Structural Econometrics

Optimal Stopping-Model of Schooling

Background: Belzil and Hansen (2002, Econometrica) and Belzil and Hansen (2007, Journal of Econometrics)

- Model Structure: T periods to allocate (Finite Horizon) between two activities: work (full-time) vs education (with a maximum for schooling)
- Evevery individual starts in school and eventually works (limit to schooling)
- Assume to intermediate state (like no school-no work)

• Utility of attending school, $U_{it}^s(.)$:

$$U_{it}^{s}(.) = X_{i}'\delta + \psi(S_{it}) + v_{i}^{\xi} + \varepsilon_{it}^{\xi}$$
$$= \bar{U}_{it}^{s}(.) + \varepsilon_{it}^{\xi}$$
$$\varepsilon_{it}^{\xi} \sim i.i.dN(0, \sigma_{\xi}^{2})$$

Utility of Work is logarithm of wages

$$U_{it}^w(.) = \ln(w_{it}). = \bar{U}_{it}^w(.) + \varepsilon_{it}^w \text{ with } \varepsilon_{it}^w \sim i.i.dN(0, \sigma_w^2)$$

$$\bar{U}_{it}^w(.) = \varphi_1(S_{it}) + \varphi_2.Exper_{it} + \varphi_3.Exper_{it}^2 + v_i^w$$

ullet v_i^w is innate market ability

ullet v_i^{ξ} is innate taste for schooling (academic ability)

ullet v_i^w and v_i^ξ are correlated

ullet $S_{
m max}$ is the maximum schooling achievable and $T={f 65}$

• Key issues:

– Law of motion is deterministic:

$$S_{it} = \sum_{j=1}^{t-1} d_{it}$$

$$Exper_t = T - S_{it}$$

- Post schooling human capital is exogenous (need to solve for S only)

$$\Omega_{it} = (S_{it}, \eta_{it})$$
 and $\eta_{it} = (arepsilon_{it}^{\xi}, arepsilon_{it}^{w})$

• However, because random shocks are i.i.d., we will omit them.

Bellman Equation: Value of Attending School:

$$V_t^s(S_t, \eta_t) = X_i'\delta + \psi(S_{it}) + \upsilon_i^{\xi} + \varepsilon_{it}^{\xi} +$$

$$\beta E(Max\{V_{t+1}^s(S_{t+1}), V_{t+1}^w(S_{t+1})\} \mid d_t = 1)$$

$$= \bar{U}_{it}^s + \varepsilon_{it}^{\xi} + \beta EV_{t+1}(. \mid d_t = 1)$$

$$= \bar{V}_t^s + \varepsilon_{it}^{\xi}$$

Define $ar{V}_t^s$ as

$$\bar{V}_t^s = X_i'\delta + \psi(S_{it}) + v_i^{\xi} + \beta EV_{t+1}(.) .$$

Bellman Equation: Value of entering the labor market:

$$V_t^w(S_t, \eta_t) = \varphi_1(S_{it}) + \varphi_2.Exper_{it} + \varphi_3.Exper_{it}^2 + \upsilon_i^w + \varepsilon_{it}^w$$
$$+\beta E(V_{t+1}^w(S_{t+1} = S_t) \mid d_t = 0)$$
$$= \bar{V}_t^w(S_t, \eta_t) + \varepsilon_{it}^w$$

Define $ar{V}_t^w(S_t,\eta_t)$ as

$$\bar{V}_{t}^{w}(S_{t}, \eta_{t}) = \varphi_{1}(S_{it}) + \varphi_{2}.Exper_{it} + \varphi_{3}.Exper_{it}^{2} +$$

$$v_{i}^{w} + \beta EV_{t+1}^{w}(S_{t+1}, \eta_{t+1} \mid d_{t} = 0)$$

- . Two important thing to note:
- First, at entrance in the market, accumulated experience is 0), so

$$\bar{V}_t^w(S_t, \eta_t) = \varphi_1(S_{it}) + v_i^w + \beta E V_{t+1}^w(S_{t+1}, \eta_{t+1} \mid d_t = 0)$$

• Second, work is an "absorbing" state so no maximization beyond entrance in the market (EV_{t+1}^w) will be a simple sum of discounted earnings)

$$EV_{t+1}^{w}(.) = \sum_{j=t+1}^{T} \beta^{j-(t+1)}(\varphi_{1}(S_{j}) + \varphi_{2}.Exper_{j} + \varphi_{3}.Exper_{j}^{2} + v_{i}^{w})$$

• Obviously, calculating $EV_{t+1}^w(.)$, the expected utility of working from t+1 until T, does not require any maximization.

