SBML Model Report

Model name: "Nishio2008 - Design of the phosphotransferase system for enhanced glucose uptake in E. coli."

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Kieran Smallbone¹, Audald Lloret i Villas² and Pierre Millard³ at January first 2015 at noon. and last time modified at March 27th 2015 at 4:08 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	76
events	1	constraints	0
reactions	92	function definitions	0
global parameters	18	unit definitions	8
rules	17	initial assignments	0

Model Notes

Nishio2008 - Design of the phosphotransferasesystem for enhanced glucose uptake in E. coli.

¹University of Manchester, kieran.smallbone@manchester.ac.uk

²EMBL-EBI, lloret@ebi.ac.uk

 $^{^3}INSA$ Toulouse, millard@insa-toulouse.fr

This model is described in the article:Computer-aided rational design of the phosphotrans-ferase system for enhanced glucose uptake in Escherichia coli.Nishio Y, Usuda Y, Matsui K, Kurata H.Mol. Syst. Biol. 2008; 4: 160

Abstract:

The phosphotransferase system (PTS) is the sugar transportation machinery that is widely distributed in prokaryotes and is critical for enhanced production of useful metabolites. To increase the glucose uptake rate, we propose a rational strategy for designing the molecular architecture of the Escherichia coli glucose PTS by using a computer-aided design (CAD) system and verified the simulated results with biological experiments. CAD supports construction of a biochemical map, mathematical modeling, simulation, and system analysis. Assuming that the PTS aims at controlling the glucose uptake rate, the PTS was decomposed into hierarchical modules, functional and flux modules, and the effect of changes in gene expression on the glucose uptake rate was simulated to make a rational strategy of how the gene regulatory network is engineered. Such design and analysis predicted that the mlc knockout mutant with ptsI gene overexpression would greatly increase the specific glucose uptake rate. By using biological experiments, we validated the prediction and the presented strategy, thereby enhancing the specific glucose uptake rate.

This model is hosted on BioModels Database and identified by: BIOMD0000000571.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of ten unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition mol

2.2 Unit time

Definition 60 s

2.3 Unit volume

Definition 1

2.4 Unit M

Definition $mol \cdot l^{-1}$

2.5 Unit per_min

Definition $(60 \text{ s})^{-1}$

2.6 Unit per_M

Definition $mol^{-1} \cdot 1$

2.7 Unit per_M_per_min

Definition $\text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$

2.8 Unit per_M_squared

Definition $mol^{-2} \cdot l^2$

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cyt			3	1	litre	$ \mathbf{Z} $	

3.1 Compartment cyt

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 76 species. The boundary condition of 18 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
CRP		cyt	$\text{mol} \cdot l^{-1}$		
$\mathtt{CRPsiteI_crp}$		cyt	$\text{mol} \cdot l^{-1}$		
CRPsiteII_crp		cyt	$\text{mol} \cdot l^{-1}$		
CRPsite_cyaA		cyt	$\text{mol} \cdot l^{-1}$		\Box
CRPsite_genome		cyt	$\text{mol} \cdot l^{-1}$		\Box
CRPsite_ptsGp1		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
CRPsite_ptsGp2		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
$\mathtt{CRPsite_ptsHp0}$		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
$\mathtt{CRPsite_ptsHp1}$		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$		\Box
$\mathtt{CRPsite_ptsIp0}$		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$		\Box
$\mathtt{CRPsite_ptsIp1}$		cyt	$\operatorname{mol} \cdot 1^{-1}$		\Box
${\tt CRPsite_mlcp1}$		cyt	$\operatorname{mol} \cdot 1^{-1}$		\Box
${\tt CRPsite_mlcp2}$		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
Mlc		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
${\tt Mlcsite_mlcp1}$		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		\Box
${\tt Mlcsite_mlcp2}$		cyt	$\operatorname{mol} \cdot 1^{-1}$		\Box
${ t Mlcsite_ptsGp1}$		cyt	$\operatorname{mol} \cdot 1^{-1}$		\Box
${\tt Mlcsite_ptsGp2}$		cyt	$\text{mol} \cdot 1^{-1}$		
${\tt Mlcsite_ptsHp0}$		cyt	$\text{mol} \cdot 1^{-1}$		
${\tt Mlcsite_ptsIp0}$		cyt	$\text{mol} \cdot 1^{-1}$		
CRP_cAMP		cyt	$\operatorname{mol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
CRP_cAMP-		cyt	$\text{mol} \cdot l^{-1}$		\Box
$_\mathtt{CRPsiteI_crp}$					
CRP_cAMP-		cyt	$\text{mol} \cdot l^{-1}$	\Box	
$_\mathtt{CRPsiteII}_\mathtt{crp}$					
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$		
_cyaA			1 1-1		
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$		
_genome CRP_cAMP_CRPsite-		cut	$\text{mol} \cdot l^{-1}$		
_ptsGp1		cyt	11101 • 1		
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot 1^{-1}$		
_ptsGp2			1101 1		
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot 1^{-1}$		
_ptsHpO		·			
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot 1^{-1}$	\Box	
_ptsHp1					
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$	\Box	
_ptsIp0			1		
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$		
_ptsIp1			1 1-1		
CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$		
_mlcp1 CRP_cAMP_CRPsite-		cyt	$\text{mol} \cdot l^{-1}$		
_mlcp2		Cyt	11101 - 1		
Mlc_Mlcsite-		cyt	$\text{mol} \cdot 1^{-1}$		
_ptsGp1		- J -			

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	Mlc_Mlcsite-		cyt	$\text{mol} \cdot l^{-1}$	\Box	
	_ptsGp2 Mlc_Mlcsite-		aut.	$\text{mol} \cdot l^{-1}$		
	_ptsIp0		cyt	11101 • 1		
	_ptsipo Mlc_Mlcsite-		cyt	$\operatorname{mol} \cdot 1^{-1}$		\Box
	_ptsHp0		Cyt	mort		
	Mlc_Mlcsite_mlcp:	1	cyt	$\text{mol} \cdot l^{-1}$		
	Mlc_Mlcsite_mlcp2		cyt	$\text{mol} \cdot l^{-1}$		
Prc	IICB		cyt	$\text{mol} \cdot l^{-1}$		
du	$IICB_Mlc$		cyt	$\text{mol} \cdot l^{-1}$		
ced	CYA		cyt	$\text{mol} \cdot l^{-1}$	\Box	
Produced by SBML2PTEX	IIA_P		cyt	$\text{mol} \cdot l^{-1}$	\Box	
<u>₩</u>	IIA_P_CYA		cyt	$\text{mol} \cdot l^{-1}$		
\leq	$\mathtt{mRNA_cyaA}$		cyt	$\text{mol} \cdot 1^{-1}$	\Box	
Ä	$\mathtt{mRNA_crp}$		cyt	$\text{mol} \cdot 1^{-1}$		
×	$\mathtt{mRNA_ptsG}$		cyt	$\text{mol} \cdot 1^{-1}$	\Box	\Box
	$\mathtt{mRNA_ptsH}$		cyt	$\text{mol} \cdot 1^{-1}$	\Box	\Box
	${\tt mRNA_ptsI}$		cyt	$\text{mol} \cdot l^{-1}$	\Box	
	$\mathtt{mRNA_crr}$		cyt	$\text{mol} \cdot l^{-1}$	\Box	\Box
	$mRNA_mlc$		cyt	$\text{mol} \cdot 1^{-1}$	\Box	
	${\tt IICB_P}$		cyt	$\text{mol} \cdot l^{-1}$		
	IIA		cyt	$\text{mol} \cdot l^{-1}$		
	HPr_P		cyt	$\text{mol} \cdot l^{-1}$		
	HPr		cyt	$\text{mol} \cdot l^{-1}$		
	EI_P		cyt	$\text{mol} \cdot 1^{-1}$		
	EI		cyt	$\text{mol} \cdot 1^{-1}$		
	cAMP		cyt	$\text{mol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
cyaA		cyt	$\text{mol} \cdot l^{-1}$		
$cyaA_basal$		cyt	$\operatorname{mol} \cdot 1^{-1}$		\square
crp		cyt	$\operatorname{mol} \cdot 1^{-1}$		\square
$\mathtt{crp_basal}$		cyt	$\operatorname{mol} \cdot 1^{-1}$		
ptsGp1		cyt	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
ptsGp2		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$		$\overline{\mathbf{Z}}$
ptsHp0		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
ptsHp1		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
ptsIp0		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
ptsIp1		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
crr		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
mlcp1		cyt	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
mlcp2		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$	$\overline{\mathbb{Z}}$	$\overline{\mathbf{Z}}$
Pyr		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$	$\overline{\mathbb{Z}}$	$\overline{\mathbf{Z}}$
PEP		cyt	$\operatorname{mol} \cdot \operatorname{l}^{-1}$	$\overline{\mathscr{L}}$	$\overline{\mathbf{Z}}$
Glc6P		cyt	$\text{mol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
Glucose		cyt	$\text{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
ATP		cyt	$\text{mol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $	$\overline{\mathbf{Z}}$

5 Parameters

This model contains 18 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
fast TCRPsite-			$10^9 \\ 2.43 \cdot 10^{-10}$	$(60 \text{ s})^{-1}$ $\text{mol} \cdot l^{-1}$	☑ ⊟
_cyaA TCRPsiteI-			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
_crp TCRPsiteII- _crp			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsGp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _ptsGp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsGp2			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _ptsGp2			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsHp0			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _ptsHp0			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsHp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsIp0			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _ptsIp0			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _ptsIp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _mlcp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _mlcp1			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TCRPsite- _mlcp2			$2.43 \cdot 10^{-10}$	$\text{mol} \cdot l^{-1}$	
TMlcsite- _mlcp2			$2.43 \cdot 10^{-10}$	$\operatorname{mol} \cdot \mathbf{l}^{-1}$	

6 Rules

This is an overview of 17 rules.

6.1 Rule TCRPsite_cyaA

Rule TCRPsite_cyaA is an assignment rule for parameter TCRPsite_cyaA:

$$TCRPsite_cyaA = [CRPsite_cyaA] + [CRP_cAMP_CRPsite_cyaA]$$
 (1)

Derived unit $mol \cdot 1^{-1}$

6.2 Rule TCRPsiteI_crp

Rule TCRPsiteI_crp is an assignment rule for parameter TCRPsiteI_crp:

$$TCRPsiteI_crp = [CRPsiteI_crp] + [CRP_cAMP_CRPsiteI_crp]$$
 (2)

Derived unit $mol \cdot l^{-1}$

6.3 Rule TCRPsiteII_crp

Rule TCRPsiteII_crp is an assignment rule for parameter TCRPsiteII_crp:

$$TCRPsiteII_crp = [CRPsiteII_crp] + [CRP_cAMP_CRPsiteII_crp]$$
 (3)

Derived unit $mol \cdot 1^{-1}$

6.4 Rule TCRPsite_ptsGp1

Rule TCRPsite_ptsGp1 is an assignment rule for parameter TCRPsite_ptsGp1:

$$TCRPsite_ptsGp1 = [CRPsite_ptsGp1] + [CRP_cAMP_CRPsite_ptsGp1]$$
 (4)

Derived unit $mol \cdot l^{-1}$

6.5 Rule TMlcsite_ptsGp1

Rule TMlcsite_ptsGp1 is an assignment rule for parameter TMlcsite_ptsGp1:

$$TMlcsite_ptsGp1 = [Mlcsite_ptsGp1] + [Mlc_Mlcsite_ptsGp1]$$
 (5)

Derived unit $mol \cdot l^{-1}$

6.6 Rule TCRPsite_ptsGp2

Rule TCRPsite_ptsGp2 is an assignment rule for parameter TCRPsite_ptsGp2:

$$TCRPsite_ptsGp2 = [CRPsite_ptsGp2] + [CRP_cAMP_CRPsite_ptsGp2]$$
 (6)

Derived unit $mol \cdot l^{-1}$

6.7 Rule TMlcsite_ptsGp2

Rule TMlcsite_ptsGp2 is an assignment rule for parameter TMlcsite_ptsGp2:

$$TMlcsite_ptsGp2 = [Mlcsite_ptsGp2] + [Mlc_Mlcsite_ptsGp2]$$
 (7)

Derived unit $mol \cdot l^{-1}$

6.8 Rule TCRPsite_ptsHp0

Rule TCRPsite_ptsHp0 is an assignment rule for parameter TCRPsite_ptsHp0:

$$TCRPsite_ptsHp0 = [CRPsite_ptsHp0] + [CRP_cAMP_CRPsite_ptsHp0]$$
 (8)

Derived unit $mol \cdot l^{-1}$

6.9 Rule TMlcsite_ptsHp0

Rule TMlcsite_ptsHp0 is an assignment rule for parameter TMlcsite_ptsHp0:

$$TMlcsite_ptsHp0 = [Mlcsite_ptsHp0] + [Mlc_Mlcsite_ptsHp0]$$
 (9)

Derived unit $mol \cdot l^{-1}$

6.10 Rule TCRPsite_ptsHp1

Rule TCRPsite_ptsHp1 is an assignment rule for parameter TCRPsite_ptsHp1:

$$TCRPsite_ptsHp1 = [CRPsite_ptsHp1] + [CRP_cAMP_CRPsite_ptsHp1]$$
 (10)

Derived unit $mol \cdot l^{-1}$

6.11 Rule TCRPsite_ptsIp0

Rule TCRPsite_ptsIpO is an assignment rule for parameter TCRPsite_ptsIpO:

$$TCRPsite_ptsIp0 = [CRPsite_ptsIp0] + [CRP_cAMP_CRPsite_ptsIp0]$$
 (11)

Derived unit $mol \cdot 1^{-1}$

6.12 Rule TMlcsite_ptsIp0

Rule TMlcsite_ptsIp0 is an assignment rule for parameter TMlcsite_ptsIp0:

$$TMlcsite_ptsIp0 = [Mlcsite_ptsIp0] + [Mlc_Mlcsite_ptsIp0]$$
 (12)

Derived unit $mol \cdot l^{-1}$

6.13 Rule TCRPsite_ptsIp1

Rule TCRPsite_ptsIp1 is an assignment rule for parameter TCRPsite_ptsIp1:

$$TCRPsite_ptsIp1 = [CRPsite_ptsIp1] + [CRP_cAMP_CRPsite_ptsIp1]$$
 (13)

Derived unit $mol \cdot l^{-1}$

6.14 Rule TCRPsite_mlcp1

Rule TCRPsite_mlcp1 is an assignment rule for parameter TCRPsite_mlcp1:

$$TCRPsite_mlcp1 = [CRPsite_mlcp1] + [CRP_cAMP_CRPsite_mlcp1]$$
 (14)

Derived unit $mol \cdot l^{-1}$

6.15 Rule TMlcsite_mlcp1

Rule TMlcsite_mlcp1 is an assignment rule for parameter TMlcsite_mlcp1:

$$TMlcsite_mlcp1 = [Mlcsite_mlcp1] + [Mlc_Mlcsite_mlcp1]$$
 (15)

Derived unit $mol \cdot l^{-1}$

6.16 Rule TCRPsite_mlcp2

Rule TCRPsite_mlcp2 is an assignment rule for parameter TCRPsite_mlcp2:

$$TCRPsite_mlcp2 = [CRPsite_mlcp2] + [CRP_cAMP_CRPsite_mlcp2]$$
 (16)

Derived unit $mol \cdot l^{-1}$

6.17 Rule TMlcsite_mlcp2

Rule TMlcsite_mlcp2 is an assignment rule for parameter TMlcsite_mlcp2:

$$TMlcsite_mlcp2 = [Mlcsite_mlcp2] + [Mlc_Mlcsite_mlcp2]$$
 (17)

