PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-022731

(43) Date of publication of application: 26.01.2001

(51)Int.Cl.

GO6F 17/14 GO6F 7/00

(21)Application number: 11-192716

(71)Applicant: YAMATAKE CORP

(22)Date of filing:

07.07.1999

(72)Inventor: MORIKAWA MAKOTO

(54) FAST FOURIER TRANSFORM DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To secure a high processing speed with small memory capacity, to eliminate an odd/even restriction on the number of pipeline stages, and to use an inexpensive IR/1W type as a 2-

SOLUTION: This fast Fourier transform device is provided with a data temporary holding means 7 and couples of output data from a butterfly arithmetic means 6 are not put back in data storage means 3 and 4 immediately, but held by two couples (4 pieces of data). Two pieces of output data as an input data couple at a next stage for butterfly operation are taken out, and distributed and overwritten to specific storage areas of the data storage means 3 and 4 at the same time.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-22731

(P2001-22731A)

(43)公開日 平成13年1月26日(2001.1.26)

(51) Int.Cl. ¹	觀別紀号	FI	テーマコート゚(参考)
G06F 17/14		G 0 6 F 15/332	A 5B022
7/00		7/00	A 5B056

審査請求 未離求 締求項の数3 〇L (全 9 百

		鬱盤閉状 未開駅 請求項の数3 OL (全9 頁
(21)出腦器号	特顯平11-192716	(71) 出願人 000006686 株式会社山武
(22)出廣日	平成11年7月7日(1999.7.7)	東京都被谷区統谷 2 丁目12番19号
		(72)発明者 桑川 誠 東京都於谷区統谷 2 丁目12番19号 株式全 社山武内
		(74)代理人 100064621 弁理士 山川 政樹
		F 夕一ム(参考) 58022 AAD1 BA00 CA01 CA03 FA03 58056 AAD1 AAO5 BB13 FF04 FF07 FF16

(54) 【発明の名称】 高速フーリエ変換装置

(57)【要約】

【課題】 少ないメモリ容量で高速の処理速度を確保する。パイプライン段数として奇数・偶数の制約をなくす。2ポートメモリとして安価な[R/IW型の使用を可能とする。設計の自由度を高める。

【解決手段】 データー時保持手段7を設け、バタフライ演算手段6から出力された出力データ対を直ぐにはデータ記憶手段3、4には戻さずに、2組(4データ)分保持する。この保持されている出力データ(SO、S1、S2、S3)の中から、次のバタフライ演算のステージでの入力データ対となる2個の出力データを取り出し、データ記憶手段3、4の指定記憶エリアに振り分けて同時に上書きする。

【特許請求の範囲】

【請求項1】 N=2 個のデータにバタフライ演算を 施してフーリエ変換を行う高速フーリエ変換装置におい

個のデータを保持する2個のデータ記憶手段と、 2組のデータを2* サイクル連続でパイプライン処理 を行うバタフライ演算手段とを備えたことを特徴とする 高速フーリエ変換装置。

【請求項2】 N=2 個のデータにパイプライン構成 高速フーリエ変換装置において、

各々2" 個のデータを格納可能な2ポートメモリで構 成された第1および第2のデータ記憶手段と、

この第1および第2のデータ記憶手段の記憶エリアから 指定された順序に従って同時に各々1個のデータを読み 出すデータ読出制御手段と、

このデータ読出制御手段によって読み出された各々1個 のデータを入力データ対としてバタフライ演算を実行 し、その実行結果として2個の出力データを出力データ 対として出力するバタフライ演算手段と、

このバタフライ演算手段からの出力データ対を複数組 分、一時保持するデータ一時保持手段と、

このデータ一時保持手段に保持されている出力データの 内、次のバタフライ演算のステージでの入力データ対と なる2個の出力データを取り出し、この取り出した2個 の出力データを前記第1および第2のデータ記憶手段の 指定記憶エリアに振り分けて同時に上書きするデータ書 込制御手段とを備えたことを特徴とする高速フーリエ変 換装置。

【請求項3】 N=2° 個のデータにパイプライン構成 30 によるバタフライ演算を施して高速フーリエ変換を行う 高速フーリエ変換装置において、

各々2* 個のデータを格納可能な2ポートメモリで構 成された第1および第2のデータ記憶手段と、

この第1および第2のデータ記憶手段の記憶エリアから 指定された順序に従って同時に各々1個のデータを読み 出すデータ読出制御手段と、

このデータ読出制御手段によって読み出された各々1個 のデータを入力データ対としてバタフライ演算を実行 し、その実行結果として2個の出力データを出力データ 40 対として出力するバタフライ演算手段と、

