Tiago Montalvão

Um conjunto $M \subseteq E(G)$ é chamado de emparelhamento em G se não existem duas arestas distintas $e_1, e_2 \subseteq M$ adjacentes em G.

Um conjunto $M \subseteq E(G)$ é chamado de emparelhamento em G se não existem duas arestas distintas e_1 , $e_2 \subseteq M$ adjacentes em G.

Um emparelhamento M satura um vértice v, e v é dito M-saturado se alguma aresta em M é incidente a v. Caso contrário, v é M-insaturado.

Um conjunto $M \subseteq E(G)$ é chamado de emparelhamento em G se não existem duas arestas distintas $e_1, e_2 \subseteq M$ adjacentes em G.

Um emparelhamento M satura um vértice v, e v é dito M-saturado se alguma aresta em M é incidente a v. Caso contrário, v é M-insaturado.

Se todo vértice em V(G) é M-saturado, o emparelhamento é dito perfeito.

Um conjunto $M \subseteq E(G)$ é chamado de emparelhamento em G se não existem duas arestas distintas e_1 , $e_2 \subseteq M$ adjacentes em G.

Um emparelhamento M satura um vértice v, e v é dito M-saturado se alguma aresta em M é incidente a v. Caso contrário, v é M-insaturado.

Se todo vértice em V(G) é M-saturado, o emparelhamento é dito perfeito.

M é um emparelhamento máximo se não existe um emparelhamento M', tal que |M'| > |M|.

Emparelhamento

Emparelhamento máximo

Emparelhamento perfeito

Seja M um emparelhamento de G. Um caminho M-alternante em G é um caminho cujas arestas estão alternadamente em E\M e M.

Um caminho M-aumentante é um caminho M-alternante que começa e termina em um vértice M-insaturado.

Teorema de Berge

Teorema de Berge (1957)

Um emparelhamento M em G é máximo se e somente se G não contém um caminho M-aumentante.

Teorema de Berge (1957)

(⇒) Se um emparelhamento M em G é máximo, então G não contém um caminho M-aumentante.

Teorema de Berge (1957)

(⇒) Se um emparelhamento M em G é máximo, então G não contém um caminho M-aumentante.

Seja M um emparelhamento em G, e suponha que G contém um caminho M-aumentante $v_0v_1...v_{2m+1}$. Seja M' \subseteq E(G) definido como:

Teorema de Berge (1957)

(⇒) Se um emparelhamento M em G é máximo, então G não contém um caminho M-aumentante.

Seja M um emparelhamento em G, e suponha que G contém um caminho M-aumentante $v_0v_1...v_{2m+1}$. Seja M' \subseteq E(G) definido como:

$$M' = (M \setminus \{v_1v_2, v_3v_4, ..., v_{2m-1}v_{2m}\} \cup \{v_0v_1, v_2v_3, ..., v_{2m}v_{2m+1}\})$$

Teorema de Berge (1957)

(⇒) Se um emparelhamento M em G é máximo, então G não contém um caminho M-aumentante.

Seja M um emparelhamento em G, e suponha que G contém um caminho M-aumentante $v_0v_1...v_{2m+1}$. Seja M' \subseteq E(G) definido como:

$$M' = (M \setminus \{v_1v_2, v_3v_4, ..., v_{2m-1}v_{2m}\} \cup \{v_0v_1, v_2v_3, ..., v_{2m}v_{2m+1}\})$$

M' também é emparelhamento em G e |M'| > |M|. Portanto, M não é máximo.

Teorema de Berge (1957)

Definição:

Diferença simétrica (Δ ou \oplus) entre dois conjuntos é o conjunto dos elementos que pertencem a um dos conjuntos, mas não aos dois.

Teorema de Berge (1957)

Definição:

Diferença simétrica (Δ ou \oplus) entre dois conjuntos é o conjunto dos elementos que pertencem a um dos conjuntos, mas não aos dois.

