









### **Overview of Trees**

A quick overview of trees, its types, and some important formulas to compute height and number of nodes in a tree.

We'll cover the following



- Binary Trees
- Binary Search Trees
- Red Black Trees
- AVL Trees
- 2-3 Trees

# Binary Trees#

**Definition:** A tree where each vertex has two children at most.

Types: Perfect, Full, Complete, Skewed

Total number of nodes:  $2^{(h+1)}-1$ 

Total number of leaf nodes:  $2^h or \frac{(n+1)}{2}$ 

**Height:**  $log_2(n+1) - 1$ 





## Binary Search Trees#

**Definition:** Every node has a value greater than/equal to all the node values in its left sub-tree and has a value less than all the node values in its right sub-tree. Mathematically,

$$Keys(SubTree1) < Keys(Y) < Keys(Subtree2) < Keys(X) < Keys(SubTree3)$$



#### Red Black Trees#

**Definition:** A tree where every node is colored as red or black and no two adjacent nodes have *red* color and root and null nodes are considered *black* 

Height:  $h \le 2log_2(n+1)$ 

Minimum number of nodes:  $(h+1)+2\left(\sum_{i=0}^y 2^i-1\right)$ , very second to: floor(h/2)



#### **AVL Trees**#

**Definition:** For each node, height of left and right *subtree* differ by at max one

Minimum number of nodes: N(h) = 1 + N(h-1) + N(h-2)

Maximum number of nodes:  $N-1+2^{log(N-1)+2}$ 

Height:  $O(log_2n)$ 





#### 2-3 Trees#

**Definition:** A balanced and ordered tree where each node can have two keys (X and Y) and three children at max such that:

\$LChild.Key < X < MChild.Key < Y < RChild.Key \$

Maximum number of nodes: \$ 3^h\$

**Height:**  $log_4(n+1) - 1 < h < log_2(n+1) - 1$ 

Types: 2-3-4 Trees



Interviewing soon? We've partnered with Hired so that companies apply to you instead of you applying to them. See how ①



Next  $\rightarrow$ 

2-3-4 Trees

Challenge 1: Find minimum value in Bi...



✓ Mark as Completed



Report an Issue

