Real-Time Data Communications

Raj Rajkumar Lecture #17

Adapted from Perkins and Liu

Carnegie Mellon

18-648: Embedded Real-Time Systems

Outline

- Real-time communications
 - Traffic and network models
 - Properties of networks
 - Throughput, delay and jitter
 - Congestion and loss
- Examples
 - Controller Area Networks
 - Ethernet

Carnegie Mellon

Real-Time Communications

- In digital data communications, it is highly desirable that network packets reach their destinations dependably
 - One would like fast delivery, but not at the expense of reliability
 - E.g. web browsing, e-mail, file transfer, twitter, etc.
 - These applications are often referred to as *elastic* applications
 - i.e. time can be "dilated"
- In real-time data communications, network packets must arrive on time
 - Timely delivery may be deemed to be more desirable than reliable delivery
 - Different levels of priority may be associated with applications
 - Examples:
 - Anti-lock braking in a car
 - "Fly-by-wire" systems in a modern aircraft
 - Skype internet telephony and IPTV (TV using the Internet Protocol)
 - drop delayed packets

Carnegie Mellon

18-648: Embedded Real-Time Systems

Real-Time Traffic Categories

- Packet-switched traffic falls into two categories:
 - Synchronous periodic messages
 - Produced and consumed in a continual basis, according to some schedule
 - Generally require some performance guarantee
 - Can be generated by periodic tasks
 - Fixed rate ("isochronous") flows (e.g. sensor data, speech)
 - Characterize by inter-packet spacing, message length, reception deadline
 - Can be generated by sporadic tasks
 - Variable rate flows (e.g. MPEG-2 video, control traffic)
 - Characterize by average throughput + maximum burst size
 - Aperiodic (asynchronous) messages
 - No deadline, best-effort delivery, but want to keep delays small
 - Characterize by average delivery time

Carnegie Mellon

Sources of Message Delays

- Message delays on networks comprise of the following components:
 - 1. Queueing delay at sender
 - Network not always ready to accept a packet when it becomes available
 - Data may be queued if produced faster than the network can deliver it
 - 2. Queueing delay in the network
 - Due to cross-traffic or bottleneck links
 - 3. Network transit time
 - Fixed propagation delay
 - 4. Queueing delay at receiver
 - Application not always ready to accept packets arriving from network
 - Network may deliver data in bursts

Carnegie Mellon

- Packet-switched networks are comprised of a multitude of network links connected between switches/routers and end-points
- Each network link has a constant *propagation delay*
- A network switch queues data packets for transmission if its output link is busy
 - Such queueing can cause a variable delay
- The *switching policy* on the output links is critical for time-sensitive traffic
 - Packets and/or ports can have priorities
 - "Traffic shaping" and reservations can also be done on network streams

Carnegie Mellon

18-648: Embedded Real-Time Systems

Performance Metrics

- Performance metrics include:
 - Throughput: a measure of the number of packets that the network can deliver per unit time
 - Delay (latency): time taken to deliver a packet
 - · Fixed minimum propagation delay due to speed of light
 - Variation due to queuing on path
 - Jitter: Variance of the delay
 - Buffer requirements: amount of storage required so as not to drop packets
 - Packet Miss rate: ratio of packets that miss their timing constraints
 - Packet loss rate: ratio of packets that are not delivered
 - Packet error rate: ratio of packets that have an error in them

Carnegie Mellon

Throughput and Delay

- Throughput and delay depend on the capacity of each link, and on the queuing delay at each hop
 - Queuing delay will vary based on the traffic
 - Throughput variations may cause queues to build up at bottleneck links
 - "Cross traffic" will also affect queue occupancy
 - Throughput may be limited by an intermediate link, which cannot be directly observed by sender and receiver
 - How to tell if the throughput is limited by the network, or by other traffic using the network?
 - Cannot know if capacity available, unless requirements signaled in advance

Throughput and Delay

- Delay matters for some applications, but not others
 - Interactive applications need low delay
 - Telephony, video conferencing and games
 - Control applications often need low delay in the sensor ⇒ controller ⇒ actuator path
 - Propagation delay places a lower bound on delay
 - Queuing delay can be substantially more but is (hopefully) controllable
 - Non-interactive applications are less delay-sensitive
 - Watching YouTube/Google videos
 - TV and radio broadcasts
- Throughput is typically important
 - Need to sustain a certain rate in order to support the application
 - May wish to use scheduling algorithms to prioritize which packets are to be sent first (up to a certain limit)
 - Adaptive schemes can scale back throughput in case of overload

