MA 105 Part II (IIT Bombay) Tutorial Sheet 1 : Multiple integrals

- 1. (a) Let $R := [0,1] \times [0,1]$ and f(x,y) := [x] + [y] + 1 for all $(x,y) \in R$, where [u] is the greatest integer less than equal to u, for any $u \in \mathbb{R}$. Using the definition of integration over rectangles, show that f is integrable over R. Also, find its value.
 - (b) Let $R := [0,1] \times [0,1]$ and $f(x,y) := (x+y)^2$ for all $(x,y) \in R$. Show that f is integrable over R and find its value using Riemann sum.
 - (c) Let $R := [a, b] \times [c, d]$ be a rectangle in \mathbb{R}^2 and let $f : R \to \mathbb{R}$ be integrable. Show that |f| is also integrable over R.
 - (d) Check the integrability of the function f over $[0,1] \times [0,1]$;

$$f(x,y) := \left\{ \begin{array}{ll} 1 & \text{if both x and} \quad y \quad \text{are rational numbers,} \\ -1 & \text{otherwise.} \end{array} \right.$$

What do you conclude about the integrability of |f|?

- 2. (a) Sketch the solid bounded by the surface $z = \sin y$, the planes x = -1, x = 0, y = 0 and $y = \frac{\pi}{2}$ and the xy plane and compute its volume.
 - (b) The integral $\int \int_R \sqrt{9-y^2} \, dx dy$, where $R=[0,3]\times [0,3]$, represents the volume of a solid. Sketch the solid and find its volume.
- 3. Consider the function $f:[0,1]\times[0,1]\to\mathbb{R}$ defined as

$$f(x,y) = \begin{cases} 1 - 1/q & \text{if } x = p/q & \text{where} \quad p,q \in \mathbb{N} \quad \text{are relatively prime and } y \quad \text{is rational,} \\ 1 & \text{otherwise.} \end{cases}$$

Show that f is integrable but the iterated integrals do not always exist.

4. Consider the function $f:[0,1]\times[0,1]\to\mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{1}{x^2} & \text{if } 0 < y < x < 1, \\ -\frac{1}{y^2} & \text{if } 0 < x < y < 1, \\ 0 & \text{otherwise} \end{cases}$$

Is f integrable over the rectangle? Do both iterated integrals exist? If they exist, do they have the same value?

- 5. For the following, write an equivalent iterated integral with the order of integration reversed and verify if their values are equal:
 - (a) $\int_0^1 \left(\int_0^1 \log[(x+1)(y+1)] dx \right) dy$.
 - (b) $\int_0^1 \left(\int_0^1 (xy)^2 \cos(x^3) \, dx \right) dy$.
- 6. (a) Let $R = [a, b] \times [c, d]$ and $f(x, y) = \phi(x)\psi(y)$ for all $(x, y) \in R$, where ϕ is continuous on [a, b] and ψ is continuous on [c, d]. Show that

$$\int \int_{R} f(x,y) \, dx dy = \Big(\int_{a}^{b} \phi(x) \, dx \Big) \Big(\int_{c}^{d} \psi(y) \, dy \Big).$$

- (b) Compute $\int \int_{[1,2]\times[1,2]} x^r y^s dxdy$, for any given $r \geq 0$ and $s \geq 0$.
- (c) Compute $\int \int_{[0,1]\times[0,1]} xye^{x+y} dxdy$.
- 7. Evaluate the following integrals:

(a)
$$\int \int_{R} (x+2y)^2 dxdy$$
, where $R = [-1, 2] \times [0, 2]$.

(b)
$$\int \int_{R} \left[xy + \frac{x}{y+1} \right] dxdy$$
, where $R = [1, 4] \times [1, 2]$.

8. Consider the function f over $[-1,1] \times [-1,1]$:

$$f(x,y) = \begin{cases} x+y & \text{if } x^2 + y^2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Determine the set of points at which f is discontinuous. Is f integrable over $[-1,1] \times [-1,1]$?

