Homework 5

CMPSC 360

Kinner Parikh February 18, 2022

Question 1: We try to prove that if n is an integer, then $n^3 - 2n^2 + 5n - 1$ is divisible by 3

- 1. n is not divisible by 3
- 2. 2
- 3. divisible by 3
- 4. neither true nor false \rightarrow even if the cases pass, there is a case where n%3 == 0
- 5. all cases are true

Proof: Assume $n \in \mathbb{Z}$

Suppose n is not divisible by $3 (3 \nmid n)$

By definition of divides, either n=3k+1 or n=3k+2 where $k\in\mathbb{Z}$

Case 1:
$$n = 3k + 1$$

$$\begin{array}{l} n^3-2n^2+5n-1=(3k+1)^3-2(3k+1)^2+5(3k+1)-1\\ =27k^3+27k^2+9k+1-18k^2-12k-2+15k+5-1\\ =27k^3+9k^2+12k+3\\ =3(9k^3+3k^2+4k+1)\\ =3t \text{ such that } t\in\mathbb{Z} \text{ where } t=9k^3+3k^2+4k+1 \end{array}$$

By definition of divides, $n^3 - 2n^2 + 5n - 1$ is divisible by 3

Therefore, when n = 3k + 1, $n^3 - 2n^2 + 5n - 1$ is divisible by 3

Case 2:
$$n = 3k + 2$$

$$n^{3} - 2n^{2} + 5n - 1 = (3k + 2)^{3} - 2(3k + 2)^{2} + 5(3k + 2) - 1$$

$$= 27k^{3} + 54k^{2} + 36k + 8 - 18k^{2} - 24k - 8 + 15k + 10 - 1$$

$$= 27k^{3} + 36k^{2} + 27k + 9$$

$$= 3(9k^{3} + 12k^{2} + 9k + 3)$$

$$= 3t \text{ such that } t \in \mathbb{Z} \text{ where } t = 9k^{3} + 12k^{2} + 9k + 3$$

By definition of divides, $n^3 - 2n^2 + 5n - 1$ is divisible by 3

Therefore, when n = 3k + 2, $n^3 - 2n^2 + 5n - 1$ is divisible by 3

Question 2: Prove that $\max\{x,y\} + \min\{x,y\} = x + y$. Collaborated with Sahil Kuwadia.

a. Assumption: x and y are real numbers $\rightarrow x, y \in \mathbb{R}$

Conclusion: The sum of the larger value in x or y and the smaller value in x and y is equal to the sum of x and y

b. Proof: Suppose $x, y \in \mathbb{R}$

We know that x is either greater than y or x is less than or equal to y

Case 1:
$$x > y$$

$$\max\{x, y\} = x, \min\{x, y\} = y$$

so, the sum of
$$\max\{x,y\}$$
 and $\min\{x,y\}$ is $x+y$

therefore, $\max\{x, y\} + \min\{x, y\} = x + y$

Case 2: $x \leq y$

$$\max\{x,y\} = y, \min\{x,y\} = x$$

so, the sum of
$$\max\{x, y\}$$
 and $\min\{x, y\}$ is $y + x$

therefore,
$$\max\{x, y\} + \min\{x, y\} = x + y$$

The statement holds for both cases

Therefore, $\max\{x,y\} + \min\{x,y\} = x + y$ for all $x,y \in \mathbb{R}$. \square

c. Proof: Suppose $x, y \in \mathbb{R}$

$$\max\{x,y\} = \frac{x+y+|x-y|}{2}$$

$$\min\{x,y\} = \frac{x+y-|x-y|}{2}$$

$$\max\{x,y\} = \frac{x+y+|x-y|}{2}$$

$$\min\{x,y\} = \frac{x+y-|x-y|}{2}$$
So,
$$\max\{x,y\} + \min\{x,y\} = \frac{x+y+|x-y|}{2} + \frac{x+y-|x-y|}{2}$$

$$= x+y+\frac{|x-y|}{2} - \frac{|x-y|}{2}$$

$$= x+y$$
Therefore,
$$\max\{x,y\} + \min\{x,y\} = x+y \square$$

$$= x + y$$

Question 3: Prove that there are no integer solutions to the equation: $x^{10} + y^{10} = 2022$

Conclusion: $x^{10} + y^{10} \neq 2022$ Proof: Suppose $x, y \in \mathbb{Z}$ So, $1^{10} = 1$, $2^{10} = 1024$, and $3^{10} = 59049$ Since $2^{10} < 2022 < 3^{10}$, x and y must be less than 3 Therefore, by definition of an integer, x and y must be either 1 or 2 Case 1: x and y are different values. Without loss of generality, x = 1 and y = 2 $x^{10} + y^{10} = 1^{10} + 2^{10}$ = 1 + 1024 = 1025Therefore, when x = 1 and y = 2, the sum of $x^{10} + y^{10} \neq 2022$ Case 2: x and y are equal to 1 $x^{10} + y^{10} = 1^{10} + 1^{10}$ = 1 + 1

= 2 Therefore, when x=1 and y=2, the sum of $x^{10}+y^{10} \neq 2022$

Case 3: x and y are equal to 2 $x^{10} + y^{10} = 2^{10} + 1^{10}$ = 1024 + 1024= 2048

Assumption: $x, y \in \mathbb{Z}$

Therefore, when x=1 and y=2, the sum of $x^{10}+y^{10}\neq 2022$ $x^{10}+y^{10}\neq 2022$ is true in all cases

Therefore, there are no integer solutions to the equation: $x^{10} + y^{10} = 2022 \square$

Question 4: Using proof by contrapositive, prove the following statement: Suppose $m, n \in \mathbb{Z}$. If both $m \cdot n$ and m + n are even, then both m and n are even

Assumption: $m, n \in \mathbb{Z}$

Conclusion: m and n are even

Proof: Assume $m, n \in \mathbb{Z}$

For sake of proof by contrapositive, if m or n is odd, then $m \cdot n$ is odd or m + n is odd m and n can have the same parity or opposite parity

Case 1: m and n have the same parity, therefore are both odd

By definition of odd, m = 2x + 1 such that $x \in \mathbb{Z}$

By definition of odd, n = 2y + 1 such that $y \in \mathbb{Z}$

$$m \cdot n = (2x+1)(2y+1)$$

$$=4xy+2x+2y+1$$

$$= 2(2xy + x + y) + 1$$

$$=2z+1$$
 for some $z\in\mathbb{Z}$ such that $z=2xy+x+y$

So, by definition of odd, $m \cdot n$ is odd

Therefore, when m and n are both odd, $m \cdot n$ is odd.

Case 2: m and n have opposite parity. Without loss of generality, m is odd and n is even

By definition of even, m=2x such that $x\in\mathbb{Z}$

By definition of odd, n = 2y + 1 such that $y \in \mathbb{Z}$

$$m + n = 2x + 2y + 1$$

$$= 2(x+y) + 1$$

$$=2z+1$$
 for some $z\in\mathbb{Z}$ such that $z=x+y$

So, by definition of odd, m + n is odd

Therefore, when m and n have opposite parity, m + n is odd.

It is true that $m \cdot n$ is odd or m + n is odd in both cases

Therefore, by proof by contrapositive, if both $m \cdot n$ and m + n are even, then both m and n are even \square

Question 5: If $x^3 + 9x^7 + x > x^2 + x^6 + x^4$, then x > 0

Proof: Assume $x \in \mathbb{R}$

For sake of proof by contrapositive, if x < 0, then $x^3 + 9x^7 + x < x^2 + x^6 + x^4$

By definition of a negative number, x=-n such that $n\in\mathbb{R}$ and $n\geq 0$

$$x^{3} + 9x^{7} + x = (-n)^{3} + 9(-n)^{7} + (-n)$$
$$= -n^{3} - 9n^{7} - n$$
$$= -(n^{3} + 9n^{7} + n)$$

$$= -k_1 \text{ such that } k_1 \in \mathbb{R} \text{ where } k_1 = n^3 + 9n^6 + n$$
$$x^2 + x^6 + x^4 = (-n)^2 + (-n)^6 + (-n)^4$$
$$= n^2 + n^6 + n^4$$

$$x^{2} + x^{6} + x^{4} = (-n)^{2} + (-n)^{6} + (-n)^{4}$$
$$= n^{2} + n^{6} + n^{4}$$

$$= k_2$$
 such that $k_2 \in \mathbb{R}$ where $k_2 = n^2 + n^6 + n^4$

 $=k_2 \text{ such that } k_2 \in \mathbb{R} \text{ where } k_2=n^2+n^6+n^4$ since, $k_1 < k_2,$ we know that $x^3+9x^7+x < x^2+x^6+x^4$

Therefore, by proof by contraposition, it is true if $x^3 + 9x^7 + x \ge x^2 + x^6 + x^4$, then $x \ge 0$

Question 6: There are no integers a and b such that 20a + 4b = 1

- 1) There exists integers a and b such that 20a + 4b = 1
- 2) There are no integers a and b such that 20a + 4b = 1

```
Proof: Assume \exists a, b \in \mathbb{Z} \ 20a + 4b = 1
So, 20a + 4b = 1 \equiv 2(10a + 2b) = 1
\equiv 2(10a + 2b) = 1
\equiv 2k = 1 such that k \in \mathbb{Z} where k = 10a + 2b
```

By definition of even, 1 is even

We arrive at a contradiction where 1 is even while we know 1 is an odd integer Therefore, there are no integers a and b such that 20a + 4b = 1

Question 7: For real number a and b, if a is rational and ab is irrational, then b is irrational

- 1) For $a, b \in \mathbb{R}$ and a is irrational and ab is rational, then b is rational
- 2) b is irrational

Proof: Suppose $a, b \in \mathbb{R}$

For sake of proof by contradiction, assume that a is rational and ab is irrational and b is rational Then, $\exists w, x \in \mathbb{Z}$ such that a = w/x where $x \neq 0$

Let the fraction be fully reduced. That means there are no common factors between w and x. Then, $\exists y, z \in \mathbb{Z}$ such that b = y/z where $z \neq 0$

Let the fraction be fully reduced. That means there are no common factors between y and z

So,
$$ab = \frac{w}{x} \cdot \frac{y}{z}$$

 $= \frac{wy}{xz}$
 $= \frac{m}{n}$ such that $m, n \in \mathbb{Z}$ where $m = wy$ and $n = xz$

By definition of a rational number, ab is rational

We arrive at a contradiction where ab is rational and irrational.

Therefore, by proof by contradiction, if a is rational and ab is irrational, then b is irrational. \square