

SEQUENCE LISTING

<110> Clegg, James M.
Latham, John
Litton, Mark
Schatzman, Randall
Tolstorukov, Ilya

<120> Methods of synthesizing heteromultimeric
polypeptides in yeast using a haploid mating strategy

<130> ALDR-001WO

<140> unassigned
<141> 2004-10-22

<150> 60/513,876
<151> 2003-10-22

<160> 16

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 47
<212> DNA
<213> mouse

<400> 1
ccgctcgaga aaagagaggc tgaagcttag gtccagctgc agcagtc

47

<210> 2
<211> 41
<212> DNA
<213> mouse

<400> 2
tgggcccttg gtggaggctg aggagactgt gagagtggtg c

41

<210> 3
<211> 50
<212> DNA
<213> mouse

<400> 3
ccgctcgaga aaagagaggc tgaagctcaa attgttctca cccagtctcc

50

<210> 4
<211> 44
<212> DNA
<213> mouse

<400> 4
gacagatggc gcagccacag cccggtttat ttccaacttt gtcc

44

<210> 5
<211> 38
<212> DNA
<213> homo sapien

<400> 5

ataagaatgc ggccgctcat ttaccggag acaggag

38

<210> 6

<211> 41

<212> DNA

<213> homo sapien

<400> 6

gcaccactt cacagtctcc tcagcctcca ccaagggccc a

41

<210> 7

<211> 32

<212> DNA

<213> homo sapien

<400> 7

tgcggccgct catggcacy gtgggcatgt gt

32

<210> 8

<211> 39

<212> DNA

<213> homo sapien

<400> 8

ataagaatgc ggccgctaactctccct gttgaagct

39

<210> 9

<211> 44

<212> DNA

<213> homo sapien

<400> 9

ggacaaagtt ggaaataaac cgggctgtgg ctgcaccatc tgtc

44

<210> 10

<211> 212

<212> PRT

<213> homo sapien

<400> 10

Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu

1 5 10 15

Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn

20 25 30

Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp

35 40 45

Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly

50 55 60

Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly Met Glu Ala Glu Asp

65 70 75 80

Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr Phe

85 90 95

Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg Ala Val Ala Ala Pro Ser

100 105 110

Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala

115 120 125

Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val

130 135 140

Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser

145 150 155 160

Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr

165 170 175

Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys
 180 185 190
 Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn
 195 200 205
 Arg Gly Glu Cys
 210

<210> 11
<211> 321
<212> DNA
<213> mouse

<400> 11
caaattgttc tcacccagtc tccagcaatc atgtctgcat ctccagggga gaaggtcacc 60
atgacctgca gtgccagctc aagtgttaat tacatgaact ggtaccagca gaagtcaggc 120
acctccccca aaagatggat ttatgacaca tccaaactgg cttctggagt ccctgctcac 180
ttcaggggca gtgggtctgg gacctttac tctctcacaa tcagcggcat ggaggctgaa 240
gatgctgcca cttattactg ccagcagtgg agtagtaacc cattcacgtt cggctcgaaa 300
acaaagtgg aaataaaccg g 321

<210> 12
<211> 321
<212> DNA
<213> homo sapien

<400> 12
gctgtggctg caccatctgt cttcatcttc cgcgcattctg atgagcagtt gaaatctgga 60
actgcctctg ttgtgtgcct gctgaataac ttcttatccc gagaggccaa agtacagtgg 120
aagggtggata acgcctcca atcgggtaac tcccaggaga gtgtcacaga gcaggacagc 180
aaggacagca cctacagcct cagcagcacc ctgacgctga gcaaagcaga ctacgagaaa 240
cacaaugtct acgcctgcga agtcacccat cagggcctga gctcgccgt cacaaagagc 300
ttcaacacagg gagagtgtta g 321

<210> 13
<211> 449
<212> PRT
<213> homo sapien

<400> 13
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30
Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45
Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60
Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80
Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95
Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110
Thr Thr Leu Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
115 120 125
Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
130 135 140
Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
145 150 155 160
Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 180 185 190
 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
 195 200 205
 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
 210 215 220
 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 225 230 235 240
 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
 245 250 255
 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
 260 265 270
 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
 275 280 285
 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
 290 295 300
 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
 305 310 315 320
 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
 325 330 335
 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
 340 345 350
 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr
 355 360 365
 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 370 375 380
 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
 385 390 395 400
 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
 405 410 415
 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
 420 425 430
 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
 435 440 445
 Lys