Derived unit $mol \cdot l^{-1}$

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event event_0

Trigger condition

$$T \ge 500 \tag{18}$$

Assignment

$$Glucose = 2.0E - 9 (19)$$

8 Reactions

_ptsGp2

This model contains 92 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

			411 1 44 4 1 10110	
N⁰	Id	Name	Reaction Equation	SBO
1	binding_CRP- _cAMP		$CRP+cAMP \stackrel{CRP, cAMP, C}{\leftarrow}$	
2	binding_CRP- _cAMP_CRPsite- _cyaA		CRP_cAMP+CRPsite_cyaA	CRP_cAMP, CRPsite_cyaA, CRP_cAMP_CRPsite_cyaA
3	binding_CRP- _cAMP_CRPsiteI- _crp		CRP_cAMP+CRPsiteI_crp =	CRP_cAMP, CRPsiteI_crp, CRP_cAMP_CRPsiteI_crp
4	binding- _CRP_cAMP- _CRPsiteII_crp			CRP_cAMP, CRPsiteII_crp, CRP_cAMP_CRPsiteII_crp
5	binding_CRP- _cAMP_CRPsite- _ptsGp1		CRP_cAMP+CRPsite_ptsGp	o1 CRP_cAMP, CRPsite_ptsGp1, CRP_cAMP_CRPsite_pt
6	binding_CRP- _cAMP_CRPsite-		CRP_cAMP+CRPsite_ptsGp	o2 CRP_cAMP, CRPsite_ptsGp2, CRP_cAMP_CRPsite_pt

14	N₀	Id	Name	Reaction Equation	SBO
Produced by SBML⊉ ^{©T} E ^X	7	binding_CRP- _cAMP_CRPsite- _ptsHp0			CRP_cAMP, CRPsite_ptsHp0, CRP_cAMP_CRPsite_pt
	8	binding_CRP- _cAMP_CRPsite- _ptsHp1			CRP_cAMP, CRPsite_ptsHp1, CRP_cAMP_CRPsite_pt
	9	binding_CRP- _cAMP_CRPsite- _ptsIp0		CRP_cAMP+CRPsite_ptsIp0	CRP_cAMP, CRPsite_ptsIp0, CRP_cAMP_CRPsite_ptsI
	10	binding_CRP- _cAMP_CRPsite- _ptsIp1		CRP_CAMP + CRPsite_ptsip1 =	
SBMLZATEX	11	binding_CRP- _cAMP_CRPsite- _mlcp1			CRP_cAMP, CRPsite_mlcp1, CRP_cAMP_CRPsite_mlc
	12	binding_CRP- _cAMP_CRPsite- _mlcp2		CRP_cAMP+CRPsite_mlcp2	CRP_cAMP, CRPsite_mlcp2, CRP_cAMP_CRPsite_mlc
	13	binding_CRP- _cAMP_CRPsite- _genome		CRP_cAMP+CRPsite_genome	e CRP_cAMP, CRPsite_genome, CRP_cAMP_CRPsite_g
	14	binding_Mlc- _Mlcsite_ptsGp1		Mlc+Mlcsite_ptsGp1 Mlc, Ml	lcsite_ptsGp1, Mlc_Mlcsite_ptsGp1 Mlc_Mlcsite_ptsGp1

No	Id	Name	Reaction Equation	SBO
15	binding_Mlc- _Mlcsite_ptsGp2		Mlc+Mlcsite_ptsGp2	Mlc, Mlcsite_ptsGp2, Mlc_Mlcsite_ptsGp2 Mlc_Mlcsite_ptsGp2
16	binding_Mlc- _Mlcsite_ptsHp0			Mlc, Mlcsite_ptsHp0, Mlc_Mlcsite_ptsHp0 Mlc_Mlcsite_ptsHp0
17	binding_Mlc- _Mlcsite_ptsIp0		Mlc+Mlcsite_ptsIp0	Mlc, Mlcsite_ptsIp0, Mlc_Mlcsite_ptsIp0 Mlc_Mlcsite_ptsIp0
18	binding_Mlc- _Mlcsite_mlcp1		Mlc+Mlcsite_mlcp1	Mlc, Mlcsite_mlcp1, Mlc_Mlcsite_mlcp1 Mlc_Mlcsite_mlcp1
19	binding_Mlc- _Mlcsite_mlcp2		Mlc+Mlcsite_mlcp2	Mlc, Mlcsite_mlcp2, Mlc_Mlcsite_mlcp2 Mlc_Mlcsite_mlcp2
20	binding_IICB- _Mlc		IICB + Mlc = IICB, Ml	c, IICB_Mlc IICB_Mlc
21	binding_IIA_P- _CYA		,	IA_P, IIA_P_CYA IIA_P_CYA
22	transcription- _CRP_cAMP- _CRPsite_cyaA- _cyaA		Ø CRP_cAMP_CRPsi	te_cyaA, cyaA, CRP_cAMP_CRPsite_cyaA, cyaA mRNA_cyaA
23	transcription- _cyaA_basal		Ø cyaA_basal, cyaA_b	oasal

16	No	Id	Name	Reaction Equation	SBO
	24	transcription-		CRP_cAMP_CRPsiteI_crp, CRP_cAMP_CRPsiteI	I_crp, crp, CRP_cAMP_CRPsiteII_c
		_CRP_cAMP-			
		_CRPsiteI-			
		_crp_CRP_cAMP-			
		_CRPsiteII_crp-			
		_crp			
	25	transcription-		0 crp_basal, crp_basal mRNA_crp	
	23	_crp_basal		W — IIIXIVA_CIP	
		_crp_basar		©CRP_cAMP_CRPsite_ptsGp1, Mlc_Mlcsite_ptsGp	1. ptsGp1. CRP cAMP CRPsite pt
Prc	26	transcription-		0 =====================================	1, p.s p. 1, - 11 - 11 - 11 - 11 - 11 - 11 - 11
npa		_CRP_cAMP-			
ced		$_{ t CRPsite}$			
by		_ptsGp1_Mlc-			
88		_Mlcsite-			
Produced by SBML2l ^{ET} EX		$_{ t ptsGp1_ptsGp1}$			
	27	transcription-		@CRP_cAMP_CRPsite_ptsGp2, Mlc_Mlcsite_ptsGp	72, ptsGp2, CRP_cAMP_CRPsite_pt
\mathbb{Z}	_,	_CRP_cAMP-			
		_CRPsite-			
		_ptsGp2_Mlc-			
		_Mlcsite-			
		_ptsGp2_ptsGp2			
	20			CRP_cAMP_CRPsite_ptsHp0, Mlc_Mlcsite_ptsHp	0, ptsHp0, CRP_cAMP_CRPsite_pt
	28	transcription-		0 -	
		_CRP_cAMP-			
		_CRPsite-			
		_ptsHp0_Mlc-			
		_Mlcsite-			
		_ptsHp0_ptsHp0			

No	Id	Name	Reaction Equation	SBO
29	transcription-		O CRP_cAMP_CRPsite_ptsHp1, pts	sHp1, CRP_cAMP_CRPsite_ptsHp1, ptsHp1 mRNA
	_CRP_cAMP-			
	_CRPsite-			
	_ptsHp1_ptsHp1			
20			CRP_cAMP_CRPsite_ptsIp0, Mlo	c_Mlcsite_ptsIp0, ptsIp0, CRP_cAMP_CRPsite_ptsIp
30	transcription-		0 = 1 1	
	_CRP_cAMP-			
	_CRPsite-			
	_ptsIp0_Mlc-			
	_Mlcsite-			
	_ptsIp0_ptsIp0		CRP cAMP CRPsite ntsIn1 nts	In 1 CRP cAMP CRPsite ptsIn1 ptsIn1
31	transcription-		$\emptyset \stackrel{CRI}{\longleftarrow} \frac{CRI}{CRI} \stackrel{CRI}{\longrightarrow} CRI \stackrel{SRC}{\longrightarrow} ptsl pt, pts.$	Ip1, CRP_cAMP_CRPsite_ptsIp1, ptsIp1 mRNA_pts
	_CRP_cAMP-			
	$_{ extsf{CRPsite-}}$			
	$_ptsIp1_ptsIp1$			
32	transcription-		$\emptyset \stackrel{\operatorname{crr}, \operatorname{crr}}{\longleftarrow} \operatorname{mRNA_crr}$	
	_crr			
22			CRP_cAMP_CRPsite_mlcp1, Mlo	c_Mlcsite_mlcp1, mlcp1, CRP_cAMP_CRPsite_mlcp
33	transcription- _CRP_cAMP-		0 —————————————————————————————————————	
	_CRPsite_mlcp1-			
	_Mlc_Mlcsite-			
	_mlcp1_mlcp1			
	штертштерт		CRP cAMP CRPsite mlcp2. Mlc	c_Mlcsite_mlcp2, mlcp2, CRP_cAMP_CRPsite_mlcp
34	transcription-		0 =====================================	
	_CRP_cAMP-			
	_CRPsite_mlcp2-			
	_Mlc_Mlcsite-			

_mlcp2_mlcp2

	No	Id	Name	Reaction Equation	SBO
	35	decomposition- _mRNA_cyaA		$mRNA_cyaA \xrightarrow{mRNA_cyaA} \emptyset$	
	36	decomposition- _mRNA_crp		$mRNA_crp \xrightarrow{mRNA_crp} \emptyset$	
	37	decomposition- _mRNA_ptsG		$mRNA_ptsG \xrightarrow{mRNA_ptsG} \emptyset$	
P	38	decomposition- _mRNA_ptsH		$mRNA_ptsH \xrightarrow{mRNA_ptsH} \emptyset$	
roduced	39	decomposition- _mRNA_ptsI		$mRNA_ptsI \xrightarrow{mRNA_ptsI} \emptyset$	
by GBM	40	decomposition- _mRNA_crr		$mRNA_crr \xrightarrow{mRNA_crr} \emptyset$	
Produced by SBMI⊅BT⊨X	41	decomposition- _mRNA_mlc		mRNA_mlc = #RNA_mlc #0	
	42	translation- _mRNA_cyaA		Ø mRNA_cyaA, mRNA_cyaA CYA	
	43	translation- _mRNA_crp		Ø TRNA_crp, mRNA_crp CRP	
	44	translation- _mRNA_ptsG		$\emptyset \xrightarrow{\text{mRNA_ptsG}, \text{ mRNA_ptsG}} \text{IICB}$	
	45	translation- _mRNA_ptsH		$\emptyset \xrightarrow{\text{mRNA_ptsH}, \text{mRNA_ptsH}} \text{HPr}$	

Nº	Id	Name	Reaction Equation	SBO
46	translation- _mRNA_ptsI		$\emptyset \xleftarrow{mRNA_ptsI, mRNA_ptsI} EI$	
47	translation- _mRNA_crr		$\emptyset \xrightarrow{\text{mRNA_crr, mRNA_crr}} IIA$	
48	translation_mlc		$\emptyset \xrightarrow{\text{mRNA_mlc}, \text{mRNA_mlc}} \text{Mlc}$	
49	decomposition- _CYA		$CYA \stackrel{CYA}{\longleftarrow} \emptyset$	
50	decomposition- _CRP		$CRP \stackrel{CRP}{\longleftarrow} \emptyset$	
51	decomposition- _Mlc		$Mlc \stackrel{Mlc}{\longleftarrow} \emptyset$	
52	decomposition- _cAMP		$cAMP \xrightarrow{cAMP} \emptyset$	
53	decomposition- _CRP_cAMP		$CRP_cAMP \xrightarrow{CRP_cAMP} \emptyset$	
54	decomposition- _CRP_cAMP- _CRPsite_cyaA		CRP_cAMP_CRPsite_cyaA	aA → CRPsite_cya
55	decomposition- _CRP_cAMP-		CRP_cAMP_CRPsiteI_crp CRP_cAMP_CRPsiteI_crp	o È CRPsiteI_crp
56	_CRPsiteI_crp decompositionCRP_cAMPCRPsiteII_crp		CRP_cAMP_CRPsiteII_crp CRP_cAMP_CRPsiteII_c	erp

20	N⁰	Id	Name	Reaction Equation	SBO	_
	57	decomposition- _CRP_cAMP-		CRP_cAMP_CRPsite_ptsGp1	CRP_cAMP_CRPsite_ptsGp1 CRPs	site_ptsGp1
		_CRPsite_ptsGp1			CRP_cAMP_CRPsite_ptsGp2	
	58	<pre>decomposition- _CRP_cAMP-</pre>		CRP_cAMP_CRPsite_ptsGp2	CRP_cAMP_CRPsite_ptsGp2 CRPs	site_ptsGp2
		_CRPsite_ptsGp2			CRP cAMP CRPsite ntsHn()	
P	59	<pre>decomposition- _CRP_cAMP- _CRPsite_ptsHp0</pre>		CRP_cAMP_CRPsite_ptsHp0	CRP_cAMP_CRPsite_ptsHp0 CRPs	site_ptsHp0
Produced by SBML2PTEX	60	decomposition- _CRP_cAMP- _CRPsite_ptsHp1		CRP_cAMP_CRPsite_ptsHp1	CRP_cAMP_CRPsite_ptsHp1 CRPs	site_ptsHp1
SBMLZIE	61	decomposition- _CRP_cAMP-		CRP_cAMP_CRPsite_ptsIp0	CRP_cAMP_CRPsite_ptsIp0 CRPsit	te_ptsIp0
$\overline{\mathbb{Z}}$		$_{ m CRPsite_ptsIp0}$			CRP cAMP CRPsite ntsIn1	
	62	<pre>decomposition- _CRP_cAMP-</pre>		CRP_cAMP_CRPsite_ptsIp1	CRPsit	te_ptsIp1
		_CRPsite_ptsIp1			CRP cAMP CRPsite mlcn1	
	63	decomposition- _CRP_cAMP-		CRP_cAMP_CRPsite_mlcp1	CRP_cAMP_CRPsite_mlcp1	te_mlcp1
	<i>.</i>	_CRPsite_mlcp1			CRP_cAMP_CRPsite_mlcp2	
	64	<pre>decomposition- _CRP_cAMP- _CRPsite_mlcp2</pre>		CRP_cAMP_CRPsite_mlcp2	CRPsit CRPsit	te_mlcp2

No	Id	Name	Reaction Equation	SBO
65	decomposition- _CRP_cAMP- _CRPsite_genome		CRP_cAMP_CRPsite_genome CRP_cAMP_	CRPsite_genome CRPsite_genome
66	decomposition- _Mlc_Mlcsite- _ptsGp1		Mlc_Mlcsite_ptsGp1 Mlc_Mlcsite_ptsGp1 Mlc_Mlcsite_ptsGp1	
67	<pre>decomposition- _Mlc_Mlcsite- _ptsGp2</pre>		Mlc_Mlcsite_ptsGp2 \(\frac{\text{Mlc_Mlcsite_ptsGp2}}{}\) N	
68	<pre>decomposition- _Mlc_Mlcsite- _ptsHp0</pre>		Mlc_Mlcsite_ptsHp0 Mlc_Mlcsite_ptsHp0 N	
69	<pre>decompositionMlc_MlcsiteptsIp0</pre>		Mlc_Mlcsite_ptsIp0 Mlc_Mlcsite_ptsIp0 Ml	
70	<pre>decomposition- _Mlc_Mlcsite- _mlcp1</pre>		Mlc_Mlcsite_mlcp1	•
71	<pre>decomposition- _Mlc_Mlcsite- _mlcp2</pre>		Mlc_Mlcsite_mlcp2 Mlc_Mlcsite_mlcp2 Ml	csite_mlcp2
72	decomposition- _IICB_Mlc		$IICB_Mlc \xrightarrow{\underbrace{IICB_Mlc}} \emptyset$	

