1. Naïve Bayes Classifier

A probabilistic classification algorithm based on Bayes' Theorem, assuming feature independence. In this practical, we use Gaussian Naïve Bayes, which assumes features follow a normal distribution.

2. Bayes' Theorem

The core formula behind Naïve Bayes:

$$P(A|B)=P(B|A) \cdot P(A)P(B)P(A|B) = \frac{P(B|A) \cdot P(B)}{P(B)}P(A|B)=P(B)P(B|A) \cdot P(A)$$

This is used to calculate the probability of a class given the input features.

3. Supervised Learning

Naïve Bayes is a supervised learning technique because the model is trained on labeled data to predict output labels.

4. Classification

The task of predicting categorical labels (e.g., species names in Iris dataset). Naïve Bayes performs multi-class classification in this case.

5. Iris Dataset

A classic dataset containing 150 rows of flower measurements (sepal/petal length and width) and a label (Species). Commonly used for classification benchmarking.

6. Data Preprocessing

- Label Encoding: Converts text labels into numerical format.
- Train-Test Split: Splits dataset into training and testing sets for evaluation.

7. Model Evaluation Metrics

- Confusion Matrix: Matrix showing true/false positives/negatives.
- Accuracy, Precision, Recall, F1-Score: Key performance metrics.

Related Topics

1. Gaussian Distribution

Gaussian Naïve Bayes assumes each feature is normally distributed. Knowledge of mean, variance, and bell-curve behavior is important.

2. Machine Learning Pipeline

From loading data, preprocessing, model training, prediction, to evaluation. Understanding the full pipeline is essential in real-world ML projects.

3. Overfitting vs Underfitting

Overfitting happens when a model learns the training data too well, including noise Naïve Bayes, being simple, tends to generalize better and is less prone to overfitting.

4. Scikit-learn (sklearn)

Python ML library used here. Knowing how to use classes like GaussianNB, train_test_split, and confusion_matrix is key.

5. Label Encoding vs One-Hot Encoding

Here, LabelEncoder is used since class labels are categorical and need to be converted to numerical values. One-hot encoding is another technique used when multiple categorical features exist.

6. Evaluation Metric Trade-offs

Precision vs Recall trade-off, especially in imbalanced datasets. Choosing the right metric is context-dependent (e.g., spam detection prioritizes precision).

7. Data Cleaning

Checking isnull().sum() ensures there are no missing values, which could affect model training and evaluation.