

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Dissecting the Pyrenophora tritici-repentis (tan spot of wheat) pangenome

Gourlie et al., 2022. bioRxiv. https://doi.org/10.1101/2022.03.07.483352

Outline

- Introduce Pyrenophora tritici-repentis
- Overview of our pangenome study
 - open pangenome and adaptability
 - phylogeny in relation to effectors and geography
 - effector gene mobility on large transposons
- Conclusions

Tan spot of wheat

- Pyrenophora tritici-repentis (Ptr)
- Isolated from Agropyron repens in early
 1900s "weakly pathogenic" on grasses
- Emergence on wheat in the 1940s via HGT^{1,2}
 - 14 kb transposon ToxhAT
- Today worldwide occurrence on wheat
 ~5% global losses³

¹Nat. Genet. **38**, 953-956 (2006) ²mBio **10**, e01515-19 (2018) ³Nat. Ecol. Evol. **3**, 430-439 (2019)

Ptr and its necrotrophic effectors

ToxA	ToxB	ToxC				
Necrosis	Chlorosis B	Chlorosis C				

Ptr race structure

CJPP 25, 339-349 (2003)

Ptr and its necrotrophic effectors

Objective

- Sequence all Ptr races and from the centre of wheat origin
 - Previous emphasis on North America and Australian isolates
- Provide insights into the evolution of the species as a whole
 - How is Ptr so adaptable?
 - How plastic is the Ptr genome?
- Add to understanding of effector evolution and mobility
 - Movement of *ToxA* within Ptr (previous PFGE work)
 - Is *ToxB* mobile like *ToxA*?

Sequenced isolates

- Collection dates range from 1990 to 2017
- Grown on $\frac{1}{4}$ conc. PDB for \sim 7 days @ \sim 25°C
- Fungal mats washed and freeze-dried
- DNA extracted w/ 'Genomic-tip 20/G' or 'Genomic-tip 100/G' (Qiagen) for long-reads

Race	ToxA	<i>ToxB</i>	ToxC	Number of isolates sequenc			
1	+	-	+	1	10		
2	+	-	-		6		
3*	-	-	+		6		
4	-	-	_		3		
5	-	+	-		7		
6	-	+	+	1			
7	+	+	-	3			
8*	+	+	+	3			
novel	-	+	-	1			
				Total	40		

^{*}sequenced with long-reads as well

Ptr genomics pipeline

Assembly details

- Assembly completeness BUSCO >99%
- Short-read genome size 34.8 ± 2.1 Mb
 - TE content \sim 7% of genome
- Long-read genome size 39.8 ± 1 Mb
 - >150% more TEs
- Non-pathogenic genomes ~2 Mb larger than pathogenic genomes
 - Expansion of non-pathogenic genomes via TE

Table 1. Summary statistics for 40 isolates of Pyrenophora tritici-repentis sequenced with Illumina HiSeq X and assembled with Shovill/SPAdes, and two isolates sequenced with PacBio and assembled with Flye/Pilon (table is sorted by race then isolate name).

