Linzer biol. Beitr.	47/1	569-581	31.7.2015

A redescription of *Abrolophus silesiacus* (HAITLINGER, 1986) with notes on some other *Abrolophus* species (Acari, Prostigmata, Erythraeidae)

Ryszard Haitlinger & Dariusz Łupicki

A b s t r a c t: Larvae of *Abrolophus silesiacus* are redescribed and the neotype is designated. *A. amilberti* and *A. kotorensis* are synonymized with *A. silesiacus*. New localities and new measurements are given for *A. silesiacus A. anzelmi* and *A. dagmarae*. *A. dagmarae* and *A. silesiacus* are not synonyms of *A. norvegicus*. *A. dagmarae* is new to the fauna of Madeira and *A. norvegicus* is new to the fauna of Sicily.

K e y w o r d s: Taxonomy, Abrolophus silesiacus, A. dagmarae, A. norvegicus, A. anzelmi, redescription, synonymization, new records, Sicily.

Introduction

Abrolophus silesiacus (HAITLINGER, 1986) was described from Poland based on a single specimen. The description was very short and incomplete. Drawings were restricted only to scutum, palp and part of ventral side of idiosoma (HAITLINGER 1986). Later further three specimens were colleted in Poland, 9 specimens in Slovakia and one specimen has been collected in France (HAITLINGER 1987, 2002a, 2003, 2007a). Standard measurements, based on 4 specimens from Poland and 3 specimens from Slovakia, were given by HAITLINGER (2007b). Now, new localities for A. silesiacus, A, dagmarae and A. anzelmi in Sicily are given. Recently A. silesiacus was synonymized with A. norvegicus (THOR 1900) (WOLTHMANN & MAKOL 2012, MAKOL & WOHLTMANN 2012). A. dagmarae (HAITLINGER, 2012) was described from Sicily based on 5 larvae (HAITLINGER 2012). Also this species was synonymized with A. norvegicus (WOHLTMANN & MAKOL 2012, MAKOL & WOHLTMANN 2012). In this paper a redescription of A. silesiacus, based on neotype, is given (holotype is lost). A. silesiacus and A. dagmarae, both good species, are compared with A. norvegicus and characters differing these species are given. A. amilberti (HAITLINGER, 2010) and A. kotorensis (HAITLINGER, 2007) are synonymized with A. silesiacus.

570

Material and methods

In this paper 67 larvae of *A. silesiacus* from nine countries, 10 larvae of *A. dagnarae* from Sicily, 3 larvae from Madeira and 33 larvae of *A. norvegicus* from Austria, Belgium, Czech Republic, Denmark, Estonia, Germany, Latvia, Liechtenstein, Lithuania, Moldova, Norway, Poland, Russia, Sicily, Slovakia and Sweden were studied. All larvae were collected by R. HAITLINGER in the period 1985-2014. Measurements (in micrometers µm) were made using a microscope NIKON Eclipse 80i. Figures were drawings using the same microscope. The terminology and abbreviations follow HAITLINGER (1999, 2013) and WOHLTMANN et al. (2007). The neotype of *A. silesiacus* is deposited in Museum of Natural History, Wrocław University (MNHWU), Poland.

Results

Family E r y t h r a e i d a e ROBINEAU-DESVOIDY, 1828

Abrolophus silesiacus (HAITLINGER, 1986) Abrolophus kotorensis (HAITLINGER, 2007) syn. nov. Abrolophus amilberti (HAITLINGER, 2010) syn, nov.

D i a g n o s i s : fD.74 (72-78), fV 22 (20-28), Ta I 62 (60-70), Ti III 87 (86-97), AL. 37 (32-42), L 82 (76-90), W 63 (62-72), odontus (OD) divided to about $\frac{1}{3}$ - $\frac{1}{2}$ its length, paradontus (Prd) not divergent.

In Sicily this species (as *A. kotorensis*) was known from five localities (HAITLINGER 2012). New localities are mentioned below.

