Title

D. Zack Garza

December 24, 2019

Contents

1	Fall	019			2
	1.1				2
	1.2				3
		.2.1 a			3
		.2.2 b			3
		.2.3 c			3
		.2.4 d			4
	1.3				4
		.3.1 a			4
		.3.2 b			4
	1.4				4
		.4.1 a			4
		.4.2 b			4
		.4.3 c			5
	1.5				5
		.5.1 a			5
		.5.2 b			5
		.5.3 c			6
	1.6				6
		.6.1 a			6
		.6.2 b			6
		.6.3 c			6
	1.7				6
	1.8				8
		.8.1 a			8
		.8.2 b			8
		83 c	•	•	10

1 Fall 2019

1.1 1

Centralizer:

$$C_G(h) = Z(h) = \{g \in G \ni [g, h] = 1\}$$
 Centralizer

Class equation:

$$|G| = \sum_{\substack{\text{One } h \text{ from each} \\ \text{conjugacy class}}} \frac{|G|}{|Z(h)|}$$

Notation:

$$\begin{split} h^g &= ghg^{-1} \\ h^G &= \{h^g \ni g \in G\} \quad \text{Conjugacy Class} \\ H^g &= \{h^g \ni h \in H\} \\ N_G(H) &= \{g \in G \ni H^g = H\} \supseteq H \quad \text{Normalizer}. \end{split}$$

Theorem 1: $\left|h^G\right| = [G:Z(h)]$ Theorem 2: $\left|\{H^g \ni g \in G\}\right| = [G:N_G(H)]$

Use the fact that $\bigcup_{g \in G} H^g = \bigcup_{g \in G} gHg^{-1} \subsetneq G$ for any proper $H \leq G$. Proof: By theorem 2,

$$\left| \bigcup_{g \in G} H^g \right| < |H|[G:N_G(H)] \quad \text{since e is in every conjugate}$$

$$= |H| \frac{|G|}{|N_G(H)|}$$

$$\leq |H| \frac{|G|}{|H|}$$

$$= |G|.$$

Since $[g_i, g_j] = 1$, we have $g_i \in Z(g_j)$ for every i, j.

Then

$$g \in G \implies g = g_i^h$$
 for some h

$$\implies g \in Z(g_j)^h \text{ for every } j \text{ since } g_i \in Z(g_j) \ \forall j$$

$$\implies g \in \bigcup_{h \in G} Z(g_j)^h \text{ for every } j$$

$$\implies G \subseteq \bigcup_{h \in G} Z(g_j)^h \text{ for every } j,$$

which can only happen if $Z(g_j) = G$ for every j. But this says that $g_j \in Z(G)$, and so $[g_j] = \{g_j\}$, i.e. each conjugacy class is size one, so every element of g is some g_j , and thus $g \in Z(G)$, so $G \subseteq Z(G)$ and G is abelian.

Todo: Revisit. I don't get it!

1.2 2

pqr Theorem.

1.2.1 a

Recall
$$n_p \mid m$$
 and $n_p \cong 1 \mod p$.

An easy check:

$$n_3 \in \{1,7\}$$
 $n_5 \in \{1,21\}$ $n_7 \in \{1,15\}$.

Toward a contradiction, if $n_5 \neq 1$ and $n_7 \neq 1$, then Q, R contribute

$$(5-1)n_5 + (7-1)n_7 + 1 = 4(21) + 6(15) > 105$$
 elements.

1.2.2 b

If $H, K \leq G$ and $H \subseteq G$ then $HK \leq G$ is a subgroup. Proof: Check closure under products, needs normality.

Theorem: For a positive integer n, all groups of order n are cyclic $\iff n$ is squarefree and, for each pair of distinct primes p and q dividing n, $q-1\neq 0 \mod p$.

Theorem: If
$$G = A_1 A_2 \cdots A_n = \prod A_k$$
 and $A_i \cap \prod_{k \neq i} A_i = \{e\}$ for all i , then $A \cong A_1 \times \cdots \times A_n$.

Either Q or R is normal, so $QR \leq G$ is a subgroup of order $|Q| \cdot |R| = 5 \cdot 7 = 35$.

By the theorem, since 5 / 7 - 1, QR is cyclic.

1.2.3 c

In QR, there are

- 35-5+1 elements of order not equal to 5,
- 5-7+1 elements of order *not* equal to 7.

Since $QR \leq G$, there are at least this many such elements in G.

Suppose $n_5 = 21$ or $n_7 = 15$.

- Combining elements of order 5 with elements not of order 5 yields at least 31 elements of order not 5 with $n_5(5-1) = 21(4) = 84$ elements of order 5, this contributes 31 + 84 > 105 elements contradiction.
- Similarly, there are at least 29 elements of order not 7, plus $n_7(7-1) = 15(6) = 90$ elements of order 7, yielding 29 + 90 > 105 elements.

