Statistical Methods

Thinking of statistical methods as tools, instead of tests

Philip Sweet Summer 2021

What can we do with statistics?

1. Estimate parameters

• Mean, Median, SD, IQR

2. Make and test predictions

Use a sample to predict the populations (t-tests)

3. Build and compare models

• Regressions, classifiers (ie "big data" stuff)

What can we do with statistics?

- 1. Estimate parameters
 - Mean, Median, SD, IQR
- 2. Make and test predictions
 - Use a sample to predict the population (t-tests)

- 3. Build and compare models
 - Regressions, classifiers (ie "big data" stuff)

What can we do with statistics?

- 1. Estimate parameters
 - Mean, Median, SD, IQR
- 2. Make and test predictions
 - Use a sample to predict the populations (t-tests)

• Regressions, ANOVA, classifiers (ie "big data" stuff)

Conducting meaningful statistical analysis requires that you <u>understand your data</u>

Understanding your data

- What kind of data are you working with?
- How much data will you have?
- Do you have a sense of how it will be distributed?
- Are you trying to be descriptive or predictive?

Conducting meaningful statistical analysis requires that you know your tools

Classes of Statistical Methods

- Frequentist
 - Parametric
 - T-tests
 - ANOVA/F-test
 - Regression
 - Chi-squared
 - Non-parametric
 - Mann–Whitney/Kolmogorov–Smirnov
 - Bootstrapping
- Bayesian
 - Bayes' Theorem
 - Naïve Bayes Classifier
 - Markov Chain Monte Carlo
- ~~Machine Learning~~

Methods Crash Course

- Introduction to Classes of Statistics
 - Frequentist vs Bayesian
 - Parametric vs Non-parametric
 - Bayesian Statistics
- Biology Examples
 - Parametric:
 - ANOVA comparing mean of qPCR data
 - Non-parametric:
 - KS test of distribution of cell sizes
 - Bayesian:
 - Assign bird gender using weight
 - Model development

Flow Chart for Selecting Commonly Used Statistical Tests

Frequentist vs Bayesian Statistics

Frequentist

- Based on the probability that the experiment would have the same outcomes if it were to replicated
- Only takes into account the data collected
- Tests against randomness, ie a "positive" result is that the data/outcome isn't random

Bayesian

- Uses probability to expresses a degree of belief in an experimental outcome
- Takes into account existing data and assumptions as well as the current experiment data
- Tests which model is more predictive (more true)

Parametric Methods Rely on a Distribution

Parametric Methods Rely on a Distribution

- Most of the commonly employed statistical tests in the life sciences are parametric.
- Tests rely on the data coming from an assumed distribution against which hypothesis can be tested
- Null Hypothesis = Assumption
- Alt Hypothesis = Prediction
- Parametric test allow you to REJECT the null, but they do not PROVE the alternative.

DeltaDeltaCT Method

- **1. CT** = abundance of gene in the sample
- 2. DeltaCT = internally normalized abundance of the gene
- **3. DeltaDeltaCT** = relative abundance to the control sample
- From this we can calculate a foldchange by raising the 2^DeltaDeltaCT

DeltaDeltaCT Method

- **1. CT** = abundance of gene in the sample
- 2. DeltaCT = internally normalized abundance of the gene
- **3. DeltaDeltaCT** = relative abundance to the control sample
- From this we can calculate a foldchange by raising the 2^DeltaDeltaCT

For determining significance of the effect, it is best to use the DeltaCT since it is the least modified


```
# Compute the analysis of variance
res.aov <- aov(weight ~ group, data = my data)
# Summary of the analysis
summary(res.aov)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
       2 3.766 1.8832 4.846 0.0159 *
group
Residuals 27 10.492 0.3886
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


The output includes the columns F value and Pr(>F) corresponding to the p-value of the test.