and two isolates sequenced with PacBio and assembled with Flye/Pilon (table is sorted by race then isolate name).													
Isolate	Race	NE ¹	Year	Location ²	Host	Size	Contigs	GC	TE	N50	Genes	BUSCO	Accessory
						(MB)	Contigs	(%)	(%)	(kbp)	delles	(%)	(%)
ASC1	1	AC	1985	Manitoba	T. aestivum	34.78	6,495	50.9	6.9	65.5	13,124	99.3	22.5
I-33-1	1	AC	2001	Azerbaijan	T. aestivum	35.06	6,850	50.9	6.9	75.2	13,055	99.5	22.1
L3-1	1	AC	2016	Alberta	T. durum	34.93	6,666	50.9	6.9	77.2	13,115	99.4	22.4
L4-1	1	AC	2016	Alberta	T. durum	34.74	6,361	50.9	6.9	72.4	13,063	99.6	22.1
SW20-7	1	AC	2016	Saskatchewan	T. durum	35	6,568	50.9	7.2	76.2	13,116	99.4	22.5
SW2-1	1	AC	2016	Saskatchewan	T. durum	35.11	6,789	50.9	6.9	74.3	13,116	99.7	21.3
SW21-1	1	AC	2016	Saskatchewan	T. durum	34.62	6,282	50.9	6.8	74.3	12,965	99.4	21.6
SW21-7	1	AC	2016	Saskatchewan	T. durum	34.97	6,741	50.9	7	74.7	13,126	99.4	22.5
SW21-8	1	AC	2016	Saskatchewan	T. durum	34.96	6,631	50.9	6.9	75	13,073	99.4	22.2
SW7-5	1	AC	2016	Saskatchewan	T. durum	35.65	6,701	50.8	6.9	73.7	13,490	99.6	24.6
86-124	2	Α	1986	Manitoba	T. aestivum	34.9	6,832	50.9	6.9	60.7	13,209	99.2	23
AB88-2	2	Α	2010	Alberta	T. aestivum	34.83	6,465	50.9	6.9	75.3	13,126	99.5	22.5
L2-1	2	Α	2016	Alberta	T. durum	34.96	6,923	50.9	7.1	72.9	13,130	99.4	22.5
SW1-2	2	Α	2016	Saskatchewan	T. durum	35.08	6,599	50.9	7.1	71.2	13,365	99.4	24
SW15-1	2	Α	2016	Saskatchewan	T. durum	34.83	6,272	50.9	6.6	78.8	13,201	99.7	22.9
T132-2	2	Α	2017	Tunisia	T. durum	34.41	6,472	50.9	6.8	57.1	12,935	99.4	21.3
331-2	3	C	1985	Manitoba	Triticum sp.	34.44	6,828	51	6.9	55.6	12,909	99.5	21.2
D308	3	C	1985	Manitoba	T. aestivum	34.33	6,809	51	6.8	58.5	12,826	99.1	N/A¥
D308*	3	С	1985	Manitoba	T. aestivum	39.6	70	50.8	18.6	3,667	12,501	99.6	18.7
I-72-1	3	С	2001	Syria	Triticum sp.	34.35	6,734	51	6.8	58.6	13,011	99.5	21.8
I-72-7	3	C	2001	Syria	Triticum sp.	34.35	6,696	51	7	58.9	12,901	99.4	21.2
SC29-1	3	С	1999	Saskatchewan	T. durum	34.19	6,464	51	6.8	59	12,951	99.5	21.5
SW21-5	3	С	2016	Saskatchewan	T. durum	34.66	6,619	51	7.2	63.5	13,029	99.5	22
90-2	4	absent	1990	Canada	T. aestivum	35.22	3,818	50.8	7.2	225.9	12,909	99.5	21.3
G9-4	4	absent	2016	Alberta	wild grass	36.97	8,035	50.7	9.8	78.2	13,148	98.7	23
T126-1	4	absent	2017	Tunisia	T. durum	34.15	6,373	51	6.5	62.4	12,837	99.6	20.6
92-171R5	5	В	1992	Saskatchewan	T. aestivum	36.81	14,647	51.1	10.2	45.1	13,393	99.3	24.1
Alg3-24	5	В	1993	Algeria	T. durum	34.3	6,098	50.9	6.6	73.6	12,900	99.6	21.1
Alg4x-1	5	В	1993	Algeria	T. durum	35.71	8,072	50.9	7.5	71	13,193	99.4	22.9
I-17-2	5	В	2001	Azerbaijan	T. durum	34.25	6,555	51	7	62.5	12,820	99.6	20.7
I-34-5	5	В	2001	Azerbaijan	Triticum sp.	34.29	6,315	51	6.8	61.9	12,841	99.6	20.8
I-35-56	5	В	2001	Azerbaijan	T. durum	34.24	6,516	51	6.9	62.6	12,918	99.5	21.3
I-36-1	5	В	2001	Azerbaijan	T. durum	34.36	6,467	50.9	6.7	62.4	12,881	99.5	21
AlgH1	6	BC	1993	Algeria	T. durum	34.74	6,902	51	6.9	61.7	13,159	99.3	22.7
AZ35-5	7	AB	2001	Azerbaijan	T. durum	35.3	7,165	50.9	7.1	72.1	13,239	99.5	23.2
T176-2	7	AB	2017	Tunisia	T. aestivum	34.7	6,896	50.9	7.3	57.1	13,141	99.5	22.6
T181-1	7	AB	2017	Tunisia	T. durum	34.78	6,718	51.2	6.5	57.5	13,583	99.4	25.1
I-34-1	8	ABC	2001	Azerbaijan	T. durum	34.38	6,405	50.9	6.6	64.5	13,036	99.5	22
I-35-18	8	ABC	2001	Azerbaijan	T. durum	34.85	6,698	50.9	7	65.3	13,071	99.4	22.9
I-73-1	8	ABC	2001	Syria	T. aestivum	34.62	6,619	50.9	6.8	63.4	12,941	99.5	N/A¥
I-73-1*	8	ABC	2001	Syria	T. aestivum	39.9	39	50.8	18.3	3,647	12,744	99.6	20
T128-1	atypical	В	2017	Tunisia	T. durum	34.12	6,095	51	6.4	59.1	13,002	99.6	21.7

¹NE= Necrotrophic effector; ²Alberta, Saskatchewan, and Manitoba are provinces within Canada; *Long-read assemblies; ¹not included in pangenome

Pangenome of Ptr

- 43% of genes in core set (all isolates)
 - 69% had functional info (Pfam)
 - CAZymes were highly conserved
- 57% of genes in accessory set (some isolates)
 - 28% had functional info (Pfam)
 - Effectors primarily accessory
- 25% of genes were singletons (subset of accessory in only one isolate)
 - Primarily from race 4 (non-pathogenic) and divergent race 5 (*ToxB*)
- Large accessory and singleton count
 - *Candida albicans*¹: 91% core
 - Zymoseptoria tritici² (another wheat pathogen): 60% core
 - Previous Ptr pangenome³ (11 isolates): 69% core
- Large accessory genome ~ diverse functions ~ higher adaptability

