

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

THIS PAGE BLANK (USPTO)

(19) Europäisches Patentamt
European Patent Office
Offic européen des brevets

(11) Publication number:

0 575 749 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93108114.5

(51) Int. Cl.⁵: A61K 31/00, A61K 31/35,
A61K 31/275, A61K 31/38,
A61K 31/395, A61K 31/435,
A61K 31/44

(22) Date of filing: 18.05.93

(30) Priority: 11.06.92 US 897217

6 Brickyard Lane
Westborough, MA(US)
Inventor: Ogletree, Martin L.
646 South State St.
Newtown, Pennsylvania 18940(US)
Inventor: O'Keefe, Eugene H.
1798 Wrightstown Rd.
Newtown, PA 18940(US)

(43) Date of publication of application:

29.12.93 Bulletin 93/52

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU MC
NL PT SE

(71) Representative: Josif, Albert, Dr-Ing. et al
Baaderstrasse 3
D-80469 München (DE)

(71) Applicant: E.R. SQUIBB & SONS, INC.

P.O.Box 4000
Princeton New Jersey 08543-4000(US)

(72) Inventor: Aberg, Gunnar A.K.

(54) Use of potassium-channel activators for the manufacture of a medicament for the treatment of
gastrointestinal ulcers.

(57) Ulcerative conditions of the gastro-intestinal tract, e.g., antiinflammatory-drug-induced ulcers, are treated or prevented by the administration of a potassium channel activator. Methods and combination products are also disclosed for the treatment of inflammatory conditions without causing ulceration of the gastrointestinal tract.

EP 0 575 749 A2

The present invention relates to a method for protecting against and/or treating ulcerative gastrointestinal conditions, including anti-inflammatory-drug-induced ulcers, employing a potassium channel activator (PCA), as well as to compositions, combinations and improved methods for treating inflammatory conditions.

5 Anti-inflammatory drugs, such as aspirin, indomethacin, ibuprofen, meclofenamate, naproxen, phenylbutazone, piroxicam and various corticosteroids are effective in treating or controlling pain, including headache, and in decreasing joint swelling, tenderness, pain and stiffness in conditions such as rheumatoid arthritis. Unfortunately, although much anti-inflammatory drugs are effective in treating pain and inflammatory conditions, they cause development of gastrointestinal ulcers thereby seriously limiting chronic use
10 of these drugs.

In accordance with the present invention, it has now been found that gastrointestinal ulcers are effectively treated using a therapeutic amount of a potassium channel activator (PCA). Additionally, it has been found that the incidence of antiinflammatory drug-induced gastric ulcers is substantially reduced when PCA's are administered with the antiinflammatory drug. Thus, PCA's can be used prophylactically in
15 patients taking antiinflammatory drugs. This can be accomplished by administering a single combination dosage form or by the concomitant administration of a PCA and an antiinflammatory drug. Accordingly, combination products and improved methods of treating inflammation are also provided by the present invention.

Any PCA can be used in the methods and compositions of the present invention. Preferably, PCA's
20 which have little or no vasodilator activity in normal tissue, but which show an anti-ischemic effect in ischemic tissue, are preferred.

Suitable potassium channel activators include those disclosed in U. S. Patent 4,057,636, especially the compound

25

A

30

known as pinacidil; those disclosed in European Patent Application 0 274 821, especially the compound

35

B

40

45

known as cromakalim; nicorandil; minoxidil; compounds in copending application U. S. Ser. No. 661,763
50 filed February 27, 1991 having the formula

55

C

5

10

wherein a, b, and c are all carbons or one of a, b and c can be nitrogen or -NO₂ and the others are carbons;
 R₁ is

15

20

25

R₂ is hydrogen, hydroxy.

30

R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

35 R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SO₂alkyl, -SO₂alkyl,

40

45 halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NR₂COalkyl and NR₂COOalkyl, NR₂CONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

R₆ is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN, and NO₂;

50 R₇ and R₈ are each independently selected from hydrogen, alkyl, alkenyl, aryl (including phenyl substituted with R' and R'' as defined below), (heterocyclo) alkyl, heterocyclo, arylalkyl, cycloalkyl and (cycloalkyl)alkyl, substituted alkyl wherein the substituents include alkoxy, alkylthio and substituted amino, or R₇ and R₈ taken together with the nitrogen atom to which they are attached form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiomorpholinyl, 1-piperazinyl, 4-alkyl-1-piperazinyl or 4-arylalkyl-1-piperazinyl, wherein each of the so-formed groups can be substituted with alkyl, alkoxy, alkylthio, halogen or trifluoromethyl;

55 R₉ and R₁₀ are selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkyl; and
 n is 1, 2 or 3;
 with the compound

C:

(where R' and R'' are independently hydrogen, cyano, alkyl, alkoxy, nitro, hydroxy, halo, haloalkyl, alkylthio, amino, -N(alkyl)₂, -NHalkyl or benzyloxy with the proviso that at least one of R' and R'' is other than hydrogen)

20 being preferred:
compounds in copending application U. S. Patent 5,011,837 granted April 30, 1991 having the formula

D:

and its possible tautomers

D':

45
and

D'':

wherein R₁ is alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, aryl, arylalkyl or cycloalkylalkyl; R₂ is -C≡N- or -NO₂.

15 CF₃ or

20

R₃ and **R₄** are each independently selected from -R₂, hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, halo, alkoxy, -NHalkyl, -N-(alkyl)₂, -S-alkyl, -O-arylalkyl, -S-arylalkyl or -S-aryl, -O-aryl, -NHarylalkyl, or R₂ and R₃ taken together are a group which forms a ring with the two carbon atoms to which they are attached.

30

wherein

$m = 1$ or 2 ;

$n = 1-3;$

n = 0-2;

X is O, NR₅, CH₂; and,

B_F is hydrogen or B_1 :

is hydrogen or H, the compounds disclosed in copending patent application serial number 776,921 filed October 15, 1991 of the formula

40

E

45

wherein A can be $-\text{CH}_2-$, $-\text{O}-$, $-\text{NR}_9-$, $-\text{S}-$, $-\text{SO}-$ or $-\text{SO}_2-$, where R_9 is hydrogen or lower alkyl of 1 to 4 carbons;

55

wherein X is oxygen or sulfur;

Y is $-NR_8$, $-O-$, $-S-$ or

EP 0 575 749 A2

- 5 R₁ is aryl, arylalkyl, heterocyclo or (heterocyclo)alkyl;
 R₂ is hydrogen, hydroxy,

- 10 R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with the
 carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;
 15 R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂,
 -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

- 25 halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOOalkyl and
 NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl,
 cycloalkyl, or (cycloalkyl)alkyl;
 R₆ is selected from H, alkyl, halo, OH, O-alkyl, amino and substituted amino;
 R₇ and R₈ are each independently selected from hydrogen, alkyl, arylalkyl;
 30 n is 1, 2 or 3; and,
 R₁₀ is hydrogen, hydroxy, alkyl or O-alkyl; and compounds in copending application Serial No. 745,563
 filed August 15, 1991 having the general formula

E

- 40 wherein a, b and c are all carbons or one of a, b and c can be nitrogen or -NO- and the others are carbons;
 where X is oxygen or sulfur;
 R₁ is selected from aryl, arylalkyl, (heterocyclo)alkyl, heterocyclo, cycloalkyl and (cycloalkyl)alkyl;
 45 R₂ is hydrogen, hydroxy,

R_3 and R_4 are each independently hydrogen, alkyl or arylalkyl, or R_3 and R_4 taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R_5 is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

5

10

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NR₂COalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

15

R_6 is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN and NO₂;

R_7 is selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkylalkyl; and,

n is 1, 2 or 3; and,

compounds disclosed in copending application serial number 630,472 filed December 19, 1990 having the formula

20

G

25

wherein A can be -CH₂-, -O-, -NR₉-, -S-, -SO- or -SO₂-; where R_9 is hydrogen or lower alkyl of 1 to 4 carbons;

wherein X is oxygen or sulfur;

Y is -NR₈, -O-, -S- or

40

45

R_1 is aryl, arylalkyl, heterocyclo or (heterocyclo)alkyl;

