PneumonoDetect

An Al-Powered Pneumonia Detection Tool

Developed by Team Alpha Praful John Mohibkhan Pathan Tingfei Gu Ranyi Zhang

Necessity for early detection

Pneumonia is the leading cause of death, particularly in children and elderly

Children Under Five: In 2019, pneumonia was responsible for 740,180 deaths in children under five, accounting for 14% of all deaths in this age group. (WHO)

Adults Over 70: In 2019, the highest pneumonia death rates were among people aged 70 and older (WHO)

Necessity for Early Detection

Pneumonia patients needs a reliable diagnosis for their health and survival.

- Early and accurate detection can significantly improve the chance of survival.
- Challenges: Reliance on manual diagnosis, prone to errors (41% error rate); time-consuming for radiologists

Automated and Accurate Detection

To develop a robust deep learning model that can:

- Be deployed for real-world usage via an accessible web interface.
- Accurately classify chest X-rays into pneumonia and non-pneumonia categories.
- Provide a user-friendly application for healthcare professionals to expedite diagnosis.

Tools & Technologies

Python

TensorFlow, Keras, Matplotlib, NumPy

Google Colab

Leveraged its GPU (T4) environment for efficient training

Huggingface

Used radio for UI and further deployed it using Huggingface

Data Collection

Dataset source:

- Kaggle
- Detecting Pneumonia in X-ray Images

Details:

- Over 5000 chest X-Ray Images.
- Split across training, validation and test splits.

Normal X-ray

Pneumonia X-ray

Data Cleaning/Preparation

Challenges

- Class imbalance
- Large dataset

Solution:

- Data Augmentation
- Resizing Images
- Balanced train-test split

VGG19 Model Architecture

Transfer Learning with VGG19:

- Pretrained on ImageNet for feature extraction.
- Fine-tuned the Block 5 convolutional layers for enhanced generalization.

Key Features:

- 19 layers deep:
 - 16 convolutional layers
 - 3 fully connected layers
- Small receptive fields (3x3) with max pooling for spatial reduction.

Why VGG19?

- Achieves high accuracy for image classification tasks.
- Ideal for image datasets due to transfer learning capabilities.

<u>Image source</u>

Model Training Process

Transfer Learning with VGG19

 Used the pretrained VGG19 model, fine-tuned on the convolutional layers to achieve better feature extraction.

Model Architecture

- Added custom fully connected layers on top of the VGG19 base model for pneumonia detection.
- Applied Dropout layers to reduce overfitting.

Compilation

- Optimizer: Adam
- Loss Function: Categorical Crossentropy
- Metrics: higher accuracy and lower loss function

Training Procedure

- Data split into training, validation, and test sets.
- Epochs: 5
- Batch Size: 32
- GPU Acceleration: Leveraged Google Colab's GPU for faster training.
- Real-time monitoring of validation accuracy and loss for early stopping.

Optimization Techniques

Regularization

Added Dropout layers in the fully connected layers to reduce overfitting.

Early Stopping

Monitored validation loss during training to stop at the optimal point and avoid overfitting.

Data Augmentation

Performed transformations like flipping, zooming, and rotation to improve model robustness and prevent overfitting.

Fine-Tuning VGG19

adjusted **block5** layers of the pretrained model for better generalization

GPU Utilization

Used Google Colab's T4 GPU for faster model training and experimentation.

MODEL RESULTS

92% accuracy on test data

Test Loss: 0.28 ROC-AUC: 0.96

Deployment of the Model

Frameworks

- Gradio
- Hugging Face Spaces

Steps

- Save model weights
- Integrate with Gradio
- Deploy on Hugging Face Space

Enhancements

- Icons
- Confidence
- Images

Live Demo

Pneumonia Detection Application

Pneumonia Detection CNN

ad an image to classify it as NORMAL or PNEUMONIA.

Image

Drop Image Here
- or Click to Upload

Clear Submit

Please change this.

References

VGG19

Images

Image Source

Presentation Template

<u>Chronic Obstructive Pulmonary Disease (COPD) Case</u> <u>Study Presentation</u>

