YUAN CHEN

PERSONAL DATA

ADDRESS: Phillips Hall, Room 704, 801 22nd Street NW, WA, DC 20052.

EMAIL: yuan_chen@gwu.edu WEB-PAGE: www.iamyuanchen.xyz

EDUCATION

June 2021 | The George Washington University

M.S. in Statistics, GPA: 4.0/4.0

Certification: Graduate Teaching Assistant Certificate

Course Work: Mathematical Statistics I, Mathematical Statistics II, Regression Analysis, Longitudinal Data Analysis, Survival Analysis, Ph.D. Level: Stochastic Process, (Modern) Probability, Advanced Statistical

Theory I, Martingale and Topic in Probability

June 2021 | The George Washington University

Cert. in Mathematics, GPA: 4.0/4.0

Course Work: Real Analysis, Measure Theory and Integration, Numerical Analysis (Graduate), (Modern) Partial Differential Equations (*University of Maryland*), Functional Analysis, Numerical Methods for Partial Differential Equations, Combinatorics, The Finite Element Method for Problems in Physics (Coursera)

June 2019 | Hohai University

B.E. in Environmental Science, GPA: 90.7/100; Rank: the 1st place

Course Work: Calculus I & II, Linear Algebra, Hydraulics, Data and Analysis, Machine Learning, Environmental Hydraulics, Geographical Information System, Bayesian Statistics I & II (Coursera), Practical Time Series Analysis (Coursera)

RESEARCH INTERESTS

- 1. Numerical Methods for Partial Differential Eq.s: Finite Element Method
- 2. Stochastic Methods for Partial Differential Eq.s: Deep Ritz Method, Monte Carlo Method
- 3. Interface problems: Partial Differential Eq.s with discontinuities coefficients across 'interfaces'
- 4. Immersed Finite Element Method (IFEM) for interface problems
- 5. Applications of statistics and economics on environmental problems

PUBLICATIONS

- 5. **Y.** Chen, S. Hou, and X. Zhang. *Error Estimates for a Partially Penalized Immersed Finite Element Method for Elastodynamic Interface Problems*, (2021+), preprint.
- 4. Y. Chen, H. Wang, H. Yan, D. Liang, X. He, and R. Li. A Novel View to Understand the Spatiotemporal Variation of Nutrients in Urban River Networks from Energy Scale, (2021+), under review.
- 3. Y. Chen and X. Zhang. A \mathcal{P}_2 - \mathcal{P}_1 Partially Penalized Immersed Finite Element Method for Stokes Interface Problem Based on a Least Square Construction, Int. J. Numer. Anal. Mod., 18(2021), no. 1, 120-141.
- 2. Y. Chen, S. Hou, and X. Zhang. A Bilinear Partially Penalized Immersed Finite Element Method for Elliptic Interface Problems with Multi-domains and Triple Junction Points, Results Appl. Math., 8(2020), 100100.
- 1. Y. Chen, S. Hou, and X. Zhang. *An Immersed Finite Element Method for Elliptic Interface Problems with Multi-domain and Triple Junction Points*, Adv. Appl. Math. Mech., 11(2019), no. 5, 1005-1021.

TALKS AND POSTERS

- 2. Immersed Finite Element Methods for Interface Problems with Multi-Domains and Triple-Junction Points. **GW Research Day**, The George Washington University, D.C. (April 2020, Online).
- 1. Immersed Finite Element Methods for Interface Problems with Multi-Domains and Triple-Junction Points. **AMS Southeastern Sectional Meeting**, University of Virginia, VA (March 2020, Cancelled).

TEACHING EXPERIENCES

Fall 2020

MATH 1051, Teaching Assistant, GWU

Assisting Professor Michael F. Moses in course MATH 1051: Finite Math for the Social and Management Sciences. Lead three Recitation sessions (20 people each) every week and hold regular office hour.

RESEARCH EXPERIENCES

Present

Research on High Order IFEM for Stokes Interface Problem on Actual Interface

Advised by Prof. Xu Zhang

- Constructed an immersed Taylor-Hood \mathcal{P}_2 - \mathcal{P}_1 finite element space according to actual interface using least square construction for stokes interface problems
- Tested approximation capability of the space on numerical examples, both velocity and pressure showed optimal order convergence in L₂ and semi-H₁ norm under moderate and high contrast
- Designed a weak formulation with penalty terms. Extra ghost penalty terms are added to stabilize the scheme, validated optimal convergence rate of this scheme on numerical examples.
- · Vectorized program of proposed method, speed up CPU time significantly by NumPy in Python

May 2020

Research on Time-dependent Elasticity Interface Problem

Co-advised by Prof. Xu Zhang and Prof. Songming Hou

- Designed a fully discrete scheme for time-dependent elasticity interface problems based on Partially Penalized Immersed Finite Element Method (PPIFEM)
- Implemented multi-processing programs to verify the proposed scheme on numerical examples, showed optimal order convergence in L₂ and semi-H₁ norm using NumPy, SciPy package in Python
- Proved the unconditional stability for Symmetric case. Completed a-priori error estimation for proposed scheme: proved the optimal convergence of numerical solution in energy norm and \mathbf{L}^2 norm under the standard piecewise H^2 regularity assumption of exact solution

Nov. 2019

Improved Research on Multi-domain Elliptic Interface Problem

Advised by Prof. Songming Hou

- Constructed new bilienar IFE functions on elements intersected with multiple interfaces or with triple-junction points to accommodate interface jump conditions.
- Enriched the local approximating spaces by adding up to three local flux basis functions. Verified the Lagrange interpolations converge optimally in L_2 , semi- H_1 norm with numerical examples
- · Designed a weak formulation with additional penalty terms on both element edges and interface
- Tested optimal order convergence rate of partial penalized IFEM solutions in L_2 , semi- H_1 norm without deterioration

Nov. 2018

Research on Multi-domain Elliptic Interface Problem

Advised by Prof. Songming Hou

- Established a immersed finite element space by modifying local basis functions to accommodate interface conditions with multi-domains and triple-junction points
- Enriched proposed space by adding local flux basis functions to handle with the non-homogeneous flux jump interface condition. Verified the Lagrange interpolations converge optimally in L_2 , semi- H_1 norm with numerical examples
- Implemented proposed method on three numerical examples using NumPy package in Python to show the optimal order convergence of IFE solutions in L_2 and semi- H_1 norm

SCHOLARSHIPS & CERTIFICATES

GWU Department of Mathematics Award of Graduate Assistantship	2020
• Hohai University Honored Student Scholarship 2	016, 2018, 2019
Hohai University Science & Technology Innovation Scholarship	2019
• Certificate of Honored Achievement in Bayesian Statistics I & II, Coursera online course by UCSC	2018
• Certificate of Achievement in Practical Time Series Analysis, Coursera online course by SUNY	2018
• 3 rd Prize of China Undergraduate Mathematical Contest in Modeling	2017

SKILLS

Programming C/C++, Python, R, MYSQL, ETeX, VB, MATLAB

Vectorization Python(NumPy), MATLAB

Data Analysis Python (pandas, matplotlib, geopy), R (ggplot, dplyr, tidyr), QGIS, ECHARTS, D3, sas

Sci. Computing Python (NumPy, SciPy, SymPy, multiprocessing), MATLAB, Mathematica

Deep Learning Python (Numpy, PyTorch, TensorFlow)