Corso di Logica 2.1 – Insiemi

Docenti: Alessandro Andretta, Luca Motto Ros, Matteo Viale

Dipartimento di Matematica Università di Torino

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

1/42

Insiemi

In matematica è uso comune considerare delle collezioni di oggetti e queste collezioni si dicono **insiemi**. Sinonimi: **classe** o **famiglia**.

Per indicare che un **elemento** x appartiene ad un insieme A scriviamo

$$x \in A$$
.

Se invece x non appartiene ad A scriviamo

$$x \notin A$$
.

Un insieme è completamente determinato dai suoi elementi:

Principio di estensionalità

Due insiemi coincidono se e solo se hanno gli stessi elementi, ovvero

$$A = B$$
 se e solo se $\forall x (x \in A \leftrightarrow x \in B)$.

Insiemi

L'insieme formato dagli elementi x_1, \ldots, x_n si indica con

$$\{x_1,\ldots,x_n\}.$$

Esempio

L'insieme delle soluzioni dell'equazione $x^3-4x^2+x+6=0$ è $\{-1,2,3\}$.

Per il principio di estensionalità

$$\{-1,2,3\} = \{2,-1,3\} = \{3,2,3,-1\}.$$

In altre parole: l'ordine in cui vengono elencati gli elementi di un insieme è irrilevante, e le eventuali ripetizioni non contano.

Al contrario, $\{3,-1,2\} \neq \{2,-1,2\}$ poiché 3 appartiene al primo insieme ma non al secondo.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

3 / 42

L'insieme di tutti gli x che godono della proprietà P è indicato con

$$\{x \mid P(x)\}$$
 oppure $\{x : P(x)\}.$

L'insieme degli x in A che soddisfano la proprietà P è indicato invece con

$$\{x \mid x \in A \in P(x)\}$$
 oppure $\{x \in A \mid P(x)\}.$

Esempio

Consideriamo la proprietà P(x) data da

$$x^3 - 4x^2 + x + 6 = 0.$$

Allora l'insieme di tutti i numeri interi che godono della proprietà P(x) è

$$\{x \in \mathbb{Z} \mid x^3 - 4x^2 + x + 6 = 0\}.$$

Se invece P(x) è la proprietà "essere un numero pari" possiamo scrivere

$$\{x \in \mathbb{Z} \mid x \text{ è pari}\}.$$

Osservazione

Consideriamo i due insiemi visti prima

$$\{-1,2,3\}$$
 e $\{x \in \mathbb{Z} \mid x^3 - 4x^2 + x + 6 = 0\}.$

La descrizione dell'insieme a sinistra è data attraverso una lista esplicita dei suoi elementi, mentre la descrizione di quello a destra è data attraverso una proprietà P(x) (essere soluzione dell'equazione $x^3-4x^2+x+6=0$) che caratterizza quali numeri interi fanno parte dell'insieme.

Anche se le due descrizioni sono diverse, per il principio di estensionalità i due insiemi coincidono:

$$\{-1, 2, 3\} = \{x \in \mathbb{Z} \mid x^3 - 4x^2 + x + 6 = 0\}.$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

5 / 42

L'insieme vuoto

Per definizione, un insieme è vuoto se non contiene elementi.

Osservazione

L'insieme vuoto è unico, ovvero: se A e B sono due insiemi che non contengono nessun elemento, allora per il principio di estensionalità

$$A = B$$
.

Infatti, A e B hanno gli stessi elementi (cioè nessuno), ovvero A e B verificano la formula

$$\forall x (x \in A \leftrightarrow x \in B)$$
.

L'(unico!) insieme vuoto si indica con ∅.

Un insieme A è **incluso** (o **contenuto**) in un insieme B se ogni elemento di A è anche un elemento di B: in simboli, $A \subseteq B$. Quindi

 $A \subseteq B$ se e solo se $\forall x (x \in A \rightarrow x \in B)$.

In questo caso, diciamo che A è un sottoinsieme di B, oppure che B è un sovrainsieme di A.

Attenzione!

