Prover Agent: An Agent-based Framework for Formal Mathematical Proofs

Kaito Baba¹, Chaoran Liu², Shuhei Kurita³, Akiyoshi Sannai⁴ ⁵ ⁶ ² ⁷

2025/07/24

¹The University of Tokyo, Tokyo, Japan ²Research and Development Center for Large Language Models, National Institute of Informatics, Tokyo, Japan ³National Institute of Informatics, Tokyo, Japan ⁴Kyoto University, Kyoto, Japan ⁵Shiga University, Shiga, Japan ⁶RIKEN Center for Advanced General Intelligence for Science Program, Kobe, Japan ⁷National Institute of Science Technology Policy (NISTEP), Tokyo, Japan

Section1 -

Overview

02. Prover Agent
03. Experiments
04. Conclusion

Motivation

- ► Large language models (LLMs):
 - ✓ Capable of powerful reasoning and generation
 - X Prone to errors and hallucinations
- ▶ Formal proof assistants (e.g., Lean):
 - ✓ Verify mathematical correctness
 - X Not generative; requires painstaking meticulous detail
- LLM-based formal proving is gaining attention

Yet, a large gap remains between informal reasoning and formal proving

Our goal: Bridge this gap

Our Contributions

- ▶ Coordination of informal and formal reasoning with Lean feedback
- Auxiliary lemma generation for strategy discovery
 Helps discover strategies even when the solution path is not apparent at first

Our Contributions

State-of-the-art-theorem-proving performance among methods using small language models (SLMs)

Helps disco

not apparent at first

Our Contributions

- ▶ Coordination of informal and formal reasoning with Lean feedback
- Auxiliary lemma generation for strategy discovery
 Helps discover strategies even when the solution path is not apparent at first
- State-of-the-art theorem-proving performance among methods using small language models (SLMs)
- Efficiency in inference-time cost
 - Small model with much smaller sample budget than prior work

•Section2 •

Prover Agent

01. Overview
02. Prover Agent
03. Experiments
04. Conclusion

Overall Workflows

- ▶ Prover Agent coordinates:
 - Informal reasoning LLM
 - Formal prover model
 - Lean feedback

3 Key Components of Prover Agent

- Lemma generation via informal reasoning
- Formal proof construction guided by informal reasoning and iterative feedback
- ▶ Final proof synthesis guided by verified lemmas and iterative feedback

① Lemma Generation via Informal Reasoning

- Generate auxiliary lemmas
 - Specific cases
 - Potentially useful intermediate facts
- Not limited to subgoals of predefined proof sketch
 - Key difference from prior approachs
- ▶ e.g. Problem: Show that $n^2 + an$ is even $(n \in \mathbb{N}, a: even)$
 - Consider $n^2 + n$ or $n^2 + 3n$
- → Help discover overall proof strategy
- ✓ Mirrors how human mathematicians typically work

② Formal Proof Construction

- Leverage the stronger mathematical ability of the informal LLM
- Construct a formal proof using an informal proof as a guide
- Iteratively refine the proof based on Lean feedback
 - O Can be seen as self-correction through in-context learning
 - Akin to how humans improve their understanding based on feedback

③ Final Proof Synthesis

- Consider overall proof using the lemmas
 - Use only the verified lemmas
- Allows bottom-up strategy construction even when the full plan isn't initially clear
 - Prior work: top-down approach requiring the full plan upfront
- Iteratively refine the proof based on Lean feedback

-Section3 -

Experiments

01. Overview
02. Prover Agent
03. Experiments
04. Conclusion

Experimental Setup

- ▶ Informal LLM: DeepSeek-R1-0528-Qwen3-8B
- ▶ Formal prover model: DeepSeek-Prover-V2-7B
- ▶ AutoFormalizer: Kimina-Autoformalizer-7B

