Pinak Mandal

Glebe - 2037, Sydney, NSW

Email: pinak.mandal@sydney.edu.au
Website: https://pinakm9.github.io/

Professional Summary

Machine learning researcher with over 8 years of experience developing innovative algorithms for dynamical systems, generative models, and data-driven optimization. Expert in Python, PyTorch, TensorFlow, and building scalable, GPU-accelerated ML solutions. Passionate about translating theoretical insights into impactful real-world applications.

Education and Employment

University of Sydney, Sydney
 Postdoc (Machine Learning and Dynamical Systems)
 Supervisor: Georg Gottwald

 International Centre for Theoretical Sciences, Bengaluru

PhD (Applied Mathematics and Deep Learning)
Supervisors: Amit Apte, Vishal Vasan
Thesis: Numerical Filter Stability, Fokker-Planck Equations and
Infinite Dimensional Optimization with Deep Learning

Jadavpur University, Kolkata - MSc (Mathematics)
 Jadavpur University, Kolkata - BSc (Mathematics)
 2014 - 2016
 2011 - 2014

Work Experience

I have worked on a broad range of applied problems with a recent focus in fundamental machine learning. Some of them are listed below.

- Unlearning via orthogonalization in generative models, USyd
 Developed new model-agnostic algorithms for forgetting sensitive data in generative models that are ~150x faster than gradient surgery.
 https://arxiv.org/pdf/2506.04712.pdf
- Learning dynamical systems from data with Random Feature Maps, USyd 2024 Developed data-driven sampling for tanh random feature maps; implemented deep and local variants of RFMs, achieving state-of-the-art forecast times for chaotic dynamical systems with ~15-20x smaller models than traditional ML architectures. https://www.nature.com/articles/s41467-025-61195-1
- Solving partial differential equations and constrained optimization problems with deep learning, ICTS
 2021-2023
 Developed deep learning algorithms for solving high-dimensional Fokker-Planck equations and problems in calculus of variations and identified a special failure mode of physics-informed neural networks for parabolic equations. https://arxiv.org/pdf/2306.07068.pdf, https://arxiv.org/pdf/2306.07068.pdf, https://arxiv.org/pdf/2401.01292.pdf
- Data Assimilation, ICTS 2020-2021 Developed a fast, scalable method for assessing the stability of numerical filters, including EnKF and particle filters, and demonstrated exponential stability in both cases.

https://www.sciencedirect.com/science/article/abs/pii/S0167278923001197, https://ieeexplore.ieee.org/document/9703185

- Predicting Visual Stimuli from fMRI Data, Neuromatch Academy 2021

 Used fMRI data to predict images seen by human subjects (in collaboration with an international group of graduate students).
- Atmospheric Plume Modelling, ICTS

 Developed a PDE-based model for atmospheric plume, and combining with it open-source data from OpenStreetMap, estimated air pollution levels in Peenya.
- I have also worked as a consultant for Adam Spencer. 2024

Selected Conferences and Seminars

- Mathematical and Computational Foundations of Climate Modeling BIRS, CMI |
 Talk: Unlearning via orthogonalization in generative models
- Co-organized minisymposium titled: Data-driven reconstruction and forecasting of dynamical systems - SIAM DS25, Denver
- Machine learning seminar **USyd** | **Talk**: Learning dynamical systems with hit-and-run random feature maps 2025
- Numerical methods for complex high dimensional systems Jervis Bay | Talk:
 From Random to Reliable: Good sampling for random features in ML
 2024
- New directions for SDE and machine learning ICMS, Edinburgh | Poster: Success and failure of PINNs and solving Fokker-Planck equations
- Variational principles of plasma confinement in 3D magnetic fields ANU | Talk:
 Deep learning for stellarator design (with Zhisong Qu)
- 7th Indian Control Conference **IIT Bombay** | **Talk**: Stability of nonlinear filters numerical explorations of particle and ensemble Kalman filters 2021

Achievements

•	2nd place at national level mathematics exam IIT-JAM	2014
•	9th place at national level mathematics exam TIFR-GS	2016
•	15th place at national level math exam (for lecturership in India) NET	2016
•	Future Research Talent Fellow (Australian National University)	2021
	Recipient of Infosys-TIFR Leading Edge travel grant	2023

Publications and Visualizations

- I have published several first-author articles in high-impact journals, including **Nature Communications, Foundations of Data Science, Physica D,** and **IEEE**. A list of my research articles can be found here.
- A gallery of visualizations illustrating some of my projects is available on my **GitHub page**.

Technical Skills

- · Languages: Python (primary), C, MATLAB, SQL
- Libraries: PyTorch, TensorFlow, NumPy, SciPy, Pandas, Matplotlib
- AI/ML: Deep Learning, Generative Models (VAE, GAN, WGAN, WGAN-GP, Diffusion Transformers, Flow Matching), Gradient Surgery, Random Feature Maps
- Other: Git, GPU Computing, Data Visualization, Google Colab, Hugging Face
- Some open-source GitHub projects authored by me: DeepRFM, forget, fp-solvers

 DeepRFM has garnered significant the interest from the climate modelling community,
 and is slated for integration with other climate modelling systems.

Referees

Georg GottwaldUniversity of Sydney, Sydney

Vishal VasanICTS, Bengaluru

Tarun Malviya

Commonwealth Bank, Sydney

Amit Apte

IISER Pune, India

Sreekar Vadlamani

TIFR-CAM, Bengaluru