Designcraft for experiments

cjlortie

2020-08-11

Contents

1	Introduction	5
2	Balcony birdwatching	9
3	Backyard bioblitz	15
4	Solo surveys	19
5	Magic data	23
6	Diversity data	25
7	Human data	27
8	Rubrics	29
9	Final notes	33

4 CONTENTS

Introduction

Welcome to experimental design. There are two sets of three exercises provided to explore principles for better experiments. This is a simple book to support the practical, at-home learning associated with experimental design. The text 'Experimental Design for the Life Sciences' underpins the design principles (Ruxton and Colgrave., 2018).

Life is an experiment. Individually and collectively. We experiment everyday. This is an opportunity to formalize some of those processes and make the learning from experimental design thinking a craft you can apply to all challenges. There are two primary modules to support this process.

(1) Field experiments comprises three outdoor experiments to explore sampling heterogeneous, complex processes in natural systems. The purpose

is to provide choice. You need to try each, briefly, as a pilot experiment only. Then, select one to pursue in depth and write up as a research article.

(2) The data experiments describe the opportunity to use design thinking to structure existing data that others have already collected. The same principles for better experiments still apply in how you reuse the data. There are also three examples provided. Select only one and write up as a note.

Both report formats supported by FACETS. It is the first and only open access science journal in Canada.

Workflow for pilot and field experiment

- Do all three field experiments in brief, pilot only, try each for a few hours each.
- 2. Then, Select one of the first three field experiments to publish data with meta-data.
- 3. Publish your data with meta-data to an open and public data repository such as figshare.
- 4. Share the link with all the files with the teaching assistment via the course turnitin.com platform.
- 5. Select one of the three field experiments to do a deeper dive, i.e. fuller experiment wherein you structure observation by a key variable in the environment.
- 6. Design experiment, collect data for the deeper dive.
- 7. Consider combining data from other students that examined the same system.
- 8. Publish data with meta-data to figshare and submit to teaching assistant via turnitin.com.
- 9. Write up the field experiment you completed for the deeper dive as a research article for the Canadian open science journal Facets.
- 10. Submit paper to teaching assistant via turnitin.com.

Workflow for the data-design lab report

- 1. Explore each dataset.
- 2. Plan a variable to structure your design and analysis.
- 3. Reuse the data to explore your hypothesis and test your predictions.
- 4. Write a short research 'note' format paper suitable for publication in Facets journal.
- 5. Submit paper to teaching assistant via turnitin.com.

Field experiments gear and prep

Data-design experiment prerequisites

Balcony birdwatching

Bird observation, from a distance.

Learning outcomes

- 1. Identify common species of birds locally.
- 2. Collect a dataset.
- 3. Connect principles of experimental design to implementation.
- 4. Write clear and reusable meta-data.
- 5. Contribute to open science by publishing data and meta-data.

Steps

- 1. Scout out a location with more than a single species of birds and a frequency of a few different individuals of birds over a 5-10 minute duration.
- 2. Select a good spot to the observe birds at your designated location. It can be a balcony or quiet spot. Vegetation such as trees or shrubs can facilitate observation of birds by providing habitat.
- 3. Choose a distance that permits enough resolution to see plumage and what an individual bird is doing (depending on whether you are using binoculars, a spotting scope, or unassisted with your vision). There are considerable merits to observing birds more simply (Wilkinson et al., 2014). You are also welcome to address any visibility or spotting challenges using bird calls to record frequency of birds in a sampling region.
- 4. Specify a duration to sample, for instance, 60 minutes when you have observed the most birds in your scouting exercise. Remember, this is a pilot experiment. Take qualitative notes, sketch, and complete this datasheet.
- 5. Use your notes to complete a meta-data file, i.e. a description of how the data were collected, whether, when, and what each attribute in your dataset means.
- 6. Sign out a bird guide for your region from the library or university or try out a free app for now to support identification.

Data

Here is a sample datasheet for the pilot experiment. This is set up as species-level observations, i.e. each row or replicate is a species of bird you observe.

This datasheet is for the pilot experiment, and it is a stepping stone for the deeper dive experiment if you choose to complete this experiment for your first report. A more detailed datasheet can consider duration or start and stop times of each individual bird, more details on the environment, or record interesting ecological or environmental variables that are present in the environment too noise, disturbance, squirrels, other birds, etc.

Data can be organized in many different formats depending on the approach to collecting the data in the field or the lab, the instrument or method used, preference, or accepted standards within the domain of study. In many modern data science endeavours, data are also formatted according to the principles of 'tidy data' (Wickham, 2014). The following three rules define data as tidy (Grolemund and Wickham, 2016).

