IN THE CLAIMS:

1. (Previously Amended) A method of producing mostly 5β , 6β -epoxides of steroids from Δ^5 -unsaturated steroids by an epoxidation reaction using a ketone and an oxidizing agent under conditions effective to generate epoxides-,

wherein said ketone is selected from compounds of generic formula I,

 R_1 or R_4 in formula (I) is selected from alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y = alkyl$ or aryl), and halogen;

 R_2 or R_3 in formula (I) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_y$ (where $R_y = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = Aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_v$ (where R_w , R_x or $R_y = Alkyl$ or aryl), and halogen;

 R_5 , R_6 , R_7 or R_8 in formula (I) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

R₉ or R₁₀ in formula (I) is selected from alkyl, halogenated alkyl, and aryl; and A in formula (I) is selected from halogen, OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF₆.

- 2. (Original) The method of claim 1 wherein said oxidizing reagent is selected from the group consisting of potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids.
- 3. (Original) The method of claim 2 wherein said epoxidation reaction is carried out using potassium peroxomonosulfate as an oxidizing agent.
- 4. (Previously Amended) The method of claim 1 wherein said epoxidation reaction is carried out in a homogeneous solvent system selected from dimethoxymethane-acetonitrile-water, acetonitrile-water, acetone-water, dioxane-water, dimethoxyethane-water, and tetrahydrofuran-water, or a biphasic solvent system selected from dichloromethane-water, chloroform-water, benzene-water, toluene-water, dimethoxymethane-water, or diethylether-water, or mixtures thereof.
- 5. (Original) The method of claim 1 wherein said epoxidation reaction is carried out at a temperature within the range from about -10 °C to about 40 °C.
- 6. (Original) The method of claim 5 wherein said epoxidation reaction is carried out at room temperature.
- 7. (Original) The method of claim 1 wherein said epoxidation reaction is carried out at a pH within the range from about 7.0 to about 12.0.
- 8. (Original) The method of claim 7 wherein said pH is within the range from about 7.0 to about 7.5.

- 9. (Original) The method of claim 7 wherein said pH is controlled by using a pH-stat or a buffer.
- 10. (Previously Amended) The method of claim 9 wherein said buffer is selected from the group consisting of solutions of sodium bicarbonate, sodium carbonate, sodium borate, sodium hydrogenphosphate, sodium dihydrogenphosphate, sodium hydroxide, potassium hydrogenphosphate, potassium dihydrogenphosphate, potassium bicarbonate, potassium carbonate, potassium hydroxide, and mixtures thereof.
- 11. (Original) The method of claim 1 wherein said epoxidation reaction provides said epoxides in at least about 5:1 β/α -epoxide ratio.
- 12. (Original) A method of producing mostly 5β , 6β -epoxides of steroids from Δ^5 -unsaturated steroids having a substituent at the 3α -position by an epoxidation reaction using a ketone and an oxidizing agent under conditions effective to generate epoxides.
- 13. (Previously Amended) The method of claim 12 wherein said substituent is selected from OR_v (where $R_v = H$, alkyl or aryl), $O(CH_2)_nOR_v$ (where n = 1, 2 or 3, $R_v = H$, alkyl or aryl), $O(CH_2)_mSO_nR_v$ (where m = 1, 2 or 3; n = 0, 1 or 2; $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y =$ alkyl or aryl), OSO_nR_v (where n = 0, 1 or 2; $R_v = H$, alkyl or aryl), OCO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), OPO_nR_y (where n = 1 or 2; $R_y =$ alkyl or aryl), NR_uR_v (where R_u or $R_v = H$, alkyl or aryl), $NR_uCO_nR_v$ (where n = 1 or 2; n = 10 or n = 10 or 2; n = 11 or 2; n = 11 or 2; n = 12 or 3; n = 12 or 3; n = 13 or 3; n = 14 or 3; n = 13 or 3; n = 14 or 3;

(where n = 0, 1 or 2; $R_v = H$, alkyl or aryl), SCO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), halogen, CN, NO_2 , alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl).

