# Introductory Electricity, Magnetism, and Optics Practice Problems

Cyrus Vandrevala

March 21, 2013

# Contents

### **Useful Constants**

Electron Mass =  $9.11 \times 10^{-31}$  kg Proton Mass =  $1.67 \times 10^{-27}$  kg Elementary Charge =  $1.602 \times 10^{-19}$  C Coulomb's Constant =  $8.99 \times 10^9$  Nm<sup>2</sup>/C<sup>2</sup> Avogadro's Number =  $6.02 \times 10^{23}$  atoms/mole

# 1 Gauss's Law for Magnetism

## 1.1 Magnetic Monopoles

True or False? Since magnetic monopoles cannot exist in nature, Gauss's law for magnetism predicts that the closed surface integral of the magnetic field in a region of space must always equal zero.

 $\Rightarrow$  True

### 1.2 Magnetic Flux #1

True or False? The magnetic flux through a closed Gaussian surface must always equal zero.

 $\Rightarrow$  True

### 1.3 Magnetic Flux #2

True or False? The magnetic flux through an open surface must always equal zero.

 $\Rightarrow$  False

## 2 Faraday's Law of Induction

#### 2.1 Definition of Faraday's Law of Induction

Faraday's Law of Induction tells us how a changing magnetic flux produces  $a(n) = \infty$ .  $\Rightarrow$  Voltage/EMF

### 2.2 Bar in a Magnetic Field #1

A bar of length 50.0 cm is moving to the right with a velocity v = 10.0 m/s in a constant magnetic field of magnitude B = 1.00 T. In which direction is the induced current in the wire connecting points a and b?



 $\Rightarrow$  It flows from b to a

### 2.3 Bar in a Magnetic Field #2

A bar of length L is moving in a magnetic field B with a constant velocity v, as shown below. What is the electric potential developed between the ends of the bar? Which end(s) of the bar would become positively charged?



 $\Rightarrow \epsilon = BLv$ , The right side (b) will develop a positive charge

### 2.4 Transformer

A transformer has 100 turns in the primary coil and 10,000 turns in the secondary coil. If I apply a sinusoidal voltage ( $V_{max} = 10 \text{ V}$ ), what is the maximum output voltage from the secondary coil?

 $\Rightarrow 1000 \text{ V}$ 

### 2.5 Changing Magnetic Field

Suppose I put a wire loop with resistance  $R = 100 \Omega$  and radius r = 0.1 m into a uniform magnetic field such that the area vector of the loop and the magnetic field vector are parallel. The magnetic field begins to decrease according to the equation  $B(t) = 10e^{-t}$ . What is the magnitude of the current in the wire loop at time t = 10 s?

 $\Rightarrow 0.1426 \ \mu A$ 

# 3 RL Circuits

# 3.1 Energy Stored in an RL Circuit

An series RL circuit (R = 10  $\Omega$ , L = 5.0 H, V = 10 V) is initially uncharged. At time t = 0 s, the elements are connected together and current is allowed to flow in the circuit. What is the energy stored in the inductor at time t = 1 s?

 $\Rightarrow 1.87~\mathrm{J}$ 

### 4 AC Circuits

#### 4.1 RMS Voltage

A square wave (shown below) has an amplitude of 2 units and a period of 3 units. What is the RMS value of this wave?

 $\Rightarrow$  2 units



#### 4.2 LC Oscillator

Suppose you have a 10 mH inductor and box of various capacitors. What capacitor should you use to make an oscillator with frequency 920kHz? This is approximately the center of the medium wave AM radio band.

 $\Rightarrow$  3 pF

#### 4.3 Resonance With and Without a Resistor

Suppose I have a capacitor (C) connected to an inductor (L) in a circuit (i.e. an LC Circuit). It has a certain resonant frequency  $(\omega)$ . I now attach a resistor (R) in series with the inductor and the capacitor. What is the new resonant frequency?

 $\Rightarrow \omega_{new} = \omega$ 

### 4.4 Resonant Frequency of Series RLC Circuit

A series RLC circuit contains a resistor (R = 200  $\Omega$ ), a capacitor (C = 2.00  $\mu$ F), an inductor (L = 2.00 H), and a battery with some voltage V. The amplitude of the current going through the circuit is I = 1.00 A. Determine the resonant frequency of the circuit.

 $\Rightarrow 500 \text{ rad/s}$ 

#### 4.5 RMS Power in a Series RLC Circuit

A series RLC circuit contains a resistor ( $R = 200 \Omega$ ), a capacitor ( $C = 2.00 \mu F$ ), an inductor (L = 2.00 H), and a battery with some voltage V. The amplitude of the current going through the circuit is I = 1.00 A. Determine the RMS power going through the resistor.

 $\Rightarrow 100 \text{ W}$ 

# 4.6 Phase Angle of Series RLC Circuit

Suppose I have an a AC circuit with a reactance of 100 ohms and an impedance of 150 ohms. What is the phase angle of the circuit in degrees?

$$\Rightarrow \phi = 33.69^{\circ}$$