SimuTel Customer Churn Prediction - README

Company: SimuTel is a mid-sized telecom provider focused on customer retention analytics.

Project Summary

This project predicts customer churn using supervised machine learning to support SimuTel's retention strategies. Churn, which is when a customer leaves the service is costly, and this project empowers the business to intervene early.

We analyzed a Kaggle dataset of 3,333 telecom users, applying classification models to identify churn drivers and generate actionable insights.

Business Problem

SimuTel lacks predictive tools to flag customers at risk of leaving. This project enables targeted interventions, improving customer loyalty and reducing churn.

Objectives

- Understand key drivers of churn
- Clean and prepare the dataset
- Train baseline and advanced models
- Evaluate using classification metrics
- Deliver data-driven business recommendations

Workflow

1. Data Preparation

- Dropped non-predictive fields like phone number
- Encoded binary and categorical features (e.g., international plan, state)

2. Exploratory Data Analysis (EDA)

- Class imbalance confirmed: ~14.5% churn
- Key churn indicators identified:
 - International plan
 - Total day charge
 - Customer service calls

3. Modeling

- Baseline: Logistic Regression (interpretable)
- Advanced: Random Forest (nonlinear, higher performance)

4. Evaluation

- Metrics used: Precision, Recall, F1-score, Confusion Matrix, ROC AUC
- Visuals: ROC curves, heatmaps, feature importance rankings

Visualizations

1. **Churn Distribution**: Bar chart highlighting imbalance

2. Confusion Matrix Heatmaps:

o Logistic Regression: Higher false negatives

• Random Forest: Better recall

3. ROC Curve:

RF AUC: 0.94 (Excellent)LR AUC: 0.85 (Strong)

4. Feature Importance (RF):

- o International plan
- o Total day charge
- Customer service calls

Model Evaluation

Logistic Regression (Baseline)

Precision: 0.56Recall: 0.31F1-score: 0.40ROC AUC: 0.85

Interpretation: Logistic Regression identifies churners with moderate accuracy. While its precision of 56% means over half of its churn predictions are correct, the low recall (31%) indicates it misses many actual churners. This limits its usefulness in aggressive retention campaigns where missing a churner can be costly. However, it remains valuable where interpretability is critical, such as explaining risk to business teams.

Random Forest (Advanced)

Precision: 0.61Recall: 0.51F1-score: 0.56ROC AUC: 0.94

Interpretation: Random Forest improves both precision and recall, catching over half of all churners (recall = 51%) while maintaining a strong ROC AUC of 0.94, indicating excellent class separation. Its higher F1-score reflects better balance in identifying true churners while minimizing false alarms. This model is more suitable for proactive retention strategies where catching churners early outweighs the need for simplicity.

Key Insights

- International plan customers are more likely to churn
- High day-time usage and customer service complaints are warning signs
- Random Forest offers better predictive power, especially for churn detection

Business Recommendations

- Target high-risk customers (international plans, high day charges) with incentives
- Improve service to reduce repeated support calls
- Deploy churn scores to prioritize outreach
- Use Logistic Regression when interpretability matters; Random Forest for performance

Limitations & Future Work

- Address class imbalance (e.g., SMOTE or class_weight='balanced')
- Assess ROI of retention efforts per segment
- Explore real-time churn scoring with live customer data

Repository Contents

- telecom_churn_analysis.py: Complete analysis notebook
- README.md: Project overview and findings
- Churn.csv: Dataset used for modeling (subject to license)

Author: Margaret Kuria **Title**: Data Scientist