ECON 4360: Empirical Finance

Term Structure Models

Sherry Forbes

University of Virginia

Empirics Lecture #11

What are we doing today?

• Term Structure Models

Term Structure Models

- Three basic types
 - Macro Models
 - Expectations Hypothesis (EH) The most rejected hypothesis in economics!
 - Finance Models
 - No deep theory Find 'factors' that minimize pricing errors
 - Macro-Finance Models
 - Lots of recent papers in this area

First. Some Definitions...

- Spot rate: the interest rate on a T-year loan that is to be made today
 - e.g., $R_t^1 = 5\%$ means that the current rate for a one-year loan is 5% e.g., $R_t^2 = 6\%$ means that the current rate for a two-year loan is 6%
- Term Structure of Interest Rates: the series of spot rates R₁, R₂, R₃, ... relating interest rates to the term of the investment
 - Yield Curve: just a plot of the term structure: interest rates plotted against investment term (i.e., maturity)
- Forward Rate: a rate agreed upon today for loan to be made in the future
 - Not necessarily equal to the future spot rate!

Sample Yield Curves

Term		Date	
(years)	Jan. 2004	Jan. 2005	Jan. 2006
1	1.15%	2.69%	4.32%
2	1.87%	3.06%	4.34%
3	2.48%	3.34%	4.34%
4	2.98%	3.57%	4.34%
5	3.40%	3.76%	4.36%
6	3.75%	3.93%	4.38%
7	4.05%	4.08%	4.42%
8	4.31%	4.22%	4.48%
9	4.53%	4.36%	4.53%
10	4.72%	4,49%	4.59%
11	4.88%	4.61%	4.65%
12	5.02%	4.73%	4.70%
13	5.15%	4.83%	4.73%
14	5.25%	4.91%	4.76%
15	5.35%	4.99%	4.78%
16	5.43%	5.05%	4.79%
17	5.49%	5.09%	4.79%
18	5.55%	5.12%	4.79%
19	5.59%	5.14%	4.78%
20	5.62%	5.15%	4,78%

Macro Models

- Rational Expectations Hypothesis of the Term Structure (EH)
 - Essentially says that yields (long-term) will be the expected average short-term rate over the life of the bond.
 - Equivalently, the forward rate equals the expected future spot rate
 - EH: There should be no difference in returns to holding a long-term bond or rolling over a sequence of short-term bonds, except for maybe a term premium.
- Standard reference: Campbell and Shiller (1991), ReStud.
- There are a number of tests of the EH...

- One approach to testing the EH due to Campbell and Shiller (1991) does the following:
- The EH implies the *n*-period yield is the expected average *m*-period interest rate over the next *n* period:

$$R_t^{(n)} = \frac{1}{K} \sum_{i=0}^{K-1} E_t R_{t+mi}^{(m)}$$

- $R_t^{(n)}$ is an *n*-period bond
- $R_{t+mi}^{(m)}$ is an *m*-period bond at time t+mi
- K = n/m (needs to be an integer)

• From the previous equation implies we can write

$$R_t^{(n)} - R_t^{(m)} = \frac{1}{K} \sum_{i=0}^{K-1} E_t \left[R_{t+mi}^{(m)} - R_t^{(m)} \right]$$

• Take a concrete example - m=3, n=6, (K=2), then we can consider a regression like

$$\frac{1}{2} \left[R_{t+3}^{(3)} - R_t^{(3)} \right] = \alpha + \beta \left(R_t^{(6)} - R_t^{(3)} \right) + \varepsilon_t$$

ullet If the EH holds, we should get a coefficient eta=1, if there is no time-varying term premia

 For our example, derivation from Mankiw and Miron (1986) QJE shows

$$p \lim \left(\widehat{\beta}\right) = \frac{\sigma_{e3}^2 + 2\rho \sigma_{e3} \sigma_{K_t t}}{\sigma_{e3}^2 + 4\sigma_{K_t}^2 + 4\rho \sigma_{e3} \sigma_{K_t}}$$

