Monosodium Aspartate for Use in Cardioplegia Solutions

Raymond Lipicky, MD, Director K Srinivasachar, PhD, Chemist N Stockbridge, MD, PhD, Team Leader Division of Cardio-Renal Drug Products

Cardioplegia

Elective procedure to halt cardiac mechanical activity temporarily

Contractility is controlled by interference with electrical activity

• "Resting" membrane potential is set by

$$\frac{[K^+]_o}{[K^+]_i}$$

• Raising extracellular potassium depolarizes the membrane and interrupts the electrical rhythm of the heart.

Cardioplegia solutions have evolved through experience, not controlled clinical trials

Aspartic acid

Non-essential amino acid

- Part of respiratory chain
- CNS transmitter

Aspartate aids recovery of function in a reperfusion model

Sample cardioplegia solutions

Purpose	Substance	For	Final composition
Cold induction	KCl	K	18-20 mEq/L
	THAM	pН	7.7-7.8
	CPD	Ca ⁺⁺	0.5-0.6 mM
	D5 + 1/4 NS	Osmolarity	340-360 mOsm
Warm induction	KCl	K^{+}	20-25 mEq/L
	THAM	pН	7.5-7.6
	CPD	Ca ⁺⁺	0.15-0.25 mM
	Glucose		>400 mg%
	Glutamate/Aspartate		13 mM each
	D5W	Osmolarity	380-400 mOsm
Cold maintenance	KCl	\mathbf{K}^{+}	8-10 mEq/L
	THAM	pН	7.7
	CPD	Ca ⁺⁺	0.5-0.6 mM
	D5 + 1/4 NS	Osmolarity	340-360 mOsm
Warm reperfusion	KCl	K^{+}	8-10 mEq/L
_	THAM	pН	7.5-7.6
	CPD	Ca ⁺⁺	0.15-0.25 mM
	Glucose		>400 mg%
	Glutamate/Aspartate		13 mM each
	D5W	Osmolarity	380-400 mOsm

Specifications

	Na Glutamate	_
	(NF)	(Supplier)
Assay	99.0-100.5%	98.5-101%
pН	6.7-7.2	6.0-7.5
Heavy metals	≤20 ppm	≤10 ppm
NH ₄		≤0.02%
SO ₄		≤0.03%

Clinical experience

- Loop et al., 1992: Less morbidity among 819 consecutive cases with blood cardioplegia with aspartate and glutamate than in 2582 concurrent consecutive cases with crystalloid cardioplegia.
- Buckberg et al., 1995: 1.6% total mortality among 1474 cases in 4 centers.

Safety

- Aspartate is a natural amino acid with plasma levels to $\sim 30 \ \mu M$.
- Total circulating levels of amino acids equivalent to ~3 mM.
- High aspartate and glutamate during maintenance leads to peripheral vasodilation.

Recommendation

- Use of aspartate is supported by clinical experience, if not controlled studies
- No safety concerns evident in literature
- No role for potassium salt

 Sodium aspartate should be approved for pharmacy compounding