

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА 09.04.01/07 Интеллектуальные системы анализа, обработки и интерпретации больших данных

ОТЧЕТ

по лабораторным работам № 1 – 4

Название ЛР 1: Исследование возможностей использования генеративных помощников и их применения в платформах промышленной аналитики

Название ЛР 2: Сбор и предобработка данных для модели машинного обучения

Название ЛР 3: Построение модели машинного обучения на базе платформ промышленной аналитики

Название ЛР 4: Доработка модели и оценка ее качества

Дисциплина: Платформы промышленной аналитики

Студент	ИУ6-42М		М.И. Шаговитов
	(Группа)	(Подпись,	(И.О. Фамилия)
		дата)	
_			
Преподаватель			М.А. Скворцова
		(Подпись,	(И.О. Фамилия)
		дата)	

Цель работы

Ознакомиться с возможностями работы чатов/генеративных помощников на базе LLM для применения в исследовательской деятельности студентов и решения профессиональных задач.

Задание

- 1. Нужно выбрать 4 генеративных помощника из представленных в методическом пособии. Далее необходимо задать вопросы по тематике вашей магистерской диссертации и проанализировать ответы чат-ботов для актуальности и корректности применения данных ответов в ВКРМ (должно быть сформулировано и проверено не менее 5 гипотез по каждому генеративному помощнику). Результаты работы оформить в виде сравнительной таблицы. Выбрать лучшее из решений для дальнейшей работы. Вывести таблицу от лучшего худшего по итогам анализа и вкратце объяснить почему вы пришли к такому выводу.
- 2. Сформировать аннотацию/введение для своей магистерской диссертации с помощью генеративных помощников. Определить какой из них справляется с этой задачей лучше.
- 3. Описать достоинства и недостатки применения данного инструмента для профессиональной деятельности.
- 4. Проверить несколько запросов и ответов по использованию генеративных помощников по использованию в конструкторской/технологической части ВКРМ, при формировании списка литературы.

Выполнение

Задание 1

Были выбраны следующие генеративные помощники: DeepSeek, YandexGPT, GigaChat и Gemini.

Далее были сформулированы гипотезы и соответствующие вопросы для их подтверждения или опровержения:

Гипотеза 1: разработка роя дронов является актуальной задачей по сегодняшний день.

Вопрос: есть ли необходимость в разработке новый систем роя дронов?

Гипотеза 2: разработка роя БПЛА организуется по принципу «ведущийведомый», который уступает многоагентному подходу.

Вопрос: многоагентный подход в разработке роя дронов лучше чем «ведущий-ведомый»?

Гипотеза 3: польза логического программирования в разработке многоагентной системы может быть большой, благодаря способности формализовать знания и правила в логическом подходе.

Вопрос: за счет чего логическое программирование может улучшить разработку многоагентной системы?

Гипотеза 4: логическое программирование было создано с целью решения задач в области ИИ и обработки знаний.

Вопрос: для чего разработали логическое программирование?

Гипотеза 5: беспилотные летательные аппараты применяется в различных сферах.

Вопрос: где применяются беспилотные летательные аппараты?

Ответы генеративного помощника DeepSeek

Ответ ИИ на гипотезу 1:

Разработка новых систем роя дронов может быть оправдана в зависимости от целей и задач, которые они призваны решать. Вот несколько аргументов за и против:

Аргументы за разработку новых систем:

- 1. Совершенствование технологий:
- Современные технологии, такие как искусственный интеллект, машинное обучение и улучшенные алгоритмы навигации, позволяют создавать более эффективные и автономные системы.

- Новые системы могут быть более устойчивыми к сбоям и лучше адаптироваться к изменяющимся условиям.

2. Новые применения:

- Рои дронов могут использоваться в новых областях, таких как доставка грузов, мониторинг окружающей среды, сельское хозяйство, поисковоспасательные операции и военные задачи.
- Например, в сельском хозяйстве дроны могут использоваться для точного опрыскивания или мониторинга состояния урожая.

3. Повышение эффективности:

- Новые системы могут быть более энергоэффективными, что позволит увеличить время работы и дальность полета.
- Улучшенные алгоритмы взаимодействия между дронами могут повысить координацию и снизить вероятность столкновений.

4. Безопасность и надежность:

- Современные системы могут быть более защищенными от кибератак и сбоев, что особенно важно для критически важных задач.

5. Конкуренция и инновации:

- Разработка новых систем стимулирует конкуренцию и инновации в отрасли, что может привести к появлению новых технологий и решений.

Аргументы против:

- 1. Высокая стоимость разработки:
- Создание новых систем требует значительных инвестиций в исследования, разработку и тестирование.
- Внедрение новых технологий может быть дорогостоящим для конечных пользователей.

2. Регуляторные ограничения:

- Во многих странах существуют строгие правила использования дронов, которые могут ограничивать внедрение новых систем.
- Необходимость получения разрешений и сертификаций может замедлить процесс разработки.
 - 3. Этические и социальные вопросы:

- Использование роев дронов, особенно в военных целях, вызывает этические вопросы и может привести к негативной реакции общества.
- Возможность использования дронов для слежки или нарушения приватности также вызывает опасения.

4. Технические ограничения:

- Несмотря на прогресс, существуют технические ограничения, такие как ограниченная емкость батарей, сложность управления большими роями и зависимость от внешних условий (например, погоды).

Вывод:

Необходимость в разработке новых систем роя дронов зависит от конкретных задач и контекста. Если существующие системы не удовлетворяют потребностям или есть возможность значительно улучшить их эффективность, безопасность и функциональность, то разработка новых систем оправдана. Однако важно учитывать экономические, регуляторные и этические аспекты, чтобы минимизировать риски и обеспечить успешное внедрение.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 2:

Многоагентный подход и подход «ведущий-ведомый» имеют свои преимущества и недостатки, и выбор между ними зависит от конкретных задач, которые должен решать рой дронов. Давайте разберем оба подхода и их особенности.

Подход «ведущий-ведомый» (Leader-Follower):

В этом подходе один дрон (или несколько) выступает в роли ведущего, а остальные — ведомые. Ведущий управляет движением и задачами всей группы, а ведомые следуют за ним или выполняют его команды.

Преимущества:

1. Простота управления:

- Централизованное управление упрощает координацию и снижает сложность алгоритмов.
 - Легче реализовать на практике, особенно для небольших групп дронов.

- 2. Меньше требований к вычислительным ресурсам:
- Ведомые дроны могут быть менее сложными, так как они просто следуют инструкциям ведущего.
 - 3. Предсказуемость:
- Поведение системы более предсказуемо, так как все решения принимаются одним ведущим.

Недостатки:

- 1. Уязвимость ведущего:
- Если ведущий дрон выходит из строя, вся система может потерять управление.
 - Ведущий становится «точкой отказа» (single point of failure).
 - 2. Ограниченная масштабируемость:
- C увеличением числа дронов нагрузка на ведущего возрастает, что может привести к задержкам в принятии решений.
 - 3. Негибкость:
- Ведомые дроны не могут адаптироваться к изменяющимся условиям самостоятельно, что снижает общую устойчивость системы.

Многоагентный подход (Multi-Agent Systems, MAS):

В этом подходе каждый дрон является автономным агентом, способным принимать решения на основе локальной информации и взаимодействия с другими агентами. Координация достигается через распределенные алгоритмы.

Преимущества:

- 1. Отказоустойчивость:
- Нет единой точки отказа. Если один дрон выходит из строя, остальные могут продолжать выполнение задачи.
 - Система более устойчива к сбоям.
 - 2. Масштабируемость:
- Легче масштабировать на большие группы дронов, так как каждый агент действует автономно.
 - Нет необходимости в централизованном управлении.

