

ORGANISATION MONDIALE DE LA PROPRIETE INTEL Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6 : WO 97/43224 (11) Numéro de publication internationale: C03C 17/34 (43) Date de publication internationale:20 novembre 1997 (20.11.97) (21) Numéro de la demande internationale: PCT/FR97/00857 (81) Etats désignés: BR, CA, CZ, JP, KR, MX, PL, US, brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, (22) Date de dépôt international: 14 mai 1997 (14.05.97) IT, LU, MC, NL, PT, SE). (30) Données relatives à la priorité:

FR

(71) Déposant (pour tous les Etats désignés sauf US): SAINT-GOBAIN VITRAGE [FR/FR]; 18, avenue d'Alsace, F-

14 mai 1996 (14.05.96)

96/05995

92400 Courbevoie (FR).

(72) Inventeurs: et (75) Inventeurs/Déposants (US seulement): BOIRE, Philippe [FR/FR]; 77, rue de Cambronne, F-75015 Paris (FR). ZAGDOUN, Georges [FR/FR]; 32, rue Léon Maurice Nordmann, F-92250 La Garenne Colombes (FR).

(74) Mandataire: RENOUS CHAN, Véronique; Saint-Gobain Recherche, 39, quai Lucien Lefranc, F-93300 Aubervilliers (FR).

Publiée

Avec rapport de recherche internationale.

(54) Title: GLAZING WITH AN ANTI-REFLECTIVE COATING

(54) Titre: VITRAGE A REVETEMENT ANTIREFLET

(57) Abstract

Glazing comprising an anti-reflective coating (A) on at least one outer surface thereof, wherein said coating consists of a stack of material layers alternately having a high and a low refractive index, is disclosed. At least some of said layers, and the end layer in particular, are pyrolysed.

(57) Abrégé

L'invention concerne un vitrage comportant sur au moins une de ses faces extérieures un revêtement antireflet "A" comprenant un empilement de couches de matériaux d'indices de réfraction alternativement forts et faibles. Au moins une partie des couches dudit empilement sont des couches pyrolysées, notamment la demière couche.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en ventu du PCT.

							•
AL	Albanic	ES	Espagne	L8	Lesotho	SI	Slovénic
AM	Arménie	Fi	Pinlande	LT	Liturnie	SK	Slovaquie
AT	Autriche	FR	Prance	LU	Luxembourg	SN	Sénégal
ΑÜ	Australic	GA	Gabon	LV	Lettonie	8Z	Swaziland
AZ	Azerbaldjan	GB.	Roysume-Uni	MC	Monaco	TD	Tched
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldava	TG	Togo
BB	Barbade	GH	Ghane	MG	Madagascar	T.)	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquic
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
ÐJ	Bénin	1E	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israči	MR	Mauritanie	UG	Ouganda
BY	Bélarus	18	Islande	MW	Malawi	US	Etas-Unis d'Amérique
CA	Canada	£T	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougos lavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	2W	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Сагнегоцо		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucle	RU	Fédération de Russie		
DΕ	Allemagne	H	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
BE	Estonie	LR	Libéria	SG	Singapour		

10

15

20

25

30

VITRAGE A REVETEMENT ANTIREFLET

L'invention concerne les substrats transparents, plus particulièrement les substrats verriers, destinés à être incorporés dans des vitrages et munis de revêtements antireflet.

Un revêtement antireflet est usuellement constitué d'un empilement de couches minces interférentielles, en général une alternance de couches à base de matériau diélectrique à forts et faibles indices de réfraction. Déposé sur un substrat transparent, un tel revêtement a pour fonction d'en diminuer sa réflexion lumineuse, donc d'en augmenter sa transmission lumineuse. Un substrat ainsi revêtu voit donc s'accroître son ratio lumière transmise/lumière réfléchie, ce qui améliore la visibilité des objets placés derrière lui. Pour obtenir un effet antireflet maximal, il est recommandé de munir chacune des faces du substrat de ce type de revêtement.

Une des applications les plus connues de ce type de produit est la protection des tableaux éclairés par une lumière placée derrière l'observateur. Un vitrage à effet antireflet est également très intéressant pour équiper des bâtiments, par exemple en tant que vitrine de magasin, afin de mieux distinguer ce qui se trouve dans la vitrine même lorsque l'éclairage intérieur est faible par rapport l'éclairage extérieur, ou en tant que verre de comptoir.

Il serait aussi utile d'employer ce type de produit en tant que vitrage de véhicule, notamment de voiture, et plus particulièrement en tant que parebrise, les normes imposant des niveaux élevés de transmission lumineuse.

Ce qui limite actuellement l'utilisation de vitrages antireflet dans les bâtiments ou pour équiper des véhicules, c'est le niveau de durabilité mécanique et chimique qui est nécessaire pour de telles applications. En effet, le revêtement antireflet va se trouver disposé dans le vitrage au moins sur sa

10

15

20

25

30

face 1, c'est-à-dire la face du vitrage tournée vers l'extérieur de la pièce ou de l'habitacle (conventionnellement, on numérote chacune des faces des substrats verriers constituant un vitrage donné en commençant par la face qui se trouve tournée vers l'extérieur). Or cette face du vitrage est soumise à beaucoup de sollicitations ; ainsi, dans le bâtiment, elle est soumise aux aléas climatiques et au nettoyage par des moyens plus ou moins abrasifs et/ou par des produits chimiques plus ou moins corrosifs. Le problème de durabilité est peut-être encore plus flagrant pour les vitrages pour véhicules : le pare-brise est soumis à l'effet abrasif du va-et-vient des essuie-glaces, aux projections diverses de poussières ou gravillons, et l'ensemble des vitrages latéraux de véhicules se trouve soumis aux frottements répétés avec les lèvres en caoutchouc des portières.

Or, jusqu'ici, la majorité des revêtements antireflet proposés est obtenue par dépôt de couches minces à l'aide de techniques utilisant le vide, par exemple de techniques du type pulvérisation cathodique. Ce type de technique de dépôt conduit à l'obtention de couches minces de bonne qualité, notamment optique, mais qui présentent souvent une durabilité inférieure à celle qui serait requise pour les applications envisagées plus haut. En outre, ces techniques s'utilisent en reprise, c'est-à-dire en discontinu sur les plateaux de verre une fois découpés à partir du ruban de verre issu d'une ligne de production float.

Le but de l'invention est alors de pallier ces inconvénients, en cherchant à mettre au point un nouveau type de revêtement multicouche à effet antireflet qui soit performant optiquement et qui, en outre, présente une haute durabilité mécanique et chimique.

L'invention a pour objet un vitrage comportant sur au moins une de ses faces extérieures un revêtement antireflet, désigné ci-après sous le terme de revêtement « A », et qui comprend un empilement de couches de matériaux d'indices de réfraction alternativement forts et faibles. L'empilement est conçu de manière à ce qu'au moins une partie des couches qui le constituent soient des couches pyrolysées, de préférence au moins la dernière couche.

On peut par exemple prévoir que les premières sont pyrolysées et que la ou les dernières sont déposées sous vide.

10

15

20

25

30

Avantageusement toutes les couches de l'empilement sont des couches pyrolysées.

Dans le cadre de l'invention, on comprend par faces « extérieures », les faces du vitrage au contact avec l'atmosphère (à opposer aux faces dites « internes » qui sont notamment celles en contact avec la feuille intermédiaire en polymère dans un vitrage à structure feuilletée).

L'intérêt d'avoir recours à des couches pyrolysées est triple :

d'une part par pyrolyse, qu'elle soit en phase liquide, pulvérulente ou gazeuse (cette dernière étant souvent désignée sous le sigle CVD signifiant « Chemical Vapor Deposition »), on peut obtenir un vaste choix de matériaux du type oxyde, nitrure ou carbure, ou un mélange d'au moins deux de ces types de composés, présentant les indices de réfraction adéquats pour être incorporés dans un revêtement antireflet,

 d'autre part, des couches pyrolysées, et c'est ce qui intéresse tout particulièrement la présente invention, présentent une durabilité chimique et mécanique généralement très élevée. De par le fait qu'elles ont été obtenues par décomposition de précurseurs à très hautes températures sur verre chaud, elles sont particulièrement solides, denses, adhérentes fortement au substrat, et résistent donc bien aux agressions mécaniques du type abrasion/frottement ou aux agressions chimiques, notamment par mise au contact d'eau, de gaz poliuants, de détergents agressifs. Ce qui est très avantageux, pour garantir la durabilité de l'ensemble de l'empilement de couches, c'est que la dernière couche soit ainsi pyrolysée. Le plus simple est alors de déposer toutes les couches par pyrolyse : en effet, et c'est le troisième intérêt de la pyrolyse, ce type de dépôt peut s'effectuer en continu, directement sur le ruban de verre chaud d'une ligne float : il suffit alors d'aligner autant de buses de projection de précurseurs que de couches à déposer sur la ligne pour obtenir l'empilement recherché. Il n'est cependant pas exclu du cadre de l'invention de ne déposer par pyrolyse que la dernière ou les « n » dernières couches de l'empilement, et de déposer par une autre technique de dépôt la ou les premières couches. Cette autre technique peut par exemple être une technique sous vide du type pulvérisation cathodique ou une technique du type sol-gel. Il n'est pas non plus exclu de déposer par pyrolyse, une autre couche de l'empilement, notamment

10

15

20

25

30

Cette autre technique peut par exemple être également une technique sous vide.

