```
In [1]: from os.path import join, dirname, basename, splitext, abspath
             from glob import glob
            import pandas as pd
            import yaml
            import platform
             from datetime import timedelta
            from IPython.display import display
            from IPython.core.display import display, HTML
            import platform
            display(HTML("<style>.container { width:100% !important; }</style>"))
            this_folder = dirname(_file_) if '_file_' in globals() else abspath('') root_folder = dirname(dirname(this_folder)) def get_test_result_folder(testname = 'baseline'):
                  return join(root folder, 'test', 'testresults', 'XPS-15-9500', testname, 'CUTEst')
           def color_negative_red(val):
    color = 'red' if val < 0 else 'black'
    return f'color: {color}'
def color_negative_red_positive_green(val):
    if val > 0:
                  return 'color: green'
elif val < 0:
                        return 'color: red'
                  else:
                        return 'color: black'
In [2]: def load raw data(folder):
                  output files = glob(join(folder, '*.yaml'))
                   raw_data = \{\}
                   for filename in output files:
                       with open(filename, 'r') as f:
    all_content = yaml.safe_load_all(f)
    content = next(all_content)
                              name = splitext(basename(filename))[0]
                              raw_data[name] = content
                   return raw_data
In [3]: def convert_data(raw_data):
                  for name, content in raw_data.items():
                       element = {
   'name': name.
                               'status': content['status'],
                                 'time': timedelta(seconds=content['elapsed time']),
                               'time': float(content['elapsed time']),
                              'inner iterations': content['inner iterations'],
'outer iterations': content['outer iterations'],
'inner convergence failures': content['inner convergence failures'],
                              'f': float(content['f']),
'E': float(content['E']),
                              'e': float(content('e']),
'f: float(content('e']),
'f evaluations': content['counters']['f'],
'grad_f evaluations': content['counters']['grad_f'],
'grad_g evaluations': content['counters']['grad_g'],
'grad_g evaluations': content['counters']['grad_g'],
'linesearch failures': content['linesearch failures'],
'L-BFGS failures': content['L-BFGS failures'],
'L-BFGS rejected': content['L-BFGS rejected'],
'[][]': content['||x||'],
'||x||': content['||x||'],
                               '||y||': content['||y||'],
                        data.append(element)
                  df = pd.DataFrame(data)
                  # df.sort values(['status', 'inner iterations'], inplace=True, ignore index=True)
                   # df.sort_values(['name'], inplace=True, ignore_index=True)
                 df.set_index('name', inplace=True)
df.sort index(inplace=True)
                     df['rel linesearch failures'] = df['linesearch failures'] / df['inner iterations']
In [4]: base folder = get test result folder('baseline')
            new folder = get test result folder('upd-lipschitz-ls')
In [5]: base_raw = load_raw_data(base_folder)
            new_raw = load_raw_data(new_folder)
```

In [6]: base_df = convert_data(base_raw)
 new_df = convert_data(new_raw)

Out[7]:

1:	status	time	inner iterations	outer iterations	inner convergence failures	f	ε	ð	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixil	llyll
name																		
3РК	Converged	0.530828	77487	79	76	1.720119e+00	8.218430e-06	0.000000e+00	156057	155356	156215	155356	0	0	0	0.000000e+00	369.613046	0.000000e+00
A4X12	MaxTime	90.220912	88944	90	88	4.509074e-01	6.782443e+00	6.763965e-06	178926	178348	179106	178348	0	0	0	6.929378e+10	5.995788	6.307587e+05
A5ESSNDL	MaxTime	96.005144	7523	10	6	1.968820e-06	8.314276e-03	1.129296e-04	15730	15380	15750	15380	0	0	0	8.742505e+02	474.682459	1.703736e-02
A5NSDSDM	Converged	18.797764	9287	11	8	0.000000e+00	9.708457e-06	1.018720e-06	18661	18624	18683	18624	0	0	0	6.052366e+02	158.538408	4.843200e-02
A5NSSNSM	Converged	9.580745	9287	11	8	0.000000e+00	9.708457e-06	1.018720e-06	18661	18624	18683	18624	0	0	0	6.052366e+02		4.843200e-02
A5NSSSSL	MaxTime	97.024743	3805	4	3	4.255219e-06	1.677482e-02	1.545677e-02		7711	7823	7711	0	0		3.490440e+02		1.160185e-01
ACOPP14	MaxIter	85.258758	198485	200	198					1738997	3089111	1738997	0	0		1.020076e+06		1.492883e+04
ACOPP30	MaxIter	30.270504	198964	200	198		5.998761e+02	8.320505e-07		399155	401735	399155	0	0		1.150848e+09		2.687248e+03
ACOPR14		63.908112	198279	200	197			1.446608e-07		1451202	2514240	1451202	1	0		4.265989e+05		1.493134e+04
AIRCRFTA	-	0.000484	156	6	0			5.302163e-07		330	360	330	0	0		1.140857e+02		5.141171e-07
AIRPORT		90.057608	53139	57			4.125447e-04			557315	1010358	557315	0	0		1.181124e+06		5.031360e+03
	Converged	0.088955	3134	13				4.514688e-06		29561	52939	29561	0	0		5.003964e+08		4.412754e+03
	Converged	0.203884	15170	25				5.323762e-07		62588	95416	62588	0	0		1.000000e+09		1.909921e+04
ALSOTAME	-	0.000108	19	5	0					68	97	68	0	0		1.000000e+02		8.208500e-02
ANTWERP	Maxiter	2.858412	200000	200	200			5.456487e-07		412009	425970	412009	0	0		1.203653e+10	82583.604853	
	Converged	0.000487	112 134	6	0	-4.631927e+00 -4.483222e+00	5.500549e-06	6.722551e-06 4.774360e-06		242 290	260 316	242 290	0	0		8.122607e+01 1.563551e+02		2.248488e+00 1.940813e+00
AVION2	Converged Maxiter	2.326070	200000	200	-	-4.483222e+00 5.043179e+08					451027	423941	0	0		9.091129e+12	44064.299158	
		0.006646	200000	200	200	0.000000e+00		8.442953e-00		423941 208	451027		0	0				8.967014e-09
BA-L1 BA-L1SP		0.006646	88	6	0		8.284544e-06 8.939834e-06	2.923907e-08		194	213	208 194	0	0		5.713008e+01 4.419575e+01		1.356287e-08
BARDNE	Maxiter	1.550988	193105	200	193		9.183478e+06	8.046706e-02		660384	941069	660384	0	0		2.558059e+15		8.976238e+13
BATCH	Maxiter	7.620435	200000	200	200	2.591806e+05				926419	1458145	926419	2820	0		1.436772e+06		1.495323e+05
BEALENE		0.000226	49	6	0			1.672278e-07		117	144	117	0	0		8.916820e+01		3.716883e-02
BIGGS6NE	Maxiter	2.547240	192232	200	-	0.000000e+00				585433	791708	585433	0	0	-	3.326107e+15		7.512366e+13
	Converged	0.000756	121	6			5.128197e-06			584	924	584	0	0		6.322338e+02		4.636807e+00
	Converged	0.000090	13	5	0			1.313944e-06		41	50	41	0	0		1.411385e+02		1.758281e-09
	Converged	0.000385	55	6			5.687824e-06	5.806736e-08		128	158	128	0	0	-	1.031286e+03		6.308137e-02
BOXBOD		0.000249	2	0		0.000000e+00	NaN	NaN		7	7	7	0	0		2.449490e+00		0.000000e+00
	Converged	0.619518	3253	7		0.000000e+00		1.725158e-06		6543	6611	6543	0	0		5.326927e+02		2.665215e-05
BROWNBSNE		0.000124	17	5	0	0.000000e+00	4.991785e-06	3.492460e-10		50	247	50	0	0		1.732051e+00		1.746230e-09
	Converged	0.000115	21	5	0	-1.000027e+00	3.512176e-07	2.665500e-07		67	94	67	0	0		1.000000e+03	1.0	9.950000e+01
BT10		0.000182	70	7	0	-1.000003e+00	2.971082e-06	1.331632e-06		161	181	161	0	0		1.058462e+02		1.414198e+00
	Converged	0.000368	142	7	0	8.248888e-01		1.756319e-06		305	320	305	0	0		7.305078e+02		1.998434e+00
BT12		0.000476	180	6	0	6.188119e+00	4.103010e-07	1.715887e-08		378	420	378	0	0		7.136873e+02		4.950494e-01
BT13	Converged	0.006075	1728	6	1	0.000000e+00	6.575428e-06	1.761411e-10	8345	5890	8357	5890	0	0	0	1.000000e+02	0.000009	5.724474e-02
BT2	Converged	0.000503	181	6	0	3.256820e-02	3.263298e-06	4.375078e-10	451	396	463	396	0	0	0	1.000000e+02	2.238252	1.072677e-02
ВТ3	Converged	0.000251	90	6	0	4.092954e+00	4.993645e-06	7.212189e-06	206	198	218	198	0	0	0	1.113934e+02	1.061903	6.679506e+00
BT4	Converged	0.000282	103	7	0	-4.551053e+01	3.600484e-06	1.707324e-06	5 250	230	264	230	0	0	0	7.664839e+01	5.0	1.637374e+01
BT5	Converged	0.020897	4130	10	4	9.617152e+02	3.477018e-06	2.926144e-08	25982	17062	26002	17062	0	0	3341	4.031501e+01	5.0	1.253975e+00
ВТ6	Converged	0.000830	163	6	0	2.770448e-01	6.941240e-06	1.057827e-07	346	345	358	345	0	0	0	1.005153e+02	2.809451	6.416401e-02
ВТ7	Converged	0.005821	2267	13	2	3.064991e+02	6.353834e-06	4.638192e-07	4761	4622	4787	4622	0	0	1893	1.486843e+05	2.958037	1.885731e+03
вт8	Converged	0.000174	60	6	0	1.000000e+00	7.292121e-06	3.474568e-08	140	140	152	140	0	0	0	1.192491e+01	1.0	1.016640e+00
ВТ9	Converged	0.000228	103	7	0	-1.000003e+00	5.461454e-06	2.984141e-06	i 233	227	247	227	0	0	0	6.887232e+02	1.414223	1.414195e+00
BYRDSPHR	Converged	0.000305	81	6	0	-4.683300e+00	6.714868e-06	2.252757e-07	384	283	396	283	0	0	0	6.441297e+01	3.0	7.270278e-01
C-RELOAD	Converged	4.465177	19938	23	19	-1.016152e+00	9.247353e-06	1.152703e-07	41835	40857	41881	40857	0	0	0	1.979600e+04	10.979025	4.098650e+00
CANTILVR	Converged	0.000244	69	6	0	1.339956e+00	2.689272e-06	2.955095e-07	210	156	222	156	0	0	0	1.000000e+02	10.073384	4.466504e-01
CBS	MaxTime	90.073239	32000	32	32	1.114056e+05	1.493529e+01	1.285575e-03	85624	74784	85688	74784	0	0	0	2.630139e+04	27663.88435	1.932884e+01
CHACONN1	Converged	0.000188	52	6	0	1.952225e+00	9.045071e-06	1.364848e-06	122	122	134	122	0	0	0	3.251185e+01	2.432652	7.139087e-01
CHACONN2	Converged	0.000206	66	6	0	2.000000e+00	3.139227e-06	7.787767e-08	148	150	160	150	0	0	0	1.137590e+02	2.44949	6.236091e-01
CLEUVEN7	MaxTime	90.167317	85680	87	85	6.835966e+02	1.545719e+00	1.146030e-05	197869	184601	198043	184601	0	0	0	1.434145e+06	19.535207	5.977112e+01
	Converged	0.000196	40	7	0	0.000000e+00	1.332904e-08	3.651261e-06	165	113	179	113	0	0		6.191062e+03		6.997659e-08
COATINGNE		15.039681	198509	200		0.000000e+00		1.824155e-01	. 397801	397619	398201	397619	0	0		1.224556e+16		7.017957e+14
CONCON		1.582787	200000	200		-6.230637e+03				570823	744459	570823	0	0		1.552335e+07		7.621328e-01
CONGIGMZ		0.000469	129	7		2.799999e+01		1.231208e-06		388	537	388	0	0		1.576905e+01		8.062256e+00
COOLHANS		1.423889	196197	200	196	0.000000e+00				534506	683240	534506	0	0		2.828427e+15		8.551076e+11
COOLHANSLS		0.831902	195171	200	195	2.997478e-05				390995	397722	390995	1	0		0.000000e+00		0.000000e+00
CORE2		5.708921	200000	200		7.615559e+01		1.662282e-02		402676	407195	402676	0	0		8.959034e+15	13201.929943	
CRESC50		0.002209	31	0		2.882191e+00	NaN	NaN		66	75	66	0	0		1.000000e+01		0.000000e+00
	Converged	0.000139	66	6		0.000000e+00		7.726958e-08		156	186	156	0	0		1.044260e+02		6.985986e-09
DALLASM	Maxiter	70.936111	198649	200	197					561369	737725	561369	3	0		6.980828e+03		1.366679e+03
DALLASS		34.117246	198875	200		-3.239322e+04				1156576	1925529	1156576	1332	0		1.786559e+02		6.591052e+02
DANIWOOD	Maxiter	0.753633	195056	200	195	0.000000e+00		3.683666e-02		449011	511795	449011	0	0		2.449490e+15		6.570835e+13
DANWOOD		1.032289	195062	200		0.000000e+00				462060	537640	462060	0	0		2.449490e+15		6.570835e+13
DECONVBNE	converged	0.148484	3950	12	2	0.000000e+00	в.12b233e-06	1.976211e-06	9018	8472	9042	8472	0	0	0	4.819366e+02	4.518749	1.069367e-02

	status	time	inner iterations	outer iterations i	inner convergence failures	f	3	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixii	llyll
name																		
	Converged	0.054867	818	6 12	0		5.766452e-06			1781	1916	1781	0	0		1.000000e+01		3.356039e-07
DECONVNE		0.075019	2132 92	6	0		9.487293e-06 7.496512e-06			4303 202	4321 211	4303 202	0	0		3.512375e+04 0.000000e+00		3.921639e-02 0.000000e+00
DEGENLPA	Maxiter	0.916358	189756	200	189			7.991664e-07	432505	404391	432905	404391	0	0		5.238215e+09		1.793603e+02
DEGENLPB	Maxiter	0.994870	189998	200	189	-2.975285e+01	4.943053e+03	1.365574e-13	539293	457720	539693	457720	1052	0	20025	3.392720e+15	0.335462	1.022110e+02
DEMBO7	Maxiter	4.258142	194260	200	193	1.749111e+02		1.622386e-08		966570	1552647	966570	0	0	189707			5.504294e+02
DEMYMALO		0.000190	69	6	0	-3.000001e+00		2.599738e-06	238	171	250	171	0	0		1.667995e+01		5.773515e-01
	Converged Converged	0.136018 0.009985	19175 1151	24	19	6.806301e+02 1.562497e+00		7.139007e-06 6.940442e-06		84529 2322	131227 2353	84529 2322	0	0		4.837632e+01 8.272847e+01		1.197848e+00 5.821509e-01
	Converged	0.384085	13993	23	8	1.200006e+01		8.095675e-06		32777	37817	32777	1	0		4.557977e+04		7.909874e-01
DIXCHLNG		0.006091	450	10	0	8.226970e-08		7.102124e-06		937	1021	937	0	0		1.616197e+04		1.933652e-02
DNIEPER	MaxIter	9.833934	197809	200	197	1.874401e+04	3.682609e-02	1.577365e-07	2015769	1202017	2016169	1202017	0	0	188977	7.654075e+04	192.944743	4.591815e+03
DUAL1	Converged	0.094314	290	6	0	3.501294e-02		6.299042e-07		607	625	607	0	0		1.000000e+01		3.704729e-02
	Converged	0.068216	179	6	0	3.373368e-02				377	388	377	0	0		1.000000e+01		3.599682e-02
	Converged Converged	0.094369	193 51	6	0	1.357558e-01 7.460910e-01	8.818535e-06 6.543196e-06	3.213409e-08 4.698586e-07	402 118	404 120	414 130	404 120	0	0		1.000000e+02 1.000000e+01	0.130345 0.144259	1.458489e-01 8.387206e-01
	Converged	0.051866	1115	11	1	6.155180e+03		6.943324e-06		2323	2455	2323	0	0		3.786999e+04		1.032973e+04
	Converged	0.135123	3060	9	3			5.327575e-08		6230	6446	6230	0	0		5.108433e+04		4.725807e+03
DUALC5	Converged	0.057481	1080	7	1	4.272326e+02	7.800884e-07	1.203119e-08	2232	2189	2246	2189	0	0	981	1.000001e+04	0.519302	4.600655e+02
DUALC8	Maxiter	32.326171	196090	200	196	1.830936e+04	4.957510e-03	2.916182e-09	801228	593937	801628	593937	0	0	195460	1.000000e+05	0.635296	3.321141e+04
	Converged	0.003617	6	4	0					24	37	24	0	0		0.000000e+00		0.000000e+00
	Converged	0.092359	1001	2	1		0.000000e+00			19972	37938	19972	0	0		1.732051e+00		0.000000e+00
ERRINBAR	MaxIter Converged	1.762705 0.005064	199566 454	200	199	3.117059e+01 1.136612e-03		2.109347e-08 4.919368e-07	1277602	836472 1138	1278002 1415	836472 1138	0	0		9.834788e+05 1.709086e+02		5.523656e-02 3.851619e-03
	Converged	0.019636	454 558	8	0	5.019357e-03		4.919368e-07 8.592817e-07	1327	1212	1343	1212	0	0		1.167050e+02		1.426474e-02
EXPFITC	Maxiter	68.033419	194378	200	194	2.330259e-02	2.331579e-05	9.054419e-07		770878	1158060	770878	0	0		6.770601e+03		8.175375e-02
EXPLIN	Maxiter	10.925847	198083	200	198	-7.192467e+07	6.441750e-04	0.000000e+00	498489	444429	498889	444429	0	0	196829	0.000000e+00	341.120086	0.000000e+00
EXPLIN2	NotFinite	0.019674	41	0	1	9.999999e+01	inf	0.000000e+00	151	108	152	108	0	0	0	0.000000e+00	0.0	0.000000e+00
EXPQUAD	NotFinite	0.018560	7	0	1	9.999999e+01		0.000000e+00		17	23	17	0	0		0.000000e+00		0.000000e+00
EXTROSNBNE		1.058400	5284	10	5	-1.999995e+00		6.009825e-08		10650	10734	10650	0	0		2.528515e+02		5.773570e-02
FEEDLOC	Converged	0.001187	187 3913	7	0	1.114909e+01 0.000000e+00		4.915018e-06 5.254815e-07		395 8560	434 9346	395 8560	0	0		1.869798e+02 1.826045e+02		5.243036e+00 1.933070e+00
FERRISDC		0.037257	0	1	0			1.664442e-07		3	5	3	0	0		1.449138e+01		4.923500e-07
FLETCHER	Converged	0.000356	118	7	0	1.165685e+01	2.968983e-06	8.224130e-07	367	294	381	294	0	0	0	1.140367e+03	5.490186	8.363076e+00
FLOSP2TM	MaxTime	90.897544	82000	82	82	0.000000e+00	1.236373e+15	9.787395e+00	165703	164246	165867	164246	0	0	0	2.886105e+13	27.390202	2.381049e+13
FREURONE	Maxiter	0.262325	196045	200	196	0.000000e+00	4.706327e+09	4.948952e+00	464367	425275	464767	425275	0	0	195923	1.414214e+15	11.44796	6.998877e+15
GAUSSELM		91.651104	4077	7	2	-1.000040e+00		4.763477e-06		8177	8264	8177	0	0		4.957875e+02		2.350119e+00
GENROSENE GIGOMEZ1		90.036479	40493 78	42	40		8.792014e-02 3.013967e-06	5.630181e+00 1.615270e-07		450939 185	822768 235	450939 185	1576	0		2.769365e+10 1.696091e+01		2.869365e+10 5.773495e-01
GIGOMEZ2	-	0.000223	65	6	0			8.984661e-08		148	161	148	0	0		1.009950e+02		7.139090e-01
GIGOMEZ3	-	0.000218	69	6	0	2.000000e+00	7.663418e-07	4.772265e-07	172	162	184	162	0	0		9.811253e+01	2.44949	
GILBERT	Converged	0.296711	80	8	0	2.459468e+03	6.810466e-06	1.435904e-06	725	439	741	439	0	0	0	1.000000e+03	1.000001	4.023330e+01
GMNCASE1	Converged	1.805480	1355	12	0	2.669347e-01	5.930342e-06	1.699472e-07	2753	2746	2777	2746	0	0	0	3.348584e+04	0.592716	2.853429e+01
GMNCASE2		6.611189	3903	14	0	-9.944532e-01		2.744001e-06		7848	7882	7848	0	0		2.323836e+04		1.986266e+01
GMNCASE3	-	4.942514	3507	15	0	1.524677e+00		7.193234e-06		7059	7102	7059	0	0		4.580507e+04		3.651910e+01
GMNCASE4 GOFFIN	MaxTime Converged	90.904258 0.023455	4483 461	9	4		6.353323e-05 4.913487e-06	6.654126e-01 1.194639e-07		89452 1148	170128 1396	89452 1148	0	0		3.573276e+03 6.224416e+01		2.070112e+03 1.414211e-01
GOULDQP1	-	0.347009	10954	16	-		8.696890e-06			109645	197751	109645	0	0		7.560076e+02		3.343181e+02
GOULDQP2	Converged	0.049777	0	1	0		3.468504e-08	6.784334e-09		3	35	3	0	0	0	9.999500e+01		2.612256e-07
GOULDQP3	Converged	2.110106	323	6	0	2.379100e-05	6.774130e-06	6.383185e-07	703	664	715	664	0	0	0	8.873650e+03	276.234866	6.898089e-03
GRIDGENA	NotFinite	0.003797	0	1	1	NaN		0.000000e+00		5	6	5	0	0		0.000000e+00		0.000000e+00
GRIDNETH		91.133699	35846	39	34		7.451888e-03 1.577794e-05			71820	72005	71820	0	0		1.599717e+04		7.646960e+02
GRIDNETH		105.387188 92.928741	23845 27691	29 34			1.577794e-05 6.647291e-04			66268 55565	84969 55817	66268 55565	0	0		4.761547e+04 8.999630e+03		1.481571e+02 2.944834e+02
GROUPING		0.076323	27691	6	1			2.115577e-02		5345	6113	5345	0	0		2.448466e+03		2.944834e+02 2.082531e+01
GROWTH	Maxiter	2.398585	196401	200	196		9.974929e+09			608284	828537	608284	0	0		3.316625e+15		1.001964e+15
HADAMARD	MaxIter	68.019615	197021	200	197	7.181291e-01	9.940332e+05	1.809524e+01	427380	409030	427780	409030	0	0	196853	1.449138e+16	6.213769	8.507700e+16
HAHN1	Maxiter	41.171830	193656	200	193		6.449611e+06			1142694	1907183	1142694	0	0		1.288632e+16	21288733.545069	
HAIFAL	MaxTime	91.097686	12001	13			1.327574e+00			24864	25839	24864	0	0		1.171425e+03		4.731945e-01
HAIFAM	Maxiter Converged	17.792251 0.000407	199005 72	200	199		1.548131e+00 8.161784e-06	4.268440e-06		484013	573241	484013	0	0		2.179891e+06 1.056965e+02		5.925170e-01 6.123762e-01
HALDMADS		0.000407	72 755	6 13	0		8.161784e-06 5.932318e-06			170 1552	259 1675	170 1552	0	0		1.056965e+02 4.728314e+04		6.123762e-01 4.267201e-01
HANGING		90.829820	47912	49			1.413929e-03			212764	330535	212764	0	0		2.560819e+05		3.818656e+02
HARKERP2		13.140290	886	4	0		0.000000e+00			2813	3880	2813	0	0		0.000000e+00		0.000000e+00
HATFLDDNE	MaxIter	2.252877	190188	200	190	0.000000e+00	5.141760e+05	1.867970e-04	1078873	727941	1079273	727941	0	0	188876	2.828482e+15	3.441898	2.591723e+11
HATFLDENE	MaxIter	3.428557	191181	200	191		2.713594e+06			608252	838575	608252	0	0		4.123106e+15		1.652285e+12
HATFLDF	Converged	0.001224	191	6	0	0.000000e+00	5.757712e-07	4.054420e-08	1792	1090	1804	1090	0	0	0	8.544017e+02	0.583391	6.070167e-07

status time inner iterations outer iterations inner convergence failures δ f evaluations grad_f evaluations grad_g evaluations linesearch failures L-BFGS failures L-BFGS rejected llxll llyll name HATFLDFLNE 196 0.000000e+00 6.610966e+07 6.337356e-03 195265 1.732051e+15 143.455287 7.762870e+12 MaxIter 0.367540 196017 473842 430959 474242 430959 HATFLDG Converged 327 0 0.000000e+00 8.280937e-06 2.892455e-06 678 672 0 1.575977e+02 1.414216 1.490174e-05 HATFLDH Converged 0.000258 89 0 -2.450000e+01 5.525776e-06 4.099515e-06 234 214 246 214 0 0 5.796030e+02 7.035624 4.636811e+00 HEART6 Converged 0.008234 1657 0 0.000000e+00 5.517395e-06 1.996276e-08 4669 3845 4681 3845 0 1.370834e+02 20.573945 1.986407e-06 HEART8 197251 0.000000e+00 9.482478e+10 7.459915e-01 548709 548709 192448 2.529876e+15 74.943508 1.065317e+15 MaxIter 1.106661 200 707866 708266 0 HELIXNE Converged 0.000211 62 0 0.000000e+00 1.976825e-06 5.384959e-08 154 149 166 149 0 0 1.023135e+02 1.0 1.048434e-06 HELSBY MaxTime 90.055061 144000 146 144 3.654642e+01 7.076675e+06 1.599360e-05 292503 290334 292795 290334 0 1.741827e+16 3198.988167 1.049020e+11 HET-Z Converged 0.006084 25 9.999938e-01 1.776912e-12 9.822704e-06 71 0 3.368341e+04 0.999994 6.891940e-01 HIE1327D MaxIter 64.062934 198781 200 198 5.189385e+02 5.914572e-03 1.222862e-06 399167 401090 399167 0 5.746047e+04 1462.196612 1.300492e+00 400690 HIE1372D Converged 4 760086 34275 33 2.779871e+02 9.618839e-06 6.150329e-07 68902 68754 68974 68754 0 0 6.180287e+03 1074.815379 8.242893e-01 HILBERTA Converged 0 3.570853e-13 2.023390e-07 0.000000e+00 29 41 0 0.000000e+00 0.000003 0.000000e+00 HILBERTB Converged 4 0 1.241713e-13 8.001450e-06 0.000000e+00 21 26 33 26 0 0.00000e+00 0.0 0.000000e+00 HIMMELBA Converged 0.000179 20 0 0.000000e+00 1.311452e-06 1.336273e-07 57 58 69 58 0 0 1.006906e+02 7.81025 7.593766e-08 HIMMELBB Converged 0.000108 28 0 7.552349e-13 2.366738e-06 0.000000e+00 90 74 102 74 0 0.000000e+00 12 0 0.000000e+00 2.910597e-06 2.091201e-07 3.605551 6.493683e-07 HIMMELBC Converged 0.000064 39 39 0 1.204661e+01 HIMMELBCLS Converged 0 2.424379e-19 2.008203e-08 0.000000e+00 31 0.000046 8 29 31 39 0 0.000000e+00 3.605551 0.000000e+00 HIMMELBD 545399 MaxIter 196067 200 196 0.000000e+00 3.141232e+10 2.432422e+00 466883 545799 466883 0 195841 1.001301e+15 0.399575 2.432455e+15 HIMMELBE Converged 0.000113 32 0.000000e+00 8.179309e-06 3.181678e-06 81 82 93 82 0 0 1.291960e+01 1.732054 5.535215e-06 195 3.185717e+02 3.032839e-05 0.000000e+00 399382 200 398982 391807 391807 0 194984 0.000000e+00 1713.571317 0.000000e+00 HIMMELBF Maxiter 0.349900 195085 HIMMEI BENE Maylter 0.619164 199069 200 199 0.000000e+00 2.996771e+11 1.000000e+04 572755 482911 573155 482911 Λ 197659 2 242863e+15 4420.472576 1.014113e+19 HIMMELBG Converged 0 4.162127e-13 6.966051e-06 0.000000e+00 32 44 0 0.000000e+00 0.0 0.000000e+00 0.000079 0 -1.000000e+00 4.232670e-06 0.000000e+00 32 33 42 33 0 0.000000e+00 1.414214 0.000000e+00 HIMMELBH Converged HIMMELBI NotFinite 0.302787 6278 6 -1.735570e+03 inf 8.675181e-04 16762 14651 16777 14651 0 0 4.469830e+02 229.439061 2.836057e-01 HIMMELBJ NotFinite 0.036927 1 -3.099520e+03 NaN 1942 1943 1942 0 1.765821e+01 46.988659 3.459341e+01 0 5.181434e-02 6.092523e-06 3.000162e-07 0 1.109841e+02 3567 3073 3579 3073 0.72815 5.617594e-02 HIMMELBK Converged 0.036752 1297 HIMMELP1 Converged 0.000082 15 0 -6.205394e+01 2.400113e-06 0.000000e+00 120 57 132 57 0 0.000000e+00 106.653173 0.000000e+00 HIMMELP2 Converged 0 -6.205394e+01 2.400113e-06 0.000000e+00 57 211 57 0 1.000000e+00 106.653173 0.000000e+00 0.000145 15 199 HIMMELP3 Converged 0.000094 0 -5.901318e+01 0.000000e+00 0.000000e+00 89 0 1.414214e+00 99.247166 0.000000e+00 HIMMELP4 Converged 0.000103 6 0 -5.901318e+01 0.000000e+00 0.000000e+00 89 27 27 0 1.732051e+00 99.247166 0.000000e+00 HIMMELP5 Converged 0.000087 8 0 -5.901318e+01 0.000000e+00 0.000000e+00 39 25 43 25 0 1.732051e+00 99.247166 0.000000e+00 HIMMELP6 Converged 0 -5.901318e+01 0.000000e+00 0.000000e+00 39 25 25 0 2.236068e+00 99.247166 0.000000e+00 MaxTime 21 16 1.248150e+03 3.895767e-05 0.000000e+00 32384 32992 32384 0 15992 0.000000e+00 0.775199 0.000000e+00 HOLMES 90.408464 16128 32950 HONG Converged 0.000276 81 0 2 257092e+01 8 563155e-06 3 906548e-06 200 190 214 190 Λ 0 1 000000e+03 0.551101 4.366802e+01 HS10 Converged 0.000135 49 0 -1.000003e+00 1.685880e-06 5.745382e-06 169 113 179 113 0 1.000000e+01 1.000004 4.999993e-01 HS100 Converged 0.116295 9373 15 9 6.806301e+02 9.484349e-06 2.645438e-06 83466 50988 83496 50988 8853 4.837632e+01 5.704029 1.197847e+00 HS100LNP Converged 0.005517 1 6.806301e+02 5.818392e-06 4.371968e-07 3385 1328 4159 3385 4171 843 3.264155e+01 5.704029 1.197847e+00 HS100MOD Converged 3 6.786796e+02 9.980697e-06 18186 2910 1.014889e+01 5.904106 1.187541e+00 0.068247 3244 9.861360e-07 29957 18186 29975 HS101 NotFinite 231 1 9.902837e+01 NaN 557 509 560 509 0 1.430038e+01 6.53391 2.261524e+00 HS102 112 105 113 105 0 2.236068e+00 15.874524 0.000000e+00 NotFinite 0.001776 48 1 2.206894e+03 NaN NaN HS103 NotFinite 0.006526 149 1 2.208891e+03 NaN NaN 356 328 357 328 Λ 0 2 236068e+00 15.874524 0.000000e+00 HS104 NotFinite 141 NaN 3.166358e-01 952 619 0 8.173225e+01 11.405796 4.172347e+00 HS105 Converged 0.152929 0 1.044612e+03 4.672851e-06 0.000000e+00 1292 951 1304 951 0 1.000000e+00 287.861448 0.000000e+00 308 HS106 Maylter 0.807850 199002 200 199 8 537159e+03 1 000000e+00 0 000000e+00 520049 442860 520449 442860 279 0 186520 8 336944e+06 5240.353634 0.000000e+00 HS107 193103 193 5.055012e+03 9.618724e-06 2.544163e-09 1284261 832465 1284657 832465 189492 8.748188e+04 2.285948 7.915116e+03 2.000001 9.674057e-01 HS108 Converged 0.000793 143 -8.660258e-01 4.385211e-06 3.149711e-06 331 317 343 317 0 0 2.456734e+01 1.591576 200 449963 HS109 MaxIter 200000 200 5.431989e+03 9.773056e+11 1.342275e-05 449563 420625 420625 0 194533 2.449490e+15 1455.277332 2.628860e+10 HS11 Converged 39 0 -8.498476e+00 5.970567e-06 3.759154e-06 0 1.000000e+01 1.961954 3.049325e+00 0.000121 98 110 96 HS110 Converged 0.000102 0 -4.577848e+01 1.031245e-06 0.000000e+00 21 29 0 0.000000e+00 29.568137 0.000000e+00 HS111 Converged 0.023603 1081 0 -4.776110e+01 4.483741e-06 1.217640e-06 2267 2186 2279 2186 0 1.447045e+02 12.48268 2.226323e+01 HS111LNP Converged 0.023406 1081 0 -4.776110e+01 4.483741e-06 1.217640e-06 2267 2186 2279 2186 0 1.447045e+02 12.48268 2.226323e+01 HS112 20 47 46 50 0 1.560565e+01 9.117253 2.199622e+01 HS113 MaxIter 3.143446 195267 200 195 2.430621e+01 1.244620e-04 4.502346e-07 2149165 1266874 2149565 1266874 0 193869 3.840977e+01 18.797608 2.290201e+00 HS114 Maylter 1 833105 195963 200 195 -1 768807e+03 2 982926e-04 5 181719e-07 1447350 915834 1447750 915834 Ω 188863 9 844765e+03 16313 822428 4 051640e+02 HS116 196851 196 1.546721e+02 1.418074e-01 2.027485e-06 862717 862717 120909 1.290209e+09 861.064546 2.903796e+03 196 3.234868e+01 2.668763e-04 5.982322e-08 13.300647 7.712535e-01 HS117 MaxIter 3.669855 198216 200 1881094 1135909 1881494 1135909 191130 2.809571e+02 0 6.648205e+02 3.551765e-06 3.700100e-06 HS118 Converged 0.001700 295 691 638 703 638 0 0 6.655833e+01 144.734246 5.373634e+00 4 2.448997e+02 9.580795e-06 21017 33704 21017 3317 5.255800e+03 3.173506 1.219039e+02 HS119 Converged 4275 9.594952e-07 33684 9.134912e-06 115 90 0 1.000000e+02 3.605551 4.999994e-01 HS12 Converged 0.000127 36 0 -3.000000e+01 7.284788e-09 103 90 HS13 Converged 0.000143 59 0 9.587107e-01 3.640586e-07 9.079939e-06 139 145 157 145 0 1.000000e+08 1.020862 1.499791e+03 HS14 Converged 0.000178 39 0 1.393454e+00 4.445662e-07 4.035188e-06 99 97 111 97 0 1.301960e+02 1.227947 2.439719e+00 HS15 Converged 0.000424 64 0 3.064995e+02 4.547474e-13 7.604421e-07 591 0 1.000000e+04 2.061551 6.999994e+02 0.000122 0 2.500000e-01 8.138462e-06 0.000000e+00 87 87 0 1.414214e+00 0.559017 0.000000e+00 HS16 Converged 30 100 112 HS17 Converged 0.000128 37 0 1.000000e+00 1.278357e-07 2.055425e-06 103 QQ. 115 98 Λ 0 1 000050e+02 0.000002 2.000000e+00 HS18 Converged 52 0 5.000000e+00 6.883372e-06 1.115618e-07 136 122 148 122 0 1.000050e+02 15.890246 1.999999e-01 0.041974 15035 21 15 -6.961816e+03 2.100882e-06 1.048767e-06 54006 41845 54048 41845 0 14866 1.328569e+04 14.120183 1.647860e+03 HS19 Converged 15 0 4.941229e+00 1.173978e-06 0.000000e+00 88 65 HS2 Converged 0.000065 76 65 0 0 0.000000e+00 1.934142 0.000000e+00 HS20 Converged 0.000183 44 0 3.819828e+01 6.005976e-09 6.267921e-06 157 132 0 1.000001e+03 0.999997 7.113237e+01

