

## TEST REPORT

Report Number: 100328280MPK-002 Project Number: G100328280 April 26, 2011

Testing performed on the UHF Radio

Model Numbers: HPT404BT, HPT404, AW400BT, AW400 and AW400AF

FCC ID: WJ4HPT404 IC ID: 3504A-HPT404

to

FCC Part 90, RSS-119 Issue 10

for

Javad GNSS, Inc.

**Test Performed by:** 

Intertek Testing Services NA, Inc 1365 Adams Court Menlo Park, CA 94025 **Test Authorized by:** 

Javad GNSS, Inc. 900 Rock Avenue San Jose, CA 95131, USA

| Prepared by: | 20shove | Date: | April 26, 2011 |
|--------------|---------|-------|----------------|
|              | \ /     |       |                |

Krishna K Vemuri

Reviewed by: Date: April 26, 2011

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.



Krishna K Vemuri

EMC Senior Staff Engineer

# Report No. 100328280MPK-002

| Equipment Under Test:                     | UHF Radio                            |
|-------------------------------------------|--------------------------------------|
| Trade Name:                               | Javad GNSS, Inc.                     |
| Model No.:                                | HPT404BT, HPT404, AW400BT, AW400 and |
|                                           | AW400AF                              |
| Serial No.:                               | EMCProto1                            |
| FCC ID:                                   | WJ4HPT404                            |
| IC ID:                                    | 3504A-HPT404                         |
| Applicant:                                | Javad GNSS, Inc.                     |
| Contact:                                  | Mr. Vladimir Zhukov                  |
| Address:                                  | 900 Rock Avenue                      |
|                                           | San Jose, CA 95131                   |
| Country                                   | USA                                  |
| Tel. number:                              | (408) 770-1770                       |
| Fax number:                               | (408) 770-1799                       |
| Email:                                    | v.zhukov@javad.com                   |
| Applicable Regulation:                    | FCC Part 90, RSS-119 Issue 10        |
| Test Site Location:                       | ITS - Site 1                         |
|                                           | 1365 Adams Drive                     |
|                                           | Menlo Park, CA 94025                 |
| Date of Test:                             | April 01 to April 25, 2011           |
| We attest to the accuracy of this report: |                                      |
| ashove                                    | oll & X                              |

Ollie Moyrong

Engineering Manager

File: 100328280MPK-002 Page 2 of 131



## **TABLE OF CONTENTS**

| 1.0 | Intro | oduction                           | 5   |
|-----|-------|------------------------------------|-----|
|     | 1.1   | Product Description                |     |
|     | 1.2   | Summary of Test Results            | 6   |
|     | 1.3   | Test Configuration                 | 7   |
|     |       | 1.3.1 Support Equipment            | 7   |
|     |       | 1.3.2 Block Diagram of Test Setup  | 7   |
|     | 1.4   | Related Submittal(s) Grants        |     |
| 2.0 | RF I  | Power Output                       | 8   |
|     | 2.1   | Test Procedure                     | 8   |
|     | 2.2   | Test Equipment                     | 8   |
|     | 2.3   | Test Results                       | 8   |
| 3.0 | Radi  | iated Power                        | 13  |
|     | 3.1   | Requirement                        | 13  |
|     | 3.2   | Test Procedure                     | 13  |
|     | 3.3   | Test Equipment                     | 13  |
|     | 3.4   | Test Results                       | 13  |
| 4.0 | Occup | oied Bandwidth                     | 14  |
|     | 4.1   | Test Procedure                     |     |
|     | 4.2   | Test Equipment                     | 14  |
|     | 4.3   | Test Results                       | 14  |
| 5.0 | Emiss | sion Mask                          | 46  |
|     | 5.1   | Requirement                        | 46  |
|     | 5.2   | Test Procedure                     | 46  |
|     | 5.3   | Test Equipment                     | 46  |
|     | 5.4   | Test Results                       | 46  |
| 6.0 | Spuri | ous Emissions at Antenna Terminals | 77  |
|     | 6.1   | Requirement                        | 77  |
|     | 6.2   | Test Procedure                     | 77  |
|     | 6.3   | Test Equipment                     | 77  |
|     | 6.4   | Test Results                       | 78  |
| 7.0 | Spur  | ious Radiation                     | 97  |
|     | 7.1   | Requirement                        | 97  |
|     | 7.2   | Test Procedure                     | 97  |
|     | 7.3   | Test Equipment                     | 97  |
|     | 7.4   | Test Results                       | 98  |
| 8.0 | Tran  | nsient Frequency behavior          | 100 |
|     | 8.1   | Requirement                        |     |



| 8.2   | Test Procedure                             | 100                                                                                                                                                                                                                                                                                  |
|-------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.3   | Test Results                               | 101                                                                                                                                                                                                                                                                                  |
| Frequ | uency Stability vs Temperature and Voltage | 114                                                                                                                                                                                                                                                                                  |
| 9.1   |                                            |                                                                                                                                                                                                                                                                                      |
| 9.2   | Test Procedure                             | 114                                                                                                                                                                                                                                                                                  |
| 9.3   | Test Equipment                             | 114                                                                                                                                                                                                                                                                                  |
| 9.4   | Test Results                               | 115                                                                                                                                                                                                                                                                                  |
| RF E  | Exposure Evaluation                        | 117                                                                                                                                                                                                                                                                                  |
| Emis  | sions from Digital Parts and Receiver      | 118                                                                                                                                                                                                                                                                                  |
| 11.1  | Radiated Emissions                         | 118                                                                                                                                                                                                                                                                                  |
|       | 11.1.1 Test Limit                          | 118                                                                                                                                                                                                                                                                                  |
|       | 11.1.2 Test Procedure                      | 118                                                                                                                                                                                                                                                                                  |
|       | 11.1.3 Test Results                        | 119                                                                                                                                                                                                                                                                                  |
| 11.2  | Receiver Antenna Conducted Emissions       | 123                                                                                                                                                                                                                                                                                  |
|       | 11.2.1 Limit                               | 123                                                                                                                                                                                                                                                                                  |
|       | 11.2.2 Test Procedure                      | 123                                                                                                                                                                                                                                                                                  |
|       |                                            |                                                                                                                                                                                                                                                                                      |
| List  | of Test Equipment                          | 130                                                                                                                                                                                                                                                                                  |
| Docu  | ıment History                              | 131                                                                                                                                                                                                                                                                                  |
|       | 8.3  Freq 9.1 9.2 9.3 9.4  RF E  Emis 11.1 | Frequency Stability vs Temperature and Voltage  9.1 Requirement  9.2 Test Procedure  9.3 Test Equipment  9.4 Test Results  RF Exposure Evaluation  Emissions from Digital Parts and Receiver  11.1 Radiated Emissions  11.1.1 Test Limit  11.1.2 Test Procedure  11.1.3 Test Results |



