

USAAVSCOM TR 77-31

# ADA 041462



# CH-47 MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM RUN BOOK

Mark E. Barkley John A. Weaver

June 1977

**Final Report** 





APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

U.S. ARMY AVIATION SYSTEMS COMMAND Systems Analysis Office Advanced Methodology Division P.O. Box 209 St. Louis, Missouri 63166



# DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

#### UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER USAAVSCOM /TR 77-31 TYPE OF REPORT & PERIOD COVERED TITLE (and Subtitle) Final Report CH-47 Medium Lift Helicopter Effectiveness Evaluation Program Run Book . PERFORMING ORG. REBORT NUMBER DRSAV-D-77-19/2 CONTRACT OR GRANT NUMBER(0) AU THORY Mark E./Barkley John A./Weaver US Army Aviation Systems Command PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS ATTN: Systems Analysis Office P.O. Box 209, St. Louis, MO US Army Aviation Systems Command June 1977 ATTN: Systems Analysis Office 13. NUMBER OF PAGES P.O. Box 209, St. Louis, MO 37 pages 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Effectiveness Medium Lift Helicopter Evaluation 20. ACCT (Continue on reverse side if necessary and identify by block number) This report offers a general description of the Medium Lift Helicopter Effectiveness Evaluation Program, instructions for preparing input data and job control language (JCL) card decks, and for consolidating these decks. It also offers definitions of the input/output variables, a listing of the JCL, a sample output listing, and a glossary of the terms used.

FORM 1472 COLONES LANGE CONTRACTOR

XE

# TABLE OF CONTENTS

|                                        | Page |
|----------------------------------------|------|
| LIST OF EXHIBITS                       | . 1v |
| LIST OF ILLUSTRATIONS                  | . v  |
| 1. INTRODUCTION                        | . 1  |
| 1.1 Language                           | . 1  |
| 1.2 Machine                            | . 1  |
| 1.3 Memory Requirements                | . 1  |
| 1.4 Description                        | . 1  |
| 2. INSTRUCTIONS                        | . 4  |
| 2.1 Input Card Formats                 | . 4  |
| 2.2 General                            | . 4  |
| 3. APPLICATION                         | . 14 |
| REFERENCES                             | . 15 |
| APPENDIX A. VARIABLE NAMES             | . 16 |
| APPENDIX B. JOB CONTROL LANGUAGE       | . 20 |
| APPENDIX C. SAMPLE OUTPUT LISTING      | . 23 |
| APPENDIX D. GLOSSARY                   | . 27 |
| APPENDIX E. LOCATION OF USER MATERIALS | . 30 |



# LIST OF EXHIBITS

| Exhibit |                                                     |               | Page |
|---------|-----------------------------------------------------|---------------|------|
| 1       | CARD 1. MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM | EFFECTIVENESS | . 5  |
| 2       | CARD 2, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM |               | . 6  |
| 3       | CARD 3, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM | EFFECTIVENSS  | . 7  |
| 4       | CARD 4, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM | EFFECTIVENESS | . 9  |
| 5       | CARD 5, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM |               | . 10 |
| 6       | CARD 6, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM |               | . 11 |
| 7       | CARD 7, MEDIUM LIFT HELICOPTER E EVALUATION PROGRAM | EFFECTIVENESS | . 12 |

# LIST OF ILLUSTRATIONS

| Figure |                                                                                 | P | age |
|--------|---------------------------------------------------------------------------------|---|-----|
| 1      | DATA DECK SETUP FOR THE MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM |   | 13  |

#### 1. INTRODUCTION

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program was developed by the U.S. Army TRADOC Systems Analysis Activity (TRASANA) in support of a cost and operational effectiveness analysis (COEA) for assessing the effectiveness of CH-47 aircraft systems. The model was written in FORTRAN IV for a UNIVAC System 1108 computer. Following completion, the model was used by TRASANA for the cited purpose during the tenure of the CH-47 COEA.

The Systems Analysis Office, U.S. Army Aviation Systems Command (AVSCOM), sought and obtained the CH-47 Medium Lift Helicopter Effectiveness Evaluation Program from TRASANA. It is now operational and is being evaluated for possible application in determining the optimum schedule for CH-47 aircraft.

#### 1.1 Language

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program is written in FORTRAN IV, one of the high level computer languages.

#### 1.2 Machine

The AVSCOM version of the CH-47 Medium Lift Helicopter Effectiveness Evaluation Program is written for and implemented on the IBM System 360/65 computer.

#### 1.3 Memory Requirements

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program requires 120K 32-bit words of memory.

