ترجمه پاسخنامه مجموعه مسائل ۷.۲

صفحه ۱۱۷

مجموعه مسائل ۷.۲، صفحه ۱۱۷

$$(A^{-1})^T = (A^T)^{-1} = \begin{bmatrix} 1 & -\mathbf{r} \\ 1 & 1/\mathbf{r} \end{bmatrix}$$
 و $A^{-1} = \begin{bmatrix} 1 & \mathbf{r} \\ -\mathbf{r} & 1/\mathbf{r} \end{bmatrix}$ ، $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{r} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T = \begin{bmatrix} 1 & \mathbf{q} \\ 1 & \mathbf{q} \end{bmatrix}$. $A^T =$

- باشد و A^TB^T باشد و ترانهاده گیری نتیجه دهد $B^TA^T=A^TB^T$ باشد و
- $(A^T)^{-1}(B^T)^{-1}$ این همچنین برابر است با $((AB)^{-1})^T = (B^{-1}A^{-1})^T = (A^{-1})^T(B^{-1})^T$ (الف) .۳ (ب) اگر U بالا_مثلثی باشد، U^{-1} نیز چنین است: آنگاه $(U^{-1})^T$ پایین_مثلثی است.
- ۴. $\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$ در دودشان را ما قطر A^TA حاصلضربهای داخلی ستونهای A در خودشان را دارد. اگر A^TA باشد، حاصلضربهای داخلی صفر A ستونهای صفر A عاتریس صفر.
- $x^TA=\begin{bmatrix} \mathbf{f} & \mathbf{0} & \mathbf{f} \end{bmatrix}$ سطر $\mathbf{f} = \mathbf{0}$ الف) $\mathbf{f} = \mathbf{0}$ الف) $\mathbf{f} = \mathbf{0}$ این برابر است با سطر $\mathbf{f} = \mathbf{0}$ این همچنین برابر است با سطر $\mathbf{f} = \mathbf{0}$ ضربدر $\mathbf{f} = \mathbf{0}$ این همچنین برابر است با سطر $\mathbf{f} = \mathbf{0}$ ضربدر $\mathbf{f} = \mathbf{0}$
 - باشد. $D^T=D$ و $B^T=C$ ، $A^T=A$ باشد، $M^T=M$ باشد. $M^T=D$ و $M^T=\begin{bmatrix}A^T & C^T \\ B^T & D^T\end{bmatrix}$.۶
- ۷. (الف) غلط: $\begin{bmatrix} \cdot & A \\ A^T & \cdot \end{bmatrix}$ متقارن است. (ب) غلط: ترانهاده AB برابر با AB است. بنابراین $\begin{bmatrix} \cdot & A \\ A^T & \cdot \end{bmatrix}$ نیاز به BA = AB دارد. (ج) صحیح: ماتریسهای متقارن معکوس پذیر، معکوسهای متقارن دارند! ساده ترین اثبات، ترانهاده گرفتن از $AB^{-1} = I$ است. (د) صحیح: $AB^{-1} = I$ متقارن دارند! صحیح: $AB^{-1} = I$ است. (C) صحیح: $AB^{-1} = I$ ماتریسهای متقارن $AB^{-1} = I$
 - ۸. عدد ۱ در سطر اول n انتخاب دارد؛ سپس ۱ در سطر دوم -n۱ انتخاب دارد n (در کل n! حالت).
- $P_{\mathsf{Y}} = P_{\mathsf{Y}} P_{\mathsf{Y}} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{Y} & \mathsf{Y} \\ \mathsf{Y} \end{bmatrix} = \begin{bmatrix} \mathsf{$

- ۱۰. جایگشتهای (۴،۲،۱،۳) و (۴،۲،۱،۳) عنصر ۴ را در جای خود نگه می دارند؛ ۶ جایگشت زوج دیگر عنصر ۱ یا ۲ یا ۳ را ثابت نگه می دارند؛ جایگشتهای (۳،۴،۱،۲) و (۲،۱،۴،۳) و (۱،۲،۳،۴) دو جفت را جابجا می کنند. جایگشت (۴،۳،۲،۱) همانی است. مجموعاً ۱۲ جایگشت زوج وجود دارد.
- بالا مثلثی است. ضرب A از سمت راست در ماتریس $PA = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot & \cdot & \beta \\ \cdot & \cdot & A \\ \cdot & \cdot & \delta \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \gamma \\ \cdot & \cdot & A \\ \cdot & \cdot & \delta \end{bmatrix}$. 11