MA 105 Part II (IIT Bombay) Tutorial Sheet 2 : Multiple integrals

1. For the following, write an equivalent iterated integral with the order of integration reversed:

(a)
$$\int_0^1 \left[\int_1^{e^x} dy \right] dx$$

(b)
$$\int_0^1 \left[\int_{-\sqrt{y}}^{\sqrt{y}} f(x, y) dx \right] dy$$

2. Evaluate the following integrals

(a)
$$\int_0^{\pi} \left[\int_x^{\pi} \frac{\sin y}{y} dy \right] dx$$

(b)
$$\int_0^1 \left[\int_y^1 x^2 e^{xy} dx \right] dy$$

(c)
$$\int_0^2 (\tan^{-1} \pi x - \tan^{-1} x) dx$$
.

3. Find $\iint_D f(x,y)d(x,y)$, where $f(x,y)=e^{x^2}$ and D is the region bounded by the lines $y=0,\ x=1$ and y=2x.

4. (a) Compute the volume of the solid enclosed by the ellipsoid:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

where a, b, c are given real numbers.

(b) Find the volume of the region under the graph of $f(x,y) = e^{x+y}$ over the region

$$D := \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| \le 1\}.$$

5. Find

$$\lim_{r \to \infty} \iint_{D(r)} e^{-(x^2 + y^2)} d(x, y),$$

where D(r) equals:

(a)
$$\{(x,y): x^2 + y^2 \le r^2\}.$$

(b)
$$\{(x,y): x^2 + y^2 \le r^2, x \ge 0, y \ge 0\}.$$

(c)
$$\{(x,y): |x| \le r, |y| \le r\}.$$

(d)
$$\{(x,y): 0 \le x \le r, \ 0 \le y \le r\}.$$

6. Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$ using double integral over a region in the plane. (Hint: Consider the part in the first octant.)

7. Find the volume of the solid that lies under the paraboloid $z=x^2+y^2$ above the region $x^2+y^2=2x$ in x-y plane.

1

8. Express the solid $D = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le 1\}$ as

$$\{(x, y, z) \mid a \le x \le b, \quad \phi_1(x) \le y \le \phi_2(x), \quad \xi_1(x, y) \le z \le \xi_2(x, y)\}.$$

9. Evaluate

$$I = \int_0^{\sqrt{2}} \left(\int_0^{\sqrt{2-x^2}} \left(\int_{x^2+y^2}^2 x dz \right) dy \right) dx.$$

Sketch the region of integration and evaluate the integral by expressing the order of integration as dxdydz.

- 10. Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^2+y^2}$ and below the sphere $x^2+y^2+z^2=z$.
- 11. Describe the solid whose volume is given by the integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 \rho^2 \sin \phi d\rho d\phi d\theta,$$

and evaluate the integral.

MA 105 Part II Tutorial Sheet 3: Change of variables, Line integrals, October 16, 2023

I Multiple integrals and change of variables

- 2. Using a suitable change of variables, evaluate the integral $\int \int_D y dx dy$, where D is the region bounded by the x-axis and the parabolas $y^2 = 4 4x$ and $y^2 = 4 + 4x$, $y \ge 0$.
- 4. Use cylindrical coordinates to evaluate $\int \int \int_W (x^2 + y^2) dz dy dx$, where

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid -2 \le x \le 2, \quad -\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}, \quad \sqrt{x^2 + y^2} \le z \le 2\}.$$

- 6. Find $\iiint_F \frac{1}{(x^2+y^2+z^2)^{n/2}} dV$, where F is the region bounded by the spheres with center the origin and radii r and R, 0 < r < R.
- 7. Evaluate the integral

$$\iint_D (x-y)^2 \sin^2(x+y) d(x,y),$$

where D is the parallelogram with vertices at $(\pi,0)$, $(2\pi,\pi)$, $(\pi,2\pi)$ and $(0,\pi)$.

- 8. Let D be the region in the first quadrant of the xy-plane bounded by the hyperbolas $xy=1,\ xy=9$ and the lines $y=x,\ y=4x$. Find $\iint_D dxdy$ by transforming it to $\iint_E dudv$, where $x=\frac{u}{v},\ y=uv,\ v>0$.
- 9. Using suitable change of variables, evaluate the following:

i.

$$I = \iiint_D (z^2x^2 + z^2y^2) dx dy dz$$

where D is the cylindrical region $x^2 + y^2 \le 1$ bounded by $-1 \le z \le 1$.

ii.

$$I = \iiint_{D} \exp(x^{2} + y^{2} + z^{2})^{3/2} dx dy dz$$

over the region enclosed by the unit sphere in \mathbb{R}^3 .

