Introducción a la Visión por Computador Lección 01.1

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Definición

- 2 Aplicaciones de la visión por computador
- 3 Historia

Philipp Psurek, 2008

¿Qué es visión por computador?

Recuperación de información del entorno espacial y temporal a partir de una o más imágenes.

Avances de la visión por computador

Szeliski, 2012

Retos de la visión por computador

Tareas que un niño de 2 años hace sin esfuerzo son aún un reto

¿Por qué es un reto?

- Visión por computador: problema inverso
- Se busca recuperar una o más incógnitas con información insuficiente para para especificar la solución.
- Intento: utilizar modelos físicos o probabilísticos para restringir soluciones.

Problemas directos

• Modelos simulan realidad: Gráficos por Computador

Life of Pi. 2012, 20th Century Fox

- Avances permiten generar imágenes prácticamente perfectas.
- Un problema inverso (no resuelto) es ¿cuántos pescados hay en la imagen?

Un problema está bien propuesto (según Hadamard) si:

- Existe solución
- 2 La solución es única
- La solución cambia poco si las condiciones iniciales cambian poco

Problema mal propuesto

Encontrar significado a contenido de imagen 2D sobre realidad 3D es un problema mal propuesto (*ill-posed*) pues existen varias soluciones, y cambios pequeños producen soluciones abruptamente diferentes.

Solución de problemas mal propuestos requiere **regularizar** el problema: se deben agregar condiciones adicionales (basadas en contexto, información adicional, expectativas, etc.) que reduzcan el número de soluciones a una sola.

Visualística

La visión por computador (VC) es un área de la visualística

Visión por Computador en Visualística

- Con frecuencia utiliza resultados de las neurociencias para la creación de algoritmos y sistemas.
- La neurociencia utiliza los sistemas computacionales para comprobar teorías de funcionamiento.

Disciplinas

- Reconocimiento de caracteres (OCR)
- Inspección visual
- Ventas (verificación de productos)
- Reconstrucción de modelos 3D
- Imágenes médicas
- Seguridad en automóviles (peatones, carril, cansancio, etc.)
- Acople de movimiento (acoplar CGI a vídeo real)
- Captura de movimiento (observar movimientos reales para transferirlos a CGI)
- Vigilancia
- Biométrica (huellas dactilares, retina, caras)
- etc.

Áreas ejemplo tomadas para el curso

Alineación de imágenes

Panotools

- Extracción básica de información 3D de imágenes
- Reconocimiento de objetos y categorías

Historia

Los 70

- Se partía del hecho que nivel perceptivo en gran proyecto de robots inteligentes era fácil:
 Dice la legenda que Marvin Minski en 1966 pidió sus estudiantes de pregrado "en el verano conectar una cámara al computador y lograr que el computador describiera lo que veía"
- Ya existía el procesamiento de imágenes
- Nuevo: recuperar información 3D de imágenes, como el "mundo de bloques"

Los 70 (2)

Roberts, 1965

Los 70 (3)

- Correspondencias estéreo
- Cilindros generalizados (sólidos de rotación)
- Flujo óptico

Los 70

- David Marr propuso meta-teoría para los problemas de VC:
 - Nivel computacional ¿Cómo lograr la tarea? (Mayor nivel de abstracción). Restricciones necesarias para mapear entradas en salidas.
 - Nivel algorítmico ¿Cómo ejecutar la tarea? Algoritmos y estructuras de datos.
 - Nivel de implementación Nivel físico (Bajo nivel de abstracción)

Los 80 (1)

Pirámides y espacios de escala

- Reconstrucción 3D con "shape from X" (focus, shading, texture)
- Wavelets (artículo de Mallat 1989)
- Modelos físicos (snakes)
- Campos aleatorios de Markov (MRF)
- Filtros de Kalman

Los 90

- Reconstrucción proyectiva (sin calibración)
- Procesamiento de imágenes de rango
- Mejoras al flujo óptico
- Contornos activos (ASM)
- Conjuntos de nivel (level-sets)
- Segmentación por minimización energética, cortes normalizados, desplazamiento de media
- Eigenfaces

Los 2000

- Más interacción entre VC y gráficos por computador
- HDR y otras técnicas: inicio de la fotografía computacional
- Reconocimiento con descriptores locales
- Incremento en el uso de técnicas avanzadas de reconocimiento de patrones

Resumen

Definición

- 2 Aplicaciones de la visión por computador
- 3 Historia

Tarea 1

- Investigue en revistas científicas de alto nivel y en memorias de congresos especializados en el área de visión por computador qué temas están en auge en ésta década.
- Revise el artículo: Miller, G., Fels, S. y Oldridge, S. A conceptual structure for computer vision. 2011 Canadian Conference on Computer and Robot Vision. 2011
- 3 Descargue la biblioteca LTI-Lib-2 y compílela. Realice un programa de captura de imágenes de una cámara web.

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica