Week 11

BERT-base vs BERT-large

- d model: 768 → 1024
- # heads: 12 → 16
- dk = d_model / # heads: 64 → 64 (self attention parameter size)
- d_ff = 4 * d_model: 3072 → 4096 (feed forward parameter size)

Kernel Group I (U: utilization, P: SP-FLOP/Cycle, T: execution cycle)

- ReLU, Dropout
- Vectorize columns with unit ld/st
- Input x: n x d_ff
 - Doubling Nr_Lanes:
 - U constant, P doubled, T halved
 - Max vl also doubled, d_ff is large enough, we can always use max vl.
 - Increasing d_ff:
 - U, P constant, T linearly increased
 - o Doubling n:
 - U, P constant, T doubled
 - n is not the vector

Kernel Group II

- LayerNorm, Softmax
- Vectorize rows using strid ld/st (stride size = column size)
- Input x: n x dk (Softmax), n x d_model (LayerNorm)
 - Doubling Nr Lanes:
 - U halved, P, T constant
 - vl = n = 64
 - Increasing d_model:
 - U, P constant, T linearly increased
 - o Doubling n:
 - U, P slightly increased, T almost doubled
 - vl doubled, we should expect doubled P, U, constant T
 - reason: strided load performs poorly, still memory bounded

Kernel Group III

- MatMul
- Feed forward layer (nxd_model * d_modelxd_ff, nxd_ff * d_ffxd_model)
 - d_ff and d_model large enough
 - Utilization > 90% (4/8/16 lanes)
- Self attention (nxd_model * d_modelxdk)
 - Doubling Nr_lanes:
 - P, T constant, U halved
 - Increasing d_model:
 - P, U decreased

MatMul

L2 MEM

MatMul

L2 MEM

