Combinatória Extremal

Ref. Tópicos em Combinatória Contemporânea - Gugu, Yoshi

Autor: Xenônio Discord: xennonio

Sumário

1	Inti	rodução	2
	1.1	Motivação	2
		1.1.1 Anticadeias sob Divisão (Sequências Primitivas)	2
		1.1.2 Sistemas Intersectantes	2
2	Teo	rema de Sperner	3
	2.1	Estimativas Iniciais	3
	2.2	Prova de Lubell e Desigualdade de LYM	3
	2.3	Teorema de Lovász	5
3	\mathbf{Pro}	blema de Littlewood-Offord	6
	3.1	O Problema Inicial	6
		3.1.1 Resultado de Littlewood-Offord	6
		3.1.2 O Problema Geométrico	7
	3.2	Estimativa de Erdös	8
		3.2.1 O Melhor Limitante	8
		3.2.2 O Caso Real	0
		3.2.3 O Caso Complexo	0
		3.2.4 Generalizações em \mathbb{R}^d	1
4	Teo	rema de Behrend	2
	4.1	Como Mensurar $A \subseteq \mathbb{N}$	2
		4.1.1 Propriedades da Densidade Aritmética	2
		4.1.2 Teorema de Davenport-Erdös	3
	4.2	Teorema de Behrend	4
		4.2.1 Estimativa de $r(u)$ com (\dagger)	5
		4.2.2 Eliminação da Hipótese (†)	8
5	Teo	rema de Erdös-Ko-Rado	8
	5.1	Sistemas Intersectantes	8
	5.2	Sistemas ℓ -intersectantes	1

1 Introdução

1.1 Motivação

1.1.1 Anticadeias sob Divisão (Sequências Primitivas)

Dado $\overline{2n}:=\{1,2,\ldots,2n\}$, é fácil ver que há $x,y\in\overline{2n}$ tal que $\gcd(x,y)=1$, basta considerar a partição

$$A = \{\{1, 2\}, \{3, 4\}, \dots, \{2n - 1, 2n\}\}\$$

de $\overline{2n}$ com |A| = n. Isso garante que, escolhendo n+1 elementos, pelo princípio da casa dos pombos no mínimo dois estarão na mesma classe, i.e., serão consectuvos logo seu mdc será 1.

Analogamente, podemos perguntar, qual o maior subconjunto de $\overline{2n}$ que não possui x, y tal que $x \mid y$, i.e., qual a maior cardinalidade de uma anticadeia de $\overline{2n}$ sob divisibilidade (também conhecida como sequência primitiva).

Como todo número em $\overline{2n}$ pode ser secrito como

$$\overline{2n} = \{1, 2, 3, 2^2, 5, 2 \cdot 3, 7, 2^3, 3^2, \dots, 2^m a\}$$

retirando os fatores de 2 teremos

$$A = \{1, 1, 3, 1, 5, 3, 7, 1, 3^2, \dots, a\}$$

como há n ímpares em 2n, |A|=n, escolhendo n+1 inteiros, no mínimo 2 serão tal que $x=2^rk$, $y=2^sk$, i.e., $x\mid y$ ou $y\mid x$.

Como $B = \{n+1, \ldots, 2n\}$ é tal que |B| = n e B é uma anticadeia, então n é o maior número de elementos de $\overline{2n}$ que não tem elementos tal que um divide o outro.

Em geral, combinatória extremal trabalha com questões do tipo: Dada uma determinada propriedade $\varphi(x) \in \mathcal{L}_1$, qual a maior (ou menor) cardinalidade possível para o conjunto A tal que $\varphi(A)$. Tal número, se existir, será denotado por $c(\varphi)$.

1.1.2 Sistemas Intersectantes

Como uma motivação adicional e, utilizando a notação mencionada anteriormente. Seja $\varphi_n(x) := "\mathscr{A} \subseteq \mathcal{P}(\overline{n})$ e, para todo $A, B \in \mathscr{A}, A \cap B \neq \emptyset$. Provaremos que:

Teorema 1.1. Se \mathscr{A} é tal que $\varphi_n(\mathscr{A})$ e $|\mathscr{A}| < 2^{n-1}$, então ele pode ser estendido para uma coleção \mathscr{A}' com 2^{n-1} elementos tal que $|\mathscr{A}'| = 2^{n-1}$, ou seja

$$c(\varphi_n) = 2^{n-1}$$

Prova. Se $A \subseteq \mathcal{A}$, então $\overline{n} \setminus A \notin \mathcal{A}$, visto que $A \cap (\overline{n} \setminus A) = \emptyset$. Portanto

$$|\mathscr{A}| \le \frac{1}{2} |\mathcal{P}(\overline{n})| = \frac{1}{2} \cdot 2^n = 2^{n-1}$$

De fato, tal limitante não pode ser melhora, visto que

$$\mathscr{A} := \{ x \in \mathcal{P}(\overline{n}) : 1 \in x \}$$

é tal que $\varphi_n(\mathscr{A})$ e $\mathscr{A}=2^{n-1}$.

Agora, se $|\mathscr{A}| < 2^{n-1}$, com $\varphi_n(\mathscr{A})$, então existe $X \in \mathcal{P}(\overline{n})$ tal que $X \notin \mathscr{A}$ e $\overline{n} \setminus X \notin \mathscr{A}$. Se adicionarmos X em \mathscr{A} e não houver $Y \in \mathscr{A}$ tal que $X \cap Y = \emptyset$, então estamos feitos, caso contrário, $X \cap Y = \emptyset$, logo $Y \subseteq \overline{n} \setminus X$, i.e., podemos adicionar $\overline{n} \setminus X$ em \mathscr{A} , visto que, para todo $A \in \mathscr{A}$, temos $A \cap Y \neq \emptyset$ e $A \cap (\overline{n} \setminus X) \neq \emptyset$, então eventualmente \mathscr{A} será extendido para um conjunto de 2^{n-1} elementos.

2 Teorema de Sperner

2.1 Estimativas Iniciais

Dado $\mathscr{A} \subseteq \mathcal{P}(\overline{n})$, uma anticadeia sob \subseteq , um problema interessante é, sendo $\psi_n(x) := x \subseteq \mathcal{P}(\overline{n})$ é uma anticadeia, determinar $c(\psi_n(x))$.

Note que $[\overline{n}]^k$ é uma anticadeia de $\mathcal{P}(\overline{n})$, portanto, para $0 \le k \le n$

$$c(\psi_n) \ge \binom{n}{k}$$

Que é máximo em $k = \lceil \frac{n}{2} \rceil$, pelo seguinte lema.

Lema 2.1. Se $f(k) = \binom{n}{k}$, com $n \in \mathbb{N}$ fixo, então

$$\max_{0 \le k \le n} f(k) = f\left(\left\lceil\frac{n}{2}\right\rceil\right)$$

Prova. Provaremos que f é estritamente crescente para $0 \le k < \lceil \frac{n}{2} \rceil$, visto que, como f(k) = f(n-k), então ela é estritamente decrescente após $\lceil \frac{n}{2} \rceil$, logo em $k = \lceil \frac{k}{2} \rceil$ temos um ponto de máximo.

