Chapter 2 Regression

Neural networks and deep learning

Regression and classification

Primarily, neural network are used to *predict* output **labels** from input **features**.

Prediction tasks can be classified into two categories:

Regression: the labels are continuous (age, income, height, etc.)

Classification: the labels are discrete (sex, digits, type of flowers, etc.),

Supervised learning finds network weights and biases that are optimal for **prediction** of labels from features.

Linear neuron

$$u = \mathbf{w}^T \mathbf{x} + b$$

$$y = f(u) = u$$

where input $\mathbf{x} = (x_1 \quad x_2 \quad \cdots \quad x_n)^T \in \mathbf{R}^n$ and output $\mathbf{y} \in \mathbf{R}$.

Linear neuron performs linear regression

Representing a dependent (output) variable as a linear combination of independent (input) variables is known as **linear regression**.

The output of a linear neuron can be written as

$$y = w_1 x_1 + w_2 x_2 \cdots + w_n x_n + b$$

where $x_1, x_2, \dots x_n$ are the inputs.

That is, a linear neuron performs linear regression and the weights and biases (that is, b and $w_1,...w_n$) act as regression coefficients.

Given a training dataset $\{(x_p, d_p)\}_{p=1}^P$ where input $x_p \in \mathbf{R}^n$ and target $d_p \in \mathbf{R}$, training a linear neuron finds a regression function $\phi \colon \mathbf{R}^n \to \mathbf{R}$, given by the linear mapping:

$$y = \mathbf{w}^T \mathbf{x} + b$$

Stochastic gradient descent (SGD) for linear neuron

The cost function J(w, b) for regression is usually given as the *square error* (s.e.) between neuron outputs and targets.

Given a training pattern (x, d), $\frac{1}{2}$ square error cost J is defined as

$$J = \frac{1}{2}(d-y)^2$$

where y is neuron output for input pattern x and

$$y = \mathbf{w}^T \mathbf{x} + b$$

The ½ in the cost function is introduced to simplify learning equations and does not affect the optimal values of the parameters (weights and bias).

$$J = \frac{1}{2}(d - y)^2$$
$$y = u = \mathbf{w}^T \mathbf{x} + b$$

$$\frac{\partial J}{\partial u} = \frac{\partial J}{\partial y} = -(d - y)$$

$$\nabla_{w} J = \frac{\partial J}{\partial w} = \frac{\partial J}{\partial u} \frac{\partial u}{\partial w}$$
(A)
(B)

$$\nabla_{\mathbf{w}} J = \frac{\partial J}{\partial \mathbf{w}} = \frac{\partial J}{\partial u} \frac{\partial u}{\partial \mathbf{w}} \tag{B}$$

$$u = \mathbf{w}^{T} \mathbf{x} + b = w_{1} x_{1} + w_{2} x_{2} \cdots + w_{n} x_{n} + b$$

$$\frac{\partial u}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial u}{\partial w_1} \\ \frac{\partial u}{\partial w_2} \\ \vdots \\ \frac{\partial u}{\partial w_n} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathbf{x} \tag{C}$$

Substituting (A) and (C) in (B),

$$\nabla_{\mathbf{w}}J = -(d - y)\mathbf{x} \tag{D}$$

(E)

Similarly, since
$$\frac{\partial u}{\partial b}=1$$
,
$$\nabla_b J=\frac{\partial J}{\partial u}\frac{\partial u}{\partial b}=-(d-y)$$

Gradient learning equations:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J$$
$$b \leftarrow b - \alpha \nabla_{b} J$$

By substituting from (D) and (E), SGD equations for a linear neuron are given by

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha(d - y)\mathbf{x}$$
$$b \leftarrow b + \alpha(d - y)$$

SGD algorithm for linear neuron

```
Given a training dataset \left\{ \left( \boldsymbol{x}_{p}, d_{p} \right) \right\}_{p=1}^{P}

Set learning parameter \alpha

Initialize \boldsymbol{w} and \boldsymbol{b}

Repeat until convergence:

For every training pattern \left( \boldsymbol{x}_{p}, d_{p} \right):

y_{p} = \boldsymbol{w}^{T} \boldsymbol{x}_{p} + \boldsymbol{b}

\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha (d_{p} - y_{p}) \boldsymbol{x}_{p}

\boldsymbol{b} \leftarrow \boldsymbol{b} + \alpha (d_{p} - y_{p})
```

