HGNN Algorithm

Jarred M. Kvamme¹, Boyu Zhang², and Audrey Q. Fu 1,3

¹Department of Bioinformatics and Computational Biology - University of Idaho ²Department of Computer Science - University of Idaho ³Department of Mathematics and Statistical Science - University of Idaho

August 24, 2023

1 Preprocessing

- 1.1 Given the node feature matrix $\mathbf{X} \in \mathbb{R}^{\mathbf{N} \times \mathbf{p}}$ compute the adjacency matrix $\mathbf{A_0}$ corresponding to the input graph $\mathcal{G}_0(E, N)$ of E edges and N vertices by one of the following methods
 - 1.1.1 Correlations method: Compute the correlation matrix $\mathbf{R} \in \mathbb{R}^{\mathbf{N} \times \mathbf{N}}$ from \mathbf{X} . Convert the correlation matrix \mathbf{R} into an adjacency matrix $\mathbf{A_0}$ such that

$$a_{i,j} = \begin{cases} 1 & \text{if } r_{i,j} > \rho \\ 0 & \text{else} \end{cases}$$

where ρ represents a minimum correlation threshold to consider an edge $e_{i,j}$ between nodes i and j.

- 1.1.2 **K-neighbors method: For all nodes** i compute the distance from node i to all other nodes. Link node i to the first k nodes with smallest distances
- 1.1.3 Precision method:
- **1.2** Construct the consensus hierarchy \mathcal{H}_0 of the input graph \mathcal{G}_0 ...
 - 1.2.1 For $i \in \{1:n\}$ repetitions: Using the Louvain Algorithm, construct a hierarchy $\mathcal{H}^{(i)}$ which represents a stochastic partition of \mathcal{G}_0 into a set of $\ell-1$ sub-graphs such that $\mathcal{H}^{(i)} = \{\mathcal{S}_0, \mathcal{S}_1^{(i)}, \mathcal{S}^{(i)}, \cdots, \mathcal{S}_{\ell-1}^{(i)}\}$ where $\ell = |\mathcal{H}^{(i)}|$ is the number of layers in the hierarchy with $\mathcal{S}_0 = \mathcal{G}_0$ representing the starting (or bottom) layer.
 - 1.2.2 Let $M = \{m_i\}_{i=1}^n$ contain the number of super layers in all n hierarchies such that $m_i = |\mathcal{H}^{(i)}| 1$. Next let $\zeta \in \{1, 2, ...(\ell 1)\}$ denote the set of possible numbers of super-layers for a given hierarchy. Compute the number of super-layers for the consensus hierarchy \mathcal{H}_0 via popular vote:

$$m_0 = \underset{\zeta}{\operatorname{arg max}} f(M)$$
 where $f(M) = \frac{\sum_{i \in \zeta} I(M=i)}{n}$

1.2.3 Compute the number of communities in each super-layer of the consensus hierarchy \mathcal{H}_0 by agglomerating the community assignments for a given layer across all n computed hierarchies from step 1.2.1.

For all $j \in \{1 : m_0\}$: agglomerate the community assignments for all i subgraphs S_j corresponding to the j^{th} super layer in all i hierarchies.

- 1.3 For each layer S_j in \mathcal{H}_0 , gather all edges connecting S_j to its adjacent super-layer S_{j+1} . These are the "down-to-up" edges. Let $p_i^{(j)}$ represent the collection of edges which maps the path from node η_i in the bottom layer to the j^{th} super-layer. Then this path represents the message-passing channel by which the i^{th} node N_i can communicate with k^{th} super-level node N_k in the j^{th} super layer
- 1.4 For each super
- 1.5 Set up HC-GNN model
- 1.6 Generate within-level community detection autoencoders

2 Training