Name:

Read these instructions before proceeding.

- Closed book. Closed notes. You can use calculator.
- You have **80 minutes** to complete this exam.
- No questions will be answered during the examor immediately afterwards. Answer each question as best you can. Partial credit will be awarded for reasonable efforts. If a question contains an ambiguity or a misprint, then say so in your answer, providing the answer to a reasonable interpretation of the question; give your assumptions.
- Answer the problems on the blank spaces provided for each problem.
- Box your answers.

Ī	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Total
	(6)	(7)	(7)	(6)	(6)	(8)	(4)	(4)	(4)	(4)	(6)	(6)	(5)	(6)	(5)	(5)	(6)	(5)	(100)

(6 pts) Determine whether the proposition is TRUE or FALSE. No justifications needed.

b) If it is raining, then it is raining. (2 pts)

2. (7 pts) Determine whether $(p \rightarrow q) \land (\neg p \rightarrow q) \equiv q$ using truth table.

3. (7 pts) Prove that $(\neg p \land (\neg q \rightarrow p)) \rightarrow q$ is a tautology using propositional equivalence and the laws of logic.

(7PN(79 -> P)) -> 9 $(7PA(7(7qV)p))\rightarrow 9$ $(7P\Lambda(qVP)) \rightarrow q | ((PV7q)\LambdaT)Vq$ $7(7P\Lambda(QVP))VQ$

7 (7p) V 7 (QVP) V Q PVY(QVP)Va

(PV(79 / 7P))V9 ((Pv 79)1(P17p)) v 9

i. It is a tautology

4. (6 pts) write the contrapositive, converse, and inverse of the following:
If you give it a try, then you will be good.
a) contrapositive (2 pts) If you are not good, then you will not give it a $79 \rightarrow 7P$
b) converse (2 pts) If you are good, then you will give t a try
c) inverse (2 pts) F you do not give it a try, then you will no
5. (6 pts) Suppose the variable x represents people, and F(x): x is friendly T(x): x is tall A(x): x is angry.
Write the statement using these predicates and any needed quantifiers.
a) Some people are not angry. (3 pts)
b) All tall people are friendly. (3 pts)
6. (8 pts) Consider the following theorem: "if x and y are odd integers, then x + y is even". Give a direct proof of this theorem. Suppose x and y are odd integers then $x = 2k + 1$ for some integer k and $y = 2k + 1$ for some integer k $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 1 + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$ $x + y = 2k + 2k + 1$
An (Buc). Are they the same?
A A B
8. (4 pts) determine whether the given set is the power set of some set. (Answer "Yes" or "No"). If the set is a power set, give the set of which it is a power set.
a) {Ø, {Ø}, {b}, {Ø, b}} (2 pts)
b) {{Ø}, {a}, {b}, {a,b}} (2 pts)
2

9. (4 pts) Just answer "yes" or "no" in the box. No justifications needed. (a) Suppose f:N \rightarrow N has the rule f(n) = 2n + 1. Determine whether f is onto. (1 pts) (b) Suppose f:N \rightarrow N has the rule f(n) = 2n + 1. Determine whether f is 1-1. (1 pts) (c) Suppose f:Z \rightarrow Z has the rule f(n) = $2n^2 - 1$. Determine whether f is 1-1. (1 pts) (d) Suppose f:Z \rightarrow Z has the rule f(n) = $2n^2 - 1$. Determine whether f is onto Z. (1 pts) **10.** (4 pts) Find a_n (a formula that generates the following sequence $a_1, a_2, a_3 \dots$) *11. (6 pts*) Suppose Find (a) the *join* of A and B. AVB 20 (b) the *meet* of A and B. IND DND -(c) the **Boolean product** of A and B. $ADB = \frac{(000) \vee (000) \vee (101) \vee (001) \vee (001) \vee (100)}{(000) \vee (100) \vee (101) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100) \vee (100)} \frac{(000) \vee (100) \vee (100)}{(100) \vee (100)} \frac{(000) \vee (100)}{(100)} \frac{(000)}{(100)} \frac{(000)}{(100)$ 12. (6 pts) Show (step by step) how the binary search algorithm searches for 43 in the following list: $\alpha = 15815213543$. index = 0123456 O3 = 16, 15 < 43 start = midle +1 = 4 Start = 0 end = 6 middle = $\frac{4 \pm 6}{2}$ = 5 $\frac{2}{3}$ A Heration middle = $\frac{4 \pm 6}{2}$ = 5 $\frac{2}{3}$ A $\frac{3}{3}$ < $\frac{4}{3}$ $\frac{3}{3}$ start = middle + 1 = 6 3 rd Heration middle = 6 + 6 = 6 while start < end

43 TS found cat

	13. (5 pts) Arrange the following functions in a list so each is big-O of the next one in the list. No justifications needed. $n^3 + 7n^2 - 1$, $\log n$, n^3 , $n^4 \log n$, 2^n , 1111
1111	$\rightarrow log(n) \rightarrow n^3 \rightarrow n^3 + 7n^2 - 1 \rightarrow n^4 log(n) \rightarrow z^n$
	14. (6 pts) (a) Give the best-case analysis of a linear search of a list of size n (counting the number of comparisons). (3 pts) The best-case of a linear search of a list of size n. That the search term is the first one in the list.
L	(b) Give the worst-case analysis of a linear search of a list of size n (counting the number of
	comparisons). (3 pts) the worst - case of a linear search of a list of size n is that the search term is the last one in the list.
	i, tis n,
Ç	15. (5 pts) Prove or disprove: For all integers a, b, c, if a c and b c, then ab c². Suppose $C = C + C + C + C + C + C + C + C + C + $
	$ab \mid c^2 \Rightarrow c^2 = at \cdot bk$
	$\frac{c^2}{ab} = \frac{c^2}{ab \cdot tk}$
7	16. (5 pts) Find the prime factorization of 6,600.
2	$\frac{1}{2}$
35	17. (6 pts)
28 28 4	(a) Convert (135) ₁₀ to base 2 (3 pts) 0 0 0 0 (27) b4 22
5 4 37 -1	(b) Convert (11 1100 0101)2 to base 16. (3 pts)
-1	18. (5 pts) A message has been encrypted using the function $f(x) = (x + 3) \mod 26$.
B C (2	If the message in coded form is $UHRSHQ$, $decode$ the message. DEFGHIJKLMNOPQRSTUVWNYZ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22 23 24 25
+1 =	$(20-3) \mod 26 = R$ $(7-3) \mod 26 = E$ $(17-3) \mod 26 = O$ $(18-3) \mod 26 = P$ $(7-3) \mod 26 = E$ $(7-3) \mod 26 = E$
H = Q =	$(7-3) \mod 26 = 12$ $(16-3) \mod 26 = N$