Introdução à Análise Numérica 2ª Lista

Igor Patrício Michels

12/09/2021

Exitem algumas formas de ver se um sistema do tipo $\mathbf{A}\mathbf{x} = \mathbf{b}$ é convergente pelo método de Gauss-Seidel. Um dos mais simples é ver se a matriz \mathbf{A} tem diagonal estritamente dominante. Na nossa matriz de interesse, podemos ver que, para m=3, por exemplo, a linha 5 é dada por $\begin{bmatrix} 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \end{bmatrix}$, de onde vemos que a matriz em questão não tem diagonal estritamente positiva, logo não podemos concluir nada desse teste. Entretanto, existe uma outra forma de descobrir se a matriz é convergente por Gauss-Seidel. Basta ver se a matriz é simétrica definida-positiva. A matriz em questão é simétrica. Isso é fácil de se perceber pois os blocos de matrizes \mathbf{T} , que estão na diagonal de \mathbf{A} , são simétricos e, além disso, os valores não nulos da identidade estão localizados exatamente m linhas abaixo da diagonal ou m colunas à direita, ou seja, $\forall i \leq m^2 - m$, $\mathbf{A}_{i,i+m} = \mathbf{A}_{i+m,i} = -1$. Dessa forma, temos que ver se a matriz é definida positiva.

Para ver se \mathbf{A} é definida positiva, precisamos ter que $\forall \mathbf{x} \neq 0, \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0$. Agora, note que, usando o fato de \mathbf{A} ser simétrica, temos

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = 4 \sum_{i=1}^{m^2} x_i^2 - 2 \sum_{i \in C_m} x_i x_{i+1} - 2 \sum_{i=1}^{m^2 - m} x_i x_{i+m},$$

onde $C_m = \{n \in \mathbb{N} : 1 \le n \le m^2 \land n \ne km \forall k \in \mathbb{N}\}$. Dessa forma, temos

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} > 0 \iff 2 \sum_{i=1}^{m^2} x_i^2 > \sum_{i \in C_m} x_i x_{i+1} + \sum_{i=1}^{m^2 - m} x_i x_{i+m}.$$

Perceba que, usando a desigualdade de Cauchy-Schwarz, temos

$$\sum_{i \in C_m} x_i x_{i+1} \le \left(\sum_{i \in C_m} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i \in C_m} x_{i+1}^2\right)^{\frac{1}{2}}$$

$$\le \left(\sum_{i=1}^{m^2} x_i^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{m^2} x_{i+1}^2\right)^{\frac{1}{2}}$$

$$= \sum_{i=1}^{m^2} x_i^2.$$

De modo análogo, chegamos que

$$\sum_{i=1}^{m^2 - m} x_i x_{i+m} \le \sum_{i=1}^{m^2} x_i^2,$$

dessa forma, temos que

$$2\sum_{i=1}^{m^2} x_i^2 \ge \sum_{i \in C_m} x_i x_{i+1} + \sum_{i=1}^{m^2 - m} x_i x_{i+m}.$$

Vamos então provar que não vale a igualdade. Seja $\mathbf{x} = (x_1, x_2, \dots, x_{m^2}) \in \mathbb{R}^{m^2}$ e tome $\mathbf{x}' = (x_{m^2}, x_1, x_2, \dots, x_{m^2-1})$. É claro que $\|\mathbf{x}\| = \|\mathbf{x}'\|$ e que

$$\|\mathbf{x}\| \|\mathbf{x}'\| = \sum_{i=1}^{m^2} x_i^2.$$

Mas note que, usando Cauchy-Schwarz de novo, temos que

$$\sum_{i \in C_m} x_i x_{i+1} \leq \langle \mathbf{x}, \mathbf{x}' \rangle
\leq |\langle \mathbf{x}, \mathbf{x}' \rangle|
\leq ||\mathbf{x}|| ||\mathbf{x}'||
= \sum_{i=1}^{m^2} x_i^2.$$
(1)

Vamos mostrar que pelo menos uma dessas desigualdades não pode ser igualdade. Em primeiro lugar, a última desigualdade vira igualdade apenas quando os dois vetores são linearmente dependentes, ou seja, existe um α de modo que $\mathbf{x} = \alpha \mathbf{x}'$. Assim, temos que, para valer a igualdade em todas as passagens, os vetores devem satisfazer

$$x_1 = \alpha x_{m^2} = \alpha(\alpha x_{m^2-1}) = \alpha^2 x_{m^2-1} = \dots = \alpha^{m^2} x_1.$$

Assim, temos que $x_1 = \alpha^{m^2} x_1$. Podemos ver, pela relação acima e pelo fato de que $\mathbf{x} \neq 0$, que $x_1 \neq 0$ pois isso implicaria que $\mathbf{x} = 0$. Dessa forma, temos que $\alpha^{m^2} = 1$. Assim, se m é impar, então $\alpha = 1$. Já se m é par, então $\alpha = \pm 1$. Agora, perceba que, se $\alpha = -1$ e usando que $x_i \neq 0$ para todo i, vale que

$$\sum_{i \in C_m} x_i x_{i+1} \le 0 < \sum_{i=1}^{m^2} x_i^2.$$

Já se $\alpha = 1$, temos que $x_1 = x_2 = \cdots = x_{m^2}$, logo

$$\langle \mathbf{x}, \mathbf{x}' \rangle = \alpha^2 x_{m^2 - 1} = \dots = \alpha^{m^2} x_1.$$