14. (Original) The method of claim 12 wherein said Δ^5 -unsaturated steroid having a substituent at the 3 α -position is selected from the group consisting of Δ^5 -unsaturated steroids having a ketal derivative of ketone group or a thioketal derivative of ketone group at the 3-position.

15. (Previously Amended) The method of claim 12 wherein said ketone is selected from the group consisting of compounds of generic formula II, III, IV, and V wherein

$$R_1$$
 R_1
 R_2
 R_3
 R_4
 R_6
 R_5
 R_8
 R_{10}
 R_8
 R_8
 R_{10}
 R_8

 R_1 , R_2 , R_3 , or R_4 in formula (II) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y =$ alkyl or aryl), and halogen;

 R_5 , R_6 , R_7 , R_8 , R_9 or R_{10} in formula (II) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

A in formula (II) is selected from halogen, OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF₆;

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
 R_{18}

X in formula (III) is selected from $(CR_uR_v)_n$ (where n=1, 2, 3, 4, or 5; R_u or $R_v=1$ H, alkyl or aryl), O, S, SO, SO₂, and NR_v (where $R_v=1$ H, alkyl or aryl);

 R_{11} , R_{12} , R_{13} , or R_{14} in formula (III) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), and halogen;

 R_{15} , R_{16} , R_{17} , or R_{18} in formula (III) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

$$R_{19}$$
 R_{20} IV

 $R_{19} \text{ or } R_{20} \text{ in formula (IV) is selected from alkyl, halogenated alkyl, aryl,} \\ CR_tR_uOCOR_v \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl), } CR_uR_vOCOOR_y \text{ (where } R_u \text{ or } R_v\text{= H, alkyl or aryl; } R_y\text{= alkyl or aryl), } CR_tR_uNR_vCOOR_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl), } CR_sR_tNR_uCOR_v \text{ (where } R_s, R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl), } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl); } and \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v\text{= H, alkyl or aryl$

Y in formula (V) is selected from H, alkyl, halogenated alkyl, aryl, NO₂, CN, F, Cl, Br, I, COOR_q (where $R_q = H$ or alkyl), OR_v (where $R_v = H$, alkyl or aryl), OSO₂R_v (where $R_v = H$, alkyl or aryl), OSR_v (where $R_v = H$, alkyl or aryl), OSR_v (where $R_v = H$, alkyl or aryl), SO₂R_v (where $R_v = H$, alkyl or aryl), SO₃R_v (where $R_v = H$, alkyl or aryl), SOONR_uR_v (where R_u or $R_v = H$, alkyl or aryl), NR_vSOOR_y (where $R_v = H$, alkyl or aryl; $R_y =$ alkyl or aryl), NR_vSOR_y (where $R_v = H$, alkyl or aryl), CR_tR_uOR_v (where R_t , R_t or $R_v = H$, alkyl or aryl), CR_q(OR_p)₂ (where $R_q = H$ or alkyl; $R_p =$ alkyl), CF₃, CF₂CF₃, OTf, OTs, OCOR_v (where $R_v = H$, alkyl or aryl), and OSiR_wR_xR_y (where R_v , R_v or $R_v =$ alkyl or aryl).

- 16. (Previously Amended) The method of claim 12 wherein said epoxidation reaction is carried out in a homogeneous solvent system selected from dimethoxymethane-acetonitrile-water, acetonitrile-water, acetone-water, dioxane-water, dimethoxyethane-water, and tetrahydrofuran-water, or a biphasic solvent system selected from dichloromethane-water, chloroform-water, benzene-water, toluene-water, dimethoxymethane-water, or diethylether-water, or mixtures thereof.
- 17. (Original) The method of claim 12 wherein said oxidizing reagent is selected from the group consisting of potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids.
- 18. (Original) The method of claim 17 wherein said epoxidation reaction is carried out using potassium peroxomonosulfate as an oxidizing agent.
- 19. (Original) The method of claim 12 wherein said epoxidation reaction is carried out at a temperature within the range from about -10 °C to about 40 °C.

7

- 20. (Original) The method of claim 19 wherein said epoxidation reaction is carried out at room temperature.
- 21. (Original) The method of claim 12 wherein said epoxidation reaction is carried out at a pH within the range from about 7.0 to about 12.0.
- 22. (Original) The method of claim 21 wherein said pH is within the range from about 7.0 to about 7.5.
- 23. (Original) The method of claim 21 wherein said pH is controlled by using a pH-stat or a buffer.
- 24. (Previously Amended) The method of claim 23 wherein said buffer is selected from the group consisting of solutions of sodium bicarbonate, sodium carbonate, sodium borate, sodium hydrogenphosphate, sodium dihydrogenphosphate, sodium hydroxide, potassium hydrogenphosphate, potassium dihydrogenphosphate, potassium bicarbonate, potassium carbonate, potassium hydroxide, and mixtures thereof.
- 25. (Original) The method of claim 12 wherein said epoxidation reaction provides said epoxides in at least about 5:1 β/α -epoxide ratio.
- 26. (Previously Amended) A method of producing mostly 5β , 6β -epoxides of steroids from Δ^5 -unsaturated steroids by an epoxidation reaction using a dioxirane under conditions effective to generate epoxides,

wherein said dioxirane is selected from compounds of generic formula VI,

 R_1 or R_4 in formula (VI) is selected from alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_y$ (where $R_y = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = A$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y = A$), and halogen;

 R_2 or R_3 in formula (VI) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_v$ (where R_w , R_x or $R_y = alkyl$ or aryl), and halogen;

 R_5 , R_6 , R_7 or R_8 in formula (VI) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl); R_9 or R_{10} in formula (VI) is selected from alkyl, halogenated alkyl, and aryl; and A in formula (VI) is selected from halogen, OTf, BF_4 , OAc, NO_3 , BPh_4 , PF_6 , and SbF_6 .

27. (Previously Amended) The method of claim 26 wherein said dioxirane is generated in situ from a ketone and an oxidizing agent selected from potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids,

wherein said ketone is selected from compounds of generic formula I,

$$R_1$$
 R_2
 R_3
 R_4
 R_6
 R_7
 R_8
 R_9
 R_{10}

 R_1 or R_4 in formula (I) is selected from alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OSiR_wR_xR_v$ (where R_w , R_x or $R_y = H$), and halogen;

 R_2 or R_3 in formula (I) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_zR$ (where $R_z = aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y = alkyl$ or aryl), and halogen;

 R_5 , R_6 , R_7 or R_8 in formula (I) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl); R_9 or R_{10} in formula (I) is selected from alkyl, halogenated alkyl, and aryl; and A in formula (I) is selected from halogen, OTf, BF_4 , OAc, NO_3 , BPh_4 , PF_6 , and SbF_6 .

- 28. (Original) The method of claim 26 wherein said epoxidation reaction is carried out in a solvent selected from acetonitrile, dimethoxymethane, acetone, dioxane, dimethoxyethane, tetrahydrofuran, dichloromethane, chloroform, benzene, toluene, diethylether, water, and mixtures thereof.
- 29. (Original) The method of claim 26 wherein said epoxidation reaction is carried out at a temperature within the range from about -40 °C to about 40 °C.

- 30. (Original) The method of claim 26 wherein said epoxidation reaction is carried out at a pH within the range from about 7.0 to about 12.0.
- 31. (Original) The method of claim 26 wherein said epoxidation reaction provides said epoxides in at least about 5:1 β/α -epoxide ratio.
- 32. (Original) A method of producing mostly 5β , 6β -epoxides of steroids from Δ^5 -unsaturated steroids having a substituent at the 3α -position by an epoxidation reaction using a dioxirane under conditions effective to generate epoxides.
- 33. (Previously Amended) The method of claim 32 wherein said substituent is selected from OR_v (where $R_v = H$, alkyl or aryl), $O(CH_2)_nOR_v$ (where n = 1, 2 or 3, $R_v = H$, alkyl or aryl), $O(CH_2)_mSO_nR_v$ (where m = 1, 2 or 3; n = 0, 1 or 2; $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y =$ alkyl or aryl), OSO_nR_v (where n = 0, 1 or 2; $R_v = H$, alkyl or aryl), OCO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), OPO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), OPO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), OPO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), OPO_nR_v (where n = 1 or 2; $R_v = H$, alkyl or aryl), OPO_nR_v (where n = 1 or 2; n = H, alkyl or aryl), and n = H, alkyl or aryl).

34. (Original) The method of claim 32 wherein said Δ^5 -unsaturated steroid having a substituent at the 3 α -position is selected from the group consisting of Δ^5 -unsaturated steroids having a ketal derivative of ketone group or a thioketal derivative of ketone group at the 3-position.

35. (Previously Amended) The method of claim 32 wherein said dioxirane is selected from the group consisting of compounds of generic formula VII, VIII, IX and $X_{\overline{z}}$, wherein

$$R_{2}$$
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{6}
 R_{5}
 R_{9}
 R_{10}
 R_{10}
 R_{3}
 R_{4}
 R_{5}
 R_{8}
 R_{10}
 R_{10}
 R_{10}
 VII

 R_1 , R_2 , R_3 , or R_4 in formula (VII) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y = alkyl$ or aryl), and halogen;

 R_5 , R_6 , R_7 , R_8 , R_9 or R_{10} , in formula (VII) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

A in formula (VII) is selected from halogen, OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF_{6} :

X in formula (VIII) is selected from $(CR_uR_v)_n$ (where n = 1, 2, 3, 4, or 5; R_u or R_v = H, alkyl or aryl), O, S, SO, SO₂, and NR_v (where R_v = H, alkyl or aryl);

 R_{11} , R_{12} , R_{13} , or R_{14} in formula (VIII) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = aryl$), $OCONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y = alkyl$ or aryl), and halogen;

 R_{15} , R_{16} , R_{17} , or R_{18} in formula (VIII) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

 R_{19} or R_{20} in formula (IX) is selected from alkyl, halogenated alkyl, aryl, $CR_tR_uOCOR_v \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl), } CR_uR_vOCOOR_y \text{ (where } R_u \text{ or } R_v = H, \text{ alkyl or aryl), } CR_tR_uNR_vCOOR_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl), } CR_sR_tNR_uCOR_v \text{ (where } R_s, R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl), } CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } and$

Y in formula (X) is selected from H, alkyl, halogenated alkyl, aryl, NO_2 , CN, F, Cl, Br, I, $COOR_q$ (where $R_q = H$ or alkyl), OR_v (where $R_v = H$, alkyl or aryl), OSO_2R_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$, alkyl or aryl), OSO_v (where $R_v = H$)

alkyl or aryl), SO_2R_v (where $R_v = H$, alkyl or aryl), SO_3R_v (where $R_v = H$, alkyl or aryl), $SOONR_uR_v$ (where $R_v = H$, alkyl or aryl), NR_vSOOR_v (where $R_v = H$, alkyl or aryl); $R_y =$ alkyl or aryl), NR_vSOR_v (where $R_v = H$, alkyl or aryl), $CR_tR_vOR_v$ (where R_t , R_t or $R_v = H$, alkyl or aryl), $CR_tR_vOR_v$ (where R_t , R_t or $R_v = H$, alkyl or aryl), $CR_tR_vOR_v$ (where R_t , R_t or R_t alkyl or aryl), and $CSIR_tR_vOR_v$ (where R_t , R_t or R_t alkyl or aryl).

36. (Original) The method of claim 32 wherein said dioxirane is generated in situ from a ketone and an oxidizing agent selected from potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids.

