Sheet 6

Discussion of the sheet: Tue./Wed., December 6/7

This exercise sheet is concerned with the topics

- Stokes' theorem
- Fourier series
- 1. Use Stokes' theorem to compute the line integral $\int_{\partial S} \psi \cdot ds$, where S is the rectangle with the vertices (0,1,0), (1,1,0), (1,0,0), (0,0,0) and $\psi = (3x^2y, z+x, xyz)^T$.
- 2. Consider the surface given by the parametrisation $r(u, v) = (u, v, u^3 3uv^3)^T$ on the domain $G = \{(u, v) : u^2 + v^2 \le 1\}.$
 - a) Sketch the surface S;
 - **b)** Give a parametrisation of its boundary ∂S ;
 - c) Use Stokes' theorem to the function $\psi = (0, 0, x)^T$, computing first a line integral, and conclude something about a surface integral.
- 3. Let $f(x) = x^2$ on I = [-1/2, 1/2]. Sketch the periodic extension of f and compute its complex Fourier series. Evaluate the series at x = 0 and derive an identity for π^2 as an infinite sum.
- 4. Use the same f from the previous exercise. Write Parseval's identity for the complex Fourier series on I

$$||f||_{L^2(I)}^2 = \sum_{k \in \mathbb{Z}} |c_k|^2$$

and derive an identity for π^4 as an infinite sum.

- 5. Let $f(t) = \exp(-t)$ on I = [0, 1]. Provide different periodic continuations of f such that its (real) Fourier series
 - a) has only cosine terms;
 - b) has only sine terms;
 - c) has a period of 1;
 - d) has a period of 2.

Provide the expansions of a) and b). Which values do the Fourier series give at t = 0?