Applied Data Science and Machine Learning Course

Course Instructor

Mohammad Sabik Irbaz

Powered by Pioneer Alpha Ltd

Statistics

Problems with Wrong Interpretation

History Effect

"A blanket ad during the winter actually increased the blanket sale"

Problems with Wrong Interpretation

History Effect

"A blanket ad during the winter actually increased the blanket sale"

Third Variable Effect

"Some Muslims were involved in 9/11 attacks, thus Muslims are terrorists."

Problems with Wrong Interpretation

History Effect

"A blanket ad during the winter actually increased the blanket sale"

Third Variable Effect

"Some Muslims were involved in 9/11 attacks, thus Muslims are terrorists."

Correlation-Causation Problem

"Study shows that eating more banana causes cancer."

02

Design Experiments

Experiment Types

Public Experiment

Everybody knows what's happening

Blind Experiment

One side don't know

Double Blind Experiment

Both sides don't know

Two Types of Statistics

Descriptive Statistics

Inferential Statistics

Summarizing the Data.

Understanding what the data can be without looking into it explicitly.

Interpreting the Data.

Interpreting the descriptive statistics.

Descriptive Statistics

Central Tendency

04

Descriptive Statistics

Variability Diversity Checker

8

8 Range $x_{max}-x_{min}$

Mean Absolute Deviation

$$rac{1}{n}\sum_{i=1}^n|x_i-\mu$$

11.44

$$s^2=rac{1}{n}\sum_{i=1}^n(x_i-\mu)^2$$

Standard **Deviation**

3.38

$$s = \sqrt{\frac{1}{n}\sum_{i=1}^n (x_i - \mu)^2}$$

05