IMPERIAL

Francesco Sanna Passino

Department of Mathematics, Imperial College London

8th October, 2024

1/43

Joint work with:

- Dynamic multiplex graphs
 - Maximilian Baum (PhD student, Imperial College London)
 - Axel Gandy (Chair in Statistics, Imperial College London)
- Panels of multivariate time series / vector autoregressive processes
 - Brendan Martin (PhD student, Imperial College London)
 - Mihai Cucuringu (Associate Professor of Statistics, University of Oxford)
 - Alessandra Luati (Chair in Statistics, Imperial College London & University of Bologna)

Acknowledgments:

 UK Research and Innovation / EPSRC ECR International Collaboration Grant 2024-2026 on "Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs" (EP/Y002113/1) in collaboration with Professor Carey Priebe (Johns Hopkins University)

•0000

UNDIRECTED GRAPHS

- Undirected graph $\mathbb{G} = (V, E)$ where:
 - V is the **node set**, with cardinality n = |V|,
 - $E \subseteq V \times V$ is the **edge set**, containing dyads $(i, j) \in V \times V$.
- An edge is drawn if a node $i \in V$ connects to $j \in V$, written $(i, j) \in E$.
- From \mathbb{G} , an adjacency matrix $\mathbf{A} \in \{0,1\}^{n \times n}$, can be obtained via $A_{i,j} = \mathbb{1}_E\{(i,j)\}$.
- Real-world graphs tend to be more complex. For example:

3/43

LATENT POSITION MODELS FOR GRAPHS

• Latent position models (Hoff, Raftery, and Handcock, 2002) for adjacency matrices:

$$oldsymbol{x}_i \overset{iid}{\sim} \mathcal{F} \quad o \quad \mathbb{P}(A_{i,j} = 1 \mid oldsymbol{x}_i, oldsymbol{x}_j) = \kappa(oldsymbol{x}_i, oldsymbol{x}_j) \quad o$$

- LPMs illustrate a powerful idea for network modelling: expressing edge-specific quantities through unobserved node features $x_i \in \mathcal{X} \subseteq \mathbb{R}^d$ sampled from a distribution \mathcal{F} .
- Node features are "linked" to link probabilities via a **kernel function** $\kappa: \mathcal{X} \times \mathcal{X} \to [0,1]$.
- $\bullet \ \, \textbf{Inner product kernels} \rightarrow \textbf{random dot product graph} \ (\textbf{RDPG}, \textbf{Athreya et al.}, 2018) : \\$

$$A_{i,j} \mid \boldsymbol{x}_1, \dots, \boldsymbol{x}_n \sim \text{Bernoulli}(\boldsymbol{x}_i^\intercal \boldsymbol{x}_j).$$

4/43

5/43

RANDOM DOT PRODUCT GRAPHS

- RDPGs (and their generalisation, GRDPG, see Rubin-Delanchy et al., 2022) include:
 - Stochastic blockmodels (Holland, Laskey, and Leinhardt, 1983): $x_i = \mu_{z_i}$ for a community $z_i \in \{1,\ldots,K\}$, giving a between-community constant connection probability $B_{k\ell} = \mu_k^\mathsf{T} \mu_\ell$;
 - Degree-corrected stochastic blockmodels (Karrer and Newman, 2011): $x_i = \rho_i \mu_{z_i}$ for community $z_i \in \{1, \dots, K\}$ and degree-correction parameter $\rho_i \in (0, 1)$.
- The latent positions can be **estimated via the spectral decomposition** of **A**.

Definition (ASE - Adjacency spectral embedding)

For an integer $d \in \{1,\dots,n\}$ and a binary *symmetric* adjacency matrix $\mathbf{A} \in \{0,1\}^{n \times n}$, the d-dimensional adjacency spectral embedding (ASE) $\hat{\mathbf{X}} = [\hat{x}_1,\dots,\hat{x}_n]^{\mathsf{T}}$ of \mathbf{A} is

$$\hat{\mathbf{X}} = \mathbf{\Gamma} |\mathbf{\Lambda}|^{1/2} \in \mathbb{R}^{n \times d},$$

where Λ is a $d \times d$ diagonal matrix containing the d largest eigenvalues in magnitude, and Γ is a $n \times d$ matrix containing corresponding orthonormal eigenvectors.

MULTIPLEX GRAPHS

Introduction

00000

 In many real-world applications, edges can have different types. For example, links in cyber-security applications occur on different ports. In transportation networks, there are different means of transport between two locations. Edge types are usually called layers.

Vector autoregressive processes

• Undirected multiplex graph $\mathbb{G} = (V, \{E_1, \dots, E_K\})$ where:

Layer 1

- V is the **shared node set** across layers, with cardinality n = |V|,
- $E_k \subset V \times V$ is the **edge set** for the k-th layer, containing dyads $(i, j) \in V \times V$.
- Denote the adjacency matrix for the k-th layer as A_k [It is **not assumed** that $E_k \cap E_\ell = \emptyset$].

$$\mathbf{A}_2 = \left[egin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array}
ight.$$

$$\mathbf{A}_1 = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right] \quad \mathbf{A}_2 = \left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right] \quad \mathbf{A}_3 = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

6/43

SPECTRAL EMBEDDING OF MULTIPLEX GRAPHS

- Multiplex graphs can mainly be spectrally embedded via two methods: OMNI and UASE.
- Omnibus embedding (OMNI, Levin et al., 2017) Take ASE of the following block-matrix:

$$\tilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A}_1 & (\mathbf{A}_1 + \mathbf{A}_2)/2 & \cdots & (\mathbf{A}_1 + \mathbf{A}_K)/2 \\ (\mathbf{A}_2 + \mathbf{A}_1)/2 & \mathbf{A}_2 & \cdots & (\mathbf{A}_2 + \mathbf{A}_K)/2 \\ \vdots & \vdots & \ddots & \vdots \\ (\mathbf{A}_K + \mathbf{A}_1)/2 & (\mathbf{A}_K + \mathbf{A}_2)/2 & \cdots & \mathbf{A}_K \end{bmatrix},$$