37. (Previously Amended) The method of claim 36 wherein said ketone is selected from the group consisting of compounds of generic formula II, III, IV, and V,

$$\begin{array}{c|c}
R_1 & O & R_3 \\
R_6 & + & R_7 \\
R_5 & R_9 & R_{10}
\end{array}$$
II

 R_1 , R_2 , R_3 , or R_4 in formula (II) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OSiR_wR_xR_v$ (where $R_v = H$, alkyl or aryl), $OSiR_wR_xR_v$ (where $R_v = H$, alkyl or aryl), and halogen;

 R_5 , R_6 , R_7 , R_8 , R_9 or R_{10} in formula (II) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

A in formula (II) is selected from halogen, OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF₆;

$$R_{11}$$
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{16}
 R_{17}
 R_{18}
III

X in formula (III) is selected from $(CR_uR_v)_n$ (where n=1, 2, 3, 4, or 5; R_u or $R_v=H$, alkyl or aryl), O, S, SO, SO₂, and NR_v (where $R_v=H$, alkyl or aryl);

 R_{11} , R_{12} , R_{13} , or R_{14} in formula (III) is selected from H, alkyl, halogenated alkyl, aryl, OR_v (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOR_v$ (where $R_v = H$, alkyl or aryl), $OCOOCH_2R_z$ (where $R_z = Aryl$), $OCOOR_v$ (where $R_v = Aryl$), and halogen;

 R_{15} , R_{16} , R_{17} , or R_{18} in formula (III) is selected from H, alkyl, halogenated alkyl, aryl, $COOR_v$ (where $R_v = H$, alkyl or aryl), and $CONR_uR_v$ (where R_u or $R_v = H$, alkyl or aryl);

$$R_{19}$$
 R_{20} IV

 $R_{19} \text{ or } R_{20} \text{ in formula (IV) is selected from alkyl, halogenated alkyl, aryl,} \\ CR_tR_uOCOR_v \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl), } CR_uR_vOCOOR_y \text{ (where } R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl), } CR_tR_uNR_vCOOR_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl, } R_y = \text{ alkyl or aryl), } CR_sR_tNR_uCOR_v \text{ (where } R_s, R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl), } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl; } R_y = \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ and } \\ CR_tR_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, \text{ alkyl or aryl); } \text{ (where } R_t = H, R_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, R_uNR_vSO_2R_y \text{ (where } R_t, R_u \text{ or } R_v = H, R_uNR_vSO_2R_y \text$

Y in formula (V) is selected from H, alkyl, halogenated alkyl, aryl, NO₂, CN, F, Cl, Br, I, COOR_q (where $R_q = H$ or alkyl), OR_v (where $R_v = H$, alkyl or aryl), OSO₂R_v (where $R_v = H$, alkyl or aryl), OSR_v (where $R_v = H$, alkyl or aryl), OSR_v (where $R_v = H$, alkyl or aryl), SO₂R_v (where $R_v = H$, alkyl or aryl), SO₃R_v (where $R_v = H$, alkyl or aryl), SOON R_uR_v (where R_u or $R_v = H$, alkyl or aryl), NR_vSOOR_y (where $R_v = H$, alkyl or aryl; $R_y =$ alkyl or aryl), NR_vSOR_y (where $R_v = H$, alkyl or aryl), CR₁R_uOR_v (where R_t , R_t or $R_v = H$, alkyl or aryl), CR_q(OR_p)₂ (where $R_q = H$ or alkyl; $R_p =$ alkyl), CF₃, CF₂CF₃, OTf, OTs, OCOR_v (where $R_v = H$, alkyl or aryl), and OSiR_wR_xR_y (where R_w , R_x or $R_y =$ alkyl or aryl).

38. (Original) The method of claim 32 wherein said epoxidation reaction is carried out in a solvent selected from acetonitrile, dimethoxymethane, acetone, dioxane, dimethoxyethane, tetrahydrofuran, dichloromethane, chloroform, benzene, toluene, diethylether, water and mixtures thereof.

39. (Original) The method of claim 32 wherein said epoxidation reaction is carried out at a temperature within the range from about -40 °C to about 40 °C.

40. (Original) The method of claim 32 wherein said epoxidation reaction is carried out at a pH within the range from about 7.0 to about 12.0.

