Curvature

Curvature of a space curve

- Curvus: bent
- Circle
- Osculating circle
- Curve
- Properties of a curve
- Equivalence of analytical and intuitive definitions

Figure 7.1.: Curvature of a plane curve

Curvature of surfaces

- Surfaces in the 3-dim euclidian space
- Geodesic
- A problem of choice: we need a criterion
- Negative curvatures
- Gaussian curvature

Curvature of surfaces

- Theorema Egregium
- Some consequences
- Pseudosphere

Figure 7.3.: Examples of Gaussian curvatures of surfaces

Curvature of Riemannian manifolds

- A new notion of length
- Riemannian line element
- Conformal metric

Curvature of metric spaces

- Slimmer triangles
- Delta-slim

Figure 7.4.: Geodesic triangles in surfaces

Definition 7.2.1 (δ -Slim geodesic triangle). Let (X, d) be a metric space.

• A geodesic triangle in X is a triple $(\gamma_0, \gamma_1, \gamma_2)$ consisting of geodesics $\gamma_i \colon [0, L_i] \longrightarrow X$ in X such that

$$\gamma_0(L_0) = \gamma_1(0), \qquad \gamma_1(L_1) = \gamma_2(0), \qquad \gamma_2(L_2) = \gamma_0(0).$$

• A geodesic triangle $(\gamma_0, \gamma_1, \gamma_2)$ is δ -slim if (Figure 7.5)

$$\operatorname{im} \gamma_0 \subset B^{X,d}_{\delta} (\operatorname{im} \gamma_1 \cup \operatorname{im} \gamma_2),$$
 $\operatorname{im} \gamma_1 \subset B^{X,d}_{\delta} (\operatorname{im} \gamma_0 \cup \operatorname{im} \gamma_2),$
 $\operatorname{im} \gamma_2 \subset B^{X,d}_{\delta} (\operatorname{im} \gamma_0 \cup \operatorname{im} \gamma_1).$

Figure 7.5.: A δ -slim triangle

Here, for $\gamma : [0, L] \longrightarrow X$ we use the abbreviation im $\gamma := \gamma([0, L])$, and for $A \subset X$ we write $B_{\delta}^{X,d}(A) := \{x \in X \mid \exists_{a \in A} \ d(x, a) \leq \delta\}$.

Definition 7.2.2 (δ -Hyperbolic space). Let X be a metric space.

- Let $\delta \in \mathbb{R}_{\geq 0}$. We say that X is δ -hyperbolic if X is geodesic and if all geodesic triangles in X are δ -slim.
- The space X is hyperbolic if there exists a $\delta \in \mathbb{R}_{\geq 0}$ such that X is δ -hyperbolic.

Figure 7.6.: The Euclidean plane \mathbb{R}^2 is *not* hyperbolic

Bibliography

- Do Carmo, M. Differential Geometry of Curves and Surfaces
- Fasano, A; Marmi, S. Analytical Mechanics
- Loustau, B. Hyperbolic Geometry
- Löh, C. Geometric Group Theory

Image credits

- Loustau, B. Hyperbolic Geometry
- Löh, C. Geometric Group Theory