<210> 14
 <211> 1350
 <212> DNA
 <213> homo sapien

<400> 14
 cagggtccagc tgcagcagtc tggggctgaa ctggcaagac ctggggcctc agtgaagatg 60
 tcctgcaagg cttctggcta cacccttact aggtacacga tgcaactgggt aaaacagagg 120
 cctggacagg gtcttggatg gattggatac attaatccta gcccgtggta tactaattac 180
 aatcagaagt tcaaggacaa ggccacattg actacagaca aatcctccag cacagcctac 240
 atgcaactga gcagggctgac atctgaggac tctgcagtct attactgtgc aagatattat 300
 gatgatcatt actgccttga ctactggggc caaggcacca ctctcacagt ctccctcagcc 360
 tccaccaagg gcccatecggt cttccccctg gcaccctcct ccaagagcac ctctggggc 420
 acagcggccc tgggctgcct ggtcaaggac tacttccccg aaccgtgtac ggtgtcgtgg 480
 aactcaggcg ccctgaccag cggcgtgcac accttcccg ctgtcctaca gtcctcagga 540
 ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac ccagacctac 600
 atctgcaacg tgaatcacaa gcccagcaac accaagggtgg acaagaaaagt tgagcccaa 660
 tcttgtgaca aaactcacac atgcccaccc tgcccagcac ctgaactcct ggggggaccc 720
 tcagtcttcc tctttccccc aaaacccaaag gacaccctca tgatctcccg gacccttgag 780
 gtcacatgcg tgggtggta cgtgagccac gaagaccctg aggtcaagtt caactgttac 840
 gtggacggcg tggaggtgca taatgccaag acaaagccgc gggaggagca gtacaacagc 900
 acgtaccgtg tggtcagcgt cctcaccgtc ctgcaccagg actggctgaa tggcaaggag 960
 tacaagtgca aggtctccaa caaagccctc ccagccccca tcgagaaaaac catctccaaa 1020
 gccaaagggc agccccgaga accacaggtg tacaccctgc ctccatcccg ggatgagctg 1080

accaagaacc agtcagcc gacctgcctg gtcaaaggct tctatcccag cgacatcgcc 1140
 gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgccc tcccgtgctg 1200
 gactccgacg gtccttctt cctctatacg aagtcaccg tggacaagag caggtggcag 1260
 caggggaacg tcttctcatg ctccgtatg catgaggctc tgcacaacca ctacacgcag 1320
 aagagctct ccctgtctcc gggtaaatga 1350

<210> 15
<211> 1350
<212> DNA
<213> homo sapien

<400> 15
caggtccagc tgcaagcgtc tgggctgaa ctggcaagac ctggggcctc agtgaagatg 60
 tcctgcaagg ctctggcta caccttact aggtacacga tgcactgggt aaaacagagg 120
 cctggacagg gtctggatg gattggatac attaatccta gccgtggta tactaattac 180
 aatcagaagt tcaaggacaa ggccacattt actacagaca aatcctccag cacagcctac 240
 atgcaactga gcagcctgac atctgaggac tctgcagttt attactgtgc aagatattat 300
 gatgatcatt actgccttga ctactggggc caaggcacca ctctcacagt ctcctcagcc 360
 tccaccaagg gcccattcggt cttccccctg gcaccctctt ccaagagcac ctctggggc 420
 acagcggccc tgggctgctt ggtcaaggac tacttccccg aaccgggtgac ggtgtcggt 480
 aactcaggcg ccctgaccag cggcgtgcac accttccccg ctgtcctaca gtcctcagga 540
 ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac ccagacccat 600
 atctgcaacg tgaatcacaa gcccagcaac accaagggtgg acaagaaaagt tgagcccaa 660
 tcttgtgaca aaactcacac atgcccaccg tgcccagcac ctgaactcctt ggggggaccg 720
 tcagtcttcc tcttcccccc aaaacccaag gacaccctca tgatctcccg gaccctcg 780
 gtcacatgcg tgggtgtgga cgtgagccac gaagaccctg aggtcaagtt caactgggtac 840
 gtggacggcg tggaggtgca taatgcaag acaaaggccgc gggaggagca gtacaacagc 900
 gcctaccgtg tggttagcgt ctcaccgtc ctgcaccagg actggctgaa tggcaaggag 960
 tacaagtgcg aggtctccaa caaaggccctc ccagccccca tcgagaaaaac catctccaa 1020
 gccaaaggcc agcccccggaga accacaggtg tacaccctgc ccccatcccg ggatgagctg 1080
 accaagaacc aggtcagcc gacctgcctg gtcaaaggct tctatcccag cgacatcgcc 1140
 gtggagtggg agagcaatgg gcagccggag aacaactaca agaccacgccc tcccgtgctg 1200
 gactccgacg gtccttctt cctctatacg aagtcaccg tggacaagag caggtggcag 1260
 caggggaacg tcttctcatg ctccgtatg catgaggctc tgcacaacca ctacacgcag 1320
 aagagctct ccctgtctcc gggtaaatga 1350

<210> 16
<211> 699
<212> DNA
<213> homo sapien

<400> 16
caggtccagc tgcaagcgtc tgggctgaa ctggcaagac ctggggcctc agtgaagatg 60
 tcctgcaagg ctctggcta caccttact aggtacacga tgcactgggt aaaacagagg 120
 cctggacagg gtctggatg gattggatac attaatccta gccgtggta tactaattac 180
 aatcagaagt tcaaggacaa ggccacattt actacagaca aatcctccag cacagcctac 240
 atgcaactga gcagcctgac atctgaggac tctgcagttt attactgtgc aagatattat 300
 gatgatcatt actgccttga ctactggggc caaggcacca ctctcacagt ctcctcagcc 360
 tccaccaagg gcccattcggt cttccccctg gcaccctctt ccaagagcac ctctggggc 420
 acagcggccc tgggctgcctt ggtcaaggac tacttccccg aaccgggtgac ggtgtcggt 480
 aactcaggcg ccctgaccag cggcgtgcac accttccccg ctgtcctaca gtcctcagga 540
 ctctactccc tcagcagcgt ggtgaccgtg ccctccagca gcttgggcac ccagacccat 600
 atctgcaacg tgaatcacaa gcccagcaac accaagggtgg acaagaaaagt tgagcccaa 660
 tcttgtgaca aaactcacac atgcccaccg tgcccattga 699