MATH 395 Notes

Contents

1	Joint Distributions 1.1 Joint Probability Mass Function
	1.5 Marginal Probability Mass Function 3 1.6 Marginal Probability Density Function 3 1.7 Summary of Joint Distributions 4 1.8 Joint Uniform Random Variables 4 1.9 Multinomial Random Variables 4 1.10 Standard Bivariate Normal Distribution 4
2	Sums82.1Sums of Independent Random Variables82.2Sums of Independent Moment Generating Functions82.3Sums of Independent Poisson Random Variables82.4Sums of Independent Binomial Random Variables82.5Sums of Independent Normals82.6Negative Binomial Random Variables82.7Gamma Distribution8
3	Symmetry 3.1 Symmetric Functions
4	Multivariate Expectation and Variance84.1 Linearity of Expectation84.2 Product of Expectations84.3 Sums of Independent Variances8
5	Covariance and Correlation 9 5.1 Covariance 9 5.2 Covariance Matrix 9 5.3 Sums of Variances 9 5.4 Uncorrelated Random Variables 9 5.5 Correlation 10
6	Tail Bounds and Limit Theorems16.1 Markov's Inequality16.2 Chebyshev's Inequality16.3 Law of Large Numbers With Finite Variances16.4 Central Limit Theorem1

7	Con	onditional Distributions 12					
	7.1	Conditional Probability Mass Function	12				
		Conditional Probability Density Function					
		Conditional Expectation for Discrete Variables					
	7.4	Conditional Expectation for Continuous Variables	12				
		Law of Total Probability for Discrete Variables					
	7.6	Law of Total Probability for Continuous Variables	12				
	7.7	Law of Total Expectation for Discrete Variables	13				
	7.8	Law of Total Expectation for Continuous Variables	13				
	7.9	Wald's Identity	13				

1 Joint Distributions

1.1 Joint Probability Mass Function

Let X and Y be discrete random variables. The joint probability mass function of X and Y is

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

1.2 Joint Probability Density Function

Random variables X and Y are jointly continuous if there exists a joint density function $f_{X,Y}$ on \mathbb{R}^2 such that for subsets $B \subseteq \mathbb{R}^2$

$$f_{X,Y}(x,y) = \iint_B f(x,y) \ dy \ dx$$

1.3 Joint Cumulative Distribution Function

The cumulative distribution of random variables X and Y is

$$F(x,y) = \mathbb{P}(X \le x, Y \le y)$$

1.4 Joint Distributions of Independent Random Variables

Let X and Y be discrete random variables. X and Y are independent if and only if

$$\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x) \cdot \mathbb{P}(Y = y)$$

Let X and Y be jointly continuous random variables. X and Y are independent if and only if

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$

1.5 Marginal Probability Mass Function

Let X and Y be discrete random variables with joint probability mass function $p_{X,Y}(x,y)$. The marginal probability mass functions of X and Y are

$$p_X(x) = \sum_{y \in \Omega_Y} p_{X,Y}(x,y) \qquad p_Y(y) = \sum_{x \in \Omega_Y} p_{X,Y}(x,y)$$

1.6 Marginal Probability Density Function

Let X and Y be continuous random variables with joint probability density function $f_{X,Y}(x,y)$. The marginal probability density functions of X and Y are

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dy \qquad \qquad f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dx$$

1.7 Summary of Joint Distributions

	Discrete Random Variables	Continuous Random Variables
Joint PMF/PDF	$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$	$f_{X,Y} \neq \mathbb{P}(X = x, Y = y)$
Joint range/support	$\{(x,y)\in\Omega_X\times\Omega_Y\mid p_{X,Y}(x,y)>0\}$	$\{(x,y)\in\Omega_X\times\Omega_Y\mid f_{X,Y}(x,y)>0\}$
Joint CDF	$F_{X,Y}(x,y) = \sum_{t \le x} \sum_{s \le y} p_{X,Y}(t,s)$	$F_{X,Y}(s,t) = \int_{-\infty}^{s} \int_{-\infty}^{t} f_{X,Y}(x,y) \ dy \ dx$
Normalization	$\sum_{x,y} p_{X,Y}(x,y) = 1$	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy dx = 1$
Marginal PMF/PDF	$p_X(x) = \sum_{y \in \Omega_y} p_{X,Y}(x,y)$	$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ dy$
Expectation	$\mathbb{E}[g(X,Y)] = \sum_{x,y} g(x,y) \cdot p_{X,Y}(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) dy dx$