#### 1.4 Description

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program is presently composed of a main program and 10 subprograms (AVGEFF, BMPPAR, DAYSEQ, FLEETF, FLTHRS, PRINTI, UNITF, RANDU, RANF, and FILL).

MAIN--The program that directs and controls the activities of the subprograms. For example, calls the statistical routine to add the current day's performance to the previous day's performance data and computes a moving average; and checks the 95 percent confidence limits, mean, and variance of performance for aircraft of type k.

AVGEFF--A subroutine that computes performance statistics (mean, variance, and 95 percent confidence limits) for aircraft of type k from the start of the computer run until its termination in number of sample (NOSMPL) days.

BMPPAR--A subroutine that is used to facilitate the sensitivity analysis of the input variables. The input variable under investigation is initially set at an assigned lower limit and incrementally increased until it reaches its assigned upper limit.

DAYSEQ--A subroutine that generates the daily mission sequence to be performed by an aircraft. The occurrence of a mission is based upon a pre-established frequency distribution for a mission of type m.

FLEETF--A subroutine that calls in the six alternative fleet mixes or number of units expected for each year of the analysis and calculates fleet relative effectiveness by multiplying the relative effectiveness of a type k aircraft times the number of type k aircraft in the fleet.

FLTHRS--A subroutine that computes the flight hours available for an aircraft to perform its daily mission(s).

PRINTI--A subroutine that outputs the relative effectiveness of aircraft of type k versus the MOE.

UNITF--A subroutine that calculates the relative effectiveness of aircraft of type k which are assigned to a given organizational unit.

RANDU--A subroutine that calls a pseudorandom number generator.

RANF--A pseudorandom number generator for producing random numbers.

FILL--A table look-up of pseudorandom numbers which is used to verify computer runs which are accomplished at the organization which developed this program.

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program was designed to handle a maximum of five distinct CH-47 aircraft types which may be exercised in any theater (Middle East, European, etc.).

Aircraft are assumed to operate out of table of organization and equipment (TO&E) aircraft units with each possessing an assigned strength and an homogeneous mix of aircraft (CH-47A, CH-47B, CH-47C, CH-47D, and CH-53E). The general concept of operation is the following: Mission profile data for the Middle East and European scenarios are defined. Daily mission requests are exacted upon the various organizational aircraft unit until each organizational aircraft unit's preallotted time is exhausted. Candidate CH-47 aircraft are ranked in order of average daily effectiveness values. Over a 20 year period, 6 alternate fleet mixes of aircraft are phased into the CH-47 fleet. A relative effectiveness value for a fleet of aircraft of a given mix is determined by multiplying the average relative effectiveness value for a CH-47 aircraft of type k times the number of CH-47 aircraft of type k in a given year's fleet mix for each of the 20 years.

A sensitivity analysis is performed. Each independent variable is examined over a range. Each time the target variable is increased, the number of flight hours allowed and MOE for CH-47 aircraft of type k to perform mission(s) of type m are calculated for each of NOSMPL days. Statistical performance measures (mean, variance, and 95 percent confidence limits) as a consequence of the mission profile data are accumulated and saved for each day of the simulation, from the first day through the last NOSMPL day.

The MOE, productivity, efficiency, utilization ratio, mission fill ratio, and load fill ratio, are calculated from daily performance summations and combined with the previous day's MOE. The MOE and relative effectiveness values are calculated and verified for NOSMPL days. The mean, variance, and 95 percent confidence limits are printed along with the average daily relative effectiveness values for aircraft type k over NOSMPL days.

The number of <u>flight hours</u> <u>allowed</u> (FHALOW) for a CH-47 aircraft of type k to perform a mission of type m is computed as follows:

FHALOW = MNTPER X PERAVL X EFFNCY X SHFTLN,

where

MNTPER--The number of maintenance personnel assigned to the target aircraft maintenance support unit.

PERAVL--The percentage of the MNTPER who actually supports the target aircraft maintenance support unit.

EFFCNY--A number on the unit interval that is assigned to MNTPER to represent their relative proficiency for performing their duties.

SHFTLN--The number of clock hours expended by a given employee during her/his regular work day.

MMHPFH--The number of standard man-hours per flight hour.

COMFAC--A number assigned to an aircraft unit to denote its relative effectiveness for performing its dedicated mission(s).

#### 2. INSTRUCTIONS

#### 2.1 Input Card Formats

Below are complete input card layouts for the CH-47 Medium Lift Helicopter Effectiveness Evaluation Program. (Note that each card layout also describes the target variables, parameters, or data elements listed thereon.)

