1 Topological Spaces

Definition 1.1.

- 1. A **topology** on a set X is a set \mathcal{T} of subsets of X called **open sets** such that
 - $\varnothing, X \in \mathscr{T}$
 - $\mathscr{T}' \subseteq \mathscr{T} \implies \bigcup_{U \in \mathscr{T}'} U \in \mathscr{T}$. (Preserved under arbitrary unions)
 - $U_1, \dots, U_n \in \mathscr{T} \implies \bigcap_{i=1}^n U_i \in \mathscr{T}$. (Preserved under finite intersections)

 (X, \mathcal{T}) – or just X when \mathcal{T} is understood – is a **(topological) space**.

- 2. Suppose $\mathscr{T}, \mathscr{T}'$ are two topologies on X with $\mathscr{T} \subseteq \mathscr{T}'$. We say \mathscr{T}' is **finer** than \mathscr{T} and \mathscr{T} is **coarser** than \mathscr{T}' .
- 3. $A \subseteq X$ is **closed** if $X \setminus A$ is open. Hence \emptyset, X are closed, and closedness is preserved under finite unions and arbitrary intersections.

Example 1.1.

- 1. The **discrete topology** on X is $\mathcal{T} = \mathcal{P}(X)$.
- 2. The *trivial topology* on X is $\mathcal{T} = \{\emptyset, X\}$.
- 3. $X = \{1, 2, 3\}$:

Definition 1.2. A set \mathcal{B} of subsets of X is a **basis** if

- $\bullet \ X = \bigcup_{B \in \mathscr{B}} B$
- $x \in B_1 \cap B_2$ with $B_1, B_2 \in \mathscr{B} \implies (\exists B \in \mathscr{B}) (x \in B \subseteq B_1 \cap B_2)$

Theorem 1.1. A basis \mathcal{B} generates a topology \mathcal{T} via

$$U \in \mathscr{T} \iff (\forall x \in U) (\exists B \in \mathscr{B}) (x \in B \subseteq U).$$

Proof. $\emptyset \in \mathcal{T}$ (vacuously) and $X \in \mathcal{T}$ since \mathcal{B} covers X. We then verify the union and intersection properties:

• Suppose $U_{\alpha} \subseteq X$ are open, then $\bigcup_{\alpha} U_{\alpha}$ is open because

$$x \in \bigcup_{\alpha} U_{\alpha} \implies x \in U_{\alpha} \text{ for some } \alpha \implies x \in B_{\alpha} \subseteq U_{\alpha} \subseteq \bigcup_{\alpha} U_{\alpha}$$

• Suppose U_1, U_2 are open, then $U_1 \cap U_2$ is open because

$$x \in U_1 \cap U_2 \implies \begin{cases} x \in B_1 \subseteq U_1 \text{ for some } B_1 \in \mathscr{B} \\ x \in B_2 \subseteq U_2 \text{ for some } B_2 \in \mathscr{B} \end{cases} \implies x \in B \subseteq B_1 \cap B_2 \subseteq U_1 \cap U_2$$

for some $B \in \mathcal{B}$. By induction, any finite intersection of open sets is open.

Example 1.2. Let $X = \mathbb{R}$. We can construct three topologies via the bases:

- 1. $\{(a,b): a,b \in \mathbb{R}\}\$ (the **standard topology** on \mathbb{R})
- 2. $\{[a, b) : a, b \in \mathbb{R}\}$
- 3. $\{U \subseteq \mathbb{R} : U = \mathbb{R} \setminus \{x_1, \dots, x_n\} \text{ for some } x_1, \dots, x_n \in \mathbb{R}\}$

Note, (2) is finer than (1), and (1) is finer than (3).

Remark.

- 1. Uncountable intersections may not be open. E.g. $\bigcap_n (-1/n, 1/n) = \{0\}$ is not open in the standard topology on \mathbb{R} .
- 2. Different bases could generate the same topology. E.g. For $X = \mathbb{R}^2$, open balls generate the same topology as open squares do.

Definition 1.3. Let X be a space, and $A \subseteq X$.

- 1. $int(A) = \bigcup \{U \subseteq A : U \text{ is open}\}\ is the$ *interior*of A.
- 2. $\overline{A} = \bigcap \{C \supseteq A : C \text{ is closed}\}\$ is the $\boldsymbol{closure}\$ of A.
- 3. A is **dense** if $\overline{A} = X$.

Example 1.3.

- 1. $int(A) = \overline{A} = A$ in the discrete topology.
- 2. $\operatorname{int}(A) = \varnothing; \overline{A} = X$ in the trivial topology for any $A \neq \varnothing, X$.
- 3. \mathbb{Q} is dense in \mathbb{R} .

Warning. A, B dense does not imply $A \cap B$ dense, e.g. take \mathbb{Q} and $\mathbb{Q} + \sqrt{2}$.

Theorem 1.2.

- 1. $A \text{ open} \Leftrightarrow A = \text{int}(A)$
- 2. $A \text{ closed} \Leftrightarrow A = \overline{A}$

Definition 1.4.

- 1. A *neighborhood of* $x \in X$ is an open set that contains x.
- 2. $x \in X$ is a *limit point* of A if $(\forall x \in U \in \mathcal{T}) (A \cap U \setminus \{x\} \neq \emptyset)$.
- 3. $x \in X$ is an **adherent point** of A if $(\forall x \in U \in \mathcal{T}) (A \cap U \neq \emptyset)$.
- 4. The **boundary** of A is $\partial A = \{x \in X : x \text{ adh pt of } A \text{ and } X \setminus A\} = \overline{A} \cap \overline{X \setminus A}$.

Theorem 1.3.

- 1. $\overline{A} = \{\text{adherent pts of } A\} = A \cup \{\text{limit pts of } A\} = \text{int}(A) \sqcup \partial A.$
- 2. $X = int(A) \sqcup \partial A \sqcup int(X \backslash A)$.

Theorem 1.4. If U_1, U_2 are dense and open, then $U_1 \cap U_2$ is dense and open.

Proof. Suppose $x \in X$. We want to show that for any $x \in U$ open we have $U \cap (U_1 \cap U_2) \neq \emptyset$.

Since U_1 is dense, $U \cap U_1 \neq \emptyset$. Since U_2 is also dense, $U \cap U_1 \cap U_2 \neq \emptyset$.

2 Metric Spaces

Definition 2.1.

- 1. A **metric** on a set X is a function $d: X^2 \to \mathbb{R}$ such that
 - $d(x,y) \ge 0$ and equality holds if and only if x = y
 - \bullet d(x,y) = d(y,x)
 - $d(x,y) + d(y,z) \ge d(x,z)$

The set $B_x(\varepsilon) = \{y : d(x,y) < \varepsilon\}$ is the (open) ε -ball centered at x.

2. The **metric topology** on (X, d) is the topology generated by the basis

$$\mathscr{B} = \{B_x(r) : x \in X, r > 0\}$$

Example 2.1. The *euclidean metric* d on \mathbb{R}^n is $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_i (x_i - y_i)^2}$.

3 Subspace Spaces

Definition 3.1. Let (X, \mathcal{T}) be a space and $A \subseteq X$. The **subspace topology** on A (with respect to X) is

$$\mathscr{T}_A = \{ A \cap U : U \in \mathscr{T} \} .$$

We call A with this topology a **subspace** of X.

Theorem 3.1. A basis \mathcal{B} for \mathcal{T} defines a basis \mathcal{B}_A for \mathcal{T}_A via

$$\mathscr{B}_A = \{A \cap B : B \in \mathscr{B}\}.$$

Remark. If (X, d) is a metric space and $A \subseteq X$ then (A, d_A) is a metric space where $d_A(a_1, a_2) = d(a_1, a_2)$.

Theorem 3.2. Let (X, d) be a metric space. Then the metric topology on $A \subseteq X$ agrees with the subspace topology of $A \subseteq X$.

Proof. The subspace topology on A has basis $\mathscr{B}_S = \{A \cap B_x(r)\}_{x \in X}$ whereas the metric topology on A has basis $\mathscr{B}_M = \{B_x^A(r)\} = \{A \cap B_x(r)\}_{x \in A} \subseteq \mathscr{B}_S$. On the other hand, given any open U in the subspace topology and $x \in U \subseteq A$, we have $x \in A \cap B_x(r) \subseteq U$ for some r > 0, but this is just $x \in B_x^A(r) \subseteq U$. Since $x \in U$ was arbitrary, U is open in the metric topology too.

Definition 3.2. $A \subseteq X$ (space) is discrete if its subspace topology is discrete.

Example 3.1. Is $X = \{0\} \cup_n \{1/n\}$ discrete in \mathbb{R} ? No. $\{0\}$ is not open in X. If it were, then $\exists (a,b)$ such that $(a,b) \cap X = \{0\}$, but 1/n < b for large n.

Warning. $B = A = \mathbb{R} \times \{0\} \subseteq X = \mathbb{R}^2$ are examples for the following statements:

- 1. B open in A does not imply B open in X.
- 2. Suppose $A \subseteq Y \subseteq X$, then the int(A) in Y may not be $Y \cap int(A)$.

But these versions are true:

Theorem 3.3.

- 1. B open in A, and A open in X, then B open in X.
- 2. Suppose $A \subseteq Y \subseteq X$, the closure of A in Y is $Y \cap$ (closure of A in X).

