ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ им. А.Н. ТИХОНОВА

Москаленко Роман Борисович МОДЕЛЬ ИЗИНГА НА АНСАМБЛЯХ СЛУЧАЙНЫХ БЛУЖДАНИЙ БЕЗ САМОПЕРЕСЕЧЕНИЙ: МАГНИТНЫЕ И СТРУКТУРНЫЕ СВОЙСТВА

Выпускная квалификационная работа - БАКАЛАВРСКАЯ РАБОТА по направлению подготовки **01.03.04 «Прикладная математика**

образовательная программа «Прикладная математика»

Студент Р. Б. Москаленко

Научный руководитель Доцент, PHD. Е. А. Буровский

ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Московский институт электроники и математики им. А.Н. Тихонова

ЗАДАНИЕ на выполнение выпускной квалификационной работы

студенту группы БПМ191 Москаленко Роман Борисович

377 3 13		<u>.</u>
1. Тема работы		
Модель Изинга на ансамблях случай:	ных блужданий без самоперес	ечений: магнитные и структурные
свойства	y 11-	- FJ JF -
2. Цель работы		
Анализ свойств модели Изинга на ан	самблях случайных блуждани	й.
	<i>y y y y y y y y y y</i>	
3. Формулировка задания		
Исследование предметной области и		
Создание програмного комплекса дл	* * * * * * * * * * * * * * * * * * * *	<u> </u>
Поиск корреляции между структурны	ыми и магнитными свойствамі	и модели.
Проект ВКР должен быть пре	доставлен студентом в	срок до «15» февраля 2023г.
		\bigwedge
Научный руководитель ВКР	13 февараля 2023	Е. А. Буровский
		\sim
Первый вариант ВКР предост	авлен студентом в срог	к до «22» апреля 2023г.
	311	
Научный руководитель ВКР	17 апреля 2023	Е. А. Буровский
паў півіт руповодітель вта	1. dip 000 2020	2.11. 25 pozemin
		\mathcal{O}
Итоговый вариант ВКР предо	ACTOR HOLL CTV/HOLLTON B. CF	оок во «30» зарода 2023г
ттоговый вариант БКГ предс	ставлен студентом в ср	оок до «зо» апреля 2023г.
Hayayay vy nywono wyma w DVD	07	E A Evnongyuy
Научный руководитель ВКР	27 апреля 2023	Е. А. Буровский
2	10 6 0000	
Задание выдано студенту	19 декабря 2023	Е. А. Буровский
Задание принято к	10	
исполнению студентом	19 декабря 2023	Р. Б. Москаленко
mento et jacinom		, *

Аннотация

В данной работе рассмотрена модель Изинга на ансамблях конформаций. Интерес в данной работе представляет связь структурных свойств конформаций и магнитных свойств модели Изинга, построенной на конформациях. В частности, влияние фазового геометрического перехода на появление магнитного перехода. Поскольку при низких температурах структура конформаций схожа с двумерной решёткой и известно, что модель Изинга на двумерной решётке имеет фазовый переход. И при высоких температурах конформации схожи с одномерной решёткой, на которой переход в модели Изинга отсутствует. В отличие от других работ в данной области, где спиновая подсистема модели Изинга и структура конформации меняются одновременно, мы рассматриваем модель с замороженным беспорядком. Так в нашей модели сначала генерируется конформация, и затем с фиксированной геометрией рассматривается модель Изинга. Результатами работы являются: магнитные свойства конформаций в каждой из фаз, точка магнитного перехода в глобулярной фазе, изменение магнитных свойств конформаций при геометрическом фазовом переходе, влияние структурных особенностей конформаций на их магнитные свойства.

Abstract

This paper studies magnetic properties of the Ising model on ensembles of conformations. This work focuses on the relationship between the structural properties of conformations and the magnetic properties of the Ising model built on conformations. In particular, the effect of a geometric phase transition on the appearance of a magnetic transition. Since at low temperatures the structure of conformations is similar to a two-dimensional lattice, and it is known that the Ising model on a two-dimensional lattice has a phase transition. And at high temperatures, the conformations are similar to a one-dimensional lattice, on which there is no transition in the Ising model. In other works in this field, the spin subsystem of the Ising model and the conformation structure change simultaneously, but this considers a model with frozen disorder. Thus, in our model, the conformation is first generated, and then the Ising model is considered with a fixed geometry. The results of the work are: the magnetic properties of conformations in each of the phases, the magnetic transition point in the globular phase, the change in the magnetic properties of conformations during a geometric phase transition, the influence of structural features of conformations on their magnetic properties.

Содержание

1	Введение	6
2	Описание модели	7
3	Программная реализация	S
4	Глобулярные конформации	11
5	Магнитная восприимчивость	24
6	Конформации при высоких температурах	28
7	Изменение температуры конформаций	31
8	Заключение	34

1 Введение

Модель Изинга [1] — широко распространённая и хорошо исследованная модель, которую активно применяют в различных областях науки: биология, физика, материаловеденье и др. Она позволяет описать магнитные свойства системы, основываясь на взаимодействии магнитных моментов и внешнего магнитного поля. В частности большой интерес представляет применение данной модели к моделям макромолекул [2](далее конформации). Данное направление обрело популярность в последние годы. В работах рассматриваются разнообразные модели: в пространствах разной размерности, с различными правилами взаимодействия соседей, и т. д. Однако во всех работах [3] Модель изинга рассматривается одновременно с моделью конформаций, то есть спиновая подсистема изменяется вместе с геометрической структурой конформации . В отличие от этих работ, в нашей модели, модель Изинга строится на фиксированной структуре, уже после генерации конформации.

