

Level-Up Insulin

An Intelligent Closed-Loop Insulin Delivery System

Presented by:

- Anitra R
- Naresh L
- Nimisha Patel
- Yatish S

CB.AI.U4AIM24004

CB.AI.U4AIM24028

CB.AI.U4AIM24029

CB.AI.U4AIM24050

24AIM113 & 24AIM114

Introduction to NN, CNN and GNN Analog System Design

Faculty In-Charge - Dr. Snigdhatanu Acharya, Dr. Amrutha V

PRESENTATION LAYOUT

- Problem Statement
- Objectives
- Concept Block Diagram
- Prototype Design
- Progress so far
- Hardware related to prototype
- Neural Network model from readings of prototype I
- Future Goals
- Timeline

PROBLEM STATEMENT

Current insulin delivery systems often depend on **manual monitoring** and **administration**, causing challenges in achieving optimal blood glucose control for individuals with diabetes.

How can we make insulin injection **automated** as soon as glucose levels rise??

- PROJECT GOALS -

- To provide an enhanced and smart **non-invasive Continuous Glucose Monitoring** (CGM) system and an automated insulin pump.
- To develop an algorithm to **calibrate insulin dosage** based on live glucose monitoring as well as bolus and basal insulin.
- To use better CGM sensor and enhancing its accuracy using **deep learning** techniques.

- To incorporate RF transmitter and receiver for connecting CGM and insulin pump to provide compactness and portability.
- To introduce a **safety system** (buzzer/haptic) for alerting in case of extreme hypoglycemia or hyperglycemia

CONCEPT BLOCK DIAGRAM

PROTOTYPE DESIGN

CGM

Insulin Pump

The **CGM** and **Insulin Pump** would be two separate devices integrated seamlessly through radio technology, as opposed to our previous design.

PROGRESS SO FAR-

PROTOTYPE I

- ☐ Created dataset using 1123 readings taken from prototype I.
- ☐ Inputs taken:
 - (a) BPM
 - (b) SpO2
- ☐ Output values:
 - (a) Blood glucose
- Made a neural network based on collected data.

PROTOTYPE II

- ☐ Insulin **infusion pump** has been designed.
- Methodology has been deduced for converting intensity values from sensor to glucose values.
- □ **RF transmission** mechanism has been implemented.

HARDWARE RELATED TO PROTOTYPE

Previous Design

New Design

PROBLEMS FACED & SOLUTIONS DERIVED

1

Poor accuracy with a vanilla Neural Network architecture

- Since a simple NN architecture was not working out, we went with a more complex architecture consisting of 4 fully connected layers and ReLU activation.
- Z-Score normalization gave us a poor accuracy (~54%) After re-tuning the model, we found that Min-Max normalization gave us a better accuracy of 97.09%

2

Low RAM on Arduino Uno and Nano boards (32KB)

- If we run the SSD1306 OLED Display on full resolution (128 x 64), there is not enough RAM left to load the RadioHead library. For now, it is running on half its maximum resolution (128 x 32).
- This also prompted us the idea of integrating an Android App interface with the model, which is one more reason why we are using ESP32.

NN MODEL RESULTS

From Prototype 1

FUTURE GOALS

- ☐ To take experimental readings from NIR sensor of prototype II
- ☐ To make the neural network from the readings of prototype II
- ☐ To set up a comparison between the values of glucose from NN model of both the prototypes
- ☐ To achieve portability and compactness of the model in the final design

PROPOSED TIMELINE

Tentative 2nd Review

March 1st week

Jan 3rd week

Research on implementations, component selection and literature.

Feb 3rd week

Dataset building and development of DL model; algorithm implementation with embedded programming

First Review

Feb 1st week

Prototype completion, final testing and implementation.

April 2nd week

Tentative final review

April 1st week

