

BEST AVAILABLE COPY

JAN

**

Access DB# 99911

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: R GITOMER Examiner #: 69630 Date: 7/28/03
Art Unit: 1651 Phone Number 303-0732 Serial Number: 09/913,361
Mail Box and Bldg/Room Location: 11801 Results Format Preferred (circle): PAPER DISK E-MAIL
11D11

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: _____

Inventors (please provide full names): _____

Earliest Priority Filing Date: _____

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

JAN

Jan Delaval
Reference Librarian
Biotechnology & Chemical Library
CM1 1E07 - 703-308-4498
jan.delaval@uspto.gov

STAFF USE ONLY		Type of Search	Vendors and cost where applicable
Searcher:	<u>Jan</u>	NA Sequence (#)	STN <input checked="" type="checkbox"/>
Searcher Phone #:	<u>4498</u>	AA Sequence (#)	Dialog <input checked="" type="checkbox"/>
Searcher Location:		Structure (#)	Questel/Orbit <input checked="" type="checkbox"/>
Date Searcher Picked Up:	<u>8/13/03</u>	Bibliographic	Dr.Link <input checked="" type="checkbox"/>
Date Completed:	<u>8/13/03</u>	Litigation	Lexis/Nexis <input checked="" type="checkbox"/>
Searcher Prep & Review Time:		Fulltext	Sequence Systems <input checked="" type="checkbox"/>
Clerical Prep Time:	<u>15</u>	Patent Family	WWW/Internet <input checked="" type="checkbox"/>
Online Time:	<u>X 110</u>	Other	Other (specify) _____

STIC Search Report

Biotech-Chem Library

STIC Database Tracking Number: 99911

TO: Ralph J Gitomer
Location: 11b01 / 11d11
Wednesday, August 13, 2003
Art Unit: 1651
Phone: 308-0732
Serial Number: 09 / 913361

From: Jan Delaval
Location: Biotech-Chem Library
CM1-1E07
Phone: 308-4498

jan.delaval@uspto.gov

Search Notes

Jan Delaval
Reference Librarian
Biotechnology Reference Library
CM1-1E07
jan.delaval@uspto.gov

STIC SEARCH RESULTS

Biotech-Chem Library

Questions about the scope or the results of the search? Contact *the searcher or contact:*

Mary Hale, Information Branch Supervisor
308-4258, CM1-1E01

Voluntary Results Feedback Form

➤ I am an examiner in Workgroup: Example: 1610

➤ Relevant prior art **found**, search results used as follows:

- 102 rejection
- 103 rejection
- Cited as being of interest.
- Helped examiner better understand the invention.
- Helped examiner better understand the state of the art in their technology.

Types of relevant prior art found:

- Foreign Patent(s)
- Non-Patent Literature
(journal articles, conference proceedings, new product announcements etc.)

➤ Relevant prior art **not found**:

- Results verified the lack of relevant prior art (helped determine patentability).
- Results were not useful in determining patentability or understanding the invention.

Comments:

Drop off or send completed forms to STIC/Biotech-Chem Library CM1 - Circ. Desk

=> fil reg
FILE 'REGISTRY' ENTERED AT 14:02:55 ON 13 AUG 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 12 AUG 2003 HIGHEST RN 565411-31-6
DICTIONARY FILE UPDATES: 12 AUG 2003 HIGHEST RN 565411-31-6

TSCA INFORMATION NOW CURRENT THROUGH JANUARY 6, 2003

Please note that search-term pricing does apply when
conducting SmartSELECT searches.

Crossover limits have been increased. See HELP CROSSOVER for details.

Experimental and calculated property data are now available. See HELP PROPERTIES for more information. See STNote 27, Searching Properties in the CAS Registry File, for complete details:
<http://www.cas.org/ONLINE/STN/STNOTES/stnotes27.pdf>

=> d ide can tot

L88 ANSWER 1 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN
RN 97089-70-8 REGISTRY
CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA
INDEX NAME)
OTHER NAMES:
CN E.C. 1.11.1.12
CN Phospholipid hydroperoxide glutathione peroxidase
CN Selenoperoxidase
MF Unspecified
CI MAN
LC STN Files: AGRICOLA, ANABSTR, BIOBUSINESS, BIOSIS, BIOTECHNO, CA,
CAPLUS, CASREACT, EMBASE, TOXCENTER, USPATFULL

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
247 REFERENCES IN FILE CA (1947 TO DATE)
4 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
247 REFERENCES IN FILE CAPLUS (1947 TO DATE)

REFERENCE 1: 139:68398
REFERENCE 2: 139:66752
REFERENCE 3: 139:52172
REFERENCE 4: 139:49000
REFERENCE 5: 139:20085
REFERENCE 6: 139:4267
REFERENCE 7: 138:399038
REFERENCE 8: 138:383455
REFERENCE 9: 138:382751
REFERENCE 10: 138:298823

L88 ANSWER 2 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN
RN **6892-68-8** REGISTRY
CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3S)-rel- (9CI) (CA INDEX NAME)
OTHER CA INDEX NAMES:
CN 2,3-Butanediol, 1,4-dimercapto-, (R*,S*)-
CN Erythritol, 1,4-dithio- (8CI)
OTHER NAMES:
CN 1,4-Dithioerythritol
CN Dithioerythritol
CN DTE
CN crythro-1,4,-Dimercapto-2,3-butanediol
FS STEREOSEARCH
MF C4 H10 O2 S2
CI COM
LC STN Files: AGRICOLA, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA,
CANCERLIT, CAPLUS, CASREACT, CHEMCATS, CHEMINFORMRX, CHEMLIST, CIN,
CSCHEM, DDFU, DRUGU, EMBASE, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA,
MEDLINE, MSDS-OHS, NIOSHTIC, PROMT, RTECS*, SPECINFO, TOXCENTER, USPAT2,
USPATFULL
(*File contains numerically searchable property data)
Other Sources: DSL**, EINECS**, TSCA**
(**Enter CHEMTST File for up-to-date regulatory information)

Relative stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

588 REFERENCES IN FILE CA (1947 TO DATE)
17 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
588 REFERENCES IN FILE CAPLUS (1947 TO DATE)

REFERENCE 1: 139:74140
REFERENCE 2: 139:64564
REFERENCE 3: 139:48332
REFERENCE 4: 139:32933
REFERENCE 5: 139:22078
REFERENCE 6: 138:381681
REFERENCE 7: 138:333880
REFERENCE 8: 138:284049
REFERENCE 9: 138:221460
REFERENCE 10: 138:132122

L88 ANSWER 3 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN
RN **3483-12-3** REGISTRY

CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3R)-rel- (9CI) (CA INDEX NAME)
 OTHER CA INDEX NAMES:
 CN 2,3-Butanediol, 1,4-dimercapto-, (R*,R*)-
 CN Threitol, 1,4-dithio- (7CI, 8CI)
 OTHER NAMES:
 CN (.+-.)-1,4-Dimercapto-2,3-butanediol
 CN (.+-.)-Dithiothreitol
 CN 1,4-Dithio-DL-threitol
 CN 1,4-Dithiothreitol
 CN Cleland's reagent
 CN Dithiothreitol
 CN DL-1,4-Dimercapto-2,3-dihydroxybutane
 CN DL-1,4-Dithiothreitol
 CN DL-Dithiothreitol
 CN DTT
 CN DTT (threitol derivative)
 CN rac-Dithiothreitol
 CN Reagents, Cleland's
 CN Sputolysin
 CN threo-1,4-Dimercapto-2,3-butanediol
 CN threo-2,3-Dihydroxy-1,4-butanedithiol
 CN WR 34678
 FS STEREOSEARCH
 DR 27565-41-9, 28823-08-7, 214119-27-4
 MF C4 H10 O2 S2
 CI COM
 LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS,
 BIOSIS, BIOTECHNO, CA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB, CEN,
 CHEMCATS, CHEMINFORMRX, CHEMLIST, CIN, CSCHEM, CSNB, DDFU, DRUGU,
 EMBASE, GMELIN*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS,
 NIOSHTIC, PIRA, PROMT, RTECS*, SPECINFO, TOXCENTER, USPAT2, USPATFULL
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

Relative stereochemistry.

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

4428 REFERENCES IN FILE CA (1947 TO DATE)
 69 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 4435 REFERENCES IN FILE CAPLUS (1947 TO DATE)
 1 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:97486
 REFERENCE 2: 139:96519
 REFERENCE 3: 139:85201
 REFERENCE 4: 139:81143
 REFERENCE 5: 139:81133

REFERENCE 6: 139:81126

REFERENCE 7: 139:81071

REFERENCE 8: 139:80455

REFERENCE 9: 139:80414

REFERENCE 10: 139:74140

L88 ANSWER 4 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN
RN 593-84-0 REGISTRY

CN Thiocyanic acid, compd. with guanidine (1:1) (7CI, 8CI, 9CI) (CA INDEX NAME)

OTHER CA INDEX NAMES:

CN Guanidine thiocyanate (6CI)

CN Guanidine, monothiocyanate (8CI, 9CI)

OTHER NAMES:

CN Guanidine isothiocyanate

CN Guanidinium thiocyanate

CN NSC 2119

DR 134932-17-5, 60930-22-5, 109028-07-1, 151201-26-2, 90229-46-2, 5341-59-3,
40817-29-6

MF C H5 N3 . C H N S

CI COM

LC STN Files: AGRICOLA, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA,
CANCERLIT, CAOLD, CAPLUS, CHEMCATS, CHEMLIST, CIN, CSCHEM, DETHERM*,
EMBASE, HODOC*, IFICDB, IFIPAT, IFIUDB, MEDLINE, MSDS-OHS, PROMT,
RTECS*, SPECINFO, TOXCENTER, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

CM 1

CRN 463-56-9

CMF C H N S

HS—C≡N

CM 2

CRN 113-00-8

CMF C H5 N3

489 REFERENCES IN FILE CA (1947 TO DATE)

3 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

491 REFERENCES IN FILE CAPLUS (1947 TO DATE)

14 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:97519

REFERENCE 2: 139:90513

REFERENCE 3: 139:86751

REFERENCE 4: 139:84159

REFERENCE 5: 139:49513

REFERENCE 6: 139:32744

REFERENCE 7: 138:381744

REFERENCE 8: 138:381660

REFERENCE 9: 138:365135

REFERENCE 10: 138:349185

L88 ANSWER 5 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN

RN 60-24-2 REGISTRY

CN Ethanol, 2-mercaptop- (8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN .beta.-Hydroxyethanethiol

CN .beta.-Hydroxyethylmercaptan

CN .beta.-Mercaptoethanol

CN 1-Hydroxy-2-mercptoethane

CN 1-Mercapto-2-hydroxyethane

CN 2-Hydroxy-1-ethanethiol

CN 2-Hydroxyethanethiol

CN 2-Hydroxyethyl mercaptan

CN 2-ME

CN 2-Mercapto-1-ethanol

CN 2-Mercaptoethanol

CN 2-Mercaptoethyl alcohol

CN Ethylene glycol, monothio-

CN Hydroxyethyl mercaptan

CN Mercaptoethanol

CN Monothioethylene glycol

CN Monothioglycol

CN NSC 3723

CN Thioethylene glycol

CN Thiomonoglycol

FS 3D CONCORD

DR 99748-78-4

MF C2 H6 O S

CI COM

LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS, BIOSIS, BIOTECHNO, CA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CHEMSAFE, CIN, CSCHEM, CSNB, DDFU, DETHERM*, DIOGENES, DIPPR*, DRUGU, EMBASE, GMELIN*, HODOC*, HSDB*, IFICDB, IFIPAT, IFIUDB, IPA, MEDLINE, MRCK*, MSDS-OHS, NIOSHTIC, PIRA, PROMT, RTECS*, SPECINFO, SYNTHLINE, TOXCENTER, TULSA, ULIDAT, USPAT2, USPATFULL, VETU, VTB

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

7413 REFERENCES IN FILE CA (1947 TO DATE)

373 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
7428 REFERENCES IN FILE CAPLUS (1947 TO DATE)
134 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:106433

REFERENCE 2: 139:96851

REFERENCE 3: 139:90377

REFERENCE 4: 139:89894

REFERENCE 5: 139:86691

REFERENCE 6: 139:85600

REFERENCE 7: 139:81071

REFERENCE 8: 139:79255

REFERENCE 9: 139:79121

REFERENCE 10: 139:77850

L88 ANSWER 6 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN

RN 57-13-6 REGISTRY

CN Urea (8CI, 9CI) (CA INDEX NAME)

OTHER NAMES:

CN Aquacare

CN Aquadrate

CN B-I-K

CN Basodexan

CN Benural 70

CN Carbamide

CN Carbamimidic acid

CN Carbonyl diamide

CN Elaqua XX

CN Eucerin 10% Urea Lotion

CN Hyanit

CN Isourea

CN Keratinamin

CN Keratinamin Kowa

CN NSC 34375

CN Nutraplus

CN Onychomal

CN Optigen 1200

CN Pastaron

CN Pastaron 10

CN Pastaron 20

CN Pastaron 20 soft

CN Pseudourea

CN UR

CN Urea perhydrate

CN Ureaphil

CN Ureophil

CN Urepeal

CN Urepeal L

CN Ureppearl

CN Urevert

CN Varioform II

FS 3D CONCORD

DR 30535-50-3

MF C H4 N2 O

CI COM
 LC STN Files: ADISNEWS, AGRICOLA, ANABSTR, AQUIRE, BEILSTEIN*, BIOBUSINESS,
 BIOSIS, BIOTECHNO, CA, CABA, CANCERLIT, CAOLD, CAPLUS, CASREACT, CBNB,
 CEN, CHEMCATS, CHEMINFORMRX, CHEMLIST, CIN, CSCHEM, CSNB, DDFU,
 DETHERM*, DIOGENES, DIPPR*, DRUGU, EMBASE, ENCOMPLIT, ENCOMPLIT2,
 ENCOMPPAT, ENCOMPPAT2, GMELIN*, HODOC*, HSDB*, IFICDB, IFIPAT, IFIUDB,
 IPA, MEDLINE, MRCK*, MSDS-OHS, NAPRALERT, NIOSHTIC, PDLCOM*, PHAR, PIRA,
 PROMT, RTECS*, SPECINFO, SYNTHLINE, TOXCENTER, TULSA, ULIDAT, USAN,
 USPAT2, USPATFULL, VETU, VTB
 (*File contains numerically searchable property data)
 Other Sources: DSL**, EINECS**, TSCA**
 (**Enter CHEMLIST File for up-to-date regulatory information)

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

65666 REFERENCES IN FILE CA (1947 TO DATE)
 3057 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA
 65926 REFERENCES IN FILE CAPLUS (1947 TO DATE)
 9 REFERENCES IN FILE CAOLD (PRIOR TO 1967)

REFERENCE 1: 139:110538
 REFERENCE 2: 139:110511
 REFERENCE 3: 139:108726
 REFERENCE 4: 139:107077
 REFERENCE 5: 139:107064
 REFERENCE 6: 139:106534
 REFERENCE 7: 139:106419
 REFERENCE 8: 139:106255
 REFERENCE 9: 139:106109
 REFERENCE 10: 139:105165

L88 ANSWER 7 OF 7 REGISTRY COPYRIGHT 2003 ACS on STN
 RN 50-01-1 REGISTRY
 CN Guanidine, monohydrochloride (8CI, 9CI) (CA INDEX NAME)
 OTHER NAMES:
 CN Guanidine chloride
 CN Guanidine hydrochloride
 CN Guanidinium chloride
 CN Guanidinium hydrochloride
 DR 420-13-3, 14317-32-9, 15827-40-4, 94369-44-5, 139693-44-0, 143504-22-7,
 87667-20-7, 106946-18-3
 MF C H5 N3 . Cl H
 CI COM
 LC STN Files: AGRICOLA, ANABSTR, BEILSTEIN*, BIOBUSINESS, BIOSIS,
 BIOTECHNO, CA, CAOLD, CAPLUS, CASREACT, CEN, CHEMCATS, CHEMINFORMRX,
 CHEMLIST, CIN, CSCHEM, CSNB, DETHERM*, DIOGENES, EMBASE, GMELIN*,
 HODOC*, IFICDB, IFIPAT, IFIUDB, IPA, MRCK*, MSDS-OHS, NIOSHTIC, PIRA,

PROMT, RTECS*, SPECINFO, SYNTHLINE, TOXCENTER, TULSA, USPAT2, USPATFULL

(*File contains numerically searchable property data)

Other Sources: DSL**, EINECS**, TSCA**

(**Enter CHEMLIST File for up-to-date regulatory information)

CRN (113-00-8)

HCl

PROPERTY DATA AVAILABLE IN THE 'PROP' FORMAT

3208 REFERENCES IN FILE CA (1947 TO DATE)

27 REFERENCES TO NON-SPECIFIC DERIVATIVES IN FILE CA

3216 REFERENCES IN FILE CAPLUS (1947 TO DATE)

1 REFERENCES IN FILE CAOLD (PRTOR TO 1967)

REFERENCE 1: 139:108958

REFERENCE 2: 139:102704

REFERENCE 3: 139:95549

REFERENCE 4: 139:81281

REFERENCE 5: 139:81257

REFERENCE 6: 139:81192

REFERENCE 7: 139:80901

REFERENCE 8: 139:80866

REFERENCE 9: 139:77788

REFERENCE 10: 139:69243

=> d his

(FILE 'HCAPLUS' ENTERED AT 12:36:55 ON 13 AUG 2003)

DEL HIS

L1 1 S (EP99-103959 OR WO2000-EP1877)/AP, PRN
E FLOHE L/AU

L2 248 S E3, E4
E URSINI F/AU

L3 188 S E3, E4
E ROVERI A/AU

L4 43 S E3, E4

FILE 'REGISTRY' ENTERED AT 12:40:38 ON 13 AUG 2003

L5 1 S 97089-70-8

FILE 'HCAPLUS' ENTERED AT 12:41:12 ON 13 AUG 2003

L6 247 S L5

L7 41 S SELENOPEROXIDASE OR SELENO PEROXIDASE OR (EC OR "E C") ()1 11
 L8 321 S PHOSPHOLIPID HYDROPEROXID# GLUTATHION# PEROXIDASE
 L9 192 S PHGPX
 L10 358 S L6-L9
 L11 219 S L10 AND (PD<=19990309 OR PRD<=19990309 OR AD<=19990309)
 L12 60 S L2-L4 AND L10
 L13 48 S L11 AND L12
 L14 12 S L12 NOT L13
 SEL DN AN L13 1 2
 L15 2 S L13 AND E1-E6
 L16 2 S L1,L15
 E SPERM/CT
 L17 9 S E3-E18 AND L11
 E E3+ALL
 E E15+ALL
 E E21+ALL
 E FERTILITY/CT
 E E3+ALL
 E TESTIS/CT
 E E3+ALL
 L18 32 S E12,E11+NT AND L11
 E E21+ALL
 L19 1 S E3 AND L11
 E E7+ALL
 E E22+ALL
 L20 1 S E4,E5,E3+NT AND L11
 E FERTILITY/CT
 E E3+ALL
 L21 2 S E3 AND L11
 E E6+ALL
 L22 2 S E1 AND L11
 E E8+ALL
 L23 0 S E3 AND L11
 E E7+ALL
 L24 9 S E3,E2+NT AND L11
 E E40+ALL
 L25 34 S E4+NT AND L11
 L26 42 S L11 AND (SPERM? OR TESTES OR TESTIS OR SEMEN)
 L27 44 S L17-L26
 L28 12 S L27 AND (PATTERN OR BIOLOGICAL SAMPLE OR MATURATION OR PUBERT
 SEL DN AN 1-3 6 7 11 12
 L29 7 S L28 AND E1-E21
 L30 7 S L16,L29
 L31 10 S L6 (L) (ANT OR ANST)/RL
 L32 12 S L6 (L) USES/RL
 L33 224 S L6 (L) BIOL/RL
 L34 2 S L31,L32 AND L30
 L35 11 S L32,L32 NOT L34
 L36 3 S L35 AND L11
 L37 1 S WO9613225/PN
 L38 1 S MAIORINO ?/AU AND 1998/PY AND FASEB?/JT AND (12 AND 1359)/SO
 L39 1 S MAIORINO ?/AU AND 1990/PY AND ("METHODS IN ENZYM?")/JT AND (1
 L40 1 S ROVERI ?/AU AND 1994/PY AND ("METHODS IN ENZYM?")/JT AND (233
 L41 1 S URSINI F?/AU AND 1999/PY AND SCIENCE?/JT AND (285 AND 1393)/S
 L42 4 S L37-L41 AND L1-L4,L6-L36
 L43 5 S L37-L42
 L44 11 S L30,L34,L43
 L45 11 S L44 AND L1-L4,L6-L44

FILE 'REGISTRY' ENTERED AT 13:35:24 ON 13 AUG 2003

L46 1 S 57-13-6
 L47 1 S 50-01-1
 L48 1 S 593-84-0

L49 1 S 113-00-8
L50 2351 S 113-00-8/CRN
L51 1 S 60-24-2
L52 1 S 3483-12-3
L53 1 S 6892-68-8
L54 51 S C4H10O2S2/MF
L55 7 S L54 AND 2 3 BUTANEDIOL
L56 5 S L55 NOT (D/ELS OR 35)
SEL RN
L57 28 S E2-E26/CRN
L58 9 S L57 AND (NA/ELS OR 57-13-6/CRN OR K/ELS OR MXS/CI)
L59 7 S L58 NOT C6/ES
L60 6 S L59 NOT UNSPECIFIED
L61 107 S L50 NOT ((PMS OR MXS OR AYS OR IDS OR MNS)/CI OR COMPD OR WIT
L62 110 S L46-L49, L61
L63 12 S L51-L53, L56, L60

FILE 'HCAPLUS' ENTERED AT 13:45:55 ON 13 AUG 2003

L64 11185 S L63
L65 72894 S L62
L66 6 S L10 AND L64
L67 2 S L10 AND L65
L68 7 S L66, L67
L69 5 S L68 NOT (MYELOID OR OSBECK)
L70 4 S L69 NOT ALS
L71 14 S L45, L70
L72 12 S L71 AND L11
L73 14 S L71, L72
E DETERGENT/CT
L74 1 S E12-E56 AND L10
E E12+ALL
L75 1 S L10 AND E4, E5, E3+NT
L76 11 S L10 AND DETERGENT
L77 11 S L11 AND L74-L76
L78 2 S L77 AND L73
L79 9 S L77 NOT L78
SEL DN AN 5 8
L80 2 S L79 AND E1-E6
L81 16 S L73, L74, L75, L78, L80
L82 20 S L10 AND THIOL
L83 4 S L82 AND L81
L84 16 S L82 NOT L83
L85 8 S L11 AND L84
SEL DN AN 1 2 5 8
L86 4 S L85 AND E7-E18
L87 20 S L81, L83, L86 AND L1-L4, L6-L45, L64-L86
SEL HIT RN

FILE 'REGISTRY' ENTERED AT 14:02:37 ON 13 AUG 2003

L88 7 S E19-E25

FILE 'REGISTRY' ENTERED AT 14:02:55 ON 13 AUG 2003

=> fil hcaplus
FILE 'HCAPLUS' ENTERED AT 14:03:04 ON 13 AUG 2003
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2003 AMERICAN CHEMICAL SOCIETY (ACS)

26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 13 Aug 2003 VOL 139 ISS 7
FILE LAST UPDATED: 12 Aug 2003 (20030812/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 187 all hitstr tot

L87 ANSWER 1 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 2002:798535 HCAPLUS
DN 138:102779
TI A Comparative Study on the Hydroperoxide and **Thiol** Specificity of the Glutathione Peroxidase Family and Selenoprotein P
AU Takebe, Gen; Yarimizu, Junko; Saito, Yoshiro; Hayashi, Takaaki; Nakamura, Hajime; Yodoi, Junji; Nagasawa, Shigebaru; Takahashi, Kazuhiko
CS Graduate School of Pharmaceutical Sciences, Department of Hygienic Chemistry, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
SO Journal of Biological Chemistry (2002), 277(43), 41254-41258
CODEN: JBCHA3; ISSN: 0021-9258
PB American Society for Biochemistry and Molecular Biology
DT Journal
LA English
CC 7-3 (Enzymes)
AB Glutathione peroxidase catalyzes the redn. of hydrogen peroxide and org. hydroperoxide by glutathione and functions in the protection of cells against oxidative damage. Glutathione peroxidase exists in several forms that differ in their primary structure and localization. We have also shown that selenoprotein P exhibits a glutathione peroxidase-like activity (Saito, Y., Hayashi, T., Tanaka, A., Watanabe, Y., Suzuki, M., Saito, E., and Takahashi, K. (1999) J. Biol. Chem. 274, 2866-2871). To understand the physiol. significance of the diversity among these enzymes, a comparative study on the peroxide substrate specificity of three types of ubiquitous glutathione peroxidase (cellular glutathione peroxidase, **phospholipid hydroperoxide glutathione peroxidase**, and extracellular glutathione peroxidase) and of selenoprotein P purified from human origins was done. The specific activities and kinetic parameters against two hydroperoxides (hydrogen peroxide and phosphatidylcholine hydroperoxide) were detd. We next examd. the **thiol** specificity and found that thioredoxin is the preferred electron donor for selenoprotein P. These four enzymes exhibit different peroxide and **thiol** specificities and collaborate to protect biol. mols. from oxidative stress both inside and outside the cells.
ST glutathione peroxidase selenoprotein P hydroperoxide **thiol** specificity
IT Thioredoxins
RL: BSU (Biological study, unclassified); BIOL (Biological study) (as electron donor; comparative study addresses hydroperoxide and **thiol** specificity of human glutathione peroxidases and human selenoprotein P)
IT Enzyme kinetics
Human
(comparative study addresses hydroperoxide and **thiol** specificity of human glutathione peroxidases and human selenoprotein P)
IT Phosphatidylcholines, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (hydroperoxy; comparative study addresses hydroperoxide and
thiol specificity of human glutathione peroxidases and human
 selenoprotein P)

IT Hydroperoxides
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (phosphatidylcholine; comparative study addresses hydroperoxide and
thiol specificity of human glutathione peroxidases and human
 selenoprotein P)

