Mixed / Multilevel models

Example dataset: trees

▶ Data on 1000 trees from 10 plots.

head(trees)

```
plot dbh height sex dead dbh.c
1 2 38.85 37.8 female 0 13.85
2 4 26.05 38.1 female 0 1.05
3 5 42.66 50.2 female 0 17.66
4 2 20.72 30.1 female 0 -4.28
5 4 21.83 34.0 female 0 -3.17
6 4 8.23 21.9 male 0 -16.77
```

Example dataset: trees

- ▶ Data on 1000 trees from 10 plots.
- ► Trees per plot: 4 392.

head(trees)

```
plot dbh height sex dead dbh.c
1 2 38.85 37.8 female 0 13.85
2 4 26.05 38.1 female 0 1.05
3 5 42.66 50.2 female 0 17.66
4 2 20.72 30.1 female 0 -4.28
5 4 21.83 34.0 female 0 -3.17
6 4 8.23 21.9 male 0 -16.77
```

Q: What's the relationship between tree

diameter and height?

A simple linear model

```
lm.simple <- lm(height ~ dbh, data = trees)</pre>
Call:
lm(formula = height ~ dbh, data = trees)
Residuals:
    Min 1Q Median 3Q
                                      Max
-13.7384 -4.7652 0.4759 4.2931 13.5282
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.18767   0.41476   31.80   <2e-16 ***
dbh 0.60967 0.01351 45.14 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.549 on 998 degrees of freedom
```

Multiple R-squared: 0.6712, Adjusted R-squared: 0.6709 F-statistic: 2038 on 1 and 998 DF, p-value: < 2.2e-16

Remember our model structure

$$y_i \sim N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta x_i$

In this case:

Height_i ~
$$N(\mu_i, \sigma^2)$$

 $\mu_i = \alpha + \beta DBH_i$

 α : expected height when DBH = 0

 β : how much height increases with every unit increase of DBH

There is only one intercept

What if allometry varies among plots?

Fitting a varying intercepts model with 1m

```
lm(formula = height ~ factor(plot) + dbh, data = trees)
             coef.est coef.se
(Intercept) 7.79
                     0.24
factor(plot)2 7.86 0.24
factor(plot)3 7.95 0.32
factor(plot)4 11.48 0.33
factor(plot)5 11.05 0.32
factor(plot)6 11.55
                     0.43
factor(plot)7 7.41
                     0.63
factor(plot)8 3.05
                     0.97
factor(plot)9 9.73
                     1.45
factor(plot)10 -0.14
                     0.92
dbh
              0.61
                     0.01
n = 1000, k = 11
residual sd = 2.89, R-Squared = 0.91
```

Single vs varying intercept

Different intercept for each plot

Mixed models enable us to account for variability

Varying intercepts

Figure 1:

Mixed models enable us to account for variability

- Varying intercepts
- Varying slopes

Figure 1:

Mixed model with varying intercepts

$$y_i = a_j + bx_i + \varepsilon_i$$
$$a_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

En nuestro ejemplo:

$$Height_i = plot_j + bDBH_i + \varepsilon_i$$

$$plot_j \sim N(0, \tau^2)$$

$$\varepsilon_i \sim N(0, \sigma^2)$$

Mixed models estimate varying parameters (intercepts and/or slopes) with pooling among levels (rather than considering them fully independent)

complete pooling: Single overall intercept.

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each plot.

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each plot.
 - lm (height ~ dbh + factor(plot))

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each plot.
 - lm (height ~ dbh + factor(plot))
- partial pooling: Inter-related intercepts.

- **complete pooling**: Single overall intercept.
 - ▶ lm (height ~ dbh)
- **no pooling**: One *independent* intercept for each plot.
 - lm (height ~ dbh + factor(plot))
- partial pooling: Inter-related intercepts.
 - lmer(height ~ dbh + (1 | plot))

1. Fixed effects constant across individuals, random effects vary.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.

http://andrewgelman.com/2005/01/25/why i dont use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

- 1. Fixed effects constant across individuals, random effects vary.
- 2. Effects are fixed if they are interesting in themselves; random if interest in the underlying population.
- 3. Fixed when sample exhausts the population; random when the sample is small part of the population.
- 4. Random effect if it's assumed to be a realized value of random variable.
- 5. Fixed effects estimated using least squares or maximum likelihood; random effects estimated with shrinkage.

http://andrewgelman.com/2005/01/25/why_i_dont_use/

What is a random effect, really?

1. Varies by group

Random effects are estimated with partial pooling, while fixed effects are not (infinite variance).

What is a random effect, really?

- 1. Varies by group
- 2. Variation estimated with probability model

Random effects are estimated with partial pooling, while fixed effects are not (infinite variance).

Shrinkage improves parameter estimation

Especially for groups with low sample size

Figure 2:

From Gelman & Hill p. 253

Fitting mixed/multilevel models

```
library(lme4)
mixed <- lmer(height ~ dbh + (1|plot), data = trees)
lmer(formula = height ~ dbh + (1 | plot), data = trees)
           coef.est coef.se
(Intercept) 14.80 1.44
dbh 0.61 0.01
Error terms:
Groups Name Std.Dev.
plot (Intercept) 4.45
Residual
                    2.89
number of obs: 1000, groups: plot, 10
AIC = 5015.6, DIC = 4996.4
deviance = 5002.0
```

Retrieve model coefficients

coef(mixed)

```
$plot
   (Intercept)
                      dbh
      7.798373 0.6056549
2
    15.647613 0.6056549
3
     15.735397 0.6056549
4
     19.253661 0.6056549
5
     18.819467 0.6056549
     19.306574 0.6056549
     15.197908 0.6056549
8
     11.016485 0.6056549
9
     17.265448 0.6056549
10
      7.940715 0.6056549
attr(,"class")
[1] "coef.mer"
```

Broom: model estimates in tidy form

```
library(broom)
tidy(mixed)
```

```
# A tibble: 4 x 5
 term
                          estimate std.error statistic group
  <chr>>
                             <dbl>
                                       <fdb1>
                                                 <dbl> <chr>
1 (Intercept)
                            14.8
                                     1.44
                                                  10.3 fixed
2 dbh
                                                  86.0 fixed
                             0.606
                                     0.00704
3 sd_(Intercept).plot
                             4.45
                                    NA
                                                  NA
                                                       plot
4 sd Observation.Residual
                             2.89
                                    NΑ
                                                  NΑ
                                                       Residual
```

See also broom.mixed

Visualising model: allEffects

Visualising model: visreg

```
visreg(mixed, xvar = "dbh", by = "plot", re.form = ~(1|plot))
```


Visualising model: sjPlot

```
plot_model(mixed, type = "re")
```

Random effects

Visualising model

Using merTools to understand fitted model

library(merTools)
shinyMer(mixed)

Checking residuals

plot(mixed)

Checking residuals

ggResidpanel::resid_panel(mixed)

Checking residuals (DHARMa)

DHARMa::simulateResiduals(mixed, plot = TRUE, use.u = TRUE)

DHARMa scaled residual plots

Model checking with simulated data

```
library(bayesplot)
sims <- simulate(mixed, nsim = 100)
ppc_dens_overlay(trees$height, yrep = t(as.matrix(sims)))</pre>
```


R-squared for GLMMs

Many approaches! Somewhat polemic (e.g. see this). Nakagawa & Schielzeth propose **marginal** (considering fixed effects only) and **conditional** R^2 (including random effects too):

```
library(MuMIn)
r.squaredGLMM(mixed)
```

```
R2m R2c [1,] 0.687565 0.9076325
```

Growing the hierarchy: adding plot-level

predictors

Model with group-level predictors

We had:

$$y_i = a_j + bx_i + \varepsilon_i$$
$$a_j \sim N(0, \tau^2)$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

Now

$$y_i = a_j + bx_i + \varepsilon_i$$
 $a_j \sim N(\mu_j, \tau^2)$
 $\mu_j = \gamma + \delta \cdot predictor_j$
 $\varepsilon_i \sim N(0, \sigma^2)$

Merging trees and plot data

```
plotdata <- read.csv("data-raw/plotdata.csv")
trees.full <- merge(trees, plotdata, by = "plot")
head(trees.full)</pre>
```

Centre continuous variables

Plot temperatures referred as deviations from 15°C

```
trees.full$temp.c <- trees.full$temp - 15</pre>
```

Fit multilevel model

```
group.pred <- lmer(height ~ dbh + (1 | plot) + temp.c, data = tr
arm::display(group.pred)
lmer(formula = height ~ dbh + (1 | plot) + temp.c, data = trees.
           coef.est coef.se
(Intercept) 11.79 1.75
dbh 0.61 0.01
temp.c 1.07 0.46
Error terms:
Groups Name Std.Dev.
plot (Intercept) 3.61
Residual
                    2.89
number of obs: 1000, groups: plot, 10
AIC = 5012.8, DIC = 4991
deviance = 4996.9
```

Examine model with merTools

shinyMer(group.pred)

Comparing plot effects with and without group predictor

Are plot effects related to temperature?

► There is overall difference in height among plots (different intercepts)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees
```

- ► There is overall difference in height among plots (different intercepts)
- ► AND

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees
```

- ► There is overall difference in height among plots (different intercepts)
- AND
- ► Relationship between DBH and Height varies among plots (different slopes)

```
mixed.slopes <- lmer(height ~ dbh + (1 + dbh | plot), data=trees
```

```
lmer(formula = height ~ dbh + (1 + dbh | plot), data = trees)
          coef.est coef.se
(Intercept) 14.82 1.30
dbh 0.61 0.01
Error terms:
Groups Name Std.Dev. Corr
plot (Intercept) 3.98
        dbh 0.01 -0.29
               2.89
Residual
number of obs: 1000, groups: plot, 10
AIC = 5018.9, DIC = 4995.6
deviance = 5001.3
```

```
$plot
   (Intercept)
                      dbh
      7.577721 0.6136944
2
     15.969067 0.5941570
3
     15.862676 0.6010346
4
     19.282902 0.6043557
5
     18.832500 0.6049803
6
     19.307373 0.6051534
     15.148412 0.6071041
8
     11.032456 0.6072821
9
     17.259351 0.6032577
10
      7.908138 0.6092241
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

