Apellidos:		
Nombre:		
Convocatoria:		
DNI:		

Examen PED junio 2015 Modalidad 0

Normas:

- Tiempo para efectuar el test: 25 minutos.
- Una pregunta mal contestada elimina una correcta.
- Las soluciones al examen se dejarán en el campus virtual.
- Este test vale 2 puntos (sobre 10).
- Una vez empezado el examen no se puede salir del aula hasta finalizarlo.
- En la hoja de contestaciones el verdadero se corresponderá con la A, y el falso con la B.

•				
	\mathbf{V}	\mathbf{F}		
Para el tratamiento de errores en la especificación algebraica, se añaden funciones constantes			1	V
que devuelven un valor del tipo que causa el error.		_		
La complejidad temporal (en su caso peor) del siguiente fragmento de código es O(n²)			2	F
int i, j, n, sum;				
for $(i = 4; i < n; i++)$ {				
for $(j = i-3, sum = a[i-4]; j \le i; j++) sum += a[j];$				
cout << "La suma del subarray " << i-4 << " es " << sum << endl; }				
Es posible obtener una representación enlazada de una cola utilizando un único puntero que			3	V
apuntará al fondo de la cola.		_		_
Dado un único recorrido de cualquier árbol, siempre es posible reconstruir dicho árbol			4	F
El coste temporal en su peor caso de insertar una etiqueta en un árbol binario de búsqueda es			5	F
logarítmica respecto a la altura del árbol		_		
La complejidad temporal en el peor caso y en el mejor caso de la operación inserción en un			6	F
AVL son lineal y logarítmica respecto al número de nodos en el árbol	_	_	_	
El borrado en un árbol AVL puede requerir una rotación en todos los nodos del camino de		Ч	7	V
búsqueda.			0	17
Dado un árbol 2-3 de altura h con n items: $2^h-1 \le n \le 3^h-1$	ш	_	8	V
Los nodos hoja de un árbol 2-3 han de estar en el mismo nivel del árbol			9	V
Para que decrezca la altura de un árbol 2-3-4 en una operación de borrado, el nodo raíz y sus			10	V
hijos tienen que ser 2-nodo	_	_		
Un árbol 2-3-4 es un árbol 4-camino de búsqueda			11	V
La especificación algebraica de la siguiente operación indica que se devolverá el número de			12	F
elementos del conjunto multiplicado por 3 (Operación(Conjunto) Natural; Var: C:				
Conjunto; x: Ítem):				
$Operación(Crear) \Leftrightarrow 1$				
Operación (Insertar(C, x)) \Leftrightarrow 3 + Operación(C)	_	_		
En un montículo el número de claves en el hijo izquierda de la raíz es mayor o igual que en su		Ц	13	V
hijo derecha El siguiente árbol es un montículo máximo:			14	F
El siguiente al boi es un montreulo maximo.		ш	14	1
10				
(7) (9) (6)				
La siguiente secuencia de nodos de un grafo es un ciclo: 1,2,3,2,1			15	F
Un bosque extendido en profundidad de un grafo dirigido al que se le añaden los arcos de			16	F
retroceso es un grafo acíclico dirigido.				

Examen PED junio 2015

Normas: •

- Tiempo para efectuar el examen: 2 horas
- En la cabecera de cada hoja Y EN ESTE ORDEN hay que poner: APELLIDOS, NOMBRE.
- Cada pregunta se escribirá en hojas diferentes.
- Las soluciones al examen se dejarán en el campus virtual.
- Se puede escribir el examen con lápiz, siempre que sea legible
- Cada pregunta vale 2 puntos (sobre 10).
- Las fechas de "Publicación de notas" y "Revisión del examen teórico" se publicarán en el Campus Virtual.
- 1. Dado el grafo **no dirigido** representado por la lista de adyacencia que se muestra a continuación (se recorrerá cada lista de adyacencia considerándola ordenada de menor a mayor):
 - a) Obtener DFS(1), el árbol extendido en profundidad partiendo del vértice 1 y la clasificación de las aristas.
 - b) Obtener BFS(1).

```
1 \rightarrow 2 \rightarrow 4
2 \rightarrow 9
3 \rightarrow 1 \rightarrow 7
5 \rightarrow 6 \rightarrow 3 \rightarrow 1
6 \rightarrow 1
7 \rightarrow 1 \rightarrow 5
8 \rightarrow 7
9 \rightarrow 1
10 \rightarrow 14
11 \rightarrow 10
12 \rightarrow 11 \rightarrow 13 \rightarrow 10
13 \rightarrow 10 \rightarrow 11
14 \rightarrow 11 \rightarrow 12 \rightarrow 13
```

c) Utilizando exclusivamente las operaciones constructoras generadoras de grafo, definir la sintaxis y la semántica de la operación *CalculaPesos* que actúa sobre un grafo dirigido ponderado donde: los vértices son números Naturales y los Item son números Naturales que representan distancias kilométricas para cada par de vértices. *CalculaPesos* devuelve la suma de las distancias kilométricas de todos los arcos del grafo entre vértices pares.

