Curved Yang-Mills gauge theories and their recent applications

Simon-Raphael Fischer

國家理論科學研究中心 National Center for Theoretical Sciences (National Taiwan University)

Table of contents

- Infinitesimal Version
- 2 Integrated Version
- Applications: Singular foliations (joint work w/ Camille Laurent-Gengoux)
- Future Prospects

Infinitesimal Version

Infinitesimal curved Yang-Mills-Higgs gauge theory

Guide: Infinitesimal curved Yang-Mills-Higgs gauge theory

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M \times \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E
	& E-connections
Canonical flat connection $ abla^0$	General connection $ abla$ on E
on $M imes \mathfrak{g}$	

Classical formalism	CYMH GT
Lie algebra $\mathfrak g$ as $M imes \mathfrak g$	Lie algebroid $E o N$
${\mathfrak g} ext{-action }\gamma$	Anchor ρ of E & E -connections
Canonical flat connection $ abla^0$	General connection ∇ on E
on $M \times \mathfrak{a}$	

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \rightsquigarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

00000000000000

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

Foliations

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

- Adjoint connection \leftrightarrow Ehresmann connection on P.
- **2** As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

-0000000000000

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$:

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

Foliations

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- **2** As parallel transport along a curve γ :

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^{P}_{\gamma}(p),v\right]$$

Consider a semisimple Lie group G and a principal G-bundle $P \rightarrow M$

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

Foliations

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \Big[\mathsf{PT}^P_{\gamma}(p), \mathsf{PT}^0_{\gamma}(v)\Big],$$

Lie algebra g as trivial bundle w/ canonical flat connection

$$Ad(P) \longrightarrow At(P) \longrightarrow TM$$

Foliations

where Ad(P) and At(P) the adjoint and Atiyah bundle of a principal G-bundle P, respectively.

Gedankenexperiment

- **1** Adjoint connection \leftrightarrow Ehresmann connection on P.
- As parallel transport:

$$\mathsf{PT}^{\mathsf{Ad}(P)}_{\gamma}([p,v]) = \left[\mathsf{PT}^P_{\gamma}(p) \cdot \kappa_{\gamma}, \kappa_{\gamma}^{-1} \cdot \mathsf{PT}^0_{\gamma}(v)\right],$$

Lie algebra g as trivial bundle w/ canonical flat connection, κ_{γ} values in G & "suitable"

Motivation (S.-R. F.)

- This leads to an equivalence relation of gauge theories (in the curved sense!), preserving dynamics and kinematics
- Are there curved theories which are not equivalent to classical ones?

Motivation (S.-R. F.)

- This leads to an equivalence relation of gauge theories (in the curved sense!), preserving dynamics and kinematics
- Are there curved theories which are not equivalent to classical ones?

Definition (Field redefinition, [S.-R. F.])

Let $\lambda \in \Omega^1(N; E)$ such that $\Lambda := \mathbb{1}_F - \lambda \circ \rho$ is an automorphism of E. We then define the **field redefinitions** by

$$\widetilde{A}^{\lambda} := (\Phi^* \Lambda)(A) + \Phi^! \lambda,$$
 (1)

$$\widetilde{\nabla}^{\lambda} := \nabla + \left(\Lambda \circ d^{\nabla^{\text{bas}}} \circ \Lambda^{-1} \right) \lambda, \tag{2}$$

$$\widetilde{\kappa}^{\lambda} := \kappa \circ (\Lambda^{-1}, \Lambda^{-1}),$$
(3)

$$\widetilde{g}^{\lambda} := g \circ (\widehat{\Lambda}^{-1}, \widehat{\Lambda}^{-1}),$$
(4)

where $\widehat{\Lambda} := \mathbb{1}_{TN} - \rho \circ \lambda$, and for all $X, Y \in \mathfrak{X}(N)$ we also define

$$\widetilde{\zeta}^{\lambda}(\widehat{\Lambda}(X),\widehat{\Lambda}(Y))$$

$$:= \Lambda(\zeta(X,Y)) - \left(\mathrm{d}^{\widetilde{\nabla}^{\lambda}}\lambda\right)(X,Y) + t_{\widetilde{\nabla}^{\lambda}_{\rho}}(\lambda(X),\lambda(Y)). \tag{5}$$

Proposition ([S.-R. F.])

• Field redefinitions define an equivalence relation of CYMH gauge theories

Foliations

 \bullet $\widetilde{\mathfrak{L}}_{\mathrm{CYMH}}^{\lambda} = \mathfrak{L}_{\mathrm{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

Proposition ([S.-R. F.])

- Field redefinitions define an equivalence relation of CYMH gauge theories
- $\widetilde{\mathfrak{L}}_{\text{CYMH}}^{\lambda} = \mathfrak{L}_{\text{CYMH}}$

Let us now apply a field redefinition in order to study whether ∇ and ζ can become flat and zero, respectively.

