

LLVM for openEuler的版本规划

Compiler SIG Maintainer

谢志恒

目录

- 1. 什么是LLVM for openEuler?
- 2. LLVM for openEuler版本发布节奏
- 3. LLVM for openEuler版本配套关系
- 4. LLVM for openEuler特性预览
- 5. LLVM for openEuler性能优化效果

什么是LLVM for openEuler?

LLVM for openEuler是基于上游LLVM社区,**源码开源在openEuler社区,匹配跟随** openEuler发布维护节奏的LTS编译器工具链版本,具有优体验、高性能、易创新的特点。

- 源码仓搭载Compiler CI工程,百万级用例日常监控版本质量
- 支持LLVM多版本部署,随心切换不同版本进行集成开发
- 搭配智能迁移助手,轻松在不同编译器之间进行应用迁移

- 扩展支持鲲鹏后端硬件特性及流水线,释放极致性能
- 支持软件SoftBR采样功能,补充部分机型缺乏相应硬件能力
- 构建智能预取、BOLT内核优化、Propeller支持等能力,常用数据库应用性能大幅提升

易创新

- 架构解耦易扩展,持续接入RISC-V、龙芯、申威等后端处理器
- 引入AI for Compiler技术,支持AI模型一键式自动应用调优
- 探索LLM结合编译器优化,深度挖掘应用性能潜力

LLVM for openEuler版本发布节奏

LLVM for openEuler版本配套关系

⇔ ○penEuler ■	openEuler 20.03 LTS SP4	openEuler 22.03 LTS SP3 openEuler 22.03 LTS SP4	openEuler 24.03 LTS	openEuler 24.03 LTS SP1	openEuler 25.03 openEuler 24.03 LTS SP2 openEuler 24.03 LTS SP3	
LLVM主版本	LLVM 10	LLVM 12	LLVM 17	LLVM 17	LLVM 17	待升级
LLVM副版本	LLVM 17	LLVM 17	LLVM 18	LLVM 18	LLVM 18	LLVM 17 LLVM 18
		LLVM 19 LLVM 20	LLVM 19 LLVM 20	LLVM 19 LLVM 20	LLVM 19 LLVM 20	LLVM 19

LLVM for openEuler特性预览 — 智能预取

场景与诉求

- 一些应用(如数据库类)普遍存在由于dcache miss带来的CPU后端瓶颈问题,影响发挥CPU的极致性能
- 数据预取的有效性和收益大小受预取时机、预取代价等 影响

诉求

更广泛的有效预取场景识别和更精确的预取时机计算 自适应选择预取指令的cache level和循环层级

编译器预取能力

访存类型	描述	上游LLVM 支持	LLVM for openEuler持续构筑
a[j]	内层循环下的直接访存	√	√
a[i+j]	多层循环下的直接访存	×	√
a[f(b[j])]	内层循环下的间接访存	×	√
a[f(b[i])+j]	多层循环下的间接访存	×	√

技术方案

方案效果

• Clickhouse: 多层循环下间接访存

• 性能提升: 10%+

LLVM for openEuler特性预览 — Propeller

参考文献

Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications

Figure 1: Design of a Profile Guided, Relinking Optimizer

Propeller VS. BOLT

Propeller	BOLT
较好	直接二进制修改,相对较差
理论上都支持	X86较成熟, AArch64可用
减少30%以上开销 (内存消耗、编译时间)	_
基本持平BOLT效果	_
	较好 理论上都支持 减少30%以上开销 (内存消耗、编译时间)

LLVM for openEuler性能优化效果

互联网场景中常用数据库应用平均性能<mark>提升15%以上</mark>,其中涉及的优化能力会分阶段逐步合入LLVM for openEuler版本当中。

Thank You.

Compiler SIG 专注于编译器领域技术交流探讨和分享,包括 GCC/LLVM/OpenJDK 以及其他的程序优化技术,聚集编 译技术领域的学者、专家、学术等同行,共同推进编译相关技术的发展。

毕昇编译公众号

Compiler 交流群小助手