1. Basic ODEs

- (a) separatable: $y' = \frac{F(x)}{G(y)}$ $\Rightarrow \frac{dy}{dx} = \frac{F(x)}{G(y)} \Rightarrow \int G(y)dy = \int F(x)dx$
- (b) Linear: y' + p(x)y = q(x)Integrating Factor: $e^{\int p(x)dx}$ $\Rightarrow (e^{\int p(x)dx}y)' = e^{\int p(x)dx}q(x)$ $\Rightarrow e^{\int p(x)dx}y = \int e^{\int p(x)dx}q(x)dx$
- (c) ay'' + by' + cy = 0 (constant coefficient) characteristc EQ: $ar^2 + br + c = 0$ $\Delta > 0, y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$ $\Delta = 0, y = C_1 e^{rx} + C_2 x e^{rx}$ $\Delta < 0, r = p \pm qi : y = e^{px} [c_1 cos(qx) + c_2 sin(qx)]$
- (d) ay'' + by' + cy = f(x) $y = y_c + y_p$, y_c is solution to homogeneous DIFF EQ f(x):a polynomial in x or single sin/cos function $y_p = x^k$ (a polynomial of the same degree), k: # char eq's zero roots (0,1,2) $f(x) = e^{ax}$ (a polynomial in x) $y_p = x^k e^{ax}$ (same degree), k: # char eq's roots = a

 $f(x) = e^{ax}cos(bx)$ (poly in x) or $e^{ax}sin(bx)$ (apolyinx) $y_p = x^k e^{ax}$ [(poly in x)cos(bx) + (poly in x)sin(bx)] k: # char eq's root = $a \pm bi$ (0,1)

- (e) Second Order Cauchy-Euler Equation homogeneous: $ax^2y'' + bxy' + cy = 0$ characteristic Equation: $am^2 + (b-a)m + c = 0$
 - i. Two different real roots: $y = c_1 x^{m_1} + c_2 x^{m_2}$
 - ii. Same real root: $y = c_1 x^m + c_2 x^m lnx$
 - iii. complex roots: $m_1 = \alpha + i\beta, m_2 = \alpha - i\beta$ $y = x^{\alpha} [c_1 cos(\beta lnx) + c_2 sin(\beta lnx)]$

nonhomogeneous: $ax^2y'' + bxy' + cy = f(x)$ $y = y_c + y_p$, similar to the above case.

2. Fourier Series

(0,1,2)

Given F(x), $x \in [-L, L]$ write F(x) in a series:

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(\frac{n\pi x}{L}) + \sum_{n=1}^{\infty} b_n sin(\frac{n\pi x}{L})$$

where a_n , b_n are constants.

- (a) Orthogonality Relations $\int_{-L}^{L} sin(\frac{n\pi x}{L})cos(\frac{m\pi x}{L}) = 0$ $\int_{-L}^{L} cos(\frac{n\pi x}{L})cos(\frac{m\pi x}{L}) = 0 (m \neq n), L(m = n)$ $\int_{-L}^{L} sin(\frac{n\pi x}{L})sin(\frac{m\pi x}{L}) = 0 (m \neq n), L(m = n)$
- (b) $a_n = \frac{1}{L} \int_{-L}^{L} F(x) cos(\frac{n\pi x}{L}) dx$ $b_n = \frac{1}{L} \int_{-L}^{L} F(x) sin(\frac{n\pi x}{L}) dx, n \in [0, \infty], n \in \mathbf{Z}$
- (c) Convergece Statement of F.S. F.S. convergence to the "periodic extension" of F(x) whever F(x) is continuous and to the average of $\frac{f(x^+)+f(x^-)}{2}$ at every point.

(d) F.S.S and F.C.S of F(x) on [0, L]: Suppose F(x) is even, then $b_n = 0$, for all nF.C.S = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos \frac{n\pi x}{L}$, $a_n = \frac{2}{L} \int_0^L F(x) cos(\frac{n\pi x}{L}) dx$ Suppose F(x) is odd, then $a_n = 0$, for all nF.S.S = $\sum_{n=1}^{\infty} b_n sin \frac{n\pi x}{L}$, $b_n = \frac{2}{L} \int_0^L F(x) sin(\frac{n\pi x}{L}) dx$ F.C.S \rightarrow even extension, F.S.S \rightarrow odd extension

3. Sturm-Liouville Problem

- (a) Hyperbolic sin and $\cos \cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x e^{-x}}{2}$ $(\cosh ax)' == a\sinh ax$, $(\cosh ax)'' = a^2 \cosh ax$ $(\sinh ax)' == a\cosh ax$, $(\sinh ax)'' = a^2 \sinh ax$ $\sinh (\alpha - \beta) = \sinh \alpha \cosh \beta - \cosh \alpha \sinh \beta$ $\cosh (\alpha - \beta) = \cosh \alpha \cosh \beta - \sinh \alpha \sinh \beta$
- (b) Basic Examples of S-L BVP $f'' + \lambda f = 0, 0 \le x \le L$ and Boundary conditions Def: value λ for which the equation with the given boundary ends: has non-trival solution is called eigen value, the corresponding solution is called eigeon functions of the given S-L BVP.