このバタフライ演算手段からの出力データのうち一方の 出力データを次回動作サイクルまで一時保持するデータ 一時保持手段と、

前記バタフライ演算手段からの出力データのうち他方の 出力データを前記第1および第2のデータ記憶手段の何 れか一方の指定記憶エリアに直ちに上書きすると同時 に、前記データー時保持手段に保持されている前回の出 力データを他方のデータ記憶手段の指定記憶エリアに上 書きするデータ書込制御手段とを備えたことを特徴とす 50 返す(図8(b)参照)。最終ステージでは、図8

る高速フーリエ変換装置。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、N=2°個のデ ータにパイプライン構成によるパタフライ演算を施して 高速フーリエ変換(以下、FFTと称する)を行う高速 フーリエ変換装置に関するものである。

[00002]

【従来の技術】従来より、フーリエ級数の解を求める手 によるバタフライ演算を施して高速フーリエ変換を行う 10 法として、FFTが提案されている。このFFTでは、 パタフライ演算器を核とし、メモリから読み出した2個 のデータを入力データ対としてバタフライ演算を施し、 2個の出力データを得、この2個の出力データを演算前 に格納されていたメモリに戻し、戻された2個のデータ をメモリから読み出してバタフライ演算を施すというパ イプライン処理を繰り返す。すなわち、メモリから2個 のデータを入力データ対として読み出し、パイプライン 構成によるバタフライ演算を施して、高速フーリエ変換 を行う

> 【0003】〔従来例1〕この場合、メモリを一般的な 20 1ポートメモリとすると、1回のバタフライ演算で4回 のメモリへのアクセスが必要となる。すなわち、メモリ から2個のデータを1個ずつ読み出すのに2回、メモリ へ2個のデータを1個ずつ書き込むのに2回、合計4回 のアクセスが必要となる。この方法では、N=2'個の データにFFTを行う際、メモリ容量はN=2 個分で よいが、メモリアクセスの制約により4サイクル毎の演 算処理しかできず、処理速度が遅くなる。

【0004】〔従来例2〕そこで、特別昭63-987 72号公報に示されたFFT装置では、次のようにして 処理速度をアップしている。すなわち、このFFT装置 では、N=2 個のデータにFFTを行う際、N=2個分のデータを格納可能な第1の2ポートメモリと第2 の2ポートメモリを用意し、第1の2ポートメモリに奇 数番目のデータを格納し、第2の2ポートメモリに偶数 番目のデータを格納し、第1の2ポートメモリと第2の 2ポートメモリに対するアクセス動作を実行中のバタフ ライ演算のステージに応じて切り替えることにより、バ タフライ演算の結果を2個の2ポートメモリへ各サイク ル連続して書き込めるようにして、高速化を図ってい

【0005】例えば、バラフライ治算のステージ数(パ イプライン段数)を3とし、最終ステージである第3番 目以外のステージ (第1番目および第2番目のステー ジ)では、「第1の2ポートメモリから2個のデータを 読み出し、第2の2ポートメモリへ2個のデータを書き 込む」という動作(図8(a)参照)と、「第1の2ポ ートメモリへ2個のデータを書き込み、第2の2ポート メモリから2個のデータを読み出す」という動作を繰り

(c) に示すように、「第1の2ポートメモリおよび第 2の2ポートメモリとも1個のデータを読み出しつつ、 1個のデータを書き込む」という動作を繰り返す。な お、図8において、1は第1の2ポートメモリ、2は第 2の2ポートメモリである。このようなメモリ1、2に 対するバタフライ演算のステージに応じたアクセス動作 の切り替えにより、従来例1と比較して速度比4倍の1 サイクル毎の連続演算処理が可能となる。