Mais formalmente:

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Teorema de Berge (1957)

Definição:

Diferença simétrica (Δ ou \oplus) entre dois conjuntos é o conjunto dos elementos que pertencem a um dos conjuntos, mas não aos dois.

Teorema de Berge (1957)

Definição:

Diferença simétrica (Δ ou \oplus) entre dois conjuntos é o conjunto dos elementos que pertencem a um dos conjuntos, mas não aos dois.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Suponha que exista um emparelhamento máximo M' tal que |M'| > |M|.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Suponha que exista um emparelhamento máximo M' tal que |M'| > |M|.

Seja $H = G[M \triangle M']$.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Suponha que exista um emparelhamento máximo M' tal que |M'| > |M|.

Seja $H = G[M \triangle M']$.

Arestas em negrito em M / Arestas tracejadas em M'

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Suponha que exista um emparelhamento máximo M' tal que |M'| > |M|.

Seja $H = G[M \triangle M']$.

Cada vértice em H tem grau 1 ou 2. Sendo assim, cada componente de H é (i) um ciclo par com arestas alternadamente em M e M' ou (ii) um caminho com arestas alternadamente em M e M'.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

(i) um ciclo par com arestas alternadamente em M e M'.

(ii) um caminho com arestas alternadamente em M e M'.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Como |M'| > |M|, há em H algum componente P que é um caminho começando e terminando com arestas em M'.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Como |M'| > |M|, há em H algum componente P que é um caminho começando e terminando com arestas em M'.

Como os vértices extremos de P são M'-saturados em H, eles são M-insaturados em G.

Teorema de Berge (1957)

(⇐) Se G não contém um caminho M-aumentante, então M é máximo.

Como |M'| > |M|, há em H algum componente P que é um caminho começando e terminando com arestas em M'.

Como os vértices extremos de P são M'-saturados em H, eles são M-insaturados em G.

Sendo assim, P é um caminho M-aumentante em G.

Teorema de Hall

Teorema de Hall (1935)

Seja G um grafo bipartido com bipartição (X,Y). G contém um emparelhamento que satura todo vértice em X se e somente se $|N(S)| \ge |S|$, $\forall S \subseteq X$.

Teorema de Hall (1935)

(⇒) Se G contém um emparelhamento que satura todo vértice em X, então $|N(S)| \ge |S|$, $\forall S \subseteq X$.

Teorema de Hall (1935)

(⇒) Se G contém um emparelhamento que satura todo vértice em X, então $|N(S)| \ge |S|$, $\forall S \subseteq X$.

Seja $S \subseteq X$ e M um emparelhamento que satura todo vértice em X.

Teorema de Hall (1935)

(⇒) Se G contém um emparelhamento que satura todo vértice em X, então $|N(S)| \ge |S|$, $\forall S \subseteq X$.

Seja $S \subseteq X$ e M um emparelhamento que satura todo vértice em X.

Cada vértice em S está ligado a um vértice diferente em N(S).

Teorema de Hall (1935)

(⇒) Se G contém um emparelhamento que satura todo vértice em X, então $|N(S)| \ge |S|$, $\forall S \subseteq X$.

Seja $S \subseteq X$ e M um emparelhamento que satura todo vértice em X.

Cada vértice em S está ligado a um vértice diferente em N(S).

Portanto, temos $|N(S)| \ge |S|$.

Teorema de Hall (1935)

(⇒) Se G contém um emparelhamento que satura todo vértice em X, então $|N(S)| \ge |S|, \forall S \subseteq X.$

Seja $S \subseteq X$ e M um emparelhamento que satura todo vértice em X.

Cada vértice em S está ligado a um vértice diferente em N(S).

Portanto, temos $|N(S)| \ge |S|$.

