Задание 1. Годограф Найквиста

В соответствии с вариантом задания (см. Таблицу 1) придумать три объекта пятого порядка p полюсов передаточных функций которых вещественные, а q – комплексносопряженные.

- Первая передаточная функция должна иметь n неустойчивых полюсов у разомкнутой системы и m неустойчивых полюсов у замкнутой.
- \bullet Вторая передаточная функция должна иметь 0 неустойчивых полюсов у разомкнутой системы и m у замкнутой.
- \bullet Третья передаточная функция должна иметь n неустойчивых полюсов у разомкнутой системы и 0 у замкнутой.

Для каждого объекта:

- 1. Привести карты (изображения размещения на комплексной координатной плоскости) нулей и полюсов разомкнутой и замкнутой систем на комплексной координатной плоскости.
- 2. Выполнить моделирование и привести переходные характеристики для разомкнутой и замкнутой систем.
- 3. Построить годограф Найквиста ($A\Phi$ ЧX). Найти число оборотов годографа по часовой стрелке вокруг точки (-1; 0) и через критерий Найквиста. Сравнить результаты.
- 4. Проверить разомкнутую и замкнутую системы на устойчивость. Проанализируйте связь устойчивости с видом ЛАФЧХ разомкнутых систем используя логарифмический критерий Найквиста.

Ожидаемые результаты (для каждого объекта):

- Математическая модель (передаточная функция), описание способа ее составления под условия варианта.
- Карты нулей и полюсов для разомкнутой и замкнутой систем.
- Переходные характеристики для разомкнутой и замкнутой систем.
- Годограф Найквиста, число оборотов вокруг точки (-1;0), сравнение с результатом полученным по критерию Найквиста.
- ЛАФЧХ, анализ на основании логарифмического критерия Найквиста.

Задание 2. Коэффициент усиления

В соответствии с вариантом задания (см. Таблицу 1) взять значение i и соответствующие ему передаточные функции $W_1(s)$ и $W_2(s)$ (см. Таблицу 2). Добавить к каждой функции коэффициент усиления k. Считать k положительным. Для полученных систем:

- 1. Построить годограф Найквиста для значения коэффициента усиления k=1.
- 2. Рассмотреть, как влияет коэффициент усиления k на кривую годографа, взяв не менее трех значений k.
- 3. Найти зависимость количества неустойчивых полюсов замкнутой системы относительно значений коэффициента усиления k. Найти пределы значений коэффициента усиления k относительно которых замкнутая система устойчива.
- 4. Определить значение запаса устойчивости по амплитуде (если применимо).
- 5. Выполнить моделирование и привести переходные характеристики замкнутой системы при значениях коэффициента k для каждой из определенных областей значений, соответствующих как устойчивой системе, так и неустойчивой.

Ожидаемые результаты (для каждого объекта):

- Математическая модель (передаточная функция).
- Годографы Найквиста для различных величин k.
- Зависимость количества неустойчивых полюсов замкнутой системы относительно значений коэффициента усиления k.
- Пределы значений коэффициента усиления k, соответствующие устойчивой замкнутой системе.
- Запас устойчивости по амплитуде (если применимо).
- Листинги аналитических расчетов.
- Переходные характеристики для коэффициентов k, соответствующих различным областям значений коэффициента.

Задание 3. Запаздывание

В соответствии с вариантом задания (см. Таблицу 1) взять значение j и соответствующие ему передаточные функции $W_3(s)$ и $W_4(s)$ (см. таблицу 3). Добавьте к каждой функции звено чистого запаздывания $e^{-\tau s}$. Для полученных систем:

- 1. Построить годограф Найквиста для значений коэффициента запаздывания $\tau=0$ и $\tau=0.5$.
- 2. Рассмотреть, как влияет коэффициент запаздывания τ на кривую годографа, взяв не менее трех значений τ .
- 3. Найти пределы значений коэффициента запаздывания au относительно которых замкнутая система устойчива.
- 4. Определите значение запаса устойчивости по фазе (если применимо).
- 5. Выполнить моделирование и привести переходные характеристики замкнутой системы при значениях коэффициента τ для каждой из определенных областей значений, соответствующих как устойчивой системе, так и неустойчивой.

Ожидаемые результаты (для каждого объекта):

- Математическая модель (передаточная функция).
- Годографы Найквиста для различных величин τ .
- Пределы значений коэффициента запаздывания τ , соответствующие устойчивой замкнутой системе.
- Запас устойчивости по фазе (если применимо).
- Листинги аналитических расчетов.
- Переходные характеристики для коэффициентов τ , соответствующих различным областям значений коэффициента.

Контрольные вопросы для подготовки к защите:

- 1. Как звучит критерий устойчивости Найквиста для АФЧХ? Для ЛАФЧХ?
- 2. Что такое принцип аргумента?
- 3. Почему в критерии Найквиста фигурирует точка (-1;0)?
- 4. Как применять критерий Найквиста для систем с полюсами, лежащими на мнимой оси?
- 5. Что такое запас по амплитуде? Когда система может иметь бесконечный запас по амплитуде?
- 6. Что такое запас по фазе? Когда система может иметь бесконечный запас по фазе?