Exhibits 1 through 7 show the specific input card layouts for the CH-47 Medium Lift Helicopter Effectiveness Evaluation Program. (Please follow the instructions for preparing the input cards literally.)

#### 2.2 General

To exercise the Medium Lift Helicopter Effectiveness Evaluation Program, proceed as follows:

- a. Prepare the input data cards as prescribed under paragraph
   2.1, Input Card Formats.
- b. Prepare the job control language (JCL) as prescribed in Appendix B.
  - c. Arrange the input card data deck as shown in Figure 1.
- d. Consolidate the JCL and input card data decks in the appropriate manner.
- e. Place the consolidated card deck in the card reader (read-in hopper) and press STOP, ABORT, RESET, END OF FILE, AND START to read.
- f. Remove the consolidated card deck from the card reader (read-out hopper) and store in a designated place.

|                                                         |             | Ç                                                   | CARD: 1 |
|---------------------------------------------------------|-------------|-----------------------------------------------------|---------|
| CARD: 1                                                 |             | as designated                                       |         |
| VALUATION PROGRAM                                       | DESCRIPTION | The number of days the model was designated to run. |         |
| SSE                                                     |             | at r                                                |         |
| MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM | COLUMNS     | 1-10                                                |         |
|                                                         | FORMAT      |                                                     |         |
| MEDIUM LII                                              | UNITS       |                                                     |         |
|                                                         | PARA        | NOSIPPL                                             |         |

|                                                         |             |                                                               | CARD: | 2 |
|---------------------------------------------------------|-------------|---------------------------------------------------------------|-------|---|
| CARD: 2                                                 | b           | epresent an                                                   |       |   |
| MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM | DESCRIPTION | A code that is designated to represent an aircraft of type k. |       |   |
| EFFECTIVENE                                             | COLUMNS     | 1-10                                                          |       |   |
| FT HELICOPTER                                           | FORMAT      |                                                               |       |   |
| MEDIUM LI                                               | UNITS       |                                                               |       |   |
|                                                         | PARA        |                                                               |       |   |

|              | MEDIUM LIF | I HELICOPTER | EPFECTIVENES | MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM CARD: 3                                      |
|--------------|------------|--------------|--------------|------------------------------------------------------------------------------------------------------|
| PARA         | UNITS      | FORMAT       | COLUMNS      | DESCRIPTION                                                                                          |
|              | •          | 15           | 1-5          | A code that is designated to represent a mission of type m.                                          |
| NOAC(K,M)    |            | 13           | 8-9          | The number of aircraft of type k designated to pursue a mission of type m.                           |
| NOSRTY (K,M) |            | 13           | 9-11         | The number of sorties designated to be flown by aircraft of type k in pursuit of missions of type m. |
| MACC(K,M)    |            | 13           | 12-14        | A number which designates whether an aircraft of type k can perform a mission of type m.             |
| IMREQ(K,M)   | Ton miles  | F9.0         | 15-23        | Short ton nautical miles required of aircraft of type k on missions of type m.                       |
| TMDEL (K,M)  | Ton miles  | F9.0         | 24-33        | The number of short ton nautical miles delivered by aircraft of type k on missions of type m.        |
| TMCAP (K,M)  | Ton miles  | F9.0         | 34-42        | The short ton nautical miles deliverable by aircraft of type k on missions of type m.                |
| FUEL (K,M)   | Gal.       | F9.0         | 43-51        | Total fuel used by aircraft of type k on missions of type m.                                         |
| TALLOW(K,M)  | Hrs.       | F5.0         | 52-56        | The amount of time prealloted for aircraft of type k to complete missions of type m.                 |

|             | MEDIUM LIN | T HELICOPTER | EFFECTIVENES | UM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM CARD                       | CARD: 3 Cont |
|-------------|------------|--------------|--------------|--------------------------------------------------------------------------------|--------------|
| PARA        | UNITS      | FORMAT       | COLUMNS      | DESCRIPTION                                                                    |              |
| TACT(K,M)   | Hrs.       | F5.0         | 19-75        | The actual time expended by aircraft of type k to complete missions of type m. | of type      |
| BLKTIM(K,M) | Hrs.       | F5.0         | 99-29        | The total time the aircraft of type k are used to complete their mission.      | k are        |
| FLTTIM(K,M) | Hrs.       | F5.0         | 12-79        | The total time each aircraft of type k is in the air.                          | k 1s tn      |
|             |            |              |              |                                                                                |              |
|             |            |              |              |                                                                                |              |
|             |            |              |              |                                                                                |              |
|             |            |              |              |                                                                                |              |
|             |            | •            |              |                                                                                |              |
|             |            |              |              |                                                                                | CARI         |
|             |            |              |              |                                                                                | 2:3 Co       |
|             |            |              |              |                                                                                | nt'd         |

