

RECEIVED

JUL 1 5 2002

st96042sqlt.ST25 SEQUENCE LISTING

TECH CENTER 1600/2900

<110> ICARD-LIEPKALNS, Christine
 MALLET, Jacques
 RAVASSARD, Philippe

<120>	POLYPEPTIDES	OF	THE	"BASIC-HELIX-LOOP-HELI	X" bHLH	FAMILY,	CORRESPONDING	NUCLE
IC ACI	D.							
SEQUEN	CES						*	

<130>	ST96	5042AUS					
<140><141>		595,947 0-06-16					
<150> <151>		5/15651 5-12-19			**		
<150> <151>		/FR97/02368 7-12-19					
<150> <151>		9/331,356 7-12-19					
<160>	28						
<170>	Pate	entIn versio	on 3.0				
<210>	1		•				
<211> <212>	1460 DNA)					
<213>		us norvegio	cus				
<400>	1		hah				C 0
			tccctgggcc				60
gcagcc	egge	aggcacgctc	ctggtccggg	cagagcagat	aaagcgtgcc	aggggacaca	120
cgattag	gcag	ctcagaagtc	cctctgggtc	tcaccactgc	acagaggccg	aggaccccct	180
ccgagct	ttct	ttgctgcctc	cagacgcaat	ttactccagg	cgagggcgcc	tgcagctcag	240
caaaact	ttcg	aagcgagcag	aggggttcag	ctatccaccg	ctgcttgact	ctgaccaccc	300
gcagct	ctct	gttcttttga	gcccggagta	actaggtaac	atttaggaac	ctccaaaggg	360
tagaaga	aggg	gagtgggtgg	gcgtactcta	gtcccgcgtg	gagtgacctc	taagtcagag	420
actgtca	acac	ccccttcca	ttttttccca	acctcaggat	ggcgcctcat	cccttggatg	480
cgccca	ccat	ccaagtgtcc	caagagaccc	agcaaccctt	tcccggagcc	teggaceaeg	540
aagtgc	tcag	ttccaattcc	accccaccta	gccccactct	cgtaccgagg	gactgctccg	600
aagcaga	aagc	aggtgactgc	cgagggacat	cgaggaagct	ccgtgcgcgg	cgcggagggc	660
gcaaca	ggcc	caagagcgag	ttggcactga	gcaagcagcg	acgaagccgg	cgcaagaagg	720
ccaacg	accg	ggagcgcaac	cgcatgcaça	accttaactc	cgcgctggat	gegetgegeg	780
gtgtcc	tgcc	caccttcccg	gatgacgcca	aacttacaaa	gatcgagacc	ctgcgcttcg	840
cccaca	acta	catttgggca	ctgactcaga	cgctgcgcat		agcttctacg	900

Page 1

gccccgagcc	ccctgtgccc	tgtggggagc	tgggaagccc	gggagggggc	tccagcggcg	960
actggggctc	tatctactcc	ccagtttccc	aagctggtag	cctgagcccc	acagcctcat	1020
tggaggagtt	ccctggcctg	caggtgccca	gctccccatc	ctgtctgctc	ccgggcaccc	1080
tggtgttctc	agacttcttg	tgaagggccc	aaacaggccc	tgggcggtgg	gcgctggcag	1140
aaagggaggg	agtcagagct	gtctgaaatg	gaaggtagtg	gaggcactcg	agcatctcgc	1200
cccttctggc	tttcattagt	caggtccctg	atttaaccag	gattcgcaca	gttccttgct [°]	1260
gctgtgcgtg	cacaaaggac	attgcaggct	gateteetet	taaccctcct	cagtgtggcc	1320
acctcaaact	cccgctccaa	gcagaggaga	gccgtagcac	taaatagttg	ggagactccc	1380
atacttcctg	gtgactccgc	cctctttcaa	atctgcgggc	ctccaaccac	cgctttctcc	1440
agagtgacct	aatccagtgt					1460

```
<210> 2
<211> 24
<212> PRT
<213> Artificial
<220>
<223> peptide fragment of bHLH protein
```

