Objective of the problem statement

Use decision trees to prepare a model on fraud data treating those who have taxable_income
 30000 as "Risky" and others are "Good"

1. Import necessary libraries

```
In [56]: import pandas as pd
```

2. Importing data

```
In [57]: fc_data = pd.read_csv('Fraud_check.csv')
fc_data
```

Out[57]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO
595	YES	Divorced	76340	39492	7	YES
596	YES	Divorced	69967	55369	2	YES
597	NO	Divorced	47334	154058	0	YES
598	YES	Married	98592	180083	17	NO
599	NO	Divorced	96519	158137	16	NO

600 rows × 6 columns

3. Data Understanding

3.1 Initial Analysis

```
In [58]: fc_data.shape
Out[58]: (600, 6)
```

```
In [6]: fc_data.dtypes
 Out[6]: Undergrad
                             object
         Marital.Status
                             object
         Taxable.Income
                              int64
         City.Population
                              int64
         Work.Experience
                              int64
         Urban
                             object
         dtype: object
In [59]: fc_data.isna().sum()
Out[59]: Undergrad
                             0
         Marital.Status
                             0
         Taxable.Income
                             0
         City.Population
                             0
         Work.Experience
                             0
         Urban
         dtype: int64
```

4. Data Preparation

```
In [60]: from sklearn import preprocessing

In [61]: # Create numerical variable for categorical data
    label_encoder = preprocessing.LabelEncoder()
    fc_data['Undergrad'] = label_encoder.fit_transform(fc_data['Undergrad'])
    fc_data['Marital.Status'] = label_encoder.fit_transform(fc_data['Marital.Status']
    fc_data['Urban'] = label_encoder.fit_transform(fc_data['Urban'])
In [62]: fc_data
```

Out[62]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	0	2	68833	50047	10	1
1	1	0	33700	134075	18	1
2	0	1	36925	160205	30	1
3	1	2	50190	193264	15	1
4	0	1	81002	27533	28	0
595	1	0	76340	39492	7	1
596	1	0	69967	55369	2	1
597	0	0	47334	154058	0	1
598	1	1	98592	180083	17	0
599	0	0	96519	158137	16	0

In [63]: fc_data.head(20)

Out[63]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	0	2	68833	50047	10	1
1	1	0	33700	134075	18	1
2	0	1	36925	160205	30	1
3	1	2	50190	193264	15	1
4	0	1	81002	27533	28	0
5	0	0	33329	116382	0	0
6	0	0	83357	80890	8	1
7	1	2	62774	131253	3	1
8	0	2	83519	102481	12	1
9	1	0	98152	155482	4	1
10	0	2	29732	102602	19	1
11	0	2	61063	94875	6	1
12	0	0	11794	148033	14	1
13	0	1	61830	86649	16	1
14	0	1	64070	57529	13	1
15	0	0	69869	107764	29	0
16	1	0	24987	34551	29	0
17	1	1	39476	57194	25	0
18	1	0	97957	59269	6	0
19	0	2	10987	126953	30	1

```
In [18]: fc_data.info
Out[18]: <bound method DataFrame.info of
                                                 Undergrad
                                                             Marital.Status Taxable.Income
          City.Population \
                                         2
                                                     68833
                                                                        50047
                                         0
          1
                        1
                                                     33700
                                                                       134075
          2
                                         1
                                                     36925
                                                                       160205
          3
                        1
                                                     50190
                                                                       193264
                                         1
                                                     81002
                                                                        27533
          595
                       1
                                         0
                                                     76340
                                                                        39492
          596
                       1
                                                     69967
                                                                        55369
          597
                                                     47334
                                                                       154058
          598
                        1
                                         1
                                                     98592
                                                                       180083
          599
                        0
                                                     96519
                                                                       158137
               Work.Experience Urban
          0
                             10
          1
                             18
          2
                             30
          3
                             15
                                     1
                             28
          4
                              7
          595
                                     1
                              2
          596
          597
                              0
                                     1
          598
                             17
          599
                             16
```

5. Model Building

[600 rows x 6 columns]>

5.1 Separate input & output

```
In [64]: X = fc_data.drop(labels = 'Taxable.Income', axis=1)
y = fc_data[['Taxable.Income']]
```

In [65]: X

Out[65]:

	Undergrad	Marital.Status	City.Population	Work.Experience	Urban
0	0	2	50047	10	1
1	1	0	134075	18	1
2	0	1	160205	30	1
3	1	2	193264	15	1
4	0	1	27533	28	0
595	1	0	39492	7	1
596	1	0	55369	2	1
597	0	0	154058	0	1
598	1	1	180083	17	0
599	0	0	158137	16	0

