Gâteaux- und Fréchet Differenzierbarkeit

Grunddefinitionen

Definition 1.29

Sei $F:U\subset X\to Y$ ein Operator mit Banachräumen X,Y und $U\neq\emptyset$ offen.

- 1. Gerichtet differenzierbar in x: Der Limes $dF(x,h)=\lim_{t\to 0^+}\frac{F(x+th)-F(x)}{t}\in Y$ existiert $\forall h\in X.$
- 2. Gâteaux Differenzierbar in x: Gerichtet Differenzierbar und die gerichtete Ableitung $F'(x): X\ni h\mapsto dF(x,h)\in Y$ ist beschränkt und linear.
- 3. Fréchet Differenzierbar in x: Gâteaux Differenzierbar und $||F(x+h) F(x) F'(x)h||_Y = o(||h||_X)$ für $||h||_X \to 0$.
- 4. F wird gerichtet-/F-/G-Differenzierbar auf $V \subset U$ offen genannt, falls F gerichtet-/F-/G-Differenzierbar ist in jedem $x \in V$.

Falls F G-Differenzierbar ist in einer Umgebung V von x und $F': V \to \mathcal{L}(X,Y)$ auch G-Differenzierbar ist in x, dann nennt man F zweimal differenzierbar in x. Man schreibt $F''(x) \in \mathcal{L}(X,\mathcal{L}(X,Y))$.

Ist F F-Differenzierbar in x, dann ist F stetig in x.

Regeln zu Gâteaux- und Fréchet Differenzierbarkeit

- 1. Die Ketten- und Produktregel gilt sowohl für Gâteaux- als auch für Fréchet Differenzierbare Funktionen.
- 2. Sei F G-Differenzierbar in einer Umgebung von x und F' stetig in x, dann ist F F-Differenzierbar in x.
- 3. Sei $F: X \times Y \to Z$ F-Differenzierbar in (x,y), dann sind F(.,y) und F(x,.) F-Differenzierbar in x und y. Diese Ableitungen heißen partielle Ableitungen und man bezeichnet sie mit $F_x(x,y)$ und $F_y(x,y)$. Dabei gilt $F'(x,y)(h_x,h_y) = F_x(x,y)h_x + F_y(x,y)h_y$.
- 4. Sei F G-Differenzierbar in einer Umgebung V von x, dann gilt für alle $h \in X$ mit $\{x + th : t \in [0, 1]\} \subset V$:

$$||F(x+h) - F(x)||_Y \le \sup_{0 < t < 1} ||F'(x+th)h||_Y$$

Sei $t \in [0,1] \mapsto F'(x+th)h \in Y$ stetig, dann gilt: $F(x+h) - F(x) = \int_0^1 F'(x+th)h dx$.

Satz über implizite Funktionen

Für Optimierungs-Probleme mit der Bedingung e(y,u)=0 ist es häufig so, dass $e:Y\times U\to Z$ stetig F-Differenzierbar ist und $e_y(y,u)\in\mathcal{L}(Y,Z)$ ein beschränktes Inverses hat.

Satz über implizite Funktionen

Seien X,Y,Z Banachräume und sei $F:G\to Z$ eine stetig F-Differenzierbare Abbildung von einer offenen Teilmenge $G\subset X\times Y$ nach Z. Sei $(\bar x,\bar y)\in G$ sodass $F(\bar x,\bar y)=0$ und dass $F_y(\bar x,\bar y)\in \mathcal L(Y,Z)$ ein beschränktes Inverses hat. Dann existiert eine offene Umgebung $U_X(\bar x)\times U_Y(\bar y)\subset G$ von $(\bar x,\bar y)$ und eine eindeutige stetige Funktion $\omega:U_X(\bar x)\to Y$, sodass

- 1. $\omega(\bar{x}) = \bar{y}$
- 2. $\forall x \in U_X(\bar{x}) \exists ! y \in U_Y(\bar{y} \text{ mit } F(x,y) = 0, \text{ genannt } y = \omega(x)$

Zudem ist die Abbildung $\omega: U_X(\bar{x}) \to Y$ stetig F-Differenzierbar mit der Ableitung $\omega'(x) = F_y(x,\omega(x))^{-1}F_x(x,\omega(x))$. Falls $F: G \to Z$ m-mal stetig F-Differenzierbar ist, so ist auch $\omega: U_X(\bar{x}) \to Y$ m-mal stetig F-Differenzierbar.

1.3.1.1 Schwache Lösungen der Poissongleichung

Poissongleichung: $-\Delta y = f$ auf Ω Dirichletbedingung: y = 0 auf $\partial \Omega$

 $\Omega \subset \mathbb{R}^n$ offen und beschränkt.

Problem: f muss nicht stetig sein, aber eine klassische Lösung $y \in C^2(\Omega) \cap C^1(\bar{\Omega})$ existiert bisher nur für stetige f.

$$\begin{split} -\Delta y &= f &\quad | \text{ multipliziert mit } v \in C_c^\infty(\Omega) \\ \Leftrightarrow -\Delta y v &= f v \forall v \in C_c^\infty(\Omega) &\quad | \text{ integriert ""uber } \Omega \\ \Leftrightarrow -\int_{\Omega} \Delta y v dx &= \int_{\Omega} f v dx \forall v \in C_c^\infty(\Omega) \end{split}$$

1. Greensche Formel: $-\int_{\Omega} y_{x_ix_i}vdx = \int_{\Omega} y_{x_i}v_{x_i}dx - \int_{\partial\Omega} y_{x_i}v\nu_idS(x).$ Da $v\mid_{\partial\Omega}=0$ ist $\int_{\partial\Omega} y_{x_i}v\nu_idS(x)=0$, also $-\int_{\Omega} y_{x_ix_i}vdx = \int_{\Omega} y_{x_i}v_{x_i}dx$ und somit $-\int_{\Omega} \Delta yvdx = \int_{\Omega} \nabla y\nabla vdx.$ Also gilt $\int_{\Omega} \nabla y\nabla vdx = \int_{\Omega} fvdx \forall v \in C_c^{\infty}(\Omega).$

Lemma 1.7

Die Abbildung $g:(y,v)\in H^1_0(\Omega)\times H^1_0(\Omega)\mapsto a(y,v):=\int_\Omega \nabla y \nabla v dx\in\mathbb{R}$ ist bilinear und beschränkt.

Die Abbildung $\bar{g}:v\in H^1_0(\Omega)\mapsto \int_\Omega fvdx\in\mathbb{R}$ ist für $f\in L^2(\Omega)$ linear und beschränkt.

Beweis:

g ist bilinear: Seien $v, y, z \in H_0^1(\Omega^2), b, c \in \mathbb{R}$.

$$(by + cz, v) \mapsto a(by + cz, v) = \int_{\Omega} \nabla (by + cz) \nabla v dx$$
$$= \int_{\Omega} (\nabla by + \nabla cz) \nabla v dx = b \int_{\Omega} \nabla y \nabla v dx + c \int_{\Omega} \nabla z \nabla v dx$$
$$b(y, v) + c(z, v) \mapsto ba(y, v) + ca(z, v) = b \int_{\Omega} \nabla y \nabla v dx + c \int_{\Omega} \nabla z \nabla v dx$$

g ist beschränkt:

$$\begin{split} |a(y,v)| & \leq \int_{\Omega} |\nabla y(x) \nabla v(x)| dx \overset{\text{Cauchy-Schwarz}}{\leq} \int_{\Omega} \|\nabla y\|_2 \|\nabla v\|_2 dx \\ & \leq \|\|\nabla y\|_2 \|_{L^2} \|\|\nabla v\|_2 \|_{L^2} = |y|_{H^1} |v|_{H^1} \leq \|y\|_{H^1} \|v\|_{H^1} \end{split}$$

 \bar{g} ist linear: Seien $v, w \in H_0^1$.

$$(av + bw) \mapsto \int_{\Omega} f(av + bw) dx = a \int_{\Omega} fv dx + b \int_{\Omega} fw dx$$
$$av + bw \mapsto a \int_{\Omega} fv dx + b \int_{\Omega} fw dx$$

 \bar{g} ist beschränkt:

$$|g'(v)| \le \int_{\Omega} |fv| dx \le ||fv||_{L^2} \le ||f||_{L^2} ||v||_{L^2}$$

Schwache Lösung der Poissongleichung mit Dirichletbedingung

Eine Schwache Lösung der Poissongleichung mit Dirichletbedingung ist eine Funktion $y \in H^1_0(\Omega)$ die der Gleichung $\int_{\Omega} \nabla y \nabla v dx = \int_{\Omega} fv dx \forall v \in H^1_0(\Omega)$ genügt.