- 41. (Original) The method of claim 32 wherein said epoxidation reaction provides said epoxides in at least about 5:1 β/α -epoxide ratio.
 - 42. (Previously Amended) A method comprising:

producing mostly 5β , 6β -epoxides of steroids by epoxidation reactions of Δ^5 -unsaturated steroids of generic formula XI catalyzed by ketones of generic formula XII, wherein

$$R_1$$
 H
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7

 X_1 in formula (XI) is selected from H, OR_q (where $R_q = H$ or alkyl), OCH_2OCH_3 , $OCOR_y$ (where $R_y =$ alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or $R_y =$ alkyl or aryl), halogen, CN, alkyl, aryl, and $COOR_y$ (where $R_y = H$, alkyl or aryl);

 R_1 in formula (XI) is selected from H, OR_q (where R_q = H or alkyl), $OCOR_y$ (where R_y = alkyl or aryl), OCH_2OCH_3 , halogen, CF_3 , and CF_2CF_3 ;

 R_2 and R_3 in formula (XI) are each selected from the group consisting of H, alkyl, aryl, halogen, OR_q (where R_q = H or alkyl), $OCOR_y$ (where R_y = alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl), COR_p (where R_p = alkyl), $COCH_2OR_q$ (where R_q = H or alkyl), $COCH_2OCOR_y$ (where R_y = alkyl or aryl), $COCH_2F$, $COOR_q$ (where R_q = H or alkyl), $C(OCH_2CH_2O)R_p$ (where R_p = alkyl), $C(OCH_2CH_2O)CH_2OR_q$ (where R_q = H or alkyl), $C(OCH_2CH_2O)CH_2OCOR_y$ (where R_y = alkyl or aryl), and $C(OCH_2CH_2O)CH_2F$; or, are selected from the group consisting of O, OCH_2CH_2O , and OCH_2CH_2O ;

 R_4 in formula (XI) is selected from H, C_1 – C_4 alkyl, halogen, OR_q (where R_q = H or alkyl), $OCOR_y$ (where R_y = alkyl or aryl), and $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl);

 R_5 in formula (XI) is selected from H, C_1 – C_4 alkyl, halogen, OR_q (where R_q = H or alkyl), $OCOR_y$ (where R_y = alkyl or aryl), and $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl);

 R_6 in formula (XI) is selected from H, halogen, OR_q (where $R_q = H$ or alkyl), and $OCOR_v$ (where $R_v = alkyl$ or aryl);

 R_7 in formula (XI) is selected from H, halogen, OR_q (where $R_q = H$ or alkyl), and $OCOR_y$ (where $R_y =$ alkyl or aryl);

$$R_{19}$$
 R_{17}
 R_{15}
 R_{16}
 R_{20}
 R_{18}
 R_{18}
 R_{18}

 R_{15} and R_{16} in formula (XII) are each selected from alkyl and aryl;

 R_{17} and R_{18} in formula (XII) are each selected from H, alkyl, aryl, COOR_v (where $R_v = H$, alkyl or aryl), and CONR_uR_v (where R_u or $R_v = H$, alkyl or aryl);

 R_{19} and R_{20} in formula (XII) are each selected from C_1 – C_4 alkyl, halogenated alkyl, and halogen; and

A in formula (XII) is selected from OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF₆.

43. (Previously Amended) The method of claim 42 wherein said C₁-C₄ alkyl is selected from the group consisting of methyl, ethyl, normal-propyl, iso-propyl, normal-

butyl, iso-butyl, sec-butyl, and tert-butyl; and said aryl is selected from the group consisting of phenyl, substituted phenyl, naphthyl, and substituted naphthyl groups.

- 44. (Original) The method of claim 42 wherein said epoxidation reactions are carried out in a homogeneous solvent system selected from the group consisting of dimethoxymethane-acetonitrile-water, acetonitrile-water, acetone-water, dioxane-water, dimethoxyethane-water, tetrahydrofuran-water, and mixtures thereof.
- 45. (Previously Amended) The method of claim 42 wherein said epoxidation reactions are carried out in a biphasic solvent system selected from the group consisting of dichloromethane-water, chloroform-water, benzene-water, toluene-water, dimethoxymethane-water, and diethylether-water, and mixtures thereof.
- 46. (Original) The method of claim 42 wherein said oxidizing reagent is selected from the group consisting of potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids.
- 47. (Original) The method of claim 42 wherein said epoxidation reactions are carried out at a temperature within the range from about -10 °C to about 40 °C.
- 48. (Original) The method of claim 47 wherein said epoxidation reactions are carried out at room temperature.
- 49. (Original) The method of claim 42 wherein said epoxidation reactions are carried out at a pH within the range from about 7.0 to about 12.0.

