	testa uz dozvoljavanje unosa proizvoljnog broja alternativa i proizvoljnog broja mjerenja svake od njih. Poželjno je da program ima graf interfejs. Dodatno, implementirati tehniku kontrasta svake dvije poređene alternative. Rješenje: U Excel fajlu (alternative.xlsx) je data tabela mjerenja i alternativa. Nakon učitavanja podataka iz tabele vršićemo izračunavanje parameta
	ANOVA testa po koracima po kojima smo to radili na laboratorijskim vježbama, nakon čega ćemo sprovesti i tehniku kontrasta. Napomena: Kod sproveden u nastavku "radi" i za drugačiji broj mjerenja, kao i za drugačiji broj alternativa (uz uslov da broj mjerenja po alternativama bude isti, kao što smo radili na vježbama). Tj. dozvoljen je proizvoljan broj alternativa i proizvoljan broj mjerenja po
29	alternativama (uslovno rečeno), samo je potrebno u skladu s tim ažurirati dati Excel fajl - alternative.xlsx # Uvezimo prvo potrebne biblioteke import numpy as np import math
	<pre>import pandas as pd import matplotlib.pyplot as plt import scipy.stats as stats from scipy.stats import t # za računanje kritične vrijednosti Studentove raspodjele import seaborn as sns from itertools import combinations # za dobijanje kombinacija parova alternativa</pre>
30	<pre>df = pd.read_excel('./alternative.xlsx') print("Matrica mjerenja po alternativama:") df</pre>
.30	Matrica mjerenja po alternativama: Alt 1 Alt 2 Alt 3 Alt 4 0 25 45 30 54 1 30 55 29 60 2 28 29 33 51 3 36 56 37 62 4 29 40 27 73 Prije same tehnike ANOVA čisto informativno pogledajmo grafički prikaz raspodjele mjerenja po alternativama.
.31	# Preoblikujmo dataframe df kako bismo omogućili da bude pogodan za "statsmodels" paket # koji će nam omogućiti da lakše vidimo razlike alternativa df_melt = pd.melt(df.reset_index(), id_vars=['index'], value_vars=['Alt 1', 'Alt 2', 'Alt 3', 'Alt 4']) # Premiještanje imena kolona df_melt.columns = ['index', 'Alternatives', 'Value'] # Generišimo boxplot kako bismo vidjeli raspodjelu podataka po alternativama # Korištenjem boxplot-a lakše detektujemo razlike između različitih alternativa print("Grafički prikaz raspodjele mjerenja po alternativama:") ax = sns.boxplot(x='Alternatives', y='Value', data=df_melt, color='#99c2a2') ax = sns.swarmplot(x="Alternatives", y="Value", data=df_melt, color='#7d0013') plt.show()
	Grafički prikaz raspodjele mjerenja po alternativama: 70
	60 - 9 N SO - 40 -
	Alt 1 Alt 2 Alt 3 Alt 4 Alternatives
	Već na osnovu prethodnog dijagrama nam je jasno da se alternative 1 i 3 najmanje razlikuju. ANOVA TEHNIKA: # Kreiranje ANOVA tabele i računanje parametara ANOVA tehnike
.32	<pre>data = [['Alternatives', '', '', '', '', ''], ['Error', '', '', '', ''], ['Total', '', '', '', ''] ANOVA_table = pd.DataFrame(data, columns = ['Variation', 'Sum of squares', 'Deg freedom', 'Mean square', ANOVA_table.set_index('Variation', inplace = True) # Izračunaćemo prvo srednje vrijednosti kolona i to smjestiti u vektor y_col_ms # Vektor y_col_ms ima onoliko elemenata koliko ima kolona, tj. alternativa (k) y_col_ms = df.mean() # Broj mjerenja n je broj vrsta matrice df n = np.shape(df)[0] # Broj alternativa k je broj kolona matrice df k = np.shape(df)[1] # Nađimo sada srednju vrijednost svih elemenata matrice df od k*n elemenata - y total ms</pre>
	<pre>y_total_ms = np.average(df) # Izračunavanje SSA i ažuriranje ANOVA tabele SSA_vector = n * (y_col_ms - y_total_ms)**2 # vektor od k elemenata SSA = SSA_vector.sum()</pre>
