Kirszenberg Alexandre Note: 14.5/20 (score total : 53/72)

+309/1/44+

THLR Contrôle (35 questions), Septembre 2016

Non	n et prénom, lisibles : Identifiant (de haut en bas) :
K	NRSLENBERG 00 01 02 03 04 05 006 07 08 09
A	lexandre.
répon restric de co pénal	Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « \S ». Noircir les case it que cocher. Renseigner les champs d'identité. Les questions marquées par « \S » peuvent avoir plusieur ses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plustive (par exemple s'il est demandé si 0 est nul , $non\ nul$, $positif$, ou $négatif$, cocher nul). Il n'est pas possible rriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrecte isent; les blanches et réponses multiples valent 0 . I'ai lu les instructions et mon sujet est complet: les 5 entêtes sont $+309/1/xx+\cdots+309/5/xx+$. Soit L_1 et L_2 deux langages sur l'alphabet Σ . Si $L_1 \cap \overline{L_2} = \emptyset$ alors $L_1 = L_2 \qquad L_1 \supseteq L_2 \qquad L_1 \subseteq L_2 \qquad L_1 \cap L_2 = \emptyset$ Le langage $\{ \textcircled{B}^n \textcircled{B}^n \textcircled{B}^n \forall n \text{ premier, codable en binaire sur } 64 \text{ bits} \}$ est I fini $ $
Q.5	récursivement énumérable mais pas récursif récursif mais pas récursivement énumérable récursif ni récursivement énumérable ni récursif Que vaut Fact(L) (l'ensemble des facteurs) :
Q .5	
Q.6	Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$
Q.7	Pour toute expression rationnelle e , on a $\varepsilon e \equiv e\varepsilon \equiv e$.
	🗌 faux 📕 vrai
Q.8	Pour toutes expressions rationnelles e , f , on a $(ef)^*e \equiv e(fe)^*$.
Q.0	
	■ vrai ☐ faux
Q.9	Pour $e = (ab)^*$, $f = a^*b^*$:
Q.10	L'expression Perl "([a-zA-Z] \\)+" engendre :
	□ "\"" □ "" ■ "\\\" □ "eol" (eol est le caractère « retour à la ligne »)
Q.11	L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :

Si un automate de n états accepte a^n , alors il accepte. . .

2/2	$a^p(a^q)^*$ avec $p \in \mathbb{N}, q \in \mathbb{N}^*$: $p + q \le n$ \square a^{n+1} \square $a^n a^m$ avec $m \in \mathbb{N}^*$ \square $(a^n)^m$ avec $m \in \mathbb{N}^*$
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):
-1/2	\square Il n'existe pas. \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $\frac{n(n+1)(n+2)(n+3)}{4}$ \bigcirc
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$
-1/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q.22
0/2	☑ Différence symétrique ☑ Complémentaire ☑ Différence ☑ Intersection ☑ Union ☐ Aucune de ces réponses n'est correcte.
	Q.23 De Quelle(s) opération(s) préserve(nt) la rationnalité?
0/2	
	Q.24 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.
2/2	\blacksquare $Rec = Rat$ \square $Rec \supseteq Rat$ \square $Rec \supseteq Rat$ \square $Rec \subseteq Rat$
	Q.25 On peut tester si un automate déterministe reconnaît un langage non vide.
2/2	☐ Seulement si le langage n'est pas rationnel ☐ Non ☐ Cette question n'a pas de sens ☐ Oui
	Q.26 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il
2/2	 □ a des transitions spontanées □ est déterministe □ accepte un langage infini
	Q.27 On peut tester si un automate nondéterministe reconnaît un langage non vide.
2/2	oui, toujours 🗌 jamais 🗎 souvent 🔲 rarement
	Q.28 Quel mot reconnait le produit de ces automates? $ \begin{array}{cccccccccccccccccccccccccccccccccc$

Q.29 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

2/2

2/2

4

□ 7

□ 6

☐ Il n'existe pas.

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

2/2

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

- $lacktriangleq \mathcal{P}$ ne vérifie pas le lemme de pompage
- \square Il existe un NFA qui reconnaisse $\mathcal P$ \square Il existe un ε -NFA qui reconnaisse $\mathcal P$

Q.32

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- ☐ (abc)*
- a*b*c
- \Box $a^* + b^* + c^*$
- \Box $(a+b+c)^*$

Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

- ☐ 1 avec 3
- 3 avec 4
- ☐ 2 avec 4
- □ 0 avec 1 et avec 2
- 1 avec 2
- ☐ Aucune de ces réponses n'est correcte.

Q.34 Sur $\{a,b\}$, quel est le complémentaire de

2/2

Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de b

2/2

$$\Box \quad \longleftrightarrow \quad \stackrel{b}{\bigcirc} \quad \stackrel{0}{\bigcirc} \leftarrow$$

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0? $(ab^* + (a+b)^*)(a+b)^+$ $(ab^* + (a+b)^*)a(a+b)^*$ $(ab^* + a+b^*)a(a+b^*)$ $(ab^* + a+b^*)a(a+b)^*$ $(ab^* + a+b^*)a(a+b)^*$ $(ab^* + a+b^*)(a(a+b)^*)$