Non confondere \in con \subseteq . In italiano, il termine "contenere" è ambiguo perché si utilizza sia nel senso di appartenenza (" $\mathbb N$ " contiene 1", inteso come "1 è un elemento di $\mathbb N$ "), sia nel senso di inclusione (" $\mathbb N$ " contiene i numeri pari", inteso come "l'insieme dei numeri pari è incluso in $\mathbb N$ ").

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

7 / 42

Dalla definizione di della relazione di inclusione \subseteq segue che per verificare che $A \not\subseteq B$ (ovvero che A non è un sottoinsieme di B) è sufficiente trovare un elemento $x \in A$ che non appartenga a B:

 $A \subsetneq B$ (oppure $A \subset B$) significa che A è un **incluso propriamente** in B, ovvero $A \subseteq B$ ma $A \neq B$.

Attenzione!

Non confondere \subsetneq con $\not\subseteq$. Se $A \subsetneq B$, allora in particolare $A \subseteq B$ e quindi non potrà essere vero che $A \not\subseteq B$. Ad esempio, $\{1,2\} \subsetneq \{1,2,3\}$ ma non è vero che $\{1,2\} \not\subseteq \{1,2,3\}$.

Dal principio di estensionalità si ottiene il

Principio di doppia inclusione

Dati due insiemi A e B, si ha che A=B se e solo se $A\subseteq B \wedge B\subseteq A$.

Questo principio si usa spesso (in maniera implicita) per dimostrare che due insiemi A e B sono uguali: si argomenta che ogni elemento di A deve appartenere anche a B (ovvero che $A\subseteq B$) e, viceversa, che ogni elemento di B deve appartenere anche ad A (ovvero $B\subseteq A$).

Osserviamo infine che per ogni insieme A si ha che $A\subseteq A$ e, poiché \emptyset non ha elementi, anche $\emptyset\subseteq A$.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

9 / 42

Descrizione informale dei principali insiemi numerici

L'insieme dei numeri naturali è

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

 $\mathbb N$ è contenuto propriamente nell'insieme dei numeri interi

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Osservazione

Qui sopra stiamo estendendo la notazione che abbiamo introdotto per insiemi finiti $\{x_0, x_1, \ldots, x_n\}$ ad insiemi infiniti. I puntini indicano che l'elenco degli elementi prosegue indefinitamente in maniera "naturale". Ad esempio, possiamo indicare l'insieme dei numeri naturali pari con

$$\{0, 2, 4, 6, \dots\}.$$

Descrizione informale dei principali insiemi numerici

L'insieme Q dei numeri razionali è l'insieme di tutti i numeri della forma

$$\frac{n}{m}$$

con $n,m\in\mathbb{Z}$ e $m\neq 0$. Ogni $k\in\mathbb{Z}$ può essere scritto come $\frac{k}{1}$ quindi $\mathbb{Z}\subseteq\mathbb{Q}$ e poiché ci sono razionali che non sono interi (ad esempio $\frac{1}{2}$), l'inclusione è propria, cioè $\mathbb{Z}\subset\mathbb{Q}$.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

11 / 42

Descrizione informale dei principali insiemi numerici

Un razionale ha un'espansione decimale finita (per esempio $\frac{1}{2}=0.5$) oppure un'espansione periodica (per esempio $\frac{1}{3}=0.33333...$). I numeri la cui espansione decimale è arbitraria (cioè finita, periodica o aperiodica) si dicono **numeri reali** e l'insieme dei numeri reali si denota con \mathbb{R} .

Chiaramente $\mathbb{Q} \subseteq \mathbb{R}$ e l'inclusione è stretta (ovvero $\mathbb{Q} \subset \mathbb{R}$) poiché, ad esempio, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Attenzione!

Alcuni numeri ammettono due espansioni decimali diverse: ad esempio 0.99999... e 1 indicano lo stesso numero reale.

