Homework #3

Handed out Oct 31st (after exam)

Due Nov 14

Last time...

Types of Stellar Temperature

Excitation - ratio of atoms in different states of excitation, defined by Boltzmann equation

Ionization - ratio of atoms in different stages of ionization, defined by Saha equation

Kinetic - Maxwell-Boltzmann distribution

Color - blackbody assumption

Effective - at the "surface" of a star

$$L = 4\pi R^2 c T^4$$

Properties of Stars - Temperature

Types of Stellar Temperature

Why aren't these all the same?

Excitation
Ionization
Kinetic
Color
Effective

Properties of Stars - Temperature

Types of Stellar Temperature

Stars aren't in thermodynamic equilibrium...

...but can approximate:

Local

Thermodynamic

Equilibrium

Excitation
Ionization
Kinetic
Color
Effective

- 1) Distance parallax, Cepheids
- 2) Velocity proper motion, radial velocity
- 3) Brightness magnitudes, luminosity
- 4) Temperature effective temp (usually)
- 5) Mass
- 6) Radius

Determining Stellar Mass

For much of a star's lifetime it follows the mass-luminosity relation.

$$L = L_{sun} \left(\frac{M}{M_{sun}}\right)^{a}$$

$$3 \le a \le 4$$

Determining Stellar Mass

For much of a ctar's lifetime it follows the

DISCUSSION QUESTION

Why - physically - might we see a mass-luminosity relation in stars?

(think, then discuss)

Determining Stellar Mass

For much of a star's lifetime it follows the mass-luminosity relation.

$$L = L_{sun} \left(\frac{M}{M_{sun}} \right)^{a}$$

 $3 \lesssim a \lesssim 4$

Most massive:

 $\sim 100 M_{sun}$ (ish)

Least massive:

~0.01 M_{sun}

Determining Stellar Mass

Masses can be determined very precisely for stars in spectroscopic binaries.

Determining Stellar Mass

Determining Stellar Mass

$$m_1d_1 = m_2d_2$$

 $v = 2\pi d/P$ so $d = vP/2\pi$

$$m_1 v_1 P / 2\pi = m_2 v_2 P / 2\pi$$

Determining Stellar Mass

$$m_1d_1 = m_2d_2$$

 $v = 2\pi d/P$ so $d = vP/2\pi$

$$\frac{\mathsf{m}_1}{\mathsf{m}_2} = \frac{\mathsf{v}_2}{\mathsf{v}_1}$$

<u>Determining Stellar Mass</u>

$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

Determining Stellar Mass

A spectroscopic binary is a classic example

of center-of-mass physics:

m2

$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

Determining Stellar Mass

A spectroscopic binary is a classic example of center-of-mass physics:

observer

i = 0: face on

Determining Stellar Mass

$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

Determining Stellar Mass

A spectroscopic binary is a classic example of center-of-mass physics: m2

i = 0: face on

i = 90: along orbital plane

 $u_2 = v_2 \sin i$

 $U_1 = V_1 \sin i$

$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

<u>Determining Stellar Mass</u>

A spectroscopic binary is a classic example of center-of-mass physics:

i = 0: face on

i = 90: along orbital plane

$$v_2 = u_2/sini$$

 $v_1 = u_1/sini$

$$\frac{\mathsf{m}_1}{\mathsf{m}_2} = \frac{\mathsf{v}_2}{\mathsf{v}_1}$$

Determining Stellar Mass

A spectroscopic binary is a classic example of center-of-mass physics:

i = 0: face on

i = 90: along orbital plane

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1}$$

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1}$$
 , $v_1 = u_1/\sin i$

Determining Stellar Mass

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1}$$
, $v_1 = u_1/\sin i$

We also know Kepler's 3rd Law:

$$m_1+m_2=\frac{4\pi^2(a_1+a_2)^3}{GP^2}$$
 , $v_1=\frac{2\pi a_1}{P}$

where a₁ and a₂ are the semimajor axes of the two masses' elliptical orbits.

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1} ,$$

$$m_1+m_2 = \frac{4\pi^2 (a_1+a_2)^3}{GP^2}$$
,

$$\frac{2\pi a_1}{P} = u_1/\sin i$$

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1} ,$$

$$m_1+m_2=\frac{4\pi^2(a_1+a_2)^3}{GP^2}$$
,

$$a_1 = \frac{u_1 P}{2\pi \sin i}$$

$$a_2 = \frac{u_2 P}{2\pi \sin i}$$

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1} ,$$

$$m_1+m_2 = \frac{4\pi^2 (a_1+a_2)^3}{GP^2}$$
,

$$a_1 + a_2 = \frac{(u_1 + u_2)P}{2\pi \sin i}$$

$$\frac{m_1}{m_2} = \frac{v_2}{v_1} = \frac{u_2}{u_1}$$
,

$$m_1+m_2 = \frac{4\pi^2 \left(\frac{(u_1+u_2)P}{2\pi \sin i}\right)^3}{GP^2}$$

$$\frac{m_1}{m_2} = \frac{u_2}{u_1}$$

$$m_1+m_2 = \frac{P(u_1+u_2)^3}{2G\pi \sin^3 i}$$

<u>Determining Stellar Mass</u>

$$\frac{m_1}{m_2} = \frac{u_2}{u_1}$$
and

$$m_1 + m_2 = \frac{P(u_1 + u_2)^3}{2G\pi \sin^3 i}$$

give us masses from a spectroscopic binary

- 1) Distance parallax, Cepheids
- 2) Velocity proper motion, radial velocity
- 3) Brightness magnitudes, luminosity
- 4) Temperature effective temp (usually)
- 5) Mass luminosity, binaries
- 6) Radius

Determining Stellar Radius

Lunar occultation

Determining Stellar Radius

Determining Stellar Radius

Lunar occultation

DISCUSSION QUESTION

Which of the following factors limit the use of the lunar occultation technique?

