

1 **SUSPENSION DESIGN FOR ATTENUATION OF DISK FLUTTER INDUCED TRACK**
2 **MIS-REGISTRATION OF A HARD DISK DRIVE BY MANIPULATION OF LOAD**
3 **BEAM PITCH ANGLE**
4

5 **BACKGROUND OF THE INVENTION**

6 **Field of the Invention**

7 The present invention relates to disk drives. More particularly, the present invention relates
8 to disk drives, head stack assemblies and load beams that include structures that contribute to
9 reducing disk flutter induced track mis-registration ("TMR").

10 **Description of the Prior Art**

11 A typical hard disk drive includes a head disk assembly ("HDA") and a printed circuit
12 board assembly ("PCBA"). The HDA includes at least one magnetic disk ("disk"), a spindle
13 motor for rotating the disk, and a head stack assembly ("HSA") that includes a slider with at
14 least one transducer or read/write element for reading and writing data. The HSA is controllably
15 positioned by a servo system in order to read or write information from or to particular tracks on
16 the disk. The typical HSA has three primary portions: (1) an actuator assembly that moves in
17 response to the servo control system; (2) a head gimbal assembly ("HGA") that extends from the
18 actuator assembly and biases the slider toward the disk; and (3) a flex cable assembly that
19 provides an electrical interconnect with minimal constraint on movement.

20 A typical HGA includes a load beam, a gimbal attached to an end of the load beam, and a
21 slider attached to the gimbal. The load beam has a spring function that provides a "gram load"
22 biasing force and a hinge function that permits the slider to follow the surface contour of the
23 spinning disk. The load beam has an actuator end that connects to the actuator arm and a gimbal
24 end that connects to the gimbal that supports the slider and transmits the gram load biasing force
25 to the slider to "load" the slider against the disk. A rapidly spinning disk develops a laminar
26 airflow above its surface that lifts the slider away from the disk in opposition to the gram load
27 biasing force. The slider is said to be "flying" over the disk when in this state.

28 A challenge faced by hard disk drive designers and manufacturers as they continually
29 increase the capacities of contemporary hard disk drives is the phenomenon known as Non

1 Repeatable Run Out (“NRRO”). NRRO, either written into the data tracks (usually denoted
2 “RRO”) or occurring live during drive operation, manifests itself as radial displacements of the
3 read/write head(s) relative to the data tracks of the disk(s), caused by vibrations of either the
4 HSA or disk pack (inc. spindle motor, disk(s), spacer(s), and clamp). As the storage capacity of
5 magnetic disks increases, the number of data tracks per inch (“TPI”) is increased, or conversely,
6 the track width is decreased, leading to greater data density per unit area on the magnetic media.
7 Since NRRO may degrade the data transfer performance to and from the magnetic media by
8 increasing, for example, the frequency of off track errors, the ratio of RMS NRRO to track width
9 must be maintained at a fairly constant value; thus, designers must ensure that NRRO decreases
10 in proportion to track width. Since disk flutter (or out of plane vibrations of the disk induced by
11 turbulent airflow within the drive) TMR is the dominant contributor to NRRO, reducing disk
12 flutter TMR will correspondingly decrease NRRO. In turn, decreasing NRRO may enable higher
13 TPI to be reliably achieved.

14 What are needed, therefore, disk drives, head stack assemblies and load beams configured
15 to reduce disk flutter induced TMR.

16 SUMMARY OF THE INVENTION

17 This invention may be regarded as a head stack assembly for a disk drive. According to
18 an embodiment of the present invention, the head stack assembly includes a body portion
19 including a bore defining a pivot axis; an actuator arm cantilevered from the body portion and a
20 head gimbal assembly supported at the actuator arm. The head gimbal assembly includes a load
21 beam having a first end and a second end, the first end being attached to the actuator arm, the
22 load beam defining a load beam feature near the second end, at least a portion of the load beam
23 feature defining an extension that is parallel to the pivot axis and that has a rectangular cross-
24 section having a length to width aspect ratio that is greater than 1. A slider is coupled to the free
25 end of the load beam extension, and a gimbal is coupled to the second end of the load beam and
26 to the slider. According to a further embodiment, the load beam feature may include a formed
27 dimple and the extension may extend from the dimple.

