8. Stiglar

Stærðfræðigreining IIB, STÆ205G

28. janúar 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Skilgreining 8.1

Látum f(x,y) vera fall og (x,y) punkt þar sem báðar fyrsta stigs hlutafleiður f eru skilgreindar. Skilgreinum $stigul\ f$ í punktinum (x,y) sem vigurinn

$$\nabla f(x,y) = f_1(x,y)\mathbf{i} + f_2(x,y)\mathbf{j}.$$

Stigull f er stundum táknaður með $\operatorname{grad} f$.

Ritháttur 8.2

Oft hentugt að rita

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y}.$$

Pá er litið svo á að ∇ sé *diffurvirki*, þ.e.a.s. ∇ gefur fyrirmæli um hvað á að gera við f til að fá $\nabla f(x,y)$.

Dæmi

 $\mathsf{Graf}\ z = 1 - x^2 - y^2$

Jafnhæðarlínur. Stigull og snertilína við jafnhæðarlínuna z=0.5 í (x,y)=(0.5,0.5).

Setning 8.3

Gerum ráð fyrir að fallið f(x,y) sé diffranlegt í punktinum (a,b) og að $\nabla f(a,b) \neq \mathbf{0}$. Þá er vigurinn $\nabla f(a,b)$ hornréttur á þá jafnhæðarlínu f sem liggur í gegnum punktinn (a,b).

Snertilína við jafnhæðarferil

Setning 8.4

Gerum ráð fyrir að fallið f(x,y) sé diffranlegt í punktinum (a,b) og að $\nabla f(a,b) \neq \mathbf{0}$. Jafna snertilínu við jafnhæðarferil f í punktinum (a,b) er gefin með formúlunni

$$\nabla f(a,b)\cdot(x,y)=\nabla f(a,b)\cdot(a,b),$$

eða

$$f_1(a,b)(x-a) + f_2(a,b)(y-b) = 0.$$

Skilgreining 8.5

Látum $\mathbf{u} = u\mathbf{i} + v\mathbf{j}$ vera einingarvigur. *Stefnuafleiða f* í punktinum (a,b) í stefnu \mathbf{u} er skilgreind sem

$$D_{\mathbf{u}}f(a,b) = \lim_{h \to 0^+} \frac{f(a+hu,b+hv) - f(a,b)}{h}$$

ef markgildið er skilgreint.

Setning 8.6

Gerum ráð fyrir að fallið f sé diffranlegt í (a,b) og $\mathbf{u}=u\mathbf{i}+v\mathbf{j}$ sé einingarvigur. Þá er stefnuafleiðan í punktinum (a,b) í stefnu \mathbf{u} skilgreind og gefin með formúlunni

$$D_{\mathbf{u}}f(a,b) = \mathbf{u} \cdot \nabla f(a,b).$$

Setning 8.7

Látum f vera gefið fall og gerum ráð fyrir að f sé diffranlegt í punktinum (a,b).

- (a) Hæsta gildið á stefnuafleiðunni $D_{\mathbf{U}}f(a,b)$ fæst þegar \mathbf{u} er einingarvigur í stefnu $\nabla f(a,b)$, þ.e.a.s. $\mathbf{u} = \frac{\nabla f(a,b)}{|\nabla f(a,b)|}$.
- (b) Lægsta gildið á stefnuafleiðunni $D_{\mathbf{u}}f(a,b)$ fæst þegar \mathbf{u} er einingarvigur í stefnu $-\nabla f(a,b)$, þ.e.a.s. $\mathbf{u}=-\frac{\nabla f(a,b)}{|\nabla f(a,b)|}$.
- (c) Ef $\mathcal C$ er sú hæðarlína f sem liggur í gegnum (a,b) og $\mathbf u$ er einingarsnertivigur við $\mathcal C$ í punktinum (a,b) þá er $D_{\mathbf u}f(a,b)=0$.

8.10 / 8.13

Setning 8.8

Látum f vera gefið fall og gerum ráð fyrir að f sé diffranlegt í punktinum (a,b).

- (a) Í punktinum (a, b) þá vex f hraðast ef haldið er í stefnu $\nabla f(a, b)$.
- (b) Í punktinum (a, b) þá minnkar f hraðast ef haldið er í stefnu $-\nabla f(a, b)$.
- (c) Ef $\mathcal C$ er sú hæðarlína f sem liggur í gegnum (a,b) og $\mathbf u$ er einingarsnertivigur við $\mathcal C$ í punktinum (a,b) þá er er vaxtarhraði f í stefnu $\mathbf u$ jafn 0.

Skilgreining 8.9

Látum f vera fall af þremur breytistærðum, þannig að allar þrjár fyrsta stigs hlutafleiður f í punktinum (x,y,z) séu skilgreindar. Stigull f í punktinum (x,y,z) er skilgreindur sem vigurinn

$$\nabla f(x,y,z) = f_1(x,y,z)\mathbf{i} + f_2(x,y,z)\mathbf{j} + f_3(x,y,z)\mathbf{k}.$$

Snertiplan við jafnhæðarflöt

Setning 8.10

Látum f vera fall af þremur breytistærðum þannig að fallið f er diffranlegt í punktinum (a,b,c). Látum $\mathcal F$ tákna þann jafnhæðarflöt f sem liggur um (a,b,c). Stigullinn $\nabla f(a,b,c)$ er hornréttur á flötinn $\mathcal F$ í punktinum (a,b,c) og snertiplan (ef $\nabla f(a,b,c) \neq \mathbf 0$) við jafnhæðarflötinn í punktinum (a,b,c) er gefið með jöfnunni

$$\nabla f(a,b,c) \cdot (x,y,z) = \nabla f(a,b,c) \cdot (a,b,c)$$

eða með umritun

$$f_1(a,b,c)(x-a) + f_2(a,b,c)(y-b) + f_3(a,b,c)(z-c) = 0.$$