Klasszikus fizika laboratórium

1. mérés

A nehézségi gyorsulás mérése megfordítható ingával

Bakó Bence Kedd délelőtti csoport

Mérés dátuma: 2020. március 3. Leadás dátuma: 2020. március 10.

1. A mérés célja:

A nehézségi gyorsulás megahtározása elvileg lehetséges bármelyik olyan mennyiség mérésével, ami vele kapcsolatban van. Egy ilyen mennyiség a megfordítható inga periódusa. A súlypont változtatásával mérjük a periódusidőt.

2. Mérőeszközök:

- Megfordtható inga rajta tolósúllyal
- Infra ledes érzékelővel ellátott időmérő
- Mérőszalag
- Súlypontmérő ék

3. A mérés menete:

A mérést megelőzte a kitérés szögének a meghatározása, amelyet az inga hosszából és a függőleges kitérésből számoltam. Ezek után 10 teljes lengés idejét mértem a tolósúly helyzetét 5 cm-enként változtatva (-40 cm és 40 cm között). Mindezt elvégeztem mindkét ék esetében. A kapott eredményeket ábrázoltam és két görbét illesztettem a pontokra. Az ábra alapján nagyjából meghatároztam a két függvény metszéspontjait. Ezek közül egyiket kiválasztva újra elvégeztem a mérést annak 6 cm-es környezetében a tolósúly helyzetét 0,5 cm-enként változtatva. Az új eredményeket megint ábrázoltam és így pontosabb becslést kaptam a metszéspontra. Végezetül a súlypontmérő éket felhasználva meghatároztam az inga súlypontját a metszéspontra és 7 másik tolósúly-helyzetre.

4. A mérés elmélete:

A fizikai inga esetében a súlypont helyzete befolyásolja a periódusidőt. A megfordítható inga két éke esetén a mért periódusidőkre illesztett egyenesek két nem triviális pontban metszik egymástés ezekre a pontokra felírható a következő összefüggés:

$$g = \frac{4\pi^2 \cdot l}{T^2}$$

Ahol l az inga éktávolsága és T a periódusidő, tehát ezek alapján meghatározható a gravitációs gyorsulás.

A két említett pont mellett még szóba jöhet a triviális metszéspont, ami akkor lehetséges, ha a súlypont a két ék közti távolság felénél van.

Ez a képlet azonban csak kis kitérésre igaz. Altalánosan α szögű kitérésre a lengésidő pontos képlete:

$$T = 2\pi \sqrt{\frac{l_e}{g} \left(1 + \frac{1}{4} \sin^2 \frac{\alpha}{2} + \frac{9}{64} \sin^4 \frac{\alpha}{2} + \frac{25}{256} \sin^6 \frac{\alpha}{2} + \dots \right)}$$

Ezen kívül még szót kell ejteni a hidrosztatikai és hidrodinamikai korrekciókról. A mért értékeket csökkenteni kell az alábbi korrekcóval:

$$\Delta T_{korr} = 0, 8 \frac{\rho_{lev}}{\rho_{inga}} T,$$

ahol a levegő sűrűsége $\rho_{lev}=1,259kg/m^3,$ az inga anyagának sűrűsége $\rho_{inga}=8500kg/m^3$

5. <u>Mérési adatok:</u>

Az inga hosszúsága 119 cm, a kitérést nagyjából 5 cm-nek választottam. Innen a kitérés szöge:

$$\alpha = arctg(\frac{5}{119}) = 2,40^{\circ}$$

Az inga éktávolsága l=100.33 cm.

5.1. 10 teljes lengés ideje a tolósúly helyzetének függvényében mindkét ékre:

x [cm]	$10T_1 [s]$	$10T_2 [s]$
-40	20.095	20.092
-35	20.039	20.014
-30	19.992	19.945
-25	19.954	19.886
-20	19.922	19.834
-15	19.902	19.797
-10	19.885	19.770
-5	19.880	19.751
0	19.882	19.746
5	19.893	19.758
10	19.911	19.782
15	19.933	19.815
20	19.964	19.858
25	20.000	19.917
30	20.044	19.993
35	20.094	20.083
40	20.149	20.189

5.2. 10 teljes lengés ideje mindkét ékre az egyik metszéspont kis környezetében:

x [cm]	$10T_1 [s]$	$10T_2 [s]$
33	20.069	20.045
33.5	20.077	20.055
34	20.082	20.063
34.5	20.086	20.073
35	20.093	20.082
35.5	20.100	20.096
36	20.103	20.106
36.5	20.109	20.111
37	20.115	20.124
37.5	20.119	20.135
38	20.125	20.146
38.5	20.131	20.158
39	20.133	20.166

5.3. A súlypont helyzete a tolósúly helyzetének függvényében:

Tolósúly helyzete [cm]	Súlypont helyzete [cm]
-46	7.3
-41	7.8
-36	8.3
-26	9.2
20	13.4
26	14
36	14.9
42	15.4