|                                                         |             |                                                                                                                      | CARD: 4 |
|---------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------|---------|
| CARD: 4                                                 | N           | represent a H-47 aircraft od.                                                                                        |         |
| EVALUATION PROGRAM                                      | DESCRIPTION | A code that is designated to represent a specific option for a given CH-47 aircraft fleet mix over a 20 year period. |         |
| MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM | COLUMNS     | 01-1                                                                                                                 |         |
|                                                         | FORMAT      | 011                                                                                                                  |         |
| MEDIUM LIFT                                             | UNITS       |                                                                                                                      |         |
|                                                         | PARA        | 5                                                                                                                    |         |

|       | MEDIUM LIFT B | IELICOPTER EF | FECTIVENESS P | LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM                                    | CARD: 5                  |
|-------|---------------|---------------|---------------|-------------------------------------------------------------------------------------|--------------------------|
| PARA  | UNITS         | FORMAT        | COLUMNS       | DESCRIPTION                                                                         |                          |
|       | Years         | 15            | 1-5           | The last two digits of the year under consideration.                                | . under                  |
|       |               | 110           | 6-15          | The number of aircraft of type one in the fleet for the year under consideration.   | one in the<br>leration.  |
|       |               | 110           | 16-25         | The number of aircraft of type two in the fleet for the year under consideration.   | two in the<br>leration.  |
|       |               | 011           | 26-35         | The number of aircraft of type three in the fleet for the year under consideration. | three in the leration.   |
| NC(4) |               | 110           | 36-45         | The number of aircraft of type four in the fleet for the year under consideration.  | four in the leration.    |
|       |               | 011           | 46-55         | The number of aircraft of type five in the fleet for the year under consideration.  | five in the<br>leration. |
|       |               | •             |               |                                                                                     |                          |
|       |               |               |               |                                                                                     | CARD                     |
|       |               |               |               |                                                                                     | . 5                      |
|       |               |               |               |                                                                                     |                          |

|                                                         |             |                                                                                             | CARD: | 6 |
|---------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------|-------|---|
| CARD: 6                                                 |             | analysis is                                                                                 |       |   |
| MEDIUM LIFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM | DESCRIPTION | The initial value of the target variable to be varied if a sensitivity analysis is desired. |       |   |
| ECTIVENESS E                                            | COLUMNS     | 01-1                                                                                        |       |   |
| ELICOPTER EFF                                           | FORMAT      | 911                                                                                         |       |   |
| EDIUM LIFT HI                                           | UNITS       |                                                                                             |       |   |
| ×                                                       | PARA        | YRABL                                                                                       |       |   |

| W                                     | MEDIUM LIPT HE | LICOPTER EFFE | CTIVENESS EV | IFT HELICOPTER EFFECTIVENESS EVALUATION PROGRAM                                                                                             | CARD: 7                                          |
|---------------------------------------|----------------|---------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| PARA                                  | UNITS          | FORMAT        | COLUMNS      | DESCRIPTION                                                                                                                                 |                                                  |
| MNTPER                                |                | F10.0         | 1-10         | The number of maintenance personnel assigned to<br>the target aircraft maintenance support unit.                                            | nel assigned to<br>support unit.                 |
| PERAVL                                |                | F10.0         | 11-20        | The percentage of the MNTPER who actual supports the target aircraft maintenance support unit.                                              | who actually<br>maintenance                      |
| EFFNCY                                |                | F10.0         | 21-30        | A number on the unit interval that is assigned to MNTPER to represent their relative proficiency for performing their duties.               | at is assigned ative duties.                     |
| SHFTLN                                | Hrs.           | F10.0         | 31-40        | The number of clock hours expended by a given employee during his regular work day in support of the aircraft maintenance support activity. | ed by a given<br>day in support<br>ort activity. |
| н н н н н н н н н н н н н н н н н н н | ₹.             | F10.0         | 41-50        | The number of standard maintenance man-hours<br>per flight hour.                                                                            | ce man-hours                                     |
| UPRLIM                                |                | F10.0         | 51-60        | The maximum value of the target variable which is chosen for consideration if a sensitivity analysis is desired.                            | variable which<br>sensitivity                    |
| LWRLIM                                |                | F10.0         | 61-70        | The minimum value of the target variable which is chosen for consideration if a sensitivity analysis is desired.                            | cardable of the cardable                         |
|                                       |                |               |              |                                                                                                                                             | 7                                                |



