Langages, Compilation, Automates. Partie 3: expressions régulières, conversion en AFD et Lemme de l'étoile

Florian Bridoux

Polytech Nice Sophia

2022-2023

Table des matières

Expressions régulières

2 Conversion en AFD

3 Langages non réguliers et lemme de l'étoile

Table des matières

Expressions régulières

2 Conversion en AFD

3 Langages non réguliers et lemme de l'étoile

Expressions régulières

Definition (Expression régulière)

Les **expressions régulières** sur l'alphabet Σ sont définies récursivement :

- (Ø est une expression régulière qui décrit l'ensemble vide;)
 - 2 (ϵ est une expression régulière qui décrit l'ensemble réduit au mot vide $\{\epsilon\}$;)
 - **3** pour toute lettre $a \in \Sigma$, a est une expression régulière qui décrit l'ensemble $\{a\}$.
- Si r et s sont deux expressions régulières, alors:
 - ① r + s est une expression régulière qui décrit le langage $L(r) \cup L(s)$,
 - 2 rs est une expression régulière qui décrit le langage $L(r)L(s) = \{uv \mid u \in L(r) \text{ et } v \in L(s)\};$
 - **3** r^* est une expression régulière qui décrit $L(r)^* = \{w_1 \dots w_n \mid w_i \in L(r) \text{ et } n \in \mathbb{N}\}.$

Expression régulière

Ordre de priorité des opérateurs :

l'étoile > la concaténation > l'union.

Par exemple, $b + ab^*$ se lit $b + (a(b^*))$.

description en français	expression régulière	langage
taille multiple de 2	$((a+b)(a+b))^*$	$(\{a,b\}^2)^*$
se termine par a	$(a + b)^*a$	${a,b}^*{a}$
avec le facteur bb	$(a+b)^*bb(a+b)^*$	${a,b}^*{bb}{a,b}^*$
sans le facteur bb	$(\epsilon+b)(a+ab)^*$	$\{\epsilon,b\}\{a,ab\}^*$

Remarque:

Une expression régulière décrit un unique langage mais un langage peut-être décrit par plusieurs expressions régulières.

Exemple:
$$(a + b)(a + b) = aa + ab + ba + bb$$
.

Expression régulière

Théorème de Kleene

Les expressions régulières décrivent exactement la même famille de langages que les AFD et les AFI (les langages réguliers).

On va le prouver en donnant:

- un "algorithme" qui transforme n'importe quelle expression régulière r en un AFD A tel que L(r) = L(A);
- un "algorithme" qui transforme n'importe quel AFD A en une expression régulière r tel que L(A) = L(r);

Table des matières

Expressions régulières

2 Conversion en AFD

3 Langages non réguliers et lemme de l'étoile

Transformer une expression régulière en AFD

Étapes de la transformation:

Transformer une expression régulière en AFD

Étapes de la transformation:

Les AFI avec ϵ -transition sont une généralisation des AFI. On va voir qu'ils reconnaissent exactement la même famille de langages que les AFI et les AFD.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Les ϵ -transitions permettent de passer d'un état à l'autre sans "consommer" de lettres.

Tant que j'ai des ϵ -transitions:

• Je choisis q_i qui a des ϵ -transitions sortantes

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

- Je choisis q_i qui a des ϵ -transitions sortantes
- Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

- Je choisis q_i qui a des ϵ -transitions sortantes
- ullet Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

- Je choisis q_i qui a des ϵ -transitions sortantes
- ullet Si, avec des ϵ -transitions je peux atteindre q_j , alors:
 - J'ajoute toutes les (non ϵ) transitions sortantes de q_j sur q_i .
 - ullet Si q_j est acceptant alors je rend q_i acceptant également.
- Je supprime les ϵ -transitions sortantes de q_i .
- (Je supprime les transitions en doublons)

Transformer une expression régulière en AFD

Étapes de la transformation:

Transformer une expression régulière: brique de base

• Langage vide: q_0 • Langage $\{\epsilon\}$: q_0 • Langage $\{a\}$:

- On ajoute un nouvel état initial q_0 .
- On ajoute deux transitions $q_0 \stackrel{\epsilon}{\to} q_A$ et $q_0 \stackrel{\epsilon}{\to} q_B$.
- Les états q_A et q_B ne sont plus initiaux.

