# <u>DATASET IMPORTANCE OF HAVING SCHEMA IN A DATASET</u> (PRIMARY KEY)

## SUBMITTED BY:-NANDINI RATHORE

## TABLES OF CONTENT:-

| INTRODUCTION2-3                                              |      |
|--------------------------------------------------------------|------|
| DATASET ANALYSIS3-2                                          | 7    |
| 3 DATASETS                                                   |      |
| ✓ NEW.HOSPITAL3-                                             | -12  |
| CREATE, INSERT, SELECT STATEMENT WHILE CREATING THIS DATASET |      |
| ✓ SCHOOL.METADATA12                                          | 2-19 |
| CREATE, INSERT, SELECT STATEMENT WHILE CREATING THIS DATASET |      |
| ✓ AIRLINE.METADATA19-                                        | -27  |
| CREATE, INSERT, SELECT STATEMENT WHILE CREATING THIS DATASET |      |
| COMPARATIVE ANALYSIS OF HAVING OR NOT HAVING SCHEMA27-       | 29   |
| REFERENCES30                                                 | j    |

## **INTRODUCTION:->Structured Data**

Structured data means data that is well-organized in rows and columns, like in a table. It is stored in databases such as Microsoft SQL or Excel. Each row is one record (like one student or one patient), and each column is a specific detail (like name, age, or address).

## **Examples of structured data:**

- Student records in a school
- Patient details in a hospital
- Booking details of airline.

Structured data is easy to search, filter, and analyze.

## Importance of schema in Data Management

A **schema** is like a plan or a map of how data is arranged in a database. It tells us:

- What kind of data is stored (like numbers or text)
- How different tables are connected
- Which column is the **Primary Key** (unique for each row,it didn't contain any null value and duplicate values.)
- How data in one table relates to another table using Foreign Keys.

## Why schema is important:

- It keeps the data clean and organized.
- It avoids mistakes like storing wrong types of data.
- It helps us understand how different tables are connected.
- It makes searching and analyzing data faster and easier.

Without a schema, the data can become messy, hard to use, and full of errors.

#### ADVANTAGES OF PRIMARY KEY:-

- 1. Uniquely Identifies Each Record
  - o No two rows will have the same primary key
  - Helps avoid duplicate data
- 2. Ensures Data Integrity
  - o Guarantees that every row has a unique and non-null value
- 3. Helps in Indexing and Fast Searching
  - Speeds up data retrieval in queries
- 4. Foundation for Table Relationships
  - Used to link with other tables via foreign keys

DISADVANTAGES OF PRIMARY KEY:- Cannot Be Null:--Every record must have a value — sometimes a problem if data is incomplete.

Needs Proper Design:--Choosing a wrong primary key (like a name) can cause issues later.

Harder to Change:--If a primary key value needs to be updated, it may affect linked data.

**ADVANTAGE OF FOREIGN KEY:**-1. Connects records across different tables (e.g., patient  $\rightarrow$  doctor).

- 2. Prevents orphan records (e.g., prescription linked to a non-existent patient).
- 3. Allows you to split large datasets into logical smaller parts.
- 4.NULL values are allowed unless a NOT NULL constraint is applied. Cannot be the same column as the primary key in the same table.

DISADVANTAGES OF FOREIGN KEY:--1. Database checks relationships before making changes, which can slow down performance.means slow insert, delete and update of statements.

- 2. Dependency on Parent Table:--cannot insert a value unless the referenced primary key exists.
- 3. Complexity in Large Schemas:--Managing many foreign keys can make design and debugging harder.

## **DATASET ANALYSIS**

FIRST DATASET

## **♣** NEW.HOSPITAL:->

SCHEMA=NEW
TABLENAME=HOSPITAL



1.CREATE TABLE NEW.PATIENTS.IT SHOWS AN ERROR BECAUSE I DIDN'T CREATE SCHEMA FIRST.



2.THEN I CREATE SCHEMA ,THEN CREATE TABLE AND INSERT VALUES INTO IT.



## 3.ENTITIES AND ATTRIBUTES OF TABLE :-NEW.PATIENT

- Attributes: p\_id (Primary Key), p\_name, p\_age, p\_address
- Primary Key: p id
- **Description:** Stores basic patient details.



4. This shows error of duplicate key because I wrote the same s\_id twice. As primary key didn't contain duplicate values and null values.



