Assignment 10

Saransh Bali

Abstract—This a simple document that explains that $F^{m\times n}$ is isomorphic to $F^{mn\times 1}.$

Download latex-tikz from

https://github.com/saranshbali/EE5609/blob/master/ Assignment10_challenge

1 Problem

Show that $F^{m\times n}$ is isomorphic to $F^{mn\times 1}.$

2 Definitions

Invertible Linear Map	A linear map $T \in L(V, W)$ is called invertible if there exists a linear map $S \in L(W, V)$ such that ST equals the identity map on V and TS equals the identity map on W . A linear map $S \in L(W, V)$ satisfying $ST = I_V$ and $TS = I_W$ is called an inverse of T .
Isomorphic Vector Spaces	Two vector spaces V and W are called isomorphic if there is an isomorphism from one vector space onto the other one. An isomorphism is an invertible linear map.
Rank Nullity Theorem	Let V and W be finite dimensional vector spaces. Let $T: V \to W$ be a linear transformation $Rank(T) + Nullity(T) = \dim V$

3 Results used

Result 1	The space of all $m \times n$ matrices over the field F has dimension mn .
Result 2	Let V and W be finite-dimensional vector spaces over the field F such that dim V = dim W . If T is a linear transformation from V into W , then the following are equivalent: (a). T is invertible.
	(b). T is non-singular.
	(c). T is onto, that is, range of T is W.

4 Proof

Defining Sets	We define set S and set T as $S = \{(a,b): a,b \in \mathbb{N}, 1 \le a \le m, 1 \le b \le n\}, T = \{1,2,,mn\}$
Defining Bijection	We now define a bijection $\sigma: S \to T$ as $(a,b) \to (a-1)n + b$
Defining Function <i>G</i>	We now define a function G from $F^{m\times n}$ to $F^{mn\times 1}$ as follows. Let $\mathbf{A} \in F^{m\times n}$. Then map \mathbf{A} to the $mn \times 1$ matrix that has \mathbf{A}_{ij} in the $\sigma(i,j)$ position. In other words, $\mathbf{A} \to (\mathbf{A}_{11} \mathbf{A}_{12} \dots \mathbf{A}_{1n} \dots \mathbf{A}_{m1} \mathbf{A}_{m2} \dots \mathbf{A}_{mn})^T$
Proving <i>G</i> to be Linear	Since, addition in $F^{m \times n}$ and in $F^{mn \times 1}$ is performed component-wise, $G(\mathbf{A} + \mathbf{B}) = G(\mathbf{A}) + G(\mathbf{B})$ and scalar multiplication in $F^{m \times n}$ and in $F^{mn \times 1}$ is also defined as $G(c\mathbf{A}) = cG(\mathbf{A})$.
Proving <i>G</i> to be One-One	$G(\mathbf{A}) = G(\mathbf{B})$ $\implies (\mathbf{A}_{11} \dots \mathbf{A}_{1n} \dots \mathbf{A}_{m1} \dots \mathbf{A}_{mn})^{T} = (\mathbf{B}_{11} \dots \mathbf{B}_{1n} \dots \mathbf{B}_{m1} \dots \mathbf{B}_{mn})^{T}$ $\implies \mathbf{A}_{i,j} = \mathbf{B}_{ij} \forall 1 \leq i \leq m, 1 \leq j \leq n$ $\implies \mathbf{A} = \mathbf{B}$
Proving G to be Onto	Since G is one to one, so $\text{Null}(G) = 0$. Thus, by Rank-Nullity Theorem $\dim(\text{Range}(G)) = mn$, proving G to be a surjective (onto) map as by Result 1 dimension of $F^{m \times n} = mn$
$F^{m\times n}\cong F^{mn\times 1}$	Since G has an inverse and is an isomorphism of T . Thus, by Result 2 $F^{m \times n} \cong F^{mn \times 1}$

5 Example

 $\mathbb{R}^{2\times2}\cong\mathbb{R}^{4\times1}$

Consider map G defined above as:

$$G: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{4 \times 1}$$
 such that (5.0.1)

$$G\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \tag{5.0.2}$$

The map defined in (5.0.2) is a bijective map and therefore represents an invertible matrix operation.