Anomaly Detection

전 재 욱

Embedded System 연구실 성균관대학교

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

- Aircraft engine features
 - x_1 : heat generated
 - \mathbf{x}_2 : vibration intensity
- Dataset: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$

- Given a new engine,
 - an anomaly detection method is used
 to see if the new engine is anomalous
 (when compared to the previous engines)

Anomaly Detection

More formally

- We have a dataset which contains **normal** (data)
 - How can we ensure they are normal data?
 - > It is up to us.
 - In reality, it is OK if this dataset contains a few which are NOT normal.
- Using this dataset as a reference point, we can check whether other examples are normal or anomalous

Density Estimation

- Using our training dataset: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
 - \blacksquare A model p(x) can be built
 - p(x): the probability that one example x is normal
- Having built a model, given x_{test}
 - If $p(x_{test}) < \varepsilon \rightarrow$ flag this as an anomaly
 - If $p(x_{test}) \ge \varepsilon \rightarrow$ this is OK

 ϵ is some threshold probability value which we define, depending on

how sure we want to be

- Fraud detection:
 - $\mathbf{x}^{(i)}$: features of user's activities
 - Model p(x) from data
 - Identify unusual users by checking which have $p(x_{test}) < \varepsilon$

Fraud detection:

- Users have activity associated with them, such as
 - Length on time on-line
 - Location of login
 - Spending frequency
- Using this data, we can build a model p(x) of what normal users' activity is like
- What is the probability of "normal" behavior?
- Identify unusual users by sending their data through the model (i.e. check $p(x_{test}) < \varepsilon$)
 - Flag up anything that looks a bit weird
 - Automatically block cards/transactions

- Monitoring computers in data center
 - If many machines are in a cluster,
 - $\mathbf{x}^{(i)}$: features of user i's activities
 - Computer features of machine
 - $\rightarrow x_1 = \text{memory use}$
 - $\rightarrow x_2$ = number of disk accesses/sec
 - $\succ x_3 = CPU load$
 - In addition to the measurable features, our own complex features can also be defined
 - $x_4 = CPU load/network traffic$
 - If we see an anomalous machine (i.e. check $p(x_{test}) < \varepsilon$)
 - Maybe about to fail
 - Look at replacing bits from it

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Gaussian (Normal) Distribution

- \blacksquare Say $x \in R$
 - If x is a distributed Gaussian with mean μ and variance σ^2

Gaussian Distribution Example

- Area under a Gaussian distribution is always 1
 - But width changes as standard deviation changes

$$\mu = 0, \sigma = 1$$

$$\mu = 0, \sigma = 2$$

Parameter Estimation Problem

- Given a dataset: $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}, x^{(i)} \in R$
 - we can plot these data on the *x* axis
- Do these data come from a Gaussian?
 - Can we estimate the distribution for the given dataset?

Parameter Estimation Problem

- A possible Gaussian could be the following curve
 - It seems like a reasonable fit
 - Data seems like a higher probability of being in the central region, lower probability of being further away

Parameter Estimation Problem

Estimation of μ and σ^2

- μ : average of data, $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\sigma^2$$
: variance of data, $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} - \mu)^2$

Maximum likelihood estimation for μ and σ^2

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Density Estimation

- Unlabeled training set: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}, \quad x^{(i)} \in \mathbb{R}^n$
 - Each example is an *n* feature vector.
- Model p(x) from the data set
 - What are high probability features and low probability features
 - x is a vector
 - So model p(x) as

$$p(x) = p(x_1; \mu_1, \sigma_1^2) * p(x_2; \mu_2, \sigma_2^2) * \dots * p(x_n; \mu_n, \sigma_n^2) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2)$$

- (→Independence assumption)
- Here, we assume each feature is distributed according to a Gaussian distribution
 - $x_i \sim N(x_1; \mu_i, \sigma_i^2)$
 - $p(x_i; \mu_i, \sigma_i^2)$
 - The probability of feature x_j (given μ_j and σ_j^2) using a Gaussian distribution

Density Estimation

The previous equation

$$p(x) = p(x_1; \mu_1, \sigma_1^2) * p(x_2; \mu_2, \sigma_2^2) * \dots * p(x_n; \mu_n, \sigma_n^2) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2)$$

makes an independence assumption for the features

- although algorithm works if features are independent or not
 - If features are tightly linked,

we should be able to do some dimensionality reduction anyway.

