武汉大学计算机学院 2018 - 2019 学年第一学期 2016 级《编译原理》(期末考试参考答案 A)

-, -(1)

$$\operatorname{start} \longrightarrow 0 \stackrel{1}{\longrightarrow} 0 \stackrel{0}{\longrightarrow} 1 \stackrel{\varepsilon}{\longrightarrow} 3 \stackrel{0}{\longrightarrow} 4 \stackrel{\varepsilon}{\longrightarrow} 1 \stackrel{1}{\longrightarrow} 2 \stackrel{0}{\longrightarrow} 5 \stackrel{\varepsilon}{\longrightarrow} 1 \stackrel{1}{\longrightarrow} 2$$

(2)

$$A = \{0,3\}, B = \{1,3,4\}, C = \{2\}, D = \{1,3,4,5\}.$$

状态转换图为:

(3) 最小 DFA 如下所示:

- (4) 无 011 子串.
- (5) r = 1*(0+1)*0*.
- 二、 (1) 语句 "[a;a[a]]" 的最左推导如下:

$$\begin{array}{cccc} S & \underset{lm}{\Longrightarrow} & [L] & & \underset{lm}{\Longrightarrow} & [a;S] \\ & \underset{lm}{\Longrightarrow} & [L;L] & & \underset{lm}{\Longrightarrow} & [a;[L]] \\ & \underset{lm}{\Longrightarrow} & [a;L] & & \underset{lm}{\Longrightarrow} & [a;[a]] \end{array}$$

(2) 消除左递归后的文法如下:

$$S \rightarrow [L]$$

$$L \rightarrow SL' \mid aL'$$

$$L' \rightarrow ; LL' \mid \varepsilon$$

- (3) First(S) = { [}; First(L) = { [, a }; First(L') = { ;, ε }. Follow(S) == { ;,],\$ }; Follow(L) = Follow(L') = { ;,] }.
- (4) LL(1) 分析表如下所示

LOU	а	;			\$
S			$S \rightarrow [L]$		
L	$L \rightarrow aL'$		$L \rightarrow SL'$		
L'		$L' \rightarrow ; LL' \mid \varepsilon$		$L' \to \varepsilon$	

(5) 语句 "[a; a]" 的分析过程如下所示:

剩余串	分析栈	分析动作
[<i>a</i> ; <i>a</i>]\$	<i>S</i> \$	$S \rightarrow [L]$
[a;a]\$	[L]\$	match-advance
<i>a</i> ; <i>a</i>]\$	L]\$	$L \rightarrow aL'$
<i>a</i> ; <i>a</i>]\$	aL']\$	match-advance
; a]\$	L']\$	$L' \rightarrow ; LL'$
; <i>a</i>]\$;LL']\$	match-advance
<i>a</i>]\$	LL']\$	$L \rightarrow aL'$
<i>a</i>]\$	aL'L']\$	match-advance
]\$	L'L']\$	L' o arepsilon
]\$	L']\$	L' o arepsilon
]\$]\$	match-advance
\$	\$	分析成功

三、 (1) 语句 "a[a,a,a]"的两颗不同的语法树为: 语法树 1:

语法树 2:

(2) 无二义文法:

$$\begin{array}{ll} S & \rightarrow & [L] \\ L & \rightarrow & S; L \mid a; L \mid S \mid a \end{array}$$

四、 (1) 状态 I_6 的 LR(0) 项目集为

$$\overline{\{L \to L; \bullet L]\}}
= \{L \to L; \bullet L, L \to \bullet L; L, L \to \bullet S, L \to \bullet a, S \to \bullet [L]\}.$$

- (2) 识别活前缀的自动在吃进 [([L;)*a 进入状态 I_5 , 而状态 I_5 无] 出边,因此不是活前缀.
- (3) $Follow(S) = \{\$, ;,]\}$, $Follow(L) = \{;,]\}$. 状态 I_8 有移进/归约冲突,右结合选移进. 故 SLR 分析表如下所示:

$\overline{}$		_					
	action					goto	
状态	;	4		a	\$	L	S
0		s2					1
1					acc	A.	
2		s2		s5		3	4
3	s6		s7				
4	r3		r3		V		
5	r4		r4				
6		s2		s5		8	4
7	r1	6	r1	J	r1		
8	s6		r2				

(4) 语句 "[a; a]" 的分析过程如下所示:

剩余串	分析栈	分析动作
[a; a]\$	0	shift
a; a]\$	0[2	shift
; a]\$	0[2 <i>a</i> 5	reduce $L \rightarrow a$
; a]\$	0[2L3	shift
<i>a</i>]\$	0[2L3;6	shift
]\$	0[2L3;6a5]	reduce $L \rightarrow a$
]\$	0[2L3;6L8]	reduce $L \to L; L$
]\$	0[2L3]	shift
\$	0[2L3]7	reduce $S \to [L]$
\$	0.51	分析成功

五、(1)

$$rac{
rac{F}{\pm}}{S} \rightarrow [L]$$
if $(L.is_list)$ then
$$S.tree = L.tree$$
else
$$S.tree = "\Lambda(" + L.tree", \perp))"$$

$$L \rightarrow L_1; L_2$$
if $(L_2.is_list)$ then
$$L.tree = "\Lambda(" + L_1.tree + ", " + L_2.tree + ")"$$
else
$$L.tree = "\Lambda(" + L_1.tree + ", \Lambda(" + L_2.tree + ", \perp))"$$

$$L.is_list = True$$

$$L \rightarrow S$$

$$L.tree = S.tree$$

$$L.is_list = False$$

$$L \rightarrow a$$

$$L.tree = a.lexval$$

$$L.is_list = False$$

(2) $\Lambda(\Lambda(\Lambda(a, \perp), \perp), \Lambda(b, \Lambda(\Lambda(c, \perp), \perp))$

六、

七、 传值是 C 语言唯一的参数传递方式, main() 中调用 foo(p) 并未能对 p 初始 化, 因此输出乱码.