Inference

Connecting models to data

The problem with infection data

Often only observe a proportion of reality

- Hospitalised case data gives you those who had severe infection
- Symptom onsets are observed but infection times are not

Or only observe a measure of infection

- antibody response at one time point
- result of imperfect diagnostic test

We use this data to infer the 'truth'.

In a perfect world, we would directly observe the 'truth'.

Diagnostic testing results

Susceptible-Infected model

Predicted number of susceptible
 (S) and infected (I) animals

• Binomial(*I*, sensitivity).Binomial(*S*, specificity)

 Diagnostic test results: test positives and test negatives

Serological data

Antibody process model

Predicted log antibody titre

 Normally distributed error around predicted log antibody titre

 Laboratory based assay (measure of log antibody titre)

Imperfect reporting of incidence data

•
$$\theta = R_0, D_{lat}, D_{inf}, D_{imm}, \alpha, \rho$$

Deterministic/Stochastic model SEITL model

• Predicted incidence *Inc*

• We assumed data were recorded according to a Poisson process : Poisson(ρInc) with reporting rate ρ and predicted incidence Inc

Reported incidence over time

Connecting your models to data relies on distinguishing how you predict the 'truth' (model) and how you connect this 'truth' to your data (observation process).

Examples

- Kucharski AJ, Lessler J, Cummings DAT, Riley S (2018) Timescales of influenza A/H3N2 antibody dynamics. PLOS Biology 16(8): e2004974.https://doi.org/10.1371/journal.pbio.2004974
- Brooks-Pollock E, Roberts G.O, Keeling, M.J (2014) A dynamic model of bovine tuberculosis spread and control in Great Britain.
 Nature, 511, pp. 228-231

Approximate Bayesian Computation

Outline

- 1. What is Approximate Bayesian Computation?
- 2. When do we use ABC instead of other methods would we use it?
- 3. How do we use it?
 - a) Choices in the ABC-rejection algorithm
 - b) Short introduction to more advanced ABC

1. What is Approximate Bayesian Computation?

Bayesian inference is based on the idea of updating belief with new evidence

- **Belief**: Prior distribution. Parameters are random variables instead of fixed quantities (they have there own distribution)
- **Evidence**: Likelihood function tells you the probability of the data given the parameters

 θ : Mathematical model parameter, D: Data

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

 θ : Mathematical model parameter, D: Data

$$P(\theta|D) \propto P(D|\theta)P(\theta)$$

 θ : Mathematical model parameter, D: Data

$$P(\theta|D) \propto P(D|\theta)P(\theta)$$

Probability of data given θ (likelihood)

EVIDENCE

 θ : Mathematical model parameter, D: Data

Prior probability

BELIEF

$$P(\theta|D) \propto P(D|\theta) P(\theta)$$

Probability of data given θ (likelihood)

EVIDENCE

 θ : Mathematical model parameter, D: Data

Prior probability

Posterior $P(\theta|D) \propto P(D|\theta) P(\theta)$ probability

Probability of data given θ (likelihood)

EVIDENCE

 θ : Mathematical model parameter, D : Data

Prior probability BELIEF

Posterior
$$P(\theta|D) \propto P(D|\theta)P(\theta)$$
 probability

What if we can't use a likelihood function?

Probability of data given θ (likelihood) **EVIDENCE**

1. Sample θ^* from the prior distribution $P(\theta)$

- 1. Sample θ^* from the prior distribution $P(\theta)$
- 2. Simulate a dataset D^* from your model using θ^*

- 1. Sample θ^* from the prior distribution $P(\theta)$
- 2. Simulate a dataset D^* from your model using θ^*
- 3. If $d(D, D^*) \le \epsilon$ accept θ^* , otherwise reject

- 1. Sample θ^* from the prior distribution $P(\theta)$
- 2. Simulate a dataset D^* from your model using θ^*
- 3. If $d(D, D^*) \le \epsilon$ accept θ^* , otherwise reject
- 4. Repeat until you have accepted *N* accepted samples

- 1. Sample θ^* from $P(\theta)$
- 2. Simulate a dataset D^* from your model using θ^*
- 3. Calculate the summary statistic for the observed data $\mu = S(D)$ and simulated data $\mu = S(D^*)$
- 4. If $d(S(D), S(D^*)) \le \epsilon$ accept θ^* , otherwise reject
- 5. Repeat until you have accepted *N* accepted samples

- 1. Sample θ^* from $P(\theta)$
- 2. Simulate a dataset D^* from your model using θ^*
- 3. Calculate the summary statistic for the observed data $\mu = S(D)$ and simulated data $\mu = S(D^*)$
- 4. If $d(S(D), S(D^*)) \le \epsilon$ accept θ^* , otherwise reject
- 5. Repeat until you have accepted *N* accepted samples

Summary statistic for model trajectory

Distance measure between summary statistic and data

1. What is Approximate Bayesian Computation?

A method to approximate the posterior distribution $P(\theta|D)$ without a likelihood function

$$P(\theta|D) \approx P(\theta|d(S(D),S(D^*)) \leq \epsilon)$$

2. When do we use ABC instead of other methods?

2. When do we use ABC instead of other methods?

- Data quality is poor, which means we have to aggregate it
- The likelihood function might be costly to evaluate (it takes a long time)
 - Large data sets
 - Complicated likelihood function

2. When do we use ABC instead of other methods?

- Data quality is poor, which means we have to aggregate it
- The likelihood function might be costly to evaluate (it takes a long time)
 - Large data sets
 - Complicated likelihood function

- Intuitive method of model fitting
 - Parameter -> model trajectory -> accept or reject

3. How do we use ABC?

a. Choices in the ABC- rejection algorithm

Choice of summary statistic(s) S(D)

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"

Choice of summary statistic(s) S(D)

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"
- If we haven't written down a likelihood then we can't know if our summary statistics are sufficient...

