

Sistemas Operacionais

Marcos Grillo

 MACHADO, Francis Berenger; MAIA, Luiz Paulo (orgs.). Arquitetura de Sistemas Operacionais. 4º ed. Rio de Janeiro: LTC -Livros Técnicos e Científicos, 2008

Programa Livro-Texto.

Conteúdo Programático
Conceitos básicos de sistemas operacionais, uma visão geral:
Sistemas Monoprogramáveis/Monotarefa,
Sistemas Multiprogramáveis/Multitarefa,
Sistemas com Múltiplos processadores,
Sistemas Fortemente acoplados,
Sistemas Fracamente acoplados.
Estrutura do Sistema Operacional
Processo:
Modelo de processo, estados, mudanças de estados,
Subprocesso e Thread,
Tipos de processos.
Comunicação entre processos
Especificação de concorrência em programas,
Problemas de compartilhamento de recursos,
Problemas de sincronização,
Deadlock.
Gerência do Processador:
Critérios de Escalonamento,
Escalonamento Não-preenptivo,
Escalonamento Preenptivo,
Escalonamento com Múltiplos Processadores
Gerência de Memória:
Alocação Contígua Simples,
Alocação Particionada,
Memória Virtual,
Segmentação, segmentação com paginação,
Proteção,
Compartilhamento de memória.

Sistema de Arquivos:	
Organização de Arquivos,	
Métodos de acesso, operações de I/O e Atributos,	
Diretórios,	
Alocação de espaço em disco,	
Proteção de acesso,	
Implementação de Cachês.	
Gerência de Dispositivos:	
Operações de I/O,	
Subsistemas de I/O,	
Device Drivers,	
Controladores,	
Dispositivos de Entrada/Saída	

Ementa – 1ª etapa.

- Introd
 a sistemas operaçios;
- Visão ge le sistemas op anais;
- Conceitos pos de Sandware e software; Conceitos pos de Sandware e
- Estrutura do Sisten eracional;
- Tipos de proces rocessos e Threads;
- Processos e ds;
- Sincronize é comunico entre proces reads;
- Revisão exercícios, seminários;

ANHANGUERA EDUCACIONAL

Ementa - 2ª etapa.

- Gerência do processador;
- Gerência de memória;
- Gerência de dispositivos;
- Sistemas com múltiplos processadores;
- Sistemas operacionais comerciais/Livre;
- Prova escrita oficial;
- Revisão;
- Prova Substitutiva;

Horários.

- ▶ 1ª aula 19:10 20:00
- ▶ 2ª aula 20:00 20:50
- ▶ 3° aula 21:10 22:00
- ▶ 4ª aula 22:00 22:50 Orientação ATPS

Avaliação.

- ▶ 1° Bimestre peso 4;
 - ▶ Prova + ATPS
- ▶ 2° Bimestre peso 6;
 - ▶ Prova + ATPS

Gerência de memória virtual.

Gerência de memória virtual consiste na técnica de combinar a memória real com a memória secundária, dando ao usuário a ilusão de existir uma memória muito maior que a capacidade real da memória principal.

Endereço Físico

- Como um vetor, o processo não precisa saber a posição da memória que se localiza um dado;
- Mecanismo de tradução do endereço virtual é denominado de mapeamento;
- O programa não precisa contar apenas com o espaço total da memória física.
- Apenas uma parte do programa fica residente na memória principal;
- Compiladores e Linkers geram o código executável em função aos endereços de memória virtual.

Espaço de endereçamento virtual	Endereço virtual 0
	Endereço virtual 1
	Endereço virtual 2
	Endereço virtual 3
	Endereço virtual 4
	Endereço virtual 5
	•
	Endereço virtual V

Mapeamento

- Processador executam apenas funções residentes na memória real;
- Sistemas modernos utilizam MMU para mapear (Hardware dedicado);
- Tamanho fixo (Técnica de paginação);
- Tamanho variável (Técnica de segmentação);
- Mista, fixo + variável.

Mapeamento

Memória Virtual

Mapeamento.

Memória virtual por paginação

- Blocos do mesmo tamanho (Paginas);
- Page fault;
 - Quando um processo referencia um endereço que não está na memória principal, ocorre um page fault.
- Utiliza a tabela de paginas;
- ▶ NPV + Deslocamento = endereço do dado;
- NPV (número da pagina virtual) Índice da tabela de paginas;
- ▶ ETP(entrada da tabela de páginas):
 - Valid bit (0 não localizada na memória principal e 1 localizada).

Memória virtual por paginação.

Memória virtual por paginação.

Memória virtual por paginação. Endereço virtual Memória Principal ANHANGUERA EDUCACIONAL Tabela de páginas Bit de validade 0 Page in Page fault Memória secundária Memória Principal Tabela de páginas Bit de validade Memória secundária

Políticas de busca de páginas.

- Paginação por demanda (demand paging);
 - Transferida apenas quando referenciadas.
- Paginação antecipada (antecipatory paging / prepaging);
 - Carrega a página referenciada e outras que podem ser utilizadas.
 - ▶ Pode ocorrer no momento da criação de um processo ou em um page fault.

Políticas de Alocação de Páginas.

- Determina quantos frames cada processo pode manter na memória principal;
- Politica de locação fixa;
 - Definida no momento de criação de um processo (contexto de software);
 - Problemas:
 - Número de páginas pequeno maior page fault;
 - Número de páginas grande, menor números de processos em memória.
- Politica de locação variável;
 - ▶ O número de páginas podem variar durante a execução do processo.
 - Quanto mais page faults, mais dados são alocados na memória principal.

Políticas de Substituição de Páginas.

Em algumas situações, quando um processo atinge seu limite de locação de frames e necessita alocar mais páginas na memória principal, o sistema operacional deve selecionar quais páginas devem ser liberadas.

Livro texto, página 183

Políticas de Substituição de Páginas.

- O Sistema Operacional deve verificar:
 - A página foi ou não modificada, evitar perdas de dados;
 - Se modificada gravar antes de liberar na memória secundária;
 - Mecanismo com bit de verificação de alterações (dirty bit / modify bit).
 - ▶ Bit de verificação localizado na tabela de páginas.
- Executáveis não sofrem alterações, grandes candidatos a deixarem a memória principal;
- Arquivo de paginação (page file);

Políticas de Substituição de Páginas.

Entre páginas da memória principal:

- ▶ Política de substituição local:
 - Apenas páginas do processo.
- Política de substituição global:
 - Páginas de qualquer processo;
 - Páginas do núcleo do sistema não podem ser realocadas, marcadas como bloqueadas;
- Política de locação variável:
 - ▶ Tanto local quanto global;
 - Aumenta ou diminui o número de paginas para o processo.

Políticas de Substituição de Páginas..

Memória Principal Arquivo de paginação Page out Page in

Working Set.

- Observa-se o número elevado de page faults;
- Com um número elevado de IO ocorre o problema conhecido como thrashing;
- Busca resolver o problema de desempenho;
- Utiliza o princípio de localidade, ex. loop;

Inicialização

ANHANGUERA EDUCACIONAL

Página 1

Página 2

Página 3

Página 4

Imprime resultados

Working Set.

Algoritmos de substituição de páginas.

Grande problema é quem substituir e não quem carregar... E quem precisa ser substituído?

- Menores chances de serem referenciados;
- Algoritmo mais sofisticado maior overhead;
- Entre os algoritmos:
 - Ótimo;
 - Aleatório;
 - ▶ FIFO;
 - LFU (Least-frequently-Used);
 - LRU (Least-recently-Used);
 - ▶ NRU (Not-recently-Used).

FIFO.

Problemas dos algoritmos.

Ótimo;

Impossível de ser implementado, SO não consegue reconhecer o comportamento futuro dos processos.

Aleatório;

Retira qualquer página, não reconhece a frequência de utilização.

FIFO.

Segue uma fila uniforme, retirando o frame com mais tempo de permanência na memória.

Problemas dos algoritmos.

- LFU (Least-frequently-Used);
 - Páginas com pouco tempo de memória podem ser retiradas, por não conter um histórico.
- LRU (Least-recently-Used);
 - ▶ Elevado custo de implementação, consumo de recursos.
- NRU (Not-recently-Used).
 - Precisa ser utilizada com dois bits, o de referência e o de modificação, elevado custo de implementação.

FIFO com buffer de páginas.

FIFO com buffer de páginas.

BR=Bit de Referência

Tamanho de páginas

Menor o tamanho de página menor fragmentação;

Maior o tamanho da página por gerar espaços maiores de fragmentação; Página 0

Página 1

Página 2

Página 3

Página 4

PROGRAM Frag; **VAR**

PROCEDURE A;

END;

BEGIN

END.

Fragment

Tamanho de páginas

- É mais demorado a operação de IO de duas paginas de 512 bytes que uma página de 1024 bytes;
- Tendência de aumento do tamanho das páginas em sistemas mais modernos, devido aos recursos secundários melhorarem.

Paginação em Múltiplos Níveis.

- Tabela de páginas consumindo muito espaço;
- Apenas informações realmente necessárias aos processos estariam na tabela principal;

Paginação em Múltiplos Níveis.

Endereço Virtual

Paginação em dois níveis.

Translation Lookaside Buffer (TLB)

- Poucas tabelas são referenciadas com maior frequência;
- ▶ TLB é como uma memória cache;
- Evita acesso excessivo na tabela de páginas;
- Utiliza mapeamento associativo (não precisando percorrer toda TLB para encontrar o endereço.

Translation Lookaside Buffer (TLB).

Translation Lookaside Buffer (TLB).

Campo	Descrição
Tag	Endereço virtual sem deslocamento
Modificação	Bit que indica se a página foi alterada
Referência	Bit que indica se a página foi recentemente referenciada, sendo utilizada para realocação de entrada pela TLB
Proteção	Define a permissão de acesso a página
Endereço físico	Posição do frame na memória principal

Proteção de memória.

Importância:

- Vários programas acessando partes em comum da memória;
- Não alterar nenhuma informação localizada em um setor privilegiado (SO);
- ▶ Proteger informações do SO.

Compartilhamento de memória.

- Reentrância;
- Cada processo tem sua tabela de memória mas referenciam o mesmo frame;
- Aplicações que compartilham os mesmos dados da memória principal.

Compartilhamento de memória.

Memória virtual por segmentação

É a técnica de memória virtual que divide os blocos em tamanhos diferentes, chamados de segmentos.

Os programas são divididos logicamente em sub-rotinas e estrutura de dados, que por sua vez serão alocados na memória principal.

Memória virtual por segmentação

- Normalmente definido pelo compilador;
- Possui um numero máximo de segmentos;
- Utilizam tabelas de mapeamento de segmentos (TMS) ao invés de tabelas de paginação;
- Possuem numero de segmento virtual (NSV);
- Possuem deslocamento;
- Endereço é obtido utilizando TMS + NSV + Deslocamento;
- Fragmentação externa.

Memória virtual por segmentação

PROGRAM Segmento;

VAR A: ARRAY...

C: ...

PROCEDURE X;

END;

FUNCTION Y;

END;

BEGIN

END.

Procedimento X

Programa Principal

Função Y

Array A

Variável C

.

-

.

Memória virtual por segmentação.

Num. do segmento

ETS

Desloc.

End. do segmento

End. do segmento Desloc.

Segmento na

Tabela de segmentos

Memória virtual por segmentação – tabela ETS

Campo	Descrição
Tamanho	Especifica o tamanho do segmento
Bit de validade	Indica se o segmento está na memória principal
Bit de Referência	Bit que indica se o segmento foi recentemente referenciado, sendo utilizado pelo algoritmo de substituição
Proteção	Define a permissão de acesso a página
Bit de modificação	Indica se o segmento foi alterado

Swapping em memória virtual.

- Não temos espaço na memória principal? Então entra em ação o swapping;
- Retirar processos da memória para livrar espaço;
- Swap in;
- Swap out;

Swapping em memória virtual.

