

LECTURE 8: Multiagent Decision Making (II)

Introduction to Multi-Agent Systems (MESIIA, MIA)

URV

Types of Agreement

- Multiagent encounters (game-like character)
- Voting.
- Coalition forming.
- Auctions (Allocating Scarce Resources)

Overview

- Allocation of scarce resources amongst a number of agents is central to multiagent systems.
- A resource might be:
 - a physical object
 - the right to use land
 - computational resources (processor, memory, . . .)
 - ..., etc.
- It is a question of supply vs demand
 - If the resource isn't scarce..., or if there is no competition for the resource...
 - Then there is no trouble allocating it
 - If there is a greater demand than supply
 - Then we need to determine how to allocate it

Overview

- In practice, this means we will be talking about auctions.
 - These used to be rare (and not so long ago)
 - However, auctions have grown massively with the Web/Internet
- Now feasible to auction things that weren't previously profitable:
 - eBay
 - Adword auctions

What is an auction

- Auctions are effective in allocating resources efficiently
 - They also can be used to reveal truths about bidders
- Concerned with *traders* and their allocations of:
 - Units of an indivisible good; and
 - Money, which is divisible.
- Assume some initial allocation.
- **Exchange** is the free alteration of allocations of goods and money between traders

Types of value

- There are several models, embodying different assumptions about the nature of the good.
 - Private Value / Common Value / Correlated Value
 - With a common value, there is a risk that the winner will suffer from the *winner's curse*, where the winning bid in an auction exceeds the intrinsic value or true worth of an item

- Each trader has a value or *limit price* that they place on the good.
 - Limit prices have an effect on the behaviour of traders

Private Value

Good has an value to me that is independent of what it is worth to you.

• For example: John Lennon's last dollar bill.

Common Value

The good has the same value to all of us, but we have differing estimates of what it is.

Winner's curse.

Correlated Value

Our values are related.

 The more you're prepared to pay, the more I should be prepared to pay.

Auction Protocol Dimensions

Winner Determination

- Who gets the good, and what do they pay?
 - e.g. first vs second price auctions

Open Cry vs Sealed-bid

- Are the bids public knowledge?
 - Can agents exploit this public knowledge in future bids?

One-shot vs Iterated Bids

- Is there a single bid (i.e. one-shot), after which the good is allocated?
- If multiple bids are permitted, then:
 - Does the price ascend, or descend?
 - What is the terminating condition?

English Auction

- This is the kind of auction everyone knows.
 - Typical example is sell-side.
- Buyers call out bids, bids increase in price.
 - In some instances the auctioneer may call out prices with buyers indicating they agree to such a price.
- The seller may set a *reserve price*, the lowest acceptable price.

- Auction ends:
 - at a fixed time (internet auctions); or when there is no more bidding activity.
 - The "last man standing" pays their bid.

English Auction

Classified in the terms we used above:

- First-price
- Open-cry
- Ascending

Around 95% of internet auctions are of this kind. The classic use is the sale of antiques and artwork.

Susceptible to:

- Winner's curse
- Shills

Dutch Auction

- Also called a "descending clock" auction
 - Some auctions use a clock to display the prices.
- Starts at a high price, and the auctioneer calls out descending prices.
 - One bidder claims the good by indicating the current price is acceptable.
 - **Ties are broken** by restarting the descent from a slightly higher price than the tie occurred at.
- The winner pays the price at which they "stop the clock".

Dutch Auction

Classified in the terms we used above:

- First-price
- Open-cry
- Descending

High volume (since auction proceeds swiftly). Often used to sell perishable goods:

- Flowers in the Netherlands (eg. Aalsmeer)
- Fish in Spain and Israel.
- Tobacco in Canada.

First-Price Sealed-Bid Auction

- In an English auction, you get information about how much a good is worth
 - Other people's bids tell you things about the market.
- In a **sealed bid auction**, none of that happens
 - at most you know the winning price after the auction.
- In the First-Price Sealed-Bid (FPSB) auction the *highest bid wins as always*.
 - As its name suggests, the winner pays that highest price (which is what they bid).

Vickrey Auction

- The Vickrey auction is a sealed bid auction.
 - The winning bid is the highest bid, but the winning bidder pays the amount of the second highest bid.
- This sounds odd, but it is actually a very smart design.
 - Will talk about why it works later.
- It is in the bidders' interest to bid their true value.
 - incentive compatible in the usual terminology.
- However, it is not a panacea, as the New Zealand government found out in selling radio spectrum rights
 - Due to interdependencies in the rights, that led to strategic bidding
 - one firm bid NZ\$100,000 for a license, and paid the second-highest price of only NZ\$6.

Vickrey Auction Classified in the terms we used above: Second-price Sealed Bid One-shot Historically used in the sale of stamps and other paper collectibles.

Why does the Vickrey auction work?

- Suppose you bid more than your valuation.
 - You may win the good.
 - If you do, you may end up paying more than you think the good is worth.
 - Not so smart.

- Suppose you bid less than your valuation.
 - You stand less chance of winning the good.
 - However, even if you do win it, you will end up paying the same.
 - Not so smart.

Proof of dominance of truthful bidding

- Let v_i be the bidding agent i's value for an item, and b_i be the agent's bid.
 - The payoff for bidder *i* is:

$$p_i = \begin{cases} v_i - \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j \\ 0 & \text{otherwise} \end{cases}$$

- Assume bidder i bids $b_i > v_i$ (i.e. **overbids**)
 - If $\max_{j \neq i} b_j < v_i$, then the bidder would win whether the bid was truthful. Therefore, the strategies of bidding truthfully and overbidding have equal payoffs
 - If $\max_{\substack{j \neq i \\ \text{both strategies have equal payoffs}} both strategies have equal payoffs}$
 - If $v_i < \max_{j \neq i} b_j < b_i$, then the strategy of overbidding would win the action, but the payoff would be negative (as the bidder will have overpaid). A truthful strategy would pay zero.

Proof of dominance of truthful bidding

- Let v_i be the bidding agent i's value for an item, and b_i be the agent's bid.
 - The payoff for bidder i is: $p_i = \begin{cases} v_i \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j \\ 0 & \text{otherwise} \end{cases}$
- Assume bidder i bids $b_i < v_i$ (i.e. **underbids**)
 - If $\max_{\substack{j \neq i \\ j \neq i}} b_j > v_i$, then the bidder would loose whether the bid was truthful. Therefore, the strategies of bidding truthfully and underbidding have equal payoffs
 - If $\max_{\substack{j \neq i \\ \text{both strategies have equal payoffs}} both strategies have equal payoffs$
 - If $b_i < \max_{\substack{j \neq i \\ \text{would}}} b_j < v_i$, then only the strategy of truth-telling would win the action, with a positive payoff (as the bidder would have). An underbidding strategy would pay zero.

Collusion

 None of the auction types discussed so far are immune to collusion

- A grand coalition of bidders can agree beforehand to collude
 - Propose to artificially lower bids for a good
 - Obtain true value for good
 - Share the profit
- An auctioneer could employ bogus bidders
 - Shills could artificially increase bids in open cry auctions
 - Can result in winner's curse

Combinatorial Auctions

- A combinatorial auction is an *auction for* bundles of goods.
 - A good example of bundles of goods are spectrum licences.
 - For the 1.7 to 1.72 GHz band for Brooklyn to be useful, you need a license for Manhattan, Queens, Staten Island.
 - Most valuable are the licenses for the same bandwidth.
 - But a different bandwidth license is more valuable than no license.
 - a phone will work, but will be more expensive.

Combinatorial Auctions

• Define a set of items to be auctioned as: $\mathcal{Z} = \{z_1, \dots, z_m\}$

- Given a set of agents $Ag = \{1, ..., n\}$ the preferences of agent i are given with the *valuation function*: $v_i: 2^{\mathcal{Z}} \to \mathbb{R}$, meaning that for every possible bundle of goods $\mathcal{Z}' \subseteq \mathcal{Z}$, $v_i(\mathcal{Z}')$ says how much \mathcal{Z}' is worth to i.
 - If that sounds to you like it would place a big requirement on agents to specify all those preferences, you would be right.
 - If $v_i(\phi) = 0$, then we say that the valuation function for i is **normalized**.
 - ullet i.e. Agent i does not get any value from an empty allocation
- Another useful idea is free disposal, $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \Rightarrow v_i(\mathcal{Z}_1) \leq v_i(\mathcal{Z}_2)$
 - In other words, an agent is never worse off having more stuff

