Making it easier to be tidy

Data Wrangling: Session 8

Kieran Healy Statistical Horizons, April 2022

Load the packages, as always

```
library(here)
                  # manage file paths
## here() starts at /Users/kjhealy/Documents/courses/data wrangling
library(socviz)
                  # data and some useful functions
## Attaching package: 'socviz'
## The following object is masked from 'package:kjhutils':
##
      %nin%
##
library(tidyverse) # your friend and mine
## — Attaching packages -
                                                              – tidyverse 1.3.1 —
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## / tibble 3.1.6 / dplyr 1.0.8
## ✓ tidyr 1.2.0 ✓ stringr 1.4.0
## ✓ readr 2.1.2
                      ✓ forcats 0.5.1
## — Conflicts —
                                                       — tidvverse conflicts() —
## x readr::edition get()
                           masks testthat::edition get()
## x dplyr::filter()
                           masks stats::filter()
## x purrr::is null()
                           masks testthat::is null()
## x dplyr::lag()
                           masks stats::lag()
## x readr::local_edition() masks testthat::local edition()
## x dplyr::matches()
                           masks tidyr::matches(), testthat::matches()
library(haven)
                 # for Stata, SAS, and SPSS files
                                                                                                                             2
```

Moving ahead

Some helpful things

The RStudio Community

The reprex package

Reference

Articles ▼

Overview

Prepare reprexes for posting to GitHub issues, StackOverflow, in Slack messages or snippets, or even to paste into PowerPoint or Keynote slides. What is a reprex? It's a reproducible example, as coined by Romain François.

Given R code on the clipboard, selected in RStudio, as an expression (quoted or not), or in a file ...

- runit via rmarkdown::render(),
- with deliberate choices re: render() arguments, knitr options, and Pandoc options.

Get resulting runnable code + output as

- Markdown, suitable for GitHub or Stack Overflow or Slack, or as
- R code, augmented with commented output, or as
- Plain HTML or (experimental) Rich Text

The result is returned invisibly, written to a file and, if possible, placed on the clipboard. Preview an HTML version in RStudio viewer or default browser.

Installation

Links

Download from CRAN at

https://cloud.r-project.org/

package=reprex

Browse source code at

https://github.com/tidyverse/reprex/

Report a bug at

https://github.com/tidyverse/reprex/

issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Best demonstrated live

When asking for help, make a reproducible example

```
library(reprex)
library(tidyverse)
starwars %>%
  count(homeworld, species) %>%
  mutate(pct = n / sum(n) * 100) %>%
  arrange(desc(pct))
## # A tibble: 58 × 4
     homeworld species
                          n pct
     <chr>
                      <int> <dbl>
              <chr>
   1 Tatooine Human
                          8 9.20
   2 Naboo
              Human
                          5 5.75
                      5 5.75
   3 <NA>
              Human
                       3 3.45
   4 Alderaan Human
                     3 3.45
   5 Naboo
              Gungan
   6 <NA>
              Droid
                          3 3.45
                       2 2.30
  7 Corellia Human
                       2 2.30
   8 Coruscant Human
              Kaminoan
                       2 2.30
   9 Kamino
## 10 Kashyyyk Wookiee
                          2 2.30
## # ... with 48 more rows
```

The usethis package

usethis 2.0.1.9000

Setup Reference

Articles ▼

News ▼

Search...

usethis

usethis is a workflow package: it automates repetitive tasks that arise during project setup and development, both for R packages and non-package projects.

Installation

Install the released version of usethis from CRAN:

install.packages("usethis")

Or install the development version from GitHub with:

install.packages("devtools")
devtools::install_github("r-lib/usethis")

Usage

Most use_*() functions operate on the *active project*: literally, a directory on your computer. If you've just used usethis to create a new package or project, that will be the active project. Otherwise, usethis verifies that current working directory is or is below a valid project directory and that becomes the active project. Use proj_get() or proj_sitrep() to manually query the project and read more in the docs.

A few usethis functions have no strong connections to projects and will expect you to provide a path.

