Compiler Design

.

Compiler Design

BOOKS AND REFERENCES

- 1. A.V. Aho, R. Sethi, J.D. Ullman, "Compilers Principles, Techniques and Tools", Addison-Wesley, 1986.
- 2. Santanu Chattopadhyay, "Compiler Design", PHI Learning Pvt. Ltd., 2015.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

<u>Automation</u>: An automation is defined as a system where energy, materials and information are transformed, transmitted and used for performing some functions without direct participation of man. Examples are automatic machine tools, automatic packing machines, and automatic photo printing machines.

An automation in which the output depends only on the input is called an automation without a memory. An automation in which the output depends on the states also is called automation with a finite memory.

 $\begin{tabular}{ll} \hline Formal & language: A & formal & language & is & an & abstraction & of & the & general \\ characteristics of programming languages. \\ \hline \end{tabular}$

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

Formal Language & Automata Theory

<u>Transition systems:</u> A transition graph or a transition system is a finite directed labelled graph in which each vertex (or node) represents a state and the directed edges indicate the transition of a state and the edges are labelled with input/output.

Example

The initial state is represented by a circle with an arrow pointing towards it, the final state by two concentric circles, and the other states are represented by just a circle. The edge is labelled by input/output.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

.

<u>Finite Automation:</u> A finite automaton can be represented by a 5-tuple $(Q, \sum, \delta, q_0, F)$, where

- i. Q is a finite nonempty set of states;
- ii. \sum is a finite nonempty set of inputs called input alphabet;
- iii. δ is a function which maps Q $x \Sigma$ into Q and is usually called direct transition function.
- iv. q₀ € Q is the initial state; and
- v. $F \subseteq Q$ is the set of final states. It is assumed that there may be more than one final state.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

5

Formal Language & Automata Theory

Nondeterministic finite automation (NDFA):

A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q0, F), where

- i. Q is a finite nonempty set of states;
- ii. \sum is a finite nonempty set of inputs;
- iii. δ is the transition function mapping from Q $x\Sigma$ into 2^Q which is the power set of Q, the set of all subsets of Q;
- iv. q₀ € Q is the initial state; and
- v. $F \subseteq Q$ is the set of final states.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

Transition Table:

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

7

Formal Language & Automata Theory

Construct a deterministic automaton equivalent to $M = (\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_0\})$. δ is given by its state table.

	States/Σ	Inputs	
		0	1
→(\mathbf{q}_0	\mathbf{q}_0	\mathbf{q}_1
	q ₁	\mathbf{q}_1	q 0, q 1

For the deterministic automaton M1,

- I. The states are subsets of $\{q_0, q_1\}$, i.e. Φ , $[q_0]$, $[q_0, q_1]$, $[q_1]$;
- II. [q₀] is the initial state;
- III. $[q_0]$ and $[q_0,q_1]$ are the final states as these are the states containing q_0 ;
- IV. δ is defined by the state table given below

	States/Σ	0	1	
-		[q ₀]	[q1]	
	[q ₁]	[q1]	$[q_0, q_1]$	
($[q_0,q_1]$	[q0, q1]	[q0, q1]	

 q_0 and q_1 appear in the rows corresponding to q_0 and q_1 and the column corresponding to 0. So, δ ([q_0,q_1], 0) = [q_0,q_1].

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

Construct a deterministic finite automaton equivalent to $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\})$. δ is given below.

	States/Σ	a	b	
→	q ₀	q0, q1	q 0	
	q1	q ₂	\mathbf{q}_1	
	q 2	q 3	q 3	
(q 3		\mathbf{q}_2	

The deterministic automaton M_1 equivalent to M is given by M_1 = $(2^Q, \{a, b\}, \delta, [q_0], F)$, where F consists of $[q_0, q_1, q_3]$, and $[q_0, q_1, q_2, q_3]$. δ is given in below.

States/Σ	a	b
► [q0]	[q0, q1]	[q ₀]
[q0, q1]	[q0, q1, q2]	[q0, q1]
[q0, q1, q2]	[q0, q1, q2, q3]	[q ₀ , q ₁ , q ₃]
[q0, q1, q3])	[q0, q1, q2]	[q0, q1, q2]
[q0, q1, q2, q3])	[q0, q1, q2, q3]	[q ₀ , q ₁ , q ₂ , q ₃]

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

.

Formal Language & Automata Theory

Construct a nondeterministic finite automaton accepting the set of all strings over {a, b} ending with aba. Use it to construct a DFA accepting the same set of strings.

The NDFA accepting the given set of strings is

The corresponding state table is

The state table of the corresponding

States/Σ	a	b
[q ₀]	[q0,q1]	[q ₀]
[q0,q1]	[q0,q1]	$[q_0,q_2]$
[q0,q2]	[q0,q1,q3]	[q ₀]
[q0,q1,q3]	[q ₀ ,q ₁]	[q0,q2]

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

Draw the transition diagram of a finite state automation M that accepts the string of even number of a's over {a, b}.

Draw the transition diagram of a finite state automation M that accepts the string of odd number of a's over $\{a,b\}$.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

11

Formal Language & Automata Theory

Assignment No: 1

Draw the transition diagram of a finite state automation M that accepts the string of even number of a's and even number of b's over {a, b}.

RANJAN JANA, Dept. of IT, RCC Institute of Information Technology

THANK YOU