Comme on l'a évoqué précédemment, un effet partiel antireflet peut être obtenu en n'ayant recours qu'à un seul revêtement antireflet par vitrage. Il est cependant connu que l'effet optimal est obtenu en munissant le vitrage non pas d'un mais de deux revêtements antireflet, un sur chacune de ses faces extérieures (donc en faces 1 et 2 s'il s'agit d'un vitrage composé d'un unique substrat ou en faces 1 et 4 s'il s'agit d'un vitrage multiple du type vitrage feuilleté à deux substrats verriers).

Plusieurs choix s'offrent donc dans l'invention pour obtenir cet effet antireflet optimal:

on peut notamment munir l'autre face extérieure du vitrage d'un revêtement antireflet « A' » similaire ou même identique au revêtement « A », comportant donc également au moins une couche pyrolysée, notamment au moins la dernière. Ainsi, quand le vitrage est à structure feuilletée, il suffit alors d'assembler à l'aide d'une feuille de polymère deux substrats chacun muni d'un empilement de type « A », les deux empilements ayant pu tous deux être fabriqués directement sur le ruban de verre float.

S'il s'agit d'un vitrage monolithique, le premier empilement « A » peut être obtenu sur float, et le second en reprise, soit également par pyrolyse, soit par une autre technique comme la pulvérisation cathodique ou la technique sol-gel (en masquant le revêtement antireflet déjà déposé).

On peut également munir l'autre face du vitrage d'un revêtement antireflet, ci-après désigné sous le terme de revêtement « B », qui comporte également un empilement de couches de matériaux d'indice de réfraction alternativement forts et faibles, mais déposé par une technique utilisant le vide telle que la pulvérisation cathodique. Avoir recours à un second empîlement antireflet non pyrolysé peut en effet présenter certains avantages : quand le vitrage est dit monolithique, composé que d'un seul substrat verrier, il peut être intéressant de déposer le premier revêtement antireflet de type « A » en continu sur le ruban de verre float, puis de déposer le second revêtement

10

15

20

25

30

antireflet du type « B » par un dépôt sous vide en reprise sans réchauffer le substrat. On peut souligner que dans ce cas de figure, la durabilité mécanique excellente de l'empilement antireflet « A » est très avantageuse : on peut déplacer le substrat le long d'une ligne de dépôt sous vide sur des rouleaux convoyeurs, avec l'empilement se trouvant au contact des rouleaux, sans que celui-ci ne se dégrade malgré les frottements inévitables entre substrat et rouleaux. Par ailleurs, souvent l'une des deux faces extérieures du vitrage, en général la face tournée vers l'intérieur de la pièce pour un vitrage bâtiment ou vers l'intérieur de l'habitacle pour un vitrage de véhicule, est moins sollicitée sur le plan chimique ou mécanique : on peut donc « se permettre » d'employer un empilement antireflet « B » présentant une durabilité inférieure à celle d'un empilement de type « A » mais qui peut néanmoins être suffisante.

Comme exemples d'empilements antireflet de type « B » susceptibles d'être déposés par une technique sous vide, on peut se reporter avantageusement à la demande de brevet européen déposée le 22 février 1996 sous le numéro 96/400367.7 correspondant à la demande de brevet français 95/02102, qui décrit un empilement antireflet présentant en outre la particularité intéressante de pouvoir subir sans détérioration des traitements thermiques du substrat porteur du type bombage/trempe ou recuit : il s'agit notamment « d'isoler » du substrat les couches susceptibles de se détériorer à haute température par migration d'alcalins du verre (comme Nb₂O₅, WO₃, Bi₂O₃ ou CeO₂) à l'aide d'une couche « écran » faisant partie de l'empilement, notamment une couche à faible indice du type SiO₂, Al₂O₃:F ou un mélange de ces deux composés, ou encore une couche à fort indice comme Si₃N₄ ou AlN, ou encore une couche à indice intermédiaire notamment à base d'un mélange d'oxyde de Si et Sn, Si et Zn, Si et Ti ou encore à base de SiO₂N₃.

On peut aussi se reporter avantageusement à la demande de brevet français déposée le 22 février 1996 sous le numéro 96/02194, décrivant un empilement antireflet également susceptible d'être déposé par une technique sous vide et utilisant des couches à bas-indice du type fluorure ou oxyfluorure d'aluminium $Al_xO_vF_z$, avec $y \ge 0$.

De manière générale, les couches dites à faible indice usuellement déposées par des techniques sous vide sont choisies par exemple parmi SiO₂,

 MgF_2 et les couches dites à fort indice par exemple parmi Ta_2O_5 , TiO_2 , Nb_2O_5 , ZrO_2 , SnO_2 , ZnO, WO_3 .

De préférence, les revêtements antireflet de type « A » selon l'invention, (et également, éventuellement, les revêtements antireflet de type « B » qui y sont associés) sont conçus de manière à ce que, d'une part, les couches dites à faible indice aient un indice de réfraction compris entre 1,35 et 1,70, de préférence entre 1,38 et 1,65 ; et d'autre part les couches dites à fort indice aient un indice de réfraction d'au moins 1,85 notamment compris entre 1,90 et 2,60, de préférence entre 2,10 et 2,45. L'effet antireflet n'est en effet pleinement réalisé que s'il y a une différence d'indices de réfraction significative entre les couches à forts et faibles indices en contact les unes avec les autres.

Selon un mode de réalisation particulier de l'invention, la première séquence de couches « couche à fort indice/couche à faible indice » du revêtement antireflet « A » (et éventuellement aussi du revêtement antireflet de type « B » lorsqu'il est utilisé) est remplacée par une seule couche dite à indice « intermédiaire », notamment compris entre 1,70 et 1,85 : une telle couche a un effet optique très similaire à une séquence haut indice/bas indice. Le matériau susceptible de présenter un tel indice peut être choisi à base d'oxyde d'étain, d'oxynitrure et/ou oxycarbure de silicium SiO_xC_y et/ou SiO_xN_y, ou à base d'un mélange d'oxydes par exemple un mélange d'oxyde de silicium et d'étain, de silicium et de zinc, de silicium et de titane, la proportion relative des deux types d'oxydes permettant d'ajuster l'indice de réfraction à la valeur voulue.

Pour réaliser le revêtement antireflet « A » selon l'invention, on choisit de préférence des couches pyrolysées à faible indice de réfraction constituées d' un matériau diélectrique ou un me ange de matériaux diélectriques choisis dans le groupe comprenant l'oxyde de silicium, l'oxynitrure et/ou l'oxycarbure de silicium SiO_xN_y et/ou SiO_xC_y, ou encore un oxyde mixte de silicium et d'aluminium comprenant également au moins un troisième élément M facilitant la formation d'une structure d'oxyde mixte homogène. Cet élément M est notamment un halogène du type fluor, et la couche peut également comprendre un quatrième élément, notamment du carbone. Pour plus de

10

15

20

25

10

15

20

25

30

détails sur la composition de cet oxyde mixte, on se rapportera avantageusement à la demande de brevet français FR-A-2 727 107 correspondant à la demande européenne 95/402612.6, qui décrit également son mode d'obtention préféré, qui est une technique CVD. Cette couche est de préférence utilisée dans l'invention pour constituer la dernière couche à faible indice du revêtement antireflet, car elle s'est avérée extrêmement résistante.

Le choix des couches pyrolysées à fort indice peut avantageusement se porter sur des matériaux diélectriques ou des mélanges de matériaux diélectriques appartenant au groupe comprenant TiO_2 , SnO_2 , ZnO, ZrO_2 ou Ta_2O_5 .