• Unfolded adjacency spectral embedding (UASE, Jones and Rubin-Delanchy, 2020; Gallagher, Jones, and Rubin-Delanchy, 2021) – Obtain the embedding from the singular value the composition of the unfolded matrix $\tilde{\mathbf{A}} \in \{0,1\}^{n \times nK}$, defined as follows:

$$\tilde{\mathbf{A}} = [\mathbf{A}_1 \ \mathbf{A}_2 \ \cdots \ \mathbf{A}_K].$$

7/43

- ullet In real-world applications, graphs evolve over time o dynamic multiplex graphs.
- Dynamic multiplex graph $\mathbb{G} = (V, \{E_{k,t}\}_{k=1,\dots,K,\ t=1,\dots,T})$ where:
 - V is the **shared node set** across layers and time points, with cardinality n = |V|.
 - $E_{k,t} \subseteq V \times V$ is the **edge set** for the k-th layer at the t-th time.
 - Denote the adjacency matrix for the k-th layer at the t-th time as $\mathbf{A}_{k,t}$.
- We propose a **dynamic multiplex RDPG (DMP-RDPG)** model where each node is represented by latent positions in $\mathcal{X}_k \subseteq \mathbb{R}^d$ and $\mathcal{Y}_t \subseteq \mathbb{R}^d$, $k = 1, \dots, K, \ t = 1, \dots, T$.
 - ullet Positions $oldsymbol{x}_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
 - ullet Positions $oldsymbol{y}_{j,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
 - \bullet The connectivity model for nodes i and j at time t in layer k is given by:

$$A_{i,j,k,t} \sim \text{Bernoulli}\left(\boldsymbol{x}_{i,k}^{\intercal} \boldsymbol{y}_{j,t}\right).$$

8/43

DMP-RDPG: THE SETUP

Introduction

• For K and T fixed, let $\mathcal{X}_1, \ldots, \mathcal{X}_K, \mathcal{Y}_1, \ldots, \mathcal{Y}_T \subseteq \mathbb{R}^d$ for some shared $d \in \mathbb{N}$, such that $x^{\mathsf{T}}y \in [0,1]$ for any $x \in \mathcal{X}_k$ and $y \in \mathcal{Y}_t$, for all $k = 1, \ldots, K$ and $t = 1, \ldots, T$.

Vector autoregressive processes

- Let \mathcal{F} be a distribution over the product space $[\bigotimes_{k=1}^K \mathcal{X}_k^n] \bigotimes [\bigotimes_{t=1}^T \mathcal{Y}_t^n]$.
- Let $x_{1,1},\ldots,x_{n,1},\ldots,x_{n,K},y_{1,1},\ldots,y_{n,1},\ldots,y_{n,T}\sim\mathcal{F}$. By organising these positions into matrices $\mathbf{X}_k = [\boldsymbol{x}_{1.k}^\intercal, \cdots, \boldsymbol{x}_{n.k}^\intercal]^\intercal$ and $\mathbf{Y}_t = [\boldsymbol{y}_{1.t}^\intercal, \dots, \boldsymbol{y}_{n.t}^\intercal]^\intercal$, the stacked matrices $\mathbf{X} = [\mathbf{X}_1^\intercal \mid \cdots \mid \mathbf{X}_K^\intercal]^\intercal \in \mathbb{R}^{nK \times d}$ and $\mathbf{Y} = [\mathbf{Y}_1^\intercal \mid \cdots \mid \mathbf{Y}_T^\intercal]^\intercal \in \mathbb{R}^{nT \times d}$ can be constructed.
- We define the $n \times n$ probability matrices for each time point and layer as $\mathbf{P}_{k,t} = \mathbf{X}_k \mathbf{Y}_t^{\mathsf{T}}$.
- Consider the following $nK \times nT$ double unfolding of the matrices $\mathbf{P}_{k,t}$ and $\mathbf{A}_{k,t}$:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_{1,1} & \dots & \mathbf{P}_{1,T} \\ \vdots & \ddots & \vdots \\ \mathbf{P}_{K,1} & \dots & \mathbf{P}_{K,T} \end{bmatrix} = \mathbf{X}\mathbf{Y}^{\mathsf{T}}, \qquad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,T} \\ \vdots & \ddots & \vdots \\ \mathbf{A}_{K,1} & \dots & \mathbf{A}_{K,T} \end{bmatrix}.$$

9/43

DMP-RDPG: THE DEFINITION

This setup leads to the definition of the dynamic multiplex RDPG (DMP-RDPG) model.

Definition (DMP-RDPG: Dynamic Multiplex Random Dot Product Graph)

 $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \mathrm{DMP\text{-}RDPG}(\mathcal{F})$ if, conditional on \mathbf{X}_k and \mathbf{Y}_t , the matrix $\mathbf{A}_{k,t}$ has entries $A_{i,j,k,t} \sim \mathrm{Bernoulli}(P_{i,j,k,t})$ for all $i,j \in V$, with $P_{i,j,k,t} = \boldsymbol{x}_{i,k}^\mathsf{T} \boldsymbol{y}_{j,t}$.

- Key features:
 - Positions $x_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
 - Positions $y_{j,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
- Given a realisation A from a DMP-RDPG, the inferential objective is to estimate X and
 Y. We propose a doubly unfolded adjacency spectral embedding estimator.

