Quantification of Convolutional Neural Networks

Confusion Matrix

- The size of the confusion matrix is determined by the number of things we want to predict
- Example: MNIST classification (10 classes)

The diagonal are where the ML algorithm did right prediction

... and **everything else** is where the ML algorithm messed up

https://androidkt.com/keras-confusion-matrix-in-tensorboard/

Precision, Sensitivity (Recall), Specificity, Accuracy

• **Precision** =
$$\frac{TP}{TP+FP}$$

• Sensitivity =
$$Recall = \frac{TP}{TP+FN}$$

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

• Specificity =
$$\frac{TN}{TN+FP}$$

• Negative predictive Value = $\frac{TN}{TN+FN}$

A Single Neuron

- The basic unit of computation in a neural network is the neuron, often called a node or unit.
- A neuron receives input from a source and computes an output.
- Each input has an associated weight (w), which is assigned on the basis of its relative importance to other inputs.
- There is a bias (b) that helps in controlling the value at which activation function will trigger.
- The node applies an activation function f to the weighted sum of its inputs as shown below:

Output of neuron = $Y = f(w_1.x_1 + w_2.x_2 + w_3.x_3 + b)$

Activation function

- The above network takes numerical inputs X_1 and X_2 and has weights w1 and w2 associated with those inputs.
- Additionally, there is another input with weight b (called the Bias) associated with it.
- The function f can be non-linear and is called the Activation Function.
- Particularly when used in neural network, the purpose of the activation function is to introduce non-linearity into the output of a neuron. This is important because most real world data is non-linear and we want neurons to learn these non linear representations.

Output of neuron = $Y = f(w_1.x_1 + w_2.x_2 + w_3.x_3 + b)$

Activation function

- Every activation function (or *non-linearity*) takes a single number and performs a certain fixed mathematical operation on it.
- There are several activation functions you may encounter in practice:
 - Sigmoid or logistic function: takes a real-valued input and squashes it to range between [0, 1]

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- **tanh:** takes a real-valued input and squashes it to the range [-1, 1] (more efficient to compute than sigmoid) $tanh(x) = 2\sigma(2x) 1$
- ReLU: ReLU stands for Rectified Linear Unit. It takes a real-valued input and thresholds it at zero (replaces negative values with zero)

$$f(x) = \max(0, x)$$

Activation function

The below figures show each of the above activation functions.

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\tanh(x) = 2\sigma(2x) - 1$$

$$f(x) = \max(0, x)$$

Sigmoid

tanh

ReLU

Convolutions

30	3	2_{2}	1	0
0_2	0_2	1_0	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Example with an edge detector

3 channels convolution

Bias addition

Each kernek generate an output channel by aggregation of the input channels

Visualization of Feature maps on GoogLeNet

Feature visualization for 3 different channels from the 1st convolution layer of GoogLeNet[3].

Feature Visualization of channel 12 from the 2nd and 3rd convolutions[3]

mixed3a, channel 31

mixed4a, channel 11

mixed5a, channel 14

Feature visualization of channels from each of the major collections of convolution blocks, showing a progressive increase in complexity[3]

The Pooling Step

- Spatial Pooling (also called subsampling or downsampling) reduces the dimensionality of each feature map but retains the most important information.
- Spatial Pooling can be of different types: Max, Average, Sum, etc.
- In case of Max Pooling, we define a spatial neighborhood (for example, a 2×2 window) and take
 the largest element from the rectified feature map within that window.
- Instead of taking the largest element we could also take the average (Average Pooling) or sum of all elements in that window.
- In practice, Max Pooling has been shown to work better.

The Pooling Step

The figure below shows an example of Max Pooling operation on a Rectified Feature map (obtained after convolution + ReLU operation) by using a 2×2 window.

- We slide our 2 x 2 window by 2 cells ('stride') and take the maximum value in each region.
- As shown, this reduces the dimensionality of our feature map.

The Pooling Step

- In the network shown below, pooling operation is applied separately to each feature map.
- Due to this, we get therefore 3 output maps from 3 input maps.

IA on the Edge: Number representation

Floatting point: Used for training (CPU/GPU) for more precision

Need a FPU

Fixed point: Used for fine-tuning and inference on target

Stored and computed as integers

- ⇒ Need for a conversion from floating-point to fixed-point:
 - ⇒ Determine **a scale** factor so that a floating-point can be represented as an integer multiplied by a scale factor

The scale is a factor of 2 => computed as shifts

Has to be choosen to represent the whole range of values while avoiding and risk of data overflow

IA on the Edge: Deployment on MCU

After the network has been trained and quantized it is deployed:

- Export the weights of the DNN and encode them into a format suitable for on-target inference
- Generate the inference program according to the topology of the DNN
- Compile the inference program
- Upload the program with weights onto the MCU's ROM

IA on the Edge: Deployment on MCU

MicroAl framework

Open-source
Support CNN with non-sequential topologies
Easy to modify and extend

Built in two parts:

- 1. A neural network training code that relies on Keras or PyTorch
- 2. A conversion tool (KerasCNN2C) that takes a trained Keras model and produces a portable C code for the inference

IA on the Edge: Deployment on MCU

MicroAl General Flow

Board	Nucleo-L452RE-P	SparkFun Edge
MCU	STM32L452RE	Ambiq Apollo3
Core	Cortex-M4F	Cortex-M4F
Max Clock	80 MHz	48 MHz (96 MHz "Burst Mode")
RAM	128 KiB	384 KiB
Flash	512 KiB	1024 KiB
CoreMark/MHz	3.42	2.479
Run current @3.3 V, 48 MHz	4.80 mA	0.82 mA *

^{*} After removing peripherals (Mic1&2, accelerometer...)

Deployment of deep neural networks on microcontrollers

MicroAl has the lowest memory overhead in all situations.

Deployment of deep neural networks on microcontrollers

- MicroAl is faster than TFLite Micro
- MicroAl is slightly slower than STM32Cube.Al

Deployment of deep neural networks on microcontrollers

The Ambiq Apollo3 MCU brings a much better efficiency over the STM32L452RE

Quantization and deployment of deep neural networks on microcontrollers

- int16: lower power consumption and ROM footprint than float32 without loss in accuracy
- int8: reduces them even further but with noticeable loss in accuracy.
 - Better quantification may help mitigate the loss
- MicroAl has a lower overhead on the ROM footprint than competitive solutions
- MicroAl inference time is similar to competitive solutions

Both the hardware and the software must be optimized together to achieve the lowest power consumption.

Quantification des nombres flottants

a. Notation à virgule fixe

$$110.111 = 1.2^{2} + 1.2^{1} + 0.2^{0} + 1.2^{-1} + 1.2^{-2} + 1.2^{-3}$$

Domaine de définition du codage :

$$D = [-2^m, 2^m - 2^{-n}]$$

Précision du codage Pas de quantification :

$$q = 2^{-n}$$

Résolution et dynamique

- Résolution : différence entre 2 nombres consécutifs
- Dynamique : différence entre le plus petit nombre et le plus grand

$$N = \begin{bmatrix} 2^{m-1} & 2^0 \\ MSB & LSB \end{bmatrix}$$

Résolution: 1

Dynamique : 2^{m-1}

$$N = \begin{bmatrix} 2^{m-1} & 2^0 & 2^{-1} & 2^{-n} \\ MSB & LSB \end{bmatrix}$$

Résolution :

Dynamique:

Gamme des nombres représentables en virgule fixe

Format	Limite négative	Limite positive	Résolution
Q1.31	-1	0,99999999	4,656612.10 ^E -10
Q1.15	-1	0,99996948	0,000030517
Q9.7	-256	255,9921	0,0078125
Q10.6	-512	511,9843	0,015625
Q11.5	-1024	1023,96875	0,03125
Q12.4	-2048	2047,9375	0,0625
Q13.3	-4096	4095,875	0,125
Q14.2	-8192	8191,75	0,25
Q15.1	-16384	16383,5	0,5
Q16.0	-32768	32767	1