Comme évoqué précédemment, le vitrage de l'invention peut être composé d'un seul revêtement antireflet sur l'une de ses faces, notamment en face 1, et soit un revêtement « A' » de même type, soit un revêtement « B » sur la face opposée, notamment la face 2. S'il s'agit d'un vitrage feuilleté usuel, avec deux substrats verriers assemblés par une feuille de matériau polymère du type PVB (polyvinylbutyral), il a de préférence sur une de ses faces, notamment la face 1 un revêtement « A », et sur l'autre face extérieure, notamment la face 4 soit un revêtement « A' » de même type, soit un revêtement de type « B ».

On peut noter par ailleurs que les revêtements antireflet selon l'invention peuvent aussi s'appliquer aux vitrages feuilletés dits asymétriques, comportant au moins un substrat verrier et au moins une feuille de polymère à propriétés d'absorption d'énergie comme le polyuréthane.

Le choix de la nature du ou des substrats verriers constitutifs du vitrage peut aussi s'avérer important : on peut combiner les propriétés optiques et/ou thermiques intrinsèque(s) au(x) substrat(s) verrier(s) avec les propriétés optiques du ou des revêtement(s) antireflet pour obtenir un vitrage présentant globalement les performances voulues.

Ainsi, les substrats peuvent être choisis en verre clair, par exemple comme ceux vendus sous l'appellation commerciale Planilux par la société SAINT-GOBAIN VITRAGE. L'effet additionnel d'augmentation de la

10

15

20

transmission lumineuse dû au(x) revêtement(s) antireflet permet alors d'obtenir des vitrages extrêmement transparents.

Mais on peut également choisir les substrats constituant les vitrages, en verre présentant des propriétés de transmission énergétique réduite, notamment des verres teintés dans la masse. Au prix d'une certaine baisse de la transmission lumineuse on obtient des vitrages de protection solaire intéressants, l'effet d'augmentation de la transmission lumineuse obtenu grâce au(x) revêtement(s) antireflet permettant avantageusement d'atténuer cette baisse de niveau de transparence. Des vitrages teintés dans la masse, notamment adaptés au bâtiment, sont par exemple commercialisés sous l'appellation « Parsol » par la société SAINT-GOBAIN VITRAGE. D'autres types de verre à transmission énergétique réduite sont également intéressants dans la cadre de la présente invention.

Il s'agit notamment de verres de couleur bronze, comme décrits dans les brevets US-4 190 542 et US-4 101 705, ou de verres dont la composition a été ajustée plutôt en vue d'une application vitrage automobile. Il s'agit par exemple de verre appelés TSA⁺ ou TSA⁺⁺, dont les taux en oxydes colorants du type Fe₂O₃, FeO et CoO sont ajustés afin d'avoir une sélectivité définie par le rapport T_L/T_E d'au moins 1,30, ou même 1,40 à 1,50, et une teinte dans les verts. On se reportera avantageusement pour plus de précisions à la demande de brevet européen EP-A-0 616 883. On rappelle sommairement ci-dessous le taux des oxydes colorants précités dans les compositions de verre selon l'enseignement de ce brevet (proportions pondérales).

Selon une première série :

25 Fe₂O₃ 0,55 à 0,62 %

FeO 0,11 à 0,16 %

CoO 0 à 12 ppm, notamment < 12 ppm avec notamment le rapport Fe²⁺/Fe de l'ordre de 0,19 à 0,25.

Selon une seconde série :

30 Fe₂O₃ 0,75 à 0,90 %

FeO 0,15 à 0,22 %

CoO 0 à 17 ppm, notamment < 10 ppm avec notamment le rapport Fe²⁺/Fe de l'ordre de 0,20.

Il peut également s'agir de verres teintés dans la masse, notamment dans les bleu-vert tels que ceux décrits dans la demande de brevet EP-A-O 644 164, dont on rappelle ci-après la composition :

SiO ₂	64 à 75 %
Al_2O_3	O à 5 %
B_2O_3	Oà5 %
CaO	2 à 15 %
MgO	Oà5 %
Na ₂ O	9 à 18 %
K₂O	Oà5 %
Fe ₂ O ₃	0,75 à 1,4 %
(fer total exprimé sous cette forme)	
FeÓ	0,25 à 0,32 %
SO ₃	0,10 à 0,35 %

Il peut également s'agir de verres tels que ceux décrits dans la demande PCT déposée sous le numéro PCT/FR95/00828 le 22 juin 1995 correspondant à la demande FR-A-2 721 599, dont la composition, toujours en pourcentages pondéraux, est rappelée ci-dessous :

	SiO ₂	69 à 75 %
10	Al ₂ O ₃	0 à 3 %
	B ₂ O ₃	Oà 5%
	CaO	2 à 10 %
	MgO	Oà 2%
	Na ₂ O	9 à 17 %
15	K ₂ O	Oà 8%
	Fe ₂ O ₃ (fer total)	0,2 à 4 %
	Se, CoO, Cr ₂ O ₃ , NiO, CuO	0 à 0,45 %

la teneur en agents colorants autres que le fer étant au moins égale à 0,0002 % lorsque la teneur en Fe₂O₃ est égale ou inférieure à 1,5 %, cette composition étant susceptible de contenir également du fluor, des oxydes de zinc, de zirconium, de cérium, de titane et moins de 4 % d'oxyde de baryum,

15

la somme des pourcentages des oxydes alcalino-terreux demeurant égale ou inférieure à 10 %.

Toujours selon l'enseignement de ce brevet, il est préféré que les agents colorants autres que le fer soient introduits dans la composition des verres seuls ou en combinaison, selon des teneurs pondérales qui, de préférence, restent inférieures aux limites suivantes :

	Se	<	0,008 %
	CoO	<	0,04 %
	Cr ₂ O ₃	<	0,1 %
10	NiO	<	0,07 %
	CuO	<	0,3 %.

Il peut aussi s'agir de verres tels que ceux décrits dans la demande PCT/FR96/00394 déposée le 14 mars 1996 et correspondant à la demande de brevet français déposée le 16 mars 1995 sous le numéro 95/03858, verres comprenant, exprimé en pourcentages pondéraux, de 0,85 à 2% de fer total exprimé sous la forme Fe₂O₃, la teneur pondérale en FeO étant comprise entre 0,21 et 0,40%.

Selon ce brevet, les compositions sont, selon une première série, les suivantes :

SiO ₂	64 à 75 %
Al_2O_3	Oà5 %
B ₂ O ₃	Oà5 %
CaO	2 à 15 %
MgO	0 à 5 %
Na₂O	9 à 18 %
K ₂ O	0 à 5 %
Fe ₂ O ₃ (fer total exprimé sous cette forme)	0,85 à 2 %
FeO	0,21 à 0,40 %
CoO, Cr ₂ O ₃ , Se, TiO ₂ , MnO, NiO, CuO	0 à 0,04 %
SO ₃	0,08 à 0,35 %
et selon une seconde série, les suivantes :	
SiO ₂	68 à 75 %
Al_2O_3	Oà3 %
	Al ₂ O ₃ B ₂ O ₃ CaO MgO Na ₂ O K ₂ O Fe ₂ O ₃ (fer total exprimé sous cette forme) FeO CoO, Cr ₂ O ₃ , Se, TiO ₂ , MnO, NiO, CuO SO ₃ et selon une seconde série, les suivantes : SiO ₂

	- 11 -	
	B_2O_3	0 à 5 %
	CaO	2 à 10 %
	MgO	O à 2 %
	Na ₂ O	9 à 18 %
5	K₂O	Oà8 %
	Fe ₂ O ₃ (fer total exprimé sous cette form	ne) 0,95 à 2 %
	CoO, Cr ₂ O ₃ , Se, TiO ₂ , MnO, NiO, CuO	0 à 0,04 %
	FeO	0,29 à 0,40 %
	SO ₃	0,08 à 0,35 %

Tous ces types de compositions de verre teinté peuvent donc être avantageusement choisis de manière à ce que les vitrages présentent des valeurs de transmission énergétique comprise entre 30 et 70%, notamment entre 35 et 60% et des valeurs de transmission lumineuse comprise entre 50 et 85%.

Les substrats verriers porteurs du ou des empilements antireflet peuvent subir différents traitements thermiques, notamment un bombage, une trempe ou un recuit. Il y a deux cas de figures : soit les revêtements sont déposés après traitement, ce qui empêche le dépôt des couches sur ligne float, (et ce qui est difficile pour des revêtements « A » dont le dépôt impose un réchauffage du verre) soit les revêtements, tout au moins les revêtements de type « A », sont déposés sur ligne et conçus de façon à être aptes à subir ces traitements sans altération de leurs propriétés optiques. Pour les empilements de type « B », a déjà été mentionnée plus haut une configuration présentant ce genre de propriété.

Les vitrages peuvent également comporter au moins un autre type de couche mince ou d'empilement de couches minces à fonction de protection solaire. Il peut s'agir de couches réfléchissantes telles que des couches à base d'argent suffisamment épaisses. Il peut ainsi s'agir d'empilements du type diélectrique / argent/ diélectrique ou diélectrique / argent / diélectrique / argent / diélectrique. Pour plus de précisions sur ces types d'empilements, on pourra se reporter aux demandes de brevet européen EP-A-O 678 484, EP-A-O 645 352 et EP-A-O 638 528. On peut également utiliser des empilements comprenant une couche réfléchissante et/ou filtrante telle qu'une couche de nitrure,

15

20

25

15

20

25

30

comme du nitrure de titane, comme cela est décrit dans les demandes EP-A-0 638 527 et EP-A-0 650 938.

On peut également munir les vitrages selon l'invention d'au moins un revêtement conducteur électrique à fonction d'alarme : il peut consister en une couche conductrice ou un réseau de fils conducteurs, par exemple sérigraphiés à partir d'une pâte à l'argent conductrice, que l'on va connecter à une source de courant par des amenées adhoc. En cas de tentative de rupture du vitrage, si le courant ne passe plus, des moyens déclenchent une alarme sonore et/ou lumineuse.

En fait, on choisira plutôt soit d'utiliser du verre teinté, soit d'utiliser ce type de revêtement de protection solaire, mais dans les deux cas il s'agit bien de combiner leurs propriétés thermiques et optiques, qui sont corrélées, avec les propriétés optiques des revêtements antireflet pour obtenir le vitrage souhaité.

Une configuration préférée de vitrage feuilleté consiste à munir au moins l'une des faces internes des substrats verriers qui le constituent, c'est-à-dire les faces 2 et/ou 3 des revêtements à fonction de protection solaire et/ou à fonction d'alarme.

On peut fonctionnaliser encore le revêtement antireflet « A » (et/ou éventuellement le revêtement antireflet « B ») des vitrages selon l'invention, en le surmontant d'un revêtement à propriétés photocatalytiques à fonction antisalissures, notamment à base d'oxyde de titane au moins partiellement cristallisé que l'on peut obtenir par CVD, comme cela est décrit dans la demande de brevet français déposée le 15 septembre 1995 sous le numéro FR-95/10839.

Dans le même ordre d'idées, il est également possible de traiter la surface de la dernière couche pyrolysée de l'empilement antireflet de type « A » par des silanes, notamment par la technique de ruissellement afin de diminuer son coefficient de frottement et ainsi, notamment, faciliter le balayage des essuieglaces dans le cas d'un pare-brise par exemple.

Notamment dans le cas où l'on envisage d'utiliser les vitrages en tant que vitrages intérieurs ou extérieurs pour bâtiments, vitrines, comptoirs de magasin ou en tant que vitrages pour véhicule type automobile autres que le pare-brise

(vitres latérales, lunettes arrières, toit-auto), on choisit avantageusement les épaisseurs optiques des couches constituant le ou les empilements antireflet de manière à abaisser la réflexion lumineuse du vitrage à des valeurs inférieures à 1,5%, notamment inférieures à 1,0% à incidence normale. C'est en effet en général le niveau de performances que l'on attend d'un vitrage antireflet.

Pour obtenir de telles valeurs de réflexion lumineuse, les empilements antireflet « A » selon l'invention peuvent comporter, en commençant par la couche se trouvant la plus proche du substrat :

- une première couche à fort indice d'épaisseur optique comprise entre 15 et 50 nm, notamment entre 20 et 40 nm,
- et une seconde couche à faible indice d'épaisseur optique comprise entre 160 et 200 nm, notamment entre 170 et 190 nm,

- une première couche d'indice intermédiaire d'épaisseur optique comprise entre 100 et 140 nm, notamment entre 110 et 130 nm,
- une seconde couche à fort indice, d'épaisseur optique comprise entre 210 et 260 nm, notamment entre 230 et 250 nm,
- et enfin une troisième couche à faible indice d'épaisseur optique comprise entre 100 et 150 nm, notamment entre 110 et 140 nm.

Notamment dans le cas où l'on envisage d'utiliser le vitrage en tant que pare-brise, notamment feuilleté, pour véhicule du type automobile ou train, la sélection des épaisseurs optiques des couches des empilements antireflet va être un peu différente, car les critères vont varier : en effet, les pare-brise actuels sont fortement inclinés, une optimisation de la réflexion lumineuse ne prenant en compte que des mesures à incidence normale s'avère insuffisante. En outre, les pare-brise doivent concilier deux propriétés, c'est-à-dire présenter à la fois une très haute transmission lumineuse pour des problèmes de sécurité (les normes actuelles imposent une valeur de T_L d'au moins 75% à incidence normale) et une transmission énergétique la plus réduite possible, pour éviter un échauffement excessif de l'habitacle en été : pour l'application spécifique des pare-brise, il faut donc chercher à ajuster en fait au plus haut la valeur de

25

15

20

25

30

la sélectivité T_L/T_E . On choisit donc pour l'application pare-brise des épaisseurs optiques de couches qui permettent d'obtenir conjointement une valeur de R_L inférieure à 7% et même inférieure à 6% à incidence normale, inférieure à 10% à incidence de 60°, une valeur de T_L à incidence normale d'au moins 75% et une sélectivité T_L/T_E d'au moins 1,65, notamment d'au moins 1,70.

Pour respecter l'ensemble de ces critères, le(s) revêtement(s) antireflet « A » de l'invention peuvent avantageusement comporter trois couches, dont, en commençant par la couche la plus proche du substrat :

☐ une première couche d'indice intermédiaire d'épaisseur optique 10 comprise entre 160 et 210 nm, notamment entre 180 et 200 nm,

☐ une seconde couche à fort indice d'épaisseur optique comprise entre 300 et 350 nm, notamment entre 320 et 340 nm,

🗇 et une troisième couche à faible indice d'épaisseur optique comprise entre 120 et 170 nm, notamment entre 145 et 165 nm.

L'invention a également pour objet l'utilisation des vitrages précédemment décrits pour d'autres applications que le bâtiment ou les véhicules déjà envisagées, notamment des applications en tant que vitrage de protection d'objets du type tableau, d'écran de protection anti-éblouissement pour ordinateur, de verre décoratif, de mobilier verrier d'ameublement ou de miroir (en lui adjoignant par exemple une couche opacifiante).

Les vitrages revêtus des revêtements antireflet selon l'invention peuvent également être conçus et montés de manière à pouvoir remplir une fonction anti-feu à propriétés pare-flamme : on peut se reporter par exemple avantageusement à la demande de brevet EP-A-O 635 617 ou à la demande de brevet EP-A-O 568 458. Ils peuvent également présenter des propriétés coupe-feu, et sont alors usuellement composés de deux substrats verriers montés dans un cadre à une certaine distance l'un de l'autre, l'espace les séparant étant rempli d'un gel aqueux, comme cela est décrit dans le brevet EP-B-442 768 ou encore le brevet US-4 983 464.

Les détails et caractéristiques avantageuses de l'invention vont maintenant ressortir des exemples suivants non limitatifs, à l'aide des figures annexées :

10

15

20

25

30

antireflet et celle du substrat n'ont pas été respectées pour en faciliter la lecture). Un seul empilement a été représenté, même si, comme décrit aux figures 2 et 3, un second empilement antireflet pyrolysé ou non peut être

déposé sur le substrat sur sa face opposée.

Selon la variante de la figure 1a, est représenté un substrat verrier 1 qui est muni d'un revêtement bi-couches A1 comprenant une première couche 2 à fort indice surmontée d'une seconde couche 3 à faible indice. Selon la variante de la figure 1b, le même substrat 1 est muni d'un revêtement tri-couche A2 comprenant une première couche d'indice intermédiaire 4 surmontée d'une seconde couche à fort indice 5 et d'une troisième couche à faible indice 6. Selon la variante de la figure 1c, le même substrat 1 est muni d'un revêtement quadri-couches A3 comprenant une alternance de deux couches à fort indice 7, 9 et deux couches à faible indice 8, 10.