General solutions: $\lambda = 0, f(x) = \alpha x + \beta$ $\lambda > 0, f(x) = C_1 cos(\sqrt{\lambda}x) + C_2 sin(\sqrt{\lambda}x)$ $\lambda < 0, f(x) = C_1 cosh(ax) + C_2 sinh(ax), a^2 = -\lambda, a > 0$ Impose the boundary in each case.

- i. Boundary COND: f(0) = 0, f(L) = 0e-values: $\lambda_n = \frac{n^2 \pi^2}{L^2}$, n = 1, 2, 3e-functions: $f_n \sim sin(\frac{n\pi x}{L})$
- ii. Boundary COND: f'(0) = 0, f'(L) = 0 e-values: $\lambda_n = \frac{n^2 \pi^2}{L^2}$, n = 0, 1, 2, 3 e-functions: $f_n \sim cos(\frac{n\pi x}{L})$
- iii. Boundary COND: f(0) = 0, f'(L) = 0e-values: $\lambda_n = (\frac{(2n-1)\pi}{2L})^2$, n = 1, 2, 3e-functions: $f_n \sim sin(\frac{(2n-1)\pi}{2L}x)$
- iv. Boundary COND: f'(0) = 0, f(L) = 0e-values: $\lambda_n = (\frac{(2n-1)\pi}{2L})^2$, n = 1, 2, 3e-functions: $f_n \sim cos(\frac{(2n-1)\pi}{2L}x)$
- (c) Regular S-L Problems EQ: $(pf')' + qf + \lambda \sigma f = 0, a < x < b$ Boundary: $k_1 f(a) + k_2 f'(a) = 0, k_3 f(b) + k_4 f'(b) = 0$

$$g(x) \sim \sum_{n=1}^{\infty} a_n f_n(x)$$
$$a_n = \frac{\int_a^b g(x) f_n(x) \sigma(x) dx}{\int_a^b \sigma(x) f_n^2(x) dx}$$

ususlly $\sigma(x) = 1$

- 4. Method of Separationg: Heat and Wave Equation
 - (a) Heat Equation $\mu_t = k\mu_{xx}$ $\mu(x,t) = X(x)T(t) \text{ (usually k = 1)}$ Seperation $\rightarrow X(x)T'(t) = kX''(x)T(t)$ $\text{Let } \frac{T'}{kT} = \frac{kX''}{x} = -\lambda$ We get $X'' + \lambda x = 0$, $T' + k\lambda T = 0$

For second EQ, T ~ $e^{-k\lambda t}$

For first EQ, we apply S-L BVP problem

 $\mu(x,t) = \sum_{n=1}^{\infty} c_n f_n e^{-\lambda_n t}$

Usually, we find the bound. cond. in the 4 fourier series probs.

e.g. bond cond 1:

$$\lambda_n = (\frac{n\pi}{L})^2, f_n \sim sin(\frac{n\pi x}{L})$$

$$\mu(x, 0) = g(x) = \sum_{n=1}^{\infty} c_n sin(\frac{n\pi x}{L})$$

Fouries formal solution: $\mu(x,t) = \sum_{n=1}^{\infty} c_n \sin(\frac{n\pi x}{l}) e^{-\frac{n^2 n^2}{L^2}t}$ e.g. bond cond 2:

$$\lambda_0 = 0$$
, $X_0(x) = 1/2$

$$\lambda_n = (\frac{n\pi}{L})^2$$
, $f_n \sim cos(\frac{n\pi x}{L})$

$$\mu(x,0) = g(x) = \frac{1}{2}c_0 + \sum_{n=1}^{\infty} c_n cos(\frac{n\pi x}{L})$$

$$g(x) = \frac{1}{2}c_0 \Rightarrow c_0 = \frac{\int_0^L \frac{1}{2}g(x)dx}{\int_0^L (\frac{1}{2})^2 dx}$$

$$g(x) = \sum_{n=1}^{\infty} c_n \cos(\frac{n\pi x}{L}) \Rightarrow c_n = \frac{\int_0^L \cos(\frac{n\pi x}{L})g(x)dx}{\int_0^L (\cos(\frac{n\pi x}{L})^2 dx}$$

