

Education

University of California, San Diego (UCSD)

La Jolla, CA

M.S. ELECTRICAL AND COMPUTER ENGINEERING - INTELLIGENT SYSTEMS, ROBOTICS & CONTROL

Sept. 2023 - Mar. 2025

· Relevant Courses: Advanced Computer Vision, Introduction to Visual Learning, Sensing & Estimation in Robotics, Introduction to Robotics, Statistical Learning, Digital Image Processing, Programming for Data Analysis

National Taiwan University (NTU)

Taipei, Taiwan

B.S. MECHANICAL ENGINEERING

Sept. 2019 - Jun. 2022

• Relevant Courses: Digital Control System, Applied Electronics, Computer Programming Language, Computer Programming in Python

Experience

Intelligent Vehicle & Mechatronics Laboratory, NTU (Advisor: Kang Li)

Taipei, Taiwan

RESEARCH INTERN [ROS, PYTORCH, PYTHON, C++, OPENCV]

July. 2020 - Jan. 2022

- · Worked with a team of 10 to design and build food delivery AMR robots, cooperated with NTU social science cafeteria, local grocery store, and Taipei Expo Park.
- · Implemented Convolutional Gated Recurrent Unit for real-time Occupancy Grid Map Prediction, achieving a performance with an AUPR of 0.6771 and mitigated speed loss in the DWA path planner, saving up to 65.95% while maintaining efficiency.
- Enhanced precision docking accuracy from 55% to 94% by implementing PID control strategies and leveraging advanced AprilTag image processing techniques.

Advanced Medical Device Laboratory, NTU (Advisor: Hao-Ming Hsiao)

Taipei, Taiwan

RESEARCH INTERN [PYTHON, OPENCV, ABAQUS]

Sept. 2020 - Jul. 2021

- Utilized image processing techniques to conduct stroke risk assessment, employing image decomposition and feature extraction. Achieved a 22% reduction in the diagnosis time for Carotid Artery Stenosis.
- Engineered a cardiac catheterization stent and conducted finite element analysis to simulate and analyze its performance within the blood vessel.

Selected Projects

3D Computer Vision tasks

La Jolla, CA

Advanced 3D computer Vision course project [Python, PyTorch]

Apr. 2024 - Jun. 2024

- · Designed a denoising training method for 3D object detection model, achieving equivalent performance with 50% fewer epochs on the NuScenes dataset.
- Implemented Point Transformer V3 fusion with 3D Boundary-Aware Transformer for medical point cloud segmentation, reducing inference time by **36.9%** on intracranial aneurysm segmentation while maintaining precision.

Lidar-based & Visual-Inertial SLAM

La Jolla, CA

SENSING & ESTIMATION IN ROBOTICS COURSE PROJECT [PYTHON, OPEN3D]

Jan. 2024 - Feb. 2024

- · Implemented a Point-cloud registration algorithm utilizing Iterative Closest Point (ICP) methodology, enhancing precision in sensor fusion by integrating IMU, wheel encoder, and **LiDAR** data.
- Applied visual-inertial SLAM techniques to generate a 2-D landmark map, utilizing Extended Kalman Filter to fuse IMU and RGBD camera data.
- Engineered an occupancy grid mapping system by integrating sensor data through a differential-drive motion model and a scan-grid correlation observation model, resulting in highly accurate environmental mapping and localization for autonomous navigation.

Qualcomm RB5 MegaBot mBots

La Jolla, CA

INTRODUCTION TO ROBOTICS COURSE PROJECT [ROS, PYTHON, OPENCV]

Oct. 2023 - Dec. 2023

- Developed a robust visual SLAM system utilizing Kalman filtering and Apriltags for precise pose estimation and accurate localization in robotic applications.
- · Innovatively crafted Motion Planning Algorithms that enhanced navigation safety rates by 18% and reduced time consumption by 46%, optimizing overall efficiency in robotic navigation systems.

Autonomous Fan-Propelled Lane-Tracing Robot

Taipei, Taiwan Feb. 2021 - Jun. 2021

PRACTICE OF MECHANICAL ENGINEERING FINAL COURSE PROJECT [PYTHON, OPENCV]

- · Applied image processing techniques, including camera calibration, Hough transform, and color/gradient thresholding, to successfully implement real-time lane-tracing operations, ensuring precise and responsive performance.
- Developed comprehensive electrical layouts for various vehicle functions, ensuring seamless integration. Conducted stress and aerodynamics analyses on mechanical components using Finite element analysis to optimize performance and reliability.
- · Demonstrated effective leadership as a team leader, overseeing the optimization of robot hardware and contributing to successful problemsolving initiatives.

Awards

1st place, NTUME Billiards Robot Competition

Taipei, Taiwan

Technical Skills

Programming Languages C/C++, Python, MATLAB

Robotics SLAM, Gazebo, Navigation, System Control, Computer Vision, Motion Planning

Libraries & Toolkits PyTorch, TensorFlow, Scikit-learn, OpenCV, NumPy, Matplotlib, Inventor, AutoCAD, Solidworks, Abaqus

Operating System ROS, Linux, macOS, Windows