PAGE NO.:

DATE: / /

Assignment No. A3

Problem Statement: Parallel Sorting algorithms.

For Bubble Sort and Merge Sort based on existing sequential algorithms, design and implement parallel algorithm utelizing all resources available.

Learning Objectives:

1) To understand parallel bubble sort.

2) To understand parallel merge sont.

Learning Outcomes:

Understand parallel bubble Sort and merge Sport

Requirements:

64 bit O.S. Linux System

4 GBRAM

Eclipse IDE

Theory.

· Bubble Sort: -

There are two phases in this algorithm called as Odd-Even phases. In this algorithm, 'n' elements are sorted in n phases where n's even.

Consider a sequence to be sorted is <a, co,

PAGE NO.:

The odd phase works on this basis that the elements with odd indices are compared with their neighbours are and found as out of sequence they are exchanged.

This means the pair with odd indices and their neighbours are compare exchanged for example the pairs (a, a2) (as, a4)... (an-, an) are compared and exchanged if not in proper sequence assume n as even here

It happens in similar fashion consider case with even phase. In this phase dements with even indices are compare with their right neighbours

After comparison among a pair and if found as out of sequence they are eachanged. This means the pairs (ar. as), (a4, as)... (an-2, an-1) are compared and exchanged.

of odd-even exchanges.

Algorithm:

Algorathm even-odd(n)

for (;=1; i(=p;i++)

if(; 1.2 1=0) 11 odd phase

PAGE NO.:

for (j=0; j (= (n12-1))

perform exchange (a2j+1, a2j+2)

else II even phase

for (j=0; j (= (n12-1))

perform exchange (a2j, a2j+1);

}

Example:

Step	Po P1 P2 P3 P4 P5 P6 P7
0	$4 \leftrightarrow 2$ $7 \leftrightarrow 8$ $5 \leftrightarrow 1$ $3 \leftrightarrow 6$
-	$2 4 \longleftrightarrow 7 8 \longleftrightarrow 1 5 \longleftrightarrow 3 6$
2	$2 \longleftrightarrow 4 \ 7 \longleftrightarrow 1 \ 8 \longleftrightarrow 3 \ 5 \longleftrightarrow 6$
3	$2 \leftrightarrow 1 \leftrightarrow 3 \leftrightarrow 5 \leftarrow 6$
4	$2 \iff 1 \iff 4 \iff 3 \iff 5 \iff 6$
5	$1 2 \longleftrightarrow 3 4 \longleftrightarrow 5 7 \longleftrightarrow 6 8$
6	$1 \longleftrightarrow 2 3 \longleftrightarrow 4 5 \longleftrightarrow 6 7 \longleftrightarrow 8$
7	1. $2 \longleftrightarrow 3 \longleftrightarrow 5$. $6 \longleftrightarrow 7 \otimes 8$

Merge Soot:

Merge soot først dørrdes the unsorted løst into smallest possible sub-lists, compares it with the adjacent løst.

PAGE NO.: DATE: / / It implements parallelismi very properly by following divide and conquer algorithm. Algorithm: 1. mid= size/2 2. if both children present in tree then 2.1. send mid firstchild 2.2. Send Sizemid, Secondehild 2.3 send light mid firstchild 2.4 send k list from mid size mid secondchild 2.5 call-merge (lest, 0, mid, list, midtl, size temp, O, size) 2.6 Store temp en another array list. 3.1 call parallel Merge Sort (19st, O, size) 4.1 send list size parent Example: Partetion Partition

PAGE NO .:

DATE: / /

Test	Cases	and	Analysis.	

-	Sorting	Input	Segvential	Parallel	Effectency
-	d	Size	Sequential Tame	Tame	/
	Bubble	n: 256	0.02	0.05	0.4
STATE	SoA	n=1024	0.07	0.011	0.36
The second second second		n=2048	0.037	0.018	2.04
	Merce	n=256	0.001	0.62	0.05
	Menge	n=1024	0.003	0.03	0.1
		n=2048	0.002	0.02	0.1
+		0.00			

Efficiency: WCSAlwCPA

IIP: 5 9 5 5 24 11 15 5 0

019: 0 5 5 5 5 9 11 15 24

Commands to zur:

gcc - fopenmp srcfile cpp -0 output file

Conclusion:

Thus, we successfully implemented parallel bubble sort and menge sort using open mp.