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = q an LAB ($\rho \equiv 0$) with a field of Lie brackets $[\cdot,\cdot]_{q} \in \Gamma(\bigwedge^{2} q^{*} \otimes q)$ which restricts to the bracket of a given Lie algebra g

Foliations

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = q an LAB ($\rho \equiv 0$) with a field of Lie brackets $\left[\cdot,\cdot\right]_{\mathscr{Q}}\in\Gamma\Big({\textstyle\bigwedge^2\mathscr{Q}^*\otimes\mathscr{Q}}\Big)$ which restricts to the bracket of a given Lie algebra g

Foliations

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = g an LAB $(\rho \equiv 0)$ with a field of Lie brackets $[\cdot,\cdot]_g \in \Gamma(\bigwedge^2 g^* \otimes g)$ which restricts to the bracket of a given Lie algebra $\mathfrak g$

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y} \left(\left[\mu, \nu \right]_{\mathcal{Q}} \right) = \left[\nabla_{Y} \mu, \nu \right]_{\mathcal{Q}} + \left[\mu, \nabla_{Y} \nu \right]_{\mathcal{Q}}, \tag{6}$$

$$R_{\nabla}(Y,Z)\mu = \left[\zeta(Y,Z),\mu\right]_{\sigma} \tag{7}$$

for all
$$Y, Z \in \mathfrak{X}(N)$$
 and $\mu, \nu \in \Gamma(g)$.

What happens in the case of Lie algebra bundles?

Example (Lie algebra bundles (LABs))

• E = q an LAB ($\rho \equiv 0$) with a field of Lie brackets $[\cdot,\cdot]_{q}\in\Gamma(\bigwedge^{2}q^{*}\otimes q)$ which restricts to the bracket of a given Lie algebra a

Foliations

Compatibilities:

- \bullet κ needs to be ad-invariant
- We need

$$\nabla_{Y}([\mu,\nu]_{g}) = [\nabla_{Y}\mu,\nu]_{g} + [\mu,\nabla_{Y}\nu]_{g}, \tag{6}$$

$$R_{\nabla}(Y,Z)\mu = [\zeta(Y,Z),\mu]_{\mathcal{Q}} \tag{7}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(q)$.

Theorem (Invariant for LABs, [S.-R. F.])

We have

$$d^{\widetilde{\nabla}^{\lambda}}\widetilde{\zeta}^{\lambda} = d^{\nabla}\zeta, \tag{8}$$

and $d^{\nabla}\zeta$ has values in the centre of g.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\tilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\sigma} \circ \zeta$ it may still be that ∇ becomes flat.

Behaviour of the field redefinition of ζ

Theorem (Existence of non-classical theories, [S.-R. F.])

If $d^{\nabla}\zeta \neq 0$, then there is no field redefinition such that $\widetilde{\zeta}^{\lambda} = 0$.

Remarks

Starting with a classical theory:

If $\dim(N) \geq 3$ and if Lie algebra $\mathfrak g$ has a non-zero centre, then we can always construct a pre-classical CYMH GT which is not a classical one by adding a ζ with $\mathrm{d}^\nabla \zeta \neq 0$.

However, by $R_{\nabla} = \operatorname{ad}_{\mathscr{Q}} \circ \zeta$ it may still be that ∇ becomes flat.

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

 ∇ restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof

Recall

$$\begin{split} \nabla_{Y} \Big([\mu, \nu]_{\mathcal{Q}} \Big) &= [\nabla_{Y} \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla_{Y} \nu]_{\mathcal{Q}}, \\ R_{\nabla} (Y, Z) \mu &= [\zeta(Y, Z), \mu]_{\mathcal{Q}}, \\ \widetilde{\nabla}_{Y}^{\lambda} \mu &= \nabla_{Y} \mu - [\lambda(Y), \mu]_{\mathcal{Q}}, \end{split}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

Infinitesimal cYM

Turning to the field redefinition of ∇ :

Theorem (Differential on centre-valued forms, [S.-R. F.])

abla restricts to the centre of g and induces a differential d^{Ξ} on centre-valued forms. Moreover, d^{Ξ} is independent of the field redefinitions.

Sketch of proof.

Recall

$$\begin{split} \nabla_{Y} \Big([\mu, \nu]_{\mathcal{Q}} \Big) &= [\nabla_{Y} \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla_{Y} \nu]_{\mathcal{Q}}, \\ R_{\nabla} (Y, Z) \mu &= [\zeta(Y, Z), \mu]_{\mathcal{Q}}, \\ \widetilde{\nabla}_{Y}^{\lambda} \mu &= \nabla_{Y} \mu - [\lambda(Y), \mu]_{\mathcal{Q}}, \end{split}$$

for all $Y, Z \in \mathfrak{X}(N)$ and $\mu, \nu \in \Gamma(g)$. Then insert μ with values in the centre.

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

000000000000000000

$$d^{\Xi}d^{\nabla}\zeta = 0. (9)$$

We define the **obstruction class** by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (10)

Foliations

Infinitesimal cYM

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (9)$$

Definition (Obstruction class, [S.-R. F.])

