Grundlagen und diskrete Mathematik $\ddot{}$

Übung 2

Aufgabe 1

Gegeben sind die beiden aussagenlogischen Formeln $F:=p_1\to (p_2\wedge p_5)$ und $G:=(p_3\wedge p_2)\to p_4$ sowie eine Belegung B mit

Abgabe: Kalenderwoche 41

$$B(p_n) = \begin{cases} 1 & \text{wenn } n \text{ eine Primzahl ist} \\ 0 & \text{sonst.} \end{cases}$$

- (a) Berechnen Sie $\widehat{B}(F)$ und $\widehat{B}(G)$.
- (b) Geben Sie eine Belegungen an, unter der F zu 0 und G zu 1 evaluiert wird.

Aufgabe 2

Geben Sie von folgenden Formeln an, ob sie in DNF und/oder in KNF sind.

- (a) p
- (b) $p \wedge (\neg q \wedge p_1)$
- (c) $p \lor (q \to p)$
- (d) $p \vee (\neg p \wedge (p \vee q))$
- (e) $(p \lor q) \land (p \lor (p \lor p))$

Aufgabe 3

Bringen Sie folgende aussagenlogischen Formeln in DNF und KNF.

- (a) $p \to (q \lor (p_1 \land p_2))$
- (b) $p \to (q \to p_1)$
- (c) $(p \to q) \to p_1$

Aufgabe 4

Zeigen Sie, dass die aussagenlogische Formel F genau dann unerfüllbar ist, wenn die Formel $\neg F$ allgemeingültig ist.

Aufgabe 5

Bestimmen Sie mithilfe von Wahrheitstabellen ob folgende Formeln allgemeingültig, erfüllbar oder unerfüllbar sind.

- (a) $p \to (q \to p)$
- (b) $(p \to q) \to (\neg q \to \neg p)$
- (c) $(p \to q) \to (q \to p)$
- (d) $(p \to q) \land (p \land \neg q)$

Eine Menge logischer Verknüpfungen heisst funktional vollständig, wenn man alle Junktoren $(\land, \lor, \neg, \rightarrow)$ durch Kombinationen dieser Verknüpfungen äquivalent ausdrücken kann. Die Verknüpfungen \neg, \land sind zum Beispiel funktional vollständig weil man damit \rightarrow und \lor wie folgt ausdrücken kann:

Abgabe: Kalenderwoche 41

- $A \lor B \equiv \neg(\neg A \land \neg B)$
- $A \to B \equiv \neg A \lor B \equiv \neg (A \land \neg B).$

Zeigen Sie, dass folgende Mengen von Verknüpfungen funktional vollständig sind:

- (a) $\{\neg, \lor\}$
- (b) $\{\neg, \rightarrow\}$
- (c) $\{ \mid \}$, wobei $A \mid B := \neg (A \land B)$ (NAND-Operator).
- (d) $\{\oplus\}$, wobei $A \oplus B := \neg (A \vee B)$.

Aufgabe 7 (Bonusaufgabe)

Implementieren Sie in einer Programmiersprache Ihrer Wahl aussagenlogische Formeln als Klasse/Datentyp. Stellen Sie folgende Funktionalitäten zur Verfügung:

- Eine Methode/Funktion eval(Formel, Belegung), mit der Sie Aussagenlogische Formeln unter einer gegebenen Belegung auswerten können.
- Methoden/Funktionen nnf(Formel), dnf(Formel), knf(Formel), um Formeln in die entsprechenden Normalformen umzuwandeln.
- Eine Methode/Funktion pretty_print(Formel), die Formeln in einer gut lesbaren Form ausgibt (z.B. als LATEX-Code).