FUSION POWER CALCULATIONS

FUSION POWER GROUP

Date: April 18, 2017.

1. Temperature and Density Profiles:

(1)
$$n = \bar{n}(1 + \nu_n)(1 - \rho^2)^{\nu_n}$$

(2)
$$T = \bar{T}(1 + \nu_T)(1 - \rho^2)^{\nu_T}$$

2. Plasma Shape Parameters

$$x_{\alpha\alpha} = 0.3(1 - \delta^2)$$

$$c_0 = -\frac{\delta}{2}$$

$$c_1 = \frac{1}{8}[9 - 2\delta - x_{\alpha\alpha}]$$

$$c_2 = \frac{\delta}{2}$$

$$c_3 = \frac{1}{8}[-1 + 2\delta + x_{\alpha\alpha}]$$

(4)
$$x = \sigma(1 - \rho^2) + c_0 \rho^4 + c_1 \rho \cos(\alpha) + c_2 \rho^2 \cos(2\alpha) + c_3 \rho^3 \cos(3\alpha)$$

$$y = \kappa \rho \sin(\alpha)$$

3. Bremmstrahlung Power Losses:

(5)
$$S_B(\rho) = \bar{n}^2 \bar{T}^{1/2} C_B Z_{eff} (1 + \nu_n)^2 (1 + \nu_T)^{1/2} (1 - \rho^2)^{2\nu_n + \frac{\nu_T}{2}}$$

Let:

(6)
$$C_B' = \bar{n}^2 \bar{T}^{1/2} C_B Z_{eff} (1 + \nu_n)^2 (1 + \nu_T)^{1/2}$$

For a general function $Q(\rho)$.

(7)

$$Q_v =$$

$$= 4\pi^2 a^2 \kappa c_1 \int_0^1 Q(\rho) \rho R_0 d\rho + 2\pi^2 a^3 \kappa \int_0^1 Q(\rho) \rho \left[2c_1(c_2 \rho^2 + 3c_0 \rho^4 - 2\rho^2 \sigma + \sigma) + 3c_2 c_3 \rho^4 \right] d\rho$$

(8)
$$S_B = C_B' \left(\frac{R_0}{2 + 2(2\nu_n + \frac{\nu_T}{2})} \right) + 2\pi^2 a^3 \kappa \left(\frac{((2\nu_n + \frac{\nu_T}{2}) + 3)c_1((2\nu_n + \frac{\nu_T}{2})\sigma + c_2) + 6c_0c_1 + 3c_2c_3}{((2\nu_n + \frac{\nu_T}{2}) + 1)((2\nu_n + \frac{\nu_T}{2}) + 2)((2\nu_n + \frac{\nu_T}{2}) + 3)} \right)$$

4. 5th order polynomial Fit of Thermal Reactivities:

$$\langle \sigma v \rangle (T(\rho)) = l_0 + l_1 \left(\bar{T} (1 + \nu_T) (1 - \rho^2)^{\nu_T} \right) + l_2 \left(\bar{T} (1 + \nu_T) (1 - \rho^2)^{\nu_T} \right)^2 + l_3 \left(\bar{T} (1 + \nu_T) (1 - \rho^2)^{\nu_T} \right)^3 + l_4 \left(\bar{T} (1 + \nu_T) (1 - \rho^2)^{\nu_T} \right)^4 + l_5 \left(\bar{T} (1 + \nu_T) (1 - \rho^2)^{\nu_T} \right)^5$$

See attached .mat file for $[l_0....l_5]$ coefficients.

5. Alpha Power:

(10)
$$S_{\alpha}(\rho) = \frac{1}{4}\bar{n}^2 E_{\alpha} \langle \sigma v \rangle ((1+\nu_n)(1-\rho^2)^{\nu_n})^2$$

For a general function $Q(\rho)$.

(11)

$$Q_v =$$

$$= 4\pi^2 a^2 \kappa c_1 \int_0^1 Q(\rho) \rho R_0 d\rho + 2\pi^2 a^3 \kappa \int_0^1 Q(\rho) \rho \left[2c_1(c_2 \rho^2 + 3c_0 \rho^4 - 2\rho^2 \sigma + \sigma) + 3c_2 c_3 \rho^4 \right] d\rho$$

Let:

(12)
$$I_1 = \int_0^1 Q(\rho)\rho R_0 d\rho$$

(13)
$$I_{1} = \frac{l_{0}(\nu_{n}+1)^{2}R_{0}}{4\nu_{n}+2} + \frac{l_{1}(\nu_{n}+1)^{2}(\nu_{T}+1)R_{0}\bar{T}}{4\nu_{n}+2\nu_{T}+2} + \frac{l_{2}(\nu_{n}+1)^{2}(\nu_{T}+1)^{2}R_{0}\bar{T}^{2}}{4\nu_{n}+4\nu_{T}+2} + \frac{l_{3}(\nu_{n}+1)^{2}(\nu_{T}+1)^{3}R_{0}\bar{T}^{3}}{4\nu_{n}+6\nu_{T}+2} + \frac{l_{4}(\nu_{n}+1)^{2}(\nu_{T}+1)^{4}R_{0}\bar{T}^{4}}{4\nu_{n}+8\nu_{T}+2} + \frac{l_{5}(\nu_{n}+1)^{2}(\nu_{T}+1)^{5}R_{0}\bar{T}^{5}}{4\nu_{n}+10\nu_{T}+2}$$

Let:

(14)
$$I_2 = \int_0^1 Q(\rho)\rho \left[2c_1(c_2\rho^2 + 3c_0\rho^4 - 2\rho^2\sigma + \sigma) + 3c_2c_3\rho^4\right]d\rho$$

$$\begin{split} I_2 &= \\ &= \frac{l_0(\nu_n+1)(6c_0c_1+c_1(2\nu_n+3)(c_2+2\nu_n\sigma)+3c_2c_3)}{2(2\nu_n+1)(2\nu_n+3)} \\ &+ \frac{l_1(\nu_n+1)^2(\nu_T+1)\bar{T}(6c_0c_1+c_1(2\nu_n+\nu_T+3)(c_2+2\nu_n\sigma+\nu_T\sigma)+3c_2c_3)}{(2\nu_n+\nu_T+1)(2\nu_n+\nu_T+2)(2\nu_n+\nu_T+3)} \\ &+ \frac{l_2(\nu_n+1)^2(\nu_T+1)^2\bar{T}^2(6c_0c_1+c_1(2\nu_n+2\nu_T+3)(c_2+2\sigma(\nu_n+\nu_T))+3c_2c_3)}{2(\nu_n+\nu_T+1)(2\nu_n+2\nu_T+1)(2\nu_n+2\nu_T+3)} \\ &+ \frac{l_3(\nu_n+1)^2(\nu_T+1)^3\bar{T}^3(6c_0c_1+c_1(2\nu_n+3\nu_T+3)(c_2+2\nu_n\sigma+3\nu_T\sigma)+3c_2c_3)}{(2\nu_n+3\nu_T+1)(2\nu_n+3\nu_T+2)(2\nu_n+3\nu_T+3)} \\ &+ \frac{l_4(\nu_n+1)^2(\nu_T+1)^4\bar{T}^4(6c_0c_1+c_1(2\nu_n+4\nu_T+3)(c_2+2\nu_n\sigma+4\nu_T\sigma)+3c_2c_3)}{2(\nu_n+2\nu_T+1)(2\nu_n+4\nu_T+3)(c_2+2\nu_n\sigma+4\nu_T\sigma)+3c_2c_3)} \\ &+ \frac{l_5(\nu_n+1)^2(\nu_T+1)^5\bar{T}^5(6c_0c_1+c_1(2\nu_n+5\nu_T+3)(c_2+2\nu_n\sigma+5\nu_T\sigma)+3c_2c_3)}{(2\nu_n+5\nu_T+1)(2\nu_n+5\nu_T+3)(c_2+2\nu_n\sigma+5\nu_T\sigma)+3c_2c_3)} \end{split}$$

(16)
$$S_{\alpha} = \frac{1}{4} \bar{n}^2 E_{\alpha} \left(4\pi^2 (R_0 \epsilon)^2 \kappa c_1 I_1 + 2\pi^2 (R_0 \epsilon)^3 I_2 \right)$$

$$(17) S_F = S_\alpha * (17.6/3.5)$$

6. Test Case - Fusion Power

name: fusion power (S_F) inputs: $S_F(\nu_T, \nu_n, \bar{T}, \bar{n}, \epsilon, \kappa, \delta, R_0)$ test-values:

Parameter	Value
$ u_T$	1.3
$ u_n$	0.5
$ar{ar{T}}$	15 (KeV)
\bar{n}	1e20
ϵ	0.25
κ	1.8
δ	0.45
R_0	8
S_F	4.0984e9

7. Test Case - Bremsstrahlung

name: bremsstrahlung power (S_B) inputs: $S_B(\nu_T, \nu_n, \bar{T}_k, \bar{n}_{20}, \epsilon, \kappa, \delta, R_0)$

test values:

Parameter	Value
$ u_T$	1.3
$ u_N$	0.5
\bar{T}_k	15
\bar{n}_{20}	1
ϵ	0.25
κ	1.8
δ	0.45
R_0	8
S_F	3.0544e7