1. According to Hardy-Weinberg law, if gene frequencies are in equilibrium, the chance of observing genotypes AA, Aa, aa in a population equals $(1-\theta)^2$, $2\theta(1-\theta)$, and θ^2 , respectively. Let X_1 , X_2 , and X_3 denote the counts observed for blood type M, MN, and N, respectively, out of sample size n. Assuming Hardy-Weinberg law holds, one may assume X_1 , X_2 and X_3 follow a multinomial distribution with probability density function

$$f(x_1, x_2, x_3 | \theta) = \frac{n!}{x_1! x_2! x_3!} (1 - \theta)^{2x_1} \{ 2\theta (1 - \theta) \}^{x_2} \theta^{2x_3},$$

and
$$E(X_1) = n(1-\theta)^2$$
, $E(X_2) = 2n\theta(1-\theta)$, and $E(X_3) = n\theta^2$.

- (a) Find the maximum likelihood estimator of θ and comment on whether it is unbiased.
- (b) Find the Cramér–Rao lower bound (CRLB) for any unbiased estimator of θ .
- (c) Naively, one may use an unbiased estimator X_3/n to estimate θ^2 . Show that

$$\sqrt{n}(X_3/n - \theta^2) \to_d N(0, \theta^2(1 - \theta^2)),$$

and find σ^2 such that

$$\sqrt{n}(\sqrt{X_3/n}-\theta)\to_d N(0,\sigma^2).$$

Compare σ^2/n to the CRLB in (b) and comment on which one is smaller.

2. Let T_1 and T_2 be sufficient statistics for θ , and suppose that U be an unbiased estimator of θ . Let

$$V_1 = E(U|T_1),$$

 $V_2 = E(V_1|T_2).$

- (a) Show that both V_1 and V_2 are unbiased estimators of θ .
- (b) Show that $Var(V_2) \leq Var(V_1)$.
- 3. In a certain laboratory experiment, the time X (in milliseconds) for a certain clotting agent to show an observable effect is assumed to have an exponential distribution

$$f(x|\beta) = \frac{1}{\beta} \exp(-x/\beta), \quad x > 0, \quad \beta > 0.$$

It is of interest to make statistical inferences about the unknown parameter $\theta = \beta^2$, which is the variance of X.

(a) Develop an explicit expression for MLE $\hat{\theta}$ of θ .

- (b) Find the uniformly minimum variance unbiased estimator (UMVUE) $\hat{\theta}^*$ of $\theta.$
- (c) Comment on whether the variance of $\hat{\theta}^*$ reaches CRLB.
- (d) Derive the likelihood ratio test statistic $\lambda(x)$ of $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$.
- (e) Show that the rejection region $R=\{\boldsymbol{x}:\lambda(\boldsymbol{x})\leq c\}$ is equivalent to $R^*=\{\boldsymbol{x}:\bar{x}\leq c_1^* \text{ or } \bar{x}\geq c_2^*\}.$

Hint 1: If a random variable W follows $Gamma(n, \beta)$, then, for r > -n,

$$E(W^r) = \frac{\Gamma(n+r)}{\Gamma(n)} \beta^r.$$

Hint 2: A function $g(y) = y^n \exp(-y)$ is a quadratic function of y.