10/43

Doubly unfolded adjacency spectral embedding (DUASE)

Definition (DUASE – Doubly unfolded adjacency spectral embedding)

For a given integer $d \in \{1, \dots, n\}$ and dynamic multiplex graph adjacency matrices $\mathbf{A}_{k,t} \in \{0,1\}^{n \times n}, \ k=1,\ldots,K, \ t=1,\ldots,T,$ consider the doubly unfolded matrix

Vector autoregressive processes

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_{1,1} & \dots & \mathbf{A}_{1,T} \ dots & \ddots & dots \ \mathbf{A}_{K,1} & \dots & \mathbf{A}_{K,T} \end{bmatrix}.$$

The d-dimensional doubly unfolded adjacency spectral embedding (DUASE) of $\bf A$ is:

$$\hat{\mathbf{X}} = \mathbf{U}\mathbf{D}^{1/2} \in \mathbb{R}^{nK \times d}, \qquad \hat{\mathbf{Y}} = \mathbf{V}\mathbf{D}^{1/2} \in \mathbb{R}^{nT \times d},$$

where **D** is a $d \times d$ diagonal matrix containing the d largest singular values of **A**, and **U** and V are $nK \times d$ and $nT \times d$ matrices containing the corresponding singular vectors.

11/43

RESULTS: TWO-TO-INFINITY NORM BOUND FOR DUASE

This theorem is an adaptation of Theorem 2 in Jones and Rubin-Delanchy, 2020.

Theorem $(2 \to \infty \text{ norm bound for DUASE})$

Let $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \text{DMPRDPG}(F_o)$ with K_n layers and T_n time points. Then, for each $k \in [K_n]$ and $t \in [T_n]$, there exist sequences of matrices \mathbf{W}_X and $\mathbf{W}_Y \in \mathrm{GL}(d)$ such that

Vector autoregressive processes

$$\|\hat{\mathbf{X}}^{k}\mathbf{W}_{X}^{-1} - \mathbf{X}^{k}\|_{2\to\infty} = O_{\mathbb{P}} \left\{ \frac{\log^{1/2}(n)}{\rho_{n}^{1/2} n^{1/2} T_{n}^{1/2}} \right\},$$
$$\|\hat{\mathbf{Y}}^{t}\mathbf{W}_{Y}^{-1} - \mathbf{Y}^{t}\|_{2\to\infty} = O_{\mathbb{P}} \left\{ \frac{\log^{1/2}(n)}{\rho_{n}^{1/2} n^{1/2} K_{n}^{1/2}} \right\}.$$

• $\|\mathbf{M}\|_{2\to\infty} = \sup_{\|\mathbf{z}\|_2=1} \|\mathbf{M}\mathbf{z}\|_{\infty}$; $\|\mathbf{M}\| = O_{\mathbb{P}}(f)$ if for any $\alpha > 0$ there exist a constant C>0 and an integer n^* such that for all $n\geq n^*$, $\mathbb{P}\{\|\mathbf{M}\|\leq Cf(n)\}\geq 1-n^{-\alpha}$.

12/43

Underlying assumptions and sparsity considerations

• A global sparsity factor $\rho_n \in (0,1)$ is used to control the asymptotic connection density of the network as the number of nodes in the network n tends to infinity.

Vector autoregressive processes

- We assume that the sequence ρ_n converges either to 0 or to some constant c.
- The desired sparsity regime is enforced by defining $x_{i,k} = \rho^{1/2} \xi_{i,k}, \xi_{i,k} \sim F_{X,k}$ for some distribution $F_{X,k}$ on \mathbb{R}^d and $y_{i,t} = \rho^{1/2} \nu_{i,t}$, $\nu_{i,t} \sim F_{Y,t}$. Therefore, the joint distribution \mathcal{F} factorises into the product of n identical marginals for each $k=1,\ldots,K,\ t=1,\ldots,T$.
- We adopt the notation \mathcal{F}_{ρ} to refer to this scaled distribution.
- For our main results to hold in the asymptotic regime where K_n and T_n tend to infinity, we further require the existence of the $d \times d$ matrices $\tilde{\Delta}_X = \lim_{n \to \infty} K_n^{-1} \sum_{k=1}^{K_n} \Delta_{X,k}$ and $\tilde{\Delta}_Y = \lim_{n \to \infty} T_n^{-1} \sum_{t=1}^{T_n} \Delta_{Y,t}$. where $\tilde{\Delta}_{X,k} = \mathbb{E}[\boldsymbol{\xi}_{i,k} \boldsymbol{\xi}_{i,k}^{\intercal}]$ and $\tilde{\Delta}_{Y,t} = \mathbb{E}[\boldsymbol{\nu}_{j,t} \boldsymbol{\nu}_{i,t}^{\intercal}]$ are the second moment matrices of F_{Xk} and F_{Yt} respectively.

13/43

RESULTS: CENTRAL LIMIT THEOREM FOR DUASE

• This theorem mirrors Theorem 3 in Jones and Rubin-Delanchy, 2020.

