Лекция 13 по курсу «Дискретные преобразования сигналов» 30 апреля 2024 г.

9. Быстрое преобразование Фурье.

Алгоритм БПФ для составной размерности N.

Алгоритмы БПФ с основанием 2.

Разбиение N-точечного ДПФ на два N/2-точечных.

Алгоритм БПФ с основанием 4.

Эффективное вычисление свертки с использованием БПФ.

Быстрое преобразование Фурье (БПФ)

5.4. Быстрое преобразование Фурье.

Быстрое преобразование Фурье (БПФ, *англ. FFT*) представляет собой эффективный метод вычисления дискретного преобразования Фурье (ДПФ).

Его эффективность заключается в существенном уменьшении числа операций умножения и суммирования, затрачиваемых для получения всех N коэффициентов ДПФ.

В этой лекции будем использовать запись ДПФ

$$X[n] = \sum_{k=0}^{N-1} x[k] \exp\left(-j\frac{2\pi}{N}nk\right)$$
 (1)

в виде

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk},$$
 (2)

где $W_N^{nk} = \exp \left(-j \frac{2\pi}{N} nk \right)$ — дискретные экспоненциальные функции, $n=0,1,2,\ldots,N-1$.

Если все множители W_N^{nk} заранее вычислены, то прямое вычисление всех N коэффициентов ДПФ X[n] по формуле (2) требует порядка N^2 операций вида «комплексное умножение плюс сложение». Асимптотическая сложность алгоритма $O(N^2)$.

Алгоритмы БПФ позволяют заметно сократить число операций при вычислении всех коэффициентов ДПФ для некоторых размерностей N. Например, если N является степенью числа 2, то асимптотическая сложность алгоритма БПФ $O(N\log_2 N)$.

Алгоритм БПФ для составной размерности $\,N\,$

Основная идея БПФ состоит в том, чтобы разбить исходную N-точечную последовательность на две более короткие последовательности, из ДПФ которых можно получить ДПФ исходной N-точечной последовательности.

Предположим, что размерность ДПФ представима составным числом

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_p \tag{3}$$

Рассмотрим случай двух сомножителей:

$$N = N_1 N_2. (4)$$

При этом входной массив из N отсчетов x[k] можно разбить на N_2 блоков по N_1 элементов в каждом.

k_2	k_1					
	0	1	2	•••	N ₁ -1	
0	<i>x</i> [0]	<i>x</i> [1]	<i>x</i> [2]	•••	$x[N_1-1]$	
1	$x[N_1]$	$x[N_1+1]$	$x[N_1+2]$	•••	$x[2N_1-1]$	
•••	•••					
N_2 -1	$x[N_1(N_2-1)]$	$x[N_1(N_2-1)+1]$	$x[N_1(N_2-1)+2]$	•••	<i>x</i> [<i>N</i> –1]	

Например, для N = 35, $N_1 = 7$, $N_2 = 5$.

k ₂	k ₁						
	0	1	2	3	4	5	6
0	<i>x</i> [0]	x[1]	<i>x</i> [2]	<i>x</i> [3]	<i>x</i> [4]	<i>x</i> [5]	<i>x</i> [6]
1	<i>x</i> [7]	<i>x</i> [8]	<i>x</i> [9]	<i>x</i> [10]	<i>x</i> [11]	<i>x</i> [12]	<i>x</i> [13]
2	x[14]	<i>x</i> [15]	<i>x</i> [16]	<i>x</i> [17]	<i>x</i> [18]	<i>x</i> [19]	<i>x</i> [20]
3	<i>x</i> [21]	<i>x</i> [22]	<i>x</i> [23]	<i>x</i> [24]	<i>x</i> [25]	<i>x</i> [26]	<i>x</i> [27]
4	<i>x</i> [28]	<i>x</i> [29]	<i>x</i> [30]	<i>x</i> [31]	<i>x</i> [32]	<i>x</i> [33]	<i>x</i> [34]

Расположив блоки один под другим, получаем двумерный массив. Элементы двумерного массива соответствуют одномерному как

$$k = N_1 k_2 + k_1, (5)$$

$$x[k_2, k_1] = x[N_1k_2 + k_1]. {(6)}$$

Первое слагаемое соответствует целому числу (k_2) блоков, предшествующих номеру k, а второе слагаемое определяет номер элемента в блоке, содержащем номер k.

ДПФ также представим в виде двумерного массива с индексами n_1 и $n_2, n_1=0,\ 1,\ 2,...,\ N_1-1;$ $n_2=0,\ 1,\ 2,...,\ N_2-1.$

n_1	n_2					
	0	1	2	•••	N_2 -1	
0	<i>X</i> [0]	<i>X</i> [1]	<i>X</i> [2]	•••	$X[N_2-1]$	
1	$X[N_2]$	$X[N_2+1]$	$x[N_2+2]$	•••	$X[2N_2-1]$	
•••	•••					
N_1 –1	$X[N_2(N_1-1)]$	$X[N_2(N_1-1)+1]$	$X[N_2(N_1-1)+2]$	•••	<i>X</i> [<i>N</i> –1]	

Например, для N = 35, $N_1 = 7$, $N_2 = 5$.

n ₁	n ₂				
	0	1	2	3	4
0	<i>X</i> [0]	<i>X</i> [1]	<i>X</i> [2]	<i>X</i> [3]	<i>X</i> [4]
1	<i>X</i> [5]	<i>X</i> [6]	<i>X</i> [7]	<i>X</i> [8]	<i>X</i> [9]
2	<i>X</i> [10]	<i>X</i> [11]	<i>X</i> [12]	<i>X</i> [13]	<i>X</i> [14]
3	<i>X</i> [15]	<i>X</i> [16]	<i>X</i> [17]	<i>X</i> [18]	<i>X</i> [19]
4	<i>X</i> [20]	<i>X</i> [21]	<i>X</i> [22]	<i>X</i> [23]	<i>X</i> [24]
5	<i>X</i> [25]	<i>X</i> [26]	<i>X</i> [27]	<i>X</i> [28]	<i>X</i> [29]
6	<i>X</i> [30]	<i>X</i> [31]	<i>X</i> [32]	<i>X</i> [33]	<i>X</i> [34]

Одномерный индекс n может быть представлен в виде

$$n = N_2 n_1 + n_2, (7)$$

$$X[n_1, n_2] = X[N_2 n_1 + n_2]. (8)$$

Для базисной функции ДПФ W_N^{nk} с учетом (5) и (7) можем записать

$$W_N^{nk} = W_N^{(N_2n_1+n_2)(N_1k_2+k_1)} = W_N^{Nn_1k_2} W_N^{N_1n_2k_2} W_N^{N_2n_1k_1} W_N^{n_2k_1}.$$

Учитывая, что

$$W_N^{Nn_1k_2} = \exp\left(-j\frac{2\pi}{N}Nn_1k_2\right) = \exp\left(-j2\pi n_1k_2\right) = 1;$$

$$W_N^{N_1 n_2 k_2} = \exp\left(-j\frac{2\pi}{N_1 N_2} N_1 n_2 k_2\right) = \exp\left(-j\frac{2\pi}{N_2} n_2 k_2\right) = W_{N_2}^{n_2 k_2},$$

$$W_N^{N_2 n_1 k_1} = \exp\left(-j\frac{2\pi}{N_1 N_2} N_2 n_1 k_1\right) = \exp\left(-j\frac{2\pi}{N_1} n_1 k_1\right) = W_{N_1}^{n_1 k_1},$$

получаем

$$W_N^{nk} = W_{N_1}^{n_1 k_1} W_N^{n_2 k_1} W_{N_2}^{n_2 k_2}.$$
(9)

При этом ДПФ

$$X[n] = \sum_{k=0}^{N-1} x[k] W_N^{nk}.$$
 (10)

Подставим (9) в (10). Используя (6) и (8), получаем

$$X[n_1, n_2] = \sum_{k_1=0}^{N_1-1} W_{N_1}^{n_1 k_1} \cdot W_N^{n_2 k_1} \sum_{\substack{k_2=0 \ \text{поворота}}}^{N_2-1} x[k_2, k_1] W_{N_2}^{n_2 k_2}.$$
(11)

Этапы вычисления коэффициентов ДПФ по формуле (11).

1) Вычисление N_2 -точечных ДПФ с ядром $W_N^{k_2 \cdot n_2}$ по столбцам матрицы $x[k_2,\ k_1]$:	$O(N_1(N_2)^2)$
$Y[k_1, n_2] = \sum_{k_2=0}^{N_2-1} x[k_2, k_1] W_{N_2}^{n_2 k_2}.$	
2) Умножение на поворачивающие	$O(N_1N_2)$
множители $W_N^{n_{\scriptscriptstyle 2}k_{\scriptscriptstyle 1}}$	
$Z[k_1, n_2] = Y[k_1, n_2] W_N^{n_2 k_1};$	
3) Вычисление ДПФ с ядром $W_{N_{\scriptscriptstyle 1}}^{n_{\scriptscriptstyle 1}\cdot k_{\scriptscriptstyle 1}}$	$O(N_2(N_1)^2)$
$X[n_1, n_2] = \sum_{k_1=0}^{N_1-1} Z[k_1, n_2] W_{N_1}^{n_2 \cdot k_1}.$	

Сложность алгоритма

$$O(N_1(N_2)^2 + N_1 \cdot N_2 + N_2 \cdot (N_1)^2) = O(N(N_1 + N_2 + 1)).$$

Для больших N это существенно меньше $O(N^2)$.

Пример. Пусть требуется вычислить ДПФ с основанием 39203 = 197*199. Тогда

$$N(N_1 + N_2 + 1) = 15563591,$$

 $N^2 = 1536875209.$

Пример. ДПФ с основанием $N = 6 = 2 \cdot 3$ ($N_1 = 2, N_2 = 3$).

k ₂	k ₁		
	0	1	
0	<i>x</i> [0]	<i>x</i> [1]	
1	<i>x</i> [2]	<i>x</i> [3]	
2	<i>x</i> [4]	<i>x</i> [5]	

k ₂	k ₁		
	0	1	
0	<i>x</i> [0, 0]	x[0,1]	
1	<i>x</i> [1, 0]	<i>x</i> [1, 1]	
2	<i>x</i> [2, 0]	x[2, 1]	

$$X[n_1,n_2] = \sum_{k_1=0}^{1} W_2^{n_1k_1} \cdot W_6^{n_2k_1} \sum_{k_2=0}^{2} x[k_2,k_1] W_3^{n_2k_2}.$$

Вектор поворота 3 - точечные ДПФ

k ₂	k ₁		
	0	1	
0	<i>x</i> [0]	<i>x</i> [1]	
1	<i>x</i> [2]	<i>x</i> [3]	
2	<i>x</i> [4]	<i>x</i> [5]	

$$X[n_1,n_2] = \sum_{k_1=0}^{1} W_2^{n_1k_1} \cdot W_6^{n_2k_1} \sum_{k_2=0}^{2} x[k_2,k_1] W_3^{n_2k_2}.$$

вектор поворота 3 - точечные ДПФ

- Для столбца $k_1=0$ поворачивающие множители $W_6^{n_2k_1}=W_6^0=1$, и умножение на них можно не производить.
- Для столбца $k_1 = 1$ значения повторяющих множителей зависят от того, для вычисления каких отсчетов 6-точечного ДПФ далее используются результаты.

Для
$$n_2=1$$
 получаем $W_6^1=\exp(-j2\pi/6)=\exp(-j\pi/3)$, для $n_2=2$ получаем $W_6^2=\exp(-j2\pi2/6)=\exp(-j2\pi/3)$.

- Нижний индекс на графах алгоритма БПФ для поворачивающих множителей, как правило, не указывают, если он совпадает с размерностью БПФ.
- Умножение на поворачивающие множители обозначено стрелками, рядом с которыми записаны значения коэффициентов $W_6^{n_2 \cdot k_1}$. Точкой обозначены ячейки памяти.
- В графе алгоритма необходимо определить базовые операции (здесь 3-х и 2-х точечные ДПФ).

Алгоритмы БПФ с основанием 2.

Разбиение N-точечного ДПФ на два N/2-точечных.

