Greedy algorithm dozign paradigm
- It contructs a solution by considering one step at at a time
- At each step it chooses the locally best solution
- In some cases it contructs a globally best solution by repeatedly choosing the locally best option.
Advantages vs challenges
Advantages: Simplicity! - Easy to describe Efficiency: - efficiently implemented
Efficiency: - efficiently implemented
challenges: Hard to design: once you have the right greedy approach design greedy algorithm is easy.
ttard to verify: The correctness often requires critical arguments.

Activity solection Problem

Input: n jobs $J = \{i_1, i_2, ..., i_n\}$ each job je J, start time s_i finish time f_i

Feasible solution:

if they do not overlap.

Find a subset of jobs that are mutually compatible

objective! manimise the size of the mutually computible set of jobs.

interval scheduling problem manimum independent set problem in intervals given on a line.

Pick the Job which finishes earlier.

Ocreedy vull.

- Select jobs one after another using some vull

Rule 1 -> Earliest start time

Rule 2: - Smallest job first

Rule 3: - Smallest conflict job first

Rule 4: Earliest finish time

Aule 1: not optimum

Rule 2:

H. W.

Rule 3

 $+\cdot W$.

Rule 4. Earliest finish time

Greedy rule:

- Fritially I be the set-of its and A be an empty set

- while Jis not empty

- choose a job jEJ that has the smallest finish time

- Delete all jobs from J that are not compatable

- Return

O(nlogn+n)

= 0 (nlogn)

correctuss: A is a fearible solution. Prost Stonightformard. claim: A is optimum A = set of jobs octured by the algorithm opt = largest set of pairwise non-overlapping jobs. what we have to prove? A must be as large as opt (A) = |OPT|

 $A = \{A_1, A_2, \dots, A_X\}$ $Opt = \{q_1, O_2, \dots, Om\}$ Assume A and Opt are sorted. Quistin: what is the relation between K&M Answer: K

m our ain: - #= m

claim for every i \(\times \)

A; finishes not later than 0! Post foore wing induction Bose core: - {=1 it is true A1 finishes not later than of J: H: Ai-, finishes not later than Oi-1 A;-1

Main claim A is the optimum Solution.
Prost we need to prose $K=m$.
If $K=m$ we are done. Assume that $K < m$.
$\frac{0}{1}$
Ax Ax
OKHI Starts after on and consequently Ax we could add UKHI in A and obtain a bigge solution. >: E