The result? The question is whether we have only one result to justify the article "the". We summarize telegrammatically. To find $X \bigoplus Y$,

- 1) choose $a \in \mathbb{Z}$ from X,
- 2) choose $b \in \mathbb{Z}$ from Y,
- 3) find a + b in \mathbb{Z} ,
- 4) take the residue class of a + b.

This sounds a perfectly good recipe for finding $X \bigoplus Y$ but notice that we use some auxiliary objects, namely a and b, to find $X \bigoplus Y$, which must be determined by X and Y alone. Indeed, the result a + b depends explicitly on the auxiliary objects a and b. We can use our recipe with different auxiliary objects. Let us do it. 1) I choose a from $X \subseteq \mathbb{Z}$ and you choose a_1 from X. 2) I choose b from $Y \subseteq \mathbb{Z}$ and you choose b_1 from Y. 3) I compute a + band you compute $a_1 + b_1$. In general, $a + b \neq a_1 + b_1$. Hence our recipe gives, generally speaking, distinct elements a + b and $a_1 + b_1$. So far, both of us followed the same recipe. I cannot claim that my computation is correct and yours is false. Nor can you claim the contrary. Now we carry out the fourth step. I find the residue class of a + b as $X \bigoplus Y$, and you find the residue class of $a_1 + b_1$ as $X \bigoplus Y$. Since $a + b \neq a_1 + b_1$ in \mathbb{Z} , it can very well happen that $\overline{a+b} \neq \overline{a_1+b_1}$ in \mathbb{Z}_n . On the other hand, if \bigoplus is to be a binary operation on \mathbb{Z}_n , we must have $\overline{a+b} = \overline{a_1+b_1}$ whenever $\overline{a} = \overline{a_1}, \overline{b_1} = \overline{b}$, even if $a+b \neq a_1+b_1$. If there is such a mechanism, we say \bigoplus is a well defined operation on \mathbb{Z}_n . This means \bigoplus is really a genuine operation on $\mathbb{Z}_n: X \bigoplus Y$ is uniquely determined by X and Y alone. Any dependance of $X \bigoplus Y$ on auxiliary integers $a \in X$ and $ba \in Y$ is only apparent. We will prove that \bigoplus and \bigotimes are well defined operation on \mathbb{Z}_n , but before that, we discuss more generally well definition of functions.

A function $f: A \to B$ is essentially a rule by which each element a of A is associated with a unique element of f(a) = b of B. The important point is that the rule produces an element f(a) that depends only on a. Sometimes we consider rules having the following form. To find f(a),

- 1)do this and that
- 2)take an x related a in such and such manner
- 3)do this and that to x
- 4) the result is f(a).