AIX

60/139,070, filed June 11, 1999 and United States provisional application 60/190,211, filed March 17, 2000.

IN THE CLAIMS

Please cancel, without prejudice, claim 6.

Please amend claims 1-4, 8-9, 11, 15-18 and 21-22

as follows:*

AN

(G) OP⁷ D'

1. (Amended) A compound of the formula (I):

and pharmaceutically acceptable salts thereof; wherein:

(I)

A is tetrahydrofurodihydrofuranyl-O-C(O)-, wherein tetrahydrofurodihydrofuranyl is optionally substituted with one or more substituents independently selected from oxo, $-OR^2,\ SR^2,\ -R^2,\ -N(R^2)(R^2),\ -R^2-OH,\ -CN,\ -CO_2R^2,\ -C(O)-N(R^2)_2,\\ -S(O)_2-N(R^2)_2,\ -N(R^2)-C(O)-R^2,\ -N(R^2)-C(O)O-R^2,\ -C(O)-R^2,\\ -S(O)_n-R^2,\ -OCF_3,\ -S(O)_n-Q,\ methylenedioxy,\ -N(R^2)-S(O)_2(R^2),\\ halo,\ -CF_3,\ -NO_2,\ Q,\ -OQ,\ -OR^7,\ -SR^7,\ -R^7,\ -N(R^2)(R^7)\ or \\ -N(R^7)_2;$

An "Appendix of Amendments" is enclosed at Tab A, showing the amendments to claims 1-4, 8-9, 11, 15-18 and 21-

pa

each Ht is independently selected from C_3-C_7 cycloalkyl; C_5-C_7 cycloalkenyl; C_6-C_{14} aryl; or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, $N(R^2)$, O, S and $S(O)_n$; wherein said aryl or said heterocycle is optionally fused to Q; and wherein any member of said Ht is optionally substituted with one or more substituents independently selected from oxo, $-OR^2$ SR^2 , $-R^2$, $-N(R^2)(R^2)$, $-R^2-OH$, -CN, $-CO_2R^2$, $-C(O)-N(R^2)_2$, $-S(O)_2-N(R^2)_2$, $-N(R^2)-C(O)-R^2$, $-N(R^2)-C(O)-R^2$, $-S(O)_n-R^2$, $-S(O)_n-R^2$, $-S(O)_n-Q$, methylenedioxy, $-N(R^2)-S(O)_2(R^2)$, halo, $-CF_3$, $-NO_2$, Q, -OQ, $-OR^7$, $-SR^7$, $-R^7$, $-N(R^2)(R^7)$ or $-N(R^7)_2$;

each R^2 is independently selected from H, or C_1 - C_4 alkyl optionally substituted with a 3-7 membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, S, S(O)_n or N(R^{33}); wherein any of said ring systems or N(R^{33}) is optionally substituted with 1 to 4 substituents independently selected from -X'-Y', -O-arylalkyl, -S-arylalkyl, -N(Y')₂, -N(H)-arylalkyl, -N(C₁-C₄ alkyl)-arylalkyl, oxo, -O-(C₁-C₄ alkyl), OH, C₁-C₄

^{22.} In the Appendix, the added portion is underscored and the deleted portion is bracketed.

alkyl, $-SO_2H$, $-SO_2-(C_1-C_4 \text{ alkyl})$, $-SO_2-NH_2$, $-SO_2-NH(C_1-C_4 \text{ alkyl})$, $-SO_2-N(C_1-C_4 \text{ alkyl})_2$, $-NH_2$, $-NH(C_1-C_4 \text{ alkyl})$, $-N(C_1-C_4 \text{ alkyl})_2$, -NH-C(O)H, $-N(C_1-C_4 \text{ alkyl})_2$, -NH-C(O)H, $-N(C_1-C_4 \text{ alkyl})_2$, $-C_1-C_4 \text{ alkyl}_3$, $-C_1-C_4 \text{ alkyl}_4$, $-C_1-C_4 \text{ alkyl}_4$, $-C_1-C_4 \text{ alkyl}_4$, $-C(O)-NH_2$, $-C(O)-NH(C_1-C_4 \text{ alkyl})$, $-C(O)-N(C_1-C_4 \text{ alkyl})_2$, halo or $-CF_3$;

X' is -O-, -S-, -NH-, -NHC(O)-, -NHC(O)O-, -NHSO₂-, or -N-(C₁-C₄)alkyl-;

Y' is C_1 - C_{15} alkyl, C_2 - C_{15} alkenyl or alkynyl, wherein one to five carbon atoms in Y' are optionally substituted with C_3 - C_7 cycloalkyl or C_5 - C_6 cycloalkenyl, C_6 - C_{14} aryl or a 5-7 membered saturated or unsaturated heterocycle, containing one or more heteroatoms selected from N, NH, O, S and S(O)_n;

each R^3 is independently selected from H, Ht, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl or C_5 - C_6 cycloalkenyl; wherein any member of said R^3 , except H, is optionally substituted with one or more substituents selected from $-OR^2$, $-C(O)-N(R^2)_2$, $-S(O)_n-N(R^2)_2$, $-N(R^2)_2$, $-N(R^2)-C(O)O(R^2)$, $-N(R^2)-C(O)-R^2$, Ht, -CN, $-SR^2$, $-C(O)OR^2$, or $N(R^2)-C(O)-R^2$;

each R^{33} is selected from H, C_1 – C_6 alkyl, C_2 – C_6 alkenyl, C_2 – C_6 alkynyl, C_3 – C_6 cycloalkyl or C_5 – C_6 cycloalkenyl, C_6 – C_{14} aryl or a 5-7 membered saturated or

NW Y

unsaturated heterocycle, containing one or more heteroatoms selected from N, NH, O, S and $S(O)_n$;

each n is independently 1 or 2; G is selected from H, R^7 or C_1-C_4 alkyl; v in $(G)_x$ is 1;

D is C_1 - C_6 alkyl substituted with Q, wherein said alkyl is optionally substituted with one or more groups selected from C_3 - C_6 cycloalkyl, $-R^3$, -O-Q or Q;

membered saturated, partially saturated or unsaturated carbocyclic ring system; wherein Q contains one substituent selected from $-OR^2$, $-OR^8$, -O-arylalkyl, $-SR^8$, -S-arylalkyl, $-N(R^2)R^8$, $-N(R^2)$ -arylalkyl and may be optionally substituted with one or more additional substituents independently selected from OR^2 , OR^2 , OR^3 ,

each R^8 is independently selected from Ht', $-C_1-C_{15}$ branched or straight chain alkyl, alkenyl or alkynyl wherein one to five carbon atoms in said alkyl, alkenyl or alkynyl are independently replaced by W, or wherein one to five carbon atoms in said alkyl, alkenyl or alkynyl are substituted with Ht'; and wherein R^8 is additionally and

Ant Cont

optionally substituted with one or more groups independently selected from -OH; -S(C₁-C₆ alkyl); -CN; -CF₃; -N(R²)₂; halo; -C₁-C₄-alkyl; -C₁-C₄-alkoxy; -Ht'; -O-Ht'; -NR²-CO-N(R²)₂; -CO-N(R³)₂; -R¹-C₂-C₆ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C₁-C₄ alkoxy, -Ht', -O-Ht', -NR²-CO-N(R²)₂ or -CO-N(R²)₂; or R^7 ;

ANY CAN

wherein W is -O-, -NR²-, -S-, -C(O)-, -C(S)-, -C(=NR²)-, -S(O)₂-, -NR²-S(O)₂-, -S(O)₂-NR²-, -NR²-C(O)O-, -O-C(O)NR²-, -NR²-C(O)NR²-, -NR²-C(O)NR²-, -NR²-C(O)-, -C(S)NR², -NR²C(S)-, -NR²-C(=N-CN)-NR²-, -NR²C(=N-CN)O- or -C(O)O-;

each Ht' is independently selected from C_3-C_7 cycloalkyl; C_5-C_7 cycloalkenyl; C_6-C_{14} aryl; 5-7 membered saturated or unsaturated heterocycle containing one or more heteroatoms selected from N, $N(R^2)$, O, S and $S(O)_n$; wherein said aryl or said heterocycle is optionally fused to Q'; and wherein any member of said Ht' is optionally substituted with one or more substituents independently selected from OXO, OR^2 , SR^2 , OR^2 , O

each Q' is independently selected from a 3-7 membered saturated, partially saturated or unsaturated carbocyclic ring system; or a 5-7 membered saturated, partially saturated or unsaturated heterocyclic ring containing one or more heteroatoms selected from O, N, S, $S(O)_n$ or $N(R^2)$;

ACM

D' is selected from C_1-C_{15} alkyl, C_1-C_{15} alkoxy, C_2-C_{15} alkenyl, C_2-C_{15} alkenyloxy, C_2-C_{15} alkynyl, or C_2-C_{15} alkynyloxy, wherein D\ optionally comprises one or more substituents independently selected from Ht, oxo, halo, $-CF_3$, $-OCF_3$, $-NO_2$, azido, -SH, $-SR^3$, $-N(R^3) - N(R^3)_2$, $-O-N(R^3)_2$, $-(R^3)N-O-(R^3)$, $-N(R^3)_2$, $-CN\lambda$ $-CO_2R^3$, $-C(O)-N(R^3)_2$, $-S(O)_n-N(R^3)_2$, $-N(R^3)-C(O)-R^3$ $-N(R^3)-C(O)-N(R^3)_2$, $-C(O)-R^3$, $-S(O)_n-R^3$, $-N(R^3)-S(O)_n(R^3)$, $-N(R^3)-S(O)_n-N(R^3)_2$, $-S-NR^3-C(0)R^3$, $-C(S)N(R^3)_2$, $-C(S)R^3$, $-NR^3-C(0)OR^3$, $-O-C(0)OR^3$, $-O-C(O)N(R^3)_2$, $-NR^3-C(S)R^3$, $=N-OH\lambda = N-OR^3$, $=N-N(R^3)_2$, $=NR^3$, =NNR³C(O)N(R³)₂, =NNR³C(O)OR³, =NNR³S(O)_n-N(R³)₂, -NR³-C(S)OR³, $-NR^3-C(S)N(R^3)_2$, $-NR^3-C[=N(R^3)]-N(R^3)_2$ $-N(R^3)-C[=N-NO_2]-N(R^3)_2$, $-N(R^3)-C[=N-NO_2]-OR^3$, $-OC(O)R^3$, $-OC(S)R^3$, $-OC(O)N(R^3)_2$, $-C(O)N(R^3)-N(R^3)_2$, $-N(R^3)-N(R^3)C(O)R^3$, $-N(R^3) - OC(O)R^3$, $-N(R^3) - OC(O)R^3$, $-N(R^3) - OC(O)R^3$, $-OC(S)N(R^3)_2$, $-OC(S)N(R^3)(R^3)$, or $-PO_3-R^3$;

E is selected from Ht; Ht-Ht; Ht fused with Ht; $-O-R^3$; $-N(R^2)(R^3)$; C_1-C_6 alkyl, which is optionally

substituted with one or more groups selected from R^4 or Ht; C_2 C_6 alkenyl, which is optionally substituted with one or more groups selected from R^4 or Ht; C_3 - C_6 saturated carbocycle, which is optionally substituted with one or more groups selected from R^4 or Ht; or C_5 - C_6 unsaturated carbocycle, which is optionally substituted with one or more groups selected from R^4 or Ht;

PM

each R^4 is independently selected from $-R^2$, $-OR^2$, $-OR^3$, $-SR^2$, $-SO_2R^2$, $-CO_2R^2$, $-OC(O) - R^2$, $-C(O) - N(R^2)_2$, $-C(O) - NR^2(OR^2)$, $-S(O)_2 - N(R^2)_2$, halo, $-NR^2 - C(O) - R^2$, $-NR^2 - OR^2$, $-N(R^2)_2$ or -CN;

each R⁷ is independently selected from hydrogen,

wherein each M is independently selected from H, Li, Na, K, Mg, Ca, Ba, $-N(R^2)_4$, C_1-C_{12} -alkyl, C_2-C_{12} -alkenyl, or $-R^6$; wherein 1 to 4 $-CH_2$ radicals of the alkyl or alkenyl group, other than the $-CH_2$ that is bound to Z, is optionally replaced by a heteroatom group selected from O, S, S(O), S(O₂), or N(R²); and wherein any hydrogen in said alkyl, alkenyl or R⁶ is optionally replaced with a substituent selected from oxo, $-C_1-C_4$ alkyl, $-N(R^2)_2$, $-N(R^2)_3$,

 $\Colon C_1 - C_4 \text{ alkyl}$, -CN, $-C(0) OR^2$, $-C(0) - N(R^2)_2$, $S(Q)_2 - N(R^2)_2$, $-N(R^2) - C(O) - R_2$, $C(O) R^2$, $-S(O)_n - R^2$, $-OCF_3$, $-S(0)_{R}-R^{6}$, $-N(R^{2})-S(0)_{2}(R^{2})$, halo, $-CF_{3}$, or $-NO_{2}$; M' is H, C_1-C_{12} -alkyl, C_2-C_{12} -alkenyl, or $-R^6$; wherein 1 to 4 -CH2 radicals of the alkyl or alkenyl group is optionally replaced by a heteroatom group selected from O, S, S(O), S(\mathbb{Q}_2), or N(\mathbb{R}^2); and wherein any hydrogen in said alkyl, alkeryl or R6 is optionally replaced with a substituent selected from oxo, $-OR^2$, $-C_1-C_4$ alkyl, $-N(R^2)_2$, $N(R^2)_3$, -OH, -O-(C₁-C₁ alkyl), -CN, -C(O)OR², -C(O)-N(R²)₂, $-S(O)_2-N(R^2)_2$, $-N(R^2)-C\setminus(O)-R_2$, $-C(O)R^2$, $-S(O)_n-R^2$, $-OCF_3$, $-S(O)_n-R^6$, $-N(R^2)-S(O)_2(R^{3}\sqrt{)}$, halo, $-CF_3$, or $-NO_2$; x, when associated with R^7 , is 0 or 1; Z is 0, S, $N(R^2)_2$, or, when M is not present, H; Y is P or S; X is 0 or S;

 R^9 is $C(R^2)_2$, O or $N(R^2)$; wherein when Y is S, Z is not S; and

 R^6 is a 5-6 membered saturated, partially saturated or unsaturated carbocyclic or heterocyclic ring system, or an 8-10 membered saturated, partially saturated or unsaturated bicyclic ring system; wherein any of said heterocyclic ring systems contains one or more heteroatoms selected from 0, N, S, S(0) $_n$ or N(R^2); and wherein any of

Ant

said ring systems optionally contains 1 to 4 substituents independently selected from -OH, -C₁-C₄ alkyl, -O-(C₁-C₄ alkyl) or -O- (C_1-C_4) alkyl).

2. (Amended) The compound according to claim 1, wherein R^B is -C₁-C₄-branched or straight chain alkyl, wherein one to two carbon atoms in said alkyl are independently replaced by W, wherein R^B is additionally and optionally substituted with one or more groups independently selected from -OH; -C₁-C₄-alkoxy; -Ht'; -O-Ht'; -NR²-CO-N(R²)₂; -CO-N(R²)₇, -R¹-C₂-C₆ alkenyl, which is optionally substituted with one or more groups independently selected from hydroxy, C₁-C₄ alkoxy, -Ht', -O-Ht', -NR²-CO-N(R²)₂ of -CO-N(R²)₂; or R⁷; and wherein W is -O-, -NR²-, -NR²-S(O)₂-, -NR²-C(O)O-, -O-C(O)NR²-, -NR²-C(O)NR²-, -NR²-C(S)NR²-, -NR²C(O)-, -C(=NR²)-, -C(O)NR²-, -NR²-C(=N-CN)O- or -C(O)O-.

3. (Amended) The compound according to claim 1, wherein R^8 is a $-C_1-C_4$ -branched or straight alkyl chain, wherein one to two carbon atoms are substituted with Ht';

wherein Mt' is C_{6-14} aryl or a 5-7 membered saturated or unsaturated heterocycle, containing one or more

heteroatoms selected from N, $N(R^2)$, O, S and $S(O)_n$, wherein any member of Ht' is optionally substituted with one or more substituents independently selected from $O(N_1)$, $O(N_2)$, $O(N_1)$, $O(N_1)$, $O(N_2)$, $O(N_1)$, $O(N_2)$, $O(N_1)$, $O(N_2)$, $O(N_1)$

A2

4. (Amended) The compound according to claim 1, wherein \mathbb{R}^8 is selected from:

NHCSNHMe -CONHMe , OCONHMe соон

NO₂
CN
or

(Amended) The compound according to claim 1,

My wherein.

E is selected from:

NH₂
NH₂
NHMe

9. (Amended) The compound according to claim 1, having the formula (II):

11. (Amended) The compound according to claim 9, wherein $\ensuremath{\mathsf{R}}^8$ is selected from:

A5

15. (Amended) The compound according to claim 9, wherein said compound is selected from compound numbers: 26, 27, 31, 33, 35, 36, 38, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 1, 72, 73, 74, 202-204, 209, 213, 215, 217, 223, 227, 231, 233, 236, 237, 239, 243, 247, 250, 260, 263, 271, 281, 289, 293, 295, 304, 309, 317, 319, 320, 322, 334, 335, 348, 364, 367, 368, 375, 382, 383 or 396, wherein said compound is as defined below:

26 H	NH ₂	
27 H	NH ₂	
31 H	NH ₂	N
33 H	S NH ₂	N _O
	' -	

AST

AS X

3				
215	, , ,	× CN	×.<	II.
223	o H o H o H	NHCOO-t-b	×.<	\(\sigma\)
227	, , , , , , , , , , , , , , , , , , ,	NHSO₂Me	×.<	\(\mathcal{I}\)?
231	, , ,	× Nº	×.<	\(\infty\)?
233	, HO N	× n	×<	\(\sigma^\circ\)
236		÷ No Eo	х-<	汉。
237	, , , , , , , , , , , , , , , , , , ,	Can H	х-<	\(\sigma\);
239		H, O	×	\(\sigma\)
243	+ ° ,	, N OMe	×<	XX:
247	, , , , , , , , , , , , , , , , , , ,	, OEt	х-<	XX°
250	, , ,	, Ho O-i-Pr	/×<	XX°
260	H, O, J,	NHCSNHM	×	
263		N.CN N. OPh	×	XX°
271		× H N	×< /	\(\sigma\)
281	H ° C	× N N N	×	\.[``]``\

AS cont

AS COM

AST

16. (Amended) The compound according to claim
15, wherein said compound is selected from compound numbers:
26, 27, 31, 33, 35, 36, 38, 41, 43, 48, 49, 51, 52, 53, 54,
55, 56, 57, 59, 60, 71, 72, 73, 74, 209, 215, 227, 233, 237,
281, 289, 295, 304, 309, 322, 335, 364, 368, 382 or 383,
wherein said compound is as defined below:

74, SIOLE P NH₂ 27 NH₂ 31 NH₂ 33 35 NH₂ 36 38 Øн -so₂ 41 -OH 43 48

QН O-R8 NH₂ 72 73 74 NH₂

368	H, O, J,	× In	×	
382	H, O,	; CN	×	\(\sigma\)
383	بْ الْمِ	, NO ₂	×<	\(\mathcal{O}\);

AST

17. (Amended) The compound according to claim 16, wherein said compound is selected from: 54, 209, 237, 281, 295, 309, 367 or 368, wherein said compound is as

 $\mathbf{R}^{\mathbf{8}}$ CONHMe

(Amended) A composition comprising a compound according to any one of claims 1-5 or 7-17, in an amount sufficient to inhibit an aspartyl protease; and a pharmaceutically acceptable carrier.

