[Büten Zar] B.Sz Scan A y B sucesos. Calcular P(AIB) en los siguientes casos:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

= necesariamente ocurre A. Si ocurre B

$$P(A|B) = O$$

Si se da B es imposible que se de A.

Entonces puede pasar cualquier

Si Ay B son succesos independientes , . By C también.

¿ Puede afirmorse que AyC son independientes? En caso afirmativo, demostrar.

$$P(A \cap B) = P(B) \cdot P(A)$$

 $P(B \cap C) = P(B) \cdot P(C)$

(dado equilibrado)

$$P(A) = \frac{4}{6}$$

$$P(B) = \frac{4}{6}$$

$$P(c) = \frac{1}{6}$$

$$P(A \cap B) = \frac{4}{36} = P(A) \cdot P(B)$$

$$P(B \cap C) = \frac{1}{36} = P(B) \cdot P(C)$$

Entonces A , C no son independientes.

плото общинацию отрада и сека стору. Волител прости и Этоминации и 3

politica rieges, regimmentes), y hiero la implementación es restixtuas por una

(leyes, reglamentos), y luego es implementado por varias instructoras.
 Programas sociales en los cuales varias institucipare realizan la risburación.

a. Programus sociales en les ex

. Los programes sociates integrados multi-institucionales corresponden a

Panion: 1

intento

Cuestionario Modulo 4: versión para respuesta onime.

Demostrar: A es independiente de A \ P(A) = 0 6 P(A) = 1

Dem:

$$\Leftrightarrow$$
 $P(A) [1 - P(A)] = 0 \Leftrightarrow $P(A) = 0 \circ P(A) = 1$$

English 1

2: 1(:/(mea.bm !/

Complete person beginning as on agents place consider on an hore-

Season Salte:

безранска ен в деного совно наизтого

CITION.

Enumerat al menos è situaciones en las que no se reguiare el conscrimiente informado. La raspuesta puede referirse al articulo de la lay ast como nendicio ejemplificar los

Postor I

Question to

Green Contract of the Contract

Cath:

新華重要 H か 日日を在 デザーサルのか 日日の日本 ち の 極 ドフ まる レ へ 何 しゅ

R cspuesial

Responder on a timeas como minamo

calidad de los datos.

Cuales de los principios de la ley de protectivo de datos personnes nace recentarios a la

Puntasi 1

Quastion 15

informanion de una personn fisica o juridica

el. Reparar les datos en bases de datos diferentes evitando tener colicentrada foda la

Sean Ay B sucesos /
$$P(A) = \frac{1}{4}$$
, $P(A \cup B) = \frac{1}{3}$. Calcular $P(B)$.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \implies \frac{1}{3} = \frac{1}{4} + P(B) - P(A). P(B)$$

$$\frac{1}{12} = \frac{3}{4} P(B) \longrightarrow P(B) = \frac{1}{9}$$

$$P(A \cup B) = P(A) + P(B) \implies \frac{1}{12} = P(B)$$

$$P(A \cup B) = P(B)$$

$$P(B) = \frac{1}{3}$$

Sean A , B succesos tales que
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{3}$ $P(A \cap B) = \frac{1}{4}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{A}{4}}{\frac{A}{3}} = \frac{3}{4}$$

2 P(BIA)

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

3 P(Ac | B)

4 P(BC IA)

$$P(B^c|A) = 1 - P(B|A) = \frac{1}{2}$$

$$A = A \mid B \downarrow B \cap A$$

$$P(A) - P(B \cap A) = P(A \mid B)$$

(5) P(Ac | Bc)

$$P(A^{c}|B^{c}) = 1 - P(A|B^{c}) = 1 - \frac{P(A \cap B^{c})}{P(B^{c})} = 1 - \frac{P(A/B)}{1 - P(B)}$$

$$= 1 - \frac{P(A) - P(A \cap B)}{1 - P(B)} = 1 - \frac{\frac{1}{4}}{\frac{9}{3}} = \frac{5}{8}$$

(P(Bc | Ac)

$$P(B^{c}|A^{c}) = 1 - P(B|A^{c}) = 1 - \frac{P(B \cap A^{c})}{P(A^{c})} = 1 - \frac{P(B/A)}{1 - P(A)} = 1 - \frac{P(B) - P(A \cap B)}{1 - P(A)}$$

$$= 1 - \frac{\frac{1}{3} - \frac{1}{4}}{\frac{1}{2}} = 1 - \frac{A}{6} = \frac{5}{6}$$

1) Una caja contiene 12 lámparas de las cuales 4 son defectuosas. Se toman 3 lámparas al azar, una tras otra. Hallar la Prob de que ninguna de las 3 sea defectuosa.

