Cl059: Introdução à Teoria da Computação Expressões Regulares

Profa. Carmem Hara

Departamento de Informática/UFPR

3 de agosto de 2023

Roteiro

- Classe de Linguagens Regulares
- Expressões Regulares

Seção 3.1 do livro Introdução à Teoria de Autômatos, Linguagens e Computação

Linguagens Regulares

Uma linguagem é **regular** se pode ser definida por uma **ex- pressão regular**.

Expressões Regulares (ER)

As expressões regulares sobre um alfabeto Σ e as linguagens que elas representam são definidas recursivamente da seguinte forma:

- ∮ é uma expressão regular que representa a linguagem vazia;
- $@ \ \epsilon \ {\rm \acute{e}} \ {\rm uma} \ {\rm express\~ao} \ {\rm regular} \ {\rm que} \ {\rm representa} \ {\rm a} \ {\rm linguagem} \ \{\epsilon\};$
- **3** para cada símbolo $a \in \Sigma$, a é uma expressão regular que representa a linguagem $\{a\}$;
- se r e s são expressões regulares que representam as linguagens R e S, respectivamente, então:
 - ullet (r+s) é uma expressão regular que representa a linguagem $R \cup S$
 - (rs) é uma expressão regular que representa a linguagem R.S
 - r* é uma expressão regular que representa a linguagem R*

Exemplo

Obter uma expressão regular que defina a linguagem abaixo considerando o alfabeto binário $\Sigma=\{0,1\}$:

$$\{10 \ w \ 01 \mid w \in \{a, b\}^*\}$$

	Linguagem	ER	Justificativa
1	{0}	0	base
2	{1}	1	base
3	$\{0\}.\{1\} = \{01\}$	01	1,2,concatenação
4	$\{0\}\cup\{1\}=\{0,1\}$	0+1	1,2,união
5	$\{1\}.\{0\} = \{10\}$	10	1,2,concatenação
6	{0,1}*	$(0+1)^*$	4,fecho Kleene
7	{10}.{0,1}*	01(0+1)*	5,6,concatenação
8	{10}.{0,1}*.{01}	01(0+1)*10	7,3,concatenação

precedencia: * . + notacao: $r+=rr^*$

Exemplos

Obter expressões regulares que definam cada uma das linguagens abaixo considerando o alfabeto binário $\Sigma=\{0,1\}$:

- $L_1 = \{ w \in \{0,1\}^* \mid w \text{ contém } 00 \}$
- $L_2 = \{ w \in \{0,1\}^* \mid w \text{ cont\'em } 00 \text{ ou } 11 \}$
- $L_3 = \{w \in \{0,1\}^* \mid w \text{ cont\'em exatamente dois 0's}\}$
- $L_4 = \{ w \in \{0,1\}^* \mid w \text{ contém dois ou mais 0's} \}$
- $L_5 = \{w \in \{0,1\}^* \mid w \text{ cont\'em uma quantidade par de 0's}\}$
- $L_6 = \{ w \in \{0,1\}^* \mid w \text{ não contém o substring } 00 \}$