Topos Theory V: Sheaves

Robbert Liu

October 19, 2022

Contents

• Grothendieck Sites

2/13

Contents

- Grothendieck Sites
- Examples of Sites

2/13

Contents

- Grothendieck Sites
- Examples of Sites
- Sheaves on a Site

2/13

Generalized Topologies

• Grothendieck observes the following duality between Galois theory and covering space theory:

Galois Theory	Covering Space Theory
Field K of characteristic 0	(Locally) arcwise connected space X
Normal extension $m: K \rightarrow N$	Covering space $\rho: Y \twoheadrightarrow X$
Galois group of N/K	Covering group of ρ
Field automorphisms σ of N/K	Deck transformations $\sigma: Y \to Y$
Factorizations $K \mapsto N_{\sigma} \mapsto N$	Factorizations $Y woheadrightarrow Y_{\sigma} woheadrightarrow X$
$Y \otimes_K N \cong \bigotimes_i N, N$ splitting	$Y \times_X U \to U \cong \prod_i U$ for some $U \ni x$
$K \to N$	$U \rightarrowtail X$

3 / 13

Generalized Topologies

• Grothendieck observes the following duality between Galois theory and covering space theory:

Galois Theory	Covering Space Theory
Field K of characteristic 0	(Locally) arcwise connected space X
Normal extension $m: K \rightarrow N$	Covering space $\rho: Y \to X$
Galois group of N/K	Covering group of ρ
Field automorphisms σ of N/K	Deck transformations $\sigma: Y \to Y$
Factorizations $K \mapsto N_{\sigma} \mapsto N$	Factorizations $Y woheadrightarrow Y_{\sigma} woheadrightarrow X$
$Y \otimes_K N \cong \bigotimes_i N, N$ splitting	$Y \times_X U \to U \cong \prod_i U$ for some $U \ni x$
$K \to N$	$U \rightarrowtail X$

• Grothendieck. We need a more general notion of topology where the primitive notions are not open sets $U \rightarrow X$, but more general maps.

3 / 13

• *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).

4/13

- *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).
- Definition. A Grothendieck topology on a category C is a functor J assigning each object C a collection J(C) of sieves on C such that:

4/13

- *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).
- Definition. A Grothendieck topology on a category C is a functor J assigning each object C a collection J(C) of sieves on C such that:
 - I J(C) contains the maximal sieve C.

4/13

- *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).
- Definition. A Grothendieck topology on a category C is a functor J assigning each object C a collection J(C) of sieves on C such that:
 - I J(C) contains the maximal sieve C.
 - 2 Stability Axiom. If $S \in J(C)$, then $h^*(S) \in J(D)$ for any morphism $h: D \to C$.

4/13

- *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).
- Definition. A Grothendieck topology on a category C is a functor J assigning each object C a collection J(C) of sieves on C such that:
 - I J(C) contains the maximal sieve C.
 - **2** Stability Axiom. If $S \in J(C)$, then $h^*(S) \in J(D)$ for any morphism $h: D \to C$.
 - **3** Transitivity Axiom. If $S \in J(C)$ and R is any sieve on C such that $h^*(R) \in J(D)$ for all $h: D \to C \in S$, then $R \in J(C)$.

4/13

- *Idea*. Define a "topology" on a category by assigning each object its set of "open covers" (in actuality: sieves).
- Definition. A Grothendieck topology on a category C is a functor J assigning each object C a collection J(C) of sieves on C such that:
 - I J(C) contains the maximal sieve C.
 - **2** Stability Axiom. If $S \in J(C)$, then $h^*(S) \in J(D)$ for any morphism $h: D \to C$.
 - **3** Transitivity Axiom. If $S \in J(C)$ and R is any sieve on C such that $h^*(R) \in J(D)$ for all $h: D \to C \in S$, then $R \in J(C)$.
- A tuple (C, J), C small, is called a **(Grothendieck) site**.

4/13

• Alternative terminology. we say S covers C if $S \in J(C)$, and S covers $f: D \to C$ if $S \in J(C)$ and f^*S covers D.