4 Product Spaces

Definition 4.1. Let $\{X_{\alpha}\}_{\alpha}$ be a collection of spaces.

1. The **product topology** on $X_1 \times \cdots \times X_n$ is generated by the basis

$$\mathscr{B} = \{Y_1 \times \cdots \times Y_n : Y_1, \cdots, Y_n \text{ open}\}$$

2. More generally, the **product topology** on $\prod_{\alpha} X_{\alpha}$ is generated by the basis

$$\mathscr{B} = \{ \prod_{\alpha} Y_{\alpha} : Y_{\alpha} \text{ open for all } \alpha, \text{ and only finitely many } Y_{\alpha} \neq X_{\alpha} \}$$

Theorem 4.1.

1. If $A \subseteq X$; $B \subseteq Y$ are subspaces, then the subspace topology and product topology on $A \times B$ agree.

2. The metric topology on \mathbb{R}^n agrees with the product topology on \mathbb{R}^n .

5 Quotient Space

Definition 5.1.

• Let X be a space, Y be a set, and $q: X \to Y$ be surjective. The **quotient topology** on Y induced by the **quotient** map q is given by

$$\mathscr{B} = \{ U \subseteq Y : q^{-1}(U) \text{ open in } X \}$$

• Let $A \subseteq X$ be a subset and define $x \stackrel{A}{\sim} y \Leftrightarrow x = y \text{ or } x, y \in A$. We denote X/A the space on $X/\stackrel{A}{\sim}$ with quotient topology induced by the canonical map $q: X \to X/\stackrel{A}{\sim}$.

Remark. An equivalence relation \sim on X determines the surjective *canonical map* $q:X \twoheadrightarrow X/\sim$ defined by q(x)= equivalence class of x.

Example 5.1.

1. Consider the unit 2-disk $X=D^2=\{x\times y:x^2+y^2\leqslant 1\}$. If we identify together all points on the boundary ∂D^2 , we get the quotient space $D^2/\partial D^2$ that is homeomorphic with the subspace of \mathbb{R}^3 called the unit 2-sphere $S^2=\{x\times y\times z:x^2+y^2+z^2=1\}$.

- 2. We can construct a torus $S^1 \times S^1$ from the rectangle $[0,1] \times [0,1]$.
- 3. We can patch two disks $D^2 \sqcup D^2$ along their boundaries to obtain S^2 . Formally, given a homeomorphism $\varphi: \partial D_1^2 \to D_2^2$, we have $(D_1^2 \sqcup D_2^2)/\sim = S^2$ where $x \sim y \Leftrightarrow x = y$ or $x \in \partial D_1^2, y \in \partial D_2^2, \varphi(x) = y$.

6 Continuous Functions

Definition 6.1. Let X, Y be spaces. A function $f: X \to Y$ is

- continuous at $x \in X$ if $f^{-1}(V)$ is open in X for all neighborhoods V of f(x).
- **continuous** if $f^{-1}(V)$ is open in X for all V open in Y.
- a **homeomorphism** if f is bijective, and f and f^{-1} are continuous.

Theorem 6.1.

- 1. Let \mathscr{B} be a basis of X. The map $f: X \to Y$ is continuous if and only if $f^{-1}(B)$ is open for all $B \in \mathscr{B}$.
- 2. A composition of continuous functions is continuous.
- 3. Let $A \subseteq X$ be a subspace and $f: X \to Y$ be continuous. Then $f|_A$ is continuous.
- 4. Let $f: Z \to X \times Y$ where $f = f_X \times f_Y$. Then f is continuous if and only if f_X, f_Y are continuous.
- 5. Any quotient map is continuous. Given a quotient map $p: X \to Y$, $f: Y \to Z$ is continuous if and only if $g = f \circ p$ is continuous.

- 6. The following are equivalent to $f: X \to Y$ being continuous:
 - (1) $f^{-1}(C)$ is closed for all closed $C \subseteq Y$.
 - (2) Given any $x \in X$ and $f(x) \subseteq V$ open, there exists open U with $f(U) \subseteq V$.
 - (3) $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.

Proof of (6).

• Continuity is equivalent to (1) by taking complements.

- For (2), say f is continuous, then $U = f^{-1}(V)$ works. Conversely, say (2) is true. Then for any open $V \subseteq Y$, any $v \in V$ admits a neighborhood within V, which has an open preimage $U_v \subseteq X$. Then $f^{-1}(V) = \bigcup_{v \in V} U_v$ is open, and thus f is continuous.
- (1) \Rightarrow (3). Since $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$ which is closed, we have $\overline{A} \subseteq f^{-1}(\overline{f(A)})$ and thus $f(\overline{A}) \subseteq \overline{f(A)}$.
- (3) \Rightarrow (1). Let $C \subseteq Y$ be closed. Then $f\left(\overline{f^{-1}(C)}\right) = \overline{f(f^{-1}(C))} \subseteq \overline{C} = C$ and hence $\overline{f^{-1}(C)} \subseteq f^{-1}f\left(\overline{f^{-1}(C)}\right) \subseteq f^{-1}(C)$ and thus $f^{-1}(C)$ is closed.

Corollary 6.1. Say X, Y are metric spaces. $f: X \to Y$ is continuous if and only if

$$(\forall x \in X, \varepsilon > 0) (\exists \delta > 0) (\forall d_X(x, y) < \delta) (d_Y(f(x), f(y)) < \varepsilon).$$

Theorem 6.2. (Pasting Lemma) Let $X = A \cup B$ be a space where A, B are closed. If $f_A : A \to Y$ and $f_B : B \to Y$ are continuous and $f_A(x) = f_B(x)$ for all $x \in A \cap B$, then $f : X \to Y$ defined by

$$f(x) = \begin{cases} f_A(x) & x \in A \\ f_B(x) & x \in B \end{cases}$$

is continuous.

7 Limits and Continuity

Definition 7.1. $\{x_n\}_{n\in\mathbb{N}}$ in X converges to $x\in X$ if any neighborhood of x contains all but finitely many x_n . Write $x_n\to x$.

Warning. Limits may not be unique:

- 1. In the trivial topology, any sequence converges to all points.
- 2. In $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$ where $x \sim y \iff x \in \mathbb{R}_1, y \in \mathbb{R}_2, x = y \neq 0$, we have

$$1/n \rightarrow 0_1$$
 and $1/n \rightarrow 0_2$ (fat point)

Theorem 7.1. If $x_n \to x$, then $x \in \overline{\{x_n\}_n}$.

Definition 7.2. A space X is *first-countable* if for any $x \in X$, there exists a countable number of neighborhoods U_1, U_2, \cdots such that any neighborhood of x contains some U_i . The $\{U_i\}$ is called a **neighborhood basis** of x.

Theorem 7.2. If X is first-countable,

- 1. $x \in \overline{A} \implies \exists x_1, x_2, \dots \in A \text{ such that } x_n \to x.$
- 2. $f: X \to Y$ is continuous if and only if $(x_n \to x) \implies (f(x_n) \to f(x))$.

8 Connectedness

Definition 8.1. A space X is **connected** if there is no nontrivial clopen (closed and open) set $A \subseteq X$.

Example 8.1. The subspace $(0,1) \cup (2,3)$ of \mathbb{R} is not connected.

Theorem 8.1. $[a, b] \subseteq \mathbb{R}$ is connected.

Proof. Suppose the contrary, that $[a,b] = A \sqcup B$ where A,B are closed and non-empty. WLOG Assume $b \in B$. Then $s = \sup A < b$. If $s \in A$, since A is also open, there exists $(s - \varepsilon, s + \varepsilon) \subseteq A \implies \sup A \geqslant s + \varepsilon$, a contradiction. Hence $s \in B$ instead. Since B is open, there exists $(s - \varepsilon, s + \varepsilon) \subseteq B$ and thus $\sup A \leqslant s - \varepsilon$, a contradiction.

Definition 8.2. A space X is **path-connected** if every pair $x, y \in X$ can be joined by a path in X: a continuous map $\gamma : I = [0, 1] \to X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

Example 8.2.

- 1. \mathbb{R}^n is path-connected. Use the path $\gamma(t) = t\mathbf{x} + (1-t)\mathbf{y}$.
- 2. S^n is path-connected. Use the path $\gamma(t) = \frac{t\mathbf{x} + (1-t)\mathbf{y}}{|t\mathbf{x} + (1-t)\mathbf{y}|}$.
- 3. A torus is path-connected: Start with a path in I^2 and then take the quotient.

Theorem 8.2.

- 1. Any path-connected space is connected.
- 2. If $f: X \to Y$ is continuous and surjective,
 - X connected $\implies Y$ connected.
 - X path-connected $\implies Y$ path-connected.
- 3. Quotients of a (path-)connected space is (path-)connected.
- 4. A product of (path-)connected spaces is (path-)connected.

Example 8.3. The *topologist's sine curve* defined by

$$X = \{(x \times \sin(1/x)) : x > 0\} \cup \{0\} \times [-1, 1]$$

is connected but not path-connected.

Definition 8.3. The equivalence relation $x \sim y$ where there is a (path-)connected subspace containing both x, y partitions the space into (path-)connected **components**.

9 Compactness

Definition 9.1.

