## Deep Learning for NLP

#### Semantics

How does a computer understands meaning?

- Dictionary
- Thesuras
- WordNet



#### Semantics

How does a computer understands meaning?

What is the meaning of "bardiwac"?

He handed her a glass of bardiwac.

Beef dishes are made to complement the bardiwacs.

Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.

## Word Sense Disambiguation

- What is the meaning of "Bank"?
  - he sat on the bank of the river and watched the currents --> sloping land
  - a huge bank of earth --> a long ridge or pile
  - The State Bank has allowed me the loan --> Financial Institution

## Meaning and Neighbourhood

You shall know a word by the company it keeps!

Meaning of a word can be derived from the meaning of its contexts

## Meaning and Neighbourhood

You shall know a word by the company it keeps!

Meaning of a word can be derived from the meaning of its contexts

AKA
The Distributional Hypothesis

#### Semantics

# **Meaning** of a word can be derived from the meaning of its **CONTEXTS**

#### Context??

He handed her a glass of bardiwac.

Beef dishes are made to complement the bardiwacs.

Malbec, one of the lesser-known bardiwac grapes, responds well to Australia's sunshine.

#### Context??

- I love playing cricket
- Sachin is a cricketer
- Cricket is played using a bat and a ball
- Sourav plays cricket
- Sachin is the highest test scorer
- Maradona plays football
- ...
- . . .

#### Context

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Malbec, one of the lesserknown bardiwac grapes, responds well to Australia's sunshine.

- I love playing cricket
- Sachin is a cricketer
- Cricket is played using a bat and a ball
- Sourav plays cricket
- Sachin is the highest test scorer
- Maradona plays football

Central/ Target Word

#### Context

- He handed her a glass of bardiwac.
- Beef dishes are made to complement the bardiwacs.
- Malbec, one of the lesserknown bardiwac grapes, responds well to Australia's sunshine.

- I love playing cricket
- Sachin is a cricketer
- Cricket is played using a bat and a ball
- Sourav plays cricket
- Sachin is the highest test scorer
- Maradona plays football

**Context Word** 

#### Building a distributional model



## Construction of co-occurrence matrix



- row vector x<sub>dog</sub> describes usage of word dog in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space

|        | get | see | use | hear | eat | kill |
|--------|-----|-----|-----|------|-----|------|
| knife  | 51  | 20  | 84  | 0    | 3   | 0    |
| cat    | 52  | 58  | 4   | 4    | 6   | 26   |
| dog    | 115 | 83  | 10  | 42   | 33  | 17   |
| boat   | 59  | 39  | 23  | 4    | 0   | 0    |
| cup    | 98  | 14  | 6   | 2    | 1   | 0    |
| pig    | 12  | 17  | 3   | 2    | 9   | 27   |
| banana | 11  | 2   | 2   | 0    | 18  | 0    |

co-occurrence matrix M

## Intuition



Postulate: Words that are "close together" in the vector space talk about the same things.

## Desiderata for proximity

• If  $d_1$  is near  $d_2$ , then  $d_2$  is near  $d_1$ .

• If  $d_1$  near  $d_2$ , and  $d_2$  near  $d_3$ , then  $d_1$  is not far from  $d_3$ .

No word is closer to d than d itself.

## Cosine similarity

• Distance between vectors  $d_1$  and  $d_2$  captured by the cosine of the angle x between them.



