Chapter 4

Sho Shirasaka, December 16, 2022

Exercise 4.2.

By taking derivatives of both sides of $f^{-1} \circ f(x) = x$, we obtain

$$D_{f(x)}(f^{-1}) \cdot D_x f = \mathbf{I}. \tag{0.1}$$

Exercise 4.5.

Consider a characteristic polynomial

$$f(x) = x^2 - \text{tr}(A)x + \text{det}(A).$$
 (0.2)

Its descriminant is $\operatorname{tr}(A)^2 - 4\operatorname{det}(A) > 2^2 - 4 = 0$. Moreover, f(0) = 1 > 0 and $f(1) = 2 - \operatorname{tr}(A) < 0$. Hence the two eigenvalues λ_1, λ_2 of A are real and positive and satisfy $\lambda_1 < 1 < \lambda_2$.

The matrix A can be diagonalized as $A = P \operatorname{diag}(\lambda_1, \lambda_2) P^{-1}$ since the eigenvalues are distinct. Let us define $y = P^{-1}x$. This conjugates $x \mapsto Ax$ and $y \mapsto \operatorname{diag}(\lambda_1, \lambda_2)y$. An orbit in the y-coordinate can be expressed as $(\lambda_1^n y_1(0), \lambda_2^n y_2(0))_{n \in \mathbb{Z}}, (y_1(0), y_2(0)) \in \mathbb{R}^2$. The orbit belongs to $y_1 y_2 = y_1(0) y_2(0) = \operatorname{const}$, since $\lambda_1 \lambda_2 = \det(A) = 1$. This is a hyperbola if $y_1(0)y_2(0) \neq 0$ and a line otherwise. An image of a linear transformation of a hyperbola (resp. a line) by a regular matrix x = Py is a hyperbola (resp. a line). Thus each orbit of the linear map $x \mapsto Ax$ belongs to a hyperbola (or a line in a degenerate situation).

Exercise 4.10.

This answer greatly relies on [1] but somewhat elementalized and concretized.

Let f_1, f_2 be C^n and

$$Q_k(\omega) = \left\{ \pi = (\pi_1, \dots, \pi_k) \mid \emptyset \neq \pi_i \subset \omega, \bigcup_{i=1}^k \pi_i = \omega, \ \pi_i \cap \pi_j = \emptyset \text{ and } \min \pi_i < \min \pi_j \text{ for all } i < j \right\}, \quad (0.3)$$

$$Q(\omega) = \bigcup_{k=1}^{|\omega|} Q_k(\omega), \quad Q(\emptyset) = \{\emptyset\}, \quad Q(n) = Q(\{1, \dots, n\}).$$

$$(0.4)$$

Then the Faá di Bruno's formula is given as [2, Sec. 2.4]¹

$$D^{n}(f_{1} \circ f_{2})(x)\eta_{\omega} = \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f_{1}(f_{2}(x)) \left(D^{|\pi_{1}|} f_{2}(x) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} f_{2}(x) \eta_{\pi_{k}} \right), \tag{0.5}$$

where for any $\pi = (\pi_1, \dots, \pi_k)$ let $|\pi| = k$ denote its length and for any finite subset $\omega = \{\omega_1, \dots, \omega_n\}$ of \mathbb{N} ,

$$\eta_{\omega} = (\eta_{\sigma(\omega_1)}, \cdots, \eta_{\sigma(\omega_n)}) \tag{0.6}$$

where σ is a permutation and $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$.

Let $\tilde{g}(x) := (x, g(x))$. We take the *n*-th derivatives of the both sides of

$$g \circ f^{s}(\eta, g(\eta)) = f^{u}(\eta, g(\eta)) \Leftrightarrow g \circ f^{s} \circ \tilde{g}(\eta) = f^{u} \circ \tilde{g}(\eta)$$

$$(0.7)$$

¹Note that how the sum is taken in the last expression in the page. 97 is somewhat vague.

and apply the rule (0.5).

$$(l.h.s): D^{n}(g \circ f^{s} \circ \tilde{g})(0)(\eta_{1}, \dots, \eta_{n})$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k}(g \circ f^{s})(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)$$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l}g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\tau_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, D^{|\pi_{k}|} f^{s}(0) \left(D^{|\pi_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}} \right)_{\tau_{1}}$$

