# VERIFICAÇÃO DE ASSINATURAS

Gustavo Antonio Souza de Barros 18/0064487 gustavoasb@gmail.com

Créditos:

Gianlucas dos Santos Lopes Mayara Chew Marinho

# Sumário

| 1 Introdução                          | 2  |
|---------------------------------------|----|
| 1.1 Objetivo                          | 2  |
| 1.2 Database                          | 3  |
| 1.3 Funcionalidades                   | 4  |
| 2 Metodologia                         | 5  |
| 2.1. Pré-processamento                | 5  |
| 2.2. Validação                        | 6  |
| 2.2.1 Histogram of Oriented Gradients | 7  |
| 2.3 Identificação                     | 9  |
| 2.3.1 Transformada de Radon           | 10 |
| 2.3.2 K-Vizinhos mais próximos        | 1  |
| 3 Conclusão                           | 1  |
| 3.1 Resultados                        | 1  |
| 3.2 Conclusão e trabalhos futuros     | 1  |
| 4 Bibliografia                        | 1  |

# Objetivo

Implementar um algoritmo que verifica a autenticidade de uma única assinatura a mão alçada.

Identificação

Associa uma assinatura dada a algum usuário.

Validação

Testa se uma assinatura é compatível com a de um usuário indicado.

#### Database

- Center of Excellence for Document Analysis and Recognition (CEDAR).
- University of New York, Buffalo Campus.
- 54 assinaturas diferentes.
- 24 de cada exemplar.
- Total de 1296 assinaturas.
- Majoritariamente Random Forgery.

| Genuine  | Skilled forgery | Unskilled forgery | Random forgery |
|----------|-----------------|-------------------|----------------|
| Dynatico | my faur gul     | Monnal            | Madan          |
| Ukushi   | Venshie         | rkishne           | Vamsi          |
| quada    | gwedweg.        | Weekle            | weenee         |
| Adm      | Faith           | 有ML               | mionfai        |
| Bright   | Margat          | agaign            | Jaham          |



#### Funcionalidades

- Identificação.
- Validação.
- Teste de acurácia para identificação.
- Teste de acurácia para validação.



# Pré-processamento

- Assinatura Original.
- Binarização (Otsu).
- 3. Remoção de Rúído (Abertura)
- Remoção de espaços brancos.
- Resize 200x200







# Validação

- 1. Pré-processamento
- 2. Extração de features (HOG)
- 3. Comparação (Distância Euclediana)
- 4. Resultado



# Histogram of oriented gradients (HOG)



Assinatura Original



**HOG Features** 



# Histogram of oriented gradients (HOG)



**HOG Features 20x20** 



**HOG Features 8x8** 



**HOG Features 4x4** 

Comparação:

$$D_E(\mathbf{v}, \mathbf{u}) = \|\mathbf{v} - \mathbf{u}\| = \sqrt{(v_1 - u_1)^2 + (v_2 - u_2)^2 + \dots + (v_k - u_k)^2}$$



# Identificação

- 1. Pré-processamento
- 2. Extração de features (Radon)
- 3. Classificador KNN
- 4. Predição









Projeções da Transformada de Radon



Projeção horizontal



Projeção vertical





4 ângulos



180 ângulos

# K-Vizinhos mais próximos



#### Resultados

|               | Teste 1 | Test 2 | Teste 3 | Teste 4 | Média  |
|---------------|---------|--------|---------|---------|--------|
| Identificação | 91,98%  | 95,68% | 92,59%  | 93,21%  | 93,36% |
| Validação     | 90%     | 94%    | 90%     | 95%     | 92,25% |

- Resultados podem variar dependendo da base de dados.
- Offline and online signature verification.

#### Predefinições:

- Utilizadas todas as assinaturas.
- 10 exemplares de cada.
- 70% para conjunto de treinamento.



### Conclusão e Trabalhos Futuros

16

## Bibliografia

- [1] N. Otsu, "A threshold selection method from gray-level histograms," IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, Jan 1979.
- [2] R. Sabourin, R. Plamondon, and G. Lorette, Off-line Identification With Handwritten Signature Images: Survey and Perspectives, 01 1992, pp. 219–234.
- [3] M. K. KALERA, S. SRIHARI, and A. XU, "Offline signature verification and identification using distance statistics," International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 07, pp. 1339–1360, 2004.
- [4] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, June 2005, pp. 886–893 vol. 1.
- [5] J. Radon, "On the determination of functions from their integral values along certain manifolds," IEEE Transactions on Medical Imaging, vol. 5, no. 4, pp. 170–176, Dec 1986.
- [6] A. A. A. Abdelrahaman and M. E. A. Abdallah, "K-nearest neighbor classifier for signature verification system," in 2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE), Aug 2013, pp. 58–62.
- [7] K. S. Khabiya and L. V. Sonawane, "Online signature verification system using drt, dct and k-nn classifier," 2016.
- [8] M. U. The MathWorks, Natick, "Radon transform," https://www.mathworks.com/help/images/ref/radon.html, acessado em: 02 de Julho, 2019.
- [9] Matlab Team, "Select optimal machine learning hyperparameters using bayesian optimization," https://www.mathworks.com/help/stats/bayesopt.html, acessado em: 02 de Julho, 2019.
- [10] S. N. S. Sung-Hyuk Cha, "Handwritten document image database construction and retrieval system," 2001, acessado em: 2 de Julho, 2019. [Online]. Available: https://cedar.buffalo.edu/NIJ/publications.html

