6 HOMEWORK 6 HAAHHAHAHAHAHAA

Question 19.

Let X be a metric space and let $A \subseteq X$. A **compact exhaustion** for A is a sequence of compact sets K_1, K_2, K_3, \ldots such that $U = \bigcup_{i>1} K_i$ and $K_i \subseteq K_{i+1}^{\circ}$.

- (a) Let $U \subseteq \mathbf{R}^n$ be a bounded open set. Show that U has a compact exhaustion
- (b) Now show that every open set $U \subseteq \mathbf{R}^n$ has a compact exhaustion.

Proof. Suppose Question 19 is true. Then the result immediately follows.

_

Question 19.

Let $x, y \in \ell^{\infty}$ be two sequences. Let us say that y is **dominated** by x, denoted $x \geq y$, if $|x_n| \geq |y_n|$ for all $n \in \mathbb{N}$. Let D_x denote the set of all sequences which are dominated by x:

$$D_x = \{ y \in \ell^{\infty} : |y_n| \le |x_n| \text{ for all } n \in \mathbf{N} \}$$

Prove that D_x is compact if and only if $x_n \to 0$.

Proof. Suppose that D_x is compact. Suppose for contradiction that $x_n \to 0$. For some $\varepsilon > 0$, $|x_{N_k}| \ge \varepsilon$ for an infinite number of N_k . Consider the open cover $\{B(\vec{y_i}, \frac{\varepsilon}{2})\}_{i \in I}$, which is the collection of $\frac{\varepsilon}{2}$ -balls centered around every $\vec{y_i} \in D_x$. By compactness of D_x , there is a finite subcover $\{B(\vec{y_i}, \frac{\varepsilon}{2})\}_{i \le m}$. Now, we construct a $y \in D_x$ as follows:

For every sequence $\vec{y_i}$, let

$$y_{N_i} = \begin{cases} \varepsilon, & \text{if } (\vec{y_i})_{N_1} < \frac{\varepsilon}{2}; \\ 0, & \text{if } (\vec{y_i})_{N_1} \ge \frac{\varepsilon}{2}; \end{cases}$$

For all other terms in y, make it 0. Conversely, suppose that $x_n \to 0$.