(r.h.s): $D^n(f^{\mathbf{u}} \circ \tilde{g})(0)(\eta_1, \dots, \eta_n)$

$$= \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f^{\mathbf{u}}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right). \tag{0.9}$$

Here, we defined

$$\left(D^{|\pi_1|}\tilde{g}(0)\eta_{\pi_1},\dots,D^{|\pi_k|}\tilde{g}(0)\eta_{\pi_k}\right)_{\omega} = \left(D^{|\pi_{\sigma(\omega_1)}|}\tilde{g}(0)\eta_{\pi_{\sigma(\omega_1)}},\dots,D^{|\pi_{\sigma(\omega_n)}|}\tilde{g}(0)\eta_{\pi_{\sigma(\omega_n)}}\right),$$
(0.10)

where $\sigma(\omega_1) < \cdots < \sigma(\omega_n)$. Thus we obtain

$$\sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} \sum_{\substack{\tau \in \mathcal{Q}(k) \\ (k:=|\pi|)}} D^{l} g(0) \left(D^{|\tau_{1}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{1}}, \dots, \right) \\
D^{|\tau_{l}|} f^{s}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right)_{\tau_{l}} \right) = \sum_{\substack{\pi \in \mathcal{Q}(n) \\ (k:=|\pi|)}} D^{k} f^{u}(0) \left(D^{|\pi_{1}|} \tilde{g}(0) \eta_{\pi_{1}}, \dots, D^{|\pi_{k}|} \tilde{g}(0) \eta_{\pi_{k}} \right). \tag{0.11}$$

Let D_s, D_u denote differentiation w.r.t E^s, E^u respectively. Let $x_1 \in E^s, x_2 \in E^u$. The linearization of the mapping f at the origin is

$$Df(0) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} D_{\mathbf{s}} f^{\mathbf{s}}(0) & D_{\mathbf{u}} f^{\mathbf{s}}(0) \\ D_{\mathbf{s}} f^{\mathbf{u}}(0) & D_{\mathbf{u}} f^{\mathbf{u}}(0) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}. \tag{0.12}$$

The linearized dynamics is invariant on E^{s} and E^{u} , thus

$$D_{\rm u}f^{\rm s}(0) = 0, D_{\rm s}f^{\rm u}(0) = 0.$$
 (0.13)

Let us denote $A_s := D_s f^s(0), A_u := D_u f^u(0)$. By definition $\sigma(A_s)$ (resp. $\sigma(A_u)$) is included inside (resp. outside) the unit circle, where $\sigma(A)$ is the spectrum of A.

Let us derive a few concrete n-th order equations from (0.11).

We can see that

$$Df^{s}(0)D\tilde{g}(0) = (D_{s}f^{s}(0) \ D_{u}f^{s}(0)) \begin{pmatrix} I \\ Dq(0) \end{pmatrix} = A_{s},$$
 (0.14)

$$Df^{\mathrm{u}}(0)D\tilde{g}(0) = A_{\mathrm{u}}Dg(0). \tag{0.15}$$

Thus the first order equation is equivalent to the Sylvester equation

$$Dg(0)A_{\rm s}\eta - A_{\rm u}Dg(0)\eta = 0.$$
 (0.16)

To analyze and solve the Sylvester equation, we resort to the trick of the Kronecker form. Let us denote a space of n-multilinear maps of E_1, \dots, E_n to E_0 by $\mathcal{L}(E_1, \dots, E_n; E_0)$. For $\nu = 1, \dots, n$ let $(e_{\nu,1}, \dots, e_{\nu, \dim E_{\nu}})$ be an

ordered basis of E_{ν} and let $(e_{\nu,1}^*, \dots, e_{\nu,\dim E_{\nu}}^*)$ be its dual. Then the space $\mathcal{L}(E_1, \dots, E_n; E_0) = E_n^* \otimes \dots \otimes E_1^* \otimes E_0$, where \otimes means a tensor product, has a basis

$$(e_{n,r_n}^* \otimes \cdots \otimes e_{1,r_1}^* \otimes e_{0,r_0})_{(r_n,\cdots,r_0)}, \quad (r_n \cdots, r_0) \in \prod_{k=n}^0 \{1,\cdots,\dim E_k\}.$$
 (0.17)