R_2 is hydrogen, hydroxy,

50

R_3 and R_4 are each independently hydrogen, alkyl or arylalkyl, or R_3 and R_4 taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

55

R_5 is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

halogen, amino, substituted amino, O-alkyl, OCF_3 , OCH_2CF_3 , - OCOalkyl , - OCONRalkyl , - NRCOalkyl and NRCOOalkyl , NRCONR_2 wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl or haloalkyl;

10 R_6 is selected from H, alkyl, halo, OH, o-alkyl, amino and substituted amino, O-alkyl, OCOalkyl , OCONRalkyl , NRCOalkyl and NRCOOalkyl , NRCON(R)_2 wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or haloalkyl;

15 R_7 and R_8 are each independently selected from hydrogen, alkyl, arylalkyl; or R_1 and R_8 , or R_1 and R_7 , or R_7 and R_8 taken together can form a 5- to 7-membered saturated or unsaturated ring, which may further include an aryl group fused to 2 carbon atoms of such 5- to 7-membered ring;

16 n is 1, 2 or 3; and,

17 R_{10} is hydrogen, hydroxy, alkyl or O-alkyl.

18 Also suitable for use herein are compounds as disclosed in U. S. 4,988,723 granted January 29, 1991
20 having the formula

35 wherein

R^1 and R^2 are each lower alkyl;

R^3 is hydroxy or acyloxy and R^4 is hydrogen or R^3 and R^4 are linked together to form a bond, and

(i) Y is -S-, -O- or a group of the formula:

45 wherein R^7 is hydrogen, acyl or lower alkyl which may have suitable substituent(s), and

R^5 and R^6 are each hydrogen or lower alkyl,

(ii) Y is as defined above, and R^5 and R^6 are linked together to form lower alkylene, or

(iii) Y- R^5 is a heterocyclic group which may have suitable substituent(s), and R^6 is hydrogen or lower alkyl

50 compounds as disclosed in EP 214,818 having the formula

55

J

5

10

and salts thereof, wherein

one of R_1 and R_2 is hydrogen or C_{1-4} alkyl and the other is C_{1-4} alkyl or R_1 and R_2 together are C_{2-5} polymethylene;

either R_3 is hydrogen, hydroxy, C_{1-6} alkoxy or C_{1-7} acyloxy and R_4 is hydrogen or R_3 and R_4 together are a bond;

R_5 is hydrogen, C_{1-6} alkyl optionally substituted by halogen, hydroxy, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl, carbon or amino optionally substituted by one or two independent C_{1-6} alkyl groups, or C_{2-6} alkenyl, amino optionally substituted by a C_{1-6} alkyl or C_{1-6} alkenyl group or by a C_{1-6} alkanoyl group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by C_{1-6} alkyl, C_{1-6} alkoxy or halogen, or aryl or heteroaryl, either being optionally substituted by one or more groups or atoms selected from the class of C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C_{1-12} carboxylic acyl, or amino or aminocarbonyl optionally substituted by one or two C_{1-6} alkyl groups and R_6 is hydrogen or C_{1-6} alkyl, or R_5 and R_6 together are $-\text{CH}_2-(\text{CH}_2)_n-\text{Z}-(\text{CH}_2)_m-$ wherein m and n are 0 to 2 such that $m + n$ is 1 or 2 and Z is CH_2 , O, S or NR wherein R is hydrogen, C_{1-9} alkyl, C_{2-7} alkanoyl, phenyl C_{1-4} alkyl, naphthylcarbonyl, phenylcarbonyl or benzylcarbonyl optionally substituted in the phenyl or naphthyl ring by one or two of C_{1-6} alkyl, C_{1-6} alkoxy or halogen; mono- or bi-cyclicheteroarylcarbonyl;

X is oxygen or sulphur;

Y and Q are electron withdrawing groups; and

the nitrogen-containing group in the 4-position being trans to the R_3 group when R_3 is hydroxy, C_{1-6} alkoxy or C_{1-7} acyloxy;

compounds as disclosed in EP 359,537 having the formula

35

K

40

45

wherein

a and b together form an -O- or $-\text{CH}_2-$ linkage or a bond;

either Y is N and R_2 is hydrogen; or

Y is $\text{C}-\text{R}_1$;

wherein

either one of R_1 and R_2 is hydrogen and the other is nitro, cyano, halo, CF_3 , formyl, aldoxime, CF_3O , $\text{NO}_2\text{-CH=CH-}$, NC-CH=CH- ;

a group R_xX -wherein R_x is C_{1-6} alkyl, aryl or heteroaryl either of which may be optionally substituted by one, two or three of C_{1-4} alkyl, C_{1-4} alkoxy, nitro, halo, CF_3 and cyano; and X is $\text{C}=\text{O}$, O.C=O , C=O.O ,

EP 0 575 749 A2

CHOH, SO, SO₂, O.SO, O.SO₂, CONH, O.CONH, C=S, O.C=S, C=S.O, CH.SH, SONH, SO₂NH, O.SONH, O.SO₂NH, CO-CH=CH, C=NHOH, C=NNH₂;

or a group R_yR_zNZ- wherein R_y and R_z are independently hydrogen or C₁₋₆alkyl and Z is C=O, SO or SO₂; or

5 R₁ is a C₃₋₈cycloalkyl group or a C₁₋₆alkyl group optionally substituted by a group which is hydroxy, C₁₋₆alkoxy, amino optionally substituted by one or two C₁₋₆alkyl groups, C₁₋₇alkanoylamino, C₃₋₈cycloalkyloxy or C₃₋₈cycloalkylamino; and R₂ is hydrogen; or

one of R₁ and R₂ is nitro, cyano or C₁₋₃alkylcarbonyl and the other is a different group selected from nitro cyano, halo, C₁₋₃alkylcarbonyl, methoxy or amino optionally substituted by one or two C₁₋₆alkyl or by

10 C₂₋₇alkanoyl; either one of R₃ and R₄ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl; or

R₃ and R₄ together are C₂₋₅polymethylene;

either R₅ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy; and

R₆ is hydrogen; or

15 R₅ and R₆ together are a bond;

either R₇ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₂₋₆alkenyl or C₂₋₆alkynyl; and

R₈ is hydrogen or C₁₋₆alkyl; or

R₇ and R₈ together are C₂₋₄polymethylene;

20 R₉ is CN, NO₂, COR₁₀ wherein R₁₀ is C₁₋₃alkyl, NH₂, NH(C₁₋₃alkyl), CF₃ or phenyl optionally substituted as defined for R_x; and

the R₈N(R₉)NHR₇ moiety is trans to the R₅ group when R₅ is hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy; compounds as disclosed in EP 205,292 having the formula

L

25

30

35

wherein

one of R₁ and R₂ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl or R₁ and R₂ together are

40 C₂₋₅polymethylene;

either R₃ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₆acyloxy and R₄ is hydrogen or R₃ and R₄ together are a bond;

R₅ is hydrogen; C₁₋₆alkyl optionally substituted by up to three halo atoms, by hydroxy, C₁₋₄alkoxy, C₁₋₆alkoxycarbonyl, carboxy, or amino optionally substituted by one or two independent C₁₋₆alkyl groups

45 or disubstituted by C₄₋₅polymethylene, C₂₋₆alkenyl; amino optionally substituted by a C₁₋₆alkyl or C₁₋₆alkenyl group or by a C₁₋₆alkanoyl group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by C₁₋₆alkyl, C₁₋₆alkoxy or halogen; or aryl or heteroaryl, either being

optionally substituted by one or more groups or atoms selected from the class of C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C₁₋₁₂carboxylic acyl or amino or aminocarbonyl optionally

50 substituted by one or two C₁₋₆alkyl groups; or (when X is O). R₅ is selected from the class of carboxy, C₁₋₆alkoxycarbonyl or aminocarbonyl optionally substituted by one or two C₁₋₆alkyl groups; and,

R₆ is hydrogen or C₁₋₆alkyl; or

R₅ and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m- where m and n are 0 to 2 such that m + n is 1 or 2 and Z is CH₂, O, S or NR where R is hydrogen, C₁₋₈alkyl, C₂₋₇alkanoyl, phenyl, C₁₋₄alkyl, naphthylcar-

