Master Plan - Isak Hammer Solving Cahn-Hilliard Equation using CutCIP

Version: February 13, 2023

	Phase 1	Phase 2	Phase 3	Phase 4	Report
Estimated time	2-3 Weeks	4-5 Weeks	2 Weeks	3 Weeks	
Problem	CutDG for $-\Delta u = f$	CutCIP for $\Delta^2 u = f$	CutCIP for $\partial_t u + \Delta^2 u = g$	CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$	Prorgess in report
Goals	 Analysis ✓ Coercivity ✓ Boundedness ✓ A priori estimates ✓ Condition number ✓ Constructing face based gh Implementation ✓ Poisson CutDG ✓ L² convergence ✓ H¹ convergence ✓ ah, * convergence ✓ Implement P² elements 		 Analysis ■ BDF analysis • Implementation □ First plot □ L²L² convergence □ L²H¹ convergence 	• Implementation \square Fixed point method \square L^2L^2 convergence \square L^2H^1 convergence	□ Introduction □ Mathematical background □ CutDG $-\Delta u = f$ ☑ Bounded and coercive □ A priori estimates □ Condition number □ Constructing g_h □ Numerical experiments □ CutCIP for $\Delta^2 u = f$ □ Weak form in H^4 □ Construction of CutCIP □ Well-posedness □ A priori estimates □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u = g$ □ Time discretization □ Numerical experiments □ CutCIP for $\partial_t u + \Delta^2 u + f(u) = g$ □ Fixed point methods □ Numerical experiments □ Conclusion
Comments	Mostly based on (Gürkan and Massing, 2019)	† Not prioritized			Marked done only if it is 95% done.
Digression		2nd order mixed formulation	2nd order mixed formulation	Solve $\partial_t u + \kappa(u)\Delta^2 u = g$	

What have I done this week?

- Very productive since last time. Mostly been busy verifying every single sentence in Gürkan and Massing, 2019. There is some minor details here and there, but I agree very much with the proofs.
- Here is some numerical results.

What am I planning to do next week?

- Seems like the next 5 weeks will be the most intense part of my master thesis.
- Start easy with coercivity and boundedness for Biharmonic Equation.

Other

- 1) Maybe exam in mid of April?
- 2) Easter 5.-10. April

h/L	$ e _{L^2}$	EOC	$ e _{H^1}$	EOC	$ e _{a_h,*}$	EOC
$\frac{1}{4}$	1.073E-01		8.184E-01		1.395E+00	
<u>1</u> 8	2.909E-02	1.883E+00	4.184E-01	9.680E-01	6.186E-01	1.173E+00
$\frac{1}{16}$	6.795 E-03	2.098E+00	2.162E-01	9.524E-01	2.959E-01	1.064E+00
$\frac{1}{32}$	1.620E-03	2.069E+00	1.089E-01	9.896E-01	1.414E-01	1.066E+00
$\frac{\frac{1}{64}}{}$	3.928E-04	2.044E+00	5.453E-02	9.978E-01	6.871E-02	1.041E+00

Table 1: Order 1

h/L	$ e _{L^2}$	EOC	$ e _{H^1}$	EOC	$ e _{a_h,*}$	EOC
$\frac{1}{4}$	5.910E-03		7.007E-02		1.697E-01	
$\frac{1}{8}$	8.971E-04	2.720E+00	1.876E-02	1.901E+00	4.505E-02	1.914E+00
1	9.344E-05	3.263E+00	4.314E-03	2.121E+00	9.251E-03	2.284E+00
$\frac{\overline{16}}{\overline{32}}$	9.717E-06	3.265E+00	1.013E-03	2.091E+00	2.088E-03	2.147E+00
$\frac{\frac{32}{64}}{}$	1.113E-06	3.126E+00	2.453E-04	2.046E+00	4.989E-04	2.065E+00

Table 2: Order 2