22	N⁰	Id	Name	Reaction Equation	SBO
Produced by SBMLZ≜T⊨X	73	decomposition- _EI_P		EI_P EI_P Ø	
	74	decomposition- _EI		$EI \stackrel{EI}{\longleftarrow} \emptyset$	
	75	decomposition- _HPr_P		$HPr_P \stackrel{HPr_P}{\longleftarrow} \emptyset$	
	76	decomposition- _HPr		$HPr \stackrel{HPr}{\longleftarrow} \emptyset$	
	77	decomposition- _IIA_P		$IIA_P \stackrel{\underline{IIA_P}}{\longleftarrow} \emptyset$	
	78	decomposition- _IIA		$IIA \stackrel{IIA}{\longleftarrow} \emptyset$	
	79	decomposition- _IICB_P		$IICB_P \xleftarrow{IICB_P} \emptyset$	
	80	decomposition- _IICB		$IICB \stackrel{\overline{IICB}}{\longleftarrow} \emptyset$	
	81	PTS2for		$HPr + EI_P \xrightarrow{HPr, EI_P} HPr_P + EI$	
	82	PTS2rev		$HPr_P + EI \xrightarrow{EI, HPr_P} HPr + EI_P$	
	83	PTS3for		$IIA + HPr_P \xrightarrow{IIA, HPr_P} IIA_P + HPr$	
	84	PTS3rev		$IIA_P + HPr \xrightarrow{HPr, IIA_P} IIA + HPr_P$	
	85	PTS4for		$IICB + IIA_P \xrightarrow{IICB, IIA_P} IICB_P + IIA$	
	86	PTS4rev		$IICB_P + IIA \xrightarrow{\underbrace{IIA, \ IICB_P}} IICB + IIA_P$	

N₀	Id	Name	Reaction Equation	SBO
87	reaction_CYA- _ATP		$ATP \xrightarrow{CYA, CYA, ATP} cAMP$	
88	reaction_IIA_P- _CYA_ATP		ATP TIA_P_CYA, IIA_P_CYA, ATP cAMP	
89	reaction_EI_PEP		$EI + PEP \stackrel{EI, PEP}{\longleftarrow} EI_P + Pyr$	
90	reaction_EIP- _Pyr		$EI_P + Pyr \xrightarrow{EI_P, Pyr} EI + PEP$	
91	reaction_IICB- _P_Glucose		$IICB_P + Glucose \xrightarrow{IICB_P, Glucose} IICB + Glc6P$	
92	reaction_IICB- _Glc6P		$IICB + Glc6P \xrightarrow{IICB, Glc6P} IICB_P + Glucose$	

8.1 Reaction binding_CRP_cAMP

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP + cAMP \xrightarrow{CRP, cAMP, CRP_cAMP} CRP_cAMP$$
 (20)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
CRP		
cAMP		

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
CRP		
cAMP		
$\mathtt{CRP}_\mathtt{cAMP}$		

Product

Table 8: Properties of each product.

Id	Name	SBO
CRP_cAMP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_1 = vol\left(cyt\right) \cdot fast \cdot one_per_M \cdot \left(Kb^2 \cdot ([CRP] \cdot [cAMP])^2 - [CRP_cAMP]^2\right) \tag{21}$$

Table 9: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb				$\text{mol}^{-1} \cdot 1$	
${\tt one_per_M}$			1.0	$\text{mol}^{-1} \cdot 1$	

8.2 Reaction binding_CRP_cAMP_CRPsite_cyaA

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

Reactants

Table 10: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_cyaA}$		

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsite_cyaA		
<pre>CRP_cAMP_CRPsite_cyaA</pre>		

Product

Table 12: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_cyaA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

 $v_2 = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{CRP_cAMP}] \cdot [\text{CRPsite_cyaA}] - [\text{CRP_cAMP_CRPsite_cyaA}])$ (23)

Table 13: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			$6.67\cdot10^7$	$\text{mol}^{-1} \cdot 1$	

8.3 Reaction binding_CRP_cAMP_CRPsiteI_crp

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsiteI_crp \xrightarrow{CRP_cAMP} \xrightarrow{CRP_cAMP_CRPsiteI_crp} CRP_cAMP_CRPsiteI_crp \xrightarrow{(24)}$$

Reactants

Table 14: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsiteI_crp}$		

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsiteI_crp}$		
<pre>CRP_cAMP_CRPsiteI_crp</pre>		

Product

Table 16: Properties of each product

Id	Name	
CRP_cAMP_CRPsiteI_crp		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_3 = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{CRP_cAMP}] \cdot [\text{CRPsiteI_crp}] - [\text{CRP_cAMP_CRPsiteI_crp}])$$
 (25)

Table 17: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			$2.22\cdot 10^7$	$\text{mol}^{-1} \cdot 1$	

8.4 Reaction binding_CRP_cAMP_CRPsiteII_crp

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsiteII_crp \xleftarrow{CRP_cAMP, CRPsiteII_crp, CRP_cAMP_CRPsiteII_crp} \\ CRP_cAMP_CRPsiteII_crp \end{aligned} (26)$$

Reactants

Table 18: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
${\tt CRPsiteII_crp}$		

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsiteII_crp		

Id	Name	SBO
CRP_cAMP_CRPsiteII_crp		

Product

Table 20: Properties of each product.

Tuble 20. Troperties of et	ien produ	ict.
Id	Name	SBO
CRP_cAMP_CRPsiteII_crp		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_4 = \text{vol}\left(\text{cyt}\right) \cdot \text{fast} \cdot \left(\text{Kb} \cdot \left[\text{CRP_cAMP}\right] \cdot \left[\text{CRPsiteII_crp}\right] - \left[\text{CRP_cAMP_CRPsiteII_crp}\right]\right)$$
 (27)

Table 21: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			2700000.0	$\text{mol}^{-1} \cdot \text{l}$	

8.5 Reaction binding_CRP_cAMP_CRPsite_ptsGp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsGp1 \xrightarrow{CRP_cAMP, CRPsite_ptsGp1, CRP_cAMP_CRPsite_ptsGp1} CRP_cAMP_CRPsite_ptsGp1 \xrightarrow{(28)}$$

Reactants

Table 22: Properties of each reactant.

Id	Name	SBO
CRP_cAMP CRPsite_ptsGp1		

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsite_ptsGp1		
CRP_cAMP_CRPsite_ptsGp1		

Product

Table 24: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_5 = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_ptsGp1] - [CRP_cAMP_CRPsite_ptsGp1]\right) \tag{29}$$

Table 25: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁷	$\text{mol}^{-1} \cdot 1$	\overline{Z}

8.6 Reaction binding_CRP_cAMP_CRPsite_ptsGp2

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsGp2 \xrightarrow{CRP_cAMP, CRPsite_ptsGp2, CRP_cAMP_CRPsite_ptsGp2} CRP_cAMP_CRPsite_ptsGp2 \xrightarrow{(30)}$$

Reactants

Table 26: Properties of each reactant.

Id Name SBO

CRP_cAMP	
$\mathtt{CRPsite_ptsGp2}$	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_ptsGp2}$		
${\tt CRP_cAMP_CRPsite_ptsGp2}$		

Product

Table 28: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_6 = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_ptsGp2] - [CRP_cAMP_CRPsite_ptsGp2]\right) \tag{31}$$

Table 29: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁷	$\text{mol}^{-1} \cdot 1$	

8.7 Reaction binding_CRP_cAMP_CRPsite_ptsHp0

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsHp0 \xrightarrow{CRP_cAMP_CRPsite_ptsHp0} CRP_cAMP_CRPsite_ptsHp0 \xrightarrow{CRP_cAMP_CRPsite_ptsHp0} CRP_cAMP_CRPsite_ptsHp0 \xrightarrow{(32)}$$

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_ptsHp0}$		

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_ptsHp0}$		
CRP_cAMP_CRPsite_ptsHp0		

Product

Table 32: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp0		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_7 = \text{vol}\left(\text{cyt}\right) \cdot \text{fast} \cdot \left(\text{Kb} \cdot \left[\text{CRP_cAMP}\right] \cdot \left[\text{CRPsite_ptsHp0}\right] - \left[\text{CRP_cAMP_CRPsite_ptsHp0}\right]\right)$$
(33)

Table 33: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁷	$\text{mol}^{-1} \cdot 1$	

8.8 Reaction binding_CRP_cAMP_CRPsite_ptsHp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsHp1 \xrightarrow{CRP_cAMP, CRPsite_ptsHp1, CRP_cAMP_CRPsite_ptsHp1} CRP_cAMP_CRPsite_ptsHp1 \xrightarrow{(34)}$$

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_ptsHp1}$		

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
$\mathtt{CRPsite_ptsHp1}$		
${\tt CRP_cAMP_CRPsite_ptsHp1}$		

Product

Table 36: Properties of each product.

	on produc	
Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$\nu_8 = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_ptsHp1] - [CRP_cAMP_CRPsite_ptsHp1]\right) \tag{35}$$

Table 37: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10^{7}	$\text{mol}^{-1} \cdot l$	

8.9 Reaction binding_CRP_cAMP_CRPsite_ptsIp0

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsIp0 \xrightarrow{CRP_cAMP_CRPsite_ptsIp0} CRP_cAMP_CRPsite_ptsIp0 \xrightarrow{CRP_cAMP_CRPsite_ptsIp0} CRP_cAMP_CRPsite_ptsIp0 \xrightarrow{(36)}$$

Reactants

Table 38: Properties of each reactant.

Tueste e et a repetities	01 04011 1	
Id	Name	SBO
CRP_cAMP		
${\tt CRPsite_ptsIp0}$		

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsite_ptsIp0		
<pre>CRP_cAMP_CRPsite_ptsIp0</pre>		

Product

Table 40: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp0		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

 $v_9 = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{CRP_cAMP}] \cdot [\text{CRPsite_ptsIp0}] - [\text{CRP_cAMP_CRPsite_ptsIp0}])$ (37)

Table 41: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10^{7}	$\text{mol}^{-1} \cdot 1$	

8.10 Reaction binding_CRP_cAMP_CRPsite_ptsIp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_ptsIp1 \xrightarrow{CRP_cAMP_CRPsite_ptsIp1} CRP_cAMP_CRPsite_ptsIp1 \xrightarrow{CRP_cAMP_CRPsite_ptsIp1} CRP_cAMP_CRPsite_ptsIp1 \xrightarrow{(38)}$$

Reactants

Table 42: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
${\tt CRPsite_ptsIp1}$		

Modifiers

Table 43: Properties of each modifier.

Id	Name	SBO
CRP_cAMP CRPsite_ptsIp1		
CRP_cAMP_CRPsite_ptsIp1		

Product

Table 44: Properties of each product.

Id	Name	
CRP_cAMP_CRPsite_ptsIp1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$\nu_{10} = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_ptsIp1] - [CRP_cAMP_CRPsite_ptsIp1]\right) \tag{39}$$

Table 45: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10^{7}	$\text{mol}^{-1} \cdot 1$	

8.11 Reaction binding_CRP_cAMP_CRPsite_mlcp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_mlcp1 \xrightarrow{CRP_cAMP, CRPsite_mlcp1, CRP_cAMP_CRPsite_mlcp1} CRP_cAMP_CRPsite_mlcp1 \xrightarrow{(40)}$$

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
${\tt CRPsite_mlcp1}$		

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		

Id	Name	SBO
CRPsite_mlcp1 CRP_cAMP_CRPsite_mlcp1		

Product

Table 48: Properties of each product.

Id	Name	
CRP_cAMP_CRPsite_mlcp1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$\nu_{11} = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_mlcp1] - [CRP_cAMP_CRPsite_mlcp1]\right) \tag{41}$$

Table 49: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁷	$\text{mol}^{-1} \cdot 1$	

8.12 Reaction binding_CRP_cAMP_CRPsite_mlcp2

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_mlcp2 \xrightarrow{CRP_cAMP_CRPsite_mlcp2} CRP_cAMP_CRPsite_mlcp2 \xrightarrow{CRP_cAMP_CRPsite_mlcp2} CRP_cAMP_CRPsite_mlcp2 \xrightarrow{(42)}$$

Reactants

Table 50: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		
${\tt CRPsite_mlcp2}$		

Modifiers

Table 51: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsite_mlcp2		
CRP_cAMP_CRPsite_mlcp2		

Product

Table 52: Properties of each product.

Tueste e Zi Treperiore er en	on produc	
Id	Name	SBO
CRP_cAMP_CRPsite_mlcp2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$\nu_{12} = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_mlcp2] - [CRP_cAMP_CRPsite_mlcp2]\right) \tag{43}$$

Table 53: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10^{7}	$\text{mol}^{-1} \cdot 1$	

8.13 Reaction binding_CRP_cAMP_CRPsite_genome

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CRP_cAMP + CRPsite_genome \xleftarrow{CRP_cAMP, CRPsite_genome, CRP_cAMP_CRPsite_genome} CRP_cAMP_CRPsite_genome \xrightarrow{(44)}$$

Reactants

Table 54: Properties of each reactant.

Table 34. I Toperties of each reactain.				
Id	Name	SBO		
CRP_cAMP CRPsite_genome				

Modifiers

Table 55: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		
CRPsite_genome		
${\tt CRP_cAMP_CRPsite_genome}$		

Product

Table 56: Properties of each product.

Id	Name	SBO
CRP_cAMP_CRPsite_genome		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{13} = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [CRP_cAMP] \cdot [CRPsite_genome] - [CRP_cAMP_CRPsite_genome]\right) \tag{45}$$

Table 57: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁷	$\text{mol}^{-1} \cdot 1$	

8.14 Reaction binding_Mlc_Mlcsite_ptsGp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$Mlc + Mlcsite_ptsGp1 \xrightarrow{Mlc, Mlcsite_ptsGp1, Mlc_Mlcsite_ptsGp1} Mlc_Mlcsite_ptsGp1 \quad (46)$$

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
Mlc		
${ t Mlcsite_ptsGp1}$		

Modifiers

Table 59: Properties of each modifier.

Id	Name	SBO
Mlc		
${ t Mlcsite_ptsGp1}$		
${\tt Mlc_Mlcsite_ptsGp1}$		

Product

Table 60: Properties of each product.

Id	Name	SBO
Mlc_Mlcsite_ptsGp1		

Kinetic Law

$$v_{14} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{Mlc}] \cdot [\text{Mlcsite_ptsGp1}] - [\text{Mlc_Mlcsite_ptsGp1}])$$
 (47)

Table 61: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			$2 \cdot 10^8$	$\text{mol}^{-1} \cdot 1$	

8.15 Reaction binding_Mlc_Mlcsite_ptsGp2

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$Mlc + Mlcsite_ptsGp2 \xrightarrow{Mlc, Mlcsite_ptsGp2, Mlc_Mlcsite_ptsGp2} Mlc_Mlcsite_ptsGp2 \quad (48)$$

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
Mlc		
${\tt Mlcsite_ptsGp2}$		

Modifiers

Table 63: Properties of each modifier.

Id	Name	SBO
Mlc		
${ t Mlcsite_ptsGp2}$		
${\tt Mlc_Mlcsite_ptsGp2}$		

Product

Table 64: Properties of each product.

Id	Name	SBO
Mlc_Mlcsite_ptsGp2		

Kinetic Law

$$v_{15} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{Mlc}] \cdot [\text{Mlcsite_ptsGp2}] - [\text{Mlc_Mlcsite_ptsGp2}])$$
 (49)

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
КЪ			$2 \cdot 10^8$	$\text{mol}^{-1} \cdot \mathbf{l}$	

8.16 Reaction binding_Mlc_Mlcsite_ptsHp0

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$Mlc + Mlcsite_ptsHp0 \xrightarrow{\hspace*{-0.5cm} Mlc} Mlc, Mlcsite_ptsHp0, Mlc_Mlcsite_ptsHp0 \xrightarrow{\hspace*{-0.5cm} Mlc} Mlc_Mlcsite_ptsHp0 \hspace*{-0.5cm} (50)$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
Mlc		
${\tt Mlcsite_ptsHp0}$		

Modifiers

Table 67: Properties of each modifier.

