### Модели управления запасами

Виктор Васильевич Лепин

#### Логистика

#### Внешняя логистика: концепция системы снабжения сборочного предприятия



### Логистика

#### Моделирование сети поставок: сравнение структур и сценариев



Предприятия, фирмы имеют различные запасы: сырье, комплектующие изделия, готовую продукцию, предназначенную для продажи, и т. д. Совокупность подобных материалов, представляющих временно не используемые экономические ресурсы, называют запасами предприятия.

Предприятия, фирмы имеют различные запасы: сырье, комплектующие изделия, готовую продукцию, предназначенную для продажи, и т. д. Совокупность подобных материалов, представляющих временно не используемые экономические ресурсы, называют запасами предприятия.

• Спрос. Спрос на запасаемый продукт может быть детерминированным (в простейшем случае — постоянным во времени) или случайным (случаен момент спроса, либо объем спроса и др.).

Предприятия, фирмы имеют различные запасы: сырье, комплектующие изделия, готовую продукцию, предназначенную для продажи, и т. д. Совокупность подобных материалов, представляющих временно не используемые экономические ресурсы, называют запасами предприятия.

- Спрос. Спрос на запасаемый продукт может быть детерминированным (в простейшем случае постоянным во времени) или случайным (случаен момент спроса, либо объем спроса и др.).
- Пополнение склада. Пополнение склада может осуществляться либо периодически через определенные интервалы времени, либо по мере снижения запасов до некоторого уровня.

• Объем заказа. При периодическом пополнении и случайном исчерпании запасов объем заказа может зависеть от того состояния, которое наблюдается в момент подачи заказа. Заказ обычно подается на одну и ту же величину при достижении запасом заданного уровня — так называемой точки заказа.

- Объем заказа. При периодическом пополнении и случайном исчерпании запасов объем заказа может зависеть от того состояния, которое наблюдается в момент подачи заказа. Заказ обычно подается на одну и ту же величину при достижении запасом заданного уровня так называемой точки заказа.
- Количество товара, поставляемое на склад, называют размером партии.

- Объем заказа. При периодическом пополнении и случайном исчерпании запасов объем заказа может зависеть от того состояния, которое наблюдается в момент подачи заказа. Заказ обычно подается на одну и ту же величину при достижении запасом заданного уровня так называемой точки заказа.
- Количество товара, поставляемое на склад, называют размером партии.
- Время доставки в идеализированных моделях управления запасами предполагается, что заказанное пополнение доставляется на склад мгновенно. В других моделях рассматривается задержка поставок на фиксированный или случайный интервал времени.

• Издержки. Различают

- Издержки. Различают
  - организационные издержки расходы, связанные с оформлением и доставкой товаров;

- Издержки. Различают
  - организационные издержки расходы, связанные с оформлением и доставкой товаров;
  - издержки содержания запасов затраты, связанные с хранением (возникают из-за амортизации в процессе хранения: изделия могут портиться, устаревать, их количество может уменьшаться и т. д.);

- Издержки. Различают
  - организационные издержки расходы, связанные с оформлением и доставкой товаров;
  - издержки содержания запасов затраты, связанные с хранением (возникают из-за амортизации в процессе хранения: изделия могут портиться, устаревать, их количество может уменьшаться и т. д.);
  - издержки, связанные с дефицитом (штрафом за дефицит), если поставка со склада не может быть выполнена, то возникают дополнительные издержки, связанные с отказом.

- Издержки. Различают
  - организационные издержки расходы, связанные с оформлением и доставкой товаров;
  - издержки содержания запасов затраты, связанные с хранением (возникают из-за амортизации в процессе хранения: изделия могут портиться, устаревать, их количество может уменьшаться и т. д.);
  - издержки, связанные с дефицитом (штрафом за дефицит), если поставка со склада не может быть выполнена, то возникают дополнительные издержки, связанные с отказом.
- В большинстве моделей управления запасами считают объем склада практически неограниченным, а в качестве контролирующей величины служит объем хранимых запасов. При этом полагают, что за хранение каждой единицы запаса в единицу времени взимается определенная плата.

• Номенклатура запаса. В простейших случаях предполагается, что на складе хранится запас однотипных изделий или однородного продукта. В более сложных случаях рассматривается многономенклатурный запас.

- Номенклатура запаса. В простейших случаях предполагается, что на складе хранится запас однотипных изделий или однородного продукта. В более сложных случаях рассматривается многономенклатурный запас.
- Структура складской системы. Наиболее полно разработаны математические модели одиночного склада. Однако на практике встречаются и более сложные структуры: иерархические системы складов с различными периодами пополнения и временем доставки заказов, с возможностью обмена запасами между складами одного уровня иерархии и т. п.

• В качестве критерия эффективности принятой стратегии управления запасами выступает функция затрат (издержек), представляющая суммарные затраты на хранение и поставку запасаемого продукта (в том числе потери от порчи продукта при хранении и его морального старения, потери прибыли от омертвления капитала и т. п.) и затраты на штрафы.

• В качестве критерия эффективности принятой стратегии управления запасами выступает функция затрат (издержек), представляющая суммарные затраты на хранение и поставку запасаемого продукта (в том числе потери от порчи продукта при хранении и его морального старения, потери прибыли от омертвления капитала и т. п.) и затраты на штрафы.

Управление запасами состоит в отыскании такой стратегии пополнения и расхода запасами, при котором функция затрат принимает минимальное значение.

• Пусть функции A(t), B(t) и R(t) выражают соответственно пополнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0,t]. В моделях управления запасами обычно используются производные этих функций по времени a(t), b(t), r(t), называемые соответственно интенсивностями пополнения, расхода и спроса.

