Discrete mathematics: graphs, trees, lists

Paolo Camurati
Dip. Automatica e Informatica
Politecnico di Torino

Graphs

- Definition: G = (V,E)
 - V: finite and non empty set of vertices (simple or complex data)
 - E: finite set of edges, that define a binary relation on V
- Directed/undirected graphs
 - Directed: edge = sorted pair of vertices (u, v) ∈ E e u, v ∈ V
 - Undirected: edge = unsorted pair of vertices $(u, v) \in E$ and $u, v \in V$

Graphs as models

Domain	Vertex	Edge
communications	phone, computer	fiber optic, cable
circuits	gate, register, processor	wire
mechanics	joint	spring
finance	stocks, currencies	transactions
transports	airoport, station	air corridor, railway line
games	position on board	legal move
social networks	person	friendship
neural networks	neuron	synapsis
chemical compounds	molecules	link

Example: directed graph

In some contexts self-loops may be forbidden. If the context allows loops, but the graph is self-loop-free, it is called **simple**.

Example: undirected graph

In some contexts self-loops may be forbidden. If the context allows loops, but the graph is self-loop-free, it is called **simple**.

1

Incidence and adjacency

- Edge (a, b)
 - Incident from vertex a
 - Incident in vertex b
 - Incident on vertices a and b

- Vertices a and b adjacent
- \blacksquare a → b \Leftrightarrow (a, b) \in E

Degree of a vertex

- Undirected graph
 - degree(a) = number of incident edges

- Directed graph
 - in_degree(a) = number of incoming edges
 - out_degree(a) = number of outgoing edges
 - degree(a) = in_degree(a) + out_degree(a)

Paths and reachability

```
Path p u \rightarrow_p u' in G=(V,E) \exists (v_0,v_1,v_2,...,v_k) \mid u=v_0, u'=v_k, \ \forall i=1,2,...,k \ (v_{i-1},v_i) \in E \bullet k= length of the path \bullet \bullet u' is reachable from u \Leftrightarrow \exists \ p: \ u \rightarrow_p u' \bullet simple path p: distinct (v_0,v_1,v_2,...,v_k) \in p
```


Example

G = (V, E)
p:
$$a \rightarrow_p d$$
: (a, b), (b, c), (c, d)
k = 3
d is reachable from a
p is a simple path

Loops

Connection in undirected graphs

Undirected graph

- Connected
 - $\forall v_i, v_j \in V \text{ there } \exists p \ v_i \rightarrow_p v_j$
- Connected component
 - Maximal connected subgraph, that is, there is no subset including it for which the property holds
- Connected undirected graph
 - Only one connected component

Connection in directed graphs

Directed graph

- Strongly connected
 - $\forall v_i, v_j \in V$ $\exists p, p' \ v_i \rightarrow_p v_j \ and \ v_j \rightarrow_{p'} v_i$
- Strongly connected component
 - Maximal strongly connected subgraph

Strongly connected directed graph

Only one strongly connected component

Example

4

Dense/sparse graphs

- Given graph G = (V, E)
 - |V| = cardinality of set V
 - |E| = cardinality of set E
- Dense graph
 - |E| ≅ |V|²
- Sparse graph
 - $|E| << |V|^2$

Complete graph

Definition:

$$\forall v_i, v_j \in V \exists (v_i, v_j) \in E$$

How many edges?

- Complete undirected graph
 - |E| = number of **combinations** of |V| elements taken 2 by 2

•
$$|E| = \frac{|V|!}{(|V|-2)! \cdot 2!} = \frac{|V| \cdot (|V|-1) \cdot (|V|-2)!}{(|V|-2)! \cdot 2!} = \frac{|V| \cdot (|V|-1)}{2}$$

Order does not matter

Order matters

- Complete directed graph
 - |E| = number of **dispositions** of |V| elements taken 2 by 2

•
$$|E| = \frac{|V|!}{(|V|-2)!} = \frac{|V| \cdot (|V|-1) \cdot (|V|-2)!}{(|V|-2)!} = |V| \cdot (|V|-1)$$

Bipartite graph

Definition

 Undirected graph where the V set may be partitioned in 2 subsets V₁ and V₂, such that

$$\begin{aligned} &\forall (v_i, v_j) \in \ E \\ &v_i \in \ V_1 \ \&\& \ v_j \in \ V_2 \ || \ v_j \in \ V_1 \ \&\& \ v_i \in \ V_2 \end{aligned}$$

Weighted graph

 \exists w : E \rightarrow R | w(u,v) = weight of edge (u, v)

