1. Электростатика

Урок 2

Теорема Гаусса

1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ ; б) поле плоского конденсатора; в) поле равномерно заряженной прямолинейной бесконечной нити с линейной плотностью \varkappa .

Решение а) $\mathbf{E} = 2\pi \sigma \mathbf{z}/|z|$; б) внутри конденсатора $|E| = 4\pi q/S$, вне $\mathbf{E} = 0$; в) $\mathbf{E} = \frac{2\varkappa}{\pi^2}\mathbf{r}$.

1.2. (1.20 из задачника) Найти величину и направление сил, действующих на единицу длины для каждой из трех параллельных бесконечных прямых нитей, находящихся друг от друга на расстоянии a и заряженных одна с линейной плотностью $-\varkappa$, а две других – с линейной плотностью $+\varkappa$.

Решение Направление сил показано на рисунке.

$$E_{+} = \frac{2\varkappa}{a}, E_{-} = \frac{2\varkappa}{a}\sqrt{3}.$$

 $1.3.~(1.21~{\rm из}$ задачника) Вывести граничные условия для нормальных компонент электрического поля и соответствующих производных потенциала, если граница заряжена с поверхностной плотностью σ .

Решение $E_{2n} - E_{1n} = 4\pi\sigma$, где внешняя нормаль **n** к поверхности раздела направлена из среды 1 в среду 2.

$$\frac{\partial \varphi_1}{\partial n} - \frac{\partial \varphi_2}{\partial n} = 4\pi \sigma.$$

- 1.4. (1.22 из задачника) Показать, что поле вблизи поверхности металла ${\bf E}=4\pi\sigma{\bf n}$, где ${\bf n}$ нормаль к поверхности, а σ поверхностная плотность зарядов.
- $1.5.~(1.23~{\rm из}~{\rm задачника})$ Используя теорему Гаусса, найти поля равномерно заряженных:
 - а) шарика радиуса a с объемной плотностью ρ ;
 - б) бесконечного цилиндра радиуса a с линейной плотностью η ;
 - в) бесконечного плоского слоя толщины 2a с объемной плотностью заряда ρ .

Решение Эти задачи, обладают такой симметрией распределения зарядов, что можно, не решая, указать поверхности, на которых напряженность электрического

поля ${\bf E}$ перпендикулярна ей в каждой точке и постоянна по величине. Для нахождения поля ${\bf E}$ в таких задачах достаточно применения теоремы Гаусса, смысл которой для вакуума состоит в следующем: поток вектора напряженности электрического поля через замкнутую поверхность S равен полному заряду, заключенному внутри нее (умноженному на 4π в системе CGSE). Математическое выражение теоремы Гаусса имеет вид

$$\oint_{S} (\mathbf{E} \, d\mathbf{s}) = 4\pi \int_{V} \rho dv, \tag{1}$$

где $d\mathbf{s}$ — вектор, по величине равный величине элементарной площадки ds, а по направлению совпадает с направлением внешней нормали к этой площадке, т. е. нормали, направленной наружу; ρ — объемная плотность заряда. Интеграл с левой стороны есть поток вектора \mathbf{E} через замкнутую поверхность S. Под интегралом соответсвенно стоит скалярное произведение векторов \mathbf{E} и $d\mathbf{s}$, равное потоку вектора \mathbf{E} через малую площадку ds. Интеграл с правой стороны берется по объему, заключенному внутри поверхности, и равен полному заряду, находящемуся в нем. Успех решения с помощью соотношения (1) обусловливается тем, что, выбирая поверхность интегрирования, на которой напряженность поля E постоянна, можно E вынести за знак интеграла и тогда это соотношение дает возможность найти \mathbf{E} .

а) Совместим начало сферической системы координат с центром шара.

Ввиду сферической симметрии распределения заряда ясно, что вектор ${\bf E}$ может быть направлен только вдоль радиуса и зависеть только от величины радиуса. Поток вектора ${\bf E}$ через сферическую поверхность радиуса R независимо от величины радиуса запишется так:

$$\Phi = \oint_{S} (\mathbf{E} \, d\mathbf{s}) = E \oint_{S} ds = E \cdot 4\pi R^{2},$$

если ${\bf E}$ параллелен радиус-вектору ${\bf R}$ и $\Phi = -E \cdot 4\pi R^2$, если ${\bf E}$ антипараллелен ${\bf R}$, поскольку косинус угла между ${\bf E}$ и $d{\bf s}$ будет равен (-1).

С другой стороны,

$$4\pi \int\limits_V \rho dv = 4\pi \rho \cdot \frac{4}{3}\pi R^3 \qquad \text{при} \qquad R \leqslant a$$

И

$$4\pi \int\limits_V
ho dv = 4\pi
ho \cdot rac{4}{3}\pi a^3$$
 при $R>a.$

Поэтому

$$\mathbf{E}=rac{4}{3}\pi
ho\mathbf{R}$$
 при $R{\leqslant}a,$
$$\mathbf{E}=rac{4}{3}\pi
ho a^3rac{\mathbf{R}}{R^3}=rac{Q}{R^3}\mathbf{R}$$
 при $R>a,$

где $Q = \frac{4}{3}\pi a^3 \rho$ – полный заряд шара.

Таким образом, равномерно заряженный шар создает во внешнем пространстве такое поле, как если бы весь заряд был сосредоточен в его центре. Этот результат остается справедливым при любом сферически симметричном распределении заряда по объему шара.

