olarak yazabiliriz. \overline{B} ' ve \overline{P} ' sırasıyla, \overline{B} ve \overline{P} matrislerinin evriklerini gösterirse, bu örnek için

$$\overline{PB}' = 0$$
 ya da $\overline{BP}' = 0$

olduğu hemen görülecektir. Bu özelliğin bütün çizgeler için de doğru olduğunu göstermek için, P nin i ninci dizeği p_i ve \overline{B} nin j ninci dizeği b_j yi düşiinelim. Eğer d_i düğümü, Ç $_j$ çevresinde ise p_i de ve b_j de ortak olan yalnız iki tane bire eşit terim vardır ve bu dizekler iki tabanına göre çarpıldıklarında sıfır vereceklerdir. Eğer d_i düğümü Ç $_j$ çevresinde değilse, p_i ve b_j de bire eşit ortak terim yoktur ve bu dizeklerin çarpımı yine sıfır verecektir.

Tanım 3.2.6 dan t-çevrelerin bağımsız olduğu görülmektedir. Öyleyse çevre matrisinin, belli bir ağaca göre tanımlanan t-çevrelerden oluşan altmatrisi herzaman,

$$B_t = \begin{bmatrix} B_1 & I \end{bmatrix}$$

biçiminde yazılabilir. B_t ye t-çevre matrisi diyeceğiz. B_1 ve I nın dikeçleri sırasıyla, dallara ve krişlere karşıdüşmektedir. Örneğin, Şekil 3.3.1 de kalın çizgilerle belirtilen ağaca ilişkin t-çevre matrisi,