NIST College Department of BScCSIT First Semester Digital Logic

Tutorial 1

Number Systems

- 1. Write the first 20 decimal in base 3.
- 2. Add and multiply the following numbers in the given base without converting to decimal.
 - a. $(1230)_4$ and $(23)_4$
 - b. (367)₈ and (715)₈
 - c. (2A6)₁₆ and (B7)₁₆
 - d. $(296)_{12}$ and $(57)_{12}$
- 3. Convert the decimal number 250.5 to base 3, base 4, base 4, base 7 and base 16.
- 4. Convert the following decimal number to binary: 12.0625, 10⁴, 673.3, and 1998.
- 5. Convert the following binary numbers to decimal: 10.1001, 10110.01010, 1110101.110, 1101101.111
- 6. Covert the following numbers from the given base to the bases indicated:
 - a. Decimal 225.225 to binary, octal and hexadecimal.
 - b. Binary 11010111.110 to decimal, octal and hexadecimal.
 - c. Octal 623.77 to decimal, binary, octal, and binary.
- 7. Convert the following numbers to decimal:
 - a. $(1001001.011)_2$
 - b. $(12121)_3$
 - c. 1032.2)₄
 - d. (4310)₅
 - e. $(0.343)_6$
 - f. $(50)_7$
 - $g. (8.3)_9$
 - h. $(198)_{12}$
- 8. Obtain the 1's and 2's complement of the following binary numbers: 1010101, 0111000, 00000001, 100000, 00000, 111111.
- 9. Obtain the 9's and 10's complement of the following decimal numbers: 13579, 09900, 90090, 1000, 00000, 45689.
- 10. Find the 10's complement of $(935)_{11}$.
- 11. Perform the subtraction with the following decimal numbers using (1) 10's complement and (2) 9's complement. Check the answer by straight subtraction.
 - a. 5250-321
 - b. 753-864

- c. 3570-2100
- d. 20-1000
- 12. Perform the subtraction with the following binary numbers using (1) 2's complement and (2) 1's complement. Check the answer by straight subtraction.
 - a. 110110 1101
 - b. 10010 10011
 - c. 110101 10000
 - d. 100 110000
- 13. Perform the subtraction with the following decimal numbers using (1) 2's complement and (2) 1's complement.
 - a. 56 89
 - b. 100-200
 - c. 32 -47
 - d. 79-13
- 14. Represent the decimal number 8620 in:
 - a. BCD
 - b. Excess-3 code
 - c. 2-4-2-1 code
 - d. Binary number
- 15. Convert the following binary number into gray code:
 - a. 110111
 - b. 11011
 - c. 110011
 - d. 100000
- 16. Convert the following gray code into binary number:
 - a. 110001
 - b. 10000
 - c. 1101010
 - d. 1101111100