98119

VELOCITY OF SOUND IN SEA WATER

N. H. HECK and JERRY H. SERVICE

DEPARTMENT OF COMMERCE

U. S. COAST AND GEODETIC SURVEY

đ

Serial No. 278

DEPARTMENT OF COMMERCE

U. S. COAST AND GEODETIC SURVEY

E. LESTER JONES, DIRECTOR

VELOCITY OF SOUND IN SEA WATER

Ву

Commander N. H. HECK U. S. Coast and Geodetic Survey

and

Ensign JERRY H. SERVICE U. S. Coast and Geodetic Survey

Special Publication No. 108

PRICE, 5 CENTS

Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE 1924

CONTENTS

Introduction
Résumé of existing information on velocity of sound
Theory
Method of preparing velocity tables
Accuracy of velocity table No. 13
Comparison of computed velocities with directly measured velocities
Comparison of surface velocitiesComparison of vertical velocities to great depths
Sources of error
Sources of errorApplicability of computed velocities to acoustic sounding
ILLUSTRATIONS
 Map showing oceanographic cruise of steamer Guide
TABLES
1. Specific volume of sea water for all depths, temperatures, and salinities
2. Base values of M 3. Salinity corrections to M
4. Temperature corrections to M
5. M for all depths, temperatures, and salinities
6-10. Tables involved in the adiabatic corrections to velocity
12. Comparison of measured with computed velocities.
13. Velocity of sound in sea water for all temperatures, depths, and salinities

VELOCITY OF SOUND IN SEA WATER

By

Commander N. H. Heck and Ensign Jerry H. Service, U. S. Coast and Geodelic Survey

INTRODUCTION

While the subject of sound has always been recognized as one of the important divisions of physics and certain phases of it have been thoroughly investigated, other phases have remained almost untouched until recently. An especial example of this is the transmission of sound through sea water. Possible application in navigation was recognized just prior to the World War and some progress was made in the design of apparatus, but it was the development of the submarine as a menace to shipping and the consequent need for methods of counteracting its activities that led to concentrated investigation by the leading physicists of this and other countries. means of setting up sound waves capable of transmission through long distances and receivers capable of detecting faint sounds reaching them were among the results of this investigation.

After the war interest was not allowed to die, but on the contrary, every effort was made to find peace-time uses for this addition to knowledge. This is evidenced by the large number of organizations continuing in or taking up the work. In the United States the Navy Department developed the sonic depth finder; the War Department perfected methods for accurately determining the velocity of sound along the surface and made important determinations of velocity; the Coast and Geodetic Survey and the Bureau of Standards jointly developed the radio-acoustic method for use in hydrographic survey-

The British Navy during the same period has been at work on acoustic methods for obtaining the depth of the water and has made determinations of velocity along the surface; the French Hydrographic Office has studied the velocity of sound along the surface; the German Hydrographic Office has studied the theoretical velocity of sound with special reference to use in obtaining depth. statements are made on the basis of the latest available published information.

^{1&}quot; Modern navigational devices," by F. E. Smith, Engineering, vol. 117, pp. 209-300, Mar. 17, 1924.

"Acoustical methods for depth sounding," Nature, vol. 113, pp. 463-65 Mar. 29, 1924.

"A radio-acoustic method of locating positions at sea: Application to navigation and to hydrographical surveys," by Dr. A. B. Wood and Capt. H. E. Browne, Proc. Phys. Soc. of London, vol. 35, part 3, pp. 183-194, Apr. 15, 1923.

"The sounding of the sea by sound," by P. Martl (hydrographic engineer of the French Navy), La Nature, Aug. 20, 1921, pp. 125-127.

"Les signaux sous-marins par ondes ultra-sonores," by A. Troller, La Nature, second half, 1923.

"The velocity of sound in sea water," La Nature, p. 117, Oct. 14, 1922.

"Über Echolotungen der nordamerikantschen Marine," by Dr. H. Maurer, Annalen der Hydrographie und maritimen Meteorologic, Apr., 1924, pp. 75-87.

"Hydrographischo Bemerkungen und Hilfsmittel zur akustiken Tlefenmessung," by Dr. Arnold Schumacher, Deutsche Seewarte, Annalen der Hydrographie und maritimen Meterologic, Apr., 1924, pp. 87-95.

The sonic depth finder was developed by Dr. Harvey C. Hayes, research physicist, United States Navy. It is capable of measuring accurately the time required for sound to travel from the surface to

the bottom and for the echo to return to the surface.2

The radio-acoustic apparatus was developed by Dr. E. A. Eckhardt, Bureau of Standards, for the use of the Coast and Geodetic Survey, in hydrographic work. The function of the apparatus is to measure accurately the time required for a sound wave to travel from a bomb explosion near the surveying vessel to a hydrophone whose position is known.3

In both these cases the function of the apparatus is to measure accurately the time interval. It is evident that to determine depth in one case and distance in the other it is necessary to know the

velocity of sound in sea water under the existing conditions.

RÉSUMÉ OF EXISTING INFORMATION ON VELOCITY OF SOUND

The subaqueous sound-ranging section of the United States Army, under Col. R. S. Abernethy, Coast Artillery Corps, has made a very accurate determination of the velocity of sound along the surface in certain localities. The results are discussed by E. B. Stephenson, physicist, who was associated in this work.4

Work of the British Navy resulted in obtaining velocities of sound along the surface. An empirical formula based on their results expresses velocity as a function of temperature and salinity of the

water.5

There is no evidence in existing publications to show that any organization, except the United States Coast and Geodetic Survey, has made experimental determinations of the velocity for vertical

transmission to great depths.

From November 17 to December 29, 1923, the Coast and Geodetic Survey steamer Guide was engaged on an oceanographic cruise from New London, Conn., to San Diego, Calif., by way of Porto Rico and the Panama Canal. The wide range of conditions encountered is evident from inspection of the map. As the work included an investigation of Nares Deep, north of Porto Rico, the deepest part of the Atlantic Ocean, and also the development of a hitherto unexplored deep in the Pacific off the coasts of Central America and Mexico, the range in depth and the number of deep soundings was exceptional. The actual range in depth was from 185 fathoms to 4.617 fathoms.

The Guide was equipped with a sonic depth finder, and was also equipped with standard apparatus for taking wire soundings, temperatures, and water samples (for later determination of salinity) at any depth, and for taking specimens of the bottom. A definite scheme of soundings was laid out in advance. At every fourth or fifth sounding the depth was obtained by wire and the corresponding time interval for the transmission of sound was determined by the

^{2&}quot; Measuring ocean depths by acoustical methods," by Dr. Harvey C. Hayes, Journal of the Franklin Institute, vol. 197, pp. 323-354, Mar., 1924.

3 "Radio acoustic method of position finding in bydrographic surveys," by N. H. Heck, E. A. Eckhardt, and M. Kelser, Special Publication No. 107, U. S. Coast and Geodetic Survey.

4" Velocity of sound in sea water," by E. B. Stephenson, Physical Review, vol. 21, pp. 182-185, February,

<sup>1923.

6 &</sup>quot;A radio-acoustic method of locating positions at sea; application to navigation and to hydrographical survoy," by Dr. A. B. Wood and Capt. H. E. Browne, Proc. Phys. Soc. of London, vol. 35, part 3, pp. 183-194, Apr. 15, 1923.

sonic depth finder. Temperatures and water samples were obtained at the surface, at the depth of 200 fathoms, and at the bottom. In one case in the Atlantic and one in the Pacific serial temperatures and water samples were obtained from surface to bottom. On arrival

at San Diego, the water samples were turned over to the Scripps Institution for Biological Research, at La Jolla, Calif., for determination of the salinities.

Intermediate soundings were taken by the senic depth finder. The velocity of sound to be used in each case was not decided upon until the velocities obtained by simultaneous depth and time determinations had been studied and a rational basis for applying theo-

retical velocities had been developed.

Inasmuch as the piano-wire soundings, which were taken with special care in recognition of their importance in connection with the velocity of sound, were direct measurements of depth, and the observations with the sonic depth finder, taken with equal care, were direct measurements of time, it is evident that the work of the Guide made available a reliable series of measurements of the velocity of sound in sea water under a wide range of conditions. Owing to strong surface currents in a few places affecting the accuracy of the wire soundings, to faint echoes, to instrumental difficulties, and to other causes, a few of the determinations are less reliable than others, and such velocities are given less weight than those obtained under good conditions.

Early in the cruise of the Guide it became evident that the velocity increased with the depth in spite of the fact that the temperature fell and the salinity remained practically the same. This fact suggested that velocity is a function not only of temperature and salinity but also of pressure. Work was begun on the problem of finding the relation, based upon reliable theoretical grounds, of velocity to temperature, pressure, and salinity. The authors of this publication, Commander N. H. Heck, Coast and Geodetic Survey, who exercised general supervision over acoustic depth and position determination work of the Guide, and Ensign Jerry H. Service, United States Coast and Geodetic Survey, an officer of the Guide, who had previous experience in physical research, succeeded in finding a solution of this problem. It is the purpose of this publication to present the results of this solution in a form convenient for practical use, as well as to show how the problem has been solved.

THEORY

The Newtonian equation for the velocity of sound in a given medium suggested itself as a logical and reliable foundation upon which to work. Sir Isaac Newton first showed rigorously, reasoning from fundamentals, that the velocity of transmission of sound through any given medium is given by the equation

 $V = \sqrt{\frac{\text{elasticity of the medium}}{\text{density of the medium}}}$

· By "elasticity of the medium" is meant the ratio:

Increase of pressure applied to the medium
Resulting decrease in volume expressed as a fraction
of the original volume.

The "density of the medium" is, of course, the mass per unit volume, and the mass and volume must be expressed in units corresponding to those of the force and area, respectively, in the pressure. V will then be the velocity of transmission of sound through the medium, in units depending upon those used for pressure and density.

It has seemed most satisfactory to make use in the application of Newton's equation of the specific-volume data tabulated in Dynamic Meteorology and Hydrography, part 1, by V. Bjerknes and J. W. Sandström, published in 1910 by the Carnegie Institution of Washington. These specific volumes are based upon the very precise work of Knudsen, Ekman, and others. The use of these tables was suggested by Dr. George F. McEwen, of the Scripps Institution, who also gave other valuable advice and assistance. These specific volumes are probably nowhere in error by more than 1 part in 10,000, and for the most part are correct to 1 part in 100,000. The specific volume is, of course, the reciprocal of the density and can therefore be used directly in the application of Newton's equation.

The specific volumes tabulated by Bjerknes and Sandström are not directly measured but are built up as the sum of directly measured specific volumes and directly measured changes in specific volume due to pressure, temperature, and salinity changes. It is possible, therefore, by taking differences, to obtain from the tables satisfactory values of the elasticity of sea water, which elasticities are probably nowhere in error by as much as 1 per cent. It will now be shown how Bjerknes and Sandström's tables were used in the computation

of velocity.

In the first place it should be stated that as unit of pressure the bar, which equals 10° dynes per cm², was used in this work. It was first necessary to reduce the depth for which velocities were to be computed from fathoms to meters, and thence to dynamic meters by means of Table 3H. The dynamic meter is a unit used to take into account the increase in the force of gravity with depth. By means of Table 15H the pressure in decibars obtaining at the various depths were then found.

It is desirable to explain at this point the form in which the specific-volume tables of Bjerknes and Sandström have been compiled.

Seven tables are required which are as follows:

Table 8H gives the specific volumes of sea water in cm³/gm at 0° C. temperature and 35_{00}° (35 parts per thousand) salinity for every 10 decibars pressure from 0 to 10,000 decibars.

Table 9H is a table of salinity corrections to specific volume and

has a range from salinity 0.00 (pure water) to salinity 39.00.

Table 10H gives temperature corrections to specific volume and ranges from -1° to 29° C.

Table 11H is a table of combined salinity-temperature corrections.

Table 12H is a table of combined salinity-pressure corrections.

Table 13H is a table of combined temperature-pressure corrections. Table 14H is a table of combined salinity-temperature-pressure

corrections.

It will be noted that each of these tables is designated by a number followed by H. In what follows it will be understood that tables so designated are Bjerknes and Sandström tables without mention of the names of those authors.

It should be understood that the corrections in Tables 9H and 10H are first-order corrections and that the corrections in Tables 11H,

12H, 13H, and 14H, are additional second-order corrections.

It was found advantageous to transform Newton's equation into a more convenient form that would be better adapted to Bjerknes and Sandström's tables. The definition of elasticity which has been given can be put into the form

Increase of pressure is always taken as 10 decibars or 10^6 dynes/cm². "Resulting decrease in sp. vol." may be designated by dv. Specific volume may be designated by v.

The elasticity equation then becomes

Elasticity =
$$\frac{10^6}{\frac{dv}{v}} = \frac{10^6 v}{dv}$$
.

Furthermore, in order to have dv a whole number instead of a small decimal, it is found convenient to use $10^5 dv$ instead of dv, necessitating multiplying the numerator also by 10^5 , which gives:

Elasticity =
$$\frac{10^{11} v}{(10^6 dv)}$$
.

Since density = $\frac{1}{v}$ we have from Newton's equation

$$V \text{ in cm/sec.} = \sqrt{\frac{10^{11} v}{(10^{5} dv)} + \frac{1}{v}} = \sqrt{\frac{10^{11} v^{2}}{10^{6} dv}} = 10^{5} v \sqrt{\frac{10}{(10^{5} dv)}}$$

$$V \text{ in m/sec.} = 10^{3} v \sqrt{\frac{10}{10^{5} dv}}$$
(1)

$$V \text{ in fathoms/sec.} = 5.468 \times 10^{2} v \sqrt{\frac{10}{(10^{5} dv)}}$$
 (2)

In addition to facility in entering tables, this form lends itself well to the use of reciprocal and square-root tables and multiplying machines, with consequent ease and speed in obtaining velocities.

METHOD OF PREPARING VELOCITY TABLES

In order that the velocity of sound may be obtained in accordance with equation (2) at any place, the water from the surface to the bottom is considered in 200-fathom layers and the mean temperature and salinity for each layer is obtained from the best available source of information. The velocity for the entire depth is then taken as the mean of the various layer velocities.

Accordingly, Velocity Table No. 13, pages 26-27 gives the velocity

Accordingly, Velocity Table No. 13, pages 26-27 gives the velocity for the possible range of temperature and salinity for the surface and for the depth corresponding to the middle of each 200-fathom

The formation of a table of values of v consisted simply of taking out from Table 8H the "base specific volume" (for 0° C. and $35\frac{1}{00}$ salinity) for the pressures corresponding to the depths at the middle of the 200-fathom layers and applying to these base specific volumes corrections for salinity and temperatures from Tables 9H to 14H, inclusive. The resulting corrected values of v are given in Table 1.

Table 1

[$10^4 \ r$ (r=specific volume of sea water expressed in $\frac{\text{cm}^3}{\text{cm}}$)]

		L	10. 5 (r—speci	lic vo	lume of	Sea Wa	ter expr	essed in	<u>gm</u>)	<u> </u>		
Depth	Sa-				-	Temper	aturė (degrees	centigrae	ie)			
(fathoms)	(0/00)	0	2	4	c	8	10	12	14	16	18	20	22
Surface and 100.	31 32 33 34 35 35	97, 41 97, 41 97, 3 97, 20	97, 50 17, 97, 425 10, 97, 355 54, 97, 27 88, 97, 20	97, 520 97, 445 97, 369 97, 294 1 97, 219	97, 4 97, 3 97, 3 97, 2	16 97, 6 40 97, 5 66 97, 4 91 97, 4 16 97, 3 41 97, 2 67 97, 1	92 97,5 17 97,4 43 97,3 69 97,2	21 97, 5 47 97, 4 73 97, 4 99 97, 3	08 07, 51 08 07, 44 35 07, 37	0 97, 78 6 97, 70 3 97, 63 9 97, 56 6 97, 48 3 97, 41 0 97, 34		05 97,654 33 97,582	97, 850 97, 778 97, 705
300 (554 decl- bars).	3: 3: 3: 3: 3: 3:	97, 2 97, 1 97, 0 97, 0	90 97, 181 90 97, 103 15 97, 031	97, 274 97, 200 97, 125 97, 051 96, 977	1 01,0	96 07,3 23 97,2 49 97,1 75 97,1 01 97.0	01 97.1	36 97, 1 63 97, 1	64 97, 50 91 97, 43 118 97, 35 45 97, 28 73 97, 21 01 97, 14	3 97, 54 0 97, 47 8 97, 40 5 97, 32 3 97, 25	15 97, 5 2 97, 5 30 97, 4 28 97, 3 34 97, 2	89 97, 639 17 97, 566 46 97, 495 73 97, 423 02 97, 352 30 97, 281	07 000
500 (023 deci- bars).	31 33 33 34 34 31	97, 0 97, 0 1 06, 0 1 06, 8 1 96, 8	78 97,00- 03 97,020 25 96,01 53 96,87 78 96,70	97, 114 0 97, 040 5 96, 966 1 96, 892	97, 1 97, 0 90, 9	38 97,1 65 97,0 92 97,0 18 96.9	87 97, 2 94 97, 1 21 97, 0 18 96, 9 75 90, 9	00 97, 2 26 97, 1 54 97, 0 81 97, 0	63 97,20 91 97,13 19 97,06 47 96,98	AI 197 24	13 97,4 20 97,3 17 97,2 17 97,2 14 97,1 12 97,0	38 97, 489 66 97, 416 91 97, 314 23 97, 274 51 97, 202 79 97, 131	97, 540 97, 468 97, 396
700 (1,203 d e c i - bars).	333333333333333333333333333333333333333	2 96, 9 3 96, 8 1 96, 7 5 96, 6 6 96, 6	14 96, 93 10 96, 85 05 96 78	1 96, 953 8 96, 878 3 96, 800 0 96, 733	96, 8 96, 8	79 97,0 05 98,9 34 96,8 61 96,7 88 96,7	10 97,0 36 96,9 65 96,8 93 96,8 21 96,7	44 97,0 69 97,0 99 96,9 27 96,8 55 96,7	54 97, 19 82 97, 12 97 97, 04 97 96 97 96 96, 90 95 96, 83	5 97, 24 3 97, 16 9 97, 00 9 97, 02 8 96, 95	0 97, 2 8 97, 2 5 97, 1 5 97, 0 1 97, 0	85 97, 337 14 97, 205 42 97, 193 71 97, 124 01 97, 053 30 96, 983	
900 (1,665 d e c i - bars).	3 3	2 96, 7	05 96, 62 31 96, 55 57 96, 47	2 98,796 0 96,723 5 96,650 2 96,57	96,6	23 90, 8 51 96, 7 79 96, 7 96 96, 6 33 96, 5	57 96, 8 84 96, 8 12 96, 7 40 96, 6 68 96, 6	63 97, 0 91 96, 9 19 96, 8	02 31 59 87				
Depth	. T		Те	mperati	11.0		Salin-		Temper		<u></u>	<u></u>	
(fathor	15)	0	2	4	8	8	ity 0/00	0	1	2	3	Dept (fathor	
decl-ba	75).	96, 667 96, 593 96, 520 96, 416 96, 373 96, 300 96, 227	96, 514 96, 542 96, 468	96, 539 96, 567 96, 494 96, 422 96, 350	96, 741 96, 668 95, 506 96, 524 96, 452 96, 380 96, 309	96, 630 96, 557 96, 486 96, 415	31 32 33 34 35 36 37	I 95. S26	95, 983 95, 913 95, 840 95, 770	05, 996 95, 920 95, 854 95, 784 95, 713	96, 085 96, 013 95, 943 95, 871 95, 801 95, 731 95, 661	1,900(3,52 bars).	7 deci-
deci-ba	s).	96, 509 96, 436 96, 363 96, 290 96, 217 96, 144 96, 072	96, 459 96, 387 96, 314 96, 212 96, 169	96, 485 96, 413 96, 341 96, 269 96, 197	96, 588 96, 516 96, 444 96, 373 96, 301 96, 229 96, 159		31 32 33 34 35 30 37	1 95,606	95, 692 95, 622 95, 551	95, 848 95, 778 95, 707 95, 637 95, 566	95, 936 95, 805 95, 795 95, 724 95, 654 95, 584 95, 515	2,100(3,90 bars).	2 deci-
1,500 (2 deci-bar	5).	96, 351 96, 278 96, 200 96, 133 96, 061 95, 989 95, 917	96, 302 96, 231 96, 158 96, 087 96, 015 96, 944	96, 404 - 96, 332 - 96, 260 - 96, 188 - 06, 117 - 96, 046 - 95, 975 -			1	95, 667 95, 597 95, 526 95, 456 95, 386	95, 683 95, 614 95, 542	95, 628 95, 537 95, 488 95, 418	95, 787 95, 716 95, 647 95, 576 95, 507 95, 438 95, 369	2,300(4,27) bars).	ő deci-
1,700 (3 decl-bar	5).	96, 195 96, 122 96, 051 95, 978 95, 907 95, 836 95, 764	96, 148 96, 078 96, 005 95, 935 95, 864	96, 251 - 96, 179 - 96, 108 - 96, 036 - 95, 966 - 95, 896 - 95, 825 -			31 32 33 34 35 36 37	95, 518 95, 448 95, 378 95, 308 95, 238	95, 535 95, 466 95, 395 95, 326 96, 256	95, 411 05, 342	95, 569 95, 501 95, 430 95, 361 95, 202	2,500(4,65: bars).	2deci-

