Package 'animaltracker'

November 28, 2019

Description Import, visualize, and analyze GPS and accelerometer data for spatial-

temporal tracking of animals (e.g., cows).

Title Animal Tracker

Version 0.1.0

Depends R (>= $3.5.0$)
Imports zoo (>= 1.8.6), forcats (>= 0.4.0), lubridate (>= 1.7.0), tibble (>= 2.1.0), shinyBS (>= 0.61), V8 (>= 2.1), shinyjs (>= 1.0), shiny (>= 1.2.0), shinyWidgets (>= 0.4.4), shinycssloaders (>= 0.2.0), shinythemes (>= 1.1.2), xts (>= 0.11.2), leaflet (>= 2.0.2), leaflet.extras (>= 1.0.0), dplyr (>= 0.7.5), ggplot2 (>= 3.1.0), scales (>= 1.0.0), tidyr (>= 0.8.2), sp (>= 1.3.1), rgdal (>= 1.3.6), raster(>= 2.7.15), nabor(>= 0.5.0), elevatr (>= 0.2.0), geosphere (>= 1.5.7)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:
app_server 2 app_ui 3 boxplot_altitude 3 boxplot_time_unit 4 calc_bearing 4 clean_batch_df 5 clean_export_files 5 clean_location_data 6 clean_store_batch 7 compare_flags 8
compare_summarise_daily

 compare_summarise_data
 9

 deg_to_dec
 10

 demo
 11

 demo_comparison
 11

 demo_filtered
 11

 demo_info
 12

 demo_meta
 12

 demo_unfiltered
 12

2 app_server

	detect_peak_modz	13
	dev_add_to_gitignore	14
	get_data_from_meta	14
	get_file_meta	15
	get_meta	15
	histogram_animal_elevation	16
	histogram_time	16
	histogram_time_unit	17
	join_summaries	17
	line_compare	18
	lookup_elevation_aws	19
	lookup_elevation_file	20
	process_elevation	20
	qqplot_time	21
	quantile_time	21
	read_columbus	22
	read_gps	23
	read_zip_to_rasters	23
	run_shiny_animaltracker	24
	run_validation_app	24
	save_meta	25
	store_batch_list	25
	summarise_anidf	26
	summarise_col	26
	summarise_unit	27
	violin_compare	27
Index		29

app_server

Defines logic for updating the app based on user interaction in the ui

Description

Defines logic for updating the app based on user interaction in the ui

Usage

```
app_server(input, output, session)
```

Arguments

input see shiny app architecture output see shiny app architecture session see shiny app architecture

Value

server function for use in a shiny app

app_ui 3

app_ui

Defines a user interface for the shiny app

Description

Defines a user interface for the shiny app

Usage

```
app_ui()
```

Value

ui function for use in a shiny app

boxplot_altitude

Generates a boxplot to visualize the distribution of altitude by GPS.

Description

Generates a boxplot to visualize the distribution of altitude by GPS.

Usage

```
boxplot_altitude(rds_path)
```

Arguments

rds_path

Path of .rds animal data file to read in

Value

overall boxplot of altitude by GPS

```
# Boxplot of altitude for demo data .rds
boxplot_altitude(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

4 calc_bearing

boxplot_time_unit Generates a boxplot to visualize the distribute measurements by GPS unit.	tion of time between GPS
---	--------------------------

Description

Generates a boxplot to visualize the distribution of time between GPS measurements by GPS unit.

Usage

```
boxplot_time_unit(rds_path)
```

Arguments

rds_path

Path of .rds animal data file to read in

Value

distribution of time between GPS measurements by GPS unit, as a boxplot

Examples

```
# Boxplot of GPS measurement time differences for demo data .rds
boxplot_time_unit(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

calc_bearing

Helper function for cleaning Columbus P-1 datasets. Given lat and long coords in degree decimal, convert to radians and compute bearing.

Description

Helper function for cleaning Columbus P-1 datasets. Given lat and long coords in degree decimal, convert to radians and compute bearing.

