

Norme di Progetto

7DOS - 4 Dicembre 2018

Informazioni sul documento

Versione	1.0.0	
Responsabile	Nicolò Tartaggia	
Verifica	Giacomo Barzon Andrea Trevisin	
Redazione	Lorenzo Busin Marco Costantino Michele Roverato Giovanni Sorice	
\mathbf{Stato}	Approvato	
\mathbf{Uso}	Interno	
Destinato a	Prof. Tullio Vardanega Prof. Riccardo Cardin 7DOS	
Email	7dos.swe@gmail.com	

Descrizione

Questo documento descrive le regole, gli strumenti e le convenzioni adottate durante la realizzazione del progetto $G \mathcal{C} B$.

Diario delle modifiche

Modifica	Autore	Ruolo	Data	Versione
Approvazione del do- cumento	Nicolò Tartaggia	Responsabile	2018-12-04	1.0.0
Verifica del documen- to	Andrea Trevisin	Verificatore	2018-12-04	0.9.0
Verifica del documen- to	Giacomo Barzon	Verificatore	2018-12-02	0.8.0
Completamento stesu- ra processi organizza- tivi	Marco Costantino	Amministratore	2018-12-01	0.7.0
Completamento stesu- ra processi di supporto	Lorenzo Busin	Amministratore	2018-12-01	0.6.0
Completamento stesu- ra processi primari	Giovanni Sorice	Amministratore	2018-12-01	0.5.0
Sviluppo stesura pro- cessi primari	Giovanni Sorice	Amministratore	2018-11-29	0.4.3
Sviluppo stesura pro- cessi organizzativi	Michele Roverato	Amministratore	2018-11-238	0.4.2
Sviluppo stesura pro- cessi di supporto	Lorenzo Busin	Amministratore	2018-11-27	0.4.1
Inizio stesura processi di supporto	Lorenzo Busin	Amministratore	2018-11-26	0.3.0
Inizio stesura processi organizzativi	Marco Costantino	Amministratore	2018-11-26	0.2.0
Inizio stesura processi primari	Giovanni Sorice	Amministratore	2018-11-26	0.1.0
Stesura della sezione Introduzione	Giovanni Sorice	Amministratore	2018-11-26	0.0.2
Stesura dello scheletro del documento	Lorenzo Busin	Amministratore	2018-11-26	0.0.1

Indice

1	Intr	oduzio	one	5
	1.1	Scopo	del documento	5
	1.2	Glossa	rio	5
	1.3	Matur	ità del documento	5
	1.4	Riferin	nenti	5
		1.4.1	Normativi	5
		1.4.2		5
2	Pro	cessi n	rimari	6
_	2.1	Fornit		ŝ
	2.1	2 1 1		ŝ
		2.1.1 $2.1.2$		7
		2.1.2	0	7
			11	' 7
			J	' 7
		2.1.3		1 7
	2.2			
	2.2	2.2.1		
		2.2.1	1	
			±	
			2.2.1.3 Requisiti	
			2.2.1.4 UML	
			2.2.1.5 Strumenti di supporto	
			2.2.1.5.1 Trender	
		2.2.2	2.2.1.5.2 Astah UML	
		2.2.2	Progettazione	
			2.2.2.1 Scopo	
			2.2.2.2 Attività	
			2.2.2.3 Codifica	L
3	Pro	cessi d	i supporto	2
	3.1	Docun	$\operatorname{nentazione}$	2
		3.1.1	Fasi di sviluppo	2
		3.1.2	Template	2
		3.1.3	Struttura dei documenti	2
			3.1.3.1 Frontespizio	2
			3.1.3.2 Diario delle modifiche	
			3.1.3.3 Indice	
			3.1.3.4 Intestazione	
			3.1.3.5 Piè di pagina	
		3.1.4	Norme tipografiche	
		ı	3.1.4.1 Stile del testo	
			3.1.4.2 Elenchi puntati	
			3.1.4.3 Note a piè di pagina	
			2.2.2.0 1,000 a bio at bagina	•

			3.1.4.4 Formati comuni
		3.1.5	Elementi grafici
			3.1.5.1 Immagini
			3.1.5.2 Tabelle
		3.1.6	Nomenclatura dei documenti
		3.1.7	Classificazione dei documenti
			3.1.7.1 Documenti informali
			3.1.7.2 Documenti formali
			3.1.7.3 Verbali
		3.1.8	Sigle usate
		3.1.9	Glossario
		3.1.10	Strumenti di supporto
			3.1.10.1 LATEX
			3.1.10.2 TexStudio
	3.2	Verific	a
		3.2.1	Analisi dei processi
			3.2.1.1 Controllo delle metriche
			$3.2.1.1.1$ Schedule Variance $(SV)_g$
			$3.2.1.1.2$ Budget Variance $(BV)_g$
			3.2.1.2 Analisi PDCA
		3.2.2	Analisi dei documenti
			3.2.2.1 Controllo delle metriche
			3.2.2.1.1 Numero di errori ortografici
			3.2.2.1.2 Gunning fog index
			3.2.2.1.3 Indice di Gulpease
			3.2.2.2 Controllo del periodo
			3.2.2.3 Rispetto delle norme di progetto
			3.2.2.4 Miglioramento del processo di verifica
		3.2.3	Analisi dei prodotti software
			3.2.3.1 Analisi statica
			3.2.3.2 Analisi dinamica
			3.2.3.3 Controllo delle metriche
			3.2.3.3.1 Functional Implementation Completeness 20
			3.2.3.3.2 Average Functional Implementation Correctness 20
			3.2.3.3.3 Average Learning Time
			3.2.3.3.4 Failure Density
4	Des		rganizzativi
4	4.1		$egin{array}{cccccccccccccccccccccccccccccccccccc$
	4.1	4.1.1	Ruoli di progetto
		4.1.1	4.1.1.1 Analista
			4.1.1.1 Analista
			4.1.1.2 Programmatore
			4.1.1.4 Verificatore
			4.1.1.5 Amministratore
			4.1.1.6 Responsabile
			1.1.1.0 1000ponoaono

		4.1.2	Sistema di ticketing
			4.1.2.1 Gestione dei task
			4.1.2.2 Norme sui task
			4.1.2.3 Strumenti di supporto
			4.1.2.3.1 nTask
	4.2	Gestio	ne delle comunicazioni
		4.2.1	Comunicazioni interne al gruppo
			4.2.1.1 Norme su Discord
			4.2.1.2 Norme su Telegram
		4.2.2	Comunicazioni esterne
		4.2.3	Strumenti di supporto
			4.2.3.1 Discord
			4.2.3.2 Telegram
	4.3		ne degli incontri
		4.3.1	Incontri interni
		4.3.2	Incontri esterni
	4.4		e di versionamento
		4.4.1	Norme sui file
		4.4.2	Norme sui commit
		4.4.3	Norme su branching e merging
		4.4.4	Strumenti di supporto
			4.4.4.1 Github
			4.4.4.2 Git
			4.4.4.3 Client Git
	4.5	Forma	zione
5	1	ondiae	e
,	Ар р 5.1		EC 15504(SPICE)
	5.1 - 5.2		li miglioramento continuo (PDCA)
	5.2 - 5.3		EC 25010 (SQuaRE)
	0.0	5.3.1	Functional Suitability
		5.3.1	Performance Efficiency
		5.3.3	Usability
		5.3.4	Reliability
		5.3.4 $5.3.5$	Maintainability
		U.U.U	

1 Introduzione

1.1 Scopo del documento

Il presente documento descrive e fissa tutte le norme, le convenzioni e gli strumenti che verranno adottati dal nostro team per assicurare un modus operandi comune a tutti i membri nello sviluppo del $progetto_g$. Questo suppone che tutti i componenti del gruppo abbiano preso visione del documento e ne abbiano concordato e accettato i modi per garantire la massima omogeneità e collaborazione per tutto il progetto.