Figure 1. Data Deck Setup for the Medium Lift Helicopter Effectiveness Evaluation Program

#### 3. APPLICATION

The CH-47 Medium Lift Helicopter Effectiveness Evaluation Program may be used to obtain an estimate of the relative composite effectiveness of a medium lift or possibly a utility helicopter system (implying possibly a different value for a different configuration or series helicopter system) in the performance of its dedicated mission(s). Note that the relative composite effectiveness of one of these helicopter systems is extracted from a concept called MOE, in this instance, principally and specifically, the mission fill ratio, utilization ratio, load fill ratio, efficiency index, and productivity index. These MOE are purported to be among the foremost indicators for measuring the relative composite effectiveness of a CH-47 helicopter system. Additionally, this program may be used to determine the sensitivity of the various MOE (which were cited above) on the relative composite effectiveness of a CH-47 helicopter system.

#### REFERENCES

- 1. Diaz, Alfonso A., Armando Flores, and Lawrence J. McManus. "Medium Lift Helicopter (MLH) Effectiveness Evaluation Program." U.S. Army Training and Doctrine Command, White Sands Missile Range, New Mexico, June 1975.
- 2. United States Army Training and Doctrine Command, and United States Army Materiel Command. Medium Lift Helicopter (MLH) CH-47 Modernization Program Concept Formulation Package. Part I -- Executive Summary. Volume I. Fort Rucker, Alabama: Medium Lift Helicopter Special Study Group, United States Army Aviation Center, July 14, 1975.
- 3. ... Part II -- Trade-off Determination/Trade-off Analysis/Best Technical Approach (TOD/TOA/BTA). Volume II. Fort Rucker, Alabama: Medium Lift Helicopter Special Study Group, United States Army Aviation Center, July 14, 1975.
- 4. ... Part III -- Cost and Operational Effectiveness Analysis (COEA). Volume III. Fort Rucker, Alabama: Medium Lift Helicopter Special Study Group, United States Army Aviation Center, July 14, 1975.
- 5. ... Part IV -- (S). Volume IV. Fort Rucker, Alabama: Medium Lift Helicopter Special Study Group, United States Army Aviation Center, July 1975.
- 6. \_\_\_\_\_... Part III -- Appendices O through CC. Volume V. Fort Rucker, Alabama: Medium Lift Helicopter Special Study Group, United States Army Aviation Center, July 14, 1975.

APPENDIX A

VARIABLE NAMES

# VARIABLE NAMES

| 1.1 Input Varial | bles                                                                                                                                                                                  |                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| BLKTIM(K,M)      | Given k-number of aircraft to satisf block time is the elapse in time from the lst, 2nd,, kth aircraft forigin (BOO) to the objective until landing of the last aircraft to the       | om engine start<br>from the base of<br>the return and |
| COMFAC           | A number assigned to an aircraft to effectiveness for performing its dec                                                                                                              | denote its relative licated mission(s).               |
| EFFNCY           | A number on the unit interval that in MNTPER to represent their relative performing their duties.                                                                                     |                                                       |
| FLTIM(K,M)       | Given k-number of aircraft to satisf<br>flight time is the sum of the lapses<br>engine start of the lst, 2nd,, the BOO to the objective until the<br>of the last aircraft to the BOO. | in time from<br>th aircraft from                      |
| FUEL(K,M)        | The amount of fuel to be consumed be and landing aircraft type k in pursu type m.                                                                                                     |                                                       |
| к                | A code that is designated to represe<br>type k.                                                                                                                                       | ent an aircraft                                       |
| LWRLIM           | The lower limit of the target variate for consideration if a sensitivity a                                                                                                            |                                                       |
| LYR              | The last two digits of the year under                                                                                                                                                 | er consideration.                                     |
| м                | A code that is designated to represe<br>type m.                                                                                                                                       | ent a mission of                                      |
|                  | A number which indicates whether an k can perform a mission of type m.                                                                                                                |                                                       |
|                  | The number of standard maintenance mour.                                                                                                                                              | man-hours per flight                                  |
| MNTPER           | The number of maintenance personnel target aircraft maintenance support                                                                                                               |                                                       |
| NA               | A code that is designated to represe<br>option for a given CH-47 aircraft fi<br>20 year period.                                                                                       |                                                       |