We order the basis (0.17) lexicographically with priority to the first components of (r_n, \dots, r_0) . A multilinear map $\tilde{U} \in \mathcal{L}(E_1, \dots, E_n; E_0)$ has a coordinate representation $U \in \mathbb{R}^{\dim E_0 \times \dim E_1^* \times \dots \times \dim E_n^*}$ as

$$\tilde{U} = \sum_{(r_n \cdots, r_0) \in \prod_{k=n}^0 \{1, \cdots, \dim E_k\}} U_{r_0 r_1 \cdots r_n} e_{n, r_n}^* \otimes \cdots \otimes e_{1, r_1}^* \otimes e_{0, r_0}. \tag{0.18}$$

Let vec: $\mathbb{R}^{J_1 \times \cdots \times J_N} \to \mathbb{R}^{\prod_{i=1}^N J_i}$ be a vectorization operator

$$(\operatorname{vec}(U))_i = U_{j_1 \cdots j_N} \quad \text{with} \quad i = 1 + \sum_{l=1}^N \left[(j_l - 1) \prod_{l'=1}^{l-1} J_{l'} \right].$$
 (0.19)

By $U \times_n A \in \mathbb{R}^{J_1 \times \cdots J_{n-1} \times I \times J_{n+1} \times \cdots \times J_N}$ we denote an *n*-mode product of a tensor [3] $U \in \mathbb{R}^{J_1 \times \cdots \times J_N}$ with a matrix $A \in \mathbb{R}^{I \times J_n}$, defined as

$$(U \times_n A)_{j_1 \dots j_{n-1} i j_{n+1} \dots j_N} = \sum_{j_n=1}^{J_n} U_{j_1 \dots j_N} A_{i j_n}. \tag{0.20}$$

An action of $\tilde{U} \in E_n^* \otimes \cdots \otimes E_1^* \otimes E_0$ on $(\tilde{h}_1, \cdots, \tilde{h}_n, \tilde{h}_0^*) \in \prod_{i=1}^n E^n \times E_0^*$ is rewritten in the coordinate representation as $U \times_1 h_0^* \times_2 h_1^* \times_3 \cdots \times_{n+1} h_n^*$. The vec operation on this representation provides a convenient Kronecker form (this is a special case of [3, Proposition 3.7 (b)])

$$\operatorname{vec}(U \times_1 h_0^* \times_2 h_1^* \times_3 \dots \times_{n+1} h_n^*) = (h_n^* \otimes \dots \otimes h_1^* \otimes h_0^*) \operatorname{vec}(U), \tag{0.21}$$

where \otimes denotes the Kronecker product. In the following, we identify any multilinear map and elements in E^{s} , E^{u} as their coordinate representation.

Let $p = \dim E^{s}$, $q = \dim E^{u}$. From (0.16), it is obvious that for any $\eta_0^{\top} \in E^{u*}$, $\eta_1 \in E^{s}$

$$\eta_0^{\top} Dg(0) A_{\mathbf{s}} \eta_1 - \eta_0^{\top} A_{\mathbf{u}} Dg(0) \eta_1 = 0$$

$$\Leftrightarrow \operatorname{vec} \left(Dg(0) \times_1 \eta_0^{\top} \times_2 \eta_1^{\top} A_{\mathbf{s}}^{\top} \right) - \operatorname{vec} \left(Dg(0) \times_1 \eta_0^{\top} A_{\mathbf{u}} \times_2 \eta_1^{\top} \right) = 0 \quad (\because \operatorname{vec}(\cdot) \text{ is linear})$$

$$\Leftrightarrow (\eta_1^{\top} A_{\mathbf{s}}^{\top} \otimes \eta_0^{\top} I_q - \eta_1^{\top} I_p \otimes \eta_0^{\top} A_{\mathbf{u}}) \operatorname{vec} \left(Dg(0) \right) = 0 \quad (\because (\mathbf{0.21}))$$

$$\Leftrightarrow (\eta_1^{\top} \otimes \eta_0^{\top}) \cdot (A_{\mathbf{s}}^{\top} \otimes I_q - I_p \otimes A_{\mathbf{u}}) \operatorname{vec} \left(Dg(0) \right) = 0 \quad (\because (AB) \otimes (CD) = (A \otimes C) \cdot (B \otimes D))$$

$$\Leftrightarrow (A_{\mathbf{s}}^{\top} \otimes I_q - I_p \otimes A_{\mathbf{u}}) \operatorname{vec} \left(Dg(0) \right) = 0 \quad (\because \eta_0, \eta_1 \text{ are arbitrary}).$$

$$(0.22)$$

The following theorem is well-known [4, Thm. 4.4.5].

