

CLAIM AMENDMENTS

1 1. **(Currently amended)** An exhaust extracting device comprising:

2 an outer tube having an inlet, an inlet adapter portion, an increased diameter

3 center portion, an outlet adapter portion, an outlet, and a central axis;

4 an inner tube substantially co-axial with said outer tube, the inner tube having an

5 outer surface;

6 helically oriented vanes extending outward from the outer surface of the inner

7 tube;

8 reliefs in the inner tube, wherein the reliefs are substantially parallel to the

9 vanes; and

10 at least two supports extending between the inner tube and the outer tube,

11 wherein the supports are substantially orthogonal to the outer surface of the inner tube,

12 and have a fanblade like orientation, wherein the vanes and supports cooperate to

13 cause an outer air flow between the inner tube and the outer tube to rotate.

1 2. **(Original)** The device of Claim 1, wherein:

2 the inlet adapter portion is between approximately four inches long and

3 approximately six inches long;

4 the outlet adapter portion is between approximately four inches long and

5 approximately six inches long;

6 the inner tube has an inner tube entrance and an inner tube exit;

7 the inlet adapter portion of the outer tube has an inlet adapter entrance and an
8 inlet adapter exit;

9 the outlet adapter portion of the outer tube has an outlet adapter entrance and
10 an outlet adapter exit;

11 the inner tube entrance resides outwardly with respect to the inlet adapter exit
12 toward the inlet adapter entrance between zero and seventy five percent of the
13 distance between the inlet adapter exit and the inlet adapter entrance; and

14 the inner tube exit resides outwardly with respect to the outlet adapter entrance
15 toward the outlet adapter exit between zero and seventy five percent of the distance
16 between the outlet adapter entrance and the outlet adapter exit.

3. **(Original)** The device of Claim 2, wherein the inner tube entrance resides at
approximately thirty three percent of the distance between the inlet adapter exit and the
inlet adapter entrance.

4. **(Original)** The device of Claim 2, wherein the inner tube exit resides at
approximately thirty three percent of the distance between the outlet adapter entrance
and the outlet adapter exit.

5. **(Original)** The device of Claim 1, wherein the center portion of the outer tube is
between approximately 2.5 inches in diameter to approximately five inches in diameter.

6. **(Original)** The device of Claim 1, wherein the center portion of the outer tube is between approximately fourteen inches long and approximately twenty inches long.
7. **(Original)** The device of Claim 1, wherein the inner tube has an inner tube entrance and an inner tube exit; and wherein the at least two supports comprise between three and ten inlet supports proximal to the inner tube entrance and between three and ten outlet supports proximal to the inner tube exit.
8. **(Original)** The device of Claim 7, wherein the inlet supports comprise between eight and ten inlet supports proximal to the inner tube entrance.
9. **(Original)** The device of Claim 7, wherein the inlet supports are turned at between approximately thirty five degrees and approximately fifty five degrees from the central axis.
10. **(Original)** The device of Claim 7, wherein the outlet supports comprise four outlet supports proximal to the inner tube exit.
11. **(Original)** The device of Claim 7, wherein the outlet supports are turned at approximately sixty degrees from the central axis.

12. **(Original)** The device of Claim 1, wherein the at least two supports are between approximately one half inches long and approximately five eighths inches long.

13. **(Original)** The device of Claim 10, wherein the at least two supports are turned at approximately forty five degrees from the central axis.

14. **(Original)** The device of Claim 1, wherein the vanes extend between approximately three sixteenths and approximately one fourth inches outwardly from the outside surface of the inner tube.

15. **(Original)** The device of Claim 14, wherein the inner tube has an inside surface, and wherein the vanes further extend between approximately three sixteenths and approximately one fourth inches inwardly from the inside surface of the inner tube.

16. **(Original)** The device of Claim 14, wherein the vanes comprise pairs of vanes on opposite sides of the inner tube, and wherein the vanes are between approximately two inch and approximately three inch segments, which segments are spaced between approximately one half inches and approximately one inch apart.