| NC(K)       | The number of aircraft of type k in the fleet.                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NOAC(K,M)   | The number of aircraft of type $\boldsymbol{k}$ designated to pursue mission type $\boldsymbol{m.}$                                                                                                                                                          |
| NOSMPL      | The number of days the model was designated to run.                                                                                                                                                                                                          |
| NOSRTY(K,M) | The number of sorties to be flown by aircraft type ${\bf k}$ to complete missions of type ${\bf m}$ .                                                                                                                                                        |
| PERAVL      | The percentage of the MNTPER who actually supports the target aircraft maintenance support unit.                                                                                                                                                             |
| RL(L)       | The value of the distribution function at point L. (The method used for picking the appropriate mission.)                                                                                                                                                    |
| SHFTLN      | The number of clock hours expended by a given employee during her/his regular work day.                                                                                                                                                                      |
| TACT(K,M)   | The actual time expended by aircraft type k to complete mission type m.                                                                                                                                                                                      |
| TALLOW(K,M) | The amount of time that was pre-alloted for aircraft type k to complete mission type m.                                                                                                                                                                      |
| TMCAP(K,M)  | The number of sorties possible by aircraft type k in the pre-alloted time multiplied by the maximum payload of aircraft type k in short tons to complete mission type m times the number of nautical miles one-way from the pickup zone to the landing zone. |
| TMDEL(K,M)  | The actual number of short tons moved by aircraft type k times the number of nautical miles flown by aircraft type k in the accomplishment of mission type m.                                                                                                |
| TMREQ(K,M)  | The movement of a given mass of material by aircraft type k in pursuit of mission type m times the distance traveled by aircraft type k in nautical miles.                                                                                                   |
| UPRLIM      | The upper limit of the target variable which is chosen for consideration if a sensitivity analysis is desired.                                                                                                                                               |
| ¥RABL       | The target variable to be varied if a sensitivity analysis is desired.                                                                                                                                                                                       |

#### 1.2 Output Variables

- Efficiency..... The cumulative TMDEL(K,M) by aircraft type k for all missions flown during a day divided by the cumulative pounds of FUEL(K,M), in 100-pound units, consumed by aircraft type k for the required missions for that day.
- Load Fill Ratio.... The cumulative TMDEL(K,M) by aircraft type k for all missions flown during a day divided by the cumulative TMREQ(K,M) of aircraft type k for all missions required during that day.
- Mission Fill Ratio.... The number of missions completed by aircraft type k during a day divided by the number of missions requested during that day.
- Productivity Rate for One Unit of Time.... The cumulative TMDEL(K,M) by aircraft type k for all missions flown during a day.
- Utilization Ratio.... The cumulative TMDEL(K,M) by aircraft type k for all missions flown during a day divided by the cumulative TMCAP(K,M) of aircraft type k for the required missions for that day.

# APPENDIX B

JOB CONTROL LANGUAGE

|                                                                                         | CP() TIME (C) STEP TIME (T) • 00:00:32.79 00:01:30.43 • | BEST AVAILABLE COPY |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|
| 104 7534<br>00000020<br>00000040<br>0000020<br>0000020<br>0000020<br>0000040<br>0000040 | 01 HER (10)                                             |                     |
| TENERAL OF TO                                                                           | PEFF PE                                                 | E 44444             |