5/13

- Alternative terminology. we say S covers C if $S \in J(C)$, and S covers $f: D \to C$ if $S \in J(C)$ and f^*S covers D.
- We reformulate the axioms as follows:
 - II If S is a sieve on C and $f: D \to C \in S$, then S covers $f: D \to C$.

5/13

- Alternative terminology. we say S covers C if $S \in J(C)$, and S covers $f: D \to C$ if $S \in J(C)$ and f^*S covers D.
- We reformulate the axioms as follows:
 - II If S is a sieve on C and $f: D \to C \in S$, then S covers $f: D \to C$.
 - 2 Stability. If S covers $f:D\to C$, then it also covers $fg:E\to C$ for any morphism $g:E\to D$

5/13

- Alternative terminology. we say S covers C if $S \in J(C)$, and S covers $f: D \to C$ if $S \in J(C)$ and f^*S covers D.
- We reformulate the axioms as follows:
 - I If S is a sieve on C and $f: D \to C \in S$, then S covers $f: D \to C$.
 - 2 Stability. If S covers $f: D \to C$, then it also covers $fg: E \to C$ for any morphism $g: E \to D$
 - **3** Transitivity. If S covers $f: D \to C$ and R is a sieve on C which covers all morphisms in S, then R covers f.

5/13

Preliminary Consequences

• Consequence of Transitivity. If S covers C, and if we have a cover R_f of each $f: D_f \to C$ in S, then the set of composites fg with $f \in S$ and $g \in R_f$ covers C.

6/13

Preliminary Consequences

- Consequence of Transitivity. If S covers C, and if we have a cover R_f of each $f: D_f \to C$ in S, then the set of composites fg with $f \in S$ and $g \in R_f$ covers C.
- If R and S cover $g: D \to C$, then $R \cap S$ covers g.

6/13

Preliminary Consequences

- Consequence of Transitivity. If S covers C, and if we have a cover R_f of each $f: D_f \to C$ in S, then the set of composites fg with $f \in S$ and $g \in R_f$ covers C.
- If R and S cover $g:D\to C$, then $R\cap S$ covers g.
- Proof. If $f: D \to C \in R$, then $f^*(R \cap S) = f^*(S)$, since any morphism in $f^*(S)$, when composed with $f \in R$, is also an element of R. Hence, $f^*(R \cap S)$ covers D.

6/13

• Equivalently, we can define a topology by specifying a basis.

7/13

- Equivalently, we can define a topology by specifying a basis.
- Definition. A basis for a Grothendieck topology is a function K which assigns to each object C of a category a family of morphisms with codomain C, such that

7/13

- Equivalently, we can define a topology by specifying a **basis**.
- Definition. A basis for a Grothendieck topology is a function K which assigns to each object C of a category a family of morphisms with codomain C, such that
 - \blacksquare If $f:C'\to C$ is an isomorphism, then $\{f\}\in K(C).$

7/13

- Equivalently, we can define a topology by specifying a **basis**.
- Definition. A basis for a Grothendieck topology is a function K which assigns to each object C of a category a family of morphisms with codomain C, such that
 - If $f: C' \to C$ is an isomorphism, then $\{f\} \in K(C)$.
 - 2 Stability. If $\{f_i: C_i \to C \mid i \in I\}$ is in K(C), then for any morphism $g: D \to C$, the family of pullbacks $\pi_2: C_i \times_C D \to D \mid i \in I$ is in K(D).

- Equivalently, we can define a topology by specifying a **basis**.
- Definition. A basis for a Grothendieck topology is a function K which assigns to each object C of a category a family of morphisms with codomain C, such that
 - If $f: C' \to C$ is an isomorphism, then $\{f\} \in K(C)$.
 - **2** Stability. If $\{f_i: C_i \to C \mid i \in I\}$ is in K(C), then for any morphism $g: D \to C$, the family of pullbacks $\pi_2: C_i \times_C D \to D \mid i \in I$ is in K(D).
 - **3** Transitivity. If $\{f_i: C_i \to C \mid i \in I\}$ is in K(C) and if, for each $i, K(C_i)$ contains a family $\{g_{ij}: D_{ij} \to C_i \mid j \in I_i\}$, then the family of composites $\{f_ig_{ij}\}$ is in K(C).

