Ответы МатАн

Черепанов Илья 26.12.2024

Содержание

1	$M_{\rm H}$	ожества на числовой прямой; определение окрестно-				
	сти	конечной точки. Бесконечные точки.	7			
	1.1	Определение множества	7			
	1.2	Числовые множества. Множества на прямой	7			
	1.3	Окрестность конечной точки.	9			
2	Опр	ределение функции. Область определения. Монотон-				
	ная	ная функция. Четная и нечетная функции. Обратная функ-				
	ция	. Сложная функция. Элементарные функции.	9			
	2.1	Определение функции. Область определения	9			
	2.2	Четность/нечетность	10			
	2.3	Монотонность	10			
	2.4	Обратная функция	10			
	2.5	Сложная функция.	11			
	2.6	Элементарные функции	11			
3	Определение предела последовательности; определение пре-					
	дела функции в точке (конечной и бесконечной). Простей-					
	ши	е пределы $\lim_{x\to a}c=c$ и $\lim_{x\to a}x=a$. Единственность				
	кон	ечного предела.	12			
	3.1	Предел последовательности	12			
	3.2	Предел функции в конечной точке	12			
	3.3	Предел функции в бесконечной точке	13			
	3.4	Простейшие пределы	14			
	3.5	Единственность конечного предела	14			
4	Сво	ойства функций, стремящихся к конечному пределу				
	(огј	раниченность функции, имеющей конечный предел; тео)-			
	рем	а о сжатой переменной; предельный переход в нера-				
	вен	стве).	15			
5		носторонние пределы функции в точке. Необходимое				
		остаточное условие существования конечного преде-				
		использующее односторонние пределы). Первый заме-				
	чат	ельный предел: $\lim_{x\to 0} \frac{\sin x}{x}$.	16			
	5.1	Олносторонние пределы	16			

	5.2	Необходимое и достаточное условие существования конеч-			
		ного предела	17		
	5.3	Первый замечательный предел	17		
6	Теорема о монотонной ограниченной функции и последо-				
	вате	ельности (без доказательства). Второй замечательный			
	пре	дел. Доказательство существования.	18		
	6.1	Теорема о монотонной ограниченной последовательности .	18		
	6.2	Теорема о монотонной ограниченной функции	18		
	6.3	Второй замечательный предел	18		
7		конечно малые функции, их свойства. Необходимое и			
	дос	гаточное условие стремления функции к конечному			
	пре	делу.	19		
	7.1	Б.М.Ф	19		
	7.2	Необходимое и достаточное условие стремления функции			
		к конечному пределу	19		
8		конечно большие функции их свойства. Теорема о свя-			
	зи б	бесконечно малой и бесконечно большой функций.	19		
	8.1	Б.Б.Ф	19		
	8.2	Теорема о связи б.м. и б.б. функций	20		
9	_	едел суммы, произведения и частного функций, стре-			
	МЯЦ	цихся к конечным пределам.	20		
10	Сра	внение бесконечно малых. Эквивалентные бесконечно			
	малые. Таблица эквивалентных бесконечно малых (доказательство)				
	Teo	рема о замене бесконечно малой на эквивалентную			
	при	вычислении пределов.	21		
	10.1	Сравнение б.м.ф	21		
	10.2	Эквивалентные б.м.ф	21		
	10.3	Таблица эквивалентных б.м.ф	21		
11	Непрерывность функции в точке. Необходимое и доста-				
		ное условия непрерывности функции в точке(использую			
	-	ращения).	22		
	11.1	Непрерывность функции в точке	22		

11.2 Необходимое и достаточное условия непрерывности функ	
ции в точке	
11.3 Свойства непрерывности функции в точке	23
12 Свойства функций, непрерывных в точке. Свойства фуций, непрерывных на замкнутом промежутке (без дока	за-
тельства)	24
12.1 Свойства функций, непрерывных в точке	
12.2 Свойства функций, непрерывных на замкнутом промежу	тке 24
13 Классификация точек разрыва функции.	25
14 Определение производной. Примеры нахождения про	
водной с помощью определения.	26
15 Геометрический и механический смысл производной. У	рав-
нение касательной к графику функции.	27
15.1 Геометрический смысл производной	
15.2 Механический смысл производной	
15.3 Уравнение касательной к графику функции	28
16 Дифференцируемость функции в точке. Необходимос	
достаточное условие дифференцируемости. Непрерывн	
дифференцируемой функции.	28
16.1 Дифееренцируемость функции в точке	
16.2 Необходимое и достаточное условие дифференцируемост	
16.3 Непрерывность дифференцируемой функции	29
17 Дифференциал функции. Геометрический смысл дифо	фе-
ренциала. Производная суммы, произведения и частн	ого
двух функций.	30
17.1 Геометрический смысл дифференциала	
17.2 Производная суммы	31
17.3 Производная произведения	
17.4 Производная частного	32
18 Теорема о дифференцируемости сложной функции.	32

19	Производная обратной функции. Вывод производных обратных тригонометрических функций. 19.1 Производная обратной функции	
20	Правило логарифмического дифференцирования. Его применение к нахождению производных функций $f(x)=a^x,$ $f(x)=x^a.$	34
21	Производные и дифференциалы высших порядков.	35
22	Таблица производных.	37
23	Дифференцирование функций, заданных параметрически (первая и вторая производные). Теорема Ролля, ее геометрический смысл. 23.1 Дифференцирование функций, заданных параметрически . 23.2 Теорема Ролля	38 38
24	Теорема Коши. Формула конечных приращений Лагранжа, ее геометрический смысл. 24.1 Теорема Коши	
25	Правило Лопиталя.	40
26	Формула Тейлора для функции одной переменной с остаточным членом в форме Лагранжа и форме Пеано.	41
27	Формулы Тейлора (Маклорена) для функций $y=e^x,\ y=\sin x,\ y=\cos x,\ ,$ в окрестности точки ${\bf x}={\bf 0}.$	42
28	Необходимое и достаточное условия возрастания (убывания) функции $y = f(x)$. 28.1 Необходимое условие	43 43 43
29	Определение экстремума функции $y = f(x)$. Необходимое условие экстремума.	43

30	Достаточное условие экстремума, использующее первую производную.	44
31	Достаточное условие экстремума, использующее вторую производную.	44
32	Определение направления выпуклости графика функции $y=f(x)$. Признак выпуклости вверх и выпуклости вниз. Точки перегиба графика функции. 32.1 Достаточный признак направления выпуклости	44 45
33	Асимптоты графика функции $y=f(x)$. Правило нахождения вертикальных и невертикальных асимптот.	45
34	Определение первообразной. Теорема о двух первообразных одной функции.	45
35	Определение неопределенного интеграла и его свойства. Инвариантность формул интегрирования.	46
36	Метод интегрирования по частям для неопределенного интеграла.	46
37	Метод подстановки для неопределенного интеграла.	46
38	Простейшие рациональные дроби и их интегрирование.	46
39	Интегрирование дробно-рациональных функций.	46
40	Интегрирование тригонометрических функций.	46
41	Использование подстановок примеры.	46

1 Множества на числовой прямой; определение окрестности конечной точки. Бесконечные точки.

