

Referent

Dipl.-Inform. Uwe Neuhaus

- Dozent und wissenschaftlicher Mitarbeiter im FB Informatik
- Themenschwerpunkte
 - Bachelor Angewandte Informatik / Wirtschaftsinformatik
 - Algorithmen
 - Analytische Informationssysteme
 - Berufsbegleitender Master Applied Data Science (ab 04/2021)
 - Data Mining
 - Maschinelles Lernen
- Mitglied der Arbeitsgruppe Data Science Process Model (DASC-PM)

- Ziel: Mehr Schülerinnen und Schüler für Informatik und IT begeistern
- Slogan: "Communicate IT at School"
- Vorgehen:
 - Fachliche Unterstützung von Lehrkräften bei Informatikthemen
 - Förderung des Informatikinteresses im Rahmen von Veranstaltungen (Girls' Day, Tag der Deutschen Einheit usw.)
 - Unterstützung von Schulen und anderen Bildungseinrichtungen bei IT-Projekten

• Realisierung:

- Finanzierung durch die NORDAKADEMIE-Stiftung
- Aktivitäten z. B.:
 - Hour of Code
 - Makerspace
 - Scratch-Programmierung
 - Workshops f
 ür Lehrkr
 äfte
 - commIT@school Challenge

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

Aktivitäten

Klassifikationen mit Entscheidungsbäumen

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

- Klassifikationen mit Entscheidungsbäumen
- Erkennen von Bildern mit neuronalen Netzen

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

- Klassifikationen mit Entscheidungsbäumen
- Erkennen von Bildern mit neuronalen Netzen
- Reinforcement Learning

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

- Klassifikationen mit Entscheidungsbäumen
- Erkennen von Bildern mit neuronalen Netzen
- Reinforcement Learning
- Klassische KI

Aktivitäten und Unterrichtsmaterialien zu Künstlicher Intelligenz ohne Strom

Entwickler Annabel Lindner, Stefan Seegerer

Didaktik der Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg

Web: https://ddi.cs.fau.de/schule/ai-unplugged/

- Klassifikationen mit Entscheidungsbäumen
- Erkennen von Bildern mit neuronalen Netzen
- Reinforcement Learning
- Klassische KI
- Turing Test

Reinforcement Learning: Schlag das Krokodil

Grundidee:

- Computer erlernt einfaches Bauernschach (geradeaus ziehen, diagonal schlagen)
- 3x3-Feld mit Krokodilen (Computerspieler) und Affen (menschlicher Spieler, beginnt)

Zugmöglichkeiten

Spielfeld zu Beginn

- Gewinnbedingungen:
 - eigene Spielfigur erreicht die gegenüberliegende Seite
 - alle gegnerischen Spielfiguren wurden geschlagen
 - der Gegner kann keinen Spielzug mehr ausführen

Reinforcement Learning: Belohnen und Bestrafen

Grundidee:

- Für alle möglichen Stellungen werden die erlaubten Züge der Krokodile bestimmt (farbige Pfeile)
- Jeder Zug wird durch eine gleichfarbige Schokolinse repräsentiert

Reinforcement Learning: Belohnen und Bestrafen

Reinforcement Learning: Belohnen und Bestrafen

Grundidee:

- Für alle möglichen Stellungen werden die erlaubten Züge der Krokodile bestimmt (farbige Pfeile)
- Jeder Zug wird durch eine gleichfarbige Schokolinse repräsentiert

- Bei jedem Zug des Computerspielers wird die vorliegende Stellung ermittelt, zufällig eine der vorhandenen Schokolinsen ausgewählt und anschließend der entsprechende Zug ausgeführt
- Krokodile gewinnen: Weitere Schokolinse in der Farbe des siegbringenden Zuges hinzufügen
- Affen gewinnen: Schokolinse in der Farbe des letzten Krokodilzugs aufessen

Schlag das Krokodil – Web-Version

Verstärkendes Lernen - Schlag das Krokodil

https://www.stefanseegerer.de/schlag-das-krokodil/

Communicate IT at School

Web: www.commit-at-school.de

E-Mail: info@commit-at-school.de

uwe.neuhaus@nordakademie.de

