Контрольная работа. Кратные и криволинейные интегралы.

Необходимо в каждом пункте выполнить задания с номером n, здесь и всюду

$$n$$
 - остаток от деления $\dfrac{student\ number}{5},\ m=\left[\dfrac{student\ number}{5}\right]$ ёё целая часть.
$$g(t)=\left\{ egin{matrix} x&t=1\\x^2&t=2\\xy&t=3\\y^2&t=4\\y&t=5 \end{array} \right.$$

1 Вычислить интеграл

1.
$$\iint_G (x^2+y^2) \, dx dy$$
 G область ограниченная кривыми $y=x, \quad nx+my=2a(a>0), \quad x=0$

2.
$$\iint_G xy \, dx dy$$
 G область ограниченная кривыми $x^2+y^2=2y$, $\frac{x}{n}+\frac{y}{m}=1$, $x=0$

3.
$$\iint_G (4-y) \, dx dy$$
 G область ограниченная кривыми $x^2 = 4y$, $y = m$, $x = 0 (x > 0)$

4.
$$\iint_G (x+2y) \, dx dy$$
 G область ограниченная кривыми $y=nx^2, \quad y=m\sqrt{x}$

5.
$$\iint_G y \, dx dy$$
 G треугольник с вершинами $O(0,0), \quad A(2-n,1), \quad B(n,m)$

2 Вычислить интеграл перейдя к полярным кординатам

1.
$$\iint\limits_G \sqrt{x^2+y^2-9} + g(m) \, dx dy, \quad G \text{ кольцо между двумя фигурами } \frac{x^2+y^2=9}{x^2+y^2=25}$$

2.
$$\iint_G g(m) \, dx dy$$
 G область ограниченная кривыми $x^2 = my$, $x^2 + y^2 = 2m^2$, $y = 0$

3.
$$\iint_G (x^2 + y^2) \, dx dy$$
 G область ограниченная кривыми $x^2 + y^2 = 2mx$, $x^2 + y^2 = mx(x > 0)$

4.
$$\int_{0}^{a} dx \int_{0}^{\sqrt{a^{2}-x^{2}}} \left(e^{x^{2}+y^{2}}+g(m)\right) dy$$

5.
$$\int_{0}^{a} dy \int_{\sqrt{ay-y^{2}}}^{a^{2}-y^{2}} \left[\sqrt{a^{2}-x^{2}-y^{2}} + g(m) \right] dx$$

3 Вычислить криволинейный интеграл I рода

1. $\int\limits_C (x+y)\,ds$ где C - контур треугольника ABO с вершинами $A(n,0),\,B(0,m)$ и O(n,m)

2.
$$\int\limits_C \left[\frac{1}{\sqrt{x^2+y^2+4}} + g(m) \right] \, ds$$
, где C отрезок прямой, соединяющий точки $O(0,0)$ и $A(1,2)$

3.
$$\int\limits_C \left[y^2+g(m)\right]\,ds$$
 где C - первая арка циклоиды $\begin{cases} x=a(t-\sin t)\\ y=a(1-\cos t) \end{cases}$

4.
$$\int_{C} \left(\sqrt{x^2 + y^2} + g(m) \right) ds$$
 где C -дуга развертки окружности
$$\begin{cases} x = a(\cos t + t \sin t), \\ y = a(\sin t - t \cos t), \\ 0 \le t \le 2\pi. \end{cases}$$

5.
$$\int_C \frac{y\,ds}{mx+3z}$$
, где C - дуга линии $x=nt$, $y=\frac{t^2}{\sqrt{2}}$, $z=\frac{t^3}{3}$

4 Вычислить криволинейный интеграл II рода

1.
$$\int\limits_C (2xy-y) dx + (x^2+g(m)) dy$$
 где C - прямая $A(0,1)$ $B(2,1)$

2.
$$\int_C (\exp(x)) dx + (x^2 + g(m)) dy$$
 где С - прямая $A(0,1)$ $B(4,1)$

3.
$$\int\limits_C (\exp(x-y)) dx + g(m) dy$$
где С - прямая $A(2,1)$ $B(1,3)$

4.
$$\int_C (x \exp(x-y)) dx - \exp(x+y) g(m) dy$$
 где С - прямая $A(2,1)$ $B(1,3)$

5.
$$\int_C (\cos(x)g(m))dx - \sin(x)ydy$$
 где С - прямая $A(\pi/2,0)$ $B(2\pi,\pi/4)$

5 Вычислить криволинейный интеграл II рода используя формулу Грина

1. $\int_C ((x+y)^2+g(m))dx-(x-y)^2dy$ где C - контур образованный синусоидой $y=\sin(x)$ и отрезком оси Ox при $0\leq x\leq \pi$.

- 2. $\int_{x^2+y^2=r^2} x^2 y dx (xy^2 + g(m)) dy$
- 3. $\int\limits_C ((x+y)^2+g(m))dx-(x^2+y^2)dy$, где C треугольник с вершинами $\mathrm{O}(0,\!0),\ \mathrm{A}(1,\!0)$ и $\mathrm{B}(0,\!1)$
- 4. $\int_C (x^2-y^2) dx (x^2+y^2+g(m)) dy$ где C контур образованный полуокружностью $\sqrt{r^2-x^2}$ и осью Ox
- 5. $\int_{x^2+y^2=r^2} (x+y+g(m))dx (x-y)dy$