Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

20 ottobre 2022

Grafi di assemblaggio

Tecnologie

Porzioni di genoma chiamate rend

- Porzioni di genoma chiamate read
- 50–10000bp (base pairs)

- Porzioni di genoma chiamate
- 50–10000bp (base pairs)
- spesso in coppie (mate pairs)

- Porzioni di genoma chiamate read
- 50–10000bp (base pairs)
- spesso in coppie (mate pairs)
- posizione originaria ignota

Tecnologie

- Porzioni di genoma chiamate read
- 50–10000bp (base pairs)
- spesso in coppie (mate pairs)
- posizione originaria ignota

Obiettive

Ricostruire il genoma: circa 3 miliardi bp

Evoluzione tecnologica

Mate pairs

Regola 1

Suffisso di una read può essere prefisso di un'altra read: overlap

Overlap — sovrapposizione	
TCTATATCTCGGCTCTAGG	Read 1
TATCTCGACTCTAGGCCC	Read 2

Errore oppure organismi diploidi

Regola 1

Suffisso di una read può essere prefisso di un'altra read: overlap

Overlap — sovrapposizione

TCTATATCTCGGCTCTAGG Read 1

TATCTCGACTCTAGGCCC Read 2

Probabile motivo

TCTATATCTCGGCTCTAGG Read 1

GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT True genome

TATCTCG CTCTAGGCCC Read 2

Errore oppure organismi diploidi

Grafo di overlap

Arco fra tutte le coppie di read con overlap abbastanza lungo

Grafo di overlap

ACGTGTG

CGTGTGC

GTGCCA

CCACG

Arco fra tutte le coppie di read con overlap abbastanza lungo

String Graph

Si rimuovono gli archi transitivi dal grafo di overlap

String Graph

Read

ACGTGTG

CGTGTGC

GTGCCA

CCACG

Si rimuovono gli archi transitivi dal grafo di overlap

Istanza

Insieme $S = \{s_1, ..., s_n\}$ di stringhe

T è il genoma assemblato, $\overline{\mathcal{S}}$ le read

Istanza

Insieme $S = \{s_1, ..., s_n\}$ di stringhe

Soluzioni ammissibili

Superstring T di S. Ogni s_i è sottostringa di T

T è il genoma assemblato, ${\cal S}$ le read

Istanza

Insieme $S = \{s_1, ..., s_n\}$ di stringhe

Soluzioni ammissibili

Superstring T di \mathcal{S} . Ogni s_i è sottostringa di T

Funzione obiettivo

|T|

T è il genoma assemblato, ${\cal S}$ le read

Istanza

Insieme $S = \{s_1, ..., s_n\}$ di stringhe

Soluzioni ammissibili

Superstring T di \mathcal{S} . Ogni s_i è sottostringa di T

Funzione obiettivo

 $|\mathsf{T}|$

T è il genoma assemblato, ${\cal S}$ le read

Problema

Regioni ripetute

Algoritmo ingordo

Algoritme

Algoritmo ingordo

Algoritmo

1 Fondere le due stringhe con massimo overlap

Algoritmo ingordo

Algoritmo

- 1 Fondere le due stringhe con massimo overlap
- 2 Finchè non rimane una stringa sola

ng_lon_long_a_long_long_ti ong_lo long_t g_long g_time ng_tim

- ng_lon_long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- 3 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- _a ng_time long_ti g_long_ ng_lon a_long long_l ong_lo

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- 3 ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l
- long_lon long_time g_long_ a_long

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l
- 7 long_lon long_time g_long_ a_long
- 8 long_lon g_long_time a_long

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l
- long_lon long_time g_long_ a_long
- 8 long_lon g_long_time a_long
- long_long_time a_long

- ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long g_time ng_tim
- 2 ng_time ng_lon _long_ a_long long_l ong_ti ong_lo long_t g_long
- ng_time g_long_ ng_lon a_long long_l ong_ti ong_lo long_t
- 4 ng_time long_ti g_long_ ng_lon a_long long_l ong_lo
- 5 ng_time ong_lon long_ti g_long_ a_long long_l
- 6 ong_lon long_time g_long_ a_long long_l
- long_lon long_time g_long_ a_long
- 8 long_lon g_long_time a_long
- long_long_time a_long
- 10 a_long_long_time

