

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Statistics S3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WST03_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme										Marks	
1. (a)	Parrot	A	В	С	D	E	F	G	Н			
, ,	Rank Age	3	6	2	1	7	8	4	5			
	Rank Breed	ler 5	6	4	1	8	7	2	3		$M1 \rightarrow$	
	For finding the difference between each of the rank and evaluating $\mathring{a} d^2 = 4 + 0 + 4 + 0 + 1 + 1 + 4 + 4 = 18$										M1	
	$\mathring{\mathbf{a}} d^2 = 1$											
	For use of the correct formula with their $\overset{\circ}{\triangle} d^2$										dM1;	
	$r_{\rm S} = 1 - \frac{6(18)}{8(8^2 - 1)}$; = 0.78571429 For use of the correct formula with their $\frac{1}{2}a$ $\frac{1}{14}$ or awrt 0.786										A1	
											T	5]
(b)	$H_0: \Gamma = 0, H_1: \Gamma > 0$ Both hypotheses stated correctly										B1	
	Critical Valu	e = 0.833	3 or C	R: $r_{\rm S}$	≥ 0.833	33				Critical value of 0.8333	B1	
	Since $r_S = 0.7857$ does not lie in the CR (or $0.7857 < 0.8333$), do not reject H ₀ see notes										M1	
	 Either conclude that the <u>breeder does not</u> have the ability to correctly <u>order parrots</u> by age, after examining them. there is <u>insufficient evidence</u> that the <u>breeder</u> can correctly <u>order parrots</u> by age. 										A1ft	
											[4	4] 9
							Notes					
(a)	Attempt to rank for actual ages or breeder's estimates of ages. (At least 4 correct in either rowallow reverse rankings) Independent of 1st M1 but these must be ranks.											
	is dependent on I^{st} M1 for use of $1 - \frac{6(18)}{3}$ with their $\mathring{\ominus} d^2$.											
(b)	$ \begin{array}{c c} 3^{\text{rd}} \text{ dM1} \\ 1^{\text{st}} \text{ B1} \end{array} $ Both hypotheses correct in terms of Γ or Γ_{S} .											
	2 nd B1 Critical value of 0.8333											
	M1 F	or a corre	ct state	nent re	lating	their r_{c}	$ r_{\rm c} <$	1) wit	th their	c.v. where their c.v. < 1		
	A1ft For a contextualised comment which is accepting H ₀ , which must mention "breeder", "order", "parrots", which conveys the idea that the breeder cannot order them correctly. All previous marks in part (b) must have been scored to award this one.											
	Note Follow through their r_S with 0.8333											
	Note Two-tailed test											
		pplying a o Award								$\begin{array}{l} \Delta 0 \\ \text{oy critical value} r_s = (\pm) \end{array}$	0.881	
	the M	the M1 mark only.										

Question Number			Sch	neme			Marks				
2.	H ₀ : There is no association between gender and (inspirational) message (independent) H ₁ : There is an association between gender and (inspirational) message (dependent)										
		1			1	Some attempt at					
	Expected	A	В	C	Total		M1				
	Male	27.106	41.373	38.52	107	(Grand Total)					
	Female	29.893	45.626	42.48	118						
	Total	57	87	81	225		A1				
						At least 2 correct terms for					
	Observed	Expected	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$		$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct	13.61				
	25	27.11	0.1642	23.0542		expressions with their E_i .	dM1				
	37	41.37	0.4616	33.0916	5	Accept 2 sf accuracy					
	45	38.52	1.0901	52.5701	1	for the dM1 mark.					
	32	29.89	0.1489	34.2589		At least 5 correct					
	50	45.63	0.4185			$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms to					
	36	42.48	0.9885	30.5085		= -	A1				
		Totals	3.2718	228.271		either 1 dp or better. Allow truncation.					
			l	I		For applying either					
	$X^2 = \mathring{\mathbf{a}} \frac{O}{O}$	$\frac{-E)^2}{E}$ or	$\mathring{a}\frac{O^2}{E} - 22$	25 ;= awrt 3	3.27	$\mathring{a} \frac{(O-E)^2}{E} \text{ or } \mathring{a} \frac{O^2}{E} - 225$	dM1				
			_			awrt <u>3.27</u>	A1				
	n = (2 - 1)(3	n = (2 - 1)(3 - 1) = 2 $n = 2$									
		$10) = 4.605 \Rightarrow CR: X^2 \geqslant 4.605$ 4.605									
		[does not lie in the CR/not significant/Do not reject H ₀]									
	Either conclude that • there is insufficient evidence to support the headteacher's belief. (There are independently a literated and the support of the sup										
	• there is no association between <u>gender</u> and inspirational <u>message</u> . (They are independent)										
	Notes										
	1st B1 For both hypotheses. Must mention "gender" <i>and</i> "message" oe at least once. Use of "relationship" or "correlation" or "connection" or "link" is B0.										
	1 st M1	Can be implied by at least one correct E_i to 1 d.p.									
	. 1	I The state of the									
						t/trunc. 1.d.p. (may be implied by awr	•				
	and the						3.27)				
		Dependent on 2 nd M1 For applying either $\overset{\circ}{\bigcirc} \frac{(O-E)^2}{E}$ or $\overset{\circ}{\bigcirc} \frac{O^2}{E}$ - 225 If awrt 3.27 is seen (from a calculator) without the expected frequencies stated then award									
		special case	M0A0M1A1	M1A1.	ŕ	-					
	2 nd B1	$\bar{n} = 2$. This	mark can be	implied by a	a correct	critical value of 4.605					
		4.605 or ft their ν									
						ntextualised conclusion which is accept	oting H ₀ .				
		Must mention either "headteacher's belief" or "gender" <i>and</i> "message". Contradictory statements score A0. E.g. "significant, do not reject H ₀ "									
		Condone "relationship" or "connection" here but not "correlation".									
		Hypotheses t									

