IN THE CLAIMS

What is claimed is:

1	1. A m	nethod of forming a microelectronic structure comprising:
2	forr	ning and patterning a deep uv resist layer on a substrate; and
3	etcl	ning the substrate in a plasma generated from a gas comprising a
4	carbon to	fluorine ratio from about 1:1 to about 2:3 to form substantially
5	vertical sid	lewalls in the deep uv resist layer.

- 2. The method of claim 1 wherein forming and patterning the deep uv resist layer comprises forming a deep uv resist layer and exposing at least a portion of the deep uv resist layer to a light with a wavelength of about 200 nanometers or less.
- 3. The method of claim 1 wherein etching the deep uv resist layer and the substrate in the plasma to form substantially vertical sidewalls comprises etching the substrate in the plasma to form a polymer on the sidewalls of the deep uv resist layer that substantially prevents the deep uv resist layer from being etched.
- 4. The method of claim 1 wherein forming the deep uv resist layer

2	comprises forming the deep uv resist layer wherein the deep uv resist layer
3	comprises a pre-etch sidewall angle that is substantially the same as a post
4	etch sidewall angle.

- 5. The method of claim 1 further comprising etching the substrate in a plasma generated from a gas comprising C₄F₆, and a pressure from about 15 to about 100 millitorr.
- 1 6. The method of claim 5 further comprising etching the substrate with a 2 power from about 1000 to about 4000 Watts, a C₄F₆ gas flow from about 10 to about 50 sccm, an argon flow from about 100 to about 1000 sccm, and a nitrogen flow from about 50 to 100 sccm.
 - 7. The method of claim 1 wherein forming and patterning the deep uv resist layer on a substrate comprises forming a deep uv resist layer on a sacrificial light absorbing layer disposed on a dielectric layer.
 - 8. The method of claim 7 wherein etching the sacrificial light absorbing layer disposed on the dielectric layer in a plasma generated from a gas comprising a carbon to fluorine ratio from about 1:1 to about 2:3 comprises:

42P17274

4	substantially etching the sacrificial light absorbing layer and then
5	substantially etching the underlying dielectric layer by utilizing a plasma
6	generated from a gas comprising C₄F ₆ .

- 9. The method of claim 8 further comprising substantially etching the sacrificial light absorbing layer and then substantially etching the underlying dielectric layer in a pressure from about 15 to about 100 millitorr and a power from about 1000 to about 4000 Watts.
- 10. The method of claim 8 further comprising substantially etching the sacrificial light absorbing layer and then substantially etching the underlying dielectric layer in a C_4F_6 gas flow from about 10 to about 50 sccm, an argon flow from about 100 to about 1000 sccm, and a nitrogen flow from about 50 to 100 sccm.
- 11. The method of claim 1 wherein etching the substrate in the plasma to form a substantially vertical sidewall in the deep uv resist layer comprises etching the substrate in the plasma to form a sidewall angle that is between about 86 and about 90 degrees.
- 12. The method of claim 1 wherein forming and patterning the deep uv

16.

2	resist layer on a substrate comprises forming and patterning the deep uv	
3	resist layer on a substrate, wherein the deep uv resist layer comprises an	
4	acrylic polymer.	
1	13. A method of forming a microelectronic structure comprising:	
2	forming and patterning a deep uv resist layer on a sacrificial light	
3	absorbing layer disposed on a dielectric layer; and	
4	etching the sacrificial light absorbing layer and the dielectric layer in a	
5	plasma generated from a gas comprising a carbon to fluorine ratio that is	
6	between about 1:1 to about 2:3, at an etch rate from about 80 to about 120	
7	times faster than the etch rate of the deep uv resist layer in the plasma.	
1	14. The method of claim 13 further comprising etching the sacrificial ligh	
2	absorbing layer and the dielectric layer in a plasma generated from a gas	
3	comprising C₄F _{6.}	
1	15. The method of claim 14 further comprising etching the sacrificial	
2	ight absorbing layer in a pressure from about 40 to about 60 millitorr, and	
3	then etching the dielectric layer in a pressure from about 80 to about 120	
4	millitorr.	

