

At each node:

Choose variable and split point that achieve best fit.

At each node:

Best split is quantified with a function.

$$G = \frac{n_{left}}{N_m} H_{left} + \frac{n_{right}}{N_m} H_{right}$$

G is the impurity (loss) function.

Two terms: one from the left child, and one from the right child.

$$G = \frac{n_{left}}{N_m} H_{left} + \frac{n_{right}}{N_m} H_{right}$$

G is the impurity (loss) function.

Weighted by the fraction of samples at each child.

Decision trees: classification

$$G = \frac{n_{left}}{N_m} H_{left} + \frac{n_{right}}{N_m} H_{right}$$

pmk = proportion of
observations of class k
at each node

Gini
$$oldsymbol{ o}$$
 $H(X_m) = \sum_k p_{mk} (1-p_{mk})$

Entropy
$$igoplus H(X_m) = -\sum_k p_{mk} \log(p_{mk})$$

Misclassification
$$igoplus H(X_m) = 1 - \max(p_{mk})$$

Decision trees: regression

$$G = \frac{n_{left}}{N_m} H_{left} + \frac{n_{right}}{N_m} H_{right}$$

Sum of squares
$$igoplus H(Q_m) = rac{1}{n_m} \sum_{y \in Q_m} (y - ar{y}_m)^2$$

Poisson deviance
$$igoplus H(Q_m) = rac{1}{n_m} \sum_{y \in Q_m} (y \log rac{y}{ar{y}_m} - y + ar{y}_m)$$

Mean absolute error
$$igoplus H(Q_m) = rac{1}{n_m} \sum_{y \in Q_m} |y - median(y)_m|$$

Process:

Continues until stopping criteria.

Loss function -> feature importance

$$G = \frac{n_{left}}{N_m} H_{left} + \frac{n_{right}}{N_m} H_{right}$$

The loss function is used to infer feature importance.

THANK YOU

www.trainindata.com