I) Найти неопределенные интегралы:

a)
$$\int x \cdot \sin(x^2) dx$$
; 6) $\int (x^5 + 2x) \ln x dx$; B) $\int \frac{4x - 3}{x^2 - 2x + 6} dx$.

II)

- **а)** Тройной интеграл: определение и механический смысл. Теорема о замене переменных в тройном интеграле. Цилиндрические и сферические координаты, переход в тройном интеграле к этим координатам.
- **б)** Расставить пределы интегрирования в тройном интеграле $\iint_V dV$, переходя к цилиндрическим координатам, если V: $\left\{x^2+z^2\leq 9y^2; x^2+y^2+z^2\leq 4; y\geq 0\right.$ Сделать чертёж области интегрирования.
- **в)** Вычислить массу тела V , ограниченного поверхностями $\left\{x^2+z^2\leq 9y^2; x^2+y^2+z^2\leq 4; y\geq 0\right\}$, если его плотность постоянна в каждой точке тела.

III)

- **а)** Вычислить дифференциал *ds* дуги Γ , если дуга Γ задана параметрически: $x = \cos^3 t$; $y = \sin^3 t$. Изобразить кривую Γ .
- **б)** Вычислить криволинейный интеграл $\int_{\Gamma} y ds$, где Γ : $x = \cos^3 t$; $y = \sin^3 t$
- **в)** Исследовать на сходимость несобственный интеграл и вычислить его, если он сходится: $\int\limits_0^{+\infty} \frac{dx}{(1+x)\sqrt{x}} \, .$

IV)

- **а)** Дано пространственное тело $\Omega = \{z^2 \ge x^2 + y^2, \ 0 \le z \le 2\}$ и векторное поле $\mathbf{a} = y^2 \mathbf{i} + x^2 \mathbf{j} z^2 \mathbf{k}$. Сделать чертеж и вычислить div \mathbf{a} .
- **б)** Сформулировать теорему Гаусса-Остроградского и с помощью неё найти поток векторного поля $\mathbf{a} = y^2 \mathbf{i} + x^2 \mathbf{j} z^2 \mathbf{k}$ через всю поверхность тела $\Omega = \left\{ z^2 \ge x^2 + y^2, \ 0 \le z \le 2 \right\}$ в направлении внешней нормали.
- **в)** Проверить результат непосредственно, вычисляя потоки через все гладкие части поверхности.