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

 Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza

Problema del commesso viaggiatore (TSP)

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

- Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza
- Il costo è il peso totale di tutti gli archi attraversati

Problema del commesso viaggiatore (TSP)

Istanza

Grafo orientato $G = \langle V, A \rangle$, con archi pesati $w : A \mapsto \mathbb{Q}^+$

Soluzioni ammissibili

Permutazione $\Pi = \langle \pi_1, \dots, \pi_n \rangle$ of V

Funzione obiettivo

$$w(\pi_n, \pi_1) + \sum_{i=1}^n w(\pi_i, \pi_{i+1})$$

- Una soluzione è un percorso che tocca ogni città esattamente una volta e torna al punto di partenza
- Il costo è il peso totale di tutti gli archi attraversati
- NP-completo

Similarità

1 read = 1 città

Similarità

1 read = 1 città

Differenze

Similarità

1 read = 1 città

Differenze

assemblaggio ≠ ciclo

Similarità

1 read = 1 città

Differenze

- assemblaggio ≠ ciclo
- lunghezza stringa ≠ costo percorso TSP

Similarità

1 read = 1 città

Differenze

- assemblaggio ≠ ciclo
- lunghezza stringa ≠ costo percorso TSP

Grafo di overlap — TSP

Grafo di overlap — TSP


```
Passi
```

Passi

1 Overlap: calcolare le sovrapposizioni e costruire il grafo. Usare suffix array (esatto) o programmazione dinamica (errori).

Passi

- 1 Overlap: calcolare le sovrapposizioni e costruire il grafo. Usare suffix array (esatto) o programmazione dinamica (errori).
- 2 Layout: Fondere i cammini per ottenere i cantigs. Le ripetizioni (branching nodes) vengono rimosse.

Passi

- 1 Overlap: calcolare le sovrapposizioni e costruire il grafo. Usare suffix array (esatto) o programmazione dinamica (errori).
- 2 Layout: Fondere i cammini per ottenere i cantigs. Le ripetizioni (branching nodes) vengono rimosse.
- 3 Consensus: calcola i nucleotidi

Reverse and complement

Non si conosce lo strand

Reverse and complement

- Non si conosce lo strand
- Versione canonica (minima fra x e revcomp(x)

Reverse and complement

- Non si conosce lo strand
- Versione canonica (minima fra x e revcomp(x)
- complica il calcolo degli overlap

DNA array

Gianluca Della Vedova

DNA array

Tecnologia vecchia

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

1 Ogni k-mero viene diviso in (k − 1)-meri

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

- 1 Ogni k-mero viene diviso in (k-1)-meri
- 2 Un vertice per ogni (k − 1)-mero

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

- 1 Ogni k-mero viene diviso in (k-1)-meri
- 2 Un vertice per ogni (k − 1)-mero
- 3 Un arco per ogni k-mero

DNA array

- Tecnologia vecchia
- Per ogni k-mero, si conosce se appare nel genoma
- $k \approx 8$

Procedura

- 1 Ogni k-mero viene diviso in (k-1)-meri
- 2 Un vertice per ogni (k − 1)-mero
- 3 Un arco per ogni k-mero

Adesso

Stessa procedura, a partire dai read

Ciclo Euleriano

Ciclo Euleriano

1 Un assemblaggio valido è un cammino che attraversa ogni arco esattamente una volta

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni anto esattamente una volta
- **2** Cammino Euleriano

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni anto esattamente una volta
- **2** Cammino Euleriano

Ciclo Hamiltoniano

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni anto esattamente una volta
- **2** Cammino Euleriano

Ciclo Hamiltoniano

1 É un cammino che attraversa ogni vertice esattamente una volta

Problemi su grafi

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni anto esattamente una volta
- **2** Cammino Euleriano

Ciclo Hamiltoniano

- 1 É un cammino che attraversa ogni vertice esattamente una volta
- 2 Caso particolare di TSP

Problemi su grafi

Ciclo Euleriano

- 1 Un assemblaggio valido è un cammino che attraversa ogni anto esattamente una volta
- **2** Cammino Euleriano

Ciclo Hamiltonianc

- 1 É un cammino che attraversa ogni vertice esattamente una volta
- Caso particolare di TSP

Confronte

Qual è più difficile da risolvere?

