陈依皓

(北京师范大学 物理学系, 北京 100875)

摘 要: 本次实验的目的是利用PASCO WA-9612型谐振管装置和示波器研究一维波的反射、干涉与谐 振现象以及掌握多种测量声速的方法。

关键词:一维波,谐振管,声速测量

中图分类号: 0xx

文献识别码: A

文章编号: 1000-0000(0000)00-0000-00

1 引 言

机械振动在介质中传播形成声波, 本实验研 究空气中声波。

2 实验原理

2.1 空气中的声波

声波在空气中只有纵波, 其波速为

$$v = \sqrt{\frac{\gamma R T_0}{\mu}}$$

式中, $\gamma = \frac{c_P}{c_V}$ 为空气的比热容比, μ 为空气的摩尔质

量, T_0 为气体的热力学温度,R为热力学普适常数 对于干燥空气,温度为 $t^{\circ}C$ 时, $\gamma = 7/$ $5, \mu = 28.96g/mol$, 此时声速为

$$v_t \approx v_0 (1 + \frac{t}{2 \times 273.15})$$

= (331 + 0.606t) m/s

声压是空气压强相对大气压起伏的部分,它 是声传感器能够直接测量的物理量,下面我 们用声压替代位移分析声波。

2.2 管中的声场

对于管内的声波, 当声波波长 λ 远大于管的 直径 d 时,管内声波可以简化为一维平面波

图 1 管内声波示意图

考虑在半无限长管内传播的声波,设 $\psi_i(x,t)$ 为向右传播的声波, 行进到界面 (x=0) 反射,反射波的声压分布为 $\psi_r(x,t)$,有

$$\begin{cases} \psi_i(x,t) = A_i e^{j(kx - \omega t)} \\ \psi_r(x,t) = A_r e^{j(-kx - \omega t)} \end{cases}$$

由波的叠加原理可知 A_r 和 A_i 成正比,即 $A_r = rA_i$

r 被称为界面的反射系数, $r = |r|e^{j2\sigma\pi}$, |r|称为反射率, σ 为相移因子。对于管口直接 与自由空间相通的情况,一般取 $\sigma=1/2$, 在管口处形成声压振幅的极小值; 对于密封 管口的情况,一般取 $\sigma = 0$,在管口处形成 声压振幅的极大值。

管中总的声压为

$$\psi(x,t) = \psi_i(x,t) + \psi_r(x,t)$$
$$= A_i (e^{jkx} + re^{-jkx})e^{-j\omega t}$$

总振幅为

$$P(x) = |\psi(x,t)|$$

= $|A_i|\sqrt{1 + |r|^2 + 2|r|\cos(2kx - 2\sigma\pi)}$

图2a 不同反射率的声压分布比较

图2b 不同反射相移因子对声压分布的影响

当 |r| = 0 时,为行波

$$P(x) = |A_i| = const$$

当 |r| = 1 时,为驻波

$$P(x) = |A_i|\sqrt{2 + 2\cos(2kx - 2\sigma\pi)}$$

= $2|A_i\cos(kx - \sigma\pi)|$

对于更一般的情况,

$$x = \frac{(n+\sigma)\lambda}{2 \text{ B}}$$
 $P_{max} = |Ai|(1+|r|)$
 $x = \frac{\left(n+\sigma+\frac{1}{2}\right)\lambda}{2 \text{ B}}$

$$P_{min} = |Ai|(1-|r|)$$

定义驻波比

$$G = \frac{P_{max}}{P_{min}} = \frac{1 + |r|}{1 - |r|}$$

测量出 G 即可得到反射系数,这就是用驻波管测量材料吸声系数的工作原理。

2.3 管中声波的谐振

当声波在一根有限长度的管子内传播时,波 在管内会多次反射,在谐振频率时,这些反 射波的位相一致,会叠加产生一个振幅非常 大的驻波,此时称管内发生了谐振。 谐振频率为

