Nombre: Joel Stalin Tinitana Carrion

CONJUNTO DE EJERCICIOS 1

Resuelva los siguientes ejercicios, tome en cuenta que debe mostrar el desarrollo completo del ejercicio.

1. Calcule los errores absoluto y relativo en las aproximaciones de p por p^* .

a.
$$p = \pi, p^* = \frac{22}{7}$$

Cálculo

$$error_{abs} = |p - p^*|$$

$$error_{abs} = \left|\pi - \frac{22}{7}\right|$$

$$error_{abs} = 1.2644893x10^{-3}$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left|\frac{\pi - \frac{22}{7}}{\pi}\right|$$

$$error_{relativo} = 4.0249943x10^{-4}$$

b.
$$p = \pi, p^* = 3.1416$$

Cálculo

$$error_{abs} = |p - p^*|$$
 $error_{abs} = |\pi - 3.1416|$
 $error_{abs} = 7.3464102x10^{-6}$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{\pi - 3.1416}{\pi}\right|$
 $error_{relativo} = 2.338434995x10^{-6}$

c.
$$p = e, p^* = 2.718$$

$$error_{abs} = |p - p^*|$$

 $error_{abs} = |e - 2.718|$

$$error_{abs} = 2.8182846x10^{-4}$$
 $error_{relativo} = \left| \frac{p - p^*}{p} \right|, p \neq 0$
 $error_{relativo} = \left| \frac{e - 2.718}{e} \right|$
 $error_{relativo} = 1.03678896x10^{-4}$

d.
$$p = \sqrt{2}, p^* = 1.414$$

$$error_{abs} = |p - p^*|$$
 $error_{abs} = |\sqrt{2} - 1.414|$
 $error_{abs} = 2.1356237x10^{-4}$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{\sqrt{2} - 1.414}{\sqrt{2}}\right|$
 $error_{relativo} = 1.5101140x10^{-4}$

- 2. Calcule los errores absoluto y relativo en las aproximaciones de p por p^* .
- a. $p = e^{10}$, $p^* = 22000$

Cálculo

$$error_{abs} = |p - p^*|$$
 $error_{abs} = |e^{10} - 22000|$
 $error_{abs} = 26.4657948$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{e^{10} - 22000}{e^{10}}\right|$
 $error_{relativo} = 1.2015452x10^{-3}$

b.
$$p = 10^{\pi}, p^* = 1400$$

$$error_{abs} = |p - p^*|$$

 $error_{abs} = |10^{\pi} - 1400|$

$$error_{abs} = 14.5442686$$
 $error_{relativo} = \left| \frac{p - p^*}{p} \right|, p \neq 0$
 $error_{relativo} = \left| \frac{10^{\pi} - 1400}{10^{\pi}} \right|$
 $error_{relativo} = 0.0104978$

c.
$$p = 8!, p^* = 39900$$

$$error_{abs} = |p - p^*|$$
 $error_{abs} = |8! - 39900|$
 $error_{abs} = 420$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{8! - 39900}{8!}\right|$
 $error_{relativo} = 0.0104167$

d.
$$p = 9!, p^* = \sqrt{18\pi} \left(\frac{9}{e}\right)^9$$

Cálculo

$$error_{abs} = |p - p^*|$$

$$error_{abs} = \left| 9! - \sqrt{18\pi} \left(\frac{9}{e} \right)^9 \right|$$

$$error_{abs} = 3343.127158$$

$$error_{relativo} = \left| \frac{p - p^*}{p} \right|, p \neq 0$$

$$error_{relativo} = \left| \frac{9! - \sqrt{18\pi} \left(\frac{9}{e} \right)^9}{9!} \right|$$

$$error_{relativo} = 9.2127622x10^{-3}$$

- 3. Encuentre el intervalo más largo en el que se debe encontrar p* para aproximarse a p con error relativo máximo de 10^{-4} para cada valor de p.
- a. π

