of Scalar Multiplication: $\forall \mathbf{x} \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}, (\alpha \beta) \mathbf{x} = \alpha(\beta \mathbf{x})$
- (c) Distributive Property of Scalar Multiplication: $\forall \mathbf{x} \in V \text{ and } \forall \alpha, \beta \in \mathbb{R}, (\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$
- (d) Existence of Multiplicative Identity: $\forall \mathbf{x} \in V, 1\mathbf{x} = \mathbf{x}$

Note It could be shown that the axiom imply the commutativity of in addition, namely $\forall \mathbf{x} \implies \mathbf{y} \in \mathbb{R}, \ \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$

Example \mathbb{R}^n is a vector space over \mathbb{R} , where $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$, then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$ and $\alpha \mathbf{x} = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$

Theorem 1.0.2 (Cancelation, Part 1). Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, then:

$$x + z = y + z$$

 $x = y$

Proof.

$$x + z = y + z$$

From additive inverse we know that -z exists

$$(\mathbf{x} + \mathbf{z}) + -\mathbf{z} = (\mathbf{y} + \mathbf{z}) + -\mathbf{z}$$

By order of addition we have:

$$\mathbf{x} + (\mathbf{z} + \mathbf{-z}) = \mathbf{y} + (\mathbf{z} + \mathbf{-z})$$

 $\mathbf{x} + \mathbf{0} = \mathbf{y} + \mathbf{0}$

By additive identity we have:

$$\mathbf{x} = \mathbf{y}$$

Theorem 1.0.3 (Cancelation, Part 2). Let V be a vector space and $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, then:

$$z + x = z + y$$

 $x = y$

To proof that, it would require the following propostion:

Lemma 1.0.4. Let V be a vector space and $\mathbf{z} \in V$, then $-\mathbf{z} + \mathbf{z} = 0$

Proof.

We know:

$$-\mathbf{z} + \mathbf{z} = (-\mathbf{z} + \mathbf{z}) + 0$$
$$= (-\mathbf{z} + \mathbf{z}) + (-\mathbf{z} + -(-\mathbf{z}))$$

By the order of addition,

$$= -\mathbf{z} + (\mathbf{z} + (-\mathbf{z} + -(-\mathbf{z})))$$

Again, by the order of addition,

=
$$-z + ((z + -z) + -(-z))$$

= $-z + -(-z)$
= 0

Now, to prove the part 2 of the Cancelation Theorem:

Proof.

$$z + x = z + y$$

From additive inverse we know that -z exists

$$-z + (z + x) = -z + (z + y)$$
$$(-z + z) + x = (-z + z) + y$$

From above, we have $-\mathbf{z} + \mathbf{z} = 0$

$$0 + \mathbf{x} = 0 + \mathbf{y}$$
$$\mathbf{x} = \mathbf{y}$$

Lemma 1.0.5 (Inverse of an inverse). Let V be a vector space and $\mathbf{x} \in V$, then:

$$-(-\mathbf{x}) = \mathbf{x}$$

Proof. Assume 0, 0^* are the additive identity of V and $-\mathbf{x}$, $-\mathbf{x}^*$ are the additive inverse of \mathbf{x} . We have:

$$u + 0 = u + 0^*$$

By Cancelation Theorem, we have $0 = 0^*$. Thus, the additive identity is unique. Now, we have:

$$\mathbf{x} + \mathbf{-x} = 0$$

$$\mathbf{x} + \mathbf{-x}^* = 0$$

Thus, by the uniqueness of the additive inverse, we have:

$$\mathbf{x} + \mathbf{-x} = \mathbf{x} + \mathbf{-x}^*$$

By the Cancelation Theorem, we have:

$$-\mathbf{x} = -\mathbf{x}^*$$

Now, we have that the additive inverse is unique. Thus, -(-x) must be unique and nessarily x. \square

Results from above

- 1. The additive identity is unique
- 2. The additive inverse is unique

Definition 1.0.6 (Subtraction). Let V be a vector space and $\mathbf{x}, \mathbf{y} \in V$, then:

$$\mathbf{x} - \mathbf{y} \stackrel{\mathrm{def}}{=} \mathbf{x} + -\mathbf{y}$$

Theorem 1.0.7 (Commutativity of Addition). Let V be a vector space and $\mathbf{x}, \mathbf{y} \in V$, then:

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$

Proof.

$$\mathbf{x} + \mathbf{y} =$$