Übungsaufgaben - Organisatorisches

NAME (ir	DRUCKSCHRIFT)	VORNAME					
Übungen zu: Auswertung Von Messungen Und Fehlerrechnung							
Blatt Nr. 1/1 Datensatz Nr. 1							
	1. Abgabe	2. Abgabe					
Bewertung:							
Bemerkung:							

Der Abgabetermin der neuen Übungsblätter ist: Montag, 14:00 Uhr

Der Abgabetermin der verbesserten Übungsblätter ist: Freitag, 16:00 Uhr

Übungsaufgabe Besprechung

A) Angabe von Messwerten

Schreiben Sie die folgenden Wertepaare unter Berücksichtigung von zwei signifikanten Stellen des absoluten Fehlers.

		1. Abgabe	2. Abgabe	
1.	7907,729 ± 6,713	±	±	
2.	91423 ± 6341	±	±	
3.	81,01 ± 5,03	±	±	
4.	70000 ± 400	±	±	
5.	100009 ± 98543	±	±	
6.	476,68 ± 9,98	±	±	

Anmerkung wissenschaftliche Notation:

Zahlen zwischen 10⁻³ und 10³ kann man ausschreiben, wie in Aufgabe 3 und 6

B) Güteklasse von elektrischen Messinstrumenten

Ein analoges Messinstrument der Güteklasse 5 zeigt bei Vollausschlag 12,5 V an. Die abgelesene Spannung ist 9,8264 V. Geben Sie den Messwert inklusive Fehler (zwei signifikante Stellen) an.

Abgelesene Spannung	1. Abgabe	2. Abgabe	
9,8264V	±	±	

Güteklasse 5 bedeutet 5 % von 12,50 V.

5 % von 12,50 V sind 0,625V.

Gerundet auf zwei signifikante Stellen ergibt 0,63 V.

Somit lautet das Endergebnis:

$$U = (9.83 \pm 0.63) V$$

C) Ablesung bei digitalen Messinstrumenten

Für ein Digitalthermometer seien folgende Fehler im Datenblatt angegeben: -200° C bis -100° C: $(0,3\% rdg + 1^{\circ}C)$ und $-99,9^{\circ}$ C bis $999,9^{\circ}$ C: $(0,2\% rdg + 0,7^{\circ}C)$. Geben Sie den Messwert inklusive Fehler in sinnvoller Stellenzahl an.

Abgelesene Temperatur	1. Abgabe	2. Abgabe	
134,7°C	±	±	

-99,9 °C bis

999,9 ℃

$$0.2\% (134.7 \, ^{\circ}\text{C}) = 0.269 \, ^{\circ}\text{C}$$

a)
$$(0.269 + 0.7) ^{\circ}C = 0.969 ^{\circ}C$$

= $0.97 ^{\circ}C$

b)
$$(0.3 + 0.7) \circ C = 1.0 \circ C$$

$$T = (134,7 \pm 1,0) \circ C$$

D) Taschenrechnertest

Geben Sie die Ergebnisse der folgenden Rechnungen auf fünf signifikante Stellen an.

		1. Abgabe	2. Abgabe	
1.	$\frac{0,00151 * 20,59}{20,21 - 2,54}$			
2.	$84,79*(71-29*2,26^2)$			
3.	$5923 * e^{\left(\frac{-95,4}{93,4-4,69}\right)}$			
4.	274,4 * 46,5 ^{0,41} * 59,8 ^{-0,41}			
5.	$\sin\left(2\pi*\frac{0,22}{1,85}+\pi/4\right)*\sin(2\pi*0,24-\pi/16)$			
6.	$ln\left(e^{\frac{-2,124}{3-1,1}}\right)$			

$$sin(22 rad) = ?$$

$$sin(22 \text{ rad}) = 0$$

$$sin(22 rad) \neq sin(22 Grad)$$

$$sin(22 \text{ rad}) = -8,851309289 \cdot 10^{-3}$$

Messreihen

Wie bestimme ich die Messunsicherheit in Messreihen?

