Miniled 测试方案设计

项目名称: SLED100

1、对标产品: PXIE-4163

Pxie-4163 为 24 通道源表,最大电压 24V,最大电流 50mA。

Voltage

Table 2. Voltage Programming and Measurement Accuracy/Resolution, Warranted

Range	Resolution and Noise (0.1 Hz to 10 Hz)	Accuracy (23 °C ± 5 °C) ± (% of Voltage + Offset)	Tempco ³ ± (% of Voltage + Offset)/°C, 0 °C to 55 °C
		T _{cal} ± 5 °C	
24 V	200 μV	0.05% + 5 mV	0.0005% + 1 μV

Current

Table 3. Current Programming and Measurement Accuracy/Resolution, Warranted

Range	Resolution and Noise (0.1 Hz to 10 Hz)	Accuracy (23 °C ± 5 °C) ± (% of Current + Offset)	Tempco ⁴ ± (% of Current + Offset)/°C, 0 °C to 55 °C
		T _{cal} ± 5 °C	
10 μΑ	100 pA	0.10% + 5 nA	0.004% + 10 pA
100 μΑ	1 nA	0.10% + 50 nA	0.004% + 100 pA
1 mA	10 nA	0.10% + 500 nA	0.004% + 1 nA
10 mA	100 nA	0.10% + 5 μΑ	0.004% + 10 nA
30 mA or 50 mA ⁵	500 nA	0.10% + 25 μΑ	0.004% + 50 nA

PXIE-4163 子卡约 16W,主机 1W,控制器 2W,在 48 通道的配置中,单通道价格约为(16+16+1+2)/48 = 7300/ch。

2、产品需求

在 LED 生产的整个测试环节中,主要包括晶圆和单芯片的测试。整个晶圆的测试系统称为点测机,将晶圆切割并按不同的性能分到不能的料片(类似光通信的蓝膜料盒)上称为分选机。点测机和分选机对于测试仪表的需求是相同的。

LED 测试参考标准:《SJ/T 11394-2009 半导体发光二极管测试方法》、《SJ/T 11399-2009 半导体发光二极管芯片测试方法》。

不同的点测机,源表通道配置往往不相同,目前比较主流的是四通道源表配置,以下就 四通道配置的点测机测试过程做说明。

四通道 LED 测试机测试过程如下:主要分为电学参数测量和光学参数测量,电学参数测量时 4 通道并行测试,光学参数测量时串行测试(并行时光串扰问题严重)。

LED 主要有以下几个测试项:

- (1)、VF(正向电压)测试,FIMV:一般会测两个点,第一个点为 uA 级正向电流即 LED 刚点亮时,第二个点为 mA 级正向电流即 LED 比较亮时;
 - (2)、VZ(反向击穿电压)测试, FIMV: 一定反向电流时, 器件两端的电压;
- (3)、IR(反向泄露电流)测试,FVMI:一定反向电压时,流过器件的电流,常见的使用 5~25V 间电压测试:
- (4)、光功率及光谱测试, FIMV: 施加一定正向电流, 测量光功率及峰值波长、中心波长及半波宽:
- (5)、DVF测试,材料热缩效应测试,计算加热前后的 VF 差值,FIMV: 先施加一定的正向电流 I1 测量电压,然后再施加一个较大的电流 I2 一定时间后,再施加一定的正向电流 I1,计算两次 I1 电流下的电压差;
- (6)、VFD 测试,正向电压暂态峰值电压测试,FIMV:源表施加一定的正向电流,然后采用 2M/S 或以上的数据采集卡采集 LED 两端的电压变化,尖峰电压与正常电压的差值即为 VFD,该过冲一般在 us 级:

以上测试项,前四种几乎所有的测试机都用,后两项测试很少用。

备注:源表要带有 GUARD 输出,便于低电流测试;源表要具备连接器输出与内部电路 彻底断开的能力,同时增加 ESD 保护能力。

3、实施方案

先采用修改 S 系列源表程序的方式,将测试流程写入模拟板,由模拟板独立完成一系列的测试,确认设备测试效率及测试结果重复性。然后再设计低成本测试方案。

3.1、样机验证

将上述测试项中(1)、(2)、(3)、(4)写入模拟板中,由外部触发启动测试,测试完成后输出触发信号,采用示波器观察测试时间。

取一个 LED 样品, 重复测试 50 次, 观察重复性。

3.2、低成本方案

公司现有插卡式源表方案,由于考虑了超高速率的数据传输及触发资源的丰富性,成本较高,而本系统成本要去非常严格,整机成本必须控制在8K以内。

整机对外通讯口初步拟定为串口及网口,在串口满足通信速率的情况下,设备只考虑串口即可。

初步准备分为两种源表板卡,源表板卡 A 参数如下:

项目	参数
最大功率	3.5W
最大电压	100V
最大电流	350mA
电压量程	10V 量程: 0.1%±3mV
	100V 量程: 0.1%±10mV
	100nA 量程: 0.1%±0.1nA
	1uA 量程: 0.1%±1nA
	10uA 量程: 0.1%±5nA
e流量程	100uA 量程: 0.1%±50nA
电视单准	1mA 量程: 0.1%±300nA
	10mA 量程: 0.1%±5uA
	50mA 量程: 0.1%±15uA
	350mA 量程: 0.1%±50uA
FIMV 响应时间	<3ms
FVMI 响应时间	<3ms
最大扫描点数	<1000
自定义测量序列	支持

源表板卡 B 参数如下:

项目	参数
最大功率	5W
最大电压	100V
最大电流	1A
	5V 量程: 0.1%±1mV
电压量程	20V 量程: 0.1%±3mV
	100V 量程: 0.1%±10mV
	100nA 量程: 0.1%±0.1nA
	1uA 量程: 0.1%±1nA
	10uA 量程: 0.1%±5nA
	100uA 量程: 0.1%±50nA
电流量程	1mA 量程: 0.1%±300nA
	10mA 量程: 0.1%±5uA
	50mA 量程: 0.1%±20uA
	350mA 量程: 0.1%±50uA
	1A 量程: 0.1%±2mA
FIMV 响应时间	<3ms
FVMI 响应时间	<3ms
最大扫描点数	<1000
自定义测量序列	支持

控制板卡主要实现8*8开关矩阵、4路高速电压信号采样、单路电流信号采样、输入输

出 IO 控制等,规格参数如下:

项目	参数
开关矩阵行数	8
开关矩阵列数	8
高速采集通道数	4ch
高速采集电压范围	$-10V^{\sim}+10V$
高速采集 ADC 位数	16bit
高速采样率	4MSPS
电流测量输入接口	SMA
	1uA 量程: 0.1%±1nA
 电流量程	10uA 量程: 0.1%±5nA
巴加 <u>里</u> 牲	100uA 量程: 0.1%±50nA
	1mA 量程: 0.1%±300nA
数字输入 I0	8
数字输出 I0	8

设备由三种卡组成,源表子卡、控制卡及背板。源表子卡继续使用现有插卡式源表方案,源表子卡主控为 407,控制板主控为 FPGA,主控与子卡间使用 SPI 通信,背板主要是连接器及各种布线。

3.3、时间阶段

6.1~6.23, 完成样机验证;

6.28~8.28, 完成低成本方案;