Class 10: Halloween Candy

Nicole Chang

5/5/23

1. Importing candy data

```
candy = read.csv('https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power
View(candy)
```

Q1. How many different candy types are in this dataset?

```
candy_types <- nrow(candy)</pre>
```

Q2. How many fruity candy types are in the dataset?

```
fruity_candy_types <- sum(candy$fruity)
fruity_candy_types</pre>
```

[1] 38

2. What's your favorite candy?

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

```
candy["Twizzlers", 'winpercent']
```

- [1] 45.46628
- Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

```
# install.packages('skimr')
library(skimr)
skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	lete_ra	tmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	

skim_variable	n_missingcomp	lete_ra	atmenean	sd	p0	p25	p50	p75	p100	hist
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

In the dataset the sugarpercent, the pricepercent, and the winpercent variables are on a different scale in comparison to majority of the other columns.

Q7. What do you think a zero and one represent for the candy\$chocolate column?

The zeros and the ones represent whether the candy is considered chocolate or not.

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

The distribution is not symmetrical and skewed to the right.

Q10. Is the center of the distribution above or below 50%?

```
The distribution is below 50%.
We want to compare chocolate and fruity candy
  # chocolate_candy = candy$winpercent [as.logical(candy$chocolate) ]
  table(as.logical(candy$chocolate))
FALSE TRUE
   48
          37
Q11. On average is chocolate candy higher or lower ranked than fruit candy?
  winpercent_chocolate <- candy$winpercent[ as.logical(candy$chocolate) ]</pre>
  mean(winpercent_chocolate)
[1] 60.92153
For the fruity candies
   winpercent_fruity <- candy$winpercent[ as.logical(candy$fruity) ]</pre>
  mean(winpercent_fruity)
[1] 44.11974
Q12. Is this difference statistically significant?
Statistical test
  t.test(winpercent_chocolate, winpercent_fruity)
    Welch Two Sample t-test
```

alternative hypothesis: true difference in means is not equal to 0

data: winpercent_chocolate and winpercent_fruity
t = 6.2582, df = 68.882, p-value = 2.871e-08

95 percent confidence interval:

```
11.44563 22.15795 sample estimates: mean of x mean of y 60.92153 44.11974
```

The difference is statistically significant due to the p-value being less than 0.05.

3. Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	caramel	peanutyalmondy	${\tt nougat}$
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0

Jawbusters	0	1		0		0	0	
	crispedricewa	afer	hard	bar	pluribus	sugarper	cent	pricepercent
Nik L Nip		0	0	0	1	0	. 197	0.976
Boston Baked Beans	3	0	0	0	1	0	.313	0.511
Chiclets		0	0	0	1	0	.046	0.325
Super Bubble		0	0	0	0	0	.162	0.116
Jawbusters		0	1	0	1	0	.093	0.511
	winpercent							
Nik L Nip	22.44534							
Boston Baked Beans	23.41782							
Chiclets	24.52499							
Super Bubble	27.30386							
Jawbusters	28.12744							

Q14. What are the top 5 all time favorite candy types out of this set?

 $\label{tail(candy[order(candy$winpercent),], n=5)} \\$

	chocolate	fruity	caran	nel j	peanutyalr	nondy	nougat
Snickers	1	0		1		1	1
Kit Kat	1	0		0		0	0
Twix	1	0		1		0	0
Reese's Miniatures	1	0		0		1	0
Reese's Peanut Butter cup	1	0		0		1	0
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	percent
Snickers		0	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Twix		1	0	1	0		0.546
Reese's Miniatures		0	0	0	0		0.034
Reese's Peanut Butter cup		0	0	0	0		0.720
	priceperce	ent wing	percer	nt			
Snickers	0.6	551 76	6.6737	78			
Kit Kat	0.5	511 76	3.7686	30			
Twix	0.9	906 81	1.6429	91			
Reese's Miniatures	0.2	279 83	1.8662	26			
Reese's Peanut Butter cup	0.6	651 84	1.1802	29			

Q15. Make a first barplot of candy ranking based on winpercent values.

library(ggplot2)

```
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy),winpercent)) +
   geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?
Sixlets
Q18. What is the best ranked fruity candy?

