

FIT3003 final Notes

Business Intelligence And Data Warehousing (Monash University)

L1: Understanding BI and DW

Why study BI & DW?

- Broadly, two categories of information systems in enterprise IT
 - 1. <u>Transaction processing systems</u>: System for collecting and recording information about business activities (payroll systems, inventory management systems)
 - 2. Decision support system: Systems for collating and analysing information (typically collected from transaction processing systems) to support organisational decisionmaking
- Approaches that work well for developing transaction processing systems often don't work for decision support systems.

What is Business Intelligence?

- Designed to support informed decision making in organisation through provision of functions to visualise reports and analyse organisational data
 - o Huge amounts of data

What BI interfaces have in common:

- Data from lots of different sources → Internal, external, different database management approaches, structured and unstructured data
- Dashboards providing overview and monitoring of performance
- Ability to navigate from one report to another for investigation → 'Slice and Dice' and 'Drill Down'
- Visualisation of data → Graphical and Textual
- BI Systems have to: 1. Acquire data 2. Present it
- <u>Data warehouse</u> Large, centralised database for storing data from transaction processing systems
 - o Provides data storage layer that provides: "Subject-oriented, integrated, timevariant, non-volatile collection of data in support of management's decisions."

Business Intelligence System Architecture

Business Intelligence System Architecture

Why Data Warehousing?

- Data warehouses store data from transaction processing systems

Motivation for data warehousing:

- Data in source systems is frequently inconsistent, of poor quality and stored in different formats
- Query processing on transaction-processing systems is not a good option
- DW is custom-designed for efficient data retrieval
- DW reduces complexity and costs
 - BI systems can source their data from single system with a known, consistent data structure and format

DW – subject oriented:

- Data warehouse is organised by "data subjects" that are relevant to organisation (Customer, claim, shipment, product)
- May be contrasted with the *process orientation* of many <u>transaction-processing systems</u>

DW - integrated:

- Data in the warehouse is structured based on a corporate-wide model, spanning the functional boundaries of source systems (the naming standards, units of measurement and periodicity)
- Compare with transaction processing system:
 - Highly normalised
 - o Lack of consistency between systems

DW – time variant:

- Data in the data warehouse is characterised by the time-series nature of historical data
- Data consists of series of "snapshots" which are time-stamped and record values at a moment in time
- This supports trend analysis of data

DW - non-volatile:

- Data in a data warehouse is periodically up-loaded at a scheduled time interval (say daily) –
 "upserting"
- When updated → earlier versions of data is maintained
- Data warehouse is **not** continuously updated (inserts, deletes, changes) like data in <u>transaction-processing systems</u> (don't maintain history – edits, deletions overwrite data)

Why learn about BI/DW? Key aspects of BI/DW systems make them different to other information systems: The task supported, The users, The development process required

The Task – Decision Making

- Task is typically well-defined business workflow:
 - Clear responsibilities
 - Explicit information requirements
 - o Explicit rules for using information to perform and action
- This allows us to develop a requirements specification for that information system design
- BI systems deal with a much more complex (design too) and ambiguously defined task than most transaction processing systems.

The Users

- Organisational decision makers: Knowledge workers, managers, executives, directors
- Impossible to specify what the above people do from moment to moment (Sales clerk: repetitive task vs. Manager: many different and unique one-off tasks)
- Organisationally powerful: If they don't want to use the BI system, they won't

The Development Process

- Traditional approach to Software Development Life Cycle:
 - 1. Gather information requirements
 - 2. Produce a requirements specification document, with sign-off from client
 - 3. Develop the system Database, software, hardware
 - 4. Test the system to make sure the system matches the requirements specification
 - 5. Client signs-off and takes acceptance of the system
 - 6. Project is closed

But for BI/DW:

- Purpose of the system is to help users understand the decision problem so they can make a better decision
- Information needed to make a good decision depends on the decision problem
- Catch 22:

You don't know what information you'll need until you start using the system → You can't use system until it's designed → Can't be designed until designer has gathered the information requirements

Decision Support Systems Development

Framework for any system that supports decision-making:

BI/DW Development:

- Any system designed to support decision making must:
 - o Be closely developed with co-operation between users and developers

- Developed in adaptive manner User understanding and requirements change?
 System design has too as well
- Evolutionary/Adaptive development
 - Significantly different to traditional project-based development where there is clear end-date and specific deliverable (and budget)
- High profile projects
 - o Significant organisational impact, affects multiple business areas
- As a result → High risk

Summary:

- BI is current approach to organisational decision support
- DW provides data infrastructure to develop various decision support and business intelligence initiatives in an organisation
- BI/DW are fundamentally different from more typical information systems:
 - o Different nature of task support
 - o Different, discretionary and powerful users
 - o Different, 'chaotic' development process

L2: BI Interfaces 1

Why is the BI user interface important:

- <u>BI system developers</u> care more about the <u>technology</u>, <u>BI system users</u> care most about the <u>interface</u>

General BI UI Requirements:

- Interface must not get in the way
 - o Allow "analysis at speed of thought" and "transparent interaction"
- Information presented must be easy to understand
- Must be clear where information comes from
- Interface must be easy to learn and easy to remember
- Focus must be on the design rather than engineering

