CS 6101 Week #4 Notes: Actor-Critic Introduction, Value Functions and Q-Learning

Note taking: Alexandre Gravier, Joel Lee

LATEX transcription: Alexandre Gravier <al.gravier@gmail.com>

Contents

1	Reca	ap about policy gradients	1
	1.1	Policy differentiation with a "convenient identity"	1
	1.2	The bad news	2
	1.3	Variance reduction with "rewards to go"	2

1 Recap about policy gradients

We define $J(\theta) \doteq E_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r\left(\mathbf{s}_t, \mathbf{a}_t \right) \right]$ so that the objective of RL can be defined as an optimization exercise consting in finding an assignment of policy parameters $\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} J(\theta)$.

 $J(\theta)$ is not usually optimizable as such due to f.e. dimensionality issues, so we use a sample-based unbiased estimate: $J(\theta) \approx \frac{1}{N} \sum_i \sum_t r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$. Taking the gradient of $J(\theta)$ along θ allows maximizing the expected reward as per the policy.

1.1 Policy differentiation with a "convenient identity"

Let $r(\tau) \doteq \sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t}\right)$ the total reward of a trajectory τ .

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] \tag{1a}$$

$$= \nabla_{\theta} \int \pi_{\theta}(\tau) r(\tau) d\tau \qquad \qquad \text{by definition of expectation}$$
 (1b)

$$= \int \nabla_{\theta} \pi_{\theta}(\tau) r(\tau) d\tau \qquad \qquad \text{by linearity} \qquad \qquad (1c)$$

At this point, the expression $\int \nabla_{\theta} \pi_{\theta}(\tau) r(\tau) d\tau$ seems rather intractable. This is where the following "convenient identity" can be used to derive a tractable expression of $\nabla_{\theta} J(\theta)$.

A convenient identiy

$$\pi_{\theta}(\tau)\nabla_{\theta}\log \pi_{\theta}(\tau) = \pi_{\theta}(\tau)\frac{\nabla_{\theta}\pi_{\theta}(\tau)}{\pi_{\theta}(\tau)} = \nabla_{\theta}\pi_{\theta}(\tau)$$
 (2)

Exploration in Computer Science Research: Deep Reinforcement Learning (CS 6101, 2019), National University of Singapore.

Furthermore, we can expand the definition of $\pi_{\theta}(\tau)$ and take its logarithm:

$$\pi_{\theta}(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t) p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$$
(3a)

$$\Leftrightarrow \log \pi_{\theta} (\tau) = \log p(\mathbf{s}_{1}) + \sum_{t=1}^{T} \log \pi_{\theta} (\mathbf{a}_{t} \mid \mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t})$$
(3b)

Using (2) and (3b) in (1c), the gradient of the objective becomes:

$$\nabla_{\theta} J(\theta) = \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) d\tau \qquad \text{using (2)}$$
(4a)

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau) \right] \qquad \text{by definition of expectation} \tag{4b}$$

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \left[\log p(\mathbf{s}_{1}) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{t} \mid \mathbf{s}_{t}) + \log p(\mathbf{s}_{t+1} \mid \mathbf{s}_{t}, \mathbf{a}_{t}) \right] r(\tau) \right]$$
(4c)

We note that in the expression $\nabla_{\theta} \left[\log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t \mid \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t) \right]$ of the gradient w.r.t. θ in (4c), the terms $\log p(\mathbf{s}_1)$ and $\log p(\mathbf{s}_{t+1} \mid \mathbf{s}_t, \mathbf{a}_t)$ are independent of θ , so we are left with:

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \left[\sum_{t=1}^{T} \log \pi_{\theta} \left(\mathbf{a}_{t} \mid \mathbf{s}_{t} \right) \right] r(\tau) \right]$$
 (5a)

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(\mathbf{a}_{t} \mid \mathbf{s}_{t} \right) \right) r(\tau) \right]$$
 by linearity (5b)

$$= E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(\mathbf{a}_{t} \mid \mathbf{s}_{t} \right) \right) \sum_{t=1}^{T} r\left(\mathbf{s}_{t}, \mathbf{a}_{t} \right) \right] \quad \text{by definition of } r(\tau) \quad (5c)$$

In Equation (5c), the gradient of J is now a computable function of π_{θ} only.

We earlier mentioned the sample estimate of $J(\theta) \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$; similarly $\nabla_{\theta} J(\theta)$ is approximated with samples, leading us to the algorithm:

REINFORCE algorithm:
$$\begin{cases} \text{ sample } \left\{ \tau^{i} \right\} \text{ from } \pi_{\theta} \left(\mathbf{a}_{t} \mid \mathbf{s}_{t} \right) \\ \nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(\mathbf{a}_{t} \mid \mathbf{s}_{t} \right) \right) \sum_{t=1}^{T} r \left(\mathbf{s}_{t}, \mathbf{a}_{t} \right) \right) \\ \theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta) \end{cases}$$

$$(6)$$

In (6), there is no use of the Markov property, so the algorithm can be used as such on POMDPs.

1.2 The bad news

1.3 Variance reduction with "rewards to go"

The "rewards to go" trick computes the expected future rewards based on from the current time t to reduce variance in J. It comes from the observation that at time t, all past rewards cannot be affected by policy decisions.

Rewards to go -

References