

Report No.: EED32H002371 Page 1 of 40

TEST REPORT

Product : Fetal Doppler

Trade mark : N/A

Model/Type reference: iFM-10B

Serial Number : iFM-10B2015110008

Report Number : EED32H002371

FCC ID : 2AG9TLKNIFM10B

Date of Issue : Jan. 18, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Shenzhen Luckcome Technology Inc., Ltd.
201, 2F, NO.1 ZhongJian Industrial Building, NO.18 Yanshan Road,
SheKou, Nanshan District, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Report Seal division of the Compiled by:

Lon You

Reviewed by:

1-11011 -01

LWO Date:

Jan. 18, 2016

Sheek Luo Lab supervisor

Check No.:1996254339

2 Version

Version No.	Date	Description	0)
00	Jan. 18, 2016	Original		
		(3)		
		(67)	(67)	(0,)

Report No.: EED32H002371 Page 3 of 40

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

4 Content

1 COVER PAGE			(6)	
2 VERSION				
3 TEST SUMMARY				
4 CONTENT				
5 TEST REQUIREMENT				
5.1 TEST SETUP 5.1.1 For Conducted tes 5.1.2 For Radiated Emis	st setupssions test setupnissions test setup			
6 GENERAL INFORMATION				7
6.1 CLIENT INFORMATION 6.2 GENERAL DESCRIPTION 6.3 PRODUCT SPECIFICATIO 6.4 DESCRIPTION OF SUPPO 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STAND 6.8 ABNORMALITIES FROM S 6.9 OTHER INFORMATION R 6.10 MEASUREMENT UNCER	OF EUT N SUBJECTIVE TO THIS STATE OF THE STATE OF T	NDARD		78 38 28 29
7 EQUIPMENT LIST	•••••		•••••	10
8 RADIO TECHNICAL REQU				
Appendix B) Conducted Appendix C) Band-edge Appendix D) RF Conduct Appendix E) Power Spe Appendix F) Antenna Ro Appendix G) AC Power Appendix H) Restricted	Peak Output Powere for RF Conducted Emiss cted Spurious Emissions ectral Density	sions		
PHOTOGRAPHS OF TEST S				
PHOTOGRAPHS OF EUT C	ONSTRUCTIONAL DETA	AILS		36

Report No.: EED32H002371 Page 5 of 40

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

Antenna Tower

Antenna Tower

Antenna Tower

Antenna Tower

Antenna Tower

Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:				
Temperature:	24 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010mbar			

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx		RF Channel		
rest Mode	I X/KX	Low(L)	Middle(M)	High(H)	
05014	0400041104000411	Channel 1	Channel 20	Channel40	
GFSK	2402MHz~2480MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				

Report No.: EED32H002371 Page 7 of 40

6 General Information

6.1 Client Information

Applicant:	Shenzhen Luckcome Technology Inc., Ltd.		
Address of Applicant:	201, 2F, NO.1 ZhongJian Industrial Building, NO.18 Yanshan Road, SheKou, Nanshan District, Shenzhen, Guangdong, China		
Manufacturer:	Shenzhen Luckcome Technology Inc., Ltd.	-41	
Address of Manufacturer:	201, 2F, NO.1 ZhongJian Industrial Building, NO.18 Yanshan Road, SheKou, Nanshan District, Shenzhen, Guangdong, China		
Factory:	Shenzhen Luckcome Technology Inc., Ltd.		
Address of Factory:	201, 2F, NO.1 ZhongJian Industrial Building, NO.18 Yanshan Road, SheKou, Nanshan District, Shenzhen, Guangdong, China		

6.2 General Description of EUT

Product Name:	Fetal Doppler		
Model No.(EUT):	iFM-10B	-0-	-0
Trade Mark:	N/A	(-17)	(2)
EUT Supports Radios application:	Bluetooth V4.0 BLE		
Power Supply:	DC 3.7V		
Sample Received Date:	Dec. 16, 2015		
Sample tested Date:	Dec. 16, 2015 to Dec. 18, 2015		(6,7)

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz	~2480MHz		
Bluetooth Version:	4.0	· ·	(2)	(2)
Modulation Type:	GFSK	(3)	(25)	
Number of Channel:	40			
Sample Type:	Portable p	oroduction		
Test Power Grade:	4 (manufa	acturer declare)	0.00	-0.5
Test Software of EUT:	ISRT_V2.	.1.26.4392 (manufa	cturer declare)	
Antenna Type and Gain::	Type: Inte Gain: -2dl	ernal antenna Bi		
Test Voltage:	DC 3.7V			

