MA2.101: Linear Algebra (Spring 2022)

Mid-semester Exam

Tuesday, 17 May 2022

Attention

- Mid-sem exam is 15% of total marks for this course (50% of the total marks is allocated to the first part). 2 marks out of 15 (assuming total of 100 marks for full course) allocated for Mid-sem exam is from the inhouse Mid-sem exam that asked you to submit a question with solution by 8 PM, 14 May 2022.
- 2. Total points for in-class Midsem exam questions is 65: Q1 = 23, Q2 = 11, Q3 = 11, Q4 = 20. 65 points $\equiv 13$ marks allocated for in-class Midsem exam.
- 3. You may opt to submit solution of either Question 1 or Question 4 by Tuesday midnight (11:59:59 PM, 17 May 2022) via moodle. However, total points allocated for given question will be reduced to half of the original.

71 Question 1

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation whose action is given by

$$T(x,y,z) = (x+2y+z,z,-x+y-5z,3x+2z)$$

- ✓ What are the standard ordered bases for \mathbb{R}^3 and \mathbb{R}^4 . (2 points).
- Write the matrix representation of T relative to the standard ordered bases of \mathbb{R}^3 and \mathbb{R}^4 . (12 points).
- of If the standard ordered basis for \mathbb{R}^4 is $\{\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4\}$ (in the given sequence). Then find the matrix representation of T relative to the standard ordered basis for \mathbb{R}^3 and the ordered basis $\{\epsilon_2, \epsilon_1, \epsilon_3, \epsilon_4\}$ (in the given sequence) for \mathbb{R}^4 . (7 points)
 - Is T invertible? Why or why not? (2 point)

a myrettat

Question 2

Question 2

We also proposed to the second of the second $T^{-1}:W\to V$ is also an isomorphism. Give a formal proof of this statement. (11 points)

Question 3

Let A be an $m \times n$ matrix representing a linear transformation with respect to a pair of ordered bases. Suppose that the nullspace of A is a plane in \mathbb{R}^3 and the range is spanned by a nonzero vector $\vec{v} \in \mathbb{R}^5$.

• Determine m and (2 points)• (2 points)• (3 points)• (4)

Write the expression for rank-nullity theorem for given A. (3 points)

Question 4

Consider a linear transformation $T: \mathbb{R}^3 \to P_2$ from \mathbb{R}^3 to the vector space P_2 of polynomials in x with real coefficients, where the degree of polynomial is at most 2:

$$T(a,b,c) = (a-b)x^2 + cx + (a+b+c).$$
 (1)

Find the matrix representation of T with respect to the pair of ordered bases $\{(1,0,0),(1,1,0),(0,-1,1)\}$ and $\{x+1,x^2-x,x^2+x+1\}$ for \mathbb{R}^3 and P_2 , respectively. (20 points)