Q 2023-2-21.md 3/25/23, 2:45 PM

Before

On February 5th, we talked about 4 situations in the simulation:

- L matrix (binary-valued) + Network Guided Thresholding (already done)
- C matrix (continuous) + NG Banding (already done)
- L matrix + NG Banding
- C matrix + NG Thresholding

Q1

I think the 3rd situation "L + NG Banding" is unfeasible, because we cannot know any ordering from a binary-valued information matrix.

Q2

The 4th situation "C + NG Thresholding". We must convert $\hat{C}(\eta)$ into $\hat{L}(l,p,q)$, where η is

Assumption 4. Represent the proxy correlation matrix as columns. $C = (c_1, \ldots, c_N)$ and $\hat{C} = (\hat{c}_1, \ldots, \hat{c}_N)$. Then

$$\exists \eta \in (0,1], \forall i, \forall k, \lim_{T \to \infty} \Pr\{S_{\eta k}^{c_i} \subseteq S_k^{\hat{c}_i}\} = 1.$$

and l, p, q are

Parameter	Description
ρ	Determines how strong the correlation is and the sparsity of the covariance matrix Σ
l	Observation level, determines how we classify a pair (i, j) as important, i.e., $L_{ij} = 1$.
p	Conditional on $L_{ij} = 1$, the probability of actually observing $G_{ij} = 1$.
q	Conditional on $L_{ij} = 0$, the probability of observing $G_{ij} = 1$
τ	The Threshold level when we apply generalized thresholding operator on σ_{ij} where $G_{ij} = 0$.

Table 1: Description of varying parameters.

(G matrix in the old version notation is \hat{L} in the new version notation.)

Q2.1

But there isn't an one-to-one match between \hat{C} and \hat{L} .

Q2.2

You may think we can just pretend $\hat{L}_{fake}:=I(i\in S_k^{\hat{c}_j}\wedge j\in S_k^{\hat{c}_i})$, where \hat{c}_i is the i-th column of \hat{C} and k is determined by the CV of NG Banding, then apply NG Thresholding.

Q 2023-2-21.md 3/25/23, 2:45 PM

But then, the only difference between the two methods is whether we apply thresholding on $\hat{\sigma}_{ij}$ where $\hat{L}_{fake}=0$.

After

A1

For L + NG Banding, write in the article that 'this method is unapplicable'.

A2

It's true that we cannot directly compare ${\cal L}$ and ${\cal C}$.

After 'L + NG Threshodling' and 'C + NG Banding' have finished, list a table to compare. For example, given Σ_{AR1} and Frobenius norm, list the ratio of two error rates.

$(l,p,q) \setminus \eta$	0.5	8.0	•••
(0.5, 0.1, 0.1)	ratio_1	ratio_2	
(0.6, 0.1, 0.1)	ratio_3	ratio_4	

...