

Partie 4 Normalisation et perspectives d'évolution

Normalisation des fibres et des systèmes WDM

- Normes ITU-T
 - Normalisation des fibres : G.651 à G.655
 - Normalisation des systèmes WDM : G.692
- Normes de transmission synchrone
 - Norme SDH
 - Norme SONET

Perspectives d'évolution

- Vers les systèmes à très haut débit
 - Systèmes WDM dense (D-WDM)
 - Transmission par solitons
- Vers les liaisons de très grande distance
 - Systèmes cohérents
- Vers le réseau de distribution d'abonné
 - FTTH Fiber to the Home
- Vers le réseau tout optique
 - Les brasseurs optiques

Conclusion

Organismes internationaux de normalisation

- ◆ ITU International Telecommunication Union
 - Secteur des télécommunications : ITU-T
 - Produit des recommandations, normes qui définissent les modalités d'exploitation et d'interfonctionnement des réseaux de télécoms
- ♦ CEI Commission Electrotechnique Internationale
 - CENELEC Comité Européen de Normalisation Electrotechnique Organisme représentant l'Europe au sein du CEI
 - UTE : Union Technique de l'Electricité
 Représente la France au sein du CENELEC
- ♦ ISO International Standards Organization
 - Réseau d'instituts nationaux de normalisation regroupant 162 pays
- **♦ ETSI European Telecommunications Standard Institute**
 - Orienté sur l'architecture des systèmes
- **♦ ANSI American National Standards Institute**

Réseaux de transmission à fibre optique

- Plus de 200 millions de km de fibres ont été installés en 2015 dans le monde
- Les applications en transmission de ces fibres sont, en partant des plus performantes en produit débit x distance :
 - ULH Ultra Long Haul
 - Liaisons sous-marines transocéaniques de très longue distance
 - WAN Wide Area Network
 - Liaisons terrestres longue distance des réseaux étendus
 - MAN Metropolitan Area Network
 - Réseaux métropolitains déployés dans les grandes villes
 - FTTH Fiber to the Home
 - Réseaux d'accès chez l'abonné
 - LAN Local Area Network
 - Réseaux locaux d'entreprise
 - SAN Storage Area Network
 - Réseaux de stockage et de sécurisation de données

Normalisation des fibres optiques

Recommandations de l'ITU-T

 Série G « Systèmes et supports de transmission, systèmes et réseaux numériques »

♦ Correspondance avec les classes de la CEI

Série G	Type de fibre	Classe CEI
G.651	Fibre multimode à gradient d'indice type 50/125 µm	
G.652	Fibre monomode standard SMF pour utilisation à 1300 nm et éventuellement à 1550 nm	B1.1
G.653	Fibre monomode à dispersion décalée DSF	B.2
G.654	Fibre monomode à longueur d'onde de coupure décalée	B1.2
G.655	Fibre à dispersion décalée non nulle NZ-DSF	B.4
G.656	Fibre monomode à dispersion non nulle pour large bande	B.5
G.657	Fibre monomode pour réseaux d'accès FTTH	B.6

Normalisation des systèmes WDM Allocation des fréquences centrales

- ♦ Depuis Octobre 1998, l'allocation des fréquences centrales des canaux WDM est définie par la Recommandation ITU-T G.692 :
 - Espacement fréquentiel entre canaux adjacents : Espacement uniforme pour systèmes à fibres G.652/G.655 :

Deux valeurs sont couramment utilisées dans les systèmes actuels :

- WDM : Espacement de 100 GHz (environ 0,8 nm à λ = 1550 nm)
- WDM dense (DWDM) : Espacement de 50 GHz (environ 0,4 nm à λ = 1550 nm) Actuellement à l'étude :
- WDM ultra-dense (U-DWDM) : Espacement de 25 GHz (0,2 nm à λ = 1550 nm)

L'étude de l'espacement non-uniforme pour systèmes à fibre G.653 a été abandonnée : non gérable pour des systèmes à très grand nombre de canaux

- Référence pour le choix de la fréquence centrale :
 - Quel que soit l'espacement, la fréquence de référence est de 193.10 THz

Septembre 2017 5

Définition des fréquences centrales

♦ Définition des fréquences centrales des systèmes WDM

• Relation entre écart fréquentiel Δf et écart en longueur d'onde $\Delta \lambda$

$$\Delta \lambda = \frac{\lambda^2}{c} \Delta f$$

Définition des bandes spectrales WDM

♦ Bandes spectrales normalisées pour les systèmes WDM

Bandes de transmission pour les fibres monomodes définies par la norme G.692

Nom de la bande	Bande O (Original)	Bande E (Extended)	Bande S (Short)	Bande C (Conventional)	Bande L (Long)	Bande U (Ultra long)
Intervalle en nm	1260-1360	1360-1460	1460-1530	1530-1565	1565-1625	1625-1675
Commentaires	Bande d'origine des fibres G.652	Bande du « pic d'eau » pour les fibres à faible absorption de vapeur d'eau	Dans cette bande, certaines longueurs d'onde servent au pompage des EDFA, d'autres au canal superviseur	Bande utilisée pour les systèmes de transmission à hautes performances	Destinée à des fins de maintenance Pas encore utilisée en transmission	Bande non encore exploitée

Septembre 2017 7

Bandes spectrales WDM

 Représentation des bandes spectrales sur la courbe d'atténuation d'une fibre de silice (SiO₂)

Nombre potentiel de canaux dans la plage de longueurs d'onde 1.5 µm

◆ Trois bandes sont définies dans la plage 1460 - 1625 nm :

Bande S: 1460 - 1530 nm (largeur 70 nm)

Bande C: 1530 - 1565 nm (largeur 35 nm)

Bande L: 1565 - 1625 nm (largeur 60 nm)

Nombre potentiel de canaux :

Bande	Espacement		
	100 GHz	50 GHz	25 GHz
S	87 canaux	175 canaux	350 canaux
С	43 canaux	87 canaux	175 canaux
L	75 canaux	150 canaux	300 canaux
Total	205 canaux	412 canaux	825 canaux

Normes de transmission synchrone

- Objectif: trouver un compromis entre les intérêts américains, japonais et européens afin de garantir l'interconnexion des réseaux des différents opérateurs
- ♦ Les premiers travaux sur les réseaux optiques synchrones ont démarré en 1984
- ♦ 1986 : premiers résultats publiés aux Etats-Unis par BELLCORE
 - SONET : Synchronous Optical NETwork
 - Débit de base retenu : 51,84 Mbit/s (premier niveau OC-1 de SONET)
- ◆ En 1988 : accords internationaux sur la norme SDH (Synchronous Digital Hierarchy) ratifiés par l'ITU-T (recommandations G.707, G.708 et G.709)

Débits numériques des normes synchrones

♦ Les normes synchrones SONET et SDH définissent des structures de trames à très haut débit

OC-n : Optical Carrier de niveau n pour SONET

STM-n : Synchronous Transport Module de niveau n pour SDH

Les débits numériques correspondants sont les suivants :

SDH	SONET	Débit
STM-0	OC-1	51,84 Mbit/s
STM-1	OC-3	155,52 Mbit/s
STM-4	OC-12	622,08 Mbit/s
STM-16	OC-48	2,488 Gbit/s
STM-64	OC-192	9,95 Gbit/s
STM-256	OC-768	39,81 Gbit/s
STM-1024	OC-3072	159,25 Gbit/s

Structure d'une trame SDH STM-1

Structure de la trame de base STM-1

- Toutes les trames SDH (et SONET) ont une durée de 125 µs correspondant à la fréquence d'échantillonnage d'un signal téléphonique standard de 4 kHz de bande de base
- La trame STM-1 est constituée de 9 x 270 octets (2430 octets) transmis en 125 μs, ce qui correspond au débit de 155,52 Mbit/s
- Elle est constituée d'une charge utile de 9 x 261 octets (150,336 Mbit/s) et de 9 x 9 octets réservés à la gestion et à l'adressage

Structure d'une trame SDH STM-4

- ♦ Multiplexage temporel de 4 trames STM1 pour obtenir une trame STM-4
 - Utilisation d'un multiplexeur permettant l'entrelacement des bits

Perspectives of evolution Towards very high bit rate systems

♦ Ultra dense WDM systems (U-DWDM)

- Today, all operational WDM systems exploit standard WDM technologies (100 GHz spacing between channels) or dense WDM DWDM (50 GHz spacing between channels)
- The 25 GHz spacing (ultra dense WDM U-DWDM) is currently under study by the ITU-T organization
- It must solve the problem of bit rate increase from 2.5 Gbit/s to 10 Gbit/s then
 to 40 Gbit/s per channel, as a low spacing between adjacent channels car
 lead to interactions creating diaphony

Perspectives of evolution Towards very high bit rate systems

♦ Soliton transmission

- Pulse mode transmission
- Abnormal dispersion spectral range (positive chromatic dispersion) allowing time compression of pulses through Kerr type non-linear effect (self-phase modulation)
- This effect exactly compensates for pulse broadening due to dispersion
- The pulse can propagate over very long distances without degradation of its time duration

Perspectives of evolution Towards very high bit rate systems

Chromatic dispersion of a standard single-mode fiber

Fibre Dispersion (ps/nm/km)

Perspectives of evolution Towards very high bit rate systems

♦ Soliton transmission

- Specificities of emitted pulses
 - Source wavelength within the positive dispersion range : $\lambda_{sol} > \lambda_0$
 - Pulse duration shorter than bit time to avoid interactions between two consecutive pulses : $\Delta t < tb/5$
 - Pulse shape: hyperbolic secant in electrical field: A(z,t) = E(z) sech $(t/\Delta t)$
 - Right peak power to get pulse compression/broadening compensation

Perspectives of evolution Towards very high bit rate systems

Soliton transmission

Collision between two consecutive solitons

Normal dispersion:

SPM and chromatic dispersion work the same way :

Pulse broadening

Abnormal dispersion:

SPM and chromatic dispersion mutually compensate : Soliton regime

Interaction between two solitons:

The two solitons are too close to each other and interact to create a <u>collision</u>