Рис. 1. Примеры конформаций

Модели Изинга и модель конформаций представляют для нас интерес из-за геометрических свойств конформаций и известных свойств модели Изинга на различных решётках. А именно: точное решение для модели Изинга [4] показывает, что на одномерной сетке модель Изинга не имеет магнитного фазового перехода — одномерная модель не становится магнитной ни при каких температурах, кроме абсолютного нуля. В то время как на двумерной сетке есть фазовый переход [5], и она становится магнитной при низких температурах. Конформации так же имеют фазовый переход. Состояния конформаций называются глобулой или клубком и соответствуют низким и высоким температурам. Пример конформаций

представлен на Рис. 1. Структурно состояния конформации, которые в основном проявляются в глобулах и клубках, подобны одномерным и двумерным сеткам соответственно. Например количество соседей у вершин в глобулярных конформациях в основном 4 или 3, а в клубках у большинства вершин 2 соседа. Учитывая структурную схожесть фаз конформаций и решёток, можно предположить и магнитную схожесть.

Цель данной работы — определить магнитные свойства конформаций в фазах глобула и клубок, сравнить свойства с двумерной и одномерной решёткой, определить точку фазового магнитного перехода в глобулах, если он существует, исследовать поведение магнитной модели вблизи геометрического перехода.

2 Описание модели

В данной модели мы рассматриваем ансамбли конформаций на двумерной решётке: множества конформаций одинаковой длинны L, полученные при одинаковых температурах. Мы получаем конформации используя алгоритм SAW, где структура конформации зависит от температуры. В работе мы будем использовать обозначение U=1/T являющееся обратной температурой. На каждой из конформаций строится модель Изинга. В каждой вершине рассматриваемой конформации размещается спин, который может принимать одно из двух значений: +1,-1. Соседние спины взаимодействуют друг с другом, сила взаимодействия определяется коэффициентом J. В данной модели соседними спинами мы считаем спины расположенные строго слева, справа, снизу или сверху друг от друга. Гамильтониан данной системы имеет вид

$$H = -J\sum_{\langle i,j
angle} \sigma_i\sigma_j - h\sum_i \sigma_i$$

где i,j индексы соседних узлов, J- коэффициент взаимодействия h - воздействие внешнего поля. В данной работе мы рассматриваем модель без внешнего поля, поэтому во всех вычислениях далее h=0

Статистическая сумма

$$Z = \sum_{\{\sigma\}} e^{-H(\sigma)\beta}, \beta = \frac{1}{kT}$$

где $\{\sigma\}$ — множество всех возможных наборов значений спинов. β — обратная температура.

Намагниченность и энергия каждого состояния считаются по следующим формулам

$$E = -J\sum_{i,j}\sigma_i\sigma_j$$
 $M = \sum_i\sigma_i$

Средняя намагниченность системы

$$\langle M \rangle = \frac{1}{Z} \sum_{\{\sigma\}} M e^{-H(\sigma)\beta}$$

Заметим, что средняя намагниченность равна 0, так как для каждого состояния спинов существует равновероятное состояние с обратными значениями. Поэтому в основном мы будем рассматривать модуль намагниченности и его начальные моменты.

2.1 Численная модель

Для расчёта модели Изинга используется алгоритм основанный на методе Монте-Карло. Были реализованы версии с односпиновым и кластерным апдейтом [6]. Код представлен в репозитории github [7].

Алгоритм с кластерным апдейтом работает следующим образом. На каждой итерации мы выбираем случайный спин, и с него начинаем строить кластер из одинаково направленных спинов, добавляя новые спины в кластер с вероятностью $p=1-\exp(-2\beta)$. Затем мы меняем значения спинов в кластере на противоположные. В отличие от односпинового апдейта, где есть вероятность, что изменение значения спина не будет принято, в кластерном апдейте новые значения спинов принимаются всегда и в кластере гарантированно будет находиться как минимум один спин. В итоге для измерений используется кластерная версия. Благодаря отказоустойчивости и изменению значения сразу нескольких спинов, она работает значительно быстрее, и быстрее сходится. Это особенно важно при низких температурах, так как большинство спинов будут сонаправлены, и за одну итерацию, будут составляться крупные кластеры, меняющие значение большого

числа спинов. В обоих алгоритмах мы сначала случайным образом инициализируем спины, затем делаем некоторое число шагов для отжига модели. Далее на каждом шаге мы замеряем намагниченность, и после выполнения определённого числа шагов, усредняем полученные значения. Основной интерес для нас представляют начальные моменты модуля намагниченности. А именно 1, 2 и 4.

$$\langle |M|
angle = rac{1}{n} \sum_{\{\sigma\}} \left| \sum_i \sigma_i \right|$$
 $\langle M^2
angle = rac{1}{n} \sum_{\{\sigma\}} \left(\sum_i \sigma_i
ight)^2$

3 Программная реализация

Реализованы два алгоритма обновления спинов. Односпиновый и кластерный апдейт. Оба алгоритма работают на произвольном графе, используя таблицу соседей. Алгоритмы реализованы как отдельные библиотеки для Python, и написаны с использованием технологии Cython для ускорения работы. Кластерный апдейт является более эффективным по времени работы и количеству шагов, которые необходимо выполнить для хорошей сходимости модели.

