Real Analysis qualifying review big list

Students at the University of Michigan

Monday 28th June, 2021

1 Categorized (without solutions)

Problem 1 (Date: September 2011, tags: integral convergence). Let $f \in L_1([0,1], dx)$. Find

$$\lim_{n \to \infty} \frac{1}{n} \int_0^1 \log\left(1 + e^{nf(x)}\right) dx.$$

Problem 2 (Date: September 2011, tags: bounded variation). Suppose $f:[0,1]\to\mathbb{R}$ satisfies f(x)-f(y)< x-y for all $x,y\in[0,1], x>y$. Show that f' exists almost everywhere on [0,1] or give a counterexample.

Problem 3 (Date: September 2011, tags: hölder's inequality). Let (X,Ω,μ) be a finite measure space.

- (i) Prove that for any p < q, $L_q(\mu) \subset L_p(\mu)$.
- (ii) Assume that for any t > 0 there exists $E \in \Omega$ satisfying

$$0 < \mu(E) < t$$
.

Prove that for any $1 there exists a function <math>f \in L_p(\mu)$ such that $f \notin L_q(\mu)$ for any q > p.

Problem 4 (Date: September 2011, tags: L^p spaces). For a real valued function f(x,y) on \mathbb{R}^2 which is in L^2 , show that $f(x+\epsilon,y+\epsilon)\to f(x,y)$ in L^2 when $\epsilon\to 0$.

Problem 5 (Date: September 2011, tags: measurable sets?). Let $f \in L_1([0,1])$ be a function such that $\int_E f(x) \, dx = 0$ for any measurable set $E \subset [0,1]$ of Lebesgue measure 1/2. Prove that f = 0 a.e.

Problem 6 (Date: January 2011, tags: measurable functions).

Let A be a sequence of measurable subsets of [0,1] such that $\inf m(A_n) > 0$, where m stands for the Lebesgue measure.

- (i) Prove that there exists $x \in [0,1]$ which belongs to infinitely many of the sets A_n .
- (ii) Does there necessarily exist a point which (does not?) belong to any of the sets A_n , except finitely many?

Problem 7 (Date: January 2011, tags: integral convergence). Let $\{f_n\} \subset L_1(\mu)$ be a decreasing sequence of functions such that $f_n \to f$ a.e. Prove that

$$\lim_{n \to \infty} \int f_n \, d\mu = \int f \, d\mu.$$

Problem 8 (Date: January 2011, tags: simple function approximation). Let $f: X \to [0, +\infty)$ be an integrable function on a measure space (X, \mathcal{A}, μ) . Define the measure ν by $\nu(A) = \int_A f \, d\mu$.

- (i) Prove that the measure ν is σ -additive.
- (ii) Prove that if $g \in L_1(\nu)$, then $\int_X g \, d\nu = \int_X f g \, d\mu$. (Hint: first, assume that g is a simple positive function. Then extend the result to non-negative integrable functions using limit theorems).

Problem 9 (Date: January 2011, tags: integral inequalities). Let $f_n:\mathbb{R}\to [0,1]$ be functions such that $\sup_{x\in\mathbb{R}} f_n(x)=1/n$ and $\int_{\mathbb{R}} f(x)\,dx=1$. Set

$$F(x) = \sup_{n \in \mathbb{N}} f_n(x).$$

Find all possible values of $\int_{\mathbb{R}} F(x) dx$.

Problem 10 (Date: January 2011, tags: integral convergence?). Let $f \in L_{\infty}([0,1])$. Prove that

$$\lim_{n \to \infty} \frac{\int_{[0,1]} |f(x)|^{n+1} dx}{\int_{[0,1]} |f(x)|^n dx} = ||f||_{\infty}.$$

Problem 11 (Date: January 2011, tags: egoroff's theorem). Let E be the exceptional set in Egoroff's theorem. Is it possible to prove Egoroff's theorem with l(E) = 0 instead of l(E) < e?

2 Categorized (with solutions)

3 Uncategorized

Problem 12 (Date: January 2011, tags:). Let $f:X\to [0,\infty]$ be a measurable function. Assume that $\mu(X)<\infty$. Prove that $\int f\ d\mu<+\infty$ if and only if

$$\sum_{n=1}^{\infty} 2^n \mu(x \in X \mid f(x) \ge 2^n) < +\infty.$$

Problem 13 (Date: January 2011, tags:). Let $f_n, g_n, f, g \in L_1(\mu)$ be functions such that $f_n \to f$ a.e., $g_n \to g$ a.e. and $|f_n| \le g_n$. Prove that if $\int g_n \, d\mu \to \int g \, d\mu$, then $\int f_n \, d\mu \to \int f \, d\mu$. (Hint: follow the proof of Lebesgue dominated convergence theorem.)

Problem 14 (Date: January 2011, tags:). Let $f_n, f \in L_1(\mu)$ be such that $f_n \to f$ a.e. Prove that if $||f_n||_1 \to ||f||_1$, then $f_n \to f$ in $L_1(\mu)$.

(Hint: use the previous problem)

Problem 15 (Date: January 2011, tags:). Let $f, g : \mathbb{R} \to \mathbb{R}$ be L_1 -functions.

(a) Prove that

$$\int_{\mathbb{R}} |f(x-y)g(y)| dm(y) < +\infty.$$

(b) Let

$$h(x) = \int_{\mathbb{D}} f(x - y)g(y)dm(y).$$

Prove that $h \in L_1(\mathbb{R})$ and $||h||_1 \leq ||f||_1 \cdot ||g||_1$.

Problem 16 (Date: January 2011, tags:). Let Φ be the Cantor's function and let μ_{Φ} be the corresponding Lebesgue-Stiltjes measure. Calculate the integral

$$\int_{[0,1]} x d\mu_{\Phi}.$$

Problem 17 (Date: January 2011, tags:). Let $f \in L_1([0,1])$ be a function such that $\int_E f \, dm = 0$ for any $E \subset [0,1]$ with m(E) = 1/2. Prove that f = 0.

Problem 18 (Date: January 2011, tags:). Let $f \in L_1([0,1])$ be a function such that f(x) > 0 a.e.

(i) Prove that for any 0 < a < 1

$$\inf_{m(A)=a} \int_A f \, dm > 0.$$

(ii) Does the previous statement hold for a function $f \in L_1(\mathbb{R})$ such that f(x) > 0 a.e.

Problem 19 (Date: January 2011, tags:). Let (X, Ω, μ) be a finite measure space.

- (i) Prove that for any p < q, $L_q(\mu) \subset L_p(\mu)$.
- (ii) Assume that for any t>0 there exists $E\in\Omega$ satisfying

$$0 < \mu(E) < t$$
.

Prove that for any $1 there exists a function <math>f \in L_p(\mu)$ such that $f \notin L_q(\mu)$ for any q > p.