

Lab 6: Display devices, LCD display

Learning objectives

After completing this lab you will be able to:

- Use text-based LCD
- Understand the digital communication between MCU and HD44780
- Use library functions for LCD
- Generate custom characters on LCD

The purpose of the laboratory exercise is to understand the serial control of Hitachi HD44780-based LCD character display and how to define custom characters. Another goal is to learn how to read documentation for library functions and use them in your own project.

Preparation tasks (done before the lab at home)

Use schematic of the LCD keypad shield and find out the connection of LCD display. What data and control signals are used? What is the meaning of these signals?

LCD signal(s)	AVR pin(s)	Description
RS	PB0	Register selection signal. Selection between Instruction register (RS=0) and Data register (RS=1)
R/W	GND	Read/write (active low) selector
Е	PB1	Enable: Starts data read/write
D[3:0]	N/C (we use 4-bit mode)	Four low order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. These pins are not used during 4-bit operation
D[7:4]	PD4, PD5, PD6, PD7	Four high order bidirectional tristate data bus pins. Used for data transfer and receive between the MPU and the HD44780U. DB7 can be used as a busy flag.

What is the ASCII table? What are the codes/values for uppercase letters $\ a$ to $\ z$, lowercase letters $\ a$ to $\ z$, and numbers $\ 0$ to $\ 9$ in this table?

Hex	Dec	Char	Hex	Dec	Char	Hex	Dec	Char
0x41	65	A	0x61	97	a	0x30	48	0
0x42	66	В	0x62	98	b	0x31	49	1
0x43	67	C	0x63	99	C	0x32	50	2
0x44	68	D	0x64	100	d	0x33	51	3
0x45	69	E	0x65	101	е	0x34	52	4
0x46	70	F	0x66	102	f	0x35	53	5
0x47	71	G	0x67	103	g	0x36	54	6
0x48	72	H	0x68	104	h	0x37	55	7
0x49	73	I	0x69	105	i	0x38	56	8
0x4A	74	J	0x6A	106	j	0x39	57	9
0x4B	75	K	0x6B	107	k			
0x4C	76	L	0x6C	108	1			
0x4D	77	M	0x6D	109	m			
0x4E	78	N	0x6E	110	n			
0x4F	79	0	0x6F	111	0			
0x50	80	P	0x70	112	p			
0x51	81	Q	0x71	113	q			
0x52	82	R	0x72	114	r			
0x53	83	S	0x73	115	s			
0x54	84	\mathbf{T}	0x74	116	t			
0x55	85	U	0x75	117	u			
0x56	86	V	0x76	118	v			
0x57	87	W	0x77	119	W			
0x58	88	X	0x78	120	x			
0x59	89	Y	0x79	121	y			
0x5A	90	\mathbf{z}	0x7A	122	Z			

Part 3: Library for HD44780 based LCDs

In the lab, we are using LCD library for HD44780 based LCDs developed by Peter Fleury. Use the online manual of LCD library and add the input parameters and description of the following functions.

Function name	Function parameters	Description	Example
lcd_init	LCD_DISP_OFF LCD_DISP_ON LCD_DISP_ON_CURSOR LCD_DISP_ON_CURSOR_BLINK	Display off Display on, cursor off Display on, cursor on display on, cursor on, blink char	<pre>lcd_init(LCD_DISP_ON_CURSOR)</pre>
lcd_clrscr	none	Clear display and set cursor to home position.	<pre>lcd_clrscr();</pre>
lcd_gotoxy	uint8_t x position, uint8_t y position	Set cursor to specified position.	<pre>lcd_gotoxy(0, 1);</pre>
lcd_putc	char c, to be displayed	Display character at current cursor position.	<pre>lcd_putc('x');</pre>
lcd_puts	char *s, array of chars	Display string without auto linefeed.	<pre>lcd_puts("msg");</pre>
lcd_command	LCD_CLR LCD_HOME etc (see)	Send LCD controller instruction command.	<pre>lcd_command(LCD_CLR);</pre>
lcd_data	uint8_t data, to be sent	Send data byte to LCD controller.	<pre>lcd_data('c');</pre>

LCD display module

- 1. In your words, describe what ASCII table is.
 - ASCII is table that defines number value for standard characters (letters, numbers, control characters like new line/delete etc.)
- 2. (Hand-drawn) picture of time signals between ATmega328P and LCD keypad shield (HD44780 driver) when transmitting three character data De2.

Stopwatch

1. Flowchart figure for TIMER2_OVF_vect interrupt service routine which overflows every 16 ms but it updates the stopwatch LCD approximately every 100 ms (6 x 16 ms = 100 ms). Display tenths of a second and seconds @:seconds.tenths. Let the stopwatch counts from @:@0.0 to @0:59.9 and then starts again. The image can be drawn on a computer or by hand. Use clear descriptions of the individual steps of the algorithms.

Custom characters

1. Code listing with syntax highlighting of two custom character definition:

```
/* Variables -----
// Custom character definition
uint8_t custom_char_1[8] = {
    0b00111,
    0b01110,
    0b11100,
    0b11000,
    0b11100,
    0b01110,
    0b00111,
    0b00011
};
uint8_t custom_char_2[8] = {
    0b01100,
    0b01100,
    0b01100,
    0b01100,
    0b01100,
    0b00000,
    0b01100,
    0b01100
};
```

Kitchen alarm

Consider a kitchen alarm with an LCD, one LED and three push buttons: start, +1 minute, -1 minute. Use the +1/-1 minute buttons to increment/decrement the timer value. After pressing the Start button, the countdown starts. The countdown value is shown on the display in the form of mm.ss (minutes.seconds). At the end of the countdown, the LED will start blinking.

1. Scheme of kitchen alarm; do not forget the supply voltage. The image can be drawn on a computer or by hand. Always name all components and their values.

