REDES DE ÁREA LOCAL

CONTENIDOS

- Introducción
- Proyecto IEEE 802
- La familia Ethernet
 - Ethernet
 - Fast Ethernet
 - Gigabit Ethernet
 - 10 Gigabit Ethernet
- Token Bus
- Token Ring
- FDDI
- WLAN

CONCEPTO

Red de Área Local es un sistema de transmisión de datos que permite la comunicación entre dispositivos a gran velocidad y compartir recursos, dentro de un área geográfica limitada

CARACTERÍSTICAS

- Máxima distancia de la red: 4Km
- Mínima tasa de velocidad: 1 Mbps
- Topología física: bus, anillo, estrella (la más habitual)
- Baja tasa de error: 10⁻¹¹ < Tasa < 10⁻⁸ (menos de 1 por cada 100 millones)
- Titularidad: privada
- Configuración de la línea: difusión
- Estándares: Ethernet, FDDI, Wifi, etc.

NOTA

Se conoce como Mbps o Mbit/s a las siglas que significan "Megabits por segundo" Es una unidad de transmisión de datos equivalente a 1.000.000 bits por segundo

VENTAJAS

Compartir recursos

- Periféricos caros: Impresora láser
- Aplicaciones compartidas
- Datos accesibles para todos
- Etc.

Mayor fiabilidad

- Reparto de funciones entre equipos (servidor DNS, servidor de correo, etc.)
- Redundancia controlada de la información

Administración eficiente

Gestión de usuarios, grupos, permisos y seguridad (controladores de dominio)

Flexibilidad

No afecta cambios en la situación física de los equipos

Automatización de tareas

Copias de seguridad, tráfico de la red, etc.

INCONVENIENTES

- Posible pérdida de seguridad o privacidad de datos
- Dispersión de datos y recursos
- Mayor dificultad de gestión y administración

Estas "dificultades" pueden solucionarse mediante la creación de un dominio, la asignación de permisos de usuario, directivas de grupo, herramientas seguridad, etc.

PROYECTO IEEE 802

- Publicado en 1985 por el IEEE
- Objetivo: comunicar equipos de distintos fabricantes
- Cubre los dos primeros niveles del modelo OSI y parte del tercer nivel
- ¿Recordamos los niveles del modelo OSI?

• Recordamos el modelo OSI...

Niveles

Aplicación

Presentación

Sesión

Transporte

Red

Enlace de datos

Físico

- El proyecto divide la capa de Enlace de Datos en dos subniveles:
 - Subnivel LLC (802.2) que es el mismo para todas las redes
 - Subnivel MAC (802.3-802.22) que contiene módulos diferentes para cada red.

CONTROL DE ENLACE LÓGICO LLC

- Gestiona las direcciones lógicas, la información de control y los datos
- Es el subnivel superior dentro de la capa de enlace y es común a todas las LAN

CONTROL DE ACCESO AL MEDIO MAC

- Gestiona el tramado, la sincronización, el flujo, el control de errores y el direccionamiento físico de los equipos emisor y receptor.
- Los protocolos MAC son específicos para cada red LAN
- Además, el proyecto define el estándar 802.1 para asegurar la compatibilidad entre LAN y MAN que utilizan los distintos protocolos

TIPOS REDES LAN EN EL MODELO OSI

CLASIFICACIÓN DE LOS ESTÁNDARES IEEE 802

Estándar	Utilidad
IEEE 802.1	Estándares para la compatibilidad de redes LAN con MAN. Estándares relacionados con la gestión de redes: STP, VLAN, etc.
IEEE 802.2	Normativa para el Control de Enlace Lógico (LLC)
IEEE 802.3	Ethernet. Red LAN con topología estrella y método CSMA/CD
IEEE 802.4	Token Bus. Red LAN con topología en bus y método paso de testigo
IEEE 802.5	Token Ring. Red LAN con topología de anillo y método paso de testigo
IEEE 802.5	Redes MAN
IEEE 802.7	Redes LAN de banda ancha (en desuso)
IEEE 802.8	FDDI. Red LAN con topología en anillo sobre fibra óptica
IEEE 802.9	Integración de voz y datos en las redes LAN
IEEE 802.10	Seguridad en redes LAN

