

Aula 8: Agrupamento de dados

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos

- Agrupamento de dados
- Dificuldades em agrupamento
- Algoritmos de agrupamento
- Validação
- Aplicações

Tarefas de aprendizado

Introdução

- Nem sempre os dados em um conjunto estão rotulados
 - Custo
 - Impossibilidade
- Conhecimento útil e relevante pode ser extraídos de dados não rotulados
 - o Grupos de dados similares

Agrupamento

- Organização de um conjunto de objetos em grupos (clusters)
 - Não existe uma definição precisa
 - o Particiona objetos de acordo com alguma relação entre eles
 - o Busca partição que maximiza:
 - Similaridade entre objetos de um mesmo grupo e
 - Dissimilaridade entre objetos de grupos diferentes

Agrupamento

• Supor os objetos:

Como particionar?

Agrupamento

Agrupamento de dados

Quantos grupos?

Possíveis formatos

Agrupamento de dados

- Definição do que é um agrupamento
 - o Imprecisa
 - Depende de:
 - Natureza dos dados
 - Resultados desejados
 - Existem várias

Tipos de agrupamento

- Seja $X = \{x_1, x_2, ..., x_n\}$ o conjunto de todos os objetos de um conjunto de dados
 - o Tarefa: colocar cada X_i em um dos k clusters C_1 , C_2 , ..., C_k
- De acordo com a pertinência dos objetos, agrupamentos podem ser de dois tipos:
 - Tipo 1: duro (crisp)
 - o Tipo 2: fuzzy

Tipos de agrupamento

- Agrupamento crisp
 - o Cada objeto X_i pertence ou não a cada cluster C_j

$$C_i \neq \emptyset$$
, $i = 1, ..., k$

$$C_i \cap C_j = \emptyset$$
, $i \neq j$, $i, j \in \{1, 2, ..., k\}$

Objeto em C_i é mais semelhante a outros objetos em C_i do que àqueles em C_j , $i \neq j$

Tipos de agrupamento

- Agrupamento fuzzy
 - Usa uma função de pertinência para definir o quanto um elemento pertence a um grupo

Objetivo

- Encontrar a partição que maximiza a similaridade em um grupo
 - Maximiza a dissimilaridade entre grupos
 - Quanto maior a homogeneidade dentro dos grupos e a diferença entre os grupos,
 melhor
- Alternativas
 - Busca exaustiva
 - Algoritmos de agrupamento de dados

Busca exaustiva

- Tentar todos os possíveis agrupamentos de k grupos (para vários valores de k)
- Números de Stirling do segundo tipo
 - Número de formas de particionar *n* dados em *k* subconjuntos não vazios

$$>>$$
 $\binom{n}{k} \ge \left(\frac{n}{k}\right)^k$ $k = \text{número de grupos}$ $n = \text{número de objetos}$

Impraticável

Agrupamento de dados

- Diferentes partições podem ser encontradas
 - Por diferentes algoritmos
 - Utilizam critérios diferentes para buscar uma boa partição
 - Pelo mesmo algoritmo
 - Diferentes inicializações
 - Diferentes números de clusters (grupos)

Algoritmos de agrupamento

- Principais abordagens
 - Particionais
 - Protótipos (erro quadrático médio)
 - Densidade
 - Hierárquicos
 - Baseados em grids (grades)
 - o Baseados em grafos

Particional X Hierárquico

Agrupamento hierárquico

Algoritmos particionais

- Principais características
 - Produzem um único agrupamento (partição)
 - A maioria utiliza abordagem "gulosa" (greedy)
 - Busca pela melhor alternativa no momento, sem considerar futuras consequências
 - Uma vez tomada uma decisão, não volta atrás
 - Geralmente resultado depende da ordem de apresentação dos exemplos

Algoritmo Particional Básico (APB)

```
Entrada: \theta, q
/* \theta, distância máxima para um objeto entrar em um cluster
/* q, número máximo de clusters, é opcional) */
1 Inicializar k = 1, C_k = \{x_1\}
2 Para i = 2 até n faça

Encontrar o cluster C_j mais próximo de x_i
Se \ d(C_j, x_i) > \theta \ e \ k < q \ /* usar centros
Então \ k = k + 1
C_k = \{x_i\}
Senão \ C_j = C_j \cup \{x_i\} /* atualizar centros
```


Algoritmo Particional Básico (APB)

- Sensitividade (granularidade)
 - \circ Se heta for grande, poucos (grandes) clusters são formados
 - E vice-versa
 - Como estimar valor de θ ?
 - Executar APB para vários valores de θ e k
 - Plotar gráfico θ versus k

Algoritmo Particional Básico (APB)

Algoritmos particionais

- K-médias (K-médias ótimo, K-médias sequencial)
- SOM
- FCM
- DENCLUE
- CLICK
- CAST
- SNN

- Supor *n* objetos $x_1, x_2, ..., x_n$ a serem agrupados em k clusters, k < n
 - $_{\circ}$ Seja μ_{i} a média dos objetos do cluster C_{i}
 - Seja d uma medida de distância
 - $\mathbf{x}_{p} \in \text{cluster } C_{i} \text{ se } d(\mathbf{x}_{p}, \mu_{i}) \text{ for menor que todas as k-1 distâncias entre } \mathbf{x}_{p} \in \mu_{j}, j = 1, 2, ..., k e i \neq j$

Medidas de distância

- Calcula || $X \mu_i$ || para i = 1 até K
 - o Escolher o grupo com menor distância


```
1 Sugerir médias μ<sub>1</sub>, μ<sub>2</sub>, ..., μ<sub>k</sub> iniciais
2 Repetir

/* Usar as médias sugeridas para agrupar

/* os n objetos nos K clusters

Para cada objeto x<sub>j</sub> com j variando de 1 a n

Inserir x<sub>j</sub> no cluster C<sub>i</sub> mais próximo

Substituir μ<sub>i</sub> pela média de todos os

exemplos do cluster C<sub>i</sub>

Até nenhuma das médias mudar
```


- Médias iniciais
 - Elementos podem ser aleatoriamente escolhidos
 - Objetos claramente diferentes

Limitações do k-médias

- Escolha do valor de K
 - o Tentativa e erro ou automática
- Algoritmos K-médias tem problemas quando:
 - o Grupos têm diferentes densidades
 - o Grupos têm formatos não hiper-esféricos
 - Atributos estão em diferentes escalas
- Tem problemas também quando os dados contêm *outliers*

Quantos grupos

- Qual o melhor valor de k?
 - Vários métodos
- Método cotovelo (Elbow)
 - Traçar uma linha em um gráfico ligando o desempenho obtido para diferentes valores de k
 - Se o gráfico lembra um braço, o valor no cotovelo indica um bom valor de k

Grupos encontrados

Grupos verdadeiros

K-médias (3 grupos)

Densidades diferentes

Formatos não hiperesféricos

Algoritmos hierárquicos

- Utilizam diagrama de árvore (dendograma)
 - o Produz uma sequência (hierarquia) de agrupamentos
- Historicamente usados em áreas que empregam estrutura hierárquica
 - o Ex.: Biologia e arqueologia
 - Conceito de representação hierárquica de dados foi desenvolvido inicialmente na Biologia

- Algoritmos de agrupamento hierárquicos
 - Lembram a estrutura hierárquica da taxonomia de Lineu para classificação de organismos
 - o Domínio, reino, filo, classe, ordem, ...
 - Geralmente preferido por Biólogos
 - Aplicações na biologia geralmente não se preocupam com o número ótimo de clusters
 - O interesse está na estrutura da árvore completa (dendograma)

- Tipos:
 - o Aglomerativos: combinam, repetidamente, dois clusters em um
 - A cada passo, combina os dois clusters mais próximos
 - o Divisivos: Dividem, repetidamente, um cluster em dois
 - A cada passo, divide o cluster menos homogêneo em dois novos clusters

- Não precisa ser apenas por meio de um dendogrtama
 - o Diagrama de Venn

- Definições:
 - \circ Seja P_t = {C₁, C₂, ..., C_{mt}} uma partição no nível t de X = {x₁, x₂, ..., x_n}
 - P_t é um agrupamento crisp
 - o Diz-se que P_t é encaixado em P_t ' ($P_t \subset P_t$ ') se:
 - Cada cluster em P_t é um subconjunto de um cluster em P_t' e
 - Pelo menos um cluster em P_t é um subconjunto próprio de algum cluster em P_t ' ($A \subset B \in A \neq B$)
 - A é subconjunto próprio de B se e somente se cada elemento de A está em B, mas pelo menos um elemento de B não está em A

- Sejam:

 - \circ $P_C = \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}$
 - o Pode-se dizer que:
 - \blacksquare P_A P_B
 - P_A P_C
 - \blacksquare P_A P_A

- Sejam:
 - \circ $P_A = \{\{x_1, x_3\}, \{x_4\}, \{x_2, x_5\}\}$

 - \circ $P_C = \{\{x_1, x_4\}, \{x_3\}, \{x_2, x_5\}\}$
 - o Pode-se dizer que:
 - \blacksquare $P_A \subset P_B$
 - \blacksquare $P_A \not\subset P_C$
 - P_A ⊂ P_A (Mas não é um subconjunto próprio)

- Algoritmos aglomerativos
 - Começam com $P_0 = \{\{x_1\}, ..., \{x_n\}\}$
 - o A cada passo t, combinam dois clusters em um, produzindo:
 - $|P_{t+1}| = |P_t| 1 e P_t \subset P_{t+1}$
 - No passo final (passo n-1) tem-se a hierarquia:
 - $P_0 = \{\{x_1\}, ..., \{x_n\}\} \subset P_1 ... \subset P_{n-1} = \{x_1, ..., x_n\}$
 - Obs.: O símbolo ⊂ não se refere a um conjunto estar contido em outro, mas a um agrupamento (partição) estar encaixado em outro na hierarquia de agrupamentos

- Algoritmos divisivos
 - Começam com $P_0 = \{x_1, ..., x_n\}$
 - o A cada passo t, dividem um cluster em dois, produzindo:
 - $|P_{t+1}| = |P_t| + 1 e P_{t+1} \subset P_t$
 - No passo final (passo n-1) tem-se a hierarquia:
 - $P_{n-1} = \{\{x_1\}, ..., \{x_n\}\} \subset ... \subset P_0 = \{x_1, ..., x_n\}$
 - Obs.: O símbolo ⊂ não se refere a um conjunto estar contido em outro, mas a um agrupamento (partição) estar encaixado em outro na hierarquia de agrupamentos

Esquema Aglomerativo Generalizado (EAG)

```
1 Incializar P_0 = \{\{x_1\}, \dots, \{x_n\}\}, t = 0

2 Para t = 1 até n - 1 faça

Encontrar o par de clusters mais próximos (C_i, C_j)

P_t = (P_{t-1} - \{C_i, C_j\}) \cup \{\{C_i, \cup C_j\}\}

/* atualiza centros

/* Número de chamadas a d(C_i, C_j) é O(n^3)
```


Esquema Aglomerativo Generalizado (EAG)

- Dois métodos de implementação comuns são baseados em:
 - Matrizes
 - Teoria dos grafos
- Uma matriz de objetos n x m, D(x), contém os n objetos com m atributos cada
- Uma matriz de proximidade $(n-t) \times (n-t)$, Prox_t, fornece a proximidade entre todos os pares de clusters em um nível t
 - Utiliza medida de distância (ex. Euclidiana)

