Ampliació a l'enginyeria del programari

Teranyina, reconsideració i relectura

Què hi ha en aquest material

Reconsideració

- Coneixement
 - En tot moment hem de ser conscients de les consideracions i supòsits que tenim en compte en el moment de prendre una decisió d'assignació de responsabilitat
- o Teranyina
 - Cada nova decisió pot fer canviar el context de decisions prèvies, i per tant caldrà reconsiderar

Teranyina

- Variabilitat
 - Les consideracions d'anàlisi varien contínuament, bé perquè cada cop entenem més el sistema, bé perquè apareixen nous requeriments. Cada canvi en les condicions d'anàlisi exigeix aplicar la reconsideració
 - Exemple. Necessitats de repositoris específics poden portar a preferir el creador efectiu per sobre del creador canònic

Relectura

- Cal llegir els nostres diagrames
 - ➤ Per detectar-ne l'abast, inconsistències i afirmacions no expressament cercades
 - Les exigències del disseny poden coincidir (coincideixen!) amb exigències de l'especificació (POST) encara no analitzades

Lectura

3

Recordatori: Creació d'un objecte

Aplicació d'Expert

 Davant de múltiples experts caldrà pensar en Baix Acoblament i Alta Cohesió

• Principis de creació

- Bàsicament, Creador Canònic (en primera opció) i
 Creador Efectiu
- La creació comporta emmagatzematge

Lectura del model resultant

- Cal ser conscients de:
 - Supòsits a priori
 - ➤ Exigències i graus de llibertat, especialment pel que fa a l'emmagatzematge
 - Supòsits a posteriori
 - Enllaços dirigits i emmagatzematges emprats
 - ▼ Context considerat en l'anàlisi
 - En concret, quins emmagatzematges (repositoris) estem considerant que no tenim

Validesa de les decisions preses

- Ens hem decantat per M2 gràcies als principis:
 - Encarrilament
 - Alta cohesió
 - Baix acoblament
 - Creador canònic
- Per aplicar aquests principis, però, hem partit d'un determinats supòsits
 - Els veiem tot seguit

Anàlisi de l'emmagatzematge

- Ens hem decantat per M2 sota els supòsits següents:
 - O A priori (En l'anàlisi de les alternatives)
 - ➤ No existeix a MC cap associació entre GLS i Inscripció
 - ➤ No hi ha exigències específiques sobre l'emmagatzematge
 - o El disseny ha de decidir l'emmagatzematge, i per tant les possibilitats de comunicació
 - O A posteriori (Un cop decidits per una alternativa (M2))
 - ▼ Emmagatzematge fixat
 - Cada caminada és (potencialment) un fragment d'inscripcions
 - **▼** Emmagatzematges prohibits
 - o No tenim cap altre emmagatzematge d'inscripcions
 - × El disseny ha decidit!

Detecció d'inconsistències

- La lectura dels nostres dissenys ens pot fer adonarnos que:
 - Han canviat les condicions d'anàlisi
 - Cal reconsiderar alguna decisió prèvia
 - Tenim inconsistències
 - ➤ Manques de simetria
 - ➤ Fets que contradiuen el context d'anàlisi

Reconsideració

9

Recordatori: Reconsideració

Les decisions d'assignació preses s'han de reconsiderar contínuament

• En prendre una nova decisió poden canviar les condicions d'anàlisi considerades en prendre decisions anterior

Aspectes de la reconsideració

Canvi d'assignació

- o El canvi de les condicions d'anàlisi ens porten a canviar una decisió d'assignació de responsabilitat presa anteriorment.
 - **▼** Desfem per fer de nou; refem

Res no és definitiu

Noves responsabilitats

- El nou coneixement o les noves necessitats obliguen a afegir noves responsabilitats
 Res no està acabat
 - ➤ Potser cal completar ES ja dissenyats
- Exemple

▼ novaInscripció obliga a modificar novaCaminada per tal que creï l'objecte multiobjecte d'inscripcions

Assumim el modisme MOMO sobre els multiobjectes

Necessitat de relectura

- No n'hi ha prou en definir o dibuixar dissenys
- Cal llegir-los
 - Captura dels requeriments
 - ➤ Per comprovar que hem capturat el que preteníem
 - Supòsits emprats
 - ➤ Per detectar quins supòsits hem emprat, a priori i a posteriori
 - Conseqüències
 - ➤ Per detectar enllaços dirigits i emmagatzematges que s'han introduït com a subproducte

Recordatori: Teranyina

- Les decisions preses davant una parcialitat d'informació s'han de revalidar davant la globalitat del sistema
 - o Reconsideració contínua

Teranyina

En tot moment del desenvolupament, el disseny es pot veure com la xarxa o teranyina d'interrelacions entre les decisions d'assignació de responsabilitat preses per arribar al model present

Canvis en els requeriments

 $\left(14\right)$

Nous requeriments

- Els nous requeriments poden canviar les exigències d'emmagatzematge o de comunicació abans de començar el disseny
 - Canvien per tant les condicions de l'anàlisi de les decisions ja preses

× Reconsideració!!

