

Amendments to the claims

DT01 Rec'd PCT/PTC 16 DEC 2004

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims

What is claimed is:

Claims 1-16 (Cancelled).

17. (New) A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

(I)

wherein:

R^A is an optionally substituted bicyclic carbocyclic or heterocyclic ring system of structure:

containing 0-3 heteroatoms in each ring in which:

at least one of rings (x) and (y) is aromatic;

one of Z⁴ and Z⁵ is C or N and the other is C;

Z³ is N, NR¹³, O, S(O)_x, CO, CR¹ or CR¹R^{1a};

Z¹ and Z² are independently a 2 or 3 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_x, CO, CR¹ and CR¹R^{1a};
such that each ring is independently substituted with 0-3 groups R¹ and/or R^{1a};

one of Z¹, Z², Z³, Z⁴ and Z⁵ is N, one is CR^{1a} and the remainder are CH, or one of Z¹, Z², Z³, Z⁴ and Z⁵ is CR^{1a} and the remainder are CH;

R¹ and R^{1a} are independently hydrogen; hydroxy; (C₁₋₆)alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, CONH₂, hydroxy, (C₁₋₆)alkylthio, heterocyclithio, heterocyclxy, arylthio,

aryloxy, acylthio, acyloxy or (C₁-6)alkylsulphonyloxy; (C₁-6)alkoxy-substituted(C₁-6)alkyl; hydroxy (C₁-6)alkyl; halogen; (C₁-6)alkyl; (C₁-6)alkylthio; trifluoromethyl; trifluoromethoxy; cyano; carboxy; nitro; azido; acyl; acyloxy; acylthio; (C₁-6)alkylsulphonyl; (C₁-6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁-6)alkyl, acyl or (C₁-6)alkylsulphonyl groups, or when Z³ and the adjacent atom are CR¹ and CR^{1a}, R¹ and R^{1a} may together represent (C₁-2)alkylenedioxy; provided that R¹ and R^{1a}, on the same carbon atom are not both optionally substituted hydroxy or amino;

provided that

(i) when R^A is optionally substituted quinolin-4-yl:

it is unsubstituted in the 6-position; or
it is substituted by at least one hydroxy (C₁-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position; or
it is substituted by at least one trifluoromethoxy group; or
R¹ and R^{1a} together represent (C₁-2)alkylenedioxy;

(ii) when R^A is optionally substituted quinazolin-4-yl, cinnolin-4-yl, 1,5-naphthyridin-4-yl, 1,7-naphthyridin-4-yl or 1,8-naphthyridin-4-yl:

it is substituted by at least one hydroxy (C₁-6)alkyl, cyano or carboxy group at the 2-, 5-, 6-, 7- or 8-position as available; or
it is substituted by at least one trifluoromethoxy group; or
R¹ and R^{1a} together represent (C₁-2)alkylenedioxy;

R² is hydrogen, or (C₁-4)alkyl or (C₂-4)alkenyl optionally substituted with 1 to 3 groups selected from:

amino optionally substituted by one or two (C₁-4)alkyl groups; carboxy; (C₁-4)alkoxycarbonyl; (C₁-4)alkylcarbonyl; (C₂-4)alkenyloxycarbonyl; (C₂-4)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁-4)alkyl, hydroxy(C₁-4)alkyl, aminocarbonyl(C₁-4)alkyl, (C₂-4)alkenyl, (C₁-4)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-4)alkenylsulphonyl, (C₁-4)alkoxycarbonyl, (C₁-4)alkylcarbonyl, (C₂-4)alkenyloxycarbonyl or (C₂-4)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4-oxadiazol-3-yl; halogen; (C₁-4)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁-4)alkyl, (C₂-4)alkenyl, (C₁-4)alkoxycarbonyl, (C₁-4)alkylcarbonyl, (C₂-4)alkenyloxycarbonyl, (C₂-4)alkenylcarbonyl; oxo; (C₁-4)alkylsulphonyl; (C₂-

4) alkenylsulphonyl; or (C₁-4)aminosulphonyl wherein the amino group is optionally substituted by (C₁-4)alkyl or (C₂-4)alkenyl;

