

CPEG323: Intro. to Computer System Engineering

Lecture 02: Number Representation

Decimal Numbers: Base 10

Natural to human beings

• Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Inefficient for computer
 - They store data as an ordered sequence of binary digits : on and off signal, true and false, 1 and 0.

How to represent integers in binary?

Positional Number System

• Decimal representation example:

Positional Number System Cont.

- Terminology: Digit d and Base B
 - In base B: B symbol per digit d
 - Decimal → B=10 and 10 symbols per d
 - n digits in base B can represent Bⁿ different numbers

• Representation:

n digit number in base
$$B = d_{n-1} d_{n-2} \dots d_1 d_0$$

Value =
$$d_{n-1} \times B^{n-1} + d_{n-2} \times B^{n-2} + ... + d_1 \times B^1 + d_0 \times B^0$$

Commonly used number bases

- Decimal (Base 10)
 - 10 symbols per digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - Notation: $1234_{ten} = 1234$
- Binary (Base 2)
 - 2 symbols per digit: 0, 1
 - Binary digits are called bits
 - Notation: $1110_{two} = 0b1110$
- Hexadecimal (Base 16)
 - 16 symbols per digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - Notation: $1A5E_{hex} = 0x1A5E$
 - Each hexadecimal digit can be converted to 4 bits

Decimal	Binary	Hex
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Conversion Examples

$$(1010)_{two}$$

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$(1010)_{two} = 10$$

$$1 \times 16^{3} + 0 \times 16^{2} + 1 \times 16^{1} + 0 \times 16^{0} \implies (1010)_{hex} = 4112$$

Questions

- (111) _{two} = _____?
- 11 = 0b____?
- $0xB9EF = (____)_{two}$?
- (1000001) _{two} = ____?

Unsigned v.s. Signed

- Unsigned: n digits in base B can represent Bⁿ different numbers
- Signed: positive and negative numbers

• Challenge: Represent signed numbers in a way that both positive and negative numbers can be calculated using the same hardware

Sign and Magnitude

Separate sign bit: 0 for positive and 1 for negative

- 8 bit representation example:
 - 8 bit representation of 12:0000 1100
 - 8 bit representation of -12: 1000 1100
- What are the shortcomings?
 - Arithmetic circuits get complicated
 - Two zeros

One's Complement

- To negate a positive number: flip all of its bits
- 8 bit representation example :
 - $12 = (0000 \ 1100)_{two}$ \rightarrow $-12 = (1111 \ 0011)_{two}$
- Positive numbers have leading 0s
- Negative numbers have leading 1s

- Any shortcoming?
 - Still have two zeros

Two's complement

- To negate a positive number: Flip all of its bits and add 1
- 8 bit representation example :
 - 12 = $(0000\ 1100)_{two}$ Flip: $(1111\ 0011)_{two}$ + 1 \rightarrow -12 = $(1111\ 0100)_{two}$

An n bit two's complement number value = $-2^{n-1} \times d^{n-1} + 2^{n-2} \times d^{n-2} + ... + 2^{1} \times d^{1} + 2^{0} \times d^{0}$

- Almost split numbers evenly between positive and negative:
 - One negative number that has no corresponding positive number. Which one?
 - The single pattern for zero belongs to positive numbers

Questions

- 6-bit two's complement representation of -19?
- 5-bit two's complement representation of -3?
- What range of numbers can be presented by a 4-bit two's complement?

```
A. [-15, 15]
```

Overflow

- A condition where the result of an arithmetic operation cannot be represented by the hardware
 - Number of bits in the binary representation is insufficient to show the result
- Example

Reading assignment

• Section 2-4