IT Proteins
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
 (Biological study)
 (selenium-contg., P; comparative study addresses hydroperoxide and
thiol specificity of human glutathione peroxidases and human
 selenoprotein P)

IT 52-90-4, L-Cysteine, biological studies 60-24-2, Mercaptoethanol
 70-18-8, Glutathione, biological studies 3483-12-3,
 Dithiothreitol
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (as electron donor; comparative study addresses hydroperoxide and
thiol specificity of human glutathione peroxidases and human
 selenoprotein P)

IT 75-91-2, tert Butyl hydroperoxide 7722-84-1, Hydrogen peroxide,
 biological studies
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (comparative study addresses hydroperoxide and **thiol**
 specificity of human glutathione peroxidases and human selenoprotein P)

IT 9013-66-5, Glutathione peroxidase 97089-70-8,
Phospholipid hydroperoxide glutathione
peroxidase
 RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
 (Biological study)
 (comparative study addresses hydroperoxide and **thiol**
 specificity of human glutathione peroxidases and human selenoprotein P)

RE.CNT 40 THERE ARE 40 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Arner, E; Methods Enzymol 1999, V300, P226 HCAPLUS
- (2) Arteel, G; Biol Chem 1998, V379, P1201 HCAPLUS
- (3) Avissar, N; Am J Physiol 1994, V267, PE68 HCAPLUS
- (4) Awasthi, Y; J Biol Chem 1975, V250, P5144 HCAPLUS
- (5) Bao, Y; Anal Biochem 1995, V224, P395 HCAPLUS
- (6) Bao, Y; FEBS Lett 1997, V410, P210 HCAPLUS
- (7) Bjornstedt, M; J Biol Chem 1994, V269, P29382 MEDLINE
- (8) Brigelius-Flohe, R; Free Radical Biol Med 1999, V27, P951 HCAPLUS
- (9) Burk, R; Annu Rev Nutr 1993, V13, P65 HCAPLUS
- (10) Burk, R; Hepatology 1995, V21, P561 HCAPLUS
- (11) Burk, R; Histochem Cell Biol 1997, V108, P11 HCAPLUS
- (12) Burk, R; J Nutr 1994, V124, P1891 HCAPLUS
- (13) Burk, R; Proc Soc Exp Biol Med 1973, V143, P719 HCAPLUS
- (14) Chu, F; J Biol Chem 1993, V268, P2571 HCAPLUS
- (15) Dalziel, K; Acta Chem Scand 1957, V11, P1706 HCAPLUS
- (16) Epp, O; Eur J Biochem 1983, V133, P51 HCAPLUS
- (17) Esworthy, R; Arch Biochem Biophys 1993, V307, P29 HCAPLUS
- (18) Flohe, L; FEBS Lett 1973, V32, P132 HCAPLUS
- (19) Flohe, L; Hoppe-Seyler's Z Physiol Chem 1972, V353, P987 HCAPLUS
- (20) Laemmli, U; Nature 1970, V227, P680 HCAPLUS
- (21) Maiorino, M; Biol Chem Hoppe Seyler 1995, V376, P651 HCAPLUS
- (22) Maiorino, M; Methods Enzymol 1990, V186, P448 HCAPLUS
- (23) Mitsui, A; Biochem Biophys Res Commun 1992, V186, P1220 HCAPLUS
- (24) Oblong, J; Biochemistry 1993, V32, P7271 HCAPLUS
- (25) Pfeifer, H; FASEB J 2001, V15, P1236 HCAPLUS
- (26) Roveri, A; Biochim Biophys Acta 1994, V1208, P211 HCAPLUS
- (27) Saito, Y; J Biol Chem 1999, V274, P2866 HCAPLUS

(28) Sattler, W; Arch Biochem Biophys 1994, V309, P214 HCPLUS
 (29) Soderberg, A; Cancer Res 2000, V60, P2281 HCPLUS
 (30) Sztajer, H; J Biol Chem 2001, V276, P7397 HCPLUS
 (31) Takahashi, K; Arch Biochem Biophys 1987, V256, P677 HCPLUS
 (32) Takahashi, K; J Biochem 1990, V108, P145 HCPLUS
 (33) Ursini, F; Biochim Biophys Acta 1982, V710, P197 HCPLUS
 (34) Ursini, F; Biochim Biophys Acta 1985, V839, P62 HCPLUS
 (35) Ursini, F; Methods Enzymol 1995, V252, P38 HCPLUS
 (36) Ursini, F; Science 1999, V285, P1393 HCPLUS
 (37) Wakasugi, N; Proc Natl Acad Sci 1990, V87, P8282 HCPLUS
 (38) Wollman, E; Biochem Biophys Res Commun 1997, V230, P602 HCPLUS
 (39) Yamamoto, Y; Arch Biochem Biophys 1993, V305, P541 HCPLUS
 (40) Yarimizu, J; Antioxid Redox Signal 2000, V2, P643 HCPLUS

IT 60-24-2, Mercaptoethanol 3483-12-3, Dithiothreitol

RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (as electron donor; comparative study addresses hydroperoxide and
 thiol specificity of human glutathione peroxidases and human
 selenoprotein P)

RN 60-24-2 HCPLUS

CN Ethanol, 2-mercpto- (8CI, 9CI) (CA INDEX NAME)

RN 3483-12-3 HCPLUS

CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3R)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

IT 97089-70-8, Phospholipid hydroperoxide
 glutathione peroxidase

RL: BSU (Biological study, unclassified); PRP (Properties); BIOL
 (Biological study)
 (comparative study addresses hydroperoxide and thiol
 specificity of human glutathione peroxidases and human selenoprotein P)

RN 97089-70-8 HCPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA
 INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 2 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN

AN 2000:646244 HCPLUS

DN 133:189864

TI Method to detect male antifertility problems

IN Flohe, Leopold; Ursini, Fulvio; Roveri,
 Antonella

PA Germany

SO PCT Int. Appl., 32 pp.

CODEN: PIXXD2

DT Patent

LA English

IC ICM G01N033-573

ICS G01N033-561; C12Q001-28

CC 7-1 (Enzymes)

Section cross-reference(s): 14

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000054054	A1	20000914	WO 2000-EP1877	20000306 <--
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG	
	EP 1159617	A1	20011205	EP 2000-910773	20000306 <--
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO				
	JP 2002538791	T2	20021119	JP 2000-604228	20000306 <--
	NZ 513245	A	20030228	NZ 2000-513245	20000306 <--
	AU 761695	B2	20030605	AU 2000-32863	20000306 <--
PRAI	EP 1999-103959	A	19990309		<--
	WO 2000-EP1877	W	20000306		<--
AB	The invention relates to a method to detect male antifertility problems based on the detn. of latent phospholipid hydroperoxide glutathione peroxidase (PHGPx) .				
ST	detect antifertility				
IT	Denaturants (chaotropic; method to detect male antifertility problems)				
IT	Fertility (male, disorder, antifertility; method to detect male antifertility problems)				
IT	Detergents Diagnosis Fertilization Gel permeation chromatography				
	Immunoassay				
	Livestock				
	Solubilization				
	Sperm (method to detect male antifertility problems)				
IT	Reagents Thiols (organic), biological studies				
	RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses) (method to detect male antifertility problems)				
IT	97089-70-8, Phospholipid hydroperoxide glutathione peroxidase RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses) (method to detect male antifertility problems)				
IT	50-01-1, Guanidine chloride 57-13-6, Urea, biological studies 60-24-2, 2-Mercaptoethanol 593-84-0, Guanidine thiocyanate 3483-12-3, Dithiothreitol 6892-68-8, Dithioerythritol RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses) (method to detect male antifertility problems)				

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Beth Israel Hospital; WO 9613225 A 1996 HCPLUS
- (2) Maiorino, M; FASEB J 1998, V12, P1359 HCPLUS
- (3) Maiorino, M; METHODS ENZYMOL 1990, V186, P448 HCPLUS
- (4) Roveri, A; METHODS ENZYMOL 1994, V233, P202 HCPLUS

(5) Ursini, F; SCIENCE 1999, V285, P1393 HCPLUS
 IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
 RL: **ANT (Analyte)**; THU (Therapeutic use); **ANST (Analytical study)**; **BIOL (Biological study)**; **USES (Uses)**
 (method to detect male antifertility problems)
 RN 97089-70-8 HCPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 IT 50 01-1, Guanidine chloride 57-13-6, Urea, biological studies 60-24-2, 2-Mercaptoethanol 593-84-0, Guanidine thiocyanate 3483-12-3, Dithiothreitol 6892-68-8, Dithioerythritol
 RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
 (method to detect male antifertility problems)
 RN 50-01-1 HCPLUS
 CN Guanidine, monohydrochloride (8CI, 9CI) (CA INDEX NAME)

HCl

RN 57-13-6 HCPLUS
 CN Urea (8CI, 9CI) (CA INDEX NAME)

RN 60-24-2 HCPLUS
 CN Ethanol, 2-mercaptop- (8CI, 9CI) (CA INDEX NAME)

RN 593-84-0 HCPLUS
 CN Thiocyanic acid, compd. with guanidine (1:1) (7CI, 8CI, 9CI) (CA INDEX NAME)

CM 1

CRN 463-56-9
 CMF C H N S

CM 2

CRN 113-00-8
CMF C H5 N3

RN 3483-12-3 HCPLUS
CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3R)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

RN 6892-68-8 HCPLUS
CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3S)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

L87 ANSWER 3 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
AN 2000:646177 HCPLUS
DN 133:189863
TI Method to search for male **antifertility** drugs based on
PHGPx activity determination
IN Flohe, Leopold; Ursini, Fulvio
PA Germany
SO PCT Int. Appl., 33 pp.
CODEN: PIXXD2
DT Patent
LA English
IC ICM C12Q001-28
CC 7-1 (Enzymes)
Section cross-reference(s): 1

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2000053800	A1	20000914	WO 2000-EP1878	20000306 <--
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
	EP 1159445	A1	20011205	EP 2000-910774	20000306 <--

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
 IE, SI, LT, LV, FI, RO
 PRAI EP 1999-103960 A 19990309 <--
 WO 2000-EP1878 W 20000306

AB The invention relates to a method to search for male antifertility drugs based on activity detn. of **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** derived from human tissue or human cells or from related mammalian species.

ST antifertility drug **PHGPx** activity detn; **phospholipid hydroperoxide glutathione peroxidase**

IT Drug delivery systems
 (carriers, Pharmaceutically acceptable; method to search for male antifertility drugs based on **PHGPx** activity detn.)

IT **Fertility**
 (inhibitors, male; method to search for male antifertility drugs based on **PHGPx** activity detn.)

IT Animal cell
 Animal tissue
 Computer application
 Genetic engineering
 Mammal (Mammalia)
 (method to search for male antifertility drugs based on **PHGPx** activity detn.)

IT **97089-70-8, Phospholipid hydroperoxide glutathione peroxidase**
 RL: **ANT (Analyte); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study)**
 (method to search for male antifertility drugs based on **PHGPx** activity detn.)

RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

(1) Beth Israel Hospital Association; WO 9613225 A 1996 HCPLUS
 (2) Maiorino, M; FASEB J 1998, V12, P1359 HCPLUS
 (3) Maiorino, M; METHODS ENZYMOL 1990, V186, P448 HCPLUS
 (4) Roveri, A; METHODS ENZYMOL 1994, V233, P202 HCPLUS

IT **97089-70-8, Phospholipid hydroperoxide glutathione peroxidase**
 RL: **ANT (Analyte); BSU (Biological study, unclassified); ANST (Analytical study); BIOL (Biological study)**
 (method to search for male antifertility drugs based on **PHGPx** activity detn.)

RN 97089-70-8 HCPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 4 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1999:768506 HCPLUS
 DN 132:33617
 TI Tissue-specific functions of individual glutathione peroxidases
 AU Brigelius-Flohe, Regina
 CS German Institute of Human Nutrition, Rehbrucke, D-14558, Germany
 SO Free Radical Biology & Medicine (1999), 27(9/10), 951-965
 CODEN: FRBMEH; ISSN: 0891-5849
 PB Elsevier Science Inc.
 DT Journal; General Review
 LA English
 CC 13-0 (Mammalian Biochemistry)
 AB A discussion and review with 165 refs. The family of glutathione peroxidases comprises four distinct mammalian selenoproteins. The classical enzyme (cGPx) is ubiquitously distributed. According to animal, cell culture and inverse genetic studies, its primary function is to

counteract oxidative attack. It is distensible in unstressed animals, and accordingly ranks low in the hierarchy of glutathione peroxidases. The gastrointestinal isoenzyme (GI-GPx) is most related to cGPx and is exclusively expressed in the gastrointestinal tract. It might provide a barrier against hydroperoxides derived from the diet or from metab. of ingested xenobiotics. The extreme stability in selenium deficiency ranks this glutathione peroxidase highest in the hierarchy of selenoproteins and points to a more vital function than that of cGPx. Plasma GPx (pGPx) behaves similar to cGPx in selenium deficiency. It is directed to extracellular compartments and is expressed in various tissues in contact with body fluids, e.g., kidney, ciliary body, and maternal/fetal interfaces. It has to be rated as an efficient extracellular antioxidant device, though with low capacity because of the limited extracellular content of potential **thiol** substrates. **Phospholipid hydroperoxide glutathione peroxidase** (**PHGPx**), originally presumed to be a universal antioxidant enzyme protecting membrane lipids, appears to have adopted a variety of specific roles like silencing lipoxygenases and becoming an enzymically inactive structural component of the mitochondrial capsule during **sperm** maturation. Thus, all individual isoenzymes are efficient peroxidases in principle, but beyond their mere antioxidant potential may exert cell- and tissue-specific roles in metabolic regulation, as is evident for **PHGPx** and may be expected for others.

ST review glutathione peroxidases tissue antioxidant

IT Animal tissue
Antioxidants

(tissue-specific functions of individual glutathione peroxidases)

IT 9013-66-5, Glutathione peroxidase

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); OCCU (Occurrence); PROC (Process); USES (Uses)

(tissue-specific functions of individual glutathione peroxidases)

RE.CNT 165 THERE ARE 165 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Adham, I; DNA Cell Biol 1996, V15, P159 HCAPLUS
- (2) Avissar, N; Am J Physiol 1994, V267, PE68 HCAPLUS
- (3) Avissar, N; Am J Physiol 1996, V270, PL173 HCAPLUS
- (4) Avissar, N; J Nutr 1991, V121, P1243 HCAPLUS
- (5) Aw, T; J Clin Invest 1994, V94, P1218 HCAPLUS
- (6) Baeuerle, P; Annu Rev Immunol 1994, V12, P141 HCAPLUS
- (7) Bao, Y; FEBS Lett 1997, V410, P210 HCAPLUS
- (8) Baruchel, S; J Leukoc Biol 1992, V52, P111 HCAPLUS
- (9) Bauskin, A; Cell 1991, V56, P685
- (10) Beck, M; FASEB J 1998, V12, P1143 HCAPLUS
- (11) Beck, M; J Infect Dis 1994, V170, P351 MEDLINE
- (12) Behne, D; Biochem Biophys Res Commun 1990, V173, P1143 HCAPLUS
- (13) Behne, D; Biol Trace Elem Res 1996, V55, P99 HCAPLUS
- (14) Behne, D; J Reprod Fertil 1996, V106, P291 HCAPLUS
- (15) Bellomo, G; Biofactors 1997, V6, P91 HCAPLUS
- (16) Bermano, G; Biochem J 1995, V311, P425 HCAPLUS
- (17) Bermano, G; FEBS Lett 1996, V387, P157 HCAPLUS
- (18) Bjornstedt, M; J Biol Chem 1994, V269, P29382 MEDLINE
- (19) Brigelius-Flohe, R; Biochem J 1997, V328, P199 HCAPLUS
- (20) Brigelius-Flohe, R; J Biol Chem 1994, V269, P7342 HCAPLUS
- (21) Brown, D; J Nutr 1973, V103, P102 HCAPLUS
- (22) Burk, R; J Nutr 1994, V124, P1891 HCAPLUS
- (23) Buttke, T; Immunol Today 1994, V15, P7 HCAPLUS
- (24) Calvin, H; J Exp Zool 1978, V204, P445 HCAPLUS
- (25) Cataldo, L; Mol Reprod Dev 1996, V45, P320 HCAPLUS
- (26) Chaudiere, J; Oxidative processes and antioxidants 1994, P165
- (27) Cheng, W; Biofactors 1998, V7, P311 HCAPLUS
- (28) Cheng, W; J Nutr 1997, V127, P1445 HCAPLUS

(29) Cheng, W; J Nutr 1998, V128, P1070 HCAPLUS
(30) Christensen, M; J Nutr 1992, V122, P1620 HCAPLUS
(31) Christensen, M; J Nutr Biochem 1995, V6, P367 HCAPLUS
(32) Chu, F; Arch Biochem Biophys 1995, V323, P288 HCAPLUS
(33) Chu, F; Biomed Environ Sci 1997, V10, P156 MEDLINE
(34) Chu, F; Blood 1992, V79, P3233 HCAPLUS
(35) Chu, F; J Biol Chem 1993, V268, P2571 HCAPLUS
(36) Clerch, L; J Clin Invest 1993, V91, P499 HCAPLUS
(37) Cockell, K; J Nutr Biochem 1996, V7, P333 HCAPLUS
(38) Croteau, W; J Biol Chem 1995, V270, P16569 HCAPLUS
(39) Das, K; Mol Cell Biochem 1995, V148, P45 HCAPLUS
(40) Davey, J; J Biol Chem 1995, V270, P26786 HCAPLUS
(41) de Haan, J; J Biol Chem 1998, V28, P22528
(42) Droke, W; Biol Chem Hoppe Seyler 1988, V369, P143 MEDLINE
(43) Droke, W; Immunol Today 1992, V13, P211 MEDLINE
(44) Dworkin, B; Chem Biol Interact 1994, V91, P181 HCAPLUS
(45) Dypbukt, J; J Biol Chem 1994, V269, P30553 HCAPLUS
(46) D'Alessio, P; Free Radic Biol Med 1998, V24, P979 HCAPLUS
(47) Esworthy, R; Biochim Biophys Acta 1998, V1381, P213 HCAPLUS
(48) Fialkow, L; J Biol Chem 1993, V268, P17131 HCAPLUS
(49) Fischer, E; Science 1991, V253, P401 HCAPLUS
(50) Flohe, L; Ciba Found Symp 1978, V65, P95
(51) Flöhe, L; FEBS Lett 1973, V32, P132 HCAPLUS
(52) Flohe, L; Free Radic Biol Med 1997, V22, P1115 HCAPLUS
(53) Flohe, L; Glutathione: chemical, biochemical and medical aspects--Part A 1989, P643 HCAPLUS
(54) Flohe, L; Oxidative stress and signal transduction 1997, P415 HCAPLUS
(55) Forstrom, J; Arch Biochem Biophys 1979, V193, P51 HCAPLUS
(56) Friedrichs, B; Arterioscler Thromb Vasc Biol 1998, V18, P1829 HCAPLUS
(57) Garcia-Morales, P; Proc Natl Acad Sci USA 1990, V87, P9255 HCAPLUS
(58) Gilbert, H; Meth Enzymol 1995, V251, P8 HCAPLUS
(59) Godeas, C; Biochem Mol Med 1996, V59, P118 HCAPLUS
(60) Godeas, C; Biochim Biophys Acta 1994, V1191, P147 HCAPLUS
(61) Godeas, C; Biol Reprod 1997, V87, P1502
(62) Guimaraes, M; Proc Natl Acad Sci USA 1996, V93, P15086 HCAPLUS
(63) Halliwell, B; Arch Intern Med 1991, V151, P29 MEDLINE
(64) Hampton, M; Biofactors 1998, V8, P1 HCAPLUS
(65) Haung, W; Clin Chim Acta 1997, V261, P117 MEDLINE
(66) Haurand, M; Biol Chem Hoppe Seyler 1988, V369, P133 HCAPLUS
(67) Hecht, D; Biochem Biophys Res Commun 1992, V188, P773 HCAPLUS
(68) Himeno, S; Biochim Biophys Acta 1993, V1173, P283 HCAPLUS
(69) Ho, Y; J Biol Chem 1997, V272, P16544
(70) Hockenberry, D; Cell 1993, V75, P241
(71) Huang, H; FEBS Lett 1998, V424, P22 HCAPLUS
(72) Imai, H; J Biol Chem 1998, V273, P1990 HCAPLUS
(73) Jaeschke, H; Hepatology 1999, V29, P443 HCAPLUS
(74) Jeffery, C; Trends Biochem Sci 1999, V24, P8 HCAPLUS
(75) Jha, P; Ann Intern Med 1995, V123, P860 MEDLINE
(76) Kayanoki, Y; J Biochem 1996, V119, P817 HCAPLUS
(77) Kazmi, S; J Cell Biochem 1995, V57, P299 HCAPLUS
(78) Kingsley, P; Mol Reprod Dev 1998, V49, P343 HCAPLUS
(79) Kohrle, J; Mol Cell Endocrin 1999, V151, P103 HCAPLUS
(80) Kretz-Remy, C; J Cell Biol 1996, V133, P1083 HCAPLUS
(81) Kuhn, H; J Biol Chem 1990, V265, P1454 MEDLINE
(82) Kulmacz, R; Advances in prostaglandin, thromboxane, and leukotriene research 1983, V11, P93 HCAPLUS
(83) Lei, X; J Nutr 1995, V125, P1438 HCAPLUS
(84) Lennon, S; Cell Prolif 1991, V24, P203 MEDLINE
(85) Levine, B; Nature 1993, V361, P739 HCAPLUS
(86) Look, M; Eur J Clin Invest 1998, V28, P389 HCAPLUS
(87) Low, S; Trends Biochem Sci 1996, V21, P203 HCAPLUS
(88) Maiorino, M; Arch Biochem Biophys 1992, V295, P404 HCAPLUS
(89) Maiorino, M; Biofactors 1999, V10, P251 HCAPLUS

(90) Maiorino, M; Biol Chem Hoppe Seyler 1995, V376, P651 HCAPLUS
(91) Maiorino, M; FASEB J 1998, V12, P1359 HCAPLUS
(92) Maiorino, M; Lipids 1989, V24, P721 HCAPLUS
(93) Makropoulos, V; Arch Toxicol 1996, V70, P277 HCAPLUS
(94) Martin-Alonso, J; J Biochem 1993, V114, P284 HCAPLUS
(95) Mehlen, P; Biochem J 1995, V312, P367 HCAPLUS
(96) Mills, G; J Biol Chem 1957, V229, P189 HCAPLUS
(97) Mitchell, J; J Endocrinol 1997, V155, P255 HCAPLUS
(98) Monteiro, H; Free Radic Biol Med 1996, V21, P323 HCAPLUS
(99) Mork, H; Nutr Cancer 1998, V32, P64 HCAPLUS
(100) Moutet, M; Free Radic Biol Med 1998, V25, P270 HCAPLUS
(101) Mullenbach, G; Protein Eng 1988, V2, P239 HCAPLUS
(102) Nakane, T; Free Radic Biol Med 1998, V25, P504 HCAPLUS
(103) Nam, S; Biol Reprod 1998, V58, P1272 HCAPLUS
(104) Packham, G; J Immunol 1996, V156, P2792 HCAPLUS
(105) Parthasarathy, S; Proc Natl Acad Sci USA 1989, V86, P1046 HCAPLUS
(106) Rapoport, S; Eur J Biochem 1979, V96, P545 HCAPLUS
(107) Reddy, K; J Nutr 1974, V104, P1069 HCAPLUS
(108) Reddy, V; Ophthalmologica 1997, V211, P192 HCAPLUS
(109) Renard, P; Biochem Pharmacol 1997, V53, P149 HCAPLUS
(110) Rhee, S; Biofactors 1999, V10, P207 HCAPLUS
(111) Ross, R; Nature 1993, V362, P801 HCAPLUS
(112) Rotruck, J; Science 1973, V179, P588 HCAPLUS
(113) Roveri, A; Biochim Biophys Acta 1994, V1208, P211 HCAPLUS
(114) Roveri, A; J Biol Chem 1992, V267, P6142 HCAPLUS
(115) Roveri, A; Meth Enzymol 1994, V223, P202
(116) Saedi, M; Biochem Biophys Res Comm 1988, V153, P855 HCAPLUS
(117) Salonen, J; Int J Epidemiol 1987, V16, P323 MEDLINE
(118) Sandstrom, P; FEBS Lett 1995, V365, P66 HCAPLUS
(119) Sandstrom, P; Free Radic Biol Med 1998, V24, P1485 HCAPLUS
(120) Sandstrom, P; J Biol Chem 1994, V269, P798 HCAPLUS
(121) Sandstrom, P; J Leukocyte Biol 1994, V55, P221 HCAPLUS
(122) Sandstrom, P; J Virol 1996, V70, P4617 HCAPLUS
(123) Sappey, C; AIDS Res Hum Retroviruses 1994, V10, P1451 HCAPLUS
(124) Sattler, W; Arch Biochem Biophys 1994, V309, P214 HCAPLUS
(125) Schnurr, K; J Biol Chem 1996, V271, P4653 HCAPLUS
(126) Schuckelt, R; Free Radic Comms 1991, V14, P343 HCAPLUS
(127) Schwaab, V; Mol Reprod Dev 1998, V51, P362 HCAPLUS
(128) Shalgi, R; Biol Reprod 1989, V40, P1037 HCAPLUS
(129) Sigari, F; Arterioscler Thromb Vasc Biol 1997, V17, P3639 HCAPLUS
(130) Smith, W; Biochemistry 1972, V11, P3276 HCAPLUS
(131) Spector, A; Exp Eye Res 1996, V62, P521 HCAPLUS
(132) Spector, A; Exp Eye Res 1998, V67, P457 HCAPLUS
(133) Staal, F; AIDS Res Hum Retroviruses 1992, V8, P305 MEDLINE
(134) Staal, F; AIDS Res Hum Retroviruses 1993, V9, P299 HCAPLUS
(135) Steinbeck, M; J Cell Physiol 1998, V176, P574 HCAPLUS
(136) Steinberg, D; J Biol Chem 1997, V272, P20963 HCAPLUS
(137) Steinert, P; Biol Chem 1998, V379, P683 HCAPLUS
(138) Takahashi, K; Arch Biochem Biophys 1987, V256, P677 HCAPLUS
(139) Takahashi, K; J Biochem 1990, V108, P145 HCAPLUS
(140) Tamura, T; Proc Natl Acad Sci USA 1996, V93, P1006 HCAPLUS
(141) Tauchi, K; Acta Pathol Jpn 1991, V41, P573 HCAPLUS
(142) Terpstra, V; Proc Natl Acad Sci USA 1997, V95, P1806
(143) Tewes, F; Eur J Immunol 1997, V27, P3015 HCAPLUS
(144) Tham, D; Am J Physiol 1998, V275, PG1463 HCAPLUS
(145) Thomas, J; Arch Biochem Biophys 1994, V315, P244 HCAPLUS
(146) Thomas, J; J Biol Chem 1990, V265, P454 HCAPLUS
(147) Thompson, K; J Nutr 1995, V125, P1438
(148) Toledano, M; Mol Cell Biol 1993, V13, P852 HCAPLUS
(149) Tormay, P; Mol Microbiol 1996, V21, P1253 HCAPLUS
(150) Ursini, F; Biochim Biophys Acta 1982, V710, P197 HCAPLUS
(151) Ursini, F; Biochim Biophys Acta 1985, V839, P62 HCAPLUS
(152) Ursini, F; Chem Phys Lipids 1987, V44, P255 HCAPLUS

