${f Assignment} \,\, {f 02}$

Due Time: 8:15, March 18, 2020 (Wednesday)

Name: 陈 稼 霖 Student ID: 45875852

Score:

Problem 1 (Problem title) Score: ______. Show that the intersection S of two invariant subgroups S_1 and S_2 of a group G is an invariant subgroup.

Solution: First, we prove that S is a subgroup of G. Since S_1 and S_2 are two subgroups of G and S is the intersection of S_1 and S_2 , S is a subset of G. S satisfies all the four group axioms:

- 1. Closure: Since S is the intersection of S_1 and S_2 , if T and R are the elements of S, then T and R are elements of both S_1 and S_2 . From the closure of S_1 and S_2 , we have $TR \in S_1$ and $TR \in S_2$, so $TR \in S$.
- 2. Associativity: Since S is a subset of group G, the associativity of S is automatically satisfied.
- 3. Existence of identity element: Since S_1 and S_2 are subgroups, the identity element E is in both S_1 and S_2 . Then E is also in their intersection S.
- 4. Existence of inverse element: Since S is the intersection of S_1 and S_2 , each element T of S is in both S_1 and S_2 . Because S_1 and S_2 are subgroups, the inverse T^{-1} of T is also in both S_1 and S_2 . Then T^{-1} is in $S = S_1 \cap S_2$.

In this way, S is a subgroup of G.

Then we prove that $XTX^{-1} \in S = S_1 \cap S_2$ holds for every $T \in S$ and every $X \in G$. Since S is the intersection of S_1 and S_2 , we have $T \in S_1$ and $T \in S_2$ for every $T \in S$. Because S_1 and S_2 are two invariant subgroups of G, we have $XTX^{-1} \in S_1$ and $XTX^{-1} \in S_2$ for every X in G. In this way, $XTX^{-1} \in S = S_1 \cap S_2$ holds for every $T \in S$ and every

Therefore, S is an invariant subgroup of G.

Problem 2 Score: _____. The multiplication table of a finite group G is given by

	$\mid E \mid$	A	B	C	D	F	I	J	K	L	M	N
\overline{E}	E	A	B	C	D	F	I	J	K	L	M	N
A	A	E	F	I	J	B	C	D	M	N	K	L
B	B	F	A	K	L	E	M	N	I	J	C	D
C	C	I	L	A	K	N	E	M	J	F	D	B
D	D	J	K	L	A	M	N	E	F	I	B	C
F	F	B	E	M	N	A	K	L	C	D	I	J
I	I	C	N	E	M	L	A	K	D	B	J	F
J	J	D	M	N	E	K	L	A	B	C	F	I
K	K	M	J	F	I	D	B	C	N	E	L	A
L	L	N	I	J	F	C	D	B	E	M	A	K
M	M	K	D	B	C	J	F	I	L	A	N	E
N	N	L	C	D	B	I	J	F	A	K	E	M

- (a) Find the inverse of each element of G.
- (b) Find the elements in each class of G.
- (c) Find all invariant subgroups of G.

Solution: (a) The inverse of each element of G:

$$E^{-1} = E,$$
 $A^{-1} = A,$ $B^{-1} = F,$ $C^{-1} = I,$ $D^{-1} = J,$ $F^{-1} = B,$ $I^{-1} = C,$ $I^{-1} = C,$ $I^{-1} = I,$ $I^{-1} = I,$

(b) Constructing a class from A: for X = E, A, B, C, D, F, I, J, K, L, M, N,

$$XAX^{-1} = A \tag{1}$$

The class of G constructed from A is $\{A\}$.

Using the similar method, we construct all the classes of G:

$$\{E\}, \{A\}, \{B, C, D\}, \{F, I, J\}, \{K, L\}, \{M, N\}.$$

Table 1: The subgroups of G.

$\operatorname{ord}\epsilon$	r Subgroup(s)
1	$\{E\}$
2	$\mid \{E,A\}$
3	$\{E,A\}$ $\{E,M,N\}$
4	
6	$\{E, A, K, L, M, N\}$
12	G

(c) A subgroup of G is an invariant subgroup if and only if it consist entirely of complete classes of G. The subgroups of G are shown in table 1.

