Fiche de procédure - Projet 1

Mise en place d'une infrastructure réseau sur Cisco Packet Tracer Simulation d'une création d'infrastructure réseau pour un client dans de nouveaux locaux

Table des matières

١.	Présentation du projet	1
ΙΙ.	Environnement utilisé	2
	1. Connexions physiques	2
	2. Création des VLANs	3
	3. Configuration du trunk sur les liens inter-switchs et routeur	3
	4. Attribution des ports utilisateurs	4
	5. Mise en place du Spanning Tree Protocol (STP)	4
	6. Configuration du routeur pour le routage inter-VLAN	5
	7. Configuration du serveur DHCP	6
	8. Mise en place du NAS	6
	9. Tests de connectivité	6

I. Présentation du projet

Dans ce projet, nous allons construire une infrastructure réseau professionnelle sous **Cisco Packet Tracer**.

Les objectifs principaux sont :

- Créer 3 VLANs séparés (User, Admin et Guest),
- Mettre en place un routage inter-VLAN pour assurer la communication entre les réseaux,
- Utiliser Spanning Tree Protocol pour éviter les boucles réseau,
- Déployer des services réseau comme DHCP pour l'attribution IP automatique et NAS pour le stockage de fichiers,
- Assurer un accès filaire pour les utilisateurs internes, et un accès Wi-Fi sécurisé pour les invités.

BTS SIO: Epreuve E6

Année 2024-2025

II. Environnement utilisé

Pour mener à bien ce projet, nous allons utiliser :

- Cisco Packet Tracer,
- 1 Routeur Cisco 2901 (R1),
- 6 Switchs Cisco 2960 (SW1 à SW6),
- 1 Serveur DHCP,
- 1 NAS (FTP Server),
- Des postes clients (PC fixes et laptops).

III. Création de l'infrastructure

1. Connexions physiques

On commence par réaliser les branchements suivants :

R1 Gig9/0 \rightarrow SW1 Fa0/1

SW1 Gig0/1 \leftrightarrow SW2 Gig0/2

SW2 Gig0/1 \leftrightarrow SW3 Gig0/2

SW3 Gig0/1 \leftrightarrow SW1 Gig0/2

Serveur DHCP (Gig0) → SW1 Fa0/3

NAS (Gig0) → SW1 Fa0/4

SW1 Fa0/2 → SW4 Fa0/1

SW2 Fa0/2 → SW5 Fa0/1

SW3 Fa0/1 \rightarrow SW6 Fa0/1

2. Création des VLANs

Nous allons maintenant créer les VLANs nécessaires.

Sur n'importe quel switch de cœur (par exemple SW1) :

```
enable
configure terminal
vlan 10
name User
vlan 20
name Admin
vlan 30
name Guest
exit
```

Cette configuration est à réaliser sur un switch de cœur de réseau (par exemple SW1). Note : Les VLANs seront propagés automatiquement aux autres switchs via les trunks.

3. Configuration du trunk sur les liens inter-switchs et routeur

Sur SW1, SW2 et SW3, configurez les ports reliés aux autres switchs et au routeur en mode trunk :

```
enable

configure terminal

interface range gig0/1, gig0/2, fa0/1

switchport mode trunk

exit
```

Explication:

Le mode trunk permet de transporter plusieurs VLANs en même temps sur un seul lien réseau.

4. Attribution des ports utilisateurs

Maintenant, nous allons affecter les VLANs aux ports d'accès pour les utilisateurs.

- Les ports où sont branchés les PCs utilisateurs (Open Space 1 et 2) → VLAN 10 (User)
- Les ports où sont branchés les serveurs (DHCP et NAS) → VLAN 20 (Admin)
- Les ports des laptops en salle de réunion → VLAN 30 (Guest)

Exemple configuration sur SW1:

• Pour les serveurs :

```
interface fa0/3
switchport mode access
switchport access vlan 20
exit

interface fa0/4
switchport mode access
switchport access vlan 20
exit
```

• Pour les PC utilisateurs :

```
interface fa0/5
switchport mode access
switchport access vlan 10
exit
```

5. Mise en place du Spanning Tree Protocol (STP)

Pour éviter les boucles réseau, nous allons activer STP et définir **SW1** comme racine.

Sur **SW1** :

```
enable

configure terminal

spanning-tree vlan 10 priority 4096

spanning-tree vlan 20 priority 4096

spanning-tree vlan 30 priority 4096

exit
```

6. Configuration du routeur pour le routage inter-VLAN

Nous allons maintenant configurer les sous-interfaces sur le routeur pour permettre la communication entre les VLANs.

Sur **R1**:

```
enable
configure terminal
interface gig9/0.10
encapsulation dot1Q 10
ip address 10.10.10.1 255.255.255.0
ip helper-address 10.10.20.250
ip access-group 100 out
exit
interface gig9/0.20
encapsulation dot1Q 20
ip address 10.10.20.1 255.255.255.0
ip access-group 110 out
exit
interface gig9/0.30
encapsulation dot1Q 30
ip address 10.10.30.1 255.255.255.0
ip helper-address 10.10.20.250
ip access-group 120 out
exit
```

Cette configuration permet d'assurer la communication entre les VLANs tout en bloquant la communication croisée (ACLs) et en relayant les demandes DHCP.

7. Configuration du serveur DHCP

Le serveur DHCP est dans VLAN 20 et a pour IP 10.10.20.250.

Sur le serveur DHCP, il faut créer 3 pools pour distribuer les IP automatiquement :

- VLAN 10 (User):
 - o Plage IP: 10.10.10.100 10.10.10.200
 - o Gateway: 10.10.10.1
- VLAN 20 (Admin) :
 - o Plage IP: 10.10.20.100 10.10.20.200
 - o Gateway: 10.10.20.1
- VLAN 30 (Guest) :
 - o Plage IP: 10.10.30.100 10.10.30.200
 - o Gateway: 10.10.30.1

8. Mise en place du NAS

Le serveur NAS est aussi dans VLAN 20 avec l'IP 10.10.20.200.

Sur le serveur NAS, il faut activer le service FTP

Vérification:

Ouvrez un navigateur ou un client FTP et tapez ftp://10.10.20.200 pour vérifier l'accès.

9. Tests de connectivité

À la fin du projet, effectuez les vérifications suivantes :

- Tester qu'un PC utilisateur VLAN 10 récupère une IP via DHCP.
- Tester qu'un laptop VLAN 30 récupère une IP via DHCP.
- Tester que les VLANs sont bien isolés (ping entre VLAN impossible sauf si autorisé).
- Tester que le NAS est accessible pour les machines en VLAN 20.

IV. Conclusion

L'infrastructure réseau est maintenant totalement fonctionnelle :

- 3 VLANs isolés,
- Routage inter-VLAN actif,
- Service DHCP opérationnel,
- NAS disponible pour le partage de fichiers,
- Spanning Tree en place pour garantir la stabilité du réseau.

Ce projet respecte les standards attendus pour une PME, et il est évolutif pour accueillir de nouveaux services ou utilisateurs.