Лабораторная работа № 2

Матричная алгебра

Указания к выполнению лабораторной работы

При решении можно пользоваться электронными таблицами, системами компьютерной алгебры (Maxima, MatLab и т.п.) или написать собственную программу на языке программирования.

В качестве отчета по работе преподавателю предъявляются решения в электронном виде. При необходимости нужно ответить на дополнительные вопросы.

Задание 1. Вычислить матрицу G, если даны A, B, C, D.

	с 1. Вычислить матрицу G , если даны <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> .		
Вариант	Условия задачи		
1	$G = (A - 2B^{T}) \cdot (C + 3D),$		
	$A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \\ 5 & -2 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 & 1 & -4 \\ 1 & 1 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & -3 \\ 2 & 5 & -1 \end{pmatrix},$		
	$D = \begin{pmatrix} 10 & 5 & -1 \\ -2 & 3 & -3 \end{pmatrix}.$		
2	$G = (2A+B)^T \cdot (3C-4D),$		
	$A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \\ 5 & -2 \end{pmatrix}, B = \begin{pmatrix} -2 & -1 \\ 11 & -2 \\ 5 & 7 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 & 0 & 4 \\ 0 & 2 & -3 & 5 \\ 5 & 3 & 10 & -2 \end{pmatrix},$		
	(3 - 2) $(3 7)$ $(3 3 10 -2)$ $(-2 5 1 -3)$		
	$D = \begin{pmatrix} -2 & 5 & 1 & -3 \\ 1 & 1 & -5 & -4 \\ 2 & 6 & 11 & -1 \end{pmatrix}.$		
	$(2 \ 6 \ 11 \ -1)$		
3	$G = (3A - B) \cdot (2C + 3D)^T,$		
	$A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 1 & -2 & -5 \\ 2 & 2 & -1 & -1 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 1 & -1 \\ 2 & 4 & -3 & -2 \\ 1 & 1 & 10 & -1 \end{pmatrix}$		
	$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 2 & -1 & -1 \end{bmatrix}, B = \begin{bmatrix} 2 & 4 & 3 & 2 \\ 1 & 1 & 10 & -1 \end{bmatrix}$		

	$C = \begin{pmatrix} 4 & 2 & 1 & -5 \\ 3 & 1 & -2 & -1 \\ 5 & 4 & 0 & -4 \end{pmatrix}, D = \begin{pmatrix} -2 & 1 & 3 & -3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & -3 & -1 \end{pmatrix}.$
4	$G = (2A+3B) \cdot (C-2D^{T}),$ $A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & 2 \\ 1 & 4 & -3 \\ 0 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 1 & 1 \\ 3 & -2 & 2 \\ 2 & 0 & 4 \end{pmatrix}, C = \begin{pmatrix} 3 & -2 \\ 1 & 4 \\ 2 & -3 \end{pmatrix},$ $D = \begin{pmatrix} -3 & 2 & -2 \\ -4 & 0 & -1 \end{pmatrix}.$
5	$G = 2 \cdot (A - B) \cdot (3C + 2D)^{T},$ $A = \begin{pmatrix} -2 & 1 \\ 0 & -3 \\ -1 & 4 \\ 2 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ 4 & -1 \\ 1 & 4 \\ 5 & -3 \end{pmatrix},$ $C = \begin{pmatrix} 0 & -1 \\ 3 & -4 \\ 5 & -1 \end{pmatrix}, D = \begin{pmatrix} -3 & 4 \\ 1 & 2 \\ -2 & 3 \end{pmatrix}.$
6	$G = 3(A+B)^{T} \cdot (2C-D),$ $A = \begin{pmatrix} -2 & 3 & -4 \\ -3 & 5 & -2 \end{pmatrix}, B = \begin{pmatrix} 0 & -3 & -1 \\ 2 & 0 & -4 \end{pmatrix},$ $C = \begin{pmatrix} 0 & 4 & 1 & -3 \\ 2 & 1 & -1 & 5 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 & 2 & -2 \\ 0 & 3 & -3 & 0 \end{pmatrix}.$
7	$G = 5(A^T - 2B) \cdot (C + 2D),$

