Basic Concepts of Probability: Complements, Union & Intersections

Basic Concepts of Probability

- Complement
- Intersection
- Union
- Additive Rule

The complement of an an event E in a sample space S, is the collection of all outcomes in S that are not elements of the set E.

Event E : even number on rolling dice.

Event E^c odd number on rolling dice.

$$P(E^c) = 1 - P(E)$$

Ex. Probability of customer being old?

	gender	age	occupation	churn
0	Male	young	salaried	0
1	Male	young	self_employed	0
2	Male	old	self_employed	0
3	Male	young	self_employed	0
4	Female	young	salaried	1
5	Male	old	salaried	0
6	Female	young	self_employed	1
7	Male	young	self_employed	0
8	Male	young	salaried	1
9	Male	young	salaried	0
10	Male	young	self_employed	1
11	Female	young	self_employed	1
12	Male	young	retired	0
13	Female	young	self_employed	0
14	Male	old	self_employed	0

Ex. Probability of customer being old?

Ex. Probability of customer being old?

Ex. Probability of customer being old?

E: Old

Ec: Young

$$P(E) = 1 - P(E^{c})$$

= 1 - 12/15
= 3/15
= 1/5

	gender	age	occupation	churn
0	Male	young	salaried	0
1	Male	young	self_employed	0
2	Male	old	self_employed	0
3	Male	young	self_employed	0
4	Female	young	salaried	1
5	Male	old	salaried	0
6	Female	young	self_employed	1
7	Male	young	self_employed	0
8	Male	young	salaried	1
9	Male	young	salaried	0
10	Male	young	self_employed	1
11	Female	young	self_employed	1
12	Male	young	retired	0
13	Female	young	self_employed	0
14	Male	old	self_employed	0

Intersection (\bigcap) is the collection of all outcomes that are common in events

Event A: getting a face card.

Event B: getting a spade card.

Intersection (\bigcap) is the collection of all outcomes that are common in events

Event A: getting a face card.

Event B: getting a spade card.

Intersection of A and B: A face card of spade?

Intersection (\bigcap) is the collection of all outcomes that are common in events

Ex: Among all the customers who are not going to churn, Probability of one being a Self Employed Male person?

Ex: Among all the customers who are not going to churn, Probability of

one being a Self Employed Male person?

	gender	age	occupation	churn
0	Male	young	salaried	0
1	Male	young	self_employed	0
2	Male	old	self_employed	0
3	Male	young	self_employed	0
4	Female	young	salaried	1
5	Male	old	salaried	0
6	Female	young	self_employed	1
7	Male	young	self_employed	0
8	Male	young	salaried	1
9	Male	young	salaried	0
10	Male	young	self_employed	1
11	Female	young	self_employed	1
12	Male	young	retired	0
13	Female	young	self_employed	0
4	Male	old	self_employed	0

Ex: Among all the customers who are not going to churn, Probability of one being a Self Employed Male person?

Total Retaining Customers = 10

$$P(A \cap B) = 5/10 \rightarrow 0.5$$

Union

Union (\cup) is the collection of all outcomes that are elements of **any** of the events

Ex: Among all the customers going to churn, One being a Female or a Self employed person?

Union

Union (\cup) is the collection of all outcomes that are elements of **any** of the events

Ex: Among all the customers going to churn, One being a Female or a Self employed person?

	gender	age	occupation	churn
0	Male	young	salaried	0
1	Male	young	self_employed	0
2	Male	old	self_employed	0
3	Male	young	self_employed	0
4	Female	young	salaried	1
5	Male	old	salaried	0
6	Female	young	self_employed	1
7	Male	young	self_employed	0
8	Male	young	salaried	1
9	Male	young	salaried	0
10	Male	young	self_employed	1
11	Female	young	self_employed	1
12	Male	young	retired	0
13	Female	young	self_employed	0
14	Male	old	self_employed	0

Union

Union (\cup) is the collection of all outcomes that are elements of **any** of the events

Ex: Among all the customers going to churn, One being a Female or a Self employed person?

Total Customers reducing interaction = 5

$$P(A \cup B) = \% \rightarrow 0.8$$

Additive Rule

Additive rule of Probability:-

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Thank You!

