Un exemple de résolution de problème

Complexité et Calculabilité

Pascal Berthomé

Plan

- Problème concret
- Modélisation
- Résolution
 - NP-Complétude
 - Approximation

STI 4A Calculabilité Complexité

Problème

- Réseau d'interconnexion
 - Routeurs
 - Utilisateurs finaux
 - Liens entre les routeurs
- Communauté voulant un réseau dédié
 - Couvrant tous les utilisateurs
 - Pour un coût minimum

STL4A Calculabilité Complexité

3

Modélisation

- Le réseau → un graphe G
 - Les routeurs, utilisateurs → nœuds : V
 - Les liens → les arêtes du graphe : E
 - (arcs si on suppose que les liens sont orientés)
 - Le coût de location d'un lien → fonction sur les arêtes : c : E → IR
 - La communauté → un sous-ensemble des nœuds : V'

STI 4A Calculabilité Complexité

_

Reformulation du problème

- On cherche un sous-ensemble d'arêtes qui permet de relier tous les éléments de la communauté pour un coût minimum
- Propriété : c'est un arbre!
 - Preuve:

STI 4A Calculabilité Complexité

5

Formulation mathématique

- L'ensemble des arêtes $E = (e_1, e_2, ..., e_m)$
- On définit l'ensemble des variables booléennes (0 ou 1) x_i telles que
 - x_i = 1 ssi l'arête e_i est choisie dans la solution
- La fonction de coût par arête c(e_i) = c_i
- Problème
 - Minimiser la somme des produits x_i ci
 - De sorte que l'ensemble des arêtes soit connexe et couvre V'

STI 4A Calculabilité Complexité

P

Cas particuliers

- V' contient deux éléments
 - Problème du plus court chemin dans les graphes
 - Algorithme de Dijkstra
 - → polynomial
- V′ = V
 - Problème de l'arbre couvrant de poids minimum
 - Algorithme de Prim ou de Kruskal
 - → polynomial
- V' contient trois éléments
- Tous les autres cas sont « difficiles »

STI 4A Calculabilité Complexité

1

Problème de l'arbre de Steiner

- Problème précédent dans le cas général
- Le problème de décision associé est NP-Complet [ND12, GJ79]!
 - Même dans le cas de graphes simples (grilles, graphes bipartis, ...)
 - Problème [ND13]: Arbre de Steiner Géométrique
 - Points sur Z^2, distance euclidienne.

STI 4A Calculabilité Complexité

Problème d'optimisation

- Données
 - Des données « simples »
 - Une fonction de coût f qui mesure la qualité d'une solution
- Problème
 - Trouver la valeur minimale (ou maximale) de la fonction de coût correspondant au problème initial

STI 4A Calculabilité Complexité

9

Problème de décision associé

- Données
 - Les mêmes données « simples »
 - Un entier k
- Question
 - Existe-t-il une solution du problème telle que la fonction de coût est inférieure à k?

STI 4A Calculabilité Complexité

Que faire ?

- Rechercher des solutions exactes ?
 - Algorithmes exponentiels
 - Dreyfus et Wagner, 1972
 - $O(n 3^k + n^2 2^k + n^3) = O*(3^k)$
 - Programmation dynamique
 - Wang, 2008
 - $0*(2.684^{k})$
 - Utilisation astucieuse de l'algorithme précédent

STI 4A Calculabilité Complexité

1

Que faire?

- Algorithmes approchés ?
 - Trouver un algorithme qui donne une solution « acceptable »
 - Si on sait évaluer la qualité → algorithme d'approximation
 - Sinon → heuristique
- Moralité : une heuristique donne souvent de très bons résultats, mais ne possède pas de garantie de résultats.

STI 4A Calculabilité Complexité

Approximations pour Steiner

- Il existe une approximation à un facteur 2 (1968)
 - Calculer un nouveau graphe G' avec V' comme ensemble de sommets
 - 2. Le poids de l'arête (i,j) = distance (coût) entre les sommets i et j dans G
 - 3. Calculer un arbre de poids minimum dans G'
 - 4. Si l'arête (i,j) est sélectionnée dans G', prendre le chemin allant de i à j dans G
 - 5. Éliminer les arêtes en trop dans G

STI 4A Calculabilité Complexité

13

Autres algorithmes

- 1968 : Gilbert Pollack 2
- 1993 : Zelikovski 11/6
- 1994 : Berman Ramaiyer 1.75
- 1997 : Zelikovski Karpinski 1.65
- 1999 : Hougardy Prömel 1.60
- 2000 : Zelikovski Robins 1 + ln3/2 = 1.55
- 1999 : Clementi Trevisan approx > 1.0006

STI 4A Calculabilité Complexité

Rapport d'approximation

- Garantie sur la qualité de la solution par rapport à la solution optimale
 - $\rho = Max (SolApproch/ValOpt)$
 - (pour une minimisation)
- Plus ρ est proche de 1, meilleure est l'approximation

STI 4A Calculabilité Complexité

14

Cas particuliers

- Il existe des problèmes pour lesquels il existe une famille d'algorithmes polynomiaux (fonction de ρ) qui produisent une approximation de la solution
 - → schéma d'approximation
 - La complexité de l'algorithme dépend de p
 - Problème du sac à dos

STI 4A Calculabilité Complexité

Cas particuliers

- Problèmes non approximables à une constante près
- Toutes les classes ainsi définies sont strictement incluses les une dans les autres à moins que P=NP

STI 4A Calculabilité Complexité

17

Références

- Garey, Johnson: Computers and Intractability, A Guide to the Theory of NP-Completeness, 1979
- Crescenzi, Kann, A compendium of NP optimization problems.
 http://www.csc.kth.se/~viggo/problemlist/compendium.html
- Cours d'algorithmique 3A/ Graphes 3A

STI 4A Calculabilité Complexité