

Índice

С	10	NTEXTO	4
	1.	Setor de Transporte Refrigerado no Brasil	4
		1.1 Importância do Transporte Refrigerado	4
	2.	Normas Técnicas e Regulamentações	4
		2.1 Resolução RDC nº 275/2002 da ANVISA	4
		2.2 Instrução Normativa MAPA nº 76/2018	5
		2.3 Normas ABNT para veículos refrigerados	5
	3.	Tecnologia e Tipos de Baús Refrigerados	5
		3.1 Tipos de Baús Refrigerados	5
		3.2 Tecnologias de Refrigeração	6
	4.	Mercado de Transporte Refrigerado no Brasil	6
		4.1 Crescimento e Tendências do Setor	6
		4.2 Dados de Mercado	6
	5.	Desafios Relacionados à Temperatura	7
		5.1 Falhas no Controle de Temperatura	7
		5.2 Variações de Temperatura Durante o Transporte	7
		5.3 Falta de Manutenção dos Equipamentos	7
		5.4 Problemas com Temperaturas Extremas	8
		5.5 Falta de Monitoramento em Tempo Real	8
		5.6 Regulamentações e Fiscalização	8
0	BJ	ETIVO	9
JL	JS	TIFICATIVA	9
E	sc	OPO1	0
	1.	Visão Geral do Projeto	0
		1.1 Localização dos Sensores	0
		1.2 Quantidade de Sensores	0
	2.	Resultados Esperados	2
		2.1 Produtos que serão entregues	2
		2.2 Serviços que serão entregues	2
		2.3 Resultados Finais que serão entregues:	2
	3.	Requisitos	3
		3.1 Funcionais	3
		3.2 Não Funcionais	3
	4.	Limites e Exclusões	4
		4.1 O que está incluído no projeto	4

	4.2 O que está excluído no projeto	14
5.	Macro Cronograma	15
6.	Recursos Necessários	16
	6.1 Recursos Humanos	16
	6.2 Equipamentos	16
	6.3 Recursos Externos	16
7.	Riscos e Restrições	16
	7.1 Riscos	16
	7.2 Restrições e Limitações	16
8.	Partes Interessadas (Stakeholders)	17

CONTEXTO

1. Setor de Transporte Refrigerado no Brasil

O transporte refrigerado é essencial no setor alimentício, garantindo a qualidade e segurança de produtos perecíveis, como carnes, laticínios, frutas, verduras e alimentos congelados. Sendo o Brasil, um dos maiores produtores e exportadores de alimentos do mundo, o que demanda uma infraestrutura robusta de transporte refrigerado, evitando perdas e desperdícios ao longo da cadeia produtiva.

1.1 Importância do Transporte Refrigerado

Preservação da Qualidade e Segurança Alimentar

A deterioração de alimentos ocorre rapidamente quando armazenados em temperaturas inadequadas. O transporte refrigerado mantém os produtos dentro de uma faixa térmica ideal, reduzindo o crescimento de microrganismos e garantindo que cheguem ao consumidor final sem perda de qualidade nutricional e sensorial.

Redução do Desperdício Alimentar

A adoção de tecnologias avançadas de refrigeração no transporte ajuda a evitar perdas, um problema significativo no Brasil. Segundo a FAO (Organização das Nações Unidas para a Alimentação e Agricultura), cerca de 30% dos alimentos produzidos no mundo são desperdiçados antes de chegarem ao consumidor.

2. Normas Técnicas e Regulamentações

O transporte de alimentos refrigerados no Brasil segue uma regulamentação rigorosa. Essa regulamentação envolve diversas normas e instruções de órgãos como a ANVISA (Agência Nacional de Vigilância Sanitária), o MAPA (Ministério da Agricultura, Pecuária e Abastecimento) e a ABNT (Associação Brasileira de Normas Técnicas). Detalhes das principais normas envolvidas:

2.1 Resolução RDC nº 275/2002 da ANVISA

A Resolução RDC nº 275/2002 estabelece as Boas Práticas de Fabricação (BPF) para alimentos, incluindo o transporte. Ela define diretrizes essenciais para manter a integridade e a segurança dos alimentos durante o armazenamento e a distribuição.

