Enunţuri:

- 1. Fie vectorii $v_1=(1,1,3), v_2=(2,1,0), v_3=(4,3,1), v_4=(3,2,1)\in \mathbb{R}^3.$
 - (a) Formează $\{v_1, v_2, v_3, v_4\}$ un sistem de generatori pentru \mathbb{R}^3 ?
 - (b) Extrageți o bază a lui \mathbb{R}^3 din $\{v_1, v_2, v_3, v_4\}$.
 - (c) Scrieți componentele vectorului x = (1,1,1) în raport cu baza obținută la punctul precedent.

2. Fie
$$A = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & 3 & 2 & -1 \\ 3 & 2 & 4 & 2 \end{pmatrix}$$
.

- (a) Determinați dimensiunea subspațiului $L=\left\{x\in\mathbb{R}^4|Ax=0\right\}$ și o bază a acestuia;
- (b) Determinați o descompunere $\mathbb{R}^4 = L \oplus L_0$;
- (c) Descompuneți vectorul x = (1,2,1,2) ca suma dintre un vector din L și unul din L_0 .
- 3. Fie $\mathcal{B} = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1), \}$ baza canonică din \mathbb{R}^3 și $\mathcal{B}' = \{u_1 = (1,2,1), u_2 = (1,-1,0), u_3 = (3,1,-2)\}$. Să se determine matricea de trecere de la \mathcal{B} la \mathcal{B}' și coordonatele lui v = (2,3,-5) în raport cu baza \mathcal{B}' .
- 4. Fie vectorii $x_1=(1,1,1,1), x_2=(1,1,-1,-1), x_3=(1,-1,1,-1)$ şi $y_1=(1,-1,-1,1), y_2=(2,-2,0,0), y_3=(3,-1,1,1)$ şi $L_1=Span(x_1,x_2,x_3), L_2=Span(y_1,y_2,y_3)$. Determinaţi cîte o bază în L_1+L_2 , respectiv $L_1\cap L_2$
- 5. Fie vectorii $x_1=(2,1,0), x_2=(1,2,3), x_3=(-5,-2,1)$ şi $y_1=(1,1,2), y_2=(-1,2,0), y_3=(2,0,3)$ şi $L_1=Span(x_1,x_2,x_3), L_2=Span(y_1,y_2,y_3)$. Arătaţi că $L_1+L_2=\mathbb{R}^3$ şi descompuneţi în două moduri vectorul x=(1,0,1) după subspaţiile L_1 şi L_2 .
- 6. Dacă vectorii v_1, v_2, v_3 sînt liniar-dependenți se poate ca $w_1 = v_1 + v_2$, $w_2 = v_2 + v_3$ și $w_3 = v_1 + v_3$ să fie liniar-independenți?

Indicaţii:

- 1. (a) Este suficient să arătați că matricea cu coloanele v_1, v_2, v_3, v_4 are rangul 3;
 - (b) Determinați minorul principal al matricei precedente. Baza este formată de coloanele pe care se sprijină acesta;
 - (c) Dacă u_1, u_2, u_3 este baza obținută, trebuie să rezolvați sistemul determinat de $x_1u_1 + x_2u_2 + x_3u_3 = (1, 1, 1)$.
- 2. (a) Rezolvați sistemul și găsiți un sistem fundamental de soluții;
 - (b) Completați baza lui L la o bază a lui \mathbb{R}^4 . Spațiul L_0 este generat de vectorii adăugați.
 - (c) Orice $x \in \mathbb{R}^4$ trebuie să se scrie ca $x = x_0 + x_1$ cu $x_0 \in L_0$ şi $x_1 \in L$. Observați că dacă ați determinat unul dintre acești vectori (să zicem x_1 atunci $x_0 = x x_1$). O metodă ar fi pornind de la observația că $Ax = Ax_0 + Ax_1$.

- 3. Aceeași idee ca la punctul 1. Matricea de trecere se obține aplicînd definiția
- 4. Un sistem de generatori pentru $L_1 + L_2$ este $\{x_1, x_2, x_3, y_1, y_2, y_3\}$. Extrageți o bază. Pentru $L_1 \cap L_2$ rezolvați sitemul dat de $a_1x_1 + a_2x_2 + a_3x_3 = b_1y_1 + b_2y_2 + b_3y_3$. Este suficient să găsiți a_1, a_2, a_3 , respectiv b_1, b_2, b_3 .
- 5. La fel ca la exercițiul precedent. Pentru descompuneri este suficient să observăm că $dimL_1 = dimL_2 = 2$ deci avem mai multe posibilități de a alege o bază in L_1 și L_2 .

Dacă trimiteți rezolvările pe e-mail veți primi feed-back. Pentru întrebări folosiți Zulip, streamul Algebra si Geometrie/131 (va trebui să faceți un cont în prealabil).