E - 59 - 2012

정전 및 단락접지 절차에 관한 기술지침

2012. 6

한국산업안전보건공단

## 안전보건기술지침의 개요

o 작성자 : 원광대학교 소방행정학부 이종호 교수

o 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전연구실

o 제·개정 경과

- 2010년 11월 전기안전분야 제정위원회 심의(제정)

- 2012년 4월 전기안전분야 제정위원회 심의(개정)

#### o 관련규격 및 자료

- 산업안전보건기준에 관한 규칙
- OSHA 29 CFR 1910(Occupational Safety & Health Standards)
- NFPA 70B Recommended practice for electrical equipment maintenance, CH 23(De-energizing and grounding of equipment to provide protection for Electrical maintenance personnel)
- o 관련법규·규칙·고시 등
  - 산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)
- o 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

## 정전 및 단락접지 절차에 관한 기술지침

## 1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다.) 제19조 (정전전로에서의 전기작업) 및 제307조(단로기 등의 개폐)에 따라, 정전된 전기설비 또는 근접장소에서 작업하는 작업자가 원치 않는 전기설비의 재충전으로 인한 전격 및 화상 위험을 방지하기 위하여 실시하는 정전 및 단락접지 절차에 관한 기술적 사항을 정함을 목적으로 한다.

### 2. 적용범위

사업장에 설치된 전기설비의 정전작업에 적용한다.

#### 3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
  - (가) "전기설비"(이하 "설비"라 한다.)라 함은 전기에너지의 생산 및 사용, 즉발전·송전·변전·정류·제어·저장·측정 또는 사용에 관련된 제반 모든 설비를 말한다.
  - (나) "활선"이라 함은 설비가 전기 에너지원에 연결됨으로써 전압을 보유한 상태를 말하다.
  - (다) "충전"이라 함은 설비가 활선상태이거나 전력시스템에서 분리되었다하더라도 정전유도 또는 잔류전하에 의하여 전하가 충전된 상태를 말한다.
  - (라) "정전"이라 함은 설비가 '활선' 또는 '충전'되지 아니한 상태를 말한다.

E - 59 - 2012

- (마) "분리"라 함은 설비(또는 전기 시스템의 일부분)가 기타 전기 에너지원과 접속되지 않고 충분히 이격되어 있어 우연히 충전되지 않을 정도로 안전하게 접속이 분리된 상태를 말한다.
- (바) "정전작업"이라 함은 전로를 개로한 후 수행하는 당해 전로 또는 그 지지물의 설치·점검·수리·도장 등의 작업을 말한다.
- (사) "활선작업"이라 함은 작업자가 활선 또는 충전된 도체에 접촉하거나, 기구·장비 또는 장치를 다루는 신체의 일부가 활선 작업 구역 내에 있는 제반 행위를 말한다.
- (아) "단락접지"라 함은 정전된 전로들을 도체로 점퍼하여 접지시킨 것을 말하며, 시스템의 중성점 접지 또는 전기설비의 비충전 금속 부분의 접지를 말하는 것은 아니다.
- (자) "단로기"라 함은 규정된 요구 사항에 적합한 절연거리를 제공하는 기계적인 개폐장치를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

#### 4. 일반 사항

#### 4.1 일반사항

- (1) 전기설비의 정전된 전로·도체 위 또는 근접장소에서 작업하는 작업자는 회로가 우연히 재충전되는 경우에 발생할 수 있는 전격 위험 또는 섬광에 의한 화상 (이하 "감전위험"이라 한다)을 방지하기 위하여 적절한 보호조치를 하여야 한다.
- (2) 작업자의 감전위험에 대한 보호범위와 보호장치의 형태·절차 등은 다음에 따라 합리적으로 정하여야 한다.

E - 59 - 2012

- (가) 보호범위는 특정 상황에 따라 최적의 보호조건이 되도록 정한다.
- (나) 고압 이상의 선로에서 작업하는 경우에는 높은 수준의 보호조치가 제공되어야한다. 다만, 저압의 분기회로에서 작업하는 경우 최소한의 보호조치가 필요하다. 최적 및 최소한의 보호조치의 경계에 있는 경우에는 적절한 평형상태를 유지하여야한다.

#### 4.2 전기위험의 발생

보호의 형태와 범위를 정할 때에는 다음과 같은 위험한 상태의 발생 가능성을 고려하여야 한다.

- (1) 근접 충전전로로부터의 유도
- (2) 원하지 않는 전로 재충전을 초래하는 스위치의 조작 실수
- (3) 충전 전로가 정전 전로와 전기적으로 접촉할 수 있는 모든 비정상 상태
- (4) 직격뢰 또는 인근 낙뢰로 인하여 발생하는 고전압
- (5) 커패시터(콘덴서) 또는 이와 기타 유사한 기기에 축적된 전하

#### 5. 전기위험 방지대책

5.1 단계별 전기위험 방지대책

작업자를 감전위험으로부터 보호하기 위한 안전작업 절차는 가능한 한 다음과 같은 5 단계에 따른다.

#### 5.1.1 전로의 개방

(1) 특정 기기에 공급되는 모든 전원은 최근의 도면, 단선도, 표지 등을 이용하여 확인한다.

E - 59 - 2012

- (2) 관련 전원의 단로기를 개방한다. 눈으로 확인 가능한 칼날(Blade)이 있는 단로 장치를 사용하는 경우, 모든 칼날이 완전히 개방되어 있는지를 눈으로 확인한다.
- (3) 차단기는 완전히 개방된 상태이어야 한다.
- (4) 자동으로 작동하는 스위치 또는 제어장치는 작업자의 안전 확보를 위한 단로장치로 간주하지 않는다.

#### 5.1.2 작금장치의 설치

- (1) 단로장치를 개방하는 조작 손잡이에 잠금장치와 꼬리표를 부착한다.
- (2) 특히 전원을 차단하기 위해 퓨즈를 제거하는 경우, 승인받지 않고 퓨즈를 재 삽입하지 않도록 주의하여야 한다.
- (3) 수립된 잠금 및 표지에 관련된 지침은 전기정비작업 지침에서 아주 중요한 부분이다.

#### 5.1.3 정전여부 확인

- (1) 모든 도체가 정전되었는지를 확인하기 위해 전로를 전압검출기(이하 "검전기"라 한다)로 확인한다.
- (2) 칼날이 눈에 보이지 않는 고정식 차단기 및 스위치를 포함한 전로에서의 정전 여부의 확인은 특히 중요하다.
- (3) 각 정전회로의 "무전압"임을 확인하기 위해 적합한 등급의 검전기를 사용한다.
- (4) 필요시 고전압 이상의 검전기 중 전압인가 시험에 필요한 전원 공급장치가 구비되어야 한다.

#### 5.1.4 단락접지 실시

(1) 모든 도체는 상간 단락 및 접지가 될 때까지는 충전부로 간주하여야 한다.

E - 59 - 2012

- (2) 시험에 의하여 도체에 "무전압"이라는 것이 확인되면, 수립된 절차에 따라 적절하게 단락접지를 하여야 한다.
- (3) 도체에 대한 단락접지를 하는 이유는 많은 주의에도 불구하고 기기가 재충전되는 경우 작업자를 보호하기 위한 것이다.
- (4) 전로에 용량성 부하가 포함되어 있을 때에는 그 부하에 충전된 모든 전하를 방전시키기 위해서도 단락접지가 필요하다.

#### 5.1.5 관련 모든 작업자 참여

모든 작업자는 스스로 기 수립된 정전관련 제반 절차와 방법에 따라 단락접지를 하여야 한다.

#### 5.2 단락접지의 방법 및 절차

#### 5.2.1 일반사항

- (1) 안전을 위하여 체인이나 작은 직경의 전선 및 클램프(배터리용 클램프 등) 등으로 정전된 도체를 접지하여서는 안 된다.
- (2) 수십만 A의 고장전류는 퓨즈의 용단이나 차단기를 개방하기 전에 체인이나 가는 접지선을 먼저 녹일 수 있기 때문에 위험전압, 녹은 금속 및 아크 등으로 인한 큰 위험이 작업자들에게 초래될 수 있다.
- (3) 안전 측면에서 감전방지를 보장하기 위한 단락접지 절차의 준수와 적합한 단락 접지기구의 사용과 설치는 필수사항이다.

#### 5.2.2 단락접지

(1) 단락접지를 하기 위한 접지기구(이하 "단락접지기구"라 한다)는 고장전류에 대해 적합한 용량을 가진 케이블에 부착된 대용량의 클램프로 구성된다.

