```
In [27]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

```
In [28]: df=pd.read_csv(r"C:\Users\rubin\Downloads\bottle.csv.zip")
df
```

C:\Users\rubin\AppData\Local\Temp\ipykernel_13020\3996045872.py:1: DtypeWarning: Columns (47,73) have mixed types. Specify dtype option on import or set 1 ow_memory=False.

df=pd.read_csv(r"C:\Users\rubin\Downloads\bottle.csv.zip")

Out[28]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	028
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Sainty O2ml_L STheta O2s 864862 34404 864863 093.4 026.4 026.4 0239-09340264-0015A-3 15 17.533 33.3880 5.774 24.15297 105. 864863 rows × 74 columns 74 columns 74 columns 74 columns 75 col

```
In [29]: df=df[['Salnty','T_degC']]
df.columns=['Sal','Temp']
```

In [19]: df.head(10)

Out[19]:		Sal	Temp
	0	33.440	10.50
	1	33.440	10.46
	2	33.437	10.46
	3	33.420	10.45

5 33.431 10.456 33.440 10.45

4 33.421 10.45

- **7** 33.424 10.24
- **8** 33.420 10.06
- **9** 33.494 9.86

In [36]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[36]: <seaborn.axisgrid.FacetGrid at 0x1c06f785120>

In [37]: df.describe()

Out[37]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [38]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
              Column Non-Null Count
                                       Dtype
                      _____
          0
              Sal
                      817509 non-null float64
          1
              Temp
                      853900 non-null float64
         dtypes: float64(2)
         memory usage: 13.2 MB
In [39]: | df.fillna(method='ffill',inplace=True)
         C:\Users\rubin\AppData\Local\Temp\ipykernel 13020\4116506308.py:1: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [40]: x=np.array(df['Sal']).reshape(-1,1)
         y=np.array(df['Temp']).reshape(-1,1)
In [41]: | df.dropna(inplace=True)
         C:\Users\rubin\AppData\Local\Temp\ipykernel 13020\1379821321.py:1: SettingWit
         hCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace=True)
In [44]: x train,x test,y train,y test=train test split(x,y,test size=0.25)
In [45]: regr=LinearRegression()
         regr.fit(x train,y train)
         print(regr.score(x test,y test))
         0.2042328493125658
```

```
In [47]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```


In [48]: df500=df[:][:500]

In [49]: sns.lmplot(x="Sal",y="Temp",data=df500,order=1,ci=None)

Out[49]: <seaborn.axisgrid.FacetGrid at 0x1c0810edf00>


```
In [51]: df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['Sal']).reshape(-1,1)
    y=np.array(df500['Temp']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regresion:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regresion: 0.8413182838843871


```
In [53]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score

In [55]: model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2_score:",r2)
```

R2 score: 0.8413182838843871

vehicles data set

```
In [4]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [6]: df=pd.read_csv(r"C:\Users\rubin\Downloads\fiat500_VehicleSelection_Dataset.csv
df

Out[6]:		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon
	0	1	lounge	51	882	25000	1	44.907242	8.611560
	1	2	рор	51	1186	32500	1	45.666359	12.241890
	2	3	sport	74	4658	142228	1	45.503300	11.417840
	3	4	lounge	51	2739	160000	1	40.633171	17.634609
	4	5	рор	73	3074	106880	1	41.903221	12.495650
	1533	1534	sport	51	3712	115280	1	45.069679	7.704920

3835 112000

60457

80750

54276

2223

2557

1766

1 45.845692

45.481541

45.000702

1 40.323410 17.568270

8.666870

9.413480

7.682270

74

51

51

51

1538 rows × 9 columns

1534 1535 lounge

1536 1537 lounge

pop

pop

1535 1536

1537 1538

In [7]: df=df[['age_in_days','km']]
 df.columns=['age','distance in km']

In [8]: df.head(10)

<i>ا</i> ۱		- 1	0	
U	uι	- 1	0	ι.

age	distance in km
882	25000
1186	32500
4658	142228
2739	160000
3074	106880
3623	70225
731	11600
1521	49076
4049	76000
3653	89000
	882 1186 4658 2739 3074 3623 731 1521 4049

In [9]: sns.lmplot(x="age",y="distance in km",data=df,order=2,ci=None)

Out[9]: <seaborn.axisgrid.FacetGrid at 0x1b2400f5ab0>


