Manifolds

Ashan Jayamal & Nalamudu Samarasinghe

2024-03-08

Contents

1	Basic Theroms and Definitions	5
2	Manifolds	11
	2.1 Topological Manifolds	11

4 CONTENTS

Chapter 1

Basic Theroms and Definitions

Definition 1.1 (Topology). A topology on a set X is a collection $\mathcal T$ of subsets of X such that

- **(T1)** ϕ and X are in \mathcal{T} ;
- (T2) Any union of subsets in \mathcal{T} is in \mathcal{T} ;
- **(T3)** The finite intersection of subsets in \mathcal{T} is in \mathcal{T} .

A set X with a topology \mathcal{T} is called a topological space. Denoted by (X, \mathcal{T}) . An element of \mathcal{T} is called an open set.

Definition 1.2. A subset $U \subset M$ is referred to as open in M if $U \in \mathcal{T}$. A subset $A \subset M$ is termed closed if $M \setminus A \in \mathcal{T}$.

Definition 1.3 (Continuity). If both (M, \mathcal{T}_M) and (N, \mathcal{T}_N) are topological spaces, a map $f: M \to N$ is termed continuous if

$$f^{-1}(V) \in \mathcal{T}_M$$
 for all $V \in \mathcal{T}_N$

. In other words, the preimages of open sets must be open.

Definition 1.4 (Homemorphism). A map $f: M \to N$ between two topological spaces is called homemorphism if it has following proporties. - f is a bijection, - f is continuous, - the inverse function f^{-1} is continuous.

Two topological spaces M and N are called homeomorphic if there exists a homeomorphism between them.

Definition 1.5 (Hausdorff Space). A topological space (X,\mathcal{T}) is called a Hausdorff space if

(H1) $\forall x,y \in X$ such that $x \neq y, \exists U_x, U_y \in \mathcal{T}$ such that $x \in U_x, y \in U_y$, and $U_x \cap U_y = \emptyset$.

i.e., for every pair of distinct points x, y in X, there are disjoint neighborhoods U_x and U_y of x and y respectively.

::: {.definition #unnamed-chunk-5 name="Countability"} A space X is said to have a **countable basis at the point** x if there is a countable collection $\{U_n\}_{n\in\mathbb{Z}^+}$ of neighborhoods of x such that any neighborhood U of x contains at least one of the sets U_n . A space X that has a countable basis at each of its points is said to satisfy the first countability axiom. :::

1.0.1 Stereographic Projection

• Stereographic Projection plane \mathbb{R} and the 1-sphere minus a point The 1-sphere S^1 is the set of points $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 + z^2 = 1$.

$$S^1 := \{(x,y) : ||(x,y)|| = 1\}$$

Let $S^1 \smallsetminus \{N\}$ denote the 1-sphere minus (circle) its north pole, i.e., the point (0,1).

There exists a homeomorphism $\varphi:S^1\setminus\{N\}\to\mathbb{R}$, which can be described as follows. In coordinates, this map is precisely

$$\varphi(x,y) = \frac{x}{1-y}$$

- Stereographic Projection plane \mathbb{R}^2 and the 2-sphere minus a point

Stereographic projection is an important homeomorphism between the plane \mathbb{R}^2 and the 2-sphere minus a point. The 2-sphere S^2 is the set of points $(x,y,z)\in\mathbb{R}^3$ such that $x^2+y^2+z^2=1$. Let $S^2\setminus\{N\}$ denote the 2-sphere minus its north pole, i.e., the point (0,0,1).

There exists a homeomorphism $\varphi:S^2\setminus\{N\}\to\mathbb{R}^2,$ which can be described as follows.