CLASIFICACIÓN DE LOS ESTÁNDARES IEEE 802

Estándar	Utilidad
IEEE 802.11	WLAN. Red LAN inalámbrica mediante ondas de radio
IEEE 802.12	100VG AnyLAN
IEEE 802.13	¡Se evita su uso por superstición! ¡¡Qué frikis somos ;)!!
IEEE 802.14	Cable módem para sistemas híbridos de cobre y fibra óptica (HFC)
IEEE 802.15	WPAN (Redes PAN inalámbricas mediante Bluetooth)
IEEE 802.16	WIMAX (Redes MAN inalámbricas)
IEEE 802.17	Anillo de paquete elástico (RPR)
IEEE 802.18	Normativa internacional para redes de ondas de radio
IEEE 802.19	Coexistencia de redes inalámbricas sin licencia
IEEE 802.20	Acceso a Internet para redes móviles
IEEE 802.21	Media Independent Handoff
IEEE 802.22	Wireless Regional Area Network (WRAN)

ETHERNET (IEEE 802.3)

- Primero fue desarrollada por el grupo DIX (Digital, Intel y Xerox) y, posteriormente, estandarizada por IEEE en 1985 con el objetivo de que fuera compatible con el modelo OSI.
- Ethernet es una familia de redes LAN que define:
 - Protocolos a nivel de enlace (subnivel MAC)
 - Tecnologías a nivel físico
- Por lo tanto, abarca el primer nivel del modelo OSI y el subnivel MAC del segundo

CARACTERÍSTICAS FÍSICAS

- Usa señales digitales
- Comunicación bidireccional (Full Dúplex)
- Un único canal de datos (no hay multiplexación)
- Usa repetidores, hubs y switches para reconstruir la señal
- Topología actual estrella
- Costes de instalación bajos

MÉTODO DE ACCESO AL MEDIO

- Cuando muchos usuarios comparten el mismo medio, existe el peligro de que envíen las señales a la vez, convirtiéndose en ruido.
- El envío simultáneo de 2 o más señales se llama colisión y deja ilegibles las señales
- Por tanto, es necesario mecanismo para regular el envío de señales para minimizar el nº de colisiones y maximizando el nº de tramas que lleguen con éxito.
- El mecanismo usado por Ethernet es CSMA / CD (Acceso Múltiple con Detección de Portadora y Detección de Colisiones)

DIRECCIONAMIENTO FÍSICO

- Cada estación de una red Ethernet tiene su propia tarjeta de red que se llama Network Interface Card (NIC) que proporciona una dirección física de 12 dígitos hexadecimales
- ¿Con qué comando podemos conocer la dirección física de las tarjetas de red instaladas en el equipo?

DIRECCIONAMIENTO FÍSICO

```
Sufijo DNS específico para la conexión. . :
DHCP habilitado . . . . . . . . . . . . . . sí
Configuración automática habilitada . . . : sí
Vínculo: dirección IPv6 local. . . : fe80::a858:c101:9146:7fb5%72(Preferido)
Concesión obtenida. . . . . . . . . . . : lunes, 27 de septiembre de 2021 9:52:57
La concesión expira . . . . . . . . . : jueves, 30 de septiembre de 2021 15:11:29
Puerta de enlace predeterminada . . . . : 192.168.0.1
Servidor DHCP . . . . . . . . . . . . : 192.168.0.1
Servidores DNS. . . . . . . . . . . . . . . 212.166.210.80
                     212.166.132.104
NetBIOS sobre TCP/IP. . . . . . . . . : habilitado
```