	status	time	inner iterations	outer iterations	inner convergence failures	f	ε	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixil	llyll
name																		
	Converged	0.000080	3	3		-9.996000e+01				15	33	15	0			1.000000e+00	2.0 0.00	
HS21MOD	Converged Converged	0.000057 0.000146	3 42	4		-9.596000e+01 9.999944e-01	4.299860e-06	8.916337e-06		18 105	25 124	18 105	0	0		1.000000e+00 1.173921e+01	2.828427 0.00 1.41422 9.42	
	Converged	0.000145	50	6			7.135390e-08		153	122	165	122	0	0		5.889584e+02	1.41421 2.82	
	Converged	0.000146	43	7	0	-1.000002e+00	6.672492e-06	1.717441e-06		122	172	122	0	0	0	2.002961e+01	3.464102 1.00	
HS25	Converged	0.028463	88	6	0	1.368410e-11	1.891724e-06	0.000000e+00	846	483	858	483	0	0	0	0.000000e+00	55.921382 0.00	00000e+00
HS25NE	Converged	0.008535	105	5	0	0.000000e+00	6.012810e-06	5.876295e-06	296	229	306	229	0	0	0	1.545079e+03	55.919101 4.28	86998e-01
HS26		0.000229	89	6	0		6.092685e-06	6.648329e-08		196	208	196	0	0		1.000000e+01		13824e-07
HS268		0.775672	196076	200	196		1.262714e-03			392774	400681	392774	0	0		2.236068e+00	5.552289 0.00	
HS27 HS28		0.000155 0.000159	64 58	6	0	4.000002e-02 1.633900e-11	1.694306e-06 4.444747e-06	3.985607e-07 2.569061e-09	156 134	148 134	168 146	148 134	0	0		1.000000e+01 1.000000e+02	1.414214 4.00 0.866018 3.36	00225e-02 66202e-06
HS29	-	0.000139	78	6	-	-2.262742e+01				175	205	175	0	0		1.000000e+02		71067e-01
HS2NE	Maxiter	0.335643	192031	200	192	0.000000e+00				424300	464503	424300	0	0		1.081367e+15	1.930766 2.21	
HS3	Converged	0.000041	0	5	0	1.422652e-08	3.842024e-06	0.000000e+00	10	15	20	15	0	0	0	0.000000e+00	0.037718 0.00	00000e+00
HS30	Converged	0.000045	2	1	0	1.000000e+00	0.000000e+00	0.000000e+00	7	7	9	7	0	0	0	1.000000e+00	1 0.00	00000e+00
HS31	Converged	0.000122	41	6	0	5.999998e+00	5.864978e-07	2.893543e-07	104	100	116	100	0	0	0	1.000000e+02	1.825742 6.00	00000e+00
	Converged	0.000190	56	6	0		3.306998e-06	1.281726e-07	143	136	155	136	0	0		1.002348e+02		00003e+00
	Converged Converged	0.000093	7	4	0		1.801875e-07 3.890617e-06	1.678828e-06 1.733117e-06	64 355	26 214	72 367	26 214	0	0		1.004988e+01 2.995014e+01	2.0 2.50 10.295509 4.36	00000e-01 64609e-01
	Converged	0.000281	40	6	0	1.111113e-01	8.236936e-06	6.383526e-07	98	98	110	98	0	0		1.000000e+01		22188e-01
	Converged	0.000133	40	6	0	1.111113e-01	8.236936e-06	6.383526e-07	98	98	110	98	0	0		1.000000e+01		22188e-01
HS35MOD	Converged	0.000099	23	6	0	2.500000e-01	3.325722e-06	0.000000e+00	76	69	88	69	0	0	0	1.000000e+01	1.658313 0.00	00000e+00
HS36	Converged	0.000097	21	6	0	-3.300000e+03	2.842171e-14	2.051632e-07	71	68	83	68	0	0	0	1.000000e+01	27.313001 1.10	00000e+02
HS37	Converged	0.000175	44	7	0	-3.456000e+03	4.303804e-06	2.028826e-06	131	118	145	118	0	0	0	1.000050e+02	29.393876 1.44	10000e+02
	Converged	0.000126	50	6		2.139105e-14				119	134	119	0	0	-	0.000000e+00	2.0 0.00	
HS39		0.000284	103	7		-1.000003e+00				227	247	227	0	0		6.887232e+02	1.414223 1.41	
	Converged Converged	0.000047	8	6	0	1.018997e-15 2.666667e+00				34	46	34 5	0	0		0.000000e+00 0.000000e+00		00000e+00 00000e+00
HS40		0.000206	72	5			7.223329e-06			159	169	159	0	0		1.062775e+02	1.455224 7.73	
HS41		0.000123	31	6	0	1.925926e+00	1.076161e-06	4.195258e-07	120	82	132	82	0	0		1.000000e+01		111112e-01
HS42	Converged	0.000179	60	6	0	1.385785e+01	2.779374e-06	3.490750e-06	139	138	151	138	0	0	0	4.082544e+01	3.162277 3.22	29382e+00
HS43	Converged	0.000294	99	6	0	-4.400000e+01	4.577813e-06	3.728469e-06	221	216	233	216	0	0	0	1.091058e+02	2.449489 2.23	36060e+00
	Converged	0.000205	38	6			1.576583e-07	7.949384e-07	191	105	203	105	0	0		1.338458e+01	5.0 1.95	
HS44NEW		0.000287	37	6			1.484422e-07	8.059304e-07	155	95	167	95	0	0		1.338821e+01		52562e+00
HS45 HS46	Converged Converged	0.000044	167	3		1.000000e+00 7.643831e-12				26 352	36 365	26 352	0	0		0.000000e+00 8.902253e+01	7.416198 0.00 2.239157 7.51	17522e-07
HS47		0.000237	70	5	0	-5.684613e-12			158	155	168	155	0	0		1.154807e+02		27082e-06
HS48	-	0.000170	61	6	0		8.104264e-06			140	150	140	0	0		1.106752e+02		32578e-06
HS49	Converged	0.000371	142	6	0	1.210645e-11	7.610881e-06	3.739024e-07	302	302	314	302	0	0	0	1.001199e+02	2.237666 3.77	77965e-07
HS5	Converged	0.000083	8	6	0	-1.913223e+00	5.206002e-06	0.000000e+00	86	34	98	34	0	0	0	0.000000e+00	1.641112 0.00	00000e+00
	Converged	0.000274	99	6	0		5.316818e-06	3.863162e-07	215	216	227	216	0	0		1.934559e+01		36478e-07
	Converged	0.000274	100	6	0	3.132219e-10		8.601100e-06		218	235	218	0	0		2.421755e+02		77899e-05
	Converged Converged	0.000406 0.000257	139 92	7	0	5.326616e+00 4.093014e+00	9.556198e-06 8.993996e-06	2.373197e-06 9.596286e-07	313 213	299 205	327 227	299 205	0	0		1.137760e+02 9.803330e+01	0.694181 8.90 1.061903 6.67	00292e+00
HS54		0.223081	65128	71	65		3.805281e-06	2.661665e-06	258493	193291	258635	193291	0	0		1.000000e+01		46783e-05
HS55	Converged	0.000833	160	6	0	6.666667e+00		1.667988e-06	630	482	642	482	0	0	0	3.482720e+01	2.603418 1.01	
HS56	Converged	0.000366	86	6	0	-3.456000e+00	1.336407e-06	2.991656e-07	202	193	214	193	0	0	0	4.023513e+01	3.532427 1.44	10000e+00
HS57	Converged	0.000275	4	6	0	3.064631e-02	4.385285e-06	0.000000e+00	44	26	56	26	0	0	0	1.000000e+00	5.017769 0.00	00000e+00
	Converged	0.000424	15	6	0	-6.749505e+00				48	60	48	0	0		1.732051e+00	69.852233 0.00	
	Converged	0.000273	83	6		9.456495e-12 3.256820e-02				307	449	307	0	0		1.000000e+01	1.41422 2.45 2.238252 1.07	
	Converged Converged	0.000200	67 48	6		-1.436461e+02			153 130	153 116	165 142	153 116	0	0		1.000000e+01 5.431942e+01	6.570519 1.95	
	Converged	0.084474	4069	10		-2.627252e+04				43110	78224	43110	0	0	-	1.000000e+05	0.701658 6.38	
HS63	Converged	0.000190	52	6	0	9.617152e+02	3.631826e-06	1.873597e-08	126	124	138	124	0	0	0	4.040721e+01	5.0 1.25	53975e+00
HS64	Converged	0.000512	127	9	0	6.299836e+03	3.349216e-06	2.614939e-06	281	281	299	281	0	0	0	1.000000e+05	246.61295 2.27	79024e+03
HS65	Converged	0.000253	85	6	0	9.535289e-01	4.045847e-07	2.163564e-08	246	205	258	205	0	0	0	1.000000e+02	6.928203 8.21	15330e-02
	Converged	0.000237	71	6		5.181630e-01		3.421652e-07		160	245	160	0	0		1.240897e+02	3.542625 6.94	
HS67	NotFinite	0.000225	0	0		-8.687259e+02	NaN	NaN	2	3	3	3	0	0		3.741657e+00	12126.723346 0.00	
HS68 HS69	-	0.000849	190 2190	9		-9.203894e-01 -9.567130e+02				419 4470	525 4734	419 4470	0	0		1.000016e+05 1.035024e+04	3.75483 1.36 1.448806 5.52	
	Converged	0.007000	34	6		-1.732051e+00				87	94	87	0	0		1.000000e+01	1.732051 2.88	
	Converged	0.005352	71	6		7.498464e-03				162	197	162	0	0		1.000000e+00	13.2814 0.00	
HS71	Converged	0.000382	123	6	0	1.701402e+01	1.967858e-06	7.803392e-08	373	318	385	318	0	0	0	1.701907e+02	6.324555 5.75	54132e-01
HS72	Converged	0.000481	232	13	0	7.275865e+02	2.914437e-06	2.708889e-06	496	504	522	504	0	0	0	1.071311e+08	363.739385 4.21	L3214e+04
	Converged	0.000741	202	6		2.989438e+01		7.832746e-08	910	648	922	648	0	0		4.259612e+02	0.710177 1.83	
HS74	Maxiter	1.546850	195140	200		5.126498e+03				750820	1115928	750820	0	0		1.442847e+05	1230.911037 8.12	
HS75	Maxiter	1.636809	194335	200	194	5.174413e+03	1.5020720-01	3.10/3Ub8-08	1184527	784105	1184927	784105	0	0	189205	7.582984e+07	1207.646097 3.11	111306+03

status time inner iterations outer iterations inner convergence failures δ f evaluations grad_f evaluations grad_g evaluations linesearch failures L-BFGS failures L-BFGS rejected llxll llyll name 0 -4.681818e+00 4.136636e-06 5.771799e-07 2.178027 4.545455e-01 HS76 Converged 0.000312 36 85 97 0 0 1.009950e+01 HS76I Converged 36 0 -4.681818e+00 4.136636e-06 5.771799e-07 0 1.009950e+01 2.178027 4.545455e-01 0 2.415051e-01 6.602498e-06 2.550922e-08 351 2.702557 9.128831e-02 HS77 Converged 0.000578 165 355 351 367 0 1.256377e+02 HS78 Converged 0.000193 62 0 -2.919700e+00 8.235738e-06 3.320562e-07 142 142 154 142 0 7.278861e+01 3.162278 1.028877e+00 7.877683e-02 7.405551e-06 7.132622e-07 238 238 0 5.883418e+01 3.307147 4.227471e-02 HS79 Converged 0.000343 110 238 250 5.0 1.264633e-06 HS8 Converged 0.000108 32 0 -1.000000e+00 6.003751e-06 2.117408e-07 80 79 90 79 0 1.212960e+02 HS80 Converged 0.000240 64 0 5.394985e-02 1.974076e-06 8.124353e-08 144 146 156 146 0 1.031906e+02 3.162278 5.550793e-02 HS81 Converged 0.000331 79 0 5.394985e-02 2.203498e-06 2.391652e-06 181 179 179 0 1.124156e+01 3.162278 5.550771e-02 HS83 Converged 0.002439 1113 1 -3.066554e+04 4.927684e-06 2.407652e-06 2444 2314 2472 2314 988 6.518829e+03 107.005498 9.043195e+02 HS84 Maxiter 0.397122 199151 200 199 -5.280335e+06 2.472783e-02 0.000000e+00 419598 409005 419998 409005 0 198921 1.000000e+04 61.333827 1.913665e+01 0 -2.215605e+00 6.849310e-06 1.792847e-06 HS85 Converged 1.851901 15679 5457 15693 5457 0 2.723939e+01 769.699355 6.059620e-02 HS86 Converged 162 0 -3.234869e+01 4.505726e-06 4.920009e-06 358 348 374 348 0 0 3.341831e+02 0.771239 1.327879e+01 0.000914 189656 1.144014e+07 HS87 Maxiter 1.545571 198204 200 198 8.996881e+03 7.212416e-01 1.886108e-07 1124876 758344 1125276 758344 0 606.527823 4.193675e+01 HS88 Converged 0.054917 95 0 1.361549e+00 2.782170e-06 1.049832e-06 321 260 343 260 0 1.000000e+08 1.166854 1.050808e+03 0 1.361596e+00 3.756483e-07 1.004692e-06 0 1.000000e+08 HS89 Converged 0.051480 98 274 244 296 244 1.166875 1.051191e+03 0.000162 0 -5.000000e-01 5.407524e-07 4.384106e-08 132 76 144 76 0 1.000000e+02 4.999986 3.272496e-02 HS9 Converged 29 HS90 Converged 103 0 1.361549e+00 2.862072e-07 1.049832e-06 289 245 311 245 0 1.000000e+08 1.166854 1.050810e+03 HS91 Converged 0.116022 97 11 0 1.361549e+00 7.229570e-07 288 233 310 233 0 1.000000e+08 1.166854 1.050809e+03 12 1.847902 1119 1 1.362573e+00 7.202615e-06 7.895208e-08 2401 2310 2425 2310 954 1.000000e+08 1.167293 1.059086e+03 HS92 Converged HS93 MaxIter 0.000900 25 200 0 0.000000e+00 0.000000e+00 2.070000e+00 499 673 200 673 ٥ 0 1.000000e+15 13.752958 2.070001e+15 0 1.561953e-02 5.748291e-12 0.000000e+00 HS95 Converged 33 160 118 0 1.014889e+01 0.003323 3.142762e-03 0.000199 33 0 1.561953e-02 5.748291e-12 0.000000e+00 160 166 118 0 1.014889e+01 0.003323 3.142762e-03 HS96 Converged 118 HS97 Converged 0.001214 154 0 3.135809e+00 2.218670e-12 1.006586e-06 1357 810 1363 810 1 1.014889e+01 0.270353 2.514620e-01 1 1.014889e+01 0.001157 154 0 3.135809e+00 2.218670e-12 1.006586e-06 1356 810 1362 810 0.270353 2.514620e-01 200 -8.310799e+08 3.063857e+04 6.979390e-07 198211 1.234294e+07 1.248528 1.933973e+04 3.410919 200000 200 1218038 807781 1218438 807781 0 HS99 MaxIter HS99EXP MaxIter 2.257094 200000 200 200 -1.227958e+11 4.909955e+18 1.347649e+05 567131 481764 567531 481764 0 2367 3.791542e+15 277746516.552599 1.497954e+20 HUBFIT Converged 27 0 1.689326e-02 5.561817e-06 1.922904e-06 74 88 75 0 1.000000e+01 0.677971 1.214947e-01 0.000133 75 HUES-MOD Converged 3.829070 1277 1 3.482449e+07 3.809546e-06 1.146669e-06 5889 4122 5919 4122 922 4.689518e+05 417279.822343 1.282528e+05 HUESTIS Converged 35.469192 7052 17 7 1.741224e+11 9.140215e-06 7.474518e-06 198677 106145 198711 106145 6358 3.150933e+07 417279.813257 6.412639e+08 HVYCRASH MaxTime 90.327206 87016 88 87 3.741653e-02 1.321758e+00 1.029545e-01 176746 174557 176922 174557 0 0 6.763699e+06 24770.300537 6.588661e+05 HYDCAR20 MaxIter 21.088233 199337 0.000000e+00 1.053500e+13 6.338395e-02 401475 399274 401875 399274 0 9.047198e+15 1392.779741 1.093275e+14 5.928057 200 400700 0 0 4.995615e+15 723.412235 2.408128e+13 HYDCAR6 MaxIter 199031 398662 401100 398662 HYDROELL Converged 22 894662 20933 34 16 -3 585547e+06 9 735937e-06 3 008683e-06 217462 129352 217530 129352 Λ 10799 4 636962e+05 19859545 151604 7 146014e+02 HYDROELM Converged 0.747382 4551 24 1 -3.582015e+06 9.177054e-06 5.564563e-06 9613 9292 9661 9292 0 1.216559e+05 14210901.355995 1.003623e+03 HYDROELS Converged 0.087610 1574 22 0 -3.582268e+06 7.231967e-06 8.345317e-06 3450 3494 3265 0 1.883037e+05 8220101.256648 1.734133e+03 3265 0 0.000000e+00 1.161881e-06 2.319214e-07 0 1.041242e+02 HYPCIR Converged 0.000090 26 72 70 84 70 2.0 2.084000e-07 INTEGREQ Converged 0 0.000000e+00 9.446499e-06 1.509755e-06 109 0 7.102641e+02 2.792691 8.265516e-06 0.861824 44 104 109 118 INTEQNE Converged 27 0 0.000000e+00 8.894359e-06 2.135668e-06 68 72 72 0 1.248186e+02 0.412338 8.710024e-06 3 1.999852e+04 8.337876e-03 1.474727e-05 24872 15390 2775 1.417745e+01 0.472675 2.000077e+00 JANNSON3 MaxTime 93,746064 3025 24862 15390 0 JANNSON4 Converged 29.830305 2037 2 9.801970e+03 7.083443e-07 7.255597e-06 42254 23086 42270 23086 ٥ 1925 1.000000e+03 1 000004 9 901422e+01 MaxIter 1.025091 196033 196 0.000000e+00 1.459200e+04 4.717376e+00 474821 432563 475221 432563 195840 3.000000e+15 0.36553 1.114406e+16 200 7.142245e+07 9.157359e+01 3.210946e-06 JJTABEL3 MaxIter 77.358085 200 425788 452204 425788 0 1.142879e+09 12714629.725216 7.690654e+02 200000 451804 JUDGENE Maylter 1 988432 192109 200 192 0.000000e+00 5.614264e+07 2.075376e+00 1245021 811490 1245421 811490 0 190213 4 242641e+15 1 512122 4 007890e+15 91.486090 15129 1.020152e-03 9.429718e-04 1.040474e-04 30309 30309 0 9.910358e+03 31.987904 1.698332e-01 200 0.000000e+00 1.338707e+15 5.564623e-01 KIRBY2 MaxIter 21.802254 200000 200 1778023 1084414 1778423 1084414 0 190945 1.081958e+16 1.653036 1.966097e+15 1.611922 200 4 4.472134e-01 4.325744e-06 1.000000e+00 2783 5.477226e+15 3.49285 5.477231e+15 KISSING MaxIter 5247 13382 12263 13782 12263 0 KISSING2 Converged 4827 12 2 6.216079e+00 9.842161e-06 3.014978e-07 11298 13065 11298 0 1.411351e+03 10.306119 2.908672e+00 1.349916 13041 KIWCRESC Converged 0.000185 67 0 -9.354761e-08 3.269069e-06 1.038183e-07 172 154 184 154 0 8.503067e+01 0.000003 7.905702e-01 Maxiter 1.339044 193151 200 193 0.000000e+00 7.452588e+05 1.118396e-02 1077818 728825 1078218 728825 0 190328 2.828428e+15 0.333246 1.753241e+13 KSIP Converged 0.367391 1183 12 0 5.757958e-01 9.043936e-06 5.731608e-06 2514 2433 2538 2433 0 7.113705e+04 0.599615 4.585606e-01 0 KTMODEL 1000 2036 2020 2020 0 2.121320e+01 148455944757.997864 1.244841e+10 LAKES NotFinite 0.001844 2 1 7.345891e+11 NaN NaN 9 10 0 0 8.831761e+00 9.486842 8.831761e+00 LANCZOS1 Maylter 3 899305 194386 200 194 0.000000e+00 3.450135e+08 3.081129e-04 634509 506351 634909 506351 Ω 188494 4 898979e+15 8 103914 9 591571e+11 LANCZOS2 3.614069 193543 193 0.000000e+00 4.103653e+08 3.149158e-04 596422 486832 596822 486832 188381 4.795833e+15 8.086276 9.580024e+11 LANCZOS3 NotFinite 0.020565 1139 1 0.000000e+00 NaN 1.361803e-03 3114 2673 3127 2673 0 4.296503e+02 7.024442 3.733069e-01 135 1.064046e+01 1122 4.204257e+07 4487.888072 4.909493e+00 LAUNCH NotFinite 4.325813 134817 135 NaN 1.523346e-06 289378 278813 289649 278813 0 inf 6.108166e+19 1562 1.000000e+03 212798938458704084992.0 1.000000e+09 LCH NotFinite 13.604622 6030 7 1.116944e+43 25790 17233 25803 17233 LEAKNET 12.954246 198000 198 8.132593e+00 1.695064e+04 3.271314e-06 398719 397485 397485 0 1.783166e+13 2851.377938 5.282211e+07 MaxIter 200 399119 0 LEUVEN7 MaxTime 90.487553 44598 46 44 6.946938e+02 2.064669e+00 1.136925e-06 110128 99657 110220 99657 0 0 4.044180e+06 19.552778 5.948600e+01 LEWISPOL MaxIter 2.282119 186384 200 186 3.000019e+00 3.511415e-04 7.746612e-10 2067918 1202374 2068318 1202374 18511 0 163842 1.091747e+10 1.732056 8.384862e+04 LIARWHDNE Converged 0.186860 71 0 0.000000e+00 7.933463e-06 1.117956e-08 193 160 0 1.517819e+03 70.710678 9.901628e-03 LIN NotFinite 0.000064 1 -4.650863e-11 inf 2 0 1.414214e+00 0.707107 0.000000e+00 0 NaN 1 2 0 LINCONT MayTime 90.050296 190000 190 190 0.000000e+00 2.438947e+16 1.422263e+01 381252 380570 381632 380570 Λ 0 1 363207e+16 15.91999 6.487582e+16 1297 1 -7.700000e+01 8.043444e-06 2.491641e-06 3572 3086 0 1.001930e+03 4892.387691 1.000196e+00 5327 5.447596e+08 LISWET12 MaxTime 90.292027 109512 115 109 5.534705e+00 1.128207e+02 1.600844e-03 356989 286770 357219 286770 0 31.426293 2.952123e+05 LISWET9 MaxTime 90.445531 89 84 1.116301e+01 2.502235e+02 1.077311e-02 84324 404490 285434 404668 285434 0 6158 5.248507e+08 30.982213 6.605395e+05 LOADBAL Converged 0.046724 1914 1 4.528512e-01 9.798043e-06 7.307503e-06 5055 4437 5069 4437 0 1.873967e+02 196.463409 1.711482e-02

status time inner iterations outer iterations inner convergence failures δ f evaluations grad_f evaluations grad_g evaluations linesearch failures L-BFGS failures L-BFGS rejected llxll llyll name 191 0.000000e+00 6.000000e+00 2.000000e+00 1.414214 2.828429e+15 LOOTSMA MaxIter 0.348265 191021 427909 405345 428309 405345 0 190787 1.414214e+15 LOTSCHD Converged 1184 1 2.398416e+03 9.150757e-06 7.452854e-07 46953 24659 46971 965 9.867339e+01 51.491243 5.378273e+01 27.349954 2.777024e+15 LSC1 MaxIter 0.462477 195075 200 195 0.000000e+00 1.251949e+07 1.957719e+00 492989 439642 493389 439642 0 194583 2.449490e+15 LSC2 MaxIter 0.533573 197086 200 197 0.000000e+00 2.290539e+10 1.943615e+00 577807 479884 578207 479884 193352 2.449490e+15 715324.240769 3.661902e+15 0 1.231124e+02 5.483508e-06 4.332424e-07 228 228 0 1.238851e+02 11.661903 2.039880e+01 LSNNODOC Converged 99 242 256 99 LSOFIT Converged 0.000141 32 0 3.378614e-02 9.926212e-06 3.475397e-06 85 85 85 0 0 1.000000e+01 0.677972 2.429847e-01 LUKVLE18 MaxTime 97.339566 3232 3 9.798162e+03 7.224142e-04 4.510203e-03 61299 33765 61315 33765 336 561 7.560194e+04 52.461102 5.090206e+02 LUKVLI1 MaxTime 101.922883 7020 7 9.005036e+03 9.053954e+00 2.755731e-02 14285 14152 14152 0 1.385805e+02 30.017207 1.076894e-01 LUKVLI10 MaxTime 156.572341 5 3.535103e+03 5.664568e-05 3.129503e-06 75771 42906 905 6.902212e+02 70.703971 4.078369e+01 5145 75753 42906 LUKVLI11 Converged 7.558821 651 0 4.169355e-09 8.529076e-06 9.647213e-06 1470 1385 1482 1385 ٥ 0 8 729906e+01 99.981995 2.194563e-05 LUKVLI12 Converged 1.696576e-06 9.056671e-06 0.000000e+00 2133 2062 2145 2062 0 1.086413e+03 47.252669 0.000000e+00 LUKVLI13 MaxTime 109.161063 2 1.321855e+02 4.681197e-05 6.595174e-07 59479 32922 59493 32922 75.039576 3.225866e+00 3224 LUKVLI14 MaxTime 115.018373 4038 3 1.547338e+04 1.491839e-03 6.294390e-02 53116 30497 53128 30497 0 285 1.003326e+03 100.778238 2.662464e+03 LUKVLI15 MaxTime 95.471622 12584 13 11 5.750418e+00 1.097763e-02 2.449614e-04 25283 25213 25309 25213 0 5.402614e+02 571.719855 8.248500e-01 0 1.155456e-07 9.825546e-06 9.948563e-06 99.985247 9.137224e-04 LUKVLI16 Converged 8.545775 1655 3442 3368 3456 3368 0 3.413568e+03 LUKVLI17 MaxTime 92.711289 6 7.805084e+02 1.073075e-04 3.586320e-07 37027 25503 2151 2.075181e+04 182.079312 6.732266e+01 7078 37007 25503 LUKVLI18 Converged 5.314087 1124 0 2.259756e-07 9.995131e-06 1.805262e-06 2339 2284 2355 2284 0 2.573319e+03 99.985167 1.881846e-05 LUKVLI2 MaxTime 97.577788 1000 1 -4.500000e+62 2.572410e+23 4.170052e+13 16301 8715 16303 8715 248 7.070361e+01 1e+20 7.574308e+13 1.846243 0 1.157754e+01 5.193418e-06 2.458456e-07 439 452 439 0 0 1.004988e+01 1.155792 2.911353e+00 LUKVLI3 Converged 210 440 LUKVLI4 MaxTime 91.173621 9000 9 -1.633124e+16 2.667094e+32 6.781731e-01 19212 18054 19230 18054 Λ 8906 1 000000e+08 38.289243 7.535257e+07 LUKVLI5 Converged 23.454761 973 0 5.267624e-01 9.225035e-06 3.762238e-06 2085 2005 2005 0 1.084573e+02 99.991661 1.691577e-01 LUKVLI6 MaxTime 97.388151 3 6.261378e+05 5.367853e-03 2.817521e-03 12014 9253 1841 6.681172e+04 73.297818 1.257284e+04 3313 12002 9253 LUKVLI7 MaxTime 145.140090 1256 1 -4.136664e+03 1.507164e-01 4.452433e+00 47903 25163 47907 25163 562 0 563 1.014889e+01 1.942436 4.984645e+01 LUKVLI8 MaxTime 193.952909 3752 3 8.963018e+05 2.795079e-03 1.268923e+00 51632 29487 51644 29487 610 5.377783e+04 102.750634 1.029528e+04 68076 LUKVLI9 MaxTime 90.417571 31 9.989331e+02 8.658196e-05 2.472521e-07 68076 75378 0 30914 1.024695e+01 10.591633 1.234013e-04 31033 75306 MADSEN Converged 0.000221 50 0 6.164325e-01 9.913480e-07 1.878122e-07 129 123 141 123 0 1 1.314683e+02 1.186329 7.318054e-01 13265 MADSSCHJ Converged 6020 6 -4.992134e+03 4.298333e-08 6.611117e-09 12411 12411 5354 1.421197e+02 5042.369836 7.077021e-02 6.021147 13249 MAKELA1 Converged 0.000136 38 0 -1.414215e+00 1.969005e-07 1.390810e-06 133 105 145 0 9.640681e+01 1.732052 7.653665e-01 MAKELA2 Converged 0.000248 90 0 7.200000e+00 6.841837e-06 3.445862e-08 216 202 228 202 0 1.042359e+02 7.683749 7.969899e-01 MAKELA3 Converged 0.002835 497 0 2.500696e-06 9.894734e-06 6.894871e-06 1126 1053 1140 1053 1 9.142414e+01 0.004218 2.984562e-01 MAKELA4 Converged 284 9.998696e-08 5.453426e-06 4.291752e-06 743 655 655 0 7.513063e+01 0.000007 2.579010e-01 MANCINONE Converged 43 0 0.000000e+00 9.022947e-06 2.695700e-09 106 104 118 104 0 9.881040e+01 338.021504 4.911075e-09 0.364926 MANNE Converged 1 332107 327 0 -9.745726e-01 0.000000e+00 0.000000e+00 807 711 819 711 0 2 356573e+02 5278 802781 0 000000e+00 MaxTime MARINE 93.655527 12000 12 12 4.310154e+09 1.696724e+09 9.443073e+03 31053 27395 31077 27395 0 1.311625e+05 242039.071638 6.148839e+07 MATRIX2 Converged 0.000173 0 9.987187e-13 5.862766e-06 9.743529e-12 144 80 80 0 1.004988e+01 0.000005 4.721594e-01 31 156 68736 7.447100e+07 MCONCON MaxIter 1.408634 200000 200 200 -6.230502e+03 6.005966e+00 1.667598e-08 651189 524540 651589 524540 2762.212229 8.516513e-01 197 -4.609834e+21 4.294105e+09 7.028047e-08 0 2.007440e+15 2147052356302.460693 2.498938e+09 MESH MaxIter 3.676761 197000 200 559080 470898 559480 470898 METHANL8 MaxIter 199488 199 0.000000e+00 9.585438e+11 7.423085e-03 401829 399576 402229 399576 0 0 4.772586e+15 2475.612301 9.247791e+12 MEYER3NE 0 198574 3.741657e+15 6638.043499 4.826876e+16 MaxIter 2.215150 200000 200 200 0.000000e+00 1.448564e+17 1.869280e+01 960959 676626 961359 676626 MGH09 Maylter 0.891427 194266 200 194 0.000000e+00 7.891185e+06 2.489817e-02 448099 414706 448499 414706 ٥ 192231 3.181166e+15 252.841788 3.062566e+13 Converged 0.001240 210 0 9.395630e-04 3.687305e-06 0.000000e+00 1287 839 0 0.000000e+00 201.804864 0.000000e+00 1.221812 200 0.000000e+00 3.966353e+31 1.842203e+04 428220 467521 428220 199389 3.741657e+15 400085.07656 3.115998e+19 MGH10 MaxIter 200000 200 467121 MGH10LS Maylter 0.910675 200000 200 200 1 366856e+09 4 054066e+03 0 000000e+00 450507 420554 450907 420554 0 199937 0.000000e+00 400780.488493 0.000000e+00 200000 200 0.000000e+00 8.555544e+20 2.895358e+02 521758 456812 522158 199504 3.741657e+15 23.963918 6.645357e+17 MGH10SLS MaxIter 0.942643 200000 200 200 4.417287e+05 2.055730e+06 0.000000e+00 422843 406945 423243 406945 0 199639 0.000000e+00 23.963918 0.000000e+00 0 2.840966e+02 MGH17 NotFinite 0.008084 42 1 0.000000e+00 NaN 3.118854e-01 838 459 843 459 0 176.792469 8.826694e+00 MGH17LS Converged 0 1.022432e+00 6.589307e-06 0.000000e+00 693 420 705 420 0 0.000000e+00 176.790388 0.000000e+00 0.002858 73 0 MGH17S Maxiter 6.590671 195 0.000000e+00 3.798874e+07 8.794842e-02 1075874 728682 1076274 728682 192302 5.000008e+15 200.000823 1.560127e+14 195291 MGH17SLS Converged 0.003879 61 0 1.022438e+00 9.439398e-06 0.000000e+00 1530 298 1542 298 0 0.000000e+00 275.172269 0.000000e+00 MIFFLIN1 Converged 0.000110 22 0 -1.000000e+00 5.038782e-06 4.819665e-08 121 62 0 1.364053e+01 1.414214 7.071065e-01 109 62 0 MIFFLIN2 Converged 73 0 -9.999998e-01 3.736046e-06 172 184 168 6 1.004988e+02 1.414213 9.313147e-01 MINC44 Converged 0.744445 1526 11 0 3.828686e-04 9.114358e-06 3.584022e-06 3090 3085 3112 3085 0 3.850941e+04 1.066355 1.066388e+00 MINMAXBD Converged 0.053004 7676 10 7 1.157064e+02 9.705610e-06 5.993473e-06 18475 16657 18495 16657 6207 1 306714e+01 117 195148 6 189276e₂01 MINMAXRB Converged 125 0 1.796007e-08 7.037037e-06 7.667814e-08 322 291 291 0 1.190677e+02 1.414214 5.271300e-01 0.627681 MINPERM Converged 1268 11 0 3.628691e-04 3.998887e-06 2.023078e-07 2579 2569 2601 2569 0 7.235589e+04 1.011949 1.060205e+00 0 2.506949e+00 9.415131e-06 0.000000e+00 MINSURFO Converged 1.534306 456 992 930 1004 930 0 0 0.000000e+00 55.929345 0.000000e+00 199 0.000000e+00 1.163853e+13 1.309682e-01 602549 198761 3.741657e+15 239.166712 3.530227e+14 MaxIter 1.306123 199005 200 602149 496486 496486 199005 200 199 0.000000e+00 6.908926e+12 1.385159e-01 620791 505561 505561 198731 3.741657e+15 334.730333 2.868629e+14 MISRA1B MaxIter 0.990431 621191 MISRA1C NotFinite 0.109684 7006 8 0.000000e+00 NaN 8.316787e-01 75255 44446 75272 44446 6915 1.151190e+07 659.675278 3.925893e+05 MISRA1D MaxIter 0.991823 199006 200 199 0.000000e+00 7.068928e+13 1.655690e-01 698976 544496 699376 544496 0 198689 2.828427e+15 428.624684 2.894053e+14 MISTAKE Converged 0.000798 135 0 -1.000000e+00 7.628987e-06 2.865664e-06 342 304 354 0 1.006017e+02 2.495672 5.000033e-01 11.605226 199 0.000000e+00 4.474816e+07 1.600004e-01 674248 958439 191067 2.000000e+15 5.745328 2.000018e+14 MODEL Maxiter 199292 200 958039 674248 0 MPC16 MaxTime 90.162825 130000 130 130 -9.922814e+06 2.415277e+09 6.398502e+01 280946 269929 281206 269929 Λ 0 5 533258e+08 11357.7885 6.616860e+09 MRIBASIS Converged 914 0 1.821790e+01 4.558399e-06 1.251023e-06 1893 0 1.003883e+05 50.283304 1.408781e-06 MSQRTA MaxTime 90.958897 24649 27 24 0.000000e+00 2.421903e-05 5.752680e-07 49435 49384 49489 49384 0 1.663022e+04 22.681906 6.727104e-04 14 22837 22.677864 1.955925e-04 MSORTB Converged 32,771234 11395 10 0.000000e+00 9.843004e-06 1.758464e-06 22878 22837 22906 0 1.766564e+03 MSS1 Converged 0.003835 112 0 -8.997628e+00 4.931664e-07 3.659997e-06 350 279 0 4.131345e+05 1.0 1.201456e+03