## Similarity measures

- There are many different ways to measure how similar two documents are, or how similar a document is to a query
- The cosine measure is a very common similarity measure
- Using a similarity measure, a set of documents can be compared to a query and the most similar document returned

#### The cosine measure

 For two vectors d and d' the cosine similarity between d and d' is given by:

$$\frac{d \times d'}{|d||d'|}$$

- Here d X d' is the vector product of d and d', calculated by multiplying corresponding frequencies together
- The cosine measure calculates the angle between the vectors in a high-dimensional virtual space

## Example

- Let d = (2,1,1,1,0) and d' = (0,0,0,1,0)
  - dXd' = 2X0 + 1X0 + 1X0 + 1X1 + 0X0=1
  - $|d| = \sqrt{(2^2+1^2+1^2+1^2+0^2)} = \sqrt{7}=2.646$
  - $|d'| = \sqrt{(0^2+0^2+0^2+1^2+0^2)} = \sqrt{1=1}$
  - Similarity =  $1/(1 \times 2.646) = 0.378$
- Let d = (1,0,0,0,1) and d' = (0,0,0,1,0)
  - Similarity =

## Class Assignments

- Let d = (1,0,0,0,1) and d' = (0,0,0,1,0)
  - Similarity =
- Let d = (21,10,25,30,1) and d' = (10,20,50,11,54)
  - Similarity =
- Let d1 = (21,10,25,30,1), d2 = (10,20,50,11,54) and d3 = (13,16,1,10,5)
  - Similarity (d1,d2) =
  - Similarity (d2,d3) =
  - Similarity (d3,d1) =

Which pair is most similar??

## Cosine similarity

$$sim(d_{j}, d_{k}) = \frac{d_{j} \cdot d_{k}}{|d_{j}||d_{k}|} = \frac{\sum_{i=1}^{n} w_{i,j} w_{i,k}}{\sqrt{\sum_{i=1}^{n} w_{i,j}^{2} \sqrt{\sum_{i=1}^{n} w_{i,k}^{2}}}}$$

- Cosine of angle between two vectors
- The denominator involves the lengths of the vectors.

- row vector x<sub>dog</sub> describes usage of word dog in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space

|        | get | see | use | hear | eat | kill |
|--------|-----|-----|-----|------|-----|------|
| knife  | 51  | 20  | 84  | 0    | 3   | 0    |
| cat    | 52  | 58  | 4   | 4    | 6   | 26   |
| dog    | 115 | 83  | 10  | 42   | 33  | 17   |
| boat   | 59  | 39  | 23  | 4    | 0   | 0    |
| cup    | 98  | 14  | 6   | 2    | 1   | 0    |
| pig    | 12  | 17  | 3   | 2    | 9   | 27   |
| banana | 11  | 2   | 2   | 0    | 18  | 0    |

co-occurrence matrix M

- row vector x<sub>dog</sub> describes usage of word dog in the corpus
- can be seen as coordinates of point in *n*-dimensional Euclidean space
- illustrated for two dimensions: get and use
- $ightharpoonup \mathbf{x}_{dog} = (115, 10)$



- similarity = spatial proximity (Euclidean dist.)
- location depends on frequency of noun  $(f_{\text{dog}} \approx 2.7 \cdot f_{\text{cat}})$



- vector can also be understood as arrow from origin
- direction more important than location



- vector can also be understood as arrow from origin
- direction more important than location
- use angle α as distance measure



- vector can also be understood as arrow from origin
- direction more important than location
- use angle α as distance measure
- or normalise length  $\|\mathbf{x}_{\text{dog}}\|$  of arrow



#### General definition of DSMs

A distributional semantic model (DSM) is a scaled and/or transformed co-occurrence matrix M, such that each row x represents the distribution of a target term across contexts.

|        | get    | see    | use    | hear   | eat    | kill   |
|--------|--------|--------|--------|--------|--------|--------|
| knife  | 0.027  | -0.024 | 0.206  | -0.022 | -0.044 | -0.042 |
| cat    | 0.031  | 0.143  | -0.243 | -0.015 | -0.009 | 0.131  |
| dog    | -0.026 | 0.021  | -0.212 | 0.064  | 0.013  | 0.014  |
| boat   | -0.022 | 0.009  | -0.044 | -0.040 | -0.074 | -0.042 |
| cup    | -0.014 | -0.173 | -0.249 | -0.099 | -0.119 | -0.042 |
| pig    | -0.069 | 0.094  | -0.158 | 0.000  | 0.094  | 0.265  |
| banana | 0.047  | -0.139 | -0.104 | -0.022 | 0.267  | -0.042 |

