МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №4
по дисциплине «Вычислительная математика»
Тема: Интерполирование функций

Студент гр. 0303	 Болкунов В.О
Преподаватель	Сучков А.И.

Санкт-Петербург

Цель работы.

Научиться применять интерполирование функции для решения практических задач, овладеть навыками применения интерполяционных формул Лагранжа заданной степени, многочленов Ньютона. Научиться оценивать погрешности интерполяционных формул и работать в программных пакетах с целью проверки полученных результатов.

Основные теоретические положения.

Пусть значение f(x) известно в некоторых точках $X = \{x_j\}_{j=0}^n$, и необходимо найти $f(x): x_i \notin X$. Для этих целей, функцию f(x) приближают функцией $L_n(x) = \sum_{k=0}^n a_k * \varphi_k$, где φ — произвольный базис, удобный для данной f(x). Задача интерполяции — найти обобщённый многочлен. Существует несколько способов нахождения, например, метод Лагранжа. Он даёт готовый интерполяционный многочлен Лагранжа: $L_n(x) = \sum_{i=0}^n f(x_i) * l_i$,

где $l_i(x) = \prod_{k=0; k \neq i}^{n} \frac{x - x_k}{x_i - x_k}$ і-ый базисный полином.

Если узлы, в которых определено значение f(x) являются равноотстоящими, т.е. $x_i = x_0 + i * h$, тогда можно воспользоваться интерполяционным многочленом

Ньютона: $N_n(x) = \sum_{k=0}^n \frac{\Delta^k f_0}{k!} \prod_{j=0}^k (q-j+1)$,где $\Delta^k f_0$ — конечная разность k-го порядка, $q = \frac{(x-x0)}{h}$.

Многочлен Чебышёва первого рода $T_n(x)$ характеризуется как многочлен степени n со старшим коэффициентом 2^{n-1} , который меньше всего отклоняется от нуля на отрезке [-1;1] $T_n(x) = \cos(n*\arccos(x))$. Для натурального n узлы на промежутке $x \in [-1;1]$ задаются формулой:

 $x_k = \cos(\pi \frac{(2k-1)}{2n}), k=1..n$. Это корни многочлена Чебышёва первого рода степени n.

Для получения узлов на произвольном отрезке [a,b], можно применить следующую формулу: $x_k = \frac{a+b}{2} + \frac{b-a}{2} * \cos(\pi \frac{2k-1}{2n}), k=1..n$.После нахождения интерполяционного многочлена, необходимо вычислить и оценить его погрешность. Должно выполнятся следующее неравенство:

$$\max_{x \;\in \; [a,b]} |Rn(x)| \leq \frac{M_{_{n+1}}}{(n+1)!} \max_{x \;\in \; [a,b]} |\omega_{_{n+1}}(x)| = Q_{_n} \quad \text{,где } [a,b] - \text{промежуток интерполирования,}$$

$$\text{где} \quad \begin{array}{l} Rn(x) = f(x) - \ln(x) \\ M_{n+1} = \max_{\eta \in [a,b]} |f^{(n+1)}(\eta)| \\ \omega_{n+1}(x) = \prod_{j=0}^{n} (x - x_j) \end{array}$$

Левая часть неравенства является практической погрешностью, а правая – теоретической.

Постановка задачи.

Построить интерполяционный многочлен по 2, 3, 4, 5 и 6 узлам (равноотстоящим и чебышёвским) для функции $f(x) = \frac{A}{x^2 + px + q}$ на промежутке [a, b] по равноотстоящим и по чебышёвским узлам. Найти фактическую погрешность и сравнить её с теоретической оценкой.

Выполнение работы.

Вариант 5

Значения параметров:

•
$$A = 2000$$

•
$$p = -3$$

- q = 92
- a = 1
- b = 10

Исходная функция: $f(x) = \frac{2000}{x^2 - 3x + 92}$

Полученные интерполяционные многочлены лагранжа для равноотстоящих узлов:

- 1. $L_2 = -1.0973937 * x + 23.3196159$ (график на рис. 1)
- 2. $L_3 = -0.0804237 * x^2 0.2127335 * x + 22.5153794$ (график на рис. 2)
- 3. L_4 =0.0161942* x^3 -0.3486511* x^2 +0.9402149*x+21.6144643 (график на рис. 3)
- 4. $L_5 = -0.0004194 * x^4 + 0.0250898 * x^3 0.4097870 * x^2 + 1.0912740 * x + 21.5160649$ (график на рис. 4)
- 5. $L_6 = -0.0001177 * x^5 + 0.0028540 * x^4 0.0083420 * x^3 0.2572962 * x^2 + 0.79572218 * x + 21.6894022$

(график на рис. 5)

Рисунок 1: равноотстоящие узлы n = 2

Рисунок 2: равноотстоящие узлы n = 3

Рисунок 3: равноотстоящие узлы n=4

Рисунок 4: равноотстоящие узлы n = 5

Рисунок 5: равноотстоящие узлы n = 6

Полученные интерполяционные многочлены лагранжа для чебышёвской сетки:

- 1. $L_2 = -1.2520526 * x + 25.0214891$ (график на рис. 6)
- 2. $L_3 = -0.0788664 * x^2 0.3042979 * x + 22.9718762$ (график на рис. 7)
- 3. $L_4 = 0.0164487 * x^3 0.3523949 * x^2 + 0.9590024 * x + 21.5858276$ (график на рис. 8)
- 4. $L_5 = -0.0004164 * x^4 + 0.0250162 * x^3 0.4094480 * x^2 + 1.0952447 * x + 21.4933733$ (график на рис. 9)
- 5. $L_6 = -0.0001173 * x^5 + 0.0028688 * x^4 0.0087933 * x^3 0.2538748 * x^2 + 0.7875103 * x + 21.6924138$