(153) Ursini, F; Meth Enzymol 1995, V252, P38 HCAPLUS
 (154) Ursini, F; Science, submitted 1999
 (155) Vaux, D; Nature 1988, V335, P440 HCAPLUS
 (156) Vendeland, S; Proc Natl Acad Sci USA 1995, V92, P8749 HCAPLUS
 (157) Vilas, N; J Nutr 1976, V106, P589 HCAPLUS
 (158) Wang, L; Ophthalmic Res 1994, V26, P60 HCAPLUS
 (159) Weitzel, F; Biochim Biophys Acta 1990, V1036, P88 HCAPLUS
 (160) Weitzel, F; J Biol Chem 1993, V268, P6288 HCAPLUS
 (161) Wingler, K; Eur J Biochem 1999, V259, P149 HCAPLUS
 (162) Wu, A; Biol Reprod 1979, V20, P793 HCAPLUS
 (163) Yamamoto, Y; Arch Biochem Biophys 1993, V305, P541 HCAPLUS
 (164) Yla-Herttuala, S; Proc Natl Acad Sci USA 1990, V86, P6959
 (165) Yoshimura, S; J Biochem 1991, V109, P918 HCAPLUS

L87 ANSWER 5 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 1999:660621 HCAPLUS
 DN 132:21154
 TI Regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus
 AU Avsian-Kretchmer, Orna; Eshdat, Yuval; Gueta-Dahan, Yardena; Ben-Hayyim, Gozal
 CS Department of Fruit-Tree Breeding and Molecular Genetics, The Volcani Center, Agricultural Research Organization, Bet Dagan, 50250, Israel
 SO Planta (1999), 209(4), 469-477
 CODEN: PLANAB; ISSN: 0032-0935
 PB Springer-Verlag
 DT Journal
 LA English
 CC 11-8 (Plant Biochemistry)
 AB Recent findings in the authors' lab. showed that in citrus cells, salt treatment induced the accumulation of mRNA and a protein corresponding to **phospholipid hydroperoxide glutathione peroxidase (PHGPX)**, an enzyme active in the cellular antioxidant system. The protein and its encoding gene, csa, were isolated and characterized, and the expected enzymic activity was demonstrated (Ben-Hayyim, G. et al., 1993; Holland, D. et al., 1993, 1994; Beeor-Tzahar, T. et al., 1995). In an attempt to find out how salt induces the expression of an antioxidant enzyme, the regulation of **PHGPX** in citrus cells was studied at both the mRNA transcript and the protein levels. A high and transient response at the csa mRNA level was obsd. after 4-7 h of exposing salt-sensitive cells to NaCl, or abscisic acid, whereas no response could be detected in the salt-tolerant cells under the same conditions. Tert-Butylhydroperoxide, a substrate of **PHGPX**, induced csa mRNA transcripts after only 2 h, and abolished the differential response between salt-sensitive and salt-tolerant cells. On the basis of these results and those obtained under heat and cold stresses, it is suggested that csa is directly induced by the substrate of its encoded enzyme **PHGPX**, and that salt induction occurs mainly via the prodn. of reactive oxygen species and hydroperoxides.
 ST stress induction antioxidant enzyme citrus; **phospholipid hydroperoxide glutathione peroxidase** citrus
 stress; salt stress induction antioxidant enzyme citrus; gene csa expression citrus stress
 IT Enzymes, biological studies
 RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
 (antioxidant; regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus)
 IT Temperature effects, biological
 (heat; regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**

expression in citrus)
IT Transcriptional regulation
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT Gene, plant
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT mRNA
RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT Antioxidants
(salt-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus response to)

TT Stress, plant
(salt; regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT Orange
(sweet, Shamouti; regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT 7440-09-7, Potassium, biological studies 7440-23-5, Sodium, biological studies 16887-00-6, Chloride, biological studies
RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(of citrus cells during exposure to sodium chloride in relation to salt tolerance)

IT 7647-14-5, Sodium chloride (NaCl), biological studies
RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT 75-91-2, tert-Butylhydroperoxide 21293-29-8, Abscisic acid
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
(regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase**
expression in citrus)

IT 520-18-3, Kaempferol 3483-12-3, DTT
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
(salt-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus response to)

- (1) Amzallag, G; Aust J Plant Physiol 1997, V24, P579 HCAPLUS
- (2) Amzallag, G; J Exp Bot 1993, V44, P645
- (3) Bartels, D; Planta 1990, V181, P27 HCAPLUS
- (4) Becker, J; Eur J Biochem 1990, V189, P553 HCAPLUS
- (5) Beeor-Tzahar, T; FEBS Lett 1995, V366, P151 HCAPLUS
- (6) Ben-Hayyim, G; Plant Physiol 1983, V72, P685 HCAPLUS
- (7) Ben-Hayyim, G; Plant Physiol 1987, V85, P434 HCAPLUS
- (8) Ben-Hayyim, G; Plant Sci 1993, V88, P129 HCAPLUS
- (9) Ben-Hayyim, G; Plant Sci Lett 1982, V27, P87 HCAPLUS
- (10) Binzel, M; Plant Physiol 1987, V84, P1408 HCAPLUS
- (11) Bradford, M; Anal Biochem 1976, V72, P248 HCAPLUS
- (12) Bray, E; Abscisic acid physiology and biochemistry 1991, P81 HCAPLUS
- (13) Bray, E; Acta Physiol Plant 1997, V19, P405 HCAPLUS
- (14) Bressan, R; Plant genetics 1985, P755 HCAPLUS
- (15) Chandler, P; Annu Rev Plant Physiol Plant Mol Biol 1994, V45, P113 HCAPLUS
- (16) Cotlove, E; Methods of biochemical analysis 1965, V12, P392
- (17) Criqui, M; Plant Mol Biol 1992, V18, P623 HCAPLUS
- (18) Eshdat, Y; Physiol Plant 1997, V100, P234 HCAPLUS
- (19) Faltin, Z; Physiol Plant 1998, V104, P741 HCAPLUS
- (20) Flohe, L; Methods Enzymol 1984, V105, P114 HCAPLUS
- (21) Gossett, D; Plant Physiol 1996, V112, P803
- (22) Grillo, S; Physiol Plant 1995, V93, P498 HCAPLUS
- (23) Gueta-Dahan, Y; Planta 1997, V203, P460 HCAPLUS
- (24) Hernandez, J; New Phytol 1994, V126, P37 HCAPLUS
- (25) Hernandez, J; Physiol Plant 1993, V89, P103 HCAPLUS
- (26) Hernandez, J; Plant Sci 1995, V105, P151 HCAPLUS
- (27) Holland, D; FEBS Lett 1994, V337, P52 HCAPLUS
- (28) Holland, D; Plant Mol Biol 1993, V21, P923 HCAPLUS
- (29) Hung, K; J Plant Physiol 1997, V150, P283 HCAPLUS
- (30) Inoue, Y; Agric Biol Chem 1990, V54, P3289 HCAPLUS
- (31) Kapoor, M; J Bacteriol 1990, V172, P2798 HCAPLUS
- (32) Laemmli, U; Nature 1970, V227, P680 HCAPLUS
- (33) Lalk, I; Physiol Plant 1985, V63, P287 HCAPLUS
- (34) Lang, V; Plant Mol Biol 1992, V20, P951 MEDLINE
- (35) Lobreaux, S; EMBO J 1993, V12, P651 HCAPLUS
- (36) Lu, D; Crop Sci 1989, V29, P939 HCAPLUS
- (37) Meir, S; Acta Hort 1994, V368, P355
- (38) Meir, S; J Agri Food Chem 1995, V43, P1813 HCAPLUS
- (39) Meurs, C; Plant Physiol 1992, V98, P1484 HCAPLUS
- (40) Mittler, R; J Biol Chem 1992, V267, P21802 HCAPLUS
- (41) Morgan, R; Proc Natl Acad Sci USA 1986, V83, P8059 HCAPLUS
- (42) Mullineaux, P; Plant J 1998, V13, P375 HCAPLUS
- (43) Mundy, J; EMBO J 1988, V7, P2279 HCAPLUS
- (44) Murashige, T; Proceedings 1st Int Citrus Symp 1969, V3, P1155 HCAPLUS
- (45) Naot, D; Gene 1995, V161, P171 HCAPLUS
- (46) Nordin, K; Plant Mol Biol 1993, V21, P641 HCAPLUS
- (47) Prasad, T; Plant Cell 1994, V6, P65 HCAPLUS
- (48) Prasad, T; Plant J 1996, V10, P1017 HCAPLUS
- (49) Privalle, C; Proc Natl Acad Sci USA 1987, V84, P2723 HCAPLUS
- (50) Quarrie, S; Russ J Plant Physiol 1994, V41, P565
- (51) Sambrook, J; Molecular cloning: a laboratory manual 1989
- (52) Shinozaki, K; J Plant Res 1998, V111, P345 HCAPLUS
- (53) Singh, N; Plant Physiol 1985, V79, P126 HCAPLUS
- (54) Singh, N; Plant Physiol 1989, V90, P1096 HCAPLUS
- (55) Singh, N; Proc Natl Acad Sci USA 1987, V84, P739 HCAPLUS
- (56) Skriver, K; Plant Cell 1990, V2, P503 HCAPLUS
- (57) Sugimoto, M; Biosci Biotech Biochem 1997, V61, P1379 HCAPLUS
- (58) Tran, L; Biochim Biophys Acta 1993, V1164, P166 HCAPLUS
- (59) Tsang, E; Plant Cell 1991, V3, P783 HCAPLUS
- (60) Uma, S; Anal Biochem 1995, V76, P43 HCAPLUS
- (61) Winicov, I; Stress induced gene expression in plants 1993, P61
- (62) Zeevaart, J; Annu Rev Plant Physiol Plant Mol Biol 1988, V39, P439 HCAPLUS
- (63) Zhang, C; J Am Soc Hort Sci 1994, V119, P307 HCAPLUS

(64) Zhu, D; Plant Physiol 1994, V106, P173 HCPLUS
 IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
 RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
 (regulation of stress-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus)
 RN 97089-70-8 HCPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
 IT 3483-12-3, DTT
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (salt-induced **phospholipid hydroperoxide glutathione peroxidase** expression in citrus response to)
 RN 3483-12-3 HCPLUS
 CN 2,3-Butanediol, 1,4-dimercapto-, (2R,3R)-rel- (9CI) (CA INDEX NAME)

Relative stereochemistry.

L87 ANSWER 6 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1999:572961 HCPLUS
 DN 131:284540
 TI Dual function of the selenoprotein PHGPx during **sperm maturation**
 AU Ursini, Fulvio; Heim, Sabina; Kiess, Michael; Maiorino, Matilde;
 Roveri, Antonella; Wissing, Josef; Flohe, Leopold
 CS Dipartimento di Chimica Biologica, Universita di Padova, Padua, 1-35121,
 Italy
 SO Science (Washington, D. C.) (1999), 285
 (5432), 1393-1396
 CODEN: SCIEAS; ISSN: 0036-8075
 PB American Association for the Advancement of Science
 DT Journal
 LA English
 CC 13-6 (Mammalian Biochemistry)
 AB The selenoprotein **phospholipid hydroperoxide glutathione peroxidase** (PHGPx) changes its phys. characteristics and biol. functions during **sperm maturation**. PHGPx exists as a sol. peroxidase in **spermatids** but persists in mature **spermatozoa** as an enzymically inactive, oxidatively cross-linked, insol. protein. In the midpiece of mature **spermatozoa**, PHGPx protein represents at least 50 percent of the capsule material that embeds the helix of mitochondria. The role of PHGPx as a structural protein may explain the mech. instability of the mitochondrial midpiece that is obsd. in selenium deficiency.
 ST selenoprotein PHGPx mitochondria **sperm** maturation
 IT Mitochondria

Sperm**Spermatogenesis**

(dual function of selenoprotein PHGPx during **sperm** maturation)

IT **97089-70-8, Phospholipid hydroperoxide glutathione peroxidase**

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)

(dual function of selenoprotein PHGPx during **sperm** maturation)

IT **7782-49-2, Selenium, biological studies**

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)

(dual function of selenoprotein PHGPx during **sperm** maturation)

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Adham, I; DNA Cell Biol 1996, V15, P159 HCAPLUS
- (2) Andreesen, J; J Bacteriol 1973, V116, P867 HCAPLUS
- (3) Arai, M; Biochem Biophys Res Commun 1996, V227, P433 HCAPLUS
- (4) Bauche, F; FEBS Lett 1994, V349, P392 HCAPLUS
- (5) Behne, D; J Reprod Fertil 1996, V106, P291 HCAPLUS
- (6) Berry, M; EMBO J 1993, V12, P3315 HCAPLUS
- (7) Brigelius-Flohe, R; Biochem J 1997, V328, P199 HCAPLUS
- (8) Brigelius-Flohe, R; J Biol Chem 1994, V269, P7342 HCAPLUS
- (9) Brown, D; J Nutr 1973, V103, P102 HCAPLUS
- (10) Calvin, H; Gamete Res 1981, V4, P139 HCAPLUS
- (11) Cataldo, L; Mol Reprod Dev 1996, V45, P320 HCAPLUS
- (12) Fisher, H; J Exp Zool 1997, V277, P390 HCAPLUS
- (13) Flohe, L; FEBS Lett 1973, V32, P132 HCAPLUS
- (14) Flohe, L; Oxidative Stress and Signal Transduction 1997, P415 HCAPLUS
- (15) Giannattasio, A; J Endocrinol Invest 1997, V20, P439 HCAPLUS
- (16) Gobom, J; Int J Mass Spectrom, <http://falcon.ludwig.ucl.ac.uk/ucsfhtml3.2/msfit.htm> 1998, V169-170, P153
- (17) Heider, J; EMBO J 1992, V11, P3759 HCAPLUS
- (18) Jefferey, C; Trends Biol Sci 1999, V24, P8
- (19) Maiorino, M; Biol Chem Hoppe Seyler 1995, V376, P651 HCAPLUS
- (20) Maiorino, M; FASEB J 1998, V12, P1359 HCAPLUS
- (21) Meistrich, M; Biol Reprod 1981, V25, P1065 HCAPLUS
- (22) Nam, S; J Reprod Dev 1997, V43, P227 HCAPLUS
- (23) National Research Council Subcommittee on Selenium; Selenium in Nutrition 1983
- (24) Pallini, V; J Submicr Cytol 1979, V11, P165 HCAPLUS
- (25) Piatigorsky, J; Prog Ret Eye Res 1998, V17, P145 HCAPLUS
- (26) Pushpa-Rekha, T; J Biol Chem 1995, V270, P26993 HCAPLUS
- (27) Rotruck, J; Science 1973, V179, P588 HCAPLUS
- (28) Roveri, A; J Biol Chem 1992, V267, P6142 HCAPLUS
- (29) Roveri, A; Methods Enzymol 1994, V233, P202 HCAPLUS
- (30) Sandstrom, P; Free Radical Biol Med 1998, V24, P1485 HCAPLUS
- (31) Schuckelt, R; Free Radical Res Commun 1991, V14, P343 HCAPLUS
- (32) Seligman, J; Biol Reprod 1992, V46, P301 HCAPLUS
- (33) Shalgi, R; Biol Reprod 1989, V40, P1037 HCAPLUS
- (34) Stadtman, T; Annu Rev Biochem 1990, V59, P111 HCAPLUS
- (35) Turner, D; Arch Biochem Biophys 1973, V154, P366 HCAPLUS
- (36) Ursini, F; Methods Enzymol 1995, V252, P38 HCAPLUS
- (37) Wallace, E; Selenium in Biology and Medicine 1987, P181
- (38) Weitzel, F; J Biol Chem 1993, V268, P6288 HCAPLUS
- (39) Wu, A; Biol Reprod 1979, V20, P793 HCAPLUS

IT **97089-70-8, Phospholipid hydroperoxide**

glutathione peroxidase

RL: BAC (Biological activity or effector, except adverse); BOC (Biological

occurrence); BPR (Biological process); BSU (Biological study, unclassified); **BIOL (Biological study)**; OCCU (Occurrence); PROC (Process)

(dual function of selenoprotein **PHGPx** during **sperm** maturation)

RN 97089-70-8 HCAPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L8/ ANSWER 7 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 1998:664552 HCAPLUS

DN 130:10799

TI Testosterone mediates expression of the selenoprotein **PHGPx** by induction of **spermatogenesis** and not by direct transcriptional gene activation

AU **Maiorino, Matilde**; Wissing, Josef B.; Brigelius-Flohe, Regina; Calabrese, Fiorella; **Roveri, Antonella**; Steinert, Peter; **Ursini, Fulvio**; **Flohe, Leopold**

CS Dipartimento di Chimica Biologica, Padua, I-35121, Italy

SO **FASEB Journal (1998), 12(13), 1359**

-1370

CODEN: FAJOEC; ISSN: 0892-6638

PB Federation of American Societies for Experimental Biology

DT Journal

LA English

CC 2-4 (Mammalian Hormones)

AB Selenium deficiency is known to be assocd. with male infertility, and the selenoprotein **PHGPx** has been shown to increase in rat **testis** after puberty and to depend on gonadotropin stimulation in hypophysectomized rats. Exposure of decapsulated whole **testis**, however, failed to reveal any transcriptional activation or inhibition of the **PHGPx** gene by testosterone, human chorionic gonadotropin, or forskolin. Nevertheless, it was verified that the specific activity of **PHGPx** in **testis**, but not of cGPx, correlated with sexual maturation. Leydig cell destruction in vivo by ethane dimethane sulfonate (EDS) resulted in a delayed decrease in **PHGPx** activity and mRNA that could be completely prevented by testosterone substitution. The cGPx transiently increased upon EDS treatment, probably as a result of reactive macrophage augmentation. In situ mRNA hybridization studies demonstrated an uncharacteristic low level of cGPx transcription in **testis**, whereas **PHGPx** mRNA was abundantly and preferentially expressed in round **spermatids**. The data show that the age or gonadotropin-dependent expression of **PHGPx** in **testis** does not result from direct transcriptional gene activation by testosterone, but is due to differentiation stage-specific expression in late **spermatids**, which are under the control of Leydig cell-derived testosterone. The striking burst of **PHGPx** expression at the transition of round to elongated **spermatids** suggests an involvement of this selenoprotein in **sperm** maturation.

ST testosterone **PHGPx** selenoprotein expression **testis** **spermatogenesis**; transcriptional activation **PHGPx** gene expression testosterone

IT **Testis**
(Leydig cell; testosterone mediates expression of selenoprotein **PHGPx** in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Transcriptional regulation
(activation; testosterone mediates expression of selenoprotein **PHGPx** in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Gene
 (expression; testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Sperm
 (**spermatid, round**; testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Sperm
 (**spermatid**; testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Development, mammalian postnatal
Spermatogenesis
 Transcriptional regulation
 (testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT Estrogens
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT 58-22-0, Testosterone 60-92-4, CAMP 9002-61-3, Chorionic gonadotropin
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study)
 (testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

IT 9013-66-5, Glutathione peroxidase 97089-70-8,
Phospholipid Hydroperoxide glutathione peroxidase
 RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
 (testosterone mediates expression of selenoprotein PHGPx in **testis** by induction of **spermatogenesis** independent of transcriptional gene activation)

RE.CNT 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Behne, D; Biochem Biophys Res Commun 1990, V173, P1143 HCAPLUS
- (2) Behne, D; Biol Trace Elem Res 1994, V43/45, P287
- (3) Behne, D; Biomed Environ Sci 1997, V10, P340 MEDLINE
- (4) Behne, D; J Nutr 1982, V112, P1682 HCAPLUS
- (5) Behne, D; J Reprod Fertil 1996, V106, P291 HCAPLUS
- (6) Berry, M; Endocrinol 1992, V131, P1848 HCAPLUS
- (7) Berry, M; Nature (London) 1991, V349, P438 HCAPLUS
- (8) Besandoun, A; Anal Biochem 1976, V70, P241
- (9) Bock, A; Trends Biol Sci 1991, V16, P463 MEDLINE
- (10) Brigelius-Flohe, R; J Biol Chem 1994, V269, P7342 HCAPLUS
- (11) Brigelius-Flohe, R; To be published in Biochem J 1997
- (12) Brown, D; J Nutr 1973, V103, P102 HCAPLUS
- (13) Chambers, I; EMBO J 1986, V5, P1221 HCAPLUS
- (14) Cheng, W; J Nutr 1997, V127, P1445 HCAPLUS
- (15) Chu, F; Biomed Environ Sci 1997, V10, P156 MEDLINE
- (16) Croteau, W; J Biol Chem 1995, V270, P16569 HCAPLUS
- (17) Cusan, L; J Androl 1982, V3, P124 HCAPLUS
- (18) Flohe, L; FEBS Lett 1973, V32, P132 HCAPLUS
- (19) Flohe, L; Oxidative Stress and Signal Transduction 1997, P415 HCAPLUS
- (20) Follman, H; BioFactors 1996, V5, P147
- (21) Guimaraes, M; Proc Natl Acad Sci USA 1996, V93, P15086 HCAPLUS
- (22) Jackson, C; J Reprod Fertil 1984, V71, P393 HCAPLUS

(23) Kerr, J; Cell Tissue Res 1989, V257, P163 HCAPLUS
 (24) Lei, X; FASEB J 1997, V11, PA235
 (25) Lei, X; J Nutr 1995, V125, P1438 HCAPLUS
 (26) Maiorino, M; Biol Chem Hoppe-Seyler 1995, V376, P651 HCAPLUS
 (27) Maiorino, M; Biomed Environ Sci 1997, V10, P209 MEDLINE
 (28) Maiorino, M; Eur J Biochem 1996, V238, P838 HCAPLUS
 (29) Maiorino, M; Methods Enzymol 1990, V186, P448 HCAPLUS
 (30) Maniatis, T; Molecular Cloning A Laboratory Manual 1989
 (31) Marcocci, L; BioFactors 1997, V6, P351 HCAPLUS
 (32) Meyer, E; Endocrinology 1974, V95, P1737 HCAPLUS
 (33) Peltola, V; Endocrinology 1996, V137, P105 HCAPLUS
 (34) Pushpa Rekha, T; J Biol Chem 1995, V270, P26993 HCAPLUS
 (35) Rapoport, S; Biochim Biophys Acta 1986, V864, P471 HCAPLUS
 (36) Rocher, C; Eur J Biochem 1992, V205, P955 HCAPLUS
 (37) Rotruck, J; Science 1973, V179, P588 HCAPLUS
 (38) Roveri, A; J Biol Chem 1992, V267, P6142 HCAPLUS
 (39) Roveri, A; Methods Enzymol 1994, V233, P202 HCAPLUS
 (40) Schnurr, K; J Biol Chem 1996, V271, P4653 HCAPLUS
 (41) Sharpe, R; Am J Anat 1990, V188, P3 HCAPLUS
 (42) Stadtman, T; Annu Rev Biochem 1990, V599, P111
 (43) Steinert, P; To be published in Biol Chem 1998
 (44) Takahashi, K; J Biochem (Tokyo) 1990, V108, P145 HCAPLUS
 (45) Tamura, T; Proc Natl Acad Sci USA 1996, V93, P1006 HCAPLUS
 (46) Ursini, F; Methods Enzymol 1995, V252, P38 HCAPLUS
 (47) Wallace, E; Selenium in Biology and Medicine 1987, P181
 (48) Weitzel, F; Biochim Biophys Acta 1990, V1036, P88 HCAPLUS
 (49) Weitzel, F; J Biol Chem 1993, V268, P6288 HCAPLUS
 (50) Wu, A; Biol Reprod 1973, V8, P625
 (51) Wu, A; Biol Reprod 1979, V20, P793 HCAPLUS
 (52) Zhang, L; Biochim Biophys Acta 1989, V1006, P140 HCAPLUS

IT 97089-70-8, **Phospholipid Hydroperoxide glutathione peroxidase**
 RL: BPR (Biological process); BSU (Biological study, unclassified); MFM (Metabolic formation); BIOL (Biological study); FORM (Formation, nonpreparative); PROC (Process)
 (testosterone mediates expression of selenoprotein PHGPx in testis by induction of spermatogenesis independent of transcriptional gene activation)

RN 97089-70-8 HCAPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 8 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 1998:217743 HCAPLUS
 DN 128:227659
 TI Attempt to differentiate between individual glutathione peroxidases in biological samples
 AU Maurer, S.; Friedrich, C.; Leist, M.; Maiorino, M.; Brigelius-Flohe, R.
 CS German Inst. Human Nutrition, Bergholz-Rehbruecke, D-14558, Germany
 SO Zeitschrift fuer Ernaehrungswissenschaft (1998), 37(Suppl. 1), 110-113
 CODEN: ZERNAL; ISSN: 0044-264X
 PB Dr. Dietrich Steinkopff Verlag GmbH & Co. KG
 DT Journal
 LA English
 CC 7-1 (Enzymes)
 AB We developed a simple procedure for the differential estn. of the major cellular types of glutathione peroxidases (GPx), the cytosolic GPx (cGPx) and the phospholipid hydroperoxide glutathione peroxidase (PHGPx) taking advantage of the peculiar susceptibility of PHGPx to deoxycholate. It proved to reliably

det. the activities of both purified cGPx and **PHGPx**, in mixts. thereof, and in homogenates of tissue samples (e.g., **testes**), and some (e.g. ECV 304) but not all (e.g. THP-1) cultured cell lines. The method allows the differential estn. of cGPx and **PHGPx**, if the samples do not contain further types of GPx.

