Office hours REVISED

Fridays 12-1pm (zoom or Stewart Biology, N5/8)

https://mcgill.zoom.us/j/81407275167?pwd=8Cgm0RPnWQRl OdaCNFyXnS3M8amQUj.1

- By appointment
- Before or after class, right here in Leacock 132

Large Scale Chromosomal Changes

Changes in Chromosome Structure

Cri-du-chat Syndrome

BIOL 202 W2025 | © LA Nilson

Cri-du-chat Syndrome

Chromosomal deletions and their possible causes

Can be large Can be small

How would genes look on this diagram?

Breakage and rejoining

Crossing over between repetitive DNA

Chromosomal deletions

example: possible origin of the Williams syndrome deletion

PMS

PMS

Williams syndrome is found at a frequency of about 1 in 10,000 people.

Among other traits, individuals often have pronounced musical or singing ability, as well as hyper-sociality.

The syndrome is almost always caused by a 1.5-Mb deletion on one homolog of chromosome 7, specifically at band 7q11.23.

Normal sequence

How to detect chromosomal deletions

By observing their length or pairing

By doing a complementation test

Through DNA analysis using genomic techniques

Complementation test - concept

Do strain 1 and strain 2 have mutations in the same gene?

Testing for chromosomal deletions using complementation

Strain to be tested

"tester" strain with multiple with recessive mutations

+++++/abcdefg Phenotype?

Detecting chromosomal deletions

complementation test

Using a complementation test to detect chromosomal deletions

"unknown strain" x abcdefg/abcdefg

"unknown strain" /abcdefg

Phenotype: e f

abc de f g

Known deletions can be used to map a recessive mutant allele

Example:

Flies homozygous for the "eya" (eyes absent) chromosome have no eyes.

Where is the mutated eya gene located?

Deletion mapping of the eya mutation: cross to known deletions and check F1 phenotype

Chromosomal Rearrangements:

Duplications

large duplications are called "segmental duplications"

Chromosomal duplications

Map of segmental duplications in the human genome

Griffiths et al., Introduction to Genetic Analysis, 12e, © 2020 W. H. Freeman and Company

Think Break

Chromosomal Rearrangements:

<u>Inversions</u>

Unnumbered 17 p642
Introduction to Genetic Analysis, Eleventh Edition
© 2015 W. H. Freeman and Company

Consequences: somatic

BIOL 202 W2025 | © LA Nilson

Company

Consequences: germline

Reminder: recombination occurs during meiosis I

BIOL 202 W2025 | © LA Nilson

Effects on chromosome behavior during meiosis

Effects on chromosome behavior during meiosis

Consequences: germline

Crossing over in a paracentric inversion heterozygote → dicentric chromosome

Paracentric inversions \rightarrow deletions

Figure 17-28 part 2 Introduction to Genetic Analysis, Eleventh Edition © 2015 W. H. Freeman and Company

Crossing over in a paracentric inversion heterozygote → dicentric chromosome → breakage → loss of acentric fragment and products with major deletions

Pericentric inversions \rightarrow duplications and deletions

Crossing over in a pericentric inversion heterozygote → products with major deletions

BIOL 202 W2025 | © LA Nilson

Think Break

Effect on frequency of recombinant progeny

Example from Drosophila

dp: dumpy

cn: cinnabar

45 map units apart

F2

250 wild type ++/dp cn246 dumpy dp cn/dp cncinnabar

5 dumpy dp +/dp cn7 cinnabar + cn/dp cn

Expect 45% recombinant progeny

Chromosomal translocations

Chapter 17 Opener
Introduction to Genetic Analysis, Eleventh Edition
Addenbrookes Hospital/Science Source
BIOL 202 W2025 | © LA Nilson

Chromosomal translocations

somatic consequences

First chromosome abnormality linked with a specific human cancer

Chromosomal translocations

somatic consequences

balanced translocations:

What phenotype would you predict for an individual with this translocation?

Balanced translocations and meiosis

two segregation patterns in a reciprocal-translocation heterozygote

Criffiths at al. Introduction to Constite Anglysis 120 @ 2020 W. H. Froeman and Company

Consequences of balanced translocations

Robertsonian translocations

A type of balanced translocation

Can involve any of the acrocentric chromosomes: 13, 14, 15, 21, or 22

Frequency: 1/1000 babies

Phenotype usually normal

A balanced Robertsonian translocation resulting in inheritance of trisomy 21 (Down's Syndrome)

Segregation during meiosis \rightarrow 6 possible gametes

A balanced Robertsonian translocation resulting in inheritance of trisomy 21 (Down's Syndrome)

