MUC863 Psicoacústica

Análisis de la Escena Auditiva

Prof. Rodrigo F. Cádiz

¹Centro de Investigación en Tecnologías de Audio Pontificia Universidad Católica de Chile

Apuntes

¿Qué es una escena?

- El término escena está tomado de la visión
- Hay dos casos comunes
- Un espectador estacionario
- Un espectador en movimiento
- La escena es la disposición estática visual

Análisis visual vs auditivo

- Comparten principios similares
- Gestalt
- Por ejemplo, el fenómeno de size constancy (el tamaño de los objetos no cambia si el objeto percibido está lejos o cerca y ni importando que el área que el objeto ocupa en la retina cambia) es parecido al de timbre constancy (la voz de una amigo se percibe igual no importando si se encuentra en una sala silenciosa o en una fiesta)
- Reconocimiento de "objetos" visuales, equivalente a reconocer "streams" auditivos

Figura: Análisis de la escena visual

Figura: Análisis de la escena visual

Figura: Análisis de la escena visual

Figura: Principios de la Gestalt

Análisis de la escena visual: principio de alocación exclusiva

Figura: Alocación exclusiva: un elemento no puede ser utilizado en más de una descripción al mismo tiempo

Análisis de la escena visual: pertenencia

Figura: Pertenencia: línea irregular no se percibe como perteneciente al círculo

Análisis de la escena visual: closure o continuidad percibida

llusión visual

Figure from Bregman (1990) com1070: October 23, 2006

Figura: Continuidad percibida: objetos no se perciben como continuos

Análisis de la escena visual: closure

Ilusión visual

Figure from Bregman (1990)

Figura: Continuidad percibida: objetos ahora se perciben como continuos.

Figura: Continuidad percibida

Demo Bregman 28

Figura: Continuidad percibida

Demo Bregman 29

Figura: Continuidad percibida

Demo Bregman 30

Figura: Continuidad percibida

Escenas sonoras

- Comúnmente se asume que utilizamos estímulos sonoros cercanos para estimar la ubicación o identidad de una objeto vibrante dentro de una escena auditiva
- Este es el principio de identidad de la fuente

Figura: Problema del análisis de la escena auditiva

Analogía: lago que tiene dos surcos largos y angostos que salen de él. En cada surco hay una hoja de papel flotando y a medida que sale agua del lago hacia los surcos, estas hojas se moverán.

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - 4 ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - 4 ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - 4 ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - 4 ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - 4 ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- Sólo analizando el movimiento de ambas hojas, sin mirar nada más que las hojas, responder preguntas como:
 - ¿Cuántos botes o barcos hay en el lago y donde están?
 - ¿Qué barco esta más cerca?
 - ¿Cual es más potente?
 - ¿Hay viento?
 - ¿Ha caido algún objeto grande sobre el lago?
 - ¿Hay algún nadador y qué tan rapido nada?
- ¿Imposible?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - 3 ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - 3 ¿Hay algún máquina haciendo ruido de fondo?

- El sistema auditivo hace este tipo de análisis todo el tiempo!!!!!
- Y rápidisimo!!!!
- Se pueden responder preguntas como:
 - ¿Cuánta gente está hablando?
 - ¿Cual suena más fuerte o está más cerca?
 - 3 ¿Hay algún máquina haciendo ruido de fondo?

Análisis de la escena auditiva

Figura: Análisis de la escena auditiva: escenario ideal

Análisis de la escena auditiva

Figura: Análisis de la escena auditiva: escenario real

Análisis de la escena auditiva: cocktail-party problem

Figura: Análisis de la escena auditiva: cocktail-party problem

Análisis de la escena auditiva: cocktail-party problem

Audio de ejemplo (4 voces)

Análisis de la escena auditiva: framework

Figura: Análisis de la escena auditiva

Problemas diarios de la comunicación

Figura: Análisis de la escena auditiva

Figura: Análisis de la escena auditiva

Figura: Análisis de la escena auditiva

Pero también en el dominio de la frecuencia!