IMPLEMENTACIONES

- Se trata de las distintas versiones de red Ethernet que existen
- Cada implementación se representa por:
 - un código, donde el primer número es la tasa de transferencia (Mbps)
 - el tipo de transmisión (base/broad)
 - Longitud del segmento o tipo de cable

IMPLEMENTACIONES

Las implementaciones más conocidas son:

- Ethernet (IEEE 802.3)
 - 10Base5 (10Mbps y coaxial 500m)
 - 10Base2 (10Mbps y coaxial 185m)
 - 10BaseT (10Mbps y par trenzado 100m)
 - 10BaseF (10Mbps y fibra óptica 2000m)
- Fast Ethernet (IEEE 802.3u)
 - 100BaseTX(100 Mbps y par trenzado de 2 pares 100m)
 - 100BaseT4 (100 Mbps y par trenzado de 4 pares 100m)
 - 100BaseFX (10 Mbps y fibra óptica 2000m)

IMPLEMENTACIONES

Las implementaciones más conocidas son:

- Gigabit Ethernet (IEEE 802.3ab)
 - 1000BaseX (1 Gbps y fibra óptica)
 - 1000BaseT (1Gbps y par tranzado 100m)
- 10 Gigabit Ethernet (IEEE 802.3ae)
 - 10GBaseSR, 10BaseLR, 10BaseCX4 (10 Gbps y fibra óptica)
 - 10GbBaseT (10 Gbps y par trenzado 100m)

10Base5

- El primer estándar físico definido por IEEE 802.3 en 1983 se denomina Ethernet de cable grueso
- Topología de bus
- La transmisión en banda base y la máxima longitud por segmento es de 500m
- La longitud máxima de la red es 2500m
- Distancia mínima entre estaciones 2,5m
- Total de 1024 estaciones
- Cable coaxial grueso RG-8 (similar a una manguera, muy grueso y rígido). Hoy ya no existe

10Base2

- La segunda implementación de IEEE 802.3 es Ethernet de cable fino
- Proporciona una alternativa más barata que 10Base5 pero con la misma velocidad
- Topología física en bus y tamaño máximo de segmento 185 metros
- Utiliza tarjeta red internet, coaxial fino RG-58 y conectores BNC
- Topología en bus, lo que crea problemas a medida que la LAN se hace más grande, porque un fallo de cualquier segmento de cable desconecta toda la red.
- Estas implementaciones han desaparecido

10BaseT

- Utiliza cables de par trenzado UTP, topología física en estrella con un concentrador o hub en el centro, que tiene un puerto para cada estación
- La topología lógica es en bus, porque el hub permite todas las tramas a todas las estaciones, la tarjeta NIC de cada equipo es la encargada de leer las tramas que le corresponden
- Tamaño máximo de segmento 100m y nº máximo equipos 1024
- Llamamos dominio de colisión a los equipos conectados por un hub o una serie de hubs formando una topología de estrella extendida o topología de árbol. Por tanto, el uso de hubs aumenta el tamaño del dominio de colisión

10BaseT

- En un hub la tasa de transferencia se reparte entre los equipos que se conectan, además, el número de colisiones crece considerablemente reduciendo el rendimiento de la red.
- En conclusión, la implementación 10BaseT con topología en estrella permite que el fallo de un cable no desconecte al resto de la red, pero sigue teniendo un gran número de colisiones y ancho de banda reducido cuando el nº de equipos aumenta.
- Estos problemas se resuelven con la aparición del switch, dispositivo que no permite colisiones y mantiene la tasa de transferencia por cada puerto.
- Sin embargo, 10Mbps seguían siendo muy poco para las necesidades de una LAN

- En los 90 aparece un nuevo estándar que incorpora sistemas de codificación más eficientes, posibilitando una tasa de 100Mbps
- Además, el uso del switch (que envía las tramas solamente a su destinatario en lugar de retransmitir a todos los equipos) ha convertido al estándar Fast Ethernet en el más utilizado del mundo.
- A continuación, se enumeran las implementaciones más extendidas:
 - 100BaseT4
 - 100BaseTX
 - 100BaseFX

