Introducción Actividad de la CPU Memoria Dispositivos Entrada/Salida Referencias

Programación y Administración de Sistemas

5. Gestión de los recursos del sistema

Pedro Antonio Gutiérrez y Javier Sánchez Monedero

Asignatura "Programación y Administración de Sistemas"

2º Curso Grado en Ingeniería Informática

Escuela Politécnica Superior

(Universidad de Córdoba)

pagutierrez@uco.es

28 de marzo de 2022

Objetivos del aprendizaje I

- Conocer cuáles son los recursos básicos del sistema operativo (CPU, memoria y espacio en disco) y la necesidad e importancia de su monitorización y gestión.
- Definir los procesos en GNU/Linux y distinguir los modos de ejecución básicos (modo usuario y modo núcleo).
- Establecer los tipos de procesos que pueden ejecutarse en el sistema operativo.
- Utilizar la herramienta ps para ver los procesos en ejecución y sus atributos.
- Explicar el ciclo de vida de un proceso en GNU/Linux desde el punto de vista de su administración, detallando los distintos estados por los que puede pasar.
- Conocer el mecanismo de planificación utilizado en GNU/Linux para ejecutar los procesos.

Objetivos del aprendizaje II

- Utilizar el número nice para modificar la prioridad de los procesos.
- Enviar señales a procesos para controlar su ejecución y distinguir entre el efecto de las distintas señales.
- Monitorizar el tiempo de actividad de un sistema mediante la herramienta uptime.
- Monitorizar el árbol de ejecución de procesos de un sistema mediante la herramienta pstree.
- Monitorizar los procesos en ejecución de forma interactiva mediante la herramienta top.
- Obtener informes sobre la ejecución de procesos en un sistema mediante la herramienta vmstat.
- Conocer el contenido de la carpeta /proc y los ficheros que en ella aparecen para cada uno de los procesos en ejecución.

Objetivos del aprendizaje III

- Postergar la ejecución de procesos mediante el uso de la herramienta at.
- Planificar la ejecución periódica de procesos mediante la herramienta cron.
- Rastrear señales y llamadas al sistema de un determinado proceso mediante la herramienta strace.
- Monitorizar la cantidad de memoria libre mediante la herramienta free.
- Monitorizar el uso de memoria mediante vmstat.
- Decidir el espacio de paginación necesario para un sistema operativo.
- Controlar el espacio en disco mediante las herramientas df y du.
- Monitorizar el rendimiento de los discos mediante el uso de la herramienta iostat.

Contenidos I

- 5.1. Introducción.
- 5.2. Actividad de la CPU.
 - 5.2.1. Procesos en GNU/Linux.
 - 5.2.1.1. Modo de ejecución.
 - 5.2.1.2. Tipos de procesos.
 - 5.2.1.3. Herramienta ps.
 - 5.2.1.4. Estados de los procesos.
 - 5.2.2. Prioridad y señales.
 - 5.2.2.1. Número *nice* y prioridad de procesos.
 - 5.2.2.2. Envío de señales a procesos (kill, killall).
 - 5.2.2.3. Señales más habituales y comportamientos por defecto.
 - 5.2.3. Monitorizar uso CPU.
 - 5.2.3.1. Monitorización de tiempo de actividad mediante uptime.
 - 5.2.3.2. Monitorización de procesos mediante pstree.
 - 5.2.3.3. Monitorización de procesos mediante top.
 - 5.2.3.4. Monitorización de actividad de CPU mediante vmstat.
 - 5.2.3.5. La carpeta /proc.
 - 5.2.4. Programar ejecución de procesos.

Contenidos II

- 5.2.4.1. Ejecución de tareas aplazadas mediante la herramienta at.
- 5.2.4.2. Ejecución de tareas periódicas mediante la herramienta cron.
- 5.2.5. Rastreo de señales y llamadas al sistema.
- 5.3. Memoria.
 - 5.3.1. Monitorización de memoria libre mediante vmstat y free.
 - 5.3.2. Espacio para paginación.
- 5.4. Dispositivos Entrada/Salida.
 - 5.4.1. Monitorización de espacio en disco mediante df y du.
 - 5.4.2. Monitorización de acceso a disco mediante iostat.

Evaluación

- Cuestionarios objetivos.
- Pruebas de respuesta libre.
- Tareas de administración.

Introducción

- Una correcta administración del sistema implica obtener información sobre sus recursos y rendimiento:
 - Procesos en ejecución,
 - cantidad de memoria disponible,
 - espacio en disco,
 - n° de particiones,
 - prioridad de procesos, etc.

Procesos

- Proceso: representa un programa en ejecución (el SO crea el proceso cuando comienza la ejecución y lo elimina al finalizarla). Es una abstracción a través de la cuál la memoria, tiempo de procesador y recursos E/S pueden gestionarse y monitorizarse.
- Un sistema de tiempo compartido como GNU/Linux permite múltiples usuarios que ejecuten múltiples procesos, aunque la CPU solo puede ejecutar un proceso a la vez.
- La CPU conmuta rápidamente de un proceso al siguiente, ejecutando un *cuanto* (por ejemplo, 100ms) de cada proceso.
- El SO es el encargado de decidir qué proceso se ejecuta en qué lugar → planificación de la CPU.

