Řetězce a antiřetězce v uspořádáních

Zdeněk Dvořák

19. prosince 2018

Nechť (X, \prec) je ostré částečné uspořádání konečné množiny X. <u>Řetězec</u> je podmnožina $R \subseteq X$ navzájem porovnatelných prvků (zúžení \prec na R je tedy lineární uspořádání), <u>antiřetězec</u> je podmnožina $A \subseteq X$ navzájem neporovnatelných prvků. Velikost největšího řetězec v (X, \prec) značíme $\omega(X, \prec)$, velikost největšího antiřetězec $\alpha(X, \prec)$. Řetězec či antiřetězec je <u>maximální</u>, jestliže žádná jeho vlastní nadmnožina není řetězec/antiřetězec.

Věta 1. Nechť (X, \prec) je ostré částečné uspořádání konečné množiny X. Pak X lze pokrýt $\omega(X, \prec)$ antiřetězci.

 $D\mathring{u}kaz$. Pro každý prvek $x\in X$ označme jako $\ell(x)$ velikost největšího řetězce v (X,\prec) , jehož je x maximální prvek. Povšimněme si, že je-li $x\prec y$, pak $\ell(x)<\ell(y)$ (jelikož y můžeme připojit za nejdelší řetězec končící v x); množina $X_n=\{x\in X:\ell(x)=n\}$ je tedy antiřetězec pro každé přirozené číslo n. Také zjevně $1\leq \ell(x)\leq \omega(X,\prec)$, a proto $X=X_1\cup X_2\cup\ldots\cup X_{\omega(X,\prec)}$.

Poznámka: méně než $\omega(X, \prec)$ antiřetězců použít nelze, jelikož každý antiřetězec obsahuje nejvýše jeden vrchol nejdelšího řetězce.

Důsledek 2 (Věta o dlouhém a širokém). *Pro každé ostré částečné uspořádání* (X, \prec) konečné množiny X platí

$$\alpha(X, \prec) \cdot \omega(X, \prec) \ge |X|.$$

Speciálně, $\max(\alpha(X, \prec), \omega(X, \prec)) \ge \sqrt{|X|}$.

 $D\mathring{u}kaz$. Jelikož X je sjednocení $\omega(X, \prec)$ antiřetězců, alespoň jeden z těchto antiřetězců musí mít velikost alespoň $\frac{|X|}{\omega(X, \prec)}$.

Důsledek 3 (Erdős-Szekeres). Každá posloupnost n navzájem různých čísel obsahuje rostoucí nebo klesající vybranou podposloupnost délky alespoň \sqrt{n} .

 $D\mathring{u}kaz$. Uvažme takovou posloupnost a_1, \ldots, a_n . Nechť $X = \{1, \ldots, n\}$ a $i \prec j$ pro $i, j \in X$ jestliže i < j a $a_i < a_j$. Pak vybraná podposloupnost je rostoucí právě když její indexy tvoří řetězec v (X, \prec) a klesající právě když její indexy tvoří antiřetězec v (X, \prec) .

Tvrzení pro pokrytí řetězci analogické k větě 1 platí, je ale o něco náročnější na důkaz.

Věta 4 (Dilworthova věta). Nechť (X, \prec) je ostré částečné uspořádání konečné množiny X. Pak X lze pokrýt $\alpha(X, \prec)$ řetězci.

 $D\mathring{u}kaz$. Indukcí dle |X|. Nechť $\alpha=\alpha(X,\prec)$. Jestliže X obsahuje řetězec R takový, že $\alpha(X\setminus R,\prec)<\alpha$, pak $X\setminus R$ lze z indukčního předpokladu pokrýt $\alpha-1$ řetězci, a spolu s řetězcem R dostáváme pokrytí (X,\prec) pomocí α řetězců. Stačí tedy ukázat, že (X,\prec) takový řetězec obsahuje.

Nechť m je libovolný maximální prvek (X, \prec) . Jelikož $\{m\}$ je řetězec, stačí uvažovat případ, že $\alpha(X\setminus\{m\},\prec)=\alpha$. Z indukčního předpokladu lze $X\setminus\{m\}$ pokrýt řetězci R_1,\ldots,R_α . Jelikož $X\setminus\{m\}$ obsahuje antiřetězec velikosti α a každý řetězec protíná antiřetězec v nejvýše jednom prvku, každý z řetězců R_1,\ldots,R_α musí takový antiřetězec protínat v právě jednom prvku. Pro $i=1,\ldots,\alpha$ jakožto a_i označme největší prvek v R_i , který je obsažený v antiřetězci velikosti α , a položme $A=\{a_1,\ldots,a_\alpha\}$.

Tvrdíme, že A je antiřetězec: Kdyby $a_i \prec a_j$, uvažme antiřetězec A_j velikosti α obsahující a_j . Tento antiřetězec protíná řetězec R_i v právě jednom prvku r_i (kde $r_i \neq a_i$, jelikož a_i a a_j jsou porovnatelné). Jelikož a_i je největší prvek v R_i obsažený v antiřetězci velikosti α , máme $r_i \prec a_i$. Pak z tranzitivity $r_i \prec a_j$, což je spor, jelikož A_j je antiřetězec.

