Presented by Daniel Kula

ID: 215977497

Introduction to Data Science - 2020 Semester A Final Project

מחברת 1 - הסתברות, חוק בייס

1. Tweens and Bowls

a. 5/17. The explanation is as follow:

The probability for none-identical tweens out of all he births is 1/125 (given) and for identical tweens out of all the births is 1/300 (given).

There for, the probability for tweens out of all the births should be:

$$\frac{1}{125} + \frac{1}{300} = \frac{300 + 125}{300 \times 125} = \frac{425}{37.500} = \frac{17}{1.500}$$

And the probability for none-identical tweens out of all the tween's births

should be:
$$\frac{1/_{300}}{17/_{1.500}} = \frac{1}{300} \times \frac{1,500}{17} = \frac{1,500}{300 \times 17} = \frac{1,500}{5,100} = \frac{5}{17}$$

The probability that Alvis dead tween was a none-identical tween is: $\frac{5}{17}\approx 0.29$

b. Due to the fact the choice of one of the tow bowls was random (given), the probability should be: $^1\!/_2=50\%$

2. M&M's

The probability of yellow from the 1994's bag is $\frac{20}{100}$ and from the 1996's bag is $\frac{14}{100}$, so the probability of yellow from the tow bags should be: $\frac{20}{100} + \frac{14}{100} = \frac{34}{100}$. The probability that the yellow M&M came from the 1994's bag may be reflected as:

$$\frac{20/_{100}}{34/_{100}} = \frac{20}{34} = \frac{10}{17} \approx 0.5882$$

3. Swine Flu

- a. It is given that the positive test accuracy is 99%, which mean that, if the test was positive, the probability that it is not positive false is 99%.
- b. The population dose not effect the accuracy of the test and therefor if the test was positive, the probability that it is not positive false is 99% as in a. situation.

1

Random Variables:

1. Here are the combinations of a sum of 2 six-sided dices (painted in green are the divisible by 3 sum):

	1	2	3	4	5	6
1	2	თ	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

The chance of a divisible by 3 sum is $^{12}/_{36}$, and the chance of a none-divisible by 3 sum is $^{24}/_{36}$, the payoffs of those tow situations are \$6 and -\$3, respectively (given).

So, the expected value of playing this game should be:

$$\frac{12}{36} \times \$6 - \frac{24}{36} \times \$3 = \$2 - \$2 = \$0$$

2. Here are the combinations of a sum of Marker Mixup (painted in green are the "more than 12 sum" and in red the "12 sun"):

	1	2	3	4	5
6	7	8	9	10	11
7	8	9	10	11	12
8	9	10	11	12	13
9	10	11	12	13	14
10	11	12	13	14	15

The chance of a more than 12 sum is $^6/_{25}$, The chance of a exactly 12 sum is $^4/_{25}$ and the chance of a less than 12 sum is $^{15}/_{25}$, the payoffs of those three situations are \$5.5, \$0 and -\$3, respectively (given).

So, the expected value of playing Marker Mixup should be:

$$^{6}/_{25} \times \$5.5 + ^{4}/_{25} \times \$0 - ^{15}/_{25} \times \$3 = \$1.32 + \$0 - \$1.8 = -\$0.48$$

3. The male portion, of the division's employees, is 40% (80 employees) and the female portion is 60% (120 employees) (given).

Mean:

Suppose that the selection of the 8 employees happens together, the approximate average of selected male each month may be reflect as 40%*8 = 3.2.

Standard Deviation:

There are 9 possible combinations as follows (M=Male and F=Female):

combination	Probability	Number of Combinations	$\sqrt{(X-\bar{X})^2}$
FFFFFFF	60%8	1	3.2
MFFFFFF	40%X60% ⁷	8	2.2
MMFFFFFF	40% ² X60% ⁶	28	1.2
MMMFFFFF	40%3X60%5	56	0.2
MMMMFFFF	40% ⁴ X60% ⁴	70	0.8
MMMMMFFF	40% ⁵ X60% ³	56	1.8
MMMMMFF	40% ⁶ X60% ²	28	2.8
MMMMMMF	40% ⁷ X60%	8	3.8
MMMMMMMM	40%8	1	4.8

The general formula for Standard Deviation is: $\sigma = \sqrt{\frac{\sum (X - \bar{X})^2}{n-1}}$

And in our situation:

$$\sigma = \sqrt{\frac{3.1x1 + 2.2x8 + 1.2x28 + 0.2x56 + 0.8x70 + 1.8x56 + 2.8x28 + 3.8x8 + 4.8x1}{256 - 1}} \sim 1.318$$

4. If the distribution presented with a mean and standard deviation of 26,000\$ and 2,000\$, respectively (given).

The P(26<X<30) may be described as P(26<X)- P(X<30).

The P(X<30) = 1 - P(X>30)

The P(26 < X) = 50% and the P(X > 30) = 2.275% and therefore:

P(26 < X < 30) = 50% - 2.275% = 47.725%

5. Since the distribution is represented in the triangle, the area below the triangle from x = 3 to x = 5 represents the probability of x > 3.

The area of a triangle will be measured using the formula: $\frac{h \times b}{2}$

Were:

$$h = 0.4$$
 and

$$b = 2 (5-3)$$

$$\frac{h \times b}{2} = \frac{0.4 \times 2}{2} = \mathbf{0.4}$$

6. In general, in rounded calculation, there are 5 possible combinations as follows (C=with children and 0=without children):

combination	Probability (P)	Number of Combinations (N)	N X (P)
CCCC	60%4	1	12.96%
CCC0	40%X60% ³	4	34.56%
CC00	40% ² X60% ²	6	34.56%
C000	40% ³ X60%	4	15.36%
0000	40%4	1	2.56%
			100.00%

Under the rounded calculation, exactly 3 of the 4 employees selected have children equal to the second line in the table = 34.56%

3

the accurate calculation may be described as the following (the red are employees that have children):

CCC0 × Number of Combinations =
$$\left[\frac{300}{500} \times \frac{299}{499} \times \frac{298}{498} \times \frac{200}{497}\right] \times 4 = 34.63\%$$

7. The expected Value of X is presented as:

$$E(X) = \sum (P_x) x$$

And in our situation, based on the information from the graph:

$$10\% \times (-10) + 35\% \times (-5) + 10\% \times 0 + 35\% \times 5 + 10\% \times 10 = \mathbf{0}$$