5. Attributes: D\_id (Primary Key), p\_id (Foreign Key), D\_name, D\_DEP

Primary Key: D\_id

**Foreign Key:** p\_id → patients(p\_id)

**Description:** Stores doctor details, and each doctor is related to a patient.



6. This error is because of time data datatype which require comma '12:00', in the screenshot.



- 7. insert statement into table appointment.
  - Attributes: A\_DATE (Primary Key), p\_id, D\_ID, TIMING
  - Primary Key: A\_DATE
  - Foreign Keys:
    - o p\_id → patients(p\_id)
    - $\circ$  D\_ID  $\rightarrow$  doctor(D\_ID)
  - **Description:** Stores appointment info between patients and doctors.



9. using select statement, appointment table appears.



10. Insert values into prescription table.

Attributes: pr\_no (Primary Key), p\_id, D\_id, medicine

Primary Key: pr\_no

#### **Foreign Keys:**

- p id → patients(p id)
- D\_id → doctor(D\_ID)

**Description:** Medicines prescribed to patients by doctors.





11.create table new.billing. Insert values in it and use select statement.

Attributes: b\_no (Primary Key), p\_id, price

Primary Key: b\_no

Foreign Key: p id  $\rightarrow$  patients(p id)

**Description:** Billing information for each patient.





12. metadata table of hospital dataset having 5 tables in it.

Attributes: id (Primary Key), tablename, schemaname, foldername, filename

Primary Key: id

**Description:** Metadata table – stores info about dataset file locations.

RELATIONSHIP BETWEEN THE TABLES:->

| Table        | Related Table    | Relationship Type                                |
|--------------|------------------|--------------------------------------------------|
| doctor       | patients         | Many-to-One (Each doctor is linked to a patient) |
| appointment  | patients, doctor | Many-to-One (Appointment is linked to both)      |
| prescription | patients, doctor | Many-to-One                                      |
| billing      | patients         | Many-to-One                                      |
| hospital     | (Metadata only)  | No FK relationships                              |
|              |                  |                                                  |



- I. CHART:-> X-axis shows the **filename** (like patients.csv, doctor.csv, appointment.csv,billing.csv,prescription.csv).
- II. On y-axis, It counts how many times each file is used.
- III. All 5 bars are equal and count is 1 for each that means:
  - No duplicates
  - No missing files
  - Each file is correctly mapped to one tab

The column chart shows a one-to-one mapping between database tables and CSV source files.
 Each dataset is uniquely stored under its respective folder, demonstrating organized file management and supporting schema-based data loading.



- I. PIE CHART:-> It uses columns from new.hospital table: id, tablename, schemaname, foldername, filename.
- II. The chart shows that each attribute has data.
- III. Each segment (color) represents one column. Since it forms a full circle, it means all values are present in all 5 rows.
- IV. Metadata is complete no missing values. Every table is properly linked to a folder and a .csv file

## 2.DATASET:->SCHOOL.METADATA

SCHEMA= SCHOOL

TABLENAME = METADATA



1. This error appears because first I have to create schema for table school.



2.now I create schema by using, 'create schema school'.insert values into table and then use select statement.

**Description:** Stores appointment info about school students their rollno,name,age ,address and marks.





3.for creating school.teachers table by using create, insert and select statement, contains information about teachers.

Attributes: t\_id (Primary Key), s\_rollno (Foreign Key), t\_name, t\_subject

Primary Key: t\_id

**Foreign Key:** s\_rollno → students(s\_rollno)

**Description:** Stores teachers details, and each teacher is related to a student.



4.In this I wrote wrong t\_id . that's why it shows foreigh key constraints(t\_id).



5.School.enrollment2 table.

Attributes: enrollment\_id (Primary Key), t\_id (Foreign Key), s\_rollno,e\_subject

Primary Key: enrollment\_id

Foreign Key:  $t_id \rightarrow teachers(t_id)$ ,  $s_rollno \rightarrow students(s_rollno)$ 

**Description:** Stores details about ,in which teacher's subject student enroll.



6. This error shows primary key constraints, as primary key didn't contain any duplicate values. Here I put 'absent' two times this shows an error because we can't put same values in primary key.



7.school.attendance3 table.

Attributes: attendancestatus(Primary Key), enrollment\_id (Foreign Key), s\_rollno(foreign key)

Primary Key: attendancestatus

Foreign Key: enrollment\_id → enrollments(enrollment\_id),s\_rollno→students(s\_rollno)

**Description:** Stores information about attendance of students which are enrolled in subjects.



#### 8. school.fee table

Attributes: s\_rollno(Primary Key), enrollment\_id (Foreign Key), feestatus.

Primary Key: s\_rollno

**Foreign Key:** enrollment id  $\rightarrow$  enrollments(enrollment id).

**Description:** Stores information about fee status of enrolled students.



## 9.STAFF TABLE

**Attributes:**STAFF\_ID (PRIMARY KEY),T\_ID,DEPARTMENT,S\_ROLLNO.

Primary Key: STAFF\_ID

Foreign Key:  $T_id \rightarrow TEACHERS(T_id)$ ,  $S_ROLLNO \rightarrow STUDENTS(S_ROLLNO)$ .

