LA DFT AU SERVICE DE L'HOMOLOGIE PERSISTANTE : APPLICATIONS À L'ANALYSE MUSICALE

Victoria Callet

Doctorante en Mathématiques à l'IRMA, Strasbourg sous la supervision de Pierre Guillot et Moreno Andreatta

victoria.callet@math.unistra.fr

Séminaire présenté à l'Institut de Recherche et Coordination Acoustique/Musique, Paris

14/12/2022

Introduction - Plan de l'exposé

- Homologie persistante
 - Théorie simpliciale
 - Filtration et persistance
 - Analyse topologique des données
- Modélisation : la DFT bi-dimensionnelle
 - La Transformée de Fourier Discrète
 - Persistance et DFT bi-dimensionnelle
 - Propriétés : transformations et isométries
- Applications à l'analyse musicale
 - La DFT sur le Tonnetz
 - Vers une classification du style musical ?

Introduction - Quelques références

Emmanuel Amiot.

Robert Ghrist.

Music through Fourier space.

Louis Bigo and Moreno Andreatta. Filtration of pitch-class sets complexes.

Mattia G. Bergomi, Adriano Baratè, and Barbara Di Fabio.

Towards a topological fingerprint of music.

Victoria Callet.

Persistent homology on musical bars.

Barcodes: the persistent topology of data.

Afra Zomorodian and Gunnar Carlsson.

Computing persistent homology.

Homologie persistante

- Homologie persistante
 - Théorie simpliciale
 - Filtration et persistance
 - Analyse topologique des données
- 2 Modélisation : la DFT bi-dimensionnelle
- 3 Applications à l'analyse musicale

0-simplexe sommet

1-simplexe arête

2-simplexe triangle

3-simplexe tétraèdre

(a)

0-simplexe sommet

1-simplexe arête

2-simplexe triangle

3-simplexe tétraèdre

Définition:

Un complexe simplicial est un couple (V,K) où V est un ensemble de sommets et $K\subset \mathcal{P}(V)$ est un ensemble de simplexes tels que

$$V = \bigcup_{\sigma \in K} \sigma \quad \text{et } \left[\text{si } \sigma \in K, \ \tau \subset \sigma \text{ alors } \tau \in K \right]$$

On peut toujours penser à un complexe via sa réalisation géométrique :

2-simplexe triangle

tétraèdre

Un **complexe simplicial** est obtenu par "recollement" de n-simplexes :

Un complexe simplicial (V, K) de dimension 2 : l'ensemble des **sommets** est $V = \{a, b, c, d, e\}$ et le "plus gros simplexe" est le triangle $\{bce\}$.

On considère le corps \mathbb{F}_2 à deux éléments.

On considère le corps \mathbb{F}_2 à deux éléments. Soit K un complexe simplicial.

Définition:

i) Le $n^{\mathrm{i\`{e}me}}$ groupe de chaîne $C_n(K)$ de K est le \mathbb{F}_2 -espace vectoriel sur l'ensemble des n-simplexes de K.

On considère le corps \mathbb{F}_2 à deux éléments. Soit K un complexe simplicial.

Définition:

- i) Le $n^{\mathrm{i\`{e}me}}$ groupe de chaîne $C_n(K)$ de K est le \mathbb{F}_2 -espace vectoriel sur l'ensemble des n-simplexes de K.
- ii) L'opérateur bord $\partial_n:C_n(K)\to C_{n-1}(K)$ est un morphisme défini linéairement sur une chaîne c via son action sur les simplexes $\sigma=\{v_0,v_1,\ldots v_n\}$ de c:

$$\partial_n \sigma = \sum_i \{v_0, v_1, \dots, \hat{v_i}, \dots, v_n\}$$

On considère le corps \mathbb{F}_2 à deux éléments. Soit K un complexe simplicial.

Définition:

- i) Le $n^{\text{ième}}$ groupe de chaîne $C_n(K)$ de K est le \mathbb{F}_2 -espace vectoriel sur l'ensemble des n-simplexes de K.
- ii) L'opérateur bord $\partial_n: C_n(K) \to C_{n-1}(K)$ est un morphisme défini linéairement sur une chaîne c via son action sur les simplexes $\sigma = \{v_0, v_1, \dots v_n\}$ de c:

$$\partial_n \sigma = \sum_i \{v_0, v_1, \dots, \hat{v_i}, \dots, v_n\}$$

Lemme: (Fondamental)

Pour tout $n \in \mathbb{N}$, on a $\partial_n \circ \partial_{n+1} = 0$.

On a ainsi une suite de groupes de chaînes et d'opérateurs bords

$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

telle que $\operatorname{im} \partial_{n+1} \subset \ker \partial_n$ pour tout n (car $\partial_n \circ \partial_{n+1} = 0$). La donnée d'un tel couple est appelée **complexe de chaînes**.

8 / 61

On a ainsi une suite de groupes de chaînes et d'opérateurs bords

$$\dots \xrightarrow{\partial_{n+2}} C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \xrightarrow{\partial_{n-1}} \dots$$

telle que $\operatorname{im} \partial_{n+1} \subset \ker \partial_n$ pour tout n (car $\partial_n \circ \partial_{n+1} = 0$). La donnée d'un tel couple est appelée **complexe de chaînes**.