Consideremos los sucesos:

Quiero calcular P(A1 n A2 n A3)

Comencemos calculando:
$$P(A_1) = \frac{8}{12} = \frac{9}{3}$$

$$P(A_1|A_1) = \frac{7}{11}$$

$$P(A_3|A_1 \cap A_2) = \frac{6}{10} = \frac{3}{5}$$

$$P(A_3 | A_1 \cap A_2) \cdot P(A_2 | A_1) \cdot P(A_1) = P(A_1 \cap A_2 \cap A_3)$$

$$\frac{3}{5} \cdot \frac{7}{11} \cdot \frac{2}{3} = P(A_1 \cap A_2 \cap A_3)$$

$$\frac{A4}{55} = P(A_1 \cap A_2 \cap A_3)$$

2

Se consideran ahora 3 cajas con lamparas:

La caja 2 - 10 lámparas / 4 defectuosas La caja 2 - 6 lámparas / 1 defectuosa La caja 3 - 1 8 Lámparas / 3 defectuosas

Escojemos al azur una caja y luego sacamos una lampara al azar 6 Cuál es la probabilidad de que la lampara sea defectuosa?

A = "Lampara defectuosa"

P(A) = P(An 12) = P(An (c, t c2 t c3)) = P((Anc1) t (Anc2) t (Anc3))

8019

 $= P(A_1C_1) + P(A_1C_2) + P(A_1C_3) = P(C_1) \cdot P(A|C_1) + P(C_2) \cdot P(A|C_2) + P(C_3) P(A|C_3)$

 $= \frac{1}{3} \cdot \frac{1}{10} + \frac{1}{3} \cdot \frac{1}{6} + \frac{1}{3} \cdot \frac{3}{8} = \frac{\frac{1}{30} + \frac{1}{18} + \frac{1}{8}}{\frac{1}{30} + \frac{1}{18} + \frac{1}{8}} = \frac{288 + 120 + 270}{2160} = \frac{678}{2160}$

Las implementaciones do acuaçãos informacionates de seguridad social on la Union Europea y al Mercoan rienen como caracteristicas en común.

Common a

d. Solo ta articulazion un in a u de sistemas infuntablees. Una caja tiene dos canicas rojas, una blanca y una negra.

Una persona extrae de la caja dos canicas. y asegura que tiene una roja.

6 Cuál es la probabilidad de que la otra canica también sea roja?

$$C_1 = roja$$
 $C_2 = roja$
 $C_3 = blanca$
 $C_4 = negra$
 $C_4 = negra$
 $C_1 = roja$
 $C_2 = roja$
 $C_3 = blanca$
 $C_2 = c_3$
 $C_3 = blanca$
 $C_3 = blanca$
 $C_4 = negra$
 $C_4 = negra$
 $C_4 = negra$

A1 = "Sacar al menos 1 roja"
A2 = "Tener las dos canicas rojas

$$P(A_2 | A_1) = \frac{P(A_2 \cap A_1)}{P(A_1)} = \frac{P(A_2)}{P(A_1)} = \frac{\frac{1}{6}}{\frac{5}{6}} = \frac{\frac{1}{5}}{\frac{1}{5}}$$

1

6 bolillas regas

4 " blancas

azules

se extraen 3 (sin reposición)

5 11

Calcular la prob de que la primera sea roja, la segunda blanca y la tercera azul.

necesito P(B1 n B2 n B3)

$$P(B_1) = \frac{6}{15} = \frac{2}{5}$$

$$P(B_2|B_1) = \frac{4}{14} = \frac{2}{7}$$

$$P(B_3 \mid B_1 \cap B_2) = \frac{5}{13}$$

$$P(B_1 \cap B_2 \cap B_3) = P(B_1) \cdot P(B_2 | B_1) \cdot P(B_3 | B_1 \cap B_2)$$

= $\frac{2}{5} \cdot \frac{2}{7} \cdot \frac{5}{13} = \frac{4}{94}$

2) Caja 1: 3 rojas 2 azules

caja 2 : 2 rojas 8 azules

Se lanza una moneda, cara - bola caga 1 Croz - bola cata 2

(a) Hallar la probabilidad que la bola extraída sea roja.

A = "La bola extraída es roja" (c. = "Se extrae bola de Caja! c2 = "se extrae bola de Caja?" P(A) = P(An 1) = P(An (C, & C2)) = P((Anc,) + (Anc)) = P(Anc) + P(Anc) = P(C) P(Alc) + P(c) P(Alc)

 $P(A) = \frac{1}{2} \left[\frac{3}{5} + \frac{2}{10} \right] = \frac{1}{2} \cdot \frac{8}{10} = \left[\frac{9}{5} \right] \approx 0,4$

(b) Si se sabe que la bola extraída es roja ¿ Cuál es la probabilidad que provenga de la caja 1)

; P(c, 1A)?