M a t e r i a 1 e x a m i n e d : Larvae collected from herbaceous plants, 20 June1993 in Stolec n. Ząbkowice, Lower Silesia, Poland is designated as neotype. It is deposited in MNHWU; leg. R. Haitlinger. Sicily, 3 km west of Corleone, one larva, 11 May 2010, Cantenuovo di Sicilia, five larvae, 4 May 2012, Salaparuta, one larva, 24 April 2012, Lago Villa Rosa, two larvae, 4 May 2012, Punta Zabbi, one larva, 19 April 2012, Bolognetta, one larva, 30 April 2012, Santa Margherita, one larva, 24 April 2012, Cefalu, one larva, 15 April 2012, 3 km north of Geraci, one larva, 2 May 2015, Giangi, two larvae, 9 May 2014, Piana di Albanesi, two larvae, 11 May 2014, Mendoza n. Trapani, one larva, 17 May 2014, 3 km west of Roccapalumba, two larvae, 10 May 2014, Graniti, one larva, 6 May 2014, 3 km west of Bivona, one larva, 11 May 2014; leg. R. HAITLINGER.

D i s t r i b u t i o n : Croatia, France, Greece, Italy, Montenegro, Poland, Slovakia, Slovenia, Turkey (HAITLINGER 1986, 2002, 2003, 2007a, BERON 2008). First record from Montenegro.

D e s c r i p t i o n (larva): Dorsum with 74 (72-78) weakly barbed setae.(two pairs of setae on scutum level. Laterally of scutum one pair of eyes (Fig. 1). Scutum longer than wide with pair of weakly barbed scutalae, AL < PL, Anterior sensillary setae (ASE) shorter than the posterior ones (PSE), both covered with setules in distal part of the shaft (Fig. 3).

Figs. 1-2. Abrolophus silesiacus (HAITLINGER, 1986) (1) idiosoma, dorsal view; (2) idiosoma, ventral view.

Ventral surface of idiosoma with setae Ia between coxae I, setae 2a between coxae II and setae 3a between coxae III. Between coxae I and II 6 setae, between coxae II and III 20 (24) setae and beyond coxae III 22 (20-28); all these setae are weakly barbed. Coxalae 1b > 2b; setae 2b and 3b subequal in length, all barbed (Fig. 2).

Gnathosoma with a pair of nude adoral setae cs 22; long (17-27), a pair of short clubshaped setae elcp 5 (4-6) in lateral position. Ventrally two pairs of nude hypostomal setae as2 24 (18-27) and setae as1 9 (7-14) and a pair of setulose setae bs 44 (37-59) (Fig. 4)..Palpfemur with twosetae, dorsal seta barbed, ventral seta nude, palpgenu with, two barbed setae and one nude setae. Palptibia has narrow 4 (4-5) and short 7 (9-12) paradontus and two nude setae. (Figs 5, 11). Palptarsus with 1ω , 1ζ and 6 nude setae (Fig. 6). Odontus divided to about $\frac{1}{3}$ - $\frac{1}{2}$ its length, 21 (22-25) long.

Leg setal formula: Leg I: Ta 1 ω , 2 ζ , 1 ϵ , 1Cp, 24 (7B, 17N); Ti 2 ϕ 1 κ , 12N; Ge 1 σ , 1 κ , 11N; Tf 8N; Bf 4N; Tr 2N; Cx 1 (Fig.7). Leg II: Ta 1 ω , 2 ζ , 1Cp, 21 (10B, 11N), Ti 2 ϕ 1 κ , 13N; Ge 1 σ , 1 ξ , 9N; Tf 5N; Bf 4N; Tr 2N; Cx 1 (Fig. 8). Leg III: Ta 1 ζ , 19, Ti 1 ϕ , 13N; Ge 1 σ , 9N; Tf 5N; Bf 4N; Tr 2N; Cx 1 (Figs 9, 10).

Other specimens (=8): Leg I: Ta 1ω , 2ζ , 1z, 1ε , 20-22, Ti 2φ , 1κ , 11-13; Ge 1σ , 0 (1 specimen)- 1κ , 11-12; Tf 7-8; Bf 4; Tr 2; Cx 1.Leg II: Ta 1ω , 2ζ , 1z, 17-19; Ti 2φ , 0 (2 specimens)- 1κ , 10-14; Ge 1σ , 0 (5 specimens)- 1κ , 9; Tf 5; Bf 4; Tr 2' Cx 1. Leg III: Ta 1ζ , 14-18; Ti 1φ , 12-13; Ge 1σ , 7-10; Tf 5; Bf 4; Tr 2; Cx 1.