28 The present invention is also a load beam assembly for attachment to an actuator arm in a
29 disk drive, the disk drive having a disk, the load beam assembly including a load beam, the load

1 beam defining a first end and a second end, the first end being attached to the actuator arm, the
2 load beam defining a load beam feature near the second end, at least a portion of the load beam
3 feature defining an extension that extends toward the disk and that has a rectangular cross-section
4 having a length to width aspect ratio that is greater than 1. The load beam feature may include a
5 dimple and the extension may extend from the dimple.

6 According to still another embodiment thereof, the present invention is also a head
7 gimbal assembly for attachment to an actuator arm in a disk drive having a disk. The head
8 gimbal assembly includes a load beam, the load beam defining a first end and a second end, the
9 first end being attached to the actuator arm, the load beam defining a load beam feature near the
10 second end, at least a portion of the load beam feature defining an extension that extends toward
11 the disk and that has a rectangular cross-section having a length to width aspect ratio that is
12 greater than 1. A slider is coupled to a free end of the load beam extension, and a gimbal is
13 coupled to the second end of the load beam and to the slider. The load beam feature may include
14 a dimple and the extension may extend from the dimple.

15 The present invention may also be viewed as a disk drive, including a disk having a
16 recording surface and a head stack assembly. The head stack assembly includes a body portion;
17 an actuator arm cantilevered from the body portion, and a head gimbal assembly supported at the
18 actuator arm. The head gimbal assembly includes a load beam the load beam defining a first end
19 and a second end, the first end being attached to the actuator arm, the load beam defining a load
20 beam feature near the second end, at least a portion of the load beam feature defining an
21 extension that extends toward the disk and that has a rectangular cross-section having a length to
22 width aspect ratio that is greater than 1; a slider coupled to a free end of the load beam extension,
23 and a gimbal coupled to the second end of the load beam and to the slider. The load beam
24 feature may include a dimple and the extension may extend from the dimple.

25 According to another embodiment thereof, the present invention is a head stack assembly
26 for a disk drive having a disk, the head stack assembly including a body portion; an actuator arm
27 cantilevered from the body portion and a head gimbal assembly supported at the actuator arm.
28 The head gimbal assembly includes a load beam having a first end and a second end, the first end
29 being attached to the actuator arm; a gimbal coupled to the second end of the load beam; a

1 passive spacer defining a first surface that is coupled to the gimbal and a second surface that
2 faces away from the first surface and a slider coupled to the second surface of the passive spacer.

3 The first surface of the passive spacer may be separated from the second surface of the
4 passive spacer by at least 0.02 mm. The load beam may define a dimple near the second end, the
5 passive spacer being coupled to the dimple.

6 The present invention may also be viewed as a head gimbal assembly configured to be
7 supported by an actuator arm in a disk drive, the disk drive having a disk, the head gimbal
8 assembly including a load beam having a first end and a second end, the first end being attached
9 to the actuator arm; a gimbal coupled to the second end of the load beam; a passive spacer
10 defining a first surface that is coupled to the load beam and a second surface that faces away
11 from the first surface, and a slider coupled to the second surface of the passive spacer and to the
12 gimbal. The first surface of the passive spacer may be separated from the second surface of the
13 passive spacer by at least 0.02 mm. The load beam may define a dimple near the second end, the
14 gimbal being coupled to the dimple.

15 The present invention is also disk drive, including a disk having a recording surface and a
16 head stack assembly. The head stack assembly includes a body portion; an actuator arm
17 cantilevered from the body portion, and a head gimbal assembly supported at the actuator arm.
18 The head gimbal assembly includes a load beam having a first end and a second end, the first end
19 being attached to the actuator arm; a gimbal coupled to the second end of the load beam; a
20 passive spacer defining a first surface that is coupled to the load beam and a second surface that
21 faces away from the first surface, and a slider coupled to the second surface of the passive spacer
22 and to the gimbal. The first surface of the passive spacer may be separated from the second
23 surface of the passive spacer by at least 0.02 mm. The dimension of the passive spacer between
24 the first surface of the passive spacer and the second surface of the passive spacer may be
25 selected to be greater than about 0.02 mm. The load beam may define a dimple near the second
26 end, the gimbal being coupled to the dimple.

