LISTA DE EXERCÍCIOS 5: SOLUÇÕES TEORIA DOS CONJUNTOS

Ciências Exatas & Engenharias

 1° Semestre de 2018

1. Escreva uma negação para a seguinte afirmação: \forall conjuntos A, se $A \subseteq \mathbb{R}$ então $A \subseteq \mathbb{Z}$. O que é verdadeira: a afirmação ou sua negação? Justifique a sua resposta.

Resposta:

 $\overline{\text{Negação:}} \exists \text{ um conjunto } A \text{ tal que } A \subseteq \mathbb{R} \text{ e } A \not\subseteq \mathbb{Z}.$

A negação é verdadeira. Por exemplo, seja $A = \{x \in \mathbb{R} | 0 < x < 2\}$. Então $A \subseteq \mathbb{R}$ mas $A \not\subseteq \mathbb{Z}$, já que, por exemplo, $\frac{1}{2} \in A$.

2. Sejam os seguintes conjuntos:

$$A = \{m \in \mathbb{Z} | m = 2i - 1, \text{ para algum inteiro } i\}$$

 $B = \{n \in \mathbb{Z} | n = 3j + 2, \text{ para algum inteiro } j\}$

Prove se A = B.

Resposta:

Tem-se que $A \neq B$. Por exemplo, $1 \in A$, já que $a = 2 \cdot 1 - 1$, mas $1 \notin B$. Se 1 fosse um elemento de B, então teríamos 1 = 3j + 2, para algum inteiro j, o que daria:

$$3j+2 = 1$$

$$3j = -1$$

$$j = -\frac{1}{3}$$

o que não é um número inteiro, ou seja, $1 \notin B$. Assim, existe um elemento em A que não está em B. Conseqüentemente, $A \neq B$.

3. Seja $A = \{1, 2, 3\}, B = \{u, v\}$ e $C = \{m, n\}$. Liste os elementos do conjunto $A \times (B \times C)$.

Resposta:

$$\begin{array}{lcl} A\times (B\times C) & = & \{(1,(u,m)),(2,(u,m)),(3,(u,m)),\\ & & (1,(u,n)),(2,(u,n)),(3,(u,n)),\\ & & & (1,(v,m)),(2,(v,m)),(3,(v,m)),\\ & & & (1,(v,n)),(2,(v,n)),(3,(v,n))\} \end{array}$$

4. Prove que para todos os conjuntos $A \in B$, $B - A = B \cap A^c$.

Resposta:

Prova que $B - A \subseteq B \cap A^c$:

- Suponha $x \in B A$.
- Pela definição de diferença de conjuntos, $x \in B$ e $x \notin A$.
- Pela definição de complemento, $x \in B$ e $x \in A^c$.
- Pela definição de intersecção $x \in B \cap A^c$.
- Assim, pela definição de subconjunto, $B A \subseteq B \cap A^c$.

Prova que $B \cap A^c \subseteq B - A$:

- Suponha $x \in B \cap A^c$.
- Pela definição de intersecção, $x \in B$ e $x \in A^c$.
- Pela definição de complemento, $x \in B$ e $x \notin A$.
- Pela definição de diferença de conjuntos, $x \in B$ e $x \notin A$.
- Assim, pela definição de subconjunto, $B \cap A^c \subseteq B A$.

Como $B - A \subseteq B \cap A^c$ e $B \cap A^c \subseteq B - A$ temos que $B - A = B \cap A^c$.

5. Prove por indução matemática que para todo inteiro $n \ge 1$ e todos os conjuntos A_1, A_2, \ldots, A_n e B,

$$(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_n - B) = (A_1 \cup A_2 \cup \ldots A_n) - B$$

Resposta:

Prova (por indução matemática):

- (a) Passo base: Para n = 1, a fórmula é expressa como $A_1 B = A_1 B$, que é claramente verdadeira. Logo, o passo base é verdadeiro.
- (b) Passo indutivo: se a fórmula é verdadeira para $n=k, k \geq 1$ então deve ser verdadeira para n=k+1.
 - Hipótese indutiva:

$$(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_k - B) = (A_1 \cup A_2 \cup \ldots A_k) - B$$

- Deve-se mostrar que:

$$(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_{k+1} - B) = (A_1 \cup A_2 \cup \ldots A_{k+1}) - B$$

Tem-se que:

$$(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_{k+1} - B)$$

Que pode ser reescrito como:

$$[(A_1 - B) \cup (A_2 - B) \cup \ldots \cup (A_k - B)] \cup (A_{k+1} - B) =$$

Pela hipótese indutiva temos:

$$[(A_1 \cup A_2 \cup \dots A_k) - B] \cup (A_{k+1} - B)$$

Pela propriedade de diferença, ou seja, $(X-Z) \cup (Y-Z) = (X \cup Y) - Z$, para conjuntos $X, Y \in Z$, tem-se que:

$$(A_1 \cup A_2 \cup \dots A_k \cup A_{k+1}) - B$$

6. Prove que para todos os conjuntos $A, B \in C, (A - B) - (B - C) = A - B.$

Resposta:

 \overline{A} expressão (A-B)-(B-C) pode ser expressa como

$(A \cap B^c) \cap (B \cap C^c)^c$	Representação alternativa para diferença
$(A \cap B^c) \cap (B^c \cup C)$	De Morgan
$((A \cap B^c) \cap B^c) \cup ((A \cap B^c) \cap C)$	Distributividade
$(A \cap (B^c \cap B^c)) \cup (A \cap (B^c \cap C))$	${f Associatividade}$
$(A \cap B^c) \cup (A \cap (B^c \cap C))$	Lei da interseção
$(A \cap B^c) \cup (A \cap (C \cap B^c))$	Comutatividade
$(A \cap B^c) \cup ((A \cap C) \cap B^c)$	${\it Associatividade}$
$(B^c \cap A) \cup (B^c \cap (A \cap C))$	Comutatividade
$B^c \cap (A \cup (A \cap C))$	Distributividade
$B^c \cap A$	Absorção
$A \cap B^c$	Comutatividade
A - B	Representação alternativa para diferença

7. Dados dois conjuntos A e B, defina a "diferença simétrica" de A e B, representada por $A \oplus B$, como

$$A \oplus B = (A - B) \cup (B - A)$$

Prove se $A \oplus B = B \oplus A$.

Resposta:

- Sejam A e B conjuntos quaisquer.
- Pela definição de \oplus , mostrar que $A \oplus B = B \oplus A$ é equivalente a mostrar que

$$(A-B) \cup (B-A) = (B-A) \cup (A-B)$$

- Esta igualdade é obtida diretamente da comutatividade da ∪.
- 8. Prove se para todos os conjuntos $A, B \in C, (A B) \in (C B)$ são necessariamente disjuntos.

Resposta:

 $\overline{\text{N}\tilde{\text{ao}}, \text{ ou seja}}, (A-B) \cap (C-B) \neq \emptyset.$

- Sejam os conjuntos $A = \{1, 2\}, B = \{3\} \in C = \{1, 4\}.$
- Tem-se que $A B = \{1, 2\}.$
- Tem-se que $C B = \{1, 4\}.$
- No entanto, $(A-B) \cap (C-B) = \{1\} \neq \emptyset$, ou seja, a intersecção não é um conjunto vazio.
- 9. Sejam os conjuntos $A = \{1\}$ e $B = \{u, v\}$. Determine o conjunto potência de $A \times B$, i.e., $\mathcal{P}(A \times B)$.

Resposta:

$$A \times B = \{(1, u), (1, v)\}$$

$$\mathcal{P}(A \times B) = \{\emptyset, \{(1, u)\}, \{(1, v)\}, \{(1, u), (1, v)\}\}$$

10. Determine $\mathcal{P}(\mathcal{P}(\mathcal{P}(\{\emptyset\})))$.

Resposta:

 $\overline{\text{O conjunto}}$ potência do conjunto $\{\emptyset\}$ tem os dois elementos $(2^1 = 2)$ abaixo, i.e., o conjunto vazio e um subconjunto que tem um elemento que é o conjunto vazio.

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\} \}$$

O conjunto potência do conjunto potência do conjunto $\{\emptyset\}$ tem os quatro elementos $(2^2 = 4)$ abaixo: o conjunto vazio e elementos formados a partir do conjunto $\{\emptyset, \{\emptyset\}\}$, ou seja, um subconjunto formado pelo primeiro elemento, um subconjunto formado pelo segundo elemento e um subconjunto com os dois elementos.

$$\mathcal{P}(\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\})$$

O conjunto $\mathcal{P}(\mathcal{P}(\{\emptyset\})))$ tem os 16 elementos ($2^4=4$) abaixo: o conjunto vazio e 15 elementos formados a partir do conjunto $\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}$. Esses 15 elementos são obtidos da seguinte forma:

- quatro subconjuntos unitários, cada um formado a partir dos conjuntos 1, 2, 3 e 4 acima;
- seis subconjuntos de cardinalidade dois, cada um formado a partir dos conjuntos [1 e 2], [1 e 3], [1 e 4], [2 e 3], [2 e 4], [3 e 4];
- quatro subconjuntos de cardinalidade três, cada um formado a partir dos conjuntos [1, 2 e 3], [1, 2 e 4], [1, 3 e 4], [2, 3 e 4];
- um subconjunto de cardinalidade quatro com os quatro conjuntos [1, 2, 3 e 4];

$$\mathcal{P}(\mathcal{P}(\mathcal{P}(\{\emptyset\}))) = \{\emptyset, \\ \{\emptyset\}, \{\{\emptyset\}\}, \{\{\{\emptyset\}\}\}, \{\{\emptyset, \{\emptyset\}\}\}, \\ \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \\ \{\emptyset\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\emptyset, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \\ \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}\}, \{\{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}$$

- 11. Seja $A = \{x, y\}$. Determine:
 - (a) $A \cap \mathcal{P}(A)$

Resposta:

O conjunto $\mathcal{P}(A) = \{\emptyset, \{x\}, \{y\}, \{x,y\}\}\}$. Assim, devemos identificar os elementos em comum de A e $\mathcal{P}(A)$. Basicamente, o algoritmo a ser seguido é avaliar, para cada elemento de A, se ele também pertence ao conjunto $\mathcal{P}(A)$. Por exemplo, temos que $x \in A$. A questão é $x \in \mathcal{P}(A)$? Para respondermos a essa pergunta, devemos comparar x a cada elemento de $\mathcal{P}(A)$. Ou seja,

1.
$$x \stackrel{?}{=} \emptyset$$

2. $x \stackrel{?}{=} \{x\}$
3. $x \stackrel{?}{=} \{y\}$
4. $x \stackrel{?}{=} \{x, y\}$

Claramente, a resposta é falsa para todas as linhas já que em cada caso estamos comparando um elemento a um conjunto, inclusive na linha 2 (o elemento x não é igual ao conjunto $\{x\}$). Logo, a interseção dos conjuntos $A \in \mathcal{P}(A)$ tem como resultado o conjunto vazio, i.e., $A \cap \mathcal{P}(A) = \emptyset$.

(b) $(\mathcal{P}(A) - A) \cap A$

Resposta:

$$\mathcal{P}(A) - A = \{\emptyset, \{x\}, \{y\}, \{x, y\}\} - \{x, y\}$$
$$= \{\emptyset, \{x\}, \{y\}, \{x, y\}\}$$

Assim, temos:

$$\begin{array}{rcl} (\mathcal{P}(A)-A)\cap A & = & \{\emptyset,\{x\},\{y\},\{x,y\}\}\cap \{x,y\} \\ & = & \emptyset \end{array}$$

(c) $\mathcal{P}(\{\mathcal{P}(A) - \{\{x\}\}\}) - \emptyset$

Resposta:

$$\begin{split} \mathcal{P}(\{\mathcal{P}(A) - \{\{x\}\}\}\} - \emptyset) &= \mathcal{P}(\{\{\emptyset, \{x\}, \{y\}, \{x, y\}\}\} - \{\{x\}\}\}\} - \emptyset) \\ &= \mathcal{P}(\{\{\emptyset, \{y\}, \{x, y\}\}\} - \emptyset) \\ &= \mathcal{P}(\{\{\emptyset, \{y\}, \{x, y\}\}\}\}) \\ &= \{\emptyset, \{\emptyset, \{y\}, \{x, y\}\}\} \} \end{split}$$

12. Prove que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ usando apenas as propriedades de conjuntos (sem usar diagrama de Venn). (Lembre-se que dados dois conjuntos $A \in B$, A = B sse $A \subseteq B \in B \subseteq A$, ou seja, a prova deve ser feita em duas partes.)

Resposta:

A prova deve ser dividida em duas partes:

- (a) $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.
 - Suponha que exista um elemento x contido no conjunto resultante de $A \cup (B \cap C)$. Pela definição da união temos duas possibilidades:
 - (a) $x \in A$, ou
 - (b) $x \in (B \cap C)$, i.e., $x \in B$ e $x \in C$.

Deve-se provar que x está contido no conjunto resultante de $(A \cup B) \cap (A \cup C)$. Para x estar contido nesse conjunto resultante, $x \in (A \cup B)$ e $x \in (A \cup C)$. No primeiro caso, se $x \in A$ então x estará na interseção dos dois termos, i.e., caso (a) acima. Se $x \notin A$, x deve pertencer simultaneamente a B e a C para estar na interseção dos dois termos, i.e., caso (b) acima. Assim, se x é um elemento presente no conjunto resultante de $A \cup (B \cap C)$ então x estará presente no conjunto resultante de $(A \cup B) \cap (A \cup C)$.

- (b) $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.
 - Suponha que exista um elemento x contido no conjunto resultante de $(A \cup B) \cap (A \cup C)$. Pela definição de interseção temos que:
 - (a) $x \in A$ ou $x \in B$, e
 - (b) $x \in A$ ou $x \in C$.

Isto significa que x pertence a A ou x pertence simultaneamente a B e a C. Deve-se provar que x está contido no conjunto resultante de $A \cup (B \cap C)$. Para x estar contido nesse conjunto resultante, $x \in A$ ou $x \in (B \cap C)$. Mas essas duas condições representam exatamente a hipótese feita.

- 13. Simplifique as seguintes expressões usando apenas as propriedades de conjuntos:
 - (a) $((A \cap (B \cup C)) \cap (A B)) \cap (B \cup C^c)$

Resposta:

```
\overline{(((A \cap B) \cup (A \cap C)) \cap (A \cap B^c)) \cap (B \cup C^c)} 
((A \cap B^c) \cap (A \cap B)) \cup ((A \cap B^c) \cap (A \cap C))) \cap (B \cup C^c) 
(A \cup (A \cap B^c \cap C)) \cap (B \cup C^c) 
A \cap (B \cup C^c)
```

(b) $(A - (A \cap B)) \cap (B - (A \cap B))$

Resposta:

$$\overline{((A-A) \cup (A-B)) \cap ((B-A) \cup (B-B))}$$

$$(A-B) \cap (B-A)$$

$$A \cap B^c \cap B \cap A^c$$

$$\emptyset$$

14. Sejam os conjuntos A, B e C. Sabe-se que $A \subseteq B$ e os conjuntos B e C são disjuntos, mas A e C têm elementos em comum. Esboce, se for possível, o diagrama de Venn desses conjuntos.

Resposta:

Prova (por contradição):

Suponha que sim, que é possível fazer esse diagrama. Suponha que x é o elemento em comum dos conjuntos A e C. Sabe-se que $A \subseteq B$. Assim, o elemento x deve também pertencer a B. Logo, B e C também devem ter um elemento em comum, o que contradiz a afirmação que esses conjuntos são disjuntos. Consequentemente, não existe tal diagrama de Venn.