55 bonyl, phenylcarbonyl or benzyl-carbonyl optionally substituted in the phenyl or naphthyl ring by one or two C₁₋₆alkyl, C₁₋₆alkoxy or halogen or R is heteroarylcarbonyl;

X is oxygen or sulphur; or

R₅, R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolinethione optionally substi-

tuted in the phenyl ring as defined for R above;

the nitrogen-containing group in the 4-position being trans to the R₃ group when R₃ is hydroxy, C₁₋₄alkoxy or C₁₋₇acyloxy;

compounds as disclosed in PCT 87/00386 having the formula

5

M

10

15

20 and pharmaceutically acceptable salts thereof, wherein R₁ is hydrogen or alkyl; R₂ is alkyl or R₁ and R₂ are polymethylene; R₃ is hydrogen, hydroxy, alkoxy, acyloxy; R₄ is hydrogen or R₃ and R₄ are a bond; R₅ is hydrogen, optionally substituted alkyl, alkenyl, optionally substituted amino, optionally substituted aryl or heteroaryl, carboxy, alkoxy carbonyl or aminocarbonyl; R₆ is hydrogen or alkyl or R₅ and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m-, wherein m and n are 0 to 2, m + n is 1 or 2, Z is CH₂, O, S, NR; R is hydrogen, 25 alkyl, alkanoyl, phenylalkyl, naphthylcarbonyl, phenylcarbonyl, benzylcarbonyl, or heteroaryl-carbonyl; X is O, S or R₅; R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolinethione;

compounds as disclosed in EP 344,747 having the formula

30

N

35

40

wherein

R¹ and R² are each lower alkyl;

45 R³ is hydroxy or acyloxy and R⁴ is hydrogen; or
R³ and R⁴ are linked together to form a bond, and

(i) Y is -S-, -O- or a group of the formula

50

wherein

55 R⁷ is hydrogen, acyl or lower alkyl which may have suitable substituent(s); and
R⁵ and R⁶ are each hydrogen or lower alkyl;
(ii) Y is as defined above; and
R⁵ and R⁶ are linked together to form lower alkylene; or

(iii) Y-R⁵ is a heterocyclic group which may have suitable substituent(s); and

R⁶ is hydrogen or lower alkyl;

and pharmaceutically acceptable salts thereof.

In carrying out the method of the present invention, the PCA may be administered to mammalian species, such as monkeys, dogs, cats, rats, humans, etc., to treat ulcerative gastrointestinal conditions. In methods for treating inflammatory conditions, the PCA's can be administered before, during or after antiinflammatory drug therapy alone or in combination with such drug.

The PCA may be administered systemically, such as orally, parenterally, intranasally or transdermally.

The PCA, alone or in combination with an antiinflammatory drug, may be incorporated in a conventional dosage form, such as a tablet, capsule, elixir or injectable. The above dosage forms will also include the necessary carrier material, excipient, lubricant, buffer, antibacterial, bulking agent (such as mannitol), anti-oxidants (ascorbic acid or sodium bisulfite) or the like. Oral dosage forms are preferred, although parenteral forms are quite satisfactory as well.

With regard to such systemic formulations, single or divided doses of from about 5 to about 2500 mg, preferably from about 10 to 2000 mg/one to four times daily, may be administered in systemic dosage forms as described above for a period sufficient to reduce existing ulcerative conditions, or may be administered previous to and preferably concurrently with antiinflammatory drugs.

With regard to combinations of the PCA with anti-inflammatory agent, single or divided doses of from 5 to about 2500 mg of PCA, preferably 10 to 2000 mg of PCA, and from about 2 to about 2000 mg anti-inflammatory agent and preferably from about 5 to about 1500 mg anti-inflammatory agent, depending upon the type of anti-inflammatory agent employed, may be administered one to eight times daily.

It will be appreciated that all of the anti-inflammatory drugs disclosed herein are known for treating inflammation and/or pain and may be employed in dosage forms and amounts as disclosed in the Physicians' Desk Reference.

The preferred embodiments of this invention involve using compounds of the general formulae C, E, F or G. Compounds of formula C, E, F or G are useful in the present method where little or no antihypertensive action is desired. Such "selective" compounds are those potassium channel activators which have IC₅₀ (rat aorta) values greater than that of cromakalim. Preferably the IC₅₀ value is 10 times greater and more preferably 100 times greater than that of cromakalim. In other words, the preferred embodiments use compounds which preferably have 1/10 and more preferably 1/100 of the vasorelaxant activity of cromakalim. These include compounds of formula C where R₇ is (or compounds of formula E, F or G where R₇ is) aryl, especially substituted phenyl, arylalkyl, heteroaryl or heteroarylalkyl.

The term "ulcerative conditions of the gastrointestinal tract" as employed herein includes conditions such as gastric ulcers, duodenal ulcers, Crohn's disease, ulcerative colitis, irritable bowel syndrome, and inflammatory bowel disease.

Further, in accordance with the present invention, a new combination is provided which includes a PCA and an anti-inflammatory drug which may be employed in a weight ratio to each other of within the range of from about 0.01:1 to about 100:1, and preferably from about 0.5:1 to about 2:1.

The above combination may be employed to treat pain, joint swelling, and stiffness associated with rheumatoid arthritis or to treat diseases in the manner of known anti-inflammatory agents.

Anti-inflammatory drugs or agents which may be employed herein include, but are not limited to, aspirin, indomethacin, ibuprofen, meclofenamate, naproxen, phenylbutazone, piroxicam, and various corticosteroids including hydrocortisone, dexamethasone, and methylprednisolone.

45 Example 1

Aspirin-Induced Gastric Erosions

Male Sprague-Dawley rats (150-350 g) were housed separately in cages with wire mesh floors that would allow fecal material to fall through. They were fasted overnight before the experiment and allowed free access to water. On each experiment day, the order of treatments was randomized. One hour after oral dosing with Vehicle (1% methyl cellulose - MO262, Sigma Chemical Co.) or the subject potassium channel activator (3S-trans)-N-(4-chlorophenyl)-N''-cyano-N'-{(6-cyano-3,4-dihydro-3-hydroxy-2,2-dimethyl-2H-1-benzopyran-4-yl)guanidine (3, 10 or 30 mg/kg), rats were dosed with aspirin (200 mg/kg, p.o.) prepared in a 1% methyl cellulose vehicle. Three hours after receiving aspirin, each rat was sacrificed by CO₂ asphyxiation. The stomach was removed, slit open along its greater curvature, rinsed with normal saline, and examined under a 2.5X magnifying lens. The gastric erosions were counted and the total area of gastric erosion measured. The results are illustrated in Figure 1 and Table 1 b low. The left half of Table 1

EP 0 575 749 A2

summarizes the measured areas of gastric erosion in the four groups of rats: vehicle (mean \pm SEM = 7.57 \pm 0.96 mm 2), the subject potassium channel activator (3 mg/kg; 5.31 \pm 1.22 mm 2), the subject potassium channel activator (10 mg/kg; 4.58 \pm 0.96 mm 2), and the subject potassium channel activator (30 mg/kg; 3.16 \pm 0.89 mm 2). The average lesion areas \pm SEM for vehicle and treatment groups are summarized in Figure 5 1. The subject potassium channel activator induced reduction in gastric lesion area was statistically significant by analysis of variance ($p = 0.022$). The right half of Table 1 shows the percent protection [i.e., $(7.57 - \text{lesion area})/7.75 \times 100$] afforded by the subject potassium channel activator treatment compared to the average lesion area in the vehicle group. The dose producing a 50% reduction in aspirin-induced gastric lesion area (i.e., ID₅₀) was calculated to be 17.4 mg/kg, p.o. by regression analysis.