Theorem (CLT for DUASE)

Introduction

Let $(\mathbf{A}, \mathbf{X}, \mathbf{Y}) \sim \text{DMPRDPG}(F_{\rho})$ with K_n layers and T_n time points. Given latent positions $x \in \mathcal{X}_k$ and $y \in \mathcal{Y}_t$, then for all $z \in \mathbb{R}^d$ and for any fixed $i \in [n]$, $k \in [K_n]$ and $t \in [T_n]$ there exist sequences of matrices \mathbf{W}_X , $\mathbf{W}_Y \in \mathrm{GL}(d)$ (dependent on n) such that, for $n \to \infty$:

Vector autoregressive processes

$$\mathbb{P}\left\{n^{1/2}T_n^{1/2}(\hat{\mathbf{X}}_k\mathbf{W}_X^{-1} - \mathbf{X}_k)_i^{\intercal} \leq \boldsymbol{z} \mid \boldsymbol{\xi}_{i,k} = \boldsymbol{x}\right\} \to \Phi\left\{\boldsymbol{z}, \tilde{\boldsymbol{\Delta}}_Y^{-1}\mathbf{V}_Y(\boldsymbol{x})\tilde{\boldsymbol{\Delta}}_Y^{-1}\right\},$$

$$\mathbb{P}\left\{n^{1/2}K_n^{1/2}(\hat{\mathbf{Y}}_t\mathbf{W}_Y^{-1} - \mathbf{Y}_t)_i^{\intercal} \leq \boldsymbol{z} \mid \boldsymbol{\nu}_{i,t} = \boldsymbol{y}\right\} \to \Phi\left\{\boldsymbol{z}, \tilde{\boldsymbol{\Delta}}_X^{-1}\mathbf{V}_X(\boldsymbol{y})\tilde{\boldsymbol{\Delta}}_X^{-1}\right\},$$

where $\Phi(z, \Sigma)$ is the CDF of a d-dimensional normal distribution centered at 0 (the identically zero vector of dimension d), with covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, evaluated at $z \in \mathbb{R}^d$. The form of V_Y and V_X is analytically available.

DYNAMIC MULTIPLEX STOCHASTIC BLOCKMODELS (DMP-SBM)

- DMP-RDPG to define a dynamic multiplex stochastic blockmodel (DMP-SBM).
- Assume $A_{i,j,k,t} \sim \text{Bernoulli}(B_{z_{i,k},z'_{i,t},k,t})$, where $z_{i,k} \in \{1,\ldots,G\}$ and $z'_{i,t} \in \{1,\ldots,G'\}$ are group labels for nodes i and j in the k-th layer and t-th time point respectively, and $\mathbf{B} \in [0,1]^{G \times G' \times K \times T}$ is a tensor of probabilities of connections between groups.

Vector autoregressive processes

• Under a DMP-RDPG representation, $B_{h,\ell,k,t}=m{\mu}_{h,k}^\intercal m{\lambda}_{\ell,t}$ for $m{\mu}_{h,k}, m{\lambda}_{\ell,t} \in \mathbb{R}^d$, which gives:

$$A_{i,j,k,t} \sim \operatorname{Bernoulli}(\boldsymbol{\mu}_{z_{i,k},k}^{\intercal} \boldsymbol{\lambda}_{z'_{j,t},t}).$$

• The indicators $z_{i,k}$ and $z'_{i,t}$ can be estimated via Gaussian mixture modelling on the output of **DUASE**, using the theoretical guarantees provided by our **DUASE-CLT**:

$$\mathbb{P}\left\{n^{1/2}T_n^{1/2}\left(\mathbf{W}_X^{-1}\hat{\boldsymbol{x}}_{i,k} - \boldsymbol{\mu}_{g,k}\right)^{\mathsf{T}} \leq \boldsymbol{q}\right\} \to \Phi\left\{\boldsymbol{q}, \boldsymbol{\Sigma}_{X,g}\right\}, \quad g \in [G], \; \boldsymbol{q} \in \mathbb{R}^d,$$

$$\mathbb{P}\left\{n^{1/2}K_n^{1/2}\left(\mathbf{W}_Y^{-1}\hat{\boldsymbol{y}}_{i,t} - \boldsymbol{\lambda}_{g,t}\right)^{\mathsf{T}} \leq \boldsymbol{q}\right\} \to \Phi\left\{\boldsymbol{q}, \boldsymbol{\Sigma}_{Y,g}\right\}, \quad g \in [G'], \; \boldsymbol{q} \in \mathbb{R}^d.$$

15/43

References

DMP-SBM + DUASE: A SIMULATION

Introduction

• Simulate a DMP-SBM with G=3, G'=4 and the following connection probabilities:

$$\mathbf{B}_{1,1} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{1,2} = \begin{bmatrix} 0.16 & 0.16 & 0.04 & 0.10 \\ 0.16 & 0.16 & 0.04 & 0.10 \\ 0.04 & 0.04 & 0.09 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{1,3} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}$$

Vector autoregressive processes

$$\mathbf{B}_{2,1} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{2,2} = \begin{bmatrix} 0.16 & 0.16 & 0.04 & 0.10 \\ 0.16 & 0.16 & 0.04 & 0.10 \\ 0.04 & 0.04 & 0.09 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}, \quad \mathbf{B}_{2,3} = \begin{bmatrix} 0.08 & 0.02 & 0.18 & 0.10 \\ 0.02 & 0.20 & 0.04 & 0.10 \\ 0.18 & 0.04 & 0.02 & 0.02 \\ 0.10 & 0.10 & 0.02 & 0.06 \end{bmatrix}$$

$$\mathbf{B}_{3,1} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,2} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,3} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 \end{bmatrix}, \quad \mathbf{B}_{3,3} = \begin{bmatrix} 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 & 0.08 \\ 0.08 & 0.08 & 0.08 \end{bmatrix}$$

16/43

Figure 1. Left DUASE of a simulated DMP-SBM against the true latent positions (after orthogonal Procrustes rotation).

Figure 2. Right DUASE of a simulated DMP-SBM against the true latent positions (after orthogonal Procrustes rotation).

17/43

References

Connections with literature on Euclidean mirrors

• Consider the right DUASE embedding $\hat{\mathbf{Y}} = [\hat{\mathbf{Y}}_1^\intercal \mid \cdots \mid \hat{\mathbf{Y}}_T^\intercal]^\intercal \in \mathbb{R}^{nT \times d}$ and extract the sequence of aligned time-specific embeddings $\hat{\mathbf{Y}}_1, \dots, \hat{\mathbf{Y}}_T$.