Perspectives of evolution Towards very high bit rate systems

Soliton transmission

- Interests of soliton transmission
 - Very large transmission distance without regeneration (> 10.000 km)
 - Very high bit rates, much higher than bit rates accessible with a classical NRZ type transmission (> 100 Gbit/s)
 - Compliance with WDM technology
- Solitons in future operational systems
 - Main target : very long distance transoceanic transmissions
 - Other target : very high bit rate terrestrial networks with optical routing
 - First offers could appear within the next three years

Perspectives of evolution Towards very long distance systems

- ♦ Coherent transmission : high sensitivity reception
 - Principle

Perspectives of evolution Towards very long distance systems

Coherent transmission

- Principle
 - Transmitter side
 - Signal laser with a linewidth narrower than bit rate
 - Optical wave modulation :
 - In amplitude : Amplitude Shift Keying (ASK)
 - In frequency : FSK (Frequency Shift Keying)
 - In phase : PSK (Phase Shift Keying)

Receiver side

- Mixing of signal wave with local oscillator (LO) wave
- ◆ Intermediate frequency (IF) detection : IF = F_{signal} F_{LO}
- ◆ Homodyne detection: signal and LO with same frequency (IF = 0)
- ◆ Heterodyne detection : signal and LO with different frequencies (IF # 0)

IF is within the RF range (detection band)

Perspectives of evolution Towards very long distance systems

♦ Coherent transmission

- Interests compared to direct detection
 - Detected photocurrent proportional to Signal x OL fields product
 - Main noise : quantum noise due to powerful local oscillator
 - Improved receiver sensitivity compared to direct detection :

ASK heterodyne :	+ 10 dB	(+ 50 km)
◆ ASK homodyne :	+ 13 dB	(+ 65 km)
◆ FSK :	+ 13 dB	(+ 65 km)
◆ PSK heterodyne :	+ 16 dB	(+ 80 km)
◆ PSK homodyne :	+ 19 dB	(+ 95 km)

Perspectives of evolution Towards very long distance systems

- **♦** Coherent transmission
 - Potential applications resulting from coherent detection selectivity

Perspectives of evolution Towards very long distance systems

♦ Coherent transmission

Potential capacity of singlemode fibers

Perspectives of evolution Towards very long distance systems

CONCLUSION ON COHERENT DETECTION

- Advantages of coherent detection
 - Large receiver sensitivity improvement
 - Up to + 19 dB compared to direct detection
- **♦** Constraints of related equipments
 - Design of very narrow linewidth lasers
 - Complementary devices
 - Optical isolation
 - Polarization control
 - Complex detection circuits

CONCLUSION ON COHERENT DETECTION

- Advantages of coherent detection
 - Large receiver sensitivity improvement
 - Up to + 19 dB compared to direct detection
- **♦** Constraints of related equipments
 - Design of very narrow linewidth lasers
 - Complementary devices
 - Optical isolation
 - Polarization control
 - Complex detection circuits

Target: to bring the optical technology as close as possible to the subscriber's home

Four different technologies:

- VDSL2 : Very High Speed Subscriber Line It is mainly a copper technology

- FTTB: Fiber to the Building

- FTTLA: Fiber to the Last Amplifier

- FTTH: Fiber to the Home

It is the ultimate all-optical technology

Possible technologies for the fiber distribution network

Possible technologies for the fiber distribution network

FTTH (Fiber to the Home) is the only technology which brings optics to the subscriber home

- FTTH is the ARCEP's (the French Telecommunication Authority) recommandation
- It allows to provide very high bit rate interactive services to the subscriber
- Today, all major Internet Access Providers (Orange, Bouygues, SFR, Free) offer FTTH type solutions

Le Très Haut Débit en France – Situation au 30 juin 2017

- Très Haut Débit (THD) = débits descendants > 30 Mbit/s
- Le THD regroupe actuellement 3 technologies :
 - réseau cuivre (VDSL2)
 - câble modernisé FTTB (fibre + câble)
 - fibre jusque chez l'abonné (FTTH)
- Nombre de foyers éligibles au THD à fin juin 2017 :
 - 16,7 millions de foyers
 - Dont 10,9 millions en dehors des zones denses
 - Débits supérieurs à 100 Mbit/s : 12,6 millions de foyers éligibles
- Pour le FTTB:
 - 9 millions de foyers éligibles au 30 juin 2017
- Pour le FTTH
 - 8,9 millions de lignes éligibles au 30 juin 2017
 - Hausse de 37% en un an
- Objectifs de couverture du territoire national en THD :
 - 50% des foyers fin 2017
 - 100% des foyers fin 2022
 - Mobilisation de 20 milliards d'euros en 10 ans (2013-2022)

Déploiement des réseaux FTTH en France au 30 juin 2017

Perspectives of evolution Towards the all-optical network

THE OPTICAL ROUTER

Spatial optical switching

 Use of SOA bars to realize non-blocking switching matrices up to 64 x 64

Wavelength routing

Use of interferometric wavelength converters based on SOA technology

THE ALL OPTICAL NETWORK

- All-optical network = optical transport + optical routing + FTTH
- Challenge of the next 3 years for the first operational all optical network in France (end 2020)