Project Development Phase

Model Performance Test

Date	18 November 2022
Team ID	PNT2022TMID38214
Project Name	AI-powered Nutrition Analyzer for Fitness Enthusiasts
Maximum Marks	10 Marks

ModelPerformance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Total params: 21,885,485 Trainable params: 1,024,005 Non-trainable params: 20,861,480	Attached below
2.	Accuracy	Training Accuracy - 72%	Attached below
		Validation Accuracy - 59%	
3.	Confidence Score (Only Yolo Projects)	Class Detected - NILL Confidence Score - NILL	NILL

We are performing White Box Testing for select the package module.

<u>Pseudocode for select the package module is-</u>

- select_the_package() procedure begins
- 2. READ the package name, features, offers and duration from the package database
- 3. DISPLAY the package name, features, offers and duration
- 4. DO
- 5. GET the package name, features, offers and duration
- 6. STORE the package selected to the customer's database
- 7. PROCEED to payment screen //another module
- 8. WHILE select package is NULL
- 9. //End DO...WHILE
- 10.procedure ends

FLOWGRAPH

Flowgraph

CYCLOMATIC COMPLEXITY OF RESULTANT GRAPH

LINEARLY INDEPENDENT PATHS FOR FLOW GRAPHS

Path 1: 1-2-3-4-5-6-7-8-9-10

Path 2: 1-2-3-4-5-6-7-8-4-5-6-7-8-9-10

TEST ID	INPUT VALUES	ACTUAL OUTPUT	EXPECTED OUTPUT
1	Package is selected	To be observed	Display the selected
1		after execution	package
2	Package is not	To be observed	Show the packages to select
	selected	after execution	until one is selected

Performance Testing

Future Scope

- Offers payment convenience in personal training subscriptions.
- Useful articles.
- Video instructions.
- · Diet Plans.
- Individual progress tracking.

SCREENSHOTS:

Data Collection Download the dataset here [] from google.colab import drive drive.mount('/content/drive') Mounted at /content/drive [] cd/content/drive/MyDrive/Colab Notebooks /content/drive/MyDrive/Colab Notebooks [] # Unzipping the dataset lunzip 'Dataset.zip'

```
Image Preprocessing
        from keras.preprocessing.image import ImageDataGenerator
Image Data Augmentation
        train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)
        test_datagen=ImageDataGenerator(rescale=1./255)
Applying Image DataGenerator Functionality To Trainset And Testset
       x_train = train_datagen.flow_from_directory(
            r'/content/drive/MyDrive/Colab Notebooks/Dataset/TRAIN SET',
            target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
       x_{test} = test_{datagen.flow_from_directory(
            target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')
     3. Adding CNN Layers
          classifier = Sequential()
          classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
          classifier.add(Flatten())
     4. Adding Dense Layers
          classifier.add(Dense(units=5, activation='softmax'))
          classifier.summary()
        Layer (type)
                                               Output Shape
                                                                                    Param #
        conv2d (Conv2D)
  5. Configure The Learning Process
[] classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
  6. Train The Model
 [ \ ] \quad \text{classifier.fit\_generator(generator=x\_train,steps\_per\_epoch = len(x\_train),epochs=20, validation\_data=x\_test,validation\_steps = len(x\_test)) } 
   /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Pl
  7. Saving The Model
```