Assim, vamos mostrar que a primeira desigualdade de 1 não pode ser uma igualdade. Primeiro, como todos os valores são iguais, vamos tomar $x_1 = c$, assim temos que

$$\langle \mathbf{x}, \mathbf{x}' \rangle = m^2 c^2.$$

Por outro lado, temos que

$$\sum_{i \in C_m} x_i x_{i+1} = \sum_{i \in C_m} c^2$$

$$= \sum_{i=1}^{m^2} c^2 - \sum_{i=1}^{m} c^2$$

$$= (m^2 - m)c^2.$$

Dessa forma, fica claro que

$$\sum_{i \in C_m} x_i x_{i+1} < \sum_{i=1}^{m^2} x_i^2$$

e, consequentemente, temos que

$$2\sum_{i=1}^{m^2} x_i^2 > \sum_{i \in C_m} x_i x_{i+1} + \sum_{i=1}^{m^2 - m} x_i x_{i+m},$$

o que mostra que **A** é simétrica positiva-definida e, consequentemente, o método de Gauss-Seidel converge ao ser aplicado nessa matriz para qualquer que seja o $m \in \mathbb{N}$. Por tabela¹, também podemos concluir que, se $0 < \omega < 2$, então o método SOR também converge para qualquer vetor \mathbf{x}_0 .

Realizando os cálculos para $m \in \{10, 50, 1000, 5000\}$ e $\omega \in \{\omega^*, 1, 0.5\}$, onde

$$\omega^* = \frac{2}{1 + \sin\left(\frac{\pi}{m+1}\right)},$$

temos:

m	$/\omega$	ω^*	1	0.5
	10	27	103	334
	50	135	1867	5606
	100	276	5933	17805
	500	1384	6626	19796
1	000	2775	6623	19789
5	000	14033	6327	18956

Tabela 1: Iterações necessárias para que $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} < 10^{-6}$.

Já quanto a convergência, obtemos os seguintes resultados:

n	n / ω	ω^*	1	0.5
	10	5.82094e-07	9.42509 e-07	9.9007e-07
	50	9.96747e-07	9.9685 e - 07	9.98986e-07
	100	9.7226e-07	9.99982e-07	9.9983e-07
	500	9.7694e-07	9.99944e-07	9.99964e-07
	1000	9.96756 e - 07	9.99938e-07	9.99997e-07
	5000	9.9989e-07	9.99955e-07	9.99953e-07

Tabela 2: $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} < 10^{-6}$ para cada valor de m.

Uma ideia interessante é analisar como se dá a convergência dessa método. Para isso as Figuras 1 e 2 mostram o erro, na norma infinito, iteração a iteração para $\omega = \omega^*$ (azul), $\omega = 1$ (verde) e $\omega = 0.5$ (vermelho). As linhas verticais marcam o fim das iterações para o ω da respectiva cor.

Figura 1: Gráfico do Método SOR com diferentes valores de ω e m=500.

Figura 2: Gráfico do Método SOR com diferentes valores de ω e m=1000.

¹Resultado visto em aula.

Com a análise do gráfico podemos ver que, no início, ω^* atua mantendo o erro aproximadamente na mesma faixa, com pouca variação, mas conforme as iterações vão ocorrendo o erro vai diminuindo rapidamente, numa velocidade muito maior que para os demais valores de ω , o que faz com que a convergência se dê mais rapidamente. Outra coisa interessante é que o erro para $\omega=1$ e para $\omega=0.5$ decai como uma Lei de Potência (caracterizando uma reta na escala log-log).

Por fim, vale a pena comentar que as vezes a \mathcal{F} está solta e o x_0 acaba não auxiliando muito na convergência, como podemos ver com m = 5000 na Tabela 1. A Figura 3 apresenta o gráfico análogo aos das Figuras 1 e 2, mas com m = 5000.

Figura 3: Gráfico do Método SOR com diferentes valores de ω e m=500.

Note que, nesse caso, o ω^* não conseguiu atuar a tempo, com $\omega = 1$ convergindo primeiro.

Por fim, gostaria de comentar que não testei o caso $\omega=0$ por não faria sentido. As iterações do Método SOR atualizam a i-ésima coordenada de x de acordo com a expressão

$$x_i^{(k+1)} = -\omega \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} \cdot x_j^{(k+1)} - \omega \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} \cdot x_j^{(k)} + (1-\omega)x_i^{(k)} + \omega \frac{b_i}{a_{ii}},$$

mas se $\omega = 0$, então temos que a expressão se resume a

$$x_i^{(k+1)} = x_i^{(k)},$$

ou seja, $x^{(k)} = x_0 \forall k$. Entretanto, podemos ver que quanto maior é a diferença $|\omega^* - \omega|$ o Método SOR tende a levar mais iterações até a convergência (ou até o erro ser menor que a tolerância dada).