

Data Science Challenge

Margonis Phevos – Trantalidis Giannis

June 10, 2024

Contents

- 1. Problem Definition
- 2. Exploratory Analysis
- 3. Data Cleaning
- 4. Feature Extraction
- 5. Models
- 6. Results
- 7. Failed Experiments

Introduction

Problem Definition

- Web pages
- Connected in a directed graph
- Have neighbors
- Have domain names
- Have subpage urls
- Have texts
- Single-label node (page) classification

Exploratory Analysis

Exploratory Analysis

• Total nodes: > 65.000

• Labeled nodes: > 1.800

• Unlabeled test: < 700

Label Distribution

Train Set:

Test Set:

Labels follow the same distribuion in domain with and without text

Node Connectivity

Number of incoming nodes (in degree)

Dangling Nodes

Train Set:

Test Set:

In degree is more important due to 'message passing'

Page Content

How many pages have text available?

Length of texts

Data Cleaning

Clean Texts

- 1. Clean page contents
- 2. Extract domain names
- 3. Extract urls from pages
- 4. Post-process URLs
 - a. Unigram tokenization
 - b. Transliteration
- 5. Truncate texts to 512 words

Feature Extraction

1.Greek-BERT *for* Text Representations

- 1. Train-Validation split texts
- 2. Finetune for 3 epochs
- 3. Combine texts and urls
- 4. Extract CLS

2. Deep Walk

- Series of short random walks = Sentences
- 50 random walks from each node
- Walk length 70
- When visiting a node we extend the sentence by selecting randomly 4
 of its neighbors and continue the walk from 1 of the 4 neighbors
- Pass Sentences to Word2Vec to obtain 130-dimensional node embeddings

Models

- 4 GAT models
- GAT: neural network that operates on graph
- GAT Input Features: Each node in the graph has a feature vector
- Nodes aggregate the features of their neighbors
- For each layer, output feature of each node is a weighted sum of the linear transformation of its neighbors' features, using the normalized attention coefficients as weights
- Attention: Messages from some neighbors may be more important than messages from others
- Give an attention coefficient to each neighbor, indicating the importance of that neighbor's features (using a learnable weight vector)
- Attention score for each pair of connected nodes normalized across each node's neighborhood using Softmax

Multi-head attention (3 heads)

GAT 1 Configuration

- Input Features:
 - BERT text CLS embeddings
- Architecture:
 - o 2 Layers:
 - Layer 1:
 - 13-dimensional output per head.
 - 4 heads concatenated to form a 52-dimensional output vector for each node.
 - Layer 2:
 - Produces 9-dimensional output class probabilities.
 - Uses a single head.

GAT 2 Configuration w/ Skip Connections

- Input Features:
 - BERT text CLS embeddings
- Architecture:
 - 2 Layers:
 - Both Layers:
 - 25-dimensional outputs per head.
 - 2 heads concatenated, resulting in a
 50-dimensional output vector from each layer.
 - Output:
 - Outputs from the two layers are concatenated to form a 100-dimensional vector.
 - This 100-dimensional vector is passed to an MLP to compute probabilities for 9 classes.

GAT 3 Configuration w/ Skip Connections

- Input Features:
 - Deep Walk embeddings
- Architecture:
 - o 2 Layers:
 - Both Layers:
 - 27-dimensional outputs per head.
 - 4 heads concatenated, resulting in a 108-dimensional output vector from each layer.

Output:

- Outputs from the two layers are concatenated to form a 216-dimensional vector.
- This vector is passed to an MLP to compute probabilities for 9 classes.

GAT 4 Configuration w/ Skip Connections

- Input Features (concatanated):
 - BERT text CLS embeddings
 - Deep Walk embeddings
- Architecture:
 - o 2 Layers:
 - Both Layers:
 - 16-dimensional outputs per head.
 - 2 heads concatenated, resulting in a 32-dimensional output vector from each layer.
 - Output:
 - Outputs from the two layers are concatenated to form a 64-dimensional vector.
 - This vector is passed to an MLP to compute probabilities for 9 classes.

- Skip Connections: combine layer outputs, capturing both local and global information - richer features
 - Hyperparameter tuning with optuna
 - Learn parameters with

 Backpropagation Adam optimizer
- CrossEntropy Loss

Final Model Architecture

- Voting first 3 models with equal weights
- Final Voting Submission:
 70% first Voting & 30%
 model 4

Results

Model	Validation Loss	Public Loss	Private Loss
CLS 1 GAT	0.7931	0.8343	0.8439
CLS 2 GAT_concat	0.7703	-	<u> </u>
WALK GAT_concat	0.8067	170	ā
CLS+WALK GAT_concat	0.75	0.7848	0.7631
First layer voting	0.69	0.6693	0.7255
Final Voting-submission	1	0.6691	0.7059

Failed Experiments

Experiments

- 1. GCNs
- 2. Neighbor-Loader with GraphSage
- Vectorizers: Count/TF-IDF
- 4. Multilingual BERT
- 5. Node2Vec
- 6. GAE / VGAE
- 7. Link-Prediction

References

- 1. Chalamandaris, A., Protopapas, A., Tsiakoulis, P., & Raptis, S. (n.d.). *All Greek to me! An automatic Greeklish to Greek transliteration system*. Institute for Language and Speech Processing. Epidavrou & Artemidos 6, 15125 Maroussi, Greece.
- 2. Koutsikakis, J., Chalkidis, I., Malakasiotis, P., & Androutsopoulos, I. (2020). GREEK-BERT: The Greeks visiting Sesame Street. In *11th Hellenic Conference on Artificial Intelligence (SETN 2020)* (pp. 110–117). Association for Computing Machinery. https://doi.org/10.1145/3411408.3411440
- 3. Nikolentzos, G. (2024). INF342: Domain name classification challenge. *Kaggle*. https://kaggle.com/competitions/inf342-datachallenge-2024
- 4. Toumazatos, A., Pavlopoulos, J., Androutsopoulos, I., & Vassos, S. (n.d.). *Still all Greeklish to me: Greeklish to Greek transliteration*. Department of Informatics, Athens University of Economics and Business, Greece; Archimedes/Athena RC, Greece; Helvia.ai.
- 5. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). *Graph attention networks*. arXiv. https://arxiv.org/abs/1710.10903
- 6. Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (n.d.). *Graph neural networks: A review of methods and applications*.

