Relaciones de orden y elementos extremos

Clase 13

IIC 1253

Prof. Pedro Bahamondes

Outline

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Definición

Una relación R sobre A es una relación de orden parcial si es refleja, antisimétrica y transitiva.

Generalmente denotaremos una relación de orden parcial con el símbolo ≤.

- $(x,y) \in \leq x \leq y.$
- $\blacksquare x$ es menor (o menor-o-igual) que y.

Si \leq es una relación de orden parcial sobre A, diremos que el par (A, \leq) es un **orden parcial**.

Esto último enfatiza que el orden requiere especificar un dominio...

Quizás en otro dominio no es orden parcial

Ejemplos

- 1. Los pares (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) son órdenes parciales.
- 2. El par $(\mathbb{N}\setminus\{0\},|)$ es un orden parcial.
- 3. Si A es un conjunto cualquiera, el par $(\mathcal{P}(A), \subseteq)$ es un orden parcial.

Ejercicio (propuesto ★)

Demuestre los ejemplos anteriores.

Ejercicio

Si A es un conjunto cualquiera, el par $(\mathcal{P}(A), \subseteq)$ es un orden parcial.

Demostración: Sean $X, Y, Z \in \mathcal{P}(A)$.

<u>Reflexividad</u>: Por definición de subconjunto, para todo conjunto X se cumple que $X \subseteq X$, por lo que la relación es refleja.

Antisimetría: Por definición de igualdad de conjuntos, si $X \subseteq Y$ e $Y \subseteq X$, se cumple que X = Y, y entonces la relación es antisimétrica.

<u>Transitividad</u>: Por definición de subconjunto:

- Si $X \subseteq Y$, entonces $\forall x \in X$ se tiene que $x \in Y$.
- Si $Y \subseteq Z$, entonces $\forall y \in Y$ se tiene que $y \in Z$.

Combinando las dos aseveraciones, obtenemos que $\forall x \in X$ se tiene que $x \in Z$, y por lo tanto $X \subseteq Z$. Concluimos que la relación es transitiva.

¿Por qué orden parcial?

Definición

Una relación \leq sobre A es una relación de orden total (o lineal) si es una relación de orden parcial y además es conexa.

¿Qué quiere decir esto?

Para todo par $x, y \in A$, se tiene que $x \le y$ o $y \le x$

Similarmente al caso anterior, diremos que un par (A, \leq) es un orden total.

Outline

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Definición

Sean (A, \leq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una cota inferior de S si para todo $y \in S$ se cumple que $x \le y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \le x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Ejercicio

Sea el orden parcial ($\mathbb{N}\setminus\{0\},|$) y $S=\{2,3,5,10,15,20\}\subseteq\mathbb{N}.$

Estudie los conceptos anteriores.

Ejercicio

Sea el orden parcial $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ y $S = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3,4\}\}$. Estudie los conceptos anteriores.

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

Ejercicio

Sea el orden parcial $(\mathbb{N}\setminus\{0\},|)$ y $S = \{2,3,5,10,15,20\} \subseteq \mathbb{N}\setminus\{0\}$. Estudie los conceptos anteriores.

- 1 es cota inferior, pues 1|2, 1|3, etc.
- 2 no es cota inferior, pues 2 / 3.
- 60 es cota superior, pues 2|60, 3|60, ..., 20|60.
 Nótese que 60 es el mínimo común múltiplo de S.
- También cualquier múltiplo de 60 es cota superior, por ejemplo 120.
- Elementos minimales: 2,3,5, pues ningún elemento en S además de ellos mismos los divide.
- Elementos maximales: 15, 20, pues no dividen a ningún elemento en S además de ellos mismos.
- No tiene mínimos ni máximos, pues ninguna cota inferior o superior pertenece a S.

Ejercicio

```
Sea el orden parcial (\mathcal{P}(\{1,2,3,4\}),\subseteq) y S = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3,4\}\}. Estudie los conceptos anteriores.
```

- {1} es cota inferior, elemento minimal y mínimo.
- $\{1,2,3,4\}$ es cota superior, elemento maximal y máximo.
- Ø también es cota inferior.
- No hay más cotas superiores, pues el orden está definido sobre $\mathcal{P}(\{1,2,3,4\})$.

Ejercicio

En cada caso, ¿podemos encontrar un S tal que todos sus elementos sean minimales y maximales a la vez?

- En el orden ($\mathbb{N}\setminus\{0\}$,|) podemos tomar $S = \{2,3,5\}$. Como no se dividen entre sí, son todos minimales y maximales.
- En el orden $(\mathcal{P}(\{1,2,3,4\}),\subseteq)$ podemos tomar $S = \{\{1\},\{2\},\{3\},\{4\}\}$. Como ninguno de los conjuntos en S es subconjunto de ninguno de los demás, son todos minimales y maximales.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Ejercicio

Demuestre el teorema.

Ejercicio (★)

Demuestre el resultado análogo para el máximo.

Esto nos permite hablar de el mínimo o el máximo, que denotaremos por min(S) y max(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$ no vacío. Si S tiene un elemento mínimo, este es único.

Demostración: Formalmente, debemos demostrar que

$$\forall x, y \in S(x \text{ es mínimo} \land y \text{ es mínimo} \rightarrow x = y)$$

Por demostración directa, supongamos que S tiene dos mínimos s_1, s_2 . Como son mínimos, $s_1, s_2 \in S$, y también $s_1 \le s_2$ y $s_2 \le s_1$. Como \le es una relación de orden, es antisimétrica, y luego $s_1 = s_2$. Por lo tanto, si hay un mínimo, este es único.

