PR

Discrete Mathematics

Short question

State the conditions for a relation to be a partial order.

[3 marks]

A partition of a natural number n is a collection of natural numbers (possibly including duplicates and in any order) whose sum is n. Let P_n be the set of partitions of n; for example, $P_4 = \{(4), (3,1), (2,2), (2,1,1), (1,1,1,1)\}$. Order the partitions in P_n as follows: $(a_1, a_2, \dots a_r) \le (b_1, b_2, \dots b_s)$ if the (a_i) and (b_i) can be rearranged so that $b_1 = a_1 + a_2 + \dots a_{k1}$, $b_2 = a_{k1+1} + a_{k1+2} + \dots + a_{k2}$, $b_3 = a_{km+1} + a_{km+2} + \dots + a_r$. So $(2,1,1) \le (3,1)$, but (3,1) and (2,2) can not be compared.

Show that \leq is a partial order on P_n .

[4 marks]

Draw the Hasse diagram for (P_5, \leq) .

[3 marks]

Answer

Reflexive, anti-symmetric and transitive.

Reflexive: $k_i = i$. Anti-symmetric: two partitions must have same number of elements so only one term in each sum. Transitive: substitute one decomposition into the other.