Principais pontos da RDC nº 275/2002

- O controle de temperatura deve ser rigoroso, garantindo que os alimentos sejam transportados em condições adequadas para evitar deterioração.
- Os produtos refrigerados devem ser armazenados em temperaturas que preservem suas características, conforme determinado pelo fabricante e legislação vigente.

2.2 Instrução Normativa MAPA nº 76/2018

A Instrução Normativa nº 76/2018, do MAPA, trata especificamente do transporte de produtos de origem animal, como carnes, leite, pescados e derivados.

Principais exigências da IN nº 76/2018:

- Os alimentos de origem animal devem ser transportados em veículos apropriados, equipados com sistemas de refrigeração adequados para manter a temperatura necessária.
- O controle de temperatura é rigoroso, e cada categoria de produto deve ser transportada dentro de faixas térmicas específicas, por exemplo:
 - o Carnes refrigeradas: entre 0°C e 7°C.
 - o Carnes congeladas: abaixo de -12°C.
 - Leite e derivados refrigerados: entre 0°C e 4°C.
 - Pescados congelados: abaixo de -18°C.

2.3 Normas ABNT para veículos refrigerados

A associação Brasileira de Normas Técnicas (ABNT) também estabelece regras específicas para o transporte de alimentos perecíveis. Entre essas normas, destaca-se a NBR 14701.

ABNT NBR 14701 – Requisitos para veículos refrigerados

- Define os critérios de isolamento térmico para veículos refrigerados, garantindo que a temperatura interna seja mantida dentro dos padrões exigidos.
- Estabelece a necessidade de sistemas de monitoramento de temperatura para garantir o controle térmico adequado durante o transporte.
- Determina os procedimentos de manutenção preventiva dos equipamentos de refrigeração, evitando falhas que possam comprometer a qualidade dos alimentos.

3. Tecnologia e Tipos de Baús Refrigerados

3.1 Tipos de Baús Refrigerados

Os baús refrigerados são projetados para manter a temperatura ideal de acordo com a necessidade dos produtos transportados. Os principais tipos são:

- Baús Refrigerados (0°C a 10°C)
 - o Mantêm produtos frescos sem congelá-los.
 - Utilizados para o transporte de frutas, verduras, laticínios, ovos e medicamentos sensíveis ao calor.
 - Equipados com sistemas de isolamento térmico para evitar variações de temperatura.
- Baús Congelador (-18°C a -25°C)
 - o Ideais para armazenar produtos congelados.
 - Utilizados no transporte de carnes, peixes, frutos do mar, sorvetes e produtos industrializados congelados.

- Requerem um sistema de refrigeração mais potente para manter temperaturas negativas constantes.
- Baús Ultracongelados (abaixo de -25°C)
 - Necessários para produtos altamente sensíveis à variação de temperatura.
 - Utilizados na logística de vacinas, insumos farmacêuticos e alguns tipos de alimentos especiais.
 - Demandam tecnologia avançadas para garantir temperaturas extremamente baixas durante todo o percurso.

3.2 Tecnologias de Refrigeração

Os baús refrigerados utilizam diferentes sistemas para manter a temperatura estável durante o transporte. As principais tecnologias incluem:

- Sistemas de Refrigeração a Diesel
 - o Operam independentemente do motor do caminhão.
 - o São mais eficientes para longas distâncias e grandes cargas.
 - Exemplos de fabricantes: Thermo King, Carrier Transicold.
- Sistemas de Refrigeração Elétricos
 - o Funcionam com energia elétrica, sendo mais sustentáveis.
 - Reduzem a emissão de gases poluentes e são indicados para entregas urbanas.
 - o Exemplos de fabricantes: Frigobloc, Thermo King.
- Sistemas de Refrigeração Híbridos
 - o Combinam diesel e energia elétrica para maior eficiência.
 - o Reduzem o consumo de combustível e garantem autonomia.
 - São utilizados por empresas que querem diminuir a pegada de carbono sem perder desempenho.

4. Mercado de Transporte Refrigerado no Brasil

4.1 Crescimento e Tendências do Setor

O mercado de transporte refrigerado no Brasil vem crescendo devido a fatores como:

- Maior demanda por alimentos perecíveis: A procura por frutas, verduras, carnes e laticínios aumentou, impulsionando a necessidade de transporte com controle de temperatura.
- Expansão do e-commerce de alimentos: Supermercados e aplicativos de delivery expandiram operações, exigindo logística refrigerada eficiente.
- Setor farmacêutico em alta: O transporte de vacinas, medicamentos e insumos hospitalares requer controle rigoroso de temperatura.