Рассмотрим случай, когда N является степенью двойки. Пусть в (4) $N_1=2,\ N_2=N\,/\,2,$ тогда на первой итерации N-точечное ДПФ представляется через двухточечные и $N\,/\,2$ -точечные ДПФ:

$$X[n_1, n_2] = \sum_{k_1=0}^{1} W_2^{n_1 \cdot k_1} W_N^{n_2 \cdot k_1} \sum_{k_2=0}^{(N/2)-1} W_{N/2}^{n_2 \cdot k_2} x[k_2, k_1].$$
 (12)

Эта же схема вычислений может быть использована на следующей итерации для получения каждого из N/2-точечных ДПФ. В результате перейдем к N/4-точечным ДПФ и т. д., пока не останутся только двухточечные ДПФ.

Этот подход лежит в основе алгоритмов БПФ с основанием 2, в которых N является степенью двух.

Рассмотрим сначала пример алгоритма БПФ для $N\!=\!4\!=\!2\!\cdot\!2$, а затем для $N\!=\!8\!=\!2\!\cdot\!2\!\cdot\!2$.

Пусть ДП Φ_2 вычисляется для последовательности x[0], x[1].

$$X[n] = \sum_{k=0}^{1} x[k]W_2^{nk} = x[0] + W_2^n x[1].$$

где $W_2^n = 1$ при n = 0и $W_2^n = -1$ при n = 1.

Поэтому 2-х точечное ДПФ не содержит умножений.

$$x[0]$$
 • $X[0]=x[0] + x[1]$
 $x[1]$ • $X[1]=x[0] - x[1]$

Пример. Граф алгоритма БПФ с основанием 2 для N=4.

Граф алгоритма БПФ для N=4 .

Разделим последовательность x[k] из N=4 отсчетов на $N_2=2$ блока по $N_1=2$ элемента в каждом. Получим массив $x[k_2,k_1]=x[2k_2+k_1].$

$$X[n_1,n_2] = \sum_{k_1=0}^{1} W_2^{n_1 \cdot k_1} \cdot \underbrace{W_4^{n_2 \cdot k_1}}_{\text{вектор поворота}} \underbrace{\sum_{k_2=0}^{1} x[k_2,k_1] W_2^{n_2 \cdot k_2}}_{\text{двухточечное ДПФ}}.$$

На первом этапе для каждого $k_1 = 0, 1$ вычисляются

двухточечные ДПФ
$$Y[n_2] = \sum_{k_2=0}^{1} x[k_2, k_1] W_2^{n_2 \cdot k_2}$$
.

Двухточечные ДПФ, домноженные на векторы поворота $W_N^{n_2 \cdot k_1}$:

$$Y_{k_1}[n_2] = W_N^{n_2 \cdot k_1} \sum_{k_2=0}^{1} x[k_2, k_1] W_2^{n_2 \cdot k_2}, n_2 = 0, 1.$$

При $n_2 = 0$ и $k_1 = 0$ поворачивающие множители $W_4^{n_2 \cdot k_1} \equiv 1$.

При $n_2=1$ поворачивающие множители $W_4^{k_1}$, $k_1=0,1$. Нижний индекс в схеме можно опустить, если он равен размерности ДПФ (четырем).

Далее результаты поступают на два двух-точечных ДПФ $n_1=0,1,2,3$:

$$X[n_1 + 2n_2] = X[n_1, n_2] = \sum_{k_1=0}^{1} Y_{k_1}[n_2] W_2^{n_1 \cdot k_1}.$$

Заметим, что порядок отсчетов на входе схемы прямой, а на выходе — с инверсией разрядов. В случае четырех-точечного ДПФ значения двоичных разрядов в точности соответствуют k_2 , k_1 и n_1 , n_2 .

Пример. Граф алгоритма БПФ по основанию 2 с прореживанием по частоте для N=8.

Граф алгоритма БПФ с прореживанием по частоте для $\,N=8$.

Разделим последовательность x[k] из N=8 отсчетов на

 $N_2 = 2\,$ блока по $N_1 = 4\,$ элемента в каждом.