$$\begin{aligned} \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right|, p \neq 0 \\ \\ \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right| \leq 10^{-4} \\ |p-p^*| \leq 10^{-4} \cdot |p| \\ p^* \ debe \ estar \ entre \ p - 10^{-4} p \ y \ p + 10^{-4} p \\ p - 10^{-4} p \ hasta \ p + 10^{-4} p \\ \textit{Longitud} &= (p+10^{-4}p) - (p-10^{-4}p) \\ \textit{Longitud} &= p+10^{-4}p - p+10^{-4}p \\ \textit{Longitud} &= 2x10^{-4}p \\ \textit{Longitud} &= 2x10^{-4}(\pi) \\ \textit{Longitud} &= 0.0006283 \\ \pi \approx 0.0006283 \\ p^* \in [0.0003142 - 3.1415927, 0.0003142 + 3.1415927] \\ p^* \in [3.1412785, 3.1419069] \end{aligned}$$

b. *e*

$$\begin{aligned} \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right|, p \neq 0 \\ \\ \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right| \leq 10^{-4} \\ |p-p^*| \leq 10^{-4} \cdot |p| \\ \\ p^* \ debe \ estar \ entre \ p - 10^{-4}p \ y \ p + 10^{-4}p \\ p - 10^{-4}p \ hasta \ p + 10^{-4}p \\ \\ \textit{Longitud} &= (p+10^{-4}p) - (p-10^{-4}p) \\ \textit{Longitud} &= p+10^{-4}p - p+10^{-4}p \\ \\ \textit{Longitud} &= 2x10^{-4}p \\ \\ \textit{Longitud} &= 2x10^{-4}(e) \\ \\ \textit{Longitud} &= 0.0005437 \\ e &= 2.7182818 \\ \\ p^* \in [\ 0.0002718 - 2.7182818, 0.0002718 + 2.7182818] \end{aligned}$$

$$p^* \in [2.71801, 2.7185536]$$

c. $\sqrt{2}$

Cálculo

$$\begin{aligned} \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right|, p \neq 0 \\ \\ \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right| \leq 10^{-4} \\ \\ |p-p^*| \leq 10^{-4} \cdot |p| \\ \\ p^* \ debe \ estar \ entre \ p - 10^{-4}p \ y \ p + 10^{-4}p \\ \\ p - 10^{-4}p \ hasta \ p + 10^{-4}p \\ \\ \textit{Longitud} &= (p+10^{-4}p) - (p-10^{-4}p) \\ \\ \textit{Longitud} &= p+10^{-4}p - p + 10^{-4}p \\ \\ \textit{Longitud} &= 2x10^{-4}p \\ \\ \textit{Longitud} &= 2x10^{-4}(\sqrt{2}) \\ \\ \textit{Longitud} &= 0.0002828 \\ \\ \sqrt{2} &= 1.4142136 \\ \\ p^* \in [0.0001414 - 1.4142136, 0.0001414 + 1.4142136] \\ \\ p^* \in [1.4140722, 1.414355] \end{aligned}$$

d. $\sqrt[3]{7}$

$$\begin{aligned} \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right|, p \neq 0 \\ \\ \textit{error}_{relativo} &= \left|\frac{p-p^*}{p}\right| \leq 10^{-4} \\ &|p-p^*| \leq 10^{-4} \cdot |p| \\ \\ p^* \ debe \ estar \ entre \ p - 10^{-4} p \ y \ p + 10^{-4} p \\ &p - 10^{-4} p \ hasta \ p + 10^{-4} p \\ \\ \textit{Longitud} &= (p+10^{-4}p) - (p-10^{-4}p) \\ \textit{Longitud} &= p + 10^{-4}p - p + 10^{-4}p \\ \\ \textit{Longitud} &= 2x10^{-4}p \end{aligned}$$

$$Longitud = 2x10^{-4} (\sqrt[3]{7})$$

$$Longitud = 0.0003826$$

$$\sqrt[3]{7} = 1.9129312$$

$$p^* \in [0.0003826 - 1.9129312, 0.0003826 + 1.9129312]$$

$$p^* \in [1.9125486, 1.9133138]$$

4. Use la aritmética de redondeo de tres dígitos para realizar lo siguiente. Calcule los errores absoluto y relativo con el valor exacto determinado para por lo menos cinco dígitos.