4.2 Dados de Mercado

Em 2022, o setor de logística refrigerada movimentou bilhões de reais. O crescimento foi acelerado pela pandemia, que impulsionou o consumo remoto de alimentos e medicamentos.

- Participação do transporte rodoviário: Cerca de 60% da carga refrigerada no Brasil é transportada por caminhões.
- Setores mais dependentes do transporte refrigerado:
 - o Indústria alimentícia (carnes, laticínios, hortifrúti, congelados)
 - Indústria farmacêutica (vacinas, insulina, medicamentos sensíveis)
 - Setor de cosméticos e químicos (produtos que exigem temperatura controlada)
- Investimentos em tecnologia: Empresas de transporte investem cada vez mais em monitoramento remoto, rastreamento de temperatura e otimização de rotas para reduzir perdas e custos operacionais.

Desafios Relacionados à Temperatura

Os problemas relacionados ao controle de temperatura no setor de transporte refrigerado são críticos, pois podem comprometer a qualidade e a segurança dos alimentos, além de gerar perdas financeiras significativas.

5.1 Falhas no Controle de Temperatura

A manutenção de temperatura adequada durante o transporte é essencial para preservar a qualidade dos alimentos. Falhas no sistema de refrigeração ou erros operacionais podem levar à quebra de cadeia de frio, o processo que mantém produtos perecíveis na temperatura ideal durante armazenamento, transporte e distribuição.

Segundo a Embrapa (Empresa Brasileira da Pesquisa Agropecuária), cerca de 10% dos alimentos perecíveis transportados no Brasil são perdidos devido a falhas na cadeia de frio.

Um estudo da Associação Brasileira de Supermercados (ABRAS) mostrou que 30% das perdas de alimentos em supermercados são causadas por problemas no transporte refrigerado.

5.2 Variações de Temperatura Durante o Transporte

A abertura frequente das portas dos baús refrigerados, falhas no equipamento ou a falta de monitoramento contínuo podem causar variações de temperatura, comprometendo a qualidade dos alimentos.

Um relatório da ANVISA (Agência Nacional de Vigilância Sanitária) apontou que 20% das cargas de alimentos refrigerados inspecionados apresentam variações de temperatura acima do permitido.

A Federação das Indústrias do Estado de São Paulo (FIESP) declarou que a falta de sistemas de monitoramento em tempo real é uma das principais causas dessas variações.

5.3 Falta de Manutenção dos Equipamentos

A falta de manutenção preventiva nos sistemas de refrigeração pode levar a falhas no controle de temperatura, especialmente em equipamentos mais antigos.

Segundo a Associação Brasileira de Refrigeração, Ar-Condicionado, Ventilação e Aquecimento (ABRAVA), 40% dos baús refrigerados no Brasil operam com sistemas de refrigeração desregulados ou com falhas.

5.4 Problemas com Temperaturas Extremas

Em regiões com climas muito quentes ou muito frios, os sistemas de refrigeração podem não funcionar de forma eficiente, comprometendo a qualidade dos alimentos.

Um estudo da Embrapa mostrou que 15% das perdas de alimentos refrigerados ocorrem em regiões com temperaturas extremas, como o Nordeste (calor intenso) e o Sul (frio intenso).

A ABRAS destacou que produtos como carnes e laticínios são os mais afetados por essas condições.

5.5 Falta de Monitoramento em Tempo Real

A ausência de sistemas de monitoramento contínuo de temperatura dificulta a identificação de falhas e aumenta o risco de perdas.

Segundo a ABRALOG (Associação Brasileira de Logística), apenas 30% das empresas de transporte refrigerado no Brasil utilizam sistemas de monitoramento em tempo real.

A FIESP relatou que a falta de tecnologia é um dos principais gargalos, limitações para a eficiência do setor.

5.6 Regulamentações e Fiscalização

A falta de fiscalização rigorosa e a inconsistência nas normas entre estados e municípios dificultam o controle adequado de temperatura.

