ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

06 июня 2011г.

ФИО	№ группы

ВАРИАНТ А

٠.							
	1	2	3	4	5	\sum	оценка

1А. Двухлучевой интерферометр, схема которого показана на рис. 1, состоит из следующих элементов: 1) монохроматический источник неполяризованного света S, 2) четыре идеальных

поляроида (P_0, P_1, P_2, P) , 3) экран для наблюдения интерференционных полос. На схеме L_1 и L_2 обозначают оптические пути, которые проходит свет от источника до точки наблюдения на экране. Взаимное положение разрешённых направлений поляроидов изображено на рис. 2. Рассмотрите случай $\alpha_1 = 15^\circ$, $\alpha_2 = 30^\circ$.

экран

1. Определите видность интерференционных полос.

2. Какая полоса (светлая или тёмная) будет наблюдаться в центре экрана при $\Delta = L_2 - L_1 = 0$?

2A. Зависимость показателя преломления n некоторой прозрачной среды от частоты ω в диапазоне видимого света можно приближённо описать с помощью соотношения $n(\omega) = n_0 - A/(\omega - \omega_0)$, $\omega < \omega_0$, где $\omega_0 = 3.9 \cdot 10^{15} c^{-1}$, $n_0 = 1.5$, $A = 1.9 \cdot 10^{13} c^{-1}$. Каким должно быть основание b трёхгранной призмы, изготовленной из этого вещества, для разрешения красных линий водорода ($\lambda_H = 656,45\,\text{нм}$) и дейтерия ($\lambda_D = 656,27\,\text{нм}$)?

3A. Голограмма точечного источника S, излучающего красный свет с длиной волны $\lambda_{\rm l} = 600\,{\rm hm}$, была получена по схеме, изображённой на рисунке. Источник находился на расстоянии $R_0 = 100 \, c_M$ от фотопластинки Φ . На расстоянии 1,5 R_0 от источника

располагалось плоское зеркало 3. Свет от источника, отражённый от зеркала, играл роль опорной волны. Полученная таким образом после обработки фотоматериала пластинка была просвечена плоской нормально падающей на голограмму волной с длиной волны $\lambda_2 = 400 \, \text{нм}$ (фиолетовый свет). Пренебрегая для простоты всеми несущественными постоянными фазовыми сдвигами, найдите распределение интенсивности $I(\rho)$ света на фотопластинке при записи голограммы. Считая, что амплитудная прозрачность голограммы пропорциональна интенсивности света при записи, определите положение действительного и мнимого изображений источника S. Укажите положения изображений на рисунке. Размер фотопластинки много меньше R_0 .

- 4A. Современная космическая навигационная система определения наземных координат GPS основана на измерениях дальности наземного приёмника потребителя от нескольких искусственных спутников Земли (ИСЗ), координаты которых в любой момент времени известны с высокой точностью, по времени прохождения импульсного сигнала от ИСЗ до приёмника. Земная атмосфера состоит из неионизированного приземного слоя некоторой высоты H — тропосферы и ионизированной части на высотах h > H — ионосферы. Определить ошибку Δ при измерении дальности L до ИСЗ, вызванную прохождением сигнала через атмосферу Земли. Считать, что спутник находится в зените в высоких слоях ионосферы (L > H). Несущая частота радиосигнала спутника $f_0 = 1227 \, M\Gamma u$. В тропосфере показатель преломления радиоволн $n(h) = 1 + 3 \cdot 10^{-4} \cdot (1 - h/H)$; $H = 10 \, \text{км}$; при h > H без учёта влияния ионизации n = 1. Считать известным полное число электронов на пути сигнала (т.е. их число в столбе сечением $1cm^2$ и высотой L) $N = \int_0^L N_e(h)dh = 2 \cdot 10^{13} cm^{-2}$, N_e — концентрация свободных электронов. Частота радиоволн значительно превышает частоту плазменных колебаний.
- **5A**. На рисунке показана картина интенсивности I(x), возникающая в плоскости изображения двух некогерентных точечных источников. Изображения источников расположены симметрично относительно оси оптической системы на расстоянии друг от друга $\Delta x = 2x_0$, соответствующем пределу разрешения по Рэлею. Известно, что «провал» в суммарной картине интенсивности I(x) (в точке x=0 на оси оптической системы) составляет примерно 20% от максимальной интенсивности I_{max} (т.е. от интенсивности в точках x_0 и $-x_0$, где возникает «геометрическое» изображение источников): $I(0) = 0.8I_{max}$. Будет ли заметен «провал», по которому судят, согласно критерию Рэлея, о наличии двух источников, если заменить

некогерентные источники одинаковыми когерентными источниками, излучающими с разностью фаз $\phi = \pi/3$ и расположенными на том же расстоянии Δx друг от друга?

- 1. Определить в этом случае отношение $I(0)/I_{max} = I(0)/I(x_0)$.
- 2. При какой разности фаз φ провал в суммарной картине интенсивности отсутствует, т.е. $I(0) = I(x_0)$?

