클린업 3주차

3팀 선형대수학

황정현 고경현 김지민 반경림 전효림

차원의 저주와 차원축소

차원의 저주

많은 정보를 가지고 있다

고차원일수록 좋다?

변수가 많아질수록

overfitting(과적합)의 문제 발생 가능성 농후

변수 간 관련성이 높은 경우 공간 낭비

차워의 저주

고유값 분해(EVD)

고유값과 고유벡터

개념

$$A = \begin{bmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

n x n 정방행렬

고유벡터

eigenvector

고유값 eigenvalue

$$Ax = \lambda Ix$$

$$Ax - \lambda Ix = 0$$

$$(A - \lambda I)x = 0$$

고유값 분해(EVD)

고유값과 고유벡터

🧣 선형변환의 관점

고유값 분해(EVD)

대각화와 고유값 분해

개념

n x n 정방행렬 A

$$a_{11}$$
 a_{12} ... a_{1n}

$$a_{21} \ a_{22} \ \dots \ a_{2n}$$

 a_{n1} a_{n2} ... a_{nn}

고유벡터 행렬 P

$$v_1$$
 v_2 \cdots v_n

행렬 A의 선형독립인 고유벡터 n개

고유값 대각행렬 D

$$\lambda_1$$
 0 $\cdot \cdot \cdot$ 0 λ_n

고유깂 분해

$$A = P D P^{-1}$$

주성분 분석(PCA)

공분산 행렬

주성분 분석(PCA)

주성분 분석(PCA) 개념

Principle Component Analysis

데이터를 가장 잘 설명하는 주성분을 찾아내 그 주성분이 이루는 공간으로 데이터를 <mark>정사영</mark>시켜 차원을 축소하는 방법

이 두 성분 중 데이터를 더 잘 설명하는 것은?

주성분 분석(PCA)

주성분 선택

PC 구하는 방법

공분산 행렬 고유벡터 PC

고유값 😑 중요성

고유벡터와 고유값을 사용하는 이유는 무엇인가요?

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

특이값 분해(SVD)

특이값 분해(SVD) 이해하기

특이값 분해(SVD)

특이값 분해(SVD) 이해하기

? 이미지에 활용

정사각 사진의 화질을 조정해보자!

> 2530 X 2530

SVD를 통해 적은 개수의 singular value로 사진 복원

잠재요인분석(LSA)

개념

잠재요인분석

Latent Semantic Analysis

자연어 처리에서 문서 집합의 추상적 주제를 발견하고자 사용하는 통계적 모델 (토픽모델링)

계층화분석법(AHP)

개념

인간의 의사결정은 계층적이고 상대적인 원칙을 따른다

계층화분석법

Analytic Hierarchy Process

의사결정문제가 다수의 평가 기준으로 이루어져 있을 때, 평가 기준을 계층화한 뒤 이에 따라 중요도를 정해가는 다기준 의사결정기법

쌍대비교의 반복

행렬을 이용한 단계적 가중치 산정법

계층화분석법(AHP)

예시

Charisma	앙꼬	스누피	K.K.	
앙꼬	1	5	9	
스누피	1/5	1	4	'꼬가 K.K.보
K.K.	1/9	1/4	1 (9 <mark>만큼 더</mark> '\리스마 있다
		3번의 비교		1-11 M-1
		Charisma		
	× 			
	×			
k				
^			100	
	기 (앙꼬	<u>스</u> 누피	K.K.	
		- I - I Alternatíves	1 1 1 1	

계층화분석법(AHP)

예시

두 행렬의 곱						행간의 합 각 행의 비			l율		
	1	5	9	1	5	9		53.24		0.75	
	1/5	1	4	1/5	1	4	=	13.64	\bigcirc	0.19	
	1/9	1/4	1	1/9	1/4	1		4.31		0.06	

Experience	0.547
Education	0.127
Charisma	0.270
Age	0.056

.'. 최종 점수가 가장 높은 스누피가 바로 강아지대장!

	Experience	Education	Charisma	Age	Goal
앙꼬	0.119	0.024	0.201	0.015	0.358
스누피	0.392	0.010	0.052	0.038	0.492
K.K.	0.036	0.093	0.017	0.004	0.149
Totals	0.547	0.127	0.270	0.056	1.000

감사함명