BAYESIAN LEARNING - LECTURE 1

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

COURSE OVERVIEW

- ► Four modules with:
 - Lectures
 - Computer Labs (and some mathematical exercises)
- Modules:
 - ► The basics, single- and multiparameter models
 - ► Regression models
 - Tackling more advanced models with MCMC
 - Flexible models and Model Inference

▶ Examination

- ▶ Lab reports, 2 credits
- Bayesian project report, 4 credits
- Oral exam (for some students, if needed)

Bayesian project report

- Individual
- Perform a Bayesian analysis on real data.
- Deadline May 22, 2015.

LECTURE OVERVIEW

- ► The likelihood function
- ► Bayesian inference
- ▶ Bernoulli model
- ► Normal model with known variance

THE LIKELIHOOD FUNCTION - BERNOULLI TRIALS

► Bernoulli trials:

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta).$$

▶ **Likelihood** from $s = \sum_{i=1}^{n} x_i$ successes and f = n - s failures.

$$p(x_1,...,x_n|\theta) = p(x_1|\theta)\cdots p(x_n|\theta) = \theta^s(1-\theta)^f$$

- ▶ Maximum likelihood estimator $\hat{\theta}$ maximizes $p(x_1, ..., x_n | \theta)$.
- ▶ Given the data $x_1, ..., x_n$, we may plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

THE LIKELIHOOD FUNCTION

Say it out loud:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- ▶ The symbol $p(x_1, ..., x_n | \theta)$ plays two different roles:
- Probability distribution for the data.
 - ▶ The data $x_1, ..., x_n$, are random.
 - $\triangleright \theta$ is fixed.
- ▶ Likelihood function for the parameter
 - ▶ The data $x_1, ..., x_n$ are fixed.
 - $p(x_1, ..., x_n | \theta)$ is function of θ .

PROBABILITIES FROM THE LIKELIHOOD!!

PROBABILITIES FROM THE LIKELIHOOD!!

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- ▶ Statements like $Pr(\theta < 0.6|data)$ only make sense if θ is random.
- ▶ But θ may be a fixed natural constant?
- **Bayesian:** doesn't matter if θ is fixed or random.
- ▶ Do You know the value of θ or not?
- $ightharpoonup p(\theta)$ reflects Your knowledge/uncertainty about θ .
- Subjective probability.
- ▶ The statement $p(10\text{th decimal of } \pi = 9) = 0.1$ makes sense.

BAYESIAN LEARNING

- **Bayesian learning** about a model parameter θ :
 - state your **prior** knowledge about θ as a probability distribution $p(\theta)$.
 - **collect data** x and form the **likelihood** function $p(x|\theta)$.
 - **combine** your prior knowledge $p(\theta)$ with the data information $p(x|\theta)$.
- ▶ How to combine the two sources of information? Bayes' theorem.

LEARNING FROM DATA - BAYES' THEOREM

- ▶ How do we **update** from the **prior** $p(\theta)$ to the **posterior** $p(\theta|Data)$?
- ▶ Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

 \blacktriangleright Bayes' Theorem for a model parameter θ

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- ► The prior $p(\theta)$ is the hero that converts the likelihood function $p(Data|\theta)$ into a posterior probability density $p(\theta|Data)$.
- ightharpoonup A probability distribution for θ is extremely useful. **Decision making**.
- ▶ No prior no posterior no useful inferences no fun.

BAYES' THEOREM FOR MEDICAL DIAGNOSIS

- Arr A = {Horrible and very rare disease}, B ={Positive medical test}.
- p(A) = 0.0001. p(B|A) = 0.9. $p(B|A^c) = 0.05$.
- ▶ Probability of being sick given a positive test:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)} = \frac{p(B|A)p(A)}{p(B|A)p(A) + p(B|A^c)p(A^c)} \approx 0.001797.$$

- ▶ Probably not sick, but 18 times more probable than before the test.
- Morale of the story: If you want p(A|B) then p(B|A) does not tell the whole story. The prior probability p(A) is also very important.

"You can't enjoy the Bayesian omelette without breaking the Bayesian eggs" Leonard Jimmie Savage

THE NORMALIZING CONSTANT IS NOT IMPORTANT

► Bayes theorem

$$p(\theta|\textit{Data}) = \frac{p(\textit{Data}|\theta)p(\theta)}{p(\textit{Data})} = \frac{p(\textit{Data}|\theta)p(\theta)}{\int_{\theta} p(\textit{Data}|\theta)p(\theta)d\theta}.$$

- ▶ The integral $p(Data) = \int_{\theta} p(Data|\theta)p(\theta)d\theta$ can make you cry.
- ▶ p(Data) is just a constant that makes $p(\theta|Data)$ integrate to one.
- Example: $x \sim N(\mu, \sigma^2)$

$$p(x) = (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

▶ We may write

$$p(x) \propto \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right].$$

GREAT THEOREMS MAKE GREAT TATTOOS

► All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

BERNOULLI TRIALS - BETA PRIOR

Model

$$x_1, ..., x_n | \theta \stackrel{iid}{\sim} Bern(\theta)$$

Prior

$$\theta \sim Beta(\alpha, \beta)$$

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \text{ for } 0 \le \theta \le 1.$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta)p(\theta)$$

$$\propto \theta^{s}(1-\theta)^{f}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{s+\alpha-1}(1-\theta)^{f+\beta-1}.$$

- ▶ This is proportional to the $Beta(\alpha + s, \beta + f)$ density.
- ► The prior-to-posterior mapping reads

$$\theta \sim Beta(\alpha, \beta) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x_1, \dots, x_n \sim Beta(\alpha + s, \beta + f).$$

BERNOULLI EXAMPLE: SPAM EMAILS

- ► George has gone through his collection of 4601 e-mails. He classified 1813 of them to be spam.
- Let $x_i = 1$ if i:th email is spam. Assume $x_i | \theta \stackrel{iid}{\sim} Bernoulli(\theta)$ and $\theta \sim Beta(\alpha, \beta)$.
- Posterior

$$\theta | x \sim Beta(\alpha + 1813, \beta + 2788)$$

SPAM DATA (N=10): PRIOR SENSITIVITY

SPAM DATA (N=100): PRIOR SENSITIVITY

SPAM DATA (N=4601): PRIOR SENSITIVITY

SPAM DATA: POSTERIOR CONVERGENCE

NORMAL DATA, KNOWN VARIANCE - UNIFORM PRIOR

► Model:

$$x_1, ..., x_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

Prior:

$$p(\theta) \propto c$$
 (a constant)

Likelihood

$$p(x_1, ..., x_n | \theta, \sigma^2) = \Pi_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left[-\frac{1}{2\sigma^2} (x_i - \theta)^2\right]$$

$$\propto \exp\left[-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right].$$

Posterior

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

▶ Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

$$\mu_n = w\bar{x} + (1 - w)\mu_0,$$

and

$$W = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

NORMAL DATA, KNOWN VARIANCE - NORMAL PRIOR

$$\theta \sim N(\mu_0, \tau_0^2) \stackrel{x_1, \dots, x_n}{\Longrightarrow} \theta | x \sim N(\mu_n, \tau_n^2).$$

Posterior precision = Data precision + Prior precision

Posterior mean =

 $\frac{\text{Data precision}}{\text{Posterior precision}} \big(\text{Data mean} \big) \, + \, \frac{\text{Prior precision}}{\text{Posterior precision}} \big(\text{Prior mean} \big)$

CANADIAN WAGES DATA

▶ Data on wages for 205 Canadian workers.

CANADIAN WAGES

Model

$$X_1, ..., X_n | \theta \sim N(\theta, \sigma^2), \ \sigma^2 = 0.4$$

Prior

$$heta \sim \mathcal{N}(\mu_0, au_0^2), \ \mu_0 = 12 \ \text{and} \ au_0 = 10$$

Posterior

$$\theta|x_1,...,x_n \sim N(\mu_n,\tau_n^2)$$
,

where $\mu_n = w\bar{x} + (1 - w)\mu_0$.

► For the Canadian wage data:

$$w = \frac{\sigma^{-2}n}{\sigma^{-2}n + \tau_0^{-2}} = \frac{2.5 \cdot 205}{2.5 \cdot 205 + 1/100} = 0.999.$$

$$\mu_n = w\bar{x} + (1 - w)\mu_0 = 0.999 \cdot 13.489 + (1 - 0.999) \cdot 12 \approx 13.489$$

$$\tau_n^2 = (2.5 \cdot 205 + 1/100)^{-1} = 0.00195$$

CANADIAN WAGES DATA - MODEL FIT

