Calling Party Telephone/ Other Customer Premise Rquipment,(CPE) Intelligent Prefix Dialer RJ11 Central Office Customer Premise Equipment, (CPE) Telephone Line

DRAWING FIGURES

si

FIGURE 1

Line Interruption Circuit Detailed Configurateion

Figure 2a

Intelligent Telephone Prefix Dialer, standalone POTS environment

Figure 2b

Intelligent Telephone Prefix Dialer embedded in a POTS Telephone Set

Figure 3

Intelligent Telephone Prefix Dialer embedded in an ISDN telephone set

Figure 4

Intelligent Prefix Dialer Integrated into Service Provider's Advanced Intelligent Network Equipment

Control Logic at SCP

- Analyze data triggered from Call Control at SSP
- If redial with prefix is required, append user dialed number to default dial prefix in user options database and send resultant digit sequence back to
- else send "dial as is" message to SSP

Call Control at SSP, IP:

- Capture and count dtmf digits
- Time interdigit delay
- Timeout to close digit sequence
- Report results to SCP
- Receive Dial String from SCP
- Dial Digits to complete call

User Options Interface at SSP/IP

- Capture star code for Intelligent Prefix Dialer options setup and send to SCP
- Receive dial tone stutter prompt from IP, capture default prefix from user, and send codes to SCP
- Receive dial tone stutter/voice acknowledgement from IP

User Options Recording at SCP

- Store default prefix in user options database for the Intelligent Prefix Dialer Service
- Send Acknowledge to SSP

Figure 5

INTELLIGENT TELEPHONE PREFIX DIALER PSEUDOCODE

Version Beta 3.0

Subroutines

DISPLAYPREFIX@

LINEMONITOR@

MONITORLINE@

CAPTUREDIGITS@

CAPOPTIONSTRINGS@

CAPREFIXSTRING@

FLASHLINE@

GETNDX@

CHECK_FOR_TEN@

DIALNUMBER@

PARSEOPTIONS@

PARSESTRING@

Data

LENGTH /* length of table*/

TABLE /*start of table*/

SUM /*sum of digits*/

COUNT /*count of digits*/

TELNO(8) /*user dialed digits*/

PREFIX /*user defined dial prefix*/

DIALTONE_FLAG /*Flag to indicate line state */

/* On Hook = 0, Off Hook = 1*/

/* Line one to Off Hook Line two*/

DIAL_STRING(10) /*The reparsed dial string necessary to complete */

/* the call*/

USER_REQUEST_FLAG /*Flag to initiate user input of prefix code*/

NDX /*# Pointer for user TELNO entries

/*intoDIALSTRING*/

NUMBER_OF_DIGITS_CAPTURED /*number of digits received by dtmf receiver before*/

/*timeout*/

ON_HOOK_TIME_COUNTER /*amount of time that receiver is on hook*/

BYPASS /*bypass bit, if set to 1, bypasses flashook 2 and 3*/

Sheet 8 of 14

Program MAIN

/*Declare and initialize all variables*/

Declare and Intitilize Hardware specific variables for dtmf transceiver and other hardware

Dtmf var byte
Bypass var byte
Dt flag var bit

Dt det var INL.bit2 /*Detect bit from dtmf receiver*/

Dialtone_flag var bit

Number_of_Digits_Captured var byte /*Range index to telno()*/

Digit var byte /*Index of digits to dial by autodialer*/

I var word
L var byte
K var bit
Ndx var nib

Gosub GETNDX /*Get ndx from EEPROM*/

For I = 1 to ndx - 1

Get prefix code from EEPROM and place into dial_string(I)

next

GOSUB DISPLAYPREFIX /*Show the stored dialing prefix*/

CAPDIGITS:

GOSUB CAPTUREDIGITS /*Start listening for dial string digits entered by user*/

fi

GOSUB PARSESTRING /*Parse the TELNO() into DIAL STRING()

Pause 160 /*Time delay before initiating flash hook sequence*/

GOSUB FLASHLINE /*First Flash hook*/

Pause 700 /*Time delay before further action*/

If BYPASS =1 then GOTO SKIP_FLASHES /*2nd and 3rd flash only necessary for 3

/*way call*/

GOSUB FLASHLINE /* 2nd Flash hook*/

Pause 700 /*Time delay before further action*/

GOSUB FLASHLINE /* 3rd Flash hook*/

Pause 700 /*Time delay before further action*/

SKIP_FLASHES:

pause 700 /*Time delay before initiate redial*/ GOSUB DIALNUMBER /*Dial the number with the required prefix*/ INHIBITDIAL: GOSUB LINEMONITOR /*Stay put until line goes onhook*/ GOSUB MONITORLINE /*Stay put until line goes offhook*/ GOTO CAPDIGITS /*Start listening for digits again*/

```
SUBROUTINE:LINEMONITOR
LOOPDT1:
      Set DIALTONE_FLAG from (Telephone Line) /*0 is ONHOOK, 1 is OFFHOOK*/
             IF DIALTONE FLAG indicates OFFHOOK then GOTO LOOPDT1
      Return
SUBROUTINE: MONITORLINE
      Initialize ON_HOOK_TIME_COUNTER to Zero
LOOPDT2:
      Set DIALTONE_FLAG from (Telephone Line) /*0 is ONHOOK, 1 is OFFHOOK*/
             IF DIALTONE_FLAG indicates ONHOOK then
               Do
                 Increment ON_HOOK_TIME_COUNTER
                 GOTO LOOPDT2
               Done
             IF ON_HOOK_TIME_COUNTER > 800 then set BYPASS to 1
      Return
```

```
SUBROUTINE: CAPTUREDIGITS
CAPTUREDIGITS:
      SETUP dtmf hardware for dtmf READ
      For I = 1 to 1700 /*Initialize Interdigit count down timer*/
        Get DIALTONE FLAG from (Telephone Line) /*If not still OFFHOOK then EXIT to MAIN*/
        If DIALTONE FLAG = 0 then GOTO MAIN
               fi
        POLL for dtmf tone from (DTMF RECEIVE CHIP)
        If tone not detected then NEXT I
                                          /*Increment Interdigit count down timer*/
         else
         Increment NUMBER OF DIGITS CAPTURED
         If NUMBER_OF_DIGITS_CAPTURED > (10 - NDX) + 1 then GOTO MAIN
                            /*user dialed more than */
                            /*prefix digits plus user digits and does not need help here */
         READ dtmf tone into variable DTMF
       TELNO(NUMBER_OF_DIGITS_CAPTURED) = DTMF
      NEXT I
             /*Interdigit Timer has timed out, Check for number of digits received*/
      IF NUMBER_OF_DIGITS_CAPTURED < (10 - NDX) + 1 then
        Do
           If telno(1) = 12 and telno(2) = 1 then
             Do
                                          /*User has requested to input options*/
                Gosub PARSEOPTIONS
                Goto MAIN
                                          /*Initialize with new user options*/
             Done
          Set NUMBER_OF_DIGITS_CAPTURED = 0
        Done
      Return
  SUBROUTINE: PARSESTRING
        For j = NDX to 10
        DIAL\_STRING(j) = TELNO(j - (NDX - 1))
        Next j
```

Sheet 11 of 14

Sheet 12 of 14

Write user input to EEPROM

Read user input from EEPROM

Write user input from EEPROM to DisplayDevice /*User selection confirmed on */

/*DisplayDevice*/

Write to DisplayDevice("1 PLUS ON?: Y/N) /*Prompt for user to turn 1 PLUS Dialing
/*ON or OFF*/

Gosub CAPOPTIONSTRINGS /*Get user input*/

Write user input to EEPROM

Read user input from EEPROM

Write user input from EEPROM to DisplayDevice /*User selection confirmed on*/
/*DisplayDevice*/

Write to DisplayDevice("ENTER PREFIX#) /*Prompt for user to enter dialing prefix*/

Gosub CAPREFIXSTRING

/*Get user input of dialing prefix*/

Write user input to EEPROM

While user input from EEPROM ⇔ 12

Do

Read user input from EEPROM

Gosub CHECK FOR TEN

Write user input from EEPROM to DisplayDevice /*User entry confirmed on*/

/*DisplayDevice*/

SUBROUTINE: CAPOPTIONSTRINGS

if digit = 12 then ret_ndx

next return

Sheet 13 of 14

```
For I = 1 to 1900
                           /* Time out if no user input*/
        When data present from DTMFreceiver
    Do
             READ data from DTMFreceiver into option_bit
             Return
          Done
      Next
Return
SUBROUTINE: CAPREFIXSTRING
      Mu = 0
      For I = 1 to 1900
                           /* Time out if no user input*/
        When data present from DTMFreceiver
       Do
             Mu = mu + 1
             READ data from DTMFreceiver into telno(mu)
             If telno(mu) = 12 or mu > 7 then
               Return
             fi
          done
      Next
      Return
SUBROUTINE: GETNDX
for i = 1 to 7
read from start of prefix data from EEPROM into digit
```

ret_ndx:	
ndx = I	
return	
/*************************************	*****************************
/**********	***********
SUBROUTINE: CHECK_FOR_TEN	
if telno(i) = 10 then zeroit	
return	
zeroit:	
telno(i) = 0	/*Format output for DisplayDevice*/
return	
/**********	***************

Programmer Application Notes:

- 1. Actual programming language used was Parallax, Inc. PBASIC
- 2. Processor used was the Parallax, Inc. (www.parallaxinc.com), BASIC Stamp II, BS2-IC
- 3. The Pause instruction argument is in milliseconds
- 4. The processor clock speed is approximately 20MHZ
- 5. The PBASIC interpreter executes approximately 3000 instructions per second, i.e. 0.3 milliseconds per instruction. Use the 0.3 milliseconds/instruction value to calculate timeouts and delays that are implemented using loops.
- 6. Contact the inventor at www.dimensional.com/~jbreki/dialer.html for future development and application notes.

Figure 6