Nota: se pueden utilizar todas las operaciones definidas para números naturales.

2. Sea el siguiente árbol 2-3-4:

- a) Sobre este árbol A, realiza la inserción de los ítems 1, 24 y 58 en ese orden.
- **b)** Escribe un árbol 2-3-4 de altura 4 en el que al borrar el ItemIzquierda del nodo raíz, haya que realizar 2 combinaciones y 1 rotación (da igual el orden en que se realicen) considerando los siguientes criterios. Realizar dicho borrado.

Criterio 1: r es el hermano de la izquierda.

Criterio 2: Si el ítem a borrar no está en una hoja, sustituir por el mayor de la izquierda.

3. Dada la siguiente función que calcula el código ASCII de una cadena de caracteres:

```
int hashChar(char *cadena, int max=20000) {
  int cod=0;
  for (int i=0; i<strlen(cadena); i++)
    if (cod<max)
      cod=cod+toascii(cadena[i]);
  else
    {
      cod=cod*100;
      cod=cod+toascii(cadena[i]);
    }
  return(cod);
}</pre>
```

Códigos ASCII de cada letra:

- a) Indicar la complejidad temporal. ¿Existe mejor y peor caso?
- b) Si no se utilizara el parámetro max, es decir, que dentro del for sólo estuviera la instrucción cod = cod + toascii(cadena[i]); ¿Habría algún caso en que la función hashChar no funcionara correctamente?
- c) Insertar en una tabla de dispersión cerrada de tamaño B=7, con función de dispersión H(x)=x MOD B y con estrategia de redispersión segunda función hash, la siguiente secuencia de elementos:
 - 1) AMOR(**303**) 2) COSA(**294**) 3) MORA(**303**)
 - 4) ESPONJA(528) 5) RAMO(303) -
 - 6) JAPONES(**528**) 7) ROMA(**303**) –
 - 8) CASO(294)

¿Qué elemento o elementos no se podrían insertar en la tabla? ¿Por qué?

A=65	C=67	E=69	J=74	M=77
N=78	O=79	P=80	R=82	S=83

Justifica tus respuestas.

Examen PED junio 2015. Soluciones

1.
a) DFS(1)=1,2,9,3,5,6,7,8,4. Se continúa por DFS(10)=10,11,12,13,14

Árbol extendido en profundidad. Las aristas marcadas son de árbol (A), el resto son de retroceso

b) BFS(1)=1,2,3,4,5,6,7,9,8 **c)**

CalculaPesos: grafo → natural

Var G: grafo; x,y: vértice; p: natural;

CalculaPesos (crear_grafo())=0

CalculaPesos (InsertarArista(G,x,y,p))=

si ((x MOD 2 == 0) && (y MOD 2 == 0))

entonces p + CalculaPesos (G)

sino CalculaPesos (G)

2. a)

b) Por ejemplo, el ejercicio 1 de los apuntes

3. a) $\Omega(n)=1+1*n=n$ (en el caso de que entrara en el if)

O(n)=1+2*n=n (en el caso de que entrara en el else)

La diferencia entre ambos casos es de sólo un paso por lo que podemos considerar que el caso mejor y peor coinciden.

- b) Si se pasara como parámetro una cadena muy larga y la suma de los códigos ASCII de sus letras superara el tamaño máximo de almacenamiento del tipo int se produciría un error.
- c) Dado que es una tabla de dispersión cerrada de tamaño B=7 como máximo se podrían insertar 7 elementos, por lo que el último elemento CASO, no se podría insertar hasta que no se eliminase otro elemento de la tabla.

2ª función hash k (x) = (x MOD (B-1)) + 1 $h_i(x) = (h_{i-1}(x) + k(x)) MOD B$

COSA
ROMA
AMOR
ESPONJA
RAMO
JAPONES
MORA

AMOR: H(303)=303 MOD 7=2 COSA: H(294)=294 MOD 7=0 MORA: H(303)=303 MOD 7=2 k(303)=(303 MOD 6)+1=4 h₁(303)=(2+4) MOD 7=6 ESPONJA: H(528)=528 MOD 7=3 RAMO: H(303)=303 MOD 7=2 k(303)=(303 MOD 6)+1=4 h₁(303)=(2+4) MOD 7=6 h₂(303)=(6+4) MOD 7=3 h₃(303)=(3+4) MOD 7=0 h₄(303)=(0+4) MOD 7=4 JAPONES: H(528)=528 MOD 7=3 k(528)=(528 MOD 6)+1=1 h₁(528)=(3+1) MOD 7=4 h₂(528)=(4+1) MOD 7=5 ROMA: H(303)=303 MOD 7=2 k(303)=(303 MOD 6)+1=4 $h_1(303)=(2+4) \text{ MOD } 7=6$ h₂(303)=(6+4) MOD 7=3 $h_3(303)=(3+4) \text{ MOD } 7=0$ h₄(303)=(0+4) MOD 7=4 h₅(303)=(4+4) MOD 7=1