(No) expresabilidad en primer orden

Guillermo Mosse

Universidad de Buenos Aires billy.mosse@gmail.com

October 26, 2016

Enunciado

Pr 7 ej 7: Sea \mathcal{L} un lenguaje de primer orden con igualdad.

- a. Dar un conjunto de fórmulas Γ tal que si Γ es satisfacible para un modelo \mathcal{M} (y una valuación v) entonces el dominio de \mathcal{M} es infinito. Sugerencia: para cada n, escribir una fórmula ϕ_n que fuerce a que el modelo tenga al menos n elementos.
- b. Usando compacidad y el ítem anterior, demostrar que no existe ninguna fórmula ϕ tal que ϕ es satisfacible sii el dominio del modelo es finito.

a. Asumamos que para cada n tenemos una fórmula ϕ_n que cumple lo dicho por la sugerencia.

a. Asumamos que para cada n tenemos una fórmula ϕ_n que cumple lo dicho por la sugerencia.

Sea $\Gamma = \{\phi_n : n \in \mathbb{N}\}$. Supongamos que el conjunto es satisfacible. Entonces existe un modelo \mathcal{M} (y una valuación v) tal que $\mathcal{M} \models \Gamma[v]$. Luego, para cada n, el dominio de \mathcal{M} tiene más de n elementos. Luego, jes infinito!

Solo falta construir las ϕ_n .

Solo falta construir las ϕ_n .

Para ellos introduzcamos todosDistintos $(x_1, \cdots, x_n) \equiv x_1 \neq x_2 \land x_1 \neq x_3 \land \cdots x_1 \neq x_n \land x_2 \neq x_3 \land \cdots x_{n-1} \neq x_n$ todosDistintos NO es un predicado. Es un abuso de notación (parecido a las macros en computabilidad). Recordar que los predicados vienen dados con el lenguaje, así como las funciones y las constantes.

Solo falta construir las ϕ_n .

Para ellos introduzcamos todosDistintos $(x_1, \dots, x_n) \equiv x_1 \neq x_2 \land x_1 \neq x_3 \land \dots \land x_1 \neq x_n \land x_2 \neq x_3 \land \dots \land x_{n-1} \neq x_n$

todosDistintos NO es un predicado. Es un abuso de notación (parecido a las macros en computabilidad).Recordar que los predicados vienen dados con el lenguaje, así como las funciones y las constantes.

$$\phi_n \equiv (\exists x_1, \cdots, x_n) todosDistintos(x_1, \cdots, x_n).$$

Si ϕ_n es satisfacible en un modelo $\mathcal M$ con dominio $\mathcal A$ y valuación v, por definición de las fórmulas, existen $a_1,\cdots,a_n\in\mathcal A$ tal que todos los elementos son distintos entre sí.

Se puede ver que también vale la vuelta, así que en realidad obtuvimos un si y solo si.

b. Pasos de la demostración

b. Supongamos que existe una fórmula ϕ tal que ϕ es satisfacible sii el dominio de $\mathcal M$ (el modelo) es finito. Queremos llegar a un absurdo.

b. Pasos de la demostración

b. Supongamos que existe una fórmula ϕ tal que ϕ es satisfacible sii el dominio de $\mathcal M$ (el modelo) es finito.

Queremos llegar a un absurdo.

Sea $\Gamma' = \Gamma \cup \{\phi\}$. Vamos a hacer lo siguiente:

- 1- Probar que Γ' es insatisfacible (probando que el modelo tendría que tener dominio finito e infinito a la vez)
- 2- Probar que Γ' es satisfacible (usando Compacidad)
- 3- Por 1 y 2, llegar a un absurdo al suponer que existe una fórmula ϕ tal que ϕ es satisfacible sii el dominio de $\mathcal M$ es finito.
- 4- Concluir que no puede existir una ϕ así.

Veamos que Γ' es insatisfacible.

¿Qué significa que sea satisfacible? Pues que exista un modelo \mathcal{M} con dominio \mathcal{A} (y una valuación v) tal que $\mathcal{M} \models \Gamma'[v]$. Supongamos que eso sucede. Entonces, en particular, $\mathcal{M} \models \phi[v]$. Luego, por como es ϕ , \mathcal{M} tiene dominio finito.

Veamos que Γ' es insatisfacible.

¿Qué significa que sea satisfacible? Pues que exista un modelo \mathcal{M} con dominio \mathcal{A} (y una valuación v) tal que $\mathcal{M} \models \Gamma'[v]$. Supongamos que eso sucede. Entonces, en particular, $\mathcal{M} \models \phi[v]$. Luego, por como es ϕ , \mathcal{M} tiene dominio finito.

Sin embargo, $\Gamma \subset \Gamma'$. Así que $\mathcal{M} \models \Gamma[v]$, así que, por el punto a, \mathcal{M} tiene dominio infinito!

¡¡Absurdo!! Así que Γ' es insatisfacible. (O $\nexists \phi$, pero en ese caso ya ganamos)

Veamos ahora que Γ' es satisfacible. Por compacidad, basta ver que cualquier subconjunto finito es satisfacible.

Veamos ahora que Γ' es satisfacible. Por compacidad, basta ver que cualquier subconjunto finito es satisfacible.

Sea $\Gamma_0 \subset \Gamma'$ un subconjunto finito, y $M = max(\{n : \phi_n \in \Gamma_0\} \cup \{1\})$.

Veamos ahora que Γ' es satisfacible. Por compacidad, basta ver que cualquier subconjunto finito es satisfacible.

Sea $\Gamma_0 \subset \Gamma'$ un subconjunto finito, y $M = max(\{n : \phi_n \in \Gamma_0\} \cup \{1\})$.

Para el modelo que debemos construir, basta dar su dominio. Si elegimos $\mathcal{A}=\{1,\cdots,M\}$, como el dominio tiene M elementos y el índice más grande de las ϕ_n que aparecen en Γ_0 es M, podemos afirmar, por el punto a, que \forall $\phi_n\in\Gamma_0$, ϕ_n es satisfacible. Además, si $\phi\in\Gamma_0$, ϕ es satisfacible porque el dominio del modelo es finito. Luego, Γ_0 es satisfacible.

Veamos ahora que Γ' es satisfacible. Por compacidad, basta ver que cualquier subconjunto finito es satisfacible.

Sea $\Gamma_0 \subset \Gamma'$ un subconjunto finito, y $M = max(\{n : \phi_n \in \Gamma_0\} \cup \{1\})$.

Para el modelo que debemos construir, basta dar su dominio. Si elegimos $\mathcal{A}=\{1,\cdots,M\}$, como el dominio tiene M elementos y el índice más grande de las ϕ_n que aparecen en Γ_0 es M, podemos afirmar, por el punto a, que \forall $\phi_n\in\Gamma_0$, ϕ_n es satisfacible. Además, si $\phi\in\Gamma_0$, ϕ es satisfacible porque el dominio del modelo es finito. Luego, Γ_0 es satisfacible.

Entonces, por compacidad, como cada subconjunto finito es satisfacible, Γ' es satisfacible.

Conclusión

Luego Γ' es satisfacible, e insatisfacible. ¡¡Absurdo!! Luego no existe ϕ tal que ϕ es satisfacible sii el dominio de $\mathcal M$ es finito. \square

Tarea

Con una idea parecida, pueden hacer los ejercicios 8, 9 y 10 de la práctica 7, y el ejercicio 3 del recuperatorio de Lógica del 2015.

Bibliografía

Teóricas de LyC

- Introducción a la lógica de primer orden: diapositivas 182 a 201
- Slide 236: enunciado del Teorema de Compacidad
- Slide 179: demostración del Teorema de Compacidad (para Lógica Proposicional)

¿Preguntas?

Note that this implies you should NOT honk solely because I stopped for a pedestrian and you're behind me.