Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

```
Sample Test Case
```

```
Input: 5
1051527
15
Output: 2 5 7 10
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
struct TreeNode* left;
  struct TreeNode* right;
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
}
struct TreeNode* insert(struct TreeNode* root, int key) {
 if (root == NULL) return createNode(key);
  if (key < root->data)
```

```
root->left = insert(root->left, key);
 else if (key > root->data)
    root->right = insert(root->right, key);
  return root;
struct TreeNode* findMin(struct TreeNode* root) {
  while (root->left != NULL) {
    root = root->left;
  return root;
struct TreeNode* deleteNode(struct TreeNode* root, int key) {
 if (root == NULL) return root;
  if (key < root->data) {
    root->left = deleteNode(root->left, key);
  } else if (key > root->data) {
    root->right = deleteNode(root->right, key);
  } else {
    if (root->left == NULL) {
       struct TreeNode* temp = root->right;
       free(root);
       return temp;
    } else if (root->right == NULL) {
       struct TreeNode* temp = root->left;
      free(root);
       return temp;
    struct TreeNode* temp = findMin(root->right);
    root->data = temp->data;
    root->right = deleteNode(root->right, temp->data);
  return root;
}
void inorderTraversal(struct TreeNode* root) {
  if (root != NULL) {
    inorderTraversal(root->left);
    printf("%d ", root->data);
    inorderTraversal(root->right);
```

```
240701339
                                                                               240701339
                                                    240701339
int main()
       int N, rootValue, V;
       scanf("%d", &N);
       struct TreeNode* root = NULL;
       for (int i = 0; i < N; i++) {
         int key;
         scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
                                                                               240/01339
       scanf("%d", &V);
      root = deleteNode(root, V);
     inorderTraversal(root);
       return 0;
```

Status: Correct Marks: 10/10

240701339

040701339

240701339

A0101335

2,40701339

2,0101339

240701339

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 2

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Mike is learning about Binary Search Trees (BSTs) and wants to implement various operations on them. He wants to write a basic program for creating a BST, inserting nodes, and printing the tree in the pre-order traversal.

Write a program to help him solve this program.

Input Format

The first line of input consists of an integer N, representing the number of values to insert into the BST.

The second line consists of N space-separated integers, representing the values to insert into the BST.

Output Format

The output prints the space-separated values of the BST in the pre-order traversal.

```
Sample Test Case
```

```
Input: 5
   31524
   Output: 3 1 2 5 4
   Answer
   #include <stdio.h>
#include <stdlib.h>
   struct Node {
      int data:
      struct Node* left;
      struct Node* right;
   };
   struct Node* createNode(int value) {
      struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
      newNode->data = value;
      newNode->left = newNode->right = NULL;
    return newNode;
   struct Node* insert(struct Node* root, int value) {
      if (root == NULL) {
        return createNode(value);
      if (value < root->data) {
        root->left = insert(root->left, value);
      } else if (value > root->data) {
        root->right = insert(root->right, value);
      return root;
void printPreorder(struct Node* node) {
```

```
240701339
  if (node == NULL)
   return;
  printf("%d ", node->data);
  printPreorder(node->left);
  printPreorder(node->right);
}
int main() {
  struct Node* root = NULL;
  int n;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
int value;
    scanf("%d", &value);
    root = insert(root, value);
  printPreorder(root);
  return 0;
Status: Correct
                                                                      Marks: 10/10
```

40101339

240701333

MOTO1339

NO101339

240701339

240101339

240701339

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 3

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

You are required to implement basic operations on a Binary Search Tree (BST), like insertion and searching.

Insertion: Given a list of integers, construct a Binary Search Tree by repeatedly inserting each integer into the tree according to the rules of a BST.

Searching: Given an integer, search for its presence in the constructed Binary Search Tree. Print whether the integer is found or not.

Write a program to calculate this efficiently.

Input Format

The first line of input consists of an integer n, representing the number of nodes

in the binary search tree.

The second line consists of the values of the nodes, separated by space as integers.

The third line consists of an integer representing, the value that is to be searched.

Output Format

The output prints, "Value <value> is found in the tree." if the given value is present, otherwise it prints: "Value <value> is not found in the tree."

```
Sample Test Case
Input: 7
8 3 10 1 6 14 23
Output: Value 6 is found in the tree.
Answer
struct Node* insertNode(struct Node* root, int value) {
  if (root == NULL) {
    return createNode(value);
 root->left = insertNode(root->left, value);
  } else if (value > root->data) {
    root->right = insertNode(root->right, value);
  return root;
struct Node* searchNode(struct Node* root, int value) {
  if (root == NULL || root->data == value) {
    return root;
  if (value < root->data) {
    return searchNode(root->left, value);
  } else {
```

return searchNode(root->right, value);

Status: Correct

Marks : 10/10

2,0701333

2,0701339

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1
Total Mark : 10
Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

Output Format

Sample Test Case

} else if (data > root->data) {

root->right = insert(root->right, data);

The first line of output prints the space-separated elements of the BST in postorder traversal.