- σ_{e3}^2 is the 3 month forecast error and $\sigma_{K_t}^2$ is the variance in the term premium.
- ullet Messy, but gives the intuition that the $p \lim \left(\widehat{eta} \right) = 1$ if there is no time-varying term premia.
- What is there is a time-varying term premia?
 - It gets wrapped up in the ε_t term, but it should be mean zero just like the forecast errors
 - \bullet If the variance of the time-varying term premia is large, it will decrease β

- ullet Testing if $\widehat{eta}=1$ here is considered the 'strong' version of the EH Hypothesis
 - It is always rejected
- In fact, we see in the data that when m is short (say 3 months) and n is long (say 10 years), the estimated slope coefficients are negative.
- According to the EH, when the yield curve is steep long-term interest rates should be rising, but instead they are falling.

Coefficient Estimates from the Literature

Table 1 Coefficient Estimates from Literature

Source	Short (m) Long (n)	1 period 2 period	1 period 3 period	1 period 4 period	1 period 6 period	2 period 4 period	3 period 6 period
Campbell & Shiller Table 2, T-bills, 1952–87	coefficient standard error	0.5010 0.1190	0.4460 0.1990	0.4360 0.2380	0.2370	0.1950 0.2810	-0.1470 0.2000
Roberds, Runkle & Whiteman, Table 6 F Fund, 1984–91	coefficient standard error	0.5925 0.0983	0.3935 0.1437	na na	0.2121 0.2822	na na	-0.1411 0.6079
Roberds, Runkle & Whiteman, Table 9 F Fund, 1984–91, SW*	coefficient standard error	0.7596 0.1359	0.2953 0.1399	na na	0.1557 0.1861	na na	-0.2971 0.3675
Roberds, Runkle & Whiteman, Table 11 F Fund, 1984–91, FOMC†	coefficient standard error	0.7119 0.1720	0.4104 0.1688	na na -	0.0869 0.1878	na na	-0.3149 0.4553

^{*} Settlement Wednesday.

Note: Roberds, Runkle, and Whiteman use daily data in their regressions.

[†] FOMC meeting date.

- Campbell and Shiller (1987) JPE also consider a second test of the EH.
- They compare actual spreads with calculated 'theoretical spreads' to see if they are close.
 - The idea is that the theoretical spread uses the econometrician's expectation of the spread

$$s_t' = \sum_{j=1}^N E\left[\triangle R_{t+j}|w_t\right]$$

- where s'_t is the theoretical spread, $\triangle R_{t+j}$ are changes in the short rate, and w_t is the econometrician's information set
- How is the forecast made?

Test #2 of EH: Not as Bad

Fig. 1.—Term structure: deviations from means of long-short spread S_t and theoretical spread S_t' .

Finance Models

- This literature focuses on multifactor, or k-factor, models for bond returns.
 - Finance models still model (bond) returns as functions of factors
 - And the goal is to find factors that price assets well
- We've already seen a famous example: FF (1993) Common Risk Factors in Returns of Stocks and Bonds, JFE.

FF 1993

• Recall, that for the three factor model

$$R_{t}-R_{t}^{f}=a+b\left[R_{t}^{m}-R_{t}^{f}
ight]+sSMB_{t}+hHML_{t}+e\left(t
ight)$$

- This model did a horrible job pricing government securities
- (Looked at short-term 1-5G is 1-5 year; long-term 6-10G is 6-10 years)
 - Coefficient estimates show we don't have priced factors here for bonds
 - R² really low

FF 1993: Table 6

	1-5G	6-10G
Ь	0.10	0.18
t(b)	6.45	6.75
S	- 0.06	- 0.14
t(s)	- 2.70	- 3.65
h	0.07	0.08
t(h)	2.66	1.83
$\geqslant R^2$	0.10	0.12
$\geqslant R^2$ s(e)	1.19	1.91

FF 1993

- The factors TERM and DEF work best to explain the variation in bond returns (Table 7b)
- And their regression intercepts are close to zero (Table 9b)
 - This is not surprising since the average excess returns on bond portfolios are already close to zero.
- However, the formal tests rejects that the intercepts are actually equal to zero! (F-Stat of GRS (1989))
 - Just means that low average TERM and DEF returns cannot explain the cross-section of stocks and bond returns
 - (FF argue important for time-series variability!)