【0006】 (従来例3) また、特開平9-30557 3号公報に示されたFFT装置では、次のようにして処 10 の処理速度は1/2となる。 理速度をアップしている。すなわち、このFFT装置で は、N=2 個のデータにFFTを行う際、 $2^{-1}=N$ / 2個分のデータをぞれぞれ格納可能なしポートメモリ で構成された第1のメモリ、第2のメモリ、第1の入力 バッファ、第2の入力バッファ、第1の出力パッファお よび第2の出力バッファを用意し、これら6個の1ポー トメモリを1個のデータを読み出すと同時に1個のデー タを書き込むように前半と後半とに分けて動作させ、か つ第1および第2のメモリの動作スピードをバタフライ 演算器の2倍とし、第1および第2の入力バッファから 20 るために、第1発明(請求項1に係る発明)は、2 データを1個ずつ読み出してバタフライ演算器に入力 し、このバタフライ演算器からの演算結果である2個の データを1個ずつ第1および第2のメモリに書き込み、 再度バタフライ演算を行うデータを第1および第2のメ モリから1個ずつ読み出してバタフライ演算器に入力す るという動作を繰り返し、最終的なバタフライ演算の結 果として2個ずつ出力するデータを1個ずつ第1および 第2の出力バッファに書き込むようにして、高速化を図 っている。

[0007]

【発明が解決しようとする課題】しかしながら、従来例 2や3は従来例1と比較して高速でFFTを行うことが できるが、次のような問題があった。

【0008】 〔従来例2〕 N=2* 側のデータにFFT を行うために2個の2ポートメモリの容量の合計が2N 個分必要となる。すなわち、図8 (c)の動作時にメモ リ1、2共にデータを読み出しながら書き込みを行うの で、この動作が可能なようにメモリ1,2の容量はN個 分必要とし、合計2N個分の容量が必要となる。また、 図8に示した3種類のアクセス方法だけでは1サイクル 40 処理で対応できない例外が発生するため(図9参照)、 設計条件としてパイプライン段数は奇数段であることが 必要とされ、設計の自由度が下がる。また、2個の2ポ ートメモリは、どちらも2ポートを読み出し/書き込み のいずれにも自由に割り振れる高価なメモリ(2R/W 型)でなくてはならず、回路規模的に不利な点に加え、 設計の自由度が下がる。

【0009】〔従来例3〕N=2 個のデータにFFT を行うために6個の1ポートメモリの容量の合計が3N 個分必要となる。すなわち、第1のメモリ、第2のメモ 50

リ、第1の入力パッファ、第2の人力パッファ、第1の 出力パッファおよび第2の出力パッファとしてN/2個 分の容量を有する1ポートメモリを6個必要とし、これ らの容量の合計として3N個分の容量が必要となる。ま た、第1および第2のメモリの動作スピードはパタフラ イ演算器の2倍でなければならず、第1および第2のメ モリの動作スピードを1とした場合、バラフライ演算器 の動作速度は1/2となってしまう。このため、従来例 2とメモリの動作速度を同等として比較した場合、全体

【0010】本発明はこのような課題を解決するために なされたもので、その目的とするところは、従来例1と 同等のメモリ容量で従来例2と同等の処理速度を確保す ることができ、かつパイプライン段数として奇数・偶数 の制約がなく、2ポートメモリとして安価な1R/LW 型を使用することの可能な設計の自由度の高い高速フー リエ変換装置を提供することにある。

[0011]

【課題を解決するための手段】このような目的を達成す 個のデータを保持する2個のデータ記憶手段と、2組の データを2 サイクル連続でパイプライン処理を行う バタフライ演算手段とを設けたものである。この発明に よれば、N=2 個のFFTを2個の2 個のデータ 記憶手段で構成可能となる(全体の容量的には2')。 また、処理スピードはFFTの段数をS=logN/1 og2とすると、 $S \times \{2^{-}(m-1) + \alpha\}$ サイクル で実現できる(ただし、αは1パタフライ演算のパイプ ライン処理段数程度)。

【0012】第2発明(請求項2に係る発明)は、各々 個分のデータを格納可能な2ポートメモリで構成 された第1および第2のデータ記憶手段と、この第1お よび第2のデータ記憶手段の記憶エリアから指定された 順序に従って同時に各々1個のデータを読み出すデータ 読出制御手段と、このデータ読出制御手段によって読み 出された各々1個のデータを入力データ対としてバタフ ライ演算を実行し、その実行結果として2個の出力デー タを出力データ対として出力するバタフライ演算手段 と、このパタフライ演算手段からの出力データ対を複数 組分、一時保持するデーター時保持手段とを設け、この データー時保持手段に保持されている出力データの内、 次のバタフライ演算のステージでの人力データ封となる 2個の出力データを取り出し、この取り出した2個の出 カデータを第1および第2のデータ記憶手段の指定記憶 エリアに振り分けて同時に上書きするようにしたもので ある。

