Energy and Forces in Dielectrics See Griffiths - Q + 8Qp (sec 4,4,4) for a clear discussion The energy required to add dQf is SW = Spf & External work required to charge capacitor SW = J V. (8D) 4 including to polarize the dielectric = - / 8D. VY $SW = \int \vec{E} \cdot SD(\vec{E})$ and $W = \int \vec{E}(\vec{D}) \cdot d\vec{D}$ For linear substance $S\vec{D} = \mathcal{E}(r)\vec{E}$ and $SW = \int E - \epsilon(r) SE$ and $W = \int \frac{1}{V} \epsilon(r) E^{2}(r)$

Problem
Consider the following parallel plate capacitor held
1///E - 4=0
Use the Stress tensor to determine
the force on the dielectric
Solution
tirst note that the potential is constant
So the electric field is the same at
Em and East. The charge density is not the same. In particular
Jin = Din = & Ein = & Eout while Just out = Eout
Then using the stress tensor on the dashed volume shown
Top
Fx = - pdan; Tix Side
Bottom
FX = - A (TXX - TXX)
R area of side face