ST glutathione peroxidase phospholipid hydroperoxide glutathione cell
IT 9013-66-5, Glutathione peroxidase **97089-70-8**,

Phospholipid hydroperoxide glutathione peroxidase

RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(cytosolic glutathione peroxidase and the **phospholipid hydroperoxide glutathione peroxidase**
differentiation in cell lines)

IT **97089-70-8, Phospholipid hydroperoxide glutathione peroxidase**

RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
BIOL (Biological study); OCCU (Occurrence)
(cytosolic glutathione peroxidase and the **phospholipid hydroperoxide glutathione peroxidase**
differentiation in cell lines)

RN 97089-70-8 HCPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

1/27 *** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 9 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN

AN 1997:782212 HCPLUS

DN 128:87032

TI **Distribution and possible novel role of phospholipid hydroperoxide glutathione peroxidase in rat epididymal spermatozoa**

AU Godeas, Cristiana; Tramer, Federica; Micali, Fulvio; Soranzo, Mariarosa; Sandri, Gabriella; Panfili, Enrico

CS Dep. Biochem., Biophys. Macromolecular Chem., Inst. General Pathol., Univ. Trieste, Trieste, 34127, Italy

SO Biology of Reproduction (1997), 57(6), 1502-1508
CODEN: BIREBV; ISSN: 0006-3363

PB Society for the Study of Reproduction

DT Journal

LA English

CC 13-6 (Mammalian Biochemistry)

AB The selenoenzyme **phospholipid hydroperoxide glutathione peroxidase (PHGPx, EC 1.11.1.12)** is present, in both free and membrane-bound form, in several mammalian tissues. It utilizes **thiols** such as glutathione to specifically scavenge phospholipid hydroperoxides. The **testis** exhibits the highest **PHGPx**-specific activity so far measured, and interest in the presence and function of the enzyme in this tissue has recently grown. Here we report the localization of **PHGPx** in rat epididymal **spermatozoa** and its distribution in subfractions obtained by sucrose d. gradient centrifugation. Immunochem. evidence and enzymic activity revealed for the first time that **PHGPx** is present in **sperm** heads and tail midpiece mitochondria. The binding of the enzyme to **spermatozoa**, head, and mitochondria was barely affected by ionic strength or **thiols** or **detergent**, as compared to the detachment of **PHGPx** obtained from **testis** nuclei.

Moreover, we demonstrated that pure **PHGPx** exhibits a higher thioloxidase activity toward isolated epididymal caput protamines than toward protamines from epididymal cauda. These results suggest a role for the enzyme in the maturation of **spermatozoa** through the metab.

of hydroperoxides and **sperm thiol oxidn.**, in addn. to its serving as an antioxidant protector.

ST **phospholipid hydroperoxide glutathione peroxidase epididymis spermatozoa**

IT **Epididymis**
 (caput; distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

IT **Epididymis**
 (cauda; distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

IT Mitochondria
Sperm
Spermatogenesis
 (distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

IT Protamines
 RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
 (distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

IT **Sperm**
 (head; distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
 RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal **spermatozoa**)

RE.CNT 39 THERE ARE 39 CITED REFERENCES AVAILABLE FOR THIS RECORD

RE

- (1) Ando, Y; Biochim Biophys Acta 1973, V311, P26 HCPLUS
- (2) Balhorn, R; Biochemistry 1991, V30, P175 HCPLUS
- (3) Bauche, F; FEBS Lett 1994, V349, P392 HCPLUS
- (4) Behne, D; Analyst 1995, V120, P823 HCPLUS
- (5) Brigelius-Flohe, R; J Biol Chem 1994, V269, P7342 HCPLUS
- (6) Calvin, H; Gamete Res 1981, V4, P139 HCPLUS
- (7) de Yebra, L; Anal Biochem 1993, V209, P201 MEDLINE
- (8) Godeas, C; Biochem Mol Med 1996, V59, P118 HCPLUS
- (9) Godeas, C; Biochem Mol Med 1996, V58, P221 HCPLUS
- (10) Godeas, C; Biochim Biophys Acta 1994, V1191, P147 HCPLUS
- (11) Hardison, R; Methods Cell Biol 1978, V17, P235 HCPLUS
- (12) Hrudka, F; J Ultrastruct Res 1978, V63, P1
- (13) Kay, R; Methods Cell Biol 1977, V15, P277 HCPLUS
- (14) Kleene, K; Dev Biol 1990, V137, P395 HCPLUS
- (15) Labarca, C; Anal Biochem 1980, V102, P344 HCPLUS
- (16) Maiorino, M; Biol Chem Hoppe-Seyler 1995, V376, P651 HCPLUS
- (17) Maiorino, M; Methods Enzymol 1990, V186, P448 HCPLUS
- (18) Millette, C; J Cell Biol 1973, V58, P662 HCPLUS
- (19) Orrenius, S; Ann Neurol 1992, V32, P33
- (20) Pallini, V; The Spermatozoon 1979, P401
- (21) Perry, A; Biochem J 1992, V285, P863 HCPLUS
- (22) Pushpa-Rekha, T; J Biol Chem 1995, V270, P26993 HCPLUS
- (23) Robinson, B; J Biol Chem 1992, V267, P1746 HCPLUS
- (24) Roveri, A; Biochim Biophys Acta 1994, V1208, P211 HCPLUS

(25) Roveri, A; J Biol Chem 1992, V267, P6142 HCPLUS
 (26) Roveri, A; Methods Enzymol 1994, V233, P202 HCPLUS
 (27) San, A; Methods Cell Biol 1995, V47, P31
 (28) Scala, C; J Histochem Cytochem 1992, V40, P1799 HCPLUS
 (29) Seligman, J; J Reprod Fertil 1991, V93, P399 HCPLUS
 (30) Seligman, J; Mol Reprod Dev 1991, V29, P276 HCPLUS
 (31) Shalgi, R; Biol Reprod 1989, V40, P1037 HCPLUS
 (32) Skudlarek, M; Biol Reprod 1993, V49, P204 HCPLUS
 (33) Smith, D; Biol Reprod 1979, V20, P377 HCPLUS
 (34) Smith, P; Anal Biochem 1985, V150, P76 HCPLUS
 (35) Sottocasa, G; J Cell Biol 1967, V32, P415 HCPLUS
 (36) Ursini, F; Methods Enzymol 1995, V252, P38 HCPLUS
 (37) Ursini, F; Oxidative Stress:Oxidants and Antioxidants 1991, P310 HCPLUS
 (38) Wallace, E; Gamete Res 1983, V4, P377
 (39) Wu, A; Biol Reprod 1979, V20, P793 HCPLUS

IT 97089-70-8, **Phospholipid hydroperoxide**

glutathione peroxidase

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); **BIOL (Biological study)**; OCCU (Occurrence); PROC (Process)

(distribution and possible novel role of **phospholipid hydroperoxide glutathione peroxidase** in rat epididymal spermatozoa)

RN 97089-70-8 HCPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 10 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1997:624848 HCPLUS
 DN 127:306198
 TI Glutathione metabolism in uremic rat
 AU Rao, S. V. Raman; Indira, K.
 CS Division of Molecular Biology, Department of Zoology, S. V. University, Tirupati, 517 502, India
 SO Drug and Chemical Toxicology (1977) (1997), 20(3), 229-237
 CODEN: DCTODJ; ISSN: 0148-0545
 PB Dekker
 DT Journal
 LA English
 CC 14-12 (Mammalian Pathological Biochemistry)
 AB The impact of guanidine hydrochloride, a uremic toxin, has been investigated on glutathione mediated antioxidant defense mechanisms in rat liver and kidney. Elevated glutathione-S-transferase (GST) activity in the tissue of guanidine treated rat indicates its active participation in the detoxification of uremic toxin involving glutathione. Glutathione (GSH) is replenished by elevated glutathione reductase and peroxides formed are subsequently detoxified by augmented selenium and non-selenium dependent glutathione peroxidase activities.
 ST glutathione metab uremia guanidine enzyme
 IT Kidney, disease
 (failure; glutathione metab. in uremic rat in relation to guanidine hydrochloride (uremic toxin) and enzymes)
 IT Kidney
 Liver
 (glutathione metab. in uremic rat in relation to guanidine hydrochloride (uremic toxin) and enzymes)
 IT Toxins
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (uremic; glutathione metab. in uremic rat in relation to guanidine hydrochloride (uremic toxin) and enzymes)

IT 50-01-1, Guanidine hydrochloride
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (glutathione metab. in uremic rat in relation to guanidine
 hydrochloride (uremic toxin) and enzymes)

IT 9001-48-3, Glutathione reductase 50812-37-8, Glutathione S-transferase
 RL: BAC (Biological activity or effector, except adverse); BOC (Biological
 occurrence); BPR (Biological process); BSU (Biological study,
 unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)
 (glutathione metab. in uremic rat in relation to guanidine
 hydrochloride (uremic toxin) and enzymes)

IT 70-18-8, Reduced glutathione, biological studies
 RL: BOC (Biological occurrence); BSU (Biological study, unclassified);
 BIOL (Biological study); OCCU (Occurrence)
 (glutathione metab. in uremic rat in relation to guanidine
 hydrochloride (uremic toxin) and enzymes)

IT 57-13-6, Urea, biological studies
 RL: ADV (Adverse effect, including toxicity); BOC (Biological occurrence);
 BSU (Biological study, unclassified); BIOL (Biological study); OCCU
 (Occurrence)
 (metabolic disorders, uremia; glutathione metab. in uremic rat in
 relation to guanidine hydrochloride (uremic toxin) and enzymes)

IT 9013-66-5, Glutathione peroxidase 97089-70-8,
Phospholipid hydroperoxide glutathione
peroxidase
 RL: BAC (Biological activity or effector, except adverse); BOC (Biological
 occurrence); BPR (Biological process); BSU (Biological study,
 unclassified); BIOL (Biological study); OCCU (Occurrence); PROC
 (Process)
 (selenium-dependent and -independent; glutathione metab. in uremic rat
 in relation to guanidine hydrochloride (uremic toxin) and enzymes)

IT 50-01-1, Guanidine hydrochloride
 RL: ADV (Adverse effect, including toxicity); BIOL (Biological study)
 (glutathione metab. in uremic rat in relation to guanidine
 hydrochloride (uremic toxin) and enzymes)

RN 50-01-1 HCPLUS
 CN Guanidine, monohydrochloride (8CI, 9CI) (CA INDEX NAME)

HCl

IT 57-13-6, Urea, biological studies
 RL: ADV (Adverse effect, including toxicity); BOC (Biological occurrence);
 BSU (Biological study, unclassified); BIOL (Biological study); OCCU
 (Occurrence)
 (metabolic disorders, uremia; glutathione metab. in uremic rat in
 relation to guanidine hydrochloride (uremic toxin) and enzymes)

RN 57-13-6 HCPLUS
 CN Urea (8CI, 9CI) (CA INDEX NAME)

IT 97089-70-8, **Phospholipid hydroperoxide**

glutathione peroxidase

RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence); PROC (Process)

(selenium-dependent and -independent; glutathione metab. in uremic rat in relation to guanidine hydrochloride (uremic toxin) and enzymes)

RN 97089-70-8 HCAPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 11 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN

AN 1997:49619 HCAPLUS

DN 126:142313

TI **Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin**

AU Godeas, Cristiana; Tramer, Federica; Micali, Fulvio; Roveri, Antonella; Maiorino, Matilde; Nisii, Carla; Sandri, Gabriella; Panfili, Enrico

CS Dep. Biochem., Biophys. Macromolecular Chem., Univ. Trieste, Trieste, I-34127, Italy

SO Biochemical and Molecular Medicine (1996), 59(2), 118-124
CODEN: BMMEF4; ISSN: 1077-3150

PB Academic

DT Journal

LA English

CC 13-1 (Mammalian Biochemistry)

AB In rat testis nuclei the activity of the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx, EC 1.11 .1.12) is much higher than in other tissues and subcellular compartments, with the sole exception of mitochondria. In nuclei, the bound enzyme is solubilized by DNase I treatment, thus suggesting binding to chromatin. Treatment with ionic strength releases .apprx.70% of bound PHGPx, suggesting that electrostatic bonds are involved. Immunogold electron microscopy indicates the assocn. of PHGPx with chromatin structures in isolated nuclei. A possible interpretation of these data is a PHGPx protective role against DNA peroxidative damage. Furthermore, in agreement with kinetic and structural information, PHGPx-chromatin binding could suggest an hypothetical thiol oxidase activity toward specific thiol-bearing proteins which could substitute for GSH as alternative donor substrates. Such activity could give to the enzyme a new important function which is not only protective but also has a specific regulatory function in chromatin condensation.

ST phospholipid hydroperoxide glutathione peroxidase binding chromatin; testis nucleus phospholipid hydroperoxide glutathione peroxidase

IT Cell nucleus

Chromatin

Testis

(phospholipid hydroperoxide glutathione peroxidase in rat testis nuclei is bound to chromatin)

IT 97089-70-8, Phospholipid hydroperoxide glutathione peroxidase

RL: BPR (Biological process); BSU (Biological study, unclassified); BIOL (Biological study); PROC (Process)
(phospholipid hydroperoxide glutathione

peroxidase in rat **testis** nuclei is bound to
 chromatin)
 IT 97089-70-8, Phospholipid hydroperoxide
 glutathione peroxidase
 RL: BPR (Biological process); BSU (Biological study, unclassified);
 BIOL (Biological study); PROC (Process)
 (phospholipid hydroperoxide glutathione
 peroxidase in rat **testis** nuclei is bound to
 chromatin)
 RN 97089-70-8 HCAPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA
 INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 12 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 1996:410607 HCAPLUS
 DN 125:52990
 TI Assays, devices and kits for determining male fertility
 IN Alvarez, Juan G.
 PA Beth Israel Hospital Association, USA
 SO PCT Int. Appl., 41 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 IC ICM A61D019-00
 ICS G01N033-573; G01N033-68; G01N033-92; G01N001-31; G01N033-58;
 C12Q001-28; C12Q001-32
 CC 9-1 (Biochemical Methods)
 Section cross-reference(s): 13, 14

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9613225	A2	19960509	WO 1995-US14083	19951031 <--
	WO 9613225	A3	19970109		
	W:	AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ			
	RW:	KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG			
	US 5895749	A	19990420	US 1994-332825	19941031
	CA 2203828	AA	19960509	CA 1995-2203828	19951031
	AU 9540182	A1	19960523	AU 1995-40182	19951031
	EP 789538	A1	19970820	EP 1995-939003	19951031
	R:	CH, DE, FR, GB, IT, LI, SE			
PRAI	JP 11514204	T2	19991207	JP 1995-514826	19951031
	US 1994-332825		19941031		
	US 1994-332826		19941031		
	WO 1995-US14083		19951031		
AB	Assays, devices and kits for identifying sperm samples with high pregnancy potential (e.g., for use in an assisted reproductive technol.) or sperm samples with low pregnancy potential (e.g., for identifying potentially infertile males or for evaluating the effectiveness of a male contraception means) are disclosed. The invention pertains to easy-to-use devices that can rapidly recover motile sperm from semen and assays and kits that use the devices to identify high-pregnancy-potential sperm samples. Preferred tests for identifying sperm samples with high pregnancy potential are esp. lipid peroxidn. tests that measure an indicator of lipid peroxidn. or a change in an indicator.				
ST	male fertility detn sperm pregnancy potential; lipid peroxidn test sperm male fertility				

IT Dyes
Immunoassay
Latex
Oxidative stress, biological
Peroxidation
Pregnancy
Semen
Sperm
(assays and app. and kits for detg. male fertility)
IT Lipids, analysis
RL: ANT (Analyte); BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); PROC (Process); USES (Uses)
(assays and app. and kits for detg. male fertility)
IT Glycerides, analysis
Glycolipids
Phosphatidylglycerols
Phospholipids, analysis
Protamines
Proteins, analysis
Sulfolipids
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(assays and app. and kits for detg. male fertility)
IT Antibodies
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(assays and app. and kits for detg. male fertility)
IT Gamete and Germ cell
(intrafallopian transfer; assays and app. and kits for detg. male fertility)
IT Insemination, artificial
(intrauterine; assays and app. and kits for detg. male fertility)
IT Cell nucleus
Flagella
Mitochondria
(proteins; assays and app. and kits for detg. male fertility)
IT Sperm
(acrosome, proteins; assays and app. and kits for detg. male fertility)
IT Fertilization
(extracorporeal, assays and app. and kits for detg. male fertility)
IT Enzymes
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(glycolytic, assays and app. and kits for detg. male fertility)
IT Contraceptives
Fertility
(male, assays and app. and kits for detg. male fertility)
IT Fertility
(male, disorder, assays and app. and kits for detg. male fertility)
IT Fatty acids, analysis
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(satd., assays and app. and kits for detg. male fertility)
IT Fatty acids, analysis
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(unsatd., assays and app. and kits for detg. male fertility)
IT Tubulins
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL (Biological study); USES (Uses)
(.alpha.-, assays and app. and kits for detg. male fertility)
IT 57-88-5, Cholesterol, analysis 6217-54-5, Docosahexaenoic acid
9001-15-4, Creatine kinase 9001-60-9, Lactate dehydrogenase 9013-66-5,

Glutathione peroxidase 9054-89-1, Superoxide dismutase 9068-57-9,
Acrosin 88847-89-6
RL: ANT (Analyte); THU (Therapeutic use); ANST (Analytical study); BIOL
(Biological study); USES (Uses)
(assays and app. and kits for detg. male fertility)

IT 7440-57-5, Gold, uses
RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses)
(assays and app. and kits for detg. male fertility)

L87 ANSWER 13 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 1995:217375 HCAPLUS
DN 122:4159
TI Purification and characterization of **phospholipid hydroperoxide glutathione peroxidase** from rat **testis** mitochondrial membranes
AU Roveri, Antonella; Maiorino, Matilde; Nisii, Carla; Ursini, Fulvio
CS Department of Biological Chemistry, University of Padova, via Trieste 75, I-35121, Padova, Italy
SO Biochimica et Biophysica Acta (1994), 1208(2), 211-21
CODEN: BBACAQ; ISSN: 0006-3002
PB Elsevier
DT Journal
LA English
CC 7-2 (Enzymes)
AB The selenoenzyme **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** is highly expressed in rat **testis**, where it is under gonadotropin control. In this organ a relevant **PHGPx** activity is strongly linked to mitochondria of cells undergoing differentiation to **spermatozoa**. This prompted a study on the possible difference between the sol. and the mitochondrial enzyme and the nature of the binding. The mitochondrial **PHGPx** activity could be solubilized by **detergents** or by the combined action of mild **detergent** treatment and ionic strength, thus suggesting an electrostatic binding of the protein to the inner surfaces of the organelle. The same chromatog. purifn. procedures were applied to cytosolic and membrane bound **PHGPx**, without revealing any significant difference between the two forms. Moreover, the electrophoretic mobility, the reactivity to antibodies and the fragmentation patterns also suggested the identity of the two forms of **testis PHGPx**. Eventually, **testis** cytosolic and membrane bound **PHGPx** showed the same substrate specificity for both peroxidic and **thiol** substrates. On the other hand, a complex behavior on hydrophobic interaction chromatog., compatible with multiple forms of the enzyme, and with a different tertiary structure of the major peaks was obsd. for sol. and mitochondrial **PHGPx**. Accordingly, two-dimensional electrophoresis followed by immunostaining with monoclonal antibodies, showed the presence of multiple isoforms with a different pattern between the sol. and the mitochondrial enzyme. These differences are not accounted for by glycosylation or a different degree of phosphorylation of tyrosines. In both enzymes, indeed, no glycosylation was detected and no more than 10% of **PHGPx** mols. were shown to contain a phosphotyrosine residue.
ST **phospholipid hydroperoxide glutathione peroxidase** mitochondria **testis**
IT Mitochondria
 Testis
 (purifn. and characterization of **phospholipid hydroperoxide glutathione peroxidase** from rat **testis** mitochondrial membranes)
IT Cytoplasm
 (cytosol, purifn. and characterization of **phospholipid hydroperoxide glutathione peroxidase** from

IT rat testis mitochondrial membranes)
97089-70-8, Phospholipid hydroperoxide glutathione peroxidase
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study) (purifn. and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes)

IT **97089-70-8, Phospholipid hydroperoxide glutathione peroxidase**
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study) (purifn. and characterization of phospholipid hydroperoxide glutathione peroxidase from rat testis mitochondrial membranes)

RN 97089-70-8 HCAPLUS
CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 14 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 1995:54597 HCAPLUS
DN 122:100299
TI Effect of .alpha.-lipoic acid on Se-dependent glutathione peroxidases
AU Maiorino, M.
CS Dep. Biol. Chem., Univ. Padova, Padua, I-35 121, Italy
SO Biol. Oxid. Antioxid. (1994), 69-75. Editor(s): Packer, Lester; Cadenas, Enrique. Publisher: Hippocrates, Stuttgart, Germany.
CODEN: 60KQA6
DT Conference
LA English
CC 7-3 (Enzymes)
AB The relative reactivity of different **thiols** towards peroxy radicals and their substrate specificity for glutathione peroxidase or **phospholipid hydroperoxide glutathione peroxidase** were reported. The effect of oxidized **thiols** on the peroxidases activities were also reported.
ST glutathione peroxidase lipoate
IT 1200-22-2, .alpha.-Lipoic acid 9013-66-5, Glutathione peroxidase
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BIOL (Biological study) (lipoic acid effect on Se-dependent glutathione peroxidases)

L87 ANSWER 15 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 1995:23067 HCAPLUS
DN 122:127042
TI Enzymic and immunological measurements of soluble and membrane-bound **phospholipid-hydroperoxide glutathione peroxidase**
AU Roveri, Antonella; Maiorino, Matilde; Ursini, Fulvio
CS Dep. Biol. Chem., Univ. Padova, Padua, 35121, Italy
SO Methods in Enzymology (1994), 233(OXYGEN RADICALS IN BIOLOGICAL SYSTEMS, PT. C), 202-12
CODEN: MENZAU; ISSN: 0076-6879
DT Journal
LA English
CC 7-1 (Enzymes)
AB Procedures are described for the anal. of **phospholipid-hydroperoxide glutathione peroxidase** and for the prodn. of antibodies against the enzyme.
ST **phospholipid hydroperoxide glutathione peroxidase** analysis antibody

IT Antibodies
RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); BIOL (Biological study); OCCU (Occurrence)
(enzymic and immunol. measurement of phospholipid-hydroperoxide glutathione peroxide)

IT 97089-70-8
RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); **BIOL (Biological study)**; OCCU (Occurrence)
(enzymic and immunol. measurement of phospholipid-hydroperoxide glutathione peroxide)

IT 97089-70-8
RL: BAC (Biological activity or effector, except adverse); BOC (Biological occurrence); BSU (Biological study, unclassified); **BIOL (Biological study)**; OCCU (Occurrence)
(enzymic and immunol. measurement of phospholipid-hydroperoxide glutathione peroxide)

RN 97089-70-8 HCPLUS
CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 16 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
AN 1994:479115 HCPLUS
DN 121:79115
TI Distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis mitochondria
AU Godeas, Cristiana; Sandri, Gabriella; Panfili, Enrico
CS Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, via Giorgieri, 1, Trieste, 34127, Italy
SO Biochimica et Biophysica Acta (1994), 1191(1), 147-50
CODEN: BBACAQ; ISSN: 0006-3002
DT Journal
LA English
CC 13-1 (Mammalian Biochemistry)
Section cross-reference(s): 7
AB The distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in isolated rat testis mitochondria was investigated, using a reverse sucrose d. gradient centrifugation procedure for the sepn. of the inner and outer membranes and the contact sites between the two membranes. The results indicate that PHGPx is largely localized in the contact sites fraction. This finding might therefore suggest that the enzyme has more than just an antioxidant function.
ST testis mitochondria phospholipid hydroperoxide glutathione peroxidase
IT Mitochondria
(phospholipid hydroperoxide glutathione peroxidase distribution between inner and outer membranes of, of testis)
IT Testis, composition
(phospholipid hydroperoxide glutathione peroxidase distribution between mitochondria inner and outer membranes of)
IT 97089-70-8, Phospholipid hydroperoxide glutathione peroxidase
RL: BIOL (Biological study)
(distribution between mitochondria inner and outer membranes of, of testis)
IT 97089-70-8, Phospholipid hydroperoxide

glutathione peroxidase

RL: BIOL (Biological study)

(distribution between mitochondria inner and outer membranes of, of
testis)

RN 97089-70-8 HCAPLUS

CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA
INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 17 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
AN 1992:211561 HCAPLUS

DN 116:211561

TI **Phospholipid hydroperoxide glutathione peroxidase** of rat **testis**. Gonadotropin dependence and immunocytochemical **identification**

AU Roveri, Antonella; Casasco, Andrea; Maiorino, Matilde; Dalan, Paolo; Calligaro, Alberto; Ursini, Fulvio

CS Dep. Biol. Chem., Univ. Padova, Padua, Italy

SO Journal of Biological Chemistry (1992), 267(9), 6142-6
CODEN: JBCHA3; ISSN: 0021-9258

DT Journal

LA English

CC 13-1 (Mammalian Biochemistry)

