Janteq Corp.

BONDI TwinTX Aviation Pack

Report No. JANQ0001

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2011 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: August 2, 2011 Janteq Corp.

Model: BONDI TwinTX Aviation Pack

	Emissio	ons	
Test Description	Specification	Test Method	Pass/Fail
Output Power	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass
Spurious Radiated Emissions	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass
Occupied Bandwidth	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass
Emission Mask	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass
Spurious Conducted Emissions	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass
Frequency Stability	FCC 74:2011	ANSI/TIA/EIA-603-C-2004	Pass

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Party Requesting the Test

Company Name:	Janteq Corp.
Address:	9272 Jeronimo Rd. Suite 124
City, State, Zip:	Irvine, CA 92618
Test Requested By:	Tom Chang
Model:	BONDI TwinTX Aviation Pack
First Date of Test:	7/25/2011
Last Date of Test:	8/2/2011
Receipt Date of Samples:	7/25/2011
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

Digital HD Video COFDM Transmitter operating in the S-band of 2.0 - 2.7 GHz at 1, 2.5 and 5 W on twin TX outputs

Testing Objective:

To demonstrate compliance with the requirements of FCC Part 74

EUT Photo

Configurations

CONFIGURATION 1 JANQ0001

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT	Janteq Corporation	BONDI TwinTX Aviation Pack	0

Peripherals in test se	tup boundary		
Description	Manufacturer	Model/Part Number	Serial Number
Remote Control	Jantec Corporation	N/A	N/A
50 Ohm Termination	Fairview Microwave	ST6NL-150	N/A
50 Ohm Termination (1)	Fairview Microwave	ST6NL-150	N/A
DC Power Supply	Hewlett Packard	6574A	US36340150

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
Remote Control Cable	Yes	2.5m	Yes	Remote Control	EUT
DC Cable	Yes	0.8m	No	EUT	DC Power Supply
N Type Cable	Yes	0.5m	No	EUT	50 Ohm Termination
N Type Cable	Yes	0.5m	No	EUT	50 Ohm Termination
PA = Cable is perman	ently attache	ed to the device. S	hielding and	I/or presence of ferrite r	nay be unknown.

Revision 4/28/03

			Equipment modi	fications	
Item	Date	Test	Modification	Note	Disposition of EUT
1	7/25/2011	Frequency Stability	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	7/26/2011	Output Power - Conducted	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	7/28/2011	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	7/29/2011	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	7/29/2011	Emission Mask	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	8/2/2011	Output Power - Radiated	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	8/2/2011	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

EMISSION MASK

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Power Sensor	Hewlett Packard	8481	SQP	6/7/2010	24
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	24
Spectrum Analyzer	Agilent	E4440A	AFG	4/28/2011	12
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12
Dual Directional Coupler	Amplifier Research	DC7144A	IRG	3/3/2011	24 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Per FCC Part 74, the emission mask was measured. The mean power of emissions shall be attenuated below the mean transmitter power (PMEAN) in accordance with the following schedule:

When using transmissions employing digital modulation techniques:

(i) For operating frequencies below 15 GHz, in any 4 kHz reference bandwidth (BREF), the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 250 percent of the authorized bandwidth: As specified by the following equation but in no event less than 50 decibels:

Then, a spectrum analyzer was used to measure the emission mask. A spectrum analyzer using a peak detector with no video filtering was used with a resolution bandwidth equal to approximately 1.0 percent of the emission bandwidth of the EUT.

