Math 71: Algebra Fall 2022

PSET 1 — September 24, 2022

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

- **1.** Let $f:A\to B$ and $g:B\to C$ be maps. Suppose that $g\circ f:A\to C$ is injective.
 - (a) Show that f is injective.

By definition of composition, $(g \circ f)(x) = g(f(x))$.

By definition of injectivity, $g \circ f$ is injective if and only if $(g \circ f)(a) = (g \circ f)(a')$ implies a = a'. Suppose f is not injective.

Then there exists $a, a' \in A, b \in B$ such that $f(a) = f(a') = b \land a \neq a'$.

Then:

$$(g \circ f)(a) = g(f(a)) = g(b) = g(f(a')) = (g \circ f)(a')$$

Thus, $(g \circ f)(a) = (g \circ f)(a')$ for some $a, a' \in A$ such that $a \neq a'$, implying that $g \circ f$ is not injective. This contradicts the fact that $g \circ f$ is injective.

Therefore, it must hold that $f(a) = f(a') \implies a = a'$ and f is injective.

(b) Is *g* necessarily injective? Give a proof or a counterexample.

g is necessarily injective when restricted to the codomain of f.

For instance, consider $f: \mathbb{R}^+ \to \mathbb{R}^+$ and $g: \mathbb{R}^+ \to \mathbb{R}^+$ such that f(x) = x+1 and $g(x) = x^2$. We can note that:

- (a) f is injective, since $f(x) = x + 1 = y + 1 = f(y) \implies x = y$.
- (b) g is injective as defined because its domain is limited to \mathbb{R}^+ , the codomain of f. However, if the domain of g is extended to include all of \mathbb{R} , then g would no longer be injective since $b^2 = (-b)^2$ for all $b \in \mathbb{R}$.

- 2. (sorta DF 1.1.1, 1.1.8) Determine which of the following are groups. Justify your answer.
 - (a) The set $G = \mathbb{R} \setminus \{0\}$ under the binary operation * defined by a * b = a/b for $a, b \in G$.

G is not a group.

- (a) G is not closed under the operation *, since a*b=a/b gives elements in $\mathbb Q$ for any $a,b\in\mathbb R$ such that $b\nmid a$.
- (b) G is not associative, since $a*(b*c) = a/(b/c) = ac/b \neq a/bc = (a/b)/c = (a*b)*c$
- (c) *G* does not have an identity element, since:

$$e*a = e/a = a \implies e = a^2$$

$$a*e = a/e = a \implies e = 1$$

$$e/a = a/e = a \implies e = a^2 \land e = 1 \implies a = \pm 1.$$

There is no unique identity unique identity that leaves **all** elements in G invariant.

(d) However, if we invented the identity to be 1, then each element in G would be it's own inverse since:

$$\forall a \in G: \quad a/a^{-1} = a^{-1}/a = 1 \implies a = a^{-1}$$

(b) The set $G = \mathbb{R}$ under the binary operation * defined by a * b = a + b + ab for $a, b \in G$.

G is not a group.

- (a) G has a unique identity e = 0.
- (b) *G* is closed under *.
- (c) * is not an associative operation on G.

$$a * (b * c) = a * (b + c + bc) = a * b + a * c + a * bc$$

= $a + b + ab + a + c + ac + a + bc + abc$
= $3a + b + c + ab + ac + bc + abc$

$$(a*b)*c = (a+b+ab)*c = a*c+b*c+ab*c$$

= $a+c+ac+b+c+bc+ab+c+abc$
= $a+b+3c+ab+ac+bc+abc$

As we can see, $a * (b * c) \neq (a * b) * c$.

(c) The set $G = \{z \in \mathbb{C} : z^n = 1 \text{ for some } n \in \mathbb{Z}_{>0}\}$ under multiplication. [Hint: be sure to check multiplication is a binary operation on G in the first place!]

G is a group.