Links

Download from CRAN at https://cloud.r-project.org/package=usethis

Browse source code at https://github.com/r-lib/usethis/

Report a bug at https://github.com/r-lib/usethis/issues

License

Full license

MIT + file LICENSE

Community

Contributing guide

Code of conduct

Developers

Hadley Wickham

Author (i)

Jennifer Bryan

Author, maintainer (i)

Malcolm Barrett

Author 🗈

The packages that made these slides

Never paste tables into a slide again!

```
# Never .kjh-orange[copy and paste] code to a slide again!
.pull-left[
![:scale 100%](img/xaringan-sample.png)
.pull-right[
```{r}
Oh no, its the GSS
gss_sm %>%
 count(bigregion, religion)
```

religion	Northeast	Midwest	South	West
Protestant	158	325	650	238
Catholic	162	172	160	155
Jewish	27	3	11	10
None	112	157	170	180
Other	28	33	50	48
NA	1	5	11	1

The **gtsummary** package is very powerful. There are a number of other very good tidy tablemaking options too.

```
library(gtsummary)
trial
A tibble: 200 x 8
 age marker stage grade response death ttdeath
 trt
 <chr> <dbl> <dbl> <fct> <fct>
 <int> <int>
 <dbl>
 1 Drug A
 23 0.16 T1
 ΙI
 24
 9 1.11 T2
 24
 2 Drug B
 3 Drug A
 31 0.277 T1
 ΙI
 24
 4 Drug A
 NA 2.07 T3
 III
 17.6
 51 2.77 T4
 III
 16.4
 5 Drug A
 39 0.613 T4
 15.6
 6 Drug B
 37 0.354 T1
 ΙI
 24
7 Drug A
 8 Drug A
 32 1.74 T1
 18.4
9 Drug A
 31 0.144 T1
 ΙI
 24
10 Drug B
 10.5
 34 0.205 T3
... with 190 more rows
```

The **gtsummary** package is very powerful. There are a number of other very good tidy tablemaking options too.

```
trial %>%
 tbl_summary(
 by = trt, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
 add_p() %>% # test for a difference between groups
 modify_header(label = "**Variable**") %>% # update the column header
 bold_labels()
```

Variable	N	<b>Drug A</b> , N = 98 <sup>1</sup>	<b>Drug B</b> , N = 102 <sup>1</sup>	p-value <sup>2</sup>
Age	189	46 (37, 59)	48 (39, 56)	0.7
Marker Level (ng/mL)	190	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)	0.085
T Stage	200			0.9
T1		28 (29%)	25 (25%)	
T2		25 (26%)	29 (28%)	
Т3		22 (22%)	21 (21%)	
T4		23 (23%)	27 (26%)	
Grade	200			0.9
I		35 (36%)	33 (32%)	
II		32 (33%)	36 (35%)	
III		31 (32%)	33 (32%)	
<b>Tumor Response</b>	193	28 (29%)	33 (34%)	0.5
Patient Died	200	52 (53%)	60 (59%)	0.4
Months to Death/Censor	200	23.5 (17.4, 24.0)	21.2 (14.6, 24.0)	0.14
<sup>1</sup> Median (IQR); n (%)				
<sup>2</sup> Wilcoxon rank sum test; Pe	arson	's Chi-squared test		

#### gtsummary() straight out of the box:

```
gss_sm %>%
 select(race, degree, marital) %>%
 drop_na() %>%
 tbl_summary(
 by = race, # split table by group
 missing = "no" # don't list missing data separately
) %>%
 add_n() %>% # add column with total number of non-missing observations
modify_header(label = "**Variable**") %>% # update the column header
bold_labels()
```

Variable	N	<b>White</b> , $N = 2,096^{1}$	<b>Black</b> , N = 487 <sup>1</sup>	<b>Other</b> , $N = 276^{1}$
degree	2,859			
Lt High School		197 (9.4%)	60 (12%)	71 (26%)
High School		1,057 (50%)	292 (60%)	112 (41%)
Junior College		166 (7.9%)	33 (6.8%)	17 (6.2%)
Bachelor		426 (20%)	71 (15%)	39 (14%)
Graduate		250 (12%)	31 (6.4%)	37 (13%)
marital	2,859			
Married		979 (47%)	121 (25%)	110 (40%)
Widowed		196 (9.4%)	35 (7.2%)	18 (6.5%)
Divorced		363 (17%)	93 (19%)	39 (14%)
Separated		55 (2.6%)	27 (5.5%)	20 (7.2%)
Never Married		503 (24%)	211 (43%)	89 (32%)
<sup>1</sup> n (%)				

#### With a bit more work ...

Characteristic	<b>Drug A</b> , N = 98	<b>Drug B</b> , N = 102
Age		
N	91	98
Mean (SD)	47 (15)	47 (14)
Median (IQR)	46 (37, 59)	48 (39, 56)
Range	6, 78	9, 83
Marker Level (ng/mL)		
N	92	98
Mean (SD)	1.02 (0.89)	0.82 (0.83)
Median (IQR)	0.84 (0.24, 1.57)	0.52 (0.19, 1.20)
Range	0.00, 3.87	0.00, 3.64

#### Similar to earlier, but simpler:

#### ## # A tibble: 8 × 11 ## # Groups: continent [4] continent data model mod sum term estimate std.error statistic p.value ## <fct> <chr> <dbl> <dbl> <dbl> <dbl> ## 1 Asia <tibble> <lm> <tibble> (Int... 9.58 2.71 3.54 4.46e- 4 ## 2 Asia <tibble> <lm> <tibble> log(... 6.25 0.331 18.9 3.73e- 57 <tibble> <lm> <tibble> (Int... 13.0 1.92 6.76 5.52e- 11 ## 3 Europe ## 4 Europe <tibble> <lm> <tibble> log(... 6.31 0.205 30.8 8.06e-103 ## 5 Africa <tibble> <lm> <tibble> (Int... 7.60 2.63 2.89 4.03e- 3 ## 6 Africa <tibble> <lm> <tibble> log(... 5.69 0.361 15.8 1.86e- 47 -19.1 ## 7 Americas <tibble> <lm> <tibble> (Int... 4.82 -3.95 9.65e- 5 ## 8 Americas <tibble> <lm> <tibble> log(... 9.72 0.558 17.4 2.51e- 47 ## # ... with 2 more variables: conf.low <dbl>, conf.high <dbl>

out le

The printy package is by T.J. Mahr

#### text\_ready

```
A tibble: 8 × 5
Groups:
 continent [4]
 continent term
 estimate se
 Сi
 <fct>
 <chr>
 <chr>
 <chr> <qlue>
1 Asia
 (Intercept)
 9.58
 2.706 [4.26, 14.90]
2 Asia
 log(gdpPercap) 6.25
 0.331 [5.60, 6.90]
3 Europe
 (Intercept)
 12.97
 1.917 [9.19, 16.74]
 0.205 [5.91, 6.71]
4 Europe
 log(gdpPercap) 6.31
5 Africa
 (Intercept)
 7.60
 2.632 [2.43, 12.77]
6 Africa
 log(qdpPercap) 5.69
 0.361 [4.98, 6.40]
 -19.07 4.824 [-28.56, -9.58]
7 Americas
 (Intercept)
8 Americas
 log(qdpPercap) 9.72
 0.558 [8.62, 10.82]
```

#### Now ...

```
stats <- text_ready %>%
 mutate(term = janitor::make_clean_names(term)) %>%
 printy::super_split(continent, term) # Thanks again, TJ Mahr
```

#### Why are we doing this?

```
stats
$Africa
$Africa$intercept
A tibble: 1 × 5
Groups: continent [1]
 continent term
 estimate se
 Сİ
 <fct> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <glue>
1 Africa intercept 7.60
 2.632 [2.43, 12.77]
$Africa$log_gdp_percap
A tibble: 1 × 5
Groups: continent [1]
 continent term
 estimate se
 <fct> <chr> <chr< <chr> <chr< <chr> <chr< <chr> <chr< <chr>
1 Africa log_gdp_percap 5.69 0.361 [4.98, 6.40]
##
$Americas
$Americas$intercept
A tibble: 1 × 5
Groups: continent [1]
 continent term
 estimate se
 Сi
 <fct> <chr>
 <chr> <chr> <glue>
1 Americas intercept -19.07 4.824 [-28.56, -9.58]
$Americas$log_gdp_percap
```

```
The Intercept term for Africa was 'r stats$Africa$intercept$estimate' 'r stats$Africa$intercept$ci'.

For Europe it was 'r stats$Europe$intercept$estimate' 'r stats$Europe$intercept$ci'
```

The Intercept term for Africa was 7.60 [2.43, 12.77].

For Europe it was 12.97 [9.19, 16.74].

For more, see this post by TJ Mahr:

https://www.tjmahr.com/lists-knitr-secret-weapon/

```
countries <- read csv(here("data", "countries.csv"))</pre>
countries
A tibble: 213 × 4
 cname
 iso3 iso2 continent
 <chr>
 <chr> <chr> <chr>
 1 Afghanistan AFG
 Asia
 2 Algeria
 DZA
 DΖ
 Africa
3 Armenia
 ARM
 Asia
 4 Australia AUS
 Oceania
5 Austria
 AUT
 ΑT
 Europe
 6 Azerbaijan AZE
 Asia
 7 Bahrain
 BHR
 Asia
 8 Belarus
 BLR BY
 Europe
```

## 9 Belgium

## # ... with 203 more rows

## 10 Brazil

BEL

BRA

Europe

South America

```
qet stmf <- function(url = "https://www.mortality.org/Public/STMF/Outputs",</pre>
 fname = "stmf",
 date = lubridate::today(),
 ext = "csv".
 dest = "data-raw/data",
 save file = c("n", "v"),
 ...) {
 save file <- match.arg(save file)</pre>
 target <- fs::path(url, fname, ext = ext)
 message("target: ", target)
 destination <- fs::path(here::here("data-raw/data"),</pre>
 paste0(fname, " ", date), ext = ext)
 tf <- tempfile(fileext = ext)</pre>
 curl::curl download(target, tf)
 switch(save_file,
 y = fs::file copy(tf, destination),
 n = NULL
 janitor::clean names(read csv(tf, ...))
```

```
stmf raw <- get stmf(skip = 2) %>%
 rename(deaths total = d total, rate total = r total) %>%
 select(country_code:sex, deaths_total, rate_total, split:forecast, everything()) %>%
 pivot longer(
 cols = d0 14:r85p,
 names to = c("measure", "age group"),
 names pattern = "(r|d)(.*)"
) %>%
 pivot wider(names from = measure,
 values from = value) %>%
 mutate(age group = stringr::str_replace(age_group, "_", "-"),
 age group = stringr::str replace(age group, "p", "+")) %>%
 rename(death count = d, death rate = r) %>%
 mutate(approx date = paste0(year, "-", "W",
 stringr::str_pad(week, width = 2, pad = "0"), "-", "7"),
 approx date = ISOweek::ISOweek2date(approx date)) %>%
 select(country_code:sex, split:forecast, approx_date,
 age group:death rate, deaths total, rate total) %>%
 mutate(country_code = replace(country_code, country_code == "AUS2", "AUS"),
 country code = replace(country code, country code == "NZL NP", "NZL"))
```

#### stmf raw ## # A tibble: 559,110 × 13 country code year week sex split split sex forecast approx date age group <chr> <dbl> <dbl> <chr> <dbl> <dbl> <date> <dbl> <chr> 1 AUS 2015 1 m 0 2015-01-04 0-14 2 AUS 2015 1 m 0 2015-01-04 15-64 3 AUS 2015 1 m 0 2015-01-04 65-74 4 AUS 2015 1 m 0 2015-01-04 75-84 5 AUS 2015 1 m 0 2015-01-04 85+ 6 AUS 2015 1 f 0 2015-01-04 0-14 1 f 0 2015-01-04 15-64 7 AUS 2015 1 f 8 AUS 2015 0 2015-01-04 65-74 ## 9 AUS 2015 1 f 0 2015-01-04 75-84 1 f ## 10 AUS 2015 0 2015-01-04 85+ ## # ... with 559,100 more rows, and 4 more variables: death count <dbl>, death rate <dbl>, deaths total <dbl>, rate total <dbl>

```
md ccodes <- tibble(country code = unique(stmf raw$country code)) %>%
 left join(countries, by = c("country code" = "iso3")) %>%
 mutate(cname = replace(cname, country code == "DEUTNP", "Germany"),
 iso2 = replace(iso2, country code == "DEUTNP", "DE"),
 continent = replace(continent, country_code == "DEU", "Europe"),
 cname = replace(cname, country_code == "FRATNP", "France"),
 iso2 = replace(iso2, country code == "FRATNP", "FR"),
 continent = replace(continent, country code == "FRA", "Europe"),
 cname = replace(cname, country_code == "GBRTENW", "England and Wales"),
 cname = replace(cname, country_code == "GBR_SCO", "Scotland"),
 cname = replace(cname, country_code == "GBR_NIR", "Northern Ireland"),
 continent = replace(continent, country code %in% c("GBRTENW", "GBR SCO", "GBR NIR"), "Europe")
) %>%
 left join(countries)
stmf <- left join(stmf raw, md ccodes) %>%
 select(country code, cname:iso3, everything()) %>%
 mutate(iso3 = replace(iso3, iso2 == "DE", "DEU"),
 iso3 = replace(iso3, iso2 == "FR", "FRA"))
```

#### stmf

