

Europäisches Patentamt European Patent Office

0/019

Office eur péen des brevets

REC'D 13 SEP 2000

EITTU

Bescheinigung

Certificate

Attestation

NS 00/18468

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet n°

99870146.0

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED BUT NOT IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

I.L.C. HATTEN-HECKMAN

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

21/08/00

EPA/EPO/OEB Form 1014 - 02.9

THIS PAGE BLANK (USPTO)

Eur päisches **Patentamt**

Eur pean **Patent Office** Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

Application no.: Demande n':

99870146.0

Anmeldetag: Date of filing: Date de dépôt:

08/07/99

Anmelder: Applicant(s): Demandeur(s):

THE PROCTER & GAMBLE COMPANY Cincinnati, Ohio 45202 UNITED STATES OF AMERICA

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Process for producing particles of amine reaction product

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

State: Pays:

Tag:

Aktenzeichen:

File no. Numéro de dépôt:

Date:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

C11D3/00, C11D3/20, C11D3/30, C11D3/22, C11D3/37, C11D3/33, C11D3/50, C11D17/06

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

THIS PAGE BLANK (USPTO)

CM 2176 F

PROCESS FOR PRODUCING PARTICLES OF AMINE REACTION PRODUCT

5

10

15

Alfred (NMN) BUSCH
Marcel (NMN) HOMBLE
Christophe (NMN) LAUDAMIEL
Johan (NMN) SMETS
Rafael (NMN) TRUJILLO
Jean (NMN) WEVERS

Field of the invention

The present invention relates to a process for producing particles of amine reaction product.

Background of the invention

25

30

35

Perfumed products are well-known in the art. However, consumer acceptance of such perfumed products like laundry and cleaning products is determined not only by the performance achieved with these products but also by the aesthetics associated therewith. The perfume components are therefore an important aspect of the successful formulation of such commercial products.

It is also desired by consumers for treated fabrics to maintain the pleasing fragrance over time. Indeed, perfume additives make such compositions more aesthetically pleasing to the consumer, and in some cases the perfume imparts a pleasant fragrance to fabrics treated therewith. However, the amount of perfume carried-over from an aqueous laundry bath onto fabrics is often marginal and does not last long on the fabric. Furthermore, fragrance materials are often very costly and their inefficient use in laundry and cleaning compositions and ineffective delivery to

fabrics results in a very high cost to both consumers and laundry and cleaning manufacturers. Industry, therefore, continues to seek with urgency for more efficient and effective fragrance delivery in laundry and cleaning products, especially for improvement in the provision of long-lasting fragrance to the fabrics.

5

10

15

It has recently been found that an amine reaction product of a compound containing a primary amine functional group and an active ketone or aldehyde containing component fulfills such a need. Disclosure of such compounds can be found in recently filed applications EP 98870227.0, EP 98870226.2, EP 99870026.4, and EP 99870025.6, all incorporated herein by reference.

However, a problem now encountered with the use of these compound is their ease of incorporation into fully formulated compositions. Indeed, such amine reaction products are often viscous which renders their incorporation into these fully formulated compositions more cumbersome.

It is therefore an object of the invention to provide amine reaction product in a form suitable for easy incorporation into fully formulated composition.

It has now been found that the mixing of the amine reaction product with a carrier having specific melting point to form a particle fulfills such a need. Depending on the property of the carrier, the obtained particle is thereafter treated to form a coated particle.

Further, it has also been advantageously found that both viscous and non-viscous amine reaction product when processed by the present invention exhibit better deposition and long lasting release than amine reaction product which have not been processed according to this process. Not to be bound by theory, it is believed that the mixing with such carrier acts as a shell around the amine reaction product, thus protecting it from the aggressive wash liquor as well as enhancing its fabric deposition properties.

By "viscous", it is meant a product which has a viscosity higher than \$1000 cps. The viscosity is measured from a rheometer. TA Instrument CSL2 to gat a temperature of 25C with a gap setting of 500 microns.

The carrier for use herein has a melting point, measured at atmospheric pressure, of less than 30°C.

35

- 10

15

25

Summary of the invention

- The present invention is a process for making particles of amine reaction product of a compound containing a primary and/or secondary amine functional group and an active ketone or aldehyde containing component, and which comprises the steps of:

 a)-providing the amine reaction product, and
 - b)-mixing therewith a carrier having a melting point of less than 30°C.
 - In a preferred embodiment of the invention, the processed amine reaction product is further processed to form a coated particle.

In another aspect of the invention, the processed amine reaction product or coated particle is incorporated in a finished composition.

Detailed description of the invention

Starting materials

20 1)-Amine reaction product

The amine reaction product for use herein is a product of reaction between a compound containing a primary and/or secondary amine functional group and an active ketone or aldehyde containing component, so called hereinafter "amine reaction product".

A typical disclosure of amine reaction product suitable for use herein can be found in recently filed applications EP 98870227.0, EP 98870226.2, EP 99870026.4, and EP 99870025.6, all incorporated herein by reference.

- 30 A-Primary and/or secondary amine
 - By "primary and/or secondary amine", it is meant a component which carries at least one primary and/or secondary amine and/or amide function.
- Preferably, the primary and/or secondary amine compound is also characterized by an Odour Intensity Index of less than that of a 1% solution of methyl anthranilate in dipropylene glycol.

10

Od ur Intensity Index method

By Odour Intensity Index, it meant that the pure chemicals were diluted at 1% in Dipropylene Glycol, odor-free solvent used in perfumery. This percentage is more representative of usage levels. Smelling strips, or so called "blotters", were dipped and presented to the expert panellist for evaluation. Expert panellists are assessors trained for at least six months in odor grading and whose gradings are checked for accuracy and reproducibility versus a reference on an on-going basis. For each amine compound, the panellist was presented two blotters one reference (Me Anthranilate, unknown from the panellist) and the sample. The panellist was asked to rank both smelling strips on the 0-5 odor intensity scale, 0 being no odor detected, 5 being very strong odor present.

15 Results:

The following represents Odour Intensity Index of an amine compound suitable for use in the present invention and according to the above procedure in each case, numbers are arithmetic averages among 5 expert panellists and the results are statistically significantly different at 95% confidence level.

20

Methylanthranilate 1 % (reference)	3.4
Ethyl-4-aminobenzoate (EAB)*1%	0.9

A general structure for the primary amine compound of the invention is as follows: B-(NH2)_n;

wherein B is a carrier material, and n is an index of value of at least 1.

Compounds containing a secondary amine group have a structure similar to the above excepted that the compound comprises one or more -NH- groups instead of -NH2. Further, the compound structure may also have one or more of both -NH2 and -NH- groups.

Preferred B carriers are inorganic or organic carriers:

By "inorganic carrier", it is meant carrier which are non-or substantially non carbon based backbones.

35

20

25

30

Preferred primary and/or secondary amines, among the inorganic carriers, are those selected from mono or polymers or organic-organosilicon copolymers of amino derivatised organo silane, siloxane, silazane, alumane, aluminum siloxane, or aluminum silicate compounds. Typical examples of such carriers are: organosiloxanes with at least one primary amine moiety like the diaminoalkylsiloxane [H2NCH2(CH3) 2Si]O, or the organoaminosilane (C6H5) 3SiNH2 described in: Chemistry and Technology of Silicone, W. Noll, Academic Press Inc. 1998, London, pp 209, 106).

Preferred primary and/or secondary amines, among the organic carriers, are those 10 selected from aminoaryl derivatives, polyamines, amino acids and derivatives thereof, substituted amines and amides, glucamines, dendrimers, polyvinylamines and derivatives thereof, and/or copolymer thereof, alkylene polyamine. polyaminoacid and copolymer thereof, cross-linked polyaminoacids. 15 substituted polyvinylalcohol, polyoxyethylene bis amine or bis aminoalkyl, aminoalkyl piperazine and derivatives thereof, bis (amino alkyl) alkyl diamine linear or branched, and mixtures thereof.

Preferred aminoaryl derivatives are the amino-benzene derivatives including the alkyl esters of 4-amino benzoate compounds, and more preferably selected from ethyl-4-amino benzoate, phenylethyl-4-aminobenzoate, phenyl-4-aminobenzoate, 4-amino-N'-(3-aminopropyl)-benzamide, and mixtures thereof.

Polyamines suitable for use in the present invention are polyethyleneimines polymers, poly[oxy(methyl-1,2-ethanediyl)], α -(2-aminomethylethyl)- ω -(2aminomethyl-ethoxy)- (= C.A.S No. 9046-10-0); poly[oxy(methyl-1,2-ethanediyl)], α hydro-)-ω-(2-aminomethylethoxy)-, ether with 2-ethyl-2-(hydroxymethyl)-1,3propanediol (= C.A.S. No. 39423-51-3); commercially available under the tradename Jeffamines T-403, D-230, D-400, D-2000; 2,2',2"-triaminotriethylamine; 2,2'-diamino-3,3'-diamino-dipropylamine, diethylamine; 1,3 bis aminoethyl-cyclohexane commercially available from Mitsibushi and the C12 Sternamines commercially available from Clariant like the C12 Sternamin(propylenamine), with n=3/4, and mixtures thereof. Preferred polyamines are polyethyleneimines commercially available under the tradename Lupasol like Lupasol FG (MW 800), G20wfy (MW

20

25

30

1300), PR8515 (MW 2000), WF (MW 25000), FC (MW 800), G20 (MW 1300), G35 (MW 1200), G100 (MW 2000), HF (MW 25000), P (MW 750000), PS (MW 750000), SK (MW 2000000), SNA (MW 1000000).

Preferred amino acids for use herein are selected tyrosine, tryptophane, lysine, glutamic acid, glutamine, aspartic acid, arginine, asparagine, phenylalanine, proline, glycine, serine, histidine, threonine, methionine, and mixture thereof, most preferably selected from tyrosine, tryptophane, and mixture thereof. Preferred amino acid derivatives selected from tyrosine ethylate, glycine methylate, tryptophane ethylate, and mixture thereof.

Preferred substituted amines and amides for use herein are selected from nipecotamide, N-coco-1,3-propenediamine; N-oleyl-1,3-propenediamine; N-(tallow alkyl)-1,3-propenediamine; 1,4-diamino cyclohexane; 1,2-diamino-cyclohexane; 1,12-diaminododecane, and mixtures thereof.

Other primary amine compounds suitable for use herein are the glucamines, preferably selected from 2,3,4,5,6-pentamethoxy-glucamine; 6-acetylglucamine, glucamine, and mixture thereof.

Also preferred compounds are the polyethylenimine and/or polypropylenimine dendrimers and the commercially available Starburst® polyamidoamines (PAMAM) dendrimers, generation G0-G10 from Dendritech and the dendrimers Astromols®, generation 1-5 from DSM being DiAminoButane PolyAmine DAB (PA)x dendrimers with $x = 2^n x4$ and n being generally comprised between 0 and 4.

Still other preferred primary and/or secondary amine containing compounds are amino-functional polymers. Preferred amino-functional polymers for use in the present invention are selected from the polyvinylamines, derivatives thereof, copolymer thereof, alkylene polyamine, polyaminoacids and copolymer thereof, cross-linked polyaminoacids, amino substituted polyvinylalcohol, polyoxyethylene bis amine or bis aminoalkyl, aminoalkyl piperazine and derivatives, N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched (TPTA), and mixtures thereof.

Polyamino acid is one suitable and preferred class of amino-functional polymer. Polyaminoacids are compounds which are made up of amino acids or chemically

10

15

20

25

30

35

modified amino acids. They can contain alanine, serine, aspartic acid, arginine, valine, threonine, glutamic acid, leucine, cysteine, histidine, lysine, isoleucine, tyrosine, asparagine, methionine, proline, tryptophan, phenylalanine, glutamine, glycine or mixtures thereof. In chemically modified amino acids, the amine or acidic function of the amino acid has reacted with a chemical reagent. This is often done to protect these chemical amine and acid functions of the amino acid in a subsequent reaction or to give special properties to the amino acids, like improved solubility. Examples of such chemical modifications are benzyloxycarbonyl, aminobutyric acid, butyl ester, pyroglutamic acid. More examples of common modifications of amino acids and small amino acid fragments can be found in the Bachem, 1996, Peptides and Biochemicals Catalog.

Preferred polyamino acids are polylysines, polyarginine, polyglutamine, polyasparagine, polyhistidine, polytryptophane or mixtures thereof. Most preferred are polylysines or polyamino acids where more than 50% of the amino acids are lysine, since the primary amine function in the side chain of the lysine is the most reactive amine of all amino acids.

The preferred polyamino acid has a molecular weight of 500 to 10.000.000, more preferably between 5.000 and 750.000.

The polyamino acid can be cross linked. The cross linking can be obtained for example by condensation of the amine group in the side chain of the amino acid like lysine with the carboxyl function on the amino acid or with protein cross linkers like PEG derivatives. The cross linked polyamino acids still need to have free primary and/or secondary amino groups left for reaction with the active ingredient.

The preferred cross linked polyamino acid has a molecular weight of 20.000 to 10.000.000, more preferably between 200.000 and 2.000.000.

The polyamino acid or the amino acid can be co-polymerized with other reagents like for instance with acids, amides, acyl chlorides. More specifically with aminocaproic acid, adipic acid, ethylhexanoic acid, caprolactam or mixture thereof. The molar ratio used in these copolymers ranges from 1:1 (reagent/ amino acid (lysine)) to 1:20, more preferably from 1:1 to 1:10.

The polyamino acid like polylysine can be partially ethoxylated.

15

20

30

35

Examples and supply of polyaminoacids containing lysine, arginine, glutamime, asparagine are given in the Bachem 1996, Peptides and Biochemicals catalog.

The polyaminoacid can be obtained before reaction with the active ingredient, under a salt form. For example polylysine can be supplied as polylysine hydrobromide is commercially available from Sigma, Applichem, Bachem and Fluka.

Examples of suitable amino functional polymers containing at least one primary and/or secondary amine group for the purpose of the present invention are:

- Polyvinylamine with a MW of about 300-2.10E6;
- Polyvinylamine alkoxylated with a MW of about 600, 1200 or 3000 and an ethoxylation degree of 0.5;
- Polyvinylamine vinylalcohol molar ratio 2:1, polyvinylaminevinylformamide molar ratio 1:2 and polyvinylamine vinylformamide-molar ratio 2:1;
- Triethylenetetramine, diethylenetriamine, tetraethylenepentamine;
- Bis-aminopropylpiperazine
- Polyamino acid (L-lysine / lauric acid in a molararatio of 10/1), Polyamino acid (L-lysine / aminocaproic acid / adipic acid in a molararatio of 5/5/41), Polyamino acid (L-lysine / aminocaproic acid / ethylhexanoic acid in a molararatio of 5/3/1) Polyamino acid (polylysine-cocaprolactam); Polylysine Polylysine Polylysine hydrobromide; cross-linked polylysine,
- amino substituted polyvinylalcohol with a MW ranging from 400 300 000 -
- polyoxyethylene bis [amine] available from e.g. Sigma;
- polyoxyethylene bis [6-aminohexyl] available from e.g. Sigma;
 - N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched (TPTA); and
 - 1,4-bis-(3-aminopropyl) piperazine (BNPP).

The more preferred compounds are selected from ethyl-4-amino benzoate, polyethyleneimine polymers commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA; the diaminobutane-dendrimers-Astramol®, polylysine, cross-linked polylysine, N,N'-bis-(3-aminopropyl)-1,3-propanediamine-linear preferred compounds are those selected from ethyl-4-amino benzoate, polyethyleneimine polymers commercially available under the tradename Lupasol like Lupasol FG, G20,wfv, PR8515, WF, FC, G20, G35, G100, HF, P, PS, SK, SNA; polylysine, cross-linked polylysine, N,N'-bis-

10

15

20

30

35

(3-aminopropyl)-1,3-propanediamine linear or branched, 1,4-bis-(3-aminopropyl) piperazine, and mixtures thereof.

Advantageously, such most preferred primary and/or secondary amine compounds also provide fabric appearance benefit, in particular colour appearance benefit, thus providing a resulting amine reaction product with the dual properties of both fabric appearance benefit and delayed release of the active. Further, when the primary and/or secondary amine compound has more than one free primary and/or secondary amine group, several different active ingredients (aldehyde and/or ketone) can be linked to the amine compound.

B-Active ketone and/or aldehyde

Preferably, for the above mentioned compounds, by active ketone or active aldehyde, it is meant any chain containing at least 1 carbon atom, preferably at least 5 carbon atoms.

Preferably, the active ketone or active aldehyde is respectively selected from a flavour ketone or aldehyde ingredient, a pharmaceutical ketone or aldehyde active, a biocontrol ketone or aldehyde agent, a perfume ketone or aldehyde component and mixtures thereof; most preferably a perfume ketone and/or aldehyde.

Flavour ingredients include spices, flavor enhancers that contribute to the overall flavour perception.

25 Pharmaceutical actives include drugs.

Biocontrol agents include biocides, antimicrobials, bactericides, fungicides, algaecides, mildewcides, disinfectants, sanitiser like bleach, antiseptics, insecticides, insect and/or moth repellant, vermicides, plant growth hormones.

