Report Justification and Results

Vu Viet Thai – B23DCCE085

1. Problem 1:

Approach: problem-1 has the task of collecting data about players who play in the Premier League on the website FBref.com. It is designed to:

- Access the website: Connect to FBref to obtain data.
- Search for the league: Identify the Premier League page.
- Get team data: Browse the list of teams, then access each team page.
- Extract player data: Collect various types of statistics, including:
 - Standard Stats.
 - Goalkeeping.
 - Shooting.
 - Passing.
 - Goal and Shot Creation.
 - Defensive Actions.
 - Possession.
 - Miscellaneous Stats.
- Save results: The final data are saved to a CSV file (results.csv).

Results: After running the program, a data table containing detailed information about the *Premier League* players will be saved in the results.csv file, including:

• Standard Stats: Player name, Nation, Team, Position (Pos), Age, Matches Played (MP), Starts, Minutes played (Min), Goals scored (Gls_st), Assists (Ast_st), Yellow cards (CrdY_st), Red cards (CrdR_st), Expected goals (xG_st), Expected assists (xAG_st), Progressive carries (PrgC_st), Progressive passes (PrgP_st), Progressive passes received (PrgR_st), Goals per 90 minutes (Gls_st_per90), Assists per 90 minutes (Ast_st_per90), Expected goals per 90 minutes (xG_st_per90), Expected assists per 90 minutes (xAG_st_per90).

- Goalkeeping Stats: Goals against per 90 minutes (GA90_gk), Save percentage (%) (Save%_gk), Clean sheet percentage (%) (CS%_gk), Penalty save percentage (%) (Save%_gk_pen).
- Shooting Stats: Shots on target percentage (%) (SoT%_sh), Shots on target per 90 minutes (SoT/90_sh), Goals per shot (G/Sh_sh), Average shot distance (Dist_sh).
- Passing Stats: Completed passes (Cmp_pas), Pass completion rate (%) (Cmp%_pas), Short pass completion rate (%) (Cmp%_pas_S), Medium pass completion rate (%) (Cmp%_pas_M), Long pass completion rate (%) (Cmp%_pas_L), Key passes (KP_pas), Passes into final third (1/3_pas), Passes into penalty area (PPA_pas), Crosses into penalty area (CrsPA_pas), Progressive passes (PrgP_pas).
- Goal and Shot Creation Stats: Shot-creating actions (SCA_gsc), Shot-creating actions per 90 minutes (SCA90_gsc), Goal-creating actions (GCA_gsc), Goal-creating actions per 90 minutes (GCA90_gsc).
- Defensive Actions Stats: Tackles (Tkl_def), Tackles won (TklW_def), Challenges attempted (Att_def), Challenges lost (Lost_def), Blocks (Blocks_def), Shots blocked (Sh_def), Passes blocked (Pass_def), Interceptions (Int_def).
- Possession Stats: Touches (Touches_pos), Touches in defensive penalty area (Def Pen_pos), Touches in defensive third (Def 3rd_pos), Touches in middle third (Mid 3rd_pos), Touches in attacking third (Att 3rd_pos), Touches in attacking penalty area (Att Pen), Dribbles attempted (Att_pos), Successful dribble percentage (%) (Succ%_pos), Dispossessed percentage (%) (Tkld%_pos), Ball carries (Carries_pos), Total progressive carrying distance (PrgDist_pos), Progressive carries (PrgC_pos), Carries into final third (1/3_pos), Carries into penalty area (CPA_pos), Miscontrols (Mis_pos), Dispossessed (Dis_pos), Passes received (Rec_pos), Progressive passes received (PrgR_pos).
- Miscellaneous Stats: Fouls committed (Fls_mis), Fouls drawn (Fld_mis), Offsides (Off_mis), Crosses (Crs_mis), Ball recoveries (Recov_mis), Aerial duels won (Won_mis), Aerial duels lost (Lost_mis), Aerial duel win percentage (%) (Won%_mis).

The results.csv file contains a list of players with all of the above parameters, helping to analyze or use for deeper reporting on players in the Premier League.

2. Problem 2:

A. Problem-2a:

Approach: problem-2a has the task of processing data from the results.csv file (results of problem-1) to find the top three players and the bottom three players for each statistical indicator in the data. The implementation process includes the following.

• Reading the data: The CSV file containing information about Premier League players is loaded into a DataFrame.

- Data processing:
 - Remove columns containing non-numeric information (Player, Nation, Team, Pos).
 - Convert N/a data to 0.0 to ensure calculations do not produce errors.
 - Convert the values of numeric columns to numeric data types (int64, float64).
- Sort and select players:
 - Sort each statistical column by value from low to high.
 - Take the three players with the lowest values and the three players with the highest values for each indicator.
- Write results to file: Save the list of players with top & bottom 3 for each indicator to the Top_and_Bottom_3_statistics.txt file.