1.2 Glossario

Per rendere la lettura del documento più semplice, chiara e comprensibile viene allegato il documento $Glossario\ v1.0.0$ nel quale sono contenute le definizioni dei termini tecnici, dei vocaboli ambigui, degli acronimi e delle abbreviazioni. La presenza di un termine all'interno del Glossario è segnalata con una "g" posta come pedice (esempio: $Glossario_q$).

1.3 Maturità del documento

Il presente documento sarà soggetto ad incrementi futuri. Per questo motivo, non si pone l'obiettivo di risultare completo già in questa fase del progetto. Tale decisione è dovuta al fatto che sono state trattate le esigenze di attività di progetto più impellenti e ricorrenti. Tutto ciò che riguarda la pianificazione degli incrementi, può essere trovato nel *Piano di Progetto v1.0.0* all'interno della sezione 4.

1.4 Riferimenti

1.4.1 Normativi

• ISO/IEC 12207: https://www.math.unipd.it/~tullio/IS-1/2009/Approfondimenti/ISO_12207-1995.

• Verbali: Verbale del 2018-12-04.

1.4.2 Informativi

Grafana_g Code Styleguide:
 http://docs.grafana.org/plugins/developing/code-styleguide/;

 Angular TypeScript_g Code Styleguide: https://angular.io/guide/styleguide;

- Software Engineering Ian Sommerville- Tenth Edition (2015);
- Trender
 https://github.com/campagna91/Trender/tree/master.

2 Processi primari

2.1 Fornitura

Il fine di questa sezione è quello di definire le norme che i membri del gruppo 7DOS sono invitati a rispettare con l'obiettivo di proporsi e diventare fornitori nei confronti dell'azienda proponente Zucchetti s.r.l. e dei committenti Prof. Tullio Vardanega e Prof. Riccardo Cardin per quanto concerne il prodotto G B. Per raggiungere questa meta nel miglior modo possibile, abbiamo intenzione di collaborare in modo efficiente_g e efficace_g con i referenti dell'azienda. I punti fondamentali che verranno affrontati insieme al proponente saranno:

- Determinare gli aspetti cruciali al fine di soddisfare l'azienda proponente;
- Concordare la qualifica del prodotto;
- Determinare vincoli sui processi e sui requisiti;
- Stimare i costi del prodotto finale.

Di seguito verranno riportate tutte le attività che compongono questo processo:

2.1.1 Studio di Fattibilità

Nel documento *Studio di Fattibilità v1.0.0.* troviamo le motivazioni che hanno portato il nostro gruppo a favorire la scelta del prodotto per cui proporci come fornitori. Inoltre, si riportano, per ogni capitolato, le seguenti informazioni:

- **Descrizione**: riporta una breve sintesi del prodotto da sviluppare;
- Studio del dominio: riporta un'analisi del dominio applicativo, in cui vi è una più corposa descrizione del prodotto da sviluppare con l'aggiunta di una generale contestualizzazione, e un'analisi del dominio tecnologico, in cui vengono elencate le maggiori tecnologie coinvolte per ogni prodotto secondo la descrizione del capitolato e dalle esperienze pregresse dei componenti del gruppo;
- Valutazione generale: composta dagli aspetti positivi e dagli aspetti negativi trovati e discussi dal gruppo riguardo al capitolato in esame;
- Valutazione finale: vi si può trovare in breve la motivazione della scelta presa per ogni capitolato in base a ciò che è stato riportato nelle tre sezioni precedenti.

2.1.2 Piano di Progetto

La redazione di un $piano_g$ da seguire durante la realizzazione del progetto spetta al Responsabile, aiutato nelle scelte dagli Amministratori. Il documento dovrà coprire le seguenti tematiche:

- Analisi dei rischi: riporta una dettagliata analisi dei rischi che si potrebbero incontrare durante la realizzazione del progetto, determinandone, in base alle conoscenze pregresse e alle nuove acquisite, la probabilità che essi accadano e la loro gravità. Inoltre, quando possibile, verranno analizzati i possibili metodi per affrontarli;
- **Pianificazione**: viene presentata una pianificazione delle *attività*_g da svolgere nel corso del progetto, fornendo delle scadenze temporali il più possibile precise e veritiere;
- Suddivisione risorse: riporta la suddivisione oraria delle risorse, tenendo conto dei ruoli ricoperti da tutti i membri. In questo modo si ha una visione chiara su come il gruppo sta procedendo e quante ore vengono impiegate per ogni attività;
- Preventivo: sulla base della pianificazione, viene stimata la quantità di lavoro necessaria per portare a termine ogni attività (e quindi ogni fase) del progetto, per arrivare infine ad avere una valutazione complessiva per tutto il progetto e proporre un preventivo finale con il costo del lavoro precedentemente stimato.

2.1.2.1 Strumenti di supporto

2.1.2.1.1 Gantt Project

Per quanto riguarda la creazione dei diagrammi di Gantt è stato deciso di utilizzare Gantt Project data la sua completezza, facilità di utilizzo e la possibilità di esportare i diagrammi sotto forma di $PNG_{\rm g}$. Inoltre, i file di Gantt Project sono salvati in formato $XML_{\rm g}$, quindi facilmente versionabili.

2.1.2.1.2 Microsoft Excel

Per la realizzazione dei consuntivi è stato deciso di utilizzare Microsoft Excel come strumento per creare i grafici, data la sua efficacia e facilità di utilizzo.

2.1.3 Piano di Qualifica

Il $compito_g$ di $verifica_g$ e $validazione_g$ viene svolto da parte dei Verificatori. Questa mansione verrà svolta secondo un preciso metodo che deve coprire le seguenti tematiche:

- Metodo di verifica: riporta le procedure di controllo sulla $qualità_g$ di $processo_g$ e di $prodotto_g$, considerando i mezzi e le risorse a disposizione;
- Misure e metriche: presenta criteri oggettivi per i documenti, i processi e il software;
- Gestione della revisione: precisa nel dettaglio le metodologie di comunicazione delle procedure di controllo per la qualità di processo e delle anomalie;

- Pianificazione del collaudo: definisce dettagliatamente le metodologie di collaudo a cui sarà sottoposto il progetto realizzato;
- Resoconto dell'attività di verifica: riporta le metriche calcolate e il resoconto sul collaudo delle attività sottoposte a verifica e validazione.

2.2 Sviluppo

Il processo in questione affronta le attività ed i compiti svolti dal gruppo con l'obiettivo di sviluppare il software richiesto dal proponente. Per una corretta implementazione è fondamentale:

- Realizzare un prodotto finale conforme alle richieste del proponente;
- Realizzare un prodotto finale che soddisfa i test di verifica e validazione;
- Fissare gli obiettivi di sviluppo;
- Fissare i vincoli tecnologici e di design.

Inoltre, il gruppo ha deciso di seguire le linee guida dettate dallo standard $ISO_{\rm g}/IEC_{\rm g}$ 12207. Per questo motivo le attività scelte alla base del progetto di sviluppo saranno le seguenti:

- Analisi dei Requisiti;
- Progettazione;
- Codifica.

2.2.1 Analisi dei requisiti

2.2.1.1 Scopo

Determinare con precisione i requisiti del progetto ed elencarli in modo formale. Essi vengono estrapolati da varie fonti:

- Documenti di specifica del capitolato_g;
- Incontri con l'azienda proponente;
- Verbali interni ed esterni;
- Casi d'uso.