Train a linear neuron to perform the following mapping, using stochastic gradient descent (SGD) learning:

$x = (x_1, x_2)$	d
(0.54, -0.96)	1.33
(0.27, 0.50)	0.45
(0.00, -0.55)	0.56
(-0.60, 0.52)	-1.66
(-0.66, -0.82)	-1.07
(0.37, 0.91)	0.30

Use a learning factor $\alpha = 0.01$.

Let's initialize weights randomly and biases to zeros

$$w = \binom{0.92}{0.71}$$
 and $b = 0.0$

$$\alpha = 0.01$$

Epoch 1 begins

Shuffle the patterns

First pattern p = 1 is applied:

$$x_p = {0.54 \choose -0.96}$$
 and $d_p = 1.33$

$$y_p = \mathbf{w}^T \mathbf{x}_p + b = (0.92 \quad 0.71) {0.54 \choose -0.96} + 0.0 = -0.19$$

s.e. $= (d_p - y_p)^2 = 2.292$

$$\mathbf{w} = \mathbf{w} + \alpha (d_p - y_p) \mathbf{x}_p = \begin{pmatrix} 0.92 \\ 0.71 \end{pmatrix} + 0.01 \times (1.33 + 0.19) \begin{pmatrix} 0.54 \\ -0.96 \end{pmatrix} = \begin{pmatrix} 0.93 \\ 0.70 \end{pmatrix}$$
$$b = b + \alpha (d_p - y_p) = 0 + 0.01 \times (1.33 + 0.19) = 0.02$$

Second pattern p = 2 is applied:

$$x_p = {-0.66 \choose -0.82}$$
 and $d_p = -1.07$

$$y_p = \mathbf{w}^T \mathbf{x}_p + b = (0.93 \quad 0.70) {\binom{-0.66}{-0.82}} + 0.02 = -0.19$$

s.e. = $(d_p - y_p)^2 = 0.01$

$$\mathbf{w} = \mathbf{w} + \alpha (d_p - y_p) \mathbf{x}_p = \begin{pmatrix} 0.93 \\ 0.70 \end{pmatrix} + 0.01 \times (-1.07 + 0.19) \begin{pmatrix} -0.66 \\ -0.82 \end{pmatrix} = \begin{pmatrix} 0.93 \\ 0.70 \end{pmatrix}$$
$$b = b + \alpha (d_p - y_p) = 0.02 + 0.01 \times (1.33 + 0.19) = 0.02$$

Iterations continues for patterns $p = 3, \dots 6$.

the second epoch starts Shuffle the patterns Apply patterns $p=1,2,\cdots 6$

Training epochs continue until convergence.

x_p	\mathcal{Y}_p	s.e.	W	b
$x_1 = \begin{pmatrix} 0.54 \\ -0.96 \end{pmatrix}$	-0.19	2.29	$\binom{0.93}{0.70}$	0.02
$\boldsymbol{x}_2 = \begin{pmatrix} -0.66 \\ -0.82 \end{pmatrix}$	-1.17	0.01	$\binom{0.93}{0.70}$	0.03
$\boldsymbol{x}_3 = \begin{pmatrix} 0.00 \\ -0.55 \end{pmatrix}$	-0.37	0.87	$\binom{0.93}{0.69}$	0.03
$\boldsymbol{x}_4 = \begin{pmatrix} 0.27 \\ 0.50 \end{pmatrix}$	0.62	0.03	$\binom{0.92}{0.69}$	0.02
$x_5 = {-0.60 \choose 0.52}$	-0.17	2.21	$\binom{0.93}{0.69}$	0.01
$\boldsymbol{x}_6 = \begin{pmatrix} 0.37 \\ 0.91 \end{pmatrix}$	0.98	0.45	$\binom{0.93}{0.68}$	0.00

