Question 1:

- A. Decision Variables
 - a. X1 = number of Collegiate bags
 - b. X2 = number of Mini bags
 - c. Z = total profit of sales
- B. Objective Function: to maximize Z the total profit of sales from the
 - a. Z = 32 X1 + 24X2
- C. Constraints:
 - a. $X1 \leq 1000$ sales forecast constraint collegiate bags
 - b. $X2 \leq 1200$ sales forecast constraint mini bags
 - c. $3X1 + 2X2 \le 5000$ nylon constraint
 - d. $45X1 + .40X2 \le 84,000 < (35 * 40 * 45) labor time constraints$
 - e. $X1 \ge 0, X2 \ge 0$

D.

Question 2:

- A. Decision Variables
 - a. X1 = large products
 - b. X2 = Medium Products
 - c. X3 = small products
 - d. Z = profit that maximizes sales
- B. Objective Function:
 - a. To maximize profit and product Mix
 - b. (420X1 + 420 X2 + 420 X3) + (360 X1 + 360X2 + 360X1) + (300X1 + 300 X2 + 300X3)
- C. Constraints
 - a. Plant Excess Capacity Constraints

i.
$$X1 + X2 + X3 \le 750$$

ii.
$$X1 + X2 + X3 \le 900$$

iii.
$$X1 + X2 + X3 \le 450$$

- b. Sales Forecast Constraints
 - i. $X1 + X2 + X3 \le 900$
 - ii. $X1 + X2 + X3 \le 1200$
 - iii. $X1 + X2 + X3 \le 750$
- c. Plant Storage Constraints

i.
$$20X1 + 15X2 + 12X3 \le 13,000$$

ii.
$$20X1 + 15X2 + 12X3 \le 12,000$$

iii.
$$20X1 + 15X2 + 12X3 \le 5,000$$

d.
$$X1, X2, X3 \le 0$$