1.1 Определение множества.

Mножество — совокупность объектов, объединенных по какому-то признаку.

Объекты, из которых состоит множество, нахываются его *элемента-ми*.

Множества принято обозначать заглавными буквами латинского алфавита $\{A, B, ..., X, Y, ...\}$, а их элементы – малыми буквами $\{a, b, ..., x, y, ...\}$. Множество, не содержащее ни одного элемента, называется nycmum, обозначается символом \varnothing .

Множество A называется nodмножеством множества B, если каждый элемент множества A является элементом множества B. Обозначается $A \subset B$.

Говорят, что множества A и B равны или совападают, и пишут A=B, если $A \subset B$ и $B \subset A$. То есть, если множества состоят из одних и тех же элементов.

Объединением (или суммой) множеств A и B называется множество, состоящие из элементов, принадлежащих хотя бы одному их этих множеств. Обозначается $A \cup B$ (илиA + B). Кратко можно записать $A \cup B = \{x \colon x \in A \text{ или } x \in B\}$

Пересечением (или произведением) множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множеству B. Обозначают $A \cap B$ (или $A \cdot B$). Кратко можно записать $A \cap B = \{x \colon x \in A \text{ и } x \in B\}$

1.2 Числовые множества. Множества на прямой.

Множества, элементами которых явлвяются числа, называются **число-** $\boldsymbol{\epsilon} \boldsymbol{\omega} \boldsymbol{\omega} \boldsymbol{u}$.

Примеры числовых множеств:

 $\mathbb{N} = \{1; 2; 3; ...; n; ...\}$ - множество натуральных чисел.

 $\mathbb{Z} = \{\pm 1; \pm 2; \pm 3; ...; \pm n; ...\}$ - множество целых чисел.

 $\mathbb{Q}=\{rac{m}{n}\colon m\in\mathbb{Z}, n\in\mathbb{N}\}$ - множество рациональных чисел.

 \mathbb{R} – множество вещественных чисел.

Между этими множествами существует соотношение:

$$\mathbb{N} \in \mathbb{Z} \in \mathbb{Q} \in \mathbb{R}$$

Действительные числа, не являющиеся рациональными, нызываются up-рациональными.

Свойства \mathbb{R} :

- 1. Множество упорядоченное: для любых двух различных чисел а и b справедливо a < b или a > b
- 2. Множество nлотное: между двумя раличными числами a и b содержится бесконечное множество действительных чисел.
- 3. Множество *непрерывное*. Пусть множество \mathbb{R} разбито на два непустых класса A и B таких, что каждое действительное число содержится только в одном классе и для каждой пары чисел $a \in A$ и $b \in B$ выполнено неравенство a < b. Тогда существует единственное число c, удовлетворяющее неравенству $a \le c \le b(\forall a \in A, \forall b \in B)$. Оно отделяет числа класса A от чисел класса B. Число c является либо наибольшим числом в классе A (тогда в классе B нет наименьшего числа), либо наименьшим числом в классе B (тогда в классе A нет наибольшего).

Свойство непрерывности позволяет установить взаимно-однозначное соответствие между множеством всех действительных чисел и множеством всех точек прямой. Это означает, что каждому числу $x \in \mathbb{R}$ соответствует единственная точка числовой оси и наоборот.

Пусть $a, b \in \mathbb{R}, a < b$

Числовыми промежсутками (интервалами) называют подмножества всех действительных чисел, имеющих следующий вид:

$$[a; b] = \{x : a \le x \le b\}$$
 – отрезок;

$$(a;b) = \{x \colon a < x < b\}$$
 – интервал;

$$[a;b) = \{x \colon a \le x < b\};$$

 $(a;b] = \{x \colon a < x \le b\}$ – полуоткрытые интервалы (или полуоткрытые отрезки);

$$(-\infty;b] = \{x\colon x \le b\};$$

$$(-\infty;b) = \{x\colon x < b\};$$

$$[a;\infty) = \{x\colon x \ge a\};$$

$$(a;\infty) = \{x\colon x \ge a\};$$

$$(-\infty;\infty) = \{x\colon -\infty < x < \infty\} = \mathbb{R} - \text{бесконечные интервалы (промежутки)};$$

1.3 Окрестность конечной точки.

Пусть x_0 – любое действительное число. Окрестностью точки x_0 называется любой интервал (a;b), содержащий точку x_0 . В частоности итервал $(x_0 - \varepsilon, x_0 + \varepsilon)$, где $\varepsilon > 0$, называется ε -окрестностью точки x_0 . Число x_0 называется ε -прадиусом.

Если $x \in (x_0 - \varepsilon; x_0 + \varepsilon)$, то выполняется неравенство $x_0 - \varepsilon < x < x_o + \varepsilon$, или, что то же, $|x - x_0| < \varepsilon$. Выполнение последнего неравенства означает попадание точки x в ε -окрестность точки x_0 .

2 Определение функции. Область определения. Монотонная функция. Четная и нечетная функции. Обратная функция. Сложная функция. Элементарные функции.

2.1 Определение функции. Область определения

Пусть даны два непустых множества X и Y. Соответствие f, которое каждому элементу $x \in X$ сопостовляет один и только один элемент $y \in Y$, называется $\pmb{\phi}y$ нкцией и записывается $y = f(x), x \in X$ или $f \colon X \to Y$. Говорят ещё, что функция f отпображсает множество X

на множество Y.

Множество X называется *областью определения* функции f и обозначается D(f). Множество Y называется *множеством значений* функции f и обозначается E(f).

2.2 Четность/нечетность

Функция, определенная на множестве D, называется **четной**, если $\forall x \in D$ выполняются условия $-x \in D$ и f(-x) = f(x); **нечетной**, если $\forall x \in D$ выполняются условия $-x \in D$ и f(-x) = -f(x); остальные относятся к функциям **общего вида**.

2.3 Монотонность.

Пусть функция y = f(x) определена на множестве D и пусть $D_1 \subset D$. Если для любых значений $x_1, x_2 \in D_1$ аргументов их неравенства $x_1 < x_2$ вытекает неравенство

 $f(x_1) < f(x_2)$, то функция называется возрастающей на множестве D_1 ;

 $f(x_1) < f(x_2) -$ **неубывающей** на множестве D_1 ;

 $f(x_1) > f(x_2) -$ **убывающей** на множестве D_1 ;

 $f(x_1) \geq f(x_2)$ – **невозрастающей** на множестве D_1 ;

Возрастающие, невозрастающие, убывающие и неубывающие функции на множестве D_1 называются **монотонными** на этом множестве, а возрастающие и убывающие - **строго монотонными**. Интервалы, в которых функция монотонна, называются **интервалами монотонности**

2.4 Обратная функция.