Запуск алгоритмов по симуляции модели проводились на суперкомпьютерном кластере ВШЭ Charisma.

3.1 Проверка алгоритмов

Чтобы убедиться, что алгоритмы работают правильно, мы проверили, что оба алгоритма дают одинаковые результаты на одних и тех же конформациях, так же сравнил их с точными решениями для одномерной модели Изинга.

Результаты замеров кластерным и односпиновым апдейтом совпадают в пределах погрешности.

Рис. 2. кластерный и односпиновый апдейт

Для сравнения с точными значениями для одномерной модели Изинга, мы используем замкнутый квадратный контур. Данная конформация по свойствам полностью совпадает с одномерной моделью Изинга с открытыми граничными условиями.

Рис. 3. Сравнение с точным решением одномерной модели

Так же был написан код, точно вычисляющий энергию системы путём полного перебора всех её состояний. Сравнение на маленьких конформациях (длина до 10) даёт одинаковые результаты.

Примеры с использованием кластерного апдейта добавлены в библиотеку mc_lib.

4 Глобулярные конформации

Как уже говорилось, конформации при низких температурах переходит в глобулярную фазу. Данные конформации отличаются более плотно расположенными вершинами, большинство из которых имеет 4 или 3 соседа. Конформации данного вида предположительно имеют магнитные свойства, схожие с двумерной квадратной решёткой.

Для вычислений были сгенерированы по 1000 конформаций длины 250, 500, 1000, 2000. При моделировании методом Монте-Карло делалось 10000–30000 шагов на отжиг, и 50000–100000 шагов для замеров. Оказалось что достаточно боль-

шая часть этих конформаций неплотные, то есть их свойства ближе к свойствам одномерной решётки, чем двумерной. При попытке посчитать среднее значения кумулянта Биндера неплотные конформации сильно влияли на значение кумулянта, увеличивая погрешность от реплики к реплике.

Рис. 4. Пример кумулянта и намагниченности плотной и неплотной конформаций

4.1 Разделение конформаций

Для отделения плотных конформаций от остальных было предложено вычислять их радиус инерции.

$$R = \sqrt{\frac{1}{n} \sum_{i=1}^{n} r_i^2}$$

где r_i это расстояние от узла конформации до её центра масс.

Однако при рассмотрении большого количества конформаций оказалось, что маленький радиус инерции не гарантирует хорошую намагниченность кон-

формации. Это хорошо видно при рассмотрении намагниченности конформаций при низких температурах $\pmb{\beta}=1$

Рис. 5. Квадрат намагниченности и радиус инерции конформаций длины L=250 при $\beta=1$

На рис.5, при $R \approx 0.6~m^2$ принимают любые значения от 0.2 до 1.0. Значит, при разделении конформации только по радиусу инерции, мы либо будем отбрасывать намагничивающиеся конформации, либо оставлять не намагничивающиеся

Кластеризованные конформации.

На искусственном примере рис.6 показана одна из причин, по которой плотная конформация может плохо намагничиваться. Тут имеется несколько крупных двумерных кластеров, соединённых одномерной цепочкой. И несмотря на то, что сами по себе эти кластеры намагничиваются, направление спинов в них слабо связано, из-за чего спины в разных кластерах с большой вероятностью будут направлены в противоположные стороны. Далее соединяющие цепочки будут называться мостами, а длина моста - количество вершин, входящих в него.

На рис.6 приведён пример с очень длинным мостом, чтобы показать, что конформации могут одновременно иметь малый радиус инерции и большую длину моста, однако даже в большинстве сгенерированных конформаций длины мостов оказываются значительно меньше.

Для лучшего понимания влияния размеров мостов и кластеров, и количества кластеров на магнитные свойства модели, мы рассмотрели искусственные модели конформаций с кластерами размером: 250, 500, 1000, 2000, количеством

Рис. 6. Пример плотных немагнитных конформаций с двумя и тремя кластерами

кластеров: 2, 3, 4, и длинами мостов между ними от 1 до 10. Кластеры в конформациях имеют прямоугольную форму и последовательно соединены мостами снизу. Пример конформаций представлен на рис. 7.

Рис. 7. Пример модели кластеризованной конформации с тремя кластерами и мостами длины 6.

Абсолютные размеры кластеров не показали значительного влияния на магнитные свойства, поэтому далее будут рассматриваться конформации с кластерами размера 2000.