Typical antimicrobials include Glutaraldehyde, Cinnamaldehyde, and mixtures thereof. Typical insect and/or moth repellants are perfume ingredients, such as citronellal, citral, N, N diethyl meta toluamide, Rotundial, 8-acetoxycarvotanacenone, and mixtures thereof. Other examples of insect and/or moth repellant for use herein are disclosed in US 4,449,987, 4,693,890, 4,696,676, 4,933,371, 5,030,660, 5,196,200, and "Semio Activity of Flavor and Fragrance molecules on various Insect Species", B.D. Mookherjee et al., published in <u>Bioactive Volatile Compounds from</u>

<u>Plants</u>, ASC Symposium Series 525, R. Teranishi, R.G. Buttery, and H. Sugisawa, 1993, pp. 35-48.

A typical disclosure of suitable ketone and/or aldehydes, traditionally used in perfumery, can be found in "perfume and Flavor Chemicals", Vol. I and II, S. Arctander, Allured Publishing, 1994, ISBN-0-931710-35-5.

Perfume ketones components include components having odoriferous properties.

Preferably, for the above mentioned compounds, the perfume ketone is selected 10 from buccoxime; iso jasmone; methyl beta naphthyl ketone; musk indanone; tonalid/musk plus; Alpha-Damascone, Beta-Damascone, Delta-Damascone, Iso-Damascone, Damascenone, Damarose, Methyl-Dihydrojasmonate, Carvone, Camphor, Fenchone, Alpha-Ionone, Beta-Ionone, Gamma-Methyl socalled Ionone, Fleuramone, Dihydrojasmone, Cis-Jasmone, Iso-E-Super, Methyl-15 Cedrenyl-ketone or Methyl- Cedrylone, Acetophenone, Methyl-Acetophenone, Para-Benzyl-Acetone, Methoxy-Acetophenone, Methyl-Beta-Naphtyl-Ketone, Benzophenone, Para-Hydroxy-Phenyl-Butanone, Celery Ketone or Livescone, 6-Isopropyldecahydro=2-naphtone,... Dimethyl-Octenone, Freskomenthe, Ethoxyvinyl)-3,3,5,5, tetramethyl-Cyclohexanone, Methyl-Heptenone, 2-(2-(4-Methyl-20 3-cyclohexen-1-yl)propyl)-cyclopentanone, *1-(p-Menthen-6(2)-yl)-1-propanone, 4-(4-Hydroxy-3-methoxyphenyl)-2-butanone, 2-Acetyl-3,3-Dimethyl-Norbornane, Dihydro-1,1,2,3,3-Pentamethyl-4(5H)-Indanone, 4-Damascol, Dulcinyl or Cassione, Gelsone, Hexalon, Isocyclemone E, Methyl Cyclocitrone, Methyl-Lavender-Ketone, Para-tertiary-Butyl-Cyclohexanone, Verdone, Delphone, 25 Orivon, 2,4,4,7-Tetramethyl-oct-6-en-3-one, Veloutone. Plicatone. Neobutenone, Tetrameran, hedione, and mixtures thereof.

More preferably, for the above mentioned compounds, the preferred ketones are selected from Alpha Damascone, Delta Damascone, Iso Damascone, Carvone, Gamma-Methyl-Ionone, Iso-E-Super, 2,4,4,7-Tetramethyl-oct-6-en-3-one, Benzyl Acetone, Beta-Damascone, Damascenone, methyl-dihydrojasmonate, methyl cedrylone, hedione, and mixtures thereofor

35 Perfume aldehyde components include components having odoriferous properties.

Preferably, for the above mentioned compounds, the perfume aldehyde is selected from adoxal; anisic aldehyde; cymal; ethyl vanillin; florhydral; helional; heliotropin;

30

10

15

20

25

30

35

hydroxycitronellal; koavone; lauric aldehyde; lyral; methyl nonyl acetaldehyde; P. T. bucinal: phenyl acetaldehyde; undecylenic aldehyde; vanillin; 2.6,10-trimethyl-9-3-dodecen-1-al, alpha-n-amyl cinnamic aldehyde, undecenal. 4methoxybenzaldehyde, benzaldehyde, 3-(4-tert butylphenyl)-propanal, 2-methyl-3-(para-methoxyphenyl propanal. 2-methyl-4-(2,6,6-trimethyl-2(1)-cyclohexen-1-yl) butanal, 3-phenyl-2-propenal, cis-/trans-3,7-dimethyl-2,6-octadien-1-al, 3,7-dimethyl-6-octen-1-al, [(3,7-dimethyl-6-octenyl)oxy] acetaldehyde, 4-isopropylbenzyaldehyde, 1,2,3,4,5,6,7,8-octahydro-8,8-dimethyl-2-naphthaldehyde, 2,4-dimethyl-3cyclohexen-1-carboxaldehyde, 2-methyl-3-(isopropylphenyl)propanal, 1-decanal; 2,6-dimethyl-5-heptenal, 4-(tricyclo[5.2.1.0(2,6)]-decylidene-8)aldehyde. octahydro-4,7-methano-1H-indenecarboxaldehyde, 3-ethoxy-4-hydroxy butanal. benzaldehyde, para-ethyl-alpha, alpha-dimethyl hydrocinnamaldehyde, alphamethyl-3,4-(methylenedioxy)-hydrocinnamaldehyde, 3.4methylenedioxybenzaldehyde, alpha-n-hexyl cinnamic aldehyde, m-cymene-7carboxaldehyde, alpha-methyl phenyl acetaldehyde, 7-hydroxy-3,7-dimethyl octanal, 2,4,6-trimethyl-3-cyclohexene-1-carboxaldehyde, 4-(3)(4-methyl-3pentenyl)-3-cyclohexen-carboxaldehyde, 1-dodecanal, 2,4-dimethyl cyclohexene-3carboxaldehyde, 4-(4-hydroxy-4-methyl pentyl)-3-cylohexene-1-carboxaldehyde, 7methoxy-3,7-dimethyloctan-1-al, 2-methyl undecanal, 2-methyl decanal, 1-nonanal, 1-octanal. 2,6,10-trimethyl-5,9-undecadienal, 2-methyl-3-(4-tertbutyl)propanal, dihydrocinnamic aldehyde, 1-methyl-4-(4-methyl-3-pentenyl)-3-cyclohexene-1carboxaldehyde. 5 or 6 methoxy0hexahydro-4,7-methanoindan-1 carboxaldehyde, 3,7-dimethyloctan-1-al, 1-undecanal, 10-undecen-1-al, 4-hydroxy-3-methoxy benzaldehyde, 1-methyl-3-(4-methylpentyl)-3-cyclhexenecarboxaldehyde, trans-4-decenal, 2,6-nonadienal, 7-hydroxy-3,7-dimethyl-octanal, paratolylacetaldehyde; 4-methylphenylacetaldehyde, 2-methyl-4-(2,6,6-trimethyl-1cyclohexen-1-yl)-2-butenal, ortho-methoxycinnamic aldehyde, 3,5,6-trimethyl-3carboxaldehyde, 3,7-dimethyl-2-methylene-6-octenal, cyclohexene phenoxyacetaldehyde, 5,9-dimethyl-4,8-decadienal, peony aldehyde (6,10-dimethyl-3-oxa-5,9-undecadien-1-al), hexahydro-4,7-methanoindan-1-carboxaldehyde, methyl octanal, alpha-methyl-4-(1-methyl ethyl) benzene acetaldehyde, 6,6-dimethyl-2-norpinene-2-propionaldehyde, para methyl phenoxy acetaldehyde, 2-methyl-3-Hexahydro-8,8-dimethyl-2phenyi-2-propen-1-al, 3,5,5-trimethyl hexanal, naphthaldehyde, 3-propyl-bicyclo[2.2.1]-hept-5-ene-2-carbaldehyde, 9-decenal, 3methyl-5-phenyl-1-pentanal. methylnonyl acetaldehyde. 1-p-menthene-qcarboxaldehyde, citral, lilial and mixtures thereof.

10

15

20

25

30

35

Most preferred aldehydes are selected from citral, 1-decanal, benzaldehyde, florhydral, 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde; cis/trans-3,7-dimethyl-2,6-octadien-1-al; heliotropin; 2,4,6-trimethyl-3-cyclohexene-1-carboxaldehyde; 2,6-nonadienal; alpha-n-amyl cinnamic aldehyde, alpha-n-hexyl cinnamic aldehyde, P.T. Bucinal, lyral, cymal, methyl nonyl acetaldehyde, trans-2-nonenal, lilial, trans-2-nonenal, and-mixture thereofe:

In the above list of perfume ingredients, some are commercial names conventionally known to one skilled in the art, and also includes isomers. Such isomers are also suitable for use in the present invention.

In another embodiment, especially suitable for the purpose of the present invention are the perfume compounds, preferably the perfume ketones or aldehydes, characterised by having a low Odor Detection Threshold. Such Odor Detection Threshold (ODT) should be lower than 1ppm, preferably lower than 10ppb - measured at controlled Gas Chromatography (GC) conditions such as described here below. This parameter refers to the value commonly used in the perfumeny arts and which is the lowest concentration at which significant detection takes place that some odorous material is present as referred to for example in "Compilation of Odor and Taste Threshold Value Data (ASTIM DS 48 A)", "edited by F. A. Fazzalari, International Businesse Machines," Hopwell Junction, NY and in Calkin et al., Perfumery, Practice and Principles, John Willey & Sons, Inc., page 243 et seq (1994). For the purpose of the present invention, the Odor Detection Threshold is measured according to the following method:

The gas chromatograph is characterized to determine the exact volume of material injected by the syringe, the precise split ratio, and the hydrocarbon response using a hydrocarbon standard of known concentration and chain-length distribution. The air flow rate is accurately measured and, assuming the duration of a human inhalation to last 0.02 minutes, the sampled volume is calculated. Since the precise concentration at the detector at any point in time is known, the mass per volume inhaled is known and hence the concentration of material. To determine the ODT of a perfume material, solutions are delivered to the sniff port at the back-calculated concentration. A panelist sniffs the GC effluent and identifies the retention time when odor is noticed. The average over all panelists determines the threshold of noticeability. The necessary amount of analyte is injected onto the column to achieve a certain concentration, such as 10 ppb, at the detector. Typical gas chromatograph parameters for determining odor detection thresholds are listed below.

GC: 5890 Series II with FID detector

7673 Autosampler

Column: J&W Scientific DB-1

Length 30 meters ID 0.25 mm film thickness 1 micron

5 Method:

Split Injection: 17/1 split ratio

Autosampler: 1.13 microliters per injection

Column Flow: 1.10 mL/minute

Air Flow: 345 mL/minute

10 Inlet Temp. 245°C

Detector Temp. 285°C

Temperature Information

Initial Temperature: 50°C

Rate: 5C/minute

15 Final Temperature: 280°C

Final Time: 6 minutes

Leading assumptions: 0.02 minutes per sniff

GC air adds to sample dilution

Examples of such preferred perfume components are those selected from : 2-methyl-2-(para-iso-propylphenyl)-propionaldehyde, 1-(2,6,6-trimethyl-2-cyclohexan-1-yl)-2-buten-1-one and/or para-methoxy-acetophenone. Even more preferred are the following compounds having an ODT ≤ 10ppb measured with the method described above : undecylenic aldehyde, undecalactone gamma, heliotropin, dodecalactone gamma, p-anisic aldehyde, para hydroxy-phenyl-butanone, cymal, benzyl acetone, ionone alpha, p.t.bucinal, damascenone, ionone beta and methyl-nonyl ketone.

Typically the level of active is of from 10 to 90%, preferably from 30 to 85%, more preferably from 45 to 80% by weight of the amine reaction product.

Preferred amine reaction products are those which have a Dry Surface Odour Index as per given in co-pending application EP 98870155.3 given at page 29, line 26 to page 32 line 29, in which the specified unperfumed base for fabric surfaces and hard surfaces are respectively as follow:

Composition for fabric surface test	% by weight
LAS	16

30

35

NaSKS-6	6
PB1	8
TAED	2.4
Carbonate	1
Sodium Carbonate	1
HEDP	0.4
SRP1	0.2
Photobleach	0.013
Citric acid	1.0
Protease	0.3
Lipase	0.1
Cellulase	0.1
Amylase	0.3
Zeolilte	3.0
TFAA	3.0
QAS1	2.5
Silicone antifoam	1.0
Misc/minors:to.balance.to.100%	

Composition for hard-surface test	%"by weight
C12-14 EO 21 14	2
C12-14 EO 5	2.5.±
C9-11 EO 5	2.5
LAS	0.8
Na2CO3	0.2
Citric acid	0.8
Caustic acid	0.5
Fatty acid	0.5
scs	1.5
Water & Misc/Minors to balance to 100%	

Most preferred amine reaction products are those resulting from the reaction of polyethyleneimine polymeralike tupasol polymers. BNRP or TPTA with one or more of the following Alpha Damascone, Delta Damascone, Carvone, Gamma-Methyllonone, Hedione, Florhydral, Lilial, Heliotropine, and 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde. Still other preferred amine reaction products are those resulting from the reaction of Astramol Dendrimers with Carvone as well as those resulting

5

10

15

20

25

30

35

from the reaction of ethyl-4-amino benzoate with one or more of the following 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde, and trans-2-nonenal. Still another preferred amine reaction products are those resulting from the reaction of polylysine with one or more of the following Alpha Damascone, Delta Damascone, Carvone, and 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde.

Even most preferred amine reaction products are those from the reaction of Lupasol HF with Delta Damascone; LupasolG35 with Alpha Damascone; LupasolG100 with 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde, BNPP or TPTA with Alpha and Delta Damascone; ethyl-4-amino benzoate with 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde.

Most preferred amine reaction products are those fulfilling the Dry Surface Odor Index as per given in co-pending application EP 98870155.3 given at page 29, line 26 to page 32 line 29.

2)-Carrier

Another essential ingredient of the process invention is a carrier having a melting point of less than 30°C, preferably between minus 150°C and less than 30°C. By means of this carrier, particles of amine reaction product, suitable for spray-on application, will be produced.

Typical of such carrier includes liquid as well as solid carrier material. The liquid carrier can be in any suitable physical form like hydrophobic or hydrophilic form.

As used herein in relation to carrier materials, "hydrophobic" means substantially water insoluble; "hydrophilic" means substantially water soluble. In this regard, "substantially water insoluble" shall refer to a material that is not soluble in distilled (or equivalent) water, at 25.degree. C., at a concentration of 0.2% by weight, and preferably not soluble at 0.1% by weight (calculated on a water plus carrier weight basis). "Substantially water soluble" shall refer to a material that is soluble in distilled (or equivalent) water, at 25.degree. C., at a concentration of 0.2% by weight, and are preferably soluble at 1.0% by weight. The terms "soluble", "solubility" and the like, for purposes hereof, corresponds to the maximum concentration of carrier, as applicable, that can dissolve in water or other solvents to form a homogeneous solution, as is well understood to those skilled in the art.

20

25

Typical of materials that are in hydrophobic form include ingredients useful in perfumery. Typical of such ingredients are the perfume raw materials, solvents, and mixtures thereof. Typical hydrophobic raw materials include the ketones or aldehydes like hexyl cinnamic aldehyde, hydrocarbons like Limolene, d-Limonene, esters like Hercolyn D, benzyl salicylate, hexyl salicylate, triethyl citrate, iso propyl myristate, or mixtures thereof, or hydrophobic perfume composition preferably incorporating one or more of these raw materials.

Typical hydrophobic solvents include diethyl phthalate, ethers like butoxypropoxypropanol, and mixtures thereof.

Also suitable for use herein are the finished perfume compositions which have hydrophobic properties.

Typical of materials that are in hydrophilic form include alcohols like methanol, ethanol, dipropyleneglycol, water, nonionic surfactants as above described but having a melting point below 30C, or mixtures thereof.

Preferred carrier materials are eselected from benzyl salicylate, diethyl phatalate, dipropylene glycol, methanol, ethanol, and mixtures; thereof.

Typically when the amine reaction product is only mixed with a carrier but not further processed, the amine reaction product will be present in an amount of from 1 to 75%, preferably 10 to 60%, more preferably 15 to 45% by weight of the processed reaction product. In this instance, the amount of carrier will be sufficient to add up to 100%. Of course, the processed amine reaction product may also contain minors but in quantities which will not exceed the amount of carrier material. Typically the carrier will be present in an amount of from 3 to 95%, preferably from 15 to 90% and most preferably from 45 to 85%, by weight of the processed amine reaction product.

By processed amine reaction product, it is meant the resulting product of the amine reaction product with the carrier material.

Processing of the amine reaction product with the carrier is done by thoroughly mixing the amine reaction product with the carrier. Advantageously, there is no need for additional ingredients to provide a resulting substantially homogenous mixture. This mixing is done at the lowest possible temperature, i.e. just above the melting point of the carrier or at room temperature. The mixing step is carried out until a complete homogeneous mixture is obtained. By "homogeneous", it is meant

compositions which have similar appearance to the resulting composition of a 20g of amine reaction product mixed with 20g of methanol or 80g of diethylphtalate for 5 minutes by means of an Ultra Turrax, the temperature of mixing being room temperature.

