Optics Lab. and Project (Problem Solving) Orientation & Topics

Kyu-Tae Lee

Department of Physics, Inha University

E-mail: ktlee@inha.ac.kr

Phone: 032-860-7653

Room: 5N546B

About this course

GOALS

- 각 팀별로 최신 광학기술과 관련된 주제와 최종목표를 설정하고 이를 실제로 구현한다. 광학기술의 기본원리와 응용분야를 이해하고 전산 모의, 설계, 최적화, 제작, 광학 특성 측정 등을 직접 수행한다.
- 프로젝트를 진행하면서 발생하는 문제점을 파악하고 팀별로 토의와 아이디 어를 창출해서 해결방안을 마련하여 학기 중에 프로젝트를 마무리한다.

EVALUATION

- Bi-weekly Presentation (60%), Discussion (10%), Final Presentation (30%)
- 첫 발표 (9/20), 중간발표 (11/1), 최종발표 (12/20)
- 학기 중에 마무리를 못하면 2019년 동계현장실습에 참여해서 마무리 가능
- 동계현장실습에서 똑같은 주제로 할 필요는 없음

Wire-Grid Polarizers

Absorptive Polarizers (H-sheet Polaroid)

- H-sheet Polaroids are made from polyvinyl alcohol (PVA) plastic with an iodine doping.
- PVA molecules are aligned parallel to one another by heating and stretching of the sheet.
- When exposed to iodine vapor, iodine dopant attaches to the PVA molecules and makes the conducting along the length of the chains.
- Conduction electrons associated with iodine can move easily along the polymer chains, but not perpendicular to them (*i.e.*, acts like a wire mesh).
- Incident light with the E-field parallel to the molecules is absorbed; light with the E-field perpendicular to the polymer chains is transmitted with little absorption.

Wire-Grid Polarizers (WGPs)

For s-polarization where the E-field is parallel to the direction of wires, incident light can excite electrons in the metal wires to move along the length of the wires, which behave like a metal that reflects light (a small amount of energy lost to Joule heating).

For p-polarization where the E-field is perpendicular to the direction of the wires, the movement of electrons cannot be induced due to a very narrow wire width (subwavelength scale). Thus, most energy is transmitted through the polarizer, which behave like a dielectric.

Project 1-1. Visible Wire-Grid Polarizers (Al monolayer)

Fabrication and Characterization

Oblique Angle Deposition (OAD) of Al

<u>Goals</u>: Understand the working principles of WGP and OAD, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Fabricate visible WGPs by an e-beam evaporator (at least 2 samples).
- Characterize optical properties of visible WGPs by a spectrophotometer and an ellipsometer.

Project 1-2. Visible WGPs (Al monolayer)

Theoretical Analysis and Optimization (WGP)

Oblique Angle Deposition (OAD) of Al

<u>Goals</u>: Study the working principles of WGP, effective medium approximation (EMA), and admittance analysis. Find the optimized WGP parameters.

- Investigate optical properties of WGPs by EMA and admittance analysis.
- Optimize the parameters of the visible WGPs via EMA and admittance analysis.

Project 1-3. Visible WGPs with Anti-reflection (Al monolayer)

Theoretical Analysis and Optimization (WGP w/ AR 1)

<u>Goals</u>: Study the working principles of WGP, anti-reflection, effective medium approximation (EMA), and admittance analysis. Find the optimized single and triple anti-reflection (AR) layers for visible WGPs.

- Investigate optical properties of WGPs w/ AR by EMA and admittance analysis.
- Optimize single and triple AR layers for the WGPs via EMA and admittance analysis.

Project 1-4. Visible WGPs with AR (Al monolayer)

Theoretical Analysis and Optimization (WGP w/ AR 2)

<u>Goals</u>: Study the working principles of WGP, anti-reflection, effective medium approximation (EMA), and admittance analysis. Find the optimized anti-reflection (AR) layers for visible WGPs.

- Investigate optical properties of WGPs w/ AR by EMA and admittance analysis.
- Optimize the AR layers for the WGPs via EMA and admittance analysis.

Ultrathin Fabry-Pérot Nanocavity

Trivial phase shift: 0 or π

Non-trivial phase shift: between $-\pi$ and π

Nat. Mater., 12, 20-24 (2013)

From planar structure to 1D gratings

TM: a-Si is just ultra-thin layer (no resonance)

TE: a-Si is bulk (strong resonance behavior)

Project 1-5. Colored Visible WGPs (Al monolayer)

Theoretical Analysis and Optimization (Colored WGP w/ AR)

<u>Goals</u>: Study the working principles of WGP, cavity, anti-reflection, effective medium approximation (EMA), and admittance analysis. Study optical properties of colored WGPs and effects of AR on the WGP performance.

- Investigate optical properties of colored WGPs w/o and w/ AR by EMA and admittance analysis.

Project 1-6. Low-Reflective Visible WGPs (Al monolayer)

Theoretical Analysis and Optimization (Low-reflective WGP w/ AR)

<u>Goals</u>: Study the working principles of WGP, cavity, anti-reflection, effective medium approximation (EMA), and admittance analysis. Study optical properties of low-reflective WGPs and effects of AR on the WGP performance.

- Investigate optical properties of low-reflective WGPs w/o and w/ AR by EMA and admittance analysis.

Project 2-1. Visible WGPs (Al bilayer)

P=100nm W=50nm Al Al Al Polycarbonate (PC)

<u>Goals</u>: Understand the working principles of WGP and OAD, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Fabricate visible WGPs by an e-beam evaporator (at least 2 samples).
- Characterize optical properties of visible WGPs by a spectrophotometer and an ellipsometer.

Project 2-2. Visible WGPs (Al bilayer)

Theoretical Analysis and Optimization (WGP)

<u>Goals</u>: Study the working principles of WGP, effective medium approximation (EMA), and admittance analysis. Find the optimized WGP parameters.

- Investigate optical properties of WGPs by EMA and admittance analysis.
- Optimize the parameters of the visible WGPs via EMA and admittance analysis.

Project 2-3. Visible WGPs with AR (Al bilayer)

Theoretical Analysis and Optimization (WGP w/ AR 1)

<u>Goals</u>: Study the working principles of WGP, anti-reflection, effective medium approximation (EMA), and admittance analysis. Find the optimized single and triple anti-reflection (AR) layers for visible WGPs.

- Investigate optical properties of WGPs w/ AR by EMA and admittance analysis.
- Optimize single and triple AR layers for the WGPs via EMA and admittance analysis.

Project 2-4. Visible WGPs with AR (Al bilayer)

Theoretical Analysis and Optimization (WGP w/ AR 2)

<u>Goals</u>: Study the working principles of WGP, anti-reflection, effective medium approximation (EMA), and admittance analysis. Find the optimized anti-reflection (AR) layers for visible WGPs.

- Investigate optical properties of WGPs w/ AR by EMA and admittance analysis.
- Optimize the AR layers for the WGPs via EMA and admittance analysis.

Project 3. Visible WGPs (Ag monolayer)

Fabrication and Characterization

P=100nm W=50nm
h=150nm
Polycarbonate (PC)

Oblique Angle Deposition (OAD) of Ag

<u>Goals</u>: Understand the working principles of WGP and OAD, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Fabricate visible WGPs by an e-beam evaporator (at least 2 samples).
- Characterize optical properties of visible WGPs by a spectrophotometer and an ellipsometer.

Project 4. Visible WGPs (Ag bilayer)

Fabrication and Characterization

<u>Goals</u>: Understand the working principles of WGP and OAD, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Fabricate visible WGPs by an e-beam evaporator (at least 2 samples).
- Characterize optical properties of visible WGPs by a spectrophotometer and an ellipsometer.

Structural Color Filters

Conventional Coloring Mechanism

Chemical pigments

- Low efficiency (30-50%)
- Low stability
- Non-glossy
- Limited color generation

Unusual Coloring by Nanostructures

Colors by Nanostructure Neon tetra fish

Humming bird

Morpho butterfly

- High efficiency (>70%)
- High stability
- Wide color generation

NanoStructural Color Paint for Automobiles

Blue wavelengths fit in the structure while red interferes destructively and is not reflected

NanoStructural Color Paint

Basic Theory of Fabry-Perot Resonance

Resonance condition:

$$\phi_{r12} + \phi_{r23} + \phi_{propagation} = 2m\pi$$

$$\phi_{propagation} = \frac{2\pi n_1}{\lambda} 2d \cos(\theta_1)$$

Project 5-1. Structural Color Filters (Blue and Magenta)

Theoretical analysis, Fabrication and Characterization

<u>Goals</u>: Understand the working principles of Fabry-Perot cavity, multicavity, higher-order resonance, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Theoretical analysis of Fabry-Perot cavity (1st order vs high order) and multicavity.
- Fabricate and characterize optical properties of structural color filters by e-beam evaporator, spectrophotometer, and ellipsometer.

Project 5-2. Structural Color Filters (Green and Red)

Theoretical analysis, Fabrication and Characterization

<u>Goals</u>: Understand the working principles of Fabry-Perot cavity, multicavity, higher-order resonance, and gain knowledge of the operation principles of the fabrication and characterization techniques.

- Theoretical analysis of Fabry-Perot cavity (1st order vs high order) and multicavity.
- Fabricate and characterize optical properties of structural color filters by e-beam evaporator, spectrophotometer, and ellipsometer.

Simulation Code

Project 6. Code Transfer Matrix Method by Any Language

Develop simulation code and Theoretical analysis

Propagation through mediums at normal incidence

Superposition of electric field one wave with positive direction(E⁺) one wave with negative direction(E⁻)

Propagating through an interface:

$$\begin{bmatrix} E_{i}^{\ +}_{-} \\ E_{i}^{\ -} \end{bmatrix} = \frac{1}{t_{i,j}} \begin{bmatrix} 1 & r_{i,j} \\ r_{i,j} & 1 \end{bmatrix} \begin{bmatrix} E_{j}^{\ +}_{-} \\ E_{j}^{\ -} \end{bmatrix}$$

$$r_{i,j} = -r_{j,i} = \frac{N_{i} - N_{j}}{N_{i} + N_{j}}, \qquad t_{i,j} = \frac{2N_{i}}{N_{i} + N_{j}}, \quad t_{j,i} = \frac{2N_{j}}{N_{i} + N_{j}};$$

r, t are, respectively, the complex amplitude reflection and transmission Fresnel coefficients; N is the complex refractive index of the layer

Propagating within a layer:

$$\begin{bmatrix} E_i + \\ E_i \end{bmatrix} = \begin{bmatrix} \Phi^{-1} & o \\ o & \Phi \end{bmatrix} \begin{bmatrix} E_i + \\ E_i \end{bmatrix} \qquad \Phi = e^{-i\frac{2\pi}{\lambda}N_i d}$$

Where d is the thickness of medium, ω is the frequency of the propagating light and c is the speed of light

Project 6. Code Transfer Matrix Method by Any Language

Develop simulation code and Theoretical analysis

At interface

P polarization:

$$\begin{split} r_{i,j} &= \frac{N_{j} cos \pmb{\theta}_{i} - N_{i} cos \pmb{\theta}_{j}}{N_{j} cos \pmb{\theta}_{i} + N_{i} cos \pmb{\theta}_{j}} \\ t_{i,j} &= \frac{2N_{i} cos \pmb{\theta}_{i}}{N_{j} cos \pmb{\theta}_{i} + N_{i} cos \pmb{\theta}_{j}} \end{split}$$

S polarization:

$$\begin{split} r_{i,j} &= \frac{N_i cos \pmb{\theta}_i - N_j cos \pmb{\theta}_j}{N_i cos \pmb{\theta}_i + N_j cos \pmb{\theta}_j} \\ t_{i,j} &= \frac{2N_i cos \pmb{\theta}_i}{N_i cos \pmb{\theta}_i + N_j cos \pmb{\theta}_j} \end{split}$$

Fresnel coefficiencts for oblique incidence Within the layer

 $\Phi = e^{-i\frac{2\pi}{\lambda}N_md/cos\theta_j}$

Project 6. Code Transfer Matrix Method by Any Language

Develop a simulation code and Theoretical analysis

<u>Goals</u>: Develop a simulation code, study optical properties of metal-dielectric-metal Fabry-Perot cavity, and confirm the results by a commercial thin-film software (Essential Macleod).

- Code transfer matrix method by any language (python, matlab, C, etc).
- Study optical properties of a simple Fabry-Perot cavity, and confirm the results by Essential Macleod.

Theoretical analysis, Design and Optimization

Dielectric mirrors

$$r_{12} = (n_1 - n_2)/(n_1 + n_2)$$

(positive number \rightarrow no phase change)

$$r_{21} = (n_2 - n_1)/(n_2 + n_1)$$

(negative $\rightarrow \pi$ phase change)

The phase difference between *A* and *B* is

$$0 + \pi + 2k_1d_1 = 0 + \pi + 2(2\pi n_1/\lambda_o)(\lambda_o/4n_1) = 2\pi$$

Thus, waves *A* and *B* are in phase and **interfere constructively**.

 $\Delta\lambda$ = Reflectance bandwidth (Stop-band for transmittance)

$$\frac{\Delta \lambda}{\lambda_o} \approx (4/\pi) \arcsin\left(\frac{n_1 - n_2}{n_1 + n_2}\right)$$

$$R_{N} = \left[\frac{n_{1}^{2N} - (n_{0}/n_{3})n_{2}^{2N}}{n_{1}^{2N} + (n_{0}/n_{3})n_{2}^{2N}} \right]^{2}$$

32

Project 7. Ultra-Narrow Band-Pass Filters at 1550 nm

Theoretical analysis, design and optimization

<u>Goals</u>: Understand the working principles of dielectric mirrors, Fabry-Perot cavity, and multicavity. Design the band-pass filters (bandwidth < 1 nm).

- Theoretical analysis, design and optimization of ultra-narrow band-pass filters at 1550 nm based on multicavity via Essential Macleod.

Project 8. Rugate Filters for RGB Reflection Colors

Theoretical analysis, design and optimization

<u>Goals</u>: Understand the working principles of rugate filters (gradient-index filters) and design rugate filters at visible frequencies for RGB reflection color generation.

- Theoretical analysis, design and optimization of the structural color filters based on rugate filters for RGB reflection colors by Essential Macleod.

Project 9. Higher-Orders in Dielectric Mirrors (Color Filters)

Theoretical analysis, design and optimization

<u>Goals</u>: Understand the working principles of dielectric mirrors and higher-orders, and design the structural color filters creating RGB reflection colors.

- Theoretical analysis, design and optimization of dielectric mirrors with higherorders for RGB color generation via Essential Macleod.

Invisibility Cloak based on Ray Optics

Issues of Existing Invisibility Cloak

Science 349, 1310 (2015)

Opt. Express 22, 29465 (2014)

- Narrow band and low efficiency
- Small area and expensive
- Too bulky → low cloaking ratio

Example: Polarizers + Plane Mirrors

- 1. No focusing optics
- 2. Good angle-insensitivity
- 3. Easy implementation
- 4. Wide field of view

Sci. Rep., 6, 38965 (2016)

Project 10. Ray Optics Cloaking

New design and ray-tracing simulation

Ray Optics Cloaking

<u>Goals</u>: Develop a new design of the ray optics cloaking and confirm the optical cloaking performance by ray-tracing simulation (Zemax). If time allows, implement your own optical system design (should be cheap!) with commercial elements.

Optical Lens and Mirror Design

Project 11. Heads-up Display Lens and Mirror

Design Lens and Mirrors for Heads-up Display

<u>Goals</u>: Understand the working principles of optical systems for heads-up display, and design optical lenses and mirrors by ray-tracing software (Zemax). If time allows, implement your own optical system design (should be cheap!) with commercial elements.

Project 12. Smart Phone Camera Lens

Design Lenses for Smart Phone Camera

<u>Goals</u>: Understand the working principles of a camera lens of recent smart phones, a role of each element of the camera lens and design the camera lens by ray-tracing software (Zemax).

Project 13. Any Optics Topics

List of Project Topics

- 1. Wire-Grid Polarizers
- 2. Fabry-Perot Cavity-based Structural Color Filters
- 3. Transfer Matrix Method Code
- 4. Ultra-Narrow Band-Pass Filters
- 5. Dielectric Mirror-based Structural Color Filters
- 6. Optical Cloaking
- 7. Lens and Mirror Design for Heads-up Display
- 8. Smart Phone Camera Lens Design