Тема: Теорема Котельникова

 1^0 . Аналоговые сигналы, отсчеты, дискретизация и интерполяция сигнала. Потеря информации. 2^0 . Пространства $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$ на числовой прямой. Преобразование Фурье и равенство Планшереля. Функции ограниченного спектра. Ширина спектра. 3^0 . Теорема Котельникова для функций из $L_1(\mathbb{R})$ и $L_2(\mathbb{R})$. Ряд Котельникова. Период и частота дискретизации. 4^0 . Неулучшаемость условия на период T отсчетов: пример.

 4^0 . Отметим, что условие $0 < 2T\omega \leqslant 1$ в теореме Котельникова существенно. Как показывает следующий пример, отказаться от этого условия нельзя.

Пусть $T>0,\ \omega>0$ и при этом $2T\omega>1.$ Непрерывная функция

$$f(t) = rac{\sin(rac{\pi t}{T})}{(rac{\pi t}{T})}, \qquad t \in \mathbb{R},$$

как уже отмечалось ранее, принадлежит линейному пространству $L_2(\mathbb{R})$.

Более того, функция f(t) имеет ограниченный спектр, причем, в силу предположения, что $2T\omega>1$, ширина $\frac{1}{2T}$ этого спектра строго меньше ω :

$$|\xi|\geqslant\omega>rac{1}{2T} \quad \Rightarrow \quad \widehat{f}(\xi)=0.$$

Далее имеем следующие равенства:

$$f(nT) = \left\{egin{array}{ll} 0 & ext{ПРИ} & n
eq 0, \ 1 & ext{ПРИ} & n = 0. \end{array}
ight.$$

Таким образом, правая часть g(t) формулы (NK) принимает следующий вид

$$2T\omega\sum_{n=-\infty}^{+\infty}f(nT)rac{\sin2\pi\omega(t-nT)}{2\pi\omega(t-nT)}=$$

$$=2T\omegarac{\sin2\pi\omega t}{2\pi\omega t}=g(t).$$

При этом непрерывные функции f(t) и g(t) в некоторой окрестности нуля отличаются друг от друга:

$$g(0) = 2T\omega > 1 = f(0).$$

Следовательно, $\|f-g\|_{L_2}>0$ и для рассматриваемой функции f(t) равенство (NK) не выполняется ни поточечно, ни в смысле равенства элементов $L_2(\mathbb{R})$.

Тема: Пространство интегрируемых с квадратом на промежутке функций

 1^0 . Определение и структура пространства $L_2(\Delta)$. Неравенство Коши — Буняковского. Сходимость. 2^0 . Неравенство Бесселя и свойство минимальности коэффициентов Фурье. 3^0 . Полные в $L_2(\Delta)$ системы функций. 4^0 . Ряды Фурье функций из $L_2(\Delta)$. Равенство Парсеваля.

 ${f 1}^0$. Пусть ${f \Delta}=[lpha,m{eta}]$ — конечный отрезок на числовой прямой.

Определение. Абсолютно интегрируемые на промежутке $\Delta = [\alpha, \beta]$ функции образуют в совокупности линейное пространство, обозначаемое как $L_1(\Delta)$.

Функция f(x) принадлежит пространству $L_1(\Delta)$ тогда и только тогда когда $\int\limits_{\alpha}^{\beta} |f(x)|\,dx < +\infty.$

Если f(x) принадлежит пространству $L_1(\Delta)$, то ее L_1 -норма определяется равенством

$$\|f\|_{L_1(\Delta)} = \int\limits_lpha^eta |f(x)|\, dx.$$

Эта же норма обозначается также несколько иным символом $\|f \mid L_1(\Delta)\|$.

Любая кусочно непрерывная функция принадлежит пространству $L_1(\Delta)$. **Определение.** Пусть функция f(x) интегрируема с квадратом на промежутке $\Delta = [\alpha, \beta]$, то есть

$$\int_{\alpha}^{\beta} |f(x)|^2 dx < +\infty.$$

Тогда говорят, что f(x) принадлежит пространству $L_2(\Delta)$.