NORTHWEST			FMIS	SION MASK			XMit 2011
EMC				SIGIT MAGIC			
EUT:	: BONDI TwinTX Aviation Pack				Work Order:		
Serial Number:						07/29/11	
	: Janteq Corp.				Temperature:		
Attendees:					Humidity:		
Project:					Barometric Pres.:		
	: Jaemi Suh		Power:	28VDC	Job Site:	OC10	
ST SPECIFICAT	TIONS			TEST METHOD			
C 74:2011				ANSI/TIA/EIA-603-C-2004			
OMMENTS							
rt A. Power Set	ting Set to Max.						
EVIATIONS FROM	M TEST STANDARD						
EVIATIONS FROM	M TEST STANDARD						
	M TEST STANDARD	4.8					
	M TEST STANDARD	Jan St					
		Signature					
		1-1					
nfiguration #		1-1			Value	Limit	Result
nfiguration #	1	1-1					
nfiguration #	1 Low Channel 2031.5 MHz	1-1			See Graph	See Graph	Pass
nfiguration #	1 Low Channel 2031.5 MHz Mid Channel 2067.5 MHz	1-1			See Graph See Graph	See Graph See Graph	Pass Pass
nfiguration #	1 Low Channel 2031.5 MHz	1-1			See Graph	See Graph	Pass
eviations FROM onfiguration # PSK QAM	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz	1-1			See Graph See Graph See Graph	See Graph See Graph See Graph	Pass Pass Pass
onfiguration #	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz Low Channel 2031.5 MHz	1-1			See Graph See Graph See Graph See Graph	See Graph See Graph See Graph See Graph	Pass Pass Pass
nfiguration #	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz	1-1			See Graph See Graph See Graph	See Graph See Graph See Graph	Pass Pass Pass
nfiguration #	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz Low Channel 2031.5 MHz	1-1			See Graph See Graph See Graph See Graph	See Graph See Graph See Graph See Graph	Pass Pass Pass
infiguration # PSK	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz Low Channel 2031.5 MHz Mid Channel 2067.5 MHz	1-1			See Graph See Graph See Graph See Graph See Graph	See Graph See Graph See Graph See Graph See Graph	Pass Pass Pass Pass Pass
onfiguration # PSK	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz Low Channel 2031.5 MHz Mid Channel 2067.5 MHz	1-1			See Graph See Graph See Graph See Graph See Graph	See Graph See Graph See Graph See Graph See Graph	Pass Pass Pass Pass Pass
onfiguration #	Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz Low Channel 2031.5 MHz Mid Channel 2067.5 MHz High Channel 2103.5 MHz	1-1			See Graph See Graph See Graph See Graph See Graph See Graph	See Graph See Graph See Graph See Graph See Graph See Graph	Pass Pass Pass Pass Pass Pass

	QPSK, I	Mid Channel 2067	7.5 MHz		
			Value	Limit	Result
			See Graph	See Graph	Pass

	16QAM,	Low Channel 203	31.5 MHz			
			Value	Limit	Result	
			See Graph	See Graph	Pass	

Value Limit Becult		16QAM, I	High Channel 210	3.5 MHz		
				Value	Limit	Result
				See Graph	See Graph	Pass

	64QAM,	Mid Channel 206	7.5 MHz		
					5 1
			Value	Limit	Result
			See Graph	See Graph	Pass

	64QAM,	High Channel 21	03.5 MHz		
			Value	Limit	Result
			See Graph	See Graph	Pass

OUTPUT POWER - CONDUCTED

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12
Power Sensor	Hewlett Packard	8481	SQP	6/7/2010	24
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	24
Spectrum Analyzer	Agilent	E4440A	AFG	4/28/2011	12
Dual Directional Coupler	Amplifier Research	DC7144A	IRG	3/3/2011	24 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its maximum data rate.

