AURIX 2G Power Management System

Sherry Li IFCN ATV SMD GC SAE MC

Agenda

- 1 Power Supply and Control
- Power Management
- Monitoring and Reset
- 4 Power Consumption

Agenda

- 1 Power Supply and Control
- 2 Power Management
- 3 Monitoring and Reset
- 4 Power Consumption

Power Supply and Control Standard Interface to External regulator

Power Supply and Control Standard Interface to TLF35584 regulator

- Standard interface
 - Reset monitoring for 5V/3.3V
 Vext
 - Single, Dual or Triple rail supplies
 - Separate analog domain supply
 - Separate standby domain supply
 - SPI configuration interface
 - NMI interface (error interrupt) + SPI
- Safety relevant enhancements
 - Q/A watchdog supporting queryresponse mechanism
 - Safe State Control
 - Supervision of regulators
 - Watchdogs WWD and FWD
 - Fail safe pin of μC. Fail Safe pin is connnected to secondary voltage monitors routed from uC to regulator.

TC3xx Power Domains

- 5V / 3.3V VEVRSB Standby Domain
 - VDDPD Standby Domain (Regulators, Start-up / Safety modules, PMS, SCR)
 - Standby Pads (P33, P34)
 - CPU0 and CPU1
 dLMU Standby RAM
- 5V / 3.3V VEXT Pad domain
 - All Pads / Ports, Shared pads
 - OSC, HSCT
- 5V / 3.3V VFLEX, VEBU independent and isolated Pad domains
- > 5V / 3.3V VDDM ADC domain
 - EVADC, DSADC, ADC pads
- 3.3V VDDP3 Flash domain
 - Flash Programming
- 1.25V VDD domain
 - Core domain (CPUs,..)
 - Flash Read Sense
- 1.25V VDDSB (ED domain, EMEM)

TC39x

Supply Pins and Module Connectivity

Embedded Voltage Regulators Features at a glance

- Supply modes (What should external regulator supply?)
 - Single source 5V supply
 - 5V + 10 % 20%
 - Single source 3.3V supply
 - $-3.3V \pm 10\%$
 - Legacy tri-supply mode also supported for backward compatibility.
 - 5V + 10 % 20%
 - 3.3V \pm 10 %
 - 1.25V \pm 10 %
 - Dual supply modes
- Supply topologies (How should the internal voltages be generated?)
 - Linear / Low dropout mode (LDO)
 - Switch mode DC –DC regulator mode (SMPS)
- System modes (Does the supply requirements change with system modes?)
 - Normal Run
 - Sleep Mode (Target < 10 mA) Selective Clock gating carried out
 - Standby Mode (Target < 50 uA) (3.0V @ V_{EXT}) Only Standby Domain is powered

Embedded Voltage Regulators Features at a glance

- Higher tolerance to external 5V supply voltage drops upto 3.0V (Eg. Engine Cranking phase).. Compliance to LV 124 specification...
- Compensation against transient load changes to minimize voltage over/undershoots.
 - Current ramps limited to 50mA / 100us @ Startup to have reduced load jumps on external regulator.
 - No power sequencing required between supplies incase of dual/triple supply modes.
- Capability to drive additional external non-inductive 3.3 V loads from internal devices.
- Mixed IO system
 - 5V or 3.3V Flexport (upto 18 pins) with a dedicated separate supply pin
 - 5V or 3.3V ADCs
- Idle Request Acknowledge Reset Sequence to avoid corruption of RAM contents after a reset in case of non-power related failures. Eg: /PORST assertion
- Bidirectional PORST: PORST capable of driving upto a max of 13 mA incase of Supply undervoltage events

TC3xx Salient features

	TC39x	TC38x	TC37x	TC36x	TC35x					
Dual / Triple Ext. Supply	5V	5V / 3,3V ± 10% External supply range. Single, dual & triple supply as in AURIX. Separate VDDM / VAREF supply for ADC								
EVRC Core Regulator	LC D	LC DC DC (Efficiency η=72%+) (0.8 MHz and 1.8 MHz nominal switching frequency) 3,3uH - 4,7uH inductor + 6,8 -10uF input cap +10 - 22uF output cap								
		Static accuracy	/ target = 2% over P\	/T + 12mV ripple in ca	se of SMPS					
Nominal VDD Set point range		TC3xx VDD nominal voltage = 1,25V ± 10% 1,2 V up to 1,3 V in steps of 5 mV in case of TC3xx								
EVR33 3,3V regulator			•	ices. 1 uF buffer capad racy target = 2% over						
VDDP3 Range & Tolerance	3,3V ± 10%. No voltage scaling. Static accuracy = 2%									
Primary supply monitors	Bi-directional PORST concept as in A1G. Configurable (1% - 2%) voltage and time hysteresis. Default reset threshold < -10%									
Secondary supply monitors		•		•	Configurable averaging filter (3.3V/5V) & VDDPD(1.3V)					

