Machhine Learning | HW3 | Rohan Thorat | (201)-744-4816

Comparison between LDA algorithm, KNN algorithm and Logistic Regression over Breast Cancer Wisconsin Dataset to classify Malignant vs. Benign breast tumors.

Inference for the Project

Model Accuracy for Test data

Ranking based on Accuracy for LDA, KNN and Logistic Regression

1) LDA - 97.18% 2) KNN - 97.05% 3) Logistic Regression - 91.37%

Naming the variables

Id Number – V1 Diagnosis – V2

Diving Deep into the analysis for LDA

R Code for LDA

#Inputting raw data

Wdbc3<-read.csv("/Users/rohan/Desktop/DS630_MachineLearning/HW3/wdbc.data.txt") #View(wdbc3)

#Naming raw data

```
names(wdbc3)<-c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14",

"V15","V16","V17","V18","V19","V20","V21","V22","V23","V24","V25","V26","V27",

"V28","V29","V30","V31","V32")

#View(wdbc3)
```

#removing id number

wdbc3 <- wdbc3[,c(-1)] summary(wdbc3)

#splitting data

train <- wdbc3[1:426,] test <- wdbc3[427:568,]

#using MASS library for LDA

library(MASS) wdbclda <- Ida(V2~., data = train) summary(wdbclda)

#running prediction on training data

```
pred_train <- predict(wdbclda, train, type= "response")
ls(pred_train)
pred_train$class
table(train$V2,pred_train$class)</pre>
```

#creating confusionMatrix for training data

library(caret)

confusionMatrix(table(train\$V2,pred_train\$class), positive = "M")

B M B 249 1 M 12 164

#Accuracy for training data

Accuracy: 0.9695

#running prediction on testing data

pred_test <- predict(wdbclda, test, type = "response")
table(test\$V2,pred_test\$class)</pre>

#creating confusionMatrix() for test data

confusionMatrix(table(test\$V2,pred_test\$class), positive = "M")

B M B 106 1 M 3 32

#Accuracy for testing data

Accuracy: 0.9718

Diving Deep into the analysis for KNN

#Inputting raw data

wdbc2<-read.csv("/Users/rohan/Desktop/DS630_MachineLearning/HW3/wdbc.data.txt") #View(wdbc2)

#Naming raw data

```
names(wdbc2)<-c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14",

"V15","V16","V17","V18","V19","V20","V21","V22","V23","V24","V25","V26","V27",

"V28","V29","V30","V31","V32")

#View(wdbc2)
```

#removing id number

wdbc2 <- wdbc2[,c(-1)] summary(wdbc2)

#Scaling Data

wdbc2Normalized <- as.data.frame(scale(wdbc2[-1]))

#splitting data

train <- wdbc2Normalized[1:426,] test <- wdbc2Normalized[427:568,] trainLabels <- wdbc2[1:426, 1] testLabels <- wdbc2[427:568, 1]

#running CLASS package for KNN

library(class)

#taking k approximately equal to square root of the number of rows in the training data

```
k <- 20
```

```
wdbcknn <- knn(train = train,test = test,cl = trainLabels,k)
```

#running gmodels library for crosstable function

library (gmodels)

CrossTable(x = testLabels, y = wdbcknn, prop.chisq = F, dnn = c('actual', 'predicted'))

Cell Contents			
N			
∣ N / Row Total ∣			
N / Col Total			
N / Table Total			
Total Observations in Table: 142			
I	predicted		
actual	В	I M	Row Total
			-
BI	107	1 0	I 107 I
I	1.000	0.000	l 0.754 l
	0.982	0.000	1
	0.754	0.000	1
		1	-
MI	2	I 33	I 35 I
	0.057	0.943	I 0.246 I
	0.018	1.000	1 1
	0.014	0.232	1 1
		I	-
Column Total	109	1 33	l 142 l
	0.768	0.232	1 1
			-
	·	·	

> #correctly detect as being malignant

> recall=33/(33+2)

> recall

[1] 0.9428571

> #predict benign tumors although they are malignant

> score=(2*((1*0.9428)/(1+0.9428)))

> score

[1] 0.970558

Diving Deep into the analysis for Logistic Regression

#Inputting raw data

wdbc1<-read.csv("/Users/rohan/Desktop/DS630_MachineLearning/HW3/wdbc.data.txt")
#View(wdbc1)</pre>

#Naming raw data

```
names(wdbc1)<-c("V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14",

"V15","V16","V17","V18","V19","V20","V21","V22","V23","V24","V25","V26","V27",

"V28","V29","V30","V31","V32")

#View(wdbc)
```

#Removing id number

wdbc1 <- wdbc1[,c(-1)]
summary(wdbc1)</pre>

#Removing outliers after comparing the histograms for all the variables

wdbc1<-subset(wdbc1,V4<35 & V7<0.15 & V13<1.5 & V12<0.09 & V14<3 & V17<0.20 & V20<0.045) summary(wdbc1)

#Checking for NA values

complete.cases(wdbc1)

#Random Sampling of data as 75% Train and 25% Test

indexes = sample(1:nrow(wdbc1), size=0.75*nrow(wdbc1))

#Splitting data

train = wdbc1[indexes,]
dim(train)
test = wdbc1[-indexes,]
dim(test)

#Running the GLM model for logistic regression with the significant values alone

 $model11 < -glm(V2^V4+V7+V12+V13+V14+V17+V20, data=train, family = binomial)$ summary(model11)

#Running prediction on training data

```
pred_train<-predict(model11,train, type = "response")
train$result<-ifelse(pred_train >0.5, "M","B")
cv<-table(train$result,train$V2)
cv</pre>
```

B M B 265 17 M 10 125

#Accuracy for training data

Accuracy: 0.9353

#Creating confusionMatrix() for test data

confusionMatrix(cv,positive = "M")

#Running prediction on testing data

pred_test <- predict(model11,test,type="response")
test\$result<-ifelse(pred_test > 0.5 ,"M","B")
cv_1<-table(test\$result,test\$V2)
cv_1</pre>

B M B 72 16 M 4 47

#Accuracy for test data

Accuracy: 0.8561

#Creating confusionMatrix() for test data

confusionMatrix(cv_1,positive = "M")

#ROCR curve

#install.packages("ROCR")
library(ROCR)
ROCRpred<-prediction(pred_test, test\$V2)
ROCRperf<-performance(ROCRpred,'tpr','fpr')
plot(ROCRperf,colorize = TRUE, text.adj = c(-0.2,1.7))</pre>