Figs. 3-6. Abrolophus silesiacus (HAITLINGER, 1986) (3) scutum: (4) gnathosoma; (5) palp; (6) palptarsus.

Leg lengths (including coxa, excluding claws): leg I 413 (409 - 453), leg II 370 (389 - 413), leg III 435 (422 - 475). IP = 1218 (1251 - 1334). Metric data are given in Table 1.

R e m a r k s: A. silesiacus belongs to the species group having odontus divided to about $\frac{1}{3}$ - $\frac{1}{2}$ of its length. This group includes A. stanislavae (HAITLINGER, 1986), A. podorasensis (HAITLINGER, 2007), A. sardiniensis (HAITLINGER, 2007), and A. dagmarae (HAITLINGER 2012) (HAITLINGER 1986, 2007a, c, 2012). It differs from A. stanislavae and A. podorasensis in not divided paradontus. From A. dagmarae it differs in the longer L (68-89 vs. 48-67), AP (26-40 vs. 14-18), thinner Prd (W) (3-5 vs. 8-11), and fD (72-78 vs. 38) and from A. sardiniensis in.fD (72-78 vs. 44), the longer L (68-89 vs. 54), W (56-74 vs. 48), PW (48-66 vs. 42), AP (26-40 vs.12), AL (23-43 vs. 18), GL (98-125 vs. 88), 1a 24-46 vs. 14), PsFd (38-55 vs. 20), Ti I (63-84 vs. 54) and Ti III (70-101 vs. 48).

Recently A. silesiacus was synonymized with A. norvegicus by WOHLTMANN & MAKOL (2012). In their paper decision about synonymization A. silesiacus with A. norvegicus is restricted to following statesment: "we have had an opportunity of studying the other specimen assigned to A. silesiacus and both, in the case of data provided in the original description and those calculated for the specimen at hand – the conspecificity of H. silesiacus with A. norvegicus is being confirmed". In reality metric data for A. silesiacus in majority are identical with A. norvegicus. (HAITLINGER, 1986, 2007b and Table 1). The following main characters differs A. silesiacus with A. norvegicus: odontus (OD) divided to about ½-1/2 of its length vs. OD bifurcate at termination (~½ its length), narrow

Figs. 7-10. Abrolophus silesiacus (HAITLINGER, 1986) (7) leg I; (8) leg II; (9) leg III, tarsus-genu; (10) leg III, telofemur-coxa.

Figs. 11-13a, b. Odontus and paradontus. (11) Abrolophus silesiacus; (12) A. norvegicus; (13a) A. dagmarae, external side; (13b) A. dagmarae, ventral side.

paradontus Prd (W) (4-5 vs. 9-12), narrow PaFe (W) (31-43 vs. 52-66), PaFe(L)/PaFe(W) (1.26-1.66 vs. 0.85-1.17), PaGe (W) (24-30 vs. 34-42), GL (108-122 vs. 121-154), PW (53-63 vs. 62-80), AP (30-37 vs. 16-23), fD (72-78 vs. 44-54) and as2 (14-27 vs. 34-60) (Figs 11, 12 1). Above mentioned characters indicate that A. silesiacus diametrically differs from A. norvegicus and can not be recognized as synonym of A. norvegicus. Two species A. kotorensis and A. amilberti have identical metric and meristic data with A. silesiacus and both are synonymized with A. silesiacus (Table 1).

Abrolophus dagmarae (HAITLINGER, 2012)

This species was known only from 4 localities in Sicily (HAITLINGER 2012).

New localities: 2 larvae, 21 April 2012, Masteria Cagelotto n. Piana di Albanesi, 1 larva, 17 April 2012, Boletto n. San Giuseppe Jato (Palermo prov.), 1 larva, 24 April 2012, Salaparuta (Trapani prov.), 3 km east of Santo Stefano, 11 May 2014, all from herbaceous plants.

