Matemática IV- 2019 TP2 - Relaciones y Congruencia

- 1. Sean los conjuntos $A = \{1, 0, -1\}$ y $B = \{2, 3, 1\}$. Decide si las siguientes corresponden a relaciones de A en B. Justifica.
 - (a) $R = \{(1, 2), (0, 3)\}$
 - (b) $R = \{(-1, 1), (-1, 2), (-1, 3)\}$
 - (c) $R = \{(3;1)\}$
 - (d) $R = \emptyset$
- 2. Sea $A = \{-3, -2, -1, 0, 1, 2, 3\}, B = Z$ y la relación viene definida en la forma: xRy si y sólo si y es el cuadrado de x.

Escribe R por extensión. Define R^{-1} por comprensión y por extensión.

- 3. Sea $A = \{a, b, c\}$
 - (a) Dar un ejemplo de una relación R no reflexiva en A
 - (b) Dar un ejemplo de una relación R simétrica en A
 - (c) Dar un ejemplo de una relación R no transitiva en A
- 4. Sea A un conjunto arbirtario. Sea $R = \Delta_A$ (diagonal de A). Analizar qué propiedades tiene R.
- 5. Sea $A = \{1, 2, 3\}$
 - (a) Dar un ejemplo de una relación R no simétrica en A
 - (b) Dar un ejemplo de una relación R antisimétrica en A
 - (c) ¿ Hay alguna conexión entre ser no simétrica y ser antisimétrica? Ejemplificar
- 6. Determinar si las siguientes relaciones definidas en $A = \{a, b, c, d\}$ son reflexivas, simétricas, antisimétricas y transitivas:
 - $R_1 = \{(a, a); (a, b); (b, a); (c, d)\}$
 - $R_2 = \{(a, a); (b, b); (b, c); (c, b); (d, d); (c, c)\}$
 - $R_3 = \{(a, a); (a, b); (b, a); (b, c); (c, b); (b, b)\}$
 - $R_4 = \{(a, a); (b, b); (c, c); (d, d)\}$
 - $R_5 = \emptyset$
- 7. Dado el conjunto $A = \{a, b, c\}$ y las relaciones en A definidas como sigue:

$$R = \{(a, a), (a, b), (b, a), (b, b)\}\ y\ S = \{(b, a), (c, a)\}\$$

- (a) Decidir justificando si R es reflexiva, simétrica, transitiva, o antisimétrica
- (b) Decidir justificando si S es transitiva y/o antisim étrica
- (c) ¿Qué pares hay que agregar necesariamente a S para que sea reflexiva?
- (d) ¿Qué pares hay que agregar necesariamente a S para que sea simétrica?

- 8. Establecer las propiedades de las siguientes realaciones:
 - (a) Sea H el conjunto de los seres humanos. Sea R la relación en H definida por xRy si y sólo si x es hermano de y
 - (b) Sea H el conjunto de los seres humanos. Sea R la relación en H definida por xRy si y sólo si x es hijo de y
 - (c) Sea N el conjunto de los números naturales. Sea \leq la relación en N dada por $x \leq y$ si y sólo si x es menor que y
 - (d) Sea N el conjunto de los números naturales. Sea | la relación en N dada por x|y si y sólo si x divide a y
 - (e) Igual al anterior pero en el conjunto de los enteros.
- 9. Sea R la siguiete relación en ZxZ dada por (x,y)R(z,w) si y solo si x=zEsta relación se llama relación de equivalencia asociada a la primera proyección Demostrar que es efectivamente una relación de equivalencia y hallar la R – clase del par (x,y).
- 10. Sea $f: A \to B$ una función. Sea R la relación en A dada por: xRy si y sólo si f(x) = f(y) Hallar los conjuntos cocientes para cada una de las siguientes funciones en los reales:
 - (a) $f(x) = x^2$
 - (b) f(x) = 2x
- 11. Hallar las clases de equivalencia módulo 3 y 5 de los números 387, 25 y 649
- 12. Hallar las respectivas clases de 13, 6, 11 y $-49 \ mod$ 4
- 13. Averiguar si son congruentes módulo 3 entre sí los siguientes pares de números: (2, 1024), (101, 512), (1501, 1348).
- 14. Analizar para qué valores de m se hacen verdaderas las siguientes congruencias: $5 \equiv 4 \mod(m)$, $1 \equiv 0 \mod(m)$, $1197 \equiv 286 \mod(m)$, $3 \equiv -3 \mod(m)$
- 15. Probar que dos enteros son congruentes módulo m si y sólo si los respectivos restos de su división por m son iguales.
- 16. Probar las siguientes propiedades para todo $a, b, c \in Z$:
 - (a) $a \equiv a \mod(n)$
 - (b) $a \equiv b \mod(n) \Rightarrow b \equiv a \mod(n)$
 - (c) $a \equiv b \mod(n)$ y $b \equiv c \mod(n) \Rightarrow a \equiv c \mod(n)$
 - (d) $a \equiv b$ $(n) \Leftrightarrow a + c \equiv b + c$ (n)
 - (e) $a \equiv b$ $(n) \Rightarrow ac \equiv bc$ (n)
 - (f) $a \equiv 0$ $(n) \Leftrightarrow n|a$
- 17. Sea m un entero impar, probar que $m^2 \equiv 1 \mod(4)$
- 18. Probar: todo número es congruente, módulo n, con el resto de su división por n
- 19. Hallar los resultados de las siguientes operaciones realizadas entre enteros módulo 4 y 5 : $\bar{3} + \bar{1}$; $\bar{5} + \bar{9}$; $\bar{4}0.\bar{3}$; $(\bar{3} + \bar{2}).(\bar{6}.\bar{8})$
- 20. Construir las tablas de sumar y multiplicar de los enteros módulo 2 y 5