

Ejercicio 2. 1 Sea $f(x) = x^5 + x^3 + x - 3$.

- 1. Razone que f tiene raíz única en [0,3] y que el método de bisección, comenzando en [0,3], converge a dicha raíz.
- 2. Calcule el término x_3 de la sucesión obtenida por bisección.
- 3. Halle $N \in \mathbb{N}$ de forma que el término x_N de la sucesión obtenida por bisección aproxime la raíz con al menos ocho dígitos.
- 1. f(x) es continua por ser polinómica y f(0) = -3 < 0, $f(3) = 3^5 + 3^3 + 3 3 = 270 > 0$. Luego $f(0) \cdot f(3) = -810 < 0$, por Bolzano, f(x) tiene al menos una raíz en el intervalo [0,3].
 - f es derivable y $f'(x) = 5x^4 + 3x^2 + 1 \ge 1$ para todo $x \in \mathbb{R}$ luego $g'(x) \ne 0$ para todo $x \in \mathbb{R}$. f tiene a lo sumo una raíz real.
 - Por último se tiene que f tiene exactamente una única raíz real en [0,3].
 - Sabemos que para una raíz de [0,3], se cumple que $|x_n-r| \leq \frac{1}{2^n}(b-a) = \frac{3}{2^n}$. Como solo hay una raíz, esto se cumple para dicha raíz, luego

$$0 \leqslant \lim_{n \to \infty} |x_n - r| \leqslant \lim_{n \to \infty} \frac{3}{2^n} = 0 \Longrightarrow \lim_{n \to \infty} |x_n - r| = 0 \Longleftrightarrow$$
$$\lim_{n \to \infty} (x_n - r) = 0 \Longleftrightarrow \lim_{n \to \infty} x_n = r$$

Luego el método converge a r.

2. •
$$a_1 = a = 0, f(0) = -3; b_1 = b = 3, f(3) = 270$$

•
$$x_1 = \frac{0+3}{2} = 1.5; f(1.5) = 9.46875$$

$$a_2 = a_1 = 0; b_2 = x_1 = 1.5$$

•
$$x_2 = \frac{0+1.5}{2} = 0.75$$
; $f(0.75) = -1.5908203125$

$$a_3 = x_2 = 0.75; b_3 = b_2 = 1.5$$

$$x_3 = \frac{0.75 + 1.5}{2} = 1.125$$

- 3. El error relativo es $\delta_r = \frac{|r-x_n|}{|r|}$
 - \bullet Para que aproxime con al menos 8 dígitos, $\delta_r = \frac{|r x_n|}{|r|} \leqslant 5 \cdot 10^{-8}$
 - \bullet Como hay que acotar $\frac{1}{|r|},$ tenemos que $r\geqslant\frac{3}{4}>0 \Rightarrow |r|\geqslant\frac{3}{4}\Rightarrow\frac{1}{|r|}\leqslant\frac{4}{3}$
 - $\delta_r = \frac{|r x_n|}{|r|} = \frac{1}{|r|} |r x_n| \leqslant \frac{4}{3} \frac{3 0}{2^n} = \frac{1}{2^{n 2}} \leqslant 5 \cdot 10^{-8}$
 - La última desigualdad se cumple si, y solamente si, $10^7 \le 2^{n-3} \iff n-3 \ge 7\log_2(10) = 23.25...$

1

• $n \ge 26.25... \text{ luego } \boxed{n = 27}$

Ejercicio 2. 2 Sea $f(x) = x^3 + 4x^2 - 10$. Razone que f posee una única raíz en el intervalo [1,2] y plantee dos métodos de punto fijo asociados al cálculo de las raíces de f.

- f(x) es continua por ser polinómica y f(1) = 1 + 4 10 = -5 < 0, f(2) = 8 + 16 10 = 14 > 0. Luego $f(1) \cdot f(2) = -70 < 0$, por Bolzano, f(x) tiene al menos una raíz en el intervalo [1, 2].
- f es derivable y $f'(x) = 3x^2 + 8x = 0$ si, y solamente sí x = 0 o $x = -\frac{8}{3}$, luego $f'(x) \neq 0$ para todo $x \in [1, 2]$. f tiene a lo sumo una raíz real.
- Por último se tiene que f tiene exactamente una única raíz real en [1,2].

$$x^3 + 4x^2 - 10 = 0 \Leftrightarrow x^3 + 4x^2 + x - 10 = x \Rightarrow g_1(x) = x^3 + 4x^2 + x - 10$$

■ $x^3 + 4x^2 - 10 = 0 \Leftrightarrow 4x^2 = 10 - x^3 \Leftrightarrow \frac{10 - x^3}{4} = x^2$ Tomando la raíz cuadrada positiva, si $x = \frac{1}{2}\sqrt{10 - x^3}$, entonces x es una raíz. Tomando $g_2(x) = \frac{1}{2}\sqrt{10 - x^3}$, los puntos fijos de esta función, son ceros de f(x), el recíproco no tiene por qué ser cierto.

