SAMPLE OPTION PRICING

Valuation 6103

Prof David Shimko

SPY: OCT 17. 2022 EOD

BSM Coll for ones X

ETF for S&P500

- Option expiry 12.30.22
 - 230 Call options expiring that day

same maturity options

Computed from BSM

Solve for sigma that gives market value of call

Contract Name	Last Trade Date	Strike	Last Price	Bid	Ask	Change	% Change	Volume	Open Interest	Implied Volatility
SPY221230C00150000	2022-06-27 12:02PM EDT	150	241	249.83	251.47	0	-	1	6	257.61%
SPY221230C00160000	2022-06-29 12:26PM EDT	160	220.66	251.73	252.76	0	-	1	3	282.99%
SPY221230C00170000	2022-06-29 9:41AM EDT	170	210.9	237.06	238.58	0	-	1	1	252.01%
SPY221230C00190000	2022-09-23 2:39PM EDT	<u>190</u>	176	181.05	182.66	0	-	1	2	89.64%
SPY221230C00200000	2022-10-17 10:26AM EDT	200	168.31	171.01	172.46	0	-	2	41	82.65%
SPY221230C00210000	2022-05-23 10:44AM EDT	210	185	168.34	169.22	0	-	1	0	112.21%
SPY221230C00230000	2022-06-22 10:47AM EDT	230	150.41	169.1	170.7	0	-	66	43	157.93%
SPY221230C00240000	2022-09-27 1:38PM EDT	240	124.6	131.91	132.49	0	-	1	2	64.12%
SPY221230C00250000	2022-09-22 9:34AM EDT	<u>250</u>	129.02	122.21	122.76	0	-	2	3	60.61%
SPY221230C00260000	2022-10-14 2:26PM EDT	<u>260</u>	100.86	112.34	112.89	0	-	1	31	56.29%
SPY221230C00270000	2022-07-14 2:13PM EDT	270	110.87	158.24	159.01	0	-	3	4	182.34%
SPY221230C00275000	2022-10-05 2:39PM EDT	<u>275</u>	104.94	97.94	98.53	0	-	1	2	51.62%
SPY221230C00280000	2022-09-16 9:38AM EDT	280	107.54	80.42	82.52	0	-	1	16	0.00%
SPY221230C00285000	2022-10-12 11:30AM EDT	<u>285</u>	77.98	88.3	88.9	0	-	1	0	49.16%
SPY221230C00290000	2022-10-10 11:48AM EDT	<u>290</u>	75.24	83.42	84	0	-	1	17	47.03%
SPY221230C00295000	2022-10-14 2:27PM EDT	<u>295</u>	67.7	78.77	79.38	0	-	1	2	45.77%
SPY221230C00300000	2022-10-17 10:12AM EDT	300	71.01	73.85	74.49	0	-	10	125	43.63%
SPY221230C00304000	2022-10-03 12:32PM EDT	<u>304</u>	65.5	70.33	70.95	0	-	2	2	42.96%
SPY221230C00305000	2022-10-10 12:12PM EDT	<u>305</u>	61.31	69.2	69.79	0	-	2	42	42.01%
SPY221230C00310000	2022-10-12 9:33AM EDT	310	53.66	64.7	65.33	0	-	1	0	40.96%
SPY221230C00315000	2022-10-05 2:45PM EDT	<u>315</u>	67.62	60.1	60.69	0	-	10	20	39.33%
SPY221230C00320000	2022-10-17 11:27AM EDT	320	52.16	55.63	56.22	0	-	2	211	38.02%
SPY221230C00321000	2022-10-11 11:40AM EDT	321	47.07	54.74	55.36	0	-	1	1	37.82%

INFORMATION IN THE "SMILE"

- Implied volatility
 - Using the market price of the option, what volatility level causes the BSM price of the option to equal the market price?
 - This is the implied vol
- Implied vol is to options what YTM is to bonds
 - It is a pricing tool, but some of the meaning is lost since the implied vol differs for every strike
- Often called a "vol smile"
 - Sometimes a smirk!
- The equity option smirk suggests a negativelyskewed risk-neutral distribution of the stock price at expiration

Proof that BSM is mis-specified.oo

PROBLEMS WITH BSM & EQUITY OPTIONS

- BSM assumes future stock price distributions are lognormal, therefore positively skewed
 - Empirically, these distributions are negatively skewed
- The lognormal distribution has relatively thin tails
 - In practice, the kurtosis of the market returns is greater, implying thicker tails
- BSM implicitly assumes stock prices are positive
 - However, prices can reach zero in practice
- If BSM were true, then implied vol would be the same for all strikes
 - The smile indicates that the model is incorrectly specified

WHAT IF RETURNS ARE NORMAL?

- Use the Bachelier model to compute implied dollar volatilities
- Reduces the skew problem
 - But not really enough
- Does not affect the kurtosis problem
- Best to use a negatively skewed distribution

CORRECTING FOR SKEWNESS & KURTOSIS

- Use the skew-normal distribution to add skewness and kurtosis
- Skewness parameter
 - Lambda = -0.93
- Kurtosis parameter
 - Gamma = 0.19
- Implications
 - Two extra parameters
 - Constant across strikes
 - Better specification
 - Better hedge ratios?

GENERAL EUROPEAN OPTION PRICING FORMULA

 Determine the appropriate riskneutral probability distribution of future underlying values

 Substitute the risk-neutral mean for the natural mean

- This is SD/B, where D is a dividend factor and B is a discount factor
- Calculate or simulate expected option payout at maturity using this probability distribution
- Discount at the risk-free interest rate to find the present value

