Kernel Methods in Machine Learning - Course Notes

Hugo Cisneros

Contents

1	Kernels and RKHS	1
	1 Positive Definite Kernels	
	2 Reproducing Kernel Hilbert Spaces (RKHS)	2
	.3 Examples	3
2	Kernel tricks	4
	2.1 Kernel trick	4
	Representer theorem	4
3	Kernel Methods: Supervised Learning	4
	3.1 Kernel Ridge regression	4
	3.2 Kernel logistic regression	5
	3.3 Largse-margin classifiers	5
4	Kernel Methods: Unsupervised Learning	5
5	Γhe Kernel Jungle	5
	6.1 Green, Mercer, Herglotz, Bochner and friends	5
6	Open Problems and Research Topics	6
A	Proofs	6
	A.1 Kernels and RKHS	
	A.2 The Kernel Jungle	7

1 Kernels and RKHS

1.1 Positive Definite Kernels

Definition

A kernel K is a comparison function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. With n data point $\{x_1, x_2, ..., x_n\}$ a $n \times n$ matrix K can be defined by $K_{ij} = K(x_i, x_j)$. A kernel K is **positive definite** (p.d.) if it is **symmetric** (K(x, x') = K(x', x)) and for all sets of a and x

$$\sum_{i} \sum_{j} a_i a_j K(x_i, x_j) \ge 0$$

This is equivalent to the kernel matrix being **positive semi-definite**.

Examples:

- Kernel on $\mathbb{R} \times \mathbb{R}$ defined by K(x, x') = xx' is p.d. $(xx' = x'x \text{ and } \sum_i \sum_j a_i a_j K(x_i, x_j) = (\sum_i a_i x_i)^2 \ge 0$.
- Linear kernel $(K(x,x') = \langle x,x' \rangle_{\mathbb{R}^d})$ is p.d
- More generally for any set \mathcal{X} , and function $\Phi : \mathcal{X} \to \mathbb{R}^d$, the kernel defined by $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathbb{R}^d}$ is p.d.

Theorem 1 – Aronszajn, 1950

K is a p.d. kernel on the set \mathcal{X} if and only if there exists a **Hilbert space** \mathcal{H} and a mapping $\Phi: \mathcal{X} \to \mathcal{H}$ such that, for any x, x' in \mathcal{X} :

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

Proof.

(A Hilbert space is a vector space with an inner product and complete for the corresponding norm).

1.2 Reproducing Kernel Hilbert Spaces (RKHS)

Let \mathcal{X} be a set and $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ a class of functions forming a Hilbert space.

Definition 2 – Reproducing kernel

A kernel K is called a **reproducing kernel** (r.k.) of \mathcal{H} if

 \bullet \mathcal{H} contains all functions of the form

$$\forall x \in \mathcal{X}, K_x : t \to K(x, t)$$

• For every $x \in \mathcal{X}$ and $f \in \mathcal{H}$, $f(x) = \langle f, K_x \rangle_{\mathcal{H}}$

If there exists a r.k., \mathcal{H} is called a RKHS.

Theorem 2 – Equivalent Definition of RKHS

 \mathcal{H} is a RKHS if and only if for any $x \in \mathcal{X}$, the mapping

$$F: \mathcal{H} \to \mathbb{R}$$

 $f \mapsto f(x)$

is continuous.

Proof.

As a corollary, convergence in a RKHS implies point-wise convergence.

Theorem 3 – Uniqueness of RKHS

If \mathcal{H} is a RKHS, it has a **unique r.k.**, and a function K can be **the r.k of at most one RKHS**.

Proof.

Theorem 4

A function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is **p.d.** if and only if it is a r.k..

Proof.

1.3 Examples

1.3.1 Steps for finding the RKHS of a Kernel

- 1. Look for an **inner product** $(K(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\mathcal{H}})$
- 2. Propose a candidate RKHS \mathcal{H}
- 3. Check that the candidate \mathcal{H} is a **Hilbert space** (inner product and complete)
- 4. Check that \mathcal{H} is the RKHS
 - \mathcal{H} contains all the functions $K_x: t \mapsto K(x,t)$
 - For all $f \in \mathcal{H}$ and $x \in \mathcal{X}$, $f(x) = \langle f, K_x \rangle_{\mathcal{H}}$.