x_p	\mathcal{Y}_p	s.e.	W	b
$x_1 = \begin{pmatrix} 0.54 \\ -0.96 \end{pmatrix}$	1.49	0.03	$\binom{2.00}{-0.44}$	-0.01
$\boldsymbol{x}_2 = \begin{pmatrix} 0.00 \\ -0.55 \end{pmatrix}$	0.22	0.12	${2.00 \choose -0.44}$	-0.01
$\boldsymbol{x}_3 = \begin{pmatrix} -0.66 \\ -0.82 \end{pmatrix}$	-0.98	0.01	$\binom{2.00}{-0.44}$	-0.01
$\boldsymbol{x}_4 = \begin{pmatrix} 0.37 \\ 0.91 \end{pmatrix}$	0.33	0.00	$\binom{2.00}{-0.44}$	-0.01
$\boldsymbol{x}_5 = \begin{pmatrix} 0.27 \\ 0.50 \end{pmatrix}$	0.30	0.02	$\binom{2.00}{-0.44}$	-0.01
$\boldsymbol{x}_6 = \begin{pmatrix} -0.60\\ 0.52 \end{pmatrix}$	-1.45	0.04	$\binom{2.00}{-0.44}$	-0.01

m.s.e. =
$$\frac{1}{6}\sum_{p=1}^{6}(d-y)^2$$

At convergence:

$$\mathbf{w} = \begin{pmatrix} 2.00 \\ -0.44 \end{pmatrix}$$
$$b = -0.013$$

Mean square error = 0.037

The regression equation:

$$y = \mathbf{x}^T \mathbf{w} + b = (x_1 \quad x_2) \begin{pmatrix} 2.00 \\ -0.44 \end{pmatrix} - 0.013$$

The mapping learnt by the linear neuron:

$$y = 2.00x_1 - 0.44x_2 - 0.013$$

$inputs \\ x = (x_1, x_2)$	predictions $y = 2.00x_1 - 0.44x_2 - 0.01$	targets d
(0.54, -0.96)	1.49	1.33
(0.27, 0.50)	0.30	0.45
(0.00, -0.55)	0.22	0.56
(-0.60, 0.52)	-1.45	-1.66
(-0.66, -0.82)	-0.98	-1.07
(0.37, 0.91)	0.33	0.30

The mapping portrays a hyperplane in the 3-dimensional space:

$$y = 2.00x_1 - 0.44x_2 - 0.013$$

```
# class for a linear neuron
class Linear(object):
  def init (self):
    self.w = tf.Variable(np.random.rand(2), dtype=tf.float64)
    self.b = tf.Variable(0., dtype=tf.float64)
  def call (self, x):
    return tf.tensordot(x ,self.w, axes=1) + self.b
# squared error as the loss
def loss(predicted y, target y):
  return tf.square(predicted y - target y)
# function executing a training step
def train_step(model, x, d, learning_rate):
  y = model(x)
  grad w = -(d - y)*x
  grad b = -(d - y)
 model.w.assign(model.w - learning rate * grad w)
 model.b.assign(model.b - learning_rate * grad_b)
```

```
model = Linear()
# keep an index for training
idx = np.arange(len(X))
# training epochs iterate
err = []
for epoch in range(no_epochs):
  np.random.shuffle(idx)
  X, Y = X[idx], Y[idx]
  for p in np.arange(len(X)):
      train_step(model, X[p], Y[p], learning_rate=Ir)
```

Gradient descent (GD) for linear neuron

Given a training dataset $\{(x_p, d_p)\}_{p=1}^P$, cost function J is given by the sum of square errors (s.s.e):

$$J = \frac{1}{2} \sum_{p=1}^{P} (d_p - y_p)^2$$

where y_p is the neuron output for input pattern x_p .

$$J = \sum_{p=1}^{P} J_p \tag{F}$$

where $J_p = \frac{1}{2}(d_p - y_p)^2$ is the square error for the pth pattern.