- 3. Гибкость и адаптивность:
- Дроны могут адаптироваться к изменяющимся условиям и динамически перераспределять задачи.
 - Подходит для сложных и неструктурированных сред.
 - 4. Распределенная обработка данных:
- Каждый дрон может обрабатывать данные локально, что снижает нагрузку на коммуникационные каналы.

Недостатки:

- 1. Сложность реализации:
- Требуются сложные алгоритмы для координации и взаимодействия между агентами.
 - Необходимость обеспечения согласованности действий.
 - 2. Высокие требования к вычислительным ресурсам:
- Каждый дрон должен быть оснащен достаточно мощным процессором для автономного принятия решений.
 - 3. Проблемы с синхронизацией:
- В распределенных системах могут возникать задержки и ошибки в коммуникации, что может привести к несогласованности действий.
 - 4. Сложность тестирования и отладки:
- Из-за распределенного характера системы сложнее предсказать и протестировать все возможные сценарии.

Когда какой подход лучше?

Подход «ведущий-ведомый» лучше подходит, если:

- Группа дронов небольшая (например, до 10 единиц).
- Задачи простые и предсказуемые (например, движение по заданному маршруту).
 - Требуется минимальная сложность реализации и низкая стоимость.
 - Нет высоких требований к отказоустойчивости.

Многоагентный подход лучше подходит, если:

- Группа дронов большая (десятки или сотни единиц).

- Задачи сложные и требуют адаптивности (например, поисковоспасательные операции, мониторинг больших территорий).
 - Требуется высокая отказоустойчивость и масштабируемость.
- Среда динамическая и неструктурированная (например, городская застройка или лес).

Вывод:

Многоагентный подход часто считается более перспективным для современных задач, особенно в условиях неопределенности и необходимости масштабирования. Однако он требует более сложных технологий и алгоритмов. Подход «ведущий-ведомый» проще в реализации, но менее гибкий и масштабируемый. Выбор зависит от конкретных требований и ресурсов. В некоторых случаях возможно комбинирование обоих подходов, например, использование локальных «ведущих» внутри многоагентной системы.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 3:

Логическое программирование (ЛП) может значительно улучшить разработку многоагентных систем (MAS) благодаря своим уникальным особенностям. Оно основано на формальной логике и позволяет описывать задачи в декларативной форме, что делает его особенно полезным для сложных систем, где важны четкость, гибкость и способность к рассуждениям. Вот основные преимущества и механизмы, за счет которых ЛП может улучшить разработку MAS:

1. Декларативный подход

Логическое программирование позволяет описывать что нужно сделать, а не как это сделать. Это упрощает формулировку задач и правил взаимодействия агентов.

Преимущество: Разработчики могут сосредоточиться на логике взаимодействия и принятия решений, а не на низкоуровневых деталях реализации.

Пример: Вместо написания сложных алгоритмов для координации дронов, можно описать правила, например: "Если дрон А видит препятствие, он должен уведомить дронов В и С."

2. Легкость моделирования сложных правил

ЛП позволяет легко описывать сложные правила и ограничения, которые могут быть трудны для реализации в императивных языках программирования.

Преимущество: Упрощается моделирование взаимодействий между агентами, таких как согласование целей, распределение задач или разрешение конфликтов.

Пример: Правила для распределения задач между дронами могут быть описаны на языке логики, например: "Если дрон X ближе к цели, чем дрон Y, то X должен выполнить задачу."

3. Автоматический вывод и рассуждения

Логическое программирование поддерживает механизмы автоматического вывода (например, резолюцию в Prolog), которые позволяют системе самостоятельно находить решения на основе заданных правил и фактов.

Преимущество: Агенты могут принимать решения на основе логических рассуждений, что особенно полезно в динамических и неопределенных условиях.

Пример: Дрон может использовать логические правила для выбора оптимального маршрута, учитывая препятствия, топографию и задачи других дронов.

4. Единообразие и модульность

ЛП позволяет создавать модульные и легко расширяемые системы. Правила и факты могут быть добавлены или изменены без необходимости переписывать весь код.

Преимущество: Упрощается поддержка и масштабирование системы.

Пример: Если в систему добавляется новый тип агента, достаточно описать его поведение в виде логических правил, не затрагивая существующую логику.

5. Обработка неполной информации

Логическое программирование хорошо справляется с ситуациями, где информация неполная или неопределенная. Это важно для многоагентных систем, работающих в динамических средах.

Преимущество: Агенты могут принимать решения даже при отсутствии полных данных.

Пример: Если дрон не знает точного местоположения цели, он может использовать логические правила для сужения области поиска.

6. Упрощение координации и коммуникации

ЛП позволяет формализовать правила взаимодействия между агентами, что упрощает координацию и снижает вероятность конфликтов.

Преимущество: Агенты могут согласовывать свои действия на основе общих правил.

Пример: Правила для избежания столкновений могут быть описаны как: "Если два дрона находятся на расстоянии менее 5 метров, один из них должен изменить курс."

7. Поддержка онтологий и семантических моделей

Логическое программирование часто используется для работы с онтологиями и семантическими моделями, что полезно для многоагентных систем, где агенты должны обмениваться сложной информацией.

Преимущество: Упрощается обмен данными между агентами, даже если они используют разные форматы или языки.

Пример: Дроны могут использовать общую онтологию для описания объектов в окружающей среде (например, "препятствие", "цель", "опасная зона").

8. Поддержка распределенных вычислений

Логическое программирование может быть интегрировано с распределенными вычислениями, что важно для многоагентных систем, где агенты работают на разных устройствах.

Преимущество: Логические правила могут быть распределены между агентами, что позволяет им работать автономно, но в согласованной манере.

Пример: Каждый дрон может иметь свою копию логической базы знаний, но обновлять ее на основе данных от других дронов.

Пример использования:

Представим, что рой дронов используется для поисково-спасательных операций. Логическое программирование может быть использовано для:

Описания правил распределения зон поиска.

Определения приоритетов задач (например, "спасти человека важнее, чем доставить оборудование").

Координации действий дронов для избежания столкновений.

Вывод:

Логическое программирование улучшает разработку многоагентных систем за счет:

- 1. Декларативного подхода, упрощающего формулировку задач.
- 2. Возможности автоматического вывода и рассуждений.
- 3. Легкости моделирования сложных правил и взаимодействий.
- 4. Поддержки обработки неполной информации и распределенных вычислений.

Эти особенности делают ЛП мощным инструментом для создания гибких, масштабируемых и отказоустойчивых многоагентных систем.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 4:

Логическое программирование (ЛП) было разработано для решения задач, которые требуют четкого, формального и декларативного подхода к описанию логики и рассуждений. Оно основано на математической логике и позволяет программистам сосредоточиться на что нужно сделать, а не на как это сделать. Вот основные цели и причины, которые привели к созданию и развитию логического программирования:

1. Моделирование логических рассуждений

Логическое программирование было создано для автоматизации процессов, связанных с логическими рассуждениями и выводом. Оно позволяет компьютерам решать задачи, которые требуют анализа и обработки логических правил.

Пример: Доказательство теорем, автоматическое принятие решений на основе правил.

2. Декларативный подход

ЛП позволяет описывать задачи в декларативной форме, то есть программист указывает, что должно быть сделано, а не как это сделать. Это упрощает формулировку сложных задач.

