第五周作业报告

佐藤拓未 20300186002

第一间

用二阶到四阶格式计算例 2.2.2, 观察收敛阶

解: 考虑用 MATLAB 计算例 2.2.2, 先设 $t_0 = 0, u_0 = u(t_0) = 2, T = 1, \Delta t = 2^{-i}, N = \left[\frac{T}{\Delta t}\right], 令 i 变动, 这样可以后续观察收敛阶与 i 之间的关系. 又可知精确解 <math>u(t) = \frac{1}{1-0.5e^{-t}}$, 编写子程序并带入参数计算, 给出二到四阶 Kutta 格式与精确解的末项相对误差与 i 之间的关系 (如图 1 所示). 那么此时 u_N 就是在 T = 1 处的近似值, 且

$$|e_N| = \frac{|u(T) - u_N|}{|u(T)|} = O(\Delta t^p) \stackrel{\triangle}{=} C\Delta t^p$$

则在对数意义下, 相对误差的对数值与 i 就呈现线性关系

$$\ln|e_N| = \ln C + p \ln \Delta t$$

再由 $\Delta t = \frac{1}{2^i}$, 可知

$$\ln|e_N| = \ln C - pi \ln 2$$

即斜率就是 $-p \ln 2$, 从而可以从图 1 的斜率差别观察到 Kutta 二至四阶的 收敛阶.

图 1: 相对误差的对数与 i 的关系

而当 $\Delta t \leq 2^{-11}$ 时, Kutta 四阶格式已经达到了机器精度, 从而收敛精度不会再进一步降低.

另一方面,可以直接在数值上对比相对误差对数与 i 关系图以及斜率为 $-p\ln 2$ 的直线之间的关系,如图 2 或者 semilogy 图 (图 3) 所示.

图 2: 图 1 的基础上加入直线作比较

图 3: semilogy

从上图也可以看出 Kutta 的 p 阶格式与斜率为 $-p \ln 2$ 的直线之间的关系:下降速度是接近的.

第二问

如果增量函数 $\phi(t, u; \Delta t)$ 在区域定义域上连续且关于 u 满足 Lipschitz 条件,则相容得单步方法时收敛的,且如果有局部截断误差:

$$|R_n| \le C_R \Delta t^{p+1},$$

则有收敛性估计

$$|\epsilon_n| \le e^{L(T-t_0)}|e_0| + \Delta t^p \frac{C_R}{L} e^{L(T-t_0)}$$

证:考虑单步方法与局部截断误差

$$\begin{cases} u_n &= u_{n-1} + \Delta t \phi(t_{n-1}, u_{n-1}; \Delta t) \\ u(t_n) &= u(t_{n-1}) + \Delta t \phi(t_{n-1}, u(t_{n-1}); \Delta t) + R_n \end{cases}$$

由 $\epsilon_n = u(t_n) - u_n$, 以及 $\phi(t,u;\Delta t)$ 是关于 u 为 L-Lipschitz 连续, 可知

$$\begin{aligned} |\epsilon_n| &\leq |\epsilon_{n-1}| + L\Delta t |\epsilon_{n-1}| + |R_n| \\ &= (1 + L\Delta t)|\epsilon_{n-1}| + C_R \Delta t^{p+1} \\ &\leq (1 + L\Delta t)^n |\epsilon_0| + C_R \Delta t^{p+1} \frac{1 - (1 + L\Delta t)^n}{1 - (1 + L\Delta t)} \end{aligned}$$

由 $(1 + L\Delta t)^n \le e^{nL\Delta t}$, 以及 $T - t_0 \ge t_n - t_0 = n\Delta t$, 可知

$$|\epsilon_n| \le e^{nL\Delta t} |\epsilon_0| + \Delta t^{p+1} C_R \frac{e^{nL\Delta t}}{L\Delta t}$$

$$\le e^{n(T-t_0)} |\epsilon_0| + \Delta t^p \frac{C_R}{L} e^{n(T-t_0)}$$