II Vector analysis and line integrals

- 1. Let f, g be differentiable functions on \mathbb{R}^2 . Show that
 - A. $\nabla(fg) = f\nabla g + g\nabla f$;
 - B. $\nabla f^n = n f^{n-1} \nabla f$;
 - C. $\nabla(f/g) = (g\nabla f f\nabla g)/g^2$ whenever $g \neq 0$.
- 2. Let \mathbf{a}, \mathbf{b} be two fixed vectors, $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r^2 = x^2 + y^2 + z^2$. Prove the following:

1

- (i) $\nabla(r^n) = nr^{n-2}\mathbf{r}$ for any integer n.
- (ii) $\mathbf{a} \cdot \nabla \left(\frac{1}{r} \right) = -\left(\frac{\mathbf{a} \cdot \mathbf{r}}{r^3} \right)$.

(iii)
$$\mathbf{b} \cdot \nabla \left(\mathbf{a} \cdot \nabla \left(\frac{1}{r} \right) \right) = \frac{3(\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r})}{r^5} - \frac{\mathbf{a} \cdot \mathbf{b}}{r^3}.$$

3. Calculate the line integral of the vector field

$$\mathbf{F}(x,y) = (x^2 - 2xy)\mathbf{i} + (y^2 - 2xy)\mathbf{j}$$

from (-1,1) to (1,1) along $y = x^2$.

4. Calculate the line integral of

$$\mathbf{F}(x,y) = (x^2 + y^2)\mathbf{i} + (x - y)\mathbf{j}$$

once around the ellipse $b^2x^2 + a^2y^2 = a^2b^2$ in the counter clockwise direction.

Remark Often line integral of a vector field \mathbf{F} along a 'geometric curve' C is represented by $\int_C \mathbf{F}.\mathbf{ds}$. A geometric curve C is a set of points in the plane or in the space that can be traversed by a parametrized path in the given direction.

To evaluate $\int_C \mathbf{F}.\mathbf{ds}$, choose a convenient parametrization \mathbf{c} of C traversing C in the given direction and then

$$\int_C \mathbf{F}.\mathbf{ds} := \int_{\mathbf{c}} \mathbf{F}.\mathbf{ds}.$$

' \oint_C ' means the line integral over a closed curve C.

5. Calculate the value of the line integral

$$\oint_C \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$

where C is the curve $x^2 + y^2 = a^2$ traversed once in the counter clockwise direction.

6. Calculate

$$\oint_C ydx + zdy + xdz$$

where C is the intersection of two surfaces z = xy and $x^2 + y^2 = 1$ traversed once in a direction that appears counter clockwise when viewed from high above the xy-plane.

- 7. Let the curve C be given by $x^2 + y^2 = 1$, z = 0. Let \mathbf{c}_1 be a parametrization defined by $\mathbf{c}_1(t) = (\cos t, \sin t)$ for $t \in [0, 2\pi]$. Find the line integral of $\mathbf{F}(x, y, z) = -y\mathbf{i} + x\mathbf{j}$ along this curve. Also find the line integral along the curve parametrized by $\mathbf{c}_2(t) = (\cos t, -\sin t)$, for $t \in [0, \pi]$.
- 8. Show that a constant force field does zero work on a particle that moves once uniformly around the circle: $x^2+y^2=1$. Is this also true for a force field $\mathbf{F}(x,y,z)=\alpha(x\mathbf{i}+y\mathbf{j}+z\mathbf{k})$, for some constant α .
- 9. Let $C: x^2 + y^2 = 1$. Find

$$\oint_C \operatorname{grad} (x^2 - y^2) \cdot \mathbf{ds}.$$

10. Evaluate

$$\int_C \operatorname{grad}(x^2 - y^2) \cdot \mathbf{ds},$$

where C is $y = x^3$, joining (0,0) and (2,8).

11. Compute the line integral

$$\oint_C \frac{dx + dy}{|x| + |y|}$$

where C is the square with vertices (1,0),(0,1),(-1,0) and (0,-1) traversed once in the counter clockwise direction.

12. A force $F = xy\mathbf{i} + x^6y^2\mathbf{j}$ moves a particle from (0,0) onto the line x = 1 along $y = ax^b$ where a, b > 0. If the work done is independent of b find the value of a.