

Propositional Logic.

- If \mathcal{A} is defined for every atomic formula A_i occurring in F, then \mathcal{A} is called **suitable** for F.
- If \mathcal{A} is **suitable** for F, and if $\mathcal{A}(F) = 1$, then we write $\mathcal{A} \models F$. In this case we say \mathcal{A} is a model for F.
- Otherwise we write $\mathcal{A} \neq \mathbf{F}$, and say: under the assignment \mathcal{A} , \mathcal{A} is not a model for \mathbf{F} .

2

Propositional Logic.

<u>Definition</u> (satisfiable/unsatisfiable and valid formula)

- Let F be a formula and let \mathcal{A} be an assignment, i.e. a mapping from a set of $\{A_1, A_2, ...\}$ of F to $\{0, 1\}$.
- A formula F is **satisfiable** if F has <u>at least one model</u>, otherwise F is called **unsatisfiable** or **contradictory**.
- A formula F is called valid (or a tautology) if every suitable assignment for F is a model for F. In this case we write ⊨ F, and otherwise ⊭ F.
- **Theorem:** A formula F is a **tautology** if and only if ¬F is **contradictory (unsatisfiable)**.

•

Propositional Logic. Semantic

Examples:

- $\Box F_1 = A \lor \neg A$
 - F₁ is a valid formula or a tautology
- $\Box F_2 = A \land \neg A$
 - F₂ is a contradiction (unsatisfiable)

Exercises:

- \square $F_3 = A \rightarrow (B \rightarrow A)$ is ???
- \Box $F_4 = A \rightarrow (A \rightarrow B)$ is ???
- ☐ If **F** is **valid**, then ¬**F** is **satisfiable** ???

Propositional Logic. Semantic

Example:

■ Let $F = (\neg A \rightarrow (A \rightarrow B))$. Using truth tables we can verify that:

_	\boldsymbol{A}	\boldsymbol{B}	$\neg A$	$(A \rightarrow B)$	\boldsymbol{F}
	0	0	1	1	1
	0	1	1	1	1
	1	0	0	0	1
	1	1	0	1	1

■ Then F is a **valid** formula or a **tautology**

_

Propositional Logic. The SAT problem.

Note that...

- The truth-table method allows us to test formulas for satisfiability or for validity in an algorithmic way.
- But note that the expense of this algorithm is immense: For a formula containing n atomic formulas, 2ⁿ rows of the truth-table have to be evaluated.
- This exponential behavior regarding the running time of potential algorithms for the satisfiability problem in propositional logic does not seem to be improvable.
- The satisfiability (SAT) problem is NP-complete*!

*the most notable (informal) property of **NP-complete problems** is that **no fast solution** to them is known. That is, the time required to solve the problem using any currently known algorithm increases very quickly as the size of the problem grows.

Propositional Logic. Semantic

Exercises:

- Construct truth-tables for each of the following formulas and indicate if the formula is a tautology.

■ A
$$\leftrightarrow$$
 (B \rightarrow C)
■ (A $\land \neg$ A) \rightarrow B

$$\begin{array}{c|cccc} \mathcal{A}(F) & \mathcal{A}(G) & \mathcal{A}((F \leftrightarrow G)) \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

• Let $\mathcal{A}(A) = 1$, $\mathcal{A}(B) = 0$, $\mathcal{A}(C) = 0$, and $\mathcal{A}(D) = 1$. Verify if the following formula is true or false.

$$\blacksquare$$
 F= C \vee (D \vee (A \wedge B))

Propositional Logic. Semantic

Homework:

Construct truth-tables for each of the following formulas.

$$((A \land B) \land (\neg B \lor C))$$

$$\neg(\neg A \vee \neg(\neg B \vee \neg A))$$

$$(A \leftrightarrow (B \leftrightarrow C))$$

Definition

■ Two formulas **F** and **G** are (semantically/logically) **equivalent** if for every assignment A that is suitable for both F and G, $\mathcal{A}(F) = \mathcal{A}(G)$. Symbolically we denote this by $\mathbf{F} \equiv \mathbf{G}$.