Como S foi escolhido arbitrariamente, a relação é válida para todo $S \subseteq X$.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, $\forall S \subseteq X$, então G contém um emparelhamento que satura todo vértice em X.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Suponha que a relação é válida, mas G não possui um emparelhamento que satura todo vértice em X.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, $\forall S \subseteq X$, então G contém um emparelhamento que satura todo vértice em X.

Suponha que a relação é válida, mas G não possui um emparelhamento que satura todo vértice em X.

Seja M^* um emparelhamento máximo. Pela hipótese, há algum vértice u em X M^* -insaturado. Seja Z o conjunto de todos os vértices conectados a u por caminhos M^* -alternantes.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Pelo teorema de Berge, sabemos que u é o único vértice M*-insaturado em Z, pois M* é máximo. Seja $S = Z \cap X$ e $T = Z \cap Y$.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Todo vértice de $S\setminus\{u\}$ está emparelhado com vértices de T em M*. Sendo assim, temos que |T| = |S| - 1 e $N(S) \supseteq T$.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Todo vértice de $S\setminus\{u\}$ está emparelhado com vértices de T em M*. Sendo assim, temos que |T| = |S| - 1 e $N(S) \supseteq T$.

Temos, na verdade, que N(S) = T, pois cada vértice em N(S) está conectado a u por um caminho M^* -alternante.

Teorema de Hall (1935)

(\Leftarrow) Se $|N(S)| \ge |S|$, \forall S ⊆ X, então G contém um emparelhamento que satura todo vértice em X.

Todo vértice de $S\setminus\{u\}$ está emparelhado com vértices de T em M*. Sendo assim, temos que |T| = |S| - 1 e $N(S) \supseteq T$.

Temos, na verdade, que N(S) = T, pois cada vértice em N(S) está conectado a u por um caminho M^* -alternante.

Sendo assim, |T| = |N(S)| = |S| - 1 < |S|, o que contradiz a hipótese.

Cobertura de vértices

Uma cobertura de um grafo G é um $K \subseteq V$ tal que toda aresta de G tem pelo menos uma extremidade em K.

K é uma cobertura mínima se não existe uma cobertura K', tal que |K'| < |K|.

Cobertura de vértices

Se K é uma cobertura de G e M um emparelhamento de G, então K contém pelo menos uma extremidade de cada aresta de M. Então, é verdade que

$$|M| \leq |K|$$

Mais particularmente, seja K* uma cobertura mínima e M* um emparelhamento máximo. Então

$$|\mathsf{M}^*| \leq |\mathsf{K}^*|$$

Teorema de König

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|M^*| = |K^*|$.

Teorema de König (1931)

Lema: Seja M um emparelhamento e K uma cobertura, tal que |M| = |K|. Neste caso, M é um emparelhamento máximo e K uma cobertura mínima.

Teorema de König (1931)

Lema: Seja M um emparelhamento e K uma cobertura, tal que |M| = |K|. Neste caso, M é um emparelhamento máximo e K uma cobertura mínima.

Sabemos que $|M^*| \le |K^*|$, para M^* e K^* ótimos. Sendo assim:

$$|\mathsf{M}| \le |\mathsf{M}^*| \le |\mathsf{K}^*| \le |\mathsf{K}|$$

Como |M| = |K|, temos que $|M| = |M^*| = |K^*| = |K|$.

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|M^*| = |K^*|$.

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|\mathbf{M}^*| = |\mathbf{K}^*|$.

Seja um grafo G com bipartição (X,Y) e M* um emparelhamento máximo de G.

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|\mathbf{M}^*| = |\mathbf{K}^*|$.

Seja um grafo G com bipartição (X,Y) e M* um emparelhamento máximo de G.

Seja U o conjunto de todos os vértices M*-insaturados em X (possivelmente vazio) e Z o conjunto de todos os vértices conectados por caminhos M*-alternantes a vértices de U.

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|\mathbf{M}^*| = |\mathbf{K}^*|$.

Seja um grafo G com bipartição (X,Y) e M* um emparelhamento máximo de G.

