舞鶴工業高等専門学校 電子制御工学科 卒業研究論文 (平成 30 年 2 月 〇〇 日提出)

OO OO (5069)

平成 29 年度

卒業研究論文

○○○○○○○○○に関する研究

舞鶴工業高等専門学校 電子制御工学科										
提出者	OO OO (5069)									
提出日	平成 30 年 2 月 〇〇 日									

Department of Control Engineering,
National Institute of Technology, Maizuru College

指導教員 : ○○ ○○ 准教授

提出者 : ○○ ○○ (5069)

平成 30 年 2 月 〇〇 日

舞鶴工業高等専門学校 電子制御工学科

論文要旨

ここには論文要旨を書きます.

目 次

第 1 1	章	はじ	め	に															 								1
第 2 章	章	図表	ξ																 								2
	2.1	図																	 								2
	2.2	表																	 								2
第 3 章	章	参考	文	献,	7	Z 0	り付	也											 								3
参考又	と献																		 								4
謝辞																			 								5
付録																			 								6
	A.1	付	録	のヹ	番力	手	<u>.</u>												 								6
	A.2	付	緑	の国	(番	₹	‡ .	ŧ	长	\$	<u>.</u>				_	_								_	_		6

第1章 はじめに

あああ

第 2 章 差分進化

2.1 進化計算

進化計算(Evolutionary Computation)は、対象とする問題に対して生物のように進化させて、目標とする解を求める。たとえば、最適化問題では多変数関数の変数の状態を生物の遺伝子と解釈し、

- (1) 変数をそれぞれ関数へ代入し、生物の個体を生成する.
- (2) それらの生物の評価を行う.
- (3) 評価の高いものを生存させ、個体間での交叉を行う. さらに、突然変異を発生させ次世代の染色体とする.

この手順(遺伝的アルゴリズム)を繰り返し、最適化を行う.このとき、複数の個体を用意し解探索を行い、集団を並列に処理する.この集団を交叉を用いて変化させ、

第3章 参考文献,その他

参考文献²⁾⁻⁴⁾ です. 参考文献 2) です. 丸文字やリターンキーは ①, ↓, → のようにして書けます.

参考文献

- 1) 島ほか: 非線形システム制御論, コロナ社 (1997)
- 2) 川田, 島津, 井上 : Hamilton-Jacobi 方程式に基づく非線形 \mathcal{H}_{∞} 制御の近似実現,システム制御情報学会論文誌,Vol. 11,No. 7,pp. 401–410 (1998)
- 3) A. J. van der Schaft: \mathcal{L}_2 -gain Analysis of Nonlinear Systems and Nonlinear State Feedback \mathcal{H}_{∞} Control, *IEEE Trans. Automat. Contr.*, Vol. AC-37, No. 6, pp. 770–784 (1992)
- 4) 中村:二次安定化による倒立振子システムのロバスト制御に関する研究,立命館大学理工学部卒業論文 (1997)

謝辞

謝辞はここに書きます.

付録

A.1 付録の式番号

付録の式番号は

$$\int_0^\infty \|\boldsymbol{x}(t)\|^2 dt < \infty \tag{A.1}$$

のように区別してください.

A.2 付録の図番号,表番号

リスト A.1 (prog.m: フルビッツの安定判別法)

```
1
    %% prog.m
2
3
    clear
    format compact
    syms s
 7
    syms kP kI kD real
8
    syms a0 a1 b0 real
9
10
    P = b0/(s^2 + a1*s + a0);
11
    C = (kD*s^2 + kP*s + kI)/s;
12
13
    [Np Dp] = numden(P);
14
    [Nc Dc] = numden(C);
15
16
    Delta = Dp*Dc + Np*Nc;
17
    Delta = collect(Delta,s)
    alpha = coeffs(Delta,s);
18
19
    N = length(alpha);
20
    n = N - 1;
21
22
23
    % ===== 条件 A ==================
24
    disp('----- 条件 A:a_i > 0 -----')
25
    for i = 1:N
26
      str = ['a', num2str(i-1), '= alpha(i)'];
27
      eval(str)
28
29
```

```
30 | cond1 = '';
31
    for i = 1:N
32
      if i == 1
33
        cond1 = strcat(cond1,['simplify(a' num2str(i-1) '> 0)']);
34
        cond1 = strcat(cond1,[' & simplify(a' num2str(i-1) '> 0)']);
35
36
      end
37
    end
38
    % ===== 条件 B" ============
39
40
    for i = 1:n
41
      for j = 1:n
        k = (N - 1) + (i - 1) - 2*(j - 1);
42
43
        if k >= 1 & k <= N
44
45
         H(i,j) = alpha(k);
46
        else
         H(i,j) = 0;
47
48
        end
49
      end
50
    end
51
    disp('----')
52
53
54
    if mod(n,2) == 0 % 次数: n = 2*k
55
     i_min = 3; i_max = n - 1;
56
                    % 次数: n = 2*k + 1
57
58
     i_min = 2; i_max = n - 1;
59
    end
60
    disp('----- 条件 B":H_i > 0 -----')
61
62
    for i = i_min:2:i_max
63
      str = ['H', num2str(i), '= det(H(1:i,1:i))'];
64
      eval(str)
65
    end
66
    cond2 = ', ';
67
68
    for i = i_min:2:i_max
69
      if i == i_min
70
        cond2 = strcat(cond2,['simplify(H' num2str(i) '> 0)']);
71
72
        cond2 = strcat(cond2,[' & simplify(H' num2str(i) '> 0)']);
73
74
    end
75
    % ===== 安定条件 ===============================
76
    disp('---- 安定条件 -----')
77
    simplify(eval(cond1) & eval(cond2))
78
```