- Equivalently, we can define a topology by specifying a **basis**.
- Definition. A basis for a Grothendieck topology is a function K which assigns to each object C of a category a family of morphisms with codomain C, such that
 - If $f: C' \to C$ is an isomorphism, then $\{f\} \in K(C)$.
 - **2** Stability. If $\{f_i: C_i \to C \mid i \in I\}$ is in K(C), then for any morphism $g: D \to C$, the family of pullbacks $\pi_2: C_i \times_C D \to D \mid i \in I$ is in K(D).
 - **3** Transitivity. If $\{f_i: C_i \to C \mid i \in I\}$ is in K(C) and if, for each $i, K(C_i)$ contains a family $\{g_{ij}: D_{ij} \to C_i \mid j \in I_i\}$, then the family of composites $\{f_ig_{ij}\}$ is in K(C).
- From K, we get a unique topology J, such that $S \in J(C)$ iff S contains some $R \in K(C)$.

• Given any topological space X, the open set category $\mathcal{O}(X)$ has the topology assigning each object U its set of covering sieves.

8 / 13

- Given any topological space X, the open set category $\mathcal{O}(X)$ has the topology assigning each object U its set of covering sieves.
- Trivial Topology. Given any category C, the coarsest topology on C is the **trivial** topology τ_{C} containing only the maximal sieve τ_{C} .

8/13

- Given any topological space X, the open set category $\mathcal{O}(X)$ has the topology assigning each object U its set of covering sieves.
- Trivial Topology. Given any category C, the coarsest topology on C is the **trivial** topology τ_{C} containing only the maximal sieve τ_{C} .
- Open Cover Topology. Given a small subcategory $T \leq \text{Top}$, which is closed under finite limits and restriction to open subspaces, the **open cover topology** is generated by the basis K defined by $\{\iota_i: Y_i \hookrightarrow X \mid i \in I\} \in K(X)$, iff each Y_i is an open subspace of X with the inclusion ι_i , and $\bigcup_i Y_i = X$.

- Given any topological space X, the open set category $\mathcal{O}(X)$ has the topology assigning each object U its set of covering sieves.
- Trivial Topology. Given any category C, the coarsest topology on C is the **trivial** topology τ_{C} containing only the maximal sieve τ_{C} .
- Open Cover Topology. Given a small subcategory $T \leq \text{Top}$, which is closed under finite limits and restriction to open subspaces, the **open cover topology** is generated by the basis K defined by $\{\iota_i: Y_i \hookrightarrow X \mid i \in I\} \in K(X)$, iff each Y_i is an open subspace of X with the inclusion ι_i , and $\bigcup_i Y_i = X$.

- Given any topological space X, the open set category $\mathcal{O}(X)$ has the topology assigning each object U its set of covering sieves.
- Trivial Topology. Given any category C, the coarsest topology on C is the **trivial** topology τ_{C} containing only the maximal sieve τ_{C} .
- Open Cover Topology. Given a small subcategory $T \leq \text{Top}$, which is closed under finite limits and restriction to open subspaces, the **open cover topology** is generated by the basis K defined by $\{\iota_i: Y_i \hookrightarrow X \mid i \in I\} \in K(X)$, iff each Y_i is an open subspace of X with the inclusion ι_i , and $\bigcup_i Y_i = X$.
- A finer category on T is generated by the basis K assigning to X the set of all families $\{f_i: Y_i \to X \mid i \in I\}$ such that $f: \coprod_i Y_i \to X$ is an open surjection.

