II rok, Fizyka Wtorek, 8:00-10:15

Prowadząca: dr Sylwia Owczarek

Ćwiczenie nr 65

Wyznaczanie promienia krzywizny soczewki za pomocą pierścieni Newtona

1 Wstęp teoretyczny

Interferencja światła i spójność

Interferencja jest zjawiskiem charakterystycznym dla ruchów falowych, obserwowanym, gdy fale nakładają się na siebie. Zjawisko to jest ściśle związane z pojęciem spójności (koherencji) fal. Gdy fale pochodzące ze spójnych źródeł (np. drgających ze stałą częstością) interferują, powstaje regularna struktura miejsc, w których drgania się wygaszają i wzmacniają (Dryński, 1976).

Warunki interferencji i prążki jednakowej grubości

Wzmocnienie (maksimum) występuje, gdy różnica dróg optycznych interferujących promieni jest równa całkowitej wielokrotności długości fali $(k\lambda)$, a wygaszenie (minimum) dla nieparzystej wielokrotności połówek długości fali $((2k+1)\frac{\lambda}{2})$. Należy uwzględnić ewentualną zmianę fazy o π (odpowiadającą zmianie drogi optycznej o $\lambda/2$) przy odbiciu od ośrodka optycznie gęstszego (Dryński, 1976).

W przypadku oświetlenia cienkiej płytki o zmiennej grubości światłem rozciągłym, obserwuje się prążki interferencyjne umiejscowione na powierzchni płytki, biegnące przez punkty o jednakowej grubości. Są to tzw. krzywe jednakowej grubości (Dryński, 1976).

Pierścienie Newtona

Najdogodniejszym sposobem uzyskania regularnych prążków jednakowej grubości jest użycie **zestawu Newtona**. Składa się on z płasko-równoległej płytki szklanej i soczewki płasko-wypukłej o dużym promieniu krzywizny, położonej wypukłą stroną na płytce. Między soczewką a płytką tworzy się klin powietrzny o grubości d rosnącej wraz z odległością r od punktu styku (Dryński, 1976).

Gdy układ jest oświetlony prostopadle światłem jednorodnym (monochromatycznym), interferencja zachodzi między promieniami odbitymi od dolnej powierzchni soczewki i od górnej powierzchni płytki szklanej. Ponieważ grubość klina powietrznego jest stała wzdłuż okręgu o

środku w punkcie styku, powstają koncentryczne prążki interferencyjne zwane **pierścienia-mi Newtona**. W centrum obserwuje się ciemny prążek (k = 0), gdyż przy odbiciu od płytki szklanej (ośrodek gęstszy) następuje zmiana fazy o π (Dryński, 1976).

Dla padania prostopadłego ($\cos \beta \approx 1$), warunek na k-ty ciemny pierścień (minimum), uwzględniający zmianę fazy przy odbiciu od płytki, ma postać:

$$2nd = k\lambda$$

Dla klina powietrznego (n = 1):

$$2d_k = k\lambda$$

gdzie d_k to grubość warstwy powietrza dla k-tego ciemnego pierścienia (k = 0, 1, 2...) (Dryński, 1976).

Zasada pomiaru promienia krzywizny soczewki

Grubość warstwy powietrza d w odległości r od punktu styku można powiązać z promieniem krzywizny R soczewki. Z geometrii układu (rys. 157 w (Dryński, 1976)) wynika zależność $2Rd-d^2=r^2$. Ponieważ d jest bardzo małe w porównaniu z R, można pominąć człon d^2 , co daje przybliżony wzór:

$$d \approx \frac{r^2}{2R}$$

Podstawiając to do warunku na k-ty ciemny pierścień $(2d_k = k\lambda)$, otrzymujemy:

$$2\frac{r_k^2}{2R} = k\lambda$$

$$r_k^2 = kR\lambda$$

gdzie r_k to promień k-tego ciemnego pierścienia. Stąd można wyznaczyć promień krzywizny soczewki R: (Dryński, 1976).

