

proof that countable unions are countable

Canonical name ${\bf ProofThat Countable Unions Are Countable}$

Date of creation 2013-03-22 12:00:01 Last modified on 2013-03-22 12:00:01

Owner Koro (127) Last modified by Koro (127)

Numerical id

Koro (127) Author Entry type Proof

Classification msc 03E10 Let C be a countable set of countable sets. We will show that $\cup C$ is countable.

Let P be the set of positive http://planetmath.org/Primeprimes. P is countably infinite, so there is a bijection between P and \mathbb{N} . Since there is a bijection between C and a subset of \mathbb{N} , there must in turn be a one-to-one function $f: C \to P$.

Each $S \in C$ is countable, so there exists a bijection between S and some subset of \mathbb{N} . Call this function g, and define a new function $h_S : S \to \mathbb{N}$ such that for all $x \in S$,

$$h_S(x) = f(S)^{g(x)}$$

Note that h_S is one-to-one. Also note that for any distinct pair $S, T \in C$, the range of h_S and the range of h_T are disjoint due to the fundamental theorem of arithmetic.

We may now define a one-to-one function $h: \cup C \to \mathbb{N}$, where, for each $x \in \cup C$, $h(x) = h_S(x)$ for some $S \in C$ where $x \in S$ (the choice of S is irrelevant, so long as it contains x). Since the range of h is a subset of \mathbb{N} , h is a bijection into that set and hence $\cup C$ is countable.