# Vecteurs, Droites Et Plans de l'Espace

# 1. Vecteurs de l'espace

### **Définition**

Un vecteur est défini par une direction + un sens + une norme

### **Vecteur <u>E</u> <u>Déplacement</u>**

M' est l'image du point M par la **translation** de vecteur  $\vec{u}$ 

 $\iff$   $(MM') \stackrel{\rightarrow}{=} \overrightarrow{u}$ .

 $\iff$   $\ll M' = M + \vec{u} \gg$ 

## **Propriétés**



### **Définition**

 $a\vec{u} + b\vec{v} + c\vec{w}$ , avec  $a,b,c \in \mathbb{R}$ , est appelé **combinaison linéaire** des vecteurs  $\vec{u},\vec{v}$  et  $\vec{w}$ 

## 2. Droites et plans de l'espace

### **Droites de l'espace**

- Un vecteur directeur d'une droite d est tout vecteur non nul qui possède la même direction que la droite d
- Deux droites de vecteurs directeur  $\vec{u}$  et  $\vec{v}$  sont parallèles  $\Leftrightarrow \vec{u}$  et  $\vec{v}$  sont colinéaires.
- Soit d une droite passant par A et de vecteur directeur  $\vec{u}$ .  $M \in d \Leftrightarrow \overrightarrow{AM}$  et  $\vec{u}$  sont colinéaires.

### Plans de l'espace

- Deux vecteurs non nuls et non colinéaires déterminent la direction d'un plan.
- Deux plans sont parallèles 
  ⇔ deux vecteurs directeurs de l'un sont combinaisons linéaires des deux vecteurs directeur de l'autre.
- Soit un plan P passant par A et dirigé par deux vecteurs  $\vec{u}$  et  $\vec{v}$  non colinéaires.

$$M \in P \Leftrightarrow \overrightarrow{AM} = x\overrightarrow{u} + y \overrightarrow{v} \text{ avec } x \in \mathbb{R} \text{ et } y \in \mathbb{R}.$$



## **Vecteurs coplanaires**

 $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$  sont coplanaires (peuvent être représentés dans un même plan) si l'un est combinaison linéaire des deux autres.

### En pratique:

- Trois vecteurs avec deux colinéaires sont toujours coplanaires
- Soient  $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$  avec  $\vec{u}$ ,  $\vec{v}$  non colinéaires. Alors  $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$  sont coplanaires  $\iff \exists \ a,b \in \mathbb{R}$ ,  $tq \ \vec{w} = \vec{au} + b\vec{v}$

# **Points coplanaires**

A, B, C, D sont coplanaires  $\Leftrightarrow \overrightarrow{AB}, \overrightarrow{AC}$  et  $\overrightarrow{AD}$  sont coplanaires.

## 3. Bases et repères de l'espace.

#### **Définition**

Une base de l'espace est formée d'un triplet de vecteurs  $(\vec{\imath}, \vec{j}, \vec{k})$ non coplanaires.

### Propriété

Tout vecteur peut s'écrire comme combinaison linéaire de la base:

$$\forall \vec{u} \ , \ \ni x, y, z \in \mathbb{R} \ tq : \vec{u} = x \vec{i} + y \vec{j} + z \vec{k}$$

x, y, z sont les cordonnées de  $\vec{u}$  dans cette base

Deux vecteurs sont colinéaires ⇔ leurs cordonnées sont proportionnelles

#### **Définition**

Un **repère de l'espace** est formé d'un point origine 0 et d'une base  $(\vec{i}, \vec{j}, \vec{k})$ . On note  $(0, \vec{i}, \vec{j}, \vec{k})$ .

## Propriété

Pour tout point M de l'espace il existe un unique triplet (x, y, z)tel que  $\overrightarrow{OM} = x\vec{i} + y\vec{j} + z\vec{k}$ .

(x,y,z) sont les cordonnées de M dans le repère  $(0,i^{\dagger},j^{\dagger},k^{\dagger})$ .

Si 
$$A = \begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$$
 et  $B = \begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$  alors le milieu du segment  $[AB]$  a pour cordonnées  $\begin{pmatrix} \frac{x_A + x_B}{2} \\ \frac{y_A + y_B}{2} \\ \frac{z_A + z_B}{2} \end{pmatrix}$ 

cordonnées 
$$\begin{pmatrix} \frac{x_A + x_B}{2} \\ \frac{y_A + y_B}{2} \\ \frac{z_A + z_B}{2} \end{pmatrix}$$

## 4. Positions relatives de droites et de plans

- La direction d'une droite est définie par son vecteur directeur
- La direction d'un plan est définie par deux vecteurs directeurs non colinéaires



## **Attention:**

- Dans l'espace, deux droites peuvent ne pas se toucher sans forcément être parallèles. Elles sont dans ce cas non coplanaires.
- Deux droites peuvent appartenir a deux plans parallèles sans qu'elles soient parallèles.
- Deux droites peuvent appartenir a deux plans sécants tout en étant parallèles.

# Théorème du toit

Soient P et P' deux plans. Soient d une droite  $\in$  P et d^' une droite  $\in$  P' tq d // d'Si P et P' sont sécants en une droite  $\Delta$ Alors  $\Delta$  // d // d'



# **METHODES**

## Exprimer un vecteur comme combinaison linéaire

### On utilise:

- 1. La relation de Chasles
- 2. La règle du parallélogramme



$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$$

3. La propriété caractérisant un milieu :



$$\forall \ le \ point \ M, \qquad \overrightarrow{MI} = \frac{1}{2} \left( \overrightarrow{MA} + \overrightarrow{MB} \right)$$

### 4. Théorème des milieux :



$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{BC}$$

## Reconnaitre géométriquement une base de l'espace

Il faut repérer 3 vecteurs non coplanaires

### Montrer que A, B, C sont alignés

On montre que  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  sont colinéaires

$$\iff \overrightarrow{AB} = k\overrightarrow{AC}$$

⇔ les cordonnés sont proportionnelles.

# Montrer l'appartenance d'un point à un plan

Soit un plan  $P(A, \vec{u}, \vec{v})$ 

$$M \in P \iff \exists a, b \ tq \ \overrightarrow{AM} = a\overrightarrow{u} + b\overrightarrow{v}$$

Pour ça, on résout un système d'équation en a et en b.

S'il y'a des solutions alors  $M \in P$ 

### Montrer que $\overrightarrow{w}$ est dans la direction de D ou de P

- À la direction d'une droite d, on montre que  $\vec{w}$  est colinéaire à un vecteur directeur de la droite d
- À la direction d'un plan P, on montre que  $\overrightarrow{w}$  s'écrit comme combinaison linéaire de deux vecteurs directeurs du plan P

### Montrer que trois vecteurs sont coplanaires

On démontre que l'un peut s'écrire comme combinaison linéaire des deux autres qui sont a priori non-colinéaires.

## Montrer que trois vecteurs sont libres

On démontre que

$$a\vec{u} + b\vec{v} + c\vec{w} = 0 \Leftrightarrow a = 0, b = 0, et c = 0$$

### Montrer que quatre points sont coplanaires

On démontre que trois vecteurs formés par les <u>quatre</u> points sont coplanaires.

## Montrer qu'une droite est incluse dans un plan P

- Si la droite est donnée par deux points A et B, il suffit de montrer que les deux points appartiennent à P
- Si la droite est donnée par un point A et un vecteur directeur ū, il suffit de montrer que A ∈ P et que ū s'écrit comme combinaison linéaire de deux vecteurs directeurs de P (ū est dans la direction de P)

### Montrer que deux droites sont parallèles

Il suffit de montrer que leurs vecteurs directeurs sont colinéaires (coordonnées proportionnelles)

## Montrer que deux plans sont parallèles

Il suffit de montrer qu'un couple de vecteurs directeurs de  $P_1$  peut chacun s'écrire comme combinaison linéaire de deux vecteurs directeurs de  $P_2$ 

## Montrer qu'une droite d est parallèle à un plan P

Il suffit de montrer qu'un vecteur directeur de d peut s'écrire comme combinaison linéaire de deux vecteurs directeurs de P.