Définition:

- i) Le $n^{\mathrm{l\`{e}me}}$ groupe d'homologie de K est le quotient $H_n(K) = \frac{\ker \partial_n}{\dim \partial_{n+1}}$.
- ii) Le $n^{\text{ième}}$ nombre de Betti est le nombre $\beta_n(K) = \dim H_n(K)$.

$$\begin{cases} C_0(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{0\} \oplus \mathbb{F}_2 \cdot \{1\} \oplus \mathbb{F}_2 \cdot \{2\} \cong \mathbb{F}_2^3 \\ C_1(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{01\} \oplus \mathbb{F}_2 \cdot \{12\} \oplus \mathbb{F}_2 \cdot \{02\} \cong \mathbb{F}_2^3 \\ C_n(\mathbb{S}^1) &=& 0 \text{ pour } n \geq 2 \text{ et } n < 0 \end{cases}$$

$$0 \stackrel{\partial_2}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} C_1(\mathbb{S}^1) \stackrel{\partial_1}{-\!\!\!\!-\!\!\!\!-\!\!\!-} C_0(\mathbb{S}^1) \stackrel{\partial_0}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} 0$$

- $\partial_1\{01\} = \{1\} + \{0\}, \ \partial_1\{20\} = \{2\} + \{0\}, \ \partial_1\{12\} = \{2\} + \{1\}$
- $\partial_1(\{01\} + \{12\} + \{20\}) = 2(\{0\} + \{1\} + \{2\}) = 0$

$$\begin{cases} C_0(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{0\} \oplus \mathbb{F}_2 \cdot \{1\} \oplus \mathbb{F}_2 \cdot \{2\} \cong \mathbb{F}_2^3 \\ C_1(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{01\} \oplus \mathbb{F}_2 \cdot \{12\} \oplus \mathbb{F}_2 \cdot \{02\} \cong \mathbb{F}_2^3 \\ C_n(\mathbb{S}^1) &=& 0 \text{ pour } n \geq 2 \text{ et } n < 0 \end{cases}$$

$$0 \stackrel{\partial_2}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} C_1(\mathbb{S}^1) \stackrel{\partial_1}{-\!\!\!\!-\!\!\!\!-\!\!\!-} C_0(\mathbb{S}^1) \stackrel{\partial_0}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} 0$$

- $\partial_1\{01\} = \{1\} + \{0\}, \ \partial_1\{20\} = \{2\} + \{0\}, \ \partial_1\{12\} = \{2\} + \{1\}$
- $\partial_1(\{01\} + \{12\} + \{20\}) = 2(\{0\} + \{1\} + \{2\}) = 0$

$$\int H_1(\mathbb{S}^1) = \frac{\ker \partial_1}{\dim \partial_2} = \ker \partial_1 = \mathbb{F}_2 \cdot (\{01\} + \{02\} + \{12\}) \text{ et } \beta_1(\mathbb{S}^1) = 1$$

$$\begin{cases} C_0(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{0\} \oplus \mathbb{F}_2 \cdot \{1\} \oplus \mathbb{F}_2 \cdot \{2\} \cong \mathbb{F}_2^3 \\ C_1(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{01\} \oplus \mathbb{F}_2 \cdot \{12\} \oplus \mathbb{F}_2 \cdot \{02\} \cong \mathbb{F}_2^3 \\ C_n(\mathbb{S}^1) &=& 0 \text{ pour } n \geq 2 \text{ et } n < 0 \end{cases}$$

$$0 \xrightarrow{\partial_2} C_1(\mathbb{S}^1) \xrightarrow{\partial_1} C_0(\mathbb{S}^1) \xrightarrow{\partial_0} 0$$

- $\partial_1\{01\} = \{1\} + \{0\}, \ \partial_1\{20\} = \{2\} + \{0\}, \ \partial_1\{12\} = \{2\} + \{1\}$
- $\partial_1(\{01\} + \{12\} + \{20\}) = 2(\{0\} + \{1\} + \{2\}) = 0$

$$\begin{cases} H_1(\mathbb{S}^1) = \frac{\ker \partial_1}{\lim \partial_2} = \ker \partial_1 = \mathbb{F}_2 \cdot \left(\{01\} + \{02\} + \{12\} \right) \text{ et } \frac{\beta_1(\mathbb{S}^1)}{\lim \partial_1} = 1 \\ H_0(\mathbb{S}^1) = \frac{\ker \partial_0}{\lim \partial_1} = \frac{C_0(\mathbb{S}^1)}{\mathbb{F}_2^2} \cong \mathbb{F}_2^3 / \mathbb{F}_2^2 \cong \mathbb{F}_2 \text{ et } \frac{\beta_0(\mathbb{S}^1)}{\lim \partial_1} = 1 \end{cases}$$

$$\begin{cases} C_0(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{0\} \oplus \mathbb{F}_2 \cdot \{1\} \oplus \mathbb{F}_2 \cdot \{2\} \cong \mathbb{F}_2^3 \\ C_1(\mathbb{S}^1) &=& \mathbb{F}_2 \cdot \{01\} \oplus \mathbb{F}_2 \cdot \{12\} \oplus \mathbb{F}_2 \cdot \{02\} \cong \mathbb{F}_2^3 \\ C_n(\mathbb{S}^1) &=& 0 \text{ pour } n \geq 2 \text{ et } n < 0 \end{cases}$$

$$0 \xrightarrow{\partial_2} C_1(\mathbb{S}^1) \xrightarrow{\partial_1} C_0(\mathbb{S}^1) \xrightarrow{\partial_0} 0$$

- $\partial_1\{01\} = \{1\} + \{0\}, \ \partial_1\{20\} = \{2\} + \{0\}, \ \partial_1\{12\} = \{2\} + \{1\}$
- $\partial_1(\{01\} + \{12\} + \{20\}) = 2(\{0\} + \{1\} + \{2\}) = 0$

$$\begin{cases} H_1(\mathbb{S}^1) = \frac{\ker \partial_1}{\lim \partial_2} = \ker \partial_1 = \mathbb{F}_2 \cdot \left(\{01\} + \{02\} + \{12\} \right) \text{ et } \frac{\beta_1(\mathbb{S}^1)}{\lim \partial_1} = 1 \\ H_0(\mathbb{S}^1) = \frac{\ker \partial_0}{\lim \partial_1} = \frac{C_0(\mathbb{S}^1)}{\mathbb{F}_2^2} \cong \mathbb{F}_2^3 /_{\mathbb{F}_2^2} \cong \mathbb{F}_2 \text{ et } \frac{\beta_0(\mathbb{S}^1)}{\lim \partial_1} = 1 \\ H_n(\mathbb{S}^1) = 0 \text{ et } \frac{\beta_n(\mathbb{S}^1)}{\lim \partial_1} = 0 \text{ sinon} \end{cases}$$

