Network Systems Capstone @CS.NYCU

Lab7: MIMO ZF Equalization

Example of Wireless Transmission

pre_lab7_mod.m

Example Code

- 1. Generate a sequence of data bits
- 2. Modulate the bits into BPSK samples
- 3. Generate random channel h
 - (TODO) | h | ² should be equal to the receiving power
 - (TODO) P_{rx} should be derived based on the Friis path loss model
- 4. Simulate the reception over the channel with AWGN
 - y = hx + n
 - Expected noise power E[|n|²] is set to -85 dBm
- 5. SNR and BER calculation

Snapshot of Example Code

pre-lab7-mod()

TODO - Pre-Lab7-mod

Input and Output

- Input
 - Link distances: 200m ~ 700m
 - Tx Power: 4dBm
 - Noise Power: -85dBm
- Output
 - SNR, BER
 - Plot the figures
 - Constellation points for every different distance
 - 10 distances in total
 - BER bar graph (x-axis: distances, y-axis: BER)
 - SNR bar graph (x-axis: distances, y-axis: SNR)

TODO

Given a link distance and 1,000 random samples

- Calculate the path loss and drive the receiving power
- 2. Modulate the bit stream tx_data to x using BPSK/QPSK/16QAM
- 3. Given the received sample y, decode the received sample x'
- 4. Demodulate x' back to rx_data
- 5. Count the number of erroneous bits and calculate BER
- 6. Calculate the error (noise) by n = x'-x and derive the average noise power and, thereby, the average SNR
- 7. Plot figures to compare various modulation schemes

Code Submission

- Deadline: May. 17 (Mon.) 23:59
- Submit to new E3
 - Source code: pre_lab7_mod_<studentID>.m
 - Figures
 - IQ_1_<studentID>.jpg
 - IQ_1_<studentID>.jpg
 - IQ_1_<studentID>.jpg
 - SNR_<studentID>.jpg
 - BER_<studentID>.jpg
 - Report: pre_lab7_mod_<studentID>.pdf, including all figures