GIST: Distributed Training for Large-Scale GCNs

Cameron R. Wolfe* Jingkang Yang*, Fangshuo Liao*, Arindam Chowdhury, Chen Dun, Artun Bayer, Santiago Segarra, Anastasios Kyrillidis

*Equal Contribution

CENTRAL QUESTION

GCN on Graph Structured Data:

$$H_{\ell+1} = \sigma\left(\bar{A}H_{\ell}\Theta_{\ell}\right); \quad H_0 = X$$

Current Efficient GCN Training

Our proposal: a novel distributed training framework for large-scale GCNs.

DESIGN ABLATION

Selective Partitioning of Hidden Layers

# Sub-GCNs	$\mid d_0$	d_1	d_2	Cora	Citeseer
Baseline				81.52 ± 0.005	75.02 ± 0.018
2	 ✓	✓	✓	80.00 ± 0.010	75.95 ± 0.007
	✓	\checkmark		78.30 ± 0.011	69.34 ± 0.018
		✓	✓	80.82 ± 0.010	75.82 ± 0.008
4	 ✓	✓	✓	76.78 ± 0.017	70.66 ± 0.011
	✓	\checkmark		66.56 ± 0.061	68.38 ± 0.018
		✓	✓	81.18 ± 0.007	76.21 ± 0.017
8	 ✓	\checkmark	✓	48.32 ± 0.087	45.42 ± 0.092
	✓	\checkmark		53.60 ± 0.020	54.68 ± 0.030
		✓	✓	79.58 ± 0.006	75.39 ± 0.016

Robustness to Local Iterations

Combining GIST with LADIES

L	# Sub-GCNs	GIST + LADIES						
		F1 Score	Time	Speedup				
2	Baseline	89.73	3359.91s	1.00×				
	2	89.29	1834.59s	$1.83 \times$				
	4	88.42	1158.51s	$2.90 \times$				
3	Baseline	89.57	4803.88s	1.00×				
	2	86.52	2635.18s	$1.82 \times$				
	4	86.72	1605.32s	3.00×				

METHODOLOGY

end for

- Disjointly partition model parameters into several sub-GCNs
- Train sub-GCNs independently in parallel
- Aggregate parameters into global model after several training iterations

Algorithm 1 GIST Algorithm **Parameters**: T synchronization iterations, m sub-GCNs ζ local iterations, c clusters, \mathcal{G} training graph. $\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}) \leftarrow \text{randomly initialize GCN}$ $$\begin{split} \{\mathcal{G}_{(j)}\}_{j=1}^{c} \leftarrow \texttt{Cluster}(\mathcal{G}, c) \\ \textbf{for } t = 0, \dots, T-1 \ \textbf{do} \\ \left\{\Psi_{\mathcal{G}}(\,\cdot\,; \boldsymbol{\Theta}^{(i)})\right\}_{i=1}^{m} \leftarrow \texttt{subGCNs}(\Psi_{\mathcal{G}}(\,\cdot\,; \boldsymbol{\Theta}), m) \end{split}$$ Distribute each $\Psi_{\mathcal{G}}(\,\cdot\,;\boldsymbol{\Theta}^{(i)})$ to a different worker for $i = 1, \ldots, m$ do for $z=1,\ldots,\zeta$ do $\Psi_{\mathcal{G}}(\,\cdot\,; \boldsymbol{\Theta}^{(i)}) \leftarrow \mathtt{subTrain}(\boldsymbol{\Theta}^{(i)}, \{\mathcal{G}_{(j)}\}_{j=1}^c)$ end for end for

 $\Psi_{\mathcal{G}}(\,\cdot\,;oldsymbol{\Theta}) \leftarrow \mathtt{subAgg}(\{oldsymbol{\Theta}^{(i)}\}_{i=1}^m)$

Cluster (\cdot, \cdot) : perform graph partitioning (METIS) $subGCNs(\cdot, \cdot): divide GCN into disjoint Sub-GCNs$ $subTrain(\cdot, \cdot): perform independent training$ subAgg (\cdot, \cdot) : copy sub-GCN parameters into model

Communication Complexity

Vanilla: $\mathcal{O}(Md_id_{i-1})$ | Vanilla: $\mathcal{O}(N^2d_i+Nd_id_{i-1})$

Computational Complexity

 $\texttt{GIST}: \quad \mathcal{O}\left(\frac{1}{M}d_id_{i-1}\right) \qquad \middle| \quad \texttt{GIST}: \quad \mathcal{O}\left(\frac{1}{M}N^2d_i + \frac{1}{M^2}Nd_id_{i-1}\right) |$

ULTRA WIDE GCN: GRAPHSAGE+AMAZON2M

L	# Sub-GCNs	F1 Score (Time)								
		$d_i = 400$	$d_i = 4096$	$d_i = 8192$	$d_i = 16384$	$d_i = 32768$				
2	Baseline	89.38 (1.81hr)	90.58 (5.17hr)	OOM	OOM	OOM				
	2	87.48 (1.25hr)	90.09 (1.70hr)	90.87 (2.76hr)	90.94 (9.31hr)	90.91 (32.31hr)				
	4	84.82 (1.11hr)	88.79 (1.13hr)	89.76 (1.49hr)	90.10 (2.24hr)	90.17 (5.16hr)				
	8	82.56 (1.13hr)	87.16 (1.11hr)	88.31 (1.20hr)	88.89 (1.39hr)	89.46 (1.76hr)				
3	Baseline	89.73 (2.32hr)	90.99 (9.52hr)	OOM	OOM	OOM				
	2	87.79 (1.56hr)	90.40 (2.12hr)	90.91 (4.87hr)	91.05 (17.7hr)	OOM				
	4	85.30 (1.37hr)	88.51 (1.42hr)	89.75 (2.07hr)	90.15 (3.44hr)	OOM				
	8	82.84 (1.37hr)	86.12 (1.34hr)	88.38 (1.37hr)	88.67 (1.88hr)	88.66 (2.56hr)				
4	Baseline	89.77 (3.00hr)	91.02 (14.20hr)	OOM	OOM	OOM				
	2	87.75 (1.79hr)	90.36 (2.77hr)	91.08 (6.92hr)	91.09 (26.44hr)	OOM				
	4	85.32 (1.58hr)	88.50 (1.65hr)	89.76 (2.36hr)	90.05 (4.93hr)	OOM				
	8	83.45 (1.56hr)	86.60 (1.55hr)	88.13 (1.61hr)	88.44 (2.30hr)	OOM				

LARGE SCALE EXPERIMENTS

		Reddit Dataset						Amazon2M Dataset					
L	m		GraphSAGE			GAT		GraphSAGE ($d_i = 400$)		GraphSAGE ($d_i = 4096$)			
		F1	Time	Speedup	F1	Time	Speedup	F1	Time	Speedup	F1	Time	Speedup
2	-	96.09	105.78s	1.00×	89.57	1.19hr	1.00×	89.90	1.81hr	1.00×	91.25	5.17hr	1.00×
	2	96.40	70.29s	$1.50 \times$	90.28	0.58hr	$2.05 \times$	88.36	1.25hr	$(1.45\times)$	90.70	1.70hr	$3.05 \times$
	4	96.16	68.88s	$1.54 \times$	90.02	0.31hr	$3.86 \times$	86.33	1.11hr	$(1.63\times)$	89.49	1.13hr	$(4.57\times)$
	8	95.46	76.68s	$1.38 \times$	89.01	0.18hr	$6.70 \times$	84.73	1.13hr	$(1.61\times)$	88.86	1.11hr	$(4.65\times)$
3	-	96.32	118.37s	1.00×	89.25	2.01hr	1.00×	90.36	2.32hr	1.00×	91.51	9.52hr	1.00×
	2	96.36	80.46s	$1.47 \times$	89.63	0.95hr	$2.11 \times$	88.59	1.56hr	$(1.49\times)$	91.12	2.12hr	$4.49 \times$
	4	95.76	78.74s	$1.50 \times$	88.82	0.48hr	$4.19 \times$	86.46	1.37hr	$(1.70\times)$	89.21	1.42hr	$(6.72\times)$
	8	94.39	88.54s	$(1.34\times)$	70.38	0.26hr	$(7.67\times)$	84.76	1.37hr	$(1.69\times)$	86.97	1.34hr	$(7.12\times)$
4	-	96.32	120.74s	1.00×	88.36	2.77hr	1.00×	90.40	3.00hr	1.00×	91.61	14.20hr	1.00×
	2	96.01	91.75s	$1.32 \times$	87.97	1.31hr	$2.11 \times$	88.56	1.79hr	$(1.68\times)$	91.02	2.77hr	$5.13 \times$
	4	95.21	78.74s	$(1.53\times)$	78.42	0.66hr	$(4.21\times)$	87.53	1.58hr	$(1.90\times)$	89.07	1.65hr	$(8.58\times)$
	8	92.75	88.71s	$(1.36\times)$	66.30	0.35hr	$(7.90\times)$	85.32	1.56hr	$(1.93\times)$	87.53	1.55hr	$(9.13\times)$