Seja U o conjunto de todos os vértices M*-insaturados em X (possivelmente vazio) e Z o conjunto de todos os vértices conectados por caminhos M*-alternantes a vértices de U.

Seja S = $Z \cap X$ e T = $Z \cap Y$. Sabemos, assim como na prova anterior, que N(S) = T.

Teorema de König (1931)

Em um grafo bipartido, a quantidade de arestas no emparelhamento máximo é igual ao número de vértices na cobertura mínima, ou seja, vale $|M^*| = |K^*|$.

Teorema de König (1931)

Seja K = $(X \setminus S) \cup T$.

Teorema de König (1931)

Seja $K = (X \setminus S) \cup T$.

Toda aresta de G tem pelo menos uma das extremidades em K.

Teorema de König (1931)

Seja $K = (X \setminus S) \cup T$.

Toda aresta de G tem pelo menos uma das extremidades em K. Caso contrário, existiria uma aresta com uma extremidade em S e outra em $Y \setminus T$, contradizendo N(S) = T.

Teorema de König (1931)

Seja $K = (X \setminus S) \cup T$.

Toda aresta de G tem pelo menos uma das extremidades em K. Caso contrário, existiria uma aresta com uma extremidade em S e outra em $Y\T$, contradizendo N(S) = T.

Portanto, K é uma cobertura de G e $|M^*| = |K|$.

Teorema de König (1931)

Seja $K = (X \setminus S) \cup T$.

Toda aresta de G tem pelo menos uma das extremidades em K. Caso contrário, existiria uma aresta com uma extremidade em S e outra em $Y \setminus T$, contradizendo N(S) = T.

Portanto, K é uma cobertura de G e $|M^*| = |K|$.

Pelo lema provado anteriormente, K é uma cobertura mínima.

Teorema de Tutte

Teorema de Tutte (1947)

Um grafo G possui um emparelhamento perfeito se e somente se o(G\S) \leq |S|, $\forall S \subset V$.

Teorema de Tutte (1947)

Um grafo G possui um emparelhamento perfeito se e somente se o(G\S) \leq |S|, $\forall S \subset V$.

Definição:

Uma componente é par ou ímpar se seu número de vértices é par ou ímpar, respectivamente.

o(G) denota o número de componentes ímpares de G.

Teorema de Tutte (1947)

(⇒) Se G possui um emparelhamento perfeito, então o(G\S) ≤ |S|, $\forall S \subset V$.

Teorema de Tutte (1947)

(⇒) Se G possui um emparelhamento perfeito, então o(G\S) ≤ |S|, $\forall S \subset V$.

Sejam $S \subset V$ e G_1 , G_2 , ..., G_n as componentes impares de $G \setminus S$.

Teorema de Tutte (1947)

(⇒) Se G possui um emparelhamento perfeito, então o(G\S) ≤ |S|, $\forall S \subset V$.

Sejam $S \subset V$ e G_1 , G_2 , ..., G_n as componentes impares de $G \setminus S$.

Como cada G_i é ímpar, existe um vértice $u_i \subseteq G_i$ que deve ser emparelhado com um vértice v_i de S.

Teorema de Tutte (1947)

(⇒) Se G possui um emparelhamento perfeito, então o(G\S) ≤ |S|, $\forall S \subset V$.

Sejam $S \subset V$ e G_1 , G_2 , ..., G_n as componentes impares de $G \setminus S$.

Como cada G_i é ímpar, existe um vértice $u_i \in G_i$ que deve ser emparelhado com um vértice v_i de S.

Como $\{v_1, v_2, ..., v_n\} \subseteq S$, temos que:

$$o(G \setminus S) = n = |\{v_1, v_2, ..., v_n\}| \le |S|$$

Teorema de Tutte (1947)

(⇒) Se G possui um emparelhamento perfeito, então o(G\S) ≤ |S|, $\forall S \subset V$.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Suponha que G não possua emparelhamento perfeito. Note que adicionar arestas pode fazer o grafo ter um, pois eventualmente ele será ser completo.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Suponha que G não possua emparelhamento perfeito. Note que adicionar arestas pode fazer o grafo ter um, pois eventualmente ele será ser completo.

