Алгем. Лекция 2

Сергей Григорян 6 сентября 2024 г.

1 Упражняемся

 $A \in M_{m*n}$ Произвольную і-ую строку будем записывать в виде:

$$A_{i*} = \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix}.$$

Определение 1.1. Линейная комбинация (ЛК) строк A_{1*}, \dots, A_{m*} наз-ся форм. алг. выр-е:

$$\alpha_1 A_{1*} + \alpha_2 A_{2*} + \dots + \alpha_m A_{m*} \in M_{1n}.$$

- ${\bf Утверждение} \ {\bf 1.1.} \ a) \ \Pi y cmb \ A \in M_{m*n}, B \in M_{n*k}. \ Torda \ cmpoки матрицы \ AB$ явл ${\bf ЛK}$ строкматрицы B с коэф. из соотв. строки матрицы A
 - b) Столбцы матрицы AB явл. ΠK столбцев матрицы A c коэф. из cooms. cmonбцов матрицы B.

Доказательство. b) Пусть $C = AB \in M_{m*k}$

$$C_{*j} = \begin{pmatrix} c_{1j} \\ c_{2j} \\ \vdots \\ c_{mj} \end{pmatrix} = \sum_{s=1}^{n} a_{1s} b_{s1} = \begin{pmatrix} \sum_{j=1}^{n} a_{2s} b_{s2} \\ \vdots \\ \sum_{s=1}^{n} a_{ms} b_{sm} \end{pmatrix} = \sum_{s=1}^{n} b_{sj} \begin{pmatrix} a_{1s} \\ a_{2s} \\ \vdots \\ a_{ms} \end{pmatrix} = .$$

$$= \sum_{s=1}^{n} b_{sj} A_{*s}.$$

2 Векторная алгебра

 V_i - линейное пространство і-ого измерения. (i=1,2,3)

<u>Определение</u> **2.1.** Две точки $X,Y \in V_i$ определяют направленный отрезок, если известно, какая из этих точек первая, какая вторая.

 \overline{XY} - направленный отрезок.

 $|\overline{XY}| = XY$ - длина напр. отр.

Обозначение.

 $\overline{0}$ - нулевой напр. отр..

Определение 2.2. $\overline{XY} = \overline{X'Y'} \iff$

- a) XY = X'Y'
- b) \overline{XY} и $\overline{X'Y'}$ коллинеарны (\exists прямая, || им обоим)
- c) \overline{XY} и $\overline{X'Y'}$ сонаправлены.

Определение 2.3. Вектор - это класс направленных отрезков, кот. равны некоторому фиксированному напр. отр.

Обозначение. $\overline{a}, \overline{b}, \overline{c}$

Утверждение 2.1. Два напр. отр. \overline{XY} и $\overline{X'Y'}$ определяют (порождатот) один и тот же вектор т. и т. т., когда они равны.

Доказательство.

- а) Необходимое: Пусть \overline{XY} и $\overline{X'Y'}$ опр. один и тот же вектор $\Rightarrow \overline{XY} = \overline{X'Y'} = \overline{a}$
- **b)** Достаточное: Пусть $\overline{XY} = \overline{X'Y'} \Rightarrow$ они содерж. в одном классе $\overline{a} \Rightarrow$ они опред. один и тот же вектор.

Определение 2.4. $\overline{XY} = \overline{a} \iff$ он порождает вектор a

3 Операции с векторами

3.1 І. Сложение

<u>Замечание</u>. При данном векторе \overline{a} и фикс. точке X, то найдётся напр. $\overline{XY} = \overline{a}$

Определение 3.1. Пусть напр. отр. \overline{XY} опр. \overline{a} , \overline{YZ} опр. \overline{b} : Сумма векторов: вектором $\overline{a}+\overline{b}$ назыв. вектор, порожд. \overline{XZ}

 $\underline{\bf 3амечание}.$ Данное onp. ${\it корректно},$ и не зависит от начальной точ ${\it ku}~X$

Доказательство. ***Рисунок***

3.2 Умножение вектора на $\lambda \in \mathbb{R}$

Рассм. напр. отр. $\overline{a} = \overline{XY}$ и \overline{XZ} :

- a) $XZ = |\lambda| * XY$
- b) \overline{XZ} коллинеарен \overline{XY}
- c) \overline{XZ} сонаправлен \overline{XY} , при $\lambda>0$ \overline{XZ} прот. направлен. \overline{XY} при $\lambda<0$:

Вектор, определяемы напр. отр. XZ, наз-ся вектором $\lambda \overline{a}$

Доказательство. to do by yourself

Теорема 3.1. Операции "+"и "* λ "удовл. след. св-вам:

1. Коммутативность сложения (Вытекает из св-в параллелограмма):

 $\overline{a} + \overline{b} = \overline{b} + \overline{a}.$

2. Ассоциативность сложения:

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}).$$

- 3. $\exists \overline{o} \colon \overline{o} + \overline{a} = \overline{a} + \overline{o} = \overline{a}, \forall \overline{a} \in V_i$
- 4. $\forall \overline{a} \in V_i \ \exists (-\overline{a}) \in V_i : \overline{a} + (-\overline{a}) = (\overline{-a}) + \overline{a} = \overline{o}$
- 5. Унитарность:

$$1 * \overline{a} = \overline{a}, \forall \overline{a} \in V_i.$$

6.

$$(\lambda*\mu)*\overline{a}=\lambda*(\mu*\overline{a}).$$

7.

$$(\lambda + \mu) * \overline{a} = \lambda \overline{a} + \mu * \overline{a}.$$

8.

$$\lambda(\overline{a} + \overline{b}) = \lambda \overline{a} + \lambda \overline{b}.$$

<u>Замечание</u>. Mн-во векторов является действительным линейным пространством отн-но мн-ва \mathbb{R} .

