正态总体下样本均值和样本方差的分布正态总体下样本均值和样本方差的分布

对正态总体, 我们有

/ Thr

定理 3. 设 X_1, X_2, \cdots, X_n i.i.d. $\sim N(a, \sigma^2)$, 则

$$\sum_{i=1}^n \left(\frac{X_i - a}{\sigma}\right)^2 \sim \chi_n^2$$

此处我们给出一个利用特征函数的证明方法.

Proof. 做变换: $Y_1 = \bar{X}, Y_2 = X_2, \dots, Y_n = X_n$, 因此由

$$egin{aligned} x_1 &= ny_1 - y_2 - \dots - y_n \ x_2 &= y_2 \ dots \ x_n &= y_n \end{aligned}$$

可以得到
$$\$Y_1,\cdots,Y_n$$
 $\$$ 的联合密度为 $\$f(y_1,\cdots,y_n)=nig(2\pi\sigma^2ig)^{-n/2}\exp\left\{-rac{(ny_1-y_2-\cdots-y_n-y_1)^2}{2\sigma^2}
ight.$ -

 $\ \left(2 \right)^{-(n-1)/2} \exp \left(-q/2 \right)^{2}\right)$

其中
$$q = (ny_1 - y_2 - \dots - y_n - y_1)^2 + \sum_{j=1}^{n} (y_i - y_1)^2$$
\$. 注意到

 $(n-1) S^{2}=\sum_{1}^{n} \left| \frac{X}{i}-\frac$

因此
$$\$(n-1)S^2$$
\$在给定 $\$Y_1 = y_1$ \$的条件特征函数为

\begin{aligned}

$$\& = (1-2 i t)^{-(n-1)} / 2$$

\end{aligned}

此即 $\$(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ \$.而且此条件分布和 $\$Y_1$ \$无关,因此 $\$S^2$ \$和 $\$Y_1$ \$相互独立.>[!Thr]>定理4.

 $T = \frac{|sqrt{n}(|bar{X}-a)}{S} | sim t_{n-1}$

/ Thr

定理 5. 设 X_1,X_2,\cdots,X_m i.i.d. $\sim N\left(a_1,\sigma_1^2\right),Y_1,Y_2,\cdots,Y_n$ i.i.d. $\sim N\left(a_2,\sigma_2^2\right)$, 且假定 $\sigma_1^2=\sigma_2^2=\sigma_1^2$, 合样本 X_1,X_2,\cdots,X_m 与 Y_1,Y_2,\cdots,Y_n 相互独立, 则

$$T=rac{(ar{X}-ar{Y})-(a_1-a_2)}{S_w}\cdot\sqrt{rac{mn(n+m-2)}{n+m}}\sim t_{n+m-2}$$

此处 $(n+m-2)S_w^2=(m-1)S_1^2+(n-1)S_2^2$, 此处

$$S_1^2 = rac{1}{m-1} \sum_{i=1}^m \left(X_i - ar{X}
ight)^2, \quad S_2^2 = rac{1}{n-1} \sum_{j=1}^n \left(y_j - ar{Y}
ight)^2$$

/ Thr

定理 6. 设 X_1,X_2,\cdots,X_m i.i.d. $\sim N\left(a_1,\sigma_1^2\right),Y_1,Y_2,\cdots,Y_n$ i.i.d. $\sim N\left(a_2,\sigma_2^2\right)$, 且合样本 X_1,X_2,\cdots,X_m 和 Y_1,Y_2,\cdots,Y_n 相互独立, 则

$$F = rac{S_1^2}{S_2^2} \cdot rac{\sigma_2^2}{\sigma_1^2} \sim F_{m-1,n-1}$$

此处 S_1^2 和 S_2^2 定义如前所述.

/ Thr

定理 7. 设 X_1, X_2, \cdots, X_n i.i.d. 服从指数分布: $f(x, \lambda) = \lambda e^{-\lambda x} I_{[x>0]}$, 则有

$$2\lambda nar{X}=2\lambda\sum_{i=1}^n X_i\sim \chi_{2n}^2$$