Пусть задана функция y = f(x) с обласьтю определения D и множеством значений E. Если каждому значению $y \in E$ соответствует единственное значение $x \in D$, то определена функция $x = \varphi(y)$ с областью определения E и множеством значений D. Такая функция $\varphi(y)$ называется обратной к функции f(x) и записывается как $x = \varphi(y) = f^{-1}(y)$. Про

функции y=f(x) и $x=\varphi(y)$ говорят, что они являются взаимно обратными. Чтобы найти функцию $x=\varphi(y)$ достаточно решить уравнение y=f(x) относительно x (если это возможно).

Из определения обратной функции вытекает, что функция y = f(x) имеет обратную тогда и только тогда, когда функция f(x) задает взаимно однозначное соответствие между множествами D и E. Отсюда следует, что любая строго монотонная функция имеет обратную.

2.5 Сложная функция.

Пусть функция y = f(u) определена на множестве D, а функция $u = \varphi(x)$ на множестве D_1 , причем для $\forall x \in D_1$ соответствующее значение $u = \varphi(x) \in D$. Тогда на множестве D_1 определена функция $y = f(\varphi(x))$, которая называется *сложеной функцией* от (x) (или *суперпозицией* заданных функций).

Переменную $u=\varphi(x)$ называют npoмежсуточным аргументом сложной функции.

2.6 Элементарные функции.

Основные элементарыне функции:

- 1. Показательная функция $y = a^x, a > 0, a \neq 0$
- 2. Степенная функция $y = x^{\alpha}, \alpha \in \mathbb{R}$
- 3. Логарифмическая функция $y = \log_a x, a > 0, a \neq 1$
- 4. Тригонометрические функции $y = \sin x, y = \cos x, y = \tan x, y = \cot x$
- 5. Обратные тригонометрические функции $y = \arcsin x, y = \arccos x, y = \arctan x, y = \arctan x$

Функция, задаваемая одной формулой, составленной из основных элементарных функций и постоянных с помощью конечного числа арифметических операций (сложения, вычитания, умножения деления) и операций взятия функции от функции, называется элементарной функцией.

3 Определение предела последовательности; определение предела функции в точке (конечной и бесконечной). Простейшие пределы $\lim_{x\to a} c = c$ и $\lim_{x\to a} x = a$. Единственность конечного предела.

3.1 Предел последовательности

Под **числовой последовательностью** $x_1, x_2, x_3, ..., x_n, ...$ понимается функция $x_n = f(n)$, заданная на множестве \mathbb{N} , кратко обозначается $\{x_n\}$.

Число a называется npedeлom $nocnedoвameльности <math>\{x_n\}$, если для любого положительного числа ε найдется такое натуральное число N, что при всех n > N выполняется неравенство $|x_n - a| < \varepsilon$. В этом случае пишут

$$\lim_{x \to \infty} x_n = \lim x_n = a$$

или $x_n \to a$.

Короткое определение предела:

$$(\forall \varepsilon > 0 \exists N : \forall n > N \Longrightarrow |x_n - a| < \varepsilon) \Longleftrightarrow \lim_{n \to \infty} x_n = a$$

Геометрическая интерпритация:

Чило a называется пределом последовательности $\{x_n\}$, если для любой ε -окрестности точки a найдется $N \in \mathbb{N}$, что все значения x_n , для которых n > N, попадут в ε -окрестность точки a.

3.2 Предел функции в конечной точке

Определение 1 (на языке последовательностей или по Гейне). Число A называется npedenom функции y = f(x) в точке x_0 (или при $x \to x_0$), если для любой последовательности допустимых значений аргумента $x_n, n \in \mathbb{N}(x_n \neq x_0)$, сходящейся к x_0 (т.е. $\lim_{n\to\infty} x_n = x_0$), последовательность соотоветвующих значений функции $f(x_n), n \in \mathbb{N}$, сходится

к числу A (т.е. $\lim_{n\to\infty} f(x_n) = A$).

В этом случае пишут $\lim_{x\to x_0} f(x) = A$ или $f(x) \to A$ при $x \to x_0$. Геометрический смысл предела функции $\lim_{x\to x_0} f(x) = A$ означает, что для всех точек x, достаточно близких к точке x_0 , соответствующие значения функции как угодно мало отличаются от числа A.

Определение 2 (на языке ε - δ или по Коши) Число A наызается пределом функции в точке x_0 (или при $x \to x_0$), если для любого положительного ε найдется такое положительное число δ , что для всех $x \neq x_0$, удовлетворяющих неравенству $|x-x_0|<\delta$, выполняется неравенство $|f(x)-A|<\varepsilon$. Записывают $\lim_{x\to x_0}f(x)=A$. Это определение коротко можно записать так

$$(\forall \varepsilon > 0 \exists \delta > 0 \forall x \colon |x - x_0| < \delta, x \neq x_0 \Longrightarrow |f(x) - A| < \varepsilon) \Longleftrightarrow \lim_{x \to x_0} f(x) = A$$

Геометрический смысл предела функции $A=\lim_{x\to x_0}f(x)$, если для любой ε -окрестности точки A найдется такая δ -окрестность точки x_0 , что для всех $x\neq x_0$ из этой δ -окрестности соответствующие значения функции f(x) лежат в ε - окрестности точки A. Иными словами, точки графика функции y=f(x) лежат внутри полосы шириной 2ε , ограниченной прямыми $y=A+\varepsilon, y=A-\varepsilon$. Очевидно, что величина δ зависит от выбора ε , поэтому пишут $\delta=\delta(\varepsilon)$.

3.3 Предел функции в бесконечной точке

Пусть функция y=f(x) определена в промежутке $(-\infty;\infty)$. Число A называется **Пределом функции** f(x) **при** $x\to\infty$, если для любого положительного числа ε существует такое счисло $M=M(\varepsilon)>0$, что при всех x, удовлетворяющих неравенству |x|>M выполняется неравенство $|f(x)-A|<\varepsilon$.

Коротко:

$$(\forall \varepsilon > 0 \exists M > 0 \forall x \colon |x| > M \Longrightarrow |f(x) - A| < \varepsilon) \Longleftrightarrow \lim_{x \to \infty} f(x) = A$$

Если $x \to +\infty$, то пишут $A = \lim_{x \to +\infty} f(x)$, если $x \to -\infty$, то $-A = \lim_{x \to -\infty} f(x)$. Геометрический смысл этого определения таков: для $\forall \varepsilon > 0 \exists M > 0$, что при $x \in (-\infty; -M)$ или $x \in (M; +\infty)$ соответствующие значения функции f(x) попадают в ε -окрестность точки A, т.е. точки графика лежат в полосе шириной 2ε , ограниченной прямыми $y = A + \varepsilon$ и $y = A - \varepsilon$.

