Matemática Computacional Introdução

Sumário

1	Contextualização e importância da Matemática Computacional	2
	1.1 Sistemas de ponto flutuante e cálculo computacional	2
	1.2 Resolução de equações não-lineares	4
	1.3 Ajustamento de dados discretos	7
	1.4 Cálculo de integrais	7
	1.5 Resolução de equações diferenciais ordinárias	9
2	Breves considerações sobre os recursos computacionais disponíveis	10
3	Objetivos e Programa da Unidade Curricular	12
	3.1 Objetivos	12
	3.2 Programa	

1 Contextualização e importância da Matemática Computacional

A Matemática Computacional é uma área da Matemática Aplicada cuja importância é facilmente explicada pelo papel fundamental que hoje em dia as ferramentas computacionais desempenham em todos os ramos das Ciências e Engenharia. Permite obter resultados numéricos para inúmeros problemas cuja solução analítica não é conhecida ou efetivamente calculável, o que a torna indispensável no estudo e na simulação de modelos matemáticos usados nas mais variadas áreas das Ciências e Engenharia. Por outro lado, é uma disciplina transversal às diferentes áreas da Matemática, já que o seu estudo e desenvolvimento assentam em conhecimentos de Álgebra Linear, Análise Matemática, Equações Diferenciais, etc. O desenvolvimento e implementação de algoritmos computacionais faz com que a Programação seja essencial na Matemática Computacional.

Em que situações surge a Matemática Computacional?

Muitos problemas da vida real, da indústria ao mercado financeiro, passando pela investigação científica em Física, Engenharia e Ciências da vida, têm "soluções matemáticas", mas é impossível colocá-las em prática sem a ajuda da computação.

Veremos, em seguida, alguns exemplos relacionados com os tópicos do programa de Matemática Computacional.

1.1 Sistemas de ponto flutuante e cálculo computacional

Desde 1985, a implementação em computador de um sistema de representação numérica e respetiva aritmética computacional seguem os padrões definidos pelo Institute of Electrical and Electronics Engineers (IEEE). Os computadores modernos usam a norma IEEE 754 para representar números reais, sendo IEEE 754-2008 a versão mais recente.

Segundo a norma IEEE 754, podemos considerar dois esquemas principais de representação de números reais: precisão simples de 32 bits e precisão dupla de 64 bits (recorde que um bit é um dígito binário). A representação dos números de ponto flutuante obedece a

$$x = (-1)^s (d_1.d_2...d_n)_2 \times 2^t, d_1 \neq 0, s \in \{0,1\}, t \in \mathbb{Z} \cap [t_{max}, t_{min}],$$

onde o número t representa o expoente de x, s o sinal do número e a $(d_1.d_2...d_n)_2$ chama-se mantissa. A condição de normalização $d_1 \neq 0$ neste caso significa simplesmente $d_1 = 1$.

Figura 1: Sistemas de ponto flutuante definidos pela norma IEEE 754

As representações definidas pelas normas IEEE incluem ainda INF (infinito) e NaN (Not a Number). Por exemplo, 0/0 e $\infty - \infty$ produzem NaN.

A representação de números inteiros no computador pode ser feita separadamente, usando esquemas de 8 bits, 16 bits, 32 bits ou 64 bits. Além disso, há dois subconjuntos de representação para inteiros: inteiros sem sinal (podem representar zero e inteiros positivos) e inteiros com sinal.

Vejamos alguns problemas que podem surgir com a representação de números no computador.

Exemplo 1.1. Um problema com a divisão em ponto flutuante no Pentium

Em 1993, um problema com os microprocessadores provocou uma falha na divisão de números em ponto flutuante. Por exemplo, ao dividir 4195835.0 por 3145727.0, o resultado apresentado era 1.33374 ao invés de 1.33382.

Ainda que o erro fosse pequeno (erro de 0.006%) e a falha afetasse poucos utilizadores, isto resultou num sério problema para a Intel, que se viu obrigada a trocar entre 3 e 5 milhões de chips, uma operação com custo superior a 500 milhões de dólares.