Section cross-reference(s): 2

AB A high glutathione peroxidase activity toward phospholipid hydroperoxides is present in rat **testis**. The attribution of this activity to the selenoenzyme **phospholipid hydroperoxide glutathione peroxidase** (PHGPX) was supported by cross-reactivity with antibodies raised against pig heart **PHGPX** which had been purified and characterized. Rat **testis** **PHGPX** is partially cytosolic and partially linked to nuclei and mitochondria. The sol. and organelle-bound enzymes appear identical by Western blot anal. **PHGPX**, but neither Se-dependent nor non-Se-dependent glutathione peroxidase activity, is expressed in **testes** only after puberty, disappears after hypophysectomy, and is partially restored by gonadotropin treatment. Specific immunostaining of **testes** by antiserum against **PHGPX** appears as a fine granular brown pattern localized throughout the cytoplasm in more immature cells but is confined to the peripheral part of the cytoplasm, the nuclear membrane, and mitochondria in maturing **spermatogenic** cells. As expected, immunostaining of **spermatogenic** cells in hypophysectomized animals was neg., but gonadotropin treatment only marginally increased the immunoreactivity. The expression of **PHGPX** in **testes** is consistent with the previously described specific requirement for Se for synthesis of a 15-20-kDa selenoprotein which is related to the prodn. of functional **spermatozoa**.ST **phospholipid hydroperoxide glutathione peroxidase testis**; gonadotropin **phospholipid hydroperoxide glutathione peroxidase**
testisIT Cell nucleus
Mitochondria(phospholipid hydroperoxide glutathione peroxidase assocn. with, of **testis**)IT Sperm
Spermatogenesis

(phospholipid hydroperoxide glutathione peroxidase in, gonadotropin regulation of)

IT Pituitary hormones

RL: BIOL (Biological study)

(phospholipid hydroperoxide glutathione

IT peroxidase of testis regulation by)
 IT Puberty
 (phospholipid hydroperoxide glutathione
 peroxidase of testis regulation by gonadotropins in
 relation to)
 IT Testis, composition
 (phospholipid hydroperoxide glutathione
 peroxidase of, localization of, gonadotropins regulation in
 relation to)
 IT Liver, composition
 (phospholipid hydroperoxide glutathione
 peroxidase of, testis in relation to)
 IT Cytoplasm
 (cytosol, phospholipid hydroperoxide
 glutathione peroxidase of, of testis)
 IT Gonadotropins
 RL: BIOL (Biological study)
 (pituitary, phospholipid hydroperoxide
 glutathione peroxidase of testis regulation
 by)
 IT 97089-70-8, Phospholipid hydroperoxide
 glutathione peroxidase
 RL: PROC (Process)
 (of testis, localization of, gonadotropins in relation to)
 IT 9002-61-3, Chorionic gonadotropin
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological
 study, unclassified); BIOL (Biological study)
 (phospholipid hydroperoxide glutathione
 peroxidase of testis response to)
 IT 97089-70-8, Phospholipid hydroperoxide
 glutathione peroxidase
 RL: PROC (Process)
 (of testis, localization of, gonadotropins in relation to)
 RN 97089-70-8 HCPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA
 INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 18 OF 20 HCPLUS COPYRIGHT 2003 ACS on STN
 AN 1991:180927 HCPLUS
 DN 114:180927
 TI Phospholipid hydroperoxide glutathione
 peroxidase
 AU Maiorino, Matilde; Gregolin, Carlo; Ursini, Fulvio
 CS Dep. Biol. Chem., Univ. Padova, Padua, 35121, Italy
 SO Methods in Enzymology (1990), 186(Oxygen
 Radicals Biol. Syst., Pt. B), 448-57
 CODEN: MENZAU; ISSN: 0076-6879
 DT Journal
 LA English
 CC 7-2 (Enzymes)
 AB Phospholipid hydroperoxide glutathione
 peroxidase (PGHPX) of cytosol was purified and characterized.
 Kinetic mechanisms, Se content, function in protection of membranes
 against oxidative damage, and enzyme detn. in mammalian tissues are
 included.
 ST phospholipid hydroperoxide glutathione
 peroxidase; mammal phospholipid hydroperoxide
 glutathione peroxidase; cytosol phospholipid
 hydroperoxide glutathione peroxidase
 IT Organ
 (phospholipid hydroperoxide glutathione peroxidase of, of mammals,

IT detn. and purifn. and properties of)
97089-70-8P, Phospholipid hydroperoxide glutathione peroxidase
 RL: PREP (Preparation)
 (of mammalian tissue cytosol, detn. and purifn. and characterization of)
 IT **97089-70-8P, Phospholipid hydroperoxide glutathione peroxidase**
 RL: PREP (Preparation)
 (of mammalian tissue cytosol, detn. and purifn. and characterization of)
 RN 97089-70-8 HCAPLUS
 CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

L87 ANSWER 19 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 1987:630619 HCAPLUS
 DN 107:230619
 TI The role of selenium peroxidases in the protection against oxidative damage of membranes
 AU Ursini, Fulvio; Bindoli, Alberto
 CS Inst. Biol. Chem., Univ. Padova, Padua, Italy
 SO Chemistry and Physics of Lipids (1987), 44(2-4), 255-76
 CODEN: CPLIA4; ISSN: 0009-3084
 DT Journal; General Review
 LA English
 CC 4-0 (Toxicology)
 Section cross-reference(s): 1
 AB A review with 115 refs. which deals with the chem. properties of Se in relation to its antioxidant properties and its reactivity in biol. systems. The interaction selenite with **thiols** and glutathione and the reactivity of selenocompds. with hydroperoxides are described. After a short survey on the distribution, metab. and organification of Se, the role of this element as a component of the 2 seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase** are also reviewed.
 ST selenium antioxidant peroxidase review
 IT Cell membrane
 (damage to, selenium antioxidant properties and peroxidases in relation to)
 IT 7782-49-2, Selenium, biological studies
 RL: BIOL (Biological study)
 (antioxidant properties of, cell membrane damage and peroxidases in relation to)
 IT 9013-66-5, Glutathione peroxidase
 RL: BIOL (Biological study)
 (selenium antioxidant properties and cell membrane damage in relation to)

L87 ANSWER 20 OF 20 HCAPLUS COPYRIGHT 2003 ACS on STN
 AN 1987:63476 HCAPLUS
 DN 106:63476
 TI Different effects of Triton X-100, deoxycholate, and fatty acids on the kinetics of glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase**
 AU Maiorino, Matilde; Roveri, Antonella; Gregolin, Carlo; Ursini, Fulvio
 CS Inst. Biol. Chem., Univ. Padova, Padua, 35131, Italy
 SO Archives of Biochemistry and Biophysics (1986), 251(2), 600-5
 CODEN: ABBIA4; ISSN: 0003-9861

DT Journal
LA English
CC 7-3 (Enzymes)
AB The effects of Triton X 100, deoxycholate, and fatty acids were studied on the 2 steps of the ping-pong reaction catalyzed by Se-dependent glutathione peroxidases. The study was carried out by analyzing the single progression curves where the specific glutathione oxidn. was monitored by using glutathione reductase and NADPH. Although the classical glutathione peroxidase was inhibited only by Triton, the newly discovered **phospholipid hydroperoxide glutathione peroxidase** (from pig heart) was inhibited by deoxycholate and by unsatd. fatty acids. The kinetic anal. showed that in the case of glutathione peroxidase only the interaction of the lipophilic peroxidic substrate was hampered by Triton, indicating that the enzyme is not active at the interface. **Phospholipid hydroperoxide glutathione peroxidase** activity measured with linoleic acid hydroperoxide as substrate on the other hand, was not stimulated by Triton concns. which were shown to stimulate the activity with phospholipid hydroperoxides. Furthermore a slight inhibition was apparent at high Triton concns., and the effect could be attributed to a surface diln. of the substrate. Deoxycholate and unsatd. fatty acids were not inhibitory to glutathione peroxidase but inhibited both steps of the peroxidic reaction of **phospholipid hydroperoxide glutathione peroxidase**, in the presence of either amphiphilic or hydrophilic substrates. This inhibition pattern suggests an interaction of anionic detergents with the active site of this enzyme. These results are in agreement with the different roles played by these peroxidases in the control of lipid peroxide concns. in the cells. Whereas glutathione peroxidase reduces the peroxides in the water phase (mainly H₂O₂), the new peroxidase reduces the amphiphilic peroxides, possibly at the water-lipid interface.
ST glutathione peroxidase surfactant fatty acid; **phospholipid hydroperoxide glutathione peroxidase**
IT surfactant
IT Kinetics, enzymic
 (of inhibition, of glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase**, by fatty acids and surfactants)
IT Enzyme functional sites
 (of **phospholipid hydroperoxide glutathione peroxidase**, surfactants interaction with)
IT Surfactants
 (anionic, **phospholipid hydroperoxide glutathione peroxidase** inhibition by, interaction with active site in relation to)
IT Fatty acids, biological studies
RL: BIOL (Biological study)
 (unsatd., **phospholipid hydroperoxide glutathione peroxidase** inhibition by, kinetics of)
IT 9013-66-5, Glutathione peroxidase
RL: BIOL (Biological study)
 (Triton X-100 inhibition of, kinetics of)
IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
RL: BIOL (Biological study)
 (deoxycholate and fatty acids and Triton X-100 inhibition by, kinetics of, interactions with active site in relation to)
IT 9002-93-1, Triton X-100
RL: BIOL (Biological study)
 (glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase** inhibition by, kinetics of)
IT 83-44-3, Deoxycholic acid

RL: BIOL (Biological study)
(phospholipid hydroperoxide glutathione peroxidase inhibition by, kinetics of)
IT 112-80-1, Oleic acid, biological studies
RL: BIOL (Biological study)
(phospholipid hydroperoxide glutathione peroxidase inhibition by, kinetics of, Triton X-100 effect on)
IT 25657-09-4
RL: RCT (Reactant); RACT (Reactant or reagent)
(reaction of, with glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase**, kinetics of, inhibitors effect on)
IT 97089-70-8, **Phospholipid hydroperoxide glutathione peroxidase**
RL: BIOL (Biological study)
(deoxycholate and fatty acids and Triton X-100 inhibition by, kinetics of, interactions with active site in relation to)
RN 97089-70-8 HCAPLUS
CN Peroxidase, glutathione (phospholipid hydroperoxide-reducing) (9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

=> fil biosis
FILE 'BIOSIS' ENTERED AT 14:19:24 ON 13 AUG 2003
COPYRIGHT (C) 2003 BIOLOGICAL ABSTRACTS INC. (R)

FILE COVERS 1969 TO DATE.
CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 6 August 2003 (20030806/ED)

=> d all tot

L117 ANSWER 1 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
AN 1999:478880 BIOSIS
DN PREV199900478880
TI Dual function of the selenoprotein PHGPx during **sperm** maturation.
AU Ursini, Fulvio; Heim, Sabina; Kiess, Michael; Maiorino, Matilde;
Roveri, Antonella; Wissing, Josef; Flohé, Leopold (1)
CS (1) Department of Biochemistry, Technical University of Braunschweig,
Mascheroder Weg 1, D-38124, Braunschweig Germany
SO Science (Washington D C), (Aug. 27, 1999) Vol. 285, No. 5432,
pp. 1393-1396.
ISSN: 0036-8075.
DT Article
LA English
SL English
AB The selenoprotein **phospholipid hydroperoxide glutathione peroxidase** (PHGPx) changes its physical characteristics and biological functions during **sperm** maturation. **PHGPx** exists as a soluble peroxidase in **spermatids** but persists in mature **spermatozoa** as an enzymatically inactive, oxidatively cross-linked, insoluble protein. In the midpiece of mature **spermatozoa**, **PHGPx** protein represents at least 50 percent of the capsule material that embeds the helix of mitochondria. The role of **PHGPx** as a structural protein may explain the mechanical instability of the mitochondrial midpiece that is observed in selenium deficiency.

CC **Reproductive System - General; Methods *16501**
 Biochemical Studies - General *10060
 Developmental Biology - Embryology - Morphogenesis, General *25508
 BC Mammalia - Unspecified 85700
 IT Major Concepts
 Development; Reproductive System (Reproduction)
 IT Parts, Structures, & Systems of Organisms
 sperm: maturation, reproductive system
 IT Chemicals & Biochemicals
 PHGPx: selenoprotein
 ORGN Super Taxa
 Mammalia: Vertebrata, Chordata, Animalia
 ORGN Organism Name
 mammal (Mammalia)
 ORGN Organism Superterms
 Animals; Chordates; Mammals; Nonhuman Mammals; Nonhuman Vertebrates;
 Vertebrates

L117 ANSWER 2 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1999:299151 BIOSIS
 DN PREV199900299151
 TI **Role of phospholipid hydroperoxide glutathione peroxidase activity in protection against phospholipid damage in human sperm.**
 AU Hurst, R. (1); St. John, J.; Barratt, C. L. R.; Bao, Y.-P. (1);
 Williamson, G. (1)
 CS (1) Department of Biochemistry, Norwich Laboratory, Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA UK
 SO FASEB Journal, (April 23, 1999) Vol. 13, No. 7, pp. A1365.
 Meeting Info.: Annual Meeting of the American Societies for Experimental Biology on Biochemistry and Molecular Biology 99 San Francisco, California, USA May 16-20, 1999 American Societies for Experimental Biology
 . ISSN: 0892-6638.
 DT Conference
 LA English
 CC Enzymes - General and Comparative Studies; Coenzymes *10802
 Cytology and Cytochemistry - Human *02508
 Biochemical Studies - General *10060
 Metabolism - Energy and Respiratory Metabolism *13003
 Reproductive System - General; Methods *16501
 Biophysics - General Biophysical Studies *10502
 General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals *00520
 BC Hominidae 86215
 IT Major Concepts
 Bioenergetics (Biochemistry and Molecular Biophysics); Enzymology (Biochemistry and Molecular Biophysics); Reproductive System (Reproduction)
 IT Parts, Structures, & Systems of Organisms
 sperm: reproductive system
 IT Diseases
 male infertility: reproductive system disease/male
 IT Chemicals & Biochemicals
 phospholipid hydroperoxide glutathione peroxidase: antioxidant enzyme, selenium-dependent
 IT Alternate Indexing
 Infertility, Male (MeSH)
 IT Miscellaneous Descriptors
 fertility; oxidative destruction defense; phospholipid damage protection; **Meeting Abstract**
 ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 human (Hominidae)
 ORGN Organism Superterms
 Animals; Chordates; Humans; Mammals; Primates; Vertebrates
 RN 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE)
 GLUTATHIONE PEROXIDASE
 7782-49-2 (SELENIUM)

L117 ANSWER 3 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1998:488093 BIOSIS
 DN PREV199800488093
 TI Testosterone mediates expression of the selenoprotein **PHGPx** by induction of **spermatogenesis** and not by direct transcriptional gene activation.
 AU Maiorino, Matilde (1); Wissing, Josef B.; Brigelius-Flohe, Regina; Calabrese, Fiorella; Roveri, Antonella; Steinert, Peter; Ursini, Fulvio; Flohe, Leopold
 CS (1) Dipartimento Chimica Biologica, Viale G. Colombo 3, I-35121 Padova Italy
 SO FASEB Journal, (Oct., 1998) Vol. 12, No. 13, pp. 1359-1370.
 ISSN: 0892-6638.
 DT Article
 LA English
 AB Selenium deficiency is known to be associated with male infertility, and the selenoprotein **PHGPx** has been shown to increase in rat **testis** after puberty and to depend on gonadotropin stimulation in hypophysectomized rats (Roveri et al. (1992) J. Biol. Chem. 267, 6142-6146). Exposure of decapsulated whole **testis**, however, faded to reveal any transcriptional activation or inhibition of the **PHGPx** gene by testosterone, human chorionic gonadotropin, or forskolin. Nevertheless, it was verified that the specific activity of **PHGPx** in **testis**, but not of cGPx, con-elated with sexual maturation. Leydig cell destruction in vivo by ethane dimethane sulfonate (EDS) resulted in a delayed decrease in **PHGPx** activity and mRNA that could be completely prevented by testosterone substitution. cGPx transiently increased upon EDS treatment, probably as a result of reactive macrophage augmentation. In situ mRNA hybridization studies demonstrated an uncharacteristic low level of cGPx transcription in **testis**, whereas **PHGPx** mRNA was abundantly and preferentially expressed in round **spermatids**. The data show that the age or gonadotropin-dependent expression of **PHGPx** in **testis** does not result from direct transcriptional gene activation by testosterone, but is due to differentiation stage-specific expression in late **spermatids**, which are under the control of Leydig cell-derived testosterone. The striking burst of **PHGPx** expression at the transition of round to elongated **spermatids** suggests an involvement of this selenoprotein in **sperm** maturation.
 CC Reproductive System - Physiology and Biochemistry *16504
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Enzymes - Chemical and Physical *10806
 Endocrine System - Gonads and Placenta *17006
 Biochemical Studies - General *10060
 Biochemical Studies - Nucleic Acids, Purines and Pyrimidines *10062
 BC Muridae 86375
 IT Major Concepts
 Endocrine System (Chemical Coordination and Homeostasis); **Methods and Techniques**; Respiratory System (Respiration)
 IT Chemicals & Biochemicals
 ethane dimethane sulfonate; glutathione peroxidase: assay; mRNA [messenger RNA]; testosterone; **PHGPx**: selenoprotein
 IT Methods & Equipment
 in situ hybridization: labeling method, nucleic acid labeling;

IT spectrophotometry: analytical method, photometry: CB
 IT Miscellaneous Descriptors
 IT **spermatogenesis**
 ORGN Super Taxa
 ORGN Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 ORGN Wistar rat (Muridae): male
 ORGN Organism Superterms
 ORGN Animals; Chordates; Mammals; Nonhuman Mammals; Nonhuman Vertebrates;
 ORGN Rodents; Vertebrates
 RN 58-22-0 (TESTOSTERONE)
 RN 9013-66-5 (GLUTATHIONE PEROXIDASE)
 RN 4672-49-5 (ETHANE DIMETHANE SULFONATE)

L117 ANSWER 4 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1998:57363 BIOSIS
 DN PREV199800057363
 TI **Phospholipid hydroperoxide glutathione peroxidase (PHGPx)**: More than an antioxidant enzyme.
 AU Ursini, Fulvio; Maiorino, Matilde; Roveri, Antonella
 CS Dep. Biol. Chem., Univ. Padova, Padova Italy
 SO Biomedical and Environmental Sciences, (Sept., 1997) Vol. 10,
 No. 2-3, pp. 327-332.
 Meeting Info.: **Sixth International Symposium on Selenium in Biology and Medicine** Beijing, China The Chinese Academy of Preventive Medicine
 . ISSN: 0895-3988.
 DT Conference
 LA English
 CC Enzymes - General and Comparative Studies; Coenzymes *10802
 Biochemical Studies - General *10060
 General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals *00520
 IT Major Concepts
 IT Enzymology (Biochemistry and Molecular Biophysics)
 IT Chemicals & Biochemicals
 IT glutathione peroxidase; **phospholipid hydroperoxide glutathione peroxidase [PHGPx]**: antioxidant enzyme; selenocysteine glutamine; tryptophan; vitamin E; 15-lipoxygenase
 IT Miscellaneous Descriptors
 IT **Meeting Paper**
 RN 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
 GLUTATHIONE PEROXIDASE)
 RN 9013-66-5 (GLUTATHIONE PEROXIDASE)
 RN 54-12-6Q (TRYPTOPHAN)
 RN 73-22-3Q (TRYPTOPHAN)
 RN 1406-18-4 (VITAMIN E)
 RN 82249-77-2 (15-LIPOXYGENASE)

L117 ANSWER 5 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1998:57349 BIOSIS
 DN PREV199800057349
 TI Product of the Schistosoma mansoni glutathione peroxidase gene is a selenium containing **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** sharing molecular weight and substrate specificity with its mammalian counterpart.
 AU Maiorino, Matilde (1); Pierce, Raymond; Flohe, Leopold
 CS (1) Dep. Biol. Chem., Via Trieste 75, I-35121 Padova Italy
 SO Biomedical and Environmental Sciences, (Sept., 1997) Vol. 10,
 No. 2-3, pp. 209-213.
 Meeting Info.: **Sixth International Symposium on Selenium in Biology and Medicine** Beijing, China The Chinese Academy of Preventive

Medicine
 . ISSN: 0895-3988.

DT Conference

LA English

CC Enzymes - General and Comparative Studies; Coenzymes *10802
 Genetics and Cytogenetics - General *03502
 Biochemical Studies - General *10060
General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals *00520

BC Trematoda 45200
 Bovidae 85715
 Suidae 85740

IT Major Concepts
 Enzymology (Biochemistry and Molecular Biophysics); Molecular Genetics (Biochemistry and Molecular Biophysics)

IT Chemicals & Biochemicals
 glutathione peroxidase gene; **phospholipid hydroperoxide glutathione peroxidase [PHGPx]**: selenium containing; selenocysteine

IT Miscellaneous Descriptors
Meeting Paper

ORGN Super Taxa
 Bovidae: Artiodactyla, Mammalia, Vertebrata, Chordata, Animalia;
 Suidae: Artiodactyla, Mammalia, Vertebrata, Chordata, Animalia;
 Trematoda

ORGN Organism Name
 bovine (Bovidae); porcine (Suidae); Schistosoma-mansoni (Trematoda)

ORGN Organism Superterms
 Animalia; Animals; Artiodactyls; Chordates; Helminthes; Invertebrata; Mammals; Nonhuman Mammals; Nonhuman Vertebrates; Trematoda; Platyhelminthes; Vertebrates

RN 9013-66-5 (GLUTATHIONE PEROXIDASE)
 7782-49-2 (SELENIUM)
97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE)
 3614-08-2 (SELENOCYSTEINE)

L117 ANSWER 6 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1997:87282 BIOSIS
 DN PREV199799378995
 TI **Phospholipid hydroperoxide glutathione peroxidase (PHGPx) in rat testis nuclei is bound to chromatin.**
 AU Godeas, Cristiana; Tramer, Federica; Micali, Fulvio; **Roveri, Antonella**; Maiorino, Matilde; Nisii, Carla; Sandri, Gabriella; Panfili, Enrico (1)
 CS (1) Dep. Biochem., Biophysics Macromolecular Chemistry, Univ. Trieste, Via Giorgieri, 1-34127 Trieste Italy
 SO Biochemical and Molecular Medicine, (1996) Vol. 59, No. 2, pp. 118-124.
 ISSN: 1077-3150.
 DT Article
 LA English
 AB In rat testis nuclei the activity of the selenoenzyme **phospholipid hydroperoxide glutathione peroxidase (PHGPx, EC 1.11.1.12)** is much higher than in other tissues and subcellular compartments, with the sole exception of mitochondria. In nuclei, the bound enzyme is solubilized by DNase I treatment, thus suggesting a binding to chromatin. Treatment with ionic strength releases about 70% of bound **PHGPx**, suggesting that electrostatic bonds are involved. Immunogold electron microscopy indicates the association of **PHGPx** with chromatin structures in isolated nuclei. A possible interpretation of these data is a **PHGPx** protective role against

DNA peroxidative damage. Furthermore, in agreement with kinetic and structural information, PHGPx-chromatin binding could suggest an hypothetical thiol oxidase activity toward specific thiol bearing proteins which could substitute for GSH as alternative donor substrates. Such activity could give to the enzyme a new important function which is not only protective but also has a specific regulatory function in chromatin condensation.

CC Microscopy Techniques - Electron Microscopy *01058
Cytology and Cytochemistry - Animal *02506
 Genetics and Cytogenetics - Animal *03506
 Biochemical Studies - Nucleic Acids, Purines and Pyrimidines *10062
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Enzymes - Physiological Studies *10808
 Anatomy and Histology, General and Comparative - Microscopic and Ultramicroscopic Anatomy *11108
Reproductive System - Physiology and Biochemistry *16504
 BC Muridae *86375
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Cell Biology; Enzymology
 (Biochemistry and Molecular Biophysics); Genetics; **Methods and Techniques**; Morphology; Reproductive System (Reproduction)
 TT Chemicals & Biochemicals
 PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE; EC 1.11.1.
 12
 IT Miscellaneous Descriptors
 ANALYTICAL METHOD; CHROMATIN; CONDENSATION; DNA; **EC 1.11.1.12**; IMMUNOGOLD ELECTRON MICROSCOPY;
 MOLECULAR GENETICS; NUCLEI; **PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE**;
 REPRODUCTIVE SYSTEM; **TESTIS**
 ORGN Super Taxa
 Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia
 ORGN Organism Name
 rat (Muridae)
 ORGN Organism Superterms
 animals; chordates; mammals; nonhuman mammals; nonhuman vertebrates;
 rodents; vertebrates
 RN 97089-70-8 (**PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE**)
 97089-70-8 (EC 1.11.1.
 12)

L117 ANSWER 7 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1996:378037 BIOSIS
 DN PREV199699100393
 TI Influence of selenium status on activity of **phospholipid hydroperoxide glutathione peroxidase** in rat liver and **testis** in comparison with other selenoproteins.
 AU Cockell, Kevin A. (1); Brash, Alan R.; Burk, Raymond F.
 CS (1) Nutrition Res. Div., Food Directorate, Health Protection Branch, Health Canada, 2203C Sir F.G. Banting Research Centre, Tunney's Pasture, Ottawa, ON K1A 0L2 Canada
 SO Journal of Nutritional Biochemistry, (1996) Vol. 7, No. 6, pp. 333-338.
 ISSN: 0955-2863.
 DT Article
 LA English
 AB Selenium-deficient rats (-Se, fed a Torula yeast-based diet containing no added selenium for 6 weeks) were injected intraperitoneally with up to 50 mu-g selenium per kg bodyweight (BW) and sacrificed 6 or 12 hr later. Control rats were fed a similar diet with 0.25 mg Se/kg diet added as sodium selenate. **Phospholipid hydroperoxide glutathione peroxidase** (phGSH-Px) and cellular

glutathione peroxidase (cGSH-Px) activities were determined in liver and **testis**. Extracellular glutathione peroxidase (eGSH-Px) activity and selenoprotein P level were measured in plasma. Liver phGSH-Px activity in control rats was small in comparison with liver cGSH-Px activity. Much of the phGSH-Px activity measured in liver (especially under -Se conditions) was accounted for by non-specific NADPH oxidation, which was measurable in the absence of any added substrate in the reaction vial, or when a non-reactive substrate analogue was used. Gross activity of liver phGSH-Px fell only to 76% of control values in selenium deficiency and showed little response to selenium injection. Liver cGSH-Px and plasma eGSH-Px activities in -Se rats were reduced to 1t 2% of control values under the same conditions, increasing after selenium injection only to 2 to 3% of control. Selenoprotein P level in plasma fell to 7% of control levels in -Se rats, returning to a maximum of 43% of control by 12 hr after injection of the highest selenium dose. In **testis**, phGSH-Px and cGSH-Px fell only to 65% and 45% of control values, respectively, and did not increase significantly in response to resupplementation of selenium under the conditions of this experiment. Based on activity levels, phGSH-Px appears to be of greater relevance in **testis** than liver. Activity of phGSH-Px in either tissue showed little change with selenium status. None of the peroxidases measured responded as strongly to short-term selenium repletion as did selenoprotein P.

CC Biochemical Methods - Proteins, Peptides and Amino Acids *10054
 Biochemical Methods - Minerals *10059
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Lipids 10066
 Biochemical Studies - Minerals 10069
 Biophysics - General Biophysical Techniques 10504
 Enzymes - Physiological Studies *10808
 Metabolism - Lipids *13006
 Metabolism - Minerals *13010
 Metabolism - Proteins, Peptides and Amino Acids *13012
 Metabolism - Metabolic Disorders *13020
 Nutrition - Minerals *13206
 Digestive System - Physiology and Biochemistry *14004
 Blood, Blood-Forming Organs and Body Fluids - Blood and Lymph Studies *15002

BC Muridae *86375

IT Major Concepts
 Blood and Lymphatics (Transport and Circulation); Digestive System (Ingestion and Assimilation); Enzymology (Biochemistry and Molecular Biophysics); Metabolism; **Methods and Techniques**; Nutrition

IT Chemicals & Biochemicals
SELENIUM; PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE; GLUTATHIONE PEROXIDASE

IT Miscellaneous Descriptors
 CELLULAR GLUTATHIONE PEROXIDASE; EXTRACELLULAR GLUTATHIONE PEROXIDASE;
 SELENOPROTEIN P

ORGN Super Taxa
 Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 Muridae (Muridae)

ORGN Organism Superterms
 animals; chordates; mammals; nonhuman vertebrates; nonhuman mammals;
 rodents; vertebrates

RN 7782-49-2 (SELENIUM)
97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE)
 9013-66-5 (GLUTATHIONE PEROXIDASE)

DN PREV199698802390
 TI **Phospholipid hydroperoxide glutathione peroxidase**: More than an antioxidant enzyme.
 AU Maiorino, Matilde (1); **Roveri, Antonella** (1); Gregolin, Carlo (1); **Ursini, Fulvio**
 CS (1) Univ. Padova, Padova Italy
 SO Packer, L. [Editor]; Cadenas, E. [Editor]. Antioxidants in Health and Disease, (1995) Vol. 2, pp. 265-286. Antioxidants in Health and Disease; Biothiols in health and disease.
 Publisher: Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016, USA.
 ISBN: 0-8247-9654-3.
 DT Book
 LA English
 CC Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Minerals 10069
 Enzymes - Physiological Studies 10808
 Metabolism - Minerals *13010
 Toxicology - General; Methods and Experimental *22501
 Plant Physiology, Biochemistry and Biophysics - Enzymes *51518
 Plant Physiology, Biochemistry and Biophysics - Metabolism *51519
 Plant Physiology, Biochemistry and Biophysics - Chemical Constituents *51522
 BC Plantae - Unspecified *11000
 IT Major Concepts
 Enzymology (Biochemistry and Molecular Biophysics); Metabolism;
 Toxicology
 IT Chemicals & Biochemicals
 PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
 PEROXIDASE; SELENIUM; SELENOCYSTINE; SELENOHOMOCYSTINE;
 SELENOCYSTATHIONINE; SELENOMETHIONINE
 IT Miscellaneous Descriptors
 BOOK CHAPTER; METABOLISM; METHYLSelenocystine; SELENIUM;
 SELENOCYSTATHIONINE; SELENOCYSTINE; SELENOHOMOCYSTINE; SELENOMETHIONINE
 ORGN Super Taxa
 Plantae - Unspecified: Plantae
 ORGN Organism Name
 Plantae (Plantae - Unspecified)
 ORGN Organism Superterms
 plants
 RN 97089-70-8 (**PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE**)
 7782-49-2 (SELENIUM)
 1464-43-3Q (SELENOCYSTINE)
 2897-21-4Q (SELENOCYSTINE)
 29621-88-3Q (SELENOCYSTINE)
 7776-33-2 (SELENOHOMOCYSTINE)
 2196-58-9 (SELENOCYSTATHIONINE)
 1464-42-2Q (SELENOMETHIONINE)
 3211-76-5Q (SELENOMETHIONINE)

 L117 ANSWER 9 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1995:27827 BIOSIS
 DN PREV199598042127
 TI Purification and characterization of **phospholipid hydroperoxide glutathione peroxidase** from rat testis mitochondrial membranes.
 AU **Roveri, Antonella**; Maiorino, Matilde; Nisii, Carla; **Ursini, Fulvio** (1)
 CS (1) Dep. Chem. Sci. Technol., Univ. Udine, Udine Italy
 SO Biochimica et Biophysica Acta, (1994) Vol. 1208, No. 2, pp. 211-221.
 ISSN: 0006-3002.
 DT Article

LA English

AB The selenoenzyme **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** is highly expressed in rat **testis**, where it is under gonadotropin control. In this organ a relevant **PHGPx** activity is strongly linked to mitochondria of cells undergoing differentiation to **spermatozoa**. This prompted a study on the possible difference between the soluble and the mitochondrial enzyme and the nature of the binding. The mitochondrial **PHGPx** activity could be solubilized by detergents or by the combined action of mild detergent treatment and ionic strength, thus suggesting an electrostatic binding of the protein to the inner surfaces of the organelle. The same chromatographic purification procedures were applied to cytosolic and membrane bound **PHGPx**, without revealing any significant difference between the two forms. Moreover, the electrophoretic mobility, the reactivity to antibodies and the fragmentation patterns also suggested the identity of the two forms of **testis PHGPx**. Eventually, **testis** cytosolic and membrane bound **PHGPx** showed the same substrate specificity for both peroxidic and thiol substrates. On the other hand, a complex behaviour on hydrophobic interaction chromatography, compatible with multiple forms of the enzyme, and with a different tertiary structure of the major peaks was observed for soluble and mitochondrial **PHGPx**. Accordingly, two-dimensional electrophoresis followed by immunostaining with monoclonal antibodies, showed the presence of multiple isoforms with a different pattern between the soluble and the mitochondrial enzyme. These differences are not accounted for by glycosylation or a different degree of phosphorylation of tyrosines. In both enzymes, indeed, no glycosylation was detected and no more than 10% of **PHGPx** molecules were shown to contain a phosphotyrosine residue.

CC **Cytology and Cytochemistry - Animal *02506**

Biochemical Studies - General 10060
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Biochemical Studies - Minerals 10069
 Biophysics - Molecular Properties and Macromolecules *10506
 Biophysics - Membrane Phenomena *10508
 Enzymes - Chemical and Physical *10806
 Enzymes - Physiological Studies *10808
 Metabolism - Lipids 13006

Reproductive System - Physiology and Biochemistry *16504

Endocrine System - Gonads and Placenta *17006
 Developmental Biology - Embryology - Morphogenesis, General *25508

BC Muridae *86375

IT Major Concepts

Biochemistry and Molecular Biophysics; Cell Biology; Endocrine System (Chemical Coordination and Homeostasis); Enzymology (Biochemistry and Molecular Biophysics); Membranes (Cell Biology); Reproductive System (Reproduction)

IT Chemicals & Biochemicals

PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE; EC 1.11.1.
12; PHOSPHOTYROSINE; SELENIUM

IT Miscellaneous Descriptors

CHROMATOGRAPHY; CYTOSOLIC ENZYME; EC 1.11
.1.12; ELECTROPHORESIS; ELECTROSTATIC BINDING;
 ORGANELLE MEMBRANE BOUND ENZYME; PEPTIDE MAPPING; PHOSPHOTYROSINE;
 SELENIUM; SELENOENZYME; SOLUBLE PROTEIN; **SPERMATOGENESIS;**
 STRUCTURE-ACTIVITY RELATIONSHIP; SUBSTRATE SPECIFICITY

ORGN Super Taxa

Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name

Muridae (Muridae)

ORGN Organism Superterms

animals; chordates; mammals; nonhuman vertebrates; nonhuman mammals;

RN rodents; vertebrates
RN 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE)
97089-70-8 (EC 1.11.1.
12)
21820-51-9 (PHOSPHOTYROSINE)
7782-49-2 (SELENIUM)

L117 ANSWER 10 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:421809 BIOSIS
DN PREV199497434809
TI Comparison between soluble and membrane bound **phospholipid hydroperoxide glutathione peroxidase**.
AU Maiorino, Matilde (1); Roveri, Antonella (1); Ursini, Fulvio
CS (1) Dep. Biol. Chem., Univ. Padova, I-35121 Padova Italy
SO Asada, K. [Editor]; Yoshikawa, T. [Editor]. **International Congress Series**, (1994) No. 1058, pp. 107-110. **International Congress Series**; Frontiers of reactive oxygen species in biology and medicine. Publisher: Elsevier Science Publishers B.V. PO Box 211, Sara Burgerhartstraat 25, 1000 AE Amsterdam, Netherlands.
Meeting Info.: **6th International Conference on Superoxide and Superoxide Dismutase** Kyoto, Japan October 11-15, 1993
ISSN: 0531-5131. ISBN: 0-444-81778-6.
DT Book; Conference
LA English
CC **General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520**
Biochemical Studies - Nucleic Acids, Purines and Pyrimidines 10062
Biochemical Studies - Proteins, Peptides and Amino Acids *10064
Biochemical Studies - Lipids *10066
Biochemical Studies - Minerals 10069
Enzymes - Physiological Studies *10808
Reproductive System - Physiology and Biochemistry *16504
BC Muridae *86375
IT Major Concepts
Biochemistry and Molecular Biophysics; Enzymology (Biochemistry and Molecular Biophysics); Reproductive System (Reproduction)
IT Chemicals & Biochemicals
PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE; TYROSINE KINASE; SELENIUM
IT Miscellaneous Descriptors
BOOK CHAPTER; DNA; **MEETING PAPER; SELENIUM; TESTIS; TYROSINE KINASE**
ORGN Super Taxa
Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia
ORGN Organism Name
rat (Muridae)
ORGN Organism Superterms
animals; chordates; mammals; nonhuman mammals; nonhuman vertebrates; rodents; vertebrates
RN 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE)
80449-02-1 (TYROSINE KINASE)
7782-49-2 (SELENIUM)

L117 ANSWER 11 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
AN 1994:415757 BIOSIS
DN PREV199497428757
TI Enzymatic and immunological measurements of soluble and membrane-bound **phospholipid-hydroperoxide glutathione peroxidase**.
AU Roveri, Antonella (1); Maiorino, Matilde (1); Ursini,

Fulvio

CS (1) Dep. Biol. Chem., Univ. Padova, 35121 Padova Italy
 SO Packer, L. [Editor]. Methods in Enzymology, (1994) Vol. 233, pp. 202-212.
 Methods in Enzymology; Oxygen radicals in biological systems, Part C.
 Publisher: Academic Press, Inc. 1250 Sixth Ave., San Diego, California
 92101, USA.
 ISSN: 0076-6879. ISBN: 0-12-182134-X.

DT Book
 LA English
 CC Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Biophysics - Molecular Properties and Macromolecules *10506
 Biophysics - Membrane Phenomena *10508
 Enzymes - Methods *10804
 Enzymes - Physiological Studies *10808
 Immunology and Immunochemistry - General; Methods *34502

IT Major Concepts
 Biochemistry and Molecular Biophysics; Enzymology (Biochemistry and
 Molecular Biophysics); Immune System (Chemical Coordination and
 Homeostasis); Membranes (Cell Biology)

IT Chemicals & Biochemicals
PHOSPHOLIPID-HYDROPEROXIDE GLUTATHIONE PEROXIDASE

IT Miscellaneous Descriptors
 ANTIBODY PRODUCTION; ASSAY PROCEDURE; BOOK CHAPTER; METHOD; STANDARD
 ENZYME; WESTERN BLOTH

RN 97089-70-8 (**PHOSPHOLIPID-HYDROPEROXIDE GLUTATHIONE PEROXIDASE**)

L117 ANSWER 12 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1994:405397 BIOSIS
 DN PREV199497418397
 TI Cloning and sequencing of the cDNA encoding a human **testis phospholipid hydroperoxide glutathione peroxidase**.
 AU Esworthy, R. Steven (1); Doan, Khiem; Doroshow, James H.; Chu, Fong-Fong
 CS (1) Dep. Med. Oncol. Ther. Res., City Hope Natl. Med. Cent., 1500 E.
 Duarte Road, Duarte, CA 91010 USA
 SO Gene (Amsterdam), (1994) Vol. 144, No. 2, pp. 317-318.
 ISSN: 0378-1119.

DT Conference
 LA English
 AB A human cDNA that encodes a polypeptide that has 94% deduced amino-acid sequence identity to porcine **phospholipid hydroperoxide glutathione peroxidase** was cloned from a **testis** library. The sequence shows preservation of the UGA selenocysteine codon, putative active-site Trp and Glu residues and a Tyr residue that is phosphorylated in the porcine protein. The 3'-UTR shows some conservation of sequences implicated in the insertion of selenocysteine at an opal codon in human glutathione peroxidase-1.

CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Genetics and Cytogenetics - Human *03508
 Biochemical Studies - Nucleic Acids, Purines and Pyrimidines *10062
 Biochemical Studies - Proteins, Peptides and Amino Acids *10064
 Replication, Transcription, Translation *10300
 Enzymes - Physiological Studies *10808
 Reproductive System - Physiology and Biochemistry *16504

BC Hominidae *86215
 IT Major Concepts
 Biochemistry and Molecular Biophysics; Enzymology (Biochemistry and
 Molecular Biophysics); Genetics; Molecular Genetics (Biochemistry and
 Molecular Biophysics); Reproductive System (Reproduction)

IT Chemicals & Biochemicals

**PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
PEROXIDASE; GENBANK-X71973**

IT Sequence Data
 amino acid sequence; molecular sequence data; nucleotide sequence;
 EMBL-X71973; GENBANK-X71973

IT Miscellaneous Descriptors
COMPLEMENTARY DNA; MEETING ABSTRACT

ORGN Super Taxa
 Hominidae: Primates, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name
 Hominidae (Hominidae)

ORGN Organism Superterms
 animals; chordates; humans; mammals; primates; vertebrates

RN 97089-70-8 (**PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE**)
 150354-87-3 (GENBANK-X71973)

L117 ANSWER 13 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1994:247010 BIOSIS

DN PREV199497260010

TI Selenium toxicity in stable **selenoperoxidase**-transfected mod
 cells.

AU Evenson, Jacque; Lei, Xingen; Patrick, Derrick; Wen, Wu; Moran, Tom;
 Sunde, Roger A.

CS Nutr. Sci. Group, Univ. Missouri, Columbia, MO 65211 USA

SO FASEB Journal, (1994) Vol. 8, No. 4-5, pp. A435.

Meeting Info.: Experimental Biology 94, Parts I and II Anaheim,
 California, USA April 24-28, 1994

ISSN: 0892-6638.

DT Conference

LA English

CC General Biology - Symposia, Transactions and Proceedings of
 Conferences, Congresses, Review Annuals 00520

Cytology and Cytochemistry - Animal *02506

Genetics and Cytogenetics - Animal *03506

Biochemical Methods - Minerals *10059

Biochemical Studies - Proteins, Peptides and Amino Acids *10064

Biochemical Studies - Minerals 10069

Enzymes - Physiological Studies *10808

Metabolism - Minerals *13010

Reproductive System - Anatomy *16502

Reproductive System - Pathology *16506

Toxicology - General; Methods and Experimental *22501

Neoplasms and Neoplastic Agents - Neoplastic Cell Lines *24005

Neoplasms and Neoplastic Agents - Biochemistry *24006

Tissue Culture, Apparatus, Methods and Media *32500

BC Muridae *86375

IT Major Concepts

Biochemistry and Molecular Biophysics; Cell Biology; Enzymology
 (Biochemistry and Molecular Biophysics); Genetics; Metabolism;

Methods and Techniques; Reproductive System (Reproduction);

Toxicology; Tumor Biology

IT Chemicals & Biochemicals

SELENIUM

IT Miscellaneous Descriptors

MEETING ABSTRACT; MOUSE MAMMARY ADENOCARCINOMA MOD CELLS

ORGN Super Taxa

Muridae: Rodentia, Mammalia, Vertebrata, Chordata, Animalia

ORGN Organism Name

Muridae (Muridae)

ORGN Organism Superterms

animals; chordates; mammals; nonhuman vertebrates; nonhuman mammals;
 rodents; vertebrates

RN 7782-49-2 (SELENIUM)

L117 ANSWER 14 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1993:44428 BIOSIS
 DN PREV199344021278
 TI **Phospholipid hydroperoxide glutathione peroxidase**: A peculiar member of a growing family of mammalian selenoproteins.
 AU Brigelius-Flohe, R. (1); Aumann, K. D.; Gross, G.; Schuckelt, R.; Ursini, F.; Flohe, L.
 CS (1) Med. Hochschule Hannover, Molekularpharmakol., Konstanty Gutschow Str. 6, D-3000 Hannover Germany
 SO Biological Chemistry Hoppe-Seyler, (1992) Vol. 373, No. 9, pp. 758-759.
 Meeting Info.: Autumn Meeting of the Gesellschaft fuer Biologische Chemie (German Society for Biological Chemistry), Rostock, Germany, September 24-26, 1992. BIOL CHEM HOPPE-SEYLER
 ISSN: 0177-3593.
 DT Conference
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Comparative Biochemistry, General 10010
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Minerals 10069
 Biophysics - Molecular Properties and Macromolecules 10506
 Enzymes - General and Comparative Studies; Coenzymes *10802
 Enzymes - Chemical and Physical *10806
 Enzymes - Physiological Studies *10808
 IT Major Concepts
 Enzymology (Biochemistry and Molecular Biophysics)
 IT Chemicals & Biochemicals
 PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE; EC 1.11.1.9
 IT Sequence Data
 amino acid sequence; molecular sequence data
 IT Miscellaneous Descriptors
 ABSTRACT; ANALYTICAL METHOD; EC 1.11.1.9
 RN 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE)
 9013-66-5 (EC 1.11.1.9)

L117 ANSWER 15 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1992:422824 BIOSIS
 DN BR43:66974
 TI **PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE** FROM THE INHIBITION OF LIPID PEROXIDATION TO THE CONTROL OF CELLULAR FUNCTIONS?.
 AU URSINI F; MAIORINO M; ROVERI A; BRIGELIUS-FLOHE R; SCHUCKELT R; WOLF B; FLOHE L
 CS IST. CHIMICA, UNIV. UDINE, ITALY.
 SO DAVIES, K. J. A. (ED.). OXIDATIVE DAMAGE AND REPAIR: CHEMICAL, BIOLOGICAL AND MEDICAL ASPECTS; 5TH BIENNIAL MEETING OF THE INTERNATIONAL SOCIETY FOR FREE RADICAL RESEARCH, PASADENA, CALIFORNIA, USA, NOVEMBER 14-20, 1990. XXVIII+899P. PERGAMON PRESS: OXFORD, ENGLAND, UK; ELMSFORD, NEW YORK, USA. ILLUS. (1991) 0 (0), 612-618.
 ISBN: 0-08-041749-3.
 DT Conference
 FS BR; OLD
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of Conferences, Congresses, Review Annuals 00520
 Cytology and Cytochemistry - Animal *02506
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064

Biochemical Studies - Lipids 10066
 Biochemical Studies - Minerals 10069
 Enzymes - Chemical and Physical *10806
 Enzymes - Physiological Studies *10808
 Nutrition - Malnutrition; Obesity *13203
 Nutrition - Minerals *13206
Reproductive System - Physiology and Biochemistry 16504
 Endocrine System - Gonads and Placenta 17006
 BC Animalia - Unspecified 33000
 IT Miscellaneous Descriptors
 SELENIUM DEFICIENCY **TESTES** GONADOTROPIN EFFECT FREE RADICALS
 RN 7782-49-2 (SELENIUM)
 97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
 GLUTATHIONE PEROXIDASE)

 L117 ANSWER 16 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1992:263490 BIOSIS
 DN BA93:139815
 TI **PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE**
 PEROXIDASE OF RAT TESTIS GONADOTROPIN DEPENDENCE AND
 IMMUNOCYTOCHEMICAL IDENTIFICATION.
 AU ROVERI A; CASASCO A; MAIORINO M; DALAN P; CALLIGARO A;
 URSINI F
 CS DEP. BIOLOGICAL CHEMISTRY, UNIVERSITY PADOVA, ITALY.
 SO J BIOL CHEM, (1992) 267 (9), 6142-6146.
 CODEN: JBCHA3. ISSN: 0021-9258.
 FS BA; OLD
 LA English
 AB A high glutathione peroxidase activity toward phospholipid hydroperoxides
 is present in rat **testis**. The attribution of this activity to
 the selenoenzyme **phospholipid hydroperoxide**
glutathione peroxidase (PHGPX) was supported
 by cross-reactivity with antibodies raised against pig heart **PHGPX**
 which had been purified and characterized. Rat **testis**
PHGPX is partially cytosolic and partially linked to nuclei and
 mitochondria. The soluble and organelle-bound enzymes appear identical by
 Western blot analysis. **PHGPX**, but neither selenium-dependent nor
 nonselenium-dependent glutathione peroxidase activity, is expressed in
testes only after puberty, disappears after hypophysectomy, and is
 partially restored by gonadotropin treatment. Specific immunostaining of
testes by antiserum against **PHGPX** appears as a fine
 granular brown pattern localized throughout the cytoplasm in more immature
 cells but is confined to the peripheral part of the cytoplasm, the nuclear
 membrane, and mitochondria in maturing **spermatogenic** cells. As
 expected, immunostaining of **spermatogenic** cells in
 hypophysectomized animals was negative, but gonadotropin treatment only
 marginally increased the immunoreactivity. The expression of **PHGPX**
 in **testes** is consistent with the previously described specific
 requirement for selenium for synthesis of a 15-20-kDa selenoprotein which
 is related to the production of functional **spermatozoa**.
 CC **Cytology and Cytochemistry - Animal *02506**
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Minerals 10069
 Enzymes - Physiological Studies *10808
 Metabolism - Minerals *13010
 Nutrition - Minerals *13206
Reproductive System - Physiology and Biochemistry *16504
 Endocrine System - Gonads and Placenta *17006
 Immunology and Immunochemistry - General; Methods 34502
 BC Muridae 86375
 IT Miscellaneous Descriptors
 SELENOPROTEIN DIETARY SELENIUM **SPERMATOGENESIS**
 RN 7782-49-2 (SELENIUM)

**97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE)**

L117 ANSWER 17 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1991:107021 BIOSIS
 DN BR40:49841
 TI **PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
PEROXIDASE** FROM THE INHIBITION OF LIPID PEROXIDATION TO THE
CONTROL OF CELLULAR FUNCTIONS?.
 AU **URSINI F**
 CS DEP. BIOL. CHEM., UNIV. PADOVA, ITALY.
 SO MEETING ON OXIDATIVE DAMAGE AND REPAIR HELD AT THE 5TH BIENNIAL
MEETING OF THE INTERNATIONAL SOCIETY FOR FREE RADICAL RESEARCH,
PASADENA, CALIFORNIA, USA, NOVEMBER 14-20, 1990. FREE RADICAL BIOL MED.
(1990) 9 (SUPPL 1), 127.
 CODEN: FRBMEH. ISSN: 0891-5849.
 DT Conference
 FS BR; OLD
 LA English
 CC General Biology - Symposia, Transactions and Proceedings of
Conferences, Congresses, Review Annuals 00520
 Cytology and Cytochemistry - Animal *02506
 Biochemistry - Gases *10012
 Biochemical Studies - Lipids *10066
 Biochemical Studies - Sterols and Steroids 10067
 Enzymes - Physiological Studies *10808
 Reproductive System - Physiology and Biochemistry *16504
 BC Muridae 86375
 IT Miscellaneous Descriptors
 ABSTRACT RAT TESTIS PHOSPHOLIPIDS CHOLESTEROL HYDROPEROXIDE
 RN 55529-60-7 (CHOLESTEROL HYDROPEROXIDE)
 **97089-70-8 (PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE)**

L117 ANSWER 18 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1986:223085 BIOSIS
 DN BA81:114385
 TI **PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
PEROXIDASE.**
 AU **URSINI F; MAIORINO M; GREGOLIN C**
 CS INST. BIOL. CHEM., UNIV. PADUA, 35131 PADUA, ITALY.
 SO INT J TISSUE REACT, (1986) 8 (2), 99-104.
 CODEN: IJTEDP. ISSN: 0250-0868.
 FS BA; OLD
 LA English
 AB In acute inflammation the activated leukocytes generate cytotoxic oxygen free radicals. The role of these radical species in the cellular damage following an acute inflammatory reaction is well known. On the other hand the extent of the cellular damage must be dependent on both the rate of the free-radical generation and the scavenging capacity of the tissues. Among the enzymes acting in the inhibition of this damage, a key role seems to be played by the new selenoenzyme **phospholipid hydroperoxide glutathione peroxidase**. Indeed the reduction of membrane hydroperoxides constitutes a secondary line of defence against lipid peroxidation, preventing the decomposition of hydroperoxides leading to the formation of new radicals. This enzyme inhibits lipid peroxidation and is as active as glutathione peroxidase on phospholipid hydroperoxides, on which no previously known peroxidase is active. Its protective activity for biomembranes, and the kinetic analysis in the presence of detergents, suggest its interfacial character. The inhibition of lipid peroxidation in the membranes apparently requires this enzyme, along with glutathione and vitamin E, in order to reduce the rate of the initiation reactions. This synergism bears out the role of this

enzyme in the multilevel defence system against free-radical damage in tissues.

