CENG 3420 Computer Organization & Design

Lecture 05: Logic Basis

Bei Yu CSE Department, CUHK byu@cse.cuhk.edu.hk

(Textbook: Chapter 2.4)

2024 Spring

Overview

1 Numeral System

2 Logic Gates (Optional)

Numeral System

Analog vs. Digital

Analog Signal

- Vary in a smooth way over time
- Analog data are continuous valued
 - Example: audio, video

Digital Signal

- Maintains a constant level then changes to another constant level (generally operate in one of the two states)
- Digital data are discrete valued
 - Example: computer data

Number Systems

- An ordered set of symbols, called digits, with relations defined for addition, subtraction, multiplication, and division
- Radix or base of the number system is the total number of digits allowed in the number system
- Commonly used numeral systems

System Name	Decimal	Binary	Octal	Hexadecimal
Radix	10	2	8	16
First seventeen	0	0	0	0
positive integers	1	1	1	1
	2	10	2	2
	3	11	3	3
	4	100	4	4
	5	101	5	5
	6	110	6	6
	7	111	7	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	Α
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	E
	15	1111	17	F
	16	10000	20	10

Example

• In the 2009 film Avatar, Na'vi race employs an octal numeral system.

Conversion from Decimal Integer

- Step 1: Divide the decimal number by the radix (number base)
- Step 2: Save the remainder (first remainder is the least significant digit)
- Repeat steps 1 and 2 until the quotient is zero
- Result is in reverse order of remainders

- EX1: Convert 36₈ to binary value
- EX2: Convert 36₁₀ to binary value

Unsigned Binary Representation

Hex	Binary	Decimal
0x00000000	00000	0
0x00000001	00001	1
0x00000002	00010	2
0x00000003	00011	3
0x00000004	00100	4
0x00000005	00101	5
0x00000006	00110	6
0x00000007	00111	7
0x00000008	01000	8
0x00000009	01001	9
0xFFFFFFC	11100	232 - 4
0xFFFFFFD	11101	2 ³² - 3
0xFFFFFFE	11110	2 ³² - 2
0xFFFFFFF	11111	2 ³² - 1

	2 ³¹	230	2 ²⁹		2 ³	2 ²	21	20	bit weight
	31	30	29		3	2	1	0	bit position
	1	1	1		1	1	1	1	bit
1	0	0	0		0	0	0	0	- 1
				2 ³² -	1				

Signed Binary Representation

• For an n-bit signed binary numeral system, what's the largest positive number and the smallest negative number?

Digital Signal Representation

- Active HIGH
 - High voltage means On
- Active LOW
 - Low voltage means Off

		ſ	0.0 .
Logic 0	Logic 1	HIGH (1) <	4.0.1/
False	True	nigh (1) $\stackrel{\checkmark}{\downarrow}$	- 4.0 V
Off	On	l	- 3.0 V
LOW	HIGH		- 2.0 V
No	Yes		2.0 V
Open switch	Closed switch	LOW (0)	- 1.0 V
		(0.0 V

5.0 V

Addition & Subtraction

• Just like in grade school (carry/borrow 1s)

Two's complement operations are easy: do subtraction by negating and then adding

 Overflow (result too large for finite computer word). E.g., adding two n-bit numbers does not yield an n-bit number

Logic Gates (Optional)

Logic Gates

• What is the schematic view of an AND gate?

• Please draw NOR gate schematic view

Truth Table

- A means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs
- The number of input combinations will equal 2^N for an N-input truth table

Inp	Output	
Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

• Determine the true table of a three-input AND gate