Predicting Student Performance

An Analytical Approach

Introduction

- Overview of the project
- Importance of predicting student performance
- Brief summary of the dataset

Problem Description

Objective: Predict the students' final grades (G3)

Prediction can help in several ways:

- Identifying At-Risk Students
- Resource Allocation
- Personalized Education Plans
- Policy Making
- Parental Engagement

Dataset Overview

- Demographics: school, sex, age, address
- Family Background: famsize, Pstatus, Medu, Fedu, Mjob, Fjob, guardian
- Educational Support: traveltime, studytime, failures, schoolsup, famsup, paid, activities, nursery, higher, internet, romantic
- Personal Information: famrel, freetime, goout, Dalc, Walc, health, absences
- **Grades**: G1, G2, G3

EDA Procedure

- Visualize the Distribution of Numerical Features
- Visualize Categorical Features
- Feature Relationships with Target Variable

Introduce the StudentPerformanceAnalyzer Class

- Purpose: Analyzes and predicts student performance.
- Initialization: Loads dataset and models.
- **Preprocessing**: Encodes data, splits into train/test, standardizes features.
- Models: Includes various classifiers (Logistic Regression, Decision Tree, SVM, etc.).
- Training: Trains models and evaluates metrics.
- Evaluation: Compares model performance.
- Feature Importance: Plots top features for selected models.

Model Selection

- 1. Logistic Regression
- 2. Decision Tree Classifier
- 3. Support Vector Machine
- Random Forest Classifier
- 5. AdaBoost Classifier
- 6. Gradient Boosting Classifier
- 7. K Neighbors Classifier
- 8. Gaussian Naive Bayes

Model Training

- Train each model on training data
- Evaluate models on testing data
- Store evaluation metrics (accuracy, precision, recall, F1 score)

Model Evaluation

- Compare models based on evaluation metrics
- Highlight best performing models

Model Comparison Table

Model	Accuracy	Precision	Recall	F1 Score
Gradient Boosting Classifier	0.515385	0.522385	0.515385	0.508159
Random Forest Classifier	0.446154	0.462195	0.446154	0.420462
Decision Tree Classifier	0.384615	0.411134	0.384615	0.388698
Logistic Regression	0.261538	0.279706	0.261538	0.266291
Support Vector Machine	0.246154	0.231989	0.246154	0.216996
AdaBoost Classifier	0.223077	0.053197	0.223077	0.085577
K Neighbors Classifier	0.192308	0.210256	0.192308	0.192286
Gaussian Naive Bayes	0.092308	0.050318	0.092308	0.045445

Feature Importance

Conclusion: Model Performance

Gradient Boosting Classifier:

Achieved the highest accuracy (0.515385) among all models.

Random Forest Classifier:

Performed moderately well with an accuracy of (0.446154).

Decision Tree Classifier:

Showed a lower accuracy (0.384615).

Other Models:

Other models showed lower performance.

Conclusion: Feature Importance

Gradient Boosting Classifier:

- Top features: G2, G1, absences, age, free time.
- G2 and G1 are the most important, showing continuous assessment is crucial.

Random Forest Classifier and Decision Tree Classifier:

- Similar top features: G1, G2, absences, free time, Fedu, Medu.
- Emphasize past performance, engagement, and family background.

Insights and Recommendations

- Importance of Continuous Assessment
- Attendance and Engagement
- Family Background
- Holistic Approach

References

- Project:
 - GitHub Repository
- Dataset:
 - Kaggle: Student Performance Data Set
- Additional Analysis:
 - Kaggle Notebook: Annual Grades Average 5-Level Classification