Unit 1: Introduction to data

4. Introduction to statistical inference

LBJ - SDA - Spring 2024

University of Texas

Outline

1. Housekeeping

- 2. Case study: Is yawning contagious?
 - Competing claims
 - 2. Testing via simulation
 - 3. Checking for independence

▶ Lab 1 Due today by midnight

▶ Lab 1 Due today by midnight - Questions?

- ▶ Lab 1 Due today by midnight Questions?
- ▶ Problem set (PS) 1 Due Feb 19

- ▶ Lab 1 Due today by midnight Questions?
- ▶ Problem set (PS) 1 Due Feb 19
- ▶ Same day as lab 2 so plan accordingly

Outline

1. Housekeeping

- 2. Case study: Is yawning contagious?
 - 1. Competing claims
 - 2. Testing via simulation
 - 3. Checking for independence

Your turn

Do you think yawning is contagious?

- (a) Yes
- (b) No
- (c) Don't know

Is yawning contagious?

An experiment conducted by the MythBusters tested if a person can be subconsciously influenced into yawning if another person near them yawns.

50 people were randomly assigned to two groups:

- ightharpoonup treatment: see someone yawn, n=34
- lacktriangle control: don't see someone yawn, n=16

	Treatment	Control	Total
Yawn	10	4	14
Not Yawn	24	12	36
Total	34	16	50
% Yawners			

50 people were randomly assigned to two groups:

- ightharpoonup treatment: see someone yawn, n=34
- lacktriangle control: don't see someone yawn, n=16

	Treatment	Control	Total
Yawn	10	4	14
Not Yawn	24	12	36
Total	34	16	50
% Yawners	$\frac{10}{34} = 0.29$		

50 people were randomly assigned to two groups:

- ightharpoonup treatment: see someone yawn, n=34
- lacktriangle control: don't see someone yawn, n=16

	Treatment	Control	Total
Yawn	10	4	14
Not Yawn	24	12	36
Total	34	16	50
% Yawners	$\frac{10}{34} = 0.29$	$\frac{4}{16} = 0.25$	

50 people were randomly assigned to two groups:

- ightharpoonup treatment: see someone yawn, n=34
- lacktriangle control: don't see someone yawn, n=16

	Treatment	Control	Total
Yawn	10	4	14
Not Yawn	24	12	36
Total	34	16	50
% Yawners	$\frac{10}{34} = 0.29$	$\frac{4}{16} = 0.25$	

Based on the proportions we calculated, do you think yawning is really contagious, i.e. are seeing someone yawn and yawning dependent?

➤ The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent

- ➤ The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent
- ▶ But the differences are small enough that we might wonder if they might simple be *due to chance*

- ➤ The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent
- ▶ But the differences are small enough that we might wonder if they might simple be *due to chance*
- ▶ Perhaps if we were to repeat the experiment, we would see slightly different results

- ➤ The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent
- ▶ But the differences are small enough that we might wonder if they might simple be *due to chance*
- ▶ Perhaps if we were to repeat the experiment, we would see slightly different results
- ➤ So we will do just that well, somewhat and see what happens

- ➤ The observed differences might suggest that yawning is contagious, i.e. seeing someone yawn and yawning are dependent
- ▶ But the differences are small enough that we might wonder if they might simple be *due to chance*
- ▶ Perhaps if we were to repeat the experiment, we would see slightly different results
- ➤ So we will do just that well, somewhat and see what happens
- ► Instead of actually conducting the experiment many times, we will *simulate* our results

Outline

1. Housekeeping

- 2. Case study: Is yawning contagious?
 - 1. Competing claims
 - Testing via simulation
 - 3. Checking for independence

Two competing claims

 "There is nothing going on."
 Seeing someone yawn and yawning are independent, observed difference in proportions of yawners in the treatment and control is simply due to chance. → Null hypothesis

Two competing claims

- "There is nothing going on."
 Seeing someone yawn and yawning are independent, observed difference in proportions of yawners in the treatment and control is simply due to chance. → Null hypothesis
- 2. "There is something going on." Seeing someone yawn and yawning are dependent, observed difference in proportions of yawners in the treatment and control is not due to chance. → Alternative hypothesis

A trial as a hypothesis test

- \blacktriangleright H_0 : Defendant is innocent
- \blacktriangleright H_A : Defendant is guilty
- ▶ Present the evidence: collect data.
- ▶ Judge the evidence: "Could these data plausibly have happened by chance if the null hypothesis were true?"
- ▶ Make a decision: "How unlikely is unlikely?"

Outline

1. Housekeeping

- 2. Case study: Is yawning contagious?
 - Competing claims
 - 2. Testing via simulation
 - Checking for independence

Simulation setup

- ▶ A regular deck of cards is comprised of 52 cards: 4 aces, 4 of numbers 2-10, 4 jacks, 4 queens, and 4 kings.
- ► Take out two aces from the deck of cards and set them aside.
- ► The remaining 50 playing cards to represent each participant in the study:
 - 14 face cards (including the 2 aces) represent the people who yawn.
 - 36 non-face cards represent the people who don't yawn.

[DEMO: Watch me go through the activity before you start it in your teams.]

Activity: Running the simulation

- 1. Shuffle the 50 cards at least 7 times to ensure that the cards counted out are from a random process
- 2. Divide the cards into two decks:
 - deck 1: 16 cards → control
 - deck 2: 34 cards → treatment
- 3. Count the number of face cards (yawners) in each deck
- 4. Calculate the difference in proportions of yawners (treatment control), and submit this value (value must be between 0 and 1)
 only one submission per team per simulation
- 5. Repeat steps (1) (4) 2 times

Outline

1. Housekeeping

- 2. Case study: Is yawning contagious?
 - 1. Competing claims
 - 2. Testing via simulation
 - 3. Checking for independence

Your turn

Do the simulation results suggest that yawning is contagious, i.e. does seeing someone yawn and yawning appear to be dependent?

(Hint: In the actual data the difference was 0.04, does this appear to be an unusual observation for the chance model?)

(a) Yes (b) No