Class 13 Mini Project

AUTHOR

Charlie Rezanka (A15837296)

Reading in Data

```
#L message = false
 library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':
    expand.grid, I, unname
Loading required package: IRanges
Attaching package: 'IRanges'
The following object is masked from 'package:grDevices':
    windows
```

localhost:6415

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedMedians

Loading required package: Biobase

Welcome to Bioconductor

Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

localhost:6415 2/12

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

#metadata
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
#count data
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

Checking Formats

Q. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[,-1]) #use the -1 trick
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0

localhost:6415 3/12

5/23/23, 12:14 PM

0 0 ENSG00000273547 0 0 0 ENSG00000187634 124 123 205 207 212 258

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
zerocounts <- rowSums(countData) == 0</pre>
head(zerocounts)
```

ENSG00000186092 ENSG00000279928 ENSG00000279457 ENSG00000278566 ENSG00000273547

TRUE **TRUE** **FALSE**

TRUE

TRUE

ENSG00000187634

FALSE

```
newcounts <- countData[!zerocounts, ]</pre>
head(newcounts)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(newcounts)

[1] 15975

Running RNAseq

Running DESeq

```
#L message = false
library(DESeq2)
```

```
dds = DESeqDataSetFromMatrix(countData=newcounts,
                              colData=colData,
                              design=~condition)
```

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

localhost:6415 4/12 estimating size factors

```
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
 res <- results(dds, contrast=c("condition", "hoxa1 kd", "control sirna"))</pre>
 res
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 15975 rows and 6 columns
                 baseMean log2FoldChange
                                             1fcSE
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
ENSG00000273748 35.30265
                                0.674387 0.303666
                                                     2.220817 2.63633e-02
ENSG00000278817
                2.42302
                               -0.388988 1.130394 -0.344117 7.30758e-01
ENSG00000278384
                 1.10180
                                0.332991 1.660261
                                                     0.200565 8.41039e-01
ENSG00000276345 73.64496
                               -0.356181 0.207716 -1.714752 8.63908e-02
                               -0.609667 0.141320 -4.314071 1.60276e-05
ENSG00000271254 181.59590
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000273748 4.79091e-02
ENSG00000278817 8.09772e-01
ENSG00000278384 8.92654e-01
ENSG00000276345 1.39762e-01
ENSG00000271254 4.53648e-05
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

localhost:6415 5/12

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

4349 are upregulated, 4396 are down-regulated

Annotate Results

```
library(AnnotationDbi)
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                     "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                    "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                    "GENENAME"
                     "GO"
                                    "GOALL"
                                                    "IPI"
                                                                    "MAP"
[11] "GENETYPE"
                                    "ONTOLOGYALL"
                                                                    "PFAM"
[16] "OMIM"
                     "ONTOLOGY"
                                                    "PATH"
[21] "PMID"
                     "PROSITE"
                                    "REFSEO"
                                                    "SYMBOL"
                                                                    "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

localhost:6415 6/12

^{&#}x27;select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                    baseMean log2FoldChange
                                                1fcSE
                                                             stat
                                                                       pvalue
                   <numeric>
                                  <numeric> <numeric>
                                                        <numeric>
                                                                    <numeric>
ENSG00000279457
                   29.913579
                                  0.1792571 0.3248216
                                                         0.551863 5.81042e-01
ENSG00000187634
                 183.229650
                                  0.4264571 0.1402658
                                                         3.040350 2.36304e-03
ENSG00000188976 1651.188076
                                 -0.6927205 0.0548465 -12.630158 1.43990e-36
                                  0.7297556 0.1318599
                                                         5.534326 3.12428e-08
ENSG00000187961 209.637938
ENSG00000187583
                   47.255123
                                  0.0405765 0.2718928
                                                         0.149237 8.81366e-01
                                  0.5428105 0.5215598
                                                         1.040744 2.97994e-01
ENSG00000187642
                  11.979750
ENSG00000188290 108.922128
                                  2.0570638 0.1969053
                                                       10.446970 1.51282e-25
ENSG00000187608
                 350.716868
                                  0.2573837 0.1027266
                                                         2.505522 1.22271e-02
ENSG00000188157 9128.439422
                                  0.3899088 0.0467163
                                                         8.346304 7.04321e-17
                                  0.7859552 4.0804729
ENSG00000237330
                    0.158192
                                                         0.192614 8.47261e-01
                                  symbol
                                              entrez
                        padi
                                                             name
                   <numeric> <character> <character> <character>
ENSG00000279457 6.86555e-01
                                      NA
                                                   NA
                                                               NA
ENSG00000187634 5.15718e-03
                                  SAMD11
                                              148398
                                                          1p36.33
ENSG00000188976 1.76549e-35
                                   NOC2L
                                                26155
                                                          1p36.33
ENSG00000187961 1.13413e-07
                                  KLHL17
                                              339451
                                                          1p36.33
ENSG00000187583 9.19031e-01
                                 PLEKHN1
                                                84069
                                                          1p36.33
ENSG00000187642 4.03379e-01
                                   PERM1
                                               84808
                                                          1p36.33
ENSG00000188290 1.30538e-24
                                    HES4
                                                57801
                                                          1p36.33
ENSG00000187608 2.37452e-02
                                   ISG15
                                                9636
                                                          1p36.33
ENSG00000188157 4.21963e-16
                                    AGRN
                                              375790
                                                          1p36.33
ENSG00000237330
                                  RNF223
                                              401934
                                                          1p36.33
I will now produce a CSV file for later reference
```

```
res = res[order(res$pvalue),]
write.csv(res, file="myresultsc13proj.csv")
```

Visualize Results

```
plot( res$log2FoldChange, -log(res$padj) )
```

localhost:6415 7/12


```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)")</pre>
```

localhost:6415 8/12

Pathway Analysis

#L message: false
library(pathview)

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

library(gage)

library(gageData)

localhost:6415 9/12

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
# Examine the first 3 pathways
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
            "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
                                  "10941"
                                                                "1549"
                                                                         "1551"
               "1066"
                         "10720"
                                            "151531" "1548"
 [9] "1553"
               "1576"
                         "1577"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
                                            "51733"
                                                                "54575"
               "3614"
                         "3615"
                                  "3704"
                                                      "54490"
                                                                         "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                         "83549"
               "8833"
                         "9"
                                  "978"
[49] "8824"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
                                                                           "159"
 [17] "114"
                "115"
                          "122481" "122622" "124583"
                                                      "132"
                                                                 "158"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
 [33] "2272"
                "22978"
                                   "246721" "25885"
                                                                           "270"
                          "23649"
                                                       "2618"
                                                                 "26289"
                          "272"
                                             "2977"
                                                                 "2983"
                                                                           "2984"
 [41] "271"
                "27115"
                                    "2766"
                                                       "2982"
 [49] "2986"
                "2987"
                          "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
 [57] "353"
                "3614"
                          "3615"
                                   "3704"
                                             "377841"
                                                       "471"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
 [73] "51082"
                "51251"
                          "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                           "5140"
 [81] "5141"
                "5142"
                          "5143"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
                                   "5144"
 [89] "5149"
                "5150"
                          "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
[105] "5424"
                "5425"
                          "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364" "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
                                    "9533"
                                                       "955"
[153] "9061"
                "93034"
                          "953"
                                             "954"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
```

Obtaining entrez gene IDs

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
```

localhost:6415 10/12

```
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792 gage pathway analysis
```

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

```
[1] "greater" "less" "stats"
```

Some of the downregulated pathways

```
head(keggres$less)
```

```
p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
                                       9.424076e-05 -3.951803 9.424076e-05
hsa03030 DNA replication
hsa03013 RNA transport
                                       1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                       3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                       3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                             q.val set.size
                                                                    exp1
                                                        121 8.995727e-06
                                       0.001448312
hsa04110 Cell cycle
hsa03030 DNA replication
                                       0.007586381
                                                         36 9.424076e-05
hsa03013 RNA transport
                                       0.073840037
                                                        144 1.375901e-03
hsa03440 Homologous recombination
                                       0.121861535
                                                         28 3.066756e-03
                                                        102 3.784520e-03
hsa04114 Oocyte meiosis
                                       0.121861535
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                         53 8.961413e-03
```

A simple visualization of our pathway

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

```
'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/charl/OneDrive/Desktop/BIMM 143/Class 13

Info: Writing image file hsa04110.pathview.png

localhost:6415 11/12

Fig. 1. A schematic overview of the cell cycle pathway and associated genes. Green coloration dennotes upregulation, red coloration dennotes down-regulation

localhost:6415