17. **(Cancelled)** The device of Claim 14, wherein the inner tube further includes reliefs, wherein the reliefs are substantially parallel to the vanes.

18. (Currently amended) The device of Claim 14, wherein the reliefs are between
approximately one eighth inches and approximately three sixteenths inches wide.

1 19. (Currently amended) An exhaust extracting device comprising:

2 an outer tube having:

3 an inlet;

4 an inlet adapter portion between approximately four inches long and
5 approximately six inches long and having an inlet adapter entrance and an inlet
6 adapter exit;

7 an increased diameter center portion;

8 an outlet adapter portion between approximately four inches long and
9 approximately six inches long and having an outlet adapter entrance and an outlet
10 adapter exit; and

11 an outlet, and a central axis;

12 an inner tube substantially co-axial with said outer tube, the inner tube having an
13 outer surface, an inner tube entrance and an inner tube exit;

14 helically oriented vanes extending outward from the outer surface of the inner
15 tube between approximately three sixteenths and approximately one fourth inches
16 inwardly from the inside surface of the inner tube;

17 reliefs in the inner tube, wherein the reliefs are substantially parallel to the
18 vanes; and

19 between three and ten inlet supports proximal to the inner tube entrance and
20 between three and ten outlet supports proximal to the inner tube exit, said supports
21 extending between the inner tube and the outer tube, wherein the supports are
22 substantially orthogonal to the outer surface of the inner tube, and have a fanblade like
23 orientation, wherein the vanes and supports cooperate to cause an outer air flow
24 between the inner tube and the outer tube to rotate, wherein:
25 the inner tube entrance resides outwardly with respect to the inlet adapter exit
26 toward the inlet adapter entrance between zero and seventy five percent of the
27 distance between the inlet adapter exit and the inlet adapter entrance; and
28 the inner tube exit resides outwardly with respect to the outlet adapter entrance
29 toward the outlet adapter exit between zero and seventy five percent of the distance
30 between the outlet adapter entrance and the outlet adapter exit.

1 20. **(Currently amended)** An exhaust extracting device comprising:
2 an outer tube having:
3 an inlet;
4 an inlet adapter portion between approximately four inches long and
5 approximately six inches long and having an inlet adapter entrance and an inlet
6 adapter exit;
7 an increased diameter center portion;

8 an outlet adapter portion between approximately four inches long and
9 approximately six inches long and having an outlet adapter entrance and an outlet
10 adapter exit; and

11 an outlet, and a central axis;

12 an inner tube substantially co-axial with said outer tube, the inner tube having an
13 outer surface and an inner surface, an inner tube entrance and an inner tube exit;

14 helically oriented vanes extending outward from the outer surface of the inner
15 tube between approximately three sixteenths and approximately one fourth inches
16 inwardly from the inside surface of the inner tube, and wherein the vanes also extend
17 between approximately three sixteenths and approximately one fourth inches inwardly
18 from the inside surface of the inner tube;

19 reliefs in the inner tube, wherein the reliefs are substantially parallel to the
20 vanes; and

21 between three and ten inlet supports proximal to the inner tube entrance and
22 between three and ten outlet supports proximal to the inner tube exit, said supports
23 extending between the inner tube and the outer tube, wherein the supports are
24 substantially orthogonal to the outer surface of the inner tube, and have a fanblade like
25 orientation, wherein the vanes and supports cooperate to cause an outer air flow
26 between the inner tube and the outer tube to rotate, wherein:

27 the inner tube entrance resides outwardly with respect to the inlet adapter exit
28 toward the inlet adapter entrance between zero and seventy five percent of the
29 distance between the inlet adapter exit and the inlet adapter entrance; and

30 the inner tube exit resides outwardly with respect to the outlet adapter entrance
31 toward the outlet adapter exit between zero and seventy five percent of the distance
32 between the outlet adapter entrance and the outlet adapter exit.