SBML Model Report

Model name: "Jiang2007 - GSIS system, Pancreatic Beta Cells"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Kieran Smallbone² at November 29th 2011 at 12:14 a.m. and last time modified at April eighth 2016 at 4:06 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Quantity Element	
compartment types	0	compartments	4
species types	0	species	59
events	0	constraints	0
reactions	45	function definitions	0
global parameters	1	unit definitions	0
rules	0	initial assignments	0

Model Notes

Jiang2007 - GSIS system, Pancreatic Beta CellsDescription of a core kinetic model of the glucose-stimulated insulin secretion system (GSIS) in pancreatic beta cells.

¹EMBL-EBI, viji@ebi.ac.uk

 $^{^2} University \ of \ Manchester, \verb|kieran.smallbone@manchester.ac.uk|$

This model is described in the article: A kinetic core model of the glucose-stimulated insulin secretion network of pancreatic beta cells. Jiang N, Cox RD, Hancock JM. Mamm Genome 2007 Jul; 18(6-7):508-20.

Abstract:

The construction and characterization of a core kinetic model of the glucose-stimulated insulin secretion system (GSIS) in pancreatic beta cells is described. The model consists of 44 enzymatic reactions, 59 metabolic state variables, and 272 parameters. It integrates five subsystems: glycolysis, the TCA cycle, the respiratory chain, NADH shuttles, and the pyruvate cycle. It also takes into account compartmentalization of the reactions in the cytoplasm and mitochondrial matrix. The model shows expected behavior in its outputs, including the response of ATP production to starting glucose concentration and the induction of oscillations of metabolite concentrations in the glycolytic pathway and in ATP and ADP concentrations. Identification of choke points and parameter sensitivity analysis indicate that the glycolytic pathway, and to a lesser extent the TCA cycle, are critical to the proper behavior of the system, while parameters in other components such as the respiratory chain are less critical. Notably, however, sensitivity analysis identifies the first reactions of nonglycolytic pathways as being important for the behavior of the system. The model is robust to deletion of malic enzyme activity, which is absent in mouse pancreatic beta cells. The model represents a step toward the construction of a model with species-specific parameters that can be used to understand mouse models of diabetes and the relationship of these mouse models to the human disease state.

The model reproduces Figure 2 of the paper, and is built using files 'ModelNNT11.xml' and 'changed.m' available from http://www.har.mrc.ac.uk/research/bioinformatics/research_areas/systems_biology.html

A couple of small errors in the model (in the original SBML file 'ModelNNT11.xml') have been corrected. The errors are:

- v44 now produces Pyr rather than PYR
- the kinetic law of v27 is now dependent on cytoplasmic (rather than mitochondrial) acetyl CoA and OXA

This model is hosted on BioModels Database and identified by: BIOMD0000000239.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
CYTOPLASM	cytoplasm		3	1	litre	Ø	
$\mathtt{MT}_{-}\mathtt{IMS}$	mitochondrial intermembrane space		3	1	litre		
$\mathtt{MT}_{-}\mathtt{IM}$	mitochondrial inner membrane		3	1	litre		
MATRIX	mitochondrial matrix		3	1	litre		

3.1 Compartment CYTOPLASM

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment MT_IMS

This is a three dimensional compartment with a constant size of one litre.

Name mitochondrial intermembrane space

3.3 Compartment MT_IM

This is a three dimensional compartment with a constant size of one litre.

Name mitochondrial inner membrane

3.4 Compartment MATRIX

This is a three dimensional compartment with a constant size of one litre.

Name mitochondrial matrix

4 Species

This model contains 59 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

* 1		3: Properties of each species.		<u> </u>	
Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
GLC	glucose	CYTOPLASM	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
F6P	fructose-6-phosphate	CYTOPLASM	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
FBP	fructose-1,6-bisphosphate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
GAP	glyceraldehyde 3-phosphate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
DPG	1,2-bisphospho-D-glycerate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
PEP	phosphoenolpyruvate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
PYR_cyt	pyruvate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
AMP	adenine monophosphate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
LAC	lactate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
G3P	glycerol-3-phosphate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
DHAP	dihydrohxyacetone-phosphate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		\Box
$\mathtt{OXA_cyt}$	oxaloacetate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		
Asp_-cyt	aspartate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		
${\tt Glu_cyt}$	glutamate	CYTOPLASM	$\text{mol} \cdot 1^{-1}$		
OG_cyt	oxoglutarate	CYTOPLASM	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
${\tt Mal_cyt}$	malate	CYTOPLASM	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
$Acetyl_CoA_cyt$	acetyl CoA	CYTOPLASM	$\text{mol} \cdot 1^{-1}$		\Box
CoA_cyt	coenzyme A	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		
IsoCitcyt	isocitrate	CYTOPLASM	$\operatorname{mol} \cdot 1^{-1}$		
${\tt Cit_cyt}$	citrate	CYTOPLASM	$\text{mol} \cdot l^{-1}$		
$\mathtt{ATP}_\mathtt{cyt}$	adenine triphosphate	CYTOPLASM	$\text{mol} \cdot l^{-1}$		
$\mathtt{ADP_cyt}$	adenine diphosphate	CYTOPLASM	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
NAD	NAD	CYTOPLASM	$\text{mol} \cdot l^{-1}$		
$NADH_cyt$	NADH	CYTOPLASM	$\text{mol} \cdot l^{-1}$	\Box	
NADP_cyt	NADP	CYTOPLASM	$\text{mol} \cdot l^{-1}$		
$\mathtt{NADPH_cyt}$	NADPH	CYTOPLASM	$\text{mol} \cdot l^{-1}$		
Pyr	pyruvate	MATRIX	$\text{mol} \cdot l^{-1}$		\Box
CO2	carbon dioxide	MATRIX	$\text{mol} \cdot 1^{-1}$		\Box
CoA	coenzyme A	MATRIX	$\text{mol} \cdot l^{-1}$		
Acetyl_CoA	acetyl CoA	MATRIX	$\text{mol} \cdot l^{-1}$		
Pi	phosphate	MATRIX	$\text{mol} \cdot l^{-1}$		
Fum	fumarate	MATRIX	$\text{mol} \cdot l^{-1}$	\blacksquare	
SCoA	succinyl-CoA	MATRIX	$\text{mol} \cdot l^{-1}$		
Suc	succinate	MATRIX	$\text{mol} \cdot 1^{-1}$	\blacksquare	
GTP	guanosine triphosphate	MATRIX	$\text{mol} \cdot l^{-1}$		
GDP	guanosine diphosphate	MATRIX	$\text{mol} \cdot l^{-1}$	\blacksquare	
Ala	slanine	MATRIX	$\text{mol} \cdot l^{-1}$		
Asp	aspartate	MATRIX	$\text{mol} \cdot 1^{-1}$		
Glu	glutamate	MATRIX	$\text{mol} \cdot l^{-1}$		
H20	water	MATRIX	$\text{mol} \cdot l^{-1}$		
ETFred	electron transfer flavoprotein (reduced form)	MATRIX	$\mathrm{mol}\cdot \mathrm{l}^{-1}$		
ETFox	electron transfer flavoprotein (oxidised form)	MATRIX	$\text{mol} \cdot l^{-1}$		
FADH2	FADH2	MATRIX	$\mathrm{mol}\cdot \mathrm{l}^{-1}$		
FAD	FAD	MATRIX	$\text{mol} \cdot 1^{-1}$		
OG	oxoglutarate	MATRIX	$\text{mol} \cdot 1^{-1}$		
Mal	malate	MATRIX	$\text{mol} \cdot 1^{-1}$		
OXA	oxaloacetate	MATRIX	$\text{mol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Cit	citrate	MATRIX	$\text{mol} \cdot l^{-1}$		\Box
IsoCit	isocitrate	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
ATP	adenine triphosphate	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
ADP	adenine diphosphate	MATRIX	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
$NADP_p$	NADP+	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
NADPH	NADPH	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
NAD_p	NAD+	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
NADH	NADH	MATRIX	$\operatorname{mol} \cdot 1^{-1}$		\Box
Q	ubiquinone	$\mathtt{MT}_{-}\mathtt{IMS}$	$\operatorname{mol} \cdot 1^{-1}$		\Box
QH2	ubiquinol	$\mathtt{MT}_{-}\mathtt{IMS}$	$\operatorname{mol} \cdot 1^{-1}$		\Box
Cytc3p	ferrocytochrome c	$\mathtt{MT}_{-}\mathtt{IMS}$	$\operatorname{mol} \cdot 1^{-1}$	\Box	\Box
Cytc2p	ferricytochrome c	MT_IMS	$\text{mol} \cdot l^{-1}$		

5 Parameter

This model contains one global parameter.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
flow		0.011	

6 Reactions

This model contains 45 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
1	GLCflow		$\emptyset \rightleftharpoons GLC$	
2	LACflow		$LAC \longrightarrow \emptyset$	
3	GAPflow		$\operatorname{GAP} \longrightarrow \emptyset$	
4	v1	glucokinase	$GLC + ATP_cyt \longrightarrow F6P + ADP_cyt$	
5	v2	6-phosphofructokinase	$F6P + ATP_cyt \xrightarrow{AMP} FBP + ADP_cyt$	
6	v3	fructose-bisphosphate aldolase	$FBP \Longrightarrow 2GAP$	
7	v4	glyceraldehyde 3-phosphate dehydrogenase	$GAP + NAD \longrightarrow DPG + NADH_cyt$	
8	v5	bisphosphoglycerate phosphotase (1/2)	$DPG + ADP_cyt \Longrightarrow PEP + ATP_cyt$	
9	v6	pyruvate kinase	$PEP + ADP_cyt \longrightarrow PYR_cyt + ATP_cyt$	
10	ν7	lactate dehydrogenase	$PYR_cyt + NADH_cyt \Longrightarrow LAC + NAD$	
11	${\tt hidden_1}$		$AMP + ATP_cyt \Longrightarrow 2 ADP_cyt$	
12	v8	pyruvate carrier	PYR_cyt ← Pyr	
13	v9	pyruvate dehydrogenase complex	$\begin{array}{l} Pyr + CoA + NAD_p \longrightarrow CO2 + Acetyl_CoA + \\ NADH \end{array}$	
14	v10	citrate synthase	$OXA + Acetyl_CoA \Longrightarrow Cit + CoA$	
15	v11	aconitase	Cit ← IsoCit	
16	v12	isocitrate dehydrogenase (NAD+) (al-pha/beta/gamma)	$IsoCit + NAD_{-p} \xrightarrow{ADP} OG + NADH$	
17	v14	oxoglutarate dehydrogenase complex	$OG + CoA + NAD_p \longrightarrow CO2 + SCoA + NADH$	
18	v15	succinyl-CoA synthetase	$GDP + SCoA + Pi \Longrightarrow Suc + GTP + CoA$	
19	v16	succinate dehydrogenase	$Suc + Q \Longrightarrow Fum + QH2$	
20	v17	fumarase	Fum ← Mal	