Allocation of Goods

- An outcome is an allocation of goods to the agents.
 - Note that we don't require all off the goods to be allocated
 - Formally an allocation is a list of sets $\mathcal{Z}_1,\dots,\mathcal{Z}_n$ one for each agent i such that $\mathcal{Z}_i\subseteq\mathcal{Z}$
 - and for all $i, j \in Ag$ such that $i \neq j$, we have $\mathcal{Z}_i \cap \mathcal{Z}_j = \phi$
 - Thus, no good is allocated to more than one agent
- The set of all allocations of Z to agents Ag is: alloc(Z,Ag)

Maximising Social Welfare

- If we design the auction, we get to say how the allocation is determined.
 - Combinatorial auctions can be viewed as different social choice functions, with different outcomes relating to different allocations of goods
 - A desirable property would be to maximize social welfare
 - i.e. maximise the sum of the utilities of all the agents.
- We can define a social welfare function:

$$sw(Z_1...,Z_n,v_1,...,v_n) = \sum_{i=1}^n v_i(Z_i)$$
allocations valuations

Defining a Combinatorial Auction

- Given this, we can define a combinatorial auction.
 - Given a set of goods \mathcal{Z} and a collection of valuation functions v_1, \dots, v_n one for each agent $i \in Ag$, the goal is to find allocation $\mathcal{Z}_1^*, \dots, \mathcal{Z}_n^*$ that maximses sw:

$$\mathcal{Z}_1^*, \dots, \mathcal{Z}_n^* = \arg\max_{(\mathcal{Z}_1, \dots, \mathcal{Z}_n) \in alloc(\mathcal{Z}, Ag)} sw(\mathcal{Z}_1, \dots, \mathcal{Z}_n, v_1, \dots, v_n)$$

• Figuring this out, i.e. solving this optimization problem, is called the *winner determination problem*

Winner Determination

How do we do this?

- Well, we could get every agent i to declare their valuation : \hat{v}_i
 - The hat denotes that this is what the agent says, not what it necessarily is.
 - Remember that the agent may lie! ©
- Then we just look at all the possible allocations and figure out what the best one is.

- One problem here is representation, valuations are exponential in terms of the number of items: $v_i \colon 2^{\mathcal{Z}} \to \mathbb{R}$
 - A naive representation is impractical.
 - In a bandwidth auction with 1122 licenses we would have to specify 2^{1122} values for each bidder.

 Searching through them is computationally intractable

Bidding Languages

- Rather than exhaustive evaluations, allow bidders to construct valuations from the bits they want to mention.
 - An atomic bid β is a pair (\mathcal{Z}', p) where $\mathcal{Z}' \subseteq \mathcal{Z}$
 - A bundle \mathcal{Z}^* satisfies a bid (\mathcal{Z}', p) if $\mathcal{Z}' \subseteq \mathcal{Z}^*$.
- In other words a bundle *satisfies* a bid if it contains at least the things in the bid.
- Atomic bids define valuations

$$v_{\beta}(\mathcal{Z}^{\star}) = \begin{cases} p & \text{if } \mathcal{Z}^{\star} \text{ satisfies } (\mathcal{Z}', p) \\ 0 & \text{otherwise} \end{cases}$$

Atomic bids alone don't allow us to construct very interesting valuations.

XOR Bids

- With XOR bids, we pay for at most one
 - A bid $\beta = (\mathcal{Z}_1, p_1)XOR \dots XOR (\mathcal{Z}_k, p_k)$ defines a valuation function v_β as follows $v_\beta(\mathcal{Z}^\star) = \begin{cases} 0 & \text{if } \mathcal{Z}^\star \text{ does not satisfy any } (\mathcal{Z}_i, p_i) \\ \max\{p_i | \mathcal{Z}_i \subseteq \mathcal{Z}^\star\} & \text{otherwise} \end{cases}$
 - I pay nothing if your allocation \mathcal{Z}^{\star} doesn't satisfy any of my bids
 - Otherwise, I will pay the largest price of any of the satisfied bids.
- XOR bids are *fully expressive*, that is they can express any valuation function over a set of goods.
 - To do that, we may need an exponentially large number of atomic bids
 - However, the valuation of a bundle can be computed in polynomial time.

$$B_1 = (\{a,b\}, 3) XOR (\{c, d\}, 5)$$

"...I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 5 for a bundle that contains a, b, c and d..."