More Examples

• Sup Topology. A complete Heyting algebra is a HA admitting sups and infs over any family. The **sup topology** on a cHa is generated by the basis K, defined by $\{a_i : i \in I\} \in K(c)$ if $\bigwedge_{i \in I} a_i = c$; this generalizes the open set topology to any complete Heyting algebra. Stability follows from

$$\bigwedge_{i \in I} (b \wedge a_i) = b \wedge \bigwedge_{i \in I} a_i$$

More Examples

• Sup Topology. A complete Heyting algebra is a HA admitting sups and infs over any family. The **sup topology** on a cHa is generated by the basis K, defined by $\{a_i : i \in I\} \in K(c)$ if $\bigwedge_{i \in I} a_i = c$; this generalizes the open set topology to any complete Heyting algebra. Stability follows from

$$\bigwedge_{i \in I} (b \wedge a_i) = b \wedge \bigwedge_{i \in I} a_i$$

• Dense Topology. Define the **dense topology** J on a category C by $S \in J(C)$ if for any $f: D \to C$, there is a $g: E \to D$ such that $fg \in S$. When the category is a poset P, J(p) is simply the set of dense subsets below $p \in P$.

More Examples

• Sup Topology. A complete Heyting algebra is a HA admitting sups and infs over any family. The **sup topology** on a cHa is generated by the basis K, defined by $\{a_i:i\in I\}\in K(c)$ if $\bigwedge_{i\in I}a_i=c$; this generalizes the open set topology to any complete Heyting algebra. Stability follows from

$$\bigwedge_{i \in I} (b \wedge a_i) = b \wedge \bigwedge_{i \in I} a_i$$

- Dense Topology. Define the **dense topology** J on a category C by $S \in J(C)$ if for any $f:D\to C$, there is a $g:E\to D$ such that $fg\in S$. When the category is a poset P, J(p) is simply the set of dense subsets below $p \in P$.
- Atomic Topology. The atomic category is defined by $S \in J(C)$ iff S is a nonempty sieve.

October 19, 2022

9/13

The Zariski Site

• Given an ideal $I \subseteq \mathbb{C}[x_1, \dots, x_n]$, we define $V(I) = \{x \in \mathbb{C}^n : I \text{ vanishes on } x\}$. V(I) is called a **complex affine variety**.

10 / 13

The Zariski Site

- Given an ideal $I \subseteq \mathbb{C}[x_1, \dots, x_n]$, we define $V(I) = \{x \in \mathbb{C}^n : I \text{ vanishes on } x\}$. V(I) is called a **complex affine variety**.
- We can then form a topology on \mathbb{C}^n called the **Zariski topology** by specifying the closed sets to be all V(I). The topology is generated by the subbasis of sets of the form $V(P)^c$, for prime ideals P, which is the nonvanishing set of P.

◆ロ ト ◆ 個 ト ◆ 重 ト ◆ 重 ・ り へ ⊙

Robbert Liu Topos Theory V October 19, 2022 10/13

The Zariski Site

- Given an ideal $I \subseteq \mathbb{C}[x_1, \dots, x_n]$, we define $V(I) = \{x \in \mathbb{C}^n : I \text{ vanishes on } x\}$. V(I) is called a **complex affine variety**.
- We can then form a topology on \mathbb{C}^n called the **Zariski topology** by specifying the closed sets to be all V(I). The topology is generated by the subbasis of sets of the form $V(P)^c$, for prime ideals P, which is the nonvanishing set of P.
- The Zariski topology has a structure sheaf \mathcal{O} , defined by letting $\mathcal{O}(U)$ to be the set of all rational functions h over \mathbb{C} which are defined at each point of U.

Robbert Liu Topos Theory V October 19, 2022 10/13

The Zariski Site

- Given an ideal $I \subseteq \mathbb{C}[x_1, \dots, x_n]$, we define $V(I) = \{x \in \mathbb{C}^n : I \text{ vanishes on } x\}$. V(I) is called a **complex affine variety**.
- We can then form a topology on \mathbb{C}^n called the **Zariski topology** by specifying the closed sets to be all V(I). The topology is generated by the subbasis of sets of the form $V(P)^c$, for prime ideals P, which is the nonvanishing set of P.
- The Zariski topology has a structure sheaf \mathcal{O} , defined by letting $\mathcal{O}(U)$ to be the set of all rational functions h over \mathbb{C} which are defined at each point of U.
- \bullet Moreover, \mathcal{O} is a sheaf of rings, with each stalk being a local ring, i.e. contains a unique maximal ideal.