Um relatório da ANVISA mostrou que 40% das empresas de transporte refrigerado não cumprem integralmente as normas de controle de temperatura.

A CNT (Confederação Nacional do Transporte) destacou que a falta de padronização nas leis estaduais é um dos principais desafios do setor.

OBJETIVO

O objetivo principal deste projeto é desenvolver um sistema de monitoramento e registro de temperatura em baús de transporte refrigerados, com foco no setor alimentício, utilizando sensores e tecnologias de IoT (Internet das Coisas). O sistema visa assegurar que a temperatura seja mantida dentro dos limites estabelecidos para cada tipo de produto, como carnes, laticínios, frutas e congelados, de acordo com as normas técnicas e regulamentações do setor alimentício. Além disso, o projeto tem como foco fornecer dados confiáveis e em tempo real, permitindo a rastreabilidade e a geração de gráficos detalhados para auditorias e análises. A responsabilidade do sistema é monitorar, registrar e alertar sobre eventuais variações de temperatura, sem assumir diretamente a redução de perdas de produtos, mas sim fornecer as ferramentas necessárias para que os operadores e gestores possam tomar decisões informadas e ágeis.

Outro objetivo importante é automatizar o processo de monitoramento, eliminando a necessidade de inspeções manuais e reduzindo a margem de erro humano. Com o uso de sensores precisos e uma plataforma de software intuitiva, o sistema permitirá que as empresas de transporte tenham acesso imediato às informações sobre as condições térmicas dos baús refrigerados, tanto durante o trajeto quanto após a entrega. Isso não apenas otimiza a eficiência operacional, mas também aumenta a transparência e a confiança entre todos os envolvidos na cadeia logística, incluindo produtores, transportadores e consumidores finais. Além disso, o sistema será projetado para atender às exigências de órgãos reguladores, como a ANVISA e o MAPA, facilitando a conformidade com as normas de segurança alimentar e a obtenção de certificações de qualidade.

Ao final do projeto, espera-se que o sistema esteja completamente funcional, integrado à frota de veículos refrigerados e capaz de fornecer dados precisos e confiáveis sobre as condições de temperatura durante todo o transporte. A plataforma de software deve permitir a visualização dos dados em tempo real, a geração de gráficos e o envio de alertas automáticos em caso de variações fora dos limites pré-definidos. O desenvolvimento do sistema deve ser incremental e adaptável, permitindo futuras melhorias e integrações com outras tecnologias. O resultado esperado é um aumento significativo na eficiência e na confiabilidade do transporte refrigerado, contribuindo para a segurança alimentar e a satisfação dos clientes, sem que a responsabilidade pela redução de perdas seja atribuída ao sistema, mas sim às ações tomadas com base nas informações fornecidas por ele.

JUSTIFICATIVA

Falhas no controle de temperatura geram multas, perdas e desconfiança dos clientes. Este projeto garante conformidade com a ANVISA e MAPA, fortalece sua reputação no mercado e posiciona sua empresa como líder em inovação e qualidade.

ESCOPO

1. Visão Geral do Projeto

O transporte refrigerado é vital para garantir a qualidade e segurança de alimentos perecíveis, como carnes, frutas e congelados, no Brasil. No entanto, falhas no controle de temperatura durante o transporte geram perdas, multas e danos à reputação das empresas. Este projeto propõe uma solução inovadora: desenvolver um sistema de monitoramento e registro de temperatura em baús refrigerados, utilizando sensores e IoT (Internet das Coisas), para garantir conformidade com as normas da ANVISA e MAPA, aumenta a eficiência operacional e fortalecer a confiança dos clientes.

A motivação do projeto está nos desafios do setor, como variações térmicas, falta de monitoramento em tempo real e exigências rigorosas de órgãos reguladores. A importância reside na automação do controle de temperatura, eliminando inspeções manuais e reduzindo erros. O sistema fornecerá dados precisos em tempo real, alertas automáticos e gráficos detalhados, otimizando a logística e aumentando a transparência.

Ao final, o sistema estará integrado à frota de veículos refrigerados, fornecendo informações confiáveis sore as condições térmicas durante todo o transporte. O resultado será um aumento na eficiência e confiabilidade do transporte refrigerado, contribuindo para a segurança alimentar e a satisfação dos clientes. Este projeto protege seu negócio, evita prejuízos e posiciona sua empresa como líder em inovação e qualidade no mercado.