Se adivina que el primer método no converge, pero el segundo sí.

Ejercicio 2. 3 Sea $f(x) = x - 0.5 \sin x - 2$.

- 1. Razone que la ecuación f(x) = 0 tiene una única raíz real en [0,3].
- 2. Verifique que los puntos fijos de $g(x) = 2 + 0.5 \operatorname{sen} x$ son raíces de f
- 3. Compruebe que q verifica las hipótesis del teorema convergencia local en [0,3].
- 1. f(x) es continua por ser suma de funciones elementales y f(0) = -2, $f(3) = 3 0.5 \operatorname{sen}(3) 2 = 1 0.5 \operatorname{sen}(3) \ge 1 0.5 = 0.5 > 0$. Luego $f(0) \cdot f(3) < 0$, por Bolzano, f(x) tiene al menos una raíz en el intervalo [0,3].
 - $f'(x) = 1 0.5\cos(x)$, (como $-1 \le -\cos(x) \le 1 \Rightarrow -0.5 \le -0.5\cos(x) \le 0.5$) $f'(x) = 1 0.5\cos(x) \ge 1 0.5 = 0.5 > 0$. Luego $f'(x) \ne 0$ para todo $x \in \mathbb{R}$. f tiene a lo sumo una raíz real.
 - Por último se tiene que f tiene exactamente una única raíz real en [0,3].

- 2. x es un punto fijo de $g(x)=2+0.5 \operatorname{sen}(x)$ si, y solamente si, $x=2+0.5 \operatorname{sen}(x)$ si, y solamente si, $x-0.5 \operatorname{sen}(x)-2=0$ si, y solamente si, x es una raíz de $f(x)=x-0.5 \operatorname{sen}(x)-2$
- 3. g es una función de clase 1 porque es suma de funciones elementales. En el intervalo [0,3] tiene un punto fijo r ya que hemos demostrado que f tiene un raíz en dicho intervalo y $|g'(r)| = |0.5\cos(r)| \le 0.5 < 1$. Luego verifica las hipótesis del teorema.

Ejercicio 2. 4 Sea $g(x) = \frac{1}{4}x^2 + \frac{1}{4}x + \frac{1}{2}$.

- 1. Demuestre que x = 1 y x = 2 son los únicos puntos fijos de g.
- 2. Demuestre que en x = 1 se cumplen las hipótesis del teorema de convergencia local pero no en x = 2.
- 3. Halle $x_0 \neq 2$ tal que la sucesión $x_{n+1} = g(x_n)$, $n \geq 0$ converja a 2.
- 1. g(x) = x si, y solamente si, $\frac{1}{4}x^2 + \frac{1}{4}x + \frac{1}{2} = x$ si, y solamente si, $x^2 + x + 2 = 4x$ si, y solamente si, $x^2 3x + 2 = 0$ si, y solamente si, $x = \frac{-(-3) \pm \sqrt{(-3)^2 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{3 \pm 1}{2} = \begin{cases} 2 \\ 1 \end{cases}$
- 2. g(x) es de clase 1 por ser una función polinómica. Tenemos que r=1 es un punto fijo ya que $g(r)=g(1)=\frac{1}{4}\cdot 1^2+\frac{1}{4}\cdot 1\frac{1}{2}=\frac{1}{4}+\frac{1}{4}+\frac{1}{2}=1=r.$ $g'(r)=\frac{1}{2}r+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}<1.$ Luego se cumplen las hipótesis del teorema de convergencia local. Sin embargo, si r=2, $g'(r)=\frac{1}{2}r+\frac{1}{4}=\frac{1}{2}\cdot 2+\frac{1}{4}=\frac{5}{4}>1.$ No se cumplen las hipótesis.
- 3. Por último, calculamos un $x \in \mathbb{R}$ tal que g(x)=2 si, y solamente si, $\frac{1}{4}x^2+\frac{1}{4}x+\frac{1}{2}=2$ si, y solamente si, $x^2+x+2=8$ si, y solamente si, $x^2+x-6=0$ si, y solamente si, $x=\frac{-1\pm\sqrt{1-(-24)}}{2}=\frac{-1\pm5}{2}$ si, y solamente si, x=2 o x=-3. Luego si tomamos $x_0=-3\neq 2, x_1=g(x_0)=2$ y, como este es un punto fijo, $g(x_n)=2$ para todo $n\in\mathbb{N}$

Ejercicio 2. 5 Razone que $f(x) = x^3 + 4x^2 - 10$ verifica las hipótesis del teorema de convergencia local del método de Newton en [1,2] y realize dos iteraciones de dicho método con $x_0 = 1.5$. (Nota: Tomando $x_0 = 1.5$ y utilizando r = 1.365230013 como la única raíz de f en [1,2], se obtiene que con el método del punto fijo para $g(x) = \sqrt{10 - x^3}/2$ son necesarias 30 iteraciones para aproximar r con una precisión de 10 dígitos, mientras que el método de Newton solamente necesita 4 iteraciones.)

• f(x) es continua por ser polinómica y f(1) = 1 + 4 - 10 = -5 < 0, f(2) = 8 + 16 - 10 = 14 > 0. Luego $f(1) \cdot f(2) = -70 < 0$, por Bolzano, f(x) tiene al menos una raíz $r \in [1, 2]$.

- f es de clase 2 por ser polinómica y $f'(x) = 3x^2 + 8x = 0$ si, y solamente sí x = 0 o $x = -\frac{8}{3}$, luego $f'(x) \neq 0$ para todo $x \in [1, 2]$. Por tanto, $f'(r) \neq 0$.
- $x_0 = 1.5$.
- $x_1 = x_0 \frac{f(x_0)}{f'(x_0)} = 1.5 \frac{f(1.5)}{f'(1.5)} = 1.5 \frac{1.5^3 + 4 \cdot 1.5^2 10}{3 \cdot 1.5^2 + 8 \cdot 1.5} = 1.3733.$
- $x_2 = x_1 \frac{f(x_1)}{f'(x_1)} = 1.3733 \frac{f(1.3733)}{f'(1.3733)} = 1.3733 \frac{1.3733^3 + 4 \cdot 1.3733^2 10}{3 \cdot 1.3733^2 + 8 \cdot 1.3733} = 1.3653.$

Ejercicio 2. 6 Se considera el polinomio $x^5 + 2x^4 + 6x^3 + 24x^2 + 2x$. Puesto que x = 0 es una de las raíces, podemos realizar la descomposición: $x^5 + 2x^4 + 6x^3 + 24x^2 + 2x = P(x)x$, siendo $P(x) = x^4 + 2x^3 + 6x^2 + 24x + 2$ y en el que el coeficiente a_0 es no nulo. Razone que P tiene, a lo sumo, dos raíces reales. Halle $a, b \in \mathbb{R}$ tal que las raíces de P verifiquen $a \leq |r| \leq b$.

- $P'(x) = 4x^3 + 6x^2 + 12x + 24$ y $P''(x) = 12x^2 + 12x + 12 = 12(x^2 + x + 1)$. Luego P''(x) = 0 si, y solamente si $x^2 + x + 1 = 0$ si, y solamente si, $x = \frac{-1 \pm \sqrt{1-4}}{2} \notin \mathbb{R}$ Luego como no tiene raíces reales, $P''(x) \neq 0$ para todo $x \in \mathbb{R}$ y P(x) tiene a lo sumo dos raíces reales.
- Por el teorema anterior, calculamos

$$\lambda = \max\left\{\frac{|a_0|}{|a_n|}, \dots, \frac{|a_{n-1}|}{|a_n|}\right\} = \max\left\{\frac{|2|}{|1|}, \frac{|24|}{|1|}, \frac{|6|}{|1|}, \frac{|2|}{|1|}\right\} = 24$$

• Por el teorema anterior, calculamos

$$\nu = \max\left\{\frac{|a_1|}{|a_0|}, \dots, \frac{|a_n|}{|a_0|}\right\} = \max\left\{\frac{|24|}{|2|}, \frac{|6|}{|2|}, \frac{|2|}{|2|}, \frac{|1|}{|2|}\right\} = 12$$

- Luego $a = \frac{1}{1+\nu} = \frac{1}{1+12} = \frac{1}{13}$ y $b = 1 + \lambda = 1 + 24 = 25$.
- $\frac{1}{13} \leqslant |r| \leqslant 25$
- Es claro que las raíces de P son negativas, ya que si $r \ge 0$, entonces $P(r) = r^4 + 2r^3 + 6r^2 + 24r + 2 \ge 2$, luego $P(r) \ne 0$.
- Se puede decir que, en caso de tener raíces reales, éstas están en el intervalo $\left[-25, -\frac{1}{13}\right]$.

Ejercicio 2. 7 Sean $P(x) = x^3 - 6x^2 + 3x - 0.149$, a = 4.71 y P(a) = -14.636489. Usando aritmética de tres dígitos, halle el error relativo cometido al evaluar P(a) directamente y por método de Horner.

