Algorítmica (2015-2016)

Grado en Ingeniería Informática Universidad de Granada

Práctica 4-Primera Parte: Cena de gala

Francisco Carrillo Pérez, Borja Cañavate Bordons, Miguel Porcel Jiménez, Jose Manuel Rejón Santiago, Jose Arcos Aneas 18 de mayo de 2016

Índice

1.	Introducción	3
2.	Elementos de la solución al problema 2.1. Representación de la compatibilidad 2.2. Representación de la solución 2.3. Solucion parcial 2.4. Restricciones explícitas 2.5. Restricciones implícitas	3 3 3
3.	Pseudocódigo	3
4.	Eficiencia 4.1. Eficiencia Híbrida	4 5
ĺn	dice de figuras	
	4.1. algoritmo backtracking	
ĺn	dice de tablas	
	4.1. Ef híbrida obtenida	5

1. Introducción

El objetivo de esta práctica es diseñar un algoritmo Backtracking, que resuelva uno de los cinco problemas de la práctica y realizar un estudio empírico de su eficiencia. Se desea sentar a N invitados alrededor de una mesa, de manera que cada invitado tendra a su lado a otros dos. Cada par de invitados tiene un nivel de compatibilidad. Se desea maximizar la compatibilidad de estos comensales.

2. Elementos de la solución al problema

Dada una matriz M[i][j] Mantenemos en la matriz la afinidad entre el comensal i y el comensal j

$$\left(\begin{array}{ccc}
0 & 30 & 15 \\
30 & 0 & 20 \\
15 & 20 & 0
\end{array}\right)$$

2.1. Representación de la compatibilidad

La entrada sera una matriz simetrica de valores aleatorios con la diagonal de 0s.

2.2. Representación de la solución

Vector de longitud igual al número de invitados (N), en que cada posición guarda el valor del invitado que se sienta en la posición i.

2.3. Solucion parcial

olucion parcial al problema de tamaño menor que N.

2.4. Restricciones explícitas

Los valores que puede tomar la solucion son los enteros de 1 a N. Donde N es el número total de invitados.

2.5. Restricciones implícitas

Estas restricciones son las que determinan si una función parcial puede llevarnos a una solucion del problema. Si supera un umbral.

3. Pseudocódigo

Require: Matriz, S_final[N] S_parcial[N] Sentados[N]=false comensal_actual, nivel, valor_maximo=0; Funcion(S,S_parcial,Sentados,comensal_actual,nivel): Sentados[comensal_actual]=true;

```
\begin{split} S\_parcial[nivel-1] = &comensal\_actual;\\ \textbf{for i to N do}\\ &\textbf{if Sentados}[i] = = false \textbf{ then}\\ &valor\_actual = CalcularSolucionActual(S\_parcial);\\ &\textbf{Funcion(S,S\_parcial,Sentados,i,nivel+1);}\\ &\textbf{if nodo\_actual} = = nodo\_hoja \textbf{ then}\\ &valor\_actual = CalcularSolucionActual()\\ &\textbf{if valor\_actual mayor que valor\_maximo) then}\\ &S\_final = S\_Actual\\ &valor\_maximo = valor\_actual\\ &\textbf{end if}\\ &\textbf{end if}\\ &Sentados[i] = false;\\ &\textbf{end for} \end{split}
```

4. Eficiencia

Figura 4.1: algoritmo backtracking

4.1. Eficiencia Híbrida

Figura 4.2: comparación x**8 vs algoritmo backtracking

Ajuste con X**8

Tabla 4.1: Ef híbrida obtenida Final set of parameters — Asymptotic Standard Error

a0 = 8.59555e-09 +/- 2.326e-11 (0.2706 %)