We define the **obstruction class** by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (10)

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (9)$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (10)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $Obs(\Xi) = 0$.

Foliations

Infinitesimal cYM

Theorem (Closedness of $d^{\nabla}\zeta$, [S.-R. F.])

We have

$$d^{\Xi}d^{\nabla}\zeta = 0. (9)$$

Definition (Obstruction class, [S.-R. F.])

We define the obstruction class by

$$Obs(\Xi) := \left[d^{\nabla} \zeta \right]_{d^{\Xi}}.$$
 (10)

Proposition ([S.-R. F.])

- An invariant of the field redefinitions.
- If ∇ flat, then $\mathrm{Obs}(\Xi) = 0$.

Infinitesimal cYM

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Foliations

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Foliations

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{
abla}^{\lambda}$ is flat.

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. London Mathematical Society Lecture Note Series, 213, 2005). Mackenzie derived $Obs(\Xi)$ in the context of extending Lie algebroids by LABs.

Theorem (Obstruction for non-pre-classical theories, [S.-R. F.])

If $\mathrm{Obs}(\Xi) \neq 0$, then there is no field redefinition such that $\widetilde{\nabla}^{\lambda}$ is flat.

Foliations

Theorem (Locally always pre-classical)

If N is contractible, then there is a field redefinition such that $\widetilde{
abla}^{\lambda}$ is flat.

Remarks

Second theorem follows as a result by K. Mackenzie (General Theory of Lie Groupoids and Algebroids. London Mathematical Society Lecture Note Series, 213, 2005). Mackenzie derived $Obs(\Xi)$ in the context of extending Lie algebroids by LABs.

Classification

Example (Zero obstruction class not necessarily pre-classical)

Let P be the Hopf fibration

$$SU(2) \rightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Then for the adjoint bundle

$$g := P \times_{\mathrm{SU}(2)} \mathfrak{su}(2) := \left(\mathbb{S}^7 \times \mathfrak{su}(2)\right) / \mathrm{SU}(2)$$

we have a non-flat ∇ satisfying the compatibility conditions such that all of its field redefinitions are not flat either, but $\mathrm{Obs}(\Xi) = 0$.

Classification

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $\mathrm{Obs}(\Xi)=0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4?$ \leadsto Integration

Classification

Summary

Remarks

Locally, LABs are always pre-classical but not necessarily classical. In general, $\mathrm{Obs}(\Xi)=0$ does not imply a flat connection.

So, what actually happens in the adjoint bundle of $\mathbb{S}^7 \to \mathbb{S}^4?$ \leadsto Integration

We will only focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra 🏻	LAB ¹ g
Integrated	Lie group <i>G</i>	LGB ² 𝒯

 $^{^{1}}LAB = Lie algebra bundle$

²LGB = Lie group bundle

Definition (LGB actions, simplified)

$$\begin{array}{c} \mathscr{G} \\ \downarrow \\ \mathscr{P} \stackrel{\pi}{\longrightarrow} M \end{array}$$

 $\mathscr{P} \stackrel{\pi}{\to} M$ a fibre bundle. A **right-action of** \mathscr{G} **on** \mathscr{P} is a smooth map $\mathscr{P} * \mathscr{G} := \pi^* \mathscr{G} = \mathscr{P} \times_M \mathscr{G} \to \mathscr{P}$, $(p,g) \mapsto p \cdot g$, satisfying the following properties:

$$\pi(p \cdot g) = \pi(p), \tag{11}$$

$$(p \cdot g) \cdot h = p \cdot (gh), \tag{12}$$

$$p \cdot e_{\pi(p)} = p \tag{13}$$

for all $p \in \mathscr{P}$ and $g, h \in \mathscr{G}_{\pi(p)}$, where $e_{\pi(p)}$ is the neutral element of $\mathscr{G}_{\pi(p)}$.

Definition (Principal bundle)

Still a fibre bundle

$$G \longrightarrow \mathscr{P}$$

$$\downarrow^{\pi}$$
 M

but with \mathscr{G} -action

simply transitive on fibres of \mathcal{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_X o \mathscr{P}_X$$
 $D_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_{\!\scriptscriptstyle X} o \mathscr{P}_{\!\scriptscriptstyle X} \ {
m D}_p r_g$$
 only defined on vertical structure

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathcal{G}) : r_{\sigma}(p) := p \cdot \sigma_{x}$$

Ambiguity in the choice of $\sigma \Rightarrow \text{Fix a horizontal distribution}$

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathcal{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\times}$

Remarks (Problem!)

Ambiguity in the choice of $\sigma \Rightarrow \text{Fix a horizontal distribution}$

Definition (Fundamental vector fields)

Fundamental vector fields defined by

$$\overline{\nu}_{p} := \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (p \cdot \mathrm{e}^{t\nu_{x}})$$

Foliations

for all $\nu \in \Gamma(q)$ and $p \in \mathcal{P}_{x}$, where q is the LAB of \mathcal{G} .