جایگشت P_1 ، ستونهای A رآ جابجا می کند. برای پایین مثلثی کردن این A نیاز داریم که P_1 نیز سطرهای

$$P_1AP_7=egin{bmatrix} 1 & 1 \ 1 \end{bmatrix}Aegin{bmatrix} 1 & 1 \ 1 \end{bmatrix}=egin{bmatrix} 9 & \cdot & \cdot \ 0 & f & \cdot \ 0 & f & \cdot \end{bmatrix}$$
 کند: $P_1AP_7=egin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$

 $Px\cdot y=x\cdot P^Ty
eq x\cdot Py$ به طور کلی $P^TP=I$ زیرا $Px\cdot y=x\cdot P^TP$ زیرا $Px\cdot y=x\cdot P^T$ به طور کلی $Px\cdot y=x\cdot P^T$

$$P^{\pi}=I$$
 است: $P^{\pi}=I$ است: $P=\begin{bmatrix} \cdot & 1 & \cdot \\ \cdot & \cdot & 1 \\ 1 & \cdot & \cdot \end{bmatrix}$ است: $P^{\pi}=I$ است: $P^{\pi}=I$ است. $P^{\pi}=I$ دارای $P^{\pi}=I$ دارای $P^{\pi}=I$ است. $P^{\pi}=I$ است. $P^{\pi}=I$ دارای $P^{\pi}=I$ دارای $P^{\pi}=I$ است.

- ۱۴. «ماتریس همانی معکوس» P، بردار (۱ (n,...، را به n) میبرد. وقتی سطرها و همچنین ستونها معکوس شوند، درایههای ۱،۱ و n، در ماتریس A در PAP^T جابجا میشوند. درایههای n، و n، نیز همینطور. به طور کلی، $(PAP^T)_{ij}$ برابر با $(PAP^T)_{i-1,n-j+1}$ است.
- $P = \begin{bmatrix} E & \mathbf{1} \\ \mathbf{1} & E \end{bmatrix} = P^T$ (به سطر ۱ میبرد. (به سطر ۲ ببرد، آنگاه P^T سطر ۴ سطر ۱ میبرد. (با الف) اگر P سطر ۱ میشوند. P^T سطرها را جابجا میکند: ۱ و ۲ جابجا میشوند، P^T تمام سطرها را جابجا میکند: ۱ و ۲ جابجا میشوند، P^T تمام سطرها را جابجا میکند: ۱ و ۲ جابجا می
- ABABو (A+B) و A و B متقارن باشند. اما (A+B) و A و B متقارن باشند. اما و ABAB و A . 19 به طور کلی متقارن نیستند.

۱۷. (الف)
$$S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = S$$
 معکوسپذیر نیست. (ب) $S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = S^T$ نیاز به جابجایی سطر دارد. (ج) $S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = S^T$ دارای محورهای $S = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ است: ریشه دوم حقیقی ندارد.

- ۱۸. (الف) ۱۵ L (ب) اشد. C (ب) باشد. (ب) درایه و C درایه مستقل اگر C درایه است؛ مجموعاً ۱۵ درایه در C دارای ۵ درایه است؛ مجموعاً ۱۵ درایه در C دارای ۵ درایه است، قطر صفر است و C دارای ۵ درایه است؛ مجموعاً ۱۵ درایه در C درایه در C دارای ۵ درایه است، قطر صفر است و C دارای ۵ درایه است، C دارای ۵ درایه در C درایه درای در C درایه در C در C درایه در C در C درایه در C درای در C در C
- ۱۹. (الف) ترانهاده A^TSA برابر است با A^TSA برابر است با A^TSA که ماتریسی $\mathbf{n} \times \mathbf{n}$ است وقتی $\mathbf{n} \times \mathbf{n}$ (برای هر ماتریس $\mathbf{n} \times \mathbf{n}$ مانند .($\mathbf{n} \times \mathbf{n}$ برابر است با $\mathbf{n} \times \mathbf{n}$ برای هر ماتریس $\mathbf{n} \times \mathbf{n}$ مانند .($\mathbf{n} \times \mathbf{n}$ برای هر مربع ستون $\mathbf{n} \times \mathbf{n}$ مانند .($\mathbf{n} \times \mathbf{n}$ برای هر مربع ستون از مربع میتون و نام کرد.

