ENVIRONMENTAL ENGINEERING

SOLID WASTE MANAGEMENT

5R PRINCIPLES

CIRCULAR ECONOMY

CLASSIFICATION OF WASTE

INTEGRATED SOLID WASTE MANAGEMENT HEIRARCHY

WASTE TO ENERGY

WASTE TO ENERGY – THERMAL

HYDROTHERMAL TREATMENT

ADVANCED OXIDATION PROCESSES

EXAMPLE – 1. MUNICIPAL SOLID WASTE

FRAMEWORK FOR INTEGRATED MSW MANAGEMENT

GLOBAL MSW COMPOSITION

MUNICIPAL SOLID WASTE COMPOSTING

ANAEROBIC DIGESTION OF MSW

RESOURCE RECOVERY FROM MIXED SOLID WASTE

WASTE TO ENERGY FOR MSW DISPOSAL

REFUSE-DERIVED FUEL OR SOLID-RECOVERED FUEL

LANDFILLING

EXAMPLE – 2. BIOMASS

BIOMASS GASIFICATION

BIOMASS PYROLYSIS

BIOMASS COMBUSTION

BIOMASS LIQUEFACTION

ANAEROBIC DIGESTION OF BIOMASS

BIOMASS FERMENTATION

PHYSICO-CHEMICAL CONVERSION OF BIOMASS

HYDROTHERMAL CONVERSION OF BIOMASS

OPTIONS WITH SUGARCANE BAGASSE

CHEMICALS FROM FOOD WASTE

Antioxidant biomaterial hydrolysis extraction/ microwave distillation **Essential oil Biochemicals and** (limonene) nanoporous materials fermentation H₃C **Nutraceuticals** Enzyme

Solvent (ethanol)

CONVERSION OF LIGNOCELLULOSIC BIOMASS

BIO-PET AND BIO-PEF

HYDROGEN AND FUELS FROM BIOMASS

EXAMPLE – 3. PLASTIC WASTE

PYROLYSIS OF PLASTIC WASTE

HYDROTHERMAL LIQUEFACTION OF PLASTIC WASTE

GASIFICATION OF COVID-19 PLASTIC WASTE

S

Advantages High energy efficiency, stability, high heating value Stable engine performance Production of by-products of various potential applications Reducing of unsaturated hydrocarbons Employing cheaper catalyst Design consideration in engine (optimum blend, delayed ignition, Higher heat release rate and increased Nox) Ensures complete destruction of waste Advantages No requirement of design modification, processing Thermal substitution rate of industry can be increased Waste collection and transportation senes strategy to the cement kiln Paying and buying options for user and producer ssues Advantages Can treat heterogeneous polymers with limited scope of pre-treatment Greater process flexibility

Emerging practices For plastic waste management

Gasification

Better binding between aggregates and bitumen

Resistance to deformation under extreme climate and water induced damage

Reduction in Gross phase separation under quiescent conditions

Lighter weight than competing products Improved reliability and sustainability Resistant to chemical, water and impact Excellent thermal and electrical insulation properties

Lower manufacturing and shipping cost

Workable Plastic proportion for optimum concrete quality

Boost durability, strength, fatigue

Development of appropriate equipment and product optimization

CIRCULAR ECONOMY FOR PLASTIC WASTE MANAGEMENT

Ш SLUD Ш WAST 4. EXAMPL

Sludge Valorization

· Carbon resource Biodegradable plastics Resource recovery · Nitrogen and phosphorus recovery resource recovery Struvite CH, fuel · Gas pollutants removal · Liquid pollutants removal Sludge based including antibiotics. heavy metals, dyes, adsorbents phenolic compounds, fluoride Sludge based adsorbents · Wastewater treatment Bioflocculants · Heavy metal removal · Pulp effluent treatment Bioflocculants Sludge Sludge brick manufacturing Sludge cement construction · Sludge ceramsite Sludge brick Sludge ceramsite materials Sludge cement · Accelerating plant growth · Improving moisture Crop fertilizer Sludge retention Vegetable Fertilizer · Increasing organic matter composting in the soil Sludge · Improving erosion control composting Flower fertilizer Turf fertilizer Incineration Thermal Pyrolysis valorization Gasification Gas fuels

HYDROTHERMAL CONVERSION OF OILY SLUDGE

50MPa

5MPa

THERMAL HYDROLYSIS / WET OXIDATION OF SLUDGE IN WWTP

AQUEOUS-PHASE REFORMING OF SEWAGE SLUDGE

EXAMPLE – 5. MUNICIPAL PAPER WASTE

https://doi.org/10.1038/s41598-021-95361-4

EXAMPLE – 6. WASTE TOILET PAPER

THANK YOU