Customer Segmentation

Using K-Means and DBSCAN Clustering: A Comparative Study

- Abhishek Puppala
- Neelapu Tirumalesh Reddy
- Deval Shaileshkumar Mali
- Jashwanth Kalyan Polavarapu

Clustering

- Clustering is the classification of objects into different groups, or more precisely, partitioning of a data set into subsets => clusters.
- Data points in each cluster share common trait/behavior according to some defined distance measure.
- ▶ Distance measure defines how the similarity of two elements is calculated and influences the shape of the cluster.
 - ► Euclidean Distance:
 - $\triangleright \quad \mathbf{E} = \sum_{i=1}^{k} \sum_{x \in C_i} |x x_i|^2$
- Clustering Algorithms used:
 - ► K Means
 - DBSCAN

K – Means Clustering

- Clustering Algorithm to cluster 'n' objects based on attributes into k partitions, where k < n.
- An algorithms for partitioning (or clustering) N data points into K disjoint subsets S_i containing data points so as to minimize the sum-of-squares criterion.

$$J = \sum_{i=1}^{k} \sum_{x \in S_i} |x - x_i|^2$$

- Where x is a vector representing the data point and x_i is the geometric centroid of the data points in S_i .
- ► Clustering is done by minimizing the sum of squares of distances between data and the corresponding cluster centroid.

DBSCAN Clustering

- ▶ DBSCAN for Density-Based Spatial Clustering of Applications with Noise
- ▶ Density based clustering locates regions of high density that are separated from one another by regions of low density.
 - ▶ Density = number of points within a specified radius (eps)
- Algorithm:
 - ► Input => N objects to be clustered and global parameters Eps, MinPts.
 - ► Output => Cluster of objects.

Customer Segmentation

- Customer segmentation helps the organizations/companies understand their customer base and can target or design new products specific to a sub-group of the customers.
- ▶ Business can determine which niche market best fits the unique product they produce, which enables the business to maintain a sizable market share and maintain its competitive edge over other market participants.
- ▶ Segmentation can be achieved focusing on different attributes such as behavioral, geographic, demographic etc.,
- ▶ Segmentation focuses on behavioral data as it is the most efficient and practical one.

RFM Analysis

- ▶ RFM known for the values based on Recency, Frequency and Monetary.
- Recency:
 - ▶ Refers to how often times a customer awaits before making subsequent purchase.
- Frequency:
 - ▶ Measurement of how frequently a customer made a purchase over a given time frame.
 - Higher values suggests that clients are more devoted to the business, while the lower values suggests the opposite.
- Monetary:
 - ▶ Money spent by a consumer during the specified time period.

Customer Segmentation using Online Retail Dataset

- Dataset Link: https://archive.ics.uci.edu/ml/datasets/online+retail
- Attributes:
 - ► InvoiceNo Six digit unique number for each transaction.
 - ► StockCode Discrete value allocated to each individual product.
 - ▶ Description Name or Description of the item.
 - ▶ Quantity Volume of each purchase made in a single trade.
 - ▶ InvoiceDate Timestamp when the invoice was generated.
 - ► UnitPrice Production cost of the goods.
 - ► CustomerID Each user is identified by a distinct autoincremented number.
 - ► Country = Country Name, title of the nation in which the client lives.

Country Distribution – Outliers

▶ United Kingdom comprises of 98% data and all the other countries data is considered as outliers and dropped from the dataset

Year Distribution – Outliers contd.

Year 2010 data is dropped from the dataset as it is not having enough volume.

RFM Values Calculation

Recency

- InvoiceDate attribute provides the date information when the customer purchased.
- Max InvoiceDate of the entire dataset is calculated as most recent transaction date.
- Max transaction date and customer invoice date difference is calculated.
- Applying min function for each customer on the calculated date column gives the Recency of the customer.

Frequency

- For Each customer, no (count) of transactions made in the dataset is calculated.
- Calculated value is named as Frequency.

Monetary

- UnitPrice and Quantity attributed are multiplied to calculate the amount spent by the customer for each transaction.
- For each customer total amount spent is calculated by using sum function.
- Aggregated amount spent is termed as Monetary.

K – Means Clustering

DBSCAN Clustering

Results

Conclusion

- For the selected Dataset with RFM values, K-Means algorithm performed better generating the clusters than DBSCAN.
 - ▶ Comparison done based on the silhouette scores of the formed clusters
- ▶ Time taken to model the data and form the clusters.
 - \triangleright K Means is faster than DBSCAN most times.