10

15

20

25

30

35

40

45

50

55

Table 1

		BMS 180,448 (3, 10 and 30 mg/kg, p.o., In 1% MC, 60 min before ASA @ 200 mg/kg, p.o., In 1% MC)													
		Vehicle					Dose 1 % P10					Dose 2 % P10		Dose 3 % P10	
		BMS 3 mg/kg	BMS 10 mg/kg	BMS 30 mg/kg			Dose % P10								
11/3,14	& 12/5,6/1991	2.38	7.31	10.44	4.44		68.6%	3.4%	-37.9%	41.3%					
		8.50	6.69	5.69	0.94		-12.3%	11.6%	24.8%	87.6%					
		8.19	6.31	2.13	3.75		-8.2%	16.6%	71.9%	50.5%					
		6.38	4.94	8.25	10.50		15.7%	34.7%	-9.0%	-38.7%					
		8.13	8.06	0.88	6.13		-7.4%	6.5%	88.4%	19.0%					
		3.07	2.50	5.88	5.31		59.4%	67.0%	22.3%	29.8%					
		10.00	16.28	1.38	2.63		-32.1%	-115.1%	81.8%	65.3%					
		8.25	0.44	10.25	1.06		-9.0%	94.2%	-35.4%	86.0%					
		2.69	1.12	0.63	1.56		64.5%	85.2%	91.7%	79.4%					
		6.38	2.88	2.63	0.00		15.7%	61.9%	65.3%	100.0%					
		6.31	3.19	1.56	1.63		16.6%	57.9%	79.4%	76.5%					
		8.50	4.00	4.31	0.00		-12.3%	47.2%	43.1%	100.0%					
		16.56		5.56			-118.8%		26.5%						
		5.75					24.0%								
		12.44					-64.4%								
		Mean	7.57	5.31	4.58	3.16	p=0.022 by ANOVA	0.0%	29.8%	39.4%	58.2%				
		SD	0.96	1.22	0.96	0.89		12.6%	16.1%	12.6%	11.7%				
		N	15	12	13	12						ID50 = 17.4 mg/kg, p.o.			

55 Claims

1. Use of a potassium channel activator for manufacturing a medicament for preventing or treating ulcerative conditions of the gastrointestinal tract, in a mammalian species.

2. The use as defined in claim 1 wherein the potassium channel activator is nicorandil, minoxidil, a compound of the formula

A

known as pinacidil;

B

known as cromakalim;

C

wherein a, b, and c are all carbons or one of a, b and c can be nitrogen or -NO- and the others are carbons;

R₁ is

45

55

R₂ is hydrogen, hydroxy,

EP 0 575 749 A2

5 R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with
the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;
R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN,
-NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

10 $\begin{array}{c} \text{O} \\ || \\ \text{P}(\text{O-alkyl})_2 \end{array},$

15 halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl
and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl,
arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

20 R₆ is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN, and NO₂;
R₇ and R₈ are each independently selected from hydrogen, alkyl, alkenyl, aryl (including phenyl
substituted with R' and R'' as defined below), (heterocyclo)alkyl, heterocyclo, arylalkyl, cycloalkyl and substituted
25 (cycloalkyl)alkyl, substituted alkyl wherein the substituents include alkoxy, alkylthio and substituted
pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiomorpholinyl, 1-piperazinyl, 4-alkyl-1-
piperazinyl or 4-arylalkyl-1-piperazinyl, wherein each of the so-formed groups can be substituted with
alkyl, alkoxy, alkylthio, halogen or trifluoromethyl;

30 R₉ and R₁₀ are selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkyl; and
n is 1, 2 or 3;
with the compound

45 (where R' and R'' are independently hydrogen, cyano, alkyl, alkoxy, nitro, hydroxy, halo, haloalkyl,
alkylthio, amino, -N(alkyl)₂, -NHalkyl or benzyloxy with the proviso that at least one of R' and R'' is
50 other than hydrogen) being preferred;

D

5

10

and its possible tautomers

D'

15

20

and

D''

25

30

wherein R_1 is alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, aryl, arylalkyl or cycloalkylalkyl;
 R_2 is $-\text{C}\equiv\text{N}$, $-\text{NO}_2$,

35

40

45

R_3 and R_4 are each independently selected from $-\text{R}_2$, hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, halo, alkoxy, $-\text{NHalkyl}$, $-\text{N}(\text{alkyl})_2$, $-\text{S-alkyl}$, $-\text{O-arylalkyl}$, $-\text{S-arylalkyl}$ or $-\text{S-aryl}$, $-\text{O-aryl}$, $-\text{NHarylalkyl}$, or R_2 and R_3 taken together are a group which forms a ring with the two carbon atoms to which they are attached, which group is selected from

50

wherein

55

$m = 1$ or 2 ;
 $n = 1$ - 3 ;
 $p = 0$ - 2 ;
 X is O , NR_5 , CH_2 ; and,

R₅ is hydrogen or R₁;

E

5

10

15

wherein A can be -CH₂-, -O-, -NR₉-, -S-, -SO- or -SO₂-, where R₉ is hydrogen or lower alkyl of 1 to 4 carbons;

wherein X is oxygen or sulfur;

20 Y is -NR₈, -O-, -S- or

25

30

35 R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

40

45

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

R₆ is selected from H, alkyl, halo, OH, O-alkyl, amino and substituted amino;

50

R₇ and R₈ are each independently selected from hydrogen, alkyl, arylalkyl;

n is 1, 2 or 3; and,

R₁₀ is hydrogen, hydroxy, alkyl or O-alkyl;

55

E

5

10

wherein a, b and c are all carbons or one of a, b and c can be nitrogen or -NO₂ and the others are carbons;

where X is oxygen or sulfur;

R₁ is selected from aryl, arylalkyl, (heterocyclo)alkyl, heterocyclo, cycloalkyl and (cycloalkyl)alkyl;

R₂ is hydrogen, hydroxy,

20

25

R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

30

35

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

40

R₆ is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN and NO₂;

R₇ is selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkylalkyl; and,

n is 1, 2 or 3; and,

45

50

55

G

wherein A can be -CH₂-, -O-, -NR₉-, -S-, -SO- or -SO₂-, where R₉ is hydrogen or lower alkyl of 1 to 4

carbons;

wherein X is oxygen or sulfur;
Y is -NR₈, -O-, -S- or

5

10 R₁ is aryl, arylalkyl, heterocyclo or (heterocyclo)alkyl;
R₂ is hydrogen, hydroxy,

15

20 R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or R₃ and R₄ taken together with
the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN,
-NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

25

30 halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl
and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl,
arylalkyl, cycloalkyl, or (cycloalkyl)alkyl or haloalkyl;

35 R₆ is selected from H, alkyl, halo, OH, o-alkyl, amino and substituted amino, O-alkyl, OCOalkyl,
OCONRalkyl, NRCOalkyl and NRCOOalkyl, NRCON(R)₂ wherein R in each of the above groups can be
hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or haloalkyl;

40 R₇ and R₈ are each independently selected from hydrogen, alkyl, arylalkyl;
or R₁ and R₈, or R₁ and R₇, or R₇ and R₈ taken together can form a 5- to 7-membered saturated
or unsaturated ring, which may further include an aryl group fused to 2 carbon atoms of such 5- to 7-
membered ring;

45 n is 1, 2 or 3; and,
R₁₀ is hydrogen, hydroxy, alkyl or O-alkyl.