Solution: $\mu(x,t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} c_n cos(\frac{n\pi x}{L})e^{-\frac{n^2\pi^2}{L^2}t}$

If the bound. cond. not in the 4 SLBVP:

Do the SL-BVP manually and find e-value and e-

write
$$\lambda_n = (\frac{\zeta_n}{L})$$
, $X_n = \sin/\cos\frac{\zeta_n}{L}$

(b) Wave Equation

$$\mu_{tt} = C^2 \mu_{xx}$$

$$\mu(x,t) = X(x)T(t)$$
, usually $C = 1$

$$\mu(0,t) = 0, \ \mu(L,t) = 0$$

Separation $\rightarrow XT'' = C^2X''T$ Let $\frac{T''}{c^2T} = \frac{X''}{x} = -\lambda$

Let
$$\frac{T''}{c^2T} = \frac{X''}{r} = -\lambda$$

We get $X'' + \lambda x = 0$, $T'' = -\lambda c^2 T$

 $T_n(\tilde{t}) = b_{1,n} cos \frac{n\pi ct}{L} + b_{2,n} sin \frac{n\pi ct}{L}, X_n = sin \frac{n\pi cx}{L} (X_n)$

from SL-BVP problem)

$$\mu(x,t) = X_n T_n = \sum_{n=1}^{\infty} (b_{1,n} cos \frac{n\pi ct}{L} + b_{2,n} sin \frac{n\pi ct}{L}) sin \frac{n\pi x}{L}$$

i.
$$\mu(x, 0) = f(x)$$

$$f(x) = \sum_{n=1}^{\infty} b_{1,n} \sin \frac{n\pi x}{L}$$

$$b_{1,n} = \frac{\int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx}{\int_{0}^{L} \sin^{2} \frac{n\pi x}{L} dx}$$

$$b_{1,n} = \frac{\int_0^L f(x) \sin \frac{n\pi x}{L} dx}{\int_0^L \sin^2 \frac{n\pi x}{L} dx}$$

ii. $\mu_t(x, 0) = g(x)$

$$g(x) = \sum_{n=1}^{\infty} \frac{n\pi c}{L} b_{2,n} \sin \frac{n\pi x}{L}$$

$$g(x) = \sum_{n=1}^{\infty} \frac{n\pi c}{L} b_{2,n} \sin \frac{n\pi x}{L}$$

$$\frac{n\pi c}{L} b_{2,n} = \frac{\int_{0}^{L} g(x) \sin \frac{n\pi x}{L} dx}{\int_{0}^{L} \sin^{2} \frac{n\pi x}{L} dx}$$

(c) d'Alembert's solution to the Wave Equation

Given $\mu(x,0) = F(x), \mu_t(x,0) = 0$ we want to get $\mu(x,t)$ Do an odd extention on F(x), then $\mu(x,t) =$ $\frac{F(x+ct)+F(x-ct)}{2}$. Usually c is 1. Simply draw the graph of F(x+ct)(shift to left) and F(x-ct)(shift to right) and get the average.

A full period: $\frac{2L}{c}$

5. Laplace Equation

Consider the equilibrium temperature in a uniform rectangle(Heat EQ)

$$\begin{cases} \mu_{xx}(x,y) + \mu_{yy}(x,y) = 0, \ 0 < x < L, \ 0 < y < K \\ \mu(0,y) = f_1(y), \ \mu(L,y) = f_2(y), \ 0 < y < K \\ \mu(x,0) = g_1(x), \ \mu(x,K) = g_2(x), \ 0 < x < L \end{cases}$$
 (1)

Where we might have first order partial derivatives on those μ 's on 2nd or 3rd line.

Separate $\rightarrow \mu = XY$, then

$$X''Y + XY'' = 0$$

$$\frac{X''}{X} = -\frac{Y''}{Y}$$

we want to create a SL-BVP problem:

Determine $\frac{X''}{X} = -\frac{Y''}{Y} = \lambda$ or $-\lambda$

When $f_1(y) = f_2(y) = 0$ or X(0) = X(L) = 0 we can form SL-BVP on Y and we choose $-\lambda$.

