

Modulkatalog Mechatronik - Bachelor of Engineering (B. Eng.) (210 ECTS)

AKT60 Neue Antriebssysteme

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Darstellung der aktuellen Markt- und Arbeitsmarktsituation
	Grundbegriffe der neuen Antriebssysteme kennen
	Schlüsselelement Batterie und ihre Auswirkungen auf Fahrzeugcharakteristik und Antriebssystem
	Einflussfaktoren auf die Fahreigenschaften kennen und bewerten
	Grundlagen der Lärm-, Abgas- und Feinstaubemissionen und deren Einflüsse auf Immissionen in Städten und ländlichen Gebieten
	Einfluss der Digitalisierung auf neue Fahrzeug- und Verkehrskonzepte
	Bedeutung der Energieerzeugung und Ressourceneffizienz auf umwelt- und klimarelevante Emissionssituation und Akzeptanzverhalten des Marktes
	Hinweise zum autonomen Fahren, Darstellung neuer Geschäftsmodelle
	quo vadis neue Antriebssysteme und Nachhaltigkeit
	Unterschiedliche Fahrzeugantriebe (Elektromotoren, Hybridantriebe, Gasmotoren, Brennstoffzellen, Wasserstoff, alternative Kraftstoffe) sowie deren Funktionsweise, Lebensdauer, Leistungsvermögen, Kosten, Emissionen kennen.
Inhalt	Definition Fahrzeug PKW, Light Trucks, Light Vehicles Elektroauto mit Drehstrommotor Batterie Hybridantriebe Elektroauto mit Brennstoffzelle Wasserstoff Elektroauto mit Range Extender Gasmotoren Neue alternative Kraftstoffe Digitale Transformation von Sensordaten Schnittstelle zu neuen Verkehrskonzepten Ressourceneffizienz und Nachhaltigkeit Umwelt- und klimarelevante Emissionen Preise/Kosten
Voraussetzungen	Kenntnisse der Dynamik und Grundkenntnisse der Systemtheorie
Modulbausteine	ABTE015-EL Fachbuch Reif, Konrad (Hrsg.): Grundlagen Fahrzeug- und Motorentechnik mit
	AKT601-BH Begleitheft
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Katharina Rostek

AUT01 Grundlagen der Automatisierungstechnik

	•
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Automatisierungssysteme in der Gesamtheit kennen und in das Unternehmen einordnen; Struktur und Aufbau von Automatisierungssystemen kennen, Auswirkung von Automatisierung auf Mensch und Umwelt kennen; Informationsprozesse der Automatisierung kennen und einordnen; Prinzipien der computergestützten Informationsverarbeitung in der Automatisierungstechnik verstehen; Aufgaben der Leittechnik verstehen und abstrahieren; Projekte der Automatisierungstechnik in Einzelaufgaben strukturieren und abwickeln.
Inhalt	Systeme und Komponenten der Automatisierung
	Grundbegriffe
	Aufbau von Automatisierungssystemen
	Ankopplung der Sensoren und Aktoren an Automatisierungssysteme
	Prozessvisualisierungssysteme
	SPS-Programmierung nach IEC-61131
	Strukturierte Programmierung in der Automatisierungstechnik
	Verknüpfungssteuerungen
	Entwurf von Schaltnetzen
	Entwurf von Schaltwerken
	Einzelsteuerfunktionen
	Analogwertverarbeitung
	Regelungen
	Ablaufsteuerungen
	Aufbau von Schrittketten
	Entwurf und Analyse von Schrittketten
	Zusammenspiel zwischen Ablauf- und Verknüpfungssteuerungen
	Schutzfunktionen und Betriebsarten
	Steuerungsentwurf für parallele Prozessabläufe
	Prozess- und Betriebsleitsysteme
	Bedienen und Beobachten
	Aufbau von Prozessleitsystemen
	Prozess- und anlagentechnisches Abbild
	Betriebsdateninformationssysteme
	Produktionsplanung und -steuerung
	Sicherheit und Zuverlässigkeit in der Automatisierungstechnik
	Gefahrenanalyse und Gegenmaßnahmen
	Sicherheitsgerichtete Steuerungen
	Engineering zuverlässiger Steuerungen

Voraussetzungen

Grundlagenkenntnisse der Elektrotechnik, Steuerungstechnik und Regelungstechnik

Modulbausteine

AUT101 Studienbrief Systeme und Komponenten der Automatisierung

mit Onlineübung

AUT102 Studienbrief Verknüpfungssteuerungen mit Onlineübung

AUT103 Studienbrief Ablaufsteuerungen mit Onlineübung

AUT104 Studienbrief Prozess- und Betriebsleitsysteme mit Onlineübung

AUT105 Studienbrief Sicherheit und Zuverlässigkeit in der

Automatisierungstechnik mit Onlineübung

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Günther Würtz

AUT20 Messtechnik

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Grundlagen der elektrischen Messtechnik mechanischer Größen sowie beispielhafte Anwendungen kennen mit dem Ziel,

Automatisierungsaufgaben zur Lösung durch Automatisierungstechniker vorzubereiten; geeignete Messverfahren und Messgeräte auswählen; elektrische Messung nicht elektrischer Größen planen und durchführen; statische Sensorkennlinie aufnehmen und Sensoren kalibrieren; grundlegende physikalische Prinzipien kennen, nach denen Sensoren arbeiten; übliche Sensoren aus der praktischen Ingenieuranwendung kennen und aufgabenspezifisch auswählen; auf den Grundlagen der PC-Messtechnik aufbauend Programme zur Messdatenerfassung und - auswertung mit einem beispielhaften Werkzeug erstellen.

Inhalt

Einführung, Grundlagen und Fehlerrechnung

Anwendungsbeispiele und Bedeutung der Messtechnik

Grundbegriffe und Normen

Charakterisierung von Messsignalen und Messeinrichtungen

Messfehler

Messprinzipien und Sensoren

Einführung zu Sensoren

Messprinzipien und Messeffekte

Messgröße Temperatur

Messgrößen Weg und Winkel

Messgröße Drehzahl

Messgröße Kraft und Drehmoment

Messgröße Druck

Messgröße Beschleunigung und Schwingungen

Praktisches Arbeiten mit Messgeräten, Sensoren und PC-Messdatenerfassung bzw. -verarbeitung

Messen mit Digitalmultimeter und digitalem Speicheroszilloskop

Sensorkennlinie aufnehmen und kalibrieren

Messdaten auswerten, Messunsicherheit bestimmen

Grundlagen der Programmierung und Datenerfassung mit LabView

Messdatenerfassung und Signalverarbeitung

Rechnergestützte Messdatenverarbeitung

Grundlagen des Programmierens und Messdatenerfassung mit LabView

Grundlagen der LabView-Programmierung

Messdatenerfassung mit der Multifunktionskarte USB-6008 von National Instruments

Daten speichern

Voraussetzungen

Ingenieurwissenschaftliche Grundlagen der Physik und der Elektrotechnik

Modulbausteine Moduleinführungsvideo

MST101 Studienbrief Einführung, Grundlagen und Fehlerrechnung mit 2

Onlineübungen

MST102 Studienbrief Messprinzipien und Sensoren mit 2

Onlineübungen

MST201 Studienbrief Praktisches Arbeiten mit Messgeräten, Sensoren

und PC-Messdatenerfassung bzw. -verarbeitung

MST202 Studienbrief Grundlagen des Programmierens und Messdatenerfassung mit LabView mit **Programm** LabView

Pflicht-Onlineübung

Labor (2 Tage in Partnerhochschule)

Kompetenznachweis	2 Assignments (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

AUT22 Mechatronische Wandler

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Den Themenkomplex der Aktorik kennen und verstehen;
•	Funktionsprinzipien der verschiedenen Aktoren kennen;
	Eigenschaften, Kennlinien und Systemverhalten der verschiedenen Aktoren verstehen;
	Applikationsbeispiele von Aktoren in der Fahrzeugtechnik und Automatisierungstechnik verstehen und diese Kenntnisse auf andere Anwendungsbereiche in der Mechatronik übertragen sowie die Wirkprinzipien gängiger Sensoren kennen;
	Überblick über verschiedene Sensoreffekte zur Erfassung physikalischer Größen haben;
	Sensoren auswählen und dimensionieren;
	Applikationsbeispiele von Sensoren kennen und beurteilen.
lab alk	Aktoren als Bewegungskomponente in mechatronischen Systemen
Inhalt	Einteilung und Bewegungsarten von Aktoren
	Arbeit, Energie, Leistung
	Aktoren mit thermischer Energie
	Unkonventionelle Aktoren
	Vergleichende Betrachtung verschiedener Aktoren
	Aktoren in mechatronischen Systemen
	Schrittmotoren
	Ansteuerungsarten
	Modellbildung, Simulation und Regelung
	Der Synchronservomotor
	Grundlagen der Sensorik und Signalaufbereitung
	Bedeutung von Sensoren
	Grundbegriffe
	Sensorpartitionierung
	Elektronische Schaltungen in der Sensorik
	Beispiele für Sensorapplikationen
	Magnetoresistive Sensoren
	Magnetfeldempfindliche Sensoren
	Kapazitive Sensoren
	Kraftsensoren mit Dehnmessstreifen
	Piezo-Sensoren
	Temperatursensoren
	Optische Sensoren
	Auswertung von Sensorsignalen – Datenfusion
Voraussetzungen	Grundlagenkenntnisse der Elektrotechnik, der Regelungstechnik, der Messtechnik und der Elektronik
Modulbausteine	Moduleinführungsvideo

AKT101 Studienbrief Aktoren als Bewegungskomponente in mechatronischen Systemen mit **Onlineübung**

AKT105 Studienbrief Aktoren in mechatronischen Systemen mit **Onlineübung**

SEN101 Studienbrief Grundlagen der Sensorik und Signalaufbereitung mit **Onlineübung**

SEN104 Studienbrief Beispiele für Sensorapplikationen mit **Onlineübung ABTE099-EL Fachbuch** Roddeck: Einführung in die Mechatronik

Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Patrick Stepke

AUT41 Prozess- und Fertigungsautomatisierung

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Typische Anwendungen der Prozess- und Fertigungsautomatisierung kennen und verstehen;
	Lösungen für grundlegende Aufgaben der Automatisierungstechnik in diesen Bereichen systematisch erarbeiten;
	Anforderungen an automatisierungstechnische Einrichtungen kennen und einordnen;
	Struktur typischer Automatisierungslösungen kennen;
	Funktion von Elementen der Automatisierungstechnik in den Bereichen Prozess- und Fertigungsautomatisierung kennen und verstehen.
Inhalt	Prozessautomatisierung I
miait	Produktionstechnische Prozesse
	Anlagen der Verfahrenstechnik
	Verfahrensführung und Anlagenkonzepte
	Aufgaben der Prozessleittechnik
	Prozessleitsysteme (PLS)
	Prozessautomatisierung II
	Rezepte
	Steuerungskomponenten
	Rezeptausführung
	Fertigungsautomatisierung I
	Einführung in die Fertigungstechnik
	Fertigungsverfahren
	Werkzeugmaschinen
	Industrieroboter
	Fertigungsautomatisierung II
	Automatisierung von Werkzeugmaschinen
	CNC-Maschinen
	Bewegungsplanung in numerischen Steuerungen
	Achsregelung
	Positions- und Wegmesssysteme
Voraussetzungen	Grundlagenkenntnisse der Automatisierungstechnik
Modulbausteine	AUT201 Studienbrief Prozessautomatisierung I mit Onlineübung
	AUT202 Studienbrief Prozessautomatisierung II mit Onlineübung
	AUT203 Studienbrief Fertigungsautomatisierung I mit Onlineübung
	AUT204 Studienbrief Fertigungsautomatisierung II mit Onlineübung
Kompetenznachweis	Assignment

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Günther Würtz

AUT43 Labor Automatisierungstechnik

Kompetenzzuordnung	Instrumentale Kompetenz
Kompetenzziele	Selbstständiges Entwickeln von automatisierungstechnischen Programmen und Implementieren im realen Automatisierungssystem; Anwenden verschiedener SPS-Programmiersprachen und
	praxisrelevanter Hilfsmittel.
Inhalt	Labor Automatisierungstechnik
	Prozessleitsysteme
	PNK-Programmierung
Voraussetzungen	Grundlagen der Automatisierungstechnik
Modulbausteine	AUT301 Studienbrief mit Onlineübung
	Labor (1 Tag)
Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Günther Würtz

BWL25 Grundlagen des Wirtschaftens

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Grundlegende volkswirtschaftliche Begriffe und Zusammenhänge erläutern; Wechselbeziehungen zwischen Unternehmen und ihrer Umwelt sowie Entscheidungsgrundlagen für die Unternehmensstruktur und - strategie nennen und beschreiben.
Inhalt	Gesamtwirtschaftliche Zusammenhänge/Unternehmen und Unternehmensumwelt
	Einstieg ins Thema mit einer Darstellung wirtschaftlicher Grundzusammenhänge
	Das Unternehmen als Wirtschaftseinheit und seine Umwelt
	Betriebswirtschaftslehre: die wissenschaftliche Auseinandersetzung mit der Führung von Unternehmen
	Gründung eines Unternehmens
	Was ist ein Unternehmen Die Gründung eines Unternehmens: Vier konstitutive Entscheidungen
	Der Businessplan Systematisch Entscheiden – Eine Analyse von Entscheidungsprozessen
Voraussetzungen	Keine.
Modulbausteine	RAE101-EL Studienbrief mit Rechtsänderungen BWL101 Studienbrief Gesamtwirtschaftliche Zusammenhänge/Unternehmen und Unternehmensumwelt BWL102 Studienbrief Gründung eines Unternehmens Onlineübung zu den Studienbriefen BWL101–102 Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Beate Holze