- 50. (Original) The method of claim 49 wherein said pH is within the range from 7.0 to 7.5.
- 51. (Original) The method of claim 49 wherein said pH is controlled by using a pH-stat or a buffer.
- 52. (Previously Amended) The method of claim 51 wherein said buffer is selected from the group consisting of sodium bicarbonate, sodium carbonate, sodium borate, sodium hydrogenphosphate, sodium dihydrogenphosphate, sodium hydroxide, potassium hydrogenphosphate, potassium dihydrogenphosphate, potassium bicarbonate, potassium carbonate, potassium hydroxide, and mixtures thereof.
 - 53. (Previously Amended) A method comprising:

producing mostly 5β , 6β -epoxides of steroids by epoxidation reactions of Δ^5 -unsaturated steroids of generic formula XIII catalyzed by ketones of generic formula XIV, XV, XVI, and XVII, wherein

$$R_{8}$$
 R_{10} R_{11} R_{12} R_{12} R_{14}

 X_2 in formula (XIII) is selected from the group consisting of H, OR_q (where R_q = H or alkyl), OCH_2OCH_3 , $OCOR_y$ (where R_y = alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl), halogen, CN, alkyl, aryl, and $COOR_v$ (where R_v = H, alkyl or aryl), and,

 X_3 in formula (XIII) is selected from the group consisting of OR_q (where $R_q = H$

or alkyl), OCH_2OCH_3 , $OCOR_y$ (where R_y = alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl), halogen, CN, NO_2 , alkyl, and aryl; or,

X₂ and X₃ in formula (XIII) are selected from the group consisting of O, OCH₂CH₂O, and OCH₂CH₂CH₂O;

 R_8 in formula (XIII) is selected from H, OR_q (where $R_q = H$ or alkyl), $OCOR_y$ (where $R_y =$ alkyl or aryl), OCH_2OCH_3 , halogen, CF_3 , and CF_2CF_3 ;

 R_9 and R_{10} in formula (XIII) are each selected from the group consisting of H, alkyl, aryl, halogen, OR_q (where R_q = H or alkyl), $OCOR_y$ (where R_y = alkyl or aryl), $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl), COR_p (where R_p = alkyl), $COCH_2OR_q$ (where R_q = H or alkyl), $COCH_2OCOR_y$ (where R_y = alkyl or aryl), $COCH_2F$, $COOR_q$ (where R_q = H or alkyl), $C(OCH_2CH_2O)R_p$ (where R_p = alkyl), $C(OCH_2CH_2O)CH_2OR_q$ (where R_q = H or alkyl), $C(OCH_2CH_2O)CH_2OCOR_y$ (where R_y = alkyl or aryl), and $C(OCH_2CH_2O)CH_2F$; or R_9 and R_{10} in formula (XIII) are selected from the group consisting of O, OCH_2CH_2O , and OCH_2CH_2O ;

 R_{11} and R_{12} in formula (XIII) are each selected from the group consisting of H, C_1-C_4 alkyl, halogen, OR_q (where $R_q=H$ or alkyl), $OCOR_y$ (where $R_y=$ alkyl or aryl), and $OSiR_wR_xR_y$ (where R_w , R_x or $R_y=$ alkyl or aryl);

 R_{13} and R_{14} in formula (XIII) are each selected from the group consisting of H, halogen, OR_q (where $R_q = H$ or alkyl), and $OCOR_y$ (where $R_y =$ alkyl or aryl);

R₁₅ or R₁₆ in formula (XIV) is selected from alkyl and aryl;