Spannweite der Verteilung: Differenz zwischen größtem und kleinstem Wert.

Der Median

Der Median teilt die Grundgesamtheit in zwei Hälften gleicher Größe

Messung der Länge eines Stabes

Nummer der Messung	1	2	3	4	5	6	7	8	9	
L/cm	26	24	26	26	23	24	25	24	25	

Sortiert nach Größe:

23, 24, 24, 24, <u>25</u>, 25, 26, 26, 26

Der Median

Der Median teilt die Grundgesamtheit in zwei Hälften gleicher Größe

Messung der Länge eines Stabes

Nummer der Messung	1	2	3	4	5	6	7	8	9	10
L/cm	26	24	26	26	23	24	25	24	25	28

Sortiert nach Größe:

23, 24, 24, 24, 25, 25, 26, 26, 26, 28

Median

Ein Wert m ist Median einer Stichprobe, wenn höchstens die Hälfte der Beobachtungen einen Wert < m und höchstens die Hälfte einen Wert > m hat. Der Median m einer geordneten Stichprobe von n Werten ist dann:

$$m = \begin{cases} x_{\frac{n+1}{2}} & n \text{ ungerade} \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right) & n \text{ gerade} \end{cases}$$

Begriffe

Spannweite der Verteilung: Differenz zwischen größtem und kleinstem Wert.

Mittelwert 1 – Arithmetischer Mittelwert

Messung der Länge eines Stabes

Nummer der Messung	1	2	3	4	5	6	7	8	9	10
L/cm	26	24	26	26	23	24	25	24	25	28

Summation über alle Messwerte:

$$\overline{x} = \frac{23 + 24 + 24 + 24 + 25 + \dots + 28}{10} = \frac{\sum_{i=1}^{n} x_i}{n} = 25,10$$

Arithmetischer Mittelwert

Seien n (einfach linear zusammenhängende) Werte x_i (i \in {1; ...; n}) einer gemessenen Größe gegeben. Die Größe \underline{x}_a , die aus

$$\underline{x}_a = \frac{1}{n} \sum_{i=1}^n x_i$$

berechnet wird, wird <u>arithmetisches Mittel</u> oder <u>arithmetischer</u> <u>Mittelwert</u> genannt.

Beispiel: Studiendauer Diplom

Semester	Anzahl
10	29
11	38
12	33
13	24
14	20
15	17
16	12
17	10
18	6
19	6
20	5

Die meisten der Studenten machen die Diplomprüfung nach 11 Semestern (Modus). Die mittlere Studiendauer ist 12,5 Semester (Median).

Liegt der Median zwischen zwei ganzen Zahlen, wird gemittelt, z.B. 12,5 Semester (Es gibt detailliertere Regeln).

Der Mittelwert der Studiendauer ist 13,2 Semester (Mittelwert – Mean)

Spannweite der Verteilung: Differenz zwischen größtem und kleinstem Wert.

Mittelwert 2 – Geometrischer Mittelwert

Jahr Wir kaufen Aktien für 1000 €

Jahr Aktienkurs steigt auf 1200 €

3. Jahr Aktienkurs steigt auf 1500 €

4. Jahr Aktienkurs fällt auf 1000 € → Wir verkaufen

Annahme, es gab weder Zinsen noch Dividenden

Trivialrechnung:

$$\bar{x} = \frac{20 + 25 - 33.33}{3} = 3.89 \%$$

3,89 % pro Jahr bedeuten ca. 1121 € nach 3 Jahren

Mittelwert 2 – Geometrischer Mittelwert

Wachstumsfaktoren:

- 1. \rightarrow 2. Jahr 1200/1000 = 1,200
- 2. → 3.Jahr 1500/1200 = 1,250
- 3. \rightarrow 4. Jahr 1000/1500 = 0,667

$$\overline{x}_{geo} = \sqrt[3]{1,200 \cdot 1,250 \cdot 0,667} = \sqrt[3]{1,0005} = 1,00$$

Geometrischer Mittelwert

Seien n exponentiell zusammenhängende Werte x_i (i \in {1; 2; ...; n}) einer gemessenen Größe gegeben. Die Größe \underline{x}_g , die aus

$$\underline{x}_g = \sqrt{\prod_{i=1}^n x_i}$$

berechnet wird, wird geometrisches Mittel oder geometrischer Mittelwert genannt.

