

Gürol Canbek
Orta Doğu Teknik Üniversitesi
http://gurol.canbek.com

Makine Öğrenmesi için Büyük Veri Kümelerinin Kesitinin Çıkartılmasında Yeni Teknikler:

Android Mobil Kötücül Veri Kümelerinin Özlü Bir Gözden Geçirilmesi*

Şeref Sağıroğlu Gazi Üniversitesi **Tuğba Taşkaya Temizel**Orta Doğu Teknik Üniviersitesi

*Gürol Canbek, Seref Sagiroglu, Tugba Taskaya Temizel, "New Techniques in Profiling Big Datasets for Machine Learning with A Concise Review of Android Mobile Malware Datasets", International Congress on Big Data, Deep Learning & Fighting Cyber Terrorism (IBIGDELFT 2018), 3–4 December 2018: IEEE

Özet

SORUN:

- Büyük veri boyutları:
 - Çokluk, Çabukluk, Çeşitlilik
 - Dürüstlük, Değer, Değişkenlik
- Makine öğrenmesinde büyük verinin kullanımı?

KATKI:

- Bu çalışma veri kümelerinin kesitlerinin çıkartılması için
 - 14 kıstas ile 4 farklı teknik önermektedir.
 - İlk defa: Büyük veri boyutları ile eşleme

DENEY:

Android Malware Genome
 Project, Drebin, Android
 Malware Dataset, Anroid Botnet
 ve Virus Total 2018

SONUÇ:

- Yöntem, veri kümeleri hakkında karşılaştırılabilir önemli içgörü sunmaktadır.
- Büyük verinin daha görünür, kaliteli ve özümsenmiş olmasına uygulanabilir bir katkı sağlamaktadır.

Büyük Veri ve Makine Öğrenme İş Akışı

Veri Kümelerinin Kalitesi

- Eldeki veri kümesi:
 - Kalite artırma
- Farklı veri kümeleri
 - Kalite karşılaştırma

Veri Kümesi Kesit Çıkarma

- **≻ilk** planda
- ➤ Sistematik bir şekilde
- ≻Önemli içgörü

^{*} Volume, Velocity, Variety, Veracity, Value, Variability, Venue için Türkçe karşılık önerileri: Gürol Canbek, Kasım 2018

Literatür ve Veri/Bilginin Kalitesi

- Literatürde daha önce ele alınmış.
 - İçsel: Doğruluk, tutarlılık, ...
 - Bağlamsal: İlgi, tamlık, ...
 - Gösterimsel: Anlaşılırlık, biçem, ...
 - Erişimsel: Kullanabilirlik, güvenlik, ...
- İstatistiksel yöntemler
 - Tanımlayıcı istatistikler
- Sahaya özel kalite bakış açısı
 - Uzamsal veri kümeleri
 - Sağlık verileri
 - Doğa olayları verileri gibi

Canbek, G., Sağıroğlu, Ş. (2006). **Bilgi, Bilgi Güvenliği ve Süreçleri Üzerine Bir İnceleme**. *Politeknik Dergisi*, 9(3), 165–174.

Kesit Çıkarma

- Verinin veya veri kümesinin belirli bir bakış açısından tarif edilmesi.
- Makalede:
 - İlişkisel Veritabanı Sistemleri (RDBMS)
 - Yapısal Sorgulama Dilleri (SQL)
 - İnternet üzerindeki veriler
- Veri kümelerinin makine öğrenmesi açısından kalitesi?

Android Mobil Kötücül Yazılım Veri Kümeleri

Veri Kümesi (Kısaltma)	Yıl	Etüt*
Android Malware Genome Project (AMGP)	2013	%65
Drebin	2014	%22
Android Botnet (ABot)	2015	
Android Malware Dataset (AMD)	2017	
VirusTotal Academic Malware Samples (VT2018)	2018	

^{* 2009-2018} atmış çalışma. İlave malzeme: github.com/gurol/dsprofiling

Kesit Çıkarma Zemini

- MalWareHouse
 - Android kötücül yazılım çözümleme zemini
 - Farklı veri kümesi havuzlarının veri ambarı yaklaşımı ile birleştirilmesi
 - Kesit çıkarma bilgilerinin elde edilmesi ve görselleştirilmesi
 - Python, MongoDB, R

Önerilen Kesit Çıkarma Zümreleri

- 1. Temel
- 2. Zaman çizgisi
- 3. Mükerrer örneklem
- 4. Yoğunluk/seyreklik

Temel Kesit Çıkarım

Üst seviyeden ilk içgörü

Kıstas	Büyük Veri Boyutu	AMGP	Drebin	AMD	ABot	VT2018
Örneklem uzayı büyüklüğü (m)		1,260	5,555	23,743	1,929	4,725
Öznitelik uzayı büyüklüğü (n)	Çokluk	65	94	105	78	111
Fizikî büyüklük (GB)		1.5	6.8	58.1	2.6	18.4
Kötücül ailesi*	Çeşitlilik	49	> 20	71	14	Yok
Kötücül başka biçimleri*	Dürüstlük Dayanak	Yok	Yok	135	Yok	Yok