Пример: Вместо написания алгоритма для поиска пути в лабиринте, можно описать правила движения и позволить системе самостоятельно найти решение.

3. Работа с символическими вычислениями

ЛП было разработано для работы с символическими данными, а не только с числовыми. Это делает его особенно полезным для задач, связанных с обработкой знаний, языков и структур данных.

Пример: Анализ естественного языка, создание экспертных систем, обработка онтологий.

4. Создание экспертных систем

Одной из ключевых целей ЛП было создание экспертных систем — программ, которые имитируют принятие решений человеком-экспертом в определенной области. Такие системы используют базы знаний, состоящие из фактов и правил.

Пример: Медицинские диагностические системы, системы поддержки принятия решений.

5. Автоматизация доказательств и проверки

ЛП позволяет автоматизировать процессы доказательства теорем и проверки гипотез. Это особенно полезно в математике, компьютерных науках и инженерии.

Пример: Проверка корректности программ, автоматическое доказательство математических утверждений.

6. Обработка неполной или неопределенной информации

ЛП хорошо подходит для задач, где информация может быть неполной или неопределенной. Оно позволяет системе делать выводы на основе доступных данных.

Пример: Принятие решений в условиях неопределенности, таких как прогнозирование или диагностика.

7. Упрощение разработки сложных систем

ЛП позволяет разбивать сложные задачи на более простые логические компоненты. Это упрощает разработку и поддержку систем, особенно в областях, где важна четкость и формальность.

Пример: Разработка многоагентных систем, планирование задач, управление базами знаний.

8. Исследования в области искусственного интеллекта (ИИ)

Логическое программирование стало важным инструментом в исследованиях ИИ, особенно в ранние годы развития этой области. Оно использовалось для моделирования человеческого мышления, создания систем, способных к рассуждениям, и решения задач, требующих интеллектуального анализа.

Пример: Системы планирования, робототехника, обработка естественного языка.

9. Образовательные цели

ЛП также используется в образовании для обучения студентов основам логики, алгоритмического мышления и декларативного программирования. Оно помогает понять, как компьютеры могут решать задачи, основанные на правилах.

Пример: Изучение языка Prolog в курсах по искусственному интеллекту и логике.

10. Интеграция с другими парадигмами программирования

ЛП может быть интегрировано с другими подходами, такими как функциональное или объектно-ориентированное программирование, что расширяет его возможности и области применения.

Пример: Использование логического программирования для обработки правил в рамках более сложных систем.

Примеры применения логического программирования

1. Экспертные системы:

MYCIN (медицинская диагностика).

DENDRAL (химический анализ).

2. Обработка естественного языка:

Генерация и анализ текста.

Машинный перевод.

3. Базы данных и запросы:

Язык Datalog для работы с реляционными базами данных.

4. Планирование и оптимизация:

Автоматическое планирование задач в робототехнике.

Оптимизация маршрутов.

5. Веб-приложения:

Использование логических правил для обработки данных и принятия решений.

Вывод:

Логическое программирование было разработано для:

Автоматизации логических рассуждений и выводов.

Упрощения разработки сложных систем через декларативный подход.

Создания экспертных систем и обработки знаний.

Решения задач, связанных с символическими вычислениями и неполной информацией.

Оно остается важным инструментом в областях, где требуется четкость, формальность и способность к рассуждениям, таких как искусственный интеллект, экспертные системы, базы данных и многоагентные системы.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 5:

Беспилотные летательные аппараты (БПЛА, или дроны) нашли широкое применение в различных сферах благодаря своей универсальности, относительно низкой стоимости и способности выполнять задачи в труднодоступных или опасных для человека местах. Вот основные области, где они активно используются:

1. Военное дело и безопасность

- Разведка и наблюдение: Дроны используются для сбора информации на поле боя, мониторинга границ и наблюдения за противником.
- Целеуказание: БПЛА могут маркировать цели для артиллерии или авиации.
- Боевые задачи: Некоторые дроны оснащены оружием и используются для точечных ударов.
- Поисково-спасательные операции: В зонах конфликтов дроны помогают находить раненых или пропавших без вести.

2. Сельское хозяйство

- Мониторинг урожая: Дроны с камерами и датчиками анализируют состояние посевов, выявляют болезни растений и недостаток влаги.
- Опрыскивание: БПЛА используются для точного внесения удобрений и пестицидов.
- Картографирование: Создание подробных карт полей для планирования посадок и анализа почвы.

3. Логистика и доставка

- Доставка грузов: Компании, такие как Amazon, UPS и DHL, тестируют дроны для доставки посылок, особенно в труднодоступные районы.
- Медицинская помощь: Доставка лекарств, крови и медицинского оборудования в удаленные или пострадавшие от катастроф регионы.

4. Научные исследования

- Экологический мониторинг: Изучение состояния лесов, океанов, ледников и дикой природы.
 - **Археология:** Съемка и картографирование археологических sites.
 - Метеорология: Сбор данных о погоде и атмосфере.

5. Инфраструктура и строительство

- Инспекция объектов: Дроны используются для проверки мостов, трубопроводов, линий электропередач и других объектов без необходимости остановки их работы.
- **Картографирование и планирование:** Создание 3D-моделей местности для строительных проектов.

• Мониторинг строительства: Контроль за ходом строительных работ и соблюдением планов.

6. Киноиндустрия и медиа

- Аэросъемка: Дроны позволяют снимать высококачественные видео и фото с воздуха, что раньше требовало использования вертолетов или кранов.
- Реклама: Создание уникальных рекламных роликов и мероприятий с использованием дронов.

7. Поисково-спасательные операции

- Поиск пропавших: Дроны используются для поиска людей в горах, лесах или после стихийных бедствий.
- Оценка ущерба: После землетрясений, наводнений или ураганов дроны помогают оценить масштабы разрушений.

8. Энергетика

- Инспекция энергообъектов: Проверка ветряных турбин, солнечных панелей и линий электропередач.
- **Мониторинг нефте- и газопроводов:** Обнаружение утечек и повреждений.

9. Транспорт и картографирование

- **Картографирование:** Создание подробных карт местности, включая 3D-модели.
- Навигация: Использование дронов для разведки маршрутов в сложных условиях.

10. Развлечения и хобби

- Гонки дронов: Спортивные соревнования с участием БПЛА.
- Фото- и видеосъемка: Любительская съемка с воздуха.
- Игры и шоу: Массовые выступления дронов с подсветкой, создающие световые шоу.

11. Охрана правопорядка

• Патрулирование: Мониторинг общественных пространств, дорог и границ.

- **Расследование** преступлений: Сбор доказательств с места происшествия.
- Контроль толпы: Наблюдение за массовыми мероприятиями для предотвращения беспорядков.

12. Экология и охрана природы

- Борьба с браконьерством: Мониторинг заповедников и национальных парков.
- Изучение животных: Наблюдение за миграцией и поведением диких животных.
- Ликвидация последствий загрязнений: Мониторинг разливов нефти и других экологических катастроф.

13. Телекоммуникации

- Временные сети связи: Дроны могут использоваться для обеспечения связи в зонах бедствий или в удаленных районах.
- Расширение покрытия: БПЛА могут выступать в роли временных вышек сотовой связи.

14. Образование и исследования

- Обучение: Дроны используются в образовательных программах для изучения робототехники, программирования и аэрофотосъемки.
- **Научные эксперименты:** Проведение исследований в области физики, биологии и экологии.

15. Ритейл и маркетинг

- Реклама: Дроны используются для привлечения внимания на мероприятиях и в торговых центрах.
 - Инвентаризация: Мониторинг складов и учет товаров.