	TC33x	TC32x			
EVRC Core Regulator	SC DC DC . 1uF flying cap + 10uF i/p cap				
	300 mA current capability with 72% efficiency. Upto 450 mA capability with less efficiency.				
	Static accuracy target = 2% over PVT + 12mV ripple in case of SMPS				

TC3xx Regulator Support

TC39x 3.3V / 5V	TC38x 3.3V / 5V	TC37x 3.3V / 5V	TC36x TC35x 3.3V / 5V	TC33x TC32x 3.3V / 5V				
	LC	DC DC		SC DC DC				
3,3 - 4,7	10 uF + 1 uF							
	LDO with internal pass devices. 1 uF capacitor.							
	3.3V / 5V	3.3V / 5V 3.3V / 5V LC 3,3 - 4,7uH inductor + 6,8-	3.3V / 5V 3.3V / 5V LC DC DC 3,3 - 4,7uH inductor + 6,8-10uF i/p cap +10-22u	3.3V / 5V 3.3V / 5V 3.3V / 5V LC DC DC 3,3 - 4,7uH inductor + 6,8-10uF i/p cap +10-22uF o/p cap				

TC3xx Salient features

	TC39x	TC38x	TC37x						
Infrastructure	Enhanced D	Enhanced High Precision Bandgap shared by PMS, ADC,Flash & LVDS with better accuracy. Enhanced DTS continuously active with inherently better accuracy. Enhanced 100 MHz back-up clock with trimming support to meet CAN requirements							
Load Jumps	+-200 ו	+-150 mA jump with 100us settling time. < (IDD_real / 3) reset jump +-200 mA incase of LBIST, +-100 mA incase of MBIST Droop compensation implemented in regulators.							
Line Jumps	upto 50 V/ms with oversho	upto 50 V/ms with overshoot/undershoot on external supplies limited to ±10% for internal EVR regulators. 300 V/ms under evaluation.							
Sleep mode	15 -	· 20 mA @ Tj =25°C and fSPB/fSR	I ~ 1 MHz						
Standby mode	Standby mode with Sta	150 uA like in AURIX. ndby RAM, an integrated wake-up	timer and Standby Controller.						
Standby RAM	4x 32 Kbytes Standby RAM. Standby VEVRSB pin available also in LQFP packages.								
TLF ext. regulator enhancements	Voltage Scaling support, Configurable reset under / over voltage thresholds, FSP pin, SPI interface with CRC support.								

Supply Mode Selection HWCFG [x] + TESTMODE

HWCFG [1] P14.5	HWCFG [2] P14.2	HWCFG [3] P14.3	HWCFG [4] P10.5	HWCFG [5] P10.6	HWCFG [6] P14.4
0 - EVR33OFF 1 - EVR33ON	0 - EVRCOFF 1 - EVRCON	0 - Boot from pins HWCFG [5:4] 1 - Flash BMI boot		strap (P14.0/1) c Bootstrap on fail (P14.0/1) ootstrap on fail (P15.2/3)	Default Pad state 0 - Pins in tristate 1 - Pins with pull-up
(weak pull-up active on reset)	(weak pull-up active on reset)	(weak pull-up active on reset)	[1 1]- Internal start (weak pull-up activ		(weak pull-up active on reset)

- 1.) HWCFG [1:6] has weak internal pull-up active at start-up if the pin is left unconnected.
- > HWCFG[1:3, 6] has weak pull-up active at start-up if pin is left unconnected.
- If HWCFG[6] is left unconnected or externally pulled high, then HWCFG[4:5] pins have weak internal pull-ups active at start-up.
- > If HWCFG[6] is connected to ground, then HWCFG[4:5] pins are tristated.
- In addition for TESTMODE pin (P20.2) additional external strong pull-up to Vext of 1 -4.7kOhm is recommended.