Operation Frequency each of channel

Operation	requericy cac	or charine			/ &\\		/ 43
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002371 Page 8 of 40

8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	V3400D-326	FCCDOC	СТІ
Mouse	L.Selectron	M004	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

Report No.: EED32H002371 Page 9 of 40

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from StandardsNone.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE november de ductor	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
-°7	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002371 Page 10 of 40

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Communication test set	Agilent	Agilent N4010A	MY47230124	04-02-2015	04-01-2016
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(C)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(4)	01-13-2015	01-12-2016
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

Conducted disturbance Test					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016
Temperature/ Humidity Indicator	Belida	TT-512	101	01-14-2015	01-13-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 11 of 40

Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017

	:	3M Semi/full-anech	noic Chamber		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	06-30-2015	06-28-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/Humi dity Indicator	TAYLOR	1451	5190	07-08-2015	07-07-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002		01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001		01-13-2015	01-12-2016

Report No.: EED32H002371 Page 12 of 40

8 Radio Technical Requirements Specification

Reference documents for testing:

N	lo.	Identity	Document Title
	1	FCC Part15C (2015)	Subpart C-Intentional Radiators
	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Appendix A) 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.5008	1.0975	PASS
BLE	MCH	0.5128	1.0967	PASS
BLE	HCH	0.5320	1.0969	PASS

Note: Peak detector is used.

Test Graphs

Page 14 of 40

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.128	PASS
BLE	MCH	-0.992	PASS
BLE	HCH	-1.404	PASS

Test Graphs

Page 16 of 40

Appendix C) Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-1.626	-56.091	-21.63	PASS
BLE	HCH	-1.970	-56.455	-21.97	PASS

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Appendix D) RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.625	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.545	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-1.993	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32H002371 Page 19 of 40

Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-16.611	PASS
BLE	MCH	-16.540	PASS
BLE	НСН	-16.898	PASS

Test Graphs

Page 22 of 40

Report No.: EED32H002371 Page 23 of 40

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna car be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -2dBi.

Report No.: EED32H002371 Page 24 of 40

Appendix G) AC Power Line Conducted Emission

•	Test Procedure:	Test frequency range :150KHz-30MHz
	100(110000010.	The mains terminal disturbance voltage test was conducted in a shielded room.
		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
		3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
		4) The test was performed with a vertical ground reference plane. The rear of the

- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Fraguency range (MHz)	Limit (c	lΒμV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 25 of 40

Live line:

N	lo.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)		Lin (dBı			rgin dB)		
		MHz	Peak	QP	AVG	dΒ	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.3220	41.34	38.00	20.50	9.82	51.16	47.82	30.32	59.65	49.65	-11.83	-19.33	Р	
	2	0.4020	41.63	37.26	16.59	9.90	51.53	47.16	26.49	57.81	47.81	-10.65	-21.32	Р	
	3	0.6740	41.15	37.00	15.71	9.90	51.05	46.90	25.61	56.00	46.00	-9.10	-20.39	Р	
	4	1.2740	40.50	36.25	20.26	10.00	50.50	46.25	30.26	56.00	46.00	-9.75	-15.74	Р	
	5	1.9260	40.23	36.00	17.11	10.00	50.23	46.00	27.11	56.00	46.00	-10.00	-18.89	Р	
	6	2.2500	41.77	38.01	20.31	10.00	51.77	48.01	30.31	56.00	46.00	-7.99	-15.69	Р	
	7	5.8980	44.30	41.00	20.95	10.00	54.30	51.00	30.95	60.00	50.00	-9.00	-19.05	Ρ	

Page 26 of 40

Neutral line:

	No.	Freq.		ding_Le dBuV)	vel	Correct Factor	М	easurem (dBuV)	nent	Lin (dBi			rgin IB)		
		MHz	Peak	QP	AVG	dΒ	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.3980	41.41	37.00	24.71	9.90	51.31	46.90	34.61	57.89	47.89	-10.99	-13.28	Р	
-	2	0.7380	39.93	35.60	18.90	9.90	49.83	45.50	28.80	56.00	46.00	-10.50	-17.20	Ρ	
	3	1.3060	38.80	36.50	14.39	10.00	48.80	46.50	24.39	56.00	46.00	-9.50	-21.61	Р	
	4	2.3300	38.26	35.20	13.95	10.00	48.26	45.20	23.95	56.00	46.00	-10.80	-22.05	Р	
	5	2.8300	37.94	34.00	14.24	10.00	47.94	44.00	24.24	56.00	46.00	-12.00	-21.76	Р	
	6	5.7060	41.14	37.98	19.56	10.00	51.14	47.98	29.56	60.00	50.00	-12.02	-20.44	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32H002371 Page 27 of 40

Appendix H) Restricted bands around fundamental frequency (Radiated)

Receive	er Setup:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak	
		Ab av a 4011-	Peak	1MHz	3MHz	Peak	10
	(6	Above 1GHz	Peak	1MHz	10Hz	Average	(6)
Test Pr	ocedure:	Below 1GHz test procedu	re as below:				
		 a. The EUT was placed of at a 3 meter semi-anect determine the position of the EUT was set 3 meters are was mounted on the top. b. The EUT was set 3 meters are was mounted on the top. c. The antenna height is was determine the maximum polarizations of the anternation of the anternation was tuned table was turned from the extraction of the test-receiver system. e. The test-receiver system Bandwidth with Maximum of the Place a marker at the extraction of the position of the position of the extraction of the position of the extraction of the position of the position	hoic camber. The fitness away from the highest raters away from the firm one of a variable-from one of a value of the fitnession, the EUT to heights from the degrees to 360 m was set to Peism Hold Mode.	the table was adiation. the interferencient anter to found the strength make the number to degrees the ak Detect	s rotated 3 ence-recei nna tower. ur meters n. Both hor neasureme ged to its v 4 meters a o find the i Function a	wing antennations above the grain and vent. worst case and the rotatemaximum reard Specified	to a, wh ounce rertice nd the able
		frequency to show com bands. Save the spectr for lowest and highest of	um analyzer plo				
		bands. Save the spectr for lowest and highest of the spectra shows a spectra for lowest and highest of the spectra shows a spectra for lowest and highest of the spectra for lowest spectra for lowest spectra for lowest spectra for lowest shows a spectra for lowest and highest of lowest spectra for lowest	um analyzer plochannel re as below: e is the test site ber change form i meter and tab west channel, nents are perfo	e, change from table 0.8 le is 1.5 method in X, kis positioni	or each portion Semi- metre to 1 tre). channel Y, Z axis p ng which i	Anechoic Ch .5 metre(Abo cositioning for t is worse ca	dulat namb ove
Limit:		bands. Save the spectr for lowest and highest of the spectra shows a specific for lowest and highest of the specific for lowest and highest of the specific for lowest and highest of the spe	um analyzer plochannel re as below: e is the test site ber change form the meter and tab west channel, ments are perform the X as the suntil all frequents.	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies me	or each portion Semi- metre to 1 tre). channel Y, Z axis p ng which i	Anechoic Ch.5 metre(Aboositioning for tis worse cases complete.	dulat namb ove
Limit		bands. Save the spectr for lowest and highest of the spectra section	re as below: e is the test site ber change form the meter and tab west channel; ments are perform found the X as the ments all frequents (dBµV).	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	or each portion Semi- metre to 1 tre). channel Y, Z axis programmed was red was	Anechoic Ch.5 metre(Aboositioning for tis worse cases complete.	dulat namb ove
Limit		bands. Save the spectr for lowest and highest of the spectral	um analyzer plochannel re as below: e is the test site ber change form the meter and tab west channel, ments are performents are performental fround the X are until all frequential (dBµV 40.0)	e, change from table 0.8 le is 1.5 med in X, kis positioni uencies med/m @3m)	or each portion Semi- metre to 1 tre). It channel Y, Z axis programmed was red was Rei Quasi-portion of the second	Anechoic Ch.5 metre(Abecositioning for its worse cases complete.	dulat namb ove
Limit:		bands. Save the spectr for lowest and highest of the spectra shows a specific for lowest and highest of the specific for lowest and highest of the specific for lowest and specific for lowest and specific for lowest and specific for lowest for	um analyzer plachannel re as below: e is the test site ber change form of the meter and tab west channel, ments are perform of found the X as the ments are until all frequency Limit (dBµV 40.43.44).	e, change from table 0.8 le is 1.5 method in X, kis positioni uencies method (m. @3m)	or each portion of semi- metre to 1 tre). It channel Y, Z axis programmed was red was Rei Quasi-pe	Anechoic Ch.5 metre(About is worse cases complete. mark eak Value	dulat namb ove
Limit:		bands. Save the spectr for lowest and highest of lowest and highest of the second seco	re as below: e is the test site ber change form meter and tab west channel, ments are perform found the X are until all freq Limit (dBµV 40.4 43.4	e, change from table 0.8 le is 1.5 med in X, kis positioni uencies med	or each portion of semi- metre to 1 tre). channel Y, Z axis p ng which i asured wa Rei Quasi-pe Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cases complete. mark eak Value eak Value	dulat namb ove
Limit:		bands. Save the spectr for lowest and highest of the spectra shows a specific for lowest and highest of the specific for lowest and highest of the specific for lowest and specific for lowest and specific for lowest and specific for lowest for	um analyzer plachannel re as below: e is the test site ber change form of meter and tab west channel, ments are performed found the X as res until all frequency Limit (dBµV 40.43.46.46.454.46.46.454.46.46.46.46.46.46.46.46.46.46.46.46.46	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med	or each portion of semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 metre(About 15 metre) consitioning for the second to the second teach value eak Value eak Value eak Value eak Value	dulat namb ove
Limit:		bands. Save the spectr for lowest and highest of lowest and highest of the second seco	re as below: e is the test site ber change form meter and tab west channel, ments are perform found the X are until all freq Limit (dBµV 40.4 43.4	e, change from table 0.8 le is 1.5 met the Highest rmed in X, kis positioni uencies med/m @3m)	or each portion of semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch.5 metre(Abecositioning for tis worse cases complete. mark eak Value eak Value	dulat namb ove