- 1. An *open cover* of X is a collection of open sets that cover X. A space X is *compact* if every open cover of X admits a finite subcover.
- 2. A space X is **sequentially compact** if every sequence of points in X admits a convergent subsequence.

Theorem 9.1. 1st-countable + compact \implies sequentially compact.

Proof. Suppose $\{x_n\}_n$ does not have a convergent subsequence. Let $x \in X$, then there exists a countable neighborhood basis U_1, U_2, \cdots . We can safely let $U_1 \supseteq U_2 \supseteq \cdots$ by taking successive intersections. Since there is no subsequence that converges to x, only finitely many x_n lie in U_n for some sufficiently large n. Hence, every $x \in X$ has a neighborhood U_x that intersects $\{x_n\}_n$ at a finite number of points. Taking the union of all U_x and applying compactness shows that $\{x_n\}_n$ is finite, so we can conclude by the pigeonhole principle.

Theorem 9.2.

- 1. Every closed subspace of a compact space is compact.
- 2. A continuous function maps compact spaces to a compact image.
- 3. Suppose X is compact and $C_1 \supseteq C_2 \supseteq \cdots$ is a sequence of closed and non-empty sets. Then $\bigcup_n C_n$ is non-empty.
- 4. A product of compact spaces is compact (Infinite case is hard: Tychonoff's Thm)
- 5. [a, b] is compact.

Proof of (4). Suppose $[a,b] = \bigcup_{\alpha} U_{\alpha}$. Then

 $S = \{x \in [a, b] : [a, b] \text{ can be covered by finitely many } U_{\alpha} \}$

contains $a \in S$ and is bounded above by b. Hence S has a supremum s.

Claim. $s \in S$.

Proof. Let $s \in U_{\beta}$ for some β , so there exists $(s - \varepsilon, s + \varepsilon) \subseteq U_{\beta}$. If $s \notin S$, just add U_{β} to the finite subcover of $[a, s - \varepsilon/2]$.

Claim. s = b.

Proof. If not, then similarly, just add U_{β} to the finite subcover of [a, s].

Therefore [a, b] can be covered by finitely many U_{α} .

Theorem 9.3. (Heine-Borel)

A subspace A of \mathbb{R}^n is compact if and only if it is closed and bounded.

Proof.

• (\Leftarrow) $X \subseteq [-M, M]^n$ is a closed subset of a compact space, so X is compact.

• (\Rightarrow) Compactness on the open cover $\{B_0(r)\}_{r>0}$ shows X is bounded. We then show any limit pt x of X is in X: For all $n \in \mathbb{N}^*$, $C_n := \overline{B_x 1/n} \cap X \neq \emptyset$, and thus $\bigcap_n C_n = X \cap \{x\}$ is non-empty.

10 Hausdorff Spaces

Definition 10.1. A space X is **Hausdorff** if for any distinct $x, y \in X$ there exists disjoint neighborhoods $x \in U, y \in V$.

Example 10.1.

- 1. The trivial topology is not Hausdorff. The discrete topology is.
- 2. Metric spaces are Hausdorff.
- 3. The finite complement topology on \mathbb{R} is not Hausdorff.
- 4. The space $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$ containing the fat point is not Hausdorff.

Theorem 10.1. X is Hausdorff if and only if $\Delta = \{(x \times x) : x \in X\} \subseteq X^2$ is closed.

Proof.

- (\Rightarrow) If X is Hausdorff, for any $x \neq y$ there exists disjoint neighborhoods U, V of x, y respectively. Then $U \times V$ is a neighborhood of $(x \times y) \in X \times Y$ disjoint from Δ . Taking the union over all $(x \times y)$ implies Δ is closed.
- (\Leftarrow) If Δ is closed, given any $x \neq y$ there exists a basis neighborhood $U \times V$ of $(x \times y)$ disjoint from Δ . Then U, V are the desired neighborhoods.

Theorem 10.2.

- 1. In a Hausdorff space, a sequence of points converge to at most one point.
- 2. One-point sets in a Hausdorff space are closed.
- 3. A subspace of a Hausdorff space is Hausdorff.
- 4. A finite product of Hausdorff spaces is Hausdorff.
- 5. A compact subspace of a Hausdorff space is closed.

Warning. A quotient of a Hausdorff space may not be Hausdorff.

11 Normal Spaces

Definition 11.1.

- 1. X is T_1 if one-point sets are closed.
- 2. A space is **normal** if it is T_1 , and, for any pair of disjoint closed sets $A, B \subseteq X$ there exists disjoint open sets $U, V \subseteq X$ such that $A \subseteq U, B \subseteq V$.

Remark.

- 1. Normal \implies Hausdorff $\implies T_1$.
- 2. A quotient, subspace, or product of normal space(s) need not be normal.

Example 11.1.

- 1. The fat point $\mathbb{R}_1 \sqcup \mathbb{R}_2 / \sim$ is T_1 but not Hausdorff.
- 2. The K-topology on \mathbb{R} generated by $\{(a,b)\} \cup \{(a,b) \setminus \bigcup_n \{1/n\}\}$ is Hausdorff but not normal.
- 3. The topology \mathbb{R}_{ℓ} on \mathbb{R} generated by $\{[a,b)\}$ is normal, but \mathbb{R}^2_{ℓ} is not normal.

Theorem 11.1.

- 1. A closed subspace A of a normal space X is normal.
- 2. Compact + Hausdorff \implies Normal.

Proof of (2). Suppose $A, B \subseteq X$ are disjoint and closed. Fix $a \in A$. Then for each $b \in B$ there exists disjoint neighborhoods $a \in U_b, b \in V_b$. Since B is also compact, there exists finitely many V_b that cover B. The union of such finitely many V_b and the intersection of their corresponding U_b form disjoint open sets containing a and b respectively. Repeat the same procedure for every $a \in A$ and then apply compactness of b.

Theorem 11.2. Metric spaces are normal.

Proof. We can show that, for any subset $A \subseteq X$, the *point-to-set distance* $d(-,A): X \to \mathbb{R}$ given by $d(x,A) = \inf_{a \in A} d(x,a)$ is continuous. For disjoint closed sets A,B, the open sets

$$U = \{x : d(x, A) < d(x, B)\}, \qquad V = \{x : d(x, A) > d(x, B)\}\$$

contain A, B respectively and are disjoint.

Theorem 11.3. X is normal if and only if for any closed A and open U such that $A \subseteq U$, there exists an open set V such that $A \subseteq V \subseteq \overline{V} \subseteq U$.

Theorem 11.4. (Urysohn's Lemma)

Let X be normal and A, B be disjoint closed sets of X. There exists a continuous map

$$f: X \to I$$

such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

Proof. Define open sets U_p for each $p \in \mathbb{Q} \cap [0,1]$ as follows: Enumerate $\mathbb{Q} \cap [0,1]$ such that 1 and 0 are the first two elements. Define $U_1 = X - B$ and by normality pick U_0 such that $A \subseteq U_0 \subseteq \overline{U_0} \subseteq U_1$. By induction, say we defined U_p for a finite number of p's and let p be the next rational in the enumeration. We must have p < r < q where U_p, U_q are already defined. By normality we pick U_r such that $\overline{U_p} \subseteq U_r \subseteq \overline{U_r} \subseteq U_q$.

Additionally, we let $U_p = \emptyset$ for all rationals p < 0 and $U_p = X$ for all rationals p > 1. Hence,

$$p < q \implies \overline{U_p} \subseteq U_q$$
.

We then define $f(x) = \inf\{p : x \in U_p\}$. It is easy to see $f(A) = \{0\}$ and $f(B) = \{1\}$. We show that f is continuous.

Lemma 1.
$$x \in \overline{U_r} \implies f(x) \leqslant r$$

Proof. If $x \in \overline{U_r}$, then $x \in U_s$ for every $s > r$. Hence $f(x) \leqslant r$. \Box
Lemma 2. $x \notin \overline{U_r} \implies f(x) \geqslant r$.
Proof. If $x \notin \overline{U_r}$, then $x \notin U_s$ for any $s < r$. Hence $f(x) \geqslant r$. \Box

Given a ball $I = (f(x) - \delta, f(x) + \delta)$, we wish to find a neighborhood U of x such that $f(U) \subseteq I$. First we choose rational numbers $p, q \in I$ such that p < f(x) < q. Then the open set $U_q \setminus \overline{U_p}$ is the desired neighborhood using the lemmas above.

Theorem 11.5. (Tietze Extension Theorem)

Let A be closed in a normal space X. Any continuous map from A to I can be extended to a continuous map from X to I. True also for \mathbb{R} instead of I.

Proof. We show for [-1,1] instead of I, and then for (-1,1) instead of \mathbb{R} .

Lemma. If $f: A \to [-\varepsilon, \varepsilon]$ is continuous, there exists continuous $g: X \to \mathbb{R}$ with $g(X) \subseteq [-\varepsilon/3, \varepsilon/3]$ and $(g-f)(A) \subseteq [-2\varepsilon/3, 2\varepsilon/3]$.

Proof. Applying the Urysohn Lemma on the disjoint closed sets $L = f^{-1}([-\varepsilon, -\varepsilon/3])$ and $R = f^{-1}([\varepsilon/3, \varepsilon])$, there exists $g: X \to [-\varepsilon/3, \varepsilon/3]$ such that $g(L) = \{-\varepsilon/3\}$ and $g(R) = \{\varepsilon/3\}$. This g works.

Now let $f: A \to [-1,1]$ be continuous. Then we can find $g_1: X \to [-1/3,1/3]$ such that $|f(a) - g_1(a)| \leq 2/3$ for all $a \in A$. Then we apply the Lemma on $f - g_1$ again, so we get $g_2: X \to [-2/9,2/9]$ such that $|f(a) - g_1(a) - g_2(a)| \leq 4/9$. Recursively, we get a sequence of functions g_n such that $g_{n+1}: X \to [-(2/3)^n/3, (2/3)^n/3]$ and

$$|f(a) - g_1(a) - \dots - g_{n+1}(a)| \le \left(\frac{2}{3}\right)^{n+1}.$$

By the Weierstrass M-test, $g(x) = \sum_{n=1}^{\infty} g_n(x)$ converges to the desired function (Exercise).

To show the (-1,1) version, take g from the [-1,1] case. Apply the Urysohn Lemma to the disjoint closed sets A and $D = g^{-1}(\{-1\}) \cup g^{-1}(\{1\})$ to get a continuous $\varphi : X \to [0,1]$ so that $\varphi(D) = \{0\}$ and $\varphi(A) = \{1\}$. Then $h(x) = \varphi(x)g(x)$ works (|h(x)| < 1).

Urysohn Metrization Theorem

Definition 11.2.

- 1. A space is **second-countable** if it has a countable basis.
- 2. A space is *metrizable* if it is homeomorphic to a metric space.

Theorem 11.6. (Urysohn Metrization Theorem)

 $2nd countable + Normal \implies Metrizable.$

Proof. We first note that $I^{\omega} = \{ \mathbf{x} = (x_1, x_2, \cdots) : x_i \in I \}$ with the metric

$$d(\mathbf{x}, \mathbf{y}) = \sup_{n} \frac{|x_n - y_n|}{n}.$$

is a metric space. Let X be normal with a countable basis \mathscr{B} . We will embed X into I^{ω} .

Lemma. There exists a collection $\{f_n : X \to I\}_{n \in \mathbb{N}}$ of continuous functions such that given any $x \in X$ and any neighborhood U, there exists some f_n that is positive at x but vanishes outside U.

Proof. For each $B, C \in \mathcal{B}$ with $\overline{B} \subseteq C$, apply the Urysohn Lemma to construct a continuous function $g_{B,C}: X \to I$ such that $g_{B,C}(\overline{B}) = \{1\}$ and $g_{B,C}(X \setminus C) = \{0\}$. $\{g_{B,C}: \overline{B} \subseteq C\}$ is the desired collection. It is countable because $\mathcal{B} \times \mathcal{B}$ is countable, and given any x with neighborhood U, we can choose by Theorem 11.3 the sequence of open sets $x \in B \subseteq \overline{B} \subseteq C \subseteq U$, and then use $g_{B,C}$.

Using $\{f_n\}_{n\in\mathbb{N}}$ from the Lemma, define $F:X\to I^\omega$ such that

$$F(x) = (f_0(x), f_1(x), f_2(x), \cdots)$$

- F is injective because given $x \neq y$, there exists some $f_n(x) > 0 = f_n(y)$ (Hausdorff!).
- F is continuous: Let $B_x(\varepsilon) \subseteq I^\omega$. Fix an integer $N > 2/\varepsilon$. Since each f_n is continuous, for each $1 \le n \le N$ there exists a neighborhood $x \in U_n$ such that $y \in U_n \implies |f_n(x) f_n(y)| \le \varepsilon/2$. Hence for any $y \in U_1 \cap \cdots \cap U_N$,

$$d(F(x), F(y)) = \sup_{n} \frac{|f_n(x) - f_n(y)|}{n}$$

$$\leq \max \left(\sup_{1 \leq n \leq N} \frac{|f_n(x) - f_n(y)|}{n}, \sup_{n > N} \frac{|f_n(x) - f_n(y)|}{n} \right)$$

$$\leq \max \left(\frac{\varepsilon}{2}, \frac{1}{N+1} \right) < \varepsilon.$$

• For each open set U in X, F(U) is open in F(X): Let $x \in U$ and f(x) = z. Choose a f_N that is positive at x but vanishes outside U. Let

$$W = F(X) \cap \pi_N^{-1}((0,1])$$

be open in F(X). We claim that $z \in W \subseteq F(U)$. Firstly, we have $z = F(x) \in W$ because $f_N(x) > 0$. Secondly, given any $F(y) \in W$, we must have $f_N(y) > 0$. Since $f_N(y) \in W$ vanishes outside U, y must be in U, so $F(y) \in F(U)$.

Therefore, X is homeomorphic to its image under F, a subspace of the metric space I^{ω} , which is also a metric space.

12 Manifolds

Definition 12.1. An *n-manifold* is a 2nd countable Hausdorff space X such that each $x \in X$ has a neighborhood homeomorphic with an open subset of \mathbb{R}^n . We also write $X = X^n$. A 1-manifold is a *curve*, and a 2-manifold is a *surface*.

Theorem 12.1. $X^n \times Y^m$ is an (n+m)-manifold.

Proof. Hausdorffness and 2nd Countability follow immediately. Fix $(x \times y) \in X \times Y$, then there exists neighborhoods U, V of x, y homeomorphic to $\mathbb{R}^n, \mathbb{R}^m$ respectively. Then $U \times V$ is a neighborhood of $(x \times y)$ homeomorphic to $\mathbb{R}^n \times \mathbb{R}^m \cong \mathbb{R}^{n+m}$.

Example 12.1.

- 1. \mathbb{R}^n is an *n*-manifold.
- 2. S^n is an *n*-manifold. (Write $S^n = e_1^n \cup e_2^n$ where $e^n = \operatorname{int}(D^n) \cong \mathbb{R}^n$).
- 3. The **real projective space** $\mathbb{RP}^n = S^n / \sim (\text{where } x \sim y \iff x = \pm y) \text{ is an } n\text{-manifold.}$
- 4. $T^n = \underbrace{S^1 \times \cdots S^1}_n$ is an *n*-manifold. T^2 is a **torus**.
- 5. Fact: Every connected curve is homeomorphic to either \mathbb{R} and S^1 .

Theorem 12.2. A compact *n*-manifold X can be embedded in \mathbb{R}^N for some $N \in \mathbb{N}$.

Proof. Each $x \in X$ admits a neighborhood U^x with a homeo $\varphi^x : \mathbb{R}^n \to U^x$. We can choose a basis $x \in B^x \subseteq \varphi^x(B_0(1))$, and hence by compactness of X via the B^x there exists U_1, \dots, U_m with homeos $\varphi_i : \mathbb{R}^n \to U_i$ and $X \subseteq \bigcup_i \varphi_i(B_0(1))$

By Urysohn's Lemma, there exists $\rho_i: X \to I$ such that $\rho_i\left(\overline{\varphi_i(B_0(1))}\right) = \{1\}$ and $\rho_i\left(X \setminus \varphi_i(B_0(2))\right) = \{0\}$. Via the pasting lemma, let $\psi_i: X \to \mathbb{R}^n$ be the continuous function

$$\psi_i(x) = \begin{cases} \rho_i(x)\varphi_i^{-1}(x) & x \in U_i \\ (0, \dots, 0) & \text{otherwise} \end{cases}.$$

Then $F(x) = (\rho_1(x), \dots, \rho_m(x), \psi_1(x), \dots, \psi_m(x))$ embeds X into $\mathbb{R}^{m(n+1)}$.

13 Paracompactness

Definition 13.1.

• An open cover $\{U_{\alpha}\}_{\alpha}$ of X is **locally finite** if every $x \in X$ has a neighborhood that intersects only finitely many U_{α} .

- A **refinement** of an open cover $\{U_{\alpha}\}_{\alpha}$ of X is an open cover $\{V_{\beta}\}_{\beta}$ such that each V_{β} is contained in some U_{α} (depends on β).
- A space X is paracompact if it is Hausdorff, and, every open cover of X admits a locally finite refinement.

Warning.

- 1. Some sources do not require Hausdorffness in the definition.
- 2. Quotient/Subspace/Product of paracompact space(s) may not be paracompact.

Example 13.1. \mathbb{R}^n is paracompact. Let B(r) be the open ball of radius r centered at the origin. Given any open covering \mathscr{A} , for each $n \in \mathbb{N}^*$ we can pick a finite number of elements of \mathscr{A} that covers $\overline{B(n)}$. Intersect them with $\mathbb{R}^n \setminus \overline{B(n-1)}$. The union of these open sets is a desired locally finite refinement.

Theorem 13.1.

- 1. A closed subspace of a paracompact space is paracompact.
- 2. Compact + Hausdorff \implies Paracompact
- 3. Metric space \implies Paracompact.
- 4. Paracompact \implies Normal.

Proof of (4). Let A, B be closed and disjoint. We first prove the case when $A = \{a\}$. For each $b \in B$ pick disjoint neighborhoods $a \in U_b, v \in V_b$. Since $(X \setminus B) \cup_b V_b$ is an open cover of X, by paracompactness there exists a locally finite refinement of V_{α} 's that cover B. Also, x has a neighborhood W that intersects only finitely many V_{α} , say V_{b_1}, \dots, V_{b_n} . Then the open sets $U = U_{b_1} \cap \dots \cap U_{b_n}$ and $V = V_{b_1} \cap \dots \cap V_{b_n}$ form a desired pair.