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is given by

$$(\mu_{\mathscr{C}})_{\mathsf{g}} := \mathrm{D}_{\mathsf{g}} \mathsf{L}_{\mathsf{g}^{-1}} \circ \pi^{\mathsf{v}},$$

 π^{ν} the projection onto the vertical bundle.

Definition (Darboux derivative)

For $\sigma \in \Gamma(\mathcal{G})$ we define the **Darboux derivative** $\Delta \sigma \in \Omega^1(M; q)$

$$\Delta \sigma = \sigma^! \mu_{\mathscr{C}},$$

where $\mu_{\mathscr{C}}$ is given by

$$(\mu_{\mathscr{C}})_{\mathsf{g}} := \mathrm{D}_{\mathsf{g}} \mathsf{L}_{\mathsf{g}^{-1}} \circ \pi^{\mathsf{v}},$$

 π^{ν} the projection onto the vertical bundle.

Remarks

If \mathscr{G} a trivial LGB with canonical flat connection and if Lie group additionally a matrix group, then

$$\Delta \sigma = \sigma^{-1} d\sigma$$
.

Definition (Modified right-pushforward, [S.-R. F.])

Define

$$r_{g*}(X) := \mathrm{D}_p r_{\sigma}(X) - \left. \overline{(\pi^! \Delta \sigma)|_p(X)} \right|_{p \cdot g}$$

for all $(p,g) \in \mathscr{P}_{x} \times \mathscr{G}_{x}$ and $X \in T_{p}\mathscr{P}$, where σ is any section of \mathscr{G} with $\sigma_{x} = g$.

Proposition (Well-defined isomorphism, [S.-R. F.])

We have that

$$T\mathscr{P}|_{\mathscr{P}_{x}} \to T\mathscr{P}|_{\mathscr{P}_{x}},$$
 $X \mapsto r_{\sigma*}(X),$

is a well-defined automorphism over r_g .

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\gamma_{g*}(H_p) = H_{p\cdot g}$$

Definition (Ehresmann connection, [S.-R. F.])

H a horizontal distribution of $T\mathscr{P}$ with

$$\gamma_{g*}(H_p) = H_{p\cdot g}$$

Definition (Equivalently: Connection 1-form, [S.-R. F.])

 $A \in \Omega^1(\mathscr{P}; \pi^*_{\mathscr{Q}})$ with

$$A(\overline{\nu}) = \pi^* \nu,$$

$$r_{\sigma}^! A = \mathrm{Ad}_{\sigma^{-1}} \circ A$$

for all $\sigma \in \Gamma(\mathcal{G})$ and $\nu \in \Gamma(\mathcal{Q})$.

Remarks

$$\left(r_{\sigma}^{!}A\right)_{p}(X)=A_{p\sigma_{x}}\left(r_{\sigma_{x}*}(X)\right).$$

Proposition (Connection on g, [S.-R. F.])

We have an induced vector bundle connection on g given by

$$\nabla^{\mathscr{G}}\nu := \left.\frac{\mathrm{d}}{\mathrm{d}t}\right|_{t=0} \Delta \mathrm{e}^{t\nu}.$$

Remarks

Recall, \mathscr{G} a principal \mathscr{G} -bundle.

Definition (Compatibility conditions, [S.-R. F.])

 $\mu_{\mathscr{C}}$ a Yang-Mills connection (w.r.t. $\zeta \in \Omega^2(M; \mathscr{Q})$) if it satisfies the compatibility conditions:

Foliations

- **1** $\mu_{\mathscr{C}}$ a connection 1-form on $\mathscr{C} \stackrel{\pi_{\mathscr{C}}}{\to} M$;
- **2** $\mu_{\mathscr{C}}$ satisfies the **generalised Maurer-Cartan equation**

$$\left. \left(\mathrm{d}^{\pi_{\mathscr{G}}^* \nabla^{\mathscr{G}}} \mu_{\mathscr{G}} + \frac{1}{2} [\mu_{\mathscr{G}} \stackrel{\wedge}{,} \mu_{\mathscr{G}}]_{\pi_{\mathscr{G}}^* \mathscr{G}} \right) \right|_{g} = \mathrm{Ad}_{g^{-1}} \circ \left. \pi_{\mathscr{G}}^! \zeta \right|_{g} - \left. \pi_{\mathscr{G}}^! \zeta \right|_{g}$$

Proposition ($\nabla^{\mathcal{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{C} , then

$$\nabla^{\mathcal{G}} \Big(\left[\mu, \nu \right]_{\mathcal{G}} \Big) = \left[\nabla^{\mathcal{G}} \mu, \nu \right]_{\mathcal{G}} + \left[\mu, \nabla^{\mathcal{G}} \nu \right]_{\mathcal{G}}.$$

Proposition ($\nabla^{\mathcal{G}}$ a Lie bracket derivation)

Let $\mu_{\mathscr{C}}$ be a connection 1-form on \mathscr{C} , then

$$\nabla^{\mathcal{G}}\Big(\big[\mu,\nu\big]_{\mathcal{Q}}\Big) = \Big[\nabla^{\mathcal{G}}\mu,\nu\Big]_{\mathcal{Q}} + \Big[\mu,\nabla^{\mathcal{G}}\nu\Big]_{\mathcal{Q}}.$$

Theorem (Curvature of LAB connection exact, [S.-R. F.])