Seja G* um grafo maximal não possuindo emparelhamento perfeito, tal que G é subgrafo gerador.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Suponha que G não possua emparelhamento perfeito. Note que adicionar arestas pode fazer o grafo ter um, pois eventualmente ele será ser completo.

Seja G* um grafo maximal não possuindo emparelhamento perfeito, tal que G é subgrafo gerador.

Então é verdade que $o(G^* \setminus S) \le o(G \setminus S) \le |S|$, $\forall S \subseteq V$ pois adicionar arestas em $G \setminus S$ não incrementa o número de componentes ímpares.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Sabemos que |V| é par, pois fazendo $S = \emptyset$, temos que $o(G^* \setminus S) = o(G^*) \le |\emptyset| = 0$.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Sabemos que |V| é par, pois fazendo $S = \emptyset$, temos que $o(G^* \setminus S) = o(G^*) \le |\emptyset| = 0$.

Seja U o conjunto de todos os vértices de grau |V|-1 em G*. Sabemos que U \neq V, caso contrário G* seria completo e teria um emparelhamento perfeito.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Sabemos que |V| é par, pois fazendo $S = \emptyset$, temos que $o(G^* \setminus S) = o(G^*) \le |\emptyset| = 0$.

Seja U o conjunto de todos os vértices de grau |V|-1 em G*. Sabemos que U \neq V, caso contrário G* seria completo e teria um emparelhamento perfeito.

Lema: G*√U é uma união disjunta de grafos completos.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Sabemos que $o(G^*\setminus U) \le |U|$. Mas, usando o lema, conseguimos construir um emparelhamento perfeito da seguinte forma:

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Como assumimos que G* não possuía um emparelhamento perfeito, chegamos a uma contradição.

Teorema de Tutte (1947)

(\Leftarrow) Se o(G \setminus S) ≤ \mid S \mid , \forall S \subseteq V, então G possui um emparelhamento perfeito.

Como assumimos que G* não possuía um emparelhamento perfeito, chegamos a uma contradição.

Logo, G possui um emparelhamento perfeito.

Lema: G*\U é uma união disjunta de grafos completos.

Lema: G*\U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Lema: G*√U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Como y \notin U, existe um vértice w em G*\U tal que $yw \notin E(G^*)$.

Lema: G*√U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Como y \notin U, existe um vértice w em G*\U tal que $yw \notin E(G^*)$.

Lema: G*√U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Como y \notin U, existe um vértice w em G*\U tal que $yw \notin E(G^*)$.

Como G* é um grafo maximal que não possui um emparelhamento perfeito, G*+e tem um emparelhamento perfeito, \forall e \notin E(G*).

Lema: G*√U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Como y \notin U, existe um vértice w em G*\U tal que $yw \notin E(G^*)$.

Como G* é um grafo maximal que não possui um emparelhamento perfeito, G*+e tem um emparelhamento perfeito, \forall e \notin E(G*). Sejam M_1 e M_2 os emparelhamentos perfeitos em G*+xz e em G*+yw, respectivamente.

Lema: G*√U é uma união disjunta de grafos completos.

Suponha que exista algum componente de $G^*\setminus U$ não completo. Então existem x, y, $z \in V$, tal que xy, $yz \in E(G^*)$, mas $xz \notin E(G^*)$.

Como y \notin U, existe um vértice w em G*\U tal que $yw \notin E(G^*)$.

Como G* é um grafo maximal que não possui um emparelhamento perfeito, G*+e tem um emparelhamento perfeito, \forall e \notin E(G*). Sejam M_1 e M_2 os emparelhamentos perfeitos em G*+xz e em G*+yw, respectivamente.

