12.1	The Existence of Zeros
(0. 1	
	Questions about the Existence of Zeros:
	i) Existence: are there any zeros?
	ii) Number: are there infinitely many? how many, or about how many?
	iii) Approximate Location: Find small intervals confaining only one zero
	iv) Calculation: Determine the zero "exactly", or to a given accuracy
	· · populatine file zero carrily, or 10 or given seeming
	- We say f(x) changes sign on the closed finite interval [a, b] if it is defined on this interval and
	has opposite signs at a and b; $f(a) \cdot f(b) < 0$
	Bolzano's Theorem:
	- Let $f(x)$ be continuous on $[a,b]$, then $f(x)$ changes sign on $[a,b]$ \Rightarrow $f(x)$ has a zero on $[a,b]$
	The starting interval $[a_0, b_0]$ is just $[a, b]$ itself. To get the next interval in the sequence, divide $[a_0, b_0]$ in two by its midpoint x_0 ; then choose as $[a_1, b_1]$ the
	half-interval on which $f(x)$ goes from $-$ to $+$: if $f(x_0) > 0$, let $[a, b_0] = [a, x_0]$, $[a, x_0] = [a, x_0]$
	if $f(x_0) > 0$, let $[a_1, b_1] = [a, x_0]$; $\underbrace{a x_0 b}_{b_1}$ if $f(x_0) < 0$, let $[a_1, b_1] = [x_0, b]$.
	In either case, we have $f(a_1) < 0$. $f(b_1) > 0$. This gives a new interval $[a_1.b_1]$ of half the length, on which $f(x)$ still changes sign from $-$ to $+$.
	(If at the midpoint we find that $f(x_0) = 0$, the above doesn't apply, but in that case we can stop and pack up: we've found a zero.)
	We continue this process with $[a_1, b_1]$, bisecting it and choosing as $[a_2, b_2]$ the half on which $f(x)$ goes from $-$ to $+$. If at any stage the midpoint is a zero of
	f(x), we are done; if not, we get an infinite sequence of nested intervals
	$[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$ such that
	(2) $f(a_n) < 0, f(b_n) > 0, \text{and} b_n - a_n \to 0.$
	By the Nested Interval Theorem 6.1, there is a unique c inside all these intervals, and
	$\lim a_n = c \;, \qquad \lim b_n = c.$ To finish, we show that $f(c) = 0$. Since $f(x)$ is continuous on $[a,b]$, the
	Sequential Continuity Theorem 11.5 implies that
	$\lim f(a_n) = f(c) , \qquad \lim f(b_n) = f(c) .$
	According to (2), we have $f(a_n) < 0$ and $f(b_n) > 0$ for all n ; it follows by the Limit Location Theorem for sequences 5.3A that
	$\lim f(a_n) \leq 0$, $\lim f(b_n) \geq 0$, i.e.,
	$f(c) \leq 0 \; , \qquad \qquad f(c) \geq 0 \; ,$ which implies that $f(c) = 0$, proving (1).
	Intermediate Value Theorem:
	- Assume $f(x)$ is continuous on [a, b] $f(a) \le f(b)$. Then for $k \in \mathbb{R}$,
	$f(a) \le k \le f(b) \implies k = f(c)$ for some $C \in [a, b]$
	×
	Since Bolzano's Theorem is essentially the special case of the Intermediate Value Theorem when $K=0$, the two
	theorems are equivalent

<i>'</i> 5
, (5
, (5
, ₍₅
í5
ís.
ís
\
) on
S
(is

