## Projektityö M12

## **Johdanto**

Projektityö sisältää kuutta tehtävää, kuitenkin ne kaikki koskevat saman yhtälön ratkaisua.

Yhtälö on 
$$\sin(\frac{x}{2}) = e^{-2x}$$
 (1.1)

Sen ratkaisu voidaan käsitellä tutkimalla funktio  $y=e^{-2x}-\sin{(\frac{x}{2})}$ , sanotaan sen funktioksi y=f(x) ja kuin funktio f(x) menee nollalle – **x** on yhtälön (1.1) ratkaisu.

Kuitenkin (1.1) on helpompi käsitellä, jos huomataan että funktio f(x) on yhdistelmä funktio.

Siis on 
$$f(x)=g(x)-h(x)$$
, missä on  $g(x)=e^{-2x}$  (1.2), ja on  $h(x)=\sin(\frac{x}{2})$  (1.3)

Funktio h(x) on jaksollinen funktio, ja sen jakso on  $\frac{x}{2}=2\pi$ , eli  $x=\pi*4$  (tehtävässä ei mainittu, mutta käytetään radiaaneja). Käytännössä se tarkoita että funktio toistuu joka  $\pi*4$  jakson välein.

Lähde: http://fi.wikipedia.org/wiki/Jaksollinen\_funktio

**Jaksollinen funktio** on sellainen funktio, joka toistuu samanlaisena tietyn jakson välein. Jaksollisen funktion argumenttia kutsutaan vaiheeksi (engl. phase).

### Ja sen kuva:



Funktio g(x) on x akselin asymptootti, eikä leikkaa akselin, kuitenkin sitä pitää perusta.

Lähde: <a href="http://fi.wikipedia.org/wiki/Asymptootti">http://fi.wikipedia.org/wiki/Asymptootti</a>

**Asymptootti** on suora tai käyrä A, mitä toinen käyrä B lähestyy äärettömyydessä. Kun B:tä kuljetaan eteenpäin rajatta, etäisyys A:n ja B:n välillä kutistuu kohti nollaa. On myös mahdollista, että käyrä leikkaa asymptoottiaan, jopa äärettömän monta kertaa.

Se, että g(x) ei leikkaa x akselin, tai  $g(x) \neq 0$  helppo todista siitä, että vakio joka ei ole nolla, kerrottu itsellä myös ei voi olla nolla, eikö se voi olla negatiivinen, koska vakio ei ole negatiivinen(e $\approx$ 2,718281828459...).

Se, että g(x) lähestyy äärimäisesti x akselin todetaan induktiolla:

$$\frac{1}{e^{2x}} > \frac{1}{e^{2x+1}} \quad (*e^{2x})$$

$$\frac{1}{1} > \frac{e^{2x}}{e^{2x+1}}$$

$$1 > \frac{1}{e^{2x+1}}$$

1/e≈0.36787944117144... eli toteudu.

Lisätään yksi: (x=x+1)

$$\frac{1}{e^{2(x+1)}} > \frac{1}{e^{2(x+1)+1}} \quad (*e^{2(x+1)})$$

$$\frac{1}{1} > \frac{e^{2(x+1)}}{e^{2(x+1)+1}}$$

$$1 > \frac{1}{e}$$

1/e≈0.36787944117144... myös toteudu, eli g(x) asymptootti, eikä leikkaa missään x akselin.

Lisäksi vielä pitäisi mainita, että sin(x)≤1, johtuen siitä että hypotenuusa ei voi olla pitempi, kuin kateetti.

Myös pidetään mielessä että  $e^0$  on 1, ja johtuen siitä että g(x) on x akeslin asymptootti, jos x<0 niin on g(x)>1, jos kuitenkin x>0 niin on g(x)<1

Yhtälön (1.1) juuret toteutuvat kun h(x)=g(x) (eli kun käyrät leikkaavat toinen toista) ja toteutuvat vain jos x>0. (Jos x<0, niin g(x)>1, ja h(x) ei voi olla suurempi kun 1)

# g(x) kuva:



### 1. Ratkaise yhtälön (1.1) pienin positiivinen juuri piirtämällä kuvaajat paperille, ja anna arvio yhden desimaalin tarkkuudella

f(x)=g(x)-h(x) kuva alueella ]0,1[:



Eli kuvaaja leikkaa x akselin aika tarkasti 0.6 kohdalla.

Vastaus: 0.6

## 2. Ratkaise edellisen tehtävän yhtälö puolitus menetelmällä.

Otetaan samat rajat, kuin edellisellä tehtävällä - ]0,1[.

0 – on helppo laskea, ja x ei voi olla pienempi kuin 0, eli se on hyvä vaihtoehto.

