Semi-Relativistic Coulomb Collision Operators for Current Drive Applications

Y. J. $Hu^{1,2}$ Y. M. $Hu^{1,2}$ Y. R. Lin-Liu³

¹Institute of Plasma Physics, Chinese Academy of Sciences, Hefei.

²Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei.

³Department of Physics and Center for Mathematics and Theoretical Physics, National Central University, Taiwan.

EC-16, Sanya, China, 2010

Introduction and Motivation

- A semi-relativistic Fokker-Planck operator for electron-electron collision was first used by Karney and Fisch to calculate lower-hybrid and electron cyclotron current drive efficiencies.
- There is evidence from our recent numerical work that this collision operator should be appropriate for current drive applications under ITER conditions.
- We extended Karney and Fisch's work by expressing the semi-relativistic Fokker-Planck coefficients in terms of a pair of Rosenbluth-Trubnikov potential functions, and worked out the general Legendre expansion of these two potentials.
- This general Legendre expansion can be used to implement the semi-relativistic collision term efficiently in Fokker-Planck codes, such as in CQL3D.

Whether the semi-relativistic collision operator is precise enough under ITER conditions?

- To justify the use of semi-relativistic collision operator under ITER conditions, here we give some numerical examples about the precision of the semi-relativistic collision operator.
- These numerical results indicate that the semi-relativistic collision operator should be precise enough for current drive applications under ITER conditions.

Whether the semi-relativistic collision operator is precise enough under ITER conditions?

Figure 1: Efficiencies for localized excitation of Landau-damped waves (left figure), cyclotron-damped waves (middle figure) and narrow Landau-damped waves (right figure). The curves from bottom to top show the efficiencies for different temperature $\Theta = T_e/m_ec^2 = 0.02, 0.05, 0.1, 0.2.$ The solid lines correspond to the full-relativistic model, while the dashed lines correspond to the semi-relativistic model.

Collision operator in Fokker-Planck form

The collision term for a relativistic plasma of species a colliding off species b may be written in the Fokker-Planck form as[1, 4, 5]

$$C(f_a, f_b) = -\frac{\partial}{\partial \boldsymbol{u}} \cdot \left[-\boldsymbol{D}^{a/b} \cdot \frac{\partial f_a}{\partial \boldsymbol{u}} + \boldsymbol{F}^{a/b} f_a \right],$$

in which the coefficient $oldsymbol{D}^{a/b}$ and $oldsymbol{F}^{a/b}$ are defined by

$$\boldsymbol{D}^{a/b}(\boldsymbol{u}) = \frac{q_a^2 q_b^2}{8\pi \epsilon_0^2 m_a^2} \ln \Lambda^{a/b} \int \boldsymbol{U}(\boldsymbol{u}, \boldsymbol{u}') f_b(\boldsymbol{u}') d\boldsymbol{u}', \qquad (1)$$

$$\boldsymbol{F}^{a/b}(\boldsymbol{u}) = -\frac{q_a^2 q_b^2}{8\pi\epsilon_0^2 m_a m_b} \ln \Lambda^{a/b} \int \frac{\partial}{\partial \boldsymbol{u}'} \cdot \boldsymbol{U}(\boldsymbol{u}, \boldsymbol{u}') f_b(\boldsymbol{u}') d\boldsymbol{u}', \quad (2)$$

Here f_a and f_b are the distribution functions for the two species, \boldsymbol{u} is the ratio of momentum to species mass, and $\ln \Lambda^{a/b}$ is the Coulomb logarithm.

Extend Karney and Fisch's work

 If either the test or the background species is weakly relativistic, the full relativistic collision kernel can be approximated by the simple Landau semi-relativistic kernel[2, 4],

$$oldsymbol{U}(oldsymbol{v},oldsymbol{v}') = rac{oldsymbol{I}}{|oldsymbol{v}-oldsymbol{v}'|} - rac{(oldsymbol{v}-oldsymbol{v}')\,(oldsymbol{v}-oldsymbol{v}')}{|oldsymbol{v}-oldsymbol{v}'|^3}.$$

 In this work, we extend Karney's work by expressing the semi-relativistic Fokker-Planck coefficients in terms of two potential functions, and worked out the general Legendre decomposition of these two potential functions.

Potential form of the semi-relativistic Fokker-Planck coefficients

Define two potential functions,

$$h_b(\boldsymbol{v}) = -\frac{1}{8\pi} \int |\boldsymbol{v} - \boldsymbol{v}'| \gamma'^5 f_b(\gamma' \boldsymbol{v}') d^3 \boldsymbol{v}',$$

$$g_b(\boldsymbol{v}) \equiv -\frac{1}{4\pi} \int \left| \frac{1}{|\boldsymbol{v} - \boldsymbol{v}'|} \left(\frac{1}{\gamma'} + \frac{1}{\gamma'^3} \right) + \frac{(\boldsymbol{v} \cdot \boldsymbol{v}' - \boldsymbol{v}'^2)^2}{|\boldsymbol{v} - \boldsymbol{v}'|^3 \gamma'} \right| \gamma'^5 f_b(\gamma' \boldsymbol{v}') d^3 \boldsymbol{v}'.$$

In terms of these two potential functions, the diffusion and friction coefficients can be written as.

$$\boldsymbol{D}^{a/b}(\boldsymbol{u}) = -\frac{4\pi c_{ab}}{m_a^2} \frac{\partial^2 h_b(\boldsymbol{v})}{\partial \boldsymbol{v} \partial \boldsymbol{v}},$$

$$\mathbf{F}^{a/b}(\mathbf{u}) = -\frac{4\pi c_{ab}}{m_{rr}m_{b}}\frac{\partial}{\partial \mathbf{v}}g_{b}(\mathbf{v}).$$

Legendre expansion of Fokker-Planck coefficients I

If the background distribution f_b and the potential functions are expanded in terms of Legendre polynomials (assuming axial symmetry),

$$f_b(u,\theta) = \sum_{l=0}^{\infty} f_b^l(u) P_l(\cos \theta),$$

$$h_b(v,\theta) = \sum_{l=0}^{\infty} h_b^l(v) P_l(\cos \theta),$$

$$g_b(v,\theta) = \sum_{l=0}^{\infty} g_b^l(v) P_l(\cos \theta),$$

one can get a relation between \boldsymbol{h}_b^l and \boldsymbol{f}_b^l ,

$$h_b^l(v) = \frac{1}{2(4l^2 - 1)} \left[\int_0^v \frac{(v')^{l+2}}{v^{l-1}} \left(1 - \frac{2l - 1}{2l + 3} \times \frac{(v')^2}{v^2} \right) \gamma'^5 f_b^l(\gamma' v') dv' \right] + \int_v^c \frac{v^l}{(v')^{l-3}} \left(1 - \frac{2l - 1}{2l + 3} \times \frac{v^2}{(v')^2} \right) \gamma'^5 f_b^l(\gamma' v') dv' \right].$$

Я

Legendre expansion of Fokker-Planck coefficients II

And a relation between g_b^l and f_b^l ,

$$\begin{split} g_b^l(v) &= -\frac{1}{2l+1} \int_0^v \left[\frac{1}{c^2} \frac{v'^{l+2}}{v^{l-1}} \gamma'^4 \frac{l(l-1)}{2l-1} - \frac{1}{c^2} \frac{v'^{l+4}}{v^{l+1}} \gamma'^4 \left(\frac{l^2+l-1}{2l+3} \right) \right. \\ &+ \left. \frac{(v')^{l+2}}{v^{l+1}} \left(\gamma'^2+1 \right) \gamma'^2 \right] f_b^l(\gamma'v') dv' \\ &- \left. \frac{1}{2l+1} \int_v^c \left[-\frac{1}{c^2} \frac{v^{l+2}}{v'^{l-1}} \gamma'^4 \frac{(l+1)(l+2)}{2l+3} + \frac{1}{c^2} \frac{v^l}{v'^{l-3}} \gamma'^4 \left(\frac{l^2+l-1}{2l-1} \right) \right. \\ &+ \left. \frac{v^l}{(v')^{l-1}} \left(\gamma'^2+1 \right) \gamma'^2 \right] f_b^l(\gamma'v') dv'. \end{split}$$

Q

Summary

- We have derived a general Legendre expansion for the Fokker-Planck coefficients of the semi-relativistic collision operator.
- This general Legendre decomposition can be used to implement the semi-relativistic collision term efficiently in Fokker-Planck codes, such as in CQL3D[9].

References

[1] S. T. Beliaev and G. I. Budker. Sov. Phys. Dokl, 1:218, 1956.

[2] Charles F. F. Karney and Nathaniel J. Fisch. Physics of Fluids, 28(1):116-126, 1985.

[3] Charles F. F. Karney. Comp. Phys. Rep., 4:183-244, 1986.

[4] L. D. Landau. Phys. Z. Sowjetunion, 10:154, 1936.

[5] Bastiaan J. Braams and Charles F. F. Karney. Phys. Fluids, 1B(7):1355-1368, July 1989.

[6] Y. M. Hu, Y. J. Hu, and Y. R. Lin-Liu. In Poster at 9th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating. Sanva. China. 2010.

[7] Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd. Phys. Rev., 107(1):1-6, Jul 1957.

[8] B. A. Trubnikov. Consultants Bureau, New York, 1965.

[9] R.W. Harvey and M.G. McCoy. In *IAEA Conf. Proc.*, Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, page 527, Montreal, Canada, 1992. International Atomic Energy Agency.

[10] Bastiaan J. Braams and Charles F. F. Karney. Phys. Rev. Lett, 59(16):1817, 1987.

[11] Jr. T.M. Antonsen and K.R. Chu. Physics of Fluids, 25(8):1295–1296, 1982.

[12] Ronald H. Cohen. Physics of Fluids, 30(8):2442-2449, 1987.

[13] Y. R. Lin-Liu, V. S. Chan, and R. Prater. Physics of Plasmas, 10(10):4064-4071, 2003.