Lecturer: Siu On Chan

Notes 3: Perceptron and Halving algorithms

1. Perceptron algorithm

Update weights additively

Learn well-separated (i.e. large margin) LTF

Normalization: threshold $\theta = 0$ (halfspace through origin)

Reason: Add extra coordinate $x_{n+1} = 1$ to every instance

$$w \cdot (x_1, \dots, x_n) \geqslant \theta \iff (w, -\theta) \cdot (x_1, \dots, x_{n+1}) \geqslant 0$$

 $(\text{recall } ||x|| = \sqrt{x_1^2 + \dots + x_n^2})$ **Normalization:** Every sample x has unit length, i.e. ||x|| = 1

Reason: By previous assumption $\theta = 0$; rescaling x doesn't change the sign of $w \cdot x$

Normalization: weight vector w has unit length

-Perceptron-

w = 0Initialize:

On input x, output hypothesis $h(x) = \mathbb{1}(w \cdot x \ge 0)$ and get c(x)

False positive (h(x) = 1, c(x) = 0): Update w as w-x

False negative (h(x) = 0, c(x) = 1): Update w as w + x

On false positive, $w \cdot x$ is too big, so subtract x from w, so that $(w-x) \cdot x = w \cdot x - ||x|| = w \cdot x - 1$ On false negative, $w \cdot x$ is too small, so add x to w, so that $(w+x) \cdot x = w \cdot x + ||x|| = w \cdot x + 1$

Theorem 1.1. (Perceptron convergence) Let $c(x) = \mathbb{1}(v \cdot x \ge 0)$ be centered LTF with ||v|| = 1. Suppose all samples x has unit length, let margin δ be $\min |v \cdot x|$ over all samples x received by the algorithm. Then Perceptron Algorithm learns c with at most $1/\delta^2$ mistakes

Claim 1.2. After M mistakes, $w \cdot v \geqslant \delta M$

Proof. True when M=0 since w=0

Will show that every mistake increases $w \cdot v$ by $\geq \delta$

On false positive, $w \cdot v$ becomes $(w - x) \cdot v = w \cdot v - x \cdot v \geqslant w \cdot v + \delta$

On false negative, $w \cdot v$ becomes $(w + w) \cdot v = w \cdot v + x \cdot v \ge w \cdot v + \delta$

Claim 1.3. After M mistakes, $||w||^2 \leq M$

Proof. True when M=0 since w=0

Will show that every mistake increases $||w||^2$ by ≤ 1

Will show that every mistake increases ||w|| by ≤ 1 On false positive, $||w||^2$ becomes $||w - x||^2 = (w - x) \cdot (w - x) = ||w||^2 - 2\underbrace{w \cdot x}_{\geqslant 0} + \underbrace{||x||^2}_{=1}$

On false negative, $||w||^2$ becomes $||w + x||^2 = (w + x) \cdot (w + x) = ||w||^2 + 2\underbrace{w \cdot x}_{0} + \underbrace{||x||^2}_{0}$

Proof of Perceptron Convergence.

$$\delta M \leqslant w \cdot v \underset{\text{Cauchy-Schwarz}}{\leqslant} \|w\| \underbrace{\|v\|}_{=1} \leqslant \sqrt{M}$$

The above bound is tight!

Claim 1.4. When $X = \{x \in \mathbb{R}^d \mid ||x|| = 1\}$ and $d \ge 1/\delta^2$, any deterministic algorithm for learning LTF with margin δ makes $|1/\delta^2|$ mistakes in the worst case

Proof. ith x^i sample is ith standard basis vector e_i (i.e. 1 at position i and 0 elsewhere)

Number of samples is $n \stackrel{\text{def}}{=} |1/\delta^2|$ (as most d by assumption)

All samples will be labeled as the opposite of algorithm's prediction

Will find $v \in \mathbb{R}^d$ with $||v|| \leq 1$ that "correctly" classifies all e_i with margin δ , i.e.

 \forall "correct label sequence" $y \in \{1, -1\}^n$, $y_i \delta = v \cdot e_i$

This forces $v_i = \delta y_i$ for all $i \leq n$

Indeed $||v||^2 = \delta^2 ||y||^2 = \delta^2 n \le 1$

2. Dual perceptron

In Perceptron Algorithm w always ± 1 -sum of samples, i.e. \exists signs $\sigma_1, \ldots, \sigma_\ell \in \{1, -1\}$ s.t.

$$w = \sigma_1 x^{i_1} + \dots + \sigma_{\ell} x^{i_{\ell}}$$

Initially w = 0; Every mistake adds a new term $\sigma_i x^{i_j}$ to w

Memorizing all mistakes, on sample x,

$$w \cdot x = \sum_{1 \le j \le \ell} \sigma_j(x^{i_j} \cdot x)$$

Computable given inner products $x^{ij} \cdot x$ between samples Now takes #mistakes time to compute w (slower)

Can replace inner product \cdot with any **kernel function** K(,)

3. Halving algorithm

Given any finite concept class \mathcal{C}

-Halving Algorithm-

K always contains all $c \in \mathcal{C}$ consistent with all labeled samples so far (initially $K = \mathcal{C}$) On sample x, predicts according to majority vote over concepts in K (then update K)

Every mistake removes at least half of concepts from K

Claim: Halving Algorithm makes $\leq \log |\mathcal{C}|$ mistakes

Slow: |K| per round

Hypothesis isn't from \mathcal{C} , but majority over a subset of \mathcal{C}

4. RANDOMIZED HALVING ALGORITHM

Randomized Halving Algorithm-

K always contains all $c \in \mathcal{C}$ consistent with all labeled samples so far (initially $K = \mathcal{C}$) On sample x, predicts according to a random concept $c \in K$ (then update K)

Claim 4.1. On any sequence of samples x^1, \ldots, x^m labeled by any $c \in \mathcal{C}$,

$$\mathbb{E}[\#mistakes \ of \ the \ algorithm] \leq \ln |\mathcal{C}| + O(1)$$

Proof. Fix $c \in \mathcal{C}$ and x^1, \ldots, x^m

Suppose at some point $|\mathcal{K}| = r$, let $M_r = \mathbb{E}[\#\text{future mistakes}]$

Need to bound $M_{|\mathcal{C}|}$

Order concepts c_1, \ldots, c_r in K according to when they are eliminated by the sequence e.g. first eliminated batch c_1, \ldots, c_3 , next c_4, c_5 etc, finally $c_r = c$ never eliminated

On first sample x^1 , Algorithm randomly chooses one of c_1, \ldots, c_r

If c_r is chosen, no mistake (1/r chance)

If chosen c_t makes mistake on x^1 (1/r chance for each t < r)

 c_1, \ldots, c_t (and possibly more) must be eliminated

K shrinks to (at most) size r - t, expect M_{r-t} more mistakes

$$M_r \leqslant \sum_{1 \leqslant t < r} \frac{1}{r} (1 + M_{r-t}) \implies rM_r \leqslant \sum_{1 \leqslant t < r} (1 + M_{r-t}) = r - 1 + M_1 + \dots + M_{r-1}$$

Same for
$$r-1$$
: $(r-1)M_{r-1} = (r-2) + M_1 + \dots + M_{r-2}$

Subtracting,
$$r(M_r - M_{r-1}) \le 1$$

 $M_r \le \frac{1}{r} + M_{r-1} \le \frac{1}{r} + \frac{1}{r-1} + M_{r-2} \le \dots \le \underbrace{\frac{1}{r} + \frac{1}{r-1} + \dots + \frac{1}{1}}_{\text{Harmonic number}} = \ln r + O(1)$

Constant factor improvement over deterministic halving: $\log |\mathcal{C}|/\ln |\mathcal{C}| = \log e = 1.44...$