For the general case, we update the notation so that for each $a \in A$ there exists disjoint open sets $a \in U_a, B \subseteq V_a$. Let $\{U_\alpha\}$ be a locally finite refinement that covers A, so $b \in B$ admits a neighborhood W_b that intersects finitely many U_α , say U_{a_1}, \dots, U_{a_n} . We then let

 $V_b = W_b \cap_i V_{a_i}$. Then $U = \bigcup_{\alpha} U_{\alpha}$ and $V = \bigcup_{b \in B} V_b$ give the desired separation.

Definition 13.2. A *partition of unity* on X for a locally finite open cover $\{U_{\alpha}\}_{\alpha}$ is a collection of continuous $\rho_{\alpha}: X \to I$ such that

- $\rho_{\alpha}(x) > 0 \implies x \in U_{\alpha}$
- $\sum_{\alpha} \rho_{\alpha}(x) = 1$ (well-defined due to local finiteness)

Theorem 13.2. Every cover of a paracompact space admits a refinement that has a partition of unity.

Proof. Let $\{U_{\alpha}\}$ be a cover of X. For each $x \in X$ there is an $x \in U_{\alpha_x}$ and hence we can pick $x \in W_x \subseteq \overline{W_x} \subseteq U_{\alpha_x}$ by normality. Let $\{V_{\beta}\}$ be a locally finite refinement of $\{W_x\}$. By Urysohn's Lemma, there exists $\psi_{\beta}: X \to I$ such that $\psi\left(\overline{V_{\beta}}\right) = \{1\}$ and $\psi\left(X \setminus U_{\alpha_{\beta}}\right) = \{0\}$. Then $\rho_{\beta}(x) = \psi_{\beta}(x) / \sum_{\gamma} \psi_{\gamma}(x)$ is a desired partition of unity.

Theorem 13.3. Manifold \implies Paracompact.

Proof. We first prove that a manifold X can be a limit of increasing compact sets.

Lemma. $\exists K_1, K_2, \cdots$ compact with $K_n \subseteq \operatorname{int}(K_{n+1})$ and $X = \bigcup_n \operatorname{int}(K_n)$. Proof. Let U_i with homeos $\varphi_i : \mathbb{R}^n \to U_i$ such that $\{\varphi_i(B_0(1))\}$ covers X. Then take the compact spaces $K_n = \bigcup_{i=1}^n \bigcup_{j=1}^n \varphi_i\left(\overline{B_0(j)}\right)$ for $n \in \mathbb{N}^*$.

Let $X = \bigcup_{\alpha} U_{\alpha}$. Then for each n there exists $U_1^n, \dots, U_{t_n}^n$ that cover the compact space K_n . Then $V_j^n = U_j^n \backslash K_{n-1}$ form a locally finite refinement: Any $x \in X$ is contained within some $\operatorname{int}(K_n)$, which means it can only be in the sets V_j^m $(1 \leq j \leq t_m)(1 \leq m \leq n)$. This is similar to Example 13.1.

14 Covering Dimension

Definition 14.1.

1. The **covering dimension** of a space X is the infimum over $n \in \mathbb{N}$ such that $(\forall \text{ open cover } \{U_{\alpha}\})$ $(\exists \text{ refinement } \{V_{\beta}\})$ $(\forall x \in X)$ $(x \text{ is in } \leqslant n+1 \text{ of the } V_{\beta})$ or equivalently

$$\dim X = \max_{\mathscr{A} \text{ open cover } X} \left[\min_{\mathscr{B} \text{ refmt of } \mathscr{A}} \underbrace{\left(\max_{x \in X} |\{B \in \mathscr{B} : x \in B\}|\right)}_{\text{order of } \mathscr{B}} \right] - 1$$

2. A **Lebesgue number** for an open cover $\{U_{\alpha}\}$ of a compact metric space is a real $\delta > 0$ such that any subset of X of diameter $< \delta$ is contained within some U_{α} .

Theorem 14.1. (Lebesgue's Covering Lemma)

Any open cover $\{U_{\alpha}\}$ of a compact metric space (X,d) has a Lebesgue number.

Proof. Since X is compact, assume $\{U_{\alpha}\} = \{U_1, \cdots, U_n\}$. The map $f(x) = \max_{1 \leq i \leq n} d(x, X \setminus U_i) > 0$ is continuous on a compact space and thus f(X) has a minimum $\delta > 0$.

Example 14.1.

1. Any compact subspace of \mathbb{R} has dimension at most 1.

Proof. Note that $\mathscr{C} = \{(n, n+1), (n-\frac{1}{2}, n+\frac{1}{2}) : n \in \mathbb{Z}\}$ has order 2. Let \mathscr{A} be any open covering of a compact subspace X of \mathbb{R} , with some Lebesgue number $\delta > 0$. The image \mathscr{I} of \mathscr{C} under $f : x \mapsto \delta x/2$ is an open covering whose elements have diameter $\delta/2 < \delta$, and hence is an open refinement subcover of \mathscr{A} . Hence

$$\dim X = \max_{\mathscr{A} \text{ open cover } X} \left[\min_{\mathscr{B} \text{ open refinement subcover of } \mathscr{A}} (\text{order of } \mathscr{B}) \right] - 1$$

$$\leqslant \max_{\mathscr{A} \text{ open cover } X} [2] - 1 = 1.$$

- 2. $\dim I = 1$.
 - *Proof.* We show that there is some open covering \mathscr{A} such that any open refinement subcover of \mathscr{A} has order at least 2. Let $\mathscr{A} = \{[0,1), (0,1]\}$ and let \mathscr{B} be any open refinement subcovering. Since 0 and 1 cannot belong to the same refinement, \mathscr{B} has at least two elements. Partition \mathscr{B} into two nonempty parts \mathscr{B}_1 and \mathscr{B}_2 . If \mathscr{B} had order 1 then $[]\mathscr{B}_1$ and $[]\mathscr{B}_2$ disconnect [0,1], a contradiction.

3. Fact: dim $I^n = n$, and every compact subspace of \mathbb{R}^n has dimension $\leq n$.

Theorem 14.2.

- If Y is a closed subspace of a finite dimensional space X, then $\dim Y \leq \dim X$.
- If $X = Y \cup Z$ where Y, Z are closed finite dimensional subspaces of X, then $\dim X = \max(\dim Y, \dim Z)$.
- Every compact subspace of \mathbb{R}^N has dimension at most N.

Tangent: Baire's Theorem, Function Spaces and Geometry

Definition 14.2. Let X be a compact metric space.

- 1. $C(X, \mathbb{R}^n) = \{f : X \to \mathbb{R}^n \text{ cts}\}\$ is the metric space equipped with the uniform metric $d(f,g) = \sup_x |f(x) g(x)|$.
- 2. For $A \subseteq X$, diam $(A) = \sup_{x,y \in A} d(x,y)$.
- 3. $\Delta(f) = \sup \{ \operatorname{diam}(f^{-1}\{z\}) : z \in f(X) \}$ (Deviation of f from injectivity).

Remark.
$$\bigcap_n U_{1/n} = \{f : \Delta(f) = 0\} = \{f \text{ injective}\}.$$

Theorem 14.3. (Baire's Theorem)

Let $\{U_n\}$ be a countable collection of dense open sets in a compact Hausdorff space X. Then $\bigcap_n U_n$ is dense in X.

Proof. Let W_1 be an open set. We want to show $W_1 \cap_n U_n \neq \emptyset$.

- Since U_1 is dense and open, there exists $x_1 \in W_1 \cap U_1$ open.
- Inductively, since X is normal, there exists $x_n \in W_n \subseteq \overline{W_n} \subseteq W_{n-1} \cap U_{n-1}$.

Since X is compact and $\overline{W_1} \supseteq \overline{W_2} \supseteq \cdots$, we have

$$\varnothing \neq \bigcap_{n} \overline{W_n} \subseteq \bigcap_{n} (U_n \cap W_n) \subseteq W \cap_n U_n.$$

Definition 14.3.

1. $\{z_0, \dots, z_m\} \subseteq \mathbb{R}^n$ are **geometrically independent** if

$$\lambda_0 z_0 + \dots + \lambda_m z_m = \mathbf{0}, \ \lambda_0 + \dots + \lambda_m = 0 \implies \lambda_0 = \dots = \lambda_m = 0$$

2. $A \subseteq \mathbb{R}^n$ is in **general position** if any subset of size n+1 are geom. ind.

Theorem 14.4. Given $\{z_0, \dots, z_m\} \subseteq \mathbb{R}^n$ and $\delta > 0$, there exists $\{y_0, \dots, y_m\} \subseteq \mathbb{R}^n$ that is in general position such that all $|z_i - y_i| < \delta$.

Back to dimension theory

Theorem 14.5. (Embedding Compact Metric Spaces)

Every compact metric space X of dimension n can be embedded in \mathbb{R}^{2n+1} .

Define $U_{\varepsilon} = \{ f \in \mathcal{C}(X, \mathbb{R}^{2n+1}) : \Delta(f) < \varepsilon \}.$

Claim. U_{ε} is open.

