Arquitectura de computadores I

Memoria Cache

Septiembre de 2017

Memoria cache

- Sistemas de Memoria
- Principios de la memoria Cache
- Elementos del diseño de la Cache
- Organización de la Cache en Pentium
- Organización de la Cache en ARM

Sistemas de Memoria

Características sistemas memoria

- Ubicación
- Capacidad
- Transferencia
- Método de acceso
- Rendimiento
- Tipos y características físicas
- Organización

Ubicación

CPU

Cache, registros

Externa

Perifericos (FLASH), SDCARD

Interna

Cache, RAM, ROM

Capacidad

- Tamaño de palabra
 - La unidad natural de organización

Número de palabras

O bytes

5 101

13 bits direcciones

RESET D SO28-5 8 bits

2x3 lits=65536 bits 9KB

 5_{13}

Bus de 32 bits 11 direcciones 8 datos 11 bits control

Transferencia de datos

- Interna
 - Depende del tamaño del bus
- Externa
 - Se utilizan bloques que son agrupaciones de palabras
 USB --> Transferencia serial
 0000101010101010
- Unidad direccionable
 - Menor localización que puede ser direccionada
 - Palabra Depende de lo que está almacenado en cada dirección (Palabra)

Métodos de acceso (1)

- Secuencial
 - Inicia en el comienzo de la memoria y va leyendo posición por posición
 - El tiempo de acceso depende de la localización
 - Ejemplo: Un caset
- Directo
 - Los bloques individuales tienen una única dirección
 - Acceso es un salto con respecto al acceso secuencial
 - El tiempo de acceso depende de la posición anterior
 - Ejemplo: Un disco

Métodos de acceso (2)

Aleatorio

- Las direcciones individuales identifican direcciones exactamente
- El tiempo de acceso es independiente de la localización anterior o sucesos anteriores
 - Ejemplo: RAM

Asociativo

- Los datos estan localizados por comparación con el contenido de una porción de los datos
- El tiempo de acceso es independiente de accesos previos
- Ejemplo cache

Jerarquía de memoria

- Registros
- Memoria interna o externa
 - Puede incluir uno o más niveles de cache
 - --"RAM"
- Memoria externa
 - Almacenamiento

Diagrama de jerarquía de memoria

Rendimiento

- Tiempo de acceso
 - Tiempo entre la presentación de la dirección y la obtención de los datos
- Tiempo de ciclo de memoria
 - Tiempo que es requierdo por la memoria para recuperarse antes del siguiente acceso
 - El tiempo del ciclo: Es acceso + recuperación
- Capacidad de transferencia
 - La capacidad está dada por cuantos datos pueden ser movidos

Rendimiento

- Capacidad de transferencia
 - Tiempo de acceso (Latencia)
 - Tiempo de ciclo de memoeria
 - Tasa de transferencia

Cuanto se tarda procesar la dirección

Recuperación (Leer o escribir requiere este proceso

Tiempo promedio de escritura o lectura de n bits
$$T_a$$
 Tiempo promedio de accceso
 R Número de bits
 R Tasa de transferencia (Bits por segundo bps)

Tipos físicos

- Semiconductor / Condang 90 or is
- Magnético
 - Discos y casete
- Óptico
 - CD y DVD
- Otros
 - Burbuja
 - Holograma

Características físicas

- Durabilidad
- Volatibilidad
- Borrable
- Consumo de energía

Organización

- Arreglo físico de bits dentro palabras
- No siempre obvio
- Ejemplo: internivel

Lista jerárquica

- Registros
- L1 Cache
- L2 Cache
- Memoria principal
- Discos S Depende
- Opticos
- Casete

Unidades magnéticas

Principios de la memoria cache

Cache

- Pequeña pero muy rápida
- Se encuentra entre la memoria principal y la CPU
- Podría estar localizada en el chip de la CPU o en un módulo