- (가) 고장 발생으로 인해 과전류 보호장치가 작동하여 선로를 개방할 때까지 큰 고장전류에 주의하여야 한다.
- (나) 단락접지기구를 도체와 접속하기 위하여 절연봉을 사용할 때, 단락접지기구의 부피와 무게가 지나치게 크면 작업에 불편을 주기 때문에 단락접지기구는 필요 이상으로 크지 않도록 하여야 한다.
- (2) 단락접지기구를 선택할 때, 다음 사항을 고려하여야 한다.
  - (가) 접지 클램프는 도체의 굵기와 고장 전류에 대하여 적합한 용량이어야 한다.
    - ① 부적합한 크기의 접지 클램프는 고장전류로 인하여 용해 또는 분리될 수 있고, 전로가 재충전되는 경우에 고장전류를 흘릴 수 있도록 설계되지 않았기 때문에 활선작업용 클램프는 정전된 전로의 접지용으로 사용해서는 안 된다.
    - ② 활선작업용 클램프는 탭 도체를 가공선로에 연결하기 위한 것으로, 큰 고장 전류는 과전류 보호장치가 작동하기 전에 활선작업용 클램프를 용해 또는 분리시켜 치명적인 전압 및 아크 화상을 작업자에게 입힐 수 있다.
  - (나) 단락접지 케이블은 2개 이상을 병렬로 접속 사용하기에 적합한 용량이어야 하며, 이 적합한 용량의 주요 3요소는 다음과 같다.
    - ① 케이블 말단에 설치된 압착고리의 단자 강도
    - ② 용해하지 않고 최대 전류를 흘릴 수 있는 굵기
    - ③ 재충전 중, 작업구역에서 안전하게 전압 강하를 유지하는 저저항
  - (다) 단락접지 클램프와 정전된 도체 사이의 금속과 금속간의 견고한 접속은 필수 적인 요건이다.
    - ① 대부분의 도체는 부식되어 있거나 페인트칠이 되어 있는 경우가 많지만 이를 닦아 낸다는 것은 쉽지 않기 때문에 접지 클램프는 톱니 형태이어야 한다.
    - ② 철탑, 개폐장치 또는 변전소 접지 모선에 부착된 접지 클램프는 부식이나 페인트를 확실히 통과하도록 하기 위하여 뾰족하고 움푹한 고정나사로 조여 적합한 접속부를 확보하여야 한다.
  - (라) 단락접지 케이블은 낮은 저항을 유지하고 고장시 케이블의 과도한 늘어짐이 없도록 그 길이는 가급적 짧아야 한다.

- ① 전로가 재충전되면 고장전류와 합성자력은 작업자가 작업 중인 구역에서 접지 케이블을 심하고 위험하게 이완시킬 수 있다.
- ② 작업자의 안전을 위한 접지 케이블은 적절한 경로 선택은 과도한 늘어짐을 방지하기 위하여 필수적인 사항이다.
- (마) 단락접지 케이블은 전로가 불의의 재충전되었을 경우, 작업 장소에 전압강하를 최소화시키기 위하여 여러 상을 접지된 구조물 사이와 시스템 중성점(가능한 경우에 한함)에 접속하여야 한다(<그림 1> 참조).
- (3) 적절한 굵기의 짧은 단락접지 케이블 및 클램프를 상도체에 접속하는 것은 상도체 사이의 저항을 최소화 시켜 정전된 선로가 불의에 재충전될 경우에 과전류 보호 장치를 신속히 작동시키게 된다(<그림 1> 참조).
  - (가) 점퍼선과 접지된 철탑 또는 개폐장치 접지모선 사이의 짧은 인하 케이블은 대전류가 흐르는 동안에 작업구역에서 과격하게 요동칠 수 있는 케이블의 양과 저항을 줄여 준다.
  - (나) 만약 작업 구역에 시스템 접지도체가 있을 경우, 케이블을 시스템 접지도체에 접속하면 전원에서 접지로 연결되는 가장 작은 저항 값을 갖게 되어 더욱 완벽하게 보호된다.
  - (다) <그림 1>의 (a)는 개폐장치 내부에서 작업하는 사람과 모선을 나타내며, 가공 선로 및 변전소 외부 위에서 작업하는 경우와 같은 조건이다.
  - (라) 위와 같이 적절히 접지된 지역에서 작업하는 경우, 시스템에 흐르는 전류에 의한 전압 강하가 최소가 되도록 한다. 또한 낮은 저항으로 인하여 퓨즈 또는 차단기의 신속히 작동한다면 작업자가 전압에 노출되는 시간을 최소화할 수 있다.
- (4) 단락접지기구를 설치하고 철거할 때에는 다음 사항에 따른다.
  - (가) 단락접지기구를 설치하기 전에, 도체 내에 끊어진 연선이 있는지, 클램프 단자에 분리된 연결부가 있는지, 클램프 기구의 결함이 있는지 등을 검사 하여야 하며, 결함이 있는 기구는 사용하여서는 안 된다.

