This listing of claims will replace all prior versions, and listings, of claims in the application:

In the Claims:

1. (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of an indole of formula 1

$$R_{6}$$
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -S0₃T, -C0₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aOPO₃

Page 2 of 14

- -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂,
- -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂,
- -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂,
- - $(CH_2)_aNHCSNH(CH_2)_bPO_3HT$, - $(CH_2)_aNHCSNH(CH_2)_bPO_3T_2$,
- -(CH₂)₂OCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-

CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_e-NH₂, -CH₂-

 $(CH_2-O-CH_2)_0-CH_2-NH_2$, $-(CH_2)_1-N(R_a)-(CH_2)_1-CO_2T$, and $-(CH_2)_1-N(R_b)-CH_2-(CH_2-CH_2)_1-N(R_b)$

O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and

-NR_c; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k

independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same

manner as Y₁; T is either H or a negative charge.

- 2. (ORIGINAL) The composition of claim 1 wherein R₃ to R₇,and Y₁ are independently selected from the group consisting of -H, C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C5 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_t-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_i-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and -NR_c; a, b, d, f, h, I, and j independently vary from 1-5; c, e, g, and k independently vary from 1-20; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is a negative charge.
- 3. (ORIGINAL) The composition of claim 2 wherein each R_3 , R_4 , R_8 and R_7 is H, R_5 is SO_3T , Y_1 is $-(CH_2)_3SO_3T$; W_1 is $-C(CH_3)_2$; T is a negative charge.

4. (CURRENTLY AMENDED) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of the indele of formula a composition comprising formula 1

$$R_{8}$$
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of –H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₃T,

-CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T,

 $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-(CH_2)_aCONH(CH_2)_bSO_3T$,

 $-(CH_2)_2NHCO(CH_2)_bSO_3T$, $-(CH_2)_2NHCONH(CH_2)_bSO_3T$,

- $(CH_2)_aNHCSNH(CH_2)_bSO_3T$, - $(CH_2)_aOCONH(CH_2)_bSO_3T$, - $(CH_2)_aPO_3HT$,

 $-(CH_2)_aPO_3T_2$, $-(CH_2)_aOPO_3HT$, $-(CH_2)_aOPO_3T_2$, $-(CH_2)_aNHPO_3HT$,

 $-(CH_2)_aNHPO_3T_2$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3T_2$,

-(CH₂)_aOCO(CH₂)_bPO₃HT, <math>-(CH₂)_aOCO(CH₂)_bPO₃T₂,

 $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3T_2$,

-(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂,

Page 5 of 14

- -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-CO₂T, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_r-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and -NR_c; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is either H or a negative charge.
- 5. (CURRENTLY AMENDED) The method for performing the diagnostic or therapeutic procedure of claim 4 which comprises administering to an individual an effective amount of the composition ef-indeles wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_g-CH₂-CO₂T, -(CH₂)_r-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, and -NR_c; a, b, d, f, h, l, and j independently vary from 1-5; c, e, g, and k independently vary from

- 1-20; R_a , R_b , R_c , and R_d are defined in the same manner as Y_1 ; T is a negative charge.
- 6. (CURRENTLY AMENDED) The method for performing the diagnostic or therapeutic procedure of claim 5 which comprises administering to an individual an effective amount of the composition of indoles wherein each R₃, R₄, R₆ and R₇ is H, R₅ is SO₃T, Y₁ is -(CH₂)₃SO₃T; W₁ is -C(CH₃)₂; T is a negative charge.
- 7. (ORIGINAL) The method of claim 4 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.
- 8. (ORIGINAL) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by fluorescence wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- (ORIGINAL) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by absorption wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- 10. (ORIGINAL) The method of claim 4 wherein said procedure is for physiological function monitoring.

Page 7 of 14

- 11. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for renal function monitoring.
- 12. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for cardiac function monitoring.
- 13. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for kidney function monitoring.
- 14. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for determining organ perfusion in vivo.

