Tsinghua-Berkeley Shenzhen Institute Information Theory and Statistical Learning Fall 2020

Problem Set 1

Notations: We use x, y, w and $\underline{x}, y, \underline{w}$ to denote random variables and random vectors.

- 1.1. Mathematical Expectation, Variance, and Covariance Matrix Prove the following properties, where $\underline{\mathbf{x}}$ is a random vector in \mathbb{R}^k .
 - (a) i. $\mathbb{E}[x|y] = \mathbb{E}[\mathbb{E}[x|yz]|y]$.
 - ii. $\mathbb{E}[xg(y)|y] = g(y)\mathbb{E}[x|y]$, for all functions $g: \mathcal{Y} \to \mathbb{R}$.
 - iii. $\mathbb{E}[\mathsf{x}\,\mathbb{E}[\mathsf{x}|\mathsf{y}]] = \mathbb{E}[(\mathbb{E}[\mathsf{x}|\mathsf{y}])^2].$
 - iv. $var(x) = \mathbb{E}[var(x|y)] + var(\mathbb{E}[x|y]).$
 - (b) i. $cov(\underline{x}) = \mathbb{E}[cov(\underline{x}|y)] + cov(\mathbb{E}[\underline{x}|y]).$
 - ii. $\det(\operatorname{cov}(\underline{\mathbf{x}})) = 0 \iff \exists \underline{c} \in \mathbb{R}^k \setminus \{\underline{0}\}, \text{ such that } \underline{c}^{\mathsf{T}}\underline{\mathbf{x}} \text{ is a constant.}$

Solution: The former 3 can be verified by definition. On variance or covariance, let's take variance as an example: $\mathbb{E}[\operatorname{var}(x|y)] + \operatorname{var}(\mathbb{E}[x|y]) = \mathbb{E}[\mathbb{E}[x^2|y] - \mathbb{E}^2[x|y]] + \mathbb{E}[\mathbb{E}^2[x|y]] - \mathbb{E}^2[\mathbb{E}[x|y]] = \mathbb{E}[\mathbb{E}^2[x|y]] - \mathbb{E}^2[\mathbb{E}[x|y]] = \mathbb{E}[x^2] - \mathbb{E}^2[x] = \operatorname{var}(x).$

To obtain the last property, note the following facts:

- $\det(\operatorname{cov}(\underline{\mathbf{x}})) = 0 \iff \exists \underline{c} \in \mathbb{R}^k \setminus \{\underline{0}\}, \text{ such that } \operatorname{cov}(\underline{\mathbf{x}})\underline{c} = \underline{0}.$
- $\underline{c}^{\mathrm{T}} \operatorname{cov}(\underline{\mathsf{x}})\underline{c} = 0 \iff \operatorname{cov}(\underline{\mathsf{x}})\underline{c} = \underline{0}$. To obtain " \Rightarrow ", note that since $\operatorname{cov}(\underline{\mathsf{x}})$ is PSD, we can find a PSD matrix \mathbf{A} , such that $\mathbf{A}^2 = \operatorname{cov}(\underline{\mathsf{x}})$. Therefore, we have

$$\underline{c}^{\mathrm{T}} \operatorname{cov}(\underline{\mathbf{x}})\underline{c} = 0 \implies \|\mathbf{A}\underline{c}\|^2 = 0 \implies \mathbf{A}\underline{c} = \underline{0} \implies \operatorname{cov}(\underline{\mathbf{x}})\underline{c} = \mathbf{A}^2\underline{c} = \underline{0}.$$

• $\underline{c}^{T} \operatorname{cov}(\underline{x})\underline{c} = 0 \iff \underline{c}^{T}\underline{x}$ is a constant (with probability one). This can be obtained by noting that

$$\operatorname{var}(\underline{c}^{\mathrm{T}}\underline{\mathbf{x}}) = \underline{c}^{\mathrm{T}}\operatorname{cov}(\underline{\mathbf{x}})\underline{c}.$$

1.2. The Pearson correlation coefficient $\rho(\mathsf{x},\mathsf{y})$ of two random variables x and y is defined as

$$\rho(\mathsf{x},\mathsf{y}) \triangleq \frac{\mathbb{E}[(\mathsf{x} - \mathbb{E}[\mathsf{x}])(\mathsf{y} - \mathbb{E}[\mathsf{y}])]}{\sqrt{\mathrm{var}(\mathsf{x})\,\mathrm{var}(\mathsf{y})}}.$$
 (1)

(a) When var(x) = var(y), prove that $\rho = a^*$ where a^* is the coefficient in the linear regression problem:

$$(a^*, b^*) \triangleq \underset{(a,b) \in \mathbb{R}^2}{\operatorname{arg \, min}} \mathbb{E}[(\mathsf{y} - a\mathsf{x} - b)^2].$$

(b) Prove that

$$\mathbf{x} \perp \mathbf{y} \iff \forall f, g, \ \rho(f(\mathbf{x}), g(\mathbf{y})) = 0.$$

Solution:

(a) Compute (a^*, b^*) via

$$\frac{\partial}{\partial a} \mathbb{E}[(\mathbf{y} - a\mathbf{x} - b)^2] = \frac{\partial}{\partial b} \mathbb{E}[(\mathbf{y} - a\mathbf{x} - b)^2] = 0.$$

- (b) " \Rightarrow " is obvious. To obtain " \Leftarrow ", consider $f(x) = \mathbb{1}_{\{x=x_0\}}$ and $g(y) = \mathbb{1}_{\{y=y_0\}}$ for all possible choices of (x_0, y_0) .
- 1.3. Suppose x has a normal distribution $x \sim \mathcal{N}(0,1)$. Please compute the density of $\exp(x)$. (The answer is called the **lognormal distribution**.)

Solution: Let $y = \exp(x)$. Since the exponential function is monotonic

$$f_{y}(y) = \frac{\mathrm{d}}{\mathrm{d}y} (1 - Q(\ln y)) = -Q'(\ln y) \frac{1}{y} = \frac{1}{\sqrt{2\pi}y} \exp(-\frac{\ln^2 y}{2}), y > 0$$