

UNIVERSIDAD NACIONAL DE MISIONES - UnaM

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

TRABAJO PRÁCTICO Nº4

FUNCIONES TRASCENDENTES

- 1- Resolver las siguientes situaciones.
 - a) El Polonio 210 se desintegra de manera tal que la cantidad de masa, medida en mg, que permanece después de t medido en días, se expresa a través de la función:

$$m(t) = 300 \cdot e^{-0.00495 t}$$

- a.1) Calcular la masa después de un año.
- a.2) ¿Cuánto tarda en desintegrarse a una masa de 200mg?
- b) Cierta raza de conejos se introdujo en una isla pequeña hace 8 años. La población actual de conejos se estima en 4100.
- b.1) Sabiendo que el crecimiento de esta población está dado por la función: $P(t) = P_0 \cdot e^{0.55 t}$ determinar la población inicial.
- b.2) Estimar la población para 12 años a partir de ahora.
- c) En el proceso de la respiración se alternan períodos de inhalación y exhalación, que se pueden estimar mediante la fórmula: f(t)=0, $6\cdot\sin\left(\frac{\pi}{2}t\right)$ siendo t el tiempo medido en segundo y f(t) el caudal de aire en el tiempo t, medido en litros por segundo.
- c.1) Determinar cuál es el caudal de aire a los 5s y a los 15s del proceso de respiración. Interprete los resultados obtenidos.
- c.2) ¿Qué ocurre en este proceso al cabo de un minuto?
- 2-Para cada una de estas funciones:

$$f(x) = \log(x+1)$$

II)
$$f(x) = e^{2x}$$

III)
$$f(x) = \sin x$$

- a) Analizar si admiten inversas o no. Justificar.
- b) Si admite inversa, encontrarla. Si no admite inversa, realice las restricciones que sean necesarias para que exista f^{-1} .
- c) Comprobar analítica y gráficamente que ambas funciones son inversas.
- 1-Sea la función $f(x) = Sh x = \frac{e^x e^{-x}}{2}$
 - a) Determinar dominio, ceros, ordenada al origen.
 - b) Estudiar la existencia de asíntotas (verticales y horizontales).
 - c) Clasificarla según su simetría.

2-

3- A partir del gráfico de la función $f(x) = \cos\left(\frac{\pi}{x}\right)$ analizar los siguientes límites.

UNIVERSIDAD NACIONAL DE MISIONES – UnaM

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

a)
$$\lim_{n\to\infty} \cos\left(\frac{\pi}{x}\right)$$

b)
$$\lim_{n \to -2} cos\left(\frac{\pi}{x}\right)$$

c)
$$\lim_{n \to -\infty} \cos\left(\frac{\pi}{x}\right)$$

4- Comparar la gráfica de f(x) = sen x, en un mismo sistema coordenado, con la gráfica de:

$$1. \quad g(x) = sen(2x)$$

II.
$$h(x) = sen\left(\frac{x}{2}\right)$$

III.
$$j(x) = sen\left(x - \frac{\pi}{2}\right)$$

¿qué conclusiones puede sacar a partir de estas gráficas?

b) ídem al punto a) para el siguiente grupo de funciones:

$$f(x) = cos(x)$$
; $g(x) = 2cos(x)$; $h(x) = \frac{1}{2}cos(x)$

Ejercicios Complementarios

- 1- Representar la función $y=2^x$, luego a partir de ella bosquejar en el mismo sistema de ejes coordenados las funciones $g(x)=2^x+1$; $h(x)=-2^x$; $i(x)=2^{x-1}$; $j(x)=2^{-x}$.
- 2- Dada la función f(x) = log(2x + 3).
 - a. Determinar su dominio e indicar ceros, ordenada al origen.
 - b. Analizar si posee asíntotas.
 - c. Representar gráficamente y determinar su conjunto imagen.
- 3- Para las siguientes funciones:

I.
$$y = 2e^x + 1$$

II.
$$y = e^{-x^2}$$

UNIVERSIDAD NACIONAL DE MISIONES – UnaM

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemáticas

Profesorado en Física

ANÁLISIS MATEMÁTICO I

- $y = \ln\left(2x + 1\right)$ III.
 - a) Estudiar dominio, raíces, ordenada al origen.
 - b) Analizar si poseen asíntotas.
 - c) Encontrar $f^{-1}(x)$ realizando restricciones si fuese necesario. ¿Cuál es el dominio de $f^{-1}(x)$?