Virgule Fixe

- Avantages
 - Résolution constante
 - Arithmétique simple
 - Facilite l'addition : semblables aux entiers
 - Multiplication : Nécessite des décalages supplémentaire
- Utilisation
 - Dans des circuits spécifiques ou DSP
 - Peu dans les ordinateurs généralistes

b. Notation en virgule flottante

- Nombre flottant N en binaire :
 - Un bit de signe s
 - Un exposant e
 - Une mantisse m

$$N = (-1)^s \times m.2^e$$

Représentations équivalentes

 $0.0000101011.2^{0}$

 $0.000000101011.2^2$

 $1.01011.2^{-5}$

• Normalisation:

• Le chiffre le plus significatif (non nul) est placé à l'extrème gauche de la mantisse

La norme IEEE 754

- Objectifs de la norme
 - Représentation des nombres
 - Procédures d'arrondis
 - Précision
 - Traitement des exceptions
- Principe
 - Toujours 1 avant la virgule (ce bit n'est pas codé)
 - 1<mantisse<2

Précision simple sur 32 bits (10**-38 à 10**38)

Précision double sur 64 bits (10**-308 à 10**308)

Codage de l'exposant

- L'exposant n'est pas représenté en complément à 2. Il est biaisé
- Biais = 127
- exp codé = biais + exp réel
- exp réel = exp codé biais

Précision

- Pour un nombre total de bits constant, il faut faire un compromis entre rang et précision
 - Si on augmente la taille de l'exposant le rang augmente mais la précision diminue
- Ecart non constant entre les nombres
 - Résolution :
- Par contre, la précision relative est constante

$$P = \frac{2^{-23}}{1.F} \le 2^{-23} \approx 1.2.10^{-7}$$
B. Miramond

Valeurs particulières

Normalisé 0<Exp<max Configuration quelconque de bits Dénormalisé + Configuration quelconque de bits non nulle zéro + 0 0 + infini ou -infini + 111..1 0 NaN: not a number + 111..1 Configuration quelconque de bits B. Miramond

Les nombres dénormalisés

- L'exposant est nul
- La mantisse n'est plus normalisée
 - Il n'y a plus de bit implicite à 1 : 0<m<1
 - Codée sur 23 ou 52 bits
- Plus petit nombre dénormalisé représentable
 - 23 bits à 0 + dernier bit à 1
 - Mantisse 2^-23, Exposant 2^-126 soit 2^-150
- Plus grand nombre dénormalisé représentable
 - 0.9999999.2⁽⁻¹²⁷⁾

Précision

- ΔNd :Distance dénormalisée entre 2 nombres
- Pd : Précision relative

$$\Delta N_d = 2^{-23}.2^{-126} = 2^{-149}$$

$$P_d = \frac{2^{-23}}{0, F}$$

- Précision absolue constante comme dans le cas des nombres en virgule fixe
- Précision relative inférieure à celle des flottants normalisés (cas des plus petits nombres)

Comparaison Simple / Double précision

Caractéristique	Simple	Double
Taille totale	32	64
Taille exposant	8 [-126, +127]	11 [-1022, + 1023]
Taille mantisse	23	52
Codage mantisse	Signe & Grandeur	Signe & Grandeur
Codage exposant	Par Excédant 127	Excédant 1023
Plus petit positif normalisé	1,0.2 ^E -126	1,0.2 ^E -1022
Plus petit positif dénormalisé	(2E-23).2E-126	(2 ^E -52).2 ^E -1022
Plus grand positif normalisé	(2-2 ^E -23).2E+127	(2-2 ^E -52).2E+1023
Plus grand positif dénormalisé	(1-2 ^E -23).2E+127	(1-2 ^E -52).2E+1023

Comparaison Virgule fixe/Virgule flottante

 Niveau de la dynamique

Implantations matérielles

Problèmes relatifs aux nombres flottants

- Le problème du missile patriote
- Durant la 1ère guerre du Golfe (1991), un missile patriote à loupé l'interception d'un missile scud irakien
- Mauvais calcul du temps de vol du missile patriote
- Le temps estimé en dizième de seconde a été converti en seconde en multipliant par 1/10.
- L'opération a été tronquée sur 24bits (représentation en virgule fixe) et l'erreur s'est propagée induisant un retard de 0.34s

Explosion d'ARIANE 5

- Problème dans le logiciel de lancement
- Conversion d'un nombre flottant sur 64 bits en un entier signé codé sur 16 bits
- La valeur à convertir était plus grande que 32767!!