Proof. Let $f \in U_{\varepsilon}$, we want to show $\exists B_f(\delta) \subseteq U_{\varepsilon}$. Pick $\varepsilon < b < \Delta(f)$ and define

$$A = \{(x \times y) : d(x, y) \geqslant b\} \subseteq X^2$$

Note that $f(x) = f(y) \implies d(x,y) \le \Delta(f) < b \implies (x \times y) \notin A$. Hence |f(x) - f(y)| has a positive minimum 2δ on A. Now if $g \in B_f(\delta)$, then for any $(x \times y) \in A$,

$$|f(x) - g(x)| < \delta$$
, $|f(y) - g(y)| < \delta$, $|f(x) - f(y)| \ge 2\delta$

so $g(x) \neq g(y)$. In other words, $g(x) = g(y) \implies d(x,y) < b \implies \Delta g \leqslant b < \varepsilon$.

Claim. U_{ε} is dense. (Difficult!)

Proof. Let $f \in \mathcal{C}(X, \mathbb{R}^{2n+1})$ and $\delta > 0$, we want to find a $g \in B_f(\delta) \cap U_{\varepsilon}$. Firstly, we cover X with V_1, \dots, V_m such that

- (1) diam $(V_i) < \varepsilon/2$
- (2) diam $(f(V_i)) < \delta/2$
- (3) Each $x \in X$ is in at most n+1 of the V_i .

To do this, pick a Lebesgue number $0 < \kappa < \varepsilon/4$ such that any $B_x(\kappa) \subseteq f^{-1}(B_y(\delta/4))$ for some y. Since dim $X \le n$, there exists a refinement $\{V_\beta\}_\beta$ of $\{B_x(\kappa)\}_x$ such that (3) holds. Since $V_\beta B_{x(\beta)}(\kappa)$ for some $x(\beta)$, (1) and (2) also hold. By compactness, we can find a finite cover using V_i .

Let $\varphi_i: X \to \mathbb{R}$ be a partition of unity associated to the U_i . Also, fix $x_i \in U_i$ and $z_i \in \mathbb{R}^{2n+1}$ such that $|f(x_i) - z_i| < \delta/2$ and $\{z_i\}$ is in general position. Define

$$g(x) = \sum_{i} \varphi_i(x) z_i.$$

Then $d(f,g) < \delta$ because

$$|g(x) - f(x)| = \left| \sum_{i} \varphi_i(x)(z_i - f(x_i)) + \sum_{i} \varphi_i(x)(f(x_i) - f(x)) \right| < \sum_{i} \varphi_i(x) \left(\frac{\delta}{2} + \frac{\delta}{2} \right) = \delta.$$

and $g \in U_{\varepsilon}$ because $g(x) = g(y) \Longrightarrow \sum_{i} (\varphi_{i}(x) - \varphi_{i}(y)) z_{i} = \mathbf{0} \Longrightarrow \varphi_{i}(x) = \varphi_{i}(y) \ \forall i$ since x, y are in $\leq 2(n+1)$ of the U_{i} . Since $\varphi_{i}(x) > 0$ for some i, we have $x, y \in U_{i} \Longrightarrow d(x, y) < \varepsilon/2$. Therefore $\Delta(g) \leq \varepsilon/2 < \varepsilon$.

By Baire's theorem, $\bigcap_n U_{1/n}$ is dense and hence non-empty, i.e. there is a continuous injective $f: X \to \mathbb{R}^{2n+1}$. Also since X is compact and f(X) is Hausdorff, f sends closed sets to closed sets (i.e. is closed). Hence f embeds X into \mathbb{R}^{2n+1} .

Theorem 14.6. (Embedding Manifolds)

Every manifold can embedded in some \mathbb{R}^N .

Proof. Let X be an m-manifold.

Lemma 1. Let $f: X \to \mathbb{R}^N$ such that $f^{-1}(\text{compact}) = \text{compact}$. Then f is closed (sends closed sets to closed sets).

Proof. Let $C \subseteq X$ be closed. Suppose $y \in \mathbb{R}^N \backslash f(C)$. By Heine-Borel, $\overline{B_y(\varepsilon)}$ is compact and hence $K = C \cap f^{-1}\left(\overline{B_y(\varepsilon)}\right)$ is compact $\Longrightarrow f(K) \subseteq f(C)$ is compact $\Longrightarrow V = B_y(\varepsilon) \backslash f(K)$ is a neighborhood of y. Note that

$$z \in V \cap f(C) \implies \exists x \in f^{-1}(B_y(\varepsilon)) \cap C \subseteq K \text{ with } f(x) = z$$

$$\implies z \in f(K) \implies V \cap f(C) = \emptyset$$

and thus f(C) is closed.

Lemma 2. There exists continuous $f: X \to \mathbb{R}$ such that $f^{-1}(\text{compact}) = \text{compact}$.

Proof. Using the Lemma from Theorem 13.3, we can write X as a limit of increasing compact sets $\bigcup_n K_n$ where $K_n \subseteq \operatorname{int}(K_{n+1})$. Since manifold \Longrightarrow paracompact \Longrightarrow normal, we can use Urysohn's Lemma to construct continuous maps $\varphi_n : X \to I$ such that $\varphi_n(K_n) \equiv 0$ and $\varphi_n\left(\overline{X \setminus K_{n+1}}\right) \equiv 1$. Then we define $f : X \to \mathbb{R}$ by $f = \sum_{n=1}^{\infty} \varphi_n$.

- $x \in K_n \implies \varphi_n(x) = \varphi_{n+1}(x) = \cdots = 0$ and hence f is well-defined.
- $x \notin K_n \implies \varphi_{n-1}(x) = \varphi_{n-2}(x) = \dots = 1 \implies f(x) \geqslant n-1.$
- f is continuous: Given any $(a,b) \subseteq \mathbb{R}$, $f^{-1}((a,b)) \subseteq K_{\lceil b+2 \rceil}$ and hence $f^{-1}((a,b))$ is the preimage of (a,b) under $\sum_{n=1}^{\lceil b+1 \rceil} \varphi_n$ (a continuous map) which is open.
- $f^{-1}(C)$ is compact for any compact $C \subseteq \mathbb{R}$: Since C is closed and bounded, $f^{-1}(C)$ is closed and contained within some K_N (compact), and hence $f^{-1}(C)$ is compact (closed subspace of a compact space).

Take K_n and f from Lemma 2, and denote $R_n = K_n \setminus \operatorname{int}(K_{n-1})$ and $U_n = \operatorname{int}(K_{n+1}) \setminus K_{n-2}$. By Urysohn's Lemma again, construct $\rho_n : X \to \mathbb{R}$ with $\rho_n(R_n) \equiv 1$, $\rho_n(X \setminus U_n) \equiv 0$.

Since $D_n = K_{n+1} \setminus \operatorname{int}(K_{n-2})$ is compact and metrizable (normal and 2nd countable), there exists a cts closed inj $f_n : D_n \hookrightarrow \mathbb{R}^{2m+1}$. Then define $\psi_n : X \to \mathbb{R}^{2m+1}, \psi : X \to \mathbb{R}^{4m+3}$ as

$$\psi_n(x) = \begin{cases} \rho_n(x) f_n(x) & x \in U_n \\ \mathbf{0} & \text{otherwise} \end{cases} \qquad \psi(x) = \left(\sum_{\text{even } n} \psi_n(x), \sum_{\text{odd } n} \psi_n(x), f(x) \right).$$

 ψ is injective (Exercise: $f(x) = f(y) \implies x, y \in R_{\ell}$, and $\sum_{i \equiv_2 \ell} \psi_i(x) = \psi_{\ell}(x) = f_{\ell}(y) \implies x = y$) and closed (for any compact $K \subseteq \mathbb{R}^N, \psi^{-1}(K)$ is closed and contained within the compact $f^{-1}(\pi_N(K))$). Thus ψ embeds X into \mathbb{R}^{4m+3} .

15 Homotopies

From now on, assume all 'maps' are continuous.

Definition 15.1.

- 1. Given $f_0, f_1: X \to Y$, a **homotopy** from f_0 to f_1 is $H: X \times I \to Y$ such that $f_0(x) = H(x,0), f_1(x) = H(x,1)$. We sometimes write $H(x,t) = f_t(x)$. If such homotopy exists, we say f_0, f_1 are **homotopic** $(f_0 \simeq f_1)$.
- 2. A **homotopy relative to** $A \subseteq X$ (homotopy rel A) is a homotopy $H : X \times I \to Y$ such that H(a,t) = H(a,0) for all $a \in A$.
- 3. A **reparameterization** of $\alpha: I \to X$ is a map $\beta: I \to X$ such that $\beta = \alpha \circ r$ where $r: I \to I$ satisfies r(0) = 0, r(1) = 1.
- 4. X, Y are **homotopy equivalent** $(X \simeq Y)$ if there exists $f: X \to Y, g: Y \to X$ (called homotopy equivalences) such that $f \circ g \simeq \mathbf{1}_Y$ and $g \circ f \simeq \mathbf{1}_X$.
- 5. X is *contractible* if $X \simeq \text{point}$. $f: X \to Y$ is *nullhomotopic* if $f \simeq \text{constant}$.
- 6. A **retraction** of X onto $A \subseteq X$ is a map $r: X \to X$ with $r \mid_A = \mathbf{1}_A, r(X) = A$. If it exists, A is a **retract** of X.
- 7. A **deformation retraction** of X onto $A \subseteq X$ is a homotopy rel A from the identity on X to a retraction of X onto A. If it exists, A is a **deformation retract** of X.

