```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

<frozen importlib._bootstrap>:219: RuntimeWarning: scipy._lib.messagestream.Mes
sageStream size changed, may indicate binary incompatibility. Expected 56 from
C header, got 64 from PyObject

```
In [7]: #country-names-and-codes.csv
gdp=pd.read_csv('gdp_1960_2020.csv')
contry_code=pd.read_csv('country-names-and-codes.csv')
```

In [8]: gdp.head()

Out[8]:

	year	rank	country	state	gdp	gdp_percent
0	1960	1	the United States	America	543300000000	0.468483
1	1960	2	United Kingdom	Europe	73233967692	0.063149
2	1960	3	France	Europe	62225478000	0.053656
3	1960	4	China	Asia	59716467625	0.051493
4	1960	5	Japan	Asia	44307342950	0.038206

```
In [9]: gdp.columns
```

```
In [11]: |gdp['country'].unique()
```

Out[11]: array(['the United States', 'United Kingdom', 'France', 'China', 'Japan', 'Canada', 'Italy', 'India', 'Australia', 'Sweden', 'Brazil', 'Turkey', 'Mexico', 'Netherlands', 'Spain', 'Belgium', 'Switzerland', 'Venezuela', 'South Africa', 'Philippines', 'Austria', 'Denmark', 'New Zealand', 'Finland', 'Norway', 'Greece', 'Bangladesh', 'Iran', 'Nigeria', 'Chile', 'Columbia', 'South Korea', 'Pakistan', 'Congo (gold)', 'Portugal', 'Thailand', 'Algeria', 'Israel', 'Peru', 'Morocco', 'Ireland', 'Malaysia', 'Puerto Rico', 'Iraq', 'Sri Lanka', 'Hong Kong', 'Sudan', 'Uruguay', 'Garner', 'Zimbabwe', 'Guatemala', 'Ecuador', 'Syria', 'Senegal', 'Kenya', 'Zambia', 'Singapore', 'Luxembourg', 'Jamaica', 'Madagascar', 'Dominica', 'Cambodia', 'Cameroon', 'Bolivia', "C ô te d'Ivoire", 'Afghanistan', 'Panama', 'Trinidad and Tobago', 'Nepal', 'Costa Rica', 'Niger', 'Uganda', 'Honduras', 'Burkina Faso', 'Sierra Leone', 'Chad', 'Haiti', 'Iceland', 'Papua New Guinea', 'Benin', 'Nicaragua', 'Burundi', 'Liberia', 'Somalia', 'Guyana', 'Bahamas', 'Malawi', 'Gabon', 'Congo (Brazzaville)', 'Togo', 'Rwanda', 'Fiji Islands', 'Central Africa', 'Suriname', 'Mauritania', 'Bermuda', 'Eswatini', 'Lesotho', 'Botswana', 'Belize', 'Saint Vincent and the Grenadines', 'Saint Kitts and Nevis', 'Seychelles', 'Argentina', 'Equatorial Guinea', 'Egypt', 'Kuwait', 'Tunisia', 'El Salvador', 'Jordan', 'Paraguay', 'French Polynesia', 'New Caledonia', 'Brunei', 'Oman', 'Gambia', 'Indonesia', 'Mali', 'Solomon Islands', 'Saudi Arabia', 'Germany', 'Cuba', 'Qatar', 'Monaco', 'Malta', 'Liechtenstein', 'Guinea Bissau', 'Andorra', 'Greenland', 'Kiribati', 'Barbados', 'United Arab Emirates', 'Cyprus', 'Tonga', 'Mauritius', 'Saint Lucia', 'Antigua and Barbuda', 'Grenada', 'Vanuatu', 'Bulgaria', 'Angola', 'Mozambique', 'Bahrain', 'Namibia', 'Cape Verde', 'Bhutan', 'Comoros', 'Maldives', 'Ethiopia', 'Mongolia', 'Marshall Islands', 'Macao', 'Samoa', 'Micronesia (Federated States of)', 'Albania', 'Laos', 'Vietnam', 'Djibouti', 'Guinea', 'Aruba', 'Ukraine', 'Romania', 'Turkmenistan', 'Russia', 'Tanzania', 'Lebanon', 'Poland', 'Czech', 'Libya', 'Kazakhstan', 'Belarus', 'Slovenia', 'Uzbekistan', 'Slovakia', 'Azerbaijan', 'Georgia', 'Yemen', 'Macedonia', 'Moldova', 'Kyrgyzstan', 'Tajikistan', 'Armenia', 'Palau', 'Tuvalu', 'Hungary', 'Eritrea', 'Estonia', 'Palestine', 'Bosnia and Herzegovina', 'Croatia', 'Serbia', 'Lithuania', 'Latvia', 'Isle of man', 'Cayman Islands', 'Faroe Islands', 'Myanmar', 'San Marino', 'Montenegro', 'Timor Leste', 'Turks and Caicos Islands', 'Sao Tome and Principe.', 'Guam', 'Northern Mariana Islands', 'American Samoa', 'Nauru', 'South Sultan', 'Cura ç Ao', 'Netherlands Saint Martin'], dtype=object)

In [12]: contry_code.head()

Out[12]:

	country_name	country_code
0	Aruba	ABW
1	Africa Eastern and Southern	AFE
2	Afghanistan	AFG
3	Africa Western and Central	AFW
4	Angola	AGO

In [13]: india_gdp=gdp[gdp['country']=='India']
india_gdp

Out[13]:

	year	rank	country	state	gdp	gdp_percent
7	1960	8	India	Asia	37029883875	0.031931
110	1961	8	India	Asia	39232435784	0.032502
213	1962	8	India	Asia	42161481858	0.031930
317	1963	7	India	Asia	48421923458	0.034050
422	1964	7	India	Asia	56480289940	0.036255
9153	2016	7	India	Asia	2294797980509	0.030479
9357	2017	6	India	Asia	2651472946375	0.033085
9562	2018	7	India	Asia	2701111782774	0.031710
9764	2019	5	India	Asia	2870504096717	0.033278
9963	2020	5	India	Asia	2622983732006	0.033827

61 rows × 6 columns

In [20]: india_gdp.drop(['rank','state','gdp_percent'], axis = 1, inplace = True)

C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\pandas\cor
e\frame.py:4906: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

return super().drop(

In [21]: india_gdp

Out[21]:

	year	country	gdp
7	1960	India	37029883875
110	1961	India	39232435784
213	1962	India	42161481858
317	1963	India	48421923458
422	1964	India	56480289940
9153	2016	India	2294797980509
9357	2017	India	2651472946375
9562	2018	India	2701111782774
9764	2019	India	2870504096717
9963	2020	India	2622983732006

61 rows × 3 columns

