

	THE CONTRACTOR OF THE CONTRACT
相	IIR滤波器吸收了模拟滤波器的成果,设计简单便捷。特别是双线性 皮接没有频谱交叠,效果很好,然而其相位特性不易控制,要获得线性 3位特性必须用全通网络进行复杂的相位校正。另外,IIR滤波器只能采 到递归结构,在有限精度运算下,会出现不稳定现象。
-	FIR滤波器易于获得精确严格的线性相位特性;
W.	其单位脉冲响应z变换的收敛域为整个有限z平面,因此没有不稳定问题;
····	任何非因果有限长序列总可以通过一定延时转变为因果序列,故FIR濾波器 有因果性困难;
W.	FIR滤波器主要采用非递归型结构,不会出现不稳定现象,误差也较小;
特	FIR滤波器还可以采用快速傅里叶变换方法过滤信号,运算效率很高。这些点使得FIR滤波器越来越受关注,应用也越来越广泛。
	本章主 6.1 线性相位FIR滤波器的特点; 6.2 窗口法 要内容 6.3 频率采样法; 6.4 IIR与FIR滤波器的比较

Ш	6.1 线性相位FIR滤波器的特点	T サ
	如果FIR滤波器的单位脉冲响应 $h(n)$ 是实数,对称的条件,即 $h(n)=h(N-1-n)$ 或 $h(n)=-h(N-1-n)$ 具有严格的线性相位特性。	
	一、线性相位特点 h(n) 偶对称的情况: h(n)=h(N-1-n)	(6-1)
	$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = \sum_{n=0}^{N-1} h(N-1)$	
	$\stackrel{\stackrel{m=Nn}{\Longrightarrow}}{\Longrightarrow} H(z) = \sum_{m=0}^{N-1} h(m) z^{-(N-1-m)} = z^{-(N-1)}$ $= z^{-(N-1)} H(z^{-1})$	$\sum_{m=0}^{\infty} h(m) z^m \tag{6-2}$
	6.1 线性相位FIR滤波器的特点	10/18/2022 3

	the season of the
VIVI	(金) 市步交通大学
周此 $H(e^{j\omega}) = -je^{-j\omega(\frac{N-1}{2})} \sum_{n=0}^{N-1} h(n) \sin[\omega(n-\frac{N-1}{2})]$	(6-9)
$=e^{-j(\omega\frac{N-1}{2}+\frac{\pi}{2})}\sum_{n=0}^{N-1}h(n)\sin[\omega(n-\frac{N-1}{2})]$	
順度函数 $H(\omega) = \sum_{n=0}^{N-1} h(n) \sin[\omega(n - \frac{N-1}{2})]$ (6-10)	$\varphi(\varphi)$ to π 2π
相位函数 $\varphi(\omega) = -\omega(\frac{N-1}{2}) - \frac{\pi}{2}$ (6-11)	$-\pi/2$
这个相位特性同样是一条严格的直线,但是它	
在零频处还有 $-\pi/2$ 的截距,如图 6.2 所示。它说	$-(N-1/2)\pi$
明FIR滤波器不仅有 $(N-1)/2$ 个采样周期的群时延,	图6.2 h(n) 奇对称时的
而且所有通过的信号还将产生90°的相移。	线性相位特性
这种在所有频率上都产生90°相移的变换也称为信 正交变换在电子技术中有很重要的地位,因此这种正交 还是在实用上都有很重要的意义。因此,当h(n)奇对称 个具有严格线性相位的 <u>正交变换网络。</u>	变换网络无论在理论上
6.1 线性相位FIR滤波器的特点	10/18/2022 6

	★ → 大名 大学 ★ → 大名
	$rightharpoonup n = \frac{N}{2} - 1 + m, M$
	$H(\omega) = \sum_{m=1}^{N/2} 2h(\frac{N}{2} - 1 + m)\cos[\omega(m - \frac{1}{2})]$
	日 此 $\begin{cases} H(\omega) = \sum_{n=1}^{N/2} b(n) \cos[\omega(n-\frac{1}{2})] \\ b(n) = 2h(\frac{N}{2} - 1 + n) \end{cases} $ (6-13)
	特点: $\omega=\pi$ 时 $\cos[\pi(n-1/2)]=0$,而且 $\cos[\pi(n-1/2)]$ 对 $\omega=\pi$ 呈奇对称,因此 $H(\pi)=0$,而且 $H(\omega)$ 对 $\omega=\pi$ 呈奇对称。
١.	(3) h(n) 为奇对称,N为奇数 $H(\omega) = \sum_{s=0}^{N-1} h(n) \sin[\omega(n-\frac{N-1}{2})] \qquad (6-10)$
	这种情况下 $h(n)$ 的中间项 $h(\frac{N-1}{2})$ 必须为零,因为 $h(n)$ 的奇对称要
	这样可以将(6-10)式中两两对应项合并,因为 sin 和 h(n) 都是奇对称的。
	6.1 线性相位FIR滤波器的特点 10/18/2022 9

-		

		(金) 而安克通大	R.
	一般来说,窗口函数并不一定要是矩形函数,可	以在矩形以	
1111	内再对 $h_a(n)$ 作一定的加权处理。因此,一般可以表	示为	
	$h(n) = h_d(n) \cdot \underline{w(n)}$ 窗口函数	(6-22)	
	设 $W(e^{i\omega})$ 为窗口函数的频谱: $W(e^{i\omega}) = \sum_{n=-\infty}^{\infty} w(n)e^{-j\omega n}$,则根据卷积公式有	
	$H(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\theta}) W(e^{j[\omega-\theta]}) d\theta$	(6-23)	
	可见,逼近程度的好坏完全取决于窗口函数的频率特性。 的频率特性为:	N.C.	
	$W_R(e^{j\omega}) = \sum_{n=0}^{N-1} e^{-j\omega n} = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}} = e^{-j\omega(\frac{\Delta}{2})}$	$\frac{1}{\sin(\omega N/2)}$ $\frac{\sin(\omega N/2)}{\sin(\omega/2)}$	
	用幅度函数和相位函数表示为:		
	$W_{R}(e^{j\omega}) = W(\omega)e^{-j\omega\alpha}$		
	其线性相位部分 $e^{-j\omega\alpha}$ 只表示时延一半长度 $\alpha=(N-1)/2$:	, 对频响起影响的	
	部分是它的幅度函数: $W(\omega) = \frac{\sin(\omega N / 2)}{\sin(\omega / 2)}$	(6-24)	
	6.2 窗口法	10/18/2022 18	3

		大字
	我们特别注意由于这个卷积过程而给H(ω) 响应上造成的起伏现象。如	
1000	图6.5 (f) ,在通带截止频率的两旁 $\omega = \omega_c \pm 2\pi/N$ 处, $H(\omega)$ 出现最大的	4
	肩峰值。在这两肩峰之间形成一个过渡带,过渡带宽度等于 $W_{\scriptscriptstyle R}(\omega)$ 的主瓣	
	宽度 $\Delta\omega=4\pi/N$ 。在这最大肩峰的两侧形成长长的余振,如果增加截取	
	的长度 N ,我们看主瓣附近的频谱结构:	
	$W_{\mathbb{R}}(\omega) = \frac{\sin(\omega N/2)}{\sin(\omega/2)} \approx \frac{\sin(\omega N/2)}{\omega/2} = N \frac{\sin x}{x} \qquad \text{#ψ } x = \omega N/2$	
	可见,长度 N 的改变只能改变 ω 坐标的比例与 $W_{o}(\omega)$ 的绝对大小,而	
	不能改变主瓣与旁瓣的相对比例。这个相对比例是由 sinx/x 决定的,与N 无关。	
	因此增加N也不能改变肩峰的大小,例如矩形窗的情况下,最大肩峰值为8.95%。	
	当N 增加时,只能使起伏的振荡变密,而最大肩峰却永远是8.95%,这种现象	
	称为吉布斯 (Gibbs) 效应。	
	6.2 窗口法 10/18/2022	20

结	论: 由于加了窗函数将对理想特性产生以下三点影响:	● 市步交通大学
	● 使理想特性不连续的边沿加宽,形成一个过渡带,过渡带3 主瓣宽度。	宽度取决于窗口频谱的
	 在过渡带两旁产生<mark>肩峰和余振</mark>,它们取决于窗口频谱的旁流 越多,旁瓣相对值越大,肩峰则越强。 	6,旁瓣越多,余振也
增加藏取长度N,只能缩小窗口频谱的主脑宽度而不能改变旁瓣的相尽 太小时则会影响旁端相对值),旁瓣与主脑的相对关系只取决于窗口。 因此增加 N只能相应减入过渡带宽度,而不能改变肩峰值。肩峰值的, 定着通带内的波动和阻邻的衰竭,对滤波器的性能有很大影响。要改3 减粉性,只能从改善窗口形状上找出路。		
开	(善窗口 (本) (*)	然而,这两个要求总 是不能兼得的,往往 需要用增加主瓣宽度 来换取旁瓣的抑制。
	6.2 窗口法	10/18/2022 21

● 6手次 **********************************	至大学
虽然凯塞窗看上去没有初等函数的解析表达式, 但是零阶贝 塞尔函数 I _n (x) 可以展开成无穷级数:	
$I_0(x) = 1 + \sum_{K=1}^{\infty} \left[\frac{(x/2)^K}{K!} \right]^2 $ (6-35)	
这个无穷级数可以用有限项级数去近似, 因而采用计算机是很容易求解的。 总结:	
窗口法设计的主要优点是简单,使用起来方便。窗口函数大多 都有封闭的公式可循,性能、参数都已有表格、资料可供参考,计 穿程序简便,所以很实用。	
窗口法的出发点是从时域开始,以有限长 $h(n)$ 近似理想的 $h_a(n)$,然后再对 $h(n)$ 进行修正,以便使频响能更好的逼近理想要求 $H_a(\omega)$	
6.2 窗口法 10/18/2022	30

FIR滤波器设计步	·骤 (窗口法)	● お子文五大学 MAN HACOMON ENTY EMBYY
2、依据表6-1确定波 3、依据对称性,确定	$\left H_{d}\left(e^{j\omega}\right)\right $ 在 $0\leq\omega\leq M$ 發 整	建滤波器的阶数 N 。 ◎ 。
$H_{d}(\omega) = \begin{cases} H_{d}(\varepsilon) \\ \pm H_{d}(\varepsilon) \end{cases}$	\mathbf{y} $\varphi_a(\omega) = \omega \alpha \pi$ π π π π π π π π π	2

				● お子 え道大学
	FIR:	虑波器设计步骤(窗口法)	
	4、求			
	h_a	$I(n) = \frac{1}{2\pi} \int_{0}^{2\pi} H_d(e^{j\omega}) e^{j\omega}$	$^{\scriptscriptstyle{(m)}}d\omega$	
	5、加窗:	27 0		
		$h(n) = h_d(n) \cdot w(n)$	$H(e^{j\omega}) = \sum_{n=0}^{N-1} h$	$(n)e^{-j\omega n}$
١.				
		数字信	『号处理I	32

■ 第六章 FIR滤波器的设计	分法 分法
习题一、用矩形窗口法设计一个线性相位低通滤波器。要求 $N=8$, 其理想低通滤波器的截止角頻率 $\omega_c=\frac{\pi}{3}$ 如 B_1 所示。	$\left H_{d}\left(e^{hv}\right)\right $
 选择确定所设计的线性相位低通FIR滤波器的类型; 确定理想线性相位低通滤波器的频率响应 H_d(eⁱⁿ)=H_d(w)eⁱⁿ⁽ⁱⁿ⁾ 给出在反变接软分区间的表达式。 	0
3、求所设计的低通滤波器的单位脉冲响应函数h(n); 4、计算 h(n), n=0,1,···,7 的值,验证所设计h(n)的 5、编写一段MATLAB程序,画出该低通滤波器的幅频响 6、画出该低通滤波器的槽载结构,说明这类FR结构型	6应。
数字信号处理[2022/10/18 33

I	窗口法例题
	(3) $h_d(n) = \frac{1}{2\pi} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} e^{\sqrt{(n-\frac{7}{2})}\omega} d\omega = \frac{1}{2\pi j \left(n-\frac{7}{2}\right)} \cdot e^{\sqrt{(n-\frac{7}{2})}\omega} \left \frac{\pi}{3} \right _{\frac{\pi}{3}}$
	$= \frac{1}{2\pi j \left(n - \frac{7}{2}\right)} \left[e^{j\frac{\pi}{3}\left(n - \frac{7}{2}\right)} - e^{-j\frac{\pi}{3}\left(n - \frac{7}{2}\right)} \right] = \frac{\sin\frac{\pi}{3}\left(n - \frac{7}{2}\right)}{\pi\left(n - \frac{7}{2}\right)}$
ŀ	所以有 $h(n) = h_d(n) \cdot R_s(n) = \frac{\sin \frac{\pi}{3} \left(n - \frac{7}{2}\right)}{\pi \left(n - \frac{7}{2}\right)} \cdot R_s(n)$
	$ h(0) = \frac{\sin\frac{\pi}{3}\left(0-\frac{7}{2}\right)}{\pi\left(0-\frac{7}{2}\right)} = \frac{\sin\frac{7\pi}{6}}{\frac{7\pi}{2}} = -\frac{\frac{1}{2}}{\frac{7\pi}{2}} = -\frac{1}{7\pi} = h(7) = \frac{\sin\frac{\pi}{3}\left(7-\frac{7}{2}\right)}{\pi\left(7-\frac{7}{2}\right)} = \frac{\sin\frac{7\pi}{6}}{\frac{7\pi}{2}} = -\frac{1}{7\pi}$
	数字信号处理I 2022/10/18 36

		(百年京五	大楽
	当我们需要设计的是线性相位滤波器时,还必须使 度和相位遵循表6-1中的约束条件。	采样值 H(k)的幅	Limity
	例如,要设计第一类线性相位滤波器,即 N为奇数的情	情况。根据表6-1第	
	$H(e^{j\omega}) = H(\omega)e^{-j\omega\left(\frac{N-1}{2}\right)}$	(6-40)	
	其中,幅度函数 $H(\omega)$ 应具有偶对称性: $H(\omega) = H(2\pi - \omega)$	(6-41)	
	如果頻率采样值 $H(k)$ 也用幅值 H_k (纯标量) 与相角 θ	表示,	
	$H\left(k\right) = H_{k}e^{j\theta_{k}}$	(6-42)	
	那么根据式(6-40)、(6-41)的约束条件, θ_{k} 值必须	取为	
Н	$\theta_k = -k \frac{2\pi}{N} (\frac{N-1}{2}) = -k\pi (1-1/N)$	(6-43)	
	而 H_k 必须满足偶对称要求,即 H_k = H_{N-k}	(6-44)	
Ш	6.3 频率采样法	10/18/2022	41

		● 百步交通大學
	若所要设计的是N为偶数的线性相位滤波器,相 栏除了相位约束式(6-43)不变外,由于幅度特性	
	的: $H(\omega) = -H(2\pi - \omega)$	(6-45)
	因此, H_k 也必须满足 $H_k = -H_{N-k}$	(6-46)
	其它两类线性相位滤波器的设计,同样也需要注意幅度与	相位的约束关系。
	看起來,頻率采样法设计是比較简单的;接下 考察用这种頻率采样所得到的传递函数的遏近效果 的頻响 H(e ^m)与理想要求的頻响H _e (e ^m) 之间的差别	5, 以及如此得到
	$H(e^{i\omega}) = \sum_{k=1}^{N-1} H(k)\phi(\omega - \frac{2\pi}{N}k)$	(6-47)
li	其中, $\phi(\omega)$ 是内插函数	
	$\phi(\omega) = \frac{\sin(\omega N/2)}{N \sin(\omega/2)} e^{-j\omega(\frac{N-1}{2})}$	(6-48)
	6.3 频率采样法	10/18/2022 42

I	FIR滤波器设计步骤(频率采样法)
	1 、了解需求,确定 $\left H_{d}\left(e^{j\omega}\right)\right $ 在 $0\leq\omega\leq\pi$ 区间的性质。 2、依据表6-1确定滤波器的类型,并确定滤波器的阶数 N 。 3 、依据对称性,确定 $H_{d}(e^{j\omega})=H_{d}(\omega)e^{j\omega_{d}(\omega)}$ 。
i	其中 $\varphi_d(\omega) = -\omega \alpha$ 或 $\varphi_d(\omega) = -\omega \alpha - \pi/2$ 而 $\alpha = \frac{N-1}{2}$, $H_d(\omega) = \begin{cases} \left H_d\left(e^{i\omega}\right) \right , & 0 \le \omega < \pi \\ \pm \left H_d\left(e^{i\omega}\right) \right , & \pi \le \omega < 2\pi \end{cases}$
	正负决定于滤波器的类型或 $H_d(\omega)$ 的对称性。 2022/10/18 数字信号处理1 46

■ FIR滤波器设计步骤(频率采样法)	● 百步克道大學 EAR JACONSH ENTERNITY
4、求频域采样点的值: $H(k) = H_4(e^{\frac{r^2x_4}{N}})$	
5、求系统脉冲响应:	
$h(n) = \sum_{k=0}^{N-1} H(k) W_N^{-kn} \qquad H(e^{j\omega}) = \sum_{n=0}^{N-1} h(n) e^{-j\omega n} = \sum_{k=0}^{N-1} h(n) e^{-j\omega n}$	$H(k)\phi(\omega-\frac{2\pi}{N}k)$
$\phi(\omega) = \frac{\sin(\omega N/2)}{N \sin(\omega/2)} e^{-j\omega(\frac{N-1}{2})}$	
	47

		● お子気通大	学
I	频率采样法例题		
.)	率采样法设计一个线性相位高通滤波器。要求N=8,	$\begin{array}{c c} & H_{d}\left(e^{i\omega}\right) \\ \hline 1 & & & \\ \hline 0 & & & \\ \hline 0 & & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & $	
	·择确定所设计的线性相位高通FIR滤波器的类型,并 ·冲响应的奇偶对称性;	说明该滤波器的单位	
	角定该理想线性相位高通滤波器在频率采样点上的频 $: H_{\iota}, \theta_{\iota}$ 和 $H_{\iota}(k), k = 0.1, \dots, 7$ 各采样点的值;	率响应 $H_d(k) = H_k e^{j\theta_k}$	
	於		
(4) 相	&据所求得的单位脉冲响应计算h(n) , n=0 , 1 , ,	7的值;	
(5) 验	è证所设计滤波器的奇偶对称性,说明它是否属于线+	性相位FIR滤波器;	
(6) 編	高写一段MATLAB程序,画出该高通滤波器的幅频响应	注。	
	数字信号处理I 2	2022/10/18 4	8,

	学
频率采样法例题	
$h(1) = -\frac{1}{8} \left[1 - 2\cos\frac{3\pi}{8} \right] = -h(6) = -\left\{ \frac{1}{8} \left[1 - 2\cos\frac{3\pi}{8} \right] \right\} \approx -0.0293$	
$8 \begin{bmatrix} 8 \end{bmatrix} \times \begin{bmatrix} 8 \end{bmatrix} \times \begin{bmatrix} 8 \end{bmatrix}$ $h(2) = \frac{1}{8} \begin{bmatrix} 1 + 2\cos\frac{3\pi}{8} \end{bmatrix} = -h(5) = -\left\{ -\frac{1}{8} \begin{bmatrix} 1 + 2\cos\frac{3\pi}{8} \end{bmatrix} \right\} \approx 0.2207$	
$h(3) = -\frac{1}{8} \left[1 + 2\cos\frac{\pi}{8} \right] = -h(4) = -\left[\frac{1}{8} \left[1 + 2\cos\frac{\pi}{8} \right] \right] \approx -0.356$	
(5) 在 (4) 中我们已经看到这里的 h(n)=-h(N-1-n), 是奇对称的, 所以该邀波器是一个实	
系数,且h(n)为奇对称的FIR滤波器,这样的滤波器是线性相位的滤波器。	
(6) MATLAB程序及该滤波器的幅频特性	
clear all; close all; N=200; M=8; w=([1:N]-1)*2/N; wc=pi/3; h=[-0.106 -0.0293 0.2207 -0.356 0.356 -0.2207 0.0293 0.106];	
for k=1200 z=exp(-j*(k-1)*2*pi/N);	
$H(k)=abs(h(a)+h(a)*z+h(3)*z^{2}+h(4)*z^{3}+h(5)*z^{4}+h(6)*z^{5}+h(7)*z^{6}+h(8)*z^{7});$ end	
plot(w,H)	
数字信号处理I 2022/10/18 5	51

(金) 百安克通大學 总结: 频率采样设计法的<mark>优点</mark>是可以从频域直接处理,并且适合于最 优化设计。用选择过渡点的办法所得的效果也相当好。 其缺点是频率控制点的位置受限于频率轴上的N个采样点,因 此滤波器的截止频率不易随意控制。如果为了适应截止频率的选择 自由,就必须增加采样点数,这样做是很不经济的。 最后,强调一下,FIR滤波器的频率采样型结构与传递函数的频率采样设计 方法不要混为一谈。 尽管两者的理论依据都是频率采样理论,但是频率采样型结构,对于任何 FIR传递函数都能采用;而频率采样法设计所得的传递函数,并不涉及滤波器的 结构,既可以采用频率采样型结构来实现,也可以采用横截型或级联型等结构 6.3 频率采样法 (金) 百安克道大学 6.4 IIR与FIR滤波器的比较 我们已经讨论了IIR和FIR两种滤波器的传递函数设计方法,下面 我们对这两种滤波器作一个简单的比较: 从性能上讲: IIR滤波器可以用较少的阶数获得很高的选择特性,所用存储单元少, 运算次数少,经济、效率高;其代价是相位的非线性,选择性越好非线性 越严重。相反,FIR滤波器可以得到严格的线性相位,但要获得一定的选择 性,则需要较多的存储器和较多的定点运算,信号延时也较大。FIR滤波器 的这些缺点是相对于非线性相位的IIR滤波器而言的,如果按相同的选择性 和相同的相位要求的话,那么IIR滤波器必须加全通网络来进行相位校正, 同样需要大大增加滤波器阶数和复杂性。如果相位要求严格一点,那么FIR 滤波器在性能上和经济上都优于IIR滤波器。 6.4 IIR与FIR滤波器的比较 (金) 百步克道大学 从结构上讲: IIR滤波器必须采用递归型结构,极点位置必须在单位圆内,否则系统将 不稳定;另外,这种结构对舍入误差非常敏感,有时会产生微弱的寄生振荡。 相反,FIR滤波器主要采用非递归结构,在理论上和实际的有限精度运算中都 不存在稳定性问题,运算误差也较小。此外,FIR滤波器可以采用FFT算法, 相同阶数下,运算速度可以快得多。

从设计上讲:

IIR滤波器可以借助于模拟滤波器的成果,一般都有有效的封闭函数的设计公式可供准确的计算,又有许多数据和表格可查,设计计算的工作量较小,对计算工具的要求不高。FIR滤波器设计则一般没有封闭函数的设计公式,只

有计算程序可循, 因此对计算工具要求较高。

6.4 IIR与FIR滤波器的比较

	● 万步交通大學
	另一方面,IIR滤波器虽然设计简单,但主要用于设计具有分段常数特
	性的滤波器,如低、高、带通及带阻等,往往脱离不了模拟滤波器的格局;
	而FIR滤波器则要灵活得多,尤其是频率采样设计法更容易适应各种幅度特
	性和相位特性的要求,可以设计出理想的正交变换、理想微分、线性调频等
	各种重要网络,有更大的适应性和更广阔的天地。
	T
	通过上述比较可以看到,IIR与FIR滤波器各有所长,所以实际应用
	中应该从多方面考虑来加以选择。如对相位要求不高的场合,选用IIR
	滤波器较合适;而对线性相位要求较高的场合,采用FIR滤波器比较好。
•	当然在实际设计中还应考虑经济上的要求以及计算工具的条件等多方
	面的因素。
	6.4 IIR与FIR滤波器的比较 10/18/2022 55