概统第十三次作业参考题解

2023.12.24

Q1. 假设检验: $H_0: \mu \geq \mu_0$ vs. $H_1: \mu < \mu_0$. 接受域为 $\{\mu_0 \leq \bar{x} - \frac{S}{\sqrt{n}} t_\alpha(n-1)\}^1$. 也即 $1-\alpha$ 置信上限.

Q2. $H_0: \mu \leq \mu_0$ vs. $H_1: \mu > \mu_0$. $\mu_0 = 225$. $p = \sup_{\mu \in \Theta_0} P_{\mu}(\bar{X} \geq \bar{x}) = 0.257$. 取检验水平 $\alpha = 0.05$, 不拒绝原假设,即无理由认为元器件寿命大于225.

Q3. $H_0: \mu_1 - \mu_2 = 0$ vs. $H_1: \mu_1 - \mu_2 \neq 0$. 无数据分布信息,利用大样本方法. P 值约为 0.0002. 取检验水平 $\alpha = 0.01$, 拒绝原假设,即可认为有显著不同.

Q4. 均错误.

Q5. H_0 : 一致(理论正确) vs. H_1 : 不一致. 卡方统计量 $\chi_0^2=0.47,\ p=P(\chi^2(3)\geq\chi_0^2)=0.925$. 不拒绝原假设.

Q6. (1) $H_0: p_1 = \cdots = p_6$. vs. $H_1: p_1, \ldots, p_6$ 不全相等. $\chi_0^2 = 1$, P值为0.96. 取检验水平 $\alpha = 0.05$, 不拒绝原假设,即可认为骰子均匀.

(2) $\chi_0^2 = 10$, P值为0.079. 取检验水平 $\alpha = 0.05$, 不拒绝原假设,即可认为骰子均匀. (但理由很不充分)

Q7. H_0 : 不相关 $p_{ij}=p_{i\cdot}p_{\cdot j}$ vs. H_1 : 相关. 卡方统计量 $\chi_0^2=3.08$, $p=P(\chi^2(2)\geq\chi_0^2)=0.215$. 不拒绝原假设.

Q8. H_0 : 非伪造 vs. H_1 : 伪造. 卡方统计量 $\chi_0^2 = 0.51$, $p = P(\chi^2(3) \le \chi_0^2) = 0.0834$. 不拒绝原假设.

¹参考题解中所用分位数均为下分位数.