**Description:** Stores information about STAFF in the school including teachers who teach students for particular subject.



9. . metadata table of school dataset having 5 tables in it.

Attributes: id (Primary Key), tablename, schemaname, foldername, filename

Primary Key: id

**Description:** Metadata table – stores info about dataset file locations.

#### **RELATIONSHIP BETWEEN TABLES:-**

| Table      | Related Table      | Relationship Type                                 |
|------------|--------------------|---------------------------------------------------|
| TEACHERS   | STUDENTS           | Many-to-One (Each teacher is linked to a student) |
| ENROLLMENT | STUDENTS, TEACHERS | Many-to-One (enrollment is linked to both)        |
| FEE        | STUDENTS, TEACHERS | Many-to-One                                       |
| ATTENDANCE | STUDENTS           | Many-to-One                                       |
| STAFF      | STUDENTS, TEACHERS | Many-to-One                                       |
| METADATA   | ALL THE TABLES     | No FK relationships                               |



- > STUDENTS is the **central table** (all others link to it).
- > TEACHERS has a foreign key to STUDENTS.
- ENROLLMENT connects both TEACHERS and STUDENTS.
- > ATTENDANCE links TEACHERS and STUDENTS.
- STAFF links only to TEACHERS.



CHART:-> X-axis shows the filename (like students.csv, teachers.csv, enrollment.csv,fee.csv,staff.csv).

- > On y-axis, It counts how many times each file is used.
- ➤ All 5 bars are equal and count is 1 for each that means:
- No duplicates
- No missing files
- Each file is correctly mapped to one tab
- The column chart shows a one-to-one mapping between database tables and CSV source files. Each dataset is
  uniquely stored under its respective folder, demonstrating organized file management and supporting schema-based
  data loading.



- I. PIE CHART:-> It uses columns from new.hospital table: id, tablename, schemaname, foldername, filename.
- II. The chart shows that each attribute has data.
- III. Each segment (color) represents one column. Since it forms a full circle, it means all values are present in all 5 rows.
- IV. Metadata is complete no missing values. Every table is properly linked to a folder and a .csv file

## 3 DATASET:->AIRLINE.METADATA6



1.creating schema airline first. Then insert values in table airline.flights.

Attributes:flight\_ID (PRIMARY KEY),origin,departure time,arrival time...

Primary Key: flight\_id

**Description:** Stores information about flights.



'Attributes:passenger\_ID (PRIMARY KEY),flight\_ID,p\_email,p\_passportno

Primary Key: PASSENGER\_ID

**Foreign Key:** FLIGHT\_id → FLIGHT(FLIGHT\_ID)

Description: Stores information about PASSENGERS, WHICH FLIGHTTHEY BOOK FOR TRAVELLING AT

WHAT TIME.



HERE DATE SHOULD BE IN ''.LIKE'2025-06-04'.



#### 3. BOOKING TABLE:→

Attributes: BOOKING\_ID (PRIMARY KEY), PASSENGER\_IDFLIGHT\_ID, BOOKING\_DATE, SEAT\_NO.

Primary Key: BOOKING\_ID

Foreign Key: PASSENGER\_ID,FLIGHT\_ID.

Description: Stores information about BOOKING OF FLIGHT BY PASSENGER, DETAILS ABOUT SEAT NO.

AND DATE.



#### 4.AIRPORTS TABLE:->

Attributes: AIRPORT\_CODE (PRIMARY KEY), CITY, COUNTRY, FLIGHT\_ID

Primary Key: AIRPORT\_CODE

Foreign Key:->FLIGHT\_ID.

**Description:** Stores information about AIRPORTS OF COUNTRY HAVING FLIGHT\_ID.



HERE ERROR BECAUSE I WROTE SAME PAYMENT\_ID WHICH IS A PRIMARY KEY.



5.CREATE, INSERT STATEMENT OF TABLE AIRLINE. PAYMENT.



Attributes: PAYMENT\_ID PRIMARY KEY,BOOKING\_ID,AMOUNT,METHOD.

Primary Key: PAYMENT\_ID

Foreign Key:->BOOKING\_ID

Description: Stores information about PAYMENT METHOD FOR BOOKING FLIGHT.



6. . metadata table of school dataset having 5 tables in it.

