Data Load and Preparation

```
In [1]:
import pandas as pd
pd.set option('display.max rows', 1000)
                                                                            In [2]:
import seaborn as sns
                                                                            In [3]:
#import sales csv
sales = pd.read csv('cleaned sales.csv')
census = pd.read csv('cleaned census.csv')
                                                                           In [4]:
census = census.drop(['Unnamed: 0'], axis=1)
census subset = census[['ZCTA','Average Household Size', 'Median Age',
'Percent Bachelors Deg' , 'Percent Graduate Deg', 'Median Mortgage', 'Mean
Income', 'Percent 65 and Over', 'Percent White']]
census subset['ZCTA'] = census subset['ZCTA'].astype(str)
C:\Users\julie\anaconda3\lib\site-packages\ipykernel launcher.py:3:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer, col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
 This is separate from the ipykernel package so we can avoid doing imports
until
                                                                           In [5]:
sales['Practice Area'].value counts()
                                                                           Out[5]:
Estate Planning
                                   207
Estate Administration
                                  42
Estate Admin - Package
                                   24
Estate Admin - Hourly
Business
                                   14
Medicaid
                                   11
                                     7
Business - Package
Estate Admin - Partial
                                     6
Real Estate
                                     6
Business - LLC
                                     5
Guardianship
                                     4
Trust Administration
                                    3
Estate Admin - SEP
                                     3
Business - Hourly
                                     3
                                     2
Non Profit
Medicaid - Hourly
```

```
Real Estate - Deed
                                    1
POA Agent Rep
Estate Administration - Hourly
Medicaid - Package
Name: Practice Area, dtype: int64
                                                                          In [6]:
sales.loc[sales['Practice Area'].str.contains('Estate Admin'), 'Practice
Area'] = 'Estate Admin'
sales.loc[sales['Practice Area'].str.contains('Business'), 'Practice Area'] =
'Business'
sales.loc[sales['Practice Area'].str.contains('Medicaid'), 'Practice Area'] =
'Medicaid'
sales.loc[(sales['Practice Area'] != 'Estate Admin') &
           (sales['Practice Area'] !='Estate Planning') &
          (sales['Practice Area'] !='Business')
           (sales['Practice Area']!='Medicaid'), 'Practice Area'] = 'Other'
sales['Practice Area'].value counts()
                                                                         Out[6]:
Estate Planning
                  207
Estate Admin
                   95
Business
                    29
Other
                    17
Medicaid
                   14
Name: Practice Area, dtype: int64
                                                                          In [7]:
#join on zip
joined = sales.merge(census subset, left on='Zip', right on='ZCTA')
#create column for bachelors and graduate degrees
joined['Degree'] = joined['Percent Bachelors Deg'].astype(float) +
joined['Percent Graduate Deg'].astype(float)
#one-hot encoding of practice area
dummies = pd.get dummies(joined['Practice Area'])
#remove unneeded columns
joined = joined.drop(['Unnamed: 0', 'Percent Bachelors Deg', 'Percent
Graduate Deg',
                      'City', 'State', 'Zip', 'ZCTA', 'Contact Year',
'Practice Area', 'Referral'], axis=1)
joined['Median Mortgage'] = joined['Median
Mortgage'].str.replace('+','').str.replace(',','')
#concat all columns and remove rows with no fee
joined = pd.concat([joined,dummies],axis=1).dropna().reset index(drop=True)
```

df = pd.concat([categoric, numeric], axis=1)

In [9]:

#df[['Fee', 'Average Household Size', 'Median Age',
'Median Mortgage', 'Mean Income', 'Percent 65 and Over',
'Percent White', 'Degree']].describe()

In [10]:

import matplotlib.pyplot as plt

```
ax = sales[['Contact Month']].plot.hist()
plt.show()
```

```
ax = sales[['Fee']].plot.hist()
plt.show()
```


In [11]:

In [12]:

Mortgage', 'Mean Income']].plot.box(figsize=(15,7))

Out[11]:

<AxesSubplot:>


```
from sklearn.preprocessing import StandardScaler

# Instantiate scaler
scaler = StandardScaler()

numeric_scaled = pd.DataFrame(scaler.fit_transform(numeric),
columns=numeric.columns)

# Concatenate categoric and scaled numeric columns
scaled_DF = pd.concat([categoric, numeric_scaled], axis=1)
```

