Lösungen Testat STOC SW08

Daniel Winz

25. April 2013 14:16

Inhaltsverzeichnis

1	Aufgabe 1	2
	1.1 a	2
	1.2 b	2
2	Aufgabe 2	3
	2.1 a	9
	2.2 b	9
3	Aufgabe 3	3
	3.1 a	5
	3.2 b	
	3.3 c	4
4	Aufgabe 4	4
	4.1 a	4
	4.2 b	4
	4.3 c	

Aufgabe 1 1

1.1 a

$$F_x(x) = 1 - e^{-\lambda x} = u$$

$$1 - u = e^{-\lambda x}$$

$$\ln(1 - u) = -\lambda x$$

$$x = -\frac{\ln(1 - u)}{\lambda} = \triangleq F_x^{-1}(u)$$
and <- 1000

> anz <- 1000

> x <- -(log(1-runif(n=anz,min=0,max=1)))/(2)

> hist(x)

Histogram of x

1.2 b

- > anz <- 10000
- > quantexp <- qexp((seq(1,anz,by=1)-0.5)/anz,rate=2)</pre>
- $> x <- -(\log(1-runif(n=anz,min=0,max=1)))/(2)$
- > qx <- sort(x)
- > plot(quantexp,qx)

2 Aufgabe 2

2.1 a

> 1-ppois(q=12,lambda=60/15)

[1] 0.0002737168

2.2 b

> ppois(q=6,lambda=60/15)

[1] 0.889326

3 Aufgabe 3

3.1 a

$$E(x+2y) = \mu_x + 1\mu_y = 40 + 2 \cdot 85 = 210$$

$$Var(x+2y) = Var(x) + Var(2y) = \sigma_x^2 + 2^2 \sigma_y^2 = 15^2 + 4 \cdot 18^2 = 1521$$

$$E(x^2) = Var(x) + E(x)^2 = \sigma_x^2 + \mu_x^2 = 15^2 + 40^2 = 1825$$

- 3.2 b
- 3.3 c

4 Aufgabe 4

4.1 a

- > par(mfrow=c(1,2)) # Mehrere Grafiken neben- und untereinander
- > werte <- c(0,10,11) # moegliche Werte von X
- > sim <- sample(werte,1000, replace = TRUE) # X simulieren
- > hist(sim, main=paste("Original")) # Histogramm erstellen
- > qqnorm(sim) # Normalplot erstellen

4.2 b

- > par(mfrow=c(1,2))
- > n<-5
- > sim<-matrix(sample(werte,n*1000,replace=TRUE),ncol=n)</pre>
- > # X_1, \ldots, X_n simulieren und in einer n-spaltigen Matrix
- > # (mit 1000 Zeilen) anordnen
- > sim.mean<- apply(sim,1,"mean") #In jeder Matrixzeile Mittelwert berechnen
- > hist(sim.mean)
- > title(paste("Mittelwerte von",n,"Beobachtungen"))
- > qqnorm(sim.mean)

Mitte Mietteg vann 5 Beiorbace aung

Normal Q-Q Plot

1 2 3

4.3 c

- > par(mfrow=c(1,2))
- > n<-10
- > sim<-matrix(sample(werte,n*1000,replace=TRUE),ncol=n)</pre>
- > # X_1,...,X_n simulieren und in einer n-spaltigen Matrix
- > # (mit 1000 Zeilen) anordnen
- > sim.mean<- apply(sim,1,"mean") #In jeder Matrixzeile Mittelwert berechnen
- > hist(sim.mean)
- > title(paste("Mittelwerte von",n,"Beobachtungen"))
- > qqnorm(sim.mean)

Mittel Weste gram 10f Beabae atung

Normal Q-Q Plot

- > par(mfrow=c(1,2))
- > n<-200
- > sim<-matrix(sample(werte,n*1000,replace=TRUE),ncol=n)</pre>
- > # X_1, \ldots, X_n simulieren und in einer n-spaltigen Matrix
- > # (mit 1000 Zeilen) anordnen
- > sim.mean<- apply(sim,1,"mean") #In jeder Matrixzeile Mittelwert berechnen
- > hist(sim.mean)
- > title(paste("Mittelwerte von",n,"Beobachtungen"))
- > qqnorm(sim.mean)

1 2 3

Theoretical Quantiles

-3

6.0

7.0

sim.mean

8.0