Id	Name	SBO
Mlc		
$ t Mlcsite_ptsHp0$		
${\tt Mlc_Mlcsite_ptsHp0}$		

Product

Table 68: Properties of each product.

Id	Name	SBO
Mlc_Mlcsite_ptsHp0		

Kinetic Law

$$v_{16} = vol\left(cyt\right) \cdot fast \cdot \left(Kb \cdot [Mlc] \cdot [Mlcsite_ptsHp0] - [Mlc_Mlcsite_ptsHp0]\right) \tag{51}$$

Table 69: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			$2 \cdot 10^8$	$\text{mol}^{-1} \cdot 1$	

8.17 Reaction binding_Mlc_Mlcsite_ptsIp0

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$Mlc + Mlcsite_ptsIp0 \xrightarrow{\begin{subarray}{c} Mlc, Mlcsite_ptsIp0, Mlc_Mlcsite_ptsIp0 \end{subarray}} Mlc_Mlcsite_ptsIp0 \end{subarray} (52)$$

Reactants

Table 70: Properties of each reactant.

Id	Name	SBO
Mlc		
${\tt Mlcsite_ptsIp0}$		

Modifiers

Table 71: Properties of each modifier.

Id	Name	SBO
Mlc		
${ t Mlcsite_ptsIp0}$		
${\tt Mlc_Mlcsite_ptsIp0}$		

Product

Table 72: Properties of each product.

Id	Name	SBO
Mlc_Mlcsite_ptsIp0		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{17} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{Mlc}] \cdot [\text{Mlcsite_ptsIp0}] - [\text{Mlc_Mlcsite_ptsIp0}])$$
 (53)

Table 73: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			$2 \cdot 10^8$	$\text{mol}^{-1} \cdot 1$	

8.18 Reaction binding_Mlc_Mlcsite_mlcp1

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$\label{eq:mlcp1} \begin{aligned} & \text{Mlc} + \text{Mlcsite_mlcp1}, \ & \text{Mlc_Mlcsite_mlcp1} \\ & \longleftarrow \end{aligned} \\ & \text{Mlc_Mlcsite_mlcp1} \end{aligned} \\ & \text{Mlc_Mlcsite_mlcp1} \end{aligned} \tag{54}$$

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
Mlc		
Mlcsite_mlcp1		

Modifiers

Table 75: Properties of each modifier.

Id	Name	SBO
Mlc		
${ t Mlcsite_mlcp1}$		
Mlc_Mlcsite_mlcp1		

Product

Tuble 70: 1 toperties of each product:		
Id	Name	SBO
Mlc_Mlcsite_mlcp1		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{18} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{Mlc}] \cdot [\text{Mlcsite_mlcp1}] - [\text{Mlc_Mlcsite_mlcp1}])$$
 (55)

Table 77: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			2430000.0	$\text{mol}^{-1} \cdot 1$	

8.19 Reaction binding_Mlc_Mlcsite_mlcp2

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$Mlc + Mlcsite_mlcp2 \xrightarrow{\hspace*{-0.5cm} Mlc, \hspace*{-0.5cm} Mlcsite_mlcp2, \hspace*{-0.5cm} Mlc_Mlcsite_mlcp2} \xrightarrow{\hspace*{-0.5cm} Mlc_Mlcsite_mlcp2} Mlc_Mlcsite_mlcp2 \hspace*{-0.5cm} (56)$$

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
Mlc		
${\tt Mlcsite_mlcp2}$		

Table 79: Properties of each modifier.

Id	Name	SBO
Mlc		
${ t Mlcsite_mlcp2}$		
Mlc_Mlcsite_mlcp2		

Table 80: Properties of each product.

Table 60. I Toperties of each product.		
Id	Name	SBO
Mlc_Mlcsite_mlcp2		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{19} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{Mlc}] \cdot [\text{Mlcsite_mlcp2}] - [\text{Mlc_Mlcsite_mlcp2}])$$
 (57)

Table 81: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			1350000.0	$\text{mol}^{-1} \cdot \mathbf{l}$	Ø

8.20 Reaction binding_IICB_Mlc

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$IICB + Mlc \xrightarrow{IICB, Mlc, IICB_Mlc} IICB_Mlc$$
 (58)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
IICB		
Mlc		

Table 83: Properties of each modifier.

Id	Name	SBO
TTCB		

Id	Name	SBO
Mlc		
${\tt IICB_Mlc}$		

Table 84: Properties of each product.

Id	Name	SBO
IICB_Mlc		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{20} = \text{vol}(\text{cyt}) \cdot \text{fast} \cdot (\text{Kb} \cdot [\text{IICB}] \cdot [\text{Mlc}] - [\text{IICB_Mlc}])$$
 (59)

Table 85: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			7000000.0	$\text{mol}^{-1} \cdot 1$	$\overline{\mathbf{Z}}$

8.21 Reaction binding_IIA_P_CYA

This is a reversible reaction of two reactants forming one product influenced by three modifiers.

Reaction equation

$$CYA + IIA_P \xrightarrow{CYA, IIA_P, IIA_P_CYA} IIA_P_CYA$$
 (60)

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
CYA		
IIA_P		

Table 87: Properties of each modifier.

Id	Name	SBO
CYA		
IIA_P		
IIA_P_CYA		

Table 88: Properties of each product.

Id	Name	SBO
IIA_P_CYA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{21} = vol(cyt) \cdot fast \cdot (Kb \cdot [CYA] \cdot [IIA_P]^2 - [IIA_P_CYA])$$
 (61)

Table 89: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kb			10 ⁸	$\text{mol}^{-2} \cdot l^2$	$ \mathcal{L} $

8.22 Reaction transcription_CRP_cAMP_CRPsite_cyaA_cyaA

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \xleftarrow{CRP_cAMP_CRPsite_cyaA, cyaA, CRP_cAMP_CRPsite_cyaA, cyaA} mRNA_cyaA \quad (62)$$

Table 90: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_cyaA		
cyaA		

Id	Name	SBO
CRP_cAMP_CRPsite_cyaA cyaA		

Table 91: Properties of each product.

Id	Name	SBO
$mRNA_cyaA$		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot \left(1 - \frac{[\text{CRP_cAMP_CRPsite_cyaA}]}{\text{TCRPsite_cyaA}}\right) \cdot [\text{cyaA}]$$
 (63)

Table 92: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			45.26	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.23 Reaction transcription_cyaA_basal

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{cyaA_basal}, \text{cyaA_basal}} \text{mRNA_cyaA}$$
 (64)

Table 93: Properties of each modifier.

Id	Name	SBO
cyaA_basal cyaA_basal		

Table 94: Properties of each product.

Id	Name	SBO
mRNA_cyaA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{23} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot [\text{cyaA_basal}]$$
 (65)

Table 95: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			1.281	$(60 \text{ s})^{-1}$	

8.24 Reaction

transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP_CRPsiteII_crp_crp

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

Table 96: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsiteI_crp		
${\tt CRP_cAMP_CRPsiteII_crp}$		
crp		
CRP_cAMP_CRPsiteII_crp		
CRP_cAMP_CRPsiteI_crp		
crp		

Table 97: Properties of each product.

Id	Name	SBO
mRNA_crp		

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot \left(1 + \frac{\text{RelativeactivityatTCRPsiteII_crp} \cdot [\text{CRP_cAMP_CRPsiteII_crp}]}{\text{TCRPsiteII_crp}} - \frac{[\text{CRP_cAMP_CRPsiteI_crp}]}{\text{TCRPsiteI_crp}}\right) \cdot [\text{crp}]$$

$$(67)$$

Table 98: Properties of each parameter.

	· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
Id	Name	SBO	Value	Unit	Constant
km Relativ _crp	eactivityatTCRPsiteII-		20.0 5.0	(60 s) ⁻¹ dimensionless	Ø Ø

8.25 Reaction transcription_crp_basal

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{crp_basal, crp_basal}} \text{mRNA_crp}$$
(68)

Table 99: Properties of each modifier.

Id	Name	SBO
crp_basal		
crp_basal		

Table 100: Properties of each product.

Id	Name	SBO
mRNA_crp		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{25} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot [\text{crp_basal}] \tag{69}$$

Table 101: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			1.009	$(60 \text{ s})^{-1}$	$\overline{\mathbf{Z}}$

8.26 Reaction

 $transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1_ptsGp1$

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

Table 102: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp1		
${ t Mlc_Mlcsite_ptsGp1}$		
ptsGp1		
CRP_cAMP_CRPsite_ptsGp1		
${ t Mlc_Mlcsite_ptsGp1}$		
ptsGp1		

Table 103: Properties of each product.

Id	Name	SBO
mRNA_ptsG		

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = vol\left(cyt\right) \cdot km \cdot \frac{\left[CRP_cAMP_CRPsite_ptsGp1\right]}{TCRPsite_ptsGp1} \cdot \left(1 - \frac{\left[Mlc_Mlcsite_ptsGp1\right]}{TMlcsite_ptsGp1}\right) \cdot \left[ptsGp1\right]$$
(71)

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			892.0	$(60 \text{ s})^{-1}$	

8.27 Reaction

 $transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2$

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

© CRP_cAMP_CRPsite_ptsGp2, Mlc_Mlcsite_ptsGp2, ptsGp2, CRP_cAMP_CRPsite_ptsGp2, Mlc_Mlcsite_ptsGp2, (72)

Table 105: Properties of each modifier.

10	Name	2BO
CRP_cAMP_CRPsite_ptsGp2		
Mlc_Mlcsite_ptsGp2		
ptsGp2		
${\tt CRP_cAMP_CRPsite_ptsGp2}$		
Mlc_Mlcsite_ptsGp2		

Id	Name	SBO
ptsGp2		

Table 106: Properties of each product.

Id	Name	SBO
${\tt mRNA_ptsG}$		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}\left(\text{cyt}\right) \cdot \text{km} \cdot \frac{\left[\text{CRP_cAMP_CRPsite_ptsGp2}\right]}{\text{TCRPsite_ptsGp2}} \cdot \left(1 - \frac{\left[\text{Mlc_Mlcsite_ptsGp2}\right]}{\text{TMlcsite_ptsGp2}}\right) \cdot \left[\text{ptsGp2}\right]$$
(73)

Table 107: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			2.0	$(60 \text{ s})^{-1}$	

8.28 Reaction

transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc_Mlcsite_ptsHp0_ptsHp0

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

© CRP_cAMP_CRPsite_ptsHp0, Mlc_Mlcsite_ptsHp0, ptsHp0, CRP_cAMP_CRPsite_ptsHp0, Mlc_Mlcsite_ptsHp0,

(74)

Table 108: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp0		
${ t Mlc_Mlcsite_ptsHp0}$		

Id	Name	SBO
<pre>ptsHp0 CRP_cAMP_CRPsite_ptsHp0 Mlc_Mlcsite_ptsHp0 ptsHp0</pre>		

Table 109: Properties of each product.

Id	Name	SBO
mRNA_ptsH		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}\left(\text{cyt}\right) \cdot \text{km} \cdot \frac{\left[\text{CRP_cAMP_CRPsite_ptsHp0}\right]}{\text{TCRPsite_ptsHp0}} \cdot \left(1 - \frac{\left[\text{Mlc_Mlcsite_ptsHp0}\right]}{\text{TMlcsite_ptsHp0}}\right) \cdot \left[\text{ptsHp0}\right]$$
(75)

Table 110: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			71.8	$(60 \text{ s})^{-1}$	Ø

8.29 Reaction transcription_CRP_cAMP_CRPsite_ptsHp1_ptsHp1

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \xleftarrow{ CRP_cAMP_CRPsite_ptsHp1, \ ptsHp1, \ CRP_cAMP_CRPsite_ptsHp1, \ ptsHp1} mRNA_ptsH \tag{76}$$

Table 111: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp1		
ptsHp1		
${\tt CRP_cAMP_CRPsite_ptsHp1}$		
ptsHp1		

Table 112: Properties of each product.

Id	Name	SBO
$mRNA_ptsH$		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{29} = vol(cyt) \cdot km \cdot \frac{[CRP_cAMP_CRPsite_ptsHp1]}{TCRPsite_ptsHp1} \cdot [ptsHp1]$$
 (77)

Table 113: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			17.95	$(60 \text{ s})^{-1}$	$\overline{\checkmark}$

8.30 Reaction

 $transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0_ptsIp0$

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

© CRP_cAMP_CRPsite_ptsIp0, Mlc_Mlcsite_ptsIp0, ptsIp0, CRP_cAMP_CRPsite_ptsIp0, Mlc_Mlcsite_ptsIp0, ptsIp

(78)

Table 114: Properties of each modifier.

Name	SBO
	Name

Table 115: Properties of each product.

Id	Name	SBO
$mRNA_ptsI$		

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = vol\left(cyt\right) \cdot km \cdot \frac{\left[CRP_cAMP_CRPsite_ptsIp0\right]}{TCRPsite_ptsIp0} \cdot \left(1 - \frac{\left[Mlc_Mlcsite_ptsIp0\right]}{TMlcsite_ptsIp0}\right) \cdot \left[ptsIp0\right] \quad (79)$$

Table 116: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			6.244	$(60 \text{ s})^{-1}$	

8.31 Reaction transcription_CRP_cAMP_CRPsite_ptsIp1_ptsIp1

This is a reversible reaction of no reactant forming one product influenced by four modifiers.

Reaction equation

$$\emptyset \xleftarrow{CRP_cAMP_CRPsite_ptsIp1, \ ptsIp1, \ CRP_cAMP_CRPsite_ptsIp1, \ ptsIp1} mRNA_ptsI \quad (80)$$

Table 117: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp1		
ptsIp1		
CRP_cAMP_CRPsite_ptsIp1		
ptsIp1		

Table 118: Properties of each product.

Id	Name	SBO
mRNA_ptsI		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{31} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot \frac{[\text{CRP_cAMP_CRPsite_ptsIp1}]}{\text{TCRPsite_ptsIp1}} \cdot [\text{ptsIp1}]$$
 (81)

Table 119: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			0.892	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.32 Reaction transcription_crr

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \stackrel{\operatorname{crr, crr}}{=\!\!\!\!=\!\!\!\!=\!\!\!\!=} mRNA_\operatorname{crr}$$
 (82)

Table 120: Properties of each modifier.

Id	Name	SBO
crr		
crr		

Table 121: Properties of each product.

Id	Name	SBO
mRNA_crr		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{32} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot [\text{crr}] \tag{83}$$

Table 122: Properties of each parameter.

Id	Name	SBO	Value		Constant
km			334.5	$(60 \text{ s})^{-1}$	\blacksquare

8.33 Reaction

transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite_mlcp1_mlcp1

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

© CRP_cAMP_CRPsite_mlcp1, Mlc_Mlcsite_mlcp1, mlcp1, CRP_cAMP_CRPsite_mlcp1, Mlc_Mlcsite_mlcp1, mlcp

(84)

Table 123: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_mlcp1		

Id	Name	SBO
Mlc_Mlcsite_mlcp1		
mlcp1		
CRP_cAMP_CRPsite_mlcp1		
Mlc_Mlcsite_mlcp1		
mlcp1		

Table 124: Properties of each product.

