Es10: Misura del rapporto carica-massa dell'elettrone e/m_e

21 marzo 2022

1 Scopo dell'esperienza

Si vuole misurare il rapporto e/m attraverso la misura del raggio di curvatura della traiettoria circolare di un fascio di elettroni immersi in un campo magnetico uniforme (generato da bobine in configurazione di Helmholtz) accelerati da una differenza di potenziale nota.

2 Metodo di misura

Consideriamo il campo magnetico prodotto da due bobine coassiali di raggio medio r = 15.8 cm, costituite da N = 130 spire collegate in serie e percorse da una stessa corrente di intensità I_{coil} da noi controllabile.

Si può calcolare il campo magnetico nella regione vicino al centro di ciascuna bobina dalla legge di Biot-Savart e, quando queste sono poste ad una distanza a=r pari al loro raggio -cioè in configurazione di Helmholtz-si può ricavare un'espressione per il campo totale come sovrapposizione dei due campi

$$B = \frac{\mu_0 N r^2 I_{\text{coil}}}{\left[r^2 + \left(\frac{r}{2}\right)^2\right]^{\frac{3}{2}}} = \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_0 N}{r} I_{\text{coil}}.$$
 (1)

Nel piano parallelo alle spire passante per il punto medio dell'asse congiungente i centri delle bobine (ovvero il piano della traiettoria degli elettroni) il campo magnetico è parallelo all'asse z delle spire ed ha valore massimo della componente lungo lo stesso asse:

$$Bz_{\text{MAX}} = 7.4010^{-4} I_{\text{coil}}$$
 (2)

Un catodo, riscaldato da un filamento incandescente alimentato con una tensione $V_{\rm heat}=6$ V emette elettroni per effetto termoionico. Gli elettroni vengono accelerati da una d.d.p. $V_{\rm acc}$ compresa tra 150 e 250 V e, all'uscita dal cannone elettronico urtano gli atomi del gas rarefatto (He, a pressione di 10^{-1} Pa) presente nell'ampolla, i quali emettono la radiazione che consente di visualizzare il pennello elettronico e misurarne l'orbita.

Una volta liberati dal catodo, nella regione in cui supponiamo assente il campo elettrico $V_{\rm acc}$, per la conservazione dell'energia vale

$$\frac{1}{2}m_e v^2 = eV_{\rm acc} \tag{3}$$

Per cui, assumendo che il campo magnetico sia statico e uniforme lungo z e che il fascio di elettroni abbia velocità ortogonale all'asse delle spire, ci aspettiamo che gli elettroni rimangano in moto circolare uniforme nel piano ortogonale x-y.

Dalla condizione di moto circolare di raggio R dovuto alla forza di Lorentz abbiamo che

$$m_e \frac{v^2}{R} = evB \implies v = \frac{e}{m_e} BR$$

Combinando l' eq. (3) con la precedente troviamo

$$v^2 = 2V_{\rm acc}\frac{e}{m_e} \implies \left(\frac{e}{m_e}BR\right)^2 = 2V_{\rm acc}\frac{e}{m_e}$$

Da cui otteniamo l'equazione tramite cui vogliamo stimare il rapporto

$$\frac{e}{m_e} = \frac{2\Delta V}{(BR)^2}. (4)$$

Dal momento che tutte le variabili nel RHS sono direttamente controllabili configurando le tensioni di alimentazione e possiamo misurare il raggio della traiettoria R analizzando (come faremo ad esempio con un fit circolare) le fotografie del moto nel bulbo.

3 Descrizione delle misure

3.1 Orientazione delle bobine rispetto al campo magnetico terrestre

Usando le due bussole in dotazione e la bussola di un cellulare abbiamo per prima cosa orientato l'apparato in modo che il campo magnetico generato dalle bobine fosse nella stessa direzione del campo magnetico generato dalle bobine: in questo modo non dovremo preoccuparci di componenti del campo magnetico non perpendicolari alla direzione degli elettroni, che avrebbero contribuito rendendo il moto elicoidale.

3.2 Mappatura del campo magnetico lungo l'asse delle bobine

Si vuole a questo punto misurare la variazione d'intensità del campo magnetico lungo l'asse delle bobine: per farlo ci serviamo di una sonda ad effetto hall con fattore di conversione di $5.0 \pm 0.1 \frac{mV}{G} = 50 \pm 1 \frac{V}{T}$. A questo punto abbiamo alimentato le bobine, facendo attenzione a non utilizzare più dei valori massimi consigliati dal costruttore (2 A di corrente); abbiamo quindi misurato il valore della corrente di alimentazione:

$$I_{coil} = 2.00 \pm 0.03 A$$

Facendo un veloce calcolo con l'equazione 2 e con il valore misurato di I_{coil} ci si accorge immediatamente che l'intensità del campo magnetico massimo misurato sarà dell'ordine del millesimo di Tesla (circa 1.4 mT); se ne deduce che quindi il sensore Hall da solo non è sufficiente per misurare approfonditamente le variazioni del campo magnetico (il sensore produrrebbe una d.d.p di circa 70 mV al massimo). Si è quindi inserito tra la sonda e il multimetro un amplificatore-sottrattore (da calibrare) con un coefficiente di amplificazione pari a 11.1 ± 0.1 . Dato che l'errore sul valore letto dal multimetro è circa 0.7~%+1 digit contro al 2~%+1~% derivante dal circuito sonda + Amplificatore, lo abbiamo trascurato, prendendo in considerazione solo quelli del circuito sopracitato. Il primo passo è stato quello di calibrare il circuito amplificatore-sottrattore, aggiustando l'offset, in modo che il multimetro misurasse lo stesso valore ma di segno invertito ruotando la sonda di 180° ; da questa procedura ci accorgiamo che la sonda misura un campo magnetico residuo, infatti dal multimetro leggiamo una tensione di circa 19~mV, che convertendoli ci danno come risultato un campo magnetico di circa $34.2\pm0.7\mu T$, compatibile con l'intensità del campo magnetico terrestre.

