МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ОТНОШЕНИЕ ЭКВИВАЛЕНТНОСТИ И ОТНОШЕНИЕ ПОРЯДКА

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы				
специальности 100501 — Компьютерная безопасность				
факультета КНиИТ				
Окунькова Сергея Викторовича				
Проверил				

аспирант

В. Н. Кутин

СОДЕРЖАНИЕ

1	Пос	остановка задачи		
2	Teop	Георетические сведения по рассмотренным темам с их обоснованием 4		
3	Результаты работы			
	3.1	Описание алгоритма классификации бинарных отношений б		
	3.2	.2 Описание алгоритмов построения основных замыканий бинар-		
		ных от	гношений	
	3.3	Коды	программ, реализующей рассмотренные алгоритмы 9	
	3.4	Результаты тестирования программ		
	3.5	Оценк	ки сложности рассмотренных алгоритмов	
		3.5.1	Алгоритм определения рефлексивности	
		3.5.2	Алгоритм определения антирефлексивности19	
		3.5.3	Алгоритм определения симметричности19	
		3.5.4	Алгоритм определения антисимметричности	
		3.5.5	Алгоритм определения транзитивности	
		3.5.6	Алгоритм классификации	
		3.5.7	Построение замыкания рефлексивности	
		3.5.8	Построение замыкания симметричности	
		3.5.9	Построение замыкания транзитивности	
34	ЗАКЛЮЧЕНИЕ21			

1 Постановка задачи

Цель работы:

Изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать определения отношения эквивалентности, фактор-множества. Разработать алгоритмы построения эквивалентного замыкания бинарного отношения и системы представителей фактор-множества.
- 2. Разобрать определения отношения порядка и диаграммы Хассе. Разработать алгоритмы вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Хассе.
- 3. Разобрать определения контекста и концепта. Разработать алгоритм вычисления решетки концептов.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Бинарное отношение ε на множестве A называется отношением эквивалентности (или просто эквивалентностью), если оно рефлексивно, симметрично и транзитивно.

Для любого подмножества $X\subset A$ множество $\rho(X)=\{b\in B:(x,b)\in \rho$ для некоторого $x\in X\}$ называется образом множества X относительно отношения ρ .

Образ одноэлементного множества $X=\{a\}$ относительно отношения ρ обозначается символом $\rho(a)$ и называется также образом элемента a или **срезом** отношения ρ через элемент a.

Срезы $\varepsilon(a)$ называются классами эквивалентности по отношению ε и сокращенно обозначаются символом [a]. Множество всех таких классов эквивалентности $\{[a]:a\in A\}$ называется фактор-множеством множества A по эквивалентности ε и обозначается символом A/ε .

Бинарное отношение ω на множестве A называется отношением порядка (или просто порядком), если оно рефлексивно, антисимметрично и транзитивно.

Множество A с заданным на нем отношением порядка \leq называется упорядоченным множеством и обозначается $A = (A, \leq)$ или просто (A, \leq) .

Элемент a упорядоченного множества (A,\leq) называется:

- 1. минимальным, если $(\forall x \in A) \ x \le a \implies x = a$,
- 2. максимальным, если $(\forall x \in A) \ a \leq x \implies x = a$,
- 3. наименьшим, если $(\forall x \in A) \ a \leq x$,
- 4. наибольшим, если $(\forall x \in A) \ x \leq a$.

Упорядоченное множество $A=(A,\leq)$ наглядно представляется диаграммой Хассе, которая представляет элементы множества A точками плоскости и пары $a<\cdot b$ представляет линиями, идущими вверх от элемента a к элементу b.

Алгоритм построения диаграммы Хассе конечного упорядоченного множества $A=(A,\leq).$

- 1. В упорядоченном множестве $A = (A, \leq)$ найти множество A_1 всех минимальных элементов и расположить их в один горизонтальный ряд (это первый уровень диаграммы).
- 2. В упорядоченном множестве $A \setminus A_1$, найти множество A_2 всех минимальных элементов и расположить их в один горизонтальный ряд над первым

- уровнем (это второй уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущего ряда.
- 3. В упорядоченном множестве $A \setminus (A_1 \cup A_2)$ найти множество A_3 всех минимальных элементов и расположить их в один горизонтальный ряд над вторым уровнем (это третий уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущих рядов.
- 4. Процесс продолжается до тех пор, пока не выберутся все элементы множества A.

