Solution to Assignment 1

Due via canvas Feb 17th

Thanks to Brandon Carter

1. (4 pts) Consider a sequence of iid random variables $\{X_n\}$ such that $X_i \sim Beta(\theta, 1)$, where $\theta > 0$. Let \bar{X}_n denote the sample mean. The method of moments estimator of θ is $\hat{\theta}_n = \bar{X}_n/(1-\bar{X}_n)$. Derive the asymptotic distribution of $\sqrt{n}(\hat{\theta}_n - \theta)$.

Solution.

$$\sqrt{n}(\hat{\theta} - \theta) = \sqrt{n} \left(\frac{\bar{X}_n}{1 - \bar{X}_n} - \theta \right)$$

$$= \sqrt{n} \left(\frac{\bar{X}_n - (1 - \bar{X}_n)\theta}{1 - \bar{X}_n} \right)$$

$$= \frac{1}{1 - \bar{X}_n} \sqrt{n} \left(\bar{X}_n(\theta + 1) - \theta \right)$$

$$= \frac{\theta + 1}{1 - \bar{X}_n} \sqrt{n} \left(\bar{X}_n - \frac{\theta}{\theta + 1} \right)$$

The mean of a $Beta(\theta,1)$ is $\frac{\theta}{\theta+1}$, from the weak law of large numbers (WLLN) we know that $\bar{X}_n \stackrel{p}{\to} \frac{\theta}{\theta+1}$.

By the CLT we have $\sqrt{n}\left(\bar{X}_n - \frac{\theta}{\theta+1}\right) \stackrel{d}{\to} N(0, \sigma^2)$, where $\sigma^2 = \frac{\theta}{(\theta+1)^2(\theta+2)}$.

Using the continuous mapping theorem we can show $\frac{\theta+1}{1-\tilde{X}_n} \stackrel{p}{\to} \frac{\theta+1}{1-\frac{\theta}{\theta+1}} = (\theta+1)^2$. This is a constant, which allows us to use Slutsky's theorem and conclude:

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} N(0, \sigma^2(\theta + 1)^4) = N\left(0, \frac{\theta(\theta + 1)^2}{\theta + 2}\right)$$

2. We will do some examples of convergence in distribution and convergence in probability here.

1

(a) (1 pt) Let
$$X_n \sim N(0, 1/n)$$
. Does $X_n \stackrel{d}{\rightarrow} 0$?

Solution. Yes, first we show that X_n converges in probability to 0.

$$\lim_{n \to \infty} \Pr(|X_n - 0| > \epsilon) = \lim_{n \to \infty} \Pr(|X_n|^2 > \epsilon^2)$$

$$\leq \lim_{n \to \infty} \frac{\operatorname{var}(X_n)}{\epsilon^2}$$

$$= \lim_{n \to \infty} \frac{1}{n\epsilon^2}$$

$$= 0$$

Thus $X_n \stackrel{p}{\to} 0$ which implies that $X_n \stackrel{d}{\to} 0$.

(b) (3pts) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 - 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, infty)$ is a constant. For what values of α , will you have $X_n \stackrel{q.m}{\to} 0$? For what values will you have $X_n \stackrel{p}{\to} 0$? Solution.

Convergence in quadratic mean:

$$E[|X_n|^2] = (n^{\alpha})^2 \frac{1}{n}$$
$$= \frac{n^{2\alpha}}{n}$$

The above will converge to zero if $2\alpha < 1$, or $\alpha < \frac{1}{2}$.

Convergence in Probability:

For $\epsilon \geq n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = 0$. For $\epsilon < n^{\alpha}$ we have $\Pr(|X_n| > \epsilon) = \frac{1}{n}$. This probability converges to zero for all values of α .

3. (1+1+1+1) If $X_n \stackrel{d}{\to} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \to E[g(X)]$?

