

1. Basic concepts 2. Singly linked list 3. Operations on linked list Pal HOC BÁCH KHOA HÀ NÓI BASIC CONCEPTS PAGE DAMPER OF ICHECHAGO PAGE DAM

OBJECTIVES

After this lesson, students can:

- 1. Understand singly linked list data structure;
- 2. Build two basic operations on singly linked list data structures:

 Browse and Search

1. Basic concepts 1.1. Pointer 1.2. Struct 2. Singly linked list 3. Operations on linked list 3.1 Browse 3.2 Search

ĐẠI HỌC BÁCH KHOA HÀ NỘI

1.2. Struct Struct is a data structure that is defined by the user (user defined datatype) A structure is a collection of variables, which can have different data types Struct structureName { dataType member1; dataType member2; ... }; PAI HOC BÁCH KHOA HÁ NÓI MAICH MOG BÁCH KHOA HÁ NÓI MAICH MOG BÁCH KHOA HÁ NÓI

```
1.2. Struct

A struct is a user-defined data type, consisting of a set of variables, which can have different data types.

typedef struct TNode{
int a;
double b;
char* s;
}TNode;

TNode* q: q is a pointer that points to a variable of type TNode

Q→a: access to member a of the struct type

q = (TNode*)malloc(sizeof(TNode)): allocate memory for a TNode type and q points to the allocated memory area
```


2.1. Introduction

- Singly linked list is an ordered list of elements; Elements are connected to each other through a link.
- Linked list and array:

	Linked list	Array
Data structure type	Don't need to be the same	Must be the same
Allocate memory	Disperse	Continuous, side by side

3.1. Browse the list • Task: Visit each element of the list exactly once • Idea: Use the next pointer to access the next element head 5 9 9 3 + ... 6 4 4 + ...

3.2. Search • Task: Find the first element of the list whose value is equal to the input value • Idea: Use the next pointer to access the next element For example, find the first element of the list with value 3 head 5 9 3 3 ... 3 4 ... 3 4 ...

SUMMARY AND SUGGESTIONS

1. Summary:

The lesson introduced singly linked lists and two basic operations on singly linked lists: browse and search

2. Suggestions:

Design and implement other operations on the list

ĐẠI HỌC BÁCH KHOA HÀ NỘI

2

CONTENTS

- 1. Insert an element at the beginning of the list
- 2. Insert an element at the end of the list
- 3. Insert an element before an element in the list

OBJECTIVES

After this lesson, students can:

Understand the algorithm and successfully implement three basic operations on singly linked lists: inserting an element at the beginning, end, and before an element in a singly linked list.

CONTENTS

- 1. Insert an element at the beginning of the list
- 2. Insert an element at the end of the list
- 3. Insert an element before an element in the list

24

SUMMARY AND SUGGESTIONS

1. Summary:

Implement three operations to insert a new element into a singly linked list: insert an element at the beginning, at the end, and before an element of the list.

2. Suggestions:

Design and implement other operations on the list

ĐẠI HỌC BÁCH KHOA HÀ NỘI

33

CONTENTS

- 1. Delete an element of the list
- 2. Reverse the order of list elements

OBJECTIVES

After this lesson, students can:

Understand the algorithm and successfully implement two basic operations on singly linked lists:

- remove an element from the list
- reverse the order of elements in a list

CONTENTS

- 1. Delete an element of the list
- 2. Reverse the order of list elements

36


```
1. Delete an element of the list
2. Reverse the order of list elements

Dal HOC BÁCH KHOA HÀ NÓI
MACH DEVISIER OF SICHACI HOLDICACOF

39
```


1. Summary: Implement two important operations on singly linked lists: remove an element from the list and reverse the order of the list's elements. 2. Suggestions: • A singly linked list has only 1 link between 2 consecutive elements in the list. If there are 2 links, is it easier to operate on the list? **Dai HOC BÁCH KHOA HÁ NÓ!** **MONUMERISENT CE PICIPICA MOS TICHPOLOGY** **DAI HOC BÁCH KHOA HÁ NÓ!** **MONUMERISENT CE PICIPICA MOS TICHPOLOGY** **TICHPOLOGY** **DAI HOC BÁCH KHOA HÁ NÓ!** **MONUMERISENT CE PICIPICA MOS TICHPOLOGY** **TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICHPOLOGY** **TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICHPOLOGY** **TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICHPOLOGY** **TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICHPOLOGY** **PROPRIED TO THE PICIPICA MOS TICH