- (나) 단락접지기구는 정전된 장비에서 수행되는 작업의 각 지점에 각각 설치하며, 이와 달리 정전된 전로 끝이나 작업 양쪽에 접지장치를 설치하기도 한다.
- (다) 정전된 설비의 상도체에 단락접지기구를 접속하기 전에 접지 인하도체의 한 끝을 금속 구조물 또는 개폐장치의 접지모선에 먼저 접속하고, 이어서 상 도체 사이를 접지케이블로 접속하여야 한다.
- (라) 단락접지기구를 철거할 때에는 설치 절차와 반대로 상 사이의 케이블을 먼저 분리하고 이어서 상도체로부터 인하도체를, 마지막으로 금속 구조물 또는 접지 모선으로부터 인하도선을 분리시킨다.
- (5) 단락접지기구를 철거할 때의 주의사항은 다음과 같다.
  - (가) 전로를 재충전하기 전에 접지장치를 철거하는 것은 일부를 제외하고, 초기 설치와 같이 중요하다. 만약 작업을 완료하고 단락접지기구 철거를 잊고 전로를 재충전하면 단락 및 접지된 도체로 인하여 과전류차단장치가 즉시 작동하여 전로를 개방하게 될 것이다.
  - (나) 큰 단락전류는 적합한 차단용량을 가진 차단기의 접점을 손상시킬 수 있고 부적합한 차단기 또는 퓨즈의 폭발을 초래할 수 있으며, 접지 케이블이 부적합 하면 케이블은 용해되고 아크 손상을 일으킨다.
  - (다) 따라서 전로를 재충전하기 전에 모든 단락접지기구의 철거를 보증하기 위한 다음과 같은 절차를 수립하여야 한다.
    - ① 각 단락접지기구에 인식 번호를 부여하고, 협력업체 작업자를 포함한 모든 당사자가 사용가능한 모든 기구를 엄격하게 통제한다.
      - ⑦ 설치된 각 단락접지기구의 번호와 위치를 기록한다.
      - 바 각 단락접지기구를 제거할 때에는 번호를 기록과 대조한다.
    - ② 전로를 재충전하기 전에 모든 단락접지기구가 철거 되었는지를 인식 번호로 확인한다.
    - ③ 개폐장치 내부에 설치된 단락접지기구는 문이나 덮개로 가려서는 안 된다. 접지기구를 은폐할 필요가 있다면, 단락접지기구가 내부에 있다는 것을 작업자들이 알 수 있도록 문 또는 뚜껑의 잘 보이는 곳에 표시한다.

E - 59 - 2012

- ④ 재충전 전에 계기용변성기, 계전기 등 시험에 사용된 모든 단락접지기구가 철거되었는지를 확인하기 위해 전기설비 내부를 검사하여야 한다.
- ⑤ 재충전하기 전에 접지상태를 확인하기 위하여 절연 저항계로 모든 도체를 시험하여 그 원인을 찾아 보완하여야 한다.
- (라) 비접지된 단락접지기구, 정전된 가공 전로 도체에 단락접지기구를 설치하거나 철거할 때에는 절연봉, 고무장갑 또는 기타 이와 유사한 보호구를 사용한다.
- (마) 케이블 및 클램프의 용량, 상세한 관련 정보에 대하여는 단락접지기구의 제조자 사용설명서를 참고한다.
- (바) 충전전로 인근에 새로운 가공선로 도체에서 이동식 접지(Travelling ground)와 같은 특수 단락접지기구가 필요할 수 있다.
- (6) 개폐장치의 차단기를 임시로 교체하기 위해서는 인출형 접지 및 시험 장치를 이용한다.
  - (가) 인출형 접지 및 시험 장치들은 인출형 차단기와 같은 방법으로 개폐장치 모선 또는 배선 스태브(Stab)와 접속하여 개폐장치 모선 또는 관련 회로를 확실하고 편리하게 접지하는 것이다.
  - (나) 일차 분리용 스태브 2개가 있는 장치는 "BUS"로 표기된 한쪽은 개폐장치 모선 스태브와 접속하고, "LINE"으로 표시된 다른 한 쪽은 개폐장치의 전원선 또는 부하 스태브와 접속한다. 또다른 형태인 일차 분리용 스태브 1개가 있는 장치는 개폐장치 "BUS" 스태브 또는 "LINE" 스태브와 접속한다.
  - (다) 개폐장치 내로 완전히 삽입되었을 때 단락접지기구가 정전된 모선 또는 전로를 접지한다.
  - (라) 충전된 모선 또는 전로의 원치 않는 접지를 방지하기 위해 사용할 때에는 고도의 주의가 필요하다. 이런 경우, 작업자는 섬광 화상에 노출될 수 있고 개폐장치의 심각한 손상을 초래할 수도 있다.

