MI-SPOL-8

Princip lokálních heuristik, pojem globálního a lokálního minima, obrana před uváznutím v lokálním minimu.

Princip globálních metod: řešení zadané instance je konstruováno z řešení dílčích instancí

Princip lokálních metod: Věnuje se jedné aktuální konfiguraci a vybírá se příští z jejích sousedů

Stavový prostor

Stav algoritmu:

 $X=\{x_1,x_2,...,x_n\}$ konfigurační proměnné problému Π

 $Z=\{z_1,z_2,...,z_m\}$ vnitřní proměnné algoritmu A řešícího instanci I problému Π

Každé ohodnocení s proměnných $X \cup Z$ je **stav algoritmu** A řešícího I

Stavový prostor:

 $S = \{s_I\}$ množina všech stavů algoritmu A řešícího I

 $Q = \{q_J\}$ množina operátorů S o S t.ž. $orall s_I, q_J: q_J(s_I)
eq s_I$

Dvojice (S,Q) je stavový prostor algoritmu A řešícího I

Nechť $S \in S$ stav a $q \in Q$ operátor. Aplikace q na s je **akce**.

Nechť (S,Q) staovvý prostor algoritmu řešícího instanci problému. Pak se orientovaný graf H=(S,E), kde hrana $(e_I,e_J)\in E$ odpovídá akci $s_J=q(s_I)$ pro $q\in Q$, nazývá **grafem stavového prostoru algoritmu**.

Okolí stavu $s \in S$: množina stavů dosažitelných z s aplikací některé operace $q \in Q$

k-okolí stavu $s \in S$: množina stavů dosažitelných z s aplikací nejméně jedné a nejvýše k operací $q \in Q$

Stavy z okolí $s \in S$ jsou **sousední stavy** stavu s.

Příklad: Hamiltonova kružnice v grafu G:

1 z 4 14.05.2020 15:33

- ullet jedna konfigurace = podgraf G
- ullet uzel stavového prostoru = podgraf G
- operátor = např. dvojzáměna na hranách

Hrana stavového grafu

Prohledávací prostor

Ve stavovém prostoru co stav, co jedna aktuální konfigurace: $(000), (010), \dots$

V prohledávacím prostoru se začíná od "nic nevím": (???), (??0), ...

Pohyb stavovým prostorem

Aktuální stav: konfigurace příslušející aktuálnímu stavu

Transformace aktuálního stavu pomocí operátorů (pohyb)

Nutno řídit: strategie prohledávání

Úplná strategie: navštívit všechny stavy kromě těch, o kterýmch víme, že nedávají (optimální) řešení

Systematická strategie: úplná, ale navštívit každý stav nejvýše jednou

Vlastnosti:

2 z 4 14.05.2020 15:33

- nejhorší případ = hrubá síla
 - o nastane i pokud neexistuje řešení
- řešení existuje ⇒ je nalezeno
- nalezne optimální řešení

Lokální metody:

 Pouze nejlepší: jako následující stav je zvolen nejlepší ze sousedních (pokud je lepší než aktuální).

Pořadí procházení neovlivní výsledek.

• První zlepšení: Následující stav je první, který je lepší než aktuální.

Pořadí procházení ovlivní výsledek -- nutno randomizovat

Prořezávání: Cesty prohledávání, které nevedou na validní nebo optimální řešení nejsou prohledávány

Globální minimum: optimální řešení instance, žádný ze stavů není lepší

Lokální minimum: Všechny jeho souední stavy mají horší hodnotu optimalizačního kritéria.

Únik z lokálních minim:

- balanc mezi:
 - diverzifikace: rovnoměrný průzkum stavového prostoru (ochota připustit akci vedoucí k horšímu řešení)
 - o intenzifikace: konverence k finálnímu řešení (neochota připouštět horší řešení)
- Metody:
 - o zvětšení okolí stavu
 - start z někoilka různých počátečních konfigurací
 - vracet se z větví, které nevedou k řešení
 - zpracování více stavů najednou
 - restriktivní opatření (tabu search)

Pohyb v prohledávacím prostoru

- typicky ne úplné ani systematické strategie
- krok prohledávání: vyber proměnnou, vyber její hodnotu

3 z 4 14.05.2020 15:33

• možnost odvolat nastavení proměnné

4 z 4