 $P(x) = x^3 - 6x^2 + 3x - 0.149$. Calculamos el valor directamente, con el orden de operaciones del ordenador: $P(a) = a^3 - 6a^2 + 3a - 0.149$

$$a = 4.71; 3 * a = 14.13 = 14.1$$

$$a^2 = 22.1841 = 22.2$$
; $6 * a^2 = 133.2 = 133$

$$a^3 = a * a^2 = 104.562 = 105$$

$$a^3 - 6a^2 = -28.0; (a^3 - 6a^2) + 3a = -13.9$$

$$P(a) = ((a^3 - 6a^2) + 3a) - 0.149 = -14.049 = -14$$

•
$$\delta_v = \frac{|-14.636489 - (-14)|}{|-14.636489|} = 0.0434864536160281 = 4.3\%$$

Se han hecho 4 multiplicaciones y 3 sumas.

A continuación, vamos a aplicar el método de Horner:

•
$$\alpha = a = 4.71$$

$$b_2 = a_3 = 1$$

$$b_1 = a_2 + \alpha \cdot b_2 = -6 + 4.71 = -1.29$$

•
$$b_0 = a_1 + \alpha \cdot b_1 = 3 + (4.71) \cdot (-1.29) = 3 + (-6.0759) = 3 + (-6.08) = -3.08$$

$$P(\alpha) = a_0 + \alpha \cdot b_0 = -0.149 + (4.71) \cdot (-3.08) = -0.149 + (-14.5068) = -0.149 - 14.5 = -14.6$$

•
$$\delta_v = \frac{|-14.636489 - (-14.6)|}{|-14.636489|} = 0.00249301591385794 = 0.24\%$$

Se han hecho 2 multiplicaciones y 3 suma.

Ejercicio 2. 8 Sea $P(x) = 2x^4 - 3x^2 + 3x - 4$. Realice una iteración del método de Newton con $x_0 = -2$ y utilizando el algoritmo de Horner para evaluar P(-2) y P'(-2).

$$P(x) = 2x^4 - 3x^2 + 3x - 4.$$

$$\alpha = -2$$

$$b_3 = a_4 = 2$$

$$b_2 = a_3 + \alpha \cdot b_3 = 0 + (-2) \cdot 2 = -4$$

•
$$b_1 = a_2 + \alpha \cdot b_2 = -3 + (-2) \cdot (-4) = 5$$
;

$$b_0 = a_1 + \alpha \cdot b_1 = 3 + (-2) \cdot 5 = -7$$

$$P(\alpha) = a_0 + \alpha \cdot b_0 = -4 + (-2) \cdot (-7) = 10$$

$$Q(x) = 2x^3 - 4x^2 + 5x - 7$$

$$P'(-2) = Q(-2)$$

$$b_2' = b_3 = 2$$

$$b_1' = b_2 + \alpha \cdot b_2' = -4 + (-2) \cdot 2 = -8$$

$$b_0' = b_1 + \alpha \cdot b_1' = 5 + (-2) \cdot (-8) = 21$$

$$Q(-2) = b_0 + \alpha \cdot b_0' = -7 + (-2) \cdot (21) = -49$$

$$x_1 = -2 - \frac{10}{-49} = -1.79591836734694$$

Ejercicio 2. 9 Sea $P(x)=x^4-1$, cuyas raíces reales son $r_1=1$ y $r_2=-1$. Calcule, mediante el método de Horner y con aritmética de 4 dígitos, la descomposición $P(x)=Q^*(x)(x-0.9999)+P(0.9999)$. Realice una iteración del método de Newton para Q^* con $x_0=1$.

Factorización mediante el algoritmo de Horner:

$$P(x) = x^4 - 1$$
 $\alpha = 0.9999$

$$a_0 = -1$$
, $a_1 = a_2 = a_3 = 0$, $a_4 = 1$

$$b_3 = a_4 = 1$$

$$b_2 = a_3 + \alpha b_3 = 0 + (0.9999 * 1)^* = 0.9999$$

•
$$b_1 = a_2 + \alpha b_2 = 0 + (0.9999 * 0.9999)^* = (0.99980001)^* = 0.9998$$

•
$$b_0 = a_1 + \alpha b_1 = 0 + (0.9999 * 0.9998)^* = (0.99970002)^* = 0.9997$$

$$Q^*(x) = 0.9997 + 0.9998x + 0.9999x^2 + x^3$$

• Nota:
$$P(x) = (1 + x + x^2 + x^3)(x - 1)$$

Método de Newton:

$$Q^*(x) = x^3 + 0.9999x^2 + 0.9998x + 0.9997$$

$$Q^{*'}(x) = 3x^2 + 2x + 0.9998$$

$$Q^{*'}(1) = \begin{bmatrix} 3 & 2 & 0.9998 \\ 1 & 3 & 5 \\ \hline 3 & 5 & 6 \end{bmatrix} = 6$$

$$x_1 = 1 - \frac{4}{6} = 1 - 0.6667 = 0.3333$$

6 A. Palacio