Лучшая страна для жизни в 2024 году

https://www.kaggle.com/datasets/rafsunahmad/best-country-to-live-in-2024

Лучшая страна для жизни в соответствии с отчетом по индексу человеческого развития

О наборе данных Этот набор данных содержит данные разных стран. Этот набор данных о лучшей стране для жизни в 2024 году. Этот набор данных лучше всего подходит для исследовательского анализа данных.

population_2024 - Общая численность населения в 2024 году

population_growthRate - Темпы роста населения

land_area - Общая Площадь Страны

country - Название страны

region - Название региона

unMember - Является ли страна членом Организации Объединенных Наций или нет

population_density - Плотность Населения На КМ

population_densityMi - Плотность населения на милю

share_borders - Границы с другой страной

Hdi2021 - Индекс человеческого развития, является метрикой, составленной Программой развития Организации Объединенных Наций и используемой для количественной оценки "средних достижений страны в трех основных измерениях развития человека: долгая и здоровая жизнь, знания и достойный уровень жизни.

Hdi2020 - Индекс человеческого развития, является метрикой, составленной Программой развития Организации Объединенных Наций и используемой для количественной оценки "средних достижений страны в трех основных измерениях развития человека: долгая и здоровая жизнь, знания и достойный уровень жизни.

WorldHappiness2022 - Индекс счастья

```
In [20]: import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns

In [2]: #Переменные
#переменая для head
a = 1000000
#переменая для размера ерафиков
b = 20

In [3]: # Загрузка сsv-файла в датафрейм
input_raw = pd.read_csv('2_Лучшая_страна_для_жизни_в_2024 году.csv')
# Отображение первых нескольких строк датафрейма, чтобы убедиться, что данные были успешно загружены
input_raw.head(a)
```

Out[3]:	population_2024		population_growthRate	land_area	country	region	unMember	population_density	population_densityMi	sh
	0	1441719852	0.00916	3287590	India	Asia	True	484.9067	1255.9084	
	1	1425178782	-0.00035	9706961	China	Asia	True	151.2174	391.6530	IN K
	2	341814420	0.00535 9372610 United North States America True 37.3673		96.7813					
	3	279798049	0.00816	1904569	Indonesia	Asia	True	149.0254	385.9758	58 TL
	4	245209815	0.01964	881912	Pakistan	Asia	True	318.0908	823.8551	AF
	•••									
	136	867605	0.01823	1862	Comoros	Africa	True	466.2037	1207.4675	
	137	661594	0.01043	2586	Luxembourg	Europe	True	256.9796	665.5772	В
	138	626102 -0.00061 13812 Montene		Montenegro	Europe True		46.5503	120.5654	Al	
	139	536740	0.00313	316	Malta	Europe	True	1677.3125	4344.2394	
	140	377689	0.00632	103000	Iceland	Europe	True	3.7458	9.7016	

141 rows × 12 columns

In [4]: print(input_raw.dtypes)

```
population growthRate
                                 float64
        land area
                                   int.64
        country
                                  object
        region
                                  object
        unMember
                                    bool
        population density
                                 float64
        population densityMi
                                 float64
        share borders
                                  object
        Hdi2021
                                 float64
        Hdi2020
                                 float64
        WorldHappiness2022
                                 float64
        dtype: object
In [5]:
        input raw copy = input raw.copy(deep = True)
        # Сортировка DataFrame по столбцу 'population 2024' и выбор топ-10
        top countries = input raw copy.sort values(by='population 2024', ascending=False).head(10)
        # Размер графика
        fig, ax = plt.subplots(figsize=(b, b * 0.3))
        # Построение горизонтальной столбчатой диаграммы
        bars = ax.barh(top countries['country'], top countries['population 2024'], color='green')
        # Настройка осей и меток
        ax.set xlabel('Общая численность населения в 2024 году. млрд.чел.')
        ax.set ylabel('CTpaHa')
        ax.set title('Top 10 Стран по численности населения в 2024')
        # Отображение значений над столбцами
        for bar in bars:
            plt.text(bar.get width(), bar.get y() + bar.get height() / 2,
                     f'{bar.get width():,.0f}',
                     va='center', ha='left', color='black')
        plt.show()
```

population 2024

int64

Общая численность населения в 2024 году. млрд.чел.