Similarly, when $g_1(x) = g_2(x) = 0$ or Y(0) = Y(K) = 0 we can form SL-BVP on X and we choose λ

when we choose $-\lambda$: (X(0) or X'(0) = 0, X(L) or X'(L) = 0)

$$\begin{cases} X'' + \lambda X = 0, & (SL - BVP) \\ \mu(x, 0) = f_1(y), \mu(x, K) = f_2(y) \end{cases}$$
 (2)

 \Rightarrow find out λ_n and X_n Then:

$$Y_n^{\prime\prime} - \lambda_n Y_n = 0, 0 < y < K$$

$$Y_n = \alpha_n \sinh \frac{n\pi y}{L} + \beta_n \cosh \frac{n\pi y}{L}$$

$$\mu(x,y) = \sum_{n=1}^{\infty} (\alpha_n \sinh \frac{n\pi y}{L} + \beta_n \cosh \frac{n\pi y}{L}) X_n$$

For simplicity, we transform to:

- (a) $\mu(x,0) = g_1(x), \ \mu(x,K) = g_2(x)$ $Y_n = \alpha_n \sinh \frac{n\pi(y-K)}{T} + \beta_n \sinh \frac{n\pi y}{T}$
- (b) $\mu_v(x,0) = g_1(x), \ \mu_v(x,K) = g_2(x)$
- $Y_n = \alpha_n \cosh \frac{n\pi(y-K)}{T} + \beta_n \cosh \frac{n\pi y}{T}$
- (c) $\mu(x,0) = g_1(x), \ \mu_v(x,K) = g_2(x)$

$$Y_n = \alpha_n \cosh \frac{n\pi(y-K)}{L} + \beta_n \sinh \frac{n\pi y}{L}$$

(d) $\mu_{\nu}(x,0) = g_1(x), \ \mu(x,K) = g_2(x)$

$$Y_n = \alpha_n \cosh \frac{n\pi y}{I} + \beta_n \sinh \frac{n\pi (y-K)}{I}$$

Then we get $\mu(x,0)$, $\mu(x,K)$ (as long as they fit the other 2 equations) and try to figure out α_n , β_n using match or

Note: in bond cond 2, n starts from 0. calc case 0 seperately: $\lambda_0 = 0$, $X_0 = 1 \Rightarrow Y_0'' - 0Y_0 = 0 \Rightarrow Y_0 = ay + b$

6. Method of Eigenfunction Expansion

 $PDE: \mu_t = k \mu_{xx}(x, t) + q(x, t), 0 < x < L, t > 0$ $BCs: \mu(0,t) = 0, \mu(L,t) = 0, t > 0$

 $IC: \mu(x,0) = f(x), 0 < x < L$

- (a) BCs \Rightarrow Eigenfunction: $X_n(x)$, λ_n $\Rightarrow \mu(x,t) = \sum_{n=1}^{\infty} C_n(t) X_n(x)$ Write $q(x,t) = \sum_{n=1}^{\infty} q_n(t) X_n(x)$
- (b) PDE: $X_n'' + \lambda_n X_n = 0$

$$\Rightarrow \sum_{n=1}^{\infty} C_n'(t) X_n(x) = \sum_{n=1}^{\infty} C_n(t) X_n''(x) + \sum_{n=1}^{\infty} q_n(t) X_n(x)$$

$$\Rightarrow \sum_{n=1}^{\infty} C'_n(t)X_n(x) = -\sum_{n=1}^{\infty} C_n(t)\lambda_n X_n(x) + \sum_{n=1}^{\infty} q_n(t)X_n(x)$$

$$\Rightarrow \sum_{n=1}^{\infty} [C'_n(t) + C_n(t)\lambda_n] X_n(x) = \sum_{n=1}^{\infty} q_n(t) X_n(x)$$

$$\Rightarrow \sum_{n=1}^{\infty} [C'_n(t) + C_n(t)\lambda_n] = \sum_{n=1}^{\infty} q_n(t)$$

Form may vary (μ is differentiated in other ways)

- (c) IC $\Rightarrow \mu(x,0) = f(x) = \sum_{n=1}^{\infty} C_n(0) X_n(x)$ (SL-BVP) either match up or $C_n(0) = \frac{\int_0^L f(x) X_n(x) dx}{\int_0^L X_n^2(x) dx}$
- (d) Then we solve functions $C'_n(t) + C_n(t)\lambda_n = q_n(t)$ for each n with initial condition $C_n(0)$'s and $q_n(0)$'s
- 7. Laplace Transform

Def:
$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$Def: H_a(t) = H(t - a) = \begin{cases} 1, \ t \ge a \\ 0, \ t < a \end{cases}$$
 (3)

Def: $erf(x) = \frac{2}{\pi} \int_0^x e^{-u^2} du$, erfc(x) = 1 - erf(x)

