

SOUMYA SARKAR

UNDER THE GUIDANCE OF

DR. SHWETA JAIN

USING USER PREFERENCE

THE WHAT?

Why does my model show that the shortest path is through a river?

Why was this investment of mine flagged for being a potential loss?

Why does this model show a lower expected range for women job-seekers as compared to men?

Why am I being recommended this song over and over again?

Is this even fair? Is this model discriminatory?

How smart is my model and how well does it generalize?

WHY WAS MY LOAN REJECTED?

Why did the model say I am a potential criminal?

Why does my smart band say I might potentially have a terminal disease?

How well does this algorithm truly work over the expected data?

How is the model calculating my age of marriage as 55?

Why am I not eligible for that prestigious scholarship?

So how do I ensure that this time, I do pass the GATE cutoff?

Why was my driver's license denied?

How was my resume sorted by the automated system and why was I out?

How well does this algorithm truly work over the expected data?

VHAI? THE WHY?

ENTER: EXPLAINABLE AI

SHAP - A global and local explanation technique

LIME - A local explanation technique

PDP - A global explanation technique

THE HOW?

0

SUBSCRIBE

article

Opinion

In-depth

Leadership

A lot of use cases are cropping up

Themen

Taishi Kayano, Yura Ko, Kanako Otani, Yura Ko, Kanako Ko,

Scientific Reports 13, Article number:

33k Accesses 3135 Altmetric Me

Counterfactual Explanations: The What-Ifs of Al Decision Making

Counterfactuals: Demystifying AI decision-making for greater clarity.

ARTIFICIAL INTELLIGENCE

The complex math of counterfactuals could help Spotify pick your next favorite song

Topics Newsletters Events Podcasts

A new kind of machine-learning model is set to improve automated decision making in finance, health care, ad targeting, and more.

By Will Douglas Heaven

MIT

Technology

Review

April 4, 2023

ALGORITHMIC RECOURSE

Now your loan too can be approved!

A BIT ABOUT HUMAN PREFERENCES

EVERYONE HAS IT, BUT NOBODY CAN QUANTIFY IT

What is the best way to ask users for preferences, especially their inherent resistance towards changes?

Which ice-cream would you choose?

Amazon recommendations

CAUSALITY

CORRELATION IS NOT CAUSATION!

But what is causation?

So does more ice cream being sold mean more soccer games being played?

CAUSALITY IS IMPORTANT

Effects of your actions can trickle downstream.

Ignoring it has been proven to lead to suboptimal recourse [1].

A causal graph

O [1] - Karimi, A. H., Schölkopf, B., & Valera, I. (2021, March). Algorithmic recourse: from counterfactual explanations to interventions. In *Proceedings of the 2021 ACM conference on fairness, accountability, and transparency* (pp. 353-362).

COUNTER FACTUAL GENERATION

Plenty of work, but several assumptions needed

Algorithmic Recourse: from Counterfactual Explanations to Interventions

Amir-Hossein Karimi MPI-IS, Germany ETH Zürich, Switzerland

Bernhard Schölkopf MPI-IS, Germany

Isabel Valera MPI-IS, Germany Saarland University, Germany

Manan Singh*

IIT Palakkad, India, India

142214003@smail.iitpkd.ac.in

Ganesh Ghalme

IIT Hyderabad, India, India

ganeshghalme@ai.iith.ac.in

The state-of-the-art recourse generation

the user's profile (feature vector). Howev

same profile may still have different prefer

recourse generated from a single profile m peal to both the users. For example, one rej

ABSTRACT

Algorithmic Recourse based on User's Feature-order Preference

Sai Srinivas Kancheti* IIT Hyderabad, India, India cs21resch01004@iith.ac.in

> Shweta Iain IIT Ropar, India, India

Shivam Gupta* IIT Ropar, India, India shivam.20csz0004@iitrpr.ac.in

Naravanan C. Krishnan IIT Palakkad, India, India

Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses

Synthesizing explainable counterfactual policies for algorithmic recourse with program synthesis

Giovanni De Toni^{1,2} • Bruno Lepri¹ • Andrea Passerini²

COUNTERFACTUAL EXPLANATIONS WITHOUT OPENING THE BLACK BOX: AUTOMATED DECISIONS AND THE GDPR

Sandra Wachter,* Brent Mittelstadt,** & Chris Russell***

Consequence-aware Sequential Counterfactual Generation

Philip Naumann^{1,2} (⋈) and Eirini Ntoutsi^{1,2}

¹ Freie Universität Berlin, Germany ² L3S Research Center, Leibniz Universität Hannover, Germany {philip.naumann, eirini.ntoutsi}@fu-berlin.de

Personalized Algorithmic Recourse with Preference Elicitation

THREE MODULES

Preference taken from user using a novel duelling bandits-based algorithm

Causal Discovery using the causallearn and dowhy packages for python Counterfactual generation based on causality, user preference and other restrictions

THE BRADLEY-TERRY MODEL

A SIMPLE HEURISTIC SATISFYING SEVERAL KEY PROPERTIES IN A BANDIT PERSPECTIVE

- Strong stochastic transitivity
- o Stochastic triangle inequality

$$P(b_i > b_j) = \frac{\mu_i}{\mu_i + \mu_j}$$

THE COST OF INTERVENTIONS

SMALLEST COST IN ALL SEQUENCE OF ACTIONS

- L2 cost
- Classification loss (BCE)
- A Reduction Factor
- Cost of children of features being intervened on.

$$\mathcal{I}^* = \arg\min_{\mathcal{I}} \mathbb{C}(\mathcal{I}, \mathbf{x})$$
 (3.3)

such that $h(\mathcal{I}^*(x)) \neq h(x)$

where we define the cost function $\mathbb{C}(\mathcal{I}, \mathbf{x})$ as:

$$\mathbb{C}(\mathcal{I}, x) = \sum_{a_i \in \mathcal{I}} \mathrm{C}(a_i, x) * \mathrm{R}_{factor}$$

where
$$C(a_i, x) = \lambda ||a_i(x_i) - x_i||_2 + L_{classification}(a_i(x))$$
 (3.4)

and
$$R_{factor} = 0.85(1 - 0.3 * y_{pred})$$

CAUSAL INFERENCE

WE USE ICA-BASED LINGAM [2] FOR ALL INFERENCE PURPOSES

[2] - Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A., & Jordan, M. (2006). A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7(10).