4 D > 4 B > 4 E > 4 E > 990

The Zariski Site

- Given an ideal $I \subseteq \mathbb{C}[x_1, \dots, x_n]$, we define $V(I) = \{x \in \mathbb{C}^n : I \text{ vanishes on } x\}$. V(I) is called a **complex affine variety**.
- We can then form a topology on \mathbb{C}^n called the **Zariski topology** by specifying the closed sets to be all V(I). The topology is generated by the subbasis of sets of the form $V(P)^c$, for prime ideals P, which is the nonvanishing set of P.
- The Zariski topology has a structure sheaf \mathcal{O} , defined by letting $\mathcal{O}(U)$ to be the set of all rational functions h over \mathbb{C} which are defined at each point of U.
- Moreover, \mathcal{O} is a sheaf of rings, with each stalk being a local ring, i.e. contains a unique maximal ideal.
- The general construction can be done for a commutative ring k.

• Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.

- Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.
- Instead of working with varieties V(I), we define a **finitely presented** k-algebra A to be of the form $k[x_1, \ldots, x_m]/(f_1, \ldots, f_m)$, where $f_i \in k[x_1, \ldots, x_m]$.

- Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.
- Instead of working with varieties V(I), we define a **finitely presented** k-algebra A to be of the form $k[x_1, \ldots, x_m]/(f_1, \ldots, f_m)$, where $f_i \in k[x_1, \ldots, x_m]$.
- This construction provides more information than varieties: the k-algebra defined by x y is different from that defined by $(x y)^2$.

- Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.
- Instead of working with varieties V(I), we define a **finitely presented** k-algebra A to be of the form $k[x_1, \ldots, x_m]/(f_1, \ldots, f_m)$, where $f_i \in k[x_1, \ldots, x_m]$.
- This construction provides more information than varieties: the k-algebra defined by x y is different from that defined by $(x y)^2$.
- Let $(k Alg)_{fp}$ denote the category of all these algebras. The objects are no longer point-sets but algebras, so we cannot define functions at points.

<ロト < 回 > < 巨 > < 巨 > 三 9 9 9 9

- Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.
- Instead of working with varieties V(I), we define a **finitely presented** k-algebra A to be of the form $k[x_1, \ldots, x_m]/(f_1, \ldots, f_m)$, where $f_i \in k[x_1, \ldots, x_m]$.
- This construction provides more information than varieties: the k-algebra defined by x y is different from that defined by $(x y)^2$.
- Let $(k Alg)_{fp}$ denote the category of all these algebras. The objects are no longer point-sets but algebras, so we cannot define functions at points.
- We can instead define a Grothendieck topology on $(k Alg)_{fp}$. Covers of a k-algebra A will be determined by elements a_1, \ldots, a_n such that $(a_1, \ldots, a_n) = A$. Each cover will be the dual of a family of the form $\{A \to A[a_i^{-1}]\}_i$.

◆ロト ◆昼 ◆ (重) ◆ (国) ◆ (日) ◆ (日)

- Given a commutative unital ring A, define the **localization** $A_{[a^{-1}]}$ containing elements b/a^n , where $b \in A$ and $n \in \mathbb{N}$.
- Instead of working with varieties V(I), we define a **finitely presented** k-algebra A to be of the form $k[x_1, \ldots, x_m]/(f_1, \ldots, f_m)$, where $f_i \in k[x_1, \ldots, x_m]$.
- This construction provides more information than varieties: the k-algebra defined by x y is different from that defined by $(x y)^2$.
- Let $(k Alg)_{fp}$ denote the category of all these algebras. The objects are no longer point-sets but algebras, so we cannot define functions at points.
- We can instead define a Grothendieck topology on $(k Alg)_{fp}$. Covers of a k-algebra A will be determined by elements a_1, \ldots, a_n such that $(a_1, \ldots, a_n) = A$. Each cover will be the dual of a family of the form $\{A \to A[a_i^{-1}]\}_i$.
- The last step is to define a suitable structure sheaf on $(k Alg)_{fp}$ which acts like "the ring of functions on each neighbourhood".