(график на рис. 10)

Рисунок 6: чебышёвская сетка n = 2

Рисунок 7: чебышёвская сетка n = 3

Рисунок 8: чебышёвская сетка n = 4

Рисунок 9: чебышёвская сетка n = 5

Рисунок 10: чебышёвская сетка n = 6

Результаты оценки погрешностей методов выбора узлов интерполяции: для равноотстоящих узлов и для чебышёвской сетки соответственно в (табл. 1) и (табл. 2)

Таблица 1: Интерполяция по равноотстоящим узлам

Значние п	1	2	3	4	5
Значение М _{п+1}	0.11948645	0.12235638	0.066395156	0.010811812	0.011780057
Значение $\max \omega_{n+1}(x) $	0	35.074021	45.562043	209.40597	171.72915
Значение (n+1)!	2	6	24	120	720
Значение Q _n	0	0.71525503	0.12604579	0.018867149	0.0028096932
Значение $\max R_n(x))$	1.9035288	0.58610992	0.057757813	0.032779955	0.0067391678

Таблица 2: Интерполяция по чебышёвской сетке

Значние п	1	2	3	4	5
Значение М _{п+1}	0.11948645	0.12235638	0.066395156	0.010811812	0.011780057
Значение $\max \omega_{n+1}(x) $	10.125000	22.781250	51.257813	115.33008	259.49268
Значение (n+1)!	2	6	24	120	720
Значение Q _n	0.60490017	0.46457188	0.14180293	0.010391059	0.0042456089
Значение $\max R_n(x))$	1.5472142	0.39897689	0.039430160	0.018449253	0.0031806201

На основании данных из таблиц можно сделать вывод что в общем случае практическая погрешность интерполяции приближается к теоретической при увеличении количества узлов интерполяции, но также можно заметить что для интерполяционных многочленов построенных по сетке Чебышёва теоретическая и практическая погрешность отличаются значительно меньше.

Выводы.

В ходе работы

- была реализована функция для вычисления интерполяционного многочлена Лагранжа,
- были произведены вычисления по равноотстоящей и чебышёвской сетке для [2 ... 6] узлов интерполяции,
- были оценены теоретические и практические погрешности интерполяции для двух методов выбора узлов.
- Из полученных результатов можно сделать вывод что интерполяционный многочлен построенный по чебышёвской сетке более устойчивый к феномену Рунге.

Приложение. Код программы. Уравнение.

Файл f.m

```
function y = f(x)

y = 2000 ./ (x .^ 2 - 3 * x + 92);

endfunction
```

Файл df.m

```
function d = df(x, n = 1)
 Z = 2*x - 3;
 F = (x .^2 - 3 * x + 92);
 switch (n)
  case 1
    d = -2000 .* Z ./ F.^2;
  case 2
    d = 2000 .* (2*Z.^2 ./ F.^3 .- 2 ./ F.^2);
  case 3
    d = 2000 .* (12*Z ./ F.^3 .- 6*Z.^3 ./ F.^4);
  case 4
    d = 2000 .* (24*Z.^4 ./ F.^5 .- 72*Z.^2 ./ F.^4 .+ 24 ./ F.^3);
  case 5
    d = 2000 \cdot * (-120*Z.^5 \cdot / F.^6 \cdot + 480*Z.^3 \cdot / F.^5 \cdot - 360*Z \cdot / F.^4);
    d = 2000 \cdot * (720*Z.^6 \cdot / F.^7 \cdot - 3600*Z.^4 \cdot / F.^6 \cdot + 4320*Z.^2 \cdot / F.^5 \cdot - 720 \cdot / F.^4);
 endswitch
endfunction
```

Файл chebishev.m

```
function x = \text{chebishev}(a, b, n, k)

x = (a + b) / 2 + (b - a) * \cos(pi * (2*k - 1) / (2*n)) / 2;

endfunction
```

Файл lagrange.m

```
function L = lagrange(X, f = @f)
L = 0;
for i = 1:length(X)
    x = X(X != X(i));
    li = [1, -x(1)];
    for j = 2:length(x)
        li = conv(li, [1, -x(j)]);
    endfor
    li = f(X(i)) .* li ./ prod(X(i) .- x);
    L = L + li;
endfor
endfunction
```

Файл solve_eq_range.m

```
function solve_eq_range(n = 2)
 a = 1; b = 10;
 R = linspace(a, b, n);
 L = lagrange(R, @f);
 scatter(R, f(R)), hold on;
 X = linspace(a, b, 1000);
 Y1 = f(X);
 Y2 = polyval(L, X);
 plot(X, Y1, "r--;f(x);");
 plot(X, Y2, "b;Ln(x);"), hold off;
 polyout(L, 'x');
 M = max(df(X, n))
 w = max(arrayfun(@(x) prod(x .- R), X))
 nfact = factorial(n)
 Qn = M * w / nfact
 Rn = max(abs(Y1 - Y2))
```

endfunction

Файл solve_chebishev.m

```
function solve_chebishev(n = 2)
 a = 1; b = 10;
 R = arrayfun(@(k) chebishev(a, b, n, k), 1:n);
 L = lagrange(R, @f);
 scatter(R, f(R)), hold on;
 X = Iinspace(a, b, 1000);
 Y1 = f(X);
 Y2 = polyval(L, X);
 plot(X, Y1, "r--;f(x);");
 plot(X, Y2, "b;Ln(x);"), hold off;
 polyout(L, 'x');
 M = max(df(X, n))
 w = max(arrayfun(@(x) prod(x .- R), X))
 nfact = factorial(n)
 Qn = M * w / nfact
 Rn = max(abs(Y1 - Y2))
```

endfunction