Вывод:

Беспилотные летательные аппараты применяются в огромном количестве сфер, от военных операций до развлечений. Их популярность продолжает расти благодаря развитию технологий, снижению стоимости и увеличению функциональности. В будущем можно ожидать еще большего расширения

областей применения, особенно с развитием автономных систем и искусственного

интеллекта.

Анализ: ответ соответствует гипотезе.

Ответы генеративного помощника YandexGPT

Ответ ИИ на гипотезу 1:

Да, разработка новых систем роя дронов необходима для улучшения

управления, автономности и эффективности работы дронов в группах. Это может

привести к созданию более совершенных систем для выполнения различных

задач, таких как разведка, атака и доставка грузов.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 2:

Многоагентный подход в разработке роя дронов может быть эффективнее,

чем подход «ведущий-ведомый», поскольку он позволяет дронам самостоятельно

принимать решения и координировать свои действия без центрального контроля.

Это может повысить гибкость, адаптивность и надёжность системы.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 3:

Логическое программирование может улучшить разработку многоагентной

системы за счёт использования чёткой постановки задач и возможности

добиваться предсказуемого поведения программного обеспечения. Это позволяет

обеспечить оптимизационные стратегии и эффективное взаимодействие агентов,

что повышает производительность и эффективность работы системы.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 4:

Логическое программирование разработали для упрощения обработки

символьной информации и создания экспертных систем. Оно основано на

18

математической логике и позволяет задавать программы в форме логических утверждений и правил вывода.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 5:

Вот некоторые области применения беспилотных летательных аппаратов (БПЛА):

- исследование окружающей среды и геологических процессов;
- изучение поверхности земли;
- мониторинг лесных пожаров и наводнений;
- сельское хозяйство: наблюдение за растениями, удобрение почвы, оценка урожайности;
- строительство и архитектура: документирование и оценка процесса строительства;
 - логистика: доставка грузов и почты на дальние расстояния;
- развлечения: создание кино- и видеоматериалов, съёмка спортивных мероприятий;
 - гонки дронов;
 - мониторинг автодорог и контроль за транспортным потоком.

Анализ: ответ соответствует гипотезе.

Ответы генеративного помощника GigaChat

Ответ ИИ на гипотезу 1:

Разработка новых систем роев дронов действительно имеет важное значение и является актуальной задачей в различных областях. Вот несколько ключевых причин, почему такие системы продолжают развиваться:

1. Военное применение

Рои дронов уже активно используются в военных целях. Их преимущества включают возможность разведки, наблюдения, атаки на противника, а также подавления ПВО. Системы роевого управления позволяют координировать

действия множества беспилотников одновременно, делая их эффективными в сложных боевых условиях.

2. Гражданские и коммерческие цели

Дроны находят широкое применение в гражданских сферах, включая мониторинг окружающей среды, сельское хозяйство, логистику и доставку товаров. Рои дронов могут значительно повысить эффективность выполнения таких задач, особенно когда речь идет о больших площадях или объемах работ.

3. Исследования и разработки

Развитие технологий управления роями требует новых подходов к искусственному интеллекту, коммуникациям между дронами и распределенным вычислениям. Это стимулирует научные исследования и разработки в области робототехники, машинного обучения и сетевых технологий.

4. Повышение автономии

Современные рои дронов часто требуют минимального вмешательства человека. Разработка новых алгоритмов и систем управления позволяет сделать дроны еще более автономными, способными принимать решения в режиме реального времени и адаптироваться к изменениям окружающей среды.

5. Увеличение эффективности и снижение затрат

Использование роев дронов может существенно снизить затраты на выполнение различных задач. Например, в сельском хозяйстве рои дронов могут эффективно обрабатывать большие площади полей, экономя время и ресурсы. В логистике рои могут оптимизировать маршруты доставки, снижая расходы на топливо и транспортировку.

6. Экологические аспекты

Дроны могут использоваться для мониторинга состояния окружающей среды, поиска утечек газа, оценки ущерба от природных катастроф и многих других экологических задач. Рои дронов способны охватывать большие территории и собирать данные быстрее и точнее, чем традиционные методы.

Таким образом, разработка новых систем роев дронов продолжает оставаться важной задачей, поскольку она открывает новые возможности для

повышения эффективности, снижения затрат и улучшения качества выполнения различных задач в военной, гражданской и коммерческой сферах.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 2:

Выбор подхода к управлению роем дронов зависит от конкретных целей и условий эксплуатации. Оба подхода — многоагентный и «ведущий-ведомый» — имеют свои достоинства и недостатки. Рассмотрим каждый из них подробнее.

Многоагентный подход

Преимущества:

- 1. Автономность: Каждый дрон действует независимо, принимая решения на основе локальной информации и взаимодействуя с соседними дронами. Это делает систему более устойчивой к сбоям связи и потере отдельных элементов.
- 2. Масштабируемость: Система легко расширяется добавлением новых дронов без значительного изменения архитектуры управления.
- 3. Адаптивность: Дроны могут адаптироваться к изменяющимся условиям окружающей среды и задачам благодаря децентрализованному принятию решений.
- 4. Распределенная обработка: Вычислительные нагрузки распределяются между всеми элементами роя, что снижает требования к мощности каждого отдельного дрона.

Недостатки:

- 1. Сложность реализации: Создание эффективных алгоритмов взаимодействия и координации требует значительных усилий и ресурсов.
- 2. Затраты на коммуникации: Постоянная передача данных между дронами увеличивает энергопотребление и может создавать задержки в принятии решений.
- 3. Ограниченность ресурсов: У каждого дрона ограничены вычислительные мощности и память, что накладывает ограничения на сложность выполняемых задач.

Подход «ведущий-ведомый»

Преимущества:

- 1. Простота управления: Один ведущий дрон контролирует всех ведомых, что упрощает координацию действий и уменьшает количество передаваемых данных.
- 2. Эффективность в простых сценариях: Для выполнения стандартных операций, где требуется минимальное взаимодействие между дронами, этот подход может быть достаточно эффективным.
- 3. Экономия энергии: Ведомые дроны выполняют меньше вычислений, что снижает общее потребление энергии.

Недостатки:

- 1. Зависимость от ведущего: Потеря ведущего дрона может привести к полной дезорганизации роя.
- 2. Низкая адаптивность: Система менее гибка в реагировании на изменения окружающей среды и задачи, так как все решения принимаются централизованно.
- 3. Ограниченная масштабируемость: Добавление большого количества дронов усложняет управление и может потребовать модернизации системы.

Заключение

Многоагентный подход чаще всего предпочтительнее для сложных задач, требующих высокой степени автономности и адаптации к меняющимся условиям. Однако он сложнее в реализации и требует больше ресурсов. Подход «ведущийведомый» подходит для более простых задач и обеспечивает эффективное управление небольшим количеством дронов. Выбор конкретного подхода зависит от требований конкретной миссии и возможностей разработчика.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 3:

Логическое программирование обладает рядом особенностей, которые делают его полезным инструментом для разработки многоагентных систем. Вот некоторые ключевые аспекты, которые способствуют улучшению процесса разработки:

1. Декларативный характер

Логические программы формулируются в виде утверждений и правил, а не последовательностей инструкций. Это позволяет сосредоточиться на описании

желаемого поведения агентов, а не на подробностях его реализации. Таким образом, разработчики могут уделять больше внимания высокоуровневым аспектам проектирования, оставляя низкоуровневые детали языкам программирования общего назначения.

