

Computer Engineering 2

Overview

Timer / Counter

Reference Manual pages 576-635

Agenda

3

- Timer / Counter Basic Ideas
- Timers / Counters
- ST32F4xx Timers
- Timer Configuration
- Input Capture
- Pulse-Width-Modulation (PWM)
- Output Compare Generating PWM Signals
- Capture / Compare Configuration

Learning Objectives

At the end of this lesson, you will be able

- to describe the functionality of timers
- to explain the realization of a timer
- to give an overview of timer functions
- to describe the timers of a real microcontroller
- to interpret block diagrams of timers
- to explain the concepts of capture / compare
- to explain the idea of PWM
- to program timers using documents / data sheets

Timer / Counter – Basic Ideas

5

Binary up- or down-counter

- Counts events / clock pulses or external signals
- Output after a defined number of events (e.g. interrupt)
- Timer: counting clock cycles or processor cycles (periodic)
- Counter: counting events

Use

- Count of events
- Measure of time, frequencies, phases, periods
- Generate intervals, row of pulses, interrupts

Timer / Counter – Basic Ideas

6

Application examples

- Trigger for periodic software tasks
 - Display refresh
 - Sampling inputs e.g. buttons
- Count number of pulses on input pin
- Measure time between rising edges of an input pin
- Generate defined sequence of pulses on an output pin

Timer / Counter – Basic Ideas

■ Repetition: 2-bit binary counter

D1 = Q0\$ Q1 D0 = !Q0

State diagram

Timing diagram

0, 1, 2, 4'294'967'295

65'535

8

0, 1, 2,

Function

- Configure in up- or down-counting mode
- Select source
- 16-bit / 32-bit counter register
 - Increment / decrement at every tick
- Set interrupt flag → trigger interrupt

ARR interrupt

16-bit counter

32-bit counter

Up-counting mode

- Counts from 0 to the auto-reload value (content of ARR)
- Restarts from 0
- Generates a counter overflow event

Down-counting mode

- Counts from auto-reload value (content of ARR) down to 0
- Restarts from auto-reload value
- Generates a counter underflow event

Prescaler

- Increase counting range
- Count only every n-th event
 - e.g. $n = \{1, 2, 4, 8, 32, 64, \ldots\}$

Example: 16-bit counter

Source 100 MHz \rightarrow period T = 1 / (100 MHz) = 0.01 us

Prescaler = 1 \rightarrow 65'536 \cong 65'536 * 0.01 us = 655.36 us

Prescaler = 1'000 \rightarrow 65'536 \approx 65'536 * 0.01 ms = 655.36 ms

Down-counting example

- Prescaler → divide by 4
- Count down to zero
 - Set interrupt request (UIF)
 - Restart from value in ARR

Exercise

- Source: 1 MHz
- What needs to be set, when we want an interrupt every

timers

- 50 ms \rightarrow 20 Hz
- 1s \rightarrow 1 Hz
- Assume
 - **16-bit** counter / ARR
 - Prescaler n = 1, 2, 4, 8, 16
 - Down-counter

ARR

Up-counting example

- Prescaler → divide by 4
- Count up to the value in reload register
 - Set interrupt request
 - Restart from 0

For a given problem there are often different ways to use the available hardware.

E.g. up-counter vs. down-counter.

STM32F4xx Timers

- Full-featured general-purpose timers
 - TIM2, TIM3, TIM4, TIM5
- General-purpose timers
 - TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
- Advanced-control timers
 - TIM1, TIM8
- Basic timers
 - TIM6, TIM7

Not explained in detail see reference manual

Explained

STM32F4xx Timers

■ Timers TIM2 - TIM5

• 16-bit → TIM3 and TIM4

32-bit \rightarrow TIM2 and TIM5

- Up, down, up/down
- Auto-reload
- 16-bit programmable prescaler
 - Dividing counter clock frequency by factor between 1 and 65536
- Up to 4 independent channels for:
 - Input capture
 - Output compare
 - PWM generation
 - One-pulse mode output
- Synchronization circuit
 - Control timer with external signals
 - Interconnect several timers together
- Interrupt/DMA generation based on several events

- Register address = Base address + Offset
 - Offset address is given for each register in Reference Manual
 - Base address defined in memory map
 - → Reference Manual

Boundary address	Peripheral
0x4000 0C00 - 0x4000 0FFF	TIM5
0x4000 0800 - 0x4000 0BFF	TIM4
0x4000 0400 - 0x4000 07FF	TIM3
0x4000 0000 - 0x4000 03FF	TIM2
0x4002 3800 - 0x4002 3BFF	RCC