Solution

It is now easy to use backward recursions

- Start at \tilde{t} with $(S_{\text{max}} 1)$ years of schooling already accumulated:
- This is the last date at which we need to compute a schooling choice probability because

$$S_{\tilde{t}} = S_{\mathsf{max}} - 1$$

Either

- $d_{\tilde{t}} = 1$ (obtain S_{max} years of schooling and next period start working for $EV_{\tilde{t}+1}^w(S_{max}, Exper = 0.)$
- $d_{\tilde{t}}=$ O(obtain S_{max} -1 years of schooling, start working in \tilde{t} , and next period work for $EV_{\tilde{t}+1}^w(S_{\max}-1, Exper=1.)$
- Note that both $EV^w_{\tilde{t}+1}(.)$ is easily computed

ullet Write down the probabilistic statement (Prob $d_{ ilde{t}}=1)$ as

$$\begin{split} \Pr(d_{\tilde{t}} = 1) &= \Pr(V_{i\tilde{t}}^s - V_{i\tilde{t}}^w > 0) = \\ \\ &= \Pr\{(X_i'\delta + \psi(S_{\mathsf{max}}) + \upsilon_i^\xi + \varepsilon_{it}^\xi + \beta E V_{\tilde{t}+1}^w(S_{\mathsf{max}}, Exper = 0.) \\ \\ &> \varphi_1(S_{\mathsf{max}} - 1) + \ \upsilon_i^w + \varepsilon_{it}^w + E V_{\tilde{t}+1}^w(S_{\mathsf{max}} - 1, Exper = 1.) \} \\ \\ &= \Pr(\varepsilon_{it}^s - \varepsilon_{it}^w > \bar{V}_{i\tilde{t}}^w - \bar{V}_{i\tilde{t}}^s) \end{split}$$

which is simply a non-linear probit equation (conditional on v_i^w and v_i^s).

• Given $d_{\tilde{t}-1} = 1$,

$$EV_{\tilde{t}}(.) = pr(d_{\tilde{t}} = 1) \cdot E(V_{i\tilde{t}}^s \mid V_{i\tilde{t}}^s > V_{i\tilde{t}}^w) + pr(d_{\tilde{t}} = 0) \cdot E(V_{i\tilde{t}}^w \mid V_{i\tilde{t}}^w > V_{i\tilde{t}}^s)$$

• Take one component: say $E(V_{i\tilde{t}}^s \mid V_{i\tilde{t}}^s > V_{i\tilde{t}}^w)$

$$\begin{split} E(V_{i\tilde{t}}^s &\mid V_{i\tilde{t}}^s > V_{i\tilde{t}}^w) \\ &= X_i'\delta + \psi(.) + \upsilon_i^\xi + \beta EV_{\tilde{t}+1}^w(S_{\mathsf{max}}, Exp = \mathbf{0}) \\ + E\{\varepsilon_{it}^s &\mid \varepsilon_{it}^s - \varepsilon_{it}^w > EV_{\tilde{t}+1}^w(S_{\mathsf{max}} - \mathbf{1}, Exp = \mathbf{1}) \\ -\beta EV_{\tilde{t}+1}^w(S_{\mathsf{max}}, Exper = \mathbf{0}.)\} \end{split}$$

• Evaluating $E(\varepsilon_{it}^s \mid \varepsilon_{it}^s - \varepsilon_{it}^w >)$ is easily done using standard truncated normal distribution expression (selectivity literature).

Digression: Truncated Normal Distributions

$$Z \sim N(\mu, \sigma^2)$$
, c is a constant (truncation point), $\alpha = \frac{(c-\mu)}{\sigma}$
$$E(Z \mid Z > c) = \mu + \sigma \cdot \frac{\phi(\alpha)}{(1-\Phi(\alpha))}$$

$$E(Z \mid Z < c) = \mu - \sigma \cdot \frac{\phi(\alpha)}{\Phi(\alpha)}$$

where the expression, $\frac{\phi(\alpha)}{(1-\Phi(\alpha))}$, is often referred to as a **Mill's ratio**.

