Permutations and Combinations Section 6.3

Section Summary

- Permutations
- Combinations
- Combinatorial Proofs

Permutations

Definition: A *permutation* of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement of r elements of a set is called an *r-permuation*.

Example: Let $S = \{1,2,3\}$.

- The ordered arrangement 3,1,2 is a permutation of *S*.
- The ordered arrangement 3,2 is a 2-permutation of *S*.
- The number of r-permuatations of a set with n elements is denoted by P(n,r).
 - The 2-permutations of $S = \{1,2,3\}$ are 1,2; 1,3; 2,1; 2,3; 3,1; and 3,2. Hence, P(3,2) = 6.

A Formula for the Number of Permutations

Theorem 1: If n is a positive integer and r is an integer with $1 \le r \le n$, then there are

$$P(n, r) = n(n - 1)(n - 2) \cdots (n - r + 1)$$

r-permutations of a set with n distinct elements.

Proof: Use the product rule. The first element can be chosen in n ways. The second in n-1 ways, and so on until there are (n-(r-1)) ways to choose the last element.

• Note that P(n,0) = 1, since there is only one way to order zero elements.

Corollary 1: If *n* and *r* are integers with $1 \le r \le n$, then

$$P(n,r) = \frac{n!}{(n-r)!}$$

Solving Counting Problems by Counting Permutations

Example: How many ways are there to select a first-prize winner, a second prize winner, and a third-prize winner from 100 different people who have entered a contest?

Solution:

$$P(100,3) = 100 \cdot 99 \cdot 98 = 970,200$$

Solving Counting Problems by Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight different cities. She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes. How many possible orders can the saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are ordered arbitrarily. Hence the orders are:

$$7! = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5040$$

If she wants to find the tour with the shortest path that visits all the cities, she must consider 5040 paths!

Solving Counting Problems by Counting Permutations (continued)

Example: How many permutations of the letters *ABCDEFGH* contain the string *ABC* ?

Solution: We solve this problem by counting the permutations of six objects, *ABC*, *D*, *E*, *F*, *G*, and *H*.

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

Combinations

Definition: An *r*-combination of elements of a set is an unordered selection of *r* elements from the set. Thus, an *r*-combination is simply a subset of the set with *r* elements.

- The number of r-combinations of a set with n distinct elements is denoted by C(n, r). The notation $\binom{n}{r}$ is also used and is called a *binomial coefficient*. (We will see the notation again in the binomial theorem in Section 6.4.)
 - **Example**: Let S be the set $\{a, b, c, d\}$. Then $\{a, c, d\}$ is a 3-combination from S. It is the same as $\{d, c, a\}$ since the order listed does not matter.
- C(4,2) = 6 because the 2-combinations of $\{a, b, c, d\}$ are the six subsets $\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \text{ and } \{c, d\}.$

Combinations

Theorem 2: The number of *r*-combinations of a set with *n* elements, where $n \ge r \ge 0$, equals

$$C(n,r) = \frac{n!}{(n-r)!r!}.$$

Proof: By the product rule $P(n, r) = C(n,r) \cdot P(r,r)$. Therefore,

$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{(n-r)!r!}$$
.

Combinations

Example: How many poker hands of five cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a deck of 52 cards?

Solution: Since the order in which the cards are dealt does not matter, the number of five card hands is:

$$C(52,5) = \frac{52!}{5!47!}$$

$$= \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 10 \cdot 49 \cdot 12 = 2,598,960$$

• The different ways to select 47 cards from 52 is

$$C(52,47) = \frac{52!}{47!5!} = C(52,5) = 2,598,960.$$

This is a special case of a general result. \rightarrow

Combinations

Corollary 2: Let n and r be nonnegative integers with $r \le n$. Then C(n, r) = C(n, n - r).

Proof: From Theorem 2, it follows that

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

and

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!} = \frac{n!}{(n-r)!r!}$$
.

Hence, C(n, r) = C(n, n - r).

This result can be proved without using algebraic manipulation. \rightarrow

Combinatorial Proofs

- **Definition 1**: A *combinatorial proof* of an identity is a proof that uses one of the following methods.
 - A *double counting proof* uses counting arguments to prove that both sides of an identity count the same objects, but in different ways.
 - A *bijective proof* shows that there is a bijection between the sets of objects counted by the two sides of the identity.

