FÍSICA

1º SÉRIE DO ENSINO MÉDIO PROF. FABIANO

CAPÍTULO CINEMÁTICA: O ESTUDO DOS MOVIMENTOS

Já pensou em um mundo sem medidas?

Seria um verdadeiro caos entender todas as relações que nos cercam!

Meça suas palavras

Fonte: https://www.humorcomciencia.com/tirinhas/

Egípcios: o cúbito

Babilônicos: o siclo (shekel)

Gregos: o dedo

Romanos: o pé

Ingleses: braçadas, jardas, palmos, polegadas

Franceses: a ideia da unificação

Sistema Internacional de Unidades - Física Enem

Países que, em 2019, usavam o sistema métrico ou imperial de medidas

Anos de pesquisas e medições em importantes institutos de metrologia ao redor do mundo nos forneceram as atuais sete unidades de base do SI definidas por valores ditados pela natureza:

- O **segundo**, unidade de tempo definida a partir do valor numérico fixo da frequência de transição do césio 133.
- O *metro*, unidade de comprimento definida a partir do valor numérico fixo da velocidade da luz no vácuo.
- O quilograma, unidade de massa definida a partir do valor numérico fixo da constante de Planck.
- O ampere, unidade de corrente elétrica definida a partir do valor numérico fixo da carga elementar e.
- O kelvin, unidade de temperatura termodinâmica definida a partir do valor numérico fixo da constante de Boltzmann.
- O *mol*, unidade de quantidade de substância definida a partir do valor numérico fixo da constante de *Avogadro*.
- A candela, unidade de intensidade luminosa definida a partir do valor numérico da eficácia luminosa da radiação monocromática.

Grandeza de Base	Unidade	Símbolo
Comprimento	Metro	m
Corrente Elétrica	Ampere	Α
Intensidade Luminosa	Candela	cd
Massa	Quilograma	kg
Quantidade de Substância	Mol	mol
Temperatura Termodinâmica	Kelvin	K
Tempo	Segundo	S

GRANDEZAS DERIVADAS	UNIDADES	
Força	N - newton	
Velocidade	m/s – metro por segundo	
Aceleração	m/s ² - metro por segundo ao quadrado	
Volume	m³ - metro cúbico	

Um exemplo do que pode acontecer quando não existe um sistema de medidas único, é a história da sonda *Mars Climate Orbiter*. A missão do satélite era sobrevoar Marte e fornecer dados sobre o clima. A sonda foi desenvolvido por várias empresas: a Lockheed Martin Astronautics foi responsável pela concepção e construção, enquanto que a Jet Propulsion Laboratory, teve a missão de programar os sistemas de navegação. A primeira empresa realizou seu trabalho com o sistema Inglês de medidas, que usa padrões como o pé, milha, etc. Enquanto que a segunda trabalhou com o sistema internacional de unidades. As duas empresas executaram suas funções perfeitamente, mas não consideraram a conversão de unidades, fazendo com que a sonda voasse a 60 quilômetros e não a 150 como estava planejado. Custo do descuido: 125 milhões de dólares!