

INTEGER RATIONAL HOMOMORPHISM

Why

Do the integer numbers correspond (in the sense *Homomorphisms*) to elements of the rationals.

Main Result

Indeed, roughly speaking the integers correspond to rationals whose denominator is 1. Denote by $\tilde{\mathbf{Q}}$ the set $\{[(a,b)] \in Q \mid b=1_{\mathbf{Z}}\}.$

Proposition 1. The rings $(\tilde{\mathbf{Q}}, +_{\mathbf{Q}} | \tilde{\mathbf{Q}}, \cdot_{\mathbf{Q}} | \tilde{\mathbf{Q}})$ and $(Z, +_{\mathbf{Z}}, \cdot_{Z})$ are homomorphic.¹

Proof. The function is $f: \mathbf{Z} \to \mathbf{Q}$ with $f(z) = [(z,1)]^2$

 $^{^{1}}$ Indeed, more is true and will be included in future editions. There is an *order perserving* ring homomorphism.

 $^{^{2}}$ The full account will appear in future editions.

