## Data Science for Actuaries (ACT6100)

Arthur Charpentier

Rappels # 3.4 (Gaussian Vectors)

automne 2020

#### Random Vectors

Soient X un vecteur aléatoire de dimension d

- L'espérance de X, notée  $\mathbb{E}(X)$  est définie (si elle existe) par le vecteur de dimension  $d \mathbb{E}(\boldsymbol{X}) = (\mathbb{E}(\boldsymbol{X}_1), \dots, \mathbb{E}(\boldsymbol{X}_d))^{\top}$ .
- La matrice de covariance (appelée aussi matrice de variance-covariance de X) est définie (si elle existe) par la matrice de taille (d, d)

$$\mathsf{Var}(oldsymbol{X}) = \mathbb{E}\left( (oldsymbol{X} - \mathbb{E}(oldsymbol{X}))(oldsymbol{X} - \mathbb{E}(oldsymbol{X}))^{ op} 
ight).$$

Ainsi le terme ij de cette matrice représente la covariance entre  $X_i$  et  $X_i$ ,

$$Cov(X_i, X_j) = \mathbb{E}\left[(X_i - \mathbb{E}(X_i))(X_j - \mathbb{E}(X_j))\right].$$



#### Random Vectors

Soit **X** un vecteur aléatoire de dimension d, de moyenne  $\mu$  et de matrice de covariance  $\Sigma$ .

Soient **A** et **B** deux matrices réeeles de taille (d, p) et (d, q) et enfin soit  $\mathbf{a} \in \mathbb{R}^p$  alors

$$lacksquare$$
  $\operatorname{Var}(oldsymbol{X}) = \mathbb{E}\left((oldsymbol{X} - oldsymbol{\mu})(oldsymbol{X} - oldsymbol{\mu})^{ op}
ight) = \mathbb{E}(oldsymbol{X}oldsymbol{X}^{ op}) - oldsymbol{\mu}oldsymbol{\mu}^{ op}.$ 

$$ightharpoonup \mathbb{E}\left(\mathbf{A}^{\top}\mathbf{X}+\mathbf{a}\right)=\mathbf{A}^{\top}\boldsymbol{\mu}+\mathbf{a}.$$

$$\qquad \qquad \mathsf{Var}\left(\boldsymbol{A}^{\top}\boldsymbol{X} + \mathbf{a}\right) = \boldsymbol{A}^{\top}\boldsymbol{\Sigma}\boldsymbol{A}.$$

$$\triangleright \mathsf{Cov}\left(\mathbf{A}^{\top}\mathbf{X}, \mathbf{B}^{\top}\mathbf{X}\right) = \mathbf{A}^{\top}\mathbf{\Sigma}\mathbf{B}.$$



### The Gaussian Distribution

A Gaussian variable, with distribution  $\mathcal{N}(\mu, \sigma^2)$ , where  $\mu \in \mathbb{R}$  and  $\sigma > 0$ , has density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right), \text{ for all } x \in \mathbb{R}.$$

Then  $\mathbb{E}(X) = \mu$  and  $Var(X) = \sigma^2$ . Observe that if  $Z \sim \mathcal{N}(0,1)$ ,  $X = \mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$ . The Gaussian vector  $\mathcal{N}(\mu, \Sigma)$ :  $\mathbf{X} = (X_1, ..., X_n)$  is a Gaussian vector with mean  $\mathbb{E}(\boldsymbol{X}) = \boldsymbol{\mu}$  and covariance matrix  $\mathsf{Var}(oldsymbol{X}) = oldsymbol{\Sigma} = \mathbb{E}\left( (oldsymbol{X} - oldsymbol{\mu}) (oldsymbol{X} - oldsymbol{\mu})^ op 
ight)$  non-degenerated  $(oldsymbol{\Sigma}$  is invertible) if its density is

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det \mathbf{\Sigma}}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right), \ \mathbf{x} \in \mathbb{R}^{n},$$

see multivariate Gaussian distribution

# Gaussian (multivariate) distribution

 $X \sim \mathcal{N}(\mu, \Sigma)$ , with density

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

where  $\mathbb{E}(\boldsymbol{X}) = \boldsymbol{\mu}$  and  $\text{Var}(\boldsymbol{X}) = \boldsymbol{\Sigma}$ .

Estimates are 
$$\overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$
 and  $\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{x}_{i} - \overline{\mathbf{x}})^{\top}$ 

In dimension 2, f(x, y) is proportional to

$$\exp\left(-\frac{1}{2(1-\rho^2)}\left[\frac{(x-\mu_X)^2}{\sigma_X^2}+\frac{(y-\mu_Y)^2}{\sigma_Y^2}-\frac{2\rho(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y}\right]\right)$$

levels curves (isodensities) are ellipses.



## Gaussian (multivariate) distribution



## Quadratic Forms

Consider 
$$\mathbf{M} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
, and function  $\mathbf{z} \mapsto \mathbf{z}^{\top} \mathbf{M} \mathbf{z}$ , i.e.

$$f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

or  $ax^2 + 2bxy + cy^2$  is a quadratic form.

If M > 0, points z = (x, y) such that  $z^{\top}Mz =$  $\gamma$ , for some  $\gamma > 0$ , are on an ellipse (centered on **0**)

Let  $\lambda_1 > \lambda_2 > 0$  denote the eigenvalues of **M** and  $\vec{\mathbf{v}}_1$  and  $\vec{\mathbf{v}}_2$  denote the eigenvectors.





### Quadratic Forms

On the picture, 
$$\mathbf{M} = \begin{pmatrix} 0.6 & 0.2 \\ 0.2 & 0.9 \end{pmatrix}$$

- 1 > M=matrix(c(.6,.2,.2,.9),2,2)
  2 > eigen(M)
  3 eigen() decomposition
  4 \$values
  5 [1] 1.0 0.5
  6 \$vectors
- 7 [,1] [,2]
- 8 [1,] 0.4472136 -0.8944272
- 9 [2,] 0.8944272 0.4472136

i.e. 
$$\lambda_1=1$$
 and  $\lambda_2=1/2$ , and

$$\vec{\mathbf{v}}_1 = \sqrt{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \ \vec{\mathbf{v}}_2 = \sqrt{5} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

Note that  $\| ec{m{v}}_1 \| = \| ec{m{v}}_2 \| = 1$  and  $ec{m{v}}_1 \perp ec{m{v}}_2$ 





### The Gaussian Distribution

If X is a Gaussian vector, then for any i,  $X_i$  has a (univariate) Gaussian distribution, but its converse it not necessarily true.

Let  $\boldsymbol{X}=(X_1,...,X_n)$  be a random vector with mean  $\mathbb{E}(\boldsymbol{X})=\boldsymbol{\mu}$ and with covariance matrix  $\Sigma$ , if  $\boldsymbol{A}$  is a  $k \times n$  matrix, and  $\boldsymbol{b} \in \mathbb{R}^k$ . then  $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$  is a Gaussian vector  $\mathbb{R}^k$ , with distribution  $\mathcal{N}\left(\mathbf{A}\boldsymbol{\mu}+\mathbf{b},\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}\right).$ 

Observe that if  $(X_1, X_2)$  is a Gaussian vector,  $X_1$  and  $X_2$  are independent if and only if

$$\mathsf{Cov}\left(X_{1},X_{2}\right)=\mathbb{E}\left(\left(X_{1}-\mathbb{E}\left(X_{1}
ight)
ight)\left(X_{2}-\mathbb{E}\left(X_{2}
ight)
ight)
ight)=0.$$