Procesos: modos de ejecución

- Modos de ejecución (distinción para proteger mejor las direcciones de memoria a las que puede acceder un proceso)
 - Modo usuario: se ejecuta código normal del programa.
 - Modo núcleo: se ejecutan las funciones del núcleo (en realidad, es el kernel ejecutándose en nombre del proceso):
 - Llamadas al sistema: Los procesos de usuario solicitan servicios explícitamente a través de la interfaz de llamadas al sistema (p.ej. crear un hilo, abrir un fichero...).
 - Excepciones: Situaciones excepcionales (división por cero, errores de direccionamiento...) causan excepciones hardware que requieren intervención del kernel.
 - Interrupciones: Los dispositivos periféricos interrumpen para notificar al kernel de diversos sucesos (terminación de E/S, cambio de estado...).

Procesos: tipos de procesos I

Procesos de usuario

- Procesos creados por un usuario real.
- Se ejecutan en modo usuario, excepto en los casos anteriores.

Procesos demonio

- No asociados a un usuario, o asociados a uno ficticio.
- Se ejecutan en modo usuario, excepto en los casos anteriores.
- Realizan tareas periódicas relacionadas con la administración del sistema (gestión de la red, crontab...).

Procesos: tipos de procesos II

Procesos núcleo

- No asociados a un usuario.
- Corresponden al código del kernel.
- Se ejecutan siempre en modo núcleo.
- Tareas de administración más delicadas (planificación, intercambio de procesos, intercambio de páginas...).

Procesos: monitorizar con ps

- ps: información sobre los procesos en ejecución
 - USER ⇒ usuario que lanzó el programa.
 - PID ⇒ identificador del proceso.
 - PPID ⇒ identificador del proceso padre (los nuevos procesos se crean clonándose con fork).
 - %CPU ⇒ porcentaje de la CPU consumido por este proceso (en ese momento).
 - %MEM ⇒ fracción de memoria consumida (es una estimación).
 - VSZ ⇒ tamaño virtual (código+datos+pila) en KB.
 - RSS ⇒ memoria real usada en KB (VSZ incluye a RSS).
 - TTY ⇒ terminal asociado con el proceso.

Procesos: monitorizar con ps

- ps: información sobre los procesos en ejecución
 - STAT \Rightarrow estado del proceso.

R: en ejecución	N: prioridad	L: tiene páginas	
	baja (> 0)	bloqueadas en memoria	
S: durmiendo	<:prioridad	s: líder de sesión	
	alta (< 0)		
T: parado (señal o trace)		1: tiene <i>multithread</i>	
Z: proceso <i>zombie</i>		+: proceso foreground	
D: durmiendo			
ininterrumpible (E/S)			

- R: un proceso en ejecución está listo para ejecutarse en cuanto la CPU esté libre. Tiene todos los recursos que necesita y está esperando su cuanto para ejecutarse.
- S: durmiendo, esperando a que ocurra un evento específico (petición I/O, lectura de un socket...). bash y los demonios del sistema pasan casi todo su tiempo durmiendo, esperando la entrada por terminal o que un cliente haga una petición por la red. Estos procesos no recibirán tiempo de CPU hasta que el evento ocurra o que se reciba una señal específica.

Tema 5

D: durmiendo, espera ininterrumpible. Algunas operaciones causan este estado, en el que el proceso no maneja señales, solo despertará cuando pase el evento. Normalmente, el estado D es transitorio y no llegaríamos a verlo en el ps. Sin embargo, determinadas situaciones anómalas hacen que el estado se mantenga (p.ej. pedir un fichero a un servidor NFS al que no podemos acceder y que hemos montado con hard). Solo podemos reiniciar o arreglar el problema.

- Z: zombie, el proceso termina correctamente pero el padre no recoge su código de error → Consultar el PPID para ver el origen del problema.
- T: proceso detenido temporalmente mediante señales (Ctrl+Z) o porque está siendo examinado (trace). Solo volverán a ejecutarse tras otra señal.

 I: idle, este estado se introdujo en 2017 con la versión 4.17 del núcleo. Significa que estamos ante un proceso ocioso de un hilo del núcleo, en espera ininterrumpible. A diferencia del estado D, solo se aplica a procesos del núcleo y no contribuye a la carga de la CPU.

- s: líder de sesión. Los procesos se pueden agrupar. Si se manda una señal al grupo, se le manda a todos los procesos.
 El líder es el que interactúa con la terminal.
- 1: hilos creados con CLONE_THREAD (p.ej. hilos Native Posix Thread Library, NPTL).
- L: el proceso ha pedido al kernel bloquear determinadas páginas de memoria, para evitar que no se modifiquen mientras se hacen determinadas operaciones.
- +: foreground, proceso de primer plano, iniciado sin &.

