Time Synchronization: Progress Report

Fasika Assegei

June 14, 2008

Absolute time ...

"A man with a watch knows what time it is. A man with two watches is never sure." Segal's Law

¡¡¡¡¡¡¡ .mine

- Frequency Offset
- 2 Intermediate Results
- Oiscussion Points
- Frequency Offset
- Intermediate Results
- Discussion Points

Clock Drift

$$f_i(t) = f_o + \Delta f + f_d(t - t_o) + f_e + f_r(t)$$
 (1)

where

 f_i = phase, or time error

 f_0 = nominal frequency of the clock - 32768KHz

 Δf = calibration error - 30ppm

 f_d = the frequency drift due to aging - 3ppm per year

 f_e = frequency variation due to temprature - $-0.035ppm/C^2$

 f_r = short-term frequency instability due to noise

Frequency variation with Temperature

Figure: Frequency variation with temperature

Clock Drift

Worst Case Scenarios

$$f_i(t) = f_o + \Delta f + f_d(t - t_o) + f_e + f_r(t)$$
 (2)

Assuming the maximum deviations,

$$\Delta f_{max} = 1.0117Hz \tag{3}$$

for a slow clock and

$$\Delta f_{min} = 0.95436Hz \tag{4}$$

for a fast clock.

Figure: TDMA Slot

Figure: TDMA guard time

Frequency of Synchronization

Worst case scenario - Clocks drifting in opposite directions

$$t_{guard} = f_{sy}[\Delta f_{sl} + \Delta f_{fa}] \tag{5}$$

where

$$t_{guard} = 274.6575 \mu s$$
 (6)

The maximum value will be

$$f_{sy} = 4$$

Node Time

 ΔT is the time difference between the nodes firing times Δt is the delay(transmitting , receiving and propagation delay) δ_{ij} is the net difference in time

Adjusting the error

$$\tilde{t}_i = I_i + \frac{f_i(t)}{f_o}t + D_i,\tag{7}$$

where

 I_i is the initial firing time of the node , f_i is the frequency of the node at time t , f_o is the nominal frequency of the node's clock , D_i is the processing time(Upon receiving and transmitting) plus the delay in propagation

Adjusting the error

$$\Delta t_{ij} = \tilde{t}_i - \tilde{t}_j, \tag{8}$$

$$\Delta t_{ij} = (I_i - I_j) + (D_i - D_j) + t(f_i - f_j), \tag{9}$$

$$\tilde{t_i} = t_i + O_i, \tag{10}$$

where O_i is given by

$$O_i = f(\Delta t_{ij}), \tag{11}$$