Results: After running the program, the Top_and_Bottom_3_statistics.txt file will contain a list of best and worst players for each statistical indicator in the data, including:

- Number of goals, number of assists.
- Defensive performance, passing.
- Advanced metrics such as xG (expected goals), CS% (clean sheet percentage for goal-keepers), Tkl_def (number of tackles), etc.
- Special indicators for passing, saves, dribbling and many other factors.

This file helps easily analyze strengths & weaknesses of each player in the league, supporting statistics, evaluation, or making more in-depth assessments.

B. Problem-2b:

Approach: problem-2b is designed to calculate important statistics for each team in the *Premier League*. It processes data from the results.csv file (results of problem-1) to determine:

- Mean value The average value of each indicator within the team.
- Median value The midpoint of the data, helping to eliminate the influence of outliers.
- Standard Deviation Measuring the variability of each indicator within the team.

The key steps include:

• Reading data from the results.csv file (results of problem-1).

- Removing unnecessary columns: Player, Nation, Age, Pos, keeping only data by team.
- Processing data: Converting N/a values to 0.0 and forcing data types to ensure calculations do not encounter errors.
- Calculating statistics for each team.
- Saving results: The calculated data are saved to the results.csv file.

Results: After running the program, the results.csv file will contain:

- List of teams in the *Premier League*.
- Mean, median, and standard deviation of each indicator (e.g., goals, assists, shot accuracy percentage, number of tackles, etc.).
- An overview of the stability or performance disparity between teams.

This file is used to *analyze* and *compare the strength* of teams, as well as identify which teams play consistently and which teams have large performance fluctuations.

C. Problem-2c:

Approach: problem-2c has the task of creating histograms to visualize attacking and defensive indicators of players in the Premier League. Specifically, it performs the following steps:

- Reading data from the results.csv file (results of problem-1) containing player information.
- Data processing:
 - Converting relevant data columns (Gls_st, Ast_st, xG_st, Tkl_def, Int_def, Blocks_def) to numeric types.
 - Filling missing values (NaN) with 0.0 to avoid errors when drawing charts.
- Drawing histograms:
 - Creating 6 charts, divided into 2 rows, 3 columns.
 - Each chart represents an indicator:
 - * Attacking: Goals (Gls_st), Assists (Ast_st), Expected Goals (xG_st).
 - * Defensive: Tackles (Tkl_def), Interceptions (Int_def), Blocks (Blocks_def).
 - Using different colors for each chart for easy differentiation.
 - Adding titles, axis labels, and grids to enhance readability.
- Saving results: The chart is saved as histogram_premier_league.png for viewing.

Results: After running the program, the result is:

- An image containing 6 histograms, visualizing Premier League players' performance by attacking & defensive indicators.
- Easy identification of the distribution of goals, assists, expected goals, tackles, blocks, interceptions among players.
- Support for *performance analysis* to find players with strong attacking play or solid defense.

D, Problem-2d:

Approach: problem-2d has the task of identifying the team with the best performance in the season based on a set of statistical indicators. It performs the following steps:

- Reading data from the results.csv file (results of problem-2b), containing average statistics for each team.
- Categorizing indicators:
 - Attack (Atk): Number of goals (Gls_st), number of assists (Ast_st), expected goals (xG_st).
 - Defense (**Def**): Number of tackles (Tkl_def), number of interceptions (Int_def), number of blocks (Blocks_def).
 - Possession (**Pos**): Pass success rate (Cmp_pas), number of progressive passes (PrgP_pas), number of touches (Touches_pos).
- Data normalization: Converting the value of each indicator to the same scale (from 0 to 1) for easier comparison.
- Calculating composite scores:
 - Attack score accounts for 40% of total score.
 - Defense score accounts for **30%** of total score.
 - Possession score accounts for 30% of total score.
- Ranking teams by composite score to determine the team with the best performance in the season.
- Saving results to the Team_stat_leaders_and_record.txt file.

Results: After running the program, the results include:

• List of teams ranked by composite score from highest to lowest.

- An overview of the best performing teams, based on attacking performance, defense, and ball possession.
- The team with the *best performance* in the season, clearly displayed with their composite score.

This file helps *compare strength between teams*, find the team with the strongest attacking style, the most solid defense, or the team with the best match control.

3. Problem 3:

A, Problem-3a:

Approach: problem-3a uses the Elbow Method to find the optimal number of clusters (K) in K-Means clustering. Its main objectives are:

- Reading data from the results.csv file (results of problem-1), which contains statistical information about players.
- Data preprocessing:
 - Selecting columns containing numerical values.
 - Normalizing data using *StandardScaler* to ensure features have the same scale, helping the clustering algorithm work better.
- *K-Means clustering:*
 - Running K-Means with number of clusters from 1 to 10.
 - Recording intra-group variability (Inertia) for each cluster number K.
- Drawing the Elbow chart:
 - X-axis: Number of clusters (K).
 - Y-axis: Value of intra-group variability (Inertia).
 - Finding the Elbow point, where variability begins to decrease more slowly (this is the optimal K value).
- Saving the chart as Find_the_optimal_k.png.