Dans tous les exemples suivants, les couches des revêtements A1, A2 ou A3 sont obtenues par une technique de pyrolyse en phase liquide, pulvérulente, gazeuse, directement sur le ruban de verre float.

Ci-après sont indiqués, de manière non exhaustive, les précurseurs adéquats pour obtenir les couches d'oxyde à indice voulu :

 les couches à faible indice du type silice sont déposées par CVD à partir de tétraorthosilicate TEOS ou de SiH4.

I les couches à faible indice du type oxyde mixte de silicium et d'aluminium éventuellement fluoré sont déposées par CVD à partir d'un mélange d'un précurseur de silicium comme le TEOS et d'un précuseur d'aluminium sous forme d'un organo-métallique à fonction alcoolate ou βdicétone du type acétylacétonate ou métyl-2-heptadione 4,6, éventuellement fluoré (des précurseurs d'aluminium fluoré sont notamment choisis parmi

10

15

20

25

30

l'acétylacétonate d'aluminium hexafluoré ou un trifluoroacétylacétonate d'aluminium, comme décrit dans la demande FR-A-2 727 107 précitée,

☐ les couches à indice intermédiaire du type oxycarbure de silicium SiO_xC_y sont déposées également par CVD à partir d'éthylène et de SiH₄, conformément à la demande de brevet EP-A-O 518 755,

Il les couches à fort indice à base d'oxyde d'étain sont déposées par pyrolyse de poudre de dibutyldifluorure d'étain (DBTF) ou par CVD à partir de tétrachlorure d'étain,

Dies couches à fort indice à base de TiO₂ sont déposées par pyrolyse liquide à partir d'un mélange d'alcoolate et de chélate de titane dans un solvant du type acétate d'éthyle (précurseurs décrits dans le brevet EP-B-O 465 309) ou par CVD à partir tétraisopropyltitanate, ou encore par pyrolyse de poudre à partir de méthyléthyltitanate ou de Ti(OCH₃)₄. On ne rentrera pas dans les détails des conditions de dépôt de chacune de ces couches, qui sont connues de l'homme de l'art. Pour les antireflet déposés sous vide, on pourra notamment trouver des précisions dans la demande de brevet européen 96/400367.7 précitée.

La figure 2 illustre la configuration d'un vitrage selon un premier exemple 1 : il s'agit d'un vitrage dit monolithique, ne comportant qu'un seul substrat verrier muni sur sa face 1 d'un empilement antireflet « A » et sur sa face 2 d'un empilement antireflet « B » constitué de couches minces obtenues par pulvérisation cathodique. Le substrat 1 est représenté plan, mais peut également être bombé avec un rayon de courbure variable. On a généralement la face 1 tournée vers l'extérieur qui correspond alors, en cas de bombage, à la face convexe (la face 2 étant concave).

EXEMPLE 1

- → On dépose sur ligne float sur un ruban de verre de 4 mm d'épaisseur et de nature silico-sodo-calcique (vendu une fois découpé sous l'appellation Planilux par la société SAINT-GOBAIN VITRAGE) un premier empilement A2 pyrolysé comportant (cf. figure 1b) :
- ☐ une première couche à base de SiO_xC_y d'indice de réfraction environ 1,73 et d'épaisseur géométrique 71 nm,

- ☐ une seconde couche à base de TiO₂ d'indice de réfraction 2,45 et d'épaisseur géométrique 99 nm,
- ☐ une troisième couche à bas indice à base d'oxyde mixte SiOAIF, d'indice de réfraction 1,48 et d'épaisseur géométrique 90 nm.
- Après découpe du ruban, on dépose sur l'autre face par pulvérisation cathodique réactive en présence d'oxygène un revêtement antireflet « B » comportant :
 - une première couche de 18 nm d'épaisseur géométrique de SnO₂ d'indice 1,9,
- 10 Dune seconde couche de 35 nm d'épaisseur géométrique de SiO₂ d'indice 1,45,
 - ☐ une troisième couche de 120 nm d'épaisseur géométrique de Nb₂O₅ d'indice 2,1,
- ☐ une quatrième couche de 85 nm d'épaisseur géométrique de SiO₂ d'indice 15 1,45.

Le tableau 1 ci-dessous regroupe pour le substrat ainsi revêtu et, à titre de comparaison, pour un substrat identique mais dépourvu de tout revêtement, les valeurs spectrophotométriques suivantes mesurées sous l'illuminant D_{66} :

20

- T_L la transmission lumineuse en pourcentage à incidence normale,
- T_E la transmission énergétique en pourcentage à incidence normale,
- R_L la réflexion lumineuse en pourcentage à incidence normale
- a*-b* les valeurs de couleur en réflexion selon le système de colorimétrie (L*, a*, b*) sans unité, T_L/T_E la sélectivité sans unité :

TABLEAU 1

	EXEMPLE 1	EXEMPLE COMPARATIF
Τι	95	89
T _E	79	83
RL	0.7	7,9
a*	3,3	-0,2
b*	-17,5	-0,5
T _L /T _E	1,2	1,07

15

25

30

Une seconde série d'exemples 2 à 10 correspond à des vitrages ayant la configuration feuilletée représentée à la figure 3 : le substrat 1 précédent est assemblé à un second substrat verrier 10 à l'aide d'une feuille 11 de PVB de 0,7 mm d'épaisseur. Ce second substrat est muni sur sa face extérieure également d'un empilement antireflet, soit pyrolysé et identique à celui dont le substrat 1 est revêtu, soit déposé sous vide et du type « B ».

10 Les exemples 2 à 5 utilisent deux substrats 1, 10 verriers Planilux de 4 mm d'épaisseur.

EXEMPLE 2

Les deux empilements antireflet des substrats 1 et 10 sont identiques et toutes leurs couches sont pyrolysées. Il s'agit d'empilements bi-couches (cf. figure 1a), comprenant :

- ☐ une première couche de TiO₂ de 12 nm d'épaisseur géométrique,
- ☐ une seconde couche d'oxyde mixte SiOAIF_x identique à celle de l'exemple 1 d'épaisseur géométrique 124 nm.

EXEMPLE 3

Les deux empilements antireflet des substrats 1 et 10 sont identiques et toutes leurs couches pyrolysées. Il s'agit également d'empilements bi-couches comprenant :

- ☐ une première couche de SnO₂ de 95 nm d'épaisseur géométrique,
- ☐ une seconde couche de SiOAIF_x identique à celle des exemples précédents d'épaisseur géométrique 92 nm.

EXEMPLE 4

Les deux empilements antireflet des substrats 1 et 10 sont identiques et toutes leurs couches pyrolysées. Il s'agit d'empilements tri-couches (cf. figure 1b) de structures et d'épaisseurs de couches identiques à celles de l'exemple 1.

EXEMPLE 5

Les deux empilements antireflet sont différents : celui du substrat 1 est un empilement bi-couche selon l'exemple 2, celui du substrat 10 est un

10

15

.20

l'exemple 1.

- 19 empilement de type « B » déposé sous vide identique à celui décrit dans

Le tableau 2 ci-dessous regroupe toutes les valeurs spectrophotométriques déjà explicitées pour les exemples 2 à 4, avec, à titre de comparaison, les valeurs pour un feuilleté assemblant deux mêmes substrats verriers mais dépourvus de revêtement.

TABLEAU 2

	EX.2	EX. 3	EX. 4	EX. 5	COMPARATIF
TL	96	95	97	95	86
T _E	84	83	78	79	72
RL	0,9	1,3	0,4	1,1	7,6
a*	44	17,1	0,7	19,7	-1,0
b*	-40	-36,7	3	-25,4	0,1
T _L /T _E	1,14	1,14	1,24	1,20	1,18

De ce tableau, on voit que tous les exemples de l'invention, même ceux avec des empilements simplement bi-couches, permettent d'atteindre des valeurs de R_L d'au plus 1,3%, particulièrement faibles.

On peut également noter un gain en sélectivité significatif pour les exemples 4 et 5 par rapport à l'exemple comparatif, et une valeur résiduelle en réflexion particulièrement atténuée pour l'exemple 4.

Les exemples 6 à 10 utilisent un substrat 10 clair de 4 mm identique à celui utilisé dans les exemples 2 à 5, mais un substrat 1 de 4 mm teinté dans la masse à $T_{\rm E}$ réduite.