4□ > 4回 > 4 豆 > 4 豆 > 豆 の Q O

11 / 13

• Let $P: \mathsf{C}^{\mathrm{op}} \to \mathsf{Set}$ be a presheaf.

- Let $P: C^{op} \to Set$ be a presheaf.
- Given a covering sieve S of an object C, matching family for S of elements of P is a family $\{x_f \mid f: D \to C \in S\}$, such that $x_f \cdot g = x_{fg}$ for any morphism $g: E \to D$.

- Let $P: C^{op} \to Set$ be a presheaf.
- Given a covering sieve S of an object C, **matching family** for S of elements of P is a family $\{x_f \mid f: D \to C \in S\}$, such that $x_f \cdot g = x_{fg}$ for any morphism $g: E \to D$.
- An amalgamation of such a matching family is an element $x \in P(C)$ such that $x \cdot f = x_f$ for all $f \in S$.

- Let $P: C^{op} \to \mathsf{Set}$ be a presheaf.
- Given a covering sieve S of an object C, **matching family** for S of elements of P is a family $\{x_f \mid f: D \to C \in S\}$, such that $x_f \cdot g = x_{fg}$ for any morphism $g: E \to D$.
- An amalgamation of such a matching family is an element $x \in P(C)$ such that $x \cdot f = x_f$ for all $f \in S$.
- Then, P is a sheaf precisely when all matching families for any cover of any object of C has a unique amalgamation.

- Let $P: \mathsf{C}^{\mathrm{op}} \to \mathsf{Set}$ be a presheaf.
- Given a covering sieve S of an object C, **matching family** for S of elements of P is a family $\{x_f \mid f: D \to C \in S\}$, such that $x_f \cdot g = x_{fg}$ for any morphism $g: E \to D$.
- An amalgamation of such a matching family is an element $x \in P(C)$ such that $x \cdot f = x_f$ for all $f \in S$.
- Then, P is a sheaf precisely when all matching families for any cover of any object of C has a unique amalgamation.
- Regarding a sieve as a subfunctor of &(C), a matching family $f \mapsto x_f$ is just a natural transformation $S \to P$; the above conditions reduces to if

12 / 13

Robbert Liu Topos Theory V October 19, 2022

- Let $P: C^{op} \to Set$ be a presheaf.
- Given a covering sieve S of an object C, **matching family** for S of elements of P is a family $\{x_f \mid f: D \to C \in S\}$, such that $x_f \cdot g = x_{fg}$ for any morphism $g: E \to D$.
- An amalgamation of such a matching family is an element $x \in P(C)$ such that $x \cdot f = x_f$ for all $f \in S$.
- Then, P is a sheaf precisely when all matching families for any cover of any object of C has a unique amalgamation.
- Regarding a sieve as a subfunctor of &(C), a matching family $f \mapsto x_f$ is just a natural transformation $S \to P$; the above conditions reduces to if

$$\operatorname{Hom}(S, P) \cong \operatorname{Hom}(\sharp(C), P)$$

• This is true if we have a family of equalizers:

$$P(C) \xrightarrow{x \mapsto \{x_f\}_f} \prod_{f \in S} P(\operatorname{dom} f) \xrightarrow{x_f \mapsto x_f \cdot g} \prod_{\substack{f \in S \\ \operatorname{dom} f = \operatorname{cod} g}} P(\operatorname{dom} g)$$

• Again, it suffices to describe a sheaf on a basis K. If $R = \{f_i : C_i \to C \mid i \in I\}$ is a K-cover of C, a matching family is one such that $x_i \cdot \pi^1_{ij} = x_j \cdot \pi^2_{ij}$ always holds. An amalgamation for $\{x_i\}$ is a compatible element x.