Id	Name	SBO
mRNA_mlc		

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \text{vol}(\text{cyt}) \cdot \text{km} \cdot \left(1 - \frac{[\text{CRP_cAMP_CRPsite_mlcp1}]}{\text{TCRPsite_mlcp1}}\right) \cdot \left(1 - \frac{[\text{Mlc_Mlcsite_mlcp1}]}{\text{TMlcsite_mlcp1}}\right) \cdot [\text{mlcp1}]$$
(85)

Table 125: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			1.875	$(60 \text{ s})^{-1}$	

8.34 Reaction

transcription_CRP_cAMP_CRPsite_mlcp2_Mlc_Mlcsite_mlcp2_mlcp2

This is a reversible reaction of no reactant forming one product influenced by six modifiers.

Reaction equation

© CRP_cAMP_CRPsite_mlcp2, Mlc_Mlcsite_mlcp2, mlcp2, CRP_cAMP_CRPsite_mlcp2, Mlc_Mlcsite_mlcp2, mlcp

(86)

Table 126: Properties of each modifier.

1		
Id	Name	SBO
CRP_cAMP_CRPsite_mlcp2		
Mlc_Mlcsite_mlcp2		
mlcp2		
CRP_cAMP_CRPsite_mlcp2		
Mlc_Mlcsite_mlcp2		
mlcp2		

Table 127: Properties of each product.

Id	Name	SBO
mRNA_mlc		

Kinetic Law

Derived unit contains undeclared units

$$v_{34} = vol\left(cyt\right) \cdot km \cdot \frac{[CRP_cAMP_CRPsite_mlcp2]}{TCRPsite_mlcp2} \cdot \left(1 - \frac{[Mlc_Mlcsite_mlcp2]}{TMlcsite_mlcp2}\right) \cdot [mlcp2] \quad (87)$$

Table 128: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
km			1.875	$(60 \text{ s})^{-1}$	

8.35 Reaction decomposition_mRNA_cyaA

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_cyaA \xrightarrow{mRNA_cyaA} \emptyset$$
 (88)

Reactant

Table 129: Properties of each reactant.

Id	Name	SBO
$mRNA_cyaA$		

Modifier

Table 130: Properties of each modifier.

Id	Name	SBO
$mRNA_cyaA$		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{35} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_cyaA}]$$
 (89)

Table 131: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kmd		0.126	$(60 \text{ s})^{-1}$	Ø

8.36 Reaction decomposition_mRNA_crp

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_crp \xrightarrow{mRNA_crp} \emptyset$$
 (90)

Reactant

Table 132: Properties of each reactant.

Id	Name	SBO
mRNA_crp		

Table 133: Properties of each modifier.

Id	Name	SBO
mRNA_crp		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{36} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_crp}]$$
 (91)

Table 134: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kmd			0.139	$(60 \text{ s})^{-1}$	\blacksquare

8.37 Reaction decomposition_mRNA_ptsG

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_ptsG \xrightarrow{mRNA_ptsG} \emptyset$$
 (92)

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
$mRNA_ptsG$		

Table 136: Properties of each modifier.

Id	Name	SBO
mRNA_ptsG		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{37} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_ptsG}]$$
 (93)

Table 137: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kmd			0.217	$(60 \text{ s})^{-1}$	

8.38 Reaction decomposition_mRNA_ptsH

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_ptsH \xrightarrow{mRNA_ptsH} \emptyset$$
 (94)

Reactant

Table 138: Properties of each reactant.

Id	Name	SBO
$\mathtt{mRNA_ptsH}$		

Modifier

Table 139: Properties of each modifier.

Id	Name	SBO
mRNA_ptsH		

Kinetic Law

$$v_{38} = vol(cyt) \cdot kmd \cdot [mRNA_ptsH]$$
 (95)

Table 140: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kmd			0.089	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.39 Reaction decomposition_mRNA_ptsI

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_ptsI \xrightarrow{mRNA_ptsI} \emptyset$$
 (96)

Reactant

Table 141: Properties of each reactant.

Id	Name	SBO
$mRNA_ptsI$		

Modifier

Table 142: Properties of each modifier.

Id	Name	SBO
mRNA_ptsI		

Kinetic Law

$$v_{39} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_ptsI}]$$
 (97)

Table 143: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kmd			0.080	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.40 Reaction decomposition_mRNA_crr

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_crr \xrightarrow{mRNA_crr} \emptyset$$
 (98)

Reactant

Table 144: Properties of each reactant.

Id	Name	SBO
$mRNA_crr$		

Modifier

Table 145: Properties of each modifier.

Id	Name	SBO
mRNA_crr		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{40} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_crr}]$$
 (99)

Table 146: Properties of each parameter.

Id	Name	SBO Valu	e Unit	Constant
kmd		0.08	$(60 \text{ s})^{-1}$	\square

8.41 Reaction decomposition_mRNA_mlc

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$mRNA_mlc \xrightarrow{mRNA_mlc} \emptyset$$
 (100)

Reactant

Table 147: Properties of each reactant.

Id	Name	SBO
mRNA_mlc		

Modifier

Table 148: Properties of each modifier.

Id	Name	SBO
mRNA_mlc		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{41} = \text{vol}(\text{cyt}) \cdot \text{kmd} \cdot [\text{mRNA_mlc}]$$
 (101)

Table 149: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kmd			0.301	$(60 \text{ s})^{-1}$	

8.42 Reaction translation_mRNA_cyaA

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_cyaA, mRNA_cyaA}} \text{CYA}$$
 (102)

Table 150: Properties of each modifier.

Id	Name	SBO
mRNA_cyaA		

Id	Name	SBO
$mRNA_cyaA$		

Table 151: Properties of each product.

Id	Name	SBO
CYA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{42} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_cyaA}]$$
 (103)

Table 152: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	

8.43 Reaction translation_mRNA_crp

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_crp, mRNA_crp}} \text{CRP}$$
 (104)

Modifiers

Table 153: Properties of each modifier.

Id	Name	SBO
mRNA_crp mRNA_crp		

Product

Table 154: Properties of each product.

Id	Name	SBO
CRP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{43} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_crp}]$$
 (105)

Table 155: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.44 Reaction translation_mRNA_ptsG

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_ptsG}, \text{mRNA_ptsG}} \text{IICB}$$
 (106)

Modifiers

Table 156: Properties of each modifier.

Id	Name	SBO
mRNA_ptsG mRNA_ptsG		

Product

Table 157: Properties of each product.

Id	Name	SBO
IICB		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{44} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_ptsG}]$$
 (107)

Table 158: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	

8.45 Reaction translation_mRNA_ptsH

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_ptsH}, \text{mRNA_ptsH}} \text{HPr}$$
 (108)

Modifiers

Table 159: Properties of each modifier.

Id	Name	SBO
mRNA_ptsH		
$\mathtt{mRNA_ptsH}$		

Product

Table 160: Properties of each product.

Id	Name	SBO
HPr		

Kinetic Law

$$v_{45} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_ptsH}]$$
 (109)

Table 161: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.46 Reaction translation_mRNA_ptsI

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_ptsI}, \text{mRNA_ptsI}} \text{EI}$$
 (110)

Modifiers

Table 162: Properties of each modifier.

Id	Name	SBO
mRNA_ptsI mRNA_ptsI		

Product

Table 163: Properties of each product.

Id	Name	SBO
EI		

Kinetic Law

$$v_{46} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_ptsI}]$$
 (111)

Table 164: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	

8.47 Reaction translation_mRNA_crr

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_crr, mRNA_crr}} \text{IIA}$$
 (112)

Modifiers

Table 165: Properties of each modifier.

Id	Name	SBO
mRNA_crr		
$\mathtt{mRNA_crr}$		

Product

Table 166: Properties of each product.

Id	Name	SBO
IIA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{47} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_crr}]$$
 (113)

Table 167: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	\overline{Z}

8.48 Reaction translation_mlc

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Reaction equation

$$\emptyset \xrightarrow{\text{mRNA_mlc}, \text{mRNA_mlc}} \text{Mlc}$$
(114)

Modifiers

Table 168: Properties of each modifier.

Id	Name	SBO
mRNA_mlc		_
${\tt mRNA_mlc}$		

Product

Table 169: Properties of each product.

Id	Name	SBO
Mlc		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{48} = \text{vol}(\text{cyt}) \cdot \text{kp} \cdot [\text{mRNA_mlc}]$$
 (115)

Table 170: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kp			11.0	$(60 \text{ s})^{-1}$	

8.49 Reaction decomposition_CYA

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$CYA \stackrel{CYA}{\longleftarrow} \emptyset \tag{116}$$

Reactant

Table 171: Properties of each reactant.

Id	Name	SBO
CYA		

Modifier

Table 172: Properties of each modifier.

Id	Name	SBO
CYA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{49} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CYA}] \tag{117}$$

Table 173: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
kpd		0.1	$(60 \text{ s})^{-1}$	Ø

8.50 Reaction decomposition_CRP

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$CRP \stackrel{CRP}{\rightleftharpoons} \emptyset \tag{118}$$

Reactant

Table 174: Properties of each reactant.

Id	Name	SBO
CRP		

Modifier

Table 175: Properties of each modifier.

Id	Name	SBO
CRP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{50} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP}] \tag{119}$$

Table 176: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.51 Reaction decomposition_Mlc

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$Mlc \stackrel{Mlc}{\rightleftharpoons} \emptyset$$
 (120)

Reactant

Table 177: Properties of each reactant.

Id	Name	SBO
Mlc		

Modifier

Table 178: Properties of each modifier.

Id	Name	SBO
Mlc		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{51} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc}] \tag{121}$$

Table 179: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.52 Reaction decomposition_cAMP

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$cAMP \stackrel{cAMP}{\rightleftharpoons} \emptyset$$
 (122)

Reactant

Table 180: Properties of each reactant.

Id	Name	SBO
cAMP		

Modifier

Table 181: Properties of each modifier.

Id	Name	SBO
cAMP		

Kinetic Law

$$v_{52} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{cAMP}]$$
 (123)

Table 182: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			400.0	$(60 \text{ s})^{-1}$	$ \mathbf{Z} $

8.53 Reaction decomposition_CRP_cAMP

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$CRP_cAMP \xrightarrow{CRP_cAMP} \emptyset$$
 (124)

Reactant

Table 183: Properties of each reactant.

Id	Name	SBO
CRP_cAMP		

Modifier

Table 184: Properties of each modifier.

Id	Name	SBO
CRP_cAMP		

Kinetic Law

$$v_{53} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP}]$$
 (125)

Table 185: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.54 Reaction decomposition_CRP_cAMP_CRPsite_cyaA

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Reactant

Table 186: Properties of each reactant.

Id	Name	
CRP_cAMP_CRPsite_cyaA		

Modifier

Table 187: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_cyaA		

Product

Table 188: Properties of each product.

Id	Name	SBO
CRPsite_cyaA		

Kinetic Law

$$v_{54} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_cyaA}]$$
 (127)

Table 189: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.55 Reaction decomposition_CRP_cAMP_CRPsiteI_crp

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsiteI_crp \xrightarrow{CRP_cAMP_CRPsiteI_crp} CRPsiteI_crp \qquad (128)$$

Reactant

Table 190: Properties of each reactant.

Id Name SBO

CRP_cAMP_CRPsiteI_crp

Modifier

Table 191: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsiteI_crp		

Product

Table 192: Properties of each product.

Id	Name	SBO
CRPsiteI_crp		

Kinetic Law

$$v_{55} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsiteI_crp}]$$
 (129)

Table 193: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.56 Reaction decomposition_CRP_cAMP_CRPsiteII_crp

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsiteII_crp \xrightarrow{CRP_cAMP_CRPsiteII_crp} CRPsiteII_crp \qquad (130)$$

Reactant

Table 194: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsiteII_crp		

Modifier

Table 195: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsiteII_crp		

Product

Table 196: Properties of each product.

Id	Name	SBO
CRPsiteII_crp		

Kinetic Law

$$v_{56} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsiteII_crp}]$$
 (131)

Table 197: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.57 Reaction decomposition_CRP_cAMP_CRPsite_ptsGp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsGp1 \xrightarrow{CRP_cAMP_CRPsite_ptsGp1} CRPsite_ptsGp1 \qquad (132)$$

Reactant

Table 198: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp1		

Modifier

Table 199: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp1		

Product

Table 200: Properties of each product.

Id	Name	SBO
CRPsite_ptsGp1		-

Kinetic Law

$$v_{57} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsGp1}]$$
 (133)

Table 201: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.58 Reaction decomposition_CRP_cAMP_CRPsite_ptsGp2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsGp2 \xrightarrow{CRP_cAMP_CRPsite_ptsGp2} CRPsite_ptsGp2 \qquad (134)$$

Reactant

Table 202: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp2		

Modifier

Table 203: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsGp2		

Product

Id	Name	SBO
CRPsite_ptsGp2		-

Kinetic Law

$$v_{58} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsGp2}]$$
 (135)

Table 205: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.59 Reaction decomposition_CRP_cAMP_CRPsite_ptsHp0

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsHp0 \xrightarrow{CRP_cAMP_CRPsite_ptsHp0} CRPsite_ptsHp0 \qquad (136)$$

Reactant

Table 206: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp0		

Modifier

Table 207: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp0		

Product

Id	Name	SBO
CRPsite_ptsHp0		

Kinetic Law

$$v_{59} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsHp0}]$$
 (137)

Table 209: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.60 Reaction decomposition_CRP_cAMP_CRPsite_ptsHp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsHp1 \xrightarrow{CRP_cAMP_CRPsite_ptsHp1} CRPsite_ptsHp1 \qquad (138)$$

Reactant

Table 210: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp1		

Modifier

Table 211: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsHp1		

Product

Table 212: Properties of each product.

Id	Name	SBO
CRPsite_ptsHp1		

Kinetic Law

$$v_{60} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsHp1}]$$
 (139)

Table 213: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.61 Reaction decomposition_CRP_cAMP_CRPsite_ptsIp0

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsIp0 \xrightarrow{CRP_cAMP_CRPsite_ptsIp0} CRPsite_ptsIp0 \qquad (140)$$

Reactant

Table 214: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp0		

Modifier

Table 215: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp0		

Product

Table 216: Properties of each product.

Id	Name	SBO
CRPsite_ptsIp0		-

Kinetic Law

$$v_{61} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsIp0}]$$
 (141)

Table 217: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.62 Reaction decomposition_CRP_cAMP_CRPsite_ptsIp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_ptsIp1 \xrightarrow{CRP_cAMP_CRPsite_ptsIp1} CRPsite_ptsIp1 \tag{142}$$

Reactant

Table 218: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp1		

Modifier

Table 219: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_ptsIp1		

Product

Id	Name	SBO
CRPsite_ptsIp1		

Kinetic Law

$$v_{62} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_ptsIp1}]$$
 (143)

Table 221: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.63 Reaction decomposition_CRP_cAMP_CRPsite_mlcp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_mlcp1 \xrightarrow{CRP_cAMP_CRPsite_mlcp1} CRPsite_mlcp1 \qquad (144)$$

Reactant

Table 222: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_mlcp1		

Modifier

Table 223: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_mlcp1		

Product

Table 224: Properties of each product.

Id	Name	SBO
CRPsite_mlcp1		

Kinetic Law

$$v_{63} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_mlcp1}]$$
 (145)

Table 225: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.64 Reaction decomposition_CRP_cAMP_CRPsite_mlcp2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

Reactant

Table 226: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_mlcp2		

Modifier

Table 227: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_mlcp2		

Product

Table 228: Properties of each product.

Id	Name	SBO
CRPsite_mlcp2		

Kinetic Law

$$v_{64} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_mlcp2}]$$
 (147)

Table 229: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.65 Reaction decomposition_CRP_cAMP_CRPsite_genome

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$CRP_cAMP_CRPsite_genome \xrightarrow{CRP_cAMP_CRPsite_genome} CRPsite_genome \qquad (148)$$

Reactant

Table 230: Properties of each reactant.