<400> 2

Asp Lys Cys Gly Cys Arg Tyr Gly

```
<210> 3
<211> 24
<212> PRT
<213> Artificial
<220>
```

<223> peptide fragment of bHLH protein

<400> 3

Tyr Asx Gly Ala Tyr Cys Thr Thr 20

```
<210> 4
<211> 25
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 4
```

							S	t960	42sq	[lt.S	T25					
aacctt	aact	ccgc	gctg	ga t	gcgc										25	
<210>	5															
<211>	18															
<212>																
<213>	Arti	fici	al												•	
<220>																
<223>	prim	er													•	
	-															
<400>	5															
cgcggt	gtcc	tgcc	cacc												18	
		•														
	_															
<210>	6															
<211> <212>																
<213>		fici	~ I													
(213)	ALCI	LICI	aı													
<220>																
<223>	DNA	semi	ence	of ·	E bo	v										
,,		Doqu		<u> </u>	.	^										
<400>	6															
caggtg															6	
															· ·	
<210>																
<211>																
<212>		<i>-</i>	_													
<213>	Arti	fici	al													
<220>																
<223>	ר זארד	comi	2240	of.	m. + a		D bo									
(223)	DNA	sequi	ence	OT I	nuca	cea .	E DO	X.				•				
<400>	7															
tccgtg															6	
5-5															0	
<210>	8															
<211>	214															
<212>	PRT															
<213>	Ratt	us no	orve	gicus	3											
400	•															
<400>	8			_												
Mot Al	a Pro	Wic.	Dro	T 011	7 ~~	77-	Dwa	mb	т1.	a 1	77- 7	a	~1	~ 1		
Met Al 1	a PIO	птр	5	Leu	Asp	Ala	Pro		шe	GIN	vaı	Ser		Glu		
-			5					10					15			
Thr Gl	ո գյո	Pro	Dhe	Pro	Glv	Δla	Sar	Aen	Hic	Glu	Wa 1	Tan	602	Co~		
1111 01	0111	20	FIIC	FIO	GIY	лта	25	Asp	nis	Giu	vaı	30	ser	ser		
							23					30				
Asn Se	r Thr	Pro	Pro	Ser	Pro	Thr	Leu	Val	Pro	Ara	Asp	Cvs	Ser	Glu		
	35					40				5	45	<i>-12</i>	501	014		
Ala Gl	u Ala	Gly	Asp	Cys	Arg	Gly	Thr	Ser	Arg	Lys	Leu	Arg	Ala	Arg		
50					55	_			_	60				-		
Arg Gl	y Gly	Arg	Asn		Pro	Lys	Ser	Glu		Ala	Leu	Ser	Lys	Gln		
65				70					75					80		
B 3	6				_		_	_	_		_	_	_			
Arg Ar	y ser	arg		ràs	ьуs	Ala	Asn		Arg	Glu	Arg	Asn		Met		
			85					90		_			95			
]	?age	3						

His Asn Leu Asn Ser Ala Leu Asp Ala Leu Asp Ala Leu Arg Gly Val Leu Pro Thr 100 Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala Lish Asn Tyr Ile Trp Ala Leu Thr 135 Pro Gly Roll Pro Gly Gly Gly Ser Ser Gly Asp Trp Gly Fro Gly Gly Gly Ser Ile Ser Info Gly Asp Trp Gly Ser Ile Tyr Gly Ser Info Gly Roll Fro Info Roll Fro Info Gly Roll Fro Info Gly Roll Fro Info Roll Fro Info Roll Fro Info Gly Roll Fro Info Ro