Implémentation

- Virgule fixe
 - Opérateurs arithmétiques plus simples
 - Implantation
 - Circuits spécifiques
 - Certains DSPs
 - applications
- Virgule flottante
 - Implantation
 - Processeurs généralistes
 - Certains DSPs
 - Applications
 - Filtrage adaptifs
 - TS (les coefficients ont besoin d'une large dynamique)

• ...

46

TI 8847

MIPS R3010

B. Miramond

49

Weitek 3364

B. Miramond

50

Implémentation matérielle

Features	MIPS R3010	Weitek 3364	TI 8847
Clock cycle time (ns)	40	50	30
Size (mil ²)	114,857	147,600	156,180
Transistors	75,000	165,000	180,000
Pins	84	168	207
Power (watts)	3.5	1.5	1.5
Cycles/add	2	2	2
Cycles/mult	5	2	3
Cycles/divide	19	17	11
Cycles/square root	_	30	14

Figure H.36 Summary of the three floating-point chips discussed in this section. The cycle times are for production parts available in June 1989. The cycle counts are for double-precision operations.

Opérations arithmétiques sur les flottants

- virgule fixe
- virgule flottante

L'addition

- Addition en virgule fixe
- Addition en virgule flottante

Addition virgule fixe

Mécanisme d'addition classique avec extension de signe et ajout de la virgule

Addition en virgule flottante

- Algorithme à suivre
 - Décaler à droite la mantisse du nombre possédant le plus petit exposant jusqu'à arriver à l'exposant de l'autre nombre.
 - Additionner les mantisses
 - Re-Normaliser le résultat
 - Arrondir (éventuellement)

Exemple

- Calcul de 3+1.5 en flottant
- Notation simple selon le format IEEE 754
- a=3, b=1.5

Alignement des mantisses (on modifie b pour que les 2 nombres aient le même exp)

Addition des mantisses

Renormalisation

Arrondi

La soustraction

• Même principe que l'addition puisque

- A+B = A+(-B)
- En complément à 2

La multiplication en virgule fixe

Mécanisme de multiplication classique avec ajout de la virgule

La multiplication/division en virgule flottante

Soit à calculer a*b ou a/b

$$p = a \times b = (M_a \times M_b) \times 2^{(ExpA + ExpB)}$$

$$q = \frac{a}{b} = \frac{M_a}{M_b} \times 2^{(ExpA - ExpB)}$$

- Les opérations sur les exposants sont effectuées en complément à 2
- Les opérations sur les mantisses sont effectuées en virgule fixe
- Ne pas oublier les éventuels dépassements de capacité

IA on the Edge: Deployment on MCU

MicroAl General Flow

Dark side UCA Board RFT dev board

- The target is a RFT-AI Dev. Kit board equipped with a STM32L476RGT6 Microcontroller.
 This MCU is based on the ARM Cortex M4 architecture and runs at a frequency of 80 MHz. The board provides 1 MB Flash and 128 KB SRAM.
 - LoRa SX1262 Module with CP antenna
 - Quectel L96 M33 GPS module
 - Accelerometer
 - Gyroscope
 - Magnetometer
 - 9 Axis Sensor TDK InvenSense ICM-20948 Digita
 - PDM Microphone MEMS (Silicon) Omnidirection SPH0690LM4H
 - Air Quality Sensor Sensirion AG SGP30-2.5K
 - Optical Sensor Ambient Lite-On Inc. LTR-303ALS

