PROJECT DESIGN PHASE - I

PROPOSED SOLUTION TEMPLATE

Date	05 November 2022
Team ID	PNT2022TMID38219
Project Name	Deep Learning Fundus Image Analysis for Early Detection of Diabetic Retinopathy

Proposed Solution Template:

The main aim of this project is to create an appropriate machine learning model to detect Diabetic Retinopathy as early as possible.

S NO.	Parameter	Description
1	Duahlam Ctatamant	Dishatia Datinamathy is one of the amounts
1.	Problem Statement	Diabetic Retinopathy is one of the emerging
	(Problem to be	diseases which is the reason for blindness. DR
	solved)	multilates the retinal blood vessels of a patient
		having diabetes. Diabetic Retinopathy (DR) is an
		ophthalmic disease that damages retinal blood
		vessels. DR causes imperfect vision and may cause
		blindness if it is not diagnosed in early stages.
		Early detection of Diabetic Retinopathy includes
		the identification of microneurysms and
		haemorrhages. Because the signs and symptoms of

		diabetic retinopathy are typically not present during the first stage of the disease, it can often go undiagnosed until damage to vision has occurred. Existing methods are lacking in the earlier detection. Because preprocessing techniques used in those methods are not effective to analyze such smaller features (nearly 10 microns to 100 microns.
2.	Idea / Solution description	We opt to use multi-layer neural networks as deep NN. Due to the fact that data is Image, the best type of neural network satisfying our goal is Convolutional Neural Networks. As we have to do for most of the data, normalization plays an important role in our process. Before doing any tasks, preprocessing images (our dataset) is highly recommended. Consequently better accuracy will be achieved by preprocessed data. After preprocessing and normalizing, the prepared dataset could be used as input to our deep convolutional neural network. Then deep NN will be run and fit to our data and the result will be produced by that. This report will cover step by step how this deep convolutional network be implemented.
3.	Novelty / Uniqueness	One of the major decisions had to be made was choosing the suitable programming language

		satisfying our goal for extracting knowledge from
		our data. After some searching the suitable
		decision has been made by selecting Python as the
		project programming language. Due to the fact
		that, a lot of tools and frameworks are available for
		Python to create powerful Artificial Neural
		Networks. Also IBM Watson helps to predict
		future outcomes, automate complex processes and
		optimize user's time. And also the result accuracy
		will be increased from 70% which is the accuracy
		of the test results that the previous developed
		codes produced.
4.	Social Impact /	It Reduction of Diabetic Retinopathy risk.
	Customer	It provides Digital Assistance.
	Satisfaction	It is very helpful in making decisions faster.
		It can be used 24x7.
5.	BusinessModel	This can be implemented as an essential diagnosis
	(Revenue Model)	method in every hospital. Accurate detection and
		analysis can encourage the increase in financial
		benefit. It can collaborate with the government for
		health awareness camps.
6.	Scalability of the	Accurate predictions and extensive use.
	solution	Based on the times of the correct diagnosis
		Availability.
		This project will help us to detect DR more
		precisely than the existing methodologies.

Also it can produce a result which specifies the
stages of Diabetic Retinopathy.