#### 1.0 Introduction

### 1.1 Product Description

The Equipment Under Test (EUT) is the model HPT404BT. As declared by the Applicant, the models HPT404BT and AW400BT are identical except for their housing color and brand name (HPT for Javad; AW for ArWest). Models HPT404, AW400, AW400AF are exactly the same as models HPT404BT and AW400BT consist of identical hardware without having modular approved Bluetooth Module with FCC ID: WJ4BT4EX8M, IC: 3504A-BT4EX8M.

HPT404BT is an external UHF radio transceiver used for commercial, indoor and outdoor use.

The HPT404BT provides real-time data transmission using spectrum efficient GMSK/BPSK/QPSK/8PSK/16QAM modulations.

The HPT404BT provides half-duplex communication with transmitter output power of 4 W ( $\pm$ 36 dBm) in the frequency bands 406.1-470 MHz for USA; 406.1-430 MHz and 450-470MHz for Canada with channel spacing of 25 / 12.5 / 6.25 kHz.

For more information about the radio, refer to the users manual.

| Specification of the radio module |                                         |  |  |  |
|-----------------------------------|-----------------------------------------|--|--|--|
| Type                              | UHF radio                               |  |  |  |
| <b>Rated RF Output Power</b>      | 4 W                                     |  |  |  |
| Frequency Ranges, MHz             | 406.1 – 470                             |  |  |  |
| Type of modulation                | BPSK, QPSK, 8PSK, 16QAM, GMSK           |  |  |  |
| Channel bandwidth and             | 25 kHz at 38.4 kbps                     |  |  |  |
| maximum data rate                 | 12.5 kHz at 19.2 kbps                   |  |  |  |
|                                   | 6.25 kHz at 9.6 kbps                    |  |  |  |
| Antenna & Gain                    | Whip, 2.5 dBi                           |  |  |  |
| Detachable antenna                | Yes                                     |  |  |  |
| External input                    | data                                    |  |  |  |
| Operating temperature             | From $-30^{\circ}$ C to $+50^{\circ}$ C |  |  |  |

**EUT receive date:** April 01, 2011

**EUT receive condition:** The prototype version of the EUT was received in good condition with no

apparent damage. As declared by the Applicant it is identical to the production

units.

**Test start date:** April 01, 2011 **Test completion date:** April 25, 2011

Page 5 of 131



## 1.2 Summary of Test Results

| FCC Rule       | RSS-119 Rule | Description of Test                             | Result            |
|----------------|--------------|-------------------------------------------------|-------------------|
| 2.1046         | 4.1          | RF Power Output                                 | Complies          |
| 90.205(h)      | -            | ERP                                             | Complies          |
| 2.1047         | -            | Modulation characteristics                      | Not<br>Applicable |
| 2.1049, 90.209 | RSS-GEN      | Occupied Bandwidth                              | Complies          |
| 90.210         | 5.8          | Emission masks                                  | Complies          |
| 2.1051, 90.210 | 5.8          | Out of Band Emissions at Antenna Terminals      | Complies          |
| 2.1053, 90.210 | 5.8          | Spurious Radiation                              | Complies          |
| 2.1055, 90.213 | 5.3          | Frequency Stability vs. Temperature and Voltage | Complies          |
| 90.214         | 5.9          | Transient frequency behavior                    | Complies          |
| 2.1091         | RSS-102      | RF Exposure evaluation                          | Complies          |
| 15.109, 15.111 | RSS-GEN      | Emission from digital part and receiver         | Complies          |



## 1.3 Test Configuration

## 1.3.1 Support Equipment

| Item<br># | Description     | Model No. | S/N        |
|-----------|-----------------|-----------|------------|
| 1         | Toshiba Laptop  | A15-S129  | Z3042027P  |
| 2         | DC Power Supply | 6030A     | US38320722 |

## 1.3.2 Block Diagram of Test Setup



| S = Shielded   | <b>F</b> = With Ferrite     |
|----------------|-----------------------------|
| U = Unshielded | <b>m</b> = Length in Meters |

## 1.4 Related Submittal(s) Grants

None



#### 2.0 RF Power Output

FCC 2.1046

#### 2.1 Test Procedure

The EUT RF output was connected as shown on the diagram in section 1.3.2. The EUT was setup to transmit continuously the maximum power.

The spectrum analyzer was setup to measure the Average power. The attenuation and cable loss were added to the spectrum analyzer reading by using OFFSET function.

Measurements were performed at three frequencies (low, middle, and high channels).

## 2.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer.

#### 2.3 Test Results

| Frequency (MHz) | Measured Output Power (dBm) | Measured Output Power (Watt) | Graph |
|-----------------|-----------------------------|------------------------------|-------|
| 406.1           | 36.08                       | 4.0                          | 2.1   |
| 430.0           | 35.83                       | 3.8                          | 2.2   |
| 450.0           | 35.46                       | 3.5                          | 2.3   |
| 470.0           | 35.91                       | 3.9                          | 2.4   |

For more details refer to the attached Graphs.

Page 8 of 131





Date: 11.APR.2011 17:41:24





Date: 11.APR.2011 17:18:25





Date: 11.APR.2011 17:19:12





Date: 11.APR.2011 17:19:54



#### 3.0 Radiated Power

## 3.1 Requirement

## FCC 90.205(h)

The maximum Effective Radiated Power (ERP) is 500 Watts.

#### 3.2 Test Procedure

The ERP was calculated by adding the antenna gain to the output power in dBm.

$$ERP = P_{max} + G_{dBd}$$

## 3.3 Test Equipment

None.