Id	Name	SBO
CRP_cAMP_CRPsite_genome		

Modifier

Table 231: Properties of each modifier.

Id	Name	SBO
CRP_cAMP_CRPsite_genome		

Product

Table 232: Properties of each product.

Id	Name	SBO
CRPsite_genome		

Kinetic Law

$$v_{65} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{CRP_cAMP_CRPsite_genome}]$$
 (149)

Table 233: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.66 Reaction decomposition_Mlc_Mlcsite_ptsGp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_ptsGp1 \xrightarrow{Mlc_Mlcsite_ptsGp1} Mlcsite_ptsGp1$$
 (150)

Reactant

Table 234: Properties of each reactant.

Id	Name	
Mlc_Mlcsite_ptsGp1		

Modifier

Table 235: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_ptsGp1		

Product

Table 236: Properties of each product.

Id	Name	SBO
Mlcsite_ptsGp1		

Kinetic Law

$$v_{66} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_ptsGp1}]$$
 (151)

Table 237: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.67 Reaction decomposition_Mlc_Mlcsite_ptsGp2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_ptsGp2 \xrightarrow{Mlc_Mlcsite_ptsGp2} Mlcsite_ptsGp2$$
 (152)

Reactant

Table 238: Properties of each reactant.

Id	Name	
Mlc_Mlcsite_ptsGp2		

Modifier

Table 239: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_ptsGp2		

Product

Table 240: Properties of each product.

Id	Name	SBO
Mlcsite_ptsGp2		

Kinetic Law

$$v_{67} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_ptsGp2}]$$
 (153)

Table 241: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.68 Reaction decomposition_Mlc_Mlcsite_ptsHp0

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_ptsHp0 \xrightarrow{Mlc_Mlcsite_ptsHp0} Mlcsite_ptsHp0$$
 (154)

Reactant

Table 242: Properties of each reactant.

Id	Name	
Mlc_Mlcsite_ptsHp0		

Modifier

Table 243: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_ptsHp0		

Product

Table 244: Properties of each product.

Id	Name	SBO
Mlcsite_ptsHp0		

Kinetic Law

$$v_{68} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_ptsHp0}]$$
 (155)

Table 245: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.69 Reaction decomposition_Mlc_Mlcsite_ptsIp0

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_ptsIp0 \xrightarrow{Mlc_Mlcsite_ptsIp0} Mlcsite_ptsIp0$$
 (156)

Reactant

Table 246: Properties of each reactant.

Id Name SBO

Modifier

Table 247: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_ptsIp0		

Product

Table 248: Properties of each product.

Id	Name	SBO
Mlcsite_ptsIp0		

Kinetic Law

$$v_{69} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_ptsIp0}]$$
 (157)

Table 249: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.70 Reaction decomposition_Mlc_Mlcsite_mlcp1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_mlcp1 \xrightarrow{Mlc_Mlcsite_mlcp1} Mlcsite_mlcp1$$
 (158)

Reactant

Table 250: Properties of each reactant.

Id Name SBO

Mlc Mlcsite mlcp1	
MIC MICCITA MICHI	
IIIC TII COI CO MIT COI	
TITO TITODE OF METOPE	

Modifier

Table 251: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_mlcp1		

Product

Table 252: Properties of each product.

Id	Name	SBO
Mlcsite_mlcp1		

Kinetic Law

$$v_{70} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_mlcp1}]$$
 (159)

Table 253: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.71 Reaction decomposition_Mlc_Mlcsite_mlcp2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Mlc_Mlcsite_mlcp2 \xrightarrow{Mlc_Mlcsite_mlcp2} Mlcsite_mlcp2$$
 (160)

Reactant

Table 254: Properties of each reactant.

Id Name SBO

Mlc_Mlcsite_mlcp2

Modifier

Table 255: Properties of each modifier.

Id	Name	SBO
Mlc_Mlcsite_mlcp2		

Product

Table 256: Properties of each product.

Id	Name	SBO
Mlcsite_mlcp2		

Kinetic Law

$$v_{71} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{Mlc_Mlcsite_mlcp2}]$$
 (161)

Table 257: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.72 Reaction decomposition_IICB_Mlc

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$IICB_Mlc = \emptyset$$
 (162)

Reactant

Table 258: Properties of each reactant.

Id	Name	SBO
IICB_Mlc		

Modifier

Table 259: Properties of each modifier.

Id	Name	SBO
IICB_Mlc		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{72} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{IICB_Mlc}]$$
 (163)

Table 260: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.73 Reaction decomposition_EI_P

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$EI.P \stackrel{EI.P}{\rightleftharpoons} \emptyset \tag{164}$$

Reactant

Table 261: Properties of each reactant.

Id	Name	SBO
EI_P		

Modifier

Table 262: Properties of each modifier.

Id	Name	SBO
EI_P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{73} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{EI_P}] \tag{165}$$

Table 263: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.74 Reaction decomposition_EI

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$EI \stackrel{EI}{\longleftarrow} \emptyset$$
 (166)

Reactant

Table 264: Properties of each reactant.

Id	Name	SBO
EI		

Modifier

Table 265: Properties of each modifier.

Id	Name	SBO
EI		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{74} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{EI}] \tag{167}$$

Table 266: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.75 Reaction decomposition_HPr_P

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$HPr_P \stackrel{HPr_P}{\longleftarrow} \emptyset$$
 (168)

Reactant

Table 267: Properties of each reactant.

Id	Name	SBO
HPr_P		

Modifier

Table 268: Properties of each modifier.

Id	Name	SBO
HPr_P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{75} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{HPr}_P]$$
 (169)

Table 269: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.76 Reaction decomposition_HPr

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$HPr \stackrel{HPr}{\rightleftharpoons} \emptyset \tag{170}$$

Reactant

Table 270: Properties of each reactant.

Id	Name	SBO
HPr		

Modifier

Table 271: Properties of each modifier.

Id	Name	SBO
HPr		

Kinetic Law

$$v_{76} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{HPr}] \tag{171}$$

Table 272: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.77 Reaction decomposition_IIA_P

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$IIA.P = \frac{IIA.P}{\longleftarrow} \emptyset$$
 (172)

Reactant

Table 273: Properties of each reactant.

Id	Name	SBO
IIA_P		

Modifier

Table 274: Properties of each modifier.

Id	Name	SBO
IIA_P		

Kinetic Law

$$v_{77} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{IIA_P}] \tag{173}$$

Table 275: Properties of each parameter.

Id	Name	SBO V	/alue	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	Ø

8.78 Reaction decomposition_IIA

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$IIA \stackrel{IIA}{\longleftarrow} \emptyset \tag{174}$$

Reactant

Table 276: Properties of each reactant.

Id	Name	SBO
IIA		

Modifier

Table 277: Properties of each modifier.

Id	Name	SBO
IIA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{78} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{IIA}] \tag{175}$$

Table 278: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.79 Reaction decomposition_IICB_P

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$IICB_P \xrightarrow{\boxed{IICB_P}} \emptyset \tag{176}$$

Reactant

Table 279: Properties of each reactant.

Id	Name	SBO
IICB_P		

Modifier

Table 280: Properties of each modifier.

Id	Name	SBO
IICB_P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{79} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{IICB_P}] \tag{177}$$

Table 281: Properties of each parameter.

Id	Name	SBO Va	alue Unit	Constant
kpd		0	$(60 \text{ s})^{-1}$	

8.80 Reaction decomposition_IICB

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Reaction equation

$$IICB = \emptyset$$
 (178)

Reactant

Table 282: Properties of each reactant.

Id	Name	SBO
IICB		

Modifier

Table 283: Properties of each modifier.

Id	Name	SBO
IICB		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{80} = \text{vol}(\text{cyt}) \cdot \text{kpd} \cdot [\text{IICB}] \tag{179}$$

Table 284: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
kpd			0.1	$(60 \text{ s})^{-1}$	

8.81 Reaction PTS2for

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$HPr + EI_P \xrightarrow{HPr, EI_P} HPr_P + EI$$
 (180)

Reactants

Table 285: Properties of each reactant.

Id	Name	SBO
HPr		
EI_P		

Modifiers

Table 286: Properties of each modifier.

Id	Name	SBO
HPr		

Id	Name	SBO
EI_P		

Products

Table 287: Properties of each product.

Id	Name	SBO
HPr_P		
EI		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{81} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{HPr}] \cdot [\text{ELP}]$$
 (181)

Table 288: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$1.2\cdot 10^{10}$	$\text{mol}^{-1} \cdot \mathbf{l} \cdot (60 \text{ s})^{-1}$	

8.82 Reaction PTS2rev

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$HPr_P + EI \xrightarrow{EI, HPr_P} HPr + EI_P$$
 (182)

Reactants

Table 289: Properties of each reactant.

Id	Name	SBO
HPr_P		
EI		

Modifiers

Table 290: Properties of each modifier.

Id	Name	SBO
EI		
HPr_P		

Products

Table 291: Properties of each product.

Id	Name	SBO
HPr		
EI_P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{82} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{EI}] \cdot [\text{HPr}_\text{P}]$$
 (183)

Table 292: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$4.8\cdot10^8$	$\text{mol}^{-1} \cdot l \cdot (60 \text{ s})^{-1}$	

8.83 Reaction PTS3for

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IIA + HPr_P \xrightarrow{IIA, HPr_P} IIA_P + HPr$$
 (184)

Reactants

Table 293: Properties of each reactant.

Id	Name	SBO
IIA		
HPr_P		

Modifiers

Table 294: Properties of each modifier.

Id	Name	SBO
IIA		
HPr_P		

Products

Table 295: Properties of each product.

Id	Name	SBO
IIA_P		
HPr		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{83} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{IIA}] \cdot [\text{HPr}_P]$$
 (185)

Table 296: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$3.66\cdot10^9$	$mol^{-1} \cdot l \cdot (60 \text{ s})^{-1}$	

8.84 Reaction PTS3rev

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IIA_P + HPr \xrightarrow{HPr, IIA_P} IIA + HPr_P$$
 (186)

Reactants

Table 297: Properties of each reactant.

Id	Name	SBO
IIA_P		
HPr		

Modifiers

Table 298: Properties of each modifier.

Id	Name	SBO
HPr		
IIA_P		

Products

Table 299: Properties of each product.

Id	Name	SBO
IIA		
HPr_P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{84} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{HPr}] \cdot [\text{IIA_P}]$$
(187)

Table 300: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$2.82 \cdot 10^9$	$\text{mol}^{-1} \cdot 1 \cdot (60 \text{ s})^{-1}$	\overline{Z}

8.85 Reaction PTS4for

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IICB + IIA_P \xrightarrow{\underline{IICB}, \ IIA_P} IICB_P + IIA$$
 (188)

Reactants

Table 301: Properties of each reactant.

Id	Name	SBO
IICB		
${\tt IIA_P}$		

Modifiers

Table 302: Properties of each modifier.

Id	Name	SBO
IICB		
${\tt IIA_P}$		

Products

Table 303: Properties of each product.

Id	Name	SBO
IICB_P		
IIA		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{85} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{IICB}] \cdot [\text{IIA_P}]$$
 (189)

Table 304: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$6.6 \cdot 10^8$	$\text{mol}^{-1} \cdot \mathbf{l} \cdot (60 \text{ s})^{-1}$	\overline{Z}

8.86 Reaction PTS4rev

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IICB_P + IIA \xrightarrow{\underline{IIA}, \ IICB_P} IICB + IIA_P$$
 (190)

Reactants

Table 305: Properties of each reactant.

Id	Name	SBO
IICB_P		
IIA		

Modifiers

Table 306: Properties of each modifier.

Id	Name	SBO
IIA		
IICB_P		

Products

Table 307: Properties of each product.

Id	Name	SBO
IICB		
IIA_P		

Kinetic Law

$$v_{86} = \text{vol}(\text{cyt}) \cdot \text{kx} \cdot [\text{IIA}] \cdot [\text{IICB_P}]$$
 (191)

Table 308: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kx			$2.4 \cdot 10^{8}$	$\mathrm{mol}^{-1} \cdot \mathrm{l} \cdot (60 \mathrm{s})^{-1}$	\overline{Z}

8.87 Reaction reaction_CYA_ATP

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$ATP \xrightarrow{CYA, CYA, ATP} cAMP$$
 (192)

Reactant

Table 309: Properties of each reactant.

Id	Name	SBO
ATP		

Modifiers

Table 310: Properties of each modifier.

Id	Name	SBO
CYA		
CYA		
ATP		

Product

Table 311: Properties of each product.

Id	Name	SBO
cAMP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{87} = \text{vol}\left(\text{cyt}\right) \cdot \frac{\text{Q} \cdot [\text{CYA}] \cdot [\text{ATP}]}{\text{Kmich} + [\text{ATP}]} \tag{193}$$

Table 312: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kmich			0.001	$\text{mol} \cdot 1^{-1}$	\overline{Z}
Q			100.000	$(60 \text{ s})^{-1}$	

8.88 Reaction reaction_IIA_P_CYA_ATP

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$ATP \xrightarrow{IIA_P_CYA, IIA_P_CYA, ATP} cAMP$$
 (194)

Reactant

Table 313: Properties of each reactant.

Id	Name	SBO
ATP		

Modifiers

Table 314: Properties of each modifier.

Id	Name	SBO
IIA_P_CYA		
IIA_P_CYA		
ATP		

Product

Table 315: Properties of each product.

	_	
Id	Name	SBO
cAMP		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{88} = vol (cyt) \cdot \frac{Q \cdot [IIA_P_CYA] \cdot [ATP]}{Kmich + [ATP]}$$
(195)

Table 316: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kmich			0.001	$\text{mol} \cdot 1^{-1}$	
Q			9000.000	$(60 \text{ s})^{-1}$	

8.89 Reaction reaction_EI_PEP

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$EI + PEP \xrightarrow{EI, PEP} EI_P + Pyr$$
 (196)

Reactants

Table 317: Properties of each reactant.

Id	Name	SBO
ΕI		
PEP		

Modifiers

Table 318: Properties of each modifier.

Id	Name	SBO
ΕI		
PEP		

Products

Table 319: Properties of each product.

Id	Name	SBO
EI_P		
Pyr		

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \text{vol}\left(\text{cyt}\right) \cdot \frac{2 \cdot \text{Q} \cdot [\text{EI}] \cdot [\text{PEP}]^2}{\text{Kmich}^2 + [\text{PEP}]^2}$$
(197)

Table 320: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kmich			$3 \cdot 10^{-4}$	$\text{mol} \cdot l^{-1}$	\overline{Z}
Q			108000.000	$(60 \text{ s})^{-1}$	

8.90 Reaction reaction_EIP_Pyr

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$EI_P + Pyr \xrightarrow{EI_P, Pyr} EI + PEP$$
 (198)

Reactants

Table 321: Properties of each reactant.

Id	Name	SBO
EI_P Pyr		

Modifiers

Table 322: Properties of each modifier.

Id	Name	SBO
EI_P		
Pyr		

Products

Table 323: Properties of each product.

Id	Name	SBO
EI		
PEP		

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = \text{vol}\left(\text{cyt}\right) \cdot \frac{2 \cdot Q \cdot [\text{EI_P}] \cdot [\text{Pyr}]^2}{\text{Kmich}^2 + [\text{Pyr}]^2}$$
(199)

Table 324: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kmich			0.002	$\text{mol} \cdot 1^{-1}$	\overline{Z}
Q			480000.000	$(60 \text{ s})^{-1}$	\square

8.91 Reaction reaction_IICB_P_Glucose

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IICB_P + Glucose \xrightarrow{IICB_P, Glucose} IICB + Glc6P$$
 (200)

Reactants

Table 325: Properties of each reactant.

Id	Name	SBO
IICB_P		
Glucose		

Modifiers

Table 326: Properties of each modifier.