27 The foregoing and other features of the invention are described in detail below and set
28 forth in the appended claims.

1 **BRIEF DESCRIPTION OF THE DRAWINGS**

2 Fig. 1 depicts the geometry of a disk of a hard disk drive.

3 Fig. 2 shows a side view of a head gimbal assembly (HGA) in which the pitch angle α_s is
4 identified.

5 Fig. 3 is a plan view of a disk and an HSA, according to an embodiment of the present
6 invention.

7 Fig. 4 is a partial side cross-sectional view of a HGA, according to an embodiment of the
8 present invention.

9 Fig. 5 is a partial side cross-sectional view of a HGA, according to another embodiment
10 of the present invention.

11 Fig. 6 is a partial side cross-sectional view of a HGA, according to a further embodiment
12 of the present invention.

13 Fig. 7 is an exploded view of a hard disk drive, according to an embodiment of the
14 present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

15 Fig. 7 shows the principal components of a magnetic disk drive 700 constructed in
16 accordance with the present invention. With reference to Fig. 7, the disk drive 700 comprises a
17 HDA 744 and a PCBA 714. The HDA 744 includes a base 716 and a cover 717 attached to the
18 base 716 that collectively house a disk stack 723 that includes a plurality of magnetic disks (of
19 which only a first disk 711 and a second disk 712 are shown in Fig. 7), a spindle motor 713
20 attached to the base 716 for rotating the disk stack 723, an HSA 720, and a pivot bearing
21 cartridge 784 (such as a stainless steel pivot bearing cartridge, for example) that rotatably
22 supports the HSA 720 on the base 716. The spindle motor 713 rotates the disk stack 723 at a
23 constant angular velocity. The HSA 720 comprises a swing-type or rotary actuator assembly
24 730, at least one HGA 710, and a flex circuit cable assembly 780. The rotary actuator assembly
25 730 includes a body portion 740, at least one actuator arm 760 cantilevered from the body
26 portion 740, and a coil portion 750 cantilevered from the body portion 740 in an opposite
27 direction.

1 direction from the actuator arm 760. The actuator arm 760 supports the HGA 710 that, in turn,
2 supports the slider(s) (see Figs. 4, 5 and 6) according to the present invention. The flex cable
3 assembly 780 may include a flex circuit cable and a flex clamp 759. The HSA 720 is pivotally
4 secured to the base 716 via the pivot-bearing cartridge 784 so that the slider at the distal end of
5 the HGA 710 may be moved over the surfaces of the disks 711, 712. The pivot-bearing cartridge
6 784 enables the HSA 720 to pivot about a pivot axis, shown in Figs. 7 and 3 at reference numeral
7 782. The storage capacity of the HDA 744 may be increased by, for example, increasing the
8 track density (the TPI) on the disks 711, 712 and/or by including additional disks in the disk
9 stack 723 and by an HSA 720 having a vertical stack of HGAs 710 supported by multiple
10 actuator arms 760.

The “rotary” or “swing-type” actuator assembly comprises a body portion 740 that rotates
on the pivot bearing 784 cartridge between limited positions, a coil portion 750 that extends from
one side of the body portion 740 to interact with one or more permanent magnets 792 mounted to
back irons 770, 772 to form a voice coil motor (VCM), and an actuator arm 760 that extends
from an opposite side of the body portion 740 to support the HGA 710. The VCM causes the
HSA 720 to pivot about the actuator pivot axis 782 to cause the slider and the read write
transducers thereof to sweep radially over the disk(s) 711, 712. The HGA 710 includes a load
beam and a gimbal coupled to the load beam, as detailed below.