	$A = \begin{pmatrix} 0 & 1 & -2 \\ 3 & 2 & 1 \\ 2 & 0 & -2 \\ 1 & 4 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 2 & -2 \\ 0 & 3 & -1 & -1 \\ 4 & 1 & 0 & -3 \end{pmatrix}, C = \begin{pmatrix} -3 & 4 \\ -2 & 1 \\ -1 & 4 \\ -2 & 3 \end{pmatrix}.$ $\begin{pmatrix} 2 & -2 \\ 3 & -4 \\ 4 & -3 \\ 5 & -4 \end{pmatrix}$
	$D = \begin{pmatrix} 4 & -3 \\ 5 & -4 \end{pmatrix}$
8	$G = (3A - B) \cdot (2C + 3D)^{T},$ $A = \begin{pmatrix} -2 & 1 \\ 0 & -3 \\ -1 & 4 \\ 2 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ 4 & -1 \\ 1 & 4 \\ 5 & -3 \end{pmatrix},$ $C = \begin{pmatrix} 0 & -1 \\ 3 & -4 \\ 5 & -1 \end{pmatrix}, D = \begin{pmatrix} -3 & 4 \\ 1 & 2 \\ -2 & 3 \end{pmatrix}.$
9	$G = (2A+B)^{T} \cdot (3C-4D),$ $A = \begin{pmatrix} 0 & 1 & 1 & -1 \\ 1 & 1 & -2 & -5 \\ 2 & 2 & -1 & -1 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 & 1 & -1 \\ 2 & 4 & -3 & -2 \\ 1 & 1 & 10 & -1 \end{pmatrix}$ $C = \begin{pmatrix} 4 & 2 & 1 & -5 \\ 3 & 1 & -2 & -1 \\ 5 & 4 & 0 & -4 \end{pmatrix}, D = \begin{pmatrix} -2 & 1 & 3 & -3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & -3 & -1 \end{pmatrix}.$
10	$G = (A - 2B^{T}) \cdot (C + 3D),$ $A = \begin{pmatrix} 2 & -1 \\ 3 & 2 \\ 5 & -2 \end{pmatrix}, B = \begin{pmatrix} 3 & 2 & 1 & -4 \\ 1 & 1 & -3 & 0 \end{pmatrix}, C = \begin{pmatrix} 4 & 0 & -3 \\ 2 & 5 & -1 \end{pmatrix},$

$$D = \begin{pmatrix} 10 & 5 & -1 \\ -2 & 3 & -3 \end{pmatrix}.$$

Задание 2. Вычислить определитель

Вариант	Определитель	Вариант	Определитель
1	3 5 7 2 7 6 3 7 5 4 3 5 -5 -6 -5 -4	3	2 4 8 0 4 8 0 27 8 0 27 9 0 27 9 3
2	$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	4	$ \begin{vmatrix} -3 & 2 & 4 & 0 \\ -2 & 3 & 6 & 9 \\ -4 & 0 & 3 & 9 \\ -6 & 2 & 3 & 0 \end{vmatrix} $
5	$\begin{vmatrix} 2 & -3 & 4 & 3 \\ 4 & -2 & 3 & 2 \\ 5 & -5 & 2 & 3 \\ 3 & -4 & 4 & 3 \end{vmatrix}$	8	3 5 7 2 7 6 3 7 5 4 3 5 -5 -6 -5 -4
6	2 4 8 0 4 8 0 27 8 0 27 9 0 27 9 3	9	1 1 1 1 4 3 2 1 16 9 4 1 64 27 8 1
7	$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$	10	0 3 5 7 -3 0 3 5 -5 -3 0 3 -7 -5 -3 0

Задание 3. Найти обратную матрицу к данной

Вариант	Исходная матрица						Вариант	Исходная матрица					
1	(-1	-4	8	15	$-\tilde{1}$	5)	5	$\left(-5\right)$	-1	4	2	-9	11)
	-8	4	-5	7	-5	8		-1	5	4	-6	8	-6
	7	3	-14	7	8	-2		4	4	-4	2	-7	-3
	10	-9	0	-4	-2	-6		2	-6	2	-8	5	-2
	-6	-3	-4	-2	12	2		-9	8	-7	5	-6	7
	-7	8	12	-4	-9	9)		(11	-6	-3	-2	7	-8)