Theorem 0.1.

If
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}, \sigma(B) = \{\mu_1, \dots, \mu_m\}, \text{ then } \sigma(I_m \otimes A + B \otimes I_n) = \{\lambda_i + \mu_j \mid i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}.$$

This implies $A_{\rm s}^{\top} \otimes I_q - I_p \otimes A_{\rm u}$ is regular since $\sigma(A_{\rm s})$ (resp. $\sigma(A_{\rm u})$) is included inside (resp. outside) the unit circle. Therefore Dg(0) = 0.

The second order equation of (0.11) is

$$D^{2}g(0)(A_{s}\eta_{1}, A_{s}\eta_{2}) - Df^{u}(0)D^{2}\tilde{g}(0)(\eta_{1}, \eta_{2}) = D^{2}f^{u}(0)(D\tilde{g}(0)\eta_{1}, D\tilde{g}(0)\eta_{2}). \tag{0.23}$$

In the second term of the l.h.s., the first p columns of $Df^{\mathrm{u}}(0)$ are zeros, so the first p mode-1 slices of $D^2\tilde{g}(0)$ do not contribute to the term, i.e., $Df^{\mathrm{u}}(0)D^2\tilde{g}(0)(\eta_1,\eta_2)=A_{\mathrm{u}}D^2g(0)(\eta_1,\eta_2)$. Also, components of $D^2f^{\mathrm{u}}(0)$ of

indices larger than p+1 do not contribute to the r.h.s. since Dg(0)=0. Namely, $D^2f^{\mathrm{u}}(0)(D\tilde{g}(0)\eta_1,D\tilde{g}(0)\eta_2)=D_{\mathrm{s}}^2f^{\mathrm{u}}(0)(\eta_1,\eta_2)$. Then we obtain a multilinear Sylvester equation. For any $\eta_0^{\top}\in E^{\mathrm{u}*}, \eta_1,\eta_2\in E^{\mathrm{s}}$

$$\eta_0^{\top} D^2 g(0) (A_{\mathbf{s}} \eta_1, A_{\mathbf{s}} \eta_2) - \eta_0^{\top} A_{\mathbf{u}} D^2 g(0) (\eta_1, \eta_2) = \eta_0^{\top} D_{\mathbf{s}}^2 f^{\mathbf{u}}(0) (\eta_1, \eta_2)
\Leftrightarrow (A_{\mathbf{s}}^{\top} \otimes A_{\mathbf{s}}^{\top} \otimes I_q - I_{n^2} \otimes A_{\mathbf{u}}) \operatorname{vec} \left(D^2 g(0) \right) = \operatorname{vec} \left(D_{\mathbf{s}}^2 f^{\mathbf{u}}(0) \right) \quad (\because \eta_0, \eta_1, \eta_2 \text{ are arbitrary}).$$
(0.24)

The theorem 0.1 and the following one [4, Thm. 4.2.12]

Theorem 0.2.

If
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}, \sigma(B) = \{\mu_1, \dots, \mu_m\}, \text{ then } \sigma(A \otimes B) = \{\lambda_i \mu_j \mid i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}.$$

lead to the regularity of $(A_s^{\top} \otimes A_s^{\top} \otimes I_q - I_{p^2} \otimes A_u)$. Thus we obtain

$$D^{2}g(0) = \operatorname{vec}^{-1}\left[(A_{s}^{\top} \otimes A_{s}^{\top} \otimes I_{q} - I_{p^{2}} \otimes A_{u})^{-1} \operatorname{vec}\left(D_{s}^{2} f^{u}(0)\right) \right]. \tag{0.25}$$

Similarly, the higher order equation of (0.11) lead to a multilinear Sylvester equation of a unique solution, which can be explicitly written using a more complicated Kronecker form.