600 rows × 5 columns

In [66]: y

Out[66]:

	Taxable.Income				
0	68833				
1	33700				
2	36925				
3	50190				
4	81002				
595	76340				
596	69967				
597	47334				
598	98592				
599	96519				

5.2 Train test split

600 rows × 1 columns

In [67]: from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test = train_test_split(X,y, test_size = 0.20, random_st

```
In [68]: X_train
```

Out[68]:

	Undergrad	Marital.Status	City.Population	Work.Experience	Urban
82	0	0	111068	26	1
568	0	2	150036	22	1
347	0	1	80991	0	1
544	0	2	133877	21	1
34	1	0	183767	1	1
129	1	2	65469	26	0
144	1	2	156503	29	1
72	1	0	108300	27	1
235	0	0	87541	9	0
37	0	1	66912	5	1

```
In [69]: # for training data
X_train.shape,y_train.shape
```

```
Out[69]: ((480, 5), (480, 1))
```

```
In [70]: # for test data
X_test.shape,y_test.shape
```

Out[70]: ((120, 5), (120, 1))

6. Model training

```
In [71]: from sklearn.tree import DecisionTreeClassifier
dt_model = DecisionTreeClassifier(criterion='gini', max_depth=5)
dt_model.fit(X_train,y_train)
```

Out[71]: DecisionTreeClassifier(max_depth=5)

Plot Tree

```
In [72]: #Prepare a plot figure with set size
from sklearn.tree import plot_tree
from matplotlib import pyplot as plt
```

```
In [73]: plt.figure(figsize=(16,10))
         plot_tree(dt_model,rounded=True,filled=True)
         plt.show()
```


7. Model Testing

```
In [29]: #Training data
         y_train_pred = dt_model.predict(X_train)
```

```
In [30]: # Test data
         y_test_pred = dt_model.predict(X_test)
```

8. Model Evaluation

In [31]: from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion

Training data

```
In [74]: | accuracy_score(y_train,y_train_pred)
```

Out[74]: 0.04583333333333333

```
In [75]: confusion_matrix(y_train,y_train_pred)
Out[75]: array([[0, 0, 0, ..., 0, 0, 0],
                  [0, 1, 0, \ldots, 0, 0, 0],
                  [0, 0, 1, \ldots, 0, 0, 0],
                  [0, 1, 0, \ldots, 0, 0, 0],
                  [0, 0, 1, \ldots, 0, 0, 0],
                  [0, 1, 0, ..., 0, 0, 0]], dtype=int64)
In [76]: print(classification_report(y_train,y_train_pred))
                  54638
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  54850
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  55299
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                                                     0.00
                  55308
                               0.00
                                          0.00
                                                                    1
                  55873
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                               0.00
                                                     0.00
                                                                    1
                  55981
                                          0.00
                  56129
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56166
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56438
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56501
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56536
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56555
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  56647
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                               0.00
                  56974
                                          0.00
                                                     0.00
                                                                    1
                  57365
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  58199
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  58403
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  58451
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                               0.00
                                          0.00
                                                     0.00
                                                                    1
                  58635
                  59751
                               a aa
                                          a aa
                                                     a aa
```

For Testing Data

```
In [80]: print(classification report(y test,y test pred))
                         precision
                                       recall f1-score
                                                            support
                  10003
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  10163
                              0.00
                                         0.00
                                                    0.00
                                                                0.0
                  10329
                              0.00
                                                    0.00
                                                                0.0
                                         0.00
                  10348
                              0.00
                                         0.00
                                                    0.00
                                                                0.0
                  10455
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  11784
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  11865
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  12083
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                              0.00
                                                    0.00
                  12453
                                         0.00
                                                                0.0
                  12470
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  12514
                              0.00
                                         0.00
                                                    0.00
                                                                0.0
                  13068
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  14398
                              0.00
                                         0.00
                                                    0.00
                                                                0.0
                  14912
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                  15532
                              0.00
                                                    0.00
                                         0.00
                                                                1.0
                  15710
                              0.00
                                         0.00
                                                    0.00
                                                                1.0
                                         0.00
                                                    0.00
                  16690
                              0.00
                                                                1.0
```

9 .Model Deployment

```
In [35]: from pickle import dump
In [84]: dump(dt_model,open('log_model.pkl','wb'))
In [85]: from pickle import load
In [86]: dt_model_pickle = load(open('log_model.pkl','rb'))
In [87]: pickle_pred = dt_model_pickle.predict(X_test)
```

Conclusion:-We can see maximum depth of tree 5 is good as accuracy prospective & classification is good technique for predict the sale & regression is not usual to good at this dataset