<211> 1330

<212> DNA

<213> Homo sapiens

<400> 9

cctcggaccc cattctctct tcttttctcc tttggggctg gggcaactcc caggeggggg 60 egectgeage teagetgaae ttggegaeea gaageeeget gageteeeea eggeeetege 120 tgctcatcgc tctctattct tttgcgccgg tagaaaggta atatttggag gccttcgagg 180 gacgggcagg ggaaagaggg atcctctgac ccagcggggg ctgggaggat ggctgttttt 240 gttttttccc acctagcctc ggaatcgcgg actgcgccgt gacggactca aacttaccct 300 tecetetgae ecegeegtag gatgaegeet caaceetegg gtgegeecae tgtecaagtg 360 accegtgaga eggageggte ettecceaga geeteggaag aegaagtgae etgeceeaeg 420 teegeeeege ceageeeeae tegeacaeeg gggaactgeg cagaggegga agagggagge 480 tgccgagggg ccccgaggaa gctccgggca cggcgcgggg gacqcaqccq qcctaaqaqc 540 gagttggcac tgagcaagca gcgacggagt cggcgaaaga aggccaacga ccgcgagcgc 600 aategaatge aegaceteaa eteggeaetg gaegeeetge geggtgteet geeeaeette 660 ccagacgacg cgaagctcac caagatcgag acgctgcgct tcgcccacaa ctacatctgg 720 gegetgaete aaaegetgeg catageggae cacagettgt aegegetgga geegeeggeg 780 cegeactgeg gggagetggg cageecagge ggteeceeeg gggaetgggg gteectetae 840 tecceagtet eccaggetgg cageetgagt eccgeegegt egetggagga gegaeeeggg 900 ctgctggggg ccacctcttc cgcctgcttg agcccaggca gtctggcttt ctcagatttt 960

st96042sqlt.ST25		
ctgtgaaagg acctgtctgt cgctgggctg tgggtgctaa gggtaaggga gaggga	ggga	
gccgggagcc gtagagggtg gccgacggcg gcggccctca aaagcacttg ttcctt		
ttetecetag etgaceeetg geeggeeeag geeteeaegg gggeggtagg etgggt	ctgggttcat	
tecceggeee teegageege gecaaegeae geaaeeettg etgetgeeeg egegaag		
gcattgcaaa gtgcgctcat tttaggcctc ctctctgcca ccaccccata atcccat		
aagaatacta gaatggtagc actacccggc cggagccgcc caccgtcttg ggtcgcc	cta	
ccctcactca		
<210> 10 <211> 214 <212> PRT <213> Homo sapiens		
<400> 10		
Met Thr Pro Gln Pro Ser Gly Ala Pro Thr Val Gln Val Thr Arg Gl 1 10 15		
Thr Glu Arg Ser Phe Pro Arg Ala Ser Glu Asp Glu Val Thr Cys Pr 20 25 30	0	
Thr Ser Ala Pro Pro Ser Pro Thr Arg Thr Pro Gly Asn Cys Ala Gl	u	
Ala Glu Glu Gly Gly Cys Arg Gly Ala Pro Arg Lys Leu Arg Ala Ar 50 55 60	g	
Arg Gly Gly Arg Ser Arg Pro Lys Ser Glu Leu Ala Leu Ser Lys Gl 65 70 75 80	n	
Arg Arg Ser Arg Arg Lys Lys Ala Asn Asp Arg Glu Arg Asn Arg Me 85 90 95	t	
His Asp Leu Asn Ser Ala Leu Asp Ala Leu Arg Gly Val Leu Pro The	r	
Phe Pro Asp Asp Ala Lys Leu Thr Lys Ile Glu Thr Leu Arg Phe Ala 115 120 125	a	
His Asn Tyr Ile Trp Ala Leu Thr Gln Thr Leu Arg Ile Ala Asp His	3	
Ser Leu Tyr Ala Leu Glu Pro Pro Ala Pro His Cys Gly Glu Leu Gly 145 150 155 160		
Ser Pro Gly Gly Pro Pro Gly Asp Trp Gly Ser Leu Tyr Ser Pro Val 165 170 175	_	
Ser Gln Ala Gly Ser Leu Ser Pro Ala Ala Ser Leu Glu Glu Arg Pro 180 185 190)	
Gly Leu Leu Gly Ala Thr Ser Ser Ala Cys Leu Ser Pro Gly Ser Leu 195 200 205	l	
Ala Phe Ser Asp Phe Leu 210		


```
<210>
        11
 <211>
        18
 <212>
        DNA
 <213>
        Artificial
 <220>
 <223>
       primer
 <400> 11
 caacgaccgg cagcgcaa
                                                                       18
 <210>
        12
 <211>
       24
 <212> DNA
 <213> Artificial
 <220>
 <223> primer
 <400> 12
gcccagatgt agttgtgggc gaag
                                                                      24
<210> 13
<211> 60
<212> DNA
<213> Artificial
<220>
<223>
       primer
<220>
<221>
       misc_feature
<223> n=a or t or g or c
<400> 13
atcgttgaga ctcgtaccag cagagtcacg agagagacta cacggtactg gnnnnnnnn
                                                                      60
<210>
       14
<211>
      20
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 14
agacgacgcg aagctcacca
                                                                     20
<210>
      15
<211> 24
<212> DNA
<213> Artificial
<220>
<223> primer
<400> 15
```

