#### Gastvorlesung

**Concurrent Programming** 



## Inhalt

|   |   | _   |   |       |   |
|---|---|-----|---|-------|---|
|   |   | ber |   | : _ L | _ |
|   |   | nΔr | m | ıcr   | 7 |
| _ | U | UCI |   |       |   |

| • Effiziente parallele Dosisberechnung 1. Teil | 20' |
|------------------------------------------------|-----|
| • Einführung in OpenCL                         | 30' |
| • Arbeitsblatt                                 | 30' |
| Effiziente parallele Dosisberechnung 1. Teil   | 10' |

#### Über mich



- B. Sc. Computer Science
- Thesis:
  Effiziente parallele Dosisberechung

 Scala, Concurrent Programming, Machine Learning

## Effiziente parallele Dosisberechnung

**Concurrent Programming** 



#### Inhalt

- Protonentherapie
- Dosisberechnung
- Resultate
  - Varianten
  - Performance

#### Protonentherapie am PSI

- Seit 1984
- Über 5700 Patienten
- Behandlung von
  - Augentumoren
  - Hirn-/Schädelbasis-/Wirbelsäulentumoren
  - (Prostatakarzinomen)

#### n|u

Protonentherapie am PSI



## Protonentherapie am PSI – OPTIS 1 & 2

Bestrahlung von Augentumoren







## Protonentherapie am PSI – Gantry 1

Bestrahlung von tiefliegenden Tumoren



## Protonentherapie am PSI – Gantry 2

• Bestrahlung von tiefliegenden Tumoren



## Weshalb Protonentherapie



## Dosisberechung – Spot Scanning

- Berechnung mittels eines Pencil Beam Models
- Spot: Ein "Schuss"
- Scannen: Verschieben der Spots
- Abgelegte Dosis = Summe der Dosen der Spots



## Dosisberechung – Therapieplanung

- Artzt + Physiker planen Therapie
  - Identifizieren des Tumors
  - Definieren der Spots
- Optimierung der Freiheitsgrade der Gantry



#### Dosisberechung – Ziele der Thesis

- So schnell wie möglich, so wartbar wie möglich
- Evaluieren verschiedener Varianten
  - Möglichst auf der JVM
  - Empfelungen welche Technologie weiterverfolgt werden soll
- Verbesserungen des Algorithmus

#### Dosisberechung – Performance?

- UI der Therapieplanungs-Software
- Optimierung
- Zukunft:
  - Online adaptive radiation therapy (OART)



# Dosisberechung – Algorithmus



#### Dosisberechung – Berechnung der Dosis

- Abhängig von der Water Equivalent Depth
- Abhängig vom Air Gap (Abstand Patient Nozzle)
- Abhängig vom Abstand zur Spot-Hauptachse
- Optimierungen:
  - Abschneiden nachdem 99% Dosis deponiert wurde



#### Dosisberechung – Planewise Iteration

- Keine Synchronisation nötig
- Parallelität beschränkt durch Anzahl Planes



## Dosisberechung – Spotwise Iteration

- Synchronisation nötig
- Parallelität beschränkt durch Anzahl Spots



#### Dosisberechung – Voxelwise Iteration

- Keine Synchronisation nötig
- Parallelität beschränkt durch Anzahl Voxels
  - Ideale Flexibilität für Arbeitsaufteilung
- Cutoff Optimierung aufwändig



#### Dosisberechung – Optimierung (WIP)

- Voxelwise
- Vorberechnung der Voxel of Interests (VOI)



## Dosisberechung – Klinische Testfälle

| Name   | CT-Dimensions | CT-Voxels  | Calculation-Grid | Calculation-Voxels | Spots  |
|--------|---------------|------------|------------------|--------------------|--------|
| Small  | 256,256,114   | 7'471'104  | 61,61,61         | 226'981            | 3'444  |
| Medium | 256,256,166   | 10'878'976 | 96,51,71         | 347'616            | 10'241 |
| Large  | 256,256,159   | 10'420'224 | 51,51,71         | 184'671            | 51'081 |

| Name   | Voxels  | Affected Voxels | Avg.<br>Spots | Total<br>Calculations | Max<br>Calculations | Affected<br>Grid |
|--------|---------|-----------------|---------------|-----------------------|---------------------|------------------|
| Small  | 226'981 | 105'043         | 6.377597      | 669'921               | 781'722'564         | 46.28%           |
| Medium | 347'616 | 265'791         | 10.3802       | 2'758'963             | 3'559'935'456       | 76.46%           |
| Large  | 184'671 | 175'288         | 5.289427      | 927'173               | 9'433'179'351       | 94.92%           |

#### Dosisberechung – Varianten

- "Legacy" Java
- Scala
  - Sequentiell
  - Planewise / Spotwise
- OpenCL
  - nativ
  - Aparapi

