머코노초 상황

- 최소제곱법
- 최급하강법 ->선형 회귀

 - ->1차 함수 모델일 때 theta0와 theta1의 값을 구할 수 있다
- 순서도 작성, 과제 그래프 분석
- 깃허브 사용법, 제로페이지 사용법
- 다항식 회귀 -> 2차 함수_또는 그 이상의 함수일 때 theta0, theta1, ... theta(n)을 구한다
- 중회귀 -> 변수가 하나 이상일 때 중요도를 따진다.

• theta0가 상수일 때, thata1구하기
https://github.com/jihoonseon/MCNC/blob/master/Hubble%2
Oconstant.c 접속해서 보고 순서도 작성하기

temp1 = theta1 - n * f_theta1(px, py, theta1); 입력값 px, py는 x값과 y값이 저장되어있는 배 열의 주소. Theta1은 값이 계속 갱신될 변수.

theta1=temp1; temp1에 저장했던 갱신값을 theta1에 대입하 여 theta1을 갱신함.

f_theta1(px, py, theta1); 함수 정의

포인터 px, py와 theta1 값을 받는다.

dE/dtheta1인

$$\frac{\delta u}{\delta \theta_1} = \sum_{\ell=1}^{n} (f_{\theta}(x)^{(\ell)} - y^{(\ell)}) \cdot x^{(\ell)}$$

를 반환한다.

E(x)그래프 분석_(E(x)변형식)

• theta0가 상수일 때, thata1구하기
https://github.com/jihoonseon/MCNC/blob/master/Leanear%2
ORegression.c</u>접속해서 보고 순서도 작성하기

temp0 = theta0 - n * f_theta0(px, py, theta0); 입력값 px, py는 x값과 y값이 저장되어있는 배 열의 주소. Theta0은 값이 계속 갱신될 변수.

temp1 = theta1 - n * f_theta1(px, py, theta1); 입력값 px, py는 x값과 y값이 저장되어있는 배 열의 주소. Theta1은 값이 계속 갱신될 변수.

theta0=temp0; temp0에 저장했던 갱신값을 theta0에 대입하 여 theta0을 갱신함.

theta1=temp1; temp1에 저장했던 갱신값을 theta1에 대입하 여 theta1을 갱신함. f_theta0(px, py, theta0); 함수 정의

포인터 px, py와 theta0 값을 받는다.

dE/dtheta0인

$$\frac{\partial u}{\partial \theta_0} = \sum_{\ell=1}^{n} (f_{\theta}(x)^{(\ell)} - y^{(\ell)})$$

를 반환한다.

f_theta1(px, py, theta1); 함수 정의

포인터 px, py와 theta1 값을 받는다.

dE/dtheta1인

$$\frac{\partial u}{\partial \theta_1} = \sum_{\ell=1}^{n} (f_{\theta}(x)^{(\ell)} - y^{(\ell)}) \cdot x^{(\ell)}$$

를 반환한다.

반복 한다

E(x)그래프 분석_(E(x)변형식)

- 깃허브
- 제로페이지

모델_2차함수

모델_2차함수

모델_2차함수

1. 2차함수 식 정의

$$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

2. 최소제곱법, 확률하강법 사용

$$\theta_0, \theta_1, \theta_2$$

최소제곱법과 최급하강법

$$E(\theta) = \frac{1}{2} \sum_{\ell=1}^{n} (y^{(\ell)} - f(x^{(\ell)}))^{2}$$

$$u = E(\theta)$$

$$v = f_{\theta}(x)$$

$$\frac{\partial u}{\partial \theta_{0}} = \frac{\partial u}{\partial v} \cdot \frac{\partial u}{\partial \theta_{0}} = \frac{\partial u}{\partial v} \cdot \frac{\partial u}{\partial v} = \frac{\partial u}{\partial$$

$$u = E(\theta)$$

$$v = f_{\theta}(x)$$

$$\frac{\partial u}{\partial \theta_{0}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{0}}$$

$$\frac{\partial u}{\partial v} = \frac{\partial}{\partial v} \left(\frac{1}{2} \sum_{t=1}^{n} (y^{(t)} - v)^{2}\right)$$

$$= \sum_{t=1}^{n} (v - y^{(t)})$$

$$= \sum_{t=1}^{n} (f_{\theta}(x) - y^{(t)})$$

$$\frac{\partial v}{\partial \theta_{0}} = \frac{\partial}{\partial \theta_{0}} (\theta_{0} + \theta_{1}x + \theta_{2}x^{2}) = 1$$

$$\frac{\partial u}{\partial \theta_{0}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{0}} = \sum_{t=1}^{n} (f_{\theta}(x)^{(t)} - y^{(t)})$$

