Circuitos Electricos II

Roberto Sanchez Figueroa

brrsanchezfi@unal.edu.co

Soluciones propuestas para los ejercicios del taller 13

Table of Contents

Circuitos Electricos II	1
Soluciones propuestas para los ejercicios del taller 13	
Solucion	
Simulacion	

Dado el circuito RC con elemento no lineal,

Probar que el circuito sigue las ecuaciones,

$$i = f(v)$$

$$\frac{dv_c}{dt} + \frac{1}{RC}v_c = \frac{1}{C}f(v)$$

$$v = v_s - v_c$$

Donde,

$$i = 0, v < \delta$$

 $i = k.v, v \ge \delta$

Dibujar el voltaje de salida $v_c(t)$ para la entrada senoidal $v_s(t) = A. \sin \omega t \ V$, simular con distintos valores de $\{A, \omega, \delta, R, C\}$.

Solucion

La ecuacion que se nos muestra es una ecuacion corriente, adicional es claro que la figura del circuito tiene un divisor de corriente, por tanto

$$i(t) = f(v)$$

esto quiere decir que podemos reemplazar fuente de tension por una fuente de corriente dependiente de tension de v_s , luego tengo la siguiente expresion.

$$f(v) = C\frac{dv_c}{dt} + \frac{v_c}{R}$$

Tenga en cuenta que la tension enel capacitor es la misma que en la resistencia al estar en paralelo, dicho esto se despeja la expresion para ecuacion diferencial se paresca a la solucion del enunciado.

$$\frac{dv_c}{dt} + \frac{v_c}{CR} = \frac{f(v)}{C}$$

Simulacion