5

The obtained processed amine reaction product may then be suitable for spray on applications when use of a liquid carrier is made.

Coating agents

10

When use of a carrier with a melting point of less than 30 °C is made for the mixing with the amine reaction product, it may then be preferred to further process the mixture to form a coated particle like e.g. by adsorption of the mixture onto a solid, preferably porous coating. The coating will advantageously protect the processed amine reaction product from the aggressive chemicals present in wash water.

15

The resulting coated particles can be in any form which is suitable for incorporation into liquid or powders, preferably powders, such as agglomerate, pellets, tablets, or mixtures thereof.

20

Suitable coating agents for both solid, including paste, and liquid mixtures are substantially water-soluble solid binder or agglomerating agents.

25

"Substantially water soluble" shall refer to a material that is soluble in distilled (or equivalent) water, at 25°C., at a concentration of 0.2% by weight, and are preferably soluble at 1.0% by weight.

A "solid" is defined as a material that is a solid at ambient temperatures, and so solid substantially water-soluble binder or agglomerating agent must have a melting point of at least 30°C, and preferably of at least 40°C.

30

35

Suitable water-soluble binders or agglomerating agents include the water soluble organic polymeric compounds, water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, sulfate salts like sodium and magnesium sulfate, inorganic perhydrate salts including perborate like perborate monohydrate, percarbonate, silicates, starch, cyclodextrin, and mixtures of any of the foregoing.

10

15

20

25

30

35

Suitable organic polymeric compounds suitable as coating agents include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylcellulose and hydroxyethylcellulose, as well as carbohydrates like pectins, and gums. Further compounds are carbohydrates and derivatives such as fructose, xylose, galactose, galacturonic acid or glucose based polymers like inuline; dextran; xyloglucan, pectin or gums

Suitable carboxylates containing one-carboxy group include the water-soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,24l, lactoxysuccinates described in Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the exypolycarboxylate materials such as 2-oxa-1,1,3-propane, tricarboxylates described in British Patent No. 1,387,447.

Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2 ethane tetracarboxylates 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.

Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran - cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols—such as sorbitols mannitol and xylitol. Aromatic polycarboxylates include mellitic acid, pyromellitic acid, and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.

Of the above, the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.

Borate, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40°C.

5

Examples of carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.

10

Specific examples of water-soluble phosphates are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.

15

20

Suitable silicates include the water soluble sodium silicates with an Si0₂: Na₂0 ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.4 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt. Sodium silicate with an SiO₂: Na₂0 ratio of 2.0 is the most preferred silicate.

25

Typical disclosure of cyclodextrin derivatives are disclosed in WO96/05358, U.S. Pat. Nos: 3,426,011, Parmerter et al., issued Feb. 4, 1969; 3,453,257; 3,453,258; 3,453,259; and 3,453,260, all in the names of Parmerter et al., and all issued July 1, 1969; 3,459,731, Gramera et al., issued Aug. 5, 1969; 3,553,191, Parmerter et al., issued Jan. 5, 1971; 3,565,887, Parmerter et al., issued Feb. 23, 1971; 4,535,152, Szejtli et al., issued Aug. 13, 1985; 4,616,008, Hirai et al., issued Oct. 7, 1986; 4,678,598, Ogino et al., issued Jul. 7, 1987; 4,638,058, Brandt et al., issued Jan. 20, 1987; and 4,746,734, Tsuchiyama et al., issued May 24, 1988; all of said patents being incorporated herein by reference.

30

35

Although less preferred for use herein because of their lower solubility, partially water soluble coating agents may also be used as coating agent. These compounds are indeed less preferred because during the wash cycle the amine reaction product will still be at least partially coated and therefore can not display its full functionality of long lasting freshness on dry fabrics or hard surfaces. Examples of partially water

DESC

soluble coating agents include the crystalline layered silicates. Examples of largely water insoluble builders include the sodium aluminosilicates.

Crystalline layered sodium silicates have the general formula

5

10

NaMSi_xQ_{x+1,v}H₂0

wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2, 3 or 4 and is preferably 2. The most preferred material is δ -Na₂Si₂O₅, available from Hoechst AG as NaSKS-6.

Suitable aluminosilicate zeolites have the unit cell formula Na_z[(AlO₂)_z(SiO₂)y]. XH₂O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276; more preferably from 10 to 264. The aluminosilicate materials are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.

20

The aluminosilicate ion:exchange materials can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations. Zeolite A, Zeolite B, Zeolite P, Zeolite KA, Zeolite HS and mixtures thereof. Zeolite A has the formula

25

wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na₈₆ $[(AIO_2)_{86}(SiO_2)_{106}]$. 276 H₂O.

30

Typically when the amine reaction product is mixed with a carrier and further processed to form a coated particle the amine reaction product will be present in an amount of from 1 to 75%, preferably 5 to 30%, more preferably 6 to 25% by weight of the processed reaction product in the produced particle.

35

Typically the coating agent will be present in an amount of from 10% to 95%, preferably from 30 to 90%, more preferably, 50 to 75% by weight of the particle of the processed amine reaction product. In this instance, the amount of carrier will be

15

20

25

30

sufficient to add up to 100%. Of course, the coated particle may also contain minors but in quantities which will not exceed either of the amount of carrier material or coating agent.

5 Preferred coating materials are selected from carbonate, starch, cyclodextrin, sulfate salts, silicates, and mixtures thereof.

The surface treatment of the particle can be carried out in a number of ways using equipment known in the art and the process may take in batch wise or continuous fashion.

One method for applying the coating material involves agglomeration. Any conventional agglomerator/mixer may be used including, but not limited to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of the mixture of amine reaction product with carrier.

Another method for applying the coating is to pour the obtained mixture (so-called particle), as herein before described, onto the coating material and agglomerate it in a Braun Mixer. Care is also taken that the temperature during the mixing and/or coating step does not substantially exceed the melting point of the carrier material. For example, 50g of a mixture containing a hydrophobic perfume composition and 25g of the amine reaction product is poured at room temperature into a Braun Mixer containing 200g of starch. The mixing of the ingredients is carried out for about 5 minutes.

Once the coated particle is obtained, it may be useful to remove the carrier. Such removal can be made by conventional techniques. One typical of these technique is vacuum drying. By removal of the carrier, in particular with liquid carrier having a boiling point between 5 and 200°C, the original viscosity of the amine reaction product, i.e. higher viscosity, in the coated particle is restored which as a result gives a better stability of the coated particle towards the wash liquor environment. The coated particle can then be used as is for incorporation into the finished composition.

Accordingly, there is provided a processed amine reaction product as obtainable by the process of the invention.

10

15

20

30

35

If desired, the coated particle may also contain one or more additional ingredients like a surfactant for improved solubility or dispersability. Typical of such surfactant are the anionic, nonionic, or cationic surfactants. a cationic, anion or non-ionic surfactant like. Preferably, the weight ratio of such additional ingredient(s) to the coating agent is of up to 1:1.

In another preferred marketing execution, an additional coating on the coated particle can be provided, which depending on the nature of this additional coating will give improved storage stability, flowability and/or improved fabric substantivity of the coated particle. One typical example is polyvinyl alcohol.

Incorporation into finished composition

The finished compositions aspect of the invention, including laundry compositions, hard surface cleaning compositions, personal cleaning compositions, comprises the incorporation of the hereinbefore described processed amine reaction product together with one or more laundry or cleaning ingredient in a finished composition. Laundry compositions of the invention, which also encompass compositions providing color care, are suitable for use in any steps of the domestic treatment, that is as a pre-treatment composition, as a wash additive as a composition suitable for use in the rinse-cycle of the laundry cycle or applied on a dryer-sheet. Obviously, multiple applications can be made such as treating the fabric with a pre-treatment composition of the invention and also thereafter with a composition of the invention suitable for use in the rinse-cycle and/or suitable for use as a dryer-sheet.

As mentioned hereinbefore, the incorporation of the processed amine reaction product is conveniently made depending on its end form by either by spraying when in sprayable liquid form, or dry-addition when in coated form.

Laundry compositions encompass laundry detergent compositions, including liquid, solid form like powdered, tablets as well as softening compositions including rinse added softening composition as well as dryer added softening compositions.

A conventional disclosure of softening ingredients to be used in the softening composition of the invention can be found in EP 98870227.0, incorporated herein by reference.

Finished compositions incorporating the processed amine reaction product will normally contain from 0.001 to 25%, more preferably from 0.02 to 10%, and most preferably from 0.05 to 5% of the processed product on a composition weight basis.

5 Preferably, the finished composition is a detergent composition, more preferably in solid form.

In particular, it is preferred that the detergent composition comprises a clay.

10 Clay

15

20

25

The compositions of the invention may preferably contain a clay, preferably present at a level of from 0.05% to 40%, more preferably from 0.5% to 30%, most preferably from 2% to 20% by weight of the composition. For clarity, it is noted that the term clay mineral compound, as used herein, excludes sodium aluminosilicate zeolite builder compounds, which however, may be included in the compositions of the invention as optional components.

One preferred clay may be a bentonite clay. Highly preferred are smectite clays, as for example disclosed in the US Patents No.s 3,862,058 3,948,790, 3,954,632 and 4,062,647 and European Patents No.s EP-A-299,575 and EP-A-313,146 all in the name of the Procter and Gamble Company.

The term smectite clays herein includes both the clays in which aluminium oxide is present in a silicate lattice and the clays in which magnesium oxide is present in a silicate lattice. Typical smectite clay compounds include the compounds having the general formula Al₂(Si₂O₅)₂(OH)₂.nH₂O and the compounds having the general formula Mg₃(Si₂O₅)₂(OH)₂.nH₂O. Smectite clays tend to adopt an expandable three layer structure.

- 30 Specific examples of suitable smectite clays include those selected from the classes of the montmorillonites, hectorites, volchonskoites, nontronites, saponites and sauconites, particularly those having an alkali or alkaline earth metal ion within the crystal lattice structure. Sodium or calcium montmorillonite are particularly preferred.
- 35 Suitable smectite clays, particularly montmorillonites, are sold by various suppliers including English China Clays, Laviosa, Georgia Kaolin and Colin Stewart Minerals.

20

25

30

35

Clays for use herein preferably have a particle dimension of from 10nm to 800nm more preferably from 20nm to 500 mm, most preferably from 50nm to 200 mm.

Particles of the clay mineral compound may be included as components of agglomerate particles containing other detergent compounds. Where present as such components, the terme "largest particle dimension" of the clay mineral component as such, and not to the agglomerated particle as a whole.

Substitution of small cations, such as protons, sodium ions, potassium ions, magnesium ions and calcium ions, and of certain organic molecules including those having positively charged functional groups can typically take place within the crystal lattice structure of the smectite clays. A clay may be chosen for its ability to preferentially absorb one cation type, such ability being assessed by measurements of relative ion exchange capacity. The smectite clays suitable herein typically have a cation exchange capacity of at least 50 meq/100g. U.S. Patent No. 3,954,632 describes a method for measurement of cation exchange capacity.

The crystal lattice structure of the clay mineral compounds may have in a preferred execution, a cationic fabric softening agent substituted therein. Such substituted clays have been termed hydrophobically activated clays. The cationic fabric softening agents are typically present at a weight ratio, cationic fabric softening agent to clay, of from 1:200 to 1:10 preferably from 1:100 to 1:200 Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340.

A preferred commercially available "hydrophobically activated" clay is a bentonite clay containing approximately 40% by weight of a dimethyl ditallow quaternary ammonium salt sold under the tradename Claytone EM by English China Clays International.

In a highly preferred embodiment of the invention, the clay is present in an intimate mixture or in a particle with a humectant and a hydrophobic compound, preferably a wax or oil, such as paraffin oil. Preferred humectants are organic compounds, including propylene glycol, ethylene glycol, dimers or trimers of glycol, most preferably glycerol. The particle is preferably an agglomerate. Alternatively, the particle may be such that the wax or oil and optionally the humectant form an encapsulate on the clay or alternatively, the clay be a encapsulate for the wax or oil

and the humectant. It may be preferred that the particle comprises an organic salt or silica or silicate.

However, in another embodiment of the invention, the clay is preferably mixed with one or more surfactants and optionally builders and optionally water, in which case the mixture is preferably subsequently dried. Preferably, such a mixture is further processed in a spray-drying method to obtain a spray dried particle comprising the clay.

10 It may be preferred that the flocculating agent is also comprised in the particle or granule comprising the clay.

It may also be preferred that the intimate mixture comprises a chelating agent.

15 Flocculating agent

The compositions of the invention may contain a clay flocculating agent, preferably present at a level of from 0.005% to 10%, more preferably from 0.05% to 5%, most preferably from 0.1% to 2% by weight of the composition.

The clay flocculating agent functions such as to bring together the particles of clay compound in the wash solution and hence to aid their deposition onto the surface of the fabrics in the wash. This functional requirement is hence different from that of clay dispersant compounds which are commonly added to laundry detergent compositions to aid the removal of clay soils from fabrics and enable their dispersion within the wash solution.

Preferred as clay flocculating agents herein are organic polymeric materials having an average weight of from 100,000 to 10,000,000, preferably from 150,000 to 5,000,000, more preferably from 200,000 to 2,000,000.

Suitable organic polymeric materials comprise homopolymers or copolymers containing monomeric units selected from alkylene oxide, particularly ethylene oxide, acrylamide, acrylic acid, vinyl alcohol, vinyl pyrrolidone, and ethylene imine. Homopolymers of, on particular, ethylene oxide, but also acrylamide and acrylic acid are preferred.

30

35

European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe preferred organic polymeric clay flocculating agents for use herein.

- The weight ratio of clay to the flocculating polymer is preferably from 1000:1 to 1:1, more preferably from 500:1 to 1:1, most preferably from 300:1 to 1:1, or even more preferably from 80:1 to 10:1, or in certain applications even from 60:1 to 20:1.
- Inorganic clay flocculating agents are also suitable herein, typical examples of which include lime and alum.

The flocculating agent is preferably present in a detergent base granule such as a detergent agglomerate, extrudate or spray-dried particle, comprising generally one or more surfactants and builders.

Effervescent

15

Effervescent means=may-also-be optionally-used in the compositions of the invention.

20 Effervescency as:defined, herein means the evolution of bubbles of gas from a liquid, as the result of a chemical reaction between a soluble, acid source and an alkali metal carbonate, to produce carbon dioxide gas;

i.e. C₆H₈O₇ + 3NaHGO₃ → Na₃G₆H₅Q₇ + 3CO₂ ↑ + 3H₂O

25 Further examples of acid and carbonate sources and other effervescent systems may be found in : (Pharmaceutical Dosage Forms : Tablets Volume 1 Page 287 to 291).

Carbonate salts

Suitable alkali and/ or earth alkali inorganic carbonate salts herein include carbonate and hydrogen carbonate of potassium, lithium, sodium, and the like amongst which sodium and potassium carbonate are preferred. Suitable bicarbonates to be used herein include any alkali metal salts of bicarbonate like lithium, sodium, potassium and the like, amongst which sodium and apotassium bicarbonate are preferred. However, the choice of carbonate or bicarbonate or mixtures thereof may be made depending on the pH desired in the aqueous medium wherein the granules are dissolved. For example where a relative high pH is desired in the aqueous medium (e.g., above pH 9.5) it may be preferred to use carbonate alone or to use a

10

15

20

combination of carbonate and bicarbonate wherein the level of carbonate is higher than the level of bicarbonate. The inorganic alkali and/ or earth alkali carbonate salt of the compositions of the invention comprises preferably a potassium or more preferably a sodium salt of carbonate and/ or bicarbonate. Preferably, the carbonate salt comprises sodium carbonate, optionally also a sodium bicarbonate.

The inorganic carbonate salts herein are preferably present at a level of at least 20% by weight of the composition. Preferably they are present at a level of at least 23% or even 25% or even 30% by weight, preferably up to about 60% by weight or more preferably up to 55% or even 50% by weight.

They may be added completely or partially as separate powdered or granular component, as co-granules with other detergent ingredients, for example other salts or surfactants. In solid detergent compositions of the invention, they may also completely or partially be present in detergent granules such as agglomerates or spray dried granules.

In one embodiment of the invention, an effervescence source is present, preferably comprising an organic acid, such as carboxylic acids or aminoacids, and a carbonate. Then it may be preferred that part or all of the carbonate salt herein is premixed with the organic acid, and thus present in an separate granular component.

Preferred effervescent source are selected from compressed particles of citric acid and carbonate optionally with a binder; and particle of carbonate, bicarbonate and malic or maleic acid in weight ratios of 4:2:4. The dry add form of citric acid and carbonate are preferably used.

