

1/24

FIGURE 1

2/24FIGURE 2

	10	20	30	40	50	
MOUSE-X1.DNA	1 ATGAGGCTTC	CTGGTTGGTT	GTGGCTGAGT	TCTGCCGTCC	TCGCTGCCCTG	50
HUMAN-X1.DNA	1 ATGAAGCTGG	CTAACTGGTA	CTGGCTGAGC	TCAGCTGTT	TTGCCACTTA	50
	60	70	80	90	100	
MOUSE-X1.DNA	51 CCGAGC---G	GTGGAGGGAGC	ACAACCTGAC	TGAGGGGCTG	GAGGATGCCA	100
HUMAN-X1.DNA	51 CGGTTTTTG	GTTGTGGCAA	ACAATGAAAC	AGAGGAAATT	AAAGATGAAA	100
	110	120	130	140	150	
MOUSE-X1.DNA	101 GCGCCCAGGC	TGCCTGCC	GCGAGGCTGG	AGGGCAGCGG	GAGGTGCGAG	150
HUMAN-X1.DNA	101 GAGCAAAGGA	TGTCTGCCA	GTGAGACTAG	AAAGCAGAGG	GAAATGCGAA	150
	160	170	180	190	200	
MOUSE-X1.DNA	151 GGGA---GCC	AGTCCCCCTT	CCAGCTCACCC	CTGCCAACGC	TGACCATCCA	200
HUMAN-X1.DNA	151 GAGGCAGGGG	AGTCCCCCTA	CCAGGTAAGC	CTGCCCCCCCT	TGACTATTCA	200
	210	220	230	240	250	
MOUSE-X1.DNA	201 GCTCCCGCGG	CAGCTTGGCA	GCATGGAGGA	GGTGCTCAA	GAAGTGCAGG	250
HUMAN-X1.DNA	201 GCTCCCGAAG	CAATTCAAGCA	GGATCGAGGA	GGTGTCAA	GAAGTCCAAA	250
	260	270	280	290	300	
MOUSE-X1.DNA	251 CCCTCAAGGA	AGCAGTGGAC	AGTCTGAAGA	AATCTGCCA	GGACTGTAAG	300
HUMAN-X1.DNA	251 ACCTCAAGGA	AATCGTAAAT	AGTCTAAAGA	AATCTGCCA	AGACTGCAAG	300
	310	320	330	340	350	
MOUSE-X1.DNA	301 TTGCAGGCTG	ACGACCATCG	AGATCCCGGC	GGGAATGGAG	GG-----	350
HUMAN-X1.DNA	301 CTGCAGGCTG	ATGACAACGG	AGACCCAGGC	AGAAACGGAC	TGTTGTTACC	350
	360	370	380	390	400	
MOUSE-X1.DNA	351 -AAT---GGA	GC---AGAGA	CAGCCGAGGA	CAGTAGAGTC	CAGGAACCTGG	400
HUMAN-X1.DNA	351 CAGTACAGGA	GCCCCGGGAG	AGGTTGGTGA	TAACAGAGTT	AGAGAATTAG	400
	410	420	430	440	450	
MOUSE-X1.DNA	401 AGAGTCAGGT	GAACAAGCTG	TCCTCAGAGC	TGAAGAATGC	AAAGGACCAG	450
HUMAN-X1.DNA	401 AGAGTGAGGT	TAACAAGCTG	TCCTCTGAGC	TAAAGAATGC	CAAAGAGGAG	450
	460	470	480	490	500	
MOUSE-X1.DNA	451 ATCCAGGGGC	TGCAGGGGCG	CCTGGAGACG	CTCCATCTGG	TAAATATGAA	500
HUMAN-X1.DNA	451 ATCAATGTAC	TTCATGGTCG	CCTGGAGAAG	CTGAATCTTG	TAAATATGAA	500
	510	520	530	540	550	
MOUSE-X1.DNA	501 CAACATTGAG	AACTACGTGG	ACAACAAAGT	GGCAAATCTA	ACCGTTGTGG	550
HUMAN-X1.DNA	501 CAACATAGAA	AATTATGTTG	ACAGCAAAGT	GGCAAATCTA	ACATTTGTTG	550
	560	570	580	590	600	
MOUSE-X1.DNA	551 TCAACAGTTT	GGATGGCAAG	TGTTCCAAGT	GTCCCAGCCA	AGAACACATG	600
HUMAN-X1.DNA	551 TCAATAGTTT	GGATGGCAAA	TGTTCAAAGT	GTCCCAGCCA	AGAACAAATA	600
	610	620	630	640	650	
MOUSE-X1.DNA	601 CAGTCACAGC	CGG.....	650
HUMAN-X1.DNA	601 CAGTCACGTC	CAG.....	650