Seja H o subgrafo de $G^* \cup \{xz, yw\}$ induzido por $M_1 \triangle M_2$.

Lema: G*√U é uma união disjunta de grafos completos.

Todo vértice de H possui grau 2, pois é adjacente a exatamente uma aresta de M_1 e de M_2 . Portanto, H é uma união disjunta de ciclos, todos pares, pois alternam entre arestas de M_1 e M_2 . Dois casos aparecem:

- (i) xz e yw estão em componentes diferentes em H.
- (ii) xz e yw estão na mesma componente em H.

Lema: G*√U é uma união disjunta de grafos completos.

(i) xz e yw estão em componentes diferentes em H.

(ii) xz e yw estão na mesma componente em H.

Lema: G*\U é uma união disjunta de grafos completos.

(i) xz e yw estão em componentes diferentes em H.

Lema: G*√U é uma união disjunta de grafos completos.

(i) xz e yw estão em componentes diferentes em H.

Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do ciclo que contém a aresta yw e as arestas de M_2 do outro.

Lema: G*√U é uma união disjunta de grafos completos.

(i) xz e yw estão em componentes diferentes em H.

Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do ciclo que contém a aresta yw e as arestas de M_2 do outro. Todas elas estão em G^* e formam um emparelhamento perfeito.

Lema: G*\U é uma união disjunta de grafos completos.

(i) xz e yw estão em componentes diferentes em H.

Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do ciclo que contém a aresta yw e as arestas de M_2 do outro. Todas elas estão em G^* e formam um emparelhamento perfeito.

Portanto, este caso não pode ocorrer pois, por hipótese, G* não possui um emparelhamento perfeito.

Lema: G*\U é uma união disjunta de grafos completos.

(ii) xz e yw estão na mesma componente em H.

Lema: G*\U é uma união disjunta de grafos completos.

(ii) xz e yw estão na mesma componente em H.

Seja esta componente C.

Lema: G*∖U é uma união disjunta de grafos completos.

(ii) xz e yw estão na mesma componente em H.

Seja esta componente C. Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do caminho y, w, ..., z junto com a aresta yz e as arestas de M_2 de C que estão neste caminho.

Lema: G*\U é uma união disjunta de grafos completos.

(ii) xz e yw estão na mesma componente em H.

Seja esta componente C. Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do caminho y, w, ..., z junto com a aresta yz e as arestas de M_2 de C que estão neste caminho. Todas elas estão em G^* e formam um emparelhamento perfeito.

Lema: G*∖U é uma união disjunta de grafos completos.

(ii) xz e yw estão na mesma componente em H.

Seja esta componente C. Podemos construir um emparelhamento perfeito em G^* selecionando as arestas de M_1 do caminho y, w, ..., z junto com a aresta yz e as arestas de M_2 de C que estão neste caminho. Todas elas estão em G^* e formam um emparelhamento perfeito.

Portanto, este caso não pode ocorrer pois, por hipótese, G* não possui um emparelhamento perfeito.

Lema: G*\U é uma união disjunta de grafos completos.

Como ambos os casos levam à contradição, temos que G*\U é de fato uma união disjunta de grafos completos.

Um exemplo clássico de aplicação dos emparelhamentos é o problema da atribuição (assignment problem).

Um exemplo clássico de aplicação dos emparelhamentos é o problema da atribuição (assignment problem).

Dados n agentes X_1 , X_2 , ..., X_n e n tarefas Y_1 , Y_2 , ..., Y_n , é possível atribuir agentes para tarefas, de forma que um agente tenha exatamente uma tarefa e cada tarefa seja executada por exatamente um agente, sendo que cada agente está qualificado para as tarefas $T(X_i) \neq \emptyset$?

Um exemplo clássico de aplicação dos emparelhamentos é o problema da atribuição (assignment problem).