Introducción Actividad de la CPU Memoria

Dispositivos Entrada/Salida Referencias Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

```
1
    pedroa@pedroa-zenbook:~$ ps aux | less #a-> Todos usuarios, x-> Procesos sin
          terminal, u -> Añadir nombre de usuario
                                                                      TIME COMMAND
 2
    USER
                  PTD
                      %CPU %MEM
                                    VSZ
                                           RSS TTY
                                                         STAT START
                       0.0
                            0.0 166852 11240 ?
                                                              11:50
                                                                      0:02 /sbin/init
    root
                                                        Ss
                       0.0
                             0.0
                                                        S
                                                              11:50
                                                                      0:00 [kthreadd]
    root
                                             0 ?
5
    root
                       0.0
                             0.0
                                                         T <
                                                              11:50
                                                                      0:00 [rcu gp]
6
    root
                       0.0
                             0.0
                                      0
                                             0 ?
                                                        I <
                                                              11:50
                                                                      0:00 [rcu_par_gp]
                                                                      0:00 [ksoftirqd/0]
7
    root
                   12
                       0.0
                             0.0
                                      0
                                             0
                                                        S
                                                              11:50
8
                                                                      0:30 [rcu sched]
    root
                   13
                       0.0
                             0.0
                                             0 ?
                                                         Т
                                                              11:50
9
10
    pedroa
                18651
                            0.0
                                  14096
                                          3400 pts/1
                                                        R.+
                                                              20:36
                                                                      0:00 ps aux
                       0.0
11
    pedroa
                18652
                       0.0 0.0
                                   8140
                                           912 pts/1
                                                        S+
                                                              20:36
                                                                      0:00 less
```

```
pedroa@pedroa-zenbook:~$ ps al #a-> Todos usuarios, 1 -> Formato "long"
1
        UID
                PID
                       PPID PRI
                                  ΝT
                                        VSZ.
                                              RSS WCHAN
                                                          STAT TTY
                                                                           TIME COMMAND
          Ω
               1323
                       1315 20
                                   0 633340 217800 -
                                                          Ssl+ ttv7
                                                                          31:12 /usr/
         lib/xorg/Xorg :0 -seat seat0 -auth /var/run/lightdm/root/:0 -nolisten tcp
         vt7 -novtswitch
4
          Ω
               1324
                           1
                              20
                                       8340
                                             1760 -
                                                          Ss+ ttv1
                                                                           0:00 /sbin/
         agetty -o -p -- \u --noclear tty1 linux
5
       1000
              18303
                      18292
                              20
                                      10644
                                             4860 core_s Ss+
                                                               pts/0
                                                                           0:00 bash
6
                                                               pts/1
       1000
              18649
                      18292
                              20
                                      10644
                                             4912 -
                                                          Ss
                                                                           0:00 bash
       1000
              18718
                      18649
                              20
                                      13816
                                             1308 -
                                                          R+
                                                               pts/1
                                                                           0:00 ps al
```


Control/gestión de la actividad de la CPU

- Número *nice* ("buena gente") y **prioridad de procesos**:
 - Planificación de procesos por prioridades dinámicas.
 - Al lanzar el proceso, se le asigna un número nice o prioridad estática (se hereda por defecto del proceso padre).
 - La prioridad por defecto se obtiene mediante el número *nice*.
 - Valores bajos (negativos): más prioridad.
 - Valores altos (positivos): menos prioridad.
 - Rango de prioridad estática \Rightarrow [-20, 19]
 - Asignación de prioridades mayores o menores que la actual.
 - nice -5 nautilus: lanzar nautilus con n° nice incrementado en 5
 - nice --10 nautilus: lanzar nautilus con nº nice decrementado en 10 (solo **root**).
 - renice 14 890: prioridad 14 al proceso 890.
 - renice 5 -u pedroa: prioridad 5 para todos los procesos del usuario pedroa.

4 D > 4 A > 4 B > 4 B >

- Envío de señales a los procesos (pararlos, hacer que continúen, eliminarlos...):
 - kill -señal pid (donde señal es un número).
 - kill pid: mandar señal por defecto al proceso pid (señal SIGTERM, número 15, se puede capturar).
 - SIGKILL (9) fuerza la salida del proceso. No se puede capturar.
 - Parar un proceso SIGSTOP (19), Reiniciarlo SIGCONT (18).
 - killall comando: permite mandar una señal a todos los procesos con un determinado nombre de comando.
 - pkill ó skill ⇒ enviar una señal usando el nombre u otros atributos o criterios (uid, gid, terminal...).
 - Los procesos en estado D o Z no se detienen pese a recibir la señal KILL.