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

06 июня 2011г.

ФИО	№ группы

ВАРИАНТ Б

1	2	3	4	5	Σ	оценка

1Б. Двухлучевой интерферометр, схема которого показана на рис. 1, состоит из следующих элементов: 1) монохроматический источник неполяризованного света S; 2) три идеальных поляроида (P_0 , P_1 , P_2); 3) экран. На схеме L_1 и L_2 обозначают оптические пути, которые проходит свет от источника до точки наблюдения на экране. Взаимное положение разрешённых направлений поляроидов представлено на рис. 2. Определите видность V интерференционной картины для двух случаев: 1) $\alpha = \alpha_1 = 30^\circ$ и 2) $\alpha = \alpha_2 = 60^\circ$. Какая полоса (светлая или тёмная) будет наблюдаться в центре интерференционной картины (при разнице хода $\Delta = 0$)?

2Б. Трёхгранная призма спектрографа с шириной основания $b=1\,cM$ изготовлена из стекла, зависимость показателя преломления n которого от частоты ω в диапазоне видимого света приближённо описывается соотношением $n(\omega)=n_0^2+A\omega^2$. Известно значение $A=1,1\cdot 10^{-33}\,c^2$.

Рис.1

Определите разрешающую способность спектрографа в окрестности $\lambda = 600\,\text{нм}$. Можно ли с помощью этого прибора разрешить жёлтый дублет Na ($\lambda_1 = 589,0\,\text{нм}$, $\lambda_2 = 589,6\,\text{нм}$)?

3Б. На рис. изображена схема Габора для записи голограммы точечного источника S, расположенного на расстоянии $R_0=1$ м от фотопластинки Φ . В качестве опорной волны использовался когерентный пучок, сходящийся на расстоянии R_0 за фотопластинкой. При записи голограммы использовался свет с длиной волны λ_1 . Полученная таким образом после обработки фотоматериала голограмма просвечивалась светом точечного источника с

длиной волны λ_2 , расположенного на расстоянии $R_0/2$ перед голограммой. Пренебрегая для простоты всеми несущественными постоянными фазовыми сдвигами и предполагая, что амплитуды опорной и предметной волн одинаковы, найдите распределение интенсивности $I(\rho)$ света на фотопластинке при записи голограммы. Считая, что амплитудная прозрачность голограммы пропорциональна интенсивности света при записи, определите положения действительного и мнимого изображений. Укажите положения изображений на рисунке для случая $k_1/k_2 = \lambda_2/\lambda_1 = 2/3$. При каком условии оба изображения источника будут мнимыми? Размер фотопластинки много меньше R_0 .

4Б. Земная атмосфера состоит из тропосферы, которая простирается от поверхности Земли до некоторой высоты H, и ионосферы (h > H). В тропосфере отсутствует ионизация воздуха и показатель преломления радиоволн равен $n(h) = 1 + 3 \cdot 10^{-4} \cdot (1 - h/H)$, где $H = 7 \, \kappa m$. При h > H без учёта влияния ионизации n = 1. В ионосфере воздух ионизирован. Предположим, что искусственный спутник Земли (ИСЗ) находится в высоких слоях ионосферы в зените наземной станции приёма. Спутник излучает радиоволны некоторой частоты ω . Определите частоту ω радиоволн, для которых фазовый путь (в радиофизике — синоним оптического пути) в атмосфере $\Phi = \int_0^L n(h)dh$ равен истинному расстоянию L от ИСЗ до наземной станции приёма. Считать известным полное число N электронов на пути сигнала (т.е. их число в цилиндре сечением $1 c m^2$ и высотой L) $N = \int_0^L N_e(h)dh = 5 \cdot 10^{13} c m^{-2}$, N_e — концентрация свободных электронов. Частота радиоволн значительно превышает частоту плазменных колебаний.

5Б. Два одинаковых некогерентных точечных источника S_1 и S_2 находятся в «предметной плоскости» на расстоянии z от объектива диаметра D (симметрично относительно оси оптической системы, см. рис.1). На рис.2 показана картина

интенсивности I(x) в плоскости изображения (оптически сопряжённой с предметной плоскостью). Источники S_1 и S_2 находятся на пределе разрешения по Рэлею, т.е. на расстоянии друг от друга $\Delta x = 1,22 \, \lambda z/D$. Известно, что «провал» в суммарной картине интенсивности I(x) (в точке x=0 на оси оптической системы) составляет

примерно 20% от максимальной интенсивности I_{max} (т.е. от интенсивности в точках x_0 и $-x_0$, где возникает «геометрическое» изображение источников): $I_0 = 0.8I_{max}$. Как изменится отношение $I(0)/I(x_0)$, если заменить некогерентные источники когерентными, синфазно излучающими источниками, находящимися на том же расстоянии Δx друг от друга? Как изменится это отношение, если источники излучают с разностью фаз $\pi/2$?