Improper Integral

WU-Guoning

March, 2020

Content

- What is improper integral and computation
- Convergence of an Improper Integral
- Absolute Convergence of an Improper Integral
- Conditional Convergence of an Improper Integral

WU-Guoning Improper Integral March, 2020 2 / 32

Definition 0.1

Suppose that $x \to f(x)$ is defined on the interval $[a, +\infty)$ and integrable on every closed interval [a, b] contained in that interval. If the limit below exists,

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx,$$

we call it the improper Riemann integral or the improper integral of the function f over the interval $[a, +\infty)$.

□ ▶ ∢□ ▶ ∢ ≣ ▶ √ ■ ♥ 9 Q (?)

WU-Guoning Improper Integral March, 2020 3 / 32

The expression $\int_a^\infty f(x) dx$ itself is also called an improper integral, and in that case:

- The integral converges if the limit exists;
- The integral diverges if the limit does not exist.

WU-Guoning Improper Integral March, 2020 4 / 32

Definition 0.2

Suppose that $x \to f(x)$ is defined on the interval [a, B) and integrable on any closed interval $[a, b] \subset [a, B)$. If the limit below exists:

$$\int_{a}^{B} f(x) dx = \lim_{b \to B-0} \int_{a}^{b} f(x) dx,$$

we call it the improper integral of f over the interval [a, B).

<□ > <□ > <□ > < = > < = > < ○

5 / 32

Example 0.3

Let us investigate the values of the parameters lpha for which the integral

$$\int_0^1 \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

converges.

WU-Guoning Improper Integral

Example 0.4

Let us investigate the values of the parameters α for which the integral

$$\int_0^{+\infty} e^{-\alpha x} \, \mathrm{d}x$$

converges.

WU-Guoning Improper Integral March, 2020 7 / 32

Example 0.5

Compute the integral

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x.$$

March, 2020

8 / 32

WU-Guoning Improper Integral

Example 0.6

Let us investigate the integral

$$\int_{-\infty}^{+\infty} \frac{\frac{1}{e^x}}{\frac{e^x}{x^2}} \, \mathrm{d}x.$$

Example 0.7

Compute the integral

$$\int_0^1 \ln x \, \mathrm{d}x.$$

Example 0.8

Compute the integral

$$\int_0^{+\infty} e^{-x} x^n \, \mathrm{d} x. (n \in \mathbb{Z}^+)$$

WU-Guoning Improper Integral

Example 0.9

Compute the integral

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, \mathrm{d}x.$$

Example 0.10

Compute the integral

$$\int_0^{+\infty} \frac{1}{(1+x^2)(1+x^\alpha)} \, \mathrm{d}x.$$

13 / 32

Convergence of an Improper Integral

Let $[a,\omega)$ be a finite or infinite interval and $x\to f(x)$ a function defined on that interval and integrable over every closed interval $[a,b]\subset [a,\omega)$. Then by definition

$$\int_{a}^{\omega} f(x) dx = \lim_{b \to \omega} \int_{a}^{b} f(x) dx,$$
 (1)

if this limit exists as $b \to \omega, b \in [a, \omega)$.

Convergence of an Improper Integral

The convergence of the improper integral $\int_a^\omega f(x) dx$ is equivalent to the existence of a limit for the function

$$\mathcal{F}(b) = \int_{a}^{b} f(x) \, \mathrm{d}x \tag{2}$$

as
$$b \to \omega, b \in [a, \omega)$$
.

15 / 32

Convergence of an Improper Integral

Theorem 0.11

If the function $x \to f(x)$ is defined on the interval $[a,\omega)$ and integrable on every closed interval $[a,b] \subset [a,\omega)$, then the integral $\int_a^\omega f(x)\,\mathrm{d}x$ converges if and only is for every $\epsilon>0$ there exists $B\in[a,\omega)$, such that the relation

$$\left| \int_{b_1}^{b_2} f(x) \, \mathrm{d}x \right| \le \epsilon$$

for any $b_1, b_2 \in [a, \omega)$ satisfying $B < b_1$ and $B < b_2$.

16 / 32

Definition 0.12

The improper integral $\int_a^\omega f(x) dx$ converges absolutely if the integral $\int_a^\omega |f| dx$ converges.

17 / 32

Theorem 0.13

If a function $f \geq 0$ and integrable on every $[a,b] \subset [a,\omega)$, then the improper integral $\int_a^\omega f(x) \, \mathrm{d}x$ exists if and only if the function $\mathcal{F}(b) = \int_a^b f(x) \, \mathrm{d}x$ is bounded on $[a,\omega)$.

18 / 32

Theorem 0.14

Suppose that the function $x \to f(x)$ and $x \to g(x)$ are defined on the interval $[a, \omega)$ and integrable on any closed interval $[a, b] \subset [a, \omega)$. If

$$0 \le f(x) \le g(x)$$

on $[a,\omega)$, then the convergence of $\int_a^\omega g(x)\,\mathrm{d}x$ implies convergence of $\int_a^\omega f(x)\,\mathrm{d}x$, and the inequality

$$\int_{a}^{\omega} f(x) \, \mathrm{d}x \le \int_{a}^{\omega} g(x) \, \mathrm{d}x$$

holds. Divergence of the integral $\int_a^\omega f(x) dx$ implies divergence of $\int_a^\omega g(x) dx$.

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - り Q ()

Example 0.15

Let us discuss the integral

$$\int_0^{+\infty} \frac{\sqrt{x}}{\sqrt{1+x^4}} \, \mathrm{d}x$$

Example 0.16

Let us discuss the integral

$$\int_{1}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x$$

Example 0.17

Let us discuss the integral

$$\int_{1}^{+\infty} e^{-x^2} dx$$

Example 0.18

Let us discuss the integral

$$\int_{e}^{+\infty} \frac{1}{\ln x} \, \mathrm{d}x$$

Example 0.19

Let us discuss the Euler integral

$$\int_0^{\frac{\pi}{2}} \ln \sin x \, \mathrm{d}x$$

Example 0.20

Let us discuss the elliptic integral

$$\int_0^1 \frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}} \, \mathrm{d}x (0 < k^2 < 1)$$

WU-Guoning Improper Integral March, 2020 25 / 32

Example 0.21

Let us discuss the integral

$$\int_0^1 \frac{1}{\cos \theta - \cos \varphi} \, \mathrm{d}x$$

Definition 0.22

If an improper integral converges but not absolutely, we say that it converges conditionally.

Example 0.23

The integral

$$\int_{\frac{\pi}{2}}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = -\frac{\cos x}{x} \Big|_{\frac{\pi}{2}}^{+\infty} - \int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x = -\int_{\frac{\pi}{2}}^{+\infty} \frac{\cos x}{x^2} \, \mathrm{d}x$$

<□ > <□ > <□ > < = > < = > < > < ○

Theorem 0.24

Let $x \to f(x)$ and $x \to g(x)$ be functions defined on an interval $[a, \omega)$ and integrable on every closed interval $[a,b] \subset [a,\omega)$. Suppose that g is monotonic. Then a sufficient condition for convergence of the improper integral

$$\int_{a}^{\omega} (fg) \, \mathrm{d}x$$

is that the one of the following pairs of conditions hold:

- the integral $\int_{a}^{\omega} f(x) dx$ converges;
 - 2 the function g is bound on $[a, \omega)$.
- **2** the function $\mathcal{F}(b) = \int_a^b f(x) \, \mathrm{d}x$ is bound on $[a, \omega)$;
 - 2 the integral g(x) converges to zero as $x \to \omega, x \in [a, \omega)$.

Example 0.25

Let us discuss the **Euler-Possion** integral

$$\int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x$$

WU-Guoning Improper Integral March, 2020 30 / 32

Example 0.26

Let us discuss the integral

$$\int_0^{+\infty} \frac{1}{x^{\alpha}} \, \mathrm{d}x$$

Example 0.27

Let us discuss the integral

$$\int_0^{+\infty} \frac{\sin x}{x^{\alpha}} \, \mathrm{d}x$$

32 / 32

The last slide!