Epistatic Genetic Algorithm for Test Case Prioritization

Fang Yuan Zheng Li

2015/6/12

TCP

The Test Case Prioritization Problem. *Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to the real numbers*.

Problem: $Find T' \in PT such that$

$$(\forall T''(T'' \in PT) (T'' \neq T') [f(T') \geq (T'')].$$

NP-Hard

Different function f, which can be referred to as **fitness function**, corresponds to different objectives.

TCP

APSC(Average Percentage of statement coverage) is one of the most widely used function f.

APSC =
$$1 - \frac{TS_1 + TS_1 + ... + TS_M}{NM} + \frac{1}{2N}$$

N: the number of test cases

M: the number of code lines

 TS_i : the id of test case that first covers statement i.

AP*C

TCP

Test	Statement						
Case	1	2	3	4	5		
Α		X		X			
В		X	X				
С	X			X	X		
D	X		X				

The area filled with straight lines is the APSC for A-B-C-D

Epistasis in biology

Epistasis in GA

 The influence of a gene on the fitness of an chromosome depends on what gene values are present elsewhere.

 If a small change is made to one gene we expect a resultant change in chromosome fitness. This resultant change may vary according to the values of other genes.

Epistasis effect

Little epistasis :

- Fitness is affected by each gene independently.
- Optimization becomes gene-wise maximization.

• High epistasis:

- Too many genes are dependent on other genes.
- Good gene segment are long and of high order.
- Hard to solve.

The area filled with straight lines is the APSC for A-B-C-D

The value of APSC only depends on this segment of test cases.

Epistatic Test Case Segment (ETS): Given a permutation of all test cases in a test suite, the epistatic test case segment is a test cases segment which starts from the first test case in the execution sequence and ends with the test case that first reaches the maximum value of the test object.

The value of APSC **only** depends on this segment of test cases.

- The power of GA arises from crossover.
- Crossover is the main way to reproduce new individuals for GA.

How to adapt crossovers to TCP under the guidance of ETS.

Traditional Crossover

Epistatic Crossover for TCP

Unware of ETS

Pay more attention to ETS instead of the whole chromosome

TCP & GA

 A sequence of test cases is encoded as a chromosome.

 Use APSC as the fitness function and the value of APSC is only subject to ETS.

One-point crossover

Problems:

- If cut point is out of ETS, the fitness of offspring and one parent will be just the same.
- With more iterations of GA, ETS tends to be shorter, accordingly the possibility that cut point is out of ETS.

One-point crossover

Epistatic single crossover(E-SC)

Difference:

• SC preserves the first k elements of parents, while E-SC varies the first k elements of parents.

Advantage:

• The possibility of changing ETS becomes higher.

Two-point crossover

Order crossover(Ord)

Ord

Problems:

• The genes constructing ETS for offspring mostly come from the later genes of the parent, rather than from the ETS in parent.

Unlikely to inherit good genes from parent.

Two-point crossover

Epistatic order crossover(E-Ord)

E-Ord

Difference:

• The start position for the rest genes copied from p2.

Advantage:

 More likely to inherit good genes within ETS from parent

• What's the scale of variation in ETS should occur?

Too little:

Too much: The lost inheritance of good ETSes.

The change scale of ET\$

Research questions

• Does the epistatic crossovers outperform the original crossovers in effectiveness for TCP?

- Does the epistatic crossovers outperform the original crossovers in efficiency for TCP?
- Does the epistatic crossovers outperform other two-point crossovers in efficiency for TCP?

Experiment

Termination A: fixes the number of iterations. *Paramination B*: terminate GA while the fitness of APSC reaches a stable status. *Paramination B*: terminate GA while the fitness of APSC reaches a stable status.

Experiment	Setup
1A	SC vs E-SC with termination A
1B	SC vs E-SC with termination B
2A	Ord vs E-Ord with termination A
2B	Ord vs E-Ord with termination B
3A	E-Ord vs PMX with termination A
3B	E-Ord vs PMX with termination B

Experiment

Subject	SLOC	test suite size			
Bubject		min	max	average	
flex	3016	1047	1470	1350.17	
space	3815	1208	3229	1894.29	
bash	6181	764	1467	1063.17	
v8	59412	2564	6159	3909.15	

Experiment 1A

The average APSC values with the increasing iterations in GA with SC and E-SC for four subjects respectively.

The average iterations and average final APSC with SC and E-SC.

Subject		SC		E-SC		
Bubject	avg iters	avg APSC	variation	avg iters		
flex	56.12	0.9883	2.08E-06	74.28	0.9946	4.90E-07
space	63.52	0.9855	6.91E-07	78.42	0.9888	5.25E-07
bash	70.60	0.9590	6.23E-06	88.16	0.9686	3.69E-06
v8	62.26	0.9811	4.03E-06	79.98	0.9896	1.60E-06

Experiment 2A

The average APSC values with the increasing iterations in GA with Ord and E-Ord for four subjects respectively.

The average iterations and average final APSC with Ord and E-Ord?

Test Case	Ord			E-Ord		
	avg iters	avg APSC	variation	avg iters	avg APSC	variation
flex	24.93	0.9867	1.93E-06	101.08	0.9980	3.32E-08
space	26.29	0.9838	7.30E-07	167.78	0.9940	2.06E-07
bash	27.42	0.9553	7.10E-06	194.34	0.9836	1.34E-06
v8	25.98	0.9782	4.28E-06	130.64	0.9971	1.90E-07

Experiment 3A

The average iterations and average final APSC with PMX and E-Ord?

Test Case	PMX			E-Ord		
	avg iters	avg APSC	variation	avg iters	avg APSC	variation
flex	157.04	0.9967	1.93E-06	101.08	0.9980	3.32E-08
space	187.93	0.9929	3.67E-06	167.78	0.9940	2.06E-07
bash	229.54	0.9801	7.10E-06	194.34	0.9836	1.34E-06
v8	226.88	0.9964	4.08E-06	130.64	0.9971	1.90E-07

GAs achieved very high APSC value, but the number of iterations for E-Ord is much fewer than that for PMX.

Contribution

 Two crossover operators are proposed based on epistasis.

 Proposed crossovers outperformed other crossovers we studied yet.

Future work

- Analyze the ETS systematically.
- Improve mutation with ETS.
- Multi-objective ETS.

Q & A

Thanks