Exemplo 1.2. Desintegração do foguetão Ariane 5 devido a um erro numérico

No Ariane 5 foi reutilizado parte do código do Ariane 4, mas o computador de voo do novo foguetão incorporavam também, sem que ninguém desse conta, um erro de programação numa rotina aritmética. A 4 de junho de 1996, aquando do lançamento do Ariane 5, esse erro de programação provocou uma falha poucos segundos após a descolagem. Como consequência, meio segundo depois, o computador principal entrou em colapso. Assim, o Ariane

5 desintegrou-se 40s após o seu lançamento, com prejuízos estimados em várias centenas de milhões de euros.

A anomalia interna de software do SRI (Inertial Reference System) ocorreu durante a conversão de um número de 64 bits em ponto flutuante para um inteiro de 16 bits com sinal: o valor do número era maior do que seria possível representar como inteiro de 16 bits (overflow).

A título de curiosidade, referimos que o relatório do acidente foi elaborado por uma comissão presidida pelo matemático Jacques-Louis Lions (1928–2001), da Académie des Sciences (França). Informação adicional pode ser encontrada em

 $http://www-users.math.umn.edu/\ arnold/disasters/ariane5rep.html$

Exemplo 1.3. Um exemplo de cálculo em sistemas de ponto flutuante

Consideremos a função real de variável real

$$f(x) := \frac{1}{x} - \frac{1}{x+1} \quad (x \in \mathbb{R} \setminus \{-1, 0\})$$

No Matlab (IEEE-754 com precisão dupla) obtivémos o seguinte resultado:

```
>> format long
>> 1/10^20-1/(10^20+1)
ans = 0
```

Note-se que ans = 0 tem erro de 100%.

Problema: Como se explica este mau resultado? Como calcular um valor mais preciso para $f(10^{20})$?

1.2 Resolução de equações não-lineares

O exemplo que se segue destina-se a motivar o estudo de métodos numéricos para resolver equações.

Exemplo 1.4. Um problema da Física

Na equação do foguete de Tsiolkovsky, a velocidade de um projétil é dada, em cada instante t, por

$$v(t) = u \ln \left(\frac{m_0}{m_0 - qt}\right) - gt$$

onde u é a velocidade de expulsão do combustível (em relação ao projétil), m_0 é a sua massa inicial, q é o coeficiente de consumo do combustível e $g = 9.8 \text{ m/s}^2$ é a aceleração da gravidade.

Problema: Determinar em que instante t a velocidade do projétil atinge o valor v = 1000 m/s, quando u = 2200 m/s, $m_0 = 16 \times 10^4$ kg e q = 2680 Kg/s.

Numa primeira abordagem ao problema colocado no Exemplo 1.4, procedemos à localização gráfica de soluções de v(t) = 1000 na Fig.2. É claro que o estudo se deve limitar ao intervalo $]0, m_0/q[$ para t.

Figura 2: Localização das raízes através de esboço gráfico

Em termos da localização e separação de raízes de uma equação, é válido o seguinte resultado (teórico) que assegura a **existência e unicidade de solução de uma equação** f(x) = 0 num certo intervalo limitado.

Teorema 1.1. Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Se

- f(a)f(b) < 0
- f' não se anula em]a,b[

então existe um e um só $z \in]a,b[$ tal que f(z)=0, ou, por outras palavras: no intervalo [a,b[, a equação f(x)=0 tem uma e uma só solução.

Exemplo 1.5. Voltando ao Exemplo 1.4, consideramos a equação

$$2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000 = 0.$$

Vamos aplicar o Teorema 1.1 com $f(t) := 2200 \ln \left(\frac{16 \times 10^4}{16 \times 10^4 - 2680t} \right) - 9.8t - 1000 e [a, b] = [20, 30].$ Tem-se

$$f(20) = -298.47, f(30) = 241.951$$

$$f'(t) = -9.8 + \frac{589600}{16000 - 268t}, f''(t) = \frac{9875800}{(4000 - 67t)^2}, f \in C^2([20, 30]).$$

Notamos que, de f'' > 0 em [20,30] e f'(20) > 0, resulta que f' > 0 em [20,30]. Como f' > 0 em [20,30] e f(20)f(30) < 0, conclui-se que a equação tem em]20,30[uma e uma só solução.

