Lenguajes Formales, Autómatas y Computabilidad

Clase Teórica Autómatas Finitos

Primer cuatrimestre 2025

Bibliografía

Capítulo 2, Introduction to Automata Theory, Languages and Computation, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Jerarquía de Autómatas y los lenguajes que aceptan

Alfabetos y Lenguaje

Un alfabeto es un conjunto finito, no vacío, de símbolos.

Consideramos la concatenación de símbolos.

Una palabra sobre el alfabeto Σ es la concatenación de los elementos de una secuencia finita de símbolos. También la llamamos cadena o string.

La palabra nula λ . No tiene símbolos.

Ejemplos: Estas son algunas palabras sobre $\Sigma = \{a, j, r\}$, λ , a, j, r, aa, aj, ar, ja, jj, aaj, rja, raja, jarra, etc.

El conjunto de todas las palabras sobre un alfabeto

Dado alfabeto Σ , escribimos:

$$\begin{array}{l} \Sigma^0 = \{\lambda\} \\ \Sigma^1 = \Sigma \\ \Sigma^2 = \Sigma\Sigma = \{ab: a \in \Sigma, b \in \Sigma\} \\ \Sigma^3 = \Sigma\Sigma\Sigma = \{abc: a \in \Sigma, b \in \Sigma, c \in \Sigma\} \\ \dots \end{array}$$

La clausura de Kleene del alfabeto Σ

$$\Sigma^* = \bigcup_{i > 0} \Sigma^i$$

La clasura positiva del alfabeto Σ ,

$$\Sigma^+ = \bigcup_{i > 1} \Sigma^i$$

Ejemplos:

Supongamos
$$\Sigma = \{a, b\}$$
. Entonces $\Sigma^2 = \{aa, ab, ba, bb\}$, $\Sigma^3 = \{aaa, aab, aba, abb, baa, bab, bba, bbb\}$, . . .

 Σ^* es el conjunto de todas las palabras sobre el alfabeto Sigma, de todas las longitudes, $0,1,2,\ldots$

El conjunto de todas las plabras sobre un alfabeto

¿Cuál es la cardinalidad del conjunto Σ^i ?

El conjunto Σ tiene $|\Sigma|$ elementos.

Para cada $i \geq 0$, Σ^i tiene $|\Sigma|^i$ palabras.

El conjunto Σ^{\ast} tiene una cantidad infinita numerable de palabras.

Hay tantas palabras como números naturales

Teorema

 $|\Sigma^*|$ es igual al la cardinalidad de \mathbb{N} .

Un orden entre pares de elementos es una relación antisimétrica y transitiva.

Definición (Orden longitud-lexicográfico en Σ^*)

Definimos el orden $\prec \subset \Sigma^* \times \Sigma^*$:

Asumimos un orden lexicográfico entre los elementos del alfabeto. Lo extendemos a un lexicográfico entre todas las palabras de la misma longitud. Y ahora lo extendemos a un orden total de todas las palabras: Las palabras de menor longitud son menores que las de mayor longitud.

Por ejemplo para $\Sigma = \{a,b,c\}$,

$$\lambda \prec a \prec b \prec c \prec aa \prec ab \prec ac \prec ba \prec bb \prec bc \prec ca \prec cb \prec cc \prec aaa \prec aab \prec aac \prec aba \prec \dots$$

Demostración del Teorema.

Definimos una biyección $f: \mathbb{N} \to \Sigma^*$, f(i) = la i-ésima palabra en el orden \prec longitud lexicografico sobre Σ^* .

Lenguaje sobre un alfabeto

```
Un lenguaje L sobre un alfabeto \Sigma es un conjunto de palabras sobre \Sigma. Es decir, L\subseteq \Sigma^*.
```

Ejemplos:

```
Ø
```

 $\{\lambda\}$ (notar que es distinto de \emptyset)

 $\{0,01,011,0111,01111,\dots\}$, es un lenguaje sobre $\Sigma=\{0,1\}$.

¿Cuántos lenguajes hay?

Definición

Si A es un conjunto, $\mathcal{P}(A)$ es el conjunto de todos los subconjuntos de A, $\mathcal{P}(A) = \{B \subset A\}$.

Si A es un conjunto finito $\mathcal{P}(A) = 2^{|A|}$.

Ejemplo:
$$A = \{a,b,c\}$$
 y $\mathcal{P}(A) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$ y $|\mathcal{P}(A)| = 2^3$.

La cantidad de lenguajes es no numerable

El conjunto de todos los lenguajes sobre alfabeto Σ es .

$$\mathcal{P}(\Sigma^*) = \{ L \subseteq \Sigma^* \}$$

Teorema

$$|\Sigma^*| < |\mathcal{P}(\Sigma^*)|.$$

Demostración.

Supongamos que $\mathcal{P}(\Sigma^*)$ es numerable y supongamos el orden longitud y lexicográfico en cada L_i ,

$$L_1: [w_{1,1}], w_{1,2}, w_{1,3}, w_{1,4}, w_{1,5} \dots$$

$$L_2: \overline{w_{2,1}, \lceil w_{2,2} \rceil}, w_{2,3}, \dots$$

$$L_3: w_{3,1}, \overline{w_{3,2}, w_{3,3}}, \dots$$

Sea $L = \{u_1, u_2, \ldots\}$ donde $|u_1| < |u_2| < \ldots$ y para todo $i, w_{i,i} < u_i$. Entonces L no puede ser ninguno de los L_i , porque para todo $i, w_{i,i} < u_i$. Por lo tanto, $|\Sigma^*| < |\mathcal{P}(\Sigma^*)|$.

Definición (autómata finito determinístico (AFD))

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ el alfabeto de entrada
- $lackbox{\delta}:Q imes\Sigma o Q$ es la función de transición
- $ightharpoonup q_0 \in Q$ es el estado inicial
- ▶ $F \subseteq Q$ es el conjunto de estados finales

Definición (función de transición generalizada $\widehat{\delta}$)

Definimos $\widehat{\delta}: Q \times \Sigma^* \to Q$,

- $\blacktriangleright \ \widehat{\delta} (q, \lambda) = q$
- $\blacktriangleright \ \widehat{\delta}\left(q,xa\right)=\delta\left(\widehat{\delta}\left(q,x\right),a\right)\text{, con }x\in\Sigma^{*}\text{ y }a\in\Sigma.$

Notar que $\widehat{\delta}\left(q,a\right)=\delta\left(\widehat{\delta}\left(q,\lambda\right),a\right)=\delta\left(q,a\right).$

Definición (lenguaje aceptado por un AFD)

El lenguaje aceptado por un AFD $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, al que denotamos $\mathcal{L}\left(M\right)$, es el conjunto de palabras de Σ^* aceptadas por M,

$$\mathcal{L}\left(M\right) = \left\{x \in \Sigma^* : \widehat{\delta}\left(q_0, x\right) \in F\right\}.$$

Veremos a los autómatas finitos como funciones tales que para cada palabra dan un valor booleano: aceptación o no aceptación,

$$M: \Sigma^* \to \{0, 1\}$$

Autómata finito no determinístico

Definición (autómata finito no determinístico (AFND))

Es una 5-upla $\langle Q, \Sigma, \delta, q_0, F \rangle$ donde

- Q es un conjunto finito de estados
- $ightharpoonup \Sigma$ el alfabeto de entrada
- $ightharpoonup q_0 \in Q$ es el estado inicial
- $F \subseteq Q$ es el conjunto de estados finales

Definición (función de transición generalizada $\widehat{\delta}$)

Definimos $\widehat{\delta}: Q \times \Sigma^* \to \mathcal{P}(Q)$,

- $\widehat{\delta}(q,\lambda) = \{q\}$
- $\widehat{\delta}\left(q,xa\right) = \left\{p \in Q : \exists r \in \widehat{\delta}\left(q,x\right) \ \ \text{y} \ p \in \delta\left(r,a\right)\right\},$ $\operatorname{con} x \in \Sigma^{*} \ \ \text{y} \ a \in \Sigma.$

Notar que

$$\begin{split} \widehat{\delta}\left(q,\lambda a\right) &= \left\{p \in Q : \exists r \in \widehat{\delta}\left(q,\lambda\right) \text{ y } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q : \exists r \in \left\{q\right\} \text{ y } p \in \delta\left(r,a\right)\right\} \\ &= \left\{p \in Q : p \in \delta\left(q,a\right)\right\} \\ &= \delta\left(q,a\right). \end{split}$$

Definición (lenguaje aceptado por un AFND)

El lenguaje aceptado por AFND $M=\langle Q,\Sigma,\delta,q_0,F\rangle$, al que denotamos $\mathcal{L}\left(M\right)$, es el conjunto de palabras de Σ^* aceptadas por M,

$$\mathcal{L}(M) = \left\{ x \in \Sigma^* : \widehat{\delta}(q_0, x) \cap F \neq \phi \right\}.$$

Podemos extender la función de transición aún más, haciendo que mapee conjuntos de estados y palabras en conjuntos de estados.

Definición (función de transición de conjuntos de estados)

Función de transición δ -extendida : $\mathcal{P}\left(Q\right) \times \Sigma \to \mathcal{P}\left(Q\right)$,

$$\delta$$
-extendida $(P, a) = \bigcup_{q \in P} \delta(q, a)$.

