

Київський Політехнічний Інститут: Розробка та аналіз алгоритмі...

PARUS

Навчальна програма

Інформація про курс

Обговорення

Прогрес

Конспект лекцій

Будь ласка, зверніть увагу! Це завдання на оцінку, яка буде враховуватися для отримання сертифікату.

Для виконання завдання у вас є 2-3 спроби залежно від завдання! Зарахована буде оцінка за останню спробу.

ТЕСТОВЕ ЗАВДАННЯ 1 (3/3 балів)

ПИТАННЯ 1

Припустимо ми використовуємо хеш-функцію h для хешування n різних ключів в таблицю розміром m. Яка очікувана кількість елементів, які потраплять в першу комірку таблиці, за умови рівномірного хешування, тобто коли всі елементи розподіляються незалежно та рівномірно по таблиці?

 $\bigcirc m/(2n)$

 $\bigcap m/n$

 $\bigcirc n/(2m)$

 \bigcirc n/m \checkmark

 $\bigcirc 1/n$

 $\bigcirc 1/m$

ПИТАННЯ 2

Припустимо, що ми використовуємо метод ланцюгів для усунення колізій в хеш-таблиці, для якої виконується нерівність: $|U| \geq nm$, тобто загальна кількість унікальних значень ключів більша або дорівнює добутку кількості ключів n, які будуть вставлятись в таблицю, на розмірність таблиці m. За умови, що ми можемо обрати довільний набір n ключів з множини U, який найгірший час роботи процедури пошуку в такій таблиці? Припускається, що виконується умова рівномірного хешування.

 $\Theta(m/n)$ $\Theta(n/m)$ $\Theta(n)$ $\Theta(m)$

ПИТАННЯ 3

Припустимо, що в нас є ключ k, який потрібно знайти в хеш-таблиці, комірки якої пронумеровані від 0 до m-1, і нехай в нас є хеш-функція k, яка відображає простір всіх ключів на множину $\{0,\ldots,m-1\}$. Схема пошуку виглядає наступним чином.

- 1. Обраховуємо значення i = h(k) та визначаємо j = 0.
- 2. Досліджуємо комірку i на відповідність шуканому ключу k. Якщо ключ знайдений або комірка порожня, то пошук припиняється.
- 3. Обраховуємо нові значення $j=(j+1)\mod m$ та $i=(i+j)\mod m$ і переходимо на крок 2.

Враховуючи, що m ϵ степенем 2, який з типів дослідження реалізу ϵ описана схема?

© Квадратичне дослідежння $h'(k,i) = (h(k) + i/2 + i^2/2) \mod m$
Свадратичне дослідежння $h'(k,i) = (h(k) + i + i^2/4) \mod m$
Пінійне дослідежння $h'(k,i) = (h(k) + 2i) \mod m$
Пінійне дослідежння $h'(k,i) = (h(k) + i/2) \mod m$

Ви використали 1 з 2 можливостей надіслати свої матеріали на розгляд.

ТЕСТОВЕ ЗАВДАННЯ 2 (6/6 балів)

ПИТАННЯ 4

Припустимо, що в нас ϵ хеш-таблиця розмірності m для хешування n різних ключів. І ми використовуємо метод ланцюгів для уникнення колізій. За умови рівномірного хешування, чому дорівнює очікувана загальна кількість колізій в цій хеш-таблиці?

ПИТАННЯ 5

Припустимо, що для уникнення колізій ми використовуємо відкриту адресацію із подвійним хешуванням, тобто хеш-функцію $h(k,i)=(h_1(k)+ih_2(k))\mod m$, де m - розмірність таблиці. Нехай також існує деякий ключ k^* , для якого значення хеш-функції $h_2(k^*)$ та число m мають найбільший спільний дільник $d\geq 1$. Якою буде тоді максимальна довжина послідовності досліджень для цього ключа k^* ? Іншими словами, вам потрібно оцінити максимальну кількість комірок, в які може бути розміщений ключ k^* .

ПИТАННЯ 6

Нехай в нас ϵ хеш-таблиця з відкритою адресацією та коефіцієнтом заповнення α . Знайдіть ненульове значення α , при якому середня кількість досліджень при невдалому пошуку буде вдвічі більшою за середню кількість досліджень у випадку вдалого пошуку. Введіть отримане число із точністю до 3 знаків після коми.

0.716

0.716

Перевірка **Зберегти** Показати відповідь

Ви використали 1 з 3 можливостей надіслати свої матеріали на розгляд.

Про нас Преса FAQ Контакти

© 2015 Prometheus, some rights reserved

- Умови надання послуг та Кодекс Честі