Id	Name	SBO
IICB_P		
Glucose		

Products

Table 327: Properties of each product.

Id	Name	SBO
IICB		
Glc6P		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{91} = vol(cyt) \cdot \frac{Q \cdot [IICB_P] \cdot [Glucose]}{Kmich + [Glucose]}$$
 (201)

Table 328: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kmich			$2\cdot 10^{-5}$	$\text{mol} \cdot l^{-1}$	\overline{Z}
Q			4800.000	$(60 \text{ s})^{-1}$	\mathbf{Z}

8.92 Reaction reaction_IICB_Glc6P

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Reaction equation

$$IICB + Glc6P \xrightarrow{IICB, Glc6P} IICB_P + Glucose$$
 (202)

Reactants

Table 329: Properties of each reactant.

Id	Name	SBO
IICB		
Glc6P		

Modifiers

Table 330: Properties of each modifier.

Id	Name	SBO
IICB		
Glc6P		

Products

Table 331: Properties of each product.

Id	Name	SBO
IICB_P		
Glucose		

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{mol}$

$$v_{92} = \text{vol}(\text{cyt}) \cdot \frac{Q \cdot [\text{IICB}] \cdot [\text{Glc6P}]}{\text{Kmich} + [\text{Glc6P}]}$$
(203)

Table 332: Properties of each parameter.

Id	Name	SBO Valu	ue Unit	Constant
Kmich		9.	61 $\text{mol} \cdot l^{-1}$	Ø
Q		389.	$00 (60 \text{ s})^{-1}$	

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

9.1 Species CRP

Initial concentration $5.4207 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in binding_CRP_cAMP, decomposition_CRP and as a product in translation_mRNA_crp and as a modifier in binding_CRP_cAMP, decomposition_CRP).

$$\frac{d}{dt}CRP = v_{43} - v_1 - v_{50} \tag{204}$$

9.2 Species CRPsiteI_crp

Initial concentration $7.4368 \cdot 10^{-11} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsiteI_crp and as a product in decomposition_CRP_cAMP_CRPsiteI_crp and as a modifier in binding-_CRP_cAMP_CRPsiteI_crp).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsiteI_crp} = v_{55} - v_3 \tag{205}$$

9.3 Species CRPsiteII_crp

Initial concentration $1.9047 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsiteII_crp and as a product in decomposition_CRP_cAMP_CRPsiteII_crp and as a modifier in binding-_CRP_cAMP_CRPsiteII_crp).

$$\frac{d}{dt}CRPsiteII_crp = v_{56} - v_4$$
 (206)

9.4 Species CRPsite_cyaA

Initial concentration $3.1103 \cdot 10^{-11} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_cyaA and as a product in decomposition_CRP_cAMP_CRPsite_cyaA and as a modifier in binding-_CRP_cAMP_CRPsite_cyaA).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_cyaA} = v_{54} - v_2 \tag{207}$$

9.5 Species CRPsite_genome

Initial concentration $3.6756 \cdot 10^{-9} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_genome and as a product in decomposition_CRP_cAMP_CRPsite_genome and as a modifier in binding-_CRP_cAMP_CRPsite_genome).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{CRPsite_genome} = v_{65} - v_{13} \tag{208}$$

9.6 Species CRPsite_ptsGp1

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsGp1 and as a product in decomposition_CRP_cAMP_CRPsite_ptsGp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsGp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_ptsGp1} = v_{57} - v_5 \tag{209}$$

9.7 Species CRPsite_ptsGp2

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsGp2 and as a product in decomposition_CRP_cAMP_CRPsite_ptsGp2 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsGp2).

$$\frac{d}{dt}CRPsite_ptsGp2 = v_{58} - v_6$$
 (210)

9.8 Species CRPsite_ptsHp0

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsHp0 and as a product in decomposition_CRP_cAMP_CRPsite_ptsHp0 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsHp0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_ptsHp0} = v_{59} - v_7 \tag{211}$$

9.9 Species CRPsite_ptsHp1

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsHp1 and as a product in decomposition_CRP_cAMP_CRPsite_ptsHp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsHp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_ptsHp1} = v_{60} - v_8 \tag{212}$$

9.10 Species CRPsite_ptsIp0

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsIp0 and as a product in decomposition_CRP_cAMP_CRPsite_ptsIp0 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsIp0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_ptsIp0} = v_{61} - v_9 \tag{213}$$

9.11 Species CRPsite_ptsIp1

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_ptsIp1 and as a product in decomposition_CRP_cAMP_CRPsite_ptsIp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsIp1).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{CRPsite_ptsIp1} = v_{62} - v_{10} \tag{214}$$

9.12 Species CRPsite_mlcp1

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_mlcp1 and as a product in decomposition_CRP_cAMP_CRPsite_mlcp1 and as a modifier in binding_CRP_cAMP_CRPsite_mlcp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_mlcp1} = v_{63} - v_{11} \tag{215}$$

9.13 Species CRPsite_mlcp2

Initial concentration $1.2021 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_CRP_cAMP_CRPsite_mlcp2 and as a product in decomposition_CRP_cAMP_CRPsite_mlcp2 and as a modifier in binding_CRP_cAMP_CRPsite_mlcp2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CRPsite_mlcp2} = v_{64} - v_{12} \tag{216}$$

9.14 Species Mlc

Initial concentration $5.5172 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in 17 reactions (as a reactant in binding_Mlc_Mlcsite_ptsGp1, binding_Mlc_Mlcsite_ptsGp2, binding_Mlc_Mlcsite_ptsHp0, binding_Mlc_Mlcsite_ptsIp0, binding_Mlc_Mlcsite_ptsIp0, binding_Mlc_Mlcsite_mlcp1, binding_Mlc_Mlcsite_mlcp2, binding_IICB_Mlc, decomposition_Mlc and as a product in translation_mlc and as a modifier in binding_Mlc_Mlcsite_ptsGp1, binding_Mlc_Mlcsite_ptsGp2, binding_Mlc_Mlcsite_ptsHp0, binding_Mlc-Mlcsite_ptsIp0, binding_Mlc_Mlcsite_mlcp1, binding_Mlc_Mlcsite_mlcp2, binding_IICB_Mlc, decomposition_Mlc).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlc} = v_{48} - v_{14} - v_{15} - v_{16} - v_{17} - v_{18} - v_{19} - v_{20} - v_{51}$$
(217)

9.15 Species Mlcsite_mlcp1

Initial concentration $2.4267 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_mlcp1 and as a product in decomposition_Mlc_Mlcsite_mlcp1 and as a modifier in binding_Mlc_Mlcsite_mlcp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_mlcp1} = v_{70} - v_{18} \tag{218}$$

9.16 Species Mlcsite_mlcp2

Initial concentration $2.4282 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_mlcp2 and as a product in decomposition_Mlc_Mlcsite_mlcp2 and as a modifier in binding_Mlc_Mlcsite_mlcp2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_mlcp2} = v_{71} - v_{19} \tag{219}$$

9.17 Species Mlcsite_ptsGp1

Initial concentration $2.1885 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_ptsGp1 and as a product in decomposition_Mlc_Mlcsite_ptsGp1 and as a modifier in binding_Mlc-_Mlcsite_ptsGp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_ptsGp1} = v_{66} - v_{14} \tag{220}$$

9.18 Species Mlcsite_ptsGp2

Initial concentration $2.1885 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_ptsGp2 and as a product in decomposition_Mlc_Mlcsite_ptsGp2 and as a modifier in binding_Mlc-_Mlcsite_ptsGp2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_ptsGp2} = v_{67} - v_{15} \tag{221}$$

9.19 Species Mlcsite_ptsHp0

Initial concentration $2.1885 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_ptsHp0 and as a product in decomposition_Mlc_Mlcsite_ptsHp0 and as a modifier in binding_Mlc-_Mlcsite_ptsHp0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_ptsHp0} = v_{68} - v_{16} \tag{222}$$

9.20 Species Mlcsite_ptsIp0

Initial concentration $2.1885 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in binding_Mlc_Mlcsite_ptsIp0 and as a product in decomposition_Mlc_Mlcsite_ptsIp0 and as a modifier in binding_Mlc-_Mlcsite_ptsIp0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlcsite_ptsIp0} = v_{69} - v_{17} \tag{223}$$

9.21 Species CRP_cAMP

Initial concentration $1.0214 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in 28 reactions (as a reactant in binding_CRP_cAMP_CRPsite_cyaA, binding_CRP_cAMP_CRPsiteI_crp, binding_CRP_cAMP_CRPsiteII_crp, binding_CRP_cAMP-_CRPsite_ptsGp1, binding_CRP_cAMP_CRPsite_ptsGp2, binding_CRP_cAMP_CRPsite_ptsHp0, binding_CRP_cAMP_CRPsite_ptsHp1, binding_CRP_cAMP_CRPsite_ptsIp0, binding_CRP-cAMP_CRPsite_mlcp1, binding_CRP_cAMP_CRPsite-_mlcp2, binding_CRP_cAMP_CRPsite_genome, decomposition_CRP_cAMP and as a product in binding_CRP_cAMP and as a modifier in binding_CRP_cAMP, binding_CRP_cAMP_CRPsite-_cyaA, binding_CRP_cAMP_CRPsiteI_crp, binding_CRP_cAMP_CRPsiteII_crp, binding_CRP_cAMP_CRPsiteII_crp, binding_CRP_cAMP_CRPsite_ptsGp2, binding_CRP_cAMP_CRPsite-_ptsHp0, binding_CRP_cAMP_CRPsite_ptsHp1, binding_CRP_cAMP_CRPsite_ptsIp0, binding_CRP_cAMP_CRPsite_ptsIp1, binding_CRP_cAMP_CRPsite_mlcp1, binding_CRP_cAMP_CRPsite-_mlcp2, binding_CRP_cAMP_CRPsite_genome, decomposition_CRP_cAMP).

$$\frac{d}{dt}CRP_cAMP = v_1 - v_2 - v_3 - v_4 - v_5 - v_6 - v_7 - v_8 - v_9 - v_{10} - v_{11} - v_{12} - v_{13} - v_{53}$$
 (224)

9.22 Species CRP_cAMP_CRPsiteI_crp

Initial concentration $1.6863 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsiteI-_crp and as a product in binding_CRP_cAMP_CRPsiteI_crp and as a modifier in binding-_CRP_cAMP_CRPsiteI_crp, transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP_CRPsiteII-_crp_crp, transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP_CRPsiteII_crp_crp, decomposition-_CRP_cAMP_CRPsiteI_crp).

$$\frac{d}{dt}CRP_cAMP_CRPsiteI_crp = v_3 - v_{55}$$
 (225)

9.23 Species CRP_cAMP_CRPsiteII_crp

Initial concentration $5.2529 \cdot 10^{-11} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsiteII-_crp and as a product in binding_CRP_cAMP_CRPsiteII_crp and as a modifier in binding-_CRP_cAMP_CRPsiteII_crp, transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP_CRPsiteII-crp_crp, transcription_CRP_cAMP_CRPsiteII-crp_CRP_cAMP_CRPsiteII-crp_crp, decomposition-_CRP_cAMP_CRPsiteII_crp).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{CRP_cAMP_CRPsiteII_crp} = v_4 - v_{56} \tag{226}$$

9.24 Species CRP_cAMP_CRPsite_cyaA

Initial concentration $2.119 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-cyaA and as a product in binding_CRP_cAMP_CRPsite_cyaA and as a modifier in binding-CRP_cAMP_CRPsite_cyaA, transcription_CRP_cAMP_CRPsite_cyaA, transcription-CRP_cAMP_CRPsite_cyaA, decomposition_CRP_cAMP_CRPsite_cyaA).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{CRP_cAMP_CRPsite_cyaA} = v_2 - v_{54} \tag{227}$$

9.25 Species CRP_cAMP_CRPsite_genome

Initial concentration $3.7544 \cdot 10^{-9} \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-genome and as a product in binding_CRP_cAMP_CRPsite_genome and as a modifier in binding-CRP_cAMP_CRPsite_genome, decomposition_CRP_cAMP_CRPsite_genome).

$$\frac{d}{dt}CRP_cAMP_CRPsite_genome = v_{13} - v_{65}$$
 (228)

9.26 Species CRP_cAMP_CRPsite_ptsGp1

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsGp1 and as a product in binding_CRP_cAMP_CRPsite_ptsGp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsGp1, transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1-_ptsGp1, transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1, decomposition-_CRP_cAMP_CRPsite_ptsGp1).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsGp1 = v_5 - v_{57}$$
 (229)

9.27 Species CRP_cAMP_CRPsite_ptsGp2

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsGp2 and as a product in binding_CRP_cAMP_CRPsite_ptsGp2 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsGp2, transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2-_ptsGp2, transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2, decomposition-_CRP_cAMP_CRPsite_ptsGp2).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsGp2 = v_6 - v_{58}$$
 (230)

9.28 Species CRP_cAMP_CRPsite_ptsHp0

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsHp0 and as a product in binding_CRP_cAMP_CRPsite_ptsHp0 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsHp0, transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc_Mlcsite_ptsHp0-_ptsHp0, transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc_Mlcsite_ptsHp0-ptsHp0, decomposition-_CRP_cAMP_CRPsite_ptsHp0).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsHp0 = v_7 - v_{59}$$
 (231)

9.29 Species CRP_cAMP_CRPsite_ptsHp1

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsHp1 and as a product in binding_CRP_cAMP_CRPsite_ptsHp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsHp1, transcription_CRP_cAMP_CRPsite_ptsHp1, transcription-_CRP_cAMP_CRPsite_ptsHp1, decomposition_CRP_cAMP_CRPsite_ptsHp1).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsHp1 = v_8 - v_{60}$$
 (232)

9.30 Species CRP_cAMP_CRPsite_ptsIp0

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsIp0 and as a product in binding_CRP_cAMP_CRPsite_ptsIp0 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsIp0, transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0-_ptsIp0, transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0, decomposition-_CRP_cAMP_CRPsite_ptsIp0).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsIp0 = v_9 - v_{61}$$
 (233)

9.31 Species CRP_cAMP_CRPsite_ptsIp1

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_ptsIp1 and as a product in binding_CRP_cAMP_CRPsite_ptsIp1 and as a modifier in binding-_CRP_cAMP_CRPsite_ptsIp1, transcription_CRP_cAMP_CRPsite_ptsIp1, transcription-_CRP_cAMP_CRPsite_ptsIp1, decomposition_CRP_cAMP_CRPsite_ptsIp1).

$$\frac{d}{dt}CRP_cAMP_CRPsite_ptsIp1 = v_{10} - v_{62}$$
 (234)

9.32 Species CRP_cAMP_CRPsite_mlcp1

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite_mlcp1 and as a product in binding_CRP_cAMP_CRPsite_mlcp1 and as a modifier in binding-_CRP_cAMP_CRPsite_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite_mlcp1-_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite_mlcp1, decomposition_CRP_cAMP_CRPsite_mlcp1).

$$\frac{d}{dt}CRP_cAMP_CRPsite_mlcp1 = v_{11} - v_{63}$$
 (235)

9.33 Species CRP_cAMP_CRPsite_mlcp2

Initial concentration $1.2279 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_CRP_cAMP_CRPsite-_mlcp2 and as a product in binding_CRP_cAMP_CRPsite_mlcp2 and as a modifier in binding-_CRP_cAMP_CRPsite_mlcp2, transcription_CRP_cAMP_CRPsite_mlcp2_Mlc_Mlcsite_mlcp2-_mlcp2, transcription_CRP_cAMP_CRPsite_mlcp2_Mlc_Mlcsite_mlcp2, decomposition-_CRP_cAMP_CRPsite_mlcp2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{CRP_cAMP_CRPsite_mlcp2} = v_{12} - v_{64} \tag{236}$$