1- on helppo laskea.

$$a = 0, b = 1$$

| f(a)                             | f(b)                            | c=(a+b)/2 | f(c)                                      | Tarkkuus>0.00          |
|----------------------------------|---------------------------------|-----------|-------------------------------------------|------------------------|
| f(0)=(1)                         | f(1)=(-0.34409025536759)        | 0.5       | f(0.5)=0.12047548191692<br>(a=c)          | 0-f(c) ≈0.12           |
| f(0.5)=0.12047548191692          | f(1)=(-0.34409025536759)        | 0.75      | f(0.75)=<br>-0.14314236893762<br>(b=c)    | 0-f(c) ≈0.14           |
| f(0.5)=0.12047548191692          | f(0.75)=-<br>0.14314236893762   | 0.625     | f(0.625)=<br>-0.020933717720191<br>(b=c)  | 0-f(c) ≈0.02           |
| f(0.5)=0.12047548191692          | f(0.625)=-0.020933717720191     | 0.5625    | f(0.5625)=<br>0.047095715712013<br>(a=c)  | 0-f(c) ≈0.04           |
| F(0.5625)=<br>0.047095715712013  | F(0.625)=<br>-0.020933717720191 | 0.59375   | f(0.59375)=<br>0.012449426687732<br>(a=c) | 0-f(c) ≈0.01           |
| f(0.59375)=<br>0.012449426687732 | f(0.625)=-0.020933717720191     | 0.609375  | f(0.609375)=<br>-0.0043956480013123       | $ 0-f(c) \approx 0.00$ |

 $f(0.61)\approx 0.00$ , eli **0.61** on yhtälön (1.1) ratkaisu 2 desimaalin tarkuudella. Tarkistus:

f(0.615) = -0.010384274010162 (negatiivinen)

 $f(0.605)=2.8965753375331804*10^{-4}$  (positiivinen)  $\leftarrow$  Ok.

Vastaus: 0.61

## 3. Ratkaise yhtälö Newtonin menetelmällä

$$g'(x)=(e^{-2x})'=-2e^{-2x}$$

$$h'(x) = (\sin \frac{x}{2})' = \frac{1}{2} \cos \frac{x}{2}$$

eli

$$f'(x) = -2e^{-2x} - \frac{1}{2}\cos\frac{x}{2}$$

## Oletetaan alkuarvioksi $x_0=1$

$$x_{n+1} = x_n - f(x_n) / f'(x_n)$$

| X <sub>n</sub>   | $f(x_n)$                             | $f'(x_n)$          | $x_{n+1}=1-f(x_n)/f'(x_n)$ |          |
|------------------|--------------------------------------|--------------------|----------------------------|----------|
| 1                | -0.34409025536759                    | -0.70946184741841  | 0.51499822489445           | 0.xxxxxx |
| 0.51499822489445 | 0.10234531022428                     | -1.19753139849535  | 0.60046179633222           | 0.xxxxxx |
| 0.60046179633222 | 0.0051753753457652                   | -1.07946643343468  | 0.6052561791731            | 0.00xxxx |
| 0.6052561791731  | 1.4641605442344829*10-5              | -1.073367338025915 | 0.60526981998825           | 0.00000x |
| 0.60526981998825 | 1.1784262454739292*10 <sup>-10</sup> |                    |                            | 0.000000 |

Eli jos  $z\approx0.60526981998825$ , f(z) antaa kymmenen nolla desimaalissa, edellinen argumentti ei täytä ehtoa (vain viisi nolla, tarkkuutta ei riitä).

#### Pyöristetään z kuudeksi desimaaliksi, sadan z≈0.605270

#### Tarkistus:

 $f(0.6052705) = -7.2977251697192713*10^{-7} \text{ (negatiivinen)}$  $f(0.6052695) = 3.4357731470979758*10^{-7} \text{ (positiivinen)}$   $\leftarrow Ok.$ 

Vastaus: 0.605270

#### 4. Vertaile menetelmien tehokuutta

Newtonin menetelmä todennäköisesti tehokampi, kuitenkin kysymykseen voi lähestyä kahdella eri tavalla. Kohdassa 2 me olimme etsineet kaksi desimaalia, ja tehnet 5 iterointeja. Kohdassa 3 me olimme etsineet kuusi desimaalia, ja tehnet 4 iterointeja. Mikäli olisimme etsimässä kaksi desimaalia, olisimme tehneet vain kaksi.

Vastaus: 5vs4 tai 5vs2, molemmissa tapauksissa Newtonin menetelmä on tehokampi. (Piirros on myös menetelmä, mutta tässä työssä ei sitä voidaan vertaa - ei siinä ole iterointeja)

#### 5. Montako juurta yhtälöllä on yhteensä?

Kuten olimme jo todennut että g(x) on asymptootti x akselille, voidaan päätä, että ratkaisujen määrä (1.1):lle on sama kuin h(x)=0:lla, toisella tavalla: ratkaisujen on niin paljon, kun  $\sin(x/2)$  käyrä leikkaa x akselin positiivinen puoli.

 $\sin(x/2)=0$ :lla on  $2\pi n$  ratkaisuja, missä n>0(jos n<0, niin g(x)>1, ja ei se ole mahdollista h(x):lle) ja  $n\in Z$ 

Yhdistetty kuva:



g(x) ja h(x) erikseen:



Vastaus: ratkaisuja on niin paljon, kuin positiivisia kokonaislukuja.

Työhön oli käytetty: Maxima (<a href="http://wxmaxima.sourceforge.net/">http://wxmaxima.sourceforge.net/</a>), OpenOffice (<a href="http://openoffice.org">http://openoffice.org</a>), kaksi Wikipedia artikkelia(ks. Johdanto).

Päivämäärä: 20.11.09+21.11.09