$f(t) = \mathcal{L}^{-1}F(t)$	$F(t) = \mathcal{L}f(s)$
$f^{(n)}(t)$ (nth derivative)	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
H(t-a)f(t-a)	$e^{-as}F(s)$
$e^{at}f(t)$	F(s-a)
(f * g)(t)	F(s)G(s)
1	$\frac{1}{s} (s > 0)$
t^n (n is positive integer)	$\frac{n!}{s^{n+1}}$ (s > 0)
e^{at}	$\frac{1}{s-a}$ $(s>a)$
sin(at)	$\frac{s-u}{s^2+a^2}$ $(s>0)$
cos(at)	$\frac{s^2+a^2}{s^2+a^2}$ (s > 0)
sinh(at)	$\frac{s^2+a^2}{s^2-a^2}$ $(s> a)$
cosh(at)	$\frac{s^2 - a^2}{\frac{s}{s^2 - a^2}} (s > a)$
$\delta(t-a) \ (a \ge 0)$	e^{-as}
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
e ^{at} sinbt	$\frac{b}{((s-a)^2+b^2)}$
$e^atcosbt$	$\frac{s-a}{((s-a)^2+b^2)}$
$erfc(\frac{a}{2\sqrt{t}})$	$\frac{1}{s}e^{-a\sqrt{s}}$

Example:

$$\begin{split} & \mu_{tt}(x,t) = \mu_{xx}(x,t) + 1, \, \mu(x,0) = \mu_t(x,0) = -1, \, \mu(0,t) = t \\ & \mathcal{L}(\mu_{tt}) = s^2 U - s \mu(x,0) - \mu_t(x,0) = s^2 U + 1 \\ & \mathcal{L}(\mu_{xx}+1) = U_{xx} + \frac{1}{s} \\ & \Rightarrow U'' - s^2 U = 1 - \frac{1}{s} \text{ (x is variable, s is scalar)} \\ & U_c = k_1 e^{sx} + k_2 e^{-sx}, \, k_1 = 0 \\ & U_p = \frac{1 - \frac{1}{s}}{-s^2} = \frac{1}{s^3} - \frac{1}{s^2} \\ & \mathcal{L}\mu(0,t) = \mathcal{L}t = \frac{1}{s} = U(0,s) \\ & \Rightarrow k_2 + \frac{1}{s^3} - \frac{1}{s^2} = \frac{1}{s^2} \\ & \Rightarrow U = (\frac{2}{s^2} - \frac{1}{s^3})e^{-sx} - \frac{1}{s^2} + \frac{1}{s^3} \\ & \mu = \mathcal{L}^{-1}(U) = H(t-x)[2(t-x) - \frac{1}{2}(t-x)^2] - t + \frac{1}{2}t^2 \end{split}$$

(a) wave eq
$$\mu_{tt} = c^2 \mu_{xx}, x > 0, t > 0$$

$$\mu(0,t) = f(t), t > 0$$

$$\mu(x,0) = 0, \mu_t(x,0) = 0, x > 0$$

$$\mathcal{L}\mu(x,s) = U(x,s), \mathcal{L}f(s) = F(s)$$

$$\Rightarrow s^2 U(x,s) = c^2 U''(x,s) \Rightarrow U''(x,s) - (\frac{s}{c})^2 U(x,s) = 0$$
 General Solution: $U(x,s) = C_1(s)e^{\frac{s}{c}x} + C_2(s)e^{-\frac{s}{c}x}$
$$C_1(s) = 0, \text{ then } U(x,s) = F(s)e^{-\frac{s}{c}x} = F(s)e^{-\frac{x}{c}s}$$

$$u(x,t) = H(t-x/c)f(t-x/c)$$

3

(b) Heat equation $\mu_{t}(x,t) = \mu_{tt}(x,t)$ $\mu_{x}(0,t) - \mu(0,t) = 0$ $\mu(x,0) = \mu_{0} = const$ $\Rightarrow U''(x,s) - sU(x,s) + \mu_{0} = 0$ U'(0,s) - U(0,s) = 0General Solut: $U(x,s) = C_{1}(s)e^{\sqrt{s}x} + C_{2}(s)e^{-\sqrt{s}x} + \frac{1}{s}\mu_{0}$ $C_{1}(s) = 0, C_{2}(s) = -\frac{\mu_{0}}{s(\sqrt{s}+1)}$ $\Rightarrow U(x,s) = \mu_{0}[-\frac{1}{s(\sqrt{s}+1)}e^{-\sqrt{s}x} + \frac{1}{s}]$ $\mu(x,t) = \mu_{0}[1 - erfc(\frac{x}{2\sqrt{t}}) - erfc(\sqrt{t} + \frac{x}{2\sqrt{t}})e^{x+t}]$

8. method of characteristics

$$\mu_t + A\mu_x = B$$

$$A = \frac{dx}{dt}, B = \frac{du}{dt}$$