FINAL PRESENTATION

CUSTOMER CHURN

A DATA ANALYSIS PROJECT

BY: AHMAD SOHAIL | 64011748

> Introduction

- Model(s)
- About Dataset
- Finetuning & Evaluation

Recap

Difficulties

New EDA

P&Q <

Introduction

- Banks collect vast amounts of data to enhance their services and meet business objectives.
- A critical aspect of this data analysis is understanding customer behavior, such as churn rates.
- For this Data Analysis Project, I was assigned to work on a model to predict Customer Churn based on a dataset from Kaggle.
- This analysis helps the bank identify at-risk customers and take proactive measures to retain them.

About Dataset

Dataset by RADHESHYAM KOLLIPARA that involves Customer data collected by a bank.

- 1). 10,000 records to analyze
 - 2). 10+ necessary features to predict from
 - 3). Includes non-numeric and numeric values.

										1								
Δ	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P Q	R	S
1	RowNumk	Customerl	Surname	CreditScor	Geography	Gender	Age	Tenure	Balance	NumOfPro	HasCrCard	IsActiveM	Estimated	Exited	Complain	Satisfactic Card Type	Point Earne	d
2	1	1.6E+07	Hargrave	619	France	Female	42	2	0	1	1	1	101349	1	1	2 DIAMON	D 464	
3	2	1.6E+07	Hill	608	Spain	Female	41	1	83807.9	1	0	1	112543	0	1	3 DIAMON	D 456	
4	3	1.6E+07	Onio	502	France	Female	42	8	159661	3	1	0	113932	1	1	3 DIAMON	D 377	
5	4	1.6E+07	Boni	699	France	Female	39	1	0	2	0	0	93826.6	0	0	5 GOLD	350	
6	5	1.6E+07	Mitchell	850	Spain	Female	43	2	125511	1	1	1	79084.1	0	0	5 GOLD	425	
7	6	1.6E+07	Chu	645	Spain	Male	44	8	113756	2	1	0	149757	1	1	5 DIAMON	D 484	
8	7	1.6E+07	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	0	0	2 SILVER	206	
9	8	1.6E+07	Obinna	376	Germany	Female	29	4	115047	4	1	0	119347	1	1	2 DIAMON	D 282	
10	9	1.6E+07	He	501	France	Male	44	4	142051	2	0	1	74940.5	0	0	3 GOLD	251	
11	10	1.6E+07	H?	684	France	Male	27	2	134604	1	1	1	71725.7	0	0	3 GOLD	342	
12	11	1.6E+07	Bearce	528	France	Male	31	6	102017	2	0	0	80181.1	0	0	3 GOLD	264	
13	12	1.6E+07	Andrews	497	Spain	Male	24	3	0	2	1	0	76390	0	0	3 GOLD	249	
14	13	1.6E+07	Kay	476	France	Female	34	10	0	2	1	0	26261	0	0	3 SILVER	119	
15	14	1.6E+07	Chin	549	France	Female	25	5	0	2	0	0	190858	0	0	3 PLATINU	N 549	
16	15	1.6E+07	Scott	635	Spain	Female	35	7	0	2	1	1	65951.7	0	0	2 GOLD	318	
17	16	1.6E+07	Goforth	616	Germany	Male	45	3	143129	2	0	1	64327.3	0	0	5 GOLD	308	
18	17	1.6E+07	Romeo	653	Germany	Male	58	1	132603	1	1	0	5097.67	1	0	2 SILVER	163	
19	18	1.6E+07	Hendersor	549	Spain	Female	24	9	0	2	1	1	14406.4	0	0	3 SILVER	544	
20	19	1.6E+07	Muldrow	587	Spain	Male	45	6	0	1	0	0	158685	0	0	3 PLATINU	N 732	
21	20	1.6E+07	Hao	726	France	Female	24	6	0	2	1	1	54724	0	0	4 GOLD	477	
22	21	1.6E+07	McDonald	732	France	Male	41	8	0	2	1	1	170886	0	0	3 PLATINU	N 568	
23	22	1.6E+07	Dellucci	636	Spain	Female	32	8	0	2	1	0	138555	0	0	2 DIAMON	D 336	
24	23	1.6E+07	Gerasimo	510	Spain	Female	38	4	0	1	1	0	118914	1	1	2 DIAMON	D 887	
25	24	1.6E+07	Mosman	669	France	Male	46	3	0	2	0	1	8487.75	0	0	2 SILVER	665	
26	25	1.6E+07	Yen	846	France	Female	38	5	0	1	1	1	187616	0	0	3 PLATINU	N 225	
27	26	1.6E+07	Maclean	577	France	Male	25	3	0	2	0	1	124508	0	0	3 PLATINU	N 659	
28	27	1.6E+07	Young	756	Germany	Male	36	2	136816	1	1	1	170042	0	0	5 DIAMON	D 236	
29	28	1.6E+07	Nebechi	571	France	Male	44	9	0	2	0	0	38433.4	0	0	4 PLATINU	N 448	
30	29	1.6E+07	McWilliam	574	Germany	Female	43	3	141349	1	1	1	100187	0	0	5 DIAMON	D 499	
31	30	1.6E+07	Lucciano	411	France	Male	29	0	59697.2	2	1	1	53483.2	0	0	2 GOLD	343	
32	31	1.6E+07	Azikiwe	591	Spain	Female	39	3	0	3	1	0	140469	1	1	3 DIAMON	D 298	
33	32	1.6E+07	Odinakach	533	France	Male	36	7	85311.7	1	0	1	156732	0	0	5 SILVER	628	
34	33	1.6E+07	Sanderson	553	Germany	Male	41	9	110113	2	0	0	81898.8	0	0	3 GOLD	611	

Recap

- Developed an initial predictive model to analyze customer churn.
- Conducted basic Exploratory Data Analysis (EDA).
- Executed data preprocessing to prepare the dataset.