2.2.1.2 Casi d'uso

Ogni caso d'uso è descritto dalla seguente struttura:

• codice identificativo:

- UC specifica che si tratta di un caso d'uso;

- Codice padre identifica univocamente i casi d'uso;
- Codice figlio è un numero progressivo che identifica i sottocasi.
- Titolo;
- Diagramma UML;
- Attori;
- Scopo e descrizione;
- Precondizione:
- Flusso base degli eventi;
- Postcondizioni:
- Inclusioni (se presenti);
- Estensioni (se presenti).

2.2.1.3 Requisiti

Ogni requisito è descritto dalla seguente struttura:

- Nome;
- Tipo;
- Importanza;
- Stato implementazione;
- Fonti.

Inoltre, a ciascun requisito corrisponde un codice identificativo così composto:

R {importanza}.{tipo}.{identificativo}

- R specifica che si tratta di un requisito ;
- importanza identifica la rilevanza del requisito e può assumere 3 valori:
 - 0: indica che il requisito è obbligatorio e il suo soddisfacimento dovrà necessariamente avvenire;
 - 1: indica che il requisito è desiderabile, cioè il suo soddisfacimento può portare maggiore completezza al sistema ma non è fondamentale per lo stesso;
 - 2: indica che il requisito è opzionale, e quindi la decisione di implementarlo o meno verrà presa dopo le dovute considerazioni;
- Tipo distingue se si tratta di un requisito funzionale (F), di qualità (Q), di prestazione (P) o di vincolo (V);
- Identificativo è un numero progressivo che identifica i sottocasi.

2.2.1.4 UML

I diagrammi UML devono essere realizzati usando la versione del linguaggio v2.0

2.2.1.5 Strumenti di supporto

2.2.1.5.1 Trender

Per quanto riguarda il tracciamento dei requisiti, il gruppo ha deciso di utilizzare inizialmente uno strumento non totalmente adatto a questo compito, cioè un foglio di calcolo. Essendo a conoscenza delle limitate funzionalità offerte da questa tecnologie per lo scopo a noi d'interesse, il team 7DOS ha deciso di migrare i dati raccolti in uno strumento creato appositamente per questo scopo. Lo strumento scelto è Trender e rende il tracciamento dei requisiti semi-automatico, inoltre offre la creazione di file .tex per il tracciamento dei requisiti.

2.2.1.5.2 Astah UML

Per quanto concerne la creazione e la modellazione dei diagrammi UML per i casi d'uso, è stato deciso di utilizzare Astah UML, data la sua facilità di utilizzo e compatibilità con UML 2.x. Per la successiva fase di modellazione delle classi, potrebbe verificarsi una scelta diversa riguardo al software da utilizzare.

2.2.2 Progettazione

2.2.2.1 Scopo

Esplicita concretamente una prima forma ad alto livello del design del software pensata per il progetto, determinandone le caratteristiche più in evidenza in modo da:

- Comunicare con gli stakeholder e dare delle informazioni chiare, così da intraprendere le prime discussioni sul progetto;
- Analizzare il sistema in modo esplicito nei primi passi del progetto può portare ad importanti considerazioni riguardo a performance, affidabilità e manutenibilità;
- Capire come il sistema è organizzato e come i componenti interoperano tra di loro sottolineando la possibilità di **riutilizzo in larga scala** di parte del codice, dato che si è notata una frequente ripetizione dei requisiti in un sistema complesso come quello affrontato dal nostro team.

2.2.2.2 Attività

Il design del software non è composta da una singola attività, bensì da un insieme preciso di sotto-attività progettuali che portano al design finale. Le sotto-attività che il nostro gruppo ha scelto di svolgere sono:

• Progettazione architetturale: i progettisti identificheranno una struttura globale del sistema, quindi i componenti principali, le loro relazioni e come saranno distribuiti;

- **Progettazione dell'interfaccia**: i progettisti definiranno le interfacce tra i moduli_g di sistema. Ciò deve essere fatto assolutamente in modo non ambiguo dato che, grazie a queste specifiche, ogni componente potrà usare in modo appropriato le funzionalità degli altri componenti del progetto senza sapere l'effettiva implementazione;
- Selezione e progettazione dei componenti: i progettisti cercheranno dei componenti riutilizzabili e valuteranno se inserirli nel progetto, specificandone gli appropriati utilizzi e aggiustamenti, o se sarà più opportuno costruire dei nuovi componenti.

2.2.2.3 Codifica

Le convenzioni stilistiche definite in $Grafana\ Plugin\ Code\ Styleguide_g$ e, più in particolare per il linguaggio Typescript, in $Angular\ TypeScript_g$ Styleguide verranno seguite dai programmatori per lo sviluppo dell'intero progetto.

Soltanto il Responsabile di progetto, dopo un'attenta analisi e valutazione, potrà ammettere modifiche alle convinzioni stabilite.

L'unica lingua ammessa per i nomi di variabili, classi e funzioni è l'inglese.

3 Processi di supporto

3.1 Documentazione

Questa sezione descrive in modo dettagliato le procedure adottate dal gruppo in merito alla redazione, verifica e approvazione di tutta la documentazione prodotta. Tali norme devono essere rispettate in modo tassativo, al fine di realizzare documenti formali, coerenti e non ambigui.

3.1.1 Fasi di sviluppo

Ogni documento deve attraversare le seguenti fasi per essere considerato formale:

- **Redazione**: un documento si trova in questa fase dal momento in cui viene creato fino alla sua approvazione. I *Redattori* si occupano della stesura e della modifica delle sezioni che gli sono state assegnate dal *Responsabile di Progetto*;
- Verifica: un documento entra in questa fase al termine del lavoro dei *Redattori*. Il *Responsabile di Progetto* deve assegnare ai *Verificatori* la procedura di verifica e validazione del documento. In caso di esito positivo esso passa allo stato *Approvato*, nel caso contrario il *Responsabile di Progetto* affida ai *Redattori* il compito di apportare eventuali correzioni;
- Approvazione: un documento entra in questa fase una volta superata la fase di verifica in modo positivo ed è compito del *Responsabile di Progetto* approvarlo in maniera ufficiale.

3.1.2 Template

Per uniformare la struttura dei documenti è stato creato un template $LaTeX_g$ che implementa la formattazione e l'impaginazione degli stessi. Il contenuto di ogni documento è costituito di più file, uno per ogni sezione, la cui stesura è stata incaricata ai Redattori.

3.1.3 Struttura dei documenti

Tutta la documentazione deve rispettare la medesima struttura.

3.1.3.1 Frontespizio

Questa sezione contiene tutti gli elementi che dovranno essere presenti nella prima pagina di ogni documento.

- Logo del gruppo;
- Titolo del documento;
- Nome del gruppo;
- Data di approvazione;
- Informazioni sul documento:

- Versione corrente;
- Nome e cognome del Responsabile di Progetto;
- Nome e cognome dei *Verificatori*;
- Nome e cognome dei *Redattori*;
- Destinazione d'uso:
- Destinatari del documento;
- Indirizzo email del gruppo.
- Descrizione del documento.

3.1.3.2 Diario delle modifiche

Questa sezione contiene le modifiche apportate al documento, organizzate in modo tabulare ed ordinate in modo decrescente dall'alto verso il basso secondo la versione dello stesso. Ogni colonna descrive le seguenti informazioni:

- Modifica: tipo e soggetto di ogni modifica;
- Autore: nome e cognome dell'autore;
- Ruolo: ruolo dell'autore in quel momento;
- Data: data di esecuzione;
- Versione: versione del documento.

3.1.3.3 Indice

Ogni documento, esclusi i verbali, contiene un indice, il quale consente una visione generale del suo contenuto, ordinato e numerato rispetto alle sezioni presenti. Ci possono essere al più tre tipologie: indice delle sezioni, indice delle tabelle e indice delle immagini.

