(Не)рівноскладеність многогранників

Дві фігури будемо називати *рівновеликими*, якщо вони мають однакову площу/об'єм. Дві фігури будемо називати *рівноскладеними*, якщо їх можна розрізати на однаковий набір многокутників/многогранників.

- 1 (Теорема Бойяі Гервіна, 1833). На площині будь-які два рівновеликі многокутники є рівноскладеними.
- 2 (Третя проблема Гільберта, 1900). Чи правда, що у просторі будь-які два рівновеликих многогранники є рівноскладеними?

Функційне рівняння Коші

Функцію $\varphi : \mathbb{R} \to \mathbb{R}$ будемо називати адитивною, якщо вона задовільняє функційному рівнянню Коші: $\varphi(x+y) = \varphi(x) + \varphi(y)$. Очевидно, що будь-яка лінійна функція $\varphi(x) = ax$ є адитивною.

- 3 (Твердження). Для будь-якої адитивної функції справджується:
- 1) $\varphi(x_1 + ... + x_n) = \varphi(x_1) + ... + \varphi(x_n);$
- 2) $\varphi(qx) = q\varphi(x) \ \forall x \in \mathbb{R}, q \in \mathbb{Q}.$
- **4** (Визначення). Базисом Гамеля будемо називати довільний базис лінійного простору \mathbb{R} над полем \mathbb{Q} . Іншими словами, базисом Гамеля будемо називати таку множину $\{r_{\nu}\}\subset\mathbb{R},\ \nu\subset V$ що:
- 1) $\forall x \in \mathbb{R} \ \exists \nu_1, \nu_2, ..., \nu_n \in V, q_1, q_2, ..., q_n \in \mathbb{Q} : x = \sum_{i=1}^n q_i r_{\nu_i}$ (тобто кожне дійсне число можна представити у вигляді лінійної комбінації **скінченної** кількості чисел з $\{r_{\nu}\}$ з раціональними коефіцієнтами);
- 2) для кожного дійсного числа таке представлення єдине.

За будь-яким базисом Гамеля $\{r_{\nu}\}$, $\nu \subset V$ можна побудувати адитивну функцію наступним чином. На базисних елементах функцію визначаємо як завгодно:

 $\varphi(r_{\nu}) = a_{\nu}, \, a_{\nu}$ - довільні;

тоді значення функції для будь-якого дійсного числа x визначається однозначно за його розкладом за базисом:

$$x = \sum_{i=1}^{n} q_{i} r_{\nu_{i}} \Rightarrow \varphi(x) = \varphi(\sum_{i=1}^{n} q_{i} r_{\nu_{i}}) = \sum_{i=1}^{n} q_{i} \varphi(r_{\nu_{i}}) = \sum_{i=1}^{n} q_{i} a_{\nu_{i}}.$$

Очевидно, ця функція буде задовольняти функційному рівнянню Коші та майже ніколи не буде лінійною.

Інваріант Дена

Далі будемо розглядати адитивні функції $\varphi : \mathbb{R} \to \mathbb{R}$, для яких $\varphi(\pi) = 0$. Таких функцій нескінченно багато, бо умова $\varphi(\pi) = 0$ - це лише одне лінійне обмеження на незліченну кількість чисел a_{ν} , які ми могли вибирати як завгодно.

Розглянемо довільний многогранник P. Нехай e - його ребро. Через l(e) будемо позначати довжину ребра e, а через $\alpha(e)$ - двогранний кут при цьому ребрі.

 $\mathbf{5}$ (Визначення). Нехай $\varphi:\mathbb{R} \to \mathbb{R}$ - адитивна, $\varphi(\pi)=0$.

Інваріантом Дена многогранника P будемо називати число $\Delta_{\varphi}(P) = \sum_{e} l(e) \cdot \varphi(\alpha(e)).$

Тобто інваріант Дена залежить від вибору многогранника P та функції φ .

6 (Теорема Дена). Якщо многогранники P_1 і P_2 є рівноскладеними, то \forall адитивної φ : $\varphi(\pi) = 0$ виконується $\Delta_{\varphi}(P_1) = \Delta_{\varphi}(P_2)$.

Доведення

Достатньо довести таке твердження: якщо многогранник P розбитий на многогранники $P_1,...,P_n$, то $\Delta_{\varphi}(P)=\Delta_{\varphi}(P_1)+...+\Delta_{\varphi}(P_n)$.

Доведемо цю формулу. Розглянемо об'єднання усіх ребер многогранників $P_1, ..., P_n$. Ці ребра можуть розбиватися вершинами многогранників на менші відрізочки розбиття. Достатньо перевірити, що кожен такий відрізок дає однаковий вклад у ліву та праву частину рівності, яку ми доводимо. Розглянемо відрізочок розбиття e', який лежить на деякому ребрі e многогранника P. Сума двогранних кутів при ребрі e' многогранників P_i , що містять e' як ребро або частину ребра, рівна двогранному куту многогранника P при ребрі e. Тому такий відрізок розбиття в обидві частини рівності дає вклад $l(e') \cdot \varphi(\alpha(e))$. Будь-який інший відрізок розбиття e'' лежить всередині деякої грані P або всередині P і дає вклад P0 в ліву частину рівності. Сума двогранних кутів при такому відрізочку P0 по усім многогранникам P1, що його містять, дорівнює P1 або P2. Оскільки P3 в обидві частини рівності дає вклад P4.

7 (Приклад). Доведемо, що куб (C) та правильний тетраедр (T) рівного об'єму не є рівноскладеними.

Нехай ребро куба дорівнює a, ребро правильного тетраедра - b, двогранний кут при ребрі куба рівний $\pi/2$, двогранний кут при ребрі тетраедра позначимо за α .

Тоді $\Delta_{\varphi}(C) = 12a\varphi(\pi/2) = 0.$ $\Delta_{\varphi}(T) = 6b\varphi(\alpha).$

8 (Tвердження). α/π - ірраціональне (можна переконатись, що $\alpha = \arccos\frac{1}{3}$, далі доведення є у Айгнер Циглер "Доказательства из Книги").

Оскільки α/π - ірраціональне, тобто α і π є лінійно незалежними над полем Q, множину $\{\alpha,\pi\}$ можна доповнити до базису Гамеля. Будуючи функцію φ по цьому базису, значення $\varphi(\alpha)$ можна задавати як завгодно (значення функції на інших базисних елементах нас не цікавить). Тому $\Delta_{\varphi}(T)$ в залежості від вибору φ може приймати будь-які значення. Тому за теоремою Дена куб та правильний тетраедр рівного об'єму не є рівноскладеними.

9 (Жан-П'єр Сидлер, критерій рівноскладеності многогранників, 1965). P_1 і P_2 - рівноскладені $\Leftrightarrow V(P_1) = V(P_2)$ і $\forall \varphi$ - адитивна: $\varphi(\pi) = 0$ справджується рівність $\Delta_{\varphi}(P_1) = \Delta_{\varphi}(P_2)$.

Задачі

- 1. Доведіть, що будь-який трикутник можна розрізати на декілька частин, з яких можна скласти прямокутник.
- 2. Знайдіть двогранний кут при ребрі правильного тетраедра.
- 3. Доведіть, що правильний тетраедр зі стороною na не рівноскладений з n^3 правильними тетраедрами зі стороною a.
- 4. Доведіть, що у базисі Гамеля векторного простору ℝ над полем ℚ незліченна кількість елементів.