Satz 2 (Stetigkeitssatz)

Hat die Potenzreihe $\sum_{k=0}^{\infty} a_k (X - X_0)^k$

den Konvergenzradius ρ , so ist die Potenzreihe für

$$|X - X_0| < \rho$$

stetig.

Potenzreihendarstellung wichtiger Funktionen

$$e^x = \exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
 $\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
 $\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$

Der Konvergenzradius ρ ist jeweils ∞ und alle Funktionen sind stetig für $x \in \mathbb{R}$.

Satz 3

Besitzen die beiden Potenzreihen $\sum_{k=0}^{\infty} a_k x^k$, $\sum_{k=0}^{\infty} b_k x^k$

die Konvergenzradien ρ_A bzw. ρ_B , dann dürfen die Potenzreihen im Inneren des kleineren Konvergenzintervalls $\rho = \min \big\{ \, \rho_A, \rho_B \big\}$

gliedweise addiert bzw. subtrahiert und gliedweise mit einer Zahl λ multipliziert werden. Die daraus entstehenden

$$\sum_{k=0}^{\infty} a_k x^k + \sum_{k=0}^{\infty} b_k x^k = \sum_{k=0}^{\infty} (a_k + b_k) x^k, \lambda \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} \lambda a_k x^k$$

haben ebenfalls den Konvergenzradius ρ >0.

Beispiel 6 Konvergenzradius ρ ist jeweils ∞

$$\sinh(x) = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \frac{x^8}{8!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

$$\sinh(x) + \cosh(x) = e^x$$

Satz 4

 $f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k \text{ konvergent für } x_0 - \rho < x < x_0 + \rho, \text{ mit } \rho > 0$ $\text{dann konvergiert auch } f'(x) = \sum_{k=1}^{\infty} k \cdot a_k (x - x_0)^{k-1} \text{ für } x_0 - \rho < x < x_0 + \rho$

Beispiel 7

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

$$\Rightarrow (\sin(x))' = \left(\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}\right)' = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} (x^{2k+1})'$$

$$= \sum_{k=0}^{\infty} (-1)^k \frac{2k+1}{(2k+1)!} x^{2k} = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k} = \cos(x)$$