

Circles Ex 16.2 Q7

Answer:

Let MN is the diameter and chord AB of circle C(O, r) then according to the question AP = BP

Then we have to prove that $\angle AOM = \angle BOM$.

Join OA and OB.

In ΔAOP and ΔBOP

OA = OB (Radii of the same circle)

AP = BP (P is the mid point of chord AB)

OP = OP (Common)

Therefore, $\triangle AOP \cong \triangle BOP$

 $\Rightarrow \angle AOP = \angle BOP$ (by cpct)

 $\Rightarrow \angle AOM = \angle BOM$

Hence, proved.

Circles Ex 16.2 Q8

Answer:

We have to prove that two different circles cannot intersect each other at more than two points. Let the two circles intersect in three points *A*, *B* and *C*.

Then as we know that these three points A, B and C are non-collinear. So, a unique circle passes through these three points.

This is a contradiction to the fact that two given circles are passing through A, B, C.

Hence, two circles cannot intersect each other at more than two points.

Hence, proved.

Circles Ex 16.2 Q9

Answer

Given that a line AB = 5 cm, one circle having radius of $r_1 = 4$ cm which is passing through point A and B and other circle of radius $r_2 = 2$ cm.

As we know that the largest chord of any circle is equal to the diameter of that circle.

So, $2 \times r_2 < AB$

There is no possibility to draw a circle whose diameter is smaller than the length of the chord.

******* END *******