a.
$$\frac{\frac{13}{14} - \frac{5}{7}}{2e - 5.4}$$

Cálculo

$$p = 5.860620418$$

$$p^* \approx ?$$

$$13 \oslash 14 \approx 0.929$$

$$5 \oslash 7 \approx 0.714$$

$$(13 \oslash 14) \ominus (5 \oslash 7) \approx 0.215$$

$$2 \otimes e \approx 5.437$$

$$(2 \otimes e) \ominus 5.4 \approx 0.037$$

$$((13 \oslash 14)(5 \oslash 7)) \oslash ((2 \otimes e) \ominus 5.4) \approx 5.811$$

$$p^* \approx 5.811$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |5.860620418 - 5.811|$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left|\frac{5.860620418 - 5.811}{5.860620418}\right|$$

$$error_{relativo} \approx 0.008$$

b.
$$-10 \pi + 6e - \frac{3}{61}$$

$$p = -15.15541589$$
 $p^* \approx ?$

$$-10 \otimes \pi \approx -31.416$$

$$6 \otimes e \approx 16.31$$

$$(3 \oslash 61) \approx 0.049$$

$$(-10 \otimes \pi) \oplus (6 \otimes e) \approx -15.106$$

$$((-10 \otimes \pi) \oplus (6 \otimes e)) \ominus (3 \oslash 61) \approx -15.155$$

$$p^* \approx -15.155$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |-15.15541589 + 15.155|$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left|\frac{-15.15541589 + 15.155}{-15.15541589}\right|$$

$$error_{relativo} \approx 2.744x10^{-5}$$

c.
$$\left(\frac{2}{9}\right) \cdot \left(\frac{9}{11}\right)$$

$$p = 0.1818181818$$
 $p^* \approx ?$
 $(2 \oslash 9) \approx 0.222$
 $(9 \oslash 11) \approx 0.818$
 $(2 \oslash 9) \otimes (9 \oslash 11) \approx 0.182$
 $p^* \approx 0.182$
 $error_{abs} = |p - p^*|$
 $error_{abs} = |0.1818181818 - 0.182|$
 $error_{abs} = 1.818x10^{-4}$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{0.1818181818 - 0.182}{0.1818181818}\right|$
 $error_{relativo} = 0.001$

d.
$$\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}}$$

$$p = 23.95826074$$
 $p^* \approx ?$
 $\sqrt{13} \approx 3.606$
 $\sqrt{11} \approx 3.317$
 $\sqrt{13} \oplus \sqrt{11} \approx 6.923$
 $\sqrt{13} \oplus \sqrt{11} \approx 0.289$
 $(\sqrt{13} \oplus \sqrt{11}) \oslash (\sqrt{13} \oplus \sqrt{11}) \approx 23.955$
 $p^* \approx 23.955$
 $error_{abs} = |p - p^*|$
 $error_{abs} = |23.95826074 - 23.955|$
 $error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$
 $error_{relativo} = \left|\frac{23.95826074 - 23.955}{23.95826074}\right|$
 $error_{relativo} = 1.361x10^{-4}$

- 5. Los primeros tres términos diferentes a cero de la serie de Maclaurin para la función arcotangente son: $x-\left(\frac{1}{3}\right)x^3+\left(\frac{1}{5}\right)x^5$. Calcule los errores absoluto y relativo en las siguientes aproximaciones de π mediante el polinomio en lugar del arcotangente:
- a. $4\left[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)\right]$

$$x_{1} = \frac{1}{2}; x_{2} = \frac{1}{3}$$

$$Formula = x - \left(\frac{1}{3}\right)x^{3} + \left(\frac{1}{5}\right)x^{5}$$

$$arctan(x_{1}) = \left(\frac{1}{2}\right) - \left(\frac{1}{3}\right)\left(\frac{1}{2}\right)^{3} + \left(\frac{1}{5}\right)\left(\frac{1}{2}\right)^{5}$$

