

Figure 22: Eindopdracht

Figure 1: Boek 4: Actuatoren met hoog vermogen

Contents

Voorwoord	=
5. DC Motor met Transistor	=
7. DC Motor Met Relais	•
8. Infrarood Sensor Obstakel Ontwijkend Object	11

Voorwoord

Figure 1: Het logo van De Jonge Onderzoekers

Dit is het boek van de Arduino cursus. Een Arduino is een machine die je kunt programmeren. Dit boek leert je hoe je electronica op de Arduino aansluit, en hoe je deze programmeert.

Over dit boek

Dit boek heeft een CC-BY-NC-SA licensie.

Figure 2: De licensie van dit boek

(C) Arduino cursus Groningen 2017

Het is nog een beetje een slordig boek. Er zitten tiepvauten in en de opmaak is niet altijd even mooi.

 $Daarom\ staat\ dit\ boek\ op\ een\ GitHub.\ Om\ precies\ te\ zijn,\ op\ https://github.com/richelbilderbeek/ArduinoCourse\ .\ Hierdoor kan iedereen\ die\ dit\ boek\ te\ slordig\ vindt\ minder\ slordig\ maken.$

5. DC Motor met Transistor

Deze les leren we

- wat een transistor is
- · hoe je een transistor gebruikt
- · wat een DC motor is
- · hoe je een DC motor gebruikt

Waarschuwing

Haal deze les altijd de USB snoer uit je computer als je een schakeling aan sluit. Anders gaat de computer misschien stuk.

LED met drukknop

Haal de USB uit de computer. Sluit dan figuur 'LED met drukknop' aan. Doe op het eind de USB weer in de computer.

Upload de code van 'Blink' op de Arduino.

Vragen

1. Hoe weet je dat dit gelukt is?

Oplossingen

1. Als je elke second een tik hoort

Relais met DC motor

Figure 21: Relais met DC motor

Haal de USB uit de computer. Sluit figuur 'Relais met DC motor' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

Vragen

1. Hoe weet je dat dit gelukt is?

Oplossingen

1. Als de motor elke second van richting verandert

Eindopdracht

- Maak de schakeling af, volgens figuur 'Eindopdracht'
- Programmeer de code zelf: als er niks voor de sensor zit, moet de auto vooruit gaan. Anders moet de auto draaien

Figure 19: LED met transistor

Figure 20: Een eenzaam relais

Figure 3: Pas op! Zie 'Waarschuwing'

Figure 4: LED met drukknop

Vragen

- 1. Wat doet deze schakeling?
- 2. Wie levert de electriciteit voor het LEDje: de batterijen of de Arduino? Waarom?
- 3. Hoe moet je de Arduino programmeren?
- 4. Hoe werkt de schakeling?

Oplossingen

- 1. Als je het knopje indrukt, gaat het lampje branden
- 2. De batterijen, omdat de plus van de batterijen aangesloten is op de plus van het LEDje
- 3. Hoe je de Arduino ook programmeert, de schakeling gedraagt zich altijd hetzelfde
- 4. Als je de knop indrukt, kan er stroom gaan lopen door de knop en het LEDje. Daardoor gaat het LEDje branden

LED met transistor

Een transistor is een soort drukknop. In plaats dat je een transistor met je vinger indrukt, zet je er electrische spanning op. Als er spanning op staat, dan kan er stroom door de transistor.

Figure 5: LED met transistor

Haal de USB uit de computer. Sluit figuur 'LED met transistor' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

Vragen

- 1. Wat doet deze schakeling?
- 2. Wie levert de electriciteit voor het LEDje: de batterijen of de Arduino? Waarom?
- 3. Hoe werkt de schakeling?

Oplossingen

- 1. Als de Arduino spanning op pin 13 zet, gaat het lampje branden
- 2. De batterijen, omdat de plus van de batterijen aangesloten is op de plus van het LEDje
- 3. Als de Arduino spanning zet op de middelste pin van de transistor, kan er stroom gaan lopen door de transistor (van linker naar rechterpin) en het LEDje. Daardoor gaat het LEDje branden

Figure 18: Infrarood sensor

```
void loop()
{
   Serial.println(analogRead(A0));
   delay(100);
}
```

- 2. Als de sensorwaarde duidelijk reageert op een hand die ervoor heen en weer wordt bewogen
- 3. Hoe dichterbij je komt, hoe lager de getallen worden

LED met transistor

Een transistor is een soort drukknop. In plaats dat je een transistor met je vinger indrukt, zet je er electrische spanning op. Als er spanning op staat, dan kan er stroom door de transistor.