(*) La demostración de unicidad del máximo es completamente análoga.

Outline

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Vimos que hay conjuntos sin mínimo o máximo. La siguiente definición extiende estos conceptos.

Definición

Sea (A, \leq) un orden parcial y $S \subseteq A$. Diremos que s es un **ínfimo** de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \leq s$.

El ínfimo es la mayor cota inferior.

Análogamente se define el supremo de un conjunto.

Ejercicio

Dé ejemplos de conjuntos que no tengan mínimo pero sí ínfimo, y lo análogo para máximo y supremo.

Un ejemplo típico son los intervalos abiertos en el orden (\mathbb{R},\leq) . Por ejemplo, (0,1) no tiene mínimo pero sí infimo, 0; y no tiene máximo pero sí supremo, 1.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

Ejercicio (★)

Demuestre el teorema.

Esto nos permite hablar de **el** supremo o **el** ínfimo, que denotaremos por sup(S) e inf(S) respectivamente.

Teorema

Sea (A, \leq) un orden parcial y $S \subseteq A$. Si S tiene supremo o ínfimo, estos son únicos.

<u>Demostración:</u> de manera similar a la demostración del mínimo, supongamos que S tiene dos supremos s_1 y s_2 . Por definición de supremo, ambos son cotas superiores de S.

Como s_1 es supremo, para toda cota superior s de S se tiene que $s_1 \le s$, pues el supremo es la menor cota superior, y en particular, $s_1 \le s_2$, pues s_2 es cota superior.

Realizando un razonamiento análogo, obtenemos también que $s_2 \le s_1$, y como \le es antisimétrica, se tiene que $s_1 = s_2$. Concluimos entonces que si existe un supremo, este es único.

(*) La demostración de unicidad del ínfimo es completamente análoga.

¿Existen conjuntos acotados inferiormente (superiormente) que no tengan ínfimo (supremo)?

- En los órdenes (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) y (\mathbb{R}, \leq) no existen.
- En (\mathbb{Q}, \leq) sí, por ejemplo $S = \{q \in \mathbb{Q} \mid q^2 \leq 2\}$. Este conjunto está acotado superiormente (por ejemplo por 2), pero no tiene supremo en \mathbb{Q} . Uno podría estar tentado de decir que el supremo es $\sqrt{2}$, pero $\sqrt{2} \notin \mathbb{Q}$. El supremo debe pertenecer al conjunto sobre el cual está definido el orden.

Definición

Sea (A, \leq) un orden parcial. Este se dice **superiormente completo** si para cada $S \subseteq A$ no vacío, si S tiene cota superior, entonces tiene supremo.

De manera similar definimos el concepto de ser inferiormente completo.

Dado el ejemplo anterior, tenemos que (\mathbb{Q}, \leq) no es superiormente completo. Una observación importante es que tampoco es inferiormente completo: basta tomar $S' = \{ q \in \mathbb{Q} \mid q^2 \geq 2 \}.$

Esto motiva el siguiente teorema:

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ejercicio

Demuestre el teorema. (**)

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

<u>Demostración</u>: Demostraremos la dirección hacia la derecha; la otra dirección es análoga y se deja como ejercicio.

Supongamos que (A, \leq) es superiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado superiormente, tiene supremo. Queremos demostrar que también es inferiormente completo; es decir, $\forall S \subseteq A$ no vacío, si S está acotado inferiormente, tiene ínfimo. Sea entonces $S \subseteq A$ no vacío. Supongamos que está acotado inferiormente. Demostraremos que tiene ínfimo.

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Como S está acotado inferiormente, tiene al menos una cota inferior. Tomemos el siguiente conjunto:

$$S_{ci} = \{ a \in A \mid a \text{ es cota inferior de } S \}$$

Es decir, S_{ci} es el conjunto de todas las cotas inferiores de S. Es claro que $S_{ci} \neq \emptyset$. Por otra parte, como todos los elementos de S_{ci} son cotas inferiores de S, por definición de cota inferior se cumple que

$$\forall x \in Sci \quad \forall y \in S \quad x \leq y$$

de donde es claro que S_{ci} está acotado superiormente (por todos los elementos de S). Luego, como (A, \leq) es superiormente completo, S_{ci} tiene supremo, S_{ci} , el que por definición es una cota superior de S_{ci} .

Teorema

 (A, \leq) es superiormente completo si y sólo si es inferiormente completo.

Ahora, como todos los elementos de S son cotas superiores de S_{ci} , se cumple que

$$\forall y \in S \quad sup(S_{ci}) \leq y$$

pues el supremo es la menor cota superior. De esto último se deduce que $sup(S_{ci})$ es una cota inferior de S, y como es una cota superior de S_{ci} , es la mayor cota inferior de S, es decir, es el ínfimo de S:

$$inf(S) = sup(S_{ci})$$

Concluimos entonces que (A, \leq) es inferiormente completo.

Outline

Relaciones de orden

Cotas, mínimos y máximos

Supremos e ínfimos

Epílogo

Objetivos de la clase

- □ Comprender conceptos de relación de orden parcial y total
- □ Comprender conceptos de mínimo y máximo
- □ Comprender conceptos de supremo e ínfimo