

Verification & Implementation of SoC Design Low Power Design Technology

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

Low Power Design

Node	32/28nm	22/20nm	16/14nm	Semiconductor manufacturing processes
Intel	2007 "GL"; 45/32nm HkMG	Ivy Bridge: 22nm Tri-Gate (5/2/11)	IUV for 11nm? 5-7nm node	10 μm — 1971 3 μm — 1975 1.5 μm — 1982
TSMC	3D IC on 28nm (6/4/12); CoWos	10/09/12: 20nm ready for IC Design	10nm FinFET by 2015	1 µm — 1985 800 nm — 1989 600 nm — 1994 350 nm — 1995
IBM	"GF" 32 nm HkMG; SOI (1/10/12)	SOI	T.O. 10/30/12: FinFET, ARM CM0, EDI	250 nm — 1997 180 nm — 1999 130 nm — 2002 90 nm — 2004
GF	"GF" 32nm for HkMG SOI (1/10/12)			65 nm — 2006 45 nm — 2008 32 nm — 2010 22 nm — 2012
SMIC	2012: 28nm	?	FinFET ?	14 nm — est. 2015 10 nm — est. 2017 7 nm — est. 2020
Tech	GF/GL; 3D IC; HkMG; SOI; CoWos	Tri-Gate; DPT; 3D IC (stkd); SOI	IUV, 18" wafer FinFET / ArF 100W 200W/cm ²	5 nm — est. 2022 Half-nodes

manufacturing processes 0 µm — 1971 um - 1975 5 μm — 1982 um — 1985 00 nm — 1989 00 nm — 1994 50 nm — 1995 50 nm — 1997 80 nm — 1999 30 nm — 2002 0 nm — 2004 5 nm — 2006 5 nm — 2008 2 nm — 2010 2 nm — 2012 4 nm — est. 2015 0 nm — est. 2017 nm - est. 2020

28nm Provide Area And Power Advantages

- •28nm value proposition (relative to 40nm)
 - ~100% density increase
 - Up to 50% increased speed

Source: GlobalFoundries

CMOS Power Dissipation

Dynamic Short-circuit Power Static Leakage Power

- Due to direct current path from V_{dd} to ground during output switching
- I_{sc} ∞ input_slew/C_I

Dynamic Switching Power

- Due to charge/discharge of load cap
- $P = 0.5 C_1 V_{dd}^{2*} TR$
 - TR is the net Toggle Rate, which is toggle count/ns

Due to subthreshold leakage from V_{dd} to GND

Power Tradeoffs with A CPF-Based Methodology (Thirties Academy of Sciences

Power reduction	Power Timing Savings penalty	Timing	Area penalty	Methodology Impact			
technique		penalty		Architecture	Design	Verification	Implementation
Area optimization	Small	-None-	n/a	-None-	Low	-None-	Low
Multi-Vt optimization	Medium	Little	Little	-None-	Low	-None-	Low
Clock gating	Medium	Little	Little	-None-	Low	Low	Medium
Multi-supply voltage	Large	Some	Little	Medium	Low	Low	Medium
Power shut-off	Huge	Some	Some	Medium	Medium	Medium	Medium
Dynamic & Adaptive Voltage Frequency Scaling	Large	Some	Some	Medium	Medium	Medium	Medium

6 (SUMMER 2018 UCAS, Beijing)

IEEE1801 and CPF/UPF

IEEE 1801 Timeline

Low Power Design

- Low Power Design in Advanced Nodes
- Low Power Design and Its Verification
- Implementation of Low Power Design
- Power Integrity and Power Analysis
- Discussion

Products & Flows

The Advanced Technology for Power-Aware Design

Chip Planning InCyte Chip Estimator True Multi-Objective High level Design Virtuoso **Synthsis** Analog/Custo C-to**v&iligan** RTL Compiler **Encount Digital Implementation EDI System** Design Package Design Allegro Package Designer

