STUDY AND LEARNING CENTRE

www.rmit.edu.au/studyandlearningcentre

STUDY TIPS

FA1.3: FACTORISATION: COMPLETING THE SQUARE

A quadratic expression may be factorised by the method of "completing the square".

A perfect square is of the form

$$(x+b)^2 = x^2 + 2bx + b^2$$

The first two terms of the right-hand side of the above equation are $(x^2 + 2bx)$. To make a perfect square or to complete the square on $x^2 + 2bx$, the third term, b^2 must be added. Note that b^2 = (half the coefficient of x)².

Examples

To complete the square on $x^2 + 6x$ add (half of 6)², = $3^2 = 9$ $x^2 + 6x$ are the first two terms of the complete square $x^2 + 6x + 9$

To complete the square on $x^2 + 5x$ add (half of 5)², $= \left(\frac{5}{2}\right)^2$

 $x^2 + 5x$ are the first two terms of the complete square $x^2 + 5x + \left(\frac{5}{2}\right)^2$

To complete the square on $x^2 - 10x$ add (half of 10)², = $5^2 = 25$

 x^2-10x are the first two terms of the complete square $x^2-10x+25$

Expressions of the form $x^2 + bx + c$ can be factorised by completing the square on the first two terms and rewriting the expression in the form

$$\left[\left(x+\frac{b}{2}\right)^2-m^2\right] \text{ where } m^2=-\left(\frac{b}{2}\right)^2+c$$

The DOTS rule can then be used to factorise the expression.

Examples

Factorise by the method of completing the square

1.
$$x^2 + 8x - 5$$
:

$$x^{2}+8x-5=(x^{2}+8x+16)-16-5$$
$$=(x+4)^{2}-21$$

$$=(x+4)^2-(\sqrt{21})^2$$

$$x^{2} + 8x - 5 = (x + 4 + \sqrt{21})(x + 4 - \sqrt{21})$$

Halve the coefficient of x (8/2) = 4Square the result $4^2 = 16$

Add and subtract 16. (This does not change the expression)

Simplify

$$x^{2} + 8x + 16 = (x+4)^{2}$$
$$-16 - 5 = -21$$

Write as the difference of two squares.

factorise using 'DOTS'

2.
$$x^2 - 6x - 4$$

$$x^{2}-6x-4=(x^{2}-6x+9)-9-4$$

$$=(x-3)^{2}-13$$

$$=(x-3)^{2}-(\sqrt{13})^{2}$$

$$x^{2}-6x-4=(x-3+\sqrt{13})(x-3-\sqrt{13})$$

Halve the coefficient of x. (6/2) = 3Square the result $3^2 = 9$ Add and subtract 9

 $x^2 - 6x + 9 = (x - 3)^2$. -16 - 4 = -21

Write as the difference of two squares.

factorise using 'DOTS'

See Exercise 1

If the coefficient of x^2 is not 1, remove the coefficient as a common factor and then factorise by completing the square.

3. $2x^2 - 10x + 2$

$$2x^{2} - 10x + 2 = 2(x^{2} - 5x + 1)$$

$$= 2\left[\left(x^{2} - 5x + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + 1\right)\right]$$

$$= 2\left[\left(x - \frac{5}{2}\right)^{2} - \frac{25}{4} + \frac{4}{4}\right]$$

$$= 2\left[\left(x - \frac{5}{2}\right)^{2} - \frac{21}{4}\right]$$

$$= 2\left[\left(x - \frac{5}{2}\right)^{2} - \left(\frac{\sqrt{21}}{2}\right)^{2}\right]$$

$$= 2\left[\left(x - \frac{5}{2} + \frac{\sqrt{21}}{2}\right)\left(x - \frac{5}{2} - \frac{\sqrt{21}}{2}\right)\right]$$

Remove the common factor of 2

Proceed as in example 1
Halve the coefficient of x
Square the result, then add and subtract the answer.

$$+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2$$

simplify

write as difference of two squares

factorise using DOTS

See Exercise 2

Exercises

Exercise 1

Factorise by completing the square (if possible).

(a)
$$x^2 + 6x - 5$$

(b)
$$x^2 + 4x + 2$$

(c)
$$a^2 - 8a - 2$$

(d)
$$x^2 + 6x + 10$$

(e)
$$x^2 - 5x + 5$$

(f)
$$y^2 + 3y + 4$$

(g)
$$a^2 - 5a - 1$$

Exercise 2

(a)
$$4x^2 + 8x - 20$$

(b)
$$x^2 - 6x + 2$$

(c)
$$12-4x-2x^2$$

Answers

Exercise 1

(a).
$$(x+3+\sqrt{14})(x+3-\sqrt{14})$$
 (b) $(x+2+\sqrt{2})(x+2-\sqrt{2})$ (c) $(a-4+3\sqrt{2})(x-4-3\sqrt{2})$

(d) no real factors (e).
$$\left(x - \frac{5}{2} + \frac{\sqrt{5}}{2}\right) \left(x - \frac{5}{2} - \frac{\sqrt{5}}{2}\right)$$
 (f) no real factors (g)
$$\left(a - \frac{5}{2} + \frac{\sqrt{29}}{2}\right) \left(a - \frac{5}{2} - \frac{\sqrt{29}}{2}\right)$$

Exercise 2

(a)
$$4(x+1+\sqrt{6})(x+1-\sqrt{6})$$
 (b) $(x-3+\sqrt{7})(x-3-\sqrt{7})$ (c) $-2(x+1+\sqrt{7})(x+1-\sqrt{7})$