Конспекты лекций по алгебре-геометрии

Ведёт: Верников Борис Муневич перенесено в электронный формат Ширкуновым А.

2024-2025 учебный год, первый семестр

1 Введение в алгебру

1.1 Множества и отображения

Множество - неопределяемое понятие, которое понимается как совокупность произвольного числа объектов, выделенная исходя из какого-то признака и рассматриваемая как единое целое. Понятие множества внутренне противоречиво (см. *парадокс Рассела*), поэтому мы пользуемся таким наивным "определением".

В работе с множествами используются **кванторы** – специальные символы для описания логики рассуждений.

Например, $\{x\in\mathbb{Z}\mid x=2n+1\}$ читается как 'множество всех целых нечётных х', где в фигурных скобках объявляется x, а после вертикальной черты – условие вхождения x во множество.

Свойства логических операций над множествами: коммутативность, ассоциативность, дистрибутивность, идемпотентность и проч.

- $A \cup B = B \cup A$; $A \cap B = B \cap A$ коммутативность
- ullet $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ дистрибутивность отн. объединения
- $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ дистрибутивность отн. пересечения
- $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$ accoquamus-mb
- $A \cup A = A$; $A \cap A = A udемпотентность$
- $(A \cup B) \cap A = A$; $(A \cap B) \cup A = A$ законы поглощения
- ullet $\overline{\overline{A}}=A$ закон снятия двойного отрицания
- ullet $\overline{A \cup B} = \overline{A} \cap \overline{B}; \ \overline{A \cap B} = \overline{A} \cup \overline{B}$ законы де-Моргана
- ullet $A \cup \overline{A} = U$ определение универсального множества

ullet $A\setminus B=A\cap \overline{B}$ – определение разности множеств

Важно отметить, что у операций объединения, пересечения и разности множеств одинаковый приоритет. Поэтому при работе с множествами нужно отделять части выражения скобками.

Декартовым произведением множеств A и B называется множество $A \times B$, состоящее из всех упорядоченных пар (a,b) таких, что $a \in A, b \in B$. Замечание: декартово произведение некоммутативно и неассоциативно.

Декартово произведение n множеств:

$$A_1 \times A_2 \times \ldots \times A_n = \{(x_1, x_2, \ldots, x_n) \mid x_1 \in A_1, x_2 \in A_2, \ldots, x_n \in A_n\}$$

 A^n — **декартова степень** множества, определяется как множество всех кортежей длины n, состоящих из элементов данного множества.

1.2 Отображение

Отображением f из A в B называется подмножество f множества $A \times B$, которое определеяется следующим образом: $\forall x \in A, \exists ! y \in B : (x,y) \in f$. Если множества A и B состоят из чисел, то f называется функцией.

Форма записи: $f: A \to B$ – отображение из A в B. Запись $(x,y) \in f$ часто обозначают как y = f(x), где f(x) – образ элемента x, а x – прообраз элемента f(x) при отображении f.

Если α – отображение из A в B, а $X \subseteq \alpha$, то **ограничением** α на подмножество X называется отображение из X в B, обозначаемое через $^a \mid_x$ и определяемое правилом $^a \mid_x (x) = \alpha(x)$ для всякого $x \in X$.

Отображение f из A в B называется:

- взаимно однозначным отображением (или **инъективным** отображением), если для любых $x,y\in A$ из того, что $x\neq y$ следует, что $f(x)\neq f(y)$, то есть образы двух различных элементов различны
- отображеним A на B (или **сюрьективным** отображением), если $\forall y \in B \ \exists x \in A : f(x) = y$, то есть каждый элемент из B имеет прообраз.
- взаимно однозначным соответствием (или **биективным** отображением), если f инъективно и сюрьективно.

Пусть f — отображение из A в B, а g — отображение из B в C. Произведением (а также композицией или суперпозицией) отображений f и g называется отображение h из A в C, задаваемое правилом h(x) = g(f(x)). Часто обозначается через fg(x).

Замечания: произведение отображений ассоциативно, но некоммутативно. Произведение биективных отображений биективно. Произведение инъективных отображений инъективно, а произведение сюрьективных отображений сюрьективно.

