Assignment: Exploratory Data Analysis and Price Prediction

Dataset: Download the dataset **Bengaluru_House_Data**. You can find the dataset through an online search or from your instructor.

Objective: Perform Exploratory Data Analysis (EDA) and implement Machine Learning models for price prediction.

Part 1: Data Exploration and Cleaning

1. Describe the dataset:

- Use the describe() function to generate statistical insights.
- Use the info() function to understand the dataset structure.

2. Shape of the Dataset:

 Determine the number of rows and columns using the shape attribute.

3. Univariate Analysis:

- Identify outliers for numerical features using visualizations (boxplots).
- o Find the total number of **missing values** for each feature.
- Identify the cardinality of categorical features (number of unique values).

4. Handling Missing Values:

 Replace missing/null values in numerical features with the mean of the respective columns.

5. Feature Reduction:

Drop the two features with the highest number of missing values.

6. Categorical vs Numerical Features:

 Identify and list all the categorical and numerical features of the dataset.

Part 2: Price Prediction

Task 7(a): Implement Machine Learning Models

- 1. Perform a train-test split on the dataset (e.g., 80% for training, 20% for testing).
- 2. Use the following models to predict the house prices:

- K-Nearest Neighbors (KNN)
- Decision Tree
- Random Forest Classifier
- 3. Compare the accuracy of the models using evaluation metrics.

Task 7(b): Model Evaluation Using K-Fold Cross-Validation and Hyperparameter Tuning

- 1. Implement **K-Fold Cross-Validation** (k = 5) for the same models:
 - o KNN
 - Decision Tree
 - Random Forest Classifier
- 2. Perform **Grid Search** to optimize hyperparameters for each model.
 - Example hyperparameters to tune:
 - KNN: Number of neighbors (n neighbors)
 - Decision Tree: Maximum depth (max_depth), Criterion (gini/entropy)
 - Random Forest: Number of estimators (n_estimators),
 Maximum depth (max_depth)
- 3. Evaluate the models after hyperparameter tuning.

Task 7(c): Compare Performance

- 1. Compare the **Confusion Matrices** and **accuracy metrics** of:
 - Models without K-Fold Cross-Validation (from Task 7a).
 - Models with K-Fold Cross-Validation and Grid Search (from Task 7b).
- 2. Analyze how hyperparameter tuning and cross-validation improve the model performance.