Dataset Quality Report

Generated: 2025-09-25 11:40:25

HashPrep Version: 0.1.0-alpha

Executive Summary

Critical Issues: 13 Warnings: 38 Rows: 891 Columns: 12

Issues Overview

Category	Severity	Column	Description	Impact	Quick Fix
missing_values	critical	Cabin	77.1% missing values in 'Cabin'	high	Options: - Drop column: Reduces bias from missing data (Pros: Simplifies model; Cons: Loses potential info) Impute values: Use domain- informed methods (e.g., median, mode, or predictive model) (Pros: Retains feature; Cons: May introduce bias) Create missingness indicator: Flag missing values as a new feature (Pros: Captures missingness pattern; Cons: Adds complexity).

high_cardinality	critical	Name	Column 'Name' has 891 unique values (100.0% of rows)	high	Options: - Drop column: Avoids overfitting from unique identifiers (Pros: Simplifies model; Cons: Loses potential info) Engineer feature: Extract patterns (e.g., titles from names) (Pros: Retains useful info; Cons: Requires domain knowledge) Use hashing: Reduce dimensionality (Pros: Scalable; Cons: May lose interpretability).
high_cardinality	warning	Ticket	Column 'Ticket' has 681 unique values (76.4% of rows)	medium	Options: - Group rare categories: Reduce cardinality (Pros: Simplifies feature; Cons: May lose nuance) Use feature hashing: Map to lower dimensions (Pros: Scalable; Cons: Less interpretable) Retain and test: Evaluate feature importance (Pros: Data-

					driven; Cons: Risk of overfitting).
high_cardinality	warning	Cabin	Column 'Cabin' has 147 unique values (16.5% of rows)	medium	Options: - Group rare categories: Reduce cardinality (Pros: Simplifies feature; Cons: May lose nuance) Use feature hashing: Map to lower dimensions (Pros: Scalable; Cons: Less interpretable) Retain and test: Evaluate feature importance (Pros: Datadriven; Cons: Risk of overfitting).
outliers	warning	SibSp	Column 'SibSp' has 12 potential outliers (1.3% of non- missing values)	medium	Options: - Investigate outliers: Verify if valid or errors (Pros: Ensures accuracy; Cons: Time- consuming) Transform: Use log/sqrt to reduce impact (Pros: Retains data; Cons: Changes interpretation) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect

					sensitive models).
outliers	warning	Parch	Column 'Parch' has 10 potential outliers (1.1% of non- missing values)	medium	Options: - Investigate outliers: Verify if valid or errors (Pros: Ensures accuracy; Cons: Time- consuming) Transform: Use log/sqrt to reduce impact (Pros: Retains data; Cons: Changes interpretation) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
outliers	warning	Fare	Column 'Fare' has 11 potential outliers (1.2% of non- missing values)	medium	Options: - Investigate outliers: Verify if valid or errors (Pros: Ensures accuracy; Cons: Time- consuming) Transform: Use log/sqrt to reduce impact (Pros: Retains data; Cons: Changes interpretation) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).

feature_correlation	critical	Name,Sex	Columns 'Name' and 'Sex' are highly associated (Cramer's V: 1.00)	high	Options: - Drop one feature: Avoids overfitting from high redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Extract common patterns (e.g., group categories) (Pros: Retains info; Cons: Requires domain knowledge) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	critical	Name, Ticket	Columns 'Name' and 'Ticket' are highly associated (Cramer's V: 1.00)	high	Options: - Drop one feature: Avoids overfitting from high redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Extract common patterns (e.g., group categories) (Pros: Retains info; Cons: Requires domain knowledge) Retain and

					test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	critical	Name, Cabin	Columns 'Name' and 'Cabin' are highly associated (Cramer's V: 1.00)	high	Options: - Drop one feature: Avoids overfitting from high redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Extract common patterns (e.g., group categories) (Pros: Retains info; Cons: Requires domain knowledge) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	critical	Name,Embarked	Columns 'Name' and 'Embarked' are highly associated (Cramer's V: 1.00)	high	Options: - Drop one feature: Avoids overfitting from high redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Extract common patterns (e.g.,

					group categories) (Pros: Retains info; Cons: Requires domain knowledge) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Sex,Ticket	Columns 'Sex' and 'Ticket' are highly associated (Cramer's V: 0.86)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Group categories or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Sex,Cabin	Columns 'Sex' and 'Cabin' are highly associated (Cramer's V: 0.86)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust

					models (Pros: Keeps info; Cons: Risk of redundancy). - Engineer feature: Group categories or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Ticket,Cabin	Columns 'Ticket' and 'Cabin' are highly associated (Cramer's V: 0.95)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Group categories or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	critical	Ticket,Embarked	Columns 'Ticket' and 'Embarked' are highly associated (Cramer's V: 1.00)	high	Options: - Drop one feature: Avoids overfitting from high redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Extract common

					patterns (e.g., group categories) (Pros: Retains info; Cons: Requires domain knowledge) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Cabin,Embarked	Columns 'Cabin' and 'Embarked' are highly associated (Cramer's V: 0.95)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Group categories or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	critical	Sex,Survived	Columns 'Sex' and 'Survived' show strong association (F: 372.41, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature:

					Transform categorical or numeric feature (Pros: Retains info; Cons: Adds complexity) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Sex,Pclass	Columns 'Sex' and 'Pclass' show strong association (F: 15.74, p: 0.0001)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Sex,Age	Columns 'Sex' and 'Age' show strong association (F: 6.25, p: 0.0127)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust

					models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Sex,SibSp	Columns 'Sex' and 'SibSp' show strong association (F: 11.84, p: 0.0006)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	critical	Sex,Parch	Columns 'Sex' and 'Parch' show strong association (F: 57.01, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Transform categorical or numeric

					feature (Pros: Retains info; Cons: Adds complexity) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	critical	Sex,Fare	Columns 'Sex' and 'Fare' show strong association (F: 30.57, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Transform categorical or numeric feature (Pros: Retains info; Cons: Adds complexity) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Ticket,Survived	Columns 'Ticket' and 'Survived' show strong association (F: 3.03, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info;

					Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Ticket,Age	Columns 'Ticket' and 'Age' show strong association (F: 1.72, p: 0.0007)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Ticket,SibSp	Columns 'Ticket' and 'SibSp' show strong association (F: 9.63, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy).

					- Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Ticket,Parch	Columns 'Ticket' and 'Parch' show strong association (F: 4.28, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	critical	Ticket,Fare	Columns 'Ticket' and 'Fare' show strong association (F: 12866198.63, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Transform categorical or numeric feature (Pros: Retains info; Cons: Adds complexity).

					- Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Cabin,PassengerId	Columns 'Cabin' and 'PassengerId' show strong association (F: 1.90, p: 0.0109)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Cabin,Age	Columns 'Cabin' and 'Age' show strong association (F: 2.48, p: 0.0012)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or

					encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Cabin,SibSp	Columns 'Cabin' and 'SibSp' show strong association (F: 10.23, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Cabin,Parch	Columns 'Cabin' and 'Parch' show strong association (F: 11.93, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently

					(Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Cabin,Fare	Columns 'Cabin' and 'Fare' show strong association (F: 5.13, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy; Cons: Adds complexity).
feature_correlation	warning	Embarked,Survived	Columns 'Embarked' and 'Survived' show strong association (F: 13.61, p: 0.0000)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces

					redundancy; Cons: Adds complexity).
feature_correlation	critical	Embarked,Pclass	Columns 'Embarked' and 'Pclass' show strong association (F: 46.51, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Transform categorical or numeric feature (Pros: Retains info; Cons: Adds complexity) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
feature_correlation	warning	Embarked,Parch	Columns 'Embarked' and 'Parch' show strong association (F: 3.23, p: 0.0402)	medium	Options: - Drop one feature: If less predictive (Pros: Simplifies model; Cons: Loses info) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: Risk of redundancy) Engineer feature: Transform or encode differently (Pros: Reduces redundancy;

					Cons: Adds complexity).
feature_correlation	critical	Embarked,Fare	Columns 'Embarked' and 'Fare' show strong association (F: 38.14, p: 0.0000)	high	Options: - Drop one feature: Avoids redundancy (Pros: Simplifies model; Cons: Loses info) Engineer feature: Transform categorical or numeric feature (Pros: Retains info; Cons: Adds complexity) Retain and test: Use robust models (e.g., trees) (Pros: Keeps info; Cons: May affect sensitive models).
high_zero_counts	warning	Survived	Column 'Survived' has 61.6% zero values	medium	Options: - Transform: Create binary indicator for zeros (Pros: Captures pattern; Cons: Adds complexity) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: May skew results) Investigate zeros: Verify validity (Pros: Ensures accuracy; Cons: Time- consuming).

high_zero_counts	warning	SibSp	Column 'SibSp' has 68.2% zero values	medium	Options: - Transform: Create binary indicator for zeros (Pros: Captures pattern; Cons: Adds complexity) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: May skew results) Investigate zeros: Verify validity (Pros: Ensures accuracy; Cons: Time-consuming).
high_zero_counts	warning	Parch	Column 'Parch' has 76.1% zero values	medium	Options: - Transform: Create binary indicator for zeros (Pros: Captures pattern; Cons: Adds complexity) Retain and test: Evaluate with robust models (Pros: Keeps info; Cons: May skew results) Investigate zeros: Verify validity (Pros: Ensures accuracy; Cons: Time- consuming).
missing_patterns	warning	Age	Missingness in 'Age' correlates with	medium	Options: - Impute values: Use simple or domain- informed

			'Ticket' (p: 0.0000)		methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Datadriven; Cons: Requires computation).
missing_patterns	warning	Age	Missingness in 'Age' correlates with 'Embarked' (p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Age	Missingness in 'Age' correlates with numeric 'Survived' (F: 7.62, p: 0.0059)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias).

					- Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Age	Missingness in 'Age' correlates with numeric 'Pclass' (F: 27.41, p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Age	Missingness in 'Age' correlates with numeric 'Parch' (F: 13.91, p: 0.0002)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies

					model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Age	Missingness in 'Age' correlates with numeric 'Fare' (F: 9.11, p: 0.0026)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Cabin	Missingness in 'Cabin' correlates with 'Sex' (p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate

						model with/ without feature (Pros: Data- driven; Cons: Requires computation).
miss	sing_patterns	warning	Cabin	Missingness in 'Cabin' correlates with 'Embarked' (p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
miss	sing_patterns	warning	Cabin	Missingness in 'Cabin' correlates with numeric 'Survived' (F: 99.25, p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons:

					Requires computation).
missing_patterns	warning	Cabin	Missingness in 'Cabin' correlates with numeric 'Pclass' (F: 988.15, p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Cabin	Missingness in 'Cabin' correlates with numeric 'Age' (F: 47.36, p: 0.0000)	medium	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
missing_patterns	warning	Cabin		medium	

	Missingness in 'Cabin' correlates with numeric 'Fare' (F: 269.15, p: 0.0000)	Options: - Impute values: Use simple or domain- informed methods (Pros: Retains feature; Cons: Risk of bias) Drop column: If less critical (Pros: Simplifies model; Cons: Loses info) Test impact: Evaluate model with/ without feature (Pros: Data- driven; Cons: Requires computation).
--	--	---

Dataset Preview

Head

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.0	1	0	PC 17599	71.2
3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/ O2. 3101282	7.92
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05

Tail

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00
888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00
889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45
890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00
891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75

Sample

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
286	0	3	Stankovic, Mr. Ivan	male	33.0	0	0	349239	8.66
571	1	2	Harris, Mr. George	male	62.0	0	0	S.W./PP 752	10.5
267	0	3	Panula, Mr. Ernesti Arvid	male	16.0	4	1	3101295	39.6
754	0	3	Jonkoff, Mr. Lalio	male	23.0	0	0	349204	7.89

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
749	0	1	Marvin, Mr. Daniel Warner	male	19.0	1	0	113773	53.1
807	0	1	Andrews, Mr. Thomas Jr	male	39.0	0	0	112050	0.00
125	0	1	White, Mr. Percival Wayland	male	54.0	0	1	35281	77.2
72	0	3	Goodwin, Miss. Lillian Amy	female	16.0	5	2	CA 2144	46.9
638	0	2	Collyer, Mr. Harvey	male	31.0	1	1	C.A. 31921	26.2
703	0	3	Barbara, Miss. Saiide	female	18.0	0	1	2691	14.4

Variables

PassengerId

count: 891 histogram: bin_edges:
- 1.0

- 90.0
- 179.0
- 268.0
- 357.0
- 446.0
- 535.0
- 624.0
- 713.0
- 802.0
- 891.0

counts:

- 89
- 89
- 89
- 89

```
- 89
  - 89
  - 89
  - 89
  - 89
  - 90
max: 891.0
mean: 446.0
min: 1.0
missing: 0
quantiles:
  25%: 223.5
  50%: 446.0
  75%: 668.5
std: 257.3538420152301
zeros: 0
Survived
count: 891
histogram:
  bin_edges:
  - 0.0
  - 0.1
  - 0.2
  - 0.30000000000000004
  - 0.4
  - 0.5
  - 0.6000000000000001
  - 0.7000000000000001
  - 0.8
  - 0.9
  - 1.0
  counts:
  - 549
  - 0
  - 0
  - 0
  - 0
  - 0
  - 0
  - 0
  - 0
  - 342
max: 1.0
mean: 0.3838383838383838
min: 0.0
missing: 0
quantiles:
  25%: 0.0
  50%: 0.0
  75%: 1.0
```

std: 0.4865924542648575

zeros: 549

Pclass

```
count: 891
histogram:
  bin edges:
  - 1.0
  - 1.2
  - 1.4
  - 1.6
  - 1.8
  - 2.0
  - 2.2
  - 2.4000000000000004
  - 2.6
  - 2.8
  - 3.0
  counts:
  - 216
  - 0
  - 0
  - 0
  - 0
  - 184
  - 0
  - 0
  - 0
  - 491
max: 3.0
mean: 2.308641975308642
min: 1.0
missing: 0
quantiles:
  25%: 2.0
  50%: 3.0
  75%: 3.0
std: 0.836071240977049
zeros: 0
```

Name

```
avg_length: 26.9652076318743
char_freq:
    ' : 2735
    M: 1128
    a: 1657
    e: 1703
    i: 1325
    l: 1067
```

```
n: 1304
  o: 1008
  r: 1958
  s: 1297
common lengths:
  18: 50
  19: 64
  25: 55
  26: 49
  27: 50
count: 891
max length: 82.0
min length: 12.0
missing: 0
Sex
avg length: 4.704826038159371
char freq:
  a: 891
  e: 1205
  f: 314
  l: 891
  m: 891
common lengths:
  4: 5\overline{77}
  6: 314
count: 891
max length: 6.0
min length: 4.0
missing: 0
Age
count: 714
histogram:
  bin edges:
  - 0.42
  - 8.378
  - 16.336000000000002
  - 24.294000000000004
  - 32.252
  - 40.21
  - 48.168000000000006
  - 56.126000000000005
  - 64.084
  - 72.042
  - 80.0
  counts:
  - 54
  - 46
```

```
- 177
  - 169
  - 118
  - 70
  - 45
  - 24
  - 9
  - 2
max: 80.0
mean: 29.69911764705882
min: 0.42
missing: 177
quantiles:
  25%: 20.125
  50%: 28.0
  75%: 38.0
std: 14.526497332334042
zeros: 0
SibSp
count: 891
histogram:
  bin_edges:
  - 0.0
  - 0.8
  - 1.6
  - 2.4000000000000004
  - 3.2
  - 4.0
  - 4.800000000000001
  - 5.6000000000000005
  - 6.4
  - 7.2
  - 8.0
  counts:
  - 608
  - 209
  - 28
  - 16
  - 0
  - 18
  - 5
  - 0
  - 0
  - 7
max: 8.0
mean: 0.5230078563411896
min: 0.0
missing: 0
quantiles:
  25%: 0.0
```

```
50%: 0.0
75%: 1.0
std: 1.1027434322934317
zeros: 608

Parch

count: 891
histogram:
bin_edges:
```

histogram: - 0.0 - 0.6 - 1.2 - 1.79999999999998 - 2.4 - 3.0 - 3.59999999999999 - 4.2 - 4.8 - 5.39999999999995 - 6.0 counts: - 678 - 118 - 0 - 80 - 0 - 5 - 4 - 0 - 5 - 1 max: 6.0 mean: 0.38159371492704824 min: 0.0 missing: 0 quantiles: 25%: 0.0 50%: 0.0 75%: 0.0 std: 0.8060572211299483

Ticket

zeros: 678

avg_length: 6.750841750841751
char_freq:
 '0': 406
 '1': 689
 '2': 594
 '3': 746

```
'4': 464
  '5': 387
  '6': 422
  '7': 490
  '8': 282
  '9': 328
common lengths:
  4: 101
  5: 131
  6: 419
  8: 76
  10: 41
count: 891
max length: 18.0
min length: 3.0
missing: 0
Fare
count: 891
histogram:
  bin_edges:
  - 0.0
  - 51.23292
  - 102.46584
  - 153.69876
  - 204.93168
  - 256.1646
  - 307.39752
  - 358.63044
  - 409.86336
  - 461.09628
  - 512.3292
  counts:
  - 732
  - 106
  - 31
  - 2
  - 11
  - 6
  - 0
  - 0
  - 0
  - 3
max: 512.3292
mean: 32.204207968574636
min: 0.0
missing: 0
quantiles:
  25%: 7.9104
  50%: 14.4542
  75%: 31.0
```

```
std: 49.6934285971809
zeros: 15
```

Cabin

```
count: 204
missing: 687
most_frequent: B96 B98
top_values:
    B96 B98: 4
    C123: 2
    C22 C26: 3
    C23 C25 C27: 4
    C83: 2
    D: 3
    E101: 3
    F2: 3
    F33: 3
    G6: 4
unique: 147
```

Embarked

count: 889
missing: 2
most_frequent: S
top_values:
 C: 168
 Q: 77
 S: 644
unique: 3

Correlations

Numeric (Pearson)

```
"PassengerId": {
    "PassengerId": 1.0,
    "Survived": -0.0050066607670665175,
    "Pclass": -0.03514399403038102,
    "Age": 0.036847197861327674,
    "SibSp": -0.0575268337844415,
    "Parch": -0.0016520124027188366,
    "Fare": 0.012658219287491099
},
"Survived": {
    "PassengerId": -0.0050066607670665175,
    "Survived": 1.0,
    "Pclass": -0.33848103596101514,
    "Age": -0.07722109457217756,
```

```
"SibSp": -0.035322498885735576,
  "Parch": 0.08162940708348335,
  "Fare": 0.2573065223849626
"Pclass": {
  "PassengerId": -0.03514399403038102,
  "Survived": -0.33848103596101514,
  "Pclass": 1.0,
  "Age": -0.36922601531551735,
  "SibSp": 0.08308136284568686,
  "Parch": 0.018442671310748508,
  "Fare": -0.5494996199439076
},
"Age": {
  "PassengerId": 0.036847197861327674,
  "Survived": -0.07722109457217756,
  "Pclass": -0.36922601531551735,
  "Age": 1.0,
  "SibSp": -0.30824675892365666,
  "Parch": -0.1891192626320352,
  "Fare": 0.09606669176903912
"SibSp": {
  "PassengerId": -0.0575268337844415,
  "Survived": -0.035322498885735576,
  "Pclass": 0.08308136284568686,
  "Age": -0.30824675892365666,
  "SibSp": 1.0,
  "Parch": 0.41483769862015624,
  "Fare": 0.159651043242161
"Parch": {
  "PassengerId": -0.0016520124027188366.
  "Survived": 0.08162940708348335.
  "Pclass": 0.018442671310748508,
  "Age": -0.1891192626320352,
  "SibSp": 0.41483769862015624,
  "Parch": 1.0,
  "Fare": 0.21622494477076448
} <u>,</u>
"Fare": {
  "PassengerId": 0.012658219287491099,
  "Survived": 0.2573065223849626,
  "Pclass": -0.5494996199439076.
  "Age": 0.09606669176903912,
  "SibSp": 0.159651043242161,
  "Parch": 0.21622494477076448.
  "Fare": 1.0
}
```

}

Categorical (Cramer's V)

Pair	Value
NameSex	1.0
NameTicket	1.0
NameCabin	1.0
NameEmbarked	1.0
SexTicket	0.86
SexCabin	0.86
SexEmbarked	0.12
TicketCabin	0.95
TicketEmbarked	1.0
CabinEmbarked	0.95

Mixed

Pair	F-Stat	P-Value
SexPassengerId	1.64	0.2004
Sex_Survived	372.41	0.0
SexPclass	15.74	0.0001
Sex_Age	6.25	0.0127
Sex_SibSp	11.84	0.0006
Sex_Parch	57.01	0.0
Sex_Fare	30.57	0.0
TicketPassengerId	1.05	0.3676
TicketSurvived	3.03	0.0
TicketAge	1.72	0.0007
TicketSibSp	9.63	0.0
TicketParch	4.28	0.0
TicketFare	12866198.63	0.0

CabinPassengerId	1.9	0.0109
CabinSurvived	1.26	0.2054
CabinAge	2.48	0.0012
CabinSibSp	10.23	0.0
CabinParch	11.93	0.0
CabinFare	5.13	0.0
EmbarkedPassengerId	0.52	0.5941
EmbarkedSurvived	13.61	0.0
EmbarkedPclass	46.51	0.0
EmbarkedAge	0.64	0.5294
EmbarkedSibSp	2.18	0.1132
EmbarkedParch	3.23	0.0402
EmbarkedFare	38.14	0.0

Missing Values

Column	Count	Percentage
Age	177	19.87
Cabin	687	77.1
Embarked	2	0.22

Missing Patterns

```
{
    "Age": [
        5,
        17,
        19,
        26,
        28,
        29,
        31,
        32,
        36,
        42,
        45,
```

47,

48,

55,

64,

65,

76,

77,

82,

87,

95,

101,

107,

109,

121,

126,

128,

140,

154,

158,

159,

166,

168,

176,

180,

181,

185,

186,

196,

198,

201,

214,

223,

229,

235,

240,

241,

250,

256,

260,

264,

270,

274,

277,

284,

295,

298,

300,

301,

303,

304, 306,

330,

334,

335, 347,

351,

354,

358,

359,

364,

367,

368,

375,

384,

388,

409,

410,

411,

413,

415,

420,

425,

428,

431,

444,

451,

454,

457, 459,

464,

466,

468,

470,

475,

481, 485,

490,

495,

497, 502,

507,

511,

517,

522,

524,

527,

531, 533,

538, 547,

552,

563,

564,

568,

573,

578,

584,

589,

593,

596,

598,

601,

602,

611,

612,

613,

629,

633,

639,

643,

648,

650,

653,

656,

667,

669,

674,

680,

692,

697,

709,

711,

718,

727,

732,

738,

739,

740,

760,

766, 768,

773,

776,

778,

783,

790,

792,

793,

815,

825,

826,

```
832,
    837,
    839,
    846,
    849,
    859,
   863,
    868,
    878,
    888
],
"Cabin": [
0,
2,
    4,
   5,
7,
8,
9,
    13,
    14,
    15,
    16,
    17,
    18,
    19,
    20,
    22,
    24,
   25,
26,
    28,
    29,
    30,
   32,
33,
   34,
   35,
36,
37,
    38,
    39,
   40,
41,
    42,
   43,
    44,
    45,
    46,
    47,
    48,
```

49, 50, 51,

53, 56,

57, 58, 59, 60,

63,

64, 65,

67,

68,

69,

70, 71,

72, 73, 74,

76,

77, 78,

79,

80,

81,

82,

83,

84, 85,

86,

87,

89,

90,

91, 93,

94,

95,

98,

99, 100,

101, 103,

104, 105,

106,

107, 108, 109, 111,

112,

115,

116,

117,

119,

120,

121,

122,

125,

126,

127,

129,

130,

131, 132,

133,

134,

135,

138,

140,

141,

142,

143,

144,

145,

146,

147,

149,

150,

152,

153,

154,

155,

156,

157,

158,

159,

160,

161,

162,

163,

164, 165,

167, 168,

169,

171,

172,

173,

175,

176, 178,

180,

181,

182,

184,

186,

187,

188,

189,

190,

191, 192,

196,

197, 198,

199,

200,

201,

202,

203,

204,

206, 207,

208,

210,

211,

212,

213, 214,

216,

217,

219,

220,

221,

222,

223,

225,

226,

227,

228,

229,

231,

232,

233,

234,

235,

236, 237,

238, 239,

240,

243,

244,

246,

247,

249,

²50,

253,

254,

255,

256,

258,

259,

260,

261,

264, 265,

266,

267,

270,

271,

272,

274,

276,

277,

278,

279,

280,

281,

282,

283,

285,

286,

287,

288,

289,

290,

293,

294,

295,

296,

300,

301,

302,

304,

306,

308,

312,

313,

314,

315,

320,

321,

322,

323,

324,

326,

328,

330,

333,

334,

335,

338,

342,

343,

344,

346,

347,

348,

349,

350, 352,

353,

354,

355, 357,

358,

359,

360,

361,

362,

363,

364,

365,

367,

368,

371,

372,

373,

374, 375,

376,

378, 379,

380,

381,

382,

383,

384,

385,

386,

389,

391,

392,

395,

396,

397,

398,

399,

400,

401, 402,

403,

404,

405,

406,

407,

408,

409,

410,

411,

413,

414,

415,

416,

417,

418,

419, 420,

421, 422,

423,

424,

425,

426,

427, 428,

431,

432,

433,

436,

437,

439,

440,

441,

442,

443, 444,

446,

447,

448,

454,

455,

458,

459,

461,

463,

464,

465,

466,

467,

468,

469,

470,

471,

472,

474,

476,

477,

478,

479,

480,

481,

482,

483, 485,

488,

489,

490,

491,

493,

494,

495,

497,

499,

500,

501,

502,

503,

506,

507,

508,

509, 510,

511,

513,

514, 517,

518, 519,

521,

525,

526,

528, 529,

530,

531,

532,

533,

534,

535,

537,

538,

541,

542,

543,

545,

546,

547,

548,

549,

551,

552,

553,

554,

555,

557,

559,

560,

561,

562,

563,

564,

565,

566,

567,

568,

569,

570,

573,

574,

575,

576, 578,

579,

580,

582,

584,

586,

588, 589,

593,

594,

595,

596,

597,

598,

600,

601,

602,

603,

604,

605, 606,

607,

608,

610,

611,

612,

613,

614,

615,

616,

617,

619,

620,

622,

623,

624,

626,

628,

629,

631,

633,

634,

635, 636,

637,

638,

639,

640,

642,

643,

644,

646,

648,

649,

650,

651,

652, 653,

656,

657,

658,

660,

661,

663,

664,

665,

666,

667,

668,

670,

672, 673,

674,

675,

676,

677,

678,

680,

682,

683,

684,

685,

686,

687,

688,

691,

692,

693,

694,

695,

696,

697,

702,

703,

704, 705,

706,

708,

709,

713,

714,

718,

719,

720,

721,

722,

723,

725,

728,

729,

731,

732,

733,

734,

735,

736,

738,

739,

743,

744,

746,

747,

749,

750,

752,

753,

754,

755,

756,

757,

758,

760,

761,

762,

764,

766,

767,

768,

769,

770,

771,

773,

774, 775,

777,

778,

780,

783,

784,

785,

786,

787,

788,

790,

791,

792,

793,

794,

798,

799,

800,

801,

803,

804,

805,

807,

808,

810,

811,

812,

813,

814,

816,

817,

818,

819,

821,

822,

824,

825,

826,

827,

828,

830,

831,

832,

833,

834,

836,

837,

838,

840,

841,

842,

843,

844,

845,

846,

847, 848,

850, 851,

852,

854,

855,

856,

858,

859,

```
861,
    863,
    864,
    865,
    866,
    868,
    869,
    870,
    873,
    874,
    875,
    876,
    877,
    878,
    880,
    881,
    882,
    883,
    884,
    885,
    886,
    888,
    890
  ],
"Embarked": [
    61,
    829
  ]
}
```

Next Steps

- Address critical issues
- Handle warnings
- Re-analyze dataset

Generated by HashPrep