(a)
$$g(x) = 1(x \in (0, 10))$$

Solution. It is not necessarily true that $E[g(X_n)] \to E[g(X)]$ because there is a discontinuity in g at 0 and 10. Take the following counter example:

Let $X_n = X + \frac{1}{n}$. It is simple to show that $X_n \stackrel{p}{\to} X$, thus $X_n \stackrel{d}{\to} X$.

$$\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = \lim_{n \to \infty} \Pr(|X + \frac{1}{n} - X| > \epsilon) = \lim_{n \to \infty} \Pr(\frac{1}{n} > \epsilon) = 0$$

Now we need to show that $E[g(X_n)] \not\to E[g(X)]$. We pick a convenient λ to show that the result doesn't hold. For simplicity let $\lambda \to 0$. Thus $E[g(X)] = \Pr(X \in (0,10)) = 0$ as $\lambda \to 0$, however

$$E[g(X_n)] = \Pr(X_n \in (0, 10)) = 1$$

as $\lambda \to 0$, thus $E[g(X_n)] \not\to E[g(X)]$.

- (b) $g(x) = e^{-x^2}$ Solution. Yes, from the Portmanteau Theorem it is true that $E[g(X_n)] \to E[g(X)]$ because g(x) is bounded by 0 and 1 and continuous on the real line.
- (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.]Solution. Yes it is true that $E[g(X_n)] \to E[g(X)]$. First the function g(x) is bounded as it only takes on the values (-1,0,1). Second the discontinuities only occur when $\cos(x) = 0$ which can be defined by the set $A = \{\pi(\frac{1}{2} + n)\}_{n=0}^{\infty}$. We define $C(g) = \mathbb{R} - A$ to be the set of values on which g(x) is continuous. Since X only takes on integer values $\Pr(X \in C(g) = 1)$, thus by the Portmanteau theorem $E[g(X_n)] \to E[g(X)]$.
- (d) g(x) = x

Solution. Since g(x) is not bounded, it is not necessarily true that $E[g(X_n)] \to E[g(X)]$. Take the following counter example: Let

$$= \begin{cases} X & \text{w.pr. } \frac{n-1}{n} \\ n & \text{w.pr. } \frac{1}{n} \end{cases}$$
 (1)

Clearly $X_n \stackrel{d}{\to} X$, however

$$\lim_{n \to \infty} E[g(X_n)] = \lim_{n \to \infty} E[X_n]$$

$$= \lim_{n \to \infty} (\frac{1}{n}n + E[X]\frac{n-1}{n})$$

$$= 1 + E[X]$$

$$\neq E[X]$$

Therefore $E[g(X_n)] \not\to E[g(X)]$.

4. (4 pts) Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$. If $\exists \delta > 0$ s.t. as $n \to \infty$,

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{\pi}^{2+\delta}} \to 0,$$

then $\sum_i X_i/s_n$ converges weakly to the standard normal.

Proof. We want to show that

$$\frac{\sum_{i} E|X_{i}|^{2+\delta}}{s_{n}^{2+\delta}}$$

is an upper bound for the Lindeberg condition. If the above condition converges to 0 as $n \to \infty$ then the Lindeberg must also be satisfied and thus $\sum_i X_i/s_n \stackrel{d}{\to} N(0,1)$.

$$\frac{1}{s_n^2} \sum_{i=1}^n E[|X_i|^2 1(|X_i| \ge \epsilon s_n)] = \frac{1}{s_n^2} \sum_{i=1}^n E\left[|X_i|^2 1(|X_i|^\delta \ge \epsilon^\delta s_n^\delta)\right]
\le \frac{1}{s_n^2} \sum_{i=1}^n E\left[|X_i|^2 \frac{|X_i|^\delta}{\epsilon^\delta s_n^\delta}\right]
= \frac{1}{\epsilon^\delta} \frac{\sum_{i=1}^n E|X_i|^{2+\delta}}{s_n^{2+\delta}}$$

We used the fact that for a positive number X,

$$1(X \ge \epsilon) \le X/\epsilon$$
.