Idée : l'homologie simpliciale "compte le nombre de trous en dimension n".

$$H_n(S^2) = \left\{ \begin{array}{l} \mathbb{F}_2 \text{ si } n = 0 \text{ ou } 2\\ 0 \text{ sinon} \end{array} \right.$$

$$H_n(T) = \left\{ \begin{array}{l} \mathbb{F}_2 \ \text{si} \ n = 0 \ \text{ou} \ 2 \\ \mathbb{F}_2^{\ 2} \ \text{si} \ n = 1 \\ 0 \ \text{sinon} \end{array} \right.$$

$$H_n(C) = \begin{cases} \mathbb{F}_2 & \text{si } n = 0 \\ \mathbb{F}_2 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$$

$$H_n(K) = \left\{ \begin{array}{l} \mathbb{F}_2 \ \text{si} \ n = 0 \ \text{ou} \ 2 \\ \mathbb{F}_2^2 \ \text{si} \ n = 1 \\ 0 \ \text{sinon} \end{array} \right.$$

Soit K un complexe simplicial.

Définition:

Une **filtration** de K est une suite croissante de sous-complexes de K :

$$\emptyset = K^{-1} \subseteq K^0 \subseteq K^1 \subseteq \ldots \subseteq K^N = K$$

On dit que K est un **complexe filtré**.

Théorème : (Structure de l'homologie peristante)

Soit K un complexe filtré. Pour chaque degré n, on a

$$H_n(K) \cong \Big(\bigoplus_i t^{a_j} \cdot \mathbb{F}_2[t]\Big) \oplus \Big(\bigoplus_l t^{b_l} \cdot \mathbb{F}_2[t]/(t^{c_l})\Big)$$

Théorème: (Structure de l'homologie peristante)

Soit K un complexe filtré. Pour chaque degré n, on a

$$H_n(K) \cong \left(\bigoplus_j t^{a_j} \cdot \mathbb{F}_2[t]\right) \oplus \left(\bigoplus_l t^{b_l} \cdot \mathbb{F}_2[t] / (t^{c_l})\right)$$

Définition: (Représentation graphique de l'homologie persistante)

Le **code barre** de $H_n(K)$ est un graphe dont l'abscisse décrit le **temps de filtration** et où un élément de $H_n(K)$ (une **classe**) qui :

- naît au temps a_i et ne meurt jamais est un intervalle $[a_i, \infty[$
- naît au temps b_l et meurt au temps $b_l + c_l$ est un intervalle $[b_l, b_l + c_l]$

Code barre pour $H_0(K)$

Analyse Topologique de Données (TDA) :

Soit $X = \{x_1, \dots, x_n\}$ un nuage de points et $\epsilon \ge 0$ un paramètre.

Définition:

Le complexe de Vietoris-Rips $\mathcal{R}_{\epsilon}(X)$ est le complexe simplicial où :

- les sommets sont les points de $X = \{x_1, \dots, x_n\}$
- $\sigma = \{x_1, \dots, x_k\}$ est un k-simplex ssi $d(x_i, x_j) \le \epsilon$ pour tout $(x_i, x_j) \in \sigma^2$.

ightarrow On obtient une **filtration de complexes** en faisant **varier le paramètre** ϵ .

→ On peut calculer l'homologie persistante et donc les codes barres associés.

Homologie persistante, TDA et analyse musicale ?

Problématiques:

- Comment associer un complexe filtré à une pièce de musique ?
- Dans quelles mesures l'homologie persistante et l'analyse topologique de données peuvent être utilisées dans le contexte de l'analyse musicale ?

Homologie persistante, TDA et analyse musicale ?

Problématiques:

- Comment associer un complexe filtré à une pièce de musique ?
- Dans quelles mesures l'homologie persistante et l'analyse topologique de données peuvent être utilisées dans le contexte de l'analyse musicale ?

Idées:

- Une partition est l'ensemble des ses mesures distinctes.
- La DFT comme distance sur le nuage de point ainsi obtenu.

Modélisation : la DFT bi-dimensionnelle

- Homologie persistante
- 2 Modélisation : la DFT bi-dimensionnelle
 - La Transformée de Fourier Discrète
 - Persistance et DFT bi-dimensionnelle
 - Propriétés : transformations et isométries
- Applications à l'analyse musicale

La Transformée de Fourier Discrète

On peut étudier certaines **structures musicales** (accords, gammes, rythmes, mesures...) en modélisant à l'aide de fonctions définies sur \mathbb{Z}_n .

Idée : travailler avec une base bien choisie de cet espace de fonctions.

La Transformée de Fourier Discrète

On peut étudier certaines structures musicales (accords, gammes, rythmes, mesures...) en modélisant à l'aide de fonctions définies sur \mathbb{Z}_n .

Idée : travailler avec une base bien choisie de cet espace de fonctions.

