从 STM32F4xx 移植到 GD32F4xx 的移植说明

目录

1,	本文简介	. 2
2、	硬件资源对比	
	系统及外设资源对比	
	开发集成环境和烧录调试工具兼容说明	
5、	GD32F4xx 系列 MCU 移植步骤	
5.1.	工程选型配置	
5.2.		
5.3.	SPI 模块使用时修改代码	
	ADC 模块使用时修改代码	
	USART 模块使用时修改代码	
	ENET 模块使用时修改代码	
	USBFS 模块使用时修改代码	

1、本文简介

GD32F4xx 系列 MCU 是基于 ARM® Cortex™-M4 处理器的 32 位通用微控制器,主频高达 200MHz,内部 Flash 高达 3MB,SRAM 高达 512KB,为 GD32 系列高性能 MCU。该系列 MCU 与 STM32F4xx 系列产品保持较高兼容性,总体来说:硬件上,严格意义来说 GD32F4xx 和 STM32F4xx 并不完全兼容,但是有差异的一般只有两个引脚,Vcap_1 和 Vcap_2,这两个脚在 STM32F4xx 上是有实际使用意义的,在 GD32F4xx 上,这两个脚是 NC,如果用户之前使用 STM32F4xx 开发的硬件电路,不管这两个引脚怎么接,都不影响替换,所以,可以说 GD32F4xx 和 STM32F4xx 硬件兼容;软件上,GD32F4xx 与 STM32F4xx 寄存器兼容,由于芯片设计及工艺不同,有些寄存器配置或时序配置需要修改,具体见本文说明,若用户之前使用 STM32F4xx 进行的软件开发,修改后可实现软件兼容。

2、硬件资源对比

GD32F4xx 和 STM32F4xx 硬件引脚对比表 2.1 所示,由该表可知,GD32F4xx 可完全兼容 STM32F4xx 的硬件引脚定义。

表 2.1 GD32F4xx 和 STM3	2F4xx pin 对比表
-----------------------	---------------

Туре	Pin_to_pin	Pinouts 差异								
LQFP64	GD32F4xx		NC		NC					
	STM32F4x	31	VCAP_1	47	VCAP_2					
	x				VGAF_Z					
LQFP10	GD32F4xx		NC		NC					
0	STM32F4x	49	VCAP_1	73	VCAP_2					
	X				VCAI_Z					
LQFP14	GD32F4xx		NC		NC					
4	STM32F4x	71	VCAP_1	106	VCAP_2					
4	X				VGAI_Z					
	GD32F4xx		NC		NC		NC			
BGA176	STM32F4x	M10	VCAP_1	F13	VCAP_2	L4	BYPASS_REG			
	X		VGAP_1		V CAF_Z		DIFASS_NEG			

注:

- (1) NC 代表可接高、可接地、可不接。
- (2) STM32F4xx 的 VCAP_1/2 引脚一般是通过阻容接地,若采用 GD32F4xx 替代,建议可直接通过电阻接地,电容可省略。
- (3) STM32F4xx 的 BYPASS REG 引脚一般接地或接高,不影响替换。

3、系统及外设资源对比

GD32F4xx 外设资源较丰富,可实现对 STM32F4xx 外设资源的覆盖,具体系统及外设资源对比如表

3.1 所示。

表 3.1 GD32F4xx 和 STM32F4xx 系统及外设资源对比表

系统及 外设资 源	GD32F4xx	STM32F4xx
主频	200MHz	180MHz
内核	M4F	M4F
Flash	Up to 3MB	2MB
SRAM	Up to 512KB	256KB
供电范围	2.6V-3.6V	1.8V-3.6V
active 功耗	99mA@200MHz 所有外设使能	98mA@180MHz 所有外设使能
温度范围	-40℃~85℃/负 40 度-105 度	-40°C~85°C/-40°C~105°C
外设资源	支持高达 14 个定时器、8 个串口、3 路 IIC、6 路 SPI、2 路 CAN、USBFS、 USBHS、2 路 IIS、SDIO、LCD_TFT、摄 像头接口、以太网 MAC、IPA、EXMC、 3 个 ADC、2 个 DAC	支持高达 14 个定时器、8 路串口、6 路 SPI、 3 路 IIC、USBFS、USBHS、2 路 CAN、1 路 SAI(IIS)、 SDIO、摄像头接口、LCD_TFT、Accelerator(IPA)、 3 个 ADC、2 个 DAC、以太网 MAC

4、开发集成环境和烧录调试工具兼容说明

GD32F4xx 和 STM32F4xx 均为 ARM M4 内核 MCU,可采用相同的集成开发环境和烧录调试工具,一般集成开发环境为IAR、KEIL和 eclipse 等,烧录和调试工具可选用 ULINK、JLINK、STLINK、GDLink(仅 GD32F4xx 支持)。

5、GD32F4xx 系列 MCU 移植步骤

5.1. 工程选型配置

打开 KEIL 或 IAR 工程后,工程选型可选择 STM32F4xx 或 GD32F4xx 选型,建议选择 GD32F4xx 选型,首 先 安 装 选 型 pack 包 , 选 型 pack 包 可 通 过 https://pan.baidu.com/s/1mhQsNpu 网 盘 或 http://gd32mcu.21ic.com/documents/官网下载,若采用 KEIL5 开发,也可通过 Pack Installer 进行在线更新。 下载后解压 PACK 包如图 5.1 所示,其中 GigaDevice.GD32F4xx_Addon.1.0.2.exe 为 KEIL4 的 Pack 包、GigaDevice.GD32F4xx_DFP.1.0.3.pack 为 KEIL5 的 Pack 包、IAR_GD32F4xx_ADDON.1.0.0.exe 为 IAR 的 Pack 包,请根据不同的软件开发环境及版本进行安装,安装路径默认。

