PLAN

SIB

PLAN

SIB

1. Definition

2. Content

3. Task Distribution

4. Schedule

SIB KEYBOARD

PLAN SIB

1. Definition

2. Content

3. Task Distribution

4. Schedule

전반적인 개요

MediaPipe

Palm Detection Model

Figure 2: Palm detector model architecture.

Hand Landmark Model

Figure 3: Architecture of our hand landmark model. The model has three outputs sharing a feature extractor. Each head is trained by correspondent datasets marked in the same color. See Section 2.2 for more detail.

Dataset

Dataset

pynput

Keyboard input data

Time	L0-x	~	L21-z	Lscore	R0-x	~	R21-z	Rscore
1	0.1987		-0.0031	0.555	0.2234		0.0036	0.763
2	0.0983		0.0038	0.667	0.1055		-0.0021	0.892
3	0.0083		-0.0089	0.223	0.3450		0.0109	0.675
4	0.0072		-0.0177	0.099	0.4245		0.0002	0.558
5	0.4440		0.0084	0.075	0.4424		-0.0342	0.892

а	?	Z
0		1
0		0
1		0
0		1
0		0
	0 0 1 0	0 0 1 0

Dataset

Preprocessing

Data cleaning

Data integration

Data reduction

Data transformation

Modeling

LSTM & GRU

• LSTM : cell state로 필요 정보만 활용 가능(RNN의 한 종류)

• GRU : gate controller로 forget과 input 제어(LSTM 간소화버전)

Softmax

- 다중 클래스 분류로 3개 이상의 선택지에서 1개를 고르는 방식
- SIB 키보드로 입력 받는 데이터들은 기본 26개 이상이 될 것임
- 즉, label이 다중인 상태에서 전체 확률 1로 만들고
- 그중 가장 높은 확률의 결과를 키보드의 입력으로 사용할 것임
- 예) ASDF의 label을 뒀을 때 D를 입력한 경우 (softmax사용)

클래스	확률
Α	0.002
S	0.04
D	0.95
F	0.008

• D의 확률이 제일 크게 나오므로 선택

Future considerations

- Softmax : 타이핑을 할 때 동시에 여러 입력을 받는 경우 정답값이 2개 이상이 나와야 함.
 - =>이점을 고려해 다른 함수를 찾아보거나 직접 맞는 함수를 만들어야 함.
- 키보드 타이핑 시 입력하지 않지만 같이 움직이는 손가락에 대한 처리
- 다양한 타이핑 기법을 입력 받을 시 잘 동작하게 처리

PLAN SIB

- 1. Definition
 - 2. Content

3. Task Distribution

4. Schedule

MediaPipe 코드 분석

자체 데이터 셋 생성 프로그램

(한 손, ASDF) 모델 생성

(한 손) 구분 모델 생성

(양손) 구분 모델 생성

(다중 입력) 모델 생성

유사 모델 조사 및 정리

데이터 셋 데이터 정의

자체 데이터 셋에 맞는 모델 파악

정확도 검증 및 향상

정확도 검증 및 향상

정확도 검증 및 향상

PLAN SIB

- 1. Definition
- 2. Content
- 3. Task Distribution

4. Schedule

Semi Monthly Schedule

	주제	내용	1	2	3	4	5	6	7	8	9	10	11
할 일	데이터 셋	mediapipe 이해 및 손 데이터 셋 정의											
(시간 순)		mediapipe을 이용하여 손 데이터 셋 생성 및 정확도 향상											
		손 데이터 셋 생성 프로그램 완성											
	인공지능	인공지능과 인공지능 모델 이해											
	(키보드 입력)	인공지능 모델 생성 및 정확도 향상 (ASDF 키)											
		인공지능 모델 생성 및 정확도 향상 (한손)											
		인공지능 모델 생성 및 정확도 향상 (양손)											
		인공지능 모델 완성											
	일반화	다양한 환경에서 시도 및 취약점 분석, 개선											
		다양한 타법에서 시도 및 취약점 분석, 개선											
	완성	보고서 정리											
		최종 완성											