Anomaly Detection Algorithm

- Choose features x_i that we think might be indicative of anomalous examples.
- Given a training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
 - Fit parameters μ_1, \dots, μ_n , $\sigma_1, \dots, \sigma_n$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}, \qquad \sigma_j = \frac{1}{m} \sum_{i=1}^m \left(x_j^{(i)} - \mu_j \right)^2$$

Given new example x, compute p(x):

$$p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2}\right)$$

■ Anomaly if $p(x) < \varepsilon$

Anomaly Detection Algorithm

Chose features

- Try to come up with features which might help identify something anomalous - may be unusually large or small values
 - More generally, choose features which describe the general properties
 - This is nothing unique to anomaly detection
 - It is just the idea of building a sensible feature vector
- Fit parameters for a given training set
 - Determine parameters for each example: μ_i and σ_i^2
 - Variance and mean for each feature are calculated
- Compute p(x)
 - If p(x) is very small,
 it has very low chance for x to be "normal"

- x_1
- \mathbf{x}_2

- x_1
 - Mean: 5 , Standard deviation: 2
- x_2
 - Mean: 3, Standard deviation: 1

■ Gaussian for x_1 and x_2

- Plot for $p(x_1; \mu_1, \sigma_1^2) \times p(x_2; \mu_2, \sigma_2^2)$
 - The height of the surface is the probability $p(x) = p(x_1; \mu_1, \sigma_1^2) * p(x_2; \mu_2, \sigma_2^2)$

- Check if a test value is anomalous
 - For example, set $\varepsilon = 0.02$
 - Given two new data $x_{test}^{(1)}$ and $x_{test}^{(2)}$,

■ If
$$p(x_{test}^{(1)}) = 0.0426$$
 → normal $(0.0426 \ge ε)$

If
$$p\left(x_{test}^{(2)}\right) = 0.0021$$
 \rightarrow anomalous ($0.0021 < \varepsilon$)

- Considering the probability p(x) as the surface height,
 - All values above a certain height are normal,
 - all the values below that threshold are probably anomalous

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Importance of Real-Number Evaluation

- When developing a learning algorithm (choosing features, etc.),
 - making decisions is much easier if we have a way of evaluating our learning algorithm.
 - which gives us a single number
- Easier to evaluate our algorithm if a single number is given to show

if changes we made improved or worsened an algorithm's performance (Depending on the inclusion of one extra feature or not)

Importance of Real-Number Evaluation

- Assume we have some labeled data, of anomalous and non-anomalous examples.
 - y = 0 if normal, y = 1 if anomalous).
- Training set is the collection of normal examples
 - OK even if we have a few anomalous data examples
 - $x^{(1)}, x^{(2)}, \dots, x^{(m)}$
- Define cross validation set and test set

$$\left(x_{cv}^{(1)}, y_{cv}^{(1)} \right), \left(x_{cv}^{(2)}, y_{cv}^{(2)} \right), \dots, \left(x_{cv}^{(m_{cv})}, y_{cv}^{(m_{cv})} \right)$$

$$[x_{test}^{(1)}, y_{test}^{(1)}], (x_{test}^{(2)}, y_{test}^{(2)}), ..., (x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$$

- For both cross validation and test sets,
 - > assume we can include a few examples which have anomalous examples

Aircraft Engines Motivating Example

Engines

- Have 10,000 good (normal) engines
 - OK even if a few bad ones are here
 - Lots of y = 0
- 20 flawed engines (anomalous)
 - Typically when y = 1 have 20~50

Split into

- Training set: 6,000 good engines (y = 0)
- CV set: 2,000 good engines(y = 0), 10 anomalous(y = 1)
- Test set: 2000 good engines(y = 0), 10 anomalous(y = 1)
- Ratio is 3:1:1

Aircraft Engines Motivating Example

Engines

- Have 10,000 good (normal) engines
 - OK even if a few bad ones are here
 - Lots of y = 0
- 20 flawed engines (anomalous)
 - Typically when y = 1 have 20~50

Alternative

Exactly same

- Training set: 6,000 good engines (y = 0)
- CV set: $4{,}000$ good engines(y = 0), 10 anomalous(y = 1)
- Test set: 4,000 good engines(y = 0), 10 anomalous(y = 1)
- NOT good practice
 - Should use different data in CV and test set.