Контекстом называется алгебраическая система $K=(G,M,\rho)$, состоящая из множества объектов G, множества атрибутов M и бинарного отношения $\rho\subset G\times M$, показывающего $(g,m)\in \rho$, что объект g имеет атрибут m.

Упорядоченная пара (X,Y) замкнутых множеств $X\in Z_{f_G},Y\in Z_{f_M}$, удовлетворяющих условиям $\varphi(X)=Y,$ $\psi(Y)=X,$ называется концептом контекста $K=(G,M,\rho).$ При этом компонента X называется объемом и компонента Y - содержанием концепта (X,Y).

Множество всех концептов C(K) так упорядочивается отношением $(X,Y) \leq (X_1,Y_1) \Leftrightarrow X \subset X_1$ (или равносильно $Y_1 \subset Y$), что $(C(K),\leq)$ является полной решеткой, которая изоморфна решетке замкнутых подмножеств множества G.

Алгоритм вычисления системы замыканий на множестве G:

- 1. Рассматриваем множество $G \in Z_{f_G}$.
- 2. Последовательно перебираем все элементы $m \in M$ и вычисляем для них $\psi(\{m\}) = \rho^{-1}(m).$
- 3. Вычисляем все новые пересечения множества $\psi(\{m\})$ с ранее полученными множествами и добавляем новые множества к Z_{f_G} . Аналогично вычисляется система замыканий на множестве M.

3 Результаты работы

3.1 Описание алгоритма классификации бинарных отношений

1. Алгоритм 1 - Проверка бинарного отношения на рефлексивность: Бинарное отношение называется рефлексивным тогда и только тогда, ко-

винарное отношение называется рефлексивным тогда и только тогда, когда $\Delta_A \subset \rho$. Это означает, что бинарное отношение ρ рефлексивно, если $M(\rho) \geq E$, где E - единичная матрица. Если же матрица $M(\rho)$ несравнима с единичной матрицей, то бинарное отношение ρ не является рефлексивным;

 Bxod : матрица бинарного отношения $A=(a_{ij})$, размерности $n \times n$

Bыход: "Множество рефлексивно" или "Множество не рефлексивно"

Шаг 1. Суммирование элементов на главной диагонали ($sum = \sum_{i=1}^{n} a[i][i]$).

Шаг 2. Если sum = n, то отношение является рефлексивным, иначе не рефлексивным.

Асимптотика O(n).

2. Алгоритм 2 - Проверка бинарного отношения на симметричность:

Бинарное отношение называется симметричным тогда и только тогда, когда $\rho^{-1} \subset \rho$. Это означает, что бинарное отношение ρ симметрично, если $M(\rho) \geq M(\rho)^T$, где $M(\rho)^T$ – транспонированная матрица бинарного отношения ρ . Если же матрица $M(\rho)$ несравнима с $M(\rho)^T$, то бинарное отношение ρ не является симметричным;

 Bxod : матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$

Выход: "Множество симметрично" или "Множество не симметрично"

Шаг 1. Транспонируем A, чтобы получить $B = A^T$ ($0 \le i, j < n, b[i][j] \in B: b[i][j] = a[j][i]$).

Шаг 2. Если A=B $(b[i][j]\in B:b[i][j]=a[i][j]$, где $0\leq i,j< n$), то бинарное отношение будет является симметричным, иначе отношение не симметрично.

Асимптотика $O(n^{3/2}logn)$.

3. Алгоритм 3 - Проверка бинарного отношения на транзитивность:

Бинарное отношение транзитивным тогда и только тогда, когда $\rho \rho \subset \rho$. Это означает, что бинарное отношение ρ транзитивно, если $M(\rho)M(\rho) \leq M(\rho)$.

 $Bxo\partial$: матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$ $Bыxo\partial$: "Множество транзитивно" или "Множество не транзитивно"

На вход подается матрица бинарного отношения А.

Шаг 1. Получить матрицу $B = A^2$.

Шаг 2. Сравнить полученную и исходную матрицу.

Шаг 3. Если $B \leq A$ $(b[i][j] \in B: b[i][j] \leq a[i][j]$, где $0 \leq i, j < n$), то бинарное отношение транзитивно, иначе не транзитивным.

Асимптотика $O(n^3)$.

4. Алгоритм 4 - Проверка бинарного отношения на антирефлексивность:

 $Bxo\partial$: матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$

Bыход: "Множество антирефлексивно"или "Множество не антирефлексивно"

На вход подается матрица бинарного отоношения А.