Alp

21. The composition according to claim (Amended) 18, wherein said composition comprises at least one additional therapeutic agent selected from (1 alpha, 2 beta, 3 alpha) -9-[2,3-bis(hydroxymethyl)cyclobutyl] - quanine [(-)BHCG, SQ-34514]; oxetanocin-G (3,4-bis-(hydroxymethyl)-2-oxetanosyl]quanine); acyclic nucleosides; acyclic nucleoside phosphonates; ribonucleotide reductase inhibitors; other 2',3'-dideoxynucleosides; other aspartyl protease inhibitors; oxathiolane nucleoside analogues; 3'deoxy-3'-fluorothymidine; 5-chloro-2',3'-dideoxy-3'fluorouridine; (-)-cis-4-[2-amino-6-(cyclopropylamino)-9Hpurin-9-yl]-2-cyclopentene-1-methanol; ribavirin; 9-[4hydroxy-2-(hydroxymethyl)but-1-yl]-quanine (H2G); tat inhibitors; interferons; renal excretion inhibitors; nucleoside transport inhibitors; pentoxifylline; Nacetylcysteine (NAC); Procysteine; α -trichosanthin; phosphonoformic acid; immunomodulators; granulocyte macrophage colony stimulating factors; erythropoetin; soluble CD4 and genetically engineered derivatives thereof; non-nucleoside reverse transcriptase inhibitors (NNRTIs); 1,4-dihydro-2H-3,1-benzoxazin-2-ones NNRTIs; or quinoxaline NNRTIS.

Abt

22. (Amended) The composition according to any one of claims 18-21 or 28, wherein said composition is in an orally available dosage form.

Please add claim 28 as follows:

97

28. The composition according to claim (Added) 21, wherein said acyclic nucleosides/are acyclovir, valaciclovir, famciclovir, ganciclovir or penciclovir; said acyclic nucleoside phosphonates are (S)-1-(3-hydroxy-2phosphonyl-methoxypropyl)cytosine (HPMPC); said ribonucleotide reductase inhipitors are 2-acetylpyridine 5-[(2-chloroanilino)thiocarbonyl) thiocarbonohydrazone, or 3'-azido-3'-deoxythymidine, said other 2',3'dideoxynucleosides are 2/,3'-dideoxycytidine, 2',3'dideoxyadenosine, 2',3'/-dideoxyinosine, or 2',3'didehydrothymidine; said other aspartyl protease inhibitors are indinavir, ritoravir, nelfinavir, or [3S-[3R*(1R*, 2S*)]]-[3[[(4-aminophenyl)sulfonyl](2-methylpropyl)amino]-2hydroxy-1-(pheny/methyl)propyl]-tetrahydro-3-furanyl ester (amprenavir); said oxathiolane nucleoside analogues are (-)cis-1-(2-hydr xymethyl)-1,3-oxathiolane 5-yl)-cytosine (lamivudine) or cis-1-(2-(hydroxymethyl)-1,3-oxathiolan-5yl)-5-fluofocytosine (FTC); said tat inhibitors are 7AT

chloro-5-(2-pyrryl)-3H-1,4-benzodiazepin-2-(H)one (Ro5-3335) or 7-chloro-1,3-dihydro-5-(1H-pyrrol 2yl)-3H-1,4-benzodiazepin-2-amine (Ro24-7429); said interferons are α-interferon; said renal excretion inhibitors are probenecid; said nucleoside transport inhibitors are dipyridamole; said immunomodulators are interleukin II or thymosin; said non-nucleoside reverse transcriptase inhibitors (NNRTIs) are nevirapine (BI-RG-587), loviride (α-APA) or delavuridine (BHAP); said 1 4-dihydro-2H-3,1-benzoxazin-2-ones NNRTIs are (-)-6-chloro-4-cyclopropylethynyl-4-trifluoromethyl-1,4-dihydro-2H-3,1-benzoxazin-2-one (L-743,726 or DMP-266); or said quinoxaline NNRTIs are isopropyl (2S)-7-fluoro-3,4-dihydro-2-ethyl-3-oxo-1(2H)-quinoxalinecarboxylate (HBY1293).

REMARKS

Applicants appreciate the Examiner's telephonic discussions of the Action with applicants on August 14, 15, and 22, 2001. In particular, applicants thank the Examiner for clarifying that Amato, United States Patent 5,808,056, was listed in the Notice of References Cited only to show the state of the art.