**Term** = word, lemma, phrase, morpheme, word pair, . . .

|          |                   |     | ρ≬□ | ĄΫ́ρ |    | 44_ |    |
|----------|-------------------|-----|-----|------|----|-----|----|
| (knife)  | \A                | 51  | 20  | 84   | 0  | 3   | 0  |
| (cat)    | 0                 | 52  | 58  | 4    | 4  | 6   | 26 |
| ???      |                   | 115 | 83  | 10   | 42 | 33  | 17 |
| (boat)   | مأها              | 59  | 39  | 23   | 4  | 0   | 0  |
| (cup)    |                   | 98  | 14  | 6    | 2  | 1   | 0  |
| (pig)    |                   | 12  | 17  | 3    | 2  | 9   | 27 |
| (banana) | <u>A</u> <u>A</u> | 11  | 2   | 2    | 0  | 18  | 0  |

|          |                   |     | ρφ | QΥP | □(o | ₩_ |    |
|----------|-------------------|-----|----|-----|-----|----|----|
| (knife)  | A                 | 51  | 20 | 84  | 0   | 3  | 0  |
| (cat)    | <b>D</b>          | 52  | 58 | 4   | 4   | 6  | 26 |
| ¥???     |                   | 115 | 83 | 10  | 42  | 33 | 17 |
| (boat)   | مأها              | 59  | 39 | 23  | 4   | 0  | 0  |
| (cup)    |                   | 98  | 14 | 6   | 2   | 1  | 0  |
| (pig)    |                   | 12  | 17 | 3   | 2   | 9  | 27 |
| (banana) | <u>A</u> <u>A</u> | 11  | 2  | 2   | 0   | 18 | 0  |

|          |          |     | ρ۵ι | ĄΫ́ρ | □Vo | <b>41</b> | _le |
|----------|----------|-----|-----|------|-----|-----------|-----|
| (knife)  | M        | 51  | 20  | 84   | 0   | 3         | 0   |
| (cat)    | <b>D</b> | 52  | 58  | 4    | 4   | 6         | 26  |
| ????     |          | 115 | 83  | 10   | 42  | 33        | 17  |
| (boat)   | مأها     | 59  | 39  | 23   | 4   | 0         | 0   |
| (cup)    |          | 98  | 14  | 6    | 2   | 1         | 0   |
| y(pig)   |          | 12  | 17  | 3    | 2   | 9         | 27  |
| (banana) | £ £      | 11  | 2   | 2    | 0   | 18        | 0   |

|          |              |           | ρίω | ĄŶΠ | □Vo | 44_ |    |
|----------|--------------|-----------|-----|-----|-----|-----|----|
| (knife)  | <b>]</b> [ [ | 51        | 20  | 84  | 0   | 3   | 0  |
| (cat)    | 0            | <b>52</b> | 58  | 4   | 4   | 6   | 26 |
| ????     |              | 115       | 83  | 10  | 42  | 33  | 17 |
| (boat)   | مأها         | 59        | 39  | 23  | 4   | 0   | 0  |
| (cup)    |              | 98        | 14  | 6   | 2   | 1   | 0  |
| (pig)    |              | 12        | 17  | 3   | 2   | 9   | 27 |
| (banana) | £ £          | 11        | 2   | 2   | 0   | 18  | 0  |