3/24FIGURE 3

	10	20	30	40	50	
MOUSE-X2.DNA	1 TTCAACATCT	AATATACAAA	GATTGTTCCG	ACCACTACGT	GCTAGGAAGG	50
HUMAN-X2.DNA	1 TTCAACATCT	AATATATAAA	GATTGCTCTG	ACTACTACGC	AATAGGCAAA	50
	60	70	80	90	100	
MOUSE-X2.DNA	51 AGAACAGTG	GGGCCTACAG	AGTTACCCCT	GATCACAGAA	ACAGCAGCTT	100
HUMAN-X2.DNA	51 AGAACAGTG	AGACCTACAG	AGTTACACCT	GATCCCAAAA	ATAGTAGCTT	100
	110	120	130	140	150	
MOUSE-X2.DNA	101 TGAGGTCTAC	TGTGACATGG	AGACCATGGG	TGGAGGCTGG	ACGGTGCTGC	150
HUMAN-X2.DNA	101 TGAAGTTTAC	TGTGACATGG	AGACCATGGG	GGGAGGCTGG	ACAGTGCTGC	150
	160	170	180	190	200	
MOUSE-X2.DNA	151 AGGCTCGCCT	TGATGGCAGC	ACCAAATTCA	CCAGAGAGTG	GAAAGACTAC	200
HUMAN-X2.DNA	151 AGGCACGTCT	CGATGGGAGC	ACCAAATTCA	CCAGAACATG	GCAAGACTAC	200
	210	220	230	240	250	
MOUSE-X2.DNA	201 AAAGCCGGCT	TTGGAAACCT	TGAACGAGAA	TTTGGTTGG	GCAACGATAA	250
HUMAN-X2.DNA	201 AAAGCAGGCT	TTGGAAACCT	CAGAAGGGAA	TTTGGCTGG	GGAACGATAA	250
	260	270	280	290	300	
MOUSE-X2.DNA	251 AATTCACTT	CTGACCAAGA	GTAAGGAAAT	GATTTGAGA	ATAGATCTG	300
HUMAN-X2.DNA	251 AATTCACTT	CTGACCAAGA	GTAAGGAAAT	GATTCTGAGA	ATAGATCTG	300
	310	320	330	340	350	
MOUSE-X2.DNA	301 AAGACTTTAA	TGGTCTCACA	CTTTATGCCT	TGTATGATCA	GTTTTATGTG	350
HUMAN-X2.DNA	301 AAGACTTTAA	TGGTGTGAA	CTATATGCCT	TGTATGATCA	GTTTTATGTG	350
	360	370	380	390	400	
MOUSE-X2.DNA	351 GCTAATGAAT	TTCTCAAATA	CCGATTACAC	ATCGGTAACT	ACAATGGCAC	400
HUMAN-X2.DNA	351 GCTAATGAGT	TTCTCAAATA	TCGTTTACAC	GTTGGTAACT	ATAATGGCAC	400
	410	420	430	440	450	
MOUSE-X2.DNA	401 GGCAGGGAT	GCCTTGCAGT	TCAGTCGACA	CTACAACCAT	GACCTGAGGT	450
HUMAN-X2.DNA	401 AGCTGGAGAT	GCATTACGTT	TCAACAAACA	TTACAACAC	GATCTGAAGT	450
	460	470	480	490	500	
MOUSE-X2.DNA	451 TTTTCACAAAC	CCCAGACAGA	GACAACGATC	GGTACCCCTC	TGGGAACTGT	500
HUMAN-X2.DNA	451 TTTTCACCAAC	TCCAGATAAA	GACAATGATC	GATATCCTTC	TGGGAACTGT	500
	510	520	530	540	550	
MOUSE-X2.DNA	501 GGGCTCTATT	ACAGCTCAGG	CTGGTGGTTT	GATTCACTGTC	TCTCTGCCAA	550
HUMAN-X2.DNA	501 GGGCTGTACT	ACAGTTCAAG	CTGGTGGTTT	GATGCATGTC	TTTCTGCAAA	550
	560	570	580	590	600	
MOUSE-X2.DNA	551 CTTAAATGGC	AAATATTACC	ACCAAGAAATA	CAAAGGTGTC	CGTAATGGGA	600
HUMAN-X2.DNA	551 CTTAAATGGC	AAATATTATC	ACCAAAAAATA	CAGAGGTGTC	CGTAATGGGA	600
	610	620	630	640	650	
MOUSE-X2.DNA	601 TTTTCTGGGG	CACCTGGCCT	GGTATAAAC	AGGCACAGCC	AGGTGGCTAC	650
HUMAN-X2.DNA	601 TTTTCTGGGG	TACCTGGCCT	GGTGTAAAGTG	AGGCACACCC	TGGTGGCTAC	650
	660	670	680	690	700	
MOUSE-X2.DNA	651 AAGTCCTCCT	TCAAACAGGC	CAAGATGATG	ATTAGGCCA	AGAATTCAA	700
HUMAN-X2.DNA	651 AAGTCCTCCT	TCAAAGAGGC	TAAGATGATG	ATCAGACCCA	AGCACTTTAA	700
	710	720	730	740	750	
MOUSE-X2.DNA	701 GCCATAA...	750
HUMAN-X2.DNA	701 GCCATAA...	750