Usage

```
calc_bearing(lat1, lon1, lat2, lon2)
```

Arguments

lat1	latitude of starting point
lon1	longitude of starting point
lat2	latitude of ending point
lon2	longitude of ending point

Value

bearing computed from given coordinates

clean_batch_df 5

clean_batch_df	Cleans a directory of animal data files	
----------------	---	--

Description

Cleans a directory of animal data files

Usage

```
clean_batch_df(data_info, filters = TRUE, tz_in = "UTC",
   tz_out = "UTC")
```

Arguments

data_info	list of animal data frames with information about the data, generated by store_batch
filters	filter bad data points, defaults to true
tz_in	input time zone, defaults to UTC
tz_out	output time zone, defaults to UTC

Value

clean df with all animal data files from the directory

clean_export_files	Cleans all animal GPS datasets (in .csv format) in a chosen directory. Optionally exports the clean data as spreadsheets, a single .rds data
	file, or as a list of data frames

Description

Cleans all animal GPS datasets (in .csv format) in a chosen directory. Optionally exports the clean data as spreadsheets, a single .rds data file, or as a list of data frames

Usage

```
clean_export_files(data_dir, cleaned_filename = "animal_data.rds",
    cleaned_dir = "processed", tz_in = "UTC", tz_out = "UTC")
```

Arguments

6 clean_location_data

Examples

```
# Clean all animal GPS .csv datasets in the demo directory

## Not run:
clean_export_files(system.file("extdata", "demo_nov19", package = "animaltracker"),
cleaned_filename = "ex_animal_data.rds", cleaned_dir = "clean_export_ex", tz = "UTC")

## End(Not run)
```

clean_location_data

Cleans a raw animal GPS dataset, implementing a standardized procedure to remove impossible values

Description

Cleans a raw animal GPS dataset, implementing a standardized procedure to remove impossible values

Usage

```
clean_location_data(df, dtype, filters = TRUE, aniid = NA,
   gpsid = NA, maxrate = 84, maxcourse = 100, maxdist = 840,
   maxtime = 100, tz_in = "UTC", tz_out = "UTC")
```

Arguments

df	data frame in standardized format (e.g., from a raw spreadsheet)
dtype	data type, iGotU or Columbus P-1
filters	filter bad data points, defaults to true
aniid	identification code for the animal
gpsid	identification code for the GPS device
maxrate	maximum rate of travel (meters/minute) between consecutive points
maxcourse	maximum distance (meters) between consecutive points
maxdist	maximum geographic distance (meters) between consecutive points
maxtime	maximum time (minutes) between consecutive points
tz_in	input time zone, defaults to UTC
tz_out	output time zone, defaults to UTC

```
# Clean a data frame from csv

## Read igotU data
bannock_df <- read.csv(system.file("extdata", "demo_nov19/Bannock_2017_101_1149.csv",
package = "animaltracker"), skipNul=TRUE)

## Clean and filter
clean_location_data(bannock_df, dtype = "igotu", filters = TRUE, aniid = 1149,</pre>
```

clean_store_batch 7

```
gpsid = 101, maxrate = 84, maxdist = 840, maxtime = 100)
## Clean without filtering
clean_location_data(bannock_df, dtype = "igotu", filters = FALSE, aniid = 1149,
gpsid = 101, maxrate = 84, maxdist = 840, maxtime = 100)
# Clean a data frame from txt
## Read Columbus P-1 data
columbus_df <- read_columbus(system.file("extdata", "demo_columbus.TXT",</pre>
package = "animaltracker"))
## Clean and filter
clean_location_data(columbus_df, dtype = "columbus", filters = TRUE, aniid = 1149,
gpsid = 101, maxrate = 84, maxdist = 840, maxtime = 100)
```

clean_store_batch

Cleans a directory of animal data files and stores them locally in rds format

Description

Cleans a directory of animal data files and stores them locally in rds format

Usage

```
clean_store_batch(data_info, filters = TRUE, zoom = 11,
 get_slope = TRUE, get_aspect = TRUE, min_lat = data_info$min_lat,
 max_lat = data_info$max_lat, min_long = data_info$min_long,
 max_long = data_info$max_long, tz_in = "UTC", tz_out = "UTC")
```

Arguments

data_info	list of animal data frames with information about the data, generated by store_batch
filters	filter bad data points, defaults to true
zoom	level of zoom, defaults to 11
get_slope	logical, whether to compute slope (in degrees), defaults to true
get_aspect	logical, whether to compute aspect (in degrees), defaults to true
min_lat	minimum latitude for filtering, defaults to min in data_info
max_lat	maximum latitude for filtering, defaults to max in data_info
min_long	minimum longitude for filtering, defaults to min in data_info
max_long	maximum longitude for filtering, defaults to max in data_info
tz_in	input time zone, defaults to UTC
tz_out	output time zone, defaults to UTC

Value

df of metadata for animal file directory

compare_flags

Joins and reformats two animal data frames for the purpose of flag comparison

Description

Joins and reformats two animal data frames for the purpose of flag comparison

Usage

```
compare_flags(correct, candidate)
```

Arguments

correct reference df

candidate df to be compared to the reference

Value

joined and reformatted df

Examples

```
## Not run:
# Join and reformat unfiltered demo data and filtered demo data
## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,
get_slope=FALSE, get_aspect=FALSE)
## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)
compare_flags(unfiltered_elev, filtered_elev)
## End(Not run)</pre>
```

compare_summarise_daily

Compares two animal datasets and calculates daily summary statistics by GPS GPS, date, lat, long, course, distance, rate, elevation column names should match.

Description

Compares two animal datasets and calculates daily summary statistics by GPS GPS, date, lat, long, course, distance, rate, elevation column names should match.

Usage

```
compare_summarise_daily(correct, candidate, out)
```

Arguments

correct reference df

candidate df to be compared to the reference

out desired file name of .csv output summary

Value

summary df

Examples

```
# Compare and summarise unfiltered demo cows to filtered, grouped by both Date and GPS
## Not run:

## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,
get_slope=FALSE, get_aspect=FALSE)

## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)

## Compare and summarise
compare_summarise_daily(unfiltered_elev, filtered_elev, "ex_compare_daily.csv")

## End(Not run)</pre>
```

compare_summarise_data

Compares two animal data frames and calculates summary statistics. GPS, date, lat, long, course, distance, rate, elevation column names should match.

Description

Compares two animal data frames and calculates summary statistics. GPS, date, lat, long, course, distance, rate, elevation column names should match.

Usage

```
compare_summarise_data(correct, candidate, gps_out, date_out)
```

Arguments

correct reference df

candidate df to be compared to the reference

gps_out desired file name of .csv output summary by GPS collar date_out desired file name of .csv output summary by date

10 deg_to_dec

Value

list containing gps_out and date_out as dfs

Examples

```
# Compare and summarise unfiltered demo cows to filtered

## Not run:
## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,
get_slope=FALSE, get_aspect=FALSE)

## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)

## Compare and summarise
compare_summarise_data(unfiltered_elev, filtered_elev, "ex_gps_compare.csv", "ex_date_compare.csv")

## End(Not run)</pre>
```

deg_to_dec

Helper function for cleaning Columbus P-1 datasets. Given lat or long coords in degrees and a direction, convert to decimal.

Description

Helper function for cleaning Columbus P-1 datasets. Given lat or long coords in degrees and a direction, convert to decimal.

Usage

```
deg_to_dec(x, direction)
```

Arguments

x lat or long coords in degrees

direction direction of lat/long

Value

converted x

demo 11

demo

Demo animal GPS data from cows

Description

Demo animal GPS data from cows

Usage

demo

Format

A data frame with 2171 rows and 29 variables

demo_comparison

Demo comparison of two animal datasets

Description

Demo comparison of two animal datasets

Usage

demo_comparison

Format

A data frame with 2758 rows and 33 variables

demo_filtered

Filtered demo animal GPS data from cows

Description

Filtered demo animal GPS data from cows

Usage

 ${\sf demo_filtered}$

Format

A data frame with 2187 rows and 26 variables

12 demo_unfiltered

demo_info

Raw demo animal GPS data from cows with information

Description

Raw demo animal GPS data from cows with information

Usage

demo_info

Format

A list with 10 elements

demo_meta

Metadata for demo animal GPS data from cows

Description

Metadata for demo animal GPS data from cows

Usage

demo_meta

Format

A data frame with 6 rows and 11 variables

demo_unfiltered

Unfiltered demo animal GPS data from cows

Description

Unfiltered demo animal GPS data from cows

Usage

 ${\tt demo_unfiltered}$

Format

A data frame with 2288 rows and 32 variables

detect_peak_modz 13

detect_peak_modz	Alternative implementation of the robust peak detection algorithm by
	van Brakel 2014 Classifies data points with modified z-scores greater
	than max score as outliers coording to Iglewicz and Hoaglin 1993