From (F):

$$\nabla_{\mathbf{w}} J = \sum_{p=1}^{P} \nabla_{\mathbf{w}} J_{p}$$

$$= -\sum_{p=1}^{P} (d_{p} - y_{p}) \mathbf{x}_{p}$$

$$= -((d_{1} - y_{1}) \mathbf{x}_{1} + (d_{2} - y_{2}) \mathbf{x}_{2} + \dots + (d_{p} - y_{p}) \mathbf{x}_{p})$$

$$= -(\mathbf{x}_{1} \quad \mathbf{x}_{2} \quad \dots \quad \mathbf{x}_{p}) \begin{pmatrix} (d_{1} - y_{1}) \\ (d_{2} - y_{2}) \\ \vdots \\ (d_{p} - y_{p}) \end{pmatrix}$$

$$= -\mathbf{X}^{T} (\mathbf{d} - \mathbf{y})$$
(G)

where $\mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_P^T \end{pmatrix}$ is the data matrix, $\mathbf{d} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_P \end{pmatrix}$ is the target vector, and $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_P \end{pmatrix}$ is the output vector.

Similarly, $\nabla_b J$ can be obtained by considering inputs of +1 and substituting a vector of +1 in (G):

$$\nabla_b J = -\mathbf{1}_P{}^T (\boldsymbol{d} - \boldsymbol{y}) \tag{H}$$

where
$$\mathbf{1}_P = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
 has P elements of 1.

The vector of outputs for the batch of P patterns is given by

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_P \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_P \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1^T \mathbf{w} + b \\ \mathbf{x}_2^T \mathbf{w} + b \\ \vdots \\ \mathbf{x}_P^T \mathbf{w} + b \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_P^T \end{pmatrix} \mathbf{w} + b \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \mathbf{X} \mathbf{w} + b \mathbf{1}_P$$

Substituting (G) and (H) in gradient descent equations:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J$$
$$b \leftarrow b - \alpha \nabla_{\mathbf{h}} J$$

We get GD learning equations for the linear neuron as

$$w \leftarrow w + \alpha X^{T}(d - y)$$

$$b \leftarrow b + \alpha \mathbf{1}_{P}^{T}(d - y)$$

And α is the learning factor.

Where

$$y = Xw + b \mathbf{1}_P$$

```
Given a training dataset(X, d)

Set learning parameter \alpha

Initialize w and b

Repeat until convergence:

y = Xw + b\mathbf{1}_P

w \leftarrow w + \alpha X^T(d - y)

b \leftarrow b + \alpha \mathbf{1}_P^T(d - y)
```

GD and SGD for a linear neuron

GD	SGD
(X, d)	(x_p, d_p)
$J = \frac{1}{2} \sum_{p=1}^{P} (d_p - y_p)^2$	$J = \frac{1}{2} \left(d_p - y_p \right)^2$
$y = u = Xw + b1_P$	$y_p = u_p = \boldsymbol{x}_p{}^T \boldsymbol{w} + b$
$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \boldsymbol{X}^T (\boldsymbol{d} - \boldsymbol{y})$	$\mathbf{w} \leftarrow \mathbf{w} + \alpha (d_p - y_p) \mathbf{x}_p$
$b \leftarrow b + \alpha 1_P{}^T (\boldsymbol{d} - \boldsymbol{y})$	$b \leftarrow b + \alpha (d_p - y_p)$

Perceptron

Perceptron is a neuron having a **sigmoid** activation function and has an output

.

$$y = f(u)$$

where

$$f(u) = \frac{1}{1 + e^{-u}} = sigmoid(u)$$

And
$$u = \mathbf{w}^T \mathbf{x} + b$$

The square error is used as cost function for learning.

Perceptron

The training dataset $\{(x_p, d_p)\}_{p=1}^P$ where $x_p = (x_{p1}, x_{p2}, \dots x_{pn})^T \in \mathbb{R}^n$ and $d_p \in \mathbb{R}$.

The continuous perceptron finds a functional mapping:

$$\phi: \mathbf{R}^n \to \mathbf{R}$$

by learning from training data. ϕ is a non-linear function.

Perceptron performs a non-linear regression of inputs.