Supply Mode Selection HWCFG [2,1] + VGATE1P/N

No.	HWCFG [2,1] ¹⁾	VGATE1P ²⁾ VGATE1N ³⁾	Supply Pin Voltage Level / Source ⁴⁾	Selected Supply Scheme ⁵⁾
a.)	11 _B	VGATE1P/ VGATE1N connected to gate of P-/N-ch. MOSFET.	VEXT & VEVRSB = 5.0 V external supply. VDDM = VAREFx = 5V or 3.3V external supply. VFLEX = 5 V or 3.3 V. VDDP3 and VDDFL3 supplied by EVR33. VDD supplied by EVRC.	5 V single source supply. EVRC in SMPS mode. EVR33 in LDO mode. 5 V or 3.3 V ADC domain. 5 V or 3.3 V Flexport domain. Standby Mode supported.
d.)	01 _B	Overlapped P32.1 / P32.0 port pins may be used as standard GPIO.	VEXT & VEVRSB = 5.0 V external supply. VDDM = VAREFx = 5V or 3.3V external supply. VFLEX = 5 V or 3.3 V. VDDP3 and VDDFL3 supplied by EVR33. VDD = 1.25 V external supply.	5 V & 1.25 V external supply. EVRC inactive. EVR33 in LDO mode. 5 V or 3.3 V ADC domain. 5 V or 3.3 V Flexport domain. Standby Mode is supported and 1.25V supply shall be switched off by external regulator after Standby state is entered.
e.)	10 _B	VGATE1P/VGAT E1N connected to gate of P- /N- ch. MOSFET.	VEXT,VEVRSB,VDDP3,VFLEX and VDDFL3 = 3.3V external supply. VDDM = VAREFx = 5V or 3.3V external supply. VDD supplied by EVRC. VEXT & VEVRSB = 5.0 V external supply. VDDP3, VFLEX and VDDFL3 = 3.3V external supply. VDDM = VAREFx = 5V or 3.3V external supply. VDD supplied by EVRC.	3.3 V single source supply. EVRC in SMPS mode. EVR33 inactive. 5 V or 3.3 V ADC domain. 3.3 V Flexport domain. Standby Mode supported. 5 V & 3.3 V external supply. EVRC in SMPS mode. EVR33 inactive. 5 V or 3.3 V ADC domain. 5 V or 3.3 V Flexport domain. Standby Mode is supported and 3.3V supply shall be switched off by external regulator after Standby state is entered.
h.)	00 _B	Overlapped P32.1 / P32.0 port pins may be used as standard GPIO.	VEXT & VEVRSB = 5.0 V external supply. VDDM = VAREFx = 5V or 3.3V external supply. VFLEX = 5 V or 3.3 V.external supply. VDDP3 and VDDFL3 = 3.3V external supply. VDD = 1.25 V external supply.	5 V, 3.3 V and 1.25 V are supplied externally. EVRC and EVR33 inactive. 5 V or 3.3 V ADC domain. 5 V or 3.3 V Flexport domain. Standby Mode is supported and 3.3V and 1.25V supplies shall be switched off by external regulator after Standby state is entered.

Supply Mode Selection indication

PMSW: Standl		Wake-	up Stat	tus Reg	gister		(00D4	4 _H)			L\	/D Res	et Valu	e: 000 <i>A</i>	0000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	
PINBI NT	PINAI NT	ESR1I NT	ESR0I NT	0	WUTM ODE	WUTR UN	WUTE N		•	0	I	PORS TREQ	SCRCL K	SCRST	SCR
rh	rh	rh	rh	r	rh	rh	rh			r	I	rh	rh	rh	rh
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(0	I	PORS TDF		0	ESR0T RIST	TESTM ODE	TRIST	HWCF G5	HWCF G4	0	HWCI	FGEVR	0
	I	r	l	rh		r	rh	rh	rh	rh	rh	r	r	·h	r
HWCFO	GEVR	2:1		rh	Thi HW	is bit fie /CFG[2:	eld indi 1] durii	cates th	ne supp ld start	•	iguration ed on w	hich E\	/Rx reg	the EVR ulators ring	

EVRC active, EVR33 active.

00_B EVRC inactive, EVR33 inactive.
 01_B EVRC inactive, EVR33 active.
 10_B EVRC active, EVR33 inactive.

STANDBY-RUN transition to reselect EVR mode.

Port Pins in Tristate or with Pull-up

Port pins with Pull-up active by default

HWCFG 6¹⁾ $V_{\text{FLEX}} \\$ (3.3 / 5 V)(3.3 / 5 V) TC3xx FLEXPORT pads are connected via weak pull-up to V_{FIFX} JTAG, LVDSH & P21 pads are connected via weak pull-up to Vpdp3 /Vpdosc3 V_{EXTOSC} (5V/3.3 V) Remaining pads are connected Analog pads (V_{DDM}) & via weak pull-up to V_{EXT} with a P40.x are in tristate few exceptions 2 P40 V_{EVRSB} V_{EXT} V_{DDM}

(3.3 / 5 V)

Port pins in Tristate by default

1.) HWCFG [6] has weak internal pull-up active at start-up if the pin is left unconnected.

(3.3 / 5 V)

- 2.) If HWCFG [6] is left unconnected or is externally pulled high, weak internal pull-ups are active at port pins during and after reset. Exceptions are P32.0 (pull-down), P33.8 (tristate), P40.x (tristate), reset (PORST, ESR0) and JTAG pins.
- 3.) If HWCFG [6] is connected to ground, port pins are predominantly in tristate during and after reset.

 Exceptions are P32.0 (pull-down), reset (PORST, ESR0) and JTAG pins. External pull devices required for HWCFG pins.