# Nombre Descripción Por ¿Se puede ¿Core defecto capturar? bloquear? dump? 1 HUP Hang up (terminal) Terminar Si Si No 2 INT Interrumpir (Ctrl+C) Terminar Si Si No 3 QUIT Similar a TERM Terminar Si Si Si No 8 KILL Matar proceso Terminar No No No No 8 BUS Error manejo bus Terminar Si Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si Si 15 TERM Parar software Terminar Si Si Si No 8 STOP Parada Parar No No No No No 15 TSTP Parada (Ctrl+Z) Parar Si Si No 16 CONT Continuar (tras STOP) Continuar Si Si No 17 USR1 A definir Terminar Si Si No 18 USR2 A definir Terminar Si Si No							
1 HUP Hang up (terminal) Terminar Si Si No 2 INT Interrumpir (Ctrl+C) Terminar Si Si No 3 QUIT Similar a TERM Terminar Si Si Si Si 9 KILL Matar proceso Terminar No No No * BUS Error manejo bus Terminar Si Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	#	Nombre	Descripción	Por	¿Se puede	¿Se puede	įcore
2 INT Interrumpir (Ctrl+C) Terminar Si Si No 3 QUIT Similar a TERM Terminar Si Si Si 9 KILL Matar proceso Terminar No No No * BUS Error manejo bus Terminar Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No				defecto	capturar?	bloquear?	dump?
3 QUIT Similar a TERM Terminar Si Si Si 9 KILL Matar proceso Terminar No No No * BUS Error manejo bus Terminar Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	1	HUP		Terminar	Si	Si	No
9 KILL Matar proceso Terminar No No No * BUS Error manejo bus Terminar Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	2	INT	Interrumpir ($Ctrl+C$)	Terminar	Si	Si	No
* BUS Error manejo bus Terminar Si Si Si 11 SEGV Violación de segmento Terminar Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	3	QUIT	Similar a TERM	Terminar	Si	Si	Si
11 SEGV Violación de segmento Terminar Si Si Si 15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	9	KILL	Matar proceso	Terminar	No	No	No
15 TERM Parar software Terminar Si Si No * STOP Parada Parar No No No * TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	*	BUS	Error manejo bus	Terminar	Si	Si	Si
* STOP Parada Parar No No No No TSTP Parada (Ctrl+Z) Parar Si Si No	11	SEGV	Violación de segmento	Terminar	Si	Si	Si
* TSTP Parada (Ctrl+Z) Parar Si Si No * CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	15	TERM	Parar <i>software</i>	Terminar	Si	Si	No
* CONT Continuar (tras STOP) Continuar Si No No * WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	*	STOP	Parada	Parar	No	No	No
* WINCH Cambio tamaño Continuar Si Si No * USR1 A definir Terminar Si Si No	*	TSTP	$Parada\;(Ctrl{+}Z)$	Parar	Si	Si	No
* USR1 A definir Terminar Si Si No	*	CONT	Continuar (tras STOP)	Continuar	Si	No	No
OSKI A definition ferminal St. St. No.	*	WINCH	Cambio tamaño	Continuar	Si	Si	No
* USR2 A definir Terminar Si Si No	*	USR1	A definir	Terminar	Si	Si	No
	*	USR2	A definir	Terminar	Si	Si	No

^{*:} depende del Sistema Operativo.

- KILL (9): No se puede bloquear ni capturar.
- INT (2): La que se envía al pulsar Crtl+C.
 - Se puede bloquear.
 - Si se manda a un intérprete de órdenes, podría cancelar la orden que está ejecutando, pero no el programa completo.
- TERM (15): La que se manda al cerrar el proceso padre o al reiniciar. Se puede bloquear y capturar.
- Diferencia entre STOP y TSP: STOP no se puede ni bloquear ni capturar.

- HUP (1):
 - Si se trata de demonios, debería provocar que se reinicien, volviendo a leer su configuración.
 - Si se trata de procesos iniciados en una terminal, se manda al cerrar la terminal (algunos intérpretes hacen inmunes los procesos background a esta señal, en bash, hay que hacerlo con el comando nohup).
- QUIT (3): Similar a TERM pero hace un core dump.
- TSTP: La que se envía al pulsar Crt1+Z.
- Los procesos detenidos con TSTP o con STOP, se puede reanudar con:
 - la señal CONT, o
 - usando el comando fg (vuelve al foreground) o bg (vuelve al background).

- uptime: hora actual, cuánto tiempo lleva en marcha el sistema, número de usuarios conectados, y carga media del sistema (el número medio de procesos del sistema que durante los últimos 1, 5 y 15 minutos han estado en los estados R o D).
 - Valores altos implican que el sistema se está usando mucho, pero ¿cuándo se considera que un valor es alto? → depende del número de núcleos.
 - Valores bajos no significan que el tiempo de respuesta vaya a ser bajo.

```
pedroa@pedroa-zenbook: $\time 13:31:05 up 1:32, 3 users, load average: 0.18, 0.19, 0.19
```


Control/gestión de la actividad de la CPU

• pstree ⇒ visualiza un árbol de los procesos en ejecución

```
init---NetworkManager---2*[{NetworkManager}]
1
          |--acpid
          I--atd
 4
           --avahi -daemon ---avahi -daemon
          I--bamfdaemon
6
          I--bluetoothd
7
          |--bonobo-activati---2*[{bonobo-activat}]
 8
          |--console-kit-dae---64*[{console-kit-da}]
9
          I--cron
10
          I--cupsd
11
          |--2*[dbus-daemon]
12
          I--dbus-launch
13
          |--dconf-service---{dconf-service}
          |--evince---3*[{evince}]
14
15
          I -- evinced --- { evinced }
16
          |--firefox---plugin-containe---7*[{plugin-contain}]
17
                     |--21*[{firefox}]
18
          |--gconfd-2
```


- top: proporciona una visión continua de la actividad del procesador, en tiempo real, mostrando las tareas que hacen más uso de la CPU. Además, permite manipular procesos de forma interactiva.
 - Las cinco líneas primeras muestran información general:
 - Estadísticas uptime.
 - Resumen de procesos en el sistema: nº procesos, nº procesos en ejecución, durmiendo, parados o zombies.
 - Porcentaje de tiempo de CPU gastado en: modo usuario (us), modo sistema o núcleo (sy), procesos valor nice positivo (ni), tiempo ocioso (id), procesos esperando eventos E/S (wa), tratando interrupciones (hardware o software, hi o si), espera involuntaria en virtualización (st).
 - Estado actual de la memoria física: total disponible, usada, libre, usada en *buffers*.
 - Espacio swap: total disponible, usada, libre, usada en buffers, usada en caché de página.