Отображение f из множества A в себя, задаваемое правилом f(x) = x, называется **тождественным**. Такие отображения мы будем обозначать буквой ϵ . Пусть f – отображение из A в B. Отображение g из f(A) в A называется **обратным** к f, если отображение fg является тождественным. Обратное отображение обозначается как f^{-1} .

Критерий существования обратного отображения: отображение, обратное к f, существует тогда и только тогда, когда f — инъекция.

Доказательство: предположим, что отображение, обратное к f, существует. Если при этом $f(x_1) = f(x_2)$ для некоторых $x_1, x_2 \in A$, то:

$$x_1 = \epsilon(x_1) = (ff^{-1})(x_1) = f^{-1}(f(x_1)) = f^{-1}(f(x_2)) = (ff^{-1})(x_2) = x_2$$

Таким образом, $x_1 = x_2$, т.е отображение f инъективно. Необходимость доказана.

Докажем и достаточность: $\forall y \in f(A) \exists x \in A : f(x) = y$. По условию f инъективно \Rightarrow элемент x определён однозначно. Это позволяет определить $g: f(A) \to A$ правилом g(y) = x. Если $x \in A$, то (fg)(x) = g(f(x)) = g(y) = x, т.е $fg = \epsilon$. Следовательно, $g = f^{-1}$, т.е f^{-1} существует.

Замечание: если f – биективное отображение из A в B, то f^{-1} – биективное отображение из B в A.

Свойства обратного отображения (A, B, C — множества $f: A \to B, g: B \to C$):

- Если существует отображение f^{-1} , то существует $(f^{-1})^{-1} = f$.
- Если существуют отображения f^{-1} и g^{-1} , то существует $(fg)^{-1} = g^{-1}f^{-1}$.

1.3 Мощность конечного множества

Множества A и B называют **равномощными**, если существует биективное отображение из A на B.

Конечные множества A и B равномощны тогда и только тогда, когда они содержат одно и то же число элементов (доказывается по свойству биекции).

Число элементов конечного множества S называется мощностью этого множества и обозначается через |S|.

Если S_1, S_2, \ldots, S_n – конечные множества и $|S_i| = k$ для всех $i = 1, 2, \ldots, n$, то $|S_1 \times S_2 \times \ldots \times S_n| = k_1 \cdot k_2 \cdot \ldots \cdot k_n$.

Доказательство проведём индукцей по n. При n=1 доказываемое очевидно. Если $n>1,\ S_n=\{x_1,x_2,\ldots,x_{k_n}\}$. Для всякого $i=1,2,\ldots,k_n$ обозначим через T_i множество всех кортежей из множества $S_1\times S_2\times\ldots\times S_n$, у которых последняя компонента равна x_i . Ясно, что $S_1\times S_2\times\ldots\times S_n=T_1\cup T_2\cup\ldots\cup T_{k_n}$

и множества $T_1, T_2, \ldots, T_{k_n}$ попарно пересекаются по пустому множеству. Следовательно, $|S_1 \times S_2 \times \ldots \times S_n| = |T_1| + |T_2| + \ldots + |T_{k_n}|$. Очевидно, что для всякого $i=1,2,\ldots,k_n$ существует биекция из T_i в $S_1 \times S_2 \times \ldots \times S_{n-1}$, которая кортежу $(y_1,y_2,\ldots,y_{n-1},x_i) \in T_i$ ставит в соответствие кортеж $(y_1,y_2,\ldots,y_{n-1}) \in S_1 \times S_2 \times \ldots \times S_{n-1}$. Следовательно, $|T_i| = |S_1 \times S_2 \times \ldots \times S_{n-1}|$. По предположению индукции $|S_1 \times S_2 \times \ldots \times S_{n-1}| = k_n \cdot |S_1 \times S_2 \times \ldots \times S_{n-1}|$. Следовательно, $|S_1 \times S_2 \times \ldots \times S_n| = k_n \cdot |S_1 \times S_2 \times \ldots \times S_{n-1}|$. Следовательно, $|S_1 \times S_2 \times \ldots \times S_n| = k_1 \cdot k_2 \cdot \ldots \cdot k_{n-1} \cdot k_n$, что и требовалось доказать (советую вдумчиво подумать над д-вом, оно очень симпатичное).

Следствие: если S – конечное множество и |S|=k, а n – натуральное число, то $|S^n|=k^n.$

1.4 Булеан множества

Булеаном множества S называют множество всех подмножеств множества S. Булеан обозначается по-разному: $B(S), P(S), 2^S$.