WOHLTMANN & MAKOL (2012) recognized this species as synonym of *A. norvegicus*. They compared metric and meristic data of both species stated small differences only between 6 metric features. Both species radically differs in the following characters (33 studied specimens of *A. norvegicus* were collected from Andorra, Austria, Belgium, Czech Republic, Denmark, Estonia, Germany, Latvia, Liechtenstein, Lithuania, Moldova, Norway, Poland, Russia, Sicily, Slovakia, Sweden and Ukraine): odontus (OD) divided to about ½-½ of its length vs. OD bifurcate at termination (divided ~½ its length), the shorter OD, GL, ISD, L, ASE, SB, *cs*, *as1*, PaFe (W), PaGe (W) and PaTi (W) (Table 2). From Madeira 3 specimens were collected mistakely determined as *A. neobrevicollis* ZHANG & GOLDARAZENA 1996 (HAITLINGER 2002b). Later *A. neobrevicollis* was synonymized with *A. norvegicus* (WOHLTMANN & MAKOL 2012). Specimens from Madeira have typical characters for *A. dagmarae* (Table 3). Now, *A. dagmarae* is known only from Sicily and Madeira and this species is not a synonym of *A. norvegicus*.

Abrolophus norvegicus (THOR, 1900)

M a t e r i a l $\,$ e x a m i n e d : Sicily, Monreale n. Palermo, 27 may 2014, 1 larva from herbaceous plants.

Distribution: Europe. First record from Sicily.

This species is very common in Europe, but is very rare in Sicily. During four years only one specimen was collected. Measurements of the specimens (for comparison with *A. dagmarae*) are given in Table 3.

Abrolophus anzelmi Haitlinger & Łupicki, 2013

M a t e r i a l e x a m i n e d : Sicily, Graniti, 6 May 2014, 1 larva; 3 km west of Bivona, 11 May 2014, 1 larva, both from herbaceous plants

This species was described based on a single specimen (HAITLINGER & ŁUPIBKI 2013). Measurements for two other specimens are given in Table. 64 Species known only from Sicily.

References

- BSRON P. (2008): Acarorum Catalogus I Acariformes: Calyptostomatoidea (Calyptostomatidae), Erythraeoidea (Smarididae, Erythraeidae). Pensoft Publ. Nat. Mus. Nat. Hist., Sofia Bulg. Acad. Sci., Sofia-Moscow, 271 pp.
- HAITLINGER R. (1986): The genus *Hauptmannia* OUDEMANS, 1910 (Acari, Prostigmata, Erythraeidae) in Poland. Pol. Pismo Entom. **56**: 181-191.
- HAITLINGER R. (1987): Dalsze informacje o występowaniu gatunków rodzaju *Hauptmannia* Oudemans, 1910 (*Acari*, *Prostigmata*, *Erythraeidae*) w Polsce. Przegl. Zool. **31**: 159-164
- HAITLINGER R. (1999): Six new species of *Leptus* LATREILLE, 1796 (Acari, Prostigmata, Erythraeidae) from South-East Asia. Miscel. Zool. 22: 51-68.
- HAITLINGER R/ (2002a): New records of mites (Acari: Prostigmata: Erythraeidae, Troimbidiidae, Microtrombidiidae) from Slovakia. Biologia **57**: 554-556.
- HAITLINGER R. (2002b): A new larval *Hauptmannia* OUDEMANS, 1910 and the first record of *Abrolophus neobrevicollis* ZHANG & GOLDARAZENA, 1996 (Acari: Prostigmata: Erythraeidae) from Madeira. Syst. Parasitol. **53**: 115-119.
- HAITLINGER R. (2003): Występowanie gatunków z rodzajów *Hauptmannia* OUDEMANS, 1910 i *Rudaemannia* HAITLINGER, 2000 (Acari: Prostigmata: Erythraeidae) w Polsce. Przegl. Przyr. **14**: 61-69.
- HAITLINGER R. (2007a): New records of mites (Acari: Prosttigmata: Erythraeidae, Trombidiidae, Eutrombidiidae) from France, Liechtenstein and Switzerland, with descriptions of three new species. Syst. Appl. Acarol. 12: 55-72.
- HAITLINGER R. (2007b): New species and records of mites (Acari, Prostigmata: Erythraeidae, Trombidiidae, Eutrombidiidae) from the Balkan Peninsula. Biologia **62**: 67-77.
- HAITLINGER R. (2007c): New records of mites from Corsica and Sardinia, with descriptions of five new species (Acari: Prostigmata: Erythraeidae, Trombidiidae, Eutrombidiidae). Genus 18: 529-543.
- HAITLINGER R. (2010): New records of mites (Acari: Prostigmata: Erythraeidae, Trombidiidae) from Turkey, with description of four new species. Zesz. Nauk. Uniw.Przyr. Wroc., Biol. Hod. Zwierz. 60, 577: 49-61.
- HAITLINGER R. (2012): New records of mites (Acari: Erythraeidae, Microtrombidiidae, Tanaupodidae) from southern Italy, with description of two new species. Pers. J. Acarol. 1: 41-51.
- HAITLINGER R. (2013): First record of *Leptus (Leptus) holgeri* (Acari: Prostigmata: Erythraeidae) from Vietnam, with redescription of the species. Persian J. Acarol. 2: 341-351.
- HAITLINGER R. & D. ŁUPICKI (2013): *Abrolophus anzelmi* nov. sp. (Acari, Prostigmata, Erythraeidae) from Sicily, Italy. Linzer biol. Beitr. **45** (1): 681-687.
- MAKOL J. & A. WOHLTMANN (2012): An annotated checklist of terrestrial Parasitengona (Actinotrichida: Prostigmata) of the world, excluding Trombiculidae and Walchiidae. Ann. Zool. **62**: 359-562.
- WOHLTMANN A. & J. MAKOL (2012): Morphology and life cycle of *Abrolophus norvegicus* (THOR, 1900) with notes on *Abrolophus* spp. (Actinotrichida: Prostigmata: Erythraeidae). Ann. Zool. **62**: 69-97.
- WOHLTMANN A., GABRYŚ G. & J. MĄKOL (2007): Terrestrial Parasitengona inhabiting transient biotopes. In: GERECKE R. (Eds): Süsswasserfauna von Mitteleuropa 7/2-1, Chelicerata, Acari I. Spektrum Elsevier, München [2006]: 158-240.