- (a) \widetilde{G} has a unique identity e=1+0i=1, since 1 leaves all elements in the group invariant after multiplication.
- (b) G is closed under multiplication.

$$\forall z_1, z_2 \in G, \exists n_1, n_2 \in \mathbb{Z}_{>0}$$
:

$$z_1 * z_2 = z_1 z_2$$

We need to find an exponent n such that $(z_1z_2)^n=1$.

Taking $n = n_1 n_2$ gives:

$$(z_1 z_2)^{n_1 n_2} = z_1^{n_1 n_2} z_2^{n_1 n_2}$$

$$= (z_1^{n_1})^{n_2} (z_2^{n_2})^{n_1}$$

$$= 1^{n_2} 1^{n_1}$$

$$= 1$$

Therefore, it holds that multiplication of 2 elements in G gives an element in G.

- (c) * is associative following from associativity of \mathbb{C} .
- (d) G has inverses. By definition, if $z \in G$ then $z^n = 1$ for some $n \in \mathbb{Z}_{>0}$. The multiplicative inverse of z is 1/z, and $z^n = 1$ implies $(1/z)^n = 1$.

3. (DF 1.1.20) Let G be a group and let $x \in G$. Show that x and x^{-1} have the same order.

Let n be the order of x such that $x^n=e$. Furthermore, let x^{-1} be the inverse of x, such that $x*x^{-1}=e$. Using algebraic substitution, we can show that:

$$\begin{split} x^n &= e \\ x^n &= x * x^{-1} \qquad \text{(an element multiplied by its inverse)} \\ x^n &= \left(x * x^{-1}\right)^n \qquad \text{(multiplying e by itself n times.)} \\ x^n &= x^n * x^{-n} \\ e &= e * x^{-n} \qquad \text{(since we already know that $x^n = e$)} \\ e &= x^{-n} &= \left(x^{-1}\right)^n \end{split}$$

We see that $\left(x^{-1}\right)^n=e.$ By definition of order, x^{-1} has order n.

4. (sorta DF 1.2.2–1.2.5) Let $D_{2n} = \{1, r, \dots, r^{n-1}, s, sr, \dots, sr^{n-1}\}$ be the dihedral group of order 2n with presentation $D_{2n} = \langle r, s \mid r^n = s^2 = 1, rs = sr^{-1} rangle$.

(a) Write out the multiplication (Cayley) table for D_6 .

	1	r	r^2	s	sr	$ sr^2 $
1	1	r	r^2	s	sr	$\mid sr^2 \mid$
r	r	r^2	1	sr	sr^2	s
r^2	r^2	1	r	sr^2	s	sr
s	s	sr^2	sr	1	r^2	r
sr	sr	s	sr^2	r	1	$\mid r^2 \mid$
sr^2	sr^2	sr	s	r^2	r	1

(b) Show that if $x \in D_{2n}$ is a power of r (including $x = r^0 = 1$!), then rx = xr and x has order at most n.

Suppose $x=r^k$ for some $k\in\mathbb{Z}$. Then $rx=rr^k=r^{k+1}=r^kr=xr$. Furthermore, we know that $r^n=1$ in D_{2n} .

Therefore:

$$x=r^k$$
 $x^n=(r^k)^n$
 $x^n=r^{kn}$ (multiplication of exponents for nested exponentiation)
 $x^n=(r^n)^k$ (rearranging the powers)
$$\therefore r^n=1$$

$$\therefore x^n=1^k=1$$

Therefore, for any element $x \in D_{2n}$ such that $x = r^k$ for some $k \in \mathbb{Z}$, we see that $x^n = 1$ and x has order at most n.

The order can be lower, if k > 1 and $k \mid n$

(c) Otherwise, if $x \in \{s, sr, \dots, sr^{n-1}\}$ (not a power of r), then show that $rx = xr^{-1}$ and x has order 2. [Hint: first prove by induction that $r^m s = sr^{-m}$ for all $m \ge 1$.]

