1. a) i.

ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION DURATION: 1 HOUR 30 MINUTES

WINTER SEMESTER, 2021-2022

FULL MARKS: 75

Math 4741: Mathematical Analysis

Programmable calculators are not allowed. Do not write anything on the question paper.

Answer all 3 (three) questions. Marks of each question and corresponding CO and PO are written in the right margin with brackets.

1.	a)	I.	With a brief explanation, illustrate the Josephus Problem with a diagram.	5 (CO1)
		ii.	When sending messages over a network, there is a chance that the bits will be corrupted. A Hamming code allows for a 4 bit code to be encoded as 7 bits, with the advantage that if 0 or 1 bit(s) are corrupted, then the message can be perfectly reconstructed.	(PO1) 5 (CO1) (PO1)
			You are working on the Voyager space mission and the probability of any bit being lost in space is 0.1. Determine the improvement in reliability when using a Hamming code with 7 bits instead of 4 bits.	
	b)	of all	pose that an airplane engine will fail, when in flight, with probability $(1-p)$ independent lengines. Again, the airplane will make a successful flight if at least 50 percent of its engines ain operative. Determine the value of p for which a four-engine plane preferable to a two-ne plane.	7 (CO2) (PO2)
1. / 1. /	c)	Suppose that the amount of time that a light bulb works before burning itself out is exponentially distributed with a mean of 10 hours. Suppose, that Dobby enters a room in which a light bulb is burning. If he desires to work for 5 hours, find out the probability that he will be able to complete his work without the bulb burning out.		8 (CO3) (PO2)
2.	a)		ox contains three coins: two regular coins with head on one side and tail on the other side one fake coin with heads on both sides.	
		i.	You pick a coin at random and toss it. Find out the probability that it lands heads up.	2 (CO1) (PO1)
		ii.	You pick a coin at random and toss it, and get heads. Find out the probability that it is the two-headed coin.	(CO1) (PO1)
	b)	i.	Assume that a rare disease infects 1 out of every 10000 people in a population. There is a good, but not perfect,test for this disease: if a person has the disease, the test comes back positive 98% of the time. However, 7% of uninfected people also test positive. Given that someone just tested positive, determine their chances of having this disease.	5 (CO2) (PO2)
		ii.	An individual uses the following gambling system in Las Vegas. He bets \$1 that the roulette wheel will come up red. If he wins, he quits. If he loses then he makes the same bet a second time only this time he bets \$2; and then regardless of the outcome, quits. Assuming that he has a probability of 0.5 of winning each bet, find out the probability that he goes home a winner.	(CO3) (PO2)
200				

	c)	an average 5 automobiles per hour pass through the junction.				
		i.	Find the probability that no one passes in a given minute.	3		
				(CO3)		
				(PO2)		
		ii.	Determine the expected number passing in two minutes.	4		
				(003)		
		:::	Find the marketille, at at the superior desirable passes, through in a given true.	(PO2)		
		iii.	Find the probability that this expected number actually passes through in a given two	(CO3)		
			minute period.	(PO2)		
				(104)		
3.	a)	In a certain species of rats, black dominates over brown. Suppose that a black rat with two black parents has a brown sibling.				
		i.	Find out the probability that this rat is a pure black rat as opposed to being a hybrid with	3		
			one black and one brown gene.	(COI)		
				(PO1)		
		ii.	Suppose that when the black rat is mated with a brown rat, all five of their offspring are	\$		
			black. Now, find out the probability that the rat is a pure black rat.	(CO2)		
			COLD 1 400 C. L. 1 4 4 141 De a Calendar (CC) lat N. decente	(PO2)		
	b)	the number of flips until there is a run of three consecutive heads. Find				
		i.	$P(N \leq 8)$	2		
				(CO2)		
		::	$\mathbf{p}(\mathbf{N} = 0)$	(bO5)		
		ii.	P(N = 8)	(CO2)		
			. pl hideri	(PO2)		
	c)	Bors	tha tosses a coin repeatedly. The coin is unfair and P(H)=p. The game ends the first time	(1 (1-2)		
	- /		two consecutive heads (HH) or two consecutive tails (TT) are observed. She wins if HH is	(CO2)		
			rved and loses if TT is observed. For example, if the outcome is HTHTT, she loses. On the	(PO2)		
		othe	r hand, if the outcome is THTHTHH, she wins. the probability that she wins	(1,)		