1e9

```
In [6]: input raw copy = input raw.copy(deep = True)
        # Сортировка DataFrame по столбцу 'population 2024' и выбор топ-10
        top countries = input raw copy.sort values(by='population 2024', ascending=True).head(10)
        # Размер графика
        fig, ax = plt.subplots(figsize=(b, b * 0.3))
        # Построение горизонтальной столбчатой диаграммы
        bars = ax.barh(top countries['country'], top countries['population 2024'], color='red')
        # Настройка осей и меток
        ax.set xlabel('Общая численность населения в 2024 году. млрд.чел.')
        ax.set ylabel('Страна')
        ax.set title('FLOP 10 СТРАН ПО ЧИСЛЕННОСТИ НАСЕЛЕНИЯ В 2024')
        # Отображение значений над столбцами
        for bar in bars:
            plt.text(bar.get width(), bar.get y() + bar.get height() / 2,
                     f'{bar.get width():,.0f}',
                     va='center', ha='left', color='black')
        plt.show()
```

FLOP 10 стран по численности населения в 2024


```
In [7]: input raw copy = input raw.copy(deep = True)
        # Сортировка DataFrame по столбцу 'population 2024' и выбор топ-10
        top countries = input raw copy.sort values(by='land area', ascending=False).head(10)
        # Размер графика
        fig, ax = plt.subplots(figsize=(b, b * 0.3))
        # Построение горизонтальной столбчатой диаграммы
        bars = ax.barh(top countries['country'], top countries['land area'], color='green')
        # Настройка осей и меток
        ax.set xlabel('ПЛощадь страны')
        ax.set ylabel('Страна')
        ax.set title('Top 10 СТРАН ПО ПО ПЛОЩАДИ')
        # Отображение значений над столбцами
        for bar in bars:
            plt.text(bar.get width(), bar.get y() + bar.get height() / 2,
                     f'{bar.get width():,.0f}',
                     va='center', ha='left', color='black')
        plt.show()
```



```
In [8]: input raw copy = input raw.copy(deep = True)
        # Сортировка DataFrame по столбцу 'population 2024' и выбор топ-10
        top countries = input raw copy.sort values(by='land area', ascending=True).head(10)
        # Размер графика
        fig, ax = plt.subplots(figsize=(b, b * 0.3))
        # Построение горизонтальной столбчатой диаграммы
        bars = ax.barh(top countries['country'], top countries['land area'], color='red')
        # Настройка осей и меток
        ax.set xlabel('ПЛощадь страны')
        ax.set ylabel('Страна')
        ax.set title('FLOP 10 СТРАН ПО ПО ПЛОЩАДИ')
        # Отображение значений над столбцами
        for bar in bars:
            plt.text(bar.get width(), bar.get y() + bar.get height() / 2,
                     f'{bar.get width():,.0f}',
                     va='center', ha='left', color='black')
        plt.show()
```


ПЛощадь страны

Страны которые не входят в ООО

Malta

```
In [9]: input raw copy = input raw.copy(deep = True)
        # Фильтрация стран, не входящих в ООН
        non un members = input raw copy[input raw['unMember'] == False]
        # Вывод результатов
        non un members table = non un members[[
             'population 2024',
             'population growthRate',
            'land_area',
            'country',
             'region',
            'unMember',
            'population_density',
             'population_densityMi',
            'share_borders',
             'Hdi2021',
             'Hdi2020',
             'WorldHappiness2022'
        ]]
        non_un_members_table
```