2. Непротиворечивость и целостность знаний

Логика первого порядка, лежащая в основе большинства логических языков программирования, поддерживает проверку непротиворечивости и целостности знаний. Это особенно важно для многоагентных систем, где различные агенты могут иметь разные представления о мире и задачах. Логическое программирование помогает гарантировать согласованность этих представлений.

3. Автоматический вывод

Одним из основных преимуществ логического программирования является автоматизация вывода. Вместо явного программирования последовательности шагов для достижения цели, программист описывает правила и факты, а система автоматически находит решение. Это свойство полезно для моделирования сложного поведения агентов, когда заранее неизвестны все возможные сценарии взаимодействия.

4. Поддержка рассуждений

Логическое программирование естественным образом поддерживает механизмы рассуждения, такие как дедукция, индукция и абдукция. Эти механизмы полезны для моделирования когнитивных процессов агентов, включая планирование, принятие решений и обучение.

5. Модульность и повторное использование

Логические программы обладают высокой степенью модульности. Правила и утверждения могут быть легко добавлены, удалены или изменены без влияния на остальную часть программы. Это облегчает тестирование и модификацию отдельных компонентов многоагентной системы.

6. Легкость интеграции с другими технологиями

Логическое программирование хорошо интегрируется с другими парадигмами программирования, такими как объектно-ориентированное программирование. Это

позволяет комбинировать сильные стороны разных подходов для создания гибридных систем, сочетающих декларативные и процедурные элементы.

Примеры применения логического программирования в многоагентных системах

- Prolog: Классический пример языка логического программирования, который широко используется для разработки экспертных систем и моделей агентного поведения.
- о Answer Set Programming (ASP): Используется для моделирования сложных многоагентных систем, где требуется решать задачи оптимизации и планирования.
- ∘ Constraint Logic Programming (CLP): Применяется для решения задач, связанных с ограничениями, такими как распределение ресурсов или синхронизация действий агентов.

Заключение

Логическое программирование предлагает уникальные возможности для разработки многоагентных систем благодаря своей декларативной природе, поддержке автоматического вывода и механизмов рассуждений. Оно способствует созданию более гибких, модульных и надежных систем, что особенно важно в контексте сложной и динамичной природы многоагентных приложений.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 4:

Логическое программирование было создано с целью формализации процесса рассуждений и решения задач путем выражения знаний и отношений между объектами в форме логики. Этот подход позволяет программисту описывать проблему в терминах фактов и правил, а затем использовать эти описания для автоматического вывода решений. Основные причины разработки логического программирования заключаются в следующем:

1. Автоматизация рассуждений

Основная цель логического программирования заключается в создании инструментов, позволяющих компьютерам автоматически выводить заключения на

основе предоставленных фактов и правил. Это особенно полезно в тех случаях, когда проблема может быть выражена в виде набора логических высказываний.

2. Облегчение работы программиста

Логическое программирование позволяет программистам сосредотачиваться на описании проблемы, а не на написании пошаговых инструкций для её решения. Программист формулирует знания и отношения в виде фактов и правил, а система сама выводит результаты, используя механизм логического вывода.

3. Работа с неопределенностью и неполной информацией

Логическое программирование предоставляет средства для обработки ситуаций, когда информация неполная или противоречивая. Например, оно может быть использовано для моделирования неопределенных или вероятностных событий.

4. Поддержка декларативного стиля программирования

В отличие от традиционных императивных языков программирования, где акцент делается на последовательности команд, логическое программирование ориентировано на описание того, что должно быть сделано, а не как именно это должно быть выполнено. Это делает код более читаемым и понятным.

5. Применение в искусственных интеллектах и экспертных системах

Логическое программирование оказалось весьма полезным в развитии областей, связанных с искусственным интеллектом, таких как экспертные системы, автоматизированное доказательство теорем и другие задачи, требующие логического анализа и рассуждений.

6. Моделирование человеческих рассуждений

Благодаря своей способности имитировать процесс человеческого мышления через выражение знаний в виде логических формул, логическое программирование стало важным инструментом в исследованиях по когнитивной науке и психологии.

Примеры использования логического программирования

- Prolog: один из наиболее известных языков логического программирования,
 который широко применяется в академической среде и промышленных
 приложениях.
- o **Datalog**: упрощенный вариант Prolog, используемый в базах данных и анализе данных.

∘ Constraint Logic Programming (CLP): расширение логического программирования, которое включает обработку ограничений и применяется в задачах планирования и оптимизации.

Таким образом, логическое программирование играет важную роль в автоматизации рассуждений, облегчении труда программистов и предоставлении мощных инструментов для решения задач, связанных с обработкой знаний и неопределенности.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 5:

Беспилотные летательные аппараты (БПЛА), также известные как дроны, нашли широкое применение в различных отраслях и сферах деятельности. Вот основные области их использования:

1. Военное дело

БПЛА активно используются вооруженными силами для разведки, наблюдения, целеуказания и даже нанесения ударов. Они могут действовать в опасных зонах, заменяя пилотов и уменьшая риск потерь среди личного состава.

2. Безопасность и правоохранительная деятельность

Полицейские силы используют дроны для патрулирования территорий, наблюдения за массовыми мероприятиями, поиска пропавших людей и контроля дорожного движения. БПЛА помогают быстро реагировать на чрезвычайные ситуации и обеспечивают безопасность на местах происшествий.

3. Картография и геодезия

Дроны с камерами высокого разрешения и лазерными сканерами применяются для создания карт, топографических планов и трехмерных моделей местности. Это особенно полезно в труднодоступных районах и при необходимости быстрого обновления карт.

4. Мониторинг окружающей среды

БПЛА используются для отслеживания изменений в экосистемах, мониторинга лесных пожаров, загрязнения воздуха и воды, а также изучения миграции животных.

Они помогают ученым получать данные в реальном времени и анализировать состояние природной среды.

5. Сельское хозяйство

В агропромышленном комплексе дроны применяют для мониторинга посевов, оценки здоровья растений, орошения и внесения удобрений. Они также могут помогать в борьбе с вредителями и сорняками, обеспечивая точное распыление химикатов.

6. Доставка грузов

Компании, занимающиеся доставкой товаров, экспериментируют с использованием дронов для быстрой транспортировки небольших посылок. Это особенно актуально в городских условиях, где наземный транспорт сталкивается с пробками и сложностью маршрутов.

7. Инспекция инфраструктуры

Дроны незаменимы при инспекции мостов, линий электропередач, трубопроводов и других объектов инфраструктуры. Они позволяют проводить визуальные осмотры в труднодоступных местах, сокращая время и стоимость инспекционных работ.

8. Кинематография и медиа

В киноиндустрии и журналистике дроны стали популярными инструментами для съемки с высоты птичьего полета. Они предоставляют уникальные ракурсы и помогают создавать захватывающие кадры без необходимости использования дорогостоящей техники.

9. Поисково-спасательные операции

БПЛА играют ключевую роль в поиске пострадавших после стихийных бедствий, аварий и техногенных катастроф. Они могут обследовать обширные территории, находить людей и передавать информацию спасателям в режиме реального времени.

10. Научные исследования

Ученые используют дроны для изучения атмосферы, океанов, вулканов и других природных явлений. Благодаря своим возможностям дроны могут проникать в опасные зоны и собирать данные, которые ранее были недоступны.

11. Строительство и архитектура

На строительных площадках дроны помогают отслеживать прогресс работ,

оценивать качество строительства и выявлять отклонения от проекта. Архитекторы

используют их для создания виртуальных туров и презентаций будущих зданий.

