期中

1. 简述 Wiles、 纸益唐的贡献

Wiles:解决Fermat 大定理

新益唐: 海血藥字生素数猜想中推 将相邻素数之差下确界精进到 七千万之下 推动

2. ② Pn表示第 n个素数,试证
$$\stackrel{\infty}{\underset{i=1}{\sim}} \stackrel{1}{\underset{p_{3i+1}}{\rightarrow}} = \infty$$
反设其有界. 则 $\stackrel{N}{\underset{i=1}{\sim}} \stackrel{1}{\underset{p_{3i+1}}{\rightarrow}} \stackrel{1$

3. 试确定20! 的标准表因子分解式

和以 20! 中只有 20 以内的素因子.

$$V_{2}(20!) = \sum_{n=1}^{\infty} \left[\frac{20}{2^{n}} \right] = 10+5+2+1 = 18$$

$$V_{3}(20!) = \sum_{n=1}^{\infty} \left[\frac{20}{3^{n}} \right] = 6+2=8$$

$$V_{5}(20!) = \sum_{n=1}^{\infty} \left[\frac{20}{5^{n}} \right] = 4^{4}$$

$$V_{7}(20!) = 2$$

$$V_{17}(20!) = 1$$

$$V_{18}(20!) = 1$$

$$V_{19}(20!) = 1$$

4. 利用中国剩余灾理求解 $\begin{cases} \chi \equiv 2 \mod x \end{cases}$ $\chi \equiv 3 \mod x$

 $\chi = |5 \times | \times 2 + 2| \times | \times 3 + 35 \times 2 \times |$ = |63| $= 58 \pmod{05}$

对于 3次是否有类似结论?(将所有更能表示所有自然数的三次型写出,
①是否有:能表示前几项,就能表示所
②对于无交叉项的系数正的三次型,是否只有限个

7. 试估计了数数3且介于105到108中的素数的个数。

即mod10余3. 频量 (P(10)=10(2)(1-½)(1-½)=4.

四约为每10⁵到10⁹中素数介数的4。
0-10⁹中素数介数: $Q_{\pi}\pi(10^{9}) \sim \frac{10^{9}}{|n|0} = \frac{10^{9}}{|n|0}$ $\pi(10^{5}) \sim \frac{10^{5}}{|s|n|0}$ $\pi(10^{5}) \sim \frac{10^{5}}{|s|n|0}$ $\pi(10^{5}) \sim \frac{10^{5}}{|s|n|0}$

原题中素数个数约为 $4\left(\frac{10^{7}}{9In10} - \frac{10^{5}}{5In10}\right)$.

8. 将3+52表示为连分数

8. ¥15+12 ★ (
$$\sqrt{3}$$
 ± 1) = 4 + $\frac{1}{\sqrt{2}+1}$ = 4 + $\frac{1}{2+(\cancel{5}+1)}$ = 4 + $\frac{1}{2+(\cancel{5}+1)}$ = 4 + $\frac{1}{2+(\cancel{5}+1)}$ = 3 + $\sqrt{3}$ = $\left[4 \cdot \cancel{2}\right]$.

9. \cancel{p} = 5 + (\cancel{p} + 5) = 5 + $\frac{4}{\cancel{p}$ + 5 = 5 + $\frac{1}{2+\cancel{p}-2}}$ = 5 + $\frac{1}{2+\cancel{p}-2}$ = $\frac{1}{2+\cancel{$

 $P_5 = a_5 P_4 + P_3$, $q_5 = a_5 q_4 + q_3$ $P_5 = 727$, $q_5 = 135$ $P_6 = a_6 P_5 + P_4 = 1524$, $q_6 = a_6 q_5 + q_4 = 283$ $P_7 = a_7 P_6 + P_5 = 225$, $q_7 = a_7 P_7 q_6 + q_5 = 418$ $P_8 = a_8 P_7 + P_6 = 3775$, $q_8 = a_8 q_7 + q_6 = 701$ $P_7 = a_7 P_8 + P_7 = 1801$, $q_9 = a_7 q_8 + q_7 = 1820$