Exercises

- 1. What is a power series?
- 2. (a) What is the radius of convergence of a power series? How do you find it?
 - (b) What is the interval of convergence of a power series? How do you find it?

3-36 Find the radius of convergence and interval of convergence of the power series.

3.
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n n x^n$$

$$5. \sum_{n=1}^{\infty} \sqrt{n} x^n$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt[3]{n}}$$

$$7. \sum_{n=1}^{\infty} \frac{n}{5^n} x^n$$

$$8. \sum_{n=2}^{\infty} \frac{5^n}{n} x^n$$

$$9. \sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$

$$10. \sum_{n=1}^{\infty} \frac{n}{n+1} x^n$$

11.
$$\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$

12.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$$

$$13. \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

$$14. \sum_{n=1}^{\infty} n^n x^n$$

15.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^4 4^n}$$

16.
$$\sum_{n=1}^{\infty} 2^n n^2 x^n$$

17.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 4^n}{\sqrt{n}} x^n$$

18.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n5^n} x^n$$

19.
$$\sum_{n=1}^{\infty} \frac{n}{2^n (n^2 + 1)} x^n$$

20.
$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n!}$$

21.
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

22.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} (x-1)^n$$

23.
$$\sum_{n=2}^{\infty} \frac{(x+2)^n}{2^n \ln n}$$

24.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{8^n} (x+6)^n$$

25.
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$

26.
$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$$

$$27. \sum_{n=4}^{\infty} \frac{\ln n}{n} x^n$$

28.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} x^n$$

29.
$$\sum_{n=1}^{\infty} \frac{n}{b^n} (x-a)^n, \quad b>0$$

30.
$$\sum_{n=2}^{\infty} \frac{b^n}{\ln n} (x-a)^n, \quad b > 0$$

31.
$$\sum_{n=1}^{\infty} n!(2x-1)^n$$

31.
$$\sum_{n=1}^{\infty} n!(2x-1)^n$$
 32. $\sum_{n=1}^{\infty} \frac{n^2 x^n}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot (2n)}$

33.
$$\sum_{n=1}^{\infty} \frac{(5x-4)^n}{n^3}$$

34.
$$\sum_{n=2}^{\infty} \frac{x^{2n}}{n(\ln n)^2}$$

35.
$$\sum_{n=1}^{\infty} \frac{x^n}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$$

36.
$$\sum_{n=1}^{\infty} \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$$

37. If $\sum_{n=0}^{\infty} c_n 4^n$ is convergent, can we conclude that each of the following series is convergent?

(a)
$$\sum_{n=0}^{\infty} c_n (-2)^n$$

(b)
$$\sum_{n=0}^{\infty} c_n (-4)^n$$

38. Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series?

(a)
$$\sum_{n=0}^{\infty} c_n$$

(b)
$$\sum_{n=0}^{\infty} c_n 8^n$$

(c)
$$\sum_{n=0}^{\infty} c_n(-3)^n$$

(d)
$$\sum_{n=0}^{\infty} (-1)^n c_n 9^n$$

39. If k is a positive integer, find the radius of convergence of the series

$$\sum_{n=0}^{\infty} \frac{(n!)^k}{(kn)!} x^n$$

- **40.** Let p and q be real numbers with p < q. Find a power series whose interval of convergence is
 - (a) (p, q)
- (b) (p, q]
- (c) [p,q)
- (d) [p, q]
- 41. Is it possible to find a power series whose interval of convergence is $[0, \infty)$? Explain.
- \nearrow 42. Graph the first several partial sums $s_n(x)$ of the series $\sum_{n=0}^{\infty} x^n$, together with the sum function f(x) = 1/(1-x), on a common screen. On what interval do these partial sums appear to be converging to f(x)?
 - **43.** Show that if $\lim_{n\to\infty} \sqrt[n]{|c_n|} = c$, where $c \neq 0$, then the radius of convergence of the power series $\sum c_n x^n$ is R = 1/c.
 - **44.** Suppose that the power series $\sum c_n(x-a)^n$ satisfies $c_n \neq 0$ for all n. Show that if $\lim_{n\to\infty} |c_n/c_{n+1}|$ exists, then it is equal to the radius of convergence of the power series.
 - **45.** Suppose the series $\sum c_n x^n$ has radius of convergence 2 and the series $\sum d_n x^n$ has radius of convergence 3. What is the radius of convergence of the series $\sum (c_n + d_n)x^n$?
 - **46.** Suppose that the radius of convergence of the power series $\sum c_n x^n$ is R. What is the radius of convergence of the power