최소제곱법과 최급하강법

$$E(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{2}$$

$$u = E(\theta)$$

$$v = f_{\theta}(x)$$

$$\frac{\partial u}{\partial \theta_{1}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{1}}$$

$$\frac{\partial u}{\partial \theta_{1}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{1}}$$

$$\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v} \cdot \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - v)^{2}$$

$$= \sum_{i=1}^{n} (v - y^{(i)})$$

$$\theta_{1} := \theta_{1} - \eta \frac{\partial E}{\partial \theta_{1}} \text{ theta1 = theta1-n(dE/dtheta1)}$$

$$\theta_{2} := \theta_{2} - \eta \frac{\partial E}{\partial \theta_{2}} \text{ theta2 = theta2-n(dE/dtheta2)}$$

$$\frac{\partial v}{\partial \theta_{1}} = \frac{\partial v}{\partial \theta_{1}} \cdot \frac{\partial v}{\partial \theta_{2}} = \sum_{i=1}^{n} (f_{\theta}(x)^{(i)} - y^{(i)}) \cdot x^{(i)}$$

최소제곱법과 최급하강법

$$E(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}))^{2}$$

$$u = E(\theta)$$

$$v = f_{\theta}(x)$$

$$\frac{\partial u}{\partial \theta_{2}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{2}}$$

$$\frac{\partial u}{\partial \theta_{2}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{2}}$$

$$\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v} \cdot \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - v)^{2}$$

$$\theta_{0} := \theta_{0} - \eta \frac{\partial E}{\partial \theta_{0}} \text{ theta0} = \text{theta0-n(dE/dtheta0)}$$

$$\theta_{1} := \theta_{1} - \eta \frac{\partial E}{\partial \theta_{1}} \text{ theta1} = \text{theta1-n(dE/dtheta1)}$$

$$\theta_{2} := \theta_{2} - \eta \frac{\partial E}{\partial \theta_{2}} \text{ theta2} = \text{theta2-n(dE/dtheta2)}$$

$$\frac{\partial v}{\partial \theta_{2}} = \frac{\partial v}{\partial \theta_{2}} \cdot \frac{\partial v}{\partial \theta_{2}} = \sum_{i=1}^{n} (f_{\theta}(x)^{(i)} - y^{(i)}) \cdot x^{(i)^{2}}$$

모델 n차함수

1. 2차함수 식 정의

$$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

2. 최소제곱법, 확률하강법 사용

$$\theta_0, \theta_1, \theta_2$$

1. n차함수 식 정의

$$f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 \quad f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \cdot \cdot \cdot + \theta_n x^n$$

2. 최소제곱법, 확률하강법 사용

$$\theta_0, \theta_1, \theta_2, \theta_3, \cdot \cdot \cdot , \theta_n$$

모델_n차함수

$$\begin{split} &\theta_0 := \theta_0 - \eta \frac{\delta E}{\delta \theta_0} \text{ theta0= theta0-n(dE/dtheta0)} & \frac{\delta u}{\delta \theta_0} = \sum_{l=1}^n (f_\theta(x)^{(l)} - y^{(l)}) \\ &\theta_1 := \theta_1 - \eta \frac{\delta E}{\delta \theta_1} \text{ theta1= theta1-n(dE/dtheta1)} & \frac{\delta u}{\delta \theta_1} = \sum_{l=1}^n (f_\theta(x)^{(l)} - y^{(l)}) x^{(l)} \\ &\theta_2 := \theta_2 - \eta \frac{\delta E}{\delta \theta_2} \text{ theta2= theta2-n(dE/dtheta2)} & \frac{\delta u}{\delta \theta_2} = \sum_{l=1}^n (f_\theta(x)^{(l)} - y^{(l)}) x^{(l)^2} \\ &\theta_k := \theta_k - \eta \frac{\delta E}{\delta \theta_k} & \frac{\delta u}{\delta \theta_k} = \sum_{l=1}^n (f_\theta(x)^{(l)} - y^{(l)}) x^{(l)^k} \end{split}$$

모델_n차함수_순서도 작성

$$\begin{split} & \theta_k := \theta_k - \eta \frac{\delta E}{\delta \theta_k} \\ & \frac{\delta u}{\delta \theta_k} = \sum_{\ell=1}^n (f_{\theta}(x)^{(\ell)} - y^{(\ell)}) x^{(\ell)^k} \end{split}$$

중회귀

• (다)중회귀 변수가 여러 개인 모델

$$f_{\theta}(x_1, x_2, x_3) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

• 단순 선형회귀 1차함수 모델

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

• 다항 회귀 2차함수(혹은 그보다 고차함수) 모델 $f_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$