На рис. 8 видно, что увеличение количества кластеров, и длины мостов ведёт к уменьшению магнитной восприимчивости. Так же можно сказать, что количество кластеров имеет большее влияние на намагниченность, чем длина мостов. А так как в данном случае количество кластеров напрямую связано с относительным размером кластера, то и относительный размер кластеров, оказывает большее влияние на магнитные свойства модели, чем длина мостов. Данное замечание будет важно далее, при разделении сгенерированных конформаций.

Было сделано предположение, что можно определять намагничивающиеся

Рис. 8. Квадрат намагниченность конформаций с кластерами размера 2000, цветами отмечена длина мостов между кластерами

конформации используя кластеры и мосты. Следующей задачей стало проанализировать конформации на количество и размеры кластеров, а так же мостов. Однако пока мы не дали чёткого определения моста и кластера. Поэтому были рассмотрены несколько вариантов.

Первым вариантом было искать классические мосты — спины, при удалении которых увеличивается число компонент связанности графа. Однако такой способ не дал желаемого эффекта, так как кластеры могут быть соединены более чем одним мостом. И например на конформации из рис. 9 данный способ не выделяет ни одного моста, хотя там очевидно есть структуры, отделённые друг от друга одномерными цепочками.

Следующий алгоритм выделял как мосты все цепочки спинов у которых 1 или 2 соседа, однако при таком подходе мы получаем мосты, которые соединяют один и тот же кластер. Такие мосты не разделяют кластеры и не оказывают на конформацию эффект описанный выше. Так же этим способом мы выделяем множество вершин на краях конформации как мосты, например вершины в углах прямоугольника будут считаться мостами, что очевидно неправильно.

Итоговая версия алгоритма выделяет как мосты все спины, которые имеют 1 или 2 соседа, и затем добавляет мосты, которые соединяют один и тот же кластер, к этому же кластеру. Таким образом мы оставляем только мосты, разделяющие конформацию на отдельные плотные части, которые мы и называем кластерами. Данный алгоритм описан ниже.

Алгоритм разбиения на мосты и кластеры

- 1. Отмечаем все спины с 1 или 2 соседями как мосты.
- 2. Создаём массив, где отмечаем посещённые спины. Создаём массив где для каждого спина будем писать номер его кластера. И переменную отвечающую за текущую длину моста l. Изначально все спины не посещены, l=0.
- 3. Начинаем идти по конформации от первой вершины.
 - (a) Если спин отмечен как мост, то увеличиваем l на 1
 - (b) Если спин не отмечен как мост и не посещён, увеличиваем счётчик кластеров на 1 и запускаем DFS(Алгоритм DFS описан ниже). Если l > 0 увеличиваем счётчик мостов на 1, длина нового моста = l. Обнуляем l
 - (c) Если спин не мост, уже посещён, последний встреченный спин, не являющийся мостом, принадлежит тому же кластеру и текущая длина моста l > 0. Значит этот мост соединяет один и тот же кластер. Поэтому добавляем предыдущие l спинов к этому кластеру, обнуляем l.
 - (d) Если спин не мост, посещён, но номер кластера отличается от последнего встреченного кластера: если l>0 увеличиваем счётчик мостов на 1, длина нового моста =l. Обнуляем l
- 4. Проверяем первый и последний мост, если они соединяют один и тот же кластер, или один из их концов не соединён ни с каким кластером, добавляем их в кластер, с которым они соединены.

Алгоритм DFS

- 1. Заходим в вершину.
- 2. Отмечаем вершину как посещённую.

- 3. Отмечаем номер её кластера.
- 4. Увеличиваем счётчик размера текущего кластера на 1.
- 5. Заходим во все соседние непосещённые вершины не мосты.

В данном алгоритме мы пользуемся тем, что мосты обязательно образуются из подряд идущих вершин конформации. Поэтому чтобы определить соединяет ли мост один и тот же кластер, нам достаточно, идя по конформации, запоминать последний встреченный кластер и сравнивать его с новым. Результатом работы алгоритма являются размеры кластеров и мостов в конформации, а так же для каждой вершины однозначно определяется кластер или мост, которому она принадлежит. Пример работы алгоритма представлен на рис. 9, данная конформация так же является примером того, как глобулярная конформация с малым радиусом инерции может оказаться разбитой на кластеры, и из-за этого слабо намагничиваться.

Рис. 9. Пример реальных конформаций с маленьким радиусом инерции и маленькой намагниченностью. Фиолетовым отмечены кластеры, жёлтым – мосты

4.2 Статистика по кластерам и мостам

Ниже представлены гистограммы с размерами и числом кластеров и мостов в конформациях. Посчитано на 10000 конформациях с длинами 250, 500, 10000, кон-

формации получены при $\frac{U}{T}=1.$ Размеры кластеров и длины мостов нормированы на длины конформаций.

Рис. 10. Распределение длин мостов.

Рис. 11. Распределение числа мостов в конформации.

Рис. 12. Распределение числа кластеров в конформации.

Рис. 13. Распределение размера кластеров.

Рис. 14. Распределение размера наибольшего кластера в конформации.

4.3 Результаты разбиения на кластеры

Результаты анализа связи между намагниченностью и количеством и размерами кластеров и мостов подтверждают сказанное выше. У конформаций с большим числом кластеров обычно намагниченность ниже чем у конформаций с одним большим кластером.

Были рассмотрены несколько параметров: количество мостов, количество кластеров, суммарная длина мостов, размер наибольшего кластера. Наилучшим способом разделения конформаций на магнитные и немагнитные сейчас выглядит именно разделение по размеру наибольшего кластера. Как видно на рис.15 при разбиении по данному параметру разброс намагниченности значительно ниже, чем при разбиении по радиусу инерции. Данный параметр можно легко масштабировать для разных длин конформаций.

Рис. 15. График размера наибольшего кластера и квадрата намагниченности для 10000 конформаций длины 1000

Сравнение разделения по кластерам и по радиусу

Чтобы оценить и сравнить эффективность разбиения конформаций при помощи размера наибольшего кластера и радиуса инерции воспользуемся следующим способом.

- 1. Зададим значение намагниченности μ , начиная с которого будем считать конформации намагниченными.
- 2. Из всех сгенерированных конформаций возьмём n конформаций с наименьшими радиусом инерции, и n конформаций с наибольшими размерами кластеров.
- 3. Среди выбранных конформаций посчитаем $k_{\mu,n}$ количество конформаций, намагниченность которых $<\mu$. Чем ниже это значение, тем лучше соответствующий способ разделения.
- 4. Повторяем предыдущие пункты для разных значений μ и n.

Сравнивая полученные значения $k_{\mu,n}$, можем определить, какой из способов эффективнее. На рис.16 видно как примерно ведут себя данные значения: до определённого n они равны 0, затем, дойдя до границы между магнитными и немагнитными конформациями, оно начинает расти, после чего рост становится линейным, так как все оставшиеся конформации не являются магнитными. Лучше разницу между двумя способами видно на рис.17, где, при всех значениях μ и n разница $k_{\mu,n}$ остаётся отрицательной. То есть разделения по радиусу инерции всегда оставляет больше немагнитных конформаций, чем разделение по размеру кластеров.

Рис. 16. График $k_{\mu,n}$ для разделения по кластерам и по радиусу при $\mu=0.8$.

Рис. 17. График разности: $k_{\mu,n}$ при кластерном разделении и $k_{\mu,n}$ при разделении по радиусам. На 10000 конформаций длины 1000. Каждая линия соответствует одному значению μ .

4.4 Кумулянт и точка перехода

Кумулянт Биндера для одной реплики при заданной температуре вычисляется по формуле

$$U = 1 - \frac{\langle m^4 \rangle}{3 \langle m^2 \rangle^2}$$

Дальше Значения усредняются между репликами при каждой температуре

$$\langle U \rangle = \frac{1}{n} \sum_{i=1}^{n} U_i$$

Погрешность кумулянта от реплики к реплике вычисляется как среднеквадратичное отклонение по формуле

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(\langle U\rangle - U_i)^2}$$

Как видно на рис.18, вычисление кумулянта на всех сгенерированных конформациях даёт слишком большие погрешности от конформации к конформации, из-за этого становится невозможно определить точку перехода.

Рис. 18. кумулянты построенные на всех полученных конформациях

Описанный выше способ разделения конформаций на магнитные и немагнитные должен позволить уменьшить погрешность при вычислении кумулянта. Чтобы подобрать значение параметра (размер наибольшего кластера), при котором будет происходить разделение, мы стали перебирать значения, и следить за поведением точки пересечения. Предположительно при увеличении параметра точка пересечения должна двигаться в сторону нуля, и, начиная с определённого значения она должна остановиться.

Так как погрешность при вычислении кумулянта всё равно остаётся достаточно большой, мы используем следующий подход для вычисления точки пересечения. Рядом с предполагаемой точкой пересечения берём несколько соседних значений $\boldsymbol{\beta}$, в которых мы делали замеры. Используя среднее значение и сред-

неквадратичное отклонение кумулянта для конформаций в этих точках как параметры для нормального распределения, генерируем новые значения кумулянта. Далее, используя метод наименьших квадратов, проводим отрезок наиболее близкий к сгенерированным точкам. Таким образом генерируем пары отрезков для конформаций разных длин, определяем точки пересечения каждой пары отрезков (если отрезки не пересекаются, генерируем заново), и затем усредняем координаты пересечений.

Мы рассмотрели различные значения минимального размера кластера, начиная с которого мы будем использовать конформации для вычисления кумулянта. Как и ожидалось, при увеличении размера кластера, ожидаемая точка пересечения сдвигается в сторону нуля, и в какой-то момент останавливается.

Рис. 19. Точки пересечения, полученные после разделения конформация по размеру кластерав, полученные генерацией отрезков с использованием разных точек замеров.

Однако несмотря на уменьшение погрешности, она всё ещё слишком большая для точного определения точки перехода. На рис. 19 приведены примеры полученных точек пересечения. Из-за больших погрешностей кумулянта, сгенерированные точки пересечения очень сильно зависят от того, какие точки мы возьмём для генерации. При изменении минимального требуемого размера кластера результат почти не меняется.

