2017-2018 学年第二学期

《高等数学》(下) 期末考试试题

考试注意事项: 学生必须将答题内容做在答题纸上, 做在试题纸上均无效

	植水區	(本十55 # 10	小、時	有小師 A △	# 104
-	項父题	(本大級共工)小凝,	每小题 4 分,	共 40 ガノ

- 2. 已知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径是 3, 则幂级数 $\sum_{n=0}^{\infty} n a_n (x-1)^{n+1}$ 的收敛区间是______.
- 4. 曲线 Γ : $\begin{cases} x^2 + y^2 + z^2 = 6, \\ x + y + z = 0 \end{cases}$ 在点 $M_0(1,1,-2)$ 处的法平面方程为______.
- 5. 设 f(x,y) 有连续的偏导数,满足 $f(1,2)=1,f_x'(1,2)=2,f_y'(1,2)=3,$ $\varphi(x)=f(x,2f(x,2x)),则 \varphi'(1)=______.$
 - 6. 设D是由y=x, x=0, y=1所围区域,则 $\iint_D \arctan y dx dy =$ ______.
 - 7. 设 $f(x, y, z) = x^3 + y^3 + xye^z$, 则 $div(grad f)|_{(1,1,1)} = _____.$
- 8. 设曲线积分 $\int_L xy^2 dx + y\varphi(x) dy$ 与路径无关,若是 φ 具有连续的导数,且 $\varphi(0) = 0$,则 $\varphi(x) =$ ________.

10. 设 S 表示半球面 $z=\sqrt{1-x^2-y^2}$ 的上侧,则曲面积分 $I=\iint_S (1-xy-z)dxdy = \underline{\hspace{1cm}}.$

二 (8分). 设 $z = f(x+y,xy) + y\varphi(xy)$, 其中 f,φ 有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x^2} \text{ 和 } \frac{\partial^2 z}{\partial x \partial y}.$

三(8 分). 计算二重积分 $I=\iint_D y-x^2 \mid dxdy$, 其中积分区域 D 为正方形 $-1 \le x \le 1, 0 \le y \le 2$.

四 (8 分). 试求幂级数 $\sum_{n=1}^{\infty} \frac{2n-1}{9^n} x^{2n}$ 的收敛域及和函数.

五 (8 分). 计算曲线积分 $I = \oint_L \frac{ydx - (x-1)dy}{(x-1)^2 + y^2}$, 其中(1) L 为圆周 $x^2 + y^2 - 2y = 0$ 的正向; (2) L 为椭圆 $4x^2 + y^2 - 8x = 0$ 的正向.

六(8分). 在球面
$$x^2 + y^2 + z^2 = 1$$
 上取 $A(1,0,0), B(0,1,0), C\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$,

圆弧 \widehat{AB} , \widehat{BC} , \widehat{CA} 围成的位于第一卦限内的球面块记为S, 计算 $I=\iint_S (x^2+z^2) dS.$

七 (10 分) 在半径为 R 的上半球 $x^2 + y^2 + z^2 \le R^2$ ($0 \le z \le R$) 内嵌入有最大体积的母线平行于 z 轴的圆柱,求这圆柱的半径和高.

八(10 分). 计算曲面积分
$$I = \iint_S \frac{axdydz + (z+a)^2 dxdy}{\sqrt{x^2 + y^2 + z^2}}$$
, 其中 S 为下半球

面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的下侧, a > 0 为常数.