

NovuTensor: Hardware Acceleration of Deep Convolutional
Neural Networks for AI

Making Things Think

Miao (Mike) Li May 23, 2018

NovuMind --- Super Computing + Algorithm + IC

Deep Learning CNN Is Based on 3D Convolution

- The core of CNN is 3-D Convolution Computation
- Deeper CNN needs more 3-D Convolution Computation
 - AlexNet -> VGG -> ResNet -> ...
- DCNN is a network topology composed of basic computation elements (e.g., 3x3 3-D Convolutions)

Basic Computation Element: 3D Convolution

- Input Feature Map (IFM),
 Filter and Output Feature
 Map (OFM) are all 3D data
- 3D Convolution:
 - Inner product,
 Summation for each
 OFM pixel
 - Stride filter over IFM to form other OFM pixels
- Repeat with another filter on the same IFM

Conventional 1D, 2D Implementation of 3D Convolution

TPU with 2D Systolic Array

1D Pipelining, Multi-Core

Processor Pipelining Speed Up Opportunity

Al DSP Example Block Diagram Parallel Cores for Acceleration Peak 1T/s, Average 0.2T/s

Efficiency: 20%

2D Overhead in Computing 3D Data (TPU)

1080Ti Throughput:

Peak: 11TOPS/s

Effective: 2.4TOPS/s

(ResNet18)

Efficiency: 22%

TPU Throughput:

Peak: 96TOPS/s

Average: 23TOPS/s

Efficiency: 24%

2D Accelerators for Deep Learning

Mesh Structure and Systolic Array

- Overhead to prepare the 3D data into 2D data
- Overhead to feed data
 - TPU uses 256x256 systolic array->needs 65536 data to fill
- Systolic Array got 2D parallel acceleration only when data is loaded

1D, 2D, 3D - An Ice Cream Example

How Do You Eat Ice Cream?

- Data Movement:
 - Need a scoop, then the art of scooping
 - Need a spoon or cone that is mouth size
- Arithmetic:
 - Need a mouth to consume the ice cream

From Mesh to Collective Streaming

- Unnecessary Assumptions with Mesh:
 - dqual distance; deighboring data dependency
- Collective Streaming, and CNN 3D Data Processing: Data independency b/w PEs:
 - no data flow
 - no need to be rectangular, PEs can be flexible to have dozens to thousands of MACs

The Scooping: Tile Based Operation (patented)

- NovuTensor does not need all tensor data at once
- Instead, it divides input/output of one DCNN layer into may tiles, and each time works on one tile

When all tiles of one layer finishes, (the scoop) moves on to next

Efficiency Potentials

- Efficient Data Movement
 - Reduce unnecessary data movement off chip and on chip
 - Fully exploit data sharing, re-using:
 - IFM sharing between OFMs
 - Weight sharing within IFM (X-Y)
 - Weight sharing within batch
- Efficient Arithmetic Logic
 - Reduce unnecessary computation

IFM Sharing Among Multiple PEPs

For multiple PEPs, each PEP is sharing the same IFM while generating different OFMs (IFM sharing)

Weight Sharing Inside Tile

- Inside each tile, weight is shared in X-Y direction
 - Taking advantage of mathematic characteristics of convolution

Weight Sharing with Batches

• For multi-batch input, different batches share same weight

Math Behind Tiling: Outer Product (Patented)

Each outer product consists of 1-D data, 1-D broadcasts and 2-D computations

Hardware Architecture for Tiling

Each A and B is broadcast to multiple processing engines (sub-nodes)

NovuTensor at CES2018

	NT-BB FPGA	Server GPU
Perform ance (FPS)	301	666
Power (W)	12	250

1/20 Power Consumption

1/2 Performance

ResNet18

ImageNet Classification

Major AI Chips in Market

Name	Power Consumption (w)	Performance (Effective TOPS, VGG16)	Performance Power Ratio (TOPS/W)	
#1 Embedded	1.5 (500MHz)	0.2	0.13	
#2 Smartphone	NA (use as IP)	0.19	NA	P
#3 Smartphone	NA (use as IP)	0.3	NA	
NovuMind NT-BB ("BlackBear")	12~18	2.5	0.21 (FPGA)	
NovuMind NT-GZ ("Grizzly")	5~10	11 (peak 14)	2.25 (ASIC)	
Embedded GPU	10	0.4	0.04	
Data Center AI ASIC	40	23	0.58	D
Server GPU	250	6.6	0.026	

Low Power

Low Performance

Cannot meet the requirements of most AI computing needs.

High Power
High Performance

Cannot meet the requirements of most edge application scenarios.

NovuTensor: Server performance within embedded power

The most power-efficient chip on the market!

Super Resolution at CES2018: Beauty Made by Muscle

The world's 1st in

using AI super resolution technology to upscale low-resolution video into 4k or 8k UHD video in real time

- Intelligently fill the details to ensure ultrahigh quality
- Solve the problem of media content lacking 4K / 8K resolutions for online video and air broadcasting

NovuTensor Kestrel: When Grizzly Flies

Mobile AI IC Name	Power Consumption (W)	Performance (Effective TOPS, VGG16)
NovuTensor Kestrel	1	5 (160 fps)
iPhone X A11 Bionic	NA	0.33
HUAWEI HiSilicon Kirin970	NA	0.5
Samsung Galaxy S8 Snapdragon 835	NA	0.2

Call to Action

Please visit Booth #704 and our website http://www.novumind.com

Resources

> CES January 2018:

http://share.gmw.cn/tech/2018-01/11/content 27322512.htm?from=message&isappinstalled=0

HP Enterprise + NovuMind at GTC October 2017

"Improving Deep Learning Scalability on HPE Servers With NovuMind: GPU RDMA Made Easy"

https://www.leiphone.com/news/201710/GG9umC93Gtav2Eac.html

Real Time Endoscopic Application at West China Hospital, July~August 2017

SCTV Video: http://www.iqiyi.com/v_19rrefrw1g.html

People's Daily News: http://health.people.com.cn/n1/2017/0801/c14739-29440444.html CCTV: http://jiankang.cctv.com/2017/07/28/ARTIE26PkbwL9t34pFS8jblW170728.shtml

> AI Start-up NovuMind Helps European City Improve Their Green Life

https://smartcitiesworld.net/news/news/ai-equals-a-greener-life-for-trondheim-2407

