```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
## Import train dataset
data_train=pd.read_csv('train.csv')
data_train.head()
             y X0 X1 X2 X3 X4 X5 X6 X8
                                                   X375
                                                         X376
                                                                X377
                                                                       X378
   ID
                                              . . .
X379
      130.81
                 k
                                                      0
                                                             0
                                                                    1
                                                                          0
0
                    V
                        at
                             а
                                d
                                   u
                                       j
                                          0
                                              . . .
0
1
        88.53
    6
                 k
                    t
                        av
                            е
                                d
                                   У
                                       ι
                                         0
                                                      1
                                                                   0
                                                                          0
                                              . . .
0
2
        76.26
    7
                az
                    W
                         n
                            С
                                d
                                   Χ
                                       j
                                          Χ
                                                      0
                                                             0
                                                                   0
                                                                          0
0
3
    9
        80.62
                                                                   0
                                                                          0
                az
                    t
                             f
                                d
                                       l
                                                             0
                         n
                                   Х
                                          е
0
4
        78.02
                            f
                                                             0
                                                                   0
                                                                          0
   13
                az v
                         n
                                d
                                   h
                                       d
                                          n
                                                      0
0
   X380
         X382
                X383
                       X384
                              X385
0
      0
             0
                    0
                          0
                                 0
             0
1
      0
                    0
                          0
                                 0
2
      0
             1
                    0
                          0
                                 0
3
      0
             0
                    0
                                 0
                          0
4
      0
             0
                    0
                          0
                                 0
[5 rows x 378 columns]
data_train.shape
(4209, 378)
##chech missing value
data_train.isna().sum()
ID
        0
         0
X0
         0
X1
         0
        0
X2
X380
        0
X382
        0
X383
         0
X384
         0
```

```
X385
Length: 378, dtype: int64
data train.nunique()
ID
        4209
        2545
У
X0
           47
X1
           27
X2
           44
X380
            2
            2
X382
            2
X383
X384
            2
            2
X385
Length: 378, dtype: int64
data train.describe()
                                             X10
                                                      X11
                 ID
                                                                    X12
                                                                         \
                      4209.000000
       4209.000000
                                    4209.000000
                                                  4209.0
                                                           4209.000000
count
       4205,960798
mean
                       100.669318
                                       0.013305
                                                      0.0
                                                              0.075077
std
       2437.608688
                        12.679381
                                       0.114590
                                                      0.0
                                                              0.263547
           0.000000
                        72.110000
                                                      0.0
                                                              0.000000
min
                                       0.00000
       2095.000000
                        90.820000
25%
                                       0.00000
                                                      0.0
                                                              0.00000
                        99.150000
50%
       4220.000000
                                       0.000000
                                                      0.0
                                                              0.000000
75%
       6314.000000
                       109.010000
                                       0.000000
                                                      0.0
                                                              0.00000
       8417.000000
                       265.320000
                                       1.000000
                                                      0.0
                                                              1.000000
max
                                                           X16
                                                                         X17
                X13
                              X14
                                             X15
       4209.000000
                      4209.000000
                                    4209.000000
                                                  4209.000000
                                                                4209.000000
count
. . .
                         0.428130
                                       0.000475
                                                      0.002613
          0.057971
                                                                    0.007603
mean
. . .
          0.233716
                         0.494867
                                       0.021796
                                                      0.051061
                                                                    0.086872
std
min
          0.000000
                         0.000000
                                       0.000000
                                                      0.000000
                                                                    0.000000
          0.000000
                         0.000000
                                       0.000000
                                                      0.00000
                                                                    0.000000
25%
50%
          0.000000
                         0.000000
                                       0.000000
                                                      0.000000
                                                                    0.000000
75%
          0.000000
                         1.000000
                                       0.000000
                                                      0.000000
                                                                    0.000000
. . .
           1.000000
                         1.000000
                                       1.000000
                                                      1.000000
                                                                    1.000000
max
. . .
               X375
                             X376
                                            X377
                                                          X378
                                                                        X379
```