- Пусть функции A(t), B(t) и R(t) выражают соответственно пополнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0,t]. В моделях управления запасами обычно используются производные этих функций по времени a(t), b(t), r(t), называемые соответственно интенсивностями пополнения, расхода и спроса.
- Если функции a(t), b(t), r(t) не случайные величины, то модель управления запасами считается детерминированной,

- Пусть функции A(t), B(t) и R(t) выражают соответственно пополнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0,t]. В моделях управления запасами обычно используются производные этих функций по времени a(t), b(t), r(t), называемые соответственно интенсивностями пополнения, расхода и спроса.
- Если функции a(t), b(t), r(t) не случайные величины, то модель управления запасами считается детерминированной,
- если хотя бы одна из них носит случайный характер стохастической.

- Пусть функции A(t), B(t) и R(t) выражают соответственно пополнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0,t]. В моделях управления запасами обычно используются производные этих функций по времени a(t), b(t), r(t), называемые соответственно интенсивностями пополнения, расхода и спроса.
- Если функции a(t), b(t), r(t) не случайные величины, то модель управления запасами считается детерминированной,
- если хотя бы одна из них носит случайный характер стохастической.
- Если все параметры модели не меняются во времени, она называется статической,

- Пусть функции A(t), B(t) и R(t) выражают соответственно пополнение запасов, их расход и спрос на запасаемый продукт за промежуток времени [0,t]. В моделях управления запасами обычно используются производные этих функций по времени a(t), b(t), r(t), называемые соответственно интенсивностями пополнения, расхода и спроса.
- Если функции a(t), b(t), r(t) не случайные величины, то модель управления запасами считается детерминированной,
- если хотя бы одна из них носит случайный характер стохастической.
- Если все параметры модели не меняются во времени, она называется статической,
- в противном случае динамической.



### Основные модели

 Статические модели используются, когда принимается разовое решение об уровне запасов на определенный период,

### Основные модели

- Статические модели используются, когда принимается разовое решение об уровне запасов на определенный период,
- а динамические в случае принятия последовательных решений об уровнях запаса или корректировке ранее принятых решений с учетом происходящих изменений.

### Основные модели

- Статические модели используются, когда принимается разовое решение об уровне запасов на определенный период,
- а динамические в случае принятия последовательных решений об уровнях запаса или корректировке ранее принятых решений с учетом происходящих изменений.

### ОСНОВНЫЕ МОДЕЛИ

- Статические модели используются, когда принимается разовое решение об уровне запасов на определенный период,
- а динамические в случае принятия последовательных решений об уровнях запаса или корректировке ранее принятых решений с учетом происходящих изменений.

#### ОСНОВНОЕ УРАВНЕНИЕ ЗАПАСОВ

Уровень запаса в момент t определяется основным уравнением запасов  $J(t)=J_0+A(t)-B(t)$  где  $J_0$  — начальный запас в момент t=0. Данное уравнение чаще используется в интегральной форме:

$$J(t) = J_0 + \int_0^t a(t)dt - \int_0^t b(t)dt$$



#### ПРИМЕР 1.

• Интенсивность поступления готовых автомашин на склад готовой продукции составляет в начале дневной смены три машины/мин, в течение первого часа линейно возрастает, достигая к концу его шесть машин/мин, и затем остается постоянной.

#### ПРИМЕР 1.

- Интенсивность поступления готовых автомашин на склад готовой продукции составляет в начале дневной смены три машины/мин, в течение первого часа линейно возрастает, достигая к концу его шесть машин/мин, и затем остается постоянной.
- Полагая, что поступление автомашин на склад происходит непрерывно в течение восьми часов смены, а вывоз автомашин со склада производится только в конце работы, записать выражение для уровня запаса в произвольный момент времени и, используя его, найти количество автомашин на складе:

#### ПРИМЕР 1.

- Интенсивность поступления готовых автомашин на склад готовой продукции составляет в начале дневной смены три машины/мин, в течение первого часа линейно возрастает, достигая к концу его шесть машин/мин, и затем остается постоянной.
- Полагая, что поступление автомашин на склад происходит непрерывно в течение восьми часов смены, а вывоз автомашин со склада производится только в конце работы, записать выражение для уровня запаса в произвольный момент времени и, используя его, найти количество автомашин на складе:
- а) через 30 мин после начала работы;

### $\Pi$ РИМЕР 1.

- Интенсивность поступления готовых автомашин на склад готовой продукции составляет в начале дневной смены три машины/мин, в течение первого часа линейно возрастает, достигая к концу его шесть машин/мин, и затем остается постоянной.
- Полагая, что поступление автомашин на склад происходит непрерывно в течение восьми часов смены, а вывоз автомашин со склада производится только в конце работы, записать выражение для уровня запаса в произвольный момент времени и, используя его, найти количество автомашин на складе:
- а) через 30 мин после начала работы;
- б) в конце смены.



• Так как в течение смены не происходит выезда автомашин со склада, b(t) = 0.

- Так как в течение смены не происходит выезда автомашин со склада, b(t) = 0.
- Интенсивность пополнения запаса в течение первого часа линейно возрастает, т. е. a(t) = kt + b.

- Так как в течение смены не происходит выезда автомашин со склада, b(t) = 0.
- Интенсивность пополнения запаса в течение первого часа линейно возрастает, т. е. a(t) = kt + b.
- $\bullet$  Учитывая, что a(0)=3, получаем b=3. В конце часа (t=60):a(60)=6, следовательно, 6=60k+3, откуда k=0,05.

- Так как в течение смены не происходит выезда автомашин со склада, b(t) = 0.
- Интенсивность пополнения запаса в течение первого часа линейно возрастает, т. е. a(t) = kt + b.
- Учитывая, что a(0)=3, получаем b=3. В конце часа (t=60):a(60)=6, следовательно, 6=60k+3, откуда k=0,05.
- Таким образом, для первого часа смены a(t) = 0,05t + 3, а затем a(t) = 6.

