1 Jacobi Fields

Consider M a Riemannian manifold, $p \in M$. Let Ω be the maximal domain of the exponential map \exp_p . We wish to understand what happens to the image of a ball under the exponential map (which is a diffeo for small balls, but what about larger ones?). In essence, where is the exponential map a local diffeomorphism? Or, where is $d\exp_p$ an isomorphism? For what u is $(d\exp_p)_u: T_uT_pM \cong T_pM \to T_{\exp_p(u)}M$ an isomorphism? This is true if and only if the kernel is trivial.

Suppose v is such that $d \exp_n |_{u}(v) = 0$. We know that

$$d\exp_n|_u(v) = \partial_s \exp_n(u+sv)|_{s=0}$$

Now, we have a family of radial geodesics $\exp(t(u+sv))$ (familial wrt s) which connect $\exp(tu)$ to $\exp(t(u+v))$, call the family $\gamma(t,s)=\exp_p(t(u+sv))$. γ is a smooth map from a disk D (or a rectangle) to M. (Horizontal slices in the rectangle are geodesics). We have two important vector fields: $\partial_s \gamma$ and $\partial_t \gamma$. $\partial_s \gamma$ is the rate of change of the deformation of the starting curve, the deformation vector field. Let $J=\partial_s \gamma$. Do we have an equation for J? What happens if we differentiate J?

$$\begin{split} \nabla_{\partial_t} \nabla_{\partial_t} \partial_s \gamma &= \nabla_{\partial_t} \nabla_{\partial_s} \partial_t \gamma & \text{commutativity not proven in class} \\ &= \nabla_t \nabla_s \partial_t \gamma - \nabla_s \nabla_t \partial_t \gamma + \nabla_a s \nabla_t \partial_t \gamma + \nabla_{[\partial_s, \partial_t]} \partial_t \gamma \\ &= R(\partial_s \gamma, \partial_t \gamma) \partial_t \gamma & \text{since } \nabla_t \partial_t \gamma \text{ vanishes (geodesic)} \end{split}$$

which gives us a formula for J as

$$J'' + R(\gamma_0, J)\gamma_0 = 0$$

Theorem 1. The linear map F(w) = Jw is an isomorphism.

Proof. If Jw = 0, then J'w = 0 so w = J'w(0) = 0. So F is injective. Now, to show surjectivity, we let J be a Jacobi field along γ such that J(0) = 0, J(1) = 0, and set w = J'(0). Then Jw = J and F is surjective.

Theorem 2. $d \exp_p |_v$ is an isomorphism if and only if 1 is not a conjugate time for $\gamma(t) = \exp_p(tv)$ i.e. $\exp_p(v)$ is not conjugate to p along γ .

Here, $\exp_p(v)$ is conjugate to p if the Jacobi field along γ vanishes at both p and $\exp_p(v)$.

1.1 Jacobi Fields on Manifolds With Constant Curvature

Recall the Jacobi equation

$$J'' + R_m(\gamma', J')\gamma' = 0 \tag{1.1}$$

First assume $J = f\gamma'$. Then, the jacobi equation yields

$$J'' + fR(\gamma', \gamma')\gamma' = 0 \tag{1.2}$$

$$\begin{split} \kappa &= 0 \quad J^i(t) = a^i t \\ \kappa &< 0 \quad J^i(t) = a^i \sinh(\sqrt{-\kappa}t) \\ \kappa &> 0 \quad J^i(t) = a^i \sin(\sqrt{\kappa}t) \\ \kappa &= 0 \quad J(t) = tw(t) \\ \kappa &< 0 \quad J(t) = \frac{\sinh(\sqrt{-\kappa}t)}{\sqrt{-\kappa}} \\ \kappa &> 0 \quad J(t) = \frac{\sin(\sqrt{\kappa}t)}{\sqrt{\kappa}} \end{split}$$

and thus J''=0 so f=at+b, and so $J(t)=(at+b)\gamma'$. With the initial condition J(0)=0, we have $J(t)=at\gamma'(t)$, which will never be zero for positive time and $a\neq 0$. So, J as a tangential field cannot form conjugate points.

Now, let's assume J is normal to $\gamma'(t)$. Now, let's choose a parallel frame along γ the geodesic such that e_1 is parallel to $\gamma'(t)$. Then, $J = f^i e_i$ which yields the system of differential equations

$$f''^{i}e_{i} + f^{i}R_{m}(\gamma', e_{i})\gamma' = 0$$

$$\tag{1.3}$$

If we assume that our manifold has constant curvature, we have

$$R(X,Y)Z = \kappa(g(Z,X)Y - g(Z,Y)X) \tag{1.4}$$

which yields the equations

$$f''^{i}e_{i} + f^{i}\kappa(\|\gamma'\|^{2}e_{i} = 0$$
(1.5)

or

$$f''^{i} + f^{i} \kappa \|\gamma'\|^{2} = 0 \tag{1.6}$$

Furthermore, if we assume γ is unit parameterized, we have the equations

$$f''^i + f^i \kappa = 0 \tag{1.7}$$

Which has solutions (for J(0) = 0)

Suppose instead we wish to solve this without an orthonormal frame. Let w = J'(0) with J(0) = 0 the initial data. Let w(t) be the parallel vector field of w along γ . We assume the solution has the form J(t) = f(t)w(t). Then, we have f(0) = 0 and f'(0) = 1 initial conditions. Then, we have the equation

$$f''w + f\kappa(\|\gamma'\|^2 w - (\gamma' \cdot w)\gamma') = 0 \tag{1.8}$$

Now, we have already taken care of the tangential part, so let's assume w is orthogonal to γ' . Then, we have the solutions i++i.