Vector autoregressive processes

• Athreya et al., 2024 calculates a dissimilarity (distance) matrix $\hat{\mathcal{D}}_{\phi}$ with entries:

$$\hat{\mathcal{D}}_{\phi}(t,s) = \hat{d}_{\text{MV}}(\hat{\mathbf{Y}}_t, \hat{\mathbf{Y}}_s) = \min_{\mathbf{Q} \in \mathbb{O}(d)} \frac{1}{\sqrt{n}} ||\hat{\mathbf{Y}}_t - \hat{\mathbf{Y}}_s \mathbf{Q}||_2,$$

where $\mathbb{O}(d)$ is the orthogonal group with signature d.

- Since DUASE has **temporal stability**, one can simply set $\hat{\mathcal{D}}_{\phi}(t,s) = n^{-1/2} \|\hat{\mathbf{Y}}_t \hat{\mathbf{Y}}_s\|_2$.
- Apply CMDS to $\hat{\mathcal{D}}_{\phi}$ to estimate $\hat{\psi}(t) \in \mathbb{R}^c$ for $t = 1, \dots, T$, for some $c \in \mathbb{N}$.
- Apply ISOMAP to the points in $\text{CMDS}(\hat{\mathcal{D}}_{\phi}) = \{\hat{\psi}(t), t = 1, \dots, T\} \subset \mathbb{R}^c$ to obtain a 1-dimensional curve, which can be plotted against the time indices $t=1,\ldots,T$.
- This gives a joint (across layers) Euclidean mirror for dynamic multiplex networks.

Iso-MIRROR ON SBM WITH DUASE

Introduction

Vector autoregressive processes

Figure 3. Iso-mirrors calculated from DUASE on the simulated DMP-SBM in previous slides.

19/43

APPLICATIONS ON REAL-WORLD MULTIPLEX NETWORKS

- PLOVER dataset (Halterman et al., 2023)
 - Consider the Political Language Ontology for Verifiable Event Records (PLOVER) dataset, consisting in 624,888 political interaction events between n = 104 countries.
 - We group the events across T=16 months ranging between January 2023 and April 2024. Each event is associated with one of K=16 event types based on the PLOVER categories.
 - Each of the event types is further grouped into $K^* = 4$ macro-groups called *quad categories*: material cooperation, verbal cooperation, verbal conflict, and material conflict.
- FinDKG dataset (Li and Sanna Passino, 2024)
 - The graph has a total of 241.948 edges between n=13.637 nodes, with K=15 different connection types related to financial concepts, such as "Raise", "Invests In" or "Produce".
 - Nodes represent financial institutions, politicians, businessmen, countries, financial concepts, and commodities.

20/43

(a) Iso-mirror on right DUASE $\hat{\mathbf{Y}}$

(b) Iso-mirror on $\hat{\mathbf{X}}$, grouped by event type

Figure 4. Iso-mirror across time and event types on the POLECAT data.

21/43

PLOVER DATASET

(b) Iso-mirror on $\hat{\mathbf{X}}$ vs. PLOVER intensity

Figure 5. Iso-mirror across time and event types on the POLECAT data, grouped by quad-code.

22/43

FINDKG DATASET

(b) Iso-mirror for left DUASE $\hat{\mathbf{X}}$

Figure 6. Iso-mirror across time and event types on the FinDKG data.

23/43

- Panels of multivariate time series $\{\mathbf{X}_t = (X_{1,t},...,X_{N,t})^{\mathsf{T}}, \ X_{i,t} \in \mathbb{R}\}_{t \in \mathbb{Z}}$ exhibiting co-movement between components are central to many scientific disciplines such as environmental science, econometrics, and neuroscience.
- Often, $X_{i,t}$ depends not only on its own past values, but also on the **past values of a** subset of other panel components, $\{X_{j,s}: j \subseteq [N], s < t\}$, where $[N] = \{1, \ldots, N\}$.
- Vector autoregression (VAR) is a widely used model for multivariate time series:

$$\mathbf{X}_t = \mathbf{\Phi} \mathbf{X}_{t-1} + \boldsymbol{\varepsilon}_t, \ \boldsymbol{\varepsilon}_t \sim \mathbb{N}_N(\mathbf{0}_N, \boldsymbol{\Sigma}_{\varepsilon}),$$

where $\mathbf{\Phi} \in \mathbb{R}^{N imes N}$ is a matrix of **coefficients**, for some covariance structure $\mathbf{\Sigma}_{arepsilon}$.

• For large N, modelling via the VAR framework becomes **prohibitive** as the number of model parameters grows as $O(N^2)$ and can quickly exceed the number of observations.

24/43

- Factor models The large panel of time series are modelled as stemming from a relatively small number of common latent factors (Stock and Watson, 2002).
- Factors with sparse regression Fan, Masini, and Medeiros (2023) combine the dimensionality reduction of factor modelling with the parsimony of sparse linear regression and give a novel test for covariance structure. Their proposed model is called the Factor Augmented Regression Model (FARM).
- Network VAR Knight et al. (2020) introduce generalise network autoregression (GNAR) which, given an observed network, fits a flexible network autoregressive model. Barigozzi, Cho, and Owens (2023) propose an L1-regularised Yule-Walker method for estimating a factor adjusted, idiosyncratic VAR model (FNETS).
- Community detection: Guðmundsson and Brownlees (2021) use estimated VAR coefficients to embed and cluster the panel components.