The second line prints the minimum value found in the BST.

```
Input: 3
 5 10 15
 Output: 15 10 5
 The minimum value in the BST is: 5
 Answer
 #include <stdio.h>
 #include <stdlib.h>
 struct Node {
   int data:
   struct Node* left;
   struct Node* right;
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
 }
 struct Node* insert(struct Node* root, int data) {
   if (root == NULL) {
     return createNode(data);
   if (data < root->data) {
    root->left = insert(root->left, data);
```

```
return root;
void displayTreePostOrder(struct Node* root) {
  if (root == NULL) {
    return;
  displayTreePostOrder(root->left);
  displayTreePostOrder(root->right);
  printf("%d ", root->data);
int findMinValue(struct Node* root) {
  if (root == NULL) {
   return 1000000;
  int leftMin = findMinValue(root->left);
  int rightMin = findMinValue(root->right);
  int min = root->data;
  if (leftMin < min) {
    min = leftMin;
  if (rightMin < min) {
    min = rightMin;
  return min;
int main() {
struct Node* root = NULL;
  int n, data;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &data);
    root = insert(root, data);
  }
  displayTreePostOrder(root);
  printf("\n");
  int minValue = findMinValue(root);
  printf("The minimum value in the BST is: %d", minValue);
```

return 0; Marks : 10/10 Status: Correct

2,40101339

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

```
Sample Test Case
```

```
Input: 5
    1051527
    Output: 15
    Answer
    #include <stdio.h>
   #include <stdlib.h>
    struct TreeNode {
      int data:
      struct TreeNode* left:
      struct TreeNode* right;
   };
   struct TreeNode* createNode(int key) {
      struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
    TreeNode));
      newNode->data = key;
      newNode->left = newNode->right = NULL;
      return newNode;
   struct TreeNode* insert(struct TreeNode* root, int key) {
      if (root == NULL) return createNode(key);
      if (key < root->data)
        root->left = insert(root->left, key);
      else if (key > root->data)
        root->right = insert(root->right, key);
      return root;
   int findMax(struct TreeNode* root){
      if(root==NULL){
       return -1;
else if(root->right==NULL){
```

```
return root->data;
}
else{
                                                       240701339
         return findMax(root->right);
     }
     int main() {
       int N, rootValue;
       scanf("%d", &N);
       struct TreeNode* root = NULL;
       for (int i = 0; i < N; i++) {
     3 int key;
         scanf("%d", &key);
         if (i == 0) rootValue = key;
         root = insert(root, key);
       }
       int maxVal = findMax(root);
       if (maxVal != -1) {
         printf("%d", maxVal);
       }
       return 0;
Status: Correct
                                                                           Marks : 10/10
```

240701339

240101339

240701335

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_MCQ

Attempt : 1 Total Mark : 15

Marks Obtained: 15

Section 1: MCQ

1. Find the post-order traversal of the given binary search tree.

Answer

10, 17, 20, 18, 15, 32, 21

Status: Correct Marks: 1/1

2. While inserting the elements 5, 4, 2, 8, 7, 10, 12 in a binary search tree, the element at the lowest level is _____.

Answer

12

Status : Correct Marks : 1/1

3. The preorder traversal of a binary search tree is 15, 10, 12, 11, 20, 18, 16, 19. Which one of the following is the postorder traversal of the tree?

Answer

11, 12, 10, 16, 19, 18, 20, 15

Status: Correct Marks: 1/1

4. Find the in-order traversal of the given binary search tree.

Answer

1, 2, 4, 13, 14, 18

Status: Correct Marks: 1/1

5. Find the postorder traversal of the given binary search tree.

Answer

1, 4, 2, 18, 14, 13

Status: Correct Marks: 1/1

6. Which of the following is the correct pre-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

50, 30, 20, 32, 55, 52, 57

Status: Correct Marks: 1/1

7. How many distinct binary search trees can be created out of 4 distinct keys?

Answer

Status : Correct

Marks : 1/1

8. While inserting the elements 71, 65, 84, 69, 67, 83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is

____-

Answer

67

Status: Correct Marks: 1/1

9. Which of the following is a valid preorder traversal of the binary search tree with nodes: 18, 28, 12, 11, 16, 14, 17?

Answer

18, 12, 11, 16, 14, 17, 28

Status: Correct Marks: 1/1

10. In a binary search tree with nodes 18, 28, 12, 11, 16, 14, 17, what is the value of the left child of the node 16?

Answer

14

Status: Correct Marks: 1/1

11. Which of the following is the correct in-order traversal of a binary search tree with nodes: 9, 3, 5, 11, 8, 4, 2?

Answer

2, 3, 4, 5, 8, 9, 11

Status: Correct

Marks: 1/1

12. Which of the following is the correct post-order traversal of a binary search tree with nodes: 50, 30, 20, 55, 32, 52, 57?

