H01

A

In Exercises 19–28, describe the given set with a single equation or with a pair of equations.

19. The plane perpendicular to the

a. x-axis at (3, 0, 0)

b. y-axis at (0, -1, 0)

c. z-axis at (0, 0, -2)

20. The plane through the point (3, -1, 2) perpendicular to the

a. *x*-axis

b. *y*-axis

c. z-axis

23. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane

b. yz-plane

c. plane y = 2

26. The set of points in space equidistant from the origin and the point (0, 2, 0)

27. The circle in which the plane through the point (1, 1, 3) perpendicular to the *z*-axis meets the sphere of radius 5 centered at the origin

B

12.2

In Exercises 9–16, find the component form of the vector.

9. The vector \overrightarrow{PQ} , where P = (1, 3) and Q = (2, -1)

10. The vector \overrightarrow{OP} where O is the origin and P is the midpoint of segment RS, where R = (2, -1) and S = (-4, 3)

13. The unit vector that makes an angle $\theta = 2\pi/3$ with the positive x-axis

In Exercises 17–22, express each vector in the form $\mathbf{v} = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$.

17. $\overrightarrow{P_1P_2}$ if P_1 is the point (5, 7, -1) and P_2 is the point (2, 9, -2)

18. $\overrightarrow{P_1P_2}$ if P_1 is the point (1, 2, 0) and P_2 is the point (-3, 0, 5)

- C
- **41. Linear combination** Let $\mathbf{u} = 2\mathbf{i} + \mathbf{j}$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$, and $\mathbf{w} = \mathbf{i} \mathbf{j}$. Find scalars a and b such that $\mathbf{u} = a\mathbf{v} + b\mathbf{w}$.
- **42. Linear combination** Let $\mathbf{u} = \mathbf{i} 2\mathbf{j}$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j}$, and $\mathbf{w} = \mathbf{i} + \mathbf{j}$. Write $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$, where \mathbf{u}_1 is parallel to \mathbf{v} and \mathbf{u}_2 is parallel to \mathbf{w} . (See Exercise 41.)
- **43. Force vector** You are pulling on a suitcase with a force \mathbf{F} (pictured here) whose magnitude is $|\mathbf{F}| = 10 \text{ lb}$. Find the **i** and **j**-components of \mathbf{F} .

- **44. Force vector** A kite string exerts a 12-lb pull ($|\mathbf{F}| = 12$) on a kite and makes a 45° angle with the horizontal. Find the horizontal and vertical components of \mathbf{F} .
- \Box

In Exercises 1–8, find

a. $\mathbf{v} \cdot \mathbf{u}$, $|\mathbf{v}|$, $|\mathbf{u}|$

12.3

- **b.** the cosine of the angle between \mathbf{v} and \mathbf{u}
- \mathbf{c} . the scalar component of \mathbf{u} in the direction of \mathbf{v}
- **d.** the vector $proj_v \mathbf{u}$.

1.
$$\mathbf{v} = 2\mathbf{i} - 4\mathbf{j} + \sqrt{5}\mathbf{k}$$
, $\mathbf{u} = -2\mathbf{i} + 4\mathbf{j} - \sqrt{5}\mathbf{k}$

2.
$$\mathbf{v} = (3/5)\mathbf{i} + (4/5)\mathbf{k}, \quad \mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$$

3.
$$\mathbf{v} = 10\mathbf{i} + 11\mathbf{j} - 2\mathbf{k}, \quad \mathbf{u} = 3\mathbf{j} + 4\mathbf{k}$$

In Exercises 17–19, write **u** as the sum of a vector parallel to **v** and a vector orthogonal to **v**.

17.
$$u = 3j + 4k$$
, $v = i + j$

18.
$$u = j + k$$
, $v = i + j$

22. Orthogonality on a circle Suppose that AB is the diameter of a circle with center O and that C is a point on one of the two arcs joining A and B. Show that \overrightarrow{CA} and \overrightarrow{CB} are orthogonal.

- **23. Diagonals of a rhombus** Show that the diagonals of a rhombus (parallelogram with sides of equal length) are perpendicular.
- **24. Perpendicular diagonals** Show that squares are the only rectangles with perpendicular diagonals.
- **25.** When parallelograms are rectangles Prove that a parallelogram is a rectangle if and only if its diagonals are equal in length. (This fact is often exploited by carpenters.)
- 29. a. Cauchy-Schwartz inequality Use the fact that $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$ to show that the inequality $|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| |\mathbf{v}|$ holds for any vectors \mathbf{u} and \mathbf{v} .
 - **b.** Under what circumstances, if any, does $|\mathbf{u} \cdot \mathbf{v}|$ equal $|\mathbf{u}| |\mathbf{v}|$? Give reasons for your answer.

F

In Exercises 1–8, find the length and direction (when defined) of $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$.

12.4

1.
$$u = 2i - 2j - k$$
, $v = i - k$

2.
$$u = 2i + 3j$$
, $v = -i + j$

In Exercises 9–14, sketch the coordinate axes and then include the vectors \mathbf{u} , \mathbf{v} and $\mathbf{u} \times \mathbf{v}$ as vectors starting at the origin.

9.
$$u = i, v = j$$

10.
$$u = i - k$$
, $v = j$

11.
$$u = i - k$$
, $v = j + k$

G

- 23. Parallel and perpendicular vectors Let $\mathbf{u} = 5\mathbf{i} \mathbf{j} + \mathbf{k}$, $\mathbf{v} = \mathbf{j} 5\mathbf{k}$, $\mathbf{w} = -15\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.
- 24. Parallel and perpendicular vectors Let $\mathbf{u} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{v} = -\mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{w} = \mathbf{i} + \mathbf{k}$, $\mathbf{r} = -(\pi/2)\mathbf{i} \pi\mathbf{j} + (\pi/2)\mathbf{k}$. Which vectors, if any, are (a) perpendicular? (b) Parallel? Give reasons for your answers.

In Exercises 39 and 40, find the magnitude of the torque exerted by \mathbf{F} on the bolt at P if $|\overrightarrow{PQ}| = 8$ in. and $|\mathbf{F}| = 30$ lb. Answer in footpounds.

25.

26.

H

- **43. Triangle area** Find a formula for the area of the triangle in the *xy*-plane with vertices at (0,0), (a_1,a_2) , and (b_1,b_2) . Explain your work.
- **44. Triangle area** Find a concise formula for the area of a triangle with vertices (a_1, a_2) , (b_1, b_2) , and (c_1, c_2) .