The invariant subgroups of G are

$$\{E\}, \{E,A\}, \{E,M,N\}, \{E,A,B,C,D\}, \{E,A,K,L,M,N\}, G$$

Problem 3 Score: _____. Consider the group D_3 .

- (a) List all the classes of D_3 .
- (b) Find the right and left cosets of the subgroup $S = \{E, A\}$ of D_3 .

Solution: (a) The group D_3 is

$$D_3 = \{E, D, F, A, B, C\},\tag{2}$$

where E is the identity element, D is the rotation in the plane about the center of the equilateral triangle through $2\pi/3$, F is the rotation in the plane about the center of the triangle through $4\pi/3$, and A, B, C are the rotations about the three axis of symmetry of the triangle. The multiplication table of D_3 is shown in table . The inverse of

Table 2: The multiplication table of D_3 .

	E	D	F	A	B	C
\overline{E}	E	D	F	\overline{A}	B	\overline{C}
D	D	F	E	B	C	A
F	F	E	D	C	A	B
A	A	C	B	E	F	D
B	B	A	C	D	E	F
C	C	B	A	A B C E D F	D	E

each element of D_3 is

$$E^{-1} = E,$$
 $D^{-1} = F,$ $F^{-1} = D,$ $A^{-1} = A,$ $B^{-1} = B,$ $C^{-1} = C.$

Constructing a class from D: for X = E, D, F,

$$X^{-1}DX = D. (3)$$

For X = A, B, C,

$$X^{-1}DX = F. (4)$$

The class of D_3 constructed form D is $\{D, F\}$.

Using the similar method, we construct all the classes of D_3 :

$$\{E\}, \{D, F\}, \{A, B, C\}.$$
 (5)

(b) The right cosets of the subgroup $S = \{E, A\}$ of D_3 is

$$SE = SA = \{E, A\},$$

$$SD = SC = \{D, C\},$$

$$SF = SB = \{F, B\}.$$

The left cosets of the subgroup S is

$$ES = AS = \{E, A\},$$

$$DS = BS = \{D, B\},$$

$$FS = CS = \{F, C\}.$$

Problem 4 Score: _____. For the group D_3 and its invariant subgroup $S = \{E, D, F\}$, find the factor group D_3/S . Consider the multiplication table for the factor group.

Solution: The right coset of the invariant subgroup $S = \{E, D, F\}$ of D_3 is

$$SE = SD = SF = \{E, D, F\},$$

$$SA = SB = SC = \{A, B, C\}.$$

The factor group D_3/S is $\{SE, SA\}$. Under the multiplication operation of $ST_1 \cdot ST_2 = S(T_1T_2)$, the multiplication table of the factor group is shown in table 3.

Table 3: The multiplication table of D_3/S .

$$\begin{array}{c|cccc} & SE & SA \\ \hline SE & SE & SA \\ SA & SA & SA \end{array}$$

Problem 5 Score: Consider $C_6 = \{E, a, a^2, a^3, a^4, a^5\}$ and its two subgroups $S_1 = \{E, a^3\}$ and $S_2 = \{E, a^2, a^4\}$. Show that $C_6 = S_1 \otimes S_2$.

Solution: The two subgroups S_1 and S_2 satisfy the following three conditions:

- 1. The elements of S_1 commute with the elements of S_2 , $S^mS^n=S^{m+n}=S^{n+m}=S^nS^m$.
- 2. S_1 and S_2 have only the identity element E in common.
- 3. Every element of G' can be written as a product of an element of S_1 with an element of S_2 ,

$$E = EE,$$

$$a = a^{3}a^{4},$$

$$a^{2} = Ea^{2},$$

$$a^{3} = a^{3}E,$$

$$a^{4} = Ea^{4},$$

$$a^{5} = a^{3}a^{2}.$$

Therefore, $C_6 \cong S_1 \times S_2$.