FACULTY OF ENGINEERING & TECHNOLOGY

Third Year Bachelor of Engineering

Course Code: 102045601

Course Title: Design and Analysis of Algorithms

Type of Course: Professional Core Course

Course Objectives: This course provides the fundamental knowledge to design and analyze the algorithms. Different algorithm paradigms will be explored. Students will learn how to measure performance of various algorithms.

Teaching & Examination Scheme:

Contac	Contact hours per week		Course	Examination Marks (Maximum / Passing)				ssing)
Lastuna	Tutorial	Dwastical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
4	0	2	5	40 / 14	20 / 07	60/21	30/10	150 / 52

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Basics of Algorithms and Mathematics: Definition of Algorithm, Importance of design and analysis of algorithms, Mathematics for Algorithmic Sets, Functions and Relations, Quantifiers, Vectors and Matrices, simple series, basic combinations. Analysis of Algorithm: Time complexity, Space complexity, Analysis: average, best and worst case, Asymptotic notations, Limit rules, Conditional asymptotic notations, Analyzing generalize algorithm with control structures: "for", "while" and "repeat" loops. Amortized analysis.	6
2	Methods to Solve Recurrence: Substitution, homogeneous Recurrences, Inhomogeneous Recurrences, Change of Variable, Master Theorem, Range Transformations and Recursion Tree. Sorting Algorithms with analysis: Bubble sort, Selection sort, Insertion sort, Heap sort. Sorting in linear time: Bucket sort and Counting sort.	11
3	Divide and Conquer Algorithms: Introduction, multiplying large integers problem, Problem solving using divide conquer algorithm - Binary search, Merge sort and Quick sort algorithms with analysis, Max-Min problem, Matrix multiplication, Exponential.	6
4	Greedy Algorithms: General Characteristics of greedy algorithms, Problem solving using Greedy Algorithm- Making change problem, Minimum Spanning trees (Kruskal's algorithm, Prim's algorithm), Graphs: Single Source Shortest paths (Dijkstra's algorithm, The Bellman-Ford algorithm), The Knapsack Problem, Job Scheduling Problem, Huffman code.	7

1	(Established under Gujarat Private Universities
	(Second Amendment) Act: 2019 Guiarat Act No. 20 of 2019)

5	- y g g				
	& conquer algorithm, Problem solving using dynamic programming – Calculating the				
	binomial coefficient, The principle of optimality, Making change problem, The				
	knapsack problem, All points shortest path (Floyd's algorithm), Chained matrix				
	multiplication, longest common subsequence.				
6	Exploring Graphs: Undirected Graph, Directed Graph, Traversing Graphs, Depth First				
	Search, Breath First Search.				
Backtracking: Introduction, The Eight queen's problem, The knapsack problem. Branch and Bound: The assignment problem, The knapsack problem. Minimax principle.					
7	String Matching: Introduction, The naive string-matching algorithm, The Rabin-Karp algorithm, The Knuth-Morris-Pratt algorithm.				
8	Introduction to NP-Completeness: The class P and NP, Polynomial reduction, NP-				
	Completeness Problem, NP-Hard Problems, Travelling Salesman problem,				
	Hamiltonian problem.				

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks						R: Remembering; U: Understanding; A: Application,
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	30%	10%	20%	20%	10%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Fundamental of Algorithmics by Gills Brassard and Paul Bratley, PHI.		
2	Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, PHI.		
3	Fundamentals of Computer Algorithms by Ellis Horowitz, Sartaj Sahni and Sanguthevar		
	Rajasekharan, Galgotia.		
4	Design and Analysis of Algorithms by Dave and Dave, Pearson.		

Course Outcomes (CO):

Sr.	Course Outcome Statements	%
No.		Weightage
CO-1	To study the asymptotic performance of algorithms.	20
CO-2	Apply various complexity measures and find out performance of the	30
	algorithm through divide and conquer like searching and sorting.	
CO-3	To generate optimal solutions by applying various Greedy and Dynamic	30
	algorithms.	
CO-4	To apply fundamental algorithms to model engineering problem solving	20
	using various graph methods or using suitable data structures.	

List of Practicals:

1	Write a program to sort given elements of an array in ascending order using bubble sort. Analyze
	the time complexity for best, average and worst case.
2	Write a program to sort given elements of an array in ascending order using selection sort.
	Analyze the time complexity for best, average and worst case.
3	Write a program to implement heap sort.
4	Write a program to search given element from an array using sequential search and binary
4	search. Analyze the time complexity for best, average and worst case.
5	Write a program to sort given elements of an array in ascending order using merge sort. Analyze
J	the time complexity for best, average and worst case.
6	Write a program to sort given elements of an array in ascending order using quick sort. Analyze
0	the time complexity for best, average and worst case.
7	Write a program to implement making change problem using greedy algorithm.
8	Write a program to implement the knapsack problem using greedy algorithm.
9	Write a program to implement making change problem using dynamic programming.
10	Write a program to implement the knapsack problem using dynamic programming.
11	Write a program to implement Floyd's algorithm for finding shortest path using dynamic
	programming.
12	Write a program to implement chained matrix multiplication using dynamic programming.
13	Write a program to implement longest common subsequence using dynamic programming.

Supplementary Learning Material:

1 NPTEL - Swayam Courses

Curriculum Revision:

Version:	1
Drafted on (Month-Year):	Apr-2022
Last Reviewed on (Month-Year):	
Next Review on (Month-Year):	