FF 1993: Table 7b - Bond Regressions

Regressions of excess stock returns on government and corporate bonds (in percent) on the stock-market returns, RM-RF, SMB, and HML, and the bond-market returns, TERM and DEF.

July 1963 to December 1991, 342 months.²

$$R(t) - RF(t) = a + b[RM(t) - RF(t)] + sSMB(t) + hHML(t) + mTERM(t) + dDEF(t) + e(t)$$

	Bond portfolio						
	1-5G	6-10G	Aaa	Aa	A	Baa	LG
<i>b t</i> (<i>b</i>)	- 0.02 - 2.84	- 0.04 - 3.14	- 0.02 - 2.96	0.00	0.00	0.02 1.99	0.18 7.39
t(s)	0.00	- 0.02 - 1.12	- 0.02 - 2.28	- 0.01 - 2.42	0.00 0.40	0.05 3.20	0.08 2.34
h $t(h)$	0.00 0.44	- 0.02 - 1.29	- 0.02 - 2.46	- 0.00 - 0.40	0.00 0.90	0.04 2.39	0.12
m t(m)	30.01	0.75 36.84	1.03 93.30	0.99 117.30	1.00 124.19	0.99 50.50	0.64 14.25
$d \rightarrow co^{eff} c^{eff} c^{eff} c^{eff} t^{eff} t^{eff}$	11111	0.32 8.77	0.97 49.25	0.97 65.04	1.02 71.51	1.05 30.33	0.80 9.92
R ² s(e)	0.80 0.56	0.87 0.73	0.97 0.40	0.98 0.30	0.98 0.29	0.91 0.70	0.58 1.63

FF 1993: Table 9b - Intercepts

Intercepts form excess bond return regressions for two government and five corporate bond portfolios: July 1963 to December 1991, 342 months.^a

					1, 5 12 month	3.	
	Bond portfolio						
	1–5G	6-10G	Aaa	Aa	A	Baa	LG
		(i) $R(t) - R$	F(t) = a + i	nTERM(t) +	dDEF(t) + e(t)	
a t(a)	0.08 2.70	0.09 2.16	- 0.02 - 1.10	- 0.00 - 0.55		0.06 1.42	0.06 0.67
		(ii) $R(t)$ –	RF(t) = a -	-b[RM(t) -	RF(t)] + $e(t)$		
a t(a)	0.08 1.27	0.08 0.76		- 0.02 - 0.15	-0.01	0.04 0.37	0.00 0.03
		(iii) $R(t) - I$	RF(t) = a +	sSMB(t) + hI	HML(t) + e(t)		
a t(a)	0.12 1.70	0.16 1.47	0.07 0.52	0.07 0.58	0.07 0.55	0.11 0.82	0.08 0.58
	(iv) R(t	-RF(t)=a	+b[RM(t) -	RF(t)] + sSt	MB(t) + hHM	II(t) + e(t)	
a t(a)	0.06 0.89	0.07	-0.07	- 0.07 - 0.64	- 0.08	- 0.05 - 0.41	- 0.11 - 1.00
	(v) 1	R(t) - RF(t) =	a + b[RM(r) $-RF(t)$] +	sSMB(t) + h	HML(t)	
				f(t) + dDEF(t)		- 1-7	
a t(a)	2.84	2.77	- 0.00 - 0.17	- 0.00 - 0.25	- 0.00	0.02 0.52	- 0.07 - 0.77

