2E200 : Electronique Numérique, Combinatoire et Séquentielle

Bertrand Granado

Licence E²A

Hiver 2019

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- 2 Algèbre de Boole
- 3 Codage
 - Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- 2 Algèbre de Boole
- 3 Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- 3 Codage
- 4 Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- 3 Codage
- 4 Les composants combinatoire simples
- Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

7/33

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
 - les bascules
 - les registres
 - les compteurs
 - Le contrôle, le traitement Pipeliné

Plan du Cours

- Introduction
- Algèbre de Boole et Logique Combinatoire
- Fonctions Combinatoires Complexes
- Eléments séquentiels de base : Les Bascules

• Eléments de base

- Eléments de base
- Régulation du flux des données

- Eléments de base
- Régulation du flux des données
- Fonction Mémorisation

- Eléments de base
- Régulation du flux des données
- Fonction Mémorisation
- Eléments Asynchrones

- Eléments de base
- Régulation du flux des données
- Fonction Mémorisation
- Eléments Asynchrones
- Eléments Synchrones

Eléments Asynchrones

Les Bascules Asynchrones

• Table de Vérité

 R
 S
 Q
 Q

 0
 0
 Q
 Q

 1
 0
 1
 1
 0

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

R	S	Q	Q
0	0	Q	Q
0	1	1	0
1	0	0	1
1	1	Etat	Interdit
	R 0 0 1 1	0 0	0 0 Q 0 1 1 1 0 0

• Elément Asynchrone

Table de Vérité		S	Q	Q
	0	0	Q	Q
	0	1	1	0
	1	0	0	1
	1	1	Etat	Interdit

- Elément Asynchrone
- Base de toutes les bascules

• Plus d'état logiquement incohérent R=S=1

- Plus d'état logiquement incohérent R=S=1
- Pas forcément intéressant, circuit qui réalise la fonction identité

Eléments Synchrone

Bascules Synchrones

 Evolution temporelle de Q en fonction du signal de commande H et de l'entrée D de la bascule

 Evolution temporelle de Q en fonction du signal de commande H et de l'entrée D de la bascule

- Cette bascule est aussi appelée Verrou ou Latch (Anglais)
- Symbole de la bascule D active sur niveau

Table de Vérité

D	Н	Q_{n+1}	$\overline{Q_{n+1}}$
0	0	Qn	$\overline{Q_n}$
0	1	0	1
1	0	Q_n	$\overline{Q_n}$
1	1	1	0

Table de Vérité

D	Н	Q_{n+1}	$\overline{Q_{n+1}}$
Χ	0	Qn	$\overline{Q_n}$
0	1	0	1
1	1	1	0

La bascule D active sur niveau : chenillar

La bascule D active sur niveau : chenillar

Architecture Maître-Esclave

- Symbole de la bascule D active sur front
- L'horloge et le front sont symbolisés par un triangle

Table de Vérité

	D	Н	Q_{n+1}	$\overline{Q_{n+1}}$
	Χ	0	Qn	$\overline{Q_n}$
Front Montant	Χ	1	Q_n	$\overline{Q_n}$
	0	\uparrow	0	1
	1	\uparrow	1	0

Table de Vérité

 Q_{n+1}

 Q_{n+1}

Н

Table de Vérité

		D	Н	Q_{n+1}	$\overline{Q_{n+1}}$
		Χ	0	Qn	$\overline{Q_n}$
•	Front Montant	Χ	1	Q_n	$\overline{Q_n}$
		0	\uparrow	0	1
		1	\uparrow	1	0

• *t_s* est le temps de prépositionement (*setup en anglais*)

- *t_s* est le temps de prépositionement (*setup en anglais*)
- t_h est le temps de maintien (hold en anglais)

- *t_s* est le temps de prépositionement (*setup en anglais*)
- *t_h* est le temps de maintien (*hold en anglais*)
- t_{CO} est le temps de propagation de la bascule D (CO: Clock to Output)