CPP22 Programmieren in C/C++

	U
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Prinzipien der Programmierung in C und C++ verstehen;
	Unterschiede zwischen prozeduralem und objektorientiertem Programmieransatz erläutern;
	grundlegende Sprachelemente von C++ kennen und anwenden;
	einfache funktions- und objektorientierte Programme in C++ erstellen und zum Ablauf bringen;
	mit einer Programm-Entwicklungsumgebung für C++ umgehen.
	(Fach-, Methoden- und Medienkompetenz)
Inhalt	Programmieren in C
IIIIait	Einführung in das Programmieren
	Einführung in C
	Weiterführende Konzepte
	Programmieren in C++
	Einführung in die prozedurale Programmierung mit C++
	Weiterführende Konzepte
	Objektorientierte Programmierung
	Einführung in die Programmierung mit C++
	Das Arbeiten mit einer Entwicklungsumgebung
	Einstieg in die Programmierung
	Ausdrücke und Anweisungen
	Strukturierte Anweisungen
	Zusammengesetzte Datentypen
	Zeiger
	Funktionen
	Stack und Heap
	Klassen und Objekte
	Vererbung und Polymorphie
	Generische Programmierung
	Wichtige Bibliotheken
	Container und Iteratoren
	Unified Modelling Language
Voraussetzungen	Grundlagenkenntnisse der Programmierung
Modulbausteine	CPP109 Studienbrief Programmierung in C mit Onlineübung
	CPP110 Studienbrief Programmierung in C++ mit Onlineübung
	ABTE053-EL Fachbuch Kirch; Prinz: C++ – Lernen und professionell anwenden
	ABTE054-EL Fachbuch Kirch; Prinz: C++ - Das Übungsbuch
	CPP201-BH Begleitheft Programmieren in C/C++ mit Onlineübung
	Präsenztutorium (2 Tage, Programmierübung)
	Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (120 Minuten)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Andrea Herrmann

CSI21 Grundlagen der Computersicherheit

Theoretische Grundlagen im Bereich der Computer-Sicherheit; Aufbau und Funktionsweise moderner Sicherheitskonzepte versteierläutern können. (Fach- und Methodenkompetenz) Einführung in die Computersicherheit Entstehungsgeschichte Grundlagen der Computersicherheit Management von Sicherheit Authentifizierung Zugriffskontrolle Weiterführende Konzepte der Computersicherhe	hen und
Einfunrung in die Computersicherheit Entstehungsgeschichte Grundlagen der Computersicherheit Management von Sicherheit Authentifizierung Zugriffskontrolle	
Weiterführende Konzepte der Computersicherhe	
Sicherheitsmodelle Sicherheit von Software Sicherheit von Webanwendungen Einführung in die Kryptographie	it
Voraussetzungen Grundkenntnisse im Bereich der Informatik und Mathematik	
Modulbausteine CSI201 Studienbrief Einführung in die Computersicherheit CSI202 Studienbrief Weiterführende Konzepte der Computersich Fachbuch: Gollmann. Computer Security Onlineübung zum Modul Onlinetutorium	erheit
Kompetenznachweis Klausur (2 Stunden)	
Lernaufwand 125 Stunden, 5 Leistungspunkte	
Sprache Deutsch	
Studienleiter Christoph Karg	

CSI45 Netzwerksicherheit

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Aufbau und Funktionsweise moderner und sicherer Netzwerke verstehen und umsetzen;
	die wichtigsten Angriffsszenarien und Abwehrmaßnahmen kennen und anwenden lernen.
Inhalt	Einführung in die Netzwerksicherheit
	Grundlagen zu Computernetzwerken
	Grundlagen der Netzwerksicherheit
	Bedrohungen für Computernetzwerke
	Protokolle zur Absicherung der Computernetzwerke
	Weiterführende Konzepte der Netzwerksicherheit
	Firewalls
	Intension Detection and Prevention
	Erkennung von Malware und inhaltsbezogene Filterung
	Sicherheit in mobilen Systemen
	Sicherheit im Internet der Dinge
	Fallstudien
	Angriffe auf Webanwendungen
	WLAN-Angriff
	Malware-Attacke aus dem Internet
Voraussetzungen	Grundkenntnisse im Bereich der Informatik und Computersicherheit
Modulbausteine	Labor (1 Tag)
	AB66-666 Fachbuch Kizza: Guide to Computer Network Security
	CSI401-BH Begleitheft zum Fachbuch
Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Christoph Karg

EBS65 Echtzeitsysteme

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Grundlagen und Anwendungen von Echtzeitsystemen kennen; Anforderungen an Sicherheit und Zuverlässigkeit von Echtzeitsystemen einschätzen; Hardware Komponenten auf Echtzeitfähigkeit beurteilen und auswählen; Aufgaben und Funktionsweise von Echtzeit-Betriebssystemen kennen; Grundlagen für Entwurf und Programmierung von Microcomputer-Systemen für zeitkritische Anwendungen kennen und anwenden; die Prinzipien der digitalen Computerschnittstelle zur Außenwelt verstehen und beurteilen; den Einsatz und die Verwendung der seriellen und parallelen Standardschnittstellen sicher beherrschen; ausgewählte Bussysteme der Industrie im Bereich der Automatisierung und der Fahrzeugindustrie kennenlernen und beurteilen.
Inhalt	Grundlagen Echtzeitsysteme
iiiiait	Einführung
	Realzeit-Scheduling
	Software in Echtzeitsystemen
	Echtzeit-Betriebssysteme
	Angewandtes Real Time Scheduling
	Programmiersprachen
	Verteilte Echtzeitanwendungen
	Verteilte Systeme
	Synchronisation
	Echtzeitkommunikation
	Standards
	Einführung in die industriellen Kommunikations-Bussysteme
	Vorbemerkungen
	Leitungen und Übertragungsmedien
	Impulse und Leitungen
	Serielle und parallele Schnittstellen
	Bussysteme
	Parallele Busse
	Serielle Busse
	Bussysteme im Bereich der Automatisierung und der Fahrzeugindustrie
	Vorbemerkungen
	Anforderungen an industrielle Bussysteme
	Fehlersicherung und Restfehlerrate
	Bussysteme in der Fahrzeugtechnik
	Bussysteme in der Automatisierungstechnik
	Ethernet-basierte Feldbussysteme
Voraussetzungen	Grundkenntnisse in mindestens einer Programmiersprache
Modulbausteine	SYS201 Studienbrief Grundlagen Echtzeitsysteme mit Onlineübung SYS202 Studienbrief Software in Echtzeitsystemen mit Onlineübung

SYS203 Studienbrief Verteilte Echtzeitanwendungen mit **Onlineübung IKB101 Studienbrief** Einführung in die industriellen Kommunikations-Bussysteme mit **Onlineübung**

IKB102 Studienbrief Bussysteme im Bereich der Automatisierung und der Fahrzeugindustrie mit **Onlineübung**

Kompetenznachweis	Klausur (120 Minuten)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Patrick Stepke

EFT03 English for technology

	El 103 Eligibiliol tecimology
Kompetenzzuordnung	Kommunikative Kompetenz
Kompetenzziele	Englischsprachige E-Mails verstehen und selbst verfassen, englische Telefongespräche führen, an englischsprachigen Meetings teilnehmen können. Den wichtigsten Wortschatz und Grammatik für Besprechungen anwenden.
	Fachsprachliche Grundkenntnisse aus dem Technikbereich beim Sprechen, Lesen, Schreiben und Hören beherrschen.
	Fachspezifisches Vokabular (vorzugsweise aus den Bereichen Konstruktion, Werkstoffe, Fertigungsverfahren, Elektrotechnik, Produktior und Logistik, Energie und Umwelt) anwenden.
	Englische Grundgrammatik beim Schreiben und Sprechen beherrschen, eine große Anzahl von Strukturen und Funktionen des Englischen sicher anwenden;
Inhalt	Interaktives Training
	Telefonate sicher führen verschiedene berufliche Gesprächssituationen Vorträge und Besprechungen geschäftliche Dokumente wie z.B. Berichte, Besprechungsprotokolle, Briefe oder Broschüren. Verhandlungen führen informelle Kommunikationssituationen Kontakt mit Kunden und Geschäftspartnern Wortschatz aus der Automobilindustrie, Verarbeitungsindustrie, Energie- und Ölindustrie, Telekommunikationsindustrie
	Manufacturing and Energy Manufacturing Energy
	Electricity and Architecture Electricity Architecture
	Recycling and Telecommunications Recycling Telecommunications
Voraussetzungen	Englischkenntnisse auf Niveau B2
Modulbausteine	Online-Content Rosetta Stone: B2: Areas of Expertise: Automotive, Industry and Manufacturing, Energy and Fuel; Videos: Technology and Telecommunications
	MP3 English for Technology
	EFT101 Studienbrief Manufacturing and Energy mit Onlineübung
	EFT102 Studienbrief Electricity and Architecture mit Onlineübung
	EFT103 Studienbrief Recycling and Telecommunications mit

Onlineübung

Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (auf Englisch; 2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Englisch
Studienleiter	Verena Jung

ELT01 Elektrotechnik - Grundlagen

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Grundlagen der Elektrotechnik kennen; wesentliche Zusammenhänge, Wirkungsweisen und Verfahren verstehen und auf einfache Problemstellungen sicher anwenden; Merkmale und Eigenschaften von Gleichstrom- und Wechselstromkreisen kennen; Schaltvorgänge in elektrischen Kreisen verstehen; elektrische Felder definieren; wichtige Kenngrößen und Wechselwirkungen beschreiben; Eigenschaften von magnetischen Feldern kennen und beeinflussen; Kraftwirkung im Magnetfeld und technische Nutzung kennen; auf der Basis der elektrotechnischen Grundlagen fähig sein, sich in weiterführende Anwendungen der Elektrotechnik einzuarbeiten (z. B. Mess-, Regelungstechnik).
Inhalt	Lineare Gleichstromkreise und Widerstände Grundlegende Begriffe und Zusammenhänge Lineare Gleichstromkreise und Widerstände
	Nichtlineare Gleichstromkreise Elektrische und magnetische Felder Elektrisches Feld und Kondensatoren Das elektrische Strömungsfeld Magnetisches Feld und Spule
	Wechselstromkreise Grundbegriffe der Wechselstromtechnik Netzwerke an Sinusspannung I: Grundlegende Betrachtungen Netzwerke an Sinusspannung II: Grundzweipole Netzwerke an Sinusspannung III: Zusammenschaltungen Netzwerke an Sinusspannung IV: Schwingkreise und Resonanz Leistung im Wechselstromkreis
	Elemente der Signalübertragung und Drehstrom Ausgleichsvorgänge in Stromkreisen Übertragung von Wechselspannungen und Pegel Übertrager und Transformator Drehstrom
Voraussetzungen	Kenntnisse der linearen und Vektoralgebra, der komplexen Zahlen und der analytischen Geometrie
Modulbausteine	ELT101 Studienbrief Lineare Gleichstromkreise und Widerstände mit Onlineübung ELT102 Studienbrief Elektrische und magnetische Felder mit Onlineübung ELT103 Studienbrief Wechselstromkreise mit Onlineübung
	ELT104 Studienbrief Elemente der Signalübertragung und Drehstrom mi Onlineübung

Onlinetutorium (1 Stunde) Onlineseminar (4 Stunden)

Kompetenznachweis	Klausur (1,5 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

ELT02 Elektronik - Grundlagen

Kompetenzzuordnung Wissensverbreiterung

KompetenzzieleGrundlagen der Elektronik kennen; Funktion und Anwendung elektronischer Bauteile kennen; Modelle und Beschreibungen

elektronischer Schaltungen hinsichtlich ihres Gleich- und

Wechselstromverhaltens selbstständig erstellen und auswerten; sicherer

Umgang mit Kennlinien und Datenblättern von elektronischen Bauelementen; Kühlkörper bemessen; Grundlagen der digitalen

Schaltungstechnik kennen.

Inhalt

Passive Bauelemente und Grundschaltungen

Grundgrößen und Signalformen

Lineare passive Bauelemente

Passive Sensorelemente

Passive Grundschaltungen

Messtechnik

Signal- und Spannungsquellen

Schaltplan-Richtlinien

Grundlagen der Halbleiterbauelemente

Halbleiter

Diode

Einsatz einer Diode als Gleichrichter

Einsatz der Diode im nichtlinearen Bereich

Spezielle Dioden

Grundlagen des Transistors

Transistorgrundschaltungen, weitere Halbleiterbauelemente

Dimensionierung einer Transistorschaltung

Weitere Transistoreigenschaften

Transistorgrundschaltungen

Weitere elektronische Bauelemente

Verstärker und Kippstufen

Kenngrößen einer Verstärkerschaltung

Transistorverstärkerschaltungen

Kippstufen

Operationsverstärker

Digitale Schaltungstechnik

Boolesche Logik

Logikfamilien

Schaltungsfamilien

Integrierte Schaltkreise

Kippstufen in TTL-Technik

Flipflop

Elementare digitale Schaltungen

Voraussetzungen	Grundlagen der Elektrotechnik
Modulbausteine	ELT201 Studienbrief Passive Bauelemente und Grundschaltungen mit Onlineübung
	ELT202 Studienbrief Grundlagen der Halbleiterbauelemente mit Onlineübung
	ELT203 Studienbrief Transistorgrundschaltungen, weitere Halbleiterbauelemente mit Onlineübung
	ELT204 Studienbrief Verstärker und Kippstufen mit Onlineübung
	ELT205 Studienbrief Digitale Schaltungstechnik mit Onlineübung
	Simulationsprogramm PSPICE (elektronisches Lernmittel)
	ELT206-BH-VH Begleitheft Elektroniksimulation (elektronisches Lernmittel)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (1,5 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

ELT29 Elektrotechnik Aufbau

Kompetenzzuordnung

Aufbauend auf dem Verfahren zur Berechnung von Gleichstromkreisen Wechselstromkreise und deren Leistungsgrößen berechnen; grundlegende Anwendungen der Drehstromtechnik beherrschen; frequenzabhängige Vorgänge der Wechselstromtechnik charakterisieren und berechnen;
Eigenschaften nicht sinusförmiger periodischer Größen kennen und deren Wirkung in linearen Netzen untersuchen.

Inhalt

Grundlagen der Wechselstromtechnik

Grundbegriffe der Wechselstromtechnik

Netzwerke an Sinusspannung I: Grundlegende Betrachtungen

Netzwerke an Sinusspannung II: Grundzweipole

Netzwerke an Sinusspannung III: Zusammenschaltungen

Leistung und Drehstrom

Leistung im Wechselstromkreis

Drehstrom

Personenschutz in Niederspannungsnetzwerken

Weitere Filternetzwerke

Netzwerkberechnungen der Wechselstromtechnik

Konstruktion von Zeigerbildern

Verfahren zur Netzwerkberechnung

Gekoppelte magnetische Kreise

Transformator und Überträger

Frequenzabhängigkeit der Wechselkreise

Übertragungsvierpole

Schwingkreise und Resonanz

Komplexe Übertragungsfunktion

Tiefpass und Hochpass

Übertragungsfunktionen, nichtsinusförmige Größen

Ausgleichsvorgänge in Stromkreisen

Übertragung sinusförmiger Wechselspannungen

Überlagerung sinusförmiger Schwingungen

Bestimmung der Fourier-Koeffizienten

Lineare und nichtlineare Verzerrungen

Kennwerte nichtsinusförmiger periodischer Größen

Berechnungen linearer Netzwerke

Ausblick: nichtperiodische Größen und Fourierintegral

Übungsaufgaben

Voraussetzungen Grundlagen der Ingenieurmathematik:
Funktionen

Komplexe Zahlen

Differenzial- und Integralrechnung

Modulbausteine	ELT213 Studienbrief Grundlagen der Wechselstromtechnik mit Onlineübung
	Video Tutorial 1
	ELT214 Studienbrief Leistung und Drehstrom mit Onlineübung
	Video Tutorial 2
	ELT233 Studienbrief Netzwerkberechnungen der Wechselstromtechnik mit Onlineübung
	Video Tutorial 3
	ELT235 Studienbrief Frequenzabhängigkeit der Wechselkreise mit Onlineübung
	Video Tutorial 4
	Video Tutorial 5
	ELT238 Studienbrief Übertragungsfunktionen, nichtsinusförmige Größen mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

ELT30 Grundlagen der Digital-Technik

Kompetenzzuordnung

Wissensverbreiterung, Instrumentale Kompetenz

Kompetenzziele

Logische Funktionen und wesentliche Eigenschaften digitaler Schaltkreisfamilien sowie Typen und Struktur von Halbleiterspeichern kennen und verstehen; digitale Schaltungen miteinander kombinieren, programmierbare Logik kennen; Grundlagen des Programmierens von Logikbausteinen kennen und anwenden; einfache Steuerungen anhand von ausgewählten Anwendungen entwerfen und simulieren; Grundlagen von Mikrocontrollern und SPS verstehen.

Im Labor: Boolesche Funktionen in Gatterschaltungen praktisch umsetzen und simulieren; Funktionsweise ausgesuchter elektronischer Schaltungen wie Zähler, Schieberegister und Multiplexer verstehen; kombinatorische Schaltungen analysieren und beurteilen; sequentielle Schaltungen entwickeln und simulieren.

Inhalt

Zahlensysteme und Codes

Geschichte der Digitaltechnik

Signale und Nachricht

Zahlensysteme

Fest- und Gleitkommadarstellung

Informationstheorie

Codes

Numerische und alphanumerische Codes

Gesicherte Codes und Codeeffizienz

Boolesche Algebra und kombinatorische Schaltkreise

Boolesche Logik

Grundlagen der Aussagenlogik

Optimierung von Logikfunktionen

Kombinatorische Schaltkreise

Rechenschaltungen

Sequenzielle Schaltungen, Schaltwerke und Simulationssoftware

Automatentheorie

Flipflop

Realisierung eines synchronen Automaten

Register und Zähler

Ein einfacher Rechner

Programmierbare Logikhardware

Labor Digitaltechnik

Einführung in Logisim

Aufbau und Funktion der Grundgatter

Die digitalen Schaltungsfamilien

Kombinatorische und sequenzielle Schaltungen entwerfen und simulieren

Anwendungen sequenzieller Schaltungen

Voraussetzungen	Keine.
Modulbausteine	ELT301 Studienbrief Zahlensysteme und Codes mit Onlineübung ELT302 Studienbrief Boolesche Algebra und kombinatorische Schaltkreise mit Onlineübung ELT303 Studienbrief Sequenzielle Schaltungen, Schaltwerke und Simulationssoftware mit Onlineübung ELT111 Studienbrief Labor Digitaltechnik Labor (1 Tag, praktische Übung)
Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

FTE22 Industrieroboterprogrammieru ng

	ng
Kompetenzzuordnung	Wissensvertiefung, Instrumentale Kompetenz
Kompetenzziele	Vertieftes theoretisches, aber auch praktisches Wissen zu computergestützter Fertigungstechnik und Robotik haben;
	die Nutzung computergestützter Fertigungssysteme planen, vorbereiten und durchführen;
	das vertiefte Wissen zur flexiblen Fertigung von Bauteilen exemplarisch anwenden;
	Aufgabenstellungen aus dem Bereich flexibler Fertigungssysteme oder der Robotik selbstständig erarbeiten und in ihrer Gesamtheit ausführen und beurteilen.
Inhalt	NC-Werkzeugmaschinen und rechnergestützte Fertigung
	Numerische Steuerungen
	Programmierung von NC-Maschinen
	Bewegungsplanung in numerischen Steuerungen
	Grundlagen der rechnergestützten Fertigung
	Prozessüberwachung und Diagnose
	Fallstudie
	Hierbei ist eine komplexe Aufgabenstellung selbstständig zu bearbeiten (Planung flexibler Fertigungssysteme oder Entwicklung, Integration, Optimierung von Komponenten flexibler Fertigungssysteme) und VOR de Laborphase einzureichen.
	Kunststoffverarbeitung und NC-Programmierung
	Spritzgießen
	Herstellen von Rohren durch Extrusion
	Thermoformen von Kunststoffen
	Programmieren nach DIN 66025 mit grafischer Kontrolle der Verfahrwege Rüsten und Programmieren eines NC-Bearbeitungszentrums
	Programmierung von Industrierobotern
	Theoretische Grundlagen
	Versuch 1: Untersuchung an einer realen Roboteranlage
	Versuch 2: Erste Schritte bei der Roboterprogrammierung
	Versuch 3: Programmierung einer Industrieroboteranlage
Voraussetzungen	Grundlagen (Informationssysteme, Automatisierungstechnik, Mehrrobotersysteme)
Modulbausteine	FTE203 Studienbrief NC-Werkzeugmaschinen und rechnergestützte Fertigung mit Onlineübung
	FTE601-FS Fallstudie
	FTE301 Studienbrief Kunststoffverarbeitung und NC-Programmierung m

Onlineübung

FTE501 Studienbrief Programmierung von Industrierobotern **Labor** (20 Stunden)

Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Jörg Schmütz

FZG61 Fahrzeugsicherheit

 Kompetenzzuordnung
 Wissensvertiefung

 Kompetenzziele
 Bedeutung Fahrzeugsicherheit einschätzen; Systeme und Funktionsweise zur aktiven und passiven Fahrzeugsicherheit kennen; mechatronische Konzepte zur Erhöhung der Fahrzeugsicherheit anwenden.

 Ganzheitliche Lösung einer Aufgabenstellung aus dem Bereich Fahrzeugmechatronik selbstständig erarbeiten, in ihrer Gesamtheit ausführen und beurteilen.

Inhalt

Einführung in die Fahrzeugsicherheit und ihre mechatronischen Systeme

Einführung und Begriffserklärungen

Unfallstatistiken

Ökonomische Bedeutung

Menschliche Belastbarkeit

Verletzungskriterien

Schutzkriterien

Bremsvorgänge/Kollisionen

Crash-Tests

Normen, Richtlinien und Gesetze

Passive Sicherheitssysteme

Crashoptimierte Fahrzeugstrukturen

Überrollschutz und Seitenaufprallschutz

Gurtsysteme und Airbags

Lenksystem und Instrumententafel

Kniefänger und Pedalerie

Sitzsysteme in Pkw, Funktionen und gegenwärtige Standards

Fußgängerschutz

Mechatronische Systeme zur aktiven Sicherheit

Precrash-Systeme

Mehrstufige Bremslichter

Kurvenlicht und Abbiegelicht

Fahrerassistenzsysteme

Einparkhilfen

Videosysteme + Night-Vision

Spurassistenten

Müdigkeitswarnsysteme

Reifendrucküberwachung

Antiblockiersysteme, Bremsassistenten und Antischlupfsysteme

Fahrdynamikregelungen - Elektronisches Stabilisierungsprogramm (ESP)

X-by-Wire-Technologien

Voraussetzungen	Kenntnisse im Bereich der Sensorik, Anwendungskenntnisse in den Themengebieten Fahrzeugdynamik, Fahrzeugsicherheit, Embedded Mechatronics Labor, und Fahrzeugantriebe
Modulbausteine	FZG201 Studienbrief Einführung in die Fahrzeugsicherheit und ihre mechatronischen Systeme mit Onlineübung
	FZG202 Studienbrief Passive Sicherheitssysteme mit Onlineübung
	FZG203 Studienbrief Mechatronische Systeme zur aktiven Sicherheit mit Onlineübung
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	

FZG63 Fahrzeugtechnik und Fahrzeugantriebe

Wissensvertiefung Grundbegriffe der Fahrzeugdynamik kennen;
Grundbegriffe der Fahrzeugdynamik kennen;
Einflussfaktoren auf die Fahrzeugdynamik kennen und bewerten;
unterschiedliche Fahrzeugantriebe (Verbrennungsmotoren, Gasturbinen, elektrische Antriebe, Hybridantriebe), deren Funktionsweise, Kraftstoffe, Abgasemission kennen;
die mechatronische Dimensionierung, Steuerung und Optimierung der unterschiedlichen Fahrzeugantriebsstränge durchführen.
Grundlagen der Fahrdynamik
Grundlagen der Fahrdynamik
Der Kraftschluss mit der Fahrbahn
Fahrwiderstände
Fahrzeugantriebe
Grundlagen des Dieselmotors und der Dieseleinspritzung
Grundlagen des Ottomotors und der induktiven Zündung
Getriebe für Kraftfahrzeuge
Hybridantriebe
Grundkenntnisse der Dynamik
Grundkenntnisse der Systemtheorie
FZG101 Studienbrief Grundlagen der Fahrdynamik mit Onlineübung ABTE015-EL Fachbuch Reif (Hrsg.): Grundlagen Fahrzeug- und
Motorentechnik mit
FZG401-BH Begleitheft
Onlinetutorium (1 Stunde)
Klausur (2 Stunden)
125 Stunden, 5 Leistungspunkte
Deutsch
Matthias Niessner

IUK20 Grundlagen zu Betriebssystemen und Netzwerken

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Aufbau und Funktionsweise moderner Betriebssysteme erläutern; die Lösungsansätze in Betriebssystemen bewerten; die konkrete Realisierung in UNIX/Linux beschreiben. Die technischen Grundlagen und Mechanismen von Datenkommunikation und Computernetzwerken erläutern. Die Funktionsweise von Rechnernetzen im Allgemeinen und des Internets im Besonderen erläutern. Die Konzepte zur Netzwerksicherheit bewerten. Die Aufgaben und Hilfsmittel der Netzverwaltung beschreiben. (Fach- und Methodenkompetenz.)

Inhalt

Betriebssysteme I: Architektur und Funktionsprinzipien

Überblick und Einordnung

Architektur von Betriebssystemen

Prozesse

Koordination paralleler (nebenläufiger) Prozesse

Betriebsmittel (Ressourcen)

Speicherverwaltung

Ein-/Ausgabe-System

Dateiverwaltung

Praktischer Einsatz von Betriebssystemen

Netzwerke I: Netzwerktechnik

Grundlagen der Datenkommunikation

Das OSI-Referenzmodell

Aufbau und Funktionsweise von Netzwerken

Netzverbund, Internetworking

Netzwerke II: Internet-Technik

Protokolle und Dienste (Einführung)

Die Vermittlungsschicht: Internet Layer

Protokolle der Transportschicht: Host-to-Host-Layer

Der Netzzugang: Network Access Layer Die Anwendungsschicht: Application Layer

Netzwerke III: Inhouse-Netzwerke

LAN

LAN-Basisverfahren und Standards

Intranets und Extranets

Das Arbeiten in LANs

Netzverwaltung und Netzwerksicherheit

Netzwerkmanagement

Integrität, Funktionsfähigkeit und Auslastung des Netzes

Benutzerverwaltung, Zugriffsrechte

Anwendungsverwaltung Netzwerkmanagement-Protokolle Sicherheit im Netz Kryptologie Sicherheitsprotokolle

Voraussetzungen	Grundlagen der Wirtschaftsinformatik
Vordussetzangen	
Modulbausteine	IUK101 Studienbrief Betriebssysteme I: Architektur und Funktionsprinzipien mit Onlineübung
	IUK103 Studienbrief Netzwerke I: Netzwerktechnik mit Onlineübung
	IUK104 Studienbrief Netzwerke II: Internet-Technik mit Onlineübung
	IUK105 Studienbrief Netzwerke III: Inhouse-Netzwerke mit Onlineübung
	IUK106 Studienbrief Netzverwaltung und Netzwerksicherheit mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Franz-Karl Schmatzer

KON29 Maschinenelemente Grundlagen

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Die Grundlagen des technischen Zeichnens in Theorie und Praxis kennen und beherrschen;

technische Zeichnungen sowohl zweifelsfrei lesen und interpretieren als auch inklusive aller fertigungsrelevanten Angaben normgerecht erstellen;

Gestaltungs- und Darstellungsgrundregeln beherrschen und ausführen;

komplexere Produkte normgerecht in Zusammenbauzeichnungen mit allen nötigen Schnitten und Ansichten darstellen und bemaßen;

mit den erarbeiteten Gestaltung- und Darstellungsgrundregeln einfache Konstruktionsaufgaben anhand von Prinzipskizzen darstellen und in Konzepte umsetzen;

Aufbau und Funktionsweise einfacher Maschinenelemente und Verbindungstechniken im Maschinenbau kennen und anforderungsgerecht anwenden:

die Grundlagen ihrer technischen Darstellung beherrschen;

Elemente konstruktiv gestalten, beanspruchungsgerecht dimensionieren und in größere Konstruktionszusammenhänge einbringen;

ausgehend von beispielhaft behandelten Maschinenelementen selbstständig weitere Maschinenelemente auswählen, gestalten und auslegen.

Inhalt

Technisches Zeichnen

Darstellen von Werkstücken

Bemaßen von Werkstücken

Darstellen und Bemaßen von Maschinenelementen

Zeichnungssysteme

Toleranzen

Passungen

Fertigungsgerechtes Bemaßen und Gestalten

Normzahlen, Toleranzen und Passungen; Klebe-, Lötund Schweißverbindungen

Normzahlen

Toleranzen und Passungen

Klebeverbindungen

Lötverbindungen

Schweißverbindungen

Niet-, Schrauben-, Bolzen- und Stiftverbindungen

Nietverbindungen

Schraubenverbindungen

Bolzenverbindungen

Stiftverbindungen

Federn, Achsen, Wellen, Welle-Nabe-Verbindungen

Elastische Federn

Achsen, Wellen und Zapfen

Welle-Nabe-Verbindungen

Voraussetzungen	Keine.
Modulbausteine	KON20VE-EL Moduleinführungsvideo
	AB72-372 Fachbuch H. Hoischen: Technisches Zeichnen – Grundlagen, Normen, Beispiele, darstellende Geometrie mit KON101-BH Begleitheft
	AB76-376 Fachbuch Wittel, Jannasch, Voßiek, Spura: Roloff/Matek Maschinenelemente – Normung, Berechnung, Gestaltung mit
	MAE101-BH Begleitheft mit Onlineübung
	MAE102-BH Begleitheft mit Onlineübung
	MAE103-BH Begleitheft mit Onlineübung
	Onlineseminare (Vorlesungsreihe mit 12 thematischen Seminaren, je 1 Stunde)
Kompetenznachweis	Klausur (1 Stunde)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Ruben Maier

KON31 Rechnergestützte Konstruktionen

Kompetenzzuordnung	Instrumentale Kompetenz
Kompetenzziele	Grundlagen der virtuellen Entwicklung von Produkten mit CAx-Systemen kennen;
	2-D- und 3-D-CAD-Systeme in ihrem Systemaufbau kennen und die dazu erforderlichen Grundlagen beherrschen;
	Grundlagen von technischen Dokumentationen, die mittels moderner Hilfsmittel des CAD erarbeitet wurden, beschreiben;
	Software zur Bearbeitung konstruktiver Aufgabenstellungen und Simulationssysteme kennen, beschreiben und einsetzen;
	technische und wirtschaftliche Zusammenhänge bei der Konstruktion berücksichtigen;
	Grundlagen und Aufbau von 3-D-CAD-Systemen kennen;
	Arbeitsschritte zur Bedienung solcher Systeme beschreiben;
	technische Dokumentationen mittels moderner Hilfsmittel des CAD erarbeiten;
	Software zur Bearbeitung konstruktiver Aufgabenstellungen gezielt einsetzen;
	technische Zeichnungen CAD-gestützt erstellen, ändern und in vorgegebenen Formaten ausgeben;
	Bauteile und Baugruppen modellieren;
	einfache Simulationen ausführen;
	technische und wirtschaftliche Zusammenhänge bei der Konstruktion berücksichtigen.

Inhalt

Virtuelle Produktentwicklung

Virtuelle Produktentwicklung Grundlagen der Produktdatentechnologie CAx-Systeme und Prozessketten

CAD-Systeme

Rechnerunterstützte Konstruktion Methodisches Konstruieren mit CAD Geometrieelemente Rechnerinterne Geometriemodelle

Austauschformate

Computergestütztes Entwerfen und Konstruieren

Skizzen

Volumenmodelle

Zeichnungsableitungen

Baugruppen

Rechnergestützte Konstruktion Anwendungen

Voraussetzungen	Kenntnisse zum technischen Zeichnen
Toruscos_ungon	Maschinenelemente Grundlagen

	,	
Modulbausteine	KON22VE-EL Moduleinführungsvideo	
	CAD101 Studienbrief Virtuelle Produktentwicklung mit Onlineübung	
	CAD201 Studienbrief Computergestütztes Entwerfen und Konstruieren mit Onlineübung	
	KON205-EL Studienbrief Rechnergestützte Konstruktion Anwendungen	
	CAD-Programm PTC Creo (ca. 2 Stunden Programminstallation)	
	KON22-ASS (Zugangsvoraussetzung zum Labor)	
	Labor (2 Tage, Übung und eigenständiges Erstellen einer Konstruktionsarbeit mit Einsatz eines 3-D-CAD-Systems)	
Kompetenznachweis	Klausur (ca. 90 Min; eigenständiges Erstellen einer Konstruktionsarbeit mit Einsatz eines 3-D-CAD-Systems im Labor)	
Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Ruben Maier	

KON32 Maschinenelemente und Produktentwicklungsprozess

1.7			
Kom	petenzzi	Jordni	ına

Wissensvertiefung

Kompetenzziele

Komplexe Maschinenelemente im Maschinenbau wie Kupplungen, Bremsen und Getriebe gemäß funktionaler Anforderungen auswählen und entsprechend der gegebenen Lastsituation dimensionieren;

unter Berücksichtigung der gegebenen Betriebseigenschaften die statische und dynamische Festigkeit der Bauelemente voraussagen bzw. auf eine geforderte Lebensdauer auslegen;

ausgehend von beispielhaft behandelten Maschinenelementen selbstständig weitere Maschinenelemente auswählen, gestalten und auslegen;

die wesentlichen Ansätze des Produktenentwicklungsprozesses, insbesondere die Methoden und Elemente, kennen und anwenden;

Grundlagen und Methodik der Konzeptionsphase in der Produktentwicklung sicher beherrschen.

Inhalt

Kupplungen und Bremsen

Kupplungen Bremsen

Wälzlager, Gleitlager

Grundlagen von Lagerungen Wälzlager

Gleitlager

Zahnrad- und Stirnradgetriebe

Überblick über mechanische Getriebe und Einordnung der Zahnradgetriebe

Grundlegende Eigenschaften mechanischer Getriebe

Grundlagen der Zahnradgetriebe

Stirnradgetriebe mit Evolventenverzahnung

Toleranzen, Verzahnungsqualität

Entwurfsberechnung

Tragfähigkeitsnachweis

Kegelrad- und Schneckengetriebe

Kegelräder und Kegelradgetriebe

Schneckengetriebe

Tribologie

Hüllgetriebe

Einordnung der Hüllgetriebe in die Gruppe der mechanischen Getriebe Grundlegende theoretische Zusammenhänge an Hüllgetrieben

Formschlüssige Hülltriebe

Kraftschlüssige Hüllgetriebe

Produktplanung und Produktentwicklung

Produktplanung

Methoden zur Lösungsfindung Der Produktentwicklungsprozess

Methodenanwendung in der Konzeptionsphase

Der Produktentwicklungsprozess PEP Technische Systeme Methodisches Klären der Aufgabenstellung Methodisches Konzipieren

Voraussetzungen

Grundkenntnisse zum technischen Zeichnen, zur Fertigungstechnik und Werkstofftechnik sowie zur technischen Mechanik

Modulbausteine

Moduleinführungsvideo

AB76-376 Fachbuch Wittel; Jannasch; Voßiek; Spura: Roloff/Matek Maschinenelemente – Normung · Berechnung · Gestaltung mit

MAE201-BH Begleitheft Kupplungen und Bremsen und Onlineübung MAE202-BH Begleitheft Wälzlager, Gleitlager und Onlineübung

MAE203-BH Begleitheft Zahnrad- und Stirnradgetriebe und Onlineübung

MAE204-BHKegelrad- und Schneckengetriebe und Onlineübung

MAE205-BH Begleitheft Hüllgetriebe

KON201 Studienbrief Produktplanung und Produktentwicklung mit **Onlineübung**

KON211 Studienbrief Methodenanwendung in der Konzeptionsphase mit **Onlineübung**

Onlineseminare (Vorlesungsreihe mit 12 thematischen Seminaren, je 1 Stunde)

Onlinetutorium (2 x 2 Stunden)

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Ruben Maier

MAT31 Integral Transformationen

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Grundlagen der Differentialgleichungen sicher beherrschen; Begriffe und Aussagen zu Differentialgleichungen deuten und interpretieren; Rechenwege zur Lösung von Differentialgleichungen in der Technik kennen und anwenden; Anfangs- und Randwertprobleme und deren Besonderheiten; Differentiation und Integration von Funktionen mehrerer Veränderlicher; Partielle Ableitung und totales Differential; Mehrfachintegrale; Laplace-Transformation und deren Eigenschaften; Inverse Laplace-Transformation; Anwendungen der Laplace-Transformation; Fouriertransformation und deren Anwendungen; Diskrete Fouriertransformation (DFT); Z-Transformation und deren Anwendungen(Wissen und Methodenkompetenz).
Inhalt	Gewöhnliche Differenzialgleichungen Einführung: Beispiel, Definitionen, Anfangswertproblem, Randbedingungen
	Lösung von Differenzialgleichungen
	Anwendungen in Physik und Technik
	Differenzial- und Integralrechnung mehrerer Veränderlicher Partielle Ableitungen und totales Differenzial
	Mehrfachintegrale
	Laplace-Transformation Laplace-Transformation
	Eigenschaften der Laplace-Transformation
	Rücktransformation aus dem Bildbereich
	Anwendung der Laplace-Transformation
	Fourier- und z-Transformation Fourier-Transformation
	Diskrete Fourier-Transformation (DFT)
	z-Transformation
	Anwendungen von Integraltransformationen Anwendungen der Laplace-Transformation
	Anwendungen der Fourier-Transformation
	Anwendungen der z-Transformation
Voraussetzungen	Grundlagen- und Anwendungskenntnisse der Differential- und Integralrechnung
Modulbausteine	Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 2 Kapitel II-VI
	MAT222 Studienbrief Gewöhnliche Differenzialgleichungen mit Onlineübung
	MAT221 Studienbrief Differenzial- und Integralrechnung mehrerer Veränderlicher mit Onlineübung
	IMA603 Studienbrief Laplace-Transformation mit Onlineübung
	IMA604 Studienbrief Fourier- und z-Transformation mit Onlineübung
	IMA605 Studienbrief Anwendungen von Integraltransformationen mit Onlineübung

2 Onlinetutorien (jeweils 2 Stunden)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Rainer Berkemer

Grundlagen Mathematik I MAT32

Kompetenzzuordnung Wissensvertiefung Definition, Eigenschaften und Darstellungsformen von Funktionen; Kompetenzziele Koordinatentransformation; Grenzwerte und Stetigkeiten; Polynome und gebrochen rationale Funktionen; Potenz-, Wurzel-, Expotential- und Logarithmusfunktion; Algebraische Funktionen; Trigonometrische und Hyperbel- sowie deren Umkehrfunktionen: Folgen und Reihen; Beweis durch vollständige Induktion; Lineare Gleichungssysteme und deren Lösung; spezielle Typen linearer Gleichungssysteme; Numerische Verfahren und deren Anwendung; Vektorrechnung; Beschreibung eines Punktes, einer Geraden und einer Ebene im ndimensionalen Raum. (Wissen und Methodenkompetenz).

Inhalt

Funktionen und ihre Eigenschaften

Definition und Darstellungsformen einer Funktion

Grundlegende Eigenschaften einer Funktion

Koordinatentransformationen Grenzwerte und Stetigkeit

Ganzrationale und gebrochen-rationale Funktionen, Potenz- und Wurzelfunktionen, Exponential- und Logarithmusfunktionen

Polynome

Gebrochen-rationale Funktionen

Potenz- und Wurzelfunktionen

Exponential- und Logarithmusfunktionen

Algebraische Funktionen

Trigonometrische und verwandte Funktionen

Trigonometrische Funktionen

Arkusfunktionen

Hyperbelfunktionen

Areafunktionen

Folgen und Reihen

Was verbirgt sich hinter dem Begriff Folgen und Reihen?

Vollständige Induktion

Arithmetische Folgen und Reihen

Geometrische Folgen und Reihen

Grenzwerte von Folgen und Reihen

Lineare Gleichungssysteme

Einführung

Gauß-Algorithmus

Spezielle Typen linearer Gleichungssysteme

Numerische Verfahren

Anwendungen

Vektorrechnung und Analytische Geometrie

Vektorrechnung ohne Koordinaten

Vektoren in Koordinatendarstellung Punkte, Geraden und Ebenen Anwendungen

Voraussetzungen	Keine.
Modulbausteine	Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1 – Ein Lehr- und Arbeitsbuch für das Grundstudium, Kapitel I-III
	MAT209 Studienbrief Funktionen und ihre Eigenschaften mit Onlineübung
	MAT210 Studienbrief Ganzrationale und gebrochen-rationale Funktionen, Potenz- und Wurzelfunktionen, Exponential- und Logarithmusfunktionen mit Onlineübung
	MAT211 Studienbrief Trigonometrische und verwandte Funktionen mit Onlineübung
	MAT212 Studienbrief Folgen und Reihen mit Onlineübung
	MAT213 Studienbrief Lineare Gleichungssysteme mit Onlineübung
	MAT214 Studienbrief Vektorrechnung und analytische Geometrie mit Onlineübung
	2 Onlineseminare (2x 2 Stunden)
	Klausur (2 Stunden)
Kompetenznachweis	Tuddour (2 Grandon)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Rainer Berkemer

MAT33 Grundlagen Mathematik II

Kompetenzzuordnung Wissensvertiefung

Kompetenzziele Einführung in das Programm und Bedeutung von MATLAB in der Praxis;

Besonderheiten der numerischen Mathematik;

Computerarithmetik und Fehleranalyse;

Lösung linearer Gleichungssysteme und nichtlinearer Gleichungen;

Interpolation und Approximation; Numerische Integration;

Rechnen mit Matrizen;

Determinanten; Inverse Matrizen und Lineare Abbildungen;

Eigenwerte und Eigenvektoren; Komplexe Zahlen und deren

Rechenregeln;

Potenzen, Wurzeln und Polynome; Komplexe Funktionen und deren

Anwendungen;

Grundlagen der Differentialrechnung;

Ableitungsregeln und die Ableitung wichtiger Funktionstypen;

Ableiten der Umkehrfunktion und Methoden zur Analyse von Funktionen;

Regel von de l'Hospital;

Kurvendiskussion; iterative Verfahren zur Nullstellenbestimmung; spezielle

Extremwertaufgaben;

Potenzreihen und Taylor-Reihen; Einführung in die Integralrechnung;

bestimmte und unbestimmte Integrale sowie deren Anwendungen (Wissen

und Methodenkompetenz).

Inhalt Einführung in MATLAB

Mathematikprogramme in den Ingenieurwissenschaften

Einstieg in MATLAB

Skript-Dateien und Funktionen

Kontrollstrukturen

Einfache Benutzer-Interfaces (GUI)

Einführung in Simulink

Bedeutung von MATLAB für die Praxis

Numerischen Mathematik mit MATLAB

Besonderheiten der numerischen Mathematik

Computerarithmetik und Fehleranalyse

Lösung von linearen Gleichungssystemen

Lösung von nichtlinearen Gleichungen

Interpolation und Approximation

Numerische Integration

Lineare Algebra

Matrizen

Rechnen mit Matrizen

Determinanten

Inverse Matrix

Lineare Abbildungen

Eigenwerte und Eigenvektoren

Anwendungen

Komplexe Zahlen und Funktionen

Einführung

Rechenregeln

Potenzen, Wurzeln und Polynome

Komplexe Funktionen

Anwendungen

Differentialrechnung

Einführung, Motivation und lineare Funktionen

Grundlagen der Differentialrechnung und die Ableitungsregeln

Über die Ableitungen wichtiger Funktionstypen

Das Ableiten von Umkehrfunktionen (u.a. Logarithmus)

Funktionsuntersuchungen - Wichtige Begriffe

Anwendungen der Differentialrechnung

Unbestimmte Ausdrücke und die Regel von de l'Hospital

(Vollständige) Kurvendiskussionen

Iterationsverfahren nach Newton

Extremwertaufgaben und weitere Anwendungen der Differentialrechnung

Potenzreihen und Taylor-Reihen

Integralrechnung

Unbestimmte Integration

Bestimmte Integration

Uneigentliche Integrale

Einige Anwendungen der Integralrechnung

Voraussetzungen

Mathematische Grundlagen (Algebra, Gleichungen, Trigonometrie)

Modulbausteine

Fachbuch Papula: Mathematik für Ingenieure und Naturwissenschaftler Band 1, Kap. IV-VII, Band 2, Kap. I

IMA501 Studienbrief Einführung in MATLAB mit MATLAB-Programm und

Onlineübung

IMA502 Studienbrief Numerische Mathematik mit MATLAB mit

Onlineübung

MAT215 Studienbrief Lineare Algebra mit Onlineübung

MAT216 Studienbrief Komplexe Zahlen und Funktionen mit

Onlineübung

MAT217 Studienbrief Differentialrechnung mit Onlineübung

MAT218 Studienbrief Anwendung der Differentialrechnung mit

Onlineübung

MAT219 Studienbrief Integralrechnung mit Onlineübung

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Rainer Berkemer

MCS41 Microcomputer-Systeme mit Labor

Kompetenzzuordnung

Instrumentale Kompetenz

Kompetenzziele

Architektur, Funktionsweise und Programmierung von Mikrocomputern sowie Grundlagen eingebetteter Systeme (Embedded Systems) kennen;

Methoden und Werkzeuge für Softwareentwurf beherrschen; einfache Aufgaben zur Ansteuerung von Peripherie und zur Messwerterfassung mithilfe von Mikrocomputern lösen; einen handelsüblichen Mikrocontroller im Detail kennen.

(Fach- und Methodenkompetenz.)

Inhalt

Grundlagen der Mikrocomputersysteme

Grundbegriffe

Rechnerarchitektur

Darstellung von Zahlen und Zeichen im Mikrocomputer

Innerer Aufbau eines Mikrocomputers

Speicher und Ein-/Ausgabe

Mikrocontroller und Schnittstellen

Typische Mikrocontroller

Timer und Wandler

Chipschnittstellen

Standardschnittstellen

Digitale Interface-Schaltungen

Anzeigen und Displays

Programmierung von Mikrocomputersystemen

Programmentwicklung - Vom Problem zur Lösung

Programmierung in Assembler

Den Mikrocontroller in C programmieren

Anwendungen von Mikrocomputersystemen

Vertiefende Assemblerprogrammierung mit dem 68HC11

Arduino

Statemachine

Motorsteuerung

Analoge Daten verarbeiten

Datenauswertung

Mikrocomputerpraktikum mit dem Arduino

Die Arduino-Entwicklungssoftware

Das Arbeitsbuch "Die elektronische Welt mit Arduino entdecken"

Ablauf des Labors zu MCS41

Voraussetzungen

Kenntnisse der Digitaltechnik und im Programmieren in C;

Grundlagen der Elektronik

Modulbausteine	ABTE010-EL Fachbuch Brühlmann: Arduino Praxiseinstieg
	Bausatz mit Arduino Mikrocontroller und Zubehör mit Software (Entwicklungsumgebung Arduino)
	MCS401-BH Begleitheft zum
	ABTE022-EL Fachbuch Bartmann: Mit Arduino die elektronische Welt entdecken
	ABTE079-ELFachbuch Bernstein: Microcontroller
	Labor (2 x 1 Tag im Abstand von ca. 5 - 6 Wochen;
	1. Tag: Inbetriebnahme und erste Übungen;
	2. Tag: praktische Übungen mit einem Mikrocontroller)
Kompetenznachweis	Assignment (Laborbericht)
Rompetenznaonweis	
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Franz-Karl Schmatzer

MCT60 Assistenzsysteme

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Zentrale Elemente der benutzergerechten Gestaltung von interaktiven Systemen kennen; Mensch-Maschine-Schnittstellen beurteilen und anwenden; Anforderungen an interaktive Systeme erfassen; Grundlagen für Entwurf und die Entwicklung interaktiver mechatronischer Systeme beherrschen; Grundlagen der Systemergonomie kennen und Assistenzsysteme evaluieren; derzeitige und zukünftige Anwendungen bewerten.
Inhalt	Grundlagen interaktiver Assistenzsysteme Einführung Anwendungen und Abgrenzung interaktiver Assistenzsysteme Mensch-Maschine-Systeme
	Mensch-Maschine-Schnittstellen und Interaktionen Interaktionsmodelle für Mensch-Maschine-Schnittstellen Gestaltungsregeln von Mensch-Maschine-Schnittstellen Grundlegende Möglichkeiten der Mensch-Maschine-Kommunikation Fortgeschrittene Mensch-Computer-Schnittstellen Computer Vision
	Entwurf und Evaluation von Assistenzsystemen Einführung Robotersysteme Fahrerassistenzsysteme
Voraussetzungen	Grundlagen in Mechatronikdesign und Simulation, in Sensorik und Aktorik
Modulbausteine	MTS101 Studienbrief Grundlagen interaktiver Assistenzsysteme mit Onlineübung MTS102 Studienbrief Mensch-Maschine-Schnittstellen und Interaktion mit Onlineübung MTS103 Studienbrief Entwurf und Evaluation von Assistenzsystemen mit Onlineübung
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	

MCT62 Mikrosystemtechnik und Adaptorik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Wirkprinzip und Aufbau von Mikrosystemen kennen;
	Komponenten von Mikrosystemen beurteilen und auswählen;
	Anforderungen an die Systemintegration einschätzen;
	Grundlagen des Entwurfs anwenden;
	Entwicklung und Konstruktion von Mikrosystemen verstehen;
	Grundlagen der Technologien zur Herstellung von Mikrosystemen kennen
	Übersicht über Anwendungen der Mikrosystemtechnik haben;
	Grundlagen der Adaptronik und adaptiver Strukturen kennen;
	das Zusammenspiel von mechanischer Struktur, Aktorik, Sensorik und Regelungstechnik zur Realisierung "intelligenter" Strukturen verstehen;
	entsprechende Strukturen auslegen;
	geeignete Sensoren und Aktoren auswählen;
	Integration, Konstruktionsprinzipien und Regelungsentwurf für adaptive Systeme beherrschen;
	Anwendungsmöglichkeiten kennen und einschätzen.

Inhalt

Anwendungen

Batchfertigung und Yieldrate

Herstellung mikromechanischer Bauteile

Physikalische Wirkprinzipien und Skalierungseffekt

Einführung in die Adaptronik

Adaptronik: Zielsetzungen, Begriffe, Beispiele

Wirkprinzipien und zugehörige Entwicklungsmethoden

Grundlagen der Bauteile und Strukturmechanik

Grundlegendes zu Aktoren, Sensoren und smarten Werkstoffen

Grundlegendes zur Regelungstechnik

Multifunktionale Werkstoffe

Multifunktionale Werkstoffe, Smart Materials, Funktionswerkstoffe

Physikalische und werkstoffwissenschaftliche Grundlagen

Multifunktionale Werkstoffe

Ferroelektrika – piezoelektrische Werkstoffe

Formgedächtnislegierungen

Elektrorheologische und magnetorheologische Fluide

Konstruktion und Regelung

Berechnung, Finite-Elemente-Methode

Konstruktionsprinzipien

Konstruktive Lösungsvorschläge für Einzelaktor-Systeme

Konstruktive Lösungskonzepte für strukturintegrierte Aktoren

Prinzipien der Stellwegvergrößerung

Prinzip der modalen Interferenz

Adaptive Regelungskonzepte

Anwendungsbeispiele

Adaptive Tilger, semi-passive Dämpfung, aktive Dämpfungssysteme

Luft- und Körperschallreduktion

Feinpositionierung

Gestaltregelung

Anwendungen in den Bereichen Maschinen- und Anlagenbau, Schienenund Straßenfahrzeuge, Flächenflugzeuge, Drehflügler, Raumfahrt

Voraussetzungen	Grundlagen der Sensorik, Aktorik, Mikrocomputer-Systeme, Systemtheorie, Dynamik
Modulbausteine	MTS203 Studienbrief Anwendungen mit Onlineübung MTS301 Studienbrief Einführung in die Adaptronik mit Onlineübung MTS302 Studienbrief Multifunktionale Werkstoffe mit Onlineübung MTS303 Studienbrief Konstruktion und Regelung mit Onlineübung MTS304 Studienbrief Anwendungsbeispiele mit Onlineübung Tutorium (1 Stunde)
Kompetenznachweis	2 Klausuren
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	

MTS30 Embedded Mechatronics Labor

Kompetenzzuordnung	Instrumentale Kompetenz
Kompetenzziele	Embedded Systems auf mechatronische Systeme anwenden;
	typische Aufbauformen und verwendete Controller von Embedded Systems kennen sowie Einsatzbereiche beurteilen;
	Embedded Systems hard- und softwaremäßig entwerfen, aufbauen und programmieren;
	Umgang und Möglichkeiten von Cross-Entwicklungs- und Debug- Umgebung verstehen und anwenden;
	Integration von Sensoren und Aktoren in Embedded Mechatronik System verstehen und anwenden.
Inhalt	Embedded Mechatronics Labor
	Einführung Tastatureingabe, prellen und entprellen
	Laborübung Dateneingabe mit einem Drehgeber Aufbau und Funktion eines Drehgebers
	Laborübung Tastatureingabe Aufbau einer Matrix-Tatstatur
	Laborübung digitale Sensoren mit 1-Wire Anbindung Baustein DHT11 und seine Beschaltung Serielle Schnittstelle Ablauf des Protokolls Entwickeln einer Klasse MyDHT11 zum Auslesen der Daten
	Fehlerbehandlung in der Klasse MyDHT11
	Laborübung I2C-Bus (2-Wire) Anbindung an ein EEPROM Der I2C-Bus
	Das I2C-Bus-Protokoll Die I2C Bibliothek
	Laborübung Digitale Port-Erweiterung durch einen I2C-I/O-Port Expander
	Aufbau des I/O-Expander PCF8574
	Ein- und Ausgabekanäle mit dem Portexpander PCF8574 erweitern Die Bibliothek LiquidCrystal_I2C
Voraussetzungen	Mikrocomputer-Systeme
· o. aaooceangen	Mikrocomputer-Systeme Labor oder anderweitig erworbene gleichwertige Kompetenzen
Modulbausteine	ABTE022-EL Fachbuch Bartmann, Erik: Mit Arduino die elektronische Welt entdecken mit
	MTS501-BH Begleitheft

Bausatz mit Arduino Mikrokontroller und Zubehör mit Software Entwicklungsumgebung Arduino (Hinweis: empfindliche Bauteile)

Labor (2 x 1 Tag an einem AKAD-Standort; 1. Tag erste Übungen, 2. Tag im Abstand von ca. 5–6 Wochen zum 1. Labortag: praktische Übungen mit einem Mikrokontroller) mit

Testat (wird im Labor vergeben; erfolgreich bestandenes Testat ist Zulassungsvoraussetzung zum Assignment)

Kompetenznachweis	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Dr. Franz-Karl Schmatzer

PHY20 Grundlagenphysik für Ingenieure

Kompetenzzuordnung	Wissensverbreiterung
Rompetenzzuorunung	Wisselis verbiellerung

Kompetenzziele Physikalische Grundkenntnisse aus den Bereichen Mechanik und

Kinematik, der Schwingungs- und Wellenlehre sowie Grundlagen der Wärmelehre beherrschen; atomaren Aufbau der Substanzen als Basis der Werkstoffkunde kennen; physikalische Phänomene erkennen, diskutieren und darstellen; Gesetze der Physik zur Lösung technischer Probleme

heranziehen, an Beispielen erläutern und sicher anwenden.

Inhalt Physikalisches Messen, Kinematik

SI-Einheiten und Maßangaben

Auswertung von Messungen

Gleichförmige und ungleichförmige Bewegung

Zusammensetzen von Geschwindigkeit und Beschleunigung

Kreisbewegung Schwingungen

Mechanik: Impuls, Kraft und Energie

Impuls Kraft

Newton'sche Grundgesetze der Mechanik

Spezielle Kräfte Energie und Arbeit Stoßprozesse

Mechanik starrer Körper, Drehbewegungen

Schwerpunkt Trägheitsmoment

Mechanik der Flüssigkeiten und Gase, Schwingungen und Wellen

Ruhende Flüssigkeiten und Gase Strömende Flüssigkeiten und Gase Überlagerung von Schwingungen

Gedämpfte und erzwungene Schwingungen

Eindimensionale Wellen Kugel- und Zylinderwellen

Doppler-Effekt

Überlagerung von Wellen Brechung und Reflexion

Wärmelehre. Atome und der atomare Aufbau der Substanzen

Wärmemenge und Wärmekapazität

Wärmetransport

Thermische Ausdehnung von Festkörpern

Die Hauptsätze der Wärmelehre Aussagen der Quantenmechanik

Das Bohr'sche Atommodell

Aufbau der Atome und Periodensystem

Kristallstrukturen Chemische Bindung

Molekulares Bild der Gase

Zusammenfassung und Formelsammlung

Voraussetzungen	Mathematik- und Physikkenntnisse auf Hochschulreife-Niveau
Modulbausteine	Fachbuch Stroppe: Physik – Beispiele und Aufgaben (E-Book)
	PHY101 Studienbrief Physikalisches Messen, Kinematik mit Onlineübung
	PHY102 Studienbrief Mechanik: Impuls, Kraft und Energie mit Onlineübung
	PHY103 Studienbrief Mechanik der Flüssigkeiten und Gase, Schwingungen und Wellen mit Onlineübung
	PHY214 Studienbrief Felder
	PHY104 Studienbrief Wärmelehre. Atome und der atomare Aufbau der Substanzen mit Onlineübung
	PHY213 Studienbrief Zusammenfassung und Formelsammlung
	Präsenztutorium (1 Tag)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

PHY23 Physik für Ingenieure II

Modulbausteine	ABTE026-EL Fachbuch Stroppe: Physik – Beispiele und Aufgaben PHY201 Studienbrief Geometrische Optik mit Onlineübung
Voraussetzungen	Keine.
	Talbiotottoomologic
	Halbleitertechnologie
	Optoelektronische Bauelemente und Halbleitertechnologie Optoelektronische Bauelemente
	pn-Übergänge Transistoren
	Bänderstruktur und Ladungstransport
	Halbleiter, Isolatoren, Metalle
	Chemische Bindung und Kristallstrukturen von Halbleitern
	Mikro- und Halbleiterphysik
	Reale Gase
	Thermodynamische Potenziale Irreversible Prozesse
	Kreisprozesse
	Zustandsänderungen idealer Gase
	Die Hauptsätze der Wärmelehre
	Zustandsgleichung idealer Gase
	Thermische Ausdehnung von Festkörpern
	Wärmetransport
	Wärmemenge und Wärmekapazität
	Masse und Stoffmenge
	Temperatur
	Thermodynamik
	Energie und Farbe des Lichts
	Optische Geräte
	Hohl- und Wölbspiegel
	Optische Abbildungen
	Lichtwellenleiter
	Brechung
	Reflexion
	Natur des Lichts
Inhalt	Geometrische Optik
	Probleme heranziehen, an Beispielen erläutern und sicher anwenden.
	physikalische und mathematische Gesetze zur Lösung technischer
	physikalische Phänomene erkennen, diskutieren und darstellen;
Kompetenzziele	Thermodynamik sowie Mikro- und Halbleiterphysik verfügen;
	Über physikalische Grundkenntnisse aus den Bereichen Optik,

PHY202 Studienbrief Thermodynamik mit Onlineübung

PHY203 Studienbrief Mikro- und Halbleiterphysik mit Onlineübung PHY204 Studienbrief Optoelektronische Bauelemente und Halbleitertechnologie mit Onlineübung Onlinetutorium (1 Stunde)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Sebastian Bauer

PRG25 Grundlagen der Informatik und Programmierung für Ingenieure

Ingenieure	
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Definitionen und Begriffsbildung; Grundlagen des Aufbaus und der Arbeitsweise von Computersystemen kennen und beschreiben;
	Grundbegriffe über Software und Programmierung beherrschen;
	Ansätze der Vernetzung von Rechnersystemen skizzieren;
	Basistechniken und Methoden zur Organisation von Daten beschreiben;
	Merkmale von Datenbanksystemen erläutern (Fach- und Methodenkompetenz);
	Grundbegriffe und grundlegende Ansätze der Programmierung definieren und beschreiben;
	grundlegende Datentypen und -strukturen und ihre Abbildung in Computern erläutern;
	Komponenten der Programmentwicklung abgrenzen am Beispiel C++ (Fachkompetenz)
Inhalt	Grundlagen der Informatik
	Was ist Informatik?
	Informationen und Daten
	Daten- und Informationsverarbeitung
	Rechnersysteme und systemnahe Software
	Struktur und Organisation von Computern: Rechnerarchitekturen
	Peripheriegeräte
	Ondiana and Datas

Peripheriegeräte Codieren von Daten Betriebssysteme

Software

Klassifikation von Software

Betriebswirtschaftliche Anwendungssoftware

Betriebswirtschaftliche Daten Die Benutzerschnittstelle

Softwarequalität

Kommunikation und Netzwerke

Grundlagen der Datenübertragung

Das OSI-Referenzmodell

Lokale Netze

Netztopologien und Zugangsverfahren

Kopplung

Netzmanagement

Internet

Das TCP/IP-Protokoll

IP-Adressen

Domain Name System

Die Internetschicht mit Routing

Die Transportschicht

Dienste im Internet

Das World Wide Web

Grundaufbau

Dynamische Webanwendungen

Intranet und Extranet

Anwendungsarchitekturen

Basisarchitekturen

Schichtenarchitektur

Client-Server-Architektur

Peer-to-Peer-Architektur

Publish-Subscribe-Architektur

Serviceorientierte Architekturen

Middleware

Virtualisierung

Cloud-Computing

Datenbanksysteme

Aufgaben

Relationale Systeme

NoSQL-Systeme

Vom Datenmodell zur Speicherung von Dateien

Allgemeines zur Datenorganisation

Entity-Relationship-Modelle

Relationale Datenmodellierung

Physische Datenorganisation

Datenbanksysteme

Structured Query Language (SQL)

Grundlagen der Programmierung

Informationen und Daten

Verarbeitung von Daten in Rechnern

Programmiersprachen

Datentypen und Datenstrukturen

Programmierung im Kleinen

Programmieren im Großen

Ein- und Ausgabe in Programmen

Softwareentwicklung

Voraussetzungen

Keine.

Modulbausteine

Fachbuch "Grundkurs Wirtschaftsinformatik Eine kompakte und praxisorientierte Einführung" von Abts, Dietmar und Mülder, Wilhelm

WIN201-BH Begleitheft Grundlagen und Anwendungen der Wirtschaftsinformatik mit Onlineübung

DAO101 Studienbrief Vom Datenmodell zur Speicherung von Dateien mit Onlineübung

PRG101 Studienbrief Grundlagen der Programmierung mit Onlineübung **Onlinetutorium** (1 Stunde)

Kompetenznachweis Klausur (2 Stunden)

Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Matthias Riege

PWS40 Projektwerkstatt

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Aufgabenstellungen mit einem wissenschaftlichen Anspruch auf Bachelorniveau und im Kontext der Themenfelder und Schwerpunkte des Studiengangs problem- und zielorientiert im Team und nach den Methoden eines modernen Projektmanagements bearbeiten und lösen; das erworbene – auch interdisziplinäre – Fachwissen umsetzen und anwenden; über die Fähigkeit verfügen, geeignete Werkzeuge der Kooperation und Kommunikation einzusetzen; Ergebnisse zielorientiert und nach den Regeln der Wissenschaftlichkeit dokumentieren und präsentieren.
Inhalt	Bearbeitung einer Projektaufgabe
mnait	Selbstständig sowie in Gruppen unter Verwendung verschiedener Methoden und Diskurse; Beispiele: Modell- oder Konzeptentwicklung, Optimierungsempfehlungen, Untersuchungen, empirische Forschungsarbeit, Gestaltungsempfehlungen usw.
	Gegenstand der Projektarbeiten: Analyse, Planung, Konzeption, Gestaltung, Entwicklung, Einsatz und Bewertung von Lösungen für den Praxiseinsatz unter Berücksichtigung der Kompetenzfelder der Studiengangsschwerpunkte.
Voraussetzungen	Keine.
Modulbausteine	Keine.
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Ulrich Kreutle

REG23 Steuerungs- und Regelungstechnik

Regelungstechnik	
Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Systeme mit verschiedenen Steuerungen und Regelungen zielgerichtet beeinflussen; Steuerungsentwurf problemorientiert erarbeiten; Grundkenntnisse der SPS-Programmierung gemäß IEC 1131 beherrschen; geeignete Steuerungsverfahren und Steuerungsgeräte auswählen; Grundlagen, Begriffe und Definitionen der Regelungstechnik kennen; Wirkungsweise von Regelkreisen kennen und mathematisch beschreiben; Stabilität dynamischer Systeme bestimmen; Regelkreise entwerfen durch Wahl geeigneter Regleralgorithmen; Verfahren zur Bestimmung von Reglerparametern kennen und anwenden; Modelle dynamischer Systeme bilden; Regelsysteme modellieren und simulieren.
Inhalt	Signale und Systeme
	Eigenschaften von Signalen
	Testsignale
	Eigenschaften von Systemen
	Systemreaktionen
	Grundlagen und Beschreibung dynamischer Systeme
	Stabile und instabile Prozesse
	Beschreibung dynamischer Systeme durch das Strukturbild
	Mathematische Beschreibung und Entwurf von Regelungen
	Mathematische Beschreibung und Analyse von Regelungen
	Stabilität eines Regelkreises
	Entwurf von Regelkreisen - Regelkreissynthese
	Verfahren zur Bestimmung der Reglerparameter
	Zustandsraumdarstellung, Modellbildung und Identifikation
	Lineare Regelungssysteme
	Systembeschreibung im Zustandsraum
	Modellbildung und Identifikation
	Steuerungsarten, Schaltalgebra und SPS
	Einführung in die Automatisierungstechnik
	Grundlagen der Schaltalgebra
	Speicherprogrammierbare Steuerungen
	Kommunikation zwischen Automatisierungssystemen
	Gebräuchliche Feldbusse
	Das OSI-Referenzmodell
	Physikalische Übertragungseigenschaften: Die unteren Schichten des OSI-Modells
	Anwendungsnahe Eigenschaften von Feldbussen
Voraussetzungen	Ingenieurwissenschaftliche Mathematik, Grundlagen der Elektrotechnik
Modulbausteine	REG202 Studienbrief Signale und Systeme
	REG101 Studienbrief Grundlagen und Beschreibung dynamischer Systeme

REG102 Studienbrief Mathematische Beschreibung und Entwurf von Regelungen

REG103 Studienbrief Zustandsraumdarstellung, Modellbildung und Identifikation

Onlineübung zu den Studienbriefen REG101, REG102 und REG103

STT101 Studienbrief Steuerungsarten, Schaltalgebra und SPS

STT102 Studienbrief Kommunikation zwischen

Automatisierungssystemen

Onlineübung zu den Studienbriefen STT101 und STT102

Präsenztutorium (1 Tag)

Kompetenznachweis	Klausur (2 Stunden) Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Gregor Tebrake

ROB40 Robotik

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Unterschiedliche Roboter unterscheiden und deren typische Einsatzbereiche kennen;
	Roboter und Peripherie auswählen;
	Kinematik und Dynamik von Robotern berechnen;
	Regelungs- und Steuerungskonzepte beurteilen können;
	Roboter als flexible Automatisierungskomponente verstehen;
	Grundlagen der Roboterprogrammierung kennen.
Inhalt	Einführung in die Robotik
	Einführung in die Robotertechnik
	Grundlagen
	Die Steuerung
	Endeffektoren
	Sensorsysteme
	Peripherie
	Sicherheitseinrichtungen
	Roboteranwendungen
	Roboter-Kinematik
	Roboterkinematiken
	Maschinenunabhängige Beschreibung räumlicher Bewegungsbahnen
	Herleitung von Transformationen für serielle Roboterkinematiken
	Nutzung der Koordinatensysteme bei Industrierobotern
	Roboter-Dynamik und -Regelung
	Modellierung mechanischer Systeme
	Ansatz Euler-Lagrange
	Newton-Euler Methode
	Simulationswerkzeuge für Roboter
	Regelung von Robotern
	Bahnplanung und Programmierung
	Bahnplanung
	Roboter-Roboter-Kooperation
	Anwendungsprogrammierung von Robotern
	KRL – Eine Roboterprogrammiersprache
	Neue Programmierverfahren für Industrieroboter
Voraussetzungen	Lineare Algebra, Vektoralgebra, Funktionen, Trigonometrie, Differenzial- und Integralrechnung, Physikalisches Messen, Kinematik, Dynamik, Grundlagen der Elektrotechnik, Regelungstechnik
Modulbausteine	ROB101 Studienbrief Einführung in die Robotik mit Onlineübung
	ROB102 Studienbrief Roboter-Kinematik mit Onlineübung
	ROB103 Studienbrief Roboter-Dynamik und -Regelung mit Onlineübung ROB104 Studienbrief Bahnplanung und Programmierung mit Onlineübung