15. D 17. C 19. C 21. D 23. D 25. C

31.
$$p > 1$$
 33. $p < -1$ **35.** $(1, \infty)$

37. (a)
$$\frac{9}{10}\pi^4$$
 (b) $\frac{1}{90}\pi^4 - \frac{17}{16}$

39. (a)
$$1.54977$$
, error ≤ 0.1 (b) 1.64522 , error ≤ 0.005

EXERCISES 11.4 ■ PAGE 764

41. 0.1993, error
$$< 2.5 \times 10^{-5}$$

43. 0.0739, error
$$< 6.4 \times 10^{-8}$$

EXERCISES 11.5 PAGE 772

Abbreviations: AC, absolutely convergent;

CC, conditionally convergent

1. (a) A series whose terms are alternately positive and

negative (b)
$$0 < b_{n+1} \le b_n$$
 and $\lim_{n\to\infty} b_n = 0$,

where
$$b_n = |a_n|$$
 (c) $|R_n| \le b_{n+1}$

21. (a) The series $\sum a_n$ is absolutely convergent if $\sum |a_n|$

converges. (b) The series $\sum a_n$ is conditionally convergent if

 $\sum a_n$ converges but $\sum |a_n|$ diverges. (c) It converges absolutely.

45. An underestimate **47.**
$$p$$
 is not a negative integer.

49.
$$\{b_n\}$$
 is not decreasing. **53.** (b) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$; $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

EXERCISES 11.6 ■ PAGE 778

(b) $n \ge 11, 0.693109$

EXERCISES 11.7 ■ PAGE 781

EXERCISES 11.8 ■ PAGE 786

1. A series of the form $\sum_{n=0}^{\infty} c_n(x-a)^n$, where x is a variable and a and the c_n 's are constants

3.
$$1, [-1, 1)$$
 5. $1, (-1, 1)$ **7.** $5, (-5, 5)$

9. 3,
$$[-3, 3)$$
 11. 1, $[-1, 1)$ **13.** ∞ , $(-\infty, \infty)$

15. 4,
$$[-4, 4]$$
 17. $\frac{1}{4}$, $\left(-\frac{1}{4}, \frac{1}{4}\right]$ **19.** 2, $[-2, 2)$

21. 1, [1, 3] **23.** 2, [-4, 0) **25.**
$$\infty$$
, $(-\infty, \infty)$

27. 1,
$$[-1, 1)$$
 29. $b, (a - b, a + b)$ **31.** $0, \{\frac{1}{2}\}$

33.
$$\frac{1}{5}, \left[\frac{3}{5}, 1\right]$$
 35. $\infty, (-\infty, \infty)$ **37.** (a) Yes (b) No

39.
$$k^k$$
 41. No **45.** 2

EXERCISES 11.9 ■ PAGE 793

1. 10 **3.**
$$\sum_{n=0}^{\infty} (-1)^n x^n, (-1, 1)$$
 5. $\sum_{n=0}^{\infty} x^{2n}, (-1, 1)$

1. 10 **3.**
$$\sum_{n=0}^{\infty} (-1)^n x^n$$
, $(-1, 1)$ **5.** $\sum_{n=0}^{\infty} x^{2n}$, $(-1, 1)$ **7.** $2\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} x^n$, $(-3, 3)$ **9.** $\sum_{n=0}^{\infty} \frac{(-1)^n x^{4n+2}}{2^{4n+4}}$, $(-2, 2)$

11.
$$-\frac{1}{2} - \sum_{n=1}^{\infty} \frac{(-1)^n 3x^n}{2^{n+1}}, (-2, 2)$$

13.
$$\sum_{n=0}^{\infty} \left(-1 - \frac{1}{3^{n+1}}\right) x^n, (-1, 1)$$

15. (a)
$$\sum_{n=0}^{\infty} (-1)^n (n+1) x^n, R = 1$$

(b)
$$\frac{1}{2} \sum_{n=0}^{\infty} (-1)^n (n+2)(n+1)x^n, R = 1$$

(c)
$$\frac{1}{2} \sum_{n=2}^{\infty} (-1)^n n(n-1) x^n, R = 1$$

17.
$$\sum_{n=0}^{\infty} (-1)^n 4^n (n+1) x^{n+1}, R = \frac{1}{4}$$

19.
$$\sum_{n=0}^{\infty} (2n+1)x^n$$
, $R=1$ **21.** $\ln 5 - \sum_{n=1}^{\infty} \frac{x^n}{n5^n}$, $R=5$

23.
$$\sum_{n=0}^{\infty} (-1)^n x^{2n+2}, R = 1$$

25.
$$\sum_{n=0}^{\infty} \frac{2x^{2n+1}}{2n+1}, R=1$$

27.
$$C + \sum_{n=0}^{\infty} \frac{t^{8n+2}}{8n+2}, R = 1$$

⁽c) 1.64522 compared to 1.64493 (d) n > 1000

^{47.} b < 1/e**41.** 0.00145

^{43.} (a) $\frac{661}{960} \approx 0.68854$, error < 0.00521