Haal de USB uit de computer. Sluit figuur 'LED met transistor' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

Vragen

1. Hoe weet je dat dit gelukt is?

Oplossingen

1. Als de LED knippert

Relais

Haal de USB uit de computer. Sluit figuur 'Een eenzaam relais' aan. Doe op het eind de USB weer in de computer.

Eindopdracht

• Laat de motor reageren op een LDR: als er geen licht is, moet de motor linksom draaien, anders rechtsom

8. Infrarood Sensor Obstakel Ontwijkend Object

Deze les leren we

· hoe je een autootje maakt die dingen ontwijkt

Waarschuwing

Figure 17: Pas op! Zie 'Waarschuwing'

Haal deze les altijd de USB snoer uit je computer als je een schakeling aan sluit. Anders gaat de computer misschien stuk.

Infrarood Sensor

Sluit figuur 'Infrarood sensor' aan.

Vragen

- 1. Welke code moet je op de Arduino zetten?
- 2. Hoe weet je dat het gelukt is?
- 3. Worden de getallen hoog of laag als je dichterbij komt?

Oplossing

1. Code van de lessen met een sensor, bijvoorbeeld onderstaande code van les '4. FSR':

```
void setup()
{
  pinMode(AO, INPUT);
  Serial.begin(9600);
}
```

DC motor met drukknop

Een DC motor is een motor die beide kanten rond kan draaien. DC is een Engelse afkorting voor 'Direct Current': gelijkspanning. Daarom wordt een DC motor ook een gelijkspanningsmotor genoemd. De Arduino, maar ook batterijen, leveren gelijkspanning.

Figure 6: DC motor met drukknop

Figure 7: Diode

Er zijn twee nieuwe componenten:

- Diode (zie figuur 'Diode'): een eenrichtingsweg voor electriciteit
- Condensator (zie figuur 'Condensator'): een soort batterij die snel op- en ontlaad

Deze componenten zijn nodig omdat een DC motor ook electriciteit kan maken (!).

Haal de USB uit de computer. Sluit figuur 'DC motor met drukknop' aan. Doe op het eind de USB weer in de computer.

Vragen

- 1. Wat doet deze schakeling?
- 2. Wie levert de electriciteit voor het LEDje: de batterijen of de Arduino? Waarom?
- 3. Hoe moet je de Arduino programmeren?

Figure 8: Condensator

4. Hoe werkt de schakeling?

Oplossingen

- 1. Als je het knopje indrukt, gaat het motortje draaien
- 2. De batterijen, omdat de plus van de batterijen aangesloten is op de plus van het LEDje
- 3. Hoe je de Arduino ook programmeert, de schakeling gedraagt zich altijd hetzelfde
- 4. Als je de knop indrukt, kan er stroom gaan lopen door de knop en het motortje. Daardoor gaat het motortje draaien

DC motor met transistor

Figure 9: DC motor met transistor

Haal de USB uit de computer. Sluit figuur 'DC motor met transistor' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

5

Vragen

- 1. Wat doet deze schakeling?
- 2. Wie levert de electriciteit voor het LEDje: de batterijen of de Arduino? Waarom?
- 3. Hoe werkt de schakeling?

Figure 15: Relais met DC motor

DPDT Relay

Figure 16: Werking

Figure 14: Relais met LEDs

3. Omdat er stroom komt uit of de derde of de vierde pin, gaat er altijd precies een LEDje branden. Dan is een weerstand genoeg

Relais met DC motor

Nu komt de magie!

Haal de USB uit de computer. Sluit figuur 'Relais met DC motor' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

${\bf Vragen}$

- Wat zie je?
- Figuur 'Werking' laat zien hoe het kan dat de motor steeds een andere kant op gaat. Probeer jezelf uit te leggen hoe het werkt

Oplossingen

- 1. De motor gaat een seconde de eene kant op, dan een seconde de andere kant
- 2. Als de relais aan staat, zijn de relaispinnen 2-3 en 6-7 verbonden. Is de relais uit, dan is 2-4 en 6-8 verbonden. Als je de draden volgt, zie je hierdoor dat de eene keer de linker kant van de motor op de plus komt, de andere keer op de min kant

Oplossingen

- 1. Als de Arduino spanning op pin 13 zet, gaat het motortje draaien
- 2. De batterijen, omdat de plus van de batterijen aangesloten is op de plus van het LEDje
- 3. Als de Arduino spanning zet op de middelste pin van de transistor, kan er stroom gaan lopen door de transistor (van linker naar rechterpin) en het motortje. Daardoor gaat het motortje draaien

Eindopdracht

• Laat de motor reageren op een LDR: als er geen licht is, moet de motor gaan draaien

7. DC Motor Met Relais

Deze les leren we

- · wat een relais is
- hoe je een motor in twee richtingen kunt laten draaien

Waarschuwing

Figure 10: Pas op! Zie 'Waarschuwing'

Haal deze les altijd de USB snoer uit je computer als je een schakeling aan sluit. Anders gaat de computer misschien stuk.

LED met transistor

Een transistor is een soort drukknop. In plaats dat je een transistor met je vinger indrukt, zet je er electrische spanning op. Als er spanning op staat, dan kan er stroom door de transistor.

 $Haal\ de\ USB\ uit\ de\ computer.\ Sluit\ figuur\ `LED\ met\ transistor'\ aan.\ Doe\ op\ het\ eind\ de\ USB\ weer\ in\ de\ computer.$

Upload de code van 'Blink' op de Arduino.

Vragen

- 1. Wat doet deze schakeling?
- 2. Welke Arduino pin levert de electriciteit voor het LEDje: pin 13 of 5V? Waarom?
- 3. Hoe werkt de schakeling?

Figure 11: LED met transistor

Oplossingen

- 1. Als de Arduino spanning op pin 13 zet, gaat het lampje branden
- De 5V levert de electriciteit voor het lampje: deze gaat de linker pin van de transistor in, verder door de rechter pin en dan door het lampje. Pin 13 zorgt er enkel voor dat dat kan.
- 3. Als de Arduino spanning zet op de middelste pin van de transistor, kan er stroom gaan lopen door de transistor (van linker naar rechterpin) en het LEDje. Daardoor gaat het LEDje branden

${\bf Relais}$

Een relais (spreek uit: 'relleh') is, net als een transistor, een soort drukknop, die electronisch ingedrukt kan worden. Het verschil met de transistor is dat de twee electronische stromen elkaar nergens tegen komen.

Figure 12: Een relais

7

Figure 13: Een eenzaam relais

Haal de USB uit de computer. Sluit figuur 'Een eenzaam relais' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

${\bf Vragen}$

- 1. Wat hoor je? Als je niks hoort, heb je de schakeling fout aangesloten!
- 2. Welke Arduino pin levert de electriciteit voor het relais: pin 13 of 5V? Waarom?

Oplossingen

- 1. Elke second hoor je een tik
- 2. De 5V levert de electriciteit voor het relais: deze gaat de linker pin van de transistor in, verder door de rechter pin en dan door het lampje. Pin 13 zorgt er enkel voor dat dat kan.

Relais met LEDjes

We gaan nu kijken, wat een relais doet.

Haal de USB uit de computer. Sluit figuur 'Relais met LEDs' aan. Doe op het eind de USB weer in de computer. Upload de code van 'Blink' op de Arduino.

Vragen

- 1. Wat zie je?
- 2. Welke Arduino pin levert de electriciteit voor het LEDs: pin 13 of 5V? Waarom?
- 3. Hoe kan het dat er maar een weerstand nodig is voor twee LEDjes?

Oplossingen

- 1. Elke second hoor je een tik en gaat een andere kleur LED branden
- 2. De 5V levert de electriciteit voor de LEDs: deze gaat de tweede pin van het relais in, en komt dan uit de derde of vierde pin