PCA

```
In [13]:
from sklearn.decomposition import PCA
pca = PCA(n components=2)
principalComponents = pca.fit transform(scaled DF)
principalDf = pd.DataFrame(data = principalComponents
             , columns = ['principal component 1', 'principal component 2'])
                                                                         In [14]:
pca.explained variance ratio
                                                                        Out[14]:
array([0.59442492, 0.15070333])
                                                                         In [15]:
print(scaled DF.columns)
print(pca.components )
Index(['Contact Month', 'Business', 'Estate Admin', 'Estate Planning',
       'Medicaid', 'Other', 'Fee', 'Average Household Size', 'Median Age',
       'Median Mortgage', 'Mean Income', 'Percent 65 and Over',
       'Percent White', 'Degree'],
      dtype='object')
[[-9.98965670e-01 -2.61358640e-03 -1.21751676e-03 2.61921441e-03
   5.85558065e-03 -4.64369189e-03 2.57409583e-03 3.43537820e-03
   2.97625745e-02 -2.88096399e-03 -1.04542425e-02 2.34024155e-02
  1.14688773e-02 -1.71909230e-02]
 [-2.95350112e-02 8.37680195e-03 -4.14276385e-03 -3.96034179e-04
  2.01727963e-03 -5.85528355e-03 9.93355754e-02 3.43991902e-01
  -2.43606623e-01 4.86551934e-01 4.89006048e-01 -3.54962082e-01
  -1.08665448e-01 4.44740046e-01]]
```

K-Means Clustering

```
In [16]:
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np
                                                                          In [17]:
# Import module
from sklearn.cluster import KMeans
# Instantiate
kmeans = KMeans(n clusters=4, random state=123)
fit = kmeans.fit(scaled_DF)
# Print inertia
print("Sum of squared distances for 4 clusters is", kmeans.inertia )
Sum of squared distances for 4 clusters is 2842.8272368509147
                                                                          In [18]:
cluster score = []
for k in range (1,15):
    k means model = KMeans(n clusters=k)
    k means model.fit(scaled DF)
    cluster score.append(k means model.inertia )
C:\Users\julie\anaconda3\lib\site-packages\sklearn\cluster\ kmeans.py:882:
UserWarning: KMeans is known to have a memory leak on Windows with MKL, when
there are less chunks than available threads. You can avoid it by setting the
environment variable OMP NUM THREADS=2.
  f"KMeans is known to have a memory leak on Windows "
                                                                          In [19]:
sns.set theme(style="white")
sns.set_style({'axes.facecolor':'white', 'font.family':'Times New Roman'})
fig = plt.figure(figsize = (12,8))
ax = fig.add subplot(1,1,1)
plt.xlabel('Number of clusters (k)', fontsize=14)
plt.ylabel('Sum of Squared Error', fontsize=14)
plt.title('Sum of Squared Error for k Clusters', fontsize=20)
ax.spines['top'].set visible(False)
ax.spines['right'].set visible(False)
ax.spines['bottom'].set visible(False)
ax.spines['left'].set_visible(False)
plt.plot(range(1,15), cluster score, '-')
plt.show()
```

