

<u>Digital Signal Processing – Final project</u>

Audio equalizer using MATLAB

Names:`

1- Amr Yasser Imam – 6772

2- Marwan Khaled Mohamed – 7020

3- Begad Wael – 6718

Date: 5/7/2022

Due date: 31/5/2022

Repository address:

https://github.com/XMaroRadoX/Audio equalizer using matlab

1 Code

1.1 Input code

1.2 Filters' implementations and analysis code

Filters implemented and designed using filterDesigner tool at sampling frequency of 44.1 KHz, Following code and table are for the inputs in the tools for each band attached with the exported filter object's name. In the appendix there is a code that do the same task but with less accuracy.

```
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
                                                                                            % 600-1000 Hz band
                                                                                           analysis(fir6001000,'800-th order 600-1000 Hz BPF');
% To load filters in workspace %
% cd 'project location' % load('filters.mat')
                                                                                           % 1-3 KHz band
                                                                                           analysis(fir13k,'800-th order 1-3 KHz BPF');
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
                                                                                            % 3-6 KHz band
                                                                                           analysis(fir36k,'800-th order 3-6 KHz BPF');
% Analysis function
analyze('IIR');
                                                                                           analysis(fir612k,'800-th order 6-12 KHz BPF');
% filters' analysis function
function analyze(type)
cd 'W:\Projects\Digital Signal
Processing\Audio_equalizer_using_matlab'
                                                                                           % 12-14 KHz band
analysis(fir1214k,'800-th order 12-14 KHz BPF');
    load('filters. Mat');
                                                                                            % 14-16 KHz band
                                                                                           analysis(fir1416k,'800-th order 14-16 KHz BPF');
    if type == 'IIR'
                                                                                      end
         % IIR Analysis
         analysis(iir170,'4-th order 0-170 Hz BPF');
                                                                                  function analysis (filter, name)
                                                                                       figure('name',name);
         analysis(iir170310,'4-th order 170-310 Hz BPF');
                                                                                       [H,wh] = freqz(filter);
                                                                                       subplot (4,2,1);
                                                                                       plot(wh/pi,abs(H));grid;
                                                                                       ploc(wii/pi,aus(ii),,giia,
title('Magnitude response');
xlabel('Normalized frequency (\times\pi rad/samples)');
         analysis(iir310600,'4-th order 310-600 Hz BPF');
         % 600-1000 Hz band
                                                                                       ylabel('Magnitude');
         analysis(iir6001000,'4-th order 600-1000 Hz BPF');
                                                                                       [P,wp] = phasez(filter);
                                                                                       subplot(4,2,2);
plot(wp/pi,P.*180/pi);grid;
         % 1-3 KHz band
         analysis(iir13k,'4-th order 1-3 KHz BPF');
                                                                                      title('Phase response');
xlabel('Normalized frequency (\times\pi rad/samples)');
ylabel('Phase (Degrees)');
         % 3-6 KHz band
         analysis(iir36k,'4-th order 3-6 KHz BPF');
         % 6-12 KHz band
                                                                                       [h,nh] = impz(filter);
         analysis(iir612k,'4-th order 6-12 KHz BPF');
                                                                                       subplot(4,2,[3 4]);
                                                                                       stem(nh,h);grid;
         % 12-14 KHz band
                                                                                       title('Impulse response');
xlabel('Samples');
         analysis(iir1214k,'4-th order 12-14 KHz BPF');
                                                                                       ylabel('Amplitude');
         % 14-16 KHz hand
                                                                                       [s,ns] = stepz(filter);
         analysis(iir1416k,'4-th order 14-16 KHz BPF');
                                                                                       subplot(4,2,[5 6]);
                                                                                       stem(ns,s);grid;
                                                                                       title('Step response');
xlabel('Samples');
         % FIR Analysis
                                                                                       ylabel('Amplitude');
         analysis(fir170,'800-th order 0-170 Hz BPF');
                                                                                       subplot(4,2,[7 8]);
         % 170-310 Hz band
                                                                                       [b,a] = tf(filter);
         analysis(fir170310,'800-th order 170-310 Hz BPF');
                                                                                       zplane(b,a);grid;
         % 310-600 Hz band
         analysis(fir310600,'800-th order 310-600 Hz BPF');
                                      (1)
                                                                                                                         (2)
```


