CONTROLE Nº1

DUREE: 2H

On considère un système à base d'un microprocesseur comprenant les divers éléments suivants :

- Un microprocesseur 8 bits;
- Une mémoire ROM;
- · Une mémoire RAM;
- Un Convertisseur Analogique-Numérique (CAN) permettant de convertir plusieurs tensions analogiques.

Le schéma simplifié du système est le suivant :

- La table de vérité du circuit 74138 est donnée en annexe 1.
- Le CAN utilisé dans ce système permet de convertir jusqu'à 4 tensions analogiques (V1, V2, V3 et V4). Ces tensions sont sélectionnées à l'aide des broches S0 et S1 (Annexe 2).

- 1. Donner le format des mots traités par le microprocesseur
- 2. Donner l'espace total adressable par le microprocesseur en bits et en octets
- 3. Quel est le rôle des entrées notées \overline{CS} pour les différents circuits ? Sur quel état logique cette entrée est-elle valide ?
- 4. Quelle est la capacité de la mémoire ROM?
- 5. Quelle est la capacité de la mémoire RAM?
- 6. Quel est le rôle du bloc du décodage d'adresses ?
- 7. Quels doivent être les niveaux logiques sur A10, A11 et A12 afin de sélectionner :
 - a. La RAM?
 - b. La ROM?
 - c. Le CAN?
- Compléter le tableau suivant décrivant les adresses hautes et basses permettant de sélectionner les circuits RAM, ROM et CAN.

Circuit	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
RAM	O.	Sp. Ob.	0	10		. 7.	100			()	800	De Ju	May
		SPAST.	. Tylin	1	1	1	21	1	1			1	100
ROM										Q.			
CAN:	5. 4	A STATE OF		,									
V1	1 3												
CAN:	TANK	NO RES		1									38. 7
V2	- 1												78
CAN:	N S	Michigan.										50	1
V3		STORY FOR										Y	100
CAN:		6.1					-11						15 3
V4	10 - U.B		136	100			-						

 Déduire de la question précédente les plages d'adresses permettant la sélection des différents circuits:

Circuit		Plage d'adresses (en hexadécimal)				
Cir	cuit	Adresse basse	Adresse haute			
RAM						
ROM						
The State of	V1					
CAN	V2					
CAN	V3					
TO THE STATE OF	V4	F Park Transport				

10. On désire adresser 3 boîtiers d'entrées/sorties (I/O) comme suit :

I/O1:\$1000-\$13FF
I/O2:\$1400-\$17FF
I/O3:\$1C00-\$1FFF

Préciser, sans dessiner les boîtiers, comment connecter les différents Chip Select (CS1, CS2 et CS3 qui correspondent respectivement aux circuits I/O1, I/O2 et I/O3).