RCC: Reset and Clock Configuration

18

Enable timer block

- RCC APB1 peripheral clock enable register (RCC_APB1ENR)
- RCC = Reset and Clock Control

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
UART8 EN	UART7 EN	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART 3 EN	USART 2 EN	Reser- ved
rw	rw	rw	rw		rw	rw		rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Rese	erved	WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw

Timer Configuration → Selected Registers

Offset	Register	31	30	29	97	27	5 6	25	24	23	22	21	20	2	5 0	2 2	1	16	15	14	13	12	1	10	6	œ	7	9	2	4	က	2	-	0
0x00	TIMx_CR1											Re	eser	ve	d											KD :0]	o ARPE	['	MS [:0]	o DIR	OPM	o URS	SIGN	o CEN
0x08	TIMx_SMCR							F	Rese	erv	ed								ЕТР	ECE		PS :0]		ETF	[3:0		MSM	+	TS[2	_	Reserved	Н		2:0]
	Reset value																0																	
0x0C	TIMx_DIER						ı	Er	าล	bl	e	In	te	rr	'n	ots	5	_		TDE	COMDE	CC4DE	CC3DE	CC2DE	CC'DE	UDE	Reserved	TE	Reserved	CC4IE	CC3IE	CC2IE	CC1IE	UIE
	Reset value		0 0 0 0 0 0 0 0 0 0 0														0																	
0x10	TIMx_SR												Fla				erv	ice	R	out	ine	CC40F	CC3OF	CC20F	CC10F	3	Keserved	E	Reserved	CC4IF	CC3IF	CC2IF	CC1IF	
	Reset value	1																				0	0	0	0	٠	צ	0	~	0	0	0	0	0
0x14	TIMx_EGR													Re	eser	ved	i											TG	Reserved	CC4G	CC3G	CC2G	CC1G	ng
] [Reset value																											0	7&	0	0	0	0	0
0x24	TIMx_CNT	(TIM2	2 an	d T	IM	5 or		NT[:		-	on	the	oth	ner t	ime	ers)									CNT	[15	:0]						
	Reset value	0	0	0	0	0	0	0	0	0	0	TC	0	Τ	0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x28	TIMx_PSC		Reserved PSC[15:0]																															
	Reset value	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																
0x2C	TIMx_ARR	ARR[31:16] (TIM2 and TIM5 only, reserved on the other timers) ARR[15:0]																																
	Reset value	0	0	0 0	0	0	0	0	0	0	0	C	0 0	1	0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

CR1 – Control Register 1

CMS Center-aligned Mode Selection

DIR Direction (0: up; 1: down)

