Первый курс, весенний семестр

Практика по алгоритмам #3

Segment tree, Scanline

Contents

1	Новые задачи	2
2	Домашнее задание	3
	2.1 Обязательная часть	3
	2.2 Дополнительная часть	3

1 Новые задачи

- 1. Даны пары $\langle x_i, y_i \rangle$, у каждой пары есть вес w_i . Найти подмножество, возрастающее по x_i , по y_i и с максимальным суммарным весом w_i . $\mathcal{O}(n \log n)$.
- 2. Дан набор точек и прямоугольников со сторонами, параллельными осям координат.
 - а) Для каждой точки узнать, сколько прямоугольников ее покрывает. $\mathcal{O}(n \log n)$.
 - b) Узнать, какую точку покрывает максимальное число прямоугольников. $\mathcal{O}(n \log n)$.
- 3. k-инверсией в перестановке p называется набор индексов $i_1 < i_2 < \ldots < i_k$, такой, что $p[i_1] > p[i_2] > \ldots > p[i_k]$. Найти число k-инверсий за $\mathcal{O}(nk \log n)$.
- 4. Запросы: количество различных чисел на отрезке [L, R]. Тут будет подсказка про prev[i].
 - a) offline 3a $\mathcal{O}(\log^2 n)$.
 - b) offline 3a $\mathcal{O}(\log n)$.
 - c) online 3a $\mathcal{O}(\log n)$.
- 5. Запросы: k-е по порядку среди различных чисел на отрезке [L, R].
 - a) offline 3a $\mathcal{O}(\log^3 n)$.
 - b) online 3a $\mathcal{O}(\log^3 n)$.
 - c) (*) online за $\mathcal{O}(\log^2 n)$.
- 6. Есть дерево отрезков над массивом длины 2^k . В нем сделали запрос на префиксе длины R. Какие, в зависимости от R, вершины дерева внесут вклад в ответ на запрос?
- 7. Есть массив из нулей и единиц. Запросы: поменять элемент; найти ближайший слева/справа ноль к позиции i. Online за $\mathcal{O}(\log n)$.
- 8. Сколько раз встречается число x на отрезке [L,R]. Online, массив не меняется, $\mathcal{O}(\log n)$.
- 9. Вывести все числа на отрезке [L, R], значение которых $\geq X$. $\mathcal{O}(\log n + k)$, k размер ответа.
- 10. Даны отрезки на прямой. Запросы: даётся точка, вывести все отрезки, которые ее покрывают, и которые еще не были выведены раньше (таким образом, каждый отрезок будет выведен не более одного раза за всё время). Суммарное время работы $\mathcal{O}((m+n)\log n)$.
- 11. Дан массив чисел. Нужно находить gcd всех чисел, значения которых находятся в промежутке от X до Y.
 - а) Массив не меняется. $\mathcal{O}(\log n)$.
 - b) А потом меняется! $\mathcal{O}(\log n)$.
 - c) Массив не меняется, нужно брать числа $L \leq i \leq R, X \leq a_i \leq Y$. $\mathcal{O}(\log^2 n)$.
- 12. (*) Есть множество точек R (еноты) и множество точек B (ягоды). Для каждой ягоды найти ближайшего к ней енота по манхэттенской метрике $(|x_1 x_2| + |y_1 y_2|)$, среди всех ближайших взять минимального по индексу енота. $\mathcal{O}(n \log^2 n)$ времени, $\mathcal{O}(n)$ памяти.
- 13. (*) Решить задачу (5) для случая, когда массив может меняться.

2 Домашнее задание

2.1 Обязательная часть

- 1. (2) Дан массив чисел. За $\mathcal{O}(\log n)$ в online обрабатывать запросы:
 - а) посчитать gcd всех чисел на отрезке [L,R]
 - b) умножить на x все числа на отрезке [L, R]
 - c) изменить значение i-го числа
- 2. (2) Дан массив чисел. За $\mathcal{O}(\log n)$ в online обрабатывать запросы:
 - а) посчитать произведение всех чисел на отрезке [L,R]
 - b) присвоить значение x всем числам на отрезке [L,R]
- 3. (2) Дан массив целых чисел. За $\mathcal{O}(\log n)$ в online обрабатывать запросы: дано pos и x, найти ближайший справа/слева к pos элемент $\geq x$.
- 4. (3) Дан массив чисел. За $\mathcal{O}(\log n)$ в online обрабатывать запросы:
 - а) посчитать сумму кубов чисел на отрезке [L,R]
 - b) прибавить x ко всем числам на отрезке [L,R]
 - c) получить значение i-го числа
- 5. (3) Дана скобочная последовательность из круглых скобок. Запросы: является ли отрезок [L, R] правильной скобочной последовательностью; изменить i-ю скобку. $\mathcal{O}(\log n)$, online.
- 6. (3+2) Дан набор отрезков на клетчатой полоске. Сначала в каждой клетке сидит котик. Запрос: из клетки i ушёл котик, сколько отрезков после этого не содержат ни одного котика? а) (3) Решите в offline.
 - *b) (2) Решите в online.
- 7. (3) Дан набор точек на плоскости, каждая имеет заданный положительный вес. Точки какого максимального суммарного веса можно покрыть прямоугольником $a \times b$ со сторонами, параллельными осям координат?
- 8. (4) Предложите способ выделить $\mathcal{O}(n \log n)$ отрезков в массиве размера n так, что любой отрезок [L,R] можно было представить в виде объединения $\mathcal{O}(1)$ непересекающихся выделенных отрезков. Заметим, что дерево отрезков выделяет $\mathcal{O}(n)$ отрезков, и любой отрезок представляется как объединение $\mathcal{O}(\log n)$ из них.

2.2 Дополнительная часть

- 1. (4) Рассмотрим дерево поиска, в котором поддерживается инвариант: размер поддерева сына каждой вершины не меньше размера поддерева любого внука этой вершины. Опишите, как работают операции перебалансировки над таким деревом. Докажите, что амортизированное время работы операций над таким деревом $\mathcal{O}(\log n)$.
- 2. (4) Дан набор точек на плоскости, лежащих в квадрате $[0, S] \times [0, S]$. Найти за $\mathcal{O}(n \log n)$ квадрат тах площади, лежащий целиком в $[0, S] \times [0, S]$ и не содержащий ни одной точки.
- 3. (4) Дан массив чисел. Нужно находить gcd всех a_i , таких, что $L \leq i \leq R, X \leq a_i \leq Y$. Массив не меняется. Online. $\mathcal{O}(\log n)$.
- 4. (4) Придумать структуру данных, хранящую отрезки на прямой с координатами от 1 до M и поддерживающую **online** запросы:
 - а) добавить отрезок
 - b) удалить отрезок
 - с) вывести отрезки, покрывающие заданную точку за $\mathcal{O}(k + \log n)$, k размер ответа

Решение с использованием $\omega(n)$ памяти получит 2 балла. Решение с $\mathcal{O}(n)$ памяти и $\mathcal{O}(\log M)$ времени получит все 4 баллы.