The constant $\frac{1}{\epsilon^{\delta}}$ will not affect the convergence on the right hand side. If

$$\frac{\sum_{i=1}^{n} E|X_i|^{2+\delta}}{s_n^{2+\delta}} \to 0$$

as $n \to \infty$, then

$$0 \le \lim_{n \to \infty} \frac{1}{s_n^2} \sum_{i=1}^n E[|X_i|^2 1(|X_i| \ge \epsilon s_n)] \le 0$$

Which proves that the Lindeberg condition is also met and thus $\sum_i X_i/s_n \stackrel{d}{\to} N(0,1)$.

- 5. (2+2) Recall the converse of the Lindeberg Feller theorem. We will gather some intuition about that here. Let X_1, \ldots, X_n be independent r.v's with mean zero and variance $\sigma_i^2 := E[X_i^2]$ and $s_n^2 = \sum_i \sigma_i^2$.
 - (a) If $\max_i \sigma_i^2/s_n^2$ does not converge to zero as $n \to \infty$, then the Lindeberg condition does not hold.

Proof. We shall prove the above statement by proving the contraposition, that is if the Lindeberg condition holds, then $\max_i \sigma_i^2/s_n^2 \to 0$.

$$\begin{split} \frac{\sigma_i^2}{s_n^2} &= \frac{1}{s_n^2} E|X_i|^2 \\ &= \frac{1}{s_n^2} E[|X_i|^2 \mathbf{1}(|X_i| \ge \epsilon s_n)] + \frac{1}{s_n^2} E[|X_i|^2 \mathbf{1}(|X_i| < \epsilon s_n)] \\ &\le \frac{1}{s_n^2} E[|X_i|^2 \mathbf{1}(|X_i| \ge \epsilon s_n)] + \frac{1}{s_n^2} E[|s_n \epsilon|^2 \mathbf{1}(|X_i| < \epsilon s_n)] \\ &\le \frac{1}{s_n^2} E[|X_i|^2 \mathbf{1}(|X_i| \ge \epsilon s_n)] + \epsilon^2 \end{split}$$

 $\lim_{n\to\infty} \frac{1}{s_n^2} E[|X_i|^2 \mathbb{1}(|X_i| \ge \epsilon s_n)] + \epsilon^2 = \epsilon^2, \text{ by the Lindeberg condition.}$

So, for all $\epsilon > 0$, we have

$$\frac{1}{s_n^2} E[\sum_i |X_i|^2 \mathbb{1}(|X_i| \ge \epsilon s_n)] \ge \max_i \frac{\sigma_i^2}{s_n^2} \ge 0$$

So in order to have the Lindeberg condition hold, one must have $\max_i \frac{\sigma_i^2}{s_n^2} \to 0$.

4

(b) Construct an example where the above is true, but still we have $\sum_i X_i/s_n$ converges weakly to N(0,1). This shows that the Lindeberg condition is not necessary. You can show this by showing that the moment generating function converges to that of a standard normal.

Solution.

Let $X \sim N(0, \sigma_i^2)$ where $\sigma_i^2 = 2^{1-i}$. Let $s_n^2 = \sum_{i=1}^n \sigma_i^2$ Thus we have:

$$\max_{j} \frac{\sigma_{j}^{2}}{s_{n}} = \frac{1}{\sum_{i=1}^{n} 2^{1-i}} = \frac{1}{\sum_{i=1}^{n} 2^{1-i}} \to \frac{1}{2}$$

Therefore $\max_j \frac{\sigma_j^2}{s_n^2} \not\to 0$, however we know that

$$Z_n = \sum_i X_i \sim N(0, \sum_i \sigma_i^2) \stackrel{d}{\to} N(0, 1/2)$$

Thus using the continuous mapping theorem and Slutsky's theorem we get that

$$\sqrt{s_n^2} \xrightarrow{p} \frac{1}{\sqrt{2}}, \quad \frac{Z_n}{s_n} \xrightarrow{d} N(0,1)$$