Out[9]:		population_2024	population_growthRate	land_area	country	region	unMember	population_density	population_densityMi	share_b
	89	7496681	0.00068	1104	Hong Kong	Asia	False	7139.6962	18491.8131	

```
In [10]:
         # Создайте копию датафрейма
         input raw copy = input raw.copy(deep=True)
         # 0тсортируйте датафрейм по столбцу population growthRate и возьмите топ 10
         top 10 countries = input raw copy.sort values(by='population growthRate', ascending=False).head(10)
         # Создайте горизонтальную столбчатую диаграмму
         fig, ax = plt.subplots(figsize=(b, b * 0.3))
         bars = ax.barh(top 10 countries['country'], top 10 countries['population growthRate'], color='green')
         # Настройте подписи осей и заголовок
         ax.set xlabel('Темп роста населения')
         ax.set ylabel('CTpaHa')
         ax.set title('Топ 10 стран по темпу роста населения')
         # Добавьте значения на график
         for bar in bars:
             yval = bar.get width() # Используйте get width() вместо get height()
             plt.text(yval, bar.qet y() + bar.qet height()/2, round(yval, 5), ha='left', va='center', color='black')
         # Отобразите график
         plt.show()
```



```
In [11]: # Создайте копию датафрейма
         input raw copy = input raw.copy(deep=True)
         # 0тсортируйте датафрейм по столбцу population growthRate и возьмите топ 10
         top 10 countries = input raw copy.sort values(by='population growthRate', ascending=True).head(10)
         # Создайте горизонтальную столбчатую диаграмму
         fig, ax = plt.subplots(figsize=(b, b * 0.3))
         bars = ax.barh(top 10 countries['country'], top 10 countries['population growthRate'], color='red')
         # Настройте подписи осей и заголовок
         ax.set xlabel('Темп убывания населения')
         ax.set ylabel('Страна')
         ax.set title('TOP 10 стран по темпу убывания населения')
         # Добавьте значения на график
         for bar in bars:
             yval = bar.get width() # Используйте get width() вместо get height()
             plt.text(yval, bar.get y() + bar.get height()/2, round(yval, 5), ha='left', va='center', color='black')
         # Отобразите график
         plt.show()
```



```
In [12]: input raw copy = input raw.copy(deep = True)
         # Сортировка по плотности населения и выбор топ-10 стран
         top 10 countries = input raw.sort values(by='population density', ascending=False).head(10)
         # Создание графика
         fig, ax = plt.subplots(figsize=(b, b * 0.3))
         # Построение горизонтальной столбчатой диаграммы
         bars = ax.barh(top 10 countries['country'], top 10 countries['population density'], color='green')
         # Настройка осей и заголовка
         ax.set xlabel('Плотность населения')
         ax.set ylabel('Страна')
         ax.set title('Топ-10 стран по плотности населения')
         # Добавление значения над каждым столбцом
         # Добавьте значения на график
         for bar in bars:
             yval = bar.get width() # Используйте get width() вместо get height()
             plt.text(yval, bar.get y() + bar.get height()/2, round(yval, 5), ha='left', va='center', color='black')
         # Отображение графика
         plt.show()
```



```
In [13]: input_raw_copy = input_raw.copy(deep = True)
         # Сортировка по плотности населения и выбор топ-10 стран
         top 10 countries = input raw.sort values(by='population density', ascending=True).head(10)
         # Создание графика
         fig, ax = plt.subplots(figsize=(b, b * 0.3))
         # Построение горизонтальной столбчатой диаграммы
         bars = ax.barh(top 10 countries['country'], top 10 countries['population density'], color='red')
         # Настройка осей и заголовка
         ax.set xlabel('Плотность населения')
         ax.set ylabel('Страна')
         ax.set title('FLOP-10 стран по плотности населения')
         # Добавление значения над каждым столбцом
         for bar in bars:
             yval = bar.get width()
             plt.text(yval, bar.get y() + bar.get height()/2, round(yval, 2), va='center', ha='left', color='black')
         # Отображение графика
         plt.show()
```



```
In [14]:
         input raw copy = input raw.copy(deep = True)
         # Сортировка датафрейма по столбцу Hdi2021 и выбор топ 10
         top countries = input raw copy.sort values(by='Hdi2021', ascending=False).head(10)
         # Создание горизонтальной столбчатой диаграммы
         plt.figure(figsize=(b, b * 0.3))
         bars = plt.barh(top countries['country'], top countries['Hdi2021'], color='green')
         plt.xlabel('Индекс человеческого развития (HDI) в 2021')
         plt.ylabel('CTpaHa')
         plt.title('Ton 10 crpaH no HDI B 2021')
         plt.grid(axis='x')
         # Добавление значений на график
         for bar, value in zip(bars, top countries['Hdi2021']):
             plt.text(bar.get width(), bar.get y() + bar.get height() / 2, f'{value:.5f}',
                      va='center', ha='left', fontsize=8, color='black')
         # Показать график
         plt.show()
```



```
input raw copy = input raw.copy(deep = True)
In [15]:
         # Сортировка датафрейма по столбцу Hdi2021 и выбор топ 10
         top_countries = input_raw_copy.sort values(by='Hdi2021', ascending=True).head(10)
         # Создание горизонтальной столбчатой диаграммы
         plt.figure(figsize=(b, b * 0.3)) # Размер графика (8, 2.4), замените на ваш b и b * 0.3
         bars = plt.barh(top countries['country'], top countries['Hdi2021'], color='red')
         plt.xlabel('Индекс человеческого развития (HDI) в 2021')
         plt.ylabel('CTpaHa')
         plt.title('FLOP 10 CTPAH NO HDI B 2021')
         plt.grid(axis='x')
         # Добавление значений на график
         for bar, value in zip(bars, top countries['Hdi2021']):
             plt.text(bar.get width(), bar.get y() + bar.get height() / 2, f'{value:.5f}',
                      va='center', ha='left', fontsize=8, color='black')
         # Показать график
         plt.show()
```



```
In [16]: input raw copy = input raw.copy(deep = True)
         # Сортировка по столбцу WorldHappiness2022 и выбор топ 10
         top countries = input raw copy.sort values(by='WorldHappiness2022', ascending=False).head(10)
         # Установка размеров графика
         b = 10 # Ширина графика
         fig, ax = plt.subplots(figsize=(b *2, b * 0.6))
         # Построение горизонтальной столбчатой диаграммы
         bars = ax.barh(top countries['country'], top countries['WorldHappiness2022'], color='green')
         # Настройка осей и заголовка
         ax.set xlabel('Уровень счастья (WorldHappiness2022)')
         ax.set ylabel('Страна')
         ax.set title('Топ 10 стран по уровню счастья в 2022 году')
         # Добавление значения на каждом столбце
         for bar in bars:
             xval = bar.get width()
             ax.text(xval, bar.get y() + bar.get height()/2, round(xval, 5), va='center', ha='left', fontsize=12)
         # Отображение графика
         plt.show()
```