CC **Cytology and Cytochemistry - Animal 02506**
 Biophysics - Membrane Phenomena *10508
 Enzymes - Physiological Studies *10808
 Pathology, General and Miscellaneous - Inflammation and Inflammatory Disease *12508
 Metabolism - Lipids *13006
 Blood, Blood-Forming Organs and Body Fluids - Blood Cell Studies 15004
 Blood, Blood-Forming Organs and Body Fluids - Lymphatic Tissue and Reticuloendothelial System 15008
 Immunology and Immunochimistry Immunopathology, Tissue Immunology 34508
 BC Muridae 86375
 IT Miscellaneous Descriptors
 RAT ACUTE INFLAMMATORY REACTION LIPID PEROXIDATION FREE-RADICAL TISSUE DAMAGE MULTILEVEL DEFENSE MECHANISM
 RN 97089-70-8 (**PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE**)

L117 ANSWER 19 OF 19 BIOSIS COPYRIGHT 2003 BIOLOGICAL ABSTRACTS INC. on STN
 AN 1985:360600 BIOSIS
 DN BA80:30592
 TI THE SELENOENZYME PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE EC-1.11.1.9.
 AU URSINI F; MAIORINO M; GREGOLIN C
 CS INSTITUTE OF BIOLOGICAL CHEMISTRY OF THE UNIVERSITY OF PADUA, VIA MARZOLO, 3, PADUA, ITALY.
 SO BIOCHIM BIOPHYS ACTA, (1985) 839 (1), 62-70.
 CODEN: BBACAQ. ISSN: 0006-3002.
 FS BA; OLD
 LA English
 AB The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described peroxidation-inhibiting protein as a **phospholipid hydroperoxide glutathione peroxidase**. The enzyme is a monomer of 23 kDa (SDS[sodium dodecyl sulfate]-polyacrylamide gel electrophoresis). It contains 1 gatom Se/22,000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-unip ping-pong mechanism, as in the case of the classical glutathione peroxidase (EC 1.11.1.9). The 2nd-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H₂O₂ is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. The phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an interfacial character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the 2 enzymes classical glutathione peroxidase and **phospholipid hydroperoxide glutathione peroxidase** are in some way related. The latter is apparently specialized for lipophilic, interfacial substrates.

CC Mathematical Biology and Statistical Methods 04500
 Biochemical Studies - Proteins, Peptides and Amino Acids 10064
 Biochemical Studies - Lipids 10066
 Biochemical Studies - Minerals 10069
 Enzymes - Chemical and Physical *10806
 Enzymes - Physiological Studies *10808

Metabolism - Lipids *13006
 Metabolism - Minerals *13010
 Plant Physiology, Biochemistry and Biophysics - Enzymes 51518
 IT Miscellaneous Descriptors
 SOYBEAN PEROXIDASE EC-1.13.11.12 GLUTATHIONE PEROXIDASE EC-1.11.1.9
 KINETICS HYDROPEROXIDE SUBSTRATE PING-PONG MECHANISM
 RN 9013-66-5 (GLUTATHIONE PEROXIDASE)
 9013-66-5 (EC-1.11.1.9)
 9029-60-1 (EC-1.13.11.12)

=> fil wpix
 FILE 'WPIX' ENTERED AT 14:21:34 ON 13 AUG 2003
 COPYRIGHT (C) 2003 THOMSON DERWENT

FILE LAST UPDATED: 8 AUG 2003 <20030808/UP>
 MOST RECENT DERWENT UPDATE: 200351 <200351/DW>
 DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> NEW WEEKLY SDI FREQUENCY AVAILABLE --> see NEWS <<<

>>> SLART (Simultaneous Left and Right Truncation) is now
 available in the /ABEX field. An additional search field
 /BIX is also provided which comprises both /BI and /ABEX <<<

>>> PATENT IMAGES AVAILABLE FOR PRINT AND DISPLAY <<<

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES,
 SEE <http://www.derwent.com/dwpi/updates/dwpicov/index.html> <<<

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
 PLEASE VISIT:
http://www.stn-international.de/training_center/patents/stn_guide.pdf <<<

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
 GUIDES, PLEASE VISIT:
http://www.derwent.com/userguides/dwpi_guide.html <<<

=>
=> d all abeq tech abex tot

L121 ANSWER 1 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2002-723318 [78] WPIX
 DNC C2002-204807
 TI New nucleic acid encoding testis-specific selenoprotein, useful e.g. for
 detecting alternative exons, which is useful in screening for male
 mammalian infertility.
 DC B04 D16
 IN BEHNE, D; BORNKAMM, G; BRIELMEIER, M; CONRAD, M; KYRIAKOPOULOS, A;
 PFEIFER, H; SCHMIDT, J
 PA (GSFU-N) GSF FORSCHUNGSZENTRUM UMWELT & GESUNDHEIT; (HAHN-N)
 HAHN-MEITNER-INST BERLIN GMBH
 CYC 100
 PI WO 2002072626 A2 20020919 (200278)* DE 47p C07K014-47
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
 NL OA PT SD SE SL SZ TR TZ UG ZM ZW
 W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK
 DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR
 KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT
 RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM
 ZW
 ADT WO 2002072626 A2 WO 2002-EP1648 20020215
 PRAI DE 2001-10107186 20010215

IC ICM C07K014-47

AB WO 200272626 A UPAB: 20021204

NOVELTY - A nucleic acid (I) that:

(i) encodes a selenoprotein (II) that is related to **phospholipid-hydroperoxide-glutathione peroxidase** (X); and

(ii) contains exons 2 - 7 of the (X)-gene with an alternative exon in the first intron of this gene, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

(1) alternative exons (AE) in the first exons of the (X)-gene having any of the sequences (S1 - S4) of 197, 251, 274 or 231 base pairs (bp), respectively, and given in the specification, or their fragments, encoding a biologically active peptide;

(2) primers for amplification of AE;

(3) mammalian (II) encoded by (I);

(4) a biologically active peptide (IIa), and its homologs or fragments, defined by the specified AE;

(5) an expression vector containing (I);

(6) host cells containing the vector of (5);

(7) a screening method for in vitro determination of mammalian fertility;

(8) an antibody (Ab) specific for (II) or (IIa);

(9) a hybridoma that produces a monoclonal Ab;

(10) a recombinant non-human animal in which AE has been inactivated;

and

(11) producing (II), and derived peptides, by culturing cells of (6).

ACTIVITY - Antiinfertility. No biological data is given.

MECHANISM OF ACTION - Nuclear localization of (II) mediator.

Protamine oxidizer; Sperm DNA oxidation protector.

USE - (I) is used for detecting alternative exons (AE), which is useful in screening for male mammalian infertility. (I) can also be used for recombinant expression of proteins or peptides, and as a hybridization probe. Proteins/peptides encoded by (I) are useful:

(i) for in vitro diagnosis, also in in vivo/in vitro treatment, of male infertility; and

(ii) to raise specific antibodies (Ab), useful as diagnostic or prognostic agents for detecting (II).

Animals, especially mice, in which AE has been inactivated, are useful as models for studying male infertility.

Dwg.0/7

FS CPI

FA AB; DCN

MC CPI: B04-E03E; B04-E03F; B04-E05; B04-E08; B04-F0100E; B04-F05; B04-G01; B04-G03; B04-G21; B04-L03B; B04-L03B0E; B04-N02B; B04-N02B0E; B04-P0100E; B11-C07A; B11-C08E2; B11-C08E3; B11-C08E5; B12-K04A; B12-K04F; B14-P02; D05-C03B; D05-C12; D05-H09; D05-H11; D05-H12A; D05-H12D1; D05-H12E; D05-H14; D05-H15; D05-H16A; D05-H17A3; D05-H17A6

TECH UPTX: 20021204

TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preferred Nucleic Acid: (I) encodes a mammalian protein, especially of human, mouse, rat or pig origin, where the AE is respectively, (S1), (S2), (S3) or (S4). Preferably the primers for amplifying AE are P1 and P2. AE is the result of alternative splicing of the primary transcript from the (X)-gene, and is detected only in testis.

Preferred Protein: The N-terminal sequences of (II) are given in the specification and are 65 amino acids (aa) for human, 83 aa for mouse, 91 aa for rat, and 77 aa for pig.

Preparation: (I) is prepared by standard biochemical and molecular biology techniques. Monoclonal Ab are prepared by standard methods of immunization and cell fusion.

Preferred Process: In method (7):

(a) DNA is isolated from sperm;

- (b) AE is amplified by a polymerase chain reaction;
- (c) the amplicon is sequenced; and
- (d) the sequence is compared with (S1).

If the sequences do not correspond, this indicates male infertility. Particularly the sperm are first tested for nuclear condensation.

gtcacagtgcgcgactcctgactacgg (P1)
cctgctgaccgcgacacgcgcgaggtta (P2)

ABEX UPTX: 20021204

ADMINISTRATION - (II) is preferably injected directly into the testis but may also be used in vitro, e.g. to treat sperm intended for in vitro fertilization.

EXAMPLE - A 34 kD selenoprotein was isolated from late rat spermatids. It reacted with antibodies against **phospholipid-hydroperoxide-glutathione peroxidase** (X) but its N-terminal sequence indicated a new protein, and a related sequence was detected in the mouse gene. Primers (sequences given in the specification) derived from known DNA and protein sequences were used to amplify the various alternative exons (AE).

L121 ANSWER 2 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2002-479678 [51] WPIX
 DNC C2002-136510
 TI Recombinant multi-gene nucleic acid construct useful in plants to improve oxidative stress tolerance and enhance root development, has genes encoding gamma-glutamylcysteine synthetase and glutathione synthetase.
 DC C06 D16
 IN CREISSEN, G P; MULLINEAUX, P M
 PA (PLAN-N) PLANT BIOSCIENCE LTD
 CYC 97
 PI WO 2002033105 A2 20020425 (200251)* EN 65p C12N015-82
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW MZ
 NL OA PT SD SE SL SZ TR TZ UG ZW
 W: AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK
 DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR
 KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO
 RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
 AU 2001094027 A 20020429 (200255) C12N015-82
 ADT WO 2002033105 A2 WO 2001-GB4559 20011012; AU 2001094027 A AU 2001-94027
 20011012
 FDT AU 2001094027 A Based on WO 200233105
 PRAI GB 2000-25312 20001016
 IC ICM C12N015-82
 AB WO 200233105 A UPAB: 20020812

NOVELTY - A stable recombinant multi-gene nucleic acid construct (I) comprising a gene encoding gamma -glutamylcysteine synthetase (gamma -ECS) (EC 6.3.2.2), and a gene encoding glutathione synthetase (GS) (EC 6.3.2.3), is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for:

- (1) a host cell (II) containing or transformed with (I);
- (2) a transgenic plant (III) obtained by using (I), or which is a clone, selfed, hybrid progeny or other descendant of the transgenic plant, which in each case includes (II) and which express heterologous genes encoding gamma -ECS and GS, plus optionally one or more heterologous genes encoding enzymes (E) involved in the redox cycling of glutathione between its reduced and oxidized forms;

- (3) a part of propagule from (III); and
- (4) production (M1) of (I).

USE - (I) is useful for transforming a host cell, by introducing (I) into a plant host cell, and optionally causing or allowing recombination between the vector and the host cell genome. (I) is useful for producing a transgenic plant (e.g. tomato, pepper, aubergine, courgette, lettuce, cabbage, broccoli, ornamentals, potato or yam) with enhanced levels of

reduced glutathione, by introducing (I) into a host cell, regenerating a plant from the cell, and optionally, replicating the transgenic plant, where one or more of the promoters of the vector is an inducible promoter and applying an exogenous inducer of the inducible promoter. (M1) is useful for providing fruit with enhanced leaves of reduced glutathione and also for improving oxidative stress tolerance of a plant, enhancing root development of a plant, increasing post-harvest shelf life of a plant or fruit and delaying the bolting of a plant (all claimed). (I) is also useful for identifying transgenic plants of two crop species, e.g. tomato and lettuce, which express several genes associated with glutathione metabolism either in the chloroplast or in the cytosol.

ADVANTAGE - Using (I), a significant improvement in stress tolerance is achieved, and stable plant cell transformation is possible. The plants transformed with (I) have been found to have improved root weight and development compared to control plants, enabling improved water and nutrient uptake. The transformed plants have been found to have enhanced glutathione levels at the three ripening stages tested. This suggested that the plants and their fruits will have a longer shelf life.

DESCRIPTION OF DRAWING(S) - The figures show the plasmids pAFQ70.1 and pAFQ70.2.

13, 20/29

FS CPI
 FA AB; GI; DCN
 MC CPI: C04-A0800E; C04-A0900E; C04-E02E; C04-E08; C04-F0800E; C10-B02D;
 C12-K04F; C14-U01; D05-H12A; D05-H12E; D05-H14; D05-H16B; D05-H18B
 TECH UPTX: 20020812

TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation: (I) is prepared by standard recombinant techniques (claimed).

Preferred Construct: The gene encoding gamma-ECS is gsh1 gene and/or the gene encoding GS is gsh2 gene, operably linked to a different promoters to allow differential expression of gamma-ECS and GS. (I) comprises at least one gene operably linked to a promoter, and encodes (E). (E) is glutathione reductase (GOR) (e.g. plastidial glutathione reductase (GOR1) or cytosolic glutathione reductase (GOR2)), or glutathione peroxidase (GPX) (e.g. **phospholipid hydroperoxide glutathione peroxidase** (phGPX) or cytosolic

glutathione peroxidase/glutathione-S-transferase (GST/GPX)). The gene encoding gamma-ECS is operably linked to a weaker promoter than the gene encoding glutathione synthetase. The promoter is inducible, and each one is present in the construct as no more than one copy and is heterologous to the gene with which it is operably linked. e.g. the gene encoding gamma-ECS is operably linked to a Efla promoter, the gene encoding GS is operably linked to a cauliflower mosaic virus (CaMV) 35S promoter, and the GOR gene, if present, is operably linked to AtrpL1 promoter, and the GPX gene, if present, is operably linked to a UBQ1 promoter. (I) is a plant binary vector comprising selectable genetic marker, e.g. firefly luciferase (luc) reporter gene and kanamycin resistance (kan; NPTII). Preferred Plant: In (III), the heterologous genes are expressed in at least two subcellular compartments.

ABEX UPTX: 20020812
SPECIFIC VECTORS - (I) is pAFQ70.1 or pAFQ70.2 plasmid (claimed).
EXAMPLE - Genes encoding gamma-glutamylcysteine synthetase (GSHI) and glutathione synthetase (GSHII) were cloned from Escherichia coli B DNA. The gsh1 (1.65 kb) and gsh2 (1.15 kb) fragments were eluted from agarose gels and ligated into EcoRV digested, ddTTP-tailed pBluescript KSII+ to generate pGSH101 (gsh1) and pGSH201 (gsh2). For site directed mutagenesis (SDM), gshI and gshII genes were subcloned into pAlter using BamHI and SalI sites in pAlter and in pGSH101/pGSH201 to create pAlter/gshI and pAlter/gshII, respectively. The modified constructs containing the introduced SphI site at the AUG start codon (gcATGc) were called pGSH1-S and pGSHII-S. The modified gshI and gshII genes were subcloned into vector pJIT260 using the SphI and SalI sites in pJIT260 and pGSH1-S/pGSHII-S to create pGSH104 and pGSH205, respectively. A polymerase chain reaction

(PCR) product from pGSH104, consisting of the transit peptide and part of the GSHI coding sequence was obtained. The PCR fragment was cut with NcoI and EcoRI and cloned into pNondescript to create pNS-TP. Then SphI-SalI fragment from pGSH104 was inserted into same sites of pNS-TP, thus creating a TP-GSHI coding sequence with NcoI site at the ATG of the TP in plasmid pNS-TPGSHI. pGSH205 was cut with EcoRI and ClaI to remove sites at 3' end of the polylinker. The resulting plasmid was cut with BglII and religated, deleting 500 bp of CaMV polyA and leaving a unique XhoI site at 5' end of CaMV 35S promoter, creating pGSH205del. The plasmid was cut with XhoI, T4 polyI treated and a BamHI linker inserted, to create pGSH205del-Bam. pEF1alpha-1 63 was cut with BglII in CaMV polyA and the 35S:tpGSHII-polyA was inserted into this site as a BamHI-BglII fragment recovered from pGSH205del-Bam creating pPIGGSH205. The BglII site at the extreme end of CaMV polyA attached to the TPGSHII gene was cut, T4 polI treated and an ApaI linker (GGGCC) inserted, thus introducing a unique ApaI site into the plasmid pPIGGSH205-Apa. The plasmid was digested with NcoI and SalI. The tp-GSHI coding sequence was recovered from pNS-TPGSHI as an NcoI-SalI fragment and inserted into the same sites in pPIGGSH205-Apa. Thus EF1alpha-tpGSHI-CaMVPolyA and 35S-tpGSHII-CaMVPolyA were in tandem. This was called pGSH3. The EF1alpha-TpGSHI CaMV polyA and 35S-TPGSHII CaMV polyA genes were recovered as an SacI-ApaI fragment and inserted into the same sites of the binary Ti vector, pE6KL, creating pE6KL-GSH3. An 868bp EcoRI-SspI **PHGPX** coding sequence fragment was recovered from pGPX2. The plasmid contained a full length coding sequence for pea plastidial phospholipidhydroperoxide glutathione peroxidase (**PHGPX**). This was inserted into the BamHI-EcoRI sites of pUBQN-apx pA, creating pGPX4. A synthetic DNA fragment was made by annealing the oligonucleotides (i) and (ii), which would replace the order of restriction sites in the 5' end of the UBQ promoter. This was achieved by ligating the synthetic fragment into the Asp718 and SalI sites of pGPX4 and cutting with ApaI after ligation. This created pGPX4-Sac1. pGPX4-Sac1 was cut with XhoI and a SacI adaptor oligonucleotide (5'-TCGACGAGCTC-3') was ligated into the site, destroying the XhoI site and adding in a SacI site to create pGPX4-Sac2. The 1.85 kb UBQN-GPX-apxpA from pGPX4-Sac2 was inserted as a SacI fragment into the unique SacI site of pE6KLGSH3 and the orientation of the GPX gene selected to be driving transcription in the same direction as GSHI and GSHII. This plasmid was called pE6KLGSH3-GPX. Part of the polylinker was deleted from atrpL1-145-atrpL1 polyA. Then the GOR1 cDNA was isolated as an EcoRV-BamHI fragment from pGR202 (containing the full length GR201 cDNA sequence). This fragment was ligated into the ClaI/T4 polI treated-BamHI sites of atrpL1D to create AtrpL1-Gor1-atrpL1 polyA. A PvuI site was introduced at the 3' end of the atrpL1 polyA to create atrpL1-Gor1-PvuI. This was digested with ApaI (in AtrpL1 promoter) and PvuI and the eluted ca. 2.4kb fragment was inserted into the unique ApaI/PvuI sites in E6KLGSH3GPX. The missing 5' end of the AtrpL1 promoter was restored as a ApaI fragment from AtrpL1-145-atrpL1 polyA into the unique ApaI site in E6KLGSH3GPX, to create pAFQ70.1.
 5'-ACCGTCGACGAGCTCGTACGGTATCGA-3' (i); and
 5'-TCGATCGATAACCGTACGAGCTCGTCGACG-3' (ii).

L121 ANSWER 3 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2001-419936 [45] WPIX
 DNC C2001-127155
 TI New **phospholipid hydroperoxide glutathione peroxidase**, useful for manufacturing antioxidant cosmetic for preventing lipid and phospholipid modification due to peroxidation, leading to damage of skin cells, ageing or necrosis.
 DC B04 D16
 IN ESHDAT, Y; STROSBERG, A D
 PA (VETI-N) VETIGEN
 CYC 25
 PI EP 1111055 A1 20010627 (200145)* EN 61p C12N015-53
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT

RO SE SI

ADT EP 1111055 A1 EP 1999-403079 19991208
 PRAI EP 1999-403079 19991208
 IC ICM C12N015-53
 ICS A61K038-44; C12N009-08; C12N015-67; C12N015-74; C12N015-79;
 C12P021-02

AB EP 1111055 A UPAB: 20010813

NOVELTY - Isolated **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** and their analogues comprising an amino acid sequence which is at least 60% identical to a fully defined 167 amino acid sequence (I), provided that the sequence is not (I), are new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) isolated **PHGPx** polynucleotides comprising a sequence, which is at least 45% identical or similar to a fully defined 862-bp sequence encoding the Cit-SAP sequence having 167 amino acids, provided that the polynucleotide is not the given 862-bp sequence, and their complements;
- (2) engineering a plant **PHGPx** containing a selenocysteine instead of a cysteine at its active site, in a prokaryotic cell by introducing an appropriate stem-loop (SECIS) in a gene coding for a plant **PHGPx** is performed by site-specific mutagenesis comprising:
 - (a) amplifying the sequence containing the gene coding for a plant **PHGPx** in 2 fragments:
 - (i) one fragment amplified by 2 primers, one chosen from the sequence coding the gene containing the anticodon corresponding to the catalytic residue (Cys or Sec), and one located in the plasmid carrying the gene; and
 - (ii) one fragment amplified by 2 primers, containing the sequence of the stem-loop structure to be introduced and one located in the plasmid carrying the gene;
 - (b) digesting the DNA fragments with restriction enzymes;
 - (c) ligating and transfecting competent prokaryotic cells;
- (3) a method for engineering **PHGPx** containing a selenocysteine instead of cysteine at their active site, in a eukaryotic cell, comprising:
 - (a) converting TGT codon to TGA by site directed mutagenesis;
 - (b) synthesizing the 3'UTR of pig PGHPx by annealing 6 synthetic oligonucleotides;
 - (c) fusing the 3'UTR of pig **PHGPx** to either the 3' end of the open reading frame of csa or the 3' end of csa, by PCR; and
 - (d) cloning in mammalian and yeast vectors and transforming competent eukaryotic cells;
- (4) cosmetic or pharmaceutical dermatological compositions for preventing lipid and phospholipid modification due to peroxidation, leading to damage of skin cells, ageing and/or necrosis; and
- (5) aesthetic treatment of human to prevent skin cells damage, ageing and/or necrosis, by administering at least one compound selected from the isolated PGHPx or its analogues, or plant enzymes having **PHGPx** activity, where the plant PGHPx comprises a sequence selected from a fully defined 736-bp sequence, 10 sequences each comprising a 167 amino acids, and 5 sequences each comprising 166 amino acids fully defined in the specification, and the plant enzyme with **PHGPx** activity is glutathione-S-transferase.

ACTIVITY - Dermatological; anti-ageing.

MECHANISM OF ACTION - Peptide therapy.

USE - The plant PGHPx, its analogues, and plant enzymes having **PHGPx** activity are useful for manufacturing an antioxidant cosmetic or pharmaceutical dermatological composition for preventing lipid and phospholipid modification due to their peroxidation, which may lead to damage of skin cells, ageing and/or necrosis. These may also be used to protect phospholipids used in cosmetic compositions against phospholipid

oxidation, and as skin-lightening supporting agents (all claimed).

Dwg.0/14

FS CPI

FA AB; DCN

MC CPI: B04-E03E; B04-E04; B04-E08; B04-L03; B04-N05; B11-C09; B14-R01;
D05-C03B; D05-H09; D05-H12A; D05-H12C; D05-H12D1; D05-H12E; D05-H17A3

TECH UPTX: 20010813

TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preferred Compound: The isolated plant PGHPx is isolated from Aloe arborescens or from Aloe vera, where each comprises a specific 167 amino acid sequence fully defined in the specification. The analogue of plant **PHGPx** is a recombinant **PHGPx** where the cysteine residue in the active site is replaced by a selenocysteine residue. The analogue has a sequence selected from five 167 amino acid sequence and five 166 amino acid sequences all fully defined in the specification.

Preferred Polynucleotide: The PGHPx polynucleotide comprises a sequence selected from a fully defined sequence of 728, 769, 505 and 736 bp given in the specification.

Preferred Method: The sequence containing the csa gene is pAR01 also containing the ampicillin-resistance gene, ColE1 ori and the promoter lac. The primers are selected from 2 primers each having 45 bp and a primer coding for the mRNA stem-loop structure selected from 3 sequence each having 34 bp given in the specification. The first fragment is digested with AlwNI enzyme and HpaI enzyme, and the second fragment is digested with the AlwNI enzyme only. Transfection is done in E. coli. The eukaryotic cells are preferably COS cells. Preferred Compositions: The cosmetic or pharmaceutical dermatological compositions further comprises at least an antioxidant selected from Vitamin E, Vitamin C, beta-carotene, glutathione, and other commonly used antioxidants. The plant **PHGPx** or enzymes having **PHGPx** activity are used in the form of enriched plant extracts, partially or completely purified enzyme, recombinant enzyme in prokaryotic or eukaryotic cell types, or as genetically engineered modified enzyme.

ABEX UPTX: 20010813

SPECIFIC SEQUENCES - The PGHPx has a fully defined sequence of 167 amino acids given in the specification, and is encoded by a polynucleotide having a fully defined sequence of 862 bp also given in the specification.

EXAMPLE - Total RNA was extracted from the superior stalk of Aloe arborescens. Poly(A+)mRNA was isolated from total RNA using the polyATtract kit of Promega. Cloning of Aloe arborescens cDNA was done using RACE strategy which include cDNA synthesis from poly(A+)mRNA and isolation of 2 overlapping fragments, 3' end and 5' end fragment. 3' RACE was done using a degenerate primer 1 and a 3' poly (dT) anchored primer. Based on the sequence of the 3' fragment, the 5' end was amplified with a specific primer and a 5' anchored primer. The first strand cDNA was synthesized with RNase H- reverse transcriptase using 500 ng poly(A+)mRNA and 3' anchor-linked poly(dT). 3' end amplification was done with the forward degenerate primer 3 and the reverse 3'anchored primer 2.