1.1 Localização dos Sensores

- Ponto Mais Quente do Baú: Próximo à porta do baú, onde há maior exposição ao calor externo. Este ponto é crucial para detectar variações de temperatura causadas pela abertura frequente da porta.
- **Ponto Mais Frio do Baú**: Próximo à saída de ar do sistema de refrigeração. Garante que a temperatura mínima esteja dentro dos limites seguros.
- **Centro do Baú**: No meio da carga, onde a temperatura tende a ser mais estável. Representa a temperatura média da carga.
- Cantos Superiores e Inferiores: Sensores nos cantos ajudam a identificar variações térmicas causadas por diferenças na circulação de ar. Um sensor no canto superior e outro no inferior podem detectar estratificação de temperatura.
- **Próximo à Carga Sensível**: Produtos mais sensíveis à temperatura, instalar sensores próximos a eles.

1.2 Quantidade de Sensores

A quantidade de sensores varia conforme o tamanho do baú e a complexidade da carga.

- Baús Pequenos (até 10 metros de comprimento):
 - o 3 sensores:
 - 1 próximo à porta (ponto mais quente).
 - 1 no centro do baú.
 - 1 próximo à saída de ar do sistema de refrigeração (ponto mais frio).

- Baús Médios (10 a 15 metros de comprimento) 4 a 5 sensores:
 - o 4 a 5 sensores:
 - 1 próximo à porta.
 - 1 no centro.
 - 1 próximo à saída de ar.
 - 1 no canto superior e 1 no canto inferior (para monitorar estratificação térmica).
- Baús Grandes (acima de 15 metros de comprimento):
 - o 6 a 8 sensores:
 - 1 próximo à porta.
 - 1 no centro.
 - 1 próximo à saída de ar.
 - 2 nos cantos superiores (esquerdo e direito).
 - 2 nos cantos inferiores (esquerdo e direito).
 - 1 próximo a carga sensíveis, se aplicável.

Considerações Adicionais:

- **Distribuição Uniforme**: Os sensores devem ser distribuídos de forma a cobrir todas as áreas críticas do baú, garantindo que nenhum ponto fique sem monitoramento.
- Altura dos Sensores: Instalar sensores em diferentes alturas (superior, médio e inferior) para capturar variações de temperatura ao longo de vertical
- **Proteção dos Sensores**: Os sensores devem ser protegidos contra dados físicos, como impactos durante o carregamento e descarregamento.
- **Calibração**: Todos os sensores devem ser calibrados regularmente para garantir precisão nas medições.

Sensor de Temperatura LM35

2. Resultados Esperados

2.1 Produtos que serão entregues

- Sensores de Temperatura de Alta Precisão: Dispositivos instalados nos baús refrigerados para coleta contínua e precisa de dados de temperatura.
- Plataforma de Software: Sistema intuitiva para visualização e gerenciamento dos dados de temperatura em tempo real, acessível via dispositivos móveis ou computadores.
- **Gráficos Automatizados**: Ferramentas para geração de gráficos sobre as condições térmicas durante o transporte.
- **Sistema de Alerta Automáticos**: Mecanismo de notificações instantâneas em caso de variações de temperatura fora dos limites pré-definidos.
- **Documentação Técnica**: Manual de configuração e uso do sistema, com instruções claras para operadores e gestores.

2.2 Serviços que serão entregues

- Instalação e Configuração: Implementação dos sensores e integração do sistema com a frota de veículos refrigerados.
- Manutenção Preventiva: Planos de manutenção para garantir o funcionamento adequado dos sensores e da plataforma de software.
- Consultoria para Conformidade: Apoio para garantir que o sistema atenda às normas da ANVISA, MAPA e outras regulamentações.