10	N⁰	Id	Name	Reaction Equation	SBO
	21	v18	malate dehydrogenase (mitochondrion)	$Mal + NAD_p \rightleftharpoons NADH + OXA$	
	22	v20	alanine transaminase	$Ala + OG \rightleftharpoons Glu + Pyr$	
	23	v21	aspartate transaminase	$OXA + Glu \Longrightarrow Asp + OG$	
	24	v22	aspartate/glutamate carrier	$Glu_cyt + Asp \Longrightarrow Asp_cyt + Glu$	
	25	v24	NADH:ubiquinone oxidoreductase	$NADH + Q \Longrightarrow NAD_p + QH2$	
	26	v25	ubiquinol:cytochrome c oxidoreductase	$QH2 + 2 Cytc3p \longrightarrow Q + 2 Cytc2p$	
	27	v26	cytochrome c oxidase	$Cytc2p \longrightarrow Cytc3p$	
	28	v27	citrate synthase	$Cit_cyt + CoA_cyt \Longrightarrow OXA_cyt + Acetyl_CoA_cyt$	
	29	v28	ATPase complex	$ADP + Pi \Longrightarrow ATP + H2O$	
<u>.</u> .	30	v29	aconitase	Cit_cyt ← IsoCitcyt	
Pro	31	v30	oxoglutarate carrier	$Mal_cyt + OG \Longrightarrow OG_cyt + Mal$	
duc	32	v31	malate dehydrogenase (cytosol)	$NADH_cyt + OXA_cyt \longrightarrow Mal_cyt + NAD$	
ed	33	v32	aspartate transaminase	$Asp_cyt + OG_cyt \Longrightarrow OXA_cyt + Glu_cyt$	
Produced by SBML2PTEX	34	v33	citrate carrier	$Cit_cyt + Mal \Longrightarrow Mal_cyt + Cit$	
88	35	v34	ETF:Q oxidoreductase	$ETFred + Q \Longrightarrow ETFox + QH2$	
≦	36	v35	glutathione reductase	$FADH2 + ETFox \Longrightarrow ETFred + FAD$	
Ä	37	v36	pyruvate decarboxylase	$ATP + CO2 + Pyr \Longrightarrow Pi + ADP + OXA$	
T.	38	v37	glycerol-3-phosphate dehydrogenase (FAD	$G3P + FAD \longrightarrow FADH2 + DHAP$	
			dependent)		
	39	v38	glycerol-3-phosphate dehydrogenase (NAD+	$NADH_cyt + DHAP \longrightarrow G3P + NAD$	
			dependent)		
	40	v40	ATP/ADP carrier	$ADP_cyt \longrightarrow ADP$	
	41	v41	cytosolic isocitrate dehydrogenase	$IsoCitcyt + NADP_cyt \stackrel{CO2}{\rightleftharpoons} OG_cyt + NADPH_cyt$	
	42	v42	citrate carrier	IsoCitcyt + Mal ⇒ Mal_cyt + IsoCit	
	43	v43	ATP/ADP carrier	$ATP \longrightarrow ATP_cyt$	
	44	v39	malate dehydrogenase (oxaloacetate-	$Mal_cyt + NADP_cyt \Longrightarrow NADPH_cyt + PYR_cyt$	
	-		decarboxylating) (NADP+)		
	45	v44	malate dehydrogenase (oxaloacetate-	$Mal + NADP_p \Longrightarrow NADPH + Pyr$	
			decarboxylating) (NADP+)		

7
\simeq
2
7
=
0
0
~
-
_
6
<u></u>
~
-
(/)
m
w
\geq
\geq
=
h.
10
- 1
٠, ٢
=
\mathbf{m}
100
\sim

6.1 Reaction GLCflow

This is a reversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \rightleftharpoons GLC$$
 (1)

Product

Table 6: Properties of each product.

Id	Name	SBO
GLC	glucose	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \left(\text{Glc} \cdot \text{F} \cdot 10^{-3} - [\text{GLC}]\right) \cdot \text{flow}$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Glc_F		64.941		

6.2 Reaction LACflow

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$LAC \longrightarrow \emptyset \tag{3}$$

Table 8: Properties of each reactant.

Id	Name	SBO
LAC	lactate	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol}(\text{CYTOPLASM}) \cdot [\text{LAC}] \cdot \text{flow}$$
 (4)

6.3 Reaction GAPflow

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$GAP \longrightarrow \emptyset \tag{5}$$

Reactant

Table 9: Properties of each reactant.

Id	Name	SBO
GAP	glyceraldehyde 3-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{CYTOPLASM}) \cdot [\text{GAP}] \cdot \text{flow}$$
 (6)

6.4 Reaction v1

This is an irreversible reaction of two reactants forming two products.

Name glucokinase

Reaction equation

$$GLC + ATP_cyt \longrightarrow F6P + ADP_cyt$$
 (7)

Table 10: Properties of each reactant.

14010 10	racio 10. 110 percies of caesi feactains.				
Id	Name	SBO			
GLC ATP_cyt	glucose adenine triphosphate				

Table 11: Properties of each product.

Id	Name	SBO
F6P ADP_cyt	fructose-6-phosphate adenine diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = vol\left(CYTOPLASM\right) \cdot \frac{V1 \cdot [ATP_cyt] \cdot [GLC]}{\left(K1GLC + [GLC]\right) \cdot \left(K1ATP + [ATP_cyt]\right)} \tag{8}$$

Table 12: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V1			$5\cdot 10^{-4}$		
K1GLC			10^{-4}		\checkmark
K1ATP			$6.3\cdot 10^{-5}$		

6.5 Reaction v2

This is an irreversible reaction of two reactants forming two products influenced by one modifier.

Name 6-phosphofructokinase

Reaction equation

$$F6P + ATP_cyt \xrightarrow{AMP} FBP + ADP_cyt$$
 (9)

Table 13: Properties of each reactant.

Id	Name	SBO
F6P	fructose-6-phosphate	
ATP_cyt	adenine triphosphate	

Modifier

Table 14: Properties of each modifier.

Id	Name	SBO
AMP	adenine monophosphate	

Products

Table 15: Properties of each product.

Id	Name	SBO
FBP ADP_cyt	fructose-1,6-bisphosphate adenine diphosphate	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{5} = vol\left(CYTOPLASM\right) \cdot \frac{V2 \cdot [ATP_cyt] \cdot [F6P]^{2}}{\left(K2 \cdot \left(1 + k2 \cdot \left(\frac{[ATP_cyt]}{[AMP]}\right)^{2}\right) + [F6P]^{2}\right) \cdot \left(K2ATP + [ATP_cyt]\right)} \tag{10}$$

Table 16: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V2			0.002		\overline{Z}
K2			$1.6\cdot 10^{-9}$		\square
k2			0.017		\mathbf{Z}
K2ATP			10^{-5}		

6.6 Reaction v3

This is a reversible reaction of one reactant forming one product.

Name fructose-bisphosphate aldolase

Reaction equation

$$FBP \Longrightarrow 2GAP \tag{11}$$

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
FBP	fructose-1,6-bisphosphate	

Product

Table 18: Properties of each product.

Id	Name	SBO
GAP	glyceraldehyde 3-phosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \left(\text{k3f} \cdot [\text{FBP}] - \text{k3b} \cdot [\text{GAP}]^2\right) \tag{12}$$

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k3f		1.00	Ø
k3b		0.05	\square

6.7 Reaction v4

This is an irreversible reaction of two reactants forming two products.

Name glyceraldehyde 3-phosphate dehydrogenase

Reaction equation

$$GAP + NAD \longrightarrow DPG + NADH_cyt$$
 (13)

Table 20: Properties of each reactant.

	Tuesto Zo. Treperines er cuentreuccunici			
Id	Name	SBO		
GAP NAD	glyceraldehyde 3-phosphate NAD			

Table 21: Properties of each product.

Id	Name	SBO
DPG	1,2-bisphospho-D-glycerate	
$\mathtt{NADH_cyt}$	NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = vol\left(CYTOPLASM\right) \cdot \frac{V4 \cdot [NAD] \cdot [GAP]}{(K4GAP + [GAP]) \cdot (K4NAD + [NAD])} \tag{14}$$

Table 22: Properties of each parameter.

		1 1	
Id	Name	SBO Value Unit	Constant
V4		0.010	
K4GAP		0.001	\square
K4NAD		0.001	

6.8 Reaction v5

This is a reversible reaction of two reactants forming two products.

Name bisphosphoglycerate phosphotase (1/2)

Reaction equation

$$DPG + ADP_cyt \Longrightarrow PEP + ATP_cyt$$
 (15)

Table 23: Properties of each reactant.

Id	Name	SBO
DPG ADP_cyt	1,2-bisphospho-D-glycerate adenine diphosphate	

Table 24: Properties of each product.

Id	Name	SBO
PEP ATP_cyt	phosphoenolpyruvate adenine triphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \left(\text{k5f} \cdot \left[\text{DPG}\right] \cdot \left[\text{ADP_cyt}\right] - \text{k5b} \cdot \left[\text{PEP}\right] \cdot \left[\text{ATP_cyt}\right]\right) \tag{16}$$

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5f		1000.0	$ \mathcal{L} $
k5b		500.0	\square

6.9 Reaction v6

This is an irreversible reaction of two reactants forming two products.

Name pyruvate kinase

Reaction equation

$$PEP + ADP_cyt \longrightarrow PYR_cyt + ATP_cyt$$
 (17)

Table 26: Properties of each reactant.

Id	Name	SBO
PEP ADP_cyt	phosphoenolpyruvate adenine diphosphate	

Table 27: Properties of each product.

Id	Name	SBO
•	pyruvate adenine triphosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol\left(CYTOPLASM\right) \cdot \frac{V6 \cdot [ADP_cyt] \cdot [PEP]}{\left(K6PEP + [PEP]\right) \cdot \left(K6ADP + [ADP_cyt]\right)} \tag{18}$$

Table 28: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
V6			0.010		
K6PEP			$2 \cdot 10^{-4}$		\mathbf{Z}
K6ADP			$3 \cdot 10^{-4}$		

6.10 Reaction v7

This is a reversible reaction of two reactants forming two products.

Name lactate dehydrogenase

Reaction equation

$$PYR_cyt + NADH_cyt \Longrightarrow LAC + NAD$$
 (19)

Table 29: Properties of each reactant.

Id	Name	SBO
PYR_cyt NADH_cyt	pyruvate NADH	

Table 30: Properties of each product.

ctate AD

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \left(\text{k8f} \cdot [\text{NADH_cyt}] \cdot [\text{PYR_cyt}] - \text{k8b} \cdot [\text{NAD}] \cdot [\text{LAC}]\right)$$
 (20)

Table 31: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k8f			1000.000		Ø
k8b			0.143		

6.11 Reaction hidden_1

This is a reversible reaction of two reactants forming one product.

Reaction equation

$$AMP + ATP_cyt \Longrightarrow 2ADP_cyt \tag{21}$$

Table 32: Properties of each reactant.

Id	Name	SBO
AMP	adenine monophosphate	

Id	Name	SBO
ATP_cyt	adenine triphosphate	

Table 33: Properties of each product.

Tuble 33. Troperties of each product.				
Id	Name	SBO		
ADP_cyt	adenine diphosphate			

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{CYTOPLASM}) \cdot (\text{k9f} \cdot [\text{AMP}] \cdot [\text{ATP_cyt}] - \text{k9b} \cdot [\text{ADP_cyt}]^2)$$
 (22)

Table 34: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k9f			10000.0		
k9b			10000.0		

6.12 Reaction v8

This is a reversible reaction of one reactant forming one product.

Name pyruvate carrier

Reaction equation

$$PYR_cyt \rightleftharpoons Pyr \tag{23}$$

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
PYR_cyt	pyruvate	

Product

Table 36: Properties of each product.

Id	Name	SBO
Pyr	pyruvate	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{MATRIX}\right) \cdot \frac{\text{V} \cdot [\text{PYR_cyt}] \cdot \text{v8_PYC}}{\text{K} + [\text{PYR_cyt}]}$$
(24)

Table 37: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V			10^{-8}		
K			$1.5 \cdot 10^{-7}$		\mathbf{Z}
v8_PYC	PYC	3	$3.3211 \cdot 10^{-4}$		

6.13 Reaction v9

This is an irreversible reaction of three reactants forming three products.

Name pyruvate dehydrogenase complex

Reaction equation

$$Pyr + CoA + NAD_p \longrightarrow CO2 + Acetyl_CoA + NADH$$
 (25)

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
Pyr	pyruvate	
CoA	coenzyme A	
$\mathtt{NAD}_{-}p$	NAD+	

Products

Table 39: Properties of each product.