Temps d'attaques

$$\mathcal{T} = \{0, 1, 3, 5\} \subset \mathbb{Z}_8$$

Classes de hauteurs

$$\mathcal{P} = \{9, 2, 4, 5\} \subset \mathbb{Z}_{12}$$

 $\mathbb{1}_{\mathcal{T}}: \mathcal{T} \mapsto (1, 1, 0, 1, 0, 1, 0, 0)$ $\mathbb{1}_{\mathcal{P}}: \mathcal{P} \mapsto (0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0)$

La Transformée de Fourier Discrète

Définition:

La Transformée de Fourier Discrète (DFT) d'un ensemble de temps d'attaques $\mathcal T$ ou de classes de hauteurs $\mathcal P$ est donnée par la DFT des fonctions caractéristiques associées :

$$\mathcal{F}_{\mathcal{T}} = \widehat{\mathbb{1}_{\mathcal{T}}} : \mathbb{Z}_t \longrightarrow \mathbb{C}$$

$$x \longmapsto \sum_{k \in \mathcal{T}} \exp\left(\frac{-2i\pi kx}{8}\right)$$

$$\mathcal{F}_{\mathcal{P}} = \widehat{\mathbb{1}_{\mathcal{P}}} : \mathbb{Z}_p \longrightarrow \mathbb{C}$$

$$x \longmapsto \sum_{k \in \mathcal{P}} \exp\left(\frac{-2i\pi kx}{12}\right)$$

Les **coefficients de Fourier** sont donnés par les *t*,*p*-uplets suivant :

$$(\mathcal{F}_{\mathcal{T}}(0), \mathcal{F}_{\mathcal{T}}(1), \dots, \mathcal{F}_{\mathcal{T}}(7)) \qquad (\mathcal{F}_{\mathcal{P}}(0), \mathcal{F}_{\mathcal{P}}(1), \dots, \mathcal{F}_{\mathcal{P}}(11))$$

Idée: temps d'attaques et classes de hauteurs dans un seul ensemble.

$$\mathcal{B} = (\mathcal{T}, \mathcal{P}) = \{(0, 9), (2, 1), (4, 3), (5, 5)\} \subset \mathbb{Z}_8 \times \mathbb{Z}_{12}$$

- $t=2^k \ (k\in\mathbb{N})$ l'unité de temps ($\mathfrak{s}=1,\ J=2,\ J=4,\ J=8,\ldots$)
- $p=12m\ (m\in\mathbb{N})$ l'ambitus (m= nombre d'octaves)

$$\mathcal{B} = (\mathcal{T}, \mathcal{P}) = \{(0, 9), (2, 1), (4, 3), (5, 5)\} \subset \mathbb{Z}_8 \times \mathbb{Z}_{12}$$

- $t=2^k\;(k\in\mathbb{N})$ l'unité de temps $(\circ=1,\; \mathsf{J}=2,\; \mathsf{J}=4,\; \mathsf{J}=8,\ldots)$
- $p=12m\ (m\in\mathbb{N})$ l'ambitus (m= nombre d'octaves)

Définition:

- 1) Une **mesure** est un sous-ensemble $\mathcal{B}=(\mathcal{T},\mathcal{P})\subset \mathbb{Z}_t\times \mathbb{Z}_p$, où un élément de \mathcal{B} est une **note** caractérisée par deux coordonnées :
 - i) son **temps d'attaque** modulo t
 - ii) sa classe de hauteur modulo p

$$\mathcal{B} = (\mathcal{T}, \mathcal{P}) = \{(0, 9), (2, 1), (4, 3), (5, 5)\} \subset \mathbb{Z}_8 \times \mathbb{Z}_{12}$$

- $t=2^k\;(k\in\mathbb{N})$ l'unité de temps ($\mathfrak{s}=1,\; \mathfrak{s}=2,\; \mathfrak{s}=4,\; \mathfrak{s}=8,\ldots$)
- $p=12m\ (m\in\mathbb{N})$ l'ambitus (m= nombre d'octaves)

Définition:

- 1) Une **mesure** est un sous-ensemble $\mathcal{B}=(\mathcal{T},\mathcal{P})\subset\mathbb{Z}_t\times\mathbb{Z}_p$, où un élément de \mathcal{B} est une **note** caractérisée par deux coordonnées :
 - i) son **temps d'attaque** modulo t
 - ii) sa **classe de hauteur** modulo p
- 2) Une partition ${\mathcal S}$ est l'ensemble de ses mesures distinctes modulo (t,p) :

$$\mathcal{S} = \{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_N\}$$
 avec $\mathcal{B}_i \subset \mathbb{Z}_{\mathrm{t}} \times \mathbb{Z}_{\mathrm{p}}$ et $\mathcal{B}_i \neq \mathcal{B}_j$ si $i \neq j$.

$$\mathcal{B} = (\mathcal{T}, \mathcal{P}) = \{(0,0), (1,2), (2,4), (3,5)\} \in \mathbb{Z}_4 \times \mathbb{Z}_{12}$$

$$\mathcal{B} = (\mathcal{T}, \mathcal{P}) = \{(0,0), (1,2), (2,4), (3,5)\} \in \mathbb{Z}_4 \times \mathbb{Z}_{12}$$

Matrice caractéristique :

Définition:

La **DFT d'une mesure** $(\mathcal{T},\mathcal{P}) \subset \mathbb{Z}_t \times \mathbb{Z}_p$ est la DFT de sa fonction caractéristique $\mathbb{1}_{(\mathcal{T},\mathcal{P})}$:

$$\mathcal{F}_{(\mathcal{T},\mathcal{P})} = \widehat{\mathbb{1}_{(\mathcal{T},\mathcal{P})}} : \mathbb{Z}_t \times \mathbb{Z}_p \longrightarrow \mathbb{C}$$

$$(x,y) \longmapsto \sum_{(k,l) \in (\mathcal{T},\mathcal{P})} \exp\left(\frac{-2i\pi kx}{t}\right) \exp\left(\frac{-2i\pi ly}{p}\right)$$

Les **coefficients de Fourier** sont donnés par la matrice $t \times p$:

$$(\mathcal{F}_{\mathcal{T},\mathcal{P}}(x,y))_{x,y} \in \mathcal{M}_{t,p}(\mathbb{C})$$

Soit $\mathcal{S} = \{\mathcal{B}_1, \dots, \mathcal{B}_N\}$ une partition dans $\mathbb{Z}_t \times \mathbb{Z}_p$.