Successivamente è stato acceso il generatore e si è inserita la sonda nell'apposita fessura nel punto medio tra le bobine, tagliandole lungo il diametro, e abbiamo misurato il valore in uscita dall'amplificatore a ogni cm fatto con la sonda.

3.3 Calibrazione dell'apparato per l'acquisizione delle traiettorie

A questo punto si è potuto procedere con l'acquisizione delle misure del raggio. Per farlo abbiamo fatto uso di una fotocamera la quale è stata posizionata in modo tale che il centro delle lenti corrispondesse al centro delle bobine e del bulbo di vetro: in questo modo le distorsioni dovute al bulbo saranno minimizzate, di conseguenza sarà più facile stimare il raggio effettivo; inoltre se prendiamo come traiettoria quella di raggio tale che il suo centro che passa per il centro del bulbo, le distorsioni saranno ancora più minimizzate, e dalla fotocamera vedremo una circonferenza meno distorta. Come impostazioni per la fotocamera abbiamo utilizzato un ISO di 400 e un'esposizione di 10 secondi, in modo da vedere al meglio i limiti interni ed esterni del pennello elettronico e stimare con maggiore precisione il raggio della traiettoria.

Per cominciare abbiamo scattato una foto in cui si vedono 2 righelli (risoluzione 1 mm) posizionati ognuno in una bobina, questo per valutare gli effetti della geometria proiettiva e per valutare successivamente gli effetti di distorsione del bulbo. Abbiamo quindi alimentato il dispositivo di emissione di elettroni con una tensione di 6 Volt e abbiamo aspettato che il filamento si scaldasse il più possibile, dopodiché abbiamo iniziato a variare la tensione di accelerazione: inizialmente, nonostante si variasse V_{acc} , il pennello elettronico non era visibile in quanto non avevamo aspettato ancora abbastanza e il filamento doveva ancora raggiungere la temperatura ottimale. Dopo circa 10 minuti (in totale) il pennello elettronico aveva raggiunto lo stato di massima luminosità, quindi si sono spente le luci e abbiamo scattato diverse fotografie a diverse tensioni di accelerazioni e correnti I_{coil} ; come ci si aspettava aumentando la tensione di accelerazione aumenta il raggio di curvatura, diminuendo I_{coil} aumenta il raggio.

3.4 Misura del raggio della traiettoria

Sulle foto sopra menzionate si è effettuato un campionamento dei punti sull'arco interno e sull'arco esterno. Le coordinate dei pixel così ricavate sono state interpolate con un *fit* circolare per ottenere una stima del raggio interno ed esterno. Si è poi assunto come valore efficace del raggio dell'orbita la media del raggio del cerchio interno e di quello esterno, e si è attribuito un errore pari alla semi-dispersione degli stessi. I raggi così ottenuti sono stati poi convertiti in unità fisiche come spiegato nella sezione 3.3.

Figura 1: Foto di calibrazione in assenza di bulbo, da questa ricaveremo una scala per convertire successivamente i dati da pixel a cm

4 Analisi dati e stima del rapporto e/m

La stima del rapporto e/m_e è stata poi ottenuta in due modi diversi: come media pesata delle singole misure ottenute dalla (4) ed effettuando un fit lineare di $2\Delta V$ al variare di $(BR)^2$ e ottenendo e/m_e dal coefficiente angolare della retta di best-fit.

Prendendo come valori esatti $e=2\times 10^{11}~{\rm C}$ e $m_e=9\times 10^{-31}~{\rm kg}$ il valore atteso per il loro rapporto è

$$\left(\frac{e}{m_e}\right)_{\rm exp} = 200 \times 10^9 \text{ C/kg} \tag{5}$$

5 Valutazione degli effetti sistematici

- 5.1 Spessore del pennello elettronico
- 5.2 Dipendenza della stima di e/m dal raggio dell'orbita R
- 5.3 Distorsione del bulbo di vetro
- 5.4 Campo magnetico terrestre
- 5.5 Disuniformità del campo magnetico sulla traiettoria

Conclusioni e commenti finali

Si è riusciti a dare una misura ragionevole del rapporto carica/massa dell'elettrone a partire da un'analisi delle fotografie della sua traiettoria elicoidale in presenza di un campo magnetico uniforme.

Dichiarazione

I firmatari di questa relazione dichiarano che il contenuto della relazione è originale, con misure effettuate dai membri del gruppo, e che tutti i firmatari hanno contribuito alla elaborazione della relazione stessa.

Riferimenti bibliografici

[1] I. D. Coope, Circle fitting by linear and nonlinear least squares, Department of Mathematics, University of Canterbury, Christchurch, New Zealand, N.60, May, 1992, https://ir.canterbury.ac.nz/bitstream/handle/10092/11104/coope_report_no69_1992.pdf?sequence=1&isAllowed=y