

Лекция 8 Нейронные сети для снижения размерности

Полыковский Даниил

28 октября 2017 г.

Задача снижения размерности

Dimensionality reduction

Дано. N обучающих D-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) \mathbf{X} .

Найти. Найти преобразование $A: \mathcal{X} \to \mathcal{P}, dim(\mathcal{P}) = d < D,$ сохранив при этом большую часть "полезной информации" об \mathcal{X} .

Задача снижения размерности

Dimensionality reduction

Дано. N обучающих D-мерных объектов $\mathbf{x}_i \in \mathcal{X}$, образующих тренировочный набор данных (training data set) \mathbf{X} .

Найти преобразование $A: \mathcal{X} \to \mathcal{P}, dim(\mathcal{P}) = d < D,$ сохранив при этом большую часть "полезной информации" об \mathcal{X} . Применение:

- ▶ Визуализация в 2D или 3D (поиск структуры и закономерностей)
- ▶ Уменьшение затрат на ресурсы (память, время)
- ▶ Снижение уровня шума в данных

Снижение размерности, примеры

Рис.: Примеры данных¹

 $^{^{1}} stats. stack exchange. com/questions/56589/visualizing-high-dimensional-data \\$

Снижение размерности, примеры

Рис.: Примеры данных 2

 $^{^2} http://jntsai.blogspot.ru/2015/04/ammai-nonlinear-dimensionality.html$

Подходы к снижению размерности

Сохранение расстояний

$$\sum_{i,j=1}^{N} (||X_i - X_j||_{\chi} - ||y_i - y_j||_{\mathcal{P}})^2 o min$$

На этом принципе основаны MDS (евклидово расстояние) и Isomap (топологическое расстояние)

Точность восстановления

$$\sum\limits_{i=1}^{N}||X_i-X_i'||^2
ightarrow extit{min}$$

На этом принципе построены Автокодировщики, SOM, PCA

Метод главных компонент

PCA

Постановка задачи

Требуется найти гиперплоскость, задаваемую векторами $V_1, V_2, \dots V_d$, минимизирующую суммарное расстояние объектов до плоскости:

$$\sum_{n=1}^{N} ||h_n||^2 \to \min_{v_1, v_2, \dots, v_d}$$

Решение задачи

План доказательства

1. Переход к задаче максимизации $||x||^2 = ||h||^2 + ||p||^2 \Rightarrow ||h||^2 \rightarrow \min \Leftrightarrow ||p||^2 \rightarrow \max$ $\sum_{n=1}^N ||h_n||^2 \rightarrow \min_{v_1,v_2,\dots v_d} \Leftrightarrow \sum_{n=1}^N ||p_n||^2 \rightarrow \max_{v_1,v_2,\dots v_d}$

Решение задачи

План доказательства

1. Переход к задаче максимизации $||x||^2 = ||h||^2 + ||p||^2 \Rightarrow ||h||^2 \rightarrow \min \Leftrightarrow ||p||^2 \rightarrow \max$ $\sum_{n=1}^N ||h_n||^2 \rightarrow \min_{v_1,v_2,\dots v_d} \Leftrightarrow \sum_{n=1}^N ||p_n||^2 \rightarrow \max_{v_1,v_2,\dots v_d}$

2. Жадное построение векторов

$$\begin{cases} ||Xv_k||^2 \to \max_{v_k} \\ ||v_k||^2 = 1 \\ < v_i, v_k >= 0 \quad i = \overline{1, k - 1} \end{cases}$$

Решение задачи

План доказательства

1. Переход к задаче максимизации $||x||^2 = ||h||^2 + ||p||^2 \Rightarrow ||h||^2 \to \min \Leftrightarrow ||p||^2 \to \max$ $\sum_{n=1}^N ||h_n||^2 \to \min_{v_1,v_2,\dots v_d} \Leftrightarrow \sum_{n=1}^N ||p_n||^2 \to \max_{v_1,v_2,\dots v_d}$

2. Жадное построение векторов

$$\begin{cases} ||Xv_k||^2 \to \max_{v_k} \\ ||v_k||^2 = 1 \\ < v_i, v_k >= 0 \quad i = \overline{1, k - 1} \end{cases}$$

3. Доказательство оптимальности жадного набора векторов Сравним $L[v_1,v_2,\ldots,v_{k-1}]$ с другим набором $L[b_1,b_2,\ldots,b_{k-1}]$ $\sum\limits_{i=1}^{k-1}||Xv_i||^2\geq\sum\limits_{i=1}^{k-1}||Xb_i||^2$ (индуктивное предположение) $||Xv_k||^2\geq||Xb_k||^2$, т.к. v_k — решение оптимизационной задачи

PCA & SVD

Любая матрица может быть представлена в виде

$$X = U\Sigma V^T$$

где

 $U(N \times N)$ - ортогональная матрица левого сингулярного базиса (собственные вектора матрицы XX^T)

 $V(D \times D)$ - ортогональная матрица правого сингулярного базиса (собственные вектора матрицы X^TX)

 $\Sigma(N \times D)$ - диагональная матрица с сингулярными числами на главной диагонали (собственные значения X^TX)

Матрица главных компонет может быть вычислена:

$$XV = U\Sigma$$

Свойства SVD

 \blacktriangleright Число ненулевых сингулярных чисел σ_i^2 совпадает рангом X

$$||X||_F = \sqrt{\sum_{i,j=1}^{N,D} X_{i,j}^2} = \sqrt{\sum_{i=1}^r \sigma_i^2}$$

- ▶ Принято упорядочивать сингулярные числа: $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_t^2$
- Оптимальное по норме Фробениуса приближение X матрицой \tilde{X}_r ранга r получается занулением всех кроме r наибольших сингулярных чисел (оставляем первые r)
- Низкоранговое приближение соответствует выбору главных компонент

Выбор размерности нового пространства

Критерий

Ошибка восстановления:

$$L(r) = ||X - \tilde{X}_r||_F^2 = \sum_{i=r}^D \sigma_i^2$$

Относительная ошибка восстановления:

$$\hat{L}(r) = \frac{||X - \tilde{X}_r||_F^2}{||X||_F^2} = \frac{\sum_{i=1}^D \sigma_i^2}{\sum_{i=1}^D \sigma_i^2}$$

Критерий: $\hat{L}(r) \geq \eta$, где $\eta \sim 0.95$

Иллюстрация РСА

- Сдвигаем начало координат в центр выборки
- ▶ Поворачиваем оси, чтобы признаки не коррелировали
- ▶ Избавляемся от координат с малой дисперсией

PCA для лиц 3

PCA применяется для идентификации лиц людей. Для этого каждое лицо можно представить вектором координат в пространстве главных компонент.

³https://en.wikipedia.org/wiki/Eigenface

Eigenfaces

Рис.: "Собственные" лица

Kernel PCA

Выберем некоторое нелинейное преобразование $\phi: R^D \to H$, при котором в новом простренстве нелинейное многообразие выборки переходит в гиперплоскость.

Ядра

Ядро — скалярное произведение в новом пространстве $K(x,y) = \langle \phi(x), \phi(y) \rangle$. Его использование не требует перехода в пространство H.

PCA: требуется знять только $X^TX = K(X, X)$

Примеры ядер

- ▶ Линейное: $x^T y$
- ▶ Полиномиальное: $(1 + x^T y)^d$
- ► Γayccobo: $exp(-||x y||^2/\sigma^2)$

Пример Kernel PCA

16 / 36

Автокодировщики

Структура

- ightharpoonup Рассматривается сеть, обучаемая на отображении f(x)=x
- ▶ Внутри сети есть bottleneck слой, активации которого представление объектов в низкоразмерном пространстве
- ▶ В сверточных сетях: pooling/stride и deconvolution / unpooling

Применение

- Выделение признаков для других алгоритмов
- Снижение размерности
- Предобучение на неразмеченных данных

Denoising autoencoder

Примеры шума

- ▶ Нормальный шум: $\mathcal{N}(\mu, \sigma^2 I)$
- ▶ Маскирующий шум: часть элементов обнуляется
- ▶ Соль и перец: часть элементов принимают максимальное/минимальное допустимое значение

Denoising autoencoder

Рис.: Слева автоенкодер, справа автоенкодер с гауссовым шумом⁴

⁴Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion, 2010, P. Vincent, Y. Bengio, and others