Para terminar, vejamos alguns recursos computacionais que podemos usar para resolver equações não lineares e a sua aplicação à equação do foguete de Tsiolkovsky.

Exemplo 1.6. Uma vez localizada a solução pretendida, é fácil obter uma solução para a equação f(t) = 0 usando software como o MATHEMATICA e o MATLAB:

• Mathematica

In[1]:= FindRoot[2200Log[$16*10^4/(16*10^4-2680t)$]-9.8t-1000,{t,20}] Out[1]:={t->25.9424}

 $In[2] := FindRoot[2200Log[16*10^4/(16*10^4-2680t)] - 9.8t-1000, \{t,30\}] \\ Out[2] := \{t->25.9424\}$

In[3]:= FindRoot[2200Log [$16*10^4/(16*10^4-2680t)$]-9.8t-1000,{t,20,30}] Out[3]= {t->25.9424}

MATLAB

>> fzero(@(t)2200*log(16*10^4/(16*10^4-2680*t))-9.8*t-1000,[20,30]) ans = 25.9424

>> fzero(@(t)2200*log(16*10^4/(16*10^4-2680*t))-9.8*t-1000, 20) ans = 25.9424

>> fzero(@(t)2200*log(16*10^4/(16*10^4-2680*t))-9.8*t-1000, 30) ans = 25.9424

• PYTHON

Está disponível a função nsolve.

1.3 Ajustamento de dados discretos

Consideremos um caso prático como motivação.

Exemplo 1.7. Um problema de Biologia

Os dados representados na tabela

referem-se ao crescimento de uma bactéria num meio de cultura líquido ao longo de vários dias.

Problema: Obter previsões da quantidade de bactérias ao fim de 15 e 30 dias.

A resolução deste problema passa por construir uma função contínua que "se ajuste", num certo sentido, aos dados conhecidos. Depois, usa-se essa função para prever valores que não podem ser obtidos/medidos experimentalmente.

Há vários recursos computacionais disponíveis que permitem efetuar ajustamento de dados discretos.

Exemplo 1.8. Para interpolação polinomial e ajustamento segundo o critério dos mínimos quadrados destacamos:

• MATHEMATICA

A função InterpolatingPolynomial faz interpolação polinomial e a função Fit faz ajustamento segundo o critério dos mínimos quadrados.

Para o problema do Exemplo 1.7 obtivémos os gráficos da Fig. 3 usando o MATHEMATICA.

• Matlab

A função polyfit permite fazer o ajustamento de dados discretos através de interpolação polinomial e melhor aproximação mínimos quadrados.

PYTHON

A função polyfit, faz ajustamento de polinómios a dados discretos. Está disponível no pacote interpolate da biblioteca scipy (scipy.interpolate).

1.4 Cálculo de integrais

A solução de muitos problemas requer o cálculo de integrais de funções que não possuem primitiva explícita.

Figura 3: Funções de ajustamento

Exemplo 1.9. Um problema de Probabilidades e Estatística

Consideremos uma população com M=200 indivíduos. Sabe-se que a distribuição das alturas destes indivíduos pode ser representada por uma Gaussiana que se caracteriza pelo valor médio $\bar{a}=1.70$ m e pelo desvio padrão $\sigma=0.10$ m (distribuição normal):

$$f(a) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(\bar{a}-a)^2/(2\sigma^2)}.$$

Problema: Qual o número N de indivíduos cuja altura varia na faixa 1.80 – 1.90 m?

Uma estimativa para N é dada por

$$N \approx M \int_{1.80}^{1.90} f(a)da = 797.885 \int_{1.80}^{1.90} e^{-50(1.70-a)^2} da.$$

$$\int_{1.80}^{1.90} e^{-50(1.70-a)^2} da.$$

Integrais deste tipo aparecem nas tabelas de distribuição normal usadas em Probabilidades e Estatística.

Também podemos recorrer ao software já apresentado para resolver este problema de integração numérica.

Exemplo 1.10. Vejamos então como se pode calcular numericamente o integral.

• MATHEMATICA

A função NIntegrate faz integração numérica. Para resolver o problema do Exemplo 1.9 fazemos

$$In[1] := 797.885* NIntegrate[Exp[-50 (1.7-a)^2],{a,1.8,1.9}]$$

 $Out[1] = 27.181$

Assim, há 27 pessoas com altura entre 1.80 - 1.90 m.

Note-se que a função Integrate usa apenas as capacidades de cálculo simbólico do MATHEMATICA, as quais não permitem obter um valor numérico para o integral em causa.

• Matlab

A função integral faz integração numérica. Para o exemplo em estudo, obtemos:

>>
$$797.885*integral(@(a)(exp(-50*(1.7-a).^2)),1.8,1.9)$$

ans = 27.1810

A regra dos trapézios está implementada em trapz e cumtrapz.

PYTHON

As funções quad, trapz, simps,..., fazem integração numérica. Estão disponíveis no pacote integrate da biblioteca scipy (scipy.integrate).

1.5 Resolução de equações diferenciais ordinárias

Para terminar apresentamos um modelo matemático (modelo SIR) para epidemias.

Exemplo 1.11. Um problema de Medicina

Numa comunidade de 800 crianças suscetíveis de contrair varicela, uma delas é diagnosticada com esta doença. Suponhamos que a propagação da doença é modelada pelo sistema de equações diferenciais

$$\begin{cases} \frac{dS}{dt} = -0.001 S I \\ \frac{dI}{dt} = 0.001 S I - 0.3 I \\ \frac{dR}{dt} = 0.3 I \end{cases}$$

onde S=S(t) é o número de crianças suscetíveis de contrair a doença no momento t, I=I(t) é o número de infetados na mesma altura e que podem propagar a doença, e R(t) é o número de recuperados, ou seja, que já contraíram a doença e adquiriram imunidade.

Problema: Estudar a evolução de (S, I, R) desde o início da epidemia até que esta termina.

Exemplo 1.12. Os recursos computacionais disponíveis permitem, por exemplo, apresentar a solução de um sistema de equações diferenciais ordinárias através de gráficos.

- Mathematica
- A função NDSolve faz resolução numérica de equações diferenciais ordinárias.
- MATLAB: podemos usar ode23, ode45, ...
- Python: odeint disponível no pacote scipy.integrate.

2 Breves considerações sobre os recursos computacionais disponíveis

O MATLAB, marca registada da MATHWORKS, foi originalmente concebido por Cleve Moler, no final de 1970, e é uma abreviatura de "Matrix Laboratory". É um software interativo de alta performance destinado principalmente ao cálculo numérico. Inicialmente foi desenvolvido com o intuito de resolver sistemas e realizar cálculos com matrizes. Atualmente, integra métodos numéricos, processamento de sinais e construção de gráficos, em ambiente de fácil utilização devido à forma, muito próxima da linguagem matemática, como os problemas e as soluções são expressos. Documentação de apoio variada está disponível neste links:

https://www.mathworks.com/moler/chapters.html

https://www.mathworks.com/help/pdf doc/matlab/getstart.pdf

O GNU OCTAVE é uma linguagem computacional criada por John W. Eaton, sendo tão robusta e poderosa quanto o MATLAB, com a vantagem de ser open source. Está disponível neste link:

https://www.gnu.org/software/octave/

O sistema computacional WOLFRAM MATHEMATICA (conhecido simplesmente como MATHEMATICA) foi criado por Stephen Wolfram no final de 1980, e continuamente desenvolvido pela Wolfram Research. A juntar à sua enorme capacidade de cálculo numérico e simbólico, o MATHEMATICA também serve como um ambiente para desenvolvimento rápido de programas e pode ser usado para a elaboração de documentos com formatação matemática complexa. Destaca-se também pela fácil utilização devido à proximidade da linguagem matemática.

O PYTHON, outra ferramenta de cálculo e visualização, é uma linguagem de programação recente, inventada por Guido van Rossum no final de 1980. Em 2007 e em 2010, foi considerada a linguagem de programação do ano, sendo atualmente a oitava linguagem mais popular, depois de C, Java, Objective-C, C++, C#, PHP e Visual BASIC. Entre as grandes organizações que utilizam o Python incluem-se a Google, a Yahoo!, o YouTube, o CERN e a NASA.

