School of Computing and Information Systems The University of Melbourne MP90049 Knowledge Technologies (Semester 1, 2)

COMP90049 Knowledge Technologies (Semester 1, 2019) Workshop exercises: Week 12

- 1. Revise **Support Vector Machines**, paying particular attention to the terms "linear separability" and "maximum margin".
 - (a) What is the significance of allowing "some margin of errors", indicated by ξ in the lectures?
 - (b) Why are we interested in "kernel functions" here?
 - (c) Why are SVMs "binary classifiers", and how can we extend them to "multi-class classifiers"?

2. What is **Clustering**?

- (a) What is the difference between "partitional" and "hierarchical" clustering? What are some other distinctions that we can draw between clusterings?
- (b) How does the k-means algorithm cluster data? Given the following dataset:

id	apple	ibm	lemon	$sun \; \mathtt{A}$
	4	0	1	1
В	5	0	5	2
C	2	5	0	0
D	1	2	1	7
E	2	0	3	1
F	1	0	1	0

Apply k-means, using the Manhattan distance, and seeds A and D. What would happen if we had used different instances as seeds?

3. For the following set of instances:

a_1	a_2	a_3	c
hot	windy	dry	Yes
mild	windy	rainy	No
hot	windy	rainy	Yes
cool	still	dry	Yes
cool	still	rainy	No
hot	still	dry	No
mild	still	dry	Yes

- (a) Calculate the **confidence** and **support** of the Association Rule $\{\text{still}, \text{Yes}\} \rightarrow \{\text{dry}\}.$
- (b) Discuss how you would continue mining for effective **Association Rules**, according to some thresholds τ_c for confidence and τ_s for support.