25/43

NETWORK-INFORMED RESTRICTED VECTOR AUTOREGRESSIVE (NIRVAR) MODEL

Vector autoregressive processes

000000000000000

Definition (NIRVAR - Network-informed restricted vector autoregressive model)

For some fixed $q \in [Q]$, let $\{\mathbf{X}_t^{(q)}\}_{t \in \mathbb{Z}}$ denote a zero mean, second order stationary stochastic process where $\mathbf{X}_t^{(q)} = (X_{1,t}^{(q)},\cdots,X_{N,t}^{(q)})^\intercal \in \mathbb{R}^N$ and $q \in [Q]$. The NIRVAR model for the *a*-th feature is

$$\mathbf{X}_t^{(q)} = \sum_{r=1}^{Q} (\mathbf{A}^{(r)} \odot \tilde{\mathbf{\Phi}}^{(r)}) \mathbf{X}_{t-1}^{(r)} + \boldsymbol{\varepsilon}_t^{(q)}, \qquad \boldsymbol{\varepsilon}_t^{(q)} \sim \mathbb{N}_N(\mathbf{0}_N, \sigma^2 \mathbf{I}_{N \times N}),$$

in which $(\mathbf{A}^{(r)}, \mathbf{Y}^{(r)}) \sim \mathrm{SBM}(\mathbf{B}^{(r)}, \pi^{(r)}), \ r \in [Q], \ \text{and} \ \tilde{\mathbf{\Phi}}^{(r)}, r \in [Q], \ \text{is an} \ N \times N$ matrix of fixed weights. Defining $\mathbf{\Phi}^{(r)} = \mathbf{A}^{(r)} \odot \tilde{\mathbf{\Phi}}^{(r)}$ and $\mathbf{\Phi} = (\mathbf{\Phi}^{(1)}| \cdots |\mathbf{\Phi}^{(Q)}), \ \text{we write}$ $\mathbf{X}_{t}^{(q)} \sim \text{NIRVAR}(\mathbf{\Phi}).$

26/43

NIRVAR MODEL

ullet Defining ${f \Phi}^{(r)}={f A}^{(r)}\odot ilde{f \Phi}^{(r)},$ we can write the NIRVAR model as

$$\mathbf{X}_t^{(q)} = \sum_{r=1}^Q \mathbf{\Phi}^{(r)} \mathbf{X}_{t-1}^{(r)} + \mathbf{arepsilon}_t^{(q)}, \qquad \mathbf{arepsilon}_t^{(q)} \sim \mathbb{N}_N(\mathbf{0}_N, \sigma^2 \mathbf{I}_{N imes N}),$$

which allows the interpretation of the NIRVAR model as a **restricted VAR whose restrictions** are determined by the graph. Note that the restrictions are static.

• Equivalently, we can define the coefficient matrices $\Phi^{(r)}$ as the adjacency matrix resulting from a **weighted SBM** (**WSBM**; Gallagher, Jones, and Rubin-Delanchy, 2021), for a suitable choice of the weight distribution. A **zero-inflated** component is added to the distribution to obtain sparsity.

27/43

28/43

NIRVAR: ESTIMATION

- Recovering the **complete edge** set is difficult. Instead, we aim to **recover the community memberships** z_i , i = 1, ..., N for each node.
- The two step estimation approach is:
 - ① Estimate \hat{z}_i by performing clustering on an embedding $\hat{\mathbf{Y}} \in \mathbb{R}^{N \times d}$ of the panel components, and define the binary matrix $\hat{\mathbf{A}} = \{\hat{A}_{i,j}\} \in \{0,1\}^{N \times N}$ with the following entries:

$$\hat{A}_{i,j} = \mathbb{1} \left\{ \hat{z}_i = \hat{z}_j \right\},\,$$

where $\mathbb{1}\{\cdot\}$ is the indicator function.

- ② Set $\hat{\Phi}_{i,j} = 0$ if $\hat{A}_{i,j} = 0$ and estimate the remaining **unrestricted parameters** (corresponding to $\hat{A}_{i,j} = 1$) via ordinary least squares (OLS).
- If multiple features are used, the clustering can be done on **feature-specific embeddings** $\hat{\mathbf{Y}}^{(q)} \in \mathbb{R}^{N \times d}$, and the same procedure is followed to obtain $\hat{\mathbf{\Phi}}^{(q)}$.
- ullet The one-step-ahead prediction equation becomes: $\mathbf{X}_{t+1}^{(q)} = \sum_{r=1}^Q \hat{\mathbf{\Phi}}^{(r)} \mathbf{X}_t^{(r)}.$

29/43

- Let $\mathfrak{X}^{(q)} = (\boldsymbol{x}_1^{(q)}, \dots, \boldsymbol{x}_T^{(q)})$ be the $N \times T$ design matrix of feature q, where $\boldsymbol{x}_t^{(q)} = (x_{1,t}^{(q)}, \dots, x_{N,t}^{(q)})'$ is a realisation of the random variable $\mathbf{X}_t^{(q)}$.
- To construct an embedding $\hat{y}_i^{(q)} \in \mathbb{R}^d$ we use **unfolded adjacency spectral embedding** (UASE, Jones and Rubin-Delanchy, 2020), which obtains embeddings $\hat{\mathbf{Y}}^{(q)} \in \mathbb{R}^{N \times d}$ by considering the SVD of $\tilde{\mathbf{A}} = (\mathbf{A}^{(1)}|\cdots|\mathbf{A}^{(Q)})$.
- UASE has key stability properties (Gallagher, Jones, and Rubin-Delanchy, 2021): it
 assigns the same position, up to noise, to vertices behaving similarly for a given feature
 (cross-sectional stability) and a constant position, up to noise, to a single vertex behaving
 similarly across different features (longitudinal stability).
- We consider the SVD of $\tilde{\mathbf{S}} = (\mathbf{S}^{(1)}|\cdots|\mathbf{S}^{(Q)}) \in \mathbb{R}^{N \times NQ}$ where $\mathbf{S}^{(q)} = \mathfrak{X}^{(q)}\mathfrak{X}^{(q)^{\mathsf{T}}}/T \in \mathbb{R}^{N \times N}$ is the sample covariance matrix for feature q.