So both $n_5 = 1, n_7 = 1$.

1.2.4 d

If P is normal, then G = PQR with all intersections of the form $AB \cap C = \{e\}$, and since P, Q, R are all normal we have $G \cong P \times Q \times R \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb{Z}_{105}$ by characterization of direct products and the Chinese Remainder theorem (which is cyclic).

1.3 3

Just fiddling with computations. Context hints that we should be considering things like x^2 and a + b.

1.3.1 a

$$2a = (2a)^2 = 4a^2 = 4a \implies 2a = 0.$$

Note that this implies x = -x for all $x \in R$.

1.3.2 b

$$a + b = (a + b)^{2} = a^{2} + ab + ba + b^{2} = a + ab + ba + b$$

$$\implies ab + ba = 0$$

$$\implies ab = -ba$$

$$\implies ab = ba \text{ by (a)}.$$

1.4 4

Theorem: F^{\times} is always cyclic for F a field

1.4.1 a

Since |F| = q and [E : F] = k, we have $|E| = q^k$ and $|E^{\times}| = q^k - 1$. Noting that $\zeta \in E^{\times}$ we must have $n = o(\zeta) \mid |E^{\times}| = q^k - 1$ by Lagrange's theorem.

1.4.2 b

Rephrasing (a), we have

$$n \mid q^k - 1 \iff q^k - 1 \cong 0 \mod n$$

 $\iff q^k \cong 1 \mod n$
 $\iff m \coloneqq o(q) \mid k.$

1.4.3 c

Since $m \mid k \iff k = \ell m$, (claim) there is an intermediate subfield M such that

$$E \le M \le F$$
 $k = [F : E] = [F : M][M : E] = \ell m$

so M is a degree m extension of E.

Now consider M^{\times} . By the argument in (a), n divides $q^m - 1 = |M^{\times}|$, and M^{\times} is cyclic, so it contains a cyclic subgroup H of order n.

But then $x \in H \implies p(x) := x^n - 1 = 0$, and since p(x) has at most n roots in a field. So $H = \{x \in M \ni x^n - 1 = 0\}$, i.e. H contains all solutions to $x^n - 1$ in E[x].

But ζ is one such solution, so $\zeta \in H \subset M^{\times} \subset M$. Since $F[\zeta]$ is the smallest field extension containing ζ , we must have F = M, so $\ell = 1$, and k = m.

Todo: revisit, tricky!

1.5 5

One-step submodule test.

1.5.1 a

It suffices to show that

$$r \in R, t_1, t_2 \in \text{Tor}(M) \implies rt_1 + t_2 \in \text{Tor}(M).$$

We have

$$t_1 \in \text{Tor}(M) \implies \exists s_1 \neq 0 \text{ such that } s_1 t_1 = 0$$

 $t_2 \in \text{Tor}(M) \implies \exists s_2 \neq 0 \text{ such that } s_2 t_2 = 0.$

Since R is an integral domain, $s_1s_2 \neq 0$. Then

$$s_1s_2(rt_1 + t_2) = s_1s_2rt_1 + s_1s_2t_2$$

= $s_2r(s_1t_1) + s_1(s_2t_2)$ since R is commutative
= $s_2r(0) + s_1(0)$
= 0 .

1.5.2 b

Let $R = \mathbb{Z}/6\mathbb{Z}$ as a $\mathbb{Z}/6\mathbb{Z}$ -module, which is not an integral domain as a ring.

Then $[3]_6 \curvearrowright [2]_6 = [0]_6$ and $[2]_6 \curvearrowright [3]_6 = [0]_6$, but $[2]_6 + [3]_6 = [5]_6$, where 5 is coprime to 6, and thus $[n]_6 \curvearrowright [5]_6 = [0] \implies [n]_6 = [0]_6$. So $[5]_6$ is *not* a torsion element.

So the set of torsion elements are not closed under addition, and thus not a submodule.

1.5.3 c

Suppose R has zero divisors $a, b \neq 0$ where ab = 0. Then for any $m \in M$, we have $b \curvearrowright m := bm \in M$ as well, but then

$$a \curvearrowright bm = (ab) \curvearrowright m = 0 \curvearrowright m = 0_M$$

so m is a torsion element for any m.

1.6 6

Prime ideal: \mathfrak{p} is prime iff $ab \in \mathfrak{p} \implies a \in \mathfrak{p}$ or $b \in \mathfrak{p}$. Silly fact: 0 is in every ideal!

Zorn's Lemma: Given a poset, if every chain has an upper bound, then there is a maximal element. (Chain: totally ordered subset.)

Corollary: If $S \subset R$ is multiplicatively closed with $0 \notin S$ then $\{I \leq R \ni J \cap S = \emptyset\}$ has a maximal element. (TODO: PROVE)

Theorem: If R is commutative, maximal \implies prime for ideals. (TODO: PROVE)

Theorem: Non-units are contained in a maximal ideal. (See HW?)

1.6.1 a

Let \mathfrak{p} be prime and $x \in N$. Then $x^k = 0 \in \mathfrak{p}$ for some k, and thus $x^k = xx^{k-1} \in \mathfrak{p}$. Since \mathfrak{p} is prime, inductively we obtain $x \in \mathfrak{p}$.

1.6.2 b

Let $S = \{r^k \mid k \in \mathbb{N}\}$ be the set of positive powers of r. Then $S^2 \subseteq S$, since $r^{k_1}r^{k_2} = r^{k_1+k_2}$ is also a positive power of r, and $0 \notin S$ since $r \neq 0$ and $r \notin N$.

By the corollary, $\{I \leq R \ni I \bigcap S = \emptyset\}$ has a maximal element \mathfrak{p} .

Since R is commutative, \mathfrak{p} is prime.

1.6.3 c

Suppose R has a unique prime ideal \mathfrak{p} .

Suppose $r \in R$ is not a unit, and toward a contradiction, suppose that r is also not nilpotent.

Since r is not a unit, r is contained in some maximal (and thus prime) ideal, and thus $r \in \mathfrak{p}$.

Since $r \notin N$, by (b) there is a maximal ideal \mathfrak{m} that avoids all positive powers of r. Since \mathfrak{m} is prime, we must have $\mathfrak{m} = \mathfrak{p}$. But then $r \notin \mathfrak{p}$, a contradiction.

1.7 7

Galois Theory.

 $\mathbf{Galois} = \mathrm{normal} + \mathrm{separable}.$

Separable: Minimal polynomial of every element has distinct roots.

Normal (if separable): Splitting field of an irreducible polynomial.

Definition:
$$\zeta$$
 is a primitive root of unity iff $o(\zeta) = n$ in F^{\times} . $\phi(p^k) = p^{k-1}(p-1)$

The lattice:

Let $K = \mathbb{Q}(\zeta)$. Then K is the splitting field of $f(x) = x^n - 1$, which is irreducible over \mathbb{Q} , so K/\mathbb{Q} is normal. We also have $f'(x) = nx^{n-1}$ and $\gcd(f, f') = 1$ since they can not share any roots.

Or equivalently,
$$f$$
 splits into distinct linear factors $f(x) = \prod_{k \le n} (x - \zeta^k)$.

Since it is a Galois extension, $|Gal(K/\mathbb{Q})| = [K : \mathbb{Q}] = \phi(n)$ for the totient function.

We can now define maps

$$\tau_j: K \to K$$
$$\zeta \mapsto \zeta^j$$

and if we restrict to j such that gcd(n, j) = 1, this yields $\phi(n)$ maps. Noting that if ζ is a primitive root, then (n, j) = 1 implies that that ζ^j is also a primitive root, and hence another root of $\min(\zeta, \mathbb{Q})$, and so these are in fact automorphisms of K that fix \mathbb{Q} and thus elements of $Gal(K/\mathbb{Q})$.

So define a map

$$\theta: \mathbb{Z}_n^{\times} \to K$$
$$[j]_n \mapsto \tau_j.$$

from the *multiplicative* group of units to the Galois group.

The claim is that this is a surjective homomorphism, and since both groups are the same size, an isomorphism.

Surjectivity:

Letting $\sigma \in K$ be arbitrary, noting that $[K : \mathbb{Q}]$ has a basis $\{1, \zeta, \zeta^2, \cdots, \zeta^{n-1}\}$, it suffices to specify $\sigma(\zeta)$ to fully determine the automorphism. (Since $\sigma(\zeta^k) = \sigma(\zeta)^k$.)

In particular, $\sigma(\zeta)$ satisfies the polynomial $x^n - 1$, since $\sigma(\zeta)^n = \sigma(\zeta^n) = \sigma(1) = 1$, which means $\sigma(\zeta)$ is another root of unity and $\sigma(\zeta) = \zeta^k$ for some $1 \le k \le n$.

Moreover, since $o(\zeta) = n \in K^{\times}$, we must have $o(\zeta^k) = n \in K^{\times}$ as well. Noting that $\{\zeta^i\}$ forms a cyclic subgroup $H \leq K^{\times}$, then $o(\zeta^k) = n \iff (n, k) = 1$ (by general theory of cyclic groups).