Множество $L_2(\Delta)$ не пусто: любая непрерывная на отрезке $\Delta = [lpha, eta]$ функция принадле-

жит пространству $L_2(\Delta)$. При этом пространство $C(\Delta)$ всех непрерывных на отрезке Δ функций, будучи подмножеством $L_2(\Delta)$, не совпадает с $L_2(\Delta)$. Например, любая кусочно непрерывная на отрезке 🛆 функция пространству $L_2(\Delta)$ принадлежит, а непрерывной на Δ быть не обязана:

$$C(\Delta) \subset L_2(\Delta), \quad C(\Delta) \neq L_2(\Delta).$$

Значения функций из $L_2(\Delta)$ могут быть как вещественными, так и комплексными. К примеру, функция $e^{ix}=\cos x+i\sin x$, где $x\in\mathbb{R}$, комплекснозначна и принадлежит $L_2(\Delta)$.

Если функции f(x) и g(x) принадлежат пространству $L_2(\Delta)$, то их произведение также принадлежит $L_2(\Delta)$. Это утверждение сразу следует из оценки

$$|2|f(x)|\cdot|g(x)|\leqslant |f(x)|^2+|g(x)|^2 \quad \, orall \, x\in \Delta,$$

которую надо проинтегрировать по отрезку $[\alpha,\beta]$. Сумма f(x)+g(x) — это снова элемент пространства $L_2(\Delta)$, как это следует из поточечного неравенства

$$(|f(x)|+|g(x)|)^2\leqslant 2(|f(x)|^2+|g(x)|^2) \quad orall \, x\in\Delta,$$

если его проинтегрировать по отрезку $[\alpha, \beta]$.

Таким образом, любая линейная комбинация функций из $L_2(\Delta)$ — это снова функция из $L_2(\Delta)$. Это означает по определению,

что $L_2(\Delta)$ с обычными операциями сложения и умножения на число является линейным (векторным) пространством как над полем вещественных чисел (в случае вещественнозначных функций), так и над полем комплексных чисел.

В пространстве $L_2(\Delta)$ вводится скалярное произведение. В случае вещественнозначных

функций f(x) и g(x) их скалярное произведение определяется следующим равенством:

$$f,g\in L_2(\Delta) \,\Rightarrow\, (f,g) = \int\limits_{lpha}^{eta} f(x)g(x)\,dx.$$

Если же функции f(x) и g(x) комплекснозначны, то полагают

$$f,g\in L_2(\Delta) \ \Rightarrow \ (f,g) = \int\limits_lpha^eta f(x) \overline{g(x)} \, dx.$$

Здесь $\overline{g(x)}$ означает взятие комплексного сопряжения к величине g(x).

Например, скалярное произведение (f,g) по отрезку $[-\pi,+\pi]$ двух комплекснозначных функций $f(x)=e^{inx}$ и $g(x)=e^{imx}$ с натуральными степенными параметрами n и $m,\ m\neq n$, вычисляется по формуле

$$(f,g) = \int_{-\pi}^{+\pi} e^{inx} e^{-imx} \, dx = rac{1}{i(n-m)} e^{i(n-m)x} \Big|_{-\pi}^{+\pi} = 0.$$

Это означает, что функции e^{inx} и e^{imx} , $m \neq n$, ортогональны в пространстве $L_2([-\pi, +\pi])$.

Определенная на линейном пространстве $L_2(\Delta)$ билинейная форма (f,g) в случае вещественнозначных функций обладает следующими свойствами:

$$(f,f)\geqslant 0,\; (f,g)=(g,f),\; (lpha f,g)=lpha (f,g) \;\;\;\; orall \, lpha \in \mathbb{R},$$
 $(f+g,h)=(f,h)+(g,h).$

Если функции f(x) и g(x) комплекснозначны, то второе из указанных свойств заменяется на следующее равенство: (f,g) = (g,f). В частности, при f = g имеет место соотношение (f,f)=(f,f), означающее что величина (f, f) вещественна. При этом вещественное число (f, f) еще и неотрицательно.

Таким образом, во всех случаях билинейная форма (f,g) обладает всеми свойствами ска-

лярного произведения кроме одного. Именно, из условия, что (f,f)=0 не следует, что функция f(x) тождественно равна нулю на отрезке $[\alpha, \beta]$. Например, взяв на отрезке конечное число узловых точек $\{x_1, x_2, \dots, x_N\}$, определим функцию f(x) равной единице в этих выбранных узлах и нулем во всех остальных точках отрезка $[\alpha, \beta]$:

$$f(x_j) = 1, \quad j = 1, 2, \dots, N; \quad f(x) = 0, \quad x \neq x_j.$$

Для определенной таким образом функции f(x) по определению интеграла имеем равенства

$$(f,f)=\int\limits_{lpha}^{eta}f^2(x)\,dx=\int\limits_{lpha}^{eta}|f(x)|^2\,dx=0.$$

При этом подынтегральная функция не является тождественно нулевой.

Для того чтобы избежать указанной несо-гласованности введенной билинейной фор-

мы (f,g) с общим определением скалярного произведения предлагается придерживаться следующего соглашения:

$$f(x)$$
 И $g(x)$ равны в $L_2[lpha,eta] \Leftrightarrow (f-g,f-g)=0.$

В рамках этого соглашения говорят, что разность (f-g)(x) равна нулю почти всюду на отрезке $[\alpha,\beta]$. Отметим, что если функция f(x) непрерывна и при этом (f,f)=0, то f(x) равна нулю во всех точках из отрезка $[\alpha,\beta]$.

Определение. Линейное пространство $L_2(\Delta)$ над полем вещественных чисел с введенным на нем скалярным произведением

$$(f,g) = \int\limits_{lpha}^{eta} f(x)g(x)\,dx$$

называют евклидовым пространством интегрируемых с квадратом на отрезке $\Delta = [\alpha, \beta]$ функций.

Для этого евклидова пространства сохраняется то же самое обозначение $L_2(\Delta)$, что и для исходного линейного пространства.

В случае пространства $L_2(\Delta)$ над полем комплексных чисел скалярное произведение его элементов определяется следующим равенством:

$$f,g\in L_2(\Delta) \ \Rightarrow \ (f,g) = \int\limits_lpha^eta f(x) \overline{g(x)} \, dx.$$

Здесь $\overline{g(x)}$ — это комплексно сопряженная величина к функции g(x). При этом справедливы соотношения

$$(f,g)=\overline{(g,f)}; \hspace{0.5cm} (lpha f,g)=lpha (f,g) \hspace{0.5cm} orall \, lpha \in \mathbb{C};$$

$$(f, lpha g) = \overline{lpha}(f,g) \quad orall \, lpha \in \mathbb{C}; \quad (f,f) \geqslant 0.$$

Определение. Линейное пространство $L_2(\Delta)$ над полем $\mathbb C$ комплексных чисел с введенным на нем скалярным произведением

$$(f,g) = \int\limits_{oldsymbol{lpha}}^{oldsymbol{eta}} f(x) \overline{g(x)} \, dx$$

называют унитарным (или эрмитовым) пространством интегрируемых с квадратом на отрезке $\Delta = [\alpha, \beta]$ функций. Для унитарного пространства испольэуется то же самое обозначение $L_2(\Delta)$, что и для евклидова.

Две функции f(x) и g(x) из $L_2(\Delta)$ называются ортогональными, если их скалярное произведение равно нулю:

$$f,g\in L_2(\Delta), \quad (f,g)=0 \ \Rightarrow \ f\bot g \quad ext{ B } L_2(\Delta).$$

Множество функций из $L_2(\Delta)$ называется ортогональным, если любые его два элемента ортогональны друг другу.

Пусть f(x) принадлежит $L_2(\Delta)$. Тогда неотрицательное число

$$\sqrt{(f,f)} = \Bigl(\int\limits_{lpha}^{eta} |f(x)|^2\,dx\Bigr)^{1/2}$$

называется нормой функции f(x) в пространстве $L_2(\Delta)$. Для этой нормы используются следующие обозначения:

$$\|f\|_{L_2(\Delta)}, \quad \|f\|_{L_2}, \quad \|f\|_{L_2(\Delta)}.$$

Определение. Ортогональная последовательность $\{\varphi_{k}(x)\}$ функций из $L_{2}(\Delta)$ называется ортонормированной, если

$$\|\varphi_{\pmb{k}}\|_{L_2(\Delta)} = 1, \quad k = 1, 2, \dots$$

Лемма (неравенство Коши—Буняковского). Для любых двух функций f(x) и g(x) из пространства $L_2(\Delta)$ справедлива оценка

$$|(f,g)| \leqslant ||f||_{L_2(\Delta)} \cdot ||g||_{L_2(\Delta)}. \tag{B}$$

Доказательство. Получим неравенство (В) в случае унитарного пространства $L_2(\Delta)$. Если g(x)=0, то оценка (В) верна: в обеих ее частях стоят нули. Пусть теперь $g\neq 0$ и при

этом $\|g\|_{L_2(\Delta)}^2 = (g,g) = 1.$ Тогда для любого комплексного числа lpha справедливо равенство

$$(f+lpha g,f+lpha g)=(f,f)+lpha (g,f)+\overline{lpha} (f,g)+lpha \overline{lpha} (g,g).$$

Полагая $\alpha = -(f,g)$, получаем

$$\alpha(g,f) = -(f,g)(g,f) = -(f,g)\overline{(f,g)} = -|(f,g)|^2,$$

$$\overline{lpha}(f,g) = -(g,f)(g,f) = -|(g,f)|^2, \ \ \alpha \overline{lpha} = |(f,g)|^2.$$

Учитывая, что |(f,g)|=|(g,f)| и что (g,g)=1, имеем далее

$$|lpha(g,f)+\overline{lpha}(f,g)+lpha\overline{lpha}(g,g)=-2|(f,g)|^2+|(f,g)|^2,$$

$$(f+lpha g,f+lpha g)=(f,f)(g,g)-\left|(f,g)
ight|^2\geqslant 0.$$

Полученное неравенство запишем следующим образом: $|(f,g)|^2 \leqslant (f,f)(g,g)$. Извлекая из обеих частей квадратный корень, получаем искомое соотношение (B).

Пусть теперь $g \neq 0$ и при этом $\|g\|_{L_2(\Delta)}^2 \neq 1$. В этом случае применим к паре функций f(x) и $\frac{1}{\|g\|}g(x)$ оценку (B), что возможно в силу равенства $\|\frac{1}{\|g\|}g(x)\|=1$, снова получим искомое соотношение (B).

Впервые неравенство (В) было получено Буняковским. Его также называют неравенством Шварца.

Отметим также, что оценка (В) представляет собой интегральный аналог следующего неравенства Коши для сумм:

$$\left|\sum_{j=1}^{N}a_{j}b_{j}
ight|\leqslant ig(\sum_{j=1}^{N}|a_{j}|^{2}ig)^{rac{1}{2}}ig(\sum_{j=1}^{N}|b_{j}|^{2}ig)^{rac{1}{2}}\quadorall a_{j},b_{j}\in\mathbb{R}.$$

Это объясняет, почему оценку (В) называют также неравенством Коши — Буняковского.

Наличие в линейном пространстве $L_2(\Delta)$ скалярного произведения и соответствующей

ему нормы позволяет ввести в $L_2(\Delta)$ понятие сходящейся последовательности его элементов.

Определение. Последовательность $\{f_k(x)\}$ функций из $L_2(\Delta)$ сходится к функции f(x) из этого пространства, если $\|f_k-f\|_{L_2(\Delta)} \to 0$ при $k \to \infty$.

Для обозначения этой $L_2(\Delta)$ -сходимости последовательности $\{f_k(x)\}$ используют обычную символику теории пределов, то есть пи- шут $f_k o f$ при $k o \infty$, или же

$$\lim_{k\to\infty} f_k(x) = f(x).$$

При этом последнее равенство понимается \mathbf{n} не как поточечный предел, но как сходимость к нулю $L_2(\Delta)$ -нормы разности f_k-f .

Конечно же, если $f_k(x)$ сходится к f(x) для каждой точки x из отрезка Δ , то есть схо-

дится поточечно, то $f_k(x)$ сходится к f(x) и по норме пространства $L_2(\Delta)$.

Функциональный ряд $\sum\limits_{k=1}^{\infty}f_k(x)$ называют сходящимся по норме пространства $L_2(\Delta)$, если по этой норме сходится последовательность частичных сумм этого ряда.

Помимо нормы $\|f\|_{L_2(\Delta)}$ функции f(x) часто

используются следующие ее же нормы:

$$\|f\|_{L_1(\Delta)}=\int\limits_{\Delta}|f(x)|\,dx, \quad \|f\|_{C(\Delta)}=\max\limits_{\Delta}|f(x)|.$$

 2^0 . Пусть есть последовательность $\{ arphi_k(x) \}$ ненулевых функций из $L_2(\Delta)$. Тогда

$$\|\varphi_{\boldsymbol{k}}\|_{L_2(\Delta)} \neq 0, \quad k = 1, 2, \dots$$

Будем предполагать также, что функции этой последовательности взаимно ортогональны:

$$\varphi_{k}\bot\varphi_{l}, \quad k \neq l, \quad k, l = 1, 2, \ldots$$

Взяв произвольную функцию f(x) из $L_2(\Delta)$, рассмотрим всевозможные разности вида

$$f(x) - \sum_{k=1}^{N} eta_k arphi_k(x), \hspace{0.5cm} N = 1, 2, \ldots.$$

Здесь $eta_1,\ eta_2,\ \dots,\ eta_N$ — это некоторые числа, вещественные или комплексные. Квадрат $L_2(\Delta)$ -нормы рассматриваемой разности вычисляется по формуле

$$\|f - \sum_{k=1}^{N} eta_{k} arphi_{k}\|^{2} = (f - \sum_{k=1}^{N} eta_{k} arphi_{k}, f - \sum_{k=1}^{N} eta_{k} arphi_{k}) = 0$$

$$(f,f)-\sum_{k=1}^{N}\overline{eta}_{k}(f,arphi_{k})-\sum_{k=1}^{N}eta_{k}(arphi_{k},f)+\sum_{k=1}^{N}eta_{k}\overline{eta}_{k}(arphi_{k},arphi_{k}).$$

Коэффициент Фурье a_k функции f(x) из $L_2(\Delta)$ по ортогональной системе $\{\varphi_k(x)\}$ определяется из соотношения

$$a_k(f, \varphi_k) = a_k(\varphi_k, \varphi_k) = a_k \|\varphi_k\|^2.$$

Следовательно, рассматриваемый квадрат нормы $\|f - \sum_{k=1}^N \beta_k \varphi_k\|^2$ представим как следующее выражение:

$$||f||^2 + \sum_{k=1}^{N} (\beta_k \overline{\beta}_k - \overline{\beta}_k a_k - \beta_k \overline{a}_k) ||\varphi_k||^2.$$
 (Sq)

Взяв в этом равенстве $eta_{m{k}} = a_{m{k}}, \; k = 1, 2, \dots, N,$ получим в результате

$$\|f - \sum_{k=1}^{N} \beta_k \varphi_k\|^2 = \|f\|^2 - \sum_{k=1}^{N} |a_k|^2 \|\varphi_k\|^2.$$

В частности, получаем следующую последовательность оценок:

$$\sum_{k=1}^{N} |a_k|^2 \|arphi_k\|^2 \leqslant \|f\|^2, \quad N = 1, 2, \dots$$

Здесь a_k , $k=1,2,\ldots,N$, — это коэффициенты Фурье функции f(x) из $L_2(\Delta)$ по исходной ортогональной системе $\{\varphi_k(x)\}$.

Перейдя в полученном неравенстве к пределу при $N \to \infty$, получим оценку

$$\sum_{k=1}^{\infty} |a_k|^2 \|\varphi_k\|^2 \leqslant \|f\|^2.$$
 (Bes)

Это соотношение называется неравенством Бесселя.

Представление выражения $\|f - \sum_{k=1}^N \beta_k \varphi_k\|^2$ в виде квадратичной формы

$$||f||^2 + \sum_{k=1}^{N} (\beta_k \overline{\beta}_k - \overline{\beta}_k a_k - \beta_k \overline{a}_k) ||\varphi_k||^2 \qquad (Sq)$$

позволяет также обосновать важное свойство минимальности коэффициентов Фурье.

Заметим, что при любом номере k число $\beta_k \overline{\beta}_k - \overline{\beta}_k a_k - \beta_k \overline{a}_k$, входящее сомножителем

в выражение (Sq), является вещественным и при этом справедливо равенство

$$|\beta_k \overline{\beta}_k - \overline{\beta}_k a_k - \beta_k \overline{a}_k|^2 - |a_k|^2 - |a_k|^2$$
.

Следовательно, квадратичная форма

$$\sum_{k=1}^{N}(\beta_{k}\overline{\beta}_{k}-\overline{\beta}_{k}a_{k}-\beta_{k}\overline{a}_{k})\|\varphi_{k}\|^{2}$$

достигает своего минимального значения при условии, что $eta_{m k} = a_{m k}$ для всех $m k = 1, 2, \dots, N$.

Таким образом, справедливо соотношение

$$\|f-\sum_{k=1}^{N}a_{k}arphi_{k}\|=\min_{eta_{1},...,eta_{N}}\|f-\sum_{k=1}^{N}eta_{k}arphi_{k}\|.$$
 (Min)

Заметим, что всевозможные линейные комбинации вида $\sum_{k=1}^{N} \beta_k \varphi_k(x)$ образуют в эрмитовом пространстве $L_2(\Delta)$ линейное подпространство.

Равенство (Міп) означает, что расстояние

произвольного элемента f(x) до этого подпространства совпадает с нормой

$$\|f-\sum_{k=1}^{N}a_{k}\varphi_{k}\|,$$

где a_k , $k=1,2,\ldots,N$, — это коэффициенты Фурье функции f(x).

 3^0 . Важную роль в описании эрмитовых пространств играют *полные множества элементов* этих пространств.

Определение. Последовательность $\{\varphi_k(x)\}$ функций из $L_2(\Delta)$ называется полной в этом пространстве, если для любой функции f(x) из этого пространства и любого $\varepsilon>0$ существует такая линейная комбинация вида $\sum_{k=1}^N c_k \varphi_k(x)$, что

$$\|f-\sum_{k=1}^N c_k arphi_k\|_{L_2(\Delta)} < arepsilon.$$

Например, в эрмитовом пространстве $L_2[-\pi,\pi]$ полной является тригонометрическая система функций

 $1, \quad \cos x, \quad \sin x, \quad \dots, \cos nx, \quad \sin nx, \dots$

На любом конечном отрезке [a,b] последовательность алгебраических степенных функций $1, \quad x, \quad x^2, \quad x^3, \dots, x^n, \dots$ образует полную в $L_2[a,b]$ последовательность функций.

Особый интерес представляют полные ортогональные системы функций в $L_2(\Delta)$. Такого рода системы исполняют в пространстве ту же роль, что и ортогональные базисы в конечномерном евклидовом пространстве.

 4^0 . Пусть последовательность $\{\varphi_k(x)\}$ ортогональных на отрезке [a,b] функций не содержит нулевых элементов. Тогда для лю-

бой функции f(x) из пространства $L_2(\Delta)$ возможно построить соответствующий ей ряд Фурье

$$\sum_{k=1}^{\infty} a_k arphi_k(x),$$
 где $a_k = rac{(f, arphi_k)}{\|arphi_k\|^2}.$

Этот ряд аналогичен разложению произвольного элемента конечномерного евклидова пространства в линейную комбинацию по векторам ортогонального базиса.

Теорема (равенство Парсеваля). Ряд Фурье функции f(x) из пространства $L_2(\Delta)$ по ортогональной системе $\{\varphi_k(x)\}$ сходится по норме в пространстве $L_2(\Delta)$ тогда и только тогда когда выполняется равенство

$$\sum_{k=1}^{\infty} |a_k|^2 ||\varphi_k||^2 = ||f||^2,$$
 (Par)

где a_k — это коэффициенты Фурье функции f(x) по рассматриваемой ортогональной системе.

Доказательство. Воспользуемся установленным ранее равенством

$$\|f - \sum_{k=1}^{N} a_k \varphi_k\|^2 = \|f\|^2 - \sum_{k=1}^{N} |a_k|^2 \|\varphi_k\|^2.$$
 (PN)

Если ряд Фурье для функции f(x) сходится по норме в $L_2(\Delta)$, то по определению имеет место предельное равенство

$$\lim_{N o\infty}\|f-\sum_{k=1}^Na_karphi_k\|^2=0.$$

Учитывая его и переходя к пределу в формуле (P_N) , получим в результате искомое равенство (Par).

Если же для функции f(x) из $L_2(\Delta)$ справедливо равенство Парсеваля (Par), то это означает по определению, что

$$\lim_{N o \infty} \left(\|f\|^2 - \sum_{k=1}^N |a_k|^2 \|\varphi_k\|^2 \right) = 0.$$

Следовательно, предел при $N \to \infty$ выражения в правой части равенства (P_N) равен нулю. Но тогда равен нулю и предел выражения в левой части этого же равенства, то есть ряд Фурье для функции f(x) сходится по норме в $L_2(\Delta)$.

Если система $\{ \varphi_{k}(x) \}$ не только ортогональна, но и ортонормирована, то равенство Пар-

севаля принимает особенно простой вид:

$$||f||^2 = \sum_{k=1}^{\infty} |a_k|^2.$$
 (Par')

Теорема (достаточность полноты для сходимости в среднем). Пусть ортогональная система функций $\{\varphi_k(x)\}$ полна в пространстве $L_2(\Delta)$. Тогда ряд Фурье по этой системе любой функции f(x) из $L_2(\Delta)$ сходится к этой функции по $L_2(\Delta)$ -норме.

Доказательство. По условию полноты для любого $\varepsilon>0$ найдется линейная комбинация $N(\varepsilon)$ вида $\sum\limits_{k=1}^{N(\varepsilon)} c_k \varphi_k(x)$, обладающая тем свойством, что

$$\|f(x)-\sum_{k=1}^{N(arepsilon)}c_{k}arphi_{k}(x)\|\leqslantarepsilon.$$

Для любого номера $N\geqslant N(\varepsilon)$ рассмотрим линейную комбинацию $\sum\limits_{k=1}^{N}a_k\varphi_k(x)$, где a_k — это коэффициенты Фурье функции f(x) по рас-

сматриваемой ортогональной системе. Пользуясь свойством минимальности коэффициентов Фурье, получаем оценку

$$\|f(x) - \sum_{k=1}^{N} a_k \varphi_k(x)\| \leqslant \|f(x) - \sum_{k=1}^{N} \beta_k \varphi_k(x)\|,$$

где $eta_1,\,eta_2,\,\dots,\,eta_N$ — произвольные комплексные числа. Возьмем в этой оценке

$$\beta_1 = c_1, \dots, \beta_{N(\varepsilon)} = c_{N(\varepsilon)}, \ \beta_{N(\varepsilon)+1} = \dots = \beta_N = 0.$$

Тогда получим неравенство

$$\|f(x)-\sum_{k=1}^{N}a_{k}arphi_{k}(x)\|\leqslant \|f(x)-\sum_{k=1}^{N(arepsilon)}c_{k}arphi_{k}(x)\|\leqslant arepsilon.$$

Здесь N — произвольный номер с условием $N\geqslant N(\varepsilon)$. По определению предела полученная оценка означает, что функциональный ряд $\sum\limits_{k=1}^{N}a_k\varphi_k(x)$ сходится к f(x) по норме пространства $L_2(\Delta)$, то есть в среднем.

Известно, что система тригонометрических функций

$$\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\cos x, \frac{1}{\sqrt{\pi}}\sin x, \dots, \frac{1}{\sqrt{\pi}}\cos kx, \frac{1}{\sqrt{\pi}}\sin kx, \dots$$

ортонормирована на отрезке $[-\pi,\pi]$ и полна в пространстве $L_2[-\pi,\pi]$.

Применяя предыдущую теорему, заключаем, что ряд Фурье по тригонометрической системе любой функции f(x) из $L_2[-\pi,\pi]$ сходится к этой функции в среднем.

Точнее функция f(x) совпадает как элемент пространства $L_2[-\pi,\pi]$ с суммой тригонометрического ряда

$$\frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos kx + b_k \sin kx).$$

Коэффициенты в этом разложении вычисляются по формулам

$$a_0 = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \, dx, \qquad a_k = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \cos kx \, dx,$$

$$b_{m{k}} = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f(x) \sin kx \, dx, \hspace{0.5cm} k = 1, 2, \ldots.$$

При этом равенство Парсеваля принимает следующий вид:

$$\int_{-\pi}^{\pi} |f(x)|^2 dx = 2\pi \left(\frac{a_0}{2}\right)^2 + \pi \sum_{k=1}^{\infty} \left(|a_k|^2 + |b_k|^2\right).$$

В случае, если функция представляется рядом Фурье в комплексной форме, получаем

следующую формулировку:

Функция f(x) и сумма тригонометрического ряда в комплексной форме $\sum\limits_{k=-\infty}^{+\infty} c_k e^{ikx}$ совпадают как элементы пространства $L_2[-\pi,\pi]$. При этом справедливо равенство

$$\int\limits_{-\pi}^{\pi}|f(x)|^2\,dx=2\pi\sum_{k=-\infty}^{\infty}|c_k|^2.$$