*See footnote under table 0c

More Recent Fiance Literature

- To look at changes in the yield curve...
 - Fit a model to the observed yield curve with a limited number of parameters
 - Typical models use polynomial functions or Nelsen-Siegel functions.
- Diebold and Li (2006) adaptation of Nelsen-Siegel (1987)

$$y_t\left(\tau\right) = L_t + S_t\left(\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau}\right) + C_t\left(\left(\frac{1 - e^{-\lambda_t \tau}}{\lambda_t \tau}\right) - e^{-\lambda_t \tau}\right)$$

- where $y_t(\tau)$ is yield at time t for maturity τ
- DL set $\lambda = 0.0609$ (parameter)
- ullet L_t , S_t , and C_t are parameters (i.e., the factors) to be estimated via OLS

Implementation

 To estimate this, just regress yields of different maturities on date t factors

$$\begin{bmatrix} y_{t} (1) \\ \vdots \\ y_{t} (n) \end{bmatrix} = L_{t} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} + S_{t} \begin{bmatrix} \frac{1 - e^{-\lambda_{t}}}{\lambda_{t}} \\ \vdots \\ \frac{1 - e^{-\lambda_{t}n}}{\lambda_{t}n} \end{bmatrix} + C_{t} \begin{bmatrix} \frac{1 - e^{-\lambda_{t}}}{\lambda_{t}} - e^{-\lambda_{t}} \\ \vdots \\ \frac{1 - e^{-\lambda_{t}n}}{\lambda_{t}n} - e^{-\lambda_{t}n} \end{bmatrix} + \varepsilon$$

- ullet The coefficients in the regression at period t are the factor in period t
- Then just repeat at each date.
- The measure of fit is going to be the R^2
 - The size of the pricing errors relative to variation in the data

Diebold and Li (2006): Results

From

$$y_{t}\left(\tau\right) = L_{t} + S_{t}\left(\frac{1 - e^{-\lambda_{t}\tau}}{\lambda_{t}\tau}\right) + C_{t}\left(\left(\frac{1 - e^{-\lambda_{t}\tau}}{\lambda_{t}\tau}\right) - e^{-\lambda_{t}\tau}\right)$$

- Estimated factors have a clear interpretation
 - L_t is Level: determines mostly movements in long rates; factor loading set at 1, a constant
 - ullet S_t is Slope: associated with the spread between long and short rates
 - $m{c}_t$ is Curvature: approximates the different between short and long spreads
- Results: Level and Slope factors explain more than 90 percent of yield fluctuations across the entire term structure

Term Structure Factors

Model-Based v Data-Based LSC

Fit of Diebold-Li Factors

Maturity	$R^2(L)$	$R^2(L,S)$	$R^2(L,S,C)$
3	0.3823	0.9953	0.9982
4	0.4037	0.9925	0.9989
5	0.4333	0.9862	0.9990
6	0.4312	0.9727	0.9912
12	0.5272	0.9497	0.9983
24	0.6642	0.9351	0.9991
36	0.7489	0.9316	0.9992
48	0.8108	0.9353	0.9995
60	0.8470	0.9392	0.9994

Diebold-Li (2006) Summary

- The model is 'good' because we know how to price these interest rates; and we can extrapolate, i.e., forecast from this model
- From a finance perspective, the model is successful because it prices asset well
 - I.e., the errors are small
- From a macro-finance perspective, we want to understand the interaction between these variables and interest rates
 - E.g., a structural model with some kind of reasonable story would be nice
 - The objective is to find risk factors that price bonds accurately e.g., to write down a stochastic process for risk
- Recent macro-finance literature has been trying to bridge the gap between traditional macro and finance...

End of Today's Lecture.

 That's all for today. There are a few pages on the term structure in a section of Chapter 20 of Cochrane (2005) that you should read; and there is additional material in Chapter 19 if you're feeling adventurous!