Example 15.1.

- (L) Which paths $f: S^1 \to T^2 \# T^2$ are homotopic?
- (R) $D^2 \setminus \{x_0, x_1\}$ deformation retracts to which blue sets?

Remark.

- 1. If β is a reparam of α then $\alpha \simeq \beta$ rel $\{0, 1\}$.
- 2. $X\cong Y\implies X\simeq Y$ but not converse, e.g. Möbius band $\simeq S^1\simeq \mathrm{Band}\ S^1\times I.$
- 3. Fact: $X \simeq Y \iff \exists Z$ that deformation retracts to both X and Y.

16 CW Complexes

Definition 16.1. A CW complex / cell complex is a space X built as such:

- 1. Start with a discrete set X^0 , whose points are **0-cells**.
- 2. Let D^n_{α} be n-balls (with $\partial D^n_{\alpha} = S^{n-1}_{\alpha}$). Inductively, form the **n-skeleton** X^n as the quotient space of $X^{n-1} \sqcup_{\alpha} D^n_{\alpha}$ by identifying $x \sim \varphi_{\alpha}(x)$ where $\varphi_{\alpha} : \partial D^n_{\alpha} \to X^{n-1}$ are the **attaching maps**. This makes $X^n = X^{n-1} \sqcup_{\alpha} \operatorname{int}(D^n_{\alpha})$ as a set. The $e^n_{\alpha} = \operatorname{int}(D^n_{\alpha})$ are called **n-cells**.
- 3. One can stop after finite n, setting $X = X^n$. Or one can set $X = \bigcup_{n=0}^{\infty} X^n$, giving it the weak topology: $U \subseteq X$ is open $\Leftrightarrow U \cap X^n$ is open in X^n for all n.

The *characteristic map* of a cell e_{α}^{n} is the map

$$\Phi_{\alpha}: D_{\alpha}^{n} \hookrightarrow X^{n-1} \sqcup_{\beta} D_{\beta}^{n} \xrightarrow{\text{quot}} X^{n} \hookrightarrow X$$

Example 16.1.

1. A 1-dim CW complex is a *graph*, whose 0-cells are *nodes* and 1-cells are *edges*.

2. $X = T^2$ is a CW complex, with $X^0 = \{e_0^0\}$, $X_1 = X^0 \sqcup e_a^0 \sqcup e_b^0$ where $\varphi_a \equiv \varphi_b \equiv e_0^0$ being constant, and $X^2 = X^1 \sqcup e^2$ with attaching map $\varphi : S^1 \to X^1$ given by

Note: If we swap the direction of two adjacent leaves in the middle step, we get a *Klein bottle*. Attaching maps matter!

- 3. The *n*-sphere S^n is a cell complex with two cells e^0 and e^n , with the attaching map $S^{n-1} \to e^0$. Or, we can inductively attach two *n*-cells to the equator S^{n-1} .
- 4. $\mathbb{RP}^n \cong S^n/(v \sim -v) \cong D^n/(v \sim -v : v \in \partial D^n)$ is a cell complex by attaching an n-cell to \mathbb{RP}^{n-1} via the map $S^{n-1} \to \mathbb{RP}^{n-1}$. We can also have $\mathbb{RP}^{\infty} = \bigcup_n \mathbb{RP}^n$.

Definition 16.2. A *subcomplex* of a CW complex X is a closed subspace $A \subseteq X$ that is a union of cells of X. The pair (X, A) is a CW pair.

Example 16.2.

- 1. $\mathbb{RP}^k \subseteq \mathbb{RP}^n$ is a subcomplex $(k \leq n)$.
- 2. $S^k \subseteq S^n$ is not a subcomplex with the two-cell structure, but is a subcomplex using the recursive CW structure.

Theorem 16.1.

- If X, Y are cell complexes, then $X \times Y$ is a cell complex, whose cells are $e_{\alpha}^m \times e_{\beta}^n$ where $e_{\alpha}^m, e_{\beta}^n$ are cells of X, Y respectively.
- If (X, A) is a CW pair, then the quotient space X/A is a cell complex, whose cells are the cells of $X \setminus A$, and one new 0-cell: the image of A in X/A.

Definition 16.3. $A \subseteq X$ has the **homotopy extension property** if given any map $f_0: X \to Y$ and a homotopy $f_t \mid_A: A \to Y$ of $f_0 \mid_A$, we can extend $f_t \mid_A$ to a homotopy f_t on X. Equivalently, given any maps $H_1: X \times \{0\} \to Y$ and $H_2: A \times I \to Y$ that agree on $A \times \{0\}$, there exists a map $H: X \times I \to Y$ such that H agrees with both H_1, H_2 where their domains meet.

Theorem 16.2. $A \subseteq X$ has the homotopy extension property if and only if

$$X \times \{0\} \cup A \times [0,1]$$
 is a retract of $X \times [0,1]$.

Proof. Let $Z = X \times \{0\} \cup A \times [0, 1]$.

• If $A \subseteq X$ has h.e.p then given the maps $H_1: X \times \{0\} \to Z$ and $H_2: A \times I \to Z$ with

$$H_1(x,0) = (x,0)$$
 and $H_2(a,t) = (a,t)$

we can get an extension $H: X \times I \to Z$ constant on Z. Hence H is the retraction.

• The converse is easy if we assume A is closed. Say $r: X \times I \to Z$ is a retraction. Given any H_1, H_2 as in the definition, we can combine them via the Pasting Lemma to get $H_3: Z \to Y$. Then $H_3 \circ r: X \times I \to Y$ is the required homotopy. For the full proof where A is not necessarily closed, see appendix of [Hatcher].

Theorem 16.3. If (X, A) is a CW pair, A has the homotopy extension property.

Proof. To prove $X \times \{0\} \cup A \times I$ is a retract of $X \times I$, we first prove

Lemma. $D^n \times \{0\} \cup \partial D^n \times I$ is a deformation retract of $D^n \times I$.

Proof. Consider radial projection r from $(0,2) \in D^n \times \mathbb{R}$:

Then $f_t = t \cdot r + (1 - t) \cdot \mathbf{1}$ is a deformation retract.

Applying the deformation retraction to every D^n attached to X^{n-1} that is not in A^n , we get a deformation retraction H_n from $X^n \times I$ onto $X^n \times \{0\} \cup (X^{n-1} \cup A^n) \times I$. Note that concatenating adjacent H_n and H_{n+1} gives a deformation retraction

$$X^{n+1} \times I \xrightarrow{H_{n+1}} X^{n+1} \times \{0\} \cup \left(X^n \cup A^{n+1}\right) \times I$$

$$\xrightarrow{H_n} X^{n+1} \times \{0\} \cup \left(\left(X^n \times \{0\} \cup \left(X^{n-1} \cup A^n\right) \times I\right) \cup \left(A^{n+1} \times I\right)\right)$$

$$= X^{n+1} \times \{0\} \cup \left(X^{n-1} \cup A^{n+1}\right) \times I$$

and thus by concatenating all H_0, H_1, \cdots into $[1/4, 1/2], [1/8, 1/4], \cdots$ we get a deformation retract from $X \times I$ onto $X \times \{0\} \cup A \times I$. (In the infinite case, there is no continuity problem at t = 0 since X is given the weak topology).

Theorem 16.4. If (X, A) is a CW pair and A is contractible, then the quotient map $X \to X/A$ is a homotopy equivalence.

Proof. Let $f_t: X \to X$ be a homotopy extension of the contraction of A with $f_0 = \mathbf{1}_X$. Since $f_t(A) \subseteq A$ and $f_1(A) = \operatorname{pt}$, we can construct well-defined maps $\overline{f_t}$, g satisfying

$$X \xrightarrow{f_t} X \qquad X \xrightarrow{f_1} X$$

$$q \downarrow \qquad \qquad q \downarrow \qquad \qquad q \downarrow$$

$$X/A \xrightarrow{\overline{f_t}} X/A \qquad X/A$$

Then $g \circ q = \underline{f_1} \simeq \underline{f_0} = \mathbf{1}_X$ and $q(g([x])) = q(g(q(x))) = q(f_1(x)) = \overline{f_1}(q(x)) = \overline{f_1}([x])$ and hence $q \circ g = \overline{f_1} \simeq \overline{f_0} = \mathbf{1}_{X/A}$, so g, q are homotopy equivalences.

Example 16.3.

2.

17 Fundamental Groups

Definition 17.1.

