Question 1

Sketch on separate diagrams, the following curves for the domain $0^{\circ} \le \theta \le 360^{\circ}$ and state the corresponding range of y.

a)
$$y = \sin x - 2$$

a)
$$y = \sin x - 2$$
 b) $y = \cos (x + \frac{\pi}{4})$ c) $y = -3\sin x$ d) $y = 2\cos x + 1$

d)
$$y = 2\cos x + 1$$

Question 2

Sketch, on separate diagrams, the following graphs.

(a)
$$y = 4\cos x - 3$$
 for $0^{\circ} \le x \le 180^{\circ}$

(b)
$$y = -6 \tan x$$
 for $0^{\circ} \le x \le 180^{\circ}$

(c)
$$y = 3 - 2 \sin x$$
 for $0^{\circ} \le x \le 270^{\circ}$

Question 3

On the same diagram, sketch the graphs of $y = 3 \cos x$ and $y = 2 \sin x - 1$ for the interval $0^{\circ} \le x \le 360^{\circ}$. State the number of solutions, in this interval, of the equation $3\cos x + 1 = 2\sin x$.

Question 4

Functions f, g and h are defined for $x \in \mathbb{R}$ by

$$f: x \mapsto x^2 - 2x$$
,
 $g: x \mapsto x^2$,
 $h: x \mapsto \sin x$.

- (i) (a) State whether or not f has an inverse, giving a reason.
 - (b) Determine the range of the function f.
- (ii) (a) Show that gh(x) can be expressed as $\frac{1}{3}(1-\cos 2x)$.
 - (b) Sketch the curve C defined by y = gh(x) for $0 \le x \le 2\pi$.

Question 5

Prove the identity

$$\frac{3 - 6\cos^2 x}{\sin x - \cos x} \equiv 3(\sin x + \cos x)$$

Question 6

Prove the identity

$$\frac{1+\cos x}{\sin x} + \frac{\sin x}{1+\cos x} = \frac{2}{\sin x}.$$

Question 7

The quadratic equation in x, $3x^2 - (4\cos\theta)x + 2\sin\theta = 0$, has equal real roots. Find the value of θ , where $0^{\circ} < \theta < 360^{\circ}$.

Question 8

Given that $x = \sin \theta - 2\cos \theta$ and $y = 2\sin \theta + \cos \theta$, find $\sin \theta$ and $\cos \theta$ in terms of x and y. Hence find a relation between x and y independent of θ .

Question 9

If $8\cos^2 x + 2\sin x - 5 = 0$, show that $\sin x = \frac{3}{4}$ and $\sin x = -\frac{1}{2}$. Hence find the possible values of $\cot x$.

Question 10

The diagram shows parts of the graphs of $y = 4 \cos 3x$ and $y = 2 \sin x + k$. Points P and Q are the respective maximum points on these graphs. Given that the two graphs intersect at the x-axis, find the coordinates of P and of Q. Sketch the two graphs on the same diagram for the interval $0^{\circ} \le x \le 180^{\circ}$.

