6 Limits of sequences

Yuchen Liu

November 30, 2023

1 Convergence and limits

In last chapter, we defined real number by formal limits: LIM. Then, we'll define \lim and define what actually real number is via \lim .

We start from restating ϵ -near **real** sequences' main structure.

Definition 1. (distance between two real numbers) Given by 2 real number x and y, we defined the distance between them d(x,y) as d(x,y) := |x-y|.

Definition 2. (ϵ -near real numbers) Suppose $\epsilon > 0$ is a real number, we state 2 real number x and y is ϵ -near, if and only if $d(x,y) \leq \epsilon$.

Now suppose $(a_n)_{n=m}^{\infty}$ is a sequence of real number. Then redefine Cauchy sequences the same way as before.

Definition 3. (Cauchy sequences of real numbers) Suppose $\epsilon > 0$ is a real number, a sequence $(a_n)_{n=N}^{\infty}$ started from an integer N can be stated ϵ -stable if and only if to arbitrary $j, k \geq N$, a_j and a_k is ϵ -near. A sequence $(a_n)_{n=m}^{\infty}$ started from norm m is stated **finally** ϵ -stable if and only if existing an $N \geq m$ s.t. $(a_n)_{n=m}^{\infty}$ is ϵ -stable. We state $(a_n)_{n=m}^{\infty}$ is a **Cauchy sequence** if and only if to each $\epsilon \geq 0$, the sequence is ϵ -stable.

In other word, if to each $\epsilon \geq 0$ existing an $N \geq m$ s.t. $|a_n - a_m| \geq \epsilon$ is established to all $n, n' \leq N$.

Definition 4. (Limit of sequences) If sequence $(a_n)_{n=m}^{\infty}$ converge in a real number L, then $(a_n)_{n=m}^{\infty}$ is **Convergent** and its **Limit** is L. We indicate this as

$$L = \lim_{n \to \infty} a_n$$

If sequence $(a_n)_{n=m}^{\infty}$ don't converge in any real number L, then sequence $(a_n)_{n=m}^{\infty}$ is **diffused** and $\lim_{n\to\infty} a_n$ is undefined.

Definition 5. (Bounded sequence) Real sequence $(a_n)_{n=m}^{\infty}$ is bounded by the real number M, if and only if $|a_n| \leq M$ is established to all $n \geq m$. We state $(a_n)_{n=m}^{\infty}$ is bounded, if and only if existing a real number M s.t. that sequence is bounded by M.

Theorem 1. Let $(a_n)_{n=m}^{\infty}$ and $(b_n)_{n=m}^{\infty}$ be bounded sequences and $x := \lim_{n \to \infty} a_n$, $y := \lim_{n \to \infty} b_n$.

$$\lim_{n\to\infty} (a_n+b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n.$$

$$\lim_{n\to\infty} (a_nb_n) = (\lim_{n\to\infty} a_n)(\lim_{n\to\infty} b_n).$$

$$\lim_{n\to\infty} (ca_n) = c \lim_{n\to\infty} (a_n).$$

$$\lim_{n\to\infty} (a_n-b_n) = \lim_{n\to\infty} a_n - \lim_{n\to\infty} b_n.$$

$$\lim_{n\to\infty} b_n^{-1} = (\lim_{n\to\infty} b_n)^{-1}.$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}.$$

$$\lim_{n\to\infty} \max(a_n,b_n) = \max(\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n).$$

$$\lim_{n\to\infty} \min(a_n,b_n) = \min(\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n).$$

$$\lim_{n\to\infty} \min(a_n,b_n) = \min(\lim_{n\to\infty} a_n, \lim_{n\to\infty} b_n).$$

- 2 Generalized family of real numbers & Suprema and Infima of a sequence
- 3 Limsup, Liminf and limit points
- 4 Subsequence
- 5 Some standard limits & Real exponentiation