Combinatorial Proofs

Here are two combinatorial proofs that

$$C(n, r) = C(n, n - r)$$

when r and n are nonnegative integers with r < n:

- Bijective Proof: Suppose that S is a set with n elements. The function that maps a subset A of S to \overline{A} is a bijection between the subsets of S with r elements and the subsets with n-r elements. Since there is a bijection between the two sets, they must have the same number of elements.
- Double Counting Proof: By definition the number of subsets of S with r elements is C(n, r). Each subset A of S can also be described by specifying which elements are not in A, i.e., those which are in \overline{A} . Since the complement of a subset of S with r elements has n-r elements, there are also C(n, n-r) subsets of S with r elements.

Combinations

Example: How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school.

Solution: By Theorem 2, the number of combinations is

$$C(10,5) = \frac{10!}{5!5!} = 252.$$

Example: A group of 30 people have been trained as astronauts to go on the first mission to Mars. How many ways are there to select a crew of six people to go on this mission?

Solution: By Theorem 2, the number of possible crews is

$$C(30,6) = \frac{30!}{6!24!} = \frac{30\cdot 29\cdot 28\cdot 27\cdot 26\cdot 25}{6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1} = 593,775$$
 .

- **Example** A soccer club has 8 female and 7 male members. For today's match, how many possible configurations are there?
- (1) The coach wants to have 6 female and 5 male players on the grass.
- (2) The coach wants to have 11 players with at most 5 male players on the grass.

Solution:

- (1) $C(8, 6) \cdot C(7, 5)$ = $8!/(6! \cdot 2!) \cdot 7!/(5! \cdot 2!)$ = $28 \cdot 21$ = 588
- (2) C(8, 6)C(7, 5)+C(8, 7)C(7, 4)+C(8, 8)C(7, 3)

15

Homework

Sec 6.3: 20, 44, 46

Binomial Coefficients and Identities

Section 6.4

Section Summary

- The Binomial Theorem
- Pascal's Identity and Triangle
- Other Identities Involving Binomial Coefficients

Powers of Binomial Expressions

Definition: A *binomial* expression is the sum of two terms, such as x + y. (More generally, these terms can be products of constants and variables.)

- We can use counting principles to find the coefficients in the expansion of $(x + y)^n$ where n is a positive integer.
- To illustrate this idea, we first look at the process of expanding $(x + y)^3$.
- (x + y) (x + y) (x + y) expands into a sum of terms that are the product of a term from each of the three sums.
- Terms of the form x^3 , x^2y , x, y^2 , y^3 arise. The question is what are the coefficients?

 To obtain x^3 , an x must be chosen from each of the sums. There is only one way to do this. So, the coefficient of x^3 is 1.
 - To obtain x^2y , an x must be chosen from two of the sums and a y from the other. There ways to do this and so the coefficient of x^2y is 3
 - To obtain xy^2 , an x must be chosen from of the sums and a y from the other two. There
 - are $\binom{3}{4}$ ways to do this and so the coefficient of xy^2 is 3. To obtain y^3 , a y must be chosen from each of the sums. There is only one way to do this. So, the coefficient of y^3 is 1.
- We have used a counting argument to show that $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.
- Next we present the binomial theorem gives the coefficients of the terms in the expansion

Binomial Theorem

Binomial Theorem: Let *x* and *y* be variables, and *n* a nonnegative integer. Then:

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^n.$$

Proof: We use combinatorial reasoning . The terms in the expansion of $(x + y)^n$ are of the form $x^{n-j}y^j$ for j = 0,1,2,...,n. To form the term $x^{n-j}y^j$, it is necessary to choose n-j xs from the n sums. Therefore, the coefficient of $x^{n-j}y^j$ is $\binom{n}{n-j}$ which equals $\binom{n}{j}$.

Using the Binomial Theorem

Example: What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x - 3y)^{25}$?

Solution: We view the expression as $(2x + (-3y))^{25}$. By the binomial theorem

$$(2x + (-3y))^{25} = \sum_{i=0}^{25} {25 \choose i} (2x)^{25-j} (-3y)^j.$$

Consequently, the coefficient of $x^{12}y^{13}$ in the expansion is obtained when j = 13.

$$\left(\begin{array}{c} 25 \\ 13 \end{array}\right) 2^{12} (-3)^{13} = -\frac{25!}{13!12!} 2^{12} 3^{13}.$$

A Useful Identity

Corollary 1: With $n \ge 0$, $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$

Proof (using binomial theorem): With x = 1 and y = 1, from the binomial theorem we see that:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{k} 1^{(n-k)} = \sum_{k=0}^{n} {n \choose k}.$$

Proof (*combinatorial*): Consider the subsets of a set with n elements. There are $\binom{n}{0}$ subsets with zero elements, $\binom{n}{1}$ with one element, $\binom{n}{2}$ with two elements, ..., and $\binom{n}{n}$ with n elements. Therefore the total is $\sum_{k=0}^{n} \binom{n}{k}$.