(3.3 / 5 V)

Embedded voltage regulator topologies Single source supply

TC39x / TC38x / TC37x/ TC36x

$$(I_{EXT} = I_{dd} / 3 + I_{ddp3} + I_{ADC})$$

Substantial current consumption reduction

- 1.25V SMPS regulator
 - 80% power conversion efficiency
 - Compliance to EMI/EMC BISS limits

Single supply mode – 5V

Exposed die pad is connected to digital ground.

EVR Switch mode topology a 1 v 0.6

Single supply mode – 3.3V

Exposed die pad is connected to digital ground.

EVR Switch mode topology v 0.5

Dual Supply Mode 5V & 1.3V externally supplied

Tripple Supply Mode 5V, 3.3V and 1.3V externally supplied

TC3xx EVRC LC DCDC regulator

App Note AP32344 – SMPS regulator

- Characteristics
 - 0.8 MHz /1.8 MHz nominal switching frequency
 - ~ 72 % efficiency
 - Improved dynamic response < 6%
 - Voltage Droop on Load Jumps
- Configurability of drive strength, slew rate, frequency and other parameters to comply to EMI/EMC requirements.
- External Components
 - 1. P + N Channel Complementary MOSFET
 - BSL215C, BSZ215C, NXP MOSFETs
 - Level shifter + MOSFET driver
 - 2. Inductor/Coil 3.3 4,7 uH
 - 3. Capacitor 10 22 uF (32uF @0.8MHz)

TC3xx

EVRC External Components Reference

No.	Condition	Register Update Sequence (Modes a & e)	Components (Package)
3.)	IDD < 1,5A	EVRSDCOEFF6 (Driver) = 0088 1B02 _H	Complementary MOSFET
	fDCDC = 1,8 MHz	EVRSDCOEFF7 (Driver) = 0000 D8A6 _H	- BSZ15DC02KD / BSZ215C
	VEXT < 3.63/5.5 V	EVRSDCOEFF8 (Driver) = 0088 1B02 _H	
		EVRSDCOEFF9 (Driver) = 0000 D8A6 _H	Inductor (3.3 uH)
		EVRSDCTRL7 (Driver) = 0000 02C8 _H	- CLF6045NIT-3R3N-D
		EVRSDCTRLO.UP = 1 _R	or LTF5022T-3R3N2R5-H/D (long tern
		wait 20 us	availability not assured)
		check EVRSDCTRL0.UP bit is cleared.	or RLF7030T-3R3M4R1-T
			or SLF7045T-3R3M2R1
		EVRSDCTRL7.DRVSLOMODE = 00 _R	or TFM252012ALMA3R3MTAA (under
		EVRSDCTRLO.UP = 1 _R	analysis)
		wait 20 us	
		check EVRSDCTRL0.UP bit is cleared.	Output Capacitor (22 uF)
			- CGA6P1X7R1C226M
		EVRSDCTRL0 (Freq., Spreading) = 2036 0002	- 2 x CGA6M3X7R1C106K
		EVRSDCTRL1 (PWM mode) = 0B69 0708 _H	
		EVRSDCOEFF0 (PWM mode) = 3508 73B6	Input Capacitor (10 uF)
		EVRSDCOEFF1 (PWM mode) = 0294 6C46 _H	- CGA6M3X7R1C106K
		EVRSDCTRL2 (LP mode) = 0036 033B _H	
		EVRSDCTRL3 (LP mode) = 0B69 0810,	
		EVRSDCOEFF2 (LP mode) = 3408 710EH	
		EVRSDCOEFF3 (LP mode) = 0294 6C44 _H	
		EVRSDCTRL4 (Start mode) = 0036 0009 _H	
		EVRSDCTRL5 (Start mode) = 0B69 0808	
		EVRSDCTRL6 (Open Loop) = 0023 1C94 _H	
		EVRSDCOEFF4 (Start mode) = 1B08 23B6 _H	
		EVRSDCOEFF5 (Start mode) = 0294 6C44 _H	
		EVRSDCTRL8 (FBADC) = 1121 048E,	
		EVRSDCTRL9 (FFADC) = 0000 0434 _H	
		EVRSDCTRL10 (Short) = 0000 0000 _H	
		EVRSDCTRL11 (Droop) = 1207 0909 _H	
		EVRSDCTRLO.UP = 1 _p	
		check EVRSDCTRL0.UP bit is cleared.	
		check EVRSTAT.SDVOK is set.	