NORTHWEST EMC		UTPUT POWER - CONDUCTED)		XMit 2011.0
	TwinTX Aviation Pack		Work Order:	IANGOOO	
	WINTX AVIATION PACK			07/29/11	
Serial Number: 0 Customer: Janteq 0	Oanu		Temperature: 2		
	Jorp.		Humidity:		
Attendees: None Project: None			Barometric Pres.:		
Tested by: Jaemi S	la	Power: 28VDC	Job Site: (
ST SPECIFICATIONS	un	TEST METHOD	Job Site:	JC10	
C 74:2011		ANSI/TIA/EIA-603-C-2004			
JC 74:2011		ANSI/TIA/EIA-603-C-2004			
OMMENTS					
wer Setting Set to Max.					
EVIATIONS FROM TEST S	TANDARD				
	W. G				
onfiguration #	1				
	Signature				
			Value	Limit	Result
rt A QPSK					
QPSK	Law Observational SMILE		7.04.14/	40.14	D
	Low Channel 2031.5 MHz		7.81 W	12 W	Pass
	Mid Channel 2067.5 MHz		9.32 W	12 W	Pass
400 414	High Channel 2103.5 MHz		7.55 W	12 W	Pass
16QAM	Law Observational F Mile		0.0714/	40.14	D
	Low Channel 2031.5 MHz		9.27 W	12 W	Pass
	Mid Channel 2067.5 MHz		8.67 W	12 W	Pass
040414	High Channel 2103.5 MHz		8.45 W	12 W	Pass
64QAM	1 01 10004 5 1 111		7.40.11	40.144	
	Low Channel 2031.5 MHz		7.18 W	12 W 12 W	Pass Pass
	Mid Channel 2067.5 MHz		8.97 W		
rt B	High Channel 2103.5 MHz		8.29 W	12 W	Pass
QPSK					
QP3K	Low Channel 2031.5 MHz		6.00 W	12 W	Pass
	Mid Channel 2067.5 MHz		9.00 W	12 W	Pass
	High Channel 2103.5 MHz		9.00 W 8.20 W	12 W	Pass
16QAM	riigii Ondilliel 2 103.3 WITZ		0.20 W	I∠ VV	F 455
IJQAW	Low Channel 2031.5 MHz		5.83 W	12 W	Pass
	Mid Channel 2067.5 MHz		9.18 W	12 W	Pass
	High Channel 2103.5 MHz		7.33 W	12 W	Pass
242414	riigii Ondillitti 2 100.0 Wil I2		7.55 W	1 Z V V	1 005
	Low Channel 2031.5 MHz		6.18 W	12 W	Pass
64QAM				1 Z V V	1 000
64QAM			7.26 \//	12 \//	Daca
64QAM	Mid Channel 2067.5 MHz High Channel 2103.5 MHz		7.26 W 6.32 W	12 W 12 W	Pass Pass

		Port A, QPS	SK, Mid Channel 2	2067.5 MHz		
				Value	Limit	Result
				9.32 W	12 W	Pass

	Port A, 16QA	AM, Low Channel	2031.5 MHz		
			Value	Limit	Result
			9.27 W	12 W	Pass

Males Limits Breads		Port A, 16QA	M, High Channel	2103.5 MHz		
				Value	Limit	Result
				8.45 W	12 W	Pass

		Port A, 64Q	AM, Mid Channel	2067.5 MHz		
				Value	Limit	Result
				8.97 W	12 W	Pass

	Port B, QPS	K, Low Channel:	2031.5 MHz		
			Value	Limit	Result
			6.00 W	12 W	Pass

		Port B, QPS	K, High Channel	2103.5 MHz		
				Value	Limit	Result
				8.20 W	12 W	Pass

Value Limit Beaut		Port B, 16Q/	AM, Mid Channel	2067.5 MHz		
				Value	Limit	Result
				9.18 W	12 W	Pass

		Port B, 64QA	AM, Low Channel	2031.5 MHz		
				Value	Limit	Result
				6.18 W	12 W	Pass

	Port B, 64QA	M, High Channel	2103.5 MHz		
			Value	Limit	Result
			value	LIIIII	Result
			6.32 W	12 W	Pass

FREQUENCY STABILITY

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
MultiMeter	Fluke	79 III	MMD	1/26/2011	24
Power Sensor	Agilent	E4412A	SQE	4/21/2010	24
Power Sensor	Hewlett Packard	8481	SQP	6/7/2010	24
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	24
Chamber, Temperature/Humidity	Cincinnati Sub Zero (CSZ)	ZPHS-32-3.5-SCT/AC	TBE	6/8/2010	24
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12
Dual Directional Coupler	Amplifier Research	DC7144A	IRG	3/3/2011	24 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Variation of Supply Voltage

The primary supply voltage was varied from 85% to 115% of nominal Variation of Ambient Temperature

Using a temperature chamber, the transmit frequency was recorded at the extremes of the specified temperature range (-30 ° to +50° C) and at 10°C intervals.