12. Туризм и развлечения

В туристической индустрии дроны применяются для аэрофотосъемки

достопримечательностей, создания панорамных видеороликов и организации

экскурсий с высоты. Они также популярны среди любителей экстремальных видов

спорта для записи своих достижений.

13. Медицина

В медицине дроны используются для доставки медикаментов и медицинских

образцов в отдаленные районы, а также для экстренной помощи в чрезвычайных

ситуациях.

14. Образование

Дроны становятся частью образовательных программ, помогая студентам

изучать принципы аэродинамики, навигации и программирования. Они также

используются для проведения научных экспериментов и исследовательских

проектов.

Эти примеры показывают, насколько разнообразны и многогранны сферы

применения беспилотных летательных аппаратов. С развитием технологий их

потенциал будет только расти, открывая новые возможности для инноваций и

улучшений в различных отраслях.

Анализ: ответ соответствует гипотезе.

Ответы генеративного помощника Gemini

Ответ ИИ на гипотезу 1:

Да, есть необходимость в разработке новых систем роя дронов.

Анализ: ответ соответствует гипотезе.

28

Ответ ИИ на гипотезу 2:

Нельзя однозначно сказать, что многоагентный подход лучше "ведущий-ведомый" для всех случаев использования роя дронов. Многоагентный подход предоставляет большую гибкость и устойчивость к отказам, так как каждый дрон принимает решения независимо. Это делает его идеальным для сложных и динамичных задач, где нет единого центрального управления. "Ведущий-ведомый" подход более прост в реализации и управлении, особенно для небольших роев. Однако, он более уязвим к отказам ведущего дрона и может быть менее эффективным в сложных условиях. Какой подход лучше зависит от конкретной задачи и условий ее выполнения.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 3:

Логическое программирование может улучшить разработку многоагентных систем за счет: * Явного представления знаний: Логическое программирование позволяет явно представлять знания о мире и правила поведения агентов в виде логических формул, что делает код более понятным и удобным для анализа и модификации. Дедуктивного рассуждения: Логические языки программирования предоставляют механизмы для дедуктивного рассуждения, позволяя агентам логически выводить новые знания из имеющихся фактов и правил. Это позволяет агентам принимать более обоснованные решения и изменениям окружающей среде. Формализации адаптироваться В коммуникации: Логические языки программирования могут быть использованы формализации коммуникационных протоколов между агентами, позволяет обеспечить согласованность и надежность взаимодействия. Однако, следует отметить, что логическое программирование может быть не самым эффективным способом реализации агентов в реальном времени.

Анализ: ответ соответствует гипотезе.

Ответ ИИ на гипотезу 4:

Логическое программирование было разработано для создания программ, которые могут решать задачи путем дедуктивного рассуждения, используя формальные логические правила. Оно позволяет программистам описывать задачи в терминах логических утверждений, а затем использовать механизм вывода для решения этих задач.

Анализ: ответ не соответствует гипотезе.

Ответ ИИ на гипотезу 5:

Беспилотные летательные аппараты (БПЛА) применяются в самых разных сферах, от коммерческих до военных. Вот некоторые из них: * Съемка и картографирование: БПЛА могут быть оборудованы камерами высокого разрешения и сканерами для создания карт, моделей местности и даже 3Dреконструкций объектов. * Мониторинг и наблюдение: БПЛА могут быть использованы для наблюдения за территориями, поиска и спасения людей, обнаружения пожаров и других опасных ситуаций. * Доставки и логистика: БПЛА могут использоваться для доставки товаров, лекарств и других предметов в труднодоступные места, а также для оптимизации логистических процессов. * Сельское хозяйство: БПЛА могут использоваться для мониторинга полей, внесения удобрений и пестицидов, а также для выявления заболеваний растений. * Инспекция инфраструктуры: БПЛА могут быть использованы для осмотра линий электропередач, мостов, зданий и других объектов инфраструктуры. * Военные действия: БПЛА широко используются в военных целях для разведки, наблюдения, а также для нанесения ударов по противнику. Это лишь некоторые примеры применения БПЛА.

Анализ: ответ соответствует гипотезе.

Анализ ответов

По итогам ответов от генеративных помощников был проведен анализ, результат которого представлен в таблице 1.

Таблица 1 – Анализ ответов генеративных помощников

Генеративный	Количество	Стабильность	Качество	Простата доступа
помощник	ответов,	работы	ответов	
	соответствующих			
	гипотезам			
DeepSeek	4	Хорошая	Развернутые	Зарегистрироваться
_			ответы с	и можно работать
			приведением	
			примеров	
GigaChat	4	Требуется	Развернутые	Зарегистрироваться
		перезагрузка	ответы с	и можно работать
		страницы	приведением	
			примеров	
YandexGPT	4	Хорошая	Краткие ответы	Зарегистрироваться
				и можно работать
				через Алису
Gemini	3	Хорошая	Краткие ответы	Необходимо
				использовать сайты
				посредники

Вывод по 1 заданию

По итогу анализа генеративных помощников и их ответов можно сделать вывод, что лучшим помощников является DeepSeek. Он превосходит GigaChat стабильностью своей работы, однако GigaChat позволяет выдавать такие же полноценные, развернутые ответы, которые не только дают результат, но и могут натолкнуть к новым мыслям. А помощники YandexGPT и Gemini не дают развернутый ответов и не позволяют организовать простой доступ к себе.

Задание 2

Для формирования аннотации к магистерской диссертации генеративным помощникам задавался вопрос в виде:

На основе такого введения:

В настоящее время, по мере совершенствования телекоммуникационных сетей, наблюдается тенденция к развитию распределенных систем, обеспечивающих большую гибкость и потенциал решения сложных задач. В контексте искусственного интеллекта (ИИ) МАС были описаны как возможное

решение для решения сложных задач с распределенными функциями. Развитие МАС предполагает заметное увеличение сложности решаемых задач, а также необходимость адаптации существующих методов или разработки новых для их решения [1]. На сегодняшний день при проектировании МАС актуально использовать логическое программирование. Оно играет важную роль благодаря своей способности формализовать знания и правила взаимодействия агентов. К ключевых аспектам можно отнести: 1) формализация знаний, которая упрощает процесс моделирования поведения агентов; 2) правила вывода, которые позволят агентам делать выводы на основе имеющихся данных; 3) обработку конфликтов, так как логические системы могут обеспечивать механизмы для согласования различных целей и действий. Эти аспекты подчеркивают актуальность разработки MAC логического программирования, использованием которое может значительно улучшить проектирование функционирование MAC. И Разработанный программный модуль интерпретации логического языка системы моделирования SIMODO позволит разрабатывать MAC системы с применением логического подхода.

Напиши аннотацию к магистерской диссертации.

Ответ от DeepSeek

B настоящее время развитие телекоммуникационных сетей И искусственного интеллекта (NN) способствует активному внедрению распределенных систем, таких как многоагентные системы (МАС), которые обладают высокой гибкостью и потенциалом для решения сложных задач. МАС представляют собой перспективное направление в области ИИ, позволяющее эффективно распределять функции между агентами и адаптироваться к динамически изменяющимся условиям. Однако рост сложности задач, решаемых МАС, требует разработки новых методов и подходов к их проектированию и реализации.

В данной работе рассматривается применение логического программирования для разработки МАС, что позволяет формализовать знания и правила взаимодействия агентов, а также обеспечить механизмы для

автоматического вывода и обработки конфликтов. Ключевыми аспектами использования логического программирования являются: формализация знаний, упрощающая моделирование поведения агентов; правила вывода, позволяющие агентам принимать решения на основе доступных данных; и механизмы разрешения конфликтов, обеспечивающие согласованность действий в системе.

Целью работы является разработка программного модуля интерпретации логического языка для системы моделирования SIMODO, который позволит создавать МАС с использованием логического подхода. В рамках исследования проведен анализ существующих методов проектирования МАС, рассмотрены преимущества логического программирования для решения задач координации и взаимодействия агентов, а также предложена архитектура программного модуля.

Практическая значимость работы заключается в возможности применения разработанного модуля для моделирования и проектирования МАС в различных областях, таких как робототехника, логистика, управление умными городами и другие. Результаты исследования демонстрируют, что использование логического программирования позволяет повысить эффективность и гибкость МАС, а также упрощает процесс их разработки и адаптации к новым задачам.

Ключевые слова: многоагентные системы, логическое программирование, распределенные системы, искусственный интеллект, формализация знаний, обработка конфликтов, SIMODO.

Ответ от GigaChat

Аннотация к магистерской диссертации:

Настоящая диссертация посвящена исследованию и разработке метода проектирования многоагентных систем (МАС) с использованием логического программирования. В работе рассматривается актуальная проблема увеличения сложности задач, решаемых МАС, и необходимость адаптации существующих методов или разработки новых для их эффективного функционирования. Особое внимание уделено применению логического программирования, которое позволяет формализовать знания и правила взаимодействия агентов, что существенно улучшает процесс моделирования их поведения. Ключевыми аспектами исследования

являются формализация знаний, реализация правил вывода для обеспечения принятия решений агентами на основе данных, а также обработка конфликтов, возникающих при взаимодействии агентов с различными целями и действиями. В рамках диссертационной работы разработан программный модуль интерпретации логического языка системы моделирования SIMODO, позволяющий применять логический подход при проектировании MAC. Результаты исследования демонстрируют высокую значимость логического программирования для успешного проектирования И функционирования современных многоагентных систем, применяемых в различных областях науки и практики.

Ответ от YandexGPT

Магистерская диссертация посвящена исследованию применения логического программирования для разработки многоагентных систем (МАС). В рассматривается актуальность использования логического программирования контексте развития распределённых В систем искусственного интеллекта. Основное внимание уделяется формализации знаний, правилам вывода и обработке конфликтов, которые обеспечивают эффективное взаимодействие агентов в МАС. В работе также представлен разработанный программный модуль интерпретации логического языка системы моделирования SIMODO, который позволит разрабатывать MAC с использованием логического подхода.

Ответ от Gemini

Аннотация к магистерской диссертации

В данной диссертации исследуется применение логического программирования для проектирования многоагентных систем (МАС) в контексте развития распределенных систем искусственного интеллекта (ИИ). Развитие МАС сопровождается возрастанием сложности решаемых задач, что требует новых проектированию. Логическое программирование, обладающее подходов к способностью формализовать знания и правила взаимодействия предлагает эффективный инструмент для разработки МАС. Диссертация фокусируется на анализе существующих методов логического программирования, применяемых при проектировании МАС, а также на разработке и исследовании новых подходов. Цель работы — определить наиболее эффективные стратегии использования логического программирования для повышения гибкости, масштабируемости и производительности МАС.

Вывод по 2 заданию

По итогу ответов, полученных от генеративных помощников, можно сделать вывод, что в этом случае DeepSeek дал наиболее развернутый ответ, в котором не было необходимости. Он практически повторил заданное введение, что не было основной задачей. Но он единственный, кто смог выделить и предоставить ключевые слова. Другие же помощники дали более-менее удовлетворяющие ответы.

Задание 3

К основным достоинствам применения генеративных помощников можно отнести:

- 1) генеративный помощник позволяет быстро искать первоначальные ответы на неизвестные темы;
- 2) генеративный помощник может предоставить тезисы, с помощью который можно погружаться более детально в проблему;
- 3) генеративный помощник может предоставить информацию откуда был получен ответ, благодаря чему также можно более детально погрузиться в проблему;
- 4) генеративный помощник может натолкнуть своим ответом на противоречивость задаваемого вопроса.

К недостаткам:

- 1) генеративный помощник может дать противоречивую информацию по специфичному вопросу;
- 2) генеративный помощник не всегда может ответить на вопрос, и выдает слишком общий ответ;

- 3) несмотря на видимость всезнания, генеративные помощники не всегда способны выдавать правильные ответы;
- 4) при обращении за помощью к генеративному помощнику нельзя быть уверенным в том, что его ответ будет правильным и исчерпывающим.

Задание 4

Для выполнения этого задания был составлен один общий вопрос при условии открытых сессий генеративных помощников: на основе всех вышеупомянутых вопросов, какие можно прочитать статьи и ресурсы для разработки конструкторской и технологической составляющих?

Ответ от DeepSeek

Для разработки конструкторской и технологической составляющих многоагентных систем (MAC) с использованием логического программирования и других современных подходов, рекомендуется изучить следующие статьи и ресурсы:

1. Логическое программирование и его применение в МАС

• Статьи:

- о "Logic Programming for Multi-Agent Systems: A Review" обзор применения логического программирования в MAC.
- "Declarative Programming for Autonomous Agents" статья о
 декларативном подходе к программированию агентов.
- o "Prolog-based Multi-Agent Systems: Design and Implementation" практические аспекты использования Prolog для разработки MAC.

• Ресурсы:

- Книга: "Logic Programming and Multi-Agent Systems" (авторы: Fariba Sadri, Francesca Toni).
- о Документация по языку Prolog и его расширениям для распределенных систем (например, SWI-Prolog).

2. Архитектура и проектирование МАС

• Статьи:

- "Design Patterns for Multi-Agent Systems: A Systematic Literature Review"
 обзор архитектурных шаблонов для MAC.
- о "Distributed Multi-Agent Systems: Principles and Applications" принципы проектирования распределенных МАС.
- о "Agent-Oriented Software Engineering" статьи о методологиях разработки программного обеспечения для агентов.

• Ресурсы:

- о Книга: "Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence" (автор: Jacques Ferber).
- о Книга: "Developing Multi-Agent Systems with JADE" (автор: Fabio Luigi Bellifemine) для разработки на платформе JADE.

3. Координация и взаимодействие агентов

• Статьи:

- о "Coordination in Multi-Agent Systems: A Survey" обзор методов координации в MAC.
- "Conflict Resolution in Multi-Agent Systems Using Logic Programming" –
 статья о разрешении конфликтов с помощью логического программирования.
- o "Communication Protocols for Multi-Agent Systems" протоколы взаимодействия агентов.

• Ресурсы:

- 。 Книга: "Coordination of Large-Scale Multiagent Systems" (автор: Paul Scerri).
- о Документация по стандартам FIPA (Foundation for Intelligent Physical Agents).

4. Технологии и инструменты для разработки МАС

• Статьи:

- о "A Survey of Platforms for Multi-Agent Systems Development" обзор платформ для разработки MAC.
- $_{\circ}$ "Simulation Tools for Multi-Agent Systems: A Comparative Study" сравнение инструментов моделирования MAC.

о "Integration of Logic Programming and Multi-Agent Systems" – статьи о комбинировании логического программирования с МАС.

• Ресурсы:

- о Платформа JADE (Java Agent Development Framework) документация и учебные материалы.
- о Платформа GAMA (GIS-based Agent Modeling Platform) для моделирования MAC в географических системах.
- Инструмент SIMODO (если доступен) документация и примеры использования.

