Quantum Mechanics and Spectroscopy CHEM 3PA3 Tutorial 7

1. Label the following approximate (unnormalized) molecular orbitals using σ , π , δ , u, g, and +, - designations, and make a rough sketch of the shape of the orbitals. Here, we denote the 1s orbital on the "left-hand" atom as $\psi^{(l)}(\mathbf{r})$, and $\psi^{(r)}(\mathbf{r})$ as the "right-hand" atom.

(a)
$$\psi_{2s}^{(l)}(\mathbf{r}) + \psi_{2s}^{(r)}(\mathbf{r})$$

(e)
$$\psi_{3d_{-2}}^{(l)}(\mathbf{r}) + \psi_{3d_{-2}}^{(r)}(\mathbf{r})$$

(b)
$$\psi_{2s}^{(l)}(\mathbf{r}) - \psi_{2s}^{(r)}(\mathbf{r})$$

(f)
$$\psi_{3d,2}^{(l)}(\mathbf{r}) - \psi_{3d,2}^{(r)}(\mathbf{r})$$

(c)
$$\psi_{2p_x}^{(l)}(\mathbf{r}) + \psi_{2p_x}^{(r)}(\mathbf{r})$$

(g)
$$\psi_{2p_z}^{(l)}(\mathbf{r}) + \psi_{2p_z}^{(r)}(\mathbf{r})$$

(d)
$$\psi_{2p_x}^{(l)}(\mathbf{r}) - \psi_{2p_x}^{(r)}(\mathbf{r})$$

(h)
$$\psi_{2p_z}^{(l)}(\mathbf{r}) - \psi_{2p_z}^{(r)}(\mathbf{r})$$

- 2. Write a Slater determinant of molecular orbitals that is appropriate for the ground state of Li₂²⁺ cation. Label the molecular orbitals with symmetry labels. Use the long form of the Slater determinant, writing out all the rows and columns.
- 3. In Lithium Hydride, LiH, in the molecular orbital approximation, the ground state is predicted to be a singlet state, and the occupied molecular orbitals are both sigma orbitals. The electron configuration can then be written as $1\sigma^2 2\sigma^2$. Let $\phi_{1\sigma}(\mathbf{r})$ and $\phi_{2\sigma}(\mathbf{r})$ denote these molecular orbitals.
 - (a) Write the Slater determinant for the $1\sigma^2 2\sigma^2$ electron configuration of LiH. Write the determinant out in its entirety, showing all the occupied orbitals and the coordinates of all the electrons explicitly. Remember the normalization factor.
 - (b) Write a reasonable expression for the highest (the 2σ) occupied molecular orbital in LiH.
- 4. Draw the molecular orbital diagram for BH₃.
- 5. Draw the molecular orbital diagram for CH₄.

C