Zusammenfassung Mittelwerte

Der arithmetische Mittelwert	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Der geometrische Mittelwert	$\overline{x} = \sqrt[n]{x_1 \cdot x_2 \cdot \cdot \cdot x_n}$
Der quadratische Mittelwert	$\overline{x} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$
Der Median	Derjenige Wert, der in der Mitte steht, wenn man die x _i der Größe nach sortiert

Weitere Möglichkeiten der Angabe von mittleren Werten

- Der häufigste Wert (Modus oder Modalwert)
 !!!Bimodale Verteilung !!!
- Das arithmetische Mittel aus dem kleinsten und größten vorkommenden Wert

Messreihen

Messung der Länge eines Stabes

Wie bestimmt man den Fehler einer Messung aus einer Messreihe?

Nummer der Messung	1	2	3	4	5	6	7	8	9	10
L/cm	26	24	26	26	23	24	25	24	25	28

Sortieren der Werte nach Klassen

Werte x _k	23	24	25	26	27	28
Anzahl der Messwerte	1	3	2	3	0	1

Mittelwertbildung

Messung der Länge eines Stabes

Werte x _k	23	24	25	26	27	28
Anzahl der Messwerte	1	3	2	3	0	1

Summation über alle Messwerte:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{23 + 24 + 24 + 24 + 25 + \dots + 28}{10} = 25,10$

Summation über alle Klassen:

$$\bar{x} = \frac{\sum_{k} x_k \cdot n_k}{n}$$
 $\bar{x} = \frac{\sum_{k} x_k \cdot n_k}{n} = \frac{(23 \cdot 1) + (24 \cdot 3) + (25 \cdot 2) + \dots + (28 \cdot 1)}{10}$

$$\sum n_k = n$$
 $\overline{x} = \sum F_k \cdot x_k$, wobei $F_k = \frac{n_k}{n}$ $\sum_k F_k = 1$

Histogramm / Stabdiagramm

Beispielhaftes Histogramm zu einer Messreihe: Messung der Länge eines Stabes

Werte x _k	23	24	25	26	27	28
Anzahl der Messwerte	1	3	1	3	0	2

Einschub: Wie fasse ich Werte sinnvoll zu Klassen zusammen?

Weitere Messreihe: Messung der Länge eines Stabes

	1	2	3	4	5	6	7	8	9	10
L/cm	26,4	23,9	25,1	24,6	22,7	23,8	25,2	23,8	25,3	25,4

In diesem Beispiel ist das Zeichnen eines Stabdiagramms wenig sinnvoll

Faustregel für die Anzahl der Klassen $k \cong 5 * lg (n)$. Häufig reicht auch \sqrt{n}

Zusammenfassung der Messwerte zu Klassen

Klasse	22 bis	23 bis	24 bis	25 bis	26 bis	27 bis
	23	24	25	26	27	28
Anzahl der Messungen	1	3	1	4	1	0

Einschub: Wie fasse ich Werte sinnvoll zu Klassen zusammen?

Klasse	22 bis	23 bis	24 bis	25 bis	26 bis	27 bis
	23	24	25	26	27	28
Anzahl der Messungen	1	3	1	4	1	0

Das Zusammenfassen von Messwerten zu Klassen ist ein wichtiger Vorgang in der Statistik und wird in den Vorlesungen zu Verteilungsfunktionen und Signifikanztest ausführlich diskutiert.