The carbonate may have any particle size. In one embodiment, in particular when the carbonate salt is present in a granule and not as separately added compound, the carbonate salt has preferably a volume median particle size from 5 to 375 microns, whereby preferably at least 60%, preferably at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 425 microns. More preferably, the carbon dioxide source has a volume median particle size of 10 to 250, whereby preferably at least 60 %, or even at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 375 microns; or even preferably a volume median particle size from 10 to 200 microns, whereby

10

preferably at least 60 %, preferably at least 70% or even at least 80% or even at least 90% by volume, has a particle size of from 1 to 250 microns.

In particular when the carbonate salt is added as separate component, so to say 'dry-added' or admixed to the other detergent ingredients, the carbonate may have any particle size, including the above specified particle sizes, but preferably at least an volume average particle size of 200 microns or even 300 microns.

It may be preferred that the carbon dioxide source of the required particle size is obtained by grinding a larger particle size material, optionally followed by selecting the material with the required particle size by any suitable method.

Whilst percarbonate salts may be present in the compositions of the invention as a bleaching agent, they are not included in the carbonate salts as defined herein.

The preferred detergent composition embodiment of the invention, will, also preferably contained bleach precursor, a source of alkaline hydrogen peroxide necessary to form a peroxyacid bleaching species in the wash solution and preferably will also contain other components conventional in detergent compositions. Thus preferred detergent compositions will incorporate one or more of surfactants; organic and inorganic builders, soil suspending and anti-redeposition agents, suds suppressors perzymes fluorescent whitening agents photoactivated bleaches, perfumes, colours, and mixtures thereof.

Typical disclosure of such components can be found in EP-A-0,659,876 and European patent application No. 98870226.2 which are both incorporated herein by reference.

Form of the composition

The composition of the invention may take a variety of physical form including liquid, gel, foam in either aqueous or non-aqueous form, granular and tablet forms.

Still in another aspect of the invention there is provided a packaged composition comprising the processed product of the invention or composition of the invention. Preferably, the packaged composition is a closed packaging system having a moisture vapour transmission rate of less than 20g/m²/24 hours. Typical disclosure of such a package can be found in WO 98/40464.

30

35

10

15

20

25

30

35

Still another preferred package is a spray dispenser.

Spray Dispenser

The present invention also relates to such compositions incorporated into a spray dispenser to create an article of manufacture that can facilitate treatment of fabric articles and/or surfaces with said compositions containing the amine reaction product and other ingredients (examples are cyclodextrins, polysaccharides, polymers, surfactant, perfume, softener) at a level that is effective, yet is not discernible when dried on the surfaces. The spray dispenser comprises manually activated and non-manual powered (operated) spray means and a container containing the treating composition. Typical disclosure of such spray dispenser can be found in WO 96/04940 page 19 line 21 to page 22 line 27. The articles of manufacture preferably are in association with instructions for use to ensure that the consumer applies sufficient ingredient of the composition to provide the desired benefit. Typical compositions to be dispensed from a sprayer contain a level of amine reaction product of from about 0.01% to about 5%, preferably from about 0.05% to about 2%, more preferably from about 0.1% to about 1%, by weight of the usage composition.

Method of use

Also provided herein is a method for providing a delayed release of an active ketone or aldehyde which comprises the step of contacting the surface to be treated with a compound or composition of the invention, and thereafter contacting the treated surface with a material, preferably an aqueous medium like moisture or any other means susceptible of releasing the perfume from the amine reaction product.

By "surface", it is meant any surface onto which the compound can deposit. Typical examples of such material are fabrics, hard surfaces such as dishware, floors, bathrooms, toilet, kitchen and other surfaces in need of a delayed release of a perfume ketone and/or aldehyde such as that with litter like animal litter. Preferably, the surface is selected from a fabric, a tile, a ceramic; more preferably is a fabric.

By "delayed release" is meant release of the active component (e.g perfume) over a longer period of time than by the use of the active (e.g., perfume) itself.

Still in another aspect of the invention, there is provided the use of the product of the invention for the manufacture of a laundry and/or cleaning composition for delivering

10

20

25

30

35

residual fragrance and fabric care, in particular color care, onto the fabrics on which it is applied.

The following are synthesis examples of compounds as defined in the present invention:

I-Synthesis of ethyl 4-aminobenzoate with 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde

To an ice cooled stirred solution of 10 g of 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde (0.07 mol) in 35 mL EtOH and molecular sieves (4Å, 20 g) 1eq of the amine was added via an addition funnel. The reaction mixture was stirred under nitrogen atmosphere and protected from light. After 6 days the mixture was filtrated and the solvent was removed. The yield of imine formation is about 90%.

15 Similar results were obtained where the 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde was replaced by bourgeonal, trans-2-nonenal, or trans-2-hexenal.

II-Synthesis of 1,4-bis-(3-aminopropyl)-piperazine with α-Damascone

In order to substitute both primary amine groups with a perfume 2eq of perfume were used for 1eq of amino functional polymer. To an ice cooled stirred solution of 1mmol of α-Damascone in 16 ml EtOH and molecular sieves (4Å=20 g), 0.5eq of 1,4-bis-(3-aminopropyl)-piperazine was added via an addition funnel. The reaction mixture was stirred under nitrogen atmosphere and protected from light. After the disappearance of the absorption peak from the NMR spectrum of the free perfume raw material (from 3 to 16 hours), the mixture was filtrated and the solvent was removed by vacuum distillation. The yield of β-aminoketone formation is about 90%.

Similar results were obtained where the α -Damascone was replaced by 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde, vertocitral, bourgeonal, δ -Damascone or citronellal. In these instances, Schiff-bases are formed.

III-Synthesis iof*Lupasolawith*Damascones:and 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde

The β -amino ketone from Lupasol G100 (commercially available from BASF with a content of 50 % water, 50 % Lupasol G100 (Mw. 5000)) and α -Damascone (or δ -Damascone) was prepared using any one of these three different procedures described as follows:

1. Commercially available Lupasol G100 was dried using the following procedure: 20 g of the Lupasol solution was dried at the rotating evaporator during several hours. The obtained residue, still containing about 4.5 g of H₂O, was azeotropically distilled at the rotating evaporator using toluene. The residue was then placed in the desiccator dried at 60 °C (using P₂O₅ as water absorbing material). On basis of the obtained weight we concluded that the oil contained less then 10 % H₂O. On basis of the NMR-spectra we concluded that this is probably less then 5 %. This dried sample was then used in the preparation of β-amino ketones.

10

15

5

1.38 g of the dried Lupasol G100 obtained above was dissolved in 7 ml. ethanol. The solution was stirred gently with a magnetic stirrer during a few minutes before 2 g Na_2SO_4 (anhydrous) was added. After stirring again for a few minutes 2.21 g α -Damascone was added over a period of 1 minute. After two days reaction, the mixture was filtrated over a Celite filter (vide supra), and the residue washed thoroughly with ethanol. About 180 ml. of a light foaming filtrate was obtained. This was concentrated until dryness using a rotating evaporator and dried over P_2O_5 in an desiccator at room temperature. About 3.5 of a colorless oil was obtained.

25

20

2. 4.3 g Lupasol G100 solution was without drying dissolved in 10 ml. ethanol. The solution was stirred with a magnetic stirrer during a few minutes before 3.47 g α -Damascone was added over a 1.5 minutes period. After two days reaction at room temperature the reaction mixture was filtrated over Celite (vide supra) and the residue washed thoroughly with ethanol. The filtrate (200 ml., light foaming) was concentrated at the evaporator and dried in an desiccator (P_2O_5 as drying agent) at room temperature. About 5.9 g of a colorless oil was obtained.

30

3. To 3.0 g of Lupasol G100 solution (used as such) was added 2.41 g α-Damascone. The mixture was stirred without using solvent. After stirring for 4 days the obtained oil was dissolved in 100 ml. THF, dried with MgSO₄, filtrated and the filtrate concentrated at the rotating evaporator. After drying in the desiccator (P₂O₅) at room temperature about 4 g of a colorless oil was obtained. This oil still contained about 13 % (w/w) of THF, even after a prolonged drying (3 days).

35

The product obtained from the three procedures had identical NMR-spectra.

Similar results are obtained where Lupasol G35 or Lupasol HF is used instead of Lupasol G100.

Similar results were obtained where the α -Damascone was replaced by 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde.

Still another possible route of synthesis is by using Lupasol P. The β -amino ketone from Lupasol P and α -Damascone was prepared using the procedure described as follows:

10

5

1.8g Lupasol P solution (50 % H_2O , 50 % Lupasol Mw. 750000, as obtained from BASF) was dissolved in 7 ml ethanol, the solution was stirred for a few minutes with a magnetic stirrer before 1.44 g α -Damascone was added. After three days the reaction mixture was filtrated over a celite filter (vide supra) and the residue washed thoroughly with ethanol. After concentrating of the filtrate and drying of the obtained oil in the desiccator (P_2O_5) at room temperature, about 3 g of the reaction product between Lupasol and α -Damascone was obtained.

Processing method

20

25

30

35

15

1)-Processing method for spray-on:

Processing of the amine reaction product with the carrier is done as hereinbefore described. In particular, 20g of amine reaction product as above synthesised is mixed with 10 to 80g of a carrier, e.g. hydrophobic perfume composition, dipropylene glycol, diethylphthalate in an Ultra Turrax until an homogenous mixture is obtained. The temperature of mixing is about room temperature, and the speed of the mixer is sufficient to maintain such temperature substantially constant. Temperature and time will depend on the nature of the carrier but are a conventional step to skilled man. Of course, the amount of carrier relative to the amine reaction product will depends on the desired sprayability and the end viscosity of the resulting mixture. In the examples of the present invention, the viscosity was below 500Cps, as measured on a rheometer, TA Instrument CSL²₁₀₀ at a temperature of 25C with a gap setting of 500 microns.

2)-Processing method for coating

Processing of the amine reaction product with the carrier is done as hereinbefore described. In particular, 20g of amine reaction product as above synthesised is mixed in an Ultra Turrax containing 20g of carrier, e.g. methanol or perfume mixture

or composition for 5 minutes, the temperature of mixing being to about room temperature, and the speed of the mixer being sufficient so as to maintain such temperature substantially constant. Temperature and time will depend on the nature of the carrier but are a conventional step to skilled man.

5

When use of a perfume mixture is made, the composition in % by weight of a typical hydrophobic perfume mixture is as follows:

7
7
7
10
19
4.5
1.5
4
2
5
6
4
3
2
10
7
1

15

20

10

When desired, the obtained processed amine reaction product from above is subsequently coated. In particular, the resulting mixture is maintained at a temperature substantially equal to the melting point of the carrier material and poured onto the coating material and agglomerated in an electrical mixer like a Braun Mixer. Care is also taken that the temperature during the mixing does not substantially exceed the melting point of the carrier material. For example, 100g of a mixture containing the methanol or perfume mixture and 20g of the amine reaction product is poured at room temperature into a Braun Mixer containing 300g of carbonate. The mixing of the ingredients is carried out for about 5 minutes. Again, temperature and time will depend on the nature of the coating agent but are conventional step to skilled man.

Once the coated particle is obtained, it may be desired to remove the methanol by vacuum distillation.

Abbreviations used in the following laundry and cleaning composition Examples
In the laundry and cleaning compositions, the abbreviated component identifications have the following meanings:

DEQA : Di=(tallowyl-oxy-ethyl) dimethyl ammonium chloride

DTDMAC : Ditallow dimethylammonium chloride

DEQA (2) : Di-(soft-tallowyloxyethyl) hydroxyethyl methyl

ammonium methylsulfate.

DTDMAMS : Ditallow dimethyl ammonium methylsulfate.

SDASA : 1:2 ratio of stearyldimethyl amine:triple-pressed

stearic acid.

Fatty acid : Stearic acid of IV=0

Electrolyte : Calcium chloride

PEG : PolyethylenesGlycol:40005

Neodol 45-13 : C14-C15 linear primary alcohol ethoxylate, sold by

Shell Chemical CO.

Silicone antifoam : Polydimethylsilexane foam controller with siloxane-

oxyalkylene copolymer, as dispersing agent with a ratio of said foam controller to said dispersing agent

of 10:1 to 100%1.

PEI : Polyethyleneimine with an average molecular

weight of 1800 and an average ethoxylation

10 degree of 7 ethyleneoxy residues per nitrogen

HEDP : 1,1-hydroxyethane diphosphonic acid

LAS : Sodium linear C₁₁₋₁₃ alkyl benzene sulfonate

15 TAS : Sodium tallow alkyl sulfate.

CxyAS : Sõdium-C_{1x} - C_{1y} alkylisulfate-

C46SAS : Sodium C14 C16 Secondary (2,3) alkyl sulfate

CxyEzS : Sodium C1x-G1y-alkylisulfate condensed with z moles of

ethylene oxide

20 CxyEz : C_{1x}-C_{1y} predominantly linear primary alcohol

condensed with an average of z moles of ethylene oxide

QAS : $R_2.N^+(CH_3)_2(C_2H_4OH)$ with $R_2 = C_{12} - C_{14}$

QAS 1 : $R_2.N^+(CH_3)_2(C_2H_4OH)$ with $R_2 = C_8 - C_{11}$

APA : C₈ - C₁₀ amido propyl dimethyl amine

Soap : Sodium linear alkyl carboxylate derived from an 80/20

mixture of tallow and coconut fatty acids

5 STS : Sodium toluene sulphonate

CFAA : C₁₂-C₁₄ (coco) alkyl N-methyl glucamide

TFAA : C₁₆-C₁₈ alkyl N-methyl glucamide
TPKFA : C₁₂-C₁₄ topped whole cut fatty acids

STPP : Anhydrous sodium tripolyphosphate

10 TSPP : Tetrasodium pyrophosphate

Zeolite A: Hydrated sodium aluminosilicate of formula

Na₁₂(A₁O₂SiO₂)₁₂.27H₂O having a primary particle size in the range from 0.1 to 10 micrometers (weight

expressed on an anhydrous basis)

15 NaSKS-6 : Crystalline layered silicate of formula δ- Na₂Si₂O₅

Citric acid : Anhydrous citric acid

Borate : Sodium borate

Carbonate : Anydrous sodium carbonate with a particle size between

200µm and 900µm

20 Bicarbonate : Anhydrous sodium bicarbonate with a particle size

distribution between 400µm and 1200µm

Silicate : Amorphous sodium silicate (SiO₂:Na₂O = 2.0:1)

Sulfate : Anhydrous sodium sulfate

Mg sulfate : Anhydrous magnesium sulfate

25 Citrate : Tri-sodium citrate dihydrate of activity 86.4% with a

particle size distribution between 425µm and 850µm

MA/AA : Copolymer of 1:4 maleic/acrylic acid, average molecular

weight about 70,000

MA/AA (1) : Copolymer of 4:6 maleic/acrylic acid, average molecular

weight about 10,000

AA : Sodium polyacrylate polymer of average molecular

weight 4,500

CMC : Sodium carboxymethyl cellulose

Cellulose ether : Methyl cellulose ether with a degree of polymerization of

650 available from Shin Etsu Chemicals

Protease: Proteolytic enzyme, having 3.3% by weight of active

enzyme, sold by NOVO Industries A/S under the

tradename Savinase

30

25

35

Protease I: Proteolytic enzyme, having 4% by weight of active

enzyme, as described in WO 95/10591, sold by

Genencor Int. Inc.

Alcalase : Proteolytic enzyme, having 5.3% by weight of active

5 enzyme, sold by NOVO Industries A/S

Cellulate : Cellulytic enzyme having 0.23% by-weight of active

enzyme, sold by NONO Industries A/S under the

tradename-Carezyme

Amylase : Amylolytic enzyme, having 1.6% by weight of active

enzyme, sold by NOVO Industries A/S under the

tradename Termamyl 120T

Lipase : Lipolytic enzyme, having 2.0% by weight of active

enzyme, sold by NOVO Industries A/S under the

tradename Lipolase

15 Lipase (1) : Lipolytic enzyme, having 2.0% by weight of active

enzyme, sold by NOVO Industries A/S under the

tradename Lipolase Ultra

Endolase : Endoglucanase enzyme having 1.5% by weight of

activerenzymersold by NOVO Industries A/S

20 PB4 : Sodium perborate tetrahydrate of nominal formula

NaBOZSH2O.H2OZ

PB1 : Anhydrous sodium perborate bleach of nominal formula

NaB@ɔ̯ːHə@ə

Percarbonate : Sodium percarbonate of nominal formula

2Na₂CO₃.3H₂O₂

NOBS: Nonanoyloxybenzene sulfonate in the form of the

sodium salt

NAC-OBS : (6-nonamidocaproyl) oxybenzene sulfonate

TAED : Tetraacetylethylenediamine

30 DTPA : Diethylene triamine pentaacetic acid

DTPMP : Diethylene triamine penta (methylene phosphonate),

marketed by Monsanto under the Tradename Dequest

2060

EDDS : Ethÿlenediamine=N•N-disuccinic acid (S;S) isomer in

the form of its sodium salt.

