Assignment-II

Samit Kumar Pal, (phd2101121008)

September 16, 2021

September 16, 2021

1. **Q1**

Fiven, pixel size = 1024 x 26 1024 pixels.

Total dimenso CCD dimension = 2 cm x 2 cm.

each pixel grid dimension is =
$$\frac{2}{1024}$$
 cm x $\frac{1}{124}$ m

so, one pixel size = $\frac{1}{512}$ and $\frac{1}{512}$ m

Plate scale = $\frac{1}{f}$ = $\frac{206265}{f}$ x pixel size (mm)

= $\frac{206265}{f}$ x 20x10 = $\frac{4.1253}{f}$ m.

2. **Q2**

Now,
$$\frac{A_1}{S_1} = \frac{A_2}{S_2}$$
 $S_1 = \frac{1}{3600}$ $S_1 = \frac{1}{3600}$ $S_2 = \frac{1}{3600}$ $S_3 = \frac{1}{2000}$ $S_4 = \frac{1}{3600}$ $S_5 = \frac{1}{2000}$ $S_7 = \frac{1}{2000}$

3. **Q3**

g) given
$$f_L = 7.2$$
, $cop size = 24.6 \text{ mmx} 24.6 \text{ mm}.$

Plate scale = $\frac{206265''}{f_L \text{ (mm)}} = \frac{206265}{7.2 \times 10^3}$
 $= 28.64 \text{ ancsec/mm}.$

field of view = $\frac{135.3 \times 0}{f_L}$ (and min)

 $f_L \text{ in mm} = 7.2 \times 10^3 \text{ mm}.$

Field of view = $\frac{135.3 \times 24.6 \times 10^{55}}{7.2 \times 10^3} = 4.62 \times 10^5 \text{ ancwin}.$

4)
$$\sigma \rightarrow systematic noise, t = time dwardian $n = photon niate$

Photon Poission diramiliation of photon counter is given by, $p = (nt)^p e^{-nt}$
 \vdots $SNR = aignost No. of standard deviations, $R = \frac{nt}{\sqrt{nt+6a^2}}$
 $\Rightarrow R = \frac{(nt)^2}{\sqrt{nt+6a^2}}$
 $\Rightarrow R^nt + R^nG_a^n = t^n$
 $\Rightarrow R^nt + R^nT_n^n = t^n$
 $\Rightarrow R^nt + R^n$$$$

5. **Q5**

(a) **Q5a**

50)
$$r_s = r_{s+b} - r_b$$
 $r_s = r_{s+b} - r_b$
 $r_s = r_s + r_s$
 $r_s + r_s$

(b) **Q5b**

Manimizing $\frac{\gamma_s}{\sigma_{YS}}$ can be done by minimiting σ_{YS} Differentiating w.r.t. ts $\frac{r_s + r_b}{ts} + \frac{r_b}{T - ts}$ $2 \, \delta r_s \cdot \frac{d \, \delta r_s}{d ts} = -\frac{(r_s + r_b)}{ts} + \frac{r_b}{(T - ts)^2}$ Now, $\frac{d\delta rs}{dts} = 0 \Rightarrow \frac{r_s + r_s}{t_s^2} = \frac{r_s}{(T-t_s)^2}$ => 45 (86 = (5-45) => ts (\(\tau_b + \(\tau_{s+8_b} \) = \(\tau_{s+8_b} \) (T) => = = = \\ \text{\tint{\text{\tint{\text{\tint{\tint{\tint{\tint{\text{\text{\text{\text{\tint{\text{\text{\tint{\tint{\text{\text{\text{\text{\text{\text{\tint{\tint{\tint{\tint{\tint{\tint{\tint{\text{\text{\text{\ti}\tint{\texi\tint{\tint{\tint{\tert{\texit{\texi\tint{\tint{\tint{\tint{\tii}\tint{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\tirr{\ti}

(c) **Q5c**

$$\frac{50}{50}$$

$$\frac{45}{5} = \frac{1}{0.707+1} \Rightarrow \frac{1}{45} = \frac{1}{1.707}$$

$$\frac{45}{5} = \frac{1}{0.707+1} \Rightarrow \frac{1}{45} = \frac{1}{1.707}$$

$$\frac{45}{5} = \frac{1}{1.707}$$

$$\frac{4$$