11

Equivalence (cont)

Theorem

hold.

For all formulas F, G, and H, the following equivalences hold.
$$(F \wedge F) \equiv F$$
 (Idempotency)
$$(F \wedge G) \equiv (G \wedge F)$$
 (F \times G) $\equiv (G \wedge F)$ (Commutativity)
$$((F \wedge G) \wedge H) \equiv (F \wedge (G \wedge H))$$
 (Associativity)
$$(F \wedge (F \vee G) \vee H) \equiv (F \vee (G \vee H))$$
 (Associativity)
$$(F \wedge (F \vee G)) \equiv F$$
 (Absorption)
$$(F \wedge (G \vee H)) \equiv ((F \wedge G) \vee (F \wedge H))$$
 (Distributivity)
$$\neg F \equiv F$$
 (Double Negation) 12

Equivalence (cont)

Theorem (cont...)

• For all formulas F, G, and H, the following equivalences hold.

$$\neg (F \land G) \equiv (\neg F \lor \neg G)$$

$$\neg (F \lor G) \equiv (\neg F \land \neg G)$$
 (deMorgan's Laws)

$$(F \lor G) \equiv F$$
, if F is a tautology $(F \land G) \equiv G$, if F is a tautology (Tautology Laws)

$$(F \lor G) \equiv G$$
, if F is unsatisfiable $(F \land G) \equiv F$, if F is unsatisfiable (Unsatisfiability Laws)

13

Equivalence (cont)

Theorem (cont...)

Proof.

All equivalences can be shown easily using the **semantic definition of propositional logi**c. Also, we can verify them using truth tables. As an example we show this for the **first absorption law**.

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \lor G))$	$\mathcal{A}((F \wedge (F \vee G)))$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

The first column and the fourth column coincide. Therefore, it follows:

$$(F \wedge (F \vee G)) \equiv F$$

Equivalence (cont)

Example:

Using the above equivalences and the substitution theorem (ST) we can prove that:

$$((A \lor (B \lor C)) \land (C \lor \neg A)) \equiv ((B \land \neg A) \lor C)$$

because we have:

$$\begin{array}{ll} ((A \lor (B \lor C)) \land (C \lor \neg A)) & \text{Associativity} \\ & \equiv & (((A \lor B) \lor C) \land (C \lor \neg A)) & \text{Commutativity} \\ & \equiv & ((C \lor (A \lor B)) \land (C \lor \neg A)) & \text{Distributivity} \\ & \equiv & (C \lor ((A \lor B) \land \neg A)) & \text{Distributivity} \\ & \equiv & (C \lor (\neg A \land (A \lor B)) & \text{Commutativity} \\ & \equiv & (C \lor ((\neg A \land A) \lor (\neg A \land B)) & \text{Distributivity} \\ & \equiv & (C \lor (\neg A \land B)) & \text{Unsatisfibility Law} \\ & \equiv & (C \lor (B \land \neg A)) & \text{Commutativity} \\ & \equiv & ((B \land \neg A) \lor C) & \text{Commutativity} \end{array}$$

15

Equivalence (cont)

Important remarks:

The associativity law gives us the justification for a certain freedom in writing down formulas. For example, the notation:

$$F = A \wedge B \wedge C \wedge D$$

refers to an arbitrary formula from the following list.

$$(((A \land B) \land C) \land D)$$
$$((A \land B) \land (C \land D))$$
$$((A \land (B \land C)) \land D)$$
$$(A \land ((B \land C) \land D))$$
$$(A \land (B \land (C \land D)))$$

 Since all these formulas are equivalent to each other, from the semantic viewpoint it does not matter which of the formulas is referred to.

и.