Table 5 EVRC Regulator Component Reference and Register Settings (continued)

Tab	le 5 EVRC Reg	ulator Component Reference and Register Sett	ings (continued)
No.	Condition	Register Update Sequence (Modes a & e)	Components (Package)
4.)	IDD < 1,5 A	EVRSDCOEFF6 (Driver) = 0088 1B02 _H	Complementary MOSFET
	fDCDC = 0.8 MHz	EVRSDCOEFF7 (Driver) = 0000 D8A6 _H	- BSZ15DC02KD / BSZ215C
	VEXT < 3.63/5.5 V	EVRSDCOEFF8 (Driver) = 0088 1B02 _H	
		EVRSDCOEFF9 (Driver) = 0000 D8A6 _H	Inductor (4.7 uH)
		EVRSDCTRL7 (Driver) = 0000 02C8 _H	- CLF6045NIT-4R7N-D
		EVRSDCTRLO.UP = 1 _B	or LTF5022T-4R7N2R0-H/D (long term
		wait 20 us	availability not assured)
		check EVRSDCTRL0.UP bit is cleared.	or RLF7030T-4R7M3R4-T or SLF7045T- 4R7M2R1
		EVRSDCTRL7.DRVSLOMODE = 00 _B	
		EVRSDCTRLO.UP = 1 _B	Output Capacitor (22 uF + 10uF)
		wait 20 us	- CGA6P1X7R1C226M +
		check EVRSDCTRL0.UP bit is cleared.	CGA6M3X7R1C106K
		EVRSDCTRL0 (Freq., Spreading) = 207C 0002 _H	Input Capacitor (10 uF)
		EVRSDCTRL1 (PWM mode) = 0B69 0708 _H	- CGA6M3X7R1C106K
		EVRSDCOEFF0 (PWM mode) = 3408 7236 _H	
		EVRSDCOEFF1 (PWM mode) = 0294 6C46 _H	
		EVRSDCTRL2 (LP mode) = 0036 033B _H	
		EVRSDCTRL3 (LP mode) = 0B69 0810 _H	
		EVRSDCOEFF2 (LP mode) = 3408 710E _H	
		EVRSDCOEFF3 (LP mode) = 0294 6C44 _H	
		EVRSDCTRL4 (Start mode) = 0036 0009 _H	
		EVRSDCTRL5 (Start mode) = 0B69 0808 _H	
		EVRSDCTRL6 (Open Loop) = 0023 1C94 _H	
		EVRSDCOEFF4 (Start mode) = 1B08 23B6 _H	
		EVRSDCOEFF5 (Start mode) = 0294 6C44 _H	
		EVRSDCTRL8 (FBADC) = 1121 048E _H	
		EVRSDCTRL9 (FFADC) = 0000 0434 _H	
		EVRSDCTRL10 (Short) = 0000 0000 _H	
		EVRSDCTRL11 (Droop) = 1207 0909 _H	
		EVRSDCTRLO.UP = 1 _B	
		check EVRSDCTRL0.UP bit is cleared.	
		check EVRSTAT.SDVOK is set.	

Refer Application Note for further details: AP32344 TC3xx SMPS regulator

TC3xx EVR SC DCDC regulator concept

72% conversion efficiency feasible from 3.3V/5V to 1,25V with single flying capacitor

|TOTDCDC = |DD/3| (~80% of |TOT| + |DDP3| + |EXT|

TOTDCDC = (40% - 45%) * TOT

- A single 10uF EVRC stabilization capacitor required for IDD ~ 300mA. 450 mA with bypass SCDCDC concept.
- Load regulation and response is better. Minimal undershoot on a reset. Droop compensation allows adjusting the output voltage before triggering the reset load jump.
- BISS limit compliance achieved by using FM modulated switching techniques and variable drive strength and slew rate control of the switches with a trade-off to efficiency.
- Heat generation (uC) < 600mW. Exposed pad may not be required for thermal reasons.
 SCDCDC switches distributed into sub-switches for better controllability and to avoid local hotspots

TC3xx EVR33 LDO regulator concept

- > EVR33 generates the 3.3V VDDP3 supply requires for Flash from 5V VEXT supply.
- EVR33 implemented as LDO with distributed pass devices (>10) and COUT = 1 uF (IDDP3 < 60mA).</p>
- A maximum load current of 100 mA is supported.
- Static accuracy = $\pm 2\%$; Dynamic load response = $\pm 5\%$.

TC3xx Internal Parasitics

- All power domains are protected against neighboring domains by ESD elements
- The IO pins have diode-like structures to supply and from ground.
- In case of overvoltage, current should be limited with external resistor to comply with maximum currents of digital and analog pins in general.
- No power sequencing is required for TC3xx devices during startup / shutdown the transients. However injection currents need to be limited.
- The structures are designed to be injection tolerant to ~ 3 times the maximum current consumption of the respective supply domain.