We aim to prove that $r^m s = s r^{-m}$ for all $m \ge 1$.

Base case: We aim to show that $r^m s = sr^{-m}$ for m = 1.

$$rs = sr$$

The proof is trivial. Since s is a flip, it translates a rotation done in any direction (counter-clockwise, in this case) before the flip into equivalent rotations done in the opposite direction (clockwise) after the flip.

Induction hypothesis: incrementally, we aim to show that $r^m s = sr^{-m}$ if $r^{m-1}s = sr^{-(m-1)}$.

Let m=i+1, assuming it has been proven that $r^is=sr^{-i}$. $r^is=sr^{-i}$ $r(r^is)=r(sr^{-i})$ $r^{(i+1)}s=rsr^{-i}$ (Simplifying the left side of the equation) $r^{(i+1)}s=(rs)r^{-i}$ (Grouping the right side of the equation) $r^{(i+1)}s=(sr^{-1})r^{-i}$ $r^{(i+1)}s=sr^{-i-1}$ (Simplifying the left side of the equation) $r^{(i+1)}s=sr^{-(i+1)}$

We now aim to show that if $x = r^m s$ for some $m \in \mathbb{Z}$ then x has order 2, i.e. $x^2 = 1$.

$$\begin{split} x^2 &= (r^m s)^2 \\ x^2 &= (r^m s)(sr^{-m}) \qquad \text{(Substituting the equality)} \\ x^2 &= r^m s^2 r^{-m} \qquad \text{(Expanding the right side of the equation)} \\ x^2 &= r^m r^{-m} \qquad \text{(Simplifying } s^2 = 1) \\ x^2 &= r^{m-m} = r^0 = 1 \end{split}$$

- (d) For a group G under *, we say that a is *central* if a*x=x*a for all $x\in G$. Show that if n=2k is even that $z=r^k$ is an element of order 2 which is central.
 - (a) $z = r^k$ is an element of order 2

Given $z = r^k$, then $z^2 = (r^k)^2 = r^{2k}$.

Furthermore, we know that n=2k, which means the Dihedral group is D_{4k} . It then follows from the Group axioms that $r^{2k}=1$ in D_{4k} .

Thus, $(z^k)^2 = 1$ and z has order 2.

(b) z is central

We aim to show that z * x = x * z for all $x \in D_{4k}$.

Given $z = r^k = r^{n/2}$:

$$z*x=r^{(n/2)}*x$$
 $(zx)^2=(r^{n/2}x)^2$ (Squaring both sides) $z^2x^2=r^nx^2$ $z^2x^2=x^2$ $zx=x$ $x*z=xr^{(n/2)}$ (Squaring both sides) $xz^2=(xr^{n/2})^2$ (Squaring both sides) $xz^2=x^2r^n$ $xz^2=x^2$ $xz=x$

Thus, we see that zx = xz = x for all $x \in D_{4k}$.

5. (DF 1.2.10) Let G be the group of rigid motions in \mathbb{R}^3 of a cube. Show that G is a nonabelian group of order 24. [Hint: Find the number of positions to which an adjacent pair of vertices can be sent; alternatively, find the number of places to which a given face may be sent and, once a face is fixed, the number of positions to which a vertex on that face may be sent.]

- (a) G = 24
 - There are 6 faces on a cube, and each face has 4 edges.
 - If we visualize a person placing the cube on a table, there are 6 possible faces that can face the person, and, for each face, there are 4 orientations (or 4 possible edges that could be touching the table). This make for 6*4=24 possible positions for the cube.
- (b) G is nonabelian G has order 24. For G to be prime, then |G| must either be prime, a square of a prime, or a product of two primes $p,q\in\mathbb{Z},p< q$ such that $p\nmid (q-1)$.
 - However, $|G| = 24 = 2^3 \cdot 3$ and does not satisfy any of those properties.