14010 57.110	perties or each pro	oudet.
Id	Name	SBO
CO2 Acetyl_CoA NADH	carbon dioxide acetyl CoA NADH	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{MATRIX}) \tag{26}$$

$$KmC \cdot [Pyr] \cdot [CoA] + KmB \cdot [Pyr] \cdot [NAD_p] + KmA \cdot [CoA] \cdot [NAD_p] + [Pyr] \cdot [CoA] \cdot [NAD_p] + \frac{\frac{KmA \cdot KmP \cdot KinP \cdot KinP}{KinP}}{Kiq} + \frac{KmR}{KinP} \cdot \frac{KinP \cdot KinP}{KinP} \cdot \frac{KinP \cdot KinP}{KinP} \cdot \frac{KinP \cdot KinP}{KinP} \cdot \frac{KinP \cdot KinP}{KinP} \cdot \frac{KinP}{KinP} \cdot \frac{KinP \cdot KinP}{KinP} \cdot \frac{KinP}{KinP} \cdot$$

Table 40: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmA			$2.5 \cdot 10^{-5}$	5	Ø
KmB			$1.3 \cdot 10^{-5}$	5	$ \overline{\checkmark} $
KmC			$5 \cdot 10^{-5}$	5	$ \overline{\checkmark} $
KmP			$5.9 \cdot 10^{-7}$	7	$\overline{\mathbf{Z}}$
KmR			$6.9 \cdot 10^{-7}$	7	$\overline{\mathbf{Z}}$
Kia			$5.5 \cdot 10^{-2}$	4	$\overline{\mathbf{Z}}$
Kib			$3 \cdot 10^{-2}$	4	$\overline{\mathbf{Z}}$
Kic			$1.8 \cdot 10^{-2}$	4	$\overline{\mathbf{Z}}$
Kip			$6 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
Kiq			$3.5 \cdot 10^{-5}$	5	$\overline{\mathbb{Z}}$
Kir			$3.6 \cdot 10^{-5}$	5	$\overline{\mathbb{Z}}$
KcF			856.000		$\overline{\mathbf{Z}}$
v9_PDC	PDC	3	$3.8617 \cdot 10^{-7}$	7	$\overline{\mathbf{Z}}$

6.14 Reaction v10

This is a reversible reaction of two reactants forming two products.

Name citrate synthase

Reaction equation

$$OXA + Acetyl_CoA \Longrightarrow Cit + CoA$$
 (27)

Reactants

Table 41: Properties of each reactant.

Id	Name	SBO
OXA Acetyl_CoA	oxaloacetate acetyl CoA	

Products

Table 42: Properties of each product.

Id	Name	SBO
Cit	citrate	_
CoA	coenzyme A	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{14} = vol\left(MATRIX\right) \cdot \frac{V \cdot [Acetyl_CoA] \cdot [OXA] \cdot v10_CS}{[Acetyl_CoA] \cdot [OXA] + Ka \cdot [OXA] + Kb \cdot [Acetyl_CoA] + Kia \cdot Kib} \tag{28}$$

Table 43: Properties of each parameter.

			F		
Id	Name	SBO	Value	Unit	Constant
V			0.005		$ \mathbf{Z} $
Ka			$1.18 \cdot 10^{-5}$		
Kb			$4.8 \cdot 10^{-6}$		
Kia			10^{-5}		
Kib			$4 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
v10_CS	CS	3	$3.8617 \cdot 10^{-7}$	•	$\overline{\checkmark}$

6.15 Reaction v11

This is a reversible reaction of one reactant forming one product.

Name aconitase

Reaction equation

$$Cit \rightleftharpoons IsoCit \tag{29}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
Cit	citrate	

Product

Table 45: Properties of each product.

Id	Name	SBO
IsoCit	isocitrate	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = vol\left(MATRIX\right) \cdot \frac{\left(KcF \cdot Kp \cdot [Cit] - KcR \cdot Ks \cdot [IsoCit]\right) \cdot v11_ACO}{Ks \cdot [IsoCit] + Kp \cdot [Cit] + Ks \cdot Kp} \tag{30}$$

Table 46: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Ks			$5 \cdot 10^{-4}$		
Кр			$1.1 \cdot 10^{-4}$	ļ	\mathbf{Z}
KcF		20.470			
KcR			31.440		
v11_ACO	ACO	3	$3.8617 \cdot 10^{-7}$	1	

6.16 Reaction v12

This is an irreversible reaction of two reactants forming two products influenced by one modifier.

Name isocitrate dehydrogenase (NAD+) (alpha/beta/gamma)

Reaction equation

$$IsoCit + NAD_p \xrightarrow{ADP} OG + NADH$$
 (31)

Reactants

Table 47: Properties of each reactant.

Id	Name	SBO
IsoCit	isocitrate	
NAD_p	NAD+	

Modifier

Table 48: Properties of each modifier.

Id	Name	SBO
ADP	adenine diphosphate	

Products

Table 49: Properties of each product.

Id	Name	SBO
OG	oxoglutarate	
NADH	NADH	

Kinetic Law

$$\nu_{16} = vol\left(MATRIX\right) \cdot \frac{KcF \cdot v12 \text{_IDHa} \cdot \left(\left[IsoCit\right] \cdot \left[IsoCit\right] + b \cdot \left[ADP\right] \cdot \left[IsoCit\right]\right)}{\left[IsoCit\right] \cdot \left[IsoCit\right] + c \cdot \left[IsoCit\right] + d \cdot \left[ADP\right] + e \cdot \left[ADP\right] \cdot \left[IsoCit\right] + f} \tag{32}$$

Table 50: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KcF			105.000		
Ъ			29.600		$\overline{\mathbf{Z}}$

Id	Name	SBO	Value	Unit	Constant
С			$2.3 \cdot 10^{-4}$		
d			$7.8 \cdot 10^{-5}$		
е			$6.4 \cdot 10^{-4}$		
f			$3.6 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
$v12_{-}IDHa$	IDHa	3	$.8617 \cdot 10^{-7}$	1	$ \overline{\checkmark} $

6.17 Reaction v14

This is an irreversible reaction of three reactants forming three products.

Name oxoglutarate dehydrogenase complex

Reaction equation

$$OG + CoA + NAD_p \longrightarrow CO2 + SCoA + NADH$$
 (33)

Reactants

Table 51: Properties of each reactant.

Id	Name	SBO
OG CoA	oxoglutarate coenzyme A	
NAD_p	NAD+	
имр_р	NADT	

Products

Table 52: Properties of each product.

Id	Name	SBO
C02	carbon dioxide	
SCoA	succinyl-CoA	
NADH	NADH	

Kinetic Law

KcF·v14_0

 $\text{KmC} \cdot [\text{OG}] \cdot [\text{CoA}] + \text{KmB} \cdot [\text{OG}] \cdot [\text{NAD_p}] + \text{KmA} \cdot [\text{CoA}] \cdot [\text{NAD_p}] + [\text{OG}] \cdot [\text{CoA}] \cdot [\text{NAD_p}] + \frac{\frac{\text{KmA - KmP}}{\text{KmB}}}{\text{Kid}} + \frac{\text{KmB - KmP}}{\text{Kid}} + \frac{\text{KmB - KmB - KmP}}{\text{Kid}} + \frac{\text{KmB - KmB -$

Table 53: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmA			$2.2 \cdot 10^{-4}$		$ \overline{\checkmark} $
KmB			$2.5\cdot 10^{-5}$		$\overline{\mathbf{Z}}$
KmC			$5 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
KmP			$3 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
KmR			$6 \cdot 10^{-4}$		
Kia			$7.2 \cdot 10^{-4}$		
Kib			$7.4 \cdot 10^{-4}$		
Kic			10^{-4}		
Kip			$1.1 \cdot 10^{-6}$		
Kiq			$8.1 \cdot 10^{-5}$		
Kir			$2.5 \cdot 10^{-5}$		
KcF			177.000		\mathbf{Z}
$v14_OGDC$	OGDC	3	$3.8617 \cdot 10^{-7}$		\square

6.18 Reaction v15

This is a reversible reaction of three reactants forming three products.

Name succinyl-CoA synthetase

Reaction equation

$$GDP + SCoA + Pi \Longrightarrow Suc + GTP + CoA$$
 (35)

Table 54: Properties of each reactant.

Id	Name	SBO
GDP SCoA Pi	guanosine diphosphate succinyl-CoA phosphate	

Table 55: Properties of each product.

	r	
Id	Name	SBO
GTP	succinate guanosine triphosphate coenzyme A	

Kinetic Law

$$v_{18} = \text{vol}\left(\text{MATRIX}\right) \tag{36}$$

$$\text{Kia} \cdot \text{KmB} \cdot \pi + \text{KmB} \cdot [\text{GDP}] \cdot \pi + \text{KmA} \cdot [\text{SCoA}] \cdot \pi + \text{KmC} \cdot [\text{GDP}] \cdot [\text{SCoA}] + [\text{GDP}] \cdot [\text{SCoA}] \cdot \pi + \frac{[\text{GDP}] \cdot [\text{GDP}] \cdot [\text{GDP}]$$

Table 56: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmA			$5 \cdot 10^{-6}$	5	
KmB			$3.5 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
KmC			$4.5 \cdot 10^{-4}$	1	$\overline{\mathbf{Z}}$
KmP			$6 \cdot 10^{-4}$	1	$\overline{\mathbf{Z}}$
KmQ			$7.5 \cdot 10^{-6}$	5	
KmC2			$4.5 \cdot 10^{-4}$	1	\overline{Z}
KmP2			$6 \cdot 10^{-4}$	1	\overline{Z}
Keq			8.375		$\overline{\mathbb{Z}}$
Kia			$4 \cdot 10^{-4}$	1	$\overline{\mathbb{Z}}$
Kib			$2 \cdot 10^{-5}$	5	\overline{Z}
Kic			$3 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
Kip			0.070		
Kiq			$5 \cdot 10^{-6}$	5	\overline{Z}
Kir			$6.7 \cdot 10^{-6}$	5	\overline{Z}
Kc1			100.000		\overline{Z}
Kc2			100.000		$\overline{\mathscr{A}}$
v15_SCS	SCS	3	$3.8617 \cdot 10^{-7}$	7	$\overline{\mathbf{Z}}$

6.19 Reaction v16

This is a reversible reaction of two reactants forming two products.

Name succinate dehydrogenase

Reaction equation

$$Suc + Q \Longrightarrow Fum + QH2 \tag{37}$$

Reactants

Table 57: Properties of each reactant.

Id	Name	SBO
Suc	succinate	
Q	ubiquinone	

Products

Table 58: Properties of each product.

Id	Name	SBO
Fum	fumarate	
QH2	ubiquinol	

Kinetic Law

$$v_{19} = vol\left(MATRIX\right) \tag{38} \\ \frac{KcF \cdot KcR \cdot v16_SDH \cdot \left(\left[Suc\right] \cdot \left[Q\right] - \frac{\left[Fum\right] \cdot \left[QH2\right]}{Keq}\right)}{KcR \cdot KmS2 \cdot \left[Suc\right] + KcR \cdot KmS1 \cdot \left[Q\right] + \frac{KcF \cdot KmP2 \cdot \left[Fum\right]}{Keq} + \frac{KcF \cdot KmP1 \cdot \left[QH2\right]}{Keq} + KcR \cdot \left[Suc\right] \cdot \left[Q\right] + \frac{KcF \cdot KmP2 \cdot \left[Suc\right] \cdot \left[Fum\right]}{Keq \cdot KiS1}}$$

Table 59: Properties of each parameter.

