KPFlow: An Operator Perspective on Dynamic Collapse Under Gradient Descent Training of Recurrent Networks

James Hazelden¹, Laura Driscoll⁴, Eli Shlizerman^{1,2,3}, Eric Shea-Brown^{1,3}

¹Department of Applied Mathematics ²Department of Electrical & Computer Engineering ³Computational Neuroscience Center University of Washington, ⁴Allen Institute

Correspondence: jhazelde@uw.edu

Motivation

Figure 1. Example tasks, low-dimensional collapse and learned representation. During training on two example tasks (middle), the state collapses to a simple low dimensional motif (right panels). We develop a perturbation formula based on the adjoint that gives insights into why such collapse occurs. The adjoint approach is schematically shown in the bottom left panel.

- Recurrent dynamical systems (RNNs, GRUs, etc.) exhibit dynamical collapse to low-dimensional attractors when trained with GD [1, 2, 3]. When trained on multiple tasks, these models shared representations between each sub-task [4, 5, 6].
- Fundamentally, there is a need for better theory to understand latent dynamics formation in general non-linear, recurrent models.

Problem Formulation

Solve a minimization problem on parameters θ by Gradient Descent (GD):

$$\arg\min_{\theta} \left\langle \ell(z(t,x), y^*(t,x)) \right\rangle_{t,x} \tag{1}$$

where z(t,x) is the hidden state on input $x \sim X$, given by a parameterized ODE:

$$\frac{d}{dt}z(t,x) = f(z(t), x, \theta), \ z(0,x) := z_0$$
 (2)

Our Contributions

- 1. **Prop. 1 KPFlow Decomposition** We show that gradient flow factorizes into two linear operators: \mathcal{P} (the Linear Flow Propagator) and \mathcal{K} (the Parameter Operator).
- 2. Thm. 1 Operator Properties We prove the effective rank of \mathcal{K} is bounded by the latent dimension of the activity for general recurrent models. \mathcal{P} generalizes Lyapunov analysis to perturbations on trajectories, not individual points in time.
- 3. **Dynamic Collapse** K, filtering through parameters of the model, bottle-necks dimension of updates under GD in RNNs and GRUs. Higher-rank K (from larger weight scales) means less dimension collapse and faster learning.
- 4. Multi-Task Alignment & Interference KPFlow decomposes linearly into interfering operators that can be used to predict which sub-tasks will share latent subspaces.
- 5. Code We efficiently implement \mathcal{P} and \mathcal{K} and their SVDs, providing new analysis tools.

Theoretical Results

Figure 2. Schematic of KPFlow decomposition, transforming error signals into hidden state perturbations. Each stage of backpropagation is described by an operator on a space of 3-tensors.

Proposition 1: KP Gradient Flow Decomposition

The model dynamics in Equation 2 are perturbed by GD according to

$$\delta z = -\mathcal{P}\mathcal{K}\mathcal{P}^*(\text{Err}), \text{ where } \text{Err} := \nabla_z \ell$$
 (3)

Where \mathcal{P} and \mathcal{K} are linear operators on the space of trial-dependent trajectories:

$$\left[\mathcal{P}\,q\right](t,x) = \int_0^t \Phi(t_0,t,x)\,q(t_0,x)\,dt_0 \text{ where } \Phi(t_0,t) = \frac{\partial z(t,x)}{\partial z(t_0,x)} \tag{2}$$

$$\left[\mathcal{K}\,q\right](t,x) = J_{\theta}(t,x) \left\langle J_{\theta}^{\top}\,q\right\rangle_{x_{0},t_{0}} \text{ where } J_{\theta}(t,x) = \frac{\partial f(t,x)}{\partial \theta}$$
 (5)

 \mathcal{P} : How tangential changes δf integrate into δz . Its SVD generalizes Lyapunov spectra. \mathcal{K} : Filters through parameters, θ , constraining and possibly misdirecting gradient signals.

Operator SVD of ${\mathcal P}$ and ${\mathcal K}$

Figure 3. Low rank eigenfunction decomposition of the K operator pre- and post-training on the Memory-Pro task. Each eigenfunction is a 3-tensor over time, batch input, and hidden index.

Since ${\mathcal P}$ and ${\mathcal K}$ are linear, we can decompose them, e.g.:

$$\mathcal{PP}^* = \lambda_1 \phi_1 + \lambda_2 \phi_2 + \dots \tag{6}$$

For example, ϕ_1 specifies at every t and input x how to optimally stimulate \mathcal{P} .

Theorem 1: ${\mathcal K}$ Decomposes Into Simple Rank-Constrained Units

Suppose the model in Equation 2 is weight-based, $\theta = \{W_1, ..., W_M\}$, with each W_j applied once in a single evaluation of f. Then,

- (1) \mathcal{K} is a sum of M operators induced by each weight, $\mathcal{K} = \sum_{j=1}^{M} \mathcal{K}_{j}$.
- (2) Each \mathcal{K}_i is a positive semi-definite Hilbert-Schmidt integral operator induced.
- (3) The effective rank of \mathcal{K}_j over time and trials is bounded by the effective dimension of the dynamical quantity to which W_i is applied.

Neural Collapse

Figure 4. \mathcal{K} operator dramatically bottle-necks effective rank of learning. Left: Cumulative explained variance ratio explained by the eigenfunctions of the operators, \mathcal{K} , \mathcal{P} and $\mathcal{P}\mathcal{K}\mathcal{P}^*$, respectively, corresponding to an RNN at initialization with weight scale g=1. Right: Effective rank throughout training on Memory-Pro, showing \mathcal{K} is always very low rank.

- We find that for RNNs and GRUs with different non-linearities and varied initial weight scale, g, the operator \mathcal{P} has effectively higher rank than \mathcal{K} throughout training.
- ullet So, ${\cal K}$ bottle-necks dynamical changes causing neural collapse, according to Theorem 1.

Multi-Task Latent Subspace Sharing

Figure 5. Interference matrix determines emergence of subspace-aligned, shared dynamics among four tasks. A Schematic of inputs and targets for four related tasks Memory Anti (MA), Memory Pro (MP), Delay Anti (DA), and Delay Pro (DP), on which 20 GRU were trained. B Cosine similarity matrices over training, measuring alignment between all hidden states. These organize into Pro/Anti configuration. C All 20 training runs show a transition away from Del/Mem to Pro/Anti around the same iteration. D Cumulative alignment based on our interference matrix. There is a preference towards Pro/Anti throughout GD, which is not visible prior to the transition in B and C.

• In a multi-task setting, \mathcal{P} decomposes block-wise diagonal over inputs trials, while \mathcal{K} decomposes as a linear sum:

$$\mathcal{K} = \begin{bmatrix} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{bmatrix}, \ \mathcal{P} = \begin{bmatrix} \mathcal{P}_1 & 0 \\ 0 & \mathcal{P}_2 \end{bmatrix}$$

- Hence, we use the operators to measure how δz corrections interact and align (Figure 4).
- This objective alignment is able to predict final shared organization, prior to them emerging under GD.

References

[1] Sussillo & Barak, Neural Computation, 2013 [2] Farrell, Recanatesi & Shea-Brown, Current Opinion in Neurobiology, 2023 [3] Mante et al., Nature, 2013 [4] Driscoll, Shenoy & Sussillo, Nature Neuroscience, 2024 [5] Turner & Barak, NeurIPS, 2023 [6] Schuessler et al., NeurIPS, 2020

NeuroAI in Seattle 2025 jhazelde@uw.edu