Agenda

- 1 Power Supply and Control
- 2 Power Management
- 3 Monitoring and Reset
- 4 Power Consumption

Power Management Idle, Sleep & Standby modes

Mode / Current	Description	Entry / Exit
CPUx RUN	Normal operation	
CPUx IDLE 20-100 mA / CPU	The CPU clock is disabled. DMI/PMI memories accessible. All Peripherals remain active.	Entry via Software, SMU Exit on CPUx Interrupt, Trap, Reset Entry / Exit duration : Few cycles
SYSTEM SLEEP >15 mA @ Tj=85°C	Peripheral Clocks are gated if configured in CLC register. All CPUs are set to Idle.	Entry via Software Exit on CPUx Interrupt, Trap, Reset Entry / Exit duration : Few cycles
SYSTEM STANDBY 150 uA @ Tj=55°C SCR< 5mA @20MHz	Main domain is powered off. Standby RAM may be active 8-bit SCR may be active	Entry via SW, NMI Exit on edge detection on NMI/pins, PORST assertion Incase of separate standby supply pin •Entry on VEXT supply ramp-down •Wakeup on VEXT supply ramp-up Entry duration ~ 1.2us UV detection +3 cycles Exit via normal boot ~ 2 ms

Power Management System modes

Power Management CPU modes

Power Management System modes

Power Management Standby Domain

- Constitutes
 - Standby RAM CPU0 DLMU
 - Infrastructure components: Preregulator, 70 kHz clock ...
 - Wakeup unit to detect edge on ESR1/CAN/ASC pins
 - Wake-up timer (WUT)
 - Integrated Standby Controller
- Separate Standby supply pin VEVRSB in all packages to supply Standby Pads, Standby RAM, SCR, ...
- Standby entry and exit via VEXT supply ramp-up/down, Pins/NMI, SW/WUT ...
- Standby current
 - <150 uA at T_junction = 25°C
- Wakeup time resolution of 70kHz or 70kHz/2^10
 - 14.3 us resolution: 14.3 us 240 s range
 - 14.3ms resolution : 14.3ms 2.7 days range

Power Management Standby Entry/Exit

- System may enter Standby Mode on following events if so configured:
 - On a SW Standby request issued by setting PMCSRx.REQSLP= 11_B by the master CPU.
 - On a secondary undervoltage event during VEXT or VDD supply rampdown.
 - On an NMI / ESR1 assertion event.
- System may exit Standby mode on following events
 - when VEXT supply ramps up.
 - when a Wake-up edge is detected on selected pins / ESR1 incase VEXT remains supplied
 - when a Wake-up request is issued by the 8 bit standby controller incase VEXT remains supplied
 - when PORST assertion is detected incase VEXT remains supplied

Power Management Sleep Mode

Entry

- Modules Clocks would be gated if the module CLC.EDIS bit is configured to enable Sleep Mode.
- Sleep request issued.

REQSLP	[1:0]	rwh	Idle Mode and Sleep Mode Request
			00 _B Request CPU Run Mode
			01 _B Request CPU Idle Mode
			10 _B Request System Sleep Mode
			11 _B Request System Standby Mode
			[RfQ00092] In Idle Mode or Sleep Mode, these bits are
			cleared in response to an interrupt for the CPU, or
			when bit 15 of the corresponding System Watchdog
			Timer (bit WDTSSR.TIM[15]) or CPU Watchdog Timer
			count register (bit WDTCPUxSR.TIM[15]) changes
			from 0 to 1. In Standby Mode, these bits are cleared on wake-up.

Field	Bits	Type	Description
DISR	0	rw	Module Disable Request Bit Used for enable/disable control of the module.
DISS	1	r	Module Disable Status Bit Bit indicates the current status of the module.
EDIS	3	rw	Sleep Mode Enable Control Used to control module's sleep mode.
RMC	[15:8]	rw	8-bit Clock Divider Value in RUN Mode
0	[31:16], [7:4], 2	г	Reserved Read as 0; should be written with 0.

PMCSR0

Power Management Control and Status Register

(0D4_H)

PMCSR1

Power Management Control and Status Register

(0D8_H) Reset Value: 0000 0100_H

PINICSR

Power Management Control and Status Register

(0DC_H) Reset Value: 0000 0100_H

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
LCK								0			'				
rh						1		r							ı
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

0	PMST	0	0	SMU SLP	REQSLP
					1
r	rh	r	rwh	rwh	rwh

Reset Value: 0000 0100_H

Agenda

- 1 Power Supply and Control
- 2 Power Management
- Monitoring and Reset
- 4 Power Consumption

TC3xx

Supply Rails & Monitoring

PRIMARY MONITORS

- VEXT External supply
- VDDP3 supply or EVR33 output
- VDD supply or EVRC output

Short / Overload Detection

SECONDARY MONITORS

- VEXT External supply OV&UV
- VDDP3 supply or EVR33 OV&UV
- VDD supply or EVRC OV&UV
 VDDPD Pre-Reg supply OV&UV
- VDDPD FIE-Reg supply OV&UV
 VDDM ADC supply OV&UV
- VEVRSB Standby supply OV&UV