Question Number	Scheme		Marks				
3. (a)	$H_0: m = 30$ $H_1: m^{-1} 30$		B1				
	$z = \frac{28.2 - 30}{\frac{8.5}{\sqrt{75}}}; = -1.833936$ $\pm \frac{28.2 - 30}{\frac{8.5}{\sqrt{75}}} \text{ or equivalent.}$						
	, , , ,	awrt <u>-1.83</u>	A1				
	Two tailed c.v.'s $Z = \pm 1.6449$						
	or CR: $Z \le -1.6449$ or $Z \ge 1.6449$		B1				
	or p-value = awrt 0.033 or awrt 0.034 < 0.05 [in the CR/significant/Reject H ₀ /"[0.033, 0.034]" < 0.05	0.051					
	Conclude either						
	• that the mean age of gym customers is not 30) years.	A1				
	• that the manager's claim is not correct.						
			[5]				
(b)	\overline{X} is (approximately) <u>normally distributed</u>		B1				
(a)		0 1 :	[1] B1				
(c)	Assumed $s^2 = S^2$ or variance of sample = variance of population.						
			[1]				
		otes					
(a)	Both hypotheses correct. M1 Both hypotheses correct. For standardising with 28.2, 30 and $\frac{8.5}{\sqrt{75}}$ (or awrt 0.981) [Allow use of $8.5 \times \sqrt{\frac{74}{75}}$ (= 2nd B1 Critical value of -1.6449 (compatible with sign of their test statistic) or a correct property of the correct property of						
	comparison. Dependent on M1 scored for a correct contextualised comment which is rejecting H_0 which is based on their z-value and their critical value with compatible signs, where $1.64 \le c.v. \le 1.65$ Contradictory statements score final A0. E.g. "significant, do not reject H_0 ".						
	Alternative method for the "M1A1B1" marks: Let \overline{X}_C be the critical value of the sample mean.						
	$-1.6449 = \frac{\overline{X}_C - 30}{\frac{8.5}{\sqrt{75}}}$ M1: For $\frac{c - 30}{\frac{8.5}{\sqrt{75}}}$ =	- 1.6449 / -1.645 / -1.64 / -1.65					
	So $\overline{X}_C = 28.38883812$ A1: $\overline{X}_C = \text{awrt } 28$ B1: Critical value						
Note	One tailed test SC: Applying a one-tailed test scores a maximum of B0M1A1B1A0 (Allow ±1.2816 to score the 2 nd B1)						
(b)	Allow in words e.g "sample mean is normally distri	buted"					
(c)	B1 Also allow $s = S$ or standard deviation	of sample = standard deviation of population	n.				