$$X[n_{1},n_{2}] = \sum_{k_{1}=0}^{3} W_{4}^{n_{1}\cdot k_{1}} \cdot \underbrace{W_{8}^{n_{2}\cdot k_{1}}}_{\text{вектор}} \underbrace{\sum_{k_{2}=0}^{1} x[k_{2},k_{1}] W_{2}^{n_{2}\cdot k_{2}}}_{\text{двухточечное ДПФ}}.$$
 (13)

$$x[k_2, k_1] = x[4k_2 + k_1].$$

На первом этапе для каждого $k_1=0,1,2,3$ вычисляются двухточечные ДПФ

$$Y[n_2] = \sum_{k_2=0}^{1} x[k_2, k_1] W_2^{n_2 \cdot k_2}$$

Двухточечные ДПФ, домноженные на векторы поворота $W_N^{n_2 \cdot k_1}$:

$$Y_{k_1}[n_2] = W_N^{n_2 \cdot k_1} \sum_{k_2 = 0}^{1} x[k_2, k_1] W_2^{n_2 \cdot k_2}, n_2 = 0, 1.$$

При $n_2=0$ поворачивающие множители $W_8^{n_2\cdot k_1}=W_8^0\equiv 1$ и их на графе указывать не обязательно.

При $n_2 = 1$ поворачивающие множители $W_8^{k_1}$, $k_1 = 0, 1, 2, 3$. Нижний индекс в схеме можно опустить, если он равен размерности ДПФ (восьми).

Далее результаты поступают на два 4-точечных ДПФ $n_1 = 0, 1, 2, 3$:

$$X[n_1, n_2] = \sum_{k_1=0}^{3} Y_{k_1}[n_2] W_4^{n_1 \cdot k_1}.$$

Блоки четырехточечного ДПФ нами уже получены, $W_8^2 = W_4^1$.

Граф алгоритма БПФ с прореживанием по частоте для $\,N=8.$

Номер	Двоичное	Инверсия	Разрядно-инверсный
	представление	разрядов	порядок
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Пример. Граф алгоритма БПФ с прореживанием по времени для N=8.

Граф алгоритма БПФ с прореживанием по времени для $\,N=8$.

$$X[n_1,n_2] = \sum_{k_1=0}^{1} W_2^{n_1 \cdot k_1} \cdot W_8^{n_2 k_1} \sum_{k_2=0}^{3} x[k_2,k_1] W_2^{n_2 k_2}$$
. (14)

двухточечные ДПФ

Пояснения к примеру.

Формула (14) отличается от (13) порядком вычисления. При прореживании по времени сначала вычисляются 4-х точечные ДПФ, затем они умножаются на поворачивающие множители, а затем на последнем шаге считаются двухточечные ДПФ.

Для представленного графа алгоритма БПФ с прореживанием по времени характерны:

- разрядно-инверсный порядок входных отсчетов,
- прямой порядок коэффициентов ДПФ .

Для аналогичного графа алгоритма БПФ с прореживанием по частоте характерны:

- прямой порядок входных отсчетов,
- разрядно-инверсный порядок коэффициентов ДПФ.

Граф алгоритма БПФ с прореживанием по времени для $\,N=8$.

Оценка числа операций для БПФ N=8:

- 5 умножений,
- 12 двухточечных ДПФ: 24 операции вида «сложение/вычитание».

Оценка числа операций при работе прямого алгоритма:

- 7*8=56 сложений (7 сложений на каждый отсчет),
- 7*7=49 умножений (умножения не требуются для X[0]).

Алгоритм БПФ с основанием 4

Пусть N является степенью 4. Тогда можно записать

$$N = N/4 \cdot 4$$
 $(N = N_1 \cdot N_2; N_1 = N/4, N_2 = 4).$

Разобьем последовательность x[k] на $N_2=4$ блока с номерами $k_2=0,\ 1,\ 2,\ 3.$ Каждый из блоков будет содержать по $N_1=N/4$ элементов с номерами $k_1=0,1,2,...,N/4-1.$

$$k = (N/4) \cdot k_2 + k_1.$$

$$n = 4n_1 + n_2,$$

$$nk = (4n_1 + n_2)[(N/4) \cdot k_2 + k_1] =$$

$$= Nn_1 \cdot k_2 + 4n_1 \cdot k_1 + (N/4) \cdot n_2 \cdot k_2 + n_2 \cdot k_1.$$

Подставив это в формулу для ДПФ, получаем

$$X[n] = X[n_1, n_2] = \sum_{k_1=0}^{N/4-1} W^{4n_1 \cdot k_1} W^{n_2 \cdot k_1} \sum_{k_2=0}^{3} x[k_2, k_1] W^{(N/4) \cdot n_2 \cdot k_2}.$$

В свою очередь вычисление каждого из N/4 -точечных ДПФ можно разбить на рассмотренные этапы, используя представление $N/4 = (N/16)\cdot 4$ и т. д. Процесс уменьшения размерности ДПФ продолжается до тех пор, пока не останутся 4-точечные ДПФ.