TABLE 1—Continued

Depth (fathoms)	т	emperatu centig	re (degr grade)	ees	Salin-	Temp	erature (e entigrade	degrees e)	Depth (fath	oms)
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1	2	3	0/00	0	1	2		,
2,700 (5,028 deci- bars).	95, 442 95, 371 95, 302 95, 232 95, 163 95, 094 95, 025	95, 460 95, 388 95, 320 95, 249 95, 181 95, 112 95, 044	95, 476 95, 405 95, 330 95, 260 95, 198 95, 129 95, 000	95, 494 95, 423 95, 350 95, 285 95, 217 95, 149 95, 080	31 32 33 34 35 36 37	91, 443 94, 376 91, 309 94, 212 94, 176	94, 465 94, 307 94, 331 94, 264 94, 199	94, 486 91, 418 91, 352 94, 285 91, 219	3,900 (7,308 bars).	deci
2,900 (5,404 deci- bars).	95, 155 95, 086 95, 017 94, 948 94, 879	95, 174 95, 104 95, 036 91, 967 91, 899	95, 191 95, 122 95, 054 94, 985 94, 916		33 34 35 36 37	94, 305 94, 238 94, 172 94, 106 94, 040	94, 328 94, 260 94, 195 91, 129 94, 064	94, 349 91, 281 94, 216 94, 150 94, 084	4,100 (7,688 bars).	deci
3,100 (5,780 deci- bars).	95, 011 91, 912 94, 874 91, 806 91, 737	95, 031 91, 961 91, 894 91, 826 94, 758	95, 048 91, 979 94, 912 94, 814 94, 776		33 34 35 36 37	94, 167 94, 101 94, 035 93, 969 93, 903	94, 190 94, 123 94, 058 93, 992 93, 927	04, 212 94, 145 94, 080 94, 014 93, 948	4,300 (8,070 bars).	deci
3,300 (6,187 deci- bars).	94, 866 94, 797 91, 729 91, 661 94, 593	94, 886 91, 816 91, 749 94, 681 94, 614	94, 904 94, 835 94, 768 94, 700 94, 633		33 34 35 36 37	94, 033 93, 966 93, 901 93, 836 93, 770	94, 057 93, 989 93, 925 93, 860 93, 795	94, 079 91, 011 93, 947 93, 882 93, 816	4,500 (8,451 bars).	deci
3,500 (6,547 deci- bars).	94, 723 94, 654 94, 587 94, 520 94, 452	94, 744 91, 674 94, 608 94, 541 91, 1 74	94, 762 94, 693 94, 627 94, 560 94, 493		33 34 35 36 37	93, 897 93, 831 93, 766 93, 701 93, 636	93, 921 93, 854 93, 790 93, 725 93, 661	93, 944 93, 877 93, 813 93, 748 93, 663	4,700 (8,834 bars).	deci-
3,700 (6,927 deci- bars).	94, 582 94, 514 94, 447 94, 380 94, 313	94, 694 91, 535 91, 469 94, 402 94, 336	94, 624 94, 555 94, 489 94, 422 94, 355		33 34 35 36 37					

Table 2

[Ma, o, r (Ma o, r=10⁴ do. at 35% sallnity, 0° C., and standard pressure, where do=decrease in specific volume in cm⁴/gm corresponding to 1 bar increase in pressure)]

Pressure (decibars)	М _{15, 0, Р}	Pressure (decibars)	Мр., о, г	Pressure (decibars)	Mu, 0, 7	Pressure (decibars)	M25, 0, P
0 100 200 300 400	4. 50 4. 50 4. 50 4. 40 4. 48½	2, 500 2, 600 2, 700 2, 800 2, 900	4. 17 4. 15 4. 14 4. 1314 4. 12	5, 000 5, 100 5, 200 5, 300 5, 400	3. 87 3. 85 3. 8314 3. 8314 3. 8212	7,500 7,600 7,700 7,800 7,900	3. 60½ 3. 59 3. 58 3. 57⅓ 3. 50⅓
800 600 700 800 900	4. 441/2 4. 43 4. 411/2 4. 401/2 4. 391/2	3, 000 8, 100 3, 200 3, 300 3, 400	4. 10\6 4. 09\6 4. 08\6 4. 05\6 4. 06\6	8, 500 5, 600 6, 700 5, 800 8, 900	3. 803 4 3. 80 3. 70 3. 77 4 3. 77	8, 000 8, 100 8, 200 8, 300 8, 400	3. 55 3. 5414 3. 5314 3. 52 3. 5214
1,000 1,100 1,200 1,300 1,400	4. 371/2 4. 36 4. 35 4. 33 4. 311/2	3, 500 3, 600 3, 700 3, 800 3, 900	4. 043/2 4. 00 4. 00 4. 00 4. 00	6, 000 6, 100 6, 200 6, 300 6, 400	3. 76 3. 73½ 3. 73 3. 72½ 3. 71	8, 500 8, 600 8, 700 8, 800 8, 900	3. 5134 3. 50 3. 4834 3. 4734 3. 47
1,500 1,600 1,700 1,800 1,900	4. 30 4. 29 4. 27½ 4. 26 4. 25	4, 000 4, 100 4, 200 4, 300 4, 400	4. 00 3. 90)4 3. 95 3. 93)4 3. 94)4	6, 500 6, 600 6, 700 6, 800 6, 900	3. 70½ 3. 69 3. 63½ 3. 68 3. 65		
2, 000 2, 100 2, 200 2, 300 2, 400	4. 24 4. 22)4 4. 20)4 4. 19 4. 18)4	4, 500 4, 600 4, 700 4, 800 4, 900	3. 92 3. 91 3. 69! 4 3. 88 3. 88	7,000 7,100 7,200 7,300 7,400	3, 65 3, 65 3, 62) 2 3, 82 3, 61) 2		

 $10^5 dv$, which will hereafter be referred to as M is obtained from the tables in a somewhat similar manner, that is "base M" (for 0° C. and 35_{00}°) is taken out and then corrections are applied, but fortunately only two corrections are necessary. The base M is approximately the difference between successive values of the base specific volumes in Table 8H. As these simple differences yield only one significant figure, and M is required to three significant figures, a logical method of computation which would yield the desired accuracy was necessary. That suggested by D. L. Hazard, assistant chief, division of terrestrial magnetism, Coast and Geodetic Survey, was adopted. The process was as follows: A preliminary table (Table 2) of values of base M was first computed for every 100 decibars from 0 to 8,900 decibars. The method used in computing this table may be illustrated by computing one of the values, say base M for 8,300 decibars pressure.

TABLE 8H [Specific volumes in $\frac{cm^3}{gm} \times 10^3$]

Decibars	0	10	20	30	40	50	60	70	80	90
8,200 S,300	93, 989	93, 986	93, 982	93, 979	93, 975	93, 971	93, 968	93, 964	93, 961	93, 957
8,400	93, 919 70	93, 915 71	93, 912 70	93, 908 71	93, 905 70	93, 901 70	93, 807 71	93, 894 70	93, 890 71	93, 897 70

Mean difference, 70.4.

The change per 10 decibars, which is the base M for 8,300 decibars, equals 70.4 divided by 20, or 3.52. The final table of M (Table 5) is then blocked out in the same manner as Table 1 and base values of M are inserted in their proper places.

Corrections computed from Tables 12H and 13H were necessary in order to obtain the values of M for other temperatures and salinities. The corrections in Tables 9H, 10H, and 11H do not change with pressure and therefore do not affect M, and the correction from Table 14H is negligible in so far as M is concerned. The salinity and temperature corrections used in the computations of Table 5 are tabulated in Tables 3 and 4, respectively.

TABLE 3 .- Salinity corrections to M

Salinity (0/00)	Depths where applicable (fathoms)	Correc- tion	8alinity (0/00)	Depths where applicable (fathoms)	Correo- tion
31	0-1, 300 1, 500-2, 300 2, 500-2, 700 0-1, 100 1, 300-2, 700 0-1, 300 1, 500-3, 900 4, 160-4, 700	+0.06 +0.05/4 +0.05/4 +0.05/4 +0.03/4 +0.02/4 +0.02/4	30	0-2, 500 2, 700-3, 500 3, 700-4, 700 0-2, 500 2, 700-3, 500 3, 700-1, 700 0-1, 300 1, 500-3, 900 4, 100-1, 700	+0.01}4 +.01 +.00}6 01}6 00}6 00}6 03 02}6

Table 4.—Temperature corrections to M

Depths where applicable (fathoms) 1,900-3,300 3,500-4,700	Correction	Temperature (degrees centigrade)	Depths where applicable (fathoms)	Correc- tion
	011/2	12	0-300 500 700	-0. 25 24 24
0-1, 100 1, 300-2, 300 2, 500-3, 300 3, 500-4, 100 4, 300-4, 700	04	14	900 0-300 500 700	23 27 26 25
1, 900-2, 700		i	0-500 700	30 29
1, 300-1, 700	09	18	0-300 500	- 33 - 32 - 31
0-500	171/2	20	0-100	31 35 34
0-300	-, 22		500 700	34 33
700 900	21 21 20	22	0 100 300 500 700	38 37 36 36 35
	1, 300-2, 300 3, 500-4, 100 4, 300-4, 700 1, 900-2, 700 0-1, 100 1, 300-1, 700 0-500 700-1, 100 0-300 500 700	1, 300-2, 300	1, 300-2 300	1, 300-2 300

 $T_{ABLE} \ \, 5$ [M (M=1040, where dv= decrease in specific volume in cm/gm corresponding to 1 bar increase in pressure]

	Salin-				Ter	nperat	are (qu	едтеез	entigr	ade)			
Depth (fathoms)	ity (0/00)	0	2	4	6	8	10	12	14	16	18	20	22
Surface and 100	31 32 33 34 35 36 37	4. 56 4. 55 4. 53 4. 52 4. 50 4. 49 4. 47	4. 51 4. 50 4. 48 4. 47 4. 45 4. 44 4. 42	4. 47 4. 46 4. 44 4. 43 4. 41 4. 40 4. 38	4. 43 4. 42 4. 40 4. 39 4. 37 4. 36 4. 34	4.39 4.38 4.36 4.35 4.33 4.32 4.30	4.34 4.33 4.31 4.30 4.28 4.27 4.25	4.31 4.30 4.28 4.27 4.25 4.24 4.22	4. 29 4. 28 4. 26 4. 25 4. 23 4. 22 4. 20	4. 26 4. 25 4. 23 4. 22 4. 20 4. 19 4. 17	4. 23 4. 22 4. 20 4. 19 4. 17 4. 16 4. 14	4. 21 4. 20 4. 18 4. 17 4. 15 4. 14 4. 12	4. 18 4. 17 4. 14 4. 15 4. 11 4. 09
	31 32 33 34 35 36 37	4.50 4.48 4.47 4.45 4.44 4.42 4.41	4. 45 4. 43 4. 42 4. 40 4. 39 4. 37 4. 36	4. 41 4. 39 4. 38 4. 36 4. 35 4. 33 4. 32	4. 37 4. 35 4. 34 4. 32 4. 31 4. 29 4. 28	4. 33 4. 31 4. 30 4. 28 4. 27 4. 25 4. 24	4.28 4.26 4.23 4.23 4.22 4.20 4.19	4 25 4 23 4 22 4 20 4 19 4 17 4 16	4. 23 4. 21 4. 20 4. 18 4. 17 4. 15 4. 14	4. 20 4. 18 4. 17 4. 15 4. 14 4. 12 4. 11	4. 17 4. 15 4. 14 4. 12 4. 11 4. 09 4. 08	4.16 4.14 4.13 4.11 4.10 4.08 4.07	4. 14 4. 13 4. 11 4. 09 4. 08 4. 08
300:	31 32 33 34 35 36 37	4.45 4.44 4.42 4.41 4.39 4.38 4.36	4. 40 4. 39 4. 37 4. 36 4. 34 4. 33 4. 31	4. 36 4. 35 4. 33 4. 32 4. 30 4. 29 4. 27	4. 32 4. 31 4. 29 4. 28 4. 25 4. 25 4. 23	4. 28 4. 27 4. 25 4. 24 4. 22 4. 21 4. 19	4. 24 4. 23 4. 21 4. 20 4. 18 4. 17 4. 15	4. 21 4. 20 4. 18 4. 17 4. 15 4. 14 4. 12	4. 19 4. 18 4. 16 4. 15 4. 13 4. 12 4. 10	4.15 4.14 4.12 4.11 4.09 4.08 4.06	4.13 4.12 4.10 4.09 4.07 4.06 4.04	4.11 4.10 4.08 4.07 4.05 4.04 4.02	4.00 4.00 4.00 4.00 4.00 4.00
700	31 32 33 34 35 36 37	4. 39 4. 38 4. 36 4. 35 4. 33 4. 32 4. 30	4. 34 4. 33 4. 31 4. 30 4. 28 4. 27 4. 25	4.30 4.20 4.27 4.26 4.24 4.23 4.21	4. 26 4. 25 4. 23 4. 22 4. 20 4. 19 4. 17	4. 22 4. 21 4. 19 4. 18 4. 16 4. 15 4. 13	4. 18 4. 17 4. 15 4. 14 4. 12 4. 11 4. 09	4.15 4.14 4.12 4.11 4.09 4.08 4.08	4.14 4.13 4.11 4.10 4.08 4.07 4.05	4.10 4.09 4.07 4.06 4.04 4.03 4.01	4.08 4.07 4.05 4.04 4.02 4.01 3.99	4.06 4.05 4.03 4.02 4.00 3.99 3.97	
000	31 32 33 34 35 36 37	4.34 4.33 4.31 4.30 4.28 4.27 4.25	4.29 4.28 4.20 4.23 4.23 4.20	4. 25 4. 24 4. 22 4. 21 4. 19 4. 18 4. 16	4.21 4.20 4.18 4.17 4.15 4.14 4.12	4.17 4.16 4.14 4.13 4.11 4.10 4.08	4.14 4.13 4.11 4.10 4.08 4.07 4.05	4.11 4.10 4.03 4.07 4.05 4.04 4.02					

TABLE 5—Continued

Depth		Te	mperatu	IL9		Salin-		Temp	erature		Depth
(fathoms)	0	2	4	6	8	0/00	0	1	2	3	(fathoms)
1,100	4.30 4.28 4.27 4.25 4.24 4.22 4.21	4. 25 4. 23 4. 22 4. 20 4. 19 4. 17 4. 16	4. 21 4. 19 4. 18 4. 16 4. 15 4. 13 4. 12	4. 17 4. 15 4. 14 4. 12 4. 11 4. 09 4. 08	4.13 4.11 4.10 4.08 4.07 4.05 4.04	31 32 33 34 35 30 37	4.09 4.07 4.06 4.05 4.03 4.02 4.01	4. 07 4. 05 4. 04 4. 03 4. 01 4. 00 3. 99	4. 05 4. 03 4. 02 4. 01 3. 99 3. 98 3. 97	4. 04 4. 02 4. 01 4. 00 3. 98 3 97 3 96	1,900
1,300	4. 25 4. 23 4. 22 4. 20 4. 19 4. 17 4. 16	4. 21 4. 19 4. 18 4. 16 4. 15 4. 13 4. 12	4.16 4.14 4.13 4.11 4.10 4.08 4.07	4. 12 4. 10 4. 09 4. 07 4. 06 4. 01 4. 03		31 32 33 34 35 36 37	4. 06 4. 04 4. 03 4. 02 4. 00 3. 98 3. 98	4. 04 4. 02 4. 01 4. 00 3. 93 3. 97 3. 96	4. 02 4. 00 3. 99 3. 98 3. 96 3. 95 3. 94	4. 01 3. 99 3. 98 3. 97 3. 95 3. 94 3. 93	2,100
1, 500	4. 20 4. 18 4. 17 4. 15 4. 14 4. 12 4. 11	4. 16 4. 14 4. 13 4. 11 4. 10 4. 08 4. 07	4.11 4.09 4.08 4.06 4.05 4.03 4.02			31 32 33 34 35 36 37	4. 00 3. 98 3. 97 3. 96 3. 94 3. 93 3. 92	3. 98 3. 96 3. 95 3. 94 3. 92 3. 91 3. 90	3.96 3.91 3.93 3.92 3.90 3.89 3.88	3. 95 3. 93 3. 92 3. 91 3. 69 3. 88 3. 87	2,300
1,700	4. 15 4. 14 4. 12 4. 11 4. 09 4. 08 4. 08	4. 11 4. 10 4. 08 4. 07 4. 05 4. 01 4. 02	4.08 4.05 4.03 4.02 4.00 3.99 3.97			31 32 33 34 35 36 37	3. 96 3. 95 3. 94 3. 93 3. 91 3. 90 3. 89	3. 94 3. 93 3. 92 3. 91 3. 89 3. 88 3. 87	3. 92 3. 91 3. 90 3. 89 3. 87 3. 80 3. 85	3. 91 3. 90 3. 89 3. 88 3. 86 3. 85 3. 84	2,500
		- 1		Temp	erature entigrad	e)	Salin-		emperati		
Depth	h (fatho	ms)	0	1	2	3	lty 0/00	0	1	2	Depth (fathoms)
,700		Ä	3. 92 3. 91 3. 89 3. 88 3. 87 3. 86 3. 84	3. 90 3. 89 3. 87 3. 86 3. 85 3. 84 3. 82	3. 88 3. 87 3. 85 3. 84 3. 83 3. 82 3. 80	3. 87 3. 86 3. 84 3. 83 3. 82 3. 81 3. 79	31 32 33 34 35 36 37	3. 65 3. 63 3. 62 3. 61 3. 60	3. 64 3. 62 3. 61 3. 60 3. 59	3, 62 3, 60 3, 59 3, 58 3, 57	3, 900
2,900			3.85 3.84 3.83 3.82 3.80	3.83 3.82 3.81 3.80 3.78	3, 81 3, 80 3, 79 3, 78 3, 76		33 34 35 36 37	3. 60 3. 59 3. 58 3. 57 3. 56	3. 59 3. 58 3. 57 3. 56 3. 55	3. 57 3. 56 3. 55 3. 54 3. 53	4, 100
3, 100			3.80 3.79 3.78 3.77 3.75	3.78 3.77 3.76 3.75 3.73	3. 76 3. 75 3. 74 3. 73 3. 71		33 34 35 36 37	3, 57 3, 56 3, 55 3, 54 3, 53	3. 56 3. 55 3. 54 3. 53 3. 52	3. 54 3. 53 3. 52 3. 51 3. 50	4,300
3,300	····		3.76 3.74 3.73 3.72 3.71	3.74 3.72 3.71 3.70 3.69	3.72 3.70 3.69 3.68 3.67		33 34 35 30 37	3. 54 3. 53 3. 52 3. 51 3. 50	3. 53 3. 52 3. 51 3. 50 3. 49	3. 51 3. 50 3. 49 3. 48 3. 47	4, 500
3, 500		······································	3. 72 3. 71 3. 70 3. 69 3. 67	3.71 3.70 3.60 3.68 3.66	3. 69 3. 68 3. 67 3. 66 3. 64		33 -34 35 36 37	3. 49 3. 48 3. 47 3. 46 3. 45	3. 48 3. 47 3. 46 3. 45 3. 44	3. 46 3. 45 3. 44 3. 43 3. 42	4,700
3,700			3. 68 3. 66 3. 65 3. 64 3. 63	3. 67 3. 65 3. 64 3. 63 3. 62	3. 65 3. 63 3. 62 3. 61 3. 60		33 34 35 36 37				2

The salinity corrections tabulated in Table 3 were computed from Table 12H as the rate of change per bar of the values in that table at the salinity and pressure in question. The method used in computing these values may be illustrated by computing one of the values, say the correction for $31\frac{0}{00}$ salinity applicable between depths 0 and 1,300 fathoms (pressures 0 and 2,400 decibars).

Table 12H [104 \times salinity-pressure correction in $\frac{cm^3}{gm}$ to specific volume]

Salinity 31	Decibars
-13	2, 300
-14	2, 400
-14	2, 500
-15	2, 600

From an inspection of the table one may fairly assume that the exact pressure to which -14 belongs is very approximately 2,450 decibars. Since the correction for 0 decibars is 0, the mean change per bar in the salinity-pressure correction is -14 divided by 245, or -0.06. Since this tends to make the specific volume less at the higher pressure, it is additive to M. Hence the salinity correction, as tabulated in Table 3, to the base M at $31\frac{0}{00}$ salinity between 0 and 1,300 fathoms is +0.06.

The temperature corrections tabulated in Table 4 were computed from Table 13H, in an exactly similar manner, as the rate of change per bar of the values in that table at the temperature and pressure in

question.

The values of velocity in Table 13 were then computed directly by means of equations (1) and (2) from the values of v and M in Tables

1 and 5, respectively.

The curves on Plate 2 show how the two quantities from which V is computed, v and M, respectively, vary with the depth. The curves on Plate 3 show how velocity varies with depth, temperature, and salinity, respectively.

ADIABATIC CORRECTIONS TO VELOCITY

The values of velocity in Table 13 were computed using values of M experimentally determined under isothermal conditions. Granting that the condensations and rarefactions of the sea water during the transmission of sound take place under adiabatic conditions, then the velocities in Table 13 theoretically need to be increased by small corrections, which were neglected in computing that table. It was suggested by Dr. L. H. Adams, of the geophysical laboratory of the Carnegie Institution, that these corrections might increase the velocity by as much as 0.5 of 1 per cent, so it was decided to investigate the effect. The theory underlying the computation will now be given. The symbols used were as follows:

 β_a is the adiabatic compressibility (pressure rate of change of

specific volume) of the sea water. In cm3/gm per dyne/cm2;

 β is the isothermal compressibility;

C, is the specific heat at constant volume, in ergs per gram per degree centigrade;

 C_p is the specific heat at constant pressure;

a is the thermal coefficient of expansion (temperature rate of change of specific volume), in cm3/gm per degree centigrade;

T is the absolute temperature on the centigrade scale.

It is shown in works on thermodynamics that

$$\frac{\beta_{a}}{\beta} = \frac{C_{v}}{C_{p}}$$

and that
$$C_p - C_v = \frac{a^2}{\beta}$$

whence $C_v = C_p - \frac{a^2}{\beta}$
and $\frac{\beta_a}{\beta} = \frac{C_v}{C_p} = 1 - \frac{a^2}{\beta} \frac{T}{C_p}$

In other words, the adiabatic compressibility, which probably obtains during sound transmission, is less than the isothermal compressibility, which is what Ekman measured and Bjerknes used in his tables, by a fraction equal to $\frac{a^2}{\beta} \frac{T}{C_p}$. Now the elasticity is very nearly equal to the reciprocal of the compressibility, so that the adiabatic elasticity will be greater than the isothermal elasticity by the same fraction. And since the velocity is proportional to the square root of the elasticity, the velocity computed from adiabatic compressibility will be greater than the velocity computed from isothermal compressibility by approximately one-half this fraction. Tables are given herewith of 10^5 a, 10^5 β , $\frac{C_p}{4.18}$, $\frac{a^2}{\beta} \frac{T}{C_p}$, and of the adiabatic corrections to the velocities under various conditions. Since the unit of pressure used for β was the bar, or 10^6 dynes/cm², a unit of energy in C_p equal to 10^6 ergs, or 1 decijoule, was necessary.

Table 6 $\left[10^{4} a = \left(\frac{\delta \sigma}{\delta t}\right)_{p} - \text{temperature rate of change of specific volume, in } \frac{\epsilon m^{3}}{gm} \text{ per degree centigrade, of sea water of salinity 35 } \frac{0}{00}\right]$

	Temperature in degrees centigrade								
Depth (fathoms)	0	5	10	15	20				
Surface	5 10	11 15	16 19	21	25				
1,100 2,100 3,300 4,300	15 19 22	19							

The above values were computed by means of Tables 10H and 13H.

Table 7 [$10^5 \beta - \left(\frac{\delta v}{\delta p}\right)_{\tau}$ = isothermal pressure rate of change of specific volume, in $\frac{cm^3}{gm}$ per bar, of sea water of salinity 35 $\frac{0}{00}$]

	Temperature in degrees contigrade							
Depth (fathoms)	0	5	10	15	20			
8urface 1,100 2,100	4.5 4.2 4.0	4.4 4.1 3.9	4.3 4.0	4, 2	4, 2			
2,100 3,300 4,300	3.7							

The above values were taken directly from Table 5 to two significant figures.

TABLE 8

 $\left[\frac{C_p}{4.18} C_{p-s} \text{ specific heat at constant pressure, in decijoules per gram per degree contigrade, of sea water of salinity 35 <math>\frac{0}{100}$

	т	emperatui	e in degree	s centigrac	ie
Depth (fathoms)	0	5	10	15	20
Surface	9. 3 9. 1 9. 0 8. 9 8. 8	9. 3 9. 1 9. 0	9. 3 9. 1	9.3	9, 3

Table 9 $\left\lceil \frac{\alpha^2 T}{\theta C_0} \right\rceil$

	T	emperature	in degree	s centigrade	3
Depth (fathoms)	0	5	10	15	20
Surface	0.0004 .0017	0.002 .004	0.004 .0067	0, 008	0. 111
2,100 3,300 4,300	. 004 . 007 . 010	.007			

TABLE 10

[Adiabatic corrections to velocity, in fathoms per second. For the surface, corrections are also given in meters per second (lower line)]

Donald (fatheres)	T	emperatur	e in degree	s centigrac	ie
Depth (fathoms)	0	- 6	10	15	20
Surface	0. 2 . 3	0.8 1.5	1. 6 3. 0	3. 2 6. 0	4. 4 8. 3
1,100	.7 1.6	1. 6 2. 8	2.7		
3,300 4,300	2. 8 4. 0				

The authors are somewhat in doubt as to the advisability of applying this correction. The maximum effect is about 0.5 of 1 per cent and the average effect all through the tables is only about 0.2 or 0.3 of 1 per cent. Furthermore, in practice the depth obtained by wire under good conditions is accepted as the standard. It will be shown that the depth computed from the time interval measured with the sonic depth finder and the mean velocity obtained from Table 13 and known physical conditions agrees as closely as can be expected with the corresponding wire depth.

ACCURACY OF VELOCITY TABLE NO. 13

The accuracy of the velocities tabulated in Table 13 is controlled by the accuracy of the values of M. Judging from the records of the experimental work of Ekman, which is the ultimate source of the values of this quantity, no value of M will be in error by more than 1 per cent. Since M appears under the radical in the velocity equation this would indicate that no value of velocity will be in error by more than 0.5 of 1 per cent, which would amount to about 7 m./sec., or 4 fathoms/sec.

It is believed that the velocities of Table 13 are of the highest degree of accuracy possible with compressibility data available at the present time and that they are adequate for acoustic-sounding purposes. It is realized, however, that the accuracy depends upon

PRINCE THE RESIDENCE OF PERSONS

whether the values of M used in the table are the true values. Further study is being given by one of the authors to the possibility of obtaining directly from the results of Ekman's compressibility experiments more precise values of M.

COMPARISON OF COMPUTED VELOCITIES WITH DIRECTLY MEASURED VELOCITIES

COMPARISON OF SURFACE VELOCITIES

At the surface, at -0.3° C. and at salinity 33.5°_{00} , E. B. Stephenson, working over a distance of about 15,000 meters, and using very precise methods of measuring distance and time, found the velocity of sound to be $1,453 \pm 1.5$ m./sec. Table 13 gives 1,448 m./sec. for these conditions.

In connection with the tests of the radio-acoustic apparatus devised by Dr. E. A. Eckhardt, the subaqeous sound-ranging section of the Army and the steamer *Guide* cooperated in a long-distance test of the velocity of sound during November, 1923. Both time and distance were determined with great precision. The distance was about 100,000 meters. At the surface, at 13° C. and salinity 33.5% the velocity was found to be 1,492 m./sec. Table 13 gives for these conditions 1,494 m./sec.

On April 8, 1924, off Encinitas, Calif., the steamer Guide, as a test of the radio-acoustic apparatus aboard ship and at two hydrophone stations fired six detonators in the water near the ship. The position of the ship at each explosion was determined by sextant angles. The time required for the sound wave to travel from the ship to each hydrophone was measured by the radio-acoustic apparatus. The accompanying table gives the results of the test, and shows a mean measured velocity of 1,495 m./sec. at temperature 14°C. and salinity $33.5\,_{00}^{0}$, the sound wave being assumed to pass close to the surface. Table 13 gives 1,496 m./sec. for these conditions.

Detonator No.	Time from hydro- phone 1	Distance from hydro- phone l	Velocity	Time from hydro- phone 2	Distance from hydro- phone 2	Velocity
1	Seconds 12.38 12.40 12.38 12.34 12.33 12.35	Meters 18, 439 18, 456 18, 451 18, 455 18, 450 18, 439	M. seconds 1, 489 1, 488 1, 490 1, 496 1, 493	Seconds 12 60 12 72 12 71 12 68 12 66 12 73	Meters 19, 018 19, 001 19, 010 19, 000 19, 006 19, 013	M. seconds 1, 499 1, 494 1, 496 1, 501 1, 501 1, 494
Mean			1,492			1, 49

COMPARISON OF VERTICAL VELOCITIES TO GREAT DEPTHS

For convenience in making comparisons, computed velocity derived from Table 13 will be designated by V_o and measured velocity by V_m . In every case that will be discussed V_m is determined by dividing a distance measured as accurately as conditions permit by a time interval determined with equal care. The percentage difference $\frac{V_o - V_m}{V_m} \times 100$ per cent can properly be regarded as the ultimate

test of the reliablity of the method.

The results of the observations made during the oceanographic cruise of the *Guide* are given in detail in Tables 11 and 12, which follow. Table 11 also shows how V_0 was computed for each sounding.

TABLE 11

Number of sounding	Observ tures salini	ed ton centign	pora- do and			Ado	pted	temp	eratu	ros, so	diniti	es, an	d tab	ular v	olocit	les for	dopt	hs ext	016350	d in b	undr	eds of	fatho	ms			v.
	Surface	200 fathoms	Bottom	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	
1	13. 9 34. 8	6. 3 35. 0	3, 3 34. 9	9 35 812	35 807	δ 35 810	4 35 812	35 815	3 35 816																		812
2	15. 0 34. 0	6. 4 34. 9	2.4	10 35 814	5 35 807	35 810	35 812	35 815	35 816	3 35 819	3 35 823	3 35 826	3 35 830														817
3	22. 6 36. 3	17. 6 36. 4	2.6 35.1	20 36 829	15 36 825	10 30 821	9 35 822	8 35 824	7 35 825	35 827	5 35 828	35 829	35 831	3 35 832	3 35 837	3 35 839											828
4	21, 1 36, 4	17. 7 36. 4	35. 1	19 36 828	14 36 824	10 36 821	9 35 822	8 35 824	7 35 825	0 35 827	5 35 828	35 820	35 831	3 35 832	3 35 837	3 35 839											828
5	21. 3 36. 4	17. 7 36. 4	3. 0 35. 2	19 36 828	14 30 821	10 36 821	35 822	8 35 824	7 35 825	0 35 827	5 35 828	5 35 831	35 831	35 834	35 839	3 35 839	35 813	3 35 840					 		••••		831
6	21. 7 35. 9	17. 5 36. 4	2, 3 35. 0	10 36 828	14 30 824	10 30 821	9 35 822	8 35 824	7 35 825	0 35 827	5 35 828	5 35 831	35 831	35 834	35 839	3 35 839	3 35 843	3 35 846									831
7	23. 5 36. 4	17. 9 86. 5	1. 5 35. 1	21 36 831	14 36 824	10 36 821	9 35 822	8 35 824	7 35 825	0 35 827	5 35 828	35 820	35 831	35 836	5 35 841	35 841	3 35 843	2 35 844									831
8	25. 1 36. 3	17. 4 36. 5	2, 5 35, 2	21 36 831	14 36 824	10 36 821	9 35 822	8 35 824	7 35 825	6 35 827	5 35 828	5 35 831	35 831	4 35 834	4 35 839	3 35 830	3 35 843	3 35 846									831
9	25. 1 36. 0	17. 6 36. 4	35. 1	21 36 831	14 30 824	10 36 821	9 35 822	8 35 824	7 35 825	6 35 827	5 35 828	5 35 831	4 35 831	4 35 834	4 35 839	3 35 839	35 843	3 35 840									831
10	26. 3 35. 8	17. 2 36. 3	35. 1	22 36 833	14 36 824	10 36 821	35 822	8 35 824	7 35 825	6 35 827	5 35 828	5 35 831	35 831	35 834	35 830	3 35 839	3 35 843	3 35 810		 							

11	20. 8 36. 0	18, 2 36, 3	-0.3 35.2	22 36 833	14 36 824	10 36 821	9 35 822	8 35 824	7 35 825	6 35 827	5 35 828		1	35 834	- 1		l .	35 844	35 849	35 853	35 854	35 856	35 858	35 862	i	35 866	841
12	25. 0 35. 8	16. 6 36. 1	2, 5 35, 1	21 36 831	14 36 824	10 36 821	8 35 820	7 35 822	6 35 823	5 35 824	4 35 Տշմ	3 35 826	3 35 830														825 837
13	26. 3 36. 1	17. 1 36. 3	2. 3 35. 1	22 36 833	14 36 824	10 36 821	9 35 822	8 35 824	7 35 825	6 35 827	5 35 828	35 831	4 35 831	35 834	35 839		1	35 846	35 851	1		- 1					
14	25, 2 36, 1	19, 2 36, 4	2. 0 36. 1	22 36 833	15 36 825	36 822	10 35 825	9 35 825	8 35 827	35 829	1	5 35 831		35 834	35 839		l	1	851								033
15	23. 9 36. 0	17. 7 36. 4	2. 2 35. 2	21 36 831	14 36 824	1 1	9 35 822	8 35 \$24	7 35 825	35 827	1						3 35 843		I		35 854	35 858	35 861	35 865	35 867	35 870	841
16	27. 2 36. 4	16. 7 36. 3	2.5	22 36 833	13 36 823	30 819	35 818	35 820	35 821	35 822	3 35 824	35 826							 								823
17	26. 2 35. 2	17. 6 36. 3	4. 0 35. 1	632	11 35 819	1	35 812																				819
18	25. 7 34. 9	17.6 35.5	4. 5 35, 3	35 832	l .		1	8 35 824	1	1		35 834	1		35 840												831
10	25. 7 35. 0	17. 0 30. 2	4. 1 35. 1	21 35 830	13 35 821	10 35 820	1	35 822	823	35 827	35 831	35 831	35 833	35 836									1				828
20	20. 8 35. 4	13. 4 36. 0	4. 0 35. 2	829	1	35 815	6 35 816	35 820	35 821	35 824	35 828	35 829	35 832	1													824
21	20.8 36.0	12. 5 36. 3	4. 0 35. 3	36 827	i	35 815	35 816	35 820	35 821	35 824	828 828	35 829	35 832			:	-	-									
22	27, 3 36. 0	13. 5 36. 3	3. 9 35. 2	829	36 816							-			- -												818
23	20. 8 34. 9							-	-			-		-					-	.		-	-		-	-	828

TABLE 11-Continued

Number of sounding	Observ tures salini	ed tem contigra ties	pors-			Ado	pted 1	temp	oratur	185, Ба	linitic	3, an c	i tabı	ılar v	siocit	les for	dopti	as exp)1es30	d la b	undn	eds of	fathe	ms			V.
Mitthet of sounding	Surface	200 fathoms	Bottom	1	3	5	7	0	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	45	
24				20 32 825																							825
5	26. 8 31. 4	13. 6 33. 6	2 3 34 3	20 32 825	9 33 814	7 34 812	6 34 815	5 34 817	34 318	4 34 821	3 34 822			l	1					l			ł		1		819
6	26. 4 31. 1	13. 5 32. 5	1. 9 34. 5	20 32 825	8 33 811	33 810	5 34 813	4 34 815	3 34 816	34 810																	81
7	26. 6 32. 7	9. 9 33. 1	2.6 34.5	18 33 824	7 33 809	5 34 808	34 811	3 34 812				1				4.		i		i							81
8	27. 8 32. 1	12.0 34.3	34.6	20 33 826	8 34 812	6 34 810	34 811																				81
9	27. 3 33. 0	13. 4 34. 6	2 1 34 5	20 34 827	9 34 814	7 34 812	6 34 815	5 34 817	4 34 818	34 818	3 34 822	34 823				-											81
0	27. 1 33. 3	11.3 34.4	2.2 34.6		8 34 812	7 34 812	6 34 815	5 34 817	4 34 818	3 34 816	3 34 822	2 34 823												-			81
1	27. 7 34. 0	11. 1 34. 7	2.3 34.7	19 34 826	8 34 812	0 34 810	5 34 813	4 34 815	34 816	3 34 818	34 820	2 34 823	2 34 828			-					-						81
2	25. 7 33. 5	12.7 34.6	2.4 34.6		9 34 814	7	6 34 815	5 34 817	1	3	34 822	34	1	2 34 830	34 835	31 837	2 34 810	2 34 814	2 34 848				-				82
3	26. 8 33. 5	11. 6 34. 4	2.1 34.6	19	8 34 812	0 34 810	5 34 813	4 31 815	3	3	2 34 820	2 34 823	1				-		-	ļ	<u> </u>				-		81

34	27. 3 33. 8	1. 8 34. 2	2. 5 34. 6	20 34 827	34 812	6 34 810	5 34 813	34 815	34 816	34 818	2 34 820	34 823	34 828	31 830		2 34 837	- 1	34 814	34 848	34 862							828
35	27. 3 33. 8	12.0 34.7	2. 4 34. 6	20 34 827	8 34 812	6 34 810	5 34 813	34 815	- 1	3 34 818	,	34 823	2 34 828	2 34 830	34 835	2 34 837	34 810	2 34 844	949	34 852							828
36	23. 5 34. 1	10. 0 .34. 7	2. 3 34. 5			,	5 34 813	34 815	- 1	34 818	34 820	2 34 823	34 828														818
37	27. 2 34. 0	10. 6 34. 7	1.8 34.6	- (8 34 812		5 34 813	4 34 815	34 810	34 818			34 828	34 830													819
38	27. 8 33. 8	12.0 34.7	2 8 34. 6	20 34 827	8 34 812	34 810	5 34 813	4 34 815	34 816	34 818			2 34 828	34 830		34 837											822
39	28. 0 33. 8	13. 7 34. 7	2.9	21 34 820	10 34 817	7 34 812	6 34 815		*	34 821	34 822		34 829	34 831				,								1	824
40	28. 2 34. 1	10. 4 34. 5	2. 8 34. 6	10 34 826	8 34 812	0 34 810	5 34 813	5 34 817	34 818	34 821	34 822	34 825	34 828	34 830													820
41	23. 6 34. 7	11. 1 34. 6		17 34 823	8 34 812	6 34 810	5 34 613	5 34 817	34 816	34 821	1	34 825															
42	19. 1 34. 2	9. 6 34. 0	2.4 34.5	14 34 819	7 34 810	34 810	31 813	34 815	1	34 818	34 820	2 34 823	2 34 828	1	1	1		i	I .	ł	I		l	1			817
44	18. 5 34. 3	6. 1 34. 4	2. 4 34. 5	12 34 816	6 34 808	5 34 808	34 811	34 815	34 816	34 818	34 820	34 823															
44	10. 8 33. 9	7. 9 34. 0	2. 4 34. 6	816	34 808	34 808	34 813	34 815	34 818	34 821	822																821
46	16. 8 33. 0	7.4 34.0	1. 5 34. 5	816	34 808	34	34 811	3 34 812	34 816	34 816	34 820																813
46	15. 7 33. 9	8.0 34.1	2. 4 34. 3	12 34 816	34 808	34 807	34	1			-						-		-			-			-		810

TABLE No. 12
NORTH ATLANTIC OCEAN

No.	Date 1923	Lat. N.	Long.	Depth by wire	Time interval	V	v.	$\frac{V_{\rm q}-V_{\rm m}}{V_{\rm m}}$	×100%
1	11-21 11-22 11-22 11-23 11-23 11-24 11-25 11-26	39 33 38 32 37 07 35 03 32 29 29 44 27 06 24 46 23 09	71 30 71 00 71 00 70 06 70 29 70 30 70 27 70 31 70 18 69 12	Fathoms 1, 167 1, 937 2, 625 2, 984 2, 988 3, 030 3, 060 3, 027	Seconds 1. 464 2. 382 3. 522 3. 549 3. 636 3. 704 3. 039	847 842 833 826 832	Trouble wi 831 831 831 831 831	. 6	Minus 1.9 1 3 . 2
10 11 12 13 14 15	11-27 11-28 11-30 12-01 12-02 12-03 12-03	21 23 19 40 19 03 19 44 20 11 19 36 19 07	68 01 68 52 65 05 65 24 60 44 67 32 67 51	2,965 4,515 1,974 4,076 3,234 4,617 1,817	3. 625 5. 440 2. 325 4. 804 3. 931 5. 565 2. 154	818 829 849 848 823 830 843	831 841 825 837 833 841 823	1. 6 1. 4	i. 9 1. 3 2. 4
			C	ARIBBE	AN SEA			_	
17	12-03 12-04 12-05 12-05 12-06 12-07 12-07	17 50 16 57 15 15 13 23 11 35 10 02 9 36	67 41 68 15 71 16 74 02 77 05 79 08 79 49	857 2,831 2,339 2,206 1,919 1,034 185	1, 059 3, 384 2, 729 2, 716 2, 350 1, 329 , 229	809 837 857 812 817 816 808	819 831 828 824 823 818 828	1. 2 1. 5 . 7 . 2 2. 5	0. 7 3 4
				PACIFIO	OCEAN				
24	12-13 12-13 12-14 12-15 12-15 12-10 12-17 12-18 12-19 12-19 12-20 12-20 12-21 12-22 12-25 12-28 12-28	7 34 6 19 6 10 6 14 7 48 8 47 9 45 11 10 12 02 12 50 13 43 14 46 15 52 116 52 18 02 24 50 24 50 32 03 32 08	78 58 79 02 81 11 84 26 84 00 84 55 80 30 89 02 90 41 91 23 93 12 95 54 99 45 101 45 101 45 101 43 113 34 114 38 115 56 116 34	248 1, 830 1, 838 907 736 1, 763 1, 894 1, 763 3, 101 2, 020 3, 472 2, 051 2, 071 2, 071 2, 072 1, 783 2, 030 1, 939 2, 497 1, 569 702	302 2 207 1. 716 1. 104 2. 227 2. 274 2. 245 3. 796 4. 135 3. 090 2. 430 2. 430 3. 097 3. 174 2. 686 2. 237 2. 248 2. 237 2. 248 2. 237 2. 248 2. 237 2. 248 2. 237 2. 248 2. 238 2. 248 2. 248	821 797 791 822 827 792 833 822 840 859 841 825 838 823 797 816 822 830 842 842	825 819 8155 8133 815 818 818 827 818 828 828 828 828 818 818 821 820 821 821 821 821 821 821 831 831 831 831 831 831 831 831 831 83	3. 3 3. 3	1.1 1.4 1.8 1.5 7.7 1.4 3.0 2.7 1.1 1.8 4

+26.8 44)-10.4 -0.24

It is seen from Table 12 that the average percentage difference between $V_{\rm m}$ and $V_{\rm c}$ for the entire 44 determinations is 0.2 of 1 per cent. Further, it has been computed that the probable error of a single value is 1.2 per cent, which indicates that the average percentage difference may properly be taken as a guide in estimating the accuracy of the method.

In determining V_m the assumption is made that the echo returns from a point vertically below the ship. It is of course true that, if the bottom is sloping, the reflected sound wave which is received will follow the line passing through the vessel normal to the slope. If many of the soundings are taken at places of considerable slope, the time intervals measured will be too small and V_m will be too great, and accordingly the average percentage difference could not possibly be as near zero as shown by the analysis of Table 12. The inevitable conclusion is that if a 6,500-mile cruise with all kinds of bottom conditions, including several deeps, fails to show the effect of slope, areas of steep slope are of relatively insignificant extent.

To test this conclusion further, slopes for the positions where soundings 24 to 46, inclusive (Pacific Ocean), were taken, were deduced from the best available information, including the work of the Guide and wire soundings by other vessels of the Coast and

Geodetic Survey. These are given in the following table:

No.	Slope	No.	Slope	No.	Slope	No.	Slope
24	2 00 1 00 0 03 0 50 0 17 0 20	30	0 30 0 20 2 00 0 08 6 00 0 15	36	1 00 0 30 0 50 0 40 0 30 0 05	42	0 50 1 48 0 00 0 55 0 12

The mean slope is about 1° with a maximum of 6°.

It must not be inferred that steep slopes do not exist. They are important geographical features of interest to the geologist and of concern to the hydrographer and oceanographer. The purpose of the discussion has been to bring out the fact that by proper procedure the velocity of sound can be determined without appreciable error due to slope.

The agreement between V_o and V_m has been tested by determining the average percentage difference and the probable error of a single value for all the soundings of Table 12. A better test is the examination by the same method of characteristic groups, each of approxi-

mately the same physical conditions and general depth.

Soundings 5 to 10, inclusive, of general depth of 3,000 fathoms, taken over a level portion of the sea floor of the North Atlantic, give an average percentage difference of 0.2 of 1 per cent, with a probable error of a single value of 0.8 of 1 per cent. Serial temperatures and salinities were taken at sounding No. 7.

A particularly rigid test is the application to three soundings taken in Nares Deep, north of Porto Rico, ranging from 4,075 to 4,617 fathoms. For these the average percentage difference was 0.5 of 1 per cent, with a probable error for a single value of 1.1 per cent.

For a group of four soundings, Nos. 18 to 21, inclusive, in the Caribbean Sea, with depths from 1,900 to 2,800 fathoms, the average percentage difference was 0.5 of 1 per cent, with a probable error

of a single value of 1.6 per cent.

For a group of nine soundings, Nos. 36 to 44, inclusive, in the Pacific Ocean, with depths from 2,000 to 2,500 fathoms, the average percentage difference was 0.6 of 1 per cent, with a probable error of a single value of 1 per cent.

With differing conditions it should follow that in different regions velocities for the same depth should vary. This is found to be the case. Soundings Nos. 3 in the Atlantic and 44 in the Pacific form an example of this kind, with velocities 828 and 821 fathoms/sec., respectively, the depth at each being approximately 2,500 fathoms. Also in some cases the velocities are the same for widely differing depths. Sounding No. 23, depth 185 fathoms, and sounding No. 34, depth 3,472 fathoms, both have a computed velocity of 828 fathoms/sec.

SOURCES OF ERROR

The agreement between $V_{\rm m}$ and $V_{\rm o}$ which has been shown by the above study of Tables 11 and 12 is seen to be remarkably good when it is considered how many elements enter into a comparison of these two quantities and what sources of error there are in the determination of each of these elements. These sources of error will be dis-

cussed in some detail.

Errors in the determination of V_m include errors in the determination of depth by wire sounding, and errors in the measurement of

of the time interval with the sonic depth finder.

The accuracy of the determination of depth by wire sounding depends upon the skill with which the sounding is taken. The commanding officer of the steamer Guide, Lieut. Commander R. F. Luce, Coast and Geodetic Survey, showed exceptional skill in handling the vessel, and the wire was kept as nearly vertical as possible during every sounding. In only a few cases were the currents strong enough seriously to affect the accuracy of the wire measurement. The accuracy of the registering sheave was tested by running over it a measured length of wire, and the error was found to be negligible. Change in length of the wire with temperature was also found negligible. One common source of error, unfavorable weather conditions, fortunately was absent during most of the

cruise of the Guide.

The question of the accuracy of time-interval determination under service conditions is of special interest because previously to the cruise of the Guide the apparatus had not been submitted to the test of continuous check against wire soundings in depths such as to make The essential precaution is the maintenance the time intervals large. of period of disk rotation at exactly 10 seconds, which the tuning-fork governor usually accomplishes. The depth finder used was of the first type developed by Doctor Hayes and had some operating defects that have been remedied in later types. One of these was the difficulty of reducing the loudness, as heard in the phones, of the original oscillator sound so as to be comparable with that of the echo. When the oscillator is operated at full power it is often extremely difficult to hear the echo and synchronize it with the original sound. The strength of echo also varies with the character of the bottom, so that in some cases the echo was faint in moderate depths and strong in great depths. Precision of synchronism depends very largely on the distinctness and strength of the echo. The personal equation of the observer affects to a certain extent the determination of a time interval with the sonic depth finder. The indications are that this is small for a skilled observer, but by no means negligible, and that it may be slightly different for two equally skilled observers. It lies chiefly in the synchronizing of outgoing signals and returning echoes.

I BITTELL TO THE

In the studies so far made it seems to be important chiefly in depths less than 500 fathoms. It is therefore advisable in a given region of

moderate depths to take the personal equation into account.

The analysis of all the results indicates that a satisfactory degree of consistency is obtained. On one occasion a special effort was made to determine the ultimate possibilities under exceptionally favorable conditions. For five soundings in depths ranging from 535 to 702 fathoms the maximum difference of any value of V_m from the mean was 1.5 fathoms/sec.