30/43

- Estimate the dimension of the latent space as the number of singular values of \tilde{S} that are greater than the Marčencko-Pastur distribution cutoff (Marčenko and Pastur, 1967).
- Let $\mathbf{D} \in \mathbb{R}^{\hat{d} \times \hat{d}}$ and $\mathbf{U} \in \mathbb{R}^{N \times \hat{d}}$ be the matrices containing the \hat{d} largest singular values and corresponding left singular vectors of $\tilde{\mathbf{S}}$. The corresponding **joint** embedding is:

$$\hat{\mathbf{Y}} = \mathbf{U}\mathbf{D}^{1/2} \in \mathbb{R}^{N \times \hat{d}}.$$

- Cluster each $\hat{y}_i \in \mathbb{R}^{\hat{d}}$ into $K = \hat{d}$ groups using a Gaussian mixture model.
- Feature-specific embeddings $\hat{\mathbf{Y}}^{(q)} \in \mathbb{R}^{N \times \hat{d}}$ can be obtained by unstacking $\mathbf{V}\mathbf{D}^{1/2} \in \mathbb{R}^{NQ \times \hat{d}}$ into Q equal blocks $(\hat{\mathbf{Y}}^{(1)}; \dots; \hat{\mathbf{Y}}^{(Q)})$, where \mathbf{V} contains the right singular vectors of $\tilde{\mathbf{S}}$ corresponding to the \hat{d} largest singular values.

31/43

NIRVAR: EMBEDDING ϕ ESTIMATION

Introduction

32/43 Imperial College London

Francesco Sanna Passino

WEIGHTED STOCHASTIC BLOCKMODELS

- How does $\hat{\boldsymbol{y}}_i^{(q)}$ relate to the ground truth positions $\boldsymbol{\theta}_{z_i}^{(q)}$? We derive a connection between the covariance $\boldsymbol{\Gamma}^{(q)} = \mathbb{E}\{(\mathbf{X}_t^{(q)})(\mathbf{X}_t^{(q)})^{\intercal}\}$ of a NIRVAR (Φ) process and $\boldsymbol{y}_i^{(q)}$ for Q=1.
- ullet If $oldsymbol{\Phi}$ is symmetric, the rank-d spectral embedding of $oldsymbol{\Gamma}$ and $oldsymbol{\Phi}$ are equivalent.

Proposition

Let $\mathbf{X}_t \sim \mathrm{NIRVAR}(\mathbf{\Phi})$ where $\mathbf{\Phi}$ is assumed to be symmetric. Consider the eigendecomposition $\mathbf{\Phi} = \mathbf{U}_{\mathbf{\Phi}} \mathbf{\Lambda}_{\mathbf{\Phi}} \mathbf{U}_{\mathbf{\Phi}}^{\mathsf{T}} + \mathbf{U}_{\mathbf{\Phi},\perp} \mathbf{\Lambda}_{\mathbf{\Phi},\perp} \mathbf{U}_{\mathbf{\Phi},\perp}^{\mathsf{T}}$, where $\mathbf{U}_{\mathbf{\Phi}} \in \mathbb{O}(N \times d)$ and $\mathbf{\Lambda}_{\mathbf{\Phi}}$ is a $d \times d$ diagonal matrix comprising the d largest eigenvalues in absolute value of $\mathbf{\Phi}$. Then the rank d truncated eigendecomposition of the covariance matrix $\mathbf{\Gamma} = \mathbb{E}(\mathbf{X}_t \mathbf{X}_t^{\mathsf{T}})$ is $\mathbf{\Gamma} = \mathbf{U}_{\mathbf{\Phi}} \mathbf{\Lambda}_{\mathbf{\Gamma}} \mathbf{U}_{\mathbf{\Phi}}^{\mathsf{T}}$ in which $\mathbf{\Lambda}_{\mathbf{\Gamma}}$ is a $d \times d$ diagonal matrix with diagonal elements $(\lambda_{\mathbf{\Gamma}})_i = 1/\{1 - (\lambda_{\mathbf{\Phi}})_i^2\}$ where $(\lambda_{\mathbf{\Phi}})_i$ is the corresponding diagonal entry of $\mathbf{\Lambda}_{\mathbf{\Phi}}$.

33/43

MACROECONOMIC APPLICATIONS: FRED-MD DATASET

- FRED-MD is a publicly accessible database of monthly observations of macroeconomic variables.
- The prediction task is one-step ahead forecasts of the first order difference of the logarithm of the monthly industrial production (IP) index.
- We backtest NIRVAR, FARM, FNETS, and GNAR from January 2000 December 2019 using a rolling window framework with a lookback window of 480 observations.

Metric	NIRVAR	FARM	FNETS	GNAR
Overall MSE	0.0087	0.0089	0.0096	0.0101

Table 1. Overall MSE of each model for the task of forecasting US industrial production.

34/43

Macroeconomic applications: FRED-MD dataset

Vector autoregressive processes

Figure 7. Predicted (log-differenced) IP against the realised (log-differenced) IP for each model.