Sejam os dados

$$\circ$$
 $X_1 = [1, 1]^t$,

o
$$x_2 = [2, 1]^t$$
,

$$prox_0^{SM} = \begin{bmatrix} 1 & 0.75 & 0.26 & 0.21 & 0.18 \\ 0.75 & 1 & 0.44 & 0.35 & 0.20 \\ 0.26 & 0.44 & 1 & 0.96 & 0.90 \\ 0.21 & 0.35 & 0.96 & 1 & 0.98 \\ 0.18 & 0.20 & 0.90 & 0.98 & 1 \end{bmatrix}$$

SM: medida de similaridade Medida de Tanimoto

Sejam os dados

$$\circ X_1 = [1, 1]^t$$

o
$$x_2 = [2, 1]^t$$
,

o
$$x_3 = [5, 4]^t$$
,

$$\circ$$
 $X_4 = [6, 5]^t$,

$$prox_0^{DM} = \begin{bmatrix} 0 & 1 & 5 & 6,4 & 7,4 \\ 1 & 0 & 4,2 & 5,7 & 6,7 \\ 5 & 4,2 & 0 & 1,4 & 2,5 \\ 6,4 & 5,7 & 1,4 & 0 & 1,1 \\ 7,4 & 6,7 & 2,5 & 1,1 & 0 \end{bmatrix}$$

DM: medida de dissimilaridade Distância Euclidiana

- Dendograma de proximidade
 - Árvore que indica hierarquia de partições
 - Incluindo a proximidade entre dois clusters e quando eles são combinados
 - O corte de um dendograma em qualquer nível produz uma simples partição

- Deve ser observado que o desenho do dendograma é arbitrário
 - Clusters podem ser rotacionados no ponto de bifurcação
 - Afeta a proximidade aparente entre fronteiras de clusters adjacentes
 - Mas a informação importante está contida no conteúdo do cluster e na sua similaridade

- E para calcular a distância?
 - o Existem várias métricas
 - Distância Euclidiana
 - Distância Manhattan (bloco-cidade)
 - Distância quadrática
 - Distância de Mahalanobis
 - **...**

- Como escolher uma partição?
 - o Partição com n clusters
 - Selecionando partição com n clusters na sequência de agrupamentos da hierarquia
 - Partição que melhor se encaixa nos dados
 - Procurar no dendograma grandes mudanças em níveis adjacentes
 - Nesse caso, uma mudança de j para j-1 grupos pode indicar que j é o melhor número de grupos
 - Existem outros procedimentos, alguns mais objetivos

- Existe uma grande variedade de algoritmos hierárquicos
 - o Geralmente diferem na forma de calcular distância inter-clusters (entre grupos)

$$d_{AB} = \min_{\substack{i \in A \\ j \in B}} (d_{ij})$$
 Por ligação simples (single-link)

$$d_{AB} = \max_{\substack{i \in A \\ j \in B}} (d_{ij})$$
 Por ligação completa (complete-link)

$$d_{AB} = \frac{1}{n_A n_B} \sum_{i \in A} \sum_{j \in B} d_{ij}$$
 Pela média do grupo (average-link)

Validação de agrupamentos

- Como avaliar os clusters gerados por um algoritmo de agrupamento?
 - Especialista no domínio dos dados
 - Demorado para grandes conjuntos de dados
 - Subjetivo
 - o Existem várias medidas de validação para agrupamento de dados
 - Julgam aspectos diferentes

Validação de agrupamentos

- Por que avaliar agrupamentos?
 - Para evitar encontrar padrões em ruídos
 - o Para comparar algoritmos de agrupamento
 - Para comparar duas partições
 - Para comparar dois grupos

Medidas de validação

- Podem ser divididas em três grupos
 - Índices ou critérios internos
 - Medem a qualidade da partição obtida sem considerar informações externas
 - Índices ou critérios relativos
 - Usados para comparar duas partições ou grupos
 - Índices ou critérios externos
 - Medem o quanto os rótulos dos grupos coincidem com a classe verdadeira

Medidas internas

- Coesão de clusters
 - o Mede o quão relacionados estão os objetos dentro de um cluster
- Separação de clusters
 - o Mede quão distinto ou separado um cluster é dos demais clusters

Medidas internas

- Silhueta
 - Combina coesão com separação
 - o Calculada para cada objeto que faz parte de um agrupamento
 - Baseada em:
 - Distância entre os objetos de um mesmo cluster e
 - Distância dos objetos de um cluster ao cluster mais próximo

Medidas internas

- Silhueta
 - Para cada objeto i
 - a(i) = distância média de i aos outros objetos de seu cluster
 - b(i) = min (distância média de i aos objetos dos outros clusters)

$$s(i) = \begin{cases} 1 - a(i) / b(i), \text{ se } a(i) < b(i) \\ 0, & \text{ se } a(i) = b(i) \\ b(i) / a(i) - 1, & \text{ se } a(i) > b(i) \end{cases}$$

- Largura média da silhueta
 - Média sobre todos os objetos do conjunto de dados
 - Valor entre -1 e 1 (quanto mais próximo de 1, melhor)

Medidas externas

- Medidas orientadas a similaridade
 - Comparam duas partições

$$Rand = \frac{f_{00} + f_{11}}{f_{00} + f_{01} + f_{10} + f_{11}}$$

$$Jac = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

- o Onde:
 - f_{00} = número de pares de objetos com classes e clusters diferentes
 - f_{01} = número de pares de objetos com classes diferentes e mesmo cluster
 - f_{10} = número de pares de objetos com mesma classe e clusters diferentes
 - f_{11} = número de pares de objetos com mesmas classes e clusters

Dificuldades

- Um mesmo conjunto de dados pode ter mais de uma estrutura relevante
 - Cada estrutura obedece uma definição de cluster ou nível de refinamento diferente
 - Análise de agrupamento tradicional busca por uma única estrutura dos dados
 - Limita a quantidade de conhecimento que pode ser obtido

Combinação de agrupamentos

- Objetivo:
 - o Obter partições de melhor qualidade
- Vantagens:
 - o Robustez frente a diferentes conformações dos dados
 - Novidade
 - Partições novas que não poderiam ser obtida com nenhum algoritmo, individualmente
 - Estabilidade
 - Obtém partições com menor sensibilidade a ruídos, outliers, variações de amostragem ou variabilidade dos algoritmos

Abordagens existentes

- Ensemble de agrupamentos
 - Geração de um conjunto de partições base
 - O mais diverso possível
 - o Combinação das partições base em uma partição consenso
 - Utilizando uma função consenso
- Agrupamento multi-objetivo
 - o Otimização simultânea de dois ou mais critérios de agrupamento complementares

Abordagens existentes

- Ensemble multi-objetivo
 - Combina as duas abordagens:
 - Gera um conjunto de partições base
 - Combina iterativamente por meio de uma técnica de ensemble
 - Ao mesmo em que seleciona as partições mais significativas com uma técnica multi-objetivo
 - Satisfação de mais de uma medida de validação

Comparação das abordagens

- Ensemble:
 - Obtém uma única partição
 - Precisa de ajustes finos de parâmetros
 - o Influenciado por partições iniciais de baixa qualidade
- Agrupamento multi-objetivo:
 - Não requer muitos ajustes de parâmetros
 - o Resulta em um número elevado partições
 - o Tem indicações das melhores para o algoritmo de otimização
 - Não necessariamente as melhores que a técnica pode obter

Aplicações

- Compressão (redução) de dados
 - o Representa cada cluster como um único dado
- Formulação de hipóteses sobre a natureza dos dados
- Verificar hipóteses sobre os dados
 - Que atributos s\u00e3o correlacionados
 - Que atributos s\u00e3o independentes
- Predição baseada em grupos

Considerações finais

- Abordagens tradicionais de agrupamento são muito utilizadas em AM
 - Várias definições de agrupamento
 - Diversos algoritmos
- Dificuldade de validar agrupamentos encontrados
- Semi-supervisionado

Fim do apresentação

