министерство образования и науки российской федерации федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 11

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

ассистент

должность, уч. степень, звание

13.03.2

подпись, дата

В.М. Чернов инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ

ИССЛЕДОВАНИЕ ИНСТРУМЕНТАЛЬНОЙ ДОСТОВЕРНОСТИ КОНТРОЛЯ ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫХ КОМПЛЕКСОВ

по курсу: Контроль и диагностика измерительно-вычислительных комплексов

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР.

1711

М.П. Корельский инициалы, фамилия

1 Цель работы

Исследование зависимостей инструментальной достоверности и ошибок контроля измерительно-вычислительных комплексов от видов и характеристик параметров распределений вероятностей контролируемых сигналов и погрешностей измерения, параметров и свойств системы контроля и метода ее оптимизации по критериям В.А. Котельникова и Неймана-Пирсона.

2 Описание лабораторной установки

Программа CLASS 4 представляет собой файл class4.exe, для работы которого необходимо наличие в том же каталоге драйвера графики egavga.bgi и двух файлов шрифтов litt.chr и trip.chr. Необходимое для установки место составляет 87 килобайт. Исходные данные сохраняются в файлах с расширением .cl3. Программа предназначена для оценки работы системы классификации сигналов, включающей 1, 2 или 3 измерителя контролируемых параметров. Каждый измеритель может иметь один из возможных вариантов сочетания законов распределения вероятности полезный сигнал-помеха, а именно: нормальный— нормальный, равномерный — нормальный, нормальный— равномерный.

Исходными данными для каждого измерителя в зависимости от варианта сочетания законов распределения полезный сигнал-помеха являются совокупности следующих нормированных на среднеквадратические значения погрешностей измерения σНі величин:

DL –поле допуска на і-ый параметр;

DH –диапазон возможных значений контролируемого i-го параметра;

ЕТА –систематическая погрешность измерения / \(\Delta HH /; \)

EPSI –изменение поля допуска /є/;

SIGMA –среднеквадратическое значение разброса сигнала $/\sigma X$ /.

Программа осуществляет расчет следующих величин:

Р0і–вероятность того, что і-ый контролируемый параметр находится в допуске Xi∈g0i;

Руі–вероятность, что наблюдаемый сигнал і-го измерителя в допуске $Yi \in \Omega 0i$;

D0i-достоверность по каналу —годен∥ i-го измерителя;

D1i–достоверность по каналу —негоден і-го измерителя;

ALFAi-риск изготовителя і-го измерителя;

ВЕТАі-риск заказчика і-го измерителя;

Р0-вероятность, что вектор контролирумых параметров находится в допуске $X \in g0$;

Ру-вероятность, что наблюдаемые сигналы всех измерителей в допуске Y ∈ g0;

D0-достоверность системы по каналу — годен;

D1-достоверность системы по каналу — негоден;

ALFA-риск изготовителя системы;

ВЕТА-риск заказчика системы.

Программа строит графики зависимостей ALFAi, BETAi, ALFAi+BETAi от всех параметров, входящих в исходные данные. По данным для первого измерителя осуществляется построение графиков зависимостей ALFA, BETA, ALFA+BETA от числа измерителей, входящих в систему, т.е. в систему входят 1,2,3,... измерителя с характеристиками, как у первого.

Главное меню содержит 5 опций: Расчет, Графики, Ввод данных, Оптимизация, Выход. При запуске программы автоматически активизируется режим ввода данных.

Ввод данных осуществляется вводом числового значения параметра и нажатием клавиши ENTER. Обязательно начинайте ввод данных с ввода варианта сочетания законов распределения вероятности полезный сигнал-помеха, так как от этого зависит набор параметров данного канала. Переключение между окнами осуществляется нажатием клавиши Tab. Клавиши F1 и F2 осуществляют чтение и запись данных в дисковый файл. Расширение .cl3 добавляется автоматически. При отсутствии пути поиск и запись осуществляется в текущем каталоге. Клавиша F3 активизирует режим ввода числа измерителей, входящих в систему. Для выхода в главное меню используйте клавишу Esc.

При выборе опции Расчет появляется таблица с результатами расчета характеристик отдельных измерителей и системы в целом для заданных исходных данных.

Опция Графики позволяет построить графики зависимостей ALFAi, BETAi, ALFAi+BETAi от выбранного параметра (DL, DH, ETA, EPSI, SIGMA, N). Диапазон изменения аргумента задается вручную или автоматически при вводе на запрос "от" буквы А. При построении графиков производится расчет в 50 точках. Клавиша Таb выводит на экран таблицу значений. Частичное или полное отсутствие кривой означает отсутствие физического смысла в этом диапазоне значений аргумента (число -10 в таблице).

При выборе опции Оптимизация осуществляется расчет оптимальных значений EPSIi по критерию Котельникова или Неймана-Пирсона для каждого измерителя в отдельности (опция: 1 измеритель в системе) и системы в целом (опция: N измерителей в системе).

3 Выполнение лабораторной работы

Исходные данные для расчетов представлены в таблице 3.1.

Таблица 3.1 – Исходные данные

№ варианта	DL	η	ε	σ
9	14,8	1,9	1,4	3,5

Результаты расчетов по критериям Котельникова и Неймана-Пирсона для законов распределения «норм-норм» и «норм-равн» (по заданию в ЛК «равн-равн» делать не нужно) занесем в таблицу 3.2.

Таблица 3.2 – Результаты расчетов по критериям

	Критерий Котельникова	Критерий Неймана-Пирсона
«норм-норм»	Pyi = 0,855000536166632 P0i = 0,965509257848525 D0i = 0,849458931136764 D1i = 0,028949137121607 ai = 0,116050326711761 bi = 0,00554160502986777 ai+bi = 0,121591931741629	Pyi = 0,855000536166632 P0i = 0,965509257848525 D0i = 0,849458931136764 D1i = 0,028949137121607 ai = 0,116050326711761 bi = 0,00554160502986777 ai+bi = 0,121591931741629
«норм-равн»	Pyi = 0,900694561401055 P0i = 0,965509257848525 D0i = 0,900331464322975 D1i = 0,0341276450733945 ai = 0,0651777935255503 bi = 0,000363097078080243 ai+bi = 0,0655408906036306	Pyi = 0,900694561401055 P0i = 0,965509257848525 D0i = 0,900331464322975 D1i = 0,0341276450733945 ai = 0,0651777935255503 bi = 0,000363097078080243 ai+bi = 0,0655408906036306

По данным таблицы 3.2 можно сделать вывод о том, что результаты расчетов по критериям Котельникова и Неймана-Пирсона совпадают, поэтому в дальнейшем будем использовать только критерий Котельникова.

Далее будем поочередно изменять параметры DL ± 2.5 , $\eta \pm 0.2$, $\epsilon \pm 0.1$, $\sigma \pm 0.1$. Результаты расчетов занесем в таблицы 3.3 и 3.4.

Таблица 3.3 – Результаты расчета по критерию Котельникова «норм-норм»

Изменяемый параметр	Нижняя граница	Верхняя граница
	DL = 12,3	DL = 17,3
	Pyi = 0,749315689109794	Pyi = 0,923212676449526
D.	P0i = 0,921106637902833	P0i = 0,986542543260866
DL	D0i = 0,737584822664792	D0i = 0,920902911921063
	D1i = 0,0671624956521645	D1i = 0,011147692210671
	ai = 0,183521815238042	ai = 0,0656396313398031
	bi = 0,0117308664450021	bi = 0,00230976452846276
	ai+bi = 0,195252681683044	ai+bi = 0,0679493958682659

	$\eta = 1,7$	$\eta = 2,1$
	Pyi = 0,864058448229776	Pyi = 0,84497547435983
	P0i = 0,965509257848525	P0i = 0,965509257848525
η	D0i = 0,859447882945777	D0i = 0,838455568994418
•	D1i = 0,0298801768674761	D1i = 0,0279708367860632
	ai = 0,106061374902748	ai = 0,127053688854107
	bi = 0,00461056528399862	bi = 0,00651990536541151
	ai+bi = 0,110671940186747	ai+bi = 0,133573594219518
	ε = 1,3	$\varepsilon = 1,5$
	Pyi = 0,861732024938615	Pyi = 0,848027221228809
	P0i = 0,965509257848525	P0i = 0,965509257848525
3	D0i = 0,855704736802327	D0i = 0,842959451455507
	D1i = 0,0284634540151864	D1i = 0,0294229723781727
	ai = 0,109804521046199	ai = 0,122549806393018
	bi = 0,00602728813628834	bi = 0,00506776977330205
	ai+bi = 0,115831809182487	ai+bi = 0,12761757616632
	$\sigma = 3,4$	$\sigma = 3.6$
	Pyi = 0,863436535287944	Pyi = 0,846512467717276
	P0i = 0,970480020604842	P0i = 0,96017476624285
σ	D0i = 0,858550226683709	D0i = 0,840300059109657
	D1i = 0,024633670790923	D1i = 0,0336128251495309
	ai = 0,111929793921133	ai = 0,119874707133193
	bi = 0,0048863086042347	bi = 0,00621240860761866
	ai+bi = 0,116816102525368	ai+bi = 0,126087115740812