From this we can construct the valuation:

$$v_{\beta_1}(\{a\}) = 0$$
 $v_{\beta_1}(\{b\}) = 0$
 $v_{\beta_1}(\{a,b\}) = 3$
 $v_{\beta_1}(\{c,d\}) = 5$
 $v_{\beta_1}(\{a,b,c,d\}) = 5$

OR Bids

- With OR bids, we are prepared to
- pay for more than one bundle
 - A bid $\beta = (\mathcal{Z}_1, p_1)OR \dots OR (\mathcal{Z}_k, p_k)$ defines k valuations for different bundles
 - An allocation of goods \mathcal{Z}' is assigned given a set \mathcal{W} of atomic bids such that:
 - Every bid in ${\mathcal W}$ is satisfied by ${\mathcal Z}'$
 - No goods appear in more than one bundle; i.e. $\mathcal{Z}_i \cap \mathcal{Z}_j = \phi$ for all i, j where $i \neq j$
 - No other subset \mathcal{W}' satisfying the above condition is better:

$$\sum_{(\mathcal{Z}_i, p_i) \in \mathcal{W}'} p_i > \sum_{(\mathcal{Z}_j, p_j) \in \mathcal{W}'} p_j$$

$$B_1 = (\{a,b\}, 3) OR (\{c,d\}, 5)$$

"...I would pay 3 for a bundle that contains a and b but not c and d. I will pay 5 for a bundle that contains c and d but not a and b, and I will pay 8 for both bundles that contain a combination of a, b, c and d..."

From this we can construct the valuation:

$$v_{\beta_1}(\{a\}) = 0$$
 $v_{\beta_1}(\{b\}) = 0$
 $v_{\beta_1}(\{a,b\}) = 3$
 $v_{\beta_1}(\{c,d\}) = 5$
 $v_{\beta_1}(\{a,b,c,d\}) = 8$

Note that the **cost of the last bundle is different to that when the XOR bid** was used

OR Bids

- Here is another example!
 - $\beta_3 = OR((\{e, f, g\}, 4), (\{f, g\}, 1), (\{e\}, 3), (\{c, d\}, 4))$
 - This gives us:

$$v_{\beta_3}(\{e\}) = 3$$

 $v_{\beta_3}(\{e, f\}) = 3$
 $v_{\beta_3}(\{e, f, g\}) = 4$
 $v_{\beta_3}(\{b, c, d, f, g\}) = 4 + 1 = 5$
 $v_{\beta_3}(\{a, b, c, d, e, f, g\}) = 4 + 4 = 8$
 $v_{\beta_3}(\{c, d, e\}) = 4 + 3 = 7$

- Remember that if more than one bundle is satisfied, then you pay for each of the bundles satisfied.
 - Also remember free disposal, which is why the bundle $\{e, f\}$ satisfies the bid $(\{e\}, 3)$ as the agent doesn't pay extra for f.

OR Bids

- OR bids are strictly less expressive than XOR bids
 - Some valuation functions cannot be expressed
 - E.g., $v(\{a\}) = 1$, $v(\{b\}) = 1$, $v(\{a,b\}) = 1$

- OR bids also suffer from computational complexity
 - Given an OR bid β and a bundle $\mathcal Z$, computing $v_{\beta}(\mathcal Z)$ is NP-hard.

Winner Determination

- Determining the winner is a combinatorial optimisation problem (NP-hard)
 - But this is a worst case result, so it may be possible to develop approaches that are either *optimal* and run well in many cases, or *approximate* (within some bounds).
- Typical approach is to code the problem as an *integer linear program* and use a standard solver.
 - This is NP-hard in principle, but often provides solutions in reasonable time.
 - Several algorithms exist that are efficient in most cases
- Approximate algorithms have been explored
 - Few solutions have been found with reasonable bounds
- Heuristic solutions based on greedy algorithms have also been investigated
 - e.g. that try to find the largest bid to satisfy, then the next etc

- Auctions are easy to strategically manipulate
 - In general **we don't know** whether the agents valuations **are true valuations**.
 - Life would be easier if they were...
 - ... so can we make them true valuations?
- Yes!
 - In a generalization of the Vickrey auction.
 - Vickrey/Clarke/Groves Mechanism
- Mechanism is incentive compatible: telling the truth is a dominant strategy.

