Standard Errors for Calibrated Parameters

Matthew D. Cocci Amazon Mikkel Plagborg-Møller Princeton University

Slides: https://scholar.princeton.edu/mikkelpm

May 11, 2022

Data combination for structural inference

- Structural models are often calibrated to match many kinds of "moments", e.g.:
 - Micro vs. macro.
 - High-frequency vs. low-frequency.
 - Quantiles vs. regression coefficients.
 - Underlying data available vs. only moments available.
- Prominent example: heterogeneous agent macro models.
 Krueger, Mitman & Perri (2016); AKMWW (2017); Kaplan & Violante (2018)
- Key inference challenges:
 - 1 How do we account for the statistical inter-dependence between the various moments?
 - 2 How do we exploit the combined data efficiently?

This paper: Standard errors for calibrated parameters

- "Calibration": moment matching (minimum distance) estimation of structural param's.
- SE easy to compute if var-cov matrix of empirical moments is known.
- In practice, hard/impossible to estimate *correlations* of moments due to different data sources, methods, etc. But *variances* readily available.
- Contribution 1: Simple formula for *worst-case* SE ⇒ Valid confidence interval.
- ullet Contribution 2: Moment weighting that minimizes worst-case SE \Longrightarrow Moment selection.
- Further results: Testing, additional information about moment var-cov matrix.

- Framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Moment matching estimation

- $\theta_0 \in \Theta \subset \mathbb{R}^k$: structural parameter vector.
- $\mu_0 \equiv h(\theta_0) \in \mathbb{R}^p$: model-implied moment vector.
- $\hat{\mu}$: empirical moment vector. Assume $\hat{\mu} \sim N(\mu_0, \hat{V})$.
- Moment matching/minimum distance/calibration: Newey & McFadden (1994); Hansen & Heckman (1996)

$$\begin{split} \hat{\theta} &\equiv \mathsf{argmin}_{\theta \in \Theta} \; (\hat{\mu} - h(\theta))' \hat{W} (\hat{\mu} - h(\theta)) \\ & \dot{\sim} \; \mathcal{N} \left(\theta_0, (\hat{G}' \hat{W} \hat{G})^{-1} \hat{G}' \hat{W} \hat{V} \hat{W} \hat{G} (\hat{G}' \hat{W} \hat{G})^{-1} \right), \;\; \hat{G} \equiv \frac{\partial h(\hat{\theta})}{\partial \theta'}. \end{split}$$

• Issue (next slide): In applications, often don't know off-diagonal elements of \hat{V} .

4

Var-cov matrix of empirical moments

- Estimating the *correlations* of different empirical moments is conceptually and practically challenging if they come from...
 - 1 ... different data sets (e.g., micro and macro).
 - 2 . . . different estimation methods.
 - 3 . . . previous papers.
- But individual *variances* of the moments are often known/estimable.
- Can we construct SE and CI w/o knowing the correlation structure?
- Note: Joint normality of $\hat{\mu}$ is restrictive. Assume identification. Hahn, Kuersteiner & Mazzocco (2020a,b)

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Worst-case standard errors

- Assume we know SE $\hat{\sigma}_j$ of each moment $\hat{\mu}_j$.
- What are the worst-case SE for the scalar parameter of interest $r(\hat{\theta})$ across all possible correlation structures of the moments?
 - E.g., $r(\theta) = \text{counterfactual}$, or $r(\theta) = \theta_i$.
- Delta method (under standard regularity conditions):

$$r(\hat{\theta}) - r(\theta_0) \approx \hat{x}'(\hat{\mu} - \mu_0), \quad \hat{x} \equiv \hat{W}\hat{G}(\hat{G}'\hat{W}\hat{G})^{-1}\hat{\lambda}, \quad \hat{\lambda} \equiv \partial r(\hat{\theta})/\partial \theta.$$

- What is worst-case variance of $\hat{x}'\hat{\mu}$, given known marginal variances of $\hat{\mu}_i$?
- Simple but useful result:

$$\mathsf{Var}(X+Y) = \mathsf{Var}(X) + \mathsf{Var}(Y) + 2\underbrace{\mathsf{Cov}(X,Y)}_{\leq \mathsf{Std}(X)\,\mathsf{Std}(Y)} \leq (\mathsf{Std}(X) + \mathsf{Std}(Y))^2.$$

Worst-case standard errors (cont.)