2.3 Resultados Finais que serão entregues:

- **Controle de Temperatura em Tempo Real**: Capacidade de monitorar e registrar a temperatura de forma contínua durante todo o transporte.
- Conformidade com Normas Regulatórias: Garantia de que o sistema atende às exigências da ANVISA, MAPA e outras normas, facilitando auditorias e certificações.
- **Aumento da Eficiência Operacional**: Automação do monitoramento, eliminando a necessidade de inspeções manuais e reduzindo erros humanos.
- Transparência e Confiança: Dados precisos e confiáveis que aumentam a transparência para clientes e parceiros, fortalecendo a reputação da empresa.
- Rastreabilidade Completa: Histórico de temperatura de cada carga, permitindo a rastreabilidade e a tomada de decisões informadas.
- Posicionamento como Líder em Inovação: Diferencial competitivo no mercado, posicionando a empresa como referência em tecnologia e qualidade no transporte refrigerado.

3. Requisitos

3.1 Funcionais

Categoria	Requisito	Descrição
Funcional	Monitoramento Contínuo de Temperatura	O sistema deve coletar dados de temperatura em tempo real, 24 horas por dia, durante todo o transporte.
Funcional	Precisão dos Sensores	Os sensores devem ter uma margem de erro máxima de 0,5°C para garantir medições confiáveis.
Funcional	Alertas Automáticos	O sistema deve enviar notificações instantâneas em caso de variações de temperatura fora dos limites pré-definidos.
Funcional	Rastreabilidade	O sistema deve armazenar o histórico completo das condições térmicas de cada carga, permitindo a geração de gráficos.
Funcional	Interface Intuitiva	A plataforma deve ser de fácil uso, com dashboards claros.
Funcional	Configuração de Limites de Temperatura	O sistema deve permitir a definição de limites de temperatura específicos para diferentes tipos de produtos (exemplo: carnes, laticínios, congelados).
Funcional	Geração de gráficos	O sistema deve gerar gráficos detalhados sobre as condições térmicas durante o transporte.

3.2 Não Funcionais

Categoria	Requisito	Descrição
Não	Durabilidade dos	Os sensores devem ser resistentes a vibrações,
Funcional	Sensores	umidade e temperatura extremas, garantindo
		funcionamento em diferentes condições
		climáticas.
Não	Escalabilidade	A solução deve ser capaz de ser expandida para
Funcional		frotas maiores.
Não	Segurança de Dados	O sistema deve garantir a proteção dos dados
Funcional		coletados conforme a LGPD (Lei Geral de
		Proteção de Dados).
Não	Tempo de Resposta	O sistema deve enviar alertas em menos de 1
Funcional		minuto após a detecção de variações de
		temperatura.

4. Limites e Exclusões

4.1 O que está incluído no projeto

• Desenvolvimento do Sistema de Monitoramento:

- Projeto, instalação e configuração de sensores de temperatura nos baús refrigerados.
- Desenvolvimento de uma plataforma de software para monitoramento em tempo real, com interface intuitiva.

• Funcionalidades do Software:

- o Monitoramento contínuo da temperatura.
- Alertas automáticos em caso de variação fora dos limites prédefinidos.
- Geração de gráficos detalhados.

• Conformidade com Normas:

 Garantia de que o sistema atende às normas da ANVISA, MAPA e ABNT.

Documentação:

o Manual de configuração e uso do sistema.

4.2 O que está excluído no projeto

Modificações na Infraestrutura do Baú:

 O projeto não inclui alterações físicas no baú refrigerado, como instalação de novos sistemas de refrigeração ou isolamento térmico.

• Fornecimento de Veículos ou Baús:

 O projeto n\u00e3o inclui a compra ou aluguel de ve\u00edculos ou ba\u00eds refrigerados.

• Responsabilidade pela Redução de Perdas:

 O sistema monitora e registra a temperatura, mas a responsabilidade pela redução de perdas de produtos é dos operadores e gestores, com base nas informações fornecidas.

• Manutenção de Equipamentos de Refrigeração:

 O projeto não inclui manutenção ou reparo dos sistemas de refrigeração dos baús.

• Implementação em Outros Setores:

 O foco inicial do projeto é o transporte refrigerado de alimentos.
 Aplicações em outros setores (exemplo: farmacêutico, químico) ainda não estão incluídas.

• Expansão para Outras Funcionalidades:

 Funcionalidades adicionais, como monitoramento de umidade ou rastreamento de localização, não estão incluídas no escopo inicial.

• Funcionalidades do Software:

 Exportações de relatórios detalhados não estão incluídos no escopo inicial.