			•		
Id	Name	SBO	Value	Unit	Constant
KmS1			$3 \cdot 10^{-5}$		
KmS2			$6.9 \cdot 10^{-5}$		
KmP1			$3 \cdot 10^{-7}$		
KmP2			$1.5 \cdot 10^{-6}$	5	

Id	Name	SBO	Value	Unit	Constant
KiS1			$4.1 \cdot 10^{-6}$		\overline{Z}
KiP2			$5.6 \cdot 10^{-6}$	5	$ \overline{\mathbf{Z}} $
Keq			0.037		
KcF			69.300		\square
KcR			1.730		\square
v16_SDH	SDH	9	$0.9211 \cdot 10^{-5}$	i	

6.20 Reaction v17

This is a reversible reaction of one reactant forming one product.

Name fumarase

Reaction equation

$$Fum \rightleftharpoons Mal \tag{39}$$

Reactant

Table 60: Properties of each reactant.

Id	Name	SBO
Fum	fumarate	

Product

Table 61: Properties of each product.

Id	Name	SBO
Mal	malate	

Kinetic Law

$$v_{20} = vol\left(MATRIX\right) \cdot \frac{\left(KcF \cdot Kp \cdot [Fum] - KcR \cdot Ks \cdot [Mal]\right) \cdot v17_FM}{Ks \cdot [Mal] + Kp \cdot [Fum] + Ks \cdot Kp} \tag{40}$$

Table 62: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Кр			$2.5 \cdot 10^{-5}$		\overline{Z}
Ks			$5 \cdot 10^{-6}$	5	
KcF			800.000		
KcR			900.000		
$v17_FM$	FM		$3.8617 \cdot 10^{-7}$	7	\square

6.21 Reaction v18

This is a reversible reaction of two reactants forming two products.

Name malate dehydrogenase (mitochondrion)

Reaction equation

$$Mal + NAD_p \rightleftharpoons NADH + OXA$$
 (41)

Reactants

Table 63: Properties of each reactant.

Id	Name	SBO
Mal	malate	
$\mathtt{NAD}_{-}p$	NAD+	

Products

Table 64: Properties of each product.

Id	Name	SBO
NADH	NADH	
AXO	oxaloacetate	

Kinetic Law

$$v_{21} = \text{vol}\left(\text{MATRIX}\right)$$

$$\left(\frac{\frac{\text{KcF}\cdot[\text{Mal}]\cdot[\text{NAD}.p]}{\text{KiSl}}}{\text{KmS2}} - \frac{\frac{\text{KcR}\cdot[\text{OXA}]\cdot[\text{NADH}]}{\text{KiP2}}}{\text{KiP2}}\right) \cdot \text{v18_MDH}}{\text{KiSl}}$$

$$1 + \frac{[\text{Mal}]}{\text{KiSl}} + \frac{\frac{\text{KmSl}\cdot[\text{NAD}.p]}{\text{KiSl}}}{\text{KmS2}} + \frac{\frac{\text{KmP2}\cdot[\text{OXA}]}{\text{KmPl}}}{\text{KiP2}} + \frac{[\text{NADH}]}{\text{KiP2}} + \frac{\frac{[\text{Mal}]\cdot[\text{NAD}.p]}{\text{KiSl}}}{\text{KmS2}} + \frac{\frac{\text{KmP2}\cdot[\text{NAD}.p]\cdot[\text{NADH}]}{\text{KiSl}}}{\text{KiP2}} + \frac{[\text{OXA}]\cdot[\text{NADH}]}{\text{KiP1}} \cdot \text{KiP2}$$

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmS1			$7.2 \cdot 10^{-5}$	i	$\overline{\hspace{1cm}}$
KmS2			$1.1 \cdot 10^{-4}$		\overline{Z}
KmP1			0.002		\overline{Z}
KmP2			$1.7 \cdot 10^{-4}$		$ \overline{\mathscr{A}} $
KiS1			$1.1 \cdot 10^{-5}$	i	\overline{Z}
KiS2			10^{-4}	ļ	\overline{Z}
KiP1			0.007		$ \overline{\mathscr{A}} $
KiP2			0.002		
KcF			0.390		
KcR			0.040		$ \overline{\mathscr{A}} $
v18_MDH	MDH	3	$3.8617 \cdot 10^{-7}$,	$ \overline{\checkmark} $

6.22 Reaction v20

This is a reversible reaction of two reactants forming two products.

Name alanine transaminase

Reaction equation

$$Ala + OG \rightleftharpoons Glu + Pyr \tag{43}$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Ala	slanine	
OG	oxoglutarate	

Products

Table 67: Properties of each product.

Id	Name	SBO
Glu	glutamate	
Pyr	pyruvate	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = vol\left(MATRIX\right) \\ \cdot \frac{KcF \cdot KcR \cdot v20_AlaTA \cdot \left(\left[Ala\right] \cdot \left[OG\right] - \frac{\left[Glu\right] \cdot \left[Pyr\right]}{Keq}\right)}{KcR \cdot KmS2 \cdot \left[Ala\right] + KcR \cdot KmS1 \cdot \left[OG\right] + \frac{KcF \cdot KmP2 \cdot \left[Glu\right]}{Keq} + \frac{KcF \cdot KmP1 \cdot \left[Pyr\right]}{Keq} + KcR \cdot \left[Ala\right] \cdot \left[OG\right] + \frac{KcF \cdot KmP2 \cdot \left[Ala\right]}{Keq \cdot KiS1}}$$

Table 68: Properties of each parameter.

		F			
Id	Name	SBO	Value	Unit	Constant
KmS1			0.002		\overline{Z}
KmS2			$4 \cdot 10^{-4}$	1	
KmP1			0.032		
KmP2			$4 \cdot 10^{-4}$	1	
KiS1			0.009		
KiP2			0.012		
Keq			0.690		
KcF			337.000		
KcR			0.150		
$v20_AlaTA$	AlaTA	3	$3.8617 \cdot 10^{-7}$	7	

6.23 Reaction v21

This is a reversible reaction of two reactants forming two products.

Name aspartate transaminase

Reaction equation

$$OXA + Glu \Longrightarrow Asp + OG$$
 (45)

Table 69: Properties of each reactant.

Id	Name	SBO
OXA	oxaloacetate	
Glu	glutamate	

Table 70: Properties of each product.

Id	Name	SBO
Asp OG	aspartate oxoglutarate	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = vol\left(MATRIX\right) \\ \cdot \frac{KcF \cdot KcR \cdot v21_AspTA \cdot \left(\left[OXA\right] \cdot \left[Glu\right] - \frac{\left[Asp\right] \cdot \left[OG\right]}{Keq}\right)}{KcR \cdot KmS2 \cdot \left[OXA\right] + KcR \cdot KmS1 \cdot \left[Glu\right] + \frac{KcF \cdot KmP2 \cdot \left[Asp\right]}{Keq} + \frac{KcF \cdot KmP1 \cdot \left[OG\right]}{Keq} + KcR \cdot \left[OXA\right] \cdot \left[Glu\right] + \frac{KcF \cdot KmP2 \cdot \left[Asp\right]}{Keq} + \frac{KcF \cdot KmP1 \cdot \left[OG\right]}{Keq} + KcR \cdot \left[OXA\right] \cdot \left[Glu\right] + \frac{KcF \cdot KmP2 \cdot \left[OXA\right]}{Keq} + \frac{KcF \cdot KmP1 \cdot \left[OG\right]}{Keq} + \frac{KcR \cdot KmP2 \cdot \left[OXA\right]}{Keq} + \frac{KcR \cdot KmP2 \cdot \left[$$

Table 71: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
KmS1			$9 \cdot 10^{-4}$		\checkmark
KmS2			10^{-4}	ļ	$ \overline{\mathscr{L}} $
KmP1			$4 \cdot 10^{-5}$	5	
KmP2			0.004		
KiS1		0.002			\square
KiP2		0.008			
Keq			6.200		\square
KcF			300.000		\square
KcR			1000.000		
v21_AspTA	AspTA	3	$3.8617 \cdot 10^{-7}$	7	

6.24 Reaction v22

This is a reversible reaction of two reactants forming two products.

Name aspartate/glutamate carrier

Reaction equation

$$Glu_cyt + Asp \Longrightarrow Asp_cyt + Glu$$
 (47)

Reactants

Table 72: Properties of each reactant.

Id	Name	SBO
Glu_cyt	glutamate	
Asp	aspartate	

Products

Table 73: Properties of each product.

Id	Name	SBO
Asp_cyt Glu	aspartate glutamate	

Kinetic Law

$$\begin{array}{c} v_{24} \\ = vol\left(MATRIX\right) \\ & \left(\begin{array}{c} \frac{\left[Asp\right] \cdot \left[Glu \cdot cyt\right]}{alpha} \\ \hline \left(\begin{array}{c} \frac{\left[Asp\right] \cdot \left[Glu \cdot cyt\right]}{alpha} \\ \hline \left(\begin{array}{c} \frac{\left[Asp\right] \cdot \left[Glu \cdot cyt\right]}{bcta} \\ \hline \left(\begin{array}{c} \frac{KiS1}{KiS2} \end{array} \right) \cdot KcF - \frac{\left[Glu\right] \cdot \left[Asp \cdot cyt\right]}{kiP1} \cdot KcR \right) \cdot v_{22} AGC \\ \hline \\ \cdot \\ 1 + \frac{\left[Asp\right]}{KiS1} + \frac{\left[Glu \cdot cyt\right]}{KiS2} + \frac{\left[Glu\right]}{KiP1} + \frac{\left[Asp \cdot cyt\right]}{KiP2} + \frac{\left[Glu \cdot cyt\right]}{kiS1} \\ \hline \\ \frac{alpha}{KiS1} + \frac{\left[Glu \cdot cyt\right] \cdot \left[Asp \cdot cyt\right]}{KiS2} + \frac{\left[Glu \cdot cyt\right]}{kiS1} \\ \hline \\ KiS2 + \frac{\left[Glu \cdot cyt\right] \cdot \left[Asp \cdot cyt\right]}{KiP2} + \frac{\left[Asp \cdot Glu \cdot cyt\right]}{kiS1} \\ \hline \\ KiS2 + \frac{\left[Glu \cdot cyt\right] \cdot \left[Asp \cdot cyt\right]}{KiP2} + \frac{\left[Asp \cdot Glu \cdot cyt\right]}{kiS1} \\ \hline \\ KiS1 + \frac{\left[Glu \cdot cyt\right] \cdot \left[Asp \cdot cyt\right]}{KiP2} + \frac{\left[Asp \cdot Glu \cdot cyt\right]}{KiP2} \\ \hline \end{array} \right)$$

Table 74: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KiS1			8 · 10 - 5	5	\overline{Z}
KiS2			0.003		$ \overline{\mathbf{Z}} $
KiP1			$1.8 \cdot 10^{-4}$	4	
KiP2			0.003		

Id	Name	SBO	Value	Unit	Constant
KcF			10.000		
KcR			10.000		\square
alpha			1.000		
beta			1.000		\mathbf{Z}
gamma			1.000		
delta			1.000		
$v22_AGC$	AGC	•	$3.3211 \cdot 10^{-4}$	-	

6.25 Reaction v24

This is a reversible reaction of two reactants forming two products.

Name NADH: ubiquinone oxidoreductase

Reaction equation

$$NADH + Q \Longrightarrow NAD_p + QH2 \tag{49}$$

Reactants

Table 75: Properties of each reactant.

Id	Name	SBO
NADH	NADH	
Q	ubiquinone	

Products

Table 76: Properties of each product.

