Scientific Computing for Biologists

Bivariate Regression and ANOVA in Vector Terms

Paul M. Magwene

Overview of Lecture

- Bivariate regression as projection
- ANOVA as projection
- Introduction to Matrices
 - Matrices as collections of vectors
 - Matrix operations
 - Matrix transpose
 - Matrix addition, subtraction
 - Matrix multiplication
 - Special matrices

Bivariate Regression: Variable Space Representation

The standard bivariate regression equation relating one observed variable X (the predictor) to another observed variable of interest, Y (the outcome) is usually written as:

$$\hat{Y} = a + bX$$
.

where \hat{Y} is the predicted value of Y and a (intercept) and b (slope) are chosen to minimize $\sum (Y_i - \hat{Y}_i)^2$.

Geometry of Bivariate Regression

Let's express this in vector terms, and work with mean-centered vectors so the equation becomes:

$$\overrightarrow{\hat{y}} = b\overrightarrow{x}$$

Geometric interpretation of regression as projection:

$$\overrightarrow{\hat{y}} = b\vec{x} \tag{1}$$

$$b = \frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}} \tag{2}$$

Bivariate regression: Alternate formulas for slope I

Regression equation for mean-centered vectors: $\vec{\hat{y}} = b\vec{x}$ There are multiple, equivalent ways to write the solution for b:

$$b = \frac{\vec{x} \cdot \vec{y}}{(\vec{x} \cdot \vec{x})}$$

$$= \frac{\vec{x} \cdot \vec{y}}{|\vec{x}|^2}$$

$$= \frac{|x||y|\cos\theta}{|x|^2}$$

$$= \cos\theta \frac{|y|}{|x|}$$

$$= r_{XY} \frac{|y|}{|x|}$$

Geometry of Goodness of Fit

Geometric interpretation of regression goodness-of-fit:

$$|\overrightarrow{\hat{y}}|^2 + |\overrightarrow{e}|^2 = |\overrightarrow{y}|^2$$

The better the goodness-of-fit, the smaller the angle, $\cos \theta$, and the shorter residual vector, \vec{e} .

Geometry of Goodness of Fit

Bivariate Regression, Goodness of Fit

How well does our prediction agree with our outcome?

■ Measure the angle between $\vec{\hat{y}}$ and \vec{y} :

$$R = \cos\theta_{\vec{y}, \hat{\vec{y}}} = \frac{|\vec{\hat{y}}|}{|\vec{y}|}$$

- In the single-predictor case $R = r_{XY}$, but this is not generally true when we have multiple predictors.
- Note that $|\vec{y}|$ can be expressed as follows:

$$|\vec{\hat{y}}|^2 + |\vec{e}|^2 = |\vec{y}|^2$$

 $SS_{regression} + SS_{residual} = SS_{total}$

With simple substitution we can show that:

$$SS_{\text{regression}} = R^2 SS_{\text{total}}$$

 $SS_{\text{residual}} = (1 - R^2) SS_{\text{total}}$

Two-group ANOVA as Regression

We can also use a geometric perspective to test whether the mean of a variable differs between two groups of subjects.

Setup a 'dummy variable' as the predictor X_g . We assign all subjects in group 1 the value 1 and all subjects in group 2 the value -1 on the dummy variable. We then regress the variable of interest, Y, on X_g .

$$y = X_g b + e$$

	Raw		Centered	
Group	Y_i	X_i	y_i	x_i
1	2	-1	-3	$-\frac{4}{3}$
	3	-1	-1	- 43 43 23 23 23 23 23
2	5	1	0	$\frac{2}{3}$
	6	1	1	$\frac{2}{3}$
	6	1	1	$\frac{2}{3}$
	7	1	2	$\frac{2}{3}$
Mean	5	$\frac{1}{3}$	0	0

Two-group ANOVA as Regression, cont

- When the means are different in the two groups, X_g will be a good predictor of the variable of interest, hence \vec{y} and $\vec{x_g}$ will have a small angle between them.
- When the means in the two groups are similar, the dummy variable will not be a good predictor. Hence the angle between \vec{y} and $\vec{x_g}$ will be large.

Introduction to Matrices

- One way to think about a matrix is as a collection of vectors. This is, in essence, what a multivariate data set is.
- A matrix which has n rows and p columns will be referred to as a n x p matrix. n x p is the shape of the matrix.

$$A_{(n \times p)} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1p} \\
a_{21} & a_{22} & \cdots & a_{2p} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{np}
\end{bmatrix}$$

Scalar Multiplication of a Matrix

Let k be a scalar and let A be the matrix

$$A = \left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{array} \right]$$

then

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1p} \\ ka_{21} & ka_{22} & \cdots & ka_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ ka_{n1} & ka_{n2} & \cdots & ka_{np} \end{bmatrix}$$

Addition and Subtraction of Matrices

■ Let A and B be matrices that have the same shape, $n \times p$:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

then

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1p} + b_{1p} \\ a_{21} + b_{11} & a_{22} + b_{22} & \cdots & a_{2p} + b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} + b_{n1} & a_{n2} + b_{n2} & \cdots & a_{np} + b_{np} \end{bmatrix}$$

$$A - B = A + (-B)$$

Multiplying a Matrix by a Vector

■ Let A be a $n \times p$ matrix, and let x be a $p \times 1$ vector

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}$$

then

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p \end{bmatrix}$$

Note that Ax is a vector with shape $n \times 1$. The i-the element of Ax is equivalent to the dot product of the i-th row vector of A with x.

General Matrix Multiplication

■ Let A be a $n \times p$ matrix and B be a $p \times q$ matrix:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1q} \\ b_{21} & b_{22} & \cdots & b_{2q} \\ \vdots & \vdots & \vdots & \vdots \\ b_{p1} & b_{n2} & \cdots & b_{nq} \end{bmatrix}$$

■ The product AB is an $n \times q$ matrix whose (i, j)-entry is the dot product of the i-th row vector of A and the j-th column vector of B.

Matrix Arithmetic Rules

$$A + B = B + A$$

$$(A + B) + C = A + (B + C)$$

$$k(A+B) = kA + kB$$

$$(kA)B = k(AB)$$

$$(AB)C = A(BC)$$
 (associative)

$$A(B+C) = AB + AC$$
 (distributive)

$$(A + B)C = AC + BC$$
 (distributive)

Alert

Matrix multiplication is **not** commutative, i.e. $AB \neq BA$ in general.

Be careful when you expand expressions like (A + B)(A + B).

Matrix Transpose

- We denote the transpose of a matrix as A^T
- If A is an $n \times p$ matrix, then A^T is a $p \times n$ matrix where $A^T_{ii} = A_{ij}$
- Transpose rules:
 - $(A^T)^T = A$
 - $(A+B)^T = A^T + B^T$
 - $(AB)^T = B^T A^T$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1p} & a_{12} & \cdots & a_{np} \end{bmatrix}$$

Special Matrices

Zero matrix

$$O = \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right]$$

Square matrix A matrix whose shape is is $n \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Ones matrix

$$1 = \left[\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right]$$

Diagonal matrix A square matrix where the off-diagonal elements are zero.

$$A = \left[\begin{array}{cccc} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{array} \right]$$

Identity Matrix

An identity matrix is a diagonal matrix, I, where:

$$I = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

- IA = AI = A if I and A are $n \times p$ matrices
- A = Ix is a diagonal matrix where $a_{ii} = x_i$ if I is an $n \times n$ matrix and x is a $n \times 1$ vector.

More Special Matrices

Symmetric matrix – square matrix, A, where $A^T=A$ Skew-symmetric matrix – square matrix, A, where $A^T=-A$ Orthogonal matrix – square matrix for which $A^TA=AA^T=I$.