	status	time	inner iterations	outer iterations i	inner convergence failures	f	8	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixil	llyll
name																		
	Converged Converged	5.320669 13.907381	3066 3077	12 11	3		9.070552e-06 2.247476e-06	1.929988e-09 1.850236e-06	73354 63917	39660 34953	73378 63939	39660 34953	0	0	2879 2880	1.888702e+07 1.727796e+08		6.003677e+03 1.955003e+04
MUONSINE	Maxiter	33.040116	194021	200	194		6.904577e+04			34953	410196	398797	0	0		1.727796e+08 1.744228e+16		2.553604e+12
	Converged	0.000386	117	6	0		5.170475e-06	6.088179e-07	254	252	266	252	0	0		2.331076e+02		5.738518e-01
NASH	Maxiter	12.262359	196968	200	196	0.000000e+00	1.562619e+08	8.835551e+00	3497726	1942471	3498126	1942471	4246	1	140895	3.851689e+15	349.569004	1.908468e+16
NELSON	NotFinite	0.013034	51	0	1	0.000000e+00	inf	NaN	958	469	959	469	0	0	0	1.131371e+01	2.000027	0.000000e+00
	Converged	42.605707	33456	38	31		9.228936e-06	8.799441e-08		68397	70428	68397	0	0		2.590451e+04		2.269383e+00
NINE12	MaxTime	90.189158	12415	13	11	7.867491e+03		2.269488e-05	24906	24878	24932	24878	0	0		1.692920e+03		3.386521e+00
NINE5D NINENEW	MaxTime MaxTime	91.429664 144.946825	13545 16468	14 17	13 16			8.641400e-04 1.160836e-06		27164 83036	27257 133278	27164 83036	0	0		6.069124e+03 2.042458e+03		3.683024e+00 3.319116e+00
NUFFIELD	MaxTime	90.001940	106000	107	106		2.459140e+01	8.333076e-06	216232	213118	216446	213118	0	0		8.228007e+06		4.631978e+00
NYSTROM5	Converged	0.073994	7621	12	7	0.000000e+00	8.404506e-06	7.767731e-07	15279	15278	15303	15278	0	0	0	1.055390e+04	1.493085	1.295048e-01
ODFITS	Converged	0.001981	267	6	0	-2.380027e+03	9.589159e-06	1.922621e-06	625	552	637	552	0	0	0	1.137292e+02	1522.568155	9.620027e-01
ORTHREGB	Converged	0.002190	219	6	0	3.215014e-14			511	456	523	456	0	0		4.575189e+01		1.932331e-07
ORTHREGC	MaxTime	93.172975	35931	37	35	9.481287e+01			74243	72948	74317	72948	0	0		5.502782e+04		1.433625e+01
ORTHRGDM OSBORNE1	MaxTime MaxIter	92.330691 7.418083	19000 196154	19 200	19 196	0.000000e+00	7.551224e+00 6.313886e+09	1.275449e-05 5.180616e-03	39094 1233234	38492 809626	39132 1233634	38492 809626	0	0		4.022645e+04 4.690671e+15	275.192034	6.606113e-01 8.894770e+12
OSBORNE2	NotFinite	1.381038	10798	15	11	0.000000e+00		1.841387e-01	63926	42516	63957	42516	0	0		9.606746e+08		2.871128e+07
OSORIO	Converged	50.081630	25045	29	24	2.041970e+00	9.299719e-06	2.810954e-07	61605	55847	61663	55847	0	0	0	3.028345e+03	3.133519	1.362984e-02
PENTAGON	Converged	0.000587	108	7	0	1.365218e-04	7.631423e-06	1.307378e-07	317	277	331	277	0	0	0	2.017460e+01	1.888121	1.195797e-03
PFIT1	NotFinite	0.002494	207	4	1		NaN	1.056690e-02		1182	2089	1182	0	0		9.846318e+01		2.525978e-01
	Converged	0.006371	1265	7	0			7.472867e-10		3627	4952	3627	0	0		1.163590e+03		7.059405e-07
PFIT3 PFIT4	NotFinite NotFinite	0.015421 0.022846	265 719	2	1	0.000000e+00 0.000000e+00	NaN NaN	2.097365e-01 3.740387e-01		1100 4269	1980 7511	1100 4269	0	0		1.265717e+02 1.293278e+02		2.439082e+00 4.448318e+00
	Converged	0.063532	13684	18	13			8.985275e-06	53165	39683	53201	39683	4	0		1.412048e+01		7.071067e-01
	Converged	0.019861	455	6	0	5.933002e+00		4.167298e-06		929	960	929	0	0		1.390363e+02		6.986921e-01
POLAK4	Converged	0.102419	1154	5	1	-4.582999e-08	4.934010e-06	5.622860e-08	81035	41120	81045	41120	986	0	0	1.005037e+02	1.0	9.151673e-01
POLAK5	Converged	0.003358	2060	7	2	5.000000e+01	2.737837e-06	8.809596e-08	4410	4158	4424	4158	0	0	1978	1.414185e+01	50.0001	7.071069e-01
	Converged	0.071841	6193	10	6	-4.400000e+01		9.783216e-07	15182	12479	15202	12479	0	0		3.716221e+01	44.068129	
	Converged	0.032747	476	6	0	2.048628e-02		1.987769e-07	2139	1556	2151	1556	0	0		1.000000e+02	0.526284	9.373218e-03
	Converged Converged	0.031370	467 266	6	0	2.968924e-02 3.274971e-02		2.479189e-07 1.196857e-07	1944 1122	1450 838	1956 1134	1450 838	0	0		1.000000e+02 1.000000e+02	0.52452	8.840603e-03 1.387108e-02
	Converged	0.020499	450	6	0	2.630695e-02		3.447288e-07	1892	1407	1904	1407	0	0		1.000000e+02		1.461552e-02
	Converged	0.009268	335	6	0	2.579180e-02	6.771325e-06	7.464801e-08	1350	1021	1362	1021	0	0	0	1.000000e+02	0.470446	9.599872e-03
POWELLBS	Maxiter	0.373871	192112	200	192	0.000000e+00	1.678915e+08	1.063931e-04	565437	470754	565837	470754	0	0	191713	1.000000e+15	14.566459	1.073931e+11
POWELLSQ	Converged	0.000086	14	3	0	0.000000e+00	3.231293e-06	1.056779e-07	97	43	103	43	0	0	0	1.004988e+01	0.091521	8.830107e-08
PRICE3NE		0.000110	38	6	0	0.000000e+00		2.052323e-07	100	94	112	94	0	0		1.079032e+01		3.116817e-08
PRICE4NE	Converged	0.000139	41 715	5	0	-3.501299e-02		7.888487e-06 3.504368e-06	106 1469	97 1449	116 1481	97 1449	0	0		1.921314e+01 1.862377e+02		3.632187e-07 1.934751e-01
	Converged	0.122031	392	6	0		8.089760e-06			802	833	802	0	0		1.816171e+02		1.336854e-01
PRIMAL3	Converged	0.295347	435	6	0	-1.357558e-01	9.144987e-06	4.636773e-06	912	892	924	892	0	0	0	8.833969e+01	0.203609	1.303450e-01
PRIMAL4	Converged	0.161427	252	6	0	-7.460906e-01	9.796693e-06	4.844028e-06	554	529	566	529	0	0	0	7.743863e+01	0.942715	1.442579e-01
PRIMALC1	MaxIter	20.448161	196308	200	196	-6.155252e+03		2.351892e-06		795543	1207135	795543	1	0		1.226922e+01	10330.497103	
PRIMALC2		4.071423	22722	28	22			1.426969e-06		148317	251610	148317	0	0	21780 172709	5.710132e+01 9.852406e+01		7.471513e-01
PRIMALC5 PRIMALC8	Maxiter Maxiter	31.143359 43.668003	195526 198276	200 200	195 198			1.822052e-07 4.393405e-07	1632574 1352015	1008315 847109	1632974 1352415	1008315 847109	26	0		9.852406e+01 1.141119e+02	460.136464 33212.003326	
PRODPL0		0.049668	1905	8	0			8.038602e-06		3954	4122	3954	0	0		3.045668e+03		3.920241e+01
PRODPL1	Converged	0.030116	3258	9	1	3.573894e+01	9.212710e-06	1.491129e-06	7150	6761	7168	6761	0	0	202	4.928956e+02	10.059562	2.352894e+01
QC	Converged	0.205725	2930	3	2	-9.565377e+02	0.000000e+00	0.000000e+00	55876	30874	55882	30874	0	0	0	2.000000e+00	0.381156	0.000000e+00
QCNEW	Maxiter	39.033707	200000	200			4.998491e+03			8153839	15907278	8153839	198801	0		1.732051e+00		0.000000e+00
QPCBLEND	Converged MaxTime	1.261731 92.114546	53081	58 125			7.879211e-06 1.439042e-01			109717 1183287	113957 2130696	109717 1183287	0 8465	0		6.333513e+05 1.896326e+06		2.186011e+01 1.846410e+05
QPCSTAIR QPNBLEND		4.380642	121195 82487	125	78		7.293671e-06			340554	519473	340554	8465	0		3.999273e+05		2.180231e+01
RAT42	Maxiter	1.744784	197118	200	197		4.378202e+11			537177	687109	537177	0	0		2.730072e+15		2.833555e+15
RAT43	NotFinite	0.008318	113	0	1	0.000000e+00	NaN	NaN	2091	1155	2092	1155	0	0	0	3.872983e+00	100.508807	0.000000e+00
READING7	MaxTime	91.019291	10000	10	10	-7.412524e+41	1.244738e+29	1.243167e+20	64862	38804	64882	38804	4	0			864970105997521453056.0	1.243171e+29
	Converged	0.000055	0	1	0		2.784496e-14			3	21	3	0	0		3.741657e+00	65890.455166	
	Converged Converged	0.026270	2339	8	0		8.736165e-06 2.113773e-07			4718	4750 180	4718	0	0		9.590751e+03 1.046381e+03		5.414875e+00 7.062284e+00
ROSENBR		0.000543	61 68	6	0		2.113773e-07 2.119861e-07			152 165	193	152 165	0	0		0.000000e+00		7.062284e+00 0.000000e+00
ROSENMMX	-	0.009015	4152	8	4			1.084542e-06	8659	8360	8675	8360	0	0		1.006348e+02		7.348469e-01
ROTDISC	Maxiter	42.533268	199568	200	199			4.962069e-01	405305	400613	405705	400613	0	0		4.736147e+12	651641.599568	2.156648e+11
S268	Maxiter	1.503133	196076	200	196	6.490394e-06	1.262714e-03	0.000000e+00	400281	392774	400681	392774	0	0	195991	2.236068e+00	5.552289	0.000000e+00
S365	NotFinite	0.000037	0	0		6.000012e+00	inf	NaN		2	2	2	0	0		2.236068e+00		0.000000e+00
S365MOD	NotFinite Converged	0.000037	0	0	1		inf 8.621629e-06	NaN	1 38	2 42	2	2 42	0	0		2.236068e+00 0.000000e+00		0.000000e+00 0.000000e+00
SCOND1LS		0.000354	65	0		-7.500000e-01 4.900071e+05		0.000000e+00		138	48 237	138	0	0		0.000000e+00		0.000000e+00 0.000000e+00
		1.130001		3	-				200	230	231	230	Ü	0	· ·		.00.0001	

	status	time	inner iterations	outer iterations i	nner convergence failures	f	8	δ	5 f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixil	llyll
name																		
SMBANK	MaxIter	15.048057	200000	200	200	-7.102442e+06	5.373702e-01	2.019806e-08	3 1233567	785803	1233967	785803	2938	0	66282	7.994757e+08	1932014.788374	5.969756e+01
SMMPSF	MaxIter	20.834489	200000	200	200	1.345840e+06	4.185619e+03	2.400568e-06	605565	502691	605965	502691	0	0	0	8.789833e+08	7116.685553	8.252301e+02
SNAKE	MaxIter	4.789693	199014	200	199	-6.656941e+02	1.752792e+09	3.328554e-02	9193590	4076661	9193990	4076661	0	0	0	1.414214e+15	665.694148	4.707309e+13
SPANHYD	MaxIter	11.769303	200000	200	200	2.397380e+02	5.116065e-04	4.439673e-07	7 2624742	1507504	2625142	1507504	1	0	180401	1.246155e+03	4882.223981	1.089359e+01
STNQP2	MaxTime	90.305435	8122	10	7	-5.753859e+05	1.046941e+00	1.016476e-01	1 18803	17522	18823	17522	0	0	0	9.712385e+04	99.631595	4.860911e+03
STREG	MaxIter	0.252548	200000	200	200	7.571849e+06	1.178301e+00	0.000000e+00	426572	411610	426972	411610	0	0	198889	0.000000e+00	7566346.994523	0.000000e+00
STREGNE	Converged	0.018610	1858	6	1	5.577836e-11	7.472884e-06	4.480641e-07	7 9262	6453	9274	6453	9	0	0	1.001106e+02	1.414215	9.090786e-06
STRTCHDVNE	Converged	0.000507	30	6	0	0.000000e+00	4.620788e-06	1.262903e-11	1 72	78	84	78	0	0	0	8.808565e+01	3.593972	2.787426e-01
SUPERSIM	Converged	0.000081	23	6	0	6.666617e-01	2.648326e-07	4.993262e-06	60	64	72	64	0	0	0	1.414214e+01	0.942809	7.453560e-01
SWOPF	MaxIter	4.402767	199635	200	199	1.309694e-01	7.016537e-01	1.242351e-07	7 402034	400155	402434	400155	0	0	0	4.868821e+06	12.921387	5.345849e+00
SYNTHES1	Converged	0.000476	126	9	0	7.592778e-01	3.353037e-07	3.978663e-06	329	280	347	280	0	0	0	1.408801e+02	1.666706	4.245461e+00
SYNTHES2	Converged	0.032945	4305	13	4	-5.544473e-01	3.630742e-06	3.217340e-06	12878	10636	12904	10636	0	0	3827	2.249943e+03	4.324138	2.252465e+01
SYNTHES3	Converged	0.403047	6210	14	6	1.508219e+01	7.461254e-06	6.304435e-08	3 122716	67434	122744	67434	0	0	5717	1.311348e+03	3.845367	4.491478e+01
TABLE1	MaxIter	63.310136	200000	200	200	7.116966e+05	1.269423e+01	1.885395e-06	497526	448651	497926	448651	0	0	0	1.081595e+08	1683923.520877	5.860773e+01
TRUSPYR1	Converged	0.031058	4272	9	2	1.122871e+01	7.161342e-06	1.251182e-06	5 15751	12079	15769	12079	0	0	1780	1.000056e+03	12.930972	3.356887e+01
TRUSPYR2	Converged	0.786710	84791	88	83	1.122875e+01	4.586946e-06	4.041316e-07	7 404930	285454	405106	285454	84	0	78260	2.835647e+04	12.933415	4.608709e+01
TRY-B	Converged	0.000096	21	6	0	9.999990e-01	3.220801e-11	1.026230e-06	5 70	60	82	60	0	0	0	1.000000e+01	10.198039	1.000000e+00
TWIRISM1	MaxIter	46.924523	196890	200	196	-9.950387e-01	1.501898e-02	4.844435e-07	7 402967	398412	403367	398412	0	0	0	2.642228e+06	10.36158	4.062331e+00
TWOBARS	Converged	0.000118	33	6	0	1.508651e+00	3.524793e-06	7.403171e-07	7 96	86	108	86	0	0	0	1.000050e+02	1.461124	1.508649e+00
VIBRBEAMNE	MaxIter	20.872330	200000	200	200	0.000000e+00	9.485078e+12	8.698700e-01	1 1066050	729739	1066450	729739	0	0	158186	5.257746e+15	6.458338	2.166324e+15
WACHBIEG	Converged	0.000146	35	6	0	1.000000e+00	7.642049e-06	5.903824e-07	7 101	94	113	94	0	0	0	1.585334e+01	1.118034	5.000023e-01
WATER	Converged	0.603911	31544	37	31	1.054938e+04	8.727900e-06	5.722185e-06	147766	104991	147840	104991	0	0	30712	8.060725e+01	1254.050851	2.844349e+02
WOMFLET	-	0.000922	243	6	0		4.262910e-06			840	1318	840	0	0		1.018903e+02		6.946321e-01
YFITNE	Converged	1.208027	94173	100	94	0.000000e+00	9.809019e-06	4.389440e-07	7 209858	197789	210058	197789	0	0	93808	1.242140e+03		2.353010e-01
YORKNET		91.251585	137000	137	137	2.804796e+04				1018026	3284763	1018026	8352	0		3.464102e+15		1.891181e+16
ZAMB2-10	Maxiter	18.492142	198046	200		-1.578420e+00				455182	515445	455182	0	0		8.009696e+04		2.353085e-02
ZAMB2-11	Maxiter	17.509551	197927	200		-1.091492e+00				452158	509675	452158	0	0		3.752057e+05		9.980535e-02
	Converged	0.523900	12604	16	12					27770	30468	27770	0	0		2.911526e+03		4.887204e-02
ZAMB2-9	Maxiter	9.144760	197394	200	197					460473	527542	460473	0	0		1.192652e+05		5.881597e-03
ZANGWIL3	-	0.000120	32	6		0.000000e+00				82	98	82	0	0		1.432275e+02		1.016026e-06
ZECEVIC2	-	0.000094	25	6		-4.125000e+00				70	86	70	0	0		1.004988e+02		2.000001e+00
ZECEVIC3	-	0.000132	41	6		9.730939e+01				100	112	100	0	0		1.004988e+01		8.023897e+00
ZECEVIC4	-	0.000100	25	6		7.557507e+00				68	89	68	0	0		1.004988e+01		1.384138e+00
ZIGZAG	MaxTime	90.511172	85422	86	85	8.690897e+01	6.504117e+00	5.892314e-06	5 174702	172266	174874	172266	0	0	0	9.675346e+06	18.850263	2.869957e+00

0 2.000000e+00 8.624024e-07 1.779697e-08

ZY2 Converged 0.000080

res = a[columns].join(b[columns], lsuffix=' 0', rsuffix=' 1')

return res

return res

```
In [8]: def df stats(df):
                    conv = df['status'].value_counts()['Converged']
tot = df['status'].count()
                    tot_time = df['time'].sum()
conv_time = df.where(df['status'] == 'Converged')['time'].sum()
print(f'converged' {conv}/{tot} = {100*conv/tot:.02f}%')
                   print(f'Total time: {tot_time:.03f}s')
print(f'Converged time: {conv_time:.03f}s')
In [9]: print('Baseline\n---\n')
df_stats(base_df)
print('\n')
             print('\n')
print('New test\n---\n')
             df_stats(new_df)
print('\n')
              Baseline
              Converged:
Total time:
                                       313/501 = 62.48%
                                       6818.172s
               Converged time: 775.703s
              New test
             Converged: 315/501 = 62.87%
Total time: 6790.729s
Converged time: 493.068s
```

36

50

0 1.004988e+01

2.0 2.500001e-01

3PK Converged 1.72e+00 9.26e-06 0.00e+00 Converged 1.72e+00 8.22e-06 0.00e+00 -9.26e-08 -5.38e-08 A4X12 MaxTime 8.41e-01 6.52e+01 9.84e-06 MaxTime 4.51e-01 6.78e+00 6.76e-06 3.90e-01 4.64e-01 A5ESSNDL MaxTime 2.39e-06 1.19e-02 2.48e-04 MaxTime 1.97e-06 8.31e-03 1.13e-04 4.26e-07 1.78e-03 A5NSDSDM Converged 0.00e+00 9.82e-06 2.38e-06 Converged 0.00e+00 9.71e-06 1.02e-06 0.00e+00 A5NSSNSM Converged 0.00e+00 9.82e-06 2.38e-06 Converged 0.00e+00 9.71e-06 1.02e-06 0.00e+00 MaxTime 8.67e-08 5.85e-03 2.72e-03 MaxTime 4.26e-06 1.68e-02 1.55e-02 -4.17e-06 -4.81e+01 Maxiter 8.08e+03 3.03e-02 4.52e-08 Maxiter 8.08e+03 6.84e-02 2.15e-07 2.03e-03 2.51e-07 ACOPP14 ACOPP30 MaxIter 5.79e+02 3.01e+02 1.46e-06 MaxIter 5.78e+02 6.00e+02 8.32e-07 9.49e-01 1.64e-03 Maxiter 8.08e+03 1.88e-01 2.77e-07 Maxiter 8.08e+03 5.48e-02 1.45e-07 -8.51e-04 -1.05e-07 AIRCRFTA Converged 0.00e+00 8.75e-06 1.34e-06 Converged 0.00e+00 7.21e-06 5.30e-07 0.00e+00 AIRPORT MaxTime 4.80e+04 1.03e-03 3.85e-07 MaxTime 4.80e+04 4.13e-04 7.73e-08 -3.21e-04 -6.69e-09 ALLINITA Converged 3.33e+01 5.28e-06 1.33e-06 Converged 3.33e+01 1.94e-07 4.51e-06 1.83e-02 5.49e-04 ALLINITC Converged 3.05e+01 2.59e-06 2.67e-07 Converged 3.05e+01 3.62e-06 5.32e-07 5.94e-03 1.95e-04 ALSOTAME Converged 8.21e-02 2.46e-11 1.31e-08 Converged 8.21e-02 2.46e-11 1.31e-08 0.00e+00 0.00e+00 Maxiter 2.49e+04 3.31e+02 1.43e-07 Maxiter 2.49e+04 8.01e+02 5.46e-07 -4.94e+00 -1.99e-04 AVGASA Converged -4.63e+00 8.57e-06 6.72e-06 Converged -4.63e+00 8.57e-06 6.72e-06 0.00e+00 0.00e+00 AVGASB Converged -4.48e+00 9.76e-06 4.75e-06 Converged -4.48e+00 5.50e-06 4.77e-06 1.95e-07 4.34e-08 AVION2 Maxiter 5.75e+08 7.82e+06 6.95e-07 Maxiter 5.04e+08 6.63e+06 1.22e-06 7.06e+07 1.23e-01 BA-L1 Converged 0.00e+00 5.45e-06 8.12e-09 Converged 0.00e+00 8.28e-06 8.44e-09 0.00e+00 BA-L1SP Converged 0.00e+00 6.13e-06 4.51e-09 Converged 0.00e+00 8.94e-06 2.92e-08 0.00e+00 BARDNE Maxiter 0.00e+00 4.02e+06 8.05e-02 Maxiter 0.00e+00 9.18e+06 8.05e-02 0.00e+00 MaxIter 2.59e+05 8.05e-01 1.68e-06 MaxIter 2.59e+05 1.57e+00 2.23e-06 -2.63e-01 -1.01e-06 BEALENE Converged 0.00e+00 4.98e-07 3.71e-07 Converged 0.00e+00 3.79e-06 1.67e-07 0.00e+00 BIGGS6NE Maxiter 0.00e+00 1.43e+06 3.80e-02 Maxiter 0.00e+00 3.22e+06 3.80e-02 0.00e+00 BIGGSC4 Converged -2.45e+01 6.92e-06 3.75e-06 Converged -2.45e+01 5.13e-06 3.95e-06 1.22e-07 4.99e-09 BOOTH Converged 0.00e+00 5.53e-06 5.23e-08 Converged 0.00e+00 1.22e-08 1.31e-06 0.00e+00 BOX3NE Converged 0.00e+00 4.03e-06 1.80e-07 Converged 0.00e+00 5.69e-06 5.81e-08 0.00e+00 BOXBOD NotFinite 0.00e+00 nan nan NotFinite 0.00e+00 nan nan 0.00e+00 BRITGAS Converged 0.00e+00 9.69e-06 3.86e-06 Converged 0.00e+00 9.77e-06 1.73e-06 0.00e+00 BROWNBSNE Converged 0.00e+00 7.45e-07 1.86e-07 Converged 0.00e+00 4.99e-06 3.49e-10 0.00e+00 BT1 Converged 1.00e+00 7.43e-08 1.33e-08 Converged -1.00e+00 3.51e-07 2.67e-07 2.00e+00 2.00e+00 BT10 Converged -1.00e+00 2.94e-06 1.32e-06 Converged -1.00e+00 2.97e-06 1.33e-06 2.43e-08 2.43e-08 BT11 Converged 8.25e-01 7.93e-07 1.78e-06 Converged 8.25e-01 7.80e-06 1.76e-06 1.55e-08 1.88e-08 BT12 Converged 6.19e+00 4.92e-06 4.59e-07 Converged 6.19e+00 4.10e-07 1.72e-08 -2.06e-08 -3.33e-09 BT13 Converged 0.00e+00 7.04e-06 1.51e-12 Converged 0.00e+00 6.58e-06 1.76e-10 0.00e+00 BT2 Converged 3.26e-02 4.98e-06 4.86e-08 Converged 3.26e-02 3.26e-06 4.38e-10 -5.23e-10 -1.61e-08 BT3 Converged 4.09e+00 3.03e-06 7.20e-06 Converged 4.09e+00 4.99e-06 7.21e-06 9.02e-08 2.20e-08 BT4 Converged -4.55e+01 7.75e-06 1.71e-06 Converged -4.55e+01 3.60e-06 1.71e-06 1.24e-07 2.72e-09 BT5 Converged 9.62e+02 4.86e-06 1.91e-06 Converged 9.62e+02 3.48e-06 2.93e-08 2.29e-06 2.39e-09 BT6 Converged 2.77e-01 2.39e-06 6.45e-07 Converged 2.77e-01 6.94e-06 1.06e-07 -4.06e-08 -1.46e-07 BT7 Converged 3.06e+02 5.73e-06 2.44e-06 Converged 3.06e+02 6.35e-06 4.64e-07 -4.52e-03 -1.47e-05 BT8 Converged 1.00e+00 5.81e-06 1.83e-08 Converged 1.00e+00 7.29e-06 3.47e-08 -1.65e-08 -1.65e-08 BT9 Converged -1.00e+00 1.25e-06 2.96e-06 Converged -1.00e+00 5.46e-06 2.98e-06 2.23e-08 2.23e-08 BYRDSPHR Converged -4.68e+00 4.29e-06 2.69e-06 Converged -4.68e+00 6.71e-06 2.25e-07 -1.52e-06 -3.24e-07 C-RELOAD Converged -1.02e+00 9.42e-06 7.00e-09 Converged -1.02e+00 9.25e-06 1.15e-07 -4.91e-04 -4.83e-04 CANTILVR Converged 1.34e+00 8.39e-06 2.67e-08 Converged 1.34e+00 2.69e-06 2.96e-07 -1.44e-07 -1.07e-07 CBS MaxTime 1.13e+05 8.84e+01 7.86e-03 MaxTime 1.11e+05 1.49e+01 1.29e-03 1.35e+03 1.20e-02 CHACONN1 Converged 1.95e+00 2.94e-06 1.47e-07 Converged 1.95e+00 9.05e-06 1.36e-06 -5.44e-07 -2.78e-07 CHACONN2 Converged 2.00e+00 8.75e-06 7.44e-08 Converged 2.00e+00 3.14e-06 7.79e-08 -3.14e-08 -1.57e-08 CLEUVEN7 MaxTime 6.84e+02 7.92e+00 2.24e-06 MaxTime 6.84e+02 1.55e+00 1.15e-05 3.41e-02 4.98e-05 CLUSTER Converged 0.00e+00 4.98e-08 3.65e-06 Converged 0.00e+00 1.33e-08 3.65e-06 0.00e+00 Maxiter 0.00e+00 2.28e+10 1.82e-01 Maxiter 0.00e+00 1.84e+11 1.82e-01 0.00e+00 MaxIter -6.23e+03 3.04e-01 2.30e-07 MaxIter -6.23e+03 1.99e+00 6.60e-08 2.08e-01 3.34e-05 CONGIGMZ Conversed 2.80e+01 4.31e-06 2.77e-06 Converged 2.80e+01 1.69e-06 1.23e-06 -1.23e-05 -4.38e-07 MaxIter 0.00e+00 5.31e+09 2.02e-04 MaxIter 0.00e+00 6.61e+09 5.25e-04 0.00e+00 COOLHANSLS Converged 9.80e-07 8.27e-06 0.00e+00 MaxIter 3.00e-05 4.85e-05 0.00e+00 -2.90e-05 -2.96e+01 Mayter 7 69e+01 2 74e+11 1 53e-02 Mayter 7 62e+01 2 30e+11 1 66e-02 7 78e-01 1 01e-02 CORE2 CRESC50 NotFinite 2.88e+00 nan nan NotFinite 2.88e+00 nan nan 0.00e+00 0.00e+00 CUBENE Converged 0.00e+00 3.64e-06 3.24e-06 Converged 0.00e+00 5.83e-07 7.73e-08 0.00e+00 DALLASM Maxiter -4.82e+04 1.72e-04 2.05e-06 Maxiter -4.82e+04 1.48e-04 8.50e-07 -1.27e-04 -2.64e-09 Maxiter -3.24e+04 1.54e-05 9.74e-07 Maxiter -3.24e+04 7.36e-05 6.67e-07 -4.64e-04 -1.43e-08 Maxiter 0.00e+00 1.28e+07 3.68e-02 Maxiter 0.00e+00 1.21e+07 3.68e-02 0.00e+00

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
DANWOOD	Maxiter	0.00e+00	2.08e+06	3.68e-02	Maxiter	0.00e+00	2.03e+07	3.68e-02	0.00e+00	nan
DECONVBNE	Converged	0.00e+00	9.61e-06	4.03e-06	Converged	0.00e+00	8.13e-06	1.98e-06	0.00e+00	nan
DECONVC	Converged	1.14e-08	6.01e-06	9.40e-07	Converged	1.13e-08	5.77e-06	9.10e-07	1.56e-11	1.37e-03
DECONVNE	Converged	0.00e+00	9.49e-06	5.74e-06	Converged	0.00e+00	9.49e-06	5.74e-06	0.00e+00	nan
DECONVU	Converged	1.16e-07	9.85e-06	0.00e+00	Converged	1.16e-07	7.50e-06	0.00e+00	3.47e-12	3.00e-05
DEGENLPA	MaxIter	3.06e+00	1.02e+02	8.86e-07	MaxIter	3.14e+00	1.76e+03	7.99e-07	-7.68e-02	-2.51e-02
DEGENLPB	Maxiter	-3.07e+01	1.78e+08	3.08e-07	Maxiter	-2.98e+01	4.94e+03	1.37e-13	-9.73e-01	-3.17e-02
DEMBO7	Maxiter	1.75e+02	8.42e-04	4.32e-08	Maxiter	1.75e+02	1.46e-03	1.62e-08	-2.86e-06	-1.63e-08
DEMYMALO	Converged	-3.00e+00	1.23e-06	7.91e-07	Converged	-3.00e+00	7.51e-06	2.60e-06	7.90e-07	2.63e-07
DIPIGRI	Converged	6.81e+02	8.86e-06	2.76e-07	Converged	6.81e+02	8.80e-06	7.14e-06	-2.86e-06	-4.20e-09
DISC2	Converged	1.56e+00	9.64e-06	5.59e-06	Converged	1.56e+00	8.72e-06	6.94e-06	1.99e-06	1.28e-06
DISCS	Converged	2.14e+01	8.55e-06	7.13e-06	Converged	1.20e+01	6.00e-06	8.10e-06	9.38e+00	4.39e-01
DIXCHLNG	Maxiter	4.27e+02	6.04e-05	9.86e-09	Converged	8.23e-08	5.12e-06	7.10e-06	4.27e+02	1.00e+00
DNIEPER	Maxiter	1.87e+04	1.68e-02	2.64e-07	Maxiter	1.87e+04	3.68e-02	1.58e-07	-1.31e-05	-7.00e-10
DUAL1	Converged	3.50e-02	8.37e-06	1.69e-07	Converged	3.50e-02	8.90e-06	6.30e-07	2.96e-08	8.46e-07
DUAL2	Converged	3.37e-02	9.68e-06	4.51e-08	Converged	3.37e-02	6.83e-06	3.52e-07	-1.43e-08	-4.23e-07
DUAL3	Converged	1.36e-01	6.32e-06	7.21e-07	Converged	1.36e-01	8.82e-06	3.21e-08	1.10e-07	8.09e-07
DUAL4	Converged	7.46e-01	6.95e-06	4.66e-07	Converged	7.46e-01	6.54e-06	4.70e-07	-3.08e-09	-4.13e-09
DUALC1	Converged	6.16e+03	2.36e-07	6.94e-06	Converged	6.16e+03	7.81e-06	6.94e-06	-2.87e-06	-4.66e-10
DUALC2	Converged	3.55e+03	4.52e-06	5.34e-08	Converged	3.55e+03	4.49e-06	5.33e-08	-7.16e-07	-2.02e-10
DUALC5	Converged	4.27e+02	9.08e-06	9.07e-09	Converged	4.27e+02	7.80e-07	1.20e-08	1.36e-06	3.18e-09
DUALC8	Converged	1.83e+04	7.89e-06	3.98e-08	Maxiter	1.83e+04	4.96e-03	2.92e-09	1.42e-03	7.76e-08
EG2	Converged	-9.99e+02	7.39e-13	0.00e+00	Converged	-9.99e+02	7.39e-13	0.00e+00	0.00e+00	0.00e+00
EQC	Converged	-8.30e+02	0.00e+00	0.00e+00	Converged	-8.30e+02	0.00e+00	0.00e+00	0.00e+00	0.00e+00
ERRINBAR	Maxiter	1.71e+05	8.64e+00	3.16e-07	Maxiter	3.12e+01	7.55e-01	2.11e-08	1.71e+05	1.00e+00
EXPFITA	Converged	1.14e-03	1.84e-06	3.85e-07	Converged	1.14e-03	9.10e-06	4.92e-07	-1.13e-10	-9.96e-08
EXPFITB	Converged	5.02e-03	2.69e-06	6.59e-06	Converged	5.02e-03	6.20e-06	8.59e-07	-4.86e-08	-9.69e-06
EXPFITC	Converged	2.33e-02	6.07e-06	1.78e-07	Maxiter	2.33e-02	2.33e-05	9.05e-07	-2.14e-08	-9.18e-07
EXPLIN	Maxiter	-7.19e+07	6.28e-03	0.00e+00	Maxiter	-7.19e+07	6.44e-04	0.00e+00	6.11e-07	8.49e-15
EXPLIN2	Maxiter	-7.20e+07	2.46e-03	0.00e+00	NotFinite	1.00e+02	inf	0.00e+00	-7.20e+07	-1.00e+00
EXPQUAD	Maxiter	-3.68e+09	3.21e-01	0.00e+00	NotFinite	1.00e+02	inf	0.00e+00	-3.68e+09	-1.00e+00
EXTROSNBNE	Converged	-2.00e+00	9.68e-06	2.41e-06	Converged	-2.00e+00	9.64e-06	6.01e-08	-9.20e-07	-4.60e-07
FCCU	Converged	1.11e+01	5.69e-06	5.15e-06	Converged	1.11e+01	5.45e-06	4.92e-06	-6.38e-07	-5.72e-08
FEEDLOC	Converged	0.00e+00	8.35e-06	1.04e-06	Converged	0.00e+00	5.88e-06	5.25e-07	0.00e+00	nan
FERRISDC	Converged	-4.96e-13	5.05e-07	1.66e-07	Converged	-4.96e-13	5.05e-07	1.66e-07	0.00e+00	0.00e+00
FLETCHER	Maxiter	3.92e+11	3.85e+03	1.95e-04	Converged	1.17e+01	2.97e-06	8.22e-07	3.92e+11	1.00e+00
FLOSP2TM	MaxTime	0.00e+00	6.55e+13	7.27e+00	MaxTime	0.00e+00	1.24e+15	9.79e+00	0.00e+00	nan
FREURONE	Maxiter	0.00e+00	1.70e+08	4.95e+00	Maxiter	0.00e+00	4.71e+09	4.95e+00	0.00e+00	nan
GAUSSELM	Converged	-1.00e+00	9.69e-06	5.19e-06	Converged	-1.00e+00	9.65e-06	4.76e-06	-2.18e-05	-2.18e-05
GENROSENE	MaxTime	0.00e+00	3.58e+01	4.98e+00	MaxTime	0.00e+00	8.79e-02	5.63e+00	0.00e+00	-2.18e-05
GIGOMEZ1	Converged	-3.00e+00	1.46e-06	3.66e-07	Converged	-3.00e+00	3.01e-06	1.62e-07	5.61e-08	1.87e-08
					-			8.98e-08		
GIGOMEZ2	Converged	1.95e+00	6.15e-06	8.98e-08	Converged	1.95e+00	6.15e-06		0.00e+00	0.00e+00
GIGOMEZ3	Converged	2.00e+00	8.43e-07	1.41e-07	Converged	2.00e+00	7.66e-07	4.77e-07	-3.84e-07	-1.92e-07
GILBERT	Converged	2.46e+03	2.56e-06	6.10e-07	Converged	2.46e+03	6.81e-06	1.44e-06	3.32e-05	1.35e-08
GMNCASE1	Converged	2.67e-01	8.10e-06	1.74e-07	Converged	2.67e-01	5.93e-06	1.70e-07	-3.64e-07	-1.36e-06
GMNCASE2	Converged	-9.94e-01	9.69e-06	3.51e-06	Converged	-9.94e-01	7.88e-06	2.74e-06	-1.44e-07	-1.45e-07
GMNCASE3	Converged	1.52e+00	9.02e-06	7.18e-06	Converged	1.52e+00	8.42e-06	7.19e-06	-8.93e-08	-5.86e-08
GMNCASE4	MaxTime	5.93e+03	1.66e-04	1.95e-02	MaxTime	5.32e+03	6.35e-05	6.65e-01	6.09e+02	1.03e-01
GOFFIN	Converged	-9.85e-08	8.19e-06		Converged	-1.10e-07	4.91e-06	1.19e-07	1.12e-08	1.14e-01
GOULDQP1		-3.49e+03			-	-3.49e+03	8.70e-06	1.37e-06	1.45e-04	4.17e-08
GOULDQP2		1.60e-12	3.47e-08	6.78e-09	Converged	1.60e-12	3.47e-08	6.78e-09	0.00e+00	0.00e+00
GOULDQP3	-	2.38e-05	6.53e-06		Converged	2.38e-05	6.77e-06	6.38e-07	3.70e-10	1.56e-05
GRIDGENA	NotFinite	nan		0.00e+00	NotFinite	nan	inf		nan	nan
GRIDNETA	MaxTime	2.95e+02	1.45e-02	5.42e-02	MaxTime	3.11e+02	7.45e-03	3.69e-02	-1.60e+01	-5.43e-02
GRIDNETH	MaxTime	2.06e+02	9.58e-05	1.65e-05	MaxTime	2.06e+02	1.58e-05	3.64e-07	-4.45e-03	-2.15e-05
GRIDNETI	MaxTime	2.41e+02	1.23e-03	1.63e-02	MaxTime	2.42e+02	6.65e-04	7.57e-03	-1.54e+00	-6.40e-03
GROUPING		6.45e+00	7.95e-06	4.60e-06	NotFinite	2.51e+00	inf	2.12e-02	3.95e+00	6.12e-01
GROWTH	Maxiter	0.00e+00	2.75e-19	3.30e+01	Maxiter	0.00e+00		5.55e-01	0.00e+00	nan
HADAMARD	Maxiter			1.81e+01	Maxiter	7.18e-01	9.94e+05	1.81e+01	-1.10e-02	-1.56e-02
HAHN1	MaxIter	0.00e+00	5.80e-01	1.20e+01	Maxiter	0.00e+00	6.45e+06	1.44e+00	0.00e+00	nan
	MaxTime	-1.04e+01	7.03e-01	1.04e-02	MaxTime	-1.06e+01	1.33e+00	1.56e-02	2.42e-01	2.33e-02
HAIFAL					MaxIter	-7.94e+00	1.55e+00	4.27e-06	7.71e+02	1.01e+00
HAIFAL HAIFAM	Maxiter		1.00e+02							
HAIFAL HAIFAM			1.00e+02 4.85e-06		Converged	-4.50e-01	8.16e-06	2.47e-07	1.30e-07	2.89e-07
HAIFAM HAIFAS HALDMADS	Maxiter		4.85e-06	5.11e-08		-4.50e-01 1.21e-04	5.93e-06	2.47e-07 3.01e-06	1.30e-07 -4.98e-07	
HAIFAL HAIFAM HAIFAS	MaxIter Converged	-4.50e-01	4.85e-06 9.16e-06 1.83e-03	5.11e-08 8.27e-06 1.25e-06	Converged Converged MaxTime					2.89e-07 -4.13e-03 8.99e-10
HAIFAM HAIFAS HALDMADS	MaxIter Converged Converged MaxTime	-4.50e-01 1.21e-04	4.85e-06 9.16e-06 1.83e-03	5.11e-08 8.27e-06 1.25e-06	Converged Converged	1.21e-04 -3.15e+04	5.93e-06	3.01e-06 5.21e-07	-4.98e-07	-4.13e-03

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
HATFLDENE	Maxiter	0.00e+00	2.77e+06	8.00e-04	MaxIter	0.00e+00	2.71e+06	8.00e-04	0.00e+00	nan
HATFLDF	Converged	0.00e+00	1.93e-07	5.06e-09	Converged	0.00e+00	5.76e-07	4.05e-08	0.00e+00	nan
HATFLDFLNE	Maxiter	0.00e+00	6.38e+07	6.35e-03	MaxIter	0.00e+00	6.61e+07	6.34e-03	0.00e+00	nan
HATFLDG	Converged	0.00e+00	8.45e-06	2.35e-06	Converged	0.00e+00	8.28e-06	2.89e-06	0.00e+00	nan
HATFLDH	Converged	-2.45e+01	3.88e-06	4.40e-06	Converged	-2.45e+01	5.53e-06	4.10e-06	3.27e-07	1.33e-08
HEART6	MaxIter	0.00e+00	7.75e+13	2.48e-01	Converged	0.00e+00	5.52e-06	2.00e-08	0.00e+00	nan
HEART8	MaxIter	0.00e+00	1.37e+17	1.58e+00	MaxIter	0.00e+00	9.48e+10	7.46e-01	0.00e+00	nan
HELIXNE	Converged	0.00e+00	1.49e-06	4.02e-06	Converged	0.00e+00	1.98e-06	5.38e-08	0.00e+00	nan
HELSBY	MaxTime	3.75e+01	3.80e+06	1.36e-05	MaxTime	3.65e+01	7.08e+06	1.60e-05	9.47e-01	2.52e-02
HET-Z	Converged	1.00e+00	1.78e-12	9.82e-06	Converged	1.00e+00	1.78e-12	9.82e-06	0.00e+00	0.00e+00
HIE1327D	Converged	5.19e+02	8.74e-06	4.19e-07	MaxIter	5.19e+02	5.91e-03	1.22e-06	-4.46e-04	-8.59e-07
HIE1372D	Converged	2.78e+02	9.43e-06	1.69e-08	Converged	2.78e+02	9.62e-06	6.15e-07	-1.23e-06	-4.42e-09
HILBERTA	Converged	3.57e-13	2.02e-07	0.00e+00	Converged	3.57e-13	2.02e-07	0.00e+00	0.00e+00	0.00e+00
HILBERTB	Converged	1.24e-13	8.00e-06	0.00e+00	Converged	1.24e-13	8.00e-06	0.00e+00	0.00e+00	0.00e+00
HIMMELBA	Converged	0.00e+00	2.35e-06	1.89e-07	Converged	0.00e+00	1.31e-06	1.34e-07	0.00e+00	nan
HIMMELBB	Converged	7.55e-13	2.37e-06	0.00e+00	Converged	7.55e-13	2.37e-06	0.00e+00	0.00e+00	0.00e+00
HIMMELBC	Converged	0.00e+00	6.74e-06	1.02e-07	Converged	0.00e+00	2.91e-06	2.09e-07	0.00e+00	nan
HIMMELBCLS	Converged	4.84e-13	8.96e-06	0.00e+00	Converged	2.42e-19	2.01e-08	0.00e+00	4.84e-13	1.00e+00
HIMMELBD	MaxIter	0.00e+00	3.55e+10	2.43e+00	MaxIter	0.00e+00	3.14e+10	2.43e+00	0.00e+00	nan
HIMMELBE	Converged	0.00e+00	5.55e-06	7.19e-07	Converged	0.00e+00	8.18e-06	3.18e-06	0.00e+00	nan
HIMMELBF	Maxiter	3.19e+02	2.02e-05	0.00e+00	MaxIter	3.19e+02	3.03e-05	0.00e+00	3.75e-09	1.18e-11
HIMMELBFNE	Maxiter	0.00e+00	1.80e+14	1.26e+03	Maxiter	0.00e+00	3.00e+11	1.00e+04	0.00e+00	nan
HIMMELBG	Converged	1.71e-14	2.43e-06	0.00e+00	Converged	4.16e-13	6.97e-06	0.00e+00	-3.99e-13	-2.33e+01
HIMMELBH	Converged	-1.00e+00	2.52e-06	0.00e+00	Converged	-1.00e+00	4.23e-06	0.00e+00	-2.24e-13	-2.24e-13
HIMMELBI	Converged	-1.74e+03	6.43e-06	2.28e-06	NotFinite	-1.74e+03	inf	8.68e-04	8.45e-05	4.87e-08
HIMMELBJ	NotFinite	-3.10e+03	nan	nan	NotFinite	-3.10e+03	nan	nan	0.00e+00	0.00e+00
HIMMELBK	Converged	5.18e-02	3.29e-06	5.70e-07	Converged	5.18e-02	6.09e-06	3.00e-07	3.04e-09	5.86e-08
HIMMELP1	Converged	8.12e+01	1.07e-06	0.00e+00	Converged	-6.21e+01	2.40e-06	0.00e+00	1.43e+02	1.76e+00
HIMMELP2			7.17e-06						1.39e-11	
HIMMELP3	Converged	-6.21e+01	0.00e+00	0.00e+00	Converged	-6.21e+01 -5.90e+01	2.40e-06 0.00e+00	0.00e+00		2.24e-13 0.00e+00
HIMMELP3	Converged	-5.90e+01 -5.17e+01		0.00e+00 0.00e+00	Converged	-5.90e+01	0.00e+00	0.00e+00 0.00e+00	0.00e+00 7.28e+00	1.41e-01
	NotFinite		inf		Converged					
HIMMELP5	Converged	-5.90e+01	0.00e+00	0.00e+00	Converged	-5.90e+01	0.00e+00	0.00e+00	0.00e+00	0.00e+00
HIMMELP6	Converged	-5.90e+01	0.00e+00	0.00e+00	Converged	-5.90e+01	0.00e+00	0.00e+00	0.00e+00	0.00e+00
HOLMES	MaxTime	1.25e+03	3.79e-05	0.00e+00	MaxTime	1.25e+03	3.90e-05	0.00e+00	-1.59e-11	-1.28e-14
HONG	Converged	2.26e+01	8.67e-06	3.91e-06	Converged	2.26e+01	8.56e-06	3.91e-06	-1.43e-08	-6.36e-10
HS10	Converged	-1.00e+00	6.67e-07	4.99e-07	Converged	-1.00e+00	1.69e-06	5.75e-06	2.62e-06	2.62e-06
HS100	Converged	6.81e+02	9.29e-06	8.63e-08	Converged	6.81e+02	9.48e-06	2.65e-06	-6.99e-07	-1.03e-09
HS100LNP	Converged	6.81e+02	9.91e-06	3.94e-08	Converged	6.81e+02	5.82e-06	4.37e-07	-5.25e-07	-7.71e-10
HS100MOD	Converged	6.79e+02	9.36e-06	1.19e-07	Converged	6.79e+02	9.98e-06	9.86e-07	1.03e-06	1.52e-09
HS101	NotFinite	9.90e+01	nan	nan	NotFinite	9.90e+01	nan	nan	3.99e-03	4.03e-05
HS102	NotFinite	2.21e+03	nan	nan	NotFinite	2.21e+03	nan	nan	0.00e+00	0.00e+00
HS103	NotFinite	2.21e+03	nan	nan	NotFinite	2.21e+03	nan	nan	0.00e+00	0.00e+00
HS104	NotFinite	5.28e-01	nan	3.17e-01	NotFinite	5.31e-01	nan	3.17e-01	-2.66e-03	-5.04e-03
HS105	Converged	1.04e+03	7.09e-06	0.00e+00	Converged	1.04e+03	4.67e-06	0.00e+00	-4.09e-11	-3.92e-14
HS106	Maxiter	1.50e+04	1.00e+00	0.00e+00	MaxIter	8.54e+03	1.00e+00	0.00e+00	6.44e+03	4.30e-01
HS107	Converged	5.06e+03	8.23e-06	8.72e-06	Converged	5.06e+03	9.62e-06	2.54e-09	-4.20e-07	-8.31e-11
HS108	Converged	-8.66e-01	4.32e-06	2.80e-06	Converged	-8.66e-01	4.39e-06	3.15e-06	-4.92e-08	-5.69e-08
HS109	Maxiter	5.37e+03	6.61e+11	1.22e-05	MaxIter	5.43e+03	9.77e+11	1.34e-05	-6.16e+01	-1.15e-02
HS11	Converged	-8.50e+00	5.97e-06	3.76e-06	Converged	-8.50e+00	5.97e-06	3.76e-06	0.00e+00	0.00e+00
HS110	Converged	-4.58e+01	1.03e-06	0.00e+00	Converged	-4.58e+01	1.03e-06	0.00e+00	0.00e+00	0.00e+00
HS111	NotFinite	-6.81e+01	inf	1.41e+01	Converged	-4.78e+01	4.48e-06	1.22e-06	-2.03e+01	-2.98e-01
HS111LNP	NotFinite	-6.81e+01	inf	1.41e+01	Converged	-4.78e+01	4.48e-06	1.22e-06	-2.03e+01	-2.98e-01
HS112	Converged	-4.78e+01	4.44e-06	2.96e-06	NotFinite	-5.29e+02	nan	nan	4.82e+02	1.01e+01
HS113	Converged	2.43e+01	9.83e-06	1.91e-06	Maxiter	2.43e+01	1.24e-04	4.50e-07	1.88e-06	7.72e-08
HS114	Maxiter	-1.77e+03	1.31e-03	2.32e-07	MaxIter	-1.77e+03	2.98e-04	5.18e-07	1.05e-06	5.95e-10
HS116	MaxIter	1.43e+02	2.05e-01	3.07e-07	Maxiter	1.55e+02	1.42e-01	2.03e-06	-1.19e+01	-8.33e-02
HS117	Maxiter	3.23e+01	2.24e-04	7.21e-08	Maxiter	3.23e+01	2.67e-04	5.98e-08	-5.05e-08	-1.56e-09
	Converged	6.65e+02	5.15e-06	1.92e-06	Converged	6.65e+02	3.55e-06	3.70e-06	1.13e-06	1.69e-09
	Converged	2.45e+02	6.19e-06	9.84e-07	Converged	2.45e+02	9.58e-06	9.59e-07	2.25e-06	9.20e-09
	Converged	-3.00e+01	1.10e-06	5.32e-09	Converged	-3.00e+01	9.13e-06	7.28e-09	-6.30e-09	-2.10e-10
	Converged	9.59e-01	3.64e-07	9.08e-06	Converged	9.59e-01	3.64e-07	9.08e-06	4.36e-09	4.54e-09
			3.64e-07 5.07e-06		-					4.54e-09 3.20e-06
HS14	Converged	1.39e+00		2.12e-06	Converged	1.39e+00	4.45e-07	4.04e-06	4.45e-06 0.00e+00	
	Converged	3.06e+02		7.60e-07	Converged	3.06e+02		7.60e-07		0.00e+00
	Converged	2.50e-01		0.00e+00	Converged	2.50e-01		0.00e+00	-1.83e-15	-7.33e-15
HS17	Converged	1.00e+00		2.05e-06		1.00e+00		2.06e-06	-3.87e-09	-3.87e-09
HS18	Converged	5.00e+00	6.87e-06		Converged	5.00e+00	6.88e-06	1.12e-07	-1.03e-08	-2.06e-09
HS19	Converged	-6.96e+03	1.62e-06	1.58e-06	Converged	-6.96e+03	2.10e-06	1.05e-06	5.98e-03	8.60e-07

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
HS2	Converged	4.94e+00	1.17e-06	0.00e+00	Converged	4.94e+00	1.17e-06	0.00e+00	0.00e+00	0.00e+00
HS20	Converged	3.82e+01	4.71e-09	6.27e-06	Converged	3.82e+01	6.01e-09	6.27e-06	-1.27e-08	-3.31e-10
HS21	Converged	-1.00e+02	3.82e-06	0.00e+00	Converged	-1.00e+02	3.82e-06	0.00e+00	0.00e+00	0.00e+00
HS21MOD	Converged	-9.60e+01	4.30e-06	0.00e+00	Converged	-9.60e+01	4.30e-06	0.00e+00	0.00e+00	0.00e+00
HS22	Converged	1.00e+00	4.31e-06	8.38e-06	Converged	1.00e+00	3.46e-07	8.92e-06	2.83e-07	2.83e-07
HS23	Converged	2.00e+00	2.99e-06	1.71e-07	Converged	2.00e+00	7.14e-08	3.79e-06	8.15e-06	4.08e-06
HS24	Converged	0.00e+00	0.00e+00	0.00e+00	Converged	-1.00e+00	6.67e-06	1.72e-06	1.00e+00	inf
HS25	Converged	4.84e-11	3.42e-06	0.00e+00	Converged	1.37e-11	1.89e-06	0.00e+00	3.48e-11	7.18e-01
HS25NE	NotFinite	0.00e+00	nan	3.68e-02	Converged	0.00e+00	6.01e-06	5.88e-06	0.00e+00	nan
HS26	Converged	4.31e-10	5.34e-07	3.48e-09	Converged	9.70e-13	6.09e-06	6.65e-08	4.30e-10	9.98e-01
HS268	Maxiter	2.91e-11	5.15e-04	0.00e+00	Maxiter	6.49e-06	1.26e-03	0.00e+00	-6.49e-06	-2.23e+05
				3.84e-06						
HS27	Converged	4.00e-02	2.69e-07		Converged	4.00e-02	1.69e-06	3.99e-07	-1.70e-07	-4.24e-06
HS28	Converged	5.85e-11	5.50e-06	5.15e-08	Converged	1.63e-11	4.44e-06	2.57e-09	4.22e-11	7.21e-01
HS29	Converged	-2.26e+01	4.48e-06	1.48e-07	Converged	-2.26e+01	2.18e-06	7.42e-08	-1.57e-07	-6.96e-09
HS2NE	MaxIter	0.00e+00	2.50e+00	2.22e+00	MaxIter	0.00e+00	3.18e+01	2.22e+00	0.00e+00	nan
HS3	Converged	1.42e-08	3.84e-06	0.00e+00	Converged	1.42e-08	3.84e-06	0.00e+00	0.00e+00	0.00e+00
HS30	Converged	1.00e+00	0.00e+00	0.00e+00	Converged	1.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
HS31	Converged	6.00e+00	4.94e-06	7.63e-08	Converged	6.00e+00	5.86e-07	2.89e-07	2.19e-06	3.66e-07
HS32	Converged	1.00e+00	4.31e-06	1.55e-07	Converged	1.00e+00	3.31e-06	1.28e-07	-5.39e-08	-5.39e-08
HS33	Converged	-4.00e+00	1.80e-07	1.68e-06	Converged	-4.00e+00	1.80e-07	1.68e-06	0.00e+00	0.00e+00
HS34	Converged	-8.34e-01	8.64e-06	6.93e-07	Converged	-8.34e-01	3.89e-06	1.73e-06	-7.09e-07	-8.50e-07
HS35	Converged	1.11e-01	7.27e-06	5.91e-07	Converged	1.11e-01	8.24e-06	6.38e-07	-1.05e-08	-9.45e-08
HS35I	Converged	1.11e-01	7.27e-06	5.91e-07	Converged	1.11e-01	8.24e-06	6.38e-07	-1.05e-08	-9.45e-08
HS35MOD	Converged	2.50e-01	4.97e-06	0.00e+00	Converged	2.50e-01	3.33e-06	0.00e+00	-1.32e-12	-5.27e-12
HS36	Converged	-3.30e+03	2.84e-14	2.05e-07	Converged	-3.30e+03	2.84e-14	2.05e-07	0.00e+00	0.00e+00
HS37	Converged	-3.46e+03	4.31e-06	2.03e-06	Converged	-3.46e+03	4.30e-06	2.03e-06	2.80e-07	8.11e-11
HS38	Converged	2.47e-15	6.02e-07	0.00e+00	Converged	2.14e-14	9.93e-06	0.00e+00	-1.89e-14	-7.66e+00
HS39	Converged	-1.00e+00	1.25e-06	2.96e-06	Converged	-1.00e+00	5.46e-06	2.98e-06	2.23e-08	2.23e-08
HS3MOD	Converged	4.67e-14	4.18e-06	0.00e+00	Converged	1.02e-15	1.39e-06	0.00e+00	4.57e-14	9.78e-01
HS4	Converged	2.67e+00	0.00e+00	0.00e+00	Converged	2.67e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
HS40	Converged	-2.50e-01	2.53e-06	6.15e-06	Converged	-2.50e-01	7.22e-06	6.11e-06	1.47e-08	5.88e-08
HS41	Converged	1.93e+00	1.25e-07	4.34e-07	Converged	1.93e+00	1.08e-06	4.20e-07	1.57e-09	8.14e-10
HS42	Converged	1.39e+01	1.90e-06	3.12e-06	Converged	1.39e+01	2.78e-06	3.49e-06	1.48e-06	1.07e-07
HS43	Converged	-4.40e+01	3.46e-06	2.51e-06	Converged	-4.40e+01	4.58e-06	3.73e-06	1.14e-06	2.58e-08
HS44	Converged	-1.50e+01	6.10e-07	8.49e-07	Converged	-1.50e+01	1.58e-07	7.95e-07	-7.72e-08	-5.15e-09
HS44NEW	Converged	-1.50e+01	5.86e-07	7.41e-07	Converged	-1.50e+01	1.48e-07	8.06e-07	3.25e-09	2.16e-10
HS45	Converged	1.00e+00	0.00e+00	0.00e+00	Converged	1.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
HS46	-		8.67e-06	2.37e-06	-	7.64e-12	9.11e-06	2.37e-06	-7.45e-12	-3.78e+01
	Converged	1.97e-13			Converged					
HS47	Converged	-5.68e-12	7.15e-06	9.73e-07	Converged	-5.68e-12	7.15e-06	9.73e-07	0.00e+00	0.00e+00
HS48	Converged	1.93e-12	7.37e-06	6.67e-07	Converged	1.76e-11	8.10e-06	6.02e-09	-1.56e-11	-8.11e+00
HS49	Converged	9.15e-13	7.32e-06	5.93e-07	Converged	1.21e-11	7.61e-06	3.74e-07	-1.12e-11	-1.22e+01
HS5	Converged	-1.91e+00	5.21e-06	0.00e+00	Converged	-1.91e+00	5.21e-06	0.00e+00	0.00e+00	0.00e+00
HS50	Converged	3.10e-11	8.37e-06	5.77e-06	Converged	1.89e-13	5.32e-06	3.86e-07	3.08e-11	9.94e-01
HS51	Converged	3.49e-10	6.06e-06	9.27e-06	Converged	3.13e-10	3.06e-06	8.60e-06	3.58e-11	1.03e-01
HS52	Converged	5.33e+00	5.56e-06	2.37e-06	Converged	5.33e+00	9.56e-06	2.37e-06	-3.06e-07	-5.75e-08
HS53	Converged	4.09e+00	8.40e-06	1.01e-06	Converged	4.09e+00	8.99e-06	9.60e-07	-2.33e-07	-5.70e-08
HS54	MaxIter	-1.56e-01	7.55e-05	1.82e-12	Converged	-8.67e-01	3.81e-06	2.66e-06	7.11e-01	4.56e+00
HS55	Converged	6.33e+00	8.36e-06	2.18e-06	Converged	6.67e+00	7.84e-06	1.67e-06	-3.33e-01	-5.26e-02
HS56	Converged	-3.46e+00	8.21e-06	2.68e-07	Converged	-3.46e+00	1.34e-06	2.99e-07	4.45e-08	1.29e-08
HS57	Converged	3.06e-02	4.39e-06	0.00e+00	Converged	3.06e-02	4.39e-06	0.00e+00	0.00e+00	0.00e+00
HS59	Converged	-6.75e+00	7.05e-06	0.00e+00	Converged	-6.75e+00	7.05e-06	0.00e+00	0.00e+00	0.00e+00
HS6	Converged	1.29e-13	2.87e-07	1.67e-08	Converged	9.46e-12	2.46e-06	1.56e-08	-9.33e-12	-7.24e+01
HS60	Converged	3.26e-02	6.17e-06	1.33e-07	Converged	3.26e-02	7.42e-07	1.49e-07	-1.73e-10	-5.31e-09
HS61	Converged	-1.44e+02	3.59e-06	2.66e-07	Converged	-1.44e+02	2.81e-06	5.31e-08	-4.27e-07	-2.97e-09
HS62	Converged	-2.63e+04	1.78e-06	9.48e-09	Converged	-2.63e+04	5.84e-06	2.48e-07	1.52e-03	5.79e-08
HS63	Converged	9.62e+02	8.07e-06	7.40e-08	Converged	9.62e+02	3.63e-06	1.87e-08	2.91e-09	3.03e-12
HS64	Converged	6.30e+03	3.34e-06	2.61e-06	Converged	6.30e+03	3.35e-06	2.61e-06	6.19e-06	9.83e-10
HS65	Converged	9.54e-01	6.79e-06	1.23e-07	Converged	9.54e-01	4.05e-07	2.16e-08	8.36e-09	8.77e-09
HS66	Converged	5.18e-01	1.68e-06	5.18e-06	Converged	5.18e-01	2.56e-06	3.42e-07	-3.43e-06	-6.62e-06
HS67	NotFinite	-8.69e+02	nan	nan	NotFinite	-8.69e+02	nan	nan	0.00e+00	0.00e+00
HS68	Converged	-9.20e-01	5.91e-06	2.62e-06	Converged	-9.20e-01	3.41e-06	2.62e-06	1.04e-09	1.13e-09
HS69	Maxiter	-9.57e+02	1.32e-04	2.26e-08	Converged	-9.57e+02	9.01e-06	2.24e-06	9.10e-05	9.51e-08
HS7	Converged	-1.73e+00	1.63e-06	8.11e-09	Converged	-1.73e+00	1.63e-06	8.11e-09	0.00e+00	0.00e+00
HS70	Converged	7.50e-03	4.21e-06	0.00e+00	Converged	7.50e-03	5.55e-06	0.00e+00	4.66e-11	6.21e-09
HS71	Converged	1.70e+01	1.55e-06	1.02e-07	Converged	1.70e+01	1.97e-06	7.80e-08	-3.10e-08	-1.82e-09
HS72	Converged	7.28e+02	2.91e-06	2.71e-06	Converged	7.28e+02	2.91e-06	2.71e-06	0.00e+00	0.00e+00
HS73	Converged	2.99e+01	5.94e-07	1.21e-07	Converged	2.99e+01	5.49e-06	7.83e-08	-4.27e-07	-1.43e-08

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
HS74	MaxIter	5.13e+03	7.03e-05	9.72e-10	Maxiter	5.13e+03	3.70e-02	8.67e-10	4.82e-09	9.41e-13
HS75	Converged	5.17e+03	4.01e-06	2.34e-07	Maxiter	5.17e+03	1.50e-01	3.19e-08	-9.53e-05	-1.84e-08
HS76	Converged	-4.68e+00	7.34e-07	2.97e-07	Converged	-4.68e+00	4.14e-06	5.77e-07	-3.97e-07	-8.48e-08
HS76I	Converged	-4.68e+00	7.34e-07	2.97e-07	Converged	-4.68e+00	4.14e-06	5.77e-07	-3.97e-07	-8.48e-08
HS77 HS78	Converged Converged	2.42e-01 -2.92e+00	3.94e-06 9.84e-06	7.88e-08 2.52e-07	Converged Converged	2.42e-01 -2.92e+00	6.60e-06 8.24e-06	2.55e-08 3.32e-07	-4.92e-09 3.08e-08	-2.04e-08 1.06e-08
HS79	Converged	7.88e-02	5.53e-06	2.06e-07	Converged	7.88e-02	7.41e-06	7.13e-07	-1.44e-09	-1.83e-08
HS8	Converged	-1.00e+00	1.49e-06	5.70e-08	Converged	-1.00e+00	6.00e-06	2.12e-07	0.00e+00	0.00e+00
HS80	Converged	5.39e-02	1.97e-06	8.12e-08	Converged	5.39e-02	1.97e-06	8.12e-08	0.00e+00	0.00e+00
HS81	Converged	5.39e-02	2.20e-06	2.39e-06	Converged	5.39e-02	2.20e-06	2.39e-06	0.00e+00	0.00e+00
HS83	Converged	-3.07e+04	1.95e-06	2.35e-06	Converged	-3.07e+04	4.93e-06	2.41e-06	1.86e-05	6.05e-10
HS84	Maxiter	-5.28e+06	1.36e+02	3.95e-07	Maxiter	-5.28e+06	2.47e-02	0.00e+00	7.54e-06	1.43e-12
HS85	MaxTime	-2.18e+00	1.07e+00	8.74e-04	Converged	-2.22e+00	6.85e-06	1.79e-06	3.25e-02	1.49e-02
HS86	Converged	-3.23e+01	4.53e-06	4.92e-06	Converged	-3.23e+01	4.51e-06	4.92e-06	1.16e-08	3.59e-10
HS87	MaxIter	9.20e+03	3.82e+03	4.98e-09	Maxiter	9.00e+03	7.21e-01	1.89e-07	2.00e+02	2.17e-02
HS88	Converged	1.36e+00	2.44e-06	1.05e-06	Converged	1.36e+00	2.78e-06	1.05e-06	1.05e-08	7.69e-09
HS89	Converged	1.36e+00	1.92e-06	1.00e-06	Converged	1.36e+00	3.76e-07	1.00e-06	1.61e-08	1.18e-08
HS9	Converged	-5.00e-01	5.41e-07	4.38e-08	Converged	-5.00e-01	5.41e-07	4.38e-08	0.00e+00	0.00e+00
HS90	Converged	1.36e+00	1.42e-07	1.05e-06	Converged	1.36e+00	2.86e-07	1.05e-06	1.31e-09	9.60e-10
HS91	Converged	1.36e+00	9.60e-06	3.89e-15	Converged	1.36e+00	7.23e-07	1.05e-06	1.11e-03	8.13e-04
HS92	Converged	1.36e+00	1.20e-06	1.00e-06	Converged	1.36e+00	7.20e-06	7.90e-08	-9.77e-04	-7.17e-04
HS93 HS95	Maxiter Converged	0.00e+00 1.56e-02	0.00e+00 5.75e-12	2.07e+00 0.00e+00	Maxiter Converged	0.00e+00 1.56e-02	0.00e+00 5.75e-12	2.07e+00 0.00e+00	0.00e+00 0.00e+00	nan 0.00e+00
HS96	Converged	1.56e-02	5.75e-12	0.00e+00	Converged	1.56e-02	5.75e-12 5.75e-12	0.00e+00	0.00e+00	0.00e+00
HS97	Converged	4.07e+00	1.27e-10	4.68e-06	Converged	3.14e+00	2.22e-12	1.01e-06	9.35e-01	2.30e-01
HS98	Converged	4.07e+00	2.68e-11	1.84e-06	Converged	3.14e+00	2.22e-12	1.01e-06	9.35e-01	2.30e-01
HS99	Maxiter	-8.31e+08	3.64e+05	3.93e-09	Maxiter	-8.31e+08	3.06e+04	6.98e-07	1.37e-03	1.65e-12
HS99EXP	Maxiter	-3.28e+11	5.27e+20	2.03e+05	Maxiter	-1.23e+11	4.91e+18	1.35e+05	-2.05e+11	-6.25e-01
HUBFIT	Converged	1.69e-02	5.68e-06	1.96e-06	Converged	1.69e-02	5.56e-06	1.92e-06	-4.73e-09	-2.80e-07
HUES-MOD	Converged	3.48e+07	3.42e-06	6.77e-06	Converged	3.48e+07	3.81e-06	1.15e-06	9.23e-01	2.65e-08
HUESTIS	MaxTime	1.74e+11	7.46e-02	4.65e-07	Converged	1.74e+11	9.14e-06	7.47e-06	6.97e+03	4.00e-08
HVYCRASH	MaxTime	-1.60e-01	4.48e+00	2.96e-02	MaxTime	3.74e-02	1.32e+00	1.03e-01	-1.98e-01	-1.23e+00
HYDCAR20	Maxiter	0.00e+00	6.33e+12	5.68e-02	Maxiter	0.00e+00	1.05e+13	6.34e-02	0.00e+00	nan
HYDCAR6	Maxiter	0.00e+00	1.51e+12	1.97e-02	Maxiter	0.00e+00	3.93e+11	1.34e-02	0.00e+00	nan
HYDROELL	Converged	-3.59e+06	6.42e-06	9.52e-06	Converged	-3.59e+06	9.74e-06	3.01e-06	-9.56e-04	-2.67e-10
HYDROELM	Converged	-3.58e+06	9.87e-06	7.38e-06	Converged	-3.58e+06	9.18e-06	5.56e-06	1.50e-02	4.19e-09
HYDROELS	Converged	-3.58e+06	8.68e-06	6.46e-06	Converged	-3.58e+06	7.23e-06	8.35e-06	-6.78e-04	-1.89e-10
HYPCIR	Converged	0.00e+00	9.96e-06	3.41e-06	Converged	0.00e+00	1.16e-06	2.32e-07	0.00e+00	nan
INTEGREQ	Converged Converged	0.00e+00 0.00e+00	9.45e-06 8.89e-06	1.51e-06 2.14e-06	Converged Converged	0.00e+00 0.00e+00	9.45e-06 8.89e-06	1.51e-06 2.14e-06	0.00e+00 0.00e+00	nan nan
JANNSON3	MaxTime	2.00e+04	6.99e-03	3.03e-08	MaxTime	2.00e+04	8.34e-03	1.47e-05	4.62e-06	2.31e-10
JANNSON4	Converged	9.80e+03	1.85e-07	6.87e-06	Converged	9.80e+03	7.08e-07	7.26e-06	3.79e-05	3.86e-09
JENSMPNE	Maxiter	0.00e+00	5.47e+04	4.72e+00	Maxiter	0.00e+00	1.46e+04	4.72e+00	0.00e+00	nan
JJTABEL3	MaxTime	7.20e+07	3.53e+02	1.02e-04	Maxiter	7.14e+07	9.16e+01	3.21e-06	6.00e+05	8.33e-03
JUDGENE	MaxIter	0.00e+00	1.22e+08	2.08e+00	Maxiter	0.00e+00	5.61e+07	2.08e+00	0.00e+00	nan
JUNKTURN	MaxTime	7.89e-03	7.04e-01	2.83e-04	MaxTime	1.02e-03	9.43e-04	1.04e-04	6.87e-03	8.71e-01
KIRBY2	Maxiter	0.00e+00	1.90e+15	6.82e-01	Maxiter	0.00e+00	1.34e+15	5.56e-01	0.00e+00	nan
KISSING	Maxiter	4.47e-01	8.76e-06	1.00e+00	Maxiter	4.47e-01	4.33e-06	1.00e+00	9.01e-09	2.01e-08
KISSING2	Converged	5.27e+00	9.31e-06	5.12e-07	Converged	6.22e+00	9.84e-06	3.01e-07	-9.51e-01	-1.81e-01
KIWCRESC					Converged		3.27e-06		-9.77e-07	-9.13e-01
KOWOSBNE	Maxiter		1.46e+06 5.27e-06	1.12e-02	Maxiter		7.45e+05	1.12e-02	0.00e+00 6.01e-07	nan 1.04e-06
KTMODEL	Converged NotFinite	5.76e-01 0.00e+00	5.27e-06 inf	4.09e-06 nan	Converged NotFinite	5.76e-01 0.00e+00	9.04e-06 inf	5.73e-06 nan	0.00e+00	1.04e-06 nan
LAKES	NotFinite	7.35e+11	nan	nan	NotFinite	7.35e+11	nan	nan	0.00e+00	0.00e+00
LANCZOS1		0.00e+00		2.63e-06	Maxiter		3.45e+08		0.00e+00	nan
LANCZOS2	Maxiter	0.00e+00	2.12e+06	8.95e-04	Maxiter	0.00e+00	4.10e+08	3.15e-04	0.00e+00	nan
LANCZOS3	Maxiter	0.00e+00	1.93e+05	4.44e-05	NotFinite	0.00e+00	nan	1.36e-03	0.00e+00	nan
LAUNCH	Maxiter	1.07e+01	6.28e+00	2.36e-06	NotFinite	1.06e+01	nan	1.52e-06	2.97e-02	2.79e-03
LCH	NotFinite	2.26e+35	nan	1.69e+03	NotFinite	1.12e+43	inf	6.11e+19	-1.12e+43	-4.94e+07
LEAKNET	MaxIter	8.11e+00	1.39e+04	1.04e-06	MaxIter	8.13e+00	1.70e+04	3.27e-06	-2.41e-02	-2.97e-03
LEUVEN7	MaxTime	6.95e+02	5.23e+00	1.53e-04	MaxTime	6.95e+02	2.06e+00	1.14e-06	1.14e-02	1.65e-05
LEWISPOL	MaxIter	3.00e+00	5.62e-04	8.37e-10	Maxiter	3.00e+00	3.51e-04	7.75e-10	-1.78e-05	-5.92e-06
LIARWHDNE		0.00e+00		1.00e-06	Converged		7.93e-06	1.12e-08	0.00e+00	nan
LIN	NotFinite	-4.65e-11	inf	nan	NotFinite	-4.65e-11	inf	nan	0.00e+00	0.00e+00
LINCONT	MaxTime			1.43e+01	MaxTime		2.44e+16		0.00e+00	nan
	Converged	-7.70e+01	8.87e-06		Converged	-7.70e+01	8.04e-06	2.49e-06	0.00e+00	0.00e+00
LISWET12	MaxTime	5.740+00	4.49e+02	1.87e-03	MaxTime	o.oo€+00	1.13e+02	1.60e-03	2.06e-01	3.58e-02

