Peer Evaluation Form – CSE 415 Project (Autumn 2019).

Team size (circle 1): 1 2 Team members (Last name, first name):
Γitle:
Project Option for this project (circle one):
(1) Baroque Chess Agent.
(2) Wicked Problem Formulation.
(3) Backgammon Agent with Machine Learning.
(4) Hidden Markov Model algorithms and applications.
If Option==1: For each of the following: indicate whether you saw it or not by circling either "Saw" or "Didn't see".
1. (Saw, Didn't see). Play several moves of a game of Baroque Chess.
2. (Saw, Didn't see). Backed-up values from minimax search for the children of the current state.
3. (Saw, Didn't see). Evidence from the execution of number of ply used to determine most recent move. N_ply=?
4. (Saw, Didn't see). Statistics about Zobrist hashing, such as how frequently a query for a state value succeeds.
5. (Saw, Didn't see). Evidence of Zobrist hashing being used to improve the number of cutoffs by alpha-beta pruning
(e.g., a difference in number of cutoffs after turning on alpha-beta, but keeping the same max search depth).
6. (Saw, Didn't see). Evidence of superior play with good use of Zobrist, over no or just bad use of Zobrist hashing.
7. (Saw, Didn't see). Coherent personality of the agent, as revealed in the dialog.
8. (Saw, Didn't see). Some astute observation of the development or state of the game, as revealed in the dialog.
Were any other features shown? If so, what?
If Option==2: For each of the following: indicate whether you saw it or not by circling either "Saw" or "Didn't see".
1. (Saw, Didn't see). Clear explanation of what the problem is.
2. (Saw, Didn't see). Explanation of its wickedness in terms of some of the Rittel-Webber criteria.
3. (Saw, Didn't see). Rationale for modeling or simplification decisions.
4. (Saw, Didn't see). Session with the text-based interactive solving client.
5. (Saw, Didn't see). Run of a blind search algorithm (e.g., DFS or BFS) on the problem for some number of steps.
6. (Saw, Didn't see). Run of A* algorithm.
7. (Saw, Didn't see). Explanation of a heuristic for this problem.
8. (Saw, Didn't see). Presentation of some properties of the state space for this problem such as number of states as a
function of search depth.
9. (Saw, Didn't see). Explanation of what would come next in order to make the problem formulation represent more of the wicked problem.
10. (Saw, Didn't see). Explanation of what was learned in the project.
Were any other features shown? If so, what?
If Option=3: Describe what form of machine learning was applied in this project:
 Did you see V values or Q values for any particular states? How many episodes of training did you see? (roughly)
3. Did you see the program EXPLOIT the results of learning?
4. Roughly how many distinct states are reachable from the initial state after the first player has completed his/her
move? (ask the partners)
5. Did the agent achieve proficiency at playing Backgammon? (ask the partners if this is not clear)
6. How many training transitions and episodes were required to reach proficiency (i.e., optimal policy for the version chosen)?
Were any other features shown? If so, what?

	hms did you see implementations/demo		
observations). 3	m. 2. Viterbi algorithm (finding the Other:	e most likely state sequ	ience for a sequence of
What dataset(s) were used			
Dataset 1:	(Source: (a) online at	(b) made up.	(c) other:
Dataset 2:	(Source: (a) online at	(b) made up.	(c) other:
2. Could you see the pro	nission" (observation) values as they we bability distribution for the current state st likely state sequence at the end of the	e ("belief"), at each poi	nt in the sequence? Yes/No
For all 4 Project Options:			
Implementation:	ne implementation? (circle one) only so	oma nan warking aada	gama warking but incomplete
code; basic working code;		one non-working code,	, some working, but incomplete
code, busic working code,	full prototype working.		
display of current knowledg	transparency features that are working: ge base, problem/game state, training da		
	ect design include appropriate means fo program does, and so that the user can		
Was an example or	eam members participated in the present session discussed?	ntation? / (e.§	g., 2 out of 2)
Was sample input s	shown?		
Was sample desire	d output shown?		
Did you receive a	shown? of how the featured A	I technique works?	
Based on that explain	clear explanation of how the featured A anation, do you think you could effective	elv explain the technic	ue to someone else?
Was it commented	me of the project's Python code? to explain how the main technique was	s implemented?	
How clear were the	e comments?		
Lesson(s): What did you per	rsonally learn from seeing this project?		
Strengths (name at least one	e):		
Weaknesses (name at least	one):		
• • •	d the project better demonstrate the pro	•	addressing?
Other comments:			
Evaluated by (please print:)	Last name: First name	e:(signe	d:)
Acknowledgement by proje	ct team: "I/we have read the above eva	lluation and I/we agree	/disagree (circle one) with it."
Project member 1 signature	:		
Project member 2 signature:	:		
(Optional rebuttal commen	ts from the project team:)		