• Учитывая продолжительность смены (8ч=480 мин), получаем, если  $0 \le t \le 60$ :

$$J(t) = \int_0^t (0.05t + 3)dt = 0.025t^2 + 3t$$

и если  $60 \le t \le 480$ :

$$J(t) = \int_0^{60} (0,05t+3)dt + \int_{60}^t 6dt = (0,025t^2+3t)|_0^{60} + (6t)|_{60}^t =$$
$$= 270 + 6t - 360 = 6t - 90$$

### Решение.

• Учитывая продолжительность смены (8ч=480 мин), получаем, если  $0 \le t \le 60$  :

$$J(t) = \int_0^t (0,05t+3)dt = 0.025t^2 + 3t$$

и если  $60 \le t \le 480$ :

$$J(t) = \int_0^{60} (0,05t+3)dt + \int_{60}^t 6dt = (0,025t^2+3t)|_0^{60} + (6t)|_{60}^t =$$
$$= 270 + 6t - 360 = 6t - 90$$

• Количество автомашин на складе через 30 мин после начала работы будет:

 $J(30) = 900 \cdot 0,025 + 3 \cdot 30 = 112,5 \approx 112$ , а в конце смены:

$$J(480) = 6 \cdot 480 - 90 = 2790.$$



Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита. Такую модель можно применять в следующих типичных ситуациях:

• Использование осветительных ламп в здании;

Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита. Такую модель можно применять в следующих типичных ситуациях:

- Использование осветительных ламп в здании;
- Использование таких канцелярских товаров, как бумага, блокноты и карандаши, крупной фирмой;

Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита. Такую модель можно применять в следующих типичных ситуациях:

- Использование осветительных ламп в здании;
- Использование таких канцелярских товаров, как бумага, блокноты и карандаши, крупной фирмой;
- Использование некоторых промышленных изделий, таких, как гайки и болты;

Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита. Такую модель можно применять в следующих типичных ситуациях:

- Использование осветительных ламп в здании;
- Использование таких канцелярских товаров, как бумага, блокноты и карандаши, крупной фирмой;
- Использование некоторых промышленных изделий, таких, как гайки и болты;
- Потребление основных продуктов питания (например, хлеба и молока).

• Рассмотрим простейшую модель, в которой дефицит не допускается, т. е. осуществляется полное удовлетворение спроса на запасаемый продукт, при этом уровень запаса мгновенно пополняется до начального значения за счет поступления партии заказа.

- Рассмотрим простейшую модель, в которой дефицит не допускается, т. е. осуществляется полное удовлетворение спроса на запасаемый продукт, при этом уровень запаса мгновенно пополняется до начального значения за счет поступления партии заказа.
- Уровень запаса в начальный момент равен объему партии J(0) = n. Процесс изменения повторяется на каждом временном интервале продолжительностью T (см. рисунок).



• Тем самым выполняется совпадение функций r(t) и b(t), и расходование запаса происходит непрерывно с постоянной интенсивностью: b(t) = b, а общее потребление запасаемого продукта за рассматриваемый интервал времени  $\Theta$  равно N.

- Тем самым выполняется совпадение функций r(t) и b(t), и расходование запаса происходит непрерывно с постоянной интенсивностью: b(t) = b, а общее потребление запасаемого продукта за рассматриваемый интервал времени  $\Theta$  равно N.
- Интенсивность b можно определить по формуле:  $b = N/\Theta$ .

Введем обозначения необходимых для составления модели величин

| Величина      | Обозна-       | Единицы      | Предположения            |
|---------------|---------------|--------------|--------------------------|
|               | чение         |              |                          |
| Интенсивность | $\mid r \mid$ | Единиц това- | Спрос непрерывен и по-   |
| спроса        |               | ра в год     | стоянен; весь спрос удо- |
|               |               |              | влетворяется             |
| Организацион- | $c_1$         | рублей за    | Издержки постоянны,      |
| ные издержки  |               | партию       | независимо от размера    |
|               |               |              | партии                   |
| Стоимость то- | s             | рублей за    | Цена единицы товара      |
| вара          |               | единицу      | постоянна, рассматри-    |
|               |               | товара       | вается один вид товара   |
| Издержки со-  | $c_2$         | рублей за    | Стоимость хране-         |
| держания за-  |               | единицу      | ния единицы товара       |
| пасов         |               | товара в     | в единицу времени        |
|               |               | единицу      | постоянна                |
|               |               | времени      |                          |
| Размер партии | n             | Единиц това- | Размер партии постоя-    |
|               |               | ра в партии  | нен; поступление това-   |
|               |               |              | ра происходит мгновен-   |
|               |               |              | но, как только уровень   |
|               |               |              | запаса будет равен ну-   |
|               |               |              | ЛЮ                       |

• Пополнение заказа происходит партиями одинакового объема, т. е. функция a(t) не является непрерывной: a(t)=0 при всех t, кроме моментов поставки продукта, т. е. a(t)=n, где n — объем партии.

- Пополнение заказа происходит партиями одинакового объема, т. е. функция a(t) не является непрерывной: a(t)=0 при всех t, кроме моментов поставки продукта, т. е. a(t)=n, где n объем партии.
- Так как интенсивность расхода равна b, вся партия будет использована за время T :

$$T = n/b$$

- Пополнение заказа происходит партиями одинакового объема, т. е. функция a(t) не является непрерывной: a(t)=0 при всех t, кроме моментов поставки продукта, т. е. a(t)=n, где n объем партии.
- Так как интенсивность расхода равна b, вся партия будет использована за время T :

$$T = n/b$$

• На временном интервале [0,T] уровень запаса уменьшается по прямой J(t)=n-bt от значения n до нуля.

- Пополнение заказа происходит партиями одинакового объема, т. е. функция a(t) не является непрерывной: a(t)=0 при всех t, кроме моментов поставки продукта, т. е. a(t)=n, где n объем партии.
- Так как интенсивность расхода равна b, вся партия будет использована за время T :

$$T = n/b$$

- На временном интервале [0,T] уровень запаса уменьшается по прямой J(t)=n-bt от значения n до нуля.
- Описанную модель называют также основной моделью управления запасами.



Задача управления запасами состоит в определении такого объема партии n, при котором суммарные затраты на создание и хранение запаса были бы минимальными.