Answer

20, 32, 30, 52, 57, 55, 50

Status: Correct Marks: 1/1

13. Find the preorder traversal of the given binary search tree.

Answer

9, 2, 1, 6, 4, 7, 10, 14

Status: Correct Marks: 1/1

14. Which of the following operations can be used to traverse a Binary Search Tree (BST) in ascending order?

Answer

Inorder traversal

Status: Correct Marks: 1/1

15. Find the pre-order traversal of the given binary search tree.

Answer

13, 2, 1, 4, 14, 18

Status: Correct Marks: 1/1

240701335

2,40701339

Name: Mukesh V

Email: 240701339@rajalakshmi.edu.in

Roll no: 240701339 Phone: 9597888573

Branch: REC

Department: I CSE FD

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_CY_Updated

Attempt : 1 Total Mark : 30 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

Dhruv is working on a project where he needs to implement a Binary Search Tree (BST) data structure and perform various operations on it.

He wants to create a program that allows him to build a BST, traverse it in different orders (inorder, preorder, postorder), and exit the program when needed.

Help Dhruv by designing a program that fulfils his requirements.

Input Format

The first input consists of the choice.

If the choice is 1, enter the number of elements N and the elements inserted into

the tree, separated by a space in a new line.

If the choice is 2, print the in-order traversal.

If the choice is 3, print the pre-order traversal.

If the choice is 4, print the post-order traversal.

If the choice is 5, exit.

Output Format

The output prints the results based on the choice.

For choice 1, print "BST with N nodes is ready to use" where N is the number of nodes inserted.

For choice 2, print the in-order traversal of the BST.

For choice 3, print the pre-order traversal of the BST.

For choice 4, print the post-order traversal of the BST.

For choice 5, the program exits.

If the choice is greater than 5, print "Wrong choice".

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 1
5
12 78 96 34 55
2
3
4
5
```

Output: BST with 5 nodes is ready to use BST Traversal in INORDER 12 34 55 78 96 BST Traversal in PREORDER 12 78 34 55 96 BST Traversal in POSTORDER 55 34 96 78 12

Answer

-

Status: Skipped Marks: 0/10

2. Problem Statement

You are given a series of magic levels (integers) and need to construct a Binary Search Tree (BST) from them. After constructing the BST, your task is to perform a range search, which involves finding and printing all the magic levels within a specified range [L, R].

Input Format

The first line of input consists of an integer N, the number of magic levels to insert into the BST.

The second line consists of N space-separated integers, representing the magic levels to insert.

The third line consists of two integers, L and R, which define the range for the search.

Output Format

The output prints all the magic levels within the range [L, R] in ascending order, separated by spaces.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 5 10 5 15 3 7 2 20 Output: 3 5 7 10 15

Answer

-

Status: Skipped Marks: 0/10

3. Problem Statement

Kishore is studying data structures, and he is currently working on implementing a binary search tree (BST) and exploring its basic operations. He wants to practice creating a BST, inserting elements into it, and performing a specific operation, which is deleting the minimum element from the tree.

Write a program to help him perform the delete operation.

Input Format

The first line of input consists of an integer N, representing the number of elements Kishore wants to insert into the BST.

The second line consists of N space-separated integers, where each integer represents an element to be inserted into the BST.

Output Format

The output prints the remaining elements of the BST in ascending order (in-order traversal) after deleting the minimum element.

Refer to the sample output for formatting specifications.

Sample Test Case

Input: 6 5 3 8 2 4 6

Output: 3 4 5 6 8

Answer

```
#include<stdio.h>
#include<stdlib.h>
struct node{
  int data:
  struct node *left;
  struct node *right;
};
struct node *insert(struct node *root,int e){
  if(root==NULL){
    struct node *newnode=(struct node*)malloc(sizeof(struct node));
    newnode->data=e;
    newnode->left=NULL;
    newnode->right=NULL;
    return newnode;
  else if(e<root->data){
    root->left=insert(root->left,e);
  else if(e>root->data){
    root->right=insert(root->right,e);
  return root;
struct node *find_min(struct node *root){
  if(root==NULL){
    return root;
  else if(root->left==NULL){
    return root;
  else{
    return find_min(root->left);
  }
}
struct node *delete_node(struct node *root,int e){
if(root==NULL){
    return root;
```

```
else if(e<root->data){
root->left=delot
         root->left=delete_node(root->left,e);
       else if(e>root->data){
         root->right=delete_node(root->right,e);
       }
       else{
         if(root->left && root->right){
           struct node *temp=find_min(root->right);
           root->data=temp->data;
           root->right=delete_node(root->right,temp->data);
         else{
           struct node *temp=root;
           if(root->left==NULL){
              root=root->right;
           }
           else{
              root=root->left;
           free(temp);
       }
       return root;
    void inorder(struct node *root){
      if(root==NULL){
         return;
       inorder(root->left);
       printf("%d ",root->data);
       inorder(root->right);
    }
```

int main(){

1339

A0101335

```
240101339
                                                     240701339
Juuct n
int n,m;
scane
       struct node *root=NULL;
       scanf("%d",&n);
       int arr[n];
       for(int i=0;i< n;i++){
         scanf("%d",&arr[i]);
         root=insert(root,arr[i]);
       struct node *temp=find_min(root);
       if(temp!=NULL){
         m=temp->data;
         root=delete_node(root,m);
                                                                                240/01339
                                                     240701339
return 0;
       inorder(root);
```

Status: Correct Marks: 10/10

240701339

040101339

240701339

040101335

240101339

2,0101339

240701339