Sum of Squared Error for k Clusters

```
7000
   6000
Sum of Squared Error
   5000
   3000
   2000
               2
                                                                       12
                                                                                   14
                                       Number of clusters (k)
                                                                              In [20]:
k means model = KMeans(n clusters=4, random state=1)
k means model.fit(scaled DF)
scaled DF['k means values']=k means model.predict(scaled DF)
scaled DF x = scaled DF.copy()
scaled DF x = scaled DF x.drop('k means values', axis=1)
                                                                              In [21]:
finalDf = pd.concat([principalDf, scaled DF['k means values']], axis = 1)
                                                                              In [22]:
fig = plt.figure(figsize = (8,8))
ax = fig.add subplot(1,1,1)
ax.set xlabel('Principal Component 1', fontsize = 15)
ax.set ylabel('Principal Component 2', fontsize = 15)
ax.set title('2 Component PCA', fontsize = 24)
plt.xlim([-5, 5])
plt.ylim([-5, 5])
cluster = [0,1,2,3]
color = ['r', 'b', 'g','y']
for cluster, color in zip(cluster, color):
    clusInd = finalDf['k means values'] == cluster
    ax.scatter(finalDf.loc[clusInd, 'principal component 1']
                , finalDf.loc[clusInd, 'principal component 2']
```

```
, c = color
, s = 30)
ax.legend([0,1,2,3])
ax.grid()
plt.show()
```



```
In [23]:
sns.set_theme(style="white")
sns.set_style({'axes.facecolor':'white', 'font.family':'Times New Roman'})
fig = plt.figure(figsize = (12,12))
ax = fig.add_subplot(1,1,1)
ax.set_xlabel('Principal Component 1', fontsize = 20)
ax.set_ylabel('Principal Component 2', fontsize = 20)
ax.set_title('Customer Segmentation with 2 Component PCA', fontsize = 24)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
```

```
plt.xlim([-6.5, 6.5])
plt.ylim([-6.5, 6.5])
plt.text(-8, -8, 'PC1 is primarily composed of \'Contact Month\'', ha='left',
fontsize = 16)
plt.text(-8, -8.5, 'PC2 is primarily composed of \'Mean Income\', \'Median
Mortgage\', \'Percent Degree\', \'Average Household Size, and \'Percent 65
and Over\'', ha='left', fontsize = 16)
cluster = [0,1,2,3]
color = ['lightcoral', 'lightsteelblue', 'b', 'cornflowerblue']
for cluster, color in zip(cluster,color):
    clusInd = finalDf['k means values'] == cluster
    ax.scatter(finalDf.loc[clusInd, 'principal component 1']
               , finalDf.loc[clusInd, 'principal component 2']
               , c = color
               s = 50
ax.legend(['Segment 1 -Cluster 0','Segment 2 - Cluster 1', 'Segment 2 -
Cluster 2', 'Segment 2 - Cluster 3'], fontsize=20, loc = 'lower left')
plt.show()
```

Customer Segmentation with 2 Component PCA

PC1 is primarily composed of 'Contact Month'

PC2 is primarily composed of 'Mean Income', 'Median Mortgage', 'Percent Degree', 'Average Household Size, and 'Percent 65 and Over'

$$In \cite{Mathinson} In \$$

	Contact Month	Business	Estate Admin	Estate Planning	Medicaid	Other	Fee	Average Household Size	Median Age	Median Mortgage	Mean Income	Percent 65 and Over	Percent White	Degree	k_means_values
count	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.0
mean	9.159091	0.113636	0.340909	0.500000	0.022727	0.022727	5609.625000	2.592273	41.290909	2416.840909	159112.840909	15.697727	84.377273	63.729545	0.0
std	1.724558	0.321038	0.479495	0.505781	0.150756	0.150756	7888.049783	0.313538	3.850691	507.350892	40947.797211	3.932304	13.687048	9.346970	0.0
min	6.000000	0.000000	0.000000	0.000000	0.000000	0.000000	250.000000	1.690000	32.900000	1552.000000	85565.000000	6.300000	42.400000	33.300000	0.0
25%	8.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1000.000000	2.440000	40.100000	2083.000000	135569.750000	11.700000	80.150000	59.000000	0.0
50%	9.000000	0.000000	0.000000	0.500000	0.000000	0.000000	1800.000000	2.630000	41.900000	2271.000000	166720.000000	16.550000	89.800000	66.150000	0.0
75%	10.250000	0.000000	1.000000	1.000000	0.000000	0.000000	6500.000000	2.740000	43.700000	2706.000000	171881.500000	18.800000	93.100000	68.525000	0.0
max	12.000000	1.000000	1.000000	1.000000	1.000000	1.000000	34885.000000	3.290000	49.400000	4000.000000	358261.000000	24.900000	95.900000	82.000000	0.0

In [26]:

Out[25]:

```
cluster1 =
df_with_clusters[df_with_clusters['k_means_values']==0].describe().loc['mean'
,:]
                                                                           In [27]:
cluster2 =
df with clusters[df with clusters['k means values']==1].describe().loc['mean'
                                                                           In [28]:
cluster3 =
df with clusters[df with clusters['k means values']==2].describe().loc['mean'
,:]
                                                                           In [29]:
cluster4 =
df with clusters[df with clusters['k means values']==3].describe().loc['mean'
,:]
                                                                           In [30]:
list of series = [cluster1, cluster2, cluster3, cluster4]
cluster df = pd.DataFrame(list of series)
cluster df[['Fee']].plot.bar()
cluster df[['Average Household Size']].plot.bar()
cluster df[['Median Age']].plot.bar()
cluster df[['Median Mortgage']].plot.bar()
cluster df[['Mean Income']].plot.bar()
cluster df[['Percent 65 and Over']].plot.bar()
cluster df[['Percent White']].plot.bar()
cluster df[['Degree']].plot.bar()
cluster df[['Contact Month']].plot.bar()
                                                                          Out[30]:
<AxesSubplot:>
```


cluster_df

'Estate Admin', 'Medicaid',

]==1].shape[0]