Since, we know that a set with n elements has 2^n subsets, we conclude:

 $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

Proof:

Using the Binomial Theorem with x = 1 and y = -1.

Remark:

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \cdots$$

23

Blaise Pascal (1623-1662)

Pascal's Identity

Pascal's Identity: If *n* and *k* are integers with $n \ge k \ge 0$, then

$$\left(\begin{array}{c} n+1 \\ k \end{array}\right) = \left(\begin{array}{c} n \\ k-1 \end{array}\right) + \left(\begin{array}{c} n \\ k \end{array}\right).$$

Proof (*combinatorial*): Let T be a set where |T| = n + 1, $a \in T$, and $S = T - \{a\}$. There are $\binom{n+1}{k}$ subsets of T containing k elements. Each of these subsets either:

- contains a with k-1 other elements, or
- contains *k* elements of *S* and not *a*.

There are

- $\binom{n}{k-1}$ subsets of k elements that contain a, since there are $\binom{n}{k-1}$ subsets of k-1 elements of S,
- $\binom{n}{k}$ subsets of k elements of T that do not contain a, because there are $\binom{n}{k}$ subsets of k elements of S.

Hence,

$$\left(\begin{array}{c} n+1 \\ k \end{array}\right) = \left(\begin{array}{c} n \\ k-1 \end{array}\right) + \left(\begin{array}{c} n \\ k \end{array}\right).$$

See Exercise 19 for an algebraic proof.

Pascal's Triangle

```
The nth row in
                                                                                                                      \begin{pmatrix} 0 \\ 0 \end{pmatrix}
the triangle
                                                                                                               \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
consists of the
binomial
                                                                                                         \binom{2}{0} \binom{2}{1} \binom{2}{2}
coefficients \binom{n}{k},
                                                                                                   \binom{3}{0} \binom{3}{1} \binom{3}{2} \binom{3}{3}
                                                                                                                                                                      \binom{6}{4} + \binom{6}{5} = \binom{7}{5}
k = 0,1,....,n.
                                                                                            \binom{4}{0} \binom{4}{1} \binom{4}{2} \binom{4}{3} \binom{4}{4}
                                                                                      \binom{5}{0} \binom{5}{1} \binom{5}{2} \binom{5}{3} \binom{5}{4} \binom{5}{5}
                                                                               \binom{6}{0} \binom{6}{1} \binom{6}{2} \binom{6}{3} \binom{6}{4} \binom{6}{5} \binom{6}{6}
                                                                         \begin{pmatrix} 7 \\ 0 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix}
                                                                   \binom{8}{0} \binom{8}{1} \binom{8}{2} \binom{8}{3} \binom{8}{4} \binom{8}{5} \binom{8}{6} \binom{8}{7} \binom{8}{8}
```

By Pascal's identity, adding two adjacent bionomial coefficients results is the binomial coefficient in the next row between these two coefficients.

Theorem 3 Vandermonde's Identity

Let m, n and r be nonnegative integer with r not exceeding either m or n. Then $\binom{m+n}{r} \binom{m}{r} \binom{n}{n}$

Proof:

A and B are two disjoint sets. |A|=m, |B|=n,

C(m+n, r) ---- the number of ways to pick r elements from $A \cup B$

Another way to pick r element from $A \cup B$ is to pick r-k elements from A and then k elements from B, where $0 \le k \le r$, which can be done in C(m, r-k) C(n, r)

26

 \blacksquare Corollary 4 \blacksquare If n is a nonnegative integer. Then

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$

Proof:

We use Vandermonde's Identity with m = r = n to obtain

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{n-k} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k}^{2}$$

27

Theorem 4 Let *n* and *r* be nonnegative integer with $r \le n$.

Then $\binom{n+1}{r} = \binom{n}{r} \binom{n}{r}$

$$\binom{n+1}{r+1} = \sum_{j=r}^{n} \binom{j}{r}$$

Proof:

The left-hand side counts the bit strings of length n+1 containing r+1 1s.

We show that the right-hand side counts the same objects by considering the cases corresponding to the possible locations of the final 1 in a string with r+1 ones.

$$\sum_{k=r+1}^{n+1} \binom{k-1}{r} = \sum_{j=r}^{n} \binom{j}{r}$$

28

Homework

Sec.6.4: 18, 26, 30, 34