Figura: Análisis de la escena auditiva

Figura: Análisis de la escena auditiva

Figura: Análisis de la escena auditiva

Ejemplo de pistas utilizadas por el sistema auditivo en la voz

Figura: Análisis de la escena auditiva

Figura: Análisis de la escena auditiva

- El objetivo de la percepción auditiva es ...
- La identificación de una o más fuentes a partir de una mezcla sonora cercana
- Si un patrón de sonido en desarrollo se percibe como estructuralmente intacto ...
- o como una secuencia (stream), entonces ...
- debe provenir de UNA SOLA FUENTE

- El objetivo de la percepción auditiva es ...
- La identificación de una o más fuentes a partir de una mezcla sonora cercana
- Si un patrón de sonido en desarrollo se percibe como estructuralmente intacto ...
- como una secuencia (stream), entonces ...
- debe provenir de UNA SOLA FUENTE

- El objetivo de la percepción auditiva es ...
- La identificación de una o más fuentes a partir de una mezcla sonora cercana
- Si un patrón de sonido en desarrollo se percibe como estructuralmente intacto ...
- como una secuencia (stream), entonces ...
- debe provenir de UNA SOLA FUENTE

- El objetivo de la percepción auditiva es ...
- La identificación de una o más fuentes a partir de una mezcla sonora cercana
- Si un patrón de sonido en desarrollo se percibe como estructuralmente intacto ...
- o como una secuencia (stream), entonces ...
- debe provenir de UNA SOLA FUENTE

- El objetivo de la percepción auditiva es ...
- La identificación de una o más fuentes a partir de una mezcla sonora cercana
- Si un patrón de sonido en desarrollo se percibe como estructuralmente intacto ...
- como una secuencia (stream), entonces ...
- debe provenir de UNA SOLA FUENTE

- ¿Qué pasa si los patrones no son percibidos como intactos?
- Por ejemplo, si un patron se percibe como generador de N unidades subjetivas o streams
- entonces,
- debe provenir de N FUENTES SEPARADAS

- ¿Qué pasa si los patrones no son percibidos como intactos?
- Por ejemplo, si un patron se percibe como generador de N unidades subjetivas o streams
- entonces,
- debe provenir de N FUENTES SEPARADAS

Figura: Ejemplo de patrón sonoro

PMSIICCUORAS COUFSATVIOCRAIET SO

Figura: Mezcla de patrones

Figura: Mezcla de patrones

Segregación melódica

Figura: Segregación melódica

Demo Bregman 5

Segregación melódica

Figura: Segregación melódica

Demo Bregman 6

La gran pregunta

- ¿Qué hace que un patrón se perciba como estructuralmente intacto?
- O bien ¿qué determina un stream o secuencia?

La respuesta de Bregman

- Involucra una teoría de dos etapas
- Basada en principio de la Neo Gestalt

Neo Gestalt

- Involucra dos etapas
- Procesos primitivos: innatos, automáticos, sin esfuerzo que determinan grupos perceptuales coherentes a una gran velocidad
- Procesos basados en esquemas: aprendidos, voluntarios, requieren esfuerzo, que determinan la atención a ciertos agrupamientos a tasas lentas

Percepción de la escena auditiva

- ETAPA I:
- Opera en base a principios de agrupamiento de la Gestalt
- Proximidad en frecuencia y timbre, similaridad, continuidad, alocación exclusiva, etc.
- Estos son aplicables al dominio auditivo general (voz, música, ambientes naturales, etc).

Proximidad versus continuidad

- Tougas y Bregman (1985) hicieron una seria de estudios sobre proximidad vs continuidad
- El objetivo es entender que principio domina y hacer una explicación en base a trayectorias
- Trayectorias rebotantes versus cruzadas

Figura: Segregación de streams: Bregman Demo 1

Figura: Camuflaje auditivo: Bregman Demo 2

Figura: Segmentación y ritmo: Bregman Demo 3

Figura: Streaming: Bregman Demo 7

Figura: Efecto de rango de altura: Bregman Demo 8

Figura: Efecto de timbre: Bregman Demo 9

Figura: Efecto de posición espectral: Bregman Demo 10

Figura: Efecto de conectividad: Bregman Demo 12

Stream segregation of high and low bands of noise.

Figura: Segregación de bandas de ruido: Bregman Demo 14

Figura: Agrupamiento basado en frecuencia fundamental común: Bregman Demo 18

Figura: Fusión basada en modulación de frecuencia común: Bregman Demo 19

Figura: Fusión basada en modulación de frecuencia común: Bregman Demo 20

Figura: Onset afecta la segregación: Bregman Demo 21

Figura: Rhytmic masking release: Bregman Demo 22

Figura: Modulación micro en percepción de la voz: Bregman Demo 24

Estudio de Diana Deutsch

http://philomel.com/asa156th/deutsch.html

Figura: Relación entre voz hablada (speech) y voz cantada.

Bregman Demo 23

Estudio de Diana Deutsch http:

//philomel.com/musical_illusions/octave.php

Figura: Ilusion de octava (audifonos).