#### 3.4 Test Results

According to the Installation Guide, a typical 2.5 dBi (0.4 dBd) gain antenna is used with the EUT. Therefore, the calculated peak radiated power is:

$$ERP = 36.08 + 0.4 = 36.48dBm \text{ (or } 4.45 \text{ W)}.$$
  
 $EIRP = 36.08 + 2.5 = 38.58 dBm \text{ (or } 7.21 \text{ W)}.$ 

| EIRP= $36.08 + 2.5$ | = 38.58 | dBm | (or | 7.21 | W |
|---------------------|---------|-----|-----|------|---|
|                     |         |     |     |      |   |

**Result** Complies



#### 4.0 Occupied Bandwidth

FCC 2.1049, 90.209(b)(5)

#### 4.1 Test Procedure

The EUT RF output was connected as shown on the diagram in section 1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at 406.1 MHz and 470 MHz for all types of modulation and authorized bandwidths.

## 4.2 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

#### 4.3 Test Results

The test results are summarized in the following tables and presented on the Graphs 4.1 - 4.30.

The following Emission Designators are described the emission type:

3K05G1D

3K09F1D

6K05G1D

6K00F1D

11K97G1D

11K92F1D

EMC Report for Javad GNSS on the UHF Radio

File: 100328280MPK-002 Page 14 of 131



| Frequency | Modulation | Channel Bandwidth | Authorized Bandwidth | Measured Occupied Bandwidth | Graph |
|-----------|------------|-------------------|----------------------|-----------------------------|-------|
| (MHz)     |            | (kHz)             | (kHz)                | (kHz)                       |       |
|           | BPSK       |                   |                      | 3.00                        | 4.1   |
|           | QPSK       |                   |                      | 3.05                        | 4.2   |
| 406.1     | 8PSK       | 6.25              | 6.0                  | 3.04                        | 4.3   |
|           | 16QAM      |                   |                      | 3.01                        | 4.4   |
|           | GMSK       |                   |                      | 3.00                        | 4.5   |
|           | BPSK       |                   |                      | 5.96                        | 4.6   |
|           | QPSK       |                   |                      | 6.04                        | 4.7   |
| 406.1     | 8PSK       | 12.5              | 11.25                | 6.05                        | 4.8   |
|           | 16QAM      |                   |                      | 5.98                        | 4.9   |
|           | GMSK       |                   |                      | 5.95                        | 4.10  |
|           | BPSK       |                   |                      | 11.85                       | 4.11  |
|           | QPSK       |                   |                      | 11.95                       | 4.12  |
| 406.1     | 8PSK       | 25.0              | 20.0                 | 11.97                       | 4.13  |
|           | 16QAM      |                   |                      | 11.90                       | 4.14  |
|           | GMSK       |                   |                      | 11.68                       | 4.15  |

| Frequency (MHz) | Modulation | Channel Bandwidth (kHz) | Authorized Bandwidth (kHz) | Measured Occupied Bandwidth (kHz) | Graph |
|-----------------|------------|-------------------------|----------------------------|-----------------------------------|-------|
| ,               | BPSK       |                         | , ,                        | 3.01                              | 4.16  |
|                 | QPSK       |                         |                            | 3.05                              | 4.17  |
| 470             | 8PSK       | 6.25                    | 6.0                        | 3.05                              | 4.18  |
|                 | 16QAM      |                         |                            | 3.00                              | 4.19  |
|                 | GMSK       |                         |                            | 3.09                              | 4.20  |
|                 | BPSK       |                         |                            | 5.96                              | 4.21  |
|                 | QPSK       |                         |                            | 6.00                              | 4.22  |
| 470             | 8PSK       | 12.5                    | 11.25                      | 5.98                              | 4.23  |
|                 | 16QAM      |                         |                            | 5.96                              | 4.24  |
|                 | GMSK       |                         |                            | 6.00                              | 4.25  |
|                 | BPSK       |                         |                            | 11.87                             | 4.26  |
|                 | QPSK       |                         |                            | 11.87                             | 4.27  |
| 470             | 8PSK       | 25.0                    | 20.0                       | 11.83                             | 4.28  |
|                 | 16QAM      |                         |                            | 11.89                             | 4.29  |
|                 | GMSK       |                         |                            | 11.92                             | 4.30  |

For more details refer to the attached Graphs.