CEN Counter Enable

SMCR – Slave Mode Control Register

SMS Slave Mode Selection Usually keep SMS = 000

DIER – DMA/Interrupt Enable Register

UIE Update Interrupt Enable

CCsIE see later

SR - Status Register

UIF Update Interrupt Flag

Set by HW, cleared by SW

CCxIF see later

EGR – Event Generation Register

UG Update Generation
SW can reinitialize counter and
update registers

19

CNT – Counter

PSC - Prescaler

ARR – Auto Reload Register

Timer Configuration → Selected Registers

Offset	Register	31	30	67	22	77	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	∞	7	9	5	4	က	2	-	0
0x00	TIMx_CR1											Re	serv	/ed											KD :0]	ARPE	C [1	MS :0]	DIR	OPM	URS	NDIS	CEN
	Reset value	1																						0	0	0	0	0	0	0	0	0	0
0x08	TIMx_SMCR							R	lese	erve	ed							ETP	ECE		PS :0]		ETF	-[3: 0)]	MSM	T	⁻ S[2	:0]	Reserved	s	MS[2:0]
	Reset value														0	0	0	0	0	0	0	0	0	0	0	0	Re	0	0	0			
0x0C	TIMx_DIER			Enable Interrupts —										TDE	COMDE	CC4DE	CC3DE	CC2DE	CC. DE	UDE	Reserved	Ш	Reserved	CC4IE	CC3IE	CC2IE	CC1IE	UE					
	Reset value														0																		
0x10	TIMx_SR													H.																			
	Reset value																				0	0	0	0	٥	۲	0	~	0	0	0	0	0
0x14	TIMx_EGR												F	Res	erve	ed											TG	Reserved	CC4G	CC3G	CC2G	CC1G	ne
	Reset value																				_	_	_		_		0	٦٣	0	0	0	0	0
0x24	TIMx_CNT	(TIM	2 an	d TI	M	5 on		VT[3		-	on t	he c	othe	er tin	ner	s)							(CNT	[15	:0]						
	Reset value	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																															
0x28	TIMx_PSC	Reserved PSC[15:0]																															
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x2C	TIMx_ARR	<u> </u>	TIM					ıly,		erve	ed o						′							,	ARR	[15	:0]						
	Reset value	0	0	0 [0 7) [0 [0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	10	10	10	0	10	10	10	0	10	0

```
#define TIM2 ( (reg_tim_t *) 0x40000000 )
#define TIM3 ( (reg_tim_t *) 0x40000400 )
#define TIM4 ( (reg_tim_t *) 0x40000800 )
#define TIM5 ( (reg_tim_t *) 0x40000c00 )
```

```
typedef struct {
   volatile uint32 t CR1;
   volatile uint32 t CR2;
   volatile uint32 t SMCR;
    volatile uint32 t DIER;
   volatile uint32 t SR;
   volatile uint32 t EGR;
    volatile uint32 t CCMR1;
   volatile uint32 t CCMR2;
   volatile uint32 t CCER;
   volatile uint32 t CNT;
   volatile uint32 t PSC;
   volatile uint32 t ARR;
   volatile uint32 t RCR;
   volatile uint32 t CCR1;
    volatile uint32 t CCR2;
   volatile uint32 t CCR3;
   volatile uint32 t CCR4;
   volatile uint32 t BDTR;
   volatile uint32 t DCR;
   volatile uint32 t DMAR;
   volatile uint32 t OR;
 req tim t;
```

```
Example
TIM4->ARR = 32000;
```


TIMx counter (TIMx_CNT)

TIMx auto-reload register (TIMx_ARR)

ARR is the value to be loaded in the actual auto-reload register

TIMx prescaler (TIMx_PSC)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PSC[[15:0]							
rw	rw	rw	rw	rw	rw	rw	rw	rw							

- Divides counter clock frequency by a factor between 1 and 65536
- Clock frequency CK_CNT equal to f_{CK PSC} / (PSC[15:0] + 1)
- TIMx_PSC can be changed on the fly
 - Reason: TIMx_PSC is buffered → see next slide

Prescaler

Example: Changing prescaler division from 1 to 4, with TIMx_ARR=0x00FC

An update event (UEV) synchronizes the software-controlled prescaler (control) register to the actual prescaler.

An update event (UEV) is generated at each timer overflow or underflow unless it is disabled through software by setting the TIMx_CR1 \rightarrow UDIS bit.

Alternatively, the software can set the TIMx_EGR \rightarrow UG bit to generate an update event (UEV).

Reference Manual, RM0090 Rev 19, p. 592

TIMx Control Register 1 (TIMx CR1)

- CMS Center-aligned mode selection
 - 00 count up or down depending on DIR
 - others center-aligned
- DIR Direction
 - 0 up-counter
 - 1 down-counter
- CEN Counter enable
- Other settings for advanced use -> keep at default values

25

Up-counting mode

- Counting from 0 to auto-reload value (TIMx_ARR)
- Generates a counter overflow event
- Restarts from 0

Down-counting mode

Example

Division by 1

- Counting from auto-reload value (TIMx_ARR) down to 0
- Generates a counter underflow event
- Restarts from auto-reload value

07.02.2024

Center-aligned mode (up/down counting)

- Counts from 0 to auto-reload value (TIMx_ARR) 1
- Generates a counter overflow event
- Counts from auto-reload value down to 1
- Generates a counter underflow event

Clock sources

- Internal clock (CK_INT)
- External input pins (TIMx_CH1 and TIMx_CH2)
- External trigger input (TIMx_ETR)
- Internal trigger inputs (ITRx)
 - Using one timer as prescaler for another timer

TIMx slave mode control register (TIMx_SMCR)

SMS Slave Mode Selection

000: CK_INT

TS Trigger Selection

Clock sources

- Internal clock (CK_INT)
- External input pins (TIMx_CH1 and TIMx_CH2)
- External trigger input (TIMx_ETR)
- Internal trigger inputs (ITRx)
 - Using one timer as prescaler for another timer

TIMx slave mode control register (TIMx_SMCR)

SMS Slave Mode Selection

000: CK_INT

TS Trigger Selection

Exercise

Given

CK_INT is already configured to 84 MHz

Task

- Generate an interrupt every 1 s
- Use Timer 3 (16-bit) in up-counting mode

Wanted

- Names and addresses of configuration registers
- Settings for configuration registers