Шаг 1. Суммирование элементов на главной диагонали ($sum = \sum_{i=1}^{n} a[i][i]$).

Шаг 2. Если sum=0, то отношение является антирефлексивным, иначе не антирефлексивным.

Асимптотика O(n).

5. Алгоритм 5 - Проверка бинарного отношения на антисимметричность:

 Bxod : матрица бинарного отношения $A=(a_{ij})$, размерности $n \times n$

Bыход: "Множество антисимметрично" или "Множество не антисимметрично"

Шаг 1. Транспонируем A, чтобы получить $C = A^T$.

Шаг 2. Получим матрицу B = A * C.

Шаг 4. Если b[i][j]=0, где b[i][j] элемент матрицы B, $0\leq i,j< n$ и $i\neq j$, то отношение является антисиметричным, иначе отношение не антисиметрично.

Асимптотика $O(n^3)$.

6. Алгоитм 6 - Классификация бинарного отношения:

 Bxod : матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$

Выход: «Бинарное отношение является отношением квазипорядка», «Бинарное отношение является отношением эквивалентности», «Бинарное отношение является отношением частичного порядка» или «Бинарное отношение является отношением строгого порядка».

Шаг 1. Запустить алгоритмы 1 и 3 (проверки на рефлексивность и транзитивность), подав им на вход матрицу А. Если алгоритмы вернут значения «Бинарное отношение является рефлексивным» и «Бинарное отношение

является транзитивным», то вернуть значение «Бинарное отношение является отношением квазипорядка».

Шаг 2. Запустить алгоритмы 1, 2 и 3 (проверки на рефлексивность, симметричность и транзитивность), подав им на вход матрицу А. Если алгоритмы вернут значения «Бинарное отношение является рефлексивным», «Бинарное отношение является симметричным» и «Бинарное отношение является транзитивным», то вернуть значение «Бинарное отношение является отношением эквивалентности».

Шаг 3. Запустить алгоритмы 3 и 5 (проверки на антисимметричность и транзитивность), подав им на вход матрицу А. Если алгоритмы вернут значения «Бинарное отношение является антисимметричным» и «Бинарное отношение является транзитивным», то вернуть значение «Бинарное отношение является отношением частичного порядка».

Шаг 4. Запустить алгоритмы 3, 4 и 5 (проверки на антирефлексивность, антисимметричность и транзитивность), подав им на вход матрицу А. Если алгоритмы вернут значения «Бинарное отношение является антирефлексивным», «Бинарное отношение является антисимметричным» и Бинарное отношение является транзитивным», то вернуть значение «Бинарное отношение является отношением строгого порядка».

Если не учитывать сложность вызываемых алгоритмов, то асимптотика O(1), иначе асимптотика $O(n^3)$.

3.2 Описание алгоритмов построения основных замыканий бинарных отношений

1. Алгоритм 7 - Замыкание бинарного отношения относительно рефлексивности:

 $Bxo\partial$: матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$ $Bыxo\partial$: матрица бинарного отношения A', замкнутая относительно рефлексивности

Шаг 1. Присвоить каждому a[i][i] значение 1, где $0 \le i < n$: , после чего вернуть полученную матрицу бинарного отношения $A' = (a'_{ij})$ с построенным на нем рефлексивным замыканием.

Асимптотика O(n).

2. Алгоритм 8 - Замыкание бинарного отношения относительно симметричности:

 $Bxo\partial$: матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$ $Bbixo\partial$: матрица бинарного отношения A', замкнутая относительно симметричности

Шаг1. Каждому элементу a[i][j] $0 \le i,j < n$ матрицы А присваивается значение элемент a[j][i], после чего вернуть полученную матрицу бинарного отношения $A' = (a'_{ij})$ с построенным на нем симметричным замыканием.

Асимптотика $O(n^2)$.

3. Алгоритм 9 - Замыкание бинарного отношения относительно транзитивности:

 $Bxo\partial$: матрица бинарного отношения $A=(a_{ij})$, размерности $n\times n$ $Bыxo\partial$: матрица бинарного отношения A', замкнутая относительно транзитивности

Шаг1. Если a[i][k]=1 и a[k][j]=1, то присвоить a[i][j] значение 1, где $0 \le i,j,k < k$. Такой шаг нужно повторить п раз в силу определения п.3) оператора транзитивного замыкания в лемме 2, после чего вернуть полученную матрицу бинарного отношения $A'=(a'_{ij})$ с построенным на нем транзитивным замыканием.