I: star brightness

II: star size

III: star position

IV: star temperature

A) II and III

C) III only

B) I, II, and III D) all of the above

Determining Stellar Radius

Lunar occultation Interferometry

We can use interferometry to push down towards diffraction-limited astro and image very large stars.

Easier at longer wavelengths.

Betelgeuse in the IR

10 mas

<u>Determining Stellar Radius</u>

Lunar occultation
Interferometry
Eclipsing binaries

<u>Determining Stellar Radius</u>

Lunar occultation Interferometry Eclipsing binaries from T and L (L = $4\pi R^2 \sigma T^4$)

<u>Determining Stellar Radius</u>

Smallest stars: neutron stars; ~city of Seattle

Largest stars: red supergiants...

 $L = 4\pi R^2 \sigma T^4$

Star	Sp Type	V	B-V	m-M	T _{eff} (K)	M _{bol}	R/R _{sun}
HD 90382	M3-M4 I	7.45	2.21	11.7	3550	-8.27	1060
HD 91093	M2 I	8.31	2.21	11.9	3625	-8.26	640
HD 303250	M2 I	8.92	2.51	11.9	3625	-7.60	750
HD 93420	M4 I	7.55	1.87	12.0	3525	-7.60	790
HD 94096	M2 I	7.38	2.24	12.0	3650	-8.08	920
HD 95687	M3 I	7.35	2.12	11.6	3625	-7.63	760
HD 95950	M2 I	6.75	2.04	11.6	3700	-7.54	700
V396 Cen	M3-M4 I	7.85	2.15	11.6	3550	-8.29	1070
HD 160371	K2.5 I	6.14	1.82	8.4	3900	-3.63	100
KY Cygni	M3-M4 I	10.57	3.64	11.0	3500	-10.36	2850
HD 339034	K3 I	9.36	3.05	11.8	4000	-8.63	980

Levesque et al. (2005)

<u>Determining Stellar Radius</u>

Smallest stars: neutron stars; ~city of Seattle

Largest stars: red supergiants; ~orbit of Jupiter

NSF REU Programs in Astronomy

- ~2-month summer research internships at research sites around the world
- paid research with an REU adviser or group
- apply directly to specific sites; typical application includes essay, transcripts, and reference letters
- most deadlines are ~Jan-Feb
- *excellent* opportunity to present, publish, and strengthen graduate school applications

NSF REU Programs in Astronomy

REU Sites: Astronomical Sciences

Please report errors in the list below by writing to reu.ast@nsf.gov.

Search Again

Export results: 40 CSV | \$6 Excel | 60 XWL

24 items found, displaying 1 to 20.

[FirstProv] 1.2 [NextLast]

Site Information	Site Location	@Contact Information	Additional Information
American Museum of Natural History REU Program in Earth Sciences and Astrophysics at the American Museum of Natural History Division of Physical Sciences	New York, New York	Primary: Dr. Cherles Liu (212) 496-3579 diu@arnnh.org Secondary: James D. Webster (212) 769-5401 jow@arnnh.org	Research Topics/Keywords: earth science, planetary science, estrophysics Abstract of Award Cofunded: Earth Sciences
Arecibe Observatory REU at the Arecibe Observatory	Arecibo, Puerto Rico	Primary: Dr. Hilda Colón (787) 878-2612 teu-program@naic.edu	Research Topics/Keywords: astronomy, astrophysics, planetary science, instrumentation, atmospheric physics Abstract of Award Columbet: Atmospheric and Geospace Sciences
Boston University Magnetic Fields on Planetary to	Boston, Massachusetts	Primary: Prof. Andrew West (617) 358-5879	Research Topics/Keywords: Astrophysics, space physics, planetary science, magnetic fields.

Link on class website!

Properties of Stars

- 1) Distance parallax, Cepheids
- 2) Velocity proper motion, radial velocity
- 3) Brightness magnitudes, luminosity
- 4) Temperature effective temp (usually)
- 5) Mass luminosity, binaries
- 6) Radius Iunar, interferometry, binaries, L & T

- format: short answers (problems, paragraphs)
- exam goes from 1:30pm 2:50pm
- scientific calculators are the only devices allowed
- one 8.5x11 page of notes (both sides) is allowed

You will be given this:

You will **not** be given:

- equations
- relations
- basic units(microns,angstroms, Hz)

Coming up next...

Thursday, Oct 26: exam review slidecast; link on class website!

exam prep: extra office hours
Mon Oct 30: 10-11am, 1-4pm

Tuesday, Oct 31: Exam #1