1.8 Joint Uniform Random Variables

A joint uniform random variable (X,Y) is equally likely to be anywhere in a subset D of the Euclidean plane \mathbb{R}^2

•
$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{\operatorname{area}(D)} & \text{if } (x,y) \in D\\ 0 & \text{otherwise} \end{cases}$$

A joint uniform random variable (X,Y,Z) is equally likely to be anywhere in a subset D of the Euclidean space \mathbb{R}^3

•
$$f_{X,Y,Z}(x,y,z) = \begin{cases} \frac{1}{\operatorname{vol}(B)} & \text{if } (x,y,z) \in D\\ 0 & \text{otherwise} \end{cases}$$

1.9 Multinomial Random Variables

A multinomial random variable $(X_1,...,X_k)$ is the number of successes for each side of a k-sided dice rolled n times, where each side i has probability p_i , denoted $(X_1,...,X_k) \sim \operatorname{Mult}(n,k,p_1,...,p_k)$

•
$$\mathbb{P}(X_1 = x_1, ..., X_k = x_k) = \binom{n}{x_1, ..., x_k} p_1^{x_1} ... p_k^{x_k}$$

- $\mathbb{E}[X_i] = np_i$
- $\operatorname{Var}(X_i) = np_i(1 p_i)$

1.10 Standard Bivariate Normal Distribution

The standard bivariate normal distribution is the joint probability density function for two possibly dependent standard normal random variables with covariance ρ

•
$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}}e^{-\frac{x^2+y^2-2\rho xy}{2(1-\rho^2)}}$$

• X and Y are independent if and only if $\rho = 0$

2 Sums

2.1 Sums of Independent Random Variables

If X and Y are independent discrete random variables with probability mass functions p_X and p_Y , then the probability mass function of X and Y is

$$p_{X+Y}(z) = \sum_{k} p_X(k)p_Y(z-k) = \sum_{k} p_X(z-k)p_Y(k)$$

If X and Y are independent continuous random variables with probability density functions f_X and f_Y , then the probability density function of X and Y is

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) \ dx = \int_{-\infty}^{\infty} f_X(z-x) f_Y(x) \ dx$$

2.2 Sums of Independent Moment Generating Functions

If X and Y are independent random variables with moment generating functions $M_X(t)$ and $M_Y(t)$, then

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

2.3 Sums of Independent Poisson Random Variables

Let $X \sim \text{Poi}(\lambda_1)$ and $Y \sim \text{Poi}(\lambda_2)$ such that $\lambda = \lambda_1 + \lambda_2$. Let Z = X + Y. Then $Z \sim \text{Poi}(\lambda)$

•
$$\mathbb{P}(Z=z) = \frac{e^{-(\lambda_1 + \lambda_2)}}{z!} (\lambda_1 + \lambda_2)^z$$

- $\mathbb{E}[Z] = \lambda_1 + \lambda_2$
- $Var(Z) = \lambda_1 + \lambda_2$

2.4 Sums of Independent Binomial Random Variables

Let $X \sim \text{Bin}(n_1, p)$ and $Y \sim \text{Bin}(n_2, p)$ such that $n = n_1 + n_2$. Let Z = X + Y. Then $Z \sim \text{Bin}(n, p)$

•
$$\mathbb{P}(Z=z) = \binom{n_1+n_2}{z} p^z (1-p)^{(n_1+n_2)-z}$$

- $\mathbb{E}[Z] = (n_1 + n_2)p$
- $Var(X) = (n_1 + n_2)(1 p)p$

2.5 Sums of Independent Normals

Let $S_n=X_1+...+X_n$, where $X_1,...,X_n$ are independent and identically distributed (iid) random variables each with expectation μ and variance σ^2

- $\mathbb{E}[S_n] = n\mu$
- $Var(S_n) = n\sigma^2$

2.6 Negative Binomial Random Variables

A negative binomial random variable X models the number of independent trials $Y_i \sim \mathrm{Ber}(p)$ before seeing the r^{th} success. $X = \sum_{i=1}^r Z_i$ where $Z_i \sim \mathrm{Geo}(p)$, denoted $X \sim \mathrm{NegBin}(r,p)$

•
$$\mathbb{P}(X=x) = \binom{x-1}{r-1} (1-p)^{x-r} p^r$$

•
$$\mathbb{E}[X] = \frac{r}{p}$$

•
$$\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$$

The negative binomial random variable models the sum of independent geometric random variables