#### English as seen by the computer . . .

|          |          | get | see<br> ≬□ | use<br>≬îſ | hear<br>□ | eat<br>N_ | kill<br>⊸≬ <u>⊶</u> |
|----------|----------|-----|------------|------------|-----------|-----------|---------------------|
| knife    | \A       | 51  | 20         | 84         | 0         | 3         | 0                   |
| cat      | <b>D</b> | 52  | 58         | 4          | 4         | 6         | 26                  |
| dog      |          | 115 | 83         | 10         | 42        | 33        | 17                  |
| boat     | مأها     | 59  | 39         | 23         | 4         | 0         | 0                   |
| cup      |          | 98  | 14         | 6          | 2         | 1         | 0                   |
| pig      |          | 12  | 17         | 3          | 2         | 9         | 27                  |
| banana A |          | 11  | 2          | 2          | 0         | 18        | 0                   |

#### Nearest neighbours

DSM based on verb-object relations from BNC, reduced to 100 dim. with SVD

Neighbours of **trousers** (cosine angle):

shirt (18.5), blouse (21.9), scarf (23.4), jeans (24.7), skirt (25.9), sock (26.2), shorts (26.3), jacket (27.8), glove (28.1), coat (28.8), cloak (28.9), hat (29.1), tunic (29.3), overcoat (29.4), pants (29.8), helmet (30.4), apron (30.5), robe (30.6), mask (30.8), tracksuit (31.0), jersey (31.6), shawl (31.6), ...

#### Neighbours of rage (cosine angle):

anger (28.5), fury (32.5), sadness (37.0), disgust (37.4), emotion (39.0), jealousy (40.0), grief (40.4), irritation (40.7), revulsion (40.7), scorn (40.7), panic (40.8), bitterness (41.6), resentment (41.8), indignation (41.9), excitement (42.0), hatred (42.5), envy (42.8), disappointment (42.9), ...

#### Nearest neighbours with similarity graph



#### Nearest neighbours with similarity graph



#### Semantic maps

#### Semantic map (V-Obj from BNC)



### Clustering

#### Clustering of concrete nouns (V-Obj from BNC)



### Clustering

#### Clustering of concrete nouns (V-Obj from BNC)



#### Further information

- Handouts & other materials available from wordspace wiki at http://wordspace.collocations.de/
  - based on joint work with Marco Baroni and Alessandro Lenci
- ► Tutorial is open source (CC), and can be downloaded from http://r-forge.r-project.org/projects/wordspace/
- Review paper on distributional semantics:

Turney, Peter D. and Pantel, Patrick (2010). From frequency to meaning: Vector space models of semantics. *Journal of Artificial Intelligence Research*, **37**, 141–188.

## Assignment 1.1

a) Given an English corpus construct a term-term co-occurrence matrix
 b) Compute and display top 10 similar words in the corpus

(The corpus will be provided to you. You only need to construct the cooccurrence matrix)