【0013】この発明によれば、N=2。個のデータの うちN/2=2"個のデータを第1のデータ記憶手段 の2ポートメモリに書き込み、N=2 個のデータのう ち残りのN/2=2 個のデータを第2のデータ記憶

手段の2ポートメモリに書き込むものとすれば、この第 1 および第2のデータ記憶手段の記憶エリアから指定さ れた順序に従って同時に各々」個のデータが読み出さ れ、この読み出された各々1個のデータを入力データ対 としてバタフライ演算が実行され、その実行結果として の2個の出力データが出力データ対として出力される。 この出力された出力データ対は、直ぐには第1および第 2のデータ記憶手段には戻されず、一時保持手段によっ て複数組分保持される。この保持されている出力データ の中から、次のバタフライ演算のステージでの入力デー 10 タ対となる2個の出力データが取り出され、第1および 第2のデータ記憶手段の指定記憶エリアに振り分けて同 時に上書きされる。この場合、第1および第2の記憶手 段における2ポートメモリはそれぞれN/2個分の記憶 容量でよく、一時保持手段は出力データ対を複数組分 (例えば、2組(4データ))保持し得る記憶容量でよ

【0014】第3発明(請求項3に係る発明)は、各々 2" 個のデータを格納可能な2ポートメモリで構成さ れた第1および第2のデータ記憶手段と、この第1およ 20 び第2のデータ記憶手段の記憶エリアから指定された順 序に従って同時に各々1個のデータを読み出すデータ読 出制御手段と、このデータ読出制御手段によって読み出 された各々工個のデータを入力データ対としてバタフラ イ演算を実行し、その実行結果として2個の出力データ を出力データ対として出力するバタフライ演算手段と、 このバタフライ演算手段からの出力データのうち一方の 出力データを次回動作サイクルまで一時保持するデータ 一時保持手段とを設け、バタフライ演算手段からの出力 データのうち他方の出力データを第1および第2のデー 30 タ記憶手段の何れか一方の指定記憶エリアに直ちに上書 きすると同時に、データー時保持手段に保持されている 前回の出力データを他方のデータ記憶手段の指定記憶工 リアに上書きするようにしたものである。

【0015】この発明によれば、N=2 個のデータのうちN/2=2 個のデータを第1のデータ記憶手段の2ポートメモリに書き込み、N=2 個のデータを第2のデータ記憶手段の02ポートメモリに書き込むものとすれば、この第1および第2のデータ記憶手段の記憶エリアから指定された順序に従って同時に各々1個のデータが読み出された各々1個のデータを入力データ出された。この読み出された各々1個のデータを入力データは、この読み出された各々1個のデータを入力データはとしてバタフライ演算が出力データ対としてバタフライ演算が出力データ対としてバタフライ演算が出力データ対としてバタフライ演算が出力データ対として保持手段によって保持手段には戻されず、一時保持手段によって保持記念。他方の出力データは、第1おび第2のデータ記憶手段の何れか一方の指定記憶エリアに直ちに上書さる。これと同時に、データー時保持手段に保持されている前回の出力データが、他方のデータ記憶手段の指定

記憶エリアに上書きされる。この場合、第1および第2 の記憶手段における2ポートメモリはそれぞれN/2個 分の記憶容量でよく、一時保持手段は出力データを1個 分保持し得る記憶容量でよい。

[0016]

【発明の実施の形態】以下、本発明を実施の形態に基づき詳細に説明する。図1は本発明に係るFFT装置の要部を示すブロック図である。

【0017】 同図において、3は2 「個のデータを格納可能な2ポートメモリMaで構成された第1のデータ記憶手段、4は2 「個のデータを格納可能な2ポートメモリMbで構成された第2のデータ記憶手段、5は第1のデータ記憶手段3および第2のデータ記憶手段4の記憶エリア(2ポートメモリMa、Mb中の記憶エリア)から指定された順序に従って同時に各々1個のデータを読み出すデータ読出制御手段である。

【0018】6はデータ読出制御手段5によってデータ記憶手段3、4から読み出された各々1個のデータを入力データ対としてパタフライ演算を実行し、その実行結果として2個の出力データを出力データ対として出力するパタフライ演算手段、7はパタフライ演算手段6からの出力データ対を複数組分(この実施の形態では、2組(4データ)分)、一時保持するデーター時保持手段である。

