Posrednici umreženih sustava

Prof. dr. sc Siniša Srbljić

Dr. sc. Ivan Benc

Fakultet elektrotehnike i računarstva, Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Quality of Service in Middleware Systems

Dr. sc. Daniel Skrobo

Fakultet elektrotehnike i računarstva, Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Outline

- Introduction
- Quality of Service
- Quality of Experience
- Service Level Agreements
- Conslusion

Introduction

 Enforcing quality in computer systems is a dificult task that requires effort in a range of software engineering activities

- Some of the key features of software quality are
 - -Correctness
 - Completeness
 - Scalability
 - Fault-tolerance

- Extensibility
- Maintainability
- Documentation

Quality in Middleware Systems

- Middleware systems must be designed with respect to quality assurance expectations of users
 - Middleware includes open services and functionalities
 - Quality assurance is a basis for enforcing applicationspecific middleware services and functionalities
 - Service providers depend on quality assurance to deliver their end services to users over middleware platform

Middleware Classification

Resource Management

Application management

Database Middleware Software Level Resources

Database access, Data transactions Application Middleware

Application Development and Collaboration

Common application services and functionalities

nfrastructure Middleware Hardware-level Resources

CPU, Memory, Storage Space

Communication Middleware

Interapplication Communication

Remote procedure call, Message queue

Quality in Middleware Layers

Differentiated classes of quality assurance

 Each type of middleware system requires unique quality of service assurance level

Combined quality of middleware platform

 Quality of each middleware layer provides support for the grand total quality of the entire middleware platform

Quality Assurance in Context

Quality Assurance in Context

- Quality assurance in the engineering process
 - Design and implementation (Code quality)
 - Test (Functional quality)
 - Optimization (Nonfunctional quality)

- Quality assurance in the deployment and execution
 - Execution (Quality of Service and Quality of Experience)

Quality of Service and Experience

- Quality of Service (QoS)
 - Objective measure of characteristics of the service delivered provider to user

- Quality of Experience (QoE)
 - User's subjective impression on the quality of the used service

Effective Quality = Deliverables - Expectations

Quality of Service

"It is the quality of our work which will please God and not the quantity"

~Mahatma Gandhi

Quality of Service

 Quality of Service (QoS) defines the functional and nonfunctional characteristics of a computing system that are delivered as a service to end-user

QoS aspects

- Resources define the hardware and software artifacts that are served to the user
- Metrics define the objective and consistent way to measure the quality of the delivered resources

QoS resources and metrics

Computing power [CPUh]

Storage space size [MB]

Network bandwidth [Mbps]

Network Delay[s]

Data quantity and quality [MB, %]

Computation precision [%]

Application usage time [s]

- QoS mechanisms enforcement
 - Completeness
 - Type of Guarantees
 - Performance Type or Level
 - Connections
 - Degree of Support
 - Flexibility and Availability

Completeness

– Is it a total QoS solution or just a component of QoS scheme?

Type of guarantees

Are guarantees strict (always fulfilled) or dynamic (mostly fulfilled) ?

Performance type or level

Performance level is constant (delay < 20ms) or dynamic (mostly delay < 20ms) ?

Connections

 Is service packet-oriented (messages) or connectionoriented (virtual connection negotiation)?

Degree of Support

– Does the scheme support local or End-to-End QoS?

Flexibility and Adaptability

– Is the scheme applicable to systems of variable sizes (LAN, MAN, WAN, Internet)?