Таблица 1: Исходные данные для Заданий 1, 2, 3

Вариант	p	q	n	m	i	j	Вариант	p	q	n	m	i	j
1	3	2	3	3	1	1	16	3	2	3	1	2	4
2	1	4	4	1	2	2	17	5	0	3	2	3	5
3	3	2	2	1	3	3	18	3	2	1	4	4	6
4	3	2	4	2	4	4	19	5	0	4	2	5	1
5	5	0	1	3	5	5	20	5	0	3	1	6	2
6	3	2	4	3	6	6	21	5	0	4	1	7	3
7	1	4	4	4	7	1	22	1	4	4	3	8	4
8	3	2	4	1	8	2	23	1	4	1	3	9	5
9	3	2	2	3	9	3	24	1	4	3	3	10	6
10	3	2	2	4	10	4	25	1	4	2	3	11	1
11	1	4	1	1	11	5	26	1	4	3	4	12	2
12	1	4	2	4	12	6	27	1	4	4	2	13	3
13	3	2	3	4	13	1	28	1	4	2	1	14	4
14	5	0	3	3	14	2	29	1	4	3	1	1	5
15	5	0	2	3	1	3	30	3	2	4	4	2	6

Таблица 2: Исходные данные для Задания 2

i	$W_1(s)$	$W_2(s)$	i	$W_1(s)$	$W_2(s)$
1	$\frac{s-3}{s^2+7s+4}$	$\frac{100s^2 + 40s + 4}{100s^3 - 15s^2 - 8s - 0.6}$	8	$\frac{s-3}{s^2+2s+6}$	$\frac{10s^3 - 13s^2 + 10s - 2}{10s^3 + 14s^2 + 5s + 0.5}$
2	$\frac{s-2}{s^2+6s+5}$	$\frac{-9s^3 + 16s^2 - 6s}{10s^3 + 12s^2 + 5s + 1}$	9	$\frac{s-1}{s^2+4s+5}$	$\frac{10s^3 + 5s^2 + s - 7}{10s^3 + 2s^2 + 8s + 6}$
3	$\frac{s-4}{s^2+8s+2}$	$\frac{10s^2 + 9s - 1}{10s^3 - 12s^2 - s + 4}$	10	$\frac{s-4}{s^2+5s+4}$	$\frac{10s^3 - 10s^2 + 50s - 38}{10s^3 + 3s^2 + 12s + 8}$
4	$\frac{s-3}{s^2+9s+3}$	$\frac{10s^2 - 2s + 0.1}{10s^3 - 20s^2 + 8s}$	11	$\frac{s-2}{s^2+2s+1}$	$\frac{10s^3 - 2s^2 + 15s - 23}{10s^3 + 12s^2 + 20s + 58}$
5	$\frac{s-9}{s^2+s+8}$	$\frac{-80s^3 + 80s^2 + 3s - 0.04}{100s^3 - 20s^2 - 2s + 0.3}$	12	$\frac{s-3}{s^2+3s+1}$	$\frac{100s^3 + 110s^2 + 10s + 0.3}{100s^3 - 60s^2 + 6s - 1}$
6	$\frac{s-2}{s^2+3s+9}$	$\frac{10s^2 + 10s + 3}{10s^3 + s^2}$	13	$\frac{s-1}{s^2+3s+1}$	$\frac{10s^3 - 3s^2 + 13s - 2}{10s^3 + 8s^2 + 5s + 4}$
7	$\frac{s-1}{s^2+6s+7}$	$\frac{10s^3 + 15s^2 + 18s + 6}{10s^3 - 10s^2}$	14	$\frac{s-0.5}{s^2+s+1}$	$\frac{10s^3 + 0.6s^2 + s - 1}{10s^3 + 7.5s^2 + 5s + 4}$

Таблица 3: Исходные данные для Задания 3

j	$W_3(s)$	$W_4(s)$	j	$W_3(s)$	$W_4(s)$
1	$\frac{s+7}{s^2+2s+10}$	$\frac{10s^2 - 5s - 15}{10s^3 + 5s^2 + 10s + 38}$	4	$\frac{5s+10}{s^2+4}$	$\frac{8s^2 + 4s - 12}{10s^2 - 10s + 18}$
2	$\frac{7s+5}{s^2+4s}$	$\frac{20s^2 + 1.6s + 2}{10s^3 - 10s^2 - 0.1s + 0.1}$	5	$\frac{9s+2}{s^2+6s+1}$	$\frac{8s^2 + 4s + 2.4}{10s^2 - 5s + 11}$
3	$\frac{2s+9}{s^2+s+9}$	$\frac{10s^2 - 10s + 13}{10s^3 + 37s + 25}$	6	$\frac{9s+3}{s^2+3s+5}$	$\frac{10s^2 - 6s + 11}{10s^3 - s^2 + 38s + 20}$