Description

Alternative implementation of the robust peak detection algorithm by van Brakel 2014 Classifies data points with modified z-scores greater than max_score as outliers ccording to Iglewicz and Hoaglin 1993

Usage

```
detect_peak_modz(df_comparison, lag = 5, max_score = 3.5)
```

Arguments

```
df_comparison output of compare_flags

lag width of interval to compute rolling median and MAD, defaults to 5

max_score modified z-score cutoff to classify observations as outliers, defaults to 3.5
```

Value

df with classifications

```
## Not run:
# Join and reformat unfiltered demo data and filtered demo data

## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,
get_slope=FALSE, get_aspect=FALSE)

## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)

## Get comparison df
comparison <- compare_flags(unfiltered_elev, filtered_elev)

detect_peak_modz(comparison, lag = 5, max_score = 3.5)

## End(Not run)</pre>
```

14 get_data_from_meta

```
dev_add_to_gitignore Add big files to a .gitignore file
```

Description

Add big files to a .gitignore file

Usage

```
dev_add_to_gitignore(data_dir)
```

Arguments

data_dir

directory of animal data files

Examples

```
# Detect large files in the demo directory and add to the .gitignore file
## Not run:
dev_add_to_gitignore(system.file("extdata", "demo_nov19", package = "animaltracker"))
## End(Not run)
```

get_data_from_meta

Get animal data set from specified meta. If date range is invalid, automatically returns all animal data specified by meta_df.

Description

Get animal data set from specified meta. If date range is invalid, automatically returns all animal data specified by meta_df.

Usage

```
get_data_from_meta(meta_df, min_date, max_date)
```

Arguments

meta_df data frame of specified meta
min_date minimum date specified by user
max_date maximum date specified by user

get_file_meta 15

ant.	fila	meta
26.	1116	IIIeta

Generate metadata for a directory of animal data files

Description

Generate metadata for a directory of animal data files

Usage

```
get_file_meta(data_dir)
```

Arguments

data_dir

directory of animal data files

Value

list of data info as a list of animal IDs and GPS units

Examples

```
# Get metadata for demo directory
get_file_meta(system.file("extdata", "demo_nov19", package = "animaltracker"))
```

get_meta

Generate metadata for an animal data frame - filename, site, date min/max, animals, min/max lat/longitude, storage location

Description

Generate metadata for an animal data frame - filename, site, date min/max, animals, min/max lat/longitude, storage location

Usage

```
get_meta(df, file_id, file_name, site, ani_id, storage_loc)
```

Arguments

df clean animal data frame

file_id ID number of .csv source of animal data frame

file_name .csv source of animal data frame site physical source of animal data ani_id ID of animal found in data frame

storage_loc .rds storage location of animal data frame

Value

df of metadata for animal data frame

16 histogram_time

```
histogram_animal_elevation
```

Generate a histogram of the distribution of modeled elevation - measured altitude

Description

Generate a histogram of the distribution of modeled elevation - measured altitude

Usage

```
histogram_animal_elevation(datapts)
```

Arguments

datapts

GPS data with measured Altitude and computed Elevation data

Value

histogram of the distribution of modeled elevation - measured altitude

Examples

```
# Histogram of elevation - altitude for the demo data
histogram_animal_elevation(demo)
```

 $\verb|histogram_time| \\$

Generates a histogram to visualize the distribution of time between GPS measurements.

Description

Generates a histogram to visualize the distribution of time between GPS measurements.

Usage

```
histogram_time(rds_path)
```

Arguments

rds_path

Path of .rds cow data file to read in

Value

distribution of time between GPS measurements, as a histogram

```
# Histogram of GPS measurement time differences for demo data .rds
histogram_time(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

histogram_time_unit 17

histogram_time_unit	Generates a histogram to visualize the distribution of time between
	GPS measurements by GPS unit.

Description

Generates a histogram to visualize the distribution of time between GPS measurements by GPS unit.

Usage

```
histogram_time_unit(rds_path)
```

Arguments

rds_path

Path of .rds animal data file to read in

Value

distribution of time between GPS measurements by GPS unit, as a histogram

Examples

```
# Histogram of GPS measurement time differences by GPS unit for demo data .rds
histogram_time_unit(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

join_summaries

Joins two animal data frame summaries by a column and appends differences

Description

Joins two animal data frame summaries by a column and appends differences

Usage

```
join_summaries(correct_summary, candidate_summary, by_str, daily = F)
```

Arguments

```
correct_summary
```

summary df of reference dataset, returned by summarise_anidf

candidate_summary

summary df of dataset to be compared to reference, returned by summarise_anidf

by_str column to join by as a string, null if daily=T

daily whether to group by both GPS and Date for daily summary, defaults to False

line_compare

Examples

```
# Join date summaries of unfiltered and filtered demo data

## Not run:

## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,
get_slope=FALSE, get_aspect=FALSE)

## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)

## Summarise unfiltered demo by date
unfiltered_summary <- summarise_anidf(unfiltered_elev, Date, Latitude, Longitude,
Distance, Course, Rate, Elevation, daily=FALSE)

## Summarise filtered demo by date
filtered_summary <- summarise_anidf(filtered_elev, Date, Latitude, Longitude,
Distance, Course, Rate, Elevation, daily=FALSE)

## Join
join_summaries(unfiltered_summary, filtered_summary, "Date", daily=F)

## End(Not run)</pre>
```

line_compare

Compares moving averages of a variable for two datasets over time, grouped by GPS GPS, Date, and col columns should match

Description

Compares moving averages of a variable for two datasets over time, grouped by GPS GPS, Date, and col columns should match

Usage

```
line_compare(correct, candidate, col, out)
```

Arguments

correct reference df

candidate df to be compared to the reference col variable to plot the moving average for

out file name to save plot

Value

faceted line plot of moving averages over time grouped by GPS

lookup_elevation_aws 19

Examples

```
# Faceted line plot comparing moving averages over time
# grouped by GPS for unfiltered and filtered demo data
## Not run:
## Set distance as the y axis
line_compare(demo_unfiltered, demo_filtered, Distance, "ex_line_dist.png")
## End(Not run)
```

lookup_elevation_aws

Add elevation data from public AWS terrain tiles to long/lat coordinates of animal gps data

Description

Add elevation data from public AWS terrain tiles to long/lat coordinates of animal gps data

Usage

```
lookup_elevation_aws(anidf, zoom = 11, get_slope = TRUE,
  get_aspect = TRUE)
```

Arguments

anidf animal tracking dataframe zoom level of zoom, defaults to 11

get_slope logical, whether to compute slope (in degrees), defaults to true get_aspect logical, whether to compute aspect (in degrees), defaults to true

Value

original data frame, with Elevation column appended

```
# Add elevation data to filtered demo data frame
## Not run:
## Lookup with slope and aspect
lookup_elevation_aws(demo_filtered, zoom = 11, get_slope = TRUE, get_aspect = TRUE)
## End(Not run)
```

20 process_elevation

 ${\tt lookup_elevation_file} \begin{tabular}{ll} Add \ elevation \ data \ from \ terrain \ tiles \ to \ long/lat \ coordinates \ of \ animal \ gps \ data \end{tabular}$

Description

Add elevation data from terrain tiles to long/lat coordinates of animal gps data

Usage

```
lookup_elevation_file(elev, anidf, zoom = 11, get_slope = TRUE,
   get_aspect = TRUE)
```

Arguments

elev elevation data as raster
anidf animal tracking dataframe
zoom level of zoom, defaults to 11

get_slope logical, whether to compute slope (in degrees), defaults to true get_aspect logical, whether to compute aspect (in degrees), defaults to true

Value

original data frame, with terrain column(s) appended

Description

Export modeled elevation data from existing animal data file

Usage

```
process_elevation(zoom = 11, get_slope = TRUE, get_aspect = TRUE,
  in_path, out_path)
```

Arguments

zoom level of zoom, defaults to 11

get_slope logical, whether to compute slope (in degrees), defaults to true get_aspect logical, whether to compute aspect (in degrees), defaults to true

in_path animal tracking data file to model elevation from

out_path exported file path, .rds

Value

list of data frames with gps data augmented by elevation

qqplot_time 21

Examples

```
# Export elevation data from demo .rds datasets
## Not run:
process_elevation(zoom = 11, get_slope = TRUE, get_aspect = TRUE,
in_path = system.file("extdata", "demo_nov19.rds",
package = "animaltracker"), out_path = "demo_nov19_elev.rds")
## End(Not run)
```

qqplot_time

Generates a QQ plot to show the distribution of time between GPS measurements.

Description

Generates a QQ plot to show the distribution of time between GPS measurements.

Usage

```
qqplot_time(rds_path)
```

Arguments

rds_path

Path of .rds animal data file to read in

Value

quantile-quantile plot to show distribution of time between GPS measurements

Examples

```
# QQ plot of GPS measurment time differences for demo data .rds
qqplot_time(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

quantile_time

Determines the GPS measurement time value difference values roughly corresponding to quantiles with .05 intervals.

Description

Determines the GPS measurement time value difference values roughly corresponding to quantiles with .05 intervals.

Usage

```
quantile_time(rds_path)
```

22 read_columbus

Arguments

rds_path

Path of .rds animal data file to read in

Value

approximate time difference values corresponding to quantiles (.05 intervals)

Examples

```
# Read in .rds of demo data and calculate time difference quantiles
quantile_time(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

read_columbus

Read and process a Columbus P-1 data file containing NMEA records into a data frame

Description

Read and process a Columbus P-1 data file containing NMEA records into a data frame

Usage

```
read_columbus(filename)
```

Arguments

filename

path of Columbus P-1 data file

Value

NMEA records in RMC and GGA formats as a data frame

```
## Not run:
read_columbus(system.file("extdata", "demo_columbus.TXT", package = "animaltracker"))
## End(Not run)
```

read_gps 23

read_gps

Reads a GPS dataset of unknown format at location filename

Description

Reads a GPS dataset of unknown format at location filename

Usage

```
read_gps(filename)
```

Arguments

filename

location of the GPS dataset

Value

list containing the dataset as a df and the format

read_zip_to_rasters

Read an archive of altitude mask files and convert the first file into a raster object

Description

Read an archive of altitude mask files and convert the first file into a raster object

Usage

```
read_zip_to_rasters(filename, exdir = "inst/extdata/elev")
```

Arguments

filename path of altitude mask file archive

exdir path to extract files

Value

the first altitude mask file as a raster object

24 run_validation_app

```
run_shiny_animaltracker
```

You can run the animaltracker Shiny app by calling this function.

Description

You can run the animaltracker Shiny app by calling this function.

Usage

```
run_shiny_animaltracker(browser = TRUE, showcase = FALSE)
```

Arguments

browser logical, whether to launch the app in your default browser (defaults to TRUE)

showcase logical, whether to launch the app in 'showcase' mode (defaults to FALSE)

Examples

```
## Not run:
# Run the animaltracker app
run_shiny_animaltracker()
## End(Not run)
```

run_validation_app

Run the Shiny validation app

Description

Run the Shiny validation app

Usage

```
run_validation_app()
```

save_meta 25

save_meta

Save metadata to a data frame and return it

Description

Save metadata to a data frame and return it

Usage

```
save_meta(meta_df, file_meta)
```

Arguments

meta_df the data frame to store metadata in

file_meta meta for a .csv file generated by get_meta

store_batch_list

Generates basic metadata about a directory of animal data files and stores the files as data frames as a list with the meta

Description

Generates basic metadata about a directory of animal data files and stores the files as data frames as a list with the meta

Usage

```
store_batch_list(data_dir)
```

Arguments

data_dir

location of animal data files, in list format

Value

a list of animal data frames with information about the data

26 summarise_col

summarise_anidf

Calculates summary statistics for an animal data frame

Description

Calculates summary statistics for an animal data frame

Usage

```
summarise_anidf(anidf, by, lat, long, dist, course, rate, elev,
  daily = F)
```