3.1.3.4 Intestazione

- Logo del gruppo a sinistra;
- Titolo della sezione corrente a destra.

3.1.3.5 Piè di pagina

- Nome del documento e nome del gruppo a sinistra;
- Numero progressivo della pagina corrente a destra.

3.1.4 Norme tipografiche

3.1.4.1 Stile del testo

- Corsivo: è usato per termini specifici o poco comuni, per indicare ruoli all'interno del progetto, per le citazioni e per i riferimenti ai documenti. Nel Glossario tutti i termini poco comuni in lingua inglese sono in corsivo;
- Grassetto: è usato per evidenziare concetti e parole chiave;
- Maiuscolo: è usato per indicare gli acronimi;
- Sottolineato: è usato nel Glossario per evidenziare link a termini presenti nel documento che vengono impiegati nella descrizione di altri termini;
- Azzurro: è usato per indicare collegamenti ipertestuali.

3.1.4.2 Elenchi puntati

Ogni punto dell'elenco deve avere la lettera maiuscola e terminare con il carattere punto e virgola, tranne l'ultimo che deve terminare con il carattere punto.

3.1.4.3 Note a piè di pagina

In caso di presenza in una pagina interna di note da esplicare, esse vanno indicate nella pagina corrente, in basso a sinistra. Ogni nota deve riportare un numero e una descrizione.

3.1.4.4 Formati comuni

- Orari: HH:MM
 - **HH**: indica le ore scritte con due cifre;
 - MM: indica i minuti scritti con due cifre.
- Date: AAAA-MM-GG
 - **AAAA**: indica l'anno scritto con quattro cifre;
 - MM: indica il mese scritto con due cifre;
 - **GG**: indica il giorno scritto con due cifre.

• Termini ricorrenti

- Nomi propri: vanno scritti usando il formato Nome Cognome;
- Ruoli di progetto: vanno scritti in corsivo e con la lettera maiuscola;
- Nomi dei documenti: vanno scritti con la lettera maiuscola;
- Riferimenti ai documenti: vanno scritti in corsivo e con la lettera maiuscola.

3.1.5 Elementi grafici

3.1.5.1 Immagini

Le immagini devono essere separate dal testo lasciando una spaziatura per facilitarne la lettura e vanno centrate orizzontalmente. Possono essere organizzate in modo affiancato e per ogni figura deve essere presente una breve didascalia, oltre ad un identificativo che permetta il relativo inserimento all'interno dell'indice delle immagini. I formati consentiti sono **PNG** e **JPG**.

3.1.5.2 Tabelle

Le tabelle devono essere separate dal testo lasciando una spaziatura per facilitarne la lettura e vanno centrate orizzontalmente. Possono essere organizzate in modo affiancato e per ogni tabella deve essere presente una breve didascalia, oltre ad un identificativo che permetta il relativo inserimento all'interno dell'indice delle tabelle. L'intestazione di ogni colonna deve essere in grassetto ed avere la lettera maiuscola.

3.1.6 Nomenclatura dei documenti

Il formato usato per la nomenclatura dei documenti, tranne i Verbali, è il seguente:

NomeDocumento vX.Y.Z

- NomeDocumento: indica il nome del documento, scritto senza spazi e con la lettera maiuscola in ogni parola.
- vX.Y.Z: indica la versione del documento secondo il seguente criterio:
 - X: viene incrementato in seguito ad un'approvazione ufficiale del documento da parte del Responsabile di Progetto e ciò comporta l'azzeramento di Y e Z;
 - Y: viene incrementato in seguito ad un'azione di verifica o di stesura di una parte corposa del documento e ciò comporta l'azzeramento di Z;
 - Z: viene incrementato in seguito ad un'azione di stesura di una parte esigua del documento.

Il formato usato per la nomenclatura dei Verbali invece è Verbale AAAA-MM-GG.

3.1.7 Classificazione dei documenti

3.1.7.1 Documenti informali

Un documento viene considerato infomale se non è stato approvato dal Responsabile di Progetto, pertanto è concesso esclusivamente ad uso interno al gruppo.

3.1.7.2 Documenti formali

Un documento viene considerato formale dopo aver superato con esito positivo l'attività di

verifica e in seguito alla sua appovazione da parte del *Responsabile di Progetto*, pertanto può essere destinato ad una distribuzione esterna al gruppo.

3.1.7.3 Verbali

Ogni verbale deve essere redatto dal segretario durante le riunioni, sia interne che esterne, tenute dal gruppo e deve rispettare il seguente contenuto:

- Informazioni incontro: informazioni generali riguardo la riunione descritte secondo la seguente struttura:
 - Luogo;
 - Data;
 - Ora;
 - Partecipanti del gruppo;
 - Partecipanti esterni.
- Argomenti affrontati: descrizione dei temi discussi dal gruppo ed eventuali decisioni prese a riguardo.

3.1.8 Sigle usate

- AR: Analisi dei Requisiti;
- **GL**: Glossario;
- NdP: Norme di Progetto;
- **PdP**: Piano di Progetto;
- PdQ: Piano di Qualifica;
- SF: Studio di Fattibilità;
- **RA**: Revisione di Accettazione;
- **RP**: Revisione di Progettazione;
- **RQ**: Revisione di Qualifica;
- RR: Revisione dei Requisiti.

3.1.9 Glossario

Il Glossario deve contenere tutti quei termini che possono risultare ambigui o che possono essere fraintesi. Le definizioni, elencate in modo alfabetico, devono essere chiare e concise. L'inserimento nel Glossario deve avvenire parallelamente alla stesura della documentazione. Deve essere segnalata soltanto la prima occorrenza del termine in un documento e deve essere impiegato l'apposito comando personalizzato che lo formatta in corsivo aggiungendo una lettera 'g' come pedice(eg. Termine nel Glossariog).

3.1.10 Strumenti di supporto

3.1.10.1 PT_EX

L'intera documentazione deve essere redatta usando il linguaggio di markup LATEX che offre la possibilità di personalizzare comandi e variabili da usare all'interno dei documenti facilitandone la gestione e l'aggiornamento. Permette anche di dividere il contenuto di un documento dalla rispettiva struttura, suddividendolo in sezioni per facilitarne la stesura da parte dei *Redattori* e di mantenere la stessa formattazione in tutti i documenti mediante l'uso di un template comune.

3.1.10.2 TexStudio

Per redigere i documenti in L^AT_EX deve essere impiegato l'editor TexStudio. L'ambiente mette a disposizione un'interfaccia per la scrittura dei documenti, organizzati secondo una struttura gerarchica e la visualizzazione dell'anteprima del risultato ottenuto in seguito alla compilazione avvenuta con successo e in caso contrario segnalando all'utente eventuali errori.

3.2 Verifica

Il processo di verifica ha lo scopo di esaminare un prodotto al fine di accertare che le attività produttive non abbiano introdotto errori sullo stesso, fornendo una prova oggettiva della sua correttezza o nel caso contrario, segnalando le eventuali problematiche riscontrate. Le metriche ed i metodi per effettuare verifica sono ampiamente e dettagliatamente descritti nel $Piano\ di\ Qualifica\ v1.0.0$. Per questa prima parte del progetto il processo di verifica viene eseguito sulla documentazione.

3.2.1 Analisi dei processi

Descrizione delle procedure per verificare adeguatamente lo svolgimento dei processi.