【0019】8はデーター時保持手段7に保持されている出力データの内、次のバタフライ演算のステージでの入力データ対となる2個の出力データを取り出し、この取り出した2個の出力データをデータ記憶手段3,4の指定記憶エリアに振り分けて同時に上書きするデータ書込制御手段である。

【0020】9はデータ読出制御手段5が参照とするデータ読出順序指定テーブル、10はデータ書込制御手段8が参照とするデータ格納先指定テーブルであり、データ読出制御手段5とデータ書込制御手段8とで制御手段11が構成されている。

7

1(6). f1(7)を得る。

【0023】なお、ここでのバラフライ演算は、2入力を(X, Y)、2出力を(X', Y')とした場合、下記の(1), (2)式で表される。この式で、 ω はFFTで必要となる回転子を意味する。

 $X' = X + w Y \cdot \cdot \cdot \cdot (1)$

 $Y' = X - \omega Y \cdot \cdot \cdot \cdot (2)$

【0024】バタフライ演算の第2ステージST2では、入力データ「1(0)と「1(2)を入力データ対としてパタフライ演算を施し、出力データ対「2(0)、「2(2)を得る。同様にして、入力データ「1(1)と「1(3)、「1(4)と「1(6)、「1(5)と「1(7)を入力データ対としてパタフライ演算を施し、出力データ対「2(1)、「2(3)、「2(4)、「2(6)、「2(5)、「2(7)を得る。【0025】パタフライ演算の第3ステージST3では、入力データ「2(0)と「2(4)を入力データ対としてバタフライ演算を施し、出力データ対「(0)、「(4)を得る。同様にして、入力データ「2(1)と「2(5)、「2(2)と「2(6)、「2(3)と「2(7)を入力データ対としてパタフライ演算を施し、出力データ対「(1)、「(5)、「(2)、「(6)、「(3)、「(7)を得る。

【0026】図2より、3段あるバタフライ演算のステージ毎に、データ記憶手段3、4に図3に示すような格納状態を実現できれば、毎サイクル必要なバタフライ演算の組を並列に1サイクルで読み出すことが可能になることが分かる。

【0027】この場合、例えば、第1ステージST1における最初のバタフライ演算の組合せ「(0)と「(1)との結果は「1(0)」「1(1)となり、次のステージに必要な状態をみると分かるように、2データともデータ記憶手段3(2ポートメモリMa)に戻す必要がある。

【0028】しかしながら、2データをデータ記憶手段 3に戻すには、メモリアクセスの空きポートがないため イ後 (1ポートはパイプライン処理で読み出しを連続で行う ため空きは1ポートしかない)、2データの書き込み処 点で 理が1サイクルで処理できない。結果として、FFT全 体でもパタフライ演算は2サイクル周期のパイプライン 40 る。を組むことになり、従来例2と比較して速度が劣化して しまう。 8.64

【0029】そこで、本実施の形態では、データー時保持手段7を設け、バタフライ演算手段6から出力された出力データ対を、直ぐにはデータ記憶手段3、4には戻さずに、2組(4データ)分保持する。そして、この保持されている出力データ(\$0,\$1,\$2,\$3)の中から、次のバタフライ演算のステージでの入力データ対となる2個の出力データを取り出し、データ記憶手段3、4の指定記憶エリアに振り分けて同時に上書きす

る。

【0030】以下、具体的に、このFFT装置の動作について説明する。今、データ記憶手段3の2ポートメモリMaの0番地、1番地、2番地、3番地にそれぞれ人力データ「(0)、「(2)、「(4)、「(6)が、データ記憶手段4の2ポートメモリMbの0番地、1番地、2番地、3番地にそれぞれ入力データ「(1)、「(3)、「(5)、「(7)が格納されているとする。【0031】バタフライ演算の第1ステージST」を行う場合、データ読出制御手段5はデータ読出順序指定テーブル9を参照として、データ記憶手段3、4からのデータの読み出しを行う。この場合、データ読出順序指定テーブル9には、第1ステージST!用として図4(a)に示すような読出順序が定められている。これに従い、データ読出手段5は、最初の動作サイクル(サイクル1)で2ポートメモリMa、Mbの0番地からデークル1)で2ポートメモリMa、Mbの0番地からデー

