

Pertemuan 7 HIPOTESIS CHI KUADRAT

Dosen: Puji Rahayu Setyaningsih, S.E, M.Ak

STATISTIK NON PARAMETRIK

Statistik yang tidak memerlukan pembuatan asumsi tentang bentuk distribusi atau bebas distribusi sehingga tidak memerlukan asumsi terhadap populasi yang akan diuji.

Statistik Non-Parametrik digunakan apabila:

- 1. Ukuran sample sedemikian kecil sehingga distribusi sampel/populasi tidak mendekati normal dan tidak ada asumsi yang dapat dibuat tentang bentuk distribusi populasi yang menjadi sumber populasi.
- 2. Hasil pengukuran menggunakan data ordinal atau data berperingkat. Data ordinal hanya menyatakan lebih baik, lebih buruk atau sedang, atau bentuk ukuran lainnya. Data ini sama sekali tidak menyatakan ukuran perbedaan.
- 3. Hasil pengukuran menggunakan data nominal. Data nominal hanya merupakan kode dan tidak mempunyai implikasi apa-apa. Jenis kelamin diberikan kode laki-laki dan perempuan, pengkodean tsb tidak berimplikasi lebih rendah atau lebih tinggi, hanya sekedar kode.

CHI KUADRAT

- □ Dibuat oleh Karl Pearson (1899)
- ☐ Sering disebut Pearson's Chi-Square
- Digunakan untuk :
 - Goodness of Fit &
 - Test for Independence
- □ Rumus Umum :

$$X^2 = \sum \frac{(fo - fe)^2}{fe}$$

X²: Nilai Chi Kuadrat

fe: Frekuensi yang diharapkan

fo: Frekuensi yang diperoleh

GOODNESS of FIT

- Uji Goodness of Fit adalah untuk menguji seberapa tepatkah frekuensi yang teramati cocok atau sesuai dengan frekuensi yang diharapkan.
- Uji Goodness of Fit = Uji Kecocokan = Uji Keselarasan = Uji Kebaikan
- Kondisi yang bisa terjadi dalam uji goodness of fit :
 - a. Frekuensi yang diharapkan sama
 - b. Frekuensi yang diharapkan tidak sama.

GOODNESS of FIT

Contoh 1

Para pengamat dan analis berharap akan terjadi peningkatan harga saham secara tajam sekitar 13% pasca pengumuman Pilpres.
Berikut ini hasil perubahan saham 10 Emiten LQ45 sampel yang diambil secara random pada tanggal 21 Juli 2014 (menjelang pengumuman KPU) dan 23 Juli 2014 (setelah pengumuman KPU pada 22 Juli 2014) sebagai berikut :

Dari data tersebut, apakah dapat disimpulkan bahwa prosentase perubahan harga saham adalah sama dengan harapan para analis?

No	Kode	Nama Perusahaan	% Perubahan Harga Saham
1	HRUM	Harum Energy Tbk	-3,27%
2	BBTN	Bank Tabungan Negara (Persero) Tbk	-10,34%
3	INCO	International Nickel Indonesia Tbk	-1,19%
4	TLKM	Telekomunikasi Indonesia (Persero) Tbk	-3,15%
5	EXCL	XL Axiata	-0,92%
6	JSMH	Jasa Marga (Persero) Tbk	-0,39%
7	CPIN	Charoen Pokphand Indonesia Tnl	-0,13%
8	INDF	Indofood Sukses Makmur	0,00%
9	LSIP	PP London Sumatra Indonesia Tbk	-3,83%
10	AALI	Astra Argo Lestari	-0,95%

Langkah-langkah pengujian Goodness Of Fit:

1. Menentukan Hipotesis

Hipotesis nol (Ho)menyatakan bahwa tidak ada perbedaan antara nilai/frekuensi observasi dengan nilai/frekuensi harapan. Hipotesis alternatif (Ha) menyatakan bahwa ada perbedaan antara nilai/frekuensi observasi dengan nilai/frekuensi harapan Pernyataan hipotesis:

Ho: fo = fe Ha: fo \neq fe

2. Menentukan Taraf Nyata dan Nilai Kritis

Nilai kritis dengan menggunakan table distribusi Chi Kuadrat dimana df= n – k. n=sampel; k = variabel

Tabel Chi-Kuadrat

	P												
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001		
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828		
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816		
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266		
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467		
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515		
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458		
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322		
8	1.344	2.180	11.030	13.362	15,507	17.535	18.168	20.090	21.955	24.352	26.124		
9	1.735	2.700	12.242	14.684	16.919	1).023	19.679	21.666	23.589	26.056	27.877		
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588		
11	2.603	3.816	14.631	17.275	19.675	21.920	22.618	24.725	26.757	29.354	31.264		
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.300	30.957	32.909		
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528		
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123		
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697		

Dari soal :
Taraf Nyata = 5%
n = 10
k = 1
Df = n - k = 10-1 = 9
Maka Nilai Kritis (0,05; 9) = 16,919

Langkah-langkah pengujian Goodness Of Fit:

3. Uji Statistik Chi Kuadrat Menggunakan Rumus Pearson

$$X^2 = \sum \frac{(fo - fe)^2}{fe}$$

fo	fe	fo - fe	(fo-fe) ²	(fo-fe) ² /fe
-3,27	13	-16,27	264,71	20,36
-10,34	13	-23,34	544,76	41,90
-1,19	13	-14,19	201,36	15,49
-3,15	13	-16,15	260,82	20,06
-0,92	13	-13,92	193,77	14,91
-0,39	13	-13,39	179,29	13,79
-0,13	13	-13,13	172,40	13,26
00.00	13	-13,00	169,00	13,00
-3,83	13	-16,83	283,25	21,79
-0,95	13	-13,95	194,60	14,97
			X ²	189,53

4. Menentukan Daerah Keputusan Dasar Keputusan : X² hitung ≤ X² kritis → Terima Ho X² hitung > X² kritis → Tolak Ho

5. Menentukan Keputusan X² hitung (=189,53) → X² kritis (=16,919) → Tolak Ho dan Ha diterima.

Jadi terdapat cukup bukti untuk menolak Ho sehingga antara kenyataan yang terjadi dengan harapan analisis adalah tidak sama.

Contoh 2

Struktur Perbankan yang sehat menurut Bank Dunia adalah 20% bank berukuran besar, 40% bank berukuran sedang dan 40% bank berukuran kecil. Dari 33 bank umum yang terdaftar di BEI tahun 2013 menunjukkan terdapat 5 bank berukuran besar dengan asset diatas 200 triliun, 10 bank berukuran sedang dg asset antara 50T – 200T, dan 19 bank ukuran kecil dengan asset dibawah 50T.

Dengan kondisi tersebut, apakah ada keselarasan atau kesesuaian antara harapan bank dunia dengan kondisi nyata di Indonesia ? Taraf nyata 1%

Jawab:

Kategori	Frekuensi (fo)	Harapan (fe)		
Besar	5	20% X 33 = 6,6		
Sedang	10	40% X 33 = 13,2		
Kecil	19	40% X 33 = 13,2		

Langkah-langkah pengujian Goodness Of Fit:

1. Menentukan Hipotesis

Ho → tidak ada perbedaan antara persentase kategori bank dari Bank Dunia dengan di Indonesia.

ightarrow ada perbedaan antara persentase kategori bank dari Bank Dunia dengan di Indonesia.

