CS1101ST03D

SESSION 2

Slides are not fancy anymore:

Focus will be on you!:)

Main Takeaways

Substitution Model Recursion

Substitution Model

Evaluating Combinations and Functions

Evaluating Combinations

23 + 42 * 2 - 38

Evaluating Functions

Application vs Normal Order Reduction

Similarities?

Evaluating Combination & Functions

23 + 42 * 2 - 38

Similarities?

Evaluating Combination & Functions

23 + 42 * 2 - 38

Functions: plus(x, y), times(x, y), minus(x, y)

Order Reductions

Applicative vs Normal

```
function f(x) { return square(x) + add_one(x); }
function square(x) { return x * x; }
function add_one(x) { return x + 1; }

f(add_one(3));
f(4);
square(4) + add_one(4);
(4 * 4) + (4 + 1);
16 + 5;
10 19;
```

```
function f(x) { return square(x) + add_one(x); }
function square(x) { return x * x; }
function add_one(x) { return x + 1; }

f(add_one(3));
f(4);
square(4) + add_one(4);
(4 * 4) + (4 + 1);
16 + 5;
10 19;
```

Applicative Evaluate first, expand later

```
1 function f(x) { return square(x) + add_one(x); }
2 function square(x) { return x * x; }
3 function add_one(x) { return x + 1; }
4
5 f(add_one(3));
6 f(3 + 1);
7 square(3 + 1) + add_one(3 + 1);
8 ((3 + 1) * (3 + 1)) + ((3 + 1) + 1);
9 (4 * 4) + (4 + 1);
10 16 + 5;
11 19;
```

```
1 function f(x) { return square(x) + add_one(x) ; }
2 function square(x) { return x * x; }
3 function add_one(x) { return x + 1; }
4
5 f(add_one(3));
6 f(3 + 1);
7 square(3 + 1) + add_one(3 + 1);
8 ((3 + 1) * (3 + 1)) + ((3 + 1) + 1);
9 (4 * 4) + (4 + 1);
10 16 + 5;
11 19;
```

Normal Expand first, evaluate later

```
function f(x) { return square(x) + add_one(x); }
function square(x) { return x * x; }
function add_one(x) { return x + 1; }

f(3);
square(3) + add_one(3);
(3 * 3) + (3 + 1);
9 + 4;
9 13;
```

```
function f(x) { return square(x) + add_one(x); }
function square(x) { return x * x; }
function add_one(x) { return x + 1; }

f(3);
square(3) + add_one(3);
(3 * 3) + (3 + 1);
9 + 4;
9 13;
```

Could be either...

Recursion

Recursion

Summarize how it works in 3 words

Recursion

Summarize how it works in 3 words

Repeat till cannot

Parts of Recursion

Parts of Recursion

Base Case "Wishful Thinking"

Base Case

"Wishful Thinking"

"Wishful Thinking"

Pretend next recursion gives correct answer...
What to do with it?

General Structure of Recursion

Deferred Operations

Deferred Operations

Waiting for "Wishful Thinking"... Waiting...

General Structure of Recursive Process

Iterative Process

Summarize how it works in 4 words.

Iterative Process

Summarize how it works in 4 words.

Do first, wait later

General Structure of Iterative Process

Tree Recursion

In programming, trees grow downwards.

Not enough grass touched...

Lecture Example: Fibonacci sequence

Time Complexity

How long does the program run?

Space Complexity

How much does the program have to keep track?

```
factorial(4)
→ 4 * factorial(3)
→ 4 * (3 * factorial(2))
→ 4 * (3 * (2 * factorial(1)))
→ 4 * (3 * (2 * 1))
→ 4 * (3 * 2)
→ 4 * 6
→ 24
```

- Observation:
 - Number of operations grows linearly proportional to n

- Observation:
 - Number of deferred operations grows linearly proportional to n
 - Deferred operations need to be "remembered"

Big Theta Notation

For both time and space complexity

After a threshold n_0 , what is the mathematical function that bounds both UPPER and LOWER extreme cases.

Big Theta Notation

Big-O Notation

For both time and space complexity

After a threshold n_0 , what is the mathematical function that bounds the UPPER extreme cases.

Definition:

 The function r has order of growth O(g(n)) if there is a positive constant k and a number n₀ such that r (n) ≤ k · g(n) for all n > n₀

Big-O Notation

Big-Omega Notation

For both time and space complexity

After a threshold n_0 , what is the mathematical function that bounds the LOWER extreme cases.

Definition:

• The function r has order of growth $\Omega(g(n))$ if there is a positive constant k and a number n_0 such that $k \cdot g(n) \le r(n)$ for all $n > n_0$

Big Omega Notation

Some Common g(n)

- 1
- log *n*
- n
- n log n
- n²
- n^3
- 2ⁿ

Comparing the growth rates

Do the constants matter?

O(10000) Omega(50n) O(10¹⁰⁰⁰ x 2ⁿ)

Studio Sheet

studio-s3.pdf

In-Class Studio Sheet

studio-s3-in-class.pdf

gimme a sec, imma send on tele :)