 $\mu_{\mathscr{C}}$ satisfies the generalized Maurer-Cartan equation w.r.t. ζ if and only if

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta.$$

Both compatibility conditions are related to a cohomology, that is:

- \bullet μ_g closed
- 2 Curvature of μ_g exact with primitive ζ

Given a Yang-Mills connection on \mathcal{G} :

Definition (Generalized curvature/field strength \overline{F} of A, [S.-R. F.])

We define

$$F := \mathrm{d}^{\pi^* \nabla^{\mathscr{G}}} A + \frac{1}{2} [A \stackrel{\wedge}{,} A]_{\pi^* \mathscr{G}} + \pi^! \zeta.$$

Proposition (Properties of F, [S.-R. F.])

- $F(X, \cdot) = 0$, if X vertical,
- $\bullet \ r_{\sigma}^{!}F=\mathrm{Ad}_{\sigma^{-1}}\circ F.$

Proposition (Properties of F, [S.-R. F.])

- $F(X, \cdot) = 0$, if X vertical,
- $r_{\sigma}^! F = \operatorname{Ad}_{\sigma^{-1}} \circ F$.

Theorem (Gauge transformation, [S.-R. F.])

Let s_i , s_i be two sections of \mathcal{P} over U_i and U_i , respectively, which are open subsets of M with $U_i \cap U_i \neq \emptyset$. Then over $U_i \cap U_i$

Foliations

$$F_{s_i} = \operatorname{Ad}_{\sigma_{ii}^{-1}} \circ F_{s_j},$$

where $F_{s_i} := s_i^! F$ and σ_{ii} a section of $\mathscr G$ with $s_i = s_i \cdot \sigma_{ii}$.

Theorem (Lagrangian, [S.-R. F.])

- κ be an Ad-invariant fibre metric on q,
- M a spacetime, and * its Hodge star operator,
- \bullet $(U_i)_i$ open covering of M with subordinate gauges $s_i \in \Gamma(\mathscr{P}|_{U_i}).$

Then the Lagrangian $\mathfrak{L}_{CYM}[A]$, defined locally by

$$(\mathfrak{L}_{\mathrm{CYM}}[A])\big|_{U_i} := -\frac{1}{2}\kappa(F_{s_i} \stackrel{\wedge}{,} *F_{s_i}),$$

is well-defined, and

$$\mathfrak{L}_{\mathrm{CYM}}\big[L^!A\big]=\mathfrak{L}_{\mathrm{CYM}}[A]$$

for all principal bundle automorphisms L.

Back to the roots

- $\textbf{ 2} \quad \textbf{Equip } \mathcal{G} \text{ with canonical flat connection }$

Example (Hopf fibration $\mathbb{S}^7 \to \mathbb{S}^4$, [S.-R. F.])

Let P be the Hopf bundle

$$SU(2) \cong \mathbb{S}^3 \longrightarrow \mathbb{S}^7$$

$$\downarrow$$

$$\mathbb{S}^4$$

Foliations

Define $\mathscr{P} := \mathscr{G}$ as the inner group bundle of P,

$$\mathscr{G} := c_{\mathrm{SU}(2)}(P) := (P \times \mathrm{SU}(2)) / \mathrm{SU}(2).$$

This principal $c_{SU(2)}(P)$ -bundle admits the structure as curved Yang-Mills gauge theory; there is no description as classical gauge theory.

Applications: Singular foliations

(joint work w/ Camille Laurent-Gengoux)

Singular Foliations:

 Gauge Theory (Ex.: Singular foliation \leftrightarrow Symmetry breaking \rightarrow Higgs mechanism)

Foliations

- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry

A smooth singular foliation $\mathscr F$ on a smooth manifold is a subspace of $\mathfrak X_c(M)$ so that

- it is involutive,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

A smooth singular foliation \mathscr{F} on a smooth manifold is a subspace of $\mathfrak{X}_c(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$,
- it is locally finitely generated.

A smooth singular foliation \mathcal{F} on a smooth manifold is a subspace of $\mathfrak{X}_{c}(M)$ so that

- it is **involutive**, *i.e.* $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$,
- it is stable under $C^{\infty}(M)$ -multiplication, i.e. $fX \in \mathcal{F}$ for all $f \in C^{\infty}(M)$ and $X \in \mathcal{F}$.
- it is **locally finitely generated**, i.e. around each $p \in M$ there is an open neighbourhood U and a finite family $(X^i)_i^r$ $(X^i \in \mathcal{F})$ such that for all $X \in \mathcal{F}$ there are $f_i \in C^{\infty}(M)$ satisfying on U.

$$X=\sum_i f_i X^i.$$

Remarks (Leaves)

Following the flows in \mathcal{F} , this gives rise to a partition of connected immersed submanifolds in M.