Soit $S = \{B_1, \dots, B_N\}$ une partition dans $\mathbb{Z}_t \times \mathbb{Z}_p$. Pour tout i, on a une matrice de coefficients de Fourier assoicée à la mesure \mathcal{B}_i :

$$\widehat{M}_{\mathcal{B}_i} = \begin{pmatrix} \mathcal{F}_{\mathcal{B}_i}(0,0) & \mathcal{F}_{\mathcal{B}_i}(0,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(0,p) \\ \mathcal{F}_{\mathcal{B}_i}(1,0) & \mathcal{F}_{\mathcal{B}_i}(1,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(1,p-1) \\ \vdots & \vdots & \vdots & \vdots \\ \mathcal{F}_{\mathcal{B}_i}(t-1,0) & \mathcal{F}_{\mathcal{B}_i}(t-1,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(t-1,p-1) \end{pmatrix}$$

Soit $S = \{B_1, \dots, B_N\}$ une partition dans $\mathbb{Z}_t \times \mathbb{Z}_p$. Pour tout i, on a une matrice de coefficients de Fourier assoicée à la mesure \mathcal{B}_i :

$$\widehat{M}_{\mathcal{B}_i} = \begin{pmatrix} \mathcal{F}_{\mathcal{B}_i}(0,0) & \mathcal{F}_{\mathcal{B}_i}(0,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(0,p) \\ \mathcal{F}_{\mathcal{B}_i}(1,0) & \mathcal{F}_{\mathcal{B}_i}(1,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(1,p-1) \\ \vdots & \vdots & \vdots & \vdots \\ \mathcal{F}_{\mathcal{B}_i}(t-1,0) & \mathcal{F}_{\mathcal{B}_i}(t-1,1) & \dots & \mathcal{F}_{\mathcal{B}_i}(t-1,p-1) \end{pmatrix}$$

Définition:

Pour tout $i \neq j$, la **DFT-distance** entre les mesures \mathcal{B}_i et \mathcal{B}_j est donnée par

$$\mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_i,\mathcal{B}_j) = \parallel \widehat{M}_{\mathcal{B}_i} - \widehat{M}_{\mathcal{B}_j} \parallel_1 = \sum_{k=1}^t \sum_{l=1}^p |\mathcal{F}_{\mathcal{B}_i}(k,l) - \mathcal{F}_{\mathcal{B}_j}(k,l)|$$

Nuage de points

Soit $S = \{B_1, \dots, B_N\}$ une partition dans $\mathbb{Z}_t \times \mathbb{Z}_p$.

- ullet Points : mesures \mathcal{B}_i auxquelles on associe $\widehat{M}_{\mathcal{B}_i}$
- ullet Distance : DFT-distance sur les matrices $\widehat{M}_{\mathcal{B}_i}$
- ightarrow On peut ainsi construire un **complexe filtré** à partir de $\mathcal S$ et donc calculer l'**homologie persistante** et les **codes barres** associés.

Un exemple : $\mathcal{S} = \{\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4, \mathcal{B}_5\}$

Dans $\mathbb{Z}_8 \times \mathbb{Z}_{24}$:

$$\mathcal{B}_{1} = \{(6,9), (7,11)\}
\mathcal{B}_{2} = \{(0,12), (1,12), (2,14), (3,12), (4,11), (6,4), (7,7)\}
\mathcal{B}_{3} = \{(0,9), (1,9), (2,7), (3,5), (4,7), (7,7)\}
\mathcal{B}_{4} = \{(0,7), (1,5), (2,5), (3,3), (4,5), (6,0), (7,5)\}
\mathcal{B}_{5} = \{(0,3), (0,7), (0,11)\}$$

Les distances et codes barres associées à ${\mathcal S}$:

(1, 5)	(1, 3)	(1,4)	(4,5)	(1, 2)	(3, 5)	(2,3)	(2,5)	(3,4)	(2,4)
378,73	488,05	492,53	493,78	515, 11	522, 42	548,72	550, 14	572, 54	605, 70
63%	81%	82%		86%	87%	91%		95%	99%

Code barre en degré 0.

Code barre en degré 1.

La filtration associée à S:

On peut étendre l'action du groupe diédral \mathcal{D}_{24} aux mesures d'une partition.

On peut étendre l'action du groupe diédral D_{24} aux mesures d'une partition.

Définition:

Soient $\mathcal{B} = (\mathcal{T}, \mathcal{P}) \subset \mathbb{Z}_t \times \mathbb{Z}_p$ une mesure et $(m, n) \in \mathbb{Z}_t \times \mathbb{Z}_p$.

1) Une (m,n)-rotation de $\mathcal B$ est une application $\rho_{m,n}:\mathbb Z_t\times\mathbb Z_p\to\mathbb Z_t\times\mathbb Z_p$ telle que

$$\rho_{m,n} \cdot \mathcal{B} = \{ (m+t, n+p), \ (t,p) \in (\mathcal{T}, \mathcal{P}) \}.$$

2) Une (m,n)-symétrie de \mathcal{B} est une application $\sigma_{m,n}: \mathbb{Z}_{\mathrm{t}} \times \mathbb{Z}_{\mathrm{p}} \to \mathbb{Z}_{\mathrm{t}} \times \mathbb{Z}_{\mathrm{p}}$ telle que

$$\sigma_{m,n}(\mathcal{B}) = \{ (m-t, n-p), \ (t,p) \in (\mathcal{T}, \mathcal{P}) \}.$$

Soit
$$\mathcal{B} = \{(0,0), (1,2), (2,4), (3,5)\} \subset \mathbb{Z}_4 \times \mathbb{Z}_{12}.$$

Soit
$$\mathcal{B} = \{(0,0), (1,2), (2,4), (3,5)\} \subset \mathbb{Z}_4 \times \mathbb{Z}_{12}.$$

1) $\rho_{1,0} \cdot \mathcal{B} = \{(0,5), (1,0), (2,2), (3,4)\}$ (permutation cyclique des positions) :