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Frantisek Jelenciak

ROB41 Maschinelles Sehen

Kompetenzzuordnung	Wissensvertiefung
	Aufbau und Komponenten von digitalen Bildverarbeitungssystemen
Kompetenzziele	kennen;
	optische Systeme dimensionieren;
	grundlegende Algorithmen der Bildverarbeitung kennen und anwenden;
	für einfache Aufgabenstellungen Bilder aufbereiten, diese segmentieren, Merkmale extrahieren und eine Klassifizierung durchführen;
	Anwendungsmöglichkeiten digitaler Bildverarbeitung insbesondere in der industriellen Automatisierungstechnik und Robotik einschätzen.
Inhalt	Industrielle Bildverarbeitung
	Einführung in die industrielle Bildverarbeitung
	Komponenten eines Bildverarbeitungssystems
	Bildrepräsentation
	Methoden und Algorithmen der 2D-Bildverarbeitung
	Bildvorverarbeitung
	Segmentierte Klassifikation
	Problemlösungen mit 2D-Bildverarbeitung
	Anwesenheitskontrolle
	Lageerkennung Markmalaaytraktion und Vormaaaung
	Merkmalsextraktion und Vermessung Kennzeichenerkennung
	Fortgeschrittene Bildverarbeitung
	3D-Bildaufnahme
	Ausblick und Beispiele
Voraussetzungen	Lineare Algebra, Vektoralgebra, Trigonometrie, Optik, Grundkenntnisse in mindestens einer Programmiersprache
Modulbausteine	ROB201 Studienbrief Industrielle Bildverarbeitung mit Onlineübung
	ROB202 Studienbrief Methoden und Algorithmen der 2D Bildverarbeitung mit Onlineübung
	ROB203 Studienbrief Problemlösungen mit 2D-Bildverarbeitung mit Onlineübung
	ROB204 Studienbrief Fortgeschrittene Bildverarbeitung mit Onlineübung
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Frantisek Jelenciak
- Ctadiomonor	i rantion oddiolat

SB518B Brückenkurs Mathematik für 1 Ingenieure

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	5004 Brückenkurs Mathematik für Ingenieure
	Auffrischung der Schulkenntnisse der elementaren Mathematik als Grundlage eines erfolgreichen Ingenieurstudiums
	Vermittlung von Methoden zum Lösen von Aufgaben
	Verbesserung der Rechenfertigkeit beim Lösen von Aufgaben
Inhalt	5004 Brückenkurs Mathematik für Ingenieure
imait	Elementare Grundlagen (Mengen, Zahlen, elementare Rechenoperationen)
	Gleichungen/Ungleichungen/Betragsgleichungen Funktionen
	Lineare Algebra (elementare Vektoralgebra, Elementares zu Matrizen und Determinanten, Gleichungssysteme)
	Infinitesimalrechnung (einfachste Differential- und einfachste Integralrechnung)
Voraussetzungen	Schulmathematik
Modulbausteine	5004 Brückenkurs Mathematik für Ingenieure
	3 Tage
Kompetenznachweis	
Lernaufwand	
Sprache	Deutsch
Studienleiter	

SB519B Brückenkurs Physik für 1 Ingenieure

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	5005 Brückenkurs Physik für Ingenieure
	 - Auffrischung der Schulkenntnisse der Physik als Grundlage eines erfolgreichen Ingenieurstudiums
	- Vermittlung von Strategien zum Lösen von Physik-Aufgaben
Inhalt	5005 Brückenkurs Physik für Ingenieure
	 Elementare und allgemeine Grundlagen (Arbeitsweise der Physik, Physikalische Größen, Grundkonzepte)
	- Mechanik (Kinematik und Dynamik der Massenpunkte)
	 Wärmelehre/Thermodynamik (Konzept der Thermodynamik, Thermische Eigenschaften physikalischer Körper, Hauptsätze der Thermodynamik, Thermodynamische Prozesse)
	 Elektrizitätslehre (elektrische Grundgrößen, elektrischer Widerstand, Ohmsches Gesetz, einfache Netzwerke/Kirchhoffsche Regeln, elektrische und magnetische Felder)
	 Schwingungen und Wellen (Kinematik und Dynamik von Schwingungen, freie und erzwungene Schwingung, Analogie mechanischer und elektrischer Schwingungen, Wellenphänomene)
	- Atomphysik (Atombau, Übergänge, Leitungsmechanismen in Festkörpern)
Voraussetzungen	Schulmathematik, Schulphysik
Modulbausteine	5005 Brückenkurs Physik für Ingenieure
	Seminar (3 Tage)
Kompetenznachweis	_
Lernaufwand	
Sprache	Deutsch
Studienleiter	

SQF24 Schlüsselqualifikationen für Studium und Beruf

Voraussetzungen	Keine.
	Wissenschaftliche Nacharbeit
	Wissenschaftliche Hauptarbeit
	Wissenschaftliche Vorarbeit
	Wissenschaftliches Arbeiten
	Medieneinsatz
	Wege zu einer guten Präsentation
	Ist Präsentieren schwierig?
	Zielsicher Präsentieren
	Vom Lesen zum Schreiben
	Techniken der Kreativität
	Einflüsse auf die Kreativität
	Was ist kreative Kompetenz?
	Kreative Kompetenz
	Instrumente des Ziel- und Zeitmanagements
	Methoden des Ziel- und Zeitmanagements
	Zeit braucht Ziele
	Ziel- und Zeitmanagement
	Entscheidungs- und Handlungskompetenz
	Ziele
	Lebenshaltungen
Inhalt	Die Vielfalt des Lebens
	Selbstmanagement
	Korrekt zitieren (Methodenkompetenz)
Kompetenzziele	Abschlussarbeiten beschreiben und erläutern Möglichkeiten der wissenschaftlichen Recherche beschreiben und unterscheiden
	kommunikative, soziale Kompetenz). Anforderungen an wissenschaftliche Einsendeaufgaben, Referate und
	Präsentationen beurteilen und Verbesserungsansätze für Rhetorik und Körpersprache erkennen (Methoden-, Medien-, persönliche,
	Grundlagenkenntnisse: Präsentationen didaktisch-methodisch planen, organisatorisch vorbereiten, selbst durchführen und nachbereiten könner
	Moderne Methoden des Zeitmanagements anwenden.
	anwenden.
	Arbeits- und Kreativitätstechniken beschreiben und einfache Techniken
	Arbeitsstil einschätzen und Ansätze zu deren Verbesserung finden.
Vomnotonaziole	Grundlagenkenntnisse: die eigene Persönlichkeit und den eigenen
Kompetenzzuordnung	Systemische Kompetenz

SQF232 Studienbrief Selbstmanagement

SQF233 Studienbrief Ziel- und Zeitmanagement
SQF234 Studienbrief Kreative Kompetenz
SQF235 Studienbrief Zielsicher Präsentieren
SQL301 Studienbrief Wissenschaftliches Arbeiten mit Onlineübung
SQLD302-VH Download Vorgaben für wissenschaftliche Studien- und Abschlussarbeiten bei AKAD

Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Prof. Dr. Marianne Blumentritt

Projekt- und SQF43 Qualitätsmanagement

Kom	petenzz	uordnun	a li

nstrumentale Kompetenz

Kompetenzziele

Bestandteile des Projektmanagements kennen;

Projekte inklusive der Analyse des Projektumfelds und der Stakeholder initialisieren:

die systematische Strukturierung eines Projekts samt der Ablauf-,

Ressource- und Terminplanung gewährleisten;

die Instrumente der Projektplanung anwenden;

ein Konzept für das Projektcontrolling entwickeln;

Risiken, Verzögerungen und Herausforderungen bei der Durchführung

eines Projekts frühzeitig erkennen;

den Teamentwicklungsprozess modellieren;

die Möglichkeiten einer wirkungsvollen Kommunikation berücksichtigen;

Widerstände und Konflikte im Projektteam sowie bei den Stakeholdern

identifizieren und analysieren;

Bedeutung des Projektmarketings, Change Managements und Projekt-Qualitätsmanagements einschätzen sowie jeweils relevante Methoden und Instrumente einsetzen;

Rollen im Multiprojektmanagement kennen und den Prozess für ein Multiprojektmanagement implementieren;

Einsatzmöglichkeiten der Instrumente des Multiprojektmanagements beurteilen;

Techniken, Methoden und Strategien zur Umsetzung des

Qualitätsmanagements in Betriebsabläufen kennen und anwenden;

Maßnahmen zur Qualitätsverbesserung gezielt aufgabenorientiert

auswählen und umsetzen;

Dokumentation zum Qualitätsmanagement führen.

Inhalt

Projektaufbau, Funktionen und Managementtechniken

Begriffe

Projektaufbau

Funktionen im Projekt

Managementtechniken

Projekte initialisieren und planen

Projekte initialisieren

Projekte planen

Projekte abwickeln und abschließen

Projekte leiten und steuern

Risikomanagement

Problemmanagement

Projektberichte

Projektabschluss

Projektsitzungen und Workshops

Führen in Projekten und begleitende Aufgaben

Die Projektführung

Das Projektteam

Kommunikation

Widerstand

Konflikte

Projektmarketing

Änderungs- und Konfigurationsmanagement

Qualität im Projekt

Lieferantenmanagement

Multiprojektmanagement

Multiprojektmanagement: Stellenwert und Standort

Multiprojektmanagement-Prozess

Multiprojektmanagement-Methoden

Multiprojektmanagement-Organisation

Multiprojektmanagement-Qualifikation

Implementierung des Multiprojektmanagements

Statistische Methoden im Qualitätsmanagement

Statistische Grundlagen

Datensammlung im Qualitätswesen

Verteilungen und Vertrauensbereiche

Wichtige Verteilungsformen und deren Regelkarten

Test auf Normalverteilung

Fähigkeitsbetrachtungen

Stichproben

Qualitätsnormen, QM-Systeme und gesellschaftliche Aspekte

Qualitätsnormen

Auditierung und Zertifizierung

VDI/VDE/DGQ 2618

QM-Systeme, TQM und Excellence-Modelle

Juristische Aspekte

Voraussetzungen

Keine.

Modulbausteine

SQF201 Studienbrief Projektaufbau, Funktionen und

Managementtechniken mit Onlineübungen

SQF401 Studienbrief Projekte initialisieren und planen mit Onlineübungen

SQF402 Studienbrief Projekte abwickeln und abschließen mit Onlineübungen

SQF403 Studienbrief Führen in Projekten und begleitende Aufgaben mit Onlineübungen

SQF404 Studienbrief Multiprojektmanagementmit Onlineübungen

QUM102 Studienbrief Statistische Methoden im Qualitätsmanagement mit **Onlineübung**

QUM103 Studienbrief Qualitätsnormen, QM-Systeme und gesellschaftliche Aspekte mit **Onlineübung**

Onlinetutorium (1 Stunde)

Kompetenznachweis

Klausur (1 Stunde)

Lernaufwand	125 Stunden, 5 Leistungspunkte	
Sprache	Deutsch	
Studienleiter	Ulrich Kreutle	

SWE22 Softwareentwicklung für Ingenieure

Kompetenzzuordnung	Instrumentale Kompetenz
Kompetenzziele	Prinzipien und Methoden der SW-Entwicklung beschreiben. Vorgehensweisen zur Erstellung komplexer SW-Systeme anwenden;
	SW-Projekte durchführen. Funktionale und objektorientierte Methoden der SW-Technik anwenden. Ansätze zur ergonomischen Gestaltung von Software beschreiben.

Inhalt Einführung in die Systementwicklung

Einführung: Softwareentwicklung als Problem

Grundlegende Entwicklungsstrategien und Prinzipien Vorgehensmodelle: Softwareentwicklung als Prozess

Die Phasen der Softwareentwicklung Phasenunabhängige Aufgaben

Objektorientierte Softwareentwicklung

Agile Softwareentwicklung

Softwaremanagement

Software-Management

Projektmanagement

Vorstudie und Lastenheft

Produktivität und Aufwandsschätzung Innovations- und Risikomanagement

Funktionsorientierte Softwareentwicklung

Anforderungen an die SW-Entwicklung

Ansätze, Systematik und Werkzeuge der SW-Entwicklung

Elemente der funktions- und datenorientierten SW-Entwicklung

Grundsätze funktionsorientierter SW-Entwicklung

Methoden der funktionsorientierten SW-Entwicklung

Objektorientierte Softwareentwicklung

Objektorientierung

Objektorientierte Modellierung: UML

Objektorientierter Entwicklungsprozess

Komponentenbasierte Softwareentwicklung

Serviceorientierte Softwareentwicklung

Werkzeuge und Entwicklungsumgebungen

Serviceorientierte Architektur (SOA)

Software-Ergonomie und Interaktionsdesign im Internet

Grundlagen der Mensch-Computer-Kommunikation (MCK)

Benutzer- und Anwendungsklassen

Allgemeine Grundsätze der Softwareergonomie

Gestaltungskriterien für Computer-Arbeitsplätze

Entwicklung von Dialogschnittstellen

Benutzerunterstützung

Interaktionsdesign im Internet

Voraussetzungen	Programmierkenntnisse
_	
Modulbausteine	SWE101 Studienbrief Einführung in die Systementwicklung mit Onlineübung
	SWE202 Studienbrief Softwaremanagement mit Onlineübung
	SWE203 Studienbrief Funktionsorientierte Softwareentwicklung mit Onlineübung
	SWE204 Studienbrief Objektorientierte Softwareentwicklung mit Onlineübung
	SWE205 Studienbrief Software-Ergonomie und Interaktionsdesign im Internet mit Onlineübung
	Onlineseminar (2 Stunden)
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Andrea Herrmann

SYS41 Systemtheorie

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Regelkreise im Zustandsraum analysieren und Zustandsregler entwerfen;
·	Steuerbarkeit und Beobachtbarkeit von Regelungssystemen feststellen;
	vollständige und reduzierte Beobachter und Regler nach dem Polvorgabeverfahren oder LQ-Verfahren sowohl für Eingrößen- als auch
	für Mehrgrößensysteme entwerfen;
	Grundlagen der digitalen Regelung und zeitdiskreter Systeme beherrschen;
	zeitkontinuierliche Systeme diskretisieren und den zugehörigen Algorithmus für eine vorgegebene Abtastzeit angeben;
	digitale Regler mit einem Mikrocomputer-System realisieren.
Inhalt	Zustandsraumdarstellung I
	Modellbildung im Zustandsraum
	Die Lösungen des Zustandsraummodells
	Dynamisches Verhalten linearer Systeme
	Normalformen und das Realisierungsproblem
	Zustandsraumdarstellung II
	Zustandsraummodell
	Erreichbarkeit und Steuerbarkeit
	Regelung durch Zustandsrückführung
	Beobachtbarkeit und Rekonstruierbarkeit
	Beobachter und Ausgangsrückführung
	Kompensation von Störungen und Modellfehlern
	Digitale Regelung
	Zeitdiskrete Systeme – Abtastsysteme
	Der Frequenzgang von Abtastsystemen
	Reglerentwurf – Das Frequenzkennlinienverfahren
	Reglerentwurf – Zustandsregler
Voraussetzungen	Kenntnisse der Regelungstechnik
	SVS404 Studionhriof Zustandergumderstellung Lmit Onlineühung
Modulbausteine	SYS101 Studienbrief Zustandsraumdarstellung I mit Onlineübung SYS102 Studienbrief Zustandsraumdarstellung II mit Onlineübung
	SYS103 Studienbrief Digitale Regelung mit Onlineübung
	Präsenztutorium (6 Stunden)
	Fraseriztatorium (o Standen)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch

Studienleiter

Frantisek Jelenciak

SYS42 Systemmodellierung

Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Konzepte und Methoden zur Entwicklung mechatronischer Systeme und Produkte kennen und anwenden;
	Komponenten mechatronischer Systeme und deren Eigenschaften beurteilen;
	Modellbildung mechatronischer Systeme durchführen;
	Grundlagen der Simulation mechatronischer Systeme beherrschen;
	Simulationssysteme einordnen, auswählen und einsetzen;
	Entwicklung mechatronischer Systeme und derer Komponenten mit den dafür geeigneten Verfahren durchführen oder anleiten;
	die fachlichen Kenntnisse in Mechatronik-Projekten gezielt einsetzen.
Inhalt	Entwurf mechatronischer Systeme
	Mechatronische Systeme
	Entwurf mechatronischer Systeme
	Beispiel: Antiblockiersystem (ABS)
	Simulation mechatronischer Systeme
	Systemdynamik
	Mathematische Modellbildung
	Simulationstechnik
	Software-Werkzeuge zur Modellierung und Simulation
	Anwendungsbeispiele
Voraussetzungen	Kenntnisse der Regelungstechnik in Zustandsräumen
Modulbausteine	ABTE113-EL Fachbuch Glöckler: Simulation mechatronischer Systeme – Grundlagen und Beispiele für MATLAB und Simulink
	MCT201 Studienbrief Entwurf mechatronischer Systeme mit Onlineübung
	MCT202 Studienbrief Simulation mechatronischer Systeme mit Onlineübung
	Onlinetutorium (4 Stunden)
Kompetenznachweis	Assignment
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch

TME03 Dynamik

Kompetenzzuordnung	Wissensverbreiterung
Kompetenzziele	Bewegungen starrer Körper analysieren;
	kinematische und kinetische Kenngrößen mechanischer Systeme mit starren Körpern ermitteln;
	Grundgleichungen der Dynamik beherrschen; grundlegende Bewegungsgleichungen formulieren;
	Energie- und Arbeitssatz anwenden;
	Einflüsse auf das Schwingungsverhalten abschätzen;
	fachspezifische Kenntnisse in Beispielaufgaben übergreifend und sicher anwenden;
	Ergebnisse dokumentieren und auswerten.
 Inhalt	Punktbewegung
iiiiait	Kinematik des Punktes
	Kinetik des Massenpunktes
	Kinematik starrer Körper
	Ebene Bewegung eines starren Körpers
	Der Momentanpol
	Relativkinematik
	Kinetik starrer Körper
	Kinetik der Drehbewegung um feste Achsen
	Kinetik der allgemeinen ebenen Bewegung
	Stöße
	Einführung in die Schwingungslehre
	Grundlagen
	Freie Schwingungen
	Erzwungene Schwingungen
Voraussetzungen	Grundlagen der Statik
Modulbausteine	TME301 Studienbrief Punktbewegung mit Onlineübung
moduladotomo	TME302 Studienbrief Kinematik starrer Körper mit Onlineübung
	TME303 Studienbrief Kinetik starrer Körper mit Onlineübung
	TME304 Studienbrief Einführung in die Schwingungslehre mit Onlineübung
	1 Onlineseminar
	4 Online-Tutorien (je 1 Std.)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte

Sprache	Deutsch
Studienleiter	Achim Björn Ziegler

TME20 Grundlagen der Statik und Festigkeitslehre

Kompetenzzuordnung

Wissensverbreiterung

Kompetenzziele

Fähigkeit zur Abstraktion und zur Modellbildung entwickeln; Grundbegriffe und Gesetzmäßigkeiten der Statik sicher beherrschen;

statische Systeme analysieren;

Wirkungs- und Schnittkräfte in ebenen und räumlichen Kraftsystemen

darstellen, berechnen und auf Konstruktionen übertragen;

Gleichgewichtslagen herbeiführen;

Schwerpunkte berechnen; Fachwerke rechnerisch analysieren;

Kenntnisse über Haftung und Reibung gewinnen;

selbstständige Bearbeitung von typischen Problemstellungen der Statik an

praxisnahen Beispielen erlernen und üben;

Beanspruchungen in stabförmigen Systemen bestimmen und

Verformungen berechnen;

Spannungen und Verformungen elastischer Körper berechnen;

Lastannahmen treffen, um die Tragfähigkeit sicherzustellen;

Knickprobleme erkennen;

Bauteile nach Berechnung dimensionieren;

geeignete Werkstoffe auswählen, Beanspruchungen und Verformungen

systematisch dokumentieren und formulieren;

Sicherheitsanalysen durchführen.

Inhalt

Ebene Kräftesysteme

Grundbegriffe der Statik starrer Körper

Zentrale ebene Kräftesysteme

Allgemeine ebene Kräftesysteme

Statik ebener Tragwerke

Statik ebener Tragwerke

Ebene Fachwerke

Schwerpunkte, Schnittgrößen ebener Balkentragwerke

Schwerpunkte

Schnittgrößen ebener Balkentragwerke

Grundlastfälle Zug und Druck

Einführung

Grundlastfall Zug

Grundlastfall Druck

Ermittlung von Querschnittskennwerten

Grundlastfälle Biegung, Schub und Torsion

Grundlastfall Biegung

Grundlastfall Schub

Grundlastfall Torsion

Voraussetzungen

Anwendungskenntnisse der linearen und Vektoralgebra, der komplexen

Zahlen und der analytischen Geometrie

Modulbausteine

TME101 Studienbrief Ebene Kräftesysteme mit Onlineübung

TME102 Studienbrief Statik ebener Tragwerke mit Onlineübung

TME103 Studienbrief Schwerpunkte, Schnittgrößen ebener

Balkentragwerke mit Onlineübung

TME201 Studienbrief Grundlastfälle Zug und Druck mit Onlineübung

TME202 Studienbrief Grundlastfälle Biegung, Schub und Torsion mit

Onlineübung

TME206 Studienbrief Formelsammlung

4 Online-Tutorien (je 1 Std.)

Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Achim Björn Ziegler

WST23 Grundlagen der Werkstoffkunde

Kompetenzzuordnung Wissensverbreiterung

Kompetenzziele

Einsatzpotenziale der technisch und wirtschaftlich relevanten metallischen Werkstoffe;

Legierungsstrukturen und deren Einfluss auf das Eigenschaftsprofil; Kennenlernen der wichtigsten Wärmebehandlungsverfahren für Eisenund Nichteisenmetalle;

Weiterentwicklung des bereits erworbenen Wissens über Stähle und Nichteisenmetalle;

Gegenüberstellung der Eigenschaftsprofile metallischer und nichtmetallischer Werkstoffe (Polymer- und Verbundwerkstoffe);

Entwickeln einer kritischen Entscheidungskompetenz hinsichtlich des Werkstoffeinsatzes;

Wissenserwerb über Werkstoffe der Elektro- bzw. Energietechnik;

Kennenlernen der wichtigsten Verfahren zur Werkstoffprüfung;

Erlernen von elementaren Kenntnissen über das elektrochemische Korrosionsverhalten der metallischen Werkstoffe;

vertieftes Wissen über Kunststoffe und deren Einsatzpotenziale in Ergänzung zur Verwendung metallischer Kunststoffe;

Kenntniserwerb über die elektrischen Eigenschaften und das optische Verhalten der Kunststoffe;

Wechselwirkungen der Polymere mit natürlicher Umgebung;

Fakten zur Aufbereitung der Kunststoffe;

Vermittlung von Kenntnissen über Verarbeitungsverfahren;

Erwerb von Grundlagenkenntnissen zur Unterscheidung synthetischer und natürlicher Kunststoffe.

Inhalt Metallische Werkstoffe

Einteilung und Eigenschaften der Werkstoffe

Metallkunde der reinen Metalle

Legierungskunde

Eisenbasismetalle

Nichteisenmetalle

Legierungen für besondere technische Verwendungen

Sinterwerkstoffe

Leiterwerkstoffe

Aufbau, Verhalten und Werkstoffeigenschaften von Polymeren im festen Zustand

Entwicklung und historische Bedeutung der Kunststoffe

Kunststoffe - Eigenschaften und Anwendungen kurzgefasst

Der makromolekulare Aufbau der Kunststoffe

Bindungskräfte und Aufbau von Polymerwerkstoffen

Additive

Chemische Beständigkeit/Abbau von Polymeren

Recycling von Kunststoffen

Entstehung der inneren Struktur

Verformungsverhalten fester Kunststoffe

Mechanische Tragfähigkeit von Kunststoffen Reibung und Verschleiß Elektrische Eigenschaften von Kunststoffen Optische Eigenschaften von Kunststoffen Akustische Eigenschaften von Kunststoffen

Voraussetzungen	Keine.
Modulbausteine	WST303-EL Einführung in das Modul "Grundlagen der Werkstoffkunde"
Moddibadsteine	AB73-373 Fachbuch Greven; Großkreutz: Werkstoffkunde und Werkstoffprüfung für technische Berufe mit
	WST105-BH Begleitheft Metallische Werkstoffe mit Onlineübung und Einsendeaufgabe
	ABTE006-EL E-Book Menges; Michaeli; Haberstroh; Schmachtenberg: Menges Werkstoffkunde Kunststoffe mit
	WST201-BH Begleitheft Aufbau, Verhalten und Werkstoffeigenschaften von Polymeren im festen Zustand mit Onlineübung
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Christoph Herden

WST24 Vertiefung Werkstofftechnik

	W3124 Vertierung Werkstontechnik
Kompetenzzuordnung	Wissensvertiefung
Kompetenzziele	Kennenlernen der Gruppen wirtschaftlich und technisch relevanter metallischer Werkstoffe;
	Einsatzpotenzial der vorgestellten Werkstoffe;
	metallische Strukturen kennenlernen;
	verständliche Abgrenzung metallischer zu nichtmetallischen Werkstoffen;
	Einblick in die Definitionen von charakterisierenden, werkstofftechnischen Kenngrößen bekommen;
	Auswirkungen der Kenngrößen auf Bauteileigenschaften erkennen;
	Werkstoffeigenschaften auf den jeweiligen Verwendungszweck kennen- und analysieren lernen;
	erwerben praxisrelevanter Einblicke in die verschiedenen Einsatzmöglichkeiten metallischer Werkstoffe;
	Unterschiede zwischen dem Metall als Reinstoff und die eigenschaftsverändernde Wirkungsweise von Legierungselementen sowie Unterschiede zwischen Stählen, Stahlguss und Gusseisen hinsichtlich Anwendung, Wirtschaftlichkeit und Recyclebarkeit kennenlernen;
	wesentliche Eigenschaften der technische relevanten Nichteisenmetalle und das daraus resultierende Einsatzpotenzial erlernen;
	Poymerwerkstoffe: Gruppeneinteilung nachvollziehen und das Nutzungspotenzial abschätzen;
	Vorstellung über die Chemie und den Aufbau der Kunststoffe entwickeln;
	Wettbewerbsfähigkeit von Kunststofferzeugnissen im Vergleich zu Erzeugnissen aus metallischen Werkstoffen erkennen;
	Prüfung der Ressourcenschonung und Klimaverträglichkeit von Kunststoffen;
	ökologische und ökonomische Fragestellungen im Zusammenhang mit Recyclingeffizienz bewerten;
	Kenntnisse in der Werkstoffprüfung der Kunststoffe.

Inhalt

Werkstoffkunde

Einteilung der Werkstoffe

Technologische, mechanische, chemische und physikalische Eigenschaften von Werkstoffen

Überblick zur Verwendung und zum Einsatzbereich von Werkstoffen Kristalline und amorphe Erscheinungsformen von Werkstoffen (Metalle,

Kunststoffe)

Chemische Bindungen (Atombindung, Metallische Bindung, Ionenbindung und Nebenvalenzbindung)

Einführung Diffusion (Stationärer Fall)

Metallische Werkstoffe

Metallkunde der reinen Metalle

Legierungen

Einfache praxisrelevante binäre Zustandsdiagramme

Eisen-Kohlenstoff-Schaubild

Grundlegende Eigenschaften der Stähle

Einführung und Grundlagen der Wärmebehandlung der Stähle

Übersicht Nichteisenmetalle

Mechanische Werkstoffprüfung

Polymerwerkstoffe

Kunststoffe – Grundsätzliche Eigenschaften und Anwendungen

Bildung von Polymerwerkstoffen durch Umwandlung oder vollsynthetische

Herstellung

Bindungen in Polymerwerkstoffen und Struktur der Polymerwerkstoffe

Technologische Einteilung

Zugversuch an viskoelastischen Kunststoffen

Recycling von Kunststoffen

Voraussetzungen	Grundlagen Werkstoffkunde
Modulbausteine	WST304-EL Einführung in das Modul "Vertiefung Werkstofftechnik"
	Fachbuch Läpple: Wärmebehandlung des Stahls – Grundlagen, Verfahren und Werkstoffe
	Fachbuch Worch; Pompe; Schatt: Werkstoffwissenschaft
	Fachbuch Greven; Großkreutz: Werkstoffkunde und Werkstoffprüfung für technische Berufe mit
	Fachbuch: Hopmann/Michaeli: Einführung in die Kunststoffverarbeitung
	WST301-BH Begleitheft Werkstoffprüfung und Onlineübungen
	WST302 Studienbrief Eigenschaften, Verhalten und Prüfen von Kunststoffen mit Onlineübung
	Labor (2 Tage)
	Onlinetutorium (1 Stunde)
Kompetenznachweis	Klausur (2 Stunden)
	Assignment (Laborbericht)
Lernaufwand	125 Stunden, 5 Leistungspunkte
Sprache	Deutsch
Studienleiter	Christoph Herden