Dados n agentes X_1 , X_2 , ..., X_n e n tarefas Y_1 , Y_2 , ..., Y_n , é possível atribuir agentes para tarefas, de forma que um agente tenha exatamente uma tarefa e cada tarefa seja executada por exatamente um agente, sendo que cada agente está qualificado para as tarefas $T(X_i) \neq \emptyset$?

Podemos modelar este problema como um grafo bipartido G(X, Y), sendo X o conjunto de agentes e Y o conjunto de tarefas. Há uma aresta (x, y) se o agente x está qualificado para a tarefa y.

Dado um grafo bipartido, este algoritmo retorna um emparelhamento máximo em $O(|E| \sqrt{|V|})$.

Dado um grafo bipartido, este algoritmo retorna um emparelhamento máximo em $O(|E| \sqrt{|V|})$.

Foi desenvolvido em 1973 por John Hopcroft e Richard Karp.

Dado um grafo bipartido, este algoritmo retorna um emparelhamento máximo em $O(|E| \sqrt{|V|})$.

Foi desenvolvido em 1973 por John Hopcroft e Richard Karp.

Pelo teorema de Berge, uma ideia inicial para computar um emparelhamento máximo é começar com um emparelhamento arbitrário M e procurar por caminhos aumentantes.

Dado um grafo bipartido, este algoritmo retorna um emparelhamento máximo em $O(|E| \sqrt{|V|})$.

Foi desenvolvido em 1973 por John Hopcroft e Richard Karp.

Pelo teorema de Berge, uma ideia inicial para computar um emparelhamento máximo é começar com um emparelhamento arbitrário M e procurar por caminhos aumentantes.

O algoritmo utiliza esta ideia, mas em cada passo é descoberto um conjunto maximal de caminhos aumentantes mínimos.

Seja G(X, Y) bipartido.

$$M \leftarrow \emptyset$$

Enquanto existe um caminho aumentante

 $P \leftarrow \{P_1, P_2, ..., P_n\}$ conjunto maximal de caminhos aumentantes mínimos disjuntos P_i

$$M \leftarrow M \Delta \{P_1 \cup P_2 \cup ... \cup P_n\}$$

Corretude:

Cada iteração do algoritmo adiciona pelo menos uma aresta ao emparelhamento. Portanto, o algoritmo termina.

Corretude:

Cada iteração do algoritmo adiciona pelo menos uma aresta ao emparelhamento. Portanto, o algoritmo termina.

O algoritmo pára quando não há caminhos aumentantes. Pelo teorema de Berge, isto garante a maximalidade do emparelhamento.

Análise assintótica:

Cada iteração do algoritmo consiste de uma busca simples (pode ser implementada com uma busca em largura + busca em profundidade). Portanto, cada iteração requer tempo O(|E|).

Análise assintótica:

Cada iteração do algoritmo consiste de uma busca simples (pode ser implementada com uma busca em largura + busca em profundidade). Portanto, cada iteração requer tempo O(|E|). Sendo assim, após as primeiras $\sqrt{|V|}$ iterações, o algoritmo requer um tempo $O(|E|\sqrt{|V|})$.

Análise assintótica:

Cada iteração do algoritmo consiste de uma busca simples (pode ser implementada com uma busca em largura + busca em profundidade). Portanto, cada iteração requer tempo O(|E|). Sendo assim, após as primeiras $\sqrt{|V|}$ iterações, o algoritmo requer um tempo $O(|E|\sqrt{|V|})$.

Seja M o emparelhamento após as primeiras √ | V | iterações.

Análise assintótica:

Cada iteração do algoritmo consiste de uma busca simples (pode ser implementada com uma busca em largura + busca em profundidade). Portanto, cada iteração requer tempo O(|E|). Sendo assim, após as primeiras $\sqrt{|V|}$ iterações, o algoritmo requer um tempo $O(|E|\sqrt{|V|})$.