A direct connect measurement was made between the EUT's antenna cable and a spectrum analyzer. The spectrum analyzer is equipped with a precision frequency reference that exceeds the stability requirement of the EUT. Measurements were made at the mid channel of each band to determine frequency stability. If the frequency variation is less than 100 ppm, the EUT will meet the requirement of FCC Part 74 that the emissions are maintained within the band of operation.

NORTHWEST EMC		FREQUENCY	Y STAI	BILITY	XMit 2010.07	7.29
EUT:	BONDI TwinTX Aviation P	Pack			Work Order: JANQ0001	_
Serial Number:	0				Date: 07/25/11	
Customer:	Janteq Corporation				Temperature: 22.86°C	
	Tom Chang				Humidity: 52%	
Project:					Barometric Pres.: 1012.2	
	Jaemi Suh		Power:	28 VDC	Job Site: OC13	
TEST SPECIFICATI	IONS			TEST METHOD		
FCC 74:2011				ANSI/TIA/EIA-603-C-20	04	
COMMENTS						
Transmitting at low	, mid and high channels. I	Port A. Power Setting set to Max.				
DEVIATIONS FROM	M TEST STANDARD					
Configuration #	2	Signature				_

Low Channel, 5150 MHz - 5250 MHz Band
Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
32.2 (115%)	2031.500000	2031.487000	0.001	0.005
31.9 (110%)	2031.500000	2031.455000	0.002	0.005
29.4 (105%)	2031.500000	2031.482500	0.001	0.005
28 (100%)	2031.500000	2031.487000	0.001	0.005
26.6 (95%)	2031.500000	2031.483000	0.001	0.005
25.2 (90%)	2031.500000	2031.502500	0.000	0.005
23.8 (85%)	2031 500000	2031 480000	0.001	0.005

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 28 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(%)	(%)
50	2031.500000	2031.477500	0.001	0.005
40	2031.500000	2031.510000	0.000	0.005
30	2031.500000	2031.472500	0.001	0.005
20	2031.500000	2031.477500	0.001	0.005
10	2031.500000	2031.512500	-0.001	0.005
0	2031.500000	2031.432500	0.003	0.005
-10	2031.500000	2031.495000	0.000	0.005
-20	2031.500000	2031.512500	-0.001	0.005
-30	2031.500000	2031.537000	-0.002	0.005

Mid Channel, 2.0675 MHz
Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
32.2 (115%)	2067.500000	2067.470000	0.001	0.005
31.9 (110%)	2067.500000	2067.505000	0.000	0.005
29.4 (105%)	2067.500000	2067.532500	-0.002	0.005
28 (100%)	2067.500000	2067.512500	-0.001	0.005
26.6 (95%)	2067.500000	2067.490000	0.000	0.005
25.2 (90%)	2067.500000	2067.512500	-0.001	0.005
23.8 (85%)	2067.500000	2067.470000	0.001	0.005

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 28 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(%)	(%)
50	2067.500000	2067.492500	0.000	0.005
40	2067.500000	2067.495000	0.000	0.005
30	2067.500000	2067.485000	0.001	0.005
20	2067.500000	2067.512500	-0.001	0.005
10	2067.500000	2067.452500	0.002	0.005
0	2067.500000	2067.500000	0.000	0.005
-10	2067.500000	2067.507600	0.000	0.005
-20	2067.500000	2067.467500	0.002	0.005
-30	2067.500000	2067.467000	0.002	0.005

High Channel, 2.1035 GHz
Frequency Stability with Variation of DC Voltage (Ambient Temperature = 20°C)