5/24FIGURE 5

	10	20	30	40	50	
MOUSEPRO.AMI	1 VRIPPGALALS	SAVLAACR-A	VEEHNLTEGL	EDASAQAAEF	ARLEGSRPE	50
HUMANPRO.AMI	1 EKLANKYFLES	SAVLATYGFL	WVANSEEEI	KDERAKDVSE	VRLESRSKEE	50
	60	70	80	90	100	
MOUSEPRO.AMI	51 -GSOCEPFLT	LFTLTIOLER	ILGSMEEVLR	EVRTLKEAVD	SLKKSCODCK	100
HUMANPRO.AMI	51 EAGECPYCVS	LFPPLTIOLPK	SFSRIEEVFR	EVQNLKEIVN	SLKKSCODCK	100
	110	120	130	140	150	
MOUSEPRO.AMI	101 LOADDHRDPG	GNG----GN	GAETAESRV	QELESQVNKL	SSELKNAKDQ	150
HUMANPRO.AMI	101 LOADDNGDPG	RNGLLLPSSTG	APGEVGUNRV	RELESEVNKL	SSELKNAKEE	150
	160	170	180	190	200	
MOUSEPRO.AMI	151 IQGLQGRLET	LHLVNMNNIE	NYVDNKVANL	FVVVNSLDGK	CSKCPSOEHM	200
HUMANPRO.AMI	151 INVLIHGRLEK	LNLVNMNNIE	NYVDSKVANL	FEVVVNSLDGK	CSKCPSOEQI	200
	210	220	230	240	250	
MOUSEPRO.AMI	201 DSOPVQHLY	KDCSDHYVLG	PRSSGAYRVT	PDHRNSSFEV	YCDMETMGGG	250
HUMANPRO.AMI	201 DSRPVQHLY	KDCSDYYAIS	KRSSETYRVT	PDPKNSSFEV	YCDMETMGGG	250
	260	270	280	290	300	
MOUSEPRO.AMI	251 NTVLQARLDG	STNFTREAKD	YKAGFGNLER	EFWLGNDKIH	LLTKSKEMIL	300
HUMANPRO.AMI	251 NTVLQARLDG	STNFTPTAQL	YKAGFGNLRP	EFWLGNDKIH	LLTKSKEMIL	300
	310	320	330	340	350	
MOUSEPRO.AMI	301 RIDLEDFNGL	TLYALYDOFY	VANEFLKYRL	HIGNYNNTAG	DALRFSRHYN	350
HUMANPRO.AMI	301 RIDLEDFNGV	ELYALYDOFY	VANEFLKYRL	HVGNYNNTAG	DALRENKHYN	350
	360	370	380	390	400	
MOUSEPRO.AMI	351 HDLRFITTPD	RDNDRYPSGN	EGLYYSSGWW	FDSCLSANLN	SKYYHQKYKE	400
HUMANPRO.AMI	351 HDLKFFTPD	KDNDRYPSGN	EGLYYSSGWW	FDACLSANLN	SKYYHQKYRS	400
	410	420	430	440	450	
MOUSEPRO.AMI	401 VRNGIFWTW	PGINQAOPGG	YKSSFKQAKM	MIRPKNEFP*	450
HUMANPRO.AMI	401 VRNGIFWTW	PGVSEAHPGG	YKSSFKEAKM	MIRPKHFKP*	450

