LLM Optimization

Jordan Boyd-Graber

University of Maryland

Quantization

Slides adapted from https://huggingface.co/docs/optimum/concept_quides/quantization

Motivation for Quantization

Why Quantize?

- Memory efficiency: reduces model size
- Faster inference: accelerates computation on specialized hardware
- Lower energy use: fewer bits mean less data movement
- Deployment ease: run on edge or CPU devices

Why Not Quantize?

- Accuracy loss: rounding and clipping errors
- Sensitivity: some layers (e.g., embeddings, layernorm) don't work
- Hardware dependence: performance gains vary by platform
- Complexity: requires calibration or quantization-aware retraining

LLAMA Example (from Meta)

- For models trained in FP16 (16-bit), converting to INT8 (8-bit) reduces memory usage by 50%, while INT4 (4-bit) reduces it by 75%.
- INT8 quantization can provide a 2-4x speedup on modern hardware, while INT4 can offer even greater speedups.

Types of Quantization: float16 vs. int8

Reduced-Precision Floating Point (FP16)

$$x = (-1)^s \times (1+m) \times 2^{e-15}$$

Component	Bits	Range	Notes
Sign	1	±	Sign bit
Exponent	5	[-14, +15]	Reduced range
Mantissa	10	_	Reduced precision

Integer Quantization (INT8)

Component	Bits	Notes
Sign + Magnitude	8	Two's complement integer

Types of Quantization: float16 vs. int8

Reduced-Precision Floating Point (FP16)

$$x = (-1)^s \times (1+m) \times 2^{e-15}$$

Component	Bits	Range	Notes
Sign	1	±	Sign bit
Exponent	5	[-14, +15]	Reduced range
Mantissa	10	_	Reduced precision

Integer Quantization (INT8)

Component	Bits	Notes
Sign + Magnitude	8	Two's complement integer

Core Equation

$$\mathbf{x} = S \times (x_q - Z)$$

• *x* — original **floating-point** value.

$$x_q \in [-128, 127], S > 0, Z \in \mathbb{Z}$$

Core Equation

$$x = S \times (x_q - Z)$$

- *x* original **floating-point** value.
- S scale factor that maps integer steps to real value intervals.

$$x_a \in [-128, 127], S > 0, Z \in \mathbb{Z}$$

Core Equation

$$x = S \times \left(x_q - Z \right)$$

- *x* original **floating-point** value.
- S scale factor that maps integer steps to real value intervals.
- x_q quantized integer representation (usually in [-128, 127]).

$$x_a \in [-128, 127], S > 0, Z \in \mathbb{Z}$$

Core Equation

$$x = S \times (x_q - Z)$$

- *x* original **floating-point** value.
- S scale factor that maps integer steps to real value intervals.
- x_q quantized integer representation (usually in [-128, 127]).
- Z zero-point offset, ensuring x = 0 maps to an integer in range.

$$x_a \in [-128, 127], S > 0, Z \in \mathbb{Z}$$

Core Equation

$$x = S \times (x_q - Z)$$

- *x* original **floating-point** value.
- S scale factor that maps integer steps to real value intervals.
- x_q quantized integer representation (usually in [-128, 127]).
- Z zero-point offset, ensuring x = 0 maps to an integer in range.

Typical ranges:

$$x_a \in [-128, 127], S > 0, Z \in \mathbb{Z}$$

Setup

- Float range: $x_{\min} = -1.0$, $x_{\max} = 2.0$
- Integer range: $q_{\min} = -128$, $q_{\max} = 127$

Setup

- Float range: $x_{\min} = -1.0$, $x_{\max} = 2.0$
- Integer range: $q_{\min} = -128$, $q_{\max} = 127$
- Compute scale:

$$S = \frac{x_{\text{max}} - x_{\text{min}}}{q_{\text{max}} - q_{\text{min}}} = \frac{3}{255} \approx 0.01176$$

Setup

- Float range: $x_{\min} = -1.0$, $x_{\max} = 2.0$
- Integer range: $q_{\min} = -128$, $q_{\max} = 127$
- Compute scale:

$$S = \frac{x_{\text{max}} - x_{\text{min}}}{q_{\text{max}} - q_{\text{min}}} = \frac{3}{255} \approx 0.01176$$

• Compute zero-point:

$$Z = \text{round}(q_{\text{min}} - \frac{x_{\text{min}}}{S}) = \text{round}(-128 + 85) = -43$$

Setup

Forward mapping:

• S = 0.01176

• Z = -43

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

Setup

Forward mapping:

• S = 0.01176

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8$$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow$$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}(\frac{-0.8}{0.01176} - 43)$$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}(\frac{-0.8}{0.01176} - 43) = -111$$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}(\frac{-0.8}{0.01176} - 43) = -111$$

 $x = 0.5$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}\left(\frac{-0.8}{0.01176} - 43\right) = -111$$

 $x = 0.5 \rightarrow$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}(\frac{-0.8}{0.01176} - 43) = -111$$

 $x = 0.5 \rightarrow \text{round}(\frac{0.5}{0.01176} - 43)$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8$$
 \rightarrow round $\left(\frac{-0.8}{0.01176} - 43\right) = -111$
 $x = 0.5$ \rightarrow round $\left(\frac{0.5}{0.01176} - 43\right) = -1$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}\left(\frac{-0.8}{0.01176} - 43\right) = -111$$

 $x = 0.5 \rightarrow \text{round}\left(\frac{0.5}{0.01176} - 43\right) = -1$
 $x = 1.5$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8 \rightarrow \text{round}\left(\frac{-0.8}{0.01176} - 43\right) = -111$$

 $x = 0.5 \rightarrow \text{round}\left(\frac{0.5}{0.01176} - 43\right) = -1$
 $x = 1.5 \rightarrow$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8$$
 \rightarrow round $\left(\frac{-0.8}{0.01176} - 43\right) = -111$
 $x = 0.5$ \rightarrow round $\left(\frac{0.5}{0.01176} - 43\right) = -1$
 $x = 1.5$ \rightarrow round $\left(\frac{1.5}{0.01176} - 43\right)$

Setup

Forward mapping:

•
$$S = 0.01176$$

•
$$Z = -43$$

$$x_q = \text{round}\left(\frac{x}{S} + Z\right)$$

$$x = -0.8$$
 \rightarrow round $\left(\frac{-0.8}{0.01176} - 43\right) = -111$
 $x = 0.5$ \rightarrow round $\left(\frac{0.5}{0.01176} - 43\right) = -1$
 $x = 1.5$ \rightarrow round $\left(\frac{1.5}{0.01176} - 43\right) = 85$

But how to set the mapping? (post hoc)

- · Area of active research
- · You have to quantize each layer
- Error propagates
- Strategy: Select the quantization that minimizes the overall error

But how to set the mapping? (post hoc)

- Area of active research
- · You have to quantize each layer
- Error propagates
- Strategy: Select the quantization that minimizes the overall error
 - On a representative data
 - Order matters!

Recap

- Modern models are big
- Quantization lets you run them on smaller computers (or phones)
- While it degrades accuracy, you can strategically quantize to minimize it

