INLA Introduction

Outline

- Introduction to INLA
- Posterior inference with INLA
- Examples
- Discussion

Bayesian inference

Data y (with covariates Z), depend on X and θ such that, E[Y] = h(A(Z)X).

Bayes' theorem:

$$q(\mathbf{X}, \boldsymbol{\theta}) \propto L(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta})p(\mathbf{X}, \boldsymbol{\theta})$$

Posterior \propto Likelihood \times Prior

Computational aspects

- Analytical methods conjugacy (pre-computer era)
- Approximate methods Laplace (can be inaccurate)
- Exact methods MCMC (very slow for complex models or large data)

Now, due to computing resources approximate methods are gaining popularity - INLA, VB, EP etc

Model definition - GAMM

Suppose we have response data $\mathbf{y}_{n\times 1}$ (conditionally independent) with density function $\pi(y|\mathbf{X}, \boldsymbol{\theta})$ and link function h(.), that is linked to some covariates \mathbf{Z} through linear predictors

$$oldsymbol{\eta}_n = eta_0 + oldsymbol{\mathcal{Z}}_eta oldsymbol{eta} + \sum f^k(oldsymbol{\mathcal{Z}}_f) = oldsymbol{A}oldsymbol{\mathcal{X}}$$

The inferential aim is to estimate the latent field $\mathbf{X}_m = \{\beta_0, \boldsymbol{\beta}, \boldsymbol{f}\}$, and $\boldsymbol{\theta}$.

$\mathsf{GAMM} \to \mathsf{LGM}$

Assume

$$X|\theta \sim N(\mathbf{0}, \mathbf{Q}(\theta)^{-1})$$

where $Q(\theta)$ is a sparse matrix (X is a GMRF).

$$p(\mathbf{X}, \boldsymbol{\theta}) = p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$
 and $p(\boldsymbol{\theta})$ can be non-Gaussian.

Why is INLA so accurate and so fast?

- LGM structure
- Sparse precision matrix
- Specialized matrix algebra for sparse matrices

Use precision matrix instead of covariance matrix \rightarrow natural occurrence

How common are sparse $Q(\theta)$?

Consider an AR(1) model..

8/32

AR(1) example

AR(1) example

Posterior approximations by INLA

$$\pi(\mathbf{X}, \boldsymbol{\theta}, \mathbf{y}) = \pi(\boldsymbol{\theta}) \pi(\mathbf{X}|\boldsymbol{\theta}) \prod_{i=1}^{n} \pi(y_{i}|(\mathbf{A}\mathbf{X})_{i}, \boldsymbol{\theta})$$

$$\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) \propto \frac{\pi(\mathbf{X}, \boldsymbol{\theta}, \mathbf{y})}{\pi_{G}(\mathbf{X}|\boldsymbol{\theta}, \mathbf{y})} \Big|_{\mathbf{X} = \boldsymbol{\mu}(\boldsymbol{\theta})}$$

$$\tilde{\pi}(\theta_{j}|\mathbf{y}) = \int \tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) d\theta_{-j}$$

$$\tilde{\pi}(\mathbf{X}_{j}|\mathbf{y}) = \int \tilde{\pi}(\mathbf{X}_{j}|\boldsymbol{\theta}, \mathbf{y}) \tilde{\pi}(\boldsymbol{\theta}|\mathbf{y}) d\boldsymbol{\theta},$$

 $\tilde{\pi}(\mathbf{X}_i|\boldsymbol{\theta},\mathbf{y})$ depends on the approximation used, for Gaussian it is straightforward for the Laplace approximation we do another Gaussian approximation to $\tilde{\pi}(\mathbf{X}_{-i}|\boldsymbol{\theta},\mathbf{y})$.

Modern INLA

The Gaussian approximation $\pi_G(\mathbf{X}|\boldsymbol{\theta},\mathbf{y})$ to $\pi(\mathbf{X}|\boldsymbol{\theta},\mathbf{y})$ is calculated from a second order expansion of the likelihood around the mode of $\pi(\mathbf{X}|\boldsymbol{\theta},\mathbf{y})$, $\mu(\boldsymbol{\theta})$ as follows

$$\log (\pi(\mathbf{X}|\boldsymbol{\theta}, \mathbf{y})) \propto -\frac{1}{2} \mathbf{X}^{\top} \mathbf{Q}(\boldsymbol{\theta}) \mathbf{X} + \sum_{i=1}^{n} \left(b_{i} (\mathbf{A} \mathbf{X})_{i} - \frac{1}{2} c_{i} (\mathbf{A} \mathbf{X})_{i}^{2} \right)$$

$$= -\frac{1}{2} \mathbf{X}^{\top} \left(\mathbf{Q}(\boldsymbol{\theta}) + \mathbf{A}^{\top} \mathbf{D} \mathbf{A} \right) \mathbf{X} - \mathbf{b}^{\top} \mathbf{A} \mathbf{X}$$

where \boldsymbol{b} is an n-dimensional vector with entries $\{b_i\}$ and \boldsymbol{D} is a diagonal matrix with n entries $\{c_i\}$. Note that both \boldsymbol{b} and \boldsymbol{D} depend on $\boldsymbol{\theta}$, so the Gaussian approximation is for a fixed $\boldsymbol{\theta}$.

