- Recap: Lecture 6: 20th January 2014, 1130-1230 hrs.
  - First law for a cycle
  - First law for a system undergoing a change of state
  - First law for an isolated system
  - Perpetual Motion Machines of the First Kind (PMM1)

### First law of thermodynamics for open systems

- First law process applied to flow process
  - System approach: Lagrangian
  - Control volume approach: Eulerian
- Steady flow processes
- Unsteady flow processes

### First law of thermodynamics for open systems

- Steady flow processes: rates of flow of mass, energy are constant across the system boundary
  - eg. Turbines, compressors, heat exchangers etc
- Unsteady flow processes: rates of mass, energy are not constant across the system boundary
  - eg. Charging and discharging process (tanks, pipelines etc.)

#### **Conservation of mass**

- Conservation of mass principle
  - Total mass entering the system Total mass leaving the system = Net change in mass within the system

$$m_{in} - m_{out} = \Delta m_{CV}$$

$$m_{in} - m_{out} = \frac{dm_{CV}}{dt}$$

Total mass within the CV:  $n_{CV} = \int_{CV} \rho \, dV$ 

Rate of change of mass within the CV:  $\frac{dm_{CV}}{dt} = \frac{d}{dt} \int_{CV} \rho \, dV$ 

### Flow work and the energy of a flowing fluid

- Work required to push the mass into or out of the control volume: flow work or flow energy.
- Consider a fluid element of volume V.
- Let fluid pressure be *P*, the cross-sectional area be *A*, *L* is the distance through which the imaginary piston must move.
- The work done in pushing the fluid element across the system boundary is

$$Wflow = FL = PAL = PV$$

## Flow work and the energy of a flowing fluid



### Total energy of a flowing fluid

- The fluid entering or leaving a control volume possesses an additional form of energy—the flow energy, *Pv*
- The total energy of a flowing fluid on a unit-mass basis (denoted by  $\theta$ ) becomes

$$\theta = e + Pv = (u + ke + pe) + Pv$$

• Since u+Pv=h,

$$\theta = h + ke + pe$$
 (kJ/kg)

• Therefore, enthalpy, *h*, takes care of the flow work in addition to the internal energy.

### Total energy of a flowing fluid

Non flowing fluid:

$$e = u + ke + pe = u + \frac{V^2}{2} + gz$$

Flowing fluid:

$$\theta = h + ke + pe = u + Pv + \frac{V^2}{2} + gz$$

The total energy consists of three parts for a non flowing fluid and four parts for a flowing fluid.

### **Energy transport by mass**

•  $\theta$  is total energy per unit mass, the total energy of a flowing fluid of mass m is simply  $m\theta$ , for uniform properties of the mass m.

Amount of energy transport, 
$$E_{mass}$$

$$E_{mass} = m\theta = m\left(h + \frac{V^2}{2} + gz\right) \qquad (kJ)$$

Rate of energy transport,  $E_{mass}$ 

$$\dot{E}_{mass} = \dot{m}\theta = \dot{m}\left(h + \frac{V^2}{2} + gz\right) \qquad (kW)$$

- Several engineering devices can be approximated to operate as steady flow devices: turbine, compressors, nozzles etc.
- During a steady-flow process, no intensive or extensive properties within the control volume change with time.
- The boundary work is zero for steady-flow systems (since VCV = constant).
- The total mass or energy entering the control volume must be equal to the total mass or energy leaving it.

- Properties of steady flow processes
  - No properties within the control volume change with time.
  - No properties change at the boundaries of the CV with time.
  - The rates of flow of energy and mass across the control surface is constant.
  - Thermodynamic property has a fixed value at a particular location and do not change with time.



Under steady-flow conditions, the fluid properties at an inlet or exit remain constant (do not change with time).

- For a steady flow system, the amount of energy entering a control volume in all forms (by heat, work, and mass) must be equal to the amount of energy leaving it.
- Energy balance for a steady flow system



• Energy balance for a steady flow system written more explicitly,

$$\dot{Q}_{in} - \dot{W}_{in} + \sum_{in} \dot{m} \theta = \dot{Q}_{out} - \dot{W}_{out} + \sum_{out} \dot{m} \theta$$
or,
$$\dot{Q}_{in} - \dot{W}_{in} + \sum_{in} \dot{m} \left( h + \frac{V^2}{2} + gz \right) = \dot{Q}_{out} - \dot{W}_{out} + \sum_{out} \dot{m} \left( h + \frac{V^2}{2} + gz \right)$$
for each inlet

• The energy equation is also written as:

$$\dot{Q} - \dot{W} = \sum_{out} \dot{m} \left( h + \frac{V^2}{2} + gz \right) - \sum_{in} \dot{m} \left( h + \frac{V^2}{2} + gz \right)$$
for each existing for each inlet

where, Q is the net heat input to the system and

W is the net work output from the system

• For single entry and exit devices,

$$\dot{Q} - \dot{W} = \dot{m} \left[ h_2 - h_1 + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1) \right]$$
or per unit mass,
$$\dot{q} - \dot{w} = h_2 - h_1 + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$$

## Steady flow energy equation for common engineering devices

- Some commonly used steady flow engineering devices:
  - Nozzles and diffusers
  - Compressors and turbines
  - Throttling devices
  - Mixing chambers
  - Heat exchangers

### **Nozzles and diffusers**

- A nozzle is a device that increases the velocity of a fluid at the expense of pressure.
- A diffuser is a device that increases the pressure of a fluid by slowing it down.
- The cross-sectional area of a nozzle decreases in the flow direction for subsonic flows and increases for supersonic flows. The reverse is true for diffusers.

#### **Nozzles and diffusers**



Nozzles and diffusers are shaped so that they cause large changes in fluid velocities and thus kinetic energies.

#### **Nozzles and diffusers**

$$\dot{E}_{in} = \dot{E}_{out}$$

$$\dot{m} \left( h_1 + \frac{V_1^2}{2} \right) = \dot{m} \left( h_2 + \frac{V_2^2}{2} \right)$$
(since  $\dot{Q} \cong 0$ ,  $\dot{W} = 0$  and  $\Delta PE \cong 0$ )
$$h_2 = \dot{h}_1 - \frac{V_2^2 - V_1^2}{2}$$

### **Turbines and compressors**

- Pumps, compressors and fans: used to increase the pressure of a fluid and require work input.
- Turbines generate work.
- Q, KE and PE may or may not be zero.
- Usually *PE* is negligibly small.

### **Turbines and compressors**



### **Turbines and compressors**

• For a turbine for eg., the energy equation would be:

$$\dot{m}(h_1 + \frac{V_1^2}{2} + gz_1) = \dot{W}_{out} + \dot{m}(h_2 + \frac{V_2^2}{2} + gz_2)$$

If KE and PE are negligible,

$$\overset{\bullet}{W}_{out} = \overset{\bullet}{m}(h_1 - h_2)$$

- Throttling valves are any kind of flow-restricting devices that cause a significant pressure drop in the fluid.
- Eg: capillary tubes, valves
- Unlike turbines, they produce a pressure drop without involving any work.
- The pressure drop in the fluid is often accompanied by a large drop in temperature.
- Hence throttling devices are commonly used in refrigeration and air-conditioning applications.



An adjustable valve



A porous plug

A capillary tube

For throttling devices,

$$q \cong 0$$
,  $w = 0$ ,  $\Delta pe \cong 0$ ,  $\Delta ke \cong 0$ 

The energy equation therefore reduces to,

$$h_2 \cong h_1$$

Throttling processes are isenthalpic processes.

It follows that,

$$u_1 + P_1 v_1 = u_2 + P_2 v_2$$

or, Internal energy + flow energy = constant

If  $P_2 v_2 > P_1 v_1$ ,  $u_2 < u_1$ 

Therefore, if flow energy increases, temperature decreases and vice - versa.

For an ideal gas, h = h(T).

Therefore temperature has to remain constant during a throttlin g process.



During a throttling process, the enthalpy (flow energy + internal energy) of a fluid remains constant. But internal and flow energies inter-convertible.

### **Mixing chambers**

- The section where the mixing process takes place is commonly referred to as a mixing chamber.
- Eg.: mixing of hot and cold water at the T joint of a shower.

$$m_1 h_1 + m_2 h_2 = m_3 h_3$$
 (Since  $q = 0, w = 0, ke \& pe = 0$ )

Combining energy and mass balances,

$$m_1 h_1 + m_2 h_2 = \begin{pmatrix} \cdot & \cdot \\ m_1 + m_2 \end{pmatrix} h_3$$