Probabilistic Relational Models

Seminarvortrag

Alexander Galitzki galickis@gmail.com

Darmstadt, den 2. Dezember 2009

Ziele

Was wir in dieser Präsentation kennen lernen:

- den Formalismus und seine Motivation,
- verschiedene Arten von PRMs,
- die exakte und approximative Inferenz,
- die Lernalgorithmen.

Motivation

- Versuch, Bayes'sche Netze um Elemente der Prädikatenlogik zu erweitern
- Wahrscheinlichkeitsrechnung auf beliebigen Aussagen schwierig:

$$P(\phi) = \sum_{M: \phi \text{ wahr in } M} \mu(M)$$

 $(\phi$ – eine prädikatenlogische Aussage, μ – Wahrscheinlichkeit in einer Welt M)

- Benötigt ist eine Sprache, die:
 - 1. nur eine endliche Anzahl von Modellen zulässt und
 - 2. eine konsistente Wahrscheinlichkeitsverteilung ermöglicht.

Komponenten eines relationalen Schemas

- ► Klassenmengen $\mathcal{X} = \{X_1, ..., X_n\},\$
- Für jede Klasse $X \in \mathcal{X}$: Menge der Attribute $\mathcal{A}(X)$ mit Wertebereich $\mathcal{V}(X.A)$ für jedes Attribut $A \in \mathcal{A}(X)$,
- Für jede Klasse $X \in \mathcal{X}$: Menge der Referenz-Slots ρ_i mit Definitionsbereich X und Bildbereich $Y \in \mathcal{X}$.
- ▶ Ein inverser Slot ρ^{-1} ist die inverse Funktion von ρ .
- Eine Slot-Kette ρ_1, \dots, ρ_k ist eine Abfolge von (ggf. inversen) Slots, so dass für alle i gilt: ρ_i bildet auf den Definitionsbereich von ρ_{i+1} ab.
- Eine Instanz $\mathcal I$ gibt für jede Klasse X die Menge der Objekte der Klasse $\mathcal I(X)$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Komponenten eines relationalen Schemas

- ► Klassenmengen $\mathcal{X} = \{X_1, ..., X_n\},\$
- Für jede Klasse $X \in \mathcal{X}$: Menge der Attribute $\mathcal{A}(X)$ mit Wertebereich $\mathcal{V}(X.A)$ für jedes Attribut $A \in \mathcal{A}(X)$,
- Für jede Klasse $X \in \mathcal{X}$: Menge der Referenz-Slots ρ_i mit Definitionsbereich X und Bildbereich $Y \in \mathcal{X}$.
- ▶ Ein inverser Slot ρ^{-1} ist die inverse Funktion von ρ .
- Eine Slot-Kette $\rho_1, ..., \rho_k$ ist eine Abfolge von (ggf. inversen) Slots, so dass für alle i gilt: ρ_i bildet auf den Definitionsbereich von ρ_{i+1} ab.
- ightharpoonup Eine Instanz $\mathcal I$ gibt für jede Klasse X die Menge der Objekte der Klasse $\mathcal I(X)$.

TECHNISCHE UNIVERSITÄT DARMSTADT

Komponenten eines relationalen Schemas

- ► Klassenmengen $\mathcal{X} = \{X_1, ..., X_n\},\$
- Für jede Klasse $X \in \mathcal{X}$: Menge der Attribute $\mathcal{A}(X)$ mit Wertebereich $\mathcal{V}(X.A)$ für jedes Attribut $A \in \mathcal{A}(X)$,
- Für jede Klasse $X \in \mathcal{X}$: Menge der Referenz-Slots ρ_i mit Definitionsbereich X und Bildbereich $Y \in \mathcal{X}$.
- ▶ Ein inverser Slot ρ^{-1} ist die inverse Funktion von ρ .
- Eine Slot-Kette $\rho_1, ..., \rho_k$ ist eine Abfolge von (ggf. inversen) Slots, so dass für alle i gilt: ρ_i bildet auf den Definitionsbereich von ρ_{i+1} ab.
- ▶ Eine Instanz \mathcal{I} gibt für jede Klasse X die Menge der Objekte der Klasse $\mathcal{I}(X)$.