# BEST AVAILABLE CON

|--|

APPENDIX C

SAMPLE OUTPUT LISTING

| , |                         |                                   |         |         |         |         |         |                              |                         |   | Magnesseem | BEST                              |   |         |         | Transcount Control of the Control of | A Control of the Cont | 3        |                             | COP                          | Y |                            |         |  |
|---|-------------------------|-----------------------------------|---------|---------|---------|---------|---------|------------------------------|-------------------------|---|------------|-----------------------------------|---|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|------------------------------|---|----------------------------|---------|--|
|   |                         | FLIGHT<br>TIME USED               | 2.66    | 5.65    | 5.65    | 5.65    | 5.65    |                              |                         |   |            | FLIGHT<br>TIME USED               |   | 99.7    | 5,65    | 2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.5     | 1                           |                              |   | FLIGHT<br>TIME USED        | 2.66    |  |
|   |                         | HLOCK<br>VTME USED                | 2.93    | 2.18    | 2.94    | 16.5    | 18.2    |                              |                         |   |            | ALOCK<br>TIME USED                |   |         | 2.1A    | 5.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.81     |                             |                              |   | PLOCK<br>TIME USED         | 5.89    |  |
|   |                         | #                                 | 5301.70 | K422.05 | 1132.04 | 7054.33 | RA32.65 |                              |                         |   |            | £ =                               |   | 0101056 | 6422.05 | 1132.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7054.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8832.65  |                             |                              |   | Z.                         | 4013.71 |  |
|   |                         | FUEL                              | 25      | 2       | 2       | 5       | i       |                              |                         |   |            | FUEL                              |   | ,       | 2       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | è        |                             |                              |   | rier<br>Usen               | £       |  |
|   |                         | TONOMILES<br>DELIVEDARLE          | 347.42  | 941.82  | 1125.78 | 1514.52 | 1772.54 |                              |                         |   |            | TONOMILES<br>DEL IVEDARLE         | ; | 367.66  | 941.82  | 1125.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1516.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1772.54  |                             |                              |   | TONOMILES<br>DEL IVERARI E | 347.46  |  |
|   | PANCE.                  | Tower ILES<br>DF OILESTFD         | 184.45  | 44,745  | 464,33  | 449.22  | 137.07  |                              | DMANCE                  |   |            | Tonewiles<br>Regijested           |   | 364.45  | 465.66  | 444.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K49.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137.07   |                             | PHANTE                       |   | TONION 11 FS               | 162.96  |  |
|   | CIMALATIVE DAILY PEDFOR | tower! Fe<br>DEL ivEpfn           | 346.48  | 564.AA  | ******  | 460,22  | 137.07  | !                            | CUMULATIVE NAILY PEBENG |   |            | TOWNTI FE<br>DEL TVEDEN           |   | 384.45  | 464.46  | 644.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 449.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 737.07   | !                           | CUMULATIVE DAILY PFRFNOMANCE |   | TOWENTI ES                 | 162.04  |  |
|   | ILATIVE                 | SOPTIFS<br>COMP.                  | ,       | •       | •       | •       | -       | •                            | ULATIVE                 |   | :          | MISSTANS SABTIES<br>ACCOUP. COMP. |   | •       | -       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3        |                             | ULATIVE                      |   | MISSIONS Shalles           | •       |  |
|   | £ ;                     | MISSIANS SOPTIFS<br>ACCOMP. CAMP. | -       | •       | •       | •       |         | SECONDE DAVEDATILY SEON MEND | 3                       | • |            | #15570WS<br>ACCOUP.               |   | •       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . A.     | SSSSEL DAYSDATLY SEON CLEAR |                              |   | Serons                     |         |  |
|   |                         |                                   | ******  | -14.54  | -12.44  | -12.16  | -10.44  | STLY CE                      |                         |   |            |                                   |   | .220.14 | -14.55  | . 512.45 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e12.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2olo.94. | MILY SE                     |                              |   |                            | -34.24  |  |
| ! |                         | Wieston Time                      | -       |         | -       |         | -       | PANO A                       |                         |   |            | HISSION TIME                      | 1 |         | -       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7        | PANDAY                      |                              |   | Je Type Leet               | -       |  |
|   |                         | A/C 41                            | -       | ~       | 3       |         | 5       | A                            |                         |   | 24         | 170E 41                           |   | 1       | 7       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -8       | M                           |                              |   | 1406 41                    | -       |  |

|              |                 |             |                 |                    |        |                    |              |                 |             |                 |                    |   |                                                  |   | -02                                                   |   |    |    |     |     |
|--------------|-----------------|-------------|-----------------|--------------------|--------|--------------------|--------------|-----------------|-------------|-----------------|--------------------|---|--------------------------------------------------|---|-------------------------------------------------------|---|----|----|-----|-----|
| 11348.844    | 14.795          | 0.935       | 1.000           | 0.054              |        | T UPPER CONF LIMIT | 5280.430     | 13,409          | 0.919       | 1.000           | 0,357              |   |                                                  | 9 | 0.540000E+07 0+208800E+02                             | 7 |    |    |     |     |
| 9014-176     | 12.074          | 9.4.0       | 1.000           | 0.512              |        | LOWER CONF LIMIT   | 3670.351     | 10.275          | 0.613       | 1.000           | 00000              |   | TYPE OF ATRIBATT                                 | 9 | 0.28210nF.02<br>0.105495F.02                          | A | VA | MA | BLE | COP |
| 1 n 20, 90 h | 151.4           | 9.190       | 0.000           | 0.112              |        | STD DEV            | 1121.090     | 2.541           | 0.242       | 0.000           | 0.290              |   |                                                  | £ | 0.276400E-02<br>0.105857E-02                          |   |    |    |     |     |
| 10101.512    | 11.435          | n.dn9       | 1.000           | n.583              |        | AVEHARE            | 4474,301     | 11.8n?          | 0.746       | 1.000           | 0.170              | , | SESSESSIEN EDNCLUDED. FOR IGNAVS AND 11 TH CYCLI | 3 | 0.1 0.273000F + 02                                    |   | 4  |    |     |     |
| PROMUCTIVITY | ELEL EPFICIENCY | UTTLIZATION | LASD FILL PATIN | MISSTON FILL RATIO | C163-E |                    | PRODUCTIVITY | FUEL EFFICTENCY | UTILIZATION | LOAD FILL RATIO | WISSION FILL RATIO |   | ****** CONCLUDED. FO                             |   | SENSITIVITY PARAMETER NO. 1<br>FLIGHT MINDS AVAILARLE |   |    |    |     |     |

