Logística Urbana para Entrega de Mercadorias

Desenho de Algoritmos

Alunos - G57

David Marques - up201905574 Gonçalo Marques - up202006874 Rui Soares - up202103631

Orientadores

Ana Paula Tomás Rosaldo Rossetti Gonçalo Leão

Descrição do Problema

Uma empresa com base tecnológica pretende inovar, criando uma plataforma eletrónica de crowdsourcing para a entrega de mercadorias em zonas urbanas.

A empresa tem o seu próprio <u>armazém</u>, onde recebe e mantém as <u>mercadorias</u> enviadas pelos fornecedores, que ficam a aguardar o <u>transporte</u> para o destino final.

A empresa realiza <u>dois tipos de serviços</u>, nomeadamente a <u>entrega **normal**</u> e a <u>entrega **expresso**</u>.

Neste contexto surgiram 3 abordagens às formas de entrega:

- Cenário 1: otimização do número de estafetas (entrega normal);
- Cenário 2: otimização do lucro da empresa (entrega normal);
- **Cenário 3**: otimização das entregas expresso.

Cenário 1 - Formalização

- Input:
 - o lista de carrinhas = {c1,c2,c3,...,cn};
 - o lista de encomendas = {e1,e2,e3,...,em};
- Output: lista de carrinhas com encomendas;
- Restrições:
 - o peso e volume máximo de cada carrinha não podem ser ultrapassados;

Cenário 1 - Descrição de Algoritmos

Neste cenário foi usado um algoritmo *greedy*:

- 1. **ordenar** o <u>vetor de carrinhas</u> pela **soma** dos valores <u>maxPeso</u> e <u>maxVol</u> por <u>ordem crescente;</u>
- 2. **ordenar** o <u>vetor de encomendas</u> pela **soma** dos valores <u>peso</u> e <u>volume</u> por <u>ordem</u> <u>decrescente</u>;
- percorrer o vetor das carrinhas até ao <u>final</u> do vetor ou até o vetor das encomendas ficar <u>vazio</u>;
- 4. em cada **iteração** percorrer o vetor das encomendas até ao <u>final</u> do vetor ou até que o <u>peso</u> ou o <u>volume</u> das **encomendas** dentro da carrinha seja <u>igual à capacidade</u> da carrinha:
 - a. se o peso e o volume da **encomenda** em conjunto com o peso e volume de todas as **encomendas dentro** da carrinha forem **menor ou igual** ao peso e volume máximo da **carrinha** esta é <u>inserida</u> dentro da **carrinha** e <u>removida</u> do vetor das **encomendas**.

Cenário 1 - Análise da Complexidade

- vetor de carrinhas: n elementos;
- vetor de encomendas: m elementos;
- 1. ordenar os vetores usando a função sort que tem complexidade temporal O(nlog(n));
- 2. um ciclo <u>while</u> com **m** elementos num ciclo <u>for</u> com **n** elementos resulta em complexidade O(n*m);

Assim, temos um complexidade temporal total de O[nlog(n) + mlog(m) + n*m] = O(n*m).

Em relação à complexidade espacial como não são criadas novas estruturas de dados a complexidade espacial é **O(1)**.

Cenário 1 - Resultados da Avaliação Empírica

volMax	pesoMax	total
42	100	142
19	115	134
28	95	123
20	89	109
35	55	90

volume	peso	total
9	9	18
3	19	22
3	19	22
3	19	22
3	20	23
3	23	26
16	13	29
16	13	29
6	26	32
6	26	32
20	13	33
19	16	35
25	13	38
22	16	38
23	16	39
16	26	42
13	29	42
19	28	47
26	22	48
25	28	53

arrinha	volEnc	volCar - volEnc	pesoEnc	pesoCar - pesoEnc	Eficiencia de Volume	Eficiencia de Peso
9	9	33	9	91		
	3	30	19	72	900/	20%
142	3	27	19	53		
142	3	24	19	34	88%	99%
	3	21	20	14		
	16	5	13	1		
	134 3 16	16	23	92	4000/	240/
134		0	13	79	100%	31%
	6	22	26	69		
123	6	16	26	43	100%	82%
	16	0	26	17		
109	20	0	13	76	100%	15%
90 19	19	16	16	39	019/	939/
	13	3	29	10	91%	82%

Encomendas Entregues: 70%

Eficie	encia Média
96%	62%

Na tabela acima podemos ver os resultados ideais do cenário. Usando o algoritmo descrito anteriormente obtemos valores que estão dentro das margens de erro aceitáveis. Existem algoritmos que podem dar respostas melhores ao problema (e.g. *brute-force*) mas têm complexidades temporais muito maiores do que o nosso algoritmo.