Para isso, note que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$= \frac{n!}{(k-1)!(n-k+1)!} \cdot \frac{n-k+1}{k}$$

$$= \binom{n}{k-1} \frac{n-k+1}{k}$$

Logo f(k) > f(k-1) sse n-k+1 > k, i.e., $k < \frac{n+1}{2}$. Se n = 2m, k = m é máximo e, se n = 2m+1, k+1 = m+1, ou seja, $k = \left\lceil \frac{n}{2} \right\rceil$.

2.2 Prova de Lubell e Desigualdade de LYM

Dada essa estimativa de $c(\psi_n)$, o que o Teorema a seguir nos diz é que esta é, na verdade, a melhor possível:

Teorema 2.1. (Sperner)

$$c(\psi_n) = \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

Obs. Note que a escolha de $\lceil \rceil$ por $\lfloor \rfloor$ é arbitrária, visto que, se n=2m, então $\lfloor \frac{n}{2} \rfloor = \lceil \frac{n}{2} \rceil$ e, se n=2m+1, então

$$\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} = \binom{n}{m} = \binom{n}{n-m} = \binom{n}{m+1} = \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

Existem muitas provas elegantes para o Teorema de Sperner, em particular duas delas são importantes:

• Prova de Lubell

Prova um outro resultado mais forte conhecido como Desigualdade de Lym

È muito mais simples que a prova de Sperner

Mas tem uma aplicação mais difícil ao problema de Littlewood-Offord

• Prove de Sperner

Desenvolve métodos mais gerais para combinatória extremal

Mais fácil de ser aplicada ao problema de Littlewood-Offord

De uma forma ou outra, apresentaremos somente a prova de Lubell:

Prova. (Lubell)

Considere

$$S_n := \{ \pi : \overline{n} \to \overline{n} : \pi \text{ \'e bijetora} \}$$

i.e., o conjunto de todas as permutações em \overline{n} . Dizemos que π é compatível com A se

$$A = \{\pi(1), \pi(2), \dots, \pi(|A|)\}\$$

seja $\mathcal{C}(A) := \{ \pi \in S_n : \pi \text{ \'e compat\'evel com } A \}$. Mostraremos que $\mathcal{C}(A) \cap \mathcal{C}(B) = \emptyset$ se $A \neq B$, para $A, B \in \mathscr{A}$.

Assuma por contradição que exista $\pi \in \mathcal{C}(A) \cap \mathcal{C}(B)$, portanto, assuma sem perda de generalidade que $|B| \leq |A|$, portanto

$$B = {\pi(1), \dots, \pi(|B|)} \subseteq {\pi(1), \dots, \pi(|A|)} = A$$

contradição, visto que $\mathscr A$ é uma anticadeia.

Com isso, e sabendo que

$$|\mathcal{C}(A)| = |A|!(n - |A|)!$$

visto que os primeiros |A| elementos de $\operatorname{Im}(\pi)$ são uma permutação de A. Então, como cada $\mathcal{C}(A)$ é distinto, temos que

$$\sum_{A \in \mathcal{A}} |\mathcal{C}(A)| = \sum_{A \in \mathcal{A}} (n - |A|)! \le |S_n| = n!$$

Sendo $p_k = |[\mathscr{A}]^k|$, temos que

$$\sum_{A \in \mathcal{A}} |A|!(n - |A|)! = \sum_{k=0}^{n} p_k k!(n - k)! \le n!$$

ou seja

Teorema 2.2. (Desigualdade de LYM)

$$\sum_{k=0}^{n} \frac{p_k}{\binom{n}{k}} \le 1$$

Com isso, o Teorema de Sperner vira um corolário direto:

$$|\mathcal{A}| = \sum_{k=0}^{n} p_k = \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \sum_{k=0}^{n} \frac{p_k}{\left\lceil \frac{n}{n/2} \right\rceil}$$

$$\leq \binom{n}{\left\lceil \frac{n}{2} \right\rceil} \sum_{k=0}^{n} \frac{p_k}{\binom{n}{k}}$$

$$\leq \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$
(LYM)

 \dashv

2.3 Teorema de Lovász

Uma pergunta natural que surge é quantas anticadeias $\mathscr{A} \subseteq \mathcal{P}(\overline{n})$ existem tal que

$$|\mathscr{A}| = \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

O Teorema a seguir responde tal pergunta

Teorema 2.3. Se $n \equiv 0 \pmod{2}$, $\psi_n(\mathscr{A})$ e $|\mathscr{A}| = \binom{n}{\lceil n/2 \rceil}$, então

$$\mathscr{A} = [\overline{n}]^{\frac{n}{2}}$$

e, se $n \equiv 1 \pmod{2}$, então

$$\mathscr{A}=\left[\overline{n}\right]^{\frac{n-1}{2}}$$
 ou $\mathscr{A}=\left[\overline{n}\right]^{\frac{n+1}{2}}$

Prova. (Lovász 1979)

Se n=2m, como na penúltima desigualdade da prova do Teorema de Sperner usamos que

$$\binom{n}{\left\lceil \frac{n}{2} \right\rceil} \ge \binom{n}{k}$$

e, como $\binom{n}{m} > \binom{n}{k}$, $\forall k \neq m$, para garantir que valha a igualdade temos que ter $p_k = 0$, $\forall k \neq m$, logo $\mathscr{A} = [\overline{n}]^m$ é a única possibilidade.

Analogamente, se n = 2m + 1, temos que

$$\binom{n}{m} = \binom{n}{m+1} > \binom{n}{k}$$

para todo $k \neq m, m+1$, portanto $\mathscr A$ contém apenas conjuntos de tamanho m e m+1. Como precisamos que valha a igualdade, então em particular

$$\frac{p_m}{\binom{n}{m}} + \frac{p_{m+1}}{\binom{n}{m+1}} = 1$$

ou seja

$$\sum_{\substack{|A|=m\\|A|=m+1}} |\mathcal{C}(A)| = |S_n|$$

com $A \in \mathcal{A}$. Portanto, dado $\pi \in S_n$, existe $A \in \mathcal{A}$ tal que $\pi \in \mathcal{C}(A)$, i.e., todo π contribui para um elemento de A. (*)

Queremos provar que \mathscr{A} consiste ou de todos $[\overline{n}]^m$ ou de todos $[\overline{n}]^{m+1}$. Assuma por contradição que $[\overline{n}]^{m+1} \not\subseteq \mathscr{A}$, logo $\mathscr{A} \cap [\overline{n}]^m \neq \emptyset$. Assim, existem $E, F \in [\overline{n}]^{m+1}$ tal que $E \in \mathscr{A}$ e $F \notin \mathscr{A}$, uma vez que $|\mathscr{A}| = |[\overline{n}]^{m+1}| = |[\overline{n}]^m|$.