Embedded Voltage Regulators Voltage Monitoring and Reset

- Primary Undervoltage monitoring carried out on all supplies on non configurable thresholds violation of which leads to reset
 - 5V or 3.3V primary reset @ 2.97 xV
 - 3.3V primary reset @ 2.97 xV
 - 1.25V primary reset @ 1.13 xV
- Secondary Over and Undervoltage monitoring based on a second bandgap. Configurable thresholds for Secondary Over and Undervoltage monitoring
 - Configurable 5V or 3.3V external supply secondary monitoring between 2.97 – 5.5 V
 - 3.3V monitoring between 2.97 3.63 V
 - 1.25V monitoring between 1.13 1.375 V
- Bandgap Monitoring
 - 2 Bandgaps based on different topologies located in different domains are compared against each other

TC3xx

Voltage Monitoring and Reset Pins

External Supply Internal Monitoring Mechanisms

- \bullet Incase of $V_{EXT} > 4.0V$, both 1.25V and 3.3V internal regulators are functional.
- Incase of $V_{\text{EXT}} > 3.0 \text{V}$, 1.25V regulator is functional. Incase the voltage drops upto 3.0V (cranking) , it should be taken care to switch off the 3.3V LDO regulator.

Undervoltage monitoring

- Undervoltage monitoring is based on a second band-gap
- Default after reset : interrupt at 2.97 x V
- The monitor could be later programmed to trigger a reset.
- The threshold is configurable between (2.97-x) 4.75 V

EVR33 – 3.3V Supply Internal Monitoring Mechanisms

Power Supply and Control Voltage Monitoring and Supply Range

Power Supply and Control Voltage Monitoring and Supply Range

AURIX TC3xx VEXT Voltage Profile

VEXT Range and Lifetime Profile 1

(Triangular Pulse forms)

5.6 V - 7.0 V - 2.8 hours

5.5 V - 5.6 V - 72 hours

5.4 V - 5.5 V - 5 % of lifetime

5.1 V - 5.4 V - 15 % of lifetime

4.9 V - 5.1 V - 60 % of lifetime

4.6 V - 4.9 V - 15 % of lifetime

4.5 V - 4.6 V - 5 % of lifetime

<u>VEXT Range and Lifetime Profile 2</u> (evaluation ongoing)

(Rectangular Pulse forms)

5.6 V - 6.5 V - 60 hours with additional failure rate impact of < 1PPM

5.3 V - 5.6 V - 100 hours

4.7 V - 5.3 V - 100 % of lifetime

4.5 V - 4.7 V -

AURIX TC3xx VDD Core Voltage Profile

Agenda

- 1 Power Supply and Control
- 2 Power Management
- 3 Monitoring and Reset
- 4 Power Consumption

TC39x Power Supply Current

		l .	1	1	l	<u> </u>			
\sum Sum of all currents (incl. $I_{\text{EXTRAIL}} + I_{\text{DDMRAIL}} + I_{\text{DD} \times 3\text{RAIL}} + I_{\text{DD}}$)	I _{DDTOT} CC	-	-	1536	mA	real power pattern; T_J =150°C			
		-	-	1720	mA	real power pattern; TJ=160°C			
∑ Sum of all currents with DC- DC EVRC regulator active ³⁾	$I_{\rm DDTOTDC3}$ CC	-	-	980	mA	real power pattern; EVRC reset settings with 72% efficiency; $V_{\text{EXT}} = 3.3\text{V}; T_{\text{J}} = 160^{\circ}\text{C}$			
∑ Sum of all currents with DC- DC EVRC regulator active ³⁾	I _{DDTOTDC5} CC	-	-	670	mA	real power pattern; EVRC reset settings with 72% efficiency; $V_{\text{EXT}} = 5\text{V}$; $T_{\text{J}} = 160^{\circ}\text{C}$			
∑ Sum of all currents (SLEEP mode)	I _{SLEEP} CC	_	-	25	mA	All CPUs in idle, All peripherals in sleep, $f_{SRI/SPB} = 1 MHz$ via LPDIV divider; $T_{J} = 25^{\circ}C$			
Σ Sum of all currents (STANDBY mode) drawn at $V_{\rm EVRSB}$ supply pin	$I_{STANDBY}CC$	-	-	150 ⁴⁾	μΑ	64 KB Standby RAM block active. SCR inactive. Power to remaining domains switched off. T_J = $25^{\circ}C$; V_{EVRSB} = $5V$			
Maximum power dissipation	<i>PD</i> SR	-	-	3220	mW	max power pattern			
		-	-	2500	mW	real power pattern			

Power Calculation Sheet

This is the excel sheet AURIX2G_Power_Calc_1.4.7. Please read the "readme" page first.

