Research Interests

- FPGA-based Accelerators: Application-specific Architectures
- Design Automation: Design Space Exploration and Hardware Design Generation
- Optimization via Reinforcement Learning: Especially, Routing Optimization

Education _

Tokyo Tech (Tokyo Institute of Technology)

D.E. IN INFORMATION AND COMMUNICATIONS ENGINEERING. ADVISOR IS ATSUSHI TAKAHASHI.

Tokyo Tech (Tokyo Institute of Technology)

M.E. IN INFORMATION AND COMMUNICATIONS ENGINEERING. ADVISOR IS HIROKI NAKAHARA.

Tokyo Tech (Tokyo Institute of Technology)

B.E. IN COMPUTER SCIENCE. ADVISOR IS HIROKI NAKAHARA.

Ichinoseki National College of Technology

ASSOC. B.E. IN ENGINEERING. ADVISOR IS KOJI OBOKATA.

Tokyo, Japan

Apr. 2022 - Mar. 2025

Tokyo, Japan

Apr. 2018 - Mar. 2020

Tokyo, Japan

Apr. 2016 - Mar. 2018

Iwate, Japan

Apr. 2010 - Mar. 2015

Work Experience _____

Software Engineer at rinna Co., Ltd.

Intern at Preferred Networks Inc.

Tokyo, Japan

Jun. 2021 - Now Yokosuka, Japan

Researcher at NTT Network Innovation Laboratories

RESEARCH ROUTING AND SPECTRUM ASSIGNMENT USING REINFORCEMENT LEARNING FOR OPTICAL NETWORKS.

Apr. 2020 - Jun. 2021

RESEARCHED FINE-GRAINED DATAFLOW ACCELERATOR FOR CNN INFERENCE.

Tokyo, Japan Aug. 2019 - Sep. 2019

.g. 2010 - 00p. 201

Intern at SONY Corp.

Tokyo, Japan

DEVELOPED AN FPGA-BASED ACCELERATOR FOR A PROPRIETARY NEURAL NETWORK MODEL, AND CONTRIBUTED TO THE OPEN-SOURCE PROJECT **NEURAL NETWORK LIBRARIES.**

Aug. 2018 - Sep. 2018

Research Assistant at Nakahara Lab, Tokyo Institute of Technology

CONTRIBUTED TO THE OPEN-SOURCE PROJECT GUINNESS.

Tokyo, Japan

Apr. 2017 - Mar. 2020

Awards and Scholarships _____

INTERNATIONAL

2019	Best Paper Award Runner-up, IEEE International Symposium on Embedded Multicore/Many-core	Nanyang Avenue,
	Systems-on-Chip (MCSoC)	Singapore
2019	Iron Award, InnovateFPGA Global Design Contest (APJ Regional Competition)	Tokyo, Japan

DOMESTIC

202	2020	Half Payment Exemption of Master's Scholarship of Japan Student Services Organization for	Tokyo, Japan	
	2020	Outstanding Students	токуо, зарап	
	2019	IEICE RECONF Young Presentation Award	Tokyo, Japan	
	2019	Obtained Fixters Corp. Scholarship for Outstanding STEM Students	Tokyo, Japan	
	2018	IPSJ ARC Young Presentation Award	Tokyo, Japan	
	2014	FUJITSU Corp. Award, 25th National College of Technology Programming Contest	lwate, Japan	

Qualification and Skills _____

• **TOEIC:** 790 (Apr.2017)

• Azure: AZ-900, AI-900, AZ-104

• Design Tools: SDSoC, Vivado HLS

• Programming Languages: C/C++, Python, Go

• Operating Systems: Ubuntu, macOS

Publications

JOURNAL (PEER REVIEW)

- (Invited) Masayuki Shimoda, Youki Sada, Hiroki Nakahara: FPGA-based Inter-layer Pipelined Accelerators for Filter-wise Weight-balanced Sparse Fully Convolutional Networks with Overlapped Tiling, J Sign Process Syst, 1-14, 2021 [URL].
- Masayuki Shimoda, Youki Sada, Ryosuke Kuramochi, Shimpei Sato, Hiroki Nakahara: SENTEI: Filter-wise Pruning with Distillation Towards Efficient Sparse Convolutional Neural Network Accelerators, IEICE Transactions, Vol. E103-D, pp. 2463-2470, 2020 [URL].
- Hiroki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, **Masayuki Shimoda**, Shimpei Sato: GUINNESS: A GUI Based Binarized Deep Neural Network Framework for Software Programmers, IEICE Transactions, Vol.E102-D, pp.1003-1011, 2019 [URL].
- **Masayuki Shimoda**, Shimpei Sato, Hiroki Nakahara: Power Efficient Object Detector with an Event-Driven Camera for Moving Object Surveillance on an FPGA, IEICE Transactions, Vol.E102-D, pp.1020-1028, 2019 **[URL]**.
- Koji Obokata, Genki Oniyanagi, Kenta Sato, **Masayuki Shimoda**, Hiroki Chiba: Development of a Consensus Building System to Support Community Planning that Centers on Information Sharing Using the Map, Theory and applications of GIS, vol. 24, no. 2, pp. 115–124, 2016 (in Japanese) [URL].