576

Authors' addresses: Prof. Dr. Ryszard HAITLINGER

Institute of Biology, Department of Invertebrate Systematics and

Ecology

Wrocław University of Environmental and Life Sciences

Kożuchowska 5B

PL-51-631 Wrocław, Poland

E-mail: ryszard.haitlinger@up.wroc.pl

Dr. Dariusz ŁUPICKI

Wrocław University of Environmental and Life Sciences

Museum of Natural History

Chełmońskiego 38D

PL-51-630 Wrocław, Poland

E-mail: dariusz.lupicki@up.wroc.pl

Table 1. Metric data for *Abrolophus silesiacus* (HAITLINGER, 1986) **(1)**. *A. kotorensis* (HAITLINGER, 2007) (= A. silesiacus) **(2)** and A. amilberti (HAITLINGER, 2010) (= A. silesiacus) **(3)**. H – holotype, N – neotype, P – other specimens.

	1 N	1 P n=34	2 n=20	3 n=12	Range			
II	658	288-790	385-814	413-711	288-814			
IW	415	203-489	279-580	241-438	203-580			
L	82	70-89	68-83	68-80	68-89			
W	63	60-74	56-68	56-64	56-74			
AW	43	37-51	36-45	38-40	36-51			
PW	59	51-66	50-60	48-56	48-66			
AA	15	12-17	11-15	8-12	8-17			
SB	13	12-16	12-15	10-12	10-16			
ISD	57	53-65	45-58	48-54	45-65			
AP	33	30-40	26-36	28-36	26-40			
AL	37	33-43	23-34	28-34	23-43			
PL	44	37-49	31-41	36-42	31-49			
ASE	34	30-36	17-38	24-32	17-38			
PSE	72	63-80	40-77	45-70	40-80			
GL	117	108-125	98-117	98-110	98-125			
DS	24-66	23-79	19-66	24-64	19-79			
PsFd	53	46-55	38-46	38-52	38-55			
PsGd	34	25-41	21-33		21-41			
1a	34	31-46	24-39	26-40	24-46			
2a	-	31-43	27-38		27-43			
3a	30	30-41	20-35		20-41			
1b	48	40-61	36-50	40-52	36-61			
2b	34	32-44	26-37	24-32	24-44			
3b	37	31-43	24-40	28-36	24-43			
Ta I	62	61-73	54-67	52-64	52-73			
Ti I	75	73-84	63-75	70-82	63-84			
Ge I	80	75-87	64-77	70-80	64-87			
Tf I	38	34-44	28-40	30-40	28-44			
Bf I	46	46-59	38-53	44-48	38-59			
Tr I	47	39-51	32-47	36-44	32-51			
Cx I	65	60-87	54-68	50-58	50-87			