\

count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.318841	0.057258	0.314802	0.020670	0.009503
std	0.466082	0.232363	0.464492	0.142294	0.097033
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	1.000000	0.000000	1.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000
	X380	X382	X383	X384	X385
count	4209.000000	4209.000000	4209.000000	4209.000000	4209.000000
mean	0.008078	0.007603	0.001663	0.000475	0.001426
std	0.089524	0.086872	0.040752	0.021796	0.037734
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%					
30%	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000

[8 rows x 370 columns]

try find variance of column

print(data_train.var)

```
<bound method NDFrame._add_numeric_operations.<locals>.var of
       y X0 X1 X2 X3 X4 X5 X6 X8 ... X375 X376 X377 X378 \
          130.81
0
                  k v
                       at a d
                                                     0
                                                          1
                                 u j o ...
0
1
       6
           88.53
                  k t av e d
                                 y l o ...
                                                1
                                                          0
0
2
       7
           76.26 az w
                                                          0
                       ncd x j x ...
```

```
0
3
          9
               80.62
                                             x l e
                                                                               0
                       az
                           t
                                   f d
                                                                 0
                                                                        0
                                 n
0
4
         13
               78.02
                                    f
                                        d
                                             h
                                                d
                                                                 0
                                                                        0
                                                                               0
                       az
                           ٧
                                 n
                                                   n
                                                        . . .
0
. . .
        . . .
4204
       8405
              107.39
                                                                 1
                                                                        0
                                                                               0
                       ak
                            S
                                as
                                    С
                                        d
                                            aa
                                                d
                                                    q
                                                        . . .
0
4205
       8406
              108.77
                         j
                                 t
                                     d
                                        d
                                                h
                                                    h
                                                                 0
                                                                        1
                                                                               0
                            0
                                            aa
                                                        . . .
4206
       8412
              109.22
                       ak
                                 r
                                     а
                                        d
                                            aa
                                                g
                                                    е
                                                                 0
                                                                        0
                                                                               1
                            ٧
                                                        . . .
4207
       8415
               87.48
                                     f
                                                                               0
                       al
                                        d
                                                l
                                                                 0
                                                                        0
                            r
                                 е
                                            aa
                                                    u
                                                        . . .
4208
       8417
              110.85
                         Z
                                ae
                                    С
                                        d
                                                                 1
                                                                        0
                                                                               0
                            r
                                            aa
                                                g
                                                    W
       X379
              X380
                     X382
                            X383
                                   X384
                                          X385
0
          0
                  0
                         0
                                0
                                       0
                                              0
1
          0
                  0
                         0
                                0
                                       0
                                              0
2
                         1
                                       0
          0
                  0
                                0
                                              0
3
                                       0
          0
                  0
                         0
                                0
                                              0
4
          0
                  0
                         0
                                0
                                       0
                                              0
                . . .
                       . . .
                                     . . .
        . . .
                              . . .
                                            . . .
4204
          0
                  0
                         0
                                0
                                       0
                                              0
4205
          0
                  0
                         0
                                0
                                       0
                                              0
                  0
                                              0
4206
          0
                         0
                                0
                                       0
4207
                  0
                         0
                                0
                                       0
                                              0
          0
4208
          0
                  0
                         0
                                0
                                       0
                                              0
[4209 rows x 378 columns]>
cols=[c for c in data_train.columns if 'X' in c]
print('Number of features: {}'.format(len(cols)))
Number of features: 376
print('Feature types:')
data_train[cols].dtypes.value_counts()
Feature types:
int64
            368
object
              8
dtype: int64
##Count the data in each of the columns
counts = [[], [], []]
for c in cols:
```

```
typ = data train[c].dtype
    uniq = len(np.unique(data train[c]))
    if uniq == 1:
         counts[0].append(c)
    elif uniq == 2 and typ == np.int64:
         counts[1].append(c)
    else:
         counts[2].append(c)
print('Constant features: {} Binary features: {} Categorical features:
{}\n'
       .format(*[len(c) for c in counts]))
print('Constant features:', counts[0])
print('Categorical features:', counts[2])
Constant features: 12 Binary features: 356 Categorical features: 8
Constant features: ['X11', 'X93', 'X107', 'X233', 'X235', 'X268', 'X289', 'X290', 'X293', 'X297', 'X330', 'X347']
Categorical features: ['X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']
# the prediction output
y train = data train['y'].values
## Import Test dataset
data test=pd.read csv('test.csv')
data test.head()
   ID X0 X1 X2 X3 X4 X5 X6 X8 X10
                                               X375
                                                     X376
                                                            X377
                                          . . .
                                                                   X378
X379 X380 \
                n f d
                                                                0
                                                                      1
0
    1 az
                          t a w
                                                  0
                                                         0
           V
                                      0
                                          . . .
0
1
    2
        t
           b
                      d
                                                  0
                                                         0
                                                                1
                                                                      0
               ai
                   а
                          b
                             g
                                          . . .
                                 У
0
2
    3 az
                                 j
           V
               as
                   f
                       d
                          а
                             j
                                      0
                                                  0
                                                         0
                                                                0
                                                                      1
                                          . . .
0
3
    4
           l
                   f
                       d
                             l
                                                  0
                                                         0
                                                                0
                                                                      1
                n
                          Ζ
                                 n
                                      0
       az
                                          . . .
0
4
    5
           S
                   c d y i
                                 m
                                      0
                                                   1
                                                         0
                                                                0
                                                                      0
               as
                                         . . .
        W
0
         X383
                X384
   X382
                       X385
0
      0
             0
                    0
                          0
1
      0
             0
                    0
                          0
2
      0
                    0
             0
                          0
3
      0
             0
                    0
                          0
4
      0
                    0
                          0
             0
```

[5 rows x 377 columns]

```
##remove columns ID and Y from the data
remove columns = list(set(data train.columns) - set(['ID', 'v']))
y train = data_train['y'].values
id test = data test['ID'].values
x train = data train[remove columns]
x test = data test[remove columns]
#Check for null and unique values for tain and test dataset
def check missing values(df):
    if df.isnull().any().any():
        print("There are missing values in the dataframe")
        print("There are no missing values in the dataframe")
##check null in train dataest
check missing values(x train)
There are no missing values in the dataframe
## check null in test dataset
check missing values(x test)
There are no missing values in the dataframe
## If for any column(s), the variance is equal to zero
## Apply label encoder
for column in remove columns:
    val = len(np.unique(x train[column]))
    if val == 1:
        x train.drop(column, axis=1) # Column with only one
        # value is useless so we drop it
        x_test.drop(column, axis=1)
    if val > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x train[column] = x train[column].apply(mapper)
        x test[column] = x test[column].apply(mapper)
x train.head()
<ipython-input-28-34faa544c303>:9: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
  x train[column] = x train[column].apply(mapper)
<ipython-input-28-34faa544c303>:10: SettingWithCopyWarning:
```

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation:

https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy

x_test[column] = x_test[column].apply(mapper)

	X379	X378	X115	X131	X163	X34	X48	X136	X140	X28		X95
X20	52 \ 0	0	0	1	0	0	0	1	0	Θ		0
1	U	0	0	1	в	U	U	1	0	U		Θ
1	0	0	0	0	0	0	0	1	0	0		0
0	0	0	0	0	1	0	0	0	0	1		0
0	Ū	U	U	· ·	_	J	O	O	J	_	•••	Ü
3	0	0	0	0	0	0	0	0	0	1		0
0 4	0	0	0	0	0	0	0	0	0	1		0
0	-	-			_				-			
	X317	X283	X166	Y65	Y278	Y13/	Y255	X344				
0	V211	A203	V100	703	0	0	V222	^344 0				
1	0	0	0	0	0	0	0	0				