6/24FIGURE 6

	10	20	30	40	50	
MOUSEPRO.AMI	1 MRLPGWLWLS	SAVLAACR-A VEEHNLTEGL	EDASAQAACP ARLEGSGRCE			50
HUMANPRO.AMI	1 MKLANWYWLS	SAVLATYGFL VVANNETEEI	KDERAKDVCP VRLESRGKCE			50
	60	70	80	90	100	
MOUSEPRO.AMI	51 -GSQCPFQLT	LPTLTQLPR QLGSMEEVLK	EVRTLKEAVD SLKKSCQDCK			100
HUMANPRO.AMI	51 EAGECPYQVS	LPPLTQLPK QFSRIEEVK	EVQNLKEIVN SLKKSCQDCK			100
	110	120	130	140	150	
MOUSEPRO.AMI	101 LQADDHRDPG	GNG-----GN	GAETAEDSRV QELESQVNKL SSELKNAKDQ			150
HUMANPRO.AMI	101 LQADDNGDPG	RNGLLPSTG	APGEVGDNRV RELESEVNKL SSELKNAKEE			150
	160	170	180	190	200	
MOUSEPRO.AMI	151 IQGLQGRLET	LHLVNMNNIE NYVDNKVANL	TVVVNSLDGK CSKCPSQEHM			200
HUMANPRO.AMI	151 INV LHGRLEK	LNLVNMNNIE NYVDSKVANL	TFVVNSLDGK CSKCPSQEIQI			200
	210	220	230	240	250	
MOUSEPRO.AMI	201 QSQPVQHLY	KDCSDHYVLG RRSSGAYRVT	PDH RNSSFEV YCDMETMGGG			250
HUMANPRO.AMI	201 QSRPVQHLY	KDCSDYYAIG KRSSETYRVT	PDPKNSSFEV YCDMETMGGG			250
	260	270	280	290	300	
MOUSEPRO.AMI	251 WTVLQARLDG	STNFTRREWKD YKAGFGNLER	EFWLGNDKI H LLTKSKEMIL			300
HUMANPRO.AMI	251 WTVLQARLDG	STNFTRTWQD YKAGFGNLRR	EFWLGNDKI H LLTKSKEMIL			300
	310	320	330	340	350	
MOUSEPRO.AMI	301 RIDLEDFNGL	TLYALYDQFY VANEFKYRL	HIGNYNTAG DALRF SRHYN			350
HUMANPRO.AMI	301 RIDLEDFNGL	ELYALYDQFY VANEFKYRL	HVGNYNTAG DALRFNKHYN			350
	360	370	380	390	400	
MOUSEPRO.AMI	351 HDLRF FFTPD	RDNDRYPSGN CGLYYSSGWW	FDSCLS ANLN GKYYHQKYKG			400
HUMANPRO.AMI	351 HDLKFFFTPD	KDNDRYPSGN CGLYYSSGWW	FDACL SANLN GKYYHQKYRG			400
	410	420	430	440	450	
MOUSEPRO.AMI	401 VRNGIFWGTW	PGINQAQPGG YKSSFKQAKM	MIRPKNFKP*			450
HUMANPRO.AMI	401 VRNGIFWGTW	PGVSEAHPGG YKSSFKEAKM	MIRPKHFKP*			450

