WT588D-U 语音模块使用说明书

目 录

1,	产品特征 3
2、	功能描述
3、	应用范围
4、	应用方框图
5、	封装管脚图
6、	电气参数 5
7、	环境绝对极限参数
8,	控制模式6
	8.1、按键控制模式
	8.1.1、脉冲可重复触发
	8.1.2、脉冲不可重复触发
	8.1.3、电平保持可循环
	8.1.4、电平保持不可循环 7
	8.1.5、电平非保持循环 7
	8.1.6、播放/停止
	8.1.7、下一曲不循环
	8.1.8、上一曲不循环
	8.1.9、下一曲可循环
	8. 1. 10、上一曲可循环
	8.1.11、暂停
	8. 1. 12、停止
	8.2、一线串口控制模式 9
	8. 2. 1、端口分配表
	8.2.2、命令及语音码 9
	8.2.3、语音地址对应关系
	8. 2. 4、控制时序图
	8. 2. 5、一线串口控制时序例子
	8. 2. 6、程序范例
	8.3、三线串口控制模式11
	8.3.1、端口分配方式
	8.3.2、语音及命令码对应表11
	8.3.3、语音地址对应关系
	8.3.4、三线串口控制时序
	8.3.5、程序范例
9、	典型应用电路
	9.1、按键控制典型应用电路(PWM 输出,5V 供电)13
	9.2、按键控制典型应用电路(PWM 输出,3.3V 供电)13
	9.3、按键控制典型应用电路(DAC输出)13

	9.4、一线串口控制典型应用电路(PWM 输出)	14
	9.5、一线串口控制典型应用电路(DAC输出)	14
	9.6、一线串口 MCU5V 供电/模块 3.3V 供电应用电路(PWM 输出)	14
	9.7、三线串口控制典型应用电路(PWM输出)	15
	9.8、三线串口控制典型应用电路(DAC输出)	15
	9.9、三线串口 MCU5V 供电/模块 3.3V 供电应用电路(PWM 输出)	
10、	控制程序	16
	10.1、一线串口控制汇编程序	16
	10.2、一线串口控制 C 语言程序	17
	10.3、三线串口控制汇编程序	
	10.4、三线串口控制 C 语言程序	20
11、	封装尺寸图	22
12、	货源信息	22
13、	SPI-Flash 存储器容量、采样率和时间的对应关系	23

1、产品特征

- ▶ 28 脚模块封装,可通过更换存储器以获得不同长度的语音存储时间;
- ▶ 支持 2M bit ∼32M bit 容量的 SPI-Flash (注: 1byte=8bit);
- ➤ 采用 WT588D-20SS 语音芯片当作主控核心;
- 内嵌独特的人声语音处理器,使语音表现极为自然悦耳;
- 内置 13Bit/DA 转换器,以及 12Bit/PWM 音频处理,确保高品质语音输出;
- ▶ 支持加载 6K~22KHz 采样率 WAV 音频;
- PWM 输出可直接推动 0.5W/8Ω 扬声器, 推挽电流充沛;
- ▶ 支持 DAC/PWM 两种输出方式;
- 支持按键控制模式、一线串口控制模式、三线串口控制模式;
- ▶ 按键控制模式底下可以设置多种 10 口触发方式;
- ▶ 任意设定显示语音播放状态信号的 BUSY 输出方式;
- ▶ 最多可加载 500 段用于编辑的语音:
- 220段可控制地址位,单个地址位最多可加载128段语音,地址位内的语音组合播放;
- ▶ 语音播放停止马上进入休眠模式:
- ▶ 配套 WT588D VoiceChip 上位机软件,接口简单使用方便。能极大限度的发挥 WT588D-U 语音模块各项功能;
- 在软件中可完成控制模式设置、语音组合、调用语音、插入静音等操作;
- ▶ 可随意插入静音,静音时间范围为 10ms~25min;
- ▶ USB 下载方式,支持在线下载/脱机下载;即便是在 WT588D-U 语音模块通电的情况下,也一样可以正常下载数据到 SPI-Flash;
- ➤ 工作电压 DC2.8V~5.5V;
- ▶ 休眠电流小于 10uA:
- ▶ 抗干扰性强,可应用在工业领域;

2、功能描述

按键控制模式触发方式灵活,可随意设置任意按键为脉冲可重复触发、脉冲不可重复触发、无效按键、电平保持不可循环、电平保持可循环、电平非保持可循环、上一曲不循环、下一曲不循环、上一曲可循环、下一曲可循环、音量+、音量-、播放/暂停、停止、播放/停止等 15 种触发方式;

一线串口控制模式及三线串口控制模式可通过 MCU 发码端控制语音播放、停止、循环播放和音量大小,或者直接触发 $0\sim219$ 地址位的任意语音。

3、应用范围

应用范围广,几乎可以涉及到所有的语音场所,如报站器、报警器、提醒器、闹钟、学习机、智能家电、治疗仪、电子玩具、电讯、倒车雷达以及各种自动控制装置等场所,工艺上达到工业应用的要求。

4、 应用方框图

5、封装管脚图

1	NC	VDD-USB D+ D- GND NC NC VDD BUSY VCC P00 P01 P02 P03 P15	28
2	NC		27
3	NC		26
4	NC		25
5	NC		24
6	NC		23
7	RESET		22
8	DAC		21
9	PW M +		20
10	PW M -		19
11	P14		18
12	P13		17
13	P16		16
14	GND		15

管脚描述

	引脚标号	简述	功能描述		
封装引脚					
1	NC	NC	空		
2	NC	NC	空		
3	NC	NC	空		
4	NC	NC	空		
5	NC	NC	空		
6	NC	NC	空		
7	RESET	RESET	复位脚		
8	DAC	DAC	DAC 音频输出脚,需外接功放才能驱动扬声器		
9	PWM+	PWM+	PWM+音频输出脚,跟 PWM-组合可直接驱动扬声器		
10	PWM-	PWM-	PWM-音频输出脚,跟 PWM+组合可直接驱动扬声器		
11	P14	SPI-FLASH_DI	烧写程序数据输入脚(利用外部下载器下载时用到)		
12	P13	SPI-FLASH_DO	烧写程序数据输出脚(利用外部下载器下载时用到)		
13	P16	SPI-FLASH_CLK	烧写程序时钟脚(利用外部下载器下载时用到)		

14	GND	GND	地线脚
15	P15	SPI-FLASH_CS	烧写程序片选脚 (利用外部下载器下载时用到)
16	P03	K4/CLK/DATA	按键/三线时钟/一线数据输入脚
17	P02	K3/CS	按键/三线片选输入脚
18	P01	K2/DATA	按键/三线数据输入脚
19	P00	K1	按键
20	VCC	VCC	模拟电源输入脚
21	BUSY	BUSY	语音播放忙信号输出脚
22	VDD	VDD	数字电源输入脚
23	NC	NC	空
24	NC	NC	空
25	GND	GND	USB 地线
26	D-	USB_DATA-	USB 数据-
27	D+	USB_DATA+	USB 数据+
28	VDD_USB	VDD_USB	USB 电源正极

注: 25、26、27、28 脚为引用其他 USB 插槽进行下载时用的,平时悬空。

6、电气参数

 V_{DD} — V_{ss} = 4.5V, TA = 25°C, 没有负载

参数	标记	环境条件	最小值	典型值	最大值	单位
工作电压	V _{DD}	F _{sys} =8MHz	2. 8		5.5	٧
工作电流	I _{OP1}	没有负载	-	4. 5	5.5	mA
停止电流	I DD2	没有负载	-	650		uA
休眠模式电流	_{OP2}	没有负载	-	1	2	uA
低电压输入	VIL	所有引脚输入	V_{ss}	-	$0.\ 3V_{\text{\tiny DD}}$	٧
高电压输入	VIH	所有引脚输入	$0.\ 7V_{\scriptscriptstyle DD}$	-	$V_{\scriptscriptstyle DD}$	٧
输入电流	I IN1	V _{1N} =0V	-5	-9	-14	иA
BP1、BP2、RESET		上拉阻抗=500K Ω		-30 -		
输入电流 I _{IN2} BP1、BP2、RESET		V╷ҝ=0V 上拉电阻=150K Ω	-15	-30	-45	uA
	I _{OL}	VDD=3V, VOUT=0.4V	8	12	_	mA
 输出电流(BPO)	I _{OH}	VDD=3V, VOUT=2.6V	-4	-6	-	mA
刊刊出电机(BPU)	I _{OL}	VDD=4.5V, VOUT=1.0V	-	25	-	mA
	I _{он}	VDD=4.5V, VOUT=2.6V	-	-12	-	mA
 輸出电流 (BP1)	I _{OL}	VDD=3V, VOUT=0.4V	4	10	-	mA
判面电流(BPI)	I _{он}	VDD=3V, VOUT=2.6V	-4	-6	-	mA
输出电流	I _{OL1}	RL=8 Ω	+200	-	-	mA
PWM+/PWM-	I _{0H1}	[PWM+] [RL] [PWM-]	-200	-	-	mA
DAC 最大电流	1	DI -100 ∩	-2.4	-3.0	-3.6	m A
DAU 取入电流	I DAC	RL=100 Ω -4.0 -5.0	-5.0	-6.0	mA	
上拉电阻测试	R _{PL}		75	150	225	

7、环绝对极限参数

参数	标记	环境条件	额定值	单位
电源	$V_{ t DD} - V_{ t SS}$	_	-0.3∼+7.0	V
输入电压	VIN	所有输入	V _{ss} -0.3∼V _{DD} +0.3	V
存储温度	TSTG	-	-55∼+150	° C
使用温度	$T_{\mathtt{OPR}}$	-	-40∼+85	° C

8、控制模式

8.1、按键控制模式

所定义的管脚可以直接触发芯片的一个功能,使芯片动作,每个管脚的触发方式可单独设置。按键控制模式的防抖时间为 10ms。按键触发模式下包括脉冲可重复触发、脉冲不可重复触发、电平保持可循环、电平保持不可循环、电平非保持循环、上一曲不循环、下一曲不循环、上一曲可循环、下一曲可循环、无效按键、播放/暂停、停止、音量+、音量-以及播放/停止等 15 种触发方式。详细控制方法见如下触发时序图。

8.1.1、脉冲可重复触发

备注:负脉冲触发。当I/0口检测到有下降沿时(如,该I/0口对地短路一下),触发播放语音。在语音播放期间,再检测到下降沿,芯片会打断正在播放的语音,重新播放。只要有下降沿信号,就重新播放。

8.1.2、脉冲不可重复触发

备注:负脉冲触发。当I/0口检测到有下降沿时(如,该I/0口对地短路一下),触发播放语音。在语音播放期间,再检测到下降沿时,芯片不动作。直到语音结束后,检测到的下降沿才有效。

8.1.3、电平保持可循环

备注: 当 I / 0 口 为低电平时,保持播放,高电平则停止。当第一遍结束后,还保持低电平,则继续重新播放,直到转变为高电平才停止。只要是低电平,则有声音;高电平,则没声音。

8.1.4、电平保持不可循环

备注:电平触发。当I/0口为低电平时,保持播放,高电平则停止。当第一遍播放结束后,还保持低电平,也不会继续播放,触发后只播放一次就结束。如果需要重新播放,则需要让I/0口处于高电平,再拉为低电平,而后保持低电平即可。

8.1.5、电平非保持循环

备注:负脉冲/电平触发。当I/0口为低电平时,保持播放,播放过程中,就算是给高电平也不停止,直到语音播放结束。当第一遍结束后,如果还保持低电平,则会继续重复播放,只要不保持低电平且播放完当前语音后才停止。

8.1.6、播放/停止

备注:负脉冲触发。负脉冲开始播放,下一个负脉冲结束。不管声音是处于播放还是停止状态,都遵照这个规则。

8.1.7、下一曲不循环

备注:负脉冲触发。用一个按键触发播放声音。一个负脉冲触发播放一段,下一个负脉冲播放下一段,播放完最后一段,则不会再有声音。重复操作,只能播放到最后一段声音。

8.1.8、上一曲不循环

备注:负脉冲触发。用一个按键触发播放语音。一个负脉冲触发播放一段语音,下一个负脉冲播放上一段语音,播放完最前一段,则不再向前触发播放语音。重复操作,只能播放到最前一段声音。

8.1.9、下一曲可循环

备注:负脉冲触发。用一个按键触发播放语音。一个负脉冲触发播放一段语音,下一个脉冲触发播放下一段语音,重复操作,播放完最后一段语音,则会点播到第一段语音,如此循环触发播放语音。

8.1.10、上一曲可循环

备注:负脉冲触发。用一个按键触发播放语音。一个负脉冲触发播放一段语音,下一个脉冲触发播放上一段语音,重复操作,播放完最前一段语音,则会点播到最后一段语音,如此循环触发播放语音。

8.1.11、暂停

备注:负脉冲触发。第一个脉冲令正在播放的语音处于暂停状态,第二个脉冲触发暂停的语音在暂停点继续播放。BUSY在暂停状态一直保持。

8.1.12、停止

备注: 负脉冲触发。一个脉冲令正在播放的语音停止。语音停止后再次触发无效。

8.2、一线串口控制模式

通过一根数据线发送串口数据,时序协议位占空比数据位。一线串口可以实现控制语音播放、停止、音量调节和直接触发语音等功能。10 口 P00~P02 可以选择屏蔽或者任意触发方式。

8.2.1、端口分配表

1/0 口	P00	P01	P02	P03
功能	按键 K1	按键 K2	按键 K3	DATA

8.2.2、命令及语音码

命令码	功能	描述
EOH~E7H	音量调节	在语音播放或者待机状态发此命令可以调节 8 级音量,E0H 最小,E7H 音量最大。
F2H	循环播放	在语音播放过程中发送此命令可循环播放当前地址语音。
FEH	停止语音播放	停止播放语音命令。

8.2.3、语音地址对应关系

数据(十六进制)	功能
00Н	播放第0段语音
01H	播放第1段语音
02Н	播放第2段语音
D9H	播放第 217 段语音
DAH	播放第 218 段语音
DBH	播放第 219 段语音

8.2.4、控制时序图

一线串口只通过一条数据通信线控制时序,依照电平占空比不同来代表不同的数据位。先把数据信号拉低5ms,然后再发送数据。高电平与低电平数据占空比1:3即代表数据位0,高电平于低电平数据位占空比为3:1代表数据位1。高电平在前,低电平在后。数据信号先发低位再发高位。在发送数据时,无需先发送命令码再发送指令,直接发送地址数据便可触发播放语音。D0~D7表示一个地址或者命令数据,数据中的O0H~DBH 为地址指令,E0H~E7H 为音量调节命令,F2H 为循环播放命令,FEH 为停止播放命令。详细时序请见下图:

说明:一线串口模式下 WT588D-U 无法进入休眠状态,请在电池供电时慎用。DATA 为一线串口数据通信线,WT588D-U 语音模块每次通电后要等17ms 才能开始发送数据信号,BUSY 为 WT588D-U 语音模块忙信号输出,数据成功发送后等待20ms,BUSY 输出将作出响应。数据位占空比对应详见下图。

8.2.5、一线串口控制时序例子

例如,在一线串口控制模式下,发送数据 9CH 的时序参见下图:

8.2.6、程序范例

```
主控单片机: PIC16F54, 时钟主频 4MHz
Send oneline (unsigned char addr)
{
sda=0;
delay1ms(5); /* 数据信号置于低电平 5ms */
for (i=0; i<8; i++)
{ sda=1;
if(addr & 1)
{ delay1us(600); /* 高电平比低电平为 600us: 200us, 表示发送数据 1 */
sda=0;
delay1us(200);}
else {
              /* 高电平比低电平为 200us: 600us, 表示发送数据 0 */
delay1us(600);
sda=0;
delay1us(200); }
addr>>=1;
sda=1; }
```

8.3、三线串口控制模式

三线串口控制模式由三条通信线组成,分别是片选 CS,数据 DATA,时钟 CLK,时序根据标准 SPI 通信方式。通过三线串口可以实现对 WT588D-U 语音模块进行命令控制、语音播放。三线串口模式下,所有按键均无效。

8.3.1、端口分配方式

1/0 □	P00	P01	P02	P03
功能		DATA	CS	CLK

8.3.2、语音及命令码对应表

命令码	功能	描述
E0H∼E7H	音量调节	在语音播放或者待机状态发此命令可以调节 8 级音量, EOH 最小, E7H 音量最大。
F2H	循环播放	在语音播放过程中发送此命令可循环播放当前地址语音。
FEH	停止语音播放	停止播放语音命令。

8.3.3、语音地址对应关系

数据 (十六进制)	功能
00Н	播放第0段语音
01H	播放第1段语音
02Н	播放第2段语音
D9H	播放第 217 段语音
DAH	播放第 218 段语音
DBH	播放第 219 段语音

8.3.4、三线串口控制时序

三线串口控制模式由片选 CS、时钟 CLK 和数据 DATA 脚组成,时序仿照标准 SPI 通信方式,片选信号 CS 先拉低 5ms 以唤醒语 WT588D-U 语音模块,接收数据低位在先,在时钟的上升沿接收数据。时钟周期介于 100us~2ms 之间,推荐使用 300us。数据成功接收后,语音播放忙信号 BUSY 输出在 20ms 之后做出响应。发数据时先发低位,再发高位。在发送数据时,无需先发送命令码再发送指令,直接发送地址数据便可触发播放语音。D0~D7 表示一个地址或者命令数据,数据中的 00H~DBH 为地址指令,E0H~E7H 为音量调节命令,F2H 为循环播放命令,FEH 为停止播放命令,详细时序图如下:

说明: 每次通电后等待 17ms, 才能给 WT588D-U 语音模块发送数据信号。

8.3.5、程序范例

```
(主控单片机 PIC16F54, 系统频率 4MHz)
Send threelines (unsigned char addr)
{
cs=0;
delay1ms(5);
                  /* 片选信号保持低电平 2ms */
for (i=0; i<8; i++)
\{ scl=0;
if(addr & 1)sda=1;
else sda=0;
addr>>=1;
delay1us(300);
                     /* 时钟周期 300us */
scl=1;
delay1us(300); }
cs=1;}
```

9、典型应用电路

9.1、按键控制典型应用电路(PWM输出,5V供电)

9.2、按键控制典型应用电路(PWM输出, 3.3V供电)

9.3、按键控制典型应用电路(DAC输出)

说明: DAC 输出时,需要在 DAC 输出端接一个 1.2K 电阻及 104 电容到地,然后音频信号再进入功放部分,如电路图中的 R2、R6 所示。

9.4、一线串口控制典型应用电路(PWM输出)

9.5、一线串口控制典型应用电路(DAC输出)

说明: DAC 输出时,需要在 DAC 输出端接一个 1.2K 电阻及 104 电容到地,然后音频信号再进入功放部分,如电路图中的 R2、R6 所示。

9.6、一线串口MCU5V供电/模块 3.3V供电应用电路(PWM输出)

9.7、三线串口控制典型应用电路(PWM输出)

9.8、三线串口控制典型应用电路(DAC输出)

说明: DAC 输出时,需要在 DAC 输出端接一个 1.2K 电阻及 104 电容到地,然后音频信号再进入功放部分,如电路图中的 R2、R6 所示。

9.9、三线串口MCU5V供电/模块 3.3V供电应用电路(PWM输出)

10、控制程序

10.1、一线串口控制汇编程序

说明:此程序为测试程序,请根据实际应用来更改MCU端10口;

ORG 0000H

 KEY EQU P1.1
 ;按键引脚

 SDA EQU P3.0
 ;数据引脚

DAIFAZHI EQU 50H ;发码值暂存地址 MOV DAIFAZHI,#0H;发码初始值为0 MOV R5,#8 ;发码8位循环

MAIN:

JB KEY, MAIN

MOV R6, #20 ;延时20MS

LCALL DELAY1MS

JB KEY, MAIN ;按键去抖判断 JNB KEY, \$;等待按键释放

LCALL one_line ;调用一线发码子程序

INC DAIFAZHI ;发码值加1

MOV A, DAIFAZHI

CJNE A, #220, XX2 ; 是否到达语音段最大值220

XX2: JC XX3

MOV DAIFAZHI, #OH

XX3: LJMP MAIN

one_line: ;///一线发码子程序

CLR SDA

MOV R6, #5 ;延时5MS

LCALL DELAY1MS

MOV A, DAIFAZHI

LOOP: SETB SDA

RRC A

JNC DIDIANPIN ; 高电平脉冲 高:低=3:1

LCALL DELAY200US

LCALL DELAY200US

LCALL DELAY200US

CLR SDA

LCALL DELAY200US

LJMP LOOP1

DIDIANPIN: ;低电平脉冲 高:低=1:3

LCALL DELAY200US

```
CLR SDA
        LCALL DELAY200US
        LCALL DELAY200US
        LCALL DELAY200US
        LOOP1: DJNZ R5, LOOP
                MOV R5, #08H
            SETB SDA
                 RET
      DELAY200US: MOV R6, #100
                                 ; 延 时 400US子程序
               DJNZ R6.$
             RET
    DELAY1MS:
                               ;延时1ms子程序,可以给R6赋值修改延时时间
            L1: MOV R7, #248
             DJNZ R7,$
            DJNZ R6, L1
            RET
                END
10.2、一线串口控制C语言程序
   说明:此程序为测试程序,请根据实际应用来更改 MCU 端 10 口;
     #include <at89x2051.H>
     sbit KEY=P1<sup>1</sup>; /*P1_1 为 P1 口的第 2 位*/
     sbit SDA=P3^0; /*P3 0 为 P3 口的第 4 位*/
     void delay1ms(unsigned char count) //1MS 延时子程序
     {
    unsigned char i, j, k;
    for (k=count; k>0; k--)
     for (i=2; i>0; i--)
         for (j=248; j>0; j--);
   }
     void delay100us(unsigned char count) //100US 延时子程序
     { unsigned char i;
    unsigned char j;
     for (i=count; i>0; i--)
         for (j=50; j>0; j--);
     }
         Send_oneline(unsigned char addr)
    unsigned char i;
    SDA=0;
```

```
/* delay 5ms */
delay1ms(5);
for (i=0; i<8; i++)
    {SDA=1;
   if(addr & 1)
       \{delay100us(6); /* 600us */
       SDA=0;
       delay100us(2);
                      /* 200us */
       }
   else {
       delay100us(2); /* 200us */
       SDA=0;
       delay100us(6);
                      /* 600us */
       }
   addr>>=1; }
   SDA=1;
}
main()
 {unsigned char FD=0;
P3=0XFF;
while(1)
{
   if(KEY==0)
       delay1ms(10);
       if(KEY==0) //通过按键 P1.1 来进行发码值的递增
          Send_oneline(FD);
       FD++;
           if(FD==220) //一线串口时,语音段暂时最多为 220 段
          FD=0;
          while (KEY==0); //等待按键释放,以免一次按键误判成几次
        }
   }
 }
}
```

10.3、三线串口控制汇编程序

说明:此程序为测试程序,请根据实际应用来更改 MCU 端 10 口;

ORG 0000H

KEY EQU P1.1 ;按键引脚 CS EQU P3.1 ;CS 触发引脚 SCL EQU P3.2 ;时钟引脚 SDA EQU P3.0 ;数据引脚

DAIFAZHI EQU 50H ;发码值暂存地址

MOV DAIFAZHI, #0H; 发码初始值为 0 MOV R5, #8; 发码 8 位循环

MAIN:

JB KEY, MAIN

MOV R6, #20 ;延时 20MS

LCALL DELAY1MS

JB KEY, MAIN ;按键去抖判断 JNB KEY, \$;等待按键释放

LCALL THREE_LINE;调用三线发码子程序

INC DAIFAZHI ;发码值加 1

MOV A, DAIFAZHI

CJNE A, #220, XX2;是否到达语音段最大值 220

XX2: JC XX3

MOV DAIFAZHI, #OH XX3: LJMP MAIN

THREE_LINE: ;///三线发码子程序

CLR CS

MOV R6, #5 ;延时 5MS

LCALL DELAY1MS

MOV A, DAIFAZHI

L00P:

CLR SCL

RRC A

MOV SDA, C

LCALL DELAY50US

SETB SCL

LCALL DELAY50US

DJNZ R5, LOOP

MOV R5, #08H

SETB CS

```
RET
       DELAY50US:
                    MOV R6, #150
                                       ;延时 300US 子程序
               DJNZ R6,$
             RET
       DELAY1MS:
                                ;延时 1ms 子程序,可以给 R6 赋值修改延时时间
           L1: MOV R7, #248
           L2: NOP
                NOP
               DJNZ R7, L2
               DJNZ R6.L1
              RET
                  END
10.4、三线串口控制C语言程序
   说明: 此程序为测试程序,请根据实际应用来更改 MCU 端 10 口;
       #include <at89x51.H>
       sbit KEY=P1<sup>1</sup>; /*P1 1 为 P1 口的第 2 位*/
       sbit CS=P3<sup>1</sup>; /*P3_1 为 P3 口的第 3 位*/
       sbit SCL=P3^2; /*P3_2 为 P3 口的第 4 位*/
       sbit SDA=P3^0; /*P3_0 为 P3 口的第 5 位*/
       //sbit DENG=P3<sup>7</sup>; /*P3_5 为 P3 口的第 6 位*/
       void delay1ms(unsigned char count) //1MS 延时子程序
       {
     unsigned char i, j, k;
     for (k=count: k>0: k--)
         for (i=2; i>0; i--)
         for (j=248; j>0; j--);
       }
       void delay100us(void) //100US 延时子程序
     unsigned char j;
          for(j=50; j>0; j--);
       Send_threelines(unsigned char addr) //三线发码子程序
     {unsigned char i;
     CS=0;
     delay1ms(5);
     for (i=0; i<8; i++)
         {SCL=0;
```

{

if(addr & 1)SDA=1;

```
else SDA=0;
   addr>>=1;
   Delay300us(); /* 300us */
   SCL=1;
   Delay300us();
   CS=1;
}
 main()
 {unsigned char FD=0;
   P3=0XFF;
   while (1)
{
   if(KEY==0)
    {
    delay1ms(20);
        if(KEY==0) //通过按键 P1.1 来进行发码值的递增
          Send_threelines(FD);
       FD++;
          if(FD==220//三线串口时,语音段暂时最多为 220 段
           {
          FD=0;
           }
          while (KEY==0); //等待按键释放,以免一次按键误判成几次
       }
  }
}
 }
```

11、封装尺寸图

12、货源信息

	4、 贝								
序号	封装形式	型号	语音时间(6K)	存储器容量	实物图片				
1	DIP28	WT588D-U	视存储器而定	视存储器而定					
2	SSOP20	WT588D-20SS							
3	SSOP20	WTU02-20SS							
4	SOP8	25P20	33 秒	2M					
5	SOP8	25P40	102 秒	4M					
6	SOP8	25P80	238 秒	8M					
7	SOP8	25P16	516 秒	1 6 M					
8	SOP8	25P32	1057 秒	32M					

13、SPI-Flash存储器容量、采样率和时间的对应关系。

存储器容量、采样率和时间的对应关系(以下数据为在 WT588D 的应用中计算得出,不代表存储器在其他应用场所的数据)。

存储器时间采样率	2 M	4 M	8 M	1 6 M	32M
6KHz	33	101	238	511	1057
8KHz	25	76	178	383	793
10KHz	20	61	143	307	634
12KHz	17	51	119	255	529
14KHz	14	43	102	219	453
16KHz	12	38	89	192	396
18KHz	11	34	79	170	352
20KHz	10	30	71	153	317