CS 480

Introduction to Artificial Intelligence

November 11th, 2021

Announcements / Reminders

- Quiz #02: due on Sunday (11/14/21) at 11:00 PMCST
- Programming Assignment #02:
 - weekend
- Written Assignment #03:
 - weekend
- Final Exam:
 - Thursday, December 2nd, 2021 (during lecture time)

Plan for Today

Casual Introduction to Machine Learning

Univariate Linear Regression

Real function: $y = w_1 * x + w_0$

Hypothesis / model: $h_w(x) = w_1 * x + w_0$

where $w = \langle w_0, w_1 \rangle$ are coefficients / weights.

Squared-error loss function:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 * x_j + w_0))^2$$

We want to find
$$w^* = \frac{argmin}{w} Loss(h_w)$$
:

solve
$$\frac{\partial Loss(h_w)}{\partial w_0}=0$$
 , $\frac{\partial Loss(h_w)}{\partial w_1}=0$

Weight / Parameter Space

Gradient Descent

Givne a squared-error loss function:

$$Loss(h_{\mathbf{w}}) = \sum_{j=1}^{N} (y_j - h_{\mathbf{w}}(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_1 * x_j + w_0))^2$$

We want to find
$$w^* = \frac{argmin}{w} Loss(h_w)$$
:

solve
$$\frac{\partial Loss(h_w)}{\partial w_0} = 0$$
, $\frac{\partial Loss(h_w)}{\partial w_1} = 0$

Sometimes these will be hard (or impossible) to solve. Gradient descent technique can be instead:

w ← any point in the parameter space while not converged do

for each
$$w_i$$
 in w do $w_i \leftarrow w_i - \alpha * \frac{\partial Loss(w)}{\partial w_i}$

 α - step size / learning rate

Gradient Descent

Challenging Parameter Space

K-Fold Cross-Validation

Ensemble Learning

In ensemble learning we are creating a collection (an ensemble) of hypotheses (models) $h_1, h_2, ..., h_N$ and combine their predictions by averaging, voting, or another level of machine learning. Indvidual hypotheses (models) are based models and their combination is the ensemble model.

- Bagging
- Boosting
- Random Trees
- etc.

Bagging: Regression

In bagging we generate K training sets by sampling with replacement from the original training set.

Bagging tends to reduce variance and helps with smaller data sets.

Bagging: Classification

In bagging we generate K training sets by sampling with replacement from the original training set.

Bagging tends to reduce variance and helps with smaller data sets.

scikit-learn Algorithm Cheat Sheet

Source: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html

k = 11 Nearest Neighbors

k = 11 Nearest Neighbors

k = 11 Nearest Neighbors

k = 25 Nearest Neighbors

k = 25 Nearest Neighbors

k = 25 Nearest Neighbors

How Would kNN Do Here?

Distance Measures

Source: https://towardsdatascience.com/9-distance-measures-in-data-science-918109d069fa

Practical ML: Feature Engineering

One-hot encoding

```
red = [1, 0, 0]
yellow = [0, 1, 0]
green = [0, 0, 1]
```

- Binning / Bucketing
- Normalization
- Dealing with missing data / features

Reinforcement Learning (RL)

What is Reinforcement Learning?

Idea:

Reinforcement learning is inspired by behavioral psychology. It is **based on a rewarding / punishing** an algorithm.

Rewards and punishments are based on algorithm's action within its environment.

RL: Agents and Environments

Source: https://www.youtube.com/watch?v=VMp6pq6_Qjl

Source: https://www.youtube.com/watch?v=x4O8pojMF0w

Source: https://www.youtube.com/watch?v=kopoLzvh5jY

Source: https://www.youtube.com/watch?v=Tnu4O_xEmVk

ANN for Simple Game Playing

ANN for Simple Game Playing

Current game is an input. Decisions (UP/DOWN/JUMP) are rewarded/punished.

RL: Agents and Environments

RL: Agents and Environments

Deep Learning

Machine Learning vs. Deep Learning

Machine Learning

Deep Learning

Source: https://www.quora.com/What-is-the-difference-between-deep-learning-and-usual-machine-learning

Machine Learning vs. Deep Learning

Source: https://www.intel.com/content/www/us/en/artificial-intelligence/posts/difference-between-ai-machine-learning-deep-learning.html

Deep Learning: Feature Extraction

Source: https://en.wikipedia.org/wiki/Deep_learning

Exercise: Object Recognition

https://braneshop.com.au/object-detection-in-thebrowser.html

(you can try it on your smartphone)

Exercise: Image Colorizer

https://deepai.org/machine-learning-model/colorizer

Exercise: Deep Learning

https://www.handwriting-generator.com/