3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 ELECTRONIC SYSTEM DESIGN

SEMESTER - 3

Time: 3 Hours]		[Full Marks: 70

GROUP - A

			(Multiple Choice ?	Гуре	Questions)
.•	Choo	ose th	ne correct answer from the given	alter	natives for any ten of the following: $10 \times 1 = 10$
					10 × 1 = 10
	i)	The	gain of a OP-AMP is		
		a) _	low	b)	very low
•		c)	high	d)	very high.
	ii)	The	input impedance of OP-AMP is		
		a)	infinite	b)	zero
		c)	very high, but not infinite	d)	very small.
	iii)	We	are giving sine wave to the input	t of a	differentiator, the output we get is
	<u>.</u>	a) .	square wave	b)	triangular wave
		c)	cosine wave	d) .	sawtooth wave.
	iv)	Sch	mitt Trigger is used to		
-		a)	form sine wave	•	
		b)	form square wave		
		c)	convert irregular shaped wave	form	in square pulse
		d)	none of these.		
	v)	A fil	lter that cannot pass only 3 kHz	frequ	iency signal is a
		a)	low-pass	b)	highpass
		c)	notch	d)	hand-pass filter.

44202 (17/12)

- vi) An OP-AMP has a slew rate of $5V/\mu s$. The largest sine wave output voltage possible at a frequency of 1 MHz is
 - a) 5/2 volt

b) 3/2 volt

c) 2 volt

- d) 3/8 volt.
- vii) The voltage follower has a
 - a) small open loop voltage gain
 - b) closed loop voltage gain of unity
 - c) closed loop bandwidth of zero
 - d) large closed loop output impedance.
- viii) The OP-AMP circuit shown in the fig. (1) is a filter, the type of filter and its cut-off frequency are respectively

Fig. 1

- a) high-pass, 1000 rad/s
- b) low-pass, 1000 rad/s
- c) high-pass, 10000 rad/s
- d) low-pass, 10000 rad/s.
- ix) For the circuit shown in fig. (2) $V_i = -0.3$ V. The value of V_o is

a) - 9.6 V

b) - 9.3 V

c) -2 V

d) - 10 V.

44202 (17/12)

5

x)	A band-pass filter is built by cascading a low-pass filter with a high-pass filter. Which filter has the lower cut-off frequency?								
	a)	The high-pass filter	b)	The low-pass filte	r				
	c)	Neither of them	d)	Both of them com	binedly.				
xi)	For a	a non-inverting OP-AMP, which	of the	following statement	s is true?				
	a)	The closed loop gain is reduced by a factor β							
	b)	CMRR is increased by a factor	rβ						
	c)	The bandwidth increased by a	a factor	β					
	d)	All of these.							
xii)	A dii	fferential amplifier is used at the	ne inpu	it stage of any oper	ational am	plifier to			
	a)	high CMRR	b)	Wide bandwidth					
	c)	high slew rate	d)	high open loop ga	in.				
xiii)	We c	can reject only one frequency by	y						
	a) c)	LPF BPF	b) d)	HPF Notch Filter.					
xiv)	Asta	ble multivibrator has							
	a)	one quasi-stable state	b)	one stable state		r:			
	c)	no stable state	d)	none of these.					
		GROU	P B		Andrew State				
		(Short Answer T Answer any three			3	× 5 = 15			
Draw elem		rcuit diagram of a basic log a	amplific	er using a transist	or as the	feedback			
	e the	e expression for the output	voltag	e. What are the		ns of log 2 + 2 + 1			
		circuit diagram and explain to circuit.	the pri	nciple of operation	of a non-	inverting 5			

44202 (17/12)

3.

Draw and explain the operation of window detector circuit. 4.

- Draw the circuit for an astable multivibrator using 555 timer to get 50% duty cycle. 5 5.
- Explain the operating principle of both voltage-to-current as well as current-to-voltage 6. converters. Just Grandle, which of

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$

7. Draw and explain Wien-bridge oscillator. a)

- 8
- b) Explain with diagram, the operation of a triangular wave generator.

8. Explain how to use the 555 timer as a voltage controlled oscillator.

What do you mean by pH of a solution? Describe the principle of the technique of pH measurement. 8 + 7

- 9. Explain what you mean by an active low-pass filter. Design a non-inverting low-pass filter circuit that has a gain of 10 at low frequencies, a high frequency cut-off point of 159 Hz and an input impedance of 10 k Ω . 5 + 10
- Draw the 3-OP-AMP instrumentation amplifier circuit and derive its output voltage expression. What is the need of a variable resistance in the transducer bridge to make an instrumentation amplifier? The following circuit (Fig. 3) shows a controlled gain amplifier. What is the gain of the amplifier circuit when
 - switch S is off
 - ii) switch S is on?

3 + 5 + 2 + 5

C8/B.TECH(IT)/SEM-3/EC-311/08/(09)

7

- 1. Write short notes on any three of the following:
 - a) Slew rate
 - b) CMRR
 - c) Precision rectifier
 - d) Strain gauge
 - e) Input offset voltage.

END