Introducción Actividad de la CPU Memoria Dispositivos Entrada/Salida Referencias

Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

```
1
    top - 11:33:17 up 2:11, 4 users, load average: 0.12, 0.19, 0.35
    Tasks: 183 total, 1 running, 181 sleeping, 0 stopped, 1 zombie
2
    %Cpu(s): 6.9%us, 2.6%sy, 0.0%ni, 89.8%id, 0.8%wa, 0.0%hi, 0.0%si, 0.0%st
    Mem:
          1012004k total, 970028k used,
                                             41976k free,
                                                              8444k buffers
    Swap: 2080760k total. 507884k used. 1572876k free. 278284k cached
6
7
      PID USER
                    PR.
                       NT
                           VIRT
                                 RES
                                      SHR S %CPU
                                                 %MEM
                                                         TIME+
                                                                COMMAND
8
     1001 root
                    20
                           170m
                                 17m 4496 S
                                              12
                                                 1.7
                                                       30:23.62 Xorg
g
     2489 pagutier 20
                          335m 11m 6200 S
                                               9 1.1
                                                        0:50.35 gnome-terminal
10
     1545 pagutier
                   20
                        0 304m 7240 4112 S
                                               6 0.7
                                                        4:09.81 compiz
11
     2208 pagutier
                           392m 10m 5784 S
                                                 1.0
                                                        4:48.32 plugin-containe
                  20
                                               4
12
                                               3 21.1
                                                        7:50.88 firefox
     2148 pagutier 20
                        0 881m 208m 15m S
13
     5549 pagutier 20
                           763m 22m
                                     12m S
                                               2 2.3
                                                        0:21.16 knotify4
14
     5677 root
                   20
                                        0 S
                                               0.0
                                                        0:00.06 kworker/2:1
                              0
                                   0
15
     5693 pagutier 20
                        0 19460 1500 1060 R
                                               0 0.1
                                                        0:00.12 top
16
     1565 pagutier 20
                        0 320m 6080 4636 S
                                                 0.6
                                                        0:05.66 gnome-power-man
17
     1611 pagutier 20
                        0 534m 10m 4932 S
                                               0 1.0
                                                        0:38.68 dropbox
                           360m 6856 3688 S
                                               0 0.7
18
     1917 pagutier
                  20
                                                        0:28.67 ubuntuone-syncd
     4765 pagutier
19
                  20
                           585m
                                 40m 8980 S
                                                 4.1
                                                        0:52.57 evince
20
      197 root
                    20
                                        0 S
                                                  0.0
                                                        0:02.40 usb-storage
21
      457 messageb 20
                        0 24892 1684
                                      668 S
                                                  0.2
                                                        0:09.26 dbus-daemon
22
      507 avahi
                    20
                        0 32404 1152 800 S
                                                  0.1
                                                        0:09.01 avahi-daemon
23
      513 root
                    20
                           162m 2900 2292 S
                                                  0.3
                                                        0:04.79 NetworkManager
24
     1086 root
                    20
                        0 15784
                                 448
                                      364 S
                                                  0.0
                                                        0:03.76 irgbalance
25
     1478 pagutier 20
                           238m 3908 3144 S
                                                  0.4
                                                        0:01.42 gnome-session
26
     1515 pagutier 20
                        0 26708 2032 560 S
                                                  0.2
                                                        0:12.53 dbus-daemon
27
     1531 pagutier 20
                        0 464m 5392 4264 S
                                                 0.5
                                                        0:20.41 gnome-settings-
28
     1556 pagutier 20
                                                        4:44.00 nautilus
                        0 671m 12m 6984 S
                                                 1.3
29
     1558 pagutier 20
                        0 398m 9304 5460 S
                                                  0.9
                                                        0:30.69 gnome-panel
                           398m 8876 5552 S
30
     1559 pagutier 20
                                                  0.9
                                                        0:09.11 nm-applet
```


Control/gestión de la actividad de la CPU

• top:

- Los datos de la parte inferior son similares a los de ps, excepto:
 - SHR: memoria compartida disponible para ser utilizada.
- Procesos ordenados decrecientemente por uso de CPU.
- Lista actualizada interactivamente, normalmente cada 5s.
- Tareas sobre los procesos:
 - Cambiar la prioridad de alguno utilizando la opción "r".
 - Matar o enviar una señal con la opción "k".
 - Ordenarlos según diferentes criterios (por PID con "N", uso de CPU con "P", tiempo con "T", por memoria con "M", etc.).
 - Con "n" se cambia el número de procesos que se muestran.
 - Para salir se utiliza la letra "q".
 - "u" mostrar un usuario.
 - "R" cambiar ordenación.
 - "1" información independiente por cada procesador.
- http://news.nim.google-nicon-colores (también top + "z").