QoS Enforcement Levels

Hardware-Level QoS

Connectivity-Level QoS

Data-Level QoS

Application-Level QoS

Hardware-level QoS

 Utilization of hardware resources in compliance with resource availability and system status

Battery lifetime

Processing power

Communication range

Data throughput

Hardware-level QoS

- Optimization hardware resources utilization in MANET (Mobile Ad Hoc Networks) systems
 - Collection of independent computing nodes
 - Communicating through wireless network
- MANET QoS management factors
 - Topology management
 - Packet Routing
 - Data acquisition and processing
 - Battery life

Hardware-level QoS

N – Wireless Network node

R – Communication perimeter

- Messages sent between sources and sinks in a network receive a differentiated level of service
 - Network throughput
 - Network latency
- Classes of network packet streams
 - Best effort traffic (File transfer)
 - Normal traffic (Document fetch)
 - Real-time traffic (Audio and Video Multimedia)
 - Management traffic (Monitoring and Control)

P1 – Best Effort, P2 – Normal Priority, P3 – Real-time Priority, PM – Management

Computing Connectivity-Level QoS

- Network is modeled as an extended graph structure
 - Nodes represent network connections and interconnection nodes
 - Nodes are assigned delay and throughput characteristics
- Packet routing decisions based on algorithms for path length optimization
 - Solve network for data streams with respect to their allocated QoS characteristics

Network Model with QoS Guarantees

Network Model with QoS Guarantees

- N Interconnection node
- C Interconnection link

Communication end-to-end delay

$$D_P = \sum_{c \in Pc} D_C + \sum_{n \in Pn} D_n(\theta)$$

- Dc transmission delay for connection node C
- D_N (Θ) transmission delay for interconnection node N as a function of existing load
- QoS constraints for set of streams

$$D_P \leq D_P^{Max}$$

Data-level QoS

 The performance perceived by the users of a web service depends on the efficiency of protocols that operate between web clients and servers

QoS Issues

- Data Retrieval Latency
- Data Availability

Data-Level QoS Enforcement

Data-level QoS Enforcement

Client-side

Data Caching (Data pull, push, and hybrid protocols)

Server-side

- Data Replication (Consistency protocols)
- Request Load Balancing (Request forwarding policies)

Integration Middleware

- Data Caching (Data pull, push, and hybrid protocols)
- Server Selection (Request forwarding policies)

Data Caching

 Data is moved close to clients to reduce response time and save bandwidth

- Data is periodically refreshed from the source
- Data Push Protocols
 - Data is transferred on change from source to clients
- Hybrid Protocols

Data Replication

Data is kept in multiple copies in the system

Enforce fault tolerance and availability

Propagate changes among replicas

Uniformly utilize data sources

Server Selection Strategies

Equal-Load (EL)

Least-Recently-Used (LRU)

Application-level QoS

Management of applications

Service execution duration (D)

Service cost(C)

Service reliability (R)

Service availability (A)

Service reputation (E)

Business activity monitoring systems

- Monitor QoS of application integration deployment
- Facilitate change to sustain desired QoS

Application-level QoS

- Deployment of QoS-aware application through service composition
 - Select basic services
 - Interconnect services
 - Deploy and execute service composition

- Deployed Application QoS
 - End-product of basic services QoS characteristics

Application-level QoS

Goal functions for QoS-aware application composition

Minimize response time (D)

– Minimize total price (P)

– Maximize reliability (R)

– Maximize availability (A)

– Maximize reputation (F)

Example: QoS-Aware Composition

- Application is built by composing services
- Basic services are grouped into service classes
- Service classes
 - Services have the same functional properties (purpose, function, usage context and pattern)
 - Services have differentiated nonfunctional properties (cost, performance, availability, reliability, reputation)

Example: QoS-Aware Composition

Quality of Experience

"Information is pretty thin stuff unless mixed with experience"

~Clarence Day, The Crow's Nest

Quality of Experience

- How does effective service design provides end-users with a successful and satisfying experience?
- How should be QoS features combined and in what ways in order to get a successful end-user service?

QoE and QoS

 QoS is an objective measure of service delivery characteristics and how well the provider fulfills the terms of service

 Provider may obey the terms of a contract's language, thus rating high in QoS, but, the users may be very unhappy, thus causing a low QoE

Cab Ride QoS and QoE Example

- Safety is of the utmost customer expectation
- QoS Decision (High safety)
 - The driver drives with an average speed of 10 mph
- QoE Impact (Long ride)
 - The ride takes 2 hours to
 travel 20 miles to
 the destination

QoS Engineering Factors

QoE

Quality of Experience Elements

Understand users

– How well do we understand the target users of service?

