

降维问题

数据压缩(提取主要信息)

2D to 1D数据压缩

$$x^{(1)} \longrightarrow z^{(1)}$$

$$x^{(2)} \longrightarrow z^{(2)}$$

:

$$x^{(m)} \rightarrow z^{(m)}$$

数据压缩(提取主要信息)

3D to 2D数据压缩

数据压缩(提取主要信息)

降维——将数据的维度降低,便于发现问题,

提高数据的处理效率。

数据可视化

点云数据				
22. 780	22. 920	23. 120		
58. 880	58.660	58, 680		
37.860	37. 510	38. 150		
39.820	39. 910	39, 950		
46.300	46.390	46. 400		
39.850	39. 990	39, 830		
42.700	42.640	42.690		
44.070	44. 210	44. 420		
49.730	49. 470	49.670		
50. 520	51. 140	50. 930		
90. 240	90.350	90, 600		
90. 970	91.000	91, 100		
69.410	69. 450	69.410		
70.960	71, 110	71.090		
83.120	83.040	82. 870		
54. 230	54.310	54. 440		
23. 730	23. 710	23.690		
43.320	43. 160	42.910		
33. 260	32.890	33.140		
17. 940	17. 990	18.340		
20. 570	20.640	20.540		
11.700	11.590	11, 780		

数据可视化(合并特征)

						Mean	
		Per capita			Poverty	household	
	GDP	GDP	Human	_	Index	income	
_	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	` US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	•••
	•••	•••	•••	•••	•••		

不能数据可视化

数据可视化(合并特征)

Country	z_1	z_2	
Canada	1.6	1. 2	
China	1.7	0.3	
India	1.6	0. 2	
Russia	1.4	0.5	
Singapore	0.5	1. 7	
USA	2	1.5	
•••	•••		

降维后新特征的实际意义是什么?

降维问题主成分析方法

主成分分析: PCA (Principal Components Analysis)

PCA: 找到一个方向向量(Vector direction),所有数据投影到该变量上,投影平均均方误差尽可能小。

主成分分析问题的描述:

2D to 1D: 找到方向(向量)在其上投影,最小化投影距离。

 $u^{(1)} \in \mathbb{R}$

从n维减少到k维:找到向量($u^{(1)},u^{(2)},\dots,u^{(k)}$),在其上投影数据具有最小化的投影误差。

PCA的思想:

• 将n维特征映射到k维上(k<n), k维特征称 为主元(主成分)。

k维特征是重新构造出来,不是简单地从n 维特征中去掉了其余n-k维特征。

PCA与线性回归

算法步骤

假设有数据集: $x^{(1)}, x^{(2)}, \ldots, x^{(m)}$

要采用PCA方法,首先要进行数据的预处理:

均值归一化

- ◆ 计算出所有特征的均值 $\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$

如何得到这些向量? 如何得到数据在新特征下的数值?

算法步骤

PCA减少n维到k维的步骤如下:

首先, 计算协方差矩阵

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)}) (x^{(i)})^{T}$$

$$x^{(i)}$$
是一个 $nx1$ 的矩阵

然后,计算协方差矩阵的Σ的特征向量,在Matlab、Octave、

Python numpy 里可以利用奇异值分解来求解: $[U, S, V]=svd(\Sigma)$

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

算法步骤

$$U = \begin{bmatrix} | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

U 是一个具有与数据之间最小投射误差的方向向量构成的矩阵。从U 中选取前K 个向量,获得一个 $n\times k$ 维度的矩阵 U_{reduce}

新特征向量z(i)为:

$$\mathbf{z}^{(i)} = U_{reduce}^T X \mathbf{x}^{(i)};$$

数据"恢复"

通过PCA算法,可把1000维的数据压缩100维特征,或将三维数据压缩到一二维表示。

在压缩过数据后,可以采用如下方法来近似地获得原有的特征:

$$\chi_{appox} = U_{reduce} \bullet z$$

降维问题 PCA的应用建议

PCA的应用建议

应用场景

- 数据压缩
 - 减小内存、硬盘存储空间需求
 - 提高计算效率
- 可视化

PCA的Python实现

作业

1. 用PCA算法将pca_data.txt中的数据压缩至2维