2.7 Gamma Distribution

A gamma distribution X models the sum of n independent exponential random variables $Y_i \sim \operatorname{Exp}(\lambda)$ where $X = \sum_{i=1}^n Y_i$, denoted $X \sim \operatorname{Gamma}(n,\lambda)$

•
$$f_X(x) = \frac{\lambda^n x^{n-1}}{\int_0^\infty x^{n-1} e^{-x} dx} e^{-\lambda x}$$

•
$$\mathbb{E}[X] = \frac{n}{\lambda}$$

•
$$Var(X) = \frac{n}{\lambda^2}$$

3 Symmetry

3.1 Symmetric Functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is symmetric if $f(x_{\sigma_1}, x_{\sigma_2}, ..., x_{\sigma_n}) = f(x_1, x_2, ..., x_n)$ for any permutation $(\sigma_1, \sigma_2, ..., \sigma_n)$ of (1, 2, ..., n)

3.2 Exchangeable Random Variables

A sequence of random variables $X_1, X_2, ..., X_n$ is exchangeable if $(X_1, X_2, ..., X_n) \stackrel{d}{=} (X_{\sigma_1}, X_{\sigma_2}, ..., X_{\sigma_n})$

- If $X_1, X_2, ..., X_n$ are discrete random variables with joint probability mass function p, then these random variables are exchangeable if and only if p is a symmetric function
- If $X_1, X_2, ..., X_n$ are jointly continuous random variables with joint probability density function f, then these random variables are exchangeable if and only if f is a symmetric function
- If $X_1, X_2, ..., X_n$ are exchangeable, then these random variables are identically distributed such that they have the same marginal density function
- If $X_1, X_2, ..., X_n$ are independent and identically distributed (iid), then these random variables are exchangeable

3.3 Exchangeability in Sampling Without Replacement

Let $X_1,...,X_k$ denote the outcomes of successive draws without replacement from the set $\{1,...,n\}$. Then $X_1,...,X_k$ are exchangeable

4 Multivariate Expectation and Variance

4.1 Linearity of Expectation

Let X and Y be random variables with finite expectations and let $a,b \in \mathbb{R}$. Then

$$\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$$

• Linearity of expectation applies for both independent and dependent variables

4.2 Product of Expectations

Let X and Y be independent random variables. Then for all functions g_X and g_Y

$$\mathbb{E}\left[g_X(X)\cdot g_Y(Y)\right] = \mathbb{E}[g_X(X)]\cdot \mathbb{E}[g_Y(Y)]$$

4.3 Sums of Independent Variances

Let X and Y be independent random variables with finite variances and let $a,b\in\mathbb{R}$. Then

$$Var(aX + bY + c) = a^{2}Var(X) + b^{2}Var(Y)$$

5 Covariance and Correlation

5.1 Covariance

The covariance of two random variables X and Y is

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

- If X and Y are independent, then Cov(X, Y) = 0
- If X = Y, then Cov(X, Y) = Var(X) = Var(Y)

Let $X_1,...,X_n$ and $Y_1,...,Y_m$ be random variables and let $a_1,...,a_n,b_1,...,b_m \in \mathbb{R}$. Then

$$\operatorname{Cov}\left(\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{m} b_j Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j \operatorname{Cov}(X_i, X_j)$$

5.2 Covariance Matrix

The covariance matrix of random variables X, Y is defined as

$$S = \begin{pmatrix} \operatorname{Cov}(X, X) & \operatorname{Cov}(X, Y) \\ \operatorname{Cov}(Y, X) & \operatorname{Cov}(Y, Y) \end{pmatrix} \quad S^{-1} = \begin{pmatrix} \frac{1}{\operatorname{Var}(X)} & -\frac{\operatorname{Corr}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} \\ -\frac{\operatorname{Corr}(X, Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}} & \frac{1}{\operatorname{Var}(Y)} \end{pmatrix}$$

5.3 Sums of Variances

Let $X_1, ..., X_n$ be random variables with finite variances and covariances. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j})$$

5.4 Uncorrelated Random Variables

The random variables X and Y are uncorrelated if Cov(X,Y)=0

- If X and Y are independent, then they are uncorrelated
 - The converse does not hold

5.5 Correlation

The correlation of two random variables X and Y is

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$

- $-1 \leq \operatorname{Corr}(X, Y) \leq 1$
- Let $a,b\in\mathbb{R}$ with $a\neq 0$. Then $\mathrm{Corr}(aX+b,Y)=\frac{a}{|a|}\mathrm{Corr}(X,Y)$
- $\operatorname{Corr}(X,Y)=1$ if and only if there exists a>0 and $b\in\mathbb{R}$ such that Y=aX+b
- $\operatorname{Corr}(X,Y)=-1$ if and only if there exists a<0 and $b\in\mathbb{R}$ such that Y=aX+b