Fig. 3 is a plan view of a disk 711, 712 and a head stack assembly 720, according to an
embodiment of the present invention. As shown therein, the skew angle is defined as the angle
of the slider (best shown at 412 in Figs. 4, 5 and 6) relative to a tangent to the data tracks
recorded on the recording surface of the disk 711, 712. With reference to Fig. 3, the skew angle
is shown as the angle formed between the longitudinal axis 310 of the head stack assembly 720
passing through the slider and the data track tangent 320. The data track tangent is parallel to the
tangential direction e_θ that is at a 90-degree angle relative to the radial direction e_r . As defined
herein and shown in Fig. 3, the skew angle is positive in the clockwise direction. The head stack
assembly 720 of Fig. 3 may include one or more of the structures that are shown in figures 4, 5
and 6 (and/or combinations and variants thereof) and that are described herein below.

Total disk flutter TMR, which is the radial position error between the read/write

1 transducer heads and the data track of a hard disk drive due to disk vibrations, is the summation
2 (in the time domain) of four components; namely, disk deformation, suspension pitching, and
3 slider pitching and rolling. That is,

4

$$TMR_{total} = TMR_{pitch} + TMR_{roll} + TMR_{disk} + TMR_{suspension} \quad (1)$$

5 Fig. 1 depicts the geometry of a disk 711 or 712 of a hard disk drive, such as shown at
6 700 in Fig. 7. The disk 711, 712 is clamped at the inner diameter (ID) thereof at clamp 106 and
7 free at the outer diameter (OD) thereof. In Fig. 1, α_r is the angular orientation of the disk 711,
8 712 in the radial direction and t_d is the thickness of the disk 711 or 712. As shown the disk 711
9 or 712 may undergo deformation, causing the neutral axis of the disk 711, 712 to deviate relative
10 to the radial direction r by an angle α_r .

11
12
13
14 Fig. 2 shows a side view of a head gimbal assembly (HGA) to illustrate the pitch angle α_s .
In Fig. 2, the pitch angle α_s is measured from the plane of the mount plate 210, or other
suspension mounting surface of/to the actuator arm, to the load beam. The pitch angle α_s is
positive as shown in Fig. 2.

15 As shown in Figs. 1 and 2 the disk and suspension TMR is modeled herein as

16

$$TMR_{disk} = \frac{t_d}{2} \sin(\alpha_r) \quad (2)$$

17 and

18

$$TMR_{suspension} = \sin(skew)l_5 \left[\cos \left(\sin^{-1} \left(\frac{l_5 \sin(\alpha_s) - z}{l_5} \right) \right) - \cos(\alpha_s) \right] \quad (\text{See Figs. 1, 2}) \quad (3)$$

19
20 where

21 z is the disk displacement from the undeformed state;

22 l_5 is the distance from the suspension RG (radius geometry) to the dimple
23 (reference numeral 204 in Fig. 2);

24 t_d is the thickness of the disk;

25 α_r is the angular orientation of the disk in the radial direction;

26 α_s is the pitch angle of the suspension load beam relative to the mountplate, and

27 $skew$ is the skew angle as shown in Fig. 3.

1 Restricting the r -dependence of z to monotonically increasing or decreasing, or zero-
 2 valued, functions (only modes of practical importance are considered, i.e. those with zero nodal
 3 circles) of r , then

$$5 \quad \left[\{z > 0\} \Leftrightarrow \{\alpha_r > 0\}, \quad \{z = 0\} \Leftrightarrow \{\alpha_r = 0\}, \quad \{z < 0\} \Leftrightarrow \{\alpha_r < 0\} \right], \quad (4)$$

for an arbitrary instant in time and angular location on the disk.

From Equation (2), it may be shown that minimizing $|\alpha_s|$ will minimize $TMR_{\text{suspension}}$ (regardless of skew angle), and therefore may reduce the total disk flutter induced TMR. Furthermore, if $\alpha_s < 0$, it may be proved from equations (1)-(4) that $TMR_{\text{suspension}}$ and TMR_{disk} are perfectly out-of-phase at negative skew angles (disk OD, where worst total disk flutter TMR typically occurs), and therefore at least partial cancellation of terms occurs, further reducing the total disk flutter TMR. Although there are four components that contribute to disk flutter TMR, only the suspension component is a function of α_s ; therefore, although the present invention only considers cancellation of disk and suspension TMR, the present invention may be extended to cover cancellation between the portions of slider pitch and roll TMR that are in-phase with disk TMR, i.e. the total disk flutter TMR may be considered solely as it varies with α_s , without loss of generality.

