If there are any symbols or terminology you do not recognize then please let us know.

(1) Give the truth table for the following propositions

Expression	Meaning
$a \wedge b$	a and b
$a \lor b$	$a ext{ or } b$
$a\oplus b$	$a \operatorname{xor} b$
$\neg a$ (or \bar{a})	$\operatorname{not} a$
$a \implies b$	a implies b , or: if a then b
$a \iff b$	a and b are equivalent, or: " a if and only if b "

It is usual to apply these "bit-wise" to the bits of integers, e.g. $0011 \oplus 0101 = 0110$.

Solution									
	$\neg a$	a	b	$a \wedge b$	$a \lor b$	$a\oplus b$	$a \implies b$	$a \iff b$	
	1	0	0	0	0	0	1	1	
	1	0	1	0	1	1	1	0	
	0	1	0	0	1	1	0	0	
	0	1	1	1	1	0	1	1	

(2) Recall that $\mathbb{N} = \{1, 2, 3, \ldots\}$ is the set of **natural numbers**, and $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ is the set of **integers**.

Consider the following set definitions

- $A = \{a \in \{1, 2, 3, 4\} \mid (a < 2) \lor (a > 3)\}$
- $\bullet \ B = \{a \in \mathbb{N} \mid a < 9\}$
- $\bullet \ C = \{a \in \mathbb{N} \mid a > 2 \land a < 7\}$
- $D = \{i \in \mathbb{Z} \mid i^2 \le 9\}$
- a) Give an explicit enumeration for each set, i.e. write down the elements in the form $\{x_1, x_2, \ldots\}$.

(#A is also denoted by |A|)

- b) What is the cardinality of each set?
- c) Which of these sets are subsets of at least one other set?

Solution

- a) \bullet $A = \{1, 4\}$
 - $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$
 - $C = \{3, 4, 5, 6\}$
 - $D = \{-3, -2, -1, 0, 1, 2, 3\}$
- b) #A = 2
 - #B = 8
 - #C = 4
 - #D = 7
- c) $A \subset B$ and $C \subset B$.

(3) If the set A is $\{1,3,4\}$ and the set B is $\{3,5\}$, write down:

Expression	Meaning
$A \cup B$	union of A and B
$A \cap B$	intersection of A and B
A - B	A minus B
$A \times B$	Cartesian product of A and B : set of all possible pairs (a, b)
	where $a \in A$ and $b \in B$
2^B (or $\mathcal{P}(B)$)	power set of B : set of all subsets of B

Solution

- $A \cup B = \{1, 3, 4, 5\}$
- $A \cap B = \{3\}$
- $A B = \{1, 4\}$
- $\bullet \ A\times B=\{(1,3),(1,5),(3,3),(3,5),(4,3),(4,5)\}$
- $2^B = \{\emptyset, \{3\}, \{5\}, \{3, 5\}\}$
- (4) Draw the (undirected) graph G = (V, E), where

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 2), (1, 4), (2, 3), (2, 4), (3, 5), (1, 5)\}$$

- a) Is the graph connected?
- b) What about the graph G' = (V', E'), where $V' = \{1, 2, 3, 4\}$ and $E' = \{(1, 3), (2, 4)\}$?

(5) Draw the graph G = (V, E), where $V = \{1, \dots, 5\}$ and

$$E = \{(a, b) \mid a, b \in V \land (a < b < a + 3)\}.$$

- (6) Express the following expressions using O-notation
 - \bullet x+5

- $2784x + 132 \times 1074$ $x + x \log^2 x + 35$

• 2016

- $x^{578} + 4685 + 2^x$ $2016^x + x^x + x!$

- $543x + x^3 + 13$
- $x^2 + x(\log x)^2 + 35$
- $x^{86754} + x!$

Solution

$$x + 5 = O(x)$$

$$2016 = O(1)$$

$$543x + x^{3} + 13 = O(x^{3})$$

$$2784x + 132 \times 1074 = O(x)$$

$$x^{578} + 4685 + 2^{x} = O(2^{x})$$

$$x^{2} + x(\log x)^{2} + 35 = O(x^{2})$$

$$x + x\log^{2} x + 35 = O(x\log^{2} x)$$

$$2016^{x} + x^{x} + x! = O(x^{x})$$

$$x^{86754} + x! = O(x!)$$