 $P(A|C_1) = \frac{3}{5}$

bayes :

$$P(c, |A) = \frac{P(A|c,) \cdot P(c,)}{P(A)} = \frac{\frac{3}{5} \cdot \frac{1}{2}}{\frac{9}{5}} = \frac{3}{4} \approx 0,75$$

Ejercicio 9

Sabiendo que cada jugador realiza un lanzammiento, calcular las prob de que el blanco sea alcanzado 1 sola vez.

$$P(A_1) = \frac{1}{6}$$

$$P(A_2) = \frac{1}{4}$$

$$P(A_3) = \frac{1}{3}$$

 $E = (A_{1} \cap A_{2}^{c} \cap A_{3}^{c}) \dot{t} (A_{2} \cap A_{1}^{c} \cap A_{3}^{c}) \dot{t} (A_{1}^{c} \cap A_{2}^{c} \cap A_{3})$

P(E) = P(A1 n A2 n A3) + P(A2 n A1 n A3) + P(A1 n A2 n A3)

Suponemos que A_1 , A_2^c , A_3^c son independientes $\Rightarrow P(A_1 \cap A_2^c \cap A_3^c) = P(A_1) \cdot P(A_2^c) \cdot P(A_3^c)$ Suponemos que A_2 , A_1^c , A_3^c son independientes $\Rightarrow P(A_1 \cap A_2 \cap A_3^c) = P(A_1^c) \cdot P(A_2) \cdot P(A_3^c)$ Suponemos que A_3 , A_1^c , A_2^c son independientes $\Rightarrow P(A_1 \cap A_2 \cap A_3) = P(A_1^c) \cdot P(A_2^c) \cdot P(A_3^c)$

$$P(E) = P(A_1)(1 - P(A_2)) \cdot (1 - P(A_3)) + P(A_2)(1 - P(A_1))(1 - P(A_3)) + P(A_3)(1 - P(A_1))(1 - P(A_2))$$

$$P(E) = \frac{1}{6} \cdot \frac{3}{4} \cdot \frac{2}{3} + \frac{1}{4} \cdot \frac{5}{6} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{5}{6} \cdot \frac{3}{4} = \frac{1}{12} + \frac{5}{36} + \frac{5}{24} = \frac{6+10+15}{72} = \boxed{\frac{31}{72}}$$

B Si solo 1 da en el blanco, 6 Cuál es la probabilidad que haya sido es Jugador 1?

$$P(A_1|E) = \frac{P(A_1 \cap E)}{P(E)}$$

$$P(A_1|E) = \frac{P(A_1 \cap A_2 \cap A_3^c)}{P(E)} = \frac{\frac{1}{12}}{\frac{31}{72}} = \frac{6}{31}$$

$$P_1 = \frac{1}{4}$$
 $P_2 = \frac{1}{3}$ $P_3 = \frac{1}{3}$

Hallar probabilidad de que el blanco sea alcanzado al menos I vez.

A = "Jugador 1 acierta la primera vez"

Az = "Jugador 1 acierta la segunda vez"

B1 = "Jugador 1 acierta la primera vez"

B2 = "Jugador 2 acterta la segunda vez

C1 = "Jugador 3 acterta la primera vez abosti de ottoma

P(A10A20B10B20C10C2) = 1 - P((A10A20B10B20C10C2)) = 1 - P(A10A20B10B20C10C2)

asumianos = 1 -
$$\left[P(A_1^c), P(A_2^c), P(B_1^c), P(B_2^c), P(C_1^c), P(C_2^c)\right]$$

$$= 1 - \left[\left(1 - P(A_1) \right)^2 \left(1 - P(B_1) \right)^2 \left(1 - P(C_1) \right)^2 \right] = 1 - \left[\frac{49}{69} \cdot \frac{25}{36} \cdot \frac{25}{36} \right] = \frac{8}{9}$$

(d) Si ahora cada uno dispara una vez. Sabiendo que el blanco fue Blanzado solamente una vez. Hallar la probabilidad que haya sido el J1.

$$P_1 = \frac{1}{9}$$
 $P_2 = P_3 = \frac{4}{3}$

de parte A

$$P(E) = P(A_1) \cdot (1 - P(A_2)) \cdot (1 - P(A_2)) + (1 - P(A_3)) + (1 - P(A_3)) + (1 - P(A_3)) + (1 - P(A_3)) P(A_3)$$

$$P(E) = \frac{1}{4} \cdot \frac{4}{9} + \frac{3}{4} \cdot \frac{1}{3} \cdot \frac{2}{3} + \frac{3}{4} \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{1}{9} + \frac{1}{6} + \frac{1}{6} = \frac{4}{9}$$

$$P(A, |E) = \frac{P(A, nE)}{P(E)} = \frac{P(A_1 \cap A_2 \cap A_3)}{P(E)} = \frac{\frac{1}{q}}{\frac{1}{q}} = \frac{1}{\frac{1}{q}}$$

Ejercicio 10

70 % mujeres reacciona positivo 40 % hombres reacciona positivo

Se tomo 1 persona al azar de 20 y la prueba resultó negativa. 6 Prob de que fuera un hombre?

$$P(N) = P(N \cap L) = P(N \cap (M \circlearrowleft H)) = P((N \cap M) \circlearrowleft (N \cap H)) = P(N \cap M) + P(N \cap H)$$

$$= P(N|H) \cdot P(H) + P(N|M) \cdot P(M)$$

Yo busco saber P(HIN)

$$P(H|N) = \frac{P(N|H) \cdot P(H)}{P(N|H) \cdot P(N)} = \frac{0.6 \cdot 0.25}{P(N|H) \cdot P(H) + P(N|H) \cdot P(M)} = \frac{0.6 \cdot 0.25}{0.6 \cdot 0.25 + 0.75 \cdot 0.3} = \frac{0.15}{0.375} = 0.4$$

$$P(B_3 | A) = \frac{P(A|B_3) P(B_3)}{\sum_{i=1}^{n} P(A|B_i) P(B_i)}$$
 para todo J=1,..., n.

