

Paulo Sérgio Lopes de Souza Grupo de Sist. Distribuídos e Prog. Concorrente Orientador: Prof. Dr. Marcos José Santana

março / 1999

Conteúdo

- Revisão Bibliográfica
- Problemas Encontrados na DPWP
- Propostas para Possíveis Soluções

- Como determinar a carga atual do sistema?
 - Quais fatores determinam a carga?
 - Objetivos: aumentar eficácia e a satisfação
 - O significado de eficácia e satisfação pode variar.

- O índice de carga quantifica a carga do sistema
 - é um valor não negativo que varia proporcionalmente à carga atual do sistema;
 - sinônimos (nomenclatura variada):
 - descritor da carga de trabalho
 - medida da carga de trabalho
 - finalidade: indicar comportamento futuro com base no comportamento atual/passado.

Qualidades/propriedades de um índice de carga: critérios dependem do objetivo do escalonador

de um modo geral:

- 1) capaz de refletir a carga atual de um host;
- 2) capaz de predizer a carga em um futuro próximo
- 3) ser estável, ignorar flutuações de carga (noise)
- 4) estar relacionado com o índice de desempenho do escalonador, para facilitar análises de desempenho.

- Classificação dos índices:
 - baseados no comprimento da fila do recurso
 - baseados no % de utilização do recurso
 - específicos ou genéricos
 - > exemplos:
 - comprimento da fila de CPU
 - % de utilização da CPU
 - % utilização CPU + % ocupação da memória

- Como um índice de carga é obtido e calculado?
 - obtido diretamente no kernel ou por uma aplicação
 - cálculo simples, pouco overhead (custo/benefício)
 - valores instantâneos x valores médios com "refinamentos"

- Fatores que afetam o índice de carga:
 - são vários (hardware, multiusuário, time-sharing, ...)
 - **≻**destaque:
 - classes de software e/ou carga de trabalho.

- Classes de Software:
 - há diversas classificações:(batch, interativas,...)
 - aqui, para simplificar:
 - ► CPU-bound, I/O-bound, balanceadas
 - > afeta diretamente a escolha do índice
 - vários estudos feitos (predizer o uso de recursos)
 - mais informação=>maior qualidade escalonamento
 - essa informação nem sempre está disponível:
 - dificuldade em obtê-la antes ou durante a execução

- Carga de Trabalho
 - o que é a carga trabalho ?
 - seleção das aplicações utilizadas no sistema
 - caracterização da demanda pelos recursos
 - essencial para estudar índices de carga
 - pode ser:
 - real / natural ou sintética / artificial
 - background workload:
 - multiusuário

- Estudo de Ferrari e Zhou (1988)
 - considerou carga de trabalho de vários meses:
 - ➤ VAX-11/780 com Unix 4.3BSD
 - selecionou 30 aplicações mais usadas (tipo e freqüência)
 - construiu "job scripts" com seqüências desses comandos
 - carga de trabalho sintética ou artificial
 - três níveis de scripts: (L)light, (M)moderate e (H)heavy
 - porém estudo foi feito em 6 Sun-2 workstations
 - Escalonador no SO, transparente, sem migração

Caracterização dos níveis da carga de trabalho

Tipo	Utilização da CPU	Comprimento médio Fila CPU
Light (L)	30 – 45 %	0.3 - 0.7
Moderate(M)	60 – 70 %	1.0 - 1.8
Heavy (H)	70 – 85 %	1.8 - 3.0

- Fatores considerados no Estudo de Ferrari:
 - ➤ 1) índices de carga estudados:
 - comprimento da fila de CPU atual
 - comprimento médio da fila de CPU (exponencial)
 - > soma das filas (CPU, paginação/swapping I/O e memória)
 - média de utilização de CPU em um período (T).

valores obtidos diretamente no kernel tamanho instantâneo de cada fila: média de 1s, coletando valores a cada 10ms

- 2) Intervalo T para determinação da média:
 - usado para o refinamento exponencial
 - comprimento das filas dos recursos
 - utilização média dos recursos
- 3) Carga de Trabalho:
 - carga de trabalho afeta o índice escolhido:
 - ► 6 Sun-2's => 2H, 2M, 2L e 6M
- 4) Intervalo P para atualização da informação:
 - importante em políticas periódicas (local x global)
 - curto : maior overhead
 - ≻longo: informação antiga, < desempenho, instabilidade

Carga de trabalho(2H,2M,2L), P=10s

Índice de Carga	T. de Resposta	Ganho %
sem escalonamento	53.3 +/- 0.83	
fl de CPU	35.0 +/- 0.68	34.4
média fl CPU (T = 1s)	33.8 +/- 0.65	36.6
média fl CPU (T= 4 s)	33.1 +/- 0.39	37.9
média fl CPU+I/O+MEM (T = 4s)	32.2 +/- 0.45	<i>39.6</i>
média fl CPU (T = 20s)	37.0 +/- 1.20	30.6
média fl CPU+I/O+MEM (T=20s)	35.6 +/- 0.12	33.3
média fl CPU (T=60s)	39.7 +/- 1.69	25.5
média fl CPU+I/O+MEM (T = 60s)	40.0 +/- 0.56	25.0
carga média UNIX (T = 60s)	37.2 +/- 0.8 5	30.2
utilização CPU (T = 10 s)	38.5 +/- 2.10	27.8
utilização CPU (T = 60s)	42.9 +/- 1.36	19.5

Carga de trabalho(6M), P=10s

Índice de Carga	T. de Resposta	Ganho %
sem escalonamento	49.5 +/- 0.27	
fl de CPU	42.3 +/- 0.79	14.5
média fl CPU (T= 4 s)	39.9 +/- 0.63	19.4
média fl CPU+I/O+MEM (T = 4s)	36.5 +/- 0.91	26.3
média fl CPU+I/O+MEM (T=20s)	45.2 +/- 0.89	8.7
média fl CPU+I/O+MEM (T = 60s)	47.1 +/- 1.34	4.9
carga média UNIX (T = 60s)	47.9 +/- 1.12	3.2
utilização CPU (T = 10 s)	44.0 +/- 1.97	11.1
utilização CPU (T = 60s)	48.6 +/- 1.34	1.8

Tempo de resposta sob vários períodos P Carga de trabalho: 2H,2M,2L Índice: média fila CPU+I/O+MEM T=4s

- ➤ Fechando...
 - comprovada a importância do índice de carga
 - ► 2H,2M,2L: 19,5 39,6% 6M: 1,8 26,3%
 - índices baseados no comprimento da fila são melhores
 - baseados na média são melhores (evitam oscilações)
 - intervalo T depende de quanto a carga varia
 - ➤ índice específico (ex: fila CPU) tende a ser melhor
 - união de índices não mudou resultado significativamente
 - depende da carga de trabalho e de quanto se sabe sobre ela
 - valores vindos do kernel são mais precisos e melhoram o desempenho

- Fechando...
 - cargas de trabalho diferentes não alteraram resultado
 - ➤ fila CPU+I/O+MEM-4s e Utilização de CPU 60s melhor e pior nos dois casos comparados
 - ➤ intervalo P depende:
 - custos comunicação e da carga de trabalho
 - ➤ informação mais atualizada X overhead
 - outros estudos:
 - possuem diferenças (índices e procedimentos adotados)
 - baseados nas filas dos recursos são melhores

- questões em aberto:
 - heterogeneidade configuracional
 - heterogeneidade arquitetural
 - ➤ limites de saturação
 - como generalizar a determinação da saturação de um host?
 - falhas na comparação:
 - ➤ limitou as classes de software
 - estudar o relacionamento efetivo com as classes de software
 - usou apenas o tempo de resposta médio como objetivo
 - estudar o relacionamento com o índice de desempenho (métrica)