			st96042sqlt	. ST25	
gctcac	caag atcgagacgc	tgcg	•		24
<210><211><212><213>	16 25 DNA Artificial	·			
<220> <223>	primer				
<400> atcgtt	16 gaga ctcgtaccag	cagag			25
<210><211><211><212><213>	17 25 DNA Artificial				
<220> <223>	primer				
<400> tcgtace	17 cagc agagtcacga	gagag			25
<210><211><211><212><213>	18 19 DNA Artificial				
<220> <223>	primer			٠.	
<400> ctgccaq	18 gcct gggagactg				19
<210><211><212><212><213>	19 50 DNA Artificial	·			
<220> <223>	primer .				
<400> ctgcate	19 ctat ctaatgctcc	tctcgctacc	tgctcactct go	gtgacatc	50
	20 25 DNA Artificial				
<220> <223>	primer				
<400>	20	. aataa			25

<210> 21 <211> 23 <212> DNA <213> Artificial	st96042sqlt.ST25
<220> <223> primer	
<400> 21 agcctgggag actggggagt aga	
<210> 22 <211> 24 <212> DNA <213> Artificial	23
<220> <223> primer	
<400> 22 agagtgagca ggtagcgaga ggag	
<210> 23 <211> 22 <212> DNA <213> Artificial	
<220> <223> primer	
<400> 23 cgctatgcgc agcgtttgag tc	
<210> 24 <211> 25 <212> DNA <213> Artificial	22
<220> <223> primer	
<400> 24 cctcggaccc cattctctct tcttt	
<210> 25 <211> 24 <212> DNA <213> Artificial	25
<220> <223> primer	
<400> 25 tgagtgaggg tagggcgacc caag	
<210> 26 <211> 15 <212> DNA	24

. .

<213> Artificial st96042sqlt.ST25 <220> <223> probe <400> 26 aggaagctcc gggca <210> 27 <211> 1381 <212> RNA <213> Artificial <220> <223> probe <400> 27 gggcgaauug ggcccgacgu cgcaugcucc cggccgccau ggccgcggga uuugagugag gguagggcga cccaagacgg ugggcggcuc cggccgggua gugcuaccau ucuaguauuc uuugaauggg auuauggggu gguggcagag aggaggccua aaaugagcgc acuuugcaau 60 gcccacuucg cgcgggcagc agcaaggguu gcgugcguug gcgcggcucg gagggccggg 120 gaaugaaccc agccuacegc ccccguggag gccugggccg gccagggguc agcuagggag 180 aagcagaagg aacaagugcu uuugagggcc gccgccgucg gccacccucu acggcucccg 240 gcucccuccc ucucccuuac ccuuagcacc cacagcccag cgacagacag guccuuucac 300 agaaaaucug agaaagccag acugccuggg cucaagcagg cggaagaggu ggcccccagc 360 agcccggguc gcuccuccag cgacgcggcg ggacucaggc ugccagccug ggagacuggg 420 gaguagaggg acccccaguc cccgggggga ccgccugggc ugcccagcuc cccgcagugc 480 ggcgccggcg gcuccagcgc guacaagcug ugguccgcua ugcgcagcgu uugagucagc 540 gcccagaugu aguugugggc gaagcgcagc gucucgaucu uggugagcuu cgcgucgucu 600 gggaaggugg gcaggacacc gcgcagggcg uccagugccg aguugagguc gugcauucga 660 nndedenede danednndde ennennnede edaeneedne dendennden eadndeease 720 nedenennad deeddended neeceedede edndeeedda denneenedd ddeeeenedd 780 840 gacguggggc aggucacuuc gucuuccgag gcucugggga aggaccgcuc cgucucacgg 900 ucacuuggac agugggcgca cccgaggguu gaggcgucau ccuacggcgg ggucagaggg 960 aaggguaagu uugaguccgu cacggcgcag uccgcgauuc cgaggcuagg ugggaaaaaa 1020 caaaaacage cauccuccca geeeeegeug ggucagagga ucceucuuuc eecugeeegu 1080 cccucgaagg ccuccaaaua uuaccuuucu accggcgcaa aagaauagag agcgaugagc 1140 agcgagggcc guggggagcu cagcgggcuu cuggucgcca aguucagcug agcugcaggc 1200 gcccccgccu gggaguugcc ccagccccaa aggagaaaag aagagagaau gggguccgag 1260 1320 1380