Cache y memoria principal

Estructura memoria principal y cache

(b) Main memory

Operación de la cache

- La CPU requiere el contenido de una localización en memoria
- Se revisa la cache para estos datos
- Si está presente, se obtene desde la cache (rápido)
- Si no está presente, se lee el bloque requerido desde la memoria principal hacia la cache
- Entonces, se envia desde la cache hacia la CPU
- La cache etiqueta cada bloque de memoria principal en cada slot de la cache

Operación de lectura de la cache

Diseño de la cache

- Direccionamiento
- Tamaño
- Función de mapeo
- Algoritmo de reemplazo
- Politica de escritura
- Tamaño del bloque
- Número de caches

- ♦ ¿Donde está la cache?
 - Entre el procesador y la unidad administradora de memoria (MMU)
 - Entre la MMU y la memoria principal
- La cache lógica (Cache virtual) almacena la información utilizando direcciones virtuales
 - Procesador accede la cache directamente, pero no la cache física
 - La cache se accede muy rápido
 - Las direcciones virtuales usan el mismo espacio para aplicaciones diferentes
- La caché fisica almacena información utilizando direcciones de memoria principal

Capacidad vs velocidad

- Costo
 - La cache es más costosa
- Velocidad
 - Tener más cache implica mayor velocidad
 - Verificar los datos de la cache toma tiempo

Organización de la cache

Elementos del diseño de la Cache

- Lógica: Es conocida como cache virtual, se almacena información utilizando direcciones virtuales. El procesador accede directamente a la memorira cache.
- Física: Almacena información usando la memoria principal

- Logica: Es conocida como cache virtual, se almacena información utilizando direcciones virtuales. El procesador accede directamente a la memorira cache.
- Física: Almacena información usando la memoria principal

Comparación de cache

Processor	Туре	Year of Introduction	L1 cache	L2 cache	L3 cache
IBM 360/85	Mainframe	1968	16 to 32 KB	_	_
PDP-11/70	Minicomputer	1975	1 KB	_	_
VAX 11/780	Minicomputer	1978	16 KB	_	_
IBM 3033	Mainframe	1978	64 KB	_	_
IBM 3090	Mainframe	1985	128 to 256 KB	_	_
Intel 80486	PC	1989	8 KB	_	_
Pentium	PC	1993	8 KB/8 KB	256 to 512 KB	_
PowerPC 601	PC	1993	32 KB	_	_
PowerPC 620	PC	1996	32 KB/32 KB	_	_
PowerPC G4	PC/server	1999	32 KB/32 KB	256 KB to 1 MB	2 MB
IBM S/390 G4	Mainframe	1997	32 KB	256 KB	2 MB
IBM S/390 G6	Mainframe	1999	256 KB	8 MB	_ \
Pentium 4	PC/server	2000	8 KB/8 KB	256 KB	
IBM SP	High-end server/ supercomputer	2000	64 KB/32 KB	8 MB	_
CRAY MTAb	Supercomputer	2000	8 KB	2 MB	_
Itanium	PC/server	2001	16 KB/16 KB	96 KB	4 MB
SGI Origin 2001	High-end server	2001	32 KB/32 KB	4 MB	_// _//
Itanium 2	PC/server	2002	32 KB	256 KB	6 MB
IBM POWER5	High-end server	2003	64 KB	1.9 MB	36 MB
CRAY XD-1	Supercomputer	2004	64 KB/64 KB	1MB	

Función de mapeo

- Cache de 64 KB
- Bloque de 4 bytes
 - Si la cache es de 16k (2¹⁴) lineas de 4 bytes
- 16MBytes memoria principal
- Direcciones de 24 bit
 - **●** (224=16M)

- Cada bloque de memoria principal se mapea solamente en una linea de cache
- Direcciones en dos partes
- W bits más significantes identifican la palabra
- S bits más significantes identifican un bloque de memoria
- Los bits más significantes son partidos dentro de la cache, una linea r tiene una etiqueta s-r

