工程问题建模与实践

关于案例2课题求解方案的几点探讨

Agenda

- 从元件(状态)到系统(状态)
 - 回顾三元件串并联例题元件 => 节点 => 系统
- 关于时间的离散化做法 三元件串并联例题的时间离散化做法 案例2系统仿真的时间离散化做法
- "系统失效又复活"的现象
- "系统永生不死"的现象
- 本例中的可靠性和可用性
- 关于拓展论题构思

□ 回顾三元件串并联例题

> 一个系统的可靠性模型,表现为三个不可修复元件A、B、C构成,三个元件的寿命统计独立,概率密度分布特性相同。欲求系统的平均寿命。

$$f_{life} = \lambda e^{-\lambda t}$$
 $\lambda = 10^{-3} (hour^{-1})$

> 模拟元件状态随机变化的状态机图式(状态随机转移图)

> 系统状态

$$G_{\text{sys}} = G_A / (G_B \& G_C)$$

□ 回顾三元件串并联例题

```
% parameters
  Nsample=50000;
                                                    参考代码
 3 Lamda=1/1000;
   P01=1-exp(-Lamda);
    life=zeros(1, Nsample);
    for k=1:Nsample
       state system=0;
10
      state comp=zeros(1,3);
      while state system == 0;
11
12
            if state comp(1) == 0
                state_comp(1)=(rand(1)<=P01); 元件A下一小时状态
13
14
            end
15
            if state comp(2) == 0
                state_comp(2)=(rand(1)<=P01); 元件B下一小时状态
16
17
            end
18
            if state comp(3) == 0
                state_comp(3)=(rand(1)<=P01); 元件C下一小时状态
19
20
            end
21
            state system=(state comp(1) | (state comp(2) & state comp(3)));
            life(k) = life(k) + 1;
                                                 G_{SVS} = G_A/(G_B \& G_C) 系统下一小时状态
23
      ı end
   end
   mean life=mean(life);
    fprintf('mean life=%7.2f\n', mean life);
```


- □ 元件 ⇒ 节点 ⇒ 系统 承规)
 - > 三个层面, 自下而上

每个切换器状态确定后,可以根据系统内部的组合逻辑,推定节点的状态和整 个系统的状态。

□ 元件 => 节点 => 系统

▶元件状态的随机转移图

假设时间离散步长(时间仿真颗粒度)为1小时

$$P_{01} = P_{EA1} \int_0^1 \lambda_A e^{-\lambda_A \tau} d\tau$$

$$P_{02} = P_{EA2} \int_0^1 \lambda_A e^{-\lambda_A \tau} d\tau$$

$$P_{03} = P_{EA3} \int_0^1 \lambda_A e^{-\lambda_A \tau} d\tau$$

$$P_{00} = 1 - P_{01} - P_{02} - P_{03}$$

$$P_{01} = P_{EB1} \int_0^1 \lambda_B e^{-\lambda_B \tau} d\tau$$

$$P_{02} = P_{EB2} \int_0^1 \lambda_B e^{-\lambda_B \tau} d\tau$$

切换器B

$$P_{00} = 1 - P_{01} - P_{02}$$

□ 元件 ⇒ 节点 ⇒ 系统

> 节点性能状态

- (1) 其中 g_{N0} 表示节点性能完好,为直观起见,定义别名 g_{PF} (意为 perfectly functioning);
- (2) g_{N1} 表示只能作为从节点,别名 g_{SO} (slave only);
- (3) g_{N2} 表示或者作为主节点,或者作为不阻塞总线的失效节点,别名 g_{DM} (disable/master);
- (4) g_{N3} 表示只能作为主节点,否则就会阻塞总线,别名 g_{M0} (master only);
- (5) g_{N4} 表示成为不阻塞总线的失效节点,别名 g_{DN} (disable node);
- (6) g_{N5} 表示节点总是阻塞总线,别名 g_{FB} (failed bus);

《工程问题建模与仿真之案例课题2》中5.2节

□ 元件 => 节点 => 系统

> 节点性能状态

切换器状态组合与节点性能状态的 对应关系

《工程问题建模与 仿真之案例课题2》 中5.2节

表 1 切换器-节点状态映射关系

切换器A状态	切换器B状态	节点状态	别名
g_{A0}	g _{B0}	g_{N0}	g_{PF}
	g _{B1}	g_{N3}	g_{MO}
	g _{B2}	g_{N1}	g _{so}
g_{A1}	g_{B0}	g_{N1}	g _{so}
	g _{B1}	g_{N5}	g_{FB}
	g _{B2}	g_{N1}	g _{so}
$g_{\scriptscriptstyle A2}$	g_{B0}	g_{N2}	g_{DM}
	g _{B1}	g_{N3}	g_{MO}
	g _{B2}	g_{N4}	g_{DN}
$g_{{\scriptscriptstyle A}{\scriptscriptstyle 3}}$	g_{B0}	g_{N4}	g_{DN}
	g _{B1}	g_{N4}	g_{DN}
	g_{B2}	$g_{_{N4}}$	g_{DN}

- □ 元件 ⇒ 节点 ⇒ 系统
 - > 节点角色状态的变化

□ 元件 ⇒ 节点 ⇒ 系统

> 节点角色状态的变化

Agenda

- 从元件(状态)到系统(状态) 回顾三元件串并联例题 元件 => 节点 => 系统
- 关于时间的离散化做法 三元件串并联例题的时间离散化做法 案例2系统仿真的时间离散化做法
- "系统失效又复活"的现象
- "系统永生不死"的现象
- 本例中的可靠性和可用性
- 关于拓展论题构思

关于时间的离散化做法

□ 三元件串并联例题的时间离散化做法

▶ "时间"按固定步长推进

$$G_{\text{sys}} = G_A / (G_B \& G_C)$$

□ 三元件串并联例题的时间离散化做法

```
》"时间"按固定步长推进
   Nsample=50000;
                                                   参考代码
 3 Lamda=1/1000;
  P01=1-exp(-Lamda);
   life=zeros(1, Nsample);
   for k=1:Nsample
       state system=0;
10
      state comp=zeros(1,3);
      while state system == 0;
11
12
           if state comp(1) == 0
                state_comp(1)=(rand(1)<=P01); 元件A下一小时状态
13
14
           end
15
           if state comp(2) == 0
               state_comp(2)=(rand(1)<=P01); 元件B下一小时状态
16
17
           end
18
           if state comp(3) == 0
               state_comp(3)=(rand(1)<=P01); 元件C下一小时状态
19
20
           end
21
           state system=(state comp(1) | (state comp(2) & state comp(3)));
           life(k) = life(k) + 1;
                                               G_{SVS} = G_A/(G_B \& G_C) 系统下一小时状态
23
      ı end
   end
   mean life=mean(life);
   fprintf('mean_life=%7.2f\n',mean_life);
```

关于时间的离散化做法

□ 三元件串并联例题的时间离散化做法

> "时间"按变化步长推进

□ 三元件串并联例题的时间离散化做法

▶ "时间"按变化步长推进

参考代码

```
% parameters
   Nsample=5000;
   Lamda=1/1000;
   life=zeros(1,Nsample);
   for i=1:Nsample
       state system=0;
       state comp=zeros(1,3);
     life_comp=exprnd(1/Lamda,1,3); 随机生成三元件寿命(由好变坏的时间点)
10
     while state system==0;
12
          life(i)=min(life comp);
                                      寻找并处理下一个发生的事件(元件由好变坏)
          j=find(life_comp==life(i),1);
13
14
          state comp(j)=1;
          life comp(j)=+inf; 已处理的事件数值改作无穷大(相当于删除)
15
16
           state_system=(state_comp(1)|(state_comp(2)&state_comp(3))); 系统状态的变化
     end
                                                  G_{sys} = G_A / (G_B \& G_C)
18
   mean life=mean(life);
19
20
   fprintf('mean life=%7.2f\n', mean life);
21
```

关于时间的离散化做法

□ 案例2系统仿真的时间离散化做法

> "时间"按固定步长推进

切换器A为例,时间步长(也是仿真颗粒度)为1小时

$$P_{03} = P_{EA3} \int_0^1 \lambda_A e^{-\lambda_A \tau} d\tau$$

$$P_{00} = 1 - P_{01} - P_{02} - P_{03}$$

代码大致结构

$$t=0$$

 $\Delta t=1(小时)$

切换器 a_1 的下一小时状态 切换器 b_1 的下一小时状态 切换器 a_2 的下一小时状态 切换器 b_2 的下一小时状态

 $t = t + \Delta t$

切换器a_n的下一小时状态 切换器b_n的下一小时状态

节点1至节点n的下一小时状态 分析整个系统的下一小时状态

□ 案例2系统仿真的时间离散化做法

> "时间"按变化步长推进

假设4个节点,随机模拟所有切换器的寿命和故障类型

寿命随机结果

T _{a1}	T _{b1}
T _{a2}	T _{b2}
T _{a3}	T _{b3}
T _{a4}	T _{b4}

故障类型随机结果

A1	B2
А3	B1
A3	B2
A2	B2

假设各个时间数值大小顺序

$$T_{a3} \le T_{b1} \le T_{b4} \le \dots \le T_{a1}$$

代码大致结构

t=0及初始化

t=下一个故障事件的发生时间 该切换器故障事件处理 节点1至节点n的状态相应变化 整个系统的状态相应变化

Agenda

- 从元件(状态)到系统(状态) 回顾三元件串并联例题 元件 => 节点 => 系统
- 关于时间的离散化做法 三元件串并联例题的时间离散化做法 案例2系统仿真的时间离散化做法
- "系统失效又复活"的现象
- "系统永生不死"的现象
- 本例中的可靠性和可用性
- 关于拓展论题构思

"系统失效又复活"的现象

□ "系统失效又复活"的现象

K=5,系统中需有至少5个协同工作节点,才能正常发挥作用

只有4个协同工作节点,系统已失效

变动后,有5个协同工作节点,系统"复活"

"系统永生不死"的现象

□ "系统永生不死"的现象

模型逻辑漏洞。

为了限制该漏洞对问题求解结果的影响,做了补充规则。

Agenda

- 从元件(状态)到系统(状态) 回顾三元件串并联例题 元件 => 节点 => 系统
- 关于时间的离散化做法 三元件串并联例题的时间离散化做法 案例2系统仿真的时间离散化做法
- "系统失效又复活"的现象
- "系统永生不死"的现象
- 本例中的可靠性和可用性
- 关于拓展论题构思

本例中的可靠性和可用性

□ 本例中的可靠性和可用性

可靠性

R(w) = Pr(The system is not failed during the whole operation time <math>t=0 to w)系统从时刻 0到w期间一直有效工作,才计为"可靠"。 在本例中,很难从理论上求解可靠性的公式或数值解。

可用性

>matlab辅助选择程序 A(w) = Pr(The system is not failed at the time intant <math>t=w)系统只要在 时刻w的瞬时状态为正常工作,就计为"可用"。

在本例中,可以从理论上求解可用性的公式或数值解;因前述"系统失效又复 活"现象的影响,可用性数值约等于但略高于可靠性数值。

请参阅《案例2系统可用性数值的理论求解方法介绍》

Agenda

- 从元件(状态)到系统(状态) 回顾三元件串并联例题 元件 => 节点 => 系统
- 关于时间的离散化做法 三元件串并联例题的时间离散化做法 案例2系统仿真的时间离散化做法
- "系统失效又复活"的现象
- "系统永生不死"的现象
- 本例中的可靠性和可用性
- 关于拓展论题构思

□ 关于拓展论题构思

▶ 举例1

"总线阻塞"对系统寿命影响大,它似乎主要跟切换器故障B1有关

关于拓展论题构思

□ 关于拓展论题构思

▶ 举例2

保持总线通畅是系统可靠性的核心问题

本讲结束, 感谢!