Im Folgenden sei:

$$V = H_0^1(\Omega)$$

$$a(y,v) = \int_{\Omega} \nabla v \nabla y dx$$

$$F(v) = (f,v)_{L^2(\Omega)}$$

Also gilt $a(y, v) = F(v) \forall v \in V$.

Bemerkung 1.10

Da $a(y,.) \in V^* \forall y \in V$ und $y \mapsto a(y,.) \in V^*$ stetig und linear ist, existiert ein beschränkter linearer Operator $A: V \to V^*$ mit $a(y,v) = \langle Ay,v \rangle_{V^*,V} (=(Ay)(v)) \forall y,v \in V$.

Lax-Milgram-Lemma

Sei a ein reeller Hilbertraum mit dem inneren Produkt $(.,.)_V$. Dann hat für jede beschränkte lineare Funktion $F \in V^*$ die Gleichung a(y,v) = F(v) eine eindeutige Lösung $y \in V$. Zudem genügt y $\|y\|_V \leq \frac{1}{\beta_0} \|F\|_{V^*}$. Insbesondere genügt A aus Bemerkung $1.10 \ A \in L(V,V^*), A^{-1} \in L(V^*,V), \|A^{-1}\|_{V^*,V} \leq \frac{1}{\beta_0}$.

Existenz und Eindeutigkeit des Dirichletproblems

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Dann ist a beschränkt und $H_0^1(\Omega)$ -koerziv und A hat ein beschränktes Inverses. Insbesondere hat die Poissongleichung eine eindeutige schwache Lösung gegeben durch $a(y,v) = F(v) \forall v \in V$, welche $\|y\|_H^1(\Omega) \leq C_D \|f\|_{L^2(\Omega)}$ genügt, wobei C_D von Ω , aber nicht von f abhängt.

1.3.1.2 Schwache Lösung mit RobinBedingung

$$-\Delta y + c_0 y = f \quad \text{auf } \Omega \tag{1}$$

Robin-Bedingung:
$$\frac{\partial y}{\partial \nu} + \alpha y = g$$
 auf $\partial \Omega$ (2)

Wobei $f \in L^2(\Omega)$ und $g \in L^2(\partial \Omega)$ gegeben sind und $c_0 \in L^{\infty}(\Omega), \alpha \in L^{\infty}(\partial \Omega)$ nicht negativ.

$$\int_{\Omega} (-\Delta y + c_0 y) v dx$$

$$\stackrel{1.GreenscheFormel}{=} \int_{\Omega} \nabla y \nabla v dx + (c_0 y, v)_{L^2(\Omega)} - \int_{\partial \Omega} \frac{\partial y}{\partial \nu} dS(x)$$

$$\stackrel{Robin-Bedingung}{=} \int_{\Omega} \nabla y \nabla v dx + (c_0 y, v)_{L^2(\Omega)} + (ay, v)_{L^2(\Omega)} - (g, v)_{L^2(\Omega)}$$

Also:

$$\int_{\Omega} \nabla y \nabla v dx + (c_0 y, v)_{L^2(\Omega)} + (ay, v)_{L^2(\Omega)} = (f, v)_{L^2(\Omega)} + (g, v)_{L^2(\Omega)} \quad \forall v \in H^1(\Omega).$$
(3)

Schwache Lösung mit Robin-Bedingung

Eine schwache Lösung der Robinbedingung ist eine Funktion $y \in H^1(\Omega)$, die (1) genügt.

Im Folgenden sei:

$$V = H^{1}(\Omega)$$

$$a(y, v) = \int_{\Omega} \nabla y \nabla v dx + (c_{0}y, v)_{L^{2}(\Omega)} + (ay, v)_{L^{2}(\Omega)} \quad y, v \in V$$