Id	Name	SBO
NAD_p	NAD+	
QH2	ubiquinol	

Kinetic Law

$$v_{25} = \text{vol}\left(\text{MATRIX}\right) \tag{50}$$

$$\text{KcF} \cdot \text{KcR} \cdot \text{v24_Complex_I} \cdot \left(\left[\text{NADH}\right] \cdot \left[Q\right] - \frac{\left[\text{NAD_p}\right] \cdot \left[\text{QH2}\right]}{\text{Keq}} \right) \times \frac{\left[\text{NADH}\right] \cdot \left[Q\right] + \frac{\left[\text{KcF} \cdot \text{KmP2} \cdot \left[\text{NAD_p}\right]}{\text{Keq}} + \frac{\left[\text{KcF} \cdot \text{KmP1} \cdot \left[\text{QH2}\right]}{\text{Keq}} + \text{KcR} \cdot \left[\text{NADH}\right] \cdot \left[Q\right] + \frac{\text{KcF} \cdot \text{KmP2} \cdot \left[\text{NAD_p}\right]}{\text{Keq}} + \frac{\left[\text{KcF} \cdot \text{KmP1} \cdot \left[\text{QH2}\right]}{\text{Keq}} + \frac{\left[\text{NADH}\right] \cdot \left[\text{QH2}\right]}{\text{Ceq}} + \frac{\left[\text{NADH}\right] \cdot \left[\text{QH2}\right]}{\text{Ceq$$

Table 77: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmS1			$9.2 \cdot 10^{-6}$	ó	\overline{Z}
KmS2			$2.6 \cdot 10^{-4}$	ļ.	
KmP1			$9.9 \cdot 10^{-6}$	Ó	$\overline{\mathbf{Z}}$
KmP2			$5.9 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
KiS1			$2.1 \cdot 10^{-8}$	3	$ \overline{\checkmark} $
KiP2			$9.8 \cdot 10^{-8}$	3	$\overline{\mathbf{Z}}$
Keq			407.900		$ \overline{\mathbf{Z}} $
KcF			498.000		
KcR			229.000		
v24_Complex- _I	Complex_I		$3.3211 \cdot 10^{-4}$	ı	$\overline{\mathscr{A}}$

6.26 Reaction v25

This is an irreversible reaction of two reactants forming two products.

Name ubiquinol:cytochrome c oxidoreductase

Reaction equation

$$QH2 + 2Cytc3p \longrightarrow Q + 2Cytc2p$$
 (51)

Reactants

Table 78: Properties of each reactant.

	1	
Id	Name	SBO
QH2	ubiquinol	
Cytc3p	ferrocytochrome c	

Products

Table 79: Properties of each product.

Id	Name	SBO
Q Cytc2p	ubiquinone ferricytochrome c	

Derived unit contains undeclared units

$$v_{26} = \text{vol}\left(\text{MT_IMS}\right) \\ \cdot \frac{\text{KcF} \cdot \text{v25_Complex_III} \cdot [\text{QH2}] \cdot [\text{Cytc3p}]}{\left(\text{KmA} \cdot \text{Kq2} \cdot \text{Kb2} + \text{KmA} \cdot \text{Kq2} \cdot [\text{Cytc3p}] + \frac{\text{KcF}}{\text{k8}} \cdot \text{Kq1} \cdot [\text{QH2}] \cdot \text{Kb1} + \frac{\text{KcF}}{\text{k8}} \cdot \text{Kq1} \cdot [\text{QH2}] \cdot [\text{Cytc3p}]\right) \cdot [\text{Cytc2}]}$$

Table 80: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmA			$2.8 \cdot 10^{-5}$		$\overline{\hspace{1cm}}$
KmB			$3 \cdot 10^{-6}$		$\overline{\mathscr{A}}$
Kb1			$5.4 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
Kb2			$5.7 \cdot 10^{-6}$		$\overline{\checkmark}$
Kq1			$2.8 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
Kq2			$1.9 \cdot 10^{-6}$		$\overline{\mathscr{A}}$
k8			622.100		$\overline{\mathbf{Z}}$
KcF			426.800		$\overline{\mathbf{Z}}$
v25_Complex- _III	Complex_III		$9.963 \cdot 10^{-9}$		$\overline{\mathbf{Z}}$

6.27 Reaction v26

This is an irreversible reaction of one reactant forming one product.

Name cytochrome c oxidase

Reaction equation

$$Cytc2p \longrightarrow Cytc3p \tag{53}$$

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
Cytc2p	ferricytochrome c	

Product

Table 82: Properties of each product.

Table 62. I Toperties of each product.						
Id	Name	SBO				
Cytc3p	ferrocytochrome c					

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{MT_IMS}) \cdot \frac{\text{KcF} \cdot \text{v26_Complex_IV} \cdot [\text{Cytc2p}]}{\text{Ks} + [\text{Cytc2p}]}$$
(54)

Table 83: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Ks KcF v26_Complex-	Complex_IV		$ \begin{array}{r} 1.1 \cdot 10^{-4} \\ 9.35 \cdot 10^{-4} \\ 0.002 \end{array} $		Z Z
$_{ t IV}$					

6.28 Reaction v27

This is a reversible reaction of two reactants forming two products.

Name citrate synthase

Reaction equation

$$Cit_cyt + CoA_cyt \Longrightarrow OXA_cyt + Acetyl_CoA_cyt$$
 (55)

Reactants

Table 84: Properties of each reactant.

Id	Name	SBO
Cit_cyt	citrate	
CoA_cyt	coenzyme A	

Products

Table 85: Properties of each product.

Id	Name	SBO
OXA_cyt Acetyl_CoA_cyt	oxaloacetate acetyl CoA	

Derived unit contains undeclared units

$$= \frac{\text{vol}\left(\text{CYTOPLASM}\right) \cdot \text{Kid} \cdot \text{Kc} \cdot \frac{\text{V} \cdot [\text{Acetyl_CoA_cyt}] \cdot [\text{OXA_cyt}] \cdot [\text{OXA_cyt}] \cdot \text{v10_CS}}{[\text{Acetyl_CoA_cyt}] \cdot [\text{OXA_cyt}] + \text{Kb} \cdot [\text{Acetyl_CoA_cyt}] + \text{Kia} \cdot \text{Kib}}}{\text{Keq} \cdot \text{Kia} \cdot \text{Kb}}}$$

$$(56)$$

Table 86: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V			0.005		$\overline{\hspace{1cm}}$
Ka			$5 \cdot 10^{-6}$		$ \overline{\mathscr{A}} $
Kb			$4.5 \cdot 10^{-6}$	5	$ \overline{\mathscr{A}} $
Кc			$3.9 \cdot 10^{-5}$		$ \overline{\mathscr{A}} $
Kia			$5 \cdot 10^{-6}$		$\overline{\mathbf{Z}}$
Kib			$4.5 \cdot 10^{-6}$	6	$ \overline{\checkmark} $
Kid			0.004		$ \overline{\mathscr{A}} $
Keq			$1.8 \cdot 10^{7}$	7	$ \overline{\mathscr{A}} $
v10_CS	CS	3	$3.8617 \cdot 10^{-7}$	7	

6.29 Reaction v28

This is a reversible reaction of two reactants forming two products.

Name ATPase complex

Reaction equation

$$ADP + Pi \Longrightarrow ATP + H2O \tag{57}$$

Reactants

Table 87: Properties of each reactant.

Id	Name	SBO
ADP Pi	adenine diphosphate phosphate	

Products

Table 88: Properties of each product.

Id	Name	SBO
ATP	adenine triphosphate	
H20	water	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\text{vol}(\text{MATRIX}) \cdot \text{v28_Complex_V} \cdot \text{V} \cdot [\text{ADP}]}{\text{Km} + [\text{ADP}] + \frac{[\text{ADP}] \cdot [\text{ADP}]}{\text{Ki}}}$$
(58)

Table 89: Properties of each parameter.

		I	· · · · · · · · · · · · · · · · · · ·		
Id	Name	SBO	Value	Unit	Constant
V			0.075		lacksquare
Km			0.005		$\overline{\mathbf{Z}}$
Ki			0.047		$\overline{\mathbf{Z}}$
v28_Complex- _V	Complex_V		0.003		\checkmark

6.30 Reaction v29

This is a reversible reaction of one reactant forming one product.

Name aconitase

Reaction equation

$$Cit_cyt \Longrightarrow IsoCitcyt$$
 (59)

Reactant

Table 90: Properties of each reactant.

Id	Name	SBO
${\tt Cit_cyt}$	citrate	

Product

Table 91: Properties of each product.

Id	Name	SBO
IsoCitcyt	isocitrate	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = vol\left(CYTOPLASM\right) \cdot \frac{\left(KcF \cdot Kp \cdot \left[Cit_cyt\right] - KcR \cdot Ks \cdot \left[IsoCitcyt\right]\right) \cdot v29_ACO}{Ks \cdot \left[IsoCitcyt\right] + Kp \cdot \left[Cit_cyt\right] + Ks \cdot Kp} \tag{60}$$

Table 92: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Ks			$5 \cdot 10^{-4}$!	\square
Кр			$1.1 \cdot 10^{-4}$	ļ	\mathbf{Z}
KcF			20.470		\mathbf{Z}
KcR			31.440		\mathbf{Z}
v29_ACO	ACO	3	$3.8617 \cdot 10^{-7}$	1	\square

6.31 Reaction v30

This is a reversible reaction of two reactants forming two products.

Name oxoglutarate carrier

Reaction equation

$$Mal_cyt + OG \Longrightarrow OG_cyt + Mal$$
 (61)

Reactants

Table 93: Properties of each reactant.

Id	Name	SBO
Mal_cyt		
OG	oxoglutarate	

Products

Table 94: Properties of each product.

Id	Name	SBO
OG_cyt Mal	oxoglutarate malate	

Kinetic Law

$$\begin{array}{c} v_{31} \\ = vol\left(MATRIX\right) \\ \\ \cdot \\ \hline \\ 1 + \frac{\left[OG\right] \cdot \left[Mal_cyt\right]}{KiS1} + \frac{\left[Mal\right] \cdot \left[OG_cyt\right]}{KiP2} + \frac{\left[Mal\right] \cdot \left[OG_cyt\right]}{KiS2} + \frac{\left[Mal\right] \cdot \left[OG_cyt\right]}{KiP2} + \frac{\left[Mal\right] \cdot \left$$

Table 95: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KiS1			$3 \cdot 10^{-4}$		$ \overline{\checkmark} $
KiS2			$7 \cdot 10^{-4}$		\overline{Z}
KiP1			0.001		$\overline{\mathbf{Z}}$
KiP2			$1.7 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
KcF			3.675		$\overline{\mathbf{Z}}$
KcR			4.830		$\overline{\mathbf{Z}}$
alpha			1.000		\overline{Z}
beta			1.000		\overline{Z}
gamma			1.000		\overline{Z}
delta			1.000		\overline{Z}
v30_0GC	OGC	3	$3.3211 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$

6.32 Reaction v31

This is an irreversible reaction of two reactants forming two products.

Name malate dehydrogenase (cytosol)

Reaction equation

$$NADH_cyt + OXA_cyt \longrightarrow Mal_cyt + NAD$$
 (63)

Reactants

Table 96: Properties of each reactant.

Id	Name	SBO
${\tt NADH_cyt}$	NADH	
$\mathtt{OXA_cyt}$	oxaloacetate	

Products

Table 97: Properties of each product.

Id	Name	SBO
Mal_cyt	malate	
NAD	NAD	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol}\left(\text{CYTOPLASM}\right) \tag{64}$$

 $\frac{1}{\text{kminus} 1 \cdot (\text{kminus} 2 + \text{k3}) \cdot \text{k4} + \text{k1} \cdot (\text{kminus} 2 + \text{k3}) \cdot \text{k4} \cdot [\text{NADH_cyt}] + \text{kminus} 1 \cdot (\text{kminus} 2 + \text{k3}) \cdot \text{kminus} 2 + \text{k3}}$

Table 98: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			$3.4 \cdot 10^{7}$		Ø
k2			$3.5 \cdot 10^{7}$	7	
k3			4650.000		
k4			214.000		
kminus1			26.000		\mathbf{Z}

Id	Name	SBO	Value	Unit	Constant
kminus2			1400.000		$ \mathbf{Z} $
kminus3			570000.000		
kminus4			260000.000		
v31_MDH	MDH		$3.8617 \cdot 10^{-7}$	1	

6.33 Reaction v32

This is a reversible reaction of two reactants forming two products.