Voltage (VDC)	Assigned Frequency (MHz)	Measured Frequency (MHz)	Tolerance (%)	Specification (%)
32.2 (115%)	2103.500000	2103.492500	0.000	0.005
31.9 (110%)	2103.500000	2103.500000	0.000	0.005
29.4 (105%)	2103.500000	2103.492500	0.000	0.005
28 (100%)	2103.500000	2103.487500	0.001	0.005
26.6 (95%)	2103.500000	2103.502000	0.000	0.005
25.2 (90%)	2103.500000	2103.492000	0.000	0.005
23.8 (85%)	2103.500000	2103.469500	0.001	0.005

Frequency Stability with Variation of Ambient Temperature (Primary Supply = 28 VDC)

Temp	Assigned Frequency	Measured Frequency	Tolerance	Specification
(°C)	(MHz)	(MHz)	(%)	(%)
50	2103.500000	2103.497500	0.000	0.005
40	2103.500000	2103.515000	-0.001	0.005
30	2103.500000	2103.497500	0.000	0.005
20	2103.500000	2103.487500	0.001	0.005
10	2103.500000	2103.502500	0.000	0.005
0	2103.500000	2103.477500	0.001	0.005
-10	2103.500000	2103.552500	-0.002	0.005
-20	2103.500000	2103.477500	0.001	0.005
-30	2103.500000	2103.489500	0.000	0.005

SPURIOUS CONDUCTED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12
Spectrum Analyzer	Agilent	E4440A	AFG	4/28/2011	12
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	24
Power Sensor	Hewlett Packard	8481	SQP	6/7/2010	24
Dual Directional Coupler	Amplifier Research	DC7144A	IRG	3/3/2011	24 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

EMC		SPUR	RIOUS CONDUCTED EMISSI	IONS		XMit 2011.04.2
	: BONDI TwinTX Aviation Pack			Work Orde	er: JANQ0001	
Serial Number:					e: 08/02/11	
	: Janteq Corp.			Temperatui		
Attendees				Humidi		
Project	: None			Barometric Pre		
	/: Jaemi Suh		Power: 28VDC	Job Sit	e: OC10	
TEST SPECIFICAT	TIONS		TEST METHOD			
FCC 74:2011			ANSI/TIA/EIA-603-C-2004			
	·	<u>-</u>				
COMMENTS						
Port A. Modulation	n: 16QAM. Power Setting Set to	Max.				
DEVIATIONS FROM	M TEST STANDARD					
DEVIATIONS FROI	M TEST STANDARD					
		anth				
DEVIATIONS FROM	M TEST STANDARD	Simontum Parish				
		Signature				
		Signature		Value	Limit	Result
Configuration #		Signature		Value	Limit	Result
Configuration #		Signature		Value -25.81 dBm	Limit -13 dBm	Result Pass
Configuration #	1	Signature				
	1 30 MHz - 1 GHz	Signature		-25.81 dBm	-13 dBm	Pass
Configuration #	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz	Signature		-25.81 dBm -52.57 dBm	-13 dBm -13 dBm	Pass Pass
Configuration #	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz 30 MHz - 1 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm -25.81 dBm	-13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass
Configuration #	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm	-13 dBm -13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass
Configuration # Low Channel Mid Channel	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz 30 MHz - 1 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm -25.81 dBm	-13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass
Configuration #	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm -25.81 dBm -51.01 dBm -17.35 dBm	-13 dBm -13 dBm -13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass Pass Pass Pass
Configuration # Low Channel Mid Channel	30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz 30 MHz - 1 GHz 1 GHz - 12.75 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm -25.81 dBm -51.01 dBm	-13 dBm -13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass Pass
Configuration # Low Channel Mid Channel	1 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz 30 MHz - 1 GHz 1 GHz - 12.75 GHz 12.75 GHz - 26 GHz	Signature		-25.81 dBm -52.57 dBm -31.32 dBm -25.81 dBm -51.01 dBm -17.35 dBm	-13 dBm -13 dBm -13 dBm -13 dBm -13 dBm -13 dBm	Pass Pass Pass Pass Pass Pass

Value Limit Result		Low Ch	annel, 1 GHz - 12	.75 GHz		
				Value	Limit	Result

		Mid C	hannel, 30 MHz -	1 GHz		
				Value	Limit	Result
				-25.81 dBm	-13 dBm	Pass

	Mid Cha	nnel, 12.75 GHz	- 26 GHz		
			Value	Limit	Result
			-17.35 dBm	-13 dBm	Pass

Value Limit Result	Value Limit Result		High Ch	annel, 1 GHz - 12	.75 GHz		
	value Ellin Room				Value	l imit	Result

SPURIOUS CONDUCTED EMISSIONS

EMC

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Low channel.

Mid channel. High channel

MODULATIONS INVESTIGATED

QPSK

16QAM 64QAM

WORST CASE MODULATION

OPSK

AXIS INVESTIGATED

X-Axis

POWER SETTINGS INVESTIGATED

28VDC

CONFIGURATIONS INVESTIGATED

JANQ0001 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 26 GHz

CLOCKS AND OSCILLATORS

None Provided

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
.5-1GHz Notch Filter	K&L Microwave	3TNF-500/1000-N/N	HFR	11/30/2010	24 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/29/2011	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/29/2011	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	oco	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo

MEASUREMENT	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and receiving while set at the channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and orientation in horizontal and vertical plane, and manipulating the EUT in both vertical and horizontal planes (per ANSI/TIA/EIA-603-C-2004).

OCCUPIED BANDWIDTH

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Power Sensor	Hewlett Packard	8481	SQP	6/7/2010	24
Power Meter	Hewlett Packard	E4418A	SPA	4/21/2010	24
Spectrum Analyzer	Agilent	E4440A	AFG	4/28/2011	12
Signal Generator	Agilent	E8257D	TGU	1/26/2011	12
Dual Directional Coupler	Amplifier Research	DC7144A	IRG	3/3/2011	24 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at data rates: QPSK, 16QAM, 64QAM

EMC OCCUPIED BANDWIDTH		
EUT: BONDI TwinTX Aviation Pack Work Ords	er: JANQ0001	
	e: 07/29/11	
Customer: Janteq Corp. Temperatur		
Attendees: None Humidi	y: 46%	
Project: None Barometric Pre		
	e: OC10	,
TEST SPECIFICATIONS TEST METHOD		
FCC 74:2011 ANSI/TIA/EIA-603-C-2004		
COMMENTS		
Port A. Power setting set to Max.		
DEVIATIONS FROM TEST STANDARD		
An-Ste		
Configuration # 1		
Signature		
Value	Limit	Result
QPSK		rtooun
Low Channel 2031.5 MHz 7.7797 MHz	18 MHz	Pass
Mid Channel 2067.5 MHz 7.8109 MHz 7.8109 MHz	18 MHz	Pass
High Channel 2103.5 MHz 7.7998 MHz	18 MHz	Pass
16QAM		
Low Channel 2031.5 MHz 7.7938 MHz	18 MHz	Pass
Mid Channel 2067.5 MHz 7.9112 MHz	18 MHz	Pass
High Channel 2103.5 MHz 7.7823 MHz	18 MHz	Pass
64QAM		
Low Channel 2031.5 MHz 7.7879 MHz	18 MHz	Pass
Mid Channel 2067.5 MHz 7.8639 MHz	18 MHz	Pass
High Channel 2103.5 MHz 7.7823 MHz	18 MHz	Pass

	QPSK, I	Mid Channel 2067	7.5 MHz		
			Value	Limit	Result
			7.8109 MHz	18 MHz	Pass

		16QAM,	Low Channel 203	31.5 MHz		
_				Value	Limit	Result
				7.7938 MHz	18 MHz	Pass

	16QAM,	High Channel 210	03.5 MHz		
			Value	Limit	Result
			7.7823 MHz	18 MHz	Pass

		64QAM,	Mid Channel 206	7.5 MHz		
				Value	Limit	Result
				7.8639 MHz	18 MHz	Pass

OCCUPIED BANDWIDTH