Comparison of Formal Theorem-Proving Performance

Prover System	Method	Model Size	Sample Budget	miniF2F test	
$\label{eq:DeepSeek-Prover-V1.5-RL} DeepSeek-Prover-V1.5-RL + RMaxTS \ (Xin et al., 2025a) \\ InternLM2.5-StepProver + BFS + CG \ (Wu et al., 2024) \\ HunyuanProver v16 + BFS + DC \ (Li et al., 2025) \\ BFS-Prover \ (Xin et al., 2025b) \\ \\$	Tree search Tree search Tree search Tree search	7B 7B 7B 7B	$32 \times 16 \times 400$ $256 \times 32 \times 600$ $600 \times 8 \times 400$ $2048 \times 2 \times 600$	63.5% 65.9% 68.4% 70.8%	
Leanabell-Prover-GD-RL (Zhang et al., 2025) Goedel-Prover-SFT (Lin et al., 2025) STP (Dong & Ma, 2025)	Whole-proof Whole-proof Whole-proof	7B 7B 7B	128 25600 25600	61.1% 64.7% 67.6%	
Kimina-Prover-Preview-Distill (Wang et al., 2025)	Whole-proof	7B	1 32 1024	52.5% 63.1% 70.8%	
DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025)	Whole-proof 7B		1 32 1024 8192	55.5% 68.0% 73.2% 75.0%	
DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)	Whole-proof	7B	1 32 1024 8192	58.6% 75.6% 79.9% 82.0%	
Prover Agent (Ours) (Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final Proof Synthesis w/ Lemma)	Agent	8B	1 100 400 2000	61.5% 80.7% 84.0% 86.1%	

Comparison of Formal Theorem-Proving Performance

Prover System	Method	Model Size	Sample Budget	miniF2F test
DeepSeek-Prover-V1.5-RL + RMaxTS (Xin et InternLM2.5-StepProver + RFS + CG (Wu et HavenPState-of-the-art per BFS-Prover (Xin et al., 2025b)	al., 2024) Tree search	g metho	32 × 16 × 400 256 × 32 × 600 ds: using: S 2048 × 2 × 600	63.5% 65.9% LMs 4% 70.8%
High success rate u str (Dong & Ma, 2025) Better performance	Whole-proof	7B	128 25600 25600	61.1% 64.7% 67.6%
Kimina-Prover-Preview-Distill (Wang et al., 20)		7B	32 1024	63.1% 70.8%
DeepSeek-Prover-V2 (non-CoT) (Ren et al., 20	(25) Whole-proof	7B	1 32 1024 8192	55.5% 68.0% 73.2% 75.0%
DeepSeek-Prover-V2 (CoT) (Ren et al., 2025)	Whole-proof	7B	1 32 1024 8192	58.6% 75.6% 79.9% 82.0%
Prover Agent (Ours) (Direct proving w/o iterative re (Direct proving w/o iterative re (Direct proving w/ iterative re (Final Proof Synthesis w/ Len	efinement) Agent	8B	1 100 400 2000	61.5% 80.7% 84.0% 86.1%

Performance on Olympiad-Level Problems

- Show strong performance on Olympiad-level problems
 - Suggest that coordination with informal reasoning may be the key
 Olympiad-level problems require a high degree of mathematical reasoning
- ▶ Consistent gap in MATH and Custom
 - Suggests that model size and sample budget may play a more significant role here
 - O Prover model also possesses a certain level of mathematical ability

				Olympiad			MATH			Custom				
		Model Size	Sample Budget	IMO	AIME	AMC	Sum	Algebra	Number Theory	Sum	Algebra	Number Theory	Induction	Sum
Number of Problems				20	15	45	80	70	60	130	18	8	8	34
Prover Agent (Ours)	(Direct proving w/o iterative refinement) (Direct proving w/o iterative refinement) (Direct proving w/ iterative refinement) (Final Proof Synthesis w/ Lemma)	8B	1 100 400 2000	40.0 70.0 80.0 80.0	53.3 80.0 80.0 80.0	62.2 82.2 88.9 91.1	55.0 78.8 85.0 86.3	71.4 82.9 84.3 85.7	60.0 88.3 91.7 91.7	66.2 85.4 87.7 88.5	55.6 66.7 66.7 72.2	75.0 75.0 75.0 87.5	50.0 62.5 62.5 75.0	58.8 67.6 67.6 76.5
DeepSeek-Prover-V2	(Ren et al., 2025)	617B	8192	50.0	93.3	77.8	73.8	100.0	96.7	98.5	83.3	87.5	100.0	88.2