Question Number				Scheme				Mai	rks
4. (a)	$\widehat{\lambda} = \frac{0(3)}{2}$) + 1(13) +	+ 2(14) + 3($\frac{(15) + 4(10)}{80}$	0+5(8)+6(8)+	-7(6)+8(3) $=$	$\frac{280}{80}$ = 3.5*	B1cso	*
									[1]
(b)	$r = 80 - \frac{e^{-3.5}(3.5)^3}{3!} = 17.26283752$ or $r = 80 - (0.5366 - 0.3208) = 17.264$								
					15.10 + 10.57	+ 6.17 + 3.08) {	= 2.14 or 2.13716}	M1	
	or $s = 8$	0 (1 - 0).9733) {=	2.136}					
	r=1	7.26 (2dp	s = 2.14	(2dp)	At least one		rt17.26 or $s = \text{awrt} 2.14$	A1	
						Both awrt $r =$	17.26 and awrt $s = 2.14$	A1	[2]
(c)	•		oution is a soution is no					B1	[3]
	l	1			<u> </u>				
	#	O_{i}	$E_{_i}$	Comb	Comb	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$		
	calls	\mathcal{O}_i	\boldsymbol{L}_{i}	$O_{_i}$	$E_{_{i}}$	$E_{_i}$	E_{i}		
	0	3	2.42	16	10.88	2.4094	23.5294	M1	
	2	13 14	8.46 14.80	14	14.80	0.0432	13.2432	1V11	
	$\frac{2}{3}$	15	17.26	15	17.26	0.2959	13.0359		
	4	10	15.10	10	15.10	1.7225	6.6225		
	5	8	10.57	8	10.57	0.6249	6.0549	M1	
	6	8	6.17	8	6.17	0.5428	10.3728		
	7 ≥8	6 3	3.08 2.14	9	5.22	2.7372	15.5172		
		Totals 8.3759 88.3759							
	_	H	$\frac{a}{a}$ or \mathring{a}	$\frac{O^2}{E} - 80;$	= awrt 8.38		awrt <u>8.38</u> or awrt <u>8.39</u>	A1	
	<i>n</i> = 7 - 1	- 1 = 5						B1ft	
	$\chi_5^2(0.05)$	= 11.070	\Rightarrow CR: 2	$X^2 \geqslant 11.07$	0			B1ft	
	Inot in th	e CR/not	significant	/Do not reio	ect Hol				
	[not in the CR/not significant/Do not reject H ₀] Poisson distribution is a suitable model. (oe)								
	1 0100011	41541104110	<u> </u>		(0.0)			A1	[7]
									11
()	D1 *	A . 1		1 ,	Not		. 2.5*		
(a) (c)	B1cso*	l l				vide by 80 to ach	neve 3.5° nce. Inclusion of 3.5 for	/ in ic 1	st P O
(c)	1 st M1					s at both ends [ft		/ 111 15 1	В
	2 nd M1						ions/values (to awrt/trun	cated 2	d.p.)
	1 st A1	awrt	8.38 or awr	t 8.39 (Thi	s implies the b	oth M1 marks)	`		. ,
	2 nd B1ft				_		btract 2 from their n .		
	3 rd B1ft						r n. (May see 9.488, 12.5	592, 14.	067)
	2 nd A1					onclusion which			
	Note Note					hey are stated the 'significant, do n	e wrong way round.		
	Note Note				ore Au. E.g. (3.5) in conclu		or reject H ₀		
	11016	Conu	one the me		(J.J) III COIICI				

Question Number	Scheme	Marks
5. (a)	Label beginners $1-452$, intermediates $1-251$, professionals $1-97$	M1
	<u>Use random numbers</u> to select a	M1
	Simple random sample of <u>28 beginners</u> , <u>16 intermediates</u> and <u>6 professionals</u> .	A1
(b)	Any one of	[3]
(0)	• Enables estimation of statistics/sampling errors for each strata.	B1
	Reduces variability.	DI
	 More representative of the population/reflects population structure 	[1]
(c)	$H_0: m_1 - m_B = 3$ $H_1: m_1 - m_B > 3$	B1; B1
(4)	s.e. = $\sqrt{\frac{38.1}{60} + \frac{57.3}{80}} $ {= 1.162432794}	M1
	36.9 - 31.7 - 3	dM1;
	$z = \frac{36.9 - 31.7 - 3}{"1.1624}$; = 1.89258 awrt 1.89	A1
	One tailed c.v. $Z = 1.6449$ or $CR : Z \ge 1.6449$ or p-value = awrt $0.029 < 0.05$	B1
	[in the CR/significant/Reject H ₀ /"0.029" < 0.05]	
	 Conclude either that the mean score of intermediates is more than 3 greater than the mean score of beginners. (oe) manager's belief is correct. 	A1
		[7]
		11
	Alternative method for "2 nd M1, 1 st A1, 3 rd B1" marks: Let $D = \overline{x}_I - \overline{x}_B$	
	$1.6449 = \frac{D-3}{1.1624}$ dependent upon the 1 st M1 for $\frac{D-3}{\text{their "1.1624"}} = 1.6449/1.645/1.64/1.65$	dM1:
	So, $D = 4.912$ $D = \text{awrt } 4.91 \text{ and } D_{\text{obs}} = 5.2$	A1
	$D_{\text{obs}} = 36.9 - 31.7 = 5.2$ [1.64, 1.65]	B1