Cost function *J* is given by

$$J = \frac{1}{2}(d - y)^2$$

where y = f(u) and $u = \mathbf{w}^T \mathbf{x} + b$

The gradient with respect to the synaptic input:

$$\frac{\partial J}{\partial u} = \frac{\partial J}{\partial y} \frac{\partial y}{\partial u} = -(d - y)f'(u)$$

From (C),
$$\frac{\partial u}{\partial w} = x$$
 and $\frac{\partial u}{\partial b} = 1$.

$$\nabla_{\mathbf{w}} J = \frac{\partial J}{\partial u} \frac{\partial u}{\partial \mathbf{w}} = -(d - y) f'(u) \mathbf{x}$$

$$\nabla_{b} J = \frac{\partial J}{\partial u} \frac{\partial u}{\partial b} = -(d - y) f'(u)$$
(J)

$$\nabla_b J = \frac{\partial J}{\partial u} \frac{\partial u}{\partial h} = -(d - y) f'(u)$$
 (J)

Gradient learning equations:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J$$
$$b \leftarrow b - \alpha \nabla_{\mathbf{b}} J$$

Substituting gradients from (I) and (J), SGD equations for a perceptron are given by

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha(d - y)f'(u)\mathbf{x}$$
$$b \leftarrow b + \alpha(d - y)f'(u)$$

SGD algorithm for perceptron

```
Given a training dataset \left\{ \left( \boldsymbol{x}_{p}, d_{p} \right) \right\}_{p=1}^{P}

Set learning parameter \alpha

Initialize \boldsymbol{w} and b

Repeat until convergence:

For every training pattern \left( \boldsymbol{x}_{p}, d_{p} \right):

u_{p} = \boldsymbol{w}^{T} \boldsymbol{x}_{p} + b

y_{p} = f\left( u_{p} \right) = \frac{1}{1 + e^{-u_{p}}}

\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha (d_{p} - y_{p}) f'(u_{p}) \boldsymbol{x}_{p}

b \leftarrow b + \alpha (d_{p} - y_{p}) f'(u_{p})
```

Given a training dataset $\{(x_p, d_p)\}_{p=1}^P$, cost function J is given by the sum of square errors (s.s.e) over all the patterns:

$$J = \frac{1}{2} \sum_{p=1}^{P} (d_p - y_p)^2 = \sum_{p=1}^{P} J_p$$
 (F)

where $J_p = \frac{1}{2}(d_p - y_p)^2$ is the square error for the pth pattern.

From (F):

$$\nabla_{\boldsymbol{w}} J = \sum_{p=1}^{P} \nabla_{\boldsymbol{w}} J_{p}$$

$$= -\sum_{p=1}^{P} (d_{p} - y_{p}) f'(u_{p}) \boldsymbol{x}_{p} \qquad \text{From (J)}$$

$$= -\left((d_{1} - y_{1}) f'(u_{1}) \boldsymbol{x}_{1} + (d_{2} - y_{2}) f'(u_{2}) \boldsymbol{x}_{2} + \dots + (d_{P} - y_{P}) f'(u_{P}) \boldsymbol{x}_{p} \right)$$

$$= -(\boldsymbol{x}_{1} \quad \boldsymbol{x}_{2} \quad \dots \quad \boldsymbol{x}_{p}) \begin{pmatrix} (d_{1} - y_{1}) f'(u_{1}) \\ (d_{2} - y_{2}) f'(u_{2}) \\ \vdots \\ (d_{P} - y_{P}) f'(u_{P}) \end{pmatrix}$$

$$= -\boldsymbol{X}^{T} (\boldsymbol{d} - \boldsymbol{y}) \cdot f'(\boldsymbol{u}) \qquad \text{(K)}$$

$$\text{where } \boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_{1}^{T} \\ \boldsymbol{x}_{2}^{T} \\ \vdots \\ \boldsymbol{x}_{r}^{T} \end{pmatrix}, \boldsymbol{d} = \begin{pmatrix} d_{1} \\ d_{2} \\ \vdots \\ d_{P} \end{pmatrix}, \boldsymbol{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{P} \end{pmatrix}, \text{and } f'(\boldsymbol{u}) = \begin{pmatrix} f'(u_{1}) \\ f'(u_{2}) \\ \vdots \\ f'(u_{P}) \end{pmatrix}$$

Substituting
$$\boldsymbol{X}^T$$
 by $\mathbf{1}_P^T$ in (K), we get
$$\nabla_{\boldsymbol{b}} J = -\mathbf{1}_P^T (\boldsymbol{d} - \boldsymbol{y}) \cdot f' \ (\boldsymbol{u})$$
 where $\mathbf{1}_P = (1 \ 1 \ \cdots \ 1)^T$.