3.4 Простейшие пределы

1. $\lim_{x\to a} x = a$. Доказательство:

$$\forall \varepsilon > 0 \exists \delta > 0 \colon x \in \mathring{U}_{\delta}(a) \curvearrowright f(x) = x \in \mathring{U}_{\varepsilon}(A)$$
$$\delta = \varepsilon$$

2. $f(x) = c = const \Longrightarrow \lim_{x\to a} c = c$ Доказательство:

$$\forall \varepsilon > 0 \exists \delta > 0 \colon x \in \mathring{U}_{\delta}(a) \curvearrowright f(x) = c \in \mathring{U}_{\varepsilon}(c)$$

 δ – любое, чтобы окрестность входила в область опредления. \blacksquare

3.5 Единственность конечного предела.

 $\lim_{x\to a} f(x) = A$ – единственный предел.

Доказательство:

Допустим
$$f(x) \to A; x \to a$$

$$f(x) \to B; x \to a$$

B > A

$$\forall \varepsilon > 0 \exists \delta_1 \colon x \in \mathring{U}_{\delta_1}(a) \curvearrowright \left(f(x) \in \mathring{U}_{\varepsilon}(A) \right) \Leftrightarrow (A - \varepsilon < f(x) < A + \varepsilon) \tag{1}$$

$$\forall \varepsilon > 0 \exists \delta_1 \colon x \in \mathring{U}_{\delta_2}(a) \curvearrowright \left(f(x) \in \mathring{U}_{\varepsilon}(B) \right) \Leftrightarrow \left(B - \varepsilon < f(x) < B + \varepsilon \right) \tag{2}$$

 $\delta=\min\{\delta_1,\delta_2\}\Rightarrow$ при $x\in \mathring{U}_\delta$ выполнены правила (1) и (2) Возьмем $\varepsilon=\frac{B-A}{2}$

$$(1): \dots < f(x) < A + \frac{B - A}{2} = \frac{B + A}{2}$$

$$(2): B - \frac{B - A}{2} < f(x) < A + \dots$$

$$\Rightarrow \frac{B + A}{2} < f(x) < \frac{B + A}{2} \Rightarrow \text{Предел единствен}$$

- 4 Свойства функций, стремящихся к конечному пределу (ограниченность функции, имеющей конечный предел; теорема о сжатой переменной; предельный переход в неравенстве).
 - 1. $\lim_{x\to a} f(x) = A$ единственный
 - 2. $\lim_{x\to a} f(x) = A$ конечный $\Rightarrow \exists \mathring{U}(a) \colon f(x)$ ограничена в $\mathring{U}(a)$
 - 3. Предельный переход в неравенстве

$$\begin{split} &\lim_{x \to a} f(x) = A, \lim_{x \to a} g(x) = B \\ &f(x) \leq g(x), x \in \mathring{U}(a) \Rightarrow \lim_{x \to a} f(x) \leq \lim_{x \to a} g(x) \\ &A < B \end{split}$$

Доказательство:

$$\forall \varepsilon > 0 \exists \delta_1 > 0 \colon x \in \mathring{U}_{\delta_1}(a) \curvearrowright (A - \varepsilon < f(x) < A + \varepsilon)$$

$$\forall \varepsilon > 0 \exists \delta_1 > 0 \colon x \in \mathring{U}_{\delta_2}(a) \curvearrowright (B - \varepsilon < f(x) < B + \varepsilon)$$

$$\delta = \min(\delta_1, \delta_2)$$

$$A - \varepsilon < f(x \le g(x) < B + \varepsilon)$$

$$A < B + 2\varepsilon$$

$$A \le B$$

4. $f(x) \le \varphi(x) \le g(x)$ – Т. о сжатой переменной (двух милиционеров)

$$\lim_{x \to a} f(x) = A$$

$$\lim_{x \to a} g(x) = A$$

$$\Rightarrow \lim_{x \to a} \varphi(x) = A$$

Доказательство:

$$\forall \varepsilon > 0 \exists \delta > 0 : x \in \mathring{U}_{\delta}(a) : \frac{A - \varepsilon < f(x) < A + \varepsilon}{A - \varepsilon < g(x) < A + \varepsilon}$$
$$\frac{A - \varepsilon < f(x) \le \varphi(x) \le g(x) < A + \varepsilon}{-}$$

- 5 Односторонние пределы функции в точке. Необходимое и достаточное условие существования конечного предела (использующее односторонние пределы). Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x}$.
- 5.1 Односторонние пределы

f(x) — определена на (b;a), a — конечная точка. Число A — предел f(x) слева в точке a, если

$$\forall \varepsilon > 0 \exists \delta > 0 \colon x \in (a - \delta; a) \curvearrowright f(x) \in U_{\varepsilon}(A)$$

Обозначение:

$$\lim_{x \to a^{-}} f(x)$$

$$\lim_{x \to a^{-}} f(x)$$

Справа аналогично

$$\lim_{x \to a+} f(x)$$
$$\lim_{x \to a+0} f(x)$$

5.2 Необходимое и достаточное условие существования конечного предела

$$\lim_{x \to a} f(x) = A \Leftrightarrow \lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = A$$

5.3 Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\lg x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

- 6 Теорема о монотонной ограниченной функции и последовательности (без доказательства). Второй замечательный предел. Доказательство существования.
- 6.1 Теорема о монотонной ограниченной последовательности

Всякая монотонная ограниченная последовательность имеет предел.

6.2 Теорема о монотонной ограниченной функции

Если функция f(x) монотонна и ограничена при $x < x_0$ или $x > x_0$, то существует соответственно ее левый предел $\lim_{x\to x_0-0} f(x) = f(x_0-0)$ или ее правый предел $\lim_{x\to x_0+0} f(x) = f(x_0+0)$

6.3 Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Доказательство существования:

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n C_n^k \frac{1}{n^k} \cdot 1^{n-k} = \sum_{k=0}^n \frac{n!}{(n-k)! \cdot k!} \cdot \frac{1}{n^k} =$$

$$= \sum_{k=0}^n \frac{(n-k+1)(n-k+2)\dots(n-(n-1)) \cdot n}{k!n^k} =$$

$$= 1 + \sum_{k=1}^n \frac{(n-k+1)(n-k+2)\dots(n-(n-1))}{k!n^{k-1}} =$$

$$= 1 + 1 + \frac{n-1}{2n} + \frac{(n-1)(n-2)}{3!n^2} + \dots + \frac{(n-(n-1))(n-(n-2)\dots(n-2)(n-1))}{n!n^{n-1}}$$

Следствия:

- $1. \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$
- 2. $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$
- 7 Бесконечно малые функции, их свойства. Необходимое и достаточное условие стремления функции к конечному пределу.
- 7.1 Б.М.Ф.

$$\lim_{x \to x_0} f(x) = 0$$

Свойства б.м.ф.

