ML/DL for Everyone Season2

with PYTORCH

10-2-mnist_cnn

지난시간까지

Convolution

오늘은

MNIST에 CNN 적용해보기

오늘은

- 1. 딥러닝을 학습시키는 단계
- 2. 우리가 만들 CNN 구조 확인
- 3. MNIST에 CNN 적용 코드를 함께 작성

학습 단계(code 기준)

- **1.** 라이브러리 가져오고 (torch, torchvision, matplotlib 같은것들)
- 2. GPU 사용 설정 하고 random value를 위한 seed 설정!
- 3. 학습에 사용되는 parameter 설정!(learning_rate, training_epochs, batch_size, etc)
- 4. 데이터셋을 가져오고 (학습에 쓰기 편하게) loader 만들기
- 5. 학습 모델 만들기(class CNN(torch.nn.Module))
- 6. Loss function (Criterion)을 선택하고 최적화 도구 선택(optimizer)
- 7. 모델 학습 및 loss check(Criterion의 output)
- **8.** 학습된 모델의 성능을 확인한다.

라이브러리 가져오기

GPU 사용설정

데이터 셋을 가져오고 loader 만들기

Parameter 결정

학습 모델 만들기

Loss function & Optimizer

Training

Test model Performance

잠시 후에 다시 봅시다~!

우리가 만들 CNN 구조 확인!

(Layer 1) Convolution layer = (in_c=1, out_c=32,kernel_size =3, stride=1,padding=1) (Layer 1) MaxPool layer = (kernel_size=2, stride =2)

(Layer 2) Convolution layer = (in_c=32, out_c=64, kernel_size =3, stride=1,padding=1) (Layer 2) MaxPool layer = (kernel_size=2, stride =2)

view => (batch_size x [7,7,64] => batch_size x [3136]) Fully_Connect layer => (input=3136, output = 10)

MNIST에 CNN 적용 코드를 함께 작성

● jupyter notebook을 켜고 직접 같이 쳐보면서 진행하겠습니다.

● 그럼 시작해볼까요?

우리가 확인한 결과

● 더 깊게 레이어를 쌓으면 어떻게 될까?

● 더 잘 되지 않을까?

오늘 만들 CNN 구조 확인!

- (Layer 1) Convolution layer = (in_c=1, out_c=32,kernel_size =3, stride=1,padding=1) (Layer 1) MaxPool layer = (kernel_size=2, stride=2)
- (Layer 2) Convolution layer = (in_c=32, out_c=64,kernel_size =3, stride=1,padding=1) (Layer 2) MaxPool layer = (kernel_size=2, stride =2)
- (Layer 3) Convolution layer = (in_c=64, out_c=128,kernel_size =3, stride=1,padding=1) (Layer 3) MaxPool layer = (kernel_size=2, stride =2)
- (Layer 4) Fully Connected layer =(input=4*4*128, output = 625) (Layer 5) Fully Connected layer =(input=625, output = 10)

오늘 같이 해본 것들은?

- 1. 딥러닝을 학습시키는 단계를 복습!
- 2. 우리가 만들 CNN 구조 확인!
- 3. 필요한 함수들의 사용 방법을 확인
- 4. MNIST에 CNN 적용 코드를 함께 작성

What's Next?

• Visdom!

