James R. Munkres - Topology (2nd edition) Answers to Selected Exercises

Marc-André Brochu

Summer 2019

Connectedness and Compactness

3.23 Connected Spaces

3.23.2 Suppose C, D are two open sets forming a separation of $A = \bigcup A_n$. By Lemma 23.2, we know that for each n, the subspace A_n is either completely contained in C or completely contained in D.

Let $J = \{i \in \mathbb{N} \mid A_i \subseteq D\}$. Because the natural numbers are well-ordered, there exists a least element of J, say k. Without loss of generality, $A_0 \subseteq C$; therefore k > 0. By minimality of k, we have $A_k \subseteq D$ while $A_{k-1} \subseteq C$. However, $A_{k-1} \cap A_k \neq \emptyset$ by hypothesis! This contradicts the fact that $C \cap D \neq \emptyset$. From this we conclude that A is in fact connected.

3.23.11 Suppose C, D are two open sets forming a separation of X. Take some $y \in Y$ such that $p^{-1}(\{y\})$ intersects C. By hypothesis, $p^{-1}(\{y\})$ is a connected subspace of X. In this case, Lemma 23.2 tells us that $p^{-1}(\{y\})$ is completely contained in C. Thus C is a saturated open set of X (i.e. it is the preimage of a subset of Y). A similar argument shows that D is also saturated.

Since p is a quotient map, it maps saturated open sets of X to open sets of Y. Hence p(C) and p(D) are (disjoint*, nonempty) open sets of Y. Because p is surjective and X is the union of C and D, we have $Y = p(C) \cup p(D)$. This is in contradiction with the hypothesis that Y is connected! Therefore X must be connected.

*Maybe it is not clear why p(C) and p(D) are disjoint. The reason is this: suppose they are not and take some y in their intersection. Then there exists $c \in C$ and $d \in D$ such that p(c) = p(d) = y. As a consequence $p^{-1}(\{y\})$ contains both c and d, that is, it intersects both C and d. But this is in contradiction with C and d being saturated sets! Hence there cannot be anything in common between p(C) and p(D).