Soit
$$\mathcal{B} = \{(0,0), (1,2), (2,4), (3,5)\} \subset \mathbb{Z}_4 \times \mathbb{Z}_{12}.$$

1) $\rho_{1,0} \cdot \mathcal{B} = \{(0,5), (1,0), (2,2), (3,4)\}$ (permutation cyclique des positions) :

2) $\rho_{0,5}\cdot \mathcal{B} = \{(0,5), (1,7), (2,9), (3,10)\}$ (transposition des classes de hauteurs) :

Soit
$$\mathcal{B} = \{(0,0), (1,2), (2,4), (3,5)\} \subset \mathbb{Z}_4 \times \mathbb{Z}_{12}.$$

1) $\rho_{1,0} \cdot \mathcal{B} = \{(0,5), (1,0), (2,2), (3,4)\}$ (permutation cyclique des positions) :

2) $\rho_{0,5}\cdot\mathcal{B}=\{(0,5),(1,7),(2,9),(3,10)\}$ (transposition des classes de hauteurs) :

3) $\sigma_{2,2} \cdot \mathcal{B} = \{(2,2), (1,0), (0,10), (3,9)\}$ (symétrie sur \mathcal{T} et \mathcal{P}):

Lemme:

Soit $\mathcal B$ une mesure de $\mathbb Z_t\times\mathbb Z_p.$

Pour toute (m,n)-rotation $\rho_{m,n}$ et toute (m,n)-symétrie $\sigma_{m,n}$, on a

i)
$$\mathcal{F}_{\rho_{m,n}\cdot\mathcal{B}}(x,y) = \exp\left(\frac{-2i\pi mx}{t}\right) \exp\left(\frac{-2i\pi ny}{p}\right) \times \mathcal{F}_{\mathcal{B}}(x,y)$$

$$ii) \mathcal{F}_{\sigma_{m,n} \cdot \mathcal{B}}(x,y) = \exp\left(\frac{-2i\pi mx}{t}\right) \exp\left(\frac{-2i\pi ny}{p}\right) \times \overline{\mathcal{F}_{\mathcal{B}}(x,y)}$$

Lemme:

Soit \mathcal{B} une mesure de $\mathbb{Z}_t \times \mathbb{Z}_p$.

Pour toute (m,n)-rotation $\rho_{m,n}$ et toute (m,n)-symétrie $\sigma_{m,n}$, on a

i)
$$\mathcal{F}_{\rho_{m,n}\cdot\mathcal{B}}(x,y) = \exp\left(\frac{-2i\pi mx}{t}\right) \exp\left(\frac{-2i\pi ny}{p}\right) \times \mathcal{F}_{\mathcal{B}}(x,y)$$

ii)
$$\mathcal{F}_{\sigma_{m,n},\mathcal{B}}(x,y) = \exp\left(\frac{-2i\pi mx}{t}\right) \exp\left(\frac{-2i\pi ny}{p}\right) \times \overline{\mathcal{F}_{\mathcal{B}}(x,y)}$$

Théorème:

Soient \mathcal{B} et \mathcal{B}' deux mesures de $\mathbb{Z}_t \times \mathbb{Z}_p$.

Pour toute (m,n)-rotation $\rho_{m,n}$ et toute (m,n)-symétrie $\sigma_{m,n}$, on a

$$\mathrm{d}_{\mathrm{DFT}}(\mathcal{B},\mathcal{B}') = \mathrm{d}_{\mathrm{DFT}}\left(\rho_{m,n}\cdot\mathcal{B},\rho_{m,n}\cdot\mathcal{B}'\right) = \mathrm{d}_{\mathrm{DFT}}\left(\sigma_{m,n}\cdot\mathcal{B},\sigma_{m,n}\cdot\mathcal{B}'\right)$$

Autrement dit, les rotations et les symétries sont des **isométries** sur l'ensemble des mesures de muni de la DFT-distance.

Corollaire:

Soit \mathcal{B} une mesure de $\mathbb{Z}_t \times \mathbb{Z}_p$. Pour tout $m \in \mathbb{Z}_t$ et tout $n \in \mathbb{Z}_p$, on a

$$d_{DFT} \left(\rho_{m-1,n-1}(\mathcal{B}), \rho_{m,n}(\mathcal{B}) \right) = d_{DFT} \left(\rho_{m,n}(\mathcal{B}), \rho_{m+1,n+1}(\mathcal{B}) \right)$$

Corollaire:

Soit $\mathcal B$ une mesure de $\mathbb Z_{\mathrm t} imes \mathbb Z_{\mathrm p}$. Pour tout $m \in \mathbb Z_t$ et tout $n \in \mathbb Z_p$, on a

$$d_{DFT} \left(\rho_{m-1,n-1}(\mathcal{B}), \rho_{m,n}(\mathcal{B}) \right) = d_{DFT} \left(\rho_{m,n}(\mathcal{B}), \rho_{m+1,n+1}(\mathcal{B}) \right)$$

Sur les temps d'attaques :

$$\mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_1,\mathcal{B}_2) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_2,\mathcal{B}_3) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_3,\mathcal{B}_4) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_1,\mathcal{B}_4)$$

Corollaire:

Soit $\mathcal B$ une mesure de $\mathbb Z_{\mathrm t} imes \mathbb Z_{\mathrm p}$. Pour tout $m \in \mathbb Z_t$ et tout $n \in \mathbb Z_p$, on a

$$d_{DFT} \left(\rho_{m-1,n-1}(\mathcal{B}), \rho_{m,n}(\mathcal{B}) \right) = d_{DFT} \left(\rho_{m,n}(\mathcal{B}), \rho_{m+1,n+1}(\mathcal{B}) \right)$$

Sur les temps d'attaques :

$$\mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_1,\mathcal{B}_2) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_2,\mathcal{B}_3) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_3,\mathcal{B}_4) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_1,\mathcal{B}_4)$$

Sur les hauteurs :

$$\mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_1,\mathcal{B}_2) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_2,\mathcal{B}_3) = \ldots = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_{11},\mathcal{B}_{12}) = \mathrm{d}_{\mathrm{DFT}}(\mathcal{B}_{12},\mathcal{B}_1)$$

35 / 61

Applications à l'analyse musicale

- Homologie persistante
- 2 Modélisation : la DFT bi-dimensionnelle
- Applications à l'analyse musicale
 - La DFT sur le Tonnetz
 - Vers une classification du style musical ?

