Time Response Analysis

First-order System:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K}{\tau s + 1}$$

u(t) U(s) G(s) Y(s)

K: Steady-state Gain

 τ : Time-constant

Settling-time (2%): $t_s = 4\tau$ Single real pole at $s = -\frac{1}{\tau}$

Unit-step Response: $y(t) = K - Ke^{-t/\tau}$, $t \ge 0$

Second-order System:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

u(t) U(s) G(s) Y(s)

 ω_n : Undamped natural frequency

 ζ : Damping-ratio

 $\zeta>1$: Over-damped system $\;\;
ightarrow\;$ Two real distinct poles at $\;\;s_{1,2}=-\zeta\,\omega_n\pm\omega_n\sqrt{\zeta^2-1}$

 $\zeta=1$: Critically damped system $\;\;
ightarrow\;$ Two real repeated poles at $\;\;s_1=s_2=-\zeta\,\omega_n$

 $0<\zeta<1$: Under-damped system \rightarrow Two complex poles at $s_{1,2}=-\zeta\omega_n\pm j\omega_n\sqrt{1-\zeta^2}$

 $\zeta=0$: Undamped system $\;
ightarrow\;$ Two complex poles at $\;s_{1,2}=\pm j\omega_n$

Settling-Time (2% criteria):

$$t_{\rm S} pprox rac{4}{\zeta \omega_n}$$
 , $0 < \zeta < 0.9$

Peak Time:

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}}$$

Rise Time:

$$t_r \cong \frac{0.8 + 2.5\zeta}{\omega_n}$$

Overshoot:

$$M_p = y(t_p) - y_{ss} = y_{ss}e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

Percent of Overshoot:

$$0.S.\% = \frac{M_p}{y_{ss}} \times 100\% = e^{-\zeta \pi / \sqrt{1 - \zeta^2}} \times 100\%$$

Damping Ratio from Overshoot:

$$\zeta = \frac{-\ln(0.S.)}{\sqrt{\pi^2 + \ln^2(0.S.)}}$$

Error constants & Steady-State Error of a Unity-feedback System:

$$k_{P} = \lim_{s \to 0} G(s) \quad \to \quad e_{SS} = \frac{R}{1 + k_{p}}$$

$$k_{v} = \lim_{s \to 0} sG(s) \quad \to \quad e_{SS} = \frac{R}{k_{v}}$$

$$k_{a} = \lim_{s \to 0} s^{2}G(s) \quad \to \quad e_{SS} = \frac{R}{k_{a}}$$

$$e_{ss} = \lim_{s \to 0} \frac{s}{1 + G(s)} R(s)$$

Conversion of a Non-Unity-feedback to a Unity-feedback:

Steady-State Error of a Unity-feedback System with Disturbances

$$e_{ss,R} = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s)$$

$$e_{ss,D} = \lim_{s \to 0} \frac{-sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

