Data modeling and table properties

DATA MODELING IN POWER BI

Maarten Van den Broeck Content Developer at DataCamp

What is a data model?

- Conceptual view of data elements
- Typically a visual representation
- Data models include:
 - Tables
 - Columns
 - Relationships between tables
 - Data types
 - Keys

Data modeling

- The process of creating a data model
- Why model data?
 - \circ Data \neq perfect
 - Reshape data for analysis
 - Compress data usage
 - Easier to understand model

Data modeling in Power BI & Power Query

- Power Query is the data preparation tool of different Microsoft products, including Power Bl
- Main goals:
 - Manage queries
 - Data modeling
- Data modeling: 80% in Power Query, 20% in Power BI

Columns and row management

Operation

- Keep or remove specific columns
- Keep or remove specific rows
- Split a single column in multiple columns
- Summarize/group rows in a table by the contents of a column

Example

- Remove empty column
- Keep top row as header
- DD/MM/YYYY column split in DD, MM, YYYY columns
- Sum or median of all rows

Data types

- Choosing the right data type is essential:
 - Constrain data to a specific shape
 - Optimize storage
 - Enable specific functionality
- Power Query infers data type on first few hundred rows

Rounding

Power Query

- Actually changes the data, not just formatting
- Typically not the right answer

Round

Specify how many decimal places to round to.

Decimal Places

2

Power BI

- Changes how the data appears, not how it's stored
- Generally a better answer than rounding in Power BI

The dataset

- United States Census Bureau survey data of manufacturers
- Summary statistics for manufacturing firms
- North American Industry Classification System (NAICS)

Let's practice!

DATA MODELING IN POWER BI

Load and transform data

DATA MODELING IN POWER BI

Maarten Van den Broeck Content Developer at DataCamp

Let's practice!

DATA MODELING IN POWER BI

Shaping tables

DATA MODELING IN POWER BI

Maarten Van den Broeck Content Developer at DataCamp

Database normalization

- A set of logical rules and processes to follow for data modeling
- Organizing a database
- Goals of normalization
 - Remove redundant data
 - Achieve a design which is a good representation of the real world
- Tables are connected through relationships in Power Bl

Data shaping in Power Query

- Power Query includes several data shaping operations to get closer to a normalized data model.
- Key techniques:
 - 1. Column splitting
 - 2. Column extraction
 - 3. Query appending
 - 4. Query merging
- There are additional techniques as well!

1. Column splitting

- Break out one column into multiple columns
- Split criteria
 - Delimiter
 - Number of characters
 - Position in string
 - Lower vs. upper casing
 - Digit vs. non-digit

2. Column extraction

- Take columns from one table and break them out into another table
- Keep a key on the original table to know which values fit together
- Result: keep distinct rows, shrinking total data model size and reducing redundancy

3. Query appending

- Combine contents of two or more tables into a single table
- Match rows based on column names, adding NULL for missing columns
- Equivalent to a UNION ALL statement in SQL

4. Query merging

- Join together two existing tables based on values from one or more columns¹
- Types of joins:
 - Inner join
 - Left outer join
 - Right outer join
 - Full outer join

ColA	ColB	ColC	Key
			K1
			K2
			K1
			K4

Key	Val
K1	Val1
K2	Val2
К3	Val3

Inner Join			
ColAColC	Key	Val	
	K1	Val1	
	K2	Val2	
	K1	Val1	

(Left) Outer Join		
ColAColC	Key	Val
	K1	Val1
	К2	Val2
	K1	Val1
	K4	null

(Loft) Outer Join

ran oater som			
ColAColC	Key	Val	
	K1	Val1	
	K2	Val2	
	K1	Val1	
	K4	null	
null	К3	Val3	

Full Outer Join

¹ This won't be covered in the exercises; check other DataCamp courses on joining tables for more detail

Let's practice!

DATA MODELING IN POWER BI

Merging and appending queries

DATA MODELING IN POWER BI

Maarten Van den Broeck Content Developer at DataCamp

Let's practice!

DATA MODELING IN POWER BI