Demostración:

$$b(B^2|V) = \frac{b(V)}{b(B^2 \cup V)} = \frac{b(V)}{b(V \cup V)}$$

Luego
$$P(A) = P(A \cap A) = P(A \cap (B_1 \vec{b} B_2 \vec{v} \dots \vec{v} B_n)) = P((A \cap B_1) \vec{v} (A \cap B_2) \vec{v} \dots \vec{v} (A \cap B_n))$$
Letra

$$= P(A \cap B_1) + P(A \cap B_2) + \dots + P(A \cap B_n) = P(A|B_1)P(B_1) + \dots + P(A|B_n)P(B_n)$$

$$= P(A \cap B_1) + P(A \cap B_2) + \dots + P(A|B_n)P(B_n)$$

$$= P(A \cap B_1) + P(A \cap B_2) + \dots + P(A|B_n)P(B_n)$$

$$= \sum_{i=1}^{n} P(A|B_i) P(B_i)$$

$$b(B^{2}|V) = \frac{\sum_{j=1}^{n} b(V|B^{2}) \cdot b(B^{2})}{b(V|B^{2}) \cdot b(B^{2})}$$

2

35 % Población pertenece Partido I
31 % Población pertenece Partido II
28 % Población pertenece Partido II
6 % " pertenece Partido IV

Adherentes al PI, 36% personas ingresos inferiores a 2 salarios mínimos.

" PI , 52%

" РШ, 42 %

.. PU , 41 %

S. se elige una persona al azar y resulta tener ingresos interiores a dos salarios míninos. Calcular prob de que sea da PI, PII, PII, y PII

 $B_{\tilde{z}}$ = "Persona adherida al partido \tilde{z} Por letra $P(B_1)$ = 0,35 $P(B_3)$ = 0,28 $P(B_2)$ = 0,31 $P(B_4)$ = 0,06

A = "Persona con ingresos inferiores a 2 sueldos minimos"

 $P(A|B_1) = 0.36$ $P(A|B_3) = 0.42$ $P(A|B_2) = 0.52$ $P(A|B_4) = 0.44$

$$P(B_1 \mid A) = \frac{P(A \mid B_1) \cdot P(B_1)}{\sum_{i=1}^{4} P(A \mid B_i) \cdot P(B_i)} = \frac{0.36 \times 0.35}{0.36 \times 0.35 + 0.52 \times 0.31 + 0.42 \times 0.28 + 0.41 \times 0.06} = \frac{0.426}{0.426 + 0.461 + 0.443 + 0.00}$$

· = 0,126 = 0,31

La prop de que la persona de bajor ingresos sea del partido I es de 0,3t

 $P(B_2 \mid A) = \frac{P(A \mid B_2) \cdot P(B_1)}{0.44} = 0.39$

$$P(B_{4}|A) = \frac{P(A|B_{4}).P(B_{4})}{O_{4}} = O_{6}O_{1}$$

 $P(B_3|A) = \frac{P(A|B_3) \cdot P(B_3)}{0.41} = 0.28$

Se toma al azar un artículo de la producción total. Si el artículo es defectuoso hullar la probabilidat de que haya sido producido por la máquina A.

Letra:

$$P(B_1) = 0.5$$
 $P(A|B_1) = 0.03$ $P(A) = 0.03$ $P(A) = 0.04$ $P(A) = \sum_{k=1}^{3} P(A|B_k) P(B_k) = 0.015 + 0.012 + 0.01$ $P(B_3) = 0.2$ $P(A|B_3) = 0.05$ $= 0.037$

$$P(B_1|A) = \frac{P(A|B_1).P(B_1)}{P(A)} = \frac{0.015}{0.037} \approx 0.40$$

Ejercicio 12

D = { La empresa de seguridad respondo a una señal de alarma a tiempo evitando el robo }

A= { La empresa es advertida por la señal sonora de la sirena de la alarma colocada en el domicilio }

B={La empresa es advertida por una alerta transmitida por la línea de telefonía sija de la casa}

C = { La empresa es advertida por una alerta transmitida por GPRS/EDGE a través de un chip y emisor celular que contiene la alarma}

A, B, C son independientes entre si.

$$P(A) = 0.25$$
 $P(B) = 0.5$ $P(C) = 0.95$

P(D| AUBUC) = 0,90

P(D((AUBUC)) = 0

Calcular la probabilidad de que se active alguna de las alarmas y que la empresa detenga el robo.

