Dark Matter as a Stochastic Resonance of the Quantum Vacuum

A phenomenological framework (full, data-integrated)

Author: CosmicThinker

Version: FINAL print-safe

Abstract

Print-safe PDF: ASCII-only and standard fonts to avoid glyph issues. We present a causal, passive susceptibility chi(omega,k) leading to an effective density rho_eff via an in-in (Einstein-Langevin) route, with on- and off-band stability criteria. We integrate 2025 nulls (Euclid QR1, JWST Bullet, LVK O4). Laboratory-Hz predictions are removed as out-of-band; active tests are weak-lensing four-point and stochastic GW bounds.

Keywords: stochastic gravity, dark matter, vacuum fluctuations, weak lensing, four-point statistics

1. Core Model

1.1 chi(omega,k): causal and passive

Retarded susceptibility obeying Kramers-Kronig with $Im\{chi\} <= 0$ (passive) and analyticity in the upper half-plane. Minimal ansatz: $chi(omega,k) = chi0(k) / [1 + (omega^2 - omega0(k)^2)/Gamma(k)^2 - i*omega/Gamma(k)], Gamma(k)>0.$

1.2 Stability on and off band

Poles at omega_p = +-sqrt(omega0(k)^2 - (Gamma(k)^2/2)) - i*Gamma(k)/2 => no runaway. Off-band stability: spectral positivity S \sim -2 Im{chi}/omega >= 0; monotonic omega0(k) with d^2(omega0^2)/dk^2 >= 0; bounded |chi|; UV-regularized R(omega,k).

1.3 In-in route to rho_eff

From Schwinger-Keldysh (Einstein-Langevin) effective action: define zeta_R via R(omega,k) and expand rho_eff = A (zeta_R^2 -) + B (zeta_R^3 - 3 zeta_R) + ..., with A ~ Re{chi0} and g_res = B/A^(3/2).

2. Backreaction and GW bound

Use Omega_GW(f) \leq alpha^2 f_res^2 (ell_c H0/c)^2 * J(f; tau_c), with J(f; tau_c) ~ 1 / (1 + (2*pi*f*tau_c)^2). Maps LVK O4 limits to constraints on (ell_c, tau_c, f_res).

3. Integration with 2025 nulls

Euclid QR1: no WL trispectrum band => upper limits via SNR scaling. JWST Bullet: no offset => $tau_c <= 0.10 \text{ Myr}$ (for $v_rel \sim 3000 \text{ km/s}$) => tab-Hz channel removed. LVK O4: tighter SGWB bounds => constraints on alpha * t_res * ($table ell_c = tab/ell_c =$

4. Predictions (active channels)

4.1 Weak-lensing trispectrum (synthetic template)

4.2 Synthetic intuition (SNR vs ell_c; Omega_GW vs tau_c)

Appendix A: Why there is no lab Hz line

For tau_c \leq 0.10 Myr, f0 ~ 1/(2*pi*tau_c) ~ 5.04e-14 Hz, far below lab bands.

References (selected)

- Okamoto and Hu (2003) PRD 67 083002.
- Lewis and Challinor (2006) Physics Reports 429.
- Planck Collaboration (2020) A&A; 641 A9.
- Hu and Verdaguer (2008) Living Rev Rel 11:3.
- BICEP/Keck (2021) PRL 127 151301.
- Euclid Consortium (2025) Quick Release 1 WL results.
- Cha et al. (2025) JWST Bullet analysis.
- LIGO Virgo KAGRA (2025) O4 SGWB limits.
- Parikh et al. (2020) PRD 101 043012.
- Dvali and Gomez (2013) graviton condensate (context).
- Delacretaz et al. hydrodynamic resonant DM (context).