Referências

- [1] Carlos Caleiro e Jaime Ramos, Introdução à Programação em Pyhton (IPython Notebooks), 2016 DMIST.
- [2] J. Carmo, A. Sernadas, C. Sernadas, F.M. Dionísio e C. Caleiro, Introdução à Programação em Mathematica, 2004 IST Press, 1999, (2ª edição).
- [3] D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Comput. Surv. (1991), 23, 1, 5–48.
- [4] John V. Guttag, Introduction to Computation and Programming Using Python (revised and expanded edition): 2013 MIT Press.
- [5] C. Moler, Numerical Computing with Matlab, SIAM, 2004.
- [6] A. Quarteroni, R. Sacco e F. Saleri, Cálculo Científico com Matlab e Octave, Springer-Verlag, 2007 (traduzido por Adélia Sequeira).
- [7] João Pavão Martins, Programação em Python: Introdução à programação utilizando múltiplos paradigmas, 2015 IST Press.

3 Objetivos e Programa da Unidade Curricular

Através dos algoritmos estudados em Matemática Computacional, dá-se a oportunidade de aplicar os conhecimentos já adquiridos em disciplinas anteriores, como Cálculo Diferencial e Integral, Álgebra Linear e Equações Diferenciais, levando à procura, de modo construtivo, de soluções aproximadas de problemas cujos modelos matemáticos frequentemente não são resolúveis a não ser por métodos numéricos. A Matemática Computacional destina-se a fornecer as bases que permitam usar as potencialidades do computador para resolver problemas numéricos comuns a todas as áreas da Engenharia. Através dos exemplos numéricos que servem de ilustração ao curso, bem como do projecto computacional que é proposto, incentivam-se boas práticas de Programação através da resolução de problemas numéricos concretos.

3.1 Objetivos

A Unidade Curricular de Matemática Computacional tem como objetivo:

- Introduzir os sistemas de ponto flutuante com um breve estudo das suas propriedades e limitações.
- Apresentar conceitos e resultados teóricos como introdução ao estudo de métodos numéricos para resolução de equações, ajustamento de dados discretos e funções, integração e equações diferenciais.
- Analisar os resultados das simulações numéricas com base nas noções de erro, convergência e estabilidade.

3.2 Programa

1. Conceitos Básicos do Cálculo Científico

Erros absoluto e relativo. Representação de números no computador e sistemas de ponto flutuante. Arredondamentos. Teoria linear de erros. Propagação de erros em funções e algoritmos. Condicionamento, estabilidade algorítmica.

2. Resolução Numérica de Equações Não Lineares

Localização de raízes. Método da bisseção. Método da secante. Método de Newton. Métodos de ponto fixo. Análise de convergência (local e global) e estimativas de erro para cada um destes métodos.

3. Resolução Numérica de Sistemas de equações

- 3.1. Sistemas Lineares Normas matriciais. Condicionamento. Métodos iterativos (ex: métodos de Jacobi, de Gauss-Seidel, SOR,...). Análise de convergência e estimativas de erro.
- 3.2. **Sistemas Não-Lineares** Método de Newton. Métodos de ponto fixo. Análise de convergência e estimativas de erro.

4. Ajustamento de Dados Discretos e Aproximação de Funções

- 4.1. **Interpolação Polinomial** Solução através da matriz de Vandermonde. Fórmula interpoladora de Lagrange. Diferenças divididas de Newton. Fórmula interpoladora de Newton. Erro de interpolação na aproximação de funções.
- 4.2. **Teoria de Aproximação** Melhor aproximação mínimos quadrados.

5. Integração Numérica

Grau de exatidão de uma regra de quadratura. Método dos coeficientes indeterminados. Fórmulas de Newton-Cotes (ponto médio, trapézio, Simpson). Fórmulas compostas. Quadraturas de Gauss. Análise de erros. Ordem de precisão.

6. Resolução Numérica de Equações Diferenciais Ordinárias

Métodos de passo único (Euler, Taylor de segunda ordem, Runge-Kutta de segunda e quarta ordem). Análise de erros. Consistência, convergência e estabilidade. Aproximação de problemas de valores na fronteira através de diferenças finitas.