Intersezione

L'intersezione di A e B, in simboli $A \cap B$, è l'insieme di tutti gli elementi che stanno sia in A che in B, cioè

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A \qquad B$$

Due insiemi A e B si dicono **disgiunti** se non hanno alcun elemento in comune, ovvero se $A\cap B=\emptyset$.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

13 / 42

Unione

L'unione di A e B, in simboli $A \cup B$, è l'insieme di tutti gli enti che stanno in A o in B (o in entrambi gli insiemi), cioè

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Unioni e intersezioni di famiglie arbitrarie

Le operazioni di unione e intersezione si possono generalizzare a famiglie di insiemi arbitrarie come segue.

Una famiglia arbitraria di insiemi è denotata da $\{A_i \mid i \in I\}$ — ad ogni indice $i \in I$ corrisponde un insieme A_i .

L'unione degli A_i è l'insieme degli enti che appartengono a qualche A_i

$$\bigcup_{i \in I} A_i = \{ x \mid \exists i \in I (x \in A_i) \}$$

mentre l'intersezione degli A_i è l'insieme degli enti che appartengono ad ogni A_i

$$\bigcap_{i \in I} A_i = \{ x \mid \forall i \in I (x \in A_i) \}.$$

Chiaramente $\bigcup_{i\in I}A_i$ contiene ogni A_j , mentre $\bigcap_{i\in I}A_i$ è contenuta in ogni A_j .

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

15 / 42

Consideriamo la famiglia $\{A_n \mid n \in \mathbb{N}\}$ di intervalli di \mathbb{R} dove $A_n = [-1; 1-2^{-n}] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid -1 \leq x \leq 1-2^{-n}\}.$

Allora

$$\bigcup_{n \in \mathbb{N}} A_n = [-1, 1) \stackrel{\text{def}}{=} \{ x \in \mathbb{R} \mid -1 \le x < 1 \}$$

e

$$\bigcap_{n \in \mathbb{N}} A_n = [-1; 0] \stackrel{\text{def}}{=} \{ x \in \mathbb{R} \mid -1 \le x \le 0 \} = A_0.$$

Poniamo ora $A_n = [-1; 2^{-n}] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid -1 \le x \le 2^{-n}\}.$

Allora

$$\bigcup_{n\in\mathbb{N}} A_n = [-1;1] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid -1 \le x \le 1\} = A_0$$

e

$$\bigcap_{n\in\mathbb{N}} A_n = [-1;0] \stackrel{\text{def}}{=} \{x \in \mathbb{R} \mid -1 \le x \le 0\}.$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

17 / 42

Differenza

La differenza tra A e B, in simboli $A\setminus B$, è l'insieme di tutti gli enti che stanno in A ma non in B, cioè

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$

$$A \qquad B$$

La differenza simmetrica tra A e B, in simboli $A \triangle B$, è l'insieme di tutti gli enti che stanno in uno dei due insiemi ma non nell'altro, cioè

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

$$\forall x \, (x \in A \triangle B \leftrightarrow ((x \in A \land x \notin B) \lor (x \in B \land x \notin A))).$$

Inoltre,

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

19 / 42

Esempio

Siamo $A = \{1, 4, 6, 27, 43\}$ e $B = \{2, 4, 6, 8, 10\}$. Allora

$$A \setminus B = \{1, 27, 43\}$$
 e $B \setminus A = \{2, 8, 10\}.$

$$B \setminus A = \{2, 8, 10\}.$$

Quindi

$$A \triangle B = (A \setminus B) \cup (B \setminus A) = \{1, 2, 8, 10, 27, 43\}.$$

Complemento

Spesso è conveniente assumere che tutti gli insiemi/oggetti/enti di cui ci stiamo occupando siano contenuti in un insieme universale \mathcal{U} , detto appunto **universo**.

