Graphs

Representation: Adjacency Matrix

By the end of this video you will be able to...

Implement graphs in Java using adjacency matrix

$$V = \{1,2,3,4,5,6\}$$

$$V = \{0,1,2,3,4,5\}$$

$$V = \{0,1,2,3,4,5\}$$

$$V = \{0,1,2,3,4,5\}$$

$$V = \{0,1,2,3,4,5\}$$

1 0

$$V = \{0,1,2,3,4,5\}$$

$$V = \{0,1,2,3,4,5\}$$

	l	 	
0	1		

$$V = \{0,1,2,3,4,5\}$$

	0	1		
)		1		
	0			

$$V = \{0,1,2,3,4,5\}$$

1			
	1		
	1		
	1	1	

$$V = \{0,1,2,3,4,5\}$$

0	1	0	0	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	0	1	1	0

```
public class GraphAdjMatrix extends Graph {
    private int[][] adjMatrix;
```


. . .

```
public class GraphAdjMatrix extends Graph {
  private int[][] adjMatrix;
  ...

public void implementAddEdge(int v, int w) {
   adjMatrix[v][w] = 1;
}
```



```
public class GraphAdjMatrix extends Graph {
       What about adding vertices to the graph?
  private int[][] adjMatrix;
  public void
                            (int v, int w) {
    adjM24
```



```
public class GraphAdjMatrix extends Graph {
  private int[][] adjMatrix;
  public void implementAddVertex() {
    int v = getNumVertices();
    if (v >= adjMatrix.length) {
      int[][] newAdjMatrix = new int[v*2][v*2];
      for (int i=0; i<adjMatrix.length; i++) {</pre>
        for (int j=0; j<adjMatrix.length; j++) {</pre>
          newAdjMatrix[i][j] = adjMatrix[i][j];
      adjMatrix = newAdjMatrix;
    for (int i=0; i<adjMatrix[v].length; i++) {</pre>
      adjMatrix[v][i]=0;
```



```
public class GraphAdjMatrix extends Graph {
```



```
private int[][] adjMatrix;
```

//constructor, methods update values of adjMatrix

IVQ: How long does it take to test whether there is an edge between vertex v and vertex w in the graph?

Recap: Adjacency matrices

Algebraic representation of graph structure.

- Fast to test for edges.
- Fast to add/remove edges.
- Slow to add/remove vertices.

Requires a lot of memory.