Visualizing the Wine Quality Red Dataset

This document outlines the data visualization techniques used to explore the Wine Quality dataset, and the insights derived from these visualizations. The primary goal is to provide a comprehensive understanding of the key factors influencing wine quality.

Data Exploration and Cleaning

- Data Loading: The Wine Quality dataset was loaded into SAS for analysis.
- **Data Cleaning**: Necessary data cleaning steps were performed, including handling missing values and outliers.

Before diving into visualizations, let's see the key variables in the Wine Quality dataset:

- Fixed Acidity: The fixed acidity in the wine
- Volatile Acidity: The volatile acidity in the wine
- Citric Acid: The citric acid in the wine
- Residual Sugar: The residual sugar in the wine
- Chlorides: The chlorides in the wine
- Free Sulfur Dioxide: The free sulfur dioxide in the wine
- Total Sulfur Dioxide: The total sulfur dioxide in the wine
- **Density:** The density of the wine
- **pH:** The pH of the wine
- **Sulphates:** The sulphates in the wine
- Alcohol: The alcohol content in the wine
- Quality: The quality rating of the wine (0-10)

Visualization Techniques

1. Histogram of Quality Ratings

A histogram was created to visualize the distribution of quality ratings.

Creating the Histogram:

Here's the SAS code to create a histogram of the Quality variable:

```
/* Data Visualization*/

proc sgplot data=new_rdata;
histogram Quality;
title "Histogram of Wine Quality Ratings";
run;

181
```

Histogram Visualization of Wine Quality Ratings

Analyzing the Histogram of Wine Quality Ratings

Key Observations:

- **Distribution:** The histogram maintains its multimodal shape, with distinct peaks at quality ratings of 5, 6, and 7.
- **Central Tendency:** The median quality rating is likely still around 6, indicating that most wines fall within the average or slightly above-average range.
- Range: The overall range of quality ratings might have changed slightly due to outlier removal.
- **Skewness:** The distribution might have become less skewed or more symmetric depending on the specific outliers removed.

2. Scatter Plots Visualizations:

- 2a. Alcohol vs. Quality: Explore the relationship between alcohol content and quality.
- **2b. Scatter plot of Alcohol, Quality, and Fixed Acidity:** Analyze the relationship between alcohol, fixed acidity and quality.

2a. Analyzing the Scatter Plot of Alcohol vs. Quality

Key Observations:

- Clustering: The data points tend to cluster around specific quality levels, particularly 5, 6, and 7.
- **Limited Overlap:** There is limited overlap between the clusters for different quality levels, suggesting that alcohol content might be a differentiating factor.
- Outliers: A few outliers are visible, especially at lower quality levels and higher alcohol values.
- **Overall Trend:** While there is a general trend of higher quality wines having slightly higher alcohol levels, the relationship is not perfectly linear.

Interpretation:

• Quality Bands: The clustering around specific quality levels indicates that alcohol content might be one of the factors influencing wine quality, but it's not the sole determinant.

- **Outliers:** The outliers suggest that there might be some wines with unique characteristics or production processes that deviate from the general trends.
- Non-Linear Relationship: The scatter plot hints at a potential non-linear relationship between alcohol and quality. A more complex model might be needed to capture this relationship accurately.

2b. Scatter plot of Alcohol, Quality, and Fixed Acidity: Analyze the relationship between fixed acidity, alcohol and quality.

Example of the code below:

```
ods graphics / reset width=6.4in height=4.8in imagemap;

proc sgplot data=new_rdata;
scatter x=Alcohol y=Quality / group=Fixed_acidity;
xaxis grid;
yaxis grid;
run;

ods graphics / reset;
```

Scatter plot of Alcohol, Quality, and Fixed Acidity

Key Observations:

- **Clustering:** The data points tend to cluster around specific quality levels, particularly 5, 6, and 7, regardless of fixed acidity.
- **Limited Overlap:** There is limited overlap between the clusters for different quality levels, suggesting that fixed acidity might not be a strong differentiating factor for overall quality.
- Outliers: A few outliers are visible, especially at lower quality levels and higher alcohol values.
- **No Clear Trend:** There doesn't seem to be a strong linear relationship between alcohol and quality when considering fixed acidity as a grouping factor.

Interpretation:

- Quality is Influenced by Multiple Factors: The scatter plot suggests that wine quality is influenced by multiple factors beyond just alcohol and fixed acidity. Other variables might play a more significant role.
- **Fixed Acidity's Limited Effect:** While fixed acidity might contribute to quality, it doesn't seem to be a primary driver of the observed quality differences.
- **Outliers:** The outliers might represent wines with unique characteristics or production processes that deviate from the general trends.