Photoactivated : Sulfonated zinc phthlocyanine encapsulated in

bleach (1) dextrin soluble polymer

Photoactivated : Sulfonated alumino phthlocyanine encapsulated in

25

30

bleach (2)	dextrin soluble polymer
------------	-------------------------

Brightener 1 : Disodium 4,4'-bis(2-sulphostyryl)biphenyl

Brightener 2 : Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-

yl)amino) stilbene-2:2'-disulfonate

5 HEDP : 1,1-hydroxyethane diphosphonic acid

PEGx: Polyethylene glycol, with a molecular weight of x

(typically 4,000)

PEO : Polyethylene oxide, with an average molecular weight

of 50,000

10 TEPAE : Tetraethylenepentaamine ethoxylate

PVI : Polyvinyl imidosole, with an average molecular weight of

20,000

PVP : Polyvinylpyrolidone polymer, with an average molecular

weight of 60,000

15 PVNO : Polyvinylpyridine N-oxide polymer, with an average

molecular weight of 50,000

PVPVI : Copolymer of polyvinylpyrolidone and vinylimidazole,

with an average molecular weight of 20,000

QEA : $bis((C_2H_5O)(C_2H_4O)_n)(CH_3)$ $-N^+-C_6H_{12}-N^+-(CH_3)$

bis((C_2H_5O) - (C_2H_4O))_n, wherein n = from 20 to 30

SRP 1 : Anionically end capped poly esters

SRP 2 : Diethoxylated poly (1, 2 propylene terephtalate) short

block polymer

PEI : Polyethyleneimine with an average molecular weight of

1800 and an average ethoxylation degree of 7

ethyleneoxy residues per nitrogen

Silicone antifoam : Polydimethylsiloxane foam controller with siloxane-

oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to

100:1

Opacifier : Water based monostyrene latex mixture, sold by BASF

Aktiengesellschaft under the tradename Lytron 621

Wax : Paraffin wax

PA30 : Polyacrylic acid of average molecular weight of between

about 4,500 - 8,000.

480N : Random copolymer of 7:3 acrylate/methacrylate,

average molecular weight about 3,500.

Polygel/carbopol : High molecular weight crosslinked polyacrylates.

Metasilicate

Sodium metasilicate (SiO₂:Na₂O ratio = 1.0).

Nonionic

: C₁₃-C₁₅ mixed ethoxylated/propoxylated fatty alcohol

with an average degree of ethoxylation of 3.8 and an

average degree of propoxylation of 4.5.

Neodol 45-13

: C14-C15 linear primary alcohol ethoxylate, sold by Shell

Chemical CO.

MnTACN ·

: Manganese 1,4,7-trimethyl-1,4,7-triazacy.clononane.

PAAC

: Pentaamine acetate cobalt(III) salt.

Paraffin

Paraffin oil sold under the tradename Winog 70 by

Wintershall.

NaBz

: Sodium benzoate.

BzP

: Benzoyl Peroxide.

SCS

Sodium cumene sulphonate.

BTA

: Benzotriazole.

PH

Measured as a 1% solution in distilled water at 20°C.

PARP1

Processed amine reaction product of ethyl 4-aminobenzoate with 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde as made from Synthesis example I, mixed with a methanol carrier optionally agglomerated with a coating agent as specified hereinafter in the examples, and followed by removal of the methanol,

according to processing method above described.

PARP2

Processed amine reaction product of Lupasol G35 with α-Damascone as made from Synthesis example III, mixed with a perfume mixture carrier as described herein before and sprayed on finished product, according to

processing method above described.

PARP3

Processed amine reaction product of Lupasol HF with δ-Damascone as made from Synthesis example III, mixed with a methanol carrier, optionally agglomerated with a coating agent as specified hereinafter in the examples, and followed by removal of the methanol, according to processing method above described.

25

39

PARP4 : Processed amine reaction product of LupasolG100 with

2,4-dimethyl-3-cyclohexen-1-carboxaldehyde as made from Synthesis example III, mixed with a perfume mixture carrier as described herein before and sprayed on finished product, according to processing method

above described.

Clay I : Bentonite clay

Clay II : Smectite clay

Flocculating agent I: polyethylene oxide of average molecular weight of

between 200,000 and 400,000

5 Flocculating agent II: polyethylene oxide of average molecular weight of

between 400,000 and 1,000,000

Flocculating agent III: polymer of acrylamide and/ or acrylic acid of

average molecular weight of 200,000 and 400,000

DOBS: Decanoyl oxybenzene sulfonate in the form of the

sodium salt

SRP 3 : Polysaccharide soil release polymer SRP 4 : Nonionically end capped poly esters

Polymer : Polyvinylpyrrolidone K90 available from BASF under the

tradename Luviskol K90

15 Dye fixative : Dye fixative commercially available from Clariant under

the tradename Cartafix CB

Polyamine : 1,4-Bis-(3-aminopropyl)piperazine

Bayhibit AM : 2-Phosphonobutane-1,2,4-tricarboxylic acid commercially

available from Bayer

Fabric softener active: Di-(canoloyl-oxy-ethyl)hydroxyethyl methyl ammonium

methylsulfate

HPBDC : Hydroxypropyl beta-cyclodextrin

RAMEB : Randomly methylated beta-cyclodextrin

Bardac 2050 : Dioctyl dimethyl ammonium chloride, 50% solution
Bardac 22250 : Didecyl dimethyl ammonium chloride, 50% solution

Genamin C100 : Coco fatty amine ethoxylated with 10 moles ethylene

oxide and commercially available from Clariant

Genapol V4463 : Coco alcohol ethoxylated with 10 moles ethylene

oxide and commercially available from Clariant

30 Silwet 7604: Polyalkyleneoxide polysiloxanes of MW 4000 of formula

10

15

Silwet 7600:

R-(CH₃)₂SiO-[(CH₃)₂SiO]_a-[(CH₃)(R)SiO]_b-Si(CH₃)₂-R, wherein average a+b is 21, and commercially available from Osi Specialties, Inc., Danbury, Connecticut Polyalkyleneoxide polysiloxanes of MW 4000, of formula R-(CH₃)₂SiO-[(CH₃)₂SiO]_a-[(CH₃)(R)SiO]_b-Si(CH₃)₂-R, wherein*average*a+b*is 11, and*commercially available from Osi-Specialties;*Inc., Danbury*Connecticut

In the following formulation examples all levels are quoted as by weight of the composition unless otherwise stated, and incorporation of the processed amine reaction product so called herein after "PARP" in the fully formulated composition is carried out by either dry addition in the composition or spray-on as defined herein before depending on its end form. The term in bracket for the PARP in the formulation examples refers, when present, to the type of coating (c) for carbonate coating and (s) for starch coating.

Example 1
The following high density granular daundry detergent compositions are in accord with the invention:

	A 🐁	Bæ	C.	D.	E
LAS	6.0	6.0	8:0.7	8:0	8.0
TASE	1:0	0.1	-	0.5.	-
C46(S)AS-	-	-	2.0	2.5	-
C25AS	4.5	5.5	-	-	-
C68AS	-		2.0	5.0	7.0
C25E5	4.6	4.6	_		3.4
C25E7	-	-	3.4	3.4	1.0
C25E3S	5.0	4.5	-	-	
QAS	-	_	-	0.8	-
QAS _k (I)	0.5	1.0	_		
Zeolite A	2010	18:1	18.1	18:0	14.1
Citric acid	-	2.5	_		-
Carbonate	10507	13:0)**	13:0	13:00	25:0
SKS-6	_	10.0	-	-	
Silicate	0.5	0.3	1.4	1.4	3.0
Citrate	-	-		1.0	_
Sulfate	-	-	26.1	26.1	26.1

Mg sulfate		0.2	0.3	_	
MA/AA	1.0	1.0	0.3	0.3	0.3
CMC	0.4	0.4	0.2	0.2	0.2
PB4	0.4	0.4	9.0	9.0	5.0
Percarbonate	18.0	18.0	-	-	5.0
	3.9	4.2	1.5	0.4	1.5
TAED NAC-OBS	3.8	<u> </u>		2.0	1.0
	-	-	0.25	0.25	0.25
DTPMP	-	-	0.25	t	
SRP 2	-	0.2	-	0.25	-
EDDS	0.5	0.5	-	0.25	0.4
CFAA		-	-	1.0	-
HEDP	0.4	0.4	0.3	0.3	0.3
QEA	-	0.5	-	-	-
Protease I	-	-	-	-	0.26
Protease	1.5	1.0	0.26	0.26	-
Cellulase	0.3	0.3	0.3	-	-
Amylase	0.5	0.5	0.1	0.1	0.1
Lipase (1)	0.5	0.5	0.3	-	
Photoactivated	20	20	15 ppm	15 ppm	15 ppm
bleach (ppm)	ppm	ppm			
Brightener 1	0.09	0.09	0.09	0.09	0.09
Perfume spray	0.4	0.4	0.3	0.3	0.3
on					
PARP 1	0.9(c)	1.2(c)	1.0(c)	0.4(s)	-
PARP 3	0.2	0.3	-	-	1.0
Silicone	0.3	0.3	0.5	0.5	0.5
antifoam					
Misc/minors to					
100%					
Density in	850	850	850	850	850
g/litre					

	F	G	н	1
LAS	2.0	6.0	6.0	5.0
TAS	0.5	1.0	0.1	1.5
C25AS	7.0	4.5	5.5	2.5
C68AS	-	-	-	0.2
C25E5	10.0	4.6	4.6	2.6
C25E3S	2.0	5.0	4.5	0.5
QAS (I)	0.8	0.5	1.0	1.5
Zeolite A	18.1	20.0	18.1	16.2
Citric acid	2.5	-	2.5	1.5
Carbonate	10.0	10.0	13.0	20.6
SKS-6	10.0	-	10.0	4.3
Silicate	0.3	0.5	0.3	
Citrate	3.0	-	-	1.4
Sulfate	6.0	-	-	
Mg sulfate	0.2	-	0.2	0.03
MA/AA	4.0	1.0	1.0	0.6
CMC.	0.2	0.4	0.4	0.3
Percarbonate	-	18:0	18.0	9.0
TAED	-	3.9	4.2	3.2
DTPMP 5	0.25	-	_	-
SRP 2	0.2		0.2	
EDDS	-	0.5	0.5	0.1
CFAA	2.0	-	-	-
TFAA		-	-	1.1
HEDP	0.3	0.4	0.4	0.3
QEA	0.2	-	0.5	-
Protease I	1.0		-	0.3
Protease		1.5	1.0	-
Cellulase	0.3	0.3	0.3	0.3
Amylase	0.4	0.5	0.5	0.1
Lipase (1)	0.5	0.5	0.5	0.1
Photoactivated	-	20 ppm	20 ppm	20 ppm
bleach (ppm)				
PVNO/PVPVI	0.1			-
Brightener 1		0.09	0.09	0.01
Brightener 2		-		0.09

Perfume spray	0.4	0.4	0.4	0.4
on				
PARP 1	-	0.5(c)	1.0(c)	-
PARP 3	0.8(c)	0.4 (s)	-	0.4(c)
Silicone antifoam	-	0.3	0.3	0.3
Clay II	-	-	-	12.0
Flocculating	-	-	-	0.3
agent I				
Glycerol	•		_	0.6
Wax	-	-	-	0.4
Misc/minors to				
100%				
Density in g/litre	850	850	850	850

The following granular laundry detergent compositions of particular utility under European machine wash conditions are in accord with the invention:

	Α	В	С	D	E	F
LAS	5.5	7.5	5.0	5.0	6.0	7.0
TAS	1.25	1.86	_	0.8	0.4	0.3
C24AS/C25AS	-	2.24	5.0	5.0	5.0	2.2
C25E3S	_	0.76	1.0	1.5	3.0	1.0
C45E7	3.25	-	-	-	_	3.0
TFAA	-	-	2.0	_	-	-
C25E5	-	5.5		-	-	-
QAS	0.8	-	-	-	-	-
QAS II	•	0.7	1.0	0.5	1.0	0.7
STPP	19.7	-	-	_	-	*
Zeolite A	-	19.5	25.0	19.5	20.0	17.0
NaSKS-6/citric acid (79:21)	-	10.6	_	10.6	-	-
NaSKS-6	-	-	9.0	-	10.0	10.0
Carbonate	6.1	10.0	9.0	10.0	10.0	18.0
Bicarbonate	-	2.0	7.0	5.0	-	2.0
Silicate	6.8	-	-	0.3	0.5	-
Citrate	-	-	4.0	4.0	-	-

Sulfate	39.8	-	-	5.0	-	12.0
Mg sulfate	-	_	0.1	0.2	0.2	-
MA/AA	0.5	1.6	3.0	4.0	1.0	1.0
СМС	0.2	0.4	1.0	1.0	0.4	0.4
PB4	5.0	12.7	-		-	-
Percarbonatez	1	-	<u>-</u>	-	18.0	15.0
TAED	0.5	3.1	-		5.0	_
NAC-OBS ^a	1.0	3.5	-		-	2.5
DTPMP	0.25	0.2	0.3	0.4	<u>-</u>	0.2
HEDP	-	0.3	-	0.3	0.3	0.3
QEA	-	-	1.0	1.0	1.0	-
Protease I	-	-	-	0.5	1.2	
Protease	0.26	0.85	0.9	1.0		0.7
Lipase (1)	0.15	0.15	0.3	0.3	0.3	0.2
Cellulase	0.28	0.28	0.2	0.2	0.3	0.3
Amylase	0.1	0.1	0.4	0.4	0.6	0.2
PVNO/PVPVI-	-	-	0.2.	0.2	_	
PVP	0.9.3	1.3	-	-	-	0.9
SRP 1	-	_	0.2 🛫	0.2	0.2 :	
Photoactivated	15 🐩	27.**	-		20	20
bleach (1) (ppm)	ppm≯	pp.m.			ppm	ppm
Photoactivated-	15**	-	-	-	-	-
bleach (2) (ppm)~	ppm				<u> </u>	
Brightener 1	0.08	0.19		-	0.09	0.15
Brightener 2	-	0.04	-	-	-	<u> - </u>
Perfume	0.3	0.3	0.4	0.3	0.4	0.3
PARP1	1.0 (c)	2.0(c)	1.5	<u> -</u>		-
PARP2	_	-	0.2	0.1	0.8	0.4
Silicone antifoam	0.5	2.4	0.3	0.5	0.3	2.0
Minors/misc to			1			
100%						
Density in g/litre	750	750	750	750E	750 ×	750

The following detergent formulations of particular utility under European machine wash conditions were prepared in accord with the invention.

	Α	В	С	D
Blown powder				
LAS	6.0	5.0	11.0	6.0
TAS	2.0	-	-	2.0
Zeolite A	24.0	-	-	20.0
STPP	_	27.0	24.0	-
Sulfate	4.0	6.0	13.0	-
MAVAA	1.0	4.0	6.0	2.0
Silicate	1.0	7.0	3.0	3.0
СМС	1.0	1.0	0.5	0.6
Brightener 1	0.2	0.2	0.2	0.2
Silicone antifoam	1.0	1.0	1.0	0.3
DTPMP	0.4	0.4	0.2	0.4
Spray on				
Brightener	0.02	_	•	0.02
C45E7	-	-	-	5.0
C45E2	2.5	2.5	2.0	-
C45E3	2.6	2.5	2.0	-
Perfume	0.5	0.3	0.5	0.2
Silicone antifoam	0.3	0.3	0.3	-
Dry additives				
QEA	-	-	-	1.0
EDDS	0.3	-	_	_
Sulfate	2.0	3.0	5.0	10.0
Carbonate	6.0	13.0	11.0	14.0
Citric acid	2.5	_	-	2.0
QAS II	0.5	-	-	0.5
SKS-6	10.0	-	-	-
Percarbonate	18.5	_	_	_
PB4	-	18.0	10.0	21.5
TAED	2.0	2.0	<u>-</u>	2.0
NAC-OBS	3.0	2.0	4.0	-
Protease	1.0	1.0	1.0	1.0
Lipase	-	0.4	-	0.2
Lipase (1)	0.4	_	0.4	-
Amylase	0.2	0.2	0.2	0.4
Brightener 1	0.05		-	0.05

EP99870146.0 46

PARP3	0.3 (c)	1.0(c)	0.4(s)	1.2
Misc/minor to 100%		_		

Example 4

The following granular detergent formulations were prepared in accord with the invention.

