Graph Attention Network on Istella22 dataset

Simone Boldrini
Alessandro Carella

Index

- <u>Istella 22 Dataset</u>
- Paper results recreation
- Graph Attention Network
- GAN Extensions
- Results (TensorBoard)

Istella 22 Dataset

Purpose

- Bridge the gap between feature-based and text-based Learning-to-Rank (LtR) models.
- Enable fair evaluation of both techniques on the same dataset.

Key Features

- 8.4M Web Documents: Multi-lingual corpus with preprocessed fields (e.g., text, title, URL).
- Queries & Judgments:
 - 2,198 test queries with 5-grade human relevance judgments.
 - Separate training, validation, and test sets.
- 220 Hand-Crafted Features: Cover query, document, and query-document interactions.

Impact

- Advances hybrid ranking techniques.
- Fills gaps by uniting text and feature vectors in a single resource. Back to index

Paper results recreation

Lightgbm lambdamart

 We set the parameters to train the model to match the ones in the release model file and we achieved the same performances with a lower total number of trees.

Number of trees: 1514							
Model Performance							
metric							
MRR	0.972405						
MAP	0.889125						
P@1	0.955869						
P@5	0.724530						
P@10	0.460924						
R@100	0.993639						
R@1000	1.000000						
NDCG@5	0.783217						
NDCG@10	0.818759						
NDCG@20	0.828635						

Number of trees: 961						
Model Performance						
metric						
MRR	0.970008					
MAP	0.884904					
P@1	0.951774					
P@5	0.721436					
P@10	0.460333					
R@100	0.993072					
R@1000	1.000000					
NDCG@5	0.779751					
NDCG@10	0.814866					
NDCG@20	0.825039					

Graph Attention Network

- Key Features
 - Attention Mechanism:
 - Dynamically assigns weights to neighbors based on relevance for better feature aggregation.
 - Learnable Parameters:
 - Enhances representation by focusing on the most relevant nodes.
- Architecture
 - Nodes calculate attention scores for neighbors using multi-head attention.
 - Features are combined via weighted averaging.
- Advantages
 - Effectively handles diverse relationships.
 - Scalable for large graphs with sparse data.

Back to index

GAN Extensions

Permutation Equivariant Document Interaction Networ for Neural Learning-to-Rank

Ordinal Loss

Structured Label Representation: Converts relevance labels into binary vectors for finergrained learning.

Level-wise Predictions: Outputs separate relevance scores for each level.

Sigmoid Activation: Ensures smooth binary crossentropy loss computation.

Multilayer perceptron

Multilayer Perception (MLP) in attn-DIN to enhance the Learning-to-Rank task by combining querydocument features, given by the Istella 22 dataset, with contextual cross-document interactions derived from self-attention layers

Results (TensorBoard)

- Interactive scalars dashboard for metrics.
- Graphs of computational models.
- Tools for comparing multiple runs.
- Easy integration with TensorFlow workflows.

Results Comparison

Table 1: Comparison of NDCG³ between various ranking models on the Web30K and Istella datasets. \triangle/∇ indicate statistically significant increase/decrease of *attn-DIN* compared to best neural ranking baseline (p-value<0.05).

(a) WEB30K	NDCG@1	NDCG@5	NDCG@10
LambdaMART (RankLib) LambdaMART (lightGBM)	0.4535 0.5057	0.4459 0.4991	0.4646 0.5183
LambdaMART + DLCM [1] GSF(m=64) with Softmax loss [2] FFNN with E[ApproxNDCG] [3] SetRank with Softmax Loss [14]	0.4630 0.4421 0.4951 0.4904	0.4500 0.4446 0.4820 0.4885	0.4690 0.4677 0.4996 0.5101
attn-DIN with Softmax Loss	0.5005△	0.5014△	0.5218△
(b) Istella	NDCG@1	NDCG@5	NDCG@10
LambdaMART (RankLib) LambdaMART (lightGBM)	0.6571 0.7264	0.6118 0.6883	0.6591 0.7356
The state of the s			3 T. F. T. T. S. C. T.

Permutation Equivariant Document Interaction Network for Neural Learningto-Rank paper results

Table 4: Performance of baseline retrieval and re-ranking systems. Re-ranking systems operate over the initial ranked list from Istella, and include LtR, neural-reranking, and hybrid LtR-using-neural-reranking systems.