#### 5.2.3 단락접지 방법

(1) <그림 1>에서 재충전이 발생할 경우, 단락접지 케이블은 접지된 구조물이나 시스템 중성선(이용 가능할 때)과 상(전원선) 사이를 접속함으로써 작업장에서 발생하는 전압강하를 최소화시킨다.



<그림 1> 양호한 접지방법

(2) <그림 1>의 등가회로에서, 인체저항( $R_m$ )은 500  $\Omega$ 이고, 하나의 케이블 저항( $R_i$ )은  $0.001~\Omega$ , 개폐장치 또는 구조물의 접지저항을  $R_g$ 라 할 때, 회로에서 1,000~A의 고장 전류가 전로에서 접지 쪽으로 흐른다고 가정하면, 작업구역에 있는 작업자에게 인가되는 전압은 약 1~V 이하이므로, 작업자에게 흐르는 전류는 무시할 수 있으므로 안전하다.

KOSHA GUIDE E - 59 - 2012

## <부록>

## 1. 바람직하지 않은 방법

## 1.1 예 1

(1) <그림 2>는 각각의 도체를 접지전극과 직접 접속한 것으로 불량한 단락접지방법의 예를 나타낸다.



<그림 2> 부적합한 접지방법(1)

(2) <그림 2>의 등가회로에서, 인체저항 $(R_m)$ 은 500  $\Omega$ , 점퍼 케이블 저항 $(R_i)$ 과 구조물 및 접지저항 $(R_{dg})$ 의 합성저항은 약 1  $\Omega$  정도이고 이는 인체저항과 병렬이다. 이때, 1,000 A의 고장 전류가 흐른다면, 작업자에게 약 1,000 V의 전압이 인가되어 위험할 수 있다.

# KOSHA GUIDE E - 59 - 2012

#### 1.2 예 2

- (1) <그림 3>은 바람직하지 않은 또 다른 단락접지 접속방법의 한 예로, 3개의 모든 접지케이블을 공통 접지극에 접속한 것이다.
- (2) 이것은 상 사이 저항 $(R_g)$ 을 과전류 보호장치가 신속하게 전로를 차단할 수 있도록 0  $\Omega$ 까지 충분히 감소시킬 수 있으나, 접지저항 $(R_{dg})$ 은 작업 부분과 병렬이므로 작업자에게 인가되는 전압은 높게 된다.



<그림 3> 부적합한 접지접속(2)

KOSHA GUIDE E - 59 - 2012

## 1.3 예 3

<그림 4>는 <그림 3>과 전기적으로는 같으나, 편의상 케이블을 함께 모은 것으로 대전류가 흐를 경우, 작업 구역에서 케이블의 격렬한 요동을 일으킬 수 있으므로 바람직하지 않은 방법이다.



<그림 4> 부적합한 접지접속(3)

## 1.4 예 4

- (1) 상 사이의 낮은 저항으로 재충전시 과전류보호장치가 신속하게 전로를 차단시킬 수는 있으나, 하나의 인하접지 도체 $(R_i)$ 가 접지극 $(R_{dg})$ 에 접속됨으로 인하여 큰 접지저항으로 인체에는 지나치게 높은 전압이 인가될 수 있다.
- (2) <그림 5>의 단락접지방법은 권고되지 않는 방법이다.



<그림 5> 부적합한 접지접속(4)