Engineering Statics - 01 Math Review Handout

1) Use the Pythagorean Theorem to determine the lengths of *CE* and *CB*

2) Use the tangent function to calculate $\angle CEF$

3) Use $\angle CEF$ just found and the sine rule to verify the length of CE found in 1) above.

4) Use the cosine function and the length of *CB* found earlier to calculate the angle between *BC* and the horizontal.

ABCD is a rigid (i.e., it does not deform) plate, pinned at C.

When horizontal force *P* is applied at *A*, *ABCD* rotates about *C* and *A* deflects 2.45 mm horizontally rightwards.

Assume that BF remains horizontal and that DE remains vertical.

- 11) Determine δ_{BF} , the change in length of BF.
- 12) Determine δ_{DE} , the change in length of DE.

14) Given that AC = 100 mm and AD = 65 mm, determine $\angle ACD$ and $\angle ABD$.

$$Q = \frac{CD^{2.63} \left(\frac{h_L}{L}\right)^{0.54}}{279000}$$

23) Solve the equation for h_L , then evaluate h_L using the values Q=135, C=120, D=202.7 and L=1200

$$0.36911x + 0.61633y = 2011.1$$

 $0.78748y - 0.92938x = 0$

24) and 25) Find the values of x and y

 $F_{BC} \sin 15^{\circ} + F_{AC} \cos 35^{\circ} + 1030.1 = 0$ $F_{BC} \cos 15^{\circ} + F_{AC} \sin 35^{\circ} = 0$

26) and 27) Determine F_{AC} and F_{BC}