Асимптотика $O(n^4)$.

3.3 Коды программ, реализующей рассмотренные алгоритмы

```
import numpy as np
import matplotlib.pyplot as plt

def isTran(a):
    n = len(a)
    b = np.matmul(a, a)
    for i in range(n):
        if b[i][j]:
            b[i][j] = b[i][j] / b[i][j]
    f = (a >= b).all()
    if f:
        print("Set is transitive")
        return 't'
    else:
        f1 = True
```

```
for i in range(n):
            for j in range(n):
                for k in range(n):
                     if a[i][k] and a[k][j] and a[i][j]:
                         f1 = False
        if f1:
            print("Set is anti-transitive")
            return 'at'
        else:
            print("Set is not transitive")
            return 'nt'
def isSymm(a):
    b = a.transpose()
    if np.array_equal(a, b):
        print("Set is symmetry")
        return 's'
    else:
        f = True
        b = np.multiply(a, b)
        for i in range(len(b)):
            for j in range(len(b[i])):
                if b[i][j] != 0 and i != j:
                    f = False
                    break
        if f:
            print("Set is anti-symmetry")
            return 'as'
        else:
            print("Set is not symmetry")
            return 'ns'
def isRefl(a):
    n = len(a)
    sum = 0
    for i in range(n):
        sum += a[i][i]
    if sum == n:
        print("Set is reflexive")
```

```
return 'r'
    elif sum == 0:
        print("Set is anti-reflexive")
        return 'ar'
    else:
        print("Set is not reflexive")
        return 'nr'
def makeRefl(a):
    n = len(a)
    for i in range(n):
        a[i][i] = 1
def makeSymm(a):
    n = len(a)
    for i in range(n):
        for j in range(n):
            if a[i][j]:
                a[j][i] = 1
def makeTran(a):
    n = len(a)
    for c in range(n):
        for k in range(n):
            for i in range(n):
                for j in range(n):
                     if a[i][k] and a[k][j]:
                         a[i][j] = 1
def get_set(a):
    s = []
    for i in range(len(a)):
        for j in range(len(a[i])):
            if a[i][j] == 1:
                s.append((i + 1, j + 1))
    return s
def get_slices_list(relation_matrix, for_factor_set=1, attributes=None):
```

```
slices = []
    for i in range(len(relation_matrix)):
        some_slice = [].copy()
        for j in range(len(relation_matrix[i])):
            if relation_matrix[i][j]:
                if attributes is None:
                    some_slice.append(j + for_factor_set)
                else:
                    some_slice.append(attributes[j])
        some_slice = tuple(some_slice)
        slices.append(some_slice)
    return slices
def create_factor_set(bin_relation):
    slices = get_slices_list(bin_relation)
    print("Factor set:")
    factor_set = set(slices)
    print(factor_set)
    return factor_set
def create_representative_system(factor_set):
    representative_system = []
    factor_set = list(factor_set)
    factor_set.sort(key=len)
    elem_dict = {}
    for eq_class in factor_set:
        for representative in eq_class:
            if not(representative in representative_system):
                elem_dict[f"{representative}"] = eq_class
                representative_system.append(representative)
                break
    print("Representative set factor system:")
    print(representative_system)
    ans = ""
    print("Where:", ans)
    for k, v in elem_dict.items():
```

```
print(f"{k} \u2208 {list(v)}; ")
def get_dividers(num, set = None):
    i = 1
    ans = []
    if set == None:
        while(num >= i):
            if num % i == 0:
                 ans.append(i)
            i += 1
    else:
        for s in set:
            if num % s == 0:
                 ans.append(s)
    return ans
def get_level(dividers, set=None):
    a = [get_dividers(div, set=set) for div in dividers]
    dct = {dividers[i]: 0 for i in range(len(a))}
    for an in a:
        m = 0
        for h in an:
            if m < dct[h]:
                m = dct[h]
        dct[an[len(an) - 1]] = m + 1
    return dct
def visualization(levels, max_level):
    plt.xlim(-1.0, max_level * 2)
    plt.ylim(0, len(levels) * 3 + 1.5)
    lvl = 1.5
    a = []
    for i in range(len(levels)):
        x = (max_level - len(levels[i]))
        1 = 0
        b = \lceil \rceil
        for j in range(len(levels[i])):
            plt.text(x + 1, i + lvl, f'{levels[i][j]}')
```

```
plt.scatter(x + 1 + 0.1, i + lvl + 0.15, s=350, facecolors='none', edgeco
            b.append((x + 1, i + lvl, levels[i][j]))
            if i > 0:
                div = []
                for g in range(len(a)-1, -1, -1):
                    for c in a[g]:
                         flag = True
                         for d in div:
                             if d \% c[2] == 0:
                                 flag = False
                         if levels[i][j] % c[2] == 0 and flag:
                             plt.plot([c[0] + 0.15, x + 1 + 0.15], [c[1] + 0.65, i + 1)
                             div.append(c[2])
            1 += 2
        a.append(b)
        lvl += 2
    plt.show()
def task1():
    print("How you want enter your relation (set or matrix)?")
    enter = input()
    if enter == 'set':
        print('Enter the number of elements in relation')
        n = int(input())
        print("Enter your set")
        \# st = [(1, 3), (3, 4), (1, 4), (2, 5), (5, 3)]
        s = list(map(str, input().split(' ')))
        st = []
        for c in s:
            a = 11
            i = 1
            while c[i] != ',':
                a += c[i]
                i += 1
            i += 1
            b = 11
            while c[i] != ')':
                b += c[i]
```

```
i += 1
      st.append((int(a), int(b)))
   a = np.zeros((n, n), int)
   for s in st:
      a[s[0] - 1][s[1] - 1] = 1
   print('----')
   print("Relation's matrix")
   print(a)
else:
   print('Enter the number of elements in relation')
   n = int(input())
   print("Enter your matrix")
   a = [list(map(int, input().split())) for i in range(n)]
   a = np.array(a).reshape(n, n)
   print('----')
   print("Relation's set")
   print(*get_set(a))
print('----')
properties = {"reflexive": isRefl(a), "symmetry": isSymm(a), "transitive": isTran
print('----')
if properties['reflexive'] == 'r' and properties['symmetry'] == 's' and propertie
   print('Relation is equivalent')
   print('----')
if properties['reflexive'] == 'r' and properties['transitive'] == 't':
   print('Relation is the relation of the quasi-order')
   print('----')
if properties['reflexive'] == 'r' and properties['symmetry'] == 'as' and properti
   print('Relation is the relation of the partial order')
   print('----')
if properties['reflexive'] == 'ar' and properties['symmetry'] == 'as' and propert
   print('Relation is the relation of the strict order')
   print('----')
if properties['reflexive'] != 'r':
   makeRefl(a)
if properties['symmetry'] != 's':
   makeSymm(a)
makeTran(a)
print('Closure matrix: ')
print(a)
print('----')
print('Closure set: ')
```

```
print(*get_set(a))
    print('----')
    factor_set = create_factor_set(a)
    create_representative_system(factor_set)
def task2():
    print("The relation of divisibility on a set or on a number")
    h = input()
    if h == "number":
       print('Enter your number')
       num = int(input())
       dividers = get_dividers(num)
       print(f'Dividers of {num} : {dividers}')
        dct = get_level(dividers)
    else:
       print('Enter your set')
        st = list(map(int, input().split()))
        st.sort()
       dct = get_level(st, set=st)
    last level = 1
    for key in dct:
        last_level = max(dct[key], last_level)
    print(dct)
    levels = [[] for _ in range(last_level)]
    for key in dct:
        levels[dct[key] - 1].append(key)
    max level = 1
    for lvl in levels:
        max_level = max(max_level, len(lvl))
    visualization(levels, max_level)
if __name__ == "__main__":
    task2()
```