	Band (Hz)	Response	Design Method &	Freq. Specs. (Hz)		Filter Name
		Type	Order	Fs = 44100 Hz or 44.1 KHz		
IIR	0 – 170	Lowpass		Fc = 170		iir170
	170 – 310	Bandpass	Butterworth – 4	Fc1 = 600	Fc2 = 310	iir170310
	310 – 600			Fc1 = 310	Fc2 = 600	iir310600
	600 – 1000			Fc1 = 600	Fc2 = 1000	iir6001000
	1000 – 3000			Fc1 = 1000	Fc2 = 3000	iir13k
	3000 – 6000			Fc1 = 1000	Fc2 = 6000	iir36k
	6000 – 12000			Fc1 = 6000	Fc2 = 12000	iir612k
	12000 – 14000			Fc1 = 12000	Fc2 = 14000	iir1214k
	14000 - 16000			Fc1 = 14000	Fc2 = 16000	iir1416k
FIR	0 – 170	Lowpass		Fc = 170		fir170
	170 – 310	Bandpass	Blackman Window 800	Fc1 = 600	Fc1 = 600	fir170310
	310 – 600			Fc1 = 310	Fc1 = 310	fir310600
	600 – 1000			Fc1 = 600	Fc1 = 600	fir6001000
	1000 – 3000			Fc1 = 1000	Fc1 = 1000	fir13k
	3000 – 6000			Fc1 = 1000	Fc1 = 1000	fir36k
	6000 – 12000			Fc1 = 6000	Fc1 = 6000	fir612k
	12000 – 14000			Fc1 = 12000	Fc1 = 12000	fir1214k
	14000 - 16000			Fc1 = 14000	Fc1 = 14000	fir1416k

Tabel 1.1 Input data for filterDesigner tool for both IIR and FIR

1.3 Wave file processing code

```
if type == 'IIR'
   y1=filter(iir170,x);
                                                                                                             % Doubling Fs
                                                                                                            fs = Fs*2;
                                                                                                            idx = 1:info.TotalSamples;
t = (idx-1)./fs;
      analyseFilter(y1,x,info,'0-170 Hz IIR Filter');
     y1 = y1 .* db2mag(gain(1));
                                                                                                            Fvec = linspace(-fs/2,fs/2,length(t));
Y = fftshift(fft(y));
     y2=filter(iir170310,x);
      analyseFilter(y2,x,info,'170-310 Hz IIR Filter');
                                                                                                            figure('name','Double Sampling');
subplot(3,2,[1 2]);
     y2 = y2 .* db2mag(gain(2));
     y3=filter(iir310600,x);
analyseFilter(y3,x,info,'310-600 Hz IIR Filter');
y3 = y3 .* db2mag(gain(3));
                                                                                                            plot(t,x);grid;
title('Original Signal (Time domain)');
xlabel('Time (seconds)');
                                                                                                            ylabel('x(t)');
     y4=filter(iir6001000,x);
     analyseFilter(y4,x,info,'600-1000 Hz IIR Filter');
y4 = y4 .* db2mag(gain(4));
                                                                                                            subplot(3,2,[3 4]);
                                                                                                           plot(t,y);grid;
title('Composite Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
     y5=filter(iir13k,x);
analyseFilter(y5,x,info,'1-3 KHz IIR Filter');
y5 = y5 .* db2mag(gain(5));
                                                                                                            subplot(3,2,5);
                                                                                                            plot(Fvec,abs(Y));grid;
title('Magnitude spectrum');
xlabel('Frequency (Hz)');
ylabel('|Y(\omega)|');
     y6=filter(iir36k,x);
analyseFilter(y6,x,info,'3-6 KHz IIR Filter');
     y6 = y6 .* db2mag(gain(6));
     y7=filter(iir612k,x);
     analyseFilter(y7,x,info,'6-12 KHz IIR Filter');
y7 = y7 .* db2mag(gain(7));
                                                                                                           support(3/2,0);
plot(Fvec,angle(Y).*180/pi);grid;
title('Phase spectrum');
xlabel('Frequency (Hz)');
ylabel('Phase (degree)');
xlim([-3,3]);
     y8=filter(iir1214k,x);
analyseFilter(y8,x,info,'12-14 KHz IIR Filter');
y8 = y8 .* db2mag(gain(8));
     y9=filter(iir1416k,x);
analyseFilter(y9,x,info,'14-16 KHz IIR Filter');
     y9 = y9 .* db2mag(gain(9));
                                                                                                            % Decreasing Fs to half
                                                                                                            fs = Fs/2:
     y1=filter(fir170,x);
                                                                                                            idx = 1:info.TotalSamples;
     analyseFilter(y1,x,info,'0-170 Hz FIR Filter');
y1 = y1 .* db2mag(gain(1));
                                                                                                            t = (idx-1)./fs;
Fvec = linspace(-fs/2,fs/2,length(t));
                                                                                                            Y = fftshift(fft(y));
     y2=filter(fir170310,x);
      analyseFilter(y2,x,info,'170-310 Hz FIR Filter');
     y2 = y2 .* db2mag(gain(2));
```



```
figure('name','Half sampling');
subplot(3,2,[1 2]);
        y3=filter(fir310600,x);
       analyseFilter(y3,x,info,'310-600 Hz FIR Filter');
y3 = y3 .* db2mag(gain(3));
                                                                                                                       subject(3/2,12 ]/,
plot(t,x);grid;
title('Original Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
       y4=filter(fir6001000,x);
      y4 = y4 .* db2mag(gain(4));
                                                                                                                        subplot(3,2,[3 4]);
                                                                                                                       Subject();[0];
plot(t,y);grid;
title('Composite Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
       y5=filter(fir13k,x);
      y3=IIIter(IIII3K,x);
analyseFilter(y5,x,info,'1-3 KHz FIR Filter');
y5 = y5 .* db2mag(gain(5));
       y6=filter(fir36k,x);
      analyseFilter(y6,x,info,'3-6 KHz FIR Filter');
y6 = y6 .* db2mag(gain(6));
                                                                                                                        subplot(3,2,5);
                                                                                                                       shapic('G', 27),
plot(Fvec, abs(Y)); grid;
title('Magnitude spectrum');
xlabel('Frequency (Hz)');
ylabel('|Y(\omega)|');
       y7=filter(fir612k,x);
       analyseFilter(y7,x,info,'6-12 KHz FIR Filter');
       y7 = y7 .* db2mag(gain(7));
                                                                                                                        xlim([-3,3]);
      y8=filter(fir1214k,x);
analyseFilter(y8,x,info,'12-14 KHz FIR Filter');
y8 = y8 .* db2mag(gain(8));
                                                                                                                        subplot(3,2,6);
                                                                                                                       subplot(3,2,6);
plot(Fvec,angle(Y).*180/pi);grid;
title('Phase spectrum');
xlabel('Frequency (Hz)');
ylabel('Phase (degree)');
       y9=filter(fir1416k,x);
      analyseFilter(y9,x,info,'14-16 KHz FIR Filter');
y9 = y9 .* db2mag(gain(9));
                                                                                                                        xlim([-3,3]);
y = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9; % output of composite
                                                                                                                        % filtered signals analysis
                                                                                                                        function analyseFilter(y,x,info,name)
Fs = info.SampleRate;
idx = 1:info.TotalSamples;
t = (idx-1)./Fs;
Fvec = linspace(-Fs/2,Fs/2,length(t));
                                                                                                                              idx = 1:info.TotalSamples;
t = (idx-1)./Fs;
 Y = fftshift(fft(y));
                                                                                                                               Fvec = linspace(-Fs/2,Fs/2,length(t));
                                                                                                                              Y = fftshift(fft(y));
figure('name','Composite Signal');
subplot(3,2,[1 2]);
                                                                                                                              figure('name',name);
subplot(3,2,[1 2]);
plot(t,x);grid;
title('Original Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
                                                                                                                              supprot(3,2,[1 2]);
plot(t,x);grid;
title('Original Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
support(J, [] 4],,
plot(t, y);grid;
title('Composite Signal (Time domain)');
xlabel('Time (seconds)');
ylabel('x(t)');
                                                                                                                              subplot(3,2,3);
                                                                                                                              plot(t,y);grid;
title('Filtered Signal (Time domain)');
xlabel('Time (seconds)');
                                                                                                                              ylabel('y(t)');
 subplot (3.2.5):
plot(Fvec, abs(Y));grid;
                                                                                                                              plot(Fvec,Y);grid;
title('Filtered Signal (Frequency domain)');
xlabel('Frequency (Hz)');
ylabel('Y(\omega)');
title('Magnitude spectrum');
xlabel('Frequency (Hz)');
ylabel('|Y(\omega)|');
xlim([-3,3]);
 subplot (3.2.6):
                                                                                                                               subplot (3.2.5):
plot(Fvec, angle(Y).*180/pi);grid;
                                                                                                                              plot(Fvec, abs(Y));grid;
                                                                                                                              rititle('Magnitude spectrum');
xlabel('Frequency (Hz)');
ylabel('|Y(\omega)|');
xlim([-3,3]);
title('Phase spectrum');
xlabel('Frequency (Hz)');
ylabel('Phase (degree)');
xlim([-3,3]);
                                                                                                                              subplot (3,2,6);
                                                                                                                              plot(Fvec, angle(Y).*180/pi);grid;
                                                                                                                              title('Phase spectrum');
xlabel('Frequency (Hz)');
ylabel('Phase (degree)');
 sound(y,Fs);
audiowrite('composite.wav',x,Os);
                                                                                                                              xlim([-3,3]);
                                                        (1)
                                                                                                                                                                                (2)
```