3. Heatmap code is shown below to show interactions effects:

A correlation heatmap was generated to visualize the relationships between all variables.

See the code generated in SAS below:

```
243 /*heatmap*/
244 ods graphics / reset width=6.4in height=4.8in imagemap;
245
246 proc sort data=new_rdata out=_HeatMapTaskData;
247 by Quality;
248 run;
249
250 proc sgplot data= HeatMapTaskData;
251
        by Quality;
        heatmap x=Fixed_acidity y=Alcohol / name='HeatMap'
252
253
            colorresponse=Volatile acidity;
        gradlegend 'HeatMap';
254
255 run;
256
257 ods graphics / reset;
258
259 proc datasets library=WORK noprint;
260
      delete HeatMapTaskData;
261
        run;
262
```

Result of Heatmap Visualization

Analyzing the Correlation Plots

Key Observations:

- Alcohol vs. Quality: The scatter plot shows a general positive correlation between alcohol
 content and quality, with higher alcohol levels associated with higher quality ratings. However,
 there are some outliers, and the relationship is not perfectly linear.
- **Fixed Acidity vs. Quality:** The scatter plot reveals a weak negative correlation between fixed acidity and quality. This suggests that wines with slightly lower fixed acidity might have a slight advantage in terms of quality.
- Other Variable Relationships: The other scatter plots show various relationships between the variables. Some variables might have stronger or weaker correlations with quality than others.

Interpretation:

- **Alcohol as a Key Factor:** Alcohol content appears to be a significant factor influencing wine quality, with higher alcohol levels generally associated with higher ratings.
- **Fixed Acidity's Limited Effect:** Fixed acidity has a limited negative impact on quality, suggesting that it's not a primary driver of quality.
- Other Variables: The relationships between other variables and quality might be more complex and require further exploration.
- 4. **Multivariate Analysis:** we are going to use multivariate analysis techniques; specifically; **principal component analysis (PCA)** to identify underlying patterns and relationships among variables.

Principal Component Analysis) PCA is statistical techniques used to reduce the dimensionality of data by combining correlated variables into a smaller set of uncorrelated components. SAS provides several procedures to perform these analyses.

```
/*principal component analysis */
ods noproctitle;
ods graphics / imagemap=on;

proc princomp data=new_rdata plots(only)=(scree);
var Fixed_acidity Volatile_acidity Citric_acid Residual_sugar Chlorides
Free_sulfur_dioxide Total_sulfur_dioxide Density pH Sulphates Alcohol;
partial Quality;

run;
```

Result of the Principal Component Analysis

Observations	1153
Variables	11
Partial Variable	1

	Simple Statistics											
	Fixed_acidity	dity Volatile_acidity Citric_acid Residual_sugar Chlorides				Free_sulfur_dioxide	Total_sulfur_dioxide	Density	pH Sulphates		Alcohol	Quality
Mean	8.254206418	0.5251561145	0.2592974848	2.195229835	0.0782437121	15.66999133	45.63052905	0.9965666522	3.319132697	0.6454640069	10.42477595	5.636600173
StD	1.671986847	0.1798149235	0.1874192673	0.451750803	0.0151509911	9.64993531	31.17369302	0.0017773755	0.151334723	0.1499044162	1.05316937	0.796441452

					Constati	on Matrix							
					Correlati	on matrix							
		Fixed_acidity	Volatile_acidity	Citric_acid	Residual_sugar	Chlorides	Free_sulfur_dioxide	Total_sulfur_dioxide	Density	pН	Sulphates	Alcohol	Qualit
Fixed_acidity	Fixed_acidity	1.0000	2660	0.6813	0.2650	0.2174	1341	0852	0.6749	7117	0.1779	1336	0.102
Volatile_acidity	Volatile_acidity	2660	1.0000	5794	0.0127	0.1114	0162	0.1000	0.0181	0.2544	3088	1894	387
Citric_acid	Citric_acid	0.6813	5794	1.0000	0.1744	0.0990	0416	0.0423	0.3565	5274	0.2577	0.0896	0.220
Residual_sugar	Residual_sugar	0.2650	0.0127	0.1744	1.0000	0.2674	0.0561	0.1357	0.4246	0917	0.0351	0.0391	003
Chlorides	Chlorides	0.2174	0.1114	0.0990	0.2674	1.0000	0.0331	0.1750	0.4413	2205	0216	3373	198
Free_sulfur_dioxide	Free_sulfur_dioxide	1341	0162	0418	0.0561	0.0331	1.0000	0.6490	0433	0.0822	0.0850	0271	027
Total_sulfur_dioxide	Total_sulfur_dioxide	0852	0.1000	0.0423	0.1357	0.1750	0.6490	1.0000	0.0913	0497	0.0203	2194	203
Density	Density	0.6749	0.0181	0.3565	0.4246	0.4413	0433	0.0913	1.0000	3459	0.1076	5820	225
рН	рН	7117	0.2544	5274	0917	2205	0.0822	0497	3459	1.0000	0984	0.2299	050
Sulphates	Sulphates	0.1779	3088	0.2577	0.0351	0218	0.0850	0.0203	0.1076	0984	1.0000	0.1866	0.347
Alcohol	Alcohol	1338	1894	0.0898	0.0391	3373	0271	2194	5820	0.2299	0.1886	1.0000	0.494
Quality	Quality	0.1022	3876	0.2201	0035	1980	0279	2039	2256	0509	0.3477	0.4946	1.000

