VISÃO COMPUTACIONAL Lista de Exercícios 00 – Retificação de Imagens

I Retificação Afim - Método das Retas Paralelas

Dada a imagem $img_retificacao.png$, manualmente escolha 2 pares de retas que sejam paralelas no mundo real $(l_A \parallel l_B \in l_C \parallel l_D)$.

- 1. Mostre a imagem com as 4 retas encontradas.
- 2. Sabendo que após uma transformação projetiva retas paralelas no mundo real se cruzam em ponto no plano projetivo (ponto de fuga), encontre o ponto de interseção para cada par de reta. Quais as coordenadas (x, y) dos dois pontos encontrados?
- 3. Mostre a imagem com a linha do infinito $l' = (l_1, l_2, l_3)$ formada pela junção dos dois pontos de fuga encontrados no item anterior.
- 4. A transformação projetiva H que mapeia a linha do infinito l' de volta para $(0,0,1)^T$ é dada por:

$$H = H_A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l_1 & l_2 & l_3 \end{bmatrix},$$

onde H_A é uma transformação afim qualquer.

Aplique a transformação H na imagem e mostre a imagem.

II Retificação Afim - Método da Razão das Distâncias

A imagem *img_retificacao.png* mostra ladrilhos com as mesmas dimensões no mundo real. Considerando que as dimensões dos ladrilhos são conhecidas, faça:

- 1. Escolha manualmente 3 pontos colineares (a', b' e c') cujas distâncias do mundo real d(a, b) e d(b, c) podem ser medidas no mundo real. Mostre os pontos na imagem e o segmento de reta que liga os pontos.
- 2. Encontre a razão das distâncias na imagem $d(\mathbf{a}', \mathbf{b}')$ e $d(\mathbf{b}', \mathbf{c}') = a' : b'$.
- 3. Os pontos do mundo real \boldsymbol{a} , \boldsymbol{b} e \boldsymbol{c} podem ser representados pelo vetor em coordenadas homogêneas $(0,1)^T$, $(a,1)^T$ e $(a+b,1)^T$. Da mesma forma, os pontos da imagem \boldsymbol{a}' , \boldsymbol{b}' e \boldsymbol{c}' possuem coordenadas 0, a' e a' + b'.

Encontre a transformação projetiva $H_{2\times 2}$ que transforma os pontos do mundo real $\boldsymbol{a}, \boldsymbol{b}$ e \boldsymbol{c} para os pontos da imagem $(\boldsymbol{a}', \boldsymbol{b}' \in \boldsymbol{c}')$.

- 4. Aplique a transformação $H_{2\times 2}$ no ponto do infinito $(1,0)^T$ para encontrar o ponto de fuga da linha $\langle \boldsymbol{a}', \boldsymbol{b}', \boldsymbol{c} \rangle$.
- 5. Repita os items anteriores escolhendo um novo segmento de reta que seja concorrente ao segmento encontrado.
- 6. Mostre a imagem com os dois segmentos de reta, seus respectivos pontos de fuga e a linha do infinito conectando os dois pontos de fuga.
- 7. Similarmente ao exercício anterior, monte a matriz de transformação projetiva H e aplique na imagem. Comente os resultados obtidos.

III Retificação Métrica

Faça a retificação métrica da imagem aplicando o método da cônica dual dos pontos circulares. Explique os passos seguidos e mostre a imagem retificada.