

Figur 1: Opgave 3.2.

3 Math101 opgaver til 3. gang

- 3.1 Lad $f(x) = 3x^2 + 2x + 1$. Bestem f(-1) og f(2).
- 3.2 Cirklen med ligning $x^2 + (y-1)^2 = 1$ er tegnet i Figur 1.
 - Findes en funktion $f \colon [-1,1] \to [0,2]$ så grafen for f svarer til cirklen i Figur 1?
 - Bestem en funktion $f_+: [-1,1] \to [1,2]$ så grafen for f_+ svarer til den øvre halvcirkel i Figur 1. (Hint: isoler y i cirklens ligning.)
 - Bestem en funktion $f_-: [-1,1] \to [0,1]$ så grafen for f_- svarer til den nedre halvcirkel i Figur 1.
- 3.3 Lad f(x) = 3x 2 og $g(x) = \frac{1}{3}x + \frac{2}{3}$. Bestem forskriften for $f \circ g$.
- 3.4 Bestem den størst mulige definitionsmængde for funktionerne:

$$f(x) = \frac{1}{1-x},$$
 $g(x) = \frac{1}{1-x^2},$ $h(x) = \sqrt{2x-3}.$

- 3.5 Lad f,g være givet ved $f(x)=\sqrt{x}$ og g(x)=1/(1+x) på domænet $(0,\infty)$. Udregn $(f\circ g)(1)$ og $(g\circ f)(1)$. Er $f\circ g=g\circ f$?
- 3.6 Bestem skæringspunktet mellem f(x) = 3x + 1 og g(x) = -x + 2.
- 3.7 Lad f(x) = 1 og g(x) = 2x + 3. Bestem $f \circ g$ og $g \circ f$.

Figur 2: Opgave 3.13.

3.8 Bestem den størst mulige definitionsmængde for funktionerne

$$f(x) = \frac{1}{(1+x^2)^{\frac{1}{2}}}, \quad g(x) = \frac{2}{x^2 - 4x + 3}, \quad h(x) = \sqrt{-x^2 + 2x}.$$

- 3.9 Bestem funktioner f og g så $(f \circ g)(x) = e^{2x^2 1}$.
- 3.10 Bestem alle skæringspunkter mellem $f(x) = x^2 + 4x + 4$ og g(x) = 2x + 3.
- 3.11 Bestem funktioner f, g og h så at $(f \circ g \circ h)(x) = \sin^2(3x)$. (Hint: $\sin^2(x) = (\sin(x))^2$.)
- 3.12 Lad $f(x)=3(\frac{1}{x-2})^2,\,g(x)=\frac{1}{x}$ og $h(x)=\sqrt{x}+2$ være funktioner på domænet $]2,\infty[.$ Bestem

$$f(g(x)), f(h(x)), h(g(x)), h(f(x)), g(f(h(x))).$$

- 3.13 Er kurven i Figur 2 grafen for en funktion?
- 3.14 Skitser grafen for en funktion som opfylder alle nedenstående puntker:
 - 3.14(a) har domæne [-1, 1],
 - 3.14(b) går gennem punkterne (-1,0) og (1,1),
 - 3.14(c) skærer y-aksen i -1,