RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari Google

ECCV - Mar 2024

Presented by: Amir Alimohammadi

Introduction

RadSplat enables high-quality real-time rendering of complex large-scale scenes at 900+ FPS.

Proposed Method

Three key ideas:

- Neural Radiance Fields as a Prior.
- 2. Radiance Field-Informed Gaussian Splatting
- 3. Post Processing

Neural Radiance Fields as a Robust Prior

$$\mathcal{L}(\theta) = \sum_{\mathbf{r} \in \mathcal{R}_{\mathrm{batch}}} \|\mathbf{c}_{\mathrm{NeRF}}^{\theta}(\mathbf{r}) - \mathbf{c}_{\mathrm{GT}}(\mathbf{r})\|_{2}^{2}$$

 θ : network parameters

 $r \in R_{batch}$: batches of rays sampled from the set of all pixels / rays R

Generative Latent Optimization (GLO)

A per-image latent vector is optimized along with the neural field that enables explaining away the view-dependent effects.

Robust Optimization on Real-World Data

$$\mathcal{L}(\theta, \{\mathbf{l}_i\}_{i=1}^N) = \sum_{\mathbf{r}_i \in \mathcal{R}_{\text{batch}}} \|\mathbf{c}_{\text{NeRF}}^{\theta, l_i}(\mathbf{r}_i) - \mathbf{c}_{\text{GT}}(\mathbf{r}_i)\|_2^2$$

θ: network parameters

I_i: The set of GLO vectors

N: the number of input images

3D Gaussian Splatting

3D Gaussian Splatting: Explicit point-based scene representation.

The impact of a 3D Gaussian i on an arbitrary 3D point p in 3D is defined as follows:

$$f_i(p) = \sigma(\alpha_i) \exp(-\frac{1}{2}(p - \mu_i)\Sigma_i^{-1}(p - \mu_i))$$

$$C(p) = \sum_{i \in N} c_i f_i^{2D}(p) \underbrace{\prod_{j=1}^{i-1} (1 - f_j^{2D}(p))}_{transmittance}$$

Where $f^{2D}(p)$ is a projection of f(p) onto an image plane of the camera that is being rendered.

New parameters in the paper

Replace $f_j(p)$ with α_j .

$$\mathbf{c}_{\mathrm{GS}} = \sum_{j=1}^{N_p} \mathbf{c}_j \alpha_j \tau_i \quad \text{where} \quad \tau_i = \prod_{i=1}^{j-1} (1 - \alpha_i)$$

NeRF

Gaussian Splatting

NeRF equation from previous slides:

$$\mathbf{c}_{\text{NeRF}} = \sum_{j=1}^{N_s} \tau_j \alpha_j \mathbf{c}_j$$
 where $\tau_j = \prod_{k=1}^{j-1} (1 - \alpha_k)$, $\alpha_j = 1 - e^{-\sigma_j \delta_j}$

Radiance Field-Informed Gaussian Splatting

Volume rendering paradigm:

Allows for flexible manipulation of 3D space.

Density control:

Enables free initialization, removal, and modification of density in 3D.

Contrast to point-based representations:

Point-based methods are limited to gradient signals for existing geometry.

Initialization advantage:

Radiance fields offer easier initialization in the optimization process.

How can NeRF priors be leveraged to improve initialization?

Rendering the median depth from our NeRF model for each ray:

$$z_{\text{median}} = \sum_{i=1}^{N_z} \alpha_i \|\mathbf{x}_i\|_2$$
 where $\tau_{N_z} \ge 0.5$ and $\tau_{N_z-1} < 0.5$

Project all rays into 3D space to obtain our initial point set:

$$\mathcal{P}_{\text{init}} = \{\mathbf{p}_i\}_{i \in \mathcal{K}_{\text{random}}} \quad \text{with} \quad \mathbf{p}_i = \mathbf{r}_0(i) + \mathbf{d}_{r(i)} \cdot z_{\text{median}}(\mathbf{r}(i))$$

 K_{random} : A set of randomly selected indices from the entire set of rays.

 $r_0(\cdot)$: The ray origin

 $d_r(\cdot)$: The normalized ray direction

Radiance Field-based Supervision

Radiance Field-based Methods:

Achieve state-of-the-art quality in view synthesis.

Handle challenging scenarios like in-the-wild captures and large-scale scenes.

Radiance Field-based Supervision

Generate cleaner supervision signals.

