

Capstone Project - 3 Credit Card Default Prediction

By: Akmal Jah Quamri

Scope of Work

Problem Description

 Aim of the project is to build a predictive model that will predict the credit default risk

Tool Used

- Pandas
- NumPy
- Matplotlib
- Seaborn
- Scikit-Learn

Problem Statements

- Supervised Learning / Binary Classification
- Imbalance target variables
- Build Machine Learning model to predict
- Identifying the model performance
- Finding the models most explained features

Approach

Data Exploration

- Exploring dataset
- Finding trends
- Processing dataset
- Visual Representation of key findings

Model Building

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- XGBoost Classifier

Model Evaluation

- Comparing Models
- Classification Report
- ROC AUC Curve
- Confusion Metrics

Part 1

Exploratory Data Analysis

 Finding the factor that impacting on default credit risk

Age Group — Default Risk

 Older people will tend to fall more in default category

Age bin: 21, 40, 60, 79

Limit Balance – Default Risk

- The lower the limit the higher the chances of being default
- With highest limit no default is recorded

Limit balance bin: 10000, 257500, 505000, 752500, 1000000

Education—Default Risk

- Education1 Graduate school
- Education 2 University
- Education 3 High school
- Education 4 others

If we see the ration of being default among all these education then, we can realize that the higher the education the lower the rate of being default.

Gender – Default Risk

- Sex 1 Male
- Sex 2 Female

From above graph we can say that male has higher chances of being default compared to female.

Part 2

Building Predictive Model

 Finding the best performing model with respect to precision and recall

Modelling Steps

Feature Engineering

- Splitting dataset into dependent and independent variables
- Train Test split
- Standardization Scaling
- Handling Imbalance

Model Training

- Building Model
- Finding best hyperparameter using grid search, random search
- Training Model and predicting on test data

Model Evaluation

- Checking accuracy
- Classification Report of precision, recall
- Roc Auc Curve
- Confusion Metrics

Data Pre-processing

Independent and Target variables Defined a variable X and stored all independent features and stored target feature in variable y.

Train Test Split

Split the dataset into two part for training with 80 percent rows and for testing with 20 percent datapoints.

Scaling

Used scikit learn standard scaler to scale our dataset. Scaling become more important when we have different units of numerical data.

Imbalance

Our target variable is binary class and there is a huge difference between majority and minority class. To balance the class I used oversampling technique to create synthetic data points for minority class.

Modelling with Performance

Logistic Regression

Accuracy	0.74
Precision	0.75
Recall	0.72

Decision Tree

Accuracy	0.73
Precision	0.76
Recall	0.68

Random Forest

Accuracy	0.79
Precision	0.81
Recall	0.74

XGBoost

Accuracy	0.80
Precision	0.83
Recall	0.77

Model Evaluation – AUC ROC Curve

With the help of this roc_auc plot it is clear that XGBoost classifier is scoring best with 0.88 points.

AUC - ROC curve is a performance measurement for the classification problems at various threshold settings. ROC is a probability curve and AUC represents the degree or measure of separability. It tells how much the model is capable of distinguishing between classes

Model Evaluation – Confusion Metrix

Logistic Regression

True Negative	5223
False Positive	1756
False Negative	1994
True Positive	5219

Decision Tree Classifier

True Negative	5481
False Positive	1498
False Negative	2337
True Positive	4876

Model Evaluation – Confusion Metrix (contd.)

Random Forest Classifier

True Negative	5708
False Positive	1271
False Negative	1889
True Positive	5324

XGBoost Classifier

True Negative	5817
False Positive	1162
False Negative	1648
True Positive	5565

Feature Importance

Random Forest Classifier Feature Importance

Random Forest feature importance:

- PAY_0
- PAY 2
- PAY 3
- PAY AMT1
- SEX
- EDUCATION
- MASSIAGE

Feature Importance

XGBoost Classifier Feature Importance

XGBoost feature importance:

- LIMIT_BAL
- PAY 0
- BILL_AMT1
- PAY_AMT1
- PAY_AMT2
- PAY_AMT3

Conclusions:

EDA

- The lower the limit the higher the chances for being default
- With highest limit no default is recorded
- Older people will tend to fall more in default category
- Male has higher chances of being default compared to female.
- Higher educated persons have less rate to be default whereas lower educated will maximum chances to be default.

Modelling

- XGBoost classifier is performing great with roc_auc score 0.88, whereas randomforest is second highest with 0.85 score, and decision tree classifier is with least score of 0.80.
- From the above reports we can see that xgboost is giving good accuracy precision and recall as well.
 In all way xgboost is performing well. Since our aim highly interested in finding positive class so we will lean towards recall in this case and XGboost is giving high recall values.
- We will go ahead and deploy XGBoost model with handling class imbalanced

Thank you

Submit to: ALMA BETTER

References:

- Scikit-learn https://scikit-learn.org/stable/auto-examples/ensemble/plot-forest-importances.html
- Analytics Vidya - https://www.analyticsvidhya.com/blog/2021/06/tune-hyperparameters with-gridsearchcv/
- Machine Learning Mastery https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/
- Stack overflow - https://stackoverflow.com/questions/40081888/xgboost-plot importance-figure-size