$$F(v) = (f, v)_{L^{2}(\Omega)} + (g, v)_{L^{2}(\Omega)} \quad v \in V$$

Existenz und Eindeutigkeit für die Robin-Bedingung

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt mit Lipschitzrand und seien $c_0 \in L^{\infty}(\Omega)$, $\alpha \in L^{\infty}(\partial\Omega)$ nicht negativ mit $\|c_0\|_{L^2(\Omega)} + \|\alpha\|_{L^2(\partial\Omega)} > 0$. Dann ist a beschränkt und $H^1_0(\Omega)$ -koerziv und A hat ein beschränktes Inverses. Insbesondere hat die Diffusionsgleichung für $f \in L^r(\Omega)$ und $g \in L^s(\partial\Omega)$ eine eindeutige schwache Lösung $g \in H^1(\Omega)$ gegeben durch (3), welche $\|g\|_H^1(\Omega) \leq C_R(\|f\|_{L^2(\Omega)} + \|g\|_{L^2(\partial\Omega)})$ genügt, wobei C_R von Ω, α, c_0 , aber nicht von f, g abhängt.

Beschränkheit und Stetigkeit für die Robinbedingung

Sei zusätzlich zu den Bedingungen von dem vorherigen Satz $r>\frac{n}{2}, s>n-1$ und $n\geq 2$. Dann existiert für jedes $f\in L^r(\Omega)$ und $g\in L^s(\partial\Omega)$ eine eindeutige schwache Lösung $y\in V\cap C(\bar\Omega)$ von (1) und (2). Es existiert eine Konstante $C_\infty>0$ mit $\|y\|_V+\|y\|_{C(\bar\Omega)}\leq C_\infty(\|f\|_{L^r(\Omega)}+\|g\|_{L^s(\partial\Omega)})$, wobei C_∞ von Ω,α,c_0 , aber nicht von f und g abhängt.

Für elliptische partielle Differentialgleichungen löst man diese Probleme analog.

1.3.2 Schwache Lösungen parabolischer partieller Differentialgleichungen

Im folgenden sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und wir definieren den Zylinder $\Omega_t := (0, T) \times \Omega$ für manche T > 0.

$$y_t + Ly = f$$
 auf Ω_t
 $y = 0$ auf $[0, T] \times \partial \Omega$
 $y(0, .) = y_0$ auf Ω (4)

Wobei $f: \Omega_t \to \mathbb{R}, y_0: \Omega \to \mathbb{R}$ gegeben und $y: \overline{\Omega}_T \to \mathbb{R}$ unbekannt. L bezeichnet für jede Zeit t einen partiellen Differentialoperator zweiter Ordnung

$$Ly := -\sum_{i,j=1}^{n} (a_{i,j}(t,x)y_{x_i})_{x_i} + \sum_{i=1}^{n} b_i(t,x)y_{x_i} + c_0(t,x)y$$

$$= -\text{div}(A\nabla y) + b\nabla y + cy$$
Zum Beispiel: $A = I, b = c = 0$ (5)

1.3.2.1 Gleichmäßige parabolische Gleichungen

gleichmäßiger parabolischer Operator

Der partiell Differenzialoperator $\frac{\partial}{\partial t} + L$, wobei L wie in (5) ist, heißt gleichmäßig parabolisch, falls eine Konstante $\Theta > 0$ existiert, sodass $\sum_{i,j=1}^{n} a_{i,j}(t,x)\xi_i\xi_j \leq \Theta \|\xi\|^2$ für fast alle $(t,x) \in \Omega_T$ und alle $\xi \in \mathbb{R}^n$.

Einfache Funktion

Eine Funktion $s:[0,T]\to X$ wird einfach genannt, wenn sie von der Form $s(t)=\sum_{i=1}^m\mathbbm{1}_{E_i}(t)y_i$ ist, mit $E_i\subset[0,T]$ lebesguemessbar und $y_i\in[0,T]$.

Stark messbar

Eine Funktion $f: t \in [0,T] \mapsto f(t) \in X$ heißt stark messbar, wenn einfache Funktionen $s_k: [0,T] \to X$ existieren, sodass $s_k(t) \to f(t)$ für fast alle $t \in [0,T]$.

Definition 1.24

Sei X ein separabler Banachraum, $1 \leq p < \infty$. Wir definieren den Raum

$$\mathcal{L}^p(0,T;X) :=$$

$$\{y: [0,T] \to X \text{ stark messbar } : \|y\|_{\mathcal{L}^p(0,T;X)} := (\int_0^T \|y(t)\|_X^p dt)^{1/p} < \infty\}$$

Zudem sei

$$\mathcal{L}^{\infty}(0,T;X) := \{y:[0,T]\to X \text{ stark messbar }: \|y\|_{\mathcal{L}^{\infty}(0,T;X)} := \underset{t\in[0,T]}{\operatorname{esssup}} \|y(t)\|_X < \infty\}$$

Der Raum $C^k([0,T];X)k\in\mathbb{N}_0$ ist definiert als der Raum der k-mal stetig differenzierbaren Funktionen auf [0,T].

