Suppose AB = C.

$$C_{ij} = \sum_{k=1}^{n} G_{ik} b_{kj}.$$

by Refinition,
$$\sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} b_{ij} = 1$$
.

$$\sum_{j=1}^{n} C_{ij} = \sum_{j=1}^{n} \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$= \sum_{k=1}^{N} \left(\sum_{j\geq 1}^{N} b_{kj} \right) Q_{ik}$$

$$= \sum_{k=1}^{N} Q_{ik}$$

therefore, AB is right stochastic

2. (a) According to the statements,

$$\begin{cases} r_1 + r_2 + r_3 = 1240 \\ a_1 n_1 + a_2 r_2 + a_3 r_3 = 276. \\ 2n_1 = r_2 \end{cases}$$

harrix Form:

$$\begin{bmatrix} 0.1 & az & a3 \\ 2 & 0 & -1 \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 1240 \\ 276 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{cases} r_1 = 280 \\ r_2 = 400 \end{cases}$$

$$r_3 = 560$$

4. Suppose
$$A = \begin{bmatrix} c_{11} & o \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ o & u_{22} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} (+)$$

$$= \begin{cases} U_{1} & U_{11} = 0 & 0 \\ U_{11} & U_{12} = 1 & 0 \\ U_{21} & U_{11} = 1 & 0 \\ U_{11} & U_{12} = 1 & 0 \\ U_{11} & U_{12} = 1 & 0 \\ U_{11} & U_{12} & U_{13} = 1 & 0 \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{11} & U_{12} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{13} \\ U_{13} & U_{13} & U_{13} & U_{13} & U_{13} & U_{1$$

but un = 0.

Therefore, (+) is not possible. A has no LV decomposition.

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

.. B has an LU decomposition.

5, (a)
$$0.13671. + 0.2122712 = -74.9028 + 75.5432 = 0.6409$$

 $0.208171. + 0.424772 = -150.4563 + 151.1932 = 0.7369$

(b)
$$a_{208} + 0.1036 = 2.009$$

 $2.009 \times 0.2122 = 0.4263$ $2.009 \times 0.4247 - 0.4263 = -0.016$ $a_{7369} - 1.287 = -0.550$

$$\chi_{2} = \frac{-0.5501}{-0.0016} = 343.8 \qquad 343.8 \times 0.2122 = 72.95$$

(N=-698.0

12 = 343.8

(c)
$$0.2081N + 0.4291N_2 = 0.7369$$
 $0.1036 \pm 0.2081 = 0.4978$. $0.4978 \times 0.4247 = 0.2114$
 $0.2122 - 0.2114 = 0.0008$
 $0.73691 \times 0.4978 \times 0.4247 = 0.2114$
 $0.2122 - 0.2114 = 0.0008$
 $0.73691 \times 0.4978 = 0.3668$
 $0.6404 - 0.3688 = 0.2136$

$$0.0008 \times 0.2736$$
 0.0008×0.2736
 $0.0008 \times$

The coefficients of the first vow is almost proportional to those of the second row. When performing gamssian elimination, we have the Situation of "(atastrophic cancellation", which reduced the precision significantly.