Задача управления запасами состоит в определении такого объема партии n, при котором суммарные затраты на создание и хранение запаса были бы минимальными.

• Обозначим суммарные затраты через C, затраты на создание запаса — через  $C_1$ , затраты на хранение запаса — через  $C_2$  и найдем эти величины за весь промежуток времени T.

Задача управления запасами состоит в определении такого объема партии n, при котором суммарные затраты на создание и хранение запаса были бы минимальными.

- Обозначим суммарные затраты через C, затраты на создание запаса через  $C_1$ , затраты на хранение запаса через  $C_2$  и найдем эти величины за весь промежуток времени T.
- Так как за время  $\Theta$  необходимо запастись N единицами продукта, который доставляется партиями объема n, число таких партий k равно

$$k = N/n = \Theta/T$$
.



Задача управления запасами состоит в определении такого объема партии n, при котором суммарные затраты на создание и хранение запаса были бы минимальными.

- Обозначим суммарные затраты через C, затраты на создание запаса через  $C_1$ , затраты на хранение запаса через  $C_2$  и найдем эти величины за весь промежуток времени T.
- Так как за время  $\Theta$  необходимо запастись N единицами продукта, который доставляется партиями объема n, число таких партий k равно

$$k = N/n = \Theta/T$$
.

• Откуда получаем

$$C_1 = c_1 k = c_1 N/n.$$



• Мгновенные затраты хранения запаса в момент времени t равны  $c_2J(t)$ . За промежуток времени [0,T] они составят с учетом:

$$c_2 \int_0^T J(t)dt = c_2 \int_0^T (n - bt)dt = c_2 \int_0^T (n - n/T)dt =$$
$$= -c_2 \left( nt - \frac{nt^2}{2T} \right) \Big|_0^T = \frac{c_2 nT}{2}.$$

• Мгновенные затраты хранения запаса в момент времени t равны  $c_2J(t)$ . За промежуток времени [0,T] они составят с учетом:

$$c_2 \int_0^T J(t)dt = c_2 \int_0^T (n - bt)dt = c_2 \int_0^T (n - n/T)dt =$$
$$= -c_2 \left( nt - \frac{nt^2}{2T} \right) \Big|_0^T = \frac{c_2 nT}{2}.$$

• Средний запас за промежуток [0,T] равен nT/2, т. е. затраты на хранение всего запаса при линейном (по времени) его расходе равны затратам на хранение среднего запаса.

• Мгновенные затраты хранения запаса в момент времени t равны  $c_2J(t)$ . За промежуток времени [0,T] они составят с учетом:

$$c_2 \int_0^T J(t)dt = c_2 \int_0^T (n - bt)dt = c_2 \int_0^T (n - n/T)dt =$$
$$= -c_2 \left( nt - \frac{nt^2}{2T} \right) \Big|_0^T = \frac{c_2 nT}{2}.$$

- Средний запас за промежуток [0,T] равен nT/2, т. е. затраты на хранение всего запаса при линейном (по времени) его расходе равны затратам на хранение среднего запаса.
- Затраты хранения запаса за промежуток времени с учетом  $k = N/n = \Theta/T$  равны

$$C_2 = \frac{c_2 nT}{2} \cdot k = \frac{c_2 nT}{2} \cdot \frac{N}{n} = \frac{c_2 NT}{2} = \frac{c_2 n\Theta}{2}.$$



• Затраты  $C_1$  обратно пропорциональны, а затраты  $C_2$  прямо пропорциональны объему партии n. Суммарные затраты будут равны:

$$C = \frac{c_1 N}{n} + \frac{c_2 n\Theta}{2}.$$

• Затраты  $C_1$  обратно пропорциональны, а затраты  $C_2$  прямо пропорциональны объему партии n. Суммарные затраты будут равны:

$$C = \frac{c_1 N}{n} + \frac{c_2 n\Theta}{2}.$$

• Для нахождения минимума C найдем производную dC/dn и приравняем ее к нулю:

$$\frac{dC}{dn} = \frac{-c_1N}{n^2} + \frac{c_2\Theta}{2} = 0$$

откуда с учетом  $b = N/\Theta$ :

$$n = n_{opt} = \sqrt{\frac{2c_1N}{c_2\Theta}} = \sqrt{\frac{2c_1b}{c_2}}.$$

Формула выше называется формулой Уилсона, или формулой наиболее экономичного объема партии.



Число оптимальных партий  $(k_{opt})$  за время  $\Theta$  с учетом выведенной формулы и время расхода  $(T_{opt})$  оптимальной партии равно:

$$k_{opt} = \frac{N}{n_{opt}} = \sqrt{\frac{c_2 N \Theta}{2c_1}} = \Theta \sqrt{\frac{c_2 b}{2c_1}}, \label{eq:kopt}$$

$$T_{opt} = \frac{n_{opt}}{b} = n_{opt} \frac{\Theta}{N} = \sqrt{\frac{2c_1\Theta}{c_2N}} = \sqrt{\frac{2c_1}{c_2b}}.$$

• Интенсивность равномерного спроса на холодильники в магазине составляет 200 шт. в год.

- Интенсивность равномерного спроса на холодильники в магазине составляет 200 шт. в год.
- Организационные издержки для одной партии составляют 40 тыс. руб.

- Интенсивность равномерного спроса на холодильники в магазине составляет 200 шт. в год.
- Организационные издержки для одной партии составляют 40 тыс. руб.
- Цена одного холодильника равна 10 тыс. руб., а издержки содержания холодильника на складе составляют 0,2 тыс. руб. за один холодильник в год.

### Пример 2

- Интенсивность равномерного спроса на холодильники в магазине составляет 200 шт. в год.
- Организационные издержки для одной партии составляют 40 тыс. руб.
- Цена одного холодильника равна 10 тыс. руб., а издержки содержания холодильника на складе составляют 0,2 тыс. руб. за один холодильник в год.
- Найти оптимальный размер партии, число поставок и продолжительность цикла.