は、人力データ「2(0)と「2(4)を入力データ対 タ f (0)、 f (1)を読み出し、バタフライ演算手段 としてバタフライ演算を施し、出力データ対 F (0)、 「 (1)を読み出し、バタフライ演算手段 6 へ与える(図 5 参照)。 「 2 (5)、 f 2 (2)と f 2 (6)、 f 2 (3)と f 2 0 で、データ読出手段 5 は 2 ポートメモリMa、Mbの 1 番地からデータ f (2)、 f (3)を読み出し、バタフライ演算を施し、出力データ対 F (1)、 F (5)、 F (2), F (2), F (3)を読み出し、バタフライ演算手段 6 へ与える。バタフライ演算手段 6 は、 サイクル 2 において、サイクル 1 で読み出されたデータ f

(1), 「(1)に対してバタフライ演算を施す。 【0033】以下同様にして、サイクル3でデータ読出 手段5がデータf(4), f(5)を読み出し、バタフ ライ演算手段5がデータ [(2), [(3)に対してバ タフライ演算を施し、サイクル4でデータ読出手段5が データf(6)、f(7)を読み出し、バタフライ演算 30 手段5がデータ ((4), f(5) に対してバタフライ 演算を施し、サイクル5でバタフライ演算手段5がデー タ「(6)、「(7)に対してバタフライ演算を施す。 【0034】サイクル2でのパタフライ演算結果である データ [1 (0), [1(1)はサイクル3でデーター 時保持手段7に書き込まれる。サイクル3でのバタフラ イ演算結果であるデータ「1(2),「1(3)はサイ クル4でデーター時保持手段7に書き込まれる。この時 点で、データー時保持手段7には、4個のデータ[1 (0), f1(1), f1(2), f1(3)が貯ま

【0035】サイクル5において、データ書込制御手段 8は、データ格納先指定テーブル10を参照として、データー時保持手段7に保持されている出力データの中か次のバタフライ演算のステージ(第2ステージST2)の入力データ対となる2個のデータを取り出し、データ記憶手段3、4の指定記憶エリアに振り分けて同時に上書きする。

【0036】この場合、データ格納先指定テーブル10 には、第1ステージST1用として図6(a)に示すよ 50 うな出力データの格納先が定められている。これに従 い、データ書込制御手段8は、サイクル5において、バ タフライ演算順序が1番の出力データf1(0)と2番 の出力データ 「1 (2) とを取り出し、出力データ 「1 (0) を2ポートメモリMaの0番地に、出力データ f 1(2)を2ポートメモリMbの0番地に振り分けて同 時に上書きする。データ「1 (0), 「1 (2) が取り 出された後には、サイクル4でのバタフライ演算結果で あるデータ f 1 (4), 「1(5)が書き込まれる。

【0037】以下同様にして、サイクル6でデーター時 保持手段7からデータ[1(1)とf1(3)とが取り 10 出され、出力データ「1(1)が2ポートメモリMaの 1番地に、出力データ「1(3)が2ポートメモリMb の1番地に上書きされ、サイクル7でデーター時保持手 段7からデータ「1(4)と「1(6)とが取り出さ れ、出力データ「1(4)が2ポートメモリMaの2番 地に、出力データ 「1 (6) が2ポートメモリMbの2 番地に上書きされ、サイクル8でデーター時保持手段7 からデータイ1(5)と「1(7)とが取り出され、出 カデータ 「1 (5) が2ポートメモリMaの3番地に、 上書きされる。

【0038】第2ステージST2や第3ステージST3 でも第1ステージST1と同様にして、図4(b)。

(c) に示す読出顧序および図6(b), (c) に示す 格納先を参照しながら、バタフライ演算が実行される。 【0039】このようにして、本実施の形態では、連続 1 サイクル処理のバタフライ演算が可能となる。この場 合、データ記憶手段3、4における2ポートメモリM a, Mbはそれぞれ2² 個 (N/2=4個) 分の記憶容 分(4個分)保持し得る記憶容覺でよい。すなわち、本 実施の形態では、N+4個分の記憶容量でよい。

【0040】この例のようにN=8と少ないポイント数 の処理では、データー時保持手段7の記憶容量は無視で きない規模 (4データ分)になるが、通常のFFTでは その精度的意味合いからも少なくとも数十点、多ければ 数万点におよぶFFTを必要とされる応用例は多数存在 する。このため、ほとんどの場合、データー時保持手段 7に必要となる4データ分程度の小規模記憶部は、デー タ記憶手段3, 4の規模から考えるとほとんど無視でき 40 る規模となる。