H

55

wherein

R¹ and R² are each lower alkyl;

R^3 is hydroxy or acyloxy and R^4 is hydrogen or R^3 and R^4 are linked together to form a bond, and
 (i) Y is -S-, -O- or a group of the formula:

5

wherein R^7 is hydrogen, acyl or lower alkyl which may have suitable substituent(s), and

10

R^5 and R^6 are each hydrogen or lower alkyl,

(ii) Y is as defined above, and R^5 and R^6 are linked together to form lower alkylene, or

(iii) Y- R^5 is a heterocyclic group which may have suitable substituent(s), and R^6 is hydrogen or lower alkyl

15

I

20

25

and salts thereof, wherein

30

one of R_1 and R_2 is hydrogen or C_{1-4} alkyl and the other is C_{1-4} alkyl or R_1 and R_2 together are C_{2-5} polymethylene;

either R_3 is hydrogen, hydroxy, C_{1-6} alkoxy or C_{1-7} acyloxy and R_4 is hydrogen or R_3 and R_4 together are a bond;

35

R_5 is hydrogen, C_{1-6} alkyl optionally substituted by halogen, hydroxy, C_{1-6} alkoxy, C_{1-6} alkoxycarbonyl, carboxy or amino optionally substituted by one or two independent C_{1-6} alkyl groups, or C_{2-6} alkenyl, amino optionally substituted by a C_{1-6} alkyl or C_{1-6} alkenyl group or by a C_{1-6} alkanoyl group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by C_{1-6} alkyl, C_{1-6} alkoxy or halogen, or aryl or heteroaryl, either being optionally substituted by one or more groups or atoms selected from the class of C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C_{1-12} carboxylic acyl, or amino or aminocarbonyl optionally substituted by one or two C_{1-6} alkyl groups and R_6 is hydrogen or C_{1-6} alkyl, or R_5 and R_6 together are $-CH_2-(CH_2)_n-Z-(CH_2)_m-$ wherein m and n are 0 to 2 such that $m + n$ is 1 or 2 and Z is CH_2 , O, S or NR wherein R is hydrogen, C_{1-9} alkyl, C_{2-7} alkanoyl, phenyl C_{1-4} alkyl, naphthylcarbonyl, phenylcarbonyl or benzylcarbonyl optionally substituted in the phenyl or naphthyl ring by one or two of C_{1-6} alkyl, C_{1-6} alkoxy or halogen; mono- or bi-cyclicheteroarylcarbonyl;

40

X is oxygen or sulphur;

Y and Q are electron withdrawing groups; and

the nitrogen-containing group in the 4-position being trans to the R_3 group when R_3 is hydroxy, C_{1-6} alkoxy or C_{1-7} acyloxy;

50

55

K

wherein

a and b together form an -O- or -CH₂- linkage or a bond;either Y is N and R₂ is hydrogen; orY is C-R₁;

wherein

either one of R₁ and R₂ is hydrogen and the other is nitro, cyano, halo, CF₃, formyl, aldoxime, CF₃O, NO₂-CH=CH-, NC-CH=CH-;a group R_xX-wherein R_x is C₁₋₆alkyl, aryl or heteroaryl either of which may be optionally substituted by one, two or three of C₁₋₄alkyl, C₁₋₄alkoxy, nitro, halo, CF₃ and cyano; and X is C=O, O.C=O, C=O.O, CHOH, SO, SO₂, O.SO, O.SO₂, CONH, O.CONH, C=S, O.C=S, C=S.O, CH.SH, SONH, SO₂NH, O.SONH, O.SO₂NH, CO-CH=CH, C=NHOH, C=NNH₂;or a group R_yR_zZ- wherein R_y and R_z are independently hydrogen or C₁₋₆alkyl and Z is C=O, SO or SO₂; orR₁ is a C₃₋₈cycloalkyl group or a C₁₋₆alkyl group optionally substituted by a group which is hydroxy, C₁₋₆alkoxy, amino optionally substituted by one or two C₁₋₆alkyl groups, C₁₋₇alkanoylalino, C₃₋₈cycloalkyloxy or C₃₋₈cycloalkylamino; and R₂ is hydrogen; orone of R₁ and R₂ is nitro, cyano or C₁₋₃alkylcarbonyl and the other is a different group selected from nitro, cyano, halo, C₁₋₃alkylcarbonyl, methoxy or amino optionally substituted by one or two C₁₋₆alkyl or by C₂₋₇alkanoyl;either one of R₃ and R₄ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl; orR₃ and R₄ together are C₂₋₅polymethylene;either R₅ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy; andR₆ is hydrogen; orR₅ and R₆ together are a bond;either R₇ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₂₋₆alkenyl or C₂₋₆alkynyl; andR₈ is hydrogen or C₁₋₆alkyl; orR₇ and R₈ together are C₂₋₄polymethylene;R₉ is CN, NO₂, COR₁₀ wherein R₁₀ is C₁₋₃alkyl, NH₂, NH(C₁₋₃alkyl), CF₃ or phenyl optionally substituted as defined for R_x; andthe R₈N(NR₉)NHR₇ moiety is trans to the R₅ group when R₅ is hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy;

50

55

L

5

10

15

wherein

one of R₁ and R₂ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl or R₁ and R₂ together are C₂₋₅polymethylene;

either R₃ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₆acyloxy and R₄ is hydrogen or R₃ and R₄ together are a bond;

20

R₅ is hydrogen; C₁₋₆alkyl optionally substituted by up to three halo atoms, by hydroxy, C₁₋₆alkoxy, C₁₋₆alkoxycarbonyl, carboxy, or amino optionally substituted by one or two independent C₁₋₆alkyl groups or disubstituted by C₄₋₅poly-methylene, C₂₋₆alkenyl; amino optionally substituted by a C₁₋₆alkyl or C₁₋₆alkenyl group or by a C₁₋₆alkanoyl group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by C₁₋₆alkyl, C₁₋₆alkoxy or halogen; or aryl or heteroaryl, either being optionally substituted by one or more groups or atoms selected from the class of C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C₁₋₁₂carboxylic acyl or amino or aminocarbonyl optionally substituted by one or two C₁₋₆alkyl groups; or (when X is O). R₅ is selected from the class of carboxy, C₁₋₆alkoxycarbonyl or aminocarbonyl optionally substituted by one or two C₁₋₆alkyl groups; and,

30

R₆ is hydrogen or C₁₋₆alkyl; or

R₅ and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m-wherein m and n are 0 to 2 such that m + n is 1 or 2 and Z is CH₂, O, S or NR wherein R is hydrogen, C₁₋₈alkyl, C₂₋₇alkanoyl, phenyl, C₁₋₄alkyl, naphthylcarbonyl, phenylcarbonyl or benzyl-carbonyl optionally substituted in the phenyl or naphthyl ring by one or two of C₁₋₆alkyl, C₁₋₆alkoxy or halogen or R is heteroarylcarbonyl;

35

X is oxygen or sulphur; or

R₅, R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolinethione optionally substituted in the phenyl ring as defined for R above;

the nitrogen-containing group in the 4-position being trans to the R₃ group when R₃ is hydroxy, C₁₋₄alkoxy or C₁₋₇acyloxy;

40

M

45

50

55

and pharmaceutically acceptable salts thereof, wherein R₁ is hydrogen or alkyl; R₂ is alkyl or R₁ and R₂ are polymethylene; R₃ is hydrogen, hydroxy, alkoxy, acyloxy; R₄ is hydrogen or R₃ and R₄ are a bond; R₅ is hydrogen, optionally substituted alkyl, alkanyl, optionally substituted amino, optionally substituted aryl or heteroaryl, carboxy, alkoxy carbonyl or aminocarbonyl; R₆ is hydrogen or alkyl or R₅

EP 0 575 749 A2

and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m, wherein m and n are 0 to 2, m + n is 1 or 2, Z is CH₂, O, S, NR; R is hydrogen, alkyl, alkanoyl, phenyl-alkyl, naphthylcarbonyl, phenylcarbonyl, benzylcarbonyl, or heteroaryl-carbonyl; X is O, S or R₅, R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolin-thione;

5

N

10

15

20

wherein

R¹ and R² are each lower alkyl;
R³ is hydroxy or acyloxy and R⁴ is hydrogen; or
R³ and R⁴ are linked together to form a bond, and
(i) Y is -S-, -O- or a group of the formula

25

30

wherein

R⁷ is hydrogen, acyl or lower alkyl which may have suitable substituent(s); and
R⁵ and R⁶ are each hydrogen or lower alkyl;
(ii) Y is as defined above; and
R⁵ and R⁶ are linked together to form lower alkylene; or
(iii) Y-R⁵ is a heterocyclic group which may have suitable substituent(s); and
R⁶ is hydrogen or lower alkyl;
and pharmaceutically acceptable salts thereof.