Vhdl: Bascule D active sur front

```
library ieee;
use ieee.std_logic_1164.all;
entity bascule is
 port ( d, clk : in std_logic;
        q : out std logic );
end entity bascule;
architecture comport of bascule is
begin
 stockage : process(d,clk) is
 begin
  if clk='1' and clk'event then
  q <= d;
 end if:
 end process stockage;
end architecture comport;
```


Nécessité de forcer les sorties

- Nécessité de forcer les sorties
- Ajout d'entrées asynchrones

- Nécessité de forcer les sorties
- Ajout d'entrées asynchrones
- RAU : Remise à Un ou entrée Set en anglais

- Nécessité de forcer les sorties
- Ajout d'entrées asynchrones
- RAU : Remise à Un ou entrée Set en anglais
- RAZ : Remise à Zéro ou entrée Reset en anglais

Entrées Asynchrones active à 1

Entrées Asynchrones active à 1

	Н	RAU	I RAZ	Q_{n+1}	$\overline{Q_{n+1}}$
X	X	1	0	1	0
Х	. X	0	1	0	1
Х	0	0	0	Qn	$\overline{Q_n}$
Х	. 1	0	0	Qn	$\overline{Q_n}$
0	↑	0	0	0	1
1	1	0	0	1	0

Entrées Asynchrones active à 1

	D	Н	RAU	RAZ	Q _{n+1}	$\overline{Q_{n+1}}$
-	Χ	Χ	1	0	1	0
	Χ	Χ	0	1	0	1
	Χ	0	0	0	Q_n	$\overline{Q_n}$
	Χ	1	0	0	Q_n	$\overline{Q_n}$
	0	\uparrow	0	0	0	1
	1	\uparrow	0	0	1	0

Combinaison RAU=RAZ=1 interdite

Vhdl : Bascule D active sur front avec entrées asynchrones

Entrées RAU et RAZ actives à 1

```
library ieee;
use ieee.std logic 1164.all;
entity bascule is
 port ( d, clk, rau, raz : in std logic;
        q : out std_logic );
end entity bascule;
architecture comport of bascule is
begin
 stockage : process(d,clk) is
 begin
  if (rau = '1' ) then
    \alpha <= '1';
  elsif (raz = '1') then
    a <= '0';
  elsif clk='1' and clk'event then
    q <= d;
 end if:
 end process stockage;
end architecture comport;
```

Entrées Asynchrones active à 0

Entrées Asynchrones active à 0

	D	Н	RAU	RAZ	Q_{n+1}	$\overline{Q_{n+1}}$
-	Χ	Х	0	1	1	0
	Χ	Χ	1	0	0	1
	Χ	0	1	1	Q_n	$\overline{Q_n}$
	Χ	1	1	1	Q_n	$\overline{Q_n}$
	0	\uparrow	1	1	0	1
	1	\uparrow	1	1	1	0

Entrées Asynchrones active à 0

D	Н	RAU	RAZ	Q_{n+1}	$\overline{Q_{n+1}}$
X	Х	0	1	1	0
Χ	Χ	1	0	0	1
Χ	0	1	1	Q _n	$\overline{Q_n}$
Χ	1	1	1	Q _n	$\overline{Q_n}$
0	↑	1	1	0	1
1	↑	1	1	1	0

Combinaison RAU=RAZ=0 interdite

Vhdl: Bascule D active sur front avec entrées asynchrones

Entrées RAU et RAZ actives à 0

```
library ieee;
use ieee.std logic 1164.all;
entity bascule is
 port ( d, clk, rau, raz : in std logic;
        q : out std_logic );
end entity bascule;
architecture comport of bascule is
begin
 stockage : process(d,clk) is
 begin
  if (rau = '0' ) then
    \alpha <= '1';
  elsif (raz = '0') then
    a <= '0';
  elsif clk='1' and clk'event then
    q <= d;
 end if:
 end process stockage;
end architecture comport;
```

Autres Bascules?

Il existe d'autres types de bascules

- Les bascules JK (Joker and King) : tombé en désuétude
- Les bascules T (Toggle) : c'est une bascule qui change d'état après chaque front d'horloge. Réalisable avec une bascule D où l'on réinjecte la sortie \overline{Q} sur l'entrée D

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