$$R = \frac{r_k^2}{k\lambda}$$

2 Opracowanie wyników pomiarów

2.1 Tabele pomiarowe

Dla wybranych numerów prążków $n \in [2,6]$ (licząc od środkowego prążka) zmierzono położenia ich lewego, prawego, dolnego i górnego brzegu (oznaczone odpowiednio x_{min} , x_{max} , y_{min} i y_{max}). Ze względu na niezerową grubość prążków, pomiary dokonywano do ich, w osi X – lewej i w osi Y – dolnej krawędzi. Pomiary zostały zapisane w tabeli 1.

n	$x_{\rm max} [10^{-3} {\rm m}]$	$x_{\rm min} [10^{-3} \rm m]$	$y_{\rm max} [10^{-3} {\rm m}]$	$y_{\rm min} [10^{-3} {\rm m}]$
2	23,62	19,89	7,92	4,23
3	24,21	19,34	8,54	3,70
4	24,58	18,78	8,89	3,23
5	25,09	18,44	9,39	2,86
6	25,38	18,04	9,72	2,46

Tabela 1: Położenia lewej, prawej, dolnej i górnej krawędzi prążków.

2.2 Średnie promienie prążków

Dla każdego prążka z tabeli 1 wyznaczono średnicę w kierunku X: $D_{X,n} = x_{max,n} - x_{min,n}$ i w kierunku Y: $D_{Y,n} = y_{max,n} - y_{min,n}$. Następnie obliczono średni promień r_n jako połowę średniej arytmetycznej tych średnic (1). Wyniki zapisano w tabeli 2:

$$r_n = \frac{D_{X,n} + D_{Y,n}}{4},\tag{1}$$

gdzie indeks n określa numer prążka.

n	$D_X [10^{-3} \mathrm{m}]$	$D_Y [10^{-3} \mathrm{m}]$	$r_n [10^{-3} \mathrm{m}]$
2	3,73	3,69	1,855
3	4,87	4,84	2,4275
4	5,80	5,66	2,865
5	6,65	6,53	3,295
6	7,34	7,26	3,650

Tabela 2: Średnice (pozioma i pionowa) oraz średnie promienie prążków.

Przykładowe obliczenia

Dla n=2:

$$D_{X,2} = (23.62 - 19.89) \cdot 10^{-3} = 3.73 \cdot 10^{-3} \,\mathrm{m}$$

 $D_{Y,2} = (7.92 - 4.23) \cdot 10^{-3} = 3.69 \cdot 10^{-3} \,\mathrm{m}$
 $r_2 = \frac{(3.73 + 3.69) \cdot 10^{-3}}{4} = 1.855 \cdot 10^{-3} \,\mathrm{m}$

2.3 Promień krzywizny soczewki

Na podstawie wartości z tab. 2 wyznaczono promienie krzywizny soczewki R_i (dla każego i-tego pomiaru) ze wzoru (2). Wartości zapisano w tabeli 3.

$$R_n = \frac{r_n^2}{n \cdot \lambda},\tag{2}$$

gdzie:

- \bullet *n* numer prążka,
- r_n promień n-tego prążka,
- $\lambda = 589 \cdot 10^{-9} \,\mathrm{m}$ długość fali dla lampy sodowej.

n	R_n [m]
2	2,921
3	3,354
4	3,484
5	3,687
6	3,792

Tabela 3: Promienie krzywizny dla każdego prążka.

Ostateczna wartość promienia krzywizny \bar{R} została obliczona jako średnia arytmetyczna promieni krzywizny dla wszystkich prążków (3) i wyniosła 3,448 m.

$$\bar{R} = \frac{1}{5} \sum_{n=2}^{6} R_n \tag{3}$$

Przykładowe obliczenia

$$R_2 = \frac{(1,855 \cdot 10^{-3})^2}{2 \cdot 589 \cdot 10^{-9}} \approx 2,921 \,\mathrm{m}$$

$$\bar{R} = \frac{2,921 + 3,354 + 3,484 + 3,687 + 3,792}{5} \approx 3,448 \,\mathrm{m}$$

3 Ocena niepewności pomiaru

Literatura

Dryński, T. (1976). Ćwiczenia laboratoryjne z fizyki. Państwowe Wydawnictwo Naukowe, Warszawa, 5 edition.