Innovationlab Big Data Science

Energeeks - ASHRAE Great Energy Predictor III

Adrian Uffmann Dario Lepke Erjona Dervishi Tobias Weber December 11, 2019

Institut for Statistics

Agenda

- 1. ASHRAE Great Energy Predictor III
- 2. Our Project
- 3. Retrospective
- 4. Next steps

ASHRAE Great Energy Predictor III

The Challenge

The Dataset

- Training Data
 - Contains \approx 20 mio. rows
 - Timespan: 1 year, from 2016 to 2017
- Test Data
 - Contains \approx 40 mio. rows
 - Timespan: 2 years, from 2016 to 2018
- Target
 - Hourly readings from four different meters (kWh)
 - \rightarrow electricity, chilledwater, steam, hotwater
- Features:
 - train.csv: building_id, timestamp, meter, meter_reading
 - building_metadata.csv: site_id, building_id, primary_use, square_feet, year_built, floor_count
 - weather_train.csv: site_id, timestamp, air_temperature, wind_direction, ...

Dataframe.head()

Our Project

Project Structure

Using Cookiecutter: https://drivendata.github.io/cookiecutter-data-science/

```
+-- data
   +-- external
                               <- Data from third party sources.
   +-- interim
                               <- Intermediate data that has been transformed.
   +-- processed
                               <- The final, canonical data sets.
   +-- raw
                               <- The original, immutable data dump.
   src
    +-- data
       +-- make_dataset.py
                             <- Data preparation.
    +-- features
       +-- build_features.py <- Feature engineering.
    +-- models
       +-- predict_model.py
                             <- Prediction.
       +-- train_model.py <- Model Training.
```


- · Exclude faulty readings.
- Impute missing data.
- Align timestamps.
- · Merge data frames.

- Exclude faulty readings.
- Impute missing data.
- Align timestamps.
- Merge data frames.

Exclude faulty readings

Exclude faulty readings

- Exclude faulty readings.
- Impute missing data.
- Align timestamps.
- Merge data frames.

Impute missing data


```
from sklearn.impute import Imputer
from sklearn.model_selection import cross_val_score
imp = Imputer_name(missing_values=np.nan, strategy='mean, median, most_frequent, zero, knn')
```


- Exclude faulty readings.
- Impute missing data.
- Align timestamps.
- Merge data frames.

Without Timestamp-Alignment

With Timestamp-Alignment

- Exclude faulty readings.
- Impute missing data.
- Align timestamps.
- Merge data frames.

- Encode categorical data.
- Transform year_built into age.
- Logarithmic scaling of square_feet.
- · Add lag features.
- Encode cyclic data.

Which frameworks were used?

Microsoft **LightGBM**

What's the best model? I

- Favorite framework so far: LightGBM
 - → Extreme fast
 - \rightarrow Low RAM Usage
- Cross Validation (4-Fold w/o shuffle)
- Mean-stacking strategy
- Bayesian Hyperparameter Optimization with hyperopt
- o RMSLE: 1.06

SHAP Values

19

Prediction

Leaks & a broken Leaderboard

- o Identification of sites and buildings via timestamp
- Public availability of energy consumption
- → Scraping of 1 mio. test labels
- ightarrow Data Science competition ightarrow Web Scraping competition
 - Allegedly no leaked data in private Leaderboard

Retrospective

Collaboration

https://github.com/energeeks/ashrae-energy-prediction

Problems & Success stories

Problems:

- Underestimation of tickets
- Sprints were a bit difficult to plan (constantly had new ideas)

Success stories:

- Ticket system (Kanban Board)
- · Team members have different backgrounds and strengths
- Python notebooks

Next steps

Next steps

- Phase I: Kaggle Challenge
 - Include more features
 - · Model stacking/ blending
 - December 19, 2019 Final submission deadline.
- Phase II: Create web-application
 - · User gives building metadata
 - Use model from Phase I to predict future energy consumption
 - Include weather APIs for weather forecasting

Thank you for your attention! :)

Cyclic-Encoding

```
df["wind_direction_sin"] = np.sin(2 * np.pi * df["wind_direction"] / 360)
df["wind_direction_cos"] = np.cos(2 * np.pi * df["wind_direction"] / 360)
df.loc[df["wind_direction"].isna(), ["wind_direction_sin", "wind_direction_cos"]] = 0
df.loc[df["wind_speed"] == 0, ["wind_direction_sin", "wind_direction_cos"]] = 0
```


What's the best model? II

Parameters	Score: 1.07	Score: 1.06
Boosting Type	GBDT	DART
Early Stopping	YES	NO
Number of Leaves	3480	3630
Learning Rate	0.05	0.05
Training Time	Low	High