Fissiamo ora un universo \mathcal{U} . La differenza $\mathcal{U} \setminus A$ si dice **complementare** (o, più semplicemente, **complemento**) di A e lo si indica con $\mathcal{C}A$. Quindi

$$\mathbf{C}A = \{x \mid x \notin A\}.$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

21 / 42

Esempio

Consideriamo l'universo $\mathcal U$ formato dall'insieme $\mathbb N$ dei numeri naturali. Sia A il sottoinsieme di tale universo costituito dai numeri pari. Allora $\mathcal CA$ è l'insieme dei numeri naturali che non sono pari, ovvero l'insieme dei numeri dispari.

$$\mathcal{U} = \mathbb{N}$$

A = numeri pari

CA = numeri dispari

Insieme delle parti o insieme potenza

Definizione

L'insieme delle parti $\mathcal{P}(A)$ di un insieme A (detto anche insieme potenza di A) è l'insieme di tutti i suoi sottoinsiemi:

$$\mathcal{P}(A) = \{ B \mid B \subseteq A \}.$$

 $\mathfrak{P}(A)$ è un insieme i cui elementi sono a loro volta insiemi!

Osservazioni: $\mathcal{P}(A)$ contiene sempre \emptyset e A come elementi, quindi è sempre non vuoto. Inoltre, se A è un insieme finito con n elementi, allora $\mathcal{P}(A)$ ha esattamente 2^n elementi.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

23 / 42

Esercizi

Descrivere
$$\mathcal{P}(A)$$
 dove $A = \{0, 1, 2\}$

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}.$$

Descrivere
$$\mathcal{P}(\mathcal{P}(A))$$
 con $A = \{1\}$

Si ha
$$\mathcal{P}(A)=\{\emptyset,A\}$$
, e quindi $\mathcal{P}(\mathcal{P}(A))=\{\emptyset,\{\emptyset\},\{A\},\{\emptyset,A\}\}.$

Esercizi

Inserire \in oppure \subseteq al posto dei puntini

$$\emptyset \ldots \subseteq \mathbb{N} \qquad \{5\} \ldots \subseteq \mathbb{N} \qquad 5 \ldots \in \mathbb{N} \qquad \{5\} \ldots \in \mathcal{P}(\mathbb{N})$$

$$\mathbb{N} \ldots \subseteq \mathbb{Z} \qquad \mathbb{N} \ldots \in \mathcal{P}(\mathbb{Z}) \qquad \mathcal{P}(\mathbb{N}) \ldots \subseteq \mathcal{P}(\mathbb{Z})$$

 $\{n\in\mathbb{N}\mid n=4k \text{ per qualche } k\}\ldots\subseteq\{n\in\mathbb{N}\mid n=2k \text{ per qualche } k\}$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

25 / 42

Esercizi

Quale delle seguenti affermazioni sono corrette?

$ \ \ \emptyset \in A per ogni insieme A$	FALSO
$ ② \ \emptyset \in \mathcal{P}(A) \ per \ ogni \ insieme \ A $	VERO
$a \in \{\{a\}\}$	FALSO
	FALSO
5 $\{a\} \in \{\{a\}\}$	VERO
	VERO
$\{a\} \subseteq \{a, \{a\}\}$	VERO
	FALSO

Il prodotto cartesiano

Coppie ordinate

La coppia ordinata (x,y) denota una **lista ordinata di due elementi** il cui *primo elemento* è x e il cui *secondo elemento* è y.

Attenzione! A differenza degli insiemi, nelle coppie ordinate l'ordine è fondamentale, cioè (x,y) è un oggetto diverso da (y,x), a meno che x non sia y.

Ad esempio, $(0,1) \neq (1,0)$ dato che, ad esempio, il primo elemento di (0,1) è diverso dal primo elemento di (1,0). Invece abbiamo visto che $\{0,1\}=\{1,0\}$ perché in un *insieme* l'ordine e le ripetizioni non contano.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

27 / 42

Definizione

Il prodotto cartesiano di A e B, in simboli $A \times B$, è l'insieme di tutte le coppie ordinate (x,y) dove $x \in A$ e $y \in B$, cioè

$$A \times B = \{(x, y) \mid x \in A \text{ e } y \in B\}.$$

Ad esempio, il prodotto cartesiano di $A = \{0, 1, 2, 3\}$ e $B = \{a, b, c\}$.

