BUILDING PERFORMANCE SIMULATION ARCH-753 Fall 2017

ASSIGNMENT 3

Meyerson Hall Shading Design

Hwang, Youngjin

Thermal Stress Analysis

As an analysis of thermal stress in Philadelphia, there are nearly two times of heat stress depending on presence of shading.

Sun Path Analysis on Target

From May to September, great influential period to gain heat stress, sun radiation directly come into the site and occurs physical discomfort.

| Shading Target & Region Setting

Shading Target (Height 5.5m)

Shading Region (Benches)

| Shading Analysis

Shade Benefit Analysis + Boundary Selection

Percentage to Keep: 30%

Of course the bigger percentage it has, The more effective shade it will be. However, the area of shade is also increased so that I tried to find the most efficient percentage Between the shade area and shade efficiency.

Shading Design Based on Shade Benefit Analysis

Since the shading also affects the winter period, there is no big difference in percentage of comfortable hours; however, the percentage of heat stress is dramatically decreased during the summer due to the new shading.

Thermal Stress Analysis with Proposed Shading

Percentage of Comfortable Hours 36.6% Percentage of Heat Stress

0.3%