Topology and Groupoids Exercises Chapter 2, Section 8

David Melendez

November 15, 2018

Problem 8.3. Let X, Y be metric spaces (their metrics will both be referred to as d) Show that the following functions define metrics on $X \times Y$ whose metric topology is the product topology.

(a)
$$D((x,y),(x',y')) = d(x,x') + d(y,y')$$

(b)
$$D((x,y),(x',y')) = \sqrt{d(x,x')^2 + d(y,y')^2}$$

Proof. For (a), first let N be a D-neighbourhood of $(a,b) \in X \times Y$. Then there exists an $\varepsilon > 0$ such that $B_D((a,b),\varepsilon) \subseteq N$; that is, if $(x,y) \in B_D((a,b),\varepsilon)$, then

$$D((x,y),(a,b)) = d(x,a) + d(y,b)$$

$$< \varepsilon.$$

Let

$$M = B_d\left(a, \frac{\varepsilon}{2}\right) \times B_d\left(b, \frac{\varepsilon}{2}\right).$$

We then have that if $(x,y) \in M$, then $d(x,a) < \varepsilon/2$ and $d(y,b) < \varepsilon/2$, and so

$$D((x,y),(a,b)) = d(x,a) + d(y,b)$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon,$$

and so we have that $M \subseteq B_D((a,b),\varepsilon) \subseteq N$, and so N is a product neighbourhood of (a,b). Thus every D-neighbourhood of (a,b) is a product neighbourhood of (a,b).

Conversely, suppose N is a product neighbourhood of $(a, b) \in X \times Y$. Then there exist $\varepsilon_1, \varepsilon_2 > 0$ such that $B_d(a, \varepsilon_1) \times B_d(b, \varepsilon_2) \subseteq N$. If we let $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$, then we have that if $(x, y) \in B_D((a, b), \varepsilon)$, then

$$D((a,b),(x,y)) = d(a,x) + d(b,y)$$

< \varepsilon;

and so certainly $d(a, x) < \varepsilon$ and $d(b, y) < \varepsilon$. Consequently, we have that $x \in B_d(a, \varepsilon)$ and $y \in B_d(b, \varepsilon)$, and so $(x, y) \in N$. Therefore, we have that $B_D((a, b), \varepsilon) \subseteq N$, and so N is a

D-neighbourhood of (a, b), as desired.

For (b), let $(a, b) \in X \times Y$ and assume N is a D-ball about (a, b); that is, there exists an $\varepsilon > 0$ such that

$$N = B_D((a, b), \varepsilon)$$
.

Then, let $\delta = \varepsilon/\sqrt{2}$, and let M be the set

$$M = B_d(a, \delta) \times B_d(b, \delta) \subseteq X \times Y$$

We then have that if $(x,y) \in M$, then $d(x,a) < \delta$ and $d(y,b) < \delta$, and so

$$d(x,a)^{2} + d(y,b)^{2} < 2\delta^{2}$$
$$= \varepsilon^{2}.$$

Therefore, we have that $D((a,b),(x,y)) < \varepsilon$, and so $(x,y) \in N$. Consequently, we have that $M \subseteq N$, and so N is a product neighbourhood of (a,b). Thus, every D-neighbourhood is a product neighbourhood.

Suppose conversely that N is a basic product neighbourhood of (a, b), and so $N = B_d(a, \varepsilon_1) \times B_d(b, \varepsilon_2)$ for some $\varepsilon_1, \varepsilon_2 > 0$. Then, let $\delta = \min\{\varepsilon_1, \varepsilon_2, 1\}$. Note that $\delta < 1$, and let $M = B_D((a, b), \delta)$. We then have that if $(x, y) \in M$, then

$$B_{d}((a,b),(x,y)) < \delta$$

$$\Rightarrow \sqrt{d(a,x)^{2} + d(b,y)^{2}} < \delta$$

$$\Rightarrow d(a,x)^{2} + d(b,y)^{2} < \delta^{2}$$

$$\Rightarrow d(a,x)^{2} < \delta^{2} - d(b,y)^{2}$$

$$\Rightarrow d(a,x) < \sqrt{\delta^{2} - d(b,y)^{2}}$$

$$< \sqrt{\varepsilon_{1}^{2} - d(b,y)^{2}}$$

$$< \sqrt{\varepsilon_{1}^{2}}$$

$$= \varepsilon_{1}.$$

Similarly, we have that $d(b, y) < \varepsilon_2$. Thus, $(x, y) \in N$, and so we have that $M \subseteq N$, showing that N is a D-neighbourhood of (a, b). Consequently, every product neighbourhood is a D-neighbourhood.

Since product neighbourhoods and D-neighbourhoods coincide, it then follows that the metric topology induced by D is the product topology, as desired.