Poiché i prodotti cartesiani sono costituiti da coppie *ordinate*, bisogna prestare attenzione al fatto che $A\times B$ è in genere distinto da $B\times A$ se $A\neq B$.

Ad esempio, se $A=\{0,1,2,3\}$ e $B=\{a,b,c\}$, allora la coppia (0,a) appartiene ad $A\times B$ ma non a $B\times A$.

Se invece A=B, allora $A\times B=B\times A$: in questo caso, tale prodotto cartesiano viene indicato con A^2 .

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

29 / 42

Esempio

L'insieme $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ è l'usuale piano cartesiano, i cui elementi sono identificati da coppie ordinate di numeri reali (le *coordinate* dei punti del piano).

Più in generale, se $n \ge 1$

$$(x_0, x_1, \ldots, x_{n-1})$$

indica la n-upla (ossia una sequenza ordinata con n elementi) costituita dagli elementi $x_0, x_1, \ldots, x_{n-1}$.

Attenzione!

A differenza di quel che accade per gli insiemi, nelle n-uple ordinate contano sia l'ordine che eventuali ripetizioni.

Le n-uple vengono anche dette **sequenze** (di lunghezza n). Come notazione, spesso si scrive

$$\langle x_0, \ldots, x_{n-1} \rangle$$

al posto di (x_0, \ldots, x_{n-1}) , specialmente quando si considerano triple, quadruple e, più in generale, n-uple di lunghezza ≥ 3 .

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

31 / 42

Definizione

Il **prodotto cartesiano** degli insiemi A_0, \ldots, A_{n-1} , denotato con

$$A_0 \times A_1 \times \ldots \times A_{n-1}$$
,

è l'insieme delle n-uple $\langle x_0, x_1, \dots, x_{n-1} \rangle$ tali che $x_i \in A_i$ per ogni $0 \le i < n$.

Il prodotto cartesiano $\underbrace{A \times \cdots \times A}_n$ di n copie dell'insieme A, ovvero

l'insieme delle n-uple $\langle x_0, \dots, x_{n-1} \rangle$ tali che $x_i \in A$ per ogni $0 \le i < n$, si indica più brevemente con A^n e viene detto **potenza** n-esima di A.

Per convenzione, si pone anche $A^0 = \{\emptyset\}$.

Identità booleane per le operazioni insiemistiche

La logica proposizionale può essere utilizzata in maniera sistematica per verificare identità o inclusioni tra insiemi costruiti utilizzando le operazioni insiemistiche (finitarie) che abbiamo visto.

Dimostriamo che

$$CCA = A$$

Dobbiamo verificare che, qualunqua sia A, valga la formula

$$\forall x \, (x \in \mathbb{CC}A \leftrightarrow x \in A).$$

Fissiamo quindi un generico x. Sfruttando la corrispondenza tra operazioni insiemistiche e connettivi logici visti in precedenza, la formula

$$x \in \mathbb{CC}A \leftrightarrow x \in A$$

diventa

$$\neg(\neg(x \in A)) \leftrightarrow x \in A.$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

33 / 42

Se ora nella formula

$$\neg(\neg(x \in A)) \leftrightarrow x \in A$$

sostituiamo l'affermazione " $x \in A$ " con una corrispondente lettera proposizionale P otteniamo la formula proposizionale

$$\neg(\neg P) \leftrightarrow P$$
.

In generale, il fatto che P sia vera o meno dipenderà naturalmente dalla scelta di A e x: ma noi vogliamo proprio dimostrare che l'equivalenza è vera in ogni caso (cioè comunque vengano presi A e x), ovvero che la proposizione precedente è una tautologia. Utilizzando le tavole di verità si verifica facilmente che questo è vero (legge della doppia negazione), quindi comunque siano presi A e x avremo che

$$x \in CCA \leftrightarrow x \in A$$

da cui CCA = A, come desiderato.

