2017 Fall PHYS2310 電磁學 (Electromagnetism) Final Exam. [Griffiths Chs. 4-7.1] 2018/01/11, 10:10am – 12:00am, 教師:張存續

(double sides)

♦ Answer the questions as complete as possible.

- (a) Find the electric field E in the air part and the oil part? (8%)
- (b) Find the capacitance? (6%)
- (c) Find the height (h) that the oil rises in the space between the tubes? (6%)

- 2. (20%) Consider a uniformly polarized dielectric sphere of radius R. $\mathbf{P} = P_0 \hat{\mathbf{z}}$
- (a) Find the surface bound charge density σ_b and the volume bound charge density ρ_b . (10%)
- (b) Find the potential V of the dipole sphere for $r \ge R$. (10%)

[Hint: Use the dipole approximation, or $V = \frac{1}{4\pi\varepsilon_0} \oint_{S} \frac{\sigma_b}{\sigma_b} da' + \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho_b}{\sigma_b} d\tau'$].

 $\int_{\nu} \frac{\rho_{b}}{2} d\tau'].$ $VSLO drd0 \qquad \forall b = pen$ $VSLO drd0 \qquad \forall b = pen$

- TENZ.

. (20%) Boundary conditions and applications.

- (a) $\nabla \cdot \mathbf{D} = \rho_f$. Find the boundary condition for the normal component of \mathbf{D} , D^{\perp} . (6%)
- (b) $\nabla \times \mathbf{H} = \mathbf{J}_f$. Find the boundary condition for the tangential component of \mathbf{H} , \mathbf{H}'' . (6%)

(c) Consider the interface between two dielectric materials with ε_1 and ε_2 as shown in the figure. Find the relations between the normal and the tangential components of the electric fields. Assume that there is no surface charge, i.e., $\sigma_f = 0$. (8%)

 $\frac{\varepsilon_1, \ E_1^{\perp}, \ E_1^{\parallel}}{\varepsilon_2, \ E_2^{\perp}, \ E_2^{\parallel}}$

- 4. (20%) An infinitely long solenoid with air core having a radius a and n closely wound turns per unit length, as shown in the figure. The windings are slanted (傾斜) at an angle θ and carry a current I.
- (a) Find the z-component of the magnetic flux density (B_z) both inside and outside the solenoid. (10%) [Hint: Use Ampere's law.]
- Find the ϕ -component of the magnetic flux density (B_{ϕ}) both inside and outside the solenoid. (10%) [Hint: Use cylindrical coordinates, r, ϕ , z.]

I Sind

I Sind

MISIND.

WIRR

WHILE

SB. D= MoI.

WHI = I ene.

MoI

2R

MoI

WE D

5, (20%) A long cylinder of radius R carries a magnetization $\mathbf{M} = M_0 \hat{\mathbf{z}}$, where M_0 is a constant.

- (a) Find J_b within the material and K_b on the surface of the material. (10%)
- (b) Find the magnetic field **B** due to **M** for points inside $(r \le R)$ and outside the cylinder $(r \ge R)$. (10%)