$$\left(\frac{1}{2}\right) \approx 0.5$$

$$fl\left(\left(\frac{1}{3}\right)^{4}\right) \otimes \left(\frac{1}{3}\right) \approx 0.004$$

$$fl\left(\left(\frac{1}{3}\right)^{3}\right) \otimes \left(\frac{1}{3}\right) \approx 0.012$$

$$\left(\frac{1}{3}\right) \ominus fl\left(\left(\frac{1}{3}\right)^{3} \otimes \left(\frac{1}{3}\right)\right) \approx 0.321$$

$$\left(\frac{1}{5}\right) \otimes fl\left(\left(\frac{1}{2}\right)^{5}\right) \approx 0.001$$

$$fl\left(\left(\frac{1}{3}\right) \ominus \left(\left(\frac{1}{3}\right)^{3} \otimes \left(\frac{1}{3}\right)\right)\right) \oplus fl\left(\left(\frac{1}{5}\right) \otimes \left(\frac{1}{3}\right)^{5}\right) \approx 0.322$$

Resultados

$$\arctan(x_1) \approx 0.464$$

$$\arctan(x_2) \approx 0.322$$

$$Formula = 4[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)]$$

$$fl\left(\arctan\left(\frac{1}{2}\right) \oplus \arctan\left(\frac{1}{3}\right)\right) \approx 0.786$$

$$4 \otimes \left(\arctan\left(\frac{1}{2}\right) \oplus \arctan\left(\frac{1}{3}\right)\right) \approx 3.144$$

$$p^* \approx 3.144$$

$$p \approx \pi$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |\pi - 3.144|$$

$$error_{abs} \approx 0.002$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} \approx 7.663x10^{-4}$$

b. $16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$

$$x_1 = \frac{1}{5}$$
; $x_2 = \frac{1}{239}$

Formula =
$$x - \left(\frac{1}{3}\right)x^3 + \left(\frac{1}{5}\right)x^5$$

 $arctan(x_1) = \left(\frac{1}{5}\right) - \left(\frac{1}{3}\right)\left(\frac{1}{5}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{5}\right)^5$
 $\left(\frac{1}{3}\right) \approx 0.333$
 $\left(\frac{1}{5}\right) \approx 0.2$
 $\left(\frac{1}{5}\right) \otimes \left(\frac{1}{5}\right) \approx 0.04$
 $fl\left(\left(\frac{1}{5}\right)^2\right) \otimes \left(\frac{1}{5}\right) \approx 0.008$
 $fl\left(\left(\frac{1}{5}\right)^3\right) \otimes \left(\frac{1}{5}\right) \approx 0.002$
 $fl\left(\left(\frac{1}{5}\right)^4\right) \otimes \left(\frac{1}{5}\right) \approx 0.0004$
 $fl\left(\left(\frac{1}{5}\right)^3\right) \otimes \left(\frac{1}{3}\right) \approx 0.003$
 $\left(\frac{1}{5}\right) \ominus fl\left(\left(\frac{1}{5}\right)^3 \otimes \left(\frac{1}{3}\right)\right) \approx 0.197$
 $\left(\frac{1}{5}\right) \otimes fl\left(\left(\frac{1}{2}\right)^5\right) \approx 0.00008$
 $fl\left(\left(\frac{1}{2}\right) \ominus \left(\frac{1}{2}\right)^3 \otimes \left(\frac{1}{3}\right)\right) \oplus fl\left(\left(\frac{1}{5}\right) \otimes \left(\frac{1}{2}\right)^5\right) \approx 0.197$
 $arctan(x_2) = \left(\frac{1}{239}\right) - \left(\frac{1}{3}\right)\left(\frac{1}{239}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{239}\right)^5$
 $\left(\frac{1}{239}\right) \approx 0.004$
 $\left(\frac{1}{3}\right) \approx 0.333$
 $\left(\frac{1}{5}\right) \approx 0.2$
 $\left(\frac{1}{239}\right) \otimes \left(\frac{1}{239}\right) \approx 1.6x10^{-5}$