2 Sample runs

A testbench with the following specifications will be used:

Sampling rate: 44100 Hz
Duration: 43.4678 seconds
Number of channels: 2 (stereo)

Total samples: 1916928Bits per sample: 16

• User gain input per band (dB): 4, -10, -9, -8, 1, -4, 9, -2, -1

Output sampling rate: 44100 Hz

2.1 Using FIR filters

Figure 2.1.1 Filtering input signal with 0 – 170 Hz bandpass FIR filter

Figure 2.1.2 Filtering input signal with 170 – 310 Hz bandpass FIR filter

Figure 2.1.3 Filtering input signal with 310 – 600 Hz bandpass FIR filter

Figure 2.1.5 Filtering input signal with $1-3\,\mathrm{KHz}$ bandpass FIR filter

Figure 2.1.4 Filtering input signal with 600 – 1000 Hz bandpass FIR filter

Figure 2.1.6 Filtering input signal with 3 – 6 KHz bandpass FIR filter

Figure 2.1.7 Filtering input signal with 6 – 12 KHz bandpass FIR filter

Figure 2.1.9 Filtering input signal with 14 – 16 KHz bandpass FIR filter

Figure 2.1.8 Filtering input signal with 12 – 14 KHz bandpass FIR filter

Figure 2.2.10 Output composite signal after applying user defined amplifications

2.2 Using IIR filters

Figure 2.2.1 Filtering input signal with 0 – 170 Hz bandpass IIR filter

Figure 2.2.3 Filtering input signal with 310 – 600 Hz bandpass IIR filter

Figure 2.2.2 Filtering input signal with 170 – 310 Hz bandpass IIR filter

Figure 2.2.4 Filtering input signal with 600 – 1000 Hz bandpass IIR filter

Figure 2.2.5 Filtering input signal with 1 – 3 KHz bandpass IIR filter

Figure 2.2.7 Filtering input signal with 6 – 12 KHz bandpass IIR filter

Figure 2.2.6 Filtering input signal with 3 – 6 KHz bandpass IIR filter

Figure 2.2.8 Filtering input signal with 12 – 14 KHz bandpass IIR filter

Figure 2.2.9 Filtering input signal with 14 – 16 KHz bandpass IIR filter

Figure 2.2.10 Output composite signal after applying user defined amplifications

2.3 Doubling output sampling rate

Figure 2.3.1 Output composite signal after doubling the output sample rate

2.4 Decreasing output sampling rate to the half

Figure 2.4.1 Output composite signal after decreasing output sample rate to the half

3 Filters' Analysis

3.1 800th order FIR filters (Blackman window)

Figure 3.1.1 Analysis for 0 – 170 Hz band

Figure 3.1.3 Analysis for 310 – 600 Hz band

Figure 3.1.2 Analysis for 170 – 310 Hz band

Figure 3.1.4 Analysis for 600 – 1000 Hz band

Figure 3.1.5 Analysis for 1 – 3 KHz band

Figure 3.1.7 Analysis for 6 – 12 KHz band

Figure 3.1.6 Analysis for 3 – 6 KHz band

Figure 3.1.8 Analysis for 12 – 14 KHz band

Figure 3.1.9 Analysis for 14 – 16 Hz band

3.2 $\mathbf{4}^{\text{th}}$ order IIR filters (Butterworth)

Figure 3.2.1 Analysis for 0 – 170 Hz band

Figure 3.2.2 Analysis for 170 – 310 Hz band

Figure 3.2.3 Analysis for 310 – 600 Hz band

Figure 3.2.5 Analysis for 1 – 3 KHz band

Figure 3.2.4 Analysis for 600 – 1000 Hz band

Figure 3.2.6 Analysis for 3 – 6 KHz band

Figure 3.2.7 Analysis for 6 – 12 KHz band

Figure 3.2.8 Analysis for 12 – 14 KHz band

Figure 3.2.9 Analysis for 14 – 16 Hz band