• Using the simple result:

$$WCSE \equiv \max_{\hat{V} \in \mathcal{S}(\hat{\sigma})} SE(r(\hat{\theta})) = \max_{\hat{V} \in \mathcal{S}(\hat{\sigma})} SE(\hat{x}'\hat{\mu}) = \sum_{j=1}^{p} |\hat{x}_j| \hat{\sigma}_j,$$

$$\hat{x} \equiv \hat{W}\hat{G}(\hat{G}'\hat{W}\hat{G})^{-1}\hat{\lambda}, \quad \hat{G} \equiv \frac{\partial h(\hat{\theta})}{\partial \theta'}, \quad \hat{\lambda} \equiv \frac{\partial r(\hat{\theta})}{\partial \theta}.$$

- Easy to compute, given $h(\cdot)$ and $r(\cdot)$.
- CI with coverage prob. at least 95% for $r(\theta_0)$:

$$r(\hat{\theta}) \pm 1.96 \times WCSE$$
.

Exact coverage under worst-case correlation structure: perfect correlation (± 1) .

• WCSE at most \sqrt{p} times larger than SE that assume independence.

7

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Efficient moment weighting/selection

• Which moment weight matrix \hat{W} minimizes the WCSE for $r(\hat{\theta})$?

$$\min_{\hat{W} \in \mathcal{S}} \sum_{j=1}^{p} |\hat{x}_j(\hat{W})| \hat{\sigma}_j = \min_{z \in \mathbb{R}^{p-k}} \sum_{j=1}^{p} |\tilde{Y}_j - \tilde{X}_j'z|,$$

for certain artificial data \tilde{Y}_j and \tilde{X}_j , $j=1,\ldots,p$.

- This is just a median regression. Easy to compute.
- There exists solution z^* such that at least p k residuals

$$\hat{\mathsf{e}}_{j}^{*} \equiv ilde{\mathsf{Y}}_{j} - ilde{\mathsf{X}}_{j}^{\prime} \mathsf{z}^{*}, \quad j = 1, \ldots, \mathsf{p},$$

are zero. Koenker & Basset (1978)

- Efficient \hat{W} : zero weight on $\hat{\mu}_j$ for which $\hat{e}_j^* = 0$. Depends on $r(\cdot)$.
- Efficient estimator $\hat{\theta}_{\text{eff}}$ uses only k moments \Longrightarrow Moment selection.

Efficient moment weighting/selection: Intuition

- Financial portfolio analogy: How do we form the lowest-variance portfolio subject to achieving a given expected return?
- Diversification argument suggests that we should use all available assets.
- But suppose we do not know the cross-correlations of the assets. How to guard against high variance in the worst case?
- Worst case: perfect correlation \Longrightarrow No diversification motive.
- Robust solution: Buy only the single asset with highest Sharpe ratio ("signal-to-noise").
- If we had k constraints (not just expected return target), we would need k assets.
 - Minimum distance: Asy. estimator unbiasedness yields *k* constraints.

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Testing

- Over-identification test (p > k). "Checking non-targeted moments."
 - $\tilde{\theta}_0 \equiv \operatorname{argmin}_{\theta}(\mu_0 h(\theta))'W(\mu_0 h(\theta)).$
 - 95% CI for $(\mu_j h_j(\tilde{\theta}_0))$: $(\hat{\mu}_j h_j(\hat{\theta})) \pm 1.96 \times WCSE_{(\hat{\mu}_j h_j(\hat{\theta}))}$.
- Joint test of parameter restrictions H_0 : $r(\theta_0) = 0_{m \times 1}$.
 - Wald-type test statistic $\hat{\mathscr{T}} \equiv r(\hat{\theta})'\hat{S}r(\hat{\theta})$.
 - Under H_0 : $n\hat{\mathscr{T}} \sim Z'QZ$, where $Z \sim N(0, I_p)$. Q depends on unknown V.
 - Bound tail probability of Z'QZ to get simple (conservative) critical value. Székely & Bakirov (2003)

General knowledge about var-cov matrix

• General problem: Given linear combination \hat{x} ,

$$\max / \min \hat{x}' V \hat{x}$$
 s.t. (i) known elements of V , (ii) V symm. pos. semidef.