	1 N	1 P n=34	2 n=20	3 n=12	Range
Ta II	54	55-64	48-59	46-54	46-64
Ti II	64	64-74	54-68	58-72	54-74
Ge II	67	63-72	52-64	64-70	52-72
Tf II	29	29-39	24-43	30-38	24-43
Bf II	40	36-49	34-44	32-52	32-52
Tr II	43	40-51	36-45	38-42	36- 51
Cx II	73	70-87	58-80	60-68	58-87
Ta III	55	55-64	44-59	52-60	44-64
Ti III	87	86-98	70-92	88-104	70-104
Ge III	77	76-88	62-76	72-82	62-88
Tf III	43	38-49	32-45	38-44	32-49
Bf III	46	45-58	36-50	42-56	36-58
Tr III	50	44-55	40-48	38-50	38-55
Cx III	77	66-82	64-78	56-68	56-82
OD	21	21-25	13-19		13-25
Prd (L)	7	9-14	7-10		7-14
Prd (W)	4	4-5	3-5		3-5
PaFe (L)	59	50-62	43-52		43-62
PaFe (W)	38	35-45	27-38		27-45
PaGe (L)	24	21-26	20-25		20-26
PaGe (W)	30	24-32	25-29		24-32
cs	22	12-27			12-27
bs	44	33-59			33-59
as I	9	7-14			7-14
as2	14	18-27			14-27
Leg I	413	401-453	344-408		344-453
Leg II	370	375-413	312-388		312-413
Leg III	435	422-475	360-450		360-475
IP	1218	1209-1334	1026-1231		1026-1334

Table 2. **(1)** Some differences between *Abrolophus dagmarae* (HAITLINGER, 2012) and **(2)** *A. norvegicus* (THOR, 1900).

	1	2		1	2
PL	34-42	44-63•	as2	19-33	34-60•
ISD	40-52	51-72	ASE	22-29	30-50
GL	97-118	120-154	PaFe (W)	27-48	49-66
L	58-67	68-88•	PaGe (W)	25-31	32-42
OD	11-15	18-33•	PaTi (W)	16-17	18-25
SB	10-16	16-21			

^{• -} after WOHLTMANN & MAKOL (2012) and own data

 $\textbf{Table 3.} \ \, \textbf{Metric data for } A. \ \, \textit{dagmarae} \ \, \textbf{from Sicily, 1-holotype, 2-other specimens, 3-Madeira (3n), 4-A.} \ \, \textit{norvegicus-Sicily}$

	1	2 n=9	3 n=3	Range	4 n=1			
IL	832	368-502	353-572	353-832	638			
IW	476	216-318	227-358	216-476	446			
L	62	58-67	63-67	58-67	81			
W	72	60-69	66-69	60-72	81			
AW	48	39-42	43-46	39-48	40			
PW	66	57-60	60-64	57-66	68			
AA	13	10-13	11-15	10-15	16			
SB	13	10-16	14-15	10-16	18			
ISD	52	40-51	47-49	40-52	57			
AP	16	14-18	18-22	14-22	18			
AL	32	31-33	25-29	25-33	36			
PL	36	34-42	37-42	34-42				
ASE	23	22	24-29	22-29	37			
PSE	56	54-61	52-59	52-61	56			
GL	110	102-118	101-104	101-118	124			
DS	33-40	28-44	27-53	27-53	47-56			
PsFd	33	36-39	37-38	33-39	39			
PsGd	31	29-33	29-31	29-33	30			
1a	38	29-34	29-30	29-38	38			
2 <i>a</i>		28-34	30-32	28-34	38			
3a		24-30	27-31	24-31	36			
1b	46	48-62	53-57	46-62	57			
2b		31-34	27-31	27-34	-49			
3b		25-30	27-31	25-31	36			
Ta I	70	56-66	63-71	56-71	65			
Ti I	70	57-66	63-72	57-72	76			