Assim, renomeando os elementos de E para que os elementos de $E \cap F$ ocorram por último, temos que $E = \{x_1, \ldots, x_{m+1}\}$ e $F = \{x_i, \ldots, x_{m+i}\}$, para algum $i \in \mathbb{N}$. Como para j = 1 < i, $\{x_j, \ldots, x_{m+j}\} = E \in \mathscr{A}$, então existe o maior j < i tal que

$$E^* = \{x_j, \dots, x_{m+j}\} \in \mathscr{A} \in F^* = \{x_{j+1}, \dots, x_{m+j+1}\} \notin \mathscr{A}$$

mas $E^* \cap F^* \subseteq E^* \in \mathscr{A}$, como \mathscr{A} é uma anticadeia, $E^* \cap F^* \notin \mathscr{A}$, mas também $E^* \cap F^* \subseteq F^*$, onde $|E^* \cap F^*| = m$ e $|F^*| = m+1$. Por causa de (*) sabemos que, dados $X \subseteq Y$ arbitrário tal que |X| = m e |Y| = m+1, com $X = \{x_1, \ldots, x_m\}$ e $Y = X \cup \{x_{m+1}\}$, então toda permutação iniciando com x_1, \ldots, x_m é compatível com algum $A \in \mathscr{A}$, logo $X \in \mathscr{A}$, ou $Y \in \mathscr{A}$, contradição, visto que $E^* \cap F^* \notin \mathscr{A}$ e $F^* \notin \mathscr{A}$, mas, se $X = E^* \cap F^*$ e $Y = F^*$, temos $X \in \mathscr{A}$ ou $Y \in \mathscr{A}$.

3 Problema de Littlewood-Offord

3.1 O Problema Inicial

3.1.1 Resultado de Littlewood-Offord

Em 1943 Littlewood e Offord atacaram o seguinte problema: dados $\{z_i\}_{0 \leq i \leq n} \subseteq \mathbb{C}$ e $\varepsilon = (\varepsilon_i)_{1 \leq i \leq n} \in \{\pm 1\}^n$, considere o polinômio

$$P(x) = z_0 + \varepsilon_1 z_1 x + \dots + \varepsilon_n z_n x^n$$

quantas raízes reais tem P(x) tipicamente?

O resultado principal provado foi que, dado $M = |z_0| + \cdots + |z_n|$ então todos os 2^n possíveis polinômio P(x) com ε variando em $\{\pm\}^n$, exceto por no máximo

$$O\left(\frac{\ell n(\ell n(n))}{\ell n(n)}2^n\right) = o(2^n) \tag{*}$$

deles, são tais que a equação P(x) = 0 tem no máximo

$$10\ell n(n) \left(\ell n \left(\frac{M}{\sqrt{|z_0 z_n|}} \right) + 2\ell n(n)^5 \right)$$

raízes reais.

Obs. Para ver (*), vale lembrar que

$$O(f) = \left\{ g : \mathbb{R} \to \mathbb{R} : \lim_{x \to \infty} \left| \frac{g(x)}{f(x)} \right| < \infty \right\}$$
$$o(f) = \left\{ g : \mathbb{R} \to \mathbb{R} : \lim_{x \to \infty} \left| \frac{g(x)}{f(x)} \right| = 0 \right\}$$

Como

$$\lim_{x \to \infty} \frac{\ell n(\ell n(x))}{\ell n(x)} \stackrel{\text{(L'H)}}{=} \lim_{x \to \infty} \frac{\frac{1}{\ell n(x)} \frac{1}{x}}{\frac{1}{x}} = 0$$

portanto, se

$$\lim_{x \to \infty} \left| \frac{g(x)\ell n(x)}{2^x \ell n(\ell n(x))} \right| = L \in \mathbb{R}$$

então

$$\lim_{x \to \infty} \frac{g(x)}{2^x} = 0$$

i.e., $O(f) \subseteq o(f)$ e, como $o(f) \subseteq O(f)$ por definição, então eles são iguais.

3.1.2 O Problema Geométrico

Para provar tal resultado Littlewood e Offord tiveram que considerar o seguinte problema geométrica: o quão concentrada pode ser a distribuição das 2^n somas

$$\sum_{1 \le j \le n} \varepsilon_j z_j, \ \varepsilon_j \in \{\pm 1\}$$

Em outras palavras

O Problema de Littlewood-Offord: Sejam $z_1,\ldots,z_n\in\mathbb{C}$ tal que $|z_j|\geq 1,\ 1\leq j\leq n,$ e $\varepsilon=(\varepsilon_j)_{1\leq j\leq n}\in\{\pm 1\}^n,$ seja

$$S(\boldsymbol{\varepsilon}) := \sum_{1 \le j \le n} \varepsilon_j z_j$$

Se $\chi_r(n) := |\{|S(\varepsilon)| < r : \varepsilon \in \{\pm 1\}^n\}|$, i.e., a quantidade das 2^n somas que caem em um disco fechado de raio r, quanto vale $c(\chi_r(n))$?

O que Littlewood e Offord provaram foi que:

$$c(\chi_r(n)) \le c \frac{(r+1)2^n}{\sqrt{n}} \ell n(n)$$

onde c é uma constante universal.

3.2 Estimativa de Erdös

2 anos depois, Paul Erdös provou, por meio do Teorema de Sperner, que

Teorema 3.1. (Erdös)

$$c(\chi_r(n)) \le B \frac{(r+1)2^n}{\sqrt{n}}$$

onde B é uma constante universal

e, de fato, tal limitante não pode ser melhorado a menos da constante.

3.2.1 O Melhor Limitante

Em particular, com o avanço de Erdös, podemos reenunciar o problema como:

O Problema de Erdös-Littlewood-Offord: Considere a variável aleatória

$$X = a_1 \xi_1 + \dots + a_n \xi_n$$

onde $a_i \in \mathbb{R} \setminus \{0\}$ são fixos e $\xi_i \sim \text{Ber}(\frac{1}{2})$ são independentes. O problema afirma que a probabilidade de concentração máxima possível

$$\max_{x \in \mathbb{R}} \mathbb{P}(X = x) = \frac{1}{2^n} \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

Para mostrarmos que o limitante de Erdös é o melhor possível, vamos antes enunciar uma forma equivalente do problema:

Some $z_1 + \cdots + z_n$ a $S(\varepsilon)$ e divida por 2, logo teremos uma soma da forma

$$S(\boldsymbol{\delta}) = \sum_{1 \le j \le n} \delta_j z_j$$

com $\boldsymbol{\delta} = (\delta_j)_{1 \leq j \leq n} \in \{0, 1\}^n$. Logo $S(\boldsymbol{\varepsilon})$ está contida em um disco de raio r sse $S(\boldsymbol{\delta})$ está contida em um disco de diâmetro $\Delta = r$.

Considere agora o caso em que $z_1 = \cdots = z_n = 1$ e sejam $u_0 < \cdots < u_{\Delta}$ distribuidos simetricamente em torno de $\frac{n}{2}$, i.e., tal que

$$\binom{n}{u_0} + \dots + \binom{n}{u_{\Delta}}$$

é máximo, por ex
. $u_0=\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{\Delta}{2}\right\rfloor,$ e $u_i=u_0+i.$ E seja

$$\mathscr{A} := [\overline{n}]^{u_0} \cup \dots \cup [\overline{n}]^{u_{\Delta}}$$

Assim, temos que, dados $A, A' \in \mathcal{A}$, como $u_0 \leq |A|, |A'| \leq u_\Delta$ e u_j são consecutivos, então

$$||A| - |A'|| \le u_0 - u_\Delta \le \Delta$$

Assim, considerando o disco B_{Δ} de diâmetro Δ ao redor de u_0, \dots, u_{Δ} , temos que \mathscr{A} contém todas as somas que caem em B_{Δ} , visto que

$$S(A) = \sum_{j \in A} \mathcal{J}^{1} = |A| = \sum_{1 \le j \le n} \delta_{j} z_{j}$$

para $\delta_j = \chi_A(j)$.

Assim

$$|\mathscr{A}| = \sum_{0 \le j \le \Delta} \binom{n}{u_j} = \sum_{|j-n/2| \le \frac{\Delta}{2}} \binom{n}{j}$$

$$= (1+o(1))(\Delta+1)\sqrt{\frac{2}{\pi n}} 2^n$$

$$\geq c \frac{(\Delta+1)2^n}{\sqrt{n}}$$
(*)

para uma constante universal c e $n \ge n_0(\Delta)$. Portanto o Teorema de Erdös não pode ser substancialmente melhorado.

Obs. A dedução da estimativa em (*) pode ser feita por meio da fórmula de Stirling. Seja $|j-\frac{n}{2}| \leq \frac{\Delta}{2}$, logo, sendo $m = \left\lceil \frac{n}{2} \right\rceil$, portanto, temos j = m+k, para $k \leq \frac{\Delta}{2}$ e

$$\binom{n}{j} = \binom{n}{m+k}$$

$$= \binom{n}{m} \cdot \frac{m(m-1)\dots(m-(k-1))}{(m+k)\dots(m+1)}$$

$$= \binom{n}{m} \cdot \frac{(m)_k}{(m+k)_k}$$

quando $n \to \infty$, $\frac{(m)_k}{(m+k)_k} \to 1$, portanto

$$\sum_{\substack{|j-\frac{n}{2}| < \frac{\Delta}{2} \\ |j| = \frac{n}{2}}} \binom{n}{j} \sim (\Delta+1) \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

e é fácil deduzir que

$$\binom{n}{\left\lceil \frac{n}{2} \right\rceil} \sim \frac{2^n}{\sqrt{n}}$$

pela Fórmula de Stirling. Portanto

$$\sum_{|j-\frac{n}{2}| \leq \frac{\Delta}{2}} \binom{n}{j} = \Theta\left(\frac{(\Delta+1)2^n}{\sqrt{n}}\right)$$

no análogo discreto, sabemos que $f = \Theta(g)$ sse existem $c_1, c_2 \in \mathbb{R}$ positivas tal que $f(x) \leq c_1 g(x)$ e $f(x) \geq c_2 g(x)$.

3.2.2 O Caso Real

Para provar o Teorema de Erdös vamos antes mostrar que vale o caso real, i.e.,

Lema 3.1. Dados $x_1, \ldots, x_n \in \mathbb{R}$ tal que $x_j \geq 1$, para $1 \leq j \leq n$ $\Delta \geq 0$ real, então

$$c(\chi_{\Delta}(n)) \le c \frac{(\lfloor \Delta \rfloor + 1)2^n}{\sqrt{n}}$$

onde c é uma constante universal.

Prova. Seja J um intervalo de diâmetro 1. Considere

$$\mathscr{A}(J) := \{ A \subseteq \overline{n} : S(A) \in J \}$$

dados $A, A' \in \mathcal{A}(J)$, se $A \subseteq A'$, então $|S(A) - S(A')| \ge 1$, visto que $x_j \ge 1$, para $1 \le j \le n$. Logo, se $S(A) \in J$, então $S(A') \notin J$, e vice-versa, portanto \mathcal{A} forma uma anticadeia.

Agora, dado um intervalo I de diâmetro Δ , divida-o em intervalos $I_0, \ldots, I_{\lfloor \Delta \rfloor}$ como J, logo $\mathscr{A}(I_j)$ é uma anticadeia, $1 \leq j \leq n$. Seja

$$\mathscr{A} := \bigsqcup_{i=0}^{\lfloor \Delta \rfloor} \mathscr{A}(I_i)$$

portanto, pelo Teorema de Sperner,

$$|\mathscr{A}| = \sum_{i=0}^{\lfloor \Delta \rfloor} |\mathscr{A}(I_i)| \le \sum_{i=0}^{\lfloor \Delta \rfloor} \binom{n}{\lceil \frac{n}{2} \rceil}$$
$$= (\Delta + 1) \binom{n}{\lceil \frac{n}{2} \rceil} \le c \frac{(\Delta + 1)2^n}{\sqrt{n}}$$

para algum $c \in \mathbb{R}$.

3.2.3 O Caso Complexo

Com isso, podemos provar agora o caso complexo:

Prova. Como $|z_j| \ge 1$, então $|\Re(z_j)| \ge \frac{1}{\sqrt{2}} > \frac{1}{2}$ ou $|\Im(z_j)| \ge \frac{1}{\sqrt{2}} > \frac{1}{2}$. Se mais da metade dos z_j tem parte imaginária maior que $\frac{1}{2}$, multiplique todos z_j por i, i.e., rotacione o sistema por $\frac{\pi}{2}$, o que obviamente não altera o enunciado do Teorema. Analogamente, se a maioria dos z_j tem parte real $<-\frac{1}{2}$, substitua-os por $-z_j$.

Em outras palavras, podemos supor sem perda de generalidade que

$$\Re(z_j) \ge \frac{1}{2}$$

para todo $1 \le j \le t$, com $t \ge \frac{n}{2}$

Fixando $\varepsilon_j \in \{\pm 1\}$, para j>t, arbitrariamente, temos 2^{n-t} formas de escolhê-los. Se, das 2^t somas da forma

$$\sum_{1 \le j \le t} \varepsilon_j z_j, \ (1 \le j \le t)$$

N delas estão em um disco fechado de raio r, defina

$$x_j = 2\Re(z_j) \ge 1, \ (1 \le j \le t)$$

então, considerando apenas a parte real dos z_i , temos N somas da forma

$$\sum_{1 \le j \le t} \varepsilon_j x_j, \ (1 \le j \le t)$$

contidas em um intervalo fechado de comprimento 4r, visto que, se

$$\left| \Re \left(\sum_{1 \le j \le t} \varepsilon_j z_j \right) \right| = \left| \sum_{1 \le j \le t} \varepsilon_j \Re(z_j) \right| \le r$$

então

$$\left| \sum_{1 \le j \le t} \varepsilon_j \underbrace{2\Re(z_j)}_{x_j} \right| \le 2r$$

logo, pelo Lema 3.1

$$N \le (4r+1) \binom{t}{\left\lceil \frac{t}{2} \right\rceil} \le C \frac{(4r+1)2^t}{\sqrt{t}} \tag{*}$$

Com isso, provamos que, para cada uma das possíveis combinações de $\varepsilon_j \in \{\pm 1\}$, $(1 \le j \le t)$, o número máximo de somas que pertencem a um disco fechado de raio r é limitado superiormente por (*). Como há ainda 2^{n-t} formas de fixar os ε_j , $(j > t e t \ge \frac{n}{2})$ temos então que, para uma constante absoluta B

$$c(\chi_r(n)) \le C \frac{(4r+1)2^t}{\sqrt{t}} 2^{n-t} \le B \frac{(r+1)2^n}{\sqrt{n}}$$