- Again, it suffices to describe a sheaf on a basis K. If $R = \{f_i : C_i \to C \mid i \in I\}$ is a K-cover of C, a matching family is one such that $x_i \cdot \pi^1_{ij} = x_j \cdot \pi^2_{ij}$ always holds. An amalgamation for $\{x_i\}$ is a compatible element x.
- Proposition. Let P be a presheaf on C with basis K. Then, P is a sheaf iff for any cover $\{f_i: C_i \to C \mid i \in I\}$ in the basis K, any matching family $\{x_i\}_i$ has a unique amalgamation.

4□ > 4回 > 4 豆 > 4 豆 > 豆 のQ ○

13 / 13

Robbert Liu Topos Theory V October 19, 2022

- Again, it suffices to describe a sheaf on a basis K. If $R = \{f_i : C_i \to C \mid i \in I\}$ is a K-cover of C, a matching family is one such that $x_i \cdot \pi_{ij}^1 = x_j \cdot \pi_{ij}^2$ always holds. An amalgamation for $\{x_i\}$ is a compatible element x.
- Proposition. Let P be a presheaf on C with basis K. Then, P is a sheaf iff for any cover $\{f_i: C_i \to C \mid i \in I\}$ in the basis K, any matching family $\{x_i\}_i$ has a unique amalgamation.
- Definition. If J is a topology on C such that all representable presheaves on C are sheaves, then J is called **subcanonical**. The **canonical** topology is the largest subcanonical topology on C. e.g. the open surjection topology is canonical.

◆ロ ト ◆ 個 ト ◆ 重 ト ◆ 重 ・ り へ ⊙

13 / 13

Robbert Liu Topos Theory V October 19, 2022

- Again, it suffices to describe a sheaf on a basis K. If $R = \{f_i : C_i \to C \mid i \in I\}$ is a K-cover of C, a matching family is one such that $x_i \cdot \pi^1_{ij} = x_j \cdot \pi^2_{ij}$ always holds. An amalgamation for $\{x_i\}$ is a compatible element x.
- Proposition. Let P be a presheaf on C with basis K. Then, P is a sheaf iff for any cover $\{f_i: C_i \to C \mid i \in I\}$ in the basis K, any matching family $\{x_i\}_i$ has a unique amalgamation.
- Definition. If J is a topology on C such that all representable presheaves on C are sheaves, then J is called **subcanonical**. The **canonical** topology is the largest subcanonical topology on C. e.g. the open surjection topology is canonical.
- Proposition. Let $I \to \mathsf{C}$ be a diagram of presheaves P_i on (C, J) . Then if P_i are all sheaves, so is the limit $\lim_{\longleftarrow} P_i$.

◆ロ ト ◆ 個 ト ◆ 重 ト ◆ 重 ・ り へ ⊙

- Again, it suffices to describe a sheaf on a basis K. If $R = \{f_i : C_i \to C \mid i \in I\}$ is a K-cover of C, a matching family is one such that $x_i \cdot \pi^1_{ij} = x_j \cdot \pi^2_{ij}$ always holds. An amalgamation for $\{x_i\}$ is a compatible element x.
- Proposition. Let P be a presheaf on C with basis K. Then, P is a sheaf iff for any cover $\{f_i: C_i \to C \mid i \in I\}$ in the basis K, any matching family $\{x_i\}_i$ has a unique amalgamation.
- Definition. If J is a topology on C such that all representable presheaves on C are sheaves, then J is called **subcanonical**. The **canonical** topology is the largest subcanonical topology on C. e.g. the open surjection topology is canonical.
- Proposition. Let $I \to \mathsf{C}$ be a diagram of presheaves P_i on (C, J) . Then if P_i are all sheaves, so is the limit $\lim_{\longrightarrow} P_i$.
- Definition. A **Grothendieck topos** is a category which is equivalent to the category Sh(C, J) of sheaves on some site (C, J).

<ロ > ← □