	Regression Statistics												
	Fixed_acidity Volatile_acidity Citric_acid Residual_sugar Chloride		Chlorides	Free_sulfur_dioxide	Total_sulfur_dioxide	Density pH		Sulphates	Alcohol				
R-Square	0.0104358742	0.1502542305	0.0484641038	0.0000122165	0.0391891385	0.0007799992	0.0415878273	0.0508751904	0.0025951745	0.1208835108	0.244653711		
RMSE	1.6639620063	0.1656439205	0.1829007143	0.4519442428	0.014857597	9.6503605383	30.531841043	0.0017323253	0.1512038668	0.1406132409	0.9157139821		

	Standardized Regression Coefficients											
Fixed_acidity Volatile_acidity Citric_acid Residual_sugar Chlorides						Free_sulfur_dioxide	Total_sulfur_dioxide	Density	рН	Sulphates	Alcohol	
Quality	0.1021581268	3876264058	0.2201456423	0034952070	1979624624	0279284655	2039309377	2255552934	0509428556	0.3476830609	0.4946248184	

	Partial Correlation Matrix												
		Fixed_acidity	Volatile_acidity	Citric_acid	Residual_sugar	Chlorides	Free_sulfur_dioxide	Total_sulfur_dioxide	Density	рН	Sulphates	Alcohol	
Fixed_acidity	Fixed_acidity	1.0000	2489	0.6790	0.2868	0.2437	1320	0661	0.7201	7111	0.1528	2130	
Volatile_acidity	Volatile_acidity	2469	1.0000	5494	0.0124	0.0383	0294	0.0232	0772	0.2549	2014	0.0029	
Citric_acid	Citric_acid	0.6790	5494	1.0000	0.1796	0.1492	0364	0.0913	0.4274	5298	0.1981	0463	
Residual_sugar	Residual_sugar	0.2668	0.0124	0.1798	1.0000	0.2721	0.0560	0.1379	0.4350	0920	0.0387	0.0470	
Chlorides	Chlorides	0.2437	0.0383	0.1492	0.2721	1.0000	0.0282	0.1403	0.4153	2355	0.0514	2809	
Free_sulfur_dioxide	Free_sulfur_dioxide	1320	0294	0364	0.0560	0.0282	1.0000	0.6574	0509	0.0809	0.1011	0153	
Total_sulfur_dioxide	Total_sulfur_dioxide	0661	0.0232	0.0913	0.1379	0.1403	0.6574	1.0000	0.0475	0815	0.0994	1393	
Density	Density	0.7201	0772	0.4274	0.4350	0.4153	0509	0.0475	1.0000	3874	0.2038	5556	
рН	рН	7111	0.2549	5298	0920	2355	0.0809	0615	3674	1.0000	0862	0.2939	
Sulphates	Sulphates	0.1528	2014	0.1981	0.0387	0.0514	0.1011	0.0994	0.2036	0862	1.0000	0.0180	
Alcohol	Alcohol	2130	0.0029	0463	0.0470	2809	0153	1393	5556	0.2939	0.0180	1.0000	

	Eigenvalue	s of the Partia	l Correlation	Matrix
	Eigenvalue	Difference	Proportion	Cumulative
1	3.34930549	1.58434673	0.3045	0.3045
2	1.76495877	0.26143615	0.1605	0.4649
3	1.50352262	0.41269806	0.1367	0.6016
4	1.09082456	0.17214379	0.0992	0.7008
5	0.91868077	0.22009812	0.0835	0.7843
6	0.69858265	0.03143927	0.0635	0.8478
7	0.66714338	0.25799531	0.0606	0.9085
8	0.40914807	0.05092885	0.0372	0.9457
9	0.35821922	0.17470249	0.0326	0.9782
10	0.18351673	0.12741896	0.0167	0.9949
11	0.05809777		0.0051	1.0000