El mapeo directo está dado por

$$i=jmodm$$

- i Número de la linea de la cache
- j Número del bloque de memoria
- m Número de lineas en la cache

- La función de mapeo se implementa de la siguiente forma:
- Tamaño de la dirección (s+w) bits
- Número de unidades direccionables 2^{s+w}
- Número de bloques en memoria principal 2^s
- Número de lineas en la cache = $m = 2^{n}$
- Tamaño de la cache 2^{r+w} palabras o bytes
- lacktriangle Tamaño de la etiqueta(s-r) bits

Etiqueta s-r	Linea r	<u>Palabra w</u>
8	14	2

- Direcciones de 24 bit
- Identificador de palabra de 2 bits (Bloque de 4 bytes)
- Identificador de bloque de 22 bits
 - Etiqueta de 8 bits (=22-14)
 - ♦ 14 bits de linea
- No hay dos bloques en la misma linea que tengan la misma etiqueta
- Tenemos una cache de 64KB

Mapeo directo desde la cache – memoria principal

Línea de cache	Bloques de memoria principal		
0	0, m, 2m, 3m2s-m		
1	1,m+1, 2m+12s-m+1		
m-1	m-1, 2m-1,3m-12s-1		

Organización del mapeo directo

Memoria principal 8 bits (1 byte de palabra)

Memoria cache de 2 bits (Dirección) (4 byte

de palabra)

24,

799

18 = r (Lineas de la cache)

3/9

7 Idyte

Suponga una memoria de 64MB, (26 bits por dirección). Una memoria cache de 512KB (18 lineas de dirección) y el tamaño de palabra utilizando es de 8 byte.

¿Cuantos bloques hay en memoria? ¿Cuales son los valores de s) w) r y tag? ¿Cual es el tamaño del bloque? ¿Cuantas líneas tiene la memoria cache?

$$2^{s+w} = 2^{s+w} = 5 = 23$$

$$2^{r+w} = 2^{18} = 2^{18} = 32k - 1; \text{ here}$$

$$2^{s} = 2^{3} = 8MB$$

Mapeo asociativo

- Un bloque de memoria puede ser cargado en una posición de la cache
- La dirección de memoria es interpretada como una etiqueta y una palabra
- Una etiqueta identifica una dirección de memoria
- Cada etiqueta es examinada para una coincidencia
- La búsqueda en cache es costosa

Mapeo asociativo

- Tamaño de dirección = (s + w) bits
- Número de unidades direccionables = 2^{s+w}
- Tamaño bloque = tamaño linea = 2^w
- Número de bloques en memoria principal = 2^s
- Número de lineas en memoria = no determinado
- Tamaño de la etiqueta = s bits

Mapeo asociativo: Estructura de las direcciones

Etiqueta 22 bit

Palabra 2 bit

- Etiqueta de 22 bit, en un bloque de 32 bits
- Se compara la etiqueta con la etiqueta de la entrada para chequear colisiones
- 2 bits menos significantes identifican cual palabra de 16 bits es requerida desde un bloque de 32 bits
- Ejemplo

Dirección Etiqueta Datos Linea de cache

FFFFC FFFFC 24682468 (3FFF)

Mapeo asociativo

Organización mapeo asociativo

Ejemplo

El mapeo asociativo está dado por

$$m = \widehat{v} * \widehat{k}$$

$$\widehat{i} = \widehat{j} m \circ d \widehat{m}$$

- i Número de la linea de la cache
- j Número del bloque de memoria
- m Número de lineas en la cache
 - V Número de conjuntos
- k Número de lineas en cada conjunto

- Tamaño de dirección = (s + w) bits
- Número de unidades direccionables = 2^{s+w}
- Tamaño bloque = tamaño línea = 2^w
- Número de bloques en memoria principal = 2^s
- Número de lineas en el conjunto = k
- Número de conjuntos $\sqrt{v} = 2^d$
- Número de lineas en memoria = $kv = k 2^d$
- Tamaño de la etiqueta = (s-d) bits