Pernyataan hipotesis:

Ho: fo = fe Ha: fo \neq fe

2. Menentukan Taraf Nyata dan Nilai Kritis

Nilai kritis dengan menggunakan table distribusi Chi Kuadrat dimana df= n - k. n=sampel; k = variabel

Tabel Chi-Kuadrat

	P												
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001		
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828		
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	0.597	12.429	13.816		
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.343	12.838	14.796	16.266		
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467		
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515		
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458		
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322		
8	1.344	2.180	11.030	13.362	15.507	17.535	18.168	20.090	21.955	24.352	26.124		
9	1.735	2.700	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877		
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588		
11	2.603	3.816	14.631	17.275	19.675	21.920	22.618	24.725	26.757	29.354	31.264		
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.300	30.957	32.909		
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528		
14	4.075	5.629	18.151	21.064	23.685	26.119	26.873	29.141	31.319	34.091	36.123		
15	4.601	6.262	19.311	22.307	24.996	27.488	28.259	30.578	32.801	35.628	37.697		
_													

Dari soal:

Langkah-langkah pengujian Goodness Of Fit:

Uji Statistik Chi Kuadrat Menggunakan Rumus Pearson

$$X^2 = \sum \frac{(fo - fe)^2}{fe}$$

fo	fe	fo - fe	(fo-fe) ²	(fo-fe) ² /fe
5	6,6	-1,60	2,56	0,39
10	13,2	-3,20	10,24	0,78
19	13,2	5,80	33,64	2,55
			χ²	3,71

Menentukan Daerah Keputusan
 Dasar Keputusan :
 X² hitung ≤ X² kritis → Terima Ho

 X^2 hitung > X^2 kritis \rightarrow Tolak Ho

5. Menentukan Keputusan X² hitung (=3,71) ≤ X² kritis (=9,21) → Terima Ho dan Ha ditolak. Jadi terdapat cukup bukti untuk menerima Ho sehingga harapan bank dunia dengan kondisi perbankan di Indonesia sudah sesuai atau sama

CHI KUADRAT untuk UJI NORMALITAS

Langkah-langkah menentukan Uji Normalitas dengan Chi-Square

- 1. Membuat distribusi frekuensi
- Menentukan nilai rata-rata hitung dan standar deviasi () dengan menggunakan data berkelompok.
- 3. Menentukan nila Z dari setiap kelas, dimana Z = $(X-\mu)/\sigma$
- 4. Menentukan probabilitas setiap kelas dengan menggunakan nilai Z
- 5. Menentukan Nilai Harapan dengan mengalikan nilai probabilitas dengan jumlah data
- 6. Melakukan uji chi-square untuk menentukan apakah suatu distribusi bersifat normal atau tidak.

Contoh 3
Berikut adalah data ROA (% laba terhadap asset) bank umum yang terdaftar di BEI tahun 2013.
Dari data tersebut, ujilah apakah ROA tersebut mengikuti distribusi normal.

No	Nama Bank	ROA
1	Bank Artha Graha Int'l tbk	0,943
2	Bank Bukopin Tnk	1,067
3	Bank Bumi Arta Tbk	1,180
4	Bank Capital Indonesia Tbk	0,894
5	Bank Centra Asia Tbk	2,127
6	Bank CIMB Niaga Tbk	0,495
7	Bank Danamon Indonesia Tbk	1,786
8	Bank Ekonomi Raharja Tbk	0,658
9	Bank Himpunan Saudara 1906 Tbk	1,213
10	Bank ICB Bumiputera Tbk	0,040
11	Bak International Indonesia Tbk	0,860
12	Bank Mandiri (Persero) Tbk	1,896
13	Bank Maspion Indonesia Tbk	0,586
14	Bank Mayapada International Tbk	1,663
15	Bank Mega Tbk	0,649
16	Bank Mestika Dharma Tbk	3,334

No	Nama Bank	ROA
17	Bank Mitraniaga Tbk	0,179
18	Bank Nationalnobu Tbk	0,232
19	Bank Negara Indonesia (Persero) Tbk	1,804
20	Bank Nusantara Parahyangan Tbk	0,767
21	Bank OCBC NISP Tbk	0,946
22	Bank Pan Indonesia Tbk	1,258
23	Bank Permata Tbk	0,856
24	Bank Pundi Indonesia Tbk	0,098
25	Bank ONB Kesawan Tbk	-0,459
26	Bank Rakyat Indonesia (Persero) Tbk	2,630
27	Bank Rakyat Indonesia Agroniaga TBI	1,100
28	Bank Sinarmas Tbk	0,973
29	Bank Tabungan Negara (Persero) Tbk	0,857
30	Bank Tabungan Pensiunan Nasional Tbk	2,699
31	Bank Victoria Internatioanal Tbk	1,266
32	Bank Windu Kencana International Tbk	1,080

1. Membuat Distribusi Frekuensi

No	Interval Kelas			Frekuensi (fo)	Nilai Tengah Kelas
1	-0,459	-	0,172	3	-0,144
2	0,173	-	0,805	7	0,489
3	0,806	-	1,438	14	1,122
4	1,439	-	2,071	4	1,755
5	2,072	-	2,704	3	2,388
6	2,705	-	3,337	1	3,021

2. Menentukan nilai rata-rata hitung dan standar deviasi data kelompok

No	Inte	vall	Kelas	f	х	fX	X - X	(X - "X")²	f (X ⁻) ²
1	-0,459	-	0,172	3	-0,144	-0,431	-1,266	1,602	4,805
2	0,173	-	0,805	7	0,489	3,423	-0,633	0,401	2,805
3	0,806	-	1,438	14	1,122	15,708	0,000	0,000	0,000
4	1,439	-	2,071	4	1,755	7,020	0,633	0,401	1,603
5	2,072	-	2,704	3	2,388	7,164	1,266	1,603	4,808
6	2,705	-	3,337	1	3,021	3,021	1,899	3,606	3,606
					Σ	35,906	1,899	7,612	17,627
									•

 $\bar{X} = fx / n$

$$S = \sqrt{\left| \frac{\sum f(X - \bar{X})^2}{n - 1} \right|}$$

$$S = \sqrt{\left| \frac{17,627}{32 - 1} \right|} = 0,754$$

3. Menentukan Nilai Z dari setiap kelas

$$Z = \frac{X - \mu}{\sigma}$$

No	х	μ	σ	Z
1	-0,459	1,122	0,754	-2,097
2	0,172	1,122	0,754	-1,260
3	0,173	1,122	0,754	-1,259
4	0,805	1,122	0,754	-0,420
5	0,806	1,122	0,754	-0,419
6	1,438	1,122	0,754	0,419
7	1,439	1,122	0,754	0,420
8	2,071	1,122	0,754	1,259
9	2,072	1,122	0,754	1,260
10	2,704	1,122	0,754	2,098
11	2,705	1,122	0,754	2,099
12	3,337	1,122	0,754	2,938

4. Menentukan Probabilitas setiap kelas dengan menggunakan nilai Z.

No	Interval Kelas							
1	-0,459	-	0,172					
2	0,173	-	0,805					
3	0,806	-	1,438					
4	1,439	-	2,071					
5	2,072	-	2,704					
6	2,705	-	3,337					

No	z	Probabilitas				
1	-2,097	0,5 - 0,4817	=	0,018		
2	-1,260	0,5 - 0,3962	=	0,104		
3	-1,259	0,5 - 0,3944	=	0,106		
4	-0,420	0,5 - 0,1628	=	0,337		
5	-0,419	0,5 - 0,1591	=	0,341		
6	0,419	0,5 - 0,1591	=	0,341		
7	0,420	0,5 - 0,1628	=	0,337		
8	1,259	0,5 - 0,3944	=	0,106		
9	1,260	0,5 - 0,3962	=	0,104		
10	2,098	0,5 - 0,4817	=	0,018		
11	2,099	0,5 - 0,4817	=	0,018		
12	2,938	0,5 - 0,4817	=	0,018		

4. Menentukan Probabilitas setiap kelas dengan menggunakan nilai Z.

No	Interval Kelas	Kisaran Z	Kisaran Probabilitas	Nilai Probabilitas Harapan	
1	-0,459 - 0,172	-2,097 - (-1,26)	0,104 - 0,018	0,086	
2	0,173 - 0,805	-1,259 - (-0,420)	0,337 - 0,106	0,231	
3	0,806 - 1,438	-0,419 - 0,419	0,159 + 0,159	0,318	
4	1,439 - 2,071	0,420 - 1,259	0,337 - 0,106	0,231	
5	2,072 - 2,704	2,098 - 1,260	0,104 - 0,018	0,086	
6	2,705 - 3,337	2,938 - 2,099	0,018 - 0,001	0,017	

No	х	Z	Probabilitas		
1	-0,459	-2,097	0,5 - 0,4817	=	0,018
2	0,172	-1,260	0,5 - 0,3962	=	0,104
3	0,173	-1,259	0,5 - 0,3944	=	0,106
4	0,805	-0,420	0,5 - 0,1628	=	0,337
5	0,806	-0,419	0,5 - 0,1591	=	0,341
6	1,438	0,419	0,5 - 0,1591	=	0,341
7	1,439	0,420	0,5 - 0,1628	=	0,337
8	2,071	1,259	0,5 - 0,3944	=	0,106
9	2,072	1,260	0,5 - 0,3962	=	0,104
10	2,704	2,098	0,5 - 0,4817	=	0,018
11	2,705	2,099	0,5 - 0,4817	=	0,018
12	3,337	2,938	0,5 - 0,4988	=	0,001

5. Menentukan Nilai Harapan dengan mengalikan nilai probabilitas dengan jumlah data

No	Interval Kelas	fo	Nilai Probabilitas Harapan	fe
1	-0,459 - 0,172	3	0,086	0,086 X 32 = 2,752
2	0,173 - 0,805	7	0,231	0,231 X 32 = 7,392
3	0,806 - 1,438	14	0,318	0,318 X 32 = 10,176
4	1,439 - 2,071	4	0,231	0,231 X 32 = 7,392
5	2,072 - 2,704	3	0,086	0,086 X 32 = 2,752
6	2,705 - 3,337	1	0,017	0,017 X 32 = 0,544

6. Menentukan Uji Chi-Square

a. Menentukan Hipotesis

Ho: Tidak ada beda antara frekuensi yang diharapkan dengan yang teramati dari ROA

Ha: Ada beda antara frekuensi yang diharapkan der Tabel Chi-Kuadrat

b. Menentukan Nilai Kritis

$$df = n - 1 = 6 - 1 = 5$$

Taraf nyata 5%

maka Nilai Kritis (0,05; 5) = 11,070

	P										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.690	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
9	1 344	2 180	11 030	13 362	15 507	17 535	18 168	20.090	21 955	24 352	26 124

6. Menentukan Uji Chi-Square

c. Menghitung nilai chi-square $X^2 = \Sigma \frac{(fo - fe)^2}{fe}$

fo	fe	(fo-fe)	(fo-fe) ²	(fo-fe) ² /fe
3	2,752	0,248	0,062	0,022
7	7,392	(0,392)	0,154	0,021
14	10,176	3,824	14,623	1,437
4	7,392	(3,392)	11,506	1,557
3	2,752	0,248	0,062	0,022
1	0,544	0,456	0,208	0,382
32	31,008	0,992	26,613	3,441

$$X^{2} = \Sigma \frac{(fo - fe)^{2}}{fe}$$
$$X^{2} = 3,441$$

d. Menentukan Daerah Keputusan

e. Menentukan Keputusan

Dasar Keputusan:

 X^2 hitung $\leq X^2$ kritis \rightarrow Terima Ho

 X^2 hitung > X^2 kritis \rightarrow Tolak Ho

Maka:

 X^2 hitung (=3,441) $\leq X^2$ kritis (=11,070) \rightarrow Menerima Ho.

Artinya tidak ada perbedaan antara frekuensi harapan dan kenyataan ROA Bank