EXEMPLE 6

Les empilements antireflet sont des empilements tri-couches pyrolysées identiques à ceux de l'exemple 4. Le verre du substrat 1 est conforme à l'enseignement du brevet EP-A-0 644 164 précité. Sa composition est la suivante (en pourcentages pondéraux) :

	SiO ₂	70,75 %
•	Al ₂ O ₃	0,62 %
25	CaO	9,50 %

- 20 -

		- 20 -
	MgO	3,90 %
	Na ₂ O	13,90 %
	K₂O	0,09 %
	SO ₃	0,18 %
5	Fe ₂ O ₃ (fer total)	0,95 %
	FeO	0,285 %
	FeO (fer total)	0,30 %

Pris seul, sans revêtement ni montage en feuilleté, il présente une T_L de 71%, une T_E de 43,5% et une T_{uv} de 18%.

10 EXEMPLE 6 COMPARATIF

Il permet de faire la comparaison avec l'exemple 6 : les substrats sont les mêmes, mais dépourvus de tout revêtement.

EXEMPLE 7

Les empilements antireflet sont des empilements tri-couches pyrolysés identiques à ceux de l'exemple 4. Le verre du substrat 1 est de 4 mm d'épaisseur et conforme à l'enseignement de la demande de brevet PCT/FR95/00828 précitée. Les teneurs en MgO, Fe₂O₃ et FeO du verre sont les suivants (en pourcentages pondéraux) :

	MgO	0,3 %
20	Fe ₂ O ₃	0,20 %
	FeO	0.36 %

Pris seul, sans revêtement ni montage en feuilleté, il présente une T_L de 81% une T_E de 60% et une T_{uv} de 51%.

EXEMPLE 7 COMPARATIF

25 Il permet de faire la comparaison avec l'exemple 7 : les substrats sont les mêmes, mais dépourvus de tout revêtement.

Le tableau 3 ci-dessous regroupe toutes les valeurs spectrophotométriques correspondant aux exemples 6, 6 comparatif, 7 et 7 comparatif:

	EX.6	EX. 6	EX. 7	EX. 7
TL	73	67	88	81
T _E	37	37	58	60
RL	0,3	6,5	0,4	7,8
a*	-1	-3,3	-0,5	-1,5
b*	-1,8	-0,8	-1,5	-0,6
T _L /T _E	1,94	1,8	1,52	1,35

TABLEAU 3

Là encore, on constate pour les exemples conformes à l'invention, un net gain en sélectivité, avec des valeurs de R_L inférieures à 0,5 % et des colorations résiduelles en réflexion très peu intenses

La dernière série d'exemples 8 à 10 vise plus particulièrement une application de pare-brise feuilleté pour automobile : les deux substrats 1, 10 sont d'abord munis de leurs empilements directement sur la ligne float, puis, après découpe, sont bombés, le substrat 1 ayant sa face extérieure 1 convexe, et le substrat 10 sa face extérieure 4 concave.

Le substrat 1 est de 2,6 mm d'épaisseur et teinté dans la masse. Le substrat 10 est de 2,1 mm d'épaisseur et clair de type Planilux. La feuille 11 de PVB a toujours 0,7 mm d'épaisseur.

15 EXEMPLE 8

5

10

Le substrat 1 a une composition conforme au brevet EP-0 644 164, et plus précisément la composition suivante (en proportions pondérales) :

SiO ₂	70,8 %
Al ₂ O ₃	0,6 %
Na ₂ O	13,8 %
K₂O	0,10 %
CaO	9,50 %
MgO	4,10 %
Fe ₂ O ₂ (fer total exprimé sous cette forme)	0.86 %

15

TiO₂ SO₃

0,035 %

0,17 %

FeO

0,28 %

Les deux empilements antireflet sont pyrolysés, identiques, et sous la forme d'un empilement tri-couches (cf. figure 1b) avec : $\square \ \ \text{une première couche à base de SiO}_x C_y \ \ d'indice 1,83 \ \ \text{et d'épaisseur}$

O une seconde couche à base de TiO₂ d'épaisseur géométrique 135 nm,

☐ une troisième couche en SiOAIF_x comme précédemment définie, d'indice 1,48 et d'épaisseur géométrique 107 nm.

EXEMPLE 8 COMPARATIF

10 Il utilise les mêmes substrats qu'à l'exemple 8, mais dépourvus de revêtements antireflet.

EXEMPLE 9

géométrique 105 nm,

La seule différence d'avec l'exemple 8 est que le substrat 1 est d'avantage coloré et répond toujours à l'enseignement du brevet EP-0 644 164 avec la composition identique à celle indiquée pour l'exemple 6.

EXEMPLE 9 COMPARATIF

Il utilise un même montage feuilleté des substrats identiques à l'exemple 9 mais sans revêtement antireflet.

Le tableau 4 ci-dessous regroupe les valeurs spectrophotométriques déjà 20 explicitées, cette fois mesurées en fonction de l'illuminant « A ». Sont également précisées les valeurs de T_L, T_E, R_L, a* et b* à incidence 60°:

- 23 -TABLEAU 4

·	EX.8	EX. 8 COMPARATIF	EX. 9	EX. 9 COMPARATIF
T _L	81	76	76	71
Τ _E	47	48	44	44
RL	1,9	7	1,5	6,7
8*	57,8	-2,6	8,9	-3,1
b*	-73,6	0,1	-45,7	-1,1
T_L/T_E	1,72	1,57	1,7	1,61
T _L (60°)	73	66	68	61
T _E (60°)	39	39	37	35
R _L (60°)	6,7	13	5,1	12,7
a*(60°)	5	-3,1	2,4	-3,3
b*(60°)	-17,3	0,3	-5,9	-0,9

De ce tableau, on constate que la sélection des épaisseurs des couches des empilements a été modifiée par rapport à la série précédente, de manière à améliorer l'effet antireflet à incidence oblique, en augmentant la valeur de Ti de manière significative à la fois à incidence normale et à 60°. Le gain de sélectivité obtenu avec l'invention est tout particulièrement intéressant dans le domaine des véhicules, pour atténuer l'échauffement des habitacles. Du tableau 4, on voit que l'on peut, grâce à l'invention, franchir la barre des 1,8 pour la sélectivité à incidence oblique. En outre, le gain en T_L obtenu par les empilements selon l'invention permet d'utiliser des substrats à transmission énergétique réduite qui jusque là ne pouvaient être utilisés car ils abaissaient la valeur de T_L du feuilleté en-dessous de la valeur seuil imposée par les normes, de 75% : sì l'on se réfère aux exemples 9 et 9 comparatif, on voit que ce sont les empilements antireflet qui permettent au vitrage de franchir cette borne des 75% de T_L à incidence normale : l'invention autorise donc l'utilisation pour les pare-brise de vitrages assez fortement colorés, ce qui tend là encore à réduire l'échauffement des habitacles, sans être pénalisé exagérément en terme de transparence.

Un dernier exemple 10 a été réalisé, similaire à l'exemple 8.

La seule différence réside dans l'empilement antireflet disposé en face 1 du substrat 1 : l'empilement tri-couche comporte une première couche de SiOC d'indice 1,83 et d'épaisseur géométrique 102 nm, une seconde couche

5

10

15

de TiO₂ de 115 nm, une troisième couche de SiOAIF_x de 80 nm d'épaisseur géométrique et d'indice 1,48, et, en plus, une dernière couche mince de 10 nm de TiO₂ déposé par CVD et partiellement cristallisée, comme décrite dans la demande FR-95/10839 précitée : on confère ainsi une fonctionnalité supplémentaire anti-salissure au pare-brise sans pénaliser de manière significative sa fonction antireflet, puisque la quatrième couche, relativement de fort indice, est cantonnée à une faible épaisseur (notamment d'au plus 20 nm).

Le tableau 5 ci-dessous regroupe les valeurs spectrophotométriques d'un tel vitrage à incidence normale ainsi qu'à incidence 60° :

EX.10
77
46
6
21,3
-40,9
1,68
72
40
8
-7
-12,4

En dernier lieu, il est à noter que les empilements pyrolysés selon l'invention de tous les exemples précédents conent d'excellents résultats en terme de durabilité, avec notamment une résine de au test de brouillard salin neutre selon la norme ISO 9227 d'au moins injours, et une variation de T_L d'au plus 3 % quand on leur fait subir un test d'abrasion dit test Taber opérant 2000 rotations (test effectué à l'aide de poudre abrasive noyée dans un élastomère à l'aide d'une machine fabriquée par la société TABER Instrument

- 25 - Corp., machine référencée sous le modèle 174 « Standard Abrasion Tester », les meules étant de type S10F chargées de 500 grammes).

- 26 - REVENDICATIONS

- 1. Vitrage comportant sur au moins une de ses faces extérieures un revêtement antireflet « A » comprenant un empilement de couches de matériaux d'indices de réfraction alternativement forts et faibles, caractérisé en ce qu'au moins une partie des couches dudit empilement sont des couches pyrolysées, notamment la dernière couche.
- 2. Vitrage selon la revendication 1, caractérisé en ce que les premières couches dudit empilement sont pyrolysées et la ou les dernières sont déposées sous vide.
- 3. Vitrage selon la revendication 1, caractérisé en ce que l'ensemble des couches de l'empilement sont des couches pyrolysées sur un substrat verrier (1, 10).
 - 4. Vitrage selon l'une des revendication précédentes, caractérisé en ce qu'il comporte sur l'une de ses faces extérieures un revêtement antireflet « A » comprenant un empilement de couches dont au moins une partie est pyrolysée, et sur l'autre de ses faces extérieures soit un revêtement antireflet « A' » de même type, soit un revêtement antireflet « B », comportant également un empilement de couches de matériaux d'indices de réfraction alternativement forts et faibles mais déposées par une technique utilisant le vide, telle que la pulvérisation cathodique.
 - 5. Vitrage selon l'une des revendications 1 à 4, caractérisé en ce que les couches (3, 6, 8, 10) à faible indice de réfraction du(des) empilement(s) antireflet ont un indice compris entre 1,35 et 1,70, de préférence entre 1,38 et 1,65 et en ce que les couches à fort indice ont un indice d'au moins 1,85, notamment compris entre 1,90 et 2,60, de préférence entre 2,10 et 2,45.
 - 6. Vitrage selon l'une des revendications précédentes, caractérisé en ce que dans le revêtement antireflet « A », ou au moins un des revêtements antireflet « A », « A' » ou « B », la première séquence (7, 8) de couches « couche à fort indice/couche à faible indice » est remplacée par une couche (4) d'indice intermédiaire compris entre 1,70 et 1,85, notamment une couche à base d'oxynitrure et/ou oxycarbure de silicium SiO_xN_y et/ou SiO_xC_y ou une couche à base d'oxyde d'étain.

15

20

25

10

15

20

25

- 7. Vitrage selon l'une des revendications précédentes, caractérisé en ce que les couches (3, 6, 8, 10) à faible indice de réfraction pyrolysées sont en un matériau diélectrique ou un mélange de matériaux diélectriques choisi(s) dans le groupe comprenant l'oxyde de silicium SiO₂, l'oxynitrure et/ou l'oxycarbure de silicium SiO_xN_y et/ou SiO_xC_y, un oxyde mixte d'oxyde de silicium et d'aluminium éventuellement halogéné de type SiAl_xO_yF_x.
- 8. Vitrage selon l'une des revendications précédentes, caractérisé en ce que les couches (2, 5, 7, 9) à fort indice de réfraction pyrolysées sont en un matériau ou un mélange de matériaux diélectriques choisi(s) dans le groupe comprenant TiO₂, SnO₂, ZnO, ZrO₂, Ta₂O₅.
- 9. Vitrage selon l'une des revendications précédentes, caractérisé en ce qu'il est composé d'un seul substrat verrier (1), avec de préférence un revêtement antireflet « A » en face 1 et soit un revêtement antireflet « A' » de même type, soit un revêtement antireflet déposé sous vide du type « B » en face 2.
- 10. Vitrage selon l'une des revendications 1 à 8, caractérisé en ce qu'il est de structure feuilletée, comportant au moins deux substrats verriers (1, 10) assemblés à l'aide d'une feuille (11) en matériau polymère tel que le PVB avec de préférence un revêtement antireflet « A » en face 1, et soit un revêtement antireflet « A' » de même type, soit un revêtement antireflet déposé sous vide de type « B » en face 4, ou encore une structure feuilletée asymétrique comportant un substrat verrier et au moins une feuille de polymère à propriétés d'absorption d'énergie tel que du polyuréthane.
- 11. Vitrage selon l'une des revendications précédentes, caractérisé en ce que le substrat verrier (1) ou au moins un des substrats verriers constitutifs (1, 10) dudit vitrage est, soit en verre clair, soit en verre à transmission énergétique réduite du type teinté dans la masse présentant notamment une transmission lumineuse T_L comprise entre 50 et 85% et une transmission énergétique T_E comprise entre 30 et 70%.
- 12. Vitrage selon l'une des revendications précédentes, caractérisé en ce que le(s) substrat(s) verrier(s) qui en fait (font) partie est (sont) bombé(s) et/ou traité(s) thermiquement, notamment recuit(s) ou trempé(s), le ou les

15

20

25

- 13. Vitrage selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également au moins un revêtement à fonction de protection solaire, composé d'une ou d'une pluralité de couches, notamment du type diélectrique / argent / diélectrique ou diélectrique / argent / diélectrique ou encore comprenant une couche filtrante du type nitrure tel que TiN ou métal.
- 14. Vitrage selon l'une des revendications précédentes, caractérisé en ce qu'il comporte également au moins un revêtement conducteur électrique à fonction d'alarme, notamment sous la forme d'une couche conductrice ou d'un réseau de fils conducteurs.
- 15. Vitrage selon la revendication 13 ou 14, caractérisé en ce qu'il est de structure feuilletée, avec le revêtement à fonction de protection solaire et/ou le revêtement à fonction d'alarme disposé(s) sur l'une et/ou l'autre des faces internes 2, 3 des substrats verriers appartenant audit vitrage.
- 16. Vitrage selon l'une des revendications précédentes, caractérisé en ce que le revêtement antireflet « A » ou au moins un des revêtements antireflet dudit vitrage est surmonté d'un revêtement à propriétés photocatalytiques à fonction anti-salissure, notamment à base d'oxyde de titane.
- 17. Vitrage monolithique ou feuilleté selon l'une des revendications précédentes, caractérisé en ce que les épaisseurs optiques des couches du(des) empilement(s) antireflet « A », « A' », « B » sont sélectionnées afin d'abaisser la réflexion lumineuse R_L à des valeurs inférieures à 1,5%, notamment inférieures à 1,0% à incidence normale.
- 18. Vitrage selon la revendication 17, caractérisé en ce que le(s) empilement(s) antireflet « A » comporte(nt) soit deux couches, dont une première couche à fort indice d'épaisseur optique comprise entre 15 et 50 nm, notamment entre 20 et 40 nm, et une seconde couche à faible indice d'épaisseur optique compris entre 160 et 200 nm, notamment entre 170 et 190 nm, soit trois couches dont une première couche d'indice intermédiaire d'épaisseur optique comprise 100 et 140 nm, notamment entre 110 et 130 nm, une seconde couche à fort indice d'épaisseur optique comprise entre 210 nm, une seconde couche à fort indice d'épaisseur optique comprise entre 210

10

15

20

et 260 nm, notamment entre 230 et 250 nm et une troisième couche à faible indice d'épaisseur optique comprise entre 100 et 150 nm, notamment entre 110 et 140 nm.

- 19. Vitrage monolithique ou feuilleté selon l'une des revendications 1 à 16, caractérisé en ce que les épaisseurs optiques des couches du(des) empilement(s) antireflet « A », « A' », « B » et la nature du ou des substrats verriers sont sélectionnées afin d'abaisser la réflexion lumineuse à incidence normale à des valeurs inférieures à 7% et à incidence de 60° à des valeurs inférieures à 10%, en maintenant la transmission lumineuse T_L en incidence normale à des valeurs d'au moins 75% et la sélectivité T_L/T_E à des valeurs d'au moins 1,65 notamment d'au moins 1,70.
- 20. Vitrage selon l'une des revendications précédentes, caractérisé en ce que le(s) empilement(s) antireflet « A » comportent trois couches, dont une première couche d'indice intermédiaire d'épaisseur optique comprise entre 160 et 210 nm, notamment entre 180 et 200 nm, une seconde couche à fort indice d'épaisseur optique comprise entre 300 et 350 nm, notamment entre 320 et 340 nm, et une troisième couche à faible indice d'épaisseur optique comprise entre 120 et 170 nm, notamment entre 145 et 165 nm.
- 21. Application du vitrage selon la revendication 17 ou la revendication 18, en tant que vitrage intérieur ou extérieur pour le bâtiment, vitrine, comptoir de magasin ou pour vitrages pour véhicule tels que les vitres latérales, la lunette arrière ou le toit-auto.
- 22. Application du vitrage selon la revendication 19 ou 20, en tant que pare-brise, notamment feuilleté, pour véhicule du type automobile, train.
- 23. Application du vitrage selon l'une des revendications 1 à 20, en tant que vitrage de protection d'objets du type tableaux, d'écran de protection anti-éblouissement pour ordinateur, de verre décoratif, de mobilier verrier d'ameublement, de miroir, ou vitrage anti-feu, pare-flamme ou coupe-feu.

FEUILLE DE REMPLACEMENT (RÈGLE 26)

BNSDOCID: <WO___9743224A1_I_>

			· · · · · · · · · · · · · · · · · · ·
A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C03C17/34		
According	to International Patent Classification (IPC) or to both national clas	sification and IPC	
	S SEARCHED		
IPC 6	ocumentation searched. (classification system followed by classific CO3C	ation symbols)	-
	tion searched other than manimum documentation to the extent tha	•	earched
	lata base consulted during the international search (name of data b	ase and, where practical, search terms usen	· •
	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with undication, where appropriate, of the	relevant passages	Resevant to class No.
х	EP 0 520 720 A (FORD MOTOR COMPA LIMITED) 30 December 1992	IN Y	1-3,5,7, 8,17, 21-23
Y	see the whole document see page 9, line 54 - page 10, l	ine 2	4,9-11
Y	EP 0 492 785 A (FORD MOTOR COMPA LIMITED) 1 July 1992 see the whole document	.NY	4,9-11
A	PATENT ABSTRACTS OF JAPAN vol. 9, no. 183 (M-400) [1906] , 1985 & JP 60 050022 A (TOYOTA JIDOSH March 1985, see abstract	i	9-11
		-/	
X Fued	her documents are listed in the continuation of box C.	X Patent family members are listed in	n annex.
	regories of cited documents : ent defining the general state of the art which is not	"T" later document published after the inter or priority date and not in conflict with	h the application but
cottato	ered to be of paracular relevance document but published on or after the international	cited to understand the principle or the invention	
illing o	sate on which may throw doubts on priority claim(s) or	"X" document of particular relevance; the c cannot be considered novel or cannot be	be considered to
MUTCH	is cited to establish the publication date of another or other special reason (as asserticed)	"Y" document of particular relevance; the of	fairned invention
O' docume	ent referring to an oral disclosure, use, exhibition or nears	cannot be considered to involve an inv document is combined with one or mor ments, such combination being obvious	re other such docu-
'P' docume	ent published prior to the international filing date but sen the priority date claimed	in the art. "A" document member of the same patent fi	-
Date of the	actual completion of the international search	Date of mailing of the international sear	rch report
2:	3 July 1997	0 5. 08. 97	
Name and n	nating address of the ISA	Authorized officer	
	European Patent Office, P.B. S818 Patentiaan 2 NL - 2280 HV Rijswig Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Faz: (+31-70) 340-3016	Reedijk, A	
	• 115	· ·	

Form PCT/ISA/210 (second sheet) (July 1992)

PCT/FR 97/09857

C (Continue	PCT/FR 97/0085/		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	WO 94 25410 A (SAINT GOBAIN VITRAGE INTERNATIONAL) 10 November 1994 see page 1, line 31 - page 2, line 7; claims 1,5,7,8,15	1-3,5-8, 17-23	
A	FR 2 713 624 A (SAINT GOBAIN VITRAGE INTERNATIONAL) 16 June 1995 see the whole document	1-23	
:			
:		·	

1

Form PCT/ISA/218 (continuation of second shart) (July 1992)

NATIONAL SEARCH REPORT

nformation on palent family members

tional Application No PCT/FR 97/00857

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 520720 A	30-12-92	US 5254392 A	19-10-93
		CA 2068570 A	25-12-92
		DE 69206052 D	21-12-95
		DE 69206052 T	18 - 04-96
		ES 2079798 T	16-01-96
-	,	JP 5193994 A	03-08-93
EP 492785 A	01-97-92	CA 2055151 A	25-06-92
		JP 4293887 A	19-10-92
WO 9425410 A	10-11-94	FR 2704545 A	.04-11-94
	• • • •	CA 2138798 A	10-11-94
•		CN 1108862 A	20-09-95
		CZ 9403335 A	16-08-95
		EP 0648196 A	19-04-95
		FI 946122 A	28-12-94
		JP 7508491 T	21-09-95
		NO 944952 A	20-12-94
		PL 306833 A	18-04-95
		US 5520996 A	28-05-96
FR 2713624 A	16-06-95	NONE	

		PCT/FR 97/99857	
A. CLASSI CIB 6	EMENT DE L'OBIET DE LA DEMANDE C03C17/34		
Selon ia el	assification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB	3	
	NINES SUR LESQUELS LA RECHERCHE A PORTE		
CIB 6	ation minimale confultée (système de classification suivi des symboles de classement) C03C		
Document	ation consultée autre que la documentation minimale dans la mesure où ces documents relévent e	des domaines sur lesquels a porté la recherch	
Base de do utilisés)	onnées électromique consultée au cours de la recherche internationale (nom de la base de données	s, et si ocla est réalisable, termes de recherche	
	MENTS CONSIDERES COMME PERTINENTS		
Catégorie	* Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no, des revendacations vistes	
X	EP 0 520 720 A (FORD MOTOR COMPANY LIMITED) 30 Décembre 1992	1-3,5,7, 8,17, 21-23	
Y	voir le document en entier voir page 9, ligne 54 - page 10, ligne 2	4,9-11	
Y	EP 0 492 785 A (FORD MOTOR COMPANY LIMITED) 1 Juillet 1992 voir le document en entier	4,9-11	

X Voir la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de brevets sont undiqués en annesse
* Catégories spéciales de documents cités: 'A' document définissant l'étai général de la technique, non considèré comme particulièrement pertinent "E' document antèneur, mais publié à la date de dépôt internamonal	"I" document ultrieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertiners, mais cité pour comprendre le principe ou la théorie constituant la base de l'invession
ou après cette date document pouvant jeter un doute sur une revendication de priorité ou cité pour détermaner la date de publication d'une autre citablon ou pour une raison apteiale (telle qu'indiquée) document se référant à une divelazion orale. À un usaire, à le document et autore et autore et de document et autore de divelazion orale.	A nocument paraculartement permant; I structure revenuelle in the fire considerte comme nouvelle ou comme impliquent une activité inventive par rapport au document considert (solément.) "Y" document paraculièrement pertinent, l'invention revendiquète na peut être considerté comment impliquant une activité inventive loraque le document est astocié à un ou plusieurs autres documents de même nature, cette combinaison etant évidente
"P" document publié avant la date de dépôt international, mais posténeurement à la date de priorité revendiquée	pour une personne du métier '&' document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
23 Juillet 1997	0 5. 08. 97

Formulaire PCT/ISA/210 (deuxième fauille) (juitlet 1992)

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Europeen des Bravets, P.B. 5818 Patentiaan 2 NL - 2220 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Fonctionnaire autorise

Reedijk, A

Del Internationale No PCT/FR 97/00857

C.(state) D	CUMENTS CONSIDERES COMME PERTINENTS		7 / 0003/	
Categorie *	Identification des documents cites, avec, le cas échéant, l'indication des passages pertur	vnts	no, dex revendications visite	
(WO 94 25410 A (SAINT GOBAIN VITRAGE INTERNATIONAL) 10 Novembre 1994 voir page 1, ligne 31 - page 2, ligne 7; revendications 1,5,7,8,15		1-3,5-8, 17-23	
\	FR 2 713 624 A (SAINT GOBAIN VITRAGE INTERNATIONAL) 16 Juin 1995 voir le document en entier		1-23	
		·		
			•	

RAPPORT DE

HERCHE INTERNATIONALE

Remerghements relatifs de membres de familles de brevet

PCT/FR 97/00857

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la (amille de brevet(s)	Date de publication
EP 520720 A	30-12-92	US 5254392 A CA 2068570 A DE 69206052 D DE 69206052 T ES 2079798 T JP 5193994 A	19-10-93 25-12-92 21-12-95 18-04-96 16-01-96 03-08-93
EP 492785 A	01-07-92	CA 2055151 A JP 4293887 A	25-06-92 19-10-92
WO 9425410 A	10-11-94	FR 2704545 A CA 2138798 A CN 1108862 A CZ 9403335 A EP 0648196 A FI 946122 A JP 7508491 T NO 944952 A PL 306833 A US 5520996 A	04-11-94 10-11-94 20-09-95 16-08-95 19-04-95 28-12-94 21-09-95 20-12-94 18-04-95 28-05-96
FR 2713624 A	16-06-95	AUCUN	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.