21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

9- Monday September 19, 2011.

Definition 9.1: An action of a group G on a set X is an homomorphism from G into S_X , the group of bijections of X. Equivalently, it is a mapping from $G \times X$ into X satisfying ex = x for all $x \in X$, and $g_1(g_2x) = (g_1g_2)x$ for all $g_1, g_2 \in G$ and all $x \in X$, where gx denotes the image of (g,x) by the mapping. For $x \in X$, the orbit of x is $\{gx \mid g \in G\} \subset X$, the stabilizer of x is $\{gx \mid g \in G\} \subset X$.

Remark 9.2: For example, an action of \mathbb{Z}_n on X is the same as having a bijection f from X onto itself satisfying $f \circ \cdots \circ f = id_X$, where there are n factors.

An action of $\mathbb{Z}_2 \times \mathbb{Z}_2$ on X is the same as having two bijections f and g from X onto itself satisfying $f \circ f = g \circ g = id_X$ and $f \circ g = g \circ f$.

Lemma 9.3: The relation $x\mathcal{R}y$ if and only if there exists $g \in G$ with gx = y is an equivalence relation, and the equivalence classes are the orbits, which then form a partition of X.

Proof: For all $x \in X$ one has $x\mathcal{R}x$, because ex = x; $x\mathcal{R}y$ means gx = y for some $g \in G$, which is equivalent to $x = g^{-1}y$, implying $y\mathcal{R}x$; $x\mathcal{R}y$ and $y\mathcal{R}z$ mean gx = y and hy = z for some $g, h \in G$, so that hgx = z, implying $x\mathcal{R}z$. The definition of the equivalence class of x coincides with the definition of the orbit of x.

Lemma 9.4: For $x \in X$, $Stab(x) \leq G$. The mapping $gx \mapsto gStab(x)$ is a bijection between the orbit of x and the left cosets of Stab(x), so that the size of the orbit of x is the index of Stab(x), which both divide the order of G if it is finite. In particular, for a prime p, and for any action of \mathbb{Z}_p , the orbits have size 1 or size p.

Proof: Because ex = x, one has $e \in Stab(x)$; if $g_1, g_2 \in Stab(x)$, then $g_1x = g_2x = x$ implies $(g_1 g_2) x = g_1x = x$, so that $g_1g_2 \in Stab(x)$, and $g_1^{-1}x = g_1^{-1}(g_1x) = x$, so that $g_1^{-1} \in Stab(x)$.

The mapping is well defined if $g_1x = g_2x$ implies $g_1Stab(x) = g_2Stab(x)$: indeed, $g_1x = g_2x$ means $g_2^{-1}g_1x = x$, i.e. $g_2^{-1}g_1 \in Stab(x)$, which implies $g_1 \in g_2Stab(x)$ so that $g_1Stab(x) \subset g_2Stab(x)$, and exchanging the roles of g_1 and g_2 gives equality. Then, the size of the orbit of x is the number of left cosets of Stab(x), i.e. the index of Stab(x), which by Lagrange's theorem divides the order of G if G is a finite group.

Example 9.5: G acts on itself by left multiplication: X = G and (g, x) is mapped to the usual product gx in G for all $g, x \in G$. G is isomorphic to a subgroup of S_G , and in particular every group of order n is isomorphic to a subgroup of the symmetric group S_n (Cayley's theorem).

Proof: For $x, g_1, g_2 \in G$, (e, x) is mapped to ex = x, and (g_1, g_2x) is mapped to $g_1(g_2x) = (g_1g_2)x$. Then, the homomorphism from G into S_G is injective, because if $g \in G$ is mapped to the identity of S_G , it means that gx = x for all $x \in G$, and taking x = e gives g = e; the first isomorphism theorem tells then that G is isomorphic to the image, which is a subgroup of S_G .

Example 9.6: G acts on itself by conjugation: X = G and (g, x) is mapped to $x^g = g x g^{-1}$. The orbit of $x \in G$ is called the *conjugacy class* of x, and the stabilizer of x is called the *centralizer of* x, i.e. $C_G(x) = \{g \in G \mid g x = x g\}$, and the size of the conjugacy class is the index of the centralizer (so that its size divides the order of G if G is finite).

Proof. For $x, g, h \in G$, one has $ex = x^e = x$, and $(x^g)^h = h(gxg^{-1})h^{-1} = (hg)x(hg)^{-1} = x^{hg}$.

¹ In some concrete examples the notation gx may lead to confusion, like for Example 9.6 and Example 9.7 below, and it is better to avoid it.

Using right multiplication, i.e. $(g, x) \mapsto x g$, does not satisfy the axioms if G is not Abelian, because $(g_1 g_2, x)$ is mapped to $x g_1 g_2$, while (g_2, x) is mapped to $x g_2$, and $(g_1, x g_2)$ is mapped to $x g_2 g_1$.

³ Here the notation gx for (g,x) would be a little misleading. Notice that the notation x^g may also be confused with a power of x in some cases.

⁴ If G is Abelian, then the conjugacy class of each $x \in G$ is reduced to $\{x\}$, and $C_G(x) = G$ for all $x \in G$; conversely, if $C_G(x) = G$ for all $x \in G$, then G is Abelian.

Example 9.7: G acts on the set of its subgroups by conjugation:⁵ (g, H) is mapped to $H^g = \{g \, h \, g^{-1} \mid h \in H\}$. The stabilizer of $H \leq G$ is called the *normalizer* $N_G(H) = \{g \in G \mid g \, H = H \, g\}$ of H in G, so that one has $H \triangleleft N_G(H) \leq G$.

Lemma 9.8: $N_G(H)$ is the largest subgroup of G in which H is normal.⁶ *Proof*: For $K \leq G$, the condition $H \triangleleft K$ is equivalent to kH = H k for all $k \in K$, i.e. $K \leq N_G(H)$.

Remark 9.9: If G acts on X, then G acts on any subset of X which is a union of orbits. If $H \leq G$, then H acts on each G-orbit, which is then partitioned as a union of H-orbits.

Definition 9.10: If p is prime and divides the order of a finite group G, a p-subgroup H of G is any subgroup whose order is a power of p. If p^n is the highest power of p which divides |G|, any $H \leq G$ with $|H| = p^n$ is called a Sylow-p subgroup of G.

Remark 9.11: Sylow's theorem will be proved in another lecture, and its proof will use action by conjugation on subgroups, and it is stated here and then used on two examples: if p is a prime and G is a group of order $|G| = p^n a$ (with $n \ge 1$) and p does not divide a, then, every p-subgroup of G is included in a Sylow p-subgroup, all Sylow p-subgroups are conjugate, and their number n_p is congruent to 1 modulo p, and divides |G|, so that it divides a. In particular, if there is a unique Sylow p-subgroup, then it is a normal subgroup (and a normal Sylow p-subgroup is unique).

Example 9.12: For a group G of order 15, then $n_3 = 1 \pmod{3}$ and n_3 divides 5, so that $n_3 = 1$ and there is only one Sylow 3-subgroup H_3 , $n_5 = 1 \pmod{5}$ and n_5 divides 3, so that $n_5 = 1$ and there is only one Sylow 5-subgroup H_5 , and since both H_3 and H_5 are normal subgroups of G it will be shown that $G \simeq H_3 \times H_5$, and since $H_3 \simeq \mathbb{Z}_3$ and $H_5 \simeq \mathbb{Z}_5$, one has $G \simeq \mathbb{Z}_{15}$ by the Chinese remainder theorem.

Example 9.13: For a group G of order 21, then $n_3 = 1 \pmod{3}$ and n_3 divides 7, so that n_3 is either 1 or 7, $n_7 = 1 \pmod{7}$ and n_7 divides 3, so that $n_7 = 1$ and there is only one Sylow 7-subgroup H_7 , which is a normal subgroup of G.

If $n_3 = 1$, there is only one Sylow 3-subgroup H_3 , which is a normal subgroup of G, and in this case $G \simeq \mathbb{Z}_{21}$.

If $n_3 = 7$, there are 7 Sylow-3 subgroups K_1, \ldots, K_7 , and since $K_i \cap K_j = \{e\}$ for $i \neq j$, there are 14 elements of order 2, which with the 6 elements of order 7 in H_7 and e make up the group. For each K_i , the action by conjugation generates an orbit of size 7 (since it gives all the K_j), so that the index of the stabilizer (called the normalizer of K_i) is 7, i.e. $N_G(K_i) = K_i$. That such a non-Abelian group of order 21 exists, will have to be shown, and it will be constructed as a semi-direct product.

⁵ If $H \leq G$, and $g \in G$, then gH is not a subgroup of G unless $g \in H$, but $H^g = gHg^{-1}$ is always a subgroup of G, hence the action of Example 9.6 leads to Example 9.7 for the set X of subgroups of G.

⁶ If G is Abelian, then $N_G(H) = G$ for all $H \leq G$.