ECE 451-LAB5

Fall 2019

Ram Rohit Gannavarapu

Contents

List	of Figures	. 1			
1.	List of items completed	. 1			
2.	Lab Procedures	. 1			
3.	Schematics/Verilog models	. 3			
4.	Simulation Results	. 4			
5.	Analysis and Explanations	. 4			
6.	Conclusion	. 4			
7.	Answers to questions posted in the lab	. 4			
Lis	t of Figures				
Figu	re 1: D-Flip Flop Schematic using gates	. 3			
Figu	Figure 2: Grey Code Counter using D-Flip Flop				
Figu	Figure 3: Simulation Results				

1. List of items completed

- a) Design of positive edge triggered D-Flip Flop
- b) Design of Grey Code Counter
- c)

2. Lab Procedures

a. Grey code Counter state transition diagram

b. State transition table

Pre	Present State			
Q2	Q1	Q0		
0	0	0		
0	0	1		
0	1	1		
0	1	0		
1	1	0		
1	1	1		
1	0	1		
1	0	0		

Next State				
Q2	Q1	Q0		
0	0	1		
0	1	1		
0	1	0		
1	1	0		
1	1	1		
1	0	1		
1	0	0		
0	0	0		

c. K-maps for D in put of the flip flop

D2

$$\overline{Q_0}Q_1 + Q_0Q_2 = D_2$$

D1

$$\overline{Q_0}Q_1 + Q_0\overline{Q_2} = D_1$$

D0

$$\overline{Q_2Q_1} + Q_1Q_2 = D_0$$

The lab design starts with designing of a D- Flip Flop. Then followed by creating a combinational logic based on the equation generated in above table

3. Schematics/Verilog models

Figure 1: D-Flip Flop Schematic using gates

Figure 2: Grey Code Counter using D-Flip Flop

4. Simulation Results

Figure 3: Simulation Results

5. Analysis and Explanations

The simulation results clearly follow the grey code counter sequence. As we didn't design a condition for initial state, the counter randomly enters a state and starts up counting from that state following the Grey code counter sequence.

6. Conclusion

In this LAB we have successfully designed a 3-bit grey code counter using D-Flip Flops and understand the concept of sequential circuit design.

7. Answers to questions posted in the lab

Q) What is Moore Finite State Machine(FSM)?

Moore finite state machine is a system whose outputs are decided only based on its current state. The outputs are decided based on the state.

Q) What is Mealy FSM?

Mealy FSM is a system whose outputs are decided based on the inputs and the current state. The outputs are set on the transition between states.