```
In [22]: plt.figure(figsize = (10,7))
    sns.barplot(x = 'year',
    y = 'gdp',
    hue = 'country',
    data = india_gdp)
    plt.xticks(rotation = 90)
    plt.title("India's GDP")
    plt.show()
```



```
In [23]: x1 = india_gdp.drop(['gdp', 'country'], axis=1)
y1 = india_gdp['gdp']
Tn [24]: print(x1 shape)
```

```
In [25]: from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(x1, y1, test_size = 0.2)
```

```
In [26]: model india=LinearRegression()
         model india.fit(x1,y1)
Out[26]: LinearRegression()
In [27]: print("Coefficient: ",model_india.coef_)
         print("intercept: ",model india.intercept )
         pred = model_india.predict(x1)
         Coefficient: [3.87539925e+10]
         intercept: -76462096733309.64
In [29]:
         plt.figure(figsize=(8,6))
         plt.scatter(x1,y1,label='Acutal value')
         plt.plot(x1,pred,color='tab:orange',label='Predicted value')
         plt.legend()
         plt.title("India",color='m')
         plt.xlabel("Years",color='r')
         plt.ylabel("per year INDIAN gdp",color='c')
         plt.tight layout()
         plt.show()
```



```
In [30]: years=[2021,2022,2023,2024,2025]
         for i in years:
             print(model_india.predict([[i]]))
         [1.85972215e+12]
         [1.89847614e+12]
         [1.93723013e+12]
         [1.97598412e+12]
         [2.01473812e+12]
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LinearRegressi
         on was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LinearRegressi
         on was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LinearRegressi
         on was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LinearRegressi
         on was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LinearRegressi
         on was fitted with feature names
           warnings.warn(
In [31]:
        from sklearn.linear model import LogisticRegression
         logimodel india=LogisticRegression()
         logimodel india.fit(x1,y1)
Out[31]: LogisticRegression()
In [35]: | pred_logi = logimodel_india.predict(x1)
```

```
In [36]: plt.figure(figsize=(8,6))
    plt.scatter(x1,y1,label='Acutal value')
    plt.plot(x1,pred_logi,color='tab:orange',label='Predicted value')
    plt.legend()
    plt.title("India",color='m')
    plt.xlabel("Years",color='r')
    plt.ylabel("per year INDIAN gdp",color='c')
    plt.tight_layout()
    plt.show()
```



```
In [37]: years=[2021,2022,2023,2024,2025]
         for i in years:
             print(logimodel_india.predict([[i]]))
         [2622983732006]
         [2622983732006]
         [2622983732006]
         [2622983732006]
         [2622983732006]
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LogisticRegres
         sion was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LogisticRegres
         sion was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LogisticRegres
         sion was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LogisticRegres
         sion was fitted with feature names
           warnings.warn(
         C:\Users\AVANISH SINGH\AppData\Roaming\Python\Python38\site-packages\sklearn\ba
         se.py:450: UserWarning: X does not have valid feature names, but LogisticRegres
```

In []:

sion was fitted with feature names

warnings.warn(