$$\frac{94\pi}{4} = \frac{3\pi}{4}$$

a)
$$(0)\left(-\frac{13\pi}{6}\right) = \left(0\right)\left(-\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

sin
$$\left(\frac{75\pi}{3}\right) = \cos\left(\frac{25\pi}{3}\right) = \frac{1}{2}$$

6)
$$\sin\left(\frac{45\pi}{6}\right) = \sin\left(\frac{9\pi}{6}\right) = \sin\left(\frac{3\pi}{2}\right) = -1$$

46.

$$\frac{2\pi}{3}$$
 four for much , our 10 mm $\frac{20\pi}{3}$
 $\frac{1}{3}$ for minute, charges = $\frac{1}{3}$ $\frac{1}{3}$

1.
$$a) = A + b) = B + c) = C$$

$$AB + b) = AB + c) = AB + c) = AB + c$$

$$AB + c$$

28.
$$\frac{1}{3}$$
 parkit de cos $\left(\frac{\pi}{3}\right)$ det cos $\left(\frac{-\pi}{3}\right)$ et cos $\left(\frac{2\pi}{3}\right)$ cos $\left(\frac{\pi}{3}\right)$ = -cos $\left(\frac{\pi}{3}\right)$

$$2 \sin\left(\frac{2\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) \qquad (0)\left(\pi - \frac{\pi}{3}\right)$$

(a) (a)
$$\left(\frac{10\pi}{3}\right) \Rightarrow \text{nigatif}$$
 c) $\left(\frac{12\pi}{18}\right) \Rightarrow \text{nigatif}$
6) $\sin\left(\frac{\pi}{18}\right) \Rightarrow \text{positif}$ d) $\sin\left(\frac{\pi}{18}\right) \Rightarrow \text{nigatif}$

36. A Résoudre sur [O] RATE (0)(x)=
$$\frac{\sqrt{3}}{2}$$
 $x = \frac{\pi}{6}$.
2. $\sin(x) = \frac{\sqrt{2}}{2}$ $x = \frac{\pi}{6}$

$$A = \frac{-3\pi}{4} \quad G = -\frac{\pi}{4} \quad 2. \quad \exists \pi, \pi \rceil \quad \sin(\alpha) = \frac{\sqrt{2}}{2}$$

$$3. \quad \sin(\alpha) \geqslant \frac{\sqrt{2}}{2} \quad 4.3\frac{\pi}{4} \quad \alpha = \frac{\pi}{4} \quad \frac{-3\pi}{4}$$

$$\alpha \geqslant \frac{\pi}{4}$$

$$8(-x) = -\sin(3x) = -3(3x)$$

$$8(-x) = (-\sin(3x))^{2} = h(x)$$

39. 1 f(x) - f(-x) où f at poire

1
$$g(-\infty) = cos(-\infty) \times sin(-\infty) = cos(\infty) \times -sin(\infty) = -g(\infty)$$

1 $g(\pi) + \infty = cos(-\infty) \times sin(-\infty) = cos(\infty) \times -sin(\infty) = -g(\infty)$

2 $g(\pi) + \infty = cos(\pi) \times sin(\pi) \times sin(\pi) + sin(\pi) = -cos(\infty) \times -sin(\infty)$

2 $g(\pi) + \infty = cos(\pi) \times sin(\pi) = \frac{10}{2} \times \frac{10}{2} = \frac{1}{2} = \frac{$