$$\begin{bmatrix} \mathbf{r} & -\mathbf{r} & \cdot \\ -\mathbf{r} & \mathbf{r} & -\mathbf{r} \end{bmatrix} = \cdot \begin{bmatrix} \mathbf{r} & b \\ b & c \end{bmatrix} = \begin{bmatrix} \mathbf{r} & \cdot \\ b & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ b & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ b & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} \end{bmatrix} = LDL^{T}$$

۲۱. حذف روی یک ماتریس متقارن
$*$
۳٪ یک ماتریس متقارن * ۲٪ در پایین سمت راست باقی میگذارد. $\begin{bmatrix} d-b^{\mathsf{T}} & e-bc \\ e-bc & f-c^{\mathsf{T}} \end{bmatrix}$ و $\begin{bmatrix} 1 & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ به ترتیب به $\begin{bmatrix} 1 & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ منجر میشوند که متقارن هستند!

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix} A = \begin{bmatrix} & & \\ & & \\ & & \\ & & & \end{bmatrix} \begin{bmatrix} & & & \\ & & \\ & & & \\ & & & \end{bmatrix} . YY$$

$$A=P$$
 . حذف روی این $A=P$ ، سطرهای ۲-۱، سپس ۲-۳ و $A=\begin{bmatrix} \cdot & \cdot & \cdot & 1 \\ 1 & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \end{bmatrix}=P$. ۲۳ سپس ۲-۳ را جابجا می کند.

است.
$$\begin{bmatrix} & & 1 \\ & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \cdot & & 1 & \\ & & & \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & & & \\ & & & \\ & & & 1/7 & \end{bmatrix} \begin{bmatrix} 1 & & & 1 \\ & & & \\ & & & \\ & & & -1/7 \end{bmatrix}$$
 است. $PA = LU$.۲۴

۲۵. یک راه برای تشخیص زوج یا فرد بودن یک جایگشت، شمردن تمام جفتهایی است که P در ترتیب اشتباه قرار داده است. آنگاه P زوج یا فرد است وقتی آن شمارش زوج یا فرد باشد. مرحله دشوار: نشان دهید که یک جابجایی همیشه آن شمارش را تغییر می دهد! آنگاه P یا P جابجایی آن شمارش را فرد باقی می گذارند.

$$E_{\Upsilon 1} A E_{\Upsilon 1}^T = \begin{bmatrix} 1 & \cdot & \cdot \\ \cdot & \Upsilon & * \\ \cdot & * & 4 \end{bmatrix}$$
 درایه (۱،۲) ماتریس $E_{\Upsilon 1} A$ را صفر می کند. آنگاه $E_{\Upsilon 1} = \begin{bmatrix} 1 \\ -\Upsilon & 1 \end{bmatrix}$ (الف) . ۲۶ منوز متقارن است و درایه (۲،۱) آن نیز صفر است. (ب) اکنون از $E_{\Upsilon 1} = \begin{bmatrix} 1 \\ -\Upsilon & 1 \end{bmatrix}$ استفاده کنید

تا درایه (۲،۳) صفر شود و $D=E_{rr}E_{rr}E_{rr}E_{rr}^T$ نیز درایه (۳،۲) خود را صفر خواهد داشت. نکته کلیدی: حذف از هر دو طرف (سطرها + ستونها) تجزیه متقارن LDL^T را نتیجه می دهد.

در هر سطر خود ۳،۲،۱،۰ را دارد. من قانونی برای چنین ساختار متقارنی
$$A = \begin{bmatrix} \cdot & 1 & 7 & \pi \\ 1 & 7 & \pi & \cdot \\ 7 & \pi & \cdot & 1 \\ \pi & \cdot & 1 & 1 \end{bmatrix} = A^T$$
 .۲۷ ماتریس هانکل با پادقطرهای ثابت) نمی شناسم.

درایه a را جابجا میکند. بنابراین نتیجه نمی تواند ترانهاده $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ درایه a را جابجا میکند. بنابراین نتیجه نمی تواند ترانهاده باشد (که a را جابجا نمیکند).