For a point $p \in S^2 \setminus \{N\}$, let $\underline{\varphi(p)}$ denote the unique point in P such that the intersection of the segment $\overline{Nf(p)}$ and S^2 is p. In coordinates, this map is precisely

$$\varphi(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right).$$

Figure 1.1:

Figure 1.2:

Chapter 2

Manifolds

2.1 Topological Manifolds

Definition 2.1. Let (M,\mathcal{T}) be a topological space with topology \mathcal{T} . Then M is called an n-dimensional topological manifold, if the following holds:

- (TM1): M is Hausdorff.
- (TM2): The topology of M has a countable basis.
- (TM3): M is locally homeomorphic to \mathbb{R}^n , that is, for all $p \in M$ exists an open subset $U \subset M$ with $p \in U$, an open subset $V \subset \mathbb{R}^n$ and a homeomorphism $\varphi: U \to V$.

Figure 2.1:

Remark. The first two conditions in the definition 2.1 are more of a technical nature and are sometimes neglected. The important fact is that a topological manifold is locally homeomorphic to \mathbb{R}^n . Loosely speaking, manifolds look locally like Euclidean space. If the topology on M is induced by a metric, then the first condition is satisfied automatically. If M is given as a subset of \mathbb{R}^N with the subset topology, then both conditions M1 and M2 are satisfied automatically.

Let's see some examples.

Example 2.1. Euclidean space $M = \mathbb{R}^n$ itself is an *n*-dimensional topological manifold:

• (TM1): We know that \mathbb{R}^n is metrc space. Let's say the metric as d. Let $x,y\in\mathbb{R}^n$ with $x\neq y$. Let r=d(x,y). Since $x\neq y,r>0$. Let $U_x=B(x,r/2)$ and $U_y=B(y,r/2)$. So, $x\in U_x$ and $y\in U_y$ We need to show that $U_x\cap U_y\neq\emptyset$. We are going to proof by contrdiction. So, assume the contray, there exist $z\in U_x\cap U_y$. Thus, d(x,z)< r/2 and d(y,z)< r/2. Then,

$$r = d(x,y) \leq d(x,z) + d(z,y) = d(x,z) + d(y,z) < \frac{r}{2} + \frac{r}{2} = r$$

This is contradiction. Hence $U_x \cap U_y \neq \emptyset$. Therefore $M = \mathbb{R}^n$ is Hausdorff.

• (TM2): Later I will update this part

Problem:(.

• (TM3): Let $U = \mathbb{R}^n = M$ and $V = \mathbb{R}^n$ and $\varphi = id$. We can easily tell that identity map is bijective. Furthur, we can observe that inverse of identity map is itself and it is well defined. So, Let $U' \subset U = \mathbb{R}^n$ be an open set

$$\forall x \in U' \quad id^{-1}(x) = id(x) = x$$

. Thus,

$$id(U^{\prime})=id^{-1}(U^{\prime})=U^{\prime}.$$

Hence, by definition of continuous mapping, id and id^- are continuous.

Example 2.2. Let $M \subset \mathbb{R}^n$ be an open subset. Then M is an n-dimensional topological manifold.

(TM1), (TM2) Obvious.

(TM3) Holds true with U = M, V = M and x = id.

Here Ia m not going to proove this. It is very similar to first example.

Example 2.3. The standard sphere $M = S^n = \{\underline{y} = (y^0, ..., y^n) \in \mathbb{R}^{n+1} : ||y|| = 1\}$ is an *n*-dimensional topological manifold.

• (TM1) and (TM2), since S^n is a subset of \mathbb{R}^{n+1} .

• (TM3) We construct two homeomorphisms with the help of the stereographic projection. Let N be north pole of the n-sphere, that is $(0,...,0,1) \in \mathbb{R}^{n+1}$. Let $U_1 := S^n \setminus \{N\}$ and $v_1 = \mathbb{R}^{n+1}$. We define n \widetilde{times}

$$\varphi: U_1 \to V_1 \tag{2.1}$$

$$\begin{array}{ccc} \varphi: U_1 & \rightarrow & V_1 & (2.1) \\ \underline{y} = (y^0, y^1, ..., y^n) & \mapsto & \dfrac{(y^0, y^1, ..., y^n)}{1 - y^{n+1}} & (2.2) \end{array}$$

- Cliam 1: varphi is injective.

Let $(x^0,...,x^n)$, $(y^0,y^1,...,y^n) \in \mathbb{R}^n$. Suppose that $\varphi(x^0,...,x^n) = \varphi(y^0,y^1,...,y^n)$.

$$\varphi(x^0, ..., x^n) = \varphi(y^0, y^1, ..., y^n)$$
(2.3)

$$\frac{(x^0, x^1, ..., x^n)}{1 - x^{n+1}} = \frac{(y^0, y^1, ..., y^n)}{1 - y^{n+1}} \tag{2.4}$$

$$(y^0, y^1, ..., y^n)(1 - x^{n+1}) = (x^0, x^1, ..., x^n)(1 - y^{n+1})$$
(2.5)

$$(y^0-y^0x^{n+1},y^1-y^1x^{n+1},...,y^n-y^nx^{n+1}) \quad = \quad (x^0-x^0y^{n+1},x^1-x^1y^{n+1},...,x^n-x^ny(2.6))$$

$$y^0(1-x^{n+1}),y^1(1-x^{n+1}),...,y^n(1-y^nx^{n+1}) = x^0(1-y^{n+1}),x^1(1-y^{n+1}),...,x^n(1-y^{n+1}),...$$

Thus, $y^i(1-x^{n+1})=x^i(1-y^{n+1})$ for all i=0,1,...,n. Since $1-y^{n+1},1-x^{n+1}>$ 0, ?

?

?

?

Problem HOW INJECTIVITY COMES: (.

CHECK:(.

- Claim 2: φ is surejctive. Surjectivity means that for every $\underline{v} \in V_1 = \mathbb{R}^n$, there exists some $y \in U_1$ such that $\varphi(y) = \underline{v}$.

So, let $\underline{v}=(v^0,v^1,...,v^n)\in V_1$. We need to find $y=(y^0,y^1,...,y^n)\in U_1$ such that

$$\frac{(y^0, y^1, ..., y^n)}{1 - y^{n+1}} = \underline{v}.$$

We can solve this equation for y as follows:

$$\underline{y} = (1 - y^{n+1})\underline{v} = \underline{v} - y^{n+1}\underline{v}.$$

We know that $\underline{y} \in U_1 = S^n \setminus \{N\}$, so $y^{n+1} = 1 - \|\underline{y}\|^2$. Substituting this into the equation gives us

$$y = \underline{v} - (1 - \|y\|^2)\underline{v} = \|y\|^2\underline{v}.$$

Solving this equation for $||y||^2$ gives us

$$\|\underline{y}\|^2 = \frac{\|\underline{v}\|^2}{1 + \|v\|^2}.$$

Substituting this back into the equation for y gives us

$$\underline{y} = \frac{\underline{v}}{1 + \|\underline{v}\|^2}.$$

This is a well-defined point in U_1 for every $\underline{v} \in V_1$, so φ is surjective.

• Claim: φ is continuous. Note that the inverse map ϕ is given by,

$$\phi: V_1 \to U_1 \tag{2.9}$$

$$\underline{x} = (x^0, x^1, ..., x^n) \quad \mapsto \quad \frac{(x^0, x^1, ..., x^{n-1})}{1 + x^n}$$
 (2.10)

I will update this proof. I want some to to write rigirs proof: (.

Analogously, we define the homeomorphism, which omits the south pole: Let now $U_2:=S^n\setminus\{S\}$ with $S:=(0,...,0,-1)\in\mathbb{R}^{n+1}$ and $V_2:=\mathbb{R}^n$. Then

$$\varphi: U_2 \quad \rightarrow \quad V_2, \tag{2.11}$$

$$\underline{y} = (y^0, y^1, ..., y^n) \quad \mapsto \quad \frac{(y^0, y^1, ..., y^n)}{1 + y^n} \tag{2.12}$$

Therefore, n-sphere S^n is an n-dimensional topological manifold.

Example 2.4 (Non-Example). We consider $M := \{(y^1, y^2, y^3) \in \mathbb{R}^3 | (y^1)^2 = (y^2)^2 + (y^3)^2 \}$, the double cone.

Since $M \subset \mathbb{R}^3$, both (i) and (ii) are satisfied.

But M is **not** a 2-dimensional manifold. Assume it were, then there would exist an open subset $U \subset M$ with $0 \in U$, an open subset $V \subset \mathbb{R}^2$ and a homeomorphism $\varphi: U \to V$ with $\varphi(0) = 0$. How do we Gruntee that such hormouphsim exsist that maps 0 to 0:(Without losss of generality assume $V = B_r(x(0))$ with r > 0. Choose $(p^1, p^2, p^3), (q^1, q^2, q^3) \in U$ with $p^1 > 0$ and $q^1 < 0$. Furthermore, choose a continuous path $c:[0,1] \to V$ with $c(0) = x(q_1), c(1) = x(q_2)$ and $c(t) \neq x(0)$ for all $t \in [0,1]$.

Define the continuous path $\tilde{c}:=x^{-1}\circ c:[0,1]\to U.$ Then $\tilde{c}(0)=q_1,\,\tilde{c}(1)=q_2,$ that is, we have $\tilde{c}_1(0)>0$ while $\tilde{c}_1(1)<0.$ Applying the mean value theorem we find, that there exists a $t\in(0,1)$ with $\tilde{c}_1(t)=0.$ Then $\tilde{c}(t)=(0,0,0)$ and consequently $c(t)=x(\tilde{c}(t))=x(0),$ which contradicts the choice of c. Hence, M is not a 2-dimensional topological manifold.

Definition 2.2 (charts). If M is an n-dimensional topological manifold, the homeomorphisms $\varphi: U \to V$ are called charts (or local coordinate systems) of M.

After choosing a local coordinate system $\varphi:U\to V$ every point $p\in U$ is uniquely characterized by its coordinates $(\varphi^1(p),\ldots,\varphi^n(p))$.

Example 2.5 (0-dimesional manifold). In a 0-dimensional manifold M every point $p \in M$ has an open neighborhood U, which is homeomorphic to $R^0 = \{0\}$. Consequently $\{p\} = U$ is an open subset of M for all $p \in M$, that is, M carries the discrete topology. Since there exists a countable basis for the topology on M and the topology is discrete in addition, M has to be countable itself.

Proposition 2.1. A topological space M is a 0-dimensional topological manifold, if and only if M is countable and carries the discrete topology.

Proof.

• (\Longrightarrow) By definition, a 0-dimensional topological manifold is a topological space where every point has a neighborhood homeomorphic to the 0-dimensional Euclidean space, which is a single point $\{0\}$. This implies that for every point $p \in M$, there exists an open neighborhood U such that $\{p\} = U$. This is exactly the definition of a discrete topology.

Since, there exists a countable basis for the topology on M, and every point in M is an open set (i.e., the topology is discrete), then M must be countable. This is because every point in M corresponds to an open set in the basis, and since the basis is countable, M must also be countable.

Figure 2.2:

• (\Leftarrow) If M carries the discrete topology, then every subset of M is open. In particular, for every point $p \in M$, the set $\{p\}$ is an open set. This means that every point in M has a neighborhood homeomorphic to the 0-dimensional Euclidean space, which is a single point $\{0\}$. This is exactly the definition of a 0-dimensional topological manifold.

If M is countable, then there exists a countable basis for the topology on M. Since every point in M is an open set (i.e., the topology is discrete), this basis can be taken to be the set of all singletons $\{p\}$, where $p \in M$.

Therefore, a topological space M is a 0-dimensional topological manifold if and only if M is countable and carries the discrete topology.

Definition 2.3. A topological manifold M is said to be **connected**, if for every two points $p, q \in M$ there exists a continuous map $c : [0, 1] \to M$ with c(0) = p and c(1) = q.

Figure 2.3:

Given two points, there has to be a continuous curve in M which connects both. Usually, in Topology one calls this path-connected, which is in the case of manifolds equivalent to being connected. We do not want to go deeper into this subject at this point.