Folded Hyperkähler Manifolds

Researcher: Benjamin Brown Benjamin.Brown@Warwick.ac.uk

Supervisor: Dr. Weiyi Zhang W.Zhang@Warwick.ac.uk

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

Abstract

An example of a folded hyperkähler manifold is given based on a particular form of the Gibbons-Hawking ansatz, and its defining properties discussed. A folded analogue to Plebański's real heaven background is then constructed, with the structure of the fold hypersurface determined by solutions to the Boyer-Finley equation.

Introduction

A hyperkähler manifold is a Riemannian manifold of real dimension 4n, that admits three covariantly orthogonal automorphisms, I, J, and K on the tangent bundle, which satisfy the quaternionic identities $I^2 = J^2 = K^2 = IJK = -id$, and are compatible with the Riemannian metric h [1].

Recently, Nigel Hitchin has introduced the notion of a folded hyperkähler manifold, *i.e.* a 4-dimensional manifold which is hyperkähler away from some folding hypersurface, on which the hyperkähler structure degenerates and the metric is singular [2].

Conclusion

Two non-trivial families of folded hyperkähler structures has been constructed, one where the embedded fold hypersurface descends to hyperbolic 2-space \mathcal{H}^2 , and the other where it descends to the 2-sphere S^2 .

To continue in the direction of this project, it would be interesting to:

- consider different solutions to the Boyer-Finley equation, and see if they admit a folded structure.
- identify whether the folded real heaven background can be linearised to recover the folded Gibbons-Hawking ansatz.
- generalise the definition of a folded hyperkähler manifold to higher dimensions.

References

- [1] N. J. Hitchin, "Hyperkähler Manifolds," Séminaire Bourbaki, vol. 34, no. 748, 1991.
- [2] N. J. Hitchin, "Higgs bundles and diffeomorphism groups," $ArXiv\ e\text{-}prints,\ 2015.$
- [3] G. W. Gibbons and S. W. Hawking, "Gravitational multi-instantons," *Phys. Lett. B*, vol. 78, no. 4, 1978.
- [4] O. Biquard, "Métriques Hyperkähleriennes Pliées," $ArXiv\ e\text{-}prints,\ 2015.$
- [5] J. F. Plebański, "Some solutions of complex Einstein equations," *Jour. Math. Phys.*, vol. 16, no. 12, 1975.
- [6] C. LeBrun, "Explicit self-dual metrics on $\mathbb{CP}_2\#\cdots\#\mathbb{CP}_2$," Jour. Diff. Geom., vol. 34, no. 1, 1991.
- [7] K. P. Tod, "Scalar-flat Kähler and hyper-Kähler metrics from Painlevé-III," Class. Quant. Grav., vol. 12, no. 6, 1995.
- [8] F. Ding and H. Geiges, "Contract Structures on Principal Circle Bundles," $ArXiv\ e\text{-}prints,\ 2011.$

Acknowledgements

I would like to thank my supervisor Dr. Weiyi Zhang for useful discussions, and for giving me the opportunity to pursue this project with the University of Warwick Mathematics Department.

Method

To get an idea of how a hyperkähler manifold should admit a fold, we look at a particular example of the Gibbons-Hawking metric [3]. Consider a principal S^1 -bundle $\mathcal{M}^4 \xrightarrow{\pi} \mathcal{U}$, where $\mathcal{U} \subset \mathbb{R}^3$ is an open set and consider a local trivialisation $\pi^{-1}(U) = \{(x, y, z, \tau) \in \mathcal{U} \times S^1\}$. The Gibbons-Hawking ansatz we consider is [2,4]

$$h = z^{-1}(d\tau + A)^2 + z(dx^2 + dy^2 + dz^2), \qquad A = (xdy - ydx)/2,$$

with the hyperkähler 2-forms given by

$$\omega^{i} = (d\tau + \mathcal{A}) \wedge dx^{i} + \frac{x^{i}}{2} \epsilon_{ijk} dx^{j} \wedge dx^{k}, \qquad i = 1, 2, 3.$$

The metric h is undefined at z=0, and hence determines a hypersurface $\mathcal{Z}=\mathcal{M}\cap\{z=0\}$ that divides the ambient manifold \mathcal{M} into two disjoint ones; one with an Euclidean signature (++++) when z>0, and the other with an anti-Euclidean signature (---) when z<0. Under the involution $i:z\mapsto -z$ one observes that

$$i^*\omega^1 = \omega^1, \qquad i^*\omega^2 = \omega^2, \qquad i^*\omega^3 = -\omega^3, \qquad i^*h = -h.$$