- 40 3. The use of claim 1 wherein the potassium channel activator has little or no vasorelaxant activity in normal tissue.
4. The use of claim 3 wherein said potassium channel activator is selected from C where R₇ is aryl, arylalkyl, heteroaryl and heteroaryl(alkyl), E, F or G where R₁ is aryl, arylalkyl, heteroaryl or heteroaryl(alkyl).
- 45 5. The use of claim 4 wherein the aryl group for R₇ in C or R₁ in E, F or G is substituted phenyl.
6. The use of claim 5 wherein the potassium channel activator is

50

55

C'

5

10

15

(where R' and R'' are independently hydrogen, cyano, alkyl, alkoxy, nitro, hydroxy, halo, haloalkyl, alkylthio, amino, -N(alkyl)₂, -NHalkyl or benzyloxy with the proviso that at least one of R' and R'' is other than hydrogen) being preferred;

20 7. The use of claim 6 wherein the potassium channel activator is

25

30

35

8. The use of claim 1 wherein said ulcerative condition of the gastrointestinal tract is induced by the administration of one or more antiinflammatory drugs.

9. The use of claim 8 wherein said medicament is for use concurrently with the antiinflammatory drug.

40

10. The use of claim 9 wherein said medicament and said antiinflammatory drug are provided by a single, combination dosage form.

45

11. Use of a potassium channel activator receptor antagonist for manufacturing a medicament for use concurrently with a therapeutically effective amount of an anti-inflammatory agent for preventing or treating an inflammatory condition without causing gastrointestinal ulcers, in a mammalian species.

50

12. The use of claim 11 wherein said potassium channel activator is nicorandil, minoxidil, a compound of the formula

55

A

EP 0 575 749 A2

known as pinacidil;

B

5

10

15

known as cromakalim;

C

20

25

wherein a, b, and c are all carbons or one of a, b and c can be nitrogen or -NO- and the others are carbons;

30 R₁ is

40 or

;

45 R₂ is hydrogen, hydroxy,

50 R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

55 R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

halogen, amino, substituted amino, O-alkyl, OCF_3 , OCH_2CF_3 , -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

10 R₆ is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN, and NO₂;

R₇ and R₈ are each independently selected from hydrogen, alkyl, alkenyl, aryl (including phenyl substituted with R' and R'' as defined below), (heterocyclo)alkyl, heterocyclo, arylalkyl, cycloalkyl and (cycloalkyl)alkyl, substituted alkyl wherein the substituents include alkoxy, alkylthio and substituted amino, or R₇ and R₈ taken together with the nitrogen atom to which they are attached form 1-pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiomorpholinyl, 1-piperazinyl, 4-alkyl-1-piperazinyl or 4-arylalkyl-1-piperazinyl, wherein each of the so-formed groups can be substituted with alkyl, alkoxy, alkylthio, halogen or trifluoromethyl;

15 R₉ and R₁₀ are selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkyl; and n is 1, 2 or 3;

20 with the compound

C'

25

30

35

(where R' and R'' are independently hydrogen, cyano, alkyl, alkoxy, nitro, hydroxy, halo, haloalkyl, alkylthio, amino, -N(alkyl)₂, -NHalkyl or benzyloxy with the proviso that at least one of R' and R'' is other than hydrogen) being preferred;

40

D

45

50

and its possible tautomers

55

D'

5

10

and

D"

15

20

wherein R₁ is alkyl, alkenyl, alkynyl, haloalkyl, cycloalkyl, aryl, arylalkyl or cycloalkylalkyl;
25 R₂ is -C≡N, -NO₂.

30

35

40

R₃ and R₄ are each independently selected from -R₂, hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, halo, alkoxy, -NHalkyl, -N-(alkyl)₂, -S-alkyl, -O-arylalkyl, -S-arylalkyl or -S-aryl, -O-aryl, -NHarylalkyl, or R₂ and R₃ taken together are a group which forms a ring with the two carbon atoms to which they are attached, which group is selected from

45

wherein

m = 1 or 2;

n = 1-3;

p = 0-2;

X is O, NR₅, CH₂; and,R₅ is hydrogen or R₁;

55

E

5

10

wherein A can be -CH₂-, -O-, -NR₉-, -S-, -SO- or -SO₂-, where R₉ is hydrogen or lower alkyl of 1 to 4 carbons;

wherein X is oxygen or sulfur;
Y is -NR₈, -O-, -S- or

20

R₁ is aryl, arylalkyl, heterocyclo or (heterocyclo)alkyl;
R₂ is hydrogen, hydroxy,

30

R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or, R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

40

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

R₆ is selected from H, alkyl, halo, OH, O-alkyl, amino and substituted amino;
R₇ and R₈ are each independently selected from hydrogen, alkyl, arylalkyl;
n is 1, 2 or 3; and,
R₁₀ is hydrogen, hydroxy, alkyl or O-alkyl;

50

55

EP 0 575 749 A2

E

5

10

wherein a, b and c are all carbons or one of a, b and c can be nitrogen or -NO- and the others are carbons;

15

where X is oxygen or sulfur;
 R_1 is selected from aryl, arylalkyl, (heterocyclo)alkyl, heterocyclo, cycloalkyl and (cycloalkyl)alkyl;
 R_2 is hydrogen, hydroxy,

20

25

R_3 and R_4 are each independently hydrogen, alkyl or arylalkyl, or R_3 and R_4 taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

30

R_5 is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

35

40

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl;

R_6 is selected from H, alkyl, OH, O-alkyl, amino, substituted amino, CN and NO₂;

R_7 is selected from hydrogen, alkyl, alkenyl, aryl, arylalkyl, cycloalkyl or cycloalkylalkyl; and,

n is 1, 2 or 3; and,

G

45

50

55

wherein A can be -CH₂-, -O-, -NR₉-, -S-, -SO- or -SO₂-, where R₉ is hydrogen or lower alkyl of 1 to 4 carbons;

wherein X is oxygen or sulfur;
 Y is -NR₈, -O-, -S- or

5

10

R₁ is aryl, arylalkyl, heterocyclo or (heterocyclo)alkyl;
 R₂ is hydrogen, hydroxy,

15

20

R₃ and R₄ are each independently hydrogen, alkyl or arylalkyl, or R₃ and R₄ taken together with the carbon atom to which they are attached form a 5-to 7-membered carbocyclic ring;

R₅ is selected from H, alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, arylalkyl, cycloalkylalkyl, -CN, -NO₂, -COR, -COOR, -CONHR, -CONR₂, -CF₃, S-alkyl, -SOalkyl, -SO₂alkyl,

25

30

halogen, amino, substituted amino, O-alkyl, OCF₃, OCH₂CF₃, -OCOalkyl, -OCONRalkyl, -NRCOalkyl and NRCOOalkyl, NRCONR₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, or (cycloalkyl)alkyl or haloalkyl;

R₆ is selected from H, alkyl, halo, OH, O-alkyl, amino and substituted amino, O-alkyl, OCOalkyl, OCONRalkyl, NRCOalkyl and NRCOOalkyl, NRCON(R)₂ wherein R in each of the above groups can be hydrogen, alkyl, aryl, arylalkyl, cycloalkyl, (cycloalkyl)alkyl or haloalkyl;

35

R₇ and R₈ are each independently selected from hydrogen, alkyl, arylalkyl; or R₁ and R₈, or R₁ and R₇, or R₇ and R₈ taken together can form a 5- to 7-membered saturated or unsaturated ring, which may further include an aryl group fused to 2 carbon atoms of such 5- to 7-membered ring;

40

n is 1, 2 or 3; and,

R₁₀ is hydrogen, hydroxy, alkyl or O-alkyl.