# Real world scenerio: Sparce matrix

| i                               | love | playi | ng crick | et sachin | is | а | crick | eter | played | using | bat | and | ball | sourav | plays | sachine | the | highe | st test | scorer | marado | na |
|---------------------------------|------|-------|----------|-----------|----|---|-------|------|--------|-------|-----|-----|------|--------|-------|---------|-----|-------|---------|--------|--------|----|
| ootball                         |      |       |          |           |    |   |       |      |        |       |     |     |      |        |       |         |     |       |         |        |        |    |
| . 0                             | 1    | 1     | 1        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| ove 1                           | 0    | 1     | 1        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| laying 1                        | 1    | 0     | 1        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| ove 1<br>blaying 1<br>cricket 1 | 1    | 1     | 0        | 0         | 1  | 0 | 0     | 1    | 1      | 0     | 0   | 0   | 1    | 1      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| sachin 0                        | 0    | 0     | 0        | 0         | 1  | 1 | 1     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| .s 0                            | Θ    | 0     | 1        | 1         | 0  | 2 | 1     | 1    | 1      | 0     | 0   | 0   | 0    | 0      | 1     | 1       | 1   | 1     | 0       | 0      | 0      |    |
| 0                               | Θ    | 0     | 0        | 1         | 2  | 2 | 1     | 1    | 1      | 2     | 2   | 1   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| ricketer<br>blayed 0<br>using 0 | Θ    | 0     | 0        | 0         | 1  | 1 | 1     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      | 0  |
| laved 0                         | Θ    | 0     | 1        | 0         | 1  | 1 | 0     | 0    | 1      | 1     | 0   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| ising 0                         | 0    | 0     | 1        | 0         | 1  | 1 | 0     | 1    | 0      | 1     | 1   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| oat 0                           | 0    | 0     | 0        | 0         | 0  | 2 | 0     | 1    | 1      | 0     | 1   | 1   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| and 0                           | 0    | 0     | 0        | 0         | 0  | 2 | 0     | 0    | 1      | 1     | 0   | 1   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| oat 0<br>and 0<br>oall 0        | 0    | 0     | 0        | 0         | 0  | 1 | 0     | 0    | 0      | 1     | 1   | 0   | 0    | 0      | 0     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| ourav 0                         | 0    | 0     | 1        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 1      | Θ     | 0       | 0   | 0     | 0       | 0      | 0      |    |
| olays 0                         | 0    | 0     | 1        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 1    | 0      | Θ     | 0       | 0   | 0     | 0       | 1      | 1      |    |
| achine 0                        | 0    | 0     | 0        | 0         | 1  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 1       | 1   | 0     | 0       | 0      | 0      |    |
| the 0                           | Θ    | 0     | 0        | 0         | 1  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 1     | 0       | 1   | 1     | 1       | 0      | 0      |    |
| the 0<br>nighest 0              | 0    | 0     | 0        | 0         | 1  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 1     | 1       | 0   | 1     | 1       | 0      | 0      |    |
| est 0                           | 0    | 0     | 0        | 0         | 1  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 1       | 1   | 0     | 1       | 0      | 0      |    |
| corer 0                         | 0    | 0     | 0        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 0     | 1       | 1   | 1     | 0       | 0      | 0      |    |
| aradona                         | 0    | 0     | 0        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 1     | 0       | 0   | 0     | 0       | 0      | 0      | 1  |
| ootball                         | 0    | 0     | 0        | 0         | 0  | 0 | 0     | 0    | 0      | 0     | 0   | 0   | 0    | 0      | 1     | 0       | 0   | 0     | 0       | 0      | 1      | 0  |

### **SVD: Intuition**

Singular Value Decomposition

$$C = U\Sigma V^T$$



### Semantics

# Wordnet

### Wordnet

A lexical knowledgebase based on conceptual lookup

Organizing concepts in a semantic network.

 Organize lexical information in terms of word meaning, rather than word form

Wordnet can also be used as a thesaurus.

## Psycholinguistic Theory

- Human lexical memory for nouns as a hierarchy.
- Can canary sing? Pretty fast response.
- Can canary fly? Slower response.
- Does canary have skin? Slowest response.



Wordnet - a lexical reference system based on psycholinguistic theories of human lexical memory.

# Relational and Componential Semantics

Relational Semantics (Words can disambiguate each other) **vs.** Componential Semantics (Words need features for disambiguation)

Example Cat

animal

An

Possible Features: Animate, Human, Carnivorous, Small, Moving

#### **Componential Semantics**

Semantic Feature Vector for

cat (animal): <1,0,1,1,1>

cat (expert): <1,1,U,U,1>

#### **Relational Semantics**

cat (animal): {cat, feline}

cat (expert): {cat, expert}

# Componential Semantics

Consider cat and tiger.
 Decide on componential attributes.

| Furry | Carnivorous | Heavy | Domesticabl |
|-------|-------------|-------|-------------|
|       |             |       | е           |

- For cat (Y, Y, N, Y)
- For tiger (Y,Y,Y,N)

Complete and correct Attributes are difficult to design.

### Semantic relations in wordnet

- 1. Synonymy
- 2. Hypernymy / Hyponymy
- 3. Antonymy
- 4. Meronymy / Holonymy.