System Level Verification Incisive Enterprise Simulator Incisive Software Extension **Functional** Verification Incisive Enterprise Simulator Incisive Formal Verifier Conformal Low Power Virtuoso AMS Designer **Power Intent** Verification Conformal Low Power

Incisive Enterprise Qο , Metrics O 0

Plan

Exploration InCyte Chip Estimator RTL Compiler Ŧ ont-to **Estimation** Power Intent **RTL Compiler** Palladium DPA ack **Analysis EDI System** Power **Encounter Power System** Signoff **Encounter Power System**

From Simulation to Sigoff using CPF

Front-End: Formal Verification Conformal[®] Low Power

- Checks CPF quality and consistency
- Power domain aware equivalence checking verifies:
 - Low power optimizations
 - State retention mapping
 - Power domain states and boundaries
- Structural and Rule checks ensure:
 - Proper insertion of low power cells
 - Proper connectivity of low-power cells
 - Consistency with CPF
- Functional checks formally validate:
 - Isolation function
 - State retention function
 - Detect leakage paths across power domain boundaries

Structural VDD and D connected to same domain?

Structural "VRET" tied to continuous power?

(RTCLK off)

Low Power Design

Activity and Accurate Power Calculation

Design concern: How to get realistic power estimates for my design?

Accurate activity information enables accurate static and dynamic power estimation.

Cycle-Accurate Power Estimation Vector Profile Red College Control of Chinese Academy of Sciences

Design concern: How do I find highly active events that can cause timing or functional failures due to high power and IR drop?

- Integrated in the Common Power Engine (CPE)
 - Identifies worst-case windows for dynamic -power and IR-drop calculation
 - Uses event-based peak-power profiling with small resolution (1 ps) and high performance
 - Reports toggle counts or calculated power spanning the whole vector
 - Reports toggle counts or calculated power in a userdefined window
 - Reports profile for total, switching, internal, or leakage
- Flexibility enables reporting per-power net.
- Efficiency to profile huge files.
- Supports VCD and FSDB simulation data formats.
- Graphical display of VCD, activity, and power histogramsin SimVision.

Identify high activity and power cycles for detailed static and dynamic analysis

Low Power Design

- Low Power Design in Advanced Nodes
- Low Power Design and Its Verification
- Implementation of Low Power Design
- Power Integrity and Power Analysis
- Discussion

Low Power Design System

Low Power Design Flow

Hierarchical Flow w/ CPF

(single-pass ILM and Black Box)

Design

Initialization

0

Load

CPF

Load

CPF

Decap Analysis and Optimization

- ☐ Decoupling capacitance on power grid helps in reducing dynamic IR drop.
- Adding decoupling cells on power grid increases overall design leakage power.
- ☐ At 65 nm, and below, leakage power component can be as high as 50 percent of total power.

Design concern: How to manage leakage power and dynamic IR drop in the design?

1. Set IR-drop limit.

2. Calculate additional decap required.

- 3. Validate IR drop using what-if analysis.
- 4.Implement in an **EDI System.**

in EDI **System**

Power and Signal Electromigration

Power electromigration

- Supports power electromigration during IR-drop analysis
- Supports Blech-length, MTTF, variable width models and RMS AC EM analysis and models.
- Supports electromigration models embedded inside QRC technology file

Signal electromigration

- Supports AC (Joule heating) and DC (hot-carrier injection) signal electromigration analysis.
- Supports frequency-based DC electromigration templates in liberty (frequency limits based on input slew and output load).
- SPICE correlation within 5 percent when ECSM models are used for Irms current waveform computation.
- Irms computed for each wire segment considering downstream capacitance to avoid false electromigration violations.
- Automatic fix is available through the EDI System.