- Easily computable using (convex) semidefinite programming.
- Closed-form formula if block diagonal of \hat{V} is known.
- Optimal weight matrix: Nested concave/convex problems.

$$\min_{W \in \mathcal{S}_{\mathcal{P}}} \max_{V \in \tilde{\mathcal{S}}} \hat{x}(W)' V \hat{x}(W) = \min_{z \in \mathbb{R}^{p-k}} \max_{V \in \tilde{\mathcal{S}}} \{ \hat{G}(\hat{G}'\hat{G})^{-1} \hat{\lambda} + \hat{G}^{\perp} z \}' V \{ \hat{G}(\hat{G}'\hat{G})^{-1} \hat{\lambda} + \hat{G}^{\perp} z \}$$

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Application: Menu cost price setting for multiproduct firms

- Alvarez & Lippi (2014): Continuous-time model of optimal pricing for multiproduct firm subject to menu cost. Once menu cost is paid, all prices may be adjusted.
- Shape of price change distribution depends on k=3 param's: (i) number of products, (ii) volatility of frictionless optimal prices, and (iii) scaled menu cost.
- Data: Price changes of beer from a single supermarket branch (Dominick's). 499 UPCs, on average 76 weekly obs. per UPC. $n \approx 38$ k.
- p = 4 estimation moments: freq. of price change and $E(|\Delta p|^j)$, $j \in \{1, 2, 4\}$.
- Compare:
 - Full-info: Use estimated moment correlations.
 - 2 Limited-info: Pretend we get moments + SE from other paper.

Application: Menu cost price setting for multiproduct firms (cont.)

	Just-ID: $E(\Delta p)$ not targeted				All moments		
	#prod	Vol	MC	Over-ID	#prod	Vol	MC
Full-info	3.012	0.090	0.291	0.0019	3.255	0.089	0.305
	(0.046)	(0.001)	(0.003)	(0.0001)	(0.052)	(0.001)	(0.003)
Limited-info	3.012	0.090	0.291	0.0019	2.786	0.090	0.278
	(0.235)	(0.001)	(0.016)	(0.0022)	(0.148)	(0.001)	(0.011)

SE in parentheses. Over-ID: error in matching $\hat{\mathcal{E}}(|\Delta p|)=0.145.$

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Estimation of HANK model by IRF matching

- One-asset HANK model from Auclert, Bardóczy, Rognlie & Straub (2021), solved via linearization. McKay, Nakamura & Steinsson (2016); Kaplan, Moll & Violante (2018)
- p=23 matched moments: impulse responses for both micro and macro variables to TFP and monetary shocks. Use IRF estimates+SEs from Chang, Chen & Schorfheide (2021) and Miranda-Agrippino & Ricco (2021).
 - IRF matching less efficient than likelihood inference, but robust to specification of other shock processes.
 - We don't need underlying data or extra assumptions required for GMM/bootstrap.
- k = 7 estimated parameters: AR(2) shock process parameters, Taylor rule coefficient on inflation, slope of Phillips curve.

Vertical bars: Cls for differences btw. empirical and model-implied moments, centered at the former.

Estimation of HANK model by IRF matching (cont.)

			TFP			Monetary	
Weight matrix	TR	PC	AR1	AR2	Std	AR1	AR2
Diagonal	1.409	0.010	0.076	-0.132	0.007	0.713	0.075
	(4.243)	(0.012)	(0.237)	(0.377)	(0.001)	(0.223)	(0.185)
Efficient	1.583	0.017	0.060	-0.078	0.007	0.723	0.014
	(3.012)	(0.010)	(0.192)	(0.282)	(0.000)	(0.170)	(0.149)

Worst-case SE in parentheses. Parameters: Taylor rule coefficient on inflation ("TR"); slope of Phillips curve ("PC"); first and second autoregressive ("AR1" and "AR2") and standard deviation ("Std") parameters of TFP and monetary disturbance processes.

- framework
- Standard errors
- 3 Efficient moment weighting
- 4 Further results
- 6 Applications
 - Menu cost price setting
 - Heterogeneous agent New Keynesian model
- **6** Summary

Summary

- In practical moment matching (minimum distance) estimation, the correlation structure of the empirical moments can be difficult/impossible to estimate.
- We construct worst-case SE and valid CI given marginal variances of moments.
- Efficient moment weighting

 Moment selection.
- Further results: Testing, additional info about var-cov matrix.
- Computationally simple (Matlab+Python packages on GitHub).

Summary

- In practical moment matching (minimum distance) estimation, the correlation structure of the empirical moments can be difficult/impossible to estimate.
- We construct worst-case SE and valid CI given marginal variances of moments.
- Efficient moment weighting

 Moment selection.
- Further results: Testing, additional info about var-cov matrix.
- Computationally simple (Matlab+Python packages on GitHub).

Thank you!