$$f = (n - \sigma_L - \sigma_R) \frac{v}{2L}$$

其中 L 代表管长,不同的整数 n 代表不同的本征模式。

两端都是开口的情况,由于 $\sigma_L = \sigma_R = \frac{1}{2}$

$$f = \frac{(n-1)v}{2L} \equiv \frac{mv}{2L}$$

一端开口,另一端闭口的情况, $\sigma_L = \frac{1}{2}$,

$$\sigma_R = 0$$

$$f = (m - \frac{1}{2}) \frac{v}{2L}$$

图4 闭管内的谐振模式

3 实验结果及分析

3.1 观察声波在管口的反射,并用回声法测量声速

我们利用扬声器输入一个 20*Hz* 的方波,不断改变活塞位置,把活塞向管内推进,由于声波传播的路程减小,因此反射波出现的时刻会提前。

有关系式

$$x = a + \frac{1}{2}v \,\Delta T$$

式中,x 为活塞位置,v 为声速, ΔT 为反射波相对入射波的时间延迟

活塞位置 x/cm	时间延迟ΔT/ms	
25	3.58	
40	2.74	
50	2.20	
60	1.56	
70	1.06	

线性拟合如图

如图所示, $\frac{1}{2}v = 17.676cm/ms$

容易计算得回声法测量得到的声速为

$$v_{\text{m}} = 353.52 m/s$$

实验时室温为 t = 25.5°C根据公式

$$v_t \approx v_0 (1 + \frac{t}{2 \times 273.15})$$

= (331 + 0.606t) m/s

可得 $v_{\text{理论}} = 346.45 m/s$

测量值与理论值的相对误差为 $\Delta v = \frac{|v_{\text{MB}} - v_{\text{理论}}|}{v_{\text{MB}}} = 2.04\%$

考虑管内温度可能略高于室温,且直线拟合效果良好,该误差在可接受的范围内。

3.2.1 按经验公式进行管口修正,并计算声速

管口修正后得到的管长

$$L' = L + 0.4d = 0.9128 m$$

根据 $\Delta f = v/2L'$,做如图所示线性拟合闭口情况下

其斜率为v/2L'=189.77, 计算得

$$v_{i \neq 1/2} = 346.44 m/s$$

开口情况下

3.2 测量谐振频率,计算声速或等效管长

我们利用扬声器输入一个正弦波, 连续改变信号, 观察示波器波形, 当声压达到极大值时, 扬声器输入正弦波的频率就是谐振频率。

闭口时的谐振频率 f /Hz				
492.8	665.8	858.9 1061.		
开口时的谐振频率 f/Hz				
372.4	569.0 742.7 935.7		935.7	

管长 L/m	管口直径 d/m	
0.9	0.032	

其斜率为v/2L'=186.36, 计算得

$$v_{\# \Box} = 340.21 m/s$$

线性拟合的效果较好

$$\Delta v_{i H \square} = 0.02\%$$
 $\Delta v_{H \square} = 1.80\%$

3.2.2 假定声速已知, 计算等效管长与管口 修正

带入声速的理论值 v = 346.45m/s 根据 $\Delta f = v/2L'$ 可计算得

	等效管长 Ľ/	管口修正 Δ	
	m		
闭口情况	0.9128	0.40d	
开口情况	0.9296	0.92 <i>d</i>	

开口测量的误差略大于闭口测量的误差,考

虑可能是由于开口的情况边界条件比模型 更复杂。

3.3 测量管内的声压分布,计算声速和反射系数

从 x = 2cm 到 x = 80cm 改变 麦克风 的位置,步长为 2cm,利用示波器测量声波的峰峰值(Vpp)表示声压

在闭口情况下,输入 665.8Hz 的谐振频率, 声压分布如下表(单位为mV)

<u> </u>				
53.12	58.17	59.08	54.34	50.01
45.37	42.19	32.76	23.96	11.68
8.04	20.49	36.31	49.37	48.27
53.17	55.63	54.85	50.01	45.21
34.28	23.85	12.66	4.47	14.20
27.69	39.47	48.54	52.16	53.97
53.09	46.23	39.07	31.19	21.23
10.16	5.19	16.23	29.75	40.35

在开口情况下,输入 742.7Hz 的谐振频率, 声压分布如下表(单位为mV)