Idea: Relation to gauge theory

Theorem $(\mathcal{F}$ -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport PT_{γ} has values in $Sym(\tau_{I}, \tau_{I'})$.
- For a contractible loop γ_0 at I: PT_{γ_0} values in $Inner(\tau_I)$.

Example of a transverse foliation τ :

Remarks

- Inner(τ_I) maps each circle to itself
- Sym (τ_I) allows to exchange circles
- Both preserve τ_I and fix the origin

Idea: Relation to gauge theory

Idea

Idea

Generators of \mathcal{F} given by $\mathcal{F}_{projectable}$:

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea

Idea

Generators of \mathcal{F} given by $\mathcal{F}_{projectable}$:

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$, X^{\uparrow} its projectable horizontal lift, $\nu \in \Gamma(\operatorname{inner}(\tau))$ and $\overline{\nu}$ its fundamental vector field.

Idea: Relation to gauge theory

Idea

Fix I and given τ_I : Reconstruct \mathscr{F} .

$$\begin{bmatrix} X^{\uparrow} + \overline{\nu}, X'^{\uparrow} + \overline{\mu} \end{bmatrix} = \begin{bmatrix} X, X' \end{bmatrix}^{\uparrow} + \dots$$

$$= \underbrace{\begin{bmatrix} X^{\uparrow}, X'^{\uparrow} \end{bmatrix}}_{\text{\sim curvature}} + \underbrace{\begin{bmatrix} X^{\uparrow}, \overline{\mu} \end{bmatrix} - \begin{bmatrix} X'^{\uparrow}, \overline{\nu} \end{bmatrix}}_{\text{\sim connection}} + \overline{[\nu, \mu]}$$

Curved Yang-Mills gauge theory

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathcal{G}

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0} A.$$

 \rightarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Curved Yang-Mills gauge theories:

Classical Curved Lie group G Lie group bundle \mathcal{G}

$$G \longrightarrow \mathscr{G}$$
 \downarrow
 I

Remarks (Why a "curved theory"?)

Usually, the field strength F is given by (abelian, for simplicity)

$$F := \mathrm{d}A = \mathrm{d}^{\nabla^0}A.$$

 \rightsquigarrow We will use a general connection ∇ instead of ∇^0 , and ∇ may not be flat.

Definition (LGB actions)

A **right-action of** \mathscr{G} **on** \mathscr{T} is a smooth map

 $\mathscr{T} * \mathscr{G} := \mathscr{T}_{\phi} \times_{\pi_{\mathscr{C}}} \mathscr{G} \to \mathscr{T}_{\phi}(t,g) \mapsto t \cdot g$, satisfying the following properties:

$$\phi(t \cdot g) = \phi(t), \tag{14}$$

$$(t \cdot g) \cdot h = t \cdot (gh), \tag{15}$$

$$t \cdot e_{\phi(t)} = p \tag{16}$$

for all $t \in \mathcal{T}$ and $g, h \in \mathcal{G}_{\phi(t)}$, where $e_{\phi(t)}$ is the neutral element of $\mathcal{G}_{\phi(t)}$.

Definition (Principal bundle)

A surjective submersion $\pi_{\mathscr{P}} \colon \mathscr{P} \to L'$, with \mathscr{G} -action

$$\mathscr{P} * \mathscr{G} \to \mathscr{P}$$
 $\mathscr{P} * \mathscr{G}$

simply transitive on $\pi_{\mathscr{P}}$ -fibres of \mathscr{P} , and "suitable" atlas.

Connection on \mathcal{P} : Idea

But:

$$r_g: \mathscr{P}_X o \mathscr{P}_X$$
 $D_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

But:

$$r_g\colon \mathscr{P}_\mathsf{X} o \mathscr{P}_\mathsf{X}$$
 $\mathrm{D}_p r_g$ only defined on vertical structure

Connection on \mathcal{P} : Idea

Use
$$\sigma \in \Gamma(\mathscr{G})$$
: $r_{\sigma}(p) := p \cdot \sigma_{\Psi(x)}$

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle (\mathscr{G} trivial, $\sigma \equiv g$ constant), and H a connection:

Connection on \mathcal{P} : Revisiting the classical setup

If \mathscr{P} a typical principal bundle $(\mathscr{G} \text{ trivial}, \ \sigma \equiv g \text{ constant})$, and H a connection:

Remarks (Integrated case)

Parallel transport $\mathsf{PT}^{\mathscr{P}}_{\gamma}$ in \mathscr{P} :

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot g$$

where $\gamma: I \to L'$ is a base path

Connection on \mathscr{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

Back to the roots

- $\mathfrak{G}\cong\mathsf{L}\times\mathsf{G}$
- 2 Equip \mathcal{G} with canonical flat connection

Connection on \mathscr{P} : General case

Remarks (Integrated case)

Ansatz: Introduce connection on \mathcal{G} ,

$$\mathsf{PT}_{\gamma}^{\mathscr{P}}(p \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{P}}(p) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g).$$

Back to the roots

- $\mathfrak{G}\cong L\times G$
- 2 Equip \mathscr{G} with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.])