Таблица 3.3 – Результаты расчета по критерию Котельникова «норм-равн»

Изменяемый параметр	Нижняя граница	Верхняя граница
	DL = 12,3	DL = 17,3
	Pyi = 0,80791637735948	Pyi = 0,953667459947572
DL	P0i = 0,921106637902833	P0i = 0,986542543260866
DL	D0i = 0,807183329516382	D0i = 0,953509165617818
	D1i = 0,0781603142540689	D1i = 0,0132991624093797
	ai = 0,113923308386451	ai = 0,0330333776430486
	bi = 0,000733047843097689	bi = 0,000158294329754116
	ai+bi = 0,114656356229549	ai+bi = 0,0331916719728027
	$\varepsilon = 1,3$	$\varepsilon = 1,5$
	Pyi = 0,906212266864041	Pyi = 0,894921314771726
	P0i = 0,965509257848525	P0i = 0,965509257848525
3	D0i = 0,905609599636288	D0i = 0,894740426688449
	D1i = 0,0338880749237219	D1i = 0,0343098540681976
	ai = 0,0598996582122375	ai = 0,0707688311600762
	bi = 0,000602667227752818	bi = 0,000180888083277098
	ai+bi = 0,0605023254399903	ai+bi = 0,0709497192433532
	$\sigma = 3.4$	$\sigma = 3,6$
	Pyi = 0,909539784715186	Pyi = 0,89166376687461
σ	P0i = 0,970480020604842	P0i = 0,96017476624285
	D0i = 0,909213985719297	D0i = 0,891263314785581
	D1i = 0,0291941803992682	D1i = 0,0394247816681208
	ai = 0,0612660348855456	ai = 0,0689114514572695
	bi = 0,00032579899588947	bi = 0,000400452089028724
	ai+bi = 0,0615918338814351	ai+bi = 0,0693119035462982

По полученным результатам, можно сделать следующие выводы:

1. Для закона распределения «норм-норм» нужно

Увеличить: параметр DL - поле допуска.

Уменьшить: η - систематическая погрешность измерения; ϵ - изменение поля допуска, σ – СКО сигнала.

2. Для закона распределения «норм-равн» нужно

Увеличить: параметр DL - поле допуска.

Уменьшить: ϵ - изменение поля допуска, σ – СКО сигнала.

Теперь построим графики зависимостей рисков заказчика и изготовителя от изменения параметров системы контроля и параметров полезного сигнала для законов распределения «норм-норм» и «норм-равн». Далее по полученным графикам выполним оптимизацию параметров. Критерий оптимизации — минимум суммарного риска.

1. Закон распределения «норм-норм».

Рисунок $3.1 - \Gamma$ рафик зависимости $\alpha + \beta$ от DL при начальных условиях

Рисунок 3.2 – График зависимости $\alpha+\beta$ от DL при $\eta=\epsilon=0, \sigma=2$. Как мы видим, при уменьшении η, ϵ и σ , значение $\alpha+\beta$ в экстремуме уменьшилось.

Рисунок 3.3 – График зависимости $\alpha+\beta$ от η при начальных условиях

Рисунок 3.4 – График зависимости $\alpha+\beta$ от η при DL=17, ϵ =0, σ =1,5

Как мы видим, при уменьшении ϵ , σ и увеличении DL, значение $\alpha+\beta$ в экстремуме уменьшилось.

Рисунок 3.5 – График зависимости $\alpha+\beta$ от ϵ при начальных условиях

Рисунок 3.6 – График зависимости $\alpha+\beta$ от ϵ при DL=17, $\sigma=1,5,\,\eta=0$ Как мы видим, при уменьшении $\eta,\,\sigma$ и увеличении DL, значение $\alpha+\beta$ в экстремуме уменьшилось.