- 1. f(x) б. м. в точке $a \Rightarrow c \cdot f(x)$ б. м. в точке a
- 2. f(x) б. м. в точке a; g(x) ограничена в U(a) или g(x) б.м. в точке $a \Rightarrow f(x) \cdot g(x)$ б.м. в точке a
- 3. f(x) б. м. в точке a; g(x) б.м. в точке $a \Rightarrow \lim_{x \to a} (f(x) + g(x)) = 0$
- 7.2 Необходимое и достаточное условие стремления функции к конечному пределу

$$\lim_{x \to a} A_{\text{koh}} \Leftrightarrow \lim_{x \to a - 0} f(x) = \lim_{x \to a + 0} f(x)$$

- 8 Бесконечно большие функции их свойства. Теорема о связи бесконечно малой и бесконечно большой функций.
- 8.1 Б.Б.Ф.

$$\lim_{x \to a} f(x) = \infty$$

Свойства Б.Б.Ф.

1. cf(x) – б.б. в точке $(c \neq 0)$

2.
$$f(x) + A_{\text{кон}}$$
 – б.б. в точке a

3.
$$f(x) \cdot g(x)$$
 –б.б. в точке $a (g(x) -$ б.б.)

4.

$$\lim_{x \to a} f(x) = +\infty$$

$$\lim_{x \to a} g(x) = +\infty$$

$$\lim_{x \to a} (f(x) + g(x)) = +\infty$$

Теорема о связи б.м. и б.б. функций 8.2

- f(x) б.б. в точке $a\Rightarrow \frac{1}{f(x)}$ б.м. в точке a
- f(x) б.м. в точке $a\Rightarrow \frac{1}{f(x)}$ б.б. в точке a

Предел суммы, произведения и частного 9 функций, стремящихся к конечным пределам.

Пусть
$$\lim_{x \to a} f(x) = A$$

$$\lim_{x \to a} g(x) = B$$

$$\lim_{x \to a} g(x) = B$$

$$1. \lim_{x \to a} cf(x) = cA$$

2.
$$\lim_{x \to a} (f(x) + g(x)) = A + B$$

3.
$$\lim_{x \to a} (f(x) \cdot g(x)) = AB$$

4.
$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{A}{B}$$

10 Сравнение бесконечно малых. Эквивалентные бесконечно малые. Таблица эквивалентных бесконечно малых (доказательство). Теорема о замене бесконечно малой на эквивалентную при вычислении пределов.

10.1 Сравнение б.м.ф.

f(x), g(x) – б.м. в точке a

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\begin{cases} 0, & f(x) \text{ более высокого порядка}\\ A\neq 0, & f(x) \text{ и } g(x) \text{ одного порядка}\\ \infty, & g(x) \text{ более высокого порядка}\\ \nexists, & \text{несравнимы} \end{cases}$$

10.2 Эквивалентные б.м.ф.

Предел отношения б.м.ф. ге изменится, если каджую из них (или одну) заменить на эквивалентную б.м.ф.

Если $\lim_{x\to a} \frac{\alpha(x)}{\beta(x)} = 1$, то α и β эквивалентны в точке a.

Доказательство:

 $f(x) \sim \alpha(x)$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)} \cdot \frac{\alpha(x)}{\alpha(x)} \cdot \frac{\beta(x)}{\beta(x)} = \lim_{x \to a} \frac{f(x)}{\alpha(x)} \cdot \frac{\beta(x)}{\beta(x)} \cdot \frac{\alpha(x)}{\beta(x)} = \lim_{x \to a} \frac{\alpha(x)}{\beta(x)}$$

10.3 Таблица эквивалентных б.м.ф.

- 1. $\sin \alpha(x) \sim \alpha(x)$
- 2. $\operatorname{tg} \alpha(x) \sim \alpha(x)$

- 3. $1 \cos \alpha(x) \sim \frac{(\alpha(x))^2}{2}$
- 4. $\arcsin \alpha(x) \sim \alpha(x)$
- 5. $\operatorname{arctg} \alpha(x) \sim \alpha(x)$
- 6. $e^{\alpha(x)} 1 \sim \alpha(x)$
- 7. $\ln(1 + \alpha(x)) \sim \alpha(x)$
- 8. $(1 + \alpha(x)^n) 1 \sim xn$
- 11 Непрерывность функции в точке. Необходимое и достаточное условия непрерывности функции в точке (использующие приращения).
- 11.1 Непрерывность функции в точке

Функция y=f(x) определена в U(a) f(x) – непрерывна в точке a, если существует предел, и он равен значнию функции в этой точке $\lim_{x\to a} f(x) = f(a)$

11.2 Необходимое и достаточное условия непрерывности функции в точке

$$\Delta f(x)=f(x_1)-f(x)$$
 $x_1=x+\Delta x$ $\Delta x=x_1-x$ $\lim_{\Delta x \to 0} \Delta f(x)=0 \Leftrightarrow f(x)$ – непрерывна в точке x

11.3 Свойства непрерывности функции в точке

- 1. f(x) непрерывна в точке $x \Rightarrow cf(x)$ непрерывна в точке x
- 2. f(x), g(x) непрерывны в точке $x \Rightarrow \frac{f(x) + g(x)}{f(x) \cdot g(x)}$ непрерывны в точке x
- 3. f(x) непрерывна в точке $x_0, f(x_0) \neq 0 \Rightarrow \exists U(x_0) \colon f(x)$ того же знака, что $f(x_0)$

Доказательство:

Пусть $f(x_0) > 0$:

$$\lim_{x\to x_0} = f(x_0), \text{ r.e. } \forall \varepsilon > 0 \exists \delta > 0 \colon x \in U_\delta(x_0)$$

$$f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$$

Выберем ε : $f(x_0) - \varepsilon > 0 \Rightarrow \delta$ – искомое

4. f(x), g(x) – непрерывны в точке $x_0, g(x) \neq 0$: $\frac{f(x)}{g(x)}$ – непрерывна в точке x_0

- 5. u(x) непрерывна в точке $x_0, u(x_0) = u_0$: f(u) непрерывна в точке $u_0 \Rightarrow f(x) = f(u(x))$ непрерывна в точке x_0
- 6. Все элементарные функции непрерывны на своей области определения

12 Свойства функций, непрерывных в точке. Свойства функций, непрерывных на замкнутом промежутке (без доказательства)

12.1 Свойства функций, непрерывных в точке

- 1. Если f(x) непрерывна в точке a, то существует U(a), в которой f(x) ограничена.
- 2. Если f(x) непрерывна в точке $a, f(a) \neq 0$, то в некоторой U(a)f(x) сохраняет свой знак.