A surjective submersion $\pi_{\mathcal T}\colon \mathcal T\to L'$ so that one has a commuting diagram

$$\begin{array}{ccc}
\mathcal{F} & & \mathcal{G} \\
\pi_{\mathcal{F}} \downarrow & & \downarrow \pi_{\mathcal{F}} \\
L' & \xrightarrow{\Psi} & L
\end{array}$$

1 Ehresmann connection: \mathscr{G} preserving $\pi_{\mathscr{T}}$ and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(t \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{T}}(t) \cdot \mathsf{PT}_{\Psi \circ \gamma}^{\mathscr{G}}(g)$$

Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(t) = t \cdot \mathsf{g}_{\gamma_0}$$

for some $g_{\gamma_0} \in \mathcal{G}_{\phi(t)}$, where γ_0 is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

- On G: Multiplicative Yang-Mills connection
- On \mathcal{P} : Ehresmann connection

Definition (Multiplicative YM connection, [S.-R. F.])

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On G: Multiplicative Yang-Mills connection
- On \(\mathcal{P} \): Ehresmann connection

This gives rise to a generalised gauge theory by contracting the

On \mathcal{G} there is also the notion of **multiplicative Yang-Mills** connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g), \ \mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$$

Definition (Principal bundle connection, [S.-R. F.])

- On G: Multiplicative Yang-Mills connection
- On \mathscr{P} : Ehresmann connection

Remarks ([S.-R. F.])

This gives rise to a generalised gauge theory by contracting the involved curvatures.

Remarks

There is a simplicial differential δ on $\mathscr{G} \overset{\pi_\mathscr{C}}{\to} L$ with Lie algebra bundle \mathscr{Q}

$$\delta: \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k \text{ times}}; \pi_{\mathscr{C}}^{*}g) \to \Omega^{\bullet}(\underbrace{\mathscr{G} * \ldots * \mathscr{G}}_{k+1 \text{ times}}; \pi_{\mathscr{C}}^{*}g)$$

such that the definition of the multiplicative Yang-Mills connection is equivalent to the **compatibility conditions**

- Connection closed
- Curvature exact ([S.-R. F.])

Remarks

On the Lie algebra bundle $\mathcal Q$ we have a connection $\nabla^{\mathcal G}$ with

$$\nabla^{\mathscr{G}}(\left[\mu,\nu\right]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad \text{([S.-R. F.])}$$

Foliations

Given a short exact sequence of algebroids

$$g \longrightarrow E \longrightarrow TL$$

with splitting $\chi : TL \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Remarks

On the Lie algebra bundle q we have a connection ∇^{g} with

$$\nabla^{\mathscr{G}}(\left[\mu,\nu\right]_{\mathscr{Q}}) = \left[\nabla^{\mathscr{G}}\mu,\nu\right]_{\mathscr{Q}} + \left[\mu,\nabla^{\mathscr{G}}\nu\right]_{\mathscr{Q}},$$

$$R_{\nabla^{\mathscr{G}}} = \mathrm{ad} \circ \zeta. \qquad ([\mathsf{S.-R. F.}])$$

Foliations

Example

Given a short exact sequence of algebroids

$$q \longrightarrow E \longrightarrow TL$$

with splitting $\chi \colon \mathrm{T} L \to E$, then

$$\nabla_X^{\mathcal{G}} \nu = [\chi(X), \nu]_E,$$

$$\zeta(X, X') = [\chi(X), \chi(X')]_E - \chi([X, X']).$$

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$X^{\uparrow} + \overline{\nu},$$

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof

We have

$$\begin{split} \left[X^{\uparrow}, \overline{\nu} \right] &= \overline{\nabla_X^{\mathcal{G}}} \nu, \\ \left[X^{\uparrow}, {X'}^{\uparrow} \right] &= \left[X, X' \right]^{\uparrow} + \overline{\zeta(X, X')}, \end{split}$$

where $\zeta \in \Omega^2(L; q)$.

Theorem ([C. L.-G., S.-R. F.])

Given a multiplicative Yang-Mills connection on $\mathcal G$ and a Yang-Mills connection on $\mathcal T$, then there is a natural foliation on $\mathcal T$ generated by

$$X^{\uparrow} + \overline{\nu}$$
,

where $X \in \mathfrak{X}(L)$ and $\nu \in \Gamma(g)$.

Proof.