[5 rows x 376 columns]

print('Feature types:')

x train[cols].dtypes.value counts()

Feature types:

int64 376 dtype: int64

Perform dimensionality reduction (PCA)

from sklearn.decomposition import PCA

pca = PCA(n_components=12, random_state=420)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)

Training using xgboost

import xgboost as xgb
from sklearn.metrics import r2_score
from sklearn.model selection import train test split

```
x_train, x_valid, y_train, y_valid = train_test_split(
        pca2 results train,
        y_train, test_size=0.2,
        random state=4242)
d train = xgb.DMatrix(x train, label=y train)
d_valid = xgb.DMatrix(x_valid, label=y_valid)
d test = xgb.DMatrix(pca2 results test)
params = \{\}
params['objective'] = 'reg:linear'
params['eta'] = 0.02
params['max depth'] = 4
def xgb r2 score(preds, dtrain):
    labels = dtrain.get label()
    return 'r2', r2_score(labels, preds)
watchlist = [(d_train, 'train'), (d_valid, 'valid')]
clf = xgb.train(params, d train,
                1000, watchlist, early stopping rounds=50,
                feval=xgb r2 score, maximize=True, verbose eval=10)
[17:48:11] WARNING: C:/Users/Administrator/workspace/xgboost-
win64_release_1.4.0/src/objective/regression_obj.cu:171: reg:linear is
now deprecated in favor of reg:squarederror.
     train-rmse:99.14835
                           train-r2:-58.35295
                                                  valid-rmse:98.26297
[0]
     valid-r2:-67.63754
[10] train-rmse:81.27651
                           train-r2:-38.88428
                                                  valid-rmse:80.36433
     valid-r2:-44.91014
                                                  valid-rmse:65.77334
[20] train-rmse:66.71610
                           train-r2:-25.87403
     valid-r2:-29.75260
[30] train-rmse:54.86915
                           train-r2:-17.17724
                                                  valid-rmse:53.89119
     valid-r2:-19.64513
[40] train-rmse:45.24564
                           train-r2:-11.36018
                                                  valid-rmse:44.22232
     valid-r2:-12.90160
[50] train-rmse:37.44741
                           train-r2:-7.46672
                                                  valid-rmse:36.37773
     valid-r2:-8.40705
                                                  valid-rmse:30.01782
[60] train-rmse:31.15105
                           train-r2:-4.85891
     valid-r2:-5.40531
                                                  valid-rmse:24.90733
[70] train-rmse:26.08691
                           train-r2:-3.10882
     valid-r2:-3.40998
[80] train-rmse:22.04894
                           train-r2:-1.93526
                                                  valid-rmse:20.82346
     valid-r2:-2.08239
[90] train-rmse:18.85430
                           train-r2:-1.14631
                                                  valid-rmse:17.59753
     valid-r2:-1.20133
[100] train-rmse:16.34233
                           train-r2:-0.61250
                                                  valid-rmse:15.07638
     valid-r2:-0.61576
[110] train-rmse:14.41168
                           train-r2:-0.25401
                                                  valid-rmse:13.14548
     valid-r2:-0.22839
```

```
[120] train-rmse:12.94262
                            train-r2:-0.01138
                                                  valid-rmse:11.68336
     valid-r2:0.02967
                            train-r2:0.15566 valid-rmse:10.61321
[130] train-rmse:11.82560
     valid-r2:0.19929
                            train-r2:0.27054 valid-rmse:9.84869