Polymerase chain reaction (PCR) fragment was carried out with 1 microl of diluted cDNA, primer 2, primer 3, dNTP, and Taq polymerase. After an initial denaturation of 2 min at 94degreesC, a step program of 40 cycles was carried out which included primer denaturation at 94degreesC for 20 sec, annealing at 55degreesC for 30 sec, elongation at 72degreesC for 1 min, and final extension at 72degreesC for 7 min. PCR fragment of 600 bp was purified from agarose gel with the Qiax II gel extraction kit and cloned in the T/A pGem-T vector. To obtain 5'A fragment, a specific cDNA was synthesized from Aloe arborescens poly(A+)mRNA and an anchored oligonucleotide was ligated to the 5' end of the cDNA. PCR was carried out with a reverse 3' specific primer and a forward complement primer of the 5' anchored oligonucleotide. Specific cDNA was synthesized from 500 ng poly(A)mRNA reverse primer 4 and 200 units Superscript II. All PCR fragments were purified from agarose gel, cloned in pGEM-T vector and

sequenced in both directions. Full-length cDNA was done using the Marathon ds cDNA library and primers from 5' and 3' ends of the genes. Primers 10 and 11 were used to isolate alarp1 gene, and primers 12 and 13 to isolate alarp2. Results showed that alarp1 and alarp2 having fully defined sequences of 728 and 769 amino acids, respectively, show 75% similarity. Alarp1 showed 75% similarity to the Citrus gene (csa) while alarp2 showed 65% similarity to csa. The deduced amino acid sequences of alarp1 and alarp2 showed 95% similarity, each of the deduced amino acid sequences showed 92% similarity to Cit-**PHGPx**. primer 1 gttttccag tcacgag primer 2 gtttcccag tcacgag primer 3 gttaangtng cntnnantg ngg primer 4 ctatcgattc tqaaccttc agagg primer 10 ccagtttag aaacccttct c primer 11 acgaagcact agaacctcat cc primer 12 gcattcaac cacctcttt tcc primer 13 cacgagagca gaaatagtcc

L121 ANSWER 4 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2000-647004 [62] WPIX
 DNN N2000-479525 DNC C2000-195647
 TI Determining latent **phospholipid hydroperoxide glutathione peroxidase** to determine the fertilization potential of spermatozoa in sperm.
 DC B04 C07 D16 S03
 IN FLOHE, L; ROVERI, A; URSINI, F
 PA (FLOH-I) FLOHE L
 CYC 83
 PI WO 2000054054 A1 20000914 (200062)* EN 32p G01N033-573
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ TZ UG ZW
 W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
 GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK
 MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US
 UZ VN YU ZW
 AU 2000032863 A 20000928 (200067) G01N033-573
 EP 1159617 A1 20011205 (200203) EN G01N033-573
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI
 JP 2002538791 W 20021119 (200281) 29p C12Q001-28
 NZ 513245 A 20030228 (200323) G01N033-573
 ADT WO 2000054054 A1 WO 2000-EP1877 20000306; AU 2000032863 A AU 2000-32863
 20000306; EP 1159617 A1 EP 2000-910773 20000306, WO 2000-EP1877 20000306;
 JP 2002538791 W JP 2000-604228 20000306, WO 2000-EP1877 20000306; NZ
 513245 A NZ 2000-513245 20000306, WO 2000-EP1877 20000306
 FDT AU 2000032863 A Based on WO 200054054; EP 1159617 A1 Based on WO
 200054054; JP 2002538791 W Based on WO 200054054; NZ 513245 A Based on WO
 200054054
 PRAI EP 1999-103959 19990309
 IC ICM C12Q001-28; G01N033-573
 ICS G01N033-561
 AB WO 200054054 A UPAB: 20001130
 NOVELTY - Determining latent **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** comprising
 obtaining a sperm sample, solubilizing the spermatozoa by using detergents and chaotropic agents and reactivating latent **PHGPx** using high concentrations of thiols, and determining enzymatic activity of reactivated latent **PHGPx**, is new.
 USE - For predicting the fertilizing potential of spermatozoa in sperm samples.
 Dwg.0/4
 FS CPI EPI
 FA AB; DCN
 MC CPI: B04-B04L; B04-L03B; B10-A14; B10-A17; B10-E03; B11-C08E3; B12-K04A6;
 C04-B04L; C04-L03B; C10-A14; C10-A17; C10-E03; C11-C08E3; C12-K04A6;
 D05-A02A; D05-H09
 EPI: S03-E14H4

TECH UPTX: 20001130
 TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preferred Methods: Between the solubilizing and determining steps, the method further comprises removing reactivating reagents by gel filtration. Instead of determining enzymatic activity of reactivated latent **PHGPx** the content of solubilized **PHGPx** is determined by conventional immunological techniques or measurement of enzymatic activity.
 Preferred Materials: The chaotropic agent is 4-8 M guanidine chloride, 4-8 M guanidine thiocyanate or 5-8 M urea. The thiol is 50-300 mM 2-mercaptoethanol, 25-300 mM dithiothreitol (DTT) or dithioerytliritol (DTE). The sperm sample is from humans or life stock.

ABEX UPTX: 20001130
 EXAMPLE - None given.

L121 ANSWER 5 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2000-587444 [55] WPIX
 DNC C2000-175252
 TI Screening assay for **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** inhibitors useful for male fertility control comprises determining **PHGPx** activity in the presence and absence of a potential inhibitor.
 DC B04 D16
 IN **FLOHE, L; URGINI, F**
 PA (FLOH-I) FLOHE L
 CYC 83
 PI WO 2000053800 A1 20000914 (200055)* EN 33p C12Q001-28
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ TZ UG ZW
 W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
 GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK
 MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US
 UZ VN YU ZW
 AU 2000032864 A 20000928 (200067) C12Q001-28
 EP 1159445 A1 20011205 (200203) EN C12Q001-28
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI
 JP 2002537853 W 20021112 (200275) 30p C12Q001-28
 ADT WO 2000053800 A1 WO 2000-EP1878 20000306; AU 2000032864 A AU 2000-32864
 20000306; EP 1159445 A1 EP 2000-910774 20000306, WO 2000-EP1878 20000306;
 JP 2002537853 W JP 2000-603421 20000306, WO 2000-EP1878 20000306
 FDT AU 2000032864 A Based on WO 200053800; EP 1159445 A1 Based on WO
 200053800; JP 2002537853 W Based on WO 200053800
 PRAI EP 1999-103960 19990309
 IC ICM C12Q001-28
 ICS A61K045-00; A61P015-16; A61P043-00; C12N009-99; G01N033-15;
 G01N033-50
 AB WO 200053800 A UPAB: 20001102
 NOVELTY - Screening for inhibitors of **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** derived for human tissue or cells comprises determining the enzymatic activity of **PHGPx** in the absence and presence of a potential inhibitor and selecting a pharmaceutically acceptable inhibitor that reversibly suppresses male fertility by specifically blocking **PHGPx**.
 DETAILED DESCRIPTION - Screening for inhibitors of **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** derived for human tissue or cells comprises :
 (a) determining the enzymatic activity of **PHGPx** in the absence and presence of a potential inhibitor;
 (b) selecting inhibitors that specifically block **PHGPx** activity and screening them for pharmaceutical acceptability; and
 (c) selecting a pharmaceutically acceptable inhibitor that reversibly

suppresses male fertility by specifically blocking **PHGPx**.

An INDEPENDENT CLAIM is also included for a pharmaceutically acceptable inhibitor of **PHGPx** from human tissue that is obtainable by the new method and that is used for male fertility control.

USE - The **PHGPx** inhibitors are useful for reversibly blocking male fertility.

Dwg.0/6

FS CPI

FA AB; DCN

MC CPI: B04-F02; B04-L03B; B04-L03B0E; B04-M01; B04-M0100E; B11-C08E3;
B12-K04E; B14-P01; D05-H09; D05-H17A6

TECH UPTX: 20001102

TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preferred Method: The tissue or cells are from livestock or any related mammalian species. **PHGPx** is produced by genetic engineering. The potential inhibitors have been tailored by computer designing and/or produced by a chemical process of production.

ABEX UPTX: 20001102

EXAMPLE - None given.

L121 ANSWER 6 OF 6 WPIX COPYRIGHT 2003 THOMSON DERWENT on STN

AN 1996-395987 [40] WPIX

DNC C1996-124595

TI DNA coding for rat **phospholipid hydroperoxide glutathione peroxidase** - useful for recombinant prodn. of the enzyme in eukaryotic host cells which produce glutathione peroxidase contg. seleno cysteine.

DC B04 D16

PA (NIHA) JAPAN ENERGY CORP

CYC 1

PI JP 08191691 A 19960730 (199640)* 16p C12N015-09

ADT JP 08191691 A JP 1995-19966 19950113

PRAI JP 1995-19966 19950113

IC ICM C12N015-09

ICS C07H021-04; C12N009-08

ICI C12N009-08, C12R001:

AB JP 08191691 A UPAB: 19961007

New DNA codes for the rat **phospholipid hydroperoxide glutathione peroxidase (PHGPx)** having the 170 amino acid sequence given in the specification. (The rat **PHGPx** amino acid sequence includes a selenocysteine residue at position 46). Also claimed is DNA coding for an amino acid sequence differing from the 170 amino acid sequence of rat **PHGPx** at one or more positions, but having the selenocysteine codon.

USE - The DNA can be used for the prodn. of rat-derived **PHGPx** or its similar peptide by recombinant DNA techniques in suitable eukaryotic host cells. i.e. microbial cells which produce glutathione peroxidase (GPx) contg. selenocysteine coded by TGA.

Dwg.0/5

FS CPI

FA AB

MC CPI: B04-E03E; B14-S03; D05-H12A; D05-H17A3

=> fil dpci

FILE 'DPCI' ENTERED AT 14:23:44 ON 13 AUG 2003

COPYRIGHT (C) 2003 THOMSON DERWENT

FILE LAST UPDATED: 21 JUL 2003 <20030721/UP>

PATENTS CITATION INDEX, COVERS 1973 TO DATE

>>> LEARNING FILE LDPCI AVAILABLE <<<

=> d all tot

L122 ANSWER 1 OF 2 DPCI COPYRIGHT 2003 THOMSON DERWENT on STN
 AN 2000-647004 [62] DPCI
 DNN N2000-479525 DNC C2000-195647
 TI Determining latent phospholipid hydroperoxide glutathione peroxidase to determine the fertilization potential of spermatozoa in sperm.
 DC B04 C07 D16 S03
 IN FLOHE, L; ROVERI, A; URISINI, F
 PA (FLOH-I) FLOHE L
 CYC 83
 PI WO 2000054054 A1 20000914 (200062)* EN 32p G01N033-573
 RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
 OA PT SD SE SL SZ TZ UG ZW
 W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
 GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK
 MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US
 UZ VN YU ZW
 AU 2000032863 A 20000928 (200067) G01N033-573
 EP 1159617 A1 20011205 (200203) EN G01N033-573 <--
 R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
 RO SE SI
 JP 2002538791 W 20021119 (200281) 29p C12Q001-28
 NZ 513245 A 20030228 (200323) G01N033-573
 ADT WO 2000054054 A1 WO 2000-EP1877 20000306; AU 2000032863 A AU 2000-32863
 20000306; EP 1159617 A1 EP 2000-910773 20000306, WO 2000-EP1877 20000306;
 JP 2002538791 W JP 2000-604228 20000306, WO 2000-EP1877 20000306; NZ
 513245 A NZ 2000-513245 20000306, WO 2000-EP1877 20000306
 FDT AU 2000032863 A Based on WO 200054054; EP 1159617 A1 Based on WO
 200054054; JP 2002538791 W Based on WO 200054054; NZ 513245 A Based on WO
 200054054
 PRAI EP 1999-103959 19990309
 IC ICM C12Q001-28; G01N033-573
 ICS G01N033-561
 FS CPI EPI

CTCS CITATION COUNTERS

PNC.DI	0	Cited Patents Count (by inventor)
PNC.DX	1	Cited Patents Count (by examiner)
IAC.DI	0	Cited Issuing Authority Count (by inventor)
IAC.DX	1	Cited Issuing Authority Count (by examiner)
PNC.GI	0	Citing Patents Count (by inventor)
PNC.GX	0	Citing Patents Count (by examiner)
IAC.GI	0	Citing Issuing Authority Count (by inventor)
IAC.GX	0	Citing Issuing Authority Count (by examiner)
CRC.I	0	Cited Literature References Count (by inventor)
CRC.X	4	Cited Literature References Count (by examiner)

CDP CITED PATENTS UPD: 20010227

Cited by Examiner

CITING PATENT	CAT	CITED PATENT	ACCNO
WO 200054054	A X	WO 9613225	A 1996-239230/24
	PA:	(BETH-N) BETH ISRAEL HOSPITAL ASSOC; (BETH-N) BETH ISRAEL DEACONESS MEDICAL CENT	

IN: ALVAREZ, J G

REN LITERATURE CITATIONS UPR: 20010227

Citations by Examiner

CITING PATENT	CAT	CITED LITERATURE
WO 200054054	A	ROVERI A. ET AL.: "Enzymatic and immunological measurements of soluble and membrane bound PHGPx" METHODS ENZYMOL., vol. 233, 1994, pages 202-212, XP000921475 cited in the application
WO 200054054	A	MAIORINO M. ET AL.: "Phospholipid hydroperoxide glutathione peroxidase" METHODS ENZYMOL., vol. 186, 1990, pages 448-457, XP000921458
WO 200054054	A	MAIORINO M. ET AL.: "Testosterone mediates expression of the selenoprotein PHGPx by induction of spermatogenesis and not by direct transcriptional gene activation" FASEB J., vol. 12, 1998, pages 1359-1370, XP002141807
WO 200054054	A	URSINI F. ET AL.: "Dual function of the selenoprotein PHGPx during sperm maturation" SCIENCE, vol. 285, 27 August 1999 (1999-08-27), pages 1393-1396, XP002141939

L122 ANSWER 2 OF 2 DPCI COPYRIGHT 2003 THOMSON DERWENT on STN
AN 2000-587444 [55] DPCI
DNC C2000-175252
TI Screening assay for phospholipid hydroperoxide glutathione peroxidase (PHGPx) inhibitors useful for male fertility control comprises determining PHGPx activity in the presence and absence of a potential inhibitor.
DC B04 D16
IN FLOHE, L; URSINI, F
PA (FLOH-I) FLOHE L
CYC 83
PI WO 2000053800 A1 20000914 (200055)* EN 33p C12Q001-28
RW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL
OA PT SD SE SL SZ TZ UG ZW
W: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE
GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK
MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US
UZ VN YU ZW
AU 2000032864 A 20000928 (200067) C12Q001-28
EP 1159445 A1 20011205 (200203) EN C12Q001-28 <--
R: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC MK NL PT
RO SE SI
JP 2002537853 W 20021112 (200275) 30p C12Q001-28
ADT WO 2000053800 A1 WO 2000-EP1878 20000306; AU 2000032864 A AU 2000-32864
20000306; EP 1159445 A1 EP 2000-910774 20000306, WO 2000-EP1878 20000306;
JP 2002537853 W JP 2000-603421 20000306, WO 2000-EP1878 20000306
FDT AU 2000032864 A Based on WO 200053800; EP 1159445 A1 Based on WO
200053800; JP 2002537853 W Based on WO 200053800
PRAI EP 1999-103960 19990309
IC ICM C12Q001-28
ICS A61K045-00; A61P015-16; A61P043-00; C12N009-99; G01N033-15;
G01N033-50
FS CPI
EXF EXAMINER'S FIELD OF SEARCH UPE: 20020917

CTCS CITATION COUNTERS

PNC.DI	0	Cited Patents Count (by inventor)
PNC.DX	1	Cited Patents Count (by examiner)
IAC.DI	0	Cited Issuing Authority Count (by inventor)
IAC.DX	1	Cited Issuing Authority Count (by examiner)
PNC.GI	0	Citing Patents Count (by inventor)
PNC.GX	0	Citing Patents Count (by examiner)
IAC.GI	0	Citing Issuing Authority Count (by inventor)
IAC.GX	0	Citing Issuing Authority Count (by examiner)
CRC.I	0	Cited Literature References Count (by inventor)
CRC.X	6	Cited Literature References Count (by examiner)

CDP CITED PATENTS UPD: 20020917

Cited by Examiner

CITING PATENT	CAT	CITED PATENT	ACCNO
WO 200053800	A X	WO 9613225	A 1996-239230/24
	PA:	(BETH-N) BETH ISRAEL HOSPITAL ASSOC; (BETH-N) BETH ISRAEL DEACONESS MEDICAL CENT	
	IN:	ALVAREZ, J G	
WO 200053800	A1 X	WO 9613225	A 1996-239230/24
	PA:	(BETH-N) BETH ISRAEL HOSPITAL ASSOC; (BETH-N) BETH ISRAEL DEACONESS MEDICAL CENT	
	IN:	ALVAREZ, J G	

REN LITERATURE CITATIONS UPR: 20020917

Citations by Examiner

CITING PATENT	CAT	CITED LITERATURE
WO 200053800	A	MAIORINO M. ET AL.: "Testosterone mediates expression of the selenoprotein PHGPx by induction of spermatogenesis and not by direct transcriptional gene activation" FASEB J., vol. 12, 1998, pages 1359-1370, XP002141807
WO 200053800	A	ROVERI A. ET AL.: "Enzymatic and immunological measurements of soluble and membrane bound PHGPx" METHODS ENZYMOL., vol. 233, 1994, pages 202-212, XP000921475 cited in the application
WO 200053800	A	MAIORINO M. ET AL.: "Phospholipid hydroperoxide glutathione peroxidase" METHODS ENZYMOL., vol. 186, 1990, pages 448-457, XP000921458
WO 200053800	A1	MAIORINO M. ET AL.: "Testosterone mediates expression of the selenoprotein PHGPx by induction of spermatogenesis and not by direct transcriptional gene activation" FASEB J., vol. 12, 1998, pages 1359-1370, XP002141807
WO 200053800	A1	ROVERI A. ET AL.: "Enzymatic and immunological measurements of soluble and membrane bound PHGPx" METHODS ENZYMOL., vol. 233, 1994, pages 202-212, XP000921475 cited in the application
WO 200053800	A1	MAIORINO M. ET AL.: "Phospholipid hydroperoxide

glutathione peroxidase" METHODS ENZYMOL., vol.
186, 1990, pages 448-457, XP000921458

=> d his

```
(FILE 'HCAPLUS' ENTERED AT 12:36:55 ON 13 AUG 2003)
      DEL HIS
L1      1 S (EP99-103959 OR WO2000-EP1877) /AP, PRN
          E FLOHE L/AU
L2      248 S E3,E4
          E URSINI F/AU
L3      188 S E3,E4
          E ROVERI A/AU
L4      43 S E3,E4

FILE 'REGISTRY' ENTERED AT 12:40:38 ON 13 AUG 2003
L5      1 S 97089-70-8

FILE 'HCAPLUS' ENTERED AT 12:41:12 ON 13 AUG 2003
L6      247 S L5
L7      41 S SELENOPOEROXIDASE OR SELENO PEROXIDASE OR (EC OR "E C") ()1 11
L8      321 S PHOSPHOLIPID HYDROPEROXID# GLUTATHION# PEROXIDASE
L9      192 S PHGPX
L10     358 S L6-L9
L11     219 S L10 AND (PD<=19990309 OR PRD<=19990309 OR AD<=19990309)
L12     60 S L2-L4 AND L10
L13     48 S L11 AND L12
L14     12 S L12 NOT L13
          SEL DN AN L13 1 2
L15     2 S L13 AND E1-E6
L16     2 S L1,L15
          E SPERM/CT
L17     9 S E3-E18 AND L11
          E E3+ALL
          E E15+ALL
          E E21+ALL
          E FERTILITY/CT
          E E3+ALL
          E TESTIS/CT
          E E3+ALL
L18     32 S E12,E11+NT AND L11
          E E21+ALL
L19     1 S E3 AND L11
          E E7+ALL
          E E22+ALL
L20     1 S E4,E5,E3+NT AND L11
          E FERTILITY/CT
          E E3+ALL
L21     2 S E3 AND L11
          E E6+ALL
L22     2 S E1 AND L11
          E E8+ALL
L23     0 S E3 AND L11
          E E7+ALL
L24     9 S E3,E2+NT AND L11
          E E40+ALL
L25     34 S E4+NT AND L11
L26     42 S L11 AND (SPERM? OR TESTES OR TESTIS OR SEMEN)
L27     44 S L17-L26
L28     12 S L27 AND (PATTERN OR BIOLOGICAL SAMPLE OR MATURATION OR PUBERT
          SEL DN AN 1-3 6 7 11 12
L29     7 S L28 AND E1-E21
```

L30 7 S L16,L29
 L31 10 S L6 (L) (ANT OR ANST)/RL
 L32 12 S L6 (L) USES/RL
 L33 224 S L6 (L) BIOL/RL
 L34 2 S L31,L32 AND L30
 L35 11 S L32,L32 NOT L34
 L36 3 S L35 AND L11
 L37 1 S WO9613225/PN
 L38 1 S MAIORINO ?/AU AND 1998/PY AND FASEB?/JT AND (12 AND 1359)/SO
 L39 1 S MAIORINO ?/AU AND 1990/PY AND ("METHODS IN ENZYM?")/JT AND (1
 L40 1 S ROVERI ?/AU AND 1994/PY AND ("METHODS IN ENZYM?")/JT AND (233
 L41 1 S URSINI F?/AU AND 1999/PY AND SCIENCE?/JT AND (285 AND 1393)/S
 L42 4 S L37-L41 AND L1-L4,L6-L36
 L43 5 S L37-L42
 L44 11 S L30,L34,L43
 L45 11 S L44 AND L1-L4,L6-L44

FILE 'REGISTRY' ENTERED AT 13:35:24 ON 13 AUG 2003

L46 1 S 57-13-6
 L47 1 S 50-01-1
 L48 1 S 593-84-0
 L49 1 S 113-00-8
 L50 2351 S 113-00-8/CRN
 L51 1 S 60-24-2
 L52 1 S 3483-12-3
 L53 1 S 6892-68-8
 L54 51 S C4H10O2S2/MF
 L55 7 S L54 AND 2 3 BUTANEDIOL
 L56 5 S L55 NOT (D/ELS OR 35)
 SEL RN
 L57 28 S E2-E26/CRN
 L58 9 S L57 AND (NA/ELS OR 57-13-6/CRN OR K/ELS OR MXS/CI)
 L59 7 S L58 NOT C6/ES
 L60 6 S L59 NOT UNSPECIFIED
 L61 107 S L50 NOT ((PMS OR MXS OR AYS OR IDS OR MNS)/CI OR COMPD OR WIT
 L62 110 S L46-L49,L61
 L63 12 S L51-L53,L56,L60

FILE 'HCAPLUS' ENTERED AT 13:45:55 ON 13 AUG 2003

L64 11185 S L63
 L65 72894 S L62
 L66 6 S L10 AND L64
 L67 2 S L10 AND L65
 L68 7 S L66,L67
 L69 5 S L68 NOT (MYELOID OR OSBECK)
 L70 4 S L69 NOT ALS
 L71 14 S L45,L70
 L72 12 S L71 AND L11
 L73 14 S L71,L72
 E DETERGENT/CT
 L74 1 S E12-E56 AND L10
 E E12+ALL
 L75 1 S L10 AND E4,E5,E3+NT
 L76 11 S L10 AND DETERGENT
 L77 11 S L11 AND L74-L76
 L78 2 S L77 AND L73
 L79 9 S L77 NOT L78
 SEL DN AN 5 8
 L80 2 S L79 AND E1-E6
 L81 16 S L73,L74,L75,L78,L80
 L82 20 S L10 AND THIOL
 L83 4 S L82 AND L81
 L84 16 S L82 NOT L83

L85 8 S L11 AND L84
SEL DN AN 1 2 5 8
L86 4 S L85 AND E7-E18
L87 20 S L81,L83,L86 AND L1-L4,L6-L45,L64-L86
SEL HIT RN

FILE 'REGISTRY' ENTERED AT 14:02:37 ON 13 AUG 2003
L88 7 S E19-E25

FILE 'REGISTRY' ENTERED AT 14:02:55 ON 13 AUG 2003

FILE 'HCAPLUS' ENTERED AT 14:03:04 ON 13 AUG 2003

FILE 'BIOSIS' ENTERED AT 14:04:26 ON 13 AUG 2003

L89 323 S L10
L90 207 S L89 AND PY<=1999
L91 55 S L90 AND (CONGRESS? OR CONFERENCE? OR POSTER? OR SYMPOS? OR ME
L92 53 S L90 AND 00520/CC
L93 53 S L91 AND L92
L94 6 S L93 AND 165?/CC
L95 22 S L90 AND 165?/CC NOT L91
L96 43 S L90 AND (SPERM? OR TESTIS OR TESTES OR SEMEN)
L97 44 S L94,L96
L98 1 S L95 NOT L97
L99 6 S L97 AND METHOD?/CT
L100 0 S L97 AND METHOD?/CC
SEL DN AN 4 L99
L101 1 S L99 AND E26-E27
L102 7 S L94,L101
L103 82 S L90 AND (01054 OR 0250?)/CC
L104 5 S L90 AND 32500/CC
L105 1 S L90 AND 32600/CC
L106 6 S L104,L105
L107 76 S L103 NOT L106
L108 73 S L107 NOT L102
SEL DN AN 50 62 L108
L109 2 S L108 AND E28-E31
L110 9 S L102,L109
L111 49 S L89 AND (FLOHE L? OR URSINI F? OR ROVERI A?)/AU
L112 39 S L90 AND L111
L113 5 S L110 AND L111
L114 9 S L110,L113
L115 34 S L112 NOT L114
SEL DN AN 1 3-6 9 15 18 31 33
L116 10 S E32-E51 AND L115
L117 19 S L114,L116 AND L89-L116

FILE 'BIOSIS' ENTERED AT 14:19:24 ON 13 AUG 2003

FILE 'WPIX' ENTERED AT 14:19:36 ON 13 AUG 2003

L118 7 S L7/BIX OR L8/BIX OR L9/BIX
L119 2 S L118 AND (FLOHE ? OR URSINI ? OR ROVERI ?)/AU
L120 7 S L118,L119

FILE 'WPIX' ENTERED AT 14:21:34 ON 13 AUG 2003

L121 6 S L120 NOT DRINK

FILE 'DPCI' ENTERED AT 14:23:02 ON 13 AUG 2003

L122 2 S (EP1159445 OR EP1159617)/PN

FILE 'DPCI' ENTERED AT 14:23:44 ON 13 AUG 2003