CO450 Computer Architectures Week 2 Exercise Handout

Re-Cap on Base 10 Decimal Numbers	2
Positional Notation: Binary to Decimal Conversion	
Doubling: Binary to Decimal Conversion	6
Short Division by Two with Remainder: Decimal to Binary Conversion	8
Comparison with Descending Powers of Two and Subtraction: Decimal to Binary Conversion	. 10
Binary Addition	. 12
The Answers	. 14

Re-Cap on Base 10 Decimal Numbers

1. What is th	ne corr	ect way	to w	rite c	out the foll	ow	ing ba	ase 10 i	numbe	er:		
45 ₁₀												
					(4 x 10 ¹)	+	(5 x :	10 ⁰)	=		4510
						•						
2. What is th	ne corr	ect way	to w	rite c	out the foll	ow	ing ba	ase 10 i	numbe	er:		
68 ₁₀												
	•										•	
3. What is th	ne corr	ect way	to w	rite c	out the foll	ow	ing ba	ase 10 i	numbe	er:		
183 ₁₀												
4. What is th	ne corr	ect way	to w	rite c	out the foll	ow	ing ba	ase 10 i	numbe	er:		
3549 ₁₀												
							J					
5. What is th	ne corr	ect way	to w	rite c	out the foll	ow	ing ba	ase 10 i	numbe	er:		
27318 ₁₀												

Positional Notation: Binary to Decimal Conversion

1. Convert the following binary number to decimal using the Positional Notation method:

000011102

We have worked this first question through for you.

128	64	32	16	8	4	2	1			
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰			
О	0	0	0	1	1	1	0			
	8 + 4 + 2 = 14									

The correct answer is:

1410

2. Convert the following binary number to decimal using the Positional Notation method:

001010102

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

ine	e cor	rect	ans	wer	IS:

3. Convert the following binary number to decimal using the Positional Notation method:

10001101₂

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2^4	2 ³	2 ²	2 ¹	2 ⁰

The correct ans	wer is:		

4. Convert the following binary number to decimal using the Positional Notation method:

11011111₂

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰

The correct answer is:		

5. Convert the following binary number to decimal using the Positional Notation method:

011100012

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2^4	2 ³	2 ²	2 ¹	2 ⁰

The correct answer is:		

6. Convert the following binary number to decimal using the Positional Notation method:

11101010₂

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20

The correct answer is:		

Doubling: Binary to Decimal Conversion

1. Convert the following binary number to decimal using the Doubling method:

10110100₂

We have worked this first question through for you.

0	х	2	+	1	=	1
1	Х	2	+	0	=	2
2	х	2	+	1	=	5
5	Х	2	+	1	=	11
11	Х	2	+	0	=	22
22	Х	2	+	1	=	45
45	Х	2	+	0	=	90
90	Х	2	+	0	=	180

The answer is:

18010

2. Convert the following binary number to decimal using the Doubling method:

11100111₂

0	х	2	+	Ш	
	х	2	+	=	
	Х	2	+	=	
	х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	х	2	+	=	
	Х	2	+	=	

The answer i	s:

3. Convert the following binary number to decimal using the Doubling method:

001101012

0	V	2	+	_	
	Х		Т	_	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	

Iho	ODCIMOR	
1116	answer	15.
	. a	

4. Convert the following binary number to decimal using the Doubling method:

00111000_2

0	х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	II	
	Х	2	+	II	
	Х	2	+	=	
	Х	2	+	=	
	Х	2	+	=	

Iha	าทเ	CIAIC	rıcı
The	ans	יאיי	ı ıs.

Short Division by Two with Remainder: Decimal to Binary Conversion

1. Convert the following decimal number to binary using the Short Division by Two with Remainder method:

8610

We have worked this first question through for you.