3.2.1.1 Controllo delle metriche

Alla conclusione di ogni fase del progetto, per ogni macro-attività, si devono calcolare i relativi indici. Al fine di avere un indice complessivo di fase deve essere inoltre calcolato il valore medio di tali indici. Di seguito verranno descritte in modo dettagliato tutte le metriche relative ai processi adottate. Per una spiegazione dettagliata riguardo gli obbiettivi che il team si è imposto di raggiungere per le suddette metriche consultare il piano di qualifica.

3.2.1.1.1 Schedule Variance $(SV)_g$

Metrica che indica se si è in linea, in anticipo o in ritardo rispetto alle attività pianificate nella $baseline_g$. Essa è un indicatore di efficacia.

Se SV > 0 significa che si sta procedendo più velocemente rispetto a quanto pianificato. Viceversa, se SV < 0 allora il gruppo è in ritardo.

$3.2.1.1.2 \quad \textit{Budget Variance } (\textit{BV})_{g}$

Metrica che indica se la spesa complessiva fino a quel momento è maggiore o minore rispetto a quanto pianificato. Essa è un indicatore con valore contabile e finanziario.

Se BV>0 il budget complessivo sta diminuendo con velocità minore rispetto a quanto pianificato. Viceversa se BV<0.

3.2.1.2 Analisi PDCA

Attraverso lo studio della rappresentazione grafica del $PDCA_g$ relativo alla fase di progetto in esame, verranno tratte delle considerazioni riguardo lo svolgimento dei processi. Da esso si possono identificare in modo visuale, quindi generico e non numericamente $quantificabile_g$, dei dati sulla fase in esame ed osservarne la tendenza:

- Errori di pianificazione, rappresentati da variazioni delle attività nello stato Plan;
- Velocità con cui il gruppo di lavoro porta avanti i processi tra i vari stati del ciclo PDCA.

3.2.2 Analisi dei documenti

Descrizione delle procedure da eseguire per verificare adeguatamente i documenti.

3.2.2.1 Controllo delle metriche

In seguito ad una qualsiasi modifica di un documento, si devono calcolare tutti i relativi indici di quel specifico documento. Inoltre dovrà essere ricalcolata la media complessiva di tutti gli indici calcolati fino a quel momento del documento in questione. Di seguito verranno descritte in modo dettagliato tutte le metriche relative ai documenti adottate. Per una spiegazione dettagliata riguardo gli obbiettivi che il team si è imposto di raggiungere per le suddette metriche consultare il piano di qualifica.

3.2.2.1.1 Numero di errori ortografici

Misura del numero di errori ortografici presenti all'interno di un documento. Per verificare la presenza di errori ortografici nella documentazione deve essere usato lo strumento di controllo ortografico offerto dall'editor *TexStudio* che integra i dizionari di OpenOffice per segnalare potenziali errori presenti nel testo.

3.2.2.1.2 Gunning fog index

Indice utilizzato per misurare la facilità di lettura e comprensione di un testo. Il numero risultante è un indicatore del numero di anni di educazione formale necessari al fine di leggere il testo con facilità.

L'indice di Gunning fog è calcolabile tramite la seguente formula:

$$0.4*((\frac{n^{\circ}\;parole}{n^{\circ}\;frasi}) + 100*(\frac{n^{\circ}\;parole\;complesse}{n^{\circ}\;parole}))$$

Per ogni documento i Verificatori devono calcolare il Gunning fog index e se questo dovesse risultare troppo alto, dovrà essere eseguita la verifica del documento con l'obiettivo di ricercare frasi troppo prolisse o complesse. Il calcolo deve essere effettuato attraverso uno $script_{\rm g}$ scritto in Perl che trasforma i documenti dal formato .pdf al formato .txt per effettuare un calcolo più preciso, eliminando le tabelle ma non il loro contenuto.

3.2.2.1.3 Indice di Gulpease

Utilizzato per misurare la leggibilità di un testo in lingua italiana. L'indice di Gulpease è calcolabile tramite la seguente formula:

$$89 + \frac{(numero\:delle\:frasi) - 10*(numero\:delle\:lettere)}{numero\:delle\:parole}$$

I risultati sono compresi tra 0 e 100, dove 0 indica la leggibilità più bassa e 100 la leggibilità più alta. In generale risulta che i testi con indice:

- Inferiore a 80: sono difficili da leggere per chi ha la licenza elementare;
- Inferiore a 60: sono difficili da leggere per chi ha la licenza media;
- Inferiore a 40: sono difficili da leggere per chi ha la licenza superiore.

Per ogni documento i Verificatori devono calcolare l'indice di Gulpease e se questo dovesse risultare troppo basso, dovrà essere eseguita la verifica del documento con l'obiettivo di ricercare frasi troppo prolisse o complesse. Il calcolo deve essere effettuato attraverso uno $script_g$ scritto in Perl che trasforma i documenti dal formato .pdf al formato .txt per effettuare un calcolo più preciso, eliminando le tabelle ma non il loro contenuto.

3.2.2.2 Controllo del periodo

Per verificare la presenza di errori di sintassi, di parole grammaticalmente corrette ma presenti in un contesto sbagliato e di periodi difficili da comprendere è necessario l'intervento umano. Per questo motivo ogni documento deve essere sottoposto a verifica da parte dei *Verificatori* incaricati, secondo la strategia walkthrough.

3.2.2.3 Rispetto delle norme di progetto

La verifica del rispetto delle norme descritte in *Norme di Progetto v1.0.0* è compito dei *Verificatori* incaricati. Non essendo possibile impiegare strumenti automatici per verificare la corretta applicazione di tutte le norme spetta quindi ai *Verificatori* sottoporre i documenti a verifica, secondo la strategia inspection.

3.2.2.4 Miglioramento del processo di verifica

Per migliorare e ottimizzare il processo di verifica i *Verificatori* devono riportare gli errori riscontrati più frequentemente al fine di rendere più efficiente ed efficace la verifica di un documento, prestando maggiore attenzione agli errori più comuni.

3.2.3 Analisi dei prodotti software

Descrizione delle procedure da eseguire per verificare adeguatamente i prodotti software.

3.2.3.1 Analisi statica

Esecuzione di test che non richiedono l'esecuzione del sistema software ma effettuano controlli sul codice sorgente del prodotto software. [Inserire test statici che eseguiamo]

3.2.3.2 Analisi dinamica

Il processo di analisi dinamica consiste nell'esecuzione di test di varia tipologia i quali richiedono l'esecuzione del sistema software o solamente di alcune sue componenti. Le principali tipologie di test che è possibile eseguire durante l'analisi dinamica sono le seguenti:

- Test d'unità: verificano un unità, il più piccolo sottosistema possibile (nella programmazione ad oggetti comunemente una classe o od un metodo) che può essere testato separatamente;
- Test d'integrazione: verificano se sono rispettati i contratti di interfaccia tra più moduli o sub-system;
- Test di sistema: verificano il comportamento dell'intero sistema software.

3.2.3.3 Controllo delle metriche

Di seguito viene riportato solamente un piccolo sottoinsieme di metriche relative ai prodotti software ritenute come fondamentali dal team 7DOS. Questa sezione verrà ampliata successivamente qualora fosse necessario introdurre nuove metriche per la valutazione della qualità dei prodotti software.

3.2.3.3.1 Functional Implementation Completeness

Misurazione in percentuale del grado con cui le funzionalità offerte dalla corrente implementazione del software coprono l'insieme di funzioni specificate nei requisiti.

Questa metrica è stata scelta per valutare il grado di completezza del prodotto; l'obiettivo è implementare tutte le funzionalità richieste.

Viene utilizzata la seguente formula:

$$FI_{Comp} = \frac{NF_i}{NF_r} * 100$$

dove FI_{Comp} è il valore della metrica, NF_i è numero di funzioni attualmente implementate e NF_r è numero di funzioni specificate dai requisiti.

