Combinatorics

Thomas Fleming

November 15, 2021

Contents

Lecture 31: Blowup Lemma

Fri 12 Nov 2021 16:22

Recall an ε -regular pair (A, B) admits an (ε, δ) -super-regular pair (A', B') with $A' \subseteq A, B' \subseteq B$.

Now, recall that for some $\varepsilon > 0$, if $n > \varepsilon^{-4}$, the the bipartite double of P_n is ε -regular. We construct a super-regular subpair from this bipartite double, denoted B_n with partite sets A, B. Applying the expander mixing lemma to two subsets $X \subseteq A$, $Y \subseteq B$ with $|X| > \varepsilon n$ $|Y| > \varepsilon n$, we find

$$\left(\frac{1}{2} - \varepsilon\right) |X| \, |Y| < e\left(X,Y\right) < \left(\frac{1}{2} + \varepsilon\right) |X| \, |Y| \, .$$

Then, inducing four subsets each of size $\sim \frac{n}{2}$, denoted A_1, A_2, B_1, B_2 of A and B respectively and completing the subgraphs (A_1, B_1) and (A_2, B_2) we see $d(A_1, B_1) = d(A_2, B_2) = 1$ and $d(A_1, B_2) \simeq d(A_2, B_1) \simeq \frac{1}{2}$. Collecting the densities, we find $d(A', B') = \frac{3}{4}$ where A', B' denote the sets A, B with the extra edges added between A_1, B_1 and A_2, B_2 . From this, we can compute the new graph to be $\left(\varepsilon, \frac{1}{2+\kappa}\right)$ -super regular for $\kappa > 0$.

Recall. We can obtain the blowup of a graph G on vertices $\{v_1, v_2, \ldots, v_r\}$ by replacing each vertex with a set V_1, V_2, \ldots, V_r where each V_i is of equal cardinality. We construct the edges such that if $v_i \sim v_j$, then (V_i, V_j) is complete otherwise (V_i, V_j) is disconnected. Moreover if $|V_1| = \ldots = |V_r| = t$, then the blowup of this graph is $G \otimes J_t$.

Definition 0.1 (Generalized Blowup). Let R be a graph with $V(R) = \{v_1, \ldots, v_r\}$. Then, we replace each vertex v_i with a set V_i of cardinality n_i and connect these sets in the same manner as a normal blowup. The induced graph is denoted $R(n_1, \ldots, n_r)$ and called the **generalized blowup**.

We modify this construction slightly. Let $\varepsilon, \delta \in (0,1)$. Then we construct a new graph by applying the generalized blowup to G with numerical vector (n_1, \ldots, n_r) , but rather than each connected pair $v_i \sim v_j$ inducing a complete bipartite subgraph, we only connect sufficient edges in order for V_i, V_j to form an (ε, δ) -super regular pair. We denote this new graph $R_{\varepsilon,\delta}(n_1, \ldots, n_r)$.

Theorem 0.1 (Blowup Lemma). Let R be a graph of order r with $\delta > 0$ and $\Delta \in \mathbb{N} \setminus \{1\}$. Then, there is $\varepsilon > 0$ so that if $H \subseteq R(n_1, n_2, \dots, n_r)$ with $\Delta(H) \leq \Delta$, then $H \subseteq R_{\varepsilon,\delta}(n_1, \dots, n_r)$

This lemma is especially useful because it allows us to efficiently embed binary trees within these modified blowups. It is trivial to embed a binary tree into a complete generalized blowup, and $\Delta\left(T\right)=3$ for a binary tree T, hence fixing a $\delta>0$ we can find an ε so that the tree embeds in $R_{\varepsilon,\delta}\left(n_1,\ldots,n_r\right)$ as well.

Lecture 32

Mon 15 Nov 2021 10:24

Definition 0.2 (Cut Norm of Matrices). Let A, be an $m \times n$ (possibly complex) matrix and define the **cut norm** of A to be

$$||A||_{\square} = \sup \left\{ \left| \sum_{i \in S, j \in T} a_{ij} \right| : S \subseteq [m], T \subseteq [n] \right\}.$$

Remark. If $A \geq 0$ is a nonnegative real matrix, we find $||A||_{\square} = |A|_{1} = \sum_{i \in [-1]} a_{ii}$.

 $\sum_{i \in [m], j \in [n]} a_{ij}$. Similarly, for a nonpositive real matrix we find the cut norm to again be the modulus of the sum of entries.

Moreover