Applications à l'analyse musicale

- Qu'est-ce que cette nouvelle construction apporte musicalement ?
- Comment s'en servir en pratique ?
- Comment lire les codes barres et que racontent-ils sur les pièces étudiées ?

Idée : Observer les H_0 et H_1 associés au Tonnetz.

Domaine fondamental du Tonnetz T[3,4,5]

Soit ${\mathcal S}$ la partition associée au Tonnetz T[3,4,5] :

Dans $\mathbb{Z}_1\times\mathbb{Z}_{12}$:

On peut maintenant calculer les codes barres associés à la partition des 24 accords du Tonnetz T[3,4,5] via la DFT-distance :

Code barre en degré 0.

Code barre en degré 1.

En degré 0 (le H_0), les complexes à t=60% puis à t=72% de la filtration :

Graphe à 60%

 ${\rm Graphe~\grave{a}~72\%}$

En degré 0, on retrouve l'objet topologique associé au domaine fondamental du Tonnetz : ici, **on retrouve bien le tore !**

Plus précisément, à t=60%, chaque sommet possède exactement trois voisins :

Plus précisément, à t=60%, chaque sommet possède exactement trois voisins :

Plus précisément, à t=60%, chaque sommet possède exactement trois voisins :

43 / 61

Plus précisément, à t=60%, chaque sommet possède exactement trois voisins :

Théorème:

Le graphe obtenu à 60% de la filtration est donné par le **graphe de Cayley** du Tonnetz T[3,4,5] généré par les transformations $P,\ L$ et R.

Les codes barres associés au Tonnetz T[3,4,5] :

Code barre en degré 0.

Code barre en degré 1.

En degré 1, on a des cycles de longueurs $\boldsymbol{6}$:

En degré 1, on a des cycles de longueurs ${\bf 6}$:

Et des cycles de longueurs ${\bf 8}$:

Cycles sur le Tonnetz T[3,4,5]

On obtient ainsi deux façons de construire des cycles en degré 1 dans T[3,4,5]: avec les 6 accords contenant une note donnée (cycles de longueurs 6) et en utilisant l'ordre des axes dans \mathbb{Z}_{12} :

- axe des tierces (+3) : cycles de longueurs $8 = 2 \times$ (ordre de 3 dans \mathbb{Z}_{12}).
- axe des tierces (+4) : cycles de longueurs $6 = 2 \times$ (ordre de 4 dans \mathbb{Z}_{12}).

Cycles sur le Tonnetz T[3,4,5]

On obtient ainsi deux façons de construire des cycles en degré 1 dans T[3,4,5]: avec les 6 accords contenant une note donnée (cycles de longueurs 6) et en utilisant l'ordre des axes dans \mathbb{Z}_{12} :

- axe des tierces (+3) : cycles de longueurs $8 = 2 \times$ (ordre de 3 dans \mathbb{Z}_{12}).
- axe des tierces (+4) : cycles de longueurs $6 = 2 \times$ (ordre de 4 dans \mathbb{Z}_{12}).

On peut également généraliser aux 11 autres Tonnetz T[a,b,c] (avec $a+b+c=0 \mod 12$) :

$$T[1,1,10]; T[1,2,9]; T[1,3,8]; T[1,4,7]; T[1,5,6];$$

$$T[2,2,8]; T[2,3,7]; T[2,4,6]; T[2,5,5]; T[3,3,6]; T[4,4,4]$$

Tonnetz	Domaine fondamental 4	Longueurs des cycles				
Tomletz		4	6	8	10	12
T[1,2,9], T[2,3,7]			×	×		×
T[1,3,8], T[3,4,5]	Tore		×	×		
T[1,4,7]			×			
T[1, 1, 10], T[2, 5, 5]	Cylindre					×
T[1, 5, 6]	Collier de 6 tétraèdres				×	
T[2, 2, 8]	2 cylindres		×			
T[2,4,6]	2 colliers de	×	×			
	3 tétraèdres					
T[3, 3, 6]	3 tétraèdres (vides)	×				
T[4, 4, 4]	4 triangles (pleins)					

Tonnetz T[a,b,c] et les cycles en degré 1.

Remarque : Pour les Tonnetz non "connexes", le code barre en degré 0 renvoie les différentes composantes qui le constituent.

Remarque: Pour les Tonnetz non "connexes", le code barre en degré 0 renvoie les différentes composantes qui le constituent.

Exemple : T[3,3,6] est constitué de 3 tétraèdres.

associé à T[3,3,6].

Complexe associa à T[3,3,6]à 80% de la filtration.

Comparer des codes barres :

Soit $S = \{B_1, \dots, B_N\}$ une partition composée de N mesures distinctes. On lui associe une **famille de codes barres** :

$$\left\{ \begin{array}{lcl} BC_0(\mathcal{S}) & = & \{[b_i,d_i] \mid 1 \leq i \leq r_0, \text{ avec } b_i \in \mathbb{N}\} - [b_{r_0},\infty] \\ BC_1(\mathcal{S}) & = & \{[b_i,d_i] \mid 1 \leq i \leq r_1, \text{ avec } b_i \in \mathbb{N}\} \end{array} \right.$$

Définition:

Soit $S = \{B_1, \dots, B_N\}$ une partition et $BC_d(S)$ les codes barres associés avec r_d le nombre de barres.