R³ is hydrogen; or

R³ is in the 2-, 3- or 4-position and is:

trifluoromethyl; carboxy; (C₁-6)alkoxycarbonyl; (C₂-6)alkenyloxycarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁-6)alkyl, hydroxy(C₁-6)alkyl, aminocarbonyl(C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-6)alkenylsulphonyl, (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl or (C₂-6)alkenylcarbonyl and optionally further substituted by (C₁-6)alkyl, hydroxy(C₁-6)alkyl, aminocarbonyl(C₁-6)alkyl or (C₂-6)alkenyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; or 5-oxo-1,2,4-oxadiazol-3-yl; or (C₁-4)alkyl or ethenyl optionally substituted with any of the substituents listed above for R³ and/or 0 to 2 groups R¹² independently selected from:

halogen; (C₁-6)alkylthio; trifluoromethyl; (C₁-6)alkoxycarbonyl; (C₁-6)alkylcarbonyl; (C₂-6)alkenyloxycarbonyl; (C₂-6)alkenylcarbonyl; hydroxy optionally substituted by (C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl, (C₂-6)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkylcarbonyl or (C₂-6)alkenylcarbonyl; amino optionally mono- or disubstituted by (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl, (C₂-6)alkenylcarbonyl, (C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkylsulphonyl, (C₂-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁-6)alkyl or (C₂-6)alkenyl; aminocarbonyl wherein the amino group is optionally substituted by (C₁-6)alkyl, hydroxy(C₁-6)alkyl, aminocarbonyl(C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl or (C₂-6)alkenylcarbonyl and optionally further substituted by (C₁-6)alkyl, hydroxy(C₁-6)alkyl, aminocarbonyl(C₁-6)alkyl or (C₂-6)alkenyl; oxo; (C₁-6)alkylsulphonyl; (C₂-6)alkenylsulphonyl; or (C₁-6)aminosulphonyl wherein the amino group is optionally substituted by (C₁-6)alkyl or (C₂-6)alkenyl; or

R³ is in the 2-position and is oxo; or

R³ is in the 3-position and is fluorine, amino optionally substituted by a group selected from hydroxy, (C₁-6)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-6)alkenylsulphonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenylcarbonyl, (C₁-6)

6)alkoxycarbonyl, (C₂-6)alkenyloxycarbonyl, (C₁-6)alkyl and (C₂-6)alkenyl, wherein a (C₁-6)alkyl or (C₂-6)alkenyl moiety may be optionally substituted with up to 2 groups R¹², or hydroxy optionally substituted as described above for R¹² hydroxy; in addition when R³ is disubstituted with a hydroxy or amino containing substituent and carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively;

R⁴ is a group -U-R⁵ where

U is selected from CO, SO₂ and CH₂ and

R⁵ is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

containing up to four heteroatoms in each ring in which

at least one of rings (a) and (b) is aromatic;

X¹ is C or N when part of an aromatic ring, or CR¹⁴ when part of a non-aromatic ring;

X² is N, NR¹³, O, S(O)_X, CO or CR¹⁴ when part of an aromatic or non-aromatic ring or may in addition be CR¹⁴R¹⁵ when part of a non aromatic ring;

X³ and X⁵ are independently N or C;

Y¹ is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring;

Y² is a 2 to 6 atom linker group, each atom of Y² being independently selected from N, NR¹³, O, S(O)_X, CO, CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring;

each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁-4)alkylthio; halo; carboxy(C₁-4)alkyl; halo(C₁-4)alkoxy; halo(C₁-4)alkyl; (C₁-4)alkyl; (C₂-4)alkenyl; (C₁-4)alkoxycarbonyl; formyl; (C₁-4)alkylcarbonyl; (C₂-4)alkenyloxycarbonyl; (C₂-4)alkenylcarbonyl; (C₁-4)alkylcarbonyloxy; (C₁-4)alkoxycarbonyl(C₁-4)alkyl; hydroxy; hydroxy(C₁-4)alkyl; mercapto(C₁-4)alkyl; (C₁-4)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁-4)alkylsulphonyl; (C₂-4)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally mono- or di-substituted by (C₁-4)alkyl or (C₂-4)alkenyl; aryl; aryl(C₁-4)alkyl; aryl(C₁-4)alkoxy or

R¹⁴ and R¹⁵ may together represent oxo;

each R¹³ is independently H; trifluoromethyl; (C₁-4)alkyl optionally substituted by hydroxy, (C₁-6)alkoxy, (C₁-6)alkylthio, halo or trifluoromethyl; (C₂-4)alkenyl; aryl; aryl (C₁-4)alkyl; arylcarbonyl; heteroarylcarbonyl; (C₁-

4)alkoxycarbonyl; (C₁-4)alkylcarbonyl; formyl; (C₁-6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁-4)alkoxycarbonyl, (C₁-4)alkylcarbonyl, (C₂-4)alkenyloxycarbonyl, (C₂-4)alkenylcarbonyl, (C₁-4)alkyl or (C₂-4)alkenyl and optionally further substituted by (C₁-4)alkyl or (C₂-4)alkenyl;

