SC223 - Linear Algebra

Aditya Tatu

Lecture 12

September 6, 2022

Vector Spaces

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - $\blacktriangleright \ \forall x \in V, \exists y \in V, x + y = y + x = \theta.$ We will denote y by

-x.

- $\forall x, y, z \in V, (x+y) + z = x + (y+z).$
- $\forall x, y \in V, x + y = y + x.$

- Symmetry group of a rectangle.
- ► What all can we do to the rectangle so that we get the same (not necessarily same vertices) rectangle?

Figure: Symmetries of a rectangle

- Symmetry group of a rectangle.
- ► What all can we do to the rectangle so that we get the same (not necessarily same vertices) rectangle?

Figure: Symmetries of a rectangle

► Do nothing! - Identity: *I*

- Symmetry group of a rectangle.
- ► What all can we do to the rectangle so that we get the same (not necessarily same vertices) rectangle?

Figure: Symmetries of a rectangle

- ► Do nothing! Identity: *I*
- ► Rotate by $180 \deg: R_{180}$

- Symmetry group of a rectangle.
- ▶ What all can we do to the rectangle so that we get the same (not necessarily same vertices) rectangle?

Figure: Symmetries of a rectangle

▶ Do nothing! - Identity: I

► Rotate by 180 deg: R_{180}

▶ Flip along vertical axis: F_v

- Symmetry group of a rectangle.
- ▶ What all can we do to the rectangle so that we get the same (not necessarily same vertices) rectangle?

Figure: Symmetries of a rectangle

- ▶ Do nothing! Identity: *I*
- ▶ Rotate by $180 \deg: R_{180}$
- ightharpoonup Flip along vertical axis: F_v
- ightharpoonup Flip along horizontal axis: F_h .

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{ν}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R_{180}
F_{v}	F_{ν}	F_h	R ₁₈₀	I

• Observe the set $D_2 = \{I, R_{180}, F_h, F_v\}$ along with composition \circ operation:

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R_{180}
F_{v}	F_{ν}	F_h	R ₁₈₀	1

▶ (S, \circ) is closed.

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R_{180}
F_{v}	F_{v}	F_h	R ₁₈₀	1

- ▶ (S, \circ) is closed.
- ightharpoonup I is the identity wrt \circ

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{ν}	F_h
F_h	F_h	F_{v}	1	R_{180}
F_{v}	F_{v}	F_h	R ₁₈₀	I

- ▶ (S, \circ) is closed.
- ► / is the identity wrt ∘
- $ightharpoonup -I = I, -R_{180} = R_{180}, -F_h = F_h, -F_v = F_v$

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{ν}	F_h
F_h	F_h	F_{v}	1	R_{180}
F_{v}	F_{ν}	F_h	R ₁₈₀	1

- ▶ (S, \circ) is closed.
- ► / is the identity wrt ∘
- $ightharpoonup -I = I, -R_{180} = R_{180}, -F_h = F_h, -F_v = F_v$
- ▶ is associative.

0	1	R ₁₈₀	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R ₁₈₀
F_{v}	F_{v}	F_h	R ₁₈₀	I

- ▶ (S, \circ) is closed.
- ► *I* is the identity wrt ∘
- $-I = I, -R_{180} = R_{180}, -F_h = F_h, -F_v = F_v$
- ▶ is associative.
- \blacktriangleright o is commutative. Thus (S, \circ) forms an Abelian group.

ullet Consider the set S'=00,01,10,11 with bitwise addition modulo-2 operation: $+_2$.

+2	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

 \bullet Consider the set S'=00,01,10,11 with bitwise addition modulo-2 operation: $+_2.$

$+_2$	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

► Compare with:

0	1	R ₁₈₀	F_h	F_{ν}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R ₁₈₀
F_{ν}	F_{ν}	F_h	R ₁₈₀	1

 \bullet Consider the set S'=00,01,10,11 with bitwise addition modulo-2 operation: $+_2.$

+2	00	01	10	11
00	00	01	10	11
01	01	00	11	10
10	10	11	00	01
11	11	10	01	00

► Compare with:

0	1	R_{180}	F_h	F_{v}
1	1	R ₁₈₀	F_h	F_{v}
R ₁₈₀	R ₁₈₀	1	F_{v}	F_h
F_h	F_h	F_{v}	1	R ₁₈₀
F_{ν}	F_{v}	F_h	R ₁₈₀	1

▶ Both are examples of the *Klein-*4 group.

Vector Spaces

- **Definition:** A Vector space is a set V with a **field** $(\mathbb{F}, +_F, \times)$, and two binary operations, vector addition + and scalar multiplication \cdot that satisfy the following axioms:
- \blacktriangleright (V,+) is an **Abelian group**:
 - $\blacktriangleright \ \forall x, y \in V, x + y \in V$
 - $ightharpoonup \exists \theta \in V, \forall x \in V, x + \theta = \theta + x = x$
 - ▶ $\forall x \in V, \exists y \in V, x + y = y + x = \theta$. We will denote y by

-x.