We have

$$\begin{bmatrix} X^{\uparrow}, \overline{\nu} \end{bmatrix} = \overline{\nabla_X^{\mathcal{G}} \nu}, \begin{bmatrix} X^{\uparrow}, {X'}^{\uparrow} \end{bmatrix} = \begin{bmatrix} X, X' \end{bmatrix}^{\uparrow} + \overline{\zeta(X, X')},$$

where $\zeta \in \Omega^2(L; q)$.

Idea (Leaf *L* simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- 2 P a principal G-bundle, equipped with an ordinary connection

Foliations

3 $\mathscr{G} := (P \times G)/G$, the inner group bundle

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

- $\mathfrak{F} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$
- $\mathfrak{T} := \left(P \times \mathbb{R}^d\right) / G$, the normal bundle

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

- $\mathfrak{F} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$
- $\mathscr{T} := (P \times \mathbb{R}^d) / G$, the normal bundle

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathcal{G} acts on \mathcal{T} (canonically from the left).

Idea (Leaf L simply connected)

Fix a point $l \in L$ with transverse model (\mathbb{R}^d, τ_l) :

- $\mathbf{0}$ $G = \operatorname{Inn}(\tau_I)$
- P a principal G-bundle, equipped with an ordinary connection

Foliations

- $\mathfrak{F} \coloneqq (P \times G) \Big/ G, \text{ the inner group bundle}$

Remarks

- Think of the induced connection on \mathcal{T} as the \mathcal{F} -connection.
- \mathscr{G} acts on \mathscr{T} (canonically from the left).

Proposition ([C. L.-G., S.-R. F.])

The associated connection on $\mathscr G$ is a multiplicative Yang-Mills connection and the one on \mathcal{T} is a corresponding Yang-Mills connection.

Foliations

Remarks

Thus, we have a singular foliation on \mathcal{T} , which, by construction, admits L as a leaf and τ_l as transverse data.

Lemma ([C. L.-G., S.-R. F.])

 $\mathscr{P} \coloneqq (P \times P) \Big/ G$, the **Atiyah groupoid**, is a principal \mathscr{G} -bundle

Foliations

where t and s are the target and source arrows, respectively. A connection on P induces an Ehresmann connection on \mathcal{P} .

Definition (Associated bundles, [C. L.-G., S.-R. F.])

Equivalence relation on $\mathcal{P}_s \times_{\pi_{\mathcal{T}}} \mathcal{T}$

$$(p,t) \sim (p \cdot g, g^{-1} \cdot t)$$

defines the **associated bundle** $\mathscr{P} \tilde{\times} \mathscr{T}$ over L'.

Theorem (Associated connection, [C. L.-G., S.-R. F.])

$$\mathsf{PT}_{\gamma}^{\mathscr{P}\tilde{\times}\mathscr{T}}[p,t] \coloneqq \left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p),\mathsf{PT}_{\mathrm{pr}_{2}\circ\gamma}^{\mathscr{T}}(t)\right]$$

is a well-defined connection.

Associated connection independent of the choice of connection on *P*!

Theorem (Associated connection, [C. L.-G., S.-R. F.])

$$\mathsf{PT}_{\gamma}^{\mathscr{P}\tilde{\times}\mathscr{T}}[p,t] \coloneqq \left[\mathsf{PT}_{\gamma}^{\mathscr{P}}(p),\mathsf{PT}_{\mathrm{pr}_{2}\circ\gamma}^{\mathscr{T}}(t)\right]$$

is a well-defined connection.

Remarks ([C. L.-G., S.-R. F.])

Associated connection independent of the choice of connection on *P*!

Explicitly, one possible way:

Remarks

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

$$\pi_{\mathscr{T}}^{!}\mathsf{Ad}(P) \longrightarrow \pi_{\mathscr{T}}^{!}\mathsf{At}(P) \longrightarrow \mathsf{T}\mathscr{T}$$

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Explicitly, one possible way:

Remarks

Corresponding to \mathcal{P} there is an Atiyah sequence:

$$Ad(P) \longrightarrow At(P) \longrightarrow TL$$

Foliations

Via pullback to \mathcal{T} we have a transitive algebroid over \mathcal{T} :

$$\pi_{\mathscr{T}}^{!}\mathsf{Ad}(P) \longrightarrow \pi_{\mathscr{T}}^{!}\mathsf{At}(P) \longrightarrow \mathsf{T}\mathscr{T}$$

Remarks

Observe

$$\pi_{\mathscr{T}}^{!}\mathsf{At}(P)\subset \mathrm{T}(\mathscr{P}_{s}\times_{\pi_{\mathscr{T}}}\mathscr{T})$$

Ad(P) and At(P) the adjoint and Atiyah bundle of P, respectively:

Future Prospects

Remarks (Why **curved** gauge theory?)

- Associated connection invariant under choice of F-connection $\nabla^{\mathscr{F}}$
- Associated connection has the form

$$\nabla^{\mathscr{F}} + A$$

where A is the connection 1-form on \mathcal{P}

Thank you!