- 1. Each variable must have its own column.
- 2. Each observation must have its own row.
- 3. Each value must have its own cell.

Most scripting languages such as R or Python can resolve and tidy up data to adhere to these principles, but with a little planning, your data can be set up to facilitate this process and enable easier data visualization and models.

Sample data set

In this example, the field observations were coded as one species per behaviour per row. A compromise between tidiness and ease of collecting the tallies per species in the field.

rep	date	researcher	location	species	frequency	behaviou
1	15/9/2020	cl	High Park, Toronto	House sparrow	12	flying
2	15/9/2020	cl	High Park, Toronto	Blue jay	2	foraging
3	15/9/2020	cl	High Park, Toronto	Cedar waxwing	1	perching
4	15/9/2020	cl	High Park, Toronto	Cedar waxwing	3	foraging
5	15/9/2020	cl	High Park, Toronto	Dark-eyed junco	2	flying
6	15/9/2020	cl	High Park, Toronto	Black-capped Chickadee	3	foraging
7	15/9/2020	cl	High Park, Toronto	Black-capped Chickadee	2	posturing
8	15/9/2020	cl	High Park, Toronto	Black-capped Chickadee	3	interactii
9	15/9/2020	cl	High Park, Toronto	Black-capped Chickadee	2	sitting
10	15/9/2020	cl	High Park, Toronto	Wood thrush	2	flying
11	15/9/2020	cl	High Park, Toronto	Wood thrush	5	on groun
12	15/9/2020	cl	High Park, Toronto	Northern flicker	1	perching

Meta-data

In many disciplines of science, meta-data are the descriptive elements of the dataset. They provide a clear means for discovery and reuse of data collected - by you in future and for others (Heidron, 2008; Reichman et al., 2011). For the purposes of our practical learning in experimental design here, describe what each column in our dataset means, describe the structure of your dataset (i.e. each row is a species-level observation, or plot, or transect), describe the duration of sampling, location, and provide a bit of guidance for someone to use in inspecting the dataset. It is very similar to the methods in conventional publications or standard reports, but it ensures each attribute in the dataset has a brief description. It is also superb preparation for the methods if you choose to write a report.

Deeper dive

If you choose this adventure, your goal is to experiment with the method of animal observation to test a hypothesis and predictions. The text 'Experimental Design for the Life Sciences' does an excellent job of explaining how to set up hypotheses and predictions (Ruxton and Colgrave., 2018). Pilot experiment first, think, explore your data and notes, then write your ideas down that you want to test. A hypothesis is a clear explanation of how a system works (LaPlaca et al., 2018; Bains, 2005). The predictions are logical and reasonable outcomes if the hypothesis is a good approximation of how the system works, i.e. the key variables that make it work. Predictions should be testable and read like simple sentences that describe results. The goal of the deeper-dive experiment is to take your pilot experiment, examine what worked and did not work so well in your experiment, and do a deeper and more thorough job of testing a key idea that you are interested in associated with bird communities in your backyard or neighbourhood. The goal should be to explore one key factor that describes how the species locally interact within one another, the environment or other species, or resources.

Backyard bioblitz

A bioblitz is a biodiversity survey that is done rapidly for a specific place. National Geographic provides an excellent 'getting started' guide to the process.

Learning outcomes

- 1. Identify common species of animals locally.
- 2. Collect a dataset.
- 3. Connect principles of experimental design to implementation.

- 4. Write clear and reusable meta-data.
- 5. Contribute to open science by publishing data and meta-data.

Steps

- Scout out a location that has a few species of animals. Vertebrate or invertebrate taxa - preferably both. A medium-size backyard, park, woodlot, or grassland is ideal.
- 2. Do a bioblitz or intensive process of surveying a specific place for a short duration of time to estimate all the living species (excepting plants) locally.
- 3. For the purposes of this experiment, focus on on all animals you can spot.
- 4. Select a set of locations within the designated area to sample. This can include direct observation of species spots, a region, walking through a region repeatedly. Select the scale carefully that matches what you can observe. This can be relatively unstructured sampling process with the goal of documenting as many species as possible that reside in this place.
- 5. Record your data to your datasheet and also consider using the iNaturalist free app to record and share your observations globally.

Data

Here is a sample datasheet for the pilot experiment. This is set up as species-level observations, i.e. each row is replicate species you observe. This datasheet is not structured for frequency or density - simply a comprehensive list of all animal species you can spot during the pilot experiment.

Meta-data

Describe how you collected the data. Ensure that each attribute in the dataset has a brief description. This is like an abbreviated version of the methods section in peer-reviewed science publications. Report total sampling time and any relevant details that enable someone else to reuse these data or repeat the process of doing a bioblitz that collecting similar data in a different place.

Deeper dive

If you choose this adventure, your goal is to experiment with the method of measuring biodiversity locally. Innovate on the pilot experiment, simple biodiversity

inventory methodology to test a hypothesis and predictions. The predictions should be logical and reasonable outcomes if the hypothesis is a good approximation of how the system works, i.e. the key variables that make it work. Predictions should be testable and read like simple sentences that describe results. The goal of the deeper-dive experiment is to take your pilot experiment, examine what worked and did not work so well in your experiment, and do a deeper and more thorough job of testing a key idea that you are interested in associated with biodiversity patterns locally. The goal should be to explore one key factor that describes why biodiversity varies locally - at the scale you define.

Solo surveys

Distributed ecological networks often use surveys done by individuals or small-teams to compile data on species or communities. Transects and quadrats are typically used to structure these 'walk-through' surveys to estimate abundances and distributions of focal species.

Magic data

Magic the Gathering is a popular collectible card game that includes strategy and chance.

Diversity data

Diversity data from ebird or any citizen science project.

Human data

Data associated with humans. Fitbit steps and sleep.

Rubrics

Experimental designcraft assessment framework

There are at least two primary modes of assessment (Kennedy et al., 2008). Formative assessment can happen during the learning process (Bennett, 2011). This active process of engagement with content and doing experiments is critical to becoming an effective life-long learner and successful scientist. In practicing experimental design and doing experiments professionally, this can take the of form of notes, sketches, photographs of the process or experiment at different steps, flowcharts, field and lab notebooks, code, and discussion with collaborators. This process of learning can include feedback from the team (in this course the teaching assistant, the instructor, or peers examining the same challenge). It can be enabled by testing how well one has advanced in achieving specific outcomes. For instance, share your meta-data with a peer and explore whether the individual can understand the meaning of the data and the process of experimentation that supported the collection or reuse of data. Summative assessment can happen at the end of key benchmarks in a learning cycle or at the completion of logical stopping points within the learning process that generated concrete products for review and grading (Taras, 2005). In this designcraft process of actively exploring experimental design, this can include production of data with meta-data, a lab report describing the deeper dive for one of the field experiments, and a lab report describing the design process of data reuse from one the examples provided. The process of formative assessment (steps along the way) and summative assessment (final products) should support one another to consolidate learning (Harlen and James, 1997).

A rubric is a scoring tool that enables fair, transparent and replicable grading in summative evaluation (Timmerman et al., 2011). Checklists are useful for formative self or peer assessment in the steps along the way to final products. In designcraft for experiments, this applies to the published data with meta-data and lab reports. In the formal offering of these labs for the course 'SC/BIOL

3250~4.00 Experimental design for environmental and evolutionary biology' at York University, the lab component is worth 50% of the final grade.

Lab component weightings

Dataset with meta-data for pilot experiment 5%Dataset with meta-data for field experiment 5%Field lab report 30%Data-design lab report 10%

Specific rubrics

Formative checklist for pilot dataset

This is not the marking key. This is a simple checklist to consider in doing the work or monitoring your progress in the process of doing the pilot experiment.

check	description	criteria
1	design	survey patterns locally, plan design
2	identification	look up common species, explore field guides
3	dataset	download, format, enter data
4	principles	sketch design, take field notes
5	principles	try different designs and sampling approaches
6	meta-data	note units and specifics of your data
7	meta-data	take notes, plan how to write methods
8	open science	explore figshare, check examples, set up account
9	open science	publish data and meta-data
10	innovation	consider how to improve and what different designs can test

Formative checklist for field dataset

This is not the marking key. This is a simple checklist to consider in doing the work or monitoring your progress in the process of doing the field experiment.

item	description	criteria
1	design	plan design
2	dataset	plan a tidy dataset, ensure variables can test predictions
3	meta-data	take detailed notes, record key techniques
4	meta-data	get a peer to review data and meta-data
5	open science	publish data and meta-data, ensure clear title, location, and details sufficient

Summative marking key for published datasets

This is the marking key you are looking for. This same key is used for both the pilot and field datasets to ensure that you can improve and learn from the process.

item	description	criteria	score
1	data	tidy, clear labels, no errors	1
2	data	observations meaningful, accuracy, sufficient	1
3	meta-data	every variable or column clearly described	1
4	meta-data	description ensures the process of observation be repeated by another	1
5	open science	published data with meta-data, ensure clear title, location, and details sufficient	1

Formative checklist for field report

This is a checklist to consider in writing up the field lab report.

check	description	criteria
1	design	explore system and reuse pilot experiment
2	identification	examine a key driver within the system
3	research	check the publish literature on the topic
4	plan	write hypothesis and predictions
5	data	collect your field data
6	test	test your data with plots and statistics
7	confirm	validate your findings with logic and published science
8	plot	make a single clear plot of data that summarizing key finding
9	write	write up paper
10	conclusions	explain the relevance of finding and make a clear conclusion

Summative assessment marking key for field lab report

This is the marking key for the field lab report. Single spaced, 12 point font, at least 1 inch margins (the default). PDF format only. Lab reports must also be submitted to turnitin.com .

