Álgebra Lineal I Tarea 05

Rubén Pérez Palacios Profesor: Rafael Herrera Guzmán

02 Marzo 2020

Problemas

- 1. Sean β y γ las bases ordenadas estándar para \mathbb{R}^n y \mathbb{R}^m , respectivamente. Para las siguientes transformaciones $T: \mathbb{R}^n \to \mathbb{R}^m$, calcular $[T]^{\gamma}_{\beta}$.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida mediante T((x,y)) = (2x y, 3x + 4y, x). Calculemos las transformaciones lineales de β .

$$T((1,0)) = (2,3,1)$$

 $T((0,1)) = (-1,4,0).$

Por lo que

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 0 \end{pmatrix}$$

(b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida mediante T((x, y, z)) = (2x + 3y - z, x + z). Calculemos las transformaciones lineales de β .

$$T((1,0,0)) = (2,1)$$

$$T((0,1,0)) = (3,0)$$

$$T((0,0,1)) = (-1,1).$$

Por lo que

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$

2. Sea $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida como T(x,y) = (x-y,x,2x+y). Sea β la base ordenada estándar para \mathbb{R}^2 y $\gamma = \{(1,1,0),(0,1,1),(2,2,3)\}$. Calcular $[T]_{\beta}^{\gamma}$. Si $\alpha = \{(1,2),(2,3)\}$, calcular $[T]_{\alpha}^{\gamma}$.

Calculemos las transformaciones lineales de β .

$$T((1,0)) = (1,1,2)$$

 $T((0,1)) = (-1,0,1).$

Luego veamos cuales son los coeficientes de la combinaciones lineales de γ que nos dan estas transformaciones lineales.

$$(1,1,2) = a(1,1,0) + b(0,1,1) + c(2,2,3)$$
$$(-1,0,1) = r(1,1,0) + s(0,1,1) + t(2,2,3)$$

De los cuales obtenemos el siguiente sistema de ecuaciones

$$a + 2c = 1$$

$$a + b + 2c = 1$$

$$b + 3c = 2$$

$$r + 2t = -1$$

$$r + s + 2t = 0$$

$$s + 3t = 1$$

cuyas soluciones son

$$a = -\frac{1}{3}$$

$$b = 0$$

$$c = \frac{2}{3}$$

$$r = -1$$

$$s = 1$$

$$t = 0$$

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} -\frac{1}{3} & -1\\ 0 & 1\\ \frac{2}{3} & 0 \end{pmatrix}$$

Calculemos las transformaciones lineales de α .

$$T((1,2)) = (-1,1,4)$$

 $T((2,3)) = (-1,2,7).$

Luego veamos cuales son los coeficientes de la combinaciones lineales de γ que nos dan estas transformaciones lineales.

$$(-1,1,4) = a(1,1,0) + b(0,1,1) + c(2,2,3)$$

$$(-1,2,7) = r(1,1,0) + s(0,1,1) + t(2,2,3)$$

De los cuales obtenemos el siguiente sistema de ecuaciones

$$a + 2c = -1$$

$$a + b + 2c = 1$$

$$b + 3c = 4$$

$$r + 2t = -1$$

$$r + s + 2t = 2$$

$$s + 3t = 7$$

cuyas soluciones son

$$a = -\frac{7}{3}$$

$$b = 2$$

$$c = \frac{2}{3}$$

$$r = -\frac{11}{3}$$

$$s = 3$$

$$t = \frac{4}{3}$$

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} -\frac{7}{3} & -\frac{11}{3} \\ 2 & 3 \\ \frac{2}{3} & \frac{4}{3} \end{pmatrix}$$

3. Para los siguientes incisos, sean

$$\alpha = \left\{ \alpha_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
$$\beta = \{1, x, x^2\}$$

У

$$\gamma = \{1\}.$$

(a) Defina $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ mediante $T(A) = A^t$, calcular $[T]_{\alpha}$. Calculemos las transformaciones lineales de β .

$$T(\alpha_1) = \alpha_1$$

$$T(\alpha_2) = \alpha_3$$

$$T(\alpha_3) = \alpha_2$$

$$T(\alpha_4) = \alpha_4$$

Por lo que

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) Defina $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ mediante T(A) = tr(A), calcular $[T]_{\alpha}^{\gamma}$. Calculemos las transformaciones lineales de β .

$$T(\alpha_1) = 1$$

$$T(\alpha_2) = 0$$

$$T(\alpha_3) = 0$$

$$T(\alpha_4) = 1$$

Por lo que

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$$

(c) Si $p(x) = 3 - 6x + x^2$, calcular $[p]_{\beta}$. Por lo que

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 3\\ -6\\ 1 \end{pmatrix}$$

4. Se
aVun espacio vectorial de dimensión n con base ordenad
a $\beta.$ Definiendo a $T:V\to\mathbb{R}^n$ mediante

Para demostrar que T es lineal entonces falta con demostrar que cT(x)+T(y)=T(ax+y), veamos lo siguiente

$$cx = c \sum_{i=1}^{n} a_i \beta_i, \quad y = \sum_{i=0}^{n} b_i \beta_i,$$

por lo que

$$cx + y = \sum_{i=1}^{n} (ca_i + b_i)\beta_i,$$

por lo tanto Concluimos que

$$T(cx + y) = cT(x) + T(y),$$

por lo tanto T es lineal.