Algorithm Evaluation

- Fit model p(x) on training set $\{x^{(1)}, ..., x^{(m)}\}$
- \blacksquare On a cross validation/test example x, predict

$$y = \begin{cases} 1 & if & p(x) < \varepsilon \text{ (anomaly)} \\ 0 & if & p(x) \ge \varepsilon \text{ (normal)} \end{cases}$$

- Possible evaluation metrics:
 - True positive, false positive, false negative, true negative
 - Precision/Recall
 - F₁-score
 - (classification would be NOT good because y = 0 is very common)
- lacktriangle Can also use cross validation set to choose parameter arepsilon

Algorithm Evaluation

- \blacksquare Can also use cross validation set to choose parameter ε
 - If we have CV set, we can see how varying ε effects various evaluation metrics
 - Then pick the value of ε which maximizes the score on our CV set

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Anomaly Detection vs. Supervised Learning

Anomaly Detection

- Very small number of positive examples (y = 1).
 - (0-20 is common)
- Large number of negative (y = 0) examples.
- Many different "types" of anomalies.
 - Hard for any algorithm to learn from positive examples what the anomalies look like;
 - future anomalies may look nothing like any of the anomalous examples we have seen so far.

- Supervised learning
 - Large number of positive and negative examples

- Enough positive examples for algorithm to get a sense of what positive examples are like,
 - Iture positive examples likely to be similar to ones in training set.

Anomaly Detection

- Very small number of positive examples
 - Save positive examples just for CV and test set
 - Consider using an anomaly detection algorithm
 - Not enough data to "learn" positive examples
- Have a very large number of negative examples
 - Use these negative examples for p(x) fitting
 - Only need negative examples for this

Anomaly Detection

- Many different "types" of anomalies
 - Hard for an algorithm to learn from positive examples when anomalies may look nothing like one another
 - So anomaly detection does not know what they look like, but knows what they do not look like
 - When we looked at SPAM email,
 - Many types of SPAM
 - For the spam problem, usually enough positive examples
 - So this is why we usually think of SPAM as supervised learning

Anomaly Detection vs. Supervised Learning

- Anomaly detection
 - Fraud detection
 - Manufacturing (e.g. aircraft engines)
 - Monitoring machines in a data center

- Supervised learning
 - Email spam classification
 - Weather prediction (sunny/rainy/etc)
 - Cancer classification

Anomaly Detection

- Application
 - Fraud detection
 - Many ways of fraud
 - If we are a major on line retailer/very subject to attacks, we sometimes might shift to supervised learning
 - Manufacturing (e.g. aircraft engines)
 - If we make HUGE volumes,
 we may have enough positive data → make supervised
 - Means we make an assumption about the kinds of errors we are going to see
 - Monitoring machines in a data center
 - ...

Supervised Learning

- Reasonably large number of positive and negative examples
- Have enough positive examples to give your algorithm the opportunity to see what they look like
- Application
 - Email/SPAM classification
 - Weather prediction
 - Cancer classification

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Choosing Features to Use

- Huge effect on an anomaly detection
 - which features are used

Choosing Features to Use

- Non-Gaussian features
 - Plot a histogram of data to check it has a Gaussian description
 - Often still works if data is non-Gaussian
 - Use hist command to plot histogram
 - Non-Gaussian data might look like this

Choosing Features to Use

- Transforming non-Gaussian data into a Gaussian data
 - Different transformation of the data to make it look more Gaussian
 - A log transformation of the data
 - \triangleright For some feature x_1 , replace it with $\log(x_1)$

- \triangleright Or do $\log(x_1 + c)$
 - Add c to make it look as Gaussian as possible
- \triangleright Or do $x^{1/2}$
- \triangleright Or do $x^{1/3}$

Error Analysis for Anomaly Detection

- Like supervised learning, error analysis procedure
 - Run algorithm on CV set
 - See which one it got wrong
 - Develop new features based on trying to understand why the algorithm got those examples wrong

Error Analysis for Anomaly Detection

- Want p(x) large for normal examples x. p(x) small for anomalous examples x.
- Most common problem:
 - p(x) is comparable (say, both large) for normal and anomalous examples

- Our anomalous value is sort of buried in it
 - Look at data see what went wrong
- Develop a new feature x_2 which can help distinguish further anomalous

Error Analysis for Anomaly Detection

- Want p(x) large for normal examples x. p(x) small for anomalous examples x .
- Most common problem:
 - p(x) is comparable (say, both large) for normal and anomalous examples

Monitoring Computers in A Data Center

- Choose features that might take on unusually large or small values in the event of an anomaly.
 - \mathbf{x}_1 : memory use of computer
 - x_2 : number of disk accesses/sec
 - \mathbf{x}_3 : CPU load
 - x_4 : network traffic
 - ...
 - x_5 : (CPU load)/(network traffic)
 - x_6 : (CPU load)²/(network traffic)

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

- Multivariate Gaussian Distribution
 - SA slightly different technique which can sometimes catch some anomalies
 - which non-multivariate Gaussian distribution anomaly detection fails to

- Unlabeled data looks like this
 - A Gaussian distribution to CPU load and memory use