100BaseT4

- Usa cuatro pares de hilos trenzados UTP de categoría 3 o superior
- Dos pares son bidireccionales, los otros son unidireccionales
- Esto significa que en cada dirección se utilizan tres pares en cada momento, y los 100Mbps se dividen en tres, resultando 33.6Mbps en cada par
- Máxima longitud del segmento 100m

100BaseTX

- Usa dos pares de hilos trenzados UTP o STP de categoría 5 o superior.
- Un par se utiliza para enviar tramas y el otro para recibir
- El modo de transmisión es Full-Dúplex con switch
- Máx. longitud de segmento 100m

100BaseFX

- Usa un par de hilos de fibra óptica multimodo, una para transmitir tramas y la otra para recibir (detecta colisiones)
- Modo de transmisión Half-Dúplex
- Máxima longitud segmento 2000 metros

Implementación	Medio	Características	Segmento máx.
100Base4	Par trenzado	Categoría 3	100m
100BaseTX	Par trenzado	Categoría 5	100m
100BaseFX	Fibra óptica	Láser onda 1300mm	2km

GIGABIT ETHERNET TASA TRANS. 1 GBPS

- Se diseñó para fibra óptica pero permite su uso para par trenzado
- Algunas implementaciones son: 1000BaseZX, 1000BaseLX, 1000BaseSX y 1000BaseT

1000BaseT

- Emplea cuatro pares de hilos de cable, transmitiendo simultáneamente en ambos sentidos
- Funciona sobre cable de categoría 5 o superior

GIGABIT ETHERNET TASA TRANS. 1 GBPS

Implementación	Medio	Características	Segmento máx.
1000BaseZX	Fibra monomodo	Láser 1550nm	80Km
1000BaseLX	Fibra monomodo	Láser 1310nm	5km
1000BaseSX	Fibra multimodo	Láser 850nm	550m
1000BaseT	UTP	Eléctrica	100m

GIGABIT ETHERNET TASA TRANS. 10 GBPS

- Publicada en 2002 en estándar IEEE 802.3ae
- Aplica en LAN, WAN, MAN
- Implementaciones sobre fibra óptica y par trenzado (categoría 6 o 7)

Implementación	Medio	Características	Segmento máx.
10GBaseER	Fibra monomodo	Láser 1550nm	80km
10GBaseLR	Fibra monomodo	Láser 1310 nm	5Km
10GBaseSR	Fibra multimodo 50/125µm	Láser 850nm	300Km
10GBaseT	FTP/STP	Eléctrica	100m

TOKEN BUS (IEEE 802.4)

INTRODUCCIÓN

- El mecanismo de acceso al medio de Ethernet produce colisiones, las estaciones pueden realizar muchos intentos antes de enviar con éxito la trama al destinatario.
- Esto puede producir retrasos indefinidos si el tráfico es denso.
- La red de anillo con paso de testigo resuelve este problema exigiendo que las estaciones manden sus tramas por turnos.

MÉTODO DE ACCESO: PASO DE TESTIGO

• El testigo es una trama de control que circula alrededor del anillo, una estación puede enviar datos solamente cuando está en posesión del testigo.

Red local Token Bus

FDDI (ANSIY IEEE 802.8)

INTRODUCCIÓN

- FDDI es un estándar para la transmisión de datos en redes locales sobre fibra óptica, aunque existe una versión sobre par trenzado llamada TP-DDI
- Características básicas:
 - Tasa de datos de 100Mbps
 - Topología en anillo doble
 - Distancia máxima de 200Km
 - Máximo 1000 estaciones conectadas

MÉTODO DE ACCESO: PASO DE TESTIGO

 El acceso al medio está regulado por el testigo y limitado por el tiempo como en Token Bus