Supposons que s et r sont deux expressions régulières équivalentes à A et B (avec q_A et q_B leurs deux états initiaux). Comment former C équivalent à sr?

• On ajoute des transitions $q_i \stackrel{\epsilon}{\to} q_A$ pour tout état acceptant q_i de A.

- On ajoute des transitions $q_i \xrightarrow{\epsilon} q_A$ pour tout état acceptant q_i de A.
- q_B n'est plus initial.

- On ajoute des transitions $q_i \xrightarrow{\epsilon} q_A$ pour tout état acceptant q_i de A.
- q_B n'est plus initial.
- Les états acceptants de q_A ne sont plus acceptants.

Supposons que s est une expression régulière équivalente à A (avec q_A sont état initial). Comment former C équivalent à s^* ?

Supposons que s est une expression régulière équivalente à A (avec q_A sont état initial). Comment former C équivalent à s^* ?

• On ajoute un nouvel état initial acceptant q_0 .

Supposons que s est une expression régulière équivalente à A (avec q_A sont état initial). Comment former C équivalent à s^* ?

- On ajoute un nouvel état initial acceptant q_0 .
- On ajoute une transition $q_0 \xrightarrow{\epsilon} q_A$ et une transition $q_i \xrightarrow{\epsilon} q_A$ pour chaque état acceptant q_i .

Supposons que s est une expression régulière équivalente à A (avec q_A sont état initial). Comment former C équivalent à s^* ?

- On ajoute un nouvel état initial acceptant q_0 .
- On ajoute une transition $q_0 \xrightarrow{\epsilon} q_A$ et une transition $q_i \xrightarrow{\epsilon} q_A$ pour chaque état acceptant q_i .
- L'état q_i n'est plus initial.

Transformer une expression régulière: cas faciles

En pratique, on peut directement représenter certaines expressions basiques par un AFD (ou même un AFI sans ϵ -transition).

		(
	Expression régulière	Langage	AFD
	a*	$\left\{a^n\mid n\in\mathbb{N}\right\}$	$\rightarrow q_0$
			$\rightarrow q_0 \xrightarrow{a} q_1$
			q_3 c q_2
ļ	abc	{abc}	
			a q_1 b q_3
	ah	(0,6,6)	q_0 b q_2
۱	ab + b	$\{ab,b\}$	

Dans l'autre sens, on peut transformer un AFD en expression régulière avec l'algorithme suivant.

ullet On ajoute un nouvel initial q_d et un nouvel état acceptant q_f .

- ullet On ajoute un nouvel initial q_d et un nouvel état acceptant q_f .
- On ajoute des ϵ -transitions de q_d vers l'ancien état initial et depuis les anciens états acceptants vers q_f .

- On ajoute un nouvel initial q_d et un nouvel état acceptant q_f .
- On ajoute des ϵ -transitions de q_d vers l'ancien état initial et depuis les anciens états acceptants vers q_f .
- L'ancien état initial n'est plus initial, les anciens états acceptants ne sont plus acceptants.

- ullet On ajoute un nouvel initial q_d et un nouvel état acceptant q_f .
- On ajoute des ϵ -transitions de q_d vers l'ancien état initial et depuis les anciens états acceptants vers q_f .
- L'ancien état initial n'est plus initial, les anciens états acceptants ne sont plus acceptants.
- On remplace $q_i \xrightarrow{a,b,c,...} q_j$ par $q_i \xrightarrow{a+b+c+...} q_j$.