Bedeutung des Mittelwertes

Wir erinnern uns:

Für zufällige Fehler gilt:

- ♣ Positive und negative Abweichungen sind gleich häufig
- ♣ Die Häufigkeit des Vorkommens nimmt mit dem Absolutbetrag des Fehlers ab
- ♣ Die Wahrscheinlichkeit für das Auftreten des Fehlers Null besitzt ein Maximum

Erwartungswert *E(X)*

Seien ω die Ergebnisse bei einem (Wahrscheinlichkeits-)Experiment aus der Gesamtheit aller Ergebnisse, dem Ergebnisraum Ω . Sei $X(\omega)$ eine reelle Zahl, die dem Ergebnis ω zugeordnet ist, und $P(\{\omega\})$ eine gegebene Wahrscheinlichkeit zu dem einzelnen Ereignis ω . So bezeichnet man die Zahl E(X), die aus

$$E(X) := \sum_{\omega \in \Omega} X(\omega) \cdot P(\{\omega\})$$

berechnet wird, als <u>Erwartungswert</u> der Zufallsgröße $X(\omega)$.

Messreihen

Wie bestimmt man den Fehler einer Messung aus einer Messreihe?

Wie verlässlich kennen wir den Erwartungswert?

Wie sehr streuen die Daten? Wie breit ist die Verteilung der Daten?

Die Stichprobe

Um den mathematisch exakten Erwartungswert zu bestimmen, müssen wir die Grundgesamtheit kennen. Es gibt aber unendlich viele mögliche Messwerte!

Grundgesamtheit

Stichprobe (Zufallsauswahl)

Wir müssen den Erwartungswert schätzen

Übergang zur Grenzverteilung

10 Messungen

100 Messungen

250 Messungen

1000 Messungen

- Mit zunehmender Anzahl der Messungen wird ein Histogramm glatter und regelmäßiger.
- Die Breite der Kurve ändert sich nicht.
- Mit zunehmender Zahl der Messungen kann die Breite und der Mittelwert verlässlicher angegeben werden.
- Wenn die Anzahl der Messungen gegen unendlich geht, n\u00e4hert sich die Verteilung einer stetigen Kurve.
- Eine solche Verteilung heißt Grenzverteilung oder Grundgesamtheit.

Mehr zur Normalverteilung folgt in den späteren Vorlesungen

Unsere Messung ist eine Stichprobe

Wenn wir wirklich nur zufällige Fehler haben können wir den Erwartungswert über das arithmetische Mittel schätzen.

Diese Schätzung wird besser sein, je mehr Messwerte wir haben.

Aber wie gut ist sie wirklich?

Wir benötigen ein Streuungsmaß!

Die Varianz

Die Varianz ist ein Maß für die "Breite" der Verteilung der Messwerte

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Bei obiger Definition ist μ der wahre Mittelwert der Verteilung.

Dieser ist aber nicht bekannt. Daher wird μ durch den gemessenen Mittelwert \overline{x} ersetzt.

Der Mittelwert muss aus der Datenmenge berechnet werden.

Dieser ist jedoch nur mit einer Unsicherheit bekannt.

Dies zwingt zur Einführung der Stichprobenvarianz.

Die Standardabweichung

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Die Messgrößen besitzen eine Einheit. In unserem Beispiel waren das mm. Somit hat die Varianz die Einheit mm².

Sinnvoll ist eine Größe mit der gleichen Dimension wie der Messwert.

Standardabweichung:

$$\sigma_x = \sqrt{\sigma_x^2} = \sqrt{\frac{1}{n}} \sum_{i=1}^n (x_i - \mu)^2$$

Die Stichprobenvarianz

Können wir einfach μ durch den Mittelwert ersetzen?

$$Z_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Schauen wir uns den Erwartungswert von Z_x^2 an:

$$E(Z_{x}^{2}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}(x_{i}-\mu+\mu-\overline{x})^{2}\right)$$
a -b

$$= \frac{1}{n} E \left(\sum_{i=1}^{n} \left(\left(x_{i} - \mu \right)^{2} - 2 \left(x_{i} - \mu \right) (\overline{x} - \mu) + \left(\overline{x} - \mu \right)^{2} \right) \right)$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= \frac{1}{n} E \left(\sum_{i=1}^{n} (x_i - \mu)^2 - 2 \sum_{i=1}^{n} (x_i - \mu) (\overline{x} - \mu) + n (\overline{x} - \mu)^2 \right)$$

$$= \frac{1}{n} E \left(\sum_{i=1}^{n} (x_i - \mu)^2 - 2n(\overline{x} - \mu)(\overline{x} - \mu) + n(\overline{x} - \mu)^2 \right)$$

