<u>Proof.</u> We can assume that $\|\mathbf{m}\|_{\infty} \le 1$ (in fact, if $B := (\mathbf{m}/\|\mathbf{m}\|_{\infty}) \cdot A$ is the generator of a positive semigroup, then by A-I,3.1 $\mathbf{m} \cdot A = \|\mathbf{m}\|_{\infty} B$ also generates a positive semigroup). The assertion of the theorem holds for A if and only if it is valid for $A - \mathbf{w}$ ($\mathbf{w} \in \mathbb{R}$). So by the proof of Thm. 1.13 we can assume that there exists $0 << \mathbf{u} \in C(K)$ such that A is P_{11} -dissipative. We first show,

(1.11) if B is a p_u-dissipative operator and 0 << q \in C(K), then q·B is p_u-dissipative.

Let $f \in D(q \cdot B) = D(B)$. There exists $x \in K$ such that $\phi_x \in dp_u(f)$ (by (1.6)). Hence $\langle Bf, \phi_x \rangle \leq 0$. Consequently, $\langle q \cdot Bf, \phi_x \rangle = q(x) \langle Bf, \phi_x \rangle \leq 0$.

Next we show,

if B is the generator of a p_u^- -contraction semigroup and (1.12) $1 \ge q \in C(K)_+$ is such that $\|1-q\|_\infty \le 1/2$, then $q \cdot B$ generates a p_u^- -contraction semigroup.

Because of (1.11) we only have to show that $(I-q \cdot B)$ is surjective. Note that $1 \in \rho(B)$. We have $(Id-q \cdot B) = (Id-B-(q-1)B) = (Id-(q-1)BR(1,B))(Id-B)$. Thus it suffices to show that Id-(q-1)BR(1,B) is invertible. The norm $\|f\|_u = \max\{p_u(f), p_u(-f)\} = \sup_{\mathbf{x} \in K} \|f(\mathbf{x})\|/u(\mathbf{x})$ is equivalent to the supremum norm. Denote by $\|T\|_u$ the operator norm corresponding to $\|\cdot\|_u$ $(T \in L(E))$. Then it is enough to show that $\|\cdot\|_{q-1}BR(1,B)\|_u = \|\cdot\|_{q-1}(R(1,B)-I)\|_u < 1$. For $\mathbf{r} \in C(K)_+$ denote by \mathbf{M}_r the multiplication operator given by $\mathbf{M}_r = \mathbf{r} \cdot \mathbf{f}$. Then $\|\mathbf{M}_r\|_u = \sup\{\|\mathbf{r} \cdot \mathbf{f}\|_u : \|\mathbf{f}\|_u \le 1\} = \sup\{\sup_{\mathbf{x} \in K} \mathbf{r}(\mathbf{x}) | f(\mathbf{x}) | f(\mathbf{x}) : \|f\|_u \le 1\} \le \|\mathbf{r}\|_\infty$. Since \mathbf{B} is \mathbf{p}_u -dissipative we have $\|R(1,B)\|_u \le 1$ (by A-II, Lemma 2.10). This gives $\|(q-1)(R(1,B)-I)\|_u \le \|\mathbf{M}_{(1-q)}\|_u(\|R(1,B)\|_u + 1) \le 2\|1-q\|_\infty < 1$. The proof of (1.12) is complete.

There exists $k \in \mathbb{N}$ such that $\|1-m^{1/k}\|_{\infty} < 1/2$. Applying now (1.12) successively to $B=m^{1/k}\cdot A$ and $q=m^{1/k}$ (1 = 1, ..., k-1) we obtain that $m\cdot A$ generates a p_u -contraction semigroup (which in particular is positive).

Finally we show (1.10) to hold.

Let $0 << u \in D(A) = D(m \cdot A)$ and $Au \le \lambda u$. Then $m \cdot Au \le \|m\|_{\infty} \lambda u$. So (1.8) implies that $\omega(m \cdot A) \le \|m\|_{\infty} \omega(A)$. This is one part of (1.10).