Multivariable Integral Guide

Integral	Notation	Application		
Basic Integrals — over "flat" regions, evaluated as iterated integrals				
$\int_{a}^{b} f(x) dx$		Area under curve; Average value of f on $[a,b] = \frac{1}{b-a} \int_a^b f(x) dx$; density= $\rho(x)$, Mass= $\int_a^b \rho(x) dx$; velocity= $v(t)$, distance traveled= $\int_a^b v(t) dt$; etc.		
$\iint_D f(x,y) dA$	$dA = dx dy$ $= r dr d\theta$	Volume under surface; Area of $D = \iint_{\overline{D}} dA$ Average value of f on $D = \frac{1}{\text{Area of } D} \iint_{\overline{D}} f(x, y) dA$; $\rho(x, y) = \text{density}$, $\text{Mass} = \iint_{\overline{D}} \rho(x, y) dA$; etc.		
$\iiint_R f(x,y,z) dV$	$dV = dx dy dz$ $= r dz dr d\theta$ $= \rho^2 \sin \phi d\rho d\phi d\theta$	$\begin{array}{c} \text{Volume of } R = \iint_R dV \\ \text{Average value of } f \text{ on } R = \frac{1}{\text{Volume of } R} \iiint_R f(x,y,z) dV \; ; \\ \rho(x,y,z) = \text{density, Mass} = \iiint_R \rho(x,y,z) dV; \\ \text{etc.} \end{array}$		

Integrals of scalar functions over "curved" things — require parameterizations, to become iterated integrals

$\int_C f(x,y)ds,$ $\int_C f(x,y,z)ds$	$\mathbf{r}(t)$ parameterizes curve C $ds = \mathbf{r}'(t) dt$	Length of $C = \int_C ds$; Average value of f on $C = \frac{1}{\text{Length of C}} \int_C f, ds$
$\iint_{S} f(x, y, z) dS$	$\Phi(u, v) \text{ parameterizes surface } S$ $T_u = \frac{\partial}{\partial u} \Phi, T_v = \frac{\partial}{\partial v} \Phi$ $dS = T_u \times T_v du dv$	Surface area of $S = \iint_S dS$; Average value of f on $S = \frac{1}{\text{Area of } S} \iint_S f(x, y, z) dS$

Integrals of **vector fields** over "curved" things — require parameterizations to become iterated integrals

$ \int_{C} F(x, y) \cdot d\mathbf{s} $ $ = \int_{C} P dx + Q dy, $ $ \int_{C} F(x, y, z) \cdot d\mathbf{s} $ $ = \int_{C} P dx + Q dy + R dz $	$\mathbf{r}(t)$ parameterizes curve C $d\mathbf{s} = \mathbf{r}'(t)dt$	Work $(F \text{ is force});$ Circulation $(F \text{ is velocity}, C \text{ is a loop})$
$\iint_{S} F(x, y, z) \cdot d\mathbf{S}$	$\Phi(u, v) \text{ parameterizes surface } S$ $T_u = \frac{\partial}{\partial u} \Phi, T_v = \frac{\partial}{\partial v} \Phi$ $d\mathbf{S} = T_u \times T_v du dv$	Flux of F through S

Theorems relating integrals and derivatives — general form: $\iint_B \partial F = \int_{\partial B} F$

Name	Statement
Fundamental Theorem of Calculus (in \mathbb{R})	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Fundamental Theorem of Calculus for line integrals	$\int_{C} \nabla f(x) dx = f(\text{end of } C) - f(\text{start of } C)$
Green's Theorem (in \mathbb{R}^2)	$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{C = \partial D} P dx + Q dy$
Stokes' theorem (in \mathbb{R}^3)	$\iint_{S} (\nabla \times F) \cdot d\mathbf{S} = \oint_{\partial S} F \cdot d\mathbf{S}$
Gauss' Divergence Theorem (in \mathbb{R}^3)	$\iiint_{R} (\nabla \cdot F) \ dV = \iint_{S=\partial R} F \cdot d\mathbf{S}$