Appendix

Median regression: Details

• Recall $x(W) = WG(G'WG)^{-1}\lambda$. Lemma:

$$\{x(W)\colon W\in\mathcal{S}_p\}=\left\{x\colon x\in\mathbb{R}^p,\ G'x=\lambda\right\}=\left\{G(G'G)^{-1}\lambda+G^{\perp}z\colon z\in\mathbb{R}^{p-k}\right\}.$$

- G^{\perp} is a full-rank $p \times (p-k)$ matrix satisfying $G'G^{\perp} = 0_{k \times (p-k)}$.
- Hence,

$$\min_{W \in \mathcal{S}} \sum_{j=1}^{p} |x_j(W)| \sigma_j = \min_{z \in \mathbb{R}^{p-k}} \sum_{j=1}^{p} |\tilde{Y}_j - \tilde{X}_j' z|,$$

where

$$\tilde{Y}_j \equiv \sigma_j G_{j\bullet}(G'G)^{-1} \hat{\lambda} \in \mathbb{R}, \quad \tilde{X}_j \equiv -\sigma_j G_{j\bullet}^{\perp \prime} \in \mathbb{R}^{p-k}.$$

∢ General

Over-identification test

$$ilde{ heta}_0 \equiv \mathop{\mathsf{argmin}}_{ heta \in \Theta} (\mu_0 - h(heta))' W(\mu_0 - h(heta))$$

Standard result:

$$\hat{\mu} - h(\hat{\theta}) - (\mu_0 - h(\tilde{\theta}_0)) \approx (I_p - \hat{G}(\hat{G}'\hat{W}\hat{G})^{-1}\hat{G}'\hat{W})(\hat{\mu} - \mu_0).$$

- Computing the WCSE for $(\hat{\mu}_j h_j(\hat{\theta}))$ just amounts to finding the WCSE for a particular linear combination of $\hat{\mu}$. Apply earlier result.
- 95% CI for $(\mu_i h_i(\tilde{\theta}_0))$:

$$(\hat{\mu}_i - h_i(\hat{\theta})) \pm 1.96 \times WCSE$$
.

Joint test of parameter restrictions

• Under H_0 :

$$n\hat{\mathcal{T}} \stackrel{d}{\to} Z'QZ, \quad Q \equiv V^{1/2'}WG(G'WG)^{-1}\lambda S\lambda'(G'WG)^{-1}G'WV^{1/2}.$$

Székely & Bakirov (2003) prove that

$$P(Z'QZ \leq \operatorname{trace}(Q) \times \tau) \leq P(Z_1^2 \leq \tau)$$

for any $p \times p$ sym. pos. semidef. $Q \neq 0$ and any $\tau > 1.5365$.

• Compute using (convex) semidefinite programming:

$$\widehat{\mathsf{cv}} \equiv \max_{\tilde{V} \in \mathcal{S}(\mathsf{diag}(V))} \frac{1}{n} \operatorname{trace} \left(\tilde{V} \mathit{WG} (\mathit{G}' \mathit{WG})^{-1} \lambda \mathit{S} \lambda' (\mathit{G}' \mathit{WG})^{-1} \mathit{G}' \mathit{W} \right) \times \left(\Phi^{-1} (1 - \alpha/2) \right)^2.$$

• Then, for any $\alpha \leq 0.215$, we have under H_0 :

$$\begin{split} P(\hat{\mathscr{T}} \leq \widehat{\mathsf{cv}}) \geq P\left(n\hat{\mathscr{T}} \leq \mathsf{trace}(Q) \times (\Phi^{-1}(1-\alpha/2))^2\right) \\ &\to P\left(Z'QZ \leq \mathsf{trace}(Q) \times (\Phi^{-1}(1-\alpha/2))^2\right) \\ &\leq P\left(Z_1^2 \leq (\Phi^{-1}(1-\alpha/2))^2\right) = 1-\alpha. \end{split}$$

Alvarez & Lippi (2014) model

• Firm chooses stopping times τ_j and price changes $\Delta p_i(\tau_j)$ to minimize

$$E\left[\underbrace{\sum_{j=1}^{\infty}e^{-r\tau_{j}}\psi}_{\text{menu cost}}+B\underbrace{\int_{0}^{\infty}e^{-rt}\left(\sum_{i=1}^{n}p_{i}(t)^{2}\right)dt}_{\text{price gaps}}\mid p(0)=p\right].$$

Price gap evolution:

$$p_i(t) = \sigma \underbrace{\mathcal{W}_i(t)}_{\mathsf{BM}} + \sum_{j \colon au_j < t} \Delta p_i(au_j), \quad t \geq 0, \ i = 1, \dots, n.$$

- Following A&L, consider limit $r \to 0$.
- Parameters to be estimated: number n of products, volatility σ , scaled menu cost $\sqrt{\psi/B}$.

