# 修論ゼミ

#### 須賀勇貴

茨城大学大学院 理工学研究科 量子線科学専攻 2 年

2023年7月20日

# $lacksymbol{1}$ 4.2 $WW^ op$ におけるスピン相関

- 2 4.3 磁化と特異値分解 (SVD)
- 3 4.4 固有値スペクトルと W に格納された情報

1 4.2  $WW^{\top}$  におけるスピン相関

2 4.3 磁化と特異値分解 (SVD)

3 4.4 固有値スペクトルと W に格納された情報

## $4.2~WW^{\top}$ におけるスピン相関



Figure 12: Elements of  $WW^T$  when the hidden layer has 16 (left), 100 (center), 400 (right) neurons.

#### 図 12 は TypeV の RBM での行列 $WW^{ op}$ $(100 \times 100)$ の各要素の値をプロットしたもの

 $\sigma_{i-L}$ 

## $4.2~WW^{\top}$ におけるスピン相関



Figure 12: Elements of  $WW^T$  when the hidden layer has 16 (left), 100 (center), 400 (right) neurons.

#### 図からわかること

- どの場合も対角成分の値は大きい
- ullet  $N_h=400$ , $N_h=100$  の時は対角行列に近い
- ullet  $N_h=16<100$  の時,非対角成分にも大きな値が存在
- $\Rightarrow N_h = 16$  の時の  $WW^ op$  は入力配位のスピン相関を反映しているに違いない!!

#### $4.2~WW^{\top}$ におけるスピン相関

#### 図からわかること

- WW<sup>T</sup> の相関は高温でより急速に減少
  ⇒RBM は相関距離 (クラスターのサイズ) を正確に学習している
- TypeV は T=2 と T=3 の間  $\Rightarrow$  TypeV の RBM は  $T_c$  付近 の配位と似た特徴を取得した



- 14.2~WW におけるスピン相関
- 2 4.3 磁化と特異値分解 (SVD)
- 3 4.4 固有値スペクトルと W に格納された情報

 $WW^ op$  の固有値,固有ベクトルをそれぞれ  $\lambda_a, u_a \; (a=1,\dots,N_h)$  とする

$$WW^{\top}u_a = \lambda_a u_a$$

入力の配位ベクトル  $v^{(0)}$  は固有値ベクトルを使って  $v^{(0)}=\sum_a c_a u_a$  (規格化条件:  $\sum_a (c_a)^2 = 1$ ) のように分解することができるので

$$v^{(0)\top}WW^{\top}v^{(0)\top} = \left(\sum_{a} c_{a}u_{a}\right)^{\top}WW^{\top}\left(\sum_{a} c_{a}u_{a}\right)$$
$$= \left(\sum_{a} c_{a}u_{a}\right)^{\top}\left(\sum_{a} c_{a}\lambda_{a}u_{a}\right)$$
$$= \sum_{a} \sum_{a'} c_{a}c_{a'}\lambda_{a'}(u_{a})^{\top}u_{a'}$$
$$= \sum_{a} c_{a}^{2}\lambda_{a}$$

 $\Rightarrow v^{(0)}$  が  $WW^{ op}$  の固有値の要素を多く含んでいれば  $v^{(0) op}WW^{ op}v^{(0) op}$  の値が大きくなる



■ 臨界点付近で大きな変化 (イジングモデルの磁化を思わせる)







#### 図 15 から分かること

- $lacksymbol{lack} N_h$  が大きい時と小さいと時で臨界点付近での値の変化量が異なる
  - → この違いが図 6 と図 9 の RBM フローの違いを引き起こす原因?
- $lacktriangleright H_h$  が大きいときは高温の時も値が大きい
- $ightarrow N_h$  が大きい RBM は高温における特徴をより多く学習しているのではないか?

これは第 3.2 節の 2 番目の予想に他ならず,これは,4.2 章のスピン相関の振舞いで裏付けられている!!!

1 4.2 WW におけるスピン相関

2 4.3 磁化と特異値分解 (SVD)

3 4.4 固有値スペクトルと W に格納された情報

#### 4.4 固有値スペクトルと W に格納された情報



#### 図 16 からわかること

- Type L ではいくつかの固有値だけが値が大きい
  - ⇒ Type L RBM は,隠れ層のニューロンは少数で十分
- Type V では固有値の値は緩やかに減少
  - ⇒ Type V RBM は,すべての固有ベクトルが均等に利用されている
- ⇒ 広い温度範囲の特徴を学習するには,隠れ層に多くのニューロンが必要!!

#### 4.4 固有値スペクトルと W に格納された情報



