

deeplearning.ai

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Andrew Ng

Neural network gradients

Veural network gradients
$$\frac{x}{b^{[2]}} = w^{[1]}x + b^{[1]} \Rightarrow a^{[1]} = \sigma(z^{[1]}) \Rightarrow z^{[2]} = w^{[2]}x + b^{[2]} \Rightarrow a^{[2]} = \sigma(z^{[2]})$$

du = de a T ->

Andrew Ng

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Summary of gradient descent \Rightarrow

$$dz^{[2]} = \underline{a^{[2]}} - \underline{y}$$

$$dz^{[2]} = A^{[2]} - \underline{y}$$

$$dz^{[2]} = A^{[2]} - \underline{y}$$

 $dW^{[2]} = dz^{[2]}a^{[1]^T}$

 $db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$

 $db^{[2]} = dz^{[2]}$ $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$ $dW^{[1]} = dz^{[1]}x^{T}$ $db^{[2]} = \frac{1}{m}np. sum(dZ^{[2]}, axis = 1, keepdims = True)$ $dZ^{[1]} = W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]})$ $dW^{[1]} = dz^{[1]}x^{T}$ $dW^{[1]} = \frac{1}{m}dZ^{[1]}X^{T}$

$$Z^{[2]}$$
, ax

 $dh^{[1]} = dz^{[1]}$

$$dw^{[2]} = dz^{[2]}$$

$$db^{[2]} = \frac{1}{m} np. sum(dZ^{[2]})$$

Velowize $dZ^{[2]} = A^{[2]} - Y$ $dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]^T}$

$$dZ^{[2]} = a^{[2]} - y$$
 $dZ^{[2]} = A^{[2]} - Y$
 $dW^{[2]} = \frac{1}{d}Z^{[2]}A^{[1]^T}$

$$|V| = a^{[2]} - y$$
 $|V| = a^{[2]} - y$
 $|V| = a^{[2]} - Y$

- y

Velowise
$$dZ^{[2]} = A^{[2]} - Y$$

Andrew Ng