

LANGUAGE

We identified several challenges for visual recognition. Which of those might also apply to auditory speech perception?

Ambiguity Context Invariance All of them Vision and audition should have different challenges

We identified several challenges for visual recognition. Which of those might also apply to auditory speech perception?

Ambiguity	
	0%
Context	
	0%
Invariance	
	0%
All of them	
	0%
Vision and audition should have different challenges	
	0%

We identified several challenges for visual recognition. Which of those might also apply to auditory speech perception?

Ambiguity	
	0%
Context	
	0%
Invariance	
	0%
All of them	
	0%
Vision and audition should have different challenges	
	0%

Announcements

Study guide later this week

- Prelim 2 will cover through end of language
 - Memory will be in Prelim 3

Neurosynth Part 2 due today

Basal Ganglia Gate Movement

- Corticostriatal loops
 - Complicated: Inhibiting inhibitor allows activation
 - Direct pathway: Excitatory for wanted movements
 - Indirect pathway: Inhibits unwanted movements
 - Usually in balance
- Nigrostriatal (dopamine):
 - Facilitate direct (D1 receptors)
 - Inhibit indirect (D2 receptors)
 - Effect is to increase activity

Two Diseases Involving the Basal Ganglia

Parkinson's disease

Two Diseases Involving the Basal Ganglia

Huntington's disease

Two Diseases Involving the Basal Ganglia

Parkinson's Disease

- Motor symptoms: akinesia, tremor, rigidity, shuffling
- Substantia Nigra Dopamine loss
- Less amplification of direct
- Less inhibition of indirect

Huntington's Disease

- · Motor symptoms: chorea, dystonia
- Loss of neurons in caudate, putamen
- Indirect pathway disrupted
- Progresses beyond basal ganglia

Modulating Movement

- Cerebellum
 - Several parts, several functions
 - Forward models
 - Learning

What would that movement have felt like, had it worked?

- Basal Ganglia
 - Selecting movements, actions
 - Two diseases

Start a voluntary movement, prevent an unwanted one

Subcortical motor structures also contribute to cognition

From effectors to controllers

- Executing a movement
 - Muscles
 - Spinal cord & cranial nerves
 - Primary motor cortex

- Selecting and ordering movement
 - Basal ganglia
 - Premotor cortex
 - Supplementary motor complex
 - Cerebellum

- Evaluating a movement
 - Cerebellum
 - Parietal cortex
 - Anterior cingulate

- Integrating external info
 - Premotor cortex
 - Parietal cortex
 - Right inferior frontal cortex

What's involved in language?

Linguistic Levels of Analysis

- Phonology
 - Rules regarding phonemes: sounds that distinguish words (e.g., rat, bat, fat)
- Morphology
 - Rules regarding morphemes: smallest units of words that carry meaning (e.g., go, -ing, -es)
- Syntax
 - Rules that govern how words are combined
- Semantics
 - Meaning of utterances
- Pragmatics
 - Contributions from context

Language is productive

- Broca's aphasia
 - Language production disrupted
 - "Non-fluent"/expressive aphasia
 - Damage to left inferior frontal cortex (BA 44/45)
- Telegraphic speech
 - Missing function words
 - Agrammatical
- Also, limited writing, signing in ASL

- Broca's aphasia
 - Language production disrupted
 - "Non-fluent"/expressive aphasia
 - Damage to left inferior frontal cortex (BA 44/45)

Difficulty understanding more unusual sentence structures

Active vs. passive

The dog bit the boy.

The boy was bit by the dog.

Garden path

Mary gave the child the dog bit a bandaid.

The old man the boat.

Since Jay always jogs a mile seems like a very short distance to him.

- Wernicke's aphasia
 - Language comprehension disrupted
 - "Fluent"/Receptive Aphasia
 - Damage to left posterior superior temporal gyrus (~BA 39)
- Word salad
- Syntax is pretty good

- Wernicke's aphasia
 - Language comprehension disrupted
 - "Fluent"/Receptive Aphasia
 - Damage to left posterior superior temporal gyrus (~BA 39)

Paraphasias

- Semantic
- Phonemic
- Neologisms

- e.g., The lumberjack used a hammer to chop down the tree
- e.g., "cime" rather than "crime"; "renoversh" rather than "renovations"
- e.g., "hetly"; "blorsh"; phonologically fine, but unlike neologisms connected to meaning

- •Distinguish between production and comprehension?
- •Do different brain regions carry out different linguistic levels of analysis?
- •Anterior/posterior distinction? Or dorsal/ventral?
- ·Lesions suggest it's complicated

Let's dig in...

The plan

- Overall: How are sounds linked to meaning?
- •What are the phonemes? Words?
 - Auditory processing
 - Visual & motor integration
 - Statistical learning

- Hierarchical structures and prediction
- •How is meaning represented in the brain?

From Sounds to Words

Visualizing Sound

•Spectrogram: Shows frequencies in sounds over time.

Transduction of Sound

•The ear breaks sounds down by frequency too

Ihttps://www.britannica.com/science/ear/Transmission-of-sound-within-the-inner-ear#/media/1/175622/537

Auditory Pathway

- Early auditory processing
 - Brainstem
 - Inferior colliculus
 - Medial geniculate nucleus
 - Primary auditory cortex

 Belt & parabelt process more complex sounds, patterns (vocalizations)

Challenges in Speech Perception

- Ambiguity (one-to-many)
- Invariance (many-to-one)
- Context & expectancies
- AND segmentation

- Integrate knowledge with sensory and motor systems
 - Similarities to visual recognition
 - Hierarchical (later)
 - Time sensitive (later)

What is the primary distinction between the ventral and dorsal visual processing streams?

Ventral: Lower hierarchy; Dorsal: Upper hierarchy

Ventral: Upper hierarchy; Dorsal: Lower hierarchy

Ventral: What; Dorsal: How

Ventral: How; Dorsal: What

What is the primary distinction between the ventral and dorsal visual processing streams?

What is the primary distinction between the ventral and dorsal visual processing streams?

Dual-Stream Model

Segregation of function (what/how)

Integration across modalities

 Bidirectional flow within and between streams

Hickock & Poeppel, 2007