4 Системы векторов в пр-ве V_i

$$V_i, i = 1, 2, 3$$

$$\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n} \in V_i$$

Обозначение.

$$\sum_{i=1}^{n} \alpha_i \overline{v_i}$$
 - наз-ся ЛК векторов.

Если $\alpha_i = 0, \forall i = 1 \cdots n$, то такая ЛК наз-ся **тривиальной**. Если $\exists i : \alpha_i \neq 0$, то ЛК **нетривиальная**.

Определение 4.1 (ЛЗ система векторов). Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ наз-ся линейно зависимой (ЛЗ), если \exists нетривиальная ЛК этих векторов, равная \overline{o}

Определение 4.2 (ЛНЗ сис. вект.). Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ назся линейно независимой (ЛНЗ), если $\not \equiv$ нетривиальной ЛК этих векторов, равной \overline{o}

Пример.

$$\overline{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \overline{c} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \text{ - ЛН3 cucm. вект..}$$

Док-во ЛНЗ: предствить, что есть коэф-ты, дающие Л $K=\overline{o}$, и показать, что она тривиальная.

Утверждение 4.1. Система векторов $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - $\mathcal{I}\mathcal{I}\mathcal{I}$ \iff хотя бы один из них представим в виде $\mathcal{I}\mathcal{K}$ остальных.

Доказательство. a) **Heoбх:** пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛЗ:

$$\Rightarrow \exists$$
 нетрив. ЛК : $\alpha_1 \overline{v_1} + \alpha_2 \overline{v_2} + \dots + \alpha_n \overline{v_n} = \overline{o}$.

Пусть $\alpha_i \neq 0$:

$$\frac{\alpha_1}{\alpha_i} \overline{v_1} + \dots + \overline{v_i} + \dots + \frac{\alpha_n}{\alpha_i} \overline{v_n} = \overline{o}.$$

$$\overline{v_i} = -\frac{\alpha_1}{\alpha_i} \overline{v_1} - \dots - \frac{\alpha_n}{\alpha_i} \overline{v_n}.$$

b) Дост.: Пусть
$$\overline{v_i} = \lambda_1 \overline{v_1} + \dots + \lambda_n \overline{v_n}$$

$$\Rightarrow \lambda_1 \overline{v_1} + \dots + \lambda_n \overline{v_n} - \overline{v_i} = \overline{o}.$$

<u>Замечание</u>. *HEBEPHO* было бы сформ. утв. вот так: каждый из вектор выразим в виде $\mathcal{J}K$ остальных.

Пример.

 $\overline{a},\overline{b}$ - неколлин..

 \Rightarrow Для $(\overline{a}\ \overline{a}\ \overline{b})$ - это неверно, т. к. b не выразим через a. $Ho\ 1*\overline{a}+(-1)*\overline{a}+0*\overline{b}=\overline{o}$ - нетривиальная ЛК.

<u>Утверждение</u> 4.2. *а)* Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ - $\mathcal{J}\mathcal{J} \Rightarrow \textit{всякая её}$ надсистема тоже $\mathcal{J}\mathcal{J}$

- Если система $\overline{v_1}, \overline{v_2}, \cdots, \overline{v_n}$ ЛНЗ \Rightarrow , то всякая её подсистема ЛНЗ.
- Доказательство. a) $\exists \alpha_1, \cdots, \alpha_n$,- не все равны \overline{o} , тогда $\sum_{i=1}^n \alpha_i \overline{v_i} = \overline{o}$ $\Rightarrow \sum_{i=1}^n \alpha_i \overline{v_i} + \sum_{i=n+1}^{n+k} 0 * \overline{v_j} = \overline{o}$
 - b) Пусть подсистема $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_k})$ ЛЗ (от прот.), тогда по а), $(\overline{v_1} \ \cdots \ \overline{v_n})$ ЛНЗ \Rightarrow Противоречие

Утверждение 4.3. Пусть $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ - ЛНЗ сист. векторов в $\overline{V_i}$. Тогда каждый вектор $\overline{w} \in V_i$ выражется через $(\overline{v_1} \ \overline{v_2} \ \cdots \ \overline{v_n})$ не более чем одним способом.

Доказательство.

$$\overline{w} = (\overline{v_1} \quad \overline{v_2} \quad \cdots \quad \overline{v_n}) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \overline{V}\alpha = \overline{V}\beta$$

$$\Rightarrow \overline{o} = \overline{V}(\alpha - \beta).$$