Эффективное вычисление свертки с использованием БПФ

Эффективное вычисление свертки с использованием БПФ

Пусть имеются две последовательности x[k] и h[k] длиной в N_1 и N_2 отсчетов. Требуется вычислить их линейную дискретную свертку

$$y[k] = \sum_{m=0}^{k} x[m]h[k-m]$$

$$\sum_{k=0}^{15} x[m]h[k-m]$$

Рассмотрим также циклическую с периодом $N=N_1+N_2-1$ свертку $y_{\Pi}[k]$ последовательностей x[k] и h[k]:

$$y_{\Pi}[k] = \sum_{m=0}^{N-1} x[m]h[k-m]_N$$

Заметим, что для $0 \le k < N$ значения $y_{\Pi}[k]$ и y[k] совпадают.

По теореме о свертке для ДПФ если $x[k] \xleftarrow{\ \ \ \ \ \ \ } X[n]$ и $h[k] \xleftarrow{\ \ \ \ \ \ \ \ } H[n]$, то

$$\sum_{m=0}^{N-1} x[m]h[k-m]_N \xleftarrow{\exists \Pi \Phi} X[n]H[n].$$

Можно предложить следующую схему вычисления свертки последовательностей x[k] и h[k]:

Размерности всех ДПФ должны быть равны $N = N_1 + N_2 - 1$.

Эффективность данного способа обеспечивается использованием алгоритма БПФ для вычисления всех ДПФ.

При больших N выигрыш в объеме вычислений по сравнению с прямым способом вычисления свертки по формуле (15) во временной области может быть весьма значительным.

Измерение спектра в секторе *z*-плоскости с применением БПФ

Приложение.

В таблице ниже приведены стандартные функции для работы с ДПФ и БПФ в MATLAB и библиотеках Python.

	Python (SciPy, NumPy)	MATLAB
Матрица $\left[W ight]_N$ из	scipy.linalg.dft(n, scale)	dftmtx(n)
матричной формы ДПФ		
Вычисление прямого	scipy.fft.fft(x)	fft(x)
ДПФ по алгоритму БПФ		
	np.fft.fft(x)	
Вычисление обратного	scipy.fft.ifft(x)	ifft(x)
ДПФ по алгоритму БПФ		
	np.fft.ifft(x)	
Сдвиг коэффициентов	scipy.fft.fftshift	fftshift
ДПФ на половину		
периода	np.fft.fftshift	
Вычисление	scipy.fft.next_fast_len	нет аналога
следующего значения		
N, для которого		
вычисления по		
алгоритму БПФ		
эффективны		

Историческая справка.

Алгоритм БПФ по основанию 2 был предложен Кули и Тьюки в 1965 году и дал огромный импульс развитию цифровых методов обработки сигналов.

Однако алгоритмы БПФ для составного *N* (в наиболее общем виде) были получены известным математиком Гауссом (1777–1855) уже в 1805 году при исследовании орбит астероидов Паллада и Юнона.

Задачи с лекции

Задачи для самостоятельного решения с лекции 30 апреля 2024 г.

Nº1. Изобразить граф алгоритма БПФ с основанием 2 с прореживанием по <u>частоте</u> для N = 16. Объяснить, в чем заключается базовая операция данного алгоритма.

Nº2. Изобразить граф алгоритма БПФ с основанием 2 с прореживанием по времени для N = 16. Объяснить, в чем заключается базовая операция данного алгоритма.

Литература

- 1. Цифровая обработка сигналов / А. Оппенгейм, Р. Шафер; пер. с англ. под ред. С. Ф. Боева .— 3-е изд., испр. М. : Техносфера, 2019 .— 1048 с.
- 2. Солонина А.И. Цифровая обработка сигналов в зеркале MATLAB: учеб. пособие. СПб.: БХВ-Петербург, 2021. 560 с.: ил.
- 3. Романюк Ю.А. Основы цифровой обработки сигналов. Учебное пособие. Часть 1. Москва. 2007г.