Algorytmy i stuktury danych - Lista 6 Alicja Myśliwiec - gr. wtorek 7:30 import numpy as np import random import time import matplotlib.pyplot as plt from scipy.optimize import curve fit Zad. 1 Stwórz własną klasę implementującą binarne drzewa przeszukiwań. Zadbaj o poprawne przetwarzanie powtarzających się kluczy. class TreeNode: def __init__(self, key, value='default', right_child=None, left_child=None, parent=None): self.key = keyself.payload = [value, 0] # [wartość; liczba pokazuje ile razy dany klucz został wprowadzony] self.rc = right_child self.lc = left child self.parent = parent def has_rc(self): return self.rc def is rc(self): return self.parent and (self.parent.rc == self) def has_lc(self): return self.lc def is lc(self): return self.parent and (self.parent.lc == self) def is_root(self): return not self.parent def is leaf(self): return not (self.rc or self.lc) def has_any_children(self): return self.rc or self.lc def has_both_children(self): return self.rc and self.lc def splice_out(self): if self.is_leaf(): if self.is_lc(): self.parent.lc = None else: self.parent.rc = None elif self.has_any_children(): if self.has_lc(): if self.is_lc(): self.parent.lc = self.lc else: self.parent.rc = self.rc self.rc.parent = self.parent elif self is not None: if self.is_lc(): self.parent.lc = self.rc else: self.parent.rc = self.rc self.rc.parent = self.parent def find_min(self): current = self while current.has_lc(): current = current.lc return current def find successor(self): successor = None if self.has_rc(): successor = self.rc.find_min() else: if self.parent: if self.is_lc(): successor = self.parent self.parent.rc = None successor = self.parent.find_successor() self.parent.rc = self return successor def replace node data(self, key, value, lc, rc): self.key = keyself.payload = value self.lc = lc self.rc = rc if self.has_lc(): self.lc.parent = self if self.has_rc(): self.rc.parent = self # ---- funckja dodana----def is_overload(self): 11 11 11 Funkcja sprawdza, czy dany klucz został wprowadzony więcej niż raz. Jeśli tak, zwraca 'True'. return self.payload[1] > 0 class BinarySearchTree: def init (self): self.root = None self.size = 0def length(self): return self.size def len (self): return self.size def iter (self): return self.root. iter () def put(self, key, val): if self.root: self. put(key, val, self.root) self.root = TreeNode(key, val) self.size += 1 def put(self, key, val, current node): if key < current node.key:</pre> if current node.has lc(): self._put(key, val, current_node.lc) current node.lc = TreeNode(key, value=val, parent=current node) elif key == current_node.key: # nadpisanie klucza current node.payload[0] = val current node.payload[1] += 1 else: if current node.has rc(): self. put(key, val, current node.rc) current node.rc = TreeNode(key, value=val, parent=current node) def setitem (self, key, val): self.put(key, val=val) def get(self, key): if self.root: res = self.find node(key, self.root) return res.payload[0] else: return None else: return None def get count(self, key): if self.root: res = self.find node(key, self.root) return res.payload[1] return None else: return None def find node(self, key, current node): if not current node: return None elif current node.key == key: return current node elif key < current node.key:</pre> return self.find node(key, current node.lc) return self.find node(key, current node.rc) def getitem (self, key): return self.get(key) contains (self, key): if self.find node(key, self.root): return True return False def delete(self, key): if self.size > 1: node to remove = self.find node(key, self.root) if node to remove: if node to remove.is overload(): node to remove.payload[1] -= 1 self.remove(node to remove) self.size -= 1 raise KeyError('Key not in the tree') elif self.size == 1 and self.root.key == key: if self.root.is overload(): self.root.payload[1] -= 1 self.root = None self.size -= 1 raise KeyError('Key not in the tree') def remove(self, current node): if current node.is leaf(): if current node == current node.parent.lc: current_node.parent.lc = None current node.parent.rc = None elif current node.has both children(): successor = current_node.find_successor() successor.splice out() current_node.key = successor.key current_node.payload = successor.payload else: if current node.has lc(): if current node.is_lc(): current_node.lc.parent = current_node.parent current_node.parent.lc = current_node.lc elif current node.is rc(): current_node.lc.parent = current_node.parent current node.parent.rc = current node.lc current_node.replace_node_data(current_node.lc.key, current_node.lc.payload, current node.lc.lc, current node.lc.rc) else: if current node.is lc(): current_node.rc.parent = current_node.parent current_node.parent.lc = current_node.rc elif current node.is rc(): current_node.rc.parent = current_node.parent current_node.parent.rc = current_node.rc current_node.replace_node_data(current_node.rc.key, current_node.rc.payload, current node.rc.lc, current node.rc.rc) def delitem (self, key): self.delete(key) # -----# wizualizacja -----def show_tree(self, current_node, list_to_print=None, lvl=0): if list to print is None: list_to_print = [] if current node is not None: self.show tree(current node.rc, list to print, lvl + 1) text = "{}---{}".format(' ' * lvl, current_node.key) list to print.append(text) self.show_tree(current_node.lc, list_to_print, lvl + 1) return list_to_print else: pass def print tree(self): if self.root: list to print = self.show tree(self.root) for line in list_to_print: print(line) else: raise NameError("There's no tree to show here yet") tree = BinarySearchTree() $key_list = [7, 4, 9, 5, 8, 1, 3]$ value_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] for i in range(len(key_list)): tree[key_list[i]] = value_list[i] tree.print_tree() ---1 In [104... tree[9] = 'h'tree[6] = 'i'tree.print tree() tree.get_count(9) # wprowadzone 2 razy - stąd wartość 1 Out[105... 1 In [106... 4 in tree Out[106... True tree.delete(4) 4 in tree Out[107... False In [108... tree.print tree() ---8 ---3 In [109... tree.delete(4) Traceback (most recent call last) <ipython-input-109-cdd8da9fc365> in <module> ---> 1 tree.delete(4) <ipython-input-102-a3b85f7ea3ff> in delete(self, key) 87 self.size -= 1 88 else: ---> 89 raise KeyError('Key not in the tree') elif self.size == 1 and self.root.key == key: 90 if self.root.is_overload(): KeyError: 'Key not in the tree' tree[6] Sprawdzimy, czy relacje pomiędzy kluczami są poprawne. tree = BinarySearchTree() key_list = [12, 7, 6, 9, 1, 5, 0, 7, 15, 8, 17, 16] for i in range(len(key_list)): tree[key list[i]] = i # wartosc nie ma tu dla nas znaczenia tree.print_tree() ---16 ---15 ---1 tree.root.key #12 Out[112... 12 tree.root.lc.rc.lc.key #8 Out[113... 8 In [114... tree.root.rc.parent.key Out[114... 12 tree.root.find min().key #0 Out[115... 0 In [118... a = BinarySearchTree() a.print_tree() Traceback (most recent call last) <ipython-input-118-b93ed115cdb4> in <module> 1 a = BinarySearchTree() ---> 2 a.print_tree() <ipython-input-117-e3f89d7434a4> in print_tree(self) print(line) else: --> 156 raise NameError("There's no tree to show here yet") NameError: There's no tree to show here yet Zad. 2 Zaimplementuj kopiec binarny. Korzystając z tego kopca napisz funkcję sortującą listę elementów w czasie $O(n \log n)$. Przeprowadź analizę eksperymentalną czasu wykonania algorytmu. class BinHeap: def __init__(self): self.heap_list = [0] self.current_size = 0 def size(self): return self.current_size def is_empty(self): return self.current_size == 0 def perc_up(self, i): while i // 2 > 0: if self.heap_list[i] < self.heap_list[i // 2]:</pre> tmp = self.heap_list[i // 2] self.heap_list[i // 2] = self.heap_list[i] self.heap_list[i] = tmp i //= 2 def find_min(self): return self.heap_list[1] def min_child(self, i): if i * 2 + 1 > self.current_size: return i * 2 else: if