Data with Linguistic Knowledge for NMT

Part of the EAMT 2024 Tutorial Linguistically Motivated Neural Machine Translation

Haiyue Song
https://shyyhs.github.io

Roadmap

Linguistic knowledge in

① Data Pre-Processing

e.g.

watch/ing ab/normal/ly

② Model Training

③ Decoding

4 Evaluation

Checklist

- ✓ Ambiguity✓ Composition✓ Punctuation
- ✓ Verb tense

.

Inject Linguistic Knowledge into Training Data

Data Tokenization

Word Segmentation [1]

Subword Segmentation [2][3]

watch/ing sea/side ab/normal/ly save/r/s

Character Decomposition [4]

Chinese

Data from *Related Languages*

Word Segmentation: Motivation

Add word boundary ⇒ less ambiguity

Japanese*

■ Add word boundary ⇒ better alignment

Chinese** 目前出现与微信、支付宝结合的趋势

word seg. 目前 / 出现 / 与 / 微信 / 、 / 支付宝 / 结合 / 的 / 趋势

English There is a <u>trend</u> of <u>integration</u> with <u>WeChat</u> and <u>Alipay</u>

^{*} Juman++: A Morphological Analysis Toolkit for Scriptio Continua

Word Segmentation: Example

- Segmentation results comparing
 - Juman++*

東京都知事 東京 / 都 / 知事
Tokyo governor Tokyo / prefecture / governor

SentencePiece**

東京都知事 東/京都/知事 east / Kyoto/governor

^{*} Juman++: A Morphological Analysis Toolkit for Scriptio Continua

Word Segmentation: Improvements

- Downsteam task performance
 - Juman + bpe > SentencePiece-Unigram

Subword Segmentation: Motivation

- NMT systems use subwords as the minimal unit.
- Compared to word, subwords handles unseen words by segmenting them into seen subwords in the subword vocabulary.

Sentence: There are some trademarks.

Word segmentation: There are some <UNK>.

Subword segmentation: There are some trade_mark_s.

Linguistically Motivated Subword Segmentation

Challenge: there are multiple segmentations for one word, which is the optimal one?

Subword Segmentation: Method

- Dynamic Programming Encoding (DPE) (He+ 20) is a neural segmenter trained on parallel sentences.
 - It maximizes the marginal likelihood of the target sentence.

Subword Segmentation: Method

- BERTSeg
 - Uses semantic information from BERT embeddings.
 - It maximizes the marginal likelihood of the target word.

Subword Segmentation: Training and Decoding

Training

Maximize the generation probability of word by maximizing all possible segmentations, conditioned on its semantic embedding.

Decoding

- Retrace the optimal segmentation with the maximum generation probability.
- Stochastic version: sample segmentations based on their probabilities.

Subword Segmentation

BERTSeg

BERTSeg	BPE	
Frequent words		
official/s	officials	
edit/ion	edition	
use/d	used	
farm/er/s	far/mers	
contribute/d	contrib/uted	
normal/ly	norm/ally	
seven/th	sevent/h	
challenge/d	challeng/ed	
over/night	o/vern/ight	
language/s	langu/ages	

BERTSeg	BPE
Rare	words
inter/face/s	inter/f/aces
sea/side	se/as/ide
ab/normal/ly	ab/n/orm/ally
b/y/stand/er	by/st/ander
dis/comfort	disc/om/fort
un/warrant/ed	un/w/arr/anted
in/definitely	ind/ef/in/itely

BPE			
Unseen words			
st/ab/led			
sa/vers			
Mill/ions			
Fre/ew/ay			
M/is/be/hav/ior			
m/our/ned			
Mad/ame			

Segmentation for Other Languages

Use multilingual BERT encoder

Character Decomposition: Motivation

 Characters in languages such as Chinese, Japanese, Korean may contain sub-characters.

Character Decomposition: Method

Replacing characters with ideograph sequences in the training data.