Cenário 2 - Formalização

• Input:

- o lista de carrinhas = {c1,c2,c3,...,cn};
- o lista de encomendas = {e1,e2,e3,...,em};

Output:

- lucro máximo;
- o carrinhas usadas;
- lucro por carrinha;

• Restrições:

- o peso e volume máximo de cada carrinha não podem ser ultrapassados;
- o não utilizar carrinhas (ou encomendas) que causem prejuízo.
- Função Objetivo: max (lucro).

Cenário 2 - Descrição do Algoritmo

Para este problema usamos um algoritmo *greedy*:

- ordenar **encomendas** por ordem de <u>decrescente</u> de **recompensa**;
- máximo de lucro com o mínimo de custos.

- ordenar carrinhas por ordem crescente de custo;
- enquanto houver encomendas, ou existir peso e volume livre na carrinha, encher a carrinha:
 - quando uma encomenda ultrapassa a capacidade restante da carrinha, tentar a seguinte até uma conseguir ser inserida ou chegar ao fim da lista;
- calcular o lucro gerado por essa carrinha;
- repetir até uma carrinha dar prejuízo, porque a partir dessa nenhuma carrinha dará lucro.
- calcular o lucro final com a seguinte equação:

encomendas Usadas.size

carrinhas Usadas.size

$$\sum_{x=0}$$

x.recompensa-

$$\sum_{m=0}^{\infty}$$

x.custo

$$x=0$$

Cenário 2 - Análise de Complexidade

- vetor de carrinhas: n elementos;
- vetor de encomendas: m elementos;
- ordenar os vetores usando a função sort que tem complexidade temporal O(nlog(n));
- 2. um ciclo while com m elementos num ciclo for com n elementos resulta em complexidade O(n*m);

Assim, temos um complexidade temporal total de O[nlog(n) + mlog(m) + n*m] = O(n*m).

Para além disso, não são criadas novas estruturas de dados, pelo que a complexidade espacial é O(1).

Cenário 2 - Resultados da Avaliação Empírica

volMax	pesoMax	custo
19	115	2 025,00 €
28	95	2 378,00 €
42	100	3 796,00 €
20	89	4 015,00 €
35	55	5 226,00 €

volume	peso	recompensa
6	26	1 991,00 €
19	16	1 967,00 €
3	20	1 645,00 €
26	22	1 628,00€
16	26	1 590,00 €
20	13	1 542,00 €
13	29	1 511,00 €
3	19	1 432,00€
3	23	1 410,00 €
25	28	1 370,00 €
6	26	1 291,00 €
25	13	1 251,00 €
9	9	1 137,00€
16	13	1 121,00 €
22	16	982,00€
19	28	946,00€
23	16	868,00 €
3	19	754,00 €
3	19	585,00€
16	13	367,00€

Carrinha	volEnc	volCar - volEnc	pesoEnc	pesoCar - pesoEnc	Recompensa Carrinha	Lucro Carrinha
	6	13	26	89		5 207,00 €
	3	10	20	69		
2025	3	7	19	50	7 232,00 €	
	3	4	23	27	100 00000000000000000000000000000000000	
	3	1	19	8		
	19	9	16	79	3 843,00 €	1 465,00 €
2378	6	3	26	53		
	3	0	19	34		
and the same	26	16	22	78	2 24 2 22 2	-578,00 €
3796	16	0	26	52	3 218,00 €	
4015	20	0	13	76	1 542,00 €	-2 473,00 €
5005	13	22	29	26	2.542.00.0	
5226 9	9	13	9	17	2 648,00 €	-2 578,00 €

Custo Total	4 403,00 €
Recompensa Total	11 075,00 €
Lucro Total	6 672,00 €

Estas tabelas demonstram os dados utilizados para os testes empíricos e as respostas ideais.