Разреженный автокодировщик

Идея: можем использовать больший скрытый слой, если введем регуляризацию

Sparse autoencoder

Регуляризатор разреженности

- Хотим, чтобы каждый нейрон в среднем активировался в ρ случаях ($\rho = 0.05$)
- ightharpoonup Пусть средняя активация нейрона $\hat{
 ho}$
- ightharpoons Регуляризатор: $\mathrm{KL}\left(
 ho\|\hat{
 ho}\right) =
 ho\log\frac{
 ho}{\hat{
 ho}_j} + (1ho)\log\frac{1ho}{1-\hat{
 ho}_j}$

KL дивергенция

$$KL(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

- $KL(p||q) \geq 0$
- ▶ $KL(p||q) = 0 \Leftrightarrow p(x) = q(x)$ п.в

Sparse autoencoder⁵

Рис.: KL достигает минимального значение в точке $\hat{\rho}_i = \rho$

 $^{^5\}mathrm{Sparse}$ autoencoder, CS294A Lecture notes, Andrew Ng

Embedding regularized AutoEncoder ⁶

Совмещаем идею MDS и AE:

$$\begin{cases} \sum\limits_{i} ||X_i - \hat{X}_i||^2 \rightarrow \textit{min} \\ \sum\limits_{i,j} (||X_i - X_j|| - ||E_i - E_j||)^2 \rightarrow \textit{min} \end{cases}$$

В результате получаем более качественный embedding.

⁶http://www.ecmlpkdd2013.org/wp-content/uploads/2013/07/196.pdf

Самоорганизующиеся карты Кохонена

Описание структуры

Построим отображениие узлов решетки (прямоугольной или шестиугольной) в пространство данных.

$$\phi: \mathcal{A} \to \mathbb{R}^D$$
$$\phi(i) = m_i, i \in \mathcal{A}$$

- Соседние узлы решетки должны быть близки после отображения
- Образ узлов должен "хорошо" приближать данные

Визуализация

- ▶ 2D визуализация
- ▶ 3D визуализация

Шаги обучения SOM

Выбираем случайную точку из данных. Затем проводим обучение в 3 этапа:

- Соревнование нейроны борются за право быть активированными (только один победитель)
- ▶ Кооперация соседние с активным нейроны также активируются
- Адаптация изменение положений образов

Соревнование

- $i(x) = \arg\min_{i \in \mathcal{A}} ||x w_i||$
- ► i(x) может быть рассмотрен как механизм внимания
- ▶ Эта часть алгоритма кодирование, т.е. $\mathbb{R}^D \to \mathcal{A}$

Кооперация

- Зададим значение активаций нейронов
- Более далекие от победителя нейроны получают меньшую активацию
- ▶ Расстояние на решетке: $d_{i,j}$
- Активация:

$$h_{j,i(x)} = \exp(-d_{jj}^2/2\sigma^2)$$

Адаптация

▶
$$w_j = (1 - \eta h_{j,i(x)})w_j + \eta h_{j,i(x)}x$$
▶ $\eta(n) = \eta_0 \exp(-n/\tau_2)$
Пример:
 $||x - w_0|| = 0.1$
 $||w_0 - w_1|| = ||w_0 - w_2|| = ||w_0 - w_3|| = ||w_0 - w_4|| = 1$
 $\sigma = \eta = 1$
 $\exp(-1) \simeq 0.4$
 $\exp(-0.5) \simeq 0.6$
Найти вектор обновлений образов
 w_0, w_1, w_2, w_3, w_4

Фазы обучения Этап сортировки

Карта производит топологическую сортировку своих узлов

Количество итераций: 1000 $\eta_0=0.1,\, au_2=1000$ $h_{j,i(x)}$ содержит почти все нейроны

Этап сходимости

Карта ищет оптимальное квантование исходного пространства

Количество итераций: $\sim 500 \cdot |\mathcal{A}|$ $0 < \eta \le 0.01$ $h_{j,i(x)}$ содержит малую окрестность

Отображение модели

 U-matrix: каждому нейрону приписывается среднее расстояние до его топологических соседей

Рис.: U-matrix и k-means кластеризация в новом пространстве 7

 $^{^{7}}$ http://www.mdpi.com/1660-4601/11/4/3618/htm

Уровень бедности

Рис.: SOM стран по 39 показателям World Bank⁸

⁸http://www.cis.hut.fi/research/som-research/worldmap.html

Уровень бедности

Рис.: Цвета кластеров перенесены на реальную карту 9

⁹http://www.cis.hut.fi/research/som-research/worldmap.html

Вопросы