		status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
	name										
	LISWET9	MaxTime	9.53e+00	2.57e+02	2.14e-02	MaxTime	1.12e+01	2.50e+02	1.08e-02	-1.63e+00	-1.71e-01
	LOADBAL	Converged	4.53e-01	9.85e-06	3.84e-06	Converged	4.53e-01	9.80e-06	7.31e-06	-2.71e-08	-5.98e-08
	LOOTSMA	Maxiter	0.00e+00	6.00e+00	2.00e+00	Maxiter	0.00e+00	6.00e+00	2.00e+00	0.00e+00	nan
	LOTSCHD	Converged	2.40e+03	3.07e-06	3.06e-06	Converged	2.40e+03	9.15e-06	7.45e-07	-1.23e-04	-5.13e-08
	LSC1	Maxiter	0.00e+00	2.40e+07	1.96e+00	Maxiter	0.00e+00	1.25e+07	1.96e+00	0.00e+00	nan
	LSC2	Maxiter	0.00e+00	9.60e+09	2.08e+00	Maxiter	0.00e+00	2.29e+10	1.94e+00	0.00e+00	nan
	LSNNODOC	Converged	1.23e+02	1.23e-06	5.01e-07	Converged	1.23e+02	5.48e-06	4.33e-07	-1.34e-06	-1.08e-08
	LSQFIT	Converged	3.38e-02	9.69e-06	3.39e-06	Converged	3.38e-02	9.93e-06	3.48e-06	2.16e-08	6.38e-07
	LUKVLE18	MaxTime	1.03e+04	4.52e+01	3.76e-04	MaxTime	9.80e+03	7.22e-04	4.51e-03	5.33e+02	5.16e-02
	LUKVLI1	MaxTime	9.48e+03	1.06e+01	5.43e-02	MaxTime	9.01e+03	9.05e+00	2.76e-02	4.77e+02	5.03e-02
	LUKVLI10	MaxTime	3.54e+03	9.53e-05	9.59e-06	MaxTime	3.54e+03	5.66e-05	3.13e-06	-1.89e-04	-5.35e-08
	LUKVLI11	Converged	4.61e-07	9.80e-06	8.25e-06	Converged	4.17e-09	8.53e-06	9.65e-06	4.57e-07	9.91e-01
	LUKVLI12	Converged	2.01e-06	9.20e-06	0.00e+00	Converged	1.70e-06	9.06e-06	0.00e+00	3.16e-07	1.57e-01
	LUKVLI13	Converged	1.32e+02	9.60e-06	1.12e-06	MaxTime	1.32e+02	4.68e-05	6.60e-07	-1.28e-06	-9.66e-09
	LUKVLI14	MaxTime	5.19e+03	1.33e-02	8.68e-06	MaxTime	1.55e+04	1.49e-03	6.29e-02	-1.03e+04	-1.98e+00
	LUKVLI15	MaxTime	5.75e+00	1.49e-02	5.85e-04	MaxTime	5.75e+00	1.10e-02	2.45e-04	-1.95e-03	-3.40e-04
	LUKVLI16	Converged	4.04e-09	9.87e-06	1.51e-06	Converged	1.16e-07	9.83e-06	9.95e-06	-1.12e-07	-2.76e+01
	LUKVLI17	MaxTime	7.81e+02	8.01e-05	7.85e-07	MaxTime	7.81e+02	1.07e-04	3.59e-07	1.30e-04	1.67e-07
	LUKVLI18	Converged	1.13e-08	9.77e-06	2.58e-06	Converged	2.26e-07	1.00e-05	1.81e-06	-2.15e-07	-1.90e+01
	LUKVLI2	MaxTime			3.55e+01						
			-1.41e+56 1.16e+01	6.23e+38 8.10e-06		MaxTime	-4.50e+62	2.57e+23	4.17e+13	4.50e+62	3.19e+06
		Converged			1.17e-07	Converged	1.16e+01	5.19e-06	2.46e-07	-3.76e-07	-3.25e-08
	LUKVLI4	NotFinite	3.54e+36 1.21e+01	inf 8.23e-06	nan	MaxTime Converged	-1.63e+16	2.67e+32	6.78e-01	3.54e+36	1.00e+00
		Converged			5.84e-06		5.27e-01	9.23e-06	3.76e-06	1.16e+01	9.56e-01
	LUKVLI6	MaxTime	6.29e+05	3.00e-03	1.01e-04	MaxTime	6.26e+05	5.37e-03	2.82e-03	2.42e+03	3.85e-03
	LUKVL17	MaxTime	-3.83e+03	5.92e-02	2.28e+00	MaxTime	-4.14e+03	1.51e-01	4.45e+00	3.11e+02	8.12e-02
	LUKVLI8	NotFinite	5.71e+06	inf	nan	MaxTime	8.96e+05	2.80e-03	1.27e+00	4.82e+06	8.43e-01
	LUKVLI9	MaxTime	9.99e+02	1.90e-04	0.00e+00	MaxTime	9.99e+02	8.66e-05	2.47e-07	-1.28e-07	-1.28e-10
	MADSEN	Converged	6.16e-01	7.66e-06	8.18e-07	Converged	6.16e-01	9.91e-07	1.88e-07	2.59e-07	4.20e-07
	MADSSCHJ	MaxTime	-4.99e+03	4.11e-03	1.47e-06	Converged	-4.99e+03	4.30e-08	6.61e-09	-1.76e-08	-3.53e-12
	MAKELA1	Converged	-1.41e+00	4.16e-06	2.14e-06	Converged	-1.41e+00	1.97e-07	1.39e-06	-4.74e-07	-3.35e-07
	MAKELA2	Converged	7.20e+00	2.02e-06	2.82e-08	Converged	7.20e+00	6.84e-06	3.45e-08	-5.48e-08	-7.61e-09
	MAKELA3	Converged	2.50e-06	9.89e-06	6.89e-06	Converged	2.50e-06	9.89e-06	6.89e-06	0.00e+00	0.00e+00
	MAKELA4	Converged	-3.72e-08	6.80e-06	1.52e-06	Converged	1.00e-07	5.45e-06	4.29e-06	-1.37e-07	-3.69e+00
N	MANCINONE	Converged	0.00e+00	3.56e-06	3.38e-09	Converged	0.00e+00	9.02e-06	2.70e-09	0.00e+00	nan
	MANNE	Converged	-9.75e-01	1.75e-06	8.68e-07	Converged	-9.75e-01	0.00e+00	0.00e+00	0.00e+00	0.00e+00
	MARINE	MaxTime	4.43e+09	1.71e+09	1.91e+03	MaxTime	4.31e+09	1.70e+09	9.44e+03	1.23e+08	2.78e-02
	MATRIX2	Converged	5.14e-12	7.70e-06	1.29e-10	Converged	9.99e-13	5.86e-06	9.74e-12	4.14e-12	8.06e-01
	MCONCON	Maxiter	-6.23e+03	3.18e-01	1.48e-08	Maxiter	-6.23e+03	6.01e+00	1.67e-08	2.40e-02	3.85e-06
	MESH	MaxIter	-3.20e+17	5.91e+25	1.79e+10	MaxIter	-4.61e+21	4.29e+09	7.03e-08	4.61e+21	1.44e+04
	METHANL8	MaxIter	0.00e+00	6.60e+11	7.25e-03	MaxIter	0.00e+00	9.59e+11	7.42e-03	0.00e+00	nan
	MEYER3NE	MaxIter	0.00e+00	2.17e+16	6.35e+01	MaxIter	0.00e+00	1.45e+17	1.87e+01	0.00e+00	nan
	MGH09	Maxiter	0.00e+00	1.35e+01	1.26e-01	Maxiter	0.00e+00	7.89e+06	2.49e-02	0.00e+00	nan
	MGH09LS	Converged	1.76e-03	4.91e-06	0.00e+00	Converged	9.40e-04	3.69e-06	0.00e+00	8.24e-04	4.67e-01
	MGH10	MaxIter	0.00e+00	2.06e+18	2.19e+04	MaxIter	0.00e+00	3.97e+31	1.84e+04	0.00e+00	nan
	MGH10LS	Maxiter	1.37e+09	4.05e+03	0.00e+00	Maxiter	1.37e+09	4.05e+03	0.00e+00	6.96e+00	5.09e-09
	MGH10S	NotFinite	0.00e+00	inf	nan	Maxiter	0.00e+00	8.56e+20	2.90e+02	0.00e+00	nan
	MGH10SLS	NotFinite	4.52e+15	inf	0.00e+00	Maxiter	4.42e+05	2.06e+06	0.00e+00	4.52e+15	1.00e+00
	MGH17	NotFinite	0.00e+00	nan	3.12e-01	NotFinite	0.00e+00	nan	3.12e-01	0.00e+00	nan
		Converged	1.02e+00	3.41e-06	0.00e+00	Converged	1.02e+00	6.59e-06	0.00e+00	1.99e-11	1.95e-11
	MGH17S	NotFinite	0.00e+00	inf	2.67e-01	Maxiter	0.00e+00	3.80e+07	8.79e-02	0.00e+00	nan
	MGH17SLS		1.02e+00	6.05e-06	0.00e+00	Converged	1.02e+00	9.44e-06	0.00e+00	-4.02e-11	-3.93e-11
		Converged	-1.00e+00	6.11e-06	5.31e-07	Converged	-1.00e+00		4.82e-08	2.23e-07	2.23e-07
		Converged	-1.00e+00	5.59e-06	2.17e-07	-	-1.00e+00	3.74e-06	1.69e-07	-1.73e-07	-1.73e-07
		Converged	3.83e-04	8.44e-06	3.42e-06	Converged	3.83e-04	9.11e-06	3.58e-06	-1.38e-08	-3.60e-05
		Converged	1.16e+02	8.89e-06	4.21e-06	Converged	1.16e+02	9.71e-06	5.99e-06	-3.69e-06	-3.19e-08
		Converged	9.54e-08	4.71e-06	1.24e-06	Converged	1.80e-08	7.04e-06	7.67e-08	7.75e-08	8.12e-01
			3.63e-04	8.97e-06	2.47e-07	Converged	3.63e-04	4.00e-06	2.02e-07	4.93e-09	1.36e-05
		Converned		2.0.6-00	26-07		2.51e+00		0.00e+00	5.76e-09	2.30e-09
	MINPERM	Converged		9.986-06	0.000+00			J140*UU			
	MINPERM MINSURFO	Converged	2.51e+00		0.00e+00	Converged		1.160+12			
	MINPERM MINSURFO MISRA1A	Converged Maxiter	2.51e+00 0.00e+00	8.78e+12	1.31e-01	Maxiter	0.00e+00	1.16e+13	1.31e-01	0.00e+00	nan
	MINPERM MINSURFO MISRA1A MISRA1B	Converged Maxiter Maxiter	2.51e+00 0.00e+00 0.00e+00	8.78e+12 1.74e+13	1.31e-01 1.19e-01	Maxiter Maxiter	0.00e+00 0.00e+00	6.91e+12	1.31e-01 1.39e-01	0.00e+00 0.00e+00	nan
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C	Converged MaxIter MaxIter NotFinite	2.51e+00 0.00e+00 0.00e+00 0.00e+00	8.78e+12 1.74e+13 nan	1.31e-01 1.19e-01 1.89e-01	Maxiter Maxiter NotFinite	0.00e+00 0.00e+00 0.00e+00	6.91e+12 nan	1.31e-01 1.39e-01 8.32e-01	0.00e+00 0.00e+00 0.00e+00	nan nan nan
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C MISRA1D	Converged MaxIter MaxIter NotFinite MaxIter	2.51e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00	8.78e+12 1.74e+13 nan 1.39e+15	1.31e-01 1.19e-01 1.89e-01 4.24e+00	Maxiter Maxiter NotFinite Maxiter	0.00e+00 0.00e+00 0.00e+00 0.00e+00	6.91e+12 nan 7.07e+13	1.31e-01 1.39e-01 8.32e-01 1.66e-01	0.00e+00 0.00e+00 0.00e+00 0.00e+00	nan nan nan
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C MISRA1D MISRA1D	Converged MaxIter MaxIter NotFinite MaxIter Converged	2.51e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00	8.78e+12 1.74e+13 nan 1.39e+15 7.49e-06	1.31e-01 1.19e-01 1.89e-01 4.24e+00 1.53e-06	Maxiter Maxiter NotFinite Maxiter Converged	0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00	6.91e+12 nan 7.07e+13 7.63e-06	1.31e-01 1.39e-01 8.32e-01 1.66e-01 2.87e-06	0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.16e-07	nan nan nan nan 6.16e-07
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C MISRA1D MISRA1D MISTAKE MODEL	Converged MaxIter MaxIter NotFinite MaxIter Converged MaxIter	2.51e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00	8.78e+12 1.74e+13 nan 1.39e+15 7.49e-06 2.09e+09	1.31e-01 1.19e-01 1.89e-01 4.24e+00 1.53e-06 1.60e-01	MaxIter MaxIter NotFinite MaxIter Converged MaxIter	0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00	6.91e+12 nan 7.07e+13 7.63e-06 4.47e+07	1.31e-01 1.39e-01 8.32e-01 1.66e-01 2.87e-06 1.60e-01	0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.16e-07 0.00e+00	nan nan nan nan 6.16e-07
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C MISRA1D MISTAKE MODEL MPC16	Converged MaxIter MaxIter NotFinite MaxIter Converged MaxIter MaxTime	2.51e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00 -8.85e+06	8.78e+12 1.74e+13 nan 1.39e+15 7.49e-06 2.09e+09 4.68e+09	1.31e-01 1.19e-01 1.89e-01 4.24e+00 1.53e-06 1.60e-01 5.00e+01	MaxIter MaxIter NotFinite MaxIter Converged MaxIter MaxTime	0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00 -9.92e+06	6.91e+12 nan 7.07e+13 7.63e-06 4.47e+07 2.42e+09	1.31e-01 1.39e-01 8.32e-01 1.66e-01 2.87e-06 1.60e-01 6.40e+01	0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.16e-07 0.00e+00 1.08e+06	nan nan nan nan 6.16e-07 nan 1.22e-01
	MINPERM MINSURFO MISRA1A MISRA1B MISRA1C MISRA1D MISRA1D MISTAKE MODEL	Converged MaxIter MaxIter NotFinite MaxIter Converged MaxIter MaxTime	2.51e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00	8.78e+12 1.74e+13 nan 1.39e+15 7.49e-06 2.09e+09	1.31e-01 1.19e-01 1.89e-01 4.24e+00 1.53e-06 1.60e-01 5.00e+01	MaxIter MaxIter NotFinite MaxIter Converged MaxIter	0.00e+00 0.00e+00 0.00e+00 0.00e+00 -1.00e+00 0.00e+00	6.91e+12 nan 7.07e+13 7.63e-06 4.47e+07	1.31e-01 1.39e-01 8.32e-01 1.66e-01 2.87e-06 1.60e-01	0.00e+00 0.00e+00 0.00e+00 0.00e+00 6.16e-07 0.00e+00	nan nan nan nan 6.16e-07

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
MSQRTB	Converged	0.00e+00	9.28e-06	1.25e-06	Converged	0.00e+00	9.84e-06	1.76e-06	0.00e+00	nan
MSS1	Converged	-9.00e+00	2.74e-06	3.66e-06	Converged	-9.00e+00	4.93e-07	3.66e-06	2.54e-06	2.82e-07
MSS2	Converged	-2.80e+01	8.06e-07	8.13e-06	Converged	-2.70e+01	9.07e-06	1.93e-09	-9.64e-01	-3.45e-02
MSS3	Converged	-4.50e+01	1.41e-06	5.24e-09	Converged	-4.48e+01	2.25e-06	1.85e-06	-1.65e-01	-3.67e-03
MUONSINE	MaxIter	0.00e+00	1.08e+05	2.96e-04	Maxiter	0.00e+00	6.90e+04	2.96e-04	0.00e+00	nan
MWRIGHT	Converged	1.29e+00	5.17e-06	6.09e-07	Converged	1.29e+00	5.17e-06	6.09e-07	0.00e+00	0.00e+00
NASH	Maxiter	0.00e+00	2.82e+08	8.84e+00	Maxiter	0.00e+00	1.56e+08	8.84e+00	0.00e+00	nan
NELSON	MaxIter	0.00e+00	6.63e+18	8.96e-01	NotFinite	0.00e+00	inf	nan	0.00e+00	nan
NGONE	Converged	-6.43e-01	8.61e-06	1.56e-07	Converged	-6.43e-01	9.23e-06	8.80e-08	3.06e-04	4.76e-04
NINE12	MaxTime	7.87e+03	1.49e-04	5.53e-06	MaxTime	7.87e+03	7.75e-04	2.27e-05	-2.99e-04	-3.80e-08
NINE5D	MaxTime	1.01e+04	5.28e-02	2.08e-04	MaxTime	1.01e+04	1.13e-01	8.64e-04	-4.13e+00	-4.11e-04
NINENEW	MaxTime	5.91e+03	3.41e-05	1.74e-06	MaxTime	5.91e+03	1.47e-05	1.16e-06	8.24e-06	1.39e-09
NUFFIELD	MaxTime	-1.85e-02	1.68e+01	6.76e-06	MaxTime	-2.90e-02	2.46e+01	8.33e-06	1.06e-02	5.72e-01
NYSTROM5	Converged	0.00e+00	9.71e-06	1.46e-06	Converged	0.00e+00	8.40e-06	7.77e-07	0.00e+00	nan
ODFITS	Converged	-2.38e+03	9.59e-06	1.92e-06	Converged	-2.38e+03	9.59e-06	1.92e-06	0.00e+00	0.00e+00
ORTHREGB	Converged	1.49e-17	3.66e-06	2.48e-07	Converged	3.22e-14	5.63e-06	1.18e-07	-3.21e-14	-2.15e+03
ORTHREGC	MaxTime	9.48e+01	3.35e-04	8.23e-07	MaxTime	9.48e+01	1.71e-03	6.94e-06	-1.39e-05	-1.46e-07
ORTHRGDM	MaxTime	1.60e+03	2.94e+02	4.35e-04	MaxTime	1.51e+03	7.55e+00	1.28e-05	8.58e+01	5.36e-02
OSBORNE1	Maxiter	0.00e+00	4.62e+07	4.47e-03	Maxiter	0.00e+00	6.31e+09	5.18e-03	0.00e+00	nan
OSBORNE2	NotFinite	0.00e+00	nan	5.96e-02	NotFinite	0.00e+00	nan	1.84e-01	0.00e+00	nan
OSORIO	Converged	2.04e+00	7.79e-06	1.24e-07	Converged	2.04e+00	9.30e-06	2.81e-07	-2.05e-07	-1.01e-07
PENTAGON	Converged	1.37e-04	7.68e-06	1.22e-07	Converged	1.37e-04	7.63e-06	1.31e-07	9.19e-11	6.73e-07
PFIT1	Maxiter	0.00e+00	4.94e+10	1.79e-02	NotFinite	0.00e+00	nan	1.06e-02	0.00e+00	nan
PFIT2	MaxIter	0.00e+00	2.19e+11	9.51e-02	Converged	0.00e+00	9.50e-06	7.47e-10	0.00e+00	nan
PFIT3	Maxiter	0.00e+00	1.81e+16	8.72e+00	NotFinite	0.00e+00	nan	2.10e-01	0.00e+00	nan
PFIT4	Maxiter	0.00e+00	2.01e+18	1.29e+01	NotFinite	0.00e+00	nan	3.74e-01	0.00e+00	nan
POLAK2	Maxiter	5.46e+01	1.20e-04	3.42e-06	Converged	5.46e+01	9.02e-06	8.99e-06	5.46e-03	1.00e-04
POLAK3	Converged	5.93e+00	8.07e-06	1.43e-06	Converged	5.93e+00	6.57e-06	4.17e-06	4.83e-07	8.13e-08
POLAK4	Converged	-1.35e-12	5.67e-06	1.86e-09	Converged	-4.58e-08	4.93e-06	5.62e-08	4.58e-08	3.41e+04
POLAK5	Converged	5.00e+01	3.01e-06	3.12e-06	Converged	5.00e+01	2.74e-06	8.81e-08	3.15e-06	6.30e-08
POLAK6	NotFinite	1.06e+04	inf	2.26e+04	Converged	-4.40e+01	7.82e-07	9.78e-07	1.06e+04	1.00e+00
PORTFL1	Converged	2.05e-02	6.03e-06	3.17e-07	Converged	2.05e-02	7.46e-06	1.99e-07	4.41e-10	2.15e-08
PORTFL2	Converged	2.97e-02	3.13e-06	6.62e-07	Converged	2.97e-02	1.80e-06	2.48e-07	8.35e-09	2.81e-07
PORTFL3	Converged	3.27e-02	9.75e-06	2.23e-07	Converged	3.27e-02	6.33e-06	1.20e-07	2.26e-09	6.91e-08
PORTFL4	Converged	2.63e-02	8.65e-06	1.97e-07	Converged	2.63e-02	1.39e-06	3.45e-07	9.16e-09	3.48e-07
PORTFL6	Converged	2.58e-02	5.70e-06	5.08e-08	Converged	2.58e-02	6.77e-06	7.46e-08	-8.83e-10	-3.42e-08
POWELLBS	Converged	0.00e+00	1.18e-06	1.28e-06	Maxiter	0.00e+00	1.68e+08	1.06e-04	0.00e+00	nan
POWELLSQ	Converged	0.00e+00	1.98e-06	6.42e-08	Converged	0.00e+00	3.23e-06	1.06e-07	0.00e+00	nan
PRICE3NE	Converged	0.00e+00	1.69e-06	1.60e-07	Converged	0.00e+00	1.45e-06	2.05e-07	0.00e+00	nan
PRICE4NE	Converged	0.00e+00	5.52e-07	1.79e-06	Converged	0.00e+00	1.79e-06	7.89e-06	0.00e+00	nan
PRIMAL1	Converged	-3.50e-02	9.58e-06	3.38e-06	Converged	-3.50e-02	9.45e-06	3.50e-06	-9.08e-09	-2.59e-07
PRIMAL2	Converged	-3.37e-02	9.73e-06	2.02e-06	Converged	-3.37e-02	8.09e-06	2.04e-06	8.71e-08	2.58e-06
PRIMAL3	Converged	-1.36e-01	9.05e-06	4.54e-06	Converged	-1.36e-01	9.14e-06	4.64e-06	-1.00e-08	-7.37e-08
PRIMAL4	Converged	-7.46e-01	7.98e-06	3.86e-06	Converged	-7.46e-01	9.80e-06	4.84e-06	4.50e-08	6.04e-08
PRIMALC1	Maxiter	-6.16e+03	4.84e-05	1.98e-06	Maxiter	-6.16e+03	7.96e-05	2.35e-06	1.93e-06	3.13e-10
PRIMALC2	Converged	-3.55e+03	9.17e-06	3.61e-07	Converged	-3.55e+03	6.26e-06	1.43e-06	-9.16e-08	-2.58e-11
PRIMALC5	Converged	-4.27e+02	8.75e-06	1.37e-08	Maxiter	-4.27e+02	3.79e-05	1.82e-07	1.56e-07	3.66e-10
PRIMALCS	Maxiter	-1.83e+04	1.07e-02	4.56e-07	Maxiter	-1.83e+04	1.05e-02	4.39e-07	-2.44e-07	-1.33e-11
PRODEL 0	Conversed	5.88e+01	9.01e-06	7.08e-07	Converned	5.88e+01	8 74e-06	8 04e-06	2 90e-04	4 93e-06
1 11001 20	Converged	3.57e+01	8.48e-06	1.000 01	Converged	3.57e+01	9.21e-06	1.49e-06	2.54e-06	7.12e-08
OC	Converged	-9.57e+02			Converged	-9.57e+02		0.00e+00	0.00e+00	0.00e+00
QCNEW	Maxiter		5.00e+03		Maxiter	-8.05e+02	5.00e+03	0.00e+00	0.00e+00	0.00e+00
QPCBLEND	Converged	-7.84e-03	9.28e-06		Converged	-7.84e-03	7.88e-06	8.63e-09	7.90e-08	1.01e-05
QPCSTAIR	MaxTime	6.20e+06	3.99e-02	2.64e-06	MaxTime	6.20e+06	1.44e-01	4.02e-06	-1.89e-01	-3.05e-08
QPNBLEND		-8.71e-03	6.85e-06		Converged	-9.14e-03	7.29e-06	6.84e-10	4.31e-04	4.95e-02
RAT42	Maxiter		1.37e+10		Maxiter		4.38e+11		0.00e+00	nan
RAT43	NotFinite	0.00e+00		3.56e+02	NotFinite	0.00e+00			0.00e+00	
RA143 READING7	MaxTime	-2.69e+34		3.56e+02 6.17e+15	MaxTime	-7.41e+41	nan	nan 1.24e+20	7.41e+41	nan 2.76e+07
RES	Converged Converged	0.00e+00	2.78e-14	6.12e-15		0.00e+00	2.78e-14	6.12e-15 2.21e-06	0.00e+00	nan
RK23	-	8.33e-02	5.92e-06	2.97e-06	Converged	8.33e-02	8.74e-06		1.88e-06	2.25e-05
ROBOT	Converged	6.59e+00	2.06e-06	1.12e-06	Converged	6.59e+00	2.11e-07	1.12e-06	2.89e-08	4.39e-09
ROSENBR	Converged	7.22e-13		0.00e+00	Converged	8.23e-16		0.00e+00	7.21e-13	9.99e-01
ROSENMMX	Converged	-4.40e+01	7.38e-07	1.35e-06	Converged	-4.40e+01	1.54e-06	1.08e-06	1.34e-06	3.04e-08
ROTDISC	Maxiter			1.05e+00	Maxiter		2.17e+10	4.96e-01	4.37e-02	4.58e-03
S268	Maxiter	2.91e-11	5.15e-04	0.00e+00	Maxiter	6.49e-06	1.26e-03	0.00e+00	-6.49e-06	-2.23e+05
S365	NotFinite	6.00e+00	inf	nan	NotFinite	6.00e+00	inf	nan	0.00e+00	0.00e+00
S365MOD	NotFinite	6.00e+00	inf	nan	NotFinite	6.00e+00	inf	nan	0.00e+00	0.00e+00

	status 0	f 0	ε 0	δ0	status 1	f1	ε 1	δ1	imprv	rel imprv
name										
S368	Converged	-7.50e-01	8.62e-06	0.00e+00	Converged	-7.50e-01	8.62e-06	0.00e+00	0.00e+00	0.00e+00
SCOND1LS	NotFinite	8.98e+04	inf	0.00e+00	NotFinite	4.90e+05	inf	0.00e+00	-4.00e+05	-4.46e+00
SMBANK	Maxiter	-7.10e+06	7.99e-01	2.03e-06	Maxiter	-7.10e+06	5.37e-01	2.02e-08	2.97e+03	4.18e-04
SMMPSF	Maxiter	1.47e+06	2.48e+02	1.73e-06	Maxiter	1.35e+06	4.19e+03	2.40e-06	1.27e+05	8.64e-02
SNAKE	Converged	2.00e-02	1.73e-08	1.00e-06	Maxiter	-6.66e+02	1.75e+09	3.33e-02	6.66e+02	3.33e+04
SPANHYD	Maxiter	2.40e+02	5.53e-04	4.33e-07	Maxiter	2.40e+02	5.12e-04	4.44e-07	-2.27e-13	-9.48e-16
STNQP2	MaxTime	-5.75e+05	2.56e-01	1.07e-03	MaxTime	-5.75e+05	1.05e+00	1.02e-01	4.16e+02	7.24e-04
STREG	Maxiter	2.01e+08	5.13e+00	0.00e+00	Maxiter	7.57e+06	1.18e+00	0.00e+00	1.94e+08	9.62e-01
STREGNE	Converged	8.04e-13	5.62e-06	8.22e-07	Converged	5.58e-11	7.47e-06	4.48e-07	-5.50e-11	-6.84e+01
STRTCHDVNE	Converged	0.00e+00	4.62e-06	1.26e-11	Converged	0.00e+00	4.62e-06	1.26e-11	0.00e+00	nan
SUPERSIM	Converged	6.67e-01	7.46e-06	6.38e-07	Converged	6.67e-01	2.65e-07	4.99e-06	4.53e-06	6.80e-06
SWOPF	Maxiter	1.27e-01	4.39e-01	4.30e-07	Maxiter	1.31e-01	7.02e-01	1.24e-07	-4.10e-03	-3.23e-02
SYNTHES1	Converged	7.59e-01	3.18e-07	3.99e-06	Converged	7.59e-01	3.35e-07	3.98e-06	-2.32e-08	-3.06e-08
SYNTHES2	Converged	-5.54e-01	3.17e-06	2.64e-06	Converged	-5.54e-01	3.63e-06	3.22e-06	7.54e-06	1.36e-05
SYNTHES3	Converged	1.51e+01	7.61e-06	1.22e-06	Converged	1.51e+01	7.46e-06	6.30e-08	-2.50e-06	-1.66e-07
TABLE1	Maxiter	7.48e+05	2.04e+01	7.30e-07	Maxiter	7.12e+05	1.27e+01	1.89e-06	3.60e+04	4.82e-02
TRUSPYR1	MaxIter	3.69e+03	5.98e-01	7.75e-12	Converged	1.12e+01	7.16e-06	1.25e-06	3.68e+03	9.97e-01
TRUSPYR2	Maxiter	8.60e+03	2.30e+02	1.65e-10	Converged	1.12e+01	4.59e-06	4.04e-07	8.59e+03	9.99e-01
TRY-B	Converged	1.00e+00	1.71e-07	6.40e-06	Converged	1.00e+00	3.22e-11	1.03e-06	7.43e-06	7.43e-06
TWIRISM1	Maxiter	-1.00e+00	3.42e-02	7.78e-07	Maxiter	-9.95e-01	1.50e-02	4.84e-07	-5.87e-03	-5.87e-03
TWOBARS	Converged	1.51e+00	3.49e-06	7.31e-07	Converged	1.51e+00	3.52e-06	7.40e-07	1.38e-08	9.15e-09
VIBRBEAMNE	Maxiter	0.00e+00	6.30e+31	7.06e+08	Maxiter	0.00e+00	9.49e+12	8.70e-01	0.00e+00	nan
WACHBIEG	Converged	1.00e+00	6.92e-07	3.07e-07	Converged	1.00e+00	7.64e-06	5.90e-07	-4.49e-07	-4.49e-07
WATER	Converged	1.05e+04	9.98e-06	1.24e-06	Converged	1.05e+04	8.73e-06	5.72e-06	-3.19e-04	-3.02e-08
WOMFLET	Converged	1.07e-07	1.41e-08	4.06e-06	Converged	9.80e-09	4.26e-06	1.55e-08	9.75e-08	9.09e-01
YFITNE	Converged	0.00e+00	6.86e-06	6.39e-07	Converged	0.00e+00	9.81e-06	4.39e-07	0.00e+00	nan
YORKNET	MaxIter	1.01e+10	5.85e+26	2.69e+13	MaxTime	2.80e+04	9.78e+08	5.67e+00	1.01e+10	1.00e+00
ZAMB2-10	MaxIter	-1.58e+00	2.25e-03	3.08e-07	MaxIter	-1.58e+00	1.89e-02	1.80e-06	3.08e-03	1.96e-03
ZAMB2-11	MaxIter	-1.08e+00	7.26e-02	1.43e-06	Maxiter	-1.09e+00	1.98e-02	3.99e-07	7.58e-03	6.99e-03
ZAMB2-8	Converged	-1.53e-01	9.77e-06	1.37e-06	Converged	-1.53e-01	9.95e-06	4.14e-07	3.56e-07	2.33e-06
ZAMB2-9	MaxIter	-3.53e-01	2.30e-03	5.27e-07	MaxIter	-3.54e-01	1.76e-03	1.97e-07	9.75e-04	2.76e-03
ZANGWIL3	Converged	0.00e+00	8.03e-06	1.65e-07	Converged	0.00e+00	3.80e-06	9.24e-08	0.00e+00	nan
ZECEVIC2	Converged	-4.13e+00	8.53e-07	1.54e-07	Converged	-4.13e+00	8.29e-07	1.55e-07	1.91e-09	4.63e-10
ZECEVIC3	Converged	9.73e+01	6.05e-06	8.10e-06	Converged	9.73e+01	6.06e-06	8.10e-06	4.22e-08	4.34e-10
ZECEVIC4	Converged	7.56e+00	3.81e-06	2.60e-07	Converged	7.56e+00	3.81e-06	2.60e-07	0.00e+00	0.00e+00
ZIGZAG	MaxTime	8.65e+01	9.21e+00	6.65e-06	MaxTime	8.69e+01	6.50e+00	5.89e-06	-3.60e-01	-4.16e-03
ZY2	Converged	2.00e+00	9.76e-07	1.06e-08	Converged	2.00e+00	8.62e-07	1.78e-08	7.09e-09	3.55e-09

```
In [12]: worse_f = cmp[(cmp['imprv'] < 0) & (cmp['status 1'] == 'Converged')]
better_f = cmp[(cmp['imprv'] > 0) & (cmp['status 1'] == 'Converged')]
tol = [e-5]
really_worse_f = worse_f[abs(worse_f['rel imprv']) > tol]
really_better_f = better_f[abs(better_f['rel imprv']) > tol]
print(f'{len(worse_f)} tests got worse results')
print(f'{len(really_worse_f)} tests got significantly worse')
print(f'{len(really_better_f)} tests got better results')
print(f'{len(really_better_f)} tests got significantly better')
print('Mignificantly worse tests:')
really_worse_f
101 tests got worse results
24 tests got significantly worse
```

Significantly worse tests:

128 tests got better results 44 tests got significantly better

Out[12]:

	status 0	f 0	ε 0	δ0	status 1	f1	ε1	δ1	imprv	rel imprv
name										
ВТ7	Converged	3.064946e+02	5.731848e-06	2.440385e-06	Converged	3.064991e+02	0.000006	4.638192e-07	-4.515006e-03	-0.000015
C-RELOAD	Converged	-1.016643e+00	9.420258e-06	7.003988e-09	Converged	-1.016152e+00	0.000009	1.152703e-07	-4.907199e-04	-0.000483
GAUSSELM	Converged	-1.000062e+00	9.693862e-06	5.188803e-06	Converged	-1.000040e+00	0.000010	4.763477e-06	-2.184026e-05	-0.000022
HALDMADS	Converged	1.206413e-04	9.160738e-06	8.269145e-06	Converged	1.211392e-04	0.000006	3.008216e-06	-4.979563e-07	-0.004128
HIMMELBG	Converged	1.713217e-14	2.432727e-06	0.000000e+00	Converged	4.162127e-13	0.000007	0.000000e+00	-3.990806e-13	-23.294225
HS111	NotFinite	-6.807185e+01	inf	1.413320e+01	Converged	-4.776110e+01	0.000004	1.217640e-06	-2.031075e+01	-0.298372
HS111LNP	NotFinite	-6.807185e+01	inf	1.413320e+01	Converged	-4.776110e+01	0.000004	1.217640e-06	-2.031075e+01	-0.298372
HS38	Converged	2.469695e-15	6.024903e-07	0.000000e+00	Converged	2.139105e-14	0.000010	0.000000e+00	-1.892135e-14	-7.661413
HS46	Converged	1.969252e-13	8.673468e-06	2.371866e-06	Converged	7.643831e-12	0.000009	2.366683e-06	-7.446906e-12	-37.815907
HS48	Converged	1.927573e-12	7.373367e-06	6.669033e-07	Converged	1.756375e-11	8000000	6.016194e-09	-1.563617e-11	-8.111847
HS49	Converged	9.152635e-13	7.321455e-06	5.933289e-07	Converged	1.210645e-11	0.000008	3.739024e-07	-1.119119e-11	-12.227284
HS55	Converged	6.333332e+00	8.364586e-06	2.177212e-06	Converged	6.666667e+00	0.000008	1.667988e-06	-3.333347e-01	-0.052632
HS6	Converged	1.287580e-13	2.869376e-07	1.668449e-08	Converged	9.456495e-12	0.000002	1.556293e-08	-9.327737e-12	-72.443949
HS92	Converged	1.361596e+00	1.202598e-06	1.004680e-06	Converged	1.362573e+00	0.000007	7.895208e-08	-9.767620e-04	-0.000717
KISSING2	Converged	5.265492e+00	9.310481e-06	5.116275e-07	Converged	6.216079e+00	0.000010	3.014978e-07	-9.505869e-01	-0.180531
KIWCRESC	Converged	-1.070105e-06	8.126056e-07	1.423598e-06	Converged	-9.354761e-08	0.000003	1.038183e-07	-9.765576e-07	-0.912581
LUKVLI16	Converged	4.039161e-09	9.874117e-06	1.513638e-06	Converged	1.155456e-07	0.000010	9.948563e-06	-1.115065e-07	-27.606344
LUKVLI18	Converged	1.130093e-08	9.773312e-06	2.583109e-06	Converged	2.259756e-07	0.000010	1.805262e-06	-2.146746e-07	-18.996199
MAKELA4	Converged	-3.720255e-08	6.796625e-06	1.516506e-06	Converged	9.998696e-08	0.000005	4.291752e-06	-1.371895e-07	-3.687637
MINC44	Converged	3.828549e-04	8.441532e-06	3.415355e-06	Converged	3.828686e-04	0.000009	3.584022e-06	-1.376626e-08	-0.000036
MSS2	Converged	-2.796390e+01	8.061747e-07	8.133389e-06	Converged	-2.700000e+01	0.000009	1.929988e-09	-9.638969e-01	-0.034469
MSS3	Converged	-4.500047e+01	1.413396e-06	5.241267e-09	Converged	-4.483529e+01	0.000002	1.850236e-06	-1.651788e-01	-0.003671
ORTHREGB	Converged	1.494111e-17	3.658101e-06	2.475044e-07	Converged	3.215014e-14	0.000006	1.179657e-07	-3.213520e-14	-2150.790750
STREGNE	Converged	8.039370e-13	5.617502e-06	8.223786e-07	Converged	5.577836e-11	0.000007	4.480641e-07	-5.497443e-11	-68.381510

```
In [13]:

statusses = base_df[['status']].join(new_df[['status']], lsuffix=' 0', rsuffix=' 1')
not_conv_to_conv = (statusses['status 0'] != 'Converged') & (statusses['status 1'] == 'Converged')
conv_to_not_conv = (statusses['status 0'] != 'Converged') & (statusses['status 1'] != 'Converged')

print(f'{len(base_df[not_conv_to_conv])} tests that didn\'t converge before do converge after the change')
print(f'{len(base_df[conv_to_not_conv])} tests that converged before no longer converge after the change')

display(HTML("shr>"))

print('The following tests went from not converging to converging')
display(lase_df[not_conv_to_conv])
display(HTML("shr>"))

print('The following tests went from converging to no longer converging')
display(lase_df[conv_to_not_conv])
display(lase_df[conv_to_not_conv])
display(lase_df[conv_to_not_conv])
```

The following tests went from not converging to converging

17 tests that didn't converge before do converge after the change 15 tests that converged before no longer converge after the change

	status	time i	inner iterations	outer iterations	inner convergence failures	f	3	δ	f evaluations	grad_f evaluations	g evaluations	$grad_g\ evaluations$	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	llxll	llyll
name																		
DIXCHLNG	MaxIter	4.186401	198128	200	198	4.274929e+02	6.037180e-05	9.861367e-09	868591	630333	868991	630333	929	0	194111	1.155681e+05	3.170685e+00	6.609778e+02
FLETCHER	MaxIter	0.519757	198053	200	198	3.916521e+11	3.848069e+03	1.948489e-04	657805	522197	658205	522197	102	0	195448	1.732051e+15	1.958489e+11	2.145433e+11
HEART6	MaxIter	0.749780	200000	200	200	0.000000e+00	7.746742e+13	2.484660e-01	451513	424880	451913	424880	61	0	198311	2.000002e+15	9.243138e+02	2.728664e+14
HIMMELP4	NotFinite	0.006182	1003	2	2	-5.173785e+01	inf	0.000000e+00	6685	4280	6690	4280	4	0	835	1.009950e+01	1.117146e+00	7.000000e+02
HS111	NotFinite	0.030507	1118	2	2	-6.807185e+01	inf	1.413320e+01	3334	2743	3339	2743	6	0	856	1.546189e+01	2.099655e+01	3.484931e+01
HS111LNP	NotFinite	0.031240	1118	2	2	-6.807185e+01	inf	1.413320e+01	3334	2743	3339	2743	6	0	856	1.546189e+01	2.099655e+01	3.484931e+01
HS25NE	NotFinite	0.011114	68	3	1	0.000000e+00	NaN	3.676122e-02	439	265	446	265	3	0	0	3.522620e+02	1.027904e+02	1.104119e+00
HS54	MaxIter	0.426629	195084	200	195	-1.559350e-01	7.553099e-05	1.818989e-12	430788	408342	431188	408342	374	0	194408	1.000000e+01	5.015975e+07	7.309451e-05
HS69	MaxIter	0.716477	196660	200	196	-9.567129e+02	1.321473e-04	2.263595e-08	421218	404121	421618	404121	116	0	195350	3.465424e+03	1.448803e+00	5.526732e+01
HS85	MaxTime	90.495024	25356	28	25	-2.183100e+00	1.066035e+00	8.735509e-04	685558	367609	685614	367609	6132	0	15493	2.545673e+05	7.769447e+02	7.280284e-01
HUESTIS	MaxTime	90.451918	18044	27	18	1.741224e+11	7.455878e-02	4.654383e-07	596573	316113	596627	316113	12	0	12952	2.728174e+09	4.172798e+05	6.412614e+08
MADSSCHJ	MaxTime	90.695403	77005	78	77	-4.992134e+03	4.109460e-03	1.473491e-06	205253	178359	205409	178359	45	0	75492	1.407266e+03	5.042370e+03	7.080371e-02
PFIT2	MaxIter	0.532009	197166	200	197	0.000000e+00	2.188930e+11	9.507778e-02	415812	401593	416212	401593	19	0	196816	1.732051e+15	5.159544e+03	1.193375e+14
POLAK2	MaxIter	0.435517	196120	200	196	5.460361e+01	1.203835e-04	3.418319e-06	416554	397902	416954	397902	124	0	192345	1.408843e+02	1.139313e+02	7.071098e-01
POLAK6	NotFinite	0.084765	10008	11	11	1.055962e+04	inf	2.257873e+04	88997	53869	89020	53869	863	0	8807	1.082407e+02	1.573103e+04	2.000000e+09
TRUSPYR1	MaxIter	0.956650	198113	200	198	3.687885e+03	5.982875e-01	7.750994e-12	452272	422329	452672	422329	238	0	180878	9.889866e+09	8.903843e+03	2.136464e-03
TRUSPYR2	MaxIter	2.111199	198150	200	198	8.601531e+03	2.301538e+02	1.649045e-10	662627	528078	663027	528078	326	0	185347	2.677791e+10	2.077591e+04	1.643112e-01
	status	time	inner iterations	s outer iterations	inner convergence failure	s ·	f E	ε δ	f evaluations	grad_f evaluation	s g evaluations	s grad_g evaluation:	s linesearch failure	L-BFGS failure	s L-BFGS rejected	ι ΙΙΣΙ		lixii liyii
name	status	: time	inner iterations	s outer iterations	inner convergence failure	s	f ε	Σ δ	f evaluations	grad_f evaluation	s g evaluations	s grad_g evaluation	s linesearch failure	L-BFGS failure	s L-BFGS rejecte	ι ΙΙΣΙ	ı	lixii liyii
name			inner iterations			8.226970e-08				grad_f evaluation:						i Σ		x y 2278
	Converged	0.006091		0 10	-		3 5.120984e-06	7.102124e-06	5 1001	•	7 102:	L 93	7 () ()		3.16	
DIXCHLNG	Converged	0.006091 0.000356	450	0 10 8 7		0 8.226970e-08	3 5.120984e-06 1 2.968983e-06	7.102124e-06 8.224130e-07	367	93	7 102:	L 93	7 () ()	0 1.616197e+04	3.16	2278 1.933652e-02
DIXCHLNG	Converged Converged	0.006091 0.000356 0.008234	450	0 10 8 7 7 6	1	8.226970e-08 0 1.165685e+03	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06	7.102124e-06 8.224130e-07 1.996276e-08	367 367 3 4669	93	7 102: 4 38: 5 468:	L 93'	7 (4) () 1.616197e+04) 1.140367e+03	3.16 5.49 20.57	2278 1.933652e-02 0186 8.363076e+00
DIXCHLNG FLETCHER HEART6 HIMMELP4	Converged Converged	0.006091 0.000356 0.008234 0.000103	450 111 165	0 10 8 7 7 6 6 2		0 8.226970e-08 0 1.165685e+03 0 0.000000e+00	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.000000e+00	5 7.102124e-06 5 8.224130e-07 6 1.996276e-08 0 0.000000e+00	367 367 3 4669 0 89	93 29 384	7 102: 4 38: 5 468: 7 9:	L 93 L 29 L 384	7 (4 (5 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7			0 1.616197e+04 0 1.140367e+03 0 1.370834e+02	3.16: 5.49i 20.57: 99.24	2278 1.933652e-02 0186 8.363076e+00 3945 1.986407e-06
DIXCHLNG FLETCHER HEART6 HIMMELP4	Converged Converged Converged Converged	0.006091 0.000356 0.008234 0.000103 0.023603	456 111 165	0 10 8 7 7 6 6 2 1 6	1	0 8.226970e-08 0 1.165685e+03 0 0.00000e+00 0 -5.901318e+03	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06	7.102124e-06 8.224130e-07 1.996276e-08 0.000000e+00 1.217640e-06	3 1001 7 367 8 4669 0 89 5 2267	93 29 384 2	7 102: 4 38: 5 468: 7 9: 6 227!	1 93 1 29 1 384 3 2 9 218	7 (4 (5 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6			1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00	3.16; 5.49; 20.57; 99.24;	2278 1.933652e-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.000000e+00
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP	Converged Converged Converged Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406	450 110 165	0 10 8 7 7 6 6 2 1 6	1	9 8.226970e-08 9 1.165685e+03 9 0.000000e+00 9 -5.901318e+03 9 -4.776110e+03	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06	5 7.102124e-06 5 8.224130e-07 6 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 1.217640e-06	5 1001 7 367 8 4669 0 89 5 2267 5 2267	93 29 384 2 218	7 102: 4 38: 5 468: 7 9: 6 227:	1 93 1 29 1 384 3 2 9 218	7 (44 (55 (77 (66 (66 (66 (66 (66 (66 (66 (66 (66			1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02	3.16i 5.49i 20.57: 99.24 12.4i	2278 1.933652e-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE	Converged Converged Converged Converged Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535	45/ 11/ 165' (108:	0 10 8 7 7 6 6 2 1 6 1 6 5 5	1	0 8.226970e-08 0 1.165685e+03 0 0.000000e+00 0 -5.901318e+03 0 -4.776110e+03 0 -4.776110e+03	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06 0 6.012810e-06	5 7.102124e-06 6 8.224130e-07 6 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 1.217640e-06 6 5.876295e-06	367 367 367 367 367 367 367 367 367 367	93 29 384 2 218 218	7 102: 4 38: 5 468: 7 9: 5 227: 6 227:	1 93 1 29 1 384 3 2 9 218 9 218	7 (44 (65) (65) (66) (66) (66) (66) (66) (66)			1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03	3.16: 5.49(20.57: 99.24: 12.4(12.4(55.91)	2278 1.933652e-02 0186 8.363076e+00 33945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01 8268 2.226323e+01
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54	Converged Converged Converged Converged Converged Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081	455 116 165 1083 1083	0 10 8 7 7 6 6 2 1 6 1 6 5 5 8 71	6	0 8.226970e-0i 0 1.165685e+0: 0 0.00000e+0i 0 -5.901318e+0: 0 -4.776110e+0: 0 0.000000e+0i	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06 1 4.483741e-06 0 6.012810e-06	5 7.102124e-06 6 8.224130e-07 6 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 5.876295e-06 6 2.661665e-06	36 1001 367 367 38 4669 39 89 5 2267 5 2267 5 296 5 258493	93 29 384 2 218 218	7 102: 4 38: 5 468: 7 9: 6 227: 9 30: 1 25863:	1 93 1 29 1 384 3 2 9 218 9 218 5 22 5 19329	7 (4 (5 (5 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6		0 1	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03	3.16: 5.49i 20.57: 99.24: 12.4i 55.91i 50159746.52:	2278 1.933652e-02 0186 8.363076e+00 33945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01 8268 2.226323e+01 9101 4.286998e-01
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69	Converged Converged Converged Converged Converged Converged Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600	456 111 165 108: 108: 101 65121	0 10 8 7 7 6 6 2 1 6 1 6 5 5 8 71	6	8.226970e-06 1.165685e+0: 0.000000e+00 -5.901318e+0: 0-4.776110e+0: 0.000000e+00 5-8.674088e-0:	3 5.120984e-06 1 2.968983e-06 2 5.517395e-06 1 0.00000e+00 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107e-06	5 7.102124e-06 5 8.224130e-07 5 1.996276e-08 0 0.00000e+00 5 1.217640e-06 5 1.217640e-06 5 2.661665e-06 6 2.241775e-06	36 1001 367 4669 3 89 5 2267 6 2267 6 258493 6 4718	93 29 384 2 218 218 22: 19329	7 102: 4 38: 5 468: 7 9: 6 227: 9 30: 1 25863: 0 473:	1 93 1 29 1 384 3 2 9 218 6 22 5 19329	7 (4 (5 (5 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6 (6		0 10 10 10 10 10 10 10 10 10 10 10 10 10	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03 5.1000000e+03	3.16: 5.49: 20.57: 99.24: 12.4: 12.4: 55.91: 50159746.52:	2278 1.933652e-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01 8268 2.226323e+01 9101 4.286998e-01 2845 4.646783e-05
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600	456 111 165 108: 108: 101 65122	0 10 8 7 7 6 6 2 1 6 1 6 5 5 8 71 0 8	6:	8.226970e-06 1.165685e+0: 0.000000e+00 -5.901318e+0: 0-4.776110e+0: 0.000000e+00 -8.674088e-0: 2-9.567130e+0;	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107e-06 0 6.849310e-06	5 7.102124e-06 5 8.224130e-07 5 1.996276e-08 0 0.00000e+00 5 1.217640e-06 5 5.876295e-06 5 2.661665e-06 6 2.241775e-06 5 1.792847e-06	5 1001 7 367 8 4669 9 89 5 2267 6 2267 6 258493 6 4718 6 15679	93 29 384 2 218 218 22 19329 447	7 102: 4 38: 5 468: 7 9: 6 227: 9 30: 1 25863: 0 473: 7 1569:	93 29 1 384 3 2 2 18 3 2 18 3 2 18 3 2 18 3 2 18 3 2 18 3 3 4 4 4 7 4 4 4 7 3 5 4 5 4 5	7 (4 5 5 7 6 6 6 6 6 9 9 (6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7)	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.447045e+02 1.545079e+03 5.100000e+01 3.1035024e+04	3.16; 5.49; 20.57; 99.24; 12.4; 12.4; 55.91; 50159746.52; 1.44; 769.69;	2278 1.933652e-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.00000e+00 8268 2.226323e+01 8269 2.26323e+01 4.266998e-01 22445 4.646783e-05 8806 5.526730e+01
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600 1.851901 35.469192	454 111 1657 (108: 108: 109: 6512(2196)	0 10 8 7 6 6 2 11 6 5 5 8 71 0 8 0 7 2 17	6:	9.8.226970e-06 9.1.165685e+05 9.0.00000e+06 9.5.901318e+05 9.4.776110e+05 9.4.776110e+05 9.0.000000e+06 9.8.674088e-05 9.9.567130e+06 9.2.215605e+06	3 5.120984e-06 1 2.968983e-06 2 5.517395e-06 1 0.00000e+00 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107e-06 0 6.849310e-06 1 9.140215e-06	5 7.102124e-06 5 8.224130e-07 5 1.996276e-08 0 .000000e+00 6 1.217640e-06 6 5.876295e-06 6 2.661665e-06 6 2.241775e-06 6 1.792847e-06 6 7.474518e-06	5 1001 7 367 8 4669 9 89 5 2267 6 2267 6 258493 6 4718 6 15679 6 198677	93 29 384 2 218 218 22 19329 447 545	7 102: 4 38: 5 468: 7 9: 5 227: 9 30: 1 25863: 0 473: 7 1569:	93 29 18 384 3 2 2 218 5 22 2 19329 4 447 545 10614	7 (4 4 5 5 7 6 6 6 6 6 6 6 6 6 6 7 7 6 7 7 6 7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03 1.000000e+01 3.1035024e+04 0.2723939e+01	3.16: 5.49: 20.57: 99.24: 12.4: 12.4: 55.91: 50159746.52: 1.44: 769.69: 417279.81:	2278 1.933652-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01 9101 4.28699e-01 22845 4.646783e-05 8806 5.526730e+01 39355 6.659620e-02
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85 HUESTIS MADSSCHJ	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600 1.851901 1.851901 1.85469192	454 111 1657 (108: 108: 109: 6512(219) 6567 705:	0 10 8 7 7 6 6 2 11 6 6 5 5 8 71 0 8 8 0 7 2 17 0 8 8	6:	0 8.226970e-06 0 1.165685e+05 0 0.00000e+06 0 5-901318e+05 0 -4.776110e+05 0 0.000000e+06 5 -8.674088e-05 2 -9.567130e+05 0 -2.215605e+06 7 1.741224e+15	3 5.120984e-06 1 2.968983e-06 0 5.517395e-06 1 0.00000e+00 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107e-06 0 6.849310e-06 1 9.140215e-06 3 4.298333e-08	5 7.102124e-06 6 8.224130e-07 6 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 1.217640e-06 6 2.661665e-06 6 2.241775e-06 6 1.792847e-06 7.474518e-06 8 6.611117e-09	5 1001 7 367 8 4669 9 89 5 2267 5 2267 5 258493 6 258493 6 4718 6 15679 198677	93 29 384 2 218 218 22 19329 447 545	7 102: 4 38: 5 468: 7 9: 6 227: 6 227: 9 300 1 25863: 7 1569: 1 1326:	93 29 18 384 3 2 9 218 3 22 18 5 5 19 22 18 4 447 3 545 1 10614 5 1241	7 (4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		0	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03 1.000000e+01 3.1035024e+04 0.2.723939e+01 3.3.150933e+07	3.16.5.499 20.57: 99.24 12.4: 12.4: 55.91 50159746.52: 1.444 769.699 417279.81: 5042.36:	2278 1.933652-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.000000e+00 8268 2.226323e+01 8268 2.226323e+01 8268 5.526730e+01 9355 6.059620e-02 3257 6.412639e+08
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85 HUESTIS MADSSCHJ	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600 1.851901 35.469192 6.021147	454 111 1657 (108: 109: 101 65121 2194 656 7055	0 10 8 7 7 6 6 2 1 6 1 6 5 5 8 71 1 0 8 8 0 7 2 17 0 8	6:	8.226970e-06 1.165685e+0: 0.000000e+06 0.5.901318e+0: 0.4.776110e+0: 0.000000e+06 0.5.8674088e-0: 0.5.8674088e-0: 0.2.215605e+06 1.741224e+1: 0.4.992134e+03	3 5.120984e-06 1 2.968983e-06 2 5.517395e-06 1 0.000000e+07 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107-06 1 9.140215e-06 3 4.298333e-08 2 9.497721e-06	5 7.102124e-06 5 8.224130e-07 6 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 2.661665e-06 6 2.241778e-06 7.474518e-06 6 6.611117e-09 6 7.472867e-10	5 1001 7 367 8 4669 9 89 6 2267 6 2267 6 25493 6 4718 6 15679 6 198677 9 13249	93 29 384 2 218 218 22 19329 447 545 10614	7 1022 4 38.8 5 468.7 7 9: 5 2277 6 2277 6 2277 7 1569; 7 1569; 7 1569; 1 1326; 7 495;	1 93 1 29 1 384 3 2 9 218 9 218 6 22: 6 19329 4 447 3 545 1 10614 5 1241	7 (4) 5 5 (6) 6 6 6 6 7 7 (7) 6 7 7 7 7 7 7 8 88 81 1 7 7 7 7 7 7 7 7 7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.616197e+04 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.545079e+03 5.100000e+03 1.035024e+04 2.723939e+01 3.150933e+07 4.1421197e+02	3.16.5.49 20.57 99.24 12.41 12.41 55.91 5015976.52: 1.444 769.69 417279.81 5042.36 4.12	2278 1.933652-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.00000e+00 8268 2.226323e+01 92685 4.6465898-01 22445 4.6465898-05 5.526730e+01 9355 6.059620e-02 3257 6.412639e+08 9836 7.077021e-02
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85 HUESTIS MADSSCHJ PFIT2	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600 1.851901 35.469192 6.021147 0.006371	459 459 1111 1655 6 1088 1088 1088 1098 1098 1098 1098 1098	0 10 8 7 7 6 6 2 1 6 1 6 5 5 8 71 0 8 0 7 2 17 0 8 5 7	6:	8.226970e-06 1.165685e+0: 0.000000e+06 0.5.901318e+0: 0.4.776110e+0: 0.000000e+06 0.5.901318e-0: 0.2.215605e+06 1.741224e+1: 0.4.992134e+0: 0.000000e+06	3 5.120984e-06 1 2.968983e-06 2 5.517395e-06 1 0.000000e+00 1 4.483741e-06 6 0.012810e-06 1 3.805281e-06 2 9.010107e-06 1 9.140215e-06 3 4.298333e-08 9 9.497721e-06 1 9.020404e-06	5 7.102124e-06 5 8.224130e-07 5 1.996276e-08 0 0.00000e+00 6 1.217640e-06 6 1.217640e-06 6 2.66166e-06 6 2.244175e-06 6 7.474518e-06 6 6.611117e-09 6 7.472867e-10 6 8.985275e-06	5 1001 7 367 8 4669 9 89 6 2267 6 2267 6 258493 6 47118 6 15679 6 198677 0 13249 0 4938 6 53165	93 29 384 2 218 218 22 19329 447 545 10614 1241	7 1022 4 38.8 5 468.8 7 9: 5 2277 6 2277 6 2277 7 1569 7 1569 7 1569 7 1470 7 495 3 5320	1 93 1 29 1 384 3 2 9 218 9 218 6 22: 6 427 1 9329 1 4477 6 545 1 10614 5 1241 2 362	7 (4) (5) (5) (6) (6) (7) (7) (7) (7) (8) (8) (8) (9) (9) (9) (9) (9		0	1.616197e+00 1.140367e+03 1.370834e+02 1.732051e+00 1.447045e+02 1.447045e+02 1.545079e+03 1.005002e+04 2.7723939e+03 3.150933e+07 4.1421197e+02 0.1163590e+03	3.16.5.49 20.57.99.24 12.44:12.44:55.91 50159746.52 1.444:779.91:5042.366 4.17279.81:5042.366	2278 1.933652-02 0186 8.363076e+00 3945 1.986407e-06 7166 0.00000e+00 8268 2.226323e+01 8268 2.226323e+01 22445 4.646738-05 8806 5.526730e+01 9355 6.059620e-02 3257 6.412639e+08 9836 7.077021e-02 7.059405e-07
DIXCHLNG FLETCHER HEART6 HIMMELP4 HS111 HS111LNP HS25NE HS54 HS69 HS85 HUESTIS MADSSCHJ PFIT2	Converged	0.006091 0.000356 0.008234 0.000103 0.023603 0.023406 0.008535 0.223081 0.007600 1.851901 35.469192 6.021147 0.006371 0.063532 0.063532	455 455 1111 1655 665 1656 1656 1656 165	0 10 8 7 6 6 2 1 6 1 6 5 5 8 71 0 8 8 7 17 0 8 8 5 7 4 18 3 10	6:	8.226970e-06 1.165685e+0: 0.000000e+06 0.5.901318e+0: 0.4.776110e+0: 0.000000e+06 0.5.8674088e-0: 2.9.567130e+0: 0.2.215605e+06 1.741224e+1: 5.4.992134e+0: 0.000000e+06 8.5459814e+0:	3 5.120984e-06 1 2.969983e-06 5.517395e-06 1 0.00000e-10 1 4.483741e-06 1 4.483741e-06 1 3.805281e-06 2 9.010107e-06 6.849310e-06 9 1.420516-06 9 1.420516-06 1 9.142215-06 1 9.02040e-06 1 7.821324e-07	7.102124e-06 5.8.224130e-07 5.1996276e-08 6.000000e+00 6.0000000e+00 6.1.217640e-06 6.1.217640e-06 6.2.241775e-06 6.1.792847e-06 7.474518e-06 6.611117e-09 7.472867e-10 8.985275e-06 7.9.783216e-07	3 1001 3 4669 3 4669 5 2267 6 2267 6 258493 6 4718 6 4788 6 4788 7 15679 1 19674 1 4938 6 53165 7 15182	93 29 384 2 218 218 22 19329 447 545 10614 1241 362 3968	7 1022 4 38: 5 468: 5 2277 5 2276 6 2277 7 1569: 7 1569: 1 128633 7 4953 7 4953 3 5320.	1 93 1 29 2 384 3 2 9 218 6 22 1 19329 4 447 3 545 1 10614 2 362 2 3968 2 1247	7		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.616197e+0.0 1.140367e+03 1.370834e+02 1.732051e+0.0 1.447745e+0.0 1.447745e+0.0 1.545079e+03 3.1035024e+0.4 2.723939e+0.3 3.150933e+0.1 4.1421197e+02 1.163590e+03 4.1412048e+0.1	3.16.5.499 20.57: 99.24 12.44: 12.44: 55.91 50159746.52: 417279.81: 504.236: 4.122: 54.59944.06:	2278 1.933652e-02 01368 8.363076e+00 3945 1.986407e-06 7166 0.00000e+00 82682 2.226323e+01 9101 4.286998e-01 2845 4.646783e-05 8806 5.526730e+01 3925 6.412639e+08 3257 6.412639e+08 3267 7.077021e-02 3106 7.059405e-07

The following tests went from converging to no longer converging

84791

88

TRUSPYR2 Converged 0.786710

	status	time	inner iterations	outer iterations	inner convergence failures	s f	ε		δ f evaluations	$grad_f\ evaluations$	g evaluations	$grad_g\ evaluations$	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	llxII	llyll
name																		
COOLHANSLS	Converged	0.006272	1201	7	1	9.798878e-07	8.271621e-06	0.000000e+0	0 3269	2814	3283	2814	10	0	777	0.000000e+00	1.775247	0.000000e+00
DUALC8	Converged	1.668640	11183	18	11	1.830936e+04	7.893788e-06	3.984041e-0	8 41579	31851	41615	31851	10	0	10821	1.000000e+05	0.635296	3.321140e+04
EXPFITC	Converged	1.160439	3445	9	3	3 2.330257e-02	6.073643e-06	1.782796e-0	7 19802	13300	19820	13300	9	0	2040	8.891412e+03	14.588723	8.174515e-02
GROUPING	Converged	0.114520	3815	10	1	6.454165e+00	7.952231e-06	4.595133e-0	6 8694	8154	8714	8154	2	0	900	2.497788e+03	4.472133	3.350068e+01
HIE1327D	Converged	13.281459	40405	42	39	5.189381e+02	8.739009e-06	4.193481e-0	7 83970	82417	84054	82417	35	0	0	1.224777e+04	1462.953295	1.490291e+00
HIMMELBI	Converged	0.149983	3293	7	2	-1.735570e+03	6.428436e-06	2.281886e-0	6 8396	7499	8410	7499	1	0	0	6.593030e+01	229.440168	2.837628e-01

404930

285454

405106

285454

0

78260 2.835647e+04

12.933415 4.608709e+01

83 1.122875e+01 4.586946e-06 4.041316e-07

	status	time	inner iterations	outer iterations	inner convergence failures	1	fε	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙ	llxII	llyll
name																		
HS112	Converged	0.004038	327	6	0	-4.776110e+01	4.435028e-06	2.964810e-06	1090	868	1102	868	5	0	0	1.268322e+02	0.940278	2.226322e+01
HS113	Converged	0.679438	60332	66	60	2.430621e+01	9.832530e-06	1.906428e-06	399025	259190	399157	259190	48	0	59584	2.975787e+01	18.797608	2.290198e+00
HS75	Converged	0.094872	13422	20	13	5.174413e+03	4.009255e-06	2.338383e-07	65902	46185	65942	46185	14	0	12618	7.529116e+07	1207.646112	2.779059e+03
LANCZOS1	. Converged	0.050237	3014	10	2	0.000000e+00	8.319030e-06	2.629056e-06	7783	6889	7803	6889	16	0	0	2.929273e+03	6.155768	3.482617e-01
LUKVLI13	Converged	13.474210	1511	6	0	1.321855e+02	9.598229e-06	1.116542e-06	4545	3774	4557	3774	1	0	0	3.478595e+02	75.039576	3.225869e+00
MSQRTA	Converged	91.359677	24350	27	23	0.000000e+00	9.666905e-06	2.504182e-07	49888	49327	49942	49327	14	0	0	1.881469e+04	22.681906	5.003778e-04
POWELLBS	Converged	0.004552	2121	9	2	0.000000e+00	1.179581e-06	1.276411e-06	4899	4504	4917	4504	6	0	1993	1.000000e+05	9.094587	2.377794e-09
PRIMALC5	Converged	6.345865	72534	78	72	-4.272326e+02	8.748268e-06	1.369136e-08	318610	231230	318766	231230	3	0	66078	9.831988e+01	460.136503	5.192972e-01
SNAKE	Converged	1.143298	198956	200	198	1.999980e-02	2 1.727304e-08	9.999900e-07	1481225	939709	1481625	939709	186	0	6	1.414214e+15	0.028284	1.414214e+04
								_										
	status	time	inner iterations	outer iterations	inner convergence failures	f	3	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	lixil	llyll
name																		
COOLHANSLS		0.831902		200	195		4.845191e-05		397322	390995	397722	390995	1	0		0.000000e+00		0.000000e+00
DUALC8		32.326171	196090	200	196		4.957510e-03		801228	593937	801628	593937	0	0		1.000000e+05		3.321141e+04
EXPFITC		68.033419		200	194		2.331579e-05		1157660	770878	1158060	770878	0	0		6.770601e+03		8.175375e-02
GROUPING		0.076323		6	1	2.506553		2.115577e-02	6100	5345	6113	5345	0	0		2.448466e+03		2.082531e+01
HIE1327D		64.062934	198781	200	198			1.222862e-06	400690	399167	401090	399167	0	0			1462.196612	
HIMMELBI		0.302787	6278	7	6	-1735.569664		8.675181e-04	16762	14651	16777	14651	0	0		4.469830e+02		2.836057e-01
	NotFinite	0.000502	20	1	1		NaN	NaN	47	46	50	46	0	0		1.560565e+01		2.199622e+01
HS113		3.143446	195267	200	195	24.306209		4.502346e-07	2149165	1266874	2149565	1266874	0	0		3.840977e+01		2.290201e+00
HS75		1.636809	194335	200	194		1.502072e-01		1184527	784105	1184927	784105	0	0			1207.646097	
LANCZOS1		3.899305	194386	200	194			3.081129e-04	634509	506351	634909	506351	0	0		4.898979e+15		9.591571e+11
	MaxTime :		3224	7	2	132.185469	4.681197e-05		59479	32922	59493	32922	0	0		3.478595e+02		3.225866e+00
		90.958897	24649	27	24		2.421903e-05		49435	49384	49489	49384	0	0		1.663022e+04		6.727104e-04
POWELLBS		0.373871	192112	200	192		1.678915e+08		565437	470754	565837	470754	0	0		1.000000e+15		1.073931e+11
PRIMALC5	MaxIter	31.143359	195526	200	195	-427.232568	3.792153e-05	1.822052e-07	1632574	1008315	1632974	1008315	2	0	172709	9.852406e+01	460.136464	5.192958e-01
SNAKE	Maxiter	4.789693	199014	200	199		1.752792e+09		9193590	4076661	9193990	4076661	0	0			665.694148	

```
In [14]: both_converged = (base_df['status'] == 'Converged') & (new_df['status'] == 'Converged')
cmp = compare_results(base_df[both_converged], new_df[both_converged], ['status', 'time', 'f evaluations', 'grad_f evaluations'])
cmp['time imprv'] = cmp['time o'] - cmp['time o']
cmp['teval time imprv'] = cmp['f evaluations o'] - cmp['revaluations o']
cmp['reval imprv'] = cmp['f evaluations o'] - cmp['revaluations o']
cmp['reval imprv'] = cmp['grad_f evaluations o'] - cmp['grad_f evaluations o']
cmp['reval imprv'] = cmp['grad_f evaluations o'] - cmp['grad_f evaluations o']
cmp['reval imprv'] = cmp['grad_f evaluations o'] - cmp['grad_f evaluations o']
cmp['reval imprv'] = cmp['grad_f evaluations o'] - cmp['grad_f evaluations o']
cmp['reval imprv'] = cmp['grad_f evaluations o'] - cmp['grad_f evaluations o']
cmp['reval imprv'] = cmp['grad_f eval imprv'].sum() / cmp['grad_f evaluations o']
cmp['reval improvement: {cmp['time imprv'].sum()} / cmp['time o'].sum():.02f}%")
print(f'Ret grad_f eval improvement: {cmp['grad_f eval imprv'].sum()} / cmp['grad_f eval improvement: {cmp['grad_f eval improv'] / {cmp['grad_f
```

Net time improvement: 197.700445
Relative time improvement: 30.60%
Net f eval improvement: 1485490
Relative f eval improvement: 23.24%
Net grad_f eval improvement: 1212015
Relative grad_f eval improvement: 26.11%
positive is good, negative is bad