		Notes						
(a)	1st M1	for a suitable numbered/labelled list for each ability level						
	2 nd M1	for use of random numbers/sample to select beginners, intermediates and professionals.						
	A1	(dependent on either the 1 st or the 2 nd M1 mark)						
		For <u>28 beginners</u> , <u>16 intermediates</u> and <u>6 professionals</u> .						
(c)	1st B1	$H_0: m_I - m_B = 3 \text{ oe}$						
	2 nd B1	$H_1: m_I - m_B > 3 \text{ oe}$						
	Note	If m_1, m_2 used then it must be clear which one refers to intermediates/beginners.						
	1 st M1	s.e. = $\sqrt{\frac{38.1}{60} + \frac{57.3}{80}}$. May be implied by s.e. = awrt 1.16						
		Condone minor slips e.g. $\sqrt{\frac{38.1}{80} + \frac{57.3}{60}}$						
	2 nd dM1	Dependent upon the 1 st M1. (follow through their s.e. if 1 st M1 mark has been awarded)						
	1 st A1	awrt 1.89						
	3 rd B1	$1.64 \le C.V. \le 1.65$ (compatible sign with their test statistic) or a correct probability comparison.						
	2 nd A1	Dep. on all M1 and B1 marks scored for contextualised comment which is rejecting H_0 .						

Question Number		Scheme		Ma	rks			
6. (a)	$\overline{x} = 230.5$	5; 95% confidence limits for <i>m</i> are						
	230.5	$5 \pm 1.96 \cdot \frac{1.2}{\sqrt{5}}$	their $\overline{x} \pm z = \frac{1.2}{\sqrt{5}}$	M1				
		······································	z = 1.96	B1				
	=(229.44)	4815, 231.55185) = awrt(229.4, 231.6)	At least one end-point is correct.	A1				
	(,		Both end-points are correct.	A1				
(b)	{ Let $X =$ number of confidence intervals that don't contain m }							
	${So X \sim} B(20,0.05)$							
	${P(X>3)}=1-P(X \le 3) \text{ or } 1-0.9841$							
	= 0.0159 awrt <u>0.0159</u>							
					[3]			
					7			
		Note	es					
(b)	M1	Writing or using either $X \sim B(20, 0.05)$ or Y	$V \sim B(20, 0.95)$					
	1st A1 $1-P(X \le 3)$ or $1-0.9841$ or $P(Y \le 16)$. Can be implied by the final answer.							
	2nd A1	awrt 0.0159	•					

Question Number	Scheme	Marks
7. (a)	$A = \frac{X_1 + X_2 + X_3 + Y_1 + Y_2}{5}, X \sim N(30, 4.5^2), Y \sim N(20, 3.5^2); X, Y \text{ are independent.}$	
	$E(A) = \frac{3(30) + 2(20)}{5}$ or $Var(A) = \frac{3(4.5)^2 + 2(3.5)^2}{25}$ A correct method for finding $E(A)$ or $Var(A)$	M1
	E(A) = 26 or $Var(A) = 3.41$ At least one of either $E(A) = 26$ or $Var(A) = 3.41$	A1
	Both $E(A) = 26$ and $Var(A) = 3.41$	A1
	$\{\text{So } A \sim N(26, 3.41)\}$	
	$\left\{ P(A < 24) = \right\} P\left(Z < \frac{24 - 26}{\sqrt{3.41}}\right)$ Standardising (±) with their mean and their standard deviation	M1
	and their standard deviation $\sqrt{3.41}$	1011
	= P(Z < -1.08306)	
	= 1 - 0.8599	M1
	= 0.1401 (or 0.139391) <u>0.14</u> or awrt <u>0.140</u> or awrt <u>0.139</u>	A1
		[6]
(b)	$W \sim N(m, 2.8^2)$; $P(W - X < 4) = 0.1$ W, X are independent.	
	$\left\{ E(W - X) = E(W) - E(X) = m - 30 \right\} \triangleright E(W - X) = m - 30$ $E(W - X) = m - 30$	B1
	$\left\{ \text{Var}(W - X) = \right\} 2.8^2 + 4.5^2 \left\{ = 28.09 \right\}$ $2.8^2 + 4.5^2$	M1
	{So W - X N(m-30, 28.09)}	
	$\left\{ P(W - X < 4) = 0.1 \right\} \implies P\left(Z < \frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} \right) = 0.1$	
	Standardising (\pm) with their mean which is in terms of m	
	4 - (m - 30) and their standard deviation and setting the result equal to	M1
	$\frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} = k \ (= -1.2816)$ k, where k is in the interval [1.28, 1.29].	
	± 1.2816 or awrt ± 1.2816	B1
	Correct equation . See notes	A1
	$\{ m = 34 + 1.2816(5.3) \triangleright \} $ $m = 40.792 (= 40.784 \text{ from using } -1.28) $ awrt <u>40.8</u>	A1
		[6]
	NT /	12
(a)	Notes 3 rd M1 For a probability tail compatible with 24 and their mean	
(4)		
(b)	2 nd M1 Allow $\pm \frac{4 - \text{their } E(W - X)}{\sqrt{\text{their } Var(W - X)}} = k$, where $ k $ is in the interval [1.28, 1.29]	
	2 nd B1 For either -1.2816 or 1.2816	
	1st A1 E.g. Allow $\frac{4 - (m - 30)}{\sqrt{2.8^2 + 4.5^2}} = [-1.29, -1.28]$ or $\frac{(m - 30) - 4}{\sqrt{2.8^2 + 4.5^2}} = [1.28, 1.29]$	