12.2 Свойства функций, непрерывных на замкнутом промежутке

f(x) –непрерывна на промежутке [a;b], если:

- 1) f(x) непрерывна на (a;b)
- $2) \ f(a+0) = f(a)$
- 3) f(b-0) = f(b)

1 теорема Вейерштрасса

Если f(x) непрерывна на [a;b], то она на нем ограничена.

2 теорема Вейерштрасса

Если f(x) непрерывна на [a;b], то она достигает на нем наибольшее и наименьшее свое значение.

1 теорема Больцано-Коши

f(x) непрерывна на [a;b] $f(a)\cdot f(b)<0\Rightarrow \exists c\in [a;b]\colon f(c)=0$

3 теорема Больцано-Коши

f(x) непрерывна на [a;b] $f(a)=A, f(b)=B\Rightarrow A\neq B \forall C\in (A;B) \exists c\in (a;b)\colon f(c)=C$

13 Классификация точек разрыва функции.

f(x) определена в U(a) или $\mathring{U}(a)$ x=a — точка разрыва функции f(x), если выполняется хотя бы одно из условий:

- 1) Функция не определена в точке a
- 2) Функция определена в точке a, но не существует $\lim_{x \to a} f(x)$
- 3) Функция определена, существуют пределы $\lim_{x\to a-} f(x)$ и $\lim_{x\to a+} f(x)$, но не выполняется условие $\lim_{x\to a-} f(x) = \lim_{x\to a+} f(x) = f(a)$

Классификация точек разрыва функции

I. a – точка разрыва I-го рода, если $\lim_{x \to a-0} f(x)$ и $\lim_{x \to a+0} f(x)$ – конечные

1) Если $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$, то a – точка устранимого разрыва.

2) Если $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$, то a – точка конечного разрыва.

- II. a точка разрыва II-го рода, если хотя бы один из $\lim_{x \to a-} f(x), \lim_{x \to a+} f(x)$
 - бесконечный или не существует

14 Определение производной. Примеры нахождения производной с помощью определения.

f(x) – определена в U(x)

 $\Delta x \colon x + \Delta x \in U(x)$

$$\Delta f(x) = f(x - \Delta x) - f(x)$$

Предел отношения приращения функции к приращению аргумента называется npouseodhoù.

$$\lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) = \frac{df(x)}{d(x)}$$

- 15 Геометрический и механический смысл производной. Уравнение касательной к графику функции.
- 15.1 Геометрический смысл производной

$$f'(x) = \lim_{\Delta x \to a} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{MA}{M_0 A} = \operatorname{tg} \alpha$$

При
$$M \to M_0$$
: $\alpha \to \varphi \Rightarrow f'(x) = \operatorname{tg} \varphi$

15.2 Механический смысл производной

15.3 Уравнение касательной к графику функции

$$y_0 = f(x_0)$$

$$y - y_0 = k(x - x_0)$$

$$y = y_0 + y'(x_0)(x - x_0)$$

16 Дифференцируемость функции в точке. Необходимое и достаточное условие дифференцируемости. Непрерывность дифференцируемой функции.

16.1 Дифееренцируемость функции в точке

f(x) — дифференцируема в точке x,если приращение функции $\varDelta f(x)$ можно представить в виде:

$$\Delta f(x) = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$
 A – число $\alpha(\Delta x)$ – б.м. при $\Delta x \to 0$

16.2 Необходимое и достаточное условие дифференцируемости.

f(x) – дифференцируема в точке $x \Leftrightarrow \exists$ конечная f'(x) Доказательство:

16.3 Непрерывность дифференцируемой функции

f(x) – дифференцируема в точке $x\Rightarrow f(x)$ непрерывна в точке x

17 Дифференциал функции. Геометрический смысл дифференциала. Производная суммы, произведения и частного двух функций.

$$f'(x)$$
 – конечная $\Rightarrow \underbrace{f'(x)\Delta x}_{} + \alpha(\Delta x)\Delta x$ $df(x) = f'(x)\Delta x$ – дифференциал функции $f(x)$ в точке x . $dx = \Delta x$

$$f'(x) = \frac{df(x)}{dx}$$

17.1 Геометрический смысл дифференциала

 $df(x) = \operatorname{tg} \varphi \cdot \Delta x$

17.2 Производная суммы

$$u = u(x); v = v(x)$$

$$y' = \lim_{\Delta x \to 0} \frac{(u(x + \Delta x) \pm v(x + \Delta x)) - (u(x) \pm v(x))}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\frac{u(x + \Delta x) - u(x)}{\Delta x}\right) \pm \lim_{\Delta x \to 0} \left(\frac{v(x + \Delta x) - v(x)}{\Delta x}\right) =$$

$$= u'(x) \pm v'(x)$$

17.3 Производная произведения

$$u = u(x); v = v(x)$$

$$\begin{split} y' &= \lim_{\Delta x \to 0} \frac{\left(u(x + \Delta x) \cdot v(x + \Delta x)\right) - \left(u(x) \cdot v(x)\right)}{\Delta x} = \\ &= \lim_{\Delta x \to 0} \frac{\left(u(x) + \Delta u\right) \cdot \left(v(x + \Delta v)\right) - u(x) \cdot v(x)}{\Delta x} = \\ &= \lim_{\Delta x \to 0} \frac{\underline{u(x)}v(x) + u(x)\Delta v + v(x)\Delta u + \Delta u\Delta v - \underline{u(x)}v(x)}{\Delta x} = \\ &= \lim_{\Delta x \to 0} \left(u(x) \cdot \frac{\Delta v}{\Delta x} + v(x)\frac{\Delta u}{\Delta x} + \frac{\Delta u\Delta v}{\Delta x}\right) = \\ &= u(x)\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x)\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \Delta u^{-0} \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = \\ &= u(x)v'(x) + u'(x)v(x) \end{split}$$

17.4 Производная частного

$$u = u(x); v = v(x)$$

$$y' = \lim_{\Delta x \to 0} \frac{\frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{u(x) + \Delta u}{v(x) + \Delta v} - \frac{u(x)}{v(x)}}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x)v(x) + v(x)\Delta u - u(x)v(x) - u(x)\Delta v}{\Delta xv(x)(v(x) + \Delta v)} =$$

$$= \lim_{\Delta x \to 0} \frac{v(x)\Delta u - u(x)\Delta v}{\Delta x(v^2(x) + \Delta vv(x))} =$$

$$= \lim_{\Delta x \to 0} \frac{u(x)v(x) + v(x)\Delta u - u(x)v(x) - u(x)\Delta v}{\Delta xv(x)(v(x) + \Delta v)} =$$

$$= \lim_{\Delta x \to 0} \frac{v(x)\frac{\Delta u}{\Delta x} - u(x)\frac{\Delta v}{\Delta x}}{v^2(x) + \Delta vv(x)} =$$

$$= \frac{v(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2 + v \cdot \lim_{\Delta x \to 0} \Delta u} =$$

$$= \frac{v(x)u'(x) - u(x)v'(x)}{v^2(x)}$$

18 Теорема о дифференцируемости сложной функции.

$$u(x)$$
 — дифференцируема в точке x $f(u)$ — дифференцируема в точке $u=u(x)$ $\Rightarrow f(u(x))$ — дифференцируема в точке x $\frac{df}{dx}=f_u'(u(x))\cdot u'(x)$

Доказательство:

$$\Delta f = f(u + \Delta u) - f(u) = f'(u)\Delta u + \alpha(\Delta u) \cdot \Delta u$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f'(u)\Delta u + \alpha(\Delta u) \cdot \Delta u}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{f'(u)\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \frac{\alpha(\Delta u) \cdot \Delta u}{\Delta x} =$$

$$= f'(u) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = f'(u)u'(x)$$

19 Производная обратной функции. Вывод производных обратных тригонометрических функций.

19.1 Производная обратной функции

y=f(x) – монотонна в U(x) и дифференцируема в точке $x,f'(x)\neq 0$ g(y) – обратная для f(x) $\Rightarrow g(y)$ – дифференцируема в точке y=y(x) и

$$g'(y) = \frac{1}{f'(x)}$$

Доказательство:

$$g'(y) = \lim_{\Delta y \to 0} \frac{g(y + \Delta y) - g(y)}{\Delta y} = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{f(x + \Delta x) - f(x)} =$$
$$= \lim_{\Delta x \to 0} \frac{1}{\frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}} = \frac{1}{f'(x)}$$

19.2 Вывод обратных тригонометрических функций

$$f(x) = \sin x, \qquad x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

$$g(x) = \arcsin y$$

$$g'(y) = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - y^2}}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\arctan x)' = \frac{1}{1 + x^2}$$

$$(\arctan x)' = -\frac{1}{1 + x^2}$$

20 Правило логарифмического дифференцирования. Его применение к нахождению производных функций $f(x) = a^x, f(x) = x^a$.

$$y = f'(x)$$
$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$

1.
$$f(x) = a^{x}$$

$$\ln f(x) = x \ln a$$

$$\frac{f'(x)}{f(x)} = \ln a$$

$$f'(x) = \ln a \cdot f(x) = \ln a \cdot a^{x}$$

2.
$$f(x) = x^{a}$$

$$\ln f(x) = a \ln x$$

$$\frac{f'(x)}{f(x)} = \ln a$$

$$f'(x) = \frac{a}{x} \cdot x^{a}$$

$$f'(x) = a \cdot x^{a-1}$$

21 Производные и дифференциалы высших порядков.

$$y = f(x)$$
 $\exists f'(x)$ – первого порядка $(f'(x))'$ – производная второго порядка O бозначение: $f''(x) = \frac{d^2 f}{dx^2}$ $f'''(x) = \frac{d^3 f}{dx^3}$ $f^{(4)}(x) = \frac{d^4 f}{dx^4}$ $f^{(n)}(x) = \frac{d^n f}{dx^n}$

\mathcal{A} ифференциал:

$$df(x)=f'(x)dx$$
 2-го порядка :
$$d(df(x))=d(f'(x)dx)=\left(f'(x)d(x)\right)'dx=f''(x)dx^2$$
 3-го порядка :

$$f'''(x)dx^3$$

$$f^{(4)}(x)dx^4$$

$$f^{(n)}(x)dx^n$$

22 Таблица производных.

1.
$$x' = 1$$

2.
$$C' = 0$$

3.
$$(C \cdot u)' = C \cdot u'$$

4.
$$(u+v)'=u'+v'$$

5.
$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$6. \quad \left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

7.
$$(u^k)' = k \cdot u^{k-1} \cdot u'$$

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$$

8.
$$(a^u)' = a^u \cdot \ln a \cdot u'$$

9.
$$(e^u)' = e^u \cdot u'$$

10.
$$(Inu)' = \frac{u'}{u}$$

11.
$$(\sin u)' = \cos u \cdot u'$$

12.
$$(\cos u)' = -\sin u \cdot u'$$

13.
$$(tgu)' = \frac{u'}{\cos^2 u}$$

14.
$$(ctgu)' = -\frac{u'}{\sin^2 u}$$

15.
$$(arcsin u)' = \frac{u'}{\sqrt{1-u^2}}$$

16.
$$(\arccos u)' = -\frac{u'}{\sqrt{1-u^2}}$$

17.
$$(arctgu)' = \frac{u'}{1+u^2}$$

18.
$$(arcctgu)' = -\frac{u'}{1+u^2}$$

- 23 Дифференцирование функций, заданных параметрически (первая и вторая производные). Теорема Ролля, ее геометрический смысл.
- 23.1 Дифференцирование функций, заданных параметрически

$$\begin{cases} x = \varphi(t) - \text{дифференцируема, монотонна} \\ y = \psi(t) - \text{дифференцируема} \end{cases}$$

$$\Downarrow$$

$$\exists \varphi^{-1}(x) \Rightarrow y(x) = \psi\left(\varphi^{-1}(x)\right)$$
 Обозначим $g(x) = \varphi^{-1}(x)$
$$g(x) - \text{обратная для } \varphi(x) \Rightarrow g'(x) = \frac{1}{\varphi'(t)}$$

$$y(x) = \psi(g(x))$$

$$y'(x) = \psi'(x) \cdot g'(x) = \psi'(t) \cdot \frac{1}{\varphi'(t)} = \frac{\psi'(t)}{\varphi'(t)}$$

$$y''(x) = \frac{\left(\frac{\psi'(t)}{\varphi'(t)}\right)'}{\varphi'(t)}$$

23.2 Теорема Ролля

f(x) — непрерывна на [a;b], дифференцируема на (a;b) $f(a)=f(b)\Rightarrow \exists$ хотя бы одна $c\in (a;b)\colon f'(c)=0$ Доказательство:

- 1. $f(x) = const \Rightarrow c \forall$ точка $\in (a; b)$
- 2. $f(x) \neq const \Rightarrow$ по Теореме Ферма.

24 Теорема Коши. Формула конечных приращений Лагранжа, ее геометрический смысл.