Exercise

RCC_APB1ENR

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
UART8 EN	UART7 EN	DAC EN	PWR EN	Reser- ved	CAN2 EN	CAN1 EN	Reser- ved	I2C3 EN	I2C2 EN	I2C1 EN	UART5 EN	UART4 EN	USART 3 EN	USART 2 EN	Reser- ved
rw	rw	rw	rw		rw	rw		rw	rw	rw	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SPI3 EN	SPI2 EN	Rese	erved	WWDG EN	Rese	erved	TIM14 EN	TIM13 EN	TIM12 EN	TIM7 EN	TIM6 EN	TIM5 EN	TIM4 EN	TIM3 EN	TIM2 EN
rw	rw			rw			rw	rw	rw	rw	rw	rw	rw	rw	rw

TIM3EN = 1

enabling timer 3 functional block

Register address

0x4002 3840

Solution

Exercise

- TIM3_PSC = (8400 1)
 - Prescaler 8400
 - 84 MHz / 8400 -> 10 kHz
 - Register address 0x4000 0428
- TIM3_SMCR [SMS] = 0b000 (default)
 - Select CK_INT as clock source SMS[2:0] = 0b000
 - Register address 0x4000 0408
- \blacksquare TIM3_ARR = (10000 1)
 - Reload Register 10000 ticks
 - 10000 @ 10 kHz → 1s
 - Register address 0x4000 042C

Exercise

TIM3_DIER

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res.	TDE	Res	CC4DE	CC3DE	CC2DE	CC1DE	UDE	Res.	TIE	Res	CC4IE	CC3IE	CC2IE	CC1IE	UIE
Res.	rw	res	rw	rw	rw	rw	rw	Res.	rw	res	rw	rw	rw	rw	rw

UIE = 1 → Update interrupt enable

Register address

0x4000 040C

TIM3_CR1

- CMS = 0 → No center aligned mode
- DIR = 0 \rightarrow Direction = up
- CEN = 1 → Enable Counter → Attention: enable counter after configuration completed!
- Register address 0x4000 0400

07.02.2024

ZHAW, Computer Engineering

Exercise

Configuration of timer 3

```
void init tim3(void)
   RCC->APB1ENR \mid = (0x1 << 1); /* Enable clock */
   /* TIM2 configuration */
   TIM3->PSC = (8400 - 1); /* 84 MHz/8400 -> 10kHz */
   TIM3->CR1 = (0x0 << 4) | /* Direction -> up */
                (0x0 \ll 5); /* Not center aligned */
   TIM3->SMCR = 0x0; /* CK INT as source */
   TIM3->CNT = 0; /* Reset Counter */
   TIM3->ARR = (10000 - 1); /* 10000 @ 10 kHz -> 1s */
   TIM3->DIER = (0x1 << 0); /* Enable interrupt */
   TIM3->CR1 \mid = 0x01; /* Enable TIM3 Counter */
   NVIC->ISER0 |= (0x1 << 29); /* Unmask TIM3 int */
```

Interrupt Service Routine

```
void TIM3_IRQHandler(void)
{
    /* Clear interrupt flag */
    TIM3->SR &= ~0x01;

    /* add functionality here */
}
```


Input Capture

■ Measuring intervals → pulse lengths and periods

Count ticks between timer start and an event

Input Capture

Capture example

- Stop watch
- At which moment in time does the user push the button?
 - Event = rising edge on input pin
 - Time of event is captured
 - Count continues

07.02.2024 ZHAW, Computer Engineering

assumed moment

Duty Cycle – Definition

$$Duty\ Cycle = \frac{On\ Time}{Period} \times 100\%$$

Average signal

$$V_{avg} = D \cdot V_H + (1 - D) \cdot V_L$$

Usually, V_L is taken as zero volts for simplicity.

