Mecanum Drivetrain How a Mecanum drivetrain works in an in depth explanation.

Pranav Yerramaneni Wilcox Highschool Robopocalypse #8872

April 4, 2023

Contents

Chapter 1	Kinematics	_ Page 3
Chapter 2	Conclusion	Page 5

Preface ______ Page 2_____

Chapter

Preface

The kinematics of a Mecanum drive train can be derived using a set of equations. Let us consider a robot with a Mecanum drive train that has four wheels. The wheels are labeled W_1 , W_2 , W_3 , and W_4 , as shown in Figure 1.1.

Chapter 1

Kinematics

The kinematics of a Mecanum drive train can be derived using a set of equations. Let us consider a robot with a Mecanum drive train that has four wheels. The wheels are labeled W_1 , W_2 , W_3 , and W_4 , as shown in Figure 1.1.

Figure 1.1: Mecanum drive train with four wheels.

The motion of the robot can be described using the following equations:

$$\begin{bmatrix} v_x \ v_y \ \omega \end{bmatrix} = \begin{bmatrix} \frac{1}{r} & \frac{1}{r} & \frac{1}{r} & \frac{1}{r} - \frac{1}{r} & \frac{1}{r} & -\frac{1}{r} - \frac{d}{r} & \frac{d}{r} & -\frac{d}{r} & \frac{d}{r} \end{bmatrix} \begin{bmatrix} \omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \end{bmatrix}$$
(1.1)

where v_x and v_y are the robot's linear velocity components in the x and y directions, respectively, ω is the robot's angular velocity, r is the radius of the wheels, d is the distance between the wheels, and ω_1 , ω_2 , ω_3 , and ω_4 are the angular velocities of the wheels.

Equation 1.1 can be used to calculate the angular velocities of the wheels needed to achieve a desired motion. For example, if we want the robot to move forward with a linear velocity of $v_x = 0.5$ m/s and no angular velocity, we can set $v_y = \omega = 0$ and solve for the wheel velocities:

$$[0.5 \ 0 \ 0] = \begin{bmatrix} \frac{1}{r} & \frac{1}{r} & \frac{1}{r} & \frac{1}{r} & -\frac{1}{r} & \frac{1}{r} & -\frac{1}{r} & -\frac{d}{r} & \frac{d}{r} & -\frac{d}{r} & \frac{d}{r} \end{bmatrix} \begin{bmatrix} \omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \end{bmatrix}$$

Solving for ω_1 , ω_2 , ω_3 , and ω_4 gives:

$$\begin{bmatrix} \omega_1 \ \omega_2 \ \omega_3 \ \omega_4 \end{bmatrix} \begin{bmatrix} 0.25 & -0.25 & -0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0.25 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.5 \ 0 \ 0 \end{bmatrix} \begin{bmatrix} 0.125 \ 0.125 \ 0 \ 0.125 \end{bmatrix}$$

This means that we need to set the angular velocities of the wheels as follows:

$$\omega_1 = 0.125 \text{ rad/s } \omega_2$$
 = 0.125 rad/s $\omega_3 = 0 \text{ rad/s } \omega_4$ = 0.125 rad/s

This will cause the robot to move forward at a linear velocity of 0.5 m/s.

Chapter 2

Conclusion

In conclusion, the kinematics of a Mecanum drive train can be described using a set of equations, as shown in Equation 1.1. These equations can be used to calculate the angular velocities of the wheels needed to achieve a desired motion. Mecanum drive trains are widely used in robotics due to their ability to provide omnidirectional motion without changing the orientation of the robot.