Attributes: id (Primary Key), tablename, schemaname, foldername, filename

Primary Key: id

**Description:** Metadata table – stores info about dataset file locations.

#### **RELATIONSHIP BETWEEN TABLES:->**

|           | Related Table     | Relationship Type                |
|-----------|-------------------|----------------------------------|
| TABLES    |                   |                                  |
| FLIGHT    |                   | ALL tables link ro flight table. |
| PASSENGER | FLIGHT            | Many-to-One (Each PASSENGER is   |
|           |                   | linked to a FLIGHT)              |
| AIRPORT   | FLIGHT            | Many-to-One                      |
| BOOKING   | FLIGHT, PASSENGER | Many-to-One                      |
| PAYMENT   | BOOKING           | Many-to-One                      |
| METADATA  | ALL THE TABLES    | No FK relationships              |



- FLIGHT is the **central table** (all others link to it).
- PASSENGER has a foreign key to FLIGHT.
- BOOKING connects both FLIGHT and PASSENGER.
- > PAYMENT LINKS WITH BOOKING.
- ➤ AIRPORT links only to FLIGHT.



CHART:-> X-axis shows the filename (like flights.csv, passengers.csv, airports.csv, payments.csv, booking.csv).

On y-axis, It counts how many times each file is used.

All 5 bars are equal and count is 1 for each — that means:

- No duplicates
- No missing files
- Each file is correctly mapped to one tab
- The column chart shows a one-to-one mapping between database tables and CSV source files. Each dataset is uniquely stored under its respective folder, demonstrating organized file management and supporting schema-based data loading.



- I. PIE CHART:-> It uses columns from new.hospital table: id, tablename, schemaname, foldername, filename.
- II. The chart shows that each attribute has data.
- III. Each segment (color) represents one column. Since it forms a full circle, it means all values are present in all 5 rows.
- IV. Metadata is complete no missing values. Every table is properly linked to a folder and a .csv file.



#### ADVATAGES AND DISADVANTAGES OF HAVING SCHEMA

#### **ADVANTAGES:-**

#### 1.ORGANISED DATA

- Tables have a fixed structure (columns, data types).
- Easy to understand and manage.

## 2.DATA QUALITY

- Only correct type of data is allowed.
- o Reduces errors in data entry.

## 3. Supports Relationships

- o Can link tables using Primary and Foreign Keys.
- o Helps in joining data for deeper analysis.

#### 4. Improves Performance

- Faster querying and indexing.
- o Efficient data storage and retrieval.

#### 5. Easier for Analysis

- o Clear structure helps tools read and analyze data.
- Useful for reports and dashboards.

## 6. Enforces Security

o Access control and validation are easier with schema.

#### DISADVANTAGES OF NOT HAVING SCHEMA

#### 1. Unorganized Data

- o Data can be messy and unstructured
- No fixed format, making it hard to understand

#### 2. Low Data Quality

- No rules for data types (e.g., age can be text)
- More chances of errors and duplicates

## 3. **Difficult to Analyze**

- o Tools cannot easily read or process unstructured data
- o Data cleaning takes more time

## 4. No Table Relationships

- Cannot link data from different sources
- Makes it hard to do joins or complex queries

#### 5. **Slower Performance**

Searching or filtering takes longer

No indexes or optimization possible

#### 6. Security Risks

- o No validation or control over what data is entered
- Harder to manage access and permissions

#### 7. Hard to Scale

As data grows, it becomes more difficult to manage without structure.

## Recommendations based on analysis:-

- 1. Always use schema for structured data. It helps keep data clean, organized, and easy to understand. Makes data analysis and reporting much faster and more accurate.
- 2. Design the Schema Before Loading Data. Plan tables, primary keys, and relationships in advance. This avoids errors and saves time later.
- 3. Use Metadata Tables. Store information like file names, folder paths, and table names. Helps manage and track data sources easily. metadata tables makes work easy.
- 4. Apply Primary and Foreign Keys.Link related tables using keys to support data relationships. Useful for joining data in reports and dashboards.
- 5. Use Schema Validation Tools.Use tools in SQL or data platforms to check if data matches the schema.Prevents wrong data from entering the system.

#### Impact on Data Processing and Analysis

#### With Schema

Fast and structured processing. Clean joins and groupings.

Works well with BI tools (Power BI, Tableau).

## • Without Schema

Slower processing.

Hard to clean and analyze.

Risk of incorrect or incomplete results.

| NANDINI RATHORE                                              | PROJECT-2 |
|--------------------------------------------------------------|-----------|
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
| REFERENCES:                                                  |           |
| https://www.geeksforgeeks.org/foreign-key-constraint-in-sql/ |           |
| https://www.geeksforgeeks.org/dbms-integrity-constraints/    |           |
| https://www.geeksforgeeks.org/create-schema-in-sql-server/   |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
| THANKYOU!                                                    |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |
|                                                              |           |