#### Решение.

• По условию задачи r = 200,  $c_1 = 40$ , s = 10,  $c_2 = 0, 2$ .

#### Решение.

- По условию задачи  $r = 200, c_1 = 40, s = 10, c_2 = 0, 2.$
- Общие издержки в течение года:  $C = 200 \cdot 40/n + 0, 2 \cdot n/2 = 8000/n + n/10;$

### Пример 2

#### Решение.

- По условию задачи  $r = 200, c_1 = 40, s = 10, c_2 = 0, 2.$
- Общие издержки в течение года:  $C = 200 \cdot 40/n + 0, 2 \cdot n/2 = 8000/n + n/10;$
- Из уравнения  $dC/dn = -8000/n^2 + 1/10 = 0$ , находим  $n_{opt} = \sqrt{80000} = 282, 84 \approx 283$ шт.;  $k_{opt} = 200/n_o pt = 200/283 \approx 0, 71;$   $T_{opt} = 365/k_{opt} = 365/0, 71 \approx 516$ дн.

#### Решение.

- По условию задачи  $r = 200, c_1 = 40, s = 10, c_2 = 0, 2.$
- Общие издержки в течение года:  $C = 200 \cdot 40/n + 0, 2 \cdot n/2 = 8000/n + n/10;$
- Из уравнения  $dC/dn = -8000/n^2 + 1/10 = 0$ , находим  $n_{opt} = \sqrt{80000} = 282, 84 \approx 283$ шт.;  $k_{opt} = 200/n_o pt = 200/283 \approx 0, 71;$   $T_{opt} = 365/k_{opt} = 365/0, 71 \approx 516$ дн.
- Ответ. Оптимальный размер партии холодильников составляет 283 шт., число поставок 0,71, интервал между поставками 516 дней.

• В основной модели управления запасами предполагалось, что поступление товаров на склад происходит мгновенно, например, в течение одного дня.

- В основной модели управления запасами предполагалось, что поступление товаров на склад происходит мгновенно, например, в течение одного дня.
- Рассмотрим случай, когда товары поступают на склад непрерывно и непосредственно с производства.

- В основной модели управления запасами предполагалось, что поступление товаров на склад происходит мгновенно, например, в течение одного дня.
- Рассмотрим случай, когда товары поступают на склад непрерывно и непосредственно с производства.
- Это модель производственных поставок.

- В основной модели управления запасами предполагалось, что поступление товаров на склад происходит мгновенно, например, в течение одного дня.
- Рассмотрим случай, когда товары поступают на склад непрерывно и непосредственно с производства.
- Это модель производственных поставок.
- Обозначим через *v* интенсивность поступления на склад товара, которая равна количеству товаров, выпускаемых производством, в определенный промежуток времени.

- В основной модели управления запасами предполагалось, что поступление товаров на склад происходит мгновенно, например, в течение одного дня.
- Рассмотрим случай, когда товары поступают на склад непрерывно и непосредственно с производства.
- Это модель производственных поставок.
- Обозначим через *v* интенсивность поступления на склад товара, которая равна количеству товаров, выпускаемых производством, в определенный промежуток времени.
- Определим оптимальный размер партии, минимизирующий общие затраты.

График изменения модели производственных запасов представлен на рисунке.



• Общие издержки рассчитываются по такой же формуле, как и для основной модели.

- Общие издержки рассчитываются по такой же формуле, как и для основной модели.
- Для получения среднего уровня запасов следует учесть, что RT = (v-r)T максимальный уровень запасов; n = vT количество товаров в одной производственной поставке.

Можно записать следующее равенство T = n/v.

- Общие издержки рассчитываются по такой же формуле, как и для основной модели.
- Для получения среднего уровня запасов следует учесть, что RT = (v-r)T максимальный уровень запасов; n = vT количество товаров в одной производственной поставке.

Можно записать следующее равенство T = n/v.

• Тогда средний уровень запасов составляет половину максимального и равен (v-r)n/2v, а C рассчитывается по формуле

$$C = c_1 r/n + c_2 (v - r)n/2v.$$

- Общие издержки рассчитываются по такой же формуле, как и для основной модели.
- Для получения среднего уровня запасов следует учесть, что RT = (v-r)T максимальный уровень запасов; n = vT количество товаров в одной производственной поставке.

Можно записать следующее равенство T = n/v.

• Тогда средний уровень запасов составляет половину максимального и равен (v-r)n/2v, а C рассчитывается по формуле

$$C = c_1 r/n + c_2 (v - r)n/2v.$$

• Решая уравнение dC/dn = 0, найдем оптимальный размер партии модели производственных поставок:

$$n_{opt} = \sqrt{\frac{2vc_1r}{c_2(v-r)}}.$$



Статическая детерминированная модель с дефицитом

• В этой модели предполагается наличие дефицита.



- В этой модели предполагается наличие дефицита.
- Это означает, что при отсутствии запасаемого продукта, т. е. при J(t)=0, спрос сохраняется с той же интенсивностью r(t)=b,



- В этой модели предполагается наличие дефицита.
- Это означает, что при отсутствии запасаемого продукта, т. е. при J(t)=0, спрос сохраняется с той же интенсивностью r(t)=b,
- но потребление запаса отсутствует b(t) = 0,



- В этой модели предполагается наличие дефицита.
- Это означает, что при отсутствии запасаемого продукта, т. е. при J(t)=0, спрос сохраняется с той же интенсивностью r(t)=b,
- но потребление запаса отсутствует b(t) = 0,
- ullet вследствие чего накапливается дефицит со скоростью b.



• Убывание графика ниже оси абсцисс в область отрицательных значений в отличие от графика основной модели УЗ характеризует накопление дефицита.

- Убывание графика ниже оси абсцисс в область отрицательных значений в отличие от графика основной модели УЗ характеризует накопление дефицита.
- Из рисунка видно, что каждый период T=n/b разбивается на два временных интервала  $T_1$  и  $T_2$ ,, т.е.  $T=T_1+T_2$ , где  $T_1$  время, в течение которого производится потребление запаса,  $T_2$  время, когда запас отсутствует и накапливается дефицит, который будет перекрыт в момент поступления следующей партии.