۱۹ در هر
$$A^T \boldsymbol{y} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & -\mathbf{1} & -\mathbf{1} \end{bmatrix} \begin{bmatrix} y_{BC} \\ y_{CS} \\ y_{BS} \end{bmatrix} = \begin{bmatrix} y_{BC} + y_{BS} \\ -y_{BC} + y_{CS} \\ -y_{CS} - y_{BS} \end{bmatrix}$$
 هستند. (ب) در هر $(A\boldsymbol{x})^T \boldsymbol{y} = \boldsymbol{x}^T (A^T \boldsymbol{y}) = x_B y_{BC} + x_B y_{BS} - x_C y_{BC} + x_C y_{CS} - x_S y_{CS} - x_S y_{BS}$ دو حالت $x_B y_{BC} + x_B y_{BS} - x_C y_{BC} + x_C y_{CS} - x_S y_{CS} - x_S y_{BS}$ شش جمله.

۱ کامیون، ۱
$$A^T y = \begin{bmatrix} 1 & x & y \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y & y \\ y & 0 \end{bmatrix} = \begin{bmatrix} y & y & y \\ y & 0 \end{bmatrix} : \begin{bmatrix} 1 & 0 & 0 & y \\ y & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Ax$$
 . $x = x$

- هزینه ورودیهاست در حالی که $oldsymbol{x} \cdot A^T oldsymbol{y}$ ارزش خروجیهاست. $A oldsymbol{x} \cdot oldsymbol{y}$
- ۱۲۰. $P^{\mathfrak{r}}=I$ بنابراین سه دوران برای ۳۶۰ درجه؛ P هر بردار v را حول خط (۱،۱،۱) به اندازه ۱۲۰ درجه می چرخاند.
 - سربدر (ماتریس متقارن). $\begin{bmatrix} 1 & 1 \\ 7 & q \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 7 & 0 \end{bmatrix} = EH$. EH . EH
- برابر با U^TDU حاصلضرب پایین مثلثی در پایین مثلثی است، بنابراین پایین مثلثی است. ترانهاده U^TDU برابر با U^TDU است، بنابراین U^TDU متقارن است. U^TDU است، بنابراین U^TDU
- ۳۵. اینها گروه هستند: ماتریسهای پایین مثلثی با درایههای قطری ۱، ماتریسهای قطری معکوس پذیر ،D ماتریسهای جراگشت ،P ماتریسهای متعامد با $Q^T=Q^{-1}$.
- ۳۶. قطعاً B^T شمال_غربی است. B^{Υ} یک ماتریس کامل است! B^{-1} جنوب_شرقی است. سطرهای B به ترتیب معکوس از یک ماتریس پایین مثلثی D هستند، بنابراین D = PL. آنگاه $D^{-1} = L^{-1}$ ستونها را به ترتیب معکوس از D^{-1} دارد. بنابراین D^{-1} جنوب_شرقی است.
- ۳۷. تعداد n! ماتریس جایگشت از مرتبه n وجود دارد. سرانجام دو توان از P باید همان جایگشت باشند. و اگر $r-s\leq n!$ باشد، آنگاه $P^{r-s}=I$ قطعاً $P^{r-s}=I$
- و $S=\frac{1}{7}(M+M^T)$ برای تجزیه ماتریس M به (متقارن (S + (پادمتقارن ،(A تنها انتخاب این است که $S=\frac{1}{7}(M+M^T)$. $A=\frac{1}{7}(M-M^T)$
- ۱۳۹. از $Q^TQ = I$ شروع کنید، به این صورت: $\begin{bmatrix} \mathbf{q}_1^T \\ \mathbf{q}_1^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_1 \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_1 \end{bmatrix}$. (الف) درایههای قطری نتیجه $Q^TQ = I$ از $Q^TQ = I$ شروع کنید، به این صورت: $\mathbf{q}_1^T\mathbf{q}_1 = \mathbf{q}_1$ است (و به طور کلی میدهند $\mathbf{q}_1^T\mathbf{q}_1 = \mathbf{q}_1$ و $\mathbf{q}_1 = \mathbf{q}_1$ بردارهای یکه. (ب) درایه غیرقطری $\mathbf{q}_1 = \mathbf{q}_1$ است (و به طور کلی $\mathbf{q}_1 = \mathbf{q}_1$ است. ($\mathbf{q}_1 = \mathbf{q}_1$). (ج) مثال اصلی برای ، $\mathbf{q}_1 = \mathbf{q}_1$ ماتریس دوران $\mathbf{q}_1 = \mathbf{q}_1$ است.