Resultados

$$\arctan(x_1) \approx 0.197$$

$$\arctan(x_2) \approx 0.333$$

$$Formula = 16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$$

$$16 \otimes fl \left(\arctan\left(\frac{1}{5}\right)\right) \approx 3.152$$

$$4 \otimes fl \left(\arctan\left(\frac{1}{239}\right)\right) \approx 1.332$$

$$fl (16 \otimes \arctan\left(\frac{1}{5}\right)) \ominus fl (4 \otimes \arctan\left(\frac{1}{239}\right)) \approx 1.82$$

$$p^* \approx 1.82$$

$$p = \pi$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |\pi - 1.82|$$

$$error_{abs} = 1.322$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left| \frac{\pi - 1.322}{\pi} \right|$$
 $error_{relativo} = 0.421$

6. El número e se puede definir por medio de $e=\sum_{n=0}^{\infty}\left(\frac{1}{n!}\right)$, donde $n!=n(n-1)\cdots 2\cdot 1$ para $n\neq 0$ y 0!=1. Calcule los errores absoluto y relativo en la siguiente aproximación de e:

a.
$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right)$$

Calcular

$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = 2.717$$

$$p = e$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |e - 2.717|$$

$$error_{abs} = 0.001$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left|\frac{e - 2.717}{e}\right|$$

$$error_{relativo} = 4.715 \times 10^{-4}$$

b.
$$\sum_{n=0}^{10} \left(\frac{1}{n!} \right)$$

Calcular

$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!} + \frac{1}{10!} = 2.718$$

$$p^* \approx 2.717$$

$$p = e$$

$$error_{abs} = |p - p^*|$$

$$error_{abs} = |e - 2.718|$$

$$error_{abs} = 2.818x10^{-4}$$

$$error_{relativo} = \left|\frac{p - p^*}{p}\right|, p \neq 0$$

$$error_{relativo} = \left| \frac{e - 2.718}{e} \right|$$

 $error_{relativo} = 1.037x10^{-4}$

7. Suponga que dos puntos (x_0, y_0) y (x_1, y_1) se encuentran en línea recta con $y_1 \neq y_0$. Existen dos fórmulas para encontrar la intersección x de la línea:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$
 y $x = x_0 - \frac{(x_1 - x_0) y_0}{y_1 - y_0}$

a. Use los datos $(x_0, y_0) = (1.31, 3.24)$ y $(x_1, y_1) = (1.93, 5.76)$ y la aritmética de redondeo de tres dígitos para calcular la intersección con x de ambas maneras. ¿Cuál método es mejor y por qué?

Resolución

Primera formula

$$x = \frac{x_0 y_1 - x_1 y_0}{y_1 - y_0}$$

Aritmética de redondeo de tres dígitos

$$x_0 \otimes y_1 \approx 7.546$$

$$x_1 \otimes y_0 \approx 6.253$$

$$(x_0 \otimes y_1) \ominus (x_1 \otimes y_0) \approx 1.293$$

$$y_1 \ominus y_0 \approx 2.52$$

$$\frac{(x_0 \otimes y_1) \ominus (x_1 \otimes y_0)}{y_1 \ominus y_0} \approx 0.513$$

Segunda formula

$$x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}$$

Aritmética de redondeo de tres dígitos

$$x_{1} \ominus x_{0} \approx 0.62$$

$$(x_{1} \ominus x_{0}) \otimes y_{0} \approx 2.009$$

$$y_{1} \ominus y_{0} \approx 2.52$$

$$\frac{(x_{1} \ominus x_{0}) \otimes y_{0}}{y_{1} \ominus y_{0}} \approx 0.797$$

$$x_{0} \ominus \frac{(x_{1} \ominus x_{0}) \otimes y_{0}}{y_{1} \ominus y_{0}} \approx 0.513$$

La segunda fórmula es más estable numéricamente cuando los productos x_0y_1 y x_1y_0 son muy cercanos, ya que evita la resta de dos números similares que puede causar pérdida de cifras significativas (error de cancelación), lo que hace que no sea menos estable.