Уровень счастья (WorldHappiness2022)

5

2

3

'n

```
In [17]: input raw copy = input raw.copy(deep = True)
         # Сортировка по столбцу WorldHappiness2022 и выбор топ 10
         top countries = input raw copy.sort values(by='WorldHappiness2022', ascending=True).head(10)
         # Установка размеров графика
         b = 10 # Ширина графика
         fig, ax = plt.subplots(figsize=(b *2, b * 0.6))
         # Построение горизонтальной столбчатой диаграммы
         bars = ax.barh(top countries['country'], top countries['WorldHappiness2022'], color='red')
         # Настройка осей и заголовка
         ax.set xlabel('Уровень счастья (WorldHappiness2022)')
         ax.set ylabel('Страна')
         ax.set title('FLOP 10 СТРАН ПО УРОВНЮ СЧАСТЬЯ В 2022 ГОДУ')
         # Добавление значения на каждом столбце
         for bar in bars:
             xval = bar.get width()
             ax.text(xval, bar.get y() + bar.get height()/2, round(xval, 5), va='center', ha='left', fontsize=12)
         # Отображение графика
         plt.show()
```



```
input raw copy = input raw.copy(deep = True)
In [22]:
         # Создаем подмножество DataFrame C нужными столбцами
         selected columns = ['population 2024', 'population growthRate', 'land area',
                              'population density', 'population densityMi', 'Hdi2021', 'Hdi2020', 'WorldHappiness2022']
         subset df = input raw copy[selected columns]
         # Создаем тепловую карту корреляции
         correlation matrix = subset df.corr()
         # Настраиваем размер фигуры
         plt.figure(figsize=(10, 8))
         # Рисуем тепловую карту с использованием seaborn
         sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt='.2f', linewidths=0.5)
         # Настраиваем заголовок
         plt.title('Тепловая карта корреляции')
         # Показываем график
         plt.show()
```

Тепловая карта корреляции

			Telline	льая карт	a kopper	ілции			_	10
population_2024 -	1.00	-0.02	0.43	-0.01	-0.01	-0.05	-0.05	-0.11		- 0.8
population_growthRate -	-0.02	1.00	-0.02	-0.07	-0.07	-0.70	-0.71	-0.46		- 0.6
land_area -	0.43	-0.02	1.00	-0.09	-0.09	0.09	0.09	0.08		- 0.4
population_density -	-0.01	-0.07	-0.09	1.00	1.00	0.18	0.18	0.06		- 0.2
population_densityMi -	-0.01	-0.07	-0.09	1.00	1.00	0.18	0.18	0.06		- 0.0
Hdi2021 -	-0.05	-0.70	0.09	0.18	0.18	1.00	1.00	0.80		0.2
Hdi2020 -	-0.05	-0.71	0.09	0.18	0.18	1.00	1.00	0.79		0.4
WorldHappiness2022 -	-0.11	-0.46	0.08	0.06	0.06	0.80	0.79	1.00		0.6
	_2024 -	hRate -	_area -	ensity -	sityMi -	12021 -	12020 -	32022 -		

Вывод:

Есть небольшая зависимость популяции населения от площади страны.

Рост популяции зависит обратно от индекса развития и индекса счастья, чем ниже индекс развития и индекс счастья, тем выше рост популяции.

```
In [18]: input_raw_copy = input_raw.copy(deep = True)

fig = px.choropleth(
    input_raw_copy,
    locations="country",
    locationmode="country names",
    color="WorldHappiness2022",
    hover_name="country",
    title="World Happiness 2022",
    color_continuous_scale="RdYlGn", # Выберите нужную цветовую схему
    projection="natural earth"
)

fig.update_layout(
    height=600, # Указываете желаемую высоту графика
    width=1000 # Указываете желаемую ширину графика
)

fig.show()
```