- Убывание графика ниже оси абсцисс в область отрицательных значений в отличие от графика основной модели УЗ характеризует накопление дефицита.
- Из рисунка видно, что каждый период T=n/b разбивается на два временных интервала  $T_1$  и  $T_2$ ,, т.е.  $T=T_1+T_2$ , где  $T_1$  время, в течение которого производится потребление запаса,  $T_2$  время, когда запас отсутствует и накапливается дефицит, который будет перекрыт в момент поступления следующей партии.
- Необходимость покрытия дефицита приводит к тому, что максимальный уровень запаса s в момент поступления каждой партии теперь не равен ее объему n, а меньше его на величину дефицита n-s, накопившегося за время  $T_2$ .

- Убывание графика ниже оси абсцисс в область отрицательных значений в отличие от графика основной модели УЗ характеризует накопление дефицита.
- Из рисунка видно, что каждый период T=n/b разбивается на два временных интервала  $T_1$  и  $T_2$ ,, т.е.  $T=T_1+T_2$ , где  $T_1$  время, в течение которого производится потребление запаса,  $T_2$  время, когда запас отсутствует и накапливается дефицит, который будет перекрыт в момент поступления следующей партии.
- Необходимость покрытия дефицита приводит к тому, что максимальный уровень запаса s в момент поступления каждой партии теперь не равен ее объему n, а меньше его на величину дефицита n-s, накопившегося за время  $T_2$ .
- Легко установить, что

$$T_1 = \frac{s}{n} \cdot T, \quad T_2 = \frac{n-s}{n} \cdot T.$$

• В данной модели в функцию суммарных затрат C наряду с за тратами  $C_1$  (на пополнение запаса) и  $C_2$  (на хранение запаса) необходимо ввести затраты  $C_3$  (на штраф из-за дефицита), т. е.  $C = C_1 + C_2 + C_3$ .

- В данной модели в функцию суммарных затрат C наряду с за тратами  $C_1$  (на пополнение запаса) и  $C_2$  (на хранение запаса) необходимо ввести затраты  $C_3$  (на штраф из-за дефицита), т. е.  $C = C_1 + C_2 + C_3$ .
- Затраты  $C_1$ , как и ранее, находим по формуле  $C_1 = c_1 k = c_1 N/n$ .

- В данной модели в функцию суммарных затрат C наряду с за тратами  $C_1$  (на пополнение запаса) и  $C_2$  (на хранение запаса) необходимо ввести затраты  $C_3$  (на штраф из-за дефицита), т. е.  $C = C_1 + C_2 + C_3$ .
- Затраты  $C_1$ , как и ранее, находим по формуле  $C_1 = c_1 k = c_1 N/n$ .
- Затраты  $C_2$  при линейном расходе запаса равны затратам на хранение среднего запаса, который за время потребления  $T_1$  равен  $sT_1/2$ , поэтому они составят:

$$C_2 = \frac{c_2 s T_1}{2} \cdot k = \frac{c_2 s \cdot s T}{2n} \cdot \frac{\Theta}{T} = \frac{c_2 s \cdot s \Theta}{2n}.$$

• При расчете затрат  $C_3$  будем считать, что штраф за дефицит составляет в единицу времени  $c_3$  на каждую единицу продукта.

- При расчете затрат  $C_3$  будем считать, что штраф за дефицит составляет в единицу времени  $c_3$  на каждую единицу продукта.
- Так как средний уровень дефицита за период  $T_2$  равен  $(n-s)T_2/2$ , штраф за этот период  $T_2$  составит  $c_3(n-s)T_2/2$ , а за весь период  $\Theta$ :

$$C_3 = \frac{1}{2} \cdot c_3(n-s)T_2k = \frac{1}{2} \cdot c_3(n-s)\frac{n-s}{n}T\frac{\Theta}{T} = \frac{c_3\Theta(n-s)^2}{2n}.$$

- При расчете затрат  $C_3$  будем считать, что штраф за дефицит составляет в единицу времени  $c_3$  на каждую единицу продукта.
- Так как средний уровень дефицита за период  $T_2$  равен  $(n-s)T_2/2$ , штраф за этот период  $T_2$  составит  $c_3(n-s)T_2/2$ , а за весь период  $\Theta$ :

$$C_3 = \frac{1}{2} \cdot c_3(n-s)T_2k = \frac{1}{2} \cdot c_3(n-s)\frac{n-s}{n}T\frac{\Theta}{T} = \frac{c_3\Theta(n-s)^2}{2n}.$$

• Суммарные затраты равны:

$$C = \frac{c_1 N}{n} + \frac{c_2 s^2 \Theta}{2n} + \frac{c_3 \Theta (n-s)^2}{2n}.$$

- При расчете затрат  $C_3$  будем считать, что штраф за дефицит составляет в единицу времени  $c_3$  на каждую единицу продукта.
- Так как средний уровень дефицита за период  $T_2$  равен  $(n-s)T_2/2$ , штраф за этот период  $T_2$  составит  $c_3(n-s)T_2/2$ , а за весь период  $\Theta$ :

$$C_3 = \frac{1}{2} \cdot c_3(n-s)T_2k = \frac{1}{2} \cdot c_3(n-s)\frac{n-s}{n}T\frac{\Theta}{T} = \frac{c_3\Theta(n-s)^2}{2n}.$$

• Суммарные затраты равны:

$$C = \frac{c_1 N}{n} + \frac{c_2 s^2 \Theta}{2n} + \frac{c_3 \Theta (n-s)^2}{2n}.$$

• При n = s формула совпадает с ранее полученной формулой в модели без дефицита.



• Рассматриваемая задача управления запасами сводится к отысканию такого объема партии n и максимального уровня запаса s, при которых функция C принимает минимальное значение.