7/24

FIGURE 7

8/24FIGURE 8

	10	20	30	40	50	
MOUSEPRO.DNA	1 TCGGTTTGGGA	TATCATGGGA	TG-GAATGAG	AAGGGA-AAG	TAGGAGCCG	50
HUMANPRO.DNA	1 TAGGGTTGGGA	AGCCAGGTCT	CCTGAGTATG	CGAGAATAAA	TACAGTCATG	50
	60	70	80	90	100	
MOUSEPRO.DNA	51 AGAGTGCAGGT	AAGACAA--G	GCATAAGGCG	TGTCTGACAA	ATTCTTCATA	100
HUMANPRO.DNA	51 GAAGTGTAAA	GAGTCTGCCA	ACATTTGAG	AATGTGAATA	GGATTTGGC-	100
	110	120	130	140	150	
MOUSEPRO.DNA	101 CACACATTC	CCCTTGAC	ATTCAAGTCTG	TATAGTTAT	TTCTATAGGA	150
HUMANPRO.DNA	101 TA-AAATTAA	GGGGATATAAC	AGAAAAGTCA	TAGGAAATCA	GGTTAAAGAC	150
	160	170	180	190	200	
MOUSEPRO.DNA	151 GAAAAAAAAT	ATTCAAATTC	CTTGTGCACT	G-GTAACAGG	CATGAAGGCT	200
HUMANPRO.DNA	151 ATAAATATGA	GATAGGCTAC	AGAGTGTGTT	AAGTAATACA	ATAAAACATT	200
	210	220	230	240	250	
MOUSEPRO.DNA	201 CAGCAAAGCC	AATACGTGTT	ATGTCCAGTT	GGAGACAGTG	CCAGGGCCAA	250
HUMANPRO.DNA	201 TAG--ATTTT	TGCCCATGTC	A-GTCATTTT	GAAATTATTT	TTAAAGCAAA	250
	260	270	280	290	300	
MOUSEPRO.DNA	251 CATTCCAGAC	TTCTCAGATA	GAAAGTGCAG	CTGCCTGCC	-TGCTCTGAG	300
HUMANPRO.DNA	251 AAAACC---C	TTTTTAAACA	AGAAATCTTA	TGAGATGTCA	ATATGCAAAA	300
	310	320	330	340	350	
MOUSEPRO.DNA	301 --AATTGAA	GAGAGTAGTT	C----AGTTA	GAATTAAGAG	GCAGTAGAGA	350
HUMANPRO.DNA	301 CAAATTAAAA	GGAGGTGGTT	TCTCTAACTG	AAGCTGTTCC	TCTTCCTGC	350
	360	370	380	390	400	
MOUSEPRO.DNA	351 AA--AGTCTT	GGGAAATCTG	GTTAGAGA--	TATAAATATG	AGAACTGGAC	400
HUMANPRO.DNA	351 CTTCAGCCTC	TGAAGAGAAA	GTTAGAAAAC	TATTATCATT	AATGCTACAT	400
	410	420	430	440	450	
MOUSEPRO.DNA	401 ATGGTGGTAC	ACACCTGTGA	TCTCTGTGTT	TAGGAGGGAG	AGGCAGAGAG	450
HUMANPRO.DNA	401 GTTTGAA-AC	AAGCTGATAT	ACCAAGTGGC	CCAGAGAGC-	AGGTAGAAGA	450
	460	470	480	490	500	
MOUSEPRO.DNA	451 ATCAGGAGTT	CAAGGCCAGC	CTGAGCTACT	TGAGACCCAG	TCTAAATAAA	500
HUMANPRO.DNA	451 ACCAGCG---	TGGAGACAGA	--AAGCAA--	-GAGGCC-G	CCTGCCAGGG	500
	510	520	530	540	550	
MOUSEPRO.DNA	501 TAAGAGATAG	ATTACAGAGT	GCCTTAAC	AGTACAGAGA	AAGAATTG	550
HUMANPRO.DNA	501 CTACCTGCAG	AA-AGAAAGG	GCAAAGATGC	TGTAGGCAAG	AGAAGTTCA	550
	560	570	580	590	600	
MOUSEPRO.DNA	551 GTTATCTGT	GTCAGTTACG	CTGAAATAAT	TTTAAGTAA	AAAATCCCT	600
HUMANPRO.DNA	551 GACAGACACT	GGCA--TA-G	CTCAAA-GAT	TCACATTGA	GCAG----C	600
	610	620	630	640	650	
MOUSEPRO.DNA	601 TTTAATAAGA	AACCTTATGA	G-GTCAGTAT	GCACAATGAA	CTTAAGAGAG	650
HUMANPRO.DNA	601 TGTGGAAGAT	GACAGTACAA	TTACCAAAAT	GT-CGAAGGG	C--AAAGGAG	650
	660	670	680	690	700	
MOUSEPRO.DNA	651 ACCCCCAGCT	CCTGAGCTGA	GTGATGGGGA	AGGACAGCCA	CTGCCTGTGA	700
HUMANPRO.DNA	651 GC----AGCT	ACTGGTTT--	-TGATG---A	AAGACAATT	TGTCCTT--	700
	710	720	730	740	750	
MOUSEPRO.DNA	701 TGTGTGAGTG	ACGTGCTTCC	AAGTGTGTTA	ACCACTGACG	ATTACATAGC	750
HUMANPRO.DNA	701 TAAATGGGTC	TTAGACATT	AGACATTAT	AT-AC--ACT	ATGCTACGGA	750
	760	770	780	790	800	
MOUSEPRO.DNA	751 CTGCACAGTC	AGGAGAAAAC	AGCCGTATT	TCTGCCAGTT	CTCTTCCCTT	800
HUMANPRO.DNA	751 CAAAGGAAT-	AGAAAGTAGC	A-CTTTTTC	TCCACTAGTT	TTCTTCTCTT	800
	810	820	830	840	850	
MOUSEPRO.DNA	801 TTACAAACAG	ATGAGAGACA	CACACAGAGA	ATCCATTAA	AGAGCGGACC	850
HUMANPRO.DNA	801 TTTCAAGTAG	ATGAAGCAA	AGT-CAACTG	CAATAGTCAG	AAAGCTGTAC	850
	860	870	880	890	900	