• In our example:

$$-\mu = 0$$
 (since the $\varepsilon's$ have mean 0),

– σ is the standard -deviation of $\varepsilon^s_{it} - \varepsilon^w_{it}$,

-
$$c$$
 is $EV_{\tilde{t}+1}^{w}(S_{\max}-1, Exper=1.) - \beta EV_{\tilde{t}+1}^{w}(S_{\max}, Exper=0.)$

• Then, evaluate $E(V^w_{i\tilde{t}} \mid V^w_{i\tilde{t}} > V^s_{i\tilde{t}}) = \dots$

In the end, you have

$$pr(d_{\tilde{t}} = 1) \cdot E(V_{i\tilde{t}}^s \mid V_{i\tilde{t}}^s > V_{i\tilde{t}}^w) + pr(d_{\tilde{t}} = 0) \cdot E(V_{i\tilde{t}}^w \mid V_{i\tilde{t}}^w > V_{i\tilde{t}}^s)$$

• Going to $\tilde{t}-1$,

$$V_{\widetilde{t}-1}^s = X_i'\delta + \psi(S_{\mathsf{max}} - 1) + \upsilon_i^{\xi} + \varepsilon_{it}^{\xi} + \beta EV_{\widetilde{t}}(. \mid d_{\widetilde{t}-1} = 1)$$

$$V_{\tilde{t}-1}^{w} = \varphi_1(S_{\text{max}} - 2) + v_i^{w} + \varepsilon_{it}^{w} + EV_{\tilde{t}+1}^{w}(S_{\text{max}} - 2, experience = 1.)$$

 Proceed recursively until you reach the initial period (say the minimum schooling).

Estimation is achieved by maximum likelihood.

- ullet Take an individual with au years of schooling. This individual would have wages observed from au+1 to T
- The Likelihood has 3 parts:
- ullet the probability of having spent at most au years in school, which can be easily derived from the structure of the model

$$L_1 = Pr[(d_0 = 1), (d_1 = 1)....(d_{\tau} = 1)]$$

• the probability of entering the labor market in year $\tau + 1$, at observed wage $w_{\tau+1}$, which can be factored as the product of a normal conditional probability times a marginal.

$$L_2 = \Pr(d_{\tau+1} = 0, w_{\tau+1}) = \Pr(d_{\tau+1} = 0 \mid w_{\tau+1}) \cdot \Pr(w_{\tau+1})$$

• the density of observed wages and employment rates from $\tau+2$ until 1990.

$$L_3 = Pr(\{w_{\tau+2}\} \cdot Pr\{w_{1990}\})$$

The likelihood function, conditional on $\vartheta_j = \left(\upsilon^\xi, \upsilon^w, \right)_j$, is given by

$$L_i(\vartheta_j) = L_{1i}(\vartheta_j) \cdot L_{2i}(\vartheta_j) \cdot L_{3i}(\vartheta_j)$$

$$\Pr(\upsilon^{\xi} = \upsilon_j^{\xi}, \upsilon^w = \upsilon_j^w) = p_j$$

with,

$$p_{j} = \frac{\exp(p_{j}^{0})}{\sum_{k=1}^{K=6} \exp(p_{k}^{0})}$$

with
$$p_6^0 = 0$$
.

The unconditional contribution to the log likelihood, for individual i, is therefore given by

$$\log L_i = \log \sum_{j=1}^{K=6} p_j \cdot L_i(. \mid \vartheta_j)$$

where each p_j represents the population proportion of type $\vartheta_j.$

Estimation provides parameter estimates for all the parameters, including $\psi(S_{it})$, v^{ξ} , v^{w} and p_{i} .

NOTES:

- The number of types should go to N (number of individuals) but this is not feasible.
- The number of types is not a standard parameter (no obvious asymptotic results since you search over a space that has no openness property)
- One approach: Start from large number, and reduce it (the number of types) by likelihood ratio test
- Another approach (to remove arbitrariness): use penalized likelihood approaches using Bayesian criterion.

Model Simulation:

- First, set a population size (say 10,000 individuals)
- ullet Out of these 10,000 individuals, the population proportions will be given by \hat{p}_{j}
- Generate 10,000 variates from a uniform distribution, and assign a type to each 10,000 individuals
- for each individual, generate a random shock for each state and each period and solve the problem

• you end-up with 10,000 wage-schooling histories

ullet Note: you know schooling choices, employment but also υ_i^ξ and υ_i^w

 \bullet you can evaluate correlation between schooling and $\upsilon_i^\xi, \upsilon_i^w$

• you can simulate what would happen if you change $\varphi_1(S_{it})$

- Belzil and Hansen (2002) use a dynamic programming model to
 - investigate the shape of the wage schooling relationship
 - evaluate ability bias as defined by the correlation between schooling achievement and the individual-specific intercept term of the wage equation.
- The model is implemented on a panel of white males taken from the NLSY covering the years 1979 to 1990.
- BH (2002) deal with the Convexity of the Wage-Schooling Relationship and the Ability Bias. $\varphi_1(S_{it})$ is a non-linear function of S_{it}