Mark Scheme SUVAT Past Paper Questions

Jan 2002 to Jan 2009

7(a)(i)
$$E_p = mg\Delta h \checkmark$$

= 5.8 × 10⁻² × 9.8(1) × 1.5 = 0.85 J \checkmark Q7 Jun 2002

- (ii) 0.85 J \checkmark (allow C.E. for value of E_p from (i))
- (iii) (use of $E_k = \frac{1}{2}mv^2$ gives) $0.85 = 0.5 \times 5.8 \times 10^{-2} \times v^2 \checkmark$ (allow C.E. for answer from (ii)) $(v^2 = 29.3)$ $v = 5.4 \text{ m s}^{-1} \checkmark$
- (iv) (use of p = mv gives) $p = 5.8 \times 10^{-2} \times 5.4 \checkmark$ (allow C.E. for value of v from (iii)) $= 0.31 \text{ N s } \checkmark$ (7)
- (b) $\left(\text{use of } F = \frac{\Delta(mv)}{\Delta t} \text{ gives}\right) F = \frac{0.31}{0.010} \checkmark$ (allow C.E. for value of p from (iv)) $= 31 \text{ N} \checkmark$

[or
$$a = \frac{5.4}{0.010} = 540 \text{ (m s}^{-2}) \checkmark$$

 $F = 5.8 \times 10^{-2} \times 540 = 31 \text{ N } \checkmark$] (2)

(2) (11)

(c) egg effectively stopped in a longer distance ✓
hence greater time and therefore less force on egg ✓
[or takes longer to stop

hence force is smaller as $F = \frac{\Delta(mv)}{t}$

[or acceleration reduced as it takes longer to stop thus force will be smaller]

[or some energy is absorbed by container less absorbed by egg]

Question 1	Q1 Jan 2006	
(a)	scales ✓ six points correctly plotted ✓ trendline ✓	3
(b)	average acceleration = $\frac{26}{25}$ = 1.0(4) m s ⁻² \checkmark (allow C.E. for incorrect values used in acceleration calculation)	2
(c)	area under graph ✓ = 510 ± 30 m ✓	2
(d)	(graph to show force starting from <i>y</i> -axis) decreasing (not a straight line) ✓ to zero (at end of graph) ✓	2
(e)	(since) gradient of a velocity-time graph gives acceleration ✓ first graph shows acceleration is decreasing ✓	2
	Total	11

Question 6	Q6 Jun 2006	
(a) (i)	(use of $a = \frac{\Delta v}{\Delta t}$ gives) $a = \frac{4.5}{3600}$	
(ii)	$= 1.25 \times 10^{-3} \mathrm{m s^{-2}} \checkmark$ (use of $v^2 = u^2 + 2as$ gives) $0 = 4.5^2 - 2 \times 1.25 \times 10^{-3} \times s \checkmark$ $s \left(= \frac{20.25}{2.5 \times 10^{-3}} \right) = 8.1 \times 10^3 \mathrm{m} \checkmark$	4
(b)	distance increasing curve ✓ correct curve ✓	2
(c)	gradient (slope) of graph represents speed ✓ hence graph has decreasing gradient ✓	2
	Total	8

Question			
(a) (i)	(use of $a = (v - u) \div t$ gives) acceleration = 29 ÷ 2.0 = 14.5 m s ⁻²	007	
(ii)	(use of $s = ut + \frac{1}{2} at^2$) $s = \frac{1}{2} \times 14.5 \times 2^2$ s = 29 m	*	4
(iii)	(use of distance = speed \times time gives) s = 29 \times 15 = 435 m	✓	
(b) (i)	reaction time acceleration over 2.0 s constant speed	√√√	6
(ii)	(use of distance = average speed × time distance travelled by antelope = 2 × 12.5 + 14.5 × 25 = 387.5 ✓	*	
(iii)	distance = 100 + 387.5 – 464 = 23 m ✓ (23.5)	✓	
		Total	10

Question 1		
(a)	gradient (or slope or steepness) is changing ✓ or graph a curve (or not a straight line)	1
(b)	25 ± 3 m ✓ Q1 Jun 2007	1
(c)	(use of speed = distance ÷ time gives)	
	speed = 100 ÷ 11	1
	speed = $9.1 \pm 0.2 \mathrm{m s^{-1}} \checkmark$	
(d) (i)	constant acceleration ✓ or acceleration stays the same or velocity increases uniformly with time	
(ii)	(use of $s = ut + \frac{1}{2} at^2$ gives)	3
	$a = 2 \times 100 \div (11^2) \checkmark$	
	$a = 1.7 \mathrm{m s^{-2}} \checkmark$	
	Total	6

Que	stion 5	Q5 Jan 2008	
(a)	(i)	(use of $F = ma$)	
		$a = 1.9 \times 10^{5}/5.6 \times 10^{4} = 3.4 \mathrm{m s^{-2}} \checkmark$	
	(ii)	(use of $v^2 = u^2 + 2as$)	3
		$82^2 = 2 \times 3.4 \times s \checkmark$	
		s = 989 m ✓ c.e. from (i)	
(b)		air resistance increases with speed ✓	2
		hence runway will be longer ✓	_
(c)	(i)	(use of $F_h = F \cos \theta$)	
		$F_h = 1.9 \times 105 \times \cos 22$	2
		$F_h = 1.8 \times 105 \mathrm{N} \checkmark$	2
	(ii)	$F_V = 1.9 \times 10^5 \times \sin 22 = 7.1 \times 10^4 \text{ N} \checkmark$	
		Total	7