6 Tail Bounds and Limit Theorems

6.1 Markov's Inequality

Let X be a non-negative random variable. Then for any c>0

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}$$

6.2 Chebyshev's Inequality

Let X be a random variable with a finite mean and finite variance. Then for any c>0

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge c) \le \frac{\operatorname{Var}(X)}{c^2}$$

•
$$\mathbb{P}(X \ge \mathbb{E}[X] + c) \le \frac{\operatorname{Var}(X)}{c^2}$$

•
$$\mathbb{P}(X \leq \mathbb{E}[X] - c) \leq \frac{\operatorname{Var}(X)}{c^2}$$

6.3 Law of Large Numbers With Finite Variances

Let $X_1,X_2,X_3,...$ be independent and identically distributed random variables with finite mean and variance and let $S_n=X_1+...+X_n$. Then for any fixed $\varepsilon>0$

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}[X_1]\right| < \varepsilon\right) = 1$$

6.4 Central Limit Theorem

Let $X_1,X_2,X_3,...$ be independent and identically distributed random variables with finite mean μ and variance σ^2 and let $S_n=X_1+...+X_n$

•
$$\mathbb{E}[S_n] = n\mu$$

•
$$Var(S_n) = n\sigma^2$$

The CDF of $Y_n = \frac{S_n - n\mu}{\sigma\sqrt{n}}$ converges to the CDF of the standard unit normal $\mathcal{N}(0,1)$

•
$$\mathbb{E}[Y_n] = 0$$

•
$$Var(Y_n) = 1$$

Alternately, the CDF of $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ converges to the CDF of normal variable $\mathcal{N}\left(\mu,\frac{\sigma^2}{n}\right)$

•
$$\mathbb{E}\left[\bar{X}\right] = \mu$$

•
$$\operatorname{Var}\left(\bar{X}\right) = \frac{\sigma^2}{n}$$

7 Conditional Distributions

7.1 Conditional Probability Mass Function

Let X be a discrete random variable. Then the conditional probability mass function of X given event Y=y is

$$p_{X|Y}(x \mid y) = \mathbb{P}(X = x \mid Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

7.2 Conditional Probability Density Function

Let X and Y be jointly continuous random variables with joint density function $f_{X,Y}(x,y)$. Then the conditional probability density function of X given event Y=y is

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

7.3 Conditional Expectation for Discrete Variables

Let X be a discrete random variable. Then the conditional expectation of X given event Y = y is

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \Omega_X} x \cdot p_{X|Y}(x \mid y) = \sum_{x \in \Omega_X} x \cdot \mathbb{P}(X = x \mid Y = y)$$

7.4 Conditional Expectation for Continuous Variables

Let X be a continuous random variable. Then the conditional expectation of X given event Y = y is

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x \mid y) \ dx$$

7.5 Law of Total Probability for Discrete Variables

Let X and Y be discrete random variables. Then the probability mass function of X is

$$\mathbb{P}(X = x) = \sum_{y \in \Omega_Y} p_{X\mid Y}(x \mid y) \cdot \mathbb{P}(Y = y) = \sum_{y \in \Omega_Y} \mathbb{P}(X = x \mid Y = y) \cdot \mathbb{P}(Y = y)$$

7.6 Law of Total Probability for Continuous Variables

Let X and Y be continuous random variables. Then the probability density function of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X|Y}(x \mid y) \cdot f_Y(y) \ dy$$

7.7 Law of Total Expectation for Discrete Variables

Let *X* and *Y* be discrete random variables. Then the expectation of *X* is

$$\mathbb{E}[X] = \sum_{y \in \Omega_Y} \mathbb{E}[X \mid Y = y] \cdot \mathbb{P}(Y = y)$$

7.8 Law of Total Expectation for Continuous Variables

Let X and Y be continuous random variables. Then the expectation of X is

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} \mathbb{E}[X \mid Y = y] \cdot f_Y(y) \ dy$$

7.9 Wald's Identity

Let $X_1,X_2,X_3,...$ be independent and identically distributed random variables with finite mean. Let N be a non-negative integer-valued variable independent of $X_1,X_2,X_3,...$ also with finite mean. Let $S_N=X_1+...+X_N$. Then

$$\mathbb{E}[S_N] = \mathbb{E}[N] \cdot \mathbb{E}[X_1]$$