Seja M o emparelhamento após as primeiras √ | V | iterações.

A cada iteração, o algoritmo incrementa o caminho aumentante mínimo em pelo menos uma aresta. Portanto, o tamanho de qualquer caminho aumentante nesta iteração é maior que $\sqrt{|V|}$.

Análise assintótica:

Seja H = $G[M \Delta M^*]$, sendo M^* um emparelhamento máximo.

Análise assintótica:

Seja $H = G[M \Delta M^*]$, sendo M^* um emparelhamento máximo. H é uma união disjunta de ciclos pares e caminhos aumentantes.

Análise assintótica:

Seja H = G[M \triangle M*], sendo M* um emparelhamento máximo. H é uma união disjunta de ciclos pares e caminhos aumentantes. Como o tamanho de cada caminho aumentante é pelo menos $\sqrt{|V|}$, há no máximo $\sqrt{|V|}$ caminhos.

Análise assintótica:

Seja H = G[M \triangle M*], sendo M* um emparelhamento máximo. H é uma união disjunta de ciclos pares e caminhos aumentantes. Como o tamanho de cada caminho aumentante é pelo menos $\sqrt{|V|}$, há no máximo $\sqrt{|V|}$ caminhos.

Isto implica que o $|M^*|-|M| \le \sqrt{|V|}$.

Análise assintótica:

Seja H = G[M \triangle M*], sendo M* um emparelhamento máximo. H é uma união disjunta de ciclos pares e caminhos aumentantes. Como o tamanho de cada caminho aumentante é pelo menos $\sqrt{|V|}$, há no máximo $\sqrt{|V|}$ caminhos.

Isto implica que o $|M^*|-|M| \le \sqrt{|V|}$.

Portanto, o algoritmo executará no máximo mais √ | V | iterações.

Análise assintótica:

Seja H = G[M \triangle M*], sendo M* um emparelhamento máximo. H é uma união disjunta de ciclos pares e caminhos aumentantes. Como o tamanho de cada caminho aumentante é pelo menos $\sqrt{|V|}$, há no máximo $\sqrt{|V|}$ caminhos.

Isto implica que o $|M^*|-|M| \le \sqrt{|V|}$.

Portanto, o algoritmo executará no máximo mais √ | V | iterações.

Sendo assim, o algoritmo tem complexidade $O(|E| \sqrt{|V|})$.

A mesma ideia pode ser aplicada a grafos que não são bipartidos.

A mesma ideia pode ser aplicada a grafos que não são bipartidos.

A maior dificuldade está, porém, em como achar os caminhos aumentantes.

A mesma ideia pode ser aplicada a grafos que não são bipartidos.

A maior dificuldade está, porém, em como achar os caminhos aumentantes.

Em 1980, Micali e Vazirani apresentaram um método que realiza esta etapa em tempo linear. Sendo assim, a complexidade de tal algoritmo é a mesma do algoritmo de Hopcroft-Karp.

A mesma ideia pode ser aplicada a grafos que não são bipartidos.

A maior dificuldade está, porém, em como achar os caminhos aumentantes.

Em 1980, Micali e Vazirani apresentaram um método que realiza esta etapa em tempo linear. Sendo assim, a complexidade de tal algoritmo é a mesma do algoritmo de Hopcroft-Karp.

O método é bem complexo e não houve provas completas de sua corretude até 2012, quando o próprio Vazirani escreveu um artigo, com uma prova simplificada sobre o algoritmo.

Referências

Graph Theory With Applications, J.A. Bondy, U.S.R. Murty

https://math.la.asu.edu/~andrzej/teach/mat416/ proofs3.pdf

https://en.wikipedia.org/wiki/K%C5%91nig%27s _theorem_(graph_theory)

https://en.wikipedia.org/wiki/Hopcroft%E2%80 %93Karp_algorithm

http://www.cc.gatech.edu/~vazirani/new-proof.pdf