,在37节7年1000年1257677				
118.1	150.9	179.5	188.2	178.3
163.2	148.1	120.7	76.3	30.3
37.1	85.3	132.1	159.6	180.3
191.3	183.6	166.4	142.3	114.6
62.3	17.3	46.7	90.5	132.1
160.9	174.3	180.7	173.4	149.1
124.9	84.3	45.9	10.3	52.7
98.4	141.3	163.6	182.7	185.4

3.3.1 计算声波波长以及声速

在闭口情况下,出现极小值的位置有 $x=22cm \quad x=48cm \quad x=74cm$ 计算得

$$\lambda/2 = \Delta x = 26 \ cm$$

$$v_{\beta \overline{J} \square} = \lambda \cdot f = 346.21 \ m/s$$

在开口情况下,出现极小值的位置有 x = 20cm x = 44cm x = 68cm 计算得

$$\lambda/2 = \Delta x = 24 cm$$

$$v_{\mathcal{H}\mathcal{D}} = \lambda \cdot f = 356.50 m/s$$

$$\Delta v_{\overrightarrow{H}\square} = 0.69\%$$
 $\Delta v_{\overrightarrow{H}\square} = 2.90\%$

开口测量的误差仍然大于闭口测量的误差。

3.3.2 计算驻波比G,以及管口反射率|r|

在闭口情况下,我们分别测量到三次极大值 与三次极小值,对其求算数平均得

$$P_{max} = 56.23$$
 $P_{min} = 5.9$

根据

$$G = \frac{P_{max}}{P_{min}} = \frac{1 + |r|}{1 - |r|}$$

得驻波比 G = 9.53 ; 反射系数 |r| = 0.81

在开口情况下,我们分别测量到三次极大值 与三次极小值,对其求算数平均得

$$P_{max} = 188.3$$
 $P_{min} = 19.3$

根据

$$G = \frac{P_{max}}{P_{min}} = \frac{1 + |r|}{1 - |r|}$$

得驻波比 G = 9.76 ; 反射系数 |r| = 0.81

3.3.3 计算管口的反射相移系数 σ

根据实验原理部分, $x = (n + \sigma)\lambda/2$ 时, P(x) 取到极大值

在闭口情况下,出现极大值的位置是 $x_0 = 6cm$ $x_1 = 34cm$ $x_2 = 60cm$ 计算得

$$\sigma = 0.30$$

在闭口情况下,出现极大值的位置是 $x_0 = 8cm$ $x_1 = 42cm$ $x_2 = 80cm$ 计算得

$$\sigma = 0.333$$

(感觉结果有误,希望能在下一版修正)

4 复习思考题

4.1 根据本实验的结论说明管乐器的管长 与音调的关系

管乐器的管长越短,音调越高。 因为 $f = (n - \sigma_L - \sigma_R)v/2L$,在声速一定的情况下,f 与 L 成反比

4.2 如何更精确地测量谐振管的谐振频率?

- 1. 应该预先测量空白频率响应曲线,即在自由空间中,把麦克风固定在扬声器正前方一定距离的位置,保持扬声器输入信号幅度不变,测量麦克风的振幅随扬声器输入信号频率的变化曲线。
- 2. 进行多次测量并取平均值,以减小测量误差的影响。
- 3. 选择高质量的声波谐振管,以减小管内损耗和非线性效应

4.3 比较谐振管与光学中的法布里-珀罗谐振腔,二者在原理和测量上有何相似与区别?

相似: 都是使声波或光波在一定空间内发生来回的反射, 使得波发生叠加, 调整相关的参数就可以是体系达到谐振状态, 测量出波的相关参数, 利用相关原理就可以进行所需的计算。

区别:本实验中的谐振管直接测量的是声波的振幅(用声压来描述),而法布里珀罗谐振腔直接测量的是光的透射率,进而反应出光波的特性。

参考文献

[1] 北京师范大学物理实验教学中心. 普通物理实验讲义 II, 2023

Acoustic resonant tube experiment

CHEN Yi-hao

(Department of Physics, Beijing Normal University, Beijing 100875, China)

Abstract: The purpose of this experiment is to use PASCO WA-9612 resonant tube device and oscilloscope to study one-dimensional wave reflection, interference and resonance

phenomena and to master a variety of methods to measure sound velocity.

Key words: one-dimensional wave, resonant tube, sound velocity measurement