	Language	Word
	JP-character	風 景
Method in this paper	JP-ideograph	几一虫 日一口小_1
	JP-stroke	ノユ <u>ー </u>
	CN-character	风景
Method in this paper	CN-character CN-ideograph	风 景 几 <u>メ</u> 日一口小_1
Method in this paper		
Method in this paper	CN-ideograph	几 <u>メ</u> 日一口小_1 ノスノ、

Character Decomposition: Results

Best performance compared to word/character/stroke

English-Ch	BLEU	
EN_word	CN_word	11.8
EN_word	CN_character	10.3
EN_word	CN_ideograph	14.6 *
EN_word	CN_stroke	14.1^{*}
Chinese-En	BLEU	
CN word	DNI 1	
CIN_word	EN_word	14.7
CN_word CN_character	EN_word	14.7 14.5
100 C C C C C C C C C C C C C C C C C C	0.00000.000	

Using Data in Related Languages

- Motivation
 - Transfer knowledge in high-resource language to low-resource language
 - Especially helpful if they are related (share the same grammar etc.)
- Challenge
 - Often different script

Using Data in Related Languages

From non-Latin to Latin

Using Data in Related Languages

From one language to another related language

Script Mapping [5] Zh: 今日天气晴,适合出<u>巾</u>散步 Mapping: ↓ ↓ ↓ ↓ Synthetic Ja: 今日天気晴,適合出門散歩

MT Performance using Romanization

Improves the performance of **low-resource language** 1

But hurts the performance of high-resource language

		transfer from		
		multilingual parent		
	base	orig	uroman	uconv
am-en	14.4	16.2	16.5	16.0
en-am	12.7	13.7	6.5	14.3
mr-en	34.3	45.0	43.4	42.8
en-mr	25.7	33.4	33.2	33.0
ta-en	21.9	29.3	29.0	29.2
en-ta	13.5	21.5	21.0	22.4
avg imp	-	+ 6.1	+ 4.5	+ 5.9

	orig	uroman	uconv
ar-en	37.4	36.3	37.4
ru-en	33.3	33.5	34.1
zh-en	39.5	37.0	39.2

Summary

- Linguistic knowledge can be injected in the training data
 - Word segmentation for languages such a Japanese and Chinese
 - Linguistically motivated subword segmentation
 - Character decomposition
- Data from related languages helps through
 - Script mapping
 - Romanization

Open Questions

- Character-level/Byte level tokenization
 - Character-level contains all information in theory
 - But it underperforms subword based methods
 - Why? Because the current architecture is designed for subwords?
- Knowledge transfer only in similar script
 - e.g., if some knowledge appears in English, if the model outputs Japanese it can never access that knowledge
 - Romanization hurts the performance of the original language
 - how to transfer between different scripts efficiently?

References

- [1] Juman++: A Morphological Analysis Toolkit for Scriptio Continua
- [2] Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
- [3] BERTSeg: BERT Based Unsupervised Subword Segmentation for Neural Machine Translation
- [4] Neural Machine Translation of Logographic Languages Using Sub-character Level Information
- [5] Pre-training via Leveraging Assisting Languages for Neural Machine Translation
- [6] On Romanization for Model Transfer Between Scripts in Neural Machine Translation

Linguistically Aware Decoding

Part of the EAMT 2024 Tutorial Linguistically Motivated Neural Machine Translation

Haiyue Song
https://shyyhs.github.io

Decoding

- String-to-Tree Decoding
- Structural Template Prediction

String to Syntactic Tree

Incorporate syntactic tree information [1]

String to Syntactic Tree

- Syntactic tree is linearized for the NMT model to process
 - Syntactic info is obtained from a specific English parser

Jane hatte eine Katze . \rightarrow $(_{ROOT}$ $(_{S}$ $(_{NP}$ Jane $)_{NP}$ $(_{VP}$ had $(_{NP}$ a cat $)_{NP}$ $)_{VP}$. $)_{S}$ $)_{ROOT}$

Results: Helpful in Low-resource

No large improvement in high-resource scenarios

4.5M parallel sentences

German English

system	newstest2015	newstest2016
bpe2bpe	27.33	31.19
bpe2tree	27.36 ∽	32.13

166k parallel sentences low-resource scenario German English

system	newstest2015	newstest2016
bpe2bpe	13.81	14.16
bpe2tree	14.55	16.13

String to Any Tree

Incorporate any tree structure information [2]

Example of one parser

Different parsers, or even not from parser

Balanced Binary Tree

String to Any Tree

Tree-structure-aware decoder [2]

String to Any Tree

Balanced Tree works [2]

Syntax-guided Generation

Guide the decoding process using syntax information [3]