Пока что мы не нашли способа точно определить точку перехода, используя кумулянт Биндера, из-за того что даже среди глобулярных конформаций значения намагниченности имеют слишком большой разброс, что приводит к большим погрешностям кумулянта. Дальнейшие попытки определить точку перехода будут опираться на другие методы.

5 Магнитная восприимчивость

Один из способов определить точку перехода — это определить пик магнитной восприимчивости конформаций. Как описано в [8], точка магнитного перехода и пик магнитной восприимчивости должны совпадать. Если пик отсутствует, значит отсутствует точка магнитного перехода.

Магнитная восприимчивость — это отношение намагниченности конформации к напряжённость внешнего поля. Ожидается, что в намагничивающихся конформациях в точке перехода должен наблюдаться пик магнитной восприимчивости, в то время как в ненамагничивающихся магнитная восприимчивость не будет иметь пиков.

Получим формулу для магнитной восприимчивости конформации.

По определению

$$\chi = \frac{\partial \langle |M| \rangle}{\partial h}$$

Подставим формулу намагниченности и продифференцируем.

$$\frac{\sum_{\sigma} |M| e^{-\beta H} \left(-\beta \frac{\partial H}{\partial h}\right) \cdot Z - \sum_{\sigma} |M| e^{-\beta H} \cdot \sum_{\sigma} e^{-\beta H} \left(-\beta \frac{\partial H}{\partial h}\right)}{Z^2}$$

Заметим, что

$$\frac{\partial H}{\partial h} = -\sum_{i} \sigma_{i} = -|M|$$

Тогда

$$\chi = \frac{\partial \langle |M| \rangle}{\partial h} = \frac{\sum_{\sigma} Z \beta M^2 e^{-\beta H} - \sum_{\sigma} |M| e^{-\beta H} \cdot \sum_{\sigma} \beta |M| e^{-\beta H}}{Z^2} = \beta \left(\langle M^2 \rangle - \langle |M| \rangle^2 \right)$$

По данной формуле мы можем вычислить магнитную восприимчивость конформаций, используя значения абсолютной намагниченности и квадрата намагниченности, полученные при при расчёте модели Изинга.

5.1 Результаты замеров

Для рассмотрения были взяты 10000 конформаций с длинами 250, 500 и 1000. Замеры были сделаны при 10 значениях β , линейно распределённых от 0.1 до 1.0.

Все конформации либо имеют единственный пик магнитной восприимчивости, либо магнитная восприимчивость непрерывно возрастает с увеличением β .

Рис. 20. Распределение пиков магнитной восприимчивости по конформациям. Цветами отмечены разные длины конформаций. Число конформаций для каждой длины 10000.

Рис. 21. Средняя намагниченность конформаций с пиками магнитной восприимчивости в $\beta=1$. Цветами отмечены разные длины конформаций.

Как видно на Рис.20 при увеличении длины конформаций пики магнитной восприимчивости начинают встречаться либо около $\beta=0.5$ либо $\beta=1.0$. Конформации с пиком в $\beta=1.0$, то есть конформаций, у которых магнитная восприимчивость непрерывно возрастает, являются ненамагничивающимися (Рис. 21). Тогда точка перехода должна находиться в окрестности $\beta=0.5$, что совпадает с предположительным положением точки перехода, полученным при помощи Кумулянта Биндера [9] ранее.

Для уточнения точки перехода были сделаны замеры в десяти точках на отрезке [0.4,0.6]. Так же рассматривались только конформации, у которых ранее был найден пик при $\beta=0.5$ или $\beta=0.6$. Число рассматриваемых конформаций 6873, 7037, 6739 для длин 250, 500 и 1000 соответственно. Результаты представлены на Рис.22. При увеличении длины конформаций значительно увеличивается количество конформаций с пиками в $\beta=0.50, \beta=0.52$, однако так же появляются пики в $\beta=0.48$ и $\beta=0.6$ хотя и сравнительно меньше. Текущих данных ещё недостаточно для точного определения точки перехода.

Рис. 22. Распределение пиков магнитной восприимчивости для конформаций с пиком около $\beta = 0.5$. Цветом отмечены длины конформаций.

5.2 Магнитная восприимчивость при разделение конформаций

Ранее при исследовании кумулянта Биндера для определения точки перехода, мы отбирали намагничивающиеся конформации от ненамагничивающихся по их радиусу инерции и размерам кластеров. И это позволило нам значительно уменьшить значения погрешности при вычислении кумулянта. Мы решили попробовать применить такой же метод отбора конформаций при вычислении магнитной восприимчивости.

Для всех сгенерированных конформаций мы вычислили долю вершин, занимаемых наибольшим кластером (ранее именно эта метрика показывала лучшие результаты при выборе конформаций). Далее мы отбросили все конформации, у которых относительный размер кластера меньше заданного параметра μ , и построили распределение пиков магнитной восприимчивости для оставшихся

конформаций. На рис. 23 представлен пример получившихся распределений для разных значений μ . На данном графике к конформациям с пиком в 0.6 также относятся конформации, у которых отсутствует пик. Аналогичные результаты получаются и для конформаций другой длины. Как видно на графике, отбор конформаций по размеру кластера влияет только на количество конформаций без пиков намагниченности.