		/
2	$\begin{pmatrix} 3 & -5 & 9 & 3 & -1 & 0 \end{pmatrix}$	$6 \qquad \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	5 -3 -5 0 -5 13	8 4 -5 4 -5 11
	-6 10 -4 15 -2 0	3 6 -14 7 8 -2
	15 -6 9 -9 -2 -6	10 4 0 -4 -2 -6
	8 -3 5 -5 8 -1	-6 -3 -4 -2 2 13
	0 8 6 -4 12 -7	\[-7 8 12 -4 9 -5 \]
3	(-5 -1 4 2 -9 11)	7 (8 -5 12 -5 -1 0)
	-1 5 4 -6 8 -6	5 -3 8 13 -5 13
	4 4 -4 2 -7 -3	-6 13 -4 15 -3 3
	2 -6 2 -8 5 -2	15 -11 9 -9 -2 -6
	-9 8 -7 5 -6 7	8 -3 9 -5 8 -1
	11 -6 -3 -2 7 -8	0 8 6 -4 12 7
4	(-1 0 8 6 -1 5)	8 (-1 -4 8 15 -1 5)
-	8 4 -5 4 -5 11	[-1 -4 8 13 -1 3]
	3 6 -14 7 8 -2	-8 4 -5 7 -5 8
	10 4 0 -4 -2 -6	7 3 -14 7 8 -2
	-6 -3 -4 -2 2 13	10 -9 0 -4 -2 -6
	-7 8 12 -4 9 -5	-6 -3 -4 -2 12 2
	(-7 8 12 -4 9 -5)	(-7 8 12 -4 -9 9)
9	(3 -5 9 3 -1 0)	10 (-1 0 8 6 -1 5)
	5 -3 -5 0 -5 13	8 4 -5 4 -5 11
	-6 10 -4 15 -2 0	3 6 -14 7 8 -2
	15 -6 9 -9 -2 -6	10 4 0 -4 -2 -6
	8 -3 5 -5 8 -1	-6 -3 -4 -2 2 13
	0 8 6 -4 12 -7	\[-7 \ 8 \ 12 \ -4 \ 9 \ -5 \]
	()	

Задание 4. Вычислить значение многочлена f(x) от матрицы A

Вариант	Условия задачи
1	$f(x) = 2x^3 + x + 5$, $A = \begin{pmatrix} -1 & 0 \\ 2 & 2 \end{pmatrix}$.
2	$f(x) = x^3 + 2x - 4$, $A = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$.
3	$f(x) = x^3 + x^2 + x + 1 , A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$
4	$f(x) = 2x^2 + x - 3, A = \begin{pmatrix} -1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}.$

5	$f(x) = x^3 - x^2 - 1, A = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}.$
6	$f(x) = x^{2} - x^{3} + 1 - x, A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$
7	$f(x) = 5x^2 - x - 5$, $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}$
8	$f(x) = 2x^3 + x + 5$, $A = \begin{pmatrix} -1 & 0 \\ 2 & 2 \end{pmatrix}$.
9	$f(x) = x^3 + 2x - 4$, $A = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$.
10	$f(x) = x^3 + x^2 + x + 1, A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$

Справочная информация: функции для работы с матрицами в Excel

Построение матрицы средствами Excel в большинстве случаев требует **использование формулы массива**. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел). Порядок применения формулы массива:

- 1. Выделить диапазон, где должен появиться результат действия формулы.
- 2. Ввести формулу (как обычно, со знака «=»).
- 3. Нажать сочетание кнопок **Ctrl + Shift + Enter**. В строке формул отобразится формула массива в фигурных скобках.

Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). **Часть массива изменить невозможно**.

Действие над матрицами	Функция Excel
Транспонирование	ТРАНСП
Умножение	МУМНОЖ
Нахождение обратной матрицы	МОБР
Нахождение определителя	МОПРЕД