Carnegie Mellon

18-648: Embedded Real-Time Systems

Jitter and Buffering Requirements

- Delay *jitter* is the variation in delay across a network path
 - For isochronous traffic, often talk about absolute value and standard deviation of packet inter-arrival time
 - Assumes we can characterise the jitter see examples later
- Jitter imposes requirement for receiver buffering
 - Isochronous applications must be fed correctly-spaced data
 - Need buffer to smooth and reconstruct timing
 - Larger jitter implies more buffering is needed
 - Packet scheduling algorithms can bound jitter

Carnegie Mellon

18-648: Embedded Real-Time Systems

Electrical & Computer ENGINEERING

Congestion and Loss

- Assumed that no traffic is ever blocked or lost because there is no space in the ready queue when it becomes available for transmission
 - Usually valid for operating systems and LAN communication
 - Not valid for many wide-area communication systems
 - Too expensive to provision buffering in all routers
 - Provision for typical load plus a safety factor, not the worst case
 - · Queues may overflow, hence packets are dropped
 - The loss rate gives the fraction of packets that are dropped
 - Patterns of loss may also be important: affected by packet scheduling algorithms
- Packets may also be dropped due to corruption or other errors

Carnegie Mellon

Congestion and Loss (cont'd)

- Both flow characteristics and cross-traffic can cause overloads and congestion
 - Temporary congestion will cause queueing delays
 - Persistent congestion will result in queues that stay full, hence packets may be lost
- How to avoid this?
 - Control the amount of traffic at a bottleneck link
 - Applications need to signal their requirements
 - Network performs admission control
 - Or prioritize traffic to give preference to important flows
 - What scheduling algorithm to use?
 - Fixed-priority schemes are much easier to implement than dynamic priority schemes
 - Weighted round-robin techniques are also available
 - May allow real-time traffic, but discard best-effort data traffic when the network is overloaded

Carnegie Mellon

18-648: Embedded Real-Time Systems

Characterization of Networks

- Given a network technology and implementation, it is desirable that throughput, latency and jitter are within appropriate bounds for the application
- Some network technologies allow this, others do not
 - Examples: CAN (Controller Area Network), Ethernet

Carnegie Mellon

CAN (cont'd)

- Widely used in automotive systems
- Communications can be scheduled using fixed-priority scheduling algorithms
 - Look at the communications patterns, assign deadlines to each message exchange
 - Use deadline-monotonic scheduling to assign priorities
 - 11-bit ID field, implies 2048 priority levels (or message IDs)
 - Treat sporadic messages as periodic messages, according to the worst-case assumptions
 - · Wastes capacity, but ensures schedulability
 - CAN cannot preempt or interrupt a message once it has started
 - Low utilization, but can prove that all messages will be delivered before their deadlines and calculate jitter
 - Standard schedulability analysis, as for any set of jobs

Carnegie Mellon

Example: Ethernet

Ethernet LAN Diagram

- Ethernet uses CSMA/CD with exponential back off
 - Before transmitting, check for a link
 - If not active, try to transmit, liste for collision
 - If a collision occurs, stop sending before retry
 - Random binary exponential bacl
 - After *i* collisions, back-off by 2*i* slots, randomly chosen
- Potentially unbounded delay on network
 - Cannot schedule transmissions t collision
- No prioritization of messages
- Implications:
 - Throughput actually drops at high loads
 - Cannot easily reason about timing properties
 - Difficult to schedule messages to ensure timely delivery

Carnegie Mellon

18-648: Embedded Real-Time Systems

Conclusions

- What is real-time communications?
- Factors that affect real-time communication
 - Throughput, delay and jitter
 - Clock skew
 - Congestion and loss
- Examples of networks and their timing properties
 - Some networks (like CANbus) provide timing guarantees, others (like the ethernet) do not

Carnegie Mellon

18-648: Embedded Real-Time Systems

Electrical & Computer ENGINEERING