Out[6]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [7]: ► data.head()

Out[7]:		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

Out[8]:

In [8]: ▶ data.tail()

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

Out[8]: <Axes: >

The dimension of X_{train} is (140, 2) The dimension of X_{test} is (60, 2)

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

Ridge Model:

The train score for ridge model is 0.990287139194161 The test score for ridge model is 0.9844266285141221


```
In [14]:
          #Lasso regression model
             print("\nLasso Model: \n")
             lasso = Lasso(alpha = 10)
             lasso.fit(X_train,y_train)
             train_score_ls =lasso.score(X_train,y_train)
             test_score_ls =lasso.score(X_test,y_test)
             print("The train score for ls model is {}".format(train_score_ls))
             print("The test score for ls model is {}".format(test_score_ls))
             Lasso Model:
             The train score for 1s model is 0.0
             The test score for ls model is -0.0042092253233847465

▶ | pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind =
In [15]:
   Out[15]: <Axes: >
                0.04
                0.02
                0.00
              -0.02
              -0.04
```

 \geq

0.9999999343798134

0.9999999152638072

```
In [17]: #plot size
    plt.figure(figsize = (10, 10))
    #add plot for ridge regression
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',mar
    #add plot for lasso regression
    plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6
    #add plot for linear model
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=6
    #rotate axis
    plt.xticks(rotation = 90)
    plt.legend()
    plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
    plt.show()
```



```
In [18]:
         #Using the linear CV model
            from sklearn.linear_model import RidgeCV
            #Ridge Cross validation
            ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 0.1, 1, 10]).fit(X_train,
            print("The train score for ridge model is {}".format(ridge_cv.score(X_train))
            print("The train score for ridge model is {}".format(ridge_cv.score(X_test
            The train score for ridge model is 0.99999999997627
            The train score for ridge model is 0.9999999999962467
In [20]:
         regr=ElasticNet()
            regr.fit(X,y)
            print(regr.coef_)
            print(regr.intercept_)
            [0.00417976 0.
                                ]
            2.026383919311004
In [23]:
         In [24]:
         ▶ | mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
            print(mean_squared_error)
            0.5538818050142158
In [ ]:
```