File: 100328280MPK-002 Page 15 of 131





Occupied bandwidth, 6kHz authorized bandwidth, BPSK

Date: 12.APR.2011 11:52:07





Occupied bandwidth, 6kHz authorized bandwidth, QPSK

Date: 12.APR.2011 11:53:32





Occupied bandwidth, 6kHz authorized bandwidth, 8PSK

Date: 12.APR.2011 11:54:46





Occupied bandwidth, 6kHz authorized bandwidth, 16QAM

Date: 12.APR.2011 11:55:36





Occupied bandwidth, 6kHz authorized bandwidth, GMSK

Date: 12.APR.2011 11:56:36





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, BPSK

Date: 12.APR.2011 12:01:51





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, QPSK

Date: 12.APR.2011 12:03:34





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, 8PSK

Date: 12.APR.2011 12:04:52





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth,  $16\mathrm{QAM}$ 

Date: 12.APR.2011 12:06:05





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, GMSK

Date: 12.APR.2011 12:07:41





Occupied bandwidth, 20kHz authorized bandwidth, BPSK

Date: 12.APR.2011 12:48:52





Occupied bandwidth,  $20\,\mathrm{kHz}$  authorized bandwidth, QPSK

Date: 12.APR.2011 12:50:06





Occupied bandwidth, 20kHz authorized bandwidth, 8PSK

Date: 12.APR.2011 12:51:02





Occupied bandwidth, 20kHz authorized bandwidth, 16QAM

Date: 12.APR.2011 12:52:07





Occupied bandwidth,  $20\,\mathrm{kHz}$  authorized bandwidth, GMSK

Date: 12.APR.2011 12:54:34





Occupied bandwidth, 6kHz authorized bandwidth, BPSK

Date: 12.APR.2011 11:43:10





Occupied bandwidth, 6kHz authorized bandwidth, QPSK

Date: 12.APR.2011 11:44:20





Occupied bandwidth, 6kHz authorized bandwidth, 8PSK

Date: 12.APR.2011 11:49:02





Occupied bandwidth, 6kHz authorized bandwidth, 16QAM

Date: 12.APR.2011 11:49:55





Occupied bandwidth, 6kHz authorized bandwidth, GMSK

Date: 12.APR.2011 11:50:53





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, BPSK

Date: 12.APR.2011 12:09:41





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, QPSK

Date: 12.APR.2011 12:11:11





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, 8PSK

Date: 12.APR.2011 12:12:32





Occupied bandwidth, 11.25kHz authorized bandwidth, 16QAM

Date: 12.APR.2011 12:13:33





Occupied bandwidth,  $11.25 \mathrm{kHz}$  authorized bandwidth, GMSK

Date: 12.APR.2011 12:15:03





Occupied bandwidth,  $20\,\mathrm{kHz}$  authorized bandwidth, BPSK

Date: 12.APR.2011 12:42:47





Occupied bandwidth,  $20\,\mathrm{kHz}$  authorized bandwidth, QPSK

Date: 12.APR.2011 12:43:53





Occupied bandwidth, 20kHz authorized bandwidth, 8PSK

Date: 12.APR.2011 12:44:54





Occupied bandwidth, 20kHz authorized bandwidth, 16QAM

Date: 12.APR.2011 12:45:30





Occupied bandwidth,  $20\,\mathrm{kHz}$  authorized bandwidth, GMSK

Date: 12.APR.2011 12:46:45



#### 5.0 Emission Mask

FCC 90.210

# 5.1 Requirement

Equipment designed to operate with a 25 kHz channel bandwidth must meet the requirements of Emission Mask C (for equipment without audio low pass filter).

Equipment designed to operate with a 12.5 kHz channel bandwidth must meet the requirements of Emission Mask D.

Equipment designed to operate with a 6.25 channel bandwidth must meet the requirements of Emission Mask E.

### 5.2 Test Procedure

The EUT RF output was connected as shown on the diagram in section 1.3.2. The EUT was setup to transmit the maximum power.

The spectrum analyzer was setup to measure the Emission at frequencies  $\pm$  100 kHz from the fundamental frequency – for Mask C,  $\pm$  31.25 kHz – for Mask D,  $\pm$  22.5 kHz – for Mask E. The peak detector is used for these measurements.

The Emission Mask was measured at 406.1 MHz and 470 MHz for all five types of modulation.

## 5.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

### 5.4 Test Results

Complies with Emission Mask Requirements. For more details refer to the attached Graphs: 5.1 - 5.30.

File: 100328280MPK-002 Page 46 of 131





Emission Mask, 25kHz ch. spacing, BPSK

Date: 11.APR.2011 21:19:08





Emission Mask, 25kHz ch. spacing, QPSK

Date: 11.APR.2011 21:20:37





Emission Mask, 25kHz ch. spacing, 8PSK

Date: 11.APR.2011 21:22:06





Emission Mask, 25kHz ch. spacing, 16QAM

Date: 11.APR.2011 21:23:18





Emission Mask, 25kHz ch. spacing, GMSK

Date: 11.APR.2011 21:24:28





Emission Mask, 25kHz ch. spacing, BPSK

Date: 12.APR.2011 08:33:31





Emission Mask, 25kHz ch. spacing, QPSK

Date: 12.APR.2011 08:34:44





Emission Mask, 25kHz ch. spacing, 8PSK

Date: 12.APR.2011 08:36:33





Emission Mask, 25kHz ch. spacing, 16QAM

Date: 12.APR.2011 08:37:47





Emission Mask, 25kHz ch. spacing, GMSK

Date: 12.APR.2011 08:41:40





Emission Mask, 12.5kHz ch. spacing, QPSK

Date: 14.APR.2011 16:13:49





Emission Mask, 12.5kHz ch. spacing, BPSK

Date: 14.APR.2011 16:16:17





Emission Mask, 12.5kHz ch. spacing, 8PSK

Date: 14.APR.2011 16:18:48





Emission Mask, 12.5kHz ch. spacing, 16QAM

Date: 14.APR.2011 16:21:10





Emission Mask, 12.5kHz ch. spacing, GMSK

Date: 14.APR.2011 16:22:58





Emission Mask, 12.5kHz ch. spacing, BPSK

Date: 14.APR.2011 17:14:28





Emission Mask, 12.5kHz ch. spacing, QPSK

Date: 14.APR.2011 17:20:56





Emission Mask, 12.5kHz ch. spacing, 8PSK

Date: 14.APR.2011 17:23:33





Emission Mask, 12.5kHz ch. spacing, 16QAM

Date: 14.APR.2011 17:28:40





Emission Mask, 12.5kHz ch. spacing, GMSK

Date: 14.APR.2011 17:30:19





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, BPSK

Date: 15.APR.2011 09:24:39





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, QPSK

Date: 15.APR.2011 09:23:05





Emission Mask, 6.25kHz ch. spacing, 8PSK

Date: 15.APR.2011 09:32:26





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing,  $16 \mathrm{QAM}$ 

Date: 15.APR.2011 09:33:59





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, GMSK

Date: 15.APR.2011 09:35:34





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, BPSK

Date: 15.APR.2011 09:03:56





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, QPSK

Date: 15.APR.2011 09:05:31





Emission Mask, 6.25kHz ch. spacing, 8PSK

Date: 15.APR.2011 09:07:04





Emission Mask, 6.25kHz ch. spacing, 16QAM

Date: 15.APR.2011 09:08:44





Emission Mask,  $6.25 \mathrm{kHz}$  ch. spacing, GMSK

Date: 15.APR.2011 09:10:17



### 6.0 Spurious Emissions at Antenna Terminals

FCC 2.1051, 90.210

## 6.1 Requirement

#### Emission Mask C

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: at least  $(43 + 10 \log P) dB$ .

Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

#### Emission Mask D

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 12.5 kHz: at least  $(50 + 10 \log P)$  dB or 70 dB, whichever is lesser attenuation.

Note: Attenuation of (50 + 10 log P) dB corresponds to the level of -20 dBm for any out-of-band and spurious emissions.