Introducción
Actividad de la CPU
Memoria
Dispositivos Entrada/Salida
Referencias

2

4

5

6 7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

```
top - 11:33:17 up 2:11, 4 users, load average: 0.12, 0.19, 0.35
Tasks: 183 total, 1 running, 181 sleeping, 0 stopped, 1 zombie
Cpu(s): 6.9%us, 2.6%sy, 0.0%ni, 89.8%id, 0.8%wa, 0.0%hi, 0.0%si,
                                        41976k free,
Mem: 1012004k total, 970028k used,
                                                        8444k buffers
Swap: 2080760k total. 507884k used. 1572876k free.
                                                       278284k cached
  PID USER
               PR
                   NT
                       VIRT
                             RES
                                 SHR S %CPU
                                            %MEM
                                                    TIME+
                                                           COMMAND
 1001 root
                      170m 17m 4496 S
               20
                                         12
                                            1.7
                                                  30:23.62 Xorg
                                                   0:50.35 gnome-terminal
 2489 pagutier 20
                    0 335m 11m 6200 S
                                          9 1.1
 1545 pagutier
              20
                    0 304m 7240 4112 S
                                          6 0.7
                                                   4:09.81 compiz
 2208 pagutier
               20
                       392m 10m 5784 S
                                             1.0
                                                   4:48.32 plugin-containe
                                          3 21.1
 2148 pagutier
              20
                       881m 208m 15m S
                                                   7:50.88 firefox
 5549 pagutier 20
                       763m
                             22m 12m S
                                             2.3
                                                   0:21.16 knotify4
 5677 root
               20
                                   0 S
                                             0.0
                                                   0:00.06 kworker/2:1
 5693 pagutier 20
                    0 19460 1500 1060 R
                                          0 0.1
                                                   0:00.12 top
                                            0.6
                                                   0:05.66 gnome-power-man
 1565 pagutier 20
                       320m 6080 4636 S
 1611 pagutier
               20
                    0 534m 10m 4932 S
                                             1.0
                                                   0:38.68 dropbox
 1917 pagutier 20
                       360m 6856 3688 S
                                             0.7
                                                   0:28.67 ubuntuone-syncd
 4765 pagutier 20
                       585m 40m 8980 S
                                            4.1
                                                   0:52.57 evince
 197 root
               20
                                   0 S
                                            0.0
                                                   0:02.40 usb-storage
  457 messageb 20
                    0 24892 1684 668 S
                                          0 0.2
                                                   0:09.26 dbus-daemon
  507 avahi
                    0 32404 1152 800 S
                                          0 0.1
               20
                                                   0:09.01 avahi-daemon
  513 root
               20
                       162m 2900 2292 S
                                          0 0.3
                                                   0:04.79 NetworkManager
 1086 root
              20
                    0 15784
                            448
                                 364 S
                                          0.0
                                                   0:03.76 irgbalance
 1478 pagutier 20
                       238m 3908 3144 S
                                          0 0.4
                                                   0:01.42 gnome-session
 1515 pagutier
               20
                    0 26708 2032
                                560 S
                                             0.2
                                                   0:12.53 dbus-daemon
 1531 pagutier
               20
                       464m 5392 4264 S
                                             0.5
                                                   0:20.41 gnome-settings-
```


- vmstat: información sobre memoria virtual (y más)
 - $r \Rightarrow$ número de procesos esperando su tiempo de ejecución.
 - ullet b \Rightarrow número de procesos en espera ininterrumpible.
 - us ⇒ tiempo de CPU en modo usuario (modo usuario).
 - sy ⇒ tiempo de CPU en modo sistema (modo núcleo).
 - id ⇒ tiempo de CPU en inactividad.
 - wa \Rightarrow tiempo de CPU usado en espera de E/S.
 - st ⇒ tiempo de CPU usado en virtualización.

```
pedroa@pedroa-zenbook:~$ vmstat 2 5
procs
                                             --io-- -system--
       swpd
                        huff
                 free
          0 10368052 221628 3251020
                                                     142
                                                          482 5
          0 10367408 221636 3251288 0
                                              0 58 1526 7113 4
                                                                            0
          0 10350648 221636 3269616 0
                                              0 0 1165 3711 9
                                                                            0
          0 10351420 221636 3268904
                                                     575 1578 6
                                                                            0
          0 10345792 221636 3274928
                                              0 26 2497 8090 6
                                                                 3 91
```


Carpeta /proc

- ps y top leen la información que necesitan de /proc.
- Cada proceso tiene una carpeta (cuyo nombre es el pid) y en esa carpeta hay información sobre el mismo:
 - cmdline: línea de comandos con que fue iniciado.
 - cwd: enlace simbólico al directorio actual del proceso.
 - environ: Las variables de entorno en el momento de invocación.
 - exe: enlace simbólico al fichero ejecutado.
 - fd: carpeta con cualquier descriptor de fichero abierto.
 - maps: información de mapeo de memoria.
 - root: enlace simbólico a la raíz del sistema (/).
 - stat: estado del proceso.
 - statm: uso de memoria.

- at: ejecutar tareas a una determinada hora.
 - Puede recibir un fichero de texto con las órdenes a ejecutar.
 - Dispone de un prompt para ir introduciendo las órdenes (Ctrl+D para finalizar).
 - atd: demonio que ejecuta las órdenes.
 - atg: consulta la lista de órdenes.
 - atrm: eliminar órdenes.