Arguments

anidf the animal data frame

by column to group by, null if daily=T

lat latitude column
long longitude column
dist distance column
course course column
rate rate column
elev elevation column

daily whether to group by both GPS and Date for daily summary, defaults to False

Examples

```
# Summary of demo data by date
summarise_anidf(demo, Date, Latitude, Longitude, Distance, Course, Rate, Elevation, daily=FALSE)
```

summarise_col

Get summary statistics for a single column in an animal data frame

Description

Get summary statistics for a single column in an animal data frame

Usage

```
summarise_col(df, col)
```

Arguments

df animal data frame

col column to get summary stats for, as a string

summarise_unit 27

Value

data frame of summary stats for col

Examples

```
# Get summary statistics for Distance column of demo data
summarise_col(demo, Distance)
```

summarise_unit

Summarise a number of animal datasets by GPS unit

Description

Summarise a number of animal datasets by GPS unit

Usage

```
summarise_unit(rds_path)
```

Arguments

rds_path

Path of .rds cow data file to read in

Value

summary statistics for animals by GPS unit

Examples

```
# Read in .rds of demo data and summarise by GPS unit
summarise_unit(system.file("extdata", "demo_nov19.rds", package = "animaltracker"))
```

violin_compare

Compares summary statistics from two datasets as side-by-side violin plots

Description

Compares summary statistics from two datasets as side-by-side violin plots

Usage

```
violin_compare(df_summary, by, col_name, out)
```

28 violin_compare

Arguments

df_summary data frame of summary statistics from both datasets to be compared

by GPS or Date

col_name variable in df_summary to be used for the y-axis, as a string

out file name to save plot

Value

side-by-side violin plots

```
# Violin plot comparing unfiltered and filtered demo data summaries by date for a single variable
## Not run:
## Get elevation data for unfiltered demo
unfiltered_elev <- lookup_elevation_aws(demo_unfiltered, zoom=1,</pre>
get_slope=FALSE, get_aspect=FALSE)
## Get elevation data for filtered demo
filtered_elev <- lookup_elevation_aws(demo_filtered, zoom=1, get_slope=FALSE, get_aspect=FALSE)</pre>
## Summarise unfiltered demo
unfiltered_summary <- summarise_anidf(unfiltered_elev, Date, Latitude, Longitude,
Distance, Course, Rate, Elevation, daily=FALSE)
## Summarise filtered demo
filtered_summary <- summarise_anidf(filtered_elev, Date, Latitude, Longitude,</pre>
Distance, Course, Rate, Elevation, daily=FALSE)
\verb|summary| <- join\_summaries(unfiltered\_summary, filtered\_summary, "Date", daily=FALSE)|
## Violin plot
violin_compare(summary, Date, "meanElev", "ex_elev_violin.png")
## End(Not run)
```

Index

* datasets	${\tt lookup_elevation_file, 20}$
demo, 11	
demo_comparison, 11	process_elevation, 20
demo_filtered, 11	qqplot_time, 21
demo_info, 12	quantile_time, 21
demo_meta, 12	quantife_time, 21
demo_unfiltered, 12	read_columbus, 22
app_server, 2	read_gps, 23
app_ui, 3	read_zip_to_rasters, 23
арр_ат, 5	<pre>run_shiny_animaltracker, 24</pre>
boxplot_altitude, 3	run_validation_app, 24
boxplot_time_unit, 4	
boxprot_time_arrit, 1	save_meta, 25
calc_bearing, 4	store_batch_list, 25
clean_batch_df, 5	summarise_anidf, 26
clean_export_files, 5	summarise_col, 26
clean_location_data, 6	summarise_unit, 27
clean_store_batch, 7	_ ,
compare_flags, 8	violin_compare, 27
· · · · · · · · · · · · · · · · · · ·	
compare_summarise_daily, 8	
compare_summarise_data,9	
deg_to_dec, 10	
demo, 11	
demo_comparison, 11	
demo_filtered, 11	
demo_info, 12	
demo_meta, 12	
demo_unfiltered, 12	
detect_peak_modz, 13	
dev_add_to_gitignore, 14	
dev_add_to_gitighore, 14	
<pre>get_data_from_meta, 14</pre>	
get_file_meta, 15	
get_meta, 15	
800000, 10	
histogram_animal_elevation, 16	
histogram_time, 16	
histogram_time_unit, 17	
/	
join_summaries, 17	
line_compare, 18	
lookup_elevation_aws, 19	
TOOKUP_ETEVACTOII_aws, 17	