KRUSKALS ALGORITHM

A spanning tree of that graph is a subgraph that is a tree and connects all the vertices together. A single graph can have many different spanning trees. A minimum spanning tree (MST) or minimum weight spanning tree for a weighted, connected and undirected graph is a spanning tree with weight less than or equal to the weight of every other spanning tree. The weight of a spanning tree is the sum of weights given to each edge of the spanning tree.

How many edges does a minimum spanning tree has?

A minimum spanning tree has (V - 1) edges where V is the number of vertices in the given graph.

Below are the steps for finding MST using Kruskal's algorithm

- 1. Sort all the edges in non-decreasing order of their weight.
- **2.** Pick the smallest edge. Check if it forms a cycle with the spanning tree formed so far. If cycle is not formed, include this edge. Else, discard it.
- 3. Repeat step#2 until there are (V-1) edges in the spanning tree.

The algorithm is a Greedy Algorithm. The Greedy Choice is to pick the smallest weight edge that does not cause a cycle in the MST constructed so far. Let us understand it with an example: Consider the below input graph.

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will be having (9-1) = 8 edges.

After sorting:			
Weight	Src	Dest	
1	7	6	
2	8	2	
2	6	5	
4	0	1	
4	2	5	
6	8	6	
7	2	3	
7	7	8	
8	0	7	
8	1	2	
9	3	4	

10	5	4
11	1	7
14	3	5

1. Pick edge 7-6: No cycle is formed, include it.

2. Pick edge 8-2: No cycle is formed, include it.

3. Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.

5. Pick edge 2-5: No cycle is formed, include it.

- 6. Pick edge 8-6: Since including this edge results in cycle, discard it.
- 7. Pick edge 2-3: No cycle is formed, include it.

- 8. Pick edge 7-8: Since including this edge results in cycle, discard it.
- 9. Pick edge 0-7: No cycle is formed, include it.

- 10. Pick edge 1-2: Since including this edge results in cycle, discard it.
- 11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (V - 1), the algorithm stops here.