Left Aligned

Left edge fixed, trailing edge modulated

Center Aligned

Center of signal fixed, both edges modulated

■ PWM-Signals are digital signals (0/1) with a defined frequency and variable pulse width

Application

- Dimming LED with variable on / off
- Digital/Analog-Converters (DAC)

Voltage is proportional to duty cycle of PWM-Signal

Sine wave approximation

Image: Zak Ahmad

Compare function produces PWM signal ARR Toggle output pin when counter **Auto Reload Register** reaches CCR Reload on overflow select Compare Update Internal on equal clear Interrupt clocks Flag ources Input Prescaler Counter pulses ticks = clear / overflow pins interrupt pulses / n Other timers Capture /Compare Interrupt Flag Input pins **CCR** interrupt events to Capture / Compare Register Other sources capture **OCXREI** Output pin Output Control Output configuration **PWM-signal**

Compare example

- Raise an alarm when specified count is reached or exceeded
- Continuously compare counter value to a reference value

Edge-aligned mode

assuming Capture Compare Register (CCR) = 4

Edge-aligned mode

- Up-counting configuration → 4 examples for different CCR values
- $TIMx_ARR = 8$
- PWM mode 1

Input Capture / Output Compare

4 independent channels for

- Input capture
- Output compare
- PWM generation
- One-pulse mode output

Capture / Compare Configuration

Offset	Register	31	30	53	28	27	76	25	24	: 6	22	77	7	50	40	5 0	2 2	=	16	15	14	13	12	=	10	6	∞	7	9	2	4	٠,	7	-	0
	TIMx_CCMR1 Output Compare mode	Reserved												OC2CE		OC2 [2:0)]	OC2PE	OC2FE	[1	C2S 1:0]	00	L	OC1 [2:0)]	OC1PE		[1	C1S I:0]						
0x18	Reset value TIMx_CCMR1 Input Capture mode Reset value								Res	ser	ved											F[3:	0] 0	P	C2 SC 1:0]	C	0 C2S 1:0]	T		0 F[3:		F [0 C1 SC 1:0] 0	C(0 C1S I:0]
0x1C	TIMx_CCMR2 Output Compare mode Reset value								Res	ser	ved									9 024CE		OC4 [2:0	М	o OC4PE	OC4FE	C	C4S 1:0]	003	ı	OC3 [2:0	M)]	OC3PE	oC3FE	[1	C3S 1:0]
UXIC	TIMx_CCMR2 Input Capture mode Reset value																					F[3:	0]	P	C4 SC I:0]	C(C4S 1:0]	Т		F[3:		F [C3 PSC 1:0]	C(C3S 1:0]
0x20	TIMx_CCER			0	u1	tp	u1	: (en	a	bl	е	C	of	C	С	_	->	•	CC4NP	Reserved	CC4P	CC4E	CC3NP	Reserved	ССЗР			Reserved	_	CC2F			CC1P	CC1E
	Reset value	1																		0		0	0	0		0	0	0		0	10) (0	0
0x34	TIMx_CCR1	(TIM	12 a	ınd	TIN	/15 c			•	1:16 ved	•	n t	he o	oth	er t	ime	ers)								C	CCR	1[15	:0]						
	Reset value	0	0	0	0	0	10	\Box	0		0 (Л	0	0	1) [) [0	0	U	U	ΙŪ	ΙU	ΙU	ΙŪ	U	ΙU	ΙU	ΙU	U	10) (ΙŪ	ΙU	U
0x38	TIMx_CCR2	((TIN	12 a	ınd	TIN	/15 c			-	1:16 ved	-	n t	he o	oth	er t	ime	ers)								C	CCR	2[15	:0]						
	Reset value	0	0	0	0	0	T 0	Т	70		0 0	П	0	10	Т	7	П	0	0	0	0	0	0	0	0	0	0	0	0	0	T) (0	0	0
0x3C	TIMx_CCR3		TIN	12 a	ind	TIN	/15 c			-	1:16 ved	-	n t	he o	oth	er t	ime	ers)								C	CCR	3[15	:0]						
	Reset value	0	0	0	0	0	0	\Box	0 0		0 0)	0	0	\Box) [(0	0	U	U	0	0	0	0	0	0	0	0	0	T) [0	0	0
0x40	TIMx_CCR4	(TIN	12 a	ind	TIN	/15 c			•	1:16 rved	•	n t	he o	oth			ers)								C	CCR	4[15	:0]						
	Reset value	0 0 0 0 0 0 0 0 0 0											0									ΤU													

CCMR1 – Capture Compare Mode Register 1 CCMR2 – Capture Compare Mode Register 2

OC1M Output Compare Mode 1

OC2M Output Compare Mode 2

OC3M Output Compare Mode 3

OC4M Output Compare Mode 4

→ 110 = PWM mode 1

→ 111 = PWM mode 2

CCER – Capture Compare Enable Register

CC1E Capture Compare 1 output enable

CC2E Capture Compare 2 output enable

CC3E Capture Compare 3 output enable

CC4E Capture Compare 4 output enable

CCR1 – Capture Compare Register 1

CCR2 – Capture Compare Register 2

CCR3 – Capture Compare Register 3

CCR4 – Capture Compare Register 4

Other settings for advanced use

→ keep at default value

Capture / Compare Configuration

PWM output cookbook

- Select counter clock (internal, external, prescaler)
- Write desired data to TIMx_ARR register
 → defines common period of PWM signals
- Write desired data to TIMx_CCRx registers
 → defines duty cycles of PWM signals
- Set CCxIE bits if interrupts are to be generated (in TIMx_DIER register)
- Select the output mode (registers CCMRx / CCER)
- Enable counter by setting the CEN bit in the TIMx_CR1 register