б) Для бесконечного равномерно заряженного цилиндра вектор напряженности

электрического поля лежит в плоскостях, пердендикулярных оси цилиндра, и может зависеть только от расстояния от точки наблюдения до оси цилиндра. В цилиндрической системе координат с осью Z вдоль оси цилиндра вектор напряженности $\mathbf E$ направлен вдоль $\mathbf r$. Построим два коаксиальных цилиндра длины ℓ с радиусами r < a и r > a. Поток вектора $\mathbf E$ через

поверхность каждого из цилиндров запишется так:

$$\Phi = \oint_{S} (\mathbf{E} d\mathbf{s}) = E \oint_{S} ds = E \cdot 2\pi r \ell.$$

При вычислении потока мы считали, что $\rho > 0$, и, значит, вектор $d\mathbf{s}$ направлен по \mathbf{r} . Поток вектора \mathbf{E} через торцы цилиндров равен нулю, поскольку на них \mathbf{E} и \mathbf{r} перпендикулярны.

С другой стороны,

$$4\pi \int_{V} \rho \, dv = 4\pi \frac{\eta}{\pi a^2} \int_{V} dv = \frac{4\eta}{a^2} \pi r^2 \ell \qquad \text{при} \qquad r < a,$$

$$4\pi \int_{V} \rho \, dv = 4\pi \rho \cdot \pi a^2 \ell = 4\pi \eta \ell \qquad \text{при} \qquad r \geq a.$$

Подставляя найденные значения в уравнение (1), получаем:

$$\mathbf{E} = \frac{2\eta}{a^2} \mathbf{r} \qquad \text{при} \qquad r \leqslant a,$$

$$\mathbf{E} = \frac{2\eta}{r^2} \mathbf{r}$$
 при $r > a$.

в) Пусть средняя плоскость пластинки занимает положение плоскости (x,y). В силу симметрии распределения заряда относительно плоскости (x,y), вектор ${\bf E}$ может зависеть только от координаты z и направлен от плоскости, если пластина заряжена положительно, и к плоскости, если ее заряд отрицателен.

Построим куб с основаниями, симметрично расположенными по разные стороны от средней плоскости. Если S – площадь каждого основания, то поток вектора ${\bf E}$

через оба основания равен 2ES. Поток через боковую поверхность куба равен нулю, так как на ней векторы $\mathbf E$ и $d\mathbf s$ взаимно перпендикулярны. Значит, поток через поверхность куба равен 2ES. С другой стороны, правая сторона выражения (1) будет равна: $4\pi \rho S \cdot |2z|$, если $z \leq a$, и $4\pi \rho S \cdot 2a$, если z > a. Поэтому

$$\mathbf{E} = 4\pi \rho \mathbf{z}$$
 при $|z| \leqslant a$,

$$\mathbf{E} = 4\pi \rho a \frac{\mathbf{z}}{z}$$
 при $|z| > a$.

1.6. (1.24 из задачника) Внутри шара радиуса a, равномерно заряженного по объему с плотностью ρ , имеется незаряженная шарообразная полость, радиус которой b, а центр отстоит от центра шара на расстоянии ℓ таком, что $(\ell+b < a)$. Найти электрическое поле $\mathbf E$ в полости.

Решение Поле, создаваемое шаром с полостью, можно рассматривать как суперпо-

зицию двух полей: поля сплошного шара радиуса a, заряженного с плотностью ρ , и поля сплошного шара радиуса b, заполняющего полость с объемной плотностью $-\rho$. Нулевой заряд полости представлен как $\rho+(-\rho)=0$. Тогда, используя результат задачи 1.23 а, находим поле в полости

$$\mathbf{E} = \frac{4}{3}\pi\rho\mathbf{R} - \frac{4}{3}\pi\rho\mathbf{r} = \frac{4}{3}\pi\rho\boldsymbol{\ell}.$$

Поле внутри полости однородное и направлено по линии, соединяющей центр шара с центром полости, в сторону центра полости.

1.7. (1.25 из задачника) Два очень больших металлических листа, расположенных один над другим, имеют поверхностную плотность зарядов σ_1 и σ_2 соответственно. Найти поверхностные плотности зарядов на внешних σ_1' , σ_2' и внутренних σ_1'' , σ_2'' сторонах ли-

CTOB.

Решение Электрическое поле **E** внутри металлических пластин, которые мы будем считать бесконечными, равно 0, поэтому поток вектора **E** через поверхность, ограниченную плоскостями внутри металла и вертикальными стенками, равен нулю. Тогда из теоремы Γ аусса

$$4\pi (\sigma_1' + \sigma_1'') = 0.$$

Исходя из закона сохранения заряда получим

$$\sigma_2' + \sigma_2'' = 0,$$

$$\sigma_1' + \sigma_1'' = 0.$$

Поле внутри первой пластины, которое равно 0, образовано зарядами σ_1'' и противоположно направленным полем от остальных трех поверхностей. Тогда мы можем записать

$$\sigma_1' - \sigma_1'' - \sigma_2'' - \sigma_2' = 0.$$

Решая полученную систему уравнений, получим

$$\sigma_1' = \sigma_2' = \frac{1}{2} \left(\sigma_1 + \sigma_2 \right),$$

$$\sigma_1'' = -\sigma_2'' = \frac{1}{2} \left(\sigma_1 - \sigma_2\right).$$