- ullet On supprime un par un les états q_j autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightarrow} q_j \stackrel{s}{\rightarrow} q_k$ par une transition $q_i \stackrel{rs}{\rightarrow} q_k$.

- On supprime un par un les états q_i autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightarrow} q_j \stackrel{s}{\rightarrow} q_k$ par une transition $q_i \stackrel{rs}{\rightarrow} q_k$.

- On supprime un par un les états q_j autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightarrow} q_j \stackrel{s}{\rightarrow} q_k$ par une transition $q_i \stackrel{rs}{\rightarrow} q_k$.
 - Si q_j a une boucle $q_j \xrightarrow{t} q_j$, on va remplacer chaque pair de transitions $q_i \xrightarrow{r} q_j \xrightarrow{s} q_k$ par une transition $q_i \xrightarrow{rt^*s} q_k$.

- ullet On supprime un par un les états q_j autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightharpoonup} q_j \stackrel{s}{\to} q_k$ par une transition $q_i \stackrel{rs}{\rightharpoonup} q_k$.
 - Si q_j a une boucle $q_j \xrightarrow{t} q_j$, on va remplacer chaque pair de transitions $q_i \xrightarrow{r} q_j \xrightarrow{s} q_k$ par une transition $q_i \xrightarrow{rt^*s} q_k$.

- ullet On supprime un par un les états q_j autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightharpoonup} q_j \stackrel{s}{\to} q_k$ par une transition $q_i \stackrel{rs}{\longrightarrow} q_k$.
 - Si q_j a une boucle $q_j \xrightarrow{t} q_j$, on va remplacer chaque pair de transitions $q_i \xrightarrow{r} q_j \xrightarrow{s} q_k$ par une transition $q_i \xrightarrow{rt^*s} q_k$.

- ullet On supprime un par un les états q_j autre que q_d et q_f .
 - Si q_j n'a pas de boucle, on remplace chaque pair de transition $q_i \stackrel{r}{\rightharpoonup} q_j \stackrel{s}{\longrightarrow} q_k$ par une transition $q_i \stackrel{rs}{\longrightarrow} q_k$.
 - Si q_j a une boucle $q_j \xrightarrow{t} q_j$, on va remplacer chaque pair de transitions $q_i \xrightarrow{r} q_j \xrightarrow{s} q_k$ par une transition $q_i \xrightarrow{rt^*s} q_k$.
- Quand on a supprimé tous les états, il ne reste qu'une transition $q_d \stackrel{r}{\rightarrow} q_f$. r est notre expression régulière.

Les expressions régulières et les langages réguliers

Remarque:

L'expression régulière obtenue n'est pas forcément la plus élégante ou la plus petite possible et elle change selon l'ordre de suppression.

Remarque:

Trouver une plus petite expression régulière correspondant à un langage donné est un problème très difficile: il est PSPACE-complet.

Remarque:

On peut vérifier que deux expressions régulières r et s sont équivalentes en les transformant en AFD minimum. Si elles sont équivalentes, à un renommage des états près, on doit obtenir le même résultat.

Table des matières

Expressions régulières

2 Conversion en AFD

3 Langages non réguliers et lemme de l'étoile

Langages non réguliers

On peut voir que le langage suivant n'est pas régulier:

$$L = \{a^t b^t \mid t \in \mathbb{N}\} = \{\epsilon, ab, aabb, aaabbb, \ldots\}.$$

Idée de preuve: un AFD a une mémoire finie et ne peut pas compter plus haut que son nombre d'états.