Effective design process

– Is the service a result of a well-known delivery process?

Needed

– What need does the service satisfy?

Learnable and usable

– Can the service be easily used?

Quality of Experience Elements

Appropriate

– Does the service provide needed user experience?

Aesthetic experience

– Is the use of service pleasing and sensually satisfying?

Mutable

– Can the service be personalized to individual users?

Manageable

– Can the service be controlled effectively?

Streaming of multimedia video content on mobile

devices

- Issues related to QoE
 - Picture quality
 - Sound quality
 - Prefetching delay
 - Media continuity

Device streaming capabilities

Network throughput BT

Video clip

– Duration D, size S, play throughput BP = S [Mb] / D

Playback features

- Realtime download size SR = BT * D [s]
- Buffered size SB = S SR
- Total time T = TB + D, Effectiveness E = D / T

SB

SR

Device streaming capabilities

-BT = 1.8 Mbps (3G HSDPA)

Video clip

-D = 2 min, S = 50 MB (lossless cmpr), BP = 3.5 Mbps

Playback features

- SR = BT * D [s] = 25.75 MB, SB = 24.25 MB
- Total time T = TB + D = SB/BT + D = 113 + 120 = 233 s
- Effectiveness E = D / T = 0.51 (51 %)

SB

SR

Device streaming capabilities

-BT = 1.8 Mbps (3G HSDPA)

Video clip

-D = 2 min, S = 30 MB (cmpr w. loss), BP = 2.4 Mbps

Playback features

- SR = BT * D [s] = 25.75 MB, SB = 4.25 MB
- Total time T = TB + D = SB/BT + D = 20 + 120 = 140 s
- Effectiveness E = D / T = 0.86 (86 %)

SB

SR

Design of UI elements for software and hardware

artifacts

Goals, Operators, Methods,
 and Selection rules (GOMS)

A framework for quantitative
 evaluation of user experience
 during the UI interaction process
 with a software of hardware artifact

Goals

 User purpose and intentions during interaction (send mail, download file)

Operations

 Actions performed to reach the desired goal (mouse clicks, typing in text, move object)

Methods

 Sequence of operations that users do to accomplish the goal (Select menu → Type name → Click search)

Selection rules

 Criteria used by users to select the appropriate method for accomplishing the desired goal (minimal time, minimal effort, maximal precision, maximal control)

System UI Evaluation 1 (eg. gMail)

- Goal type 1: 3 methods, 5 operations per method
 - (eg. Send mail)
- Goal type 2: 2 methods, 6 operations per method
 - (eg. Search mail)

System UI Evaluation 2 (eg. Yahoo! Mail)

- Goal type 1: 4 methods, 12 operations per method
 - (eg. Send mail)
- Goal type 2: 4 methods, 10 operations per method
 - (eg. Search mail)

QoE weight factors

wg – goal weight, wm – method weight, wo – operation weight

QoE total measure

- Weighted sum over goals, methods, and operations

$$QoE_{System} = \sum_{g \in Goals} w_g \left(\sum_{m \in Methods_g} w_m \left(\sum_{o \in Operations_m} w_o \right) \right)$$

"My idea of an agreeable person is a person who agrees with me"

~ Benjamin Disraeli

- A formal contract which defines the terms under which service provider and consumer engage in interaction with the purpose of delivering and consuming a service
- Service Level Agreement regulates
 - Priorities
 - Guarantees
 - Responsibilities
 - Warranties

- Service Level Agreement consists of a set of statements defining the level of service
 - Minimum service level
 - Target service level
- Service level metrics
 - Availability (%, 24/7 1)
 - Performance (MIPS, Mbps)
 - Turn around time (s)
 - Data volume (MB)
 - Custom metrics (hits per request)

