-07-19

Intelixencia Artificial aplicada a Videoxogos Top-Down

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real Grao en Exceñaria Informática Universidade de Santiago de Compostela

> Titor Manuel Muclestes Molin Cotitor Pablo Rodrigo Mer 21 de xullo de 2017

Esto é a defensa da memoria do traballo de fin de grado nombrado Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real, eu son o autor, Rubén Osorio López, e os tutores son Manuel Mucientes Molina e Pablo Rodrígez Mier

Intelixencia Artificial aplicada a Videoxogos Top-Down en tempo real

Grao en Enxeñaría Informática Universidade de Santiago de Compostela

Autor: Rubén Osorio López

Titor: Manuel Mucientes Molina Cotitor: Pablo Rodrígez Mier

21 de xullo de 2017

- 2 Videoxogo baseado en axentes
- 3 Análise de requisitos
- 4 Xestión do proxecto
- 6 Arquitectura
- 6 Validación e probas
- Conclusións

Intelixencia Artificial aplicada a Videoxogos Top-Down

└─Táboa de contidos

Durante esta presentación seguiremos unha estructura similar á memoria, centrándonos máis en alguns aspectos concretos do proxecto que expliquen en que consistiu o traballo realizado.

Validación e probas Conclusións Obxectivos

Introdución

 Proxecto que aborda a creación dun videoxogo con necesidades de comportamento complexo por parte do inimigo.

Videoxogo

Loita 1 contra 1, Top-Down en dúas dimensións

Axente

Capaz de percibir e actuar sobre o **entorno competitivo** do videoxogo mediante **sensores** e **actuadores**

Intelixencia Artificial aplicada a Videoxogos Top-Down __Introdución

Introdución		

De forma xeral, búscase a creación dun videoxogo que requira un inimigo con comportamento complexo. O axente que representará o inimigo necesita ser un competidor capaz, para o que se realizou unha etapa de entrenamento na que optivo a información que necesitaba.

Loita 1 contra 1 significa que soamente dous perxonaxes competirán entre eles contando ambos coas mesmas capacidades, accións posibles e atributos. Top-Down refírese ó plano picado utilizado para visualizar o combate. Por outra parte que sea en dúas dimensións implica que todo o contido do videoxogo son imaxen planas debuxadas unha a unha, sen que existan modelos en tres dimensións.

Un axente é aquilo capaz de percibir o entorno mediante sensores e actuar sobre o mesmo en consecuencia mediante actuadores, ambos son proporcionados pola súa interface co videoxogo. Ademáis atoparase nun entorno competitivo o que implica que buscará maximizar o seu rendemento mentres se minimiza o do contrincante.

Conclusións

Validación e probas

Obxectivos

Obxectivos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

• Implementación do videoxogo

tivos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente

Intelixencia Artificial aplicada a Videoxogos Top-Down

Introdución

Obxectivos

Obxectivos

nplementación do videonogo oplementación do avente

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente

Intelixencia Artificial aplicada a Videoxogos Top-Down
Introdución
Obxectivos
Obxectivos

a Implementación do videoxogo a Implementación do axente a Realizar o adestramento do axente

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente
- Obter datos sobre as capacidades do axente

Intelixencia Artificial aplicada a Videoxogos Top-Down
Introdución
Obxectivos
Obxectivos

a Implementación do videoxogo a Implementación do axente

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Conclusións

Obxectivos

Obxectivos

- Implementación do videoxogo
- Implementación do axente
- Realizar o adestramento do axente
- Obter datos sobre as capacidades do axente
- Analizar os resultados obtidos

Intelixencia Artificial aplicada a Videoxogos Top-Down
Introdución
Obxectivos
Obxectivos

- a Implementación do axente
- Obter datos sobre as capacidades do axent
 Analizar os resultados obtidos

- Implementación do videoxogo: Xa que necesitaremos unha plataforma que nos permita que o axente e o xogador interactúen seguindo unha serie de regras comúns para competir entre eles.
- Implementación do axente: Necesitarase implementar o axente capaz de desenvolverse correctamente durante a competición.
- Realizar o entrenamento do axente: O axente necesitará obter a información necesaria para logo comportarse adecuadamente gracias ó aprendido durante a etapa de entrenamento.
- Obter datos sobre as capacidades do axente: Obteránse datos sobre o rendemento do axente contra outras implementacións máis sinxelas.
- Analizar os resultados obtidos: Coa información obtida durante todo o proxecto, e especialmente na etapa anterior, realizarase un análise que describa o que conseguiu o axente.

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Mecánicas

Movemento

Movemento libre nunha habitación rectangular.

Ataque

Permítese atacar a zona que se atopa cada onde o personaxe está mirando.

Defensa

Posibilidade de defenderse dun ataque permitindo atacar se a defensa ten éxito

Intelixencia Artificial aplicada a Videoxogos Top-Down

Videoxogo baseado en axentes

Mecánicas

Mecánicas

ы	lovemento
N	fovemento libre nunha habitación rectangular.
Ä	taque
	ermítese atacar a zona que se atopa cada onde o personaxe atá mirando.
D	vefensa
	osibilidade de defenderse dun ataque permitindo atacar se a efensa ten éxito

Movemento libre nunha habitación rectangular que suma a complexidade de evitar situacións nas que non se poida escapar do contrincante por estar ó lado dunha parede ou unha esquina. Ademáis a única maneira de mirar cara unha dirección é mirar cara ela

Como solo se permite atacar a zona directamente enfrente do personaxe é importante ter en conta cada donde se está mirando. Esto favorece unha actitude agresiva pois hai que moverse na dirección do enemigo antes de atacalo.

Pódese realizar unha maniobra defensiva de alto risco e alta recompensa que permite evitar un ataque. Se se evita con éxito poderase realizar un ataque propio pero se non serase vulnerable durante uns instantes.

Esto fai que non exista unha estratexia idónea pois un estilo agresivo perde contra un defensivo que á sua vez perde contra xogadores que busquen a contra do movemento defensivo, este último ademáis perde contra o xogador agresivo. Esta fórmula de pedra, papel, tesoiras demostrou ser ampliamente utilizada en diseño de videoxogos.

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Prototipo de Unity

Primeira implementación realizada con **Unity3D**, estándar de facto para videoxogos de este tamaño.

Problemas de simulación

Imposibilidade de escalar o tempo sen romper o funcionamento do videoxogo.

Intelixencia Artificial aplicada a Videoxogos Top-Down

Videoxogo baseado en axentes

Prototipo de Unity

Prototipo de Unity

Ensinar vídeo

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Segunda aplicación

Implementación de un motor desde cero en C++

Intelixencia Artificial aplicada a Videoxogos Top-Down

Videoxogo baseado en axentes

Segunda aplicación
Segunda aplicación

2017-07-19

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Algoritmo

```
1 while agent is running do
      lastState ← currentState:
      currentState \( \) getCurrentState();
      deltaFitness \leftarrow
       calculateFitness(currentState) - calculateFitness(lastState);
      if lastState ∈ stateActionData then
         stateActionData .updateWith(lastState,selectedAction,deltaFitness);
      else
         stateActionData .insert(lastState,selectedAction,deltaFitness);
      if currentState ∈ stateActionData then
          if randomBetween (0.1) < \epsilon then
             selectedAction \leftarrow randomAction \in allPosibleActions;
          else
12
             selectedAction \leftarrow action \in allPosibleActions
               bestWeightedAction(stateActionData,currentState) = action;
      else
14
         selectedAction \leftarrow randomAction \in allPosibleActions:
```


Intelixencia Artificial aplicada a Videoxogos Top-Down

Videoxogo baseado en axentes

Algoritmo

Algoritmo

-07-19

goritmo

```
And the part is moving the land the part is moving the land the part is moving the land the part is moving t
```

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Fitness

input: playerHealth, enemyHealth, distance, lookingAtEnemy, noWallsNear

output: fitness

1 fitness ← INITIAL_FITNESS_VALUE:

2 fitness ← fitness +(playerHealth * MY_HEALTH_MULTIPLIER):

3 fitness ← fitness −(enemyHealth *
ENEMY_HEALTH_MULTIPLIER);

4 fitness ← fitness −(distance * DISTANCE_MULTIPLIER):

5 if lookingAtEnemy then

6 | fitness ← fitness + LOOKING_BONUS;

7 if noWallsNear then

8 | fitness \leftarrow fitness + WALL_BONUS;

Valor
1000
100
100
3
200
50

Intelixencia Artificial aplicada a Videoxogos Top-Down
Uvideoxogo baseado en axentes
Algoritmo
Fitness

tness

Mecánicas Prototipo de Unity Segunda aplicación Algoritmo Tipos de adestramento

Tipos de adestramento

Contra axente baseado en regras

Pretende simular un aprendizaxe contra xogadores reais.

Contra él mesmo

Buscando unha exploración mais extensa de estados que o axente baseado en regras non pode aportar.

Intelixencia Artificial aplicada a Videoxogos Top-Down

Videoxogo baseado en axentes

Tipos de adestramento

Tipos de adestramento

Tipos de adestramento

Contra avente biseado en regrás

Pretende simular un aprendizase contra xogadores reals.

iseado en regras non pode aportar

Casos de uso Requisitos

Casos de uso

Intelixencia Artificial aplicada a Videoxogos Top-Down
Análise de requisitos
Casos de uso
Casos de uso

Casos de uso Requisitos

Requisitos

- RF-1/2/3: Funcionalidades do menú
- RF-4/15: Consola con comandos/resultados RNF-1: Rendemento da aplicación
- **RF-5**: Saír da aplicación
- RF-6: Entrar na escena de combate
- **RF-7/8/9**: Moverse/Atacar/Defender
- RF-10: Gañar/Perder partida
- **RF-11**: Esgotar o tempo de combate
- RF-12: Volver ó menú
- RF-13: Visualizar combate entre axentes
- **RF-14**: Simular múltiples combates

