Departamento de Física Universidade de Aveiro

Modelação de Sistemas Físicos

5ª aula Prática

Sumário:

Realização e resolução de problemas sobre:

- Vetores

Bibliografia:

Problemas cap 3

- 1. Um vetor a 2 dimensões tem as coordenadas (3, 4).
- a) Qual a sua intensidade ou comprimento?
- b) Qual o vetor unitário correspondente?
- c) Qual o vetor 2×(3, 4)? Qual o seu comprimento ou módulo?
- **2**. Dois vetores são (1, 2) e (-2, 3). Qual o seu produto escalar e qual o ângulo entre os dois vetores?
- **3.** Dois vetores são (1, 2) e (-2, 1). Qual o seu produto escalar e qual o ângulo entre os dois vetores?
- **4.** Encontre um vetor perpendicular ao vetor (3, 4), no espaço a 2D. Note que o produto escalar de dois vetores perpendiculares é nulo.
- **5.** Duas forças aplicadas a um corpo de massa 2 kg, são (2,0; 1,2) N e (-3,0; 5,1) N. Calcule a força resultante. Qual a sua intensidade?
- **6.** Uma força de intensidade 6,0 N e de coordenada $F_{\chi}=2,0$ N, qual a sua coordenada segundo OY?

Problemas cap 3

- **7.** Uma força tem como coordenada segundo OX $F_{\chi}=2.0$ N e faz um ângulo de 60º com o eixo dos OX. Qual a intensidade (ou módulo) da força?
- **8.** Uma força de intensidade $|\vec{F}| = 2.00$ N faz um ângulo θ com o eixo positivo OX. Quais as coordenadas (F_χ, F_ν) da força, quando o ângulo for:
- a) $\theta = \pi/2$
- b) $\theta = -\pi/6$
- c) $\theta = 60^{\circ}$
- d) $\theta = 120^{\circ}$
- e) $\theta = 3\pi/2$
- f) $\theta = -7\pi/6$
- g) $\theta = 310^{\circ}$
- h) $\theta = 240^{\circ}$
- **9.** Uma força de intensidade $|\vec{F}| = 10.0$ N. Quais as coordenadas (F_x, F_y) da força, quando o ângulo for:
- a) 30° com a parte positiva do eixo OX
- b) 10° com a parte positiva do eixo OY
- c) 30° com a parte negativa do eixo OX

Problemas cap 3

- **16.** A lei do movimento de um objeto de massa 1 kg é $\vec{r} = (2t, t, 0)$ m.
- a) Calcule a lei da velocidade.
- b) Calcule o momento angular definido por $\vec{L} = \vec{r} \times (m\vec{v})$.

19. Uma bola de futebol é pontapeada de modo que roda sobre si própria, o que resulta adicionar a força de Magnus às outras forças. A força de Magnus resulta de o escoamento do ar ser diferente nos dois lados opostos da bola. Se a rotação for descrita pelo vetor $\vec{\omega}=(0,0,10)$ rad/s e a velocidade for $\vec{v}=(0,1,0)$ m/s, qual a força de Magnus, se for definida por $\vec{F}_{Magnus}=\frac{1}{2}A~\rho_{ar}~r~\vec{\omega}\times\vec{v}$, em que $A=\pi r^2$ é a área da secção de corte da bola, r o raio da bola e $\rho_{ar}=1.225~{\rm kg/m^3}$ a massa volúmica do ar. O raio da bola de futebol é 11 cm.