Dimostriamo che

$$C(A \cup B) = CA \cap CB$$

Dobbiamo dimostrare che per ogni \boldsymbol{x}

$$x \in \mathcal{C}(A \cup B) \leftrightarrow x \in \mathcal{C}A \cap \mathcal{C}B.$$

Utilizzando la corrispondenza tra operazioni insiemistiche e connettivi che abbiamo visto, la formula precedente diventa

$$\neg(x \in A \lor x \in B) \leftrightarrow \neg(x \in A) \land \neg(x \in B).$$

Questa è una proposizione della forma

$$\neg(P \lor Q) \leftrightarrow \neg P \land \neg Q$$

dove P e Q sono, rispettivamente, " $x \in A$ " e " $x \in B$ ". Poiché tale proposizione è una tautologia (leggi di De Morgan), l'identità insiemistica è dimostrata.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

35 / 42

Dimostriamo che

$$\complement(A\cap B)=\complement A\cup \complement B$$

Dobbiamo dimostrare che per ogni x

$$x \in \mathcal{C}(A \cap B) \leftrightarrow x \in \mathcal{C}A \cup \mathcal{C}B$$
,

ovvero che

$$\neg (x \in A \land x \in B) \leftrightarrow \neg (x \in A) \lor \neg (x \in B).$$

Questa è una proposizione della forma

$$\neg (P \land Q) \leftrightarrow \neg P \lor \neg Q,$$

dove P e Q sono, rispettivamente, " $x \in A$ " e " $x \in B$ ". Poiché tale proposizione è una tautologia (leggi di De Morgan), l'identità insiemistica iniziale è dimostrata.

$$C(A \cap B) = CA \cup CB$$

La stessa identità può anche essere dimostrata utilizzando ciò che abbiamo già dimostrato, ovvero che per tutti gli insiemi X e Y valgono $\mathbb{CC}X = X$ e $\mathbb{C}(X \cup Y) = \mathbb{C}X \cap \mathbb{C}Y$.

Dimostrazione.

$$\begin{split} \mathbb{C}(A \cap B) &= \mathbb{C}(\mathbb{C}\mathbb{C}A \cap \mathbb{C}\mathbb{C}B) \\ &= \mathbb{C}\left(\mathbb{C}\left(\mathbb{C}A \cup \mathbb{C}B\right)\right) \\ &= \mathbb{C}\mathbb{C}\left(\mathbb{C}A \cup \mathbb{C}B\right) \\ &= \mathbb{C}A \cup \mathbb{C}B \end{split}$$

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

37 / 42

Dimostrare che $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Dobbiamo dimostrare che per ogni \boldsymbol{x}

$$x \in A \cap (B \cup C) \leftrightarrow x \in (A \cap B) \cup (A \cap C),$$

ovvero

$$x \in A \land (x \in B \lor x \in C) \leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in C).$$

Questa è una proposizione della forma

$$P \wedge (Q \vee R) \leftrightarrow (P \wedge Q) \vee (P \wedge R),$$

dove P, Q e R sono, rispettivamente, " $x \in A$ ", " $x \in B$ " e " $x \in C$ ". Poiché la proposizione precedente è una tautologia (come si può verificare facilmente con le tavole di verità), l'equivalenza è dimostrata.

Dimostrare che $\mathbb{C}\left(\bigcup_{i\in I}A_i\right)=\bigcap_{i\in I}\mathbb{C}A_i$

In questo caso non possiamo ricondurci alla logica proposizionale (a meno che I non sia finito) perché le operazioni $\bigcup_{i\in I}$ e $\bigcap_{i\in I}$ sono operazioni infinitarie (coinvolgono infiniti insiemi) mentre i connettivi sono operatori finitari (unari o binari). Dobbiamo quindi procedere con una dimostrazione ad hoc.

