Х24 — Добыча нефти

А1^{0.30} Пусть залежь нефти представляет собой участок древних речных отложений песчаника в форме параллелепипеда высотой h=10м, шириной b=100м и длинной L=2000м. Пористость породы $\varphi=0.1$. Оцените запасы нефти $m_{\rm H}$ в данном месторождении. Выразите ответ через L,b,h,ρ и φ , а также приведите его численное значение в тоннах. Считайте, что нефтяной флюид целиком заполняет объём пор.

Из определения пористости для объёма нефти находим:

$$V_{\rm H} = \varphi \cdot bhL$$
.

Поскольку $m_{\rm H} = \rho V_{\rm H}$, имеем:

Ответ:

$$m_{\rm H} = \rho \varphi b h L = 160 \cdot 10^3 {
m TOHH}.$$

A2^{0.30} Пусть пластовое давление нефти на дне залежей составляет $p_{\Pi \Pi} = 250$ атм. Найдите, при какой максимальной глубине залегания H_{max} месторождение будет фонтанирующим, т.е. нефть будет вытекать на поверхность под действием собственного давления. Выразите ответ через ρ , g и $p_{\Pi \Pi}$, а также приведите его численное значение. Сжимаемостью нефти можно пренебречь.

Жидкость будет вытекать под действием пластового давления, если оно превышает давление гидростатического столба нефти:

$$p_{\Pi\Pi} \geq \rho g h$$
.

Таким образом:

Ответ:

$$H_{max} = \frac{p_{\text{пл}}}{\rho g} \approx 3.125 \text{KM}$$

А3^{0.60} Оцените максимально возможный КИН α_{max} в режиме фонтанирования при пластовом давлении $p_{пл}=250$ атм, если сжимаемость нефти $\beta=5\cdot 10^{-10}$ Па. Выразите ответ через β и $p_{пл}$, а также приведите его численное значение. Считайте, что отложения русла рек изолированы непроницаемыми глинами с малой пористостью. Глубина залежей H может быть выбрана произвольным образом.

Как уже говорилось условии - пластовое давление обусловлено сжатием флюида относительно нормальных условий. Если флюид находится под нормальным атмосферным давлением - его фиксированное количество вещества занимает наибольший возможный объём, а значит, наибольшая доля вытесненного флюида достигается, если в конечном состоянии он находится при как можно меньшем давлении. Это можно реализовать, если устремить глубину залежей H к нулю. Имеем:

$$\alpha = \frac{dV}{V} \approx \beta \Delta p.$$

Поскольку пластовое давление во много раз превышает атмосферное - находим:

Ответ:

$$\alpha_{max} \approx \beta p_{\pi\pi} \approx 1.25\%$$
.

страница 1 из 8 ≈ ∞

А4^{0.30} При тех же самых данных оцените максимально возможный КИН α_{max} в режиме фонтанирования, если снизу в пластовых отложениях находится вода объемом kV_0 (k=9) при начальных запасах нефти V_0 . Сжимаемость воды считайте равной сжимаемости нефти. Выразите ответ через β и $p_{\Pi n}$, а также приведите его численное значение. Считайте что забор жидкости происходит сверху, т.е. забирается только нефть. Глубина залежей H может быть выбрана произвольным образом.

Аналогично предыдущему пункту, глубина залежей H должна стремиться к нулю. Однако в данном случае КИН серьёзно возрастает, поскольку разжимается не только флюид, но и вода, и, поскольку забирается только нефть, забираемый её объём dV складывается из изменения объёмов нефти и воды::

$$\alpha = \frac{dV}{V_0} = \frac{dV_{\mathrm{H}} + dV_{\mathrm{B}}}{V_0} = (1+9)\beta\Delta p.$$

Таким образом:

Ответ:

$$\alpha_{max} = 10 \beta p_{\pi\pi} \approx 12.5\%.$$

В1^{1.00} Рассмотрим горизонтальное течение жидкости вдоль оси x между двумя параллельными плоскостями высотой h. Расстояние между плоскостями $w \ll h$. Определите объёмный расход (далее во всех пунктах задачи - поток) жидкости Q через поперечное сечение wh. Ответ выразите через η , w, h и градиент давления dp(x)/dx.