#### Emission Mask E

The power of any emissions must be attenuated below the unmodulated carrier output power (P) on any frequency removed from the center of the authorized bandwidth by more than 4.6 kHz: at least  $(55 + 10 \log P)$  dB or 65 dB, whichever is lesser attenuation.

Note: Attenuation of (55 + 10 log P) dB corresponds to the level of -25 dBm for any out-of-band and spurious emissions.

### 6.2 Test Procedure

The EUT RF output was connected as shown on the diagram in section 1.3.2. The EUT was setup to transmit the maximum power.

For measurements at frequencies below 1 GHz, the spectrum analyzer resolution bandwidth was set to 10 kHz. For measurements at frequencies above 1 GHz, the spectrum analyzer resolution bandwidth was set to 1 MHz. Average detector is used for these measurements.

Sufficient scans were taken to show the spurious emissions up to 10th harmonic.

## 6.3 Test Equipment

Rohde & Schwarz FSP40 Spectrum Analyzer

File: 100328280MPK-002 Page 77 of 131



# 6.4 Test Results

| Complies | Refer to the following Graphs |
|----------|-------------------------------|
|          |                               |





Conducted spurious, 406.1 MHz, Unmodulated

Date: 12.APR.2011 13:09:04





Conducted spurious, 406.1MHz, BPSK Date: 12.APR.2011 13:10:10





Conducted spurious, 406.1MHz, QPSK Date: 12.APR.2011 13:11:20





Conducted spurious, 406.1MHz, 8PSK Date: 12.APR.2011 13:12:46





Conducted spurious, 406.1MHz, 16QAM Date: 12.APR.2011 13:13:37





1 MHz/

Conducted spurious, 406.1MHz, GMSK Date: 12.APR.2011 13:14:30

Start 401 MHz

Stop 411 MHz







Conducted spurious, 406.1MHz,  ${\tt GMSK}$ 

Date: 12.APR.2011 13:20:40





58.9 MHz/

Conducted spurious, 406.1MHz, GMSK Date: 12.APR.2011 13:21:25

Start 411 MHz

Stop 1 GHz





Conducted spurious, 406.1MHz, GMSK Date: 14.APR.2011 13:37:33





Conducted spurious,  $470 \, \mathrm{MHz}$ ,  $\mathrm{Unmodulated}$ 

Date: 12.APR.2011 13:36:46





Conducted spurious, 470MHz, BPSK Date: 12.APR.2011 13:37:37





Conducted spurious, 470MHz, QPSK Date: 12.APR.2011 13:38:24





Conducted spurious, 470MHz, 8PSK Date: 12.APR.2011 13:39:08





Conducted spurious, 470MHz, 16QAM Date: 12.APR.2011 13:39:59





Conducted spurious, 470MHz, GMSK Date: 12.APR.2011 13:40:52





Conducted spurious, 470MHz, GMSK Date: 12.APR.2011 13:41:43





Conducted spurious, 470MHz, GMSK Date: 12.APR.2011 13:43:37





Conducted spurious, 470MHz, GMSK Date: 14.APR.2011 13:38:42



## 7.0 Spurious Radiation

FCC 2.1053, 90.210

## 7.1 Requirement

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least (55 + 10 log P) dB or 65 dB, whichever is lesser attenuation.

Note: Attenuation of (55 + 10 log P) dB corresponds to the level of -25 dBm for any out-of-band and spurious emissions.

#### 7.2 Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to 10th harmonic was investigated. The worst case of emissions was reported.

For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level ( $V_g$  in dBm) was adjusted to obtain the same reading as from EUT. The ERP at the spurious emissions frequency was calculated as follows.

$$ERP_{(dBm)} = V_g + G_{(dBd)}$$

The spurious emissions attenuation is the difference between ERP at the fundamental frequency (see section 3) and at the spurious emissions frequency.

## 7.3 Test Equipment

Roberts Antenna EMCO 3115 Horn Antennas Rohde & Schwarz FSP40 Spectrum Analyzer Low Pass Filter Preamplifiers



## 7.4 Test Results

# **Spurious Radiated Emissions**

| Frequency    | SA Reading<br>(from EUT) | Signal Generator Output required to have the same SA Reading | ERP*  | ERP<br>Limit | ERP<br>Margin |
|--------------|--------------------------|--------------------------------------------------------------|-------|--------------|---------------|
|              |                          | as from EUT                                                  |       | Limit        | Wargin        |
| MHz          | dB(µV)                   | $V_{\rm g}{ m dBm}$                                          | dBm   | dBm          | dB            |
| Tx 406.1 MHz |                          |                                                              |       |              |               |
| 812.2        | 18.9                     | -44.0                                                        | -44.0 | -25.0        | -19.0         |
| 1218.3       | 45.8                     | -64.3                                                        | -59.1 | -25.0        | -34.1         |
| 1624.4       | 37.4                     | -74.0                                                        | -66.8 | -25.0        | -41.8         |
| 2030.5       | 42.7                     | -63.4                                                        | -57.6 | -25.0        | -32.6         |
| 2436.6       | 36.2                     | -73.1                                                        | -64.8 | -25.0        | -39.8         |
| 2842.7       | 36.5                     | -71.9                                                        | -63.4 | -25.0        | -38.4         |
| 3248.8       | 37.0                     | -69.1                                                        | -60.8 | -25.0        | -35.8         |
| 3654.9       | 36.8                     | -66.9                                                        | -58.5 | -25.0        | -33.5         |
| 4061.0       | 41.1                     | -61.5                                                        | -53.3 | -25.0        | -28.3         |
| Tx 430.0 MHz |                          |                                                              |       |              |               |
| 860.0        | 12.5                     | -49.4                                                        | -49.4 | -25.0        | -24.4         |
| 1290.0       | 43.1                     | -66.4                                                        | -61.4 | -25.0        | -36.4         |
| 1720.0       | 35.8                     | -75.1                                                        | -67.7 | -25.0        | -42.7         |
| 2150.0       | 38.5                     | -68.3                                                        | -61.9 | -25.0        | -36.9         |
| 2580.0       | 36.3                     | -71.9                                                        | -63.8 | -25.0        | -38.8         |
| 3010.0       | 37.6                     | -69.3                                                        | -61.1 | -25.0        | -36.1         |
| 3440.0       | 37.1                     | -67.9                                                        | -59.7 | -25.0        | -34.7         |
| 3870.0       | 36.1                     | -66.7                                                        | -58.5 | -25.0        | -33.5         |
| 4300.0       | 36.4                     | -66.9                                                        | -57.9 | -25.0        | -32.9         |

<sup>\*</sup> ERP is calculated as:  $ERP_{(dBm)} = V_{g(dBm)} + G_{(dBd)}$ 

All other emissions not reported are more than 20 dB below the limit.