3.2.3.3.2 Average Functional Implementation Correctness

Misurazione in percentuale del grado in cui le funzionalità offerte dalla corrente implementazione del software, in media, rispettano il livello di precisione indicato nei requisiti.

Questa metrica è stata scelta per valutare il grado di accuratezza e garantire la qualità dei risultati restituiti dal prodotto, in quanto andrà a fare previsioni sulla verosimiglianza di alcuni eventi in base ai dati forniti, ed è necessario che tali previsioni siano sufficientemente accurate.

Viene utilizzata la seguente formula:

$$aFI_{Corr} = \frac{\sum_{i=1}^{N} \frac{iPF_i}{rPF_i}}{N} * 100$$

dove aFI_{Corr} è il valore della metrica, iPF_i è il livello di precisione della i-esima funzione implementata, rPF_i è il livello di precisione della i-esima funzione secondo i requisiti, e N è il numero totale di funzioni considerate.

3.2.3.3.3 Average Learning Time

Misurazione in minuti del tempo medio impiegato da un utente per imparare ad utilizzare una singola funzionalità del prodotto.

Questa metrica è stata scelta poiché, trattandosi di un prodotto che verrà reso disponibile pubblicamente, è stato ritenuto importante renderlo semplice da imparare per permetterne l'uso ad una vasta gamma di utenti.

Viene utilizzata la seguente formula:

$$aLT = \frac{\sum_{i=1}^{N} LT_i}{N}$$

dove aLT è il valore della metrica, LT_i è il tempo necessario ad imparare ad utilizzare la i-esima funzione implementata, espresso in minuti, e N è il numero totale di funzioni considerate.

3.2.3.3.4 Failure Density

Misurazione in percentuale della quantità di test falliti rispetto alla quantità di test eseguiti. Questa metrica è stata scelta per garantire che il prodotto sia generalmente stabile e non risulti poco utilizzabile o inutilizzabile a causa di eccessive $failure_g$. Valutazioni più precise saranno effettuate in base ai singoli risultati dei test.

Viene utilizzata la seguente formula:

$$FD = \frac{T_f}{T_c} * 100$$

dove FD è il valore della metrica, T_f è il numero di test falliti e T_e è il numero di test eseguiti.

4 Processi organizzativi

4.1 Gestione del progetto

I punti principali dell'attività di gestione di progetto sono:

- L'istanziazione dei processi di progetto;
- La pianificazione e la gestione dei compiti e delle attività che compongono i processi. Obbiettivi di quest'attività sono:
 - Permettere l'analisi dei rischi;
 - Sviluppare una strategia di lavoro che faccia uso di best practices_g;
 - Permettere una stima dei costi delle attività di progetto.
- La verifica delle attività e la loro eventuale modifica nell'ottica del miglioramento. Per garantire che la verifica sia efficace deve:
 - Essere supportata da strumenti informatici che riducano il carico di verifica sulla persona;
 - Far uso di metriche numeriche ben definite.

4.1.1 Ruoli di progetto

Segue la lista dei ruoli di progetto che ogni membro dovrà ricoprire a rotazione. Le rotazioni andranno effettuate quando arrecheranno meno disagi alle attività di progetto e i ruoli saranno stabiliti casualmente con eventuali aggiustamenti per garantire che ogni membro possa assumere almeno una volta ogni ruolo.

4.1.1.1 Analista

L'Analista si occupa di determinare e descrivere in maniera formale i requisiti del prodotto, siano essi impliciti o espliciti. Deve:

- Comunicare con il committente per determinare i requisiti del prodotto e i requisiti di dominio;
- Produrre uno Studio di Fattibilità;
- Produrre l'Analisi dei Requisiti.

4.1.1.2 Progettista

Il *Progettista* fa uso dell'Analisi dei Requisiti per produrre un architettura che rispetti i requisiti definiti dall'analista. Deve:

- Produrre un'architettura che faccia uso di best practices e che agevoli manutenzione_g e verifica;
- Assicurarsi che l'architettura rispetti i requisiti definiti dall'analista;

• Redigere la documentazione relativa all'architettura del prodotto e un manuale destinato al programmatore per l'implementazione dell'architettura progettata.

4.1.1.3 Programmatore

Il *Programmatore* ha come compito quello di implementare l'architettura progettata dal progettista. Deve:

- Scrivere codice che sia documentato e che rispetti le direttive del progettista;
- Codificare i moduli necessari al testing del codice;
- Produrre il manuale utente.

4.1.1.4 Verificatore

Il Verificatore si occupa delle attività di verifica. Deve:

- Verificare la qualità dei prodotti delle varie attività;
- Verificare che le attività siano svolte rispettando le norme di progetto stabilite;
- Redigere il Piano di Qualifica.

4.1.1.5 Amministratore

L'Amministratore gestisce l'ambiente di lavoro del team. Deve:

- Determinare quali strumenti verranno usati dal team (sistema di versioning, sistema di ticketing_g, strumenti per la comunicazione, etc.);
- Garantisce l'operatività dei sistemi informatici a supporto delle attività di progetto.

4.1.1.6 Responsabile

Il Responsabile rappresenta il team nelle interazioni con il committente, si occupa di coordinamento interno, si assume la responsabilità delle scelte prese ed approva i prodotti dei processi. Deve:

- Gestire i processi di comunicazione interna ed esterna (incontri, comunicazioni con il committente, riunioni del team);
- Approvare i prodotti risultanti dei processi (documenti, altro);
- Coordinare il gruppo assegnando attività ai vari membri e scadenze e gestendo i rischi.

4.1.2 Sistema di ticketing

4.1.2.1 Gestione dei task

Vengono distinti 2 tipi di task:

- Pro-attivi: creati e assegnati dal *Responsabile di progetto*, organizzano lo svolgimento delle attività e la verifica;
- Reattivi: creati e assegnati dai *Verificatori*, organizzano la correzione o il *miglioramen*to_g dei prodotti delle attività.

Qualora l'assegnatario di un task dovesse realizzare tale task non è completabile entro la data di fine, o se ci dovessero essere altri problemi con il task, avrà la responsabilità di segnalare il problema al Responsabile di progetto che sarà tenuto a ripianificare la risoluzione del task.

4.1.2.2 Norme sui task

Il nome del task deve essere nella forma [attività] nome. Il nome deve essere descrittivo del task stesso. Ogni task dovrà avere almeno un assegnatario.

4.1.2.3 Strumenti di supporto

4.1.2.3.1 nTask

Per la gestione del sistema di ticketing viene utilizzato nTask. La piattaforma permette al Responsabile di Progetto di creare $task_g$ e di assegnarli ai membri del gruppo. Ogni task è caratterizzato dalla data di inizio, data di fine, una descrizione ed una eventuale checklist. Esso permette di avere diverse visualizzazioni dei task assegnati: lista testuale, griglia e calendario. È stato deciso di utilizzare questo strumento, data la sua comoda board view, la possibilità di creare più feature anche nella versione gratuita e di avere uno strumento di risk $tracking_g$ integrato.

4.2 Gestione delle comunicazioni

4.2.1 Comunicazioni interne al gruppo

Le comunicazioni interne al gruppo sono gestite principalmente tramite due servizi di messaggistica Telegram e Discord.

4.2.1.1 Norme su Discord

Discord viene impiegato dal team per effettuare comunicazioni di urgenza limitata. Esso viene spesso utilizzato per effettuare riunioni a distanza tramite i suoi canali vocali. È possibile organizzare le conversazioni creando vari canali vocali e testuali associati ad uno scopo o ad alcuni ruoli del progetto, e raggruppandoli in sezioni. Di seguito verrà riportata una breve descrizione dei canali attualmente presenti, tuttavia è importante sottolineare che molti canali potrebbero essere aggiunti o rimossi nel tempo e che quindi questa lista potrebbe cambiare in futuro.

