	Virginia II		910100000	 		2000 1		
SRN					1		3871	

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE16CS311

END SEMESTER ASSESSMENT (ESA) B.Tech. V SEMESTER - Dec. 2018

UE16CS311 - Advanced Algorithms

la	Algorithm Run(n) count i i n	06
	while(i > 0)	
	j ← 1	
	while(j <= i)	
	for k ← 1 to n	
	count ← count + 1	
	j ← j + 2	
	i ← floor(i / 2)	
240 (200)	return count	
venue.	Find the worst-case asymptotic time complexity of the above algorithm in 9 -notation.	
b	INCREMENT (A[0k-1])	06
4/4	$\mathbf{i} \leftarrow 0$	-
	while i < k and A[i] = 1	
	A[i] \leftarrow 0 (toggles the bit)	
	$i \leftarrow i + 1$	
	if i < k	
	then A[i] ← 1 (toggles the bit)	1
	Using "Aggregate Method", find the amortized cost of the above operation which	- Accounts of the Contract of
ii.		000
С	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1].	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x)	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot	08
3	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$	08
	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$	08
3	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate $new-table$ with $2 \cdot size[T]$ slots	08
3	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate $new-table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into $new-table$	08
	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new - $table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new - $table$ 7 free $table[T]$	08
	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate $new-table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into $new-table$	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new - $table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new - $table$ 7 free $table[T]$	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new -table with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new -table 7 free $table[T]$ 8 $table[T] \leftarrow new$ -table	08
3	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT(T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new - $table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new - $table$ 7 free $table[T]$ 8 $table[T] \leftarrow new$ - $table$ 9 $size[T] \leftarrow 2 \cdot size[T]$	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT(T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new -table with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new -table 7 free $table[T]$ 8 $table[T] \leftarrow new$ -table 9 $size[T] \leftarrow 2 \cdot size[T]$ 10 insert x into $table[T]$	08
C	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT (T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new - $table$ with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new - $table$ 7 free $table[T]$ 8 $table[T] \leftarrow new$ - $table$ 9 $size[T] \leftarrow 2 \cdot size[T]$ 10 insert x into $table[T]$ 11 $num[T] \leftarrow num[T] + 1$	08
3	Using "Aggregate Method", find the amortized cost of the above operation which increments a binary number A[0k-1]. TABLE-INSERT(T, x) 1 if $size[T] = 0$ 2 then allocate $table[T]$ with 1 slot 3 $size[T] \leftarrow 1$ 4 if $num[T] = size[T]$ 5 then allocate new -table with $2 \cdot size[T]$ slots 6 insert all items in $table[T]$ into new -table 7 free $table[T]$ 8 $table[T] \leftarrow new$ -table 9 $size[T] \leftarrow 2 \cdot size[T]$ 10 insert x into $table[T]$	08

		1	1		1		1		1
									1
SRN			1	10	1 1				
OILIA	- 1	3 N 8		17	(6)	1		 	

2a	Find the pattern "31415" in the text "2359023141526739921" using the Rabin-Karp method. Use radix-10 with "mod 13" for finding the hash values.	06
2b	KMP-MATCHER(T, P)	06
	$ \begin{array}{ccc} 1 & n = T.length \\ 2 & m & D.length \end{array} $	
	$ \begin{array}{ll} 2 & m = P.length \\ 3 & \pi = \text{COMPUTE-PREFIX-FUNCTION}(P) \end{array} $	
	4 q = 0 // number of characters matched	
	5 for $i = 1$ to n // scan the text from left to right	
	6 while $q > 0$ and $P[q+1] \neq T[i]$	
	7 $q = \pi[q]$ // next character does not match	
	7 $q = \pi[q]$ // next character does not match 8 if $P[q+1] == T[i]$	
	9 $q = q + 1$ // next character matches	
	10 if $q == m$ // is all of P matched?	
	11 print "Pattern occurs with shift" $i - m$	
	12 $q = \pi[q]$ // look for the next match	
	For the KMP-MATCHER algorithm given above, write the COMPUTE-PREFIX-FUNCTION procedure it requires.	نبات د
2c	Explain an O(n) method of finding the longest common substring of two strings T1 and T2 of length O(n) using generalized suffix trees. Use the method to find the longest common substring of T1 = "nonsense" and T2 = "offense".	08
3a	Find the integers \mathbf{x} and \mathbf{y} in the equation $840\mathbf{x} + 462\mathbf{y} = \gcd(840, 462)$ using the extended Euclid's algorithm.	06
3b	Explain the procedure of generating a pair of public-private keys for a participant in the RSA public-key cryptosystem.	06
3с	Let P _A , S _A , P _B , S _B are public-key and secret-key of Alice, and public-key and secret-key of Bob, respectively. Explain with a block diagram, a procedure for: (i) Bob to send message M to Alice confidentially,	08
	(ii) Alice to send a short message M ` to Bob authenticating it is her who sent the message.	

4a	What is memoization technique? Write an algorithm using memoization technique to find the binomial coefficient C(n, k) in O(nk) time. Use Pascal's identity given below to	06
	find the binomial coefficient.	
	C(n, k) = C(n-1, k-1) + C(n-1, k) for $n > k > 0C(n, 0) = 1, C(n, n) = 1 for n \ge 0$	

SRN	- 1	1		- 1	1 1	1	

= "GCCCTAGCG" and T2 = "GCGCAATG". Apply dynamic programming to solve the problem of fully parenthesizing for optimally multiplying a chain of n matrices. Find the optimal substructure, recursive solution and write the procedure to find the optimal value (finding an optimal solution is not necessary, just the optional value is needed). Convert the polynomial A(x) = a ₀ + a ₁ x + a ₂ x ² + a ₃ x ³ from the coefficient representation to the point-value representation. Explain the addition of two polynomials in point-value representation.			
Apply dynamic programming to solve the problem of fully parenthesizing for optimally multiplying a chain of \mathbf{n} matrices. Find the optimal substructure, recursive solution and write the procedure to find the optimal value (finding an optimal solution is not necessary, just the optional value is needed). 5a Convert the polynomial $\mathbf{A}(\mathbf{x}) = \mathbf{a_0} + \mathbf{a_1}\mathbf{x} + \mathbf{a_2}\mathbf{x}^2 + \mathbf{a_3}\mathbf{x}^3$ from the coefficient representation to the point-value representation. 5b Explain the addition of two polynomials in point-value representation. 6c RECURSIVE-FFT(a) 1 $n = a$.length 2 if $n = 1$ 3 return a 4 $\omega_n = e^{2\pi i/n}$ 5 $\omega = 1$ 6 $a^{[0]} = (a_0, a_2, \dots, a_{n-2})$ 7 $a^{[1]} = (a_1, a_3, \dots, a_{n-1})$ 8 $y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]})$ 9 $y^{[1]} = \text{RECURSIVE-FFT}(a^{[1]})$ 10 for $k = 0$ to $n/2 - 1$ 11 $y_k = y_k^{[0]} + \omega y_k^{[1]}$ 12 $y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}$	4b	Using dynamic programming, find the longest common subsequence of two strings T1	06
multiplying a chain of n matrices. Find the optimal substructure, recursive solution and write the procedure to find the optimal value (finding an optimal solution is not necessary, just the optional value is needed). 5a Convert the polynomial $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ from the coefficient representation to the point-value representation. 6b Explain the addition of two polynomials in point-value representation. 6c RECURSIVE-FFT(a) 1		= "GCCCTAGCG" and T2 = "GCGCAATG".	98
to the point-value representation. Explain the addition of two polynomials in point-value representation. RECURSIVE-FFT (a) $1 n = a.length$ $2 \text{if } n = 1$ $3 \text{return } a$ $4 \omega_n = e^{2\pi i/n}$ $5 \omega = 1$ $6 a^{[0]} = (a_0, a_2, \dots, a_{n-2})$ $7 a^{[1]} = (a_1, a_3, \dots, a_{n-1})$ $8 y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]})$ $9 y^{[1]} = \text{RECURSIVE-FFT}(a^{[1]})$ $10 \text{for } k = 0 \text{ to } n/2 - 1$ $11 y_k = y_k^{[0]} + \omega y_k^{[1]}$ $12 y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}$	4c	multiplying a chain of n matrices. Find the optimal substructure, recursive solution and write the procedure to find the optimal value (finding an optimal solution is not	80
5c RECURSIVE-FFT(a) 1	5a		06
RECURSIVE-FFT(a) 1	5b	Explain the addition of two polynomials in point-value representation.	06
14 return y Explain the working of the above FFT algorithm to evaluate coefficient vector a into its	5c	1 $n = a.length$ 2 if $n = 1$ 3 return a 4 $\omega_n = e^{2\pi i/n}$ 5 $\omega = 1$ 6 $a^{[0]} = (a_0, a_2, \dots, a_{n-2})$ 7 $a^{[1]} = (a_1, a_3, \dots, a_{n-1})$ 8 $y^{[0]} = \text{RECURSIVE-FFT}(a^{[0]})$ 9 $y^{[1]} = \text{RECURSIVE-FFT}(a^{[1]})$ 10 for $k = 0$ to $n/2 - 1$ 11 $y_k = y_k^{[0]} + \omega y_k^{[1]}$ 12 $y_{k+(n/2)} = y_k^{[0]} - \omega y_k^{[1]}$ 13 $\omega = \omega \omega_n$ 14 return y	08