 R_{17} or R_{18} in formula (XIV) is selected from H, alkyl, aryl, COOR_v (where $R_v =$ H, alkyl or aryl), and CONR_uR_v (where R_u or $R_v =$ H, alkyl or aryl);

 R_{19} or R_{20} in formula (XIV) is selected from H, C_1 – C_4 alkyl, halogenated alkyl, and halogen; and

A in formula (XIV) is selected from OTf, BF₄, OAc, NO₃, BPh₄, PF₆, and SbF₆;

$$R_{23}$$
 R_{24}
 R_{24}
 R_{22}
 R_{22}

Y in formula (XV) is selected from CH_2 , O, S, SO, SO_2 , and NR_q (where $R_q = H$ or alkyl);

 R_{21} or R_{22} in formula (XV) is selected from H, alkyl, aryl, COOR_v (where $R_v = H$, alkyl or aryl), and CONR_uR_v (where R_u or $R_v = H$, alkyl or aryl);

 R_{23} or R_{24} in formula (XV) is selected from H, halogen, C_1 – C_4 alkyl, halogenated alkyl, and OCOR_y (where R_y = alkyl or aryl);

$$R_{25}$$
 R_{26} XVI

 R_{25} or R_{26} in formula (XVI) is selected from C_1 – C_4 alkyl, halogenated alkyl, CH_2OCOR_y (where R_y = alkyl or aryl); and

Z in formula (XVII) is selected from H, C_1 – C_4 alkyl, aryl, NO_2 , CN, F, Cl, Br, I, $COOR_p$ (where R_p = alkyl), CH_2OR_q (where R_q = H or alkyl), $CH(OR_p)_2$ (where R_p = alkyl), CF_3 , CF_2CF_3 , OTf, OTs, $OCOR_y$ (where R_y = alkyl or aryl), and $OSiR_wR_xR_y$ (where R_w , R_x or R_y = alkyl or aryl).

- 54. (Previously Amended) The method of claim 53 wherein said C₁-C₄ alkyl is selected from the group consisting of methyl, ethyl, normal-propyl, iso-propyl, normal-butyl, iso-butyl, sec-butyl, and tert-butyl; and said aryl is selected from the group consisting of phenyl, substituted phenyl, naphthyl, and substituted naphthyl groups.
- 55. (Original) The method of claim 53 wherein said epoxidation reactions are carried out in a homogeneous solvent system selected from the group consisting of dimethoxymethane-acetonitrile-water, acetonitrile-water, acetone-water, dioxane-water, dimethoxyethane-water, and tetrahydrofuran-water, and mixtures thereof.
- 56. (Previously Amended) The method of claim 53 wherein said epoxidation reactions are carried out in a biphasic solvent system selected from the group consisting of dichloromethane-water, chloroform-water, benzene-water, toluene-water, dimethoxymethane-water, and diethylether-water, and mixtures thereof.
- 57. (Original) The method of claim 53 wherein said oxidizing reagent is selected from the group consisting of potassium peroxomonosulfate, sodium hypochlorite, sodium perborate, hydrogen peroxide, and peracids.
- 58. (Original) The method of claim 53 wherein said epoxidation reactions are carried out at a temperature within the range from about -10 °C to about 40 °C.

- 59. (Original) The method of claim 58 wherein said epoxidation reactions are carried out at room temperature.
- 60. (Original) The method of claim 53 wherein said epoxidation reactions are carried out at a pH within the range from about 7.0 to about 12.0.
- 61. (Original) The method of claim 60 wherein said pH is within the range from 7.0 to 7.5.
- 62. (Original) The method of claim 60 wherein said pH is controlled by using a pH-stat or a buffer.
- 63. (Previously Amended) The method of claim 62 wherein said buffer is selected from the group consisting of sodium bicarbonate, sodium carbonate, sodium borate, sodium hydrogenphosphate, sodium dihydrogenphosphate, sodium hydroxide, potassium hydrogenphosphate, potassium bicarbonate, potassium carbonate, potassium hydroxide, and mixtures thereof.