CLAIMS

1.	High-st	rength	steel	sheet	excellen	t in	hole-
expandabil	lity and	ducti	lity, d	charact	erized b	у;	

comprising, in mass%,

5 C: not less than 0.01 % and not more than 0.20 %, Si: not more than 1.5 %,

Al: not more than 1.5 %,

Mn: not less than 0.5 % and not more than

3.5 %,

10 P: not more than 0.2 %,

S: not less than 0.0005 % and not more

than 0.009 %,

N: not more than 0.009 %,

Mg: not less than 0.0006 % and not more

15 than 0.01 %,

20

25

O: not more than 0.005 % and

Ti: not less than 0.01 % and not more than 0.20 % and/or Nb: not less than 0.01 % and not more than 0.10 %,

with the balance consisting iron and unavoidable impurities,

having the Mn%, Mg%, S% and O% satisfying equations (1) to (3), and

having the structure primarily comprising one or more of ferrite, bainite and martensite.

- $[Mg^{2}] \ge ([0^{2}]/16 \times 0.8) \times 24$... (1)
- $[S_{3}] \le ([Mg_{3}]/24 [O_{3}]/16 \times 0.8 + 0.00012) \times 32$... (2)
- $[S%] \le 0.0075/[Mn%]$... (3)
- 2. High-strength steel sheet excellent in hole-expandability and ductility described in claim 1, characterized by containing not less than 5.0×10^2 per square millimeter and not more than 1.0×10^7 per square millimeter of composite precipitates of MgO, MgS and (Nb, Ti)N of not smaller than 0.05 μ m and not larger than 3.0 μ m.
 - 3. High-strength steel sheet excellent in hole-

	expandability and ductility described in claim 1,						
	characterized by having Al% and Si% satisfying equation						
	(4).						
	$[Si\%] + 2.2 \times [Al\%] \ge 0.35$ (4)						
5	4. High-strength steel sheet excellent in hole-						
	expandability and ductility described in claim 2,						
	characterized by having Al% and Si% satisfying equation						
	(4).						
	$[Si\%] + 2.2 \times [Al\%] \ge 0.35$ (4)						
10	5. High-strength steel sheet excellent in hole-						
	expandability and ductility described in any of claims 1						
	to 4, characterized by;						
	having Ti%, C%, Mn% and Nb% satisfying						
	equations (5) to (7),						
15	having the structure primarily comprising						
	bainite, and						
	having a strength exceeding 980 N/mm ² .						
	0.9≤48/12×[C%]/[Ti%]<1.7 (5)						
	$50227 \times [C%] - 4479 \times [Mn%] > -9860$ (6)						
20	811×[C%]+135×[Mn%]+602×[Ti%]+794×[Nb%]>465 (7)						
	6. High-strength steel sheet excellent in hole-						
	expandability and ductility described in any of claims 1						
	to 4, characterized by;						
	having C%, Si%, Al% and Mn% satisfying						
25	equation (8),						
	having the structure primarily comprising						
	ferrite and martensite, and						
	having a strength exceeding 590 N/mm^2 .						
	$-100 \le -300$ [C%] +105 [Si%] -95 [Mn%] +233 [Al%] (8)						
30	7. High-strength steel sheet excellent in hole-						
	expandability and ductility described in claim 6,						
	characterized in that;						
	not less than 80 % of crystal grains						
	having a short diameter (ds) to long diameter (dl) ratio						
35	(ds/dl) of not less than 0.1 exist in the steel						
	structure.						

8. High-strength steel sheet excellent in hole-expandability and ductility described in claim 7, characterized in that;

not less than 80 % of ferrite crystal grains having a diameter of not less than 2 μm exist in the steel structure.

- 9. High-strength steel sheet excellent in holeexpandability and ductility described in any of claims 1 to 4, characterized by;
- having C%, Si%, Mn% and Al% satisfying equation (8),

5

15

20

25

30

35

having the structure primarily comprising ferrite and bainite, and

having the strength exceeding 590 N/mm².

 $-100 \le -300$ [C%] +105 [Si%] -95 [Mn%] +233 [Al%] ... (8)

10. High-strength steel sheet excellent in hole-expandability and ductility described in claim 9, characterized in that;

not less than 80 % of crystal grains having a short diameter (ds) to long diameter (dl) ratio (ds/dl) of not less than 0.1 exist in the steel structure.

11. High-strength steel sheet excellent in hole-expandability and ductility described in claim 10, characterized in that;

not less than 80 % of ferrite crystal grains having a diameter of not less than 2 μm exist in the steel structure.

12. A method for manufacturing high-strength steel sheet excellent in hole-expandability and ductility, which has the structure primarily comprising ferrite and martensite and a strength in excess of 590 N/mm², characterized by the steps of;

completing the rolling of steel having a composition described in any of claim 1 to 4 at a finish-rolling temperature of not lower than the ${\rm Ar}_3$

transformation point,

cooling at a rate of not less than 20 °C/sec, and

coiling at a temperature below 300 °C.

- 5 13. A method for manufacturing high-strength steel sheet, excellent in hole-expandability and ductility, which has the structure primarily comprising ferrite and martensite and a strength in excess of 590 N/mm², characterized by the steps of;
- completing the rolling of steel having a composition described in any of claims 1 to 4 at a finish-rolling temperature of not lower than the ${\rm Ar}_3$ transformation point,

cooling to between 650 °C and 750 °C at a rate of not less than 20 °C/sec,

air-cooling at said temperature for not longer than 15 seconds,

re-cooling, and

coiling at a temperature below 300 °C.

- 14. A method for manufacturing high-strength steel sheet, excellent in hole-expandability and ductility, which has the structure primarily comprising ferrite and bainite and a strength in excess of 590 N/mm², characterized by the steps of;
- completing the rolling of steel having a composition described in any of claims 1 to 4 above at a finish-rolling temperature of not lower than the ${\rm Ar}_3$ transformation point,

cooling at a rate of not less than 20

30 °C/sec, and

15

35

coiling at a temperature of not lower than 300 $^{\circ}\text{C}$ and not higher than 600 $^{\circ}\text{C}\,.$

15. A method for manufacturing high-strength steel sheet excellent in hole-expandability and ductility, which has the structure primarily comprising ferrite and bainite and a strength in excess of 590 N/mm²,

characterized by the steps of;

completing the rolling of steel having a composition described in any of claims 1 to 4 above at a finish-rolling temperature not lower than the ${\rm Ar}_3$ transformation point,

cooling to between 650 °C and 750 °C at a rate of not less than 20 °C/sec,

air-cooling at said temperature for not longer than 15 seconds,

10 re-cooling, and

5

coiling at a temperature of not lower than 300 °C and not higher than 600 °C.