	Teste de Matemática A						
	2018 / 2019						
Teste N.º 1 Matemática A							
Duração do Teste: 90 minutos							
NÃO É PERMITIDO O USO DE CALCULADORA							
10.º Ano de Escolaridade							
Nome do aluno:	N.º: Turma:						

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Considere uma pirâmide quadrangular regular cujas arestas medem a.

A área total da pirâmide pode ser dada em função de a por:

- **(A)** $(1+\sqrt{3})a^2$
- **(B)** $\left(1 + \frac{\sqrt{3}}{4}\right)a^2$
- **(C)** $(1+\sqrt{2})a^2$
- (D) $\left(\frac{1+\sqrt{3}}{3}\right)a^2$
- 2. Determine o valor exato da área de um quadrado inscrito numa circunferência de raio $\frac{1}{\sqrt{7}-1}$. Apresente o resultado sob a forma de fração com denominador racionalizado.
- **3.** No plano munido de um referencial o.n. 0xy, considere o conjunto de pontos definido pela condição $\sim (y < 0 \lor y \ge x)$.

Em qual das opções seguintes se encontra esse conjunto de pontos representado?

(A)

(B)

(C)

(D)

- **4.** Considere, num plano munido de um referencial o.n. Oxy, os pontos P(1,2), Q(-2,-2) e R(k,k-1), com $k \in \mathbb{R}$.
 - **4.1.** Escreva uma equação vetorial da reta paralela à bissetriz dos quadrantes pares e que contém o ponto médio de [PQ].
 - **4.2.** Determine o valor de k de modo que R:
 - **4.2.1.** pertença à reta PQ;
 - **4.2.2.** pertença à mediatriz de [PQ].
 - **4.3.** Determine as coordenadas do vetor colinear com \overrightarrow{PQ} , de sentido contrário ao de \overrightarrow{PQ} e de norma $\sqrt{15}$.
- **5.** A expressão $(2a^6b^8)^{-\frac{1}{4}} \times \sqrt[4]{8a^{-2}}$ é igual, para quaisquer números reais positivos a e b, a:
 - (A) $\sqrt{2}ab$
 - **(B)** 2ab
 - $\textbf{(C)} \frac{\sqrt{2}}{a^2b^2}$
 - **(D)** $\frac{\sqrt{2}}{(ab)^2}$
 - **6.** Na figura estão representadas, num referencial o.n. 0xy, a circunferência definida pela condição $x^2 + y^2 4x 10y = 0$, duas retas, $r \in S$, e um ponto A no segundo quadrante.

Sabe-se ainda que:

- a reta r passa no ponto A e na origem do referencial;
- a reta s contém o ponto A e é paralela ao eixo das abcissas.

- **6.1.** Indique o valor lógico de cada uma das seguintes proposições:
 - **6.1.1.** "O centro da circunferência pertence à bissetriz dos quadrantes ímpares."
 - **6.1.2.** "A reta r é paralela à reta t definida por $\begin{cases} x = \pi + 6k \\ y = \sqrt{2} 14k \end{cases}$, $k \in \mathbb{R}$."
- **6.2.** Defina por uma condição o conjunto de pontos a sombreado na figura, incluindo a fronteira.

7. Considere as proposições:

$$p: \sqrt{(-2019)^2} = -2019$$

$$q: \sqrt[3]{(-2018)^3} = -2018$$

Qual das seguintes proposições é verdadeira?

- (A) $p \wedge q$
- **(B)** $p \lor q$
- (C) $q \Rightarrow p$
- **(D)** $p \Leftrightarrow q$
- **8.** Fixado um referencial o.n. 0xy, considere uma reta r paralela ao eixo das ordenadas. Qual das seguintes equações pode definir essa reta?

(A)
$$(x, y) = (1,1) + k(2018, 2018), k \in \mathbb{R}$$

(B)
$$(x,y) = (2,2) + k(2018,0), k \in \mathbb{R}$$

(C)
$$(x, y) = (3, 3) + k(0, 2018), k \in \mathbb{R}$$

(D)
$$(x, y) = (4,4) + k(-2018, 2018), k \in \mathbb{R}$$

FIM

COTAÇÕES

Item													
Cotação (em pontos)													
1.	2.	3.	4.1.	4.2.1.	4.2.2.	4.3.	5.	6.1.1.	6.1.2.	6.2.	7.	8.	ĺ
8	20	8	20	20	20	20	8	20	20	20	8	8	200
1						ĺ							1