There are many approaches to the Software development process. While these are sometimes considered programming, often the term software development is used for this larger overall process with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Many applications use a mix of several languages in their construction and use. Different programming languages support different styles of programming (called programming paradigms). These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Many applications use a mix of several languages in their construction and use. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Integrated development environments (IDEs) aim to integrate all such help. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Computer programmers are those who write computer software. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Techniques like Code refactoring can enhance readability. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. The first step in most formal software development processes is requirements analysis, followed by testing to determine value modeling, implementation, and failure elimination (debugging). It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Some languages are very popular for particular kinds of applications, while some languages are regularly used to write many different kinds of applications. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process.