Building RAG Q&A Bots for I/O Psychologists

A step-by-step tutorial

Introductions

Yuyun Huang
ML / NLP Expert

Karim Badr Senior Research Scientist

Paul Agnello
Senior Associate Consultant

Agenda

Chatbots for I/O Psychology

Industry/Practitioner:

- Employee support and HR assistance
- Policy and compliance queries
- You can upload documents (e.g., policies or employee manuals) and ask questions about them.

Academia/Student/Researcher:

Asking questions about research articles

• Industry/Practitioner:

- Analyze employee surveys
- Extract sentiments from comments
- Analyze data

Other:

- Real-time Coaching
- Simulations of interactions with clients/employees/etc.

RAG: An Overview

RAG:

Retrieval-Augmented Generation

It's a way for AI to give better answers by first searching for useful info in a database (e.g., books, websites) and then using that info to make a clear and smart response.

It's like an assistant who checks the facts before talking!

RAG: The Process

RAG: The Process

Chunking

Chunking

- Definition
 - The process of breaking down large documents or datasets into smaller, manageable pieces (chunks) for the retriever to process.
- Types
 - 1. Simple Chunk (Character / Token cut, Sentence Cut)
 - 2. Overlap Chunking: Add overlapping text between chunks to preserve context (e.g., 20% overlap).
 - 3. Chunk with Summary: Creates chunks and generates a summary for each chunk to preserve context and aid retrieval.
 - **4. Semantic Chunking**: Use NLP to split based on meaning (e.g., topic shifts).

Chunking

Creating Chunks

AMERICAN PSYCHOLOGICAL ASSOCIATION

Step 1 Step 2 Identify source / data e.g., Chunking Strategy e.g., - SIOP Principles Character Cut: (Fifth Edition, 2018). - Split by 500 chars & 20% overlap - 60-page PDF on - Split by sections, e.g., personnel selection validation "Validity" vs. "Fairness" Test: Can a chunk from "Fairness and Bias" (p. 27) Principles for the Validation and Use of Personnel Selection Procedures answer "What does SIOP say about predictive bias?

Step 3

Automate Tools e.g., Character Cut:

- NLTK, langchain etc.
- Store Chunks (vector DB)

RAG: The Process

Embeddings

Definition

 Embeddings are numerical representations (vectors) of text, images, or other data in a high-dimensional space, capturing their meaning or context.

Usage in RAG Chatbots

- Enables the retriever to understand and compare the similarity between a user's query and stored chunks.
- Enables semantic search: e.g., find SIOP sections on "predictive bias" without exact keywords).

Embeddings

Creating Embeddings

turn text into numbers that preserve meaning Pre-trained models (e.g., all-MiniLM-L6-v2) APIs (OpenAI's Text-embedding models) vectors Text Chunk Pick Models and Tools Text Chunk vectors - Python Library Text Chunk vectors - text-embedding-3-large Text Chunk vectors embeddings

Step 1: Pick a Model

Step 2: Process Chunks

Step 3: Generate Vectors

RAG: The Process

Searching

Searching: Topic Fusion

- Fuse Topics: Split query into two richer sub-queries:
 - "What's criterion validity?" →
 - "How is criterion validity defined?" (targets definitions).
 - "What evidence supports criterion validity?" (targets examples).
- Embed Queries: Convert both to vectors
- **Compare Vectors**: Match each to SIOP chunks (e.g., p. 18's "Evidence for criterion-related validity...").
- Rank Results: Pick top 2 chunks per sub-query (4 total) using cosine similarity.
- Retrieve: Return chunks with metadata (e.g., "SIOP Principles," "p. 18").

Searching: Topic Fusion

Searching: Cosine Similarity & Vector Search

- Cosine Similarity: a measure of how close 2 vectors are
 - 1 = identical
 - 0 = unrelated
- Example: Query "What's criterion validity?" vs. p. 18 chunk "Evidence for criterion-related validity..." → high score (~0.9).
- Tools:
 - FAISS (Local): Fast vector search library
 - Pinecone (Cloud): Scalable vector DB

RAG: The Process

Prompt Forming

Prompt Forming

- Goal: Combine query + retrieved chunk → generate coherent answer
- Example:

```
Query: {user query}
Context:
{retrieved chunk1}
{retrieved chunk2}
{retrieved chunk3}
{retrieved chunk4}
Answer:"
```

Build your own Chatbot – Code

Code demo in Jupyter Notebooks

Build your own Chatbot: No Code via DIFY

- Many no code tools available
- Example: DIFY
 - Online cloud version (free & paid)
 - On-premises (Open-source, install on your server)

https://dify.ai/

DIFY Demo

DIFY: Landing Page

DIFY: Chatbot

DIFY: Create Knowledge

DIFY: Upload Files

DIFY: Text Chunking

DIFY: Embedding

DIFY: Debugging & Trialing the Chatbot

DIFY: Debugging & Trialing the Chatbot

DIFY: Using the Chatbot

DIFY: Using the Chatbot

Q&A Resources

- Q&A
- Slides available on Whova
- All materials (slides, code, and supplementary resources) found on GitHub repo here:

https://github.com/karimhbadr1/SIOP_2025_ChatBot_Master_Tutorial