Exemple de Teranyina

• Exercici 1

- o Suposem que donada una Caminada volem tenir coneixement de totes les seves Inscripcions
 - ➤ Com afecta això al disseny de M1?
 - ➤ Els canvis realitzats, mantenen els supòsits que ens han portat a preferir M2 per sobre de M1?
- Una nova necessitat pot afectar tot el disseny anterior!!!

Condicions sobre els repositoris

• Exercici 2

• Quan ens pot interessar tenir totes les inscripcions juntes, independentment de la caminada?

• Exercici 3

• Quan ens pot interessar tenir les inscripcions agrupades per caminada?

• Pista: Penseu en les necessitats d'accés

Exigència a priori d'agrupació

- Volem poder enviar un missatge només a les inscripcions d'una determinada caminada
 - Justificació. Enviar un mail demanant disculpes per un problema organitzatiu
 - o Exigència a priori. Cada caminada emmagatzema les seves inscripcions
 - ▼ Caminada → Inscripció*
 - o Com afecta aquesta exigència al disseny?

Exigència a priori de mantenir totes les inscripcions juntes

- Volem tenir totes les inscripcions juntes, independentment de la caminada
 - o **Justificació**. Volem trobar una inscripció a partir de l'identificador del resguard, en el que no hi figura codificada la caminada
 - o Exigència a priori. Emmagatzematge GLS→Inscripció*
- Com afecta aquesta exigència al disseny?

Necessitats d'emmagatzematge

- Els requeriments poden imposar o exigir determinats emmagatzematges
 - o Aquests pot ser que violin *Espill*
- El disseny pot introduir nous emmagatzematges
 - El principi del *Baix Acoblament* demana que en la mesura del possible intentem sempre aprofitar els emmagatzematges que tenim, abans d'introduir-ne de nous

Nous emmagatzematges

- A mesura que anem avançant en el disseny apareixen noves necessitats de comunicació i d'emmagatzematge
 - Forçades per les decisions de disseny
 - o Forçades pels nous requeriments
- Cada cop que s'introdueix un nou emmagatzematge canvien les condicions de les decisions preses anteriorment
 - o Emmagatzemador canònic
 - ➤ El preferim sobre qualsevol altre emmagatzemador per tal d'evitar introduir una visibilitat d'emmagatzematge que violi *Espill*
 - o Aquest argument és el que ens porta a preferir el *creador canònic*
 - ➤ Si per altres motius el disseny ha introduït aquesta visibilitat d'emmagatzematge, el *creador efectiu* no el podem menystenir

L'anàlisi de les mutacions permet justament reduir i delimitar les reconsideracions.

Però això ho veurem més endavant

Exigència d'enllaços

(22)

Exigència d'enllaços en les POST

- Els enllaços exigits en les POST són peticions d'enllaç des de la perspectiva conceptual, que en dissenyar interpretem en termes components i objectes
 - o En l'**especificació** els enllaços indiquen l'existència d'un lligam entre realitzacions de conceptes
 - En el **disseny** els enllaços dirigits indiquen l'existència d'un lligam **dirigit** entre objectes (realitzacions de components)

Recordatori: CU ferInscripció

Contracte novaInscripcio(c:Caminada)

Paràmetres |

c: Caminada a la que es vol fer la inscripció

PRE

No hi ha cap Inscripció activa

POST

- S'ha creat una nova realització i: Inscripció
- S'ha creat un enllaç entre i i c corresponent a l'associació relativa a
- 3. La inscripció i passa a estar activa

Aquest contracte no és correcte en la seva forma.

Perquè?

POST: enllaçar i amb c

• POST: cal enllaçar la i: Inscripció creada amb la c: Caminada donada

\circ M2

➤ Usem un creador canònic. Per tant l'emmagatzematge requereix un enllaç dirigit des del creador (Caminada) a l'objectiu (Inscripció), que és el demanat a la POST

OM1:

Usem un creador efectiu. En aquest cas l'enllaç dirigit necessari per l'emmagatzematge (gls:GLS→c:Inscripció) no és l'exigit

POST sense esforç

- L'anàlisi de l'emmagatzematge ens ha introduït diversos enllaços dirigits
- Els enllaços dirigits introduïts es corresponen a visibilitats d'atribut

 Dins de l'anàlisi de la creació, però, a part de l'emmagatzematge hi ha la genètica, que encara no hem estudiat

genètica

- D'aquestes visibilitats d'atribut, les que no violen *Espill* són el model d'una associació del MC
- Sovint les visibilitats introduïdes per l'emmagatzematge es corresponen a peticions d'enllaç de les POST
 - Es tracta però de dues qüestions diferents
 - Els enllaços exigits a les POST es corresponen a necessitats del problema
 - ➤ Els enllaços dirigits d'emmagatzematge i recuperació es corresponen a necessitats de la solució
 - Els principis de disseny el que pretenen és fer convergir ambdues necessitats