Recall that we could get every agent i to declare their valuation:

 $\hat{v_i}$

where the hat denotes that this is what the agent says, not what it necessarily is.

• The agent may lie!

- Need some more notation.
 - Indifferent valuation function: $v^0(\mathcal{Z}') = 0$ for all \mathcal{Z}'
 - i.e. the value for a bid that does not care about the goods
 - sw_{-i} is the **social welfare function without** i:

$$sw_{-i}(\mathcal{Z}_1,\ldots,\mathcal{Z}_n,v_1,\ldots,v_n) = \sum_{j \in Ag, j \neq i} v_j(\mathcal{Z}_j)$$

- This is how well everyone **except agent** i does from $\mathcal{Z}_1, \dots, \mathcal{Z}_n$
- And we can then define the VCG mechanism.

- Every agent simultaneously declares a valuation \hat{v}_i
 - Remember that this not be the actual valuation
- The mechanism computes the allocation \mathcal{Z}_1^* , ..., \mathcal{Z}_n^* :

$$\mathcal{Z}_1^*, \dots, \mathcal{Z}_n^* = \arg\max_{(\mathcal{Z}_1, \dots, \mathcal{Z}_n) \in alloc(\mathcal{Z}, Ag)} sw(\mathcal{Z}_1, \dots, \mathcal{Z}_n, v_1, \dots, v_n)$$

- Each agent i pays p_i
 - This is effectively a **compensation** to the other agents for their loss in utility due to *i* winning an allocation
 - ullet This is the difference in social welfare to agents other than i
 - Between the outcome \mathcal{Z}'_1 , ..., \mathcal{Z}'_n when i does not participate
 - And the outcome \mathcal{Z}_1^* , ..., \mathcal{Z}_n^* when i does participate
 - Formally: $p_i = sw_{-i}(Z_1', ..., Z_n', \hat{v}_1, ..., v^0, ..., \hat{v}_n) sw_{-i}(Z_1^*, ..., Z_n^*, \hat{v}_1, ..., \hat{v}_i, ..., \hat{v}_n)$
 - Therefore the mechanism computes, for each agent i the allocation that maximises social welfare were that agent to have declared v^0 to be its valuation:

$$\mathcal{Z}_1^*, \dots, \mathcal{Z}_n^* = \arg\max_{(\mathcal{Z}_1, \dots, \mathcal{Z}_n) \in alloc(\mathcal{Z}, Ag)} sw(\mathcal{Z}_1, \dots, \mathcal{Z}_n, v_1, \dots, v^0, \dots, v_n)$$

- With the VCG, each agent pays out the cost (to the other agents) of it having participated in the auction.
 - It is incentive compatible for exactly the same reason as the Vickrey auction was before.
 - No agent can benefit by declaring anything other than its true valuation
 - To understand this, think about VCG with a singleton bundle
 - The only agent that pays anything will be the agent i that has the highest bid
 - But if it had not participated, then the agent with the second highest bid would have won
 - Therefore agent i "compensates" the other agents by paying this second highest bid
- Therefore we get a dominant strategy for each agent that guarantees to maximise social welfare.
 - i.e. social welfare maximisation can be implemented in dominant strategies

Summary

- Allocating scarce resources comes down to auctions
- We looked at a range of different simple auction mechanisms.
 - English auction
 - Dutch auction
 - First price sealed bid
 - Vickrey auction
- We looked at the popular field of combinatorial auctions
 - We discussed some of the problems in implementing combinatorial auctions.
- And we talked about the Vickrey/Clarke/Groves mechanism, a rare ray of sunshine on the problems of multiagent interaction

Readings for this week

• Chapters 14 of the book by M.Wooldridge "An introduction to Multi-Agent Systems" (2nd edition).