```
plot_model(mixed.slopes, type = "re")
```

Random effects

Q: Relationship between tree size and mortality

```
plot(dead ~ dbh, data = trees)
```


Q: Relationship between tree size and mortality

```
plot(factor(dead) ~ dbh, data = trees)
```


Fit simple logistic regression

```
simple.logis <- glm(dead ~ dbh, data = trees, family=binomial)</pre>
Call:
glm(formula = dead ~ dbh, family = binomial, data = trees)
Deviance Residuals:
   Min 10 Median 30 Max
-0.4121 -0.3287 -0.2624 -0.2048 2.9127
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.46945 0.49445 -9.039 < 2e-16 ***
dbh 0.04094 0.01380 2.967 0.00301 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
```

Null deviance: 329.51 on 999 degrees of freedom

Logistic regression with independent plot effects

```
logis2 <- glm(dead ~ dbh + factor(plot), data = trees, family=bi</pre>
Call:
glm(formula = dead ~ dbh + factor(plot), family = binomial, data
```

Deviance Residuals:

Min 1Q Median 3Q Max -0.5923 -0.3198 -0.2549 -0.1940 2.8902

0.03126

factor(plot)7

Coefficients:

(Intercept) -4.40106 0.52997 -8.304 <2e-16 *** dbh 0.04060 0.01386 2.929 0.0034 ** factor(plot)2 -0.59168 0.52132 -1.135 0.2564

Estimate Std. Error z value Pr(>|z|)

factor(plot)3 0.54576 0.47094 1.159 0.2465

factor(plot)4 0.05507 0.57434 0.096 0.9236

factor(plot)5 -0.38312 0.64222 -0.597 0.5508

factor(plot)6 -0.08426 0.76908 -0.110 0.9128

1.06064

0.029

0.9765

Fit multilevel logistic regression

```
mixed.logis <- glmer(dead ~ dbh + (1 plot), data=trees, family =
glmer(formula = dead ~ dbh + (1 | plot), data = trees, family =
          coef.est coef.se
(Intercept) -4.47 0.49
dbh 0.04 0.01
Error terms:
Groups Name Std.Dev.
plot (Intercept) 0.00
Residual 1.00
number of obs: 1000, groups: plot, 10
AIC = 325.9, DIC = 319.9
deviance = 319.9
```

Retrieve model coefficients

```
coef(mixed.logis)
```

```
$plot
   (Intercept)
                     dbh
     -4.469446 0.04093806
    -4.469446 0.04093806
3
   -4.469446 0.04093806
4
  -4.469446 0.04093806
5
  -4.469446 0.04093806
    -4.469446 0.04093806
    -4.469446 0.04093806
8
   -4.469446 0.04093806
9
   -4.469446 0.04093806
10
   -4.469446 0.04093806
attr(,"class")
[1] "coef.mer"
```

Visualising model: sjPlot

```
plot_model(mixed.logis, type = "eff", show.ci = TRUE)
```

\$dbh

▶ Perfect for structured data (space-time)

- ▶ Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level

- ▶ Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects

- ▶ Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- Accommodate variation in treatment effects
- ► More efficient inference of regression parameters

- ► Perfect for structured data (space-time)
- ▶ Predictors enter at the appropriate level
- ► Accommodate variation in treatment effects
- ▶ More efficient inference of regression parameters
- Using all the data to perform inferences for groups with small sample size

Formula syntax for different models

```
\begin{array}{l} y\sim x+\left(1\mid \mathsf{group}\right)\ \#\ \mathsf{varying}\ \mathsf{intercepts}\\ y\sim x+\left(1+x\mid \mathsf{group}\right)\ \#\ \mathsf{varying}\ \mathsf{intercepts}\ \mathsf{and}\ \mathsf{slopes}\\ y\sim x+\left(1\mid \mathsf{group}/\mathsf{subgroup}\right)\ \#\ \mathsf{nested}\\ y\sim x+\left(1\mid \mathsf{group1}\right)+\left(1\mid \mathsf{group2}\right)\ \#\ \mathsf{varying}\ \mathsf{intercepts},\ \mathsf{crossed}\\ y\sim x+\left(1+x\mid \mathsf{group1}\right)+\left(1+x\mid \mathsf{group2}\right)\ \#\ \mathsf{varying}\ \mathsf{intercepts}\ \mathsf{and}\\ \mathsf{slopes},\ \mathsf{crossed} \end{array}
```

GLMM FAQ

https://bbolker.github.io/mixed models-misc/glmmFAQ.html

More examples

sleepstudy