# **Spurious Radiated Emissions**

| Frequency    | SA Reading<br>(from EUT) | Signal Generator Output required to have the same SA Reading | ERP*  | ERP<br>Limit | ERP<br>Margin |
|--------------|--------------------------|--------------------------------------------------------------|-------|--------------|---------------|
|              | (110111 210 1)           | as from EUT                                                  |       |              | 1,141,8111    |
| MHz          | dB(µV)                   | $V_{\rm g}{ m dBm}$                                          | dBm   | dBm          | dB            |
| Tx 450.0 MHz |                          |                                                              |       |              |               |
| 900.0        | 14.3                     | -47.5                                                        | -47.5 | -25.0        | -22.5         |
| 1350.0       | 40.4                     | -69.2                                                        | -63.9 | -25.0        | -38.9         |
| 1800.0       | 36.6                     | -74.6                                                        | -66.9 | -25.0        | -41.9         |
| 2250.0       | 38.7                     | -69.8                                                        | -62.3 | -25.0        | -37.3         |
| 2700.0       | 36.4                     | -71.4                                                        | -63.3 | -25.0        | -38.3         |
| 3150.0       | 37.0                     | -69.8                                                        | -61.4 | -25.0        | -36.4         |
| 3600.0       | 37.4                     | -67.5                                                        | -59.0 | -25.0        | -34.0         |
| 4050.0       | 37.1                     | -65.5                                                        | -57.3 | -25.0        | -32.3         |
| 4500.0       | 36.0                     | -66.5                                                        | -57.3 | -25.0        | -32.3         |
| Tx 470.0 MHz |                          |                                                              |       |              |               |
| 940.0        | 16.0                     | -45.5                                                        | -45.5 | -25.0        | -20.5         |
| 1410.0       | 42.2                     | -66.3                                                        | -60.8 | -25.0        | -35.8         |
| 1880.0       | 37.1                     | -73.0                                                        | -65.7 | -25.0        | -40.7         |
| 2350.0       | 36.6                     | -72.7                                                        | -64.7 | -25.0        | -39.7         |
| 2820.0       | 37.0                     | -71.2                                                        | -62.7 | -25.0        | -37.7         |
| 3290.0       | 37.9                     | -68.1                                                        | -59.8 | -25.0        | -34.8         |
| 3760.0       | 37.0                     | -66.5                                                        | -58.3 | -25.0        | -33.3         |
| 4230.0       | 37.2                     | -66.2                                                        | -57.5 | -25.0        | -32.5         |
| 4700.0       | 36.9                     | -64.4                                                        | -55.5 | -25.0        | -30.5         |

<sup>\*</sup> ERP is calculated as:  $\text{ERP}_{(dBm)} \!\!= V_{g(dBm)} \!+ G_{(dBd)}$ 

All other emissions not reported are more than 10 dB below the limit.

| Result | Complies |
|--------|----------|
|--------|----------|



## 8.0 Transient Frequency behavior

FCC 90.214

## 8.1 Requirement

| Time Interval                                                                       | Maximum Frequency Difference | Time  |
|-------------------------------------------------------------------------------------|------------------------------|-------|
| Transient Frequency Behavior for equipment designed to operate on 25 kHz channels   |                              |       |
| t1 *                                                                                | ±25 kHz                      | 10 ms |
| <b>t</b> 2                                                                          | ±12.5 kHz                    | 25 ms |
| t3 *                                                                                | ±25 kHz                      | 10 ms |
| Transient Frequency Behavior for equipment designed to operate on 12.5 kHz channels |                              |       |
| <b>t</b> 1 *                                                                        | ±12.5 kHz                    | 10 ms |
| <b>t</b> 2                                                                          | ±6.25 kHz                    | 25 ms |
| t3 *                                                                                | ±12.5 kHz                    | 10 ms |

ton is the instant when a 1 kHz test signal is completely suppressed

t1 is time period immediately following ton

t2 is time period immediately following t1

t3 is time period from the instant when the transmitter is turned off until toff

toff is the instant when the 1 kHz test signal start to rise

### 8.2 Test Procedure

Test was performed according to the block diagram below.



File: 100328280MPK-002 Page 100 of 131

<sup>\*</sup> If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.



## 8.3 Test Results

For more details refer to the attached Graphs

| D 1.   |          |
|--------|----------|
| Result | Complies |



406.1 MHz, 25 kHz spacing





406.1 MHz, 25 kHz spacing





470MHz, 25 kHz spacing





470MHz, 25 kHz spacing





406.1 MHz, 12.5 kHz spacing





406.1 MHz, 12.5 kHz spacing





470 MHz, 12.5 kHz spacing





470 MHz, 12.5 kHz spacing





406.1 MHz, 6.25 kHz spacing





406.1 MHz, 6.25 kHz spacing





470 MHz, 6.25 kHz spacing





470 MHz, 6.25 kHz spacing





## 9.0 Frequency Stability vs Temperature and Voltage

FCC 2.1055, 90.213

### 9.1 Requirement

In the 421–512 MHz band, mobile stations designed to operate with a 12.5 kHz channel bandwidth must have a frequency stability of 2.5 ppm. Mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 1.0 ppm.

Note: According to RSS-119, the frequency stability for mobile stations designed to operate with a 6.25 kHz channel bandwidth must have a frequency stability of 0.5 ppm.

#### 9.2 Test Procedure

The EUT was placed inside the temperature chamber. The RF power output was connected to frequency counter. The EUT was setup to transmit the maximum power.

After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the frequency counter and recorded.

