衡阳师范学院 2018-2019 学年第二学期 化学与材料科学学院化学专业 2020 级 《高等数学(II)》期末考试试题 A 卷 参考答案及评分标准

考核类型: 闭卷 考试时量: 120 分钟

		题	号	_		三	四	总分	合分人	复查人		
学院		分	值	15	15	10	60	100				
		得	分									
专 业	得分 评卷		_,	单词	先题 (每小	题 3	分,共	共15分)			
	1. 0.3×10^{45}	N =									()
班级	A. 0.3×1	10^{45}	B.	12.3°	C.	0.3 ×	$10^{45} k$	$g m/s^2$	D. 3 ×	10^{45} kg m s	s^{-2}	
	 求初值问 A. e^x + 1 								意常数	D. e^x	()
学 号	3. 求初值问	题 y'	= y,	y(0) =	= 1 的	特解)	y = 0				()
	A. $e^x + 1$. ,			-		意常数	D. e^x		,
	4. 求初值问	题 y'	=y,y	y(0) =	= 1 的	特解)	$\forall y =$				()
姓 名	A. $e^x + 1$	В.	$\frac{1}{2}x^2$	+1	C. <i>x</i>	$^2 + C$,其中	<i>C</i> 为任	意常数	D. e^x		
	5. 求初值问	题 y'	=y,y	y(0) =	= 1 的	特解)	$\forall y =$				()
	A. $e^x + 1$	В.	$\frac{1}{2}x^2$	+1	C. <i>x</i>	$^2 + C$,其中	C 为任	意常数	D. e^x		

得分|评卷人

二、填空题 (每小题 3 分, 共 15 分)

- 1. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0.
- 2. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0
- 3. 吃饭, 睡觉, 打豆豆.
- 4. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x 2y + 4 = 0

5. 求椭圆 $\frac{x^2}{4} + y^2 = 2$ 在点 (-2,1) 处的切线方程 x - 2y + 4 = 0

得分 评卷人

三、判断题(正确打√,错误打メ,每小题 2分,共 10分)

- 1. (X) 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微.
- 2. (**〈**) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 3. (X) 若二元函数 f(x,y) 在点 (1,1) 处连续,则其在该点处可微.
- 4. (🗸) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.
- 5. (🗸) 如果常数项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 那么 $\lim_{n\to\infty} a_n = 0$.

得分	评卷人

│ │ 四、解答题 (共 60 分)

1. (10 分) 试将微分方程 $x \frac{dy}{dx} = x^2 + 3y$, x > 0 转换成一阶非齐次线性微分方程的标准形式,然后使用常数变易法求解,最后对求得的结果进行验算。

使用常数变易法将常数 c 替换成与 x 相关的函数 c(x) 代入原微分方程解得: $\frac{dc(x)}{dx} = \frac{1}{x^2}$, 即 $c(x) = -\frac{1}{x} + C$, 其中 C 为任意常数。故原微分方程的通解为:

$$y = Cx^3 - x^2, x > 0$$
 其中 C 为任意常数。8分

 2. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$
故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2}(1,0,1).$

3. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$ — 7分 故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2}(1,0,1).$ — 9分

4. (9 分) 试求出不共线三点 P(1,-1,0), Q(2,1,-1), R(-1,1,2) 所确定的平面的单位法向量。

解: 设法向量为
$$\vec{n}$$
, 则 $\vec{n} = \vec{PQ} \times \vec{PR} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = (6,0,6).$
故其单位法向量 $\pm \frac{\vec{n}}{|\vec{n}|} = \pm \frac{\sqrt{2}}{2} (1,0,1).$

5. (10 分) 求函数 f(x,y) = x + y 在 $g(x,y) = x^2 + y^2 = 1$ 限制下的条件最大值与最小值。(提示:可以使用拉格朗日乘数法。)

解: 注: 此题也可以不使用乘数法。小题可以看几何意义,大题可以用三角函数 代换。另外也可以使用从限制条件中解出 u 代入 f 来解无条件极值。

6. (13分) 朱自清是怎么描写时间过得比较快的?

解:去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也茫茫然跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便伶伶俐俐地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。在逃去如飞的日子里,在千门万户的世界里的我能做些什么呢?只有徘徊罢了,

在逃去如飞的日子里,在十门万户的世界里的我能做些什么呢?只有徘徊罢了,只有匆匆罢了;在八千多日的匆匆里,除徘徊外,又剩些什么呢?过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了;我留着些什么痕迹呢?我何曾留着像游丝样的痕迹呢?我赤裸裸来到这世界,转眼间也将赤裸裸的回去罢?但不能平的,为什么偏要白白走这一遭啊?