15. (CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of an-indele-of formula 1

$$R_{6}$$
 R_{7}
 R_{1}
 R_{3}

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₃T,

-CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T,

 $-(CH_2)_aCO_2(CH_2)_bSO_3\top, -(CH_2)_aOCO(CH_2)_bSO_3\top, -(CH_2)_aCONH(CH_2)_bSO_3\top, -(CH_2)_aCONH(CH_2)_bCONH$

- $(CH_2)_aNHCO(CH_2)_bSO_3T$, - $(CH_2)_aNHCONH(CH_2)_bSO_3T$,

-(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT,

-(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CH₂)_aNHPO₃HT,

 $-(CH_2)_aNHPO_3T_2, -(CH_2)_aCO_2(CH_2)_bPO_3HT, -(CH_2)_aCO_2(CH_2)_bPO_3T_2,\\$

 $\hbox{-(CH$_2)$_a}OCO(CH$_2)$_bPO$_3HT, -(CH$_2)$_aOCO(CH$_2)$_bPO$_3T$_2,$

 $\hbox{-(CH$_2)$_a$CONH(CH$_2)$_bPO_3HT, -(CH$_2)$_a$CONH(CH$_2)$_b$PO$_3$T$_2,$

 $\hbox{-(CH$_2)$_a$NHCO(CH$_2)$_bPO_3HT, -(CH$_2)$_a$NHCO(CH$_2)$_b$PO$_3$T$_2,}\\$

 $\hbox{-(CH$_2)$_a$NHCONH(CH$_2)$_bPO_3HT, -(CH$_2)$_a$NHCONH(CH$_2)$_b$PO$_3$T$_2,$

Page 9 of 14

-(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, -NR_c, and -S-; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is either H or a negative charge; with the proviso that when W₁ is -S-, R₃-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.

16. (CURRENTLY AMENDED) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of the indole of formula 1

$$R_5$$
 R_7
 N_1
 R_3

Formula 1

wherein R_3 to R_7 , and Y_1 are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₃T,

 $-CO_2T$, -OH, $-(CH_2)_aSO_3T$, $-(CH_2)_aOSO_3T$, $-(CH_2)_aNHSO_3T$,

 $-(CH_2)_aCO_2(CH_2)_bSO_3T$, $-(CH_2)_aOCO(CH_2)_bSO_3T$, $-(CH_2)_aCONH(CH_2)_bSO_3T$,

 $-(CH_2)_aNHCO(CH_2)_bSO_3T$, $-(CH_2)_aNHCONH(CH_2)_bSO_3T$,

 $-(CH_2)_aNHCSNH(CH_2)_bSO_3T$, $-(CH_2)_aOCONH(CH_2)_bSO_3T$, $-(CH_2)_aPO_3HT$,

 $-(CH_2)_aPO_3T_2$, $-(CH_2)_aOPO_3HT$, $-(CH_2)_aOPO_3T_2$, $-(CH_2)_aNHPO_3HT$,

 $-(CH_2)_aNHPO_3T_2$, $-(CH_2)_aCO_2(CH_2)_bPO_3HT$, $-(CH_2)_aCO_2(CH_2)_bPO_3T_2$,

-(CH₂)_aOCO(CH₂)_bPO₃HT, <math>-(CH₂)_aOCO(CH₂)_bPO₃T₂,

 $-(CH_2)_aCONH(CH_2)_bPO_3HT$, $-(CH_2)_aCONH(CH_2)_bPO_3T_2$,

-(CH₂)_aNHCO(CH₂)_bPO₃HT, <math>-(CH₂)_aNHCO(CH₂)_bPO₃T₂,

Page 11 of 14

-(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_c-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_f-NH₂, -CH₂-(CH₂-O-CH₂)_g-CH₂-NH₂, -(CH₂)_h-N(R₉)-(CH₂)_i-CO₂T, and -(CH₂)_j-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; W₁ is selected from the group consisting of -CR_cR_d, -O-, -NR_c, and -S-; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; R_a, R_b, R_c, and R_d are defined in the same manner as Y₁; T is either H or a negative charge; with the proviso that when W₁ is -S-, R₃-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.