Extensive research

Extended the Textual EDA.

More visualizations

Extended the usage of plots that are helpful.

Key Observation(s)

Found Dataset's key error prone areas.

```
✓
0s
```

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):

100	() ()	J_ u	
#		Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
14	Complain	10000 non-null	int64
15	Satisfaction Score	10000 non-null	int64
16	Card Type	10000 non-null	object
17	Point Earned	10000 non-null	int64
dtype			
memor	ry usage: 1.4+ MB		

df.isnull().sum()

\rightarrow	RowNumber							
_	CustomerId							
	Surname	0						
	CreditScore	0						
	Geography							
	Gender	0						
	Age	0						
	Tenure	0						
	Balance	0						
	NumOfProducts	0						
	HasCrCard	0						
	IsActiveMember	0						
	EstimatedSalary	0						
	Exited	0						
	Complain	0						
	Satisfaction Score	0						
	Card Type	0						
	Point Earned	0						
	dtype: int64							

churned & non-churned based on number of purchased products

churned & non-churned based on Tenure

churned & non-churned based on the number of purchased products

Flow of churned and non-churned clients based on country

Amount of Complaining Customers

Exited 0 1
Complain

0 7952 41 10 2034

Model (s)

I explored three algorithms for this dataset: logistic regression, Support Vector Machine (SVM), and Random Forest Classifier. Each model underwent meticulous hyperparameter tuning to enhance accuracy and ensure and other evaluation metrics. Addressed potential overfitting and bias to uphold the integrity of the predictions.

First Model: Random Forest Tree Classifier

```
+ Code
                                                                        + Text
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.model selection import train test split
#one hot encoding
bank dummies = pd.get dummies(df)
y = bank_dummies['Exited'].values
X = bank dummies.drop(columns = ['Exited'])
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2)
model_rf = RandomForestClassifier(n_estimators=1000, oob_score= True, random_state=77, max_leaf_nodes=30)
model rf.fit(X train, y train)
preds = model rf.predict(X test)
metrics.accuracy_score(y_test, preds)
0.9985
```

```
#Finding important features and plotting them based on their affect on the model
forest_importances = pd.Series(model_rf.feature_importances_, index=X_train.columns).sort_values(ascending=False)
forest_importances.plot(kind='bar')

#Complain causing bias for our dataset
```


Finetuning

- Varied hyperparameters that will be showed in demo for higher evaluation score.
- Used different techniques for overfitting.


```
model_rf.fit(X_train, y_train)

preds = model_rf.predict(X_test)

metrics.accuracy_score(y_test, preds)
```

```
# Calculating the accuracy
accuracy = accuracy_score(y_test, preds)
print(f"Accuracy with entropy: {accuracy}")
```

0.84575

Accuracy with entropy: 0.847

Second Model: Logistics Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import classification report, confusion_matrix, accuracy_score
from sklearn.preprocessing import StandardScaler
 import pandas as pd
# Drop 'Complain' and set 'Exited' as the target variable
X = bank_dummies.drop(columns=['Exited', 'Complain'])
y = bank dummies['Exited'].values
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Feature scaling for better performance of the logistic regression
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
 logistic_classifier = LogisticRegression(random_state=0)
logistic classifier.fit(X train, y train)
```

```
[[1528
      67]
 [ 309 96]]
           precision recall f1-score
                                      support
               0.83
                        0.96
                                0.89
                                         1595
               0.59
                        0.24
                                0.34
                                         405
                                0.81
                                         2000
   accuracy
                        0.60
                                0.61
  macro avg
               0.71
                                         2000
weighted avg
               0.78
                        0.81
                                0.78
                                         2000
```

Accuracy of the model: 0.812

```
# Apply SMOTE to oversample the minority class
smote = SMOTE(random_state=42)
X_smote, y_smote = smote.fit_resample(X, y)
```

[[3023 231] [410 2706]] precision recall f1-score support 0.88 0.93 0.90 3254 0.87 0.92 0.89 3116 0.90 6370 accuracy 0.90 0.90 0.90 6370 macro avg weighted avg 0.90 0.90 0.90 6370

Accuracy: 0.8993720565149137

Third Model: SVM


```
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from imblearn.over_sampling import SMOTE
from imblearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
```

```
# Calculate accuracy
accuracy = accuracy_score(y_test, predictions)
print(classification_report(y_test, predictions))
print(f"SVM Accuracy without SMOTE: {accuracy}")
```

\rightarrow	precision	recall	f1-score	support
0	1.00	1.00	1.00	1607
1	1.00	1.00	1.00	393
accuracy			1.00	2000
macro avg	1.00	1.00	1.00	2000
weighted avg	1.00	1.00	1.00	2000

SVM Accuracy without SMOTE: 0.999

```
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train the pipeline
pipeline.fit(X_train, y_train)
# Make predictions
predictions = pipeline.predict(X_test)
# Calculate accuracy
accuracy = accuracy_score(y_test, predictions)
print(f"SVM Accuracy with SMOTE: {accuracy}")
```

SVM Accuracy with SMOTE: 0.8035

Difficulties

- Finding out clear correlation between
 Complain and Exit. (Dataset flaw)
- Encoding process.
- Model finetuning.

