Randomized Algorithms

Introduction

Types

- Las Vegas (Ex. Randomized Quick Sort)
- Monte Carlo (Ex. Karger's Min Cut)

Introduction

• A randomized algorithm is one that receives, in addition to its input data, a stream of random bits that it can use for the purpose of making random choices.

 Even for a fixed input, different runs of a randomized algorithm may give different results.

Example

- Search for an element x' in an array A.
- 1. search (int A[], int x)
- 2. for i = 0 to A.length
- 3. check if element exists.

4. end for

Simple Algorithm

```
search (int A[], int x)

Randomized Algorithm

while(1)

Randomly select one element out of A.length elements.

until 'x' is found

end
```

- An extremely important tool for the construction of algorithms in a wide range of applications.
- Principal advantages:
 - Relatively smaller execution time or space requirement than that of the best known deterministic algorithm for the same problem.
 - Extremely simple to understand and to implement.
- Running time of randomized algorithms is given as an expected values.

Types

Las-Vegas

- Always gives correct results or it informs about the failure.
- Running time is a random variable.
- Example: Randomized quicksort, where the pivot is chosen randomly, but the result is always sorted.

Monte Carlo

- May produce an incorrect result with some probability.
- Running time is fixed.
- Example: Karger's Min Cut, to get a min-cut for a given graph G with some probability.

Example – Search (int A[], int x)

```
searchLasVegas(int A[], int x)
  while(true)
                                 searchMonteCarlo(int A[], int x)
    Randomly select one
                                   i = 0; flag = false
      element out of A.length
                                   while(i <= <some number>)
      elements.
                                      Randomly select one
     if (found)
                                       element out of A.length
       return true
                                       elements.
  end
                                      i++;
                                      if (found)
                                       flag = true
                                   end
```

return *flag*

QUICKSORT(A, p, r)

- QUICKSORT(A, p, r)
- 1. if p < r
- 2. q = PARTITION(A, p, r)
- 3. QUICKSORT(A, p, q 1)
- 4. QUICKSORT(A, q + 1, r)
- To sort an array A with n elements, the first call to QUICKSORT is made with p = 0 and r = n 1.

- 1. PARTITION(A, p, r)
- 2. x = A[r]
- 3. i = p 1
- 4. for j = p to r 1
- 5. if $A[j] \leq x$
- 6. i = i + 1
- 7. Exchange A[i] with A[j]
- 8. Exchange A[i + 1] with A[r]
- 9. return i + 1

Example: 2, 8, 7, 1, 3, 5, 6, 4

Randomized Quick Sort (Las Vegas)

- RANDOMIZED-QUICKSORT(A, p, r)
- 1. if p < r
- 2. q = RANDOMIZED-PARTITION(A, p, r)
- 3. RANDOMIZED-QUICKSORT(A, p, q-1)
- 4. RANDOMIZED-QUICKSORT(A, q + 1, r)
 - RANDOMIZED-PARTITION(A, p, r)
 - 1. i = RANDOM(p, r)
 - 2. Exchange A[r] with A[i]
 - 3. return PARTITION(A, p, r)

Example

0	1	2	3	4	5	6	7
5	3	8	9	4	7	6	1

- Generate a random number in between 0 and 7.
 - Let the number be 5.
 - Exchange A[5] with A[7]

0		1	2	3	4	5	6	7
5)	3	8	9	4	1	6	7

	5	3	8	9	4	1	6	7
i	pj							r
	5	3	8	9	4	1	6	7
	pi	j						r
	5	3	8	9	4	1	6	7
	p	i	j					r
	5	3	8	9	4	1	6	7
	p	i		j				r
	5	3	8	9	4	1	6	7
	p	i			j			r

5	3	4	9	8	1	6	7
p		i			j		r
5	3	4	1	8	9	6	7
p			i			j	r
5	3	4	1	6	9	8	7
p				i			jr
5	3	4	1	6	7	8	9
p					i		jr

Exchanged

Final

Karger's Min-cut (Monte Carlo)

• Minimum cut of an undirected graph G = (V,E) is a partition of the nodes into two groups V_1 and V_2 , so that the number of edges between V_1 and V_2 is minimized.

$$-V_1 \cap V_2 = \emptyset$$
 and $V_1 \cup V_2 = V$

Example:

Size of minimum cut is two with node partitions as

$$V_1 = \{a, b, e, f\}$$
 and $V_2 = \{c, d, g, h\}.$

- 1. Repeat until just two nodes remain:
- Pick an edge of G at random and collapse its two endpoints into a single node.

• For the two remaining nodes u_1 and u_2 , set V_1 = {nodes in u_1 } and V_2 = {nodes in u_2 }

Karger's (basic algorithm)

- begin i = 1repeat repeat Take a random edge $(u,v) \in E$ in Greplace u and v with the contraction u'until only 2 nodes remain obtain the corresponding cut result C_i i = i + 1until i = m
- output the minimum cut among $C_1, C_2, ..., C_m$.
- end

i	C_i (# of edges)	Probability	
1	3	1/4 = 0.25	
2	2	2/4 = 0.5	

Result is minimum C_i value (or C_i with higher probability). Min cut is 2 with vertex sets $\{A, C, D\}$ and $\{B\}$.

Example – 2

i = 1

$$i = 2$$

i	C_i (# of edges)	Probability	Vertex Sets
1	4	0.5	{a, h} {b, c, d, e, f, g}
2	2	0.67	$\{a, b, g, h\}$ $\{c, d, e, f\}$