Project 6: An Interactive Human-in-the-Loop Collaborative Storytelling using Retrieval Augmented Generation

Project Description

This project aims to create an "Interactive Human-in-the-Loop Collaborative Storytelling" system where users and a Large Language Model (LLM) co-develop stories interactively. The system will dynamically adapt story suggestions based on user input, providing contextually relevant ideas, prompts, and text completions to enhance creativity and maintain narrative coherence. Using a Retrieval-Augmented Generation (RAG) approach, the system will retrieve similar story fragments from a large text database to ground generated suggestions in relevant contexts. Users can provide feedback on the model's suggestions to guide and refine the storytelling experience.

Note: You have the flexibility to select the models and datasets that align best with your project's goals. The steps and tools outlined here are merely suggestions to guide you; feel free to tailor, modify, or expand upon these ideas to make the project uniquely your own.

Project Goals

- 1. **Human-Al Collaboration**: Facilitate collaborative storytelling where the user and the LLM work together to create engaging, imaginative narratives.
- 2. **Retrieval-Augmented Generation (RAG)**: Integrate retrieval-based methods to pull relevant story snippets, enhancing the quality of generated suggestions.
- 3. **Interactive Feedback**: Allow users to interactively rate or modify the LLM's suggestions to refine content alignment with their creative goals.
- 4. **Creative Skill Building**: Encourage users to explore narrative structures, character development, and imaginative storytelling through interaction with the LLM.

Implementation Resources

1. Datasets

- **Primary Dataset**: Use a curated dataset of short stories or literary texts to provide rich content for the retrieval system. **Options** include:
 - BookCorpus (via Hugging Face): Contains a large collection of books, ideal for diverse storytelling themes.
 - ROC Stories Dataset (<u>Link</u>): Short, five-sentence stories useful for structuring narrative coherence.
 - FairytaleQA (Link): Contains 278 children-friendly fairytale narratives.
- Preprocessing: Tokenize, clean, and segment the data into manageable chunks for retrieval.

2. Technologies and Tools

- LLM for Generation:
 - Example models include GPT-4 or GPT-3.5 (via OpenAl API) for high-quality text generation. You can also use Mistral, LLAma-3, ...
- Retrieval Model:
 - Options include Dense Passage Retrieval (DPR) via Hugging Face for embedding passages and retrieving contextually similar content.

 FAISS (Facebook AI Similarity Search): Efficient similarity search across a large number of passages, enabling fast retrieval from the story dataset.

RAG Model Integration:

- Retrieval-Augmented Generation (RAG) pipeline to combine retrieval and generation components effectively.
- Interactive Interface: Options include:
 - Streamlit: An intuitive, Python-based framework for creating a web app to enable user interaction.
 - o **Gradio**: Another interactive interface that allows users to provide input, rate generated content, and see story progressions in real-time.

RAG Pipeline:

- Retrieval Step: User inputs a prompt (e.g., an initial story sentence or character setup), and the system retrieves related story passages using DPR and FAISS.
- Generation Step: The LLM receives the retrieved context and generates the next part of the story. The prompt is refined based on user feedback, and further story suggestions are retrieved as needed.

Feedback Loop (Optional but impactful):

- User Feedback Mechanism: Implement a simple thumbs-up/thumbs-down or slider for user feedback on suggestions.
- Adaptive Model Adjustment: Track feedback in real-time and adjust generation preferences based on user responses (e.g., using a "rating score" to bias prompts for more aligned results).