

Ministério da Educação **Universidade Tecnológica Federal do Paraná**Campus Curitiba

Dedução Natural (Parte 2)

Professor: Thiago do Nascimento Ferreira

E-mail: thiagoferreira@utfpr.edu.br

Sala: 6 DAINF

Atendimento: Terças e Sextas 15:50

Fórmulas Insatisfazíveis

- Denotaremos contradições pela constante lógica
 L, que não é satisfeita por nenhuma valoração.
- Qualquer fórmula pode ser derivada de uma contradição
 - basta recordarmos a definição de consequência lógica para verificar que, seja A uma fórmula qualquer, ⊥ ⊨ A.

L-Eliminação

 Dada uma contradição ⊥, podemos derivar qualquer fórmula A.

$$\frac{\perp}{A}$$
 (\perp e)

1-Introdução

• Suponha que as fórmulas A e ¬A foram concluídas, obviamente existe uma contradição. Esse fato gera a regra abaixo

$$\frac{A}{\bot} \frac{\neg A}{\bot} (\bot i)$$

• Prove $\neg p \lor q \vdash p \rightarrow q$

Exemplo

- Prove $\neg p \lor q \vdash p \rightarrow q$
 - 1. $\neg p \lor q$

 $\neg p$

p

q

 $p \rightarrow q$

3.

2.

- 4.
- 5.
- 6.

- premissa
- hipótese
- hipótese
- $\perp i$ 3,2
- $\perp e \ 4$
- \rightarrow i 3-5
- $hip \acute{o}tese$
- hipótese
- Cópia 7
- *→i 8-9*
- ∨e 1,2-6,7-10

7.

q

8.

l

9.

10.

- $egin{bmatrix} p & & & \\ q & & & \\ p
 ightarrow q & & & \\ \end{array}$
- 11. $p \rightarrow q$

--Introdução

--Introdução

- Para introduzir uma negação assumimos uma hipótese A e geramos uma contradição, ⊥.
- Como a hipótese não pode ser verdadeira, então ela deve ser falsa

$$[A]^{i}$$

$$\vdots$$

$$-\frac{\bot}{\neg A} (\neg i)^{i}$$

• Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

Exemplo

• Prove $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

- 1. $p \rightarrow q$
- 2. $p \rightarrow \neg q$
- 3. *p*
 - . | (
- 5. $\neg q$
- 6. ⊥
- 7. $\neg p$

premissa

premissa

hipótese

 \rightarrow e 1,3

 \rightarrow e 2,3

 $\perp i$ 4,5

 $\neg i \ 3-6$

• Prove $p \rightarrow \neg p \vdash \neg p$

Vamos Fazer

• Prove $p \rightarrow \neg p \vdash \neg p$

3. $\neg p$

4. ⊥

5.
$$\neg p$$

premissa

$$\rightarrow$$
e 1,2

$$\perp i$$
 2,3

$$\neg i \ 2\text{-}4$$

• Prove $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$

Vamos Fazer

- Prove $p \rightarrow (q \rightarrow r), p, \neg r \vdash \neg q$
 - 1. $p \to (q \to r)$
 - 2. *p*
 - $3. \neg r$
 - 4.
 - 5. $q \rightarrow$
 - 6.
 - 7.
- $egin{array}{c} q
 ightarrow r \ r \ oxedsymbol{\perp} \end{array}$
- 8. $\neg q$

- premissa
- premissa
- premissa
- hipótese
- $\rightarrow e 1,2$
- $\rightarrow e 4.5$
- $\perp i$ 3,6
- ¬i 4-7

• Derivação do modus tolens A → B, ¬B ⊢ ¬A

Vamos Fazer

• Derivação do modus tolens A → B, ¬B ⊢ ¬A

- 1. $A \rightarrow B$
- $2. \neg B$
- 3. A
 - B
- **5**. ⊥
- 6. $\neg A$

premissa

premissa

hipótese

 $\rightarrow e 1,3$

 $\perp i$ 2,4

 $\neg i \ 3-5$

• Provar que $(p \land q) \land r \vdash p \land (q \land r)$.

• Provar que $\vdash \neg(p \land \neg p)$

Para fazer em casa

Para fazer em casa

- 1. Provar que $\vdash p \rightarrow (q \rightarrow q)$
- 2. Provar que $p \land (q \lor r) \vdash (p \land q) \lor (p \land r)$

Estes slides foram feitos baseados nos slides da disciplina "Lógica para Computação", ministrada pelos seguintes professores:

Prof. Celso Antônio Alves Kaestner kaestner@dainf.ct.utfpr.edu.br

Prof. Adolfo Neto adolfo@utfpr.edu.br