At the room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

#### 9.3 Test Equipment

Temperature Chamber Frequency Counter

File: 100328280MPK-002 Page 114 of 131



#### 9.4 Test Results

Nominal Frequency: 406.1 MHz

| Temperature<br>(°C) | Maximum Deviation<br>from Frequency at 20°C | Maximum Deviation<br>from Frequency at 20°C |
|---------------------|---------------------------------------------|---------------------------------------------|
| 20                  | Hz                                          | ppm                                         |
| -30                 | -164                                        | 0.41                                        |
| -20                 | -114                                        | 0.28                                        |
| -10                 | -70                                         | 0.17                                        |
| 0                   | -6                                          | 0.02                                        |
| 10                  | 144                                         | 0.35                                        |
| 20                  | 0                                           | 0.00                                        |
| 30                  | -34                                         | 0.08                                        |
| 40                  | -94                                         | 0.23                                        |
| 50                  | -144                                        | 0.35                                        |

Nominal Frequency: 470 MHz

| Temperature | Maximum Deviation      | Maximum Deviation      |  |  |
|-------------|------------------------|------------------------|--|--|
| (°C)        | from Frequency at 20°C | from Frequency at 20°C |  |  |
|             | Hz                     | ppm                    |  |  |
| -30         | -199                   | 0.42                   |  |  |
| -20         | -168                   | 0.36                   |  |  |
| -10         | -120                   | 0.26                   |  |  |
| 0           | -112                   | 0.24                   |  |  |
| 10          | 192                    | 0.41                   |  |  |
| 20          | 0                      | 0.00                   |  |  |
| 30          | -10                    | 0.02                   |  |  |
| 40          | -128                   | 0.27                   |  |  |
| 50          | -97                    | 0.21                   |  |  |



Nominal Frequency: 406.1 MHz

| DC Voltage | Maximum Deviation from Nominal<br>Hz | Maximum Deviation from Nominal |
|------------|--------------------------------------|--------------------------------|
| 0.0        | 164                                  | 0.40                           |
| 12.0       | 166                                  | 0.40                           |
| 24.0       | 167                                  | 0.41                           |
| 36.0       | 169                                  | 0.42                           |

Nominal Frequency: 470 MHz

| DC Voltage | Maximum Deviation from Nominal | Maximum Deviation from Nominal, |
|------------|--------------------------------|---------------------------------|
| V          | Hz                             | ppm                             |
| 9.0        | 194                            | 0.41                            |
| 12.0       | 192                            | 0.41                            |
| 24.0       | 195                            | 0.42                            |
| 36.0       | 197                            | 0.42                            |

| Result Complies |
|-----------------|
|-----------------|

File: 100328280MPK-002 Page 116 of 131



# 10.0 RF Exposure Evaluation

FCC 2.1091

The EUT is a wireless device used in a mobile application and will be at least 100 cm from any body part of the user or nearby persons.

The maximum calculated EIRP is 38.58 dBm (or 7.21 W), and ERP is 36.48dBm (or 4.45 W).

As declared by the Applicant, the EUT transmits with the maximum source-based Duty Cycle of 50%, refer to the document, "HPT404BT UHF OEM Module Duty Cycle evaluation". Therefore, the average EIRP is 3.61 W

Using the formula for the Power Density,  $S = EIRP/4\pi D^2$ , the distance D, where the Maximum Permissible Exposure (MPE) satisfies the FCC 1.1310 limit for General Population/Uncontrolled Exposure, can be calculated as:

$$D \ge \sqrt{(EIRP/4\pi S)}$$

According to FCC 1.1310, the MPE Limit at 406 MHz is 2.7 W/m<sup>2</sup>, therefore  $D \ge 0.33$  m.

A statement that a minimum separation distance of 100 cm between the antenna and persons is included in the User's Manual.



#### 11.0 Emissions from Digital Parts and Receiver

11.1 Radiated Emissions FCC 15.109

11.1.1 Test Limit

Radiated Emission Limit for FCC Part 15 Subpart B and ICES 003

| Radiated Emission Limits for Class B at 3 meters |      |  |  |
|--------------------------------------------------|------|--|--|
| Frequency Quasi-Peak limits, (MHz) dB (μV/m)     |      |  |  |
| 30 to 88                                         | 40.0 |  |  |
| 88 to 216                                        | 43.5 |  |  |
| 216 to 960                                       | 46.0 |  |  |
| 960 and up                                       | 54.0 |  |  |

#### 11.1.2 Test Procedure

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

File: 100328280MPK-002 Page 118 of 131



Floor standing EUTs are placed on a horizontal metal ground plane and isolated from the ground plane by 3 to 12 mm of insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4 (2003).

#### **Example Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Factor. Then by subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - PA

Where  $FS = Field Strength in dB (\mu V/m)$ 

RA = Receiver Amplitude (including preamplifier) in dB ( $\mu V$ )

CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB (1/m) PA= Preamplifier Factor in dB

Assume a receiver reading of 52.0 dB ( $\mu$ V) is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB ( $\mu$ V/m).

 $RA = 52.0 \text{ dB } (\mu V)$ 

AF = 7.4 dB (1/m)

CF = 1.6 dB

PA = 29.0 dB

FS = RF + AF + CF - PA

FS = 52.0 + 7.4 + 1.6 - 29.0

 $FS = 32 dB (\mu V/m)$ 

#### 11.1.3 Test Results

Result Complies by 4.3 dB

EMC Report for Javad GNSS on the UHF Radio

File: 100328280MPK-002 Page 119 of 131







File: 100328280MPK-002 Page 120 of 131



| Intertek Testing Services           |                                      |          |                           |                     |     |      |      |         |
|-------------------------------------|--------------------------------------|----------|---------------------------|---------------------|-----|------|------|---------|
|                                     | Radiated Emissions 30 MHz - 1000 MHz |          |                           |                     |     |      |      |         |
|                                     | FCC Part 15 Class B (Horizontal)     |          |                           |                     |     |      |      |         |
| Operator: KK Model Number: HPT404BT |                                      |          |                           |                     |     |      |      |         |
| September 17, 2009                  |                                      |          | Company: Javad GNSS, Inc. |                     |     |      |      |         |
| Frequency                           | Peak FS                              | Limit@3m | Margin                    | Targin RA CF AG DCF |     |      | AF   |         |
| (Hz)                                | dB(uV/m)                             | dB(uV/m) | dB                        | dB(uV)              | dB  | dB   | dB   | dB(1/m) |
| 8.12E+08                            | 41.7                                 | 46.0     | -4.3                      | 39.1                | 3.4 | 31.9 | 10.5 | 20.7    |
| Modo: Dy m                          | Mode: Dy mode                        |          |                           |                     |     |      |      |         |

