Econometrics III Assignment Part I

Thao Le (523716) David Gyaraki (582340)

Contents

1	Question 1	2
2	Question 2	5
3	Question 3	6
4	Question 4	7
5	Question 5	8
6	Question 6	9
7	Question 7	9
R	Question 8	a

GDP quarterly growth since 1987 Q2

acf(dfAssign_p1\$GDP_QGR,12,pl=F)

Autocorrelations of series 'dfAssign_p1\$GDP_QGR', by lag

acf(dfAssign_p1\$GDP_QGR,12,pl=T)

Series dfAssign_p1\$GDP_QGR

pacf(dfAssign_p1\$GDP_QGR,12,p1=F)

Partial autocorrelations of series 'dfAssign_p1\$GDP_QGR', by lag

pacf(dfAssign_p1\$GDP_QGR,12,p1=T)

Series dfAssign_p1\$GDP_QGR

2 Question 2

```
ar4 <- arima(dfAssign_p1$GDP_QGR, order=c(4,0,0))
#coeftest(ar4)

ar3 <- arima(dfAssign_p1$GDP_QGR, order=c(3,0,0))
#coeftest(ar3)

ar2 <- arima(dfAssign_p1$GDP_QGR, order=c(2,0,0))
#coeftest(ar2)

ar1 <- arima(dfAssign_p1$GDP_QGR, order=c(1,0,0))
#coeftest(ar1)</pre>
```

```
stargazer::stargazer(ar4,ar3,ar2,ar1, title="Estimating the AR(4) to

AR(1) models on GDP data", align=TRUE, label = "tab_ar4",

table.placement="H", out = "tab_ar4.tex")
```

Table 1: Estimating the AR(4) to AR(1) models on GDP data

_	Dependent variable:			
	(1)	(2)	(3)	(4)
ar1	0.242** (0.118)	0.256** (0.117)	0.263** (0.119)	0.272** (0.118)
ar2	$0.030 \\ (0.120)$	$0.030 \\ (0.120)$	$0.058 \\ (0.121)$	
ar3	$0.189 \\ (0.119)$	$0.200^* \ (0.119)$		
ar4	$0.086 \\ (0.120)$			
intercept	$1.214^{***} \\ (0.204)$	1.228*** (0.180)	1.249*** (0.140)	$1.253^{***} \\ (0.130)$
Observations Log Likelihood σ^2 Akaike Inf. Crit.	88 -113.211 0.765 238.421	88 -113.468 0.770 236.936	88 -114.849 0.796 237.698	88 -114.963 0.798 235.925
Note:	*p<0.1; **p<0.05; ***p<0.01			

ar1_res <- as.numeric(ar1[["residuals"]])
acf(ar1_res,12,pl=F)</pre>

Autocorrelations of series 'ar1_res', by lag

0 1 2 3 4 5 6 7 8 9 10 1.000 -0.017 -0.003 0.140 0.114 -0.096 -0.010 -0.028 0.102 -0.071 -0.011 11 12 0.011 -0.140 acf(ar1_res,12,pl=T)

Series ar1_res

4 Question 4

Table 2: The predicted quarterly GDP growth rates using ARIMA(1,0,0)

Quarter	Predicted growth %
2009Q2	0.177
2009Q3	0.960

Quarter	Predicted growth %
2009Q4	1.173
2010Q1	1.231
2010Q2	1.247
2010Q3	1.251
2010Q4	1.252
2011Q1	1.253

```
plot(forecast8) %>%
abline(h=0, col="red", lwd=3, lty=2)
```

Forecasts from ARIMA(1,0,0) with non-zero mean

7 Question 7

Forecasts from ARIMA(1,0,0) with non-zero mean

8 Question 8

```
ar4_10 <- arima(dfAssign_p1$GDP_QGR, order=c(4,0,0))
coeftest(ar4_10)</pre>
```

z test of coefficients:

```
Estimate Std. Error z value Pr(>|z|)
       0.241960 0.117749 2.0549 0.03989 *
ar1
ar2
       0.029955 0.119538 0.2506 0.80213
ar3
       ar4
       Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  ar3_10 <- arima(dfAssign_p1$GDP_QGR, order=c(3,0,0))
 coeftest(ar3_10)
z test of coefficients:
       Estimate Std. Error z value Pr(>|z|)
       ar1
ar2
       0.029868 0.120377 0.2481 0.80404
       0.200007 0.119049 1.6800 0.09295 .
ar3
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
  forecast_10 \leftarrow forecast(ar3_10, 8, level = c(90))
  forecast_10db <- cbind(predlbl, as.data.frame(forecast_10))</pre>
 kable(forecast_10db[,1:2], caption="The predicted quarterly GDP growth
  \hookrightarrow rates using ARIMA(1,0,0) and 90% CI", col.names = c("Quarter",
  → "Predicted growth %"), digits = 3, row.names = F)
```

Table 3: The predicted quarterly GDP growth rates using ARIMA(1,0,0) and 90% CI

Quarter	Predicted growth %
2009Q2	0.031
2009Q3	0.497
2009Q4	0.219
2010Q1	0.709
2010Q2	0.919
2010Q3	0.932
2010Q4	1.040

Quarter	Predicted growth %
2011Q1	1.109

```
plot(forecast_10) %>%
abline(h=0, col="red", lwd=3, lty=2)
```

Forecasts from ARIMA(3,0,0) with non-zero mean

Forecasts from ARIMA(3,0,0) with non-zero mean

