The Application of Clustering Analysis in the Assessment of Eye Movements during Flight Training Intervention

Capstone Project

Prepared by: Nima Ahmadi

Major goals of a training intervention:

 Novice pilots and experts pilots apply different scanning pattern

- Experts have structure scanning pattern,
- Novice, on the other end, have random scanning pattern

How improve pilots scanning pattern

 Pilots could be trained on tactical scanning using an eye tracking technology and a flight simulator

There are some metrics to compare novices scanning pattern with experts, but ...

Analysis of eye movements data is a time-consuming task

In automatic mapping process by software is not enough accurate, so manual mapping is a must!

What could be done?

Focusing on gaze points rather than fixation points

- Gaze points are raw data before mapping on Areas of Interests (AOIs)
- Fixation point provides insight on people look points using Areas of Interests (AOIs).

So, maybe gaze points could shed light on peoples eye movements.

Methodology

Participants

Twenty **novice pilots** are selected from student pilots with no IFR training.

- Pilots were divided into experimental and control group.
 - Three pilots of experimental group and three pilots from control group did the experiment, in addition to one expert pilots

Eye Tracker

> Tobii Pro Glasses 2 is a lightweight, head-mou

> Sampling Frequency

60 Hz

Eye tracker collects eye movements data such as gaze point, fixation point, fixation duration & ...

Flight simulator

- > **Software:** X-Plane 11
- ➤ **Hardware:** simulator frame and seat, simulator controls
- Sampling Frequency60 Hz

Flight simulator collects flight data such as altitude, airspeed, heading & ...

Data Analysis

Procedure for Data Collection

Eye movement Metrics

► Shannon Entropy

$$H(X) = -\sum_{i=1}^{N} P(x_i) \log_2 P(x_i)$$

- It is a metric that indict to visual search.
- The unit is bit.
- Higher value shows the tendency of participants:

- to look at various objects
- o to the randomness of scanning pattern
- Lower value indicate the fact participants narrowed visual attentions &

had a more structured scanning pattern

Eye movement Metrics

► Shannon Entropy

$$H(X) = -\sum_{i=1}^{N} P(x_i) \log_2 P(x_i)$$

- How compute it?
 - First, constructing of eye movements transition matric
 - Then, computing probability of each transition
 - Finally, calculating visual entropy using Shannon Entropy equation.

Flight Environment

► Flight environment were divided into 11 AOIs

Flight Environment and Visual Entropy

Structured scanning pattern

Entropy: 3.15 bits

Random scanning pattern

Entropy: 4.75 bits

How pilots were selected from research group?

Clustering analysis on gaze points

Expert pilot

Clustering analysis on gaze points

Pilots from experimental group

Clustering analysis on gaze points

Pilots from control group

Statistical analysis

- Null hypothesis (H0): the mean of number of clusters of novice pilots does not differ from trained pilots or expert pilot
- Alternative Hypothesis (H1): the mean of number of clusters of novice pilots does differ from trained pilots or expert pilot
- Two tailed T-test
- Confidence Level = 95%

Obtained P-value: 0.097

Result: Reject H0

- Clustering analysis could be used to distinguish very bad pilots from good pilots
- Sample size should be increased to draw solid conclusion
- The finding could be used to establish a threshold for in flight visual entropy.
- Pilots should apply active scanning pattern in order to avoid:
 - Divided attention
 - Tunnel visioning

Challenges

- More than 10G data needed to be analyzed.
- Data wrangling
 - Eye tracking data has more than 100 columns
 - Flight data has more than 10 columns data