作业:

- 3.8 (1, 2, 3, 8, 9, 10, 11, 18, 19, 20)
- 3.11 (1, 3, 7)
- 3.12(1,3,5)
- 3.15 (1, 3, 6)
- 3.18(1,3,7)
- 3.19(1,3)

- 3.20
- 3.21(1,3,5)
- 3.22(1,3,5)
- 3.23(2)
- 3.24(2)

课堂练习

用公式法化简下式

$$F_{1}(A, B, C) = \overline{A}BC + \overline{B} + \overline{C} = \overline{A}C + \overline{B} + \overline{C}$$

$$= \overline{A} + \overline{B} + \overline{C}$$

$$F_{2}(A, B, C, D) = \underline{A}C + \underline{\overline{A}} + \overline{\overline{C}} + \overline{A}\overline{B}C + \overline{A}BD = \overline{A} + C + \overline{C} + \cdots$$

$$= 1$$

$$F_{3}(A, B) = A \oplus A\overline{B} = A \cdot \overline{A}\overline{B} + \overline{A} \cdot A\overline{B} = A \cdot (\overline{A} + B)$$

$$= AB$$

§2.4 卡诺图化简逻辑函数。

Simplification Using K-Maps

用公式法化简逻辑函数时,有时很难看出是否达到最简式。用卡诺图 (Karnaugh Map) 化简逻辑函数具有简单、直观、方便的特点,较容易判断出函数是否得到最简结果。

2.4.1 卡诺图 Karnaugh Map

卡诺图 (K-map)与真值表相似,可以<u>给出输入所</u> 有可能组合所对应的输出值。

卡诺图由小格构成。每个小格代表一个二进制输 入的组合。

n 个变量的卡诺图中有2ⁿ个小格,每个小格表示一个最小项。

2 变量卡诺图: F(A,B)

变量取值: 0→1

$$\left\{\begin{array}{c} 0 \text{ for } \overline{A}, \overline{B} \\ 1 \text{ for } A, B \end{array}\right\}$$
最小项

变量(A,B) 位置确定,每小格代表的最小项就确定。

3 变量卡诺图: F(A,B,C)

F _A	$m{B}$	01	11	10
$\begin{bmatrix} C \\ 0 \end{bmatrix}$	m_0	2	6	4
1	m_1	3	7	5

AB的排列顺序

排列方式要求:

保证相邻格之间只有

一个变量变化

几何相邻: 位置相邻

逻辑相邻: 只有一个变量变化

相邻格

卡诺图其他排列方式

对于n变量卡诺图,每个小格有n个相邻格,n相邻格与排列方式无关

4 变量卡诺图: F(A,B,C,D)

$F_{\setminus} A$	В				F_{\setminus} C	D			
CD	00	01	11	10	AB	00	01	11	10
00	0	4	12	8	00	0	1	3	2
01	1	5	13	9	01	4	5	7	6
11	3	7	15		11	12	13	15	14
10	2	6	14	10	10	8	9	11	10

每个小格: 4 个相邻格

5变量卡诺图: *F* (*A*,*B*,*C*,*D*,*E*)

$$2^5 = 32$$
 cells

F AB	\boldsymbol{C}							
DE	000	001	011	010	110	111	101	100
00	0	4	12	8	24	28	20	16
01	1	5	13	9	25	29	21	17
11	3	7	15	11	27	31	23	19
10	2	6	14	10	26	30	22	18

相邻格包括对称位置

14: 6, 15, 10, 12, 30

8: 12, 9, 24, 0, 10

2.4.2 用卡诺图表示逻辑函数

Mapping a Logic Function

例 1: 将真值表转换成卡诺图

A	В	\boldsymbol{C}	$oldsymbol{F}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1,
1	1	1	1

F _A	B			
	00	01	11	10
C_0	0	0	1	0
1	0	1	1	1

例 2: 用卡诺图表示标准与或式和标准或与式

$$F(X, Y, Z) = \sum m(0,4,6)$$

$$F(X,Y,Z) = \sum m(0,4,6)$$
 $F(X,Y,Z) = \prod M(1,2,3,5,7)$

F 何时为1 (最小项)

FX	<i>XY</i> 00	01	11	10
\boldsymbol{Z}_{0}	1	0	1	
1	0	0	0	0

FX	<i>XY</i> 00	01	11	10
Z_0	1	0	1	1
1	0	0	0	0

例3: 将与或式填入卡诺图

$$F(X,Y,Z) = XY + \overline{Y}Z + \overline{X}\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{Y}Z(X + \overline{X}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= XYZ + XY\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z}$$

$$= \sum m(0,1,2,5,6,7)$$

直接填 XY: 在 XY = 11 的两个格中填1

F X	Y 00	01	11	10
Z 0	1	1	1	
1	1		1	1

2.4.3 卡诺图化简逻辑函数

K-Map Simplification

1. 求最简与或式

方法: 圈相邻格中的1, 合并最小项

圈 1: 根据下面规则将含有 1 的相邻格圈在一起

尽可能多地把相邻的矩形的 2ⁿ 个 1 圈在一起,消去变化了的变量,留下不变的变量,是 1 写原变量,是 0 写反变量,组成 "与" 项;每个圈中至少有一个别的圈没圈过的 1,所有的 1 都要圈;1 可以重复圈;圈之间为"或"的关系。

圈 1个1, 2个1, 4个1, 8个1, 16个1

例 1: 用卡诺图化简下列函数

$$F(A,B) = \sum (0,1,3)$$

解:

- ① 填卡诺图
- ② 圏 1
- ③ 将与项相或

例 2: 化简函数

例 3:

$$F(A,B,C,D) = \overline{D} + AB$$

2. 求最简或与式

尽可能多的把相邻矩形中 2ⁿ个0 圈在一起,消去变化了的ⁿ 个变量,留下不变的变量,(是0 写原变量,是 1 写反变量)组成或项;每个圈中至少有一个别的圈没圈过的0,所有0 都要圈,0 可重复圈,圈之间为与的关系。

与或式和或与式可以互相转换

总结: 与或式圈 1

A + D

或与式圈 0

例 5 将下图化简成最简与或表达式

例 6 将下图化简成最简与或式

$$F = \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{AB}$$

$$= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BC}$$

$$= \overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{BC}$$

最简式不是唯一的

例 7 分别将下式化简成最简与或式和最简或与式

$$F(A,B,C,D) = (\overline{A} + \overline{C})(\overline{A} + B + \overline{D})(\overline{B} + D)(\overline{A} + B + \overline{C} + D)$$

$$1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

解: 在卡诺图中直接填 0

最简或与式: 圈 0

$$F(A,B,C,D) = (\overline{B} + D)(\overline{A} + \overline{C})(\overline{A} + B + \overline{D})$$

最简与或式: 圈 1

$$F(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A}D + B\overline{C}D + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

例8化简

$$F(W,X,Y,Z) = \overline{WX} + \overline{YZ} + (\overline{W} + Y)X\overline{Z} + (\overline{W} + Z)(\overline{W} + \overline{Y})$$

$$\overline{W} + \overline{Z} + \overline{W} + \overline{Y}$$

$$F = WX + YZ + WXZ + XYZ + WZ + WY$$

直接在 F K-Map中填1, 圈0

$$\overline{F} = (\overline{W} + Y + Z)(W + \overline{X} + \overline{Y} + \overline{Z})$$

$$F = \overline{\overline{F}} = \overline{\overline{W} + Y + Z} + \overline{W + \overline{X} + \overline{Y} + \overline{Z}}$$

$$= \overline{W}\overline{Y}\overline{Z} + \overline{W}XYZ$$