15

was ing a gradien

en transfer de la Co

1381

<210> 28 <211> 1427 <212> RNA <213> Artificial <220> <223> probe <400> agcuaugcau ccaacgcguu gggagcucuc ccauaugguc gaccugcagg cggccgcgaa 28 uucacuagug auuccucgga ccccauucuc ucuucuuuuc uccuuugggg cuggggcaac ucccaggcgg gggcgccugc agcucagcug aacuuggcga ccagaagccc gcugagcucc 60 ccacggcccu cgcugcucau cgcucucuau ucuuuugcgc cgguagaaag guaauauuug 120 gaggccuucg agggacgggc aggggaaaga gggauccucu gacccagcgg gggcugggag 180 gauggcuguu uuuguuuuuu cccaccuagc cucggaaucg cggacugcgc cgugacggac 240 ucaaacuuac ccuucccucu gaccccgccg uaggaugacg ccucaacccu cgggugcgcc 300. cacuguccaa gugacccgug agacggagcg guccuucccc agagccucgg aagacgaagu 360 gaccugccc acguccgccc cgcccagccc cacucgcaca ccggggaacu gcgcagaggc 420 ggaagaggga ggcugccgag gggccccgag gaagcuccgg gcacggcgcg ggggacgcag 480 ccggccuaag agcgaguugg cacugagcaa gcagcgacgg agucggcgaa agaaggccaa 540 cgaccgcgag cgcaaucgaa ugcacgaccu caacucggca cuggacgccc ugcgcggugu 600 ccugeccace uucccagacg acgegaageu caccaagauc gagacgeuge geuucgeeca 660 caacuacauc ugggcgcuga cucaaacgcu gcgcauagcg gaccacagcu uguacgcgcu 720 ggagccgcca gcgccgcacu gcggggagcu gggcagccca ggcggucccc ccggggacug 780 ggggucccuc uacucccag ucucccaggc uggcagccug agucccgccg cgucgcugga 840 ggagcgaccc gggcugcugg-gggccaccuc uuccgccugc uugagcccag gcagucuggc 900 ииисисадаи ииисидидаа aggaccuguc ugucgcuggg cugugggugc uaaggguaag 960 ggagagggag ggagccggga gccguagagg guggccgacg gcggcggccc ucaaaagcac 1020 иидииссиис идсиисиссс иадсидассс сиддесддес саддесисса сдддддесдди 1080 aggcuggguu cauuccccgg cccuccgagc cgcgccaacg cacgcaaccc uugcugcugc 1140 ccgcgcgaag ugggcauugc aaagugcgcu cauuuuaggc cuccucucug ccaccacccc 1200 auaaucccau ucaaagaaua cuagaauggu agcacuaccc ggccggagcc gcccaccguc 1260 uugggucgcc cuacccucac ucaaaucgaa uucccgcggc cgccaug 1320 1380 1427