Lição 1

Conceitos Básicos e Notações

Objetivos

Ao final desta lição, o estudante será capaz de:

- Explicar os processos de resolução de problemas
- Definir tipos de dados (data type), tipos de dados abstratos (abstract data type) e estrutura de dados (data structure)
- Identificar as propriedades de um algoritmo
- Diferenciar os dois métodos de endereçamento endereçamento computado e endereçamento por link
- Utilizar as funções matemáticas básicas para analisar algoritmos
- Mensurar a complexidade dos algoritmos expressando a eficiência em termos de complexidade de tempo e notação Big-O

Processo de Resolução de Problemas

- Programação um processo de resolução de problemas pode ser visto em termos de domínio
- Domínio de problema
 - entrada, ou dado bruto, em um processo
 - Saída, ou dado processado
- Domínio de máquina
 - meios de armazenamento
 - unidades processadas
- Domínio de solução

Processo de Resolução de Problemas: Domínio de Problema

Dados Brutos

Dados Processados

Dados pessoais Formulário 5S Planilhas Etc. Dados acadêmicos Indic. de performance Transcrições Etc.

Processo de Resolução de Problemas: Domínio de Máquina

Meio de Armazenamento

Bits

Bytes

Words

Etc.

Unidades de Processamento

Adicionar, Subtrair

Multiplicar

Dividir

Etc.

Processo de Resolução de Problemas: Domínio de Solução

Representações de Dados

Listas Arquivos Tabelas Árvores Algoritmos

Pesquisando Ordenando Gerenc. de Memória Transversal

Processo de Resolução de Problemas

Domínio Domínio Domínio Solução Máquina

- Duas tarefas relacionadas no domínio da solução
 - Estruturação da representação de dados de alto nível
 - Síntese do algoritmo
- Estrutura de dados e algoritmos são os blocos de construção dos programas de computador

Tipo de Dado, Tipo de Dado Abstrato e Estrutura de Dados

- Tipo de dado
- Tipo de Dado Abstrato (Abstract Data Type ADT)
- Estrutura de Dados

Algoritmo

- Finito
- Definido
- Entrada
- Saída
- Efetivo

Métodos de Endereçamento

Método de Endereçamento Computado

Método de Endereçamento por Link

Pool de Memória ou lista disponível

Métodos de Endereçamento

Passaremos agora para o NetBeans

Funções Matemáticas

- Floor de x (⌊x⌋)
- Ceil de x ([x])
- Módulo dados quaisquer dois números reais x e y,

$$- x \mod y = x \qquad \text{se } y = 0$$
$$= x - y * \lfloor x/y \rfloor \quad \text{se } y <> 0$$

Funções Matemáticas

Identidades

- -[x]=[x] se e somente se x é inteiro
- [x]> [x] se e somente se x não é inteiro

$$- [-x] = -[x]$$

$$- [x] + [y] <= [x + y]$$

$$-x = [x] + x \mod 1$$

$$-z (x mod y) = zx mod zy$$

- Utilização de Espaço
- Eficiência relacionada ao Tempo
- Tempo de execução estão incluídos:
 - Tamanho dos dados de entrada
 - Tipo da instrução
 - Velocidade da máquina
 - Qualidade do código-fonte do algoritmo implementado
 - Qualidade do código de máquina gerado a partir do código-fonte pelo compilador

Notação Big-O (ou simplesmente O)

Big-Oh	Descrição	Algoritmo
O(1)	Constante	
O(log ₂ n)	Logarítmico	Busca Binária
O(n)	Linear	Busca Sequencial
O(n log ₂ n)		Heapsort
$O(n^2)$	Quadrático	Insertion Sort
O(n ³)	Cúbico	Algoritmo de Floyd
O(2 ⁿ)	Exponencial	

F(n)	Tempo de Execução
log ₂ n	19.93 microsegundos
n	1.00 segundos
n log ₂ n	19.93 segundos
n ²	11.57 dias
n ³	317.10 séculos
2 ⁿ	Eternidade

- Notação Big-O (ou simplesmente O)
- Regra para Adição
- Regra para Multiplicação

Complexidade de Algoritmos: Exemplos

Considere o algoritmo abaixo:

```
for (i=1; i <= n, i++)
for (j=1; j <= n, j++)
  // passos quando O(1)</pre>
```

Já que os passos no laço interior irão executar n + n-1 + n-2
 + ... + 2 + 1 vezes, então o tempo de execução é:

$$n(n+1)/2 = n^2/2 + n/2 = O(n^2)$$

Complexidade de Algoritmos: Exemplos

Passaremos agora para o NetBeans

- Laços FOR
- Laços FOR aninhados
- Declarações consecutivas
- Condicional IF/ELSE

Sumário

- Processo de resolução de problemas
- Tipo de dado, tipo de dado abstrato e estrutura de dados
- Algoritmo
- Métodos de endereçamento
 - Método de endereçamento computado
 - Método de endereçamento por link
 - Dois procedimentos básicos
- Funções matemáticas
 - Identidade
- Complexidade de algoritmos

Parceiros

 Os seguintes parceiros tornaram JEDITM possível em Língua Portuguesa:

