In-Class Worksheet 11: Computable Reductions

Clarissa Littler

November 20, 2014

Construct the following reductions

- A computational reduction from the ordinary halting problem to $H'_{TM} = \{ M \mid M \text{ halts on every input} \}$
- A computational reduction from the language $\{0^{2^n} \mid n \geq 0\}$ to the language $\{0\}$ (this is actually an example of a more general principle)
- A reduction from the language $\{(N,w) \mid N \text{ is an NFA that accepts } w\}$ to the language $\{(M,w) \mid M \text{ is a DFA that accepts } w\}$
- \bullet A reduction from the $E_{TM}=\{\ M\mid L(M)=\emptyset\}$ to $L_{TM}=\{\ M\mid M\ loops\ on\ every\ input\}$
- Construct a reduction from $\overline{A_{TM}}$ to \mathbf{E}_{TM}
- Prove that $A_{TM} \leq \overline{E_{TM}}$
- Prove that $0^n 1^n \le 0^n$
- \bullet Prove that EQ_{TM} is not decidable