18 The present invention includes a number of embodiments for mitigating the deleterious
19 effects of disk flutter induced TMR by reducing the pitch angle α_s (including negative values),
20 which embodiments are described below and shown in the accompanying figures. It may be
21 shown that disk flutter TMR has a minimum for sufficiently negative values of α_s , when the
22 actuator is positioned to OD, although geometrical considerations may limit the range of α_s . In
23 particular, since only the suspension TMR is a function of α_s , this minimum corresponds to
24 complete cancellation by the suspension TMR of the portions of disk, slider pitch, and slider roll
25 TMR that are 180° out-of-phase with respect to the suspension TMR.

As collectively shown by Figs. 4 and 7, the present invention, according to one embodiment thereof, is a disk drive 700 that includes a disk 711, 712 having a recording surface

1 and a HSA 720. The HSA 720 includes a body portion, an actuator arm cantilevered from the
2 body portion 740, and a HGA 710 supported at the actuator arm 760.

3 As shown in Fig. 4, the HGA 400 includes a load beam 402 that defines a first end (not
4 shown in Fig. 4) attached to the actuator arm 760 and a second end 404, which is the free end
5 thereof. The load beam 402 defines a load beam feature near the second (slider) end 404.
6 According to one embodiment of the present invention, the load beam feature (or at least a
7 portion thereof) may define an extension 406 that extends toward the disk 711, 712 (i.e., parallel
8 or substantially parallel to the pivot axis 782) and that has a rectangular cross-section having an
9 extraordinary length to width aspect ratio; that is, the rectangular cross section of the load beam
10 extension 406 has a length to width aspect ratio l_{ext}/a_{ext} that is greater than 1. For example, the
11 aspect ration l_{ext}/a_{ext} may be selected within the range of 1 to 10, although other dimensions may
12 readily be implemented, subject to the constraints of available space between the top of the hinge
13 203 in Fig. 2 and the disk 711, 712. This space is shown in Fig. 2 at reference numeral 214.
14 Advantageously, the load beam extension 406 may be etched from the load beam 402. As shown
15 in Fig. 4, a slider 412 may be coupled to the free end 408 of the load beam extension 406. The
16 read/write transducer(s) (not shown) may be attached to or form part of the slider 412. A gimbal
17 414 is coupled to the second end 404 of the load beam 402 and to the slider 412. As the
18 extraordinary aspect ratio $l_{ext}/a_{ext} > 1$ of the load beam extension 406 raises the slider end 404 of
19 the load beam (pictured in Fig. 4) relative to the disk 711, 712 (not shown in Fig. 4, but which
20 faces the free end of slider 413), the angle α_s is minimized. In turn, minimizing α_s decreases
21 TMR at the disk OD, as shown above.

22 According to another embodiment of the present invention shown in Fig. 5, showing a
23 portion of a HGA 500 shown in cross-section in Fig. 5, the load beam feature includes a dimple
24 504 and an extension 506 extends from the dimple 504. Advantageously, the dimple 504 may be
25 formed within the load beam 502 and the extension 506 may be etched from the load beam 502
26 and, specifically from the dimple 504. The rectangular cross section of the extension 506 may
27 have a length to width aspect ratio l_{ext}/a_{ext} that is greater than 1. For example, the aspect ration
28 l_{ext}/a_{ext} may be selected within the range of 1 to 10, although other dimensions may readily be
29 implemented subject to the constraints of available space 214 (Fig. 2). As the combination of the

1 dimple 504 and the extraordinary aspect ratio $l_{ext}/a_{ext} > 1$ of the extension 506 raises the slider end
2 of the load beam 502 relative to the disk 711, 712 (not shown in Fig. 5, but which faces the free
3 end 413 of slider 412), the angle α_s is minimized. In turn, minimizing α_s decreases TMR at the
4 disk OD, as discussed above. The feature of the load beam 502 shown in Fig. 5 may include a
5 dimple 504 of extraordinarily large outer radius r_o , and/or extraordinarily small vertical
6 positional dimension $l_d (= r_i)$, such that the outer spherical surface 505 of the dimple 504 extends
7 extraordinarily low (i.e., toward the disk 711, 712), thereby raising the slider end of the load
8 beam 502 relative to the disk 711, 712.

