Normal forms cont. & intro to transactions

superkey $X \rightarrow \{A_1, \dots, A_5\}$

A1	A2	А3	A4	A5

PK

name	location	salary
remy	LA	\$30
vincent	LA	\$20

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	O	zurich	\$50	101
dan	Ο	zurich	\$50	113

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

 $job \rightarrow salary$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

BNCF

$$X \to Y : \begin{cases} Y \subseteq X \text{ (trivial FD)} \\ X \text{ is a superkey} \end{cases}$$

PK

name	location	salary
remy	LA	\$30
vincent	LA	\$20

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	O	zurich	\$50	101
dan	Ο	zurich	\$50	113

name	job	location	salary	tax %
remy	prof	LA	\$30	20
dan	prof	seattle	\$50	15
vincent	TA	LA	\$20	10

 $job \rightarrow salary$

 $name \rightarrow location \implies name, job \rightarrow tax \%$

location, salary \rightarrow tax %

Decomposition

Factor out violating FDs

$$X \to Y : \begin{cases} Y \subseteq X \text{ (trivial FD)} \\ X \text{ is a superkey} \end{cases}$$

Make new table over $X \cup Y$

Drop Y from old table (keep X)

first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	O	zurich	\$50	101
dan	Ο	zurich	\$50	113

			•	
first n.	last n.	location	salary	course
remy	W	LA	\$30	143
remy	W	LA	\$30	240
remy	W	LA	\$30	249
dan	S	seattle	\$50	344
dan	S	seattle	\$50	444
dan	О	zurich	\$50	101
dan	О	zurich	\$50	113

		I .	
first n.	last n.	location	salary
remy	W	LA	\$30
remy	W	LA	\$30
remy	W	LA	\$30
dan	S	seattle	\$50
dan	S	seattle	\$50
dan	О	zurich	\$50
dan	О	zurich	\$50
	· · · · · · · · · · · · · · · · · · ·	•	-

/----

first n.	last n.	course
remy	W	143
remy	W	240
remy	W	249
dan	S	344
dan	S	444
dan	Ο	101
dan	Ο	113

job \rightarrow salary name \rightarrow location location, salary \rightarrow tax %

name	job	location	salary	tax %	
remy	prof	LA	\$30	20	
dan	prof	seattle	\$50	15	
vincent	TA	LA	\$20	10	

3rd Normal Form

$$X \to Y : \begin{cases} Y \subseteq X \text{ (trivial FD)} \\ X \text{ is a superkey} \\ \forall y \in Y : y \in \text{key} \end{cases}$$

3rd Normal Form

$$X \to Y : \begin{cases} Y \subseteq X \text{ (trivial FD)} \\ X \text{ is a superkey} \\ \forall y \in Y : y \in \text{key} \end{cases}$$

never loses FDs

decomposition in P time

3rd Normal Form

$$X \to Y : \begin{cases} Y \subseteq X \text{ (trivial FD)} \\ X \text{ is a superkey} \\ \forall y \in Y : y \in \text{key} \end{cases}$$

never loses FDs

decomposition in P time

exercise 1: free points for all!

atomicity

a TX either completes

or leaves no trace

exercise 2: playing favorites!

consistency

a TX should leave the DB

in a consistent state

exercise 3: armageddon!

isolation

multiple concurrent TX

should not interfere

exercise 4: blackout!

durability

completed TX are forever

SQLite demo


```
import sqlite3 as sql
con = sql.connect("bank.db")
cur = con.cursor()

res = cur.execute("SELECT * FROM acc")
```

transaction

a set of read & write ops

T2

READ(A, s)

s := s*2

WRITE(A,s)

READ(B,s)

s := s*2

WRITE(B,s)

transaction

a set of read & write ops

A either execute all, or nothing

2 transactions do not interfere

 \square

schedule

an interleaving & read/writes

from different TXs

serial schedule

"one at a time!"

		_ <u> </u>	12
	A = 2 B = 2	READ(A, t)	
time		t := t+100	
		WRITE(A, t)	
		READ(B, t)	
		t := t+100	
		WRITE(B,t)	
			READ(A, s)
			s := s*2
			WRITE(A,s)
			READ(B,s)
			s := s*2
			WRITE(B,s)

T1

T2

		T1	T2
	A = 2		READ(A, s)
	B = 2		s := s*2
			WRITE(A,s)
			READ(B,s)
time	A = 4		s := s*2
tin	B = 4		WRITE(B,s)
		READ(A, t)	
		t := t+100	
		WRITE(A, t)	
		READ(B, t)	
	A = 104	t := t+100	
	B = 104	WRITE(B,t)	

serializable schedule

equivalent to "one at a time!"

T1	T2	A = 2
READ(A, t)		B = 2
t := t + 100		
WRITE(A, t)		A = 102
	READ(A, s)	B = 2
	s := s*2	
	WRITE(A,s)	A = 204
READ(B, t)		B = 2
t := t+100		
WRITE(B,t)		A = 204
	READ(B,s)	B = 102
	s := s*2	A = 204
	WRITE(B,s)	B = 204

serial → isolation

serializable = serial

serializable → isolation