Deep Reinforcement Learning Hands-On

Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Second edition—Includes multilagent methods and advanced exploration techniques

Maxim Lapan

Packt>

Deep Reinforcement Learning Hands-On

Second Edition

Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Maxim Lapan

Deep Reinforcement Learning Hands-On

Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Jonathan Malysiak

Acquisition Editor - Peer Reviews: Suresh Jain

Content Development Editors: Joanne Lovell and Chris Nelson

Technical Editor: Saby D'silva **Project Editor:** Kishor Rit **Proofreader:** Safis Editing

Indexer: Rekha Nair

Presentation Designer: Sandip Tadge

First published: June 2018

Second edition: January 2020

Production reference: 1300120

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-83882-699-4

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

Why subscribe?

- Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
- Learn better with Skill Plans built especially for you
- Get a free eBook or video every month
- Fully searchable for easy access to vital information
- Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Contributors

About the authors

Maxim Lapan is a deep learning enthusiast and independent researcher. His background and 15 years' work expertise as a software developer and a systems architect covers everything from low-level Linux kernel driver development to performance optimization and the design of distributed applications working on thousands of servers. With extensive work experience in big data, machine learning, and large parallel distributed HPC and non-HPC systems, he has the ability to explain complicated things using simple words and vivid examples. His current areas of interest surround the practical applications of deep learning, such as deep natural language processing and deep reinforcement learning.

Maxim lives in Moscow, Russia, with his family.

I'd like to thank my family: my wife, Olga, and my children, Ksenia, Julia, and Fedor, for their patience and support. It was a challenging time writing this book and it wouldn't have been possible without you, so thanks! Julia and Fedor did a great job of gathering samples for MiniWoB (*Chapter 16*, *Web Navigation*) and testing the Connect 4 agent's playing skills (*Chapter 23*, *AlphaGo Zero*).

About the reviewers

Mikhail Yurushkin holds a PhD. His areas of research are high-performance computing and optimizing compiler development. Mikhail is a senior lecturer at SFEDU university, Rostov-on-Don, Russia. He teaches advanced deep learning courses on computer vision and NLP. Mikhail has worked for over eight years in cross-platform native C++ development, machine learning, and deep learning. He is an entrepreneur and founder of several technological start-ups, including BroutonLab – Data Science Company, which specializes in the development of AI-powered software products.

Per-Arne Andersen is a PhD student in deep reinforcement learning at the University of Agder, Norway. He has authored several technical papers on reinforcement learning for games and received the best student award from the British Computer Society for his research into model-based reinforcement learning. Per-Arne is also an expert on network security, having worked in the field since 2012. His current research interests include machine learning, deep learning, network security, and reinforcement learning.

Sergey Kolesnikov is an industrial and academic research engineer with over five years' experience in machine learning, deep learning, and reinforcement learning. He's currently working on industrial applications that deal with CV, NLP, and RecSys, and is involved in reinforcement learning academic research. He is also interested in sequential decision making and psychology. Sergey is a NeurIPS competition winner and an open source evangelist. He is also the creator of Catalyst – a high-level PyTorch ecosystem for accelerated deep learning/reinforcement learning research and development.

Table of Contents

Preface	xiii	
Chapter 1: What Is Reinforcement Learning?	1	
Supervised learning	2	
Unsupervised learning	2	
Reinforcement learning	3	
RL's complications	4	
RL formalisms	5	
Reward	6	
The agent	8	
The environment	9	
Actions	9	
Observations	9	
The theoretical foundations of RL	12	
Markov decision processes	12	
The Markov process	13	
Markov reward processes	17	
Adding actions	20 23	
Policy	23 24	
Summary		
Chapter 2: OpenAl Gym	25	
The anatomy of the agent	25	
Hardware and software requirements	28	
The OpenAl Gym API	30	
The action space	31	
The observation space	31	
The environment	33	
Creating an environment	35	
The CartPole session	37	

The random CartPole agent	40
Extra Gym functionality – wrappers and monitors	41
Wrappers	41
Monitor	45
Summary	48
Chapter 3: Deep Learning with PyTorch	49
Tensors	50
The creation of tensors	50
Scalar tensors	53
Tensor operations	53
GPU tensors	53
Gradients	55
Tensors and gradients	56
NN building blocks	59
Custom layers	61
The final glue – loss functions and optimizers	64
Loss functions	64
Optimizers	65
Monitoring with TensorBoard	67
TensorBoard 101	68
Plotting stuff	69
Example – GAN on Atari images	71
PyTorch Ignite	76
Ignite concepts	77
Summary	81
Chapter 4: The Cross-Entropy Method	83
The taxonomy of RL methods	84
The cross-entropy method in practice	85
The cross-entropy method on CartPole	87
The cross-entropy method on FrozenLake	96
The theoretical background of the cross-entropy method	104
Summary	106
Chapter 5: Tabular Learning and the Bellman Equation	107
Value, state, and optimality	107
The Bellman equation of optimality	110
The value of the action	112
The value iteration method	115
Value iteration in practice	117
Q-learning for FrozenLake	124
Summary	126
r :: 1	
[ii]	