9/24FIGURE 8 cont'd

MOUSEPRO.DNA	851	TTTGTCTGA	TTAGGGCAA	TTTAAGTAC	TTAAGAGTTC	ACACAAAGTC	900
HUMANPRO.DNA	851	TTTGTACAC	TTAGAAACTT	CTAAAAGTGC	TTAAGATTTC	ACCTGAAAGT	900
	910	920	930	940	950		
MOUSEPRO.DNA	901	TAGCCTCAA	AAAGAAAACA	GGTCCCCAAA	---CTA---	-GGGAGGAAA	950
HUMANPRO.DNA	901	CCAACAT-GA	AGAAAATACA	GGCTCCCCAA	TGCCCATTC	TAAGAAGAAA	950
	960	970	980	990	1000		
MOUSEPRO.DNA	951	CAGAACATT	TCCATTTGG	TGACATT-	GTGGGAAGAA	GCTCACAGAC	1000
HUMANPRO.DNA	951	AAGGACCATT	TTCATTTAG	TAACGTTCT	GTTCTATAGA	CAGTTGGAT	1000
	1010	1020	1030	1040	1050		
MOUSEPRO.DNA	1001	ATTTAGACGT	TCCAACCTTT	TCCCCACTAG	TG-----G	ACCAAGT-AT	1050
HUMANPRO.DNA	1001	AACTAGCTCT	TACTTTTAT	CTTTAAAAAC	TGTTTTCCA	GTGAAGTTAC	1050
	1060	1070	1080	1090	1100		
MOUSEPRO.DNA	1051	ATAATATGGT	ATCTTTGGG	CACTGGTATT	ACAA-CTGTT	TTTAAACAA	1100
HUMANPRO.DNA	1051	GTATAATTAT	TTACTTCAAG	CG-TAGTATA	CCAAATTACT	TTAGAAATGC	1100
	1110	1120	1130	1140	1150		
MOUSEPRO.DNA	1101	AAGACTTTCC	TTGTGCTTTA	CTAAAAAC-C	CA-GACGGTG	AATCTTGAAT	1150
HUMANPRO.DNA	1101	AAGACTTTTC	TTATACTTCA	TAAAATACAT	TATGAAAGTG	AATCTG--T	1150
	1160	1170	1180	1190	1200		
MOUSEPRO.DNA	1151	ACAATGCGTG	GCACCCACGG	CAGGCATTCT	ATTGTGCATA	GTTTTGACTG	1200
HUMANPRO.DNA	1151	TGGCTGTGTA	CATTGACTA	TAATAATTTC	AATGCATATT	ATTTCTATTG	1200
	1210	1220	1230	1240	1250		
MOUSEPRO.DNA	1201	ACAGGAGATG	ACAGCATTG	GCTGGCTGCG	CTTGCTGAGG	ACCCTCTCCT	1250
HUMANPRO.DNA	1201	AGAGTAAGTT	ACAGTTTTG	GCAAACCTGCG	TTTGATGAGG	GCTATCTCCT	1250
	1260	1270	1280	1290	1300		
MOUSEPRO.DNA	1251	CCTG-TGTG-	GCGTCTGAGA	CT-GTGATGC	AAATGCCGCC	GCCCTTTCT	1300
HUMANPRO.DNA	1251	CTTCCTGTGC	GTTTCTAAA	CTTGTGATGC	AAACGCTCCC	ACCCTTTCT	1300
	1310	1320	1330	1340	1350		
MOUSEPRO.DNA	1301	GGGAACCTCAG	AACGCCTGAG	TCAGGGCGCG	GTGGCTATTA	AAGCG-----	1350
HUMANPRO.DNA	1301	GGGAACACAG	AAAGCCTGAC	TCAGGCCATG	GCCGCTATTA	AAGCAGCTCC	1350
	1360	1370	1380	1390	1400		
MOUSEPRO.DNA	1351	---CCTGGTC	AG-----GCT	GGGCT-GCCG	CACTGCAAGG	ATG.....	1400
HUMANPRO.DNA	1351	AGCCCTGCGC	ACTCCCTGCT	GGGTGAGCAG	CACTGTAAAG	ATG.....	1400