|                                                  | 0.2649E.01 1 0.5396E.01 0.2646E.01 1 0.7220E.01 0.5036E.01 0.7427E.01 1 0.1025E.02 0.3440F.01 1 0.47220E.01 0.7427E.01 1 0.1937E.02 0.4234F.01 1 0.1937E.02 0.1220E.01 1 0.1997E.02 0.5626F.01 1 0.1146F.02 0.1459E.02 0.145 |    |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TYPE OF AIDCRAFT                                 | 0.2446.01 1 0.7070F.01 0.3434F.01 1 0.1130F.02 0.66720F.01 1 0.1130F.02 0.66720F.01 1 0.18839F.02 0.9768F.01 1 0.2398F.02 0.9768F.01 1 0.2398F.02 0.9768F.01 1 0.2398F.02 0.1086F.02 1 0.2819F.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PΥ |
| BABU OF FLIGHT WARS AVAILABLE US DABAUFTED DO. 1 | 01 0.24ak.01 1 0.34ak.01 0.34ak.01 0.34ak.01 1 0.34ak.01 0.7483k.01 0.34ak.01 0.34ak.01 0.34ak.01 0.130nk.02 02 0.44ak.01 1 0.130nk.02 02 02 0.44ak.01 1 0.130nk.02 02 02 0.44ak.01 1 0.130nk.02 02 02 0.44ak.01 1 0.130nk.02 02 02 0.44ak.01 1 0.130nk.02 02 02 02 02 02 02 02 02 02 02 02 02 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1  |
| COSTON OF FLIGHT WHIPS AVAILANT                  | 0.82676.01 1 0.8666.01 0.3486.01 1 0.8666.01 0.42676.01 1 0.1296.02 0.62976.01 1 0.19176.02 0.62976.01 1 0.19176.02 0.62976.01 1 0.19176.02 0.62976.01 1 0.73716.02 0.62976.01 1 0.73716.02 0.74167.01 1 0.73716.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | !  |

APPENDIX D

GLOSSARY

#### GLOSSARY

Availability.... A measure of the system's condition at the start of a mission. It is a function of the relationships among hardware, personnel, and procedures.

5

- Capability..... A measure of the system's ability to achieve the mission objectives, given the system's condition during the mission. Capability specifically accounts for the performance spectrum of the system.
- Dependability.... A measure of the system's condition at one or more points during the mission, given the system's condition at the start of the mission.
- Effectiveness.... The extent to which a target aircraft weapon system performs the mission(s) for which it was designed or purported.
- Efficiency..... The ratio of the work performed by the target aircraft weapon system during a specified time period to the energy, maintenance, etc. supplied to it during that time period.
- Efficiency, CH-47... The cumulative short ton nautical miles (STNMs) delivered by aircraft type k for all missions flown during a day divided by the cumulative pounds of fuel (in 100-pounds units) consumed by aircraft type k for all missions flown during that day.
- Load-Fill-Ratio, CH-47... The cumulative STNMs delivered by aircraft type k for all missions flown during a day divided by the cumulative STNMs required of aircraft type k for all missions required for that day.
- Measure of Effectiveness... A prominent factor or component which discloses one facet of the effectiveness with which a target aircraft weapon system performs the mission(s) for which it was designed or purported.
- Mission-Fill-Ratio, CH-47... The number of missions completed by aircraft type k during a day divided by the number of missions requested during that day.
- Productivity, CH-47... The cumulative STNMs delivered by aircraft type k for all missions flown during a day.
- Sortie..... The flying of a CH-47 on a one-way trip with payload from the pickup or loading zone to the target zone.

System Effectiveness... A measure of the extent to which a system may be expected to achieve a set of specific mission requirements. It is a function of the system's availability, dependability and capability.

Utilization Ratio... The cumulative STNMs delivered by aircraft type k for all missions flown during a day divided by the cumulative STNMs deliverable by aircraft type k for the required missions for that day.

# APPENDIX E

LOCATION OF USER MATERIALS

### LOCATION OF USER MATERIALS

The source program and job control language (JCL) card decks can be found in the card files, Cabinet 2, Drawer 4 (from the top), left side, in the sixth floor computer room.