Определение 1. Многочлен $P(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$ называется *примитивным*, если числа a_n, \ldots, a_1, a_0 взаимно просты.

Задача 1. (Лемма Гаусса) Произведение двух примитивных многочленов также примитивный многочлен.

Задача 2. Докажите, что многочлен $P(x) \in \mathbb{Z}[x]$ неприводим над \mathbb{Z} тогда и только тогда, когда он неприводим над Q.

Задача 3. Докажите, что любой многочлен из $\mathbb{Z}[x]$ однозначно (с точностью до постоянных множителей) раскладывается в произведение неприводимых над \mathbb{Z} многочленов.

Задача 4. Пусть α \in \mathbb{R} — корень некоторого ненулевого многочлена P(x) $\mathbb{Z}[x].$ Пусть $Q(x) \in \mathbb{Z}[x]$ — ненулевой многочлен минимальной степени, такой что $Q(\alpha) = 0$.

- а) Докажите, что многочлен Q(x) неприводим над \mathbb{Z} ;
- **б)** Докажите, что для некоторого ненулевого целого k многочлен kP(x) делится на Q(x).

Задача 5. ($Tеорема\ \Gamma aycca$) Если действительное число α является корнем одновременно двух многочленов P(x) и Q(x) из $\mathbb{Z}[x]$ и один из них, скажем Q(x) неприводим над \mathbb{Z} , то многочлен kP(x)при некотором ненулевом целом числе k делится на Q(x).

Задача 6. Делится ли **a)** многочлен $x^{100} - 32x^{90} + x^4 + 5x^3 - 3x^2 - 10x + 2$ на многочлен $x^2 - 2$? **б)** многочлен $x^{11} + x^9 - 5x^8 + x^7 - 6x^6 - 7x^4 - 98x^2 - 49$ на многочлен $x^3 - 7$?

Задача 7. Докажите, что среди корней неприводимого над \mathbb{Z} многочлена из $\mathbb{Z}[x]$ не менее чем второй степени не может быть рациональных.

Задача 8. Докажите, что следующие числа иррациональны:

- а) $\sqrt[n]{p}$, где p простое, $n-1 \in \mathbb{N}$;
- **б)** $\sqrt[n]{p_1 \dots p_k}$, где p_1, \dots, p_k различные простые, $n-1, k \in \mathbb{N}$;
- **B)** $\sqrt{2} + \sqrt[3]{2}$;
- **r)*** $A(\sqrt[N]{p})$, где N натуральное число, большее 1, p простое, $A(x) \in \mathbb{Z}[x]$ ненулевой многочлен
- степени меньше N; д)* $\alpha_1 p^{\frac{m_1}{n_1}} + \cdots + \alpha_k p^{\frac{m_k}{n_k}}$, где p простое, $\alpha_1, \ldots, \alpha_n$ рациональные числа, не все равные нулю, $\frac{m_1}{n_1}, \dots, \frac{m_k}{n_k}$ — попарно различные правильные дроби.

Задача 9*. а) Пусть $\alpha \in \mathbb{R}$ — корень некоторого ненулевого многочлена из $\mathbb{Q}[x]$. Пусть G(x) произвольный многочлен из $\mathbb{Q}[x]$, такой что $G(\alpha) \neq 0$. Докажите, что существует такой многочлен $H(x) \in \mathbb{Q}[x]$, что $\frac{1}{G(\alpha)} = H(\alpha)$. **б)** Найдите такой многочлен H(x), если $\alpha = \sqrt[3]{2}$ и G(x) = x + 1.

Задача 10*. Пусть $\alpha \in \mathbb{R}$ — корень неприводимого многочлена из $\mathbb{Q}[x]$ степени n.

- а) Докажите, что множество чисел $\{P(\alpha) | P(x) \in \mathbb{Q}[x]\}$ с обычными операциям сложения и умножения является полем. (Это поле обозначается $\mathbb{Q}(\alpha)$.)
- **б)** Докажите, что $\mathbb{Q}(\alpha) = \{q_0 + q_1\alpha + q_2\alpha^2 + \dots + q_{n-1}\alpha^{n-1} \mid q_0, q_1, \dots, q_{n-1} \in \mathbb{Q}\}.$
- в) Докажите, что любой элемент поля $\mathbb{Q}(\alpha)$ представляется в виде суммы из пункта б) единственным образом.

Задача 11*. Докажите, что многочлен $(x-a_1)\dots(x-a_n)-1$ неприводим над $\mathbb Z$ при любых попарно различных целых числах a_1, \ldots, a_n .

Задача 12*. а) Найдите целое число a, при котором многочлен (x-a)(x-10)+1 раскладывается на два многочлена первой степени с целыми коэффициентами. б) При каких попарно различных целых числах a_1, \ldots, a_n многочлен $(x - a_1) \ldots (x - a_n) + 1$ не является неприводимым над \mathbb{Z} ?

Задача 13*. Разложите на неприводимые множители над \mathbb{Z} :

a)
$$x^8 + x^4 + 1$$
; **6)** $x^5 + x + 1$; **B)** $x^9 + x^4 - x - 1$.