5. Применение МАС в различных областях

• Статьи:

- о "Multi-Agent Systems in Robotics: Challenges and Opportunities" применение MAC в робототехнике.
- о "Autonomous Drones: A Multi-Agent Approach" статьи о разработке роев дронов.
- о "Smart Cities and Multi-Agent Systems: A Synergy" использование MAC в умных городах.

• Ресурсы:

- о Книга: "Multi-Agent Systems for Urban Planning" (авторы: Geert Deconinck, Koen Vanthienen).
- Статьи о применении MAC в сельском хозяйстве, логистике и энергетике.

6. Логическое программирование и искусственный интеллект

• Статьи:

- "Logic-Based Artificial Intelligence" статьи о применении логики в ИИ.
- "Knowledge Representation and Reasoning in Multi-Agent Systems" –
 представление знаний и рассуждения в МАС.
- о "Rule-Based Systems for Autonomous Agents" системы, основанные на правилах, для автономных агентов.

• Ресурсы:

- © Книга: "Artificial Intelligence: A Guide to Intelligent Systems" (автор: Michael Negnevitsky).
- Документация по системам, основанным на правилах (например, Drools,
 CLIPS).

7. Моделирование и симуляция МАС

• Статьи:

- o "Simulation of Multi-Agent Systems: Methods and Tools" методы и инструменты для моделирования МАС.
- о "Agent-Based Modeling and Simulation" статьи о моделировании на основе агентов.
- o "Validation and Verification of Multi-Agent Systems" проверка корректности МАС.

• Ресурсы:

- о Платформа NetLogo документация и учебные материалы.
- о Платформа AnyLogic для мультиагентного моделирования.

8. Практические примеры и кейсы

Статьи:

- "Case Studies in Multi-Agent Systems Development" примеры разработки
 MAC.
- o "Real-World Applications of Multi-Agent Systems" статьи о практическом применении MAC.
- "Lessons Learned from Deploying Multi-Agent Systems" опыт внедрения
 MAC.

• Ресурсы:

- о Открытые проекты на GitHub, связанные с MAC и логическим программированием.
 - о Примеры использования платформ JADE, GAMA и других.

9. Дополнительные ресурсы

• Онлайн-курсы:

Курсы по логическому программированию (например, на Coursera или edX).

о Курсы по разработке MAC (например, "Multi-Agent Systems" от Университета Технологий Делфта).

• Научные журналы:

- о "Autonomous Agents and Multi-Agent Systems" (журнал).
- о "Journal of Artificial Intelligence Research" (статьи по ИИ и MAC).

• Конференции:

- AAMAS (International Conference on Autonomous Agents and Multiagent Systems).
 - o ICAART (International Conference on Agents and Artificial Intelligence).

Заключение

Для успешной разработки конструкторской и технологической составляющих МАС с использованием логического программирования рекомендуется изучить как теоретические материалы (книги, статьи), так и практические инструменты (платформы, документацию). Это позволит глубже понять принципы проектирования МАС, освоить современные методы и применить их в реальных проектах.

Ответ от GigaChat

Для разработки конструкторской и технологической составляющих многоагентных систем (MAC) и роев дронов, а также для изучения логического программирования и его применения в этих областях, можно ознакомиться с рядом статей и ресурсов. Вот несколько полезных источников:

1. Журналы и статьи по многоагентным системам:

- Journal of Artificial Intelligence Research (JAIR): Этот журнал публикует статьи по различным аспектам искусственного интеллекта, включая многоагентные системы.
- о IEEE Transactions on Systems, Man, and Cybernetics: Systems: В этом журнале можно найти статьи по разработке и применению МАС в различных областях.
- о Autonomous Agents and Multi-Agent Systems (AAMAS): Журнал, специализирующийся на исследованиях в области МАС.

2. Книги по многоагентным системам:

- Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
 Foundations (Yoav Shoham, Kevin Leyton-Brown): Книга, охватывающая
 теоретические основы МАС, включая логическое программирование.
- о **Distributed Artificial Intelligence** (Martha E. Pollack): Книга, посвященная разработке распределенных систем, включая МАС.

3. Ресурсы по роям дронов:

- Swarm Robotics: From Biology to Robotics (Erol Sahin, William M. Spears): Книга, описывающая биологические принципы роевого поведения и их применение в робототехнике.
- Swarm Intelligence: From Natural to Artificial Systems (Eric Bonabeau, Marco Dorigo, Guy Theraulaz): Книга, посвященная роевому интеллекту и его применению в различных областях.

4. Логическое программирование:

- o **The Art of Prolog: Advanced Programming Techniques** (Leon Sterling, Ehud Shapiro): Книга, рассматривающая продвинутые техники логического программирования на языке Prolog.
- o Logic Programming: Proceedings of the Twelfth International Conference on Logic Programming (L. Sterling): Сборник статей по логическому программированию.

5. Интернет-ресурсы:

- o **Prolog Tutorial**: Введение в логическое программирование на языке Prolog.
- SWI-Prolog: Официальный сайт языка Prolog, содержащий документацию и примеры.
- о Robotics and Autonomous Systems: Журнал, публикующий статьи по робототехнике и автономным системам.

Эти ресурсы помогут вам глубже понять теоретические и практические аспекты разработки конструкторской и технологической составляющих МАС и роев дронов, а также освоить методы логического программирования для их реализации.

Ответ от YandexGPT

Для разработки конструкторской и технологической составляющих рекомендую изучить следующие статьи и ресурсы:

- 1. «Основы конструирования в машиностроении»: учебник для вузов под редакцией Н. Н. Учаева.
- 2. «Основы технологии машиностроения»: учебник для вузов под редакцией В. С. Корсакова.
- 3. «Справочник конструктора машиностроительного завода»: справочник под редакцией Е. А. Скороходова.
- 4. «Технология машиностроения»: учебник для вузов под редакцией А. М. Дальского.
- 5. «Основы технологии производства и ремонта автомобилей»: учебник для вузов под редакцией Л. В. Дехтеринского.
- 6. «Технология машиностроения»: учебник для техникумов под редакцией А. М. Дальского.
- 7. «Основы технологии производства и ремонта автомобилей»: учебник для техникумов под редакцией Л. В. Дехтеринского.
- 8. «Технология машиностроения»: учебник для колледжей под редакцией В. В. Бабука.
- 9. «Основы технологии производства и ремонта автомобилей»: учебник для колледжей под редакцией Л. В. Дехтеринского.
- 10. «Технология машиностроения»: учебник для профессиональных училищ под редакцией А. М. Дальского.

Ответ от Gemini

Без контекста, я не могу вам помочь.

Вывод по 4 заданию

По итогу ответов, полученных от генеративных помощников, можно сделать вывод, что в этом случае только Gemini не смог дать ответ, хотя вся история сессии имеется, как и у других помощников. Возможно дело в сайте

посреднике, но это не факт. YandexGPT при этом так неправильный ответ, который никак не состыкуется с магистерской диссертацией. Ответы от DeepSeek и GigaChat очень похожи и заключается в обзоре книг и статей без прямых ссылок на источники.

Вывод

В результате выполнения лабораторной работы были изучены и протестированы на темах ВКРМ генеративные помощники DeepSeek, GigaChat, YandexGPT и Gemini.

Цель работы

Подготовить набор данных для построения модели машинного обучения.

Задание

Выполнение

Цель работы

Построение сложного паплайна, включающего в себя возможность проверки модели на не менее чем 3х различных методах машинного обучения, релевантных поставленной задаче.

Задание

Выполнение

Цель работы

Доработка модели машинного обучения, оценка ее качества и проверка решения задачи прогнозирования.

Задание

Выполнение