Carderock Division, Naval Surface Warfare Center

Silver Spring, Maryland 20903-5640

CARDIVNSWC/TR-94/018

1 October 1994

Materials Directorate

Research and Development report

Sorption and Diffusion of Moisture in Multilayer Composite AEM/S System Sandwich Material

by
Dr. Joseph M. Augl
Weapons Materials Department, Code 68

19950117 002

Approved for public release; distribution is unlimited.

FOREWORD

The work described herein was conducted to support the materials development portion of the Advanced Enclosed Mast/Sensor (AEM/S) System Program. The work was sponsored by the Office of Naval Research. It was administered by Mr. Ivan Caplan, Materials Block Manager, at the Carderock Division of the Naval Surface Warfare Center (CDNSWC), Code 1225, under the Ship Submarine Materials Program (SC2B), Composite Materials Project (RS34S56), and CDNSWC Work Unit 1-6440-613.

The specific purpose of this work was to determine the moisture diffusion coefficients and solubilities of various constituent materials that may be used in ship mast sandwich constructions. These data are necessary for predicting the moisture uptake and internal distribution in these materials when they are exposed to marine environments or to accelerated aging conditions in the laboratory. Equations for obtaining these coefficients for any temperature of interest are provided. This data representation serves as input for finite element (FE) modeling of various environmental exposure scenarios. This FE effort is described in CARDIVNSWC-TR-94/019 (in preparation).

Approved by:

CARL E. MUELLER, Head

Weapons Materials Department

Parl E. Mueller

Accesi	on For	
DTIC	ounced	X
By_ Distrib	ution/	
Availability Codes		
Dist	Avail a Spec	nd / or cial
A-1		

ABSTRACT

The moisture diffusion coefficients and solubilities of Advanced Enclosed Mast/Sensor (AEM/S) System sandwich constituent materials of interest have been determined at 22, 35, and 50°C and at 80 percent relative humidity. Expressions for calculating the diffusion coefficients and solubilities for any temperature of typical marine environments or for accelerated laboratory aging studies are provided. The objective of this study was to provide input data for finite element moisture diffusion analyses that permits one to predict the moisture take-up and internal distribution as a function of time for composite mast or other shipboard sandwich structures in specified marine environments. The following materials were included in this investigation: E-glass/SP Systems 3113 epoxy, E-glass/510A vinyl-ester (RTM3), E-glass/G10 epoxy, Balsa wood type D57, PVC-foam (Klegecell), and Nomex honeycomb phenolic core material.

CONTENTS

	Page
INTRODUCTION	. 1
EXPERIMENTAL	. 4
DISCUSSION	43
	. 4
MEASUREMENT OF THE MOISTURE DIFFUSION COEFFICIENTS	. 6
RESULTS	. 8
CONCLUSIONS	.10
REFERENCES	.39
APPENDIXEXPERIMENTAL DATA	A-1
DISTRIBUTION	(1)

ILLUSTRATIONS

<u>Figure</u>	Page Page
1	MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT 22°C AND 80 PERCENT RH
2	MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT 35°C AND 80 PERCENT RH
3	MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT 50°C AND 80 PERCENT RH
4	MAXIMUM MOISTRUE SOLUBILITY IN 3113 GLASS-EPOXY FACE SHEET AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE
5	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR 3113 GLASS-EPOXY FACE SHEET
6	MOISTURE SORPTION IN RTM3 FACE SHEET AT 22°C AND 80 PERCENT RH
7	MOISTURE SORPTION IN RTM3 FACE SHEET AT 35°C AND 80 PERCENT RH
8	MOISTURE SORPTION IN RTM3 FACE SHEET AT 50°C AND 80 PERCENT RH
9	MAXIMUM MOISTURE SOLUBILITY IN RTM3 FACE SHEET AT 80 PERCENT RH AS A FUNCTION OF TEMPERATUR
10	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR RTM3 FACE SHEET
11	MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 22°C AND 80 PERCENT RH
12	MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET OWITHOUT COPPER SCREEN) AT 35°C AND 80 PERCENT RH

ILLUSTRATIONS (Cont.)

<u>Figure</u>	<u>Page</u>
13	MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 50°C AND 80 PERCENT RH
14	MAXIMUM MOISTURE SOLUBILITY IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE
15	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR THE GLASS-EPOXY COOPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN)
16	MOISTURE SORPTION IN BALSA WOOD CORE AT 22°C AND 80 PERCENT RH
17	MOISTURE SORPTION IN BALSA WOOD CORE AT 35°C AND 80 PERCENT RH
18	MOISTURE SORPTION IN BALSA WOOD CORE AT 50°C AND 80 PERCENT RH
19	MAXIMUM MOISTURE SOLUBILITY IN BALSA WOOD CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE
20	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR BALSA WOOD CORE
21	MOISTURE SORPTION IN PVC-FOAM CORE AT 22°C AND 80 PERCENT RH
22	MOISTURE SORPTION IN PVC-FOAM CORE AT 50°C AND 80 PERCENT RH
23	MAXIMUM MOISTURE SOLUBILITY IN PVC-FOAM CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE
24	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR PVC-FOAM CORE
25	MOISTURE SORPTION IN HONEYCOMB CORE AT 22°C AND 80 PERCENT RH

ILLUSTRATIONS (Cont.)

<u>Figure</u>	<u>Page</u>
26	MOISTURE SORPTION IN HONEYCOMB CORE AT 50°C AND 80 PERCENT RH
27	MAXIMUM MOISTURE SOLUBILITY IN HONEYCOMB CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE
28	ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR HONEYCOMB CORE

INTRODUCTION

The work described in this report was conducted to support the materials development portion of the Advanced Enclosure Mast/Sensors (AEM/S) System Program in which a ship mast structure that encloses critical shipboard equipment and radars is being developed.

The use of organic matrix composite sandwich constructions for Navy shipboard mast structures is a new concept which has many advantages. Although composite materials have found many applications such as structural members in Navy Aircraft (e.g. the AV8B Harrier) or missile motor cases where they are of vital importance, the use for mast structures is new. Having no prior experience with structures for this type of application also leaves many unanswered questions. After having designed and tested such a structure, there is always a concern about the longterm performance in a rather harsh marine environment. This may range from tropical to arctic climates combined with high relative humidity. Since large composite structures require both strength and stiffness at a minimum weight, sandwich constructions are frequently used for this purpose. At the same time, however, the complexity of the structure increases. More than one material has to be combined to provide the required properties. Therefore, the changes of these properties must be predictable to ensure that, over the life-time of the structure, the expected requirements, such as mechanical properties or electromagnetic responses, are met. Moisture is usually a culprit for material degradation. Thus, one needs to know, how much moisture will penetrate such a structure as a function of time, and what will be the consequences. The only way to answer these questions is to first, predict what the internal distribution of moisture will be at a given time, and second, to determine how this moisture affects the mechanical and physical properties. The purpose of this work was first to provide the input data (moisture solubilities and diffusion coefficients) necessary to model the moisture transport in such structures, and second, to actually predict the internal moisture distribution in specific sandwich materials for a marine environment over the entire expected life-time of a naval vessel. The first objective is presented in this report, the second, a finite element modeling of the moisture transport in such sandwich constructions, is described in a subsequent report.

Another purpose of this work is to provide the materials and test engineers with information on how to prepare test panels and specimens, using accelerated aging conditions. Test specimens for full life-time predictions of moisture penetration or worst case scenarios can then easily be prepared.

This report will provide the moisture solubilities of face sheet and core materials as a function of temperature between room temperature and 50°C and the diffusion coefficients and their temperature dependence at maximum moisture concentrations corresponding to 80 percent relative humidity (RH).

EXPERIMENTAL

MATERIALS AND SPECIMEN PREPARATION

The following AEM/S System materials were obtained from CDNSWC, Annapolis: E-glass/epoxy (SP Systems 3113); E-glass/vinyl-ester (510A), (RTM3); E-glass/epoxy (G10); Balsa wood type D57 AL6000 [nominally 7 lb./ft.³, manufactured by Baltec U.S.A]; PVC-foam [Klegecell II (R75), is a polyvinyl chloride (PVC) foam, of a nominal density of 4.7 lb./ft.³, manufactured by Polymex Corp., Italy], and Nomex honeycomb phenolic core material. For brevity, we will call these materials: 3113, RTM3, G10, Balsa wood, PVC-foam and honeycomb repectively. They were cut into rectangular specimens. Dimensions are given for all specimens in the Appendix. The thickness of each specimen was measured with a micrometer at nine different places and the average was taken for the computation of the diffusion coefficient. These samples were thoroughly dried at 100 to 105°C in a vacuum oven for at least one week before they were exposed to their respective temperature/humidity conditions. For the moisture sorption experiments, the samples were placed into a preheated desiccator above a saturated KCl salt bath (with undissolved salt) to provide the desired 80 percent RH. The samples were periodically removed from the desiccator to determine their weight gain.

The data for all the sorption experiments are given in the Appendix. Each table includes the material name; the environmental conditions (°C and RH); the sample ID; the length, width, and thickness of each sample; the sampling times (in minutes); their corresponding weights; the maximum moisture uptake at the respective exposure conditions; the values for the respective M_f/M_w; the values for (time/thickness²)^{1/2} [in (sec/cm²)^{1/2}]; the results of the linear regression of the initial data (up to 0.55 of M_f/M_w); the average diffusion coefficients (for infinitely extended plates and for the corrected finite specimen dimensions).

The maximum moisture solubilities were defined as the weight differences between the dried and the fully saturated specimens (when no further weight gain could be observed) at a given temperature. The empirical relation of the moisture solubility as a function of temperature (at 80% RH) was obtained by using a second order regression analysis. The parameters describing this curve are listed in the Appendix.

The data are plotted as M/M_w versus (time/thickness²)^{1/2}. The experimental points were graphed by connecting the individual points with straight lines. No attempt was made to draw smooth curves, since only the initial straight line portion of the curve was used for determining the diffusion coefficient. Furthermore, Arrhenius plots of log D versus 1/T (in degree Kelvin) are given.

DETERMINATION OF DIFFUSION COEFFICIENTS

The diffusion coefficients were determined as described under the heading DATA REDUCTION on page 7.

DISCUSSION

MOISTURE DIFFUSION IN COMPOSITES AND SANDWICH CONSTRUCTIONS

The purpose of this work is to determine the moisture diffusion coefficients and solubilities in multilayered composite sandwich materials to be used for shipboard structures. Specifically, it is necessary to determine these properties for each constituent material in the temperature range of interest for a marine environment. For a number of reasons it is desirable to know the moisture transport and internal distribution in such structures. For instance, the mechanical properties may change in moisture loaded materials or the radar transmission may be affected. If one wants to predict the moisture distribution at every part of the structure (in a given environment, i.e., temperature and humidity) throughout its life-time, or if one wants to prepare test panels of these materials with a desired moisture content, one needs to know the diffusion coefficient of these materials as a function of temperature and humidity. We have shown previously that the diffusion coefficient of void-free composite laminates can be calculated if the diffusion coefficients of the neat resin and that of the fiber are known together with the fiber volume fraction. However, we have also demonstrated that such predictions of the diffusion coefficient for porous composites, as obtained by filament winding, will give rather large errors. Therefore, it is better to determine the diffusion coefficients for composites directly.^{2,3} For layered structures, where the different layers have different diffusion coefficients, one can calculate an overall diffusion coefficient as described by Crank which is analogous to the electrical resistivity in series (Equation 1)⁴

$$\frac{l}{D} = \frac{l_1}{D_1} + \frac{l_2}{D_2} + \dots + \frac{l_n}{D_n}$$
 (1)

where $l_1, l_2,....l_n$ are the thicknesses of the various layers, l is the total thickness, $D_1, D_2,....D_n$ are the diffusion coefficients of the individual layers and D is the overall diffusion coefficient. This formula is useful if one only wants to determine the permeation through the layered structure but is less suitable if one wants to determine the internal moisture distribution through the layered structure as a function of time. In such cases, one can calculate the internal moisture distribution by a finite difference or a finite element analysis. Such analyses will be discussed in a forthcoming technical report.

The approach taken was to determine the diffusion coefficients, the maximum moisture solubilities, and their respective temperature dependences of all materials that are presently of interest for use in the REM/S System.

In the literature, one finds examples for increasing, decreasing, and constant diffusion coefficients as a function of moisture concentration.^{5, 6} This difference in diffusion behavior was explained by the strength of the interaction of the diffusant with the solute. If, for instance, there are

hydrophilic groups in the polymer which interact with the diffusing water molecule, D increases with increasing moisture concentration. However, when the water concentration is high enough that water molecules can cluster with each other, then D decreases again, i.e., there may be a maximum in the curve of D as a function of concentration. On the other hand, the solution of water in hydrophobic polyolefins is quite ideal thermodynamically and the mobility factor is independent of concentration, which leads to a constant D.

In general, the temperature dependence of D follows the empirical equation:

$$D = D_0 \exp(-E_D / RT) f(c)$$
 (2)

where E_D is the mean activation energy, R is the ideal gas constant, T the absolute temperature in ${}^{\circ}K$ and f(c) can be expressed as a function of concentration c, or volume fraction ϕ , or activity a in the form $\exp(\alpha c)$, etc. For a small temperature range, these functions are essentially one and the equation for D becomes:

$$D = D_0 \exp(-E_D / RT) \tag{3}$$

Since diffusion is a thermally activated process, the Arrhenius relation was used to predict the diffusion coefficients for all other temperatures which are valid for such thermally activated processes. The apparent activation energy is obtained from the slope of the straight line when log(D) is plotted vs. 1/T. Therefore the diffusion coefficients were measured at 22, 35, and 50° C.

For a more detailed diffusion analysis, it would also be desirable to know the concentration dependence of the diffusion coefficients, however, the effort to do that would be about 3 times as much and was not justifiable at the present time. Since a maritime environment is around 80% RH, and, since in many cases the moisture diffusion coefficient at lower RH value is lower, the error made by assuming a concentration independent diffusion coefficient will be on the conservative side. This means, in the interior of the composite, where the concentration is lower than at the surface (before the maximum moisture level is attained) the diffusion coefficient is still considered to be as high as on the surface.

MEASUREMENT OF THE MOISTURE DIFFUSION COEFFICIENTS

There are several methods of measuring the diffusion coefficients of gases in solid materials.⁴ Some are based on direct permeation measurements through a thin membrane or a slice of the solid. In such experiments the permeating gas is measured directly by the change in pressure or by gas chromatography. Sorption experiments usually measure the change in pressure of the gas being absorbed or desorbed from a specimen where the geometry is suitable for an analytical solution. Instead of measuring the change in partial pressure of the diffusing gas, the sorbed gas can also be measured gravimetrically, as we have done in this work.

The samples were exposed at 80 percent RH and at constant temperature (22, 35 and 50°C to ±1°C) in desiccators over a KCl solution which contained undissolved salt to maintain a constant RH. The weight gain of each sample was determined gravimetrically, in discrete time steps, by removing the samples periodically and weighing them at room temperature with a semi-microbalance.

The diffusion coefficient measurements in composites is straight forward and quite accurate. The sample size was nominally 0.1" by 2" by 2". For the core materials (PVC-foams, Balsa wood, and honeycomb core), one expects to have a much higher moisture transport. Therefore, the samples had to be much thicker. The experimental accuracy of the measurements on core materials for the elevated temperatures are expected to be lower because of some moisture loss during the time of removal from the constant RH container and weighing. This operation has to be done in as short a time as possible. Also, the sample-to-sample variations of the core materials are higher than with composites. In contrast to PVC foam (which has closed pores) the other core materials have open channels for an even more rapid moisture transport. Yet, one can still determine an effective diffusion coefficient, because the sorption of moisture into the solid core material requires time until full saturation is attained. Also, the amount of sorbed moisture can be much higher than that of the face sheet composites (about 14 weight percent for Balsa wood). Since the diffusion coefficients of the core materials is much higher than the composite face sheets however, one does not need an accurate diffusion coefficient of the core material if one wants to model the through-the-thickness moisture diffusion. As we will show in a subsequent report, even if the diffusion coefficient of the core material were 1000 times higher than what was actually measured, it would not make a significant difference in the moisture distribution with time.

More important than the diffusion coefficient is the maximum solubility of moisture in the core material because the solubility is analogous to the heat capacity in thermal conductivity problems. For intance, Balsa wood, having a high moisture solubility will reach total moisture saturation after a much longer time than a core with low solubility such as a PVC foam core. These effects will be discussed in the forthcoming report which describes the modeling of the moisture transport through the sandwich wall structure using finite difference and finite element analyses.

DATA REDUCTION

<u>Determination of the Moisture Diffusion Coefficient in Plates of Finite Dimensions</u>
The basic solution for Fick's diffusion equation for vapors in an infinite membrane is given by
Crank⁴ [Equation (3)]

$$\frac{M_t}{M_{\infty}} = 1 - \sum_{n=0}^{\infty} \frac{8}{(2n+1)^2 \pi^2} e^{-D(2n+1)^2 \pi^2 t/4l^2}$$
(4)

where M_t denotes the total amount of diffusing substance which has entered the sheet at time t, and M_{∞} the corresponding quantity after infinite time. The thickness of the membrane extends from -l

to +1.

The initial slope of this curve (up to about 0.55), for all practical purposes, follows a straight line, from which one can obtain the diffusion coefficient, and Equation (4) then simplifies to Equation (5)

$$\frac{M_t}{M_{\infty}} = \frac{4}{\pi^{1/2}} \left[\frac{Dt}{(th)^2} \right]^{1/2} \tag{5}$$

where (th) denotes the thickness of the sheet. If the initial gradient, $R = d(M_t/M_{\odot})/d(t/(th)^2)^{1/2}$, is observed in a sorption experiment in which D is the concentration-dependent diffusion coefficient, then the average diffusion coefficient, \bar{D} , is given by Equation (6)

$$\bar{\mathbf{D}} = \pi \ \mathbf{R}^2 / 16.$$
 (6)

The data were plotted as M_t/M_{∞} versus $[t/(th)^2]^{1/2}$. The initial slope of these curves was obtained from a least square fit of the data points from 0 to 0.55. (The number of points used for the analysis varied, depending of how many points could be obtained below the value of 0.55). This average diffusion coefficient was then corrected for the open edges as described by Rothwell and Marshall.⁷ The equation derived by these authors is [Equation (7)]

$$\frac{D}{D_0} = \frac{(1 + \frac{h}{a} + \frac{h}{b})^2}{\left[(1 + \frac{h}{a} + \frac{h}{b})^2 - \frac{3}{4}(\frac{h}{a} + \frac{h}{b} + \frac{h^2}{ab})F_1\right]^2}$$
(7)

where D_0 is the uncorrected diffusion coefficient, D is the corrected, h is the specimen thickness, a the length, b the width, and F_1 has the value of 0.7.

RESULTS

The following AEM/S materials, obtained from NSWC/CD, Annapolis, were investigated: two outside face-sheet materials (a vinyl ester E-glass fiber reinforced plastic, designated here as RTM3, and another E-glass fiber SP Systems 3113 epoxy composite, designated as 3113), an interior glass fiber epoxy composite (designated as G10) which can contain a copper grid of various geometries, and 3 core materials (designated as Balsa wood, PVC-foam, and honeycomb core materials). The glass epoxy material was measured without the thin flat copper grid which serves special electromagnetic purposes. This special copper grid, consisting of a thin flat foil with a special geometric pattern which reduces the effective diffusion cross section. It is not necessary to measure the diffusion coefficient for each geometry, as long as the cross-sectional grid area is known. The diffusion coefficient of this material is reduced proportional to the area of the copper (in analogous to electrical conduction with parallel resistors).

Experimental data presented in the appendix include the results obtained from sorption measurements at 80 percent RH and at 22, 35, and 50°C. Given are the sample dimensions, their exposure times and their respective weight gains, the values of M_r/M_∞ versus [time/thickness²]^{1/2}, the maximum moisture solubilities (for 80 percent RH), and the edge-corrected diffusion coefficients. Coefficients for the mathematical expression to determine the average diffusion coefficients and solubilities for any temperature of interest, are given in the summary sheet page A-3. These coefficients were used for the comparison of the measured and calculated average diffusion coefficients and solubilities listed on page A-3. The material densities were calculated from the measured sample geometry. The apparent activation energies of diffusion were calculated from the slope of the experimental data of the average diffusion coefficients plotted as log(D) versus 1/T according to Equation (3).

A visual presentation of the experimental data is given in Figures 1 through 28. The experimental data points are connected with straight, solid lines without attempting to put smooth curves through them. The graphs for the regression analyses of the maximum moisture solubilities also show dotted curves which represent the expressions for the averages calculated from second order regression analysis. The dotted lines of the Arrhenius plots however, are straight lines, since it is assumed that in the small temperature interval from 22 to 50°C there is no change in the diffusion mechanism and the Arrhenius behavior is maintained.

Figures 1 to 3 show the sorption data of the 3113 epoxy face sheet composite (plotted as M_t/M_w versus (time/thichness²)^{1/2}) at 22, 35, and 50°C and 80 percent RH. Figure 4 shows the maximum moisture solubility of this material at 80 percent RH between room temperature and 50°C. Figure 5 gives the temperature dependence of the diffusion coefficient, the dotted line indicating the average. Figures 6 through 10 show the same results for the RTM3 vinyl ester face sheet. Note that the RTM3 material has a lower moisture solubility but a higher diffusion coefficient than the 3113 epoxy composite. Figures 11 through 15 show the sorption behavior of the internal copper screen glass fiber embedment layer. The copper screen was not included since the optimal geometry of the

etched copper mask was unavailable at the time of the measurement. However, this is of little importance, since for this thin copper foil one can easily calculate the diffusion coefficient for any geometry of the copper screen. The surface through which moisture can diffuse is the area not covered by the copper screen. Thus, the diffusion coefficient measured above is to be multiplied by (1 - f_{Cu}), where f_{Cu} is the fractional area of the copper screen. Figures 16 through 20 show the sorption results for the Balsa wood core material. As mentioned before, Balsa wood sorption measurements by gravimetry is less accurate, especially at elevated temperature, because moisture can desorb much more rapidly during the weight measurements. The samples were taken from the warm humidity chamber and its weight was immediately determined to 5 decimal places (instead of 6 as used for the composites). As mentioned before, even a very large error in the diffusion coefficient of the core material would not show any measurable difference in the overall diffusion and moisture distribution, as long as the moisture has to pass through the face sheet, i.e. as long as there is not damage or diffusion from the edges of the sandwich material. The reason for this is that the face sheet dominates the overall transport of moisture into the interior. The sorption behavior of the PVC core was determined at 22 and 50°C and is shown in Figures 21 through 24. The results for the Nomex honeycomb core are shown in Figures 25 through 28. Again, the accuracy of these core materials is of little importance since they are so much higher than that of the face sheet materials. One needs to remember that the time to reach an overall moisture equilibrium depends on the maximum solubility of the core material rather than its diffusion coefficient. The effect of damage to the face sheet material needs further investigation.

These sorption and diffusion coefficients will be used in a finite difference and a finite element analysis to model the moisture uptake and the internal distribution of various sandwich constructions for the AEM/S Sandwich Materials and test panels.

CONCLUSIONS

The moisture diffusion coefficients, solubilities, and densities of E-glass/SP Systems 3113 epoxy, E-glass/510A vinyl-ester (RTM3), E-glass/G10 epoxy, Balsa wood type D57, PVC-foam (Klegecell), and Nomex honeycomb phenolic core materials have been determined gravimetrically at 22, 35, and 50°C and at 80 percent RH.

These data are sufficient for obtaining a mathematical expression to predict the average diffusion coefficients and solubilities for typical marine environments of interest to the Navy and can be used to model the uptake of moisture and its internal distribution in AEM/S System sandwich constructions by using finite element or finite difference diffusion codes.

Thus, any combination of the above listed materials with any thicknesses as well as the inclusion of metal screen materials with different geometries can be modeled for their internal moisture distribution as a function of time. Examples of some specific combinations of sandwich constructions and modeling of moisture diffusion by finite element analysis will be discussed in a forthcoming technical report.

All objectives of this study have been met.

FIGURE 1. MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT 22°C AND 80 PERCENT RH

FIGURE 2. MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT 35 $^{\circ}\text{C}$ AND 80 PERCENT RH

FIGURE 3. MOISTURE SORPTION IN 3113 GLASS-EPOXY FACE SHEET AT $50\,^{\circ}\text{C}$ AND 80 PERCENT RH

FIGURE 4. MAXIMUM MOISTRUE SOLUBILITY IN 3113 GLASS-EPOXY FACE SHEET AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 5. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR 3113 GLASS-EPOXY FACE SHEET

FIGURE 6. MOISTURE SORPTION IN RTM3 FACE SHEET AT 22°C AND 80 PERCENT RH

FIGURE 7. MOISTURE SORPTION IN RTM3 FACE SHEET AT 35 °C AND 80 PERCENT RH

FIGURE 8. MOISTURE SORPTION IN RTM3 FACE SHEET AT 50 °C AND 80 PERCENT RH

FIGURE 9. MAXIMUM MOISTURE SOLUBILITY IN RTM3 FACE SHEET AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 10. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR RTM3 FACE SHEET

FIGURE 11. MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 22°C AND 80 PERCENT RH

FIGURE 12. MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 35°C AND 80 PERCENT RH

FIGURE 13. MOISTURE SORPTION IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 50 $^{\circ}\text{C}$ AND 80 PERCENT RH

FIGURE 14. MAXIMUM MOISTURE SOLUBILITY IN GLASS-EPOXY COPPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN) AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 15. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR THE GLASS-EPOXY COOPER EMBEDMENT SHEET (WITHOUT COPPER SCREEN)

FIGURE 16. MOISTURE SORPTION IN BALSA WOOD CORE AT 22 $^{\circ}\mathrm{C}$ AND 80 PERCENT RH

FIGURE 17. MOISTURE SORPTION IN BALSA WOOD CORE AT 35°C AND 80 PERCENT RH

FIGURE 18. MOISTURE SORPTION IN BALSA WOOD CORE AT $50\,^{\circ}\mathrm{C}$ AND 80 PERCENT RH

FIGURE 19. MAXIMUM MOISTURE SOLUBILITY IN BALSA WOOD CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 20. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR BALSA WOOD CORE

FIGURE 21. MOISTURE SORPTION IN PVC-FOAM CORE AT 22°C AND 80 PERCENT RH

FIGURE 22. MOISTURE SORPTION IN PVC-FOAM CORE AT 50°C AND 80 PERCENT RH

FIGURE 23. MAXIMUM MOISTURE SOLUBILITY IN PVC-FOAM CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 24. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR PVC-FOAM CORE

FIGURE 25. MOISTURE SORPTION IN HONEYCOMB CORE AT 22°C AND 80 PERCENT RH

FIGURE 26. MOISTURE SORPTION IN HONEYCOMB CORE AT 50 °C AND 80 PERCENT RH

FIGURE 27. MAXIMUM MOISTURE SOLUBILITY IN HONEYCOMB CORE AT 80 PERCENT RH AS A FUNCTION OF TEMPERATURE

FIGURE 28. ARRHENIUS PLOT OF LOG(D) VERSUS 1/°T AT 80 PERCENT RH FOR HONEYCOMB CORE

REFERENCES

- 1. Augl, J. M. and Berger, A. E., <u>The Effect of Moisture on Carbon Fiber Reinforced Epoxy</u>
 Composites. I Diffusion, NSWC/WOL/TR 76-7, 27 Sep 1976.
- Augl, J. M., Moisture Sorption and Diffusion in the Trident D-5 FS Motor Chamber Composite Material, NSWCDD/TR-94/40, May 1994.
- 3. Augl, J. M., Moisture Sorption and Diffusion in the Trident D-5 TS Motor Chamber Composite Material, NSWCDD/TR-94/36, May 1994.
- 4. Crank, J. The Mathematics of Diffusion, (Second Edition) Clarendon Press, Oxford 1976.
- 5. Crank, J. and Park, G. S., <u>Diffusion in Polymers</u>, Academic Press 1968, pp. 304.
- 6. Van Krevelen, D. W., <u>Properties of Polymers</u>, Elsevier, 1990, pp. 574.
- 7. Rothwell, W. S. and Marshall, H. P., <u>Analysis of Experimental Transport Data Diffusion of Water in EPDM</u>, LMSC-D-566642 Report, Oct 1977, pp. 12.

Appendix

EXPERIMENTAL DATA

Page A-3 of the Appendix provides a summary of the experimental data that describe the moisture diffusion behavior of individual constituent materials to be used in AEM/S sandwich constructions. Columns 1 through 3 list the materials, the temperatures of exposure for which the diffusion coefficients and solubilities have been measured, and the experimental average of the corrected diffusion coefficients. From these average diffusion coefficients, measured at different temperatures, the Arrhenius coefficients were obtained via regression analyses. From these coefficients, the diffusion coefficients can be obtained for any temperature of interest, assuming that they are within the valid range of the Arrhenius behavior. Column 4 lists these recalculated values for the respective temperatures. Column 5 lists the experimental averages of the maximum solubilities for the exposure temperatures and column 6 lists the recalculated values after regression analysis. Column 7 lists the average densities obtained from the measured sizes and weights of the samples. The coefficients for calculating the diffusion coefficient for any desired temperature are listed in columns 2 and 3 on the lower part of the page together with the apparent activation energies of diffusion. Also listed are the coefficients for calculating the maximum solubilities between room temperature and 50°C.

The following pages list all the experimental data for each individual material sample at the respective exposure temperatures. These include: sample ID; thickness; length; width; dry weight; weights at various time intervals; the corresponding values for M_t/M_∞ and (time/thickness²)^{1/2}; the results of the regression analysis for the linear initial slope and intersection of the sorption curve of each sample; the calculated average diffusion coefficient; the corresponding edge correction for the finite lengths and widths of the specimens; and the individual maximum moisture concentration.

	1-1-0-4-					
Summary of Exp	erimentai Data					
Material	Tomp Deg C	Av Diff Coeff	Av.calc.Diff.Coef	Av.Sol.Wt%	Av.Calc.Sol.	Rho (g/ml)
Material	22	5.90E-10		0.664	0.664	1.76
3113 Gl-Epoxy	35	1.14E-09		0.69	0.69	
	50	2.48E-09			0.802	
	22	2.42E-09			0.157	1.92
RTM3 GI-Vinyl	35	5.91E-09			0.164	
	50	1.10E-08			0.161	
040 OI F	22	4.99E-10				1.82
G10 GI-Epoxy	35	1.03E-09				
	50	2.08E-09				
5 1 14/	22	5.97E-06			14.361	0.09
Balsa Wood	35	1.94E-05			13.989	
		3.64E-05		1		
	50 22	9.64E-07			1.927	0.074
PVC-Foam	50	2.54E-06				
Li Cons	22	1.05E-05				0.06
Honeycomb Core	50	6.23E-05				
	1					
To coloulate the D	iffusion Coefficie	ent for other ten	peratures (within t	he validity of t	he Arrhenius	benavior):
To calculate the D	Diffusion Coefficients $0 = b(0) + b(1)*1$	ent for other ten ((Dea.K)	peratures (within t	he validity of t	he Arrhenius	benavior):
Log(Av.Diff.Coeff.	$b(0) + b(1)^{*}1$	/(Deg.K)				
Log(Av.Diff.Coeff.	b = b(0) + b(1)*1	/(Deg.K)	Energy) of Moistu	re Diffusion is	calculated fro	
Log(Av.Diff.Coeff.	b = b(0) + b(1)*1	/(Deg.K)	Energy) of Moistu	re Diffusion is	calculated fro	
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1	Coefficient (appart) //Deg.K accordin	/(Deg.K) arent Activation g to the Arrheni	Energy) of Moistu us expression: D(re Diffusion is on the Dif	calculated fro Act.En./RT)	
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1	Coefficient (appart) //Deg.K accordin	/(Deg.K) arent Activation g to the Arrheni	Energy) of Moistu us expression: D(re Diffusion is on the Dif	calculated fro Act.En./RT)	
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E	Coefficient (appoint / Deg.K accordin	/(Deg.K)	Energy) of Moistu	re Diffusion is on the Dif	calculated fro Act.En./RT)	
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1	Coefficient (appoint / Deg.K accordin	/(Deg.K)	Energy) of Moistu us expression: D(re Diffusion is on the Dif	calculated fro Act.En./RT) 50 Deg.C:	m the slope
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1)	Coefficient (apparatus) Coefficient (apparatus) Deg.K accordin quilibrium Moiste *Deg.C + a(2)* [/(Deg.K) arent Activation g to the Arrheni ure Solubilities to	Energy) of Moistu us expression: D(re Diffusion is on the Dif	calculated fro Act.En./RT) 50 Deg.C:	m the slope
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca	Coefficient (appoint	/(Deg.K)	Energy) of Moistu us expression: D(for temperatures be	re Diffusion is of the Dif	calculated fro Act.En./RT) 50 Deg.C:	m the slope
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for calculate the Coefficients	Coefficient (appoint / Deg.K accordin / Coullibrium Moiston / Deg.C + a(2)* Endculating Log(Av. b(0))	/(Deg.K)	Energy) of Moistu us expression: D(for temperatures be Act.En.(kcal/M)	re Diffusion is of the Dif	calculated fro Act.En./RT) 50 Deg.C: cr calculating	m the slope Solubility a(2) 1.954E-0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy	Coefficient (apper leaves of the leaves of t	/(Deg.K) arent Activation g to the Arrheni ure Solubilities 1 Deg.C^2 .D) b(1) -2.1262	Energy) of Moisturus expression: D(for temperatures be Act.En.(kcal/M) 9.74	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: crealculating a(1) -9.112E-03	m the slope Solubility a(2) 1.954E-0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl	Coefficient (appropriate (appro	/(Deg.K) arent Activation g to the Arrheni ure Solubilities 1 Deg.C^2 D) b(1) -2.1262 -2.223	Energy) of Moistu us expression: D(for temperatures be Act.En.(kcal/M) 9.74 7.74	re Diffusion is of Diffusion i	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03	m the slope Solubility a(2) 1.954E-0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy	Coefficient (appel/Deg.K according Appel/Deg.K according Appel/Deg.C + a(2)* Experience (appel/Deg.C + a(2)* Experience (appel	/(Deg.K) arent Activation g to the Arrheni ure Solubilities 1 Deg.C^2 Db(1) -2.1262 -2.233	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03	solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood	Coefficient (apper length of the length of t	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is on the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 -1.618E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the EWt% = a(0) + a(1) Coefficients for calculate the EWt% = a(0) + a(1) Coeffi	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 -1.618E+0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (apper length of the length of t	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 -1.618E+0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the EWt% = a(0) + a(1) Coefficients for calculate the EWt% = a(0) + a(1) Coeffi	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 -1.618E+0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the EWt% = a(0) + a(1) Coefficients for calculate the EWt% = a(0) + a(1) Coeffi	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy Balsa Wood PVC-Foam	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 0.000E+0
Log(Av.Diff.Coeff. The Temperature of Log(Av.D) vs. 1 To calculate the E Wt% = a(0) + a(1) Coefficients for ca Material 3113 GI-Epoxy RTM3 GI-Vinyl G10 GI-Epoxy	Coefficient (appropriate (appro	/(Deg.K)	Energy) of Moisturus expression: D(for temperatures be a second of the	re Diffusion is of the property of the propert	calculated fro Act.En./RT) 50 Deg.C: or calculating a(1) -9.112E-03 2.018E-03 2.594E-03 6.380E-01 2.277E-02	Solubility a(2) 1.954E-0 -2.586E+0 -3.927E-0 -1.618E+0 0.000E+0

						F	G	Н	1 1	J	К
Ш	A Moisture Sorptio	B	C	D	E Vinyl Es	tor Face	Shoots a	t 22 Deg	C and 80		
	Moisture Sorptio	n in 3113	Glass E	poxy and	VIIIyi-Es	lei race	Silecto	L LL Dog.	0 4114 50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2		0440 -	3113-b	RTM3-1	RTM3-2						
	Sample #	3113-a	0.09157	0.082296							
	Thickness (cm)	0.09218 4.6	4.6	5.07	5.07						
	Length (cm)	4.6	4.6	4.83	4.83						
9	Width (cm) Start: 7-11; 730	4.0	4.0								
	Dry Weight a,t t=0	3.43593	3.42718	3.88361	3.91377						
8	Wt at t=inf	3.45879	3.44987	3.88976	3.91986						
10	AAC OC C-IIII	5.1.55									
	Time out	1410	1410	1410	1410						
	Min	400	400	400	400						
	Weight (Grams)	3.43708	3.42869	3.88446	3.91476						
14	Time in			10.10	4040						
	Time out 7-12	1040	1040	1040 1630	1040 1630						
	Min	1630	1630		3.91613		-				
	Weight	3.43887	3.43082	3.88608	0.51013						
18	Time in	820	820	820	820						
	Time out 7-13 Min	2930		2930	2930						
	Weight	3,44032	3.43246	3.88701	3.91717						
	Time in										
	Time out 7-14	1355	1355	1355	1355						
24	Min	4705		4705				-			
	Weight	3.44188	3.43419	3.88781	3.91805						
	Time in	4 405	4.405	4.425	1435			 			
	Time out 7-15	1435	1435 6185	1435 6185							
	Min	6185 3.44324		3.88833							
	Weight Time in	3.44324	3,40040	3.00000	0.01010						
30	Time in	1350	1350	1350	1350						
	Min	13345		13345							
	Weight	3.44739		3.88896	3.91918						
34	Time in										
35	Time out 7-22	1430		1430	1430						
36	Min	16265		16265							
	Weight	3.44881	3.44098	3.88932	3.91941		-	 			
	Time in 7-25	745	745	715	715			 			
	Time out	715 20150									
	Min Weight	3.45059			3.91962						
	Time in	0.4000	0,11200	0.000							
43	Time out 7-29	730	730	730	730						
44	Min	25925									
45	Weight	3.45238	3.44431	3.88961	3.91973		ļ				
46	Time in		10.00	4045	4245				-		
47	Time out 9-7	1345		1345 36385			 	 	 		
	Min	36380 3.45467						 			
	Weight Time in	3.43407	J.44033	0.00300	0.01010		1				
50	Time in	1315	1315	1315	1315						
	Min	70910								ļ	
	Weight	3.45848									
	Time in						ļ				
	Time out 8-5	645	645				 				
56	Min	83480									-
	Weight	3.45879	3.44987						 		
	Regression Analysis:			0.000	0.04070		-	+	-		
	b (intersection)	-0.03112		-0.02675 0.000111			1	+			
	a (x-coeff)	5.27E-05	3.09E-US	0.000111	0.000111		1				
61		E AEE 40	6.36E-10	2 435 00	241F_00		 	 	T		
	D=x^2*Pi/16 D(corr. R&M)	5.45E-10 5.45E-10	6.36E-10	2.43E-09	2.41E-09		 	1			
63	D(COIT. KOIVI)	J.40E-10	U.00L-10				4				

_	Α	В	С	D	E	F	G	н	ı	J	К
64											
	35C,80RH Sorb.	0.665322	0.66206	0.158358	0.155604						
66											
67											
	Mt/M(inf)	0	0	0	0						
	From: Line 13		0.066549	0.138211	0.162562						
	Line 17	0.128609		0.401626 0.552846							
	Line 21 Line 25	0.192038 0.26028		0.682927	0.702791						
	Line 29		0.363596	0.76748	0.775041						
	Line 33	0.501312									
	Line 37	0.56343	0.608197	0.928455	0.926108						
76	Line 41		0.679154	0.97561	0.960591						
77	Line 45	0.719598		0.97561	0.978654						
	Line 49	0.819773		0.962602	0.978654						
	Line 53	0.986439	0.992067								
	Line 57		-								
81	(time/th^2)^.5 (sec)	0	0	0	0						
	From: Line 12	1680.618		1882.465	1865.195						
84	Line 16	3392.601	3415.201	3800.062	3765.199						
85	Line 20	4548.547	4578.848		5048.1						I
	Line 24	5763.93	5802.327	6456.196							
	Line 28		6652.613		7334.39 10773.42						
	Line 32 Line 36	9707.295	9771.96 10788.21		11893.82						
	Line 40	11928.24		13360.86	13238.28						
	Line 44	13530.02	13620.15		15015.98						
92	Line 48	16027.67	16135.54	17953.87	17789.16						
93	Line 52	22376.53		25064.01	24834.07						
	Line 56	24278.96	24440.7								
95											
96											
97 98											
99											
100											
101											
102											
103											
104											
105 106											
107											
108		 	<u> </u>								
109											
110											
111											
112						-					
113 114		 									
115											
116		 	 								
117											
118											
119											
120		ļ	ļ	ļ						 	
121		 			-					 	
122 123						-	 				
124											
125											
126											
		t						1	I	1	1

	A	В	С	D	E	F	G	н		J	К
	Moisture Absorp	tion in 31	113 Glass	FDOXV a	nd Vinvl-	Ester Fa	ce Sheet	s at 35 De	g.C and	80% RH	
1 2	Moistule Apsorb	HOII III 3	170 01430	Lpoxy	1111						
	Sample #	3113-a	3113-b	RTM3-1	RTM3-2						
	Thickness (cm)	0.092	0.092	0.082	0.083						
	Length (cm)	4.6	4.6	5.07	5.07						
	Width (cm)	4.6	4.6	4.83	4.83						
17	Start:										
	Dry Weight a,t t=0	3,43036	3.42113	3.88305	3.91295						
9	Wt at t=inf	3,45403	3.44474	3.88952	3.91927						
10											
11	Time out	1700	1700	1214	1214						
12	Min	600		144	144						
13	Weight (Grams)	3.43391	3.42557	3.88431	3.91406						
	Time in	1212	1010	4.440	1412						
	Time out	1210	1210	1412 262	262		-				
	Min	1750	1750 3.42821	3.88471	3.91449						
	Weight	3.43645	3.42021	3.00471	0.01773						
	Time in	1630	1630	1635	1635						
	Time out Min	2010			405						
	Weight	3.43675		3.88511	3.91492						
	Time in	0.10070									
	Time out	1530	1530	640	640						
	Min	4830	4830	1250	1250						
	Weight	3.44058	3.43215	3.88679	3.91655						
	Time in										
	Time out	1240		1623	1623						
	Min	6100		1823	1823						
	Weight	3.44183	3.43348	3.88736	3.91726						
	Time in	1055	4055	640	640		-				
	Time out	1055									
	Min	10375 3.44508		3.88801	3.91779						
33	Weight Time in	3.44506	3.4003	0.00001	0.51710						
	Time out	1300	1300	1235	1235						
	Min	23520		4475	4475						
	Weight	3.44946			3.91848						
	Time in										
	Time out	630		635	635						
40	Min	44730			12755						
41	Weight	3.45218	3.44277	3.88947	3.91924						
42	Time in			4045	42AF		-				
	Time out			1345 20385			-	 			
	Min			3.88952			1				
	Weight			0.00002	0.01027						
46			-								
48											
49											
50											ļ
51											
52											
53			ļ				 	 			
54		L					 				
	Regression Analysis:		0.04 (5.45	0.00044	0.04075		-				
56	b (intersection)	-0.00241			-0.01075 0.000174						
	a (x-coeff)	7.4E-05	7.8E-05	0.000173	0.000174		-				
58	- 10151/65	4.075.00	4.05.00	E 05 00	5.92E-09		+				
	D=x^2*Pi/16	1.07E-09					 				
	D(corr. R&M)	1.07E-09	1.25-09	J.3E-09	J.32E-03		+	 			
61	050 00DU 0	0.6000	0.6900	0.1666	0.1615						
_	35C,80RH Sorb.	0.6900	0.0900	0.1000	0.1013		+				
63		1	l								

	Α	В	С	D	E	F	G	Н	1	J	K
64											
65											
	Mt/M(inf)	0	0	0	0						
67	From: Line 13	0.149982		0.194745							
	Line 17	0.257293		0.256569	0.243671						
	Line 21	0.269968			0.311709						
	Line 25	0.43178	0.466834	0.578053	0.56962						
	Line 29	0.48459	0.523177	0.666151	0.681962						
72	Line 33	0.621898	0.646451	0.766615	0.765823						
73	Line 37		0.809547	0.87017	0.875						
74	Line 41	0,921862	0.916724		0.995253						
	Line 45			1	1						
76											
77	(time/th^2)^.5 (sec)	0	0	0	0						
	From: Line 12	2058.328		1129.479	1119.117						
79	Line 16	3515.264									
	Line 20	3767.359	3792.455								
	Line 24	5839.995	5878.899		3297.229						
	Line 28	6563.022	6606.742								
	Line 32	8559.196		4872.64	4827.937						
84	Line 36	12887.17	12973.02	6296.416	6238.651						
	Line 40	17772.08	17890.47	10630.09	10532.57						
	Line 44			13438.55	13315.26						
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98						-					
99											
100 101											
102											
103					-						
104											
105											
106											
107											
108		-				***************************************					
109											
110		<u> </u>									
111											
112											
113											
114											
115											
116		Î									
117											
118										<u> </u>	
119											
120										<u> </u>	
121										ļ	
122										ļ	
123											
124									ļ		
125									ļ		
126									<u> </u>		
127							<u></u>	<u> </u>	l	ļ	

			С	D	E	F	G	н		j	к
\vdash	A Moisture Absorp	B G	loce Engl	vy and Vi	nyl_Ester	Face Sh			nd 80%	RH	
	Moisture Absorp	uon in G	ass Lpo	Ay and V	ilyi-Luci	1 400 0.					
2	Cample #	3113-a	3113-b	RTM3-1	RTM3-2						
	Sample # Thickness (cm)	0.09218	0.09157	0.082296							
		4.6	4.6	5.07	5.07						
	Length (cm) Width (cm)	4.6	4.6	4.83	4.83						
	Start:	7.0									
	Dry Weight a,t t=0	3.43353	3.42444	3.88321	3.91314						
9	Wt at t=inf	3.46146	3.45154	3.88937	3.91956						
10	vicute iiii										
	Time out	830	830	830							
	Min	90	90	90							
	Weight (Grams)	3.43528	3.42667	3.88457	3.91464						
	Time in				1050						
15	Time out	1050	1050	1050	1050						
	Min	230	230	230							
	Weight	3.43616	3.42769	3.88524	3.91529						
	Time in	000	800	800	800						
	Time out	800 2940	2940	2940	2940						
	Min Weight	3.44713	3.43856	3.88857	3.91861						
	Time in	3,47/13	5.40000	3.03007							
	Time out	700	700	700	700						
	Min	4320	4320	4320							
	Weight	3.45032	3.44129	3.88869	3.91884						
	Time in										
	Time out	700	700	700							
	Min	8640	8640	8640							
	Weight	3.45616	3.44706	3.88915	3.91936						
	Time in		4700	4500	1500						
	Time out	1500	1500	1500 13440							
	Min	13440 3.45833	13440 3.44821	3.88929							
	Weight Time in	3.43033	3.44021	3.00323	0.51007						
	Time out	700	700	700	700						
	Min	23040	23040	23040							
	Weight	3.46138	3.45106	3.88937	3.91946						
	Time in										
	Time out	1300	1300	1300							
	Min	29160	29160	29160							
	Weight	3.46146	3.45154	3.88937	3.91956						
42											
43											
44											
45					 						
46 47											
48		-									
49											
50											
	Regression Analysis:										
	b (intersection)	-0.02102	-0.01108	0.003578	0.005906						
	a (x-coeff)	0.00011	0.000115	0.000233	0.00024						
54											
	D=x^2*Pi/16	2.37E-09			1.13E-08						
56	D(corr. R&M)	2.37E-09	2.6E-09	1.06E-08	1.13E-08						
57					0.16:25						
	50C,80RH Sorb.	0.813449	0.79137	0.158632	0.164063						
59							ļ			-	
60		ļ			ļ		ļ <u> </u>	ļ			
61							 			-	
62							 	 	 	 	
63		<u> </u>					1		L		

	Α	В	С	D	E	F	G	Н	ı	J	K
64											
	Mt/M(inf)	0	0	0	0						
66	From: Line 13	0.062657	0.082288	0.220779	0.233645						
	Line 17	0.094164	0.119926	0.329545	0.334891						
	Line 21	0.486932	0.521033	0.87013	0.852025						
	Line 25		0.621771	0.88961	0.88785						
	Line 29	0.81024	0.834686	0.964286	0.968847						
	Line 33		0.877122								
72	Line 37	0.997136	0.982288	1	0.904424						
	Line 41	1	-								
74	(i) (i) (i) (i) (i) (i) (ii) (ii) (ii)	-	0	0	0						
	(time/th^2)^.5 (sec)	707 1960	802.4975								
	From: Line 12 Line 16	1274 391	1282.881	1427.45	1414.354						
	Line 20	4556.303	4586.655	5103.529	5056.707						
	Line 24		5559.865	6186.411	6129.655						
80	Line 28	7810.805	7862.837	8748.906	8668.641						
	Line 32	9741.785	9806.681	10911.8	10811.7						
82	Line 36	12754.99	12839.96		14155.83						
83	Line 40	14349.36	14444.95	16072.77	15925.31						
84											
85											
86											
87											
88											
89											
90											
91 92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104											
105 106											
107		-									
108				t							
109		 	†								
110											
111											
112											
113										<u> </u>	
114									 		
115			ļ <u></u>			<u> </u>					
116					<u> </u>		ļ -				
117			ļ			ļ — —					
118							 				
119				 		 					
120		 	 	 	 						
121 122		 	 		 	 	 				
123		 		 			t				
123		 	 			 					
125		 									
126											
127		 	 						<u> </u>	L	
1.21		1	ــــــــــــــــــــــــــــــــــــــ								

				-	E	F	G	Н	J	К
Ш	Α	В	C	D	Cu facin	a et 22 D	og C and			
1	Moisture Absorp	tion in G	10 E-Glas	ss/Epoxy	Cu-racin	y at 22 D	eg.c and	00 /0 1111	 	
2										
	Sample #	E-GI/Epox								
	Thickness (cm)	0.083								
5		5.08							 	
6	Width (cm)	5.08								
7	Start: 7-18; 0645									
8	Dry Weight a,t t=0	3.91388								
	Wt at t=inf	3.94206								
10		1 100								
	Time out	1400 435								
12	Min	3.91731								
13	Weight (Grams)	3,91731								
14	Time in Time out 7-19	1430								
15	Min	1905								
	Weight	3.92014								
12	Time in	5.020.4								
19	Time out 7-20	1355								
	Min	3310							 	
	Weight	3.92186								
22	Time in						L		<u> </u>	
23	Time out 7-21	1500								
	Min	4815			ļ					
25	Weight	3.92344								
26	Time in	4 400								
	Time out 7-22	1430								
	Min	6225								
29	Weight	3.92466								
30	Time in Time out 7-25	720								
31	Min	10115								L
	Weight	3.92741								
34	Time in	0.02								
35	Time out 7-29	750							 	
	Min	15905								
	Weight	3.93061							 	
38	Time in									
	Time out 8-5	1350								
	Min	26345								
	Weight	3.93395							 	
	Time in								 ļ	
43	Time out 8-29	1330								
44	Min	60920 3.93837				 		 		
	Weight	3.9383/		-	-	-				
46			· -							
47				 						
48 49			-							
50		-								
51										
52									 	
53									 	
54	Regression Analysis:	using the f	irst 7 points	(zero inclu	ded)					
55	b (intersection)	0.01217						ļ	 	
	a (x-coeff)	5.04E-05								
57										
	D=x^2*Pi/16	4.98E-10							 	
59	D(corr. R&M)	4.99E-10								
60									 	
	22C,80RH Sorb.	0.72					<u> </u>			ļ
62									 	
63								<u> </u>	 <u> </u>	L
ت										

								u l	1	J	К
	Α	В	C	D	E	F	G	Н			
64											
65	Mt/M(inf)	0									
66	From: Line 13	0.121718									
67	Line 17	0.222144						· ·			
68	Line 21	0.28318									
69	Line 25	0.339248									
70	Line 29	0.382542									
	Line 33	0.480129									
72	Line 37	0.593685									
73	Line 41	0.712209									
	Line 45	0.869058									
75											
76	(time/th^2)^.5 (sec)	0									
77	From: Line 12	1946.445									
78	Line 16	4073.287									
79	Line 20	5369.224									
80	Line 24	6475.834									
81	Line 28	7363.21									
82	Line 32	9385.998									
83	Line 36	11769.67									
84	Line 40	15147.7									
85	Line 44	23034.43									
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104											
105											
106											
107		-									
108							<u> </u>				
109											
110											
111							-				
112				<u></u>							
113							 			 	
114										 	
115		ļ	ļ							 	
116					ļ	<u></u>				 	
117										 	
118										 	
119									ļ — — —	 	\vdash
120		ļ				L					├
121									ļ		
122 123						ļ			 	 	
123											
124										 	
125						ļ			ļ		├ ──┤
126									<u> </u>	 -	<u> </u>
127				ļ	1	·	1		<u> </u>	Ļ	

		В	С	D	E	F	G	Н	1	J	К
Н	A Moisture Absorp	tion in G	10 E Glas	c/Enovy	Cu-facin	g at 35 D	eg.C and	80% RH			
	Moisture Absorp	uon in G	IU L-Glas	SILPONY	Ou-juoiii	J Color	3				
2	Sample #	E-GI/Epox									
	Thickness (cm)	0.083									
5	Length (cm)	5.08									
6	Width (cm)	5.08									
	Start:										
8	Dry Weight a,t t=0	3.90959									
	Wt at t=inf	3.93792									
10		4500									
	Time out	1523 473									
	Min Weight (Grams)	3.91407									
14	Time in	1525									
	Time out	700									
	Min	1408									
	Weight	3.91674									
	Time in	703 1000				 					
19 20	Time out	2920									
	Weight	3.92002									
	Time in										
23	Time out	655									
	Min	7055									
	Weight	3.92555									
	Time in Time out	650									
	Min	11370									
	Weight	3.92901									
30	Time in	650									
	Time out	17100									
	Min	17130									
	Weight Time in	3.93105									
	Time out	750									
36		20070									
37	Weight	3.93163									
	Time in	1000						ļ			
	Time out	1055									
	Min	23075 3.93201									
	Weight Time in	3,93201				-					
	Time out	730									
44	Min	27190									
45	Weight	3.93279									
	Time in	4040			-		-			-	
	Time out Min	1610 33470				-		ļ			
	Weight	3.93339									
50	Time in	0.50000									
51	Time out	725									
52	Min	47345					ļ	ļ		ļ 	
53	Weight	3.93426						 			
	Time in	800						 			
	Time out Min	53140									
	Weight	3.93448						1			
58	Time in										
59	Time out	850					ļ		ļ		
60	Min	77670									
61	Weight	3.93574			-		 		 	-	
62	Time in	715			-	-	 		<u> </u>		
	Time out	87655			 						
1 64	Min	0/000				1					

							G	Н	1	J	К
	Α	B	С	D	E	F	9				
	Weight	3.93611									
	Time in	4 445									
	Time out	1415									
	Min	103915 3.93664									
	Weight	3.93004									
	Time in	1300									
	Time out	171535									
	Min Weight	3.93792									
	vveigni	3.33132									
74 75											
76	Regression Analysis:	using the fi	rst 7 points	(zero includ	led)						
	b (intersection)	0.003375	ist i pointo	(2010 1110101							
	a (x-coeff)	7.24E-05									
79	a (x-coen)	7.242-00									
	D=x^2*Pi/16	1.03E-09									
	D(corr. R&M)	1.03E-09									
82	D(DOIT. T(GIVI)	1.552-00									
	35C,80RH Sorb.	0.724628									
84	COO,COINT COID.	J., 2 1020									
85											
	Mt/M(inf)	0									
	From: Line 13	0.158136		-							
	Line 17	0.252383									
89	Line 21	0.368161									
90	Line 25	0.56336									
	Line 29	0.685492									
	Line 33	0.757501									
	Line 37	0.777974									
94	Line 41	0.791387									
95	Line 45	0.81892									
	Line 49	0.840099									
	Line 53	0.870808									
	Line 57	0.878574									
99	Line 61	0.92305									
	Line 65 Line 69	0.93611 0.954818									
101	Line 73	0.934010									
103		<u> </u>									
	(time/th^2)^.5 (sec)	0									
	From: Line 12	2029.682									
	Line 16	3501.861									
	Line 20	5043		-							
	Line 24	7838.736									
	Line 28	9951.253									
	Line 32	12214.51									
	Line 36	13221.21									
112	Line 40	14176.48									
113	Line 44	15388.71									
114	Line 48	17073.61				ļ					
115	Line 52	20306.48									
	Line 56	21513.36					<u> </u>				
117	Line 60	26009.03					ļ		 		
	Line 64	27630.32			ļ			 			
119	Line 68	30084.07							 		
1120	Line 72	38652.17		l	l	1	1		1		

		В	С	D	E	F	G	Н	1	J	К
	A Moisture Absorp	tion in G	10 E-Glas	s/Enoxy	Cu-facin	g at 50 D	eg.C and				
1	Moisture Absorp	tion in G	TO L-Glas	SILPON	Ou-luoiii.	9 41 40 5	3				
2	Sample #	Gl.Epox									
	Thickness (cm)	0.083		-							
4	Length (cm)	5.08									
6	Width (cm)	5.08									
	Start:										
8	Dry Weight a,t t=0	3.91184									
9	Dry Weight a,t t=0 Wt at t=inf	3.93975									
10											
	Time out	830									
12	Min	90									
13	Weight (Grams)	3.91447									
	Time in Time out	1050									
	Min	230									
	Weight	3.91569									
18	Time in										
19	Time out	700									
	Min	1440									
	Weight	3.92222									
	Time in	800			-						
	Time out	2940									
	Min Weight	3.92625			,						
26	Time in	0.02020									
	Time out	700									
	Min	4320									
29	Weight	3.92921									
	Time in										
	Time out	700 8640									
32	Min	3.93357									
34	Weight Time in	3.33307									
35	Time out	700									
	Min	23040									
37	Weight	3.93816									
	Time in										
	Time out	1300									
	Min	29160 3.93938									
	Weight	3.93930									
	Time in Time out	1330									
44	Min	43590									
45	Weight	3.93975									
46											
47											
48											
49		-		 	-						
50					-						
51	Regression Analysis:	using the f	irst 5 points		 						
	b (intersection)	-0.00021									
54	a (x-coeff)	0.000103									
55	,										
56	D=x^2*Pi/16	2.08E-09									
57	D(corr. R&M)	2.08E-09									
58								-			
	505C,80RH Sorb.	0.713475							-	-	
60					 		 	 	 		
61			1		 			 	 		
62		-		 		 	 		 		
63		1	1				<u> </u>				

			С	D	E	F	G	н	1 1	j	К
	Α	В									
64 65											
66	Mt/M(inf)	0									
67	From: Line 13	0.094231 0.137943									
68	Line 17	0.137943									
69	Line 21	0.516302									
70	Line 25	0.622358					· · · · · ·				
1/1	Line 29 Line 33	0.022556									
1/2	Line 37	0.943031									
74	Line 41	0.986743									
75	Line 45	1									
76	Line 40										
77	(time/th^2)^.5 (sec)	0									
70	From: Line 12	885.3577									
70	Line 16	1415.342									
	Line 20	3541.431									
81	Line 24	5060.241									
82	Line 28	6133.938									
83	Line 32	8674.699									
84	Line 36	14165.72									
85	Line 40	15936.44									
86	Line 44	19484.58									
87											
88											
89											
90											
90 91 92											
92											
93											
94											
95 96											
96											
97											
98											
99											
100											
101		<u> </u>									
102											
103											
104							-				
105		<u> </u>									
106		ļ									
107				ļ							
108		 						 			
109		-			<u> </u>						
110		 									
111		-	-					 			
112		-		-		 					
113		 		-							
114											
115		 		ļ				1			
116		 	 	 	 			1			
117		 		 							
118		1	 			 	i				
119		 	-	-	 						
120 121		 	 	 	-		 				
122		-	-								
123		-			-				1		
123	 	-	 	 	—						
125		1	 		 	 					
126		 		1							
127		 	 	 		 					
121	<u> </u>								· · · · · · · · · · · · · · · · · · ·		

_		- B	С	D	E	F	G	Н	ı	J	К
\vdash	A Moisture Absorp	B	Poles W								
	Moisture Absorp	tion in in	Baisa w	000 at 24	Deg.c a	110 00 70 1					
2			5.10								
	Cumpie	Balsa 1	Balsa 2								
	Thickness (cm)	2.3	2.32								
	Length (cm)	4.95	4.95								
6	Width (cm)	4.95	4.95								
7	Start: 7-11; 0730		5.4000								
8	Dry Weight a,t t=0	5.1876	5.1098 5.8409								
	Wt at t=inf	5.9353	5.0409								
10		4 44 6	4440				-				
	Time out	1410	1410 400								
	Min	400									
13	Weight (Grams)	5.4341	5.3565								
	Time in	4020	1030								
	Time out	1030	1620								
	Min	1620 5.6749	5.5682								
	Weight	5.0749	5.5002								
	Time in	805	805								
	Time out 7-13	2915	2915								
	Min Weight	5.7668	5.6685								
	Time in	3.7000	0.0000								
22	Time in	1340	1340								
24		4690									
	Weight	5.82868	5.7332								
	Time in	0.0000									
27	Time out 7-15	1425	1425								
	Min	6175	6175								
	Weight	5.8443	5.7487								
	Time in										
	Time out 7-20	1345	1345								
32	Min	13335	13335								
33	Weight	5.8875	5.8017								
34	Time in										
	Time out 7-22	1420	1420								
36		16250	16250								
	Weight	5.8954	5.8043								
38	Time in		705								
	Time out 7-25	705	705								
40		20135	20135								
	Weight	5.907	5.8155								
42	Time in	705	705								
	Time out 7-29	735	735 25925								
	Min	25925	5.8233								
	Weight	5.9147	5.6233								
46	Time in Time out 8-5	1340	1340								
	Min	36370									
	Weight	5.921	5.8302								
	Time in	J.321	0.0002								
51	Time out 8-29	1315	1315								
	Min	70905									
	Weight	5.9353									
54											
55											
56	Regression Analysis:	using the fi	rst 2 points	(zero includ	ded)						
	b (intersection)	0.033942	0.02535								
	a (x-coeff)		0.005053								
59											
	D=x^2*Pi/16	4.7E-06	5.01E-06								
	D(corr. R&M)	5.77E-06	6.17E-06								
62											
	22C,80RH Sorb.	14.41322	14.3078								
. ~~											

	Α	В	С	D	E	F	G	Н	1	J	К
64											
65											
	Mt/M(inf)	0	0								
67	From: Line 13		0.433313								
	Line 17	0.509688	0.492556								
	Line 21	0.581867	0.608871								
70	Line 25	0.649756	0.664392								
71	Line 29		0.948511								
72	Line 33	1							UIN		
73	Line 37 Line 41	1:	1								
75	Line 41		•								
76	(time/th^2)^.5 (sec)	0	0								
77	From: Line 12	34.83691	34.5366								
78	Line 16	47.62805	47.21746								
79	Line 20	61.17934	60.65193								
	Line 24	69.59239	68.99245								
81	Line 28 Line 32	180.10/1	178.5544 220.7132								
	Line 32 Line 36	255 488	253.2855		<u> </u>						
84	Line 40	337.8739	334.9612								
85											
86											
87											
88											
89											
90 91											
92											
92 93											
94											
95											
96											
97 98											
99											
100											
101											
102											
103											
104 105											
106											
107											
108											
109											
110											
111			<u> </u>			-					
112 113											
114											
115											
116											
117											
118				-							
119											
120 121								· · · · · · · · · · · · · · · · · · ·			
122											
123											
124											
125										ļ	
126					<u> </u>						
127									<u> </u>	L	

Moisture Sorption of Moisture in Balsa Wood at 35 Deg.C and 80 RH						E	F	G	Н	i I	J	K
2 Sample # Bales 1 Bales 2	╙	Α	В	C	D							
3 Sample # Balsa 1 Balsa 2 4 Thickness (cm) 2.30 2.30		Moisture Sorption	n of Mois	ture in B	aisa woo	a at 35 l	Jeg.o and	4 00 1111				
Time for the form of the for			Dale - 4	Poles C								
\$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
G Width cm) 4.95 4.95												
	5	Length (cm)										
S Dry Weight Att=0 519719 511678 9 Wid att=in 5.9354 5.8217 9 Wid att=in 5.9354 5.8217 9 Wid att=in 5.9354 5.8217 9 11 Time out 1208 1208 9 1208 9 13 Weight (Grams) 5.4699 5.97172 9 14 Time in 1405 1405 9 14	9	Stat:	4,30	4.00								
9 Wit at I+inf	-	Dr. Moight att-0	5 10710	5.11678								
10 11 Time out 1208 1208 133 138 133 13	H	\\/\tat t=inf										
11 Time out		vvt at t-iiii	0.000									
12 Min		Time out	1208	1208								
13 Weight (Grams) 5.44989 5.37172			138	138								
14 Time in 1405 1405 1405 16 Min 255 255 18 18 Time in 1631 1631 17 weight 1631 1631 17 weight 1631 1631 17 weight 1631 1631 17 weight 1631 1631 1631 17 weight 1631 1631 17 weight 1632 1830 18	13	Weight (Grams)	5.44989	5.37172								
16 Min 255 255 17 Weight 5.55114 5.45593 18 Time in 18 Time in 1631 1631 1631 17 Weight 5.55114 5.45593 19 Time out 1631 1631 1631 17 Weight 5.6225 5.52134 19 Weight 5.6225 5.52134 19 Weight 5.6225 5.52134 19 Weight 5.6225 5.52134 19 Weight 5.6419 5.7279 19 Weight 5.6419 5.7279 19 Weight 5.6419 5.7279 19 Weight 5.8563 5.7466 19 Weight 5.8563 5.7466 19 Weight 5.8563 5.7466 19 Weight 5.8563 5.7466 19 Weight 5.8563 19 Weight 5.7466 19 Weight 5.7655 19 Weight 5.76	14	Time in										
17 Weight 5.55114 5.45593 18 Time out 1631 1631 19 Time out 1631 1631 20 Min 401 401 21 Weight 5.5225 5.52134 22 Time in 1620 23 Time out 1620 1620 24 Min 1830 1830 25 Weight 5.8419 5.7279 26 Time in 640 640 27 Time out 640 640 28 Min 2690 2690 39 Weight 5.8535 5.7466 30 Weight 5.8535 5.7466 31 Time out 1235 1235 31 Time out 1235 1235 32 Min 4485 4485 33 Weight 5.9044 5.7695 34 Time in 63 35 Time out 630 630 36 Min 12770 12770 37 Weight 5.8221 5.7938 38 Time out 1345 1345 40 Min 20405 20405 41 Weight 5.9354 5.8271 42 Howelph 1345 1345 40 Min 20405 20405 41 Weight 5.9354 5.8217 42 Howelph 1345 1345 43 Howelph 1345 1345 44 Howelph 1345 1345 45 Howelph 15.9354 5.8217 42 Howelph 15.9354 5.8217 43 Howelph 15.9354 5.8217 44 Howelph 15.9354 5.8217 45 Howelph 15.9354 5.8217 46 Howelph 15.9354 5.8217 47 Howelph 15.9354 5.8217 48 Howelph 15.9354 5.8217 49 Howelph 15.9354 5.8217 40 Howelph 15.9354 5.8217 41 Weight 5.9354 5.8217 42 Howelph 15.9354 5.8217 43 Howelph 15.9354 5.8217 44 Howelph 15.9354 5.8217 45 Howelph 15.9354 5.8217 46 Howelph 15.9354 5.8217 47 Howelph 15.9354 5.8217 48 Howelph 15.9354 5.8217 49 Howelph 15.9354 5.8217 40 Howelph 15.9354 5.8217 41 Howelph 15.9354 5.8217 42 Howelph 15.9354 5.8217 43 Howelph 15.9354 5.8217 44 Howelph 15.9354 5.8217 45 Howelph 15.9354 5.8217 46 Howelph 15.9354 5.8217 47 Howelph 15.9354 5.8217			1405									
18 Time out			255									
19 Time out 1631 1631 1631 1631 210 Min 401 401 401 21 Weight 5.6225 5.52134 22 Time in 1620 1620 3 Time out 1620 1620 24 Min 1630 1630 3 3 3 3 3 3 3 3 3	17	Weight	5.55114	5.45593								
20 Nin	18	Time in	4624	1634								
21 Weight												
Time in 1620 1620 1620 1620 1620 1620 1620 1620 1630	20	Meight										
133 Time out 1620			O.OLLO	0.0270								
24 Min			1620									
Ze			1830	1830								
28 Time in	25	Weight	5.8419	5.7279								
28 Min 2690 2690 2890 2890 2890 2890 2890 2890 2890 28	26	Time in		2.12								
29 Weight 5.8563 5.7466 30 Time in 1235 1235 31 Time out 1235 1235 32 Min 4485 4485 4485 33 Weight 5.9044 5.7695 34 Time in 630 630 630 630 630 77 Weight 5.921 5.7938 77 Weight 5.9354 5.8217 77 77 78 78 78 78 78												
30 Time in 31 Time out 1235 32 Min 4485 4485 33 Weight 5.9044 5.7695 35 Time out 630 630 36 Min 12770 12770 37 Weight 5.9221 5.7938 38 Time in 39 Time out 1345 1345 40 Min 20405 20405 41 Weight 5.9354 5.8217 42 43 43 44 45 5 60 61 61 65 65 67 67 67 67 67 67 67 68 68 68 69 60 35C,80RH Sorb. 14,20402 13,77663 66 61 66 66 66 66 66 66 66 66 66 66 66												
31 Time out			5.8563	5.7400								
32 Min			1235	1235	-							
33 Weight 5.9044 5.7695 34 Time in 630 630 535 35 Time out 630 630 537 37 Weight 5.9221 5.7938 538 539 539 539 549 549 549 549 549 549 549 549 549 54												
34 Time in 630 630 630 35 Time out 630 630 36 Min 12770 12770 37 Weight 5.9221 5.7938 38 Time in 1345 1345 40 Min 20405 20405 41 Weight 5.9354 5.8217 42 43 44 4				5.7695								
35 Time out 630 630 36 Min 12770 12770 37 Weight 5.9221 5.7938 38 Time in 1345 1345 1345 1345 141 Weight 5.9354 5.8217 40 Min 20405 20405 141 Weight 5.9354 5.8217 42 43 144 45 145 145 145 145 145 145 145 145	34	Time in										
36 Min 12770 12770 37 Weight 5.9221 5.7938 38 Time in												
38 Time in 39 Time out 1345 1345 40 Min 20405 20405 41 Weight 5.9354 5.8217 42 43 44 44 45 46 47 48 49 50 51 52 87 8Regression Analysis: using the first 3 points 54 b (intersection) 55 a (x-coeff) 60 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	36	Min										
38 Time in	37	Weight	5.9221	5.7938								
40 Min 20405 20405 41 Weight 5.9354 5.8217 42 43	38	Time in	45.45	40.45								
41 Weight 5.9354 5.8217 42 43 44 44 44 45 46 47 48 49 50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 50 50 50 50 50 50												
42 43 44 4 4	40	Min										
43 44 45 46 47 48 49 49 49 49 49 49 49	_	vveignt	5.9554	5.0217	-							
44 45 46 47 48 49 50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	42											
45 46 47 48 49 50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62								:_				
46 47 48 49 50 50 51 52 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	45											
47 48 49 50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	46											
48 49 50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62												
50 51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	48											
51 52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62												
52 53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62 62 60 60 60 60 60												
53 Regression Analysis: using the first 3 points 54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56												
54 b (intersection) -0.00171 0.001267 55 a (x-coeff) 0.008871 0.00906 56	52	Degrapaion Anglicies	using the f	iret 3 nointe								
55 a (x-coeff) 0.008871 0.00906 56 57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 60 35C,80RH Sorb. 14.20402 13.77663 61 62			-0.00174	0.001267								
56	54 EE	b (intersection)										
57 D=x^2*Pi/16 1.54E-05 1.61E-05 58 D(corr. R&M) 1.9E-05 1.98E-05 60 35C,80RH Sorb. 14.20402 13.77663 61 62		a (x-coeii)	0.000071	5.5555		-						
58 D(corr. R&M) 1.9E-05 1.98E-05 59 60 35C,80RH Sorb. 14.20402 13.77663 61 62		D=y^2*Pi/16	1.54F-05	1,61E-05								
59 60 35C,80RH Sorb. 14.20402 13.77663 61 62	58	D(corr. R&M)	1.9E-05	1.98E-05								
60 35C,80RH Sorb. 14.20402 13.77663 61 62												
61 62		35C,80RH Sorb.	14.20402	13.77663								
62									<u></u>			
	62									ļ		ļ
63	63						<u> </u>		<u> </u>			1

					E	F	G	н	1	J	К
64	Α	В	С	D_	-	-			-		
65							-				
	14/14/:-0	0	0								
67	Mt/M(inf) From: Line 13		0.361658		 						
68	Line 17	0.479471	0.481118								
69	Line 21	0.576137	0.573909								
70	Line 25	0.873342	0.866935								
71	Line 29	0.892849	0.893463								
72	Line 33	0.958007	0.925949								
73	Line 37	0.981983	0.960421								L
74	Line 41	1	1								
75											
76	(time/th^2)^.5 (sec)	0					<u> </u>	ļ			
77	From: Line 12		39.24694								
78	Line 16	53.70916	53.35024								
79	Line 20	67.352	66.9019								
	Line 24	143.8811	142.9196					<u> </u>			
81	Line 28	1/4.4434	173.2776				 		ļ ———		
82	Line 32	225.2473	223.742				-				
	Line 36	380.0789	377.5389 477.2375		 						
	Line 40	460.4482	411.23/5		-		-				
	Line 44	-						-			
86								-			
87 88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101						ļ					
102											
103											
104											
105											
106											
107 108					 						
109											
110											
111											
112							i				
113											
114											
115											<u> </u>
116											
117											
118											
119											
120											
121							<u></u>				ļ
122						<u></u>					
123											├
124											
125										ļ	
126											
127								L	<u> </u>	L	

						F	G	н	1	J	К
	Α	В	С	D	E						
1	Moisture Absorp	tion in in	Balsa W	ood at 50	Deg.C a	na 80% K	<u>.n</u>				
2											
3	Sample #		Balsa 2								
4	Thickness (cm)	2.3	2.32								
5	Length (cm)	4.95	4.95								
6	Width (cm)	4.95	4.95								
	Start:										
8	Dry Weight att=0	5.1629	5.0885								
9	Dry Weight a,t t=0 Wt at t=inf	5.839	5.7333								
10											
	Time out	847	847								
	Min	107	107								
13	Weight (Grams)	5.4641	5.3679								
14	Time in										
15	Time out	1020	1020								
	Min	200	200								
	Weight	5.5075	5.4061								
18	Time in										
19	Time out	1230	1230								
20	Min	330	330								
21	Weight	5.5563	5.4811								
	Time in										-
23	Time out	1407	1407								
24	Min	427	427								
25	Weight	5.6022	5.5169								-
26	Time in		2.12								
	Time out	640	640								
28	Min	2860	2860								
29	Weight	5.791	5.7001								
	Time in		750								
	Time out	750	750 4370								
32	Min	4370	5.72								
33	Weight	5.839	5.12								
	Time in	CEE	655								
	Time out	655 5755									
	Min	5.839									
37	Weight	5.039	5.7555								
	Time in	645	645								
39	Time out	10065									
	Min	5.839									
	Weight	0.000	0.7000								
42											
43											
44											
		 									
46											
48											
49											
50		 									
£1	Regression Analysis:										
	b (intersection)	0	0								
53	a (x-coeff)		0.012097								
54	a (A Cooli)		1								
	D=x^2*Pi/16	3.04F-05	2.87E-05								
50 EC	D(corr. R&M)	3.73F-05	3.54E-05								
57	D(COIT. NOIVI)	J.70L-00	0.012.00		1						1
	ENC BUBLI Sark	13 00535	12.67171								
	50C,80RH Sorb.	13.09333	12.0/1/1								
59					 		 				
60		ļ			 		 				
61		1					 				
62			 								
63							l				

		-	С	D	E	F	G	н	1	J	К
64	Α	В	<u> </u>	U		<u> </u>					
64 65											
	14/44/2 0		0	 .							
66	Mt/M(inf)	0 445406	0.433313							·	
67	From: Line 13	0.445490	0.492556								
68	Line 17	0.509000	0.492338								
69	Line 21	0.501007	0.664392								
70	Line 25	0.929005	0.004592						<u> </u>		
77	Line 29 Line 33	0.929003	0.979373								
72	Line 33	1	1								
	Line 41	1	1								
75	Line 41	- '	<u>'</u>								
	(Aire - 41-40) A E (000)	0	0								
75	(time/th^2)^.5 (sec)	34.83691									
70	From: Line 12 Line 16	47.62805									
	Line 20	61.17934	60.65193								
13	Line 24	60 50230	68.99245								
04	Line 28	180 1071	178.5544								
92	Line 32	222 6325	220.7132				<u> </u>				
82	Line 36	255 488	253.2855								
84	Line 40	337.8739	334.9612								
85	E110 40	357,0100	2000.2								
86											
87											
88											
89											
90											
91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104											
105											
106									ļ		ļ
107											
108										ļ	
109										 	
110									<u> </u>		
111											
112											
113											
114										<u> </u>	
115											
116											
117								ļ	 		
118									 		
119											
120											
121									 		
122											
123			-	-				ļ .			
124 125											
126						-	ļ				
127		l									

		В	С	D	E	F	G	Н	ı	J	K
1	A Moisture Absorp	tion in P\	/C-Foam	s at 22 D	eg.C and						
	Moisture Absorp	uon m P	J-1 Jaill	D	3.4 44						
3	Sample #	1A	1B	2A	2B						
	Thickness (cm)	1.75	1.82	1.8	1.75						
	Length (cm)	7.3	7.25	7.15	7.1						
6		3.4	3.4	3.35	3.35						
7	Start: 7-11; 730										-
8	Dry Weight a,t t=0	3.6172	2.8884	3.5797	2.8 2.855						
9	Wt at t=inf	3.6843	2.9468	3.6465	2.000						
10		1 100	4.400	1400	1400						
	Time out	1400 390	1400 390	390	390						
	Min	3.6271	2.89695	3.5886	2.8093						
	Weight (Grams) Time in	3.0271	2.0000	0.000							
15	Time out 7-12	1035	1035	1035	1035						
	Min	1625	1625	1625	1625						
	Weight	3.64	2.9089	3.602	2.8213						
	Time in		4500	4500	4500						
	Time out	1500	1500	1500 1890	1500 1890			-			
20		1890	1890 2.9109	3.6039	2.823			 			
21	Weight	3.6425	2.9109	3.0039	2.020						
23	Time in Time out 7-13	815	815	815	815						
24	Min	2925	2925	2925	2925						
	Weight	3.6493	2.9162	3.6105	2.8283						
26	Time in				12.12						
	Time out 7-14	1345	1345	1345	1345			-	<u> </u>		
	Min	4695	4695	4695							
	Weight	3.6577	2.9239	3.6188	2.0352						
30	Time in Time out 7-22	1430	1430	1430	1430						
32		16265	16265	16265							
	Weight	3.67355	2.936	3.6351	2.8458						
34	Time in							ļ			
35	Time out 7-29	740	740	740	740						
36	Min	25935	25935	25935					-		
	Weight	3.6774	2.9399	3.6395	2.0490						
	Time in	1345	1345	1345	1345						
39	Time out 8-5 Min	36380	36380	36380							
	Weight	3.6802	2.9417	3.6419							
	Time in							ļ			
	Time out 9-7	645	645	645	645			 			
44	Min	82040						-	<u> </u>		
	Weight	3.6843	2.9468	3.6465	2.855						
46											
47						-		-			
48		-									
49 50						 					
51	Regression Analysis:	using the f	irst 5 points	(zero inclu	ded)						
	b (intersection)	-0.01168	-0.01115	-0.01451	-0.00733						
	a (x-coeff)	0.002008	0.002109	0.002009	0.002187						
54											
55	D=x^2*Pi/16	7.92E-07	8.73E-07	7.93E-07	9.39E-07				ļ		
56	D(corr. R&M)	9.12E-07	1.01E-06	9.22E-07	1.09E-06						
57		4.00000	0.004001	4 000070	1 06/1006			+			
_	22C,80RH Sorb.	1.855026	2.021881	1.8000/8	1.964286		-				
59								1	† 		
60					 			1			
61			 				1	1			
62 63			 	 	 						
03		<u> </u>	1	<u> </u>							