```
A tibble: 559,110 × 17
##
 country code cname
 iso2 continent iso3
 year week sex
 split split sex
 <chr>
 <chr> <chr>
 <chr> <dbl> <dbl> <chr> <dbl>
 <dbl>
 <chr>
 1 AUS
 Austral... AU
 Oceania
 AUS
 2015
 1 m
 2 AUS
 Austral... AU
 Oceania
 AUS
 2015
 1 m
 3 AUS
 Austral... AU
 Oceania
 AUS
 2015
 1 m
 4 AUS
 Oceania
 2015
 1 m
 0
 Austral… AU
 AUS
 5 AUS
 Austral... AU
 Oceania
 AUS
 2015
 1 m
 6 AUS
 Austral... AU
 Oceania
 AUS
 2015
 7 AUS
 Austral... AU
 Oceania
 AUS
 2015
 8 AUS
 Austral... AU
 Oceania
 2015
 AUS
9 AUS
 Austral... AU
 Oceania
 2015
 AUS
10 AUS
 Austral... AU
 Oceania
 AUS
 2015
... with 559,100 more rows, and 7 more variables: forecast <dbl>,
 approx date <date>, age group <chr>, death count <dbl>, death rate <dbl>,
#
 deaths_total <dbl>, rate total <dbl>
#
```

### For example, manually

## [1] TRUE

### For example, manually

Imagine how you might build up a set of tests and checks

## [1] TRUE

### For example, manually

Imagine how you might build up a set of tests and checks

But you don't have to manage this manually

### Use testthat to check things

### Use testthat to check things

### testthat in practice

Oriented towards package development

Consider packaging your datasets! Benefits to documentation/codebooks etc

One-table example: uscenpops

More extensive: covdata

How R packages work: Wickham & Bryan

We might want to make a codebook of our data

library(skimr)

We might want to make a codebook of our data

```
library(skimr)
organdata <- read_csv(here("data", "organdonation.csv"))</pre>
```

organdata %>% skim(where(is.numeric)) %>% partition()

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
year	34	0.86	1996.50	3.46	1991.00	1993.75	1996.50	1999.25	2002.00	
donors	34	0.86	16.48	5.11	5.20	13.00	15.10	19.60	33.90	_
pop	17	0.93	39921.29	62219.22	3514.00	6938.00	15531.00	57301.00	288369.00	
pop.dens	17	0.93	12.00	11.09	0.22	1.94	9.49	19.11	38.89	
gdp	17	0.93	22986.18	4665.92	12917.00	19546.00	22756.00	26180.00	36554.00	
gdp.lag	0	1.00	22574.92	4790.71	11434.00	19034.25	22158.00	25886.50	36554.00	_
health	0	1.00	2073.75	733.59	791.00	1581.00	1956.00	2407.50	5665.00	
health.lag	0	1.00	1972.99	699.24	727.00	1542.00	1850.50	2290.25	5267.00	
pubhealth	21	0.91	6.19	0.92	4.30	5.50	6.00	6.90	8.80	_
roads	17	0.93	113.04	36.33	58.21	83.46	111.22	139.57	232.48	
cerebvas	17	0.93	610.80	144.45	300.00	500.00	604.00	698.00	957.00	_
assault	17	0.93	16.53	17.33	4.00	9.00	11.00	16.00	103.00	
external	17	0.93	450.06	118.19	258.00	367.00	421.00	534.00	853.00	
txp.pop	17	0.93	0.72	0.20	0.22	0.63	0.71	0.83	1.12	

organdata %>% skim(!where(is.numeric)) %>% partition()

#### Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
country	0	1.00	5	14	0	17	0
world	14	0.94	6	11	0	3	0
opt	28	0.88	2	3	0	2	0
consent.law	0	1.00	8	8	0	2	0
consent.practice	0	1.00	8	8	0	2	0
consistent	0	1.00	2	3	0	2	0
ccode	0	1.00	2	4	0	17	0

#### **Custom Summaries**

### **Custom Summaries**

#### kable(stmf\_country\_years())

	_		/ _ /																											
cname	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Australia	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y
Austria	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Belgium	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Bulgaria	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Canada	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Chile	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y
Croatia	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Czech Republic	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Denmark	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
England and Wales	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Estonia	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Finland	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
France	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Germany	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Greece	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y
Hungary	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Iceland	-	-	-	-	-	-	-	-	-	-	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	¥40
Tomool											7.7	37	3.7	77	77	7.7	77	37	7.7	77	37	37	37	37	7.7	37	7.7	7.7	37	37