^{*} Sahaya bağlı kıstaslar

Zaman Çizgisi Kesit Çıkarımı

- Yaş: En genç ile en yaşlı örneklem arasındaki fark
- Tazelik: En genç örneklemden itibaren geçen zaman aşımı
- API seviyesi menzili (sahaya bağlı)
- Çabukluk, Dürüstlük, Değişkenlik
- Önerilen gösterim yöntemi:

Veri Kümesi	En yaşlı,	En genç	API	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Tazelik
AMGP	2008	2011	12		2.9 ya	ışında									-7 yıl
Drebin	2008	2012	16			4									-6
AMD	2008	2016	25					8							-2
ABot	2009	2015	21					7							-3
VT2018	2009	2018	27						Ç)					0

Mükerrer Örneklem Kesit Çıkarımı

Değer, Dayanak

Yoğunluk/Seyreklik Kesit Çıkarımı

Çabukluk, Dürüstlük, Değer Ayrıca, öznitelik uzayı yoğunluk ve seyrekliği (evrensel veya en büyük öznitelik uzayında göre)

Alınan Sonuçlar

- 14 kıstasın toplu değerlendirilmesi
- Yüksek kesit veri kümeleri:
 - Android Malware Dataset (AMD)
 - VirusTotal Academic Malware Samples (VT2018)
- Düşük kesit veri kümesi
 - Android Malware Genome Project (AMGP)

Gürol Canbek, Seref Sagiroglu, Tugba Taskaya Temizel, "New Techniques in Profiling Big Datasets for Machine Learning with A Concise Review of Android Mobile Malware Datasets", International Congress on Big Data, Deep Learning & Fighting Cyber Terrorism (IBIGDELFT 2018), 3–4 December 2018: IEEE

Kesit	Büyük Veri Boyutu ⁽¹⁾	Kıstas	AMGP	Drebin	AMD	ABot	VT2018
	Çokluk	Örneklem uzayı büyüklüğü (m)	<u>1260</u>	5555	23743	1929	4725
		Öznitelik uzayı büyüklüğü (n) ⁽²⁾	65	94	105	78	111
Temel		Fizikî büyüklük (GB)	1.5	6.8	58.1	2.6	18.4
	Çeşitlilik,	Kötücül ailesi ⁽³⁾	49	> 20	71	14	N/A
	Dürüstlük, Dayanak	Kötücül başka biçimleri ⁽³⁾	N/A	N/A	135	N/A	N/A
Zaman Çizgisi	Dürüstlük, Değişkenlik, Çabukluk	Yaş (yıl)	2.9	4.1	7.6	6.6	9
		Tazelik (yıl)	<u>-7</u>	-6	-2	-3	0
		API-seviyesi menzili ⁽³⁾	<u>12</u>	16	25	21	27
Mükerrer	D " D	Özgün örneklem sayısı	<u>11</u>	4303	23704	1483	4725
Örneklem	Değer, Dayanak	Mükerrer örneklem sayısı	1249	1252	39	446	0
Yoğunluk / Seyreklik	Çokluk, Dürüstlük, Değer	Yoğunluk ⁽⁴⁾	18%	10%	11%	16%	15%
		Seyreklik ⁽⁴⁾	82%	90%	89%	84%	85%
		Öznitelik uzayı yoğunluğu	<u>43%</u>	62%	70%	52%	74%
		Öznitelik uzayı seyrekliği	57%	38%	30%	48%	26%
	Düşük (-5)	Normal (1)	Yüksek (4)	Normal (1)	Yüksek (4)		

⁽²⁾ Öznitelik uzayı yoğunluğu/seyrekliği kıstasında değerlendirilmeye alınmıştır.

⁽³⁾ Sahaya özel kıstas ancak diğer sahalara uygun bir şekilde uyarlanabilir

⁽⁴⁾ Bilgi verici, herhangi bir üstünlük arz etmemektedir

Değerlendirme ve Sonuçlar

Bu çalışmada;

- Dört zümrede ve 14 kıstastan oluşan veri kümesi kesit çıkartımı yöntemi önerilmiştir.
- İlk defa büyük veri boyutları veri kümesi kalitesi anlamında kıstaslarla eşleştirilmiştir.
- Kesitlerin anlaşılırlığını artırmak adına farklı görselleştirme yaklaşımları tanıtılmıştır.
- Yöntem, beş Android kötücü yazılım veri kümesinde denenmiş ve veri küme kesitlerinin karşılaştırılması yapılmıştır.

SONUÇ

- Veri kümelerinin ilk planda yüksek/düşük kesit şeklinde etiketlenmesi ilk planda elverişli bir içgörü sağlayabilir.
- Çalışmalarda kullanılan veri kümelerinin kesiti, başarım raporlamada ifade edilebilir.
- Araştırmacıları kaliteli veri kümesi elde etmek için teşvik sağlar.
- Yeni çıkan veri kümesi o saha içindeki veri kümelerinin yeniden kesitinin çıkartılmasını gerektirir.
- Bir veri kümesinin kesitinin çıkartılması eksik yönlerinin giderilmesini sağlar.

Teşekkürler

Gürol Canbek

http://gurol.canbek.com/Publications

Bildiri ile ilgili ilave bilgi, betik ve malzeme

https://github.com/gurol/dsprofiling