09 - Classification

Logistic Regression, Discriminant Analysis, and Naive Bayes

SYS 4582/6018 | Spring 2019

09-classification.pdf

Contents

1	Classification Intro	2
	1.1 Required R Packages	2
	1.2 Credit Card Default data (Default)	
2	Classification and Pattern Recognition	5
	2.1 Binary Classification	6
3	Logistic Regression	8
	3.1 Basics	8
	3.2 Estimation	9
	3.3 Logistic Regression in Action	11
4	Linear Discriminant Analysis (LDA)	13
5	Evaluation of Binary Classification Models	13
6	Naive Bayes	13

1 Classification Intro

1.1 Required R Packages

We will be using the R packages of:

- glmnet for ridge, lasso, and elasticnet regression
- tidyverse for data manipulation and visualization

```
library(glmnet)
library(tidyverse)
```

1.2 Credit Card Default data (Default)

The textbook An Introduction to Statistical Learning (ISL) has a description of a simulated credit card default dataset. The interest is on predicting whether an individual will default on their credit card payment.

```
data(Default, package="ISLR")
```

The variables are:

- response variable is categorical (factor) Yes and No, (default)
- the categorical (factor) variable (student) is either Yes or No
- the average balance a customer has after making their monthly payment (balance)
- the customer's income (income)

default	student	balance	income
No	No	729.5	44362
No	Yes	817.2	12106
No	No	1073.5	31767
No	No	529.3	35704
No	No	785.7	38463
No	Yes	919.6	7492

```
summary(Default)
   default student
                          balance
                                        income
  No :9667 No :7056
                       Min. : 0 Min. : 772
#>
   Yes: 333 Yes:2944
                       1st Qu.: 482 1st Qu.:21340
#>
                       Median : 824
                                    Median :34553
#>
                       Mean : 835 Mean :33517
#>
                       3rd Qu.:1166
                                    3rd Qu.:43808
#>
                       Max. :2654 Max. :73554
```


Your Turn #1 : Credit Card Default Modeling					
How would you construct a model to predict defaults?					

2 Classification and Pattern Recognition

- The response variable is categorical and denoted $G \in \mathcal{G}$
 - Default Credit Card Example: $G = \{\text{"Yes", "No"}\}\$
 - Medical Diagnosis Example: $\mathcal{G} = \{\text{"stroke"}, \text{"heart attack"}, \text{"drug overdose"}, \text{"vertigo"}\}$
- The training data is $D = \{(X_1, G_1), (X_2, G_2), \dots, (X_n, G_n)\}$
- Let $f_q(\mathbf{x}) = \Pr(\mathbf{X} = \mathbf{x} \mid G = g)$ be the class conditional density function

Your Turn #2

Think of two *models* (i.e., PDFs) to estimate $f_{Yes}(balance = 1500)$ in the credit default example.

- The optimal decision/classification is based on the posterior probability $\Pr(G = g \mid \mathbf{X} = \mathbf{x})$
 - We will discuss some optimal decisions in the binary case

Your Turn #3

Write out the equation for $Pr(G = g \mid \mathbf{X} = \mathbf{x})$ using $f_g(\mathbf{x})$ and $\pi_g = Pr(G = g)$, $g \in \mathcal{G}$.

- In real life, all of this is complicated because we have to estimate everything.
 - This is not easy in general, and is made more difficult in high dimensions (e.g., when x is a long vector).

2.1 Binary Classification

- Classification is simplified when there are only 2 classes.
- It is often convenient to *code* the response variable to a binary $\{0,1\}$ variable:

$$Y_i = \begin{cases} 1 & G_i = \mathcal{G}_1 \\ 0 & G_i = \mathcal{G}_2 \end{cases}$$
 (outcome of interest)

- In the Default data, it would be natural to set default=Yes to 1 and default=No to 0.
- Now we can use the more general descriptions:

-
$$f_1(\mathbf{x}) = \Pr(X = x \mid Y = 1), f_0(\mathbf{x}) = \Pr(X = x \mid Y = 0)$$

- $p(x) = \Pr(Y = 1 \mid \mathbf{X} = \mathbf{x})$
- $\pi = \Pr(Y = 1)$

2.1.1 Linear Regression

• In this set-up we can run linear regression

$$\hat{y}(\mathbf{x}) = \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j x_j$$

```
#-- Create binary column (y)
Default = Default %>% mutate(y = ifelse(default == "Yes", 1L, 0L))
#-- Fit Linear Rergression Model
fit.lm = lm(y~student + balance + income, data=Default)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-0.0812	0.0084	-9.685	0.0000
studentYes	-0.0103	0.0057	-1.824	0.0682
balance	0.0001	0.0000	37.412	0.0000
income	0.0000	0.0000	1.039	0.2990

Your Turn #4: OLS for Binary Responses

- 1. For the binary Y, what is linear regression estimating?
- 2. What is the *loss function* that linear regression is using?
- 3. How could you create a *hard classification* from the linear model?
- 4. Does is make sense to use linear regression for binary classification?

2.1.2 *k*-nearest neighbor (kNN)

- The k-NN method is a non-parametric *local* method, meaning that to make a prediction $\hat{y}|x$, it only uses the training data in the *vicinity* of x.
 - contrast with OLS linear regression, which uses all X's to get prediction.
- The model is simple to describe

$$f_{knn}(x;k) = \frac{1}{k} \sum_{i:x_i \in N_k(x)} y_i$$
$$= \text{Avg}(y_i \mid x_i \in N_k(x))$$

- $N_k(x)$ are the set of k nearest neighbors
- only the k closest y's are used to generate a prediction
- it is a *simple mean* of the k nearest observations
- When y is binary (i.e., $y \in \{0, 1\}$), the kNN model estimates

$$f_{\rm knn}(x;k) \approx p(x) = \Pr(Y=1|X=x)$$

Your Turn #5: Thoughts about kNN

The above plots show a kNN model using the *continuous* predictors of balance and income.

• How can you use kNN with the categorical student predictor?

3 Logistic Regression

3.1 Basics

- Let $0 \le p \le 1$ be a probability.
- The log-odds of p is called the logit

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

• The inverse logit is the *logistic function*. Let f = logit(p), then

$$p = \frac{e^f}{1 + e^f}$$
$$= \frac{1}{1 + e^{-f}}$$

Logistic Regression Details		

3.2 Estimation

3.2.1 Bernoulli Likelihood Function

Bernoulli Likelihood	

3.2.2 MLE for Logistic Regression

MLE for Logistic Regression

3.3 Logistic Regression in Action

- In R, logistic regression can be implemented with the glm() since it is a type of *Generalized Linear Model*.
- Because logistic regression is a special case of *Binomial* regression, use the family=binomial() argument

term	estimate	std.error	statistic	p.value
(Intercept)	-10.8690	0.4923	-22.0801	0.0000
studentYes	-0.6468	0.2363	-2.7376	0.0062
balance	0.0057	0.0002	24.7376	0.0000
income	0.0000	0.0000	0.3698	0.7115

Your Turn #6: Interpreting Logistic Regression

- 1. What is the estimated probability of default for a Student with a balance of \$1000?
- 2. What is the estimated probability of default for a *Non-Student* with a balance of \$1000?
- 3. Why does student=Yes appear to lower risk of default, when plot of student status

vs. default appears to increase risk?

- 4 Linear Discriminant Analysis (LDA)
- **5 Evaluation of Binary Classification Models**
- 6 Naive Bayes