Out[14]:

name														
3РК	Converged	6.20e-01	188892	183547	Converged	5.31e-01	156057	155356	8.93e-02	1.44e-01	32835	1.74e-01	28191	1.54e-01
A5NSDSDM		8.42e+00	14715	14534	Converged	1.88e+01	18661	18624	-1.04e+01	-1.23e+00	-3946	-2.68e-01	-4090	-2.81e-01
	Converged		14715	14534	Converged	9.58e+00	18661	18624	-6.53e-01	-7.31e-02	-3946	-2.68e-01	-4090	-2.81e-01
	Converged	8.16e-04	838	586	Converged	4.84e-04	348	330	3.32e-04	4.07e-01	490	5.85e-01	256	4.37e-01
	Converged	1.14e-01	57594	34905	Converged	8.90e-02	52913	29561	2.55e-02	2.23e-01	4681	8.13e-02	5344	1.53e-01
ALLINITC	Converged	5.08e-01	280252	176974	Converged	2.04e-01	95366	62588	3.04e-01	5.98e-01	184886	6.60e-01	114386	6.46e-01
ALSOTAME	Converged	1.24e-04	87	68	Converged	1.08e-04	87	68	1.60e-05	1.29e-01	0	0.00e+00	0	0.00e+00
AVGASA	Converged	4.91e-04	248	242	Converged	4.87e-04	248	242	4.00e-06	8.15e-03	0	0.00e+00	0	0.00e+00
AVGASB	Converged	7.68e-04	440	352	Converged	5.83e-04	302	290	1.85e-04	2.41e-01	138	3.14e-01	62	1.76e-01
BA-L1	Converged	1.51e-02	682	398	Converged	6.65e-03	263	208	8.41e-03	5.59e-01	419	6.14e-01	190	4.77e-01
BA-L1SP	Converged	5.48e-02	726	486	Converged	1.93e-02	201	194	3.55e-02	6.47e-01	525	7.23e-01	292	6.01e-01
BEALENE	Converged	6.16e-04	620	371	Converged	2.26e-04	132	117	3.90e-04	6.33e-01	488	7.87e-01	254	6.85e-01
BIGGSC4	Converged	9.46e-04	1153	717	Converged	7.56e-04	912	584	1.90e-04	2.01e-01	241	2.09e-01	133	1.85e-01
воотн	Converged	1.48e-04	205	128	Converged	9.00e-05	40	41	5.80e-05	3.92e-01	165	8.05e-01	87	6.80e-01
BOX3NE	Converged	8.47e-04	402	267	Converged	3.85e-04	146	128	4.62e-04	5.45e-01	256	6.37e-01	139	5.21e-01
BRITGAS	Converged	4.22e-01	5163	4910	Converged	6.20e-01	6597	6543	-1.97e-01	-4.67e-01	-1434	-2.78e-01	-1633	-3.33e-01
BROWNBSNE	Converged	2.38e-04	462	183	Converged	1.24e-04	237	50	1.14e-04	4.79e-01	225	4.87e-01	133	7.27e-01
BT1	Converged	2.37e-04	423	236	Converged	1.15e-04	84	67	1.22e-04	5.15e-01	339	8.01e-01	169	7.16e-01
BT10	Converged	2.01e-04	245	200	Converged	1.82e-04	167	161	1.90e-05	9.45e-02	78	3.18e-01	39	1.95e-01
BT11	Converged	5.49e-04	486	407	Converged	3.68e-04	306	305	1.81e-04	3.30e-01	180	3.70e-01	102	2.51e-01
BT12	Converged	9.19e-04	1148	798	Converged	4.76e-04	408	378	4.43e-04	4.82e-01	740	6.45e-01	420	5.26e-01
BT13	Converged	3.34e-03	3999	3038	Converged	6.07e-03	8345	5890	-2.73e-03	-8.19e-01	-4346	-1.09e+00	-2852	-9.39e-01
BT2	Converged	2.91e-03	3766	2420	Converged	5.03e-04	451	396	2.41e-03	8.27e-01	3315	8.80e-01	2024	8.36e-01
ВТ3	Converged	5.05e-04	618	415	Converged	2.51e-04	206	198	2.54e-04	5.03e-01	412	6.67e-01	217	5.23e-01
BT4	Converged	4.63e-04	640	430	Converged	2.82e-04	250	230	1.81e-04	3.91e-01	390	6.09e-01	200	4.65e-01
ВТ5	Converged	1.84e-02	6612	6339	Converged	2.09e-02	25982	17062	-2.48e-03	-1.35e-01	-19370	-2.93e+00	-10723	-1.69e+00
ВТ6	Converged	1.52e-03	812	617	Converged	8.30e-04	346	345	6.90e-04	4.54e-01	466	5.74e-01	272	4.41e-01
ВТ7	Converged	6.21e-03	5676	5238	Converged	5.82e-03	4761	4622	3.85e-04	6.20e-02	915	1.61e-01	616	1.18e-01
ВТ8	Converged	2.39e-04	278	202	Converged	1.74e-04	140	140	6.50e-05	2.72e-01	138	4.96e-01	62	3.07e-01
ВТ9	Converged	2.62e-04	309	264	Converged	2.28e-04	233	227	3.40e-05	1.30e-01	76	2.46e-01	37	1.40e-01
BYRDSPHR		4.43e-04	608	392	Converged	3.05e-04	384	283	1.38e-04	3.12e-01	224	3.68e-01	109	2.78e-01
C-RELOAD		8.18e+00	84588	81408	Converged	4.47e+00	41835	40857	3.71e+00	4.54e-01	42753	5.05e-01	40551	4.98e-01
	Converged		290	197	Converged	2.44e-04	210	156	-2.00e-05	-8.93e-02	80	2.76e-01	41	2.08e-01
CHACONN1		3.33e-04	370	253	Converged	1.88e-04	122	122	1.45e-04	4.35e-01	248	6.70e-01	131	5.18e-01
CHACONN2	-		394	279	Converged	2.06e-04	148	150	1.65e-04	4.45e-01	246	6.24e-01	129	4.62e-01
CLUSTER	-	2.68e-04	203	160	Converged	1.96e-04	165	113	7.20e-05	2.69e-01	38	1.87e-01	47	2.94e-01
CONGIGMZ		5.96e-04	649	508	Converged	4.69e-04	523	388	1.27e-04	2.13e-01	126	1.94e-01	120	2.36e-01
	Converged	5.22e-04	1027	616	Converged	1.39e-04	174	156	3.83e-04	7.34e-01	853	8.31e-01	460	7.47e-01
DECONVE		1.55e-01 5.02e-02	10490 1794	9528 1659	Converged	1.48e-01 5.49e-02	9018 1904	8472 1781	6.99e-03 -4.70e-03	4.49e-02 -9.36e-02	1472 -110	1.40e-01 -6.13e-02	1056 -122	1.11e-01 -7.35e-02
DECONVE		7.31e-02	4297	4303	Converged		4297	4303	-4.70e-03	-9.36e-02 -2.56e-02	-110	0.00e+00	-122	-7.35e-02 0.00e+00
DECONVNE		4.14e-03	4297 275	239	Converged	7.50e-02 3.33e-03	199	4303	8.12e-04	1.96e-01	76	2.76e-01	37	1.55e-01
DEMYMALO	-	4.14e-03	607	393	Converged	1.90e-04	238	171	2.28e-04	5.45e-01	369	6.08e-01	222	5.65e-01
	Converged	3.62e-01	289754	258005	Converged	1.36e-01	131179	84529	2.28e-04 2.26e-01	6.24e-01	158575	5.47e-01	173476	6.72e-01
	Converged	7.63e-03	289754	258005	Converged	9.99e-03	2341	2322	-2.35e-03	-3.08e-01	158575	2.09e-02	-106	-4.78e-02
DISCS		1.58e-01	14074	13567	Converged	3.84e-01	37771	32777	-2.26e-01	-1.43e+00	-23697	-1.68e+00	-19210	-1.42e+00
	Converged	2.17e-01	767	720	Converged	9.43e-02	613	607	1.23e-01	5.66e-01	154	2.01e-01	113	1.57e-01
	Converged		407	371	Converged	6.82e-02	376	377	1.25e-01	1.80e-02	31	7.62e-02	-6	-1.62e-02
	Converged		439		Converged	9.44e-02	402	404	-9.22e-04	-9.87e-03	37	8.43e-02	-42	-1.16e-01
DUALS	Convergeu	5.546-02	409	302	SSIIVEIGEU	J.446-UZ	402	404	3.226-04	-3.076-03	31	0.436-02	-42	-1.106-01

status 0 time 0 f evaluations 0 grad_f evaluations 0 grad_f evaluations 0 status 1 time 1 f evaluations 1 grad_f evaluations 1 time impror rel time impror rel time impror rel feval impror rel feval impror rel grad_f eval

	status 0	time 0	f evaluations 0	grad_f evaluations 0	status 1	time 1	f evaluations 1	grad_f evaluations 1	time imprv	rel time imprv	f eval imprv	rel f eval imprv	grad_f eval imprv	rel grad_f eval imprv
name DUAL4	Converged	1.96e-02	196	159	Converged	4.72e-02	118	120	-2.77e-02	-1.41e+00	78	3.98e-01	39	2.45e-01
	Converged		6705	6473	Converged	5.19e-02	2433	2323	9.07e-02	6.36e-01	4272	6.37e-01	4150	6.41e-01
	Converged	9.01e-02	4323	4234	Converged	1.35e-01	6428	6230	-4.50e-02	-5.00e-01	-2105	-4.87e-01	-1996	-4.71e-01
DUALC5	Converged	1.46e+00	68126	40069	Converged	5.75e-02	2232	2189	1.40e+00	9.61e-01	65894	9.67e-01	37880	9.45e-01
EG2	Converged	3.57e-03	29	24	Converged	3.62e-03	29	24	-4.50e-05	-1.26e-02	0	0.00e+00	0	0.00e+00
EQC	Converged	9.24e-02	37934	19972	Converged	9.24e-02	37934	19972	3.40e-05	3.68e-04	0	0.00e+00	0	0.00e+00
EXPFITA	Converged	7.06e-03	1999	1490	Converged	5.06e-03	1403	1138	2.00e-03	2.83e-01	596	2.98e-01	352	2.36e-01
EXPFITB		2.53e-02	1743	1448	Converged	1.96e-02	1327	1212	5.65e-03	2.24e-01	416	2.39e-01	236	1.63e-01
EXTROSNBNE	-	9.25e-01	9868	9391	Converged		10714	10650	-1.33e-01	-1.44e-01	-846	-8.57e-02	-1259	-1.34e-01
	Converged	1.36e-03	574	471	Converged	1.19e-03	420	395	1.71e-04	1.26e-01	154	2.68e-01	76	1.61e-01
	Converged	3.24e-01	10234	9017	Converged Converged	2.90e-01	9332	8560	3.37e-02	1.04e-01	902	8.81e-02	457	5.07e-02
FERRISDC GAUSSELM		3.98e-02 6.86e+01	3 8104	7913	Converged	3.73e-02	3 8250	3 8177	2.51e-03 -2.30e+01	6.30e-02 -3.36e-01	-146	0.00e+00 -1.80e-02	-264	0.00e+00 -3.34e-02
	Converged	4.20e-04	692	427	Converged	2.23e-04	223	185	1.97e-04	4.69e-01	469	6.78e-01	242	5.67e-01
		2.33e-04	149	148	Converged	1.96e-04	149	148	3.70e-05	1.59e-01	0	0.00e+00	0	0.00e+00
	Converged	3.22e-04	338	254	Converged	2.18e-04	172	162	1.04e-04	3.23e-01	166	4.91e-01	92	3.62e-01
		2.60e-01	624	453	Converged	2.97e-01	725	439	-3.69e-02	-1.42e-01	-101	-1.62e-01	14	3.09e-02
GMNCASE1	Converged	2.13e+00	3107	2905	Converged	1.81e+00	2753	2746	3.24e-01	1.52e-01	354	1.14e-01	159	5.47e-02
GMNCASE2	Converged	7.09e+00	8392	8191	Converged	6.61e+00	7854	7848	4.78e-01	6.75e-02	538	6.41e-02	343	4.19e-02
GMNCASE3	Converged	6.07e+00	6928	6837	Converged	4.94e+00	7072	7059	1.12e+00	1.85e-01	-144	-2.08e-02	-222	-3.25e-02
GOFFIN	Converged	2.33e-02	1460	1185	Converged	2.35e-02	1384	1148	-1.18e-04	-5.06e-03	76	5.21e-02	37	3.12e-02
GOULDQP1		2.68e-01	151343	86451	Converged	3.47e-01	197719	109645	-7.91e-02	-2.95e-01	-46376	-3.06e-01	-23194	-2.68e-01
	Converged	3.44e-02	33	3	Converged	4.98e-02	33	3	-1.54e-02	-4.46e-01	0	0.00e+00	0	0.00e+00
GOULDQP3		4.22e+00	983	788	Converged	2.11e+00	703	664	2.11e+00	5.00e-01	280	2.85e-01	124	1.57e-01
HAIFAS		4.79e-04	323	211	Converged	4.07e-04	247	170	7.20e-05	1.50e-01	76	2.35e-01	41	1.94e-01
HALDMADS	-	2.22e-02	5119	4399	Converged	8.04e-03	1649	1552	1.41e-02	6.37e-01	3470	6.78e-01	2847	6.47e-01
HARKERP2		1.22e+01 1.45e-03	3442 2169	2517 1294	Converged Converged	1.22e-03	3872 1792	2813 1090	-9.34e-01 2.25e-04	-7.66e-02 1.55e-01	-430 377	-1.25e-01 1.74e-01	-296 204	-1.18e-01 1.58e-01
	Converged	2.69e-03	764	719	Converged	3.21e-03	678	672	-5.14e-04	-1.91e-01	86	1.13e-01	47	6.54e-02
	Converged	4.97e-04	536	367	Converged	2.58e-04	234	214	2.39e-04	4.81e-01	302	5.63e-01	153	4.17e-01
HELIXNE		2.82e-04	252	208	Converged	2.11e-04	154	149	7.10e-05	2.52e-01	98	3.89e-01	59	2.84e-01
HET-Z	Converged	6.21e-03	71	77	Converged	6.08e-03	71	77	1.27e-04	2.04e-02	0	0.00e+00	0	0.00e+00
HIE1372D	Converged	8.14e+01	1724784	972028	Converged	4.76e+00	68902	68754	7.67e+01	9.42e-01	1655882	9.60e-01	903274	9.29e-01
HILBERTA	Converged	6.00e-05	29	30	Converged	4.20e-05	29	30	1.80e-05	3.00e-01	0	0.00e+00	0	0.00e+00
HILBERTB	Converged	1.30e-04	21	26	Converged	1.22e-04	21	26	8.00e-06	6.15e-02	0	0.00e+00	0	0.00e+00
HIMMELBA	Converged	1.35e-04	213	136	Converged	1.79e-04	57	58	-4.40e-05	-3.26e-01	156	7.32e-01	78	5.74e-01
HIMMELBB	Converged	8.00e-05	90	74	Converged	1.08e-04	90	74	-2.80e-05	-3.50e-01	0	0.00e+00	0	0.00e+00
	Converged	1.41e-04	218	140	Converged	6.40e-05	39	39	7.70e-05	5.46e-01	179	8.21e-01	101	7.21e-01
HIMMELBCLS		6.80e-05	103	65	Converged	4.60e-05	29	31	2.20e-05	3.24e-01	74	7.18e-01	34	5.23e-01
	Converged	2.56e-04	337	221	Converged	1.13e-04	81	82	1.43e-04	5.59e-01	256	7.60e-01	139	6.29e-01
HIMMELBG		6.80e-05 9.40e-05	102 118	64 79	Converged	9.20e-05 7.90e-05	32 32	30	-2.40e-05 1.50e-05	-3.53e-01 1.60e-01	70 86	6.86e-01 7.29e-01	34 46	5.31e-01 5.82e-01
	Converged Converged	4.05e-02	4787	3879	Converged Converged	3.68e-02	3567	3073	3.74e-03	9.24e-02	1220	2.55e-01	806	2.08e-01
	Converged	1.18e-03	3647	1985	Converged	8.20e-05	120	57	1.10e-03	9.31e-01	3527	9.67e-01	1928	9.71e-01
	Converged	1.02e-02	16539	8753	Converged	1.45e-04	199	57	1.00e-02	9.86e-01	16340	9.88e-01	8696	9.93e-01
HIMMELP3	Converged	2.91e-03	4316	2291	Converged	9.40e-05	89	27	2.82e-03	9.68e-01	4227	9.79e-01	2264	9.88e-01
HIMMELP5	Converged	1.39e-04	104	59	Converged	8.70e-05	39	25	5.20e-05	3.74e-01	65	6.25e-01	34	5.76e-01
HIMMELP6	Converged	1.34e-04	104	59	Converged	8.40e-05	39	25	5.00e-05	3.73e-01	65	6.25e-01	34	5.76e-01
HONG	Converged	3.88e-04	351	266	Converged	2.76e-04	200	190	1.12e-04	2.89e-01	151	4.30e-01	76	2.86e-01
	Converged		350		Converged	1.35e-04	169	113	1.18e-04	4.66e-01	181	5.17e-01	103	4.77e-01
	Converged		300508		Converged	1.16e-01	83466	50988	2.98e-01	7.19e-01	217042	7.22e-01	242158	8.26e-01
HS100LNP			920	795	Converged	5.52e-03	4159	3385	-4.19e-03	-3.14e+00	-3239	-3.52e+00	-2590	-3.26e+00
HS100MOD		2.07e-02	14956	13638	Converged	6.82e-02	29957	18186	-4.76e-02	-2.30e+00	-15001	-1.00e+00	-4548	-3.33e-01
HS105 HS107			1128 305521	879 241881		1.53e-01	1292 1284261	951 832465	-1.67e-02 -2.31e+00	-1.23e-01 -2.83e+00	-164 -978740	-1.45e-01 -3.20e+00	-72 -590584	-8.19e-02 -2.44e+00
	Converged Converged		408	241881	Converged Converged		1284261	832405	1.26e-04	-2.83e+00 1.37e-01	-978740 77	1.89e-01	-590584	1.07e-01
	Converged		98	96			98	96	-7.00e-06	-6.14e-02	0	0.00e+00	0	0.00e+00
	Converged		21	20			21	20	-4.00e-06	-4.08e-02	0	0.00e+00	0	0.00e+00
HS118		2.38e-03	978	774	Converged	1.70e-03	691	638	6.79e-04	2.85e-01	287	2.93e-01	136	1.76e-01
HS119			9748	9087	Converged	3.98e-01	33684	21017	-2.52e-01	-1.73e+00	-23936	-2.46e+00	-11930	-1.31e+00
		2.52e-04	355	229	Converged	1.27e-04	103	90	1.25e-04	4.96e-01	252	7.10e-01	139	6.07e-01
HS13	Converged	2.15e-04	217	184	Converged	1.43e-04	139	145	7.20e-05	3.35e-01	78	3.59e-01	39	2.12e-01
HS14	Converged	3.21e-04	498	303	Converged	1.78e-04	99	97	1.43e-04	4.45e-01	399	8.01e-01	206	6.80e-01
HS15	Converged	4.28e-04	591	376	Converged	4.24e-04	591	376	4.00e-06	9.35e-03	0	0.00e+00	0	0.00e+00
	Converged	5.46e-04	881	509	Converged	1.22e-04	100	87	4.24e-04	7.77e-01	781	8.86e-01	422	8.29e-01
HS17		2.08e-04	261	178	Converged	1.28e-04	103	98	8.00e-05	3.85e-01	158	6.05e-01	80	4.49e-01
HS18	Converged	3.54e-04	491	308	Converged	1.47e-04	136	122	2.07e-04	5.85e-01	355	7.23e-01	186	6.04e-01

	status 0	time 0	f evaluations 0	grad_f evaluations 0	status 1	time 1	f evaluations 1	grad_f evaluations 1	time imprv	rel time imprv	f eval imprv	rel f eval imprv	grad_f eval imprv	rel grad_f eval imprv
name HS19	Converged	9.13e-02	103574	101400	Converged	4.20e-02	54006	41845	4.94e-02	5.40e-01	49568	4.79e-01	59555	5.87e-01
	Converged Converged	7.90e-05	76	65	Converged Converged	4.20e-02 6.50e-05	76	41845	1.40e-05	1.77e-01	49308	0.00e+00	0	0.00e+00
HS20		3.15e-04	315	210	Converged	1.83e-04	157	132	1.32e-04	4.19e-01	158	5.02e-01	78	3.71e-01
HS21	Converged	5.30e-05	27	15	Converged	8.00e-05	27	15	-2.70e-05	-5.09e-01	0	0.00e+00	0	0.00e+00
HS21MOD	Converged	6.90e-05	17	18	Converged	5.70e-05	17	18	1.20e-05	1.74e-01	0	0.00e+00	0	0.00e+00
HS22	Converged	3.98e-04	668	390	Converged	1.46e-04	110	105	2.52e-04	6.33e-01	558	8.35e-01	285	7.31e-01
HS23	Converged	4.59e-04	617	366	Converged	1.85e-04	153	122	2.74e-04	5.97e-01	464	7.52e-01	244	6.67e-01
	Converged	1.65e-04	221	117	Converged	1.46e-04	158	122	1.90e-05	1.15e-01	63	2.85e-01	-5	-4.27e-02
HS25		1.62e-02	959 612	547 441	Converged	2.85e-02 2.29e-04	846 196	483 196	-1.23e-02 2.50e-04	-7.58e-01	113	1.18e-01 6.80e-01	64 245	1.17e-01 5.56e-01
HS26	Converged Converged	4.79e-04 3.70e-04	444	441 351	Converged Converged	2.29e-04 1.55e-04	196	196	2.50e-04 2.15e-04	5.22e-01 5.81e-01	416 288	6.49e-01	245	5.56e-01 5.78e-01
HS28	Converged	2.21e-04	280	202	Converged	1.59e-04	134	134	6.20e-05	2.81e-01	146	5.21e-01	68	3.37e-01
HS29	-	3.42e-04	494	332	Converged	2.25e-04	193	175	1.17e-04	3.42e-01	301	6.09e-01	157	4.73e-01
HS3	Converged	4.50e-05	10	15	Converged	4.10e-05	10	15	4.00e-06	8.89e-02	0	0.00e+00	0	0.00e+00
HS30	Converged	4.20e-05	7	7	Converged	4.50e-05	7	7	-3.00e-06	-7.14e-02	0	0.00e+00	0	0.00e+00
HS31	Converged	3.54e-04	249	168	Converged	1.22e-04	104	100	2.32e-04	6.55e-01	145	5.82e-01	68	4.05e-01
HS32	Converged	2.31e-04	229	181	Converged	1.90e-04	143	136	4.10e-05	1.77e-01	86	3.76e-01	45	2.49e-01
HS33	Converged	1.11e-04	64	26	Converged	9.30e-05	64	26	1.80e-05	1.62e-01	0	0.00e+00	0	0.00e+00
HS34	Converged	5.48e-04	796	437	Converged	2.81e-04	355	214	2.67e-04	4.87e-01	441	5.54e-01	223	5.10e-01
HS35		1.79e-04	176	137	Converged	1.30e-04	98	98	4.90e-05	2.74e-01	78	4.43e-01	39	2.85e-01
HS35I	Converged	1.61e-04	176	137	Converged	1.33e-04	98	98	2.80e-05	1.74e-01	78	4.43e-01	39	2.85e-01
HS35MOD		1.41e-04 9.60e-05	142 71	100	Converged	9.90e-05	76 71	69	4.20e-05 -1.00e-06	2.98e-01 -1.04e-02	66	4.65e-01	31	3.10e-01 0.00e+00
HS37	Converged Converged	2.17e-04	284	68 196	Converged Converged	9.70e-05 1.75e-04	131	68 118	4.20e-05	1.94e-02	153	0.00e+00 5.39e-01	78	3.98e-01
	Converged	2.17e-04 2.58e-04	410	288	Converged	1.75e-04 1.26e-04	122	119	1.32e-04	5.12e-01	288	7.02e-01	169	5.87e-01
HS39	-	3.07e-04	309	264	Converged	2.84e-04	233	227	2.30e-05	7.49e-02	76	2.46e-01	37	1.40e-01
HS3MOD		7.60e-05	112	73	Converged	4.70e-05	34	34	2.90e-05	3.82e-01	78	6.96e-01	39	5.34e-01
HS4	Converged	3.00e-05	4	5	Converged	3.70e-05	4	5	-7.00e-06	-2.33e-01	0	0.00e+00	0	0.00e+00
HS40	Converged	2.51e-04	245	206	Converged	2.06e-04	159	159	4.50e-05	1.79e-01	86	3.51e-01	47	2.28e-01
HS41	Converged	1.52e-04	210	133	Converged	1.23e-04	120	82	2.90e-05	1.91e-01	90	4.29e-01	51	3.83e-01
HS42	Converged	2.54e-04	293	214	Converged	1.79e-04	139	138	7.50e-05	2.95e-01	154	5.26e-01	76	3.55e-01
HS43	Converged	5.04e-04	468	347	Converged	2.94e-04	221	216	2.10e-04	4.17e-01	247	5.28e-01	131	3.78e-01
HS44	Converged	3.70e-04	461	247	Converged	2.05e-04	191	105	1.65e-04	4.46e-01	270	5.86e-01	142	5.75e-01
HS44NEW		4.25e-04	545	290	Converged	2.87e-04	155	95	1.38e-04	3.25e-01	390	7.16e-01	195	6.72e-01
HS45	Converged Converged	4.20e-05 6.29e-04	30 485	26 445	Converged	4.40e-05 6.07e-04	30 353	26 352	-2.00e-06 2.20e-05	-4.76e-02 3.50e-02	132	0.00e+00 2.72e-01	93	0.00e+00 2.09e-01
HS47	Converged	2.58e-04	158	155	Converged Converged	2.37e-04	158	155	2.10e-05	8.14e-02	0	0.00e+00	0	0.00e+00
	Converged	2.79e-04	365	249	Converged	1.70e-04	138	140	1.09e-04	3.91e-01	227	6.22e-01	109	4.38e-01
HS49		3.93e-04	414	374	Converged	3.71e-04	302	302	2.20e-05	5.60e-02	112	2.71e-01	72	1.93e-01
HS5	Converged	9.40e-05	86	34	Converged	8.30e-05	86	34	1.10e-05	1.17e-01	0	0.00e+00	0	0.00e+00
HS50	Converged	4.57e-04	426	348	Converged	2.74e-04	215	216	1.83e-04	4.00e-01	211	4.95e-01	132	3.79e-01
HS51	Converged	2.59e-04	269	227	Converged	2.74e-04	223	218	-1.50e-05	-5.79e-02	46	1.71e-01	9	3.96e-02
HS52	Converged	9.33e-04	1162	757	Converged	4.06e-04	313	299	5.27e-04	5.65e-01	849	7.31e-01	458	6.05e-01
HS53		4.88e-04	616	414	Converged	2.57e-04	213	205	2.31e-04	4.73e-01	403	6.54e-01	209	5.05e-01
HS55		1.08e-03	1110	746	Converged	8.33e-04	630	482	2.48e-04	2.29e-01	480	4.32e-01	264	3.54e-01
HS56	Converged	1.79e-03	1542	991	Converged	3.66e-04	202	193	1.43e-03	7.96e-01	1340	8.69e-01	798	8.05e-01
HS57 HS59	Converged Converged	2.71e-04 4.33e-04	44	26 48	Converged Converged	2.75e-04 4.24e-04	44	26 48	-4.00e-06 9.00e-06	-1.48e-02 2.08e-02	0	0.00e+00 0.00e+00	0	0.00e+00 0.00e+00
	Converged	6.52e-04	1277	779	Converged	2.73e-04	437	307	3.79e-04	5.81e-01	840	6.58e-01	472	6.06e-01
		3.03e-04	327	249	Converged		153	153	1.03e-04	3.40e-01	174	5.32e-01	96	3.86e-01
		1.84e-04	199	153	Converged		130	116	3.50e-05	1.90e-01	69	3.47e-01	37	2.42e-01
HS62	Converged	1.88e-02	13130	12596	Converged	8.45e-02	78204	43110	-6.57e-02	-3.49e+00	-65074	-4.96e+00	-30514	-2.42e+00
HS63	Converged	1.85e-04	191	157	Converged	1.90e-04	126	124	-5.00e-06	-2.70e-02	65	3.40e-01	33	2.10e-01
HS64	Converged	4.50e-04	531	406	Converged	5.12e-04	281	281	-6.20e-05	-1.38e-01	250	4.71e-01	125	3.08e-01
	Converged	2.84e-04	327	239	Converged		246	205	3.10e-05	1.09e-01	81	2.48e-01	34	1.42e-01
			794	447	Converged		233	160	2.50e-04	5.13e-01	561	7.07e-01	287	6.42e-01
	Converged	1.83e-03	1141	808	Converged	8.49e-04	507	419	9.79e-04	5.36e-01	634	5.56e-01	389	4.81e-01
		1.25e-04	82	87	Converged		82	87	-4.00e-06	-3.20e-02	0	0.00e+00	0	0.00e+00
	Converged Converged	1.60e-02 3.35e-04	741 385	448 289	Converged Converged	5.35e-03 3.82e-04	185 373	162 318	1.07e-02 -4.70e-05	6.66e-01 -1.40e-01	556 12	7.50e-01 3.12e-02	286 -29	6.38e-01 -1.00e-01
	Converged	5.03e-04	496	504	Converged	4.81e-04	496	504	2.20e-05	4.37e-02	0	0.00e+00	-29	0.00e+00
	Converged	9.31e-04	1205	804	Converged	7.41e-04	910	648	1.90e-04	2.04e-01	295	2.45e-01	156	1.94e-01
		1.74e-04	147	113	Converged	3.12e-04	85	90	-1.38e-04	-7.93e-01	62	4.22e-01	23	2.04e-01
		1.64e-04	147	113	Converged	1.39e-04	85	90	2.50e-05	1.52e-01	62	4.22e-01	23	2.04e-01
HS77	Converged	9.40e-04	765	608	Converged	5.78e-04	355	351	3.62e-04	3.85e-01	410	5.36e-01	257	4.23e-01
HS78	Converged	2.85e-04	220	181	Converged	1.93e-04	142	142	9.20e-05	3.23e-01	78	3.55e-01	39	2.15e-01
HS79	Converged	6.35e-04	582	426	Converged	3.43e-04	238	238	2.92e-04	4.60e-01	344	5.91e-01	188	4.41e-01

	status 0	time 0	f evaluations 0	grad_f evaluations 0	status 1	time 1	f evaluations 1	grad_f evaluations 1	time imprv	rel time imprv	f eval imprv	rel f eval imprv	grad_f eval imprv	rel grad_f eval imprv
name HS8	Conversed	2.65e-04	411	254	Converged	1.08e-04	80	79	1.57e-04	5.92e-01	331	8.05e-01	175	6.89e-01
	Converged Converged		144	146	Converged Converged	2.40e-04	144	146	2.00e-05	7.69e-02	0	0.00e+00	0	0.00e+00
	Converged	3.37e-04	181	179	Converged	3.31e-04	181	179	6.00e-06	1.78e-02	0	0.00e+00	0	0.00e+00
HS83	Converged	3.15e-03	2709	2460	Converged	2.44e-03	2444	2314	7.14e-04	2.26e-01	265	9.78e-02	146	5.93e-02
HS86	Converged	1.08e-03	440	393	Converged	9.14e-04	358	348	1.65e-04	1.53e-01	82	1.86e-01	45	1.15e-01
HS88	Converged	1.75e-01	1115	658	Converged	5.49e-02	321	260	1.20e-01	6.85e-01	794	7.12e-01	398	6.05e-01
HS89	Converged	2.19e-01	1320	796	Converged	5.15e-02	274	244	1.67e-01	7.65e-01	1046	7.92e-01	552	6.93e-01
	Converged	1.64e-04	132	76	Converged	1.62e-04	132	76	2.00e-06	1.22e-02	0	0.00e+00	0	0.00e+00
	Converged	2.50e-01	993	607	Converged	8.08e-02	289	245	1.69e-01	6.76e-01	704	7.09e-01	362	5.96e-01
	Converged		197393	107629	Converged	1.16e-01 1.85e+00	288	233	7.67e+01	9.98e-01	197105	9.99e-01	107396	9.98e-01
	Converged Converged	5.81e-01 2.14e-04	1326 160	815 118	Converged Converged	2.65e-04	2401 160	2310 118	-1.27e+00 -5.10e-05	-2.18e+00 -2.38e-01	-1075 0	-8.11e-01 0.00e+00	-1495 0	-1.83e+00 0.00e+00
	Converged	2.06e-04	160	118	Converged	1.99e-04	160	118	7.00e-06	3.40e-02	0	0.00e+00	0	0.00e+00
	Converged	1.36e-03	1365	884	Converged	1.21e-03	1357	810	1.50e-04	1.10e-01	8	5.86e-03	74	8.37e-02
HS98	Converged	1.00e-03	1099	757	Converged	1.16e-03	1356	810	-1.53e-04	-1.52e-01	-257	-2.34e-01	-53	-7.00e-02
HUBFIT	Converged	1.68e-04	162	124	Converged	1.33e-04	74	75	3.50e-05	2.08e-01	88	5.43e-01	49	3.95e-01
HUES-MOD	Converged	7.29e+00	11106	7741	Converged	3.83e+00	5889	4122	3.47e+00	4.75e-01	5217	4.70e-01	3619	4.68e-01
		2.94e+00	17823	16776	Converged	2.29e+01	217462	129352	-1.99e+01	-6.77e+00	-199639	-1.12e+01	-112576	-6.71e+00
	Converged	7.97e-01	10578	9540	Converged	7.47e-01	9613	9292	4.93e-02	6.19e-02	965	9.12e-02	248	2.60e-02
	Converged	1.23e-01	5354	4453	Converged	8.76e-02	3450	3265	3.58e-02	2.90e-01	1904	3.56e-01	1188	2.67e-01
	Converged	2.04e-04 6.95e-01	379 104	221 109	Converged	9.00e-05 8.62e-01	72 104	70 109	1.14e-04 -1.67e-01	5.59e-01 -2.41e-01	307	8.10e-01 0.00e+00	151	6.83e-01 0.00e+00
	Converged Converged	6.95e-01 2.46e-04	104	72	Converged Converged	8.62e-01 2.22e-04	104	72	-1.67e-01 2.40e-05	-2.41e-01 9.76e-02	0	0.00e+00 0.00e+00	0	0.00e+00 0.00e+00
		2.58e+00	2398	2226	Converged	2.98e+01	42254	23086	-2.72e+01	-1.05e+01	-39856	-1.66e+01	-20860	-9.37e+00
		4.55e+01	570228	318023	Converged	1.35e+00	13041	11298	4.42e+01	9.70e-01	557187	9.77e-01	306725	9.64e-01
KIWCRESC	Converged	2.43e-02	366	265	Converged	1.85e-04	172	154	2.42e-02	9.92e-01	194	5.30e-01	111	4.19e-01
KSIP	Converged	3.62e-01	2686	2483	Converged	3.67e-01	2514	2433	-5.77e-03	-1.60e-02	172	6.40e-02	50	2.01e-02
LIARWHDNE	Converged	3.71e-01	501	312	Converged	1.87e-01	193	160	1.84e-01	4.96e-01	308	6.15e-01	152	4.87e-01
	Converged	2.60e-02	4994	3638	Converged	1.52e-02	3572	3086	1.08e-02	4.17e-01	1422	2.85e-01	552	1.52e-01
	Converged	7.75e-02	7277	6149	Converged	4.67e-02	5055	4437	3.08e-02	3.97e-01	2222	3.05e-01	1712	2.78e-01
	Converged	1.13e-03	789	585	Converged	4.97e-02	46953	24659	-4.86e-02	-4.29e+01	-46164	-5.85e+01	-24074	-4.12e+01
LSNNODOC	Converged	4.87e-04 1.73e-04	483 165	353 126	Converged Converged	3.34e-04 1.41e-04	242 85	228 85	1.53e-04 3.20e-05	3.14e-01 1.85e-01	241 80	4.99e-01 4.85e-01	125 41	3.54e-01 3.25e-01
		5.42e+00	1706	1519	Converged	7.56e+00	1470	1385	-2.14e+00	-3.94e-01	236	1.38e-01	134	8.82e-02
		1.49e+01	4138	3882	Converged	9.06e+00	2133	2062	5.85e+00	3.92e-01	2005	4.85e-01	1820	4.69e-01
	Converged	1.09e+01	4441	3903	Converged	8.55e+00	3442	3368	2.32e+00	2.13e-01	999	2.25e-01	535	1.37e-01
LUKVLI18	Converged	7.86e+00	3818	3265	Converged	5.31e+00	2339	2284	2.55e+00	3.24e-01	1479	3.87e-01	981	3.00e-01
LUKVLI3	Converged	1.76e+00	553	514	Converged	1.85e+00	440	439	-8.84e-02	-5.03e-02	113	2.04e-01	75	1.46e-01
LUKVLI5	Converged	5.21e+01	6083	5645	Converged	2.35e+01	2085	2005	2.86e+01	5.49e-01	3998	6.57e-01	3640	6.45e-01
	Converged	2.82e-04	202	157	Converged	2.21e-04	129	123	6.10e-05	2.16e-01	73	3.61e-01	34	2.17e-01
	Converged	4.62e-04	723	469	Converged	1.36e-04	133	105	3.26e-04	7.06e-01	590	8.16e-01	364	7.76e-01
	Converged Converged	3.57e-04 2.88e-03	405 1126	316	Converged	2.48e-04 2.83e-03	216 1126	202 1053	1.09e-04 4.10e-05	3.05e-01 1.43e-02	189	4.67e-01 0.00e+00	114	3.61e-01 0.00e+00
	Converged	3.28e-03	1042	1053 841	Converged Converged	2.28e-03	743	655	1.00e-03	3.05e-01	299	2.87e-01	186	2.21e-01
MANCINONE		8.88e-01	291	210	Converged	3.65e-01	106	104	5.23e-01	5.89e-01	185	6.36e-01	106	5.05e-01
	-	1.27e+00	1165	890	Converged	1.33e+00	807	711	-6.09e-02	-4.79e-02	358	3.07e-01	179	2.01e-01
	Converged	5.47e-04	787	407	Converged	1.73e-04	144	80	3.74e-04	6.84e-01	643	8.17e-01	327	8.03e-01
MGH09LS	Converged	3.89e-04	394	247	Converged	1.24e-03	1287	839	-8.51e-04	-2.19e+00	-893	-2.27e+00	-592	-2.40e+00
MGH17LS	Converged	2.40e-03	555	331	Converged	2.86e-03	693	420	-4.57e-04	-1.90e-01	-138	-2.49e-01	-89	-2.69e-01
MGH17SLS		3.32e-03	773		Converged	3.88e-03	1530	298	-5.61e-04	-1.69e-01	-757	-9.79e-01	148	3.32e-01
	Converged		187		Converged	1.10e-04	109	62	3.40e-05	2.36e-01	78	4.17e-01	39	3.86e-01
	Converged		394	275		2.38e-04	172	168	4.30e-05	1.53e-01	222	5.63e-01	107	3.89e-01
	-	8.15e-01	3284	3201		7.44e-01	3090	3085	7.08e-02	8.69e-02	194	5.91e-02	116	3.62e-02
MINMAXED	Converged	4.13e-04	56440 434		Converged	5.30e-02 2.77e-04	18475 322	16657 291	1.14e-01 1.36e-04	6.83e-01 3.29e-01	37965 112	6.73e-01 2.58e-01	36955 70	6.89e-01 1.94e-01
	Converged		2660	2493	Converged Converged	6.28e-01	2579	2569	3.55e-03	5.63e-03	81	3.05e-02	-76	-3.05e-02
	Converged		1228			1.53e+00	992	930	-1.48e-01	-1.07e-01	236	1.92e-01	82	8.10e-02
	Converged		413		Converged	7.98e-04	342	304	1.46e-04	1.55e-01	71	1.72e-01	20	6.17e-02
	Converged		2329	1936		2.24e-02	1987	1893	6.85e-04	2.97e-02	342	1.47e-01	43	2.22e-02
MSQRTB	Converged	3.52e+01	20679	20517	Converged	3.28e+01	22878	22837	2.41e+00	6.86e-02	-2199	-1.06e-01	-2320	-1.13e-01
MSS1	Converged	7.41e-03	742	495	Converged	3.83e-03	350	279	3.58e-03	4.83e-01	392	5.28e-01	216	4.36e-01
MSS2	Converged	2.06e-01	2621	1573	Converged	5.32e+00	73354	39660	-5.12e+00	-2.49e+01	-70733	-2.70e+01	-38087	-2.42e+01
	Converged	1.58e+01	68163	39089	Converged	1.39e+01	63917	34953	1.93e+00	1.22e-01	4246	6.23e-02	4136	1.06e-01
	-	3.95e-04	254		Converged	3.86e-04	254	252	9.00e-06	2.28e-02	0	0.00e+00	0	0.00e+00
		5.49e+01	87736	80717		4.26e+01	70352	68397	1.23e+01	2.24e-01	17384	1.98e-01	12320	1.53e-01
NYSTROM5	Converged		15867	15710		7.40e-02	15279	15278	2.61e-02	2.61e-01	588	3.71e-02	432	2.75e-02
		1.920-03	625	552	Converged	T.986-03	625	552	-6.50e-05	-3.39e-02	0	0.00e+00	0	0.00e+00