Modern INLA

The process is iterated to find \boldsymbol{b} and \boldsymbol{D} that gives the Gaussian approximation at the mode, $\mu(\boldsymbol{\theta})$, so that

$$\mathbf{X}|\mathbf{ heta},\mathbf{y}\sim N\left(\mathbf{\mu}(\mathbf{ heta}),\mathbf{Q}_{\mathbf{X}}^{-1}(\mathbf{ heta})
ight).$$

The graph of the Gaussian approximation consists of two components,

- **1** \mathcal{G}_p : the graph obtained from the prior of the latent field through $\mathbf{Q}(\boldsymbol{\theta})$
- ② \mathcal{G}_d : the graph obtained from the data based on the non-zero entries of $\mathbf{A}^{\top}\mathbf{A}$

Modern INLA

Next, the marginal conditional posteriors of the elements of **X** is calculated from the joint Gaussian approximation as

$$m{X}_{\!j}|m{ heta},m{y}\sim N\left(\left(m{\mu}(m{ heta})
ight)_{\!j},\left(m{Q}_{m{\chi}}^{-1}(m{ heta})
ight)_{\!jj}
ight).$$

and the marginals

$$ilde{\pi}(\mathbf{X}_{j}|\mathbf{y}) = \int \pi_{G}(\mathbf{X}_{j}|\boldsymbol{\theta},\mathbf{y})\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})d\boldsymbol{\theta} \approx \sum_{k=1}^{K} \pi_{G}(\mathbf{X}_{j}|\boldsymbol{\theta}_{k},\mathbf{y})\tilde{\pi}(\boldsymbol{\theta}_{k}|\mathbf{y})\delta_{k}.$$

Conditional posterior of η_i

In order to calculate $\tilde{\pi}(\eta_i|\mathbf{y})$, we first calculate $\tilde{\pi}(\eta_i|\boldsymbol{\theta},\mathbf{y})$. We postulate a Gaussian density for $\eta_i|\boldsymbol{\theta},\mathbf{y}$ such that $\tilde{\pi}(\eta_i|\boldsymbol{\theta},\mathbf{y})=\pi_G(\eta_i|\boldsymbol{\theta},\mathbf{y})$, with mean

$$E(\boldsymbol{\eta}|\boldsymbol{\theta}, \mathbf{y}) = AE(\mathbf{X}|\boldsymbol{\theta}, \mathbf{y}) = A\mu(\boldsymbol{\theta})$$

and covariance matrix

$$\mathsf{Cov}(\boldsymbol{\eta}|\boldsymbol{\theta}, \boldsymbol{y}) = \boldsymbol{A}\mathsf{Cov}(\boldsymbol{X}|\boldsymbol{\theta}, \boldsymbol{y})\boldsymbol{A}^{\top},$$

VB corrected marginal posterior of η_i

$$\eta_{j}|\boldsymbol{\theta}, \mathbf{y} \sim N(\mu_{j}(\boldsymbol{\theta}), \sigma_{j}^{2}(\boldsymbol{\theta}))$$

$$\mu_{j}(\boldsymbol{\theta}) = (\mathbf{A}\boldsymbol{\mu}^{*}(\boldsymbol{\theta}))_{j}$$

$$\tilde{\pi}(\eta_{j}|\mathbf{y}) \approx \sum_{k=1}^{K} \pi_{G}(\eta_{j}|\boldsymbol{\theta}_{k}, \mathbf{y})\tilde{\pi}(\boldsymbol{\theta}_{k}|\mathbf{y})\delta_{k}.$$

Example (small data)

$$Y_i|\beta_0 = -1, \beta_1 = -0.5 \sim \text{Poisson}(\exp(\beta_0 + \beta_1 X_i))$$

Example (large data)

Figure: Marginal posterior of β_0 (center) and β_1 (right) from the Laplace method (points), VBC (solid line) and INLA (broken line) approximations

Tokyo example

The Tokyo dataset in the R INLA library contains information on the number of times the daily rainfall measurements in Tokyo was more than 1mm on a specific day t for two consecutive years. In order to model the annual rainfall pattern, a stochastic spline model with fixed precision is used to smooth the data.

$$y_i | \mathcal{X} \sim Bin\left(n_i, p_i = rac{\exp(lpha_i)}{1 + \exp(lpha_i)}
ight)$$

 $(lpha_{i+1} - 2lpha_i + lpha_{i-1}) | au \stackrel{ ext{iid}}{\sim} N(0, au^{-1}),$

where i = 1, 2, ..., 366 on a torus, and $n_{60} = 1$ else $n_i = 2$.