- One example in the test set
 - which looks like an anomaly (e.g. $x_1 = 0.4$, $x_2 = 1.5$)
 - memory use is high and CPU load is low

Problem

If we look at each feature individually, they are both acceptable

Problem

This is because our function makes probability prediction in concentric circles around the means of both

Problem

Probability of the two black circled examples is basically the same, even though we can clearly see the green one as an outlier

Problem

Probability of the two black circled examples is basically the same, even though we can clearly see the green one as an outlier

→ To get around this, we develop the multivariate Gaussian distribution

- Given $x \in \mathbb{R}^n$,
 - Do not model $p(x_1), p(x_2), ..., p(x_n)$ separately.
 - Model p(x) in one go.
 - Parameters: $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)
- Multivariate Gaussian Distribution

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.6 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0.8 \\ 0.8 & 1 \end{bmatrix}$$

this example gives a very tall thin distribution, shows a strong positive correlation

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0.5 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mu = \begin{bmatrix} 1.5 \\ -0.5 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Outline

- Problem motivation
- Gaussian distribution
- Algorithm
- Developing and evaluating an anomaly detection system
- Anomaly detection vs. supervised learning
- Choosing what features to use
- Multivariate Gaussian distribution
- Anomaly detection using the multivariate Gaussian distribution

Multivariate Gaussian Distribution

Parameters: $\mu \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{n \times n}$ (covariance matrix)

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)\right)$$

- Parameter fitting:
 - Given training set $\{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$,

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \quad \Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^{T}$$

Anomaly Detection with The Multivariate Gaussian

Fit model p(x) by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \ \Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu) (x^{(i)} - \mu)^{T}$$

■ Given a new example x_{test} , compute

$$p(x_{test}; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} (x_{test} - \mu)^T \Sigma^{-1} (x_{test} - \mu)\right)$$

Flag an anomaly if $p(x_{test}) < \varepsilon$

Relationship to Original Model

Original model

- $p(x) = p(x_1, \mu_1, \sigma_1^2) * p(x_2, \mu_2, \sigma_2^2) * \dots * p(x_n, \mu_n, \sigma_n^2)$
 - corresponds to multivariate Gaussian where the Gaussians' contours are axis aligned
 - Has this constraint that the covariance matrix Σ as ZEROs on the non-diagonal values

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

where
$$\Sigma = \begin{bmatrix} \sigma_1^2 & \mathbf{0} \\ \sigma_2^2 & \cdots \\ \mathbf{0} & \cdots \\ \sigma_n^2 \end{bmatrix}$$

Original Model vs. Multivariate Gaussian

Original Model

$$p(x) = p(x_1, \mu_1, \sigma_1^2) * p(x_2, \mu_2, \sigma_2^2) * \dots * p(x_n, \mu_n, \sigma_n^2)$$

Manually create features to capture anomalies where x_1 , x_2 take unusual combinations of values. (e.g. $x_3 = \frac{x_1}{x_2}$)

- Computationally cheaper (alternatively, scales better to large n)
- OK even if m (training set size) is small

Multivariate Gaussian

$$p(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

Automatically captures correlations btw features

Computationally more expensive

Must have m > n, or else Σ is non-invertible.

Original Model vs. Multivariate Gaussian

Original Gaussian

- Probably used more often
- Manually create features to capture anomalies where x_1 and x_2 take unusual combinations of values
 - So need to make extra features

For example,
$$x_3 = \frac{x_1}{x_2} = \frac{CPU \ load}{memory}$$

- Much cheaper computationally
- Scales much better to very large feature vectors
 - Even if n = 100,000, the original model works fine
- Works well even with a small training set
 - For example, m = 50, 100
- Because of the above factors,

it is used more often

because it really represents a optimized

but axis-symmetric specialization of the general model

Original Model vs. Multivariate Gaussian

Multivariate Gaussian

- Used less frequently
- Can capture feature correlation → So no need to create extra values
- Less computationally efficient
 - Must compute inverse of $[n \times n]$ matrix
 - So lots of features are bad makes this calculation very expensive
 - So if n = 100,000, multivariate Gaussian is not very good
- Needs for m > n
 - i.e. (number of examples) > (number of features)
 - If this is not true, then we have a singular matrix (non-invertible)
 - \triangleright So should be used only in $m \gg n$
- If you find the matrix is non-invertible,
 - m < n
 - So use original simple model
 - Redundant features (i.e. linearly dependent)
 - > i.e. two features that are the same
 - If this is the case, use PCA or sanity check your data

References

- https://www.coursera.org/learn/machine-learning
- http://www.holehouse.org/mlclass/15_Anomaly_Detection.html