• Custos de Operações Contínua:

 Custos com energia, conectividade (exemplo: planos de dados para transmissão de informações) e manutenção preventiva após a implementação não estão incluídos.

• Personalizações Específicas:

 Personalizações fora do escopo inicial (exemplo: integração com sistemas não previstos ou funcionalidades customizadas) não estão incluídas.

5. Macro Cronograma

1. Planejamento e Definição de Escopo

 Descrição: Definição dos requisitos do projeto, levantamento das necessidades do cliente e planejamento das etapas.

Início: 01/03/2025Término: 15/03/2025

• Interdependências: Base para todas as etapas subsequentes.

2. Seleção e Aquisição de Sensores e Tecnologias

 Descrição: Pesquisa, seleção e compra dos sensores de temperatura, dispositivos de comunicação e outros componentes necessários.

Início: 16/03/2025Término: 30/03/2025

 Interdependências: Depende da conclusão do planejamento e definição de escopo.

3. Desenvolvimento do Software

• **Descrição:** Desenvolvimento da plataforma de software para monitoramento em tempo real, incluind**o** interface, alertas e gráficos.

Início: 01/04/2025Término: 29/05/2025

• Interdependências: Depende da seleção e aquisição dos sensores.

4. Instalação e Configuração dos Sensores

 Descrição: Instalação dos sensores nos baús refrigerados e configuração inicial do sistema.

Início: 30/05/2025Término: 15/06/2025

 Interdependências: Depende do desenvolvimento do software e da entrega dos sensores.

5. Testes e Ajustes

• **Descrição:** Testes do sistema em condições reais de transporte, ajustes finais e correções de eventuais problemas.

Início: 16/06/2025Término: 30/06/2025

• Interdependências: Depende da instalação e configuração dos sensores.

6. Recursos Necessários

6.1 Recursos Humanos

- Equipe de Desenvolvimento: Engenheiros de Software, Hardware e Analistas de Dados.
- Equipe se Implementação: Técnicos de Instalação e Especialistas em IoT.
- Gestão de Projeto: Gerente de Projeto e Analista de Qualidade.

6.2 Equipamentos

- Sensores de Temperatura.
- Dispositivos de Comunicação.
- Servidores e Infraestrutura de TI.
- Ferramentas de Desenvolvimento.
- Equipamentos de Instalação de sensor.

6.3 Recursos Externos

- Consultores em normas regulatórias (ANVISA, MAPA).
- Consultores em IoT.
- Parcerias com Fornecedores de sensores.

7. Riscos e Restrições

7.1 Riscos

1. Atrasos na Entrega de Sensores e Equipamentos:

- Descrição: Atrasos na entrega de sensores ou dispositivos de comunicação podem impactar o cronograma.
- Mitigação: Estabelecer contratos com fornecedores confiáveis e incluir cláusulas de penalidade por atrasos. Manter um estoque de segurança de componentes críticos.

2. Falhas no Desenvolvimento do Software:

- Descrição: Problema técnicos no desenvolvimento da plataforma podem atrasar o projeto.
- Mitigação: Adotar metodologias ágeis para permitir ajustes rápidos.

7.2 Restrições e Limitações

1. Restrições de Orçamento:

- Descrição: O orçamento limitado pode restringir a aquisição de equipamentos de alta qualidade ou a contratação de pessoal especializado.
- Mitigação: Priorizar os componentes e recursos mais críticos. Buscar parcerias e financiamentos adicionais, se necessário.

2. Limitação de Tempo:

- Descrição: O cronograma apertado pode comprometer a qualidade do projeto.
- Mitigação: Definir metas realistas e priorizar as atividades mais críticas.
 Utilizar metodologias ágeis para acelerar o desenvolvimento.

8. Partes Interessadas (Stakeholders)

- 1. Patrocinador do Projeto: Financiador e principal interessado no sucesso do projeto.
- 2. Gerente de Projeto: Líder responsável pela coordenação e execução do projeto.
- **3. Equipe de Desenvolvimento**: Desenvolvedores da plataforma de software para monitoramento de temperatura.
- 4. Equipe de Implementação: Instaladores dos sensores nos baús refrigerados.
- 5. Operadores e Gestores: usuários finais do projeto.