	Eigenvectors												
		Prin1	Prin2	Prin3	Prin4	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10	Prin11	
Fixed_acidity	Fixed_acidity	0.481356	158545	0.007467	0.036924	117353	0.313440	0.114575	0.273312	188770	357099	0.615422	
Volatile_acidity	Volatile_acidity	212309	0.146358	542366	0.098352	0.012192	0.542258	0.397527	0.208354	0.170168	0.324135	0.004327	
Citric_acid	Citric_acid	0.412983	116451	0.358481	0.048010	174553	085459	009398	0.352586	0.420718	0.589029	044196	
Residual_sugar	Residual_sugar	0.213632	0.178424	173237	0.725768	152264	0.027896	306178	440405	030933	0.181266	0.142467	
Chlorides	Chlorides	0.251747	0.207119	348823	0.100409	0.066054	706206	0.486891	0.121888	058420	009412	0.058775	
Free_sulfur_dioxide	Free_sulfur_dioxide	021049	0.628573	0.264324	070881	110267	0.082870	044023	0.239720	619971	0.257377	022877	
Total_sulfur_dioxide	Total_sulfur_dioxide	0.061912	0.650233	0.176572	095964	162922	0.088843	0.074330	113896	0.571983	389646	0.032484	
Density	Density	0.447016	0.068407	291524	0.059126	0.192399	0.139621	319165	0.314666	036719	268014	613549	
pH	рН	402679	0.104128	066831	0.249577	0.252715	213630	437038	0.552347	0.190248	073869	0.336170	
Sulphates	Sulphates	0.148739	0.093062	0.306195	0.143981	0.869074	0.148106	0.206024	156023	0.023063	0.076874	0.069753	
Alcohol	Alcohol	236366	151851	0.375943	0.590837	182179	0.045761	0.393921	0.223327	088575	293685	315851	

- Scree Plot: The scree plot shows a rapid decrease in eigenvalues with the first few principal
 components, indicating that a significant amount of variance can be explained by a small
 number of components.
- **Variance Explained**: The variance explained plot shows that the first two principal components capture a substantial portion of the total variance in the data, suggesting that they are effective in summarizing the important information.
- **Eigenvectors**: The eigenvectors (loadings) for each principal component indicate the contribution of each variable to that component. You can use these loadings to interpret the meaning of the principal components.

Interpreting the Principal Components:

- PC1: Examine the loadings for PC1 to understand the variables that contribute most to this
 component. For example, if variables related to acidity have high loadings on PC1, it might
 suggest that PC1 represents an acidity factor.
- **PC2:** Analyze the loadings for PC2 to identify the variables that contribute most to this component. This might reveal another underlying factor or pattern in the data.
- **Subsequent Components**: Examine the loadings for subsequent principal components to understand the additional factors captured by the analysis.

Analyzing the Scree Plot

Key Observations:

- Steep Descent: The eigenvalues decrease rapidly with the first few principal components.
- Elbow Point: There appears to be an elbow point around the 3rd or 4th principal component.
- Diminishing Returns: Beyond the elbow point, the eigenvalues decrease more gradually.

Interpretation:

- **Dominant Factors:** The steep descent in the scree plot suggests that a few principal components capture a significant portion of the total variance in the data.
- **Optimal Number of Components**: The elbow point indicates that retaining the first 3 or 4 principal components might be sufficient to capture most of the important information.
- **Diminishing Returns**: Beyond the elbow point, adding more principal components would provide diminishing returns in terms of explained variance.

Based on the scree plot, it seems that 3 or 4 principal components would be sufficient to capture most of the important variation in the Wine Quality dataset. This suggests that the complexity of the data can be effectively reduced to a smaller number of dimensions.

Conclusion

- Quality is influenced by multiple factors: Wine quality is not determined by a single variable but rather by a combination of factors.
- **Alcohol and fixed acidity:** While alcohol content and fixed acidity play a role, they are not the sole determinants of quality.
- Other variables: Other variables, such as residual sugar, volatile acidity, and pH, also contribute to wine quality.
- **Dimensionality reduction:** PCA can be used to reduce the dimensionality of the data and identify the most important factors influencing quality.