On-Chip Low Dropout Voltage Regulator

Stabilizing local voltage

- Power-integrity analysis challenges
 - Nonlinearity of low dropout (LDO) due to transistors, BJTs, and so on
 - Linearity of power-grid RC network
- Voltus technology advantages: APS + Voltus co-simulation
 - Nonlinear devices in LDOs: Spectre APS
 - Linear power grid: Voltus
 - Quick convergence at partition boundaries

Low Power Design

- Low Power Design in Advanced Nodes
- Low Power Design and Its Verification
- Implementation of Low Power Design
- Power Integrity and Power Analysis
- Discussion

Power Integrity Analysis in a Typical Design Flow 中国神学院大学

- Quick sanity check and analysis on input data
- Identify gross design issues
- Connectivity check, such as missing via report
- Assessing power routing schemes at floorplan stage
- Fast power-grid rail resizing
- What-if analysis for power-grid optimization

- Static power analysis: leakage, internal, and switching power
- Static rail analysis to check IR-drop and electromigration violations on power-grid; power switch analysis

Signoff Dynamic Power & Rail Analysis

- Dynamic power analysis: vector based or vectorless
- Dynamic power analysis for decap optimization, power switches optimization, power shutoff analysis

Power Integrity Solution

Comprehensive static and dynamic power analysis the

Complete full chip power analysis

- Highest capacity and performance
- Flat, hierarchical, hybrid power/IR drop
- Static, dynamic, vector, vectorless, CPF-driven
- Gate-level, instance, pwr grid, GUI debug

Integrated with EDI System and ETS

- Better convergence and productivity
- Early rail analysis, power network optimization, decap opt, power switch opt
- Full physical/logical/analysis, rapid ECOs
- Sign-off quality timing and power analysis built-in
- Power impacts on delay/timing/skew/clock

Advanced technologies

- Easy to generate library models with transistor-level accuracy
- Thermal, variation aware, EM, ESD, DFM
- Statistical leakage power analysis

Certified for Signoff

- Qualified for signoff at all nodes by TSMC, SMIC, IBM, Chartered, Samsung, etc.
- Certified by all major ASIC and IP providers

Signoff Flow Chart for Low Power Design @ hat the second s

Chip-level Floorplanning Power planning Chip-package co-design

Block Implementation

Power rails De-coupling capacitance Power switches

Top-level Chip assembly

Full-chip Power Signoff

Power rails De-coupling capacitance **Power switches** Power ramp-up IR drop on timing

- Early planning stages (early rail analysis)
 - Validate chip-level power delivery
 - Optimize power-grid design (grid, tree ...)
 - Estimate de-coupling capacitance
- Block implementation
 - Optimize and validate power-grid within block
 - Results drive block-level optimization
 - De-coupling capacitance
 - Power switches
- Full-chip signoff
 - Most accurate analysis includes full details
 - STA drives vectorless dynamic analysis
 - Validates all aspects of power delivery

Ad-hoc Equivalence Checking

Mode	PD1	PD2	PD3
PM1	1.0	1.0	1.0
PM2	1.0	0.0	1.0

- RTL does not have low power logic inserted
 - create_isolation_rule r1 -from PD2 -to PD3 -isolation_condition {i_pmu/iso_enb} -isolation_output low
- Place and Route Step
 - Buffers inserted on reset line in PD2; Isolation inserted in PD3 based on CPF isolation rule
- Ad-hoc EC
 - iso_en='1' signal to disable isolation logic; Reports design is equivalent
- In fact, it is not equivalent because reset behavior changes when PD2 is off and PD3 is on
 - Feedthrough reset signal should not be isolated

Power Aware Equivalence Checking

- EC tool inserts isolation logic per isolation rule
 - create_isolation_rule r1 -from PD2 -to PD3 -isolation_condition {i_pmu/iso_enb} \
 -isolation_output low
- Place and Route Step
 - Buffers inserted on reset line in PD2; Isolation inserted in PD3 based on CPF isolation rule
- RTL2Gate CLP EC reports design is non-equivalent

The Need For Domain Aware Equivalence Checkin 中国中国的

- IP block in PD2 was connected incorrectly to PD3 switchable power net vdd_sw during PnR instead of PD2 primary power net
- When PD3 is shut off, registers in IP block will lose state in silicon
- Domain Aware equivalence checking finds this problem
 - Customer used Ad-hoc equivalence checking flow did not run CLP EC

Cadence Chip-Package Co-Design

EDI System
Chip design

Encounter
Power System
Chip electrical
analysis

Chip-Package-Board data transfer using Model Connection Protocol (MCP) format (open format based on SPICE)

- •Power delivery management
 Ensures clean power from source, through board, package, die and down to transistors
- •Signal Integrity management
 Ensures signals from/to chip-package-board
 arrive in time and without loss of integrity
- •Noise management

 Ensures on-chip noise sources do not negatively impact end-application function (IR drop, IO SSO, block power up ...etc...)
- •Thermal and power management
 On-chip thermal hotspots, which must be
 efficiently dissipated through package/board

Chip-Package Co-design Die and package models

- Chip design
 - Package model → accurate on-chip analysis
- Package design
 - Die model → optimize the package

Low Power Design

- Low Power Design in Advanced Nodes
- Low Power Design and Its Verification
- Implementation of Low Power Design
- Power Integrity and Power Analysis
- Discussion

IR Drop Impacts Timing Unpredictably

IR-drop impact on timing

- IR drop can lead to timing violations caused by skew introduced on both signal nets and clock nets.
- IR drop typically increases delay, but in some situations can decrease delay.

2. Current through a resistor causes voltage drop (Ohm's law). Current voltage and impacts circuit performance. 1. Input signal switches

Impact is design dependent

- Clock skew increases more than signal skew (hold-time violations).
- Signal skew increases more than clock skew (setup-time violations).

Floorplanning and power-planning stage

- Imagine power distribution using current regions.
- Apply current sinks interactively on the desired layer.
- Estimate IR drop and optimize power pads location.
- Refine power grid using EDI.

Placement and routing stage

- Imagine power distribution using current regions (unplaced).
- Calculate power using Common Power Engine (placed region).
- Virtual power-grid connectivity to placed instances.
- Scale currents for hierarchy and placed macros.
- Power gate analysis and optimization with ECO.
- Optional power-grid libr support (w/ Voltus license).
- Refine placement and power grid using EDI.
- Refine power pad placement based on IR drop.

 Al-Big Data & Soc Design

Early Rail Analysis: Dynamic Analysis Feature List

- Voltus rail analysis engine and Voltus power engine integration
- Uses EDI native extractor for fast power-grid extraction
- Available with EDI L license
- Checks out Voltus license when running dynamic early rail analysis
- Dynamic analysis supports:
 - Package analysis and die model generation
 - Decap analysis and ECO
 - Power gate steady-state analysis and ECO
 - Dynamic PWL current regions with intrinsic and loading capacitance specification
 - Estimated loading capacitance and gate capacitance in a region
 - Multi-threaded solver in local mode
 - On-chip voltage regulator
 - CPF

Chip-Package-Board Co-simulation

Integrated Voltus and Sigrity design flows

- Sigrity package model generation
 - XtractIM: broadband SPICE format
 - PowerSI: S-parameter format
- Voltus die model generation
 - Broadband SPICE format
 - Frequency and time domains
 - Single-port and N-port (up to 100s)
- Sigrity MCP interface
 - Model Connection Protocol
 - Name- based or location-based
- Complete power integrity solutions
 - Chip: Voltus + package model
 - System: PowerDC + die model

Electrical-Thermal Co-simulation

TSMC 3DIC reference flow

- Thermal runaway
 - Positive feedback among chip's Temperature, leakage, and power dissipation
 - Temperature dependent IR-drop and electromigration
- Thermal simulation in Voltus + PowerDC
 - Voltus output: temperature and location dependent Power Map file.
 - PowerDC computes detailed temperature distribution for Chip-PKG-PCB (T vs. time).
 - Voltus reads back temperature map file for EMIR convergence.
 - Thermal view available in 2D and 3D.