Continuous functions

2016-02-15 9:00 -0500

• If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.

- If the topology of Y is given by a basis \mathcal{B} , then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in \mathcal{B}$.
- If the topology of Y is given by a subbasis S, then $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open in X for every $V \in S$.
- A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for every $x_0 \in \mathbb{R}$ and $\epsilon > 0$, there is a $\delta > 0$ such that $|x x_0| < \delta$ implies $|f(x) f(x_0)| < \epsilon$.

Example (Examples)

Example (Examples)

• Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.

Example (Examples)

- Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.
- Let \mathbb{R}_l be the set of real numbers with the Sorgenfrey topology. Then the identity function $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}_l$ is not continuous.

Example (Examples)

- Any continuous function $f: \mathbb{R} \to \mathbb{R}$ from calculus courses is continuous in this sense.
- Let \mathbb{R}_l be the set of real numbers with the Sorgenfrey topology. Then the identity function $1_{\mathbb{R}} : \mathbb{R} \to \mathbb{R}_l$ is not continuous.
- On the other hand, the identity $1_{\mathbb{R}} : \mathbb{R}_{\ell} \to \mathbb{R}$ is continuous.

Theorem

Theorem

Let X, Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

• f is continuous.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.

Theorem

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.
- For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

Theorem

Let X, Y be topological spaces and $f: X \to Y$. Then the following are equivalent:

- f is continuous.
- For every $A \subseteq X$, one has $f(\overline{A}) \subseteq \overline{f(A)}$.
- For every closed set C in Y, one has $f^{-1}(C)$ is closed in X.
- For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.

Proof.

Definition (Homeomorphism)

A bijective and continuous map $f: X \to Y$ is a homeomorphism if the inverse map $f^{-1}: Y \to X$ is also continuous

Definition (Homeomorphism)

A bijective and continuous map $f: X \to Y$ is a homeomorphism if the inverse map $f^{-1}: Y \to X$ is also continuous

Equivalently, the continuous and bijective map $f: X \to Y$ is a homeomorphism if and only if $U \subseteq X$ open implies that $f(U) \subseteq Y$ is open.

Definition (Homeomorphism)

A bijective and continuous map $f: X \to Y$ is a homeomorphism if the inverse map $f^{-1}: Y \to X$ is also continuous

Equivalently, the continuous and bijective map $f: X \to Y$ is a homeomorphism if and only if $U \subseteq X$ open implies that $f(U) \subseteq Y$ is open.

Embedding

If $f: X \to Y$ is injective and the bijection $f: X \to f(X)$ (where $f(X) \subseteq Y$ is a subspace) is a homeomorphism, we say that f is an *embedding*.

Theorem (Constructing continuous functions) Let X, Y, Z be topological spaces.

Theorem (Constructing continuous functions)

Let X, Y, Z be topological spaces.

• If $f: X \to Y$ is such that $f(X) = \{y_0\}$ for $y_0 \in Y$, then f is continuous.

Theorem (Constructing continuous functions)

Let X, Y, Z be topological spaces.

- If $f: X \to Y$ is such that $f(X) = \{y_0\}$ for $y_0 \in Y$, then f is continuous.
- If $A \subseteq X$ is a subspace, the inclusion $i_A \colon A \to X$ is continuous.

Theorem (Constructing continuous functions)

Let X, Y, Z be topological spaces.

- If $f: X \to Y$ is such that $f(X) = \{y_0\}$ for $y_0 \in Y$, then f is continuous.
- If $A \subseteq X$ is a subspace, the inclusion $i_A \colon A \to X$ is continuous.
- If $f: X \to Y$ and $g: Y \to Z$ are continuous, then the composition $g \circ f$ is continuous.

• If $f: X \to Y$ is continuous and $A \subseteq X$ is a subspace, the restriction $f \mid_{A}: A \to Y$ is continuous.