Die Stichprobenvarianz

$$E(Z_x^2) = \frac{1}{n} E\left(\sum_{i=1}^n (x_i - \mu)^2 - 2n(\overline{x} - \mu)(\overline{x} - \mu) + n(\overline{x} - \mu)^2\right)$$

$$= \frac{1}{n} E \left(\sum_{i=1}^{n} (x_i - \mu)^2 - n(\overline{x} - \mu)^2 \right)$$

$$=\frac{1}{n}\left(\sum_{i=1}^{n}E\left(\left(x_{i}-\mu\right)^{2}\right)-nE\left(\left(\overline{x}-\mu\right)^{2}\right)\right)$$

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
$$= E((x - \mu)^2)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} Var(x) - nE\left(\left(\overline{x} - \mu \right)^{2} \right) \right)$$

$$= \frac{1}{n} \left(nVar(x) - nVar(\overline{x}) \right)$$

$$= Var(x) - \frac{Var(\overline{x})}{}$$

Kurze Zwischenrechnung

Wie groß ist $Var(\bar{X})$?

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, mit identisch verteilten Zufallsgrößen $X_1, X_2, ..., X_n$.

Die Zufallsgrößen X_i seien unabhängig. Dann gilt:

$$Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i})$$

Weiter:

$$\frac{1}{n^2}\sum_{i=1}^n Var(X_i) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

Die Stichprobenvarianz

$$E(Z_{x}^{2}) = \frac{1}{n} E\left(\sum_{i=1}^{n} (x_{i} - \mu)^{2} - 2n(\overline{x} - \mu)(\overline{x} - \mu) + n(\overline{x} - \mu)^{2}\right)$$

$$= \frac{1}{n} E \left(\sum_{i=1}^{n} (x_i - \mu)^2 - n(\overline{x} - \mu)^2 \right)$$

$$=\frac{1}{n}\left(\sum_{i=1}^{n}E\left(\left(x_{i}-\mu\right)^{2}\right)-nE\left(\left(\overline{x}-\mu\right)^{2}\right)\right)$$

$$Var(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
$$= E((x - \mu)^2)$$

$$= \frac{1}{n} \left(\sum_{i=1}^{n} Var(x) - nE\left(\left(\overline{x} - \mu \right)^{2} \right) \right)$$

$$= \frac{1}{n} \left(nVar(x) - nVar(\overline{x}) \right)$$

$$= Var(x) - Var(\overline{x})$$

Die Stichprobenvarianz

$$E(Z_x^2) = Var(x) - Var(\overline{x}) = \sigma_x^2 - \frac{\sigma_x^2}{n} = \frac{n-1}{n}\sigma_x^2 \neq \sigma_x^2$$

Die Varianz ist nicht erwartungstreu!

ABER: Diesen Vorfaktor können wir einfach berücksichtigen!

Wir wählen statt Z_x^2 einfach:

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x} \right)^2$$

Es ergibt sich dann sofort:

$$E(s_x^2) = \sigma_x^2$$

Kleine Hausaufgabe falls nicht offensichtlich: Prüfen Sie das!

Die Stichprobenstandardabweichung

(mittlerer quadratischer Fehler der Einzelmessung). Die Standardabweichung ist die Quadratwurzel aus der Varianz

$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 $(n > 1)$

 s_x wird auch als Stichproben-Standardabweichung bezeichnet.

Die (Stichproben)Standardabweichung ist ein Maß für die Genauigkeit der Messmethode

Unsere eigentliche Frage war aber eine andere: Wie verlässlich kennen wir den Erwartungswert?

Standardfehler des arithmetischen Mittelwertes

Wir haben eine Grundgesamtheit, deren genaue Verteilung unbekannt ist, mit Mittelwert μ und Standardabweichung σ .