Получим распределение скоростей жидкости вдоль координаты z, направленной перпендикулярно направлению потока от одной пластины к другой. Начало оси z расположено посередине между пластинами. Из условия сохранения импульса имеем:

$$-hdzdp + \eta hdx \left(\frac{dv(z+dz)}{dz} - \frac{dv(z)}{dz} \right) = 0,$$

откуда:

$$\frac{d^2v}{dz^2} = \frac{1}{\eta} \frac{dp}{dx}.$$

Интегрируя один раз, находим:

$$\frac{dv}{dz} = \frac{z}{\eta} \frac{dp}{dx} + A.$$

Поскольку скорость посередине между пластинами испытывает экстремум - A = 0. Тогда повторно интегрируя, находим:

$$v(z) = C + \frac{z^2}{2\eta} \frac{dp}{dx}.$$

При $z = \pm w/2$ скорость должна обращаться в ноль, откуда находим:

$$v(z) = -\frac{1}{2\eta} \frac{dp}{dx} \left(\frac{w^2}{4} - z^2 \right).$$

Для потока *Q* имеем:

$$Q = \int_{-w/2}^{w/2} v(z)hdz = -\frac{h}{2\eta} \frac{dp}{dx} \int_{-w/2}^{w/2} \left(\frac{w^2}{4} - z^2\right) dz.$$

Интегрируя, находим:

Ответ:

$$Q = -\frac{w^3 h}{12\eta} \frac{dp}{dx}.$$

B2^{1.00} В центре щели создается избыточное давление Δp . Найдите зависимость избыточного давления p' в щели от координаты x. Ответ выразите через Δp , Q, E, h, η и x.

Поскольку поток жидкости одинаково растекается в две разные стороны - в каждой из них он равен Q/2. Пусть ось x имеет начало в центре щели и направлена вдоль одного из потоков. Воспользуемся результатом пункта В1:

$$\frac{Q}{2} = -\frac{w^3 h}{12\eta} \frac{dp'}{dx}.$$

Воспользовавшись эмпирическим соотношением для ширины щели, получим:

$$\frac{Q}{2} = -\frac{h^4 p'^3}{12\eta E^3} \frac{dp'}{dx}.$$

Проинтегрируем полученное выражение:

$$\int_{\Delta p}^{p'(x)} p'^3 dp' = \frac{p'^4(x) - \Delta p^4}{4} = -\frac{6Q\eta E^3 x}{h^4}.$$

Таким образом:

Ответ:

$$p'(x) = \sqrt[4]{\Delta p^4 - \frac{24Q\eta E^3 x}{h^4}}.$$

B3^{0.20} Трещина заканчивается в положении, соответствующем равному нулю избыточному давлению. Определите длину трещины L. Ответ выразите через $\Delta p, E, h, \eta$ и Q.

При максимальной длине трещины давление p' обращается в ноль, откуда полудлина трещины L/2 составляет:

$$\frac{L}{2} = \frac{\Delta p^4 h^4}{24Q\eta E^3}$$

Таким образом:

Ответ:

$$L = \frac{\Delta p^4 h^4}{12Q\eta E^3}.$$

 ${f B4^{0.70}}$ Определите объем трещины V. Ответ выразите через $\Delta p,\,h,\,\eta,\,Q$ и E.

Объём трещина равен удвоенному объёму её половины:

$$V = 2 \int_{0}^{L} hw(x) dx = 2 \int_{0}^{L} \frac{h^{2}p'}{E} dx.$$

Воспользуемся выражением для p'(x):

$$V = \frac{2h^2 \Delta p}{E} \int_{0}^{L} \sqrt[4]{1 - \frac{24Q\eta E^3 x}{h^4 \Delta p^4}} dx = \frac{h^6 \Delta p^5}{12Q\eta E^4} \int_{0}^{1} \sqrt[4]{1 - z} dz.$$

страница 3 из 8 ≈ ∞

После элементарного интегрирования находим:

Ответ:

$$V = \frac{h^6 \Delta p^5}{15 Q \eta E^4}.$$

 $oldsymbol{ ext{B5}}^{ ext{0.30}}$ Рассчитайте максимально возможные значения длины трещины L_{max} и её объёма V_{max} .

<div class="example-preview"style="margin-bottom: -1px;margin-top: 1rem;»</pre>

Ответ:

$$L_{max} = \approx 83$$
 м.

Ответ:

$$V_{max} = 6.7 \text{M}.$$

C1^{1.00} Определите скорость ν движения границы жидкостей при перемещении фронта на величину S. Ответ выразите через $p_1, p_2, L, \eta_1, \eta_2, k_1$ и k_2 .