Рисунок 3.7 – График зависимости $\alpha + \beta$ от σ при начальных условиях

Рисунок 3.8 – График зависимости $\alpha+\beta$ от σ при DL=17, η =0, ϵ =0.

В результате оптимизации получим следующие значения: DL=17; η =0; ϵ =0; σ =1,5. В таблице 3.4 представлен результат до и после оптимизации для «норм-норм».

Таблица 3.4 – Результаты оптимизации параметров для «норм-норм»

Исходные результаты	Результаты после оптимизации
Pyi = 0,855000536166632	Pyi = 0,999997579471528
P0i = 0,965509257848525	P0i = 0,999999985398849
D0i = 0,849458931136764	D0i = 0,999997573958059
D1i = 0,028949137121607	D1i = 9,08768256756591E-9
ai = 0,116050326711761	ai = 2,41144078927391E-6
bi = 0,00554160502986777	bi = 5,51346883150381E-9
ai+bi = 0,121591931741629	ai+bi = 2,41695425810541E-6

В результате оптимизации суммарный риск уменьшен на 0.12158951478.

2. Закон распределения «норм-равн».

Рисунок 3.9 – График зависимости $\alpha+\beta$ от DL при начальных условиях

Рисунок 3.10 – График зависимости $\alpha+\beta$ от DL при $\epsilon=0$, $\sigma=3$.

Рисунок 3.11 – График зависимости $\alpha+\beta$ от ϵ при начальных условиях

Рисунок 3.12 – График зависимости α + β от ϵ при DL=17, σ =3

Рисунок 3.13 – График зависимости $\alpha+\beta$ от σ при начальных условиях

Рисунок 3.14 – График зависимости $\alpha+\beta$ от σ при DL=17, ϵ =0.

В результате оптимизации получим следующие значения: DL=17; ϵ =0; σ =3. В таблице 3.5 представлен результат до и после оптимизации для «норм-равн».

Таблица 3.5 – Результаты оптимизации параметров для «норм-равн»

Исходные результаты	Результаты после оптимизации
Pyi = 0,900694561401055	Pyi = 0,992934706585976
P0i = 0,965509257848525	P0i = 0,995393343379819
D0i = 0,900331464322975	D0i = 0,991665492343941
D1i = 0,0341276450733945	D1i = 0,00333744237814559
ai = 0,0651777935255503	ai = 0,00372785103587792
bi = 0,000363097078080243	bi = 0,0012692142420353
ai+bi = 0,0655408906036306	ai+bi = 0,00499706527791322
,	

В результате оптимизации суммарный риск уменьшен на 0.06054382532.

4 Вывод

В результате выполнения лабораторной работы выполнено исследование зависимостей инструментальной достоверности и ошибок контроля измерительновычислительных комплексов от видов и характеристик параметров распределений вероятностей контролируемых сигналов и погрешностей измерения, параметров и свойств системы контроля и метода ее оптимизации по критериям В.А. Котельникова и Неймана-Пирсона. Результаты расчета по критериям Котельникова и Неймана-Пирсона совпали, что свидетельствует об их одинаковой точности.

Расчеты достоверности контроля для границ диапазона рассматриваемых параметров (DL - поле допуска [12.3; 17.3], η - систематическая погрешность измерения [1.7; 2.1], ϵ - изменение поля допуска [1.3; 1.5], σ – СКО сигнала [3.4; 3.6]) показали, что при условии того, что на рассматриваемом интервале функции зависимости суммарного риска от параметров монотонны, то:

1. Для закона распределения «норм-норм» нужно

Увеличить: параметр DL - поле допуска.

Уменьшить: η - систематическая погрешность измерения; ϵ - изменение поля допуска, σ – СКО сигнала.

2. Для закона распределения «норм-равн» нужно

Увеличить: параметр DL - поле допуска.

Уменьшить: ϵ - изменение поля допуска, σ – СКО сигнала.

В результате оптимизации по экстремумам были выбраны следующие значения параметров:

DL=17; η =0; ϵ =0; σ =1.5 для закона распределения «норм-норм»,

DL=17; ε =0; σ =3 для закона распределения «норм-равн».

Таким образов в результате проведенной оптимизации для закона распределения «норм-норм» суммарный риск ai+bi=2,41695425810541E-6 (уменьшен на 0.12158951478), а для закона распределения «норм-равн» ai+bi=0,00499706527791322 (уменьшен на 0.06054382532).