$$P(D|AuBuc) = \frac{P(Dn(AuBuc))}{P(AuBuc)} \Longrightarrow P(Dn(AuBuc)) = P(D|AuBuc). P(AuBuc)$$

$$P(D_{\Lambda}(A\cup B\cup C)) = 0.90 \cdot \left[P(A) + P(B) + P(C) - P(A\cap C) - P(A\cap B) - P(B\cap C) + P(A\cap B\cap C) \right]$$

$$= 0.90 \cdot \left[1.7 - P(A) \cdot P(C) - P(A) \cdot P(B) - P(B) \cdot P(C) + P(A) \cdot P(B) \cdot P(C) \right]$$

$$= 0.90 \cdot \left[1.7 - 0.2375 - 0.125 - 0.475 + 0.11875 \right] \cong 0.88$$

Entre los adherentes de A, 10% voto en la elección interna de otro partido.

O 6 Cual fue el porcentaje de votos obtenidos por el partido A en las internas?

A =
$$\begin{cases} Persona & Persona \\ P(V) = \begin{cases} Persona & Persona \\ Persona \\ Persona \end{cases}$$

C = $\begin{cases} Persona \\ Persona \\ Persona \end{cases}$

C = $\begin{cases} Persona \\ Persona \\ Persona \end{cases}$

$$P(V_A) = P(V_A \mid A) . P(A) + P(V_A \mid B) P(B) + P(V_A \mid C) P(C) = 0.40 . 0.40 + 0.45 . 0.35 + 0.05 . 0.25$$

$$= 0.36 + 0.0525 + 0.0125 = 0.425$$

2) Si se elige una persona al azar dentro de las que votaron en A

$$P(B|V_A) = \frac{P(V_A|B) \cdot P(B)}{P(V_A)} = \frac{0.0525}{0.425} \stackrel{\circ}{=} 0.123$$

(6) Cuál es la probabilidad de que sea adherente de C?

$$P(c|v_A) = \frac{P(v_A|c) P(c)}{P(v_A)} = \frac{0.0125}{0.425} \approx 0.029$$

400000 personas votaron en la interna de A

[Büten Zar]

@ 6 En cuánto estimaria la cantidad de votantes de A que son adherentes a B)

Cobranza

P(BIVA) = 0,1235

400000 . 0,1235 = 49400

(b) 6 En cuánto estimaria la cantidad de votantes de A que son adherentes a C?

P(c/va) = 0,0294

400000 - 0,0294 = 1 11760

Ejercicio 14

[Büten Zar]
B.Sz

$$P(A_1 \cap A_2 | D) = P(A_1 | D) \cdot P(A_2 | D)$$

 $P(A_1 \cap A_2 | D^c) = P(A_1 | D^c) \cdot P(A_2 | D^c)$

$$P(A_i|0^c) = 0.02$$
 $i = 1.2$

$$P(0) = 0.05$$

1 Calcule P(DIA,)

$$\frac{P(D \mid A_1)}{P(A_1)} = \frac{P(D \cap A_1)}{P(A_1)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(A_1)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(A_1 \cap A_1)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(A_1 \cap A_1 \mid D)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(A_1 \cap A_1 \mid D)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(A_1 \cap D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(A_1 \mid D^C)}{P(D) \cdot P(A_1 \mid D^C)} = \frac{P(D) \cdot P(D)}{P(D) \cdot P(D)} = \frac{P(D) \cdot P(D)}{P(D)} = \frac{P(D) \cdot P(D)}{P(D)} = \frac{P(D) \cdot P(D)}{P(D$$

$$P(B) = P(A_1 \cap A_2) = P(A_1 \cap A_2 \mid D) P(D) + P(A_1 \cap A_2 \mid D^C) P(D^C) = P(A_1 \mid D) P(A_2 \mid D) P(D) + P(A_1 \mid D^C) P(B^C)$$

$$= (0.90)^2 \cdot 0.05 + (0.02)^2 \cdot 0.95 \approx 0.0405 + 0.0003 \approx 0.0408$$

$$P(A_1) = P(A_2)$$
 Son independientes?
$$P(A_1 \cap A_2) = 0.0408 \neq P(A_1)^2 = 0.0409$$
No son independientes.

[Büten Zar] B.Sz

$$P(0|A_1 \cap A_2) = \frac{P(A_1 \cap A_2|0) P(0)}{P(A_1 \cap A_2)} = \frac{(0.90) 0.05}{0.0408} = \frac{0.0405}{0.0408} = 0.90$$

Ejercicio 15

Se extrae una bola al azar de Caral y se coloca en cara 2 Luego se extrae bola de cara 2.

① ¿ Cuál es la probabilidad de que se extraiga la misma bola que se extrajo de la primera caja?

C = La bola extraída de la segunda caja es la misma que de la primera

2) ¿ Cuál es la probabilidad de que la bola extraída sea roja?

A = "Sale bola roja en caja!" C = "Se extrae bola 10ja de caja?"