9.34 Species Mlc_Mlcsite_ptsGp1

Initial concentration $2.4149 \cdot 10^{-11} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_ptsGp1 and as a product in binding_Mlc_Mlcsite_ptsGp1 and as a modifier in binding_Mlc_Mlcsite-_ptsGp1, transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1_ptsGp1, transcription-_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1_ptsGp1, decomposition_Mlc_Mlcsite-_ptsGp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlc_Mlcsite_ptsGp1} = v_{14} - v_{66}$$
 (237)

9.35 Species Mlc_Mlcsite_ptsGp2

Initial concentration $2.4149 \cdot 10^{-11} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_ptsGp2 and as a product in binding_Mlc_Mlcsite_ptsGp2 and as a modifier in binding_Mlc_Mlcsite-_ptsGp2, transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2, transcription-_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2, decomposition_Mlc_Mlcsite-_ptsGp2).

$$\frac{d}{dt}Mlc_Mlcsite_ptsGp2 = v_{15} - v_{67}$$
 (238)

9.36 Species Mlc_Mlcsite_ptsIp0

Initial concentration $2.4149 \cdot 10^{-11} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_ptsIp0 and as a product in binding_Mlc_Mlcsite_ptsIp0 and as a modifier in binding_Mlc_Mlcsite-_ptsIp0, transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0_ptsIp0, transcription-_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0, decomposition_Mlc_Mlcsite-_ptsIp0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlc_Mlcsite_ptsIp0} = v_{17} - v_{69} \tag{239}$$

9.37 Species Mlc_Mlcsite_ptsHp0

Initial concentration $2.4149 \cdot 10^{-11} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_ptsHp0 and as a product in binding_Mlc_Mlcsite_ptsHp0 and as a modifier in binding_Mlc_Mlcsite-_ptsHp0, transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc_Mlcsite_ptsHp0_ptsHp0, transcription-_CRP_cAMP_CRPsite_ptsHp0_ptsHp0, decomposition_Mlc_Mlcsite-_ptsHp0).

$$\frac{d}{dt}Mlc_Mlcsite_ptsHp0 = v_{16} - v_{68}$$
 (240)

9.38 Species Mlc_Mlcsite_mlcp1

Initial concentration $3.2535 \cdot 10^{-13} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_mlcp1 and as a product in binding_Mlc_Mlcsite_mlcp1 and as a modifier in binding_Mlc_Mlcsite_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite_mlcp1_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp1_mlcp1_mlcp1, decomposition_Mlc_Mlcsite_mlcp1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlc_Mlcsite_mlcp1} = v_{18} - v_{70} \tag{241}$$

9.39 Species Mlc_Mlcsite_mlcp2

Initial concentration $1.8086 \cdot 10^{-13} \; mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_Mlc_Mlcsite_mlcp2 and as a product in binding_Mlc_Mlcsite_mlcp2 and as a modifier in binding_Mlc_Mlcsite-mlcp2, transcription_CRP_cAMP_CRPsite_mlcp2_Mlc_Mlcsite_mlcp2_mlcp2, transcription_CRP_cAMP_CRPsite_mlcp2_mlcp2, decomposition_Mlc_Mlcsite_mlcp2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mlc_Mlcsite_mlcp2} = v_{19} - v_{71} \tag{242}$$

9.40 Species IICB

Initial concentration $4.2844 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in binding_IICB_Mlc, decomposition_IICB, PTS4for, reaction_IICB_Glc6P and as a product in translation_mRNA_ptsG, PTS4rev, reaction_IICB_P_Glucose and as a modifier in binding_IICB_Mlc, decomposition_IICB, PTS4for, reaction_IICB_Glc6P).

$$\frac{\mathrm{d}}{\mathrm{d}t}IICB = v_{44} + v_{86} + v_{91} - v_{20} - v_{80} - v_{85} - v_{92}$$
(243)

9.41 Species IICB_Mlc

Initial concentration $1.6546 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in decomposition_IICB_Mlc and as a product in binding_IICB_Mlc and as a modifier in binding_IICB_Mlc, decomposition__IICB_Mlc).

$$\frac{d}{dt}IICB_Mlc = v_{20} - v_{72}$$
 (244)

9.42 Species CYA

Initial concentration $1.4934 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in binding_IIA_P_CYA, decomposition_CYA and as a product in translation_mRNA_cyaA and as a modifier in binding_IIA_P_CYA, decomposition_CYA, reaction_CYA_ATP, reaction_CYA_ATP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CYA} = v_{42} - v_{21} - v_{49} \tag{245}$$

9.43 Species IIA_P

Initial concentration $7.0094 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$

This species takes part in ten reactions (as a reactant in binding_IIA_P_CYA, decomposition_IIA_P, PTS3rev, PTS4for and as a product in PTS3for, PTS4rev and as a modifier in binding_IIA_P_CYA, decomposition_IIA_P, PTS3rev, PTS4for).

$$\frac{\mathrm{d}}{\mathrm{d}t} IIA_P = v_{83} + v_{86} - v_{21} - v_{77} - v_{84} - v_{85}$$
(246)

9.44 Species IIA_P_CYA

Initial concentration $7.3371 \cdot 10^{-9} \text{ mol} \cdot 1^{-1}$

This species takes part in four reactions (as a product in binding_IIA_P_CYA and as a modifier in binding_IIA_P_CYA, reaction_IIA_P_CYA_ATP, reaction_IIA_P_CYA_ATP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IIA.P.CYA} = v_{21} \tag{247}$$

9.45 Species mRNA_cyaA

Initial concentration $1.3643 \cdot 10^{-8} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_cyaA and as a product in transcription_CRP_cAMP_CRPsite_cyaA_cyaA, transcription_cyaA_basal and as a modifier in decomposition_mRNA_cyaA, translation_mRNA_cyaA, translation_mRNA_cyaA).

$$\frac{d}{dt} mRNA_c vaA = v_{22} + v_{23} - v_{35}$$
 (248)

9.46 Species mRNA_crp

Initial concentration $5.0254 \cdot 10^{-8} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_crp and as a product in transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP_CRPsiteII_crp_crp, transcription_crp_basal and as a modifier in decomposition_mRNA_crp, translation_mRNA_crp, translation_mRNA_crp, translation_mRNA_crp).

$$\frac{d}{dt} mRNA_crp = v_{24} + v_{25} - v_{36}$$
 (249)

9.47 Species mRNA_ptsG

Initial concentration $4.5559 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_ptsG and as a product in transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1_ptsGp1, transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2 and as a modifier in decomposition_mRNA_ptsG, translation_mRNA_ptsG, translation_mRNA_ptsG).

$$\frac{d}{dt} mRNA_p tsG = v_{26} + v_{27} - v_{37}$$
 (250)

9.48 Species mRNA_ptsH

Initial concentration $1.1411 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_ptsH and as a product in transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc_Mlcsite_ptsHp0_ptsHp0, transcription_CRP_cAMP_CRPsite_ptsHp1 and as a modifier in decomposition_mRNA_ptsH, translation_mRNA_ptsH, translation_mRNA_ptsH).

$$\frac{d}{dt} mRNA_{-}ptsH = v_{28} + v_{29} - v_{38}$$
 (251)

9.49 Species mRNA_ptsI

Initial concentration $1.0038 \cdot 10^{-8} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_ptsI and as a product in transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0_ptsIp0, transcription_CRP_cAMP_CRPsite_ptsIp1 and as a modifier in decomposition_mRNA_ptsI, translation_mRNA_ptsI, translation_mRNA_ptsI).

$$\frac{d}{dt} mRNA_p tsI = v_{30} + v_{31} - v_{39}$$
 (252)

9.50 Species mRNA_crr

Initial concentration $9.3861 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in decomposition_mRNA_crr and as a product in transcription_crr and as a modifier in decomposition_mRNA_crr, translation_mRNA_crr, translation_mRNA_crr).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{mRNA_crr} = v_{32} - v_{40} \tag{253}$$

9.51 Species mRNA_mlc

Initial concentration $1.5101 \cdot 10^{-9} \text{ mol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in decomposition_mRNA_mlc and as a product in transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite_mlcp1_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp2_mlcp2 and as a modifier in decomposition_mRNA_mlc, translation_mlc, translation_mlc).

$$\frac{d}{dt} mRNA_mlc = v_{33} + v_{34} - v_{41}$$
 (254)

9.52 Species IICB_P

Initial concentration $7.1055 \cdot 10^{-6} \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in decomposition_IICB_P, PTS4rev, reaction_IICB_P_Glucose and as a product in PTS4for, reaction_IICB_Glc6P and as a modifier in decomposition_IICB_P, PTS4rev, reaction_IICB_P_Glucose).

$$\frac{d}{dt}IICB_{-}P = v_{85} + v_{92} - v_{79} - v_{86} - v_{91}$$
(255)

9.53 Species IIA

Initial concentration $9.623 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in decomposition_IIA, PTS3for, PTS4rev and as a product in translation_mRNA_crr, PTS3rev, PTS4for and as a modifier in decomposition_IIA, PTS3for, PTS4rev).

$$\frac{\mathrm{d}}{\mathrm{d}t}IIA = v_{47} + v_{84} + v_{85} - v_{78} - v_{83} - v_{86}$$
 (256)

9.54 Species HPr_P

Initial concentration $7.5867 \cdot 10^{-7} \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in decomposition_HPr_P, PTS2rev, PTS3for and as a product in PTS2for, PTS3rev and as a modifier in decomposition_HPr_P, PTS2rev, PTS3for).

$$\frac{d}{dt}HPr_P = v_{81} + v_{84} - v_{75} - v_{82} - v_{83}$$
 (257)

9.55 Species HPr

Initial concentration $1.1793 \cdot 10^{-5} \text{ mol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in decomposition_HPr, PTS2for, PTS3rev and as a product in translation_mRNA_ptsH, PTS2rev, PTS3for and as a modifier in decomposition_HPr, PTS2for, PTS3rev).

$$\frac{\mathrm{d}}{\mathrm{d}t}HPr = v_{45} + v_{82} + v_{83} - v_{76} - v_{81} - v_{84}$$
(258)

9.56 Species EI_P

Initial concentration $2.4319 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in eight reactions (as a reactant in decomposition_EI_P, PTS2for, reaction_EIP_Pyr and as a product in PTS2rev, reaction_EI_PEP and as a modifier in decomposition_EI_P, PTS2for, reaction_EIP_Pyr).

$$\frac{\mathrm{d}}{\mathrm{d}t}\text{EI.P} = v_{82} + v_{89} - v_{73} - v_{81} - v_{90} \tag{259}$$

9.57 Species EI

Initial concentration $8.6098 \cdot 10^{-7} \text{ mol} \cdot 1^{-1}$

This species takes part in nine reactions (as a reactant in decomposition_EI, PTS2rev, reaction_EI_PEP and as a product in translation_mRNA_ptsI, PTS2for, reaction_EIP_Pyr and as a modifier in decomposition_EI, PTS2rev, reaction_EI_PEP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EI} = v_{46} + v_{81} + v_{90} - v_{74} - v_{82} - v_{89} \tag{260}$$

9.58 Species cAMP

Initial concentration $4.7107 \cdot 10^{-7} \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in binding_CRP_cAMP, decomposition_cAMP and as a product in reaction_CYA_ATP, reaction_IIA_P_CYA_ATP and as a modifier in binding_CRP_cAMP, decomposition_cAMP).

$$\frac{d}{dt}cAMP = v_{87} + v_{88} - v_1 - v_{52}$$
 (261)

9.59 Species cyaA

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite-cyaA_cyaA, transcription_CRP_cAMP_CRPsite_cyaA_cyaA), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cyaA} = 0\tag{262}$$

9.60 Species cyaA_basal

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_cyaA_basal, transcription_cyaA_basal), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{cyaA_basal} = 0 \tag{263}$$

9.61 Species crp

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsiteI-_crp_CRP_cAMP_CRPsiteII_crp_crp, transcription_CRP_cAMP_CRPsiteI_crp_CRP_cAMP-_CRPsiteII_crp_crp), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{crp} = 0\tag{264}$$

9.62 Species crp_basal

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_crp_basal, transcription_crp_basal), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{crp_basal} = 0 \tag{265}$$

9.63 Species ptsGp1

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc_Mlcsite_ptsGp1_ptsGp1, transcription_CRP_cAMP_CRPsite_ptsGp1_Mlc-_Mlcsite_ptsGp1_ptsGp1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsGp1} = 0\tag{266}$$

9.64 Species ptsGp2

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc_Mlcsite_ptsGp2_ptsGp2, transcription_CRP_cAMP_CRPsite_ptsGp2_Mlc-_Mlcsite_ptsGp2_ptsGp2), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsGp2} = 0\tag{267}$$

9.65 Species ptsHp0

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite-_ptsHp0_Mlc_Mlcsite_ptsHp0_ptsHp0, transcription_CRP_cAMP_CRPsite_ptsHp0_Mlc-_Mlcsite_ptsHp0_ptsHp0), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsHp0} = 0\tag{268}$$

9.66 Species ptsHp1

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite_ptsHp1_ptsHp1, transcription_CRP_cAMP_CRPsite_ptsHp1_ptsHp1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsHp1} = 0 \tag{269}$$

9.67 Species ptsIp0

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc_Mlcsite_ptsIp0_ptsIp0, transcription_CRP_cAMP_CRPsite_ptsIp0_Mlc-_Mlcsite_ptsIp0_ptsIp0), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsIp0} = 0\tag{270}$$

9.68 Species ptsIp1

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite_ptsIp1_ptsIp1, transcription_CRP_cAMP_CRPsite_ptsIp1_ptsIp1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ptsIp1} = 0\tag{271}$$

9.69 Species crr

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_crr, transcription_crr), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{crr} = 0\tag{272}$$

9.70 Species mlcp1

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite-_mlcp1_Mlc_Mlcsite_mlcp1_mlcp1, transcription_CRP_cAMP_CRPsite_mlcp1_Mlc_Mlcsite-_mlcp1_mlcp1), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mlcp1} = 0\tag{273}$$

9.71 Species mlcp2

Initial concentration $2.43 \cdot 10^{-10} \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in transcription_CRP_cAMP_CRPsite-_mlcp2_Mlc_Mlcsite_mlcp2_mlcp2, transcription_CRP_cAMP_CRPsite_mlcp2_Mlc_Mlcsite-_mlcp2_mlcp2), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mlcp2} = 0\tag{274}$$

9.72 Species Pyr

Initial concentration $0.00267 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_EIP_Pyr and as a product in reaction_EIP_Pyr and as a modifier in reaction_EIP_Pyr), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pyr} = 0\tag{275}$$

9.73 Species PEP

Initial concentration $0.00267 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_EI_PEP and as a product in reaction_EIP_Pyr and as a modifier in reaction_EI_PEP), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PEP} = 0\tag{276}$$

9.74 Species Glc6P

Initial concentration $0.00148 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_IICB_Glc6P and as a product in reaction_IICB_P_Glucose and as a modifier in reaction_IICB_Glc6P), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glc6P} = 0\tag{277}$$

9.75 Species Glucose

Initial concentration $0.2 \text{ mol} \cdot l^{-1}$

Involved in event event_0

This species takes part in three reactions (as a reactant in reaction_IICB_P_Glucose and as a product in reaction_IICB_Glc6P and as a modifier in reaction_IICB_P_Glucose). Not these but one event influences the species' quantity because this species is on the boundary of the reaction system.

9.76 Species ATP

Initial concentration $0.0069942 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_CYA_ATP, reaction_IIA_P_CYA_ATP and as a modifier in reaction_CYA_ATP, reaction_IIA_P_CYA_ATP), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATP} = 0\tag{278}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany