Reading Quiz 2 for Electromagnetic Theory (PHYS330)

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy November 6, 2020

Abstract

A summary of content covered in chapter 2 of Introduction to Electrodynamics.

1 Distributions of Point Charges

1. Picture a physical dipole of two charges +q and -q of equal magnitude, separated by a distance d. Define the dipole moment as $\vec{p} = q\vec{d}$ pointing from -q to q somewhere in the xy-plane. Now add an external electric field $\vec{E} = E_0 \hat{x}$. Show that the torque on the dipole is

$$\vec{\tau} = \vec{p} \times \vec{E} \tag{1}$$

2. Imagine two dipoles, each with dipole moments \vec{p}_1 and \vec{p}_2 pointed in opposite directions, forming a square with alternating positive and negative charges. Calculate the electric field vector in the center of the square.

2 Continuous Charge Distributions

1. (a) Compute the electric field of a continuous line of charge, with total charge $Q = \lambda L$, where λ is the charge density and L is the total length. Take the field point to be a distance z above the center of the line of charge. Show what happens in the limit that $L \gg z$. (b) Obtain the same result as (a) using Gauss' Law.

- 2. Assuming a plane of charge with charge density (Coulombs per unit area) σ has an electric field $\sigma/(2\epsilon_0)$, what electric fields would occur in each of the following situations:
 - Two planes of positive charge, and the field point is somewhere between the plates.
 - Two planes of charge, one positive and one negative, and the field point is somewhere between the plates.
 - Two planes of positive charge, one occupying the yz-plane, and the other occupying the xz-plane, and the field point is (1,1,0).

3 The Curl of \vec{E} -fields

1. According to Eq. 2.19 in the text, the close loop line integral for the E-field of a point charge is

$$\oint \vec{E} \cdot d\vec{l} = 0$$
(2)

This implies $\nabla \times \vec{E} = 0$. According to the Helmholtz theorem in Ch. 1, this means the \vec{E} -field can be cast as the gradient of a scalar function known as the potential, V:

$$\vec{E} = -\nabla V \tag{3}$$

The minus sign is a convention that is analogous to the minus sign in $\vec{F} = -\frac{dU}{dx}\hat{x}$ from mechanics.

• Show that

$$-\int_{a}^{B} \vec{E} \cdot d\vec{l} = V(\vec{b}) - V(\vec{a}) \tag{4}$$

• Assume a point charge at the origin, and label its electric field \vec{E} . Perform the integral

$$V(\vec{r}) = -\int_{-\infty}^{r} E(r')dr' \tag{5}$$

to find the potential formula for a point charge. [Answer: kq/r]