- The previous close-to-close (pvCLCL) market excess returns of 648 financial assets from 03/01/2000 31/12/2020 were derived from databases provided by the CRSP.
- The task is to predict the sign of the next day pvCLCL market excess returns. A positive (negative) sign corresponds to a long (short) position in the asset.
- We backtest NIRVAR, FARM, FNETS, and GNAR using a rolling window from 01/01/2004 -31/12/2020 with a look-back window of four years.

	NC1	NC2	NP1	NP2	FARM	FNETS	GNAR
Sharpe Ratio	2.50	2.34	2.82	2.69	0.22	0.78	0.70
Mean Absolute Error	0.012	0.013	0.012	0.013	0.012	0.012	0.012

Table 2. Statistics on the financial returns predictive performance over the backtesting period.

36/43

Figure 8. Left: the cumulative PnL in bpts over the backtesting period. Right: comparison of the NIRVAR estimated clusters with the SIC groups on 31/12/2020.

37/43

- The first differences of the log daily number of bicycle rides from N=774 Santander Cycles stations in central London from 07/03/2018 until 10/03/2020 (T=735) were obtained using records from TfL Open Data (see https://cycling.data.tfl.gov.uk/).
- There were K = 7 clusters estimated by NIRVAR, differentiated by their mean number of bicycle rides as well as by the change in the number of bicycle rides on weekdays compared with weekends.

Model	NIRVAR	FARM	FNETS	GNAR
MSPE	0.364	0.370	0.388	0.374

Table 3. Mean squared prediction errors (MSPE) for the Santander cycles data.

38/43

SANTANDER CYCLES DATA

Figure 9. NIRVAR clusters on the Santander Cycles data.

39/43

Conclusion

- This talk introduces two different models and related estimators:
 - OMP-RDPG + DUASE for dynamic multiplex graphs
 - Propose a DMP-RDPG model for dynamic multiplex graphs where $A_{i,j,t,k} \sim \text{Bernoulli}(\boldsymbol{x}_{i,k}^\intercal \boldsymbol{y}_{j,t})$.
 - Positions $x_{i,k} \in \mathcal{X}_k$ are shared across time but are different across layers.
 - Positions $y_{j,t} \in \mathcal{Y}_t$ are shared across layers but vary over time.
 - Estimates of the latent position are obtained via a double unfolding of the adjacency matrices.
 - NIRVAR model and estimator for panels of multivariate time series
 - We model the time series as a VAR process whose parameter matrix is a realisation of a WSBM.
 - We introduce an estimation framework that firstly determines the restrictions to be placed on the VAR parameters and secondly estimates the remaining unrestricted parameters via OLS.
 - The method can be used to estimate VAR parameters when the underlying network is **unobserved**.
 - More details can be found in Martin et al. (2024) (preprint available on arXiv).
 - Martin, B. et al. (2024). "NIRVAR: Network Informed Restricted Vector Autoregression". In: *arXiv e-prints*. arXiv: 2407.13314.

40/43

References I

- Barigozzi, M., H. Cho, and D. Owens (2023). "FNETS: Factor-adjusted network estimation and forecasting for high-dimensional time series". In: Journal of Business & Economic Statistics, pp. 1–13.
- Fan, J., R. P. Masini, and M. C. Medeiros (2023), "Bridging factor and sparse models". In: The Annals of Statistics 51.4, pp. 1692–1717.
- Gallagher, I., A. Jones, and P. Rubin-Delanchy (2021). "Spectral embedding for dynamic networks with stability guarantees". In: Advances in Neural Information Processing Systems. Vol. 34, pp. 10158–10170.
- Guðmundsson, G. S. and C. Brownlees (2021). "Detecting groups in large vector autoregressions". In: Journal of Econometrics 225.1, pp. 2–26.
 - Halterman, A. et al. (2023). PLOVER and POLECAT: A New Political Event Ontology and Dataset. Tech. rep. URL: osf.io/preprints/socarxiv/rm5dw.

41/43

Francesco Sanna Passino Imperial College London Low-rank models for dynamic multiplex graphs and vector autoregressive processes

References II

Hoff, P. D, A. E. Raftery, and M. S. Handcock (2002). "Latent space approaches to social network analysis". In: Journal of the American Statistical Association 97, pp. 1090–1098.

Holland, P. W., K. B. Laskey, and S. Leinhardt (1983). "Stochastic blockmodels: First steps". In: Social *Networks* 5.2, pp. 109 –137.

lones, A. and P. Rubin-Delanchy (2020). "The multilayer random dot product graph". In: arXiv e-prints. arXiv: 2007.10455 [stat.ML].

Karrer, B. and M. E. J. Newman (2011). "Stochastic blockmodels and community structure in networks". In: Physical Review E 83 (1).

Knight, M. et al. (2020). "Generalized Network Autoregressive Processes and the GNAR Package". In: *Journal of Statistical Software* 96, pp. 1–36.

Levin, K. et al. (2017). "A central limit theorem for an omnibus embedding of multiple random graphs and implications for multiscale network inference". In: arXiv e-prints. arXiv: 1705.09355 [stat.ME].

42/43

References III

- Martin, B. et al. (2024). "NIRVAR: Network Informed Restricted Vector Autoregression". In: arXiv e-prints. arXiv: 2407.13314
- Marčenko, V. A. and L. A. Pastur (1967). "Distribution of eigenvalues for some sets of random matrices". In: *Matematicheskii Sbornik* 114.4, pp. 507–536.
- Rubin-Delanchy, P. et al. (2022). "A Statistical Interpretation of Spectral Embedding: The Generalised Random Dot Product Graph". In: *Journal of the Royal Statistical Society Series B* 84.4, pp. 1446–1473.
 - Stock, J. H. and M. W. Watson (2002). "Forecasting using principal components from a large number of predictors". In: *Journal of the American Statistical Association* 97.460, pp. 1167–1179.

43/43