- Рассматриваемая задача управления запасами сводится к отысканию такого объема партии n и максимального уровня запаса s, при которых функция C принимает минимальное значение.
- Другими словами, необходимо исследовать функцию двух переменных C(n,s) на экстремум.

- Рассматриваемая задача управления запасами сводится к отысканию такого объема партии n и максимального уровня запаса s, при которых функция C принимает минимальное значение.
- Другими словами, необходимо исследовать функцию двух переменных C(n,s) на экстремум.
- Приравнивая частные производные  $\frac{\partial C}{\partial n}, \frac{\partial C}{\partial s}$ , к нулю, получим после преобразований систему уравнений:

$$n^2c_3 - (c_2 + c_3)s^2 = 2c_1N/\Theta,$$
  
 $s = n \cdot c_3/(c_2 + c_3).$ 

- Рассматриваемая задача управления запасами сводится к отысканию такого объема партии n и максимального уровня запаса s, при которых функция C принимает минимальное значение.
- Другими словами, необходимо исследовать функцию двух переменных C(n,s) на экстремум.
- Приравнивая частные производные  $\frac{\partial C}{\partial n}$ ,  $\frac{\partial C}{\partial s}$ , к нулю, получим после преобразований систему уравнений:

$$n^2c_3 - (c_2 + c_3)s^2 = 2c_1N/\Theta,$$
  
 $s = n \cdot c_3/(c_2 + c_3).$ 

• Решая систему, получаем формулы наиболее экономичного объема партии  $n_{opt}$  и максимального уровня запаса  $s_{opt}$  модели с дефицитом:

$$n_{opt} = \sqrt{\frac{2c_1N}{c_2\Theta}} \cdot \sqrt{\frac{c_2 + c_3}{c_3}} = \sqrt{\frac{2c_1b}{c_2}} \cdot \sqrt{\frac{c_2 + c_3}{c_3}};$$

$$s_{opt} = \sqrt{\frac{2c_1N}{c_2\Theta}} \cdot \sqrt{\frac{c_3}{c_2 + c_3}} = n_{opt} \cdot \frac{c_3}{c_2 + c_3}.$$

$$\rho = \frac{c_3}{c_2 + c_3},$$

где  $0 \le \rho \le 1$ , называется плотностью убытков из-за неудовлетворенного спроса и играет важную роль в управлении запасами.

$$\rho = \frac{c_3}{c_2 + c_3},$$

где  $0 \le \rho \le 1$ , называется плотностью убытков из-за неудовлетворенного спроса и играет важную роль в управлении запасами.

• Если значение  $c_3$  мало по сравнению с  $c_2$ , то величина  $\rho$  близка к нулю, а когда  $c_3$  значительно превосходит  $c_2$ , то  $\rho$  близка к 1.

$$\rho = \frac{c_3}{c_2 + c_3},$$

где  $0 \le \rho \le 1$ , называется плотностью убытков из-за неудовлетворенного спроса и играет важную роль в управлении запасами.

- Если значение  $c_3$  мало по сравнению с  $c_2$ , то величина  $\rho$  близка к нулю, а когда  $c_3$  значительно превосходит  $c_2$ , то  $\rho$  близка к 1.
- Недопустимость дефицита равносильна предположению, что  $c_3 = \infty$  или  $\rho = 1$ .

$$\rho = \frac{c_3}{c_2 + c_3},$$

где  $0 \le \rho \le 1$ , называется плотностью убытков из-за неудовлетворенного спроса и играет важную роль в управлении запасами.

- Если значение  $c_3$  мало по сравнению с  $c_2$ , то величина  $\rho$  близка к нулю, а когда  $c_3$  значительно превосходит  $c_2$ , то  $\rho$  близка к 1.
- Недопустимость дефицита равносильна предположению, что  $c_3 = \infty$  или  $\rho = 1$ .
- Используя формулу для  $\rho$  можно записать:

$$n_{opt} = \sqrt{\frac{2c_1b}{c_2\rho}},$$
  
$$s_{opt} = n_{opt} \cdot \rho.$$

$$\rho = \frac{c_3}{c_2 + c_3},$$

где  $0 \le \rho \le 1$ , называется плотностью убытков из-за неудовлетворенного спроса и играет важную роль в управлении запасами.

- Если значение  $c_3$  мало по сравнению с  $c_2$ , то величина  $\rho$ близка к нулю, а когда  $c_3$  значительно превосходит  $c_2$ , то  $\rho$  близка к 1.
- Недопустимость дефицита равносильна предположению, что  $c_3 = \infty$  или  $\rho = 1$ .
- Используя формулу для  $\rho$  можно записать:

$$n_{opt} = \sqrt{\frac{2c_1b}{c_2\rho}},$$
$$s_{opt} = n_{opt} \cdot \rho.$$

• Следует учесть, что

$$\frac{T_1}{T} = \frac{s_{opt}}{n_{opt}} = \rho \text{ и } \frac{T_2}{T} = \frac{n_{opt} - s_{opt}}{n_{opt}} = 1 - \rho.$$

• Утверждение о том, что плотность убытков из-за неудовлетворенного спроса равна  $\rho$ , означает, что в течение  $(1-\rho)\cdot 100\%$  времени полного периода T запас продукта будет отсутствовать.

- Утверждение о том, что плотность убытков из-за неудовлетворенного спроса равна  $\rho$ , означает, что в течение  $(1-\rho)\cdot 100\%$  времени полного периода T запас продукта будет отсутствовать.
- Оптимальные объемы партий для задач с дефицитом и без него при одинаковых параметрах связаны соотношением

$$n_{optdef} = \frac{n_{opt}}{\sqrt{\rho}}$$

- Утверждение о том, что плотность убытков из-за неудовлетворенного спроса равна  $\rho$ , означает, что в течение  $(1-\rho)\cdot 100\%$  времени полного периода T запас продукта будет отсутствовать.
- Оптимальные объемы партий для задач с дефицитом и без него при одинаковых параметрах связаны соотношением

$$n_{optdef} = \frac{n_{opt}}{\sqrt{\rho}}$$

• Таким образом, оптимальный объем партии в задаче с дефицитом всегда больше в  $\frac{1}{\sqrt{\rho}}$  раз, чем в задаче без дефицита.

Стохастические модели управления запасами

• Стохастические модели управления запасами — модели, у которых спрос является случайным. Рассмотрим наиболее простые из них.

- Стохастические модели управления запасами модели, у которых спрос является случайным. Рассмотрим наиболее простые из них.
- Предположим, что спрос r за интервал времени T является случайным и задан его закон (ряд) распределения p(r) или плотность вероятностей  $\phi(r)$ .

- Стохастические модели управления запасами модели, у которых спрос является случайным. Рассмотрим наиболее простые из них.
- Предположим, что спрос r за интервал времени T является случайным и задан его закон (ряд) распределения p(r) или плотность вероятностей  $\phi(r)$ .
- Если спрос r ниже уровня запаса s, то приобретение (хранение) излишка продукта требует дополнительных затрат  $c_2$  на единицу продукта;

- Стохастические модели управления запасами модели, у которых спрос является случайным. Рассмотрим наиболее простые из них.
- Предположим, что спрос r за интервал времени T является случайным и задан его закон (ряд) распределения p(r) или плотность вероятностей  $\phi(r)$ .
- Если спрос r ниже уровня запаса s, то приобретение (хранение) излишка продукта требует дополнительных затрат  $c_2$  на единицу продукта;
- наоборот, если спрос r выше уровня запаса s, то это приводит к штрафу за дефицит  $c_3$  на единицу продукции.



• В качестве функции суммарных затрат, являющейся в стохастических моделях случайной величиной, рассматривают ее среднее значение или математическое ожидание, которое для рассматриваемой модели при дискретном случайном спросе r, имеющем закон распределения (r), имеет вид:

$$C(s) = c_2 \cdot \sum_{r=0}^{s} (s-r)p(r) + c_3 \cdot \sum_{r=s+1}^{\infty} (r-s)p(r),$$

# СТОХАСТИЧЕСКИЕ МОДЕЛИ УПРАВЛЕНИЯ ЗАПАСАМИ

• В качестве функции суммарных затрат, являющейся в стохастических моделях случайной величиной, рассматривают ее среднее значение или математическое ожидание, которое для рассматриваемой модели при дискретном случайном спросе r, имеющем закон распределения (r), имеет вид:

$$C(s) = c_2 \cdot \sum_{r=0}^{s} (s-r)p(r) + c_3 \cdot \sum_{r=s+1}^{\infty} (r-s)p(r),$$

• где первое слагаемое учитывает затраты на приобретение (хранение) излишка s-r единиц продукта (при  $r \leq s$ ),



• В качестве функции суммарных затрат, являющейся в стохастических моделях случайной величиной, рассматривают ее среднее значение или математическое ожидание, которое для рассматриваемой модели при дискретном случайном спросе r, имеющем закон распределения (r), имеет вид:

$$C(s) = c_2 \cdot \sum_{r=0}^{s} (s-r)p(r) + c_3 \cdot \sum_{r=s+1}^{\infty} (r-s)p(r),$$

- где первое слагаемое учитывает затраты на приобретение (хранение) излишка s-r единиц продукта (при  $r \le s$ ),
- а второе слагаемое штраф за дефицит на r-s единиц продукта (при r>s).

• В случае непрерывного случайного спроса, задаваемого плотностью вероятности  $\phi(r)$ , выражение C(s) принимает вид:

$$C(s) = c_2 \cdot \int_0^s (s-r)\phi(r)dr + c_3 \cdot \int_s^\infty (r-s)\phi(r)dr.$$

• В случае непрерывного случайного спроса, задаваемого плотностью вероятности  $\phi(r)$ , выражение C(s) принимает вид:

$$C(s) = c_2 \cdot \int_0^s (s-r)\phi(r)dr + c_3 \cdot \int_s^\infty (r-s)\phi(r)dr.$$

• Задача управления запасами состоит в отыскании такого запаса s, при котором математическое ожидание суммарных затрат в форме суммы или интеграла принимает минимальное значение.

• Доказано, что при дискретном случайном спросе r выражение C(s) минимально при запасе  $S_0$ , удовлетворяющем неравенствам  $F(s_0) \le \rho < F(s_0+1)$ ,

- Доказано, что при дискретном случайном спросе r выражение C(s) минимально при запасе  $S_0$ , удовлетворяющем неравенствам  $F(s_0) \le \rho < F(s_0 + 1)$ ,
- а при непрерывном случайном спросе r выражение минимально при значении  $S_0$ , определяемом из уравнения  $F(s_0) = \rho$ ,

- Доказано, что при дискретном случайном спросе rвыражение C(s) минимально при запасе  $S_0$ , удовлетворяющем неравенствам  $F(s_0) \le \rho < F(s_0 + 1),$
- $\bullet$  а при непрерывном случайном спросе r выражение минимально при значении  $S_0$ , определяемом из уравнения

$$F(s_0) = \rho,$$

• где  $F(s) = (r \le s)$  есть функция распределения спроса r,  $F(s_0)$  и  $F(s_0+1)$  — ее значения;

- $\bullet$  Доказано, что при дискретном случайном спросе rвыражение C(s) минимально при запасе  $S_0$ , удовлетворяющем неравенствам  $F(s_0) \le \rho < F(s_0 + 1),$
- $\bullet$  а при непрерывном случайном спросе r выражение минимально при значении  $S_0$ , определяемом из уравнения

$$F(s_0) = \rho,$$

- где  $F(s) = (r \le s)$  есть функция распределения спроса r,  $F(s_0)$  и  $F(s_0+1)$  — ее значения;
- $\rho$  плотность убытков из-за неудовлетворенного спроса, определяемая по  $\rho = \frac{c_3}{c_2 + c_3}.$