

Integration of Wi-Fi-Only Devices in 5G Core Networks: Addressing Authentication and Identity Management Challenges

Author

David Araújo, *DETI*, *IT davidaraujo@ua.pt*

Supervisors

Doctor Daniel Nunes Corujo, DETI, IT

Doctor Francisco Fontes, *Altice Labs*

Table of Contents

- 1. The Core Problem and Its Significance
- 2. Research Objectives
- 3. State of the Art and The Specific Gap
- 4. Framework Concept and Architecture
- 5. Key Mechanisms: Authentication, Identity, Traffic

- 6. Implementation: Testbed and Orchestration Logic
- 7. Validation: Key Results
- 8. Conclusion and Contributions
- 9. Limitations and Future Work

The Core Problem and Its Significance

The Challenge

Current 3GPP standards don't fully address integrating Wi-Fi-only devices lacking 5G credentials into the 5G network, preventing standard 5G authentication.

Impact

A significant hurdle for enterprise/residential environments with many such devices.

Motivation

Solving this is crucial for 5G's success, enabling true **5G-Wi-Fi convergence** and extending 5G benefits (eMBB, mMTC, URLLC) to this vast device ecosystem.

Research Objectives

To address this problem, this research aimed to:

- 1. **Investigate Secure Authentication:** Design a robust local authentication mechanism.
- 2. **Develop Device Identity Management:** Propose a method for 5GC to recognize and manage these device connections individually.
- 3. **Propose an Integrated Solution:** Develop a framework for seamless, secure integration with minimal impact.

State of the Art

The Gap

Non-3GPP Capable Device Types Behind RGs

- N5GC have limited 5G capabilities but can authenticate
- NAUN3 have no 5G capabilities and cannot directly authenticate and are often grouped.

A robust mechanism for **individualized**, **secure authentication** of *credential-less* Wi-Fi-only devices and their subsequent per-device management within the 5GC is the focus of this project.

State of the Art

Managing Device Groups (CGID)

Connectivity Group ID (CGID) can manage **groups of devices behind** a 5G-RG.

The 5G-RG establishes one PDU Session for the entire group.

Thi dos not provide per-device traffic management granularity.

State of the Art

Industry Direction (3GPP R19)

3GPP introduced advancements in R19.

Allows the network to distinguish traffic from specific devices behind an RG.
Can trigger a PDU Session modification or establishment for a single device.

Industry is moving towards more granular, per-device management.

Overview and Guiding Principles

A smart 5G Residential Gateway (5G-RG) capable of mediating the secure integration.

Key Design Principles

- Adaptation logic centralized at the 5G-RG.
- Minimal impact on end-devices and 5GC.

Overall Architecture

Authentication Mechanism

EAP-TLS is used for mutual, certificatebased local authentication.

- NAUN3 Device (Supplicant): Holds a client certificate.
- 5G-RG (Authenticator/Relay): Uses hostapd to relay EAP messages.
- RADIUS Authentication Server: ISP-operated, validates the device's certificate.

Identity Management (PDU Session as Proxy)

After successful EAP-TLS authentication:

- 1. The 5G-RG requests a **new**, dedicated PDU Session.
- 2. This PDU Session becomes the dynamic proxy identity for the NAUN3.
- 3. The 5G-RG maintains a mapping table with NAUN3 MAC Addresses to PDU Session ID.

Traffic Management and Policy-Based Routing

- 1. **Packet Marking:** Incoming packets from the NAUN3's MAC are marked.
- 2. **Policy Routing:** Marked packets are directed to a specific table.
- 3. **Dedicated Route:** Traffic is routed via to a unique PDU interface.
- 4. **NAT:** Traffic is then masqueraded using the PDU session's 5GC-assigned IP address.

Testbed, Components, and Interceptor Logic

Testbed, Components, and *Interceptor* Logic

Virtualized testing environment with Vagrant, Open5GS, UERANSIM, FreeRADIUS, hostapd, and wpa supplicant.

The custom logic developed, *Interceptor*, is the **brain of the solution**.

It's role is to **monitor for successful** authentication, orchestrate PDU **session creation** and attribution, manage **local DHCP permissions**, and control all routing rules.

Validation

Successful Onboarding and PDU Creation

Local EAP-TLS authentication was consistently successful.

Each authenticated NAUN3 device triggered the 5G-RG to establish a unique, dedicated "clients" PDU session, and the 5GC assigned a unique IP to each session.

```
PDU Session2:
 state: PS-ACTIVE
 session-type: IPv4
 apn: clients
 s-nssai:
  sst: 0x01
  sd: null
 emergency: false
 address: 10.46.0.2
 ambr: up[1000000Kb/s]
                       down[1000000Kb/s]
 data-pending: false
```


Validation

End-to-End Connectivity and Traffic Isolation

Using ping -R and iperf3 we can confirm that traffic from different NAUN3 devices was correctly and separately routed through their respective PDU session IPs, confirming successful traffic isolation and NAT.

Validation

Lifecycle Management and Onboarding Delay

Onboarding Delay: The average time for the full process (EAP auth, PDU setup, local IP) was approximately 33 (± 5) seconds in the testbed.

Lifecycle: When a device disconnected, the system correctly deauthenticated it, cleaned up all routing rules and DHCP permissions, and terminated the dedicated PDU session.

- 1. **V** Deauthenticate
- 2. V Disallow DHCP lease
- 3. Release dedicated PDU Session
- 4. **V** Remove routing table

Key Contributions

- 1. A practical, end-to-end framework for integrating *5G-credential-less* Wi-Fi-only devices into 5G.
- 2. The innovative use of **per-device PDU Sessions as dynamic proxy identities**, orchestrated by an intelligent 5G-RG.
- 3. The tight coupling of strong, local EAP-TLS authentication with 5G PDU session management at the network edge.
- 4. A working proof-of-concept validating the architecture with open-source tools and custom logic.

Limitations

- Onboarding Delay: Approximately 33s in the PoC.
- Scalability: Not stress-tested; CLI-based orchestration is a potential bottleneck.
- NAT Implications: Restricts inbound connection initiation to NAUN3 devices.
- Physical Hardware: Challenges encountered with physical modem integration.
- **Security:** The custom *Interceptor* logic requires further hardening for production environments.

Future Work

- Optimize Onboarding Delay: Explore API-based PDU control or pre-established session pools.
- Performance and Scalability Analysis: Rigorous testing and exploring alternatives like eBPF.
- Enhanced Security: Harden the *Interceptor* and secure RADIUS transport (e.g., with IPSec).
- Address NAT: Investigate solutions like Framed-Route or UPF port forwarding.

Thank You and Q&A

Author

David Araújo, *DETI*, *IT* davidaraujo@ua.pt

In Colaboration With

Supervisors

Doctor Daniel Nunes Corujo, DETI, IT Doctor Francisco Fontes, *Altice Labs*