[140] train-rmse:10.99171
     valid-r2:0.31049
                            train-r2:0.34830 valid-rmse:9.31929
[150] train-rmse:10.38934
     valid-r2:0.38263
[160] train-rmse:9.94055
                            train-r2:0.40339 valid-rmse:8.95843
     valid-r2:0.42951
[170] train-rmse:9.60575
                            train-r2:0.44290 valid-rmse:8.71915
     valid-r2:0.45958
[180] train-rmse:9.36104
                            train-r2:0.47092 valid-rmse:8.55947
     valid-r2:0.47919
[190] train-rmse:9.17712
                            train-r2:0.49151 valid-rmse:8.45814
     valid-r2:0.49145
[200] train-rmse:9.02794
                            train-r2:0.50791 valid-rmse:8.39234
     valid-r2:0.49933
[210] train-rmse:8.92379
                            train-r2:0.51919 valid-rmse:8.35805
     valid-r2:0.50342
                            train-r2:0.52851 valid-rmse:8.33338
[220] train-rmse:8.83687
     valid-r2:0.50635
[230] train-rmse:8.77426
                            train-r2:0.53517 valid-rmse:8.32326
     valid-r2:0.50754
                            train-r2:0.54012 valid-rmse:8.31429
[240] train-rmse:8.72745
     valid-r2:0.50860
[250] train-rmse:8.68730
                            train-r2:0.54434 valid-rmse:8.31208
     valid-r2:0.50886
[260] train-rmse:8.64810
                            train-r2:0.54844 valid-rmse:8.31297
     valid-r2:0.50876
[270] train-rmse:8.60765
                            train-r2:0.55266 valid-rmse:8.31136
     valid-r2:0.50895
                            train-r2:0.55558 valid-rmse:8.31203
[280] train-rmse:8.57949
     valid-r2:0.50887
[290] train-rmse:8.55134
                            train-r2:0.55849 valid-rmse:8.30992
     valid-r2:0.50912
[300] train-rmse:8.52779
                            train-r2:0.56092 valid-rmse:8.30644
     valid-r2:0.50953
[310] train-rmse:8.50280
                            train-r2:0.56349 valid-rmse:8.30659
     valid-r2:0.50951
[320] train-rmse:8.47743
                            train-r2:0.56609 valid-rmse:8.30403
     valid-r2:0.50982
                            train-r2:0.56937 valid-rmse:8.30214
[330] train-rmse:8.44532
     valid-r2:0.51004
[340] train-rmse:8.42141
                            train-r2:0.57181 valid-rmse:8.30014
     valid-r2:0.51027
[350] train-rmse:8.39842
                            train-r2:0.57414 valid-rmse:8.29835
     valid-r2:0.51048
                            train-r2:0.57638 valid-rmse:8.29697
[360] train-rmse:8.37635
     valid-r2:0.51065
```

```
train-r2:0.57862 valid-rmse:8.29262
[370] train-rmse:8.35410
     valid-r2:0.51116
[380] train-rmse:8.33095
                            train-r2:0.58095 valid-rmse:8.29179
     valid-r2:0.51126
                            train-r2:0.58391 valid-rmse:8.29098
[390] train-rmse:8.30154
     valid-r2:0.51136
                            train-r2:0.58673 valid-rmse:8.29057
[400] train-rmse:8.27336
     valid-r2:0.51140
[410] train-rmse:8.25648
                            train-r2:0.58841 valid-rmse:8.29034
     valid-r2:0.51143
[420] train-rmse:8.22607
                            train-r2:0.59144 valid-rmse:8.29332
     valid-r2:0.51108
[430] train-rmse:8.19721
                            train-r2:0.59430 valid-rmse:8.29163
     valid-r2:0.51128
                            train-r2:0.59688 valid-rmse:8.29193
[440] train-rmse:8.17110
     valid-r2:0.51124
                            train-r2:0.59762 valid-rmse:8.29272
[444] train-rmse:8.16357
     valid-r2:0.51115
## Predict data test values using xgboost
p test = clf.predict(d test)
sub = pd.DataFrame()
sub['ID'] = id_test
sub['y'] = p_test
sub.to_csv('xgb.csv', index=False)
```