Method	Feats.	Neural Text	P@1	P@5	P@10	NDCG@10	NDCG@20	MRR	MAP
Retrieval									
BM25 (default)	-	1-1	0.4331	0.2939	0.2055	0.2280	0.2447	0.5439	0.3649
BM25 (tuned)	-	, _ ,	0.4339	0.2947	0.2055	0.3854	0.4207	0.5494	0.3686
DPH	-	>=×	0.4408	0.2868	0.2020	0.2281	0.2443	0.5479	0.3618
Re-Ranking									
λ-Mart	✓	-	0.9559	0.7245	0.4609	0.8188	0.8286	0.9724	0.8891
MONOT5-MSMARCO	-	Ttl+Txt	0.5568	0.3893	0.2699	0.2990	0.3157	0.6675	0.4889
MONOT5-mMARCO	-	Ttl+Txt	0.5868	0.4147	0.2829	0.3175	0.3338	0.6976	0.5203
MONOT5-tuned	-	Ttl+Txt	0.8407	0.5813	0.3792	0.4418	0.4482	0.9005	0.7262
MONOT5-tuned	-	Ttl+Url	0.8412	0.5990	0.3914	0.4402	0.4472	0.9025	0.7396
MONOT5-tuned	-	Ttl+Url+Txt	0.8581	0.5945	0.3910	0.4515	0.4586	0.9132	0.7462
λ-Mart _{monoT5}	✓	Ttl+Url	0.9550	0.7223	0.4597	0.8152	0.8258	0.9716	0.8859
λ -Mart _{monoT5}	✓	Ttl+Url+Txt	0.9509	0.7238	0.4602	0.8153	0.8258	0.9701	0.8849

The Istella22 Dataset: Bridging Traditional and Neural Learning to Rank Evaluation paper various methods results

Results Comparison

Table 1: Comparison of NDCG³ between various ranking models on the Web30K and Istella datasets. \triangle/∇ indicate statistically significant increase/decrease of *attn-DIN* compared to best neural ranking baseline (p-value<0.05).

(a) WEB30K	NDCG@1	NDCG@5	NDCG@10
LambdaMART (RankLib)	0.4535	0.4459	0.4646
LambdaMART (lightGBM)	0.5057	0.4991	0.5183
LambdaMART + DLCM [1]	0.4630	0.4500	0.4690
GSF(m=64) with Softmax loss [2]	0.4421	0.4446	0.4677
FFNN with E[ApproxNDCG] [3]	0.4951	0.4820	0.4996
SetRank with Softmax Loss [14]	0.4904	0.4885	0.5101
attn-DIN with Softmax Loss	0.5005△	0.5014^{\triangle}	0.5218△
(b) Istella	NDCG@1	NDCG@5	NDCG@10
LambdaMART (RankLib)	0.6571	0.6118	0.6591
LambdaMART (lightGBM)	0.7264	0.6883	0.7356
LambdaMART + DLCM [1]	0.6272	0.5848	0.6310
FFNN with Softmax Loss	0.6645	0.6422	0.6962
SetRank with Softmax Loss [14]	0.6702	0.6419	0.6958
attn-DIN with Softmax Loss	0.6747	0.6455△	0.6999△

Permutation Equivariant Document Interaction Network for Neural Learningto-Rank paper results

Table 4: Performance of baseline retrieval and re-ranking systems. Re-ranking systems operate over the initial ranked list from Istella, and include LtR, neural-reranking, and hybrid LtR-using-neural-reranking systems.

Method	Feats.	Neural Text	P@1	P@5	P@10	NDCG@10	NDCG@20	MRR	MAP
Retrieval									
BM25 (default)		-	0.4331	0.2939	0.2055	0.2280	0.2447	0.5439	0.3649
BM25 (tuned)	200	-	0.4339	0.2947	0.2055	0.3854	0.4207	0.5494	0.3686
DPH	(7)	-	0.4408	0.2868	0.2020	0.2281	0.2443	0.5479	0.3618
Re-Ranking									
λ-Mart	✓	-	0.9559	0.7245	0.4609	0.8188	0.8286	0.9724	0.8891
MONOT5-MSMARCO	-	Ttl+Txt	0.5568	0.3893	0.2699	0.2990	0.3157	0.6675	0.4889
MONOT5-mMARCO	-	Ttl+Txt	0.5868	0.4147	0.2829	0.3175	0.3338	0.6976	0.5203
MONOT5-tuned	-	Ttl+Txt	0.8407	0.5813	0.3792	0.4418	0.4482	0.9005	0.7262
MONOT5-tuned	-	Ttl+Url	0.8412	0.5990	0.3914	0.4402	0.4472	0.9025	0.7396
MONOT5-tuned	-	Ttl+Url+Txt	0.8581	0.5945	0.3910	0.4515	0.4586	0.9132	0.7462
λ -Mart _{monoT5}	1	Ttl+Url	0.9550	0.7223	0.4597	0.8152	0.8258	0.9716	0.8859
λ -Mart _{monoT5}	1	Ttl+Url+Txt	0.9509	0.7238	0.4602	0.8153	0.8258	0.9701	0.8849

The Istella22 Dataset: Bridging Traditional and Neural Learning to Rank Evaluation paper various methods results

Metric	Value	Metric	Value
P@1	0.919472	R@100	0.988753
P@5	0.669700	R@1000	1.000000
P@10	0.427389	RR	0.952130
nDCG(dcg='exp-log2')@5	0.727369	AP	0.830362
nDCG(dcg='exp-log2')@10	0.770694	Judged@10	1.000000
nDCG(dcg='exp-log2')@20	0.785701		

Our model results

Back to index