METHODOLOGY

IFC1 ALGORITHM

19

COUNTERFACTUAL GENERATION ALGORITHM

•

EXPERIMENTAL RESULTS

- Experimental Results on Synthetic Dataset
- Experimental Results on Real World Dataset (Give Me Some Credit)
- For Bradley-Terry model, $\mu_i = 1, \mu_j = 1$

Hyperparamaters	Custom Dataset	Give Me Credit
Number of users	100	50
Size of dataset sampled	1000	5000
Learning Rate	10^{-3}	10^{-3}
Normalization	Z-score	Z-score
Maximum number of permutations of subset	3	3
(Custom 1 only) $\sum \alpha$	1000	1000
(Custom 1 only) α multiplier	100	100

EXPERIMENTAL RESULTS: CUSTOM 1 AND CUSTOM 2

$$\arg\min_{\mathbf{x'}} \max_{\lambda} \lambda \mathbb{L}(f_{\mathbf{w}}(\mathbf{x'}) - \mathbf{y'}) + d(\mathbf{x_i}, \mathbf{x'})$$

$$d(x_{i}, x') = \sum_{i=0} \alpha_{i} ||x_{i} - x||_{1}$$
(3.7)

where $\alpha_{i+1} = c.\alpha_i$, and $\alpha_1 = \frac{\beta_0(c-1)}{c^n-1}$. Here c is known as the alpha multiplier, and $\sum_i \alpha_i = \beta_0$ is the sum of all alphas.

SYNTHETIC DATASET

$$X_1 := U_1$$
 $X_2 := 2X_1 + U_2$
 $X_3 := 3X_1 + U_3$
 $X_4 := X_2 - 2X_3 + U_4$
 $X_5 := 2X_3 - 2X_1 + U_5$

$$y = \begin{cases} 1 & if \quad sigmoid(x_1 + x_2 + x_3 + x_4 + x_5) \ge 0.5 \\ 0 & otherwise \end{cases}$$

Paramater	Manan	Manan	Custom	Custom	Our
		with	1	2	Method
		Causality			
Average Number of Fea-	1.08	1	5	1	3.42
tures Changed					
Average L ₂ Cost of	14.007	896.582	1.14	21.54	6.34
Counterfactuals					
Validity Percentage	100	100	80	100	50
Average Time to Exe-	1.222	1.331	0.771	9.002	116.037
cute (s)					

Paramater	Custom	Our
	2	Method
Average number of comparisons	40.94	45.78
Average percentage of cases it failed to detect user prefer-	100	4
ence/changed fixed features		


```
2024-05-08 02:33:38.927548: y_pred = tensor([0.]) at index 106 with datapoint [-1.5935743 -2.250385 -1.6981801 1.0659246 -1.8776345].

2024-05-08 02:34:23.670241: Original data point is [-1.5935743 -2.250385 -1.6981801 1.0659246 -1.8776345]

2024-05-08 02:34:23.670241: The counterfactual is given by [-1.5935743 -2.250385 -1.6981801 1.0659246 7.097441] with number of features changed = 3, and cost = 2.501935391262246 2024-05-08 02:34:23.670241: Subset chosen by algorithm is ['X1', 'X3', 'X5'], whereas actual subset chosen by user is ['X1', 'X5']. (Fixed features = []) 2024-05-08 02:34:23.670241: Time taken 36.9246928691864 seconds 2024-05-08 02:34:23.670241: Prediction = 1.0
```

We get successful recourse, and subset prediction which is at least a superset (thereby not missing out on any features in the user's preference order).

Paramater	PEAR	CSCF	FACE	$\mathbf{M}\mathbf{y}$
				Method
Average Number of	2.79 ± 0.42	2.51 ± 1.12	5.97 ± 0.62	5.16
Features Changed				
Average L ₂ Cost of	96.04 ± 31.96	100.69 ± 120.22	327.18 ± 78.85	125.922
Counterfactuals				
Validity Percentage	89	0.57 ± 0.42	0.24 ± 0.38	100

Paramater	Our
	Method
Average number of comparisons	477.5
Average percentage of cases it failed to detect user prefer-	0
ence/changed fixed features	
Average time to execute in seconds	420.583

Fixed features: ['DebtRatio']

User Preferred subset: ['age', 'NumberOfTime30-59DaysPastDueNotWorse', 'MonthlyIncome', 'NumberOfDependents']

Output subset: ['age', 'NumberOfTime30-59DaysPastDueNotWorse', 'MonthlyIncome', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfDependents']

Number of comparisons:750

We get successful recourse, and subset prediction which is at least a superset here as well.

CONCLUSION AND FUTURE SCOPE

- End-to-end counterfactual generation methodology
- o Almost comparable to baselines at the moment, performing better on some metrics
- o Can be applied in any situation involving black box models
- Special use case in critical scenarios with scope for modification
- Reducing number of comparisons

FUTURE SCOPE

- o Reduction in the number of comparisons
- Modification in the cost function
- More optimization to reduce computations

THANK YOU

Hope this explained my work so far!

THE END