10/24

FIGURE 9

10 20 30 40 50
 TAGGGTTGGAAGCCAGGTCTCCTGAGTATGCGAGAATAAAATACAGTCATG
 60 70 80 90 100
 GAAGTGTAAAGAGTCTGCCAACATTTGAGAATGTGAATAGGATTGGCT
 110 120 130 140 150
 AAAATTAAAGGGATATACAGAAAAGTCATAGGAAATCAGGTTAAAGACAT
 TCF1 PEA3
 160 170 180 190 200
 AAAATATGAGATAGGCTACAGAGTGTTTAAGTAATACAATAAAACATT
 GATA1 NF IL6
 210 220 230 240 250
 GATTTTGCCCATGTCAGTCATTTGAAATTATTTAAAGCAAAAAAAAC
 NF IL6
 260 270 280 290 300
 CCTTTTAAACAAGAAATCTTATGAGATGTCAATATGCAAAACAAATTAA
 310 320 330 340 350
 AAGGAGGTGGTTCTCTAACTGAAGCTGTTCCTCTTCGCCTTCAGCC
 TCF1
 360 370 380 390 400
 TCTGAAGAGAAAGTTAGAAAACTATTATCATTAAATGCTACATGTTTGAA
 NF_E1
 410 420 430 440 450
 CAAGCTGATATACCAAGTGGCCCAGAGAGCAGGTAGAAGAACCACGCGTGG
 bHLH
 460 470 480 490 500
 AGACAGAAAGCAAGAGGCCGCCTGCCAGGGCTACCTGCAGAAQAAAGG
 NF IL6
 510 520 530 540 550
 GCAAAGATGCTGTAGGCAAGAGAAGTTCAGGACAGACACTGGCATAGCIC
 TCF1
 560 570 580 590 600
 :AAAGATTCACATTGAGCAGCTGGAAGATGACAGTACAATTACCAAAA
 TCF1 bHLH bHLH
 E2A
 610 620 630 640 650
 TGTCGAAGGGCAAAGGAGGCAGCTACTGGTTATGAAAGACAATTATG
 TCF1 NF IL6
 660 670 680 690 700
 TCCTTTAAATGGGTCTTAGACATTTAGACATTTATATACACTATGCTAC
 710 720 730 740 750
 GGACAAAGGAATAGAAAGTAGCACTTTCTCCACTAGTTTCTCT
 TCF1
 760 770 780 790 800
 TTTTCAAGTAGATGAAGCAAAAGTCAACTGCAATAGTCAGAAAGCTGTAC
 TCF1 bHLH

SUBSTITUTE SHEET (RULE 26)

11/24

FIGURE 9. CONT'D

12/24

FIGURE 10B

FIGURE 10A

13/24

FIGURE 11

14/24

FIGURE 12

Prevention of CsA Graft Rejection by CsA Alone or in Combination with Antibodies to Immune Coagulants

15/24

FIGURE 13

17/24

FIGURE 15

18/24

FIGURE 16

20/24

FIGURE 18

Prevention of Fetal Loss by Monoclonal Antibody 3D4.3

XENOTRANSPLANTATION CANADA

21/24

FIGURE 19

97.6 kDa →
60 kDa →
46 kDa →
30 kDa →

22/24

FIGURE 20

23/24

FIGURE 21

The lanes are:

1. H5cells
2. H5 + wild type virus
3. H5 + recombinant virus

97.6 kDa →
60 kDa →
46 kDa →
30 kDa →

1 2 3

24/24

FIGURE 22

97.6 kDa →
60 kDa →
46 kDa →
30 kDa →

1 2 3 4 5