Results: After running the program, the results include:

- An Elbow chart, helping to determine the most suitable number of clusters in player data analysis.
- Results supporting the selection of *optimal K*, helping classify players based on statistical characteristics.

• A scientific approach to grouping players with similar playing styles.

Comments on results: Based on the *Elbow Method* chart from Find_the_optimal_k.png, the *Elbow* point appears at K=3, meaning this method suggests that 3 groups is the optimal number of clusters to classify players. This is the level where intra-group variability (inertia) decreases sharply, but then the rate of decrease slows down as the number of clusters increases. The significance of 3 groups may be outstanding attacking players with notable goal-scoring and assist abilities, strong defensive players possessing good tackling, interception, and blocking skills, and good ball control players with high pass rates and effective ball retention.

B, Problem-3b:

Approach: problem-3b uses K-Means clustering combined with Principal Component Analysis (PCA) to classify players based on their statistics. The main objectives are:

- Data Processing:
 - Reading data from results.csv (output from problem-1) and filtering columns containing player statistics.
 - Normalizing data using StandardScaler to ensure equal scale for all features.
 - Using PCA to reduce dimensionality to 2 principal components, making visualization easier.
- Clustering with K-Means:
 - Identifying 3 player groups (according to results from the Elbow method).
 - Assigning each player to a cluster based on their statistical characteristics.
- Drawing the clustering chart:
 - Displaying player data on the axis system PCA Component 1 & Component 2.
 - Using colors (viridis color palette) to distinguish groups.
 - Marking *centroids* in red to see the average position of each group.
- Saving the chart as KMeans_clustering.png.

Results: The program outputs include:

- A 2D chart showing player clustering based on their statistical data.
- Three clear groups, which may represent:
 - Group 1: Attacking players (good at shooting, assisting).
 - Group 2: Defensive players (good at tackling, blocking).
 - Group 3: Ball control players (good at passing and ball retention).
- Easy identification of *common characteristics* of each group, helping analyze and optimize tactics.

4. Problem 4

A, Problem-4a

Approach: problem-4a performs data collection on transfer values of Premier League players from the website FootballTransfers.com using web scraping with Selenium. The main objectives are:

- Reading data from the results.csv file (results of problem-1), getting a list of players including: Player, Pos, Team, Age, and Min ; 900.
- Setting up Selenium browser:
 - Configuring *Chrome* browser to run *headless* (no window display).
 - Automatically navigating to the FootballTransfers website.
 - Disabling notifications, avoiding SSL certificate errors.
- Interacting with the website:
 - Closing notification pop-ups if they appear.
 - Moving the mouse to "Players" section.
 - Clicking on "All Premier League Players" to access the player list page.
- Collecting data:
 - Browsing through each player list page.
 - Getting information about Skill, Pot, and transfer value (ETV).
 - Saving data to the all_players list.
- Saving results to results.csv.

Results: After running the program, the results include:

- A list of Premier League players with information:
 - Player, Pos, Team, Age, Min.
 - Skill and Pot, showing level of expertise.
 - Expected Transfer Value (ETV) from FootballTransfers.
- CSV file containing players meeting criteria (¿900 minutes played), useful for data analysis or machine learning models.

B, Problem-4b

Approach: problem-4b helps build a player valuation model based on statistical parameters. It combines data on Min, Age, Skill, Pot with actual transfer values (ETV) to predict player value. Key steps:

- Reading data from results.csv (results of problem-1) containing player statistics and results.csv (results of problem-4a) containing transfer values.
- Data processing:
 - Normalizing ETV by extracting real numbers from strings.
 - Converting Age to numeric form (years $+ \frac{days}{365}$) to increase accuracy.
 - Separating skill and potential information (Skill / Pot).
 - One-hot encoding for Pos to turn player positions into numeric features.
- Building machine learning model:
 - Choosing *Linear Regression* to predict player value based on input factors.
 - Applying log transformation (log1p(ETV)) to handle skewed distribution of transfer values.
 - Splitting the dataset into train (80%) and test (20%).
- Evaluating the model:
 - Calculating RMSE (Root Mean Squared Error) to measure the difference between actual and predicted values.
 - Calculating R^2 Score, reflecting the model's goodness of fit.
- Exporting results: Comparing predicted values with actual values, saving to predicted_vs_actual.csv.

Results: The results obtained after running the model will include:

- Predicted & actual values of player transfer values in predicted_vs_actual.csv.
- $RMSE \approx 0.3954$ (low) shows model has small error, meaning player transfer value predictions are relatively accurate.
- R^2 Score ≈ 0.7786 (high) shows the model reflects the player valuation trend well.

Feature and Model Selection:

• Feature selection: Features are selected based on potential relationship with player value:

- Age: Younger players typically have higher value.
- Min: Players who play more often are typically valued higher.
- Skill and Pot: Higher scores indicate capability.
- Pos: An excellent striker typically has higher value than a defender.
- Model selection: Linear Regression was chosen because:
 - Player value often has a linear relationship with performance indicators.
 - Easy to interpret and suitable for small-scale data.
 - Can be improved by applying log transformation to handle skewed distribution.