Mode: Rx mode

Temp: 23 C, Humidity: 35.1%

| Intertek Testing Services            |                                            |          |       |          |            |           |      |         |
|--------------------------------------|--------------------------------------------|----------|-------|----------|------------|-----------|------|---------|
| Radiated Emissions 30 MHz - 1000 MHz |                                            |          |       |          |            |           |      |         |
|                                      | FCC Part 15 Class B (Vertical)             |          |       |          |            |           |      |         |
| Operator: KI                         | X                                          |          |       | Model Nu | ımber: HP  | Г404ВТ    |      |         |
| September 1                          | 7, 2009                                    |          |       | Company  | : Javad GN | ISS, Inc. |      |         |
| Frequency                            | uency Peak FS Limit@3m Margin RA CF AG DCF |          |       |          |            | AF        |      |         |
| (Hz)                                 | dB(uV/m)                                   | dB(uV/m) | dB    | dB(uV)   | dB         | dB        | dB   | dB(1/m) |
| 3.60E+07                             | 30.2                                       | 40.0     | -9.8  | 34.0     | 0.7        | 31.9      | 10.5 | 16.9    |
| 4.64E+07                             | 24.8                                       | 40.0     | -15.2 | 30.0     | 0.8        | 31.9      | 10.5 | 15.4    |
| 1.09E+08                             | 27.3                                       | 43.5     | -16.2 | 36.8     | 1.2        | 32.0      | 10.5 | 10.8    |
| 1.29E+08                             | 26.4                                       | 43.5     | -17.1 | 35.4     | 1.3        | 31.9      | 10.5 | 11.2    |
| 2.09E+08                             | 26.5                                       | 43.5     | -17.0 | 35.9     | 1.7        | 31.9      | 10.5 | 10.3    |
| 8.12E+08                             | 39.3                                       | 46.0     | -6.7  | 36.7     | 3.4        | 31.9      | 10.5 | 20.7    |
| Mode: Rx m                           | Mode: Rx mode                              |          |       |          |            |           |      |         |

Temp: 23 C, Humidity: 35.1%

EMC Report for Javad GNSS on the UHF Radio File: 100328280MPK-002









# 11.2 Receiver Antenna Conducted Emissions FCC 15.111(a)

#### 11.2.1 Limit

The power at the antenna terminal shall not exceed 2.0 nanowatts (-57 dBm).

#### 11.2.2 Test Procedure

The spectrum analyzer was connected to the RF output of the EUT. The EUT was setup in receiving mode. Test was performed at tuned frequencies of 406.1 MHz and 470 MHz.

#### 11.2.3 Test Results

The test results are presented on the following graphs.

| Result |
|--------|
|--------|

File: 100328280MPK-002 Page 123 of 131





Receiver conducted spurious, 470MHz Date: 12.APR.2011 13:58:18







Receiver conducted spurious, 470MHz

Date: 12.APR.2011 13:59:05





Receiver spurious conducted, f=470MHz

Date: 14.APR.2011 14:00:11





Receiver conducted spurious, 406.1 MHz

Date: 12.APR.2011 14:00:49





Receiver conducted spurious, 406.1 MHz

Date: 12.APR.2011 14:00:04







500 MHz/

Receiver spurious conducted, f=406.1MHz

Date: 14.APR.2011 13:59:17

-110 Start 1 GHz

Stop 6 GHz



## 12.0 List of Test Equipment

| Equipment               | Manufacturer    | Model/Type        | Serial #   | Cal Int | Cal Due  |
|-------------------------|-----------------|-------------------|------------|---------|----------|
| RF Filter Section       | Hewlett Packard | 85460A            | 3448A00267 | 12      | 12/08/11 |
| EMI Receiver            | Hewlett Packard | 8546A             | 3710A00373 | 12      | 12/08/11 |
| Spectrum Analyzer       | Rohde&Schwarz   | FSP40             | 036612004  | 12      | 11/04/11 |
| BI-Log Antenna          | ARA             | LPB-2513/A        | 1154       | 12      | 06/29/11 |
| Pre-Amplifier           | Sonoma          | 310N              | 185634     | 12      | 12/01/11 |
| Pre-Amplifier           | Sonoma          | 310N              | 293620     | 12      | 11/02/11 |
| Pre-Amplifier           | Miteq           | AMF-4D-001180-24- | 799159     | 12      | 08/05/11 |
|                         |                 | 10P               |            |         |          |
| Vector Signal Generator | Rohde&Schwarz   | SMU200A           | 102499     | 12      | 04/28/11 |
| Spectrum Analyzer       | Rohde&Schwarz   | FSU               | 200482     | 12      | 03/23/12 |
| Horn Antenna            | EMCO            | 3115              | 9170-3712  | 12      | 11/09/11 |
| Horn Antenna            | EMCO            | 3115              | 00126795   | 12      | 10/28/11 |
| Oscilloscope            | Tektronix       | TDS 680C          |            | 12      | 09/20/11 |
| Power Meter             | Hewlett Packard | EPM-442A          | US37480416 | 12      | 06/03/11 |
| Signal Generator        | Hewlett Packard | 8663A             | 2537A00214 | 12      | 04/29/11 |
| Signal Generator        | Hewlett Packard | SMR40             | 100445     | 12      | 08/27/11 |

Page 130 of 131



## 13.0 Document History

| Revision/<br>Job Number | Writer<br>Initials | Date           | Change            |
|-------------------------|--------------------|----------------|-------------------|
| 1.0 / G100328280        | KK                 | April 26, 2011 | Original document |
|                         |                    |                |                   |
|                         |                    |                |                   |
|                         |                    |                |                   |

Page 131 of 131