Рис. 23. Распределение пиков магнитной восприимчивости после выбора конформаций по размеру наибольшего кластера. Цветами отмечены минимальные значения относительных размеров кластера. Для конформаций длины 2000, исходное число конформаций 10000

Чтобы объяснить, почему разделение конформаций по размеру кластеров только убирает конформации без пиков намагниченности, снова рассмотрим искусственные кластеризованных конформаций, описанных в параграфе 4.1. Как видно на рис. 24, у всех конформаций, независимо от количества кластеров и длины мостов, магнитная восприимчивость не имеет пиков. Можно предположить, что сгенерированные конформации, разделённые на кластеры, также не имеют пиков магнитной восприимчивости. Что хорошо сходится с результатами полученными на рис. 23. Также на рис. 4.1 можно заметить отличия между конформациями с двумя кластерами и конформациями с 3 и 4 кластерами. Главное из которых заключатся в увеличении магнитной восприимчивости при удлинении мостов между кластерами. Что особенно интересно, учитывая схожесть поведения магнитной восприимчивости в конформациях с 3 и 4 кластерами. Пока что мы не можем объяснить, почему это происходит, требуются дополнительные исследования.

Рис. 24. Магнитная восприимчивость конформаций с кластерами размера 2000, цветами отмечена длина мостов между кластерами

6 Конформации при высоких температурах

Выше мы рассмотрели глобулярные конформации, их магнитные свойства, и показали наличие ферромагнитной фазы в данных конформациях. В этом же разделе мы сфокусируемся на конформациях, полученных при высоких температурах - клубках. Как говорилось ранее, клубки структурно схожи с одномерной решеткой, и поэтому мы ожидаем увидеть в них схожие магнитные свойства. А именно: слабая намагниченность при любых температурах, отсутствие магнитного перехода и пиков магнитной восприимчивсти.

Для рассмотрения были сгенерированы 4 набора конформаций, при температуре U=0.1 с длинами 250, 500, 1000, 2000 по 1000 конформаций в каждом наборе.

Как и ожидалось, средняя намагниченность по конформациям значительно меньше, чем у конформаций при U=1 (сравнение на Рис. 25).

Среди полученных конформаций также встречаются намагничивающиеся. Однако если мы посмотрим на намагниченность конформаций при $\beta=1$, то среди конформаций длины 250 будет только 4 конформации с намагниченностью больше 0.9, среди конформаций длиной 500 их 2, и в наборах с длинами 1000 и 2000

Рис. 25. Средняя намагниченность конформаций при U = 0.1. Цветами отмечены конформации разной длины, число конформаций каждой длины - 1000. Красный график намагниченности конформаций при U = 1, длины 1000.

таких конформаций нет. На рис.26 видно, что ненамагничивающиеся конформации составляют большую часть всех конформаций, и что при увеличении длины конформаций, доля намагничивающихся конформаций уменьшается. Максимальная намагниченность, достигаемая конформациями: 0.950, 0.947, 0.799, 0.788 - для длин 250, 500, 1000, 2000 соответственно.

Рис. 26. Доля конформаций, намагниченность которых в точке $\beta=1$ больше чем заданное значение. Цветами отмечены конформации разной длины, число конформаций каждой длины - 1000.

При увеличении длины конформаций средняя намагниченность, и максимальная достигаемая намагниченность уменьшаются. Что подтверждает предпо-

ложение о том, что при $L \to \infty$ конформации не будут намагничиваться.

6.1 Магнитная восприимчивость

Выше мы использовали магнитную восприимчивость для определения точки магнитного перехода в глобулярных конформациях. В конформациях типа клубок, магнитная восприимчивость не должна иметь пиков, так как в них отсутствует магнитный переход. И в целом магнитная восприимчивость, как и другие свойства этих конформаций, должна быть схожа с одномерной моделью Изинга.

Действительно, у большинства конформаций полученных при U=0.1 отсутствуют пики, и график магнитной восприимчивости имеет такой же вид как и у одномерной модели Изинга. Пример графиков представлен на рис. 27. На этом же графике представлен пример масштабирования магнитной восприимчивости конформации, в сравнении с одномерной цепочкой.

Рис. 27. Сравнение магнитной восприимчивости типичной конформации при U=0.1 и магнитной восприимчивости одномерной модели Изинга, с открытыми граничными условиями. На втором графике магнитная восприимчивость конформации домножена на коэффициент, подобранный методом наименьших квадратов.

Чтобы убедиться, что большинство конформаций имеют магнитную восприимчивость схожую с одномерной цепочкой. мы вычислили среднеквадратичное отклонение магнитной восприимчивости конформаций от одномерной цепочки. Распределение полученных значений представлено на рис. 28. На нём мы можем видеть пик в 0, означающий, что большинство конформаций имеют магнитную восприимчивость близкую к одномерной модели. Также интересным наблюдением является форма распределения, которая схожа с распределениями полученными при исследования кластеров и мостов в конформациях пи U=1.