• **Text channels**: sezione che contiene tutti i canali testuali principali del server. Di seguito verranno riportati tutti i canali contenuti in questa sezione:

- General: canale testuale generale in cui effettuare comunicazioni poco urgenti destinate a tutti i membri del team;
- Deadlines: canale testuale in cui vengono scritte tutte le deadline imminenti in modo da ricordarle a tutti i membri del team.
- Voice channels: sezione che contiene tutti i canali vocali principali del server. Di seguito verranno riportati tutti i canali contenuti in questa sezione:
 - **General**: canale vocale generico utilizzato principalmente per effettuare riunioni che coinvolgono tutti i membri del team;
 - Redazione: canale vocale utilizzato principalmente per effettuare riunioni tra i /emphRedattori del team;
 - Verifica: canale vocale utilizzato principalmente per effettuare riunioni tra i /emphVerificatori del team.
- Notification center: sezione che contiene tutti i canali testuali collegati ad un $Web-hook_g$ per ricevere notifiche a particolari piattaforme esterne.
 - Github-notifications: canale testuale in cui verranno comunicate da un bot tutte le notifiche provenienti da Github;
 - **Gmail-notifications**: canale testuale in cui verranno comunicate da un bot tutte le notifiche relative all'indirizzo email del gruppo.
- **Documenti**: sezione contenente un canale testuale per ogni documento redatto dal team in modo tale da permettere un'efficace comunicazione tra i /emphRedattori di quello specifico documento.

4.2.1.2 Norme su Telegram

Telegram viene utilizzato principalmente per effettuare comunicazioni urgenti ed organizzare riunioni che coinvolgono tutti i membri del team e necessitano di essere effettuate in tempi brevi. Di conseguenza è sconsigliato utilizzare questo servizio per effettuare comunicazioni che non appartengano a nessuna delle categorie precedentemente citate.

4.2.2 Comunicazioni esterne

Le comunicazioni esterne sono compito del *Responsabile di Progetto*, che utilizzerà l'indirizzo e-mail del gruppo 7dos.swe@gmail.com facendo così apparire una notifica nel server Discord del team una volta inviata la mail.

4.2.3 Strumenti di supporto

4.2.3.1 Discord

Discord, è un software di messaggistica istantanea e di VoIP che si è scelto di utilizzare per le comunicazioni interne al gruppo, come spiegato al punto 4.2.1. Permette la creazione gratuita di un server nel quale comunicare con gli altri membri mediante canali testuali e

vocali. Permette inoltre la creazione di un numero illimitato di Webhooks, utili per integrare molti altri strumenti. Il maggior vantaggio rispetto a Slack sta nell'essere un software con tutte le funzionalità di base disponibili gratuitamente, rendendo molto vantaggioso avere la possibilità di trovarsi a discutere con tutti gli altri membri del gruppo, cosa non possibile nella versione gratuita di Slack che offre solo chiamate 1-1.

4.2.3.2 Telegram

Servizio di messaggistica istantanea basato su cloud, il quale permette di stabilire conversazioni testuali tra due o più utenti.

4.3 Gestione degli incontri

4.3.1 Incontri interni

Il Responsabile di Progetto ha il compito di decidere il giorno e la data di un incontro, discutendone con gli altri membri del team. Per comodità, è stato scelto il martedì come giorno di riferimento da proporre inizialmente ai membri del team.

Una volta raggiunto un accordo su un giorno con un numero consistente di partecipanti (almeno 3), tutti i membri che hanno accettato dovranno presentarsi in orario nel luogo prestabilito per la riunione, comunicando eventuali ritardi o impegni insormontabili. Ad ogni incontro, tutti devono partecipare attivamente alla discussione offrendo la loro opinione sui punti da decidere e discutere, mentre un membro del team scelto dal *Responsabile* prenderà appunti sui contenuti da inserire appena possibile in un verbale.

Se non è possibile trovare un giorno in cui effettuare una riunione in un luogo fisico, si tenterà di scegliere un giorno in cui trovarsi a discutere su Discord.

4.3.2 Incontri esterni

Gli incontri esterni saranno anch'essi organizzati dal Responsabile di Progetto, che si metterà in contatto con il committente o il proponente tramite email come descritto al punto 4.1.2 per accordarsi con essi sulla data, l'ora e il luogo dell'incontro. Una volta che questi ultimi saranno stati decisi e confermati da entrambe le parti, il Responsabile avviserà i membri utilizzando Discord. In caso di impossibilità da una delle due parti ad organizzare un incontro fisico, si considererà l'opzione di un incontro utilizzando un servizio VoIP come Skype, Hangout o simili.

4.4 Norme di versionamento

Il servizio di hosting scelto per la repository è Github. La repository è privata e sarà resa pubblica a fine progetto. Seguono le norme che ne riguardano gli aspetti principali.

4.4.1 Norme sui file

I file devono rispettare le norme di nomenclatura già specificate in 3.1.6 Nomenclatura dei documenti. Tramite il file .gitignore vengono esclusi i file intermedi di compilazione dei file latex. Gli unici file ammessi nella repository sono .tex .jpg .png .pdf.

4.4.2 Norme sui commit

Ogni modifica sostanziale effettuata ai file dev'essere seguita da un commit. Il commento associato ad ogni commit deve essere nella forma: [nome file] descrizione. La descrizione deve essere concisa e quanto più esaustiva possibile. Ad ogni commit deve corrispondere un aggiornamento del diario delle modifiche.

4.4.3 Norme su branching e merging

Le norme usate per branching e merging si rifanno al Git Feauture Branch Workflow: master è il branch in cui risiederà documentazione e codice verificati e approvati. Le modifiche o le nuove feature vanno implementate su un feature branch che saranno verificati prima di effettuare una pull request verso master. La pull request permette di non modificare master fintanto che non viene verificato il branch. Ogni nuovo feature branch deve:

- Essere creato a partire da master;
- Avere un nome che permetta di capire a quale feature è associato.

Queste norme saranno rivisitate all'inizio del processo di sviluppo per accertarsi che il feature branch workflow sia il più opportuno da usare. Una possibile alternativa con cui verrà confrontato è GitFlow.

4.4.4 Strumenti di supporto

4.4.4.1 Github

Github è il servizio di hosting scelto per la repository. Funziona utilizzando git, un software di $versionamento_g$ descritto nella sezione immediatamente successiva. Oltre all'hosting del codice sorgente, offre altre caratteristiche utili, tra le quali:

- Un Issue tracking System_g, con etichette e milestone_g;
- Una lista dei commit passati e delle relative modifiche ai file semplice da consultare;
- Account Educational gratuito per gli studenti, il quale permette la creazione di repository private, normalmente creabili solo con un account a pagamento.

4.4.4.2 Git

Git è un software open-source di controllo $versione_g$ distribuito. Viene usato con Github, in quanto è un servizio già conosciuto dai membri del team e molto comodo da utilizzare.

4.4.4.3 Client Git

A seconda delle preferenze, ogni membro del team deciderà se usare come client GitKraken o Github Desktop. Entrambi sono client desktop che facilitano l'utilizzo di git, rendendo molto più semplice inviare le modifiche locali al repository remoto, o viceversa.

4.5 Formazione

La formazione ai fini del progetto è responsabilità di ogni singolo membro del gruppo. Qualora ai fini del progetto un membro del gruppo dovesse formarsi autonomamente su un argomento sconosciuto agli altri, sarà sua responsabilità informare il gruppo e se ritenuto opportuno formarlo secondo una delle seguenti modalità:

- Redigere un documento a scopo introduttivo che illustri le tematiche principali ed elenchi le risorse usate per la formazione. Tale modalità è da preferirsi alla successiva che verrà adottata se le circostanze dovessero ostacolare la redazione del documento;
- Formare il gruppo tramite un incontro a scopo formativo.

