What is Number System?

1. Method to represent numeric values or quantities using different digits.

Decimal System

- 1. The decimal number system has base 10.
- 2. It uses digits from 0 to 9.
- 3. Base: it is the number of symbols (digits) a number system uses.

Binary Number System

Computer Storage. CPU - Binary

- 1. Number system using base 2.
- 2. It uses only two digits i.e., 0 and 1.

0

Power ON Memos - Biner Oft on on off on off O 1 0 1 0 1 6 Bit Gpv.

-> Balty

Binary Number System

- 1. Number system using base 2.
- 2. It uses only two digits i.e., 0 and 1.

Deathy of Bolton of Survey of Survey

Storage. Binan

Counting in Binary Number System

Decimal	Binary	Decimal	Binary
0	0	12	1100
1	1	13	1101
2	10	14	1110
3	11	15	1111
4	100	16	10000
5	101	17	10001
6	110	18	10010
7	111	19	10011
8	1000	20	10100
9	1001	21	10101
10	1010	22	10110
11	1011	23	10111

Decimal to Binary Conversion

Division Method

- 1. Divide number by 2.
- 2. Store reminder. (That will be a bit in binary number)
- 3. Repeat above steps with the Quotient until quotient is less than 2.
- 4. Reverse the bits so obtained.

Decimal to Binary Conversion

Division Method

- 1. Divide number by 2.
- 2. Store reminder. (That will be a bit in binary number)
- 3. Repeat above steps with the Quotient until quotient is less than 2.
- 4. Reverse the bits so obtained.

Decimal to Binary Conversion

Bitwise Method

- 1. Obtain bit with bitwise AND operation i.e., (N & 1)
- 2. Right Shift N by 1. $(N = N \gg 1)$
- 3. Repeat above steps till N > 0.
- 4. Reverse the bits so obtained.

101 ·

NUMBER System

10 > Rem >

$$an = 0$$
. $i = 0$
 $an = \left(\frac{1}{2} + \frac{1}{2}$

Binary to Decimal Conversion

- 1. Multiple each digit with its place value.
- 2. Add up all place values.
- 3. Sum is the Decimal number.

Binary to Decimal Conversion

- 1. Multiple each digit with its place value.
- 2. Add up all place values.
- 3. Sum is the Decimal number.

Binary to Decimal Conversion

- 1. Multiple each digit with its place value.
- 2. Add up all place values.
- 3. Sum is the Decimal number.

Binary =
$$(10102)$$
 $7)$
 1010
 $91x2^{3} + 8x2^{2} + 1x2 + 0x2^{\circ}$
 $91x2^{3} + 8x2^{2} + 2x2 + 0x2^{\circ}$
 10102

$$dec = 2 + 1 \times 2^3$$

= $2 + 1 \times 2 = 10$