CONFERENCE (PEER REVIEW)

- Masayuki Shimoda, Takafumi Tanaka: Mask RSA: End-To-End Reinforcement Learning-based Routing and Spectrum Assignment in Elastic Optical Networks, ECOC, 2021 [URL].
- Takafumi Tanaka, **Masayuki Shimoda**: Impact of Operational Mode Selection and Grooming Policies on Auxiliary Graph-Based Multi-layer Network Planning, ECOC, 2021 **[URL]**.
- Masayuki Shimoda, Takafumi Tanaka: Deep Reinforcement Learning-based Spectrum Assignment with Multi-metric Reward Function and Assignable Boundary Slot Mask, OECC, 2021 [URL].
- Naoto Soga, Youki Sada, **Masayuki Shimoda**, Akira Jinguji, Simpei Sato and Hiroki Nakahara: Fast Monocular Depth Estimation on an FPGA, IPDPS Workshop (RAW), 2020 **[URL]**.
- Youki Sada, **Masayuki Shimoda**, Akira Jinguji, Hiroki Nakahara: A Dataflow Pipelining Architecture for Tile Segmentation with a Sparse MobileNet on an FPGA, FPT, 2019 **[URL]**.
- Ryosuke Kyuramochi, **Masayuki Shimoda**, Youki Sada, Shimpei Sato, Hiroki Nakahara: FPGA-based Accurate Pedestrian Detection with Thermal Camera for Surveillance System, ReConFig, 2019 **[URL]**.
- Ryosuke Kuramochi, Youki Sada, **Masayuki Shimoda**, Shimpei Satoo, Hiroki Nakahara: Many Universal Convolution Cores for Ensemble Sparse Convolutional Neural Networks, MCSoC, 2019 [URL].
- Hiroki Nakahara, Youki Sada, Masayuki Shimoda, Kouki Sayama, Akira Jinguji, Shimpei Sato: FPGA-based Training Accelerator Utilizing Sparseness of Convolutional Neural Network, FPL, 2019 [URL].
- **Masayuki Shimoda**, Youki Sada, Ryosuke Kuramochi, Hiroki Nakahara: An FPGA implementation of Real-time Object Detection with a Thermal Camera, FPL, 2019 **[URL]**.
- **Masayuki Shimoda**, Youki Sada, Hiroki Nakahara: Filter-Wise Pruning Approach to FPGA Implementation of Fully Convolutional Network for Semantic Segmentation, ARC, 371-386, 2019 [URL].
- Hiroki Nakahara, Akira Jinguji, **Masayuki Shimoda**, Shimpei Sato: An FPGA-based Fine Tuning Accelerator for a Sparse CNN, FPGA, 186, 2019 **[URL]**.
- Hiroki Nakahara, Masayuki Shimoda, Shimpei Sato: A Demonstration of FPGA-Based You Only Look Once Version2 (YOLOv2), FPL, 457-458, 2018 [URL].
- **Masayuki Shimoda**, Shimpei Sato, Hiroki Nakahara: Demonstration of Object Detection for Event-Driven Cameras on FP-GAs and GPUs, FPL, 461-462, 2018 **[URL]**.
- Hiroki Nakahara, **Masayuki Shimoda**, Shimpei Sato: A Tri-State Weight Convolutional Neural Network for an FPGA: Applied to YOLOv2 Object Detector, FPT, 298-301, 2018 **[URL]**.
- **Masayuki Shimoda**, Shimpei Sato, Hiroki Nakahara: Power Efficient Object Detector with an Event-Driven Camera on an FPGA, HEART, 10:1-10:6, 2018 **[URL]**.
- Hiroyuki Nakahara, Haruyoshi Yonekawa, Tomoya Fujii, **Masayuki Shimoda**, Simpei Sato: A demonstration of the GUINNESS: A GUI based neural NEtwork SyntheSizer for an FPGA, FPL, 1, 2017 [URL].

 Masayuki Shimoda, Shimpei Sato, Hiroki Nakahara: All binarized convolutional neural network and its implementar an FPGA, ICFPT, 291-294, 2017 [URL]. 					