Lecture-36

Sushrut Tadwalkar; 55554711

April 12, 2024

Quotes of the day: Dr. Joshua Zahl 04/12/2024

"What you're describing sounds like we have to think, which we'd like to avoid." - on a student's answer to his question.

"Maybe it's bad, I seem to be discouraging people from thinking." – after something completely different about 15 minutes later.

0.1 Equidistribution

Definition: Fractional part of a real number

If $x \in \mathbb{R}$, $\langle x \rangle = x - \lfloor x \rfloor \in [0, 1)$, i.e., $\langle x \rangle = x \pmod{1}$. This is called the *fractional part* of a the real number x.

Let $\alpha \in \mathbb{R}$; consider the sequence $\langle n\alpha \rangle$.

- If $\alpha = \frac{p}{q} \in \mathbb{Q}$, $\langle n\alpha \rangle$ is periodic.
- If $\alpha \notin \mathbb{Q}$, every value of $\langle n\alpha \rangle$ is distinct. If $\langle n\alpha \rangle = \langle m\alpha \rangle$, then $n\alpha m\alpha \in \mathbb{Z}$, so $\alpha \in \mathbb{Q}$.

Theorem (Kronecker): E

If $\alpha \notin \mathbb{Q}$, then $\langle n\alpha \rangle$ is dense in [0,1).

Definition: Equidistributed

A sequence $(x_n) \subseteq [0,1)$ is called *equidistributed* if: for every interval $\mathcal{I} \subseteq [0,1)$,

$$\lim_{N \to \infty} \frac{\#\{n = 1, \dots, N : x_n \in \mathcal{I}\}}{N} \to \ell(\mathcal{I}),$$

where $\ell(\mathcal{I})$ is the length of \mathcal{I} .

Theorem (Weyl): F

If $\alpha \notin \mathbb{Q}$, then $\langle n\alpha \rangle$ is equidistributed.

Note. Theorem F implies theorem E, since being equidistributed is a stronger notion of being dense.

In fact, there is something else worth noting here. If $f: \mathbb{R} \to \mathbb{R}$ is 1-periodic and integrable on [0,1] and $\alpha \notin \mathbb{Q}$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(x) dx. \tag{\diamondsuit}$$

Claim 1. Theorem F is implied by eq. (\diamondsuit) .

Proof. Step-1: We verify that eq. (\lozenge) is true when $f(x) = e^{2\pi i k x}$, $k \in \mathbb{Z}$.

If k = 0, f(x) = 1: 1 = 1 is tautology.

For k > 0, RHS of eq. (\diamondsuit) is zero by a straightforward computation. For LHS:

$$\begin{split} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) &= \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k n \alpha} \\ &= \frac{1}{N} e^{2\pi i k \alpha} \left(\frac{1 - e^{2\pi i k N \alpha}}{1 - e^{2\pi i k \alpha}} \right) \to 0, \text{ as } N \to \infty. \end{split}$$

- Step-2: Note that if eq. (\diamondsuit) is true for f, g, then it is true for af + g where $a \in \mathbb{R}$. Hence, by limit laws and linearity of the integral, we conclude that eq. (\diamondsuit) holds for trigonometric polynomial functions.
- Step-3: We can further extend this to continuous 1-periodic functions using the $\varepsilon/3$ argument using Step-1, and the fact that continuous functions can be uniformly approximated using trigonometric polynomial functions.
- Step-4: Finally, we extend this to a function that is 1-periodic and integrable on one period. We know that we can approximate any Riemann integrable functions using continuous functions using step function approximations as an intermediate step in the L^1 sense. But here, we wish to have better control of the approximators.

Given $\varepsilon > 0$, let f_+, f_- be continuous, 1-periodic functions with $f_-(x) \le f(x) \le f_+(x)$, and

$$\int_0^1 \left(f_+(x) - f_-(x) \right) dx < \varepsilon.$$

We let $A := \int_0^1 f_-(x) dx$ and $B := \int_0^1 f_+(x) dx$, and note that we can split this integral using Baby Rudin theorem 6.12. We don't know if the limit of their corresponding sums in eq. (\diamondsuit) exists, but we know that the limsup and liminf exist; they might exist as extended reals, but that is fine by us. Hence, note that

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) \le \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_{+}(n\alpha)$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_{+}(n\alpha),$$

and.

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) \ge \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f_{-}(n\alpha.)$$

Therefore,

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(n\alpha) = \liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(n\alpha) = \int_0^1 f(x) \, dx.$$