	status 0	time 0	f evaluations 0	grad_f evaluations 0	status 1	time 1	f evaluations 1	grad_f evaluations 1	time imprv	rel time imprv	f eval imprv	rel f eval imprv	grad_f eval imprv	rel grad_f eval imprv
name														
ORTHREGB	Converged	2.99e-03	861	613	Converged	2.19e-03	511	456	7.97e-04	2.67e-01	350	4.07e-01	157	2.56e-01
OSORIO	Converged	7.45e+01	70437	62915	Converged	5.01e+01	61605	55847	2.45e+01	3.28e-01	8832	1.25e-01	7068	1.12e-01
PENTAGON	Converged	1.45e-03	961	624	Converged	5.87e-04	317	277	8.63e-04	5.95e-01	644	6.70e-01	347	5.56e-01
POLAK3	Converged	2.10e-02	1163	990	Converged	1.99e-02	948	929	1.17e-03	5.55e-02	215	1.85e-01	61	6.16e-02
POLAK4	Converged	2.41e-01	266958	257105	Converged	1.02e-01	81035	41120	1.38e-01	5.74e-01	185923	6.96e-01	215985	8.40e-01
POLAK5	Converged	5.69e-03	6804	6343	Converged	3.36e-03	4410	4158	2.33e-03	4.10e-01	2394	3.52e-01	2185	3.44e-01
PORTFL1	Converged	1.76e-02	2255	1619	Converged	3.27e-02	2139	1556	-1.52e-02	-8.62e-01	116	5.14e-02	63	3.89e-02
PORTFL2	Converged	4.36e-02	2012	1504	Converged	3.14e-02	1944	1450	1.22e-02	2.80e-01	68	3.38e-02	54	3.59e-02
PORTFL3	Converged	1.13e-02	1348	987	Converged	9.35e-03	1122	838	1.97e-03	1.74e-01	226	1.68e-01	149	1.51e-01
PORTFL4	Converged	1.48e-02	1856	1357	Converged	2.05e-02	1892	1407	-5.73e-03	-3.88e-01	-36	-1.94e-02	-50	-3.68e-02
PORTFL6	Converged	1.39e-02	1744	1275	Converged	9.27e-03	1350	1021	4.67e-03	3.35e-01	394	2.26e-01	254	1.99e-01
POWELLSQ	Converged	1.81e-04	296	152	Converged	8.60e-05	97	43	9.50e-05	5.25e-01	199	6.72e-01	109	7.17e-01
PRICE3NE	Converged	2.36e-04	418	254	Converged	1.10e-04	100	94	1.26e-04	5.34e-01	318	7.61e-01	160	6.30e-01
PRICE4NE	Converged	2.80e-04	461	294	Converged	1.39e-04	106	97	1.41e-04	5.04e-01	355	7.70e-01	197	6.70e-01
PRIMAL1	Converged	7.42e-02	1545	1486	Converged	9.93e-02	1469	1449	-2.51e-02	-3.39e-01	76	4.92e-02	37	2.49e-02
PRIMAL2	Converged	8.04e-02	1109	1016	Converged	1.22e-01	821	802	-4.17e-02	-5.18e-01	288	2.60e-01	214	2.11e-01
PRIMAL3	Converged	1.39e-01	992	933	Converged	2.95e-01	912	892	-1.57e-01	-1.13e+00	80	8.06e-02	41	4.39e-02
PRIMAL4	Converged	2.16e-01	929	788	Converged	1.61e-01	554	529	5.48e-02	2.54e-01	375	4.04e-01	259	3.29e-01
PRIMALC2	Converged	7.59e+00	484192	388780	Converged	4.07e+00	251554	148317	3.51e+00	4.63e-01	232638	4.80e-01	240463	6.19e-01
PRODPL0	Converged	4.75e-02	13455	9526	Converged	4.97e-02	4106	3954	-2.13e-03	-4.49e-02	9349	6.95e-01	5572	5.85e-01
PRODPL1	Converged	2.25e-02	5533	5083	Converged	3.01e-02	7150	6761	-7.65e-03	-3.40e-01	-1617	-2.92e-01	-1678	-3.30e-01
QC	Converged	1.50e-01	55876	30874	Converged	2.06e-01	55876	30874	-5.61e-02	-3.75e-01	0	0.00e+00	0	0.00e+00
QPCBLEND	Converged	1.13e+00	105798	99047	Converged	1.26e+00	113841	109717	-1.28e-01	-1.13e-01	-8043	-7.60e-02	-10670	-1.08e-01
QPNBLEND	Converged	1.85e+00	129169	121586	Converged	4.38e+00	519295	340554	-2.53e+00	-1.36e+00	-390126	-3.02e+00	-218968	-1.80e+00
RES	Converged	6.80e-05	19	3	Converged	5.50e-05	19	3	1.30e-05	1.91e-01	0	0.00e+00	0	0.00e+00
RK23	Converged	9.68e-03	4118	3947	Converged	2.63e-02	4734	4718	-1.66e-02	-1.71e+00	-616	-1.50e-01	-771	-1.95e-01
ROBOT	Converged	9.34e-04	350	248	Converged	5.43e-04	164	152	3.91e-04	4.19e-01	186	5.31e-01	96	3.87e-01
ROSENBR	Converged	4.43e-04	1305	777	Converged	1.17e-04	181	165	3.26e-04	7.36e-01	1124	8.61e-01	612	7.88e-01
ROSENMMX	Converged	4.32e-03	3750	3373	Converged	9.02e-03	8659	8360	-4.70e-03	-1.09e+00	-4909	-1.31e+00	-4987	-1.48e+00
S368	Converged	3.35e-04	38	42	Converged	3.54e-04	38	42	-1.90e-05	-5.67e-02	0	0.00e+00	0	0.00e+00
STREGNE	Converged	1.43e-02	14919	8587	Converged	1.86e-02	9262	6453	-4.33e-03	-3.03e-01	5657	3.79e-01	2134	2.49e-01
STRTCHDVNE	Converged	4.84e-04	72	78	Converged	5.07e-04	72	78	-2.30e-05	-4.75e-02	0	0.00e+00	0	0.00e+00
SUPERSIM	Converged	1.19e-04	145	108	Converged	8.10e-05	60	64	3.80e-05	3.19e-01	85	5.86e-01	44	4.07e-01
SYNTHES1	Converged	9.03e-04	826	542	Converged	4.76e-04	329	280	4.27e-04	4.73e-01	497	6.02e-01	262	4.83e-01
SYNTHES2	Converged	2.95e-02	7998	7291	Converged	3.29e-02	12878	10636	-3.45e-03	-1.17e-01	-4880	-6.10e-01	-3345	-4.59e-01
SYNTHES3	Converged	2.61e-02	3501	3084	Converged	4.03e-01	122716	67434	-3.77e-01	-1.44e+01	-119215	-3.41e+01	-64350	-2.09e+01
TRY-B	Converged	1.18e-04	134	89	Converged	9.60e-05	70	60	2.20e-05	1.86e-01	64	4.78e-01	29	3.26e-01
TWOBARS	Converged	1.76e-04	180	137	Converged	1.18e-04	96	86	5.80e-05	3.30e-01	84	4.67e-01	51	3.72e-01
WACHBIEG	Converged	5.18e-04	858	554	Converged	1.46e-04	101	94	3.72e-04	7.18e-01	757	8.82e-01	460	8.30e-01
WATER	Converged	3.07e-01	91004	61887	Converged	6.04e-01	147766	104991	-2.97e-01	-9.65e-01	-56762	-6.24e-01	-43104	-6.96e-01
WOMFLET	Converged	6.32e-03	7322	6677	Converged	9.22e-04	1306	840	5.40e-03	8.54e-01	6016	8.22e-01	5837	8.74e-01
	Converged	2.33e-01	58998	57320		1.21e+00	209858	197789	-9.75e-01	-4.18e+00	-150860	-2.56e+00	-140469	-2.45e+00
	Converged	4.49e-01	25103	23015	Converged	5.24e-01	30436	27770	-7.48e-02	-1.67e-01	-5333	-2.12e-01	-4755	-2.07e-01
	Converged	1.77e-04	236	154	Converged	1.20e-04	86	82	5.70e-05	3.22e-01	150	6.36e-01	72	4.68e-01
	Converged		153		Converged	9.40e-05	74	70	4.30e-05	3.14e-01	79	5.16e-01	43	3.81e-01
ZECEVIC3		1.75e-04	177	139	Converged	1.32e-04	100	100	4.30e-05	2.46e-01	77	4.35e-01	39	2.81e-01
ZECEVIC4	Converged		77			1.00e-04	77	68	4.00e-06	3.85e-02	0	0.00e+00	0	0.00e+00
	Converged		115		Converged	8.00e-05	38	36	4.20e-05	3.44e-01	77	6.70e-01	39	5.20e-01
212	Converged	1.226-04	115	/5	Sorrerged	J.00E-03	38	30	4.206-05	J.44E-UI	- 11	5.70e-01	39	5.200-01

Net linesearch failures improvement: 2931
Relative linesearch improvement: 74.58%
Net L-BFGS failures improvement: Net L-BFGS failures improvement: Net L-BFGS rejections improvement: 411126
Relative L-BFGS rejections improvement: 45.60%

<ipython-input-15-b9487c206ea4>:11: RuntimeWarning: invalid value encountered in double_scalars

print(f"Relative L-BFGS failures improvement: {100. * cmp['lbfgs imprv'].sum() / cmp['L-BFGS failures 0'].sum():.02f}%")

Out[15]:

name														
зрк	Converged	117	0	0	Converged	0	0	0	117	1.00e+00	0	nan	0	nan
A5NSDSDM	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
A5NSSNSM	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
AIRCRFTA	Converged	6	0	0	Converged	0	0	0	6	1.00e+00	0	nan	0	nan
ALLINITA	Converged	4	0	5844	Converged	0	0	2906	4	1.00e+00	0	nan	2938	5.03e-01
ALLINITC	Converged	25	0	36435	Converged	0	0	14715	25	1.00e+00	0	nan	21720	5.96e-01
ALSOTAME	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
AVGASA	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
AVGASB	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
BA-L1	Converged	6	0	0	Converged	0	0	0	6	1.00e+00	0	nan	0	nan
BA-L1SP	Converged	6	0	0	Converged	0	0	0	6	1.00e+00	0	nan	0	nan
BEALENE	Converged	6	0	0	Converged	0	0	0	6	1.00e+00	0	nan	0	nan
BIGGSC4	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
воотн	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
BOX3NE	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
BRITGAS	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nan
BROWNBSNE	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
BT1	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
BT10	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
BT11	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
BT12	Converged	8	0	0	Converged	0	0	0	8	1.00e+00	0	nan	0	nan
BT13	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
BT2	Converged	22	0	0	Converged	0	0	0	22	1.00e+00	0	nan	0	nan
ВТ3	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nan
BT4	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nan
BT5	Converged	4	0	2950	Converged	0	0	3341	4	1.00e+00	0	nan	-391	-1.33e-01
ВТ6	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nan
ВТ7	Converged	9	0	1890	Converged	0	0	1893	9	1.00e+00	0	nan	-3	-1.59e-03
вт8	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
ВТ9	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
BYRDSPHR	-	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
C-RELOAD	Converged	56	0	0	Converged	0	0	0	56	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
CHACONN1	-	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
CHACONN2		3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
CONGIGMZ		3	0		Converged	0	0	0	3	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
DECONVBNE		9	0		Converged	0	0	0	9	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
DECONVNE	-	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
DEMYMALO		5	0		Converged	0	0	0	5	1.00e+00	0	nan	0	nan
	Converged	38	0		Converged	0	0	18595	38	1.00e+00	0	nan	94067	8.35e-01
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	10	0		Converged	1	0	47	9	9.00e-01	0	nan	-47	-inf
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
DUAL3	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan

status 0 linesearch failures 0 L-BFGS failures 0 L-BFGS failures 0 L-BFGS rejected 0 status 1 linesearch failures 1 L-BFGS rejected 1 ls imprv rel ls imprv rel ls imprv rel lbfgs imprv rel lbfgs imprv rel lbfgs rej imprv rel lbfgs rej imprv

	status 0	linesearch failures 0	L-BFGS failures 0	L-BFGS rejected 0	status 1	linesearch failures 1	L-BFGS failures 1	L-BFGS rejected 1	Is imprv	rel Is imprv	lbfgs imprv	rel lbfgs imprv	lbfgs rej imprv	rel lbfgs rej imprv
name														
	Converged	1			Converged	0	0					nan	0	
DUALC1	Converged	2	0	2924	Converged	0	0	927	2	1.00e+00	0	nan	1997	6.83e-01
DUALC2	Converged	0	0	1972	Converged	0	0	2916	0	nan	0	nan	-944	-4.79e-01
DUALC5	Converged	3	0	5934	Converged	0	0	981	3	1.00e+00	0	nan	4953	8.35e-01
EG2	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar
EQC	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
EXPFITA	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nar
	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
EXTROSNBNE	Converged	10	0	0	Converged	0	0	0	10	1.00e+00	0	nan	0	nan
FCCU	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
FEEDLOC		8	0		Converged	0	0	0	8		0	nan	0	nan
FERRISDC		0	0		Converged	0	0	0	0		0	nan	0	nan
GAUSSELM		3	0		Converged	0	0	0	3		0	nan	0	nan
GIGOMEZ1		6	0		Converged	0	0	4	6		0	nan	0	0.00e+00
GIGOMEZ2		0	0		Converged	0	0	0	0		0	nan	0	nan
		2	0		-	0	0	0			0		0	
GIGOMEZ3					Converged				2			nan		nar
	Converged	1	0		Converged	0	0	0	1			nan	0	nar
GMNCASE1		5	0		Converged	0	0	0	5			nan	0	nar
GMNCASE2		5	0		Converged	0	0	0	5		0	nan	0	nar
GMNCASE3		2	0		Converged	0	0	0	2			nan	0	nan
	Converged	1	0		Converged	0	0	0	1		0	nan	0	nar
GOULDQP1		16	0		Converged	0	0	6583	16		0	nan	1593	1.95e-01
GOULDQP2	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar
GOULDQP3	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
HAIFAS	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HALDMADS	Converged	16	0	1017	Converged	0	0	0	16	1.00e+00	0	nan	1017	1.00e+00
HARKERP2	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HATFLDF	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HATFLDG	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HATFLDH	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
HELIXNE	Converged	1	0	0	Converged	0	0	0	1		0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0		0	nan	0	nan
	Converged	75	0		Converged	0	0	0	75		0	nan	52786	1.00e+00
HILBERTA		0	0		Converged	0	0	0	0		0	nan	0	nan
HILBERTB		0	0		Converged	0	0	0	0		0	nan	0	nan
HIMMELBA		2	0		Converged	0	0	0	2			nan	0	nan
HIMMELBB		0	0		Converged	0	0	0	0			nan	0	nan
HIMMELBC		2	0		Converged	0	0	0	2		0	nan nan	0	nan nan
HIMMELBCLS		1	0		Converged	0	0	0	1		0	nan	0	nan
HIMMELBE		3	0		Converged	0	0	0	3		0	nan	0	nan
HIMMELBG		1	0		Converged	0	0	0	1			nan	0	nan
HIMMELBH		1	0		Converged	0	0	0	1			nan	0	nan
HIMMELBK		8	0	0	Converged	0	0	0	8	1.00e+00	0	nan	0	nan
HIMMELP1	-	2	0		Converged	0	0	0	2			nan	0	nan
HIMMELP2	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HIMMELP3	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
HIMMELP5	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HIMMELP6	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HONG	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS10	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS100	Converged	34	0	142547	Converged	0	0	8853	34	1.00e+00	0	nan	133694	9.38e-01
HS100LNP	Converged	3	0	0	Converged	0	0	843	3	1.00e+00	0	nan	-843	-inf
HS100MOD	Converged	4	0	5933	Converged	0	0	2910	4	1.00e+00	0	nan	3023	5.10e-01
	Converged	5	0		Converged	0	0	0	5			nan	0	nan
	Converged	41	0		Converged	0	0	189492	41			nan	-101172	-1.15e+00
	Converged	1	0		Converged	0	0	0	1		0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0			nan	0	nan
	Converged	0	0		Converged	0	0	0	0			nan	0	nan
		4				0								
	Converged		0		Converged		0	0	4			nan	0	nan
	Converged	8	0		Converged	0	0	3317	8		0	nan	92	2.70e-02
	Converged	3	0		Converged	0	0	0	3			nan	0	nan
	Converged	1	0		Converged	0	0	0	1			nan	0	nan
	Converged	5	0		Converged	0	0	0	5			nan	0	nan
	Converged	0	0		Converged	0	0	0	0			nan	0	nan
HS16	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS17	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS18	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar

	status 0	linesearch failures 0	L-BFGS failures 0	L-BFGS rejected 0	status 1	linesearch failures 1	L-BFGS failures 1	L-BFGS rejected 1	Is imprv	rel Is imprv	lbfgs imprv	rel lbfgs imprv	lbfgs rej imprv	rel lbfgs rej imprv
name														
	Converged	26	0		Converged	0	0		26	1.00e+00	0	nan	34922	7.01e-01
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	0	0		Converged	0	0		0	nan	0	nan	0	nan
	Converged	7	0		Converged	0	0	0	7	1.00e+00	0	nan	0	nan
	Converged	6	0		Converged	0	0	0	6	1.00e+00	0	nan	0	nan
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00		nan	0	nan
	Converged Converged	2	0		Converged Converged	0	0	0	4	1.00e+00 1.00e+00	0	nan nan	0	nan nan
	Converged	2	0	0		0	0		2	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	0			Converged	0	0		0	nan	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0		0	nan	0	nan	0	nan
	Converged	6	0		Converged	0	0	0	6	1.00e+00	0	nan	1	1.00e+00
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
HS37	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS38	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
HS39	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS3MOD	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS4	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
HS40	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS41	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS42	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
HS44	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	5	0		Converged	0	0	0	5	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	3	0	0		0	0	0	3	1.00e+00	0	nan	0	nan
	Converged	1 0	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged Converged	2		0	Converged Converged	0	0	0	2	nan 1.00e+00	0	nan nan	0	nan nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	10	0		Converged	0	0	0	10	1.00e+00	0	nan	0	nan
	Converged	5	0		Converged	0	0	0	5	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	6	0		Converged	0	0	0	6	1.00e+00	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS62	Converged	8	0	5925	Converged	0	0	3896	8	1.00e+00	0	nan	2029	3.42e-01
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HS64	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nan
HS65	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS66	Converged	7	0	0	Converged	0	0	0	7	1.00e+00	0	nan	0	nan
HS68	Converged	7	0	0	Converged	0	0	0	7	1.00e+00	0	nan	0	nan
HS7	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
HS70	Converged	7	0	0	Converged	0	0	0	7	1.00e+00	0	nan	0	nan
HS71	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nan
HS72	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	6	0		Converged	0	0	0	6	1.00e+00	0	nan	0	nan
	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0		4	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0		1	1.00e+00	0	nan	0	nan
HS79	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan

	status 0	linesearch failures 0	L-BFGS failures 0	L-BFGS rejected 0	status 1	linesearch failures 1 L-BF	FGS failures 1	L-BFGS rejected 1	Is imprv	rel Is imprv	lbfgs imprv	rel Ibfgs imprv	lbfgs rej imprv	rel lbfgs rej imprv
name														
HS8	Converged	4		0	Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	4	0		Converged	0	0	988	4	1.00e+00	0	nan	-3	-3.05e-03
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	11	0		Converged	0	0	0	11	1.00e+00	0	nan	0	nan
	Converged	12	0		Converged	0	0	0	12	1.00e+00	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	9	0		Converged	0	0	0	9	1.00e+00	0	nan	0	nan
	Converged	924	0	4419		0	0	0	924	1.00e+00	0	nan	4419	1.00e+00
	Converged	12	0		Converged	0	0	954	12	1.00e+00	0	nan	-954	-inf
	Converged	0		0		0	0	0	0	nan	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	1	0		Converged	0	0	1	1	1.00e+00	0	nan	1	5.00e-01
	Converged	1	0		Converged	0	0	1	1	1.00e+00	0	nan	14	9.33e-01
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
HUES-MOD		3	0		Converged	1	0	922	2	6.67e-01	0	nan	404	3.05e-01
HYDROELL		15	0		Converged	0	0	10799	15	1.00e+00	0	nan	-10799	-inf
HYDROELM		18	0		Converged	0	0	0	18	1.00e+00	0	nan	0	nan
HYDROELS		17	0		Converged	0	0	0	17	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
INTEGREQ		0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	0	0	0		0	0	0	0	nan	0	nan	0	nan
JANNSON4		2	0	986		0	0	1925	2	1.00e+00	0	nan	-939	-9.52e-01
	Converged	1242	0	21302		0	0	0	1242	1.00e+00	0	nan	21302	1.00e+00
KIWCRESC		2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	3			Converged	0	0	0	3	1.00e+00	0	nan	0	nan
LIARWHDNE		4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
LINSPANH		4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
LOADBAL	-	6	0		Converged	0	0	0	6	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	965	4	1.00e+00	0	nan	-965	-inf
LSNNODOC		3			Converged	0	0	0	3	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	2			Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	12	0		Converged	0	0	0	12	1.00e+00	0	nan	0	nan
	Converged	13	0		Converged	0	0	0	13	1.00e+00	0	nan	0	nan
	Converged	1	0	0		0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	8	0		Converged	0	0	0	8	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	1	1	1.00e+00	0	nan	0	0.00e+00
	Converged				Converged	0	0	0	6	1.00e+00	0	nan	12	1.00e+00
	Converged Converged	2	0		Converged	0	0	0	0	1.00e+00	0	nan	0	nan 0.00e+00
	Converged	3	0		Converged Converged	0	0		3	nan 1.00e+00	0	nan	0	
		2	0		Converged	0	0	0	2		0	nan		nan
MANCINONE	Converged	4	0		Converged	0	0	0	4	1.00e+00 1.00e+00	0	nan nan	0	nan nan
	Converged	8	0		Converged	0	0	0	8	1.00e+00	0	nan nan	0	nan nan
	Converged	3	0		Converged	0	0	0	3	1.00e+00	0	nan nan	0	nan nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
MGH17LS MGH17SLS	-	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nan
	Converged	3	0		Converged	0	0	6	3	1.00e+00	0	nan	-3	-1.00e+00
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
MINMAXBD		31	0		Converged	0	0	6207	31	1.00e+00	0	nan	19516	7.59e-01
MINMAXRB		1	0		Converged	0	0	0	1	1.00e+00	0	nan	1	1.00e+00
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
MINSURFO	-	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	2	0		Converged	0	0	0	2	1.00e+00	0	nan	0	nan
	Converged	8	0		Converged	0	0	0	8	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	5	0		Converged	0	0	0	5	1.00e+00	0	nan	0	nan
	Converged	4	0		Converged	0	0	2879	4	1.00e+00	0	nan	-2879	-inf
	Converged	12	0		Converged	0	0	2880	12	1.00e+00	0	nan	1975	4.07e-01
	Converged	0	0		Converged	0	0	0	0	nan	0	nan	0	nan
	Converged	52	0		Converged	0	0	0	52	1.00e+00	0	nan	0	nan
NYSTROM5		4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nan
	Converged	0			Converged	0	0	0	0	nan	0	nan	0	nan
		ŭ	· ·			-	Ü	Ü	Ü				· ·	*******

	status 0	linesearch failures 0	L-BFGS failures 0	L-BFGS rejected 0	status 1	linesearch failures 1	L-BFGS failures 1	L-BFGS rejected 1	Is imprv	rel Is imprv	lbfgs imprv	rel lbfgs imprv	lbfgs rej imprv	rel lbfgs rej impro
name														
ORTHREGB	Converged	5	0	0	Converged	0	0	0	5	1.00e+00	0	nan	0	nar
OSORIO	Converged	38	0	0	Converged	0	0	0	38	1.00e+00	0	nan	0	nar
PENTAGON	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
POLAK3	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar
POLAK4	Converged	87	0	125795	Converged	986	0	0	-899	-1.03e+01	0	nan	125795	1.00e+00
POLAK5	Converged	5	0	2994	Converged	0	0	1978	5	1.00e+00	0	nan	1016	3.39e-0
PORTFL1	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nar
PORTFL2	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
PORTFL3	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
PORTFL4	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
PORTFL6	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nar
POWELLSQ	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nar
PRICE3NE	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar
PRICE4NE	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar
PRIMAL1	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
PRIMAL2	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nar
PRIMAL3	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
PRIMAL4	Converged	3	0	0	Converged	0	0	0	3	1.00e+00	0	nan	0	nar
PRIMALC2	Converged	18	0	145021	Converged	0	0	21780	18	1.00e+00	0	nan	123241	8.50e-01
PRODPL0	Converged	6	0	744	Converged	0	0	0	6	1.00e+00	0	nan	744	1.00e+0
PRODPL1	Converged	6	0	0	Converged	0	0	202	6	1.00e+00	0	nan	-202	-in
QC	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar
QPCBLEND	Converged	73	0	0	Converged	0	0	0	73	1.00e+00	0	nan	0	nar
QPNBLEND	Converged	90	0	0	Converged	2	0	34813	88	9.78e-01	0	nan	-34813	-in
RES	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar
RK23	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar
ROBOT	Converged	2	0	0	Converged	0	0	0	2	1.00e+00	0	nan	0	nar
ROSENBR	Converged	4	0	0	Converged	0	0	0	4	1.00e+00	0	nan	0	nar
ROSENMMX	Converged	6	0	1401	Converged	0	0	4001	6	1.00e+00	0	nan	-2600	-1.86e+00
S368	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nai
STREGNE	Converged	23	0	0	Converged	9	0	0	14	6.09e-01	0	nan	0	nai
STRTCHDVNE	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar
SUPERSIM	Converged	1	0	0	Converged	0	0	0	1	1.00e+00	0	nan	0	nar
	Converged	6	0		Converged	0	0	0	6	1.00e+00	0	nan	0	nar
	Converged	13	0		Converged	0	0	3827	13	1.00e+00	0	nan	-962	-3.36e-01
	Converged	8	0		Converged	0	0	5717	8	1.00e+00	0	nan	-4791	-5.17e+00
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nar
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nar
WACHBIEG		4	0		Converged	0	0	0	4	1.00e+00	0	nan	0	nar
	Converged	7	0		Converged	0	0	30712	7	1.00e+00	0	nan	-15833	-1.06e+00
	Converged	8	0	2919	-	0	0	87	8	1.00e+00	0	nan	2832	9.70e-0
	Converged	14	0		Converged	0	0	93808	14	1.00e+00	0	nan	-65835	-2.35e+00
	Converged	14	0		Converged	0	0	0	14	1.00e+00	0	nan	0	nai
	Converged	2	0		Converged	0	0	0		1.00e+00	0	nan	0	nar
	Converged	1	0		Converged	0	0	0		1.00e+00	0	nan	0	nar
	Converged	1	0		Converged	0	0	0	1	1.00e+00	0	nan	0	nar
ZECEVIC4	Converged	0	0	0	Converged	0	0	0	0	nan	0	nan	0	nar

0 Converged

In [16]: base_df[base_df[' ϵ '] == 0]

ZY2 Converged

Out[16]:

:	status	time	inner iterations	outer iterations	inner convergence failures	f	ε	δ	f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	ΙΙΣΙΙ	llxll	llyll
name																		
EQC	Converged	0.092393	1001	2	1	-829.547705	0.0	0.00	37934	19972	37938	19972	0	0	0	1.732051e+00	0.876608	0.000000e+00
HIMMELP3	Converged	0.002910	144	2	0	-59.013178	0.0	0.00	4316	2291	4320	2291	3	0	0	1.414214e+00	99.247166	0.000000e+00
HIMMELP5	Converged	0.000139	8	1	0	-59.013178	0.0	0.00	104	59	106	59	1	0	0	1.732051e+00	99.247166	0.000000e+00
HIMMELP6	Converged	0.000134	8	1	0	-59.013178	0.0	0.00	104	59	106	59	1	0	0	2.236068e+00	99.247166	0.000000e+00
HS24	Converged	0.000165	11	4	0	0.000000	0.0	0.00	221	117	229	117	2	0	0	1.000100e+02	5.999870	0.000000e+00
HS30	Converged	0.000042	2	1	0	1.000000	0.0	0.00	7	7	9	7	0	0	0	1.000000e+00	1.000000	0.000000e+00
HS4	Converged	0.000030	1	1	0	2.666667	0.0	0.00	4	5	6	5	0	0	0	0.000000e+00	1.000000	0.000000e+00
HS45	Converged	0.000042	5	3	0	1.000000	0.0	0.00	30	26	36	26	0	0	0	0.000000e+00	7.416198	0.000000e+00
HS93	Maxiter	0.000958	25	200	0	0.000000	0.0	2.07	499	673	899	673	0	0	0	1.000000e+15	13.752958	2.070001e+15
QC	Converged	0.149588	2930	3	2	-956.537733	0.0	0.00	55876	30874	55882	30874	0	0	0	2.000000e+00	0.381156	0.000000e+00

0 1 1.00e+00

In [17]: $new_df[new_df['\epsilon'] == 0]$

Out[17]:

Out[17]:																		
		status	time	inner iterations	outer iterations	inner convergence failures	f	ε	δ f evaluations	grad_f evaluations	g evaluations	grad_g evaluations	linesearch failures	L-BFGS failures	L-BFGS rejected	IIΣII	lixii	llyll
	name																	
_	EQC	Converged	0.092359	1001	2	1	-829.547705	0.0 0.0	00 37934	19972	37938	19972	0	0	0	1.732051e+00	0.876608	0.000000e+00
	HARKERP2	Converged	13.140290	886	4	0	-0.500000	0.0 0.0	00 3872	2813	3880	2813	0	0	0	0.000000e+00	1	0.000000e+00
	HIMMELP3	Converged	0.000094	6	2	0	-59.013178	0.0 0.0	00 89	27	93	27	0	0	0	1.414214e+00	99.247166	0.000000e+00
	HIMMELP4	Converged	0.000103	6	2	0	-59.013178	0.0 0.0	00 89	27	93	27	0	0	0	1.732051e+00	99.247166	0.000000e+00
	HIMMELP5	Converged	0.000087	8	2	0	-59.013178	0.0 0.0	00 39	25	43	25	0	0	0	1.732051e+00	99.247166	0.000000e+00
	HIMMELP6	Converged	0.000084	8	2	0	-59.013178	0.0 0.0	00 39	25	43	25	0	0	0	2.236068e+00	99.247166	0.000000e+00
	HS30	Converged	0.000045	2	1	0	1.000000	0.0 0.0	00 7	7	9	7	0	0	0	1.000000e+00	1	0.000000e+00
	HS4	Converged	0.000037	1	1	0	2.666667	0.0 0.0	00 4	5	6	5	0	0	0	0.000000e+00	1	0.000000e+00
	HS45	Converged	0.000044	5	3	0	1.000000	0.0 0.0	00 30	26	36	26	0	0	0	0.000000e+00	7.416198	0.000000e+00
	HS93	Maxiter	0.000900	25	200	0	0.000000	0.0 2.0	07 499	673	899	673	0	0	0	1.000000e+15	13.752958	2.070001e+15
	MANNE	Converged	1.332107	327	6	0	-0.974573	0.0 0.0	00 807	711	819	711	0	0	0	2.356573e+02	5278.802781	0.000000e+00
	QC	Converged	0.205725	2930	3	2	-956.537733	0.0 0.0	00 55876	30874	55882	30874	0	0	0	2.000000e+00	0.381156	0.000000e+00