

Hierarchical Clustering and PCA

Contents

- Hierarchical clustering
 - Distance calculation between data points
 - Cluster formation and dendrograms
 - Cophenetic correlation
- Principal Component Analysis
 - Covariance matrix
 - PCA for dimensionality reduction

Hierarchical Clustering

Need to cluster data?

 Clustering gives us insights into the distribution of customers, it helps to understand the customers, create segmentation and formulate precise advertising, marketing, logistics mechanisms.

• Clustering as an unsupervised technique

 Clustering is an unsupervised learning technique, which essentially means that there is no label/target value we have with our training data. There is no right and wrong answer and the the groups/clusters depend upon the methods used to reach to that clustering.

Connectivity based Clustering

- Considers the distance between two data points.
 - Nearer points are more similar/connected are more probable to be a part of the same cluster.
- Distance Calculation
 - Different process to calculate distance between data points as discussed previous week -Euclidean, Manhattan, Chebyshev

Distance Calculation

- The distances between points are calculated the same way it is calculated in a two-dimensional space, i.e considering all the different features/columns as different dimensions.
- Need to scale features/columns before bringing them into distance calculation.
 - To bring all the columns in the same scale so that distance calculation isn't skewed towards one particular feature.
- Finally, distances are calculated as per the scaled features.

Cluster Formation

- Two techniques for cluster formation, i.e, divisive and agglomerative
 - Divisive Start with one cluster and divide into different clusters
 - Agglomerative Start with different clusters and ultimately clubbing them to form one cluster
- Once a cluster is formed we wish to 'agglomerate it with another cluster' in order to reach to one cluster.
- That again is achieved by calculating the distance between these new clusters, 'closer' clusters are more probable to be part of the same cluster.
- This process is repeated till we get one cluster containing all our other sub clusters.

Dendrograms

- What are dendrograms?
 - Dendrograms are used to represent the distances at which the the different clusters meet.
 - They provide us an idea as to how the clustering looks like diagrammatically .
- Different dendrograms for the same dataset
 - Based on the method chosen to calculate distance between the clusters, the same dataset may result in different dendrograms.
 - Which dendrogram to choose?

Cophenetic Correlation

- The right choice of dendrogram is done by considering a value known as a cophenetic correlation.
- Dendrogram Distance: the distance between two points/clusters as described by that dendrogram.
- Cophenetic correlation computes the correlation between the euclidean distance and the dendrogram distance for a particular dendrogram of all possible pair of points.
- Performance measure The dendrogram corresponding to highest correlation coefficient is considered to be better representative of the clustered data and is used to produce labels/ clusters for the dataset.

Principal Component Analysis

- Principal Component Analysis, or PCA, is a method for reducing the dimensionality of data.
- It can be thought of as a projection method where data with m-columns (features) is projected into a subspace with m or fewer columns, whilst retaining the essence of the original data.
- Steps Involved:
 - o Begin by standardizing the data.
 - Generate the covariance matrix
 - Perform eigen decomposition
 - Sort the eigen pairs in descending order and select the largest one.

Covariance Matrix

• Variance is measured within the dimensions and covariance is among the dimensions.

$$\operatorname{var}(X) = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(X_{i} - \overline{X})}{(n-1)}$$
$$\operatorname{cov}(X, Y) = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{(n-1)}$$

- In the covariance matrix
 - The diagonal elements represent the variance of the individual attributes
 - The non-diagonal elements represent the covariance between pairs of attributes

- The mean is subtracted from all the points on both dimensions.
- The dimensions are transformed using algebra into new set of dimensions.
- The transformation is a rotation of axes in mathematical space.

PCA for Dimensionality Reduction

- PCA can also be used to reduce the dimensionality of a dataset.
- Arrange all eigen vectors along with corresponding eigenvalues in descending order of eigenvalues.
- Plot a cumulative eigen value graph.
- Eigenvectors with insignificant contribution to total eigenvalues can be removed from analysis.

greatlearning Power Ahead

Happy Learning!