Если S – конечное множество и |S|=n, то $|B(S)|=2^n.$

Доказательство проведём индукцией по n. База индукции: если n=0, то $S=\emptyset$ и $|B(S)|=1=2^0=2^{|S|}$.

Шаг индукции: пусть n>0. Зафиксируем произвольный элемент $x\in S$ и положим $S'=S\setminus \{x\}$. Тогда |S'|=n-1 и, по предположению индукции, $|B(S')|=2^{|S'|}=s^{n-1}$. Все подмножества множества S можно разбить на два типа: те, которые не содержат x, и те, которые содержат x. Любое подмножество множества S, не содержащее x, содержится в S'. Число таких подмножеств равно мощности булеана множества S', т.е 2^{n-1} . Далее, любое подмножество множества S' путём прибавления S' нему S' число таких подмножеств равно числу подмножеств, содержащих S' т.е S' следовательно, общее число подмножеств множества S' равно S' равно S'

2 Элементы комбинаторики

2.1 Рамещения и перестановки

Пусть X — непустое конечное множество из n элементов и $k \le n$. Размещением из n элементов по k элементов называется произвольный упорядоченный набор из k попарно различных элементов множества X. Число размещений из n элементов по k элементов обозначается через A_n^k .

$$A_n^k = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n-k)!}$$

Пусть X — непустое конечное множество из n элементов. **Перестановкой** на множестве X называется размещение из n элементов на этом множестве.

Число перестановок из n элементов обозначается через P_n .

$$P_n = A_n^n = n!$$

Говорят, что перестановка (j_1,j_2,\ldots,j_n) получена из (i_1,i_2,\ldots,i_n) транспозицией символов i_k и i_m , если $j_k=i_m,j_m=i_k,j_r=i_r$ для всех $r\in\{1,2,\ldots,n\}$, отличных от k и m. Транспозиция называется смежной, если k=m+1 или m=k+1.

Говорят, что символы i_k и i_m образуют **инверсию** в перест-ке (i_1,i_2,\ldots,i_n) множества $\{1,2,\ldots,n\}$, если k< m, а $i_k>i_m$. Число инверсий в перестановке обозначается через $I(i_1,i_2,\ldots,i_n)$. Перестановка называется **чётной**, если число инверсий чётно, и **нечётной** в противном случае.

Если перестановка (j_1, j_2, \dots, j_n) получена из перестановки (i_1, i_2, \dots, i_n) транспозицией, то чётности этих перестановок различны.

Все перестановки на множестве $\{1,2,\ldots,n\}$, где n>1, можно упорядочить так, что каждая следующая перестановка будет получаться из предыдущей транспозицией пары символов. При этом в качестве первой перестановки можно взять любую на данном множестве.

Если $n \geq 2$, то как число чётных, так и число нечётных перестановок на множестве $\{1,2\dots,n\}$ равно $\frac{n!}{2}$.

2.2 Сочетания

Пусть X — непустое конечное множество из n элементов и $k \le n$. Сочетанием из n элементов по k элементов на этом множестве называется любое подмножество множества X, состоящее из k элементов. Число сочетаний из n по k обозначается через C_n^k . Для удобства вычислений будем считать, что $C_n^0=1$.

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Числа вида C_n^k называются биномиальными коэффициентами.

Свойства биномиальных коэффициентов:

- \bullet $C_n^k = C_n^{n-k}$
- $C_n^{k-1} + C_n^k = C_{n+1}^k$
- $C_n^0 + C_n^1 + \ldots + C_n^n = 2^n$

Пусть n — произвольное натуральное число. Следующая формула называется биноминальной формулой Ньютона или просто **биномом Ньютона**.

$$(x+y)^n = \sum_{k=0}^n C_n^k x^{n-k} y^k$$

Эта формула объясняет термин "биномиальные коэффициенты": числа вида C_n^k есть коэффициенты при одночленах в биноме Ньютона.

3 Универсальная алгебра

3.1 Определение алгебры

N-арной алгебраической операцией на множестве S называется произвольное отображение из S^n в S. **Арность** алгебраической операции – количество её операндов (аргументов). При n=1 операция называется **унарной** (например, дополнение множества), при n=2 – **бинарной** (например, сложение на множестве действительных чисел), при n=3 – тернарной и т.д. При n=0 мы говорим о **нульарной** операции, т.е операции без аргументов, как, например, 'взятие' элемента множества.

