

Dash

Αll

 \Box Articles

 \triangleright Videos

3 of 10 QUESTIONS

QUESTION 3 5 marks

Which of the given options provides the increasing order of asymptotic complexity of functions f1, f2, f3, and f4?

$$f1(n) = 2^n$$

$$f2(n) = n^{(3/2)}$$

$$f3(n) = n*log(n)$$

$$f4(n) = n^{\log(n)}$$

f3, f2, f4, f1

f3, f2, f1, f4

f2, f3, f1, f4

f2, f3, f4, f1

Your submitted response was incorrect.

Explanation

$$f1(n) = 2^n$$

$$f2(n) = n^{(3/2)}$$

$$f3(n) = n*log(n)$$

$$f4(n) = n^{\log(n)}$$

Except for f3, all other are exponential. So f3 is definitely first in the output. Among remaining, $n^{(3/2)}$ is next. One way to compare f1 and f4 is to take log of both functions. Order of growth of $\log(f1(n))$ is $\Theta(n)$ and order of growth of $\log(f4(n))$ is $\Theta(\log(n) * \log(n))$. Since $\Theta(n)$ has higher growth than $\Theta(\log(n) * \log(n))$, f1(n) grows faster than f4(n).

Previous

Next