Mobile BI UI Requirements:

- General BI UI requirements still apply
- Mobile BI applications tend to support very specific tasks
 - o Understand decision task and environment very well
 - o Work closely with users to develop the application
 - o Don't limit development and testing to emulators
- Design BI application interface to conform with UI conventions of the target platform
- Choose font sizes and menu targets carefully
- Mobile application users expect "beautiful" apps

Business Intelligence UI Components:

Report -

- Document that presents information in an organised format for a specific audience and purpose
- Information organised in → Graphic, tabular, narrative formats
- **Reports output:** Generated on recurring schedule, when certain conditions met or as required
- Can be static or interactive (users can enter parameters, sort columns, filter content)

Tables -

- Values are arranged in grid format (rows, columns)
- Values are encoded in text (words, numbers)
- Rows and columns can be defined by grid lines or white space
- Most appropriate method to:
 - o Display information when user has need to look up individual values
 - o Display simple relationship between numeric and categorical values

Graphs (Charts) -

- Values are displayed within an area bordered by 1/+ axes
- Values are encoded as visual objects (shapes and lines) positioned in relation to the axes
- Axes provide scales that are used to label and assign values to the visual objects
- Most appropriate method when:
 - o Message is contained in shape of the values
 - o Objective is used to reveal relationships among multiple values

Dashboards -

- Visual display of the most important information needed to achieve one or more objectives which fits entirely on a single computer screen so it can be monitored at a glance
- Small, concise, clear, intuitive, and **often interactive** display
- Customised for specific person, group, or function
- Focus → Monitoring and measuring
- Consists of → Charts and tables
- Types:
 - o Strategic
 - Used by <u>managers</u> to monitor business health & progress towards meeting strategic objectives
 - High-level measure of past and forecast performances (last week/month)
 - o Analytic
 - Used by <u>analysts</u> as a way to gain access to broad range of more detailed information → Find out why things happen
 - o Operation
 - Used to monitor operation of a factory or service
 - Display of information is real-time or near-real-time (NOW)
 - Displays measures, warnings, alerts
- Purpose: Let end-users understand their business intuitively without too much thinking, meaning they can receive critical information from dashboard without even interacting with it.

Dashboard vs Report

- Minimal interactivity and analysis needed
- Requires minimal cognitive effort
- Focus on quick communication of key data
- Individual visualisations should work together to communicate effectively:
 - Consider placement for comparisons
 - Avoid multiple 'screens' (tabs horizontal, scrolling vertical). No navigation.
- Click through to reports for substantial analysis
- Dashboards provide summary while reports let you detailed analysis

BI UI Navigation Methods:

Designing the BI UI:

- **Usability**
 - "Extent to which a product can be used by specified users to achieved specified goals with effectiveness, efficiency and satisfaction in a specified context of use"

- Affordance
 - o A capability, offered by an artefact, to a user. Can be different for different users.
 - What the object means to you/Use of the object ("To sit on")
- Visibility
 - Features or properties of an object that tells or shows a user how to interact with, or the status of, an object ("Button → Push", "Switch → Flip")

UI Design Guidelines:

- 1. <u>Visibility of System Status</u> → System gives you feedback on what's going on (Progress bar, error message, "Loading", Spinning wheel)
- 2. <u>Match Between System and Real-World</u> → System should use language (words, phrases) that are familiar to user
- 3. <u>User Control and Freedom</u> → Support undo and redo where user could make "emergency exit" if needed
- 4. <u>Consistency and Standard</u> → User shouldn't have to worry if different words/actions mean the same thing
- 5. <u>Error Prevention</u> → Eliminate error-prone conditions or check for them and present users with confirmation option before committing to action
- 6. Recognition Rather than Recall → Interface should be easy to recognise what it's about (Easily understandable in second)
- 7. Flexibility and Efficiency of Use → Allows users, whether inexperienced/experienced to tailor frequent actions
- 8. <u>Aesthetic and Minimalist Design</u> \rightarrow Dialogue shouldn't contain info which is irrelevant or rarely needed
- 9. Help users Recognise and Recover from Errors → Error messages should be expressed in plain languages (no codes), precisely indicate the problem and continuously suggest solution
- 10. <u>Help and Documentation</u> → Better if system can be used without documentation but may be necessary to provide help/documentation

Usability Testing:

- What is it? → Test the application
- Why do it? → To make sure you're on the right track
- When should it be done? → Draft application ready

Usability Testing - Structure:

- Identify the scope → The thing(s) you actually test
- What is the purpose → To see if it's easy to understand/use
- Schedule and location → Define where you run it

- Who will participate → Define target audience
- How many participants?
- Choose scenarios
- Identify test metrics → # of steps/clicks to do task, time used (too much = not good)
- Conduct the test
- Compile the results
- Fix the usability problems

Summary:

- BI UI consists of → Reports, tables, graphs and dashboards and can be navigated in different ways
- Usable BI UI → Satisfied users & confident in information provided
- Apply usability principles and conduct usability test

L3: BI Interfaces 2

Financial Markets and Financial Intermediaries:

- **Security -** A <u>claim on the issuer's future income</u> or assets