Computer Vision 2021/2022

Projects

Exams evaluation using computer vision

Automatic correction of exam.

First using QR Codes or Aruco, then

evaluate without.

			r, f, f, f, f, v,	,c,c,c,c,l ,f,v,v,		,a,c,a,a,a,		c,c,c,d,c	,d,b,a,d,	c,b,b,c,b	,c,a,						
	а	b	Nº N	лес:	76	543	ь		d			b	l.	d	2	\ V	-
1	a	×	_	u	15	а	D	С	u	29	а	D	C Y	u	1	×	Ė
2	×	Δ	H	H	16		H	H	×	30	H	H	\triangle	~	2	\triangle	~
3	^	H	×		17	X		Ħ		31		Ħ	×	Λ	3	H	Ŷ
4	Ħ	Ħ	×.	Ħ	18	×	Ħ	Ħ		32	m	Ħ		X	4	X	
5		×			19			X		33		X			5		X
6				X	20	X				34	×				6		X
7		×			21	×				35				X	7		X
8	×				22	×				36			X		8		X
9			X		23			X		37		X			9	X	
10			X		24			X		38		X			10		X
11			X		25					39			X		11	X	
12			X		26					40		X			12	X	
13				,	27			X		41			X				
14				X	28			X		42	X	0			3.0		
	á		41														

 Live demo: Capture image with camera and correct exam.

Automatic puzzle resolution

- Start with simple case (image and squares), but evolves to real puzzle.
- Detect the pieces and characterize the contours.
- Join the images in a single "bigger" image, eventually guide user to make puzzle

Live demo show the user how to make the puzzle

3D Joystick

- Detection of a coloured object and estimate its movement in 3D
- Possible to use Kinect sensor or stereo image
- Evaluate the alternative to use aruco markers on a pen.
- Evaluate errors or alternatives.
- Allow to do "painting in 3D" showing results in Open3D
- Live demo: 3D drawing showed live in open3D

Video editor to change some content

- Replace some contents of a video by other image data
- Objective: select an object on a frame (ex. selection by a user)
- Detect and track the same object in consecutive frames
- Change the content by the new one in that selected/detected part

- Live demo: replace white board in class with video or image (possible to use markers?)

3D structured light reconstruction system

- 3D Reconstruction system based on structured light using a projection pattern and a camera.
- Show resulting 3D point cloud in open3D
- Possible to use Sony Xperia projector

- https://www.youtube.com/watch?v=bxOZi9N_cR4
- Live demo acquire a ball passing on a table

Kinect Based 3D reconstruction system

- Acquire several images of environment (room) with Kinect.
- Merge and process all the images to create a 3D model/mesh with texture information.
- Evaluate different meshing and registering algorithms.
- Allow alignment of live feed with model

 Live demo: register a live view of the Kinect with the model. Show real time point cloud in correct location in model.

Automatic live keystone Projector correction

- System to correct automatically images from projectors projected on non flat surfaces
- Possible to use Sony Xperia projector

- https://www.youtube.com/watch?v=uWRPQHrA _3k
- Live demo moving and correcting projector image in class

Create and evaluate a Stereo Camera set-up

- Create a stereo set-up with two cameras.
- Calibrate and adapt algorithm to produce
 3D point cloud live
- Evaluate and document error, etc regarding:
 - Disparity algorithm results
 - Camera position/baseline influence

 Live demo: acquire a ball passing on a table and show live 3D points in open3D

Automatic surveillance system

- Create a surveillance system to detect changes in the field of view of a fixed camera, running for hours/day.
- Adjust to lighting conditions changes.
- Provide a system to automatically analyze the full video fast forwarding to events of interest automatically.
- Provide statistics about the system (number o events occurred, etc...).
- Recognize and track some specific events (people, etc...)

Real time Hand Gesture Recognition

- Initially with a set of predefined gestures (use as commands)
- Evolve to more complex or try some sign languages recognition

 Live demo: use some gestures and position to control mouse, click, etc...

PROPOSALS FROM COLLABORATORS/PROJECTS

Bounding box dimensions detection

- Detection of box dimensions based on pointlouds from Visionary-s (data from FFonseca company)
- Simple example (one box) then multiple box
- Possible to acquire data with Kinect as well

Segmentação e deteção de anomalias em painéis solares com imagem UAV

Este projeto tem como objetivo desenvolver um sistema capaz de detetar anomalias em painéis solares recorrendo a visão térmica. As anomalias mais comum em painéis solares podem ser facilmente identificadas a partir da temperatura de superfície dos mesmos (como exemplificado na Figura 1). Podemos utilizar a temperatura média dos painéis como referencia de modo a procurar e segmentar zonas com grande diferença de temperatura.

Monitorização Humana e Ocupação de Espaços

O objetivo deste projeto é desenvolver um sistema capaz de efetuar monitorização e tracking de pessoas em espaços fechados. Para isto poderemos definir uma zona de interesse na nossa imagem para a qual deverá manter contagem do numero de pessoas presentes.

Radar de Velocidade Rodoviaria

 Este projeto tem como objetivo o desenvolvimento de sistema de radar rodoviário, para medir velocidade de veículos a circular na via. O sistema irá consistir de uma camera instalada acima da faixa de rodagem com vista para os veículos em circulação. Tal como apresentado na Figura 1.

Scanner Diagramas P&ID

- Documento P&ID (Piping and instrumentation diagram) são usados na industria para esquematizar processos industriais, incluindo toda a tubagem de produção, equipamentos e métricas para controlo de uma determinada fábrica.
- O Objetivo desde projeto é desenvolver um sistema capaz de digitalizar automaticamente P&ID permitindo identificar os simbolos do diagrama ligações entre os diversos elementos e reconhecimentos de texto utilizando tecnicas de OCR.

Leave Classification

- edupark.web.ua.pt
- Test of algorithm for leave classification from pictures

Unity OpenCV Integration for Code reading

 Integration of OpenCV in Unity (or other libraries for) for mobile/hololens tracking of visual elements in industry (Bar Code, QR Code, OCR,etc...)

 Live demo: move in class and find/detect several markers in a given order. Define interaction methods to go on for next object

Proposals from students

- Datasets:
 - http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm

— . . .

- Proposals from students:
 - In line with master
 - Personal interest
 - Investigation of other topics