Meeting Schedule

Date	Method	Торіс
2020.12.14	Kakaotalk	졸업프로젝트 팀 단톡방 생성
2020.12.23	Kakaotalk	프로그래밍 및 인공지능 분야의 배경지식 수준 공유 첫 미팅 일정 계획
2020.12.28	Google Meet	각자 조사해온 프로젝트 아이디어 및 주제 공유 python 문법, numpy, pandas, matplotlib 사용법, colab 사용법 실습 스터디 tensorflow, pytorch 공부 자료 공유
2021.1.19	Google Meet	팀명 및 팀장 결정 프로젝트 아이디어 구체화 및 자료 조사
2021.1.27	Offline	프로젝트 주제에 관한 교수님과의 상담 git, github 사용법 실습 스터디 mediapipe 안드로이드 데모 앱 테스트
2021.2.1	Google Meet	california housing 데이터셋 집값 예측 회귀 문제 colab 실습 스터디 - 기계학습, 딥러닝, 인공지능의 개념 - 지도학습, 비지도학습, 강화학습과 생성모델의 개념 - 데이터 전처리, 이상값 분석 등 EDA 실습 - pycaret의 automl 기능을 활용한 앙상블 모델 학습 실습
2021.2.3	Google Meet	mnist 데이터셋 숫자 이미지 분류 문제 kaggle 실습 스터디 - 퍼셉트론, 활성화 함수 등의 개념과 다층 퍼셉트론 모델의 구조 - 오차 함수, 경사하강법, 오차역전파 등의 개념 - 과적합 문제와 검증 데이터셋이 필요한 이유 - tensorflow-keras 를 활용한 다층 퍼셉트론 모델 작성 및 학습 실습 - batch normalization, dropout을 적용하여 과적합 완화 실습 각자 3b1b Neural networks 영상 4개 각자 시청하고 이해하기

Meeting Schedule

2021.2.10	Google Meet	mnist 데이터셋 숫자 이미지 분류 문제 kaggle 실습 스터디 - 다층 퍼셉트론 모델의 한계와 합성곱 신경망의 구조 - convolution, pooling의 연산법과 이를 사용하는 이유 - tensorflow-keras를 활용한 합성곱 신경망 모델 작성 및 학습 실습 각자 cifar10 데이터셋 사물 이미지 분류 문제 실습 해보기
2021.2.21	Google Meet	SIB팀 github organization 및 slack workspace 생성 전체 프로젝트 결과물 완성을 위한 단계적 목표 구상 프로젝트 주제의 실현 가능성과 구현 난이도 검토 현재 주제의 완성이 어렵다고 판단되었을 때를 위한 후보 주제 제안
2021.2.28	Google Meet	프로젝트를 위해 각자 공부한 것을 공유 - 현재 주제에 필요할 것이라고 예상되는 rnn 모델의 구조와 수식 학습 - 후보 주제의 아이디어를 구체화하기 위한 관련 논문 공유
2021.3.2	Offline	mediapipe 실습을 위한 환경 설정 - 개인 노트북 또는 데스크탑에 ubuntu 듀얼 부팅 설치 - anaconda3 설치 및 기본 사용법 학습 - mediapipe 설치를 위한 anaconda 가상 환경 생성 - mediapipe hands landmark 모델 예제 코드 테스트
2021.3.18	Offline	학습 dataset 생성을 위한 라이브러리 조사 (도훈, 주경) - 키보드 입력 감지를 위한 pynput 라이브러리의 테스트 코드 작성 - mediapipe 및 pynput 예제 코드를 정리하여 SIB repository에 업로드 프로젝트 주제 정의 및 세부 계획을 위한 ppt 자료 작성 (대헌, 현상)
2021.3.28	Google Meet	과제 계획 실현 방안 검증 및 다른 대안 모색
2021.3.30	Offline	과제 계획에 대한 실현가능성 토의 및 확정 pynput 예제 코드를 다시 보며 활용할 점들을 학습 캠에 손이 보이면 손가락의 위치값을 받아오는 코드 작성
2021.3.31	Google Meet	mediapipe-example에서 손 데이터 분석 및 데이터 셋 구조 수립 (대헌, 도훈) 전체 계획의 틀을 잡고, 세부 계획과 공부할 자료들을 정리함 (주경, 현상)

Meeting Schedule

2021.4.4	Google Meet	계획서 작성 후 진행기간 및 방향 정리 손 데이터셋 log를 만드는 프로그램 작성 (대헌, 도훈) 비슷한 lip-reading의 예시를 보며 공부함(주경, 현상)
2021.5.2	Google Meet	복습 및 다양한 모델 확인(대헌, 도훈, 현상, 주경)
2021.5.4	Offline	PPT 제작 및 문서 정리 (대헌, 주경, 현상, 도헌)
2021.5.7	Offline	안상태교수님 PPT 미팅 IT1호관 508호(도훈,대헌,주경,현상)
2021.5.9	Google Meet	5/12일 PPT 발표 준비 미디어파이프 및 데이터셋(도훈, 대헌) 데이터셋 전처리 및 모델정리(주경, 현상)
2021.5.11	Offline	5/12일 PPT 발표 정리하고 대본 쓰기, 웹캠 및 스텐드 구매(도훈,대헌,주경,현상)

Do you have any Question?

Thank you!