B = "Sale bola azul en cotal"

$$P(c) = P(c \cap A) = P(c \cap (A \cup B)) = P((c \cap A) \cup (c \cap B))$$

$$= P(c \cap A) + P(c \cap B) = P(c \cap A) + P(c \cap B) = \frac{3}{7} \cdot \frac{3}{5} + \frac{9}{7} \cdot \frac{9}{5} = \frac{9+4}{35}$$

3 Si la bola extraída de la segunda caga es roja, ¿ Cuál es la probabilidad de que sea la misma bola que se extraída de la prinnera caga?

E = "Misma bola que la extraída en caga!"

c = Bola extraido de la segunda caja

$$P(E|C) = \frac{P(C|E) \cdot P(E)}{P(C)}$$

$$P(E|c) = \frac{\frac{3}{5} \frac{1}{7}}{\frac{13}{35}} = \frac{3}{13}$$

miro pos extraer rega de cagat Se tira una moneda dos veces y se consideran los sucesos:

A= { En la primera tirada sale cara }

B= { En la segunda tirada sale cara }

C = { En las dos tiradas salen un número y una cara, en cualquier orden}

1 Estudiar independencia de a pares.

6 A y B son independientes?

$$P(A \cap B) = \frac{1}{4}$$
 $P(A) = \frac{1}{2}$ $P(B) = \frac{1}{2}$

$$P(A) = \frac{1}{2}$$

$$P(B) = \frac{1}{2}$$

$$P(A \cap B) = P(A) \cdot P(B)$$

6 A y C son independientes?

$$P(A \cap C) = \frac{1}{4}$$
 $P(A) = \frac{1}{2}$ $P(C) = \frac{1}{2}$

$$P(A) = \frac{1}{2}$$

$$P(c) = \frac{1}{2}$$

By C son independientes?

$$P(B \cap C) = \frac{1}{4}$$
 $P(B) = \frac{1}{2}$ $P(C) = \frac{1}{2}$

$$P(B) = \frac{1}{2}$$

$$P(c) = \frac{1}{2}$$

$$P(B_A C) = P(B) P(c)$$

2 6 Son A, B, C independientes?

$$P(A) = \frac{4}{5}$$

$$P(A) = \frac{1}{2}$$
 $P(B) = \frac{1}{2}$ $P(C) = \frac{1}{2}$

$$P(c) = \frac{1}{2}$$

P(An Bnc) & P(A) . P(B) . P(c)

A, B, C no son independientes.

Se tira una moneda 3 veces y se consideran los sucesos:

$$A = \left\{ (c,c,c), (c,c,n), (c,n,c), (n,c,c) \right\}$$

$$B = \left\{ (c,c,c), (n,n,c), (n,c,n), (c,n,n) \right\}$$

$$C = \left\{ (c,c,c), (c,c,n), (c,n,c), (n,n,n) \right\}$$

$$\Omega = \left\{ (c,c,c), (u,c,c), (c,u,c), (u,u,c), (c,c,u), (u,c,u), (c,u,u), (u,u,u) \right\}$$

$$P(A) = \sum_{w \in A} P(w) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$

$$P(B) = \frac{1}{2}$$

$$P(c) = \frac{1}{2}$$

An BnC =
$$\{(c,c,c)\}$$
 $P(AnBnc) = \frac{1}{8}$

2 Estudiar la independencia de a pares

$$P(A) = P(B) = \frac{4}{2}$$

A, B no son independients

$$P(A) = P(C) = \frac{4}{2}$$

Ay C no son independientes

$$P(Anc) = \frac{3}{8}$$

$$P(B) = P(C) = \frac{1}{2}$$

By C no son independientes.

No, porque no se cumple la independencia de a pares.

Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2013 Práctico 2

Probabilidad Condicional e Independencia

Ejercicio 1

Sean A y B sucesos. Calcular P(A|B) en los siguientes casos.

- 1. $B \subseteq A$
- 2. $A \cap B = \emptyset$
- 3. ¿Qué pasa si P(B) = 0?

Ejercicio 2

Si A y B son sucesos independientes y B y C también son sucesos independientes. ¿Puede afirmarse que A y C son independientes? En caso afirmativo demostrarlo, en caso contrario dar un contraejemplo.

Ejercicio 3

Demostrar que A es independiente de A si y sólo si P(A) = 0 ó P(A) = 1.

Ejercicio 4

Sean A y B sucesos tales que $P(A) = \frac{1}{4}$ y $P(A \cup B) = \frac{1}{3}$. Calcular P(B) en los siguientes casos:

- 1. Si A y B son independientes
- 2. Si A y B son disjuntos (o excluyentes)
- 3. Si A es un subconjunto de B

Ejercicio 5

Sean A y B sucesos tales que $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ y $P(A \cap B) = \frac{1}{4}$. Calcular:

- 1. P(A|B)
- 2. P(B|A)
- 3. $P(A^C|B)$
- 4. $P(B^C|A)$
- 5. $P(A^C|B^C)$
- 6. $P(B^C|A^C)$

Ejercicio 6

- 1. Una caja contiene 12 lámparas de las cuales 4 son defectuosas. Se toman al azar tres lámparas del lote una tras otra. Hallar la probabilidad de que las tres lámparas no sean defectuosas.
- 2. Se consideran ahora tres cajas con lámparas:

La caja 1 contiene 10 lámparas de las cuales 4 son defectuosas

La caja 2 contiene 6 lámparas de las cuales 1 es defectuosa

La caja 3 contiene 8 lámparas de las cuales 3 son defectuosas

Escogemos al azar una caja y luego sacamos una lámpara al azar ¿Cuál es la probabilidad de que la lámpara sea defectuosa?