- If $f: X \to Y$ is continuous and $A \subseteq X$ is a subspace, the restriction $f \mid_{A}: A \to Y$ is continuous.
- If $f: X \to Y$ is continuous and $Z \subseteq Y$ is a subspace such that $f(X) \subseteq Z$, then $f: X \to Z$ is continuous. If Z is a space containing Y as a subspace, then $f: X \to Z$ is continuous.

- If $f: X \to Y$ is continuous and $A \subseteq X$ is a subspace, the restriction $f \mid_{A}: A \to Y$ is continuous.
- If $f: X \to Y$ is continuous and $Z \subseteq Y$ is a subspace such that $f(X) \subseteq Z$, then $f \mid : X \to Z$ is continuous. If Z is a space containing Y as a subspace, then $f: X \to Z$ is continuous.
- If $X = \bigcup U_{\alpha}$, where each U_{α} is open and $f \mid_{U_{\alpha}} : U_{\alpha} \to Y$ is continuous for each α , then f is continuous.

Pasting Lemma

Theorem (The pasting Lemma)

Let $X = A \cup B$ be a space, with A, B closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. Suppose that f(x) = g(x) for every $x \in A \cap B$, and define $h: X \to Y$ by:

$$h(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases}$$

Then h is continuous.

Pasting lemma

Theorem (The pasting lemma)

Let $X = A \cup B$ be a space, with A, B closed in X. Let $f: A \to Y$ and $g: B \to Y$ be continuous. Suppose that f(x) = g(x) for every $x \in A \cap B$, and define $h: X \to Y$ by:

$$h(x) = \begin{cases} f(x) & \text{if } x \in A, \\ g(x) & \text{if } x \in B. \end{cases}$$

Then h is continuous.

Proof.

Maps into products

Theorem (Maps into products)

Let $f: A \to X \times Y$ be given by:

$$f(a) = (f_1(a), f_2(a)).$$

Then f is continuous if and only if the functions:

$$f_1: A \to X$$
, $f_2: A \to Y$

are continuous.

Maps into products

Theorem (Maps into products)

Let $f: A \rightarrow X \times Y$ be given by:

$$f(a) = (f_1(a), f_2(a)).$$

Then f is continuous if and only if the functions:

$$f_1: A \to X, \quad f_2: A \to Y$$

are continuous.

Proof.

1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that (a, b) is homeomorphic to (0, 1).

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that (a, b) is homeomorphic to (0, 1).
- 4. Let Y be an ordered set with the order topology, and $f, g: X \to Y$ be continuous. Show that:

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that (a, b) is homeomorphic to (0, 1).
- 4. Let Y be an ordered set with the order topology, and $f, g: X \to Y$ be continuous. Show that:
 - $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that (a, b) is homeomorphic to (0, 1).
- 4. Let Y be an ordered set with the order topology, and $f, g: X \to Y$ be continuous. Show that:
 - $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.
 - the map $h: X \to Y$ given by $h(x) = \min\{f(x), g(x)\}$ is continuous.

- 1. Let $f: X \to Y$ continuous. If $A \subseteq X$ and x is a limit point of A, is f(x) a limit point of f(A)?
- 2. If $x_0 \in X$, show that the map $f_{x_0} \colon Y \to X \times Y$ given by $f_{x_0}(y) = (x_0, y)$ is an embedding.
- 3. Let $a, b \in \mathbb{R}$ with a < b. Show that (a, b) is homeomorphic to (0, 1).
- 4. Let Y be an ordered set with the order topology, and $f,g\colon X\to Y$ be continuous. Show that:
 - $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.
 - the map $h: X \to Y$ given by $h(x) = \min\{f(x), g(x)\}$ is continuous.
- 5. Let $f: A \to B$ and $g: C \to D$ be continuous functions between topological spaces. Show that the map $f \times g: A \times C \to B \times D$ given by $(a, c) \mapsto (f(a), f(c))$ is continuous.