

T05: Exploração de Marte

Marina Camilo - up201307722 - up201307722@fe.up.pt Diogo Ferreira - up201502853 - diogoff@fe.up.pt Ângela Cardoso - up200204375 - angela.cardoso@fe.up.pt

> Professores Eugénio da Costa Oliveira Henrique Daniel de Avelar Lopes Cardoso

4ºAno - Sistemas Distribuidos Novembro 2016

Conteúdo

1.	Enunciado	3
	1.1. Descrição do cenário	3
	1.2. Objectivos do trabalho	
	1.3. Resultados esperados e forma de avaliação	
2.	Plataforma/Ferramenta	5
	2.1. Para que serve	5
	2.2. Descrição das características principais	5
	2.3. Realce das funcionalidades relevantes para o trabalho	
3.	Especificação	6
	3.1. Identificação e caracterização dos agentes (arquitectura, comporta-	
	mento, estratégias)	6
	3.2. Protocolos de interacção	6
	3.3. Faseamento do projecto	6
4.	Recursos	7
	4.1. Bibliografia	7
	4.2. Software	
5.	Exemplo Figura e tabela	8
	5.1. Baixando a partir de outro documento	8
	5.2. Efni fengið frá ytra skjali	9
Bil	bliografia	11
Α.	Anexos	12

1. Enunciado

1.1. Descrição do cenário

No âmbito da unidade Curricular de Agentes e Inteligência Artificial Distribuída o grupo propôs-se a implementar um Sistema Multi-Agente para simulação de um cenário de extração de minérios em Marte. Sendo assim, é necessário um conjunto de agentes com a tarefa de explorar o planeta Marte em busca de minérios, e de transportar a maior quantidade possível para a base. Para tal, existem três tipos de Agentes:

- \Spotter- Procura fontes de minérios e inspeciona-los para determinar se podem ser explorados.
- \Producer- É chamado a uma fonte de minério por um Spotter para extrair o máximo de minério possível nessa fonte.

De forma a facilitar a procura, todos os agentes podem localizar fontes de minérios e enviar a sua localização para os *Spotter* que os analisarão. A escolha do *Producer* por parte do *Spotter* segue um protocolo de negociação. A alocação dos *Transporters* a uma determinada fonte segue também um protocolo de negociação, iniciado pelo *Producer*. Esta alocação, terá em conta a quantidade de minério a transportar, de modo a determinar mais corretamente o número necessário de *Transporters*.

1.2. Objectivos do trabalho

Um dos objetivos deste trabalho é implementar os agentes de forma a que a simulação da exploração do cenário de Marte se torne o mail eficiente possível. No caso do *Spotter* será implementado um algoritmo que dividirá a área explorada pelos *Spotter* existentes. Será também implementado um protocolo de negociação que irá determinar que *Producer* será melhor para se deslocar para o local do minério encontrado. No caso do *Producer* será implementado um protocolo de negociação que irá determinar que ou quais *Transporters* serão mais eficientes a recolher o minério.

1.3. Resultados esperados e forma de avaliação

Inicialmente serão implementadas apenas as funcionalidades básicas de cada Agente como tal: A 1º fase de avaliação será verificar o sucesso da implementação do comportamento de cada agente. Após se garantir que todos os agentes realizam o seu papel corretamente passamos para a fase seguinte, a fase de implementação de restrições. Nesta 2º fase, irá avaliar—se se os *Transporters* chamados não ultrapassam a sua capacidade, se o *Transporters* chamados conseguem recolher todo o minério presente. Após estas fases, implementaremos algoritmos de forma a tornar mais eficiente esta demanda, avaliando se as alocações dos demais agentes correspondem ao mais disponível na altura. Se o mapa fica corretamente dividido entre os *Spotters* e se o tempo de simulação foi o mínimo para o caso em questão.

2. Plataforma/Ferramenta

- 2.1. Para que serve
- 2.2. Descrição das características principais
- 2.3. Realce das funcionalidades relevantes para o trabalho

3. Especificação

3.1. Identificação e caracterização dos agentes (arquitectura, comportamento, estratégias)

3.2. Protocolos de interacção

3.3. Faseamento do projecto

Tabela 3.1: Fases previstas para o projecto		
Construir ambiente de simulação na tecnologia <i>Repast</i>		
Criação do <i>Spotter</i> com as função de explorar e dividir terri-		
tório a explorar.		
Criação do <i>Producer</i> com a função básica de produzir. Me-		
Ihoramento do Spotter para chamar Producers.		
Criação do <i>Transporter</i> sem limite de capacidade e apenas		
com a função básica de transportar. Melhoramento do <i>Pro-</i>		
ducer para chamar <i>Transporters</i> .		
Melhoria dos Agentes Spotter, Producer e Transporter.		
Defenir estratégias de forma a tornar a exploração de Marte		
o mais eficiente possível.		

4. Recursos

- 4.1. Bibliografia
- 4.2. Software

5. Exemplo Figura e tabela

Figura 5.1: Mais aluguma coisa

Tabela 5.1: Alguma coisa.

nome1	nome2	nome3
1.1	1.2	1.3
2.1	2.2	2.3

5.1. Baixando a partir de outro documento

Exemplos de autorizado [1] e tambem [2].

5.2. Efni fengið frá ytra skjali

Petta efni er sótt úr skránni *YtraEfniFyrirInclude.tex*. Hægt er að nota nokkrar skipanir til að þætta inn önnur skjöl.

- \input, færir inn texta án frekari vinnslu.
- \include, færir inn texta og setur \clearpage í byrjun og enda texta.
- \includeonly{filename,filename2,...}, skal setja í "Preamble" til að velja hvaða skrár eru sótta með \include.

Hægt er að teikna rafrásir með TikZ, sjá mynd 5.2.

Figura 5.2: Einföld RL rafrás.

Dæmi um texta úr rafrásargreiningu:

Látum i vera fall einungis af tíma, þá getum við aðskilið jöfnurnar með

$$-Ri = L\frac{di}{dt}$$

$$-\frac{R}{L}dt = \frac{di}{i}$$

$$\Leftrightarrow$$

með því að heilda báðar hliðar frá tímapunktinum 0^+ til t og straumi i_0 til ifæst

$$\int_{i_0}^{i} \frac{dy}{y} = -\frac{R}{L} \int_{0^+}^{t} d\tau \qquad \Leftrightarrow
\ln\left(\frac{i(t)}{i_0}\right) = -\frac{R}{L}t \qquad \Leftrightarrow
i(t) = i_0 e^{-\frac{R}{L}t} \qquad (5.1)$$

þá er hægt að vísa í jöfnu 5.1.

Bibliografia

- [1] P. A. M. Dirac, *The Principles of Quantum Mechanics*, sér. International series of monographs on physics. Clarendon Press, 1981, ISBN: 9780198520115.
- [2] A. Einstein, "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]", *Annalen der Physik*, vol. 322, n° 10, pp. 891–921, 1905. DOI: http://dx.doi.org/10.1002/andp.19053221004.

A. Anexos

Dicas úteis e waypoints