Name aspartate transaminase

Reaction equation

$$Asp_cyt + OG_cyt \Longrightarrow OXA_cyt + Glu_cyt$$
 (65)

Reactants

Table 99: Properties of each reactant.

Id	Name	SBO
Asp_cyt OG_cyt	aspartate oxoglutarate	

Products

Table 100: Properties of each product.

Id	Name	SBO
•	oxaloacetate glutamate	

Kinetic Law

$$v_{33} = \text{vol}\left(\text{CYTOPLASM}\right) \tag{66} \\ \frac{\text{KcF} \cdot \text{KcR} \cdot \text{v32_AspTA} \cdot \left(\left[\text{Asp_cyt}\right] \cdot \left[\text{OG_cyt}\right]}{\text{KcR} \cdot \text{KmS2} \cdot \left[\text{Asp_cyt}\right] + \text{KcR} \cdot \text{KmS1} \cdot \left[\text{OG_cyt}\right] + \frac{\text{KcF} \cdot \text{KmP2} \cdot \left[\text{OXA_cyt}\right]}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot \left[\text{Glu_cyt}\right]}{\text{Keq}} + \text{KcR} \cdot \left[\text{Asp_cyt}\right] \cdot \left[\text{OS_cyt}\right]}{\text{Keq}} + \frac{\text{KcR} \cdot \text{KmP1} \cdot \left[\text{Clu_cyt}\right]}{\text{Keq}} + \frac{\text{KcR} \cdot \text{KmP1}}{\text{Keq}} + \frac{\text{KcR} \cdot \text{KmP1}}{\text{Keq}} + \frac{\text{KcR} \cdot \text{K$$

Table 101: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmS1			$9 \cdot 10^{-4}$	1	$\overline{\hspace{1cm}}$
KmS2			10^{-4}	1	$\overline{\mathbf{Z}}$
KmP1			$4 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
KmP2			0.004		$\overline{\mathbf{Z}}$
KiS1			0.002		$\overline{\mathbf{Z}}$
KiP2			0.008		$\overline{\mathbf{Z}}$
Keq			6.200		$\overline{\mathbf{Z}}$
KcF			300.000		$ \overline{\mathbf{Z}} $
KcR			1000.000		$ \overline{\mathbf{Z}} $
$v32_AspTA$	AspTA	3	$3.8617 \cdot 10^{-7}$	7	$\overline{\checkmark}$

6.34 Reaction v33

This is a reversible reaction of two reactants forming two products.

Name citrate carrier

Reaction equation

$$Cit_cyt + Mal \Longrightarrow Mal_cyt + Cit$$
 (67)

Reactants

Table 102: Properties of each reactant.

Id	Name	SBO
Cit_cyt	citrate	
Mal	malate	

Products

Table 103: Properties of each product.

Id	Name	SBO
Mal_cyt Cit	malate citrate	

Derived unit contains undeclared units

$$v_{34} = vol\left(MATRIX\right)$$

$$\frac{\left(\frac{\stackrel{[Cit_cyt]\cdot[Mal]}{alpha}}{\stackrel{KiS1}{KiS2}} \cdot KcF - \frac{\stackrel{[Mal_cyt]\cdot[Cit]}{beta}}{\stackrel{beta}{KiP1}} \cdot KcR\right) \cdot v_{33}_CIC}{1 + \frac{[Cit_cyt]}{KiS1} + \frac{[Mal]}{KiS2} + \frac{[Mal_cyt]}{KiP1} + \frac{[Cit]}{KiP2} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{alpha}}{\stackrel{KiS1}{KiS2}} + \frac{\stackrel{[Mal_cyt]\cdot[Cit]}{beta}}{\stackrel{beta}{KiP1}} + \frac{\stackrel{[Mal]\cdot[Cit]}{gamma}}{\stackrel{Git_cyt]\cdot[Mal]}{KiS1}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal_cyt]}{delta}}{\stackrel{KiS1}{KiS1}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{kiS2}}{\stackrel{KiS2}{KiP1}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}}{\stackrel{KiS1}{KiS1}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}}{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}}{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}}{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}} + \frac{\stackrel{[Cit_cyt]\cdot[Mal]}{gamma}}$$

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KiS1			$1.3 \cdot 10^{-4}$		
KiS2			$4.4 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
KiP1			$3.3 \cdot 10^{-4}$		$\overline{\mathbf{Z}}$
KiP2			$4.18 \cdot 10^{-5}$		$\overline{\mathbf{Z}}$
KcF			5.600		$\overline{\mathbf{Z}}$
KcR			3.500		$\overline{\mathbf{Z}}$
alpha			1.000		$\overline{\mathbf{Z}}$
beta			1.000		$\overline{\mathbf{Z}}$
gamma			1.000		
delta			1.000		$\overline{\mathbf{Z}}$
v33_CIC	CIC	3	$3.3211 \cdot 10^{-4}$		\checkmark

6.35 Reaction v34

This is a reversible reaction of two reactants forming two products.

Name ETF:Q oxidoreductase

Reaction equation

$$ETFred + Q \Longrightarrow ETFox + QH2 \tag{69}$$

Reactants

Table 105: Properties of each reactant.

Id	Name	SBO
ETFred	electron transfer flavoprotein (reduced form)	

Id	Name	SBO
Q	ubiquinone	

Products

Table 106: Properties of each product.

Id	Name	SBO
ETFox QH2	electron transfer flavoprotein (oxidised form) ubiquinol	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = vol\left(MATRIX\right) \tag{70}$$

$$KcF \cdot KcR \cdot v34_ETF_QO \cdot \left([ETFred] \cdot [Q] - \frac{[ETFox] \cdot [QH2]}{Keq} \right) \times \left[KcR \cdot KmS2 \cdot [ETFred] + KcR \cdot KmS1 \cdot [Q] + \frac{KcF \cdot KmP2 \cdot [ETFox]}{Keq} + \frac{KcF \cdot KmP1 \cdot [QH2]}{Keq} + KcR \cdot [ETFred] \cdot [Q] + \frac{KcF \cdot KmP2 \cdot [ETFox]}{Keq} + \frac{KcF \cdot KmP1 \cdot [QH2]}{Keq} + KcR \cdot [ETFred] \cdot [Q] + \frac{KcF \cdot KmP2 \cdot [ETFox]}{Keq} + \frac{KcF \cdot KmP1 \cdot [QH2]}{Keq} + \frac{KcP \cdot KmP2 \cdot [ETFred]}{Keq} + \frac{KcP$$

Table 107: Properties of each parameter.

	Tuon	c 107. I Toperties (or cacir para	inicter.	
Id	Name	SBO	Value	Unit	Constant
KmS1			$3.1 \cdot 10^{-7}$,	\overline{Z}
KmS2			$3.9 \cdot 10^{-7}$	•	
KmP1			$3.2 \cdot 10^{-7}$	•	
KmP2			$4.2 \cdot 10^{-9}$)	
KiS1			$3.1 \cdot 10^{-7}$,	
KiP2			$3 \cdot 10^{-7}$	•	
Keq			0.660		
KcF			78.000		
KcR			101.000		\square
v34_ETF_Q0		3	$.3211 \cdot 10^{-5}$	i	\square

6.36 Reaction v35

This is a reversible reaction of two reactants forming two products.

Name glutathione reductase

Reaction equation

$$FADH2 + ETFox \Longrightarrow ETFred + FAD \tag{71}$$

Reactants

Table 108: Properties of each reactant.

Id	Name	SBO
FADH2	FADH2	
ETFox	electron transfer flavoprotein (oxidised form)	

Products

Table 109: Properties of each product.

Id	Name	SBO
ETFred FAD	electron transfer flavoprotein (reduced form) FAD	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}\left(\text{MATRIX}\right) \tag{72}$$

 $KcF \cdot KcR \cdot v$

$$\frac{}{\text{KcR} \cdot \text{KiS1} \cdot \text{KmS2} + \text{KcR} \cdot \text{KmS2} \cdot [\text{FADH2}] + \text{KcR} \cdot \text{KmS1} \cdot [\text{ETFox}] + \frac{\text{KcF} \cdot \text{KmP2} \cdot [\text{ETFred}]}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP2} \cdot [\text{FADH2}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP2} \cdot [\text{FADH2}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP1} \cdot [\text{FAD}]}{\text{Keq}} + 1}{\text{Keq}} + \frac{\text{KcF} \cdot \text{KmP2} \cdot [\text{FADH2}]}{\text{Keq}} + 1}{\text{Keq}} + 1}{\text{Ke$$

Table 110: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmS1			$3.9 \cdot 10^{-5}$	5	✓
KmS2			$1.2 \cdot 10^{-7}$	7	$\overline{\mathbf{Z}}$
KmP1			$1.08 \cdot 10^{-6}$	6	$\overline{\mathbf{Z}}$
KmP2			$2.42 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
KiS1			$7.6 \cdot 10^{-5}$	5	
KiS2			$2.4 \cdot 10^{-7}$	7	I
KiP1			$7.53 \cdot 10^{-5}$	5	$\overline{\mathbf{Z}}$
KiP2			$1.19 \cdot 10^{-5}$	5	$ \overline{\mathscr{L}} $
Keq			8.990		$\overline{\mathscr{A}}$

Id	Name	SBO	Value	Unit	Constant
KcF			2.180		
KcR			0.300		
v35_ACD		3	$3.3211 \cdot 10^{-5}$	5	

6.37 Reaction v36

This is a reversible reaction of three reactants forming three products.

Name pyruvate decarboxylase

Reaction equation

$$ATP + CO2 + Pyr \Longrightarrow Pi + ADP + OXA \tag{73}$$

Reactants

Table 111: Properties of each reactant.

Id	Name	SBO
ATP CO2	adenine triphosphate carbon dioxide	
Pyr	pyruvate	

Products

Table 112: Properties of each product.

Id	Name	SBO
Pi ADP OXA	phosphate adenine diphosphate oxaloacetate	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \text{vol}\left(\text{MATRIX}\right) \tag{74}$$

 $Kia \cdot KmB \cdot KcR \cdot [Pyr] + KmC \cdot KcR \cdot [ATP] \cdot [CO2] + KmA \cdot KcR \cdot [CO2] \cdot [Pyr] + KmB \cdot KcR \cdot [ATP] \cdot [Pyr] + KmB \cdot KcR \cdot [Pyr] + KmB \cdot [Pyr] + KmB \cdot KcR \cdot [Pyr] + KmB \cdot$

Table 113: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KmA			$1.1 \cdot 10^{-4}$	ļ	$\overline{\hspace{1cm}}$
KmB			0.002		\square
KmC			$3.7 \cdot 10^{-4}$	ļ	
KmP			0.016		
KmQ			$2.4 \cdot 10^{-4}$	ļ	
KmR			$5.1 \cdot 10^{-5}$	5	
Keq			9.000		
Kia			$1.5 \cdot 10^{-4}$	ļ	
Kib			0.002		
Kic			$1.3 \cdot 10^{-4}$	ļ	
Kip			0.008		
Kiq			$1.9 \cdot 10^{-4}$		
Kir			$2.4 \cdot 10^{-4}$	ļ	
KcF			200.000		
KcR			20.000		
v36_PC	PC		$3.8617 \cdot 10^{-7}$	1	\checkmark

6.38 Reaction v37

This is an irreversible reaction of two reactants forming two products.

Name glycerol-3-phosphate dehydrogenase (FAD dependent)

Reaction equation

$$G3P + FAD \longrightarrow FADH2 + DHAP$$
 (75)

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
G3P FAD	glycerol-3-phosphate FAD	

Products

Table 115: Properties of each product.

