

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

LABORATORIUM NR: 5 DATA: 01.06.2021

TEMAT: Projektowanie układów iteracyjnych

IMIĘ I NAZWISKO: Rafał Kuźmiczuk

Zadanie 1

Zadanie 2. Zaprojektować komparator (układ porównujący) dwóch k-bitowych liczb naturalnych zapisanych w kodzie NKB; układ ma dodatkowo przesyłać na wyjście większą z tych liczb.

Tabela 1. Tablica prawdy

L.P.	а	b	q1 wej	q2 wej	q1 wyj	q2 wyj	у
0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0
2	0	0	1	0	1	0	0
3	0	0	1	1	0	0	0
4	0	1	0	0	0	1	1
5	0	1	0	1	0	1	1
6	0	1	1	0	1	0	0
7	0	1	1	1	0	1	1
8	1	0	0	0	1	0	1
9	1	0	0	1	0	1	0
10	1	0	1	0	1	0	1
11	1	0	1	1	1	0	1
12	1	1	0	0	0	0	1
13	1	1	0	1	0	1	1
14	1	1	1	0	1	0	1
15	1	1	1	1	0	0	1

Sprawozdanie z ćwiczeń laboratoryjnych

Tabela 2. Tablica Karnaugh dla q1 wyj

		q01 q02			
a b		00	01	11	10
	00	0	0	0	1
	01	0	0	0	1
	11	0	0	0	1
	10	1	0	1	1

$$f(a, b, q01, q02) = q01 \cdot \overline{q02} + a \cdot \overline{b} \cdot \overline{q02} + a \cdot \overline{b} \cdot q01$$

Tabela 3. Tablica Karnaugh dla q2 wyj

		q01 q02				
a b		00	0	1	11	10
	00	0	1		0	0
	01	1	1		1	0
	11	0	1		0	0
	10	0	1	J	0	0

$$f(a, b, q01, q02) = \overline{q01} \cdot q02 + \overline{a} \cdot b \cdot \overline{q01} + \overline{a} \cdot b \cdot q02$$

Tabela 4. Tablica Karnaugh dla **y**

		q01 q02			
a b		00	01	11	10
	00	0	0	0	0
	01	1	1	1	0
	11	1	1	1	1
	10	_1	0	1	1

$$f(a, b, q01, q02) = b \cdot \overline{q01} + b \cdot q02 + a \cdot \overline{q02} + a \cdot q01$$

Sprawozdanie z ćwiczeń laboratoryjnych

Obrazek 1. Układ realizujący zadanie

Dokonałem sprawdzenia na kilku 4 bitowych liczbach i działał poprawnie.

PODSTAWY TECHNIKI CYFROWEJ

Sprawozdanie z ćwiczeń laboratoryjnych

Zadanie 2

Zadanie 3. Zaprojektować układ, który w k-bitowym ciągu wejściowym wykrywa grupy sąsiadujących ze sobą jedynek (co najmniej trzech) i na wyjściu zastępuje je zerami. Na pozostałych pozycjach mają być jedynki. Układy tego typu mogą być stosowane do sterowania wielostanowiskowymi systemami obsługi. Wykrywają nadmierne zagęszczenie zgłoszeń w pewnych rejonach i zamykają chwilowo dostęp do tych stanowisk.

Tabela 5. Tablica prawdy.

L.P.	х	q wej	p1 wej	p2 wej	У	q wyj	p1 wyj	p2 wyj
0	0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0	0
2	0	0	1	0	1	0	0	0
3	0	0	1	1	1	1	0	0
4	0	1	0	0	-	-	-	-
5	0	1	0	1	-	1	-	1
6	0	1	1	0	-	-	-	-
7	0	1	1	1	-	-	-	-
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	0	1	1	1
11	1	0	1	1	0	1	1	1
12	1	1	0	0	0	0	0	1
13	1	1	0	1	0	1	1	0
14	1	1	1	0	0	1	1	1
15	1	1	1	1	0	1	1	1

Tabela 6. Tablica Karnaugh dla y

		p1 p2			
хq		00	01	11	10
	00	1	1	1	1
	01	-	-	-	
	11	0	0	0	0
	10	1	1	0	0

$$f(x,q,p1,p2) = \overline{x} + \overline{q} \cdot \overline{p1}$$

Tabela 7. Tablica Karnaugh dla **q**

		p1 p2			
хq		00	01	_11	10
	00	0	0	1	0
	01	-	-	-	-
	11	0	1	1	1
	10	0	0	1	1

$$f(x,q,p1,p2) = p1 \cdot p2 + x \cdot p1 + q \cdot p2$$

Tabela 8. Tablica Karnaugh dla **p1**

		p1 p2						
хq		00		01	11		10	
	00	0		0	0		0 0	
	01	-		-	_			
	11	0		1	1		1	
	10	0	П	1	1		1	

$$f(x,q,p1,p2) = x \cdot p2 + x \cdot p1$$

Tabela 9. Tablica Karnaugh dla p2

		p1 p2			
хq		00	01	11	10
	00	0	0	0	0
	01		-	_	-
	11	1	0	1	1
	10	1	0	1	1

$$f(x,q,p1,p2) = x \cdot \overline{p2} + x \cdot p1$$

Obrazek 2. Układ realizujący zadanie

Sprawdziłem go na 19-bitowym przykładzie testowym z zadania i wynik był poprawny.