	<pre># Ažuriranje ANOVA tabele ANOVA_table['Sum of squares']['Alternatives'] = SSA #print(SSA) # Izračunavanje SSE i ažuriranje ANOVA tabele SSE_matrix = (df - y_col_ms)**2 # matrica od k*n elemenata</pre>
	<pre>SSE_vector = SSE_matrix.sum() # vektor od k elemenata SSE = SSE_vector.sum() # Ažuriranje ANOVA tabele ANOVA_table['Sum of squares']['Error'] = SSE</pre>
	<pre># Izračunavanje SST i ažuriranje ANOVA tabele SST = SSA + SSE # Ažuriranje ANOVA tabele ANOVA_table['Sum of squares']['Total'] = SST # Izračunavanje stepeni slobode za SSA, SSE i SST i ažuriranje ANOVA tabele</pre>
	<pre>df_SSA = k - 1 # zbog k alternativa df_SSE = k * (n - 1) # zbog k alternativa, svaka sa n-1 stepeni slobode df_SST = k * n - 1 # df_SST = df_SSA + df_SSE # Ažuriranje ANOVA tabele ANOVA_table['Deg freedom']['Alternatives'] = df_SSA ANOVA_table['Deg freedom']['Error'] = df_SSE</pre>
	ANOVA_table['Deg freedom']['Total'] = df_SST # Izračunavanje varijanse sume kvadrata (srednje kvadratne vrijednosti) i ažuriranje ANOVA tabele S_a = SSA / df_SSA # varijansa alternativa S_e = SSE / df_SSE # varijansa greške # Ažuriranje ANOVA tabele
	ANOVA_table['Mean square']['Alternatives'] = S_a ANOVA_table['Mean square']['Error'] = S_e # Izračunavanje vrijednosti F_computed i ažuriranje ANOVA tabele F_computed = S_a / S_e # Ažuriranje ANOVA tabele
	# Ažuriranje ANOVA tabele ANOVA_table['Computed F']['Alternatives'] = F_computed # Izračunavanje vrijednosti F_tabulated i ažuriranje ANOVA tabele # Ako pretpostavimo 95%-tni interval povjerenja, tada je 1-alpha=0.95 => alpha = 0.05 # F tabulated se dobija iz tabele za vrijednosti [1-alpha; (k-1), k*(n-1)]
	# U našem slučaju te vrijednosti su [0.95;3,16] alpha = 0.05 # Izračunavanje F_tabulated # Za ovo izračunavanje koristićemo funkciju stats.f.ppf() koja računa kritičnu vrijednost F raspodjele # sa k-1 = 3 i k*(n-1) = 16 stepeni slobode sa 95%-nim intervalom povjerenja # Ova funkcija zapravo daje ekvivalentnu vrijednost onoj iz naše skripte
	<pre>F_tabulated = stats.f.ppf(1-alpha, ANOVA_table['Deg freedom']['Alternatives'], ANOVA_table['Deg freedom'] ANOVA_table['Tabulated F']['Alternatives'] = F_tabulated print("ANOVA tabela:") ANOVA_table</pre>
.32	Sum of squares Deg freedom Mean square Computed F Tabulated F Variation Alternatives 3010.95 3 1003.65 17.4928 3.23887
	Error 918 16 57.375 Total 3928.95 19
133	<pre># Zaključak korištenja F-testa za poređenje odnosa varijansi # Pogledajmo najprije odnose SSA/SST i SSE/SST # koji nam daju uticaje pojedinih izvora varijacija (alternative i grešaka) u ukupnoj varijaciji ratio_a = SSA/SST # udio varijacije zbog razlika između alternativa u ukupnoj varijaciji ratio_e = SSE/SST # udio varijacije zbog grešaka u mjerenjima u ukupnoj varijaciji print("ZAKLJUČAK SPROVEDENE ANOVA TEHNIKE:") print("</pre>
	ZAKLJUČAK SPROVEDENE ANOVA TEHNIKE: 76.63497881113275 [%] ukupne varijacije u mjerenjima je zbog razlika između alternativa. 23.365021188867257 [%] ukupne varijacije u mjerenjima je zbog grešaka u mjerenjima. Rezultat F-testa: F izračunato je: 17.492810457516338 i F tabelarno je: 3.238871517453585 Što znači da imamo 95%-tno povjerenje da su razlike između alternativa statistički značajne. TEHNIKA KONTRASTA: Tehnika kontrasta nam daje informaciju o tome kako se pojedini parovi alternativa razlikuju, za razliku od ANOVA tehnike koja nam sam
	pokazuje da li postoji statistički značajna razlika između alternativa.