- RNF-2: Velocidade das simulacións
- RNF-3: Extensibilidade do motor
- RNF-4: Facilidade para depurar
- RNF-5: Aplicación autocontida
- RNF-6: Extensibilidade de escenas
- RNF-7: Documentación
- RNF-8: Usabilidade da interface

Intelixencia Artificial aplicada a Videoxogos Top-Down -07-19 -Análise de requisitos Requisitos -Requisitos

- . PE-1/2/1 Europealidades do meni . RF-4/15: Consola con comandos/resultados . RNF-1: Rendemento da aplicación
- RF-S: Sair da aplicación • PEA Fetror so esceso de combat
- . RF-7/8/9: Moveme/Apacar/Defender
- . RF-10: Gallar/Feeder gartida • RF-11 Eurotar o tempo de combat
- . RF-13: Visualizar combate entre aventes

Metodoloxía Planificación tempora

Metodoloxía

Contexto do proxecto

- Traballador único
- Duración relativamente corta
- Necesidade de avanzar rapidamente nas etapas iniciais

Programación Extrema

- Flexibilidade ante cambios
- Evitase utilizar demasiado tempo en tarefas de xestión
- Rápida iteración
- Reunións entre *sprints*

Intelixencia Artificial aplicada a Videoxogos Top-Down

Co

Co

Metodoloxía

Metodoloxía

イロト (部) (重) (重)

Metodoloxía Planificación temporal

Planificación temporal

Intelixencia Artificial aplicada a Videoxogos Top-Down

Xestión do proxecto

Planificación temporal

Planificación temporal

Arquitectura do sistema

Subsistemas conectados

Intelixencia Artificial aplicada a Videoxogos Top-Down
Arquitectura
Arquitectura do sistema
Subsistemas conectados

Arquitectura do sistema

Bus de mensaxes

Intelixencia Artificial aplicada a Videoxogos Top-Down
Arquitectura
Arquitectura do sistema
Bus de mensaxes

Arquitectura do sistema

Arquitectura final

Intelixencia Artificial aplicada a Videoxogos Top-Down
Arquitectura
Arquitectura do sistema
Arquitectura final

Aplicación Validación do Axent

Validación e probas da aplicación

Probas unitarias

Unha ou mais probas por cada requisito tanto funcional como non funcional superadas na sua totalidade.

Probas de integración

Comproban a integración entre subsistemas e do o axente ca aplicación.

Intelixencia Artificial aplicada a Videoxogos Top-Down
Validación e probas
Aplicación
Validación e probas da aplicación

Validación e probas da aplicación

Probas untarias
Unha os sala proba por cuda requisito tanto funcional como non funcional superadas na sua totalidade.

Probas de integración entre subsistemas e do o assete ca

Aplicación Validación do Axente

Comparativa de vitorias

Aplicación Validación do Axente

Comparativa de estados visitados

Intelixencia Artificial aplicada a Videoxogos Top-Down 2017-07-19 -Validación e probas Validación do Axente

-Comparativa de estados visitados

Aplicación Validación do Axente

Axente escollido

Combinación de ámbolos dous métodos de adestramento.

Contra o axente baseado en regras

Favorece un aprendizaxe moi rápido nas primeiras simulacións.

Contra él mesmo

Aporta unha exploración de estados superior.

Intelixencia Artificial aplicada a Videoxogos Top-Down
UValidación e probas
Validación do Axente
Axente escollido

Conclusións e leccións aprendidas Posibles ampliacións

Conclusións e leccións aprendidas

Logros do proxecto

- O comportamento, aspecto e rendemento da aplicación cumpriu as expectativas.
- O axente é capaz de competir contra outras implementacións e contra xogadores humanos.

Leccións aprendidas

- Importancia de ter en conta os posibles riscos do proxecto o antes posible.
- Utilidade de un deseño flexible previo á implementación.
- Calidade dos resultados de implementacións sinxelas de Intelixencia Artificial.

Intelixencia Artificial aplicada a Videoxogos Top-Down
Conclusións
Conclusións e leccións aprendidas
Conclusións e leccións aprendidas

Logno do proxecto

• O comportamento, aspecto e rendemento da aplicación
cumpriu as eoportaciónes.

• O avente é capaz de compatir contra outras implementación
e contra outragodores humanos.

Leccións aprendizis

antes posible. • Utilidade de un deseño flexible previo á implementació • Calidade dos resultados de implementacións sinuelas d

nclusións e leccións aprendidas

Conclusións e leccións aprendidas Posibles ampliacións

Posibles ampliacións

- Melloras de compatibilidade.
- Ampliación do proceso de probas con xogadores humanos.
- Implementación de máis técnicas para o axente.
- Novas mecánicas para o videoxogo.

Intelixencia Artificial aplicada a Videoxogos Top-Down 2017-07-19 Conclusións -Posibles ampliacións -Posibles ampliacións

Posibles ampliacións

- a Ampliación do proceso de probas con xogadores humanos
- Implementación de máis técnicas para o axente
- Novas mecánicas para o videoxogo.