Equivalence (cont)

Exercise/Homework:

■ Exclusive disjunction (or exclusive or) essentially means "either one, but not both". The exclusive disjunction can be expressed in terms of the conjunction (^), the disjunction (∨), and the negation (¬) as follows:

$$A \oplus B \equiv (A \vee B) \wedge \neg (A \wedge B)$$

Using the theorem of equivalences and the substitution theorem prove that:

$$A \oplus B \equiv \neg (A \leftrightarrow B)$$

17

Normal Forms

Definition (normal forms):

- A literal is an atomic formula or the negation of an atomic formula.
- A formula F is in **Conjunctive Normal Form** (**CNF**) if it is a conjunction of disjunctions of literals, i.e.

$$F = (\bigwedge_{i=1}^n (\bigvee_{j=1}^{m_i} L_{i,j}))$$
,

where
$$L_{i,j} \in \{A_1, A_2, \ldots\} \cup \{\neg A_1, \neg A_2, \ldots\}$$

- Example:
 - \Box (A $\lor \neg$ C $\lor \neg$ D) \land (\neg B $\lor \neg$ C $\lor \neg$ D) is in CNF

Definition (normal forms):

■ A formula F is in **Disjunctive Normal Form (DNF)** if it is <u>a disjunction of conjunctions</u> of literals, i.e.

$$F = (\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})),$$

where
$$L_{i,j} \in \{A_1,A_2,\ldots\} \cup \{\neg A_1, \neg A_2,\ldots\}$$

- Example:
 - \Box (A $\land \neg D$) \lor (B $\land \neg C \land \neg D$) is in DNF

19

Normal Forms. Reduction

Theorem (Normal Form reduction):

■ For <u>every formula</u> F there is an <u>equivalent</u> formula F₁ in **CNF** and an equivalent formula F₂ in **DNF**.

(see Proof in Schöning's book, Section 1.2)

Normal Forms. Reduction

Algorithm (to transform a formula into equivalent **CNF**):

- Given: a formula F.
 - □ Substitute in F every occurrence of a subformula of the form
 - $(A \rightarrow B)$ by $(\neg A \lor B)$
 - $(A \leftrightarrow B)$ by $((A \land B) \lor (\neg A \land \neg B))$

until no such subformulas occur.

- □ Substitute in F every occurrence of a subformula of the form
 - ¬¬A by A
 - $\blacksquare \neg (A \land B)$ by $(\neg A \lor \neg B)$
 - $\neg (A \lor B)$ by $(\neg A \land \neg B)$

until no such subformulas occur.

- □ Substitute in F every occurrence of a subformula of the form
 - $(A \lor (B \land C))$ by $((A \lor B) \land (A \lor C))$
 - $((A \land B) \lor C)$ by $((A \lor C) \land (B \lor C))$

until no such subformulas occur.

21

Normal Forms. Reduction

Example (to transform a formula into equivalent **CNF**):

- Given a formula $\mathbf{F} = \neg (\neg \mathbf{A} \lor \mathbf{B}) \lor (\mathbf{C} \to \neg \mathbf{D})$
 - ☐ Substitute in F every occurrence of a subformula of the form
 - $(A \rightarrow B)$ by $(\neg A \lor B)$

We obtain $\neg(\neg A \lor B) \lor (\neg C \lor \neg D)$

- □ Substitute in F every occurrence of a subformula of the form
 - ¬¬A by A
 - $\blacksquare \neg (A \lor B)$ by $(\neg A \land \neg B)$

We obtain $(A \land \neg B) \lor (\neg C \lor \neg D)$

- □ Substitute in F every occurrence of a subformula of the form
 - $((A \land B) \lor C)$ by $((A \lor C) \land (B \lor C))$

We obtain $(A \lor \neg C \lor \neg D) \land (\neg B \lor \neg C \lor \neg D)$ in CNF!

Normal Forms. Reduction

Exercise/Homework

• Reduce to **CNF** the formula:

$$F = (\neg A \rightarrow B) \rightarrow (B \rightarrow \neg C)$$