	1	2 n=9	3 n=3	Range	4 n=1		
Ge I	63	62-70	65-71	62-71	73		
Tf I	32	28-34	33-36	28-36	36		
Bf I	46	39-41	49-51	39-51	45		
Tr I	39	36-42	37-41	36-42	42		
Cx I	52	48-58	53-63	48-63	50		
Ta II	59	52-58	55-58	52-59	69		
Ti II	59	52-64	60-67	52-67	74		
Ge II	63	55-65	55-64	55-65	71		
Tf II	28	26-28	30-33	26-33	35		
Bf II	40	36-39	36-41	36-41	46		
Tr II	45	42-43	42-45	42-45	39		
Cx II	68	58-68	68-74	58-74	67		
Ta III	61	53-58	55-61	53-61	64		
Ti III	87	74-92	85-94	74-94	76		
Ge III	75	67-74	69-77	67-77	67		
Tf III	39	38-44	39-42	38-44	31		
Bf III	45	40-46	44-46	40-46	51		
Tr III	40	42-51	37-48	37-51	34		
Cx III	57	57-64	67-72	57-72	78		
CS	15	11-19	20-22	11-22	20		
bs	40	33-42	43-49	33-49	44		
as1	10	9-11	7-11	7-11	18		
as2	26	27-31	26-33	26-33	27		
elcp	4	4-5	4	4-5			
OD	14	11-15	14-15	11-15	21		
Prd (L)	8	7-11	8-11	7-11	12		
Prd (W)	10	8-11	10-11	8-11	7		
PaFe (L)	60	42-62	51-53	42-62	53		
PaFe (W)	41	27-47	46-48	27-48	49		
PaGe (L)	25	21-27	22-23	21-27	21		
PaGe (W)	29	25-31	32-31	25-31	33		
PaTi (L)	16	15-17	15-16	15-17			
PaTi (W)	17	16-17	17	16-17			
Leg I	372	335-374	367-397	335-397	387		
Leg II	362	327-355	354-374	327-374	401		
Leg III	404	381-416	410-434	381-434	421		
IP	1138	1043-1121	1131-1203	1043-1203	1209		

Table 4. Metric data for Abrolophus anzelmi HAITLINGER & LUPICKI, 2013

	Range				30-38	15-20	82-106	131-156	101-119	54-64	98-02	35-64	61-79	76-91	110-143	86-58	44-57	47-72	46-58	75-95	81-100	167-190	109-132	68-81	27-80	43-72	68-89	563-673	490-610	609-744	
	2				30	15	94	141	101	54	20	35	63	62	110	82	44	47	46	62	81	174	109	89	27	43	LL	263	490	609	
	1	40	23	25	38	20	82	131	107	64	71	47	61	9/	119	98	22	61	46	75	81	167	122	9/	9/	44	89	563	260	634	
	Н						106	156	119	63	98	64	62	91	143	86	53	72	28	95	100	190	132	81	80	72	68	673	610	744	
2013	Character	PaFe(W)	PaGe(L)	PaGe(W)	OD	Prd(L)	TaI	TiI	GeI	TfI	BfI	TrI	CxI	TaII	TiII	GeII	IIJI	BfII	TrII	CxII	TaIII	TiIII	GeIII	TfIII	BfIII	TrIII	CxIII	LegI	LegII	LegIII)
	Range	345-761	230-535	79-87	75-89	43-58	53-68	59-72	22-89	35-40	70-74	45-57	20-29	14	14-17	166-183	35-71	29-51	16-32	125-128	09-69	38-40	61-71	48-59	44-53						
AITLINGER	2	761	513	79		43	53	59		35	74	49	20	14		166	35-50	29			59	38	61		44						
ıs апzеіті н	1	345	230	87	68	52	57	69	89			57	29	14	14	177	45-67	51	32	128	09	40	70	65	51		30	47	44		
or <i>Abrolopn</i> i	Н	745	232	81	75	58	89	72	<i>LL</i>	40	02	45	25	14	17	183	43-71		16	125			71	48	23						
Lable 4. Metric data for Abrolophus anzeimi Haffleinger & Lupicki,	Character	IL	MI	T	W	AW	PW	AL	PL	ASE	PSE	ISD	AP	AA	SB	CF	DS	PsFd	PsGd	Ia	2a	3a	qI	2b	$q\varepsilon$	CS	asI	as2	sq	elcp	