FIG. 1

SUBSTITUTE SHEET (RULE 26)

6/12

FIG. 6A

42

50

48

WO 2004/105047 PCT/US2004/014875

FIG. 7

FIG. 8

PCT/US2004/014875

FIG. 10 DATA FOR v_{tio}/v =10 FOR 1 FOOT DIAMETER STRAINER

FLOW RATE	Ω	FORCE	P _{test}	P _{model} C _d =1	P _{test} /P _{model}
GPM	RPM	Lb ·	hp .	hp	
400	220	7.1	.11	.06	1.75 ⁻
300	160	2.5	.03	.027	1.1
200	108	1.3	.008	.010	1.25

FIG. 11

FIG. 12

~ 20000 GРМ

10/12

FIG. 13 OPEN AREA = 0.4 - 2000 GPM 2.0 - 4000 GPM -- 6000 GPM 1.5 -8000 GPM HEAD LOSS (FEET OF WATER) 10000 GPM 1.0-12000 GPM 14000 GPM 0.5-16000 GPM - 18000 GPM

STRAINER DIAMETER (ft)

0-1

Ó

FIG. 14 APPROACH VELOCITY 2000 GPM 4000 GPM ▲-- 6000 GPM - 8000 GPM **APPROACH** 10000 GPM VELOCITY 12000 GPM (ft/s) 14000 GPM 16000 GPM 18000 GPM Ş ---- 20000 GPM STRAINER DIAMETER (ft)

11/12

FIG. 15 ROTATION RATE (10) 2000 GPM 300 -- 4000 GPM --- 6000 GPM 250 :200 - B000 GPM ROTATION RATE, (RPM) - 10000 GPM 150 100 14000 GPM 50 — 16000 GPM — 18000 GPM — 20000 GPM 0 ż 0 . 1

STRAINER DIAMETER (ft)