The gradient descent learning is given by

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J$$
$$b \leftarrow b - \alpha \nabla_{\mathbf{b}} J$$

Substituting (K) and (L), we get the learning equations:

$$w \leftarrow w + \alpha X^{T}(d - y) \cdot f'(u)$$

$$b \leftarrow b + \alpha \mathbf{1}_{P}^{T}(d - y) \cdot f'(u)$$

Note that \cdot is the element-wise product.

Given a training dataset (X, d)Set learning parameter α Initialize w and bRepeat until convergence:

$$u = Xw + b\mathbf{1}_{P}$$

$$y = f(u) = \frac{1}{1 + e^{-u}}$$

$$w \leftarrow w + \alpha X^{T}(d - y) \cdot f'(u)$$

$$b \leftarrow b + \alpha \mathbf{1}_{P}^{T}(d - y) \cdot f'(u)$$

Derivatives of Sigmoid

The activation function of the (continuous) perceptron is *sigmoid function* (i.e., unipolar sigmoidal function with a = 1.0 and b = 1.0):

$$y = f(u) = \frac{1}{1 + e^{-u}}$$

The derivative is given by

$$f'(u) = \frac{-1}{(1+e^{-u})^2} \frac{\partial (e^{-u})}{\partial u} = \frac{e^{-u}}{(1+e^{-u})^2} = \frac{1}{1+e^{-u}} - \frac{1}{(1+e^{-u})^2} = y(1-y)$$

For *Tanh* function (bipolar sigmoid):

$$y = f(u) = \frac{e^{+u} - e^{-u}}{e^{+u} + e^{-u}}$$
$$f'(u) = \frac{(e^{+u} + e^{-u})(e^{+u} + e^{-u}) - (e^{+u} - e^{-u})(e^{+u} - e^{-u})}{(e^{+u} + e^{-u})^2} = \left(1 - \left(\frac{e^{+u} - e^{-u}}{e^{+u} + e^{-u}}\right)^2\right) = 1 - y^2$$

Design a perceptron to learn the following mapping by using gradient descent (GD):

$x = (x_1, x_2)$	d
(0.77, 0.02)	2.91
(0.63, 0.75)	0.55
(0.50, 0.22)	1.28
(0.20, 0.76)	-0.74
(0.17, 0.09)	0.88
(0.69, 0.95)	0.30
(0.00, 0.51)	-0.28

Use learning factor $\alpha = 0.01$.

$$\mathbf{X} = \begin{pmatrix} 0.77 & 0.02 \\ 0.63 & 0.75 \\ 0.50 & 0.22 \\ 0.20 & 0.76 \\ 0.17 & 0.09 \\ 0.69 & 0.95 \\ 0.00 & 0.51 \end{pmatrix} \text{ and } \mathbf{d} = \begin{pmatrix} 2.91 \\ 0.55 \\ 1.28 \\ -0.74 \\ 0.88 \\ 0.30 \\ -0.28 \end{pmatrix}$$

Output
$$y \in [-0.74, 2.91] \subset [-1.0, 3.0]$$

Note that the sigmoidal should have an amplitude = 4 and shifted downwards by 1.0.

So, the activation function should be

$$y = f(u) = \frac{4.0}{1 + e^{-u}} - 1.0$$

$$f'(u) = \frac{4e^{-u}}{(1+e^{-u})^2} = (y+1)\frac{e^{-u}}{(1+e^{-u})} = (y+1)\left(1 - \frac{1}{1+e^{-u}}\right)$$
$$f'(u) = \frac{1}{4}(y+1)(3-y)$$

Epoch 1 begins ...