each x is independently 0, 1 or 2

n is 0 and AB is NR¹¹CO, CO-CR⁸R⁹, CR⁶R⁷-CO, NHR¹¹SO₂, CR⁶R⁷-SO₂ or CR⁶R⁷-CR⁸R⁹, provided that R⁸ and R⁹ are not optionally substituted hydroxy or amino and R⁶ and R⁸ do not represent a bond:
or n is 1 and AB is NR¹¹CO, CO-CR⁸R⁹, CR⁶R⁷-CO, NR¹¹SO₂, CONR¹¹, CR⁶R⁷-CR⁸R⁹, O-CR⁸R⁹ or NR¹¹-CR⁸R⁹;

provided that R⁶ and R⁷, and R⁸ and R⁹ are not both optionally substituted hydroxy or amino;

and wherein:

each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: H; (C₁-6)alkoxy; (C₁-6)alkylthio; halo; trifluoromethyl; azido; (C₁-6)alkyl; (C₂-6)alkenyl; (C₁-6)alkoxycarbonyl; (C₁-6)alkylcarbonyl; (C₂-6)alkenyloxycarbonyl; (C₂-6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁-6)alkylsulphonyl; (C₂-6)alkenylsulphonyl; or (C₁-6)aminosulphonyl wherein the amino group is optionally substituted by (C₁-6)alkyl or (C₂-6)alkenyl;

or R⁶ and R⁸ together represent a bond and R⁷ and R⁹ are as above defined;

R¹⁰ is selected from (C₁-4)alkyl; (C₂-4)alkenyl and aryl any of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁-6)alkyl, (C₂-6)alkenyl, (C₁-6)alkylsulphonyl, trifluoromethylsulphonyl, (C₂-6)alkenylsulphonyl, (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl or (C₂-6)alkenylcarbonyl and optionally further substituted by (C₁-6)alkyl or (C₂-6)alkenyl; and

R¹¹ is hydrogen; trifluoromethyl, (C₁-6)alkyl; (C₂-6)alkenyl; (C₁-6)alkoxycarbonyl; (C₁-6)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁-6)alkoxycarbonyl, (C₁-6)alkylcarbonyl, (C₂-6)alkenyloxycarbonyl, (C₂-6)alkenylcarbonyl, (C₁-6)alkyl or (C₂-6)alkenyl and optionally further substituted by (C₁-6)alkyl or (C₂-6)alkenyl;

or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage.

18. (New) A compound according to claim 17 wherein R^A is optionally substituted isoquinolin-5-yl, quinolin-8-yl, thieno[3,2-b]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-8-yl, quinoxalin-5-yl, isoquinolin-8-yl, [1,6]-naphthyridin-4-yl, 1,2,3,4-tetrahydroquinoxalin-5-yl or 1,2-dihydroisoquinoline-8-yl..

19. (New) A compound according to claim 17 wherein R¹ is H, methoxy, methyl, cyano or halogen and R^{1a} is H.

20. (New) A compound according to claim 17 wherein R³ is hydrogen; optionally substituted hydroxy; optionally substituted amino; halogen; (C₁₋₄)alkoxycarbonyl; CONH₂; 1-hydroxyalkyl; CH₂CO₂H; CH₂CONH₂; -CONHCH₂CONH₂; 1,2-dihydroxyalkyl; CH₂CN; 2-oxo-oxazolidin-5-yl; or 2-oxo-oxazolidin-5-yl(C₁₋₄alkyl).

21. (New) A compound according to claim 17 wherein n is 0 and A and B are both CH₂, A is CHO and B is CH₂ or A is NH and B is CO.

22. (New) A compound according to claim 17 wherein -U- is -CH₂-.

23. (New) A compound according to claim 17 wherein the heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR¹³ in which Y² contains 2-3 heteroatoms, one of which is S and 1-2 are N, with one N bonded to X³ or the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non aromatic and Y² has 3-5 atoms, including a heteroatom bonded to X⁵ selected from O, S or NR¹³, where R¹³ is other than hydrogen, and NHCO bonded via N to X³, or O bonded to X³.

24. (New) A compound according to claim 17 wherein R⁵ is selected from:
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl.

25. (New) A compound according to claim 17 selected from:

4-(2-{4-[(3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-piperidin-1-yl}-ethyl)-quinoline-6-carbonitrile 6-((3R,4S)-3-Fluoro-1-[(R)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino)-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
6-((3S,4R)-3-Fluoro-1-[(R)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino)-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
6-((3R,4R)-3-Hydroxy-1-[(R)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino)-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
6-((3S,4S)-3-Hydroxy-1-[(R)-2-hydroxy-2-(2-methoxy-quinolin-8-yl)-ethyl]-piperidin-4-ylamino)-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
6-((3R,4S)-1-[2-(2,3-Dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-3-fluoro-piperidin-4-ylamino)-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one
6-[(1-((2R/S)-2-hydroxy-2-[3-(methyloxy)-5-quinoxaliny]ethyl)-4-piperidinyl)amino]methyl}-2H-pyrido[3,2-b][1,4]thiazin-3(4H)-one
(1R/S)-2-{4-[(2,3-dihydro[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)amino]-1-piperidinyl}-1-[3-(methyloxy)-5-quinoxaliny]ethanol
{1-[2-(9-Chloro-2,3-dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-piperidin-4-yl}-
(2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-ylmethyl)-amine 6-[(1-{2-hydroxy-2-[2-(methyloxy)-8-quinoliny]ethyl}-4-piperidinyl)amino]methyl}-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one
6-[(1-[2-(4-quinoliny)ethyl]-4-piperidinyl)amino]methyl]-2H-pyrido[3,2-b][1,4]thiazin-3(4H)-one
4-[2-(3-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl)methyl]amino)-1-piperidinyl]ethyl]-6-quinolinecarbonitrile (isomer E2)
4-[2-(3-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl)methyl]amino)-1-piperidinyl]ethyl]-6-quinolinecarbonitrile (isomer E2)
4-[2-(3-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl)methyl]amino)-1-piperidinyl]ethyl]-6-quinolinecarbonitrile (E1 isomer)
4-[2-(3-hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl)methyl]amino)-1-piperidinyl]ethyl]-6-quinolinecarbonitrile (E1 isomer)
or a pharmaceutically acceptable derivative thereof.

26. (New) A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment an effective amount of a compound according to claim 17.

27. (New) A pharmaceutical composition comprising a compound according to claim 17, and a pharmaceutically acceptable carrier.

28. (New) A process for preparing a compound of formula (I) according to claim 17, or a pharmaceutically acceptable derivative thereof, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

wherein n is as defined in formula (I); $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $R^{1'}$, and $R^{3'}$ are Z^1 , Z^2 , Z^3 , R^1 , and R^3 as defined in formula (I) or groups convertible thereto; Z^4 and Z^5 are as defined in formula (I);

Q^1 is $NR^{2'}R^{4'}$ or a group convertible thereto wherein $R^{2'}$ and $R^{4'}$ are R^2 and R^4 as defined in formula (I) or groups convertible thereto and Q^2 is H or $R^{3'}$ or Q^1 and Q^2 together form an optionally protected oxo group;

- (i) X is A' -COW, Y is H and n is 0;
- (ii) X is $CR^6=CR^8R^9$, Y is H and n is 0;
- (iii) X is oxirane, Y is H and n is 0;
- (iv) X is $N=C=O$ and Y is H and n is 0;
- (v) one of X and Y is CO_2R^Y and the other is $CH_2CO_2R^X$;
- (vi) X is CHR^6R^7 and Y is $C(=O)R^9$;
- (vii) X is $CR^7=PR^Z_3$ and Y is $C(=O)R^9$ and $n=1$;
- (viii) X is $C(=O)R^7$ and Y is $CR^9=PR^Z_3$ and $n=1$;
- (ix) Y is COW and X is $NHR^{11'}$, NCO or $NR^{11'}COW$ and $n=0$ or 1 or when $n=1$ X is COW and Y is $NHR^{11'}$, NCO or $NR^{11'}COW$;
- (x) X is $NHR^{11'}$ and Y is $C(=O)R^8$ and $n=1$;
- (xi) X is $NHR^{11'}$ and Y is CR^8R^9W and $n=1$;
- (xii) X is $NR^{11'}COCH_2W$ or $NR^{11'}SO_2CH_2W$ and Y is H and $n=0$;
- (xiii) X is $CR^6R^7SO_2W$ and Y is H and $n=0$;
- (xiv) X is W or OH and Y is CH_2OH and n is 1;
- (xv) X is $NHR^{11'}$ and Y is SO_2W or X is $NR^{11'}SO_2W$ and Y is H, and n is 0;
- (xvi) X is W and Y is $CONHR^{11'}$;
- (xvii) X is $-CH=CH_2$ and Y is H and $n=0$;

in which W is a leaving group, e.g. halo, methanesulphonyloxy, trifluoromethanesulphonyloxy or imidazolyl; R^X and R^Y are (C₁₋₆)alkyl; R^Z is aryl or

(C₁₋₆)alkyl; A' and NR^{11'} are A and NR¹¹ as defined in formula (I), or groups convertible thereto; and oxirane is:

wherein R⁶, R⁸ and R⁹ are as defined in formula (I);
and thereafter optionally or as necessary converting Q¹ and Q² to NR^{2'}R^{4'};
converting A', Z^{1'}, Z^{2'}, Z^{3'}, R^{1'}, R^{2'}, R^{3'}, R^{4'} and NR^{11'} to A, Z¹, Z², Z³, R¹, R²,
R³, R⁴ and NR¹¹; converting A-B to other A-B, interconverting R¹, R², R³ and/or
R⁴, and/or forming a pharmaceutically acceptable derivative thereof.