Starburst

4. Taking a look at pricepercent

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

Reese's Miniatures

```
ord <- order(candy$winpercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Reese's Peanut Butter cup	0.651	84.18029
Reese's Miniatures	0.279	81.86626
Twix	0.906	81.64291
Kit Kat	0.511	76.76860
Snickers	0.651	76.67378

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Q21. Make a barplot again with geom_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom_col() for geom_point() + geom_segment().


```
# Make a lollipop chart of pricepercent
ggplot(candy) +
   aes(pricepercent, reorder(rownames(candy), pricepercent)) +
   geom_segment(aes(yend = reorder(rownames(candy), pricepercent),
```

```
xend = 0), col="gray40") +
geom_point()
```


5. Exploring the correlation structure

```
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
    corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? Chocolate and fruity

Q23. Similarly, what two variables are most positively correlated?

Chocolate and bar

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                           PC10
                                                   PC11
                                                           PC12
Standard deviation
                       0.74530\ 0.67824\ 0.62349\ 0.43974\ 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

summary(pca\$rotation)

PC1	PC2	PC3	PC4
Min. $:-0.40195$	Min. $:-0.47017$	Min. $:-0.33970$	Min. :-0.46678
1st Qu.:-0.32300	1st Qu.:-0.27823	1st Qu.:-0.03875	1st Qu.:-0.29033
Median :-0.22839	Median :-0.06211	Median : 0.13649	Median :-0.02954
Mean :-0.13625	Mean :-0.06446	Mean : 0.13184	Mean :-0.06652
3rd Qu.:-0.02844	3rd Qu.: 0.21188	3rd Qu.: 0.28373	3rd Qu.: 0.02673
Max. : 0.36839	Max. : 0.36921	Max. : 0.65510	Max. : 0.60559
PC5	PC6	PC7	PC8
Min. :-0.57456	Min. :-0.62909	Min. $:-0.46148$	Min. :-0.49085
1st Qu.:-0.14984	1st Qu.:-0.04642	1st Qu.:-0.27311	1st Qu.:-0.21259
Median :-0.05470	Median : 0.06637	Median :-0.08572	Median :-0.02960
Mean :-0.03559	Mean : 0.03218	Mean :-0.04545	Mean :-0.00218
3rd Qu.: 0.04161	3rd Qu.: 0.10254	3rd Qu.: 0.17159	3rd Qu.: 0.19282
Max. : 0.50730	Max. : 0.56947	Max. : 0.44275	Max. : 0.45771
PC9	PC10	PC11	PC12
Min. :-0.52995	Min. :-0.48810	Min. :-0.74957	Min. :-0.69785
1st Qu.:-0.38212	1st Qu.:-0.03890	1st Qu.:-0.14511	1st Qu.:-0.12039
Median :-0.05553	Median : 0.15348	Median :-0.07709	Median :-0.06141
Mean :-0.13609	Mean : 0.09125	Mean :-0.05227	Mean :-0.06968
3rd Qu.: 0.06785	3rd Qu.: 0.26196	3rd Qu.: 0.14093	3rd Qu.: 0.07631
Max. : 0.21769	Max. : 0.50772	Max. : 0.38954	Max. : 0.37693

plot(pca\$x[,1:2])

plot(pca\$x[,1:2], col=my_cols, pch=16)


```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
   theme(legend.position = "none") +
   labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
# install.packages('plotly')
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

ggplotly(p)

par(mar=c(8,4,2,2))
barplot(pca\$rotation[,1], las=2, ylab="PC1 Contribution")

Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus are picked up strongly by PC1 in the positive direction. This makes sense because the highest scoring candies fall in the three categories.