	Α	В	С	D	E	F	G	Н	1	J	К
64	A					<u> </u>					
65											
	Mt/M(inf)	0	0	0	0						
67	From: Line 13	0 147541	0.146404								
	Line 17	0.339791	0.351027	0.333832	0.387273						
	Line 21	0.377049	0.385274	0.362275	0.418182						ļ
	Line 25	0.47839	0.476027	0.461078	0.514545						ļ <u>.</u>
	Line 29	0.603577	0.607877	0.585329	0.64						<u> </u>
72	Line 33	0.839791	0.815068	0.829341	0.832727						
73	Line 37	0.897168	0.881849	0.89521	0.901818						
74	Line 41	0.938897	0.912671	0.931138							
	Line 45	1	1	1	1						
76											
77											
78	(time/th^2)^.5 (sec)	0	0								
	From: Line 12	87.41176	84.04977	84.98366	87.41176						
80	Line 16		171.5659	1/3.4/22	178.4285						
81	Line 20	192.4281		187.0829 232.7373							
	Line 24	239.387 303.2881		294.8634							
83	Line 28	564 5000	542.7893	548 8202							
	Line 32 Line 36	712.8214		693.0208	712 8214						
	Line 40	844 2458	811.7748	820 7946	844.2458						
	Line 44	1267 799	1219.037	1232.582	1267.799						
88	Lille 44	1201.100	72,0.00								
89											
90											
91											
92											
93											
94											
95											
96				i							
97											
98											1
99							-				
100											
101 102											
103											
104											
105											
106											
107											
108											
109											ļ
110											ļ
111											
112											
113		ļ									
114		ļ									
115											
116											
117											ļ
118											
119											<u> </u>
120 121											
121											
123											
124											
125									-		
126											
127											
12/									<u> </u>		

Moisture Absorption in PVC-Foams at 50 Deg. C and 80% RH	К
2 Sample # 1A 1B 2A 2B	
3 Sample # IA 18	
Trickness (erm)	
S Length (cm)	
Second Columbia	
To Start	
B Dry Weight at I = 0 3.61705 2.89521 3.89301 2.80186	
9 Wit at teinf 3,7086 2,973 3,5744 2,9710 10 110 110 110 110 110 111 11me out 650 650 650 650 111 11me out 1025 1025 1025 1025 116 11m 10 110 110 110 117 Weight (Grams) 3,6272 2,9075 3,5949 2,8114 118 11me out 1025 1025 1025 1025 118 11me out 1025 1025 1025 205 118 11me out 1233 1233 1233 1233 129 118 11me out 1233 1233 1233 1233 120 Min 333 333 333 333 21 Weight 3,6344 2,9144 3,6021 2,8179 21 Weight 3,6344 2,9144 3,6021 2,8179 22 Time in 1410 1410 1410 1410 23 Time out 1410 1410 1410 1410 24 Min 430 430 430 430 430 25 Weight 3,6387 2,9184 3,6071 2,8221 26 Time in 560 650 650 650 27 Time out 560 650 650 650 28 Weight 3,6627 2,9404 3,6030 2,8427 29 Weight 3,6627 2,9404 3,6308 2,8427 30 Time in 750 750 750 31 Time in 750 750 750 32 Min 4370 4370 4370 4370 33 Weight 3,6783 2,9551 3,6444 2,8583 34 Time in 650 650 650 35 Time in 650 650 650 36 Min 5750 5750 5750 37 Weight 3,6804 2,9554 3,6514 2,858 38 Time in 645 645 645 44 Min 3,0694 2,9554 3,6514 2,858 39 Time out 643 645 645 645 44 Min 3,0698 2,9718 3,6744 2,8716 45 Weight 3,0690 2,9718 3,6744 2,8716 46 Time in 700 700 700 700 47 Time out 700 700 700 700 48 Min 3,0698 2,9718 3,6744 2,8716 49 Weight 3,0690 2,9718 3,6744 2,8716 40 Min 10000 10000 10000 41 Weight 3,0690 2,9718 3,6744 2,8716 42 Time in 700 700 700 700 43 Time out 700 700 700 700 44 Min 3,0690 2,9718 3,6744 2,8716 45 Weight 3,0690 0,01059 0,003592 46 Weight 3,0690 0,01059 0,003592 0,003592 47	
11 Time out	
11 11 11 11 11 11 11 1	
12	
15 Veight (Starley) Starley	
16	
Time but	
17 Weight 3.6301 2.9112 3.5987 2.8146	
Time in	
19 Time out	
23 Time 1	
22 Time in 1410 1410 1410 1410 1410 1410 1410 141	
Time out	
22 Min	
28 Weight 3.6387 2.9184 3.6071 2.8221 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.821 2.8221 2	
26 Time in 650 650 650 650 650 28 Min 1430 1430 1430 1430 1430 1430 1430 1430	
27 Time out	
28 Min 1430 1430 1430 1430 1430 29 Weight 3.6627 2.9404 3.6308 2.8427 30 Time in	
29 Weight 3.6627 2.9404 3.6308 2.8427	
30 Time in 1 1 1 1 1 1 1 1 1	
32 Min	
33 Weight 3.6783 2.9531 3.6484 2.8553 34 Time in 650 650 650 650 650 36 Min 5750 5750 5750 5750 37 Weight 3.6804 2.9554 3.6514 2.858 38 Time in 645 645 645 645 645 40 Min 10060 10060 10060 10060 40060 41 Weight 3.6937 2.9609 3.6605 2.865 42 Time in 700 700 700 700 700 43 Time out 700 700 700 700 700 700 700 700 700 70	
34 Time in 35 Time out 36 Min 5750 5750 5750 5750 5750 37 Weight 3,6804 2,9554 3,6514 2,858 38 Time in 39 Time out 645 645 645 645 645 40 Min 10060 10060 10060 41 Weight 3,6937 2,9609 3,6605 2,865 42 Time in 700 700 700 700 700 43 Time out 700 700 700 700 44 Min 124475 24475 24475 24475 45 Weight 3,7086 2,9718 3,6744 2,8716 46 Time in 1300 1300 1300 1300 1300 1300 1300 48 Min 30595 30595 30595 30595 49 Weight 3,7086 2,973 3,6744 2,8716 50 51 52 53 64 55 Regression Analysis: using the first 6 points (zero included) 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003519 0.003522 58 59 D=x^2+Pi/16 1,77E-06 2,53E-06 2,94E-06 2,82E-06	
36 Time out 650 650 650 650 36 Min 5750 5750 5750 5750 37 Welght 3.6804 2.9554 3.6514 2.858 38 Time in 38 Time out 645 645 645 40 Min 10060 10060 10060 10060 41 Weight 3.6937 2.9609 3.6605 2.865 42 Time in 700 700 700 700 43 Time out 700 700 700 700 44 Min 24475 24475 24475 24475 45 Weight 3.7086 2.9718 3.6744 2.8716 46 Time in 1300 1300 1300 1300 47 Time out 1300 30595 30595 30595 49 Weight 3.7086 2.973 3.6744 2.8716 50 51 51 52 63 64 55 Regression Analysis: using the first 6 points (zero included) 66	
36 Min 5750 5750 5750 5750 5750 3750 3750 3750	
37 Weight 3.6804 2.9554 3.6514 2.858 38 Time in 645 645 645 645 645 40 Min 10060 1	
38 Time in 39 Time out 645 645 645 645 40 Min 10060 10060 10060 10060 41 Weight 3.6937 2.9609 3.6605 2.865 42 Time in 43 Time out 700 700 700 700 44 Min 24475 24475 24475 24475 45 Weight 3.7086 2.9718 3.6744 2.8716 46 Time in 47 Time out 1300 1300 1300 1300 48 Min 30595 30595 30595 30595 49 Weight 3.7086 2.973 3.6744 2.8716 50 51 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 55 Regression -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.82E-06	
39 Time out 645 645 645 645 645 45 445 440 Min 10060 1	
40 Min 10060 10060 10060 10060 10060 41 Weight 3.6937 2.9609 3.6605 2.865 42 Time in 700 700 700 700 700 44 Min 24475 24475 24475 24475 24475 45 Weight 3.7086 2.9718 3.6744 2.8716 46 Time in 1300 1300 1300 1300 47 Time out 1300 1300 1300 1300 48 Min 30595 30595 30595 30595 30595 49 Weight 3.7086 2.973 3.6744 2.8716 50 51 52 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 55 Regression Analysis: using the first 6 points (zero included) 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.87E-06 2.82E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.82E-06 5.85E-06 5.85E-06 5.85E-06 5.85E-06 5.82E-06 5.85E-06 5.8	
42 Time in	-
43 Time out 700 700 700 700 44 Min 24475 24476 24475 24475 24475 24475 24475 24475 24475 24475 24475 24475 24475	
44 Min 24475 24475 24475 24475 24475 45 46 Time in 3.7086 2.9718 3.6744 2.8716 47 Time out 1300 1300 1300 1300 48 Min 30595 30	
45 Weight 3,7086 2,9718 3,6744 2,8716	
46 Time in	
47 Time out 1300 1300 1300 1300 48 Min 30595 30595 30595 30595 49 Weight 3.7086 2.973 3.6744 2.8716 50 51 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.82E-06	
48 Min 30595 30595 30595 30595 49 Weight 3.7086 2.973 3.6744 2.8716 50 51 50	
49 Weight 3.7086 2.973 3.6744 2.8716 50 51 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
50 51 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.82E-06	
51 52 53 54 55 Regression Analysis: using the first 6 points (zero included) 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643	-
53 54 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
54 55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
55 Regression Analysis: using the first 6 points (zero included) 56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
56 b (intersection) -0.0289 -0.01056 -0.01841 -0.02643 57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
57 a (x-coeff) 0.003005 0.00359 0.003219 0.003522 58	
58 1.77E-06 2.53E-06 2.03E-06 2.44E-06 59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.24E-06 60 D(corr. R&M) 2.04E-06 2.97E-06 2.82E-06	
59 D=x^2*Pi/16 1.77E-06 2.53E-06 2.03E-06 2.44E-06 60 D(corr. R&M) 2.04E-06 2.94E-06 2.82E-06	
60 D(corr. R&M) 2.04E-06 2.94E-06 2.37E-06 2.82E-06	
61	
62 50C,80RH Sorb. 2.531068 2.686852 2.550649 2.489061	ļ
63	<u> </u>

			С	D	E	F	G	н	1	J	К
-	Α	В	C				_ 		•		
64 65								-			
	NAL (B. A.C C)	0	0	0	0				-		
	Mt/M(inf) From: Line 13	0.110868	0.157989								
	Line 17		0.205553		0.182679						
	Line 21	0.189514			0.229997						
	Line 25	0.236483	0.29811		0.290221						
71	Line 29	0.498635			0.585604						
	Line 33	0.669033									
	Line 37	0.691972	0.77375	0.748331	0.80499						
	Line 41	0.837247		0.847905	0.905363						
	Line 45	1	0.984574	1	1						
	Line 49	1	1	1	1						
77											
78	(time/th^2)^.5 (sec)	0	0	0							
	From: Line 12		44.63757	45.13355	46.42308						
	Line 16	63.37449		61.61409	63.3/449						
	Line 20	80.77179		78.52813	01.70500						
	Line 24	91.78502	88.25483	89.23544 162.7313	91.78502						
	Line 28	167.3808	281.3487		202 5027						
84	Line 32 Line 36	292.6027 335.6383	322.7291	326 315	335.6383						
	Line 36 Line 40	443.9526	426 2775	431.6205	443 9526						
	Line 44	692.4668	665 8334	673.2316	692,4668						
	Line 48	774.2172	744.4396		774.2172	-					
89	Line 40	71-1.2-112	111.1000								
90											
91											
92											
93											
94	•										
95											
96											
97											
98											
99											
100											
101											
102											
103											
104 105											
106											
107											
108											
109											
110											
111											
112											
113											
114											
115											
116											
117											
118											
119							ļ				
120											
121 122											
122										-	
123							-				
125											
126				-					-		
127		-				-	<u> </u>				
1441											

					E	F	G	н	1 1	J	К
Ш	A	B	С	D							
	Moisture Absorp	tion in Ho	oneycom	b at ZZ D	eg.c and	00 /0 1411					
2				3							
	Sample #	1	2	2.15							
4	Thickness (cm)	2.3	2.3 5	5							
	Length (cm)	5 5	5	5							
	Width (cm)	5	3								
	Start: 7-11 0730	0.47704	3.54511	3.43841							
	Dry Weight a,t t=0	3.47701 3.687	3.7531	3.637							
	Wt at t=inf	3.007	3.7301	0.007							
10	ΨA	1410	1410	1410							
	Time out Min	390	390	390							
	Weight (Grams)	3.5677	3.63945	3.5313							
	Time in	0.00.1									
	Time out 7-12	1030	1030	1030							
	Min	1620	1620	1620							
	Weight	3.6255	3.694	3.582							
18	Time in										
19	Time out 7-13	810	810	810							
20	Min	2920	2920	2920							
	Weight	3.6436	3.7126	3.5992		 					
	Time in	1272	4050	4250							
	Time out 7-14	1350	1350 4700	1350 4700							
	Min	4700 3.6544	3.7223	3.6096							
25	Weight	3.0044	3.1223	3,0090							
26	Time in Time out 7-15	1425	1425	1425							
	Min	6175	6175	6175							
	Weight	3.6601	3.7278	3.6146							
30	Time in	0.0001									
31	Time out 7-20	1345	1345	1345							
	Min	13335	13335	13335							
	Weight	3.6731	3.7417	3.6265			<u> </u>				
34	Time in										
35	Time out 7-22	1420	1420	1420							
36	Min	16250	16250	16250							
	Weight	3.6736	3.7426	3.6276							
38	Time in	705	705	705							
	Time out 7-25	705	705 20135	20135							
	Min	20135 3.6791	3.7478	3.6328		-					
	Weight	3.0791	3.1410	0.0020							
	Time in Time out 7-29	735	735	735							
	Min	25925	25925	25925							
	Weight	3.6802	3.7481	3.634							
	Time in										
47	Time out 8-5	1340	1340	1340							
	Min	36370		36370							
	Weight	3.683	3.751	3.6363			ļ		 		
50	Time in										
51	Time out 9-7	645	645	645					 		
52	Min	82875	82875	82875					-		
	Weight	3.687	3.7531	3.637	-						
54		assing Ab a fi	not 2 mainte								
	Regression Analysis:										
	b (intersection)	0.006494		0.006574		-					
	a (x-coeff)	0.000494	0.00002	0.000014			 				
58	D-vAO+Di/C	8 28E 06	9.13E-06	8 40F_06		 					
	D=x^2*Pi/16	1.01F_05	1.12E-05	1.02F-05			 				
	D(corr. R&M)	1.01E-03	1.12L-03	1.021-00							
61	22C,80RH Sorb.	6.030384	5.866955	5 775635							
		0.03304	3.000333	3.770000		 					
63							<u> </u>				

		D	_	D	E	F	G	Н	1	J	К
64	Α	В	С	U							
64 65		_									
	1.44/1.4(i=0)	0	0	0							
	Mt/M(inf)	0.431878		0.467748							
	From: Line 13										
68	Line 17	0.707129	0.715852								
69	Line 21	0.793323	0.805279	0.809658							
	Line 25	0.844755		0.862027							
71	Line 29	0.871899	0.87836	0.887205							
72	Line 33	0.933806	0.94519	0.947127							
	Line 37	0.936187	0.949517	0.952666							
	Line 41	0.962379	0.974518	0.978851							-
	Line 45	0.967618		0.984893							
	Line 49	0.980951		0.996475							ļ
	Line 53	1	1	1							
78											
79	(time/th^2)^.5 (sec)	0	0	71.14911							
	From: Line 12	135 5510	66.50895 135.5518	145 0080							
	Line 16 Line 20	181 0865	181.9865	194.6833							
02	Line 20	230.8855	230.8855								
	Line 28	264.6466		283.1103							
85	Line 32	388.9057		416.0386							
	Line 36	429.3134		459.2655							
	Line 40	477.8852	477.8852	511.2261							
	Line 44	542.2595	542.2595								
	Line 48	642.2727	642.2727	687.0824							
90	Line 52	969.5262	969.5262	1037.168							
91											
92											
93											
94											
95											
96											
97											
98 99											
100											
101											
102											
103											
104											
105											
106											
107											
108									<u></u>		
109											
110											
111											
112 113											
114											
115	A										
116											
117											
118											
119											<u> </u>
120											↓ -
121											ļ
122											
123											├ ───┤
124											├
125											
126											
127										L	L

	Α	В	С	D	Е	F	G	Н	ı	J	K
	Moisture Absorp	tion in Ho	nevcom	b at 50 D		80% RH					
1 2	WOIStale Absorp	tion in the	J		- 3						
	Sample #	1	2	3							
4	Thickness (cm)	2.3	2.3	2.15							
	Length (cm)	5	5	5							
6	Width (cm)	5	5	5							
	Start:										
	Dry Weight a,t t=0	3.49001	3.55285	3.45005							
9	Wt at t=inf	3.6449	3.7075	3.5951							
10											
11	Time out	825	825	825							
	Min	85	85	85							
13	Weight (Grams)	3.56537	3.6265	3.534							
14	Time in	4047	4047	1047							
	Time out	1047 227	1047 227	227							
	Min	3.5926	3.6561	3.5539							
17	Weight	3.5920	3.0001	5.5559		-					
19	Time in Time out	645	645	645							
	Min	1425	1425	1425							
	Weight	3.6252	3.684	3.5799							
22	Time in										
23	Time out	750	750	750							
	Min	2930	2930	2930							
25	Weight	3.6289	3.6911	3.5869							
26	Time in										
	Time out	655	655	655							
	Min	4315	4315	4315 3.5871							
	Weight	3.6291	3.6938	3,50/1							
	Time in	645	645	645							
	Time out Min	8630	8630	8630							
	Weight	3.6449	3.7075	3.5951							
34	VVCignt	0.01.0									
35											
36											
37											
38											
39											\vdash
40											
41											
42											
43											
44											
46											
46											
48											ļ
49											
50											
51						ļ					
52	Regression Analysis:										
	b (intersection)	0	0	0							
	a (x-coeff)	0.01567	0.015338	0.017424							
55			127 - 2				ļ	-			
	D=x^2*Pi/16	4.82E-05	4.62E-05	5.96E-05							
	D(corr. R&M)	5.9E-05	5.65E-05	7.13E-05		-	 				
58		4.400000	4 2500 42	4 20 4207		 	 		-		
	35C,80RH Sorb.	4.438096	4.352843	4.204201		 	 				
60						 			 		
61								 			
62								 		·	
63											

						F	G	Н	1	J	К
	A	В	С	D	E			- n		-	
64 65											
	1 11 12 47 . 6	0	0	0							
66	Mt/M(inf)	0 400520	0.476237								
	From: Line 13	0.400009	0.4/023/	0.576760							
	Line 17	0.662341	0.667637	0./1596							
69	Line 21	0.872813	0.848044	0.895209							
			0.893954								
70	Line 25										
71	Line 29	0.897992									
72	Line 33	1	1	1							
73	(I' NI 40\4 5 ()	0	0	0							
74	(time/th^2)^.5 (sec) From: Line 12	31 04060	31.04969	33 21505							
76	Line 16	50.7412	50.7412	54 28128							
77	Line 20	127.1321	127 1321	136.0018							
78	Line 24	182 2979	182.2979	195.0163							
79	Line 28	221.227	221,227	236.6615							
80	Line 32	312.8623	312.8623	334.6899							
81											
82											
83											
84											
85											
86											
87							<u> </u>				
88											
89						ļ.————					
90 91											
92											
93											
94											
95											
96											
97											
98											
99											
100											
101											
102											
103											
104 105											
					· -						
106 107											
108											
109											
110											
111											
112											
113											
114											
115											
116					-						
117											
118 119							-				
120								-			
121											
122		-									
123						-	-				
124			-								
125											
126											
127											

DISTRIBUTION

	Copies		<u>Copies</u>
DOD ACTIVITIES (CONUS)		ATTN F24 (CAMPBELL)	1
		COMMANDER	
ATTN AIR-52032 (S STEEL)	1	NAVAL SURFACE WARFARE CENTER	
AIR-52032 (D MOOR)	1	DAHLGREN DIVISION	
COMMANDER		17320 DAHLGREN RD	
NAVAL AIR SYSTEMS COMMAND		DAHLGREN VA 22448-5100	
WASHINGTON DC 20362			
***************************************		DIRECTOR OF DEVELOPMENT	
ATTN SEA-03B	1	ARMY MATERIAL COMMAND	
SEA-03R (SPENCER)	1	GRAVELEY POINT	
SEA-05R	1	WASHINGTON DC 20316	1
SEA-062D	1		
SEA-06K42 (EADIE)	1	ATTN 6043 (E ROSENZWEIG)	1
SEA-09G32	1	606 (J DELUCCIA)	1
COMMANDER		6063	1
NAVAL SEA SYSTEMS COMMAND		6064 (R TROBACCO)	1
WASHINGTON DC 20362		COMMANDER	
WIDIMICION DO 20002		NAVAL AIR DEVELOPMENT CENTER	
ATTN 6380 (DR R BADALIANCE)	1	DEPARTMENT OF THE NAVY	
DIRECTOR	_	WARMINSTER PA 18974	
NAVAL RESEARCH LABORATORY			
WASHINGTON DC 20375		ATTN WL/DOC (TECH LIBRARY)	1
WASHINGTON DO 20373		WL/MLBC (C BROWNING)	1
ATTN 332 (JAMES J. KELLY)	1	WRIGHT LABORATORY	
331PO (DR K J WYNNE)	1	WRIGHT PATTERSON AFB OH 45433-7411	
332 (DR L E SLOTTER)	1		
DIRECTOR	_	ATTN LIBRARY	1
OFFICE OF NAVAL RESEARCH		R SACHER	1
BALLSTON TOWER - 504		S WENTWORTH	1
800 N QUINCY STREET		COMMANDING OFFICER	
ARLINGTON VA 22217-5660		U.S. ARMY RESEARCH LABORATORY	
Memorial VII 22217 5000		WATERTOWN MA 02172-0001	
ATTN 824 (LOGAN)	1		
COMMANDER		NON-DOD ACTIVITIES	
NAVAL COMMAND, CONTROL, AND OCEAN	N		
SURVEILLANCE CENTER		DEFENSE TECHNICAL INFORMATION CENTE	R
53560 HULL ST		CAMERON STATION	
SAN DIEGO CA 92152-5001		ALEXANDRIA VA 22304-6145	2

DISTRIBUTION (Continued)

		<u>Copies</u>			Copies
NSWC	CARDEROCK DIVISION		644	(CASTELLI)	1
INTER	NAL DISTRIBUTION		644	(COFFIN)	1
			644	(GIPPLE)	1
0119	(W MESSICK)	1	644	(HOYNES)	1
0112	(DOUGLAS)	1	644	(HOWELL)	1
0115	(CAPLAN)	1	644	(SORATHIA)	1
1702	(CORRADO)	1	644	(TELEGADAS)	1
172	(ROCKWELL)	1	6552	(LOUP)	1
1720.2	(MAYES)	1	6553	(JUSKA)	1
1730.2	(CRITCHFIELD)	1	6553	(WILLIAMS)	2
2723	(WILHELMI)	1	66	(BENSON)	1
3421	TECH INFO SVCS	1	68	(MUELLER)	1
3432	REPORTS CONTROL	10	681	(J AUGL)	15
60	(WACKER)	1	681	(B HARTMANN)	1
602	(MORTON)	1	681	(SUDDUTH)	1
64	(FISCHER)	1			

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- Reduction Project (0704-0188), Washington, DC 20503.	-4302, and to the Office of Management and Budget, Paperwork
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT 1 October 1994	RT TYPE AND DATES COVERED
4. TITLE AND SUBTITLE Sorption and Diffusion of Moisture in Multilayer Composite AEM/S Sandwich Materials 6. AUTHOR(S) Dr. Joseph M. Augl	5. FUNDING NUMBERS
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Surface Warfare Center Carderock Division, White Oak Laboratory 10901 New Hampshire Ave. Silver Spring, MD 20903-5640	8. PERFORMING ORGANIZATION REPORT NUMBER CDNSWC/TR-94/
sponsoring/monitoring agency name(s) and address(es) Office of Naval Research	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES	
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.	12b. DISTRIBUTION CODE
The moisture diffusion coefficients and solubilities of Advanced Enconstituent materials of interest have been determined at 22, 35, and Expressions for calculating the diffusion coefficients and solubilities environments are provided. The objective of this study was to providiffusion analyses that permits one to predict the moisture take-up at for composite mast sandwich structures in specified marine environ included in this investigation: E-glass/SP Systems 3113 epoxy, E-gepoxy, Balsa wood type D57, PVC foam (Klegecell), and Nomex house	and 50°C and at 80 percent relative humidity. If for any temperature of interest to marine wide input data for finite element moisture and internal distribution as a function of time iments. The following materials were glass/510A vinyl-ester (RTM3), E-glass/G10
14. SUBJECT TERMS moisture diffusion coefficients AEM/S marine environment solubility	15. NUMBER OF PAGES 76 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT THIS PAGE 19. SECURITY CLASSIFIED 19. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION CLASSIFICATI	CT ABSTRACT