【(1)()41】すなわち、本実施の形態によれば、従来例 1と同等の記憶容量(従来例2のほゞ半分)で従来例2 と同等の処理速度(従来例1の4倍)を確保することが できることになる。また、本実施の形態では、パイプラ イン段数として奇数・偶数の制約がなく、設計の自由度 が高められる。また、2ポートメモリMa、Mbは2R /W型でなくてもよく、読み出し/書き込みポートが固 定された安価な1RIW型でも対応可能であるため、回 路の小規模化および設計の自由度が高められる。

【0042】また、入出力バッファが不要なため、従来 例3と比較して必要な記憶容量をほゞ1/3に削減する ことができる。また、バタフライ演算とメモリの動作周 波数は同じでよく、従来例3とメモリの動作速度を同等 として比較した場合、全体の処理速度は2倍高速にな

【0043】なお、上述した実施の形態では、データ読 出順序やデータ格納先をテーブル化して記憶させておく ものとしたが、演算式で表現するようにしてもよい。演 算式で表現すれば、データ読出順序指定テーブル9やデ ータ格納先指定テーブル10を省略して回路規模をさら に小さくすることが可能である。また、データー時保持 手段7の記憶容量は、次のバタフライ演算のステージで の入力データ対となる2個の出力データを一時的に保持 することができればよく、4データ分に限られるもので ないことは言うまでもない。

【0044】図7に図5とは異なる方法で同様の効果を 得るようにしたFFT装置のタイミングチャートを示 す。この例では、サイクル1で2ポートメモリMa, M 出力データ f ((7) が2ポートメモリMbの3番地に 20 bからデータ f (0), f (1) を読み出し、サイクル 2でパタフライ演算を行う。そして、サイクル3でバタ フライ演算結果であるデータ「1(0),「1(1)の うち一方のデータ「 1 (1)をデーター時保持手段に書 き込み、他方のデータ f 1 (0) を 2 ポートメモリMa に直接上書きする。

【0045】サイクル4では、サイクル3でのバタフラ イ演算結果であるデータ [1 (2), 「 1 (3) のうち 一方のデータ「1(3)をデーター時保持手段に書き込 み、他方のデータf 1 (2)を2ポートメモリMbに直 量でよく、データ一時保持手段7は出力データ対を2組 30 接上書きする。この時、データー時保持手段に保持され ている前回のデータ [1 (1) を2ポートメモリMaに 上書きする。

> 【0046】このような方法を採用することにより、デ ーター時保持手段の記憶容量をデータ1個分とすること ができる。また、バタフライ演算の1ステージ当たり1 動作サイクル分の処理時間が短縮される。

[0047]

【発明の効果】以上説明したことから明らかなように本 発明によれば、第1発明では、2^{**} 個のデータを保持 する2個のデータ記憶手段と、2組のデータを2** サ イクル連続でパイプライン処理を行うバタフライ演算手 段とを設けたので、N=2 個のFFTを2個の2 個のデータ記憶手段で構成可能となる。また、処理スピ ードはFFTの段数をS=logN/log2とする と、 $S \times \{2^{-\alpha}(m-1) + \alpha\}$ サイクルで実現でき

【0048】第2発明では、バタフライ演算結果として 得られる2個の出力データ対を直ぐには第1および第2 のデータ記憶手段には戻さず、一時保持手段によって複 50 数組分保持し、この保持されている出力データの中か

ら、次のバタフライ演算のステージでの入力データ対と なる2個の出力データを取り出し、第1および第2のデ ータ記憶手段の指定記憶エリアに振り分けて同時に上書 きするようにしたので、第1および第2の記憶手段にお ける2ポートメモリはそれぞれN/2個分の記憶容量で よく、一時保持手段は出力データ対を複数組分(例え ば、2組(4データ))保持し得る記憶容量でよく、従 来例1と同等のメモリ容量で従来例2と同等の処理速度 を確保することができるようになる。また、パイプライ ン段数として奇数・偶数の制約がなく、2ポートメモリ として安価なIR/IW型を使用することも可能で、設 計の自由度が高くなる。

【0049】第3発明では、バタフライ演算結果として 得られる2個の出力データのうち一方は、直ぐにはデー タ記憶手段には戻さずに一時保持手段によって保持し、 他方の出力データは、第1および第2のデータ記憶手段 の何れか一方の指定記憶エリアに直ちに上書きし、これ と同時にデーター時保持手段に保持されている前回の出 力データを他方のデータ記憶手段の指定記憶エリアに上 書きするようにしたので、第1および第2の記憶手段に おける2ポートメモリはそれぞれN/2個分の記憶容量 でよく、一時保持手段は出力データを1個分保持し得る 記憶容量でよく、第1発明よりもさらに記憶容量を削減 することができ、バタフライ演算の1ステージ当たり1 動作サイクル分の処理時間を短縮することも可能とな

