Term 1 Test 2: Topic 0, 11, 1.1 (2016 - Answer Key)

Name and chemistry block: _____

There is a total of 45 points in this test. You have 5 minutes of reading time and 50 min to complete this test.

1 Multiple Choice

- [1] 1. How many significant figures are in 0.08050?
 - A. 2
 - B. 4
 - C. 5
 - D. 6

Solution: The leading 2 zeroes are placeholder, its only purpose is to help express a number that is smaller than 1.

The trailing 0 *could* have been omitted, but is not omitted because the writer uses it to designate the number is **not** 0.08051 (or others). It is thus significant.

- [1] 2. $(800 \pm 8) (50 \pm 5) = ?$
 - A. 750 ± 3
 - **B.** 750 ± 13
 - C. 750 ± 75
 - D. 750 ± 83

Solution: In addition and subtraction, absolute uncertainties are summed.

- [1] 3. $(800 \pm 8) \div (50 \pm 5) = ?$
 - A. $16 \pm \frac{8}{5}$
 - **B.** 16 ± 1.76
 - C. 16 ± 3

D. 16 ± 13

Solution: In multiplication and division, relative uncertainties are summed.

- [1] 4. Precision of an experiment may be improved by:
 - I. repeating the experiment
 - II. using more precise instruments
 - A. I
 - B. II
 - C. I and II
 - D. None of the above

Solution: Both repeating the experiment and using more precise instruments *may* improve the *precision*. One targets the reproducibility uncertainty; the other targets the instrumental uncertainty.

- [1] 5. Systematic errors in an experiment may be reduced by:
 - I. repeating the experiment
 - II. using more precise instruments
 - A.
 - B. II
 - C. I and II
 - D. None of the above

Solution: Systematic errors relate to the *lack of accuracy*. Both repeating the experiment and using more precise instruments improve the *precision* but does not help with the accuracy.

- [1] 6. Express 3.50 dm³ in cm³.
 - A. $3.50 \times 10^{1} \text{cm}^{3}$
 - B. $3.50 \times 10^{-1} \text{cm}^3$
 - C. $3.50 \times 10^{-3} \text{cm}^3$
 - **D.** $3.50 \times 10^{3} \text{cm}^{3}$

Solution: $1 \text{dm}^3 = 1 \text{dm} \times 1 \text{dm} \times 1 \text{dm} = 10 \text{cm} \times 10 \text{cm} \times 10 \text{cm} = 1000 \text{cm}^3$

- [1] 7. Which of the following is considered a mixture?
 - A. 1.00 g of mercury Hg⁰_(I)
 - B. 1.00 dm³ carbon dioxide CO_{2(g)}
 - C. 1.00 mol dm⁻³ nitric acid HNO_{3(aq)}
 - D. 1.00 mol $Ca^{2+}SO_4^{2-}(s)$

Solution: A, C, and D are all pure substances and thus not a mixture.

An aqueous solution of HNO_{3(aq)} comprises of nitric acid HNO₃ and water H₂O and is thus a mixture.

The amounts do not matter.

- [1] 8. Which of the following is an example of a homogenous mixture?
 - A. ice H₂O_(s)
 - B. dry ice $CO_{2(s)}$
 - C. blood
 - D. sea water

Solution: Ice and dry ice are pure substances and thus not a mixture.

Blood is a heterogenous mixture because different regions are physically separate from one another. It is possible to centrifuge the plasma away from the solution. A bucket of sea water cannot be separated by this physical separation.

- [1] 9. A homogenous mixture can be separated by:
 - A. Filtration
 - B. Decantation (carefully pouring off some liquid)
 - C. Centrifugation
 - D. None of the above

Solution: Because the properties of a homogenous mixture is identical throughout, it is not possible to separate by mechanical processes like filtration, decantation, or centrifugation.

- [1] 10. Which of the following describes $CO_{2(g)} \longrightarrow CO_{2(s)}$?
 - A. Freezing
 - B. Condensation
 - C. Sublimation
 - D. Deposition

Solution: Deposition is the phase change from gas to solid.

- [1] 11. Which of the following have the same chemical properties?
 - $I_{17}^{37}X_{(g)}$
 - $II_{17}^{35}X_{2(g)}$
 - $III _{16}^{35}X_{2(g)}$
 - IV 37Cl_{2(g)}
 - A. I and II
 - B. II and IV

- C. II and III
- D. II, III, and IV

Solution: Differing number of protons, and different number of the element in a compound, both affects the chemical properties. A different number of neutrons do not.

I differs from II / IV because it is a single atom, as opposed to a diatomic molecule.

- [1] 12. Molar mass has a unit of
 - l. g
 - II. $\frac{g}{mol}$
 - III. $gmol^{-1}$
 - A. I
 - B. I and II
 - C. II and III
 - D. None of the above

Solution: $\frac{g}{\text{mol}}$ and gmol^{-1} are identical ways of expression the same unit.

Note that in gmol $^{-1}$ the -1 is a mathematical index. Unlike charges in chemistry, this cannot be omitted; gmol $^{-1} \neq gmol$

- [1] 13. Relative molecular mass has a unit of
 - l. g
 - II. $\frac{g}{mol}$
 - III. gmol^{-1}
 - A. I
 - B. I and II
 - C. II and III
 - D. None of the above

Solution: Relative molecular mass, like relative atomic mass, is the ratio of the mass relative to ¹²C. Ratios have no units.

[1] 14. Calculate the number of neutrons in $\frac{1}{4}$ mol of $^{35}\mathrm{Cl_{2(g)}}$.

A.
$$(\frac{35}{4} \cdot 6.02) \times 10^{23}$$

B.
$$(\frac{36}{4} \cdot 6.02) \times 10^{23}$$

C.
$$(35 \cdot 6.02) \times 10^{23}$$

D.
$$(36 \cdot 6.02) \times 10^{23}$$

Solution: UPDATE

Chlorine has an atomic number of 17, *i.e.*, it has 17 protons. There is thus 35-17 = 18 neutrons in each atom, and 36 in one Cl_2 . There is $\frac{1}{4}$ moles of the molecule, hence $\frac{36}{4}$ mol neutrons, or $(\frac{36}{4} \cdot 6.02) \times 10^{23}$.

- [1] 15. Which of the following statements are true?
 - I The nucleus occupies a small volume in all atoms
 - II The mass of the atom is concentrated in its nucleus
 - III The nucleus is positively charged
 - A. I and II
 - B. I and III
 - C. II and III
 - D. I, II, and III
- [1] 16. In one $^{37}_{17}\text{Cl}^-_{(g)}$ ion, there is a highest number of
 - A. Protons
 - **B.** Neutrons
 - C. Electrons
 - D. There are same number of protons, neutrons, and electrons.

Solution: Superscript on the upper right designates the charge. Negative charge designates extra electrons: there are thus 18 electrons, 17 protons, and 37-17 = 20 neutrons.

- [1] 17. Calculate the moles of Al atoms present in x g of $Al_{(s)}$. The relative atomic mass of aluminium is 27.0 amu, and its atomic number is 13.
 - A. $x \times 13.0$
 - B. $x \div 13.0$
 - C. $x \times 27.0$
 - **D.** $x \div 27.0$

Solution:
$$n = \frac{m}{M} = \frac{x}{27.0}$$

- [1] 18. 0.500 mol of Cl_{2(g)} has a mass of:
 - A. $\frac{35.0}{2}$
 - B. $\frac{35.5}{2}$

- C. 35.0
- D. 35.5

Solution: There is a total of $0.500 \mathrm{mol} \times 2 = 1.00 \mathrm{mol}$ Cl atoms.

Reading off the periodic table shows that 1.00 mol of chlorine atoms weigh 35.5 g.

- [1] 19. Which formula can be determined by using only the % mass composition of an unknown compound?
 - I. Molecular formula
 - II. Structural formula
 - III. Empirical formula
 - A. I
 - B. II
 - C. III
 - D. I and III

Solution: Only the empirical formula can be determined. For example, only knowing that a hydrocarbon contains 85.7% of carbon by mass, we cannot distinguish between CH_2 , C_2H_4 , or any other molecular formula with the simplest ratio of 1:2 between carbon and hydrogen.

- [1] 20. Which of the following species has the most electrons?
 - I. 35Cl²⁻
 - II. ³⁷Cl
 - III. 35Cl₂
 - A. I
 - B. II
 - C. III
 - D. I and II has the same number of electrons

Solution: Cl₂ has twice the electrons as in Cl.

2 Extended responses

21. Alice prepared $BaCO_{3(s)}$ by adding $BaCl_{2(aq)}$ from a pipette into a solution of Na_2CO_3 and subsequently filtering and drying. (This is similar to the procedure you used in the preparation of $CaCO_{3(s)}$ in the lab.) She repeated the procedure three times.

-7-

[1] (a) i. State the name of the CO_3^{2-} ion

i. carbonate

[1] ii. Deduce the total number of protons present in **one** CO_3^{2-} ion.

ii. _____**30**___

Solution: Since atomic number refers to the number of protons, we simply sum together $6 + (8 \times 3) = 30$.

[2] iii. Deduce the total number of electrons present in **one** CO_3^{2-} ion.

iii. _____32

Solution: The 2- charge means that there are two excess electrons, or, 30 + 2 = 32.

[1] iv. Calculate the number of electrons present in 1 mol of CO_3^{2-} ion.

iv. $\underline{-1.926 \times 10^{25}}$

Solution: $32 \times (6.022 \times 10^{23}) = 1.926 \times 10^{25}$

[2] v. State and explain whether ${}^{12}\text{CO}_3{}^{2-}$ and ${}^{14}\text{CO}_3{}^{2-}$ will have the same chemical reactivity.

Solution: Different only in number of neutrons, does not affect chemical reactivities.

Note that, while I have given Benefit of Doubt in the marking, it is not correct to say either:

- 1. Properties are same because number of protons is the same, or
- 2. Properties are same because there are same number of electrons

A He atom (2 protons, 2 electrons) is very different from H₂, which also has 2 protons and 2 electrons!

[1] (b) i. State and explain whether Na₂CO_{3(aq)} is a pure substance, a homogenous mixture, or a heterogenous mixture

Solution: Aqueous solutions are always homogenous mixtures.

[2] ii. Predict, outlining your reason, what the freezing point of Na₂CO_{3(aq)} will likely be.

Solution: As an aqueous solution, most of $Na_2CO_{3(aq)}$ is water, and the freezing point will be around 0 °C.

(The actual freezing point will be below 0 °C because of a phenomena called "freezing point depression".)

- (c) Alice first centrifuged the sample before using a Buchner funnel to filter the solids.
- [1] i. State the precaution that must be undertaken when using a centrifuge.

Solution: The masses on opposing sides must be balanced.

- Do not accept general comments like "lab coats / safety goggles".
- [2] ii. Sketch and label a filtration setup using a Buchner funnel.

Solution:

- (d) For the first experiment, after filtration, Alice obtained 3.234 ± 0.002 g of a wet paste. After drying in the oven the mass decreased to 1.292 ± 0.002 g.
- [1] i. Calculate the mass of the water lost. Include uncertainties and correct number of significant figures in your answer.

i. 1.942 ± 0.004 g

Solution: 3.234 - 1.292 = 1.942

For addition and subtraction, the absolute uncertainty is summed. 0.002 + 0.002 = 0.004g.

[1] ii. Deduce the percentage of the wet paste that was water.

ii. _____60.04%

Solution: $\frac{1.942}{3.234} \times 100\% = 60.04\%$

[2] iii. Calculate the number of moles of BaCO_{3(s)} made. Include uncertainties and correct number of significant figures in your answer.

iii. 0.00655 ± 0.00002 mol

Solution:
$$n = \frac{m}{M} = \frac{1.292 \text{g}}{197.34 \text{gmol}^{-1}} = 0.006547 \text{mol}$$

Notice that the uncertainty must also be in moles: $\Delta n = \frac{\Delta m}{M} = \frac{0.004}{197.34} = 0.0000202$ mol

Express uncertainty to 1 significant figure, and making sure the principle value is consistent, gives 0.00655 ± 0.00002 mol

(e) Given the amounts of reagents used, Alice calculated that she should have made 1.500 g of BaCO_{3(s)}. (This is called the *theoretical yield*) Propose a reason for why her yield is lower than expected, and how this may be improved.

Solution: Reagents and products may be lost during the transfers, or passed through Buchner funnel during filtration.

• Do not accept general / vague answers such as "there is systematic error", or "there is human error"

- · Award 1 mark for proposed error
- · Award 1 mark for proposed solution
- Award M2 only if the solution addresses the error.
- (f) The results of the three syntheses are shown in the Table 1.

Table 1 Results for the synthesis of BaCO_{3(s)}

	Filter paper / g (± 0.002)	Dried filter paper with ${\rm BaCO_{3(s)}}$ / g (± 0.002)	Mass of BaCO _{3(s)} / g
Trial 1	0.507	1.799	1.292
Trial 2	0.500	1.313	0.813
Trial 3	0.451	1.650	1.199

[1] i. Calculate the average amount of $BaCO_{3(s)}$ prepared.

i. **1.101** g

Solution:

[1]

[1]

ii. Deduce the instrumental uncertainty for the mass of BaCO₃ prepared.

ii. **0.004**

Solution: There are both uncertainties with the filter paper, and the uncertainty with the dried filter paper c/ sample.

iii. Calculate the reproducibility uncertainty from the three preparations.

iii. **0.138**

Solution:
$$U = \frac{max - min}{2\sqrt{N}} = \frac{1.292 - 0.813}{2\sqrt{3}} = 0.138$$

[1] iv. State and explain which of the two uncertainties (from part ii and iii) should be used in reporting the yield of the synthesis.

Solution: The reproducibility uncertainty is larger, and should thus be used. We try to make claims only as good as our data allow.

[2] v. Report, as a final value, the amount of $BaCO_{3(s)}$ prepared by Alice's synthesis.

v.
$$1.1 \pm 0.1$$
 g

Solution: 1.101 ± 0.138 g expressed to 1 sig fig uncertainty is 1.101 ± 0.1 . Making the principle value consistent gives 1.1 ± 0.1