Schwache Ableitung in der Zeit

Sei $y \in \mathcal{L}^1(0,T;X)$. Wir nennen $v \in \mathcal{L}^1(0,T;X)$ schwache Ableitung von y, geschrieben $y_t = v$, falls $\int_0^T \varphi'(t)y(t)dt = -\int_0^T \varphi(t)v(t)dt \forall \varphi \in C_c^\infty((0,T))$.

Satz 1.31

Sei X ein separabler Banachraum. Für $1 \leq p < \infty$ kann der Dualraum von $\mathcal{L}^p(0,T;X)$ isometrisch identifiziert werden mit $\mathcal{L}^q(0,T;X)$, $\frac{1}{p}+\frac{1}{q}=1$ durch das Mittel des Paares $\langle v,y\rangle_{\mathcal{L}^q(0,T;X^*),\mathcal{L}^p(0,T;X)}=\int_0^T \langle v(t),y(t)\rangle_{X^*,X}dt$.

Satz 1.32

Seien H, V separable Hilberträume mit der stetigen und dichten Einbettung $V \hookrightarrow H$. Zudem sei $W(0,T;H,V) := \{y: y \in \mathcal{L}^2(0,T;V), y \in \mathcal{L}^2(0,T;V^*)\}$ mit der Norm $\|y\|_{W(0,T;H,V)} := \|y\|_{\mathcal{L}^2(0,T;V)}^2 + \|y_t\|_{\mathcal{L}^2(0,T;V^*)}$.

Dann ist W(0,T;H,V) ein Hilbertraum und wir haben die stetige Einbettung $W(0,T;H,V) \hookrightarrow C([0,T];H)$.

Zudem ergibt die partielle Integration für alle $y, v \in W(0, T; H, V)$

$$(y(t),v(t))_H - (y(s),v(s))_H = \int_s^t (\langle y_t(\tau),v(\tau)\rangle_{V^*,V} + \langle v_t(\tau),y(t)\rangle_{V^*,V}) d\tau.$$

Schwache Lösungen gleichmäßiger parabolischer Gleichungen

Schwache Lösungen

Wir betrachten das Problem (4) für Operatoren L der Form (5). Wir nehmen an, dass die Koeffizienten $a_{i,j}b_i, c_0 \in \mathcal{L}^{\infty}(\Omega_T)$ genügen und dass der Quellterm und der Anfangswert $f \in \mathcal{L}^2(0,T;H^{-1}(\Omega)), y_0 \in \mathcal{L}^2(\Omega)$ genügt, wobei $H^{-1}(\Omega) = H_0^1(\Omega)^*$.

Wir setzen $H := \mathcal{L}^2(\Omega), V := H_0^1(\Omega).$

Für eine schwache Formulierung von (4) denken wir uns eine Funktion $y \in W(0,T;\mathcal{L}^2(\Omega),H^1_0(\Omega))=W(0,T;H,V).$

Für fast alle $t \in [0,T]$ gilt $a_{ij}(t,.), b_i(t,.), c_0(t,.) \in \mathcal{L}^{\infty}(\Omega), f(t,.) \in H^1(\Omega)$ und der Operator L(t) ist ein Operator zweiter Ordnung in Divergenzform.

Nun liefert (4) das Grenzwertproblem $L(t)y(t) = f(t) - y_t(t), y(t)_{\partial\Omega} = 0$. Da $f(t) - y_t(t) \in H^{-1}(\Omega) = (H^1_0(\Omega))^*$, führt der elliptische Fall zu der Annahme, dass für nahezu alle $t \in [0,T]$ die Variationsgleichung $a(y(t),v;t) = \langle f(t),v\rangle_{H^{-1},H^1_0} - \langle y_t(t),v\rangle_{H^{-1},H^1_0} \forall v \in H^1_0(\Omega)$ erfüllt wird mit der assoziierten Bilinearform

$$a(y,v;t) := \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij}(t) y_{x_i} v_{x_j} + \sum_{i=1}^{n} b_i(t) y_{x_i} v + c_0(t) y v\right) dx, y, v \in H_0^1(\Omega)$$

$$= \int_{\Omega} (A \nabla y \nabla v + b \nabla y v + c y v) dx y, v \in H_0^1(\Omega)$$

Schwache Lösungen parabolischer partieller Differentialgleichungen

Sei $\Omega \in \mathbb{R}^n$ offen und beschränkt. Die Koeffizienten sollen $a_{i,j}b_i, c_0 \in \mathcal{L}^{\infty}(\Omega_T)$ genügen.