Report No. : EED32H002371 Page 28 of 40

Test plot as follows:

Worse case	e mode:	GFSK	FSK									
Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test channel		
2390.00	44.14	43.74	32.53	4.28	37.21	74	-30.26	Н	PK	Lowest		
2390.00	43.80	43.40	32.53	4.28	37.21	74	-30.60	V	PK	Lowest		
2483.50	45.91	45.94	32.71	4.51	37.19	74	-28.06	Н	PK	Highest		
2483.50	43.51	43.51	32.71	4.51	37.19	74	-30.49	V	PK	Highest		

Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:

100	100	5 /		10.5
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	:		_		:	1	
L	ı	r	Υ	1	ı	T	-
_	ı				ı	L	

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	/°5	300
(0.490MHz-1.705MHz	24000/F(kHz)	-		30
	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002371 Page 30 of 40

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	55.41	14.37	1.42	9.86	25.65	40.00	-14.35	Horizontal	
2	107.89	12.54	1.57	11.25	25.36	43.50	-18.14	Horizontal	
3	144.84	10.00	1.58	19.95	31.53	43.50	-11.97	Horizontal	
4 pp	211.53	11.80	2.25	20.67	34.72	43.50	-8.78	Horizontal	
5	318.82	14.01	2.51	17.81	34.33	46.00	-11.67	Horizontal	
6	668.14	20.01	3.69	10.80	34.50	46.00	-11.50	${\it Horizontal}$	

Page 31 of 40

		Ant	Cable	Kead		Limit	Over		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
								-	
-	MU-	dB/m	40	- AD. W	dDuV/m	dDul//m	dB		
	MITZ	ub/III	ub	ubuv	ubuv/m	ubuv/III	ub		
1	54.07	14.54	1.41	11.93	27.88	40.00	-12.12	Vertical	
2	108.27	12.51	1.57	17.44	31.52	43.50	-11.98	Vertical	
3 рр	157.01	10.00	1.68	26.14	37.82	43.50	-5.68	Vertical	
4	196.51	11.48	2.17	16.00	29.65	43.50	-13.85	Vertical	
5	318.82	14.01	2.51	15.94	32.46	46.00	-13.54	Vertical	
6	677.58	20.22	3.75	12.21	36.18	46.00	-9.82	Vertical	