$$\boldsymbol{u} = \boldsymbol{X}\boldsymbol{w} + b\boldsymbol{1}_{P} = \begin{pmatrix} 0.77 & 0.02 \\ 0.63 & 0.75 \\ 0.50 & 0.22 \\ 0.20 & 0.76 \\ 0.17 & 0.09 \\ 0.69 & 0.95 \\ 0.00 & 0.51 \end{pmatrix} \begin{pmatrix} 0.81 \\ 0.61 \end{pmatrix} + 0.0 \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 0.64 \\ 0.97 \\ 0.54 \\ 0.63 \\ 0.19 \\ 1.14 \\ 0.32 \end{pmatrix}$$

$$\mathbf{y} = f(\mathbf{u}) = \frac{4.0}{1 + e^{-u}} - 1.0 = \begin{pmatrix} 1.61 \\ 1.90 \\ 1.53 \\ 1.61 \\ 1.19 \\ 2.03 \\ 1.31 \end{pmatrix}$$

m. s. e. =
$$\frac{1}{7} \sum_{p=1}^{7} (d_p - y_p)^2 = 2.11$$

$$f'(\boldsymbol{u}) = \frac{1}{4}(\boldsymbol{y}+1) \cdot (3-\boldsymbol{y}) = \frac{1}{4} \begin{pmatrix} 1.61 \\ 1.90 \\ 1.53 \\ 1.61 \\ 1.19 \\ 2.03 \\ 1.31 \end{pmatrix} + \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{pmatrix} \cdot \begin{pmatrix} 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 3.0 \end{pmatrix} - \begin{pmatrix} 1.61 \\ 1.90 \\ 1.53 \\ 1.61 \\ 1.19 \\ 2.03 \\ 1.31 \end{pmatrix} = \begin{pmatrix} 0.90 \\ 0.80 \\ 0.93 \\ 0.91 \\ 0.99 \\ 0.73 \\ 0.98 \end{pmatrix}$$

$$w = w + \alpha X^{T}(d - y) \cdot f'(u)$$

$$= \binom{0.81}{0.61} + 0.01 \binom{0.77}{0.02} \quad 0.63 \quad 0.50 \quad 0.20 \quad 0.17 \quad 0.69 \quad 0.00$$

$$0.55 \quad 0.22 \quad 0.76 \quad 0.09 \quad 0.95 \quad 0.51$$

$$0.55 \quad 0.22 \quad 0.74 \quad 0.88 \quad 0.30 \quad 0.74 \quad 0.88 \quad 0.30 \quad 0.94 \quad 0.94$$

$$0.80 \quad 0.93 \quad 0.91 \quad 0.99 \quad 0.99 \quad 0.99 \quad 0.99$$

$$0.80 \quad 0.93 \quad 0.91 \quad 0.99 \quad 0.99 \quad 0.99 \quad 0.99$$

$$b = b + \alpha \mathbf{1}_{P}^{T} (\mathbf{d} - \mathbf{y}) \cdot f'(\mathbf{u})$$

$$= 0.0 + 0.01 \times (1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0 \quad 1.0) \begin{pmatrix} 2.91 \\ 0.55 \\ 1.28 \\ -0.74 \\ 0.88 \\ 0.30 \\ -0.28 \end{pmatrix} - \begin{pmatrix} 1.61 \\ 1.90 \\ 1.53 \\ 1.61 \\ 1.19 \\ 2.03 \\ 1.31 \end{pmatrix} \cdot \begin{pmatrix} 0.90 \\ 0.80 \\ 0.93 \\ 0.91 \\ 0.99 \\ 0.73 \\ 0.98 \end{pmatrix} = -0.05$$