- ▶ $\forall x, y, z \in V, (x + y) + z = x + (y + z).$
- $\forall x, y \in V, x + y = y + x.$

▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.

- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that
- $1 \cdot v = v, \forall v \in V.$

- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that
- $1 \cdot v = v, \forall v \in V$.
- **▶ Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v,$ and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u.$

- ▶ Closure with respect to Scalar multiplication: $\cdot \mathbb{F} \times V \to V$.
- ▶ Scalar Multiplication identity: $\exists 1 \in \mathbb{F}$ such that
- $1 \cdot v = v, \forall v \in V$.
- ▶ **Distributivity:** $\forall a \in \mathbb{F}, \forall u, v \in V, a \cdot (u + v) = a \cdot u + a \cdot v,$ and $\forall a, b \in \mathbb{F}, \forall u \in V, (a +_F b) \cdot u = a \cdot u + b \cdot u.$
- ► Compatibility of field and scalar multiplication:

$$\forall a, b \in \mathbb{F}, \forall u \in V, (a \times b) \cdot u = a \cdot (b \cdot u).$$

Definition:(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- ▶ $(\mathbb{F}, +_F)$ is an **Abelian group**. The additive identity will be denoted by 0.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- \blacktriangleright (\mathbb{F} , $+_F$) is an **Abelian group**. The additive identity will be denoted by 0.
- ▶ $(\mathbb{F} \{0\}, \times)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.

- **Definition:**(Field). A field is a set \mathbb{F} with two binary operations, addition $+_F$ and multiplication \times that satisfy the following axioms:
- \blacktriangleright (\mathbb{F} , $+_F$) is an **Abelian group**. The additive identity will be denoted by 0.
- \blacktriangleright $\left(\mathbb{F}-\{0\},\times\right)$ is an **Abelian group**. The mutiplicative identity will be denoted by 1.
- **▶** Distributivity:

$$\forall a, b, c \in \mathbb{F}, (a+_F b) \times c = a \times c +_F b \times c, a \times (b+_F c) = a \times b +_F a \times c$$

 \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$

- ightharpoonup $(\mathbb{Z}_2,+_2,\times)$
- $ightharpoonup (\mathbb{R},+, imes)$

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- \blacktriangleright ($\mathbb{R}, +, \times$)
- \blacktriangleright ($\mathbb{C}, +, \times$)

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R}, +, \times)$
- \blacktriangleright ($\mathbb{C}, +, \times$)
- ightharpoonup ($\mathbb{Q},+,\times$)

- \blacktriangleright $(\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C},+,\times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- \blacktriangleright ($\mathbb{R}, +, \times$)
- \blacktriangleright ($\mathbb{C},+,\times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .

- $ightharpoonup (\mathbb{Z}_2, +_2, \times)$
- $ightharpoonup (\mathbb{R},+,\times)$
- \blacktriangleright ($\mathbb{C},+,\times$)
- \blacktriangleright ($\mathbb{Q}, +, \times$)
- ▶ $(\mathbb{R}[x], +, \times)$, where $\mathbb{R}[x]$ is the set of all rational polynomials of the form $\frac{p(x)}{q(x)}$, with $q \neq 0$, and p and q are polynomials in one variable with real coefficients.
- ▶ If the 3-tuple $(V, +, \cdot)$ with field $(\mathbb{F}, +_F, \times)$ satisfies all vector space axioms, we say that $(V, +, \cdot)$ forms a vector space over \mathbb{F} .
- Any element of the vector space $(V, +, \cdot)$ will be referred to as a **vector**, and any element $a \in \mathbb{F}$ will be referred to as a **scalar**.

 \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .

- \bullet ($\mathbb{R},+,\cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- $(\mathbb{C}^n, +, \cdot)$ over \mathbb{C} .

- \bullet ($\mathbb{R},+,\cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{R}^n, +, \cdot$) over \mathbb{R} .
- \bullet ($\mathbb{C}^n,+,\cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.
- \bullet $(\mathcal{P}(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.

- \bullet ($\mathbb{R}, +, \cdot$) over \mathbb{R} .
- $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} .
- \bullet ($\mathbb{C}^n, +, \cdot$) over \mathbb{C} .
- \bullet $(\mathbb{R}^\mathbb{Z},+,\cdot)$ over $\mathbb{R},$ where $\mathbb{R}^\mathbb{Z}$ is the set of all doubly-infinite sequences.
- ullet $(\mathcal{P}(\mathbb{R}),+,\cdot)$ over \mathbb{R} , where $\mathcal{P}(\mathbb{R})$ is the set of all polynomials of one variable with real coefficients.
- $(\mathbb{L}_2(\mathbb{R}), +, \cdot)$ over \mathbb{R} , where $\mathbb{L}_2(\mathbb{R})$ denotes the set of all square-integrable functions $f : \mathbb{R} \to \mathbb{R}$.