45

50

55

wherein

R¹ and R² are each lower alkyl;

R³ is hydroxy or acyloxy and R⁴ is hydrogen or R³ and R⁴ are linked together to form a bond, and

(i) Y is -S-, -O- or a group of the formula:

5 wherein R⁷ is hydrogen, acyl or lower alkyl which may have suitable substituent(s), and
 R⁵ and R⁶ are each hydrogen or lower alkyl,
 (ii) Y is as defined above, and R⁵ and R⁶ are: linked together to form lower alkylene, or
 (iii) Y-R⁵ is a heterocyclic group which may have suitable substituent(s), and R⁶ is hydrogen or lower
 10 alkyl

I

25 and salts thereof, wherein
 one of R₁ and R₂ is hydrogen or C₁-4alkyl and the other is C₁-4alkyl or R₁ and R₂ together are
 C₂-5polymethylene;
 either R₃ is hydrogen, hydroxy, C₁-6alkoxy or C₁-7acyloxy and R₄ is hydrogen or R₃ and R₄
 together are a bond;
 30 R₅ is hydrogen, C₁-6alkyl optionally substituted by halogen, hydroxy, C₁-6alkoxy, C₁-6alkox-
 ycarbonyl, carboxy or amino optionally substituted by one or two independent C₁-6alkyl groups, or
 C₂-6alkenyl, amino optionally substituted by a C₁-6alkyl or C₁-6alkenyl group or by a C₁-6alkanoyl
 group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by
 C₁-6alkyl, C₁-6alkoxy or halogen, or aryl or heteroaryl, either being optionally substituted by one or
 35 more groups or atoms selected from the class of C₁-6alkyl, C₁-6alkoxy, hydroxy, halogen,
 trifluoromethyl, nitro, cyano, C₁-12carboxylic acyl, or amino or aminocarbonyl optionally substituted by
 one or two C₁-6alkyl groups and R₆ is hydrogen or C₁-6alkyl, or R₅ and R₆ together are -CH₂-(CH₂)_n-
 Z-(CH₂)_m- wherein m and n are 0 to 2 such that m + n is 1 or 2 and Z is CH₂, O, S or NR wherein R is
 40 hydrogen, C₁-9alkyl, C₂-7 alkanoyl, phenyl C₁-4alkyl, naphthylcarbonyl, phenylcarbonyl or benzylcar-
 bonyl optionally substituted in the phenyl or naphthyl ring by one or two of C₁-6alkyl, C₁-6alkoxy or
 halogen; mono- or bi-cyclic heteroarylcarbonyl;
 X is oxygen or sulphur;
 Y and Q are electron withdrawing groups; and
 the nitrogen-containing group in the 4-position being trans to the R₃ group when R₃ is hydroxy,
 45 C₁-6alkoxy or C₁-7acyloxy;

50

55

K

5

10

15

wherein

a and b together form an -O- or -CH₂- linkage or a bond;either Y is N and R₂ is hydrogen; orY is C-R₁;

wherein

either one of R₁ and R₂ is hydrogen and the other is nitro, cyano, halo, CF₃, formyl, aldoxime, CF₃O, NO₂-CH=CH-, NC-CH=CH-;a group R_xX-wherein R_x is C₁₋₆alkyl, aryl or heteroaryl either of which may be optionally substituted by one, two or three of C₁₋₄alkyl, C₁₋₄alkoxy, nitro, halo, CF₃ and cyano; and X is C=O, O.C=O, C=O.O, CHOH, SO, SO₂, O.SO, O.SO₂, CONH, O.CONH, C=S, O.C=S, C=S.O, CH.SH, SONH, SO₂NH, O.SONH, O.SO₂NH, CO-CH=CH, C=NHOH, C=NNH₂;

25

or a group R_yR_zNZ- wherein R_y and R_z are independently hydrogen or C₁₋₆alkyl and Z is C=O, SO or SO₂; orR₁ is a C₃₋₈acycloalkyl group or a C₁₋₆alkyl group optionally substituted by a group which is hydroxy, C₁₋₆alkoxy, amino optionally substituted by one or two C₁₋₆alkyl groups, C₁₋₇alkanoylalino, C₃₋₈cycloalkyloxy or C₃₋₈cycloalkylamino; and R₂ is hydrogen; or30 one of R₁ and R₂ is nitro, cyano or C₁₋₃alkylcarbonyl and the other is a different group selected from nitro, cyano, halo, C₁₋₃alkylcarbonyl, methoxy or amino optionally substituted by one or two C₁₋₆alkyl or by C₂₋₇alkanoyl;either one of R₃ and R₄ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl; or

35

R₃ and R₄ together are C₂₋₅polymethylene;either R₅ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy; andR₆ is hydrogen; orR₅ and R₆ together are a bond;either R₇ is hydrogen, C₁₋₆alkyl, C₃₋₆cycloalkyl, C₂₋₆alkenyl or C₂₋₆alkynyl; and

40

R₈ is hydrogen or C₁₋₆alkyl; orR₇ and R₈ together are C₂₋₄polymethylene;45 R₉ is CN, NO₂, COR₁₀ wherein R₁₀ is C₁₋₃alkyl, NH₂, NH(C₁₋₃alkyl), CF₃ or phenyl optionally substituted as defined for R_x; andthe R₈N(NR₉)NHR₇ moiety is trans to the R₅ group when R₅ is hydroxy, C₁₋₆alkoxy or C₁₋₇acyloxy;

50

55

L

5

10

wherein
one of R₁ and R₂ is hydrogen or C₁₋₄alkyl and the other is C₁₋₄alkyl or R₁ and R₂ together are C₂₋₅polymethylene;
either R₃ is hydrogen, hydroxy, C₁₋₆alkoxy or C₁₋₆acyloxy and R₄ is hydrogen or R₃ and R₄ together are a bond;

20 R₅ is hydrogen; C₁₋₆alkyl optionally substituted by up to three halo atoms, by hydroxy, C₁₋₄alkoxy, C₁₋₆alkoxycarbonyl, carboxy, or amino optionally substituted by one or two independent C₁₋₆alkyl groups or disubstituted by C₄₋₅polymethylene, C₂₋₆alkenyl; amino optionally substituted by C₁₋₆alkyl or C₁₋₆alkenyl group or by a C₁₋₆alkanoyl group optionally substituted by up to three halo atoms, by a phenyl group optionally substituted by C₁₋₆alkyl, C₁₋₆alkoxy or halogen; or aryl or heteroaryl, either being optionally substituted by one or more groups or atoms selected from the class of C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C₁₋₁₂carboxylic acyl or amino of C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen, trifluoromethyl, nitro, cyano, C₁₋₁₂carboxylic acyl or amino carbonyl optionally substituted by one or two C₁₋₆alkyl groups; or (when X is O). R₅ is selected from the class of carboxy, C₁₋₆alkoxycarbonyl or aminocarbonyl optionally substituted by one or two C₁₋₆alkyl groups; and,

30 R₆ is hydrogen or C₁₋₆alkyl; or
R₅ and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m-wherein m and n are 0 to 2 such that m + n is 1 or 2 and Z is CH₂, O, S or NR wherein R is hydrogen, C₁₋₈alkyl, C₂₋₇alkanoyl, phenyl, C₁₋₄alkyl, naphthylcarbonyl, phenylcarbonyl or benzyl-carbonyl optionally substituted in the phenyl or naphthyl ring by one or two of C₁₋₆alkyl, C₁₋₆alkoxy or halogen or R is heteroarylcarbonyl;

35 X is oxygen or sulphur; or
R₅, R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolinethione optionally substituted in the phenyl ring as defined for R above;
the nitrogen-containing group in the 4-position being trans to the R₃ group when R₃ is hydroxy, C₁₋₄alkoxy or C₁₋₇acyloxy;

40

M

45

50

55 and pharmaceutically acceptable salts thereof, wherein R₁ is hydrogen or alkyl; R₂ is alkyl or R₁ and R₂ are polymethylene; R₃ is hydrogen, hydroxy, alkoxy, acyloxy; R₄ is hydrogen or R₃ and R₄ are a bond; R₅ is hydrogen, optionally substituted alkyl, alkenyl, optionally substituted amino, optionally

substituted aryl or heteroaryl, carboxy, alkoxy carbonyl or aminocarbonyl; R₆ is hydrogen or alkyl or R₅ and R₆ together are -CH₂-(CH₂)_n-Z-(CH₂)_m-, wherein m and n are 0 to 2, m + n is 1 or 2, Z is CH₂, O, S, NR; R is hydrogen, alkyl, alkanoyl, phenyl-alkyl, naphthylcarbonyl, phenylcarbonyl, benzylcarbonyl, or heteroaryl-carbonyl; X is O, S or R₅, R₆, X and N together are tetrahydroisoquinolinone or tetrahydroisoquinolin-thione;

5

10

15

20

25

wherein

- R¹ and R² are each lower alkyl;
- R³ is hydroxy or acyloxy and R⁴ is hydrogen; or
- R³ and R⁴ are linked together to form a bond, and
- (i) Y is -S-, -O- or a group of the formula

30

wherein

- R⁷ is hydrogen, acyl or lower alkyl which may have suitable substituent(s); and
- R⁵ and R⁶ are each hydrogen or lower alkyl;

35

- (ii) Y is as defined above; and
- R⁵ and R⁶ are linked together to form lower alkylene; or
- (iii) Y-R⁵ is a heterocyclic group which may have suitable substituent(s); and
- R⁶ is hydrogen or lower alkyl;
- and pharmaceutically acceptable salts thereof.