Закон Дарси в рамках задачи можно переписать в следующей форме:

$$v = -\frac{k}{\eta} \frac{\partial p}{\partial x}.$$

Скорость движения v одинакова для обеих жидкостей и постоянна по всей длине L. Тогда для градиентов давления в нефти и в воде с учётом равенства их проницаемостей $k_1 = k_2 = k$ получим:

$$\frac{\partial p_{\rm H}}{\partial x} = -\frac{\eta_1 v}{k_1} \qquad \frac{\partial p_{\rm B}}{\partial x} = -\frac{\eta_2 v}{k_2}.$$

Для полного изменения давления находим:

$$p_2 - p_1 = \frac{\eta_2 S v}{k_2} + \frac{\eta_1 (L - S) v}{k_1}.$$

Таким образом:

Ответ:

$$v = \frac{p_2 - p_1}{\frac{\eta_1 L}{k_1} + \left(\frac{\eta_2}{k_2} - \frac{\eta_1}{k_1}\right) S}.$$

С2^{0.90} Определите зависимость перемещения S фронта от времени t. Ответ выразите через p_1 , p_2 , L, η_1 , η_2 , k и t

Поскольку v = dx/dt и $k_1 = k_2 = k$, имеем:

$$dt = \frac{(\eta_1 L + (\eta_2 - \eta_1)S)dS}{k(p_2 - p_1)}.$$

Интегрируя, найдём:

$$t = \frac{1}{k(p_2 - p_1)} \int_0^S (\eta_1 L + (\eta_2 - \eta_1) x) dx = \frac{1}{k(p_2 - p_1)} \left(\eta_1 L S + \frac{(\eta_2 - \eta_1) S^2}{2} \right).$$

с Страница 4 из 8 ≈ ∞

Приведём квадратное уравнение к классическому виду:

$$S^{2} - \frac{2\eta_{1}LS}{\eta_{1} - \eta_{2}} + \frac{2k(p_{2} - p_{1})t}{\eta_{1} - \eta_{2}} = 0.$$

Решая, получим:

$$S(t) = \frac{\eta_1 L}{\eta_1 - \eta_2} \pm \sqrt{\left(\frac{\eta_1 L}{\eta_1 - \eta_2}\right)^2 - \frac{2k(p_2 - p_1)t}{\eta_1 - \eta_2}}.$$

Поскольку x(0) = 0 - выберем корень со знаком минус. Окончательно:

Ответ:

$$S(t) = \frac{\eta_1 L}{\eta_1 - \eta_2} - \sqrt{\left(\frac{\eta_1 L}{\eta_1 - \eta_2}\right)^2 - \frac{2k(p_2 - p_1)t}{\eta_1 - \eta_2}}.$$

С3^{0.50} Определите полное время τ вытеснения нефти из месторождения. Выразите ответ через p_1 , p_2 , L, η_1 , η_2 и k и рассчитайте его.

Полное время au вытеснения нефти равняется t(L). Таким образом:

Ответ:

$$au = rac{(\eta_1 + \eta_2)L^2}{2k(p_2 - p_1)} pprox 2$$
6лет.

С4^{0.80} При каком условии на параметры системы движение границы будет устойчивым, то есть при малом отклонении формы границы от плоской это отклонение не будет возрастать? Запишите условие устойчивости через η_1 , η_2 , k_1 и k_2 . Устойчиво ли течение жидкости, рассмотренное в пунктах С2 и С3?

Отклонение не будет возрастать, если v(x+dx) < v(x). Обратим внимание, что числитель выражения для скорости постоянный, а знаменатель является линейной функцией x с угловым коэффициентом $a = \eta_2/k_2 - \eta_1/k_1$. Величина скорости уменьшается с ростом x, если величина a является положительной, т.е при условии:

Ответ:

$$\frac{\eta_2}{k_2} > \frac{\eta_1}{k_1}$$
.

Ответ: Движение рассматриваемой конструкции неустойчиво.

D1^{0.80} Найдите зависимость скорости течения жидкости в такой трубе от расстояния до оси трубы v(r), максимальное значение скорости v_{max} и полный поток Q жидкости через сечение цилиндра. Ответы выразите через Δp , η , L, R и r.

Выделим цилиндр радиусом r длиной L. Запишем условие постоянства его импульса:

$$\pi r^2 \Delta p + 2\pi r L \eta \frac{\partial v}{\partial r} = 0 \Rightarrow \frac{\partial v}{\partial r} = -\frac{r}{2} \frac{\Delta p}{nL}.$$

Интегрируя, получим:

$$v = C - \frac{\Delta p r^2}{4\eta L}.$$

Поскольку v(R) = 0, получим:

страница 5 из 8 ≈ ∞

Ответ:

$$v(r) = \frac{\Delta p(R^2 - r^2)}{4\eta L}.$$

Для потока *Q* имеем:

$$Q = \int_{0}^{R} v(r) \cdot 2\pi r dr = \frac{\pi \Delta p}{2\eta L} \int_{0}^{R} (R^2 - r^2) r dr.$$

Интегрируя, находим:

Ответ:

$$Q = \frac{\pi \Delta p R^4}{8\eta L}.$$

 ${f D2^{0.20}}$ Выразите распределение скорости течения жидкости v(r) через полный поток Q,R и r.

