

Prova de Impulso e Quantidade de Movimento – ITA

- 1 (ITA-05) Um automóvel pára quase que instantaneamente ao bater frontalmente numa árvore. A proteção oferecida pelo air-bag, comparativamente ao carro que dele não dispõe, advém do fato de que a transferência para o caro de parte do momentum do motorista se dá em condição de
- a) menor força em maior período de tempo.
- b) menor velocidade, com mesma aceleração.
- c) menor energia, numa distância menor.
- d) menor velocidade e maior desaceleração.
- e) mesmo tempo, com força menor.
- **2** (ITA-03) Sobre um plano liso e horizontal repousa um sistema constituído de duas partículas, **I** e **II**, de massas **M** e **m**, respectivamente. A partícula **II** é conectada a uma articulação **O** sobre o plano por meio de uma haste que inicialmente é disposta na posição indicada na figura. Considere a haste rígida de comprimento **L**, inextensível e de massa desprezível. A seguir, a partícula **I** desloca-se na direção de **II** com velocidade uniforme \vec{V}_B , que forma um ângulo θ com a haste. Desprezando qualquer tipo de resistência ou atrito, pode-se afirmar que, imediatamente após a colisão (elástica) das partículas.

- a) a partícula II se movimenta na direção definida pelo vetor \vec{V}_B .
- b) o componente **y** do momento linear do sistema é conservado.
- c) o componente **x** do momento linear do sistema é conservado.
- d) a energia cinética do sistema é diferente do seu valor inicial.
- e) N.D.A.
- **3** (ITA-02) Uma rampa rolante pesa **120** N e se encontra inicialmente em repouso, como mostra a figura. Um bloco que pesa **80**N, também em repouso, é abandonado no ponto **1**, deslizando a seguir sobre a

rampa. O centro de massa G da rampa tem

coordenadas:
$$X_G = \frac{2b}{3} \ e \ y_G = \frac{c}{3}$$
 . São dados ainda: a

= 15,0m e sen α = 0,6. Desprezando os possíveis atritos e as dimensões do bloco, pode-se afirmar que a distância percorrida pela rampa no solo, até o instante em que o bloco atinge o ponto 2, é:

- a) 16,0 m
- d) 24,0 m
- b) 30,0 m
- e) 9,6 m
- c) 4,8 m
- **4 -** (ITA-01) Uma certa grandeza física A é definida como o produto da variação de energia de uma partícula pelo intervalo de tempo em que esta variação ocorre. Outra grandeza, B, é o produto da quantidade de movimento da partícula pela distância percorrida. A combinação que resulta em uma grandeza adimensional é a) AB b) A/B c) A/B² d) A²/B e) A²B
- **5** (ITA-00) Uma sonda espacial de 1000 kg, vista de um sistema de referência inercial, encontra-se em repouso no espaço. Num determinado instante, seu propulsor é ligado e, durante o intervalo de tempo de 5 segundos, os gases são ejetados a uma velocidade constante, em relação à sonda, de 5000 m/s. No final desse processo, com a sonda movendo-se a 20 m/s, a massa aproximada de gases ejetados é:

- (A) 0,8 kg (B) 4 kg (C) 5 kg
- (D) 20 kg (E) 25 kg
- $\bf 6$ (ITA-00) Uma lâmina de material muito leve de massa m está em repouso sobre uma superfície sem atrito. A extremidade esquerda da lâmina está a 1 cm de uma parede. Uma formiga considerada como um

ponto, de massa $\frac{m}{5}$, está inicialmente em repouso sobre essa extremidade, como mostra a figura. A seguir,

a formiga caminha para frente muito lentamente, sobre a lâmina. A que distância d da parede estará a formiga no momento em que a lâmina tocar a parede?

7 - (ITA-95) A figura mostra o gráfico da força resultante agindo numa partícula de massa m, inicialmente em repouso.

No instante t₂ a velocidade da partícula, V₂ será:

a)
$$V_2 = [(F_1 + F_2) t_1 - F_2 t_2] / m$$

b)
$$V_2 = [(F_1 - F_2) t_1 - F_2 t_2] / m$$

c)
$$V_2 = [(F_1 - F_2) t_1 + F_2 t_2] / m$$

d)
$$V_2 = (F_1 t_1 - F_2 t_2)/m$$

e)
$$V_2 = [(t_2 - t_1)(F_1 - F_2)] / 2m$$

8 - (ITA-91) Segundo um observador acoplado a um referencial inercial, duas partículas de massa m_A e m_B possuem velocidades \vec{v}_A e \vec{v}_B , respectivamente. Qual a quantidade de movimento \vec{p}_A que um observador preso ao centro de massa do sistema mede para a partícula A?

a)
$$\vec{p}_A = m_A \vec{v}_A$$

b)
$$\vec{p}_A = m_A (\vec{v}_A - \vec{v}_B)$$

c)
$$\vec{p}_A = \left(\frac{M_A.M_B}{M_A+M_B}\right) \vec{v}_A$$

c)
$$\vec{p}_A = \left(\frac{M_A.M_B}{M_A + M_B}\right) \vec{v}_A$$
 d) $\vec{p}_A = \left(\frac{M_A.M_B}{M_A + M_B}\right) (\vec{v}_A - \vec{v}_B)$

- e) Nenhuma das anteriores.
- **9** (ITA-89) Se o impulso de uma força $ec{F}$ aplicada a um corpo de massa \underline{m} e velocidade \vec{v} durante um intervalo de tempo Δt tem sentido contrário ao da velocidade, podemos afirmar que:
- o sentido da velocidade do corpo certamente mudou.
- B) o sentido da velocidade do corpo certamente permaneceu inalterado.
- C) o sentido da velocidade do corpo pode ter mudado como pode ter permanecido inalterado.
- D) o módulo da quantidade de movimento do corpo diminuiu.

E) o módulo da quantidade de movimento do corpo aumentou.

GABARITO

1	Α
2	С
3	С
4	В
5	В
6	E
7	С
8	D
9	С