40

13. The use of claim 11 wherein the potassium channel activator has little or no vasorelaxant activity in normal tissue.

45 14. The use of claim 11 wherein said potassium channel activator is selected from C where R₇ is aryl, arylalkyl, heteroaryl and heteroaryl(alkyl), E, F or G where R₁ is aryl, arylalkyl, heteroaryl or heteroaryl(alkyl).

15. The use of claim 11 wherein the aryl group for R₇ in C or R₁ in E, F or G is substituted phenyl.

50 16. The use of claim 11 wherein the potassium channel activator is

55

C'

where R' and R'' are independently hydrogen, cyano, alkyl, alkoxy, nitro, hydroxy, halo, haloalkyl, alkylthio, amino, -N(alkyl)₂, -NHalkyl or benzyloxy with the proviso that at least one of R' and R'' is other than hydrogen.

- 20 17. The use of claim 11 wherein the potassium channel activator is

- 35 18. A pharmaceutical composition comprising an anti-ulcer amount of a potassium channel activator and an effective amount of an anti-inflammatory drug.

40

45

50

55

THIS PAGE BLANK (USPTO)

(19)

Eur pâisches Patentamt

Eur pean Patent Office

Office européen des brevets

(11)

EP 0 575 749 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
24.07.1996 Bulletin 1996/30

(51) Int. Cl.⁶: A61K 31/00, A61K 31/35,
A61K 31/275, A61K 31/38,
A61K 31/395, A61K 31/435,
A61K 31/44

(43) Date of publication A2:
29.12.1993 Bulletin 1993/52

(21) Application number: 93108114.5

(22) Date of filing: 18.05.1993

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
PT SE

(30) Priority: 11.06.1992 US 897217

(71) Applicant: E.R. SQUIBB & SONS, INC.
Princeton New Jersey 08543-4000 (US)

(72) Inventors:

- Aberg, Gunnar A.K.
Westborough, MA (US)
- Ogletree, Martin L.
Newtown, Pennsylvania 18940 (US)
- O'Keefe, Eugene H.
Newtown, PA 18940 (US)

(74) Representative: Josif, Albert, Dr.-Ing. et al
Baaderstrasse 3
D-80469 München (DE)

(54) **Use of potassium-channel activators for the manufacture of a medicament for the treatment of gastointestinal ulcers**

(57) Ulcerative conditions of the gastro-intestinal tract, e.g., antiinflammatory-drug-induced ulcers, are treated or prevented by the administration of a potassium channel activator. Methods and combination prod-

ucts are also disclosed for the treatment of inflammatory conditions without causing ulceration of the gastrointes-tinal tract.

EP 0 575 749 A3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 93 10 8114

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.)						
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim							
X	EP-A-0 389 861 (FUJISAWA PHARMACEUTICAL CO., LTD.) * page 2, line 1-15 * * page 8, line 42 - line 44 * ---	1	A61K31/00 A61K31/35 A61K31/275 A61K31/38 A61K31/395 A61K31/435 A61K31/44						
X	EP-A-0 432 893 (YAMANOUCHI PHARMACEUTICAL CO. LTD.) * page 2, line 1 - line 5 * * page 16, line 1 - line 2 * ---	1							
D,X	EP-A-0 205 292 (BEECHAM GROUP PLC) * column 1, line 1 - column 2, line 7 * ---	1							
D,X	EP-A-0 274 821 (BEECHAM GROUP PLC) * page 3, line 12; claims 1-7 * ---	1							
D,X	EP-A-0 359 537 (BEECHAM GROUP PLC) * page 2, line 10 - line 16 * ---	1							
X	DATABASE WPI Week 9123 Derwent Publications Ltd., London, GB; AN 91-168378 XP002002053 & JP-A-03 101 621 (CHUGAI PHARMACEUTICAL KK), 26 April 1991 * abstract * ---	1,2	TECHNICAL FIELDS SEARCHED (Int.Cl.) A61K						
Y	DATABASE WPI Section Ch, Week 9049 Derwent Publications Ltd., London, GB; Class B02, AN 90-363498 XP002002054 & HU-A-55 055 (SQUIBB & SONS INC E R), 5 December 1990 * abstract * ---	1-8 -/-							
<p>The present search report has been drawn up for all claims</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Place of search</td> <td style="width: 33%;">Date of completion of the search</td> <td style="width: 33%;">Examiner</td> </tr> <tr> <td>MUNICH</td> <td>3 May 1996</td> <td>Tzschoppe, D</td> </tr> </table>				Place of search	Date of completion of the search	Examiner	MUNICH	3 May 1996	Tzschoppe, D
Place of search	Date of completion of the search	Examiner							
MUNICH	3 May 1996	Tzschoppe, D							
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document							
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background : non-written disclosure P : intermediate document									

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 93 10 8114

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.CI.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
D,P, Y	US-A-5 140 031 (KARNAIL ATWAL ET AL.) 18 August 1992 * column 1 - column 11 * -----	1-8	
			TECHNICAL FIELDS SEARCHED (Int.CI.)
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
MUNICH	3 May 1996	Tzschoppe, D	
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

European Patent
Office

CLAIMS INCURRING FEES

The present European patent application comprised at the time of filing more than ten claims.

- All claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for all claims.
- Only part of the claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid.
namely claims:
- No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions or groups of inventions.
namely:

see sheet -B-

- All further search fees have been paid within the fixed time limit. The present European search report has been drawn up for all claims.
- Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respects of which search fees have been paid.
namely claims: mentioned under items 1 and 5.
- None of the further search fees has been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims.
namely claims

European Patent
Office

EP 93 10 8114 -B-

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions or groups of inventions, namely:

1. Claims 1-3 (partially) and 8 as far as nicorandil is concerned.
2. Claims 1-3 (partially) and 8 as far as minoxidil is concerned.
3. Claims 1-3 (partially) and 8 as far as pinacidil is concerned.
4. Claims 1-3 (partially) and 8 as far as cromakalim is concerned.
5. Claims 1-3 (partially) and 4-8 as far as the compounds of formula C are concerned.
6. Claims 1-3 (partially) and 8 as far as the compounds of formula D are concerned.
7. Claims 1-3 (partially) and 5,8 as far as the compounds of formula E are concerned.
8. Claims 1-3 (partially) and 5,8 as far as the compounds of formula F are concerned.
9. Claims 1-3 (partially) and 5,8 as far as the compounds of formula G are concerned.
10. Claims 1-3 (partially) and 8 as far as the compounds of formula H are concerned.
11. Claims 1-3 (partially) and 8 as far as the compounds of formula J are concerned.
12. Claims 1-3 (partially) and 8 as far as the compounds of formula K are concerned.
13. Claims 1-3 (partially) and 8 as far as the compounds of formula L are concerned.
14. Claims 1-3 (partially) and 8 as far as the compounds of formula M are concerned.
15. Claims 9-18

. / .

European Patent
Office

EP 93 10 8114 -B2-

LACK OF UNITY OF INVENTION

The Search Division considers that the present European patent application does not comply with the requirement of unity of invention and relates to several inventions or groups of inventions, namely:

The common concept linking the inventions nos. 1-15 seems to rely in the fact, that all the compounds are potassium channel activators and are effective in the treatment of the same diseases. As it is known from the documents listed in the search report that potassium channel activators are effective in the treatment of gastrointestinal disorders such as peptic ulcers or irritable bowel syndrome, this common concept is not novel.