

Computer vision

Computer Vision Problems

Image Classification

Deep Learning on large images

Andrew Ng

Edge detection example

Computer Vision Problem

Andrew Ng

Vertical edge detection

103x1 + 1x1 +2+1 + 0x0 + 5x0 +7x0+1x7 +8x-1+2x-1=-5

3	0	1	2 -	7	4-1	Convolution				
1	5	8	9	3	1-1		-5	-4	0	8
2		2	5	1	3		-10	-2	2	3
01	1	3	1	7	8 ⁻¹	*	0	-2	-4	-7
4	2	1	6	2	8	3×3	-3	-2	-3(-16
2	4	5	2	3	9	-> filter		4x	4	
		6×6	•			kenel				

Vertical edge detection

<u></u>					
10	10	10	0	O	0
10	10	10	0	0	0
10	10	10	0	0/	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
		6 x	(

	<u></u>		
1	0	<u>-1</u>	
1	0	-1	Ξ
1	0	-1	
	3×3		

*

<u> </u>	•				
O	30	30	0		
0	30	30	0		
0	30	30	0		
0	30	30	0		
14x4					

More edge detection

Vertical edge detection examples

0	30	30	0			
0	30	30	0			
0	30	30	0			
0	30	30	0			

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Andrew Ng

Vertical and Horizontal Edge Detection

Vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1 1 1 0 0 0 -1 -1 -1

Horizontal

	1
0	0
-1	-1

30 10 -10 -30 30 10 -10 -30

0

Learning to detect edges

M	0	7
lo	0	10
3	7	-3

Schor Filter

Andrew Ng

Padding

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

nt2p-ft1 ×n+2p-ft1

$$p=\frac{f}{2}$$
 $p=\frac{f-1}{2}$
 $p=\frac{3-1}{2}=1$

SxS

 $p=2$

Andrew Ng

Strided convolutions

Strided convolution

Andrew Ng

Summary of convolutions

$$n \times n \text{ image}$$
 $f \times f \text{ filter}$ padding p stride s

$$\left|\frac{n+2p-f}{s}+1\right| \times$$

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	60	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

Convolutions over volumes

Convolutions on RGB images

Convolutions on RGB image

Multiple filters

One layer of a convolutional network

Number of parameters in one layer

If you have 10 filters that are 3 x 3 x 3 in one layer of a neural network, how many parameters does that layer have?

Summary of notation

If layer l is a convolution layer:

```
f^{[l]} = filter size
   p^{[l]} = padding
   s^{[l]} = \text{stride}
   n_c^{[l]} = number of filters
→ Each filter is: fth x fth x ncto
   Activations: 0 -> 14 × 10 × 10
                                             ATED > M KAH MU XAC
   Weights: friskfrisk very x very
                                T #f: (tos is layer l.
```


A simple convolution network example

Example ConvNet

$$\frac{n+2p-f}{s} + 1 = 37$$

Types of layer in a convolutional network:

```
- Convolution (CONV) ←
- Pooling (POOL) ←
- Fully connected (FC) ←
```


Pooling layers

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

Pooling layer: Average pooling

1	3	2	1	
2	9	1	1	
1	4	2	3	→
5	6	1	2	

$$f = 2$$

 $S = 2$
 $1 \times 1 \times 1000$

Summary of pooling

Hyperparameters:

f: filter size s: stride

Max or average pooling

$$N_{H} \times N_{W} \times N_{C}$$

$$N_{H} - f + 1$$

$$\times N_{C}$$

Convolutional neural network example

(LeNet-5) Neural network example CONVZ POOLS POOL (SNV) marbaol Marphol 5×5416 28×28×6 10×10×16 32232436 0,1,2,....9 Softnax (10 outputs) NH, NW (120,400)

CONU-POOL-CONV-POOL-EC-EC- EC- SOFTMAX

(No)

Andrew Ng

Neural network example

	Activation shape	Activation Size # parameters
Input:	(32,32,3)	-3,072 0
CONV1 (f=5, s=1)	(28,28,8)	6,272 (5*5*3 + 1) * 8 = 608
POOL1	(14,14,8)	1,568
CONV2 (f=5, s=1)	(10,10,16)	1,600 (5*5*8 + 1) * 16 = 3210
POOL2	(5,5,16)	400 0 ←
FC3	(120,1)	120 400*120 + 120 = 48120
FC4	(84,1)	84 120*84 + 84 (not 1) =
Softmax	(10,1)	10 84*10 + 10 = 850

Why convolutions?

Why convolutions

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J