The accuracy of the determination of V_0 depends not only upon the fundamental corrections of the method but also upon the reliability of the adopted values of temperature and salinity. fundamental correctness of the method has been fully discussed, and it has been brought out that there is a possibility of small errors in the tables themselves and in the method of deriving M from the The reliability of the adopted values of temperature and salinity depends on whether they have been actually measured or interpolated between such measurements as in the case of the Guide, or whether they have been derived from less reliable sources.

APPLICABILITY OF COMPUTED VELOCITIES TO ACOUSTIC SOUNDING

During the cruise of the Guide depths were determined at 150 positions by the sonic depth finder alone, using computed velocities. Some of these determinations were in the vicinity of previous wire soundings obtained by various Coast Survey vessels and the agreement was found to be very satisfactory. This brings up the important question as to whether satisfactory soundings can be made with the sonic depth finder alone, using computed velocities, but without the control afforded by wire measurements and determinations of temperature and salinity. In this case it would be necessary to obtain the adopted temperatures and salinities from the best available published values. These are found in various publications.

Such a procedure will give results much nearer the truth than the adoption of a single value of the velocity of sound for all conditions.

It would obviously be of advantage to have tables expressing velocity as a function of depth alone. It has been clearly brought out that such tables can not be of universal application, but it is probable that they can be prepared for regions of considerable extent provided that the physical conditions of the sea water are approximately the same throughout the region.

e"A study of the salinity of the surface water in the North Pacific Ocean and in the adjacent inclosed seas," by A. H. Clark, Smithsonian Miscellaneous Collections, vol. 60, No. 13, Dec. 4, 1912.

"Das spezifische Gewicht des Meerwassers im Nordöst Pacifischen Ozean in Zusammenhange mit Temperaturund Strömungszuständen," by Adolph Lindenkohl, Dr. A. Petermann's Geogr. Mitteilungen —1897, Heft XII.

"Exploration of the United States Coast and Geodetic Survey steamer Bache in the western Atlantic, January-March, 1914, under the direction of the United States Bureau of Fisheries, ""Oceanography," by Henry B. Bigclow, App. V to the Report of the U. S. Commission of Fisheries for 1916, Bureau of Fisheries Document No. 833, 1917.

"The temperatures, specific gravities, and salinities of the Weddell Sea and of the North and South Atlantic Ocean," by W. S. Bruce, Andrew King, and D. W. Wilton, Transactions of the Royal Society of Edinburgh, Vol. LI, Part I, p. 71, 1914-15.

"Physiographische Probleme, Salzgehalt und Temperatur des Pacifischen Ozeans betreffend," by A. Lindenkohl, U. S. Coast and Geodetic Survey, Dr. A. Petermann's Mitteilungen aus Justus Perthes' Geographischer Anstalt, herausgogeben by Prof. Dr. A. Supan, 45 Band, 1890, Gotha, Justus Perthes' "Die Warme Verteilung in der Tielen des stillen Ozeans," by Gerhardt Schott and Fritz Schu, Berlin, 1910.

[&]quot;Die warme vertenung in der Fleich des Sandt Vollen in der verhältnisse und die vehrkehrs1910.

"Atlantischer Ozean. Ein Atlas von 30 Karten, die physikalischen verhältnisse und die vehrkehrsstrassen darstellend, mit einer erläuternden einleitung und als beilage zum segelhandbuch für den Atlantischen Ozean." 2 aufl. Hrsg. von der direktion Hamburg, L. Friederichsben & Co., 1902.

Inspection of Table 12 shows that even under the best conditions it is difficult to obtain consistently accurate results. Unless wire measurements are made and physical conditions determined there is no way of knowing how accurate the results are. If expeditions are to continue the practice of sounding by acoustic methods alone, it is important that there should be further oceanographic work similar to that of the Guide. This vessel during a cruise of 6,500 miles encountered a temperature range of 28 degrees (0° to 28° C.), a salinity range of 5.5_{00} (31 to 36.5_{00}), a depth range from 185 to 4,617 fathoms, and used computed velocities ranging from 810 to 841 fathoms/sec. While future expeditions can scarcely expect to have a wider range they can do much to provide control for acoustic sounding by determining physical conditions and making velocity measurements on all the oceans, and especially by fixing more accurately the places where physical conditions change.

TABLE 13
[Velocity of sound in sea water in fathoms per second. For the surface, velocities are also given in meters per second]

	1												
Depth (fath-	Salin-				1	'empera	ture (de	egrees o	entigrac	le)			
oms)	0/00	0	2	4	6	8	10	12	14	16	18	20	22
Surface and 100	81	790 1, 445	795 1, 453	798 1,450	802 1, 466	806 1, 474	811 1,482	814 1, 488	816 1, 492	819 1,498	822 1,504	825 1, 508	829 1, 513
100	32	791 1, 446	795 1, 454	799 1, 461	803 1,467	806 1,474	811 1, 483	814 1, 480	816 1, 4 93	820 1,499	823 1,505	825 1, 509	829 1, 516
	33	792 1, 448	796 1, 455	800 1, 462	804 1, 469	807 1, 476	812 1, 485	815 1, 491	817 3, 495	821 1, 501	824 1, 507	826 1,511	830 1, 518
	34	792 1, 449	796 1,456	800 1, 403	804 1, 471	808 1,477	818 1,486	816 1, 492	818 1, 496	821 1, 502	825 1, 508	827 1, 513	831 1, 519
	35	793 1, 450	797 1, 458	801 1, 465	805 1, 472	809 1,479	814 1, 489	817 1, 494	819 1, 498	822 1,504	826 1,510	828 1, 514	832 1, 521
	36	793 1, 451	798 1, 45 9	802 1, 466	806 1,473	809 1,480	815 1,490	818 1, 495	820 1, 499	823 1, 505	826 1,511	829 1, 515	833 1, 522
	37	794 1,452	799 1,461	803 1,468	807 1, 475	810 1, 4 82	815 1,401	819 1, 407	821 1,501	825 1,507	827 1,513	830 1, 518	834 1, 525
300	31 32 33 34 35 25 25	82 82 82 82 82 82 82 82 82 82 82 82 82 8	798 729 799 801 801 872 802	892 863 864 865 865 866 866	805 806 807 808 809 809 810	809 810 811 812 813 814 814	814 815 816 817 818 819 820	817 818 810 820 820 822 823	820 821 822 823 823 824 825	823 824 825 826 826 827 828	827 827 828 820 830 831 832	828 829 829 830 831 832 833	830 831 832 833 834 835 836
500	31 32 33 34 35 35 37	796 797 798 793 799 800 801	891 802 803 803 804 804 804	804 805 806 807 808 809 810	809 809 810 810 812 813 813	813 814 814 815 816 817 818	817 818 819 819 820 821 822	820 821 822 822 823 824 825	822 823 824 825 826 827 828	827 827 828 829 830 831 832	820 830 831 832 832 833 834	832 832 833 834 835 836 837	834 835 836 837 838 838 838
700	31 32 33 34 35 36 37	801 801 802 803 804 804 805	805 806 807 807 808 809 810	809 809 810 811 812 813 814	813 814 814 815 816 817 818	817 818 819 819 820 821 822	821 822 823 824 825 826 827	825 825 826 827 828 829 830	826 826 827 828 829 830 831	830 831 832 833 834 835 836	833 835 835 835 837 837 839	835, 836 837 838 839 840 841	

TABLE 13-Continued

				Тег	nperat	ure			Salin]_	Tempe	rature		Depth
Der (fathe	oms)	0	2	4	6	8	10	12	ity 0/00	0	1	2	3	(fathoms)
900		803 804 805 805 806 807 809	808 809 809 810 811 812 813	812 813 814 815 815 816 818	816 817 818 819 820 820 821	820 821 822 823 824 825 820	824 825 825 826 827 828 828 829	827 828 829 830 831 832 833	31 32 33 34 35 36 37	821 822 823 824 825 826 826	825 825 826 827	825 827 827 828 829 829 830	826 827 828 829 830 831 831	1,900
1, 100		806 807 803 809 809 810 811	811 812 813 814 814 815 816	817 818 819	819 820 821 822 823 824 825	823 824 825 826 827 828 828			31 32 33 34 35 36 37	823 824 825 825 826 827 827	829	827 828 829 830 831 831 832	828 829 830 831 832 833 833	2, 100
1,300		809 810 811 812 813 814 814	814 814 815 816 817 818	820 821 822 823	822 824 825 826 827 828 828					828 820 820 830 831 832 832	831 832 832 833	832 833 834 835 836 837 837	833 834 835 836 837 838 838	2, 300
1,500		813 814 815 816 816 817 817	817 818 819 820 821 822 823	823 824 825 826 827					31 32 33 34 35 36 37	830 831 831 832 833 834 835	834 834 835 836	835 836 836 837 838 839 839	836 837 838 838 839 839 840	2, 500
1,700	••••	816 817 818 819 820 821 822	820 821 822 823 824 825 826	827 828 828					31 32 33 34 35 36 37	833 834 835 836 836 837 838	836 837 838 838 838 839 841	838 839 840 840 841 842 843	839 840 841 842 813 843 844	2, 700
Salin-	Depth		Ten	peratu		Dept	Ī		peratu	ro	Depth	T -	rempo	rature
it y 0/00	(fath- oms)		T	1	2	(fath oms)		0	1	2	(fath- oms)	0		1 2
33 34 35 36 37	2, 00	0 8	38 39 39 40 42	841 842 812 843 844	843 844 844 845 846	3, 7	00	852 854 855 855 856	854 856 856 857 858	856 858 858 859 860	4, 500	- 86 - 86	5 6 8 7	868 868 867 869 867 870 867 870 868 871
33 34 35 36 37			143 143 144 144 145	845 845 846 847 848		3, 9	00	855 856 857 857 858	856 857 858 859 860	862 862	4, 700	87	9 0 1 2	871 873 872 874 872 875 873 875 873 876
33 34 35 36 37			148 147 148 149 149	848 850 851 851 851	854 854	4, 1	00	860 860 861 861 862	861 862 863 863			•		
33 34 35 36 37	3, 50	XO 8	350 350 351 351 352	851 851 852 852 854	855	4, 3	00	862 862 863 864 864	863 863 804 865 868	866 866 867 863 868				