self.heap_list[i * 2] < self.heap_list[i * 2 + 1]:</pre> return i * 2 else: **return** i * 2 + 1 def perc_down(self, i): while (i * 2) <= self.current_size:</pre> mc = self.min_child(i) if self.heap_list[i] > self.heap_list[mc]: tmp = self.heap list[i] self.heap_list[i] = self.heap_list[mc] self.heap_list[mc] = tmp def del_min(self): retval = self.heap_list[1] self.heap_list[1] = self.heap_list[self.current_size] self.current_size -= 1 self.heap_list.pop() self.perc_down(1) return retval def insert(self, k): self.heap_list.append(k) self.current_size = self.current_size + 1 self.perc_up(self.current_size) def buildHeap(self, build_list): i = len(build_list) // 2 self.current_size = len(build_list) self.heap_list = [0] + build_list[:] while i > 0: self.perc_down(i) i -= 1 def __str__(self): txt = "{}".format(self.heap_list[1:]) return txt In [54]: heap test = BinHeap() heap_test.buildHeap([2, 5, 3, 1, 1, 8, 4, 6]) print(heap_test) [1, 1, 3, 2, 5, 8, 4, 6] def sort_heap(data_list): heap = BinHeap()heap.buildHeap(data_list) return [heap.del_min() for _ in range(len(data_list))] sort_heap([2, 5, 3, 1, 1, 8, 4, 6]) Out[58]: [1, 1, 2, 3, 4, 5, 6, 8] Tak jak w przypadku listy 5, w pliku .py czasy zapisuje do pliku, by nie program ich nie liczył za każdym razem. Tutaj skorzystam z uzyskanych wcześniej danych. In [14]: def random_sort_time(n): random_data = [random.randint(-100, 100) for _ in range(n)] start = time.time() sort_heap(random_data) end = time.time() time_data = end - start return time_data #def time_check_and_save(n_list, file_name): times = []for num in n_list: times.append(random_sort_time(num)) file = open(file_name, 'w') file.write(str(times)) file.close() #def get_times(list_of_data, file_name): if not os.path.exists(file name): time_check_and_save(list_of_data, file_name) file = open(file_name, 'r') times = eval(file.read()) Wiemy, że funkcja powinna sortować elementy w czasie $O(n \log n)$. Sortujemy poprzez usuwanie najmniejszego elementu z kopca i wstawienie go do nowej listy, co kosztuje nas za każdym razem $\log n$. Dlatego też, koszt posortowania n-elementowego kopca to $n \log n$. Sprawdzimy to, dopasowując krzywą $an \log n + b$ do uzyskanych wyników. def func(n, a, b): return a * n * np.log(n) + b def plot hypothesis(x, y, func, popt): x2 = np.arange(1, x[-1])plt.plot(x, y, 'rp', label="Results") plt.plot(x2, func(x2, *popt), label="Fitted curve") plt.xlabel("Number of elements") plt.ylabel("Execution time [s]") plt.legend(loc='upper left') plt.title("Time of executions depending on the heap size") plt.show() trial data = [2000 * n for n in range(1, 20)]trial_times = [0.03125, 0.0625, 0.09375, 0.125, 0.203125, 0.21875, 0.265625, 0.28125, 0.3125, 0.390625, 0.40625 popt, pcov = curve fit(func, trial data, trial times) plot hypothesis(trial data, trial times, func, popt) Time of executions depending on the heap size 0.8 Results 0.7 Fitted curve 0.6 Execution time [s] 0.5 0.4 0.3 0.2 0.1 0.0 5000 10000 15000 20000 25000 30000 35000 Number of elements Jak widać krzywa została dopasowana całkiem dobrze. Aby potwierdzić czas z jakim sortujemy, spróbujemy przyrównać wartość dopasowywującej krzywej do czasu dla liczby n większej, niż obejmuje wykres. n = 50000ex time = random sort time(50000) fitted func = func(n, *popt)print("", ex_time, "\n", fitted_func) 1.082148790359497 1.0345255545867635 n = 60000ex_time = random_sort_time(60000) fitted_func = func(n, *popt) print("", ex_time, "\n", fitted_func) 1.2706091403961182 1.262193977512508 Z uzyskanych wyników możemy wywnioskować, że udało się zaimplementować funckje sotrującą w czasie $O(n \log n)$. Zad. 3 Zaimplementuj kopiec binarny o ograniczonej wielkości n. Innymi słowy, stwórz strukturę przechowującą n najważniejszych (największych) wartości. class LimitedBinHeap: def __init__(self, limit): $self.heap_list = [0]$ self.current_size = 0 self.limit = limit def size(self): return self.current size def is_empty(self): return