IMPLEMENTACIÓN

- Se implementa como un anillo doble:
 - El anillo primario se dedica a la transmisión
 - El anillo secundario es un respaldo. Lo que permite mantener el funcionamiento en caso de fallo
- Tasa de transferencia puede aumentarse a 200Mbps usando 2 anillos para transmitir

IMPLEMENTACIÓN

- Tres tipos de nodos:
 - Estación dual (DAS): tiene dos conectores para estar en conexión en ambos anillos
 - Estación simple (SAS)
 - Concentrador de conexión (DAC)
- La mayoría de equipos son estaciones simples conectadas a los concentradores.
- Esta LAN dejó de utilizarse porque Gigabit Ethernet es un estándar mas rápido y económico

WLAN. WIRELESS LAN (IEEE 802.11)

INTRODUCCIÓN

- WLAN o Wi-Fi es una red de área local inalámbrica que utiliza ondas de radio.
- Estas redes no sustituyen, sino que complementan a las LAN por cable.
- Instalación fácil, económica y opción cuando no es posible cableado
- Útiles para portátiles y móviles, permiten una gran movilidad sin perder conexión
- Casos de trabajos de corta duración, no interesa mantener una instalación

ELEMENTOS

- ESTACIONES Cualquier dispositivo equipado con interfaz inalámbrica
- MEDIO El aire
- TIPO DE SEÑAL Ondas de radio
- ADAPTADOR INALÁMBRICO
 - Permite al equipo conectarse a una red Wi-Fi
 - Puede ser interno (adaptador interno) o externo (vía USB o tarjeta red inalámbrica)
- PUNTOS DE ACCESO (AP)
 - Conecta la red cableada con la inalámbrica
 - Realiza la conversión de tramas, Por ej. un PC con Ethernet 802.3 y portátil wifi (802.11)
- <u>CONJUNTO DE SERVICIO BÁSICO (BSS)</u>: grupo de estaciones que se comunican entre sí y comparten la misma red Wi-Fi (SSID)
- ÁREA DE SERVICIO BÁSICO (BSA): es el área física donde se comunican las estaciones de un mismo BSS, proporcionada por un punto de acceso

MÉTODO DE ACCESO AL MEDIO

- Acceso múltiple con detección de portadora y prevención de colisiones CSMA/CA
- Este método se explicará en el tema de nivel de enlace.

TIPOS REDES WIFI

Red Ad Hoc

 Los equipos inalámbricos se conectan entre sí, sin punto de acceso

Red Ad hoc

Red de infraestructura

 El punto de acceso hace de puente entre la red cableada y la inalámbrica

Red Bridge

 Conectan redes LAN mediante enlace inalámbrico

TIPOS DE REDES WIFI

Red Bridge

IMPLEMENTACIONES

IEEE 802.11a

1999, banda ancha de 5GHz, velocidad teórica máx. 54Mbps (velocidad real 20Mbps).
 200 metros

IEEE 802.11b

• 1999, banda ancha 2.4GHz, velocidad real 5,5Mbps. 50m en interior, exterior 10Km

<u>IEEE 802.11g</u>

2003, banda de 2.4GHZ, velocidad real 22Mbps. 50Km

<u>IEEE 802.11n</u>

2009, velocidad real 300Mbps

IEEE 802.11ac

2014, banda 5GHz, velocidad transmisión 1,3Gbps

<u>IEEE 802.11ax</u>

2020 Wi-Fi 6

SEGURIDAD

<u>WEP</u> (Wired Equivalent Privacy)

- 1999 sistema WEP para proporcionar seguridad a una red inalámbrica
- WEP es el sistema de cifrado incluido inicialmente para redes 802.11.
- Actualmente, puede ser descifrada en varios minutos

<u>WPA</u> (Wifi Protected Access)

• 2003, diseñado para utilizar un servidor de autentificación

WPA2 (Wifi Protected Access)

2004

WPA3 (Wifi Protected Access)

2008

REDES DE ÁREA LOCAL