POLIMI GRADUATE MANAGEMENT

DATA PREPARATION

PERCORSO EXECUTIVE DATA SCIENCE AND BUSINESS ANALYTICS

Mauricio Soto - mauricioabel.soto@polimi.it

POLIMI GRADUATE MANAGEMENT

INCOMPLETE DATA

- Inspection
- Elimination
- Identification
- Replacement
 - mean value of numerical attributes
 - mean value of the target class
 - value estimated sing statistical inference

WHAT IS AN OUTLIER AND HOW TO RECOGNIZE IT

https://pollev.com/mauriciosoto

NOISY DATA

- Univariate
 - Normal-like distribution

$$[\bar{\mu}-2\bar{\sigma},\bar{\mu}+2\bar{\sigma}]$$

contains about 96% of the data

• In the general case, Tchebysheff theorem states taht for $\gamma>1$

$$[\bar{\mu} - \gamma \bar{\sigma}, \bar{\mu} + \gamma \bar{\sigma}]$$

contains $1 - 1/\gamma^2$ proportion of the observations

- Multi variate
 - Clustering techniques

BOX-PLOT

- $D_q = q_U q_L = q_{0.75} q_{0.25}$
- ightharpoonup internal lower edge= $q_L-1.5\,D_q$
- ightharpoonup external lower edge= $q_L 3 D_q$

POLIMI GRADUATE MANAGEMENT

DATA TRANSFORMATION

Decimal Scaling

$$x'_{ij} = \frac{x_{ij}}{10^k}$$

▶ **Min-Max** in the interval $[x'_{min,j}, x'_{max,j}]$

$$x'_{ij} = \frac{x_{ij} - x_{\min,j}}{x_{\max,j} - x_{\min,j}} (x'_{\max,j} - x'_{\min,j}) + x'_{\min,j}$$

z-index

$$x'_{ij} = \frac{x_{ij} - \bar{\mu}_j}{\bar{\sigma}_j}$$

DATA REDUCTION

- Sampling
 - Simple sampling
 - Stratified sampling
- Selection
 - Filter methods
 - Wrapper methods
 - Embedded methods
- Discretization, Aggregation
- ► **Projection** (ex. PCA)

PCA: PRINCIPAL COMPONENT ANALYSIS

PCA-INTUITION

Compute projections that better capture the variance

PCA: PRINCIPAL COMPONENT ANALYSIS

- ► Covariance data matrix V = X'X
- New components p_j obtained as a linear transformation of original data $p_j = X \, w_j$
- $lackbox{ Variance of } p_j = w_j' \, X' X \, w_j = w_j' V w_j$
- Maximizing the variance:

$$\max_{w_1} w_1' V w_1$$

s.t. $w_1' w_1 = 1$

• w_j is the j-th eigenvector of V, which explains a variance λ_j which is the j-th eigenvector

NONLINEAR REDUCTION

T-SNE: T-DISTRIBUTED STOCHASTIC NEIGHBOUR EMBEDDING

We aim to project observations preserving observation distance.

High-Dimensional Space

Distance as Normal Distribution

$$p_{ij} = \frac{\exp\left(-\left\|x_i - x_j\right\|^2/2\sigma_i^2\right)}{\sum_{k \neq l} \exp\left(-\left\|x_k - x_l\right\|^2/2\sigma_i^2\right)}$$

Low-Dimensional Space

Distance as t-Students Distribution

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

We try to minimize the divergence between the distributions

$$KL(P\|Q) = \sum_i \sum_{j \neq i} p_{ij} \log \left(rac{p_{ij}}{q_{ij}}
ight)$$
 (Kullback-Leibler)

THANK YOU