Dobbiamo dimostrare che per ogni x

$$x \in \mathbb{C}\left(\bigcup_{i \in I} A_i\right) \leftrightarrow x \in \bigcap_{i \in I} \mathbb{C}A_i.$$

In effetti $x \in \mathbb{C}\left(\bigcup_{i \in I} A_i\right) \leftrightarrow \neg \left(x \in \bigcup_{i \in I} A_i\right) \leftrightarrow \neg (\exists i \in I \ (x \in A_i)) \leftrightarrow \forall i \in I \neg (x \in A_i) \leftrightarrow \forall i \in I \ (x \notin A_i) \leftrightarrow \forall i \in I \ (x \in \mathbb{C}A_i) \leftrightarrow x \in \bigcap_{i \in I} \mathbb{C}A_i.$

Attenzione! La negazione di $\exists i \in I(\dots)$, ovvero $\neg(\exists i \in I(\dots))$, è equivalente a $\forall i \in I \neg (\dots)$. Viceversa, $\neg(\forall i \in I(\dots))$ è equivalente a $\exists i \in I \neg (\dots)$.

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021-2022

39 / 42

Dimostrare che $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$

Poiché $X \setminus Y = X \cap \complement Y$, l'identità può essere riscritta come

$$(A \cup B) \cap \mathbb{C}(A \cap B) = (A \cap \mathbb{C}B) \cup (B \cap \mathbb{C}A).$$

Quindi dobbiamo dimostrare che per ogni x

$$x \in (A \cup B) \cap \mathbb{C}(A \cap B) \leftrightarrow x \in (A \cap \mathbb{C}B) \cup (B \cap \mathbb{C}A),$$

ovvero

$$(x \in A \lor x \in B) \land \neg(x \in A \land x \in B) \leftrightarrow (x \in A \land \neg(x \in B)) \lor (x \in B \land \neg(x \in A)).$$

Questa è una proposizione del tipo

$$(P \vee Q) \wedge \neg (P \wedge Q) \leftrightarrow (P \wedge \neg Q) \vee (Q \wedge \neg P).$$

Usando le tavole di verità si verifica che tale proposizione è una tautologia, quindi l'identità insiemistica proposta è corretta.

Lo stesso metodo può essere utilizzato anche per trovare controesempi quando una certa identità booleana non è valida.

Dimostrare (trovando un controesempio) che non vale l'identità $A\cap (B\cup C)=A\cup (B\cap C)$

Dato un generico x, dobbiamo verificare che non è vero in generale che

$$x \in A \cap (B \cup C) \leftrightarrow x \in A \cup (B \cap C),$$

ovvero

$$x \in A \land (x \in B \lor x \in C) \leftrightarrow x \in A \lor (x \in B \land x \in C).$$

Questa è una proposizione del tipo

$$P \wedge (Q \vee R) \leftrightarrow P \vee (Q \wedge R),$$

dove P, Q e R sono, rispettivamente, " $x \in A$ ", " $x \in B$ " e " $x \in C$ ".

Andretta, Motto Ros, Viale (Torino)

Insiemi

AA 2021–2022

41 / 42

La tavola di verità di tale proposizione è

P	Q	\mathbf{R}	$P \wedge (Q \vee R)$	$\mid P \vee (Q \wedge R)$	$P \land (Q \lor R) \leftrightarrow P \lor (Q \land R)$
$\overline{\mathbf{V}}$	\mathbf{V}	\mathbf{V}	V	V	V
\mathbf{V}	${f V}$	${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f V}$	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{V}	${f F}$
\mathbf{F}	\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}	${f F}$
${f F}$	${f V}$	${f F}$	${f F}$	${f F}$	\mathbf{V}
${f F}$	${f F}$	${f V}$	${f F}$	${f F}$	\mathbf{V}
${f F}$	${f F}$	${f F}$	${f F}$	${f F}$	\mathbf{V}

Poiché la proposizione non è una tautologia, l'identità non è valida. Ad esempio, l'identità risulta falsa quando ci troviamo nella situazione descritta dalla quarta riga. Dunque un controesempio può essere costruito considerando un A che contenga almeno un elemento x che non compare né in B né in C: in tale situazione si avrà infatti $x \in A \cup (B \cap C)$ ma $x \notin A \cap (B \cup C)$, da cui $A \cap (B \cup C) \neq A \cup (B \cap C)$. In maniera analoga si può ottenere un (diverso) controesempio dalla quinta riga.