Sei $H:=\mathcal{L}^2(\Omega)$ und $V:=H^1_0(\Omega)$ mit der stetigen und dichten Einbettung $H\hookrightarrow V.$

Dann ist für $f \in \mathcal{L}^2(0,T;H^{-1}(\Omega)), y_0 \in \mathcal{L}^2(\Omega)$ eine Funktion $y \in W(0,T;\mathcal{L}^2,H_0^1)$ eine schwache Lösung von (4), wenn y für alle $v \in H_0^1(\Omega)$ und für alle $t \in [0,T]$ der Gleichung

$$\langle y_t(t), v \rangle_{H^{-1}, H_0^1} + \alpha(y(t), v; t) = \langle f(t), v \rangle_{H^{-1}, H_0^1}$$
 (6)

genügt und der Anfangsbedingung

$$y(0) = y_0, \tag{7}$$

wobei die Bilinearform a(., ., t) gegeben ist durch $a(y, v; t) := \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij}(t) y_{x_i} v_{x_j} + \sum_{i=1}^{n} b_i(t) y_{x_i} v + c_0(t) y u \right) dx, y, v \in H_0^1(\Omega).$

Existenz und Eindeutigkeit schwacher Lösungen

Sei $H:=\mathcal{L}^2(\Omega)$ und $V:=H^1_0(\Omega)$ mit der stetigen und dichten Einbettung $H\hookrightarrow V.$

Abstraktes parabolisches Evolutionsproblem

Wir suchen ein $y \in W(0, T; H, V)$, sodass

$$\langle y_t(t), v \rangle_{V^*, V} + a(y(t), v; t) = \langle f(t), v \rangle_{V^*, V} \forall v \in V \text{ und in allen } t \in [0, T]$$
 (8)

mit der Anfangsbedingung

$$y(0) = y_0. (9)$$

Wir arbeiten unter den folgenden Annahmen.

Annahme 1.34

- 1. Seien H und V separable Hilberträume mit der stetigen und dichten Einbettung $V \hookrightarrow H.$
- 2. $a(.,.;t): V \times V \to \mathbb{R}$ ist für fast alle $t \in (0,T)$ eine Bilinearform und es gibt $\alpha, \beta > 0$ und $\gamma \geq 0$ mit $|a(v,w;t)| \leq \alpha ||v||_V ||w||_V \forall v, w \in V$ und in allen $t \in (0,T)$, $a(u,v;t) + \gamma ||u||_H^2 \geq \beta ||v||_V^2 \forall v \in V$ und in allen $t \in (0,T)$. Die Abbildungen $t \mapsto a(v,w;t) \in \mathbb{R}$ sind messbar für alle $v,w \in V$.
- 3. $y_0 \in H, f \in L^2(0,T;V^*)$

Energie-Abschätzung und Eindeutigkeit

Sei Annahme 1.34 erfüllt.

Dann hat das abstrakte parabolische Evolutionsproblem höchstens eine Lösung $y \in W(0,T;H,V)$ und es genügt der Energie-Abschätzung

$$||y(t)||_{H}^{2} + ||y||_{L^{2}(0,t;V)}^{2} + ||y_{t}||_{L^{2}(0,t;V^{*})}^{2} \le C(||y_{0}||_{H}^{2} + ||f||_{L^{2}(0,t;V^{*})}^{2}) \forall t \in (0,T]$$
(10)

wobei C > 0 nur von β und γ aus Annahme 1.34 genügt.

Existenz durch die Galerkin-Methode

Da V separabel ist, gibt es eine abzählbare Menge $\{v_k: k \in \mathbb{N}\} \subset V$ linear unabhängiger $v_k \in V$, sodass $V_k := \operatorname{span}\{v_1,...,v_k\}$ dicht in V liegt. Da V dicht in H liegt, finden wir $y_{0,k} = \sum_{i=1}^k a_{ik}v_i \in V_k$ mit $y_{0,k} \to y_0$ in H. Die Funktion

$$y_k(t) := \sum_{i=1}^k \varphi_{ik}(t) v_i, \varphi_{ik} \in H^1(0, T)$$
 (11)

genügt der Galerkin-

Approximation von (8),(9)

$$\langle (y_k)_t(t), v \rangle_{V_*, V} + a(y_k(t), v; t) = \langle f(t), v \rangle_{V^*, V}$$

$$\forall v \in V_k \text{ und in allen } t \in [0, T]$$
(12)

$$y(0) = y_{0,k}. (13)$$

Dieses y_k ist in W(0,T;H,V).

Satz 1.36

Sei Annahme 1.34 erfüllt. Dann hat die Galerkin-Methode (12),(13) eine eindeutige Lösung $y_k \in W(0,T;H,V)$ der Form (11) und y_k genügt der Energie-Abschätzung

$$||y_k(t)||_H^2 + ||y_k||_{L^2(0,t;V)}^2 + ||(y_k)_t||_{L^2(0,t;V^*)}^2 \le C(||y_0, k||_H^2 + ||f||_{L^2(0,t;V^*)}^2)$$

$$\forall t \in (0, T].$$

wobei C > 0 nur von β und γ aus Annahme 1.34 abhängt.

Satz 1.37

Sei Annahme 1.34 erfüllt. Dann hat das abstrakte parabolische Evolutionsproblem (8),(9) eine eindeutige Lösung $y \in W(0,T;H,V)$.

Korollar 1.1

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und sei $\frac{\partial}{\partial t} + L$ mit L aus (5) gleichmäßig parabolisch, wobei $a_{ij}, b_i, c_0 \in L^\infty(\Omega_T)$. Dann hat (4) für jedes $f \in L^2(0,T;H^{-1}(\Omega))$ und $y_0 \in L^2(\Omega)$ eine eindeutige schwache Lösung $y \in W(0,T;L^2,H_0^1)$ und es genügt der Energieabschätzung (10) mit $H=L^2(\Omega)$, $V=H_0^1(\Omega), V^*=H^{-1}(\Omega)$.

Formulierung des Operators

Für die Koeffizienten $a_{ij}, b_i, c_0 \in L^{\infty}(\Omega_T)$ definiert die schwache Formulierung (6),(7) einen beschränkten lineaen Operator

$$A: y \in W(0, T; L^{2}(\Omega), H_{0}^{1}(\Omega)) \mapsto \begin{pmatrix} y_{t} + Ly \\ y(0, .) \end{pmatrix} \in L^{2}(0, T; (H_{0}^{1}(\Omega))^{*}) \times L^{2}(\Omega),$$

sodass für alle $(f, y_0) \in L^2(0, T; (H_0^1(\Omega))^*) \times L^2(\Omega)$:

$$\begin{pmatrix} y_t + Ly \\ y(0,.) \end{pmatrix} = \begin{pmatrix} f \\ y_0 \end{pmatrix} \Leftrightarrow (6), (7) \text{ ist erfüllt}$$

1.3.2.5 Regularität

Annahme 1.38

Zusätzlich zu den Bedingungen aus Annahme 1.34 fordern wir, dass:

$$a(v,w;.) \in C^{1}([0,T]), \quad a_{t}(v,w;t) \leq \alpha_{1} \|v\|_{V} \|w\|_{V} \forall v, w \in V, , \alpha_{1} \in \mathbb{R}$$
$$y_{0} \in \{w \in V : a(w,.;0) \in H^{*}\},$$
$$f \in W(0,T;H,V).$$

Satz 1.39

Sei Annahme 1.38 erfüllt. Dann genügt die Lösung (8) sowohl $y_t \in W(0,T;H,V)$ als auch

$$\langle y_{tt}(t)\rangle, w\rangle_{V^*,V} + a(y_t(t), w; t) = \langle f_t(t), w\rangle_{V^*,V} - a_t(y(t), w; t),$$

 $\langle y_t(0), w\rangle_{V^*,V} = (f(0), w)_H - a(y_0, w; 0) \forall w \in V.$

Für semilineare parabolische Gleichungen geht man analog vor.