VEEAM Kubernetes Korner

A 101 Session into K8s Storage

Adam Mazouz

Cloud Solutions Engineer @ Pure Storage

Geoff Burke

Senior Cloud Solutions Architect @ Tsunati

Agenda

Why does K8s Storage Matter?

Stateless

Stateful

Glance at Stateful Applications

- Running A Stateful Application Outside of Kubernetes (VM, Bare metal)
 - Pros: No refactoring or re-architecture for existing stateful applications.
 - Cons: Duplicate work by setting up a parallel software workflow outside Kubernetes.
- Running A Stateful Workload as a Cloud Services
 - o **Pros:** Easy to setup. Maintained by cloud service, scale up elastically.
 - Cons: Comes with cost, lack customization, vendor lock-in, not as great performance and latency properties.
- Running your Stateful Workload Inside Kubernetes
 - Pros: Greatest flexibility and operating efficiency in the long term.
 - Cons: Most difficult to implement.

Kubernetes Volumes and Storage Types

Ephemeral Volumes

Ephemeral volumes will be destroyed when a pod is destroyed.

Projected Volumes

Projected volume maps several existing volume sources into the same directory.

Persistent Volumes

Persistent volumes exist beyond the lifetime of a pod.

Demo-1 ...

- 1. Create Pod
- 2. Restrat the Pod and Validate the Data Exist

Demo-2 ...

- 1. Create Secret, and ConfigMap
- 2. Create Pod.
- 3. Validate projected config objects after Pod restarted/replaced

Demo-3 ...

- 1. Create PersistentVolume
- 2. Create PersistentVolumeClaim
- 3. Create Pod
- 4. Validate data persist after Pod restarted/replaced