Facets journal is Canada's first and only multidisciplinary open access science journal. Follow the instructions proposed for a research article for this journal - 5000 words preferred.

page	concept	description
1	Title & abstract	Title of experiment, your name, contact details, abstract that describes exp
2-3	Introduction	Sets the context, explains why study needs to be done, state hypothesis and
4	Methods	Decribed well enough for someone else to replicate design
5	Results	Clear text should be able to stand alone including description of statistics
6-7	Discussion	Restate findings in brief and then propose significance of the work
8	Literature cited	At least 5 recent papers on topic and 2 on design decisions
9	Figure legend	Figure legend describing what the figure shows.
10	Figure	Figure on a single page

Formative checklist for data-design report

This is a checklist to consider in writing up the field lab report.

check	description	criteria
1	design	explore data and look for patterns
2	identification	imagine variables that can become key factors
3	research	check the publish literature on the topic
4	plan	write hypothesis and predictions
5	test	test the data with plots and statistics
6	check	do you have what you need or do you need other data
7	learn	check short research note papers to see style and writing
8	plot	make a single clear plot of data that summarizing key finding
9	write	write up paper
10	innovation	list ideas for future experiments and implications

Summative assessment marking key for data-design lab report

This is the marking key for the data-design short report. Single spaced, 12 point font, at least 1 inch margins (the default). PDF format only. Lab reports must also be submitted to turnitin.com.

Facets journal is Canada's first and only multidisciplinary open access science journal. Follow the instructions proposed for a note for this journal - 1400 words preferred.

page	concept	description	valu
1	Title	Title of experiment, your name, contact details	
2	Introduction	Single paragraph stating background, hypothesis, and your prediction(s)	
3	Results	Single brief paragraph stating findings and single figure with legend	
4	Conclusions	Single paragraph stating conclusion and implications	
5	Lit cited	A total of 3 references	(

Final notes

Observations and conclusions.

Bibliography

- Bains, W. (2005). How to write up a hypothesis: the good, the bad and the ugly. *Medical Hypotheses*, 64(4):665–668.
- Bennett, R. E. (2011). Formative assessment a critical review. Assessment in Education Principles, Policy and Practice, 18(1):5–25.
- Grolemund, G. and Wickham, H. (2016). *R for Data Science*. O'Reilly Media, Canada.
- Harlen, W. and James, M. (1997). Assessment and learning differences and relationships between formative and summative assessment. Assessment in Education Principles, Policy and Practice, 4(3):365–379.
- Heidron, P. (2008). Shedding light on the dark data in the long tail of science. *Library Trends*, 57:280–299.
- Kennedy, K. J., Chan, J. K. S., Fok, P. K., and Yu, W. M. (2008). Forms of assessment and their potential for enhancing learning conceptual and cultural issues. *Educational Research for Policy and Practice*, 7(3):197.
- LaPlaca, P., Lindgreen, A., and Vanhamme, J. (2018). How to write really good articles for premier academic journals. *Industrial Marketing Management*, 68:202–209.
- Reichman, O. J., Jones, M. B., and Schildhauer, M. P. (2011). Challenges and opportunities of open data in ecology. *Science*, 331(6018):703.
- Ruxton, G. and Colgrave., N. (2018). Experimental Design for the Life Sciences. Oxford University Press., Oxford, UK, fourth edition.
- Taras, M. (2005). Assessment summative and formative some theoretical reflections. *British Journal of Educational Studies*, 53(4):466–478.
- Timmerman, B. E. C., Strickland, D. C., Johnson, R. L., and Payne, J. R. (2011). Development of a 'universal' rubric for assessing undergraduates' scientific reasoning skills using scientific writing. Assessment and Evaluation in Higher Education, 36(5):509–547.

36 BIBLIOGRAPHY

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59:1–23.

Wilkinson, C., Waitt, G., and Gibbs, L. (2014). Understanding place as 'home' and 'away' through practices of bird-watching. Australian Geographer, 45(2):205-220.