- La cache es dividida en un número de conjuntos
- Cada conjunto contiene un número de lineas
- Un bloque mapea una linea en un conjunto dado
 - Ejemplo. Bloque B puede estar en una linea de un conjunto i
- Ejemplo 2 lineas por conjunto
 - Un bloque dado puede estar en una de dos lineas en solo un conjunto

Mapeo asociativo

Algoritmos de reemplazo (1) Mapeo directo

- Cada bloque es mapeado en una sola línea
- Reemplaza esta linea

Algoritmos de reemplazo (2) Asociativo

- Primero en entrar primero en salir(FIFO)
 - Reemplace los bloques por el orden que ingresaron
- Menos frecuentemente usado
 - Reemplce el bloque que tiene menos colisiones
- Aleatorio

Política de escritura

- No se debe sobreescribir la memoria a menos que la memoria principal esté actualizada
- CPUs multiplies puede tener caches individuales
- E/S podrían direccionar memoria principal directamente

Organización de la Cache en Pentium

Pentium 4 Cache

- ◆80386 no on chip cache
- 80486 8k using 16 byte lines and four way set associative organization
- Pentium (all versions) two on chip L1 caches
 - Data & instructions
- Pentium III L3 cache added off chip
- Pentium 4
 - L1 caches
 - 8k bytes
 - ♦ 64 byte lines
 - four way set associative
 - ◆ L2 cache
 - Feeding both L1 caches
 - ◆ 256k
 - 128 byte lines
 - 8 way set associative
 - L3 cache on chip

Evolución de cache de Intel

Problem	Solution	Processor on which featur first appears					
External memory slower than the system bus.	Add external cache using faster memory technology.	386					
Increased processor speed results in external bus becoming a bottleneck for cache access.	Move external cache on-chip, operating at the same speed as the processor.	486					
Internal cache is rather small, due to limited space on chip	Add external L2 cache using faster technology than main memory	486					
Contention occurs when both the Instruction Prefetcher and the Execution Unit simultaneously require access to the cache. In that case, the Prefetcher is stalled while the Execution Unit's data access takes place.	Create separate data and instruction caches.	Pentium					
Increased processor speed results in external bus becoming a bottleneck for L2 cache access.	Create separate back-side bus that runs at higher speed than the main (front-side) external bus. The BSB is dedicated to the L2 cache.	Pentium Pro					
	Move L2 cache on to the processor chip.	Pentium II					

Some applications deal with massive databases and must have rapid access to large amounts of data. The on-chip

caches are too small.

Add external L3 cache.

Move L3 cache on-chip.

Pentium III

Pentium 4

Pentium 4

Organización de la Cache en ARM

Carácteristicas de cache de ARM

Carácteristicas de cache de ARM

Core	Cache Type	Cache Size (kB)	Cache Line Size (words)	Associativity	Location	Write Buffer Size (words)
ARM720T	Unified	8	4	4-way	Logical	8
ARM920T	Split	16/16 D/I	8	64-way	Logical	16
ARM926EJ-S	Split	4-128/4-128 D/I	8	4-way	Logical	16
ARM1022E	Split	16/16 D/I	8	64-way	Logical	16
ARM1026EJ-S	Split	4-128/4-128 D/I	8	4-way	Logical	8
Intel StrongARM	Split	16/16 D/I	4	32-way	Logical	32
Intel Xscale	Split	32/32 D/I	8	32-way	Logical	32
ARM1136-JF-S	Split	4-64/4-64 D/I	8	4-way	Physical	32

Referencias

William Stallings. 2013. Computer Organization and Architecture: Designing for Performance (9th Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA. Chapter 4

Gracias

¿Preguntas?

Próxima clase: Memoria cache