При рассмотрении пиков магнитной восприимчивости, распределение кото-

Рис. 28. Распределение значений среднеквадратичного отклонения магнитной восприимчивости конформаций от одномерной цепочки длины 1000.

рых представлено на рис. 29, видно, что у большинства конформаций (больше 90%) пик отсутствует и магнитная восприимчивость достигает максимума при $\beta=1$. По данному графику можно предположить, что при увеличении длины конформаций так же увеличивается доля конформаций с пиком в $\beta=1$, но особенность при L=500 не позволяет утверждать что-то однозначно.

Рис. 29. Распределение пиков магнитной восприимчивости

7 Изменение температуры конформаций

До этого мы рассматривали только конформации, строго находящиеся в одной из фаз, клубки либо глобулы, U=0.1 и U=1.0. Данный раздел будет посвящён влиянию температуры, при которой генерируются конформации, на магнитные свойства конформаций, и поведению модели Изинга на конформациях при пе-

реходе через критическую температуру U_{θ} . U_{θ} - точка геометрического фазового перехода конформаций. Результаты различных исследований [10] показывают, что точка перехода находится в области $U_{\theta}=0.66$.

Для рассмотрения мы взяли по 1000 конформаций с длинами 250, 500, 1000, 2000, полученных при $U \in \{0.1, 0.2 \dots 0.9, 1.0\}$.

Намагниченность и магнитная восприимчивость, представленные на рис. 30 и рис. 31 соответственно, почти не меняются для $U \in [0.1, 0.5]$. Затем, после U = 0.6 начинает расти средняя намагниченность конформаций, а количество конформаций без пиков магнитной восприимчивости начинает падать. Данные результаты хорошо соотносится с известными значением U_{θ} и предполагаемым поведением модели вблизи точки перехода, где при фазовом геометрическом переходе и должны начать появляться глобулярные конформации, и соответственно появляться ферромагнитные свойства у конформаций.

Рис. 30. Намагниченность конформаций полученных при разных температурах, цветом обозначено значение U при генерации.

На рис. 31 можно заметить что при увеличении U пики магнитной восприимчивости не сразу появляются около ожидаемой точки магнитного перехода $\beta \approx 0.5$ а постепенно смещаются в эту сторону из $\beta = 1.0$. И если рассмотреть

Рис. 31. Пики магнитной восприимчивости конформаций полученных при разных температурах, цветом обозначено значение U при генерации.

распределение значений намагниченности конформаций в точке $\beta=1.0$ при различных U. На рис. 32, видно, что при приближении к U_{θ} растёт доля конформаций с намагниченностью $\in (0.1,0.8)$, при этом распределение всё ещё смещено в сторону нуля, а после перехода через U_{θ} начинает расти число конформаций со намагниченностью в области (0.8,1.0).

Рис. 32. Распределение значений намагниченности конформаций полученных при разных температурах в точке $\beta=1.0$, цветом обозначено значение U при генерации.

8 Заключение

В данной работе мы представляем новую модель магнитных конформаций и описываем методы, которые будут использоваться для определения ее магнитных свойств. Мы показали, что ансамбли клубковых конформаций не являются магнитными и не имеют магнитного фазового перехода. Для глобул магнитная восприимчивость может быть полезна для определения точки перехода. А эксперименты с кумулянтом Биндера позволили найти связь между разбиением конформации на кластеры и её магнитными свойствами. Исследование свойств конформаций, полученных при различных температурах, подтверждают связь между геометрическим переходом в конформациях и появлением в них ферромагнитных свойств. Так же видно, что при всех температурах существуют как намагничивающиеся, так и ненамагничивающиеся конформации. Пока что нельзя сказать, как именно доля этих конформаций зависит от температуры.

Список литературы

- [1] E. Ising, "Contribution to the theory of ferromagnetism," 1925.
- [2] J. Des Cloizeaux and G. Jannink, Polymers in solution: their modelling and structure. Oxford University Press on Demand, 1990.
- [3] K. Faizullina, I. Pchelintsev, and E. Burovski, "Critical and geometric properties of magnetic polymers across the globule-coil transition," Physical Review E, vol. 104, no. 5, p. 054501, 2021.
- [4] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Elsevier, 2016.
- [5] S. Caracciolo, M. Papinutto, and A. Pelissetto, "Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks," Physical Review E, vol. 65, no. 3, p. 031106, 2002.
- [6] U. Wolff, "Collective monte carlo updating for spin systems," Physical Review Letters, vol. 62, no. 4, p. 361, 1989.
- [7] "Рабочий репозиторий," https://github.com/MoskalenkoRomanBorisovich/Ising-on-random-conformation.
- [8] R. H. Swendsen, "An introduction to statistical mechanics and thermodynamics (2nd edn)," An Introduction to Statistical Mechanics and Thermodynamics (2nd edn), 2020.
- [9] K. Binder, "Finite size scaling analysis of ising model block distribution functions," Zeitschrift für Physik B Condensed Matter, vol. 43, pp. 119–140, 1981.
- [10] S. Caracciolo, M. Gherardi, M. Papinutto, and A. Pelissetto, "Geometrical properties of two-dimensional interacting self-avoiding walks at the θ -point," Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 11, p. 115004, 2011.