## Dosisberechung – Ergebnisse



| driver                                                     | resultAritMean | resultAritMeanStddev | resultGeomMean | resultGeomMeanStddev | resultHarmMean | resultHarmMeanStddev |
|------------------------------------------------------------|----------------|----------------------|----------------|----------------------|----------------|----------------------|
| Java<br>Implementation                                     | 6713 078       | 43.033               | 6213.028       | 43.033               | 6213.028       | 43.033               |
| Scala<br>Sequential<br>Implementation                      | 5299.601       | 35.777               | 5299.601       | 35.777               | 5299.601       | 35.777               |
| Scala Lock<br>Free Planewise<br>Parallel<br>Implementation | 1930.34        | 45.642               | 1930.34        | 45.642               | 1930.34        | 45.642               |
| Scala CAS<br>Spotwise<br>Parallel<br>Implementation        | 2088.018       | 36.048               | 2088.018       | 36.048               | 2088.018       | 36.048               |
| Scala Locked<br>Spotwise<br>Parallel<br>Implementation     | 1890.032       | 46.124               | 1890.032       | 46.124               | 1890.032       | 46.124               |

#### Dosisberechung – Fast Scala

- tailrecursion
- Vorsicht vor Objekterzeugung
  - Typealiases
  - Value Classes
  - Interface Design (provide methods for common tasks)
    - update(x: Int,y: Int,z: Int,f: Double => Double): ch.psi.cpt.dosecalc.impl.model.Grid
    - add(x: Int,y: Int,z: Int,v: Double): ch.psi.cpt.dosecalc.impl.model.Grid

#### Dosisberechung – Work Item

- Zweidimensionale Work Items
- Work Item
  - Berechnet die Dosis eines Spots in einer Plane
  - Benötigt atomics
- Andere Möglichkeiten
  - Spotwise (atomics)
  - Planewise (lock-free)

## Dosisberechung – OpenCL Memory

- Dosis / Spots im globalen Memory
- Lookup Tables in konstanten Speicher
- Keine Verwendung von lokalem Speicher

#### Dosisberechung – OpenCL C Testing

- Black Box Unit Tests
  - Für die Dosisberechnung
- Testen des Modells
  - Hilfskernel welche eine einzige Funktion ausführen

#### Dosisberechung – Ergebnisse





#### Fachhochschule Nordwestschweiz Hochschule für Technik

| driver                                                      | resultAritMean | resultAritMeanStddev | resultGeomMean | resultGeomMeanStddev | resultHarmMean | resultHarmMeanStddev |
|-------------------------------------------------------------|----------------|----------------------|----------------|----------------------|----------------|----------------------|
| Java<br>Implementation                                      | 6213.028       | 43.033               | 6213.028       | 43.033               | 6213.028       | 43.033               |
| Scala<br>Sequential<br>Implementation                       | 5299.601       | 35.777               | 5299.601       | 35.777               | 5299.601       | 35.777               |
| Scala Lock<br>Free Planewise<br>Parallel<br>Implementation  | 1930.34        | 45.642               | 1930.34        | 45.642               | 1930.34        | 45.642               |
| Scala CAS<br>Spotwise<br>Parallel<br>Implementation         | 2088.018       | 36.048               | 2088.018       | 36.048               | 2088.018       | 36.048               |
| Scala Locked<br>Spotwise<br>Parallel<br>Implementation      | 1890.032       | 46.124               | 1890.032       | 46.124               | 1890.032       | 46.124               |
| OpenCL<br>Implementation<br>on CPU                          | 754.026        | 7.584                | 754.026        | 7.584                | 754.026        | 7.584                |
| OpenCL<br>Implementation<br>on GPU                          | 621.703        | 3.977                | 621.703        | 3.977                | 621.703        | 3.977                |
| OpenCL<br>Aparapi<br>Equivalent<br>Implementation<br>on CPU | 699.152        | 8.801                | 699.152        | 8.801                | 699.152        | 8.801                |
| Aparapi<br>Implementation<br>on CPU                         | 809.903        | 77.437               | 809.903        | 77.437               | 809.903        | 77.437               |

# Dosisberechung – LOC

| Part             | Java | Scala | OpenCL C | Aparapi |
|------------------|------|-------|----------|---------|
| Dose Calculation | 104  | 107   | 104      | 165     |
| Model            | 190  | 132   | 119      | 160     |
| Setup            |      |       | 202      | 119     |
| Datenstrukturen  | 46   | 45    | 30       |         |
| Total            | 340  | 284   | 455      | 444     |

|       | Java | Scala | С   |
|-------|------|-------|-----|
| Total | 628  | 3601  | 499 |

#### Dosisberechung – Vergleich Scala

- + JVM: Java Performance erreichbar
- + Java Tooling: jvisualvm
- + Abstraktion und Wiederverwendung

- Objekterzeugungsfreudig (javap)

#### Dosisberechung – Vergleich Aparapi

- + Gleiche Devices wie native möglich
- + Kein C Code
- + Auf JVM ausführbar (debugging/testing)

- Nicht erweiterbar
- Eingeschränkte Funktionalität (2D-Arrays)

#### Dosisberechung – Vergleich OpenCL

- + Gesamtes OpenCL verfügbar
- + Flexibel per preprocessor auf Device anpassen
- + Maximale OpenCL Performance erreichbar

- C Code
- komplexes Testing
- Manuelles Memory Management (JVM <-> Device)

#### Dosisberechung – Ausblick

- Optimierung des Algorithmus auf parallele Hardware
  - Voxel of Interest (VOI) vorberechnen

#### Gastvorlesung

**Concurrent Programming** 