self.current size == 0 def perc_up(self, i): while i // 2 > 0: if self.heap_list[i] < self.heap_list[i // 2]:</pre> tmp = self.heap_list[i // 2] self.heap_list[i // 2] = self.heap_list[i] self.heap_list[i] = tmp i //= 2 def find min(self): return self.heap list[1] def min_child(self, i): if i * 2 + 1 > self.current_size: return i * 2 else: if self.heap list[i * 2] < self.heap list[i * 2 + 1]:</pre> return i * 2 else: **return** i * 2 + 1 def perc_down(self, i): while (i * 2) <= self.current size:</pre> mc = self.min child(i) if self.heap_list[i] > self.heap_list[mc]: tmp = self.heap_list[i] self.heap_list[i] = self.heap_list[mc] self.heap_list[mc] = tmp i = mcdef del_min(self): retval = self.heap list[1] self.heap_list[1] = self.heap_list[-1] self.current_size -= 1 self.heap_list.pop() self.perc_down(1) return retval def insert(self, k): if self.current_size < self.limit:</pre> self.heap_list.append(k) self.current_size += 1 self.perc_up(self.current_size) if self.find_min() > k: raise ValueError("Given value is too small") else: self.del min() self.insert(k) def build_heap(self, build_list): size = len(build list) if size <= self.limit:</pre> i = size // 2 self.current size = size self.heap_list = [0] + build_list[:] while i > 0: self.perc_down(i) i -= 1 else: limit list = build list[:self.limit] self.build_heap(limit_list) for k in build list[self.limit:]: self.insert(k) def __str__(self): return str(self.heap_list[1:]) heap = LimitedBinHeap(7)heap.build_heap([4, 7, 2, 8, 0, 6, 3, 12, 7, 5]) print(heap) [4, 7, 5, 8, 7, 12, 6] In [124... heap.current size Out[124... 7 heap.insert(3) ValueError Traceback (most recent call last) <ipython-input-125-dc47ddbab507> in <module> ---> 1 heap.insert(3) <ipython-input-122-1174a076843a> in insert(self, k) 57 else: 58 if self.find min() > k: ---> 59 raise ValueError("Given value is too small") 60 else: self.del min() ValueError: Given value is too small heap.insert(9) heap.insert(13) print(heap) [6, 7, 9, 8, 7, 12, 13] Podczas dodawania elementów do ograniconego kopca, jego struktura również zostaje zachowana. Zad. 4 Napisz funkcję, która na wejściu przyjmuje drzewo wyprowadzenia jakiegoś wyrażenia matematycznego, a na wyjściu zwraca pochodną tego wyrażenia względem podanej zmiennej. Zaczne od zaimplementowania struktur takich jak stak i drzewo binarne, które pomogą w napisaniu właściwego kodu. class Stack: def init (self): $\frac{-}{\text{self.items}} = []$ def is_empty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[len(self.items) - 1] def size(self): return len(self.items) class BinaryTree: def __init__(self, root_obj): self.key = root_obj self.left child = None self.right_child = None def insert_left(self, new_node): if self.left_child is None: self.left_child = BinaryTree(new_node) else: tree = BinaryTree(new_node) tree.left_child = self.left_child self.left_child = tree def insert_right(self, new_node): if self.right_child is None: self.right_child = BinaryTree(new_node) else: tree = BinaryTree(new_node) tree.right_child = self.right_child self.right_child = tree def get_right_child(self): return self.right_child def get_left_child(self): return self.left_child def set_root_value(self, obj): self.key = obj def get_root_value(self): return self.key def __str__(self): return self.key def parse string(p str, unknown): p_str = p_str.replace(" ", "") while len(p_str) > 0: if p str[:3] in ['sin', 'cos', 'exp']: plist.append(p str[:3]) $p_str = p_str[3:]$ **elif** p str[:2] == 'ln': plist.append(p_str[:2]) $p_str = p_str[2:]$ elif p str[0] in ['(', ')', '*', '+', '-', '/', '^', unknown]: plist.append(p str[0]) $p_str = p_str[1:]$ elif p str[0].isdigit(): plist.append(p str[0]) $p_str = p_str[1:]$ return plist In [41]: parse_string(" $cos(3*x) -x^3$ ", "x") Out[41]: ['cos', '(', '3', '*', 'x', ')', '-', 'x', '^', '3'] **LINK GITHUB** https://github.com/AlutkaMalutka/Programowanie_python/tree/main/semestr_3/Lista_6-3s-