

planetmath.org

Math for the people, by the people.

complete Heyting algebra

Canonical name CompleteHeytingAlgebra

Date of creation 2013-03-22 19:31:42 Last modified on 2013-03-22 19:31:42

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771)
Entry type Definition
Classification msc 03G10
Classification msc 06D20
Related topic Locale

A Heyting algebra that is also a complete lattice is called a complete Heyting algebra. In the following, we give a lattice characterization of complete Heyting algebras without the relative pseudocomplementation operator \rightarrow .

Proposition 1. Let H be a complete Heyting algebra, then

$$x \to y = \bigvee \{z \mid z \land x \le y\}$$

for any $x, y \in H$, and

$$x \wedge \bigvee A = \bigvee (x \wedge A),$$

where $x \wedge A := \{x \wedge y \mid y \in A\}$, for any $x \in H$, and any subset A of H.

Proof. We first prove the identity $x \wedge \bigvee A = \bigvee (x \wedge A)$. For any $y \in H$, we have $x \wedge \bigvee A \leq y$ iff $\bigvee A \leq x \rightarrow y$ iff $a \leq x \rightarrow y$ for all $a \in A$ iff $x \wedge a \leq y$ for all $a \in A$ iff $x \wedge a \leq y \wedge A$.

Next, we show $x \to y = \bigvee \{z \mid z \land x \le y\}$. For any $a \in H$, we have $a \le x \to y$ iff $a \land x \le y$ iff $a \in \{z \mid z \land x \le y\}$ iff $a \le \bigvee \{z \mid z \land x \le y\}$. \square

The converse of the above is also true.

Proposition 2. Let H be a complete lattice such that

$$x \wedge \bigvee A = \bigvee (x \wedge A),$$

where $x \wedge A := \{x \wedge y \mid y \in A\}$, for any $x \in H$, and any subset A of H. Then for any $x, y \in H$, defining

$$x \to y := \bigvee \{z \mid z \land x \le y\}$$

turns H into a complete Heyting algebra.

Proof. We want to show that $a \leq x \rightarrow y$ iff $a \wedge x \leq y$ for any $a \in H$: $a \leq x \rightarrow y$ iff $a \leq \bigvee\{z \mid z \wedge x \leq y\}$. So $x \wedge a \leq x \wedge \bigvee\{z \mid z \wedge x \leq y\} = \bigvee\{x \wedge z \mid z \wedge x \leq y\} \leq \bigvee\{y\} = y$

From this, one readily concludes that any finite distributive lattice is Heyting.

Remark. Since any complete lattice is bounded, a complete Brouwerian lattice is a complete Heyting algebra. A complete Heyting algebra is also called a *frame*.