중회귀

	id	age	wgt	oxygen	runtime	rstpulse	runpulse	maxpulse
1	1	44	89.47	44.61	11.37	62	178	182
2	2	40	75.07	45.31	10.07	62	185	185
3	3	44	85.84	54.30	8.65	45	156	168
4	4	42	68.15	59.57	8.17	40	166	172
5	5	38	89.02	49.87	9.22	55	178	180
6	6	47	77.45	44.81	11.63	58	176	176
7	7	40	75.98	45.68	11.95	70	176	180
8	8	43	81.19	49.09	10.85	64	162	170
9	9	44	81.42	39.44	13.08	63	174	176
10	10	38	81.87	60.06	8.63	48	170	186
11	11	44	73.03	50.54	10.13	45	168	168
12	12	45	87.66	37.39	14.03	56	186	192
13	13	45	66.45	44.75	11.12	51	176	176
14	14	47	79.15	47.27	10.60	47	162	164
15	15	54	83.12	51.86	10.33	50	166	170
16	16	49	81.42	49.16	8.95	44	180	185
17	17	51	69.63	40.84	10.95	57	168	172
18	18	51	77.91	46.67	10.00	48	162	168
19	19	48	91.63	46.77	10.25	48	162	164
20	20	49	73.37	50.39	10.08	67	168	168
21	21	57	73.37	39.41	12.63	58	174	176
22	22	54	79.38	46.08	11.17	62	156	165
23	23	52	76.32	45.44	9.63	48	164	166

중회귀

$$\begin{split} &u = E(\theta) \\ &v = f_{\theta}(x) \\ &\frac{\partial u}{\partial \theta_{j}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{j}} \\ &\frac{\partial u}{\partial v} = \frac{\partial}{\partial v} (\frac{1}{2} \sum_{t=1}^{n} (y^{(t)} - v)^{2}) \\ &= \sum_{t=1}^{n} (v - y^{(t)}) \\ &= \sum_{t=1}^{n} (f_{\theta}(x) - y^{(t)}) \\ &\frac{\partial v}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} (\theta_{0} + \theta_{1}x_{1} + \cdot \cdot \cdot + \theta_{n}x_{n}) = x_{j} \\ &\frac{\partial u}{\partial \theta_{j}} = \frac{\partial u}{\partial v} \cdot \frac{\partial v}{\partial \theta_{0}} = \sum_{t=1}^{n} (f_{\theta}(x)^{(t)} - y^{(t)}) \cdot x_{j}^{(t)} \end{split}$$

중회귀_순서도 작성

$$\begin{split} \theta_j := \theta_j - \eta \frac{\delta E}{\delta \theta_k} \\ \frac{\delta E}{\delta \theta_k} = \sum_{\ell=1}^n (f_\theta(x^{(\ell)}) - y^{(\ell)}) x_j^{(\ell)} \end{split}$$

중회귀_참고 확률 경사하강법

$$\theta_j := \theta_j - \eta \sum_{\ell=1}^n (f_\theta(\boldsymbol{x}^{(\ell)}) - \boldsymbol{y}^{(\ell)}) x_j^{(\ell)}$$

$$\theta_j := \theta_j - \eta (f_\theta(\boldsymbol{x}^{(t)}) - \boldsymbol{y}^{(t)}) \boldsymbol{x}_j^{(t)}$$

$$\theta_j := \theta_j - \eta \sum_{k \in K} (f_\theta(\boldsymbol{x}^{(k)}) - \boldsymbol{y}^{(k)}) x_j^{(k)}$$

- 머코노초(과제)_w2_1 다항회귀를 이용해서 모의투자하기
- 머코노초(과제)_w2_2 중회귀를 이용해서 가장 큰 영향 끼치는 거 찾기

	id	age	wgt	oxygen	runtime	rstpulse	runpulse	maxpulse
1	1	44	89.47	44.61	11.37	62	178	182
2	2	40	75.07	45.31	10.07	62	185	185
3	3	44	85.84	54.30	8.65	45	156	168
4	4	42	68.15	59.57	8.17	40	166	172
5	5	38	89.02	49.87	9.22	55	178	180
6	6	47	77.45	44.81	11.63	58	176	176
7	7	40	75.98	45.68	11.95	70	176	180
8	8	43	81.19	49.09	10.85	64	162	170
9	9	44	81.42	39.44	13.08	63	174	176
10	10	38	81.87	60.06	8.63	48	170	186
11	11	44	73.03	50.54	10.13	45	168	168
12	12	45	87.66	37.39	14.03	56	186	192
13	13	45	66.45	44.75	11.12	51	176	176
14	14	47	79.15	47.27	10.60	47	162	164
15	15	54	83.12	51.86	10.33	50	166	170
16	16	49	81.42	49.16	8.95	44	180	185
17	17	51	69.63	40.84	10.95	57	168	172
18	18	51	77.91	46.67	10.00	48	162	168
19	19	48	91.63	46.77	10.25	48	162	164
20	20	49	73.37	50.39	10.08	67	168	168
21	21	57	73.37	39.41	12.63	58	174	176
22	22	54	79.38	46.08	11.17	62	156	165
23	23	52	76.32	45.44	9.63	48	164	166