Case study: Success with Lemma-Guided Proofs

▶ Problem:

- ▶ Reasoning trace w/ lemmas:
 - Consider the specific cases for n = 3, 4, 5
 - Clearly identify the use of mathematical induction
 - Employ proof techniques used in the lemmas
- ▶ Reasoning trace w/o lemmas:

Proof strategy is unclear

The details cannot be worked out sufficiently

► Generated lemmas:

```
theorem base_case_3 : (3 : N)! < 3^(3 - 1) := by
have h_main : (3 : N)! < 3^(3 - 1) := by
-- Calculate the factorial and the power step-by-step
norm_num [Nat.factorial, Nat.pow_succ, Nat.mul_assoc]
-- Use 'decide' to confirm the inequality
<;> decide
exact h_main
```

Conclusion

Summary

- ▶ Coordination of informal and formal reasoning with Lean feedback
- Auxiliary lemma generation for strategy discovery
- ▶ State-of-the-art performance among methods using SLMs

Future Work

- Experiment on other benchmarks
- ▶ Explore more suitable hyperparameters

Section4 -

Conclusion

01. Overview
02. Prover Agent
03. Experiments
04. Conclusion

References

- Dong, K. and Ma, T. STP: Self-play Ilm theorem provers with iterative conjecturing and proving. arXiv preprint arXiv:2502.00212, 2025.
- Li, Y., Du, D., Song, L., Li, C., Wang, W., Yang, T., and Mi, H. HunyuanProver: A scalable data synthesis framework and guided tree search for automated theorem proving. *arXiv* preprint *arXiv*:2412.20735. 2025.
- Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li, J., Xia, M., Chen, D., Arora, S., and Jin, C. Goedel-Prover: A frontier model for open-source automated theorem proving. *arXiv* preprint arXiv:2502.07640, 2025.
- Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z. F., Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D., and Ruan, C. DeepSeek-Prover-V2: Advancing formal mathematical reasoning via reinforcement learning for subgoal decomposition. 2025.

References

2025. doi: 10.48550/arXiv.2504.11354.

- Wang, H., Unsal, M., Lin, X., Baksys, M., Liu, J., Santos, M. D., Sung, F., Vinyes, M., Ying, Z., Zhu, Z., Lu, J., de Saxcé, H., Bailey, B., Song, C., Xiao, C., Zhang, D., Zhang, E., Pu, F., Zhu, H., Liu, J., Bayer, J., Michel, J., Yu, L., Dreyfus-Schmidt, L., Tunstall, L., Pagani, L., Machado, M., Bourigault, P., Wang, R., Polu, S., Barroyer, T., Li, W.-D., Niu, Y., Fleureau, Y., Hu, Y., Yu, Z., Wang, Z., Yang, Z., Liu, Z., and Li, J. Kimina-prover preview: Towards large formal reasoning models with reinforcement learning. arXiv preprint arXiv:2504.11354,
- Wu, Z., Huang, S., Zhou, Z., Ying, H., Wang, J., Lin, D., and Chen, K. InternLM2.5-StepProver: Advancing automated theorem proving via expert iteration on large-scale lean problems. 2024.
- Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu, B., Zhang, L., Lu, X., Du, Q., Gao, W., Zhu, Q., Yang, D., Gou, Z., Wu, Z. F., Luo, F., and Ruan, C. DeepSeek-Prover-V1.5: Harnessing proof assistant feedback for reinforcement learning and monte-carlo tree search, 2025a.
- Xin, R., Xi, C., Yang, J., Chen, F., Wu, H., Xiao, X., Sun, Y., Zheng, S., and Shen, K. BFS-Prover:

References

Scalable best-first tree search for Ilm-based automatic theorem proving. 2025b.

Zhang, J., Wang, Q., Ji, X., Liu, Y., Yue, Y., Zhang, F., Zhang, D., Zhou, G., and Gai, K. Leanabell-Prover: Posttraining scaling in formal reasoning. *arXiv* preprint *arXiv*:2504.06122, 2025.