* 【関面の簡単な説明】

【図1】 本発明に係るFFT装置の要部を示すプロッ ク図である。

速フーリエ変換のアルゴリズムを例示する図である。

【図3】 このアルゴリズムを実現するための理想的な 各ステージでのデータ記憶手段へのデータの格納状況を 示す図である。

【図4】 データ読出順序指定テーブルに定められてい 10 るステージ毎のデータ読出順序を示す図である。

【図5】 このFFT装置の動作を説明するためのタイ ミングチャートである。

【図6】 データ格納先指定テーブルに定められている ステージ毎の出力データの格納先を示す図である。

【図7】 図5とは異なる方法で同様の効果を得るよう にしたFFT装置のタイミングチャートである。

【図8】 従来例2での2つの2ポートメモリに対する 各ステージでのアクセス状況を説明する図である。

【図9】 2ポートメモリに対する異常アクセス状態を 20 示す図である。

【符号の説明】

3…第1のデータ記憶手段、4…第2のデータ記憶手 段、5…データ読出制御手段、6…バタフライ演算手 段、7…データー時保持手段、8…データ書込制御手 段、9…データ読出順序指定テーブル、10…データ格 納先指定テーブル、11…制御手段。

[図9] -夕遊出國序楊定 ·夕格納先指定 16 2 ポー テーブル テーブル メモリ 2#-メモリ 酸出命令 商込命令 解醫奉助 如母手的 夕配留手頭 2ポート メモリ データー・時保持学長 n w) A f (0) パタフライ資保手段 BTド S 0 S 2 $n\omega$ S a 5.1 1(1) 関1のデータ配像手掛 B 2ポート メモリ 入力データ対 出力データ対

[図1]

[图2]

[図3]

	BIOT SAME	BOT YOUR
-57	703r2x40x0	H(1)(2)(5)(7)
-22	MARKAR(I) MS	INCOLPRESIDENCE)
-;'∂	50 a (122) a 3	(24(21)(21)(27)

[図4]

数域	Me	Mb	國出版
0	f(0)	K(1)	1 0
1	f(2)	K31	2
. 1	#(4)	K(B)	(3)
3	(6)	1(7)	1 30

(b)	

(a)

ステージス(R版員のパタフライ東京)									
要绝	Ma	Ma							
٥	n(0)	f1(2)	0						
	n(1)	11(3)	0						
	£1(4)	(4)[3]	(2)						
3	f1(8)	f1(7)	(0)						

(c)

ステージ3	(3版目の/	(9751)	(華)
福均	Ma	Mb	「蒙出麗序」
0	68(Q)	12(4)	
	f2(1)	f2(6)	2
	P2(2)	12(6)	3
9	12(3)	10791	(2)

[図5]

		912A1	サイクル2	712A3	71284	サイクルち	71288	学イクル7	サイクルロ	
Maij-K		((0))	f(2))	(4)	f(0))					
MDJ-F		K1)	K(3)	((8)	1(7)					
パタフライ			-	A	A	4				
2000年8	,		BTE	BTF2	BTF3.	BTF4				
オープ教	80		l Y	Arm(a)	11(0)	Pe1(4)	f1(4)\			
	81			11(1)	, f1(f)\	ricina.				
	82				Y 41 (2),		11(5)	f1(5)		
	83				11(3)	(1(3)	70(7)	101(7)		
<u>4254</u>						11(0)	\n(n)	(4)	n(3)	
4Þ54Þ						(1(2)	n (3)	§11(6)	(1(7)	

	サウル	サクル	かりなる	サイカルム	サイクル5	サイクバムら	サックフルフ	サイクル8	
MAY)-H"	(O)	(2)	f(4) 7	f(6) ?			- 14.51	717750	
MUJ-F	f(1)人	代3)人	(60)	イカ大					
パタンライ 調整子数		BIFI	BIF2	BIF3	BIF4				
ディ機・			้าเป	n(3).	n(5)	f1(7)			
Moth		L	- H(0)	n(1)	m(4)	[*] F1(5)			
Mozah			Ц	≈n(2)	f1(30	~ f1(6)	17(7Y)		