Question Number		Scheme	Mark	ís .					
8.	X follows	s a continuous unform distribution over $\left[2 + 3, 22 + 9\right]$; $Y = \frac{2\overline{X}}{3} + k$							
(a)	$\left\{ \mathrm{E}(\overline{X}) = \right\}$	$m = \frac{2a + 9 + a + 3}{2}$	M1						
		$= \frac{3a}{2} + 6 \text{ or } \frac{3a+12}{2} + \frac{1}{2} = \frac{3a}{2} + \frac{1}{2} = $	A1						
(b)	bias {=	bias $\left\{ = \frac{3a}{2} + 6 - a \right\} = \frac{1}{2}a + 6$ or $\frac{a+12}{2}$ (allow ±)							
(c)		$\frac{2}{3}E(\bar{X}) + k = 2 \Rightarrow \frac{2}{3}\left(\frac{3a}{2} + 6\right) + k = 2$	M1	[1]					
(c)	($\frac{3}{3} \stackrel{\text{L}(\Lambda) + k - a}{\longrightarrow} \frac{3}{3} \frac{3}{2} \stackrel{\text{+} 0}{\longrightarrow} + k - a}{k = a} \stackrel{\text{L}(\Lambda) + k - a}{\longrightarrow} \frac{k = -4}{3}$	A1						
				[2]					
(d)	(3	$\overline{X} - 4 \Rightarrow \hat{a} = \frac{2}{3}(7.8) - 4 = 1.2$	M1						
	Max valu	$e = 2(1.2) + 9$ $= 11.4 \text{ or } 11\frac{2}{5} \text{ or } \frac{57}{5}$	M1 A1						
		$\frac{11.4 \text{ of } 11\frac{1}{5} \text{ of } \frac{1}{5}}{5}$	A1	[3]					
		Notes		8					
(a)	M1	Using the formula $\left(\frac{b+a}{2}\right)$ or obtaining $\frac{3a+12}{2}$ or $\frac{3a}{2}+6$							
	A1	$\frac{3a}{2} + 6$ or $\frac{3a+12}{2}$ and ¹ a.							
(b)	B1ft	bias = $\pm \left(\frac{1}{2}a + 6\right)$ or $\pm \left(\frac{a+12}{2}\right)$ or ft their μ provided $\mu \neq \alpha$							
(c)	M1	Sets $\frac{2}{3}$ (their E(\overline{X})) + $k = a$. This mark can be implied.							
	A1	k = -4. Note that $k = -4$ with no working is M1 (implied) A1.							
(d)	1 st M1	An attempt to use the sample data given to find $\frac{2}{3}\bar{x}$ + "their k ".							
		Allow full expression for \bar{x} or $\frac{\sum x}{n}$. (Note that from the data $\bar{x} = 7.8$)							
	2 nd M1	2 "their a " + 9 where their a is a function of the sample mean – which has been for applying $\frac{\sum x}{x}$ from the data values given in the question.	ound by						
	A1	$\frac{-1}{n}$ 11.4 cao							
	Note	2(10.6) + 9 = 30.2 is M0M0A0							