• La d-moyenne persistante associée à S est donnée par

$$\mu_d(\mathcal{S}) = \frac{1}{r_d} \sum_{i=1}^{r_d} (d_i - b_i)$$

Définition:

Soit $S = \{B_1, \dots, B_N\}$ une partition et $BC_d(S)$ les codes barres associés avec r_d le nombre de barres.

ullet La d-moyenne persistante associée à ${\mathcal S}$ est donnée par

$$\mu_d(\mathcal{S}) = \frac{1}{r_d} \sum_{i=1}^{r_d} (d_i - b_i)$$

ullet La d-variance persistante associée à ${\mathcal S}$ est donnée par

$$\nu_d(\mathcal{S}) = \sqrt{\frac{1}{r_d} \sum_{i=1}^{r_d} \left((d_i - b_i) - \mu_d(\mathcal{S}) \right)}$$

14/12/2022

Définition:

Soit $S = \{B_1, \dots, B_N\}$ une partition et $BC_d(S)$ les codes barres associés avec r_d le nombre de barres.

ullet La d-moyenne persistante associée à ${\mathcal S}$ est donnée par

$$\mu_d(\mathcal{S}) = \frac{1}{r_d} \sum_{i=1}^{r_d} (d_i - b_i)$$

ullet La d-variance persistante associée à ${\mathcal S}$ est donnée par

$$\nu_d(\mathcal{S}) = \sqrt{\frac{1}{r_d} \sum_{i=1}^{r_d} \left((d_i - b_i) - \mu_d(\mathcal{S}) \right)}$$

ullet La d-entropie persistante associée à ${\mathcal S}$ est donnée par

$$\epsilon_d(\mathcal{S}) = -\sum_{i=1}^{r_d} \rho_i \log \rho_i \ \text{ avec } \ \rho_i = \frac{d_i - b_i}{\sum\limits_{i=1}^{r_d} d_i - b_i}$$

ightarrow Un fichier MIDI devient ainsi un triplet (Moyenne, Variance, Entropie) $\in \mathbb{R}^3$

Du Heavy Metal contre du Baroque

$5\ \mathrm{groupes}\ \mathrm{de}\ \mathrm{Heavy}\ \mathrm{Metal},\ 15\ \mathrm{morceaux}\ \mathrm{par}\ \mathrm{groupe}$:

Metallica	Scorpions	Iron Maiden	Judas Priest	Powerwolf
Master of Puppets (1986)	Rock you like a Hurricane (1984)	Fear of the Dark (1992)	Breaking the Law (1980)	Nightside of Siberia (2018)
Enter Sandman (1991)	Still Loving You (1984)	Run to the Hills (1982)	Painkiller (1990)	Sanctified with Dynamite (2011)
Nothing Else Matters (1991)	Wind of Change (1990)	The Trooper (1983)	Turbo Lover (1986)	Werewolves of Armenia (2009)
Fade to Black (1984)	Blackout (1982)	Hallowed Be Thy Name (1982)	Living After Midnight (1980)	Sanctified with Dynamite (2011)
Bleeding Me (1996)	Sting in the Tail (2010)	Dance of the Death (2003)	Electric Eye (1982)	Armata Strigoi (2015)
Human (1999)	Send me an Angel (1990)	The Book of Souls (2015)	Hell Patrol (1990)	Blessed and Possessed (2015)

15 morceaux issus des chorals de Jean-Sébastien Bach (1685-1750) :

Chorals de Bach				
No. 1 BWV 269	No 4. BWV 9	No 7. BWV 389	No 10. BWV 687	No. 13 BWV 261
No. 2 BWV 347	No 5. BWV 9	No 8. BWV 40	No 11. BWV 41	No. 14 BWV 184
No 3. BWV 2	No 6. BWV 281	No 9. BWV 248	No 12. BWV 65	No. 15 BWV 277

Sur le groupe Queen

70 morceaux issus des 15 albums du groupe Queen (1973-1995) :

		Queen		
Keep Yourself Alive (1973)	Bohemian Rhapsody (1975)	Don't Stop me Now (1977)	Under Pressure (1982)	I Want it all (1989)
Seven Seas of Rhye (1974)	Somebody to Love (1976)	Another One Bites the Dust (1980)	Radio Ga Ga (1984)	Innuendo (1991)
Killer Queen (1974)	Tie Your Mother Down (1976)	Play the Game (1980)	I Want to Break Free (1984)	The Show Must Go On (1991)
Love of my Life (1975)	We are the Champions (1977)	Flash (1980)	A Kind of Magic (1986)	Made in Heaven (1995)

Sur le groupe Queen

Les morceaux triés par composition : **F. Mercury** (chant/piano), **B. May** (guitariste), **J. Deacon** (bassiste), **R. Taylor** (batteur)

Sur le groupe Queen

Les morceaux triés par composition : **F. Mercury** (chant/piano), **B. May** (guitariste), **J. Deacon** (bassiste), **R. Taylor** (batteur)

Sur le groupe Queen

Les morceaux triés par composition : F. Mercury (chant/piano), B. May (guitariste), J. Deacon (bassiste), R. Taylor (batteur)

Sur le groupe **Scorpions**

30 morceaux de Scorpions dont 10 issus de l'album **Humanity** (2007) :

Scorpions	Humanity (2007)		
Rock You Like a Hurricane (1984)	Hour 1		
Still Loving You (1984)	The Game of Life		
Wind of Change (1990)	We Were Born to Fly		
Blackout (1982)	The Future Never Dies		
Sting in the Tail (2011)	You're Loving Me to Death		
Send me an Angel (1990)	321		
Big City Night (1982)	Love Will Keep Us Alive		

Sur le groupe **Scorpions**

30 morceaux de Scorpions dont 10 issus de l'album **Humanity** (2007) :

MERCI POUR VOTRE ATTENTION!