МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

ОТЧЕТ

О ВЫПОЛНЕНИИ КУРСОВОГО ПРОЕКТА «ТЕПЛОГИДРАВЛИЧЕСКИЙ И НЕЙТРОННО-ФИЗИЧЕСКИЙ РАСЧЕТ АКТИВНОЙ ЗОНЫ РЕАКТОРА ВВЭР-1200»

	Выполнил студент группы С19-103 Мамлеев А. А. ————	
Научный руководитель по теплогидравлическому расчету канд. техн. наук Маслов Ю. А.	Научный руководитель по нейтронно-физическому расчету канд. физмат. наук Савандер В. И.	
подпись	подпись	

Оценка (ECTS):

Цель: изучить методы синтеза комбинационных схем на логических элементах; получить навыки проектирования комбинационных схем на VHDL; овладеть инструментальными средствами проектирования схем на ПЛИС; приобрести опыт экспериментального исследования синтезируемых схем.

1 Синтез комбинационной схемы

В соответствии с вариантом дана следующая система ФАЛ:

$$\begin{cases}
F_1(x_3, x_2, x_1, x_0) = \sum (1, 3, 5, 7, 8, 10, 12, 14), \\
F_2(x_3, x_2, x_1, x_0) = \sum (1, 2, 3, 5, 7, 9, 15), \\
F_3(x_3, x_2, x_1, x_0) = \sum (1, 3, 5, 7, 8, 9).
\end{cases} \tag{1}$$

Для данных функций составим таблицу истинности (табл. 1).

Таблица 1. Таблица истинности для системы ФАЛ (1)

$N_{\overline{0}}$	x_3	x_2	x_1	x_0	F_1	F_2	F_3
0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1
2	0	0	1	0	0	1	1
3	0	0	1	1	1	1	1
4	0	1	0	0	0	0	0
5	0	1	0	1	1	1	1
6	0	1	1	0	0	0	0
7	0	1	1	1	1	1	1
8	1	0	0	0	1	0	1
9	1	0	0	1	0	1	1
10	1	0	1	0	1	0	0
11	1	0	1	1	0	0	0
12	1	1	0	0	1	0	0
13	1	1	0	1	0	0	0
14	1	1	1	0	1	0	0
15	1	1	1	1	0	1	0

Произведем минимизацию функций методом диаграмм Вейча; на рис. 1 представлена эталонная диаграмма, которой далее будем пользоваться.

Рис. 1. Эталонная диаграмма Вейча

Рис. 2. Диаграммы Вейча для заданных функций

Произведя минимизацию при помощи диаграмм Вейча (рис. 2), запишем заданные функции в форме МДНФ:

$$\begin{cases} F_1(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee \bar{x}_0 x_3, \\ F_2(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee x_0 x_1 x_2 \vee x_0 \bar{x}_1 \bar{x}_2 \vee x_1 \bar{x}_2 \bar{x}_3, \\ F_3(x_3, x_2, x_1, x_0) = x_0 \bar{x}_3 \vee \bar{x}_1 \bar{x}_2 x_3. \end{cases}$$

2 Описание комбинационной схемы на VHDL