3.4 Результаты тестирования программ

```
How you want enter your relation (set or matrix)?
Enter the number of elements in relation
Enter your set
Relation's matrix
[[0 1 1]
[0 0 0]
[0 0 0]]
Set is anti-reflexive
Set is anti-symmetry
Set is transitive
Relation is the relation of the strict order
Closure matrix:
[[1 1 1]
[1 1 0]
[1 0 1]]
Closure set:
(1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (3, 1) (3, 3)
```

Рисунок 1 — Ввод бинарного отношения (1, 2), (1, 3) в виде множества с выводом свойств этого множества и замыкания относительно эквивалентности

```
How you want enter your relation (set or matrix)?
Enter the number of elements in relation
Relation's matrix
[[0 0 0 0 0]]
[0 0 0 0 1]
[0 1 0 0 0]
[0 1 0 0 0]
[0 0 0 0 0]]
Set is anti-reflexive
Set is not symmetry
Set is anti-transitive
Closure matrix:
[[1 0 0 0 0]
[0 1 1 1 1]
[0 1 1 1 1]
Closure set:
```

Рисунок 2 – Ввод бинарного отношения (3, 2), (2, 5), (4, 2) в виде множества с выводом свойств этого множества и замыкания относительно эквивалентности

```
How you want enter your relation (set or matrix)?

***notrix**
Enter the number of elements in relation

Enter your matrix

**a 0 0 0

**a 0 0 0 1

**a 1 0 0 0

**a 1 0 0 0

**a 1 0 0 0

**a 2 0 0 0

**a 3 0 0

**a 4 0 0

**a 4 0 0

**a 5 0 0

**a 5 0 0

**a 5 0 0

**a 5 0 0

**a 6 0 0

**a 7 0

**a 7 0 0

**a 7 0

**a 7 0 0

**a 7 0

**a 7 0 0

**a 7 0
```

Рисунок 3 – Ввод бинарного отношения (3, 2), (2, 5), (4, 2) в виде матрицы с выводом свойств этого множества и замыкания относительно эквивалентности

Рисунок 4 – Ввод бинарного отношения (1, 2), (2, 3), (4, 3) в виде матрицы с выводом свойств этого множества и замыкания относительно эквивалентности

3.5 Оценки сложности рассмотренных алгоритмов

3.5.1 Алгоритм определения рефлексивности

Сложность выполнения проверки на рефлексивность определяется как O(n).

3.5.2 Алгоритм определения антирефлексивности

За счет схожести с алгоритмом определения рефлексивности сложность определяется как O(n).

3.5.3 Алгоритм определения симметричности

Сложность транспонирования в питру определяется как $O(n^{3/2}log\ n)$, сложность сравнение двух матриц поэлементно определяется как $O(n^2)$. Отсюда можно сделать вывод, что сложность алгоритма будет определятся как $O(n^{3/2}log\ n+n^2)=O(n^{3/2}log\ n)$.

3.5.4 Алгоритм определения антисимметричности

Сложность умножения матриц определяется как $O(n^3)$, сложность сравнение двух матриц поэлементно определяется как $O(n^2)$. Отсюда можно сделать

вывод, что сложность будет определятся как $O(n^2 + n^3) = O(n^3)$

3.5.5 Алгоритм определения транзитивности

Из всего выше сказанного очевидно, что сложность проверки на транзитивность или антитранзитивность составляет $O(n^3)$, так как в нем используется умножение, сравнение матриц и тройной цикл для проверки рефлексивности в худшем случае матриц.

3.5.6 Алгоритм классификации

Сложность выполнения самого алгоритма классификации бинарных отношений реализованно через словарь языка python и оператор if, поэтому является константной (O(1)), если не учитывать сложность выполнения проверки свойств отношения. Если учитывать сложность алгоритмов проверки свойств отношения, то :

- 1. Сложность проверка на квазипорядок определяется как $O(n^3+n)=O(n^3).$
- 2. Сложность проверка на эквивалентность определяется как $O(n^3 + n + n^{3/2}log n) = O(n^3)$.
- 3. Сложность проверка на частичный порядок определяется как $O(n^3+n+n^3)=O(n^3).$
- 4. Сложность проверка на строгий порядок определяется как $O(n^3+n+n^3)=O(n^3).$

3.5.7 Построение замыкания рефлексивности

Так как весь алгоритм строится на заполнении главной диагонали матрицы 1, то его сложность состовляет O(n).

3.5.8 Построение замыкания симметричности

Для посторения замыкания симметричности используются вложенный цикла, поэтому сложность алгоритма определяется как $O(n^2)$.

3.5.9 Построение замыкания транзитивности

Для посторения замыкания транзитивности используются три вложенный цикла, поэтому сложность алгоритма определяется как $O(n^4)$.

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были рассмотренны теоритические основы свойств бинарных отношений, их видов и методов их замыкания по каждому из свойств. На основе этой теоретической части была смоделирована программа на языке Python с использованием средств библиотеки Numpy, которая способна определить свойства заданного множества, его вид и построить систему замыкания по каждому из основных свойств бинарного отношения, а так же была оценена асимптотика каждого реализованного алгоритма.