Report No. : EED32H002371 Page 32 of 40

Transmitter Emission above 1GHz

Worse cas	e mode:	GF	SK	Test Frequer	ncyl:	2402MHz				
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Cable Coss (dB)		Read Level (dBµV)	Level (dBµV/m)		Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1326.513	30.52	38.25	2.66	48.53	43.4	16	74	-30.54	H	
1659.574	31.16	37.73	2.97	54.48	50.8	38	74	-23.12		
3709.691	33.01	36.95	5.49	45.57	47.1	12	74	-26.88	Н	
4804.000	34.69	36.82	5.11	43.35	46.3	33	74	-27.67	Н	
7206.000	36.42	37.46	6.66	42.39	48.0)1	74	-25.99	Н	
9608.000	37.88	37.82	7.73	44.18	51.9	97	74	-22.03	Н	
1668.044	31.18	37.72	2.98	48.75	45.1	19	74	-28.81	V	
2995.538	33.59	37.10	5.61	48.57	50.6	67	74	-23.33	V	
3634.910	33.07	36.97	5.50	44.76	46.3	36	74	-27.64	V	
4804.000	34.69	36.82	5.11	42.29	45.2	27	74	-28.73	C V	
7206.000	36.42	37.46	6.66	41.86	47.4	18	74	-26.52	V	
9608.000	37.88	37.82	7.73	43.87	51.6	66	74	-22.34	V	

Worse case mode:		GFSK		Test Frequencyl:			2440MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)		Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1659.574	31.16	37.73	2.97	54.03	50.43		74	-23.57	Н	
3672.110	33.04	36.96	5.49	44.62	46.19	9	74	-27.81	♥ H	
4223.950	33.36	36.88	5.34	44.55	46.37	7	74	-27.63	Н	
4880.000	34.85	36.81	5.08	41.54	44.66	3	74	-29.34	Н	
7320.000	36.43	37.43	6.77	42.80	48.57	7	74	-25.43	Н	
9760.000	38.05	37.85	7.60	43.87	51.67	7	74	-22.33	Н	
1668.044	31.18	37.72	2.98	48.36	44.80)	74	-29.20	V	
3498.735	33.17	36.99	5.52	45.38	47.08	3	74	-26.92	V	
4880.000	34.85	36.81	5.08	42.32	45.44	4	74	-28.56	V	
5925.863	35.85	36.71	7.27	44.09	50.50)	74	-23.50	V	
7320.000	36.43	37.43	6.77	42.72	48.49	9	74	-25.51	V	
9760.000	38.05	37.85	7.60	43.40	51.20)	74	-22.80	V	

Report No. : EED32H002371 Page 33 of 40

(4)		(43)							
Worse case mode:		GFSK		Test Frequencyl:		2480MHz			
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
1663.803	31.17	37.72	2.97	52.88	49.30	74	-24.70	Н	
3815.033	32.93	36.93	5.47	44.51	45.98	74	-28.02	€H/	
4960.000	35.02	36.80	5.05	41.51	44.78	74	-29.22	Н	
6017.064	35.91	36.71	7.41	43.88	50.49	74	-23.51	Н	
7440.000	36.45	37.41	6.88	42.93	48.85	74	-25.15	Н	
9920.000	38.22	37.88	7.47	43.49	51.30	74	-22.70	Н	
1663.803	31.17	37.72	2.97	48.42	44.84	74	-29.16	V	
3776.385	32.96	36.94	5.48	44.27	45.77	74	-28.23	V	
4960.000	35.02	36.80	5.05	41.40	44.67	74	-29.33	V	
6156.505	35.98	36.83	7.27	43.76	50.18	74	-23.82	V	
7440.000	36.45	37.41	6.88	41.70	47.62	74	-26.38	V	
9920.000	38.22	37.88	7.47	43.39	51.20	74	-22.80	V	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32H002371 Page 34 of 40

PHOTOGRAPHS OF TEST SETUP

Test mode No.: iFM-10B

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32H002371 Page 36 of 40

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: iFM-10B

View of product-1

View of product-2

Report No. : EED32H002371 Page 37 of 40

View of product-3

View of product-4

Report No.: EED32H002371 Page 38 of 40

View of product-5

Report No. : EED32H002371 Page 39 of 40

View of product-7

View of product-8

Report No.: EED32H002371 Page 40 of 40

View of product-9

View of product-10
*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com