Optimiza!ción

Resolución tipo para grafo no dirigido Actividades del tema 5

En este documento, explicaremos de forma sencilla las claves de cómo codificar un grafo no dirigido. Resolveremos: conjunto de adyacentes, grados, matriz de incidencia vértice-arista, matriz de adyacencia y la matriz de costes.

Usaremos un ejemplo para ilustrar cada tipo, partiendo de su expresión gráfica:

Se trata de un grafo no dirigido de de orden 6, con 7 aristas, no multigrafo y con un bucle en el nodo 3.

Adyacentes del nodo i, son aquellos nodos j para los que existe la arista, (i, j), esto es, nodos adyacentes o nodos conectados.

Las aristas son pares no ordenados, con lo que (i, j) = (j, i), lo que les diferencia de los grafos dirigidos en donde el orden sí es importante. En ese caso, "ser adyacente" es una propiedad simétrica, y por tanto, si i es adyacente a j, entonces j es adyacente a i. Por tanto, tenemos

$$\Gamma_1 = \{4, 6\}$$

$$\Gamma_2 = \{3\}$$

$$\Gamma_3 = \{2, 3\}$$

$$\Gamma_4 = \{5, 1, 6\}$$

$$\Gamma_5 = \{4, 6\}$$

$$\Gamma_6 = \{1, 5, 4\}$$

Una vez construidos los conjuntos de adyacentes, el cómputo del grado, es sencillo: $\delta(1) = 2$, $\delta(2) = 1$, $\delta(3) = 2$, $\delta(4) = 3$, $\delta(5) = 2$, $\delta(6) = 3$ que suman 13, esto es, el doble del número de aristas menos el del bucles, 2m-b.

Puedes comprobar que es una codificación completa, es decir, a partir de los adyacentes puedes dibujar el grafo, aunque de una forma redundante: la arista (i, j), con i y j distintos, aparece dos veces en los adyacentes, i como adyacente a j, y j como adyacente a i.

Para construir la **matriz de incidencia vértice-arista** hay que listar las aristas, puesto que cada columna de la matriz va a representar una. Una forma de hacerlo sería por orden lexicográfico, y así, las columnas representarían los arcos en este orden único:

(1, 4); (1, 6); (2, 3); (3, 3); (4, 5); (4, 6); (5, 6)

Date cuenta que de las dos formas posibles de la arista (1, 2), (1, 2) ó (2, 1) escogemos siempre la ordenada, esto es, (1, 2).

Las filas serían los nodos, con lo que tenemos **la matriz de incidencia vértice-arista A** siguiente:

	(1, 4)	(1, 6)	(2, 3)	(3, 3)	(4, 5)	(4, 6)	(5, 6)
1	1	1	0	0	0	0	0
2	0	0	1	0	0	0	0
3	0	0	1	1	0	0	0
4	1	0	0	0	1	1	0
5	0	0	0	0	1	0	1
6	0	1	0	0	0	1	1

Para construir la matriz, hemos tenido en cuenta:

- en cada columna, de cabecera (i, j), situamos un 1 en las filas i y j (si es un bucle (i, i), sólo un 1 en la fila i.
- el resto son 0.
- la suma por columnas es 2, excepto en los bucles, que suma 1.
- por filas, la suma es el grado.

La **matriz de adyacencia** es, sin embargo, una matriz cuadrada de orden n, el orden del grafo. En este caso, referenciamos cada posición de la matriz según su fila y columna, y por tanto, el coeficiente de la posición i,j-ésima es la casilla de la fila i y columna j. La codificación es sencilla: recorremos las aristas y para la arista (i, j) situamos un 1 en la posición i,j-ésima y otro 1 en la posición j,i-ésima; cero en el resto. Así, construimos **la matriz de adyacencia A** siguiente:

	1	2	3	4	5	6
1	0	0	0	1	0	1
2	0	0	1	0	0	0
3	0	1	1	0	0	0
4	1	0	0	0	1	1
5	0	0	0	1	0	1
6	1	0	0	1	1	0

Revisando la matriz de adyacencia, tenemos cosas curiosas:

- como las aristas son una propiedad simétrica, la matriz de adyacencia en un grafo no dirigido es simétrica respecto a la diagonal principal: coincide siempre el valor de las posiciones i,j-ésima con la j,i-ésima.
- los bucles se sitúan en la diagonal principal (la posición 3, 3, es la del bucle en 3).

Finalmente, la **matriz de costes** sería una matriz cuadrada de orden n, y de forma similar a la matriz de adyacencia, identificamos las posiciones i,j-ésima y j,i-ésima de la arista (i, j), pero en esta ocasión, situamos el peso o coste de la arista, y en el resto, ya que no hay conexión, su coste es ∞ .

Así, construimos la matriz de costes W siguiente:

	1	2	3	4	5	6
1	∞	∞	∞	2,1	∞	1,1
2	∞	∞	0,9	∞	∞	∞
3	∞	0,9	1,1	∞	∞	∞
4	2,1	∞	∞	∞	1,9	2,1
5	∞	∞	∞	1,9	∞	0,1
6	1,1	∞	∞	2,1	0,1	∞