5 Appendice

5.1 ISO/IEC 15504(SPICE)

Per ogni $processo_g$ lo standard ISO/IEC 15504 definisce una scala di maturità a cinque livelli (più il livello base, detto "livello 0"), riportati di seguito:

- Livello 0 Incomplete Process: il processo riporta performance_g e risultati incompleti, inoltre è gestito in modo caotico;
- Livello 1 Performed Process: il processo raggiunge i risultati attesi ma viene eseguito in modo non controllato. Gli attributi di tale processo sono:
 - 1.1 Process Performance: capacità di un processo di raggiungere gli obiettivi definiti.
- Livello 2 Managed Process: il processo è pianificato e tracciato secondo standard prefissati, dunque il suo prodotto è controllato, manutenuto e soddisfa determinati criteri di qualità. Gli attributi di tale processo sono:
 - 2.1 Performance Management: capacità di un processo di identificare gli
 obiettivi e di definire, monitorare e modificare le sue performance;
 - 2.2 Work Product Management: capacità di un processo di identificare, elaborare, documentare e controllare i propri risultati.
- Livello 3 Established Process: il processo possiede specifici standard organizzativi che includono linee guida personalizzate, il tutto è consolidato tramite una politica di feedback del prodotto. Gli attributi di tale processo sono:
 - 3.1 Process Definition: il processo specifico si basa su processi standard, individuando e incorporando caratteristiche fondamentali di questi;
 - 3.2 Process Deployment: sono stati definiti ed assegnati dei ruoli a ciascun membro del team, ogni risorsa necessaria per l'esecuzione del processo è disponibile ed utilizzabile.
- Livello 4 Predictable Process: il processo è quantitativamente misurato e statisticamente analizzato per permettere di prendere decisioni oggettive e per assicurare che le prestazioni rimangano all'interno di limiti definiti. Gli obiettivi sono, di conseguenza, supportati in maniera consistente. Gli attributi di tale processo sono:
 - 4.1 Process Measurement: i risultati di misurazione dei processi vengono utilizzati per garantire che le prestazioni del processo supportino il raggiungimento degli obiettivi determinati;
 - 4.2 Process Control: il processo è gestito quantitativamente in modo da renderlo stabile, capace e prevedibile entro limiti definiti.
- Livello 5 Optimizing Process: il processo è in continuo miglioramento per raggiungere adeguatamente gli obiettivi prefissati. Gli attributi di tale processo sono:

- 5.1 Process Innovation: gli obiettivi di miglioramento del processo supportano gli obiettivi aziendali rilevanti;
- 5.2 Process Optimization: le modifiche alla definizione, gestione e le prestazioni del processo si traducono in un impatto efficace per il raggiungimento degli obiettivi.

Lo standard SPICE offre una scala di valutazione per ogni processo, in modo da misurare il livello di raggiungimento degli stessi:

• N - Not Achieved: 0 - 15%;

• **P - Partially Achieved**: >15% - 50%;

• L - Largely Achieved: >50% - 85%;

• F - Fully Achieved: >85% - 100%.

5.2 Ciclo di miglioramento continuo (PDCA)

Il ciclo di miglioramento continuo (PDCA, *Plan-Do-Check-Act)* prevede quattro fasi iterative che permettono di controllare costantemente lo sviluppo di un processo, in modo da poter perseguire la miglior qualità di quest'ultimo:

- Plan: in questa fase vengono definiti elementi estremamente importanti che riguardano il ciclo di miglioramento continuo. In particolare vengono fissati obiettivi, processi da utilizzare, risultati da ottenere, personale incaricato per i vari processi e scadenze da rispettare;
- **Do**: in questa fase vengono avviate tutte le attività previste da completare entro la data stabilita;
- Check: in questa fase vengono confrontati i risultati ottenuti dalle varie attività con quelli ipotizzati durante la fase Plan;
- Act: in questa fase vengono individuate le possibili problematiche che hanno prodotto risultati differenti da quelli attesi. Di conseguenza, verranno determinate tutte le attività da revisionare per migliorare la qualità del processo.

5.3 ISO/IEC 25010 (SQuaRE)

5.3.1 Functional Suitability

Questa caratteristica esprime il grado di soddisfacimento dei requisiti espliciti ed impliciti da parte di un prodotto o servizio, quando utilizzato sotto determinate condizioni.

Sotto-caratteristiche notevoli:

- Functional Completeness: esprime il grado con cui l'insieme di funzioni copre i compiti specificati e gli obiettivi dell'utente;
- Functional Correctness: esprime il grado con cui il prodotto restituisce risultati corretti, entro il livello di precisione desiderato.

5.3.2 Performance Efficiency

Questa caratteristica esprime le prestazioni relative al sistema come, quantità di risorse utilizzate per eseguire una determinata funzionalità del sistema sotto specifiche condizioni.

Sotto-caratteristiche notevoli:

- Time Behaviour: esprime il grado con cui i tempi di risposta ed elaborazione e i volumi di produzione di un prodotto o sistema, durante l'esecuzione delle sue funzionalità, rispettano i requisiti;
- Resource Utilization: esprime il grado con cui il numero e tipo di risorse utilizzate da un prodotto o sistema, durante l'esecuzione delle sue funzionalità, rispetta i requisiti.

5.3.3 Usability

Questa caratteristica esprime il grado con cui un prodotto o sistema può essere usato da un determinato utente per raggiungere determinati scopi con efficacia, efficienza e soddisfazione in uno specifico contesto d'uso.

Sotto-caratteristiche notevoli:

- Learnability: esprime il grado con cui determinati utenti sono in grado di imparare ad utilizzare il prodotto o sistema efficacemente, efficientemente, con sicurezza da rischi e soddisfazione in un dato contesto d'uso;
- Operability: esprime il grado con cui un prodotto o sistema ha attributi che lo rendono facile da operare e controllare;
- User Error Protection: esprime il grado di efficacia ed efficienza con cui un sistema protegge gli utenti dal commettere errori.

5.3.4 Reliability

Questa caratteristica esprime il grado con cui un sistema, prodotto o componente esegue determinate funzioni sotto specifiche condizioni per un dato periodo di tempo.

Sotto-caratteristiche notevoli:

- Maturity: esprime il grado con cui un sistema, prodotto o componente raggiunge i requisiti di affidabilità in normali condizioni operative;
- Fault Tolerance: esprime il grado con cui un sistema, prodotto o componente opera come previsto nonostante la presenza di malfunzionamenti hardware o software.

5.3.5 Maintainability

Questa caratteristica esprime il grado di efficacia ed efficienza con cui un prodotto, o componente può essere modificato per migliorarlo, correggerlo o adattarlo a dei cambiamenti all'ambiente.

Sotto-caratteristiche notevoli

- Modularity: esprime il grado di scomposizione del sistema in parti minimali tali che un cambiamento ad una specifica componente ha il minimo impatto su tutte le altre componenti;
- Analyzability: esprime il grado di efficacia ed efficienza con cui è possibile analizzare l'impatto nel sistema di uno specifico cambiamento ad una o più delle sue parti, ai fini di rilevare eventuali casi di fallimento;
- Modifiability: esprime il grado con cui un prodotto o sistema può essere modificato efficacemente ed efficientemente senza introdurre difetti che ne possano intaccare la qualità complessiva;
- Testability: esprime il grado di efficacia ed efficienza con cui è possibile stabilire ed eseguire dei test per valutare la qualità del sistema.