Control/gestión de la actividad de la CPU

• at: ejecutar tareas a una determinada hora.

```
pagutierrez@pagutierrez -- TOSHIBA: ~ $ at 14:38
    warning: commands will be executed using /bin/sh
    at> echo "HOLA" > /tmp/p2
    at> <EOT>
    job 10 at Sat Mar 16 14:38:00 2019
    pagutierrez@pagutierrez -- TOSHIBA: "$ date
    sáb mar 16 14:37:47 CET 2019
    pagutierrez@pagutierrez -- TOSHIBA: "$ cat /tmp/p2
    cat: /tmp/p2: No existe el fichero o el directorio
10
    pagutierrez@pagutierrez -- TOSHIBA: ~ $ date
11
    sáb mar 16 14:38:01 CET 2019
12
    pagutierrez@pagutierrez -- TOSHIBA: "$ cat /tmp/p2
13
    HOT.A
```


- cron: ejecutar tareas periódicamente.
 - crond: demonio encargado de ejecutar las órdenes.
 - crontab: establecer las tareas a ejecutar (-e: añadir/modificar tareas, -1: listar tareas, -r: eliminar tareas).
 - /etc/crontab: fichero de configuración del administrador.
 - /etc/cron.d: directorio en el que el administrador puede copiar ficheros con formato del crontab que ejecutará cron.

Control/gestión de la actividad de la CPU

- Formato de crontab:
 minuto hora día mes mes día semana [user] comando
- Se interpreta como una conjunción de condiciones, salvo para día_semana y día_mes (que sería disyunción).
- Los domingos son el día 0 y 7 de la semana.

```
# Hacer una copia de seguridad del home cada semana
                    tar -zcf /var/backups/home.tgz /home/
    # Otras tareas
                    $HOME/tareadiaria
                 $HOME/tareames
                                          # 14:15 el día 1 cada mes
    0.22 * * 1-5
                 $HOME/tareasemanal
                                          # 22:0 de lunes a viernes
    21 0-23/2 * * * $HOME/tareacada2horas # 0h, 2h, 4h, 6h, y 21m
                    $HOME/tareadomingos
                                          # Domingos a las 4:05
                    $HOME/otratarea
                                          # A las 9:00h el día 1
10
                                            de cada mes O los viernes
```


Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

Control/gestión de la actividad de la CPU

- Si la máquina no está encendida cuando se ha requerido lanzar el proceso ⇒ cron no lo lanza.
- Se podría hacer 0 10 */3 * * para conseguir algo parecido (lo intentaría a las 10h cada tres días).
- anacron: no asume que la máquina está siempre encendida.
 - Combina el uso de scripts al inicio con el uso de cron.
 - Permite especificar tareas diarias, semanales o mensuales, de forma muy simple.
 - Introducir aplicaciones o enlaces a las mismas en:
 - /etc/cron.daily/
 - /etc/cron.hourly/
 - /etc/cron.monthly/
 - /etc/cron.weekly/

Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

Rastreo de señales y llamadas al sistema

- El comando strace nos permite observar qué es lo que está haciendo un proceso.
- Muestra cada llamada al sistema que hace y cada señal que recibe.
 - strace -p pid: rastrear un proceso ya iniciado.
 - strace comando: iniciar un proceso y rastrearlo.
 - strace -o salida.txt comando: utilizar un fichero para guardar la salida.
- Procesos acaparadores:
 - Como administradores, debemos sospechar cuando un proceso acapara mucha CPU.
 - Antes de matarlos, deberíamos saber qué están haciendo.
 - Si el proceso parece legítimo, deberíamos suspenderlo con STOP, aplicarle renice y reanudarlo con CONT tras hablar con el dueño del proceso. 4 D > 4 A > 4 B > 4 B >

Procesos en GNU/Linux Prioridad y señales Monitorizar uso CPU Programar ejecución de procesos Rastreo de procesos

Rastreo de señales y llamadas al sistema

```
while 1
mkdir adir
cd adir
touch afile
end
```

- No consume mucho espacio, pero bloquea el uso del disco ¿por qué?.
- El árbol que se genera es tan grande, que ni si quiera rm -R es capaz de manejarlo.

- Intercambio y paginación ⇒ memoria virtual para alojar procesos.
- Debemos gestionar la RAM y la zona de intercambio.
- vmstat (todo en KBs):
 - swpd ⇒ Cantidad de memoria virtual (intercambio) ocupada.
 - free ⇒ Cantidad de memoria virtual sin usar.
 - buff ⇒ Cantidad de memoria empleada como buffers para E/S (memoria temporal empleada por algunos dispositivos, p.ej. una tarjeta de red).
 - cache

 La cantidad de memoria empleada como caché de disco.

vmstat:

- si ⇒ Cantidad de memoria traída del espacio de intercambio desde disco en KB/s.
- so \Rightarrow Cantidad de memoria intercambiada al disco en KB/s.
- bi ⇒ Bloques recibidos desde un dispositivo de bloques (en bloques/s).
- bo ⇒ Bloques enviados a un dispositivo de bloques (en bloques/s).
- in \Rightarrow N° de interrupciones por segundo (contando el reloj).
- $cs \Rightarrow N^o$ de cambios de contexto por segundo.

