安徽大学 20 19 -20 20 学年第 1 学期

《 大学物理 B(下) 》期末考试试卷 (闭卷 时间 120 分钟)

考场登记表序号 _____

题 号	_	11	三 (16)	三 (17)	三 (18)	四	总分
得 分							
阅卷人							

一、选择题(每小题2分,共20分)

- 1. 现有 N 匝, 长度为 l, 横截面积为 S 的长螺线管线圈, 其中充满磁导率为 u 的磁介质, 其自感系数为 (
- A. $\mu NS/l$

亭

- B. $\mu NS^2/l$
- C. $\mu N^2 S^2/l$
- D. $\mu N^2 S/l$
- 2. 已知空间中存在自由电荷 q_0 和极化电荷 q',传导电流 I_0 和磁化电流 I'. 对该空间,下列 方程组正确的一组是 .)
- A. $\oiint \vec{D} \cdot d\vec{S} = \vec{q}$, $\oiint \vec{H} \cdot d\vec{l} = I_0$ B. $\oiint \vec{D} \cdot d\vec{S} = q_0$, $\oiint \vec{H} \cdot d\vec{l} = I'$
- C. $\oiint \vec{D} \cdot d\vec{S} = q_0$, $\oiint \vec{H} \cdot d\vec{l} = I_0$ D. $\oiint \vec{D} \cdot d\vec{S} = q_0 + q'$, $\oiint \vec{H} \cdot d\vec{l} = I_0$
- 3. 如图所示,直角三角形金属框在均匀磁场 B 中以角速度 ω 绕一直角边旋转(自上而下看 逆时针方向),磁场方向竖直向上.则下列说法正确的是
- A. $a \times b$ 和 c 三端点电势相等,导体框内无电流
- B. a 和 b 电势相等, 高于 c 点, 导体框内无电流
- C. a 和 b 电势相等,低于 c 点,导体框内无电流
- D. a 和 b 电势相等,低于 c 点,导体框内有电流

- 4.在静电场中,作闭合曲面 S,若对 S有∯ $\overrightarrow{D} \cdot d\overrightarrow{S} \neq 0$,则
- A. S 内必有自由电荷和束缚电荷
- B. S内必有自由电荷,同时束缚电荷代数和一定为零
- C. S内必有自由电荷
- D. S内必有束缚电荷,同时自由电荷代数和一定为零
- 5.在单缝夫琅禾费衍射装置中, 当沿水平方向用平行白光垂直照射平面光栅时, 中央明纹)

		B. 中央明纹宽度 D. 中央明纹宽度	
		区为 n 的透明介质中从 : AB 的几何路程为	A 沿某条路径传播到 B, 如 ()
A. $2\lambda/n$	Β. 2λ	C. 2 <i>n</i> λ	D. $2n/\lambda$
偏振方向夹角为	·	, , , , , , , , , , , , = 10 (2)	7原来的 1/8,则两偏振片的 ()
A. $\cos^{-1}(0.125)$	B. $\cos^{-1}(0.25)$	C. 60°	D. 45°
		开究其衍射条纹的重要 单缝的宽度等于	手段. 已知对应 30°衍射角, _个入射光波长. ()
A. 2.5	B. 5	C. 7.5	D. 10
9. 在实验室中实现: A. 凸透镜焦距长可 B. 凸透镜焦距短可	「从远距离观察	到凸透镜,原因是	_· ()
C. 在狭缝的入射-			行光照射衍射狭缝,在出射
	-侧凸透镜可将入射的 光扩束成平行光在无穷		射狭缝上,在出射一侧再对
10. 真空中点电荷 <i>q</i>	置于半径为R的球面	的球心位置处,则该球	球面处电势等于()
A. $q/(4\pi\varepsilon_0 R)$	B. $q^2/(4\pi\varepsilon_0 R)$	C. $q/(4\pi\varepsilon_0 R^2)$	D. $q^2/(4\pi\epsilon_0 R^2)$
二、填空题(每小局 11. 用波长 $\lambda_1 = 400$		是合光垂 直照射单缝, 2	得分 在衍射图谱中 <i>λ</i> ₁ 对应的第 <i>k</i> ₁
	$=\lambda_2$ 对应的第 k_2 级暗约		1=, k ₂ = (略去
12. 某空间电场的理"静"选一填充)	不量积分 $\oint \vec{E} \cdot d\vec{l} = 0$,则该空间必不存在_	电场.(从"感生"和
	平行板电容器两极板间 电能 <i>W</i> e=		间距为 d ,面积为 S ,极板间
14. 康普顿散射实验	验有力证明了光的粒-	子性一面. 在康普顿散	射实验中,若散射光子与原

来的入射光子方向成 θ 角,当 θ =____时,相对于入射光,散射光子的波长改变量最大. (从 30°,45°,90°和 180°中选一填充)

15. 波长为 λ 的单色光入射到洁净的钠表面(设入射光子能量大于其逸出功),当逸出电子的最大动能为 E_0 时,逸出功 A= ________.(设普朗克常数为 h,光速为 c)

三、计算题(共50分)

16. (本题 20 分)

如图所示,在半径为 R 的圆柱状空间内存在均匀磁场,方向垂直于纸面向里,且 dB/dt 为常数且大于零 0. 恰好有与之同心且半径为 2R 圆形导体环(环与圆柱横截面平行),设导体环的电阻率为 ρ ,横断截面积为 α ,环的宽度远小于 R,求导体环内的电流大小和方向.

17. (本题 20 分)

得 分

波长 $\lambda = 500$ nm 的单色光垂直照射到一平面光栅上,测得第二级主极大的衍射角为 30°,且第三级缺级. 求:(1)光栅常数 d;(2)透光缝可能的最小缝宽 a.

18. (本题 10 分)

得分

有一单峰,宽度 a=0.1 mm,在缝后放置一会聚透镜,用波长 $\lambda=546$ nm 的平行单色光垂直照射单缝,测得位于透镜焦平面处屏幕上中央明纹的宽度为 $\Delta x_0=5.46$ mm. 求该透镜的焦距 f. (当 θ 较小时, $\sin\theta=\tan\theta$)

四、证明题 (本题 10 分)

得分

19. 根据马吕斯定律证明自然光通过一线偏振片后的光强为之前的一半.