С	D	E	F	G H		J K	L	M N	Д Р	Q	R	S	Т	U	V	W	X Y	Z
				Datasheet / Reference V							٥.							
Input				Please update the latest values from datasheet.						•	Outpu		•		_			
	Allowed Range / Values		1	Datashart / Bafaranaa Bararatara	Modules	1	IEXT /	,				EXT /		Malica		Fatiments.		
	/ Modules available	Input Value	ļ	Datasheet / Reference Parameters Real Pattern Current Consumption	/Value	IDD IDDP3	IFLEX / III	1 1	Outsid Barrantan	IDD	IDDP3	FLEX /	IDDM	Value	Unit	Estimation		
Input parameter			Unit	<u> </u>	/value		IEAK2R IA		Output Parameter	טטון	ון צייטטון	E A K 2 R	IDUIVI	/ Total	Unit	Accuracy		
Ambient Temperature (Ta)	55°C - 125°C	115,9	[°C]	Maximum Junction Temperature		165		[°C]										
Package	SAL, SAK or Bare Die			Maximum Package Temperature				[°C]										
RTH_JA of ECU	application dependent	12	[K/W]															CLEA
		3	[K/W]															CLEA
	application dependent	140	[°C]						Actual Pin / Ball Temperature (Tb)									
				Total IDDRAIL = Static (IDDPORST) + Dynamic														
Typical or Maximum (FF) leakage	T or M	М		(IDDDYN) @ Tj=150°C		1450		[mA]	Actual Junction Temperature (Tj)					150,0	[°C]			SET
VDD Voltage incl. +ve tolerance	1,25V + 2% upto + 10%	1,275	[V]	Static leakage @ Tj=150°C (IDDPORST)	•	655		[mA]	Static Leakage current	662	•				[mA]	±20%		351
100 Totage mon the tolerance	1.25 # T 2/0 upto T 1070	1,213	r.A.1	orano reanage (e 1)-100 e (100) e (101)	_	033		[IIIA]	Static Leakage current	002	_				[IIIA]	12070		
				Dynamic current contribution														
Device		ТСЗ9хВ		(IDDDYN = IDDRAIL - IDDPORST)		795		[mA]	Dynamic Current	819					[mA]	±20%		
50,000		TCJJAD	•	(1000111 10010111)	•	,,,,		[IIIA]	- Synamic current	313					[mA]	±20/0		
				SRI dynamic base load current														TC39
Main System / SRI bus frequency	40MHz - 300MHz	300	[MHz]	w/o CPUs, Flash @ 300 MHz (IDDSRI w/oCPU,Flash)		66		Em A1	SRI current w/o CPUs	66					[mA]	±20%		. 03.
iviaiii systeiii / ski bus irequency	4UIVIHZ - SUUIVIHZ	300	LIVITZ	W/O CFO3, Flash @ 300 NIPZ (IDD3NI_W/OCPO,Flash)		00	+	[mA]	SNI CUITEIL W/O CPUS	00					[MA]	IZU%		
				SPB dynamic base load current w/o SPB peripherals					SPB current w/o GTM and SPB									
SPB or Peripheral bus frequency	40MHz - 100MHz	100	[MHz]	contribution below (IDDSPB)	60	20		[mA]	peripherals below	20					[mA]	±20%		TCO
CPU5 frequency(CPU5DIV)	0MHz - 300MHz	300	[MHz]	contribution below (IDDSFB)	00	20		IIIAJ	peripricials seles	20					[mA]	12070		TC38
,																		
CPU5 IPC rate	0,6(real) - 1,2(max)	0,6	[IPC]	CPU5 current (IDDC50) real (IPC = 0.6)	1	40		[mA]	CPU5 current	40					[mA]	±10%		
CPU4 frequency(CPU4DIV)	OMHz - 300MHz	300	[MHz]															TC37
CPU4 IPC rate	0,6(real) - 1,2(max)	0,6	[IPC]	CPU4 current (IDDC40)	1	40		[mA]	CPU4 current	40					[mA]	±10%		103/
CPU3 frequency(CPU3DIV)	OMHz - 300MHz	300	[MHz]					2.34							(const			
CPU3 Lockstep Active	Y or N	Y		CPU3 lockstep (IDDC31-IDDC30)	1	40		[mA]	CPU3 lockstep current	40					[mA]	±10%		
CPU3 IPC rate	0,6(real) - 1,2(max)	0,6	[IPC]	CPU3 current (IDDC30)	1	40		[mA]	CPU3 current	40					[mA]	±10%		TC36
CPU2 frequency (CPU2DIV)	OMHz - 300MHz	300	[MHz]	, , ,				2							-			1030
CPU2 Lockstep Active	Y or N	Y		CPU2 lockstep (IDDC21-IDDC20)	1	40			CPU2 lockstep current	40					[mA]	±10%		
CPU2 IPC rate	0,6(real) - 1,2(max)	0,6	[IPC]	CPU2 current (IDDC20)	1	40		[mA]	CPU2 current	40					[mA]	±10%		
	0MHz - 300MHz	300	[MHz]												1			TC35
CPU1 frequency (CPU1DIV)																		
CPU1 frequency (CPU1DIV) CPU1 Lockstep Active	Y or N	Υ		CPU1 lockstep (IDDC11-IDDC10)	1	40		[mA]	CPU1 lockstep current	40					[mA]	±10%		ADA

Part of your life. Part of tomorrow.