Id	Name	SBO
FADH2 DHAP	FADH2 dihydrohxyacetone-phosphate	

Derived unit contains undeclared units

$$v_{38} = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \frac{\text{V} \cdot \text{v37_GUT2P} \cdot [\text{G3P}]}{\text{K} + [\text{G3P}]}$$
(76)

Table 116: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K			$3.4 \cdot 10^{-5}$ $3.99 \cdot 10^{-8}$		
V v37_GUT2P	Glycerol-3-		0.001		∠
	phosphate hydrogenase	de-			

6.39 Reaction v38

This is an irreversible reaction of two reactants forming two products.

Name glycerol-3-phosphate dehydrogenase (NAD+ dependent)

Reaction equation

$$NADH_cyt + DHAP \longrightarrow G3P + NAD$$
 (77)

Reactants

Table 117: Properties of each reactant.

Id	Name	SBO			
NADH_cyt DHAP	NADH dihydrohxyacetone-phosphate				

Products

Table 118: Properties of each product.

Id	Name	SBO
G3P NAD	glycerol-3-phosphate NAD	

Derived unit contains undeclared units

$$v_{39} = \text{vol}\left(\text{CYTOPLASM}\right) \cdot \frac{\text{V} \cdot \text{v38_GUT2P} \cdot [\text{NADH_cyt}]}{\text{K} + [\text{NADH_cyt}]}$$
(78)

Table 119: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
K V			34.000 0.040		
v38_GUT2P	Glycerol-3-		0.040		2 2
	phosphate hydrogenase	de-			

6.40 Reaction v40

This is an irreversible reaction of one reactant forming one product.

Name ATP/ADP carrier

Reaction equation

$$ADP_cyt \longrightarrow ADP \tag{79}$$

Reactant

Table 120: Properties of each reactant.

14010 120	or traperties of each rec	to turre.
Id	Name	SBO
ADP_cyt	adenine diphosphate	

Product

Table 121: Properties of each product.

Id	Name	SBO
ADP	adenine diphosphate	

Derived unit contains undeclared units

$$v_{40} = \text{vol}\left(\text{MATRIX}\right) \cdot \frac{\text{V} \cdot \text{v40_AAC} \cdot [\text{ADP_cyt}]}{\text{K} + [\text{ADP_cyt}]}$$
(80)

Table 122: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V			0.167		
K			0.012		\square
v40_AAC	AAC	3	$.3211 \cdot 10^{-4}$	ļ	

6.41 Reaction v41

This is a reversible reaction of two reactants forming two products influenced by one modifier.

Name cytosolic isocitrate dehydrogenase

Reaction equation

$$IsoCitcyt + NADP_cyt \stackrel{CO2}{\longleftarrow} OG_cyt + NADPH_cyt$$
 (81)

Reactants

Table 123: Properties of each reactant.

Id	Name	SBO
IsoCitcyt NADP_cyt	isocitrate NADP	

Modifier

Table 124: Properties of each modifier.

Id	Name	SBO
C02	carbon dioxide	

Products

Table 125: Properties of each product.

	<u>r</u>	<u>r</u>
Id	Name	SBO
OG_cyt NADPH_cyt	oxoglutarate NADPH	

Kinetic Law

$$\begin{array}{l} v_{41} = vol\left(CYTOPLASM\right) \cdot v41_IDHc \\ \cdot \left(\frac{[IsoCitcyt] \cdot [NADP_cyt]}{phi0 \cdot [IsoCitcyt] \cdot [NADP_cyt] + phi1 \cdot [NADP_cyt] + phi2 \cdot [IsoCitcyt] + phi12} \right. \\ - \frac{[OG_cyt] \cdot [NADPH_cyt]}{phir0 \cdot [OG_cyt] \cdot [NADPH_cyt] \cdot [CO2] + phir1 \cdot [NADPH_cyt] \cdot [CO2] + phir2 \cdot [OG_cyt] \cdot [CO2] + phir3 \cdot [CO2] + phir3 \cdot [CO2] + phir2 \cdot [CO2] + phir2 \cdot [CO2] + phir3 \cdot [CO2] + phir3 \cdot [CO2] + phir3 \cdot [CO2] + phir2 \cdot [CO2] + phir3 \cdot [CO2] + phir4 \cdot [CO$$

Table 126: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
phi0			0.051		✓
phi1			$9.5 \cdot 10^{-8}$		$\overline{\mathbf{Z}}$
phi2			$9.6 \cdot 10^{-7}$		$\overline{\mathbf{Z}}$
phi12			$9 \cdot 10^{-8}$		$ \overline{\mathscr{L}} $
phir0			0.066		$ \overline{\mathscr{L}} $
phir1			$3.7 \cdot 10^{-7}$		\square
phir2			$2.9 \cdot 10^{-5}$		$ \overline{\checkmark} $
phir3			$2.5 \cdot 10^{-4}$		$ \overline{\checkmark} $
phir12			$6 \cdot 10^{-12}$		$\overline{\mathbf{Z}}$
phir13			$1.3\cdot 10^{-10}$		$\overline{\mathbf{Z}}$
phir23			$9.4 \cdot 10^{-8}$		$\overline{\mathbf{Z}}$
phir123			$4.6 \cdot 10^{-14}$		$\overline{\mathbf{Z}}$
$v41_{-}IDHc$	IDHc	3	$.8617 \cdot 10^{-7}$		$ \overline{\mathbf{A}} $

6.42 Reaction v42

This is a reversible reaction of two reactants forming two products.

Name citrate carrier

Reaction equation

$$IsoCitcyt + Mal \Longrightarrow Mal_cyt + IsoCit$$
 (83)

Reactants

Table 127: Properties of each reactant.

Id	Name	SBO
IsoCitcyt Mal	isocitrate malate	

Products

Table 128: Properties of each product.

Id	Name	SBO
Mal_cyt	malate	
IsoCit	isocitrate	

Kinetic Law

$$v_{42} = \text{vol}\left(\text{MATRIX}\right)$$

$$\left(\begin{array}{c} \frac{[\text{IsoCitcyt}] \cdot [\text{Mal}]}{\text{alpha}} \\ \frac{\text{alpha}}{\text{KiS1}} \\ \text{KiS2} \end{array}\right) \cdot \text{KcF} - \frac{\frac{[\text{Mal_cyt}] \cdot [\text{IsoCitt}]}{\text{beta}}}{\text{KiP1}} \cdot \text{KcR} \right) \cdot \text{v42_CIC}$$

$$1 + \frac{[\text{IsoCitcyt}]}{\text{KiS1}} + \frac{[\text{Mal}]}{\text{KiS2}} + \frac{[\text{Mal_cyt}]}{\text{KiP1}} + \frac{[\text{IsoCit}]}{\text{KiS2}} + \frac{\frac{[\text{Mal_cyt}] \cdot [\text{IsoCit}]}{\text{beta}}}{\text{KiS1}} + \frac{\frac{[\text{Mal_cyt}] \cdot [\text{IsoCit}]}{\text{gamma}}}{\text{KiS1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{gamma}}}{\text{KiS1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP2}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiS1}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP1}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP2}}}{\text{KiP1}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP2}}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP2}}}{\text{KiP2}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP2}}}{\text{KiP3}}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP3}}}{\text{KiP3}} + \frac{\frac{[\text{IsoCitcyt}] \cdot [\text{Mal_cyt}]}{\text{KiP3}}}{\text{KiP3}}} +$$

Table 129: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
KiS1			1.3 · 10-4	4	$ \overline{\mathbf{Z}} $
KiS2			$4.4 \cdot 10^{-4}$	4	$ \overline{\mathscr{L}} $

Id	Name	SBO	Value	Unit	Constant
KiP1			$3.3 \cdot 10^{-4}$	1	\overline{Z}
KiP2			$4.18 \cdot 10^{-5}$	5	$\overline{\checkmark}$
KcF			5.600		$\overline{\checkmark}$
KcR			3.500		$\overline{\checkmark}$
alpha			1.000		
beta			1.000		
gamma			1.000		\square
delta			1.000		\square
$v42_CIC$	CIC		$3.3211 \cdot 10^{-4}$	1	\checkmark

6.43 Reaction v43

This is an irreversible reaction of one reactant forming one product.

Name ATP/ADP carrier

Reaction equation

$$ATP \longrightarrow ATP_cyt$$
 (85)

Reactant

Table 130: Properties of each reactant.

Id	Name	SBO
ATP	adenine triphosphate	

Product

Table 131: Properties of each product.

Id	Name	SBO
ATP_cyt	adenine triphosphate	

Kinetic Law

$$v_{43} = vol(MATRIX) \cdot \frac{V \cdot v43_AAC \cdot [ATP]}{K + [ATP]}$$
(86)

Table 132: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
V			1.117		
K			0.005		\mathbf{Z}
$v43_AAC$	AAC	3	3.3211 · 10	4	

6.44 Reaction v39

This is a reversible reaction of two reactants forming two products.

Name malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)

Reaction equation

$$Mal_cyt + NADP_cyt \Longrightarrow NADPH_cyt + PYR_cyt$$
 (87)

Reactants

Table 133: Properties of each reactant.

Id	Name	SBO
Mal_cyt	malate	
$\mathtt{NADP}_\mathtt{cyt}$	NADP	

Products

Table 134: Properties of each product.

Id	Name	SBO
$\mathtt{NADPH_cyt}$	NADPH	
$\mathtt{PYR}_{\mathtt{-}}\mathtt{cyt}$	pyruvate	

Kinetic Law

$$v_{44} = vol\left(CYTOPLASM\right) \cdot \frac{v39_MDH \cdot Kcat \cdot [Mal_cyt] \cdot [NADP_cyt]}{\left(Kmal + [Mal_cyt]\right) \cdot \left(Knadp + [NADP_cyt]\right)} \tag{88}$$

Table 135: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kcat			0.333		
Kmal			$1.25 \cdot 10^{-4}$	1	
Knadp			0.011		
v39_MDH	MDH	3	$3.8617 \cdot 10^{-7}$	7	$ \overline{\mathcal{A}} $

6.45 Reaction v44

This is a reversible reaction of two reactants forming two products.

Name malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)

Reaction equation

$$Mal + NADP_p \Longrightarrow NADPH + Pyr$$
 (89)

Reactants

Table 136: Properties of each reactant.

Id	Name	SBO
Mal	malate	
$\mathtt{NADP}_\mathtt{p}$	NADP+	

Products

Table 137: Properties of each product.