Furthermore, whilst h is undefined along the fold \mathcal{Z} the hyperkähler forms ω^i are smooth there. Pulling them back to \mathcal{Z} ,

$$\mathcal{Z}^*\omega^1 = \varphi \wedge dx, \qquad \mathcal{Z}^*\omega^2 = \varphi \wedge dy, \qquad \mathcal{Z}^*\omega^3 = 0, \qquad \text{where } \varphi \equiv d\tau + \mathcal{A}.$$

Since $d\mathcal{A} = dx \wedge dy$, it follows that

$$\varphi \wedge d\varphi = d\tau \wedge dx \wedge dy \neq 0,$$

and so (\mathcal{Z}, φ) determines a contact manifold. For a general 4-dimensional hyperkähler manifold \mathcal{M} , the quadruple $(\mathcal{M}, \mathcal{Z}, \omega^i, i)$ with the above properties defines a folded hyperkähler structure [4].

Results

Plebański's real heaven background is a more general version on the Gibbons-Hawking ansatz [5]; with the same S^1 -bundle as before, its hyperkähler metric and 2-forms are given by [6]

$$h = u_z(e^u(dx^2 + dy^2) + dz^2) + u_z^{-1}(d\tau + \mathcal{A}),$$

$$\begin{bmatrix} \omega^1 \\ \omega^2 \end{bmatrix} = e^{u/2} \begin{bmatrix} \cos(\tau) & -\sin(\tau) \\ \sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} (d\tau + \mathcal{A}) \wedge dx + u_z dy \wedge dz \\ (d\tau + \mathcal{A}) \wedge dy + u_z dz \wedge dx \end{bmatrix},$$

$$\omega^3 = u_z e^u dx \wedge dy + dz \wedge (d\tau + \mathcal{A}),$$

where $\mathcal{A} = -u_y dx + u_x dy$ such that $\psi \equiv d\tau + \mathcal{A}$ is the connection 1-form of the S^1 -bundle, and where $u \in C^{\infty}(\mathcal{U})$ satisfies the Boyer-Finley equation

$$u_{xx} + u_{yy} + (e^u)_{zz} = 0.$$

In separating the variables, the general solution is found to be

$$e^{u} = \frac{4(az^{2} + bz + c)}{(1 + a(x^{2} + y^{2}))^{2}} \implies u_{z} = \frac{2az + b}{az^{2} + bz + c}, \qquad e^{u}u_{z} = \frac{8az + 4b}{(1 + a(x^{2} + y^{2}))^{2}},$$

with a, b and c constants [7]. In order to have a fold, we must have that u_z and $e^u u_z$ are odd in z, so choosing $a \neq 0, b = 0, c > 0$, and pulling back to the hypersurface $\mathcal{Z} = \mathcal{M} \cap \{z = 0\}$, the hyperkähler metric is singular, $\mathcal{Z}^* \omega^3 = 0$, and the 2-forms ω^1, ω^2 become

$$\mathcal{Z}^* \begin{bmatrix} \omega^1 \\ \omega^2 \end{bmatrix} = \frac{2\sqrt{c}}{1 + a(x^2 + y^2)} (d\tau + \mathcal{A}) \wedge \begin{bmatrix} \cos(\tau) & -\sin(\tau) \\ \sin(\tau) & \cos(\tau) \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}, \qquad \mathcal{A} = \frac{4a(xdy - ydx)}{1 + a(x^2 + y^2)}.$$

Writing the ω^i in this form suggests that we should take $\psi \equiv d\tau + \mathcal{A}$ to be our contact 1-form. Indeed,

$$d\psi = \frac{8a}{(1+a(x^2+y^2))^2} dx \wedge dy, \qquad \psi \wedge d\psi = \frac{8a}{(1+a(x^2+y^2))^2} d\tau \wedge dx \wedge dy \neq 0$$

along \mathcal{Z} , whence (\mathcal{Z}, ψ) is a contact manifold. Let us identify $\mathbb{C} \cong \mathbb{R}^2$ via w = x + iy and, as $d\psi$ is S^1 -invariant and $i_{\partial_{\tau}}d\psi \equiv 0$, a closed 2-form α is induced on \mathbb{C} by $d\psi = \pi^*\alpha$ [8], with the form

$$\alpha = \frac{4ai}{(1+a|w|^2)^2} dw \wedge d\bar{w} = 4i\partial\bar{\partial}\log(1+a|w|^2).$$

We see that if a < 0, then α is defined only on the open disk $\mathbb{D} = \{w \in \mathbb{C} : |w| < 1/|a|\}$, which is conformally equivalent to hyperbolic space \mathcal{H}^2 , whereas if a > 0 then the boundary extends to $\{\infty\}$, i.e. we may compactify to consider the Riemann sphere $\hat{\mathbb{C}} \cong S^2$, since $\alpha \to 0$ as $|w| \to \infty$.