# Stats 206 Homework 2

Clark Fitzgerald October 16, 2014

1a

The histograms of muscle and age are unsurprising. The ranges are as expected. Age appears to be roughly uniform and muscle has a bell shape.



The relation between age and muscle appears to be linear, and it looks like muscle mass decreases with age.



#### 1b

After fitting the linear model we extract regression coefficients with their standard errors, the mean squared error (MSE), and its degrees of freedom.

Regression coefficients:

```
## (Intercept) age
## 156.346564 -1.189996
```

Standard errors for regression coefficients:

```
## (Intercept) age
## 5.51226249 0.09019725
```

The MSE and its degrees of freedom are:

```
## [1] 66.80082 58.00000
```

### 1c

The fitted regression line is:

```
## [1] "muscle = 156.35 + -1.19 * age"
```



 $\operatorname{It}$ 

looks like the linear regression is a good fit.

## 1d

The fitted values for the 6th and 16th cases are:

The residuals for the 6th and 16th cases are:

1e



Using linear algebra notation, the simple linear regression model with Normal errors assumes -  $y = X\beta + \epsilon$  The response is a linear function of the predictors. -  $\epsilon$  Normal $(0, \sigma^2 I_n)$  The error terms are normally distributed and uncorrelated.

# TODO - interpret plot

#### 1f

A 99 percent confidence interval for the estimated regression intercept is:

We are 99 percent confident that the true parameter lies within this interval.

#### 1g

We test at level 0.01 to see if there is a negative linear association between muscle mass and age.  $H_0$  is  $\beta_1 \geq 0$  and  $H_1$  is the left sided alternative hypothesis  $\beta_1 < 0$ .

The test statistic is  $T^* = \frac{\hat{(}\beta_1) - 0}{se(\hat{(}\beta_1))} \ t(n-2).$ 

The decision rule is to reject  $H_0$  if  $T^* < t(0.99, n-2)$ .

## [1] "If -13.193 is less than -2.392 we reject HO"

We reject the null hypothesis and conclude that there is a significant negative linear association between amount of muscle mass and age.

#### 1h

A 95% prediction interval for the muscle mass for women of age 60 is:

```
## fit lwr upr
## 1 84.94683 68.45067 101.443
```

The fit is the expected value. We expect 95% of new observations to fall between the lower and upper bounds.

#### 1i

The limits of a the 95% simultaneous confidence bands for the regression line at  $x_h = 60$  are:

```
## [1] 105.65106 64.24261
```

#### 1j

The ANOVA table for this data is:

We use an F test at level 0.01 to see if there is a linear association between muscle mass and age.  $H_0$  is  $\beta_1 = 0$  and  $H_1$  is the two sided alternative hypothesis  $\beta_1 \neq 0$ .

```
The test statistic is F^* = \frac{\hat{\beta}_1 - 0}{se(\hat{\beta}_1)} t(n-2).
```

The decision rule is to reject  $H_0$  if  $F^* > F(0.99; 1, n-2)$ .

```
## [1] "If 0.967 is less than 24.189 we reject HO"
```

We reject the null hypothesis and conclude that there is a significant linear association between amount of muscle mass and age.

#### 1k

The proportion of total variation in muscle mass explained by age is  $\mathbb{R}^2$  as viewed in the summary of the model:

```
##
## Call:
## lm(formula = muscle ~ age, data = women)
##
## Residuals:
```

```
1Q
                     Median
                                   3Q
## -16.1368 -6.1968 -0.5969
                               6.7607 23.4731
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 156.3466
                           5.5123
                                   28.36
                                            <2e-16 ***
               -1.1900
                           0.0902 -13.19
                                           <2e-16 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 8.173 on 58 degrees of freedom
## Multiple R-squared: 0.7501, Adjusted R-squared: 0.7458
## F-statistic: 174.1 on 1 and 58 DF, p-value: < 2.2e-16
```

The correlation between muscle mass and age is:

```
## [1] -0.866064
```

#### 11

We fit the model using the log of age.

```
##
## Call:
## lm(formula = muscle ~ log(age), data = women)
##
## Residuals:
                 1Q
                      Median
       Min
                                   3Q
                                           Max
## -14.7382 -6.5901 -0.8211
                               6.5403 21.7113
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 368.816
                           20.894
                                    17.65
                                            <2e-16 ***
                            5.122 -13.60
                                            <2e-16 ***
## log(age)
               -69.669
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.987 on 58 degrees of freedom
## Multiple R-squared: 0.7613, Adjusted R-squared: 0.7572
## F-statistic: 185 on 1 and 58 DF, p-value: < 2.2e-16
```



This model has the corresponding residual plots:



 ${f 1}$  We plot the Box-Cox power transformation.



This suggests that a value of  $\lambda=1$  is appropriate. In other words, no transformation is required.