Beispielschema

Abhängigkeiten im Beispielschema

Abhängigkeiten im Beispielschema

Probabilistisches Modell

Ein PRM Π für ein relationales Schema definiert sich wie folgt. Für jede Klasse $X \in \mathcal{X}$ und jedes beschreibende Attribut $A \in \mathcal{A}(X)$ gibt es:

- eine Menge der Eltern $Pa(X.A) = \{U_1, ..., U_l\}$, wobei U_i die Form X.B oder $\gamma(X.K.B)$ hat, K eine Slot-Kette und γ eine Aggregatfunktion von X.K.B ist;
- eine gültige bedingte Wahrscheinlichkeitsverteilung P(X.A|Pa(X.A)).

Von PRMs zu Bayes'schen Netzen

Ein relationales Gerüst σ gibt die Menge der Objekte $\sigma(X_i)$ für jede Klasse an sowie die Relationen zwischen diesen Objekten, nicht jedoch die Attributwerte.

Ein PRM Π zusammen mit einem relationalen Gerüst σ definieren ein Bayes'sches Netz mit Knoten für alle Attribute bzw. Aggregate und Kanten für alle Abhängigkeiten.

$$P(\mathcal{I}|\sigma, \mathcal{S}, \theta_{\mathcal{S}}) = \prod_{x \in \sigma} \prod_{A \in \mathcal{A}(x)} P(\mathcal{I}_{x.A}|\mathcal{I}_{Pa(x.A)})$$
$$= \prod_{X_i} \prod_{A \in \mathcal{A}(X_i)} \prod_{x \in \sigma(X_i)} P(\mathcal{I}_{x.A}|\mathcal{I}_{Pa(x.A)})$$

Gültigkeit des probabilistischen Modells

- ► Eine Instanz besteht aus endlich vielen Objekten (1)
- Aber: keine Garantie, dass $P(\mathcal{I}|\sigma, \mathcal{S}, \theta_{\mathcal{S}})$ eine Dichtefunktion ist. (2)
- Abhängigkeiten dürfen nicht zyklisch sein.
- Einführung von Abhängigkeitsgraphen:
 - ▶ für Instanzen (Zyklenfreiheit garantiert Kohärenz für *diese* Instanz)
 - ▶ für Klassenabhängigkeiten (Zyklenfreiheit garantiert Kohärenz für alle Instanzen)

Graph der Klassenabhängigkeiten

- ► PRM mit struktureller Unsicherheit:
 - Referenzielle Unsicherheit (Belegung der Referenz-Slots unbekannt)
 - Existenzielle Unsicherheit (Existenz einiger Objekte unbekannt)
- PRM mit Klassenhierarchie

- PRM mit struktureller Unsicherheit:
 - Referenzielle Unsicherheit (Belegung der Referenz-Slots unbekannt)
 - Existenzielle Unsicherheit (Existenz einiger Objekte unbekannt)
- PRM mit Klassenhierarchie

- PRM mit struktureller Unsicherheit:
 - Referenzielle Unsicherheit (Belegung der Referenz-Slots unbekannt)
 - Existenzielle Unsicherheit (Existenz einiger Objekte unbekannt)
- PRM mit Klassenhierarchie

- PRM mit struktureller Unsicherheit:
 - Referenzielle Unsicherheit (Belegung der Referenz-Slots unbekannt)
 - Existenzielle Unsicherheit (Existenz einiger Objekte unbekannt)
- PRM mit Klassenhierarchie

Inferenz

- Exakt Ausnutzung der speziellen Struktur:
 - Dekomposition,
 - Wiederverwendung der Parameter.
- Approximativ Belief-Propagation-Algorithmus.
 - Idee: Benachbarte Knoten tauschen Informationen aus.
 - Konvergenz nur auf einfach zusammenhängeden Graphen
 - Sonst: kann konvergieren und dann gute Annäherung liefern

Parameterschätzung (I)

Log-Likelihood-Funktion gegeben ein Relationsgerüst σ , eine Abhängigkeitsstruktur S, eine Instanz \mathcal{I} :

$$\log L(\theta_{S}|\mathcal{I}, \sigma, S) = \log P(\mathcal{I}|S, \sigma, \theta_{S})$$

$$= \sum_{X_{i}} \sum_{A \in \mathcal{A}(X_{i})} \left[\sum_{x \in \sigma(X_{i})} \log P(\mathcal{I}_{x.A}|\mathcal{I}_{Pa(x.A)}) \right]$$

$$= \sum_{X_{i}} \sum_{A \in \mathcal{A}(X_{i})} \sum_{v \in \mathcal{V}(X.A)} \sum_{\mathbf{u} \in \mathcal{V}(Pa|X.A)} C_{X.A}[v, \mathbf{u}] \cdot \log \theta_{v|\mathbf{u}},$$

wobei $C_{X.A}[v, \mathbf{u}]$ die Anzahl der Beobachtungen von $\mathcal{I}_{X.A} = v$ und $\mathcal{I}_{Pa(x.A)} = \mathbf{u}$ ist.

Parameterschätzung (II)

 $C_{X,A}[v, \mathbf{u}]$ können mittels SQL-Anfragen berechnet werden:

SELECT grade, intelligence, difficulty, COUNT(*)
FROM registration, student, course
GROUP BY grade, intelligence, difficulty

 $C_{X,A}[v, \mathbf{u}]$ sind *suffiziente Statistiken* für die Parameter $\theta_{\mathcal{S}}$.

Strukturlernen

Wichtige Aspekte:

- I. Prüfung der Abhängigkeitsstrukturen auf Zulässigkeit
- II. Bewertung der Kandidaten
- III. Effizienz des Suchverfahrens

Strukturlernen (I)

Zulässige Strukturen

- ► Konstruktion eines Abhängigkeitsgraphen
- Nach dem Hinzufügen der Kante (u, v) prüfen, ob ein Weg von v nach u existiert
- ightharpoonup Komplexität mit Tiefensuche: O(|V| + |E|)

Strukturlernen (II)

Strukturbewertung

Bewertung einer Struktur $\mathcal S$ gegeben eine Instanz $\mathcal I$ und ein Gerüst σ :

$$P(S|\mathcal{I}, \sigma) \propto P(\mathcal{I}|S, \sigma)P(S|\sigma)$$

 $P(S|\sigma) = P(S)$, wobei lange Slot-Ketten penalisiert werden.

 $P(\mathcal{I}|\mathcal{S},\sigma) = \int P(\mathcal{I}|\mathcal{S},\theta_{\mathcal{S}},\sigma)P(\theta_{\mathcal{S}}|\mathcal{S}) \ d\theta_{\mathcal{S}}$ kann bei bestimmten Verteilungsnnahmen in geschlossener Form dargestellt werden.

Strukturlernen (III)

Struktursuche

- Lokale Suche im Raum der zulässigen Strukturen
- Lernen in Bayes-Netzen NP-schwer, daher kein effizientes Verfahren möglich
- ▶ Übergangsoperationen: add edge, delete edge, reverse edge.
- Verbesserungen: random restart, tabulist, simulated annealing etc.

Zusammenfassung

- ▶ PRMs erweitern Bayes'sche Netze um prädikatenlogische Elemente.
- PRMs erweitern relationale Schemata um probabilistische Elemente.
- Mit den Erweiterungen (strukturelle Unsicherheit, Klassenhierarchie) kann man weitere Zusammenhänge in den Daten modellieren.
- Ein PRM kann direkt aus einer relationalen Datenbank gelernt werden.