- SLA Enforcement Standrads
 - Web Service Level Agreement Language (WSLA)
 - SLA Contract Document Specification
 - WSLA Service Deployment Information (WSLA SDI)
 - SLA Enforcement Policies
 - WS-MetadataExchange
 - SLA negotiation protocol

SLA Architecture

SLA Example – Parties

```
<Parties>
 <ServiceProvider name="provider">
    <Contact>
      <POBox>P.O.Box 218</POBox>
      <City>Yorktown, NY 10598, USA</City>
    </Contact>
  </ServiceProvider>
 <ServiceCustomer name="customer">
    <Contact>
      <Street>30 Saw Mill River RD</Street>
      <City>Hawthorne, NY 10532, USA</City>
    </Contact>
 </ServiceCustomer>
 <SupportingParty name="ms" role="MeasurementServiceProvider">
    <Contact>
      <Street>Saeumerstrasse 4</Street>
      <City>CH-8803 Ruschlikon, Switzerland</City>
    </Contact>
 </SupportingParty>
</Parties>
```

SLA Example – Operation QoS

```
<ServiceDefinition name="StockQuoteService">
  <Operation>
    <WSDLFile>http://www.uddi.com/StockQuoteService.wsdl</WSDLFile>
    <SOAPBindingName>SOAPNotificationBinding</SOAPBindingName>
    <SOAPOperationName>getQuote</SOAPOperationName>
    <SLAParameter name="AverageResponseTime"</pre>
                  type="float"
                  unit="seconds">
      <Metric>averageResponseTime</Metric>
    </SLAParameter>
    <Schedule name="MainSchedule">
      <Period>
        <Start>2001-11-30T14:00:00.000-05:00
        <End>2001-12-31T14:00:00.000-05:00</End>
      </Period>
      <Interval>
        <Minutes>2</Minutes>
        <Seconds>30</Seconds>
      </Interval>
    </Schedule>
```

SLA Example

SLA Example

```
<a href="ActionGuarantee">ActionGuarantee</a> name="q2">
    <Obliqed>ms</Obliqed>
    <Expression>
      <Predicate xsi:type="wsla:Violation">
        <ServiceLevelObjective>g1</ServiceLevelObjective>
      </Predicate>
    </Expression>
    <QualifiedAction>
      <Party>customer</Party>
      <Action actionName="notification" xsi:type="Notification">
        <NotificationType>Violation
        <CausingGuarantee>g1</CausingGuarantee>
        <SLAParameter>AverageResponseTime/SLAParameter>
      </Action>
    </QualifiedAction>
</ActionGuarantee>
```

Conclusion

Quality of Service

 Delivery of service with not only functional characteristics but also with the desired nonfunctional properties

Quality of Experience

Service quality as perceived by the service user

Service Level Agreement

 Contract specifying the required properties of service exchanged between clients and providers

References

- H.A. Duran-Limon, G.S. Blair, G. Coulson, "Adaptive Resource Management in Middleware: A Survey", IEEE Dist. Sys. Online, 2004.
- T.F. Abdelzaher, K.G. Shin, N. Bhatti, "User Level QoS-Adaptive Resource Management in Server End-Systems", IEEE Trans. on Comp., 2003.
- D.E. Taylor, "Survey and Taxonomy of Packet Classification Techniques", ACM Comp. Surv., 2005.
- L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, H. Chang, "QoS-Aware Middleware for Web Services Composition", IEEE Trans. on SW Eng., 2004.
- A.W. Bragg, "Quality of Service: Old Idea, New Options", IT Pro, 1999.
- M.P. Papazoglou, W.-J. van den Heuvel, "Web Services Management: A Survey", 2005.
- M. Conti, M. Kumar, S.K. Das, B.A. Shirazi, "Quality of Service Issues in Internet Web Services", IEEE Trans. on Comp., 2002.
- S.-N. Chuang, A.T.S. Chan, "Dynamic QoS Adaptation for Mobile Middleware", IEEE Trans. on SW Eng., 2008.