Types of Graphs

Directed weighted graphs

Undirected weighted graphs $(u,v) \in E \Leftrightarrow (v,u) = \in E$

Undirected unweighted graphs $\forall (u,v) \in E \quad w(u,v)=1$

Directed unweighted graphs $\forall (u,v) \in E \quad wt(u,v)=1$

Non rooted trees

Non rooted trees

Undirected, connected, acyclic graph

Forest

Undirected acyclic graph

Properties

- G = (V, E) undirected graph | E | edges, | V | nodes
 - G = non rooted tree
 - Every pair of nodes is connected by a single simple path
 - G connected, removing an edge disconnects the graph
 - G connected and |E| = |V| 1
 - G acyclic and |E| = |V| 1
 - G acyclic, adding an edge introduces a loop

Rooted trees

- ∃ a node r called root
 - Parent/child relationship
 - y ancestor of x
 - if y belongs to the path from r to x
 - x is a descendant of y
 - Proper ancestor if $x \neq y$
 - Parent/child: adjacent nodes
 - Root: no parent
 - Leaves: no children

Properties of a tree T

- degree(T) = maximum number of children
- $extbf{=} depth(x) = length of the path from r to x$
- height(T) = maximum depth

Representation of trees

- Representation of a node of a tree of degree(T) = k
- Pointer to parent, key, k pointers to k children

k pointers to k children, possibly NULL

- Unefficient if only few nodes have indeed degree k
 - Space is allocated for all k pointers, but many are NULL)

Left-child right-sibling representation

Representation of a node of a tree of degree(T) = k

To left child

Pointer to parent, key, 1 pointer to left child,
 1 pointer to right sibling

- Efficiency
 - Always 2 pointers, no matter the degree of the tree

Left-child right-sibling representation

Binary trees

Definition

- Tree of degree 2
- Recursively T is
 - Empty set of nodes

• Root, left subtree, right subtree

Complete binary tree

h = 38 leaves15 nodes

- Two conditions
 - All leaves have the same depth
 - Every node is either a leaf or it has 2 children

- Complete binary tree of height h
 - Number of leaves 2^h
 - Number of nodes = $\Sigma_{0 \le i \le h} 2^i = 2^{h+1} 1$

Finite geometric progression with ratio =2

Balanced binary tree

All paths root-leaves have same length

- If T is complete, then T is balanced
- The opposite is not necessarily true

Almost balanced binary tree

The length of all paths root-leaves differs at most by 1

Linear Sequences

- Finite set of consecutive elements
 - A unique index is associated to each element
 - a₀, a₁, ..., a_i, ..., a_{n-1}
- A predecessor/successor relation is defined on couples of elements
 - $\bullet \ a_{i+1} = succ(a_i)$
 - $a_i = pred(a_{i+1})$

Storage and access

Array

Storage: contiguous data in memory

Direct access

- Given index i, we access element a_i without any need for scanning the whole sequence
- The cost of an access does not depend on the position of the element in the linear sequence, thus it is O(1)

Storage and access

- List
 - Storage: non contiguous data in memory
- Sequential access
 - Given index i, we access element a_i scanning the linear sequence starting from one of its boundaries, usually the left one
 - The access cost depends on the position of the element in the linear sequence, thus it is O(n) in the worst case

Operations on lists

Search

 For an element whose search key field equals a given key

Insert an element

- At the head of an unsorted list
- At the tail of an unsorted list
- At a position such as to guarantee that the invariance propoerty of a sorted list is satisfied

Operations on lists

- Extract an element
 - From the head of an unsorted list
 - That has a field whose contents equals a deletion key (such an operation usually requires a a search for the element to be deleted).

Collections of data

- Generalized queues
 - Collections of objects (data) with insert, search, and delete as main operations
- Insert
 - Insert a new object into the collection
- Search
 - Search for an object in the collection
- Delete
 - Delete an object from the collection

Collections of data

- Other operations
 - Initialize the generalized queue
 - Count objects (or check if collection empty)
 - Destroy generalized queue
 - Copy generalized queue

Collections of data: Stack

Criteria to extract elements

- Extract the most recently inserted element
 - LIFO policy: Last-In First-Out
 - Stack
 - Insertion (push) and extraction (pop) from head

Collections of data: Stack

Collections of data: Queue

Criteria to extract elements

- Extract the least-recently inserted element
 - FIFO policy: First-In First-Out
 - Queue
 - Insert (enqueue) at the tail and extract (dequeue) from the head

Collections of data: Queue

head

Collections of data: Priority Queue

Criteria to extract elements

- Insertion guarantees that, when extracting, the highest (lowest) priority element is extracted
 - Priority queue

Collections of data: Priority Queue

initially

Collections of data: Priority Queue