Универсальная алгебра — некоторое непустое множество с заданным на нём набором n-арных операций. Этот набор операций называется сигнатурой или структурой алгебры. Множество можно считать вырожденной алгебраической системой с пустым набором операций и отношений. Имеет место следующая запись алгебры: $< A; \Omega >$, где A — произвольное непустое множество, а Ω — сигнатура алгебры.

Наука **алгебра** (как раздел математики) изучает свойства операций на множестве.

3.2 Группоид и его частные случаи

 Γ руппоид – алгебра, сигнатура которой состоит из одной бинарной операции.

Операция в произвольном группоиде записывается через f(x,y) или просто xy.

Бинарная операция на S ассоциативна, если $\forall x,y,z\in S: f(f(x,y),z)=f(x,f(y,z))\Leftrightarrow (xy)z=x(yz).$

Группоид с ассоциативной бинарной операцией называется полугруппой.

Словом над X называется произвольное упорядоченное конечное число букв. Слово без букв называется λ **-слово**.

Полугруппа, в которой задан нейтральный элемент e (использование которого в бинарной операции с другим элементом x осталяет x неизменным), называется **моноидом**.

Элемент $y \in S$ называется **обратным** к x, если xy = yx = e. Лемма: если элемент, обратный к x, существует, то он – единственный (доказывается от обратного). Элемент, обратный к x, записывается как x^{-1} .

Если существует некоторый x^{-1} , то существует и $x^{-1} = x$.

Если существуют некоторые x^{-1} и y^{-1} , то существует и $(xy)^{-1}=x^{-1}y^{-1}$. прим.: конспектировал на ходу, не очень понял, для сложения на $\mathbb R$ не выполняется же например

Моноид, в котором все элементы обратимы, называется **группой**. Сигнатура группы — три операции: произвольная бинарная ассоциативная, унарная (ставящая в соответствие элементу x элемент, обратный ему) и нульарная — введение нейтрального элемента.

Бинарная операция на S называется коммутативной, если $\forall x,y \in S$: f(x,y)=f(y,x), то есть xy=yx. Группа, в которой бинарная операция коммутативна, называется абелевой.

Взаимнооднозначное отображение множества S в себя называется **подстановкой**, а S_n – множеством всех подстановок.

Бинарная операция f на S дистрибутивна относительно g, если $\forall x,y,z \in S: g(f(x,y),z) = f(g(x,z),g(y,z)).$

Алгебра называется кольцом в общем виде, если на ней заданы две операции, одна из которых обладает свойствами коммутативности и ассоциативности ('сложение'), а другая ('умножение') обладает свойством дистрибутивности относительно сложения, при этом существует нейтральный элемент относительно сложения (ноль). Кольца могут обладать свойствами ассоциативности и коммутативности для умножения, относительно умножения может быть введён нейтральный элемент (единица), а также может быть введено условие про отсутствие делителей у нуля.

$$< R, +, \cdot > -$$
 сигнатура кольца в общем виде

Элемент a кольца $(R, +, \times)$ является левым (правым) **делителем нуля**, если существует $b \neq 0$ такой, что $a \times b = 0$ ($b \times a = 0$). Заметим, что для коммутативного кольца нет разницы между правыми и левыми делителями нуля.

4 Матрицы

4.1 Понятие матрицы и их свойства

Матрица – прямоугольная таблица, состоящая из строк и столбцов. Имеет место запись:

$$A = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1n} \\ x_{21} & x_{22} & x_{23} & \dots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & x_{m3} & \dots & x_{mn} \end{pmatrix} = (a_{ij})_{m \times n}$$

Пара чисел m,n – **размер** матрицы. В случае, если m=n, матрица называется **квадратной**.

В работе с матрицами определены операции сложения и умножения.

Если
$$A = (a_{ij})_{m \times n}, B = (b_{ij})_{m \times n},$$
 то $A + B = C, C = (c_{ij})_{m \times n}, c_{ij} = a_{ij} + b_{ij}.$
Если $A = (a_{ij})_{m \times n}, B = (b_{ij})_{n \times k},$ то $AB = C, C = (c_{ij})_{m \times k}, c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$