Simulation study

• Simulate from A&L model with just-ID parameter estimates. Same sample size $n \approx 37$ k.

	Just-identified specification			Effic	ient speci	fication
	# prod.	Vol.	Menu cost	# prod.	Vol.	Menu cost
	Confidence interval coverage rate					
Full-info	94.5%	95.0%	94.7%	95.0%	95.2%	95.3%
Independence	100.0%	95.0%	100.0%	100.0%	89.1%	100.0%
Worst case	100.0%	99.4%	100.0%	100.0%	99.4%	100.0%
	Confidence interval average length					
Full-info	0.179	0.002	0.010	0.162	0.002	0.009
Independence	0.627	0.002	0.039	0.390	0.002	0.025
Worst case	0.878	0.003	0.059	0.571	0.003	0.041

	ام: عمدا	:f:ad au	a cification	Efficient specification			
	Just-identified specification			EIIIC	ient speci	ncation	
	# prod.	Vol.	Menu cost	# prod.	Vol.	Menu cost	
	RMSE relative to true parameter values						
Full-info	1.53%	0.59%	0.86%	1.37%	0.58%	0.76%	
Independence	1.53%	0.59%	0.86%	1.72%	0.59%	0.99%	
Worst case	1.53%	0.59%	0.86%	1.79%	0.59%	1.03%	
	Rejection rate of over-identification test						
Full-info		5.01%)				
Independence		0.00%	1				
Worst case		0.00%	1				
	Rejection rate of joint test of true parameter values						
Full-info		4.79%)				
Independence		7.54%	1				
Worst case		2.47%	1				

Auclert et al. (2021) model

• Mass 1 of heterogeneous households with Bellman equation:

$$\begin{aligned} &V_{t}(e_{it}, a_{i,t-1}) = \max_{c_{it}, n_{it}, a_{it}} \left\{ \frac{c_{it}^{1-\sigma}}{1-\sigma} - \varphi \frac{n_{it}^{1+\nu}}{1+\nu} + \beta \mathbb{E}_{t}[V_{t+1}(e_{i,t+1}, a_{it})] \right\} \\ &\text{s.t.} \quad c_{it} + a_{it} = (1+r_{t})a_{i,t-1} + w_{t}e_{it}n_{it} - \tau_{t}\bar{\tau}(e_{it}) + d_{t}\bar{d}(e_{it}), \quad a_{it} \geq 0. \end{aligned}$$

- Idiosyncratic productivity (discretized): $\log e_{it} = \rho_e \log e_{i,t-1} + \sigma_e \epsilon_{it}$, $\epsilon_{it} \stackrel{i.i.d.}{\sim} N(0,1)$.
- Competitive final goods firm aggregates continuum of intermediate goods.
 - Intermediate producers: Monop. comp., linear production in labor, quadr. price adj. costs ψ_t .
 - Yields NKPC:

$$\log(1+\pi_t) = \kappa \left(\frac{w_t}{Z_t} - \frac{1}{\mu}\right) + \frac{1}{1+r_{t+1}} \frac{Y_{t+1}}{Y_t} \log(1+\pi_{t+1}).$$

• Dividends: $d_t = Y_t - w_t N_t - \psi_t$. Incidence rule $\bar{d}(e_{it}) \propto e_{it}$.

Auclert et al. (2021) model (cont.)

- Fiscal policy: $\tau_t = r_t B$. Incidence rule $\bar{\tau}(e_{it}) \propto e_{it}$.
- Monetary policy: $i_t = r_t^* + \phi \pi_t$, where $1 + r_t = (1 + i_{t-1})/(1 + \pi_t)$.
- Exogenous disturbance processes:
 - $\log Z_t \log Z_{t-1} = AR(2)$ process.
 - $r_t^* = AR(2)$ process.
- Market clearing: $Y_t = \int c_{it} di + \psi_t$, $B = \int a_{it} di$, $N_t = \int e_{it} n_{it} di$.

Auclert et al. (2021) model: Calibrated parameters

Parameter	Value		
β	0.982		
arphi	0.786		
σ	2		
ν	2		
$ ho_{m{e}}$	0.966		
$\sigma_e/\sqrt{1- ho_e^2}$	0.5		
μ	1.2		
В	5.6		

Note: $N_t = 1$, $r^{ss} = 0.005$, $Y^{ss} = 1$.

