### Счетные множества

Свойства счетных множеств

#### Счетные множества

- Множество равномощное натуральному ряду называется *счётным*.
- ightharpoonup Счетное множество можно записать так:  $\{x_1, x_2, ..., x_n, ...\}$ , где  $x_1$  это элемент поставленный в соответствие единицы,  $x_2$  двойки и т. д.
- Мы привыкли в такой форме записывать любое бесконечное множество, но только для счетного множества эта запись говорит еще и том, что его элементы можно пронумеровать натуральными числам.
- Счётным можно назвать бесконечное множество, элементы которого можно пронумеровать натуральными числами.

## Всякое бесконечное множество содержит счётное подмножество

- ▶ Пусть множество A бесконечно. Тогда оно не пусто и содержит некоторый элемент  $b_1$ .
- Будучи бесконечным, множество A не исчерпывается элементом  $b_1$  возьмем какой нибудь другой элемент  $b_2$ , и т.д.
- $\blacktriangleright$  Получится последовательность  $b_1, b_2, ...;$  построение не прервется ни на каком шаге, поскольку A бесконечно.
- Множество  $B=\{b_1,b_2,...\}$  и будет искомым счетным подмножеством. Полученное множество B не обязано совпадать с A, даже если A счётно.

## Подмножество счётного множества конечно или счётно.

- ▶ Пусть В подмножество счётного множества  $A = \{a_1, a_2, ..., a_n, ...\}$ .
- ▶ Выбросим из последовательности а₁, а₂,...,аₙ,... те члены, которые не принадлежат В (сохраняя порядок оставшихся). Тогда оставшиеся члены образуют либо конечную последовательность (и тогда В конечно), либо бесконечную (и тогда В счётно).

## Объединение конечного или счётного числа счётных множеств счётно.

Пусть имеется счетное число счетных множеств  $A_1$ ,  $A_2$ ,... Расположив элементы каждого из них слева направо в последовательность ( $A_i=\{a_{i0},\ a_{i1},\ a_{i2},...\}$ ) и поместив эти последовательности друг под другом, получим таблицу

 $a_{00}$   $a_{01}$   $a_{02}$   $a_{03}$  ...  $a_{10}$   $a_{11}$   $a_{12}$   $a_{13}$  ...  $a_{20}$   $a_{21}$   $a_{22}$   $a_{23}$  ...  $a_{30}$   $a_{31}$   $a_{32}$   $a_{33}$  ...

Теперь эту таблицу можно развернуть в последовательность, например, проходя по очереди диагонали:

 $a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, a_{03}, a_{12}, a_{21}, a_{30}, \dots$ 

ightharpoonup Если множества  $A_i$  не пересекались, то мы получили искомое представление для их объединения. Если пересекались, то из построенной последовательности надо выбросить повторения.

## Декартово произведение конечного числа счётных множеств счётно.

Докажем сначала, что декартово произведение двух счётных множеств счетно. Пусть  $A=\{a_1, a_2,...\}$ ,  $B=\{b_1, b_2,...\}$  два счетных множеств, тогда элементы декартова произведения можно записать в таблицу:

Эту таблицу также можно развернуть в последовательность, проходя по диагоналям:

$$\langle a_1,b_1 \rangle$$
,  $\langle a_1,b_2 \rangle$ ,  $\langle a_2,b_1 \rangle$ ,  $\langle a_1,b_3 \rangle$ ,  $\langle a_2,b_2 \rangle$ ,  $\langle a_3,b_1 \rangle$ ,...

Если  $A_1$ ,  $A_2$ ,  $A_3$ , ...,  $A_n$  — счетные множества, счетность их декартово произведения доказывается по индукции.

Базис индукции. Для n=1, утверждение очевидно.

Предполагаем, что оно справедливо для n-1 (при n>1). Тогда счётным будет декартово произведение  $(A_1 \times A_2 \times A_3 \times ... \times A_{n-1}) \times A_n$ , как произведение двух счётных множеств.

Множества  $A_1 \times A_2 \times A_3 \times ... \times A_n$  и  $(A_1 \times A_2 \times A_3 \times ... \times A_{n-1}) \times A_n$ , будут разными множествами, поскольку в первом случае элементами будут последовательности вида  $<a_1,a_2,a_3,...a_{n-1},a_n>$ , где  $a_i \in A_i$ ,  $(1 \le i \le n)$ , а во втором случае пары  $<<a_1,a_2,a_3,...a_{n-1}>,a_n>$ , где $<a_1,a_2,a_3,...a_{n-1}>$ ,  $<a_1,a_2,a_3,...a_n>$ , где $<a_1,a_2,a$ 

Но очевидно, что между ними существует взаимно однозначное соответствие:  $\langle a_1, a_2, a_3, ... a_{n-1}, a_n \rangle \rightarrow \langle \langle a_1, a_2, a_3, ... a_{n-1} \rangle, a_n \rangle$ .

## Свойства отношения «иметь не большую мощность»:

- **Е**СЛИ A и B равномощны, то A имеет не большую мощность, чем B.
- ► Если A имеет не большую мощность, чем B, а B имеет не большую мощность, чем C, то A имеет не большую мощность, чем C.
- ► Если A имеет не большую мощность, чем B, а B имеет не большую мощность, чем A, то они равномощны.
- Для любых двух множеств А и В верно (хотя бы) одно из двух: либо А имеет не большую мощность, чем В, либо В имеет не большую мощность, чем А.

Если A имеет не большую мощность, чем B, а B имеет не большую мощность, чем C, то A имеет не большую мощность, чем C



Пусть A находится во взаимно однозначном соответствии с  $B' \subseteq B$ , а B находится во взаимно однозначном соответствии с  $C' \subseteq C$ .

Тогда при втором соответствии B ' соответствует некоторому множеству C "  $\subseteq$  C .

### **Теорема Кантора.** Никакое множество *А* не равномощно множеству всех своих подмножеств.

- ▶ Предположим, что существует множество A, равномощное множеству всех своих подмножеств  $2^A$ , то есть, что существует взаимно однозначное соответствие  $f: A \rightarrow 2^A$ , которое ставит в соответствие каждому элементу множества A некоторое подмножество множества A.
- Рассмотрим множество B, состоящее из всех элементов A, не принадлежащих своим образам при отображении f.  $B = \{ x \in A \mid x \notin f(x) \}$ .
- ▶ f взаимно однозначное соответствие, а  $B \subseteq A$ , значит существует  $y \in A$  такой , что f(y) = B.
- Посмотрим, может ли у принадлежать В.

## Посмотрим, может ли у принадлежать B. $B = \{ x \in A \mid x \notin f(x) \}$ .

- ► Если  $y \in B$ ,  $y \in f(y)$ , а тогда , по определению B,  $y \notin B$  .
- ► Наоборот, если  $y \notin B$ , то  $y \notin f(y)$ , а следовательно,  $y \in B$ .
- В любом случае, получаем противоречие.

Поскольку отношение равномощности на множествах является отношением эквивалентности, то мощностью или кардинальным числом множества А называется соответствующий ему класс эквивалентности.

Скажем, что множество *А менее мощно*, чем множество *В* (или мощность множества *А меньше*, чем мощность множества *В*), если *А* по мощности не больше множества *В* и множества *А* и *В* не равномощны.

Поскольку любое множество A равномощно множеству одноэлементных подмножеств (любому a можно поставить в соответствие множество  $\{a\}$ ), то можно сказать, что мощность множества A меньше мощности множества  $2^A$  . Т.е. можно записать

$$|A| < |2^A|$$

# Множество бесконечных последовательностей нулей и единиц равномощно множеству всех подмножеств натурального ряда.

Сопоставим с каждой последовательностью множество номеров мест, на которых стоят единицы.

- например, 10010110... 1.4.6.7....
- последовательность из одних нулей соответствует пустому множеству,
- из одних единиц -натуральному ряду,
- ▶ а последовательность 1010101010... множеству нечетных чисел.

Очевидно, что получим взаимно-однозначное соответствие.

#### Мощность континуума

- Множество всех действительных чисел равномощно множеству всех подмножеств натурального ряда (без доказательства).
- Отсюда мы получим, что мощность натурального ряда меньше, чем мощность всех действительных чисел |N|< |R|.</li>
- Мощность множества действительных чисел называют мощностью континуума.

### Континуум гипотеза

- ► Континуум-гипотеза (проблема континуума, первая проблема Гильберта) выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным.
- Другими словами, гипотеза предполагает, что мощность континуума наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет.
- ▶ В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.
- ▶ Первые попытки доказательства этого утверждения средствами наивной теории множеств не увенчались успехом, в дальнейшем показана невозможность доказать или опровергнуть гипотезу в аксиоматике Цермело — Френкеля (как с аксиомой выбора, так и без неё).