Method

Training data

d	\mathbb{T}_d	s_d	f_d
0	{(0,4,0,T)}	<t></t>	<s></s>
1	{(0,4,1,S)}	<\$>	<c> <np> <vp> .</vp></np></c>
2	{(0,0,2, <i>NP</i>), (1,3,2, <i>VP</i>)}	<np> <vp> .</vp></np>	<c> <c> <c> ate <np></np></c></c></c>
3	{(2,3,3,NP)}	I ate <np> .</np>	<c> an apple</c>

Decoder

Case Study

Decoding process example [3]

Summary

- Leveraging the tree-structure information in the decoder/decoding is helps, especially in **low-resource scenarios**.
- The decoding process is also more controllable/explainable.

References

- [1] Towards String-to-Tree Neural Machine Translation
- [2] A Tree-based Decoder for Neural Machine Translation
- [3] Explicit Syntactic Guidance for Neural Text Generation

Linguistically Motivated Evaluation for Neural Machine Translation

Part of the EAMT 2024 Tutorial Linguistically Motivated Neural Machine Translation

Haiyue Song
https://shyyhs.github.io

Evaluation

- Linguistic Evaluation Benchmark
- Linguistic Evaluation on the MT Output of GPT-4

Checklist

- **M** Ambiguity
- **☑** Composition
- **N** Punctuation
 - Verb tense

. . .

Linguistic Evaluation Benchmark

Evaluate on language-specific linguistic phenomenon [1]

German→English

Lexical Ambiguity	
Er las gerne Novellen.	
He liked to read novels.	fail
He liked to read novellas.	pass
Phrasal verb	
Warum starben die Dinosaurier aus?	
Why did the dinosaurs die?	fail
Why did the dinosaurs die out?	pass
Why did the dinosaurs become extinct?	pass
Ditransitive Perfect	
Ich habe Tim einen Kuchen gebacken.	
I have baked a cake.	fail
I baked Tim a cake.	pass

Linguistic Evaluation Benchmark

A semi-automatic pipeline

Linguistic Evaluation on Metrics

Check if the metric favors the correct one [2]

- High-performance metrics for En-De
 - BERTScore
 - COMET-22

Linguistic Evaluation on Context-Aware MT

Translation should be contextual. [3]

Phenomena in Context-Aware MT (1/3)

- Deixis
 - Referential expressions whose denotation depends on context.

EN Is someone putting you up to this? Are you being ... coerced?

RU Тебя кто-то подговорил? Вас принуждали?

Violation of T-V form consistency

- Informal form
- Formal form

Phenomena in Context-Aware MT (2/3)

Ellipsis

The omission from a clause

Veronica, thank you, but you saw what happened. We all did.

Вероника, спасибо, но ты видела, что произошло. Мы все хотели.

"did" should be translated into a word meaning "saw" (видела) but wrongly into "want" (хотели)

Phenomena in Context-Aware MT (3/3)

- Lexical Cohesion
 - Named entity inconsistency

EN Not for <u>Julia</u>. <u>Julia</u> has a taste for taunting her victims.

RU Не для Джулии. Юлия умеет дразнить своих жертв.

Translations of the name "Julia" are not consistent.

Method

Better than simply concatenating contexts.

FIXME Add results

Linguistic Evaluation on the MT Output of GPT-4

- Can GPT-4 outperforms traditional NMT models?
 - Comparable on high-resource directions
 - Not in lower-resource directions.

Summary

- The linguistic evaluation benchmark provides a more fine-grained evaluation of MT outputs.
 - However, it is still semi-automatic and requires human effort.
 - Better to add BERTScore/COMET-22 during evaluation which are consistent with this benchmark.
- Traditional MT systems are still better than GPT-4 especially in lowresource directions.

References

- [1] Linguistically motivated Evaluation of the 2022 State-of-the-art Machine Translation Systems for three Language Directions
- [2] Linguistically Motivated Evaluation of Machine Translation Metrics based on a Challenge Set
- [3] When a Good Translation is Wrong in Context: Context-Aware Machine Translation Improves on Deixis, Ellipsis, and Lexical Cohesion
- [4] Linguistically Motivated Evaluation of the 2023 State-of-the-art Machine Translation: Can GPT-4 Outperform NMT?