Examenul de bacalaureat național 2015

Proba E. c) Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	r = 5 - 2 = 3	3 p
	$a_3 = 5 + 3 = 8$	2 p
2.	$f(3) = 5 \Leftrightarrow a - 3 = 5$	3 p
	a=8	2 p
3.	$2^{3(4-x)} = 2^{2x+2} \Leftrightarrow 12-3x = 2x+2$	3 p
	x=2	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 9 numere naturale de două cifre care au produsul cifrelor egal cu 0, deci sunt 9 cazuri	2 p
	favorabile	2 P
	nr. cazuri favorabile 9 1	•
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{90} = \frac{1}{10}$	2 p
5.	$y - y_M = 2(x - x_M)$	2p
	y=2x-1	3 p
6.	$13^2 = 5^2 + 12^2$, deci triunghiul <i>ABC</i> este dreptunghic în <i>A</i>	2p
	$\sin C = \frac{AB}{BC} = \frac{5}{13}$	3р
	BC 13	- P

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - (-2) - 0 - 0 = 2	3 p
b)	$A(x)A(y) = \begin{pmatrix} (1-x)(1-y) - 2xy & 0 & (1-x)2y + 2x(1+2y) \\ 0 & 1 & 0 \\ -x(1-y) - (1+2x)y & 0 & -2xy + (1+2x)(1+2y) \end{pmatrix} =$	3p
	$= \begin{pmatrix} 1 - (xy + x + y) & 0 & 2(xy + x + y) \\ 0 & 1 & 0 \\ -(xy + x + y) & 0 & 1 + 2(xy + x + y) \end{pmatrix} = A(xy + x + y), \text{ pentru orice numere reale } x \text{ §i } y$	2p
c)	$A(x)A(x)A(x) = A((x+1)^3 - 1)$, pentru orice număr real x	3 p
	$(x+1)^3 - 1 = 7 \Leftrightarrow x = 1$	2 p
2.a)	$f(0) = 0^3 + 2 \cdot 0^2 + 0 + m =$	3 p
	= 0 + 0 + 0 + m = m	2 p

b)	$x_1 + x_2 + x_3 = -2$, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = -1$	3 p
	$x_1^3 + x_2^3 + x_3^3 = -2\left(x_1^2 + x_2^2 + x_3^2\right) - \left(x_1 + x_2 + x_3\right) - 3 = -2\left((-2)^2 - 2 \cdot 1\right) - (-2) - 3 = -5 = 5x_1x_2x_3$	2p
c)	$x_1 \in \mathbb{Z} \text{si} f(x_1) = 0 \Leftrightarrow m = -x_1(x_1 + 1)^2$	2p
	Deoarece m este prim, obținem $(x_1 + 1)^2 = 1 \Leftrightarrow x_1 = 0$, care nu convine, sau $x_1 = -2$, pentru care $m = 2$	3 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 1 - \frac{1}{2\sqrt{x^2 + 1}}(x^2 + 1)' =$	3p
	$=1-\frac{2x}{2\sqrt{x^2+1}}=1-\frac{x}{\sqrt{x^2+1}}, \ x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - \sqrt{x^2 + 1} \right) = \lim_{x \to +\infty} \frac{x^2 - \left(x^2 + 1 \right)}{x + \sqrt{x^2 + 1}} = \lim_{x \to +\infty} \frac{-1}{x + \sqrt{x^2 + 1}} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$f''(x) = -\frac{x'\sqrt{x^2 + 1} - x(\sqrt{x^2 + 1})'}{x^2 + 1} = -\frac{\sqrt{x^2 + 1} - \frac{x^2}{\sqrt{x^2 + 1}}}{x^2 + 1} = -\frac{1}{(x^2 + 1)\sqrt{x^2 + 1}}, \ x \in \mathbb{R}$	3p
	$f''(x) < 0$, pentru orice număr real x , deci funcția f' este descrescătoare pe \mathbb{R}	2p
2.a)	$\int_{1}^{e} \frac{1}{x} dx = \ln x \Big _{1}^{e} =$	3 p
	$= \ln e - \ln 1 = 1$	2p
b)	$ = \ln e - \ln 1 = 1 $ $ \mathcal{A} = \int_{1}^{e} f(x) dx = \int_{1}^{e} \ln x dx = x \ln x \Big _{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = $	3р
	$=e-x \begin{vmatrix} e \\ 1 \end{vmatrix} = e-e+1=1$	2p
c)	$\int_{1}^{e} \frac{1}{x} (f(x))^{n} dx = \int_{1}^{e} \frac{1}{x} \ln^{n} x dx = \frac{1}{n+1} \ln^{n+1} x \Big _{1}^{e} = \frac{1}{n+1}$	3p
	$\frac{1}{n+1} = \frac{1}{2015} \Leftrightarrow n = 2014$	2 p