Note to grader: the standard notation for "the ball of radius r around the point x in the metric space X is $B_r(x)$. This is terrible; I use the notation $X_r(x)$ to denote "the ball of radius r around the point x in the metric space X, as it is better.

Problem 7a, p111:

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous from the right. Consider $f: \mathbb{R}_{\ell} \to \mathbb{R}$. Then, by definition, $\forall a \in \mathbb{R} \forall \epsilon > 0 \exists \delta > 0 : |x-a| < \delta \text{ and } a > x \implies$ $|f(x) - f(a)| < \epsilon.$

Now, let W be open in \mathbb{R} . Then for each $a \in W$, there is an interval $I \subset W$ containing a. Consider $f^{-1}(I)$; (This is open, prove it.).

That is, for each $a \in W$, there is a set, U, open in \mathbb{R}_{ℓ} with $a \in U \subset$ $f^{-1}(W)$. Thus, for each $a' \in f^{-1}(W)$, there is a set, U, open in \mathbb{R}_{ℓ} with $a \in U \subset f^{-1}(W)$. Thus, $f^{-1}(W)$ is open.

That is, for all W open in \mathbb{R} , $f^{-1}(W)$ is open in \mathbb{R}_{ℓ} ; so $f:\mathbb{R}_{\ell}\to$ ntinuous.	\mathbb{R} is
Problem 13, p112:	
Problem 2, p118:	
Problem 3, p118:	
Problem 6, p118:	

Problem 3b, p126:

Problem 4b, p126:

Problem A:

Let X be a metric space, and let A be a countable subset of X with $\overline{A} = X$.

Consider the collection $\mathcal{C} = \{X_r(x) : x \in A, r \in \mathbb{Q}\}$. Then \mathcal{C} is countable; it's a countable union of countable sets.

Next, note that
$$\bigcup_{C \in \mathcal{C}} C = X$$
;

Problem B:

Problem C, part i:

Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$. Then $f(\{1\}) = \{1\}$, so that $f^{-1}(f(\{1\})) = \{-1, 1\}$, so that $f^{-1}(f(\{1\})) \neq \{1\}$. That is, $f^{-1}(f(A)) = A$ isn't always true.

Problem C, part ii: