

AGENDA

Rob Akers UKAEA PI Neptune in chair

Wayne Arter, UKAEA	9.05-9.20	Introduction
Ben Dudson, York	9.20-9.45	Plasma fluid referent model via exploratory Proxyapps
Steven Wright, York	9.45-10.00	Investigate DSL and code generation techniques
Break		
Dave Moxey, Exeter	10.20-10.50	Performance of Spectral Elements
Felix Parra, Oxford	10.50-11.10	Referent model for plasma edge region
Break		
Peter Challenor, Exeter	11.20-11.35	UQ (UKAEA funding outside ExCALIBUR)
Sue Thorne, STFC	11.35-11.50	Investigate matrix-preconditioning techniques
Peter Coveney, UCL	11.50-12.05	Study of Uncertainty Quantification (UQ) techniques
Serge Guillas, UCL	12.05-12.20	Study of Model Order Reduction (MOR) Techniques
Ben McMillan, Warwick	12.20-12.35	Optimal Use of Particles
Short break		
Discussion	12.40-end	

Contents

- 1. Preliminaries
- 2. Next 6-9 months
 - a) Useful Information
 - b) De-risk
 - c) Steer
- 3. Points arising during meeting

1. Preliminaries

Thank you

Once in a generation opportunity

Update fusion plasma physics code design, processes and workflows

- For the Exascale, exploiting hierarchical architectures and/or GPU, with
- Object-oriented data structures
- hp-adaptive finite elements, possibly 'reduced-noise' particles
- Tight coupling, with e.g. enslavement to treat multiscale effects
- Sparse matrix solution by preconditioned iterative algorithms
- Inbuilt UQ by ensemble calculations, model reduction/surrogate, or otherwise
- Capability for integration into reactor design workflow
- Team and community effort

ExCALIBUR

Fusion Modelling System Science Plan

2a. Useful Information

https://github.com/ExCALIBUR-NEPTUNE/Documents

Redacted versions of winning bid documents, and LaTeX versions of work performed by UKAEA staff to date

tex/t12/rp1 Year One Summary Report

t21/rp1 Options for Geometry Representation

t23/rp1 Options for Particle Algorithms

t31/rp2 Report on user frameworks for tokamak multiphysics

t31/rp3 Report on user layer design for Uncertainty Quantification

t33/rp2 Report on design patterns specifications and prototypes

t33/rp3 Design patterns evaluation report

Lockdown implications – ultimate decision rests with BEIS

Mid-March meeting - features to lighten the reporting load

Fortnightly meetings to report work performed - accompany by one interesting/relevant/timely talk of 20-50min

Canonical slide format available

Graphical interactions between Tasks

2b, 2c. De-risk and Steer

Fusion Modelling System by Call Number

- Enable CCFE to possess a finite element and particle code for tokamak edge modelling that is 'maintainable' and 'actionable', developing via a series of proxyapps, each of which might be separately useful (T/NA083/20)
- *hp* finite elements to provide machine precision accuracy. Example of UK-based development of spectral/hp element package Nektar++ including Nekmesh (78)
- Desirable to have gyro-averaged plasma model (85)
- Establish state-of-the-art and future trends in key areas particles (79), UQ (80), MOR (81),
 Preconditioning (84), DSL/code generation (86)

Larger T/NA078, 83,85 offered

- Enough resource to fund a postdoc
- Weighted towards "Alignment to Work Package objectives"

2b. De-risk (T/NA078, 83)

Demonstrate application of spectral elements to special issues of tokamak edge

- 1. Interaction with neutrals leads to large sources and sinks of mass and momentum
- 2. Flow into engineered surface at approx. sonic speed *Two-degree* incidence design
- 3. Magnetic field causes anisotropy 10⁵ factor possible in spatial scale

2c. Steer

Next few months are critical

Settle on ways to collaborate, e.g. Slack Channel versus email

Take major decisions regarding algorithms, libraries, design patterns, outline interfaces etc.

Points during Meeting

- 1. You are allowed to edit slides for material not intended to be made publicly available (assuming you want published).
- 2. Please get training in use of git, UKAEA can help provide, ask on Slack.
- We started collecting acronyms and symbols, see
 https://github.com/ExCALIBUR-NEPTUNE/Documents subdirectory tex/index_of_acronyms_and_symbols
- 4. We hope to keep reporting light but do please let us know if you have significant (=affect deliverable) problems

And

Enhanced script is to be found in this same kom_documents directory