Choice of summary statistic(s) S(D)

- This is how we choose whether to accept or reject parameter values
- Sufficient summary statistic will give the same result as the likelihood
- "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter"
- In practice
 - Look at published model fitting studies using ABC methods for ideas for sufficient statistics
 - Check with simulated data!

Number of particles (N)

The more the better, but computation time must be taken into account

Tolerance value ϵ

- Determines whether you accept or reject parameter(s) based on how closely the model prediction matches you data
 - Too small and the algorithm will take a long time to run
 - Too big and the final distribution of particles will be too wide

Tolerance value ϵ

- Determines whether you accept or reject parameter(s) based on how closely the model prediction matches you data
 - Too small and the algorithm will take a long time to run
 - Too big and the final distribution of particles will be too wide

• The magnitude of the tolerance value ϵ will depend on your distance measure

For example, if the summary of the data S(D) is the cumulative number of cases, we could have:

- $S(D) = 100\ 000$ (from the data)
- $S(D^*) = 99900$ (model prediction)
- If the distance measure d() is the sum of squared difference the, $d(S(D), S(D^*)) = (100\ 000 99\ 00)^2 = (100)^2 = 10\ 000$

The prediction was 100 people short of the data, distance measure is 10 000. Hence here a reasonable choice of tolerance might be $\epsilon = 10 000$.

3. How do we use ABC?
b. Short introduction to more advanced ABC

Improvements to ABC rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ , there is a vector of tolerances $\epsilon_1, \dots, \epsilon_T$
- 1. We perform ABC rejection with a very large tolerance ϵ_1 and store our N accepted parameter values as population 1.

Improvements to ABC rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ , there is a vector of tolerances $\epsilon_1, \dots, \epsilon_T$
- 1. We perform ABC rejection with a very large tolerance ϵ_1 and store our N accepted parameter values as population 1.
- 2. Then we propose parameters by re-sampling parameters from population 1 and perturb the parameters by a small amount. Accept/reject according ϵ_2 .
- 3. Add **weight** to each parameter value according to the prior distribution, how likely you were to obtain that value from perturbation and the previous weights.

Improvements to ABC rejection algorithm: ABC-Sequential Monte Carlo (ABC-SMC)

- Instead of one tolerance ϵ , there is a vector of tolerances $\epsilon_1, \dots, \epsilon_T$
- 1. We perform ABC rejection with a very large tolerance ϵ_1 and store our N accepted parameter values as population 1.
- 2. Then we propose parameters by re-sampling parameters from population 1 and perturb the parameters by a small amount. Accept/reject according ϵ_2 .
- 3. Add weight to each parameter value according to the prior distribution, how likely you were to obtain that value from perturbation and the previous weights.
 - Repeat steps 2-3 T times, sampling from the previous population. Each time decrease the tolerance value.

Practical

In summary: ABC

- Can be used when data quality is poor, likelihood is complex or unknown and is an intuitive model fitting technique
- **But** you have to specify a suitable summary statistic(s)
- ABC can be slow, there are many extensions: ABC-SMC, ABC-PMC etc.

Reading

General introductions

- McKinley, Trevelyan J.; Vernon, Ian; Andrianakis, Ioannis; McCreesh, Nicky; Oakley, Jeremy E.; Nsubuga, Rebecca N.; Goldstein, Michael; White, Richard G. Approximate Bayesian Computation and Simulation-Based Inference for Complex Stochastic Epidemic Models. Statist. Sci. 33 (2018), no. 1, 4--18. doi:10.1214/17-STS618. https://projecteuclid.org/euclid.ss/1517562021
- Sunnåker M, Busetto AG, Numminen E, Corander J, Foll M, et al. (2013) Approximate Bayesian Computation. PLOS Computational Biology 9(1): e1002803.https://doi.org/10.1371/journal.pcbi.1002803
- Hartig, F., Calabrese, J. M., Reineking, B., Wiegand, T. and Huth, A. (2011), Statistical inference for stochastic simulation models theory and application. Ecology Letters, 14: 816-827. doi:10.1111/j.1461-0248.2011.01640.x
- Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6 187-202; DOI: 10.1098/rsif.2008.0172.

Reading

Examples of ABC

- Conlan, A.J., McKinley, T.J., Karolemeas, K., Pollock, E.B., Goodchild, A.V., Mitchell, A.P., Birch, C.P., Clifton-Hadley, R.S. and Wood, J.L., (2012). Estimating the hidden burden of bovine tuberculosis in Great Britain. *PLoS Computational Biology*, 8(10), p.e1002730.
- McKinley, T., Cook, A. R. and Deardon, R. (2009). Inference in epidemic models without likelihoods. *Int. J. Biostat.* **5**.
- Beaumont MA, Zhang W, and Balding DJ. (2002) Approximate Bayesian Computation in Population Genetics. GENETICS. 162 (4) 2025-2035.