In [31]:
Out[31]:

	Contact Month	Business	Estate Admin	Estate Planning	Medicaid	Other	Fee	Average Household Size	Median Age	Median Mortgage	Mean Income	Percent 65 and Over	Percent White	Degree	k_means_values
mean	9.159091	0.113636	0.340909	0.500000	0.022727	0.022727	5609.625000	2.592273	41.290909	2416.840909	159112.840909	15.697727	84.377273	63.729545	0.0
mean	10.660550	0.082569	0.211009	0.623853	0.009174	0.073394	2073.577982	2.295138	43.905505	1490.532110	93246.724771	20.657798	87.100917	41.125688	1.0
mean	2.408602	0.075269	0.215054	0.634409	0.043011	0.032258	2681.236559	2.356344	45.386022	1659.139785	105114.688172	21.476344	89.393548	44.556989	2.0
mean	6.125000	0.034091	0.340909	0.488636	0.079545	0.056818	2910.971591	2.324659	42.460227	1544.215909	92775.931818	19.002273	86.215909	39.238636	3.0

```
In [32]:
cluster1 areas =
df with clusters[df with clusters['k means values']==0][['Estate Planning',
'Estate Admin', 'Medicaid',
 "Business", "Other"] ] . sum() / df \_with \_clusters[df \_with \_clusters['k \_means \_values']] . sum() / df \_with \_clusters[df \_with \_clusters['k \_means \_values']] . sum() / df \_with \_clusters[df \_with \_clusters['k \_means \_values']] . sum() / df \_with \_clusters['k \_means \_values'] .
]==0].shape[0]
cluster1 areas
                                                                                                                                                                                                                                                                                                                                                                                                                                 Out[32]:
Estate Planning
                                                                                                               0.500000
Estate Admin
                                                                                                               0.340909
Medicaid
                                                                                                               0.022727
Business
                                                                                                               0.113636
Other
                                                                                                               0.022727
dtype: float64
                                                                                                                                                                                                                                                                                                                                                                                                                                      In [33]:
cluster2 areas =
df_with_clusters[df_with_clusters['k_means_values']==1][['Estate Planning',
```

 $"Business", "Other"]] . sum() / df_with_clusters[df_with_clusters['k_means_values']] . sum() / df_with_clusters[df_with_clusters['k_means_values']] . sum() / df_with_clusters[df_with_clusters['k_means_values']] . sum() / df_with_clusters[df_with_clusters['k_means_values']] . sum() / df_with_clusters['k_means_values'] . sum() / df_w$

```
cluster2 areas
                                                                       Out[33]:
Estate Planning 0.623853
Estate Admin 0.211009 Medicaid 0.009174
Business
                 0.082569
Other
                  0.073394
dtype: float64
                                                                       In [34]:
cluster3 areas =
df with clusters[df with clusters['k means values']==2][['Estate Planning',
'Estate Admin', 'Medicaid',
'Business','Other']].sum()/df with clusters[df with clusters['k means values'
]==2].shape[0]
cluster3 areas
                                                                       Out[34]:
Estate Planning 0.634409
Estate Admin 0.215054
Medicaid
                 0.043011
Business
                 0.075269
                 0.032258
Other
dtype: float64
                                                                       In [35]:
cluster4_areas =
df_with_clusters[df_with_clusters['k_means_values']==3][['Estate Planning',
'Estate Admin', 'Medicaid',
'Business','Other']].sum()/df with clusters[df with clusters['k means values'
]==3].shape[0]
cluster4 areas
                                                                       Out[35]:
Estate Planning 0.488636
Estate Admin 0.340909
Medicaid
                 0.079545
Business
                 0.034091
Other
                  0.056818
dtype: float64
                                                                         In []:
```