Chapter 6: Deep Q-Networks	127
Real-life value iteration	127
Tabular Q-learning	129
Deep Q-learning	134
Interaction with the environment	135
SGD optimization	136
Correlation between steps	137
The Markov property	137
The final form of DQN training	138
DQN on Pong	139
Wrappers	140
The DQN model	145
Training	147
Running and performance	156
Your model in action	159
Things to try	161
Summary	162
Chapter 7: Higher-Level RL Libraries	163
Why RL libraries?	163
The PTAN library	164
Action selectors	166
The agent	167
DQNAgent	169
PolicyAgent	170
Experience source	171
Toy environment	172
The ExperienceSource class ExperienceSourceFirstLast	173 176
Experience replay buffers	177
The TargetNet class	179
Ignite helpers	181
The PTAN CartPole solver	182
Other RL libraries	184
Summary	185
-	
Chapter 8: DQN Extensions	187
Basic DQN	188
Common library	188
Implementation	193
Results	195
N-step DQN	197
Implementation	199

Results	200
Double DQN	201
Implementation	202
Results	204
Noisy networks	205
Implementation	206
Results	208
Prioritized replay buffer	210
Implementation	211
Results	215
Dueling DQN	216
Implementation	218
Results	219
Categorical DQN	220
Implementation	223
Results	229
Combining everything	232
Results	232
Summary	234
References	235
Chapter 9: Ways to Speed up RL	237
Why speed matters	237
The baseline	240
The computation graph in PyTorch	242
Several environments	245
Play and train in separate processes	247
Tweaking wrappers	252
Benchmark summary	257
Going hardcore: CuLE	257
Summary	258
References	258
Chapter 10: Stocks Trading Using RL	259
Trading	259
Data	260
Problem statements and key decisions	261
The trading environment	263
Models	271
Training code	273
Results	273
The feed-forward model	273

Table of Co	ontents
-------------	---------

The convolution model	280
Things to try	281
Summary	282
Chapter 11: Policy Gradients – an Alternative	283
Values and policy	283
Why the policy?	284
Policy representation	285
Policy gradients	286
The REINFORCE method	286
The CartPole example	288
Results	291
Policy-based versus value-based methods	293
REINFORCE issues	294
Full episodes are required	294
High gradients variance	295
Exploration	295
Correlation between samples	296
Policy gradient methods on CartPole	296
Implementation	296
Results	300
Policy gradient methods on Pong	304
Implementation	305
Results	306
Summary	308
Chapter 12: The Actor-Critic Method	309
Variance reduction	309
CartPole variance	311
Actor-critic	315
A2C on Pong	317
A2C on Pong results	323
Tuning hyperparameters	327
Learning rate	327
Entropy beta	328
Count of environments	328
Batch size	329
Summary	329
Chapter 13: Asynchronous Advantage Actor-Critic	331
Correlation and sample efficiency	331
Adding an extra A to A2C	333
Multiprocessing in Python	336
[v]	

A3C with data parallelism	336
Implementation	336
Results	343
A3C with gradients parallelism	344
Implementation	345
Results	350
Summary	352
Chapter 14: Training Chatbots with RL	353
An overview of chatbots	353
Chatbot training	354
The deep NLP basics	356
RNNs	356
Word embedding	358
The Encoder-Decoder architecture	359
Seq2seq training	360
Log-likelihood training	360
The bilingual evaluation understudy (BLEU) score	362
RL in seq2seq	363
Self-critical sequence training	364
Chatbot example	365
The example structure	366
Modules: cornell.py and data.py	367
BLEU score and utils.py	368
Model	369
Dataset exploration	376
Training: cross-entropy	378
Implementation	378
Results	383
Training: SCST	385
Implementation	386
Results	393
Models tested on data	396
Telegram bot	398
Summary	402
Chapter 15: The TextWorld Environment	403
Interactive fiction	403
The environment	407
Installation	407
Game generation	408
Observation and action spaces	410

Extra game information	412
Baseline DQN	415
Observation preprocessing	417
Embeddings and encoders	422
The DQN model and the agent	425
Training code	427
Training results	