Math 240: Midterm 2 Q4

Daniel Ko

Spring 2020

§1 a

Prove that $2x^3 + 3x$ is $O(x^4)$.

Proof. We need to choose C, k > 0 such that for all x > k, $2x^3 + 3x \le Cx^4$. Choose C = 5 and k = 1. Then for all x > 1,

$$5x^4 = 2x^4 + 3x^4$$

> $2x^3 + 3x^4$
> $2x^3 + 3x$
 $x > 1$

as desired

§2 b

Prove that $x^4 + 3x$ is not $O(2x^3 + 3x)$.

Proof. Given C, k > 0, we need to choose x > k such that $x^4 + 3x > C \cdot (2x^3 + 3x)$. Choose $x = max\{5C, k\} + 1$. Then x > k and

$$x^{4} + 3x > 5Cx^{3}$$

$$= 2Cx^{3} + 3Cx^{3}$$

$$> 2Cx^{3} + 3Cx$$

$$= C \cdot (2x^{3} + 3x)$$

$$x > 5C \text{ and } x > 0$$

$$x > 0 \text{ and } C > 0$$

as desired.