- supposons par l'absurde que l'AFD A à n états reconnaît L.
- Considérons les mots $a^0 = \epsilon, \ a^1, \ a^2, \dots, \ a^n$. Il y a n+1 mots différents et A n'a que n états. Donc il doit exister $\alpha \neq \beta$ tel que $q_0 \xrightarrow{a^{\alpha}} q_i$ et $q_0 \xrightarrow{a^{\beta}} q_i$ pour un état $q_i \in Q$.
- Donc $q_0 \xrightarrow{a^{\alpha}} q_i \xrightarrow{b^{\alpha}} q_j$ et $q_0 \xrightarrow{a^{\beta}} q_i \xrightarrow{b^{\alpha}} q_j$ pour un état $q_j \in Q$.
- Le mot $a^{\alpha}b^{\alpha}$ est accepté par A ssi $a^{\beta}b^{\alpha}$ est accepté par A ce qui est absurde.

Langages non réguliers

Lemme de l'étoile

Si L est régulier, alors il existe un nombre n tel que pour tout mot w de L, si $|w| \ge n$, alors w peut être factorisé en w = xyz de telle sorte que

- $1 \le |y| \le |xy| \le n$.
- $\forall t \geq 0$, $xy^tz \in L$.

Le lemme de l'étoile (aussi appelé lemme d'itération, lemme de pompage, ...) permet de prouver que certains langages sont non réguliers.

Langages non régulier

Idée de preuve:

- Soit A l'AFD minimum qui reconnaît L et n son nombre d'états.
- Prenons $w \in L$, $|w| \ge n$ et notons

$$q_{i_0} = q_0 \xrightarrow{w_1} q_{i_1} \xrightarrow{w_2} \ldots \xrightarrow{w_{|w|}} q_{i_{|w|}}.$$

(notons que $q_{i_{|w|}}$ est acceptant).

- Comme A n'a que n états, $\exists \leq \alpha < \beta \leq n$ tel que $q_{i_{\alpha}} = q_{i_{\beta}}$.
- Prenons le plus petit tel α et notons $x=w_{[0,\alpha-1]}$ (peut être égale à ϵ), $y=w_{[\alpha,\beta]}$ et $z=w_{[\beta+1,|w|]}$.
- On a donc:

$$q_{i_0} \xrightarrow{x} q_{i_\alpha} \xrightarrow{y} q_{i_\alpha} \xrightarrow{z} q_{i_{|w|}} \text{ et donc } q_{i_0} \xrightarrow{x} q_{i_\alpha} \xrightarrow{y^t} q_{i_\alpha} \xrightarrow{z} q_{i_{|w|}}$$

Langages non réguliers: Exemple d'utilisation

Exemple d'utilisation: montrons que $L=\{a^tb^t\mid t\in\mathbb{N}\}$ n'est pas régulier.

Par l'absurde, supposons que L est régulier. Donc il existe un n tel que tout mot $w \in L$ alors w peut être factorisé en w = xyz de telle sorte que

- $1 \le |y| \le |xy| \le n$.
- $\forall t \geq 0$, $xy^tz \in L$.

Prenons $w = a^n b^n$.

- Donc, $xy \in \{a\}^*$.
- Donc, $y = a^{\alpha}$ avec $\alpha \ge 1$.
- Donc, $xy^2z = a^{n+\alpha}b^n \notin L$.
- Absurde, donc *L* n'est pas régulier.

Langages non réguliers: Exemple d'utilisation

Exemple d'utilisation: montrons que L le langage de Dyck n'est pas régulier. L est l'ensemble des mots sur l'alphabet $\{(,)\}$ bien parenthésés.

$$L = \{\epsilon, (), (()), ()(), (())(), \dots \}.$$

Par l'absurde, supposons que L est régulier. Donc il existe un n tel que tout mot $w \in L$ alors w peut être factorisé en w = xyz de telle sorte que

- $1 \le |y| \le |xy| \le n$.
- $\forall t \geq 0$, $xy^tz \in L$.

Prenons $w = \binom{n}{n}$.

- Donc, $xy \in \{()^*$.
- Donc, $y = (^{\alpha} \text{ avec } \alpha \geq 1.$
- Donc, $xy^2z = {n+\alpha \choose r} \notin L$.
- Absurde, donc L n'est pas régulier.