	alpha_effects = y_col_ms - y_total_ms print("Vektor efekata:") alpha_effects Vektor efekata:
34	Alt 1 -11.85 Alt 2 3.55 Alt 3 -10.25 Alt 4 18.55 dtype: float64
35	<pre>combs = list(combinations(df, 2)) print("Sve moguće kombinacije parova alternativa su:") combs Sve moguće kombinacije parova alternativa su:</pre>
.35	<pre>[('Alt 1', 'Alt 2'), ('Alt 1', 'Alt 3'), ('Alt 1', 'Alt 4'), ('Alt 2', 'Alt 3'), ('Alt 2', 'Alt 4'), ('Alt 3', 'Alt 4')]</pre>
36	<pre># Računanje kritične vrijednosti Studentove t raspodjele # Pretpostavimo 90%-tni interval povjerenja, tada je alpha=0.1 => alpha/2 = 0.05 # pa je a = 1-alpha/2 = 1-0.05 = 0.95 a = 0.95 # Stepen slobode je k*(n-1)</pre>
	<pre>deg_freedom = k * (n-1) # Pa se kritična vrijednost Studentove t raspodjele (t_value) dobija pozivom funkcije ppf(): t_value = t.ppf(a, deg_freedom) print("Kritična vrijednost Studentove t raspodjele je:") t_value</pre>
36	Kritična vrijednost Studentove t raspodjele je: 1.74588367627624 # Računanje vrijednosti standardne devijacije Sc # Standardna devijacija Se je kvadratni korijen varijanse S e
	<pre># Standardina devijacija Se je kvadratili kolijen valijanse 5_e Se = math.sqrt(S_e) # Vrijednost ispod korijena je uvijek (2)/(k*n) sq_rt = (2)/(k*n) Sc = Se * math.sqrt(sq_rt) print("Standardna devijacija Sc je:")</pre>
	Sc Standardna devijacija Sc je: 2.3953079134006967
.38	Računanje kontrasta i intervala povjerenja za svaku kombinaciju alternativa koje se porede: groups = [] # vektor stringova parova alternativa koje se porede contrast = [] # vektor vrijednosti kontrasta parova alternativa c1 = [] # vektor donjih vrijednosti intervala povjerenja c2 = [] # vektor gornjih vrijednosti intervala povjerenja for comb in combs: # Izračunaćemo kontrast c za svaki par kao linaernu kombinaciju efekata alternativa c = alpha_effects[comb[0]] - alpha_effects[comb[1]] ci lower = c - (t value * Sc) # donja granica intervala povjerenja
	<pre>ci_upper = c + (t_value * Sc) # gornja granica intervala povjerenja # Dodavanje informacija o tekućem kontrastu na kraj odgovarajućeg vektora groups.append(str(comb[0]) + ' : ' + str(comb[1])) contrast.append(c) c1.append(ci_lower) c2.append(ci_upper)</pre>
39	<pre>result_table = pd.DataFrame({'groups': groups,</pre>
39	<pre>"c1': c1,</pre>
	 O Alt 1: Alt 2 -15.4 -19.581929 -11.218071 1 Alt 1: Alt 3 -1.6 -5.781929 2.581929 2 Alt 1: Alt 4 -30.4 -34.581929 -26.218071 3 Alt 2: Alt 3 13.8 9.618071 17.981929 4 Alt 2: Alt 4 -15.0 -19.181929 -10.818071 5 Alt 3: Alt 4 -28.8 -32.981929 -24.618071 Grafički prikaz intervala povjerenja
.40	# Prikažimo dobijene intervale povjerenja grafički radi bolje vizuelizacije data_dict = {} data_dict['groups'] = groups data_dict['ci_lower'] = c1 data_dict['ci_upper'] = c2 dataset = pd.DataFrame(data_dict) # Grafički prikaz intervala povjerenja svih parova alternativa koje smo poredili # Svaki interval povjerenja prikazan je jednom horizontalnom linijom u xy ravni for ci_lower,ci_upper,y in zip(dataset['ci_lower'],dataset['ci_upper'],range(len(dataset))): plt.plot((ci_lower,ci_upper),(y,y),'ro-',color='red') plt.yticks(range(len(dataset)),list(dataset['groups'])) # Predstavimo isprekidano osu x = 0 radi lakše detekcije intervala povjerenja koji (ne) sadrži 0 plt.vlines(0, -1, len(groups), linestyles='dashed')
[140	<pre><matplotlib.collections.linecollection 0x1f5ae0a0430="" at=""></matplotlib.collections.linecollection></pre>
40	
. 40	Alt 2 : Alt 4 - Alt 1 : Alt 4 - Alt 1 : Alt 3 - Alt 1 : Alt 2 -