	Α	В	С	D	E	F
Blown powder						
LAS	23.0	8.0	7.0	9.0	7.0	7.0
TAS	-	-	_	-	1.0	-
C45AS	6.0	6.0	5.0	8.0	-	
C45AES	-	1.0	1.0	1.0		_
C45E35	-	-	-	-	2.0	4.0
Zeolite A	10.0	18.0	14.0	12.0	10.0	10.0
MAVAA	, <u>-</u>	0.5		-		2.0
MĄ/AA.(1)	7.0_"	-	-	_	-	_
AA		3.0.	3.0	2.0	3.0	3.0
Sülfäte.	5:0.*	6.3.*	14:3.7	11.0	15.0	19.3
Silicate	10:0	1.0.7	1.0	1.0	1:0	1.0
Carbonate	13.0	19.0	8.0	20,7	8:0	6.0
PEG 4000*	0.4	1.5	1.5	1.0	1.0	1.0
DTPA	-	0.9	0.5		-	0.5
Brightener 2	0.3	0.2	0.3	-	0.1	0.3
Spray on						
C45E7	-	2.0		-	2.0	2.0
C25E9	3.0	-		_	-	_
C23E9	-	-	1.5	2.0	-	2.0
Perfume	0.3	0.3	0.3	2.0	0.3	0.3
Agglomerates						
C45AS		5.0	5:0	2.0_	- +	5.0
LAS		2.0	2.0 🖺		-	2.0
Zeolite A	-	7.5	7.5	8.0	-	7.5
Carbonate	-	4.0	4.0	5.0	_	4.0
PEG 4000	-	0.5	0.5		-	0.5
Misc (water etc)	-	2.0	2.0	2.0		2.0

Dry additives						
QAS (I)	-				1.0	-
Citric acid	-	-	-	-	2.0	-
PB4	-	-	-	-	12.0	1.0
PB1	4.0	1.0	3.0	2.0	-	-
Percarbonate	-	-	-	-	2.0	10.0
Carbonate	-	5.3	1.8	-	4.0	4.0
NOBS	4.0	-	6.0	-	-	0.6
Methyl cellulose	0.2	-	-	-	ŧ	-
SKS-6	8.0	-	-	-	-	-
STS	-	-	2.0	~	1.0	-
Cumene sulfonic acid	-	1.0	-	-	· -	2.0
Lipase	0.2	-	0.2	-	0.2	0.4
Cellulase	0.2	0.2	0.2	0.3	0.2	0.2
Amylase	0.2	-	0.1	-	0.2	-
Protease	0.5	0.5	0.5	0.3	0.5	0.5
PVPVI	-	-	-	-	0.5	0.1
PVP	-	-	-	-	0.5	-
PVNO	-	-	0.5	0.3		-
QEA	-	-	-	-	1.0	-
SRP1	0.2	0.5	0.3	-	0.2	-
PARP3	0.2(c)	0.3(c)	1.0(c)	0.5(c)	1.0(c)	0.1(s)
Silicone antifoam	0.2	0.4	0.2	0.4	0.1	_
Mg sulfate	_	-	0.2		0.2	-
Misc/minors to 100%					<u> </u>	

	G	Н	II	J
Blown powder				
Clay I or II	7.0	10.0	6.0	2.0
LAS	16.0	5.0	11.0	6.0
TAS	-	5.0	-	2.0
Zeolite A	-	20.0	-	10.0
STPP	24.0	_	14.0	-
Sulfate	-	2.0	_	-
MA/AA	-	2.0	1.0	1.0
Silicate	4.0	7.0	3.0	-
CMC	1.0	-	0.5	0.6

				
Brightener 1	0.2	0.2	0.2	0.2
Carbonate	10.0	10.0	20.0	
DTPMP	0.4	0.4	0.2	-
Spray on				
Brightener 1	0.02	-	-	0.02
C45E7 or E9"		_	2.0	1.0.
C45E3 or E4	-	-	2.0	4.0
Perfume	0.5	-	0.5	0.2 _
Silicone antifoam	0.3	-	-	-
PARP2	0.16	0.2	0.4	1.0
Dry additives				
Flocculating agent I or II	0.3	1.0	1.0	0.5
QEA	-	-	•	1.0
HEDP/ EDDS	0.3	-	-	-
Sulfate	2.0	_	-	-
Carbonate	20.0	13.0	15.0	24:0
Citric acid	2.5	-	•	2.0
QAS	*-	-	0.5 🛬	0.5:
NaSKS#6	*3.5 **	-		5.0 *
Percarbonates	j au	18.	•	9:02
PB42	-	-	5.0 :	-, -: -
N@B\$	i -	-	-	1.3 %
TAED	h <u>.</u>	-	2.0	1.5⊸
Protease	1.0	1.0	1.0	1.0
Lipase	-	0.4	-	0.2
Amylase	0.2	0.2	0.2	0.4
Brightener 2	0.05	_	-	0.05
Perfume	0.1	0.2	0.5	-
Speckle	1.2	0.5	2.0	-
Misc/minor to 100%				

The following nil-bleach*containing**detergent* formulations**of::particular**use**in the washing of coloured clothing, according to the present invention were prepared:

	Α	В	С
Blown Powder			

			
Zeolite A	15.0	15.0	-
Sulfate	0.0	5.0	-
LAS	3.0	3.0	-
DTPMP	0.4	0.5	-
СМС	0.4	0.4	
MA/AA	4.0	4.0	-
Agglomerates			
C45AS	-	-	11.0
LAS	6.0	5.0	-
TAS	3.0	2.0	-
Silicate	4.0	4.0	-
Zeolite A	10.0	15.0	13.0
СМС	-	-	0.5
MA/AA	-	-	2.0
Carbonate	9.0	7.0	7.0
Spray On			
Perfume	0.3	0.3	0.5
C45E7	4.0	4.0	4.0
C25E3	2.0	2.0	2.0
PARP4	0.3	1.0	0.2
Dry additives			
MAVAA	-	-	3.0
NaSKS-6	-	_	12.0
Citrate	10.0	-	8.0
Bicarbonate	7.0	3.0	5.0
Carbonate	6.0	-	7.0
PVPVI/PVNO	0.5	0.5	0.5
Alcalase	0.5	0.3	0.9
Lipase	0.4	0.4	0.4
Amylase	0.6	0.6	0.6
Cellulase	0.6	0.6	0.6
PARP3	0.7(c)	0.1(c)	0.5(c)
Silicone antifoam	5.0	5.0	5.0
Dry additives			
Sulfate	0.0	9.0	0.0
Misc/minors to 100%	100.0	100.0	100.0
Density (g/litre)	700	700	700

Example 6

The following granular detergent formulations were prepared in accord with the invention.

		A	B*	C	D:
Base granule					
	Zeolite A	30.0	22.0	24:0	10:0
	Sulfate	10.0	5.0	10.0	7.0
	MA/AA	3.0	-		
	AA	**	1.6	2.0	<u>-</u> .
	MA/AA (1)	-	12.0		6.0
	LAS	14.0	10.0	9.0	20.0
	C45AS	8.0	7.0	9.0	7.0
	C45AES	-	1.0	1.0	-
	Silicate	-	1.0	0.5	10.0
	Soapa	_	2.0		
	Brighteneral	0.2	0.2	0.2	0.2
	Carbonate	6:0	9.0	10.0	10.0
	PEG:4000	# -	1.0	1.5 🗷	-
	DTPA	. -	0.4 -	-	-
Spray on					
	C25E9	-	_		5.0
	C45E7	1.0	1.0	_	-
	C23E9	-	1.0	2.5	-
	Perfume	-	0.3	0.3	-
	PARP2	0.3	0.05	0.008	-
Dry additives					
	Carbonate	5.0_	5.0	15.0	6.0
	PVPVI/PVNO.	0.5	-	0.3 🛎	-
	Protease	1.0	1.0	1.0.*	0.5
	Lipase	0.4	-	-	0.4
	Amylase	0.1	<u> </u>	_	0.1
	Cellulase	0.1	0.2	0.2	0.1
	NOBS	-	4.0	-	4.5
	PB1	1.0	5.0	1.5	6.0

Sulfate	4.0	5.0	-	5.0
SRPI	-	0.4	-	-
PARP1	_	1.5(c)	0.8(c)	-
PARP3	-	0.1	-	0.4(s)
Sud supressor	_	0.5	0.5	-
Misc/minor to 100%				

Example 7

The following granular detergent compositions were prepared in accord with the invention.

	A	В	С
Blown powder			
Zeolite A	20.0	_	15.0
STPP	-	20.0	_
Sulphate	_	-	5.0
Carbonate	-	-	5.0
TAS	_	-	1.0
LAS	6.0	6.0	6.0
C68AS	2.0	2.0	-
Silicate	3.0	8.0	_
MA/AA	4.0	2.0	2.0
СМС	0.6	0.6	0.2
Brightener 1	0.2	0.2	0.1
DTPMP	0.4	0.4	0.1
STS	<u>.</u>	-	1.0
Spray on	-		
C45E7	5.0	5.0	4.0
Silicone antifoam	0.3	0.3	0.1
Perfume	0.2	0.2	0.3
PARP4	1.2	1.0	_
Dry additives			
QEA		-	1.0
Carbonate	14.0	9.0	10.0
PB1	1.5	2.0	_
PB4	18.5	13.0	13.0

TAED	2.0	2.0	2.0
QAS (I)	-	-	1.0
Photoactivated bleach	15 ppm	15 ppm	15ppm
SKS-6	-	•	3.0
Protease	1.0	1.0	0.2
Lipase	0.2	0.2.	0.2.
Amylase	0.4 4	0.4	0.2
Cellulase	0.1	0.1	0.2
Sulfate	10.0	20.0	5.0
PARP3	0.5(c)	0.5(c)	0.4(c)
Misc/minors to 100%			
Density (g/litre)	700	700	700

Example 8

The following detergent compositions, according to the present invention were prepared:

No. of the second secon	A	B. ≱	С
Blown Powder.		- A	
Zeolite:A	15.0	15.0.	15.0
Sulfate•	0.0	5.0 ᡮ	0.0
LAS	3.0	3.0	3.0
QAS	-	1.5	1.5
DTPMP	0.4	0.2	0.4
EDDS	•	0.4	0.2
СМС	0.4	0.4	0.4
MA/AA	4.0	2.0	2.0
Agglomerates			
LAS	5.0	5.0	5.0
TAS:	2.0 =	2.0	1.0
Silicate	3.0*	3.07	4.0
Zeolite A	8.0	8.0	8.0
Carbonate	8.0	8.0	4.0
Spray On			
Perfume	0.3	0.3	0.3

C45E7	2.0	2.0	2.0
C25E3	2.0	-	-
PARP2	0.4	0.2	-
Dry additives			
Citrate	5.0	-	2.0
Bicarbonate	-	3.0	-
Carbonate	8.0	15.0	10.0
TAED	6.0	2.0	5.0
PB1	14.0	7.0	10.0
PEO	-	-	0.2
PARP3	1.2(c)	1.0 (c)	0.75(c)
Bentonite clay	-	-	10.0
Protease	1.0	1.0	1.0
Lipase	0.4	0.4	0.4
Amylase	0.6	0.6	0.6
Cellulase	0.6	0.6	0.6
Silicone antifoam	5.0	5.0	5.0
Sodium sulfate	0.0	3.0	0.0
Misc/minors to 100%	100.0	100.0	100.0
Density (g/litre)	850	850	850

	D	E	F	G	Н
Blown Powder					
STPP/ Zeolite A	9.0	15.0	15.0	9.0	9.0
Flocculating agent II or III	0.5	0.2	0.9	1.5	-
LAS	7.5	23.0	3.0	7.5	7.5
QAS	2.5	1.5	_	-	-
DTPMP	0.4	0.2	0.4	0.4	0.4
HEDP or EDDS	_	0.4	0.2		-
CMC	0.1	0.4	0.4	0.1	0.1
Sodium carbonate	5.0	20.0	20.0	10.0	-
Brightener	0.05	_	-	0.05	0.05
Clay I or II	_	10.0			_
STS	0.5	-	-	0.5	0.5
MA/AA	1.5	2.0	2.0	1.5	1.5

Agglomerates					
Suds suppresser	1.0	1.0	-	2.0	0.5
(silicon)					
Agglomerate					
Clay	9.0		-	4.0	10.0
Wax	0.5	-	-	0.5	1.5
Glycerol	0.5	-	-	0.5	0.5
Agglomerate					
LAS	-	5.0 ~	5.0 "	-	-
TAS	_	2.0	1.0	-	_
Silicate	-	3.0	4.0	-	-
Zeolite A	-	8.0	8.0	_	-
Carbonate	-	8.0	4.0	-	-
Spray On					
Perfume	-		_	-	0.1
C45E7 or E9	2.0	-	-	2.0	2.0
C25E3 or E4	2.0	-	•	2.0	2.0
Dry additives					
Citrate or citric acid	2.5	िक्का क्यों इस	2.0 🛬	2.5	2.5
Clay I or II	-	5.0	5.0	_	
Flocculating agent		-	-	-	0.2 ~
or il			<u> </u>		
Bicarbonate	-	3.0		-	
Carbonate	15.0	-	-	25.0	31.0
TAED	1.0	2.0	5.0	1.0	
Sodium perborate	6.0	7.0	10.0	6.0	-
or percarbonate					
SRP1, 2, 3 or 4	0.2	0.1	0.2	0.5	0.3
CMC or nonionic	1.0	1.5	0.5	-	-
cellulose ether		ļ		 	ļ
Protease	0.3	1.0 :	1.0	0.3	0.3
Lipase	<u> </u>	0.4	0.4	-	<u> </u>
Amylase	0.2	0.6	0.6	0.2	0.2
Cellulase	0.2	0.6	0.6	0.2	0.2
Silicone antifoam	-	5.0	5.0	-	-
Perfume (starch)	0.2	0.3	1.0	0.2	0.2
Speckle	0.5	0.5	0.1	-	1.0

NaSKS-6 (silicate 2R)	3.5	-	•	-	3.5
Photobleach	0.1	-	-	0.1	0.1
Soap	0.5	2.5	_	0.5	0.5
Sodium sulfate	_	3.0	-		-
PARP2	0.4	0.16	0.1	0.4	0.18
Misc/minors to	100.0	100.0	100.0	100.0	100.0
100%		<u> </u>	<u> </u>		
Density (g/litre)	850	850	850	850	850

5

The following detergent formulations, according to the present invention were prepared:

	Α	В	С	D
LAS	18.0	14.0	24.0	20.0
QAS	0.7	1.0	-	0.7
TFAA	-	1.0	-	
C23E56.5	-	-	1.0	
C45E7	•	1.0	-	
C45E3S	1.0	2.5	1.0	-
STPP	32.0	18.0	30.0	22.0
Silicate	9.0	5.0	9.0	8.0
Carbonate	9.0	7.5	-	5.0
Bicarbonate	-	7.5	-	-
PB1	3.0	1.0	-	
PB4	-	1.0	<u>-</u>	-
NOBS	2.0	1.0	-	<u>-</u>
DTPMP	-	1.0	-	_
DTPA	0.5	-	0.2	0.3
SRP 1	0.3	0.2	-	0.1
MA/AA	1.0	1.5	2.0	0.5
СМС	0.8	0.4	0.4	0.2
PEI	-	-	0.4	-
Sodium sulfate	20.0	10.0	20.0	30.0

Mg sulfate	0.2		0.4	0.9
Protease	0.8	1.0	0.5	0.5
Amylase	0.5	0.4		0.25
Lipase	0.2	-	0.1	_
Cellulase	0.15	-	-	0.05
Photoactivated:	30ppm	20ppm -	-	10ppm
bleach (ppm)		ļ		
PARP3	0.2(c)	1.4(s)	0.8(c)	0:8(c)
Perfume spray	0.3	0.3	0.1	0.2
on				
Brightener 1/2	0.05	0.2	0.08	0.1
Misc/minors to				
100%		L		

The following is a composition in the form of a tablet, bar, extrudate or granule in accord with the invention

	A 🐇	вЪ	C≇.	D.**	E *	F*	G.
Sodium C44-C13.	12.0	16:0	23.0.	19.0	18.0	20.0.	16.0
alkylbenzenesulfönate		,			1.		à
Sodium C14-C15 *alcohol*		4.5			-	-	4.0
sulfate							
C ₁₄ -C ₁₅ alcohol ethoxylate	-	-]	2.0	-	1.0	1.0	1.0
(3) sulfate							
Sodium C ₁₄ -C ₁₅ alcohol	2.0	2.0	-	1.3	-	-	5.0
ethoxylate							
C ₉ -C ₁₄ alkyl dimethyl			-	-	1.0	0.5	2.0
hydroxy ethyl quaternary					ł		
ammonium salt							
Tallow-fatty acid		·	-	-		-	1.0
Sodium tripolyphosphate*/	23.0	25:0	14։0แ	22,0"	2010	10:0	20.0
Zeolite				75.0			25
Sodium carbonate	25.0	-22 : 0	35:0	20,0	28 0,	4150	<u>'</u> .30.0
Sodium Polyacrylate	0.5	0.5	0.5	0.5	-	-	-
(45%)							<u> </u>

Sodium	I		1.0	1.0	110	Τ	T 0 5
	-	-	1.0	1.0	1.0	2.0	0.5
polyacrylate/maleate]						
polymer (4:0 anti-	20			0.0		-	
Sodium silicate (1:6 ratio NaO/SiO ₂)(46%)	3.0	6.0	9.0	8.0	9.0	6.0	8.0
Sodium sulfate				-	-	2.0	3.0
Sodium perborate/	5.0	5.0	10.0	-	3.0	1.0	-
percarbonate							
Poly(ethyleneglycol), MW	1.5	1.5	1.0	1.0	_	-	0.5
~4000 (50%)							
Sodium carboxy methyl	1.0	1.0	1.0	-	0.5	0.5	0.5
cellulose							
NOBS/ DOBS	-	1.0	-	-	1.0	0.7	-
TAED	1.5	1.0	2.5	-	3.0	0.7	
SRP 1	1.5	1.5	1.0	1.0	-	1.0	-
Clay I or II	5.0	6.0	12.0	7.0	10.0	4.0	3.0
Flocculating agent I or III	0.2	0.2	3.0	2.0	0.1	1.0	0.5
Humectant	0.5	1.0	0.5	1.0	0.5	0.5	_
Wax	0.5	0.5	1.0	-	-	0.5	0.5
Moisture	7.5	7.5	6.0	7.0	5.0	3.0	5.0
Magnesium sulphate			-	-	-	0.5	1.5
Chelant		<u></u>	_		0.8	0.6	1.0
Enzymes, including	-	-	_	-	2.0	1.5	2.0
amylase, cellulase,					,		
protease and lipase							
Speckle	2.5	4.1	4.2	4.4	5.6	5.0	5.2
minors, e.g. PVP,	2.0	1.0	1.0	1.0	2.5	1.5	1.0
PVPVI/PVNO, brightener.							
photo-bleach,	-						
PARP2	0.4	8.0	0.6	0.2	0.1	0.8	0.1
Perfume	0.1	-	-	0.05	0.2	_	0.3

	Н		1	J	K
Sodium C ₁	1-C ₁₃ 2	3.0	13.0	20.0	18.0
alkylbenzenesulfonate					
Sodium C ₁₄ -C ₁₅ alcohol sulfate	-		4.0	-	-
Clay I or II	5.	.0	10.0	14.0	6.0

Flocculating agent I or II	0.2	0.3	0.1	0.9
Wax	0.5	0.5	1.0	-
Humectant (glycerol/ silica)	0.5	2.0	1.5	_
C ₁₄ -C ₁₅ alcohol ethoxylate sulfate	-		-	2.0
Sodium C ₁₄ -C ₁₅ alcohol ethoxylate (2.5	3.5	-	-
C ₉ -C ₁₄ alkyl dimethyl hydroxy ethyl		-	-	0.53
quaternary ammonium salt				
Tallow fatty acid	0.5	-		-
Tallow alcohol ethoxylate (50)	-	-		1.3
Sodium tripolyphosphate	-	41.0	-	20.0
Zeolite A, hydrate (0.1-10 micron size)	26.3	-	21.3	-
Sodium carbonate	24.0	22.0	35.0	27.0
Sodium Polyacrylate (45%)	2.4		2.7	-
Sodium polyacrylate/maleate polymer	-	-	1.0	2.5
Sodium silicate (1.6 or 2 or 2.2 ratio NaO/SiO ₂)(46%)	4.0	7.0	2.0	6.0
Sodium sulfate		6.0	2.0.	_
Sodium perborate/ percarbonate	8.0 🕹	4.0.2		12.0
Poly(ethyleneglycol), MW 4000 (50%),	1.7	0.4.	1.0 .	- 13
Sodium carboxy methyl cellulose	1.0	-	-	0.3
Citric acid	-		3.0	-
NOBS/ DOBS	1.2			1.0
TAED	0.6 =	1.5	_	3.0
Perfume	0.5	0.1	0.3	
SRP 1		1.5	1.0	1.0
Moisture	7.5	3.1	6.1	7.3
Magnesium sulphate				1.0
Chelant				0.5
speckle	1.0	0.5	0.2	2.7
Enzymes, including amylase, cellulase,] -	1.0	-	1.5
protease and lipase				
minors, e.g. brightener, photo-bleach	1.0	1.0	1.01	1.0
PARP2	0.2_	0.4	0.16:	سر8.0

The following liquid detergent formulations were prepared in accord with the invention (levels are given as parts per weight).

	Α	В	С	D	E
LAS	11.5	8.8	-	3.9	<u>.</u>
C25E2.5S	-	3.0	18.0	-	16.0
C45E2.25S	11.5	3.0	_	15.7	-
C23E9	-	2.7	1.8	2.0	1.0_
C23E7	3.2	-	-		-
CFAA	-	-	5.2	-	3.1
TPKFA	1.6	-	2.0	0.5	2.0
Citric acid (50%)	6.5	1.2	2.5	4.4	2.5
Calcium formate	0.1	0.06	0.1	-	+
Sodium formate	0.5	0.06	0.1	0.05	0.05
Sodium cumene sulfonate	4.0	1.0	3.0	1.18	-
Borate	0.6		3.0	2.0	2.9
Sodium hydroxide	5.8	2.0	3.5	3.7	2.7
Ethanol	1.75	1.0	3.6	4.2	2.9
1, 2 propanediol	3.3	2.0	8.0	7.9	5.3
Monoethanolamine	3.0	1.5	1.3	2.5	0.8
TEPAE	1.6		1.3	1.2	1.2
Protease	1.0	0.3	1.0	0.5	0.7
Lipase	-	-	0.1	-	-
Cellulase	-	-	0.1	0.2	0.05
Amylase			-	0.1	-
SRP1	0.2	<u>-</u>	0.1	-	-
DTPA	<u> </u>	-	0.3	-	_
PVNO			0.3	-	0.2
PARP1	0.8(c)	1.0(c)	-	-	-
PARP3	-	-	0.3(c)	0.4	0.4(s)
Brightener 1	0.2	0.07	0.1	-	-
Silicone antifoam	0.04	0.02	0.1	0.1	0.1
Water/minors up to 100%					

The following liquid detergent formulations were prepared in accord with the

invention (levels are given in parts per weight):

Α	В	С	D	E	F	G	н

LAS	10.0	13.0	9.0		25.0		-	-
C25AS	4.0	1.0	2.0	10.0		13.0	18.0	15.0
C25E3S	1.0	-		3.0		2.0	2.0	4.0
C25E7	6.0	8.0	13.0	2.5	_	-	4.0	4.0
TFAA	-	-	_	4.5	-	6.0	8.0	8.0
APA	-	1.4	-	-	3.0	1.0 _	2.0	
TPKFA	2.0	-	13.0	7.0		15.0	11.0	11.0
Citric acid	2.0	3.0	1.0	1.5	1.0	1.0	1.0⊶	1.0
Dodecenyl/tetradecenyl	12.0	10.0	-	-	15.0	-	-	-
succinic acid								
Rape seed fatty acid	4.0	2.0	1.0	_	1.0		3.5	-
Ethanol	4.0	4.0	7.0	2.0	7.0	2.0	3.0	2.0
1,2 Propanediol	4.0	4.0	2.0	7.0	6.0	8.0	10.0	13.0
Monoethanolamine	-	-	•	5.0	_	-	9.0	9.0
Triethanolamine	-	-	8.0	•	-	-	-	_
TEPAE	0.5	-	0.5	0.2	-	l ·	0.4	0.3
DTPMP	1.0	1.0	0.5	1.0 *	2.0	1.2	1.0	-
Protease	0.5,	0.5 ~	0.4-	0.25		د_0.5	0.3	0.6
Alcalase	-	-	1	-	1.5.≵		-	~
Lipase		0.102	Transcri	0.01*	- *		0.15	0.15
Amylase	0.25	0.25	0.6	0.5	0.25	0.9	0.6	0.6
Cellulase		_	-	0.05		_	0.15	0.15
Endolase	-	_	-	0.10°		-	0.07	-
SRP2	0.3		0.3	0.1		-	0.2	0.1
Boric acid	0.1	0.2	1.0	2.0	1.0	1.5	2.5	2.5
Calcium chloride		0.02		0.01				-
Bentonite clay					4.0	4.0		-
Brightener 1		0.4			0.1	0.2	0.3	
Sud supressor	0.1	0.3	-	0.1	0.4		-	-
Opacifier	0.5	0.4	-	0.3	0.8	0.7		-
PARP1	0.8	_	0.5		0.3	-	0.4	0.2
	(s) 🗹		(C)		(c)≈		(c)	(c)
PARP3	-	0.2	_	0.1	-	0.8	0.1	0.07
		(c)		(c)		(c)	(c)	(c)
Water/minors up to				1				
100%								
NaOH up to pH	8.0	8.0	7.6	7.7	8.0	7.5	8.0	8.2

Exampl 13

The following liquid detergent compositions were prepared in accord with the invention (levels are given in parts per weight).

	Α	В
LAS	27.6	18.9
C45AS	13.8	5.9
C13E8	3.0	3.1
Oleic acid	3.4	2.5
Citric acid	5.4	5.4
Sodium hydroxide	0.4	3.6
Calcium formate	0.2	0.1
Sodium formate	-	0.5
Ethanol	7.0	-
Monoethanolamine	16.5	8.0
1,2 propanediol	5.9	5.5
Xylene sulfonic acid		2.4
TEPAE	1.5	0.8
Protease	1.5	0.6
PEG	-	0.7
Brightener 2	0.4	0.1
Perfume spray on	0.5	0.3
PARP3	0.2(c)	_
PARP1	0.1(c)	0.2(c)
Water/minors up to 100%		

Example 14

The following laundry bar detergent compositions were prepared in accord with the invention (levels are given in parts per weight).

	Α	В	С	D	Е	F
LAS	-	-	19.0	6.75	8.8	-
C28AS	30.0	13.5	-	15.75	11.2	22.5
Sodium laurate	2.5	9.0	-	-	-	-

Zeolite A	2.0	1.25	-	1.25	1.25	1.25
Carbonate	10.0	-	11.0	7.0	13.0	9.0
Calcium	27.5	39.0	35.0	40.0	-	40.0
carbonate						
Sulfate	5.0	5.0	3.0		-	5.0
TSPP	5.0	-	-	5.0 .	2.5	
STPP	5.0	15.0_	10.0	7.0	8.0	10.0
Bentonite clay	-	10.0 🖫	-		_	
DTPMP	-	0.7	0.6	0.7	0.7	0.7
CMC	-	1.0	1.0	-	-	1.0
Talc	-	-	10.0	_		
Silicate	-	-	4.0	-	-	-
PVNO	0.02	0.03	-	0.02	-	
MA/AA	0.4	1.0	-	0.4	0.5	0.4
SRP1	0.3	0.3	0.3	0.3	0.3	0.3
Protease	-	0.12	-	-		0.1
Lipase	-	0.1		-	-	
Amylase	-	•	0.8⊀	-	0.1	
Cellulase	-	0.415	-	0.1.*	-	
PEO	-	0.2.7	-	- 4	- 1 -	0.3
Perfume	0.2	0.5	0.3	-		0.05
Mg sulfate	-	-	3.0	-	-	_
PARP4	0.8	-	_	0.8(%)~	-	-
PARP2	_	0.2		-	0.8	
PARP3		-	1(c)	_	-	1(c)
Brightener	0.15	0.10	0.15		-	0.1
Photoactivated bleach (ppm)	-	15.0	15.0	_	-	15.0

The following detergent additive compositions were prepared according to the 5 present inventions:

LAS

В

C

5.0

5.0

STPP	30.0	-	20.0
Zeolite A	-	35.0	20.0
PB1	20.0	15.0	-
TAED	10.0	8.0	-
PARP1	1.0(c)	-	0.5(c)
PARP3	-	0.3(c)	0.1(c)
Protease	-	0.3	0.3
Amylase	-	0.06	0.06
Minors, water and miscellaneous		Up to 100%	

The following compact high density (0.96Kg/l) dishwashing detergent compositions were prepared according to the present invention:

	Α	В	С	D	E	F	G	Н
STPP	-	-	54.3	51.4	51.4	-	_	50.9
Citrate	35.0	17.0	-	-	-	46.1	40.2	-
Carbonate	-	15.0	12.0	14.0	4.0	-	7.0	31.1
Bicarbonate	-	-	-	-	-	25.4	-	-
Silicate	32.0	14.8	14.8	10.0	10.0	1.0	25.0	3.1
Metasilicate	-	2.5	-	9.0	9.0	-	-	-
PB1	1.9	9.7	7.8	7.8	7.8	-	-	-
PB4	8.6	-	-	-	-	- .	-	-
Percarbonate	-	-	-	-	-	6.7	11.8	4.8
Nonionic	1.5	2.0	1.5	1.7	1.5	2.6	1.9	5.3
TAED	5.2	2.4	-	-	-	2.2	-	1.4
HEDP	-	1.0	-	-	-	-	-	-
DTPMP	-	0.6	-	-	-		-	-
MnTACN	-	-	-	-	-	-	800.0	-
PAAC	-	-	800.0	0.01	0.007	-	-	-
BzP	-	-	_	~	1.4	-	-	-
Paraffin	0.5	0.5	0.5	0.5	0.5	0.6	-	-
PARP3	0.2	0.4(c)	0.2(c)	0.1(c)	-	-	-	0.5(c)
	(c)							
PARP1	_	-	~	-	1.0(c)	1.3(c)	1.2(c)	-
Protease	0.072	0.072	0.029	0.053	0.046	0.026	0.059	0.06
Amylase	0.012	0.012	0.006	0.012	0.013	0.009	0.017	0.03

Lipase	-	0.001	-	0.005	-	-	-	-
BTA	0.3	0.3	0.3	0.3	0.3	-	0.3	0.3
MA/AA	-	-	-	-	-	-	4.2	-
480N	3.3	6.0	-	-	-	-	-	0.9
Perfume	0.2	0.2	0.2	0.2	0.05	-	-	0.1
Sulphate	7.0	20,0	5.0	2.2	0.8	12.0.	4.6	-
рН	10.8	11:0	10.8	11.3	11.3 *	9.6	10.8	10.9
Miscellaneous and water				į	Jpstorii 0	0%°		

The following granular dishwashing detergent compositions of bulk density 1.02Kg/L were prepared according to the present invention :

	Α	В	С	D	E	F	G	Н
STPP	30.0	30.0	33.0	34.2	29.6	31.1	26.6	17.6
Carbonate	29•5	30,0,	29.0	24.0.	15.0	36:0. 🗻	2.1	38.0
Silicate	7.4	7.4	7.5	7.2	13.3	3.4 🛣	43.7	12.4
Metasiliçate		- 3	4.5∷	5. <u>1</u> ,		-	-	-
Percarbonate 🛦	-	-	-	-	- ,	4.0	-	-
PB1	4.4	4.2	4.5 *	4.5, ~	- 4	- +	-	~
NADCC	-	- ·	- *	-	2.0, _	-	1.6	1.0
Nonionic	1.2	1.0 =	0.7	0.8 🌞	1.9	0.7	0.6	0.3
TAED	1.0 🛎	-	-	-	-	0.8	-	-
PAAC	-	0.004	0.004	0.004	-	-	-	-
BzP	-	-	-	1.4	-	-	-	-
Paraffin	0.25	0.25	0.25	0.25	-	-	-	-
PARP3	0.1(c)	0.5(c)	0.4(c)	0.8(c)	-	-	1.0(c)	0.5(c)
PARP1	-	-	-	-	1.0	1.5(c)	1.2(c)	8.0
					(c)			(s)
Protease	0.036	0.015	0.03	0.028	-	0.03	-	-
Amylase	0.003	0.003	0.01	0.006🕶	-	0.01	-	-
Lipase	0.005	-	0.001	-	- ,	- @	-	-
BTA	0.15	0.15	0.15	0.15	-	-	-	-
Perfume	0.2	0.2	0.2	0.2	0.1	0.2	0.2	-
Sulphate	23.4	25.0	22.0	18.5	30.1	19.3	23.1	23.6
pН	10.8	10.8	11.3	11.3	10.7	11.5	12.7	10.9
Miscellaneous a		Up to	100%					

Example 18

The following tablet detergent compositions were prepared according to the present invention by compression of a granular dishwashing detergent composition at a pressure of 13KN/cm² using a standard 12 head rotary press:

	A	В	С	D	E	F
STPP	-	48.8	49.2	38.0	-	46.8
Citrate	26.4	-	-	-	31.1	-
Carbonate	-	4.0	12.0	14.4	10.0	20.0
Silicate	26.4	14.8	15.0	12.6	17.7	2.4
PARP1	1.3(c)	-	-	-	1.5	-
PARP2	-	0.2	-	-	-	0.4
PARP3	-	-	0.2(c)	0.1(s)	-	-
Protease	0.058	0.072	0.041	0.033	0.052	0.013
Amylase	0.01	0.03	0.012	0.007	0.016	0.002
Lipase	0.005	-	-	-	-	-
PB1	1.6	7.7	12.2	10.6	15.7	-
PB4	6.9	-	-	-	-	14.4
Nonionic	1.5	2.0	1.5	1.65	8.0	6.3
PAAC	-	-	0.02	0.009	-	-
MnTACN	-	-	-	-	0.007	-
TAED	4.3	2.5	-	-	1.3	1.8
HEDP	0.7	-	-	0.7	-	0.4
DTPMP	0.65	-	-	-	-	-
Paraffin	0.4	0.5	0.5	0.55	-	-
BTA	0.2	0.3	0.3	0.3	-	-
PA30	3.2	-	-	-	-	-
MA/AA	-	-	-	-	4.5	0.55
Perfume	-	-	0.05	0.05	0.2	0.2
Sulphate	24.0	13.0	2.3	-	10.7	3.4
Weight of tablet	25g	25g	20g	30g	18g	20g
pН	10.6	10.6	10.7	10.7	10.9	11.2
Miscellaneous and water			Up	to 100%		

10 **Example 19**

The following liquid dishwashing detergent compositions of density 1.40 Kg/L were prepared according to the present invention :

	A	В	С	D
STPP	17.5	17.5	17.2	16.0
Carbonate	2.0	-	2.4	-
Silicate	5.3	6:1	14:6:::	15.7
NaOCI	1.15 🕆	1.15	1.15	1.25
Polygen/carbopol	1.1	1.0	1.1 ***	1.25
Nonionic	-	-	0.1	-
NaBz	0.75	0.75	-	-
PARP3	0.4(c)	0.2(c)	0.1(c)	0.5(c)
NaOH	· -	1.9	-	3.5
KOH	2.8	3.5	3.0	-
pН	11.0	11.7	10.9	11.0
Sulphate, miscellaneous a	nd water	up to 1	00%	

5

Example 20

The following liquid finse aid compositions were prepared according to the present invention.

10

	A	B	C
Nonionic	12.0 🛣	-	14:5 *
Nonionic blend	-	64.0	-
Citric	3.2	-	6.5
HEDP	0.5	-	-
PEG	-	5.0	-
SCS	4.8	-	7.0
Ethanol	6.0	8.0	-
PARP1	1.6(c)	-	1.0(c)
PARP3	-	1.0(€)⇒	0.1(c)
pH of the liquide	2.0 *	7.5 \$	1
Miscellaneouseand water		Upito=100%	

Example 21

DESC

The following liquid dishwashing compositions were prepared according to the present invention :

	A	В	С	D	E			
C17ES	28.5	27.4	19.2	34.1	34.1			
Amine oxide	2.6	5.0	2.0	3.0	3.0			
C12 glucose amide	-	-	6.0	-	-			
Betaine	0.9	-	-	2.0	2.0			
Xylene sulfonate	2.0	4.0	-	2.0	-			
Neodol C11E9	-	-	5.0	-	-			
Polyhydroxy fatty acid amide	-	-	-	6.5	6.5			
Sodium diethylene penta acetate	-	-	0.03	-	-			
(40%)								
TAED	-	-	-	0.06	0.06			
Sucrose	-	-	-	1.5	1.5			
Ethanol	4.0	5.5	5.5	9.1	9.1			
Alkyl diphenyl oxide disulfonate	-	-	-	-	2.3			
Ca formate	-	-	-	0.5	1.1			
Ammonium citrate	0.06	0.1	-	· -	-			
Na chloride	-	1.0	-	-	-			
Mg chloride	3.3	-	0.7	-	-			
Ca chloride	-	-	0.4	-	-			
Na sulfate	-	-	0.06	-	-			
Mg sulfate	0.08	-		-	-			
Mg hydroxide	-	-	-	2.2	2.2			
Na hydroxide	-	-	-	1.1	1.1			
Hydrogen peroxide	200ppm	0.16	0.006	-	-			
PARP3	0.4(c)	-	0.2(c)	-	0.25(c)			
PARP1	-	1.6(c)	-	1.4(s)	1.3(c)			
Protease	0.017	0.005	.0035	0.003	0.002			
Perfume	0.18	0.09	0.09	0.2	0.2			
Water and minors	Up to 100%							

5

Example 22

The following liquid hard surface cleaning compositions were prepared according to the present invention :

	A	В	С	D	E
PARP1	1.8(c)	-	1.6(s)	-	1.4(c)
PARP3	-	0.2(c)	-	0.1(c)	0.05(c)
Amylase	0.01	0.002	0.005	-	-
Protease	0.05	0.01	0.02	-	-
Hydrogen peroxide.	-	-	-	6.0	6.8
Acetyl triethylacitrates	-	-	-	245~	-
DTPA	-	-	-	0.2	- . ·
Butyl hydroxy toluene	-	-	-	0.05	-
EDTA*	0.05	0.05	0.05	-	-
Citric / Citrate	2.9	2.9	2.9	1.0	-
LAS	0.5	0.5	0.5	-	-
C12 AS	0.5	0.5	0.5	-	-
C10AS	•	-	-	-	1.7
C12(E)S	0.5	0.5	0.5	-	-
C12,13 E6.5 nonionic	7.0	7.0	7.0	-	-
Neodol 23-6.5		- '€	-	12.0	-
Dobanol 23≆3 3-	-	-	-	-	1.5
Dobanol•91-10∰	-	- *	→ ₽	-	1.6
C25AE1.8S	-	-	-	6.0.	
Na paraffin sulphonate.	-	- v	- 🥗	6.0	
Perfume	1.0 🏶	1.0	1.0	0.5.	0.2
Propanediol **	-		-	1.5 🛫	
Ethoxylated tetraethylene	-	-	-	1:0	-
pentaimine					
2, Butyl octanol	-	-	-	-	0.5
Hexyl carbitol**	1.0	1.0	1.0	-	-
SCS	1.3	1.3	1.3	-	-
pH adjusted to	7-12	7-12	7-12	4	-
Miscellaneous and water		l	Jp to 100%	%	

^{*}Na4 ethylenediamine diacetic acid

Example 23

The following spray composition for cleaning of hard surfaces and removing household mildew was prepared according to the present invention :

^{**}Diethyleneiglycol-monohexylether

PARP3	0.4(c)
Amylase	0.01
Protease	0.01
Na octyl sulfate	2.0
Na dodecyl sulfate	4.0
Na hydroxide	0.8
Silicate	0.04
Butyl carbitol*	4.0
Perfume	0.35
Water/minors	up to 100%

^{*}Diethylene glycol monobutyl ether

Example 24

5 The following lavatory cleansing block compositions were prepared according to the present invention.

	A	В	C
C16-18 fatty alcohol/50EO	70.0	-	-
LAS	-	-	80.0
Nonionic	-	1.0	-
Oleoamide surfactant	-	25.0	- `
Partially esterified copolymer of vinylmethyl	5.0	-	-
ether and maleic anhydride, viscosity 0.1-0.5			
Polyethylene glycol MW 8000	-	38.0	-
Water-soluble K-polyacrylate MW 4000-8000	-	12.0	-
Water-soluble Na-copolymer of acrylamide	-	19.0	-
(70%) and acryclic acid (30%) low MW			
Na triphosphate	10.0	-	-
Carbonate	-	-	-
PARP1	0.8(c)	-	1.6(c)
PARP3	-	0.2(c)	0.05(c)
Dye	2.5	1.0	1.0
Perfume	3.0	-	7.0
KOH / HCL solution		pH 6-11	

10 **Example 25**

The following toilet bowl cleaning composition was prepared according to the present invention.

	Α	В	
C14-15 linear alcohol 7EO	2.0	10.0	
Citric acid	10.0.	5.0 .	
PARP1	1.2(6)	-	
PARP3	-	0.4(c)	
DTPMP	· -	1.0	
Dye	2.0	1.0	
Perfume	3.0	3.0	
NaOH	pH 6-11		
Water and minors	Up to 100%		

Example 26

The following fabric softening compositions are in accordance with the present invention

Component	Α**	" B [™]	C.	D.:	E₹	F
DTDMAC.**	- 74	-	→ £4 ₆ .		4.5 -	15.0
DEQA	2.6	2.9 🗱	18:0	19:0	- a	-
Fatty acid	0.3.*	-	1.0.2	-		-
HCI	0.02	0.02	0.02	0:02	0.02	0.02
PEG	-	-	0.6	0.6	-	0.6
Perfume	1.0	1.0	1.0	1.0	1.0	1.0
Silicone antifoam	0.01	0.01	0.01	0.01	0.01	0.01
PARP 3	0.45(c)	0.1(c)	0.3(s)	0.3(c)	0.1(s)	0.5(c)
Electrolyte (ppm)	_	-	600	1200		1200
Dye (ppm)	10	10	50	50,	10	50
Water and minors to balance to:100%						

Example 27

The following dryer added fabric conditioner compositions were prepared according to the present invention :

	Α	В	С	D		
DEQA(2)	-	-	•	50.0		
DTMAMS	-	-	26.0	_		
SDASA	70.0	70.0	42.0	35.0		
Neodol 45-13	13.0	13.0	-			
Ethanol	1.0	1.0				
PARP 3(c)	1.5	-	1.5	3.0		
PARP 3(s)	-	1.5	-	_		
Perfume	0.75	0.75	1.0	1.5		
Glycoperse S-20	-		-	10.0		
Glycerol	-	-	26.0	-		
monostearate						
Digeranyl Succinate	0.38	0.38	-	-		
Clay	-		3.0			
Dye	0.01	0.01				
Minors to balance to 100%						

Example 28

The following are non-limiting examples of pre-soak fabric conditioning and/or fabric enhancement compositions according to the present invention which can be suitably used in the laundry rinse cycle.

5

Ingredients	Α	В	С	D_	E	F
Polymer	3.5	3.5	3.5	3.5	3.5	3.5
Dye fixative	2.3	2.3	2.4	2.4	2.5	2.5
Polyamine	15.0	15.0	17.5	17.5	20.0	20.0
Bayhibit AM	1.0	1.0	1.0	1.0	1.0	1.0
C ₁₂ -C ₁₄ dimethyl	•	5.0	5.0	-	-	-
hydroxyethyl						
quaternary		[]				
ammonium						
chloride						
Fabric softener active	-	-	2.5	2.5	-	-
Genamin C100	0.33	-	0.33	0.33	0.33	-
Genapol V4463	0.2	-	0.2	0.2	0.2	-
PARP3	2.0	1.0	0.2	0.5	0.1	0.16

Water & minors	balance	balance	balance	balance	balance	balance

Exampl 29

The following are non-limiting examples of odor-absorbing compositions suitable for spray-on applications:

Examples	A	В	С	D	E
Ingredients	Wt.%	Wt.%	Wt.%	Wt.%	Wt.%
HPBCD	1.0	-	1.0	-	1.2
RAMEB	-	1.0		0.8	-
Tetronic 901	-	-	0.1	-	-
Silwet L-7604	•	-	-	0.1	-
Silwet L-7600	0.1	•	-	<u>-</u>	0.1
Bardac 2050	-	-	_	0.03	-
Bardac 2250 *	-	0.2	-		0.1
Diethylene glycol	-	1.0 🖫	-		0.2
Triethylene glycol	-	•	0.1		-
Ethanol	-	- 4		-	2.5
Perfume 1	0.1 *		-	_	•
Perfume 2		0.05		0.11	-
Perfume 3	•	-	0.1		0.1
Kathon	3 ppm	3 ppm	3 ppm	3 ppm	-
HCI	to pH 4.5	to pH 4.5	to pH 3.5	to pH 3.5	to pH 3.5
PARP2	5.0	2.0	1.0	0.2	0.16
Distilled water	Bal.	Bal.	Bal.	Bal.	Bal.

The perfume 1, 2, and 3 have the following compositions:

Perfume	1	2 💸	3
Perfume Ingredients	Wt.%	Wt:%	Wt.%
Anisic aldehyde	-		2
Benzophenone	3	5	-
Benzyl acetate	10	15	5
Benzyl salicylate	5	20	5

Cedrol	2		
Citronellol	10		5
Coumarin			5
Cymal			3
Dihydromyrcenol	10	-	5
Flor acetate	5	-	5
Galaxolide	10	-	-
Lilial	10	15	20
Linalyl acetate	4	-	5
Linalool	6	15	5
Methyl dihydro jasmonate	3	10	5
Phenyl ethyl acetate	2	5	1
Phenyl ethyl alcohol	15	15	20
alpha-Terpineol	5	-	8
Vanillin	_	-	1
Total	100	100	100

inted:21-08-2000 73

THIS PAGE BLANK (USPTO)

10

15

20

Claims

- 1-A process for making particles of amine reaction product of a compound containing a primary and/or secondary amine functional group and an active ketone or aldehyde containing component, and which comprises the steps of:
- a)-providing an amine reaction product, and
- b)-mixing therewith a carrier having a melting point of less than 30°C.
- 2-A process according to Claim 1, wherein the amine reaction product has a viscosity of higher than 1000cps.
- 3-A process according to either one of Claim 1 or 2, wherein the primary and/or secondary amine is selected from aminoaryl derivatives, polyamines, amino acids and derivatives thereof, substituted amines and amides, glucamines, dendrimers, polyvinylamines and derivatives thereof, and/or copolymer thereof, alkylene polyamine, polyaminoacid and copolymer thereof, cross-linked polyaminoacids, amino substituted polyvinylalcohol, polyoxyethylene bis amine or bis aminoalkyl, aminoalkyl piperazine and derivatives thereof, bis (amino alkyl) alkyl diamine linear or branched, and mixtures thereof; preferably selected from ethyl-4-amino benzoate, polyethyleneimine polymers; polylysine, cross-linked polylysine, N,N'-bis-(3-aminopropyl)-1,3-propanediamine linear or branched, 1,4-bis-(3-aminopropyl) piperazine, and mixtures thereof.
- 4-A process according to any one of Claims 1-3, wherein the active is selected from a flavour ketone or aldehyde ingredient, a pharmaceutical ketone or aldehyde active, a biocontrol ketone or aldehyde agent, a perfume ketone or aldehyde component, a refreshing cooling ketone or aldehyde agent and/or mixtures thereof.
- 5-A process according to any one of Claims 1-4, wherein said active component is an insect and/or moth repellant, preferably selected from citronellal, citral, N, N diethyl meta toluamide, Rotundial, 8-acetoxycarvotanacenone, and mixtures thereof.
- 6-A process according to any one of Claims 1-4, wherein said active component is an antimicrobial, preferably selected from Glutaraldehyde, Cinnamaldehyde, and mixtures thereof.

7-A process according to any one of Claims 1-4, wherein the active is a perfume, preferably selected from alpha-damascone, delta damascone, Carvone, Gamma-Methyl-Ionone; Damascenone, hedione, 2,4-dimethyl-3-cyclohexen-1-carboxaldehyde, Florhydral, Lilial, heliotropine, trans-2-nonenal, citral, and mixtures thereof.

8-A process according to any one of Claims 1-7, wherein the amount of amine reaction product ranges from 1 to 75%, preferably 5 to 30%, by weight of the processed amine reaction product.

9-A process according to any one of Claims 1-8, wherein the carrier has a melting point between minus 150°C and less than 30°C.

10-A process according to any one of Claims 1-9, wherein said carrier is a liquid carrier, preferably selected from hydrophobic and hydrophilic carrier, more preferably are selected from benzyl salicylate; diethyl phthalate; dipropylene glycol; methanol, ethanol, hydrophobic perfume composition, and mixtures; thereof;

11-A process-according to any one of Claims 1-10 wherein the amount of carrier material ranges from 3 to 95% preferably from 15 to 80% and most preferably from 25 to 75%, by weight of the produced particles of the processed amine reaction product.

12-A process according to Claim 11 wherein the processed product is subsequently treated to form a coated particle.

13-A process according to any one of Claims 1-12, wherein the coating is made of water-soluble agglomerating agent.

14-A process according to Claim 13, wherein the water-soluble agglomerating agent is selected from water-soluble-organic polymeric compounds; water soluble monomeric polycarboxylates; or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, sulfate salts, inorganic perhydrate salts, silicates, starch, cyclodextrin, and mixtures thereof, preferably selected from starch, carbonate, cyclodextrin, and mixtures thereof.

15-A process according to any one of Claims 1-14, wherein the amount of amine reaction product ranges from 1 to 75%, preferably 5 to 30%, by weight of the coated particle.

16-A processed amine reaction product as obtainable by the process of Claims 1-15.

17-A method of incorporating an amine reaction product according to Claim 16 into finished product, preferably by means selected from spraying, dry-addition, and mixtures thereof.

18-A finished composition comprising one or more laundry or cleaning ingredient and a processed amine reaction product according to Claim 16.

19-A composition according to Claim 18, wherein said composition is selected from a laundry composition, hard surface cleaning composition, and personal cleaning composition.

20-A method for delivering residual active to a surface which comprises the steps of contacting said surface with a processed product according to Claim 16, or composition according to either one of Claim 18 or 19, and thereafter contacting the treated surface with a material so that the active is released.

21- Use of a product as defined in Claim 16 for the manufacture of a laundry and/or cleaning composition for delivering residual fragrance on a surface on which it is applied.

22-Use of a product as defined in Claim 16 for the manufacture of a laundry and/or cleaning composition for delivering residual fragrance and fabric care onto the fabrics on which it is applied.

23-A packaged composition comprising the processed product of Claim 16 or composition of either one of Claim 18 or 19.

THIS PAGE BLANK (USPTO)

Abstract

There is provided a process for producing particles of amine reaction product by means of a carrier having a melting point of less than 30°C, optionally followed by a coating step. Processed amine reaction products and finished compositions incorporating such processed product are also herein provided.

THIS PAGE BLANK (USPTO)