Capture / Compare Configuration

Use macros and structs from "reg_stm32f4xx.h"

```
\struct reg tim t
   \brief Representation of Timer register.
   Described in reference manual p.507ff.
typedef struct {
   volatile uint32 t CR1;
                              /**< Configuration register 1. */
   volatile uint32 t CR2;
                              /**< Configuration register 2. */
                               /** Slave mode control register. */
   volatile uint32 t SMCR;
                               /** DMA/interrupt enable register. */
   volatile uint32 t DIER;
   volatile uint32 t SR;
                               /**< Status register. */
   volatile uint32 t EGR;
                               /**< Event generation register. */</pre>
   volatile uint32 t CCMR1;
                                /**< Capture/compare mode register 1. */
                               /**< Capture/compare mode register 2. */
   volatile uint32 t CCMR2;
   volatile uint32 t CCER;
                               /**< Capture/compare enable register. */</pre>
                               /**< Count register. */
   volatile uint32 t CNT;
                               /**< Prescaler register. */
   volatile uint32 t PSC;
   volatile uint32 t ARR;
                               /**< Auto reload register. */
   volatile uint32 t RCR;
                               /**< Repetition counter register. */
                               /**< Capture/compare register 1. */
   volatile uint32 t CCR1;
                               /**< Capture/compare register 2. */
   volatile uint32 t CCR2;
   volatile uint32 t CCR3;
                               /**< Capture/compare register 3. */
   volatile uint32 t CCR4;
                               /**< Capture/compare register 4. */
                               /**< Break and dead-time register. */</pre>
   volatile uint32 t BDTR;
                               /** DMA control register. */
   volatile uint32 t DCR;
   volatile uint32 t DMAR;
                               /**< DMA address for full transfer. */
   volatile uint32 t OR;
                               /**< Option register. */
 reg tim t;
```

Example: **TIM3->CCMR2**#?#2=

```
#define TIM2 ( (reg_tim_t *) 0x40000000 )
#define TIM3 ( (reg_tim_t *) 0x40000400 )
#define TIM4 ( (reg_tim_t *) 0x40000800 )
#define TIM5 ( (reg_tim_t *) 0x40000c00 )
```

Exercise: Capture / Compare Configuration

Timer 2 already configured

- CK_INT is configured to 84 MHz
- Timer 2 (see exercise "Timer")
 - Up-counting, Period = 1s
 - $TIM2_ARR = (10000 1)$

Configure PWM with Capture/Compare 1

- Duty cycle 25%
- PWM mode 1

Exercise: Capture / Compare Configuration

- Timer 2, Capture/Compare Unit 1
 - Use TIM2_CCR1; TIM2_CCMR1; TIM2_CCER
- Duty cycle 25%
 - TIM2->CCR1 = 2500
- PWM mode 1
 - TIM2->CCMR1 = 0x60
- Capture/Compare 1 output enable
 - TIM2->CCER = 1

STM32F4xx Timers

Timers TIM2 - TIM5: Reference manual block diagram

STM32F4xx Timers

Feature comparison

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary output	Max interface clock (MHz)	Max timer clock (MHz)	
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	Yes	90	180	
	TIM2, TIM5	32-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180	
	TIM3, TIM4	16-bit	Up, Down, Up/down	Any integer between 1 and 65536	Yes	4	No	45	90/180	
General	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	90	180	
purpose	TIM10 TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	90	180	
	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	No	45	90/180	
	TIM13 TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	45	90/180	
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	45	90/180	

Conclusion

■ Timer / counter functionality → TIM2 – TIM5 ST32F4xx

- Up and Down-counter with Prescaler
- Programmable count sources
- Auto Reload Register (ARR)
- Update Interrupt Flag (UIF)

Capture / Compare Unit

- Measure input signals
- Generate PWM signals
- Capture / Compare Interrupt Flags (CCxIF)

Programming example

Literature

STM32F4xx Reference Manual