9 Another embodiment of the present invention is shown in Fig. 6, which is a side cross-
10 sectional partial view of a HGA 600. The HGA 600 of Fig. 6 is supported at the actuator arm
11 760 and includes a load beam 602 having a first end attached to the actuator arm and a second
12 (slider) end. A gimbal 414 is coupled to the second end of the load beam 602 and a passive
13 spacer 606 is coupled to the gimbal 606. Specifically, the spacer 606 defines a first surface 607
14 that is coupled to the gimbal 414 and a second surface 608 that faces away from the first surface
15 607, the slider 412 being coupled to the second surface 608. Preferably, the spacer 412 is
16 entirely passive and, according to the present invention, serves no function (such as would be
17 discharged by a micro electromechanical system "MEMS" or a piezoelectric "PZT" motor for
18 controllably changing the orientation and position of the slider 412, for example) other than
19 raising the second (slider) end 610 of the load beam 602 relative to the disk 711, 712 (not shown
20 in Fig. 6, but which faces the free surface 413 of the slider 412). By raising the slider end 610 of
21 the load beam 602 relative to the disk 711, 712, the angle α_s is minimized. In turn, minimizing
22 α_s decreases TMR at the disk OD, as detailed above. According to an embodiment of the present
23 invention, the width of the passive spacer 606 (in a direction parallel to the pivot axis 782) is at
24 least 0.02 mm. That is, the first surface 607 of the passive spacer 606 is separated from the
25 second surface 608 thereof by at least 0.02 mm.

26 As shown in Fig. 6, the HGA 600 includes a load beam 606 that defines a (formed, for
27 example) dimple 604 near the second (slider) end 610 of the load beam 602. Moreover, although
28 not shown in Fig. 6, an extension similar to that shown in Fig. 5 at 506 may extend from the
29 dimple 604, to further raise the second (slider) end of the load beam 602 relative to the disk 711,

1 712, while respecting the constraints imposed upon such structures by the inherent limitation in
2 space between the mounting structure of the load beam 602 (see reference numeral 214 in Fig. 2)
3 and the disk 711, 712. Instead of the dimple 604, the load beam 602 may include a feature
4 including (optionally, only) an extension of rectangular cross-section, as shown at 406 in Fig. 4.
5 Other structures and/or combinations of structures and methods of manufacturing the same to
6 raise the second (slider) end 610 of the load beam 602 to minimize the angle α_s will occur to
7 those of skill in this art and all such structures are deemed to fall within the scope and spirit of
8 the present invention.

9 The load beam features shown in Figs. 4, 5 and 6 (and/or various combinations and
10 variants thereof) may be incorporated in the HGA 710 of Fig. 7 to achieve a disk drive according
11 to the present invention. Advantageously, the present invention, by reducing disk flutter induced
12 TMR and consequently NRRO, enables the TPI of the disks 711, 712 to be increased, thereby
13 enabling the capacity of the drive 700 to be correspondingly increased.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
994
995
996
996
997
997
998
998
999
999
1000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1094
1095
1096
1096
1097
1097
1098
1098
1099
1099
1100
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1194
1195
1196
1196
1197
1197
1198
1198
1199
1199
1200
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1294
1295
1296
1296
1297
1297
1298
1298
1299
1299
1300
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1394
1395
1396
1396
1397
1397
1398
1398
1399
1399
1400
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1494
1495
1496
1496
1497
1497
1498
1498
1499
1499
1500
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1594
1595
1596
1596
1597
1597
1598
1598
1599
1599
1600
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1694
1695
1696
1696
1697
1697
1698
1698
1699
1699
1700
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1794
1795
1796
1796
1797
1797
1798
1798
1799
1799
1800
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809<br