Smart Grid

De Heuristische Helden

Content

- Part A: Connecting Houses & Batteries
 - Introduction
 - Methods
 - Results
- Part B: Moving Batteries
 - Introduction
 - Methods
 - Results
- Conclusion & Discussion

Constraints

Part A - Connecting houses and batteries

Optimization:

sum(Manhattan distance) of all the connections

Part A - State Space & Complexity

Complexity: **#Batteries***Houses (assuming no max. capacity of the batteries)

Neighbourhood	Number of houses	Number of Batteries	State space: B ^H
1	150	5	7 * 10 ¹⁰⁴
2	150	5	7 * 10 ¹⁰⁴
3	149	5	1.4 * 10 ¹⁰⁴

Part A - State Space & Complexity

Complexity: **#Batteries***Houses (assuming no max. capacity of the batteries)

Neighbourhood	When checking 10 ⁶ states per second, time needed to exhaust state space
1	1,6 * 10 ⁸¹ * age of the universe
2	1,6 * 10 ⁸¹ * age of the universe
3	3,2 * 10 ⁸⁰ * age of the universe

Part A - Bounds of the solution space

Methods - Part A

- Connecting houses and batteries
 - Random Battery Cycler
 - Steepest Ascent Hillclimber

Methods - Random Battery Cycler

output = 2

capacity = 3

- 1. Pick random battery
- 2. Connect to closest available, fitting house
- 3. Repeat

Methods - Random Battery Cycler

- 1. Pick random battery
- Connect to closest available, fitting house/
- 3. Repeat

Methods - Steepest Ascend Hillclimber

Makes the most profitable swap until a (local) optimum is reached

Part A - Results

	Random Battery Cycler	'Absolute' Lower Bound
nbh 1	3486	3132
nbh 2	2292	2252
nbh 3	2069	1957

random connect: n=106

Part A - Results

	Random Battery Cycler + Greedy Hillclimber	Z-score	'Absolute' Lower Bound	Z-score
nbh 1	3486	-12.5	3132	-14.6
nbh 2	2292	-16.5	2252	-16.7
nbh 3	2069	-16.1	1957	-16.7

Part B - Placing Batteries

Constraints

Part B - Placing Batteries

Optimization:

Cost function: B_{costs} + total connection length * 9

Part B - Placing batteries

State Space complexity:

Neighbourhood	State Space
1	5.76 * 10 ⁵⁷
2	5.76 * 10 ⁵⁷
3	5.80 * 10 ⁵⁷

$$\sum_{i=0}^{u} c \cdot \frac{r!}{(r-n)!}$$

u=max nr. of batteries
n=nr. of batteries
r=nr. of free positions at start
c=nr. of combinations of length i

Methods - Part B

Moving/Placing batteries

- K-Bats
- Bat Propagation
- Bat Migration

Methods - K-bats (k-means clustering)

Methods - K-bats (k-means clustering)

Methods - K-bats (k-means clustering)

Methods - Global Heatmap

All distances count equally:

$$\sum_{n=1}^{N} \frac{1}{d}$$

Low distances weigh more heavily:

$$\frac{1}{\sum_{n=0}^{n=N} d(house, battery)}$$

Methods - Bat Propagation

Part B - Results - Bat migration

Part B - Results

Conclusion

- Case A
 - Significantly better than random solutions
- Case B
 - Less significance, still better than random
 - except K-means
 - Major challenge: identifying, evading local optima
 - solution: population size, repeats

Discussion

- No guaranties for best solution
- Case A: chances of better solution small
- Case B:
 - o In this case, ... best solutions

Discussion

- Runtime may improve solutions
- Hypothesis: strong bias to fewer batteries not proved
- Bat-Migration significantly (10x) faster than propagation

Future research & Ideas

- K-bats while accounting for capacity
- Battery schemes which have tighter fits are probably harder to solve because Bin-packing will become a more relevant problem
- K-bats does not seem to influence random-connect, why so?

Dummy neighbourhoods, difficulty?

Neighbour hood	Stdev of the output values	Random Battery Cycler
1	14.4	3486
2	9.2	2292
3	2.9	2069

"Een wijs man programmeert niet tegen de wind in"

- De Heuristische Helden

References

- wijk pictures: http://heuristieken.nl/wiki/index.php?title=SmartGrid
- Lego batman picture:

https://www.google.nl/search?q=lego+batman&source=lnms&tbm=isch&sa=X&ved=0ahUKEwj3vb3F2IDbAhVPL1AKHUrhCqEQ_AUICiqB&biw=1536&bih=759#imgrc=BmEt2hS6L-YR5M:

• Pindakaas picture:

 $\frac{\text{https://www.google.nl/search?biw=1536\&bih=710\&tbm=isch\&sa=1\&ei=syP3Wo_9Lo7YwALWpYVY\&q=ah+pindakaas\&oq=ah$

Migrating birds:

https://www.thespruce.com/how-birds-migrate-386445

Batteries:

https://phys.org/news/2017-05-quantum-effects-powerful-battery.html

Houses:

https://www.flaticon.com/icon-packs/smart-home

Solar Panel:

https://solartribune.com/10687-2/

House at night:

http://resources.heatingoilexpress.com/discount-heating-oil/home-heating-oil-energy-saving-tips/

vink: https://nl.freepik.com/vrije-vector/vinkje-pictogrammen_797395.htm#term=teek&page=1&position=