O algoritmo utilizado conseguiu aproximar-se de uma resposta ideal.

Outros tipos de algoritmos que conseguissem alcançar uma resposta mais precisa, seriam mais lentos.

Cenário 3 - Formalização

- Input:
 - o lista de encomendas = {e1, e2, e3, ..., en};
- Output: tempo médio mínimo;
- Restrições:
 - 1 encomenda por entrega;
 - o no máximo 28800 segundos por dia (8 horas = 1 dia de trabalho).
- Função Objetivo: min (tempo médio).

Cenário 3 - Descrição do Algoritmo

Para este problema usamos um algoritmo *greedy*:

- 1. ordenar as **encomendas** por ordem **crescente** de **duração** da entrega.
- enquanto houverem encomendas ou enquanto o tempo da entrega não passar as 8
 horas de trabalho diárias, são guardados os tempos das encomendas numa lista (time)
 para serem usados no cálculo do tempo médio das entregas.

Finalmente, para calcular o tempo médio das entregas, são usados os tempos na lista referida anteriormente da seguinte forma:

$$\sum_{i=1}^{time.size} time[time.size-1]*i$$

Cenário 3 - Análise de Complexidade

- vetor de encomendas: **n** elementos;
- ordenar o vetor usando a função sort tem complexidade temporal O(nlog(n));
- um ciclo <u>for</u> com n elementos tem complexidade O(n);
- 3. outro ciclo <u>for</u> com **n** elementos tem complexidade **O(n)**;

Assim, temos um complexidade temporal total de O[nlog(n) + n + n] = O(nlog(n)).

Para além disso, não são criadas novas estruturas de dados, pelo que a complexidade espacial é O(1).

Cenário 3 - Resultados da Avaliação Empírica

Estas tabelas demonstram os dados utilizados para os testes empíricos e as respostas ideais.

O algoritmo utilizado conseguiu alcançar aproximadamente a resposta ideal.
Outros tipos de algoritmos que conseguissem alcançar uma resposta mais precisa, seriam mais lentos.

Ou seja, para estas 20 encomendas expresso, que só serão entregues em 6 dias, foram obtidos estes tempos médios mínimos de entrega para cada dia.

volume	peso	duração (s)
20	13	1280
22	16	2290
3	20	3160
6	26	3180
13	29	3250
25	13	3840
25	28	5350
23	16	6080
16	13	6410
16	13	7030
16	26	7280
3	19	8270
19	16	8650
26	22	9250
3	19	9840
9	9	10190
19	28	10210
3	23	10280
6	26	10350
3	19	10510

Segundos em 1 Dia de Trabalho: 28800

Dia	Sum. Aux	Somatório	Média	Enc. Entregues	Tempo Total
	1280				
	3570				
	6730				
1	9910	102430	12803,75	40,00%	28430
-	13160	102430	12003,73	40,00%	20430
	17000				
	22350				
	28430				
	6410	40570	13523,33	25,00%	20720
2	13440				
	20720				
	8270	51360	17120	33,33%	26170
3	16920				
	26170	0			
4	9840	29870	14935	33,33%	20030
4	20030	29870			
5	10210	20700	15350	50,00%	20400
	20490	30700			20490
6	10350	31210	15605	100.00%	20050
	20860	51210		100,00%	20860

Funcionalidades Extra

Acrescentamos também a capacidade de medir a **eficiência de entregas** em cada cenário, em termos do quociente entre o número de pedidos **entregues** e os **não entregues**.

Solução Algorítmica de Destaque

Achamos que vale a pena destacar o algoritmo que obtivemos para o cenário 3, pois apesar de, tal como os outros cenários, ser um algoritmo *greedy*, conseguimos obter nesse caso uma complexidade temporal melhor do que nos outros algoritmos.

$$O(nlog(n)) > O(n^2)$$

Dificuldades Encontradas e Contributos

 Encontrar algoritmos com mais precisão em relação à solução ótima do que os do tipo greedy sem sacrificar tempo de execução.

FIM

