Project - Logistic Regression

Abstract:

The dataset consists of 480 student records and 16 features. The features are classified into three major categories: (1) Demographic features such as gender and nationality. (2) Academic background features such as educational stage, grade Level and section. (3) Behavioral features such as raised hand on class, opening resources, answering survey by parents, and school satisfaction. The students are classified into three numerical intervals based on their total grade/mark

Problem Statement:

Using the dataset we are going to which students are in which class using Logistic Regression.

Logistic Regression:

It is used to analyze relationship between categorical dependent variable and categorical or numerical independent variable. It combine the independent variable to estimates the probability that a particular event will occur.

Libraries

```
In [31]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset

In [32]:

mydata = pd.read_csv("xAPI-Edu-Data.csv")
mydata.head(10)

Out[32]:

	gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester	Relation	raisedhands	VisITedResources
0	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	15	16
1	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	20	20
2	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	10	7
3	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	30	25
4	М	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	40	50
5	F	KW	KuwalT	lowerlevel	G-04	Α	IT	F	Father	42	30
6	М	KW	KuwalT	MiddleSchool	G-07	Α	Math	F	Father	35	12
7	М	KW	KuwalT	MiddleSchool	G-07	Α	Math	F	Father	50	10
8	F	KW	KuwalT	MiddleSchool	G-07	Α	Math	F	Father	12	21
9	F	KW	KuwalT	MiddleSchool	G-07	В	IT	F	Father	70	80

To display the datatype

In [33]: mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 480 entries, 0 to 479
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype
0	gender	480 non-null	object
1	NationalITy	480 non-null	object
2	PlaceofBirth	480 non-null	object
3	StageID	480 non-null	object
4	GradeID	480 non-null	object
5	SectionID	480 non-null	object
6	Topic	480 non-null	object
7	Semester	480 non-null	object
8	Relation	480 non-null	object
9	raisedhands	480 non-null	int64
10	VisITedResources	480 non-null	int64
11	AnnouncementsView	480 non-null	int64
12	Discussion	480 non-null	int64
13	ParentAnsweringSurvey	480 non-null	object
14	ParentschoolSatisfaction	480 non-null	object
15	StudentAbsenceDays	480 non-null	object
16	Class	480 non-null	object
-1-4			

dtypes: int64(4), object(13)

memory usage: 63.9+ KB

Check the null values

In [34]:	<pre>mydata.isnull().sum()</pre>			
Out[34]:	gender	0		
	NationalITy	0		
	PlaceofBirth	0		
	StageID	0		
	GradeID	0		
	SectionID	0		
	Topic	0		
	Semester	0		
	Relation	0		
	raisedhands	0		
	VisITedResources	0		
	AnnouncementsView	0		
	Discussion	0		
	ParentAnsweringSurvey	0		
	ParentschoolSatisfaction	0		
	StudentAbsenceDays	0		
	Class	0		
	dtype: int64			

Label Encoder (convert object datatype into int)

```
In [35]: from sklearn.preprocessing import LabelEncoder
LE=LabelEncoder()
```

```
In [36]: mydata["gender"]=LE.fit_transform(mydata.gender)
    mydata["NationalITy"]=LE.fit_transform(mydata.NationalITy)
    mydata["PlaceofBirth"]=LE.fit_transform(mydata.PlaceofBirth)
    mydata["StageID"]=LE.fit_transform(mydata.StageID)
    mydata["GradeID"]=LE.fit_transform(mydata.GradeID)
    mydata["SectionID"]=LE.fit_transform(mydata.SectionID)
    mydata["Topic"]=LE.fit_transform(mydata.Topic)
    mydata["Semester"]=LE.fit_transform(mydata.Semester)
    mydata["Relation"]=LE.fit_transform(mydata.Relation)
    mydata["ParentAnsweringSurvey"]=LE.fit_transform(mydata.ParentAnsweringSurvey)
    mydata["ParentschoolSatisfaction"]=LE.fit_transform(mydata.ParentschoolSatisfaction)
    mydata["StudentAbsenceDays"]=LE.fit_transform(mydata.StudentAbsenceDays)
    mydata["Class"]=LE.fit_transform(mydata.Class)
```

In [37]: mydata.head(10)

Out [37]:

	gender	NationallTy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester	Relation	raisedhands	VisITedResources	Anno
0	1	4	4	2	1	0	7	0	0	15	16	
1	1	4	4	2	1	0	7	0	0	20	20	
2	1	4	4	2	1	0	7	0	0	10	7	
3	1	4	4	2	1	0	7	0	0	30	25	
4	1	4	4	2	1	0	7	0	0	40	50	
5	0	4	4	2	1	0	7	0	0	42	30	
6	1	4	4	1	4	0	8	0	0	35	12	
7	1	4	4	1	4	0	8	0	0	50	10	
8	0	4	4	1	4	0	8	0	0	12	21	
9	0	4	4	1	4	1	7	0	0	70	80	

Correlation

To find the relationship between the variables.

Visualize:

Visualize just the categorical features individually to see what options are included and how each option fares when it comes to count(how many times it appears) and see what can be deduce from t

Graphs:

In [39]: sns.countplot(x="Class",data=mydata,hue="gender")

Out[39]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dd8b6190>

In [40]: mydata.gender.value_counts()

Out [40]: 1 305 0 175

Name: gender, dtype: int64

In [41]: plt.figure(figsize=(10,6),facecolor='lightgrey')
sns.countplot(x='NationalITy',hue='Class',data=mydata)

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dda249a0>


```
In [42]: | mydata.NationalITy.value_counts()
Out[42]: 4
                179
                172
                 28
                 22
         2
                 17
         12
         10
                 12
                 11
         8
                  9
         11
         13
         Name: NationalITy, dtype: int64
```

In [43]: plt.figure(figsize=(10,6),facecolor='lightgrey')
sns.countplot(x='PlaceofBirth',hue='Class',data=mydata)

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dd8c8250>

In [44]: | sns.countplot(x='StageID', hue='Class', data=mydata)

Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dde62a00>

In [45]: mydata.StageID.value_counts()

Out[45]: 1 248 2 199

0 33

Name: StageID, dtype: int64

In [46]: sns.countplot(x='GradeID',hue='Class',data=mydata)

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8ddfa4f10>


```
In [47]: mydata.GradeID.value_counts()
```

Name: GradeID, dtype: int64

In [48]: sns.countplot(x='SectionID', hue='Class', data=mydata)

Out[48]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de0c5fd0>

In [49]: mydata.SectionID.value_counts()

Out [49]: 0 283 1 167

2 30

Name: SectionID, dtype: int64

In [50]: plt.figure(figsize=(10,6), facecolor='lightgrey')
sns.countplot(x='Topic', hue='Class', data=mydata)

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de088370>


```
In [51]: mydata.Topic.value_counts()
Out[51]: 7
                95
                65
                59
         0
         10
                51
                45
                30
         11
                25
                24
         5
                24
                22
         9
                21
                19
         Name: Topic, dtype: int64
```

In [52]: sns.countplot(x='Semester',hue='Class',data=mydata)

Out[52]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de1ac940>

In [53]: mydata.Semester.value_counts()

Out[53]: 0 245 1 235

Name: Semester, dtype: int64

In [55]: | sns.countplot(x='ParentAnsweringSurvey', hue='Class', data=mydata)

Out[55]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de510730>

In [56]: mydata.ParentAnsweringSurvey.value_counts()

Out[56]: 1 270 0 210

Name: ParentAnsweringSurvey, dtype: int64

In [57]: | sns.countplot(x='StudentAbsenceDays', hue='Class', data=mydata)

Out[57]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de5e6280>

In [58]: mydata.StudentAbsenceDays.value_counts()

Out [58]: 1 289 0 191

Name: StudentAbsenceDays, dtype: int64

In [63]: mydata.Discussion.plot.hist(color ='Blue')

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8dee5e490>

Out[59]: Text(0, 0.5, 'VisITedResources')

Correlation:

Look at some categorical features in relation to each other, to see what insights could be possibly read To find the relationship between the variables.

In [68]: mydata_corr= mydata.corr()
mydata_corr

Out[68]:

	gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester	Relation	raise
gender	1.000000	-0.023653	-0.064895	-0.017793	0.016869	0.054907	0.031769	0.049156	-0.195142	-C
NationallTy	-0.023653	1.000000	0.786798	-0.139212	0.124049	0.069712	0.076718	0.070503	0.003212	С
PlaceofBirth	-0.064895	0.786798	1.000000	-0.176368	0.174026	0.085178	0.143477	0.078554	0.031632	С
StageID	-0.017793	-0.139212	-0.176368	1.000000	-0.961835	0.296416	-0.047493	-0.029512	0.034205	-C
GradeID	0.016869	0.124049	0.174026	-0.961835	1.000000	-0.303949	0.061389	0.066079	-0.033602	С
SectionID	0.054907	0.069712	0.085178	0.296416	-0.303949	1.000000	0.267445	0.046763	0.005783	-C
Торіс	0.031769	0.076718	0.143477	-0.047493	0.061389	0.267445	1.000000	-0.035975	-0.139487	-C
Semester	0.049156	0.070503	0.078554	-0.029512	0.066079	0.046763	-0.035975	1.000000	0.148705	С
Relation	-0.195142	0.003212	0.031632	0.034205	-0.033602	0.005783	-0.139487	0.148705	1.000000	С
raisedhands	-0.149978	0.111533	0.077986	-0.172751	0.182621	-0.143862	-0.080418	0.178358	0.364237	1
VislTedResources	-0.210932	0.028793	0.033798	-0.068621	0.078262	-0.080909	-0.118144	0.173219	0.360240	С
AnnouncementsView	-0.052139	0.062827	0.078636	-0.163666	0.183033	-0.144955	-0.063856	0.287066	0.339505	С
Discussion	-0.124703	-0.063386	0.006262	-0.161406	0.168462	-0.102538	0.054064	0.019083	0.026720	С
ParentAnsweringSurvey	-0.022359	0.079380	0.040887	-0.114025	0.118246	-0.018449	0.004730	0.023628	0.163811	С
ParentschoolSatisfaction	-0.093478	-0.001701	-0.094594	0.014272	-0.018421	-0.070405	-0.064087	-0.025258	0.287698	С
StudentAbsenceDays	-0.209011	0.157116	0.134554	-0.112536	0.088342	0.037062	-0.036537	0.072462	0.219687	С
Class	0.123675	-0.077785	-0.098975	-0.011696	0.013483	0.017597	0.103610	-0.043287	-0.272111	-C

In [69]: sns.heatmap(mydata_corr, annot= True, cmap = 'RdBu')

Out[69]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8de43eb20>

9/3/21, 9:57 AM

In [70]: sns.barplot(x="Class",y='VisITedResources',data=mydata);

In [71]: sns.jointplot(x="Class",y='Discussion',data=mydata)

Out[71]: <seaborn.axisgrid.JointGrid at 0x7fd8dfa3a400>

Separate independent and dependent variables:

dependent variables

Independent variable:

Out [14]:

	gender	NationalITy	PlaceofBirth	StageID	GradeID	SectionID	Topic	Semester	Relation	raisedhands	VislTedResources An
0	1	4	4	2	1	0	7	0	0	15	16
1	1	4	4	2	1	0	7	0	0	20	20
2	1	4	4	2	1	0	7	0	0	10	7
3	1	4	4	2	1	0	7	0	0	30	25
4	1	4	4	2	1	0	7	0	0	40	50
475	0	3	3	1	5	0	2	1	0	5	4
476	0	3	3	1	5	0	5	0	0	50	77
477	0	3	3	1	5	0	5	1	0	55	74
478	0	3	3	1	5	0	6	0	0	30	17
479	0	3	3	1	5	0	6	1	0	35	14

480 rows × 16 columns

Machine Learning

Train and test split

In [15]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x_ind,y_dep,train_size = 0.8, random_state = 86)

Build classification model and present it's classification report

Logistic regression model

```
In [29]: # The class is cateroize into 3 we can use multinomial in logistic regression.
         from sklearn.linear model import LogisticRegression
         model1=LogisticRegression(multi class ='multinomial', solver ='lbfgs')
         model1
Out[29]: LogisticRegression(multi class='multinomial')
         Model fitting:
In [17]: model1.fit(x train, y train)
         /opt/anaconda3/lib/python3.8/site-packages/sklearn/linear_model/_logistic.py:762: ConvergenceWa
         rning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable
         /modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
         (https://scikit-learn.org/stable/modules/linear model.html#logistic-regression)
           n iter i = check optimize result(
Out[17]: LogisticRegression(multi class='multinomial')
```

Predict the x test

Performance measures:

Confusion matrix:

It is used to calculate the following performance measures like accuracy,f1 score,precision,recall

```
In [23]: x_train=norm.fit_transform(x_train)
x_test=norm.fit_transform(x_test)
```

```
In [24]: accuracy_score(y_test,y_pred)
```

Out[24]: 0.760416666666666

Accuracy score:

My model accuracy for this data set is 76%.

Classification report:

```
In [25]: from sklearn.metrics import classification_report
```

<pre>In [27]: print(class_report</pre>
--

	precision	recall	f1-score	support
0	0.83	0.65	0.73	31
1	0.88	0.82	0.85	28
2	0.65	0.81	0.72	37
accuracy			0.76	96
macro avg	0.79	0.76	0.77	96
weighted avg	0.78	0.76	0.76	96

Conclusion:

The overall accuracy for this dataset is **76**%. As our target variable is categorized into 3 classes. We used to multiclass logistic regression. 76 % of system provides users with a synchronous access to educational resources from any device with Internet connection.

In []:		
- []		
In []:		