Exercise 4.12.

Inverse map is obtained as

$$\begin{cases} x' = x - 1.6y'(1 - y'^2) \\ y' = y + 1.6x(1 - x^2) \end{cases}$$
 (0.26)

The jacobian of f is given as

$$Df(x,y) = \begin{pmatrix} 1 & 1.6(1-3y^2) \\ -1.6(1-3x'^2) & 1-1.6^2(1-3y^2)(1-3x'^2) \end{pmatrix}.$$
 (0.27)

f is injective and $\det(Df(x,y)) \equiv 1$, so f is area-preserving. The fixed points (x_*,y_*) s satisfy simultaneous equations $y(1-y^2)=0, x(1-x^2)=0$, so $(x_*,y_*)\in\{0,1,-1\}^2$. If $\operatorname{tr}(Df(x_*,y_*))^2-4\det(Df(x_*,y_*))=\operatorname{tr}(Df(x_*,y_*))^2-4>0$, f is hyperbolic at the fixed point and non-hyperbolic otherwise.

$$\operatorname{tr}\left(Df(x_*,y_*)\right)^2 - 4 = -1.6^2 \times 4(1 - 3y_*^2)(1 - 3x_*^2) + 1.6^4(1 - 3y_*^2)^2(1 - 3x_*^2)^2 > 0$$

$$\Leftrightarrow g(x_*,y_*) := 4 - 1.6^2(1 - 3y_*^2)(1 - 3x_*^2) \begin{cases} < 0 & \text{if } |x_*| + |y_*| \neq 1 \\ > 0 & \text{otherwise} \end{cases} \cdot (\because x_*, y_* \text{ are not irrational}) \tag{0.28}$$

We evaluate g on the fixed points as

$$g(0,0) = 4 - 1.6^{2} > 0$$

$$g(0,\pm 1) = g(\pm 1,0) = 4 + 1.6^{2} \times 2 > 0$$

$$g(\pm 1,\pm 1) = 4 - 4 \times 1.6^{2} < 0.$$
(0.29)

Therefore, (0,0) is non-hyperbolic and the others are hyperbolic.

Exercise 4.20.

We take inner product with $\xi - \eta$ on both sides of $\xi = \eta + (\xi - \eta)$ as

$$(\xi - \eta, \xi) = (\xi - \eta, \eta) + ||\xi - \eta||^2$$

$$\Leftrightarrow 2 - 2\cos\theta = ||\xi - \eta||^2.$$
(0.30)

Then

$$||A\xi - A\eta||^2 = ||A\xi||^2 + ||A\eta||^2 - 2(A\xi, A\eta) \ge ||A\xi||^2 + ||A\eta||^2 - 2||A\xi|| \cdot ||A\eta|| = (\varrho^{-1} - \varrho)^2$$

$$(0.31)$$

$$||A\xi - A\eta||^2 \le ||A||_2^2 ||\xi - \eta||^2 = ||A||_2^2 (2 - 2\cos\theta) \ (\because \text{Eq. } (0.30)). \tag{0.32}$$

Thus the desired inequality is derived.

Exercise 4.21.

Let $v = \xi + \eta, \xi \in E^{\mathrm{u}}, \eta \in E^{\mathrm{s}}$. Let $\lambda_{\mathrm{s}}, C_{\mathrm{s}}$ (resp. $\lambda_{\mathrm{u}}, C_{\mathrm{u}}$) be constants which make all tangent vectors in E^{s} (resp. E^{u}) stable and define $C = \max(C_{\mathrm{s}}, C_{\mathrm{u}})$ and $\lambda = \max(\lambda_{\mathrm{s}}, \lambda_{\mathrm{u}})$. Also let $P_{\mathrm{s}}, P_{\mathrm{u}}$ be projections onto $E^{\mathrm{s}}, E^{\mathrm{u}}$.

$$\langle v, v \rangle \ge ||\xi||^2 + ||\eta||^2 \ge ||\xi + \eta||^2 = (v, v),$$
 (0.33)

$$\langle v,v\rangle \leq \frac{C_{\rm s}^2||\xi||^2}{1-\lambda_{\rm s}^{2\epsilon}} + \frac{C_{\rm u}^2||\eta||^2}{1-\lambda_{\rm u}^{2\epsilon}} \leq \frac{C^2}{1-\lambda^{2\epsilon}}(||\xi||^2+||\eta||^2) = \frac{C^2}{1-\lambda^{2\epsilon}}(||P_{\rm u}v||^2+||P_{\rm s}v||^2)$$

$$\leq \frac{C^2}{1 - \lambda^{2\epsilon}} (||P_{\mathbf{u}}||_2^2 + ||P_{\mathbf{s}}||_2^2)(v, v). \tag{0.34}$$

Thus we can take $D = \max\left(1, \frac{C^2}{1-\lambda^{2\epsilon}}(||P_{\mathbf{u}}||_2^2 + ||P_{\mathbf{s}}||_2^2)\right)$.

Exercise 4.22.

Let $M = \max_{||x|| \le \epsilon} ||D^2Q(x)||$, $N = \max_{||x|| \le \epsilon} ||D\varphi(x/\epsilon)||$. These maxima exist because D^2Q , $D\varphi$ are continuous and the closed ball is compact. The Taylor theorem for $Q \in C^2$ [Sec. 4.5][5] says that

$$Q(x) = Q(0) + DQ(0)x + R_1(x) = R_1(x) \ (\because Q(0) = 0, DQ(0) = 0), \tag{0.35}$$

$$DQ(x) = DQ(0) + R_2(x) = R_2(x), (0.36)$$

where R_1, R_2 are remainder terms. For x in the closed ball of radius ϵ , the mean value inequalities for the remainder terms [Thm. 4.C][5] lead to

$$||Q(x)|| = ||R_1(x)|| \le \frac{1}{2!} \sup_{0 \le \tau \le 1} ||D^2 Q(\tau x)(x, x)|| \le \frac{1}{2!} \sup_{0 \le \tau \le 1} ||D^2 Q(\tau x)|| \cdot ||x|| \cdot ||x|| \le \frac{M}{2} ||x|| \cdot ||x||$$

$$\leq \frac{M\epsilon^2}{2} \tag{0.37}$$

$$||DQ(x)|| = ||R_2(x)|| \le \sup_{0 \le \tau \le 1} ||D^2Q(\tau x)x|| \le M||x|| \le M\epsilon.$$
(0.38)

The differential of Q_{ϵ} is

$$DQ_{\epsilon}(x) = \frac{1}{\epsilon} D\varphi(x/\epsilon)Q(x) + \varphi(x/\epsilon)DQ(x). \tag{0.39}$$

Then

$$||DQ_{\epsilon}(x)|| \le \frac{1}{\epsilon}||D\varphi(x/\epsilon)|| \cdot ||Q(x)|| + ||\varphi(x/\epsilon)|| \cdot ||DQ(x)|| \le \frac{M(N+2)}{2}\epsilon. \tag{0.40}$$

Exercise 4.23.

 $(\mathcal{H}_{\alpha} \text{ is a normed vector space}) \text{ If } \beta, \gamma \in \mathbb{R} \text{ and } f, g \in \mathcal{H}_{\alpha}, \text{ Then }$

$$||\beta f + \gamma g||_{\mathcal{H}_{\alpha}} = \sup_{x \neq y} \frac{||\beta (f(x) - f(y)) + \gamma (g(x) - g(y))||}{||x - y||^{\alpha}} \le \sup_{x \neq y} \frac{\beta ||f(x) - f(y)||}{||x - y||^{\alpha}} + \sup_{x \neq y} \frac{\gamma ||g(x) - g(y)||}{||x - y||^{\alpha}} < \infty.$$

$$(0.41)$$

$$\beta f(0) + \gamma g(0) = 0.$$

So, $\beta f + \gamma g \in \mathcal{H}_{\alpha}$. Also, Eq. (0.41) for $\beta = \gamma = 1$ includes the triangle inequality. The other conditions to be a norm is trivial. Hence \mathcal{H}_{α} is a normed vector space.

(Completeness) Consider a Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in \mathscr{H}_{α} . This is also Cauchy in a space of continuous functions endowed with sup-norm, say, BC(E). BC(E) is complete, so the sequence has a limit in BC(E). We denote the limit as f.

Every Cauchy sequence in a metric space is bounded, so $||f_n||_{\mathscr{H}_{\alpha}} \leq M$ for all $n \in \mathbb{N}$ and some $M \in \mathbb{R}$. Hence

$$||f||_{\mathcal{H}_{\alpha}} = \lim_{n \to \infty} ||f_n||_{\mathcal{H}_{\alpha}} \text{ (:: the norm is continuous)} \le M < \infty.$$
 (0.43)

Therefore $f \in \mathcal{H}_{\alpha}$.

Next, we show $f_n \to f$ in \mathcal{H}_{α} . For any $\epsilon > 0$, there exists N > 0 such that $||f_p - f_q||_{\mathcal{H}_{\alpha}} < \epsilon$ whenever $p, q \ge N$ since $\{f_n\}$ is Cauchy. Then for any $n \ge N$

$$||f - f_n||_{\mathscr{H}_{\alpha}} = \lim_{m \to \infty} ||f_m - f_n||_{\mathscr{H}_{\alpha}}$$
 (: the norm is continuous) $\leq \epsilon$. (0.44)

Thus $f_n \to f$ in \mathcal{H}_{α} .

Therefore \mathscr{H}_{α} is complete.

Exercise 4.24.

 $R^{\rm u}(0,0) = 0, R^{\rm s}(0,0) = 0 \text{ since } R \in \mathcal{H}_{\alpha}.$ Hence

$$\Psi^{\mathbf{u}}(R)(0,0) = (L^{\mathbf{u}})^{-1} R^{\mathbf{u}}(0,0) - (L^{\mathbf{u}})^{-1} Q_{\epsilon}^{\mathbf{u}}(0,0) = 0 \ (\because Q(0) = 0)$$

$$\Psi^{\mathbf{s}}(R)(0,0) = L^{\mathbf{s}} R^{\mathbf{s}}(0,0) + Q_{\epsilon}^{\mathbf{s}}(0,0) = 0.$$
(0.45)

Exercise 4.25.

The C^2 regularity is used to prove $||DQ_{\epsilon}|| \leq C\epsilon$. This inequality is used to bound $||\Psi(r) - \Psi(r')||_{\mathscr{H}_{\alpha}}$. To derive the inequality regarding $||\Psi(r) - \Psi(r')||_{\mathscr{H}_{\alpha}}$, Q_{ϵ} need not satisfy $||DQ_{\epsilon}|| \leq C\epsilon$. Instead, it is enough for Q_{ϵ} to be Lipschitz continuous of its Lipschitz constant $C\epsilon$.

Let \mathcal{B}_{ϵ} be a closed ball of radius ϵ centered at the origin. Every continuous functions on a compact domain is globally Lipschitz, so DQ is globally Lipschitz on \mathcal{B}_{ϵ} . Let K be the Lipschitz constant of DQ, then for all $x \in \mathcal{B}_{\epsilon}$

$$||DQ(x)|| = ||DQ(x) - DQ(0)|| \le K||x|| \le K\epsilon. \tag{0.46}$$

Let L be the Lipschitz constant of Q on \mathcal{B}_{ϵ} , then [6, Lem. 3.1]

$$L = \sup_{x \in \mathcal{B}_{\epsilon}} ||DQ(x)|| \le K\epsilon. \tag{0.47}$$

For $x, y \in \mathcal{B}_{\epsilon}$, the mean value inequalities for the remainder terms lead to

$$||Q(x)|| \le \sup_{0 \le \tau \le 1} ||DQ(\tau x)x|| \le K\epsilon^2. \tag{0.48}$$

Let M be the global Lipschitz constant of φ on \mathcal{B}_1 . Q_{ϵ} is zero outside the closed ball, so we can limit us to consider the ball to evaluate the Lipschitz constant. For $x, y \in \mathcal{B}_{\epsilon}$,

$$||Q_{\epsilon}(x) - Q_{\epsilon}(y)|| = ||\varphi(x/\epsilon)Q(x) - \varphi(y/\epsilon)Q(y)||$$

$$\leq ||\varphi(x/\epsilon) - \varphi(y/\epsilon)|| \cdot ||Q(x)|| + ||\varphi(y/\epsilon)|| \cdot ||Q(x) - Q(y)||$$

$$\leq \frac{M}{\epsilon}||x - y||K\epsilon^{2} + 1 \cdot K\epsilon||x - y|| = K(M + 1)\epsilon||x - y||$$
(0.49)

Thus Q_{ϵ} is Lipschitz continuous of its Lipschitz constant C_{ϵ} , where C can be taken as K(M+1).

