Binary Search Tree

1. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
0. BST tree;
1. tree.insert('H');
2. tree.insert('A');
3. tree.insert('R');
4. tree.insert('H');
5. tree.insert('U');
6. tree.insert('I');
```

1.

2.

3.

4.

5.

6.

 2. ต่อจากข้อ 1 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
7.delete_node(&(tree.root->left));// A
8.delete_node(&(tree.root->right));
9.delete_node(&(tree.root->right));
```

7.

8.

9.

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น HHI.

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น HHI.

หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น 1HH

3. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree2;
0.
     tree2.insert('G');
1.
2.
     tree2.insert('0');
3.
     tree2.insert('I');
     tree2.insert('N');
  tree2.insert('G');
  tree2.insert('M');
  tree2.insert('E');
7.
     tree2.insert('R');
     tree2.insert('T');
9.
      tree2.insert('Y');
10.
```


4. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
11. delete_node(&(tree2.root->right->left));(1)
12. delete_node(&((tree2.root->right->left)->right));(N)
13. delete_node(&((tree2.root->right->right)->right));(1)
14. delete_node(&((tree2.root->right->right)->right));(Y)
```


)

5. จงเขียนแผนภาพของการทำงานของ Binary search tree ในโปรแกรมต่อไปนี้ที่ละบรรทัด และตอบ คำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว (ออกแบบบรรทัดเองเลยครับ)

```
BST tree3;
1.
2.
      tree3.insert('A');
      tree3.insert('B');
3.
      tree3.insert('C');
4.
      tree3.insert('D');
5.
      tree3.insert('E');
6.
      tree3.insert('F');
7.
      tree3.insert('G');
      tree3.insert('H');
9.
                             ABCDEFGHIJKLMNOPQRSTUVWXYZ
```

หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น ABCDEF GH หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น _____A B C D E F G h หาก travers tree ดังกล่าว แบบ Post-order จะได้ output เป็น 🖁 🖰 🗜 🧗 🕻 🐧 🕻 🖪 🗛 2) 7)

6. ต่อจากข้อ 3 หากใช้ code ดังต่อไปนี้ จงเขียนแผนภาพของการทำงานของ Binary search tree ใน โปรแกรมต่อไปนี้ที่ละบรรทัด และตอบคำถามเกี่ยวกับการท่อง (Traversal) ไปใน tree ดังกล่าว

```
10. delete_node(&(tree3.root));
11. delete_node(&(tree3.root));
12. delete_node(&(tree3.root));
13. delete_node(&(tree3.root));
```


หาก travers tree ดังกล่าว แบบ Pre-order จะได้ output เป็น	EFGH
หาก travers tree ดังกล่าว แบบ In-order จะได้ output เป็น	EFGH
ระกุ travare trag ดังกล่าง แรง Pact arder ครูใต้ autnut เรื่อ	HGFE

7.	BST ที่ balance กับ BST ที่ไม่ balance แบบใหนมีลำดับชั้นที่มากกว่ากัน หากจำนวนสมาชิกเท่ากัน เนื่องจากอะไร (ขอสั้นๆ) BST ทั่ ไม่ balance เพญะมันจะทำไห้ ผู้เปม่ะเท่ากัน และค่อไป เช้อน
8.	BST ที่ balance กับ BST ที่ไม่ balance หากต้องการ search แบบใหน ให้เวลาในการค้นหาน้อยกว่ากับ อย่างไร (ขอสั้นๆ) BST ที่ balance เพราะ กับ บทช่วไลทะ ก็เนมีผม linked list
9.	Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ) Tree ที่ balance กับ tree ที่ไม่ balance แบบใดโดยทั่วไปจะมีประสิทธิภาพดีกว่ากัน (ขอ1 คำ)
10. ดังนั้นการคิด algorithm และ data structure เราควรพยายามให้ tree อยู่ในรูปของ balance หรือ unbalance เนื่องจากอะไร (ขอยาวๆ) คอร์ให้อยู่ ในรูปหญาของ balance เพราะ พัพ จะทำให้ทั้งผน้ำเพ่ากัน ว่าขท่อกรหา ผละ หาไจ้รวกเริ่วกล่า บทbalance เพื่องจาก เราฆ์จะหายญาม่ารื่องไข	