Rendering input images with a NeRF model and a constant zero GLO vector.

$$\mathcal{I}_f = \{I_f^j\}_{j=1}^N \quad \text{where} \quad I_f^j = \{\mathbf{c}_{\text{NeRF}}^{\theta, l_{\text{zero}}}(\mathbf{r}_j(i))\}_{i=1}^{H \times W}$$

Training

$$\mathcal{I}_f = \{I_f^j\}_{j=1}^N \quad \text{where} \quad I_f^j = \{\mathbf{c}_{\text{NeRF}}^{\theta, l_{\text{zero}}}(\mathbf{r}_j(i))\}_{i=1}^{H \times W}$$

I_{zero}: Indicates the zero GLO vector

H & W: The height and the width images

 $r_{i}\left(\cdot\right)$: The rays belonging to the j-th image

Loss Function:

$$\mathcal{L}(\phi) = (1 - \lambda) \|I_f^i - I_\phi^i\|_2^2 + \lambda \operatorname{SSIM}(I_f^i, I_\phi^i) \quad \text{with} \quad i \sim \mathcal{U}(N)$$

U: The uniform distribution

Ray Contribution-Based Pruning

All the techniques used by now have not helped us to achieve substantial speed improvements yet.

The number of points in a scene directly impacts rendering performance.

Proposed Solution:

Develop a novel pruning technique to reduce the number of Gaussians.

Maintain high-quality rendering output while accelerating performance across platforms.

Pruning

Defining an importance score by aggregating the ray contribution of Gaussian p_i along all rays of all input images.

$$h(\mathbf{p}_i) = \max_{I_f \in \mathcal{I}_f, r \in I_f} \alpha_i^r \tau_i^r$$

Pruning step:

$$m_i = m(\mathbf{p}_i) = \mathbb{1} (h(\mathbf{p}_i) < t_{\text{prune}}) \text{ where } t_{\text{prune}} \in [0, 1]$$

Viewpoint-Based Visibility Filtering

Viewpoint-Based Visibility Filtering

Handle larger, more complex scenes (houses, apartments).

Accelerate test-time rendering without quality loss.

Input Camera Clustering

Group input cameras based on their locations to create a scene tessellation.

Employ k-means clustering on camera positions to identify cluster centers.

Assign cameras to corresponding cluster centers.

Viewpoint-Based Visibility Filtering

Visibility Filtering:

For each cluster center, select associated input cameras.

Render images from these camera viewpoints.

Compute importance scores and visibility indicator lists.

$$h_j^{\text{cluster}}(\mathbf{p}_i) = \max_{I \in \mathcal{I}_c^i, r \in I} \alpha_i^r \tau_i^r, \quad m_j^{\text{cluster}} = \mathbb{1}\left(h_j^{\text{cluster}}(\mathbf{p}_i) > t_{\text{cluster}}\right)$$

 I_c^i : All images captured from cameras assigned to a cluster X^i $t_{cluster}^i$: Controls the points that should be filtered out.

Method Overview

3. Post-Processing for Accelerated Rendering

Quantitative Comparison

	SSIM†	PSNR↑	LPIPS↓	FPS†	#G(M)↓
INGP [35]	0.705	25.68	0.302	9.26	-
BakedSDF [73]	0.697	24.51	0.309	539	-
MERF [56]	0.722	25.24	0.311	171	-
SMERF [10]	0.818	27.99	0.211	228	-
CompactG [23]	0.798	27.08	0.247	128	1.388
LightG [11]	0.799	26.99	0.25	209	1.046
EAGLES [14]	0.809	27.16	0.238	137	1.712
3DGS [21]	0.815	27.20	0.214	251	3.161
Ours Light	0.826	27.56	0.213	907	0.370
Ours	0.843	28.14	0.171	410	1.924
Zip-NeRF [2]	0.836	28.54	0.177	0.25	-

(a) Mip-NeRF360 dataset [1]

	Incompany of the second			
8	SSIM [†]	PSNR↑	LPIPS↓	FPS↑
MERF [56]	0.747	23.49	0.445	318
SMERF [10] $(K = 1)$	0.776	25.44	0.412	356
SMERF [10] $(K = 5)$	0.829	27.28	0.340	221
3DGS [21]	0.809	25.50	0.369	470
Ours Light	0.838	26.11	0.368	748
Ours	0.839	26.17	0.364	630
Zip-NeRF [2]	0.836	27.37	0.305	0.25

(b) Zip-NeRF dataset [2]

RadSplat reduces the point count by a factor of 10 compared to 3DGS [21] while enhancing image quality. (Light Model)

RadSplat surpasses Zip-NeRF in SSIM and LPIPS metrics, rendering 3,600 times faster. (Default Model)

Pruning and Optimization Behavior

(a) SSIM against Pruning Threshold.

(b) SSIM against Iteration (in Thousand).

Thank you!

- Thank you for your attention!
- I appreciate your time and interest.
- If you have any questions, please feel free to ask.
- Contact information: alimohammadiamirhossein@gmail.com

