The Prime Square Theorem

Saksham Sethi

1 Statement

Let p_n denote the n^{th} prime number. $(p_1p_2p_3...p_k)+1$ can never be a perfect square.

2 Proof

```
Let q = (p_1 p_2 p_3 ... p_k) + 1.
```

We use contradiction. Assume q IS a perfect square.

Then, $(p_1p_2p_3...p_k)+1=m^2$, which simplifies to $p_1p_2p_3...p_k=(m+1)(m-1)$. Note $p_1=2$, which is even. This means $p_1p_2p_3...p_k$ is also even, which indirectly means q is odd. Since q is odd, m must be odd too since an even number squared can't be odd. Since m is odd, (m+1) and (m-1) are both even, making $(m+1)(m-1)=p_1p_2p_3...p_k$ a multiple of 4. Now if we recall, 2 is the only prime and $p_1p_2p_3...p_k$ only has one factor of 2. This contradicts!

And we're done.