GigaDevice.GD32F4xx_Addon.1.0.2.exe	25/04/2017 17:13	应用程序	2,420 KB
digaDevice.GD32F4xx_DFP.1.0.3.pack	07/06/2017 16:28	uVision Software	1,034 KB
MIAR_GD32F4xx_ADDON.1.0.0.exe	24/04/2017 20:12	应用程序	3,963 KB

图 5.1 pack 包

安装 Pack 包后,可在具体软件工程中进行切换选型,KEIL5 的选型配置如图 5.2 所示。选型后,先 关闭 Option 配置窗口,然后再打开 Option 配置窗口,

图 5.2 KEIL5 下选型配置

图 5.3 下载算法选择窗口

5.2. 切换系统时钟注意事项

GD32F4xx 系统时钟从高频时钟切换至低频时钟(IRC16M)时,可能导致 IRC16M、HXTAL、PLL 时钟消失,使得程序跑飞,常见于 IAP 的 BOOT 跳转 APP 时。软件上需要切换时钟前将 HCLK 时钟 4 分频,延迟后,再进行时钟切换,修改代码如示例代码 2.1 所示。

示例代码 2.1

```
__IO uint32_t i_delay = 0;

RCC->CFGR |= RCC_CFGR_HPRE_DIV4;

for(i_delay=0xffff;i_delay>0;i_delay--);
```

5.3. SPI 模块使用时修改代码

若用户在使用时切换 SPI 配置,重配 SPI 后,SPI 时钟改变,建议在重配 SPI 之前先关闭 SPI 模块,配置完成后,再使能 SPI。修改代码如示例代码 2.2 所示。

示例代码 2.2

```
SPI_Cmd(SPIx, DISABLE);
SPI_Cmd(SPIx, ENABLE);
```

5.4. ADC 模块使用时修改代码

ADC 在设置为 8bit 模式右对齐时, GD32F4xx 是取 12bit 数据中的高 8bit, 使用时请注意,如图 5.4 所示。可采用左对齐,读取高字节数据,如图 5.5 所示。

Х	Х	Х	Х	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Χ	Χ	Χ	Х
图 5.4 右对齐时 ADC 采样数据寄存器															
Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Х	Х	Х	Х	Х	Х	Х	Х

图 5.5 左对齐时 ADC 采样数据寄存器

在 ADC IDLE 的时候,软件写一下 swstart,硬件会检测到 swstart 的上升沿,然后开始采样,并在采样 开始的时候将 swstart 清 0。如果在 ADC 正在转换时写 swstart,此时 ADC 无法检测上升沿,当 ADC 转换 完当前通道后,swstart 虽为高电平,但检测不到上升沿, ADC 也无法启动转换,因此置位 swstart 之前需要等待 EOC 标志置位,即 ADC 转换完成。

5.5. USART 模块使用时修改代码

GD32F4xx MCU 的 USART 使用 DMA 发送,如果先使能 DMA,后使能串口的 Tx 功能,会导致由于 DMA 先于 USART 打开的时间差,造成在 USART 没准备好发送的情况下 DMA 事先传输数据,进而导致数

据丢失,软件上可修改 DMA 和串口配置顺序,先配置串口,然后配置 DMA。

5.6. ENET 模块使用时修改代码

若出现以太网 ping 不通的问题,若排除硬件问题,软件有以下两种可能:(1)由于 GD32F4xx 芯片主 频较高,在代码端,应该保证将 ENET_DMA_CTL 寄存器的第 20 位 FTF 置 1,清空发送 FIFO 后,必须软件等待该位被硬件清 0 后适当延迟再进行其他操作。否则,有概率性导致 ENET 发送异常,从而出现 PING 不通的情况,修改代码如示例代码 2.3 所示。

示例代码 2.3

```
void ETH_FlushTransmitFIFO(void)
{
   ETH->DMAOMR |= ETH_DMAOMR_FTF;
   while((ETH->DMAOMR & ETH_DMAOMR_FTF) != 0);
   for(uint32_t I =0; i<0xffff; i++);
}</pre>
```

(2) 若客户以太网采用半双工通信,若打开载波侦听,会导致发送异常,按照 802.1 以太网协议,需关闭载波监听功能,修改代码如示例代码 2.4 所示。

示例代码 2.4

ETH_InitStruct->ETH_CarrierSense = ETH_CarrierSense_Disable;// 半双工通信模式下修改

5.7. USBFS 模块使用时修改代码

若出现 USB 端点发送数据偶尔出错的情况,请排查 DCD_EP_Flush();函数使用情况,该函数仅需在 USB 初始化中端点缓冲区配置完成后,进行 Flush,其他地方 Flush 缓冲区会造成 USB 缓冲区异常,因而只需在 USB 初始化时进行一次缓冲区 Flush 操作,其他地方的 Flush 操作可屏蔽。