Differential abundance testing for bioinformatic data

What is differential abundance?

"All models are wrong, some are useful." -George Box

Learning objectives

- Describe how differential abundance (DA) modeling tests which taxa are significantly different between groups (e.g. treatment, host, etc)
- Be able to describe how count data is "compositional" and "sparse", and why this influences our decision making
- Understand the balance between type 1 and type 2 error based on your model selection for DA
- Describe the 3 most common categories of statistical methods used

Outline

- 1. Review types of analyses you've learned so far
- 2. Review typical model selection
- 3. Sequencing data considerations
- 4. My recommendation: ANCOM-BC2
- 5. Hands-on activity in R

Starting from count data, we want to analyze:

Analysis type	Goal	Response variable	Example test
Alpha diversity	Compare richness and evenness	1 diversity index per sample	Wilcox
Beta diversity	Compare community structure	Differences between samples	PERMANOVA
Differential abundance testing	Compare differences in taxa abundance	Counts/abundance of taxa	ANCOMBC

What do we want from a statistical test?

- Accounts for data structure
- Controls for multiple comparisons (100s of taxa)
- Must balance Sensitivity vs
 Specificity

What do you prioritize?

Type 1 error: reporting **a difference**, when there isn't Type 2 error: reporting **no difference**, when there is

"it's significant!"

"no significant findings"

What model should we choose?

Extra considerations for sequencing data

- "Count data"
 - Count data is typically modeled with a Poisson distribution
 - Sequencing count data is different

Microbiome Datasets Are Compositional: And This Is Not Optional

- 1. Zero-inflated/sparse
 - Lots of features have 0's
- 2. Compositional due to a finite amount of sequencing
 - Changes in one taxa, affect the others

What options do we have?

- <u>Microbiome differential abundance methods produce different results across 38 datasets</u> (Langille et. al. 2022)
- In my opinion, I prefer a conservative approach that minimizes Type 1 error and accounts for sequencing count data structure
- Current recommendation: Analysis of Compositions of Microbiomes with Bias Correction 2 (ANCOM-BC2)
 - Takes raw counts (not normalized)
 - Models the log ratios between features
 - Runs sensitivity analysis to reduce false positive results
 - Flexible model creation (repeated measures, random variables, interactions, etc)

ANCOMBC2

- Takes raw counts (not normalized)
- Models the log ratios between features (instead of counts)
- Flexible model creation (repeated measures, random variables, interactions, etc)
- Reduces Type1 error with sensitivity test and FDR
- Identifies "structural zeros" (only present in one group)

Hands-on activity for differential abundance

- 1. We'll use the R package "testDA" to run multiple types of differential abundance tests
- 2. Then, we'll run the ANCOM-BC2 model on it's own
- 3. Finally, we'll explore the effect of removing "sparse" features