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è semi-euleriano se esistono due vertici s, t tali che $N_G^-(s) = N_G^+(s) + 1$, $N_G^-(t) = N_G^+(t) - 1$, mentre per ogni altro vertice w, $N_G^-(w) = N_G^+(w)$.

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è semi-euleriano se esistono due vertici s, t tali che $N_G^-(s) = N_G^+(s) + 1$, $N_G^-(t) = N_G^+(t) - 1$, mentre per ogni altro vertice w, $N_G^-(w) = N_G^+(w)$.

Definizione

Sia $G = \langle V, A \rangle$ un grafo orientato. G è euleriano se $N_G^-(w) = N_G^+(w)$. per ogni vertice.

Definizione

Sia G = $\langle V, A \rangle$ un grafo orientato. G è semi-euleriano se esistono due vertici s, t tali che $N_G^-(s) = N_G^+(s) + 1$, $N_G^-(t) = N_G^+(t) - 1$, mentre per ogni altro vertice w, $N_G^-(w) = N_G^+(w)$.

Definizione

Sia G = $\langle V, A \rangle$ un grafo orientato. G è euleriano se $N_G^-(w) = N_G^+(w)$. per ogni vertice.

Teorema

Un grafo connesso $G = \langle V, A \rangle$ ha un cammino euleriano se e solo se G è semi-euleriano. G ha un ciclo euleriano se e solo se G è euleriano.

Teorema

Sia $G = \langle V, A \rangle$ un grafo semi-euleriano e sia P un cammino da s a t. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di P. Allora G_1 è euleriano.

Teorema

Sia $G = \langle V, A \rangle$ un grafo semi-euleriano e sia P un cammino da s a t. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di P. Allora G_1 è euleriano.

Teorema

Sia $G = \langle V, A \rangle$ un grafo euleriano e sia C un ciclo di G. Sia G_1 il grafo ottenuto da G togliendo tutti gli archi di C. Allora G_1 è euleriano.

Ridurre il grafo di overlap

Caso senza errori

Ridurre il grafo di overlap

Caso senza errori

Osservazione 1

G grafo di overlap con $(a \to b_1)$ unico arco irriducibile uscente da a, e $(a,b_1),\ldots,(a,b_n)$ archi uscenti da a. Allora $(b_i \to b_{i+1})$ con $1 \le i \le n-1$ sono archi di G.

Ridurre il grafo di overlap

Caso senza errori

Osservazione 1

G grafo di overlap con $(a \to b_1)$ unico arco irriducibile uscente da a, e $(a,b_1),\ldots,(a,b_n)$ archi uscenti da a. Allora $(b_i \to b_{i+1})$ con $1 \le i \le n-1$ sono archi di G.

Osservazione 2

G grafo di overlap con $(a \to b_1)$ unico arco irriducibile uscente da a, e $(a,b_1),\ldots,(a,b_n)$ archi uscenti da a. Allora $(b_1 \to b_i)$ con $2 \le i \le n-1$ sono archi di G.

Ridurre il grafo di overlap — algoritmo

1 b_i ordinati per lunghezza dell'arco

Ridurre il grafo di overlap — algoritmo

- 1 b_i ordinati per lunghezza dell'arco
- 2 Marcare "da eliminare" i vertici b_j tale che $(b_i \rightarrow b_j)$ con i < j

Ridurre il grafo di overlap — algoritmo

- 1 b_i ordinati per lunghezza dell'arco
- 2 Marcare "da eliminare" i vertici b_j tale che $(b_i \rightarrow b_j)$ con i < j
- 3 Rimuovere gli archi che terminano in vertici da eliminare

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

Attribuzione — Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.