```
In [10]: df.describe()
```

```
Out[10]:
```

```
1538.000000
count 1538.000000
      1650.980494
                    53396.011704
mean
      1289.522278
                    40046.830723
  std
       366.000000
                     1232.000000
 min
 25%
       670.000000
                    20006.250000
 50% 1035.000000
                    39031.000000
 75% 2616.000000
                    79667.750000
 max 4658.000000 235000.000000
```

age distance in km

In [11]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 2 columns):

Column Non-Null Count Dtype
--- ---0 age 1538 non-null int64
1 distance in km 1538 non-null int64

dtypes: int64(2)
memory usage: 24.2 KB

In [12]: df.fillna(method='ffill',inplace=True)

C:\Users\rubin\AppData\Local\Temp\ipykernel_6980\4116506308.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [13]: x=np.array(df['age']).reshape(-1,1)
y=np.array(df['distance in km']).reshape(-1,1)
```

```
In [14]: df.dropna(inplace=True)
```

C:\Users\rubin\AppData\Local\Temp\ipykernel_6980\1379821321.py:1: SettingWith
CopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [15]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.26)
```

```
In [16]: regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.6711479452695219

```
In [17]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [20]: df500=df[:][:500]
```

In [21]: sns.lmplot(x="age",y="distance in km",data=df500,order=1,ci=None)

Out[21]: <seaborn.axisgrid.FacetGrid at 0x1b240369960>


```
In [22]: df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['age']).reshape(-1,1)
    y=np.array(df500['distance in km']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regresion:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regresion: 0.7280940037857009


```
In [23]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score

In [25]: model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.7280940037857009

House price prediction

In [7]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn import preprocessing,svm
 from sklearn.model_selection import train_test_split
 from sklearn.linear_model import LinearRegression

Out[8]:		date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	vie
	0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0	
	1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0	
	2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0	
	3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0	
	4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0	
	4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0	
	4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0	
	4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0	
	4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0	
	4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0	

4600 rows × 18 columns

```
In [9]: df=df[['price','sqft_living']]
df.columns=['cost','living area']
```

In [10]: df.head(15)

Out[10]:

	cost	living area
0	313000.0	1340
1	2384000.0	3650
2	342000.0	1930
3	420000.0	2000
4	550000.0	1940
5	490000.0	880
6	335000.0	1350
7	482000.0	2710
8	452500.0	2430
9	640000.0	1520
10	463000.0	1710
11	1400000.0	2920
12	588500.0	2330
13	365000.0	1090
14	1200000.0	2910

In [11]: sns.lmplot(x="cost",y="living area",data=df,order=2,ci=None)

Out[11]: <seaborn.axisgrid.FacetGrid at 0x2648065f040>

In [12]: df.describe()

Out[12]:

	cost	living area
count	4.600000e+03	4600.000000
mean	5.519630e+05	2139.346957
std	5.638347e+05	963.206916
min	0.000000e+00	370.000000
25%	3.228750e+05	1460.000000
50%	4.609435e+05	1980.000000
75%	6.549625e+05	2620.000000
max	2.659000e+07	13540.000000

```
In [13]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 4600 entries, 0 to 4599
         Data columns (total 2 columns):
              Column
                           Non-Null Count Dtype
                           _____
          0
              cost
                           4600 non-null
                                           float64
          1
              living area 4600 non-null
                                           int64
         dtypes: float64(1), int64(1)
         memory usage: 72.0 KB
In [14]: | df.fillna(method='ffill',inplace=True)
         C:\Users\rubin\AppData\Local\Temp\ipykernel 4004\4116506308.py:1: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [15]: x=np.array(df['cost']).reshape(-1,1)
         y=np.array(df['living area']).reshape(-1,1)
In [16]: | df.dropna(inplace=True)
         C:\Users\rubin\AppData\Local\Temp\ipykernel 4004\1379821321.py:1: SettingWith
         CopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace=True)
In [17]: | x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.27)
In [18]: regr=LinearRegression()
         regr.fit(x train,y train)
         print(regr.score(x_test,y_test))
         0.2501992129189662
```

```
In [19]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [20]: df500=df[:][:500]
```

In [21]: sns.lmplot(x="cost",y="living area",data=df500,order=1,ci=None)

Out[21]: <seaborn.axisgrid.FacetGrid at 0x2648065fc10>


```
In [22]: df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['cost']).reshape(-1,1)
    y=np.array(df500['living area']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regresion:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regresion: 0.5561929794130172


```
In [23]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

```
In [25]: model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.5561929794130172

In []: conclusion:The data set we have taken is average for this model.