24.1 Теорема Коши

f(x),g(x) — непрерывны на [a;b], дифференцируемы на (a;b) $g(x)\neq 0, x\in (a;b)\Rightarrow \exists$ хотя бы одна точка $c\in (a;b)$:

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство:

$$F(x) = f(x) - R(g(x) - g(a))$$
 $F(a) = f(a)$
 $F(b) = f(b)$
По Теореме Ролля: $\exists c \colon f'(c) = 0$
 $\downarrow f'(c) = f'(c)$
 $\downarrow R = \frac{f'(c)}{g'(c)}$

24.2 Формула конечных приращений Лагранжа

$$a = x$$

$$b = x + \Delta x$$

$$f(b) - f(a) = f'(c)(b - a)$$

$$f(x + \Delta x) - f(x) = f'(c) \cdot \Delta x$$

$$f(b) - f(a) = BC$$

$$b - a = AC$$

$$\frac{f(b) - f(a)}{b - a} = f'(c) = \operatorname{tg} \angle BAC$$

25 Правило Лопиталя.

Для неопределенностей $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$

Теорема 1 f(x), g(x) – дифференцируемы в U(a) и бесконечно малые в точке $a, g(a) \neq 0 \Rightarrow$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
 если \exists

Доказательство:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = (\text{Теорема Коши}) = \frac{f'(c)}{g'(c)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Теорема 2 f(x), g(x) – бесконечно большие в точке $a \Rightarrow$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

26 Формула Тейлора для функции одной переменной с остаточным членом в форме Лагранжа и форме Пеано.

f(x) — определена в $U(x_0)$ и имеет в ней производные до (n+1) порядка включительно, то для любого x из этой окрестности найдется $c \in (x_0; x)$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} (x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Последний член – остаточный.

В форме Лагранжа:

$$\frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

В форме Пеано:

$$\frac{f^{(n+1)}(x_0)}{(n+1)!} (x - x_0)^{n+1}, c \in (x; x_0)$$

27 Формулы Тейлора (Маклорена) для функций $y = e^x$, $y = \sin x$, $y = \cos x$, в окрестности точки $\mathbf{x} = \mathbf{0}$.

При $x_0 = 0$

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(0)}{(n+1)!}x^{n+1}$$

1. e^x

$$f(x) = e^{x}$$
 $f(0) = 1$
 $f'(x) = e^{x}$ $f'(0) = 1$
 $f''(x) = e^{x}$ $f''(0) = 1$
... $f^{(n)}(x) = e^{x}$ $f^{(n)}(0) = 1$

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \dots + \frac{1}{n!}x^{n} + \frac{e^{0}}{(n+1)!}$$

 $2. \sin x$

$$f(x) = \sin x$$
 $f(0) = 0$
 $f'(x) = \cos x$ $f'(0) = 1$
 $f''(x) = -\sin(x)$ $f''(0) = 0$
 $f'''(x) = -\cos(x)$ $f''(0) = -1$
 $f^{(4)}(x) = \sin(x)$ $f''(0) = 0$

$$\sin x = 0 + \frac{1}{1!} + \frac{0}{2!} - 1\frac{1}{3!} + \frac{0}{4!} + \frac{1}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

28 Необходимое и достаточное условия возрастания (убывания) функции y = f(x).

28.1 Необходимое условие

f(x) – дифференцируема на X

$$f(x) \nearrow \Rightarrow f'(x) \ge 0, x \in X$$

 $f(x) \searrow \Rightarrow f'(x) \le 0, x \in X$

28.2 Достаточное условие

$$f'(x) > 0, x \in X \Rightarrow f(x) \nearrow f'(x) < 0, x \in X \Rightarrow f(x) \searrow$$

29 Определение экстремума функции y = f(x). Необходимое условие экстремума.

```
f(x) – определена на X x_0 - max, если \exists U(x_0) \colon f(x) < f(x_0) \forall x \in U(x_0) x_0 - min, если \exists U(x_0) \colon f(x) > f(x_0) \forall x \in U(x_0)
```

$$f(x)$$
 – дифференцируема на $X, x_0 \in X$ x_0 – точка экстремума $\Rightarrow f'(x_0) = 0$

30 Достаточное условие экстремума, использующее первую производную.

f(x) – дифференцируема на X x_0 – бесконечно малая точка, определенная на X

31 Достаточное условие экстремума, использующее вторую производную.

$$f(x)$$
 – два раза непрерывна на X , дифференцируема на X $x=x_0$ – стационарная точка $(f'(x)=0)$ $\Rightarrow f''<0\Rightarrow x_0$ – \max $\Rightarrow f''>0\Rightarrow x_0$ – \min

32 Определение направления выпуклости графика функции y = f(x). Признак выпуклости вверх и выпуклости вниз. Точки перегиба графика функции.

Выпуклая вверх на $X \Leftrightarrow \forall x, x + \Delta x \in X \Rightarrow \Delta y < dy$ Выпуклая вниз на $X \Leftrightarrow \forall x, x + \Delta x \in X \Rightarrow \Delta y > dy$

32.1Достаточный признак направления выпуклости

f(x)– 2 раза дифференцируема на X

- \Rightarrow Если f''(x) > 0 на $X \Rightarrow$ график выпуклый вниз на X
- \Rightarrow Если f''(x) < 0 на $X \Rightarrow$ график выпуклый вверх на X

Точки, в которых меняется направление выпуклости – точки перегиба

Асимптоты графика функции y = f(x). 33 Правило нахождения вертикальных и невертикальных асимптот.

Асимптота – прямая, к которой приближается график функции (расстояние $\rightarrow 0$)

1. Вертикальная асимптота. x = a – вертикальная асимптота, если:

 $\begin{cases} a$ — точка бесконечного разрыва a — граничная точка области определения, если односторонний предел $=\infty$

2. Наклонная асимптота

$$y = kx + b$$

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \pm \infty} f(x) - kx$$

Если хотя бы один из этих пределов \nexists или ∞ , то наклонных асимптот нет.

Определение первообразной. Теорема о двух 34 первообразных одной функции.

F(x), f(x) – определена на XF(x) – первообразная для f(x), если F'(x) = f(x) **Теорема** $F_1(x)$ и $F_2(x)$ – первообразные для f(x), то $F_1(x) = F_2(x) + c, c-const$ Доказательство:

$$(f_1(x) - F_2(x))' = f(x) - f(x) = 0 \Rightarrow F_1(x) - F_2(x) = c$$

- 35 Определение неопределенного интеграла и его свойства. Инвариантность формул интегрирования.
- 36 Метод интегрирования по частям для неопределенного интеграла.
- 37 Метод подстановки для неопределенного интеграла.
- 38 Простейшие рациональные дроби и их интегрирование.
- 39 Интегрирование дробно-рациональных функций.
- 40 Интегрирование тригонометрических функций.
- 41 Использование подстановок, примеры.