Ejercicio 7

Una caja tiene dos canicas rojas, una blanca y una negra. Una persona extrae de la caja dos canicas, y asegura que tiene una roja. ¿Cuál es la probabilidad de que la otra canica también sea roja?

Ejercicio 8

- 1. Se considera una caja que contiene 6 bolillas rojas, 4 blancas y 5 azules. Se extraen tres bolillas en forma sucesiva (sin reposición). Calcular la probabilidad que la primera sea roja, la segunda blanca y la tercera azul
- 2. Se consideran dos cajas con bolas. La caja 1 contiene 3 bolas rojas y 2 azules, la caja 2 contiene 2 bolas rojas y 8 azules. Se lanza una moneda, si se obtiene cara se saca una bola de la caja 1, y si se obtiene cruz se saca una bola de la caja 2.
 - a) Hallar la probabilidad que la bola extraída sea roja.
 - b) Si se sabe que la bola extraída es roja, ¿cuál es la probabilidad que provenga de la caja 1?

Ejercicio 9

- 1. Tres jugadores tiran al blanco. Sean $p_1 = \frac{1}{6}, p_2 = \frac{1}{4}, p_3 = \frac{1}{3}$ las probabilidades de acierto al blanco de los respectivos jugadores.
- 2. Sabiendo que cada jugador realiza un lanzamiento, calcular la probabilidad de que el blanco sea alcanzado solamente una vez.
- 3. Sabiendo que sólo uno da en el blanco, calcular la probabilidad que haya sido el jugador 1.
- 4. Ahora cada jugador lanza dos veces, $p_1 = \frac{1}{4}$, $p_2 = \frac{1}{3}$ y $p_3 = \frac{1}{3}$. Hallar la probabilidad de que el blanco sea alcanzado por lo menos una vez.
- 5. Si ahora cada uno dispara una vez. Sabiendo que el blanco fue alcanzado solamente una vez, hallar la probabilidad que haya sido el jugador 1 (las probabilidad de la parte anterior).

Ejercicio 10

Se ha observado que los hombres y las mujeres reaccionan de forma diferente en determinada circunstancia; el 70 % de las mujeres reacciona positivamente, mientras sólo el 40 % de los hombres reacciona positivamente ante la misma circunstancia. Se sometió a una prueba a un grupo de 20 personas, 15 mujeres y 5 hombres para descubrir sus reacciones. Una prueba escogida al azar de las 20 resultó negativa. ¿Cuál es la probabilidad de que haya sido realizada por un hombre?

Ejercicio 11

Este ejercicio consiste en demostrar y aplicar una generalización de la Fórmula de Bayes.

1. Sea B_1, B_2, \ldots, B_n una partición de Ω (es decir B_1, B_2, \ldots, B_n incompatibles y $\bigcup_{i=1}^n B_i = \Omega$) y sea A otro suceso cualquiera, probar que

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

para todo $j = 1, \ldots, n$.

2. En un país hay cuatro partidos políticos. Se sabe que:

El 35 % de la población pertenece al partido I

El 31 % pertenece al partido II

El 28 % pertenece al partido III

El 6% pertenece al partido IV

Entre los adherentes al partido I, un $36\,\%$ corresponde a personas con ingresos inferiores a dos salarios mínimos

Entre los adherentes al partido II, esa proporción es del $52\,\%$

Para el partido III, es un 42 %

Para el partido IV, 11 %

Si se elige una persona al azar y resulta tener ingresos inferiores a dos salarios mínimos. Calcular la probabilidad de que sea un adherente al partido I; al partido II; al partido III y al partido IV.

3. Tres máquinas A, B y C producen respectivamente 50 %, 30 % y 20 % del número total de artículos de una fábrica. Los porcentajes de producción de defectuosos de cada máquina son 3 %, 4 % y 5 % respectivamente. Se toma al azar un artículo de la producción total. Si el artículo seleccionado es defectuoso, hallar la probabilidad de que haya sido producido por la máquina A.

Ejercicio 12

En un sistema de alarmas de un domicilio, llamemos D al evento "la empresa de seguridad responde a una señal de alarma a tiempo evitando robo". El sistema de alarma puede hacer llegar la señal por tres vías que actúan en paralelo:

- 1. A = "la empresa es advertida por la señal sonora de la sirena de la alarma colocada en el domicilio".
- 2. B = "la empresa es advertida por una alerta transmitida por la línea de telefonía fija de la casa".
- 3. C = "la empresa es advertida por un alerta transmitida por GPRS/EDGE a través de un chip y emisor celular que contiene la alarma".

