ÁLGEBRA LINEAL II Y CUADRÁTICA

 $Con\ ejemplos\ e\ ilustraciones$

Segunda Edición

Diego Huaraca Jaime Toaquiza EPN, Ecuador.

Índice general

1.	Apl	icaciones Multilineales	Ę
	1.1.	Aplicaciones Multilineales	Ę
	1.2	Formas Multilineales	F

4 ÍNDICE GENERAL

1

Aplicaciones Multilineales

1.1. Aplicaciones Multilineales

Sea \mathbb{K} un cuerpo y sean E_1, E_2, \dots, E_p, F espacios vectoriales sobre \mathbb{K} .

Definición 1

Diremos que la aplicación φ de $E = E_1 \times E_2 \times \ldots \times E_n$ en F

 $\det \colon \mathbb{R}^n \times \mathbb{R}^n \times \ldots \times \mathbb{R}^n \quad \to \quad \mathbb{R}$

$$\varphi \colon E_1 \times E_2 \times \ldots \times E_n \to \mathbb{F}$$

 $x = (x_1, x_2, \ldots, x_p) \to \varphi(x)$

es multilineal si φ es lineal respecto a cada variable, es decir, si cualesquiera que sean $\alpha \in \mathbb{K}$, y $x_i \in E_i$ con $1 \le i \le n$ se satisface

$$\varphi(x_1, \dots, x_{i-1}, (\alpha x_i + y_i), x_{i+1}, \dots, x_p) = \alpha \varphi(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_p) + \varphi(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_p)$$

Ejemplo 1: Determinante de una matriz

$$(x_1, x_2, \dots, x_n) \rightarrow \det ([x_1] [x_2] \dots [x_n])$$

$$\det ([x_1] \dots [x_{i-1}] [\alpha x_i + y_i] [x_{i+1}] \dots [x_n]) = \det ([x_1] \dots [x_{i-1}] [\alpha x_i] [x_{i+1}] \dots [x_n]) + \det ([x_1] \dots [x_{i-1}] [y_i] [x_{i+1}] \dots [x_n])$$

$$= \alpha \det ([x_1] \dots [x_{i-1}] [x_i] [x_{i+1}] \dots [x_n]) + \det ([x_1] \dots [x_{i-1}] [y_i] [x_{i+1}] \dots [x_n])$$

Si $F = \mathbb{K}$ entonces la aplicación es una forma multilineal

1.2. Formas Multilineales

Definición 2

Llamaremos forma multilineal a la aplicación ϕ de $E_1 \times E_2 \times \ldots \times E_n$ en \mathbb{K} que es lineal respecto a cada una de sus variables. Es decir, para cualesquiera $\alpha \in \mathbb{K}$ y $x_i \in E_i$ con

$$1 \le i \le n$$
 se verifica que
$$\phi(x_1, \dots, x_{i-1}, (\alpha x_i + y_i), x_{i+1}, \dots, x_p) = \alpha \phi(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_p) + \phi(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_p)$$

Nos interesaremos en las aplicaciones de $E_1 \times E_2$ en F también conocidas como aplicaciones bilineales de $E_1 \times E_2$ en F.