The method of claim 15 further comprising:

2	etching the sacrificial light absorbing layer in a C₄F ₆ gas flow
3	from about 14 to about 20 sccm, an argon flow from about 300 to about 500
4	sccm, and a nitrogen flow from about 200 to 400 sccm; and
5	etching the dielectric layer in a C ₄ F ₆ gas flow from about 10 to
6	about 14 sccm, an argon flow from about 280 to about 350 sccm, and
7	a nitrogen flow from about 25 to 40 sccm.
1	17. A method of forming a microelectronic structure comprising:
2	forming a deep uv resist layer on a sacrificial light absorbing layer that
3	is disposed on a dielectric layer;
4	patterning a portion of the sacrificial light absorbing layer to define a
5	trench;
6	forming a bottom width of the trench, wherein the ratio of the bottom
7	width to a top width of the trench is about 1:1 by:
8	etching the sacrificial light absorbing layer in a plasma
9	generated from a gas comprising a carbon to fluorine ratio that is
10	between about 1:1 to about 2:3; and
11	etching the dielectric layer in a plasma generated from a gas
12	comprising a carbon to fluorine ratio that is between about 1:1 to
13	about 2:3.
1	18. The method of claim 17 wherein etching the sacrificial light absorbing

2	layer in a plasma generated from a gas comprising a carbon to fluorine ratio
3	that is between about 1:1 to about 2:3, comprises etching the sacrificial light
4	absorbing layer in a plasma generated from a gas comprising C ₄ F _{6,}

- 19. The method of claim 18 further comprising etching the sacrificial light absorbing layer in a pressure from about 40 to about 60 millitorr and a power from about 1000 to about 4000 Watts,
- 20. The method of claim 19 further comprising etching the sacrificial light absorbing material in a C_4F_6 gas flow from about 10 to about 20 sccm, an argon flow from about 400 to about 500 sccm, and a nitrogen flow from about 200 to about 400 sccm.
 - 21. The method of claim 17 wherein etching the dielectric layer in a plasma generated from a gas comprising a carbon to fluorine ratio gas that is between about 1:1 to about 2:3 comprises etching the dielectric layer in a plasma generated from a gas comprising C₄F₆, a pressure from about 90 to about 110 millitorr, a C₄F₆ gas flow from about 10 to about 15 sccm, an argon flow from about 250 to about 350 sccm and a nitrogen flow from about 20 to about 50 sccm.
 - 22. An intermediate product comprising:

2	a trench in a substrate, wherein a deep uv resist layer is disposed on	
3	a first surface of the trench, and wherein the deep uv resist layer comprises	
4	a sidewall that is substantially vertical and comprises a polymer on the	
5	sidewall; and	
6	a bottom width of the trench wherein the ratio of the bottom width to a	
7	top width of the trench is about 1:1.	
1	23. The intermediate product of claim 22 wherein the deep uv resist layer	
2	comprises a sidewall angle that is from about 85 to about 90 degrees.	
	•	
1	24. The intermediate product of claim 22 wherein the bottom width of the	
2	trench is from about 80 to about 90 nm.	
1	25. The intermediate product of claim 22 wherein the deep uv resist layer	
2	is between about 2,100 to about 3,000 angstroms in thickness.	
1	26. The intermediate product of claim 22 further comprising a trench	
2	sidewall, wherein the trench sidewall comprises has a low k dielectric layer	
3	that comprises a dielectric constant below about 4.	
1	27. The intermediate product of claim 22 wherein the low k dielectric layer	
2	comprises a material selected from the group consisting of carbon doped	

42P17274

3	oxide, organic polymers such as a polyimide, parylene, polyaryletner,
4	organo-silicone, polynaphthalene, polyquinoline, or copolymers thereof, spin
5	on glass materials, either doped or undoped, and porous materials such as
6	xerogels and others that include templated pores.