- 1. A **path** on X is $\alpha: I \to X$. Define $\Omega_{x_0}(X) = \{\text{path } \alpha \mid \alpha(0) = \alpha(1) = x_0\}.$
- 2. Given paths $\alpha, \beta \in \Omega_{x_0}(X)$, define the **concatenation** $\alpha \cdot \beta \in \Omega_{x_0}(X)$ by

$$(\alpha \cdot \beta)(s) = \begin{cases} \alpha(2s) & 0 \le s \le 0.5\\ \beta(2s-1) & 0.5 \le s \le 1. \end{cases}$$

- 3. Given a path $\gamma \in \Omega_{x_0}(X)$, define the **reversed path** $\overline{\gamma}(t) = \gamma(1-t)$.
- 4. The **fundamental group** of X based at x_0 is the group

$$\pi_1(X, x_0) = \Omega_{x_0}(X) / \sim$$

where $\alpha \sim \beta \iff \alpha \simeq \beta$ rel $\{0,1\}$, with group law $[\alpha] \cdot [\beta] = [\alpha \cdot \beta]$ and $[\gamma]^{-1} = \overline{\gamma}$.

Theorem 17.1. Let γ be a path from x_0 to x_1 . The map $\Phi_{\gamma} : \pi_1(X, x_1) \to \pi_1(X, x_0)$ by $\Phi([\alpha]) = [\gamma \cdot \alpha \cdot \overline{\gamma}]$ is an isomorphism.

Corollary. If X is path-connected, $\pi_1(X, x)$ are isomorphic over all $x \in X$ (say $\pi_1(X)$).

Theorem 17.2. If X, Y are path-connected, $\pi_1(X \times Y) = \pi_1(X) \times \pi_1(Y)$.

Definition 17.2. X is *simply connected* if X is path-connected and $\pi_1(X)$ is trivial.

Definition 17.3.

- 1. Write $f:(X,x_0)\to (Y,y_0)$ if $f:X\to Y$ and $f(x_0)=y_0$.
- 2. The **homomorphism induced** by $f:(X,x_0)\to (Y,y_0)$ is the homomorphism

$$f_*: \pi_1(X, x_0) \to \pi_1(X, y_0)$$

given by $f_*([\alpha]) = [f \circ \alpha].$

Theorem 17.3.

- 1. $(f \circ g)_* = f_* \circ g_*$.
- 2. If $f, g: X \to Y$ are homotopic rel x_0 , then $f_* = g_*$.
- 3. If $f: X \to Y$ is a homotopy equivalence, then f_* is an isomorphism.

Theorem 17.4. $\pi_1(S^1) = \mathbb{Z}$.

Proof. Let $p: \mathbb{R} \to S^1$ given by $p(\lambda) = (\cos(2\pi\lambda), \sin(2\pi\lambda))$. The following two facts will be proven in the Covering Spaces chapter.

- 1. Given any path γ of S^1 , there exists a unique path $\tilde{\gamma}$ of \mathbb{R} such that $\tilde{\gamma}(0) = 0$ and $\gamma = p \circ \tilde{\gamma}$.
- 2. Given any homotopy $f_t: I \to S^1$, there exists a unique homotopy $\tilde{f}_t: I \to \mathbb{R}$ such that $f_t = p \circ \tilde{f}_t$

The map $\Phi([\gamma]) = \tilde{\gamma}(1) \in \mathbb{Z}$ is then a well-defined isomorphism.

Theorem 17.5. If A is a retract of X, then the inclusion $i: A \hookrightarrow X$ induces an injective homomorphism i_* . If A is a defo retract of X, then i_* is an isomorphism.

Proof. Let $r: X \to A$ be a retraction. Then $r \circ i = 1 \implies r_* \circ i_* = 1 \implies i_*$ injective. If there is a deformation retraction, then i is a homotopy equivalence and hence i_* is an isomorphism.

Theorem 17.6. (Brouwer's Fixed Point Theorem) $f: D^2 \to D^2 \implies f(x) = x \text{ for some } x \in D^2$.

Proof. Otherwise, the map r defined by

is a retract from D^2 to S^1 , so $i: S^1 \to D^2$ induces an injective $i_*: \mathbb{Z} \to \{0\}$, contradiction.

Theorem 17.7. (Fundamental Theorem of Algebra)

Every complex polynomial of positive degree has a root.

Proof. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ where n > 0. Assume f has no roots. Then

$$\gamma_t(s) = \frac{f(t \cdot e^{2\pi i s})}{|f(t \cdot e^{2\pi i s})|}$$

form a homotopy between γ_1 and the trivial loop γ_0 . Hence $[\gamma_1] = 0 \in \mathbb{Z}$. However,

$$\delta_t(s) = \frac{F_t(e^{2\pi i s})}{|F_t(e^{2\pi i s})|}$$

with $F_t(x) = x^n + a_{n-1}x^{n-1}t + \cdots + a_0t^n$ is a homotopy between $\delta_1 = \gamma_1$ and the path $\delta_0(s) = e^{2\pi i n s}$ that loops around the circle n > 0 times, and hence $[\gamma_1] = n \neq 0$.

18 Van Kampen's Theorem

Definition 18.1. Let $i_1: H \hookrightarrow G_1$ and $i_2: H \hookrightarrow G_2$ be injective homomorphisms. The **amalgamated free product** of G_1 and G_2 along H, denoted as $G = G_1 *_H G_2$, is the unique group (up to isomorphism) that satisfies

- (1) There exists homomorphisms $\varphi_i: G_i \to G$ with $\varphi_1 \circ i_1 = \varphi_2 \circ i_2$.
- (2) For any other homomorphisms $\psi_i: G_i \to K$ with $\psi_1 \circ i_1 = \psi_2 \circ i_2$, there exists a unique homomorphism $\psi: G \to K$ with $\psi \circ \varphi_i = \psi_i$.

$$H \xrightarrow{i_1} G_1$$

$$i_2 \downarrow \qquad \downarrow \varphi_1$$

$$G_2 \xrightarrow{\varphi_2} G_{\cdot, \psi} \downarrow \psi_1$$

$$\downarrow \psi_2 \qquad \downarrow K$$

If $H = \{0\}$, then $G_1 * G_2 = G_1 *_H G_2$ is just the **free product** of G_1 and G_2 .

Remark.

1. Such a group always exists, e.g. if $G_i = \langle S_i \mid R_i \rangle$ then

$$G_1 *_H G_2 = \langle S_1 \sqcup S_2 \mid R_1 \cup R_2 \cup \{i_1(h)i_2(h^{-1}) : h \in H\} \rangle.$$

Uniqueness follows from the uniqueness of ψ between two such possible groups.

2. Think of $G_1 *_H G_2$ by first treating H as a common subgroup of G_1, G_2 , then construct all possible words of finite length with letters from $G_1 \cup G_2$. When two adjacent letters in a word both come from the same G_i , or if they both belong to H, we can further simplify the word.

Example 18.1.

- 1. The free group with n letters is simply $F_n = \underbrace{\mathbb{Z} * \cdots * \mathbb{Z}}_{r}$.
- 2. The free product of $\mathbb{F}_2 = \{1, a, a^2 = 1\}$ and itself $\mathbb{F}_2 = \{1, b, b^2 = 1\}$ is

$$\mathbb{F}_2 * \mathbb{F}_2 = \{1, a, b, ab, ba, aba, bab, \cdots\}$$

(This is the semi-direct product of $\mathbb{Z} = \langle c := ab \rangle$, $\mathbb{F}_2 = \langle a \rangle$ with $ac = c^{-1}a$, sometimes called the *infinite dihedral group*.)

3. If we embed $H = \mathbb{F}_2$ into the two \mathbb{F}_2 's above by $h \mapsto a$ and $h \mapsto b$, then the free product collapses into

$$\mathbb{F}_2 *_H \mathbb{F}_2 = \left\{1, h, h^2 = 1\right\} = \mathbb{F}_2$$

Theorem 18.1. (Van Kampen's Theorem, two-set version)

Suppose $X = U \cup V$ where $U, V, U \cap V$ are open and path-connected, then for $x_0 \in U \cap V$ we have $\pi_1(X, x_0) = \pi_1(U, x_0) *_{\pi_1(U \cap V, x_0)} \pi_1(V, x_0)$ (with $\pi_1(U \cap V, x_0) \hookrightarrow \pi_1(U, x_0)$ and $\pi_1(U \cap V, x_0) \hookrightarrow \pi_1(V, x_0)$ being the maps induced by the inclusions $U \cap V \hookrightarrow U$ and $U \cap V \hookrightarrow V$ respectively).

Example 18.2. $\pi_1(S^n) = \{0\}$ for $n \ge 2$ (high-dim spheres are simply connected).

 S^n is the union of open neighborhoods of the north and south hemisphere, intersecting at the equator $\simeq S^{n-1}$. Hence $\pi_1(S^n) = \pi_1(e^n) *_{\pi_1(S^{n-1})} \pi_1(e^n) = \{0\} *_{\pi_1(S^{n-1})} \{0\} = \{0\}$.

Definition 18.2. Suppose $x_0 \in X, y_0 \in Y$. The **wedge sum** $(X, x_0) \vee (Y, y_0)$ is the space $(X \sqcup Y)/\{x_0, y_0\}$ (gluing X and Y together at x_0, y_0). Lazy: $X \vee Y$.

Example 18.3. $S^1 \vee S^1$ is the figure-eight, homemorphic to shape ∞ .

Theorem 18.2. If \exists neighborhoods $x_0 \in U, y_0 \in V$ in X, Y such that $\{x_0\}, \{y_0\}$ are deformation retracts of U, V respectively, then $\pi_1(X \vee Y) = \pi_1(X) \times \pi_1(Y)$.