- Espacio para paginación:
 - ¿Qué tamaño es el adecuado para la paginación?. Depende:
 - Memoria requerida por los procesos, número de procesos simultáneos, etc...
 - Demanda del sistema.
 - En portátiles, para posibilitar la hibernación, al menos tanto espacio como memoria RAM.
 - Se puede tener una partición de intercambio o un fichero de intercambio, ¿qué opción es la mejor?
 - Se puede controlar con números de prioridad en /etc/fstab.

- Espacio para paginación:
 - swapon -s: nos da un listado de particiones o ficheros activos.
 - swapon /dev/sdd1: activar una determinada partición.
 - swapoff /dev/sdd1: desactivar una determinada partición.
 - ¿Cómo se crea un fichero de paginación?

```
1 sudo dd if=/dev/zero of=/.fichero_swap bs=1048576 count=1024
2 sudo mkswap /.fichero_swap
3 sudo sync
4 sudo swapon /.fichero_swap
```

• free: obtener información sobre el uso de memoria (mismos campos que top).

- Espacio en disco:
 - df: muestra la capacidad, el espacio libre y el punto de montaje de cada sistema de ficheros del equipo.

```
pedroa@pedroa-zenbook:~$ df -h
   S ficheros
                 Tamaño Usados Disp Uso % Montado en
   udev
                   7.7G
                           0 7.7G 0%/dev
   tmpfs
                  1,6G 1,8M 1,6G 1% /run
   /dev/nvme0n1p6 58G 32G 24G 58% /
  tmpfs
                  7,8G 279M 7,5G 4% /dev/shm
   tmpfs
                  5,0M 4,0K 5,0M 1% /run/lock
   /dev/nvmeOn1p5 314G 131G 167G 45%/home
                                 0 100% /snap/scrcpv/274
   /dev/loop1
               83M
                          83M
10
```

- Si el sistema de ficheros raíz se quedase sin espacio el sistema tendría problemas. P.ej., no podría arrancar, (¿por qué?).
- "-i" nos permite mostrar información sobre los nodos-i.

```
pedroa@pedroa-zenbook: $\(^3\) df -i /dev/nvme0n1p5
S.ficheros Nodos-i NUsados NLibres NUso% Montado en
/dev/nvme0n1p5 20946944 1021112 19925832 5% /home
```


- Espacio en disco:
 - du: muestra el espacio usado por cada subdirectorio del directorio actual.

```
pedroa@pedroa-zenbook: ~/PAS$ du -h --max-depth=1
 196K
                    ./Programa2021
176K
                    ./logs
 32K
                    ./reservas
79M
                    /Evaluacion
45 M
                    ./MaterialDocente
6,9M
                    ./guiaDocente
1.4M
                    ./listaClase
 133M
```

- Si no ponemos --max-depth=1 nos muestra todas las carpetas.
- La última línea es el acumulado.
- ¡OJO! du cuenta bloques del sistema de ficheros, estén o no completamente ocupados (para un fichero de 1B cuenta 4 KB).
- iotop.

- Control de dispositivos de entrada/salida:
 - iostat intervalo numero: presenta estadísticas sobre la CPU y los dispositivos y particiones de E/S.
 - tps \Rightarrow n° de transferencias por segundo.
 - kB_read/s ⇒ n° de kBs leídos por segundo.
 - $kB_{wrtn/s} \Rightarrow n^{\circ}$ de kBs escritos por segundo.
 - kB_read ⇒ n° total de kBs leídos.
 - kB_wrtn ⇒ n° total de kBs escritos.

```
pedroa@pedroa-zenbook:~$ iostat
1
    Linux 5.10.0-0.bpo.3-amd64 (pedroa-zenbook) 07/04/21_x86_64_ (8 CPU)
3
                    %nice %system %iowait
                                                     %idle
    avg-cpu:
              %user
                                            %steal
                      0.10
                              2,67
                                      0,10
                                                     88.75
              8.39
                                              0,00
6
    Device
              tps kB read/s kB wrtn/s kB read kB wrtn
    nvme0n1 12,28
                    134,23 199,12
                                     5031938 7464433
    10000
            0.00
                      0.03
                                0.00
                                         1197
10
    100p1
            0.00
                      0.03
                                0.00
                                         1198
11
            0,00
                      0,04
                                        1336
    loop2
                                0,00
```


Referencias

Unix and Linux system administration handbook. Capítulo 4. *Process Control*, Capítulo 10. *Logging*. Addison-Wesley. 5th Edition. 2018.

Aeleen Frisch.

Essential system administration.

Capítulo 15. Managing system resources.

O'Reilly and Associates. Tercera edición. 2002.

Introducción Actividad de la CPU Memoria Dispositivos Entrada/Salida **Referencias**

Programación y Administración de Sistemas

5. Gestión de los recursos del sistema

Pedro Antonio Gutiérrez y Javier Sánchez Monedero

Asignatura "Programación y Administración de Sistemas"

2º Curso Grado en Ingeniería Informática

Escuela Politécnica Superior

(Universidad de Córdoba)

pagutierrez@uco.es

28 de marzo de 2022

