Estudio de diferentes modelos de redes neuronales para el desarrollo de un clasificador de frases

Arkaitz Bidaurrazaga Barrueta

María Inés Torres Departamento de Electricidad y Electrónica (EHU/UPV)

Raquel Justo Blanco Departamento de Electricidad y Electrónica (EHU/UPV)

Julio 2019

Introducción

• Problema: Clasificar frases

Introducción

- Problema : Clasificar frases
- Objetivo : Desarrollar una red neuronal que haga el proceso de NLU

Introducción

- Problema : Clasificar frases
- Objetivo : Desarrollar una red neuronal que haga el proceso de NLU
- Metodología : Aprendizaje supervisado

Tabla de contenidos

- Problema a resolver
- Red neuronal
- Optimización
- 4 F1 *Score* y Búsqueda local
- Resultados
- Conclusiones

Tabla de contenidos

- Problema a resolver
- 2 Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- Resultados
- Conclusiones

Corpus de EMPATHIC

COACH: USUARIO:	Y entonces, para priorizar eso, ¿qué podrías hacer? Pues hombre, se me ocurre que podría hacer ejercicio más a menudo y salir a más conciertos de los que me gustan.
POLARIDAD:	Neutra.
SUBFRASE 1: ETIQUETA TEMA: ETIQUETA INTENCIÓN: ENTIDADES:	podría hacer ejercicio más a menudo tema, ocio y deporte, deportes, frecuencia intención, informar, plan, posible/no definitivo cantidades: más; fechas relativas: a menudo; acción: hacer ejercicio
SUBFRASE 2: ETIQUETA TEMA: ETIQUETA INTENCIÓN: ENTIDADES:	salir a más conciertos de los que me gustan tema, ocio y deporte, eventos, espectador intención, informar, plan, posible/no definitivo cantidades: más; afición: conciertos

Frecuencias de clases

(a) Tema (b) Intención

• Número de clases por ámbito:

	Tema	Intención	Polaridad		
M	8	9	3		

• Número de clases por ámbito:

	Tema	Intención	Polaridad		
М	8	9	3		

• Diálogos: 140

Número de clases por ámbito:

	Tema	Intención	Polaridad		
М	8	9	3		

• Diálogos : 140

• Subfrases: 7500

Número de clases por ámbito:

	Tema	Intención	Polaridad		
М	8	9	3		

• Diálogos: 140

• Subfrases: 7500

• Vocabulario completo : 4400 palabras

Número de clases por ámbito:

	Tema	Intención	Polaridad		
М	8	9	3		

• Diálogos: 140

• Subfrases: 7500

• Vocabulario completo : 4400 palabras

• Vocabulario wordvector: 2300

Número de clases por ámbito:

	Tema	Intención	Polaridad		
М	8	9	3		

• Diálogos: 140

• Subfrases: 7500

• Vocabulario completo : 4400 palabras

• Vocabulario wordvector : 2300

• Dimensión de los wordvectors : 300

Tabla de contenidos

- Problema a resolver
- Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- Resultados
- Conclusiones

¿Qué es una red neuronal?

Descenso por gradiente

Arquitectura y datos de entrada

Arquitectura:

Datos de entrada:

- Frase en el corpus : "Hola PERSON . ¿ Qué tal estás ?"
- Secuencia de índices :[109, 38, 1, 32, 73, 336, 270, 31]

Tabla de contenidos

- Problema a resolver
- 2 Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- Resultados
- Conclusiones

Gradiente del error

Siendo g_t la gradiente de la función de error L respecto a los parámetros θ_t , en cada momento del entrenamiento t:

$$g_t = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta_t} L(\mathsf{x}^i, \mathsf{y}^i, \theta_t) \tag{1}$$

Adam

Actualización de los parámetros:

$$\begin{aligned} \mathbf{s}_t &= \rho_1 \mathbf{s}_{t-1} + (1 - \rho_1) \boldsymbol{g}_t \\ \mathbf{r}_t &= \rho_2 \mathbf{r}_{t-1} + (1 - \rho_2) \boldsymbol{g}_t^2 \\ \hat{\mathbf{s}}_t &= \frac{\mathbf{s}_t}{1 - \rho_1^t} \\ \hat{\mathbf{r}}_t &= \frac{\mathbf{r}_t}{1 - \rho_2^t} \\ \Delta \boldsymbol{\theta}_t &= -\epsilon \frac{\hat{\mathbf{s}}_t}{\delta + \sqrt{\hat{\mathbf{r}}_t}} \\ \boldsymbol{\theta}_{t+1} &= \boldsymbol{\theta}_t + \Delta \boldsymbol{\theta}_t \end{aligned}$$

Hiperparámetros:

•
$$\epsilon = 0.001$$

•
$$\rho_1 = 0.9$$

•
$$\rho_2 = 0.999$$

•
$$\delta = 10^{-8}$$

Nesterov momentum

Actualización de los parámetros:

$$g_t = \frac{1}{m'} \sum_{i=1}^{m'} \nabla_{\boldsymbol{\theta}_t} L(\mathsf{x}^i, \mathsf{y}^i, \boldsymbol{\theta}_t + \alpha \boldsymbol{v}_t)$$

$$\boldsymbol{v}_{t+1} = \alpha \boldsymbol{v}_t - \epsilon \boldsymbol{g}_t$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_{t+1}$$

Hiperparámetros:

- ullet : ratio de aprendizaje
- ullet α : parámetro de momento

Regularizadores

Penalización de parámetros (pesos w_i y umbrales β_j) demasiado "grandes":

L1:
$$L'(x^{i}, y^{i}) = L(x^{i}, y^{i}) + \lambda \sum_{i} |w_{i}| + \mu \sum_{j} |\beta_{j}|$$

L2: $L'(x^{i}, y^{i}) = L(x^{i}, y^{i}) + \lambda \sum_{i} w_{i}^{2} + \mu \sum_{i} \beta_{j}^{2}$ (3)

Función de error:

$$L(x,y) = -\sum_{i=1}^{M} y_i \log(x_i)$$
 (4)

Tabla de contenidos

- Problema a resolver
- 2 Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- Resultados
- Conclusiones

F1 Score y Búsqueda local

• F1 Score más apropiado que la Exactitud

F1 Score y Búsqueda local

- F1 Score más apropiado que la Exactitud
- Uso de algoritmo de Búsqueda local

Tabla de contenidos

- Problema a resolver
- 2 Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- Resultados
- Conclusiones

Rendimiento de los clasificadores

		Intención	ı				
	LSTM	LSTM Convolucional WordAverage			LSTM	Convolucional	WordAverage
E	37 %	48 %	57 %	E	50 %	62%	66 %
$E(\boldsymbol{\delta})$	39 %	46 %	46 % 57 %		49%	53 %	66 %
F_1	20 %	50 %	60 %	F_1	10 %	23 %	42%
$F_1(\boldsymbol{\delta})$	27 %	52 %	59 %	$F_1(\boldsymbol{\delta})$	26 %	28 %	45 %

	Polaridad							
	LSTM Convolucional WordAverage							
E	64%	62%	64%					
$E(\boldsymbol{\delta})$	28%	54%	60%					
F_1	26%	36%	40%					
$F_1(\boldsymbol{\delta})$	19 %	41 %	40 %					

Optimización de la red

*Notación: $L1(\lambda,\mu)$, $L2(\lambda,\mu)$, $N(\epsilon,\alpha)$

		WordAverage: Intención									
	$L1(10^{-2}, 10^{-2})$	$L1(0, 10^{-3})$	$L2(10^{-4}, 10^{-4})$	$N(10^{-1}, 10^{-3})$	$N(1, 10^{-3})$	$N(1,10^{-3}) L2(10^{-4},10^{-4})$					
E	31 %	59 %	60 %	53 %	60 %	62 %					
$E(\boldsymbol{\delta})$	35 %	59 %	59 %	52 %	61 %	62 %					
F_1	11 %	62 %	64 %	55 %	63 %	65 %					
$F_1(\boldsymbol{\delta})$	28 %	62 %	63 %	54 %	65 %	64 %					

Tabla de confusión con el mejor F₁ Score

Real\Predicho	GROW Informar	Hábito / acción	Preguntar	Genérico	Acuerdo	Desacuerdo	Valoración / opinión	Saludos	No clasificable
GROW Informar	45	54	0	7	2	1	38	1	13
Hábito / acción	15	173	0	4	5	1	18	1	26
Preguntar	0	0	53	0	0	0	0	0	0
Genérico	10	11	4	58	4	1	24	0	26
Acuerdo	0	5	0	3	241	0	14	0	7
Desacuerdo	3	1	0	3	1	51	2	0	0
Valoración / opinión	27	37	1	11	21	3	177	3	21
Saludos	0	1	1	1	1	0	3	67	2
No clasificable	28	39	3	23	14	3	29	4	69

Tabla de contenidos

- Problema a resolver
- Red neuronal
- Optimización
- 4 F1 Score y Búsqueda local
- 6 Resultados
- Conclusiones

Aprendido a trabajar con redes neuronales

24 / 24

- Aprendido a trabajar con redes neuronales
- Importancia del F1 Score

- Aprendido a trabajar con redes neuronales
- Importancia del F1 Score
- Gran eficiencia con un modelo simple

- Aprendido a trabajar con redes neuronales
- Importancia del F1 Score
- Gran eficiencia con un modelo simple
- Importancia de un corpus balanceado

- Aprendido a trabajar con redes neuronales
- Importancia del F1 Score
- Gran eficiencia con un modelo simple
- Importancia de un corpus balanceado
- Posibles mejoras en el futuro