```
group \rightleftharpoons ctrl \rightleftharpoons trt1 \rightleftharpoons trt2
 TukeyHSD(res.aov)
                                                                         6.0
                                                                        Gene X (DeltaCT)
7.2
  Tukey multiple comparisons of means
     95% family-wise confidence level
Fit: aov(formula = weight ~ group, data = my data)
$group
               diff
                               lwr
                                                      p adj
                                           upr
trt1-ctrl -0.371 -1.0622161 0.3202161 0.3908711
                                                                         4.0
trt2-ctrl 0.494 -0.1972161 1.1852161 0.1979960
trt2-trt1 0.865 0.1737839 1.5562161 0.0120064
                                                                         3.5
                                                                                                                             trt2
                                                                                       ctrl
                                                                                                          trt1
                                                                                                        Treatment
```

- diff: difference between means of the two groups
- lwr, upr: the lower and the upper end point of the confidence interval at 95% (default)
- **p adj**: p-value after adjustment for the multiple comparisons.

It can be seen from the output, that only the difference between trt2 and trt1 is significant with an adjusted p-value of 0.012.

Non-Parametric Methods Only Need Data

- For when your data looks "weird" or you want to compare distributions of data
- A very broad category of methods defined by what they aren't,
 i.e. they use no assumptions about the shape of the data
- Each method builds a distribution using the data to be tested
- Often rely on ranking the data
- Good for low occurrence data sets in which you want to establish a difference
- Still based around Null and Alt hypothesis

1		A	В				
1	Sample1		Sample2				
2		87		71			
3 4		72		42			
4		94		69			
5		Input Your Data		97			
6				78			
7				84			
8		74		57			
9		61		64			
10		80		78			
11		52		73			
12		75		85			
13				91			
14							
15							
16							
17							
18							

_							
	Α		В		С	D	
1	San	ple1	Sam	ole2	Rank1	Rank2	
3		87		71	19.00	9.00	
		72		42	10.00	1.00	
4		94		69	22.00	8.00	
5				97	2.00	23.00	
6		Inp		78	4.00	14.50	
7		Your	Data	84	20.00	17.00	
8		74		57	12.00	5.00	
9		61		64	6.00	7.00	
10		80		78	16.00	14.50	
11		52	2 73		3.00	11.00	
12		75		85	13.00	18.00	
13				91		21.00	
14						Input α	
15						πιρατ α	
16							
17							
18							

		A	D	1	С	D	F	G	Н	1
		A	В		C	D	Г	G	П	ı
1	San	iple1	Sam	ole2	Rank1	Rank2	T2			
2		87		71	19.00	9.00	149	Total Rank		
3		72		42	10.00	1.00	75.50	Median		
4		94		69	22.00	8.00	12.00	n1, n2		
5		1		97	2.00	23.00	71.0	U1		
6		Inp		78	4.00	14.50	61.0	U2		
7		Your	Data	84	20.00	17.00	61.0	J		
8		74		57	12.00	5.00	132	E(U1)		
9		61		64	6.00	7.00	144	E(U2)		
10		80		78	16.00	14.50	66	E(U)		
11		52		73	3.00	11.00	16.248077	σ		
12		75		85	13.00	18.00	112.15435	Action(L)		
13				91		21.00	175.84565	Action(U)		
14						Input α	0.05	α		
15						присα	0.3077287	Z		
16							0.76	р		
17							Accept Nul	Hypothesis	at al	oha=0.05
18										

Mann-Whitney in R

```
#create a data frame with two columns, one for each group
drug_data \leftarrow data.frame(attacks = c(3, 5, 1, 4, 3, 5, 4, 8, 6, 2, 1, 9),
                        drug_group = c(rep("old", 6), rep("placebo", 6)))
#perform the Mann Whitney U test
wilcox.test(attacks~drug_group, data = drug_data)
#output
data: attacks by drug_group
W = 13, p-value = 0.468
alternative hypothesis: true location shift is not equal to 0
```

Example: Comparing the distribution of cell sizes using the Kolmogorov–Smirnov test

Bayesian Statistics

- Based on probability i.e Bayes' Therom
- Useful for assigning classifications
- Let's you build models using assumptions and collected data

Example: Determining falcon gender using weight

We are ecologists with access to large number of falcon weights and we want to determine the gender of the measured birds.

- We know half of birds are male and half are female thus our **Likelihood** is 0.5
- A previous dataset tells us a weight ranges of male and female birds this is our **Prior**
- Combining the *likelihood* and *prior* produces the **Posterior**
- Each bird weight of unknown can then be feed into this model and a probable gender assignment can be produced

Posterior
$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
Evidence

Example: Sally Determines the Weather Using John's Actions Hidden Markov Model

Bayesian statistics is great for big data sets and building complex models

Example applications

- Determining ORFs in unannotated genomes
- Determining Introns and Exon boundaries
- Assigning cell type in mixed population
- Determining diseased states using biometrics
- Testing drug treatments

But what about Machine Learning??

"A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at the tasks improves with the experiences." --- (Mitchell 1997)

- **Supervised:** You provide the labels on the data and the program tries to determine which data predict the label by building a model (Regression, Naïve Bayes Classifier, Random Forest)
- **Unsupervised:** You provide the data, the algorithm provides the clusters, no model is produced (PCA and K-means)
- **Deep Learning:** ~Neural Networks~ Huge amounts of data to train a black box classifier

Basic machine learning functions for R can be found in the caret package

Caret Resources

- https://topepo.github.io/caret/
- https://cran.r-project.org/web/packages/caret/vignettes/caret.html

Resources abound!

- Portfolio in applied statistical modeling
 - Like a minor for your PhD
 - https://stat.utexas.edu/graduate/portfolio-in-applied-statistical-modeling
- UT Summer Statistics Institute
 - Week-long courses in specific topics
 - https://stat.utexas.edu/training/ssi
- TACC Summer Institute
 - Computationally focused short courses
 - https://www.tacc.utexas.edu/education/institutes/intro-advanced-computing
- LinkedIn Learning
 - Free w/UTID
 - Go at your own pace
 - https://www.linkedin.com/learning/topics/statistics?u=36306084