1.3.2 Linear Kernel

Definition 3 – Linear Kernel

In \mathbb{R}^d , the linear kernel is defined by $K(x,y) = \langle x,y \rangle_{\mathbb{R}^d}$

Theorem 5 – RKHS of a linear Kernel

The RKHS of the linear kernel is the set of linear functions of the form $f_w(x) = \langle w, x \rangle_{\mathbb{R}^d}$ for $w \in \mathbb{R}^d$, endowed with the inner product $\langle f_w, f_v \rangle_{\mathcal{H}} = \langle w, v \rangle_{\mathbb{R}^d}$

1.3.3 Polynomial Kernel

Definition 4 – Polynomial Kernel

In \mathbb{R}^d , the polynomial kernel is defined by $K(x,y) = \langle x,y \rangle_{\mathbb{R}^d}^2$

Theorem 6 – RKHS of a polynomial Kernel

The RKHS \mathcal{H} of the polynomial kernel is the set of quadratic functions of the form $f_S(x) = x^T S x$ for $S \in \mathcal{S}^{d \times d}$

1.3.4 Properties of kernels

If K_1 , K_2 are p.d. kernels,

- $K_1 + K_2$ is a p.d. kernel
- $K_1 \cdot K_2$ is a p.d. kernel

- cK_1 for $c \ge 0$ is a p.d. kernel
- The point-wise limits of a sequence of p.d. kernels is a p.d kernel.
- $\exp(K_1)$ is a p.d. kernel

Small norms in the RKHS space means slow variations in the original space \mathcal{X} with respect to the geometry defined by the kernel.

2 Kernel tricks

2.1 Kernel trick

Statement: All expression of vectors that can be written in terms of pairwise inner products can be transposed to a infinite dimensional space by replacing inner products with kernel evaluations.

2.2 Representer theorem

Theorem 7 – Representer theorem

Let \mathcal{X} a set with a p.d. kernel K and corresponding RKHS \mathcal{H} , $S = \{x_1, ..., x_n\} \subset \mathcal{X}$ a set of points of \mathcal{X} .

Let $\Phi: \mathbb{R}^{n+1} \to \mathbb{R}$ a function strictly increasing w.r.t. the last variable.

Any solution to the optimization problem

$$\min_{f \in \mathcal{H}} \Phi(f(x_1), ..., f(x_n), ||f||_{\mathcal{H}})$$

admits a representation in the form

$$\forall x \in \mathcal{X}, f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x)$$

Proof

One of the main consequences of the theorem is that problems of the form

$$\min_{f \in \mathcal{H}} \Phi(f(x_1), ..., f(x_n), ||f||_{\mathcal{H}})$$

can be re-written as

$$\min_{\alpha \in \mathbb{R}^n} \Phi([\mathbf{K}\alpha]_1, ..., [\mathbf{K}\alpha]_n, \alpha^T \mathbf{K}\alpha)$$

which is a n-dimensional optimization problem (instead of a possibly infinite dimensional one).

3 Kernel Methods: Supervised Learning

3.1 Kernel Ridge regression

The problem can be described as minimizing a RKHS norm regularized MSE criterion

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda ||f||_{\mathcal{H}}^2$$

Effects of regularization:

- Penalize non smooth functions (avoid overfitting)
- Simplify the solution (representer theorem)

The problem can be re-written

$$\hat{f} = \arg\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} (\mathbf{K}\alpha - y)^T (\mathbf{K}\alpha - y) + \lambda \alpha^T \mathbf{K}\alpha$$

One solution is to take

$$\alpha = (\mathbf{K} + \lambda n\mathbf{I})^{-1}y$$

(Uniqueness: If **K** is singular, all $\alpha + \varepsilon$ with $\varepsilon \in \text{Ker}(\mathbf{K})$ are solutions leading to the same function f.)

- 3.2 Kernel logistic regression
- 3.3 Largse-margin classifiers
- 4 Kernel Methods: Unsupervised Learning
- 5 The Kernel Jungle
- 5.1 Green, Mercer, Herglotz, Bochner and friends
- 5.1.1 Green Kernel

Theorem 8 – Green Kernel in dimension 1

The set defined by

$$\mathcal{H} = \left\{ f : [0,1] \to \mathbb{R}, \text{absolutely continuous}, f' \in L^2([0,1]), f(0) = 0 \right\}$$

endowed with the inner product $\forall (f,g) \in \mathcal{F}^2(f,g) = \int_0^1 f'(u)g'(u)du$, is a RKHS with with r.k.

$$\forall (x, y) \in [0, 1]^2, K(x, y) = \min(x, y)$$

Theorem 9 – General Green Kernel

If D is a differential operator on a class of functions of \mathcal{H} such that the inner product $\langle f, g \rangle_{\mathcal{H}} = \langle Df, Dg \rangle_{L^2(\mathcal{X})}$

Then \mathcal{H} is a RKHS and admits for r.k. the Green function of the operator D^*D

5.1.2 Mercer Kernels

Definition 5 – Mercer Kernels

A kernel K on a set \mathcal{X} is called a Mercer kernel if:

- \mathcal{X} is a compact metric space (typically, a closed bounded subset of \mathbb{R}^d)
- $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a continuous p.d kernel (w.r.t the Borel topology)

6 Open Problems and Research Topics

A Proofs

A.1 Kernels and RKHS

Proof of Theorem 2

(⇒) If a r.k. exists in \mathcal{H} then for any $(x, f) \in \mathcal{X} \times \mathcal{H}$:

$$|f(x)| = |\langle f, K_x \rangle_{\mathcal{H}}|$$

$$\leq ||f||_{\mathcal{H}} \cdot ||K_x||_{\mathcal{H}}$$

$$\leq ||f||_{\mathcal{H}} \cdot K(x, x)^{\frac{1}{2}}$$
(Cauchy-Schwarz)

Therefore, $f \in \mathcal{H} \to f(x) \in \mathbb{R}$ is a linear continuous mapping because F is linear and $\lim_{f \to 0} F(f) = 0$

 (\Leftarrow) F is continuous, by the Riesz representation theorem: there exists a unique $g_x \in \mathcal{H}$ such that $f(x) = \langle f, g_x \rangle_{\mathcal{H}}$.

The function $K:(x,y)\mapsto g_x(y)$ is then a r.k. for \mathcal{H}

Proof of Theorem 3

(Uniqueness) If K and K' are two r.k. of a RKHS, then for any x

$$||K_x - K_x'||^2 = K_x(x) - K_x'(x) - K_x(x) + K_x'(x) = 0$$

So $K_x = K_X'$

Proof of Theorem 4

- (\Leftarrow) A r.k. is symmetric, and $\sum_{i,j} a_i a_j K(x_i, x_j) = \left\| \sum_i a_i K_{x_i} \right\|_{\mathcal{H}}^2 \ge 0$
- (\Rightarrow) Let \mathcal{H}_0 be the subspace spanned by the functions $(K_x)_{x\in\mathcal{X}}$. If $f=\sum_i a_iK_{x_i}$ and $g=\sum_j b_jK_{y_j}$. Let (not an inner product yet)

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i,j} a_i b_j K(x_i, y_j)$$
$$= \sum_i a_i g(x_i)$$
$$= \sum_j b_j f(y_j)$$

 $(\langle f, g \rangle_{\mathcal{H}_0} \text{ does not depend on the expansion of } f \text{ or } g)$ For any $x \in \mathcal{X}$ and $f \in \mathcal{H}_0$, $\langle f, K_x \rangle_{\mathcal{H}_0} = f(x)$.

$$||f||_{\mathcal{H}_0}^2 = \sum_{i,j} a_i a_j K(x_i, x_j) \ge 0$$

And since Cauchy-Schwarz is valid,

$$|f(x)| = |\langle f, K_x \rangle_{\mathcal{H}_0}| \le ||f||_{\mathcal{H}_0} \cdot K(x, x)^{\frac{1}{2}}$$

Therefore $||f||_{\mathcal{H}_0} = 0 \implies f = 0$. $\langle .,. \rangle$ is an inner product on \mathcal{H}_0 . For a Cauchy sequence $(f_n)_{n\geq 0}$,

$$|f_m(x) - f_n(x)| \le ||f_m - f_n||_{\mathcal{H}_0} \cdot K(x, x)^{\frac{1}{2}}$$

For any x the sequence $(f_n(x))$ is Cauchy in \mathbb{R} and therefore converges.

If the functions defined as the point-wise limits of Cauchy sequences are added \mathcal{H}_0 , it becomes a Hilbert space with K as r.k..

Proof of Aronszajn's theorem

If K is p.d. over a set \mathcal{X} , it is the r.k. of a Hilbert space \mathcal{H} . The mapping Φ is defined by $\forall x \in \mathcal{X}, \quad \Phi(x) = K_x.$

By the reproducing property

$$\forall (x,y) \in \mathcal{X}^2, \quad \langle \Phi(x), \Phi(y) \rangle_{\mathcal{X}} = \langle K_x, K_y \rangle_{\mathcal{X}} = K(x,y)$$

Proof of the Representer theorem

Let $\xi(f)$ the functional that is minimized in the optimization problem of the theorem, and $\mathcal{H}_{\mathcal{S}}$ the linear span of all the K_{x_i} functions.

Since $\mathcal{H}_{\mathcal{S}}$ is a finite dimensional space, every function $f \in \mathcal{H}$ can be decomposed as $f = f_{\mathcal{S}} + f_{\perp}$, with f_S the orthogonal projection of f on \mathcal{H}_S .

Because \mathcal{H} is a RKHS,

$$\forall i < n, \quad f_{\perp}(x_i) = \langle f_{\perp}, K_{x_i} \rangle_{\mathcal{H}} = 0$$

Therefore

$$\forall i \leq n, \quad f(x_i) = f_{\mathcal{S}}(x_i)$$

From Pythagora's theorem in \mathcal{H} , $||f||_{\mathcal{H}}^2 = ||f_{\mathcal{S}}||_{\mathcal{H}}^2 + ||f_{\perp}||_{\mathcal{H}}^2$. We therefore have $\xi(f) \geq \xi(f_{\mathcal{S}})$ with equality if and only if $||f_{\perp}||_{\mathcal{H}}^2 = 0$, the minimum belongs to $\mathcal{H}_{\mathcal{S}}$.

A.2 The Kernel Jungle

Proof