6. Kiértékelés:

6.1. Nehézségi gyorsulás meghatározása:

Az első adatsort a GRAPHER program segítségével ábrázoltam és függvényt illesztettem rájuk (lásd 1. melléklet). Úgy ítéltem meg, hogy a metszéspontjuk körülbelül 36 cm-nél volt. A második adatsorra is elvégeztem az ábrázolást és egyenest illesztettem a GRAPHER programmal (lásd 2. melléklet), az ábra alapján a metszéspontot az x=35,8-ra ítéltem. Az illesztést elvégeztem Python-ban a scipy modul curve_fit függvényével. Ebből megkaptam mindkét egyenes egyenletét, tehát a metszéspontra:

$$0,0107472 \cdot x + 19,7163297 = 0,0204175 \cdot x + 19,3695824$$

$$x = 35,85cm \Rightarrow 10T_m = 20,102s \Rightarrow T_m = 2,0102s$$

Innen az ismertetett képlet alapján a nehézségi gyorsulás:

$$g = 9,801 \frac{m}{s^2}$$

6.2. A súlypont:

A 3. mellékleten látható a súlypont helyzete a tolósúly helyzetének függvényében. A pontokra illesztett egyenes egyenlete:

$$s(x) = 0.091971 \cdot x + 11.574909$$

Triviális megoldást akkor kaphatunk, ha $s(x_0) = 0$. Ez az x = -125, 85cm-nél lesz, ami nem kivitelezhető az adott eszközökkel, de elméletileg megvalósítható.

Elméleti feladat:

Elméletben tanulmányozhatunk olyan eseteket, amikor a súlypont pontosan a felső ékre vagy az alsó ék alá esik. Az egyik határeset, ha a felső ék fele közelítünk a súlyponttal, ekkor a periódusidő a végtelenhez tart. Ezt akkor érheti el, ha a tolósúlyt a -669,50 cm-hez, vagy a 417,79 cm-hez tesszük (annak függvényében, hogy melyik ék van felül) mindig felfele tolva. A másik határeset amikor a súlyponttal a végtelenhez kozelítünk (lefele), ekkor a periódusidő 0-hoz tart.

7. Hibaszámítás, korrekciók:

7.1. A metszéspont hibája:

Az időmérés hibája a jegyzet alapján: $\Delta T = 0,0002s$.

Az inga éktávolságának hibája a jegyzet alapján: $\Delta l = 0,002cm$

Innen elemi módszerekkel kiszámítható a metszéspont hibája:

$$\Delta T_{mp} = 2,010813s - 2,010169s = 6,44 \cdot 10^{-4}s$$

A nehézségi gyorsulás hibája:

$$\Delta g = g \cdot \left(\frac{\Delta l}{l} + 2 \cdot \frac{\Delta T}{T}\right) = 8,2367 \cdot 10^{-3} \frac{m}{s^2}$$

.

7.2. A szög közelítéséből származó korrekció:

Az ingát átlagosan $2,40^{\circ}$ -kal térítettem ki (lásd mérési adatok). Ez az amplitúdó a táblázatból kiolvasva körülbelül 0,0076~% korrekciót jelent:

$$T = 2,0100s \Rightarrow g = 9,804 \frac{m}{s^2}$$

7.3. A levegő felhajtóerejéből származó korrekció:

$$\Delta T_{korr} = 0.8 \frac{\rho_{lev}}{\rho_{inga}} T = 2.48 \cdot 10^{-4} s$$

$$\Rightarrow g = 9.806 \frac{m}{s^2}$$

7.4. A Föld forgásából adódó centrifugális gyorsulás korrekciója:

A Föld felszínén a centrifugális gyorsulás gyengíti a gravitációs gyorsulás hatását, ezt írja le a következő képlet:

$$\Delta g = \Omega^2 R \cos^2(\phi),$$

ahol $\Omega = \frac{2\pi}{24h}$ a szögsebesség, R = 6370km a Föld sugara és $\phi = 47^\circ$ a szélességi kör. Tehát az ebből fakadó korrekció:

$$\Delta g = 0,016 \frac{m}{s^2}$$

8. <u>Diszkusszió:</u>

Az első két korrekciót összevetve a nehézségi gyorsulás számított értéke:

$$g = (9,806 \pm 8,2367 \cdot 10^{-3}) \frac{m}{s^2},$$

ami hibahatáron belül megegyezik az irodalmi értékkel.

Hivatkozások

 Az ELTE Természettudományi Kar Oktatói: Fizikai Mérések (Összevont Laboratóriumi Tananyag I.) Szerkesztette: Havancsák Károly, Lektorálta: Kemény Tamás, ELTE Eötvös Kiadó, Budapest, 2013.