86	/	2	=	43	Remainder	0
43	/	2	=	21	Remainder	1
21	/	2	=	10	Remainder	1
10	/	2	=	5	Remainder	0
5	/	2	=	2	Remainder	1
2	/	2	=	1	Remainder	0
1	/	2	=	0	Remainder	1
	/	2	=		Remainder	

The answer is:

_			_	_
1	01	N1	1	O2

2. Convert the following decimal number to binary using the Short Division by Two with Remainder method:

10910

/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder

The	ansv	ver	is:	

3. Convert the following decimal number to binary using the Short Division by Two with Remainder method:

72₁₀

/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder

The answer is:	

4. Convert the following decimal number to binary using the Short Division by Two with Remainder method:

124₁₀

/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder
/	2	=	Remainder

The answer is:	

Comparison with Descending Powers of Two and Subtraction: Decimal to Binary Conversion

1. Convert the following decimal number to binary using the Comparison with Descending Powers of Two and Subtraction method:

57₁₀

We have worked this first question through for you.

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
0	0	1	1	1	0	0	1
		57 - 32 = 25	25 - 16 = 9	9 - 8 = 1			1-1 = 0

The answer is:

0	0	1	1	1	0	0	1	
---	---	---	---	---	---	---	---	--

2. Convert the following decimal number to binary using the Comparison with Descending Powers of Two and Subtraction method:

113₁₀

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

3. Convert the following decimal number to binary using the Comparison with Descending Powers of Two and Subtraction method:

9310

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
ĺ							

InΔ	answ	or ici
1110	alisv	CI IS.

4. Convert the following decimal number to binary using the Comparison with Descending Powers of Two and Subtraction method:

29₁₀

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

CO450 Computer Architectures

Binary Addition

1. Add the following binary numbers together, what is the correct answer:

$00000110_2 + 00001010_2 =$

We have worked this first question through for you.

	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
	0	0	0	0	0	1	1	0
+	0	0	0	0	1	0	1	0
	0	0	0	1	0	0	0	0
				1	1	1		

The answer is:

0 0 0 1 0 0 0)
---------------	---

2. Add the following binary numbers together, what is the correct answer:

 $00000110_2 + 00011100_2 =$

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

3. Add the following binary numbers together, what is the correct answer:

 $00101100_2 + 00111001_2 =$

	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
+								

The answer is:

4. Add the following binary numbers together, what is the correct answer:

$00111100_2 + 00010101_2 =$

	128	64	32	16	8	4	2	1
	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
+								

CO450 Computer Architectures

The Answers

Re-Cap on Base 10 Decimal Numbers

1.
$$(4 \times 10^1) + (5 \times 10^0) = 45_{10}$$

2.
$$(6 \times 10^1) + (8 \times 10^0) = 68_{10}$$

3.
$$(1 \times 10^2) + (8 \times 10^1) + (3 \times 10^0) = 183_{10}$$

4.
$$(3 \times 10^3) + (5 \times 10^2) + (4 \times 10^1) + (9 \times 10^0) = 3549_{10}$$

5.
$$(2 \times 10^4) + (7 \times 10^3) + (3 \times 10^2) + (1 \times 10^1) + (8 \times 10^0) = 27318_{10}$$

Positional Notation: Binary to Decimal Conversion

- 1. 14₁₀
- 2.4210
- 3. 141₁₀
- 4. 22310
- 5. 113₁₀
- 6. 234₁₀

Doubling: Binary to Decimal Conversion

- 1. 18010
- 2. 23110
- 3.5310
- 4.5610

Short Division by Two with Remainder: Decimal to Binary Conversion

- 1. 01010110₂
- 2. 011011012
- 3. 01001000₂
- 4. 01111100₂

Comparison with Descending Powers of Two and Subtraction

- 1.001110012
- 2. 011100012
- 3. 01011101₂
- 4. 000111012

CO450 Computer Architectures

Binary Addition

- 1. 000100002
- 2. 00100010₂
- 3. 011001012
- 4. 010100012