Y definimos $\widehat{\delta}$ -extendida : $\mathcal{P}\left(Q\right) \times \Sigma^* \to \mathcal{P}\left(Q\right)$,

$$\widehat{\delta}\text{-extendida}\left(P,x\right) = \bigcup_{q \in P} \widehat{\delta}\left(q,x\right).$$

Es trivial ver que, para todo AFD existe un AFND equivalente. Lo que no es tan obvio es que lo recíproco también es cierto: para cada AFND existe un AFD equivalente.

Teorema (Equivalencia entre AFND y AFD (Rabin & Scott, 1959))

Dado un AFND $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, existe un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que $\mathcal{L}(M) = \mathcal{L}(M')$.

Demostración del teorema

Dado AFND
$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$
 donde $\delta: Q \times \Sigma \to \mathcal{P}(Q)$, y su extensión es δ -extendida : $\mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$, construimos un AFD $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$, con $\delta: Q' \times \Sigma \to Q'$, $Q' = \mathcal{P}(Q)$
$$\delta' = \delta\text{-extendida}$$

$$q'_0 = \{q_0\}$$

$$F' = \{P \in Q': P \cap F \neq \emptyset\}$$

Debemos probar que $\mathcal{L}\left(M'\right)=\mathcal{L}\left(M\right)$.

Por definición AFD M', $x \in \mathcal{L}\left(M'\right)$ si y solo si $\widehat{\delta}'\left(q_0',x\right) \in F'$, donde $F' = \{P \in Q': P \cap F \neq \emptyset\}$

Y por definición de AFND M, $x \in \mathcal{L}(M)$ si y solo si $\widehat{\delta}(q_0, x) \cap F \neq \emptyset$.

Demostremos que para toda palabra $x\in \Sigma^*$, $\widehat{\delta}'\left(q_0',x\right)=\widehat{\delta}\left(q_0,x\right)$, por inducción en la estructura de la palabra x.

Escribimos |x| para la longitud de la palabra x.

Caso Base: $x=\lambda$, es decir |x|=0. Por definición de $\widehat{\delta}'$ y $\widehat{\delta}$, $\widehat{\delta}'(q_0',\lambda)=\{q_0\}$ y $\widehat{\delta}(q_0,\lambda)=\{q_0\}$, por lo que $\widehat{\delta}'(q_0',\lambda)=\{q_0\}$ si y solo si $\widehat{\delta}(q_0,\lambda)=\{q_0\}$.

Caso inductivo

HI: suponemos que vale para x tal que |x|=n, es decir suponemos $\widehat{\delta}'\left(q_0',x\right)=R$ si y solo si $\widehat{\delta}\left(q_0,x\right)=R$.

Veamos que vale para xa, con $a \in \Sigma$.

$$\widehat{\delta}'(q'_0, xa) = \delta'(\widehat{\delta}'(q'_0, x), a) = R$$

si y solo si

(por definición de
$$\widehat{\delta}'$$
 en AFD M')

$$\exists P, \widehat{\delta}'\left(q_0', x\right) = P \text{ y } \delta'\left(P, a\right) = R$$

si y solo si

(por HI y por definición de
$$\widehat{\delta}$$
 y δ -extendida en AFND M)
$$\exists P, \widehat{\delta} \, (q_0, x) = P \text{ y } \delta\text{-extendida} \, (P, a) = R$$

si y solo si

por def
$$\widehat{\delta}$$
 y δ -extendida en AFND M ,
$$\widehat{\delta}(q_0,xa) = \delta$$
-extendida $(\delta(q_0,x),a) = R$.

Concluimos, $\delta'\left(q_0',xa\right)=R$ si y solo si $\delta\left(q_0,xa\right)=R$.

Ejercicios

- 1. Dado un AFD $M=\langle Q, \Sigma, \delta, q_0, F \rangle$, y sea a in símbolo de Σ . Construir otro AFD M' que acepte el lenguaje $L=\{ax\in \Sigma^*: x\in \mathcal{L}(M)\}$.
- 2. Indicar Verdadero o Falso y justificar Si $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ es un AFD entonces reconoce al menos |Q| palabras
 - distintas, es decir $\#\mathcal{L}(M) \geq |Q|$.
 - Si $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ es AFND entonces todas las palabras de $\mathcal{L}(M)$ tienen longitud menor or igual que $|Q|^2$.
 - 3. ¿Cuántos AFD hay con |Q|=2 y $|\Sigma|=3$?
- 4. ¿qué pasa si revierto todas las flechas de un AFD ?
- 5. ¿qué pasa si invierto estados finales con no finales de un AFND?