	_	
Id	Name	SBO
NADPH	NADPH	
Pyr	pyruvate	

Kinetic Law

$$v_{45} = vol\left(MATRIX\right) \cdot \frac{v44_MDH \cdot Kcat \cdot [Mal]}{Km + [Mal]}$$
(90)

Table 138: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kcat			130.500		$ \mathcal{Z} $
Km			0.013		
$v44_MDH$	MDH		$3.8617 \cdot 10^{-7}$	7	\mathbf{Z}

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

7.1 Species GLC

Name glucose

Initial concentration $1.12817 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v1 and as a product in GLCflow).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLC} = |v_1| - |v_4| \tag{91}$$

7.2 Species F6P

Name fructose-6-phosphate

Initial concentration $6.5939 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v2 and as a product in v1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F6P} = v_4 - v_5 \tag{92}$$

7.3 Species FBP

Name fructose-1,6-bisphosphate

Initial concentration $7.70135 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v3 and as a product in v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FBP} = |v_5| - |v_6| \tag{93}$$

7.4 Species GAP

Name glyceraldehyde 3-phosphate

Initial concentration $1.90919 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in GAPflow, v4 and as a product in v3).

$$\frac{d}{dt}GAP = 2 v_6 - |v_3| - |v_7| \tag{94}$$

7.5 Species DPG

Name 1,2-bisphospho-D-glycerate

Initial concentration $2.99109 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v5 and as a product in v4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DPG} = |v_7| - |v_8| \tag{95}$$

7.6 Species PEP

Name phosphoenolpyruvate

Initial concentration $2.1125 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v6 and as a product in v5).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PEP} = |v_8| - |v_9| \tag{96}$$

7.7 Species PYR_cyt

Name pyruvate

Initial concentration $4.22702 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in v7, v8 and as a product in v6, v39).

$$\frac{d}{dt}PYR_cyt = |v_9| + |v_{44}| - |v_{10}| - |v_{12}|$$
(97)

7.8 Species AMP

Name adenine monophosphate

Initial concentration $2.61149 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in hidden_1 and as a modifier in v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMP} = -\nu_{11} \tag{98}$$

7.9 Species LAC

Name lactate

Initial concentration $3.3981 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in LACflow and as a product in v7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{LAC} = |v_{10}| - |v_2| \tag{99}$$

7.10 Species G3P

Name glycerol-3-phosphate

Initial concentration $0.0076925 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v37 and as a product in v38).

$$\frac{d}{dt}G3P = v_{39} - v_{38} \tag{100}$$

7.11 Species DHAP

Name dihydrohxyacetone-phosphate

Initial concentration $0.0076925 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v38 and as a product in v37).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DHAP} = |v_{38}| - |v_{39}| \tag{101}$$

7.12 Species OXA_cyt

Name oxaloacetate

Initial concentration $4 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v31 and as a product in v27, v32).

$$\frac{d}{dt}OXA_cyt = |v_{28}| + |v_{33}| - |v_{32}|$$
 (102)

7.13 Species Asp_cyt

Name aspartate

Initial concentration $0.00114 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v32 and as a product in v22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Asp_cyt} = |v_{24}| - |v_{33}| \tag{103}$$

7.14 Species Glu_cyt

Name glutamate

Initial concentration $0.00303 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v22 and as a product in v32).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glu_cyt} = v_{33} - v_{24} \tag{104}$$

7.15 Species OG_cyt

Name oxoglutarate

Initial concentration $2.1 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v32 and as a product in v30, v41).

$$\frac{d}{dt}OG_{-}cyt = |v_{31}| + |v_{41}| - |v_{33}|$$
 (105)

7.16 Species Mal_cyt

Name malate

Initial concentration $5 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in v30, v39 and as a product in v31, v33, v42).

$$\frac{d}{dt} \text{Mal_cyt} = |v_{32}| + |v_{34}| + |v_{42}| - |v_{31}| - |v_{44}|$$
(106)

7.17 Species Acetyl_CoA_cyt

Name acetyl CoA

Initial concentration $3 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in v27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Acetyl_CoA_cyt} = v_{28} \tag{107}$$

7.18 Species CoA_cyt

Name coenzyme A

Initial concentration $2.72 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in v27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CoA_cyt} = -v_{28} \tag{108}$$

7.19 Species IsoCitcyt

Name isocitrate

Initial concentration $4.2 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in v41, v42 and as a product in v29).

$$\frac{d}{dt}IsoCitcyt = |v_{30}| - |v_{41}| - |v_{42}|$$
 (109)

7.20 Species Cit_cyt

Name citrate

Initial concentration $4.2 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in v27, v29, v33).

$$\frac{d}{dt}\text{Cit_cyt} = -|v_{28}| - |v_{30}| - |v_{34}| \tag{110}$$

7.21 Species ATP_cyt

Name adenine triphosphate

Initial concentration $0.00449064 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v1, v2, hidden_1 and as a product in v5, v6, v43).

$$\frac{d}{dt}ATP_ccyt = |v_8| + |v_9| + |v_{43}| - |v_4| - |v_5| - |v_{11}|$$
(111)

7.22 Species ADP_cyt

Name adenine diphosphate

Initial concentration $1.08367 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in v5, v6, v40 and as a product in v1, v2, hidden_1).

$$\frac{d}{dt}ADP_cyt = v_4 + v_5 + 2v_{11} - v_8 - v_9 - v_{40}$$
 (112)

7.23 Species NAD

Name NAD

Initial concentration $0.00362057 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v4 and as a product in v7, v31, v38).

$$\frac{d}{dt}NAD = |v_{10}| + |v_{32}| + |v_{39}| - |v_{7}|$$
(113)

7.24 Species NADH_cyt

Name NADH

Initial concentration $6.16118 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v7, v31, v38 and as a product in v4).

$$\frac{d}{dt}NADH_cyt = v_7 - v_{10} - v_{32} - v_{39}$$
 (114)

7.25 Species NADP_cyt

Name NADP

Initial concentration $0.00362057 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v41, v39).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NADP_cyt} = -v_{41} - v_{44} \tag{115}$$

7.26 Species NADPH_cyt

Name NADPH

Initial concentration $6.16118 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in v41, v39).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{NADPH_cyt} = |v_{41}| + |v_{44}| \tag{116}$$

7.27 Species Pyr

Name pyruvate

Initial concentration $0.001025 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v9, v36 and as a product in v8, v20, v44).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pyr} = |v_{12}| + |v_{22}| + |v_{45}| - |v_{13}| - |v_{37}| \tag{117}$$

7.28 Species CO2

Name carbon dioxide

Initial concentration $0.00163 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v36 and as a product in v9, v14 and as a modifier in v41).

$$\frac{\mathrm{d}}{\mathrm{d}t}CO2 = |v_{13}| + |v_{17}| - |v_{37}| \tag{118}$$

7.29 Species CoA

Name coenzyme A

Initial concentration $2.72 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v9, v14 and as a product in v10, v15).

$$\frac{d}{dt}CoA = |v_{14}| + |v_{18}| - |v_{13}| - |v_{17}|$$
(119)

7.30 Species Acetyl_CoA

Name acetyl CoA

Initial concentration $3 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v10 and as a product in v9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Acetyl_CoA} = v_{13} - v_{14} \tag{120}$$

7.31 Species Pi

Name phosphate

Initial concentration $0.0040 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v15, v28 and as a product in v36).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{Pi} = |v_{37}| - |v_{18}| - |v_{29}| \tag{121}$$

7.32 Species Fum

Name fumarate

Initial concentration $6.5 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v17 and as a product in v16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fum} = |v_{19}| - |v_{20}| \tag{122}$$

7.33 Species SCoA

Name succinyl-CoA

Initial concentration $2.941 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v15 and as a product in v14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SCoA} = v_{17} - v_{18} \tag{123}$$

7.34 Species Suc

Name succinate

Initial concentration $0.00295 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v16 and as a product in v15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Suc} = |v_{18}| - |v_{19}| \tag{124}$$

7.35 Species GTP

Name guanosine triphosphate

Initial concentration $0.0045 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in v15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GTP} = |v_{18}|\tag{125}$$

7.36 Species GDP

Name guanosine diphosphate

Initial concentration $4.5 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in v15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GDP} = -v_{18} \tag{126}$$

7.37 Species Ala

Name slanine

Initial concentration $0.00344 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in v20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Ala} = -v_{22} \tag{127}$$

7.38 Species Asp

Name aspartate

Initial concentration $0.00114 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v22 and as a product in v21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Asp} = v_{23} - v_{24} \tag{128}$$

7.39 Species Glu

Name glutamate

Initial concentration $0.00303 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v21 and as a product in v20, v22).

$$\frac{d}{dt}Glu = |v_{22}| + |v_{24}| - |v_{23}| \tag{129}$$

7.40 Species H20

Name water

Initial concentration $0.0010 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a product in v28).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H2O} = v_{29} \tag{130}$$

7.41 Species ETFred

Name electron transfer flavoprotein (reduced form)

Initial concentration $3.1 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v34 and as a product in v35).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{ETFred} = v_{36} - v_{35} \tag{131}$$

7.42 Species ETFox

Name electron transfer flavoprotein (oxidised form)

Initial concentration $3.2 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v35 and as a product in v34).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ETFox} = |v_{35}| - |v_{36}| \tag{132}$$

7.43 Species FADH2

Name FADH2

Initial concentration $7.2 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v35 and as a product in v37).

$$\frac{d}{dt}FADH2 = |v_{38}| - |v_{36}| \tag{133}$$

7.44 Species FAD

Name FAD

Initial concentration $0.00101~\text{mol}\cdot l^{-1}$

This species takes part in two reactions (as a reactant in v37 and as a product in v35).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FAD} = |v_{36}| - |v_{38}| \tag{134}$$

7.45 Species OG

Name oxoglutarate

Initial concentration $2.1 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v14, v20, v30 and as a product in v12, v21).

$$\frac{\mathrm{d}}{\mathrm{d}t}OG = |v_{16}| + |v_{23}| - |v_{17}| - |v_{22}| - |v_{31}|$$
(135)

7.46 Species Mal

Name malate

Initial concentration $5 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in v18, v33, v42, v44 and as a product in v17, v30).

$$\frac{d}{dt}Mal = |v_{20}| + |v_{31}| - |v_{21}| - |v_{34}| - |v_{42}| - |v_{45}|$$
(136)

7.47 Species OXA

Name oxaloacetate

Initial concentration $4 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v10, v21 and as a product in v18, v36).

$$\frac{\mathrm{d}}{\mathrm{d}t}OXA = |v_{21}| + |v_{37}| - |v_{14}| - |v_{23}| \tag{137}$$

7.48 Species Cit

Name citrate

Initial concentration $4.2 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in v11 and as a product in v10, v33).

$$\frac{d}{dt}Cit = |v_{14}| + |v_{34}| - |v_{15}| \tag{138}$$

7.49 Species IsoCit

Name isocitrate

Initial concentration $4.2 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v12 and as a product in v11, v42).

$$\frac{d}{dt}IsoCit = |v_{15}| + |v_{42}| - |v_{16}|$$
 (139)

7.50 Species ATP

Name adenine triphosphate

Initial concentration $0.0045 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v36, v43 and as a product in v28).

$$\frac{d}{dt}ATP = |v_{29} - v_{37}| - |v_{43}| \tag{140}$$

7.51 Species ADP

Name adenine diphosphate

Initial concentration $4.5 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v28 and as a product in v36, v40 and as a modifier in v12).

$$\frac{d}{dt}ADP = |v_{37}| + |v_{40}| - |v_{29}| \tag{141}$$

7.52 Species NADP_p

Name NADP+

Initial concentration $0.0101 \text{ mol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in v44).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADP}_{-}\mathrm{p} = -v_{45} \tag{142}$$

7.53 Species NADPH

Name NADPH

Initial concentration $7.2 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in v44).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADPH} = v_{45} \tag{143}$$

7.54 Species NAD_p

Name NAD+

Initial concentration $0.0101 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v9, v12, v14, v18 and as a product in v24).

$$\frac{d}{dt}NAD_{p} = |v_{25}| - |v_{13}| - |v_{16}| - |v_{17}| - |v_{21}|$$
(144)

7.55 Species NADH

Name NADH

Initial concentration $7.2 \cdot 10^{-4} \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in v24 and as a product in v9, v12, v14, v18).

$$\frac{d}{dt}NADH = |v_{13}| + |v_{16}| + |v_{17}| + |v_{21}| - |v_{25}|$$
(145)

7.56 Species Q

Name ubiquinone

Initial concentration $0.026 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in v16, v24, v34 and as a product in v25).

$$\frac{\mathrm{d}}{\mathrm{d}t}Q = |v_{26}| - |v_{19}| - |v_{25}| - |v_{35}| \tag{146}$$

7.57 Species QH2

Name ubiquinol

Initial concentration $0.028 \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in v25 and as a product in v16, v24, v34).

$$\frac{d}{dt}QH2 = |v_{19}| + |v_{25}| + |v_{35}| - |v_{26}|$$
(147)

7.58 Species Cytc3p

Name ferrocytochrome c

Initial concentration $0.0030 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v25 and as a product in v26).

$$\frac{d}{dt}Cytc3p = |v_{27}| - 2|v_{26}| \tag{148}$$

7.59 Species Cytc2p

Name ferricytochrome c

Initial concentration $1.1 \cdot 10^{-4} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in v26 and as a product in v25).

$$\frac{d}{dt}Cytc2p = 2 v_{26} - v_{27}$$
 (149)

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany