Supervised Machine Learning: Regression

Dataset Introductions	2
Exploratory data analysis	3
Numerical column analysis	3
Charges	3
Age	4
BMI	5
Children	6
Categorical Column Analysis	7
Sex	7
Smoker	8
Region	9
Feature Encoding	10
Feature Transformations	10
Correlation and interaction terms	11
Vanilla linear regression	11
Lasso regression	12
Ridge Regression	13
ElasticNet	13
Model Selection	14
Interpretability and Feature importance	14
Conclusion	15
Next Steps	15

Dataset Introductions

The dataset used here is Medical charges dataset. This dataset was obtained from kaggle. This dataset was used for Regression problems

The dataset contains the following columns

Features	Descriptions	
Age	The age of the customer	
Sex	Sex of the customer	
Children	How many children does the customer have	
ВМІ	BMI of the customer	
Region	Region of the customer	
Charges	Medical expense of the customer(amount to predict in the model)	

Dataset Observation length = 1338

Feature deletion

Before we start with the actual analysis we write a function to find features having unique value as much as observation length. We get 0 features with all unique values

Main objective of the project

This project focuses on prediction then uses interpretability to understand feature importance get more insights

Exploratory data analysis

Numerical column analysis

Charges

- Continuous variable determining the cost of insurance for a customer
- This is the target variable

Null values

We shall first check for any null values by using the isnull function. The output was that this feature had 0 null values

Distribution

```
500 -
400 -
400 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
100 -
```

```
data['charges'].isnull().sum()
0
```


This does not follow a normal distribution. This means that most customers are getting the same charges where only some customers are getting higher charges and around 35000 afterwards we are able to notice some high outliers. So we will analyze why is it so

First we check if a customer is a smoker or non smoker and the charge is above 35000. We can see majority of customer who paid above 35000 was a smoker

col_0	count
smoker	
no	3
yes	130

We can also check for bmi scale among the outliers customers Majority of them were not normal So we can conclude if you are a smoker or not normal on bmi scale you will have a higher medicalc charges

col_0	count
Bmi_range	
Normal	1
Overweight	4
0bese	57
OverObese	71

Age

- A continuous variable
- Indicating the age of the customer

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['age'].isnull().sum()
ø
```

Distribution

We can see that the majority of the customers were of age 20. The boxplot shows no outliers

We can infer minimum charge per age group increases as age increases

	0	1
0	0-20	8713.482413
1	20-40	10686.686643
2	40-60	15888.757668
3	60-80	21063.163398

We can see the average charge per age group

This also make it clear that the average cost also increases as age group increases

BMI

- Continuous variable telling the body mass index of a customer

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['bmi'].isnull().sum()
0
```

Distribution

We can see that bmi range is somewhat distributed in an normal distribution scale .There are also some outliers.These outliers are important because this indicates that customers has been overly obese

This shows the overall distribution of customers we can see that a lot of people are obses in the dataset

We can see that	as bmi increase	es the cost a	also
increases in a up	ward trend		

col_0	count
Bmi_range	
Underweight	41
Normal	206
Overweight	386
Obese	389
OverObese	316

Children

Discrete variable indicating number of children a customer has

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['children'].isnull().sum()
0
```

Unique values

5 unique respectively 1, 2, 3, 4, 5, 0

Distributions


```
{'0': 12365.975601635882,

'1': 12731.171831635793,

'2': 15073.563733958328,

'3': 15355.31836681528,

'4': 13850.656311199999,

'5': 8786.035247222222}
```

Majority of them are with no children and paid charges in variety scale but customers with 5 kids payed less average medical charges compared to others

Categorical Column Analysis

Sex

- Indicates the sex of the customer
- Categorical variable

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['sex'].isnull().sum()
0
```

Unique values

Has two 2 unique values respectively

- Male
- Female

```
data['sex'].unique()
array(['female', 'male'], dtype=object)
```

Distribution

```
0 1
0 female 12569.578844
1 male 13956.751178
```


Both count of male and female is almost identical but the mean of male is more than that of a female

Smoker

- Indicating whether customer smokes or not
- A categorical variable

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['smoker'].isnull().sum()
0
```

Unique values

There are 2 unique respectively

- Yes
- No

```
data['smoker'].unique()
array(['yes', 'no'], dtype=object)
```

Distribution

```
0 1
0 Smoker 32050.231832
1 NotSmoker 8434.268298
```


Majority of people dont smoke also average medical charges for a smoker is 4 times than that of a smoker

Region

- Denotes the area of residence of the customer
- Categorical variable

Null values

We shall first check for any null values by using the isnull function.

The output was that this feature had 0 null values

```
data['region'].isnull().sum()
0
```

Unique values

```
data['region'].unique()
array(['southwest', 'southeast', 'northwest', 'northeast'], dtype=object)
```

Four unique values

- Southwest
- Southeast
- Northwest
- Northeast

Distributions

Southeast had the highest customers and also highest average among other categories

```
0 1
0 northeast 13406.384516
1 northwest 12417.575374
2 southeast 14735.411438
3 southwest 12346.937377
```

col_0	count
region	
northeast	324
northwest	325
southeast	364
southwest	325

Feature Encoding

Feature encoding was applied on Categorical columns to produce a total of 12 columns from 7 columns

Feature Transformations

Checking the transformation effect on target feature(charges)

R2 score with box cox transformation = 0.47990628299448956 R2 score without box cox transformation = 0.7164012706034976

We will not apply box cox transformation on target variable

Correlation and interaction terms

There is not a strong positive or negative correlation between any features so we will not add any interaction terms

Vanilla linear regression

Scaling

Among three scalers standard Scaler had the least loss and highest r2 score

```
standarsScaling 37704801.58174754
minmaxScaling 37827235.04227932
robustScaling 37827235.042279325
standarsScaling 0.7164012706034976
minmaxScaling 0.7154803806270009
robustScaling 0.7154803806270008
```

Cross validation

Using Kfold cross validation with 3 splits the score we obtained was 0.7458022110624182

Polynomial features

Using GridSearchCV we were able to find the best degree and best score we achieved using Kfold with 3 splits which were Polynomial degree = 2 ,Polynomial score = 0.8332961643091904

The final score was 0.8340521783293577

Lasso regression

Scaling

The robust scaling showed the least error and highest r2 score

So we will applying the robust scale for lasso regression

standarsScaling 37825811.747555375 minmaxScaling 37825820.62618677 robustScaling 37823874.262637585 standarsScaling 0.7154910860161909 minmaxScaling 0.7154910192350787 robustScaling 0.7155056589150753

Hyper parameter tuning

We can see that the highest r2 score was achieved around 30

Using hypermater as 30 and kfold cross validation with 3 splits and robust scaling we got the highest r2 score of 0.837367277739997

Ridge Regression

Scaling

The robust scaling showed the least error and highest r2 score

So we will applying the robust scale for Ridge regression

standarsScaling 37822065.32520359 minmaxScaling 37817732.090661205 robustScaling 37798433.721370555 standarsScaling 0.7155192649370227 minmaxScaling 0.7155518575978734 robustScaling 0.715697011339059

Hyperparameter tuning

We can see that the highest r2 score was achieved around 5

Using hypermater as 5 and kfold cross validation with 3 splits and robust scaling we got the highest r2 score of 0.8360975785580597

ElasticNet

Scaling

Applying scaling showed worst performance So we won't be applying any scaling

standarsScaling 41318464.931991614 minmaxScaling 76458458.29431425 robustScaling 69552534.80681138 standarsScaling 0.689220903870258 minmaxScaling 0.42491351991679127 robustScaling 0.47685680152030385

Hyperparameter Tuning

The highest R2 score score was achieved at hypermater 0.005

Using hyperparameter of 0.005 with Kfold cross validation with 3 splits and no scaling the highest r32 score achieved was

Model Selection

Model	Scaling	Hyperparameter	R2_score
Linear Regression(vanilla)	Standard scaler	-	0.8340521783293577
Lasso Regression	Robust scaler	30	0.837367277739997
Ridge regression	Robust scaler	5	0.8360975785580597
ElasticNet regression	No scaler	0.005	0.8354538560738195

Thus Selecting lasso regression for higher predictability

Interpretability and Feature importance

	9	1
54	sex_male region_southwest	-125.802421
38	children region_southeast	-105.639566
45	sex_female region_northwest	-48.637454
23	bmi^2	-34.174945
22	age smoker_yes	-30.378901
48	sex_female smoker_no	770.804855
19	age region_southeast	1078.269615
32	bmi smoker_yes	1303.083589
12	age^2	5232.353776
75	smoker_no^2	14133.839845

Here

- The model is able some of the actual relationship in the data accurately example: bmi smoker_yes we already know that if both cause to higher medical charges and age^2
 Where medical charge increases as age increases
- But the model also learnt the trend completely opposite of what we expected Example smoker_no^2 and age smoker_yes We know that if a customer is not a smoker the medical charge should be less but here it adds the most value for the target. This happened because of the data has more smoker than non smokers

Conclusion

The final model was able to achieve the r2 score of 0.837367277739997.But for interpretability model learnt some trends and misunderstood some trends due to lack of data

Next Steps

- -Request more data to increase interpretability
- -Delete the feature misunderstood by the model to improve prediction
- -As the data was bias towards the smoker category .Need to balance out this categories