iter	u	y	f'(u)	mse	W	b
1	$ \begin{pmatrix} 0.64 \\ 0.97 \\ 0.54 \\ 0.63 \\ 0.19 \\ 1.14 \\ 0.32 \end{pmatrix} $	1.61 1.90 1.53 1.61 1.19 2.03 1.31	0.90 0.80 0.93 0.91 0.99 0.73 0.98	2.11	$\binom{0.80}{0.57}$	-0.05
2	$ \begin{pmatrix} 0.57 \\ 0.88 \\ 0.47 \\ 0.54 \\ 1.04 \\ 1.95 \\ 0.24 \end{pmatrix} $	1.56 1.83 1.46 1.52 1.13 1.95 1.24	$ \begin{pmatrix} 0.92 \\ 0.83 \\ 0.95 \\ 0.93 \\ 1.00 \\ 0.77 \\ 0.99 \end{pmatrix} $	1.96	$\binom{0.79}{0.52}$	-0.11
1500	$ \begin{pmatrix} 2.05 \\ -0.45 \\ 0.56 \\ -1.94 \\ -0.16 \\ -0.85 \\ -1.89 \end{pmatrix} $	$ \begin{pmatrix} 2.54 \\ 0.56 \\ 1.55 \\ -0.50 \\ 0.84 \\ 0.20 \\ -0.48 \end{pmatrix} $	$ \begin{pmatrix} 0.40 \\ 0.95 \\ 0.92 \\ 0.44 \\ 0.99 \\ 0.84 \\ 0.45 \end{pmatrix} $	0.046	$\binom{3.35}{-2.80}$	-0.47

At convergence:

$$\mathbf{w} = \begin{pmatrix} 3.35 \\ -2.80 \end{pmatrix}$$
$$b = -0.47$$

Mean square error = 0.01

$$u = x^{T}w + b = (x_{1} \quad x_{2}) \begin{pmatrix} 3.35 \\ -2.80 \end{pmatrix} - 0.47 = 3.35x_{1} - 2.8x_{2} - 0.47$$

$$y = \frac{4.0}{1 + e^{-u}} - 1.0$$

$$y = \frac{4.0}{1 + e^{-3.35x_{1} + 2.8x_{2} + 0.47}} - 1.0$$

Non-linear function leant by the perceptron

$$y = \frac{4.0}{1 + e^{-3.35x_1 + 2.8x_2 + 0.47}} - 1.0$$

Gradient descent for perceptron

GD	SGD
(X, d)	(x_p, d_p)
$J = \frac{1}{2} \sum_{p=1}^{P} (d_p - y_p)^2$	$J = \frac{1}{2} \left(d_p - y_p \right)^2$
$u = Xw + b1_P$	$u_p = \boldsymbol{x}_p^T \boldsymbol{w} + b$
y = f(u)	$y_p = f(u_p)$
$\mathbf{w} = \mathbf{w} + \alpha \mathbf{X}^{T} (\mathbf{d} - \mathbf{y}) \cdot f'(\mathbf{u})$	$\mathbf{w} = \mathbf{w} + \alpha (d_p - y_p) f'(u_p) \mathbf{x}_p$
$b = b + \alpha 1_{P}^{T} (\boldsymbol{d} - \boldsymbol{y}) \cdot f'(\boldsymbol{u})$	$b = b + \alpha (d_p - y_p) f'(u_p)$

Example 3: Learning rates with SGD

Example 3: Learning rates with GD

Learning rates

- At higher learning rates, convergence is faster but may not be stable.
- The optimal learning rate is the largest rate at which learning does not diverge.
- Generally, SGD convergence to a better solution (lower error) as it capitalizes on randomness of data. SGD takes a longer time to converge
- Usually, GD can use a higher learning rate compared to SGD; The time for one add/multiply computation is less when patterns are trained in a batch.
- In practice, mini-batch SGD is used.
- Time to train a network is dependent upon
 - the learning rate
 - the batch size

Local minima problem in gradient descent learning

Algorithm may stuck in a local minimum of error function depending on the initial weights. Gradient descent gives a suboptimal solution and does not guarantee the optimal solution.

Summary of Chapter 2

- Regression with a linear neuron and a perceptron
- For a batch, The synaptic input $u = Xw + b\mathbf{1}_P$
- Linear neuron performs linear regression: y = u

GD learning equations:

$$w = w + \alpha X^{T}(d - y)$$

$$b = b + \alpha \mathbf{1}_{P}^{T}(d - y)$$

• **Perceptron** performs non-linear regression:

$$\mathbf{y} = f(\mathbf{u}) = \frac{1}{1 + e^{-\mathbf{u}}}$$

GD learning equations:

$$w = w + \alpha X^{T}(d - y) \cdot f'(u)$$

$$b = b + \alpha \mathbf{1}_{P}^{T}(d - y) \cdot f'(u)$$