

MÉTHODE 1

Si aucune représentation n'est donnée dans l'énoncé

SITUATION

Une droite de l'espace est définie par une représentation paramétrique qui donne les coordonnées d'un point appartenant à la droite en fonction d'un paramètre *t*.

Si l'énoncé demande de déterminer l'équation paramétrique d'une droite passant par deux points A et B dont les coordonnées sont données, on peut appliquer la méthode suivante.

ÉNONCÉ

Déterminer une représentation paramétrique de la droite (AB) où A et B sont les points de coordonnées $A\left(1;0;2\right)$ et $B\left(4;-1;-3\right)$.

ETAPE 1

Déterminer un point et un vecteur directeur de la droite

On détermine deux informations nécessaires à la représentation paramétrique de la droite :

- Les coordonnées d'un point A de la droite qui sont fournies par l'énoncé.
- Les coordonnées d'un vecteur directeur \overrightarrow{v} de la droite : pour cela, on détermine les coordonnées du vecteur \overrightarrow{AB} où A et B sont les deux points donnés par l'énoncé.

APPLICATION

On sait que:

- La droite passe par le point $A\left(1;0;2\right)$.
- La droite a pour vecteur directeur le vecteur $\overrightarrow{AB} \begin{pmatrix} 4-1 \\ -1-0 \\ -3-2 \end{pmatrix}$ soit $\overrightarrow{AB} \begin{pmatrix} 3 \\ -1 \\ -5 \end{pmatrix}$.

ETAPE 2

Écrire une représentation paramétrique

Si les coordonnées du point A et du vecteur \overrightarrow{v} sont respectivement $A\left(x_A,y_A,z_A\right)$ et \overrightarrow{v} $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$, alors une

représentation paramétrique de la droite est :

APPLICATION

On a
$$A\left(1;0;2\right)$$
 et $\overrightarrow{AB}\begin{pmatrix}3\\-1\\-5\end{pmatrix}$.

Une représentation paramétrique de (AB) est donc :

$$egin{cases} x=1+3t \ y=-t \ z=2-5t \end{cases}$$
 , $t\in\mathbb{R}$

MÉTHODE 2

Si une représentation est donnée dans l'énoncé

SITUATION

Une droite de l'espace est définie par une représentation paramétrique qui donne les coordonnées d'un point appartenant à la droite en fonction d'un paramètre *t*.

Si l'énoncé nous demande de montrer qu'une équation paramétrique donnée est bien celle d'une droite passant par deux points A et B dont les coordonnées sont données, on peut appliquer la méthode suivante.

ÉNONCÉ

Soient A et B les points de coordonnées A (1;1;-4) et B (4;-2;5) .

Montrer que la droite (AB) admet pour représentation paramétrique le système suivant :

$$egin{cases} x=3+t \ y=-1-t \; , t \in \mathbb{R} \ z=2+3t \end{cases}$$

ETAPE 1

Montrer que les coordonnées de *A* et *B* vérifient la représentation paramétrique

On montre premièrement que les coordonnées des points *A* et *B* vérifient bien la représentation paramétrique donnée en remplaçant *x*, *y* et *z* par les coordonnées de chaque point et en vérifiant que pour chaque point, il existe bien un même *t* vérifiant les trois équations.

APPLICATION

On remplace x, y et z par les coordonnées de A. On a :

$$egin{cases} 1=3+t \ 1=-1-t \ -4=2+3t \end{cases}$$

Soit:

$$\left\{ egin{aligned} t = -2 \ t = -2 \ t = -2 \end{aligned}
ight.$$

Il existe bien une même valeur de *t* vérifiant les trois équations donc le point *A* vérifie bien la représentation paramétrique.

De même, on remplace x, y et z par les coordonnées de B. On a :

$$egin{cases} 4=3+t \ -2=-1-t \ 5=2+3t \end{cases}$$

Soit:

$$egin{cases} t=1 \ t=1 \ t=1 \end{cases}$$

Il existe bien une même valeur de t vérifiant les trois équations donc le point B vérifie bien la représentation paramétrique.

ETAPE 2

Conclure

Comme il n'existe qu'une seule droite passant par deux points donnés distincts, on peut conclure que la droite (AB) admet bien pour représentation paramétrique la représentation donnée par l'énoncé.

APPLICATION

Comme il n'existe qu'une seule droite passant par deux points donnés distincts, on peut conclure que la droite (AB) admet bien pour représentation paramétrique la représentation donnée par l'énoncé.