Supongamos que:

- 1. $A, B \vee C$ son independientes entre sí.
- 2. P(A) = 0.25, P(B) = 0.5, P(C) = 0.95
- 3. $P(D/A \cup B \cup C) = 0.90$
- 4. $P(D/(A \cup B \cup C)^C) = 0$

Calcular la probabilidad de que se active alguna de las tres alarmas en el domicilio y que la empresa evite el robo.

Ejercicio 13 Primer parcial, mayo de 1999

Supongamos que en un país el 40% de los ciudadanos habilitados para votar pertenece al partido A, el 35% al partido B y el 25% al partido C.

Se realiza de manera simultánea una elección interna en los tres partidos, pero como no se requiere acreditar la adhesión a cada partido, el voto "extrapartidario" es posible: un votante de un partido puede, si quiere, participar en la interna de otro partido.

Supongamos que Ud. sabe que:

Entre los adherentes de A, un 10 % votó en la elección interna de otro partido

Entre los adherentes de B, un 15 % votó en la interna de A

Entre los adherentes de C, un 5 % votó en la interna de A

- 1. ¿Cuál fue el porcentaje de votos obtenidos por el partido A en las internas?
- 2. Si se elige al azar una persona dentro de todas las que en las votaron a A,
 - a) ¿Cuál es la probabilidad que sea un adherente de B?
 - b) ¿Cuál es la probabilidad que sea un adherente de C?
- 3. Si 400.000 personas votaron en la interna de A,
 - a) ¿En cuánto estimaría la cantidad de votantes de A que son adherentes de B?
 - b) ¿En cuánto estimaría la cantidad de votantes de A que son adherentes de C?

Ejercicio 14 Examen, marzo de 2003

Se admite que entre los jugadores profesionales de ping pong un $5\,\%$ consume anfetaminas antes de cada partido. Durante un campeonato se les toma una muestra de orina a todos los jugadores. La muestra de cada jugador se divide en dos submuestras iguales a las que se les aplica un análisis clínico: si el resultado de aplicar el análisis a las dos submuestras da positivo, el jugador es sancionado; en cualquier otro caso el jugador no es sancionado.

Considere los eventos:

```
A_1 = \{ el resultado de la primera submuestra es positivo \}
A_2 = \{ el resultado de la segunda submuestra es positivo \}
B = \{ el jugador es sancionado\}
D = \{ el jugador consumió anfetaminas \}
```

Se asume que los eventos A_1 y A_2 condicionados a los eventos D y a D^c son independientes, esto es: $P(A_1 \cap A_2|D) = P(A_1|D)P(A_2|D)$ y $P(A_1 \cap A_2|D^c) = P(A_1|D^c)P(A_2|D^c)$. Se sabe además que $P(A_i|D) = 0.90$ y $P(A_i|D^c) = 0.02$ para i = 1, 2.

- 1. Calcule $P(D|A_1)$, esto es, la probabilidad de que un jugador haya consumido anfetaminas dado que el resultado de la primera submuestra es positivo.
- 2. Calcule P(B), esto es, la probabilidad de que un jugador sea sancionado. ¿Son A_1 y A_2 eventos independientes?
- 3. Calcule P(D|B), esto es, la probabilidad de que un jugador sancionado haya consumido anfetaminas.

Ejercicio 15 Examen, febrero 2004

De una caja que contiene 3 bolas rojas y 2 azules se extrae una bola al azar y se la coloca en una segunda caja que contiene 4 bolas azules y 2 rojas. **A continuación** se extrae una bola al azar de la segunda caja.

- 1. ¿Cuál es la probabilidad de que se extraiga la misma bola que se extrajo de la primera caja?
- 2. ¿Cuál es la probabilidad de que la bola extraída de la segunda caja sea roja?
- 3. Si la bola extraída de la segunda caja es roja, ¿cuál es la probabilidad de que sea la misma bola que se extrajo de la primera caja?

Ejercicio 16

Se tira una moneda dos veces y se consideran los sucesos:

```
A = \{ \text{ en la primera tirada sale cara } \}, B = \{ \text{ en la segunda tirada sale cara } \}, C = \{ \text{ en las dos tiradas salen un número y una cara, en cualquier orden } \}.
```

- 1. Estudiar la independencia de a pares.
- 2. ¿Son A, B y C independientes?

Ejercicio 17

Se tira una moneda tres veces y se consideran los sucesos:

$$\begin{split} A &= \{(C,C,C), (C,C,N), (C,N,C), (N,C,C)\}, \\ B &= \{(C,C,C), (N,N,C), (N,C,N), (C,N,N)\}, \\ C &= \{(C,C,C), (C,C,N), (C,N,C), (N,N,N)\}, \end{split}$$

- 1. Verificar que se cumple $P(A \cap B \cap C) = P(A)P(B)P(C)$.
- 2. Estudiar la independencia de a pares.
- 3. ¿Son A, B y C independientes?