

Probabilidades

Marcelo PAZ Estadistica y Probabilidad

18 de diciembre de 2023

1. Definiciones Generales

- 1. **Probabilidad:** Es la medida de la certeza de que un evento ocurra.
- 2. Experimento Determinista: Es aquel que al repetirlo bajo las mismas condiciones, siempre da el mismo resultado.
- 3. Experimento Aleatorio: Es aquel que al repetirlo bajo las mismas condiciones, puede dar resultados distintos.
- 4. **Espacio Muestral:** Es el conjunto de todos los posibles resultados de un experimento aleatorio Ω .
- 5. Evento: Es un subconjunto del espacio muestral $A, B, C \subset \Omega$.

2. Teoria de Conjuntos

- 1. Unión: A o B o Ambos $A \cup B = \{x \in \Omega | x \in A \lor x \in B\}$
- 2. Intersección: A y B o resultados comunes, $A \cap B = \{x \in \Omega | x \in A \land x \in B\}$
- 3. Vacio: $\emptyset = \{\}$
- 4. Mutuamente excluyente: $A \cap B = \emptyset$
- 5. Contenido: $A \subseteq B \Leftrightarrow \forall x \in A \Rightarrow x \in B$
- 6. Complemento: $A^c = \{x \in \Omega | x \notin A\}$

3. Probabilidad Clásica

La probabilidad de A es la proporción de n_A con respecto a n, esto es:

$$P(A) = \frac{n_A}{n_\Omega}$$

4. Funcion de Probabilidad

Sea Ω un espacio muestral y sea A un evento de Ω . Se llamará función de probabilidad sobre el espacio muestral a P(A) si satisface los siguientes axiomas:

- 1. $0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$
- 3. Sea A,B,C,... eventos mutuamente excluyentes, entonces: $P(A\cup B\cup C\cup...)=P(A)+P(B)+P(C)+...$

5. Teoremas de Probabilidad

5.1. Teorema 1

Si vacío es el evento imposible, entonces:

$$P(\emptyset) = 0$$

5.2. Teorema 2

Sean A y B dos eventos cualesquiera de Ω , entonces:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

5.3. Teorema 3

Sea A un evento de Ω , entonces:

$$P(A^c) = 1 - P(A)$$

5.4. Teorema 4

Sean A y B dos eventos cualesquiera de Ω , entonces:

$$P(A \cap B^c) = P(A) - P(A \cap B)$$

5.5. Teorema 5

Sean A y B eventos de Ω , tales que $A \subseteq B$, entonces:

6. Propiedades de la Probabilidad

- 1. $P(A^c \cap B^c) = P((A \cup B)^c)$
- 2. $P(A^c \cup B^c) = P((A \cap B)^c)$

7. Tecnicas de Conteo

7.1. Principio de Multiplicación

Si un evento A puede ocurrir de n_1 formas distintas y si para cada una de estas formas, un evento B puede ocurrir de n_2 formas distintas, entonces el evento A seguido del evento B puede ocurrir de $n_1 \cdot n_2$ formas distintas.

7.2. Principio de Adición

Si un evento A puede ocurrir de n_1 formas distintas y si para cada una de estas formas, un evento B puede ocurrir de n_2 formas distintas, entonces el evento A o el evento B puede ocurrir de $n_1 + n_2$ formas distintas.

7.3. Permutaciones (Importa el orden)

Una permutación de n objetos distintos es un arreglo de los n objetos en una secuencia ordenada. El número de permutaciones de n objetos distintos es n!:

$$P(n,r) = \frac{n!}{(n-r)!}$$

7.4. Combinaciones (No importa el orden)

Una combinación de n objetos distintos tomados en grupos de r es un subconjunto de r objetos de un conjunto de n objetos distintos. El número de combinaciones de n objetos distintos tomados en grupos de r es:

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$
 , $r \le n$

Combinaciones	Permutaciones
abc	abc acb bca bac cab cba
bcd	bcd bdc cbd cdb dbc dcb
abd	abd adb bad bda dab dba
acd	acd adc cad cda dac dca

Figura 1: Tabla ejemplo: Sea a,b,c,d elegir 3 letras a la vez

8. Espacio muestral equiprobable

Un espacio muestral Ω es equiprobable si todos los eventos elementales tienen la misma probabilidad de ocurrir. En este caso, la probabilidad de un evento A es:

$$P(A) = \frac{\text{número de maneras de como puede ocurrir el evento A}}{\text{número de maneras de como puede ocurrir el espacio muestral }\Omega$$

9. Probabilidad Condicional

La probabilidad condicional de que A ocurra, dado que ocurrió B, está dada por:

$$P(A/B) = \begin{cases} \frac{P(A \cap B)}{P(B)} &, P(B) > 0 \\ 0 &, P(B) = 0 \end{cases}$$

Obs:

- 1. La probabilidad condicional cumple todas las propiedades vistas anteriormente.
 - a) $P(\Omega/A) = 1$
 - b) $P(A \cup B/C) = P(A/C) + P(B/c)$, si $A \cap B = \emptyset$
 - c) $P(A^c/B) = 1 P(A/B) \leftarrow \text{Complemento Condicional}$
- 2. De la definición anterior se tiene que la probabilidad condicional de la intersección entre A y B puede ser escrita como $P(A \cap B) = P(B) \cdot P(A/B)$, llamada **Regla de la Multiplicación**.
- 3. Por Simetría, se tiene que si P(A) > 0, entonces:

$$P(B/A) = \begin{cases} \frac{P(B \cap A)}{P(A)} &, P(A) > 0\\ 0 &, P(A) = 0 \end{cases}$$

- * Obs 3.1: La Regla de la Multiplicación se utiliza cuando se seleccionan personas de un grupo o artículos de un lote sin sustitución.
- * Obs 3.2: Cuando seleccionan personas de grupo o artículos de un lote con sustitución, se dice que los eventos son independientes y en ese caso, la probabilidad de la intersección de los eventos es el producto de las probabilidades.
- 4. De las observaciones 2 y 3, se tiene que $P(B) \cdot P(A/B) = P(A) \cdot P(B/A)$
- 5. La probabilidad condicional de A dado $B_1, B_2, ..., B_n$ se escribe de la siguiente forma $P(A/B_1, B_2, ..., B_n)$ y se define $P(A/B_1 \cap B_2 \cap ... \cap B_n)$, cualesquiera sean los eventos $A, B_1, B_2, ..., B_n$ tales que $P(B_1 \cap B_2 \cap ... \cap B_n) > 0$. Un desarrollo algebraico simple conduce a la Regla de la Multiplicación Generalizada, que está dada por: $P(B_1 \cap B_2 \cap ... \cap B_n) = P(B_1) \cdot P(B_2/B_1) \cdot P(B_3/B_1 \cap B_2) \cdot ... \cdot P(B_n/B_1 \cap B_2 \cap ... \cap B_{n-1})$
- 6. La definición de probabilidad condicional puede extenderse para incluir cualquier número de eventos que se encuentren en el espacio muestral Ω . Por ejemplo, puede demostrarse que para tres eventos A, B y C.

$$P(A/B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)}$$
 , $P(B \cap C) > 0$

$$P(A \cap B/C) = \frac{P(A \cap B \cap C)}{P(C)} \quad , \quad P(C) > 0$$

10. def 7 buscar nombre

Diremos que los sucesos $B_1, B_2, ..., B_n$, representan una partición del espacio muestral Ω si:

1.
$$B_i \cap B_j = \emptyset, \forall i \neq j$$

$$2. \bigcup_{i=1}^{n} B_i = \Omega$$

3.
$$P(B_i) > 0$$
, $\forall i$, o bien, $\sum_{i=1}^{n} P(B_i) = 1$

11. Teorema de la probabilidad total

Sean los eventos $B_1, B_2, ..., B_n$, representan una partición del espacio muestral Ω y A un evento cualquiera de Ω , entonces:

$$P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A/B_i)$$

12. Teorema de Bayes

Sean los eventos $B_1, B_2, ..., B_n$, representan una partición del espacio muestral Ω y A un evento cualquiera de Ω , entonces:

$$P(B_j/A) = \frac{P(B_j) \cdot P(A/B_j)}{\sum_{i=0}^{n} P(B_i) \cdot P(A/B_i)}$$

13. Independencia de Eventos

Dos eventos A y B se dicen estadísticamente independientes si se verifica que:

$$P(A \cap B) = P(A) \cdot P(B)$$

Obs:

1.
$$P(A/B) = P(A); \quad P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

2.
$$P(B/A) = P(B)$$

3.
$$P(A^c/B) = P(A^c)$$

$$4. P(B^c/A) = P(B^c)$$

5.
$$P(A^c \cap B^c) = P(A^c) \cdot P(B^c)$$

6.
$$P(A^c \cap B) = P(A^c) \cdot P(B)$$

7.
$$P(A \cap B^c) = P(A) \cdot P(B^c)$$