Jelikož (X, \prec) neobsahuje řetězec větší než α , prvek m je porovnatelný s nějakým prvkem antiřetězec A, BÚNO s a_1 . Jelikož m je maximální prvek, máme $a_1 \prec m$. Uvažme řetězec R tvořený m, a_1 a všemi prvky řetězec R_1 menšími než a_1 . Množina $X \setminus R$ je pokryta řetězci $R_1 \setminus R, R_2, \ldots, R_{\alpha}$, kdyby platilo $\alpha(X \setminus R, \prec) = \alpha$, pak by tedy nějaký prvek $R_1 \setminus R$ musel být obsažen v antiřetězci velikosti α ; to je ovšem ve sporu s definicí a_1 . Proto $\alpha(X \setminus R, \prec) < \alpha$, jak jsme chtěli dokázat.

Graf porovnatelnosti $P(X, \prec)$ je graf s množinou vrcholů X, v němž jsou hranou spojeny právě porovnatelné prvky. Řetězce v (X, \prec) odpovídají klikám v $P(X, \prec)$, antiřetězce odpovídají nezávislým množinám (množinám vrcholů, z nichž žádné dva nejsou spojené hranou). Velikost největší nezávislé množiny v grafu G značíme $\alpha(G)$. Věta o dlouhém a širokém tedy implikuje, že je-li G graf porovnatelnosti nějakého částečného uspořádání, pak $\max(\alpha(G),\omega(G)) \geq \sqrt{|V(G)|}$. Pro obecné grafy toto tvrzení neplatí.

Věta 5. Pro každé $k \geq 2$ existuje graf G_k s $n = \lfloor 2^{(k-3)/2} \rfloor$ vrcholy takový, že $\alpha(G_k) < k$ a $\omega(G_k) < k$.

 $D\mathring{u}kaz$. Uvažme náhodný graf G_k na n vrcholech, v němž každé dva vrcholy jsou spojené hranou nezávisle s pravděpodobností 1/2 (tj. pro každou dvojici zvlášť si hodím spravedlivou mincí a spojím je hranou, padne-li panna).

Pravděpodobnost, že k-prvková podmnožina vrcholů tvoří kliku, je $2^{-\binom{k}{2}}$, střední hodnota počtu klik velikosti k v získaném grafu tedy je

$$\frac{\binom{n}{k}}{2^{k(k-1)/2}} < \frac{n^k}{2^{k(k-1)/2}}^k = \left(\frac{n}{2^{(k-1)/2}}\right)^k < 1/2,$$

a tedy dle Markovovy nerovnosti s pravděpodobností větší než 1/2 platí $\omega(G_k) < k$. Obdobně střední hodnota počtu nezávislých množin velikosti k je menší než 1/2, a tedy s pravděpodobností větší než 1/2 platí $\alpha(G_k) < k$. S nenulovou pravděpodobností tedy platí obě nerovnosti.

Proto musí existovat nějaký graf G_k na n vrcholech tž. $\alpha(G_k) < k$ a $\omega(G_k) < k$.

Naopak, platí následující tvrzení (Ramseyova věta).

Věta 6. Každý graf G má méně než $\binom{\alpha(G)+\omega(G)}{\alpha(G)} \leq 2^{\alpha(G)+\omega(G)}$ vrcholů. Speciálně, $\max(\alpha(G),\omega(G)) > \log_2|V(G)|$.

 $D\mathring{u}kaz$. Indukcí dle |V(G)|. Jestliže $V(G)=\emptyset,$ pak $\alpha(G)=\omega(G)=0$ a $|V(G)|=0<1=\binom{0}{0},$ tvrzení tedy platí. Můžeme proto předpokládat, že existuje vrchol $v\in V(G).$ Nechť S je je množina všech sousedů v a $N=V(G)\backslash(\{v\}\cup S).$ Pak $\omega(G[S])\leq\omega(G)-1$ a $\alpha(G[N])\leq\alpha(G)-1$, z indukčního předpokladu tedy máme

$$|S| \le \binom{\alpha(G[S]) + \omega(G[S])}{\alpha(G[S])} - 1 \le \binom{\alpha(G) + \omega(G) - 1}{\alpha(G)} - 1$$
$$|N| \le \binom{\alpha(G[N]) + \omega(G[N])}{\alpha(G[N])} - 1 \le \binom{\alpha(G) + \omega(G) - 1}{\alpha(G) - 1} - 1.$$

Proto

$$|V(G)| = |S| + |N| + 1 \le {\alpha(G) + \omega(G) - 1 \choose \alpha(G)} + {\alpha(G) + \omega(G) - 1 \choose \alpha(G) - 1} - 1$$
$$= {\alpha(G) + \omega(G) \choose \alpha(G)} - 1.$$