Thus θ is surjective.

Homomorphism:

$$\tau_i \circ \tau_k(\zeta) = \tau_i(\zeta^k) = \zeta^{jk} \implies \tau_{ik} = \theta(jk) = \tau_i \circ \tau_k.$$

Part 2:

We have $K \cong \mathbb{Z}_{20}^{\times}$ and $\phi(20) = 8$, so $K \cong \mathbb{Z}_8$, so we have the following subgroups and corresponding intermediate fields:

- $0 \sim \mathbb{Q}(\zeta_{20})$
- $\mathbb{Z}_2 \sim \mathbb{Q}(\omega_1)$
- $\mathbb{Z}_4 \sim \mathbb{Q}(\omega_2)$
- $\mathbb{Z}_8 \sim \mathbb{Q}$

For some elements ω_i which exist by the primitive element theorem.

1.8 8

1.8.1 a.

Let $\mathbf{v} \in \Lambda$, so $\mathbf{v} = \sum r_i \mathbf{e}_i$ where $r_i \in \mathbb{Z}$.

Then if $\mathbf{x} = \sum s_i \mathbf{e}_i \in \Lambda$, we have

$$\mathbf{v} \cdot \mathbf{x} = \sum r_i s_i \in \mathbb{Z}$$

since each term is just a product of integers, so $\mathbf{v} \in \Lambda^{\vee}$ by definition.

1.8.2 b.

 $\det M \neq 0$:

Suppose det M=0. Then $\ker M\neq \mathbf{0}$, so let $\mathbf{v}\in\ker M$ be given by $\mathbf{v}=[v_1,\cdots,v_n]$.

Note that

$$M\mathbf{v} = 0 \implies \begin{bmatrix} \mathbf{e}_1 \cdot \mathbf{e}_1 & \mathbf{e}_1 \cdot \mathbf{e}_2 & \cdots \\ \mathbf{e}_2 \cdot \mathbf{e}_1 & \mathbf{e}_2 \cdot \mathbf{e}_2 & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \mathbf{0}$$

$$\implies \sum_{j} (\mathbf{e}_1 \cdot \mathbf{e}_j) v_j = 0 \quad \forall j.$$

Let $\mathbf{w} = \sum v_i \mathbf{e}_i$. Then $\mathbf{e}_k \cdot \mathbf{w} = \sum_j v_j \mathbf{e}_k \cdot \mathbf{e}_j = 0$ for every k, so \mathbf{w} is orthogonal to every \mathbf{e}_k , and thus its span.

But \mathbf{w} is in the span of the \mathbf{e}_i by definition, so

$$\mathbf{w} \cdot \mathbf{w} = 0 \implies \mathbf{w} = 0 \implies \{\mathbf{e}_i\}$$
 is linearly dependent,

a contradiction.

Alternative proof:

Write $M = A^t A$ where A has the \mathbf{e}_i as columns. Then

$$M\mathbf{x} = 0 \implies A^t A \mathbf{x} = 0$$

$$\implies \mathbf{x}^t A^t A \mathbf{x} = 0$$

$$\implies \|A\mathbf{x}\|^2 = 0$$

$$\implies A\mathbf{x} = 0$$

$$\implies \mathbf{x} = 0,$$

since A has full rank because the \mathbf{e}_i are linearly independent.

The rows of M^{-1} span Λ^{\vee} :

Equivalently, the columns of M^{-t} span Λ^{\vee} .

Possibly an error – should be the rows of A^{-1} instead of M^{-1} ?

Let $B = A^{-t}$ and let \mathbf{b}_i denote the columns of B, i.e. the span of im B.

Since $A\in \mathrm{GL}(n,\mathbb{Z})$ which is a group, $A^{-1},A^t,A^{-t}\in \mathrm{GL}(n,\mathbb{Z})$ as well.

$$\mathbf{v} \in \Lambda^{\vee} \implies \mathbf{e}_i \cdot \mathbf{v} = z_i \in \mathbb{Z} \quad \forall i$$

 $\implies A^t \mathbf{v} = \mathbf{z} \in \mathbb{Z}^n$
 $\implies \mathbf{v} = A^{-t} \mathbf{z} := B \mathbf{z} \in \text{im } B$
 $\implies \text{span } \Lambda^{\vee} \subseteq \text{im } B,$

and

$$B^{t}A = (A^{-t})^{t}A = A^{-1}A = I$$

$$\implies \mathbf{b}_{i} \cdot \mathbf{e}_{j} = \delta_{ij} \in \mathbb{Z}$$

$$\implies \text{im } B \subseteq \text{span } \Lambda^{\vee}.$$

1.8.3 c.

?