¹Microb. Genom. **5**, 1-23 (2019)

²BMC Biology **18**, 1-18 (2020)

³BMC Genomics **19**, 279 (2018)

Pangenome of Ptr

Pangenome of Ptr

Core protein phylogeny

Accessory protein sets

ToxA is present in other species

Intraspecific translocation of *ToxA*

- Confirms work with PFGE¹
- 143 kb element
- Nested transposons
 associated with rapid
 virulence evolution²

¹*Mol. Plant Patholo.* **10**, 201-212 (2009) ²*Mol. Sciences.* **20**, 3597 (2019)

ToxA transposon is 'Starship' class

Gluck-Thaler et al., 2021. Giant *Starship* elements mobilize accessory genes in fungal genomes. *bioRxiv* preprint doi:10.1101/2021.12.13.472469

Multi-copy *ToxB* on a putative transposon

Summary of results and conclusions

- New high quality short-read assemblies representing all races of Ptr
- First long-read assemblies of race 3 (ToxC) and complex race 8 (ToxA, B, C)
- The Ptr genome is:
 - open and highly adaptive
 - plastic with chromosomal rearrangements between races (not presented)
 - 'one-compartment' but still maybe 'two-speed' (not presented)
- Phylogenetic clustering based on effector production and region
- *ToxA* is nested within multiple transposons: ToxhAT and new *Starship* class 'Horizon'
- *ToxB* may also have transposon activity and mobility

Preprint is now available

Available on ResearchGate and bioRxiv

Dissecting the Pyrenophora tritici-repentis (tan spot of wheat) pangenome

- D Ryan Gourlie, D Megan McDonald, D Mohamed Hafez, D Rodrigo Ortega-Polo, D Kristin E Low,
- D Wade Abbott, 📵 Stephen Strelkov, 📵 Fouad Daayf, 📵 Reem Aboukhaddour

doi: https://doi.org/10.1101/2022.03.07.483352

Let us know what you think on twitter!

@GeneticsGSA #Fungal22

@GourlieRyan @McdonaldMeganc @hafez_mnm

@ropolo @sweetmicrobe @ReemWheat

ACKNOWLEDGEMENTS

- Reem Aboukhaddour
- Megan McDonald
- Rodrigo Ortega-Polo
- Mohamed Hafez
- Stephen Strelkov
- Wade Abbott and Kristin Low
- Fouad Dyaaf
- HPC Biocluster Team
- Funders and Supporters

UNIVERSITY OF BIRMINGHAM

Pipeline references

Kraken2: Wood et al., 2019. Genome Biology 20

SPAdes: Bankevich et al., 2012. Journal of Computation Biology, 19(5), 455-477

Shovill: Seemann, 2019. github.com/tseemann/shovill

MEGAHIT: Li et al., 2015. Bioinformatics, 31(10), 1674-1676

SOAPdenovo2: Luo et al., 2012. Gigascience, 1(1), 18

Flye: Lin et al., 2016. Proceedings of the National Academy of Sciences, 113(52), E8396-E8405

Pylon: Walker et al., 2014. *PloS One*, 9(11), e112963

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Fungap: Min et al., 2017. Bioinformatics 33(18), 2936-2937

RNA: Moolhuijen et al., 2018. BMC Research Notes, 11(1), 907-909

BUSCO: Simão et al., 2015. Bioinformatics 31(19), 3210-3212

Pangloss: McCarthy & Fitzpatrick, 2019. Genes 10(7), 521

Reference isolate: Manning et al., 2013. G3 3(1), 41-63

Hierarchical Sets: Pedersen 2016. *github.com/thomasp85/hierarchicalSets*

Phobius: Käll et al., 2004. Journal of Molecular Biology 338(5), 1027-1036

EffectorP: Sperschneider et al., 2018. Molecular Plant Pathology.

MUSCLE: Edgar, 2004. *Nucleic Acid Research 32(5), 1792-1797*

RAxML: Stamatakis, 2014. Bioinformatics 30(9), 1312-1313

Mauve: Darling, et al., 2004. *Genome Research 14(7), 1394-1403*

EDTA: Ou et al., 2019. *Genome Biology* 20(1), 1-18

Sibelia: Minkin et al., 2013. Int. Workshop on Algorithms in Bioinformatics, 215-229

CIRCOS: Krzywinski et al., 2009. Genome Research 19(9), 1639-1645

DotPlotly: Poorten, 2018. https://github.com/tpoorten/dotPlotly

Minimap2: Li, 2018. Bioinformatics, 34(18), 3094-3100

Phyre2: Kelley et al., 2015. *Nature Protocols*, 10(6), 845-858