Figure: Posterior mean of α (left) (zoomed for the first two months (right)) from the Laplace method (points), VBC (solid line) and INLA (broken line)

Spatial survival example

Consider the R dataset Leuk that features the survival times of 1043 patients with acute myeloid leukemia (AML) in Northwest England between 1982 to 1998.

Cox spatial model

$$h(t,\mathbf{s}) = h_0(t) \exp(\beta \mathbf{X} + \mathbf{u}(\mathbf{s})),$$

with

$$\eta_i(s) = \beta_0 + \beta_1 Age_i + \beta_2 WBC_i + \beta_3 TPI_i + u(s).$$

which implies a latent field of size m = 39158.

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Figure: Marginal posteriors from the Laplace method (points), VBC (solid line) and INLA (broken line)

Cox proportional hazards model

We simulate survival data for *n* patients using the following very simple Cox proportional hazards model

$$h_i(t) = h_0(t) \exp(\beta x_i) = 1.2t^{0.2} \exp(0.1x_i), \quad 1 = 1, 2, ..., n,$$

where x is a scaled and centered continuous covariate, and the baseline hazard, $h_0(t)$ is estimated using a scaled random walk order one model with 50 bins. We also consider four different values of n which are $n=10^2$, to 10^5 .

Cox proportional hazards model

n	Augmented size	classic INLA (s)	modern INLA (s)
10 ²	1 327	1.6	0.1
10^{3}	12 657	1.3	0.4
10^{4}	131 807	10.2	2.3
10 ⁵	1 302 413	113.3	22.5

Table: Results from simulation of Cox proportional hazards model

cs-fMRI model

Functional magnetic resonance imaging (fMRI) is a noninvasive neuro-imaging technique used to localize regions of specific brain activity during certain tasks.

For T timepoints and N vertices per hemisphere resulting in data $\mathbf{y}_{TN\times 1}$ with the latent Gaussian model as follows:

$$egin{array}{lll} oldsymbol{y} | oldsymbol{eta}, oldsymbol{b}, oldsymbol{ heta} & \sim & N(oldsymbol{\mu}_{y}, oldsymbol{V}), & oldsymbol{\mu}_{y} = \sum_{k=0}^{K} oldsymbol{X}_{k} eta_{k} + \sum_{j=1}^{J} oldsymbol{Z}_{j} oldsymbol{b}_{j} \ oldsymbol{eta}_{k} & = & oldsymbol{\Psi}_{k} oldsymbol{W}_{k} & (ext{SPDE prior on } oldsymbol{eta}_{k}) \ oldsymbol{w}_{k} | oldsymbol{ heta} & \sim & N(oldsymbol{0}, oldsymbol{Q}_{ au_{k}, \kappa_{k}}^{-1}) \ oldsymbol{b}_{j} & \sim & N(oldsymbol{0}, oldsymbol{\delta} oldsymbol{I}) & (ext{Diffuse priors for } oldsymbol{b}_{j}) \ oldsymbol{ heta} & \sim & \pi(oldsymbol{ heta}), \end{array}$$

where we have K task signals and J nuisance signals.

cs-fMRI model

The data consists of a 3.5-min fMRI for each subject, consisting of 284 volumes, where each subject performs 5 different motor tasks interceded with a 3 second visual cue. Each hemisphere of the brain contained 32492 surface vertices. From these, 5000 are resampled to use for the analysis. This results in a response data vector \mathbf{y} of size $\mathbf{2}$ 523 624, with an SPDE model defined on a mesh with 8795 triangles.

The inference based on the modern formulation of INLA was computed in 148 seconds.

cs-fMRI model

Figure: Activation areas for the different tasks in the left hemisphere - visual cue, right hand motor, right foot motor, tongue motor task (from left to right)

Discussion

New default setting in INLA (previously inla.mode = "experimental")

- INLA 2.0
- Remove the linear predictors from the latent field → accurate posterior inference with VB correction (I - VB - LA)
- New applications that aren't feasible with INLA 1.0