Exercise 4.35.

Let us assume Λ is compact (at the beginning of this chapter, the compactness of M is assumed but seems frequently violated (for example, $M = \mathbb{R}^n$)). In fact, in many literatures a uniformly hyperbolic set is defined to be compact.

Let $||\cdot||_{T_xM}$ be an arbitrary norm and $||\cdot||_{*,T_xM}$ be is associated Lyapunov metric. Let $n_0 \in \mathbb{N}$ such that $C\lambda^{n_0} < 1$ in the Definition 4. 16 in the text². Then, as in the solution of Exercise 4.20, we obtain

$$1 - \cos \theta_x \ge \frac{(C^{-1}\lambda^{-n_0} - C\lambda^{n_0})^2}{||D_x f^{n_0}||_2^2},\tag{0.50}$$

where θ_x is the angle between $E_x^{\rm s}$ and $E_x^{\rm u}$. $||D_x f^{n_0}||_2^2$ is bounded above on Λ since Λ is compact. Hence the r.h.s of (0.50) is uniformly bounded away from zero on Λ . Let $\mu \in (0,1)$ be a (x-independent) lower bound of the r.h.s.

Let $v = \xi + \eta, \xi \in E_x^{\mathrm{u}}, \eta \in E_x^{\mathrm{s}}$. As in the solution of Exercise 4.21,

$$||v||_{\mathcal{T}_x M} \le ||v||_{*, \mathcal{T}_x M}. \tag{0.51}$$

Also,

$$||v||_{\mathcal{T}_{xM}} = ||\xi||_{\mathcal{T}_{xM}}^2 + ||\eta||_{\mathcal{T}_{xM}}^2 - 2\cos\theta_x ||\xi||_{\mathcal{T}_{xM}} ||\eta||_{\mathcal{T}_{xM}}$$

$$\geq ||\xi||_{\mathcal{T}_{xM}}^2 + ||\eta||_{\mathcal{T}_{xM}}^2 - 2(\mu - 1)||\xi||_{\mathcal{T}_{xM}} ||\eta||_{\mathcal{T}_{xM}} = (1 - \mu)||\xi - \eta||_{\mathcal{T}_{xM}}^2 + \mu(|\xi||_{\mathcal{T}_{xM}}^2 + ||\eta||_{\mathcal{T}_{xM}}^2)$$

$$\geq \mu(|\xi||_{\mathcal{T}_{xM}}^2 + ||\eta||_{\mathcal{T}_{xM}}^2). \tag{0.52}$$

Then

$$||v||_{*,T_xM} \le \frac{C^2}{1 - \lambda^{2\epsilon}} (||\xi||_{T_xM}^2 + ||\eta||_{T_xM}^2) \le \frac{C^2}{\mu(1 - \lambda^{2\epsilon})} ||v||_{T_xM}. \tag{0.53}$$

 $C, \mu, \lambda, \epsilon$ are independent of $x \in \Lambda$. Hence, from (0.52, 0.53), the Lyapunov metric is uniformly equivalent to the original one.

References

- [1] Wolf-Jürgen Beyn and Winfried Kleß. Numerical taylor expansions of invariant manifolds in large dynamical systems. *Numerische Mathematik*, 80(1):1–38, 1998.
- [2] Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu. *Manifolds, tensor analysis, and applications*, volume 75. Springer Science & Business Media, 2012.
- [3] Tamara Gibson Kolda. Multilinear operators for higher-order decompositions. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA ..., 2006.
- [4] Horn Roger and R Johnson Charles. Topics in matrix analysis, 1994.
- [5] Eberhard Zeidler. Applied functional analysis: main principles and their applications, volume 109. Springer Science & Business Media, 2012.
- [6] Hemant Kumar Pathak. An introduction to nonlinear analysis and fixed point theory. Springer, 2018.

²Note that C > 0 is independent of $x \in \Lambda$ for a uniformly hyperbolic set. This seems implicitly assumed in the text.