Wir machen eine Stichprobe von n Messungen und erhalten einen Mittelwert \overline{x} und eine Stichprobenstandardabweichung s.

Unser Mittelwert ist gegeben durch:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Wir betrachten nun die Schätzfunktion:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, mit identisch verteilten Zufallsgrößen $X_1, X_2, ..., X_n$.

Wie sieht die Verteilung der \overline{X} aus?

Standardfehler des arithmetischen Mittelwertes

Wie groß ist $Var(\bar{X})$?

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, mit identisch verteilten Zufallsgrößen $X_1, X_2, ..., X_n$.

Die Zufallsgrößen X_i seien unabhängig. Dann gilt:

$$Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}Var(X_{i})$$

Weiter:

$$\frac{1}{n^2}\sum_{i=1}^n Var(X_i) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

Damit:

$$\sigma(\bar{X}) = \frac{\sigma}{\sqrt{n}}.$$

Der Standardfehler ist ein Maß für die Genauigkeit der Angabe des Mittelwertes.

Der Standardfehler

Neben der Standardabweichung, die ein Maß für die Genauigkeit der Messmethode ist, gibt es den Standardfehler, der ein Maß für die Verlässlichkeit der Angabe des Mittelwertes ist.

$$S_{\overline{x}} = \frac{S_x}{\sqrt{n}}$$

Dies ist also der entscheidende Wert für die Angabe von Messgenauigkeiten!

Zur Standardabweichung

Wie groß ist der Fehler des Fehlers?

Für den relativen Fehler der Standardabweichung gilt (Siehe Squires):

$$\frac{\Delta s_x}{s_x} = \frac{1}{\sqrt{2(n-1)}}$$

Die Standardabweichung (Genauigkeit einer Messmethode) ist umso genauer angebbar, je mehr Messungen man durchführt.

Zur Stellenzahl

Annahme: Der rechnerische Wert der Standardabweichung bei einer Messung sei $s_x = 6,2431754$

Wie genau soll ich diesen Wert angeben?

Beispiel a: Es sind 5 Messungen durchgeführt worden.

$$\frac{\Delta s_x}{s_x} = \frac{1}{\sqrt{2(n-1)}}$$

 $\Delta s_x/s_x = 0.354$, d.h. s_x ist auf 35,4% genau bekannt 35,4% von s_x sind 2,2

$$s_x = 6.2 \pm 2.2$$

Daher macht es eigentlich nur Sinn, s_x = 6 auf eine signifikante Stelle anzugeben.

Der Fehler der Standardabweichung liegt in der ersten Stelle.

Zur Stellenzahl

Annahme: Der rechnerische Wert der Standardabweichung bei einer Messung sei $s_x = 6,2431754$

Wie genau soll ich diesen Wert angeben?

Beispiel b: Es sind 50 Messungen durchgeführt worden.

$$\frac{\Delta s_x}{s_x} = \frac{1}{\sqrt{2(n-1)}}$$

 $\Delta s_x/s_x$ = 0,101, d.h. s_x ist auf 10,1% genau bekannt 10,1% von s_x sind 0,63

$$s_x = 6,24 \pm 0,63$$

Erst bei mehr als 21 Messungen macht es in diesem Beispiel Sinn, s_x = 6,2 auf mehr als eine signifikante Stelle anzugeben.

Der Standardfehler - Zusammenfassung

Die Standardabweichung ist ein Maß für die Genauigkeit der **Meßmethode**.

Der Standardfehler ist ein Maß für die Verlässlichkeit der Angabe des Mittelwertes.

$$s_{\bar{x}} = \frac{s_x}{\sqrt{n}}$$

Mit zunehmender Anzahl von Messungen wird somit die Angabe des Mittelwertes der Stichprobe immer verlässlicher.

Das bedeutet nicht, dass das Messverfahren genauer wird!

Man kann lediglich bei dieser Messmethode (Standardabweichung) den Mittelwert verlässlicher angeben.