 \dashv

3.2.4 Generalizações em \mathbb{R}^d

Tendo resolvido o problema em \mathbb{R} e \mathbb{C} , é possível passar a considerar a genralização:

Dados $z_j \in \mathbb{R}^d$ tal que $||z_j|| \ge 1$, $1 \le j \le n$, seja $V = (z_j)_{1 \le j \le n}$ e considere Σ o conjunto das somas $S(\boldsymbol{\delta})$, com $\boldsymbol{\delta} \in \{0,1\}^n$ contando multiplicidade de ocorrência. Defina

$$m(V, \Delta) := \max_{\substack{B \subseteq \mathbb{R}^d \\ \ell(B) = \Delta}} |B \cap \Sigma|$$

e defina como uma nova notação para $\chi_r(n)$

$$m_d(n, \Delta) := \max_{V} m(V, \Delta)$$

com V variando em todas as sequências de vetores $z_1, \ldots, z_n \in \mathbb{R}^d$ tal que $||z_j|| \ge 1$. O Teorema de Erdös garante que

$$c(\varphi_{\Delta}(n)) = m_1(n, \Delta) = \sum_{j=0}^{\Delta} \binom{n}{u_j}$$

Katona e Kleitman provaram que

$$m_2(n,\Delta) = \binom{n}{\left\lceil \frac{n}{2} \right\rceil}$$

se $\Delta < 1$. E Kleitman posteriormente generaliziou para $d \geq 2$. Até que eventualmente Frank e Füredi publicaram no Annals of Mathematics em 1988 a confirmação da conjectura de Erdös

Teorema 3.2. Seja d um inteiro positivo e $\Delta \geq 0$ real fixo, então

$$m_d(n,\Delta) = (\lfloor \Delta \rfloor + 1 + o(1)) \binom{n}{\lceil \frac{n}{2} \rceil}$$

onde $o(1) \to 0$ quando $n \to \infty$. Ou seja

$$m_d(n, \Delta) \le c(d)(\Delta + 1) \binom{n}{\lceil \frac{n}{2} \rceil}$$

onde c(d) é uma constante que depende somente de d.

4 Teorema de Behrend

4.1 Como Mensurar $A \subseteq \mathbb{N}$

Relembrando a definição anterior de que uma sequência (a_i) de inteiros positivos $a_1 < a_2 < \dots$ é primitiva se $\underline{a_i} \nmid a_j$, $\forall i < j$, vimos no primeiro capítulo que o número máximo de sequências primitivas em $\overline{2n}$ é n.

Em geral, dada uma sequência primitiva $A = (a_i)$, estamos interessados em mensurar o tamanho de A

Obviamente |A| é uma péssima escolha, visto que A pode ser infinito, digamos

$$A = \{ p \in \mathbb{N} : p \text{ \'e primo} \}$$

Portanto, peguemos

$$\mu(A, x) := \sum_{a_i \le x} \frac{1}{a_i}$$

A fim de que possamos comparar com N, definamos o que será conhecido como Densidade Aritmética

$$d(A) := \lim_{n \to \infty} \frac{\mu(A, n)}{H_n}$$

onde H_n é a n-ésima soma parcial da série harmônica.

4.1.1 Propriedades da Densidade Aritmética

Um fato relativamente trivial para aqueles que tiveram contato com matemática à nível de graduação é de que $|\{n^2 : n \in \mathbb{N}\}| = \aleph_0 = |\{n : n \in \mathbb{N}\}|$. Apesar disso, de fato, parece haver uma intuição

forte para dizer que os quadrados perfeitos n^2 estão mais dispersos que os naturais n, embora haja a mesma quantidade de cada qual.

A Densidade Aritmética, diferentemente da cardinalidade, é capaz de capturar essa ideia de dispersão: Note que, se $A = \{n^2 : n \in \mathbb{N}\}$, então

$$d(A) = \lim_{n \to \infty} \frac{\sum_{k=1}^{n} \frac{1}{k^2}}{H_n} = 0$$

visto que

$$\lim_{n\to\infty}\mu(A,n)=\frac{\pi^2}{6}$$

mas $\lim_{n\to\infty} H_n = \infty$. Em contrapartida, $d(\mathbb{N}) = 1$, i.e., $A \prec \mathbb{N}$, sob a relação de ordem induzida por d.

Em geral

- Se F é finito, d(F) = 0
- $d(\mathbb{N} \setminus F) = 1 d(F)$
- Dado $A = \{an + b : n \in \mathbb{N}\}, a, b \in \mathbb{R}, \text{ então}$

$$d(A) = \frac{1}{a}$$

em particular $d(2\mathbb{N}) = \frac{1}{2}$

4.1.2 Teorema de Davenport-Erdös

Dada essa motivação, utilizaremos o seguinte teorema que enuncia uma equivalência entre algumas noções de densidade, em particular

Teorema 4.1. (Davenport-Erdös)

Dado $A \subseteq \mathbb{N}$, seja $M(A) = \{kA : k \in \mathbb{N}\}$, o Teorema diz que a densidade aritmética é equivalente a densidade logarítmica

$$\delta(A) = \lim_{n \to \infty} \frac{\mu(A, n)}{\ell n(n)}$$

Não é difícil ver, visto que

$$\lim_{n \to \infty} H_n - \ell n(n) = \gamma$$

Analogamente, outra relação íntima que ambas tem é que, como $f(x) = \frac{1}{x}$ é estritamente decrescente para x > 0, então

$$\int_{1}^{x+1} \frac{\mathrm{d}u}{u} < \sum_{k=1}^{x} \frac{1}{k} = 1 + \sum_{k=1}^{x-1} \frac{1}{k+1} < 1 + \int_{1}^{x} \frac{\mathrm{d}u}{u}$$

logo

$$\ell n(x+1) < H_x < \ell n(x) + 1$$

Pelo Teorema do Confronto, é fácil ver que

$$\delta(\mathbb{N}) = 1$$

4.2 Teorema de Behrend

Fixada a notação, podemos agora perguntar: Dado $A=(a_i)$ uma sequência primitiva, o que podemos dizer sobre $\delta(A)$?

Isso é o que o Teorema de Behrend estima

Teorema 4.2. (Behrend)

Existe c > 0 tal que, para toda sequência primitiva $A = (a_i)$

$$\mu(A,n) \le c \frac{\ell n(n)}{\sqrt{\ell n(\ell n(n))}}, \ n \ge 3$$

ou seja

$$\delta(A) = \lim_{n \to \infty} \frac{c}{\sqrt{\ell n(\ell n(n))}}$$

A fim de provaremos tal teorema precisamos antes do seguinte lema

Lema 4.1. Para todo $x \ge 2$

$$\sum_{m \le x} \sigma_0(m) \le 3x \ell n(x)$$

onde σ_n é a função divisora.

Prova. Podemos escrever o somatório à esquerda como a quantidade de pares (a,b) tais que $ab \leq x$, portanto

$$\sum_{m \le x} \sigma_0(m) = \sum_{a \le x} 1 = \sum_{a \le x} \sum_{b \le \frac{x}{a}} 1$$
$$= \sum_{a \le x} \left\lfloor \frac{x}{a} \right\rfloor \le \sum_{a \le x} \frac{x}{a}$$

visto que $|x| \leq x, \forall x \in \mathbb{R}$. Além disso, como $H_a < \ell n(a) + 1 \leq 3\ell n(a)$, então

$$\sum_{m \le x} \sigma_0(m) \le x \sum_{a \le x} \frac{1}{a} = x H_x \le 3x \ell n(x)$$

Dada uma sequência primitiva $A = (a_i)$, para u > 0 seja

$$r(u) := |\{n \in \mathbb{A} : n \mid u\}|$$

_

i.e., r(u) é o análogo do σ_0 , mas para elementos apenas em A. Analogamente, temos que

$$\varrho(n) := \sum_{u \le n} r(u) = \sum_{\substack{ma \le n \\ a \in A}} 1$$

$$= \sum_{\substack{a \le n \\ a \in A}} \sum_{\substack{ma \le n \\ a \in A}} 1 = \sum_{\substack{a \le n \\ a \in A}} \left\lfloor \frac{n}{a} \right\rfloor$$

$$= \sum_{\substack{a \le n \\ a \in A}} \left(\frac{n}{a} - \varepsilon \right)$$

como $0 \le \varepsilon < 1$, temos que

$$\varrho(n) = -|\{a \in A : a \le n\}| \cdot \varepsilon + n \sum_{\substack{a \le n \\ a \in A}} \frac{1}{a}$$

portanto, visto que $|-|\{a \in A : a \le n\}| \cdot \varepsilon| \le n\varepsilon < n$, então

$$\varrho(n) = n\mu(A, n) + O(n)$$

ou seja

$$\sum_{a_i \le n} \frac{1}{a_i} = \frac{1}{n} \varrho(n) + O(1)$$

logo, para provarmos o Teorema de Behrend basta estimarmos $\varrho(n)$, logo, estimaremos antes r(u).

4.2.1 Estimativa de r(u) com (†)

Seja $\omega(u) := |\{p \in \mathbb{P} : p \mid u\}|$, i.e., a quantidade de divisores primos de u, e seja div(u) o conjunto dos divisores de u.

Assuma que os elementos de
$$A$$
 são livres de quadrados (\dagger)

Como $\underline{r(u)} = |\operatorname{div}(u) \cap A|$ e A satisfaz (†), então temos que, de certa forma, $\operatorname{div}(u) \cap A$ é "subconjunto" de $\mathcal{P}(\overline{\omega(u)})$, onde, por exemplo, $\{1,2,3\} \in \mathcal{P}(\overline{\omega(u)})$ representa $p_1 \cdot p_2 \cdot p_3$. Além disso, $\operatorname{div}(u) \cap A$ é uma anticadeia, visto que A é primitiva, portanto, pelo Teorema de Sperner

$$r(u) \le {\omega(u) \choose \lceil \omega(u)/2 \rceil} = O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right)$$

Assim

$$\varrho(n) = \sum_{u \le n} r(u)$$

$$= \sum_{\substack{u \le n \\ \omega(u) \le \ell}} r(u) + \sum_{\substack{u \le n \\ \omega(u) \ge \ell}} r(u)$$

$$= \sum_{\substack{u \le n \\ \omega(u) \le \ell}} O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right) + \sum_{\substack{u \le n \\ \omega(u) \ge \ell}} O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right)$$

Temos que, para $f(x) = \frac{2^x}{\sqrt{x}}$

$$f'(x) = \frac{\ell n(2)2^x \sqrt{x} + \frac{2^x}{2\sqrt{x}}}{x} = \frac{2^x}{\sqrt{x}} \left(\ell n(2) + \frac{1}{2x}\right)$$

logo f'(x) > 0 sse $\frac{1}{2x} > \ell n(\frac{1}{2})$, mas $\ell n(\frac{1}{2}) < 0$, portanto f é estritamente crescente. Assim, visto que $\omega(u) \le \ell$, dado g tal que

$$g \in O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right)$$

existe $c \in \mathbb{R}$ tal que

$$|g(u)| \le c \frac{2^{\omega(u)}}{\sqrt{\omega(u)}} \le c \frac{2^{\ell}}{\sqrt{\ell}}$$

como temos que $f \cdot O(g) = O(f \cdot g)$, então $g \in O(c) \frac{2^{\ell}}{\sqrt{\ell}}$ e, como O(c) = O(1), então

$$\sum_{\substack{u \leq n \\ \omega(u) < \ell}} O\!\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right) = O(1) \frac{2^\ell}{\sqrt{\ell}} n$$

visto que

$$\sum_{\substack{u \leq n \\ \omega(u) \leq \ell}} g(u) \leq \sum_{u \leq n} c \frac{2^{\ell}}{\sqrt{\ell}} = c \frac{2^{\ell}}{\sqrt{\ell}} n$$

Analogamente, se $g \in O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right)$ com $\omega(u) > \ell$, então

$$|g(u)| \le c \frac{2^{\omega(u)}}{\sqrt{\omega(u)}} \le c \frac{2^{\omega(u)}}{\sqrt{\ell}}$$

e, portanto

$$\sum_{\substack{u \le n \\ \omega(u) \ge \ell}} O\left(\frac{2^{\omega(u)}}{\sqrt{\omega(u)}}\right) = O\left(\frac{1}{\sqrt{\ell}}\right) \sum_{u \le n} 2^{\omega(u)}$$

Logo, vale que

$$\varrho(n) \le O(1) \frac{2^{\ell}}{\sqrt{\ell}} n + O\left(\frac{1}{\sqrt{\ell}}\right) \sum_{u \le n} 2^{\omega(u)}$$

Com o intuito de melhorar tal estimativa, vamos provar o seguinte lema

$$\sum_{u \le n} 2^{\omega(u)} \le \sum_{u \le n} \sigma_0(n)$$

Prova. Vamos mostrar que σ_0 é multiplicativa, sejam $m, n \in \mathbb{N}$ tal que $\gcd(m, n) = 1$, logo, se $d \mid mn$, então d = rs, onde $r \mid m$ e $r \mid n$, note que $\gcd(r, s) = 1$, pois, caso contrário, m e n teriam um fator em comum. Logo

$$\sigma_0(mn) = \sum_{\substack{d|mn}} 1 = \sum_{\substack{r|m\\r|n}} 1 = \sigma_0(m)\sigma_0(n)$$

Analogamente

$$\omega(mn) = \sum_{\substack{p|mn\\n\in\mathbb{P}}} 1$$

mas, se p é primo e $p \mid mn$, então $p \mid m$ ou $p \mid n$, logo

$$\omega(mn) = \sum_{\substack{p|m\\p\in\mathbb{P}}} 1 + \sum_{\substack{p|n\\p\in\mathbb{P}}} 1 = \omega(m) + \omega(n)$$

Assim, dado $n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k}$ temos

$$\sigma_0(n) = \sigma_0(p_1^{\alpha_1} \cdot \dots \cdot \sigma_0(p_k^{\alpha_k}))$$
$$= (\alpha_1 + 1) \cdot \dots \cdot (\alpha_k + 1)$$

e

$$\omega(n) = \omega(p_1^{\alpha_1}) + \dots + \omega(p_k^{\alpha_k}) = k$$

Logo

$$2^{\omega(n)} = 2^k \le (\alpha_1 + 1) \cdot \dots \cdot (\alpha_k + 1) = \sigma_0(n)$$

portanto

$$\sum_{u \le n} 2^{\omega(u)} \le \sum_{u \le n} \sigma_0(u)$$

 \dashv

Pelos dois últimos lemas, e escolhendo $\ell = \ell n(\ell n(n))$ na estimativa de $\varrho(n)$ temos que

$$\varrho(n) \le O\left(\frac{2^{\ell n(\ell n(n))}}{\sqrt{\ell n(\ell n(n))}}n\right) + O\left(\frac{n\ell n(n)}{\sqrt{\ell n(\ell n(n))}}\right)$$

e, uma vez que $f(n) = \frac{2^{\ell n(\ell n(n))}}{\ell n(n)}$ é tal que

$$f'(n) = \frac{(\ell n(2) - 1)2^{\ell n(\ell n(2))}}{n\ell n(n)^2}$$

então f'(n) < 0 se n > 0, então $f(n) \ge 0$ e é estritamente decrescente, portanto converge quando $n \to \infty$, assim

$$\lim_{n \to \infty} \frac{2^{\ell n(\ell n(n))}}{\ell n(n)} \stackrel{\text{(L'H)}}{=} \ell n(2) \lim_{n \to \infty} \frac{2^{\ell n(\ell n(n))}}{\ell n(n)}$$

como o limite L existe, então L = ln(2)L, logo L = 0, e, portanto

$$\varrho(n) \le 2O\left(\frac{n\ell n(()n)}{\sqrt{\ell n(\ell n(n))}}\right) = O\left(\frac{n\ell n(()n)}{\sqrt{\ell n(\ell n(n))}}\right)$$

E, como $\mu(A, n) = \frac{\varrho(n)}{n} + O(1)$, então

$$\mu(A, n) = O\left(\frac{\ell n(n)}{\sqrt{\ell n(\ell n(n))}}\right)$$

4.2.2 Eliminação da Hipótese (†)

Como na prova assumimos que valia (†), mostrar que a hipótese pode ser eliminada é suficiente para provar o Teorema de Behrend. Para isso, defina uma sequência de sequência (a_i^k) como os elementos de A tal que $a_i^k = k^2 q_i^k$, onde q_i^k é livre de quadrados. Assim

$$\begin{split} \sum_{a_i \leq n} \frac{1}{a_i} &= \sum_{k \geq 1} \sum_{a_i^k \leq n} \frac{1}{a_i^k} \\ &= \sum_{\underbrace{a_i^1 \leq n}} \frac{1}{q_i^1} + \sum_{\underbrace{a_i^2 \leq n}} \frac{1}{2^2 q_i^2} + \dots \\ &\text{livre de quadrados} & \text{com um fator } 2^2 \end{split}$$

logo

$$\sum_{a_i \leq n} \frac{1}{a_i} = \sum_{k \geq 1} \frac{1}{k^2} \sum_{q_i^k \leq \frac{n}{k^2}} \frac{1}{q_i^k} \leq \sum_{k \geq 1} \frac{1}{k^2} \sum_{q_i^k \leq n} \frac{1}{q_i^k}$$

como (q_i^k) é primitiva e livre de quadrados, vale o Teorema de Behrend com (\dagger) , logo

$$\mu(A, n) \le \sum_{k>1} \frac{1}{k^2} c \frac{\ell n(n)}{\sqrt{\ell n(\ell n(n))}}$$

onde o primeiro somatório vale $\zeta(2) = \frac{\pi^2}{6}$, portanto

$$\mu(A, n) = O\left(\frac{\ell n(n)}{\sqrt{\ell n(\ell n(n))}}\right)$$

5 Teorema de Erdös-Ko-Rado

5.1 Sistemas Intersectantes

Após estudarmos as sequências primitivas definidas na introdução, vamos agora estudar os sistemas intersectantes, i.e., coleções $\mathscr{A} \subseteq \mathcal{P}(\overline{n})$ tais que, dados $A, A' \in \mathscr{A}, A \cap A' \neq \emptyset$.

Se definirmos

$$\mathscr{A}_1 := \{ A \subseteq \overline{n} : 1 \in A \}$$

temos que $|\mathscr{A}_1| = 2^{n-1}$ e, se $|\mathscr{A}| > 2^{n-1}$, então existe A tal que $A \in \mathscr{A}$ e $\overline{n} \setminus A \in \mathscr{A}$, i.e., não é um sistema intersectante, como mostrado no capítulo 1. Consideremos, portanto, um problema totalmente diferente de sistemas intersectantes, onde $\mathscr{A} \subseteq [\overline{n}]^k$.

Um exemplo que nos dá $|\mathcal{A}|$ grande é: se 2k > n, então $\mathcal{A} = [\overline{n}]^k$ é intersectante e, se $2k \le n$, seja

$$\mathscr{A}_0 = \{ A \subseteq \overline{n} : |A| = k, 1 \in A \}$$

obviamente \mathcal{A}_0 é intersectante e

$$|\mathscr{A}_0| = \binom{n-1}{k-1}$$

o reslultado que provaremos é

Teorema 5.1. (Erdös-Ko-Rado)

Se $\mathscr{A} \subseteq [\overline{n}]^k$ é um sistema intersectante, com $n \ge 2k > 0$, então

$$|\mathscr{A}| \le \binom{n-1}{k-1}$$

Ademais, se n > 2k e vale a igualdade, então $\mathscr{A} \cong \mathscr{A}_0$, i.e., existe $b : \overline{n} \to \overline{n}$ bijetora tal que

$$A \in \mathscr{A} \Leftrightarrow b(A) \in \mathscr{A}_0$$

Antes de provarmos tal Teorema, vamos enunciar um lema importante e que captura parte da elegância da prova de Katona.

Seja C um círculo dividido por n pontos em n arestas e seja um arco de comprimento k um conjunto consistindo dos k+1 pontos consecutivos e dos k lados entre eles, então temos:

Lema 5.1. Seja $n \geq 2k$, dados t arcos distintos A_1, \ldots, A_t de comprimento k, se quaisquer dois arcos tem um lado em comum, então $t \leq k$.

Prova. Note que, dado qualquer ponto em C, ele é o ponto de extremidade de no máximo um arco. De fato, se A_i e A_j tem um ponto de extremidade v em comum, então eles tem de ter começado em direções distintas, uma vez que eles são distintos. Mas caso isso ocorra eles não teriam nenhum lado em comum, visto que $n \geq 2k$. Fixemos A_1 , como A_i tem um lado em comum com A_1 e os pontos de extremidade tem de ser distintos, então algum dos pontos de extremidade de A_i é um ponto interno de A_1 . Como A_1 contém k-1 pontos internos, então podem ter no máximo k-1 tais arcos e, junto a A_1 , no máximo k.

Voltemos agora a prova do Teorema de Erdös-Ko-Rado.

Prova. (Katona) A seguinte prova elegante feita por contagem dupla deve-se a Katona. Considere $\phi: \mathbb{Z}/n\mathbb{Z} \to \overline{n}$ e $a_i := \phi(i)$. Dizemos que $(A, \phi) \in \mathcal{C}(A, \phi)$ ($A \in \phi$ são compatíveis) se, para algum $i \in \mathbb{Z}/n\mathbb{Z}$

$$A = \{a_{i+1}, \dots, a_{i+k}\}\$$

Tais conjuntos compatíveis podem ser interpretados como arcos em uma circunferência com n pontos. Como, por hipótese, $\mathscr A$ é uma família intersectante, sabemos, pelo Lema anterior, que no máximo k conjuntos A são compatíveis com ϕ .

Uma outra forma, é considerar, para cada $2 \le j \le k$, os conjuntos $J_j^-, J_j^+ \subseteq \mathbb{Z}/n\mathbb{Z}$ tais que

$$J_j^- = \{a_{i+j-k}, \dots, a_{i+j-1}\}\$$

$$J_j^+ = \{a_{i+j}, \dots, a_{i+j+k-1}\}\$$

ambos tem tamanho k e, como $n \geq 2k$, temos $J_j^- \cap J_j^+ = \emptyset$. Logo apenas um deles pode conter $A \in \mathscr{A}$ e, como $2 \leq j \leq k$, temos que todo $A \in \mathscr{A}$ que é compatível com ϕ é igual a J_j^- ou J_j^+ para algum j.

Em ambos os casos temos que, dada uma permutação cíclica ϕ , no máximo k membros de \mathscr{A} são compatíveis com ϕ .

Disso, temos que, fixado ϕ , $|\mathcal{C}(A,\phi)| \leq k$ e, fixado $A \in \mathcal{A}$, as permutações que são compatíveis com A são k!(n-k)!, como elas são cíclicas

$$|\mathcal{C}(A,\phi)| = nk!(n-k)!$$

logo

$$\sum_{A \in \mathscr{A}} |\mathcal{C}(A, \phi)| = |\mathscr{A}| nk! (n - k)! \le \sum_{\phi \in C_n} k = n! k$$

ou seja

$$|\mathscr{A}| \le \frac{(n-1)!}{(k-1)!(n-k)!} = \binom{n-1}{k-1}$$

Se n > 2k, a igualdade vale somente se, para cada permutação cíclica ϕ , exatamente k membros de \mathscr{A} sejam compatíveis com ϕ . Em outras palavras, dada uma ordenação ϕ de \overline{n} no círculo, precisamos que k membros de \mathscr{A} sejam intervalos nele ou, utilizando a prova do Lema anterior, que dado um arco A_1 , para cada um dos k pontos internos de A_1 , temos um arco que tem esse ponto como ponto de extremidade. Logo Pendente

Obs. Se n=2k forme $P=\{\{A,\overline{n}\setminus A\}:A\in\mathcal{P}(\overline{n})\}$ uma partição de $\mathcal{P}(\overline{n})$ com $\frac{1}{2}\binom{n}{k}=\binom{n-1}{k-1}$ elementos, escolha arbitráriamente um elemento de alguma classe de P e reptira o processo para as outras classes de forma que o elemento escolhido intersecte todos os outros já escolhidos anteriormente. Como 2k=n e cada classe tem k elementos sempre é possível fazer tal escolha.

Note que, com isso, podemos escolher por exemplo, para n=4 e k=2, $\mathscr{A}=\{\{1,2\},\{1,3\},\{2,3\}\}$, nesse caso \mathscr{A} não tem nenhum elemento fixo em todos os conjuntos, logo $\mathscr{A}\ncong\mathscr{A}_0$.

Interpretação Alternativa (Bollobás). Podemos também analisar a prova como um resultado probabilístico: Seja P o conjunto de intervalos cíclicos de $\mathbb{Z}/n\mathbb{Z}$ de comprimento k e considere χ_P a função característica de P. Defina, para $\mathscr{A} \subseteq \mathcal{P}(\overline{n})$

$$\chi_P(\mathscr{A}) := \sum_{A \in \mathscr{A}} \chi_P(A)$$

i.e., a quantidade de intervalos cíclicos de comprimento k em \mathscr{A} . Para $\phi \in S_n$, defina também

$$\phi(\mathscr{A}) := \{ \phi(A) : A \in \mathscr{A} \}$$

como uma família isomórfica a \mathscr{A} , i.e., uma renomeação dos elementos de $A \in \mathscr{A}$. Como $\phi(\mathscr{A})$ continua sendo uma família intersectante se \mathscr{A} for, para todo $\phi \in S_n$, então sabemos pelo Lema anterior que $\chi_P(\phi(\mathscr{A})) \leq k$ e, portanto, escolhendo aleatoriamente e uniformemente uma permutação $\phi \in S_n$, temos que $\mathbb{E}(\chi_P(\phi(\mathscr{A}))) \leq k$. Agora, dado $A \in \mathscr{A}$, sabemos que

$$\mathbb{P}(\chi_P(\phi(A)) = 1) = \mathbb{P}(\phi(A) \in P) = \frac{n}{\binom{n}{k}}$$

i.e., a probabilidade de ϕ mapear A para algum dos n intervalos cíciclos de P de todos os $\binom{n}{k}$ possíveis. Portanto, pela lineariedade de \mathbb{E}

$$\mathbb{E}(\chi_P(\phi(\mathscr{A}))) = \mathbb{E}(\chi_P(\{\phi(A) : A \in \mathscr{A}\}))$$

$$= \mathbb{E}\left(\sum_{A \in \mathscr{A}} \chi_P(\phi(A))\right)$$

$$= \sum_{A \in \mathscr{A}} \mathbb{E}(\chi_P(\phi(A)))$$

$$= \sum_{A \in \mathscr{A}} \mathbb{P}(\chi_P(\phi(A)) = 1)$$

$$= \frac{|\mathscr{A}| \cdot n}{\binom{n}{k}}$$

5.2 Sistemas ℓ -intersectantes

Consideremos agora a generalização com sistemas ℓ -intersectantes de k-subconjuntos de $[\overline{n}]$, i.e., sistemas de conjuntos $\mathscr{A} \subseteq [\overline{n}]^k$ com $|A \cap A'| \ge \ell$, para todo $A, A' \in \mathscr{A}$. Além do Teorema anterior para sistemas 1-intersectantes, Erdös, Ko e Rado provaram também algo análogo para sistemas ℓ -intersectantes quando $\ell > 1$.

Antes consideremos o caso de um sistema ℓ -intersectante grande: Seja $L \subseteq \overline{n}$ tal que $|L| = \ell$. O sistema ℓ -intersectante fixado por L é

$$\mathscr{A}_L := \{A \subset \overline{n} : |A| = k, L \subset A\}$$

Note que $|\mathscr{A}_L| = \binom{n-\ell}{k-\ell}$. Para n grande o suficiente em relação a k, o que foi provado é que os sistemas \mathscr{A}_L fixados são os sistemas ℓ -intersectantes máximos

Teorema 5.2. Para todo ℓ e k, com $1 \le \ell \le k$, existe um $n_0 = n_0(\ell, k)$ tal que, se $\mathscr{A} \subseteq [\overline{n}]^k$ é um sistema ℓ -intersectante e $n \ge n_0$, então

$$|\mathscr{A}| \le \binom{n-\ell}{k-\ell}$$

Ademais, se vale a igualdade, então \mathscr{A} é um sistema fixado por algum ℓ -conjunto $L \subseteq \overline{n}$.

Prova.