Выразим комбинацию $\Delta p/(4\eta L)$ через полный поток Q:

$$\frac{\Delta p}{4\eta L} = \frac{2Q}{\pi R^4}.$$

Подставляя в выражение для v(r), находим:

Ответ:

$$v(r) = \frac{2Q}{\pi R^2} \left(1 - \frac{r^2}{R^2} \right).$$

D3^{0,20} Найдите поток Q в сечении забоя на расстоянии h от его нижнего края и соответствующее выражение для вертикальной скорости v(r,h) в зависимости от расстояния до оси r и высоты h. Ответы выразите через Q_0 , H, R, r и h.

Поскольку жидкость поступает в цилиндр равномерно по его боковой поверхности, имеем:

$$\frac{dQ}{dh} = \frac{Q_0}{H}.$$

Поскольку Q(0) = 0, находим:

Ответ:

$$Q(h) = \frac{Q_0 h}{H}.$$

Воспользуемся выражением, полученным в пункте D2:

$$v(r,h) = \frac{2Q(h)}{\pi R^2} \left(1 - \frac{r^2}{R^2} \right).$$

Подставляя Q(h), получим:

Ответ:

$$v(r,h) = \frac{2Q_0h}{\pi R^2 H} \left(1 - \frac{r^2}{R^2} \right).$$

страница 6 из 8 ≈ ∞

 $D4^{0.30}$ Рассмотрим кольцо высотой dh с внутренним и внешним радиусами r и r+dr соответственно. Используя тот факт, что жидкость несжимаема, покажите, что из условия постоянства объёма жидкости внутри выделенного кольца следует соотношение:

$$\frac{\partial v}{\partial h} = -\frac{1}{r} \frac{\partial (u_r r)}{\partial r}.$$

Вы можете использовать это соотношение, даже если не смогли его доказать.

Запишем выражение для полного потока жидкости q в кольцо:

$$q = 2\pi r dr v(r, h + dh) - 2\pi r dr v(r, h) + 2\pi dh(r + dr)u_r(r + dr, h) - 2\pi dh r u_r(r, h) = 0.$$

Таким образом:

$$2\pi r dr dv + 2\pi dr d(ru_r) = 0,$$

или же:

$$\frac{\partial v}{\partial h} + \frac{1}{r} \frac{\partial (ru_r)}{\partial r} = 0.$$

Что и требовалось доказать.

D5^{0.50} Найдите радиальную скорость течения жидкости $u_r(r,h)$ в зависимости от расстояния до оси r и высоты h, а также максимальную величину её модуля $u_{r(max)}$. Ответы выразите через Q_0 , R, H, h и r.

Последовательно воспользуемся результатами пунктов D4 и D3:

$$\frac{\partial (ru_r)}{\partial r} = -r\frac{\partial v}{\partial h} = -\frac{2Q_0r}{\pi R^2 H} \left(1 - \frac{r^2}{R^2}\right).$$

Обратим внимание, что при r=0 величина ru_r также равна нулю. Временно переобозначим r на z в подынтегральной функции и получим:

$$ru_r(r,h) = -\frac{2Q_0}{\pi R^2 H} \int_0^r \left(1 - \frac{z^2}{R^2}\right) z dz = -\frac{Q_0}{\pi R^2 H} \left(r^2 - \frac{r^4}{2R^2}\right).$$

Таким образом:

Ответ:

$$u_r(r,h) = -\frac{Q_0}{\pi R^2 H} \left(r - \frac{r^3}{2R^2} \right).$$

Максимум величины u_r достигается при равенстве нулю её производной по r:

$$\frac{du_r}{dr} = 0 \Rightarrow 1 - \frac{3r^2}{2R^2} = 0 \Rightarrow r_{max} = \sqrt{\frac{2}{3}}R.$$

Тогда для максимального значения радиальной компоненты скорости u_{max} находим:

Ответ:

$$u_{max} = \left(\frac{2}{3}\right)^{3/2} \frac{Q_0}{\pi RH}.$$

 ${f D6^{0.10}}$ Чему равно отношение $u_{r(max)}/v_{max}$? Ответ выразите через R и H.

<div class="example-preview"style="margin-bottom: -1px;margin-top: 1rem;»</pre>

Ответ:

$$\frac{u_{r(max)}}{v_{max}} = \frac{\sqrt{2}R}{3\sqrt{3}H}$$