Processamento Digital de Sinal

Minitestel 2012/2013

1. Considere o sinal y[n]=x[n-5] onde x[n] está representado na figura seguinte:

- a) Represente graficamente y[n] bem como o módulo e a fase de $Y(\Omega)$. Justifique.
- c) Diga o que entende por DFT e explicite as motivações do seu aparecimento. Represente a DFT de 9 pontos do sinal y[n]. Justifique.
- d) Diga o que entende por FFT e represente a FFT de mais de 9 pontos do sinal y[n]. Justifique.
- 2. Considere o sistema de processamento discreto de sinais contínuous mostrado na figura seguinte com o qual se pretende recuperar o sinal x(t) que se apresenta à entrada do sistema degradado da forma $s_c(t) = x(t-T_0) + x(t+T_0)$;

- a) Considere $x(t) = 1 + 2\delta(t) + \cos(w_1 t)$. O sinal sc(t) pode ser, em sua opinião, directamente aplicado à entrada do sistema? Se a sua resposta for negativa represente em termos de diagrama de blocos um sistema que permita a adaptação de sc(t) ao sistema de processamento digital de sinais contínuos.
- b) Determine o período de amostragem máximo para o qual x(t) ou uma sua versão modificada possa ser completamente recuperado á saída do sistema. Justifique.
- c) Considere o sinal sc(t) amostrado à frequência de Nyquist e determine o atraso do eco para o qual s[n]=x[n-1]+x[n+1].
- d) Represente os espectros dos sinais sc(t), p(t), sp(t) e s[n]. Justifique convenientemente os cálculos que efectuar e comente adequadamente as suas representações gráficas.
- e) Projecte o filtro $H1(\Omega)$ que permita recuperar a versão mais aproximada possível de x(t) a menos da fase. Pretende-se que $yc(t)=x(t-4T_0)$.

- f) Imagine que na situação da alínea c) fazia uma decimação por um factor de 2 em s[n]. Na sua opinião perdia alguma informação do sinal. Se sim como procederia para minimizar ou anular essa perda. Justifique convenientemente a sua resposta.
- 3. Considere o sistema LTI digital caracterizado pela seguinte equação de diferenças y[n] = 0.25y[n-1] + x[n] + 0.5x[n-1]. Utilize a Transformada-Z e:
- a) Determine a resposta impulsional do sistema.
- b) Determine a resposta do sistema à entrada

$$x[n] = \left(\frac{1}{2}\right)^n u[n]$$

c) Determine a entrada do sistema cuja saída é

$$y[n] = n\left(\frac{1}{4}\right)^n u[n] + \left(\frac{1}{4}\right)^n u[n]$$

4)
$$y[n] = 0.25 y[n-1] + x[n] + 0.5 x[n-1]$$
 $Y[a] = 0.25 y[a] = \frac{1}{1} + x[a] + 0.5 x[a] = \frac{1}{1}$
 $Y[a] = 1 + 0.5 = \frac{1}{1} = x[a] + 1 + n = x = \frac{1}{1} = x[a] + 1 + 0.5 = \frac{1}{1} = x[a] + 1 + 0.5 = \frac{1}{1} = x[a] + 1 + 0.5 = \frac{1}{1} = x[a] + x[a] + x[a] = x[a] = x[a] + x[a] = x[a]$

$$\frac{8 - \frac{1 + 0.5 \cdot 3^{-1}}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{2}{4|2}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{2}{4|2}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{1}{4|3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{1}{4|3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{1}{4|3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3} - \frac{1}{4|3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3}$$

$$\frac{1}{1 - 0.25 \cdot 3^{-1}} \Big|_{3^{1} = 3}$$

$$\frac{1}{1 - 0.52 \cdot 3^{-1}} \Big|_{3^{1} = 4}$$

$$\frac{1}{1 - 0.52 \cdot 3^{-1}} \Big|_{3^{1} = 4}$$

$$\frac{1}{1 - 0.52 \cdot 3^{-1}} \Big|_{3^{1} = 4}$$

$$\frac{1}{3^{1} - 1}$$

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1-13-1 1+1 3
	40 13-7=-2
- H-12-11-11-11-11-11-11-11-11-11-11-11-11-	V
	$4(1)$ $2(n) = \frac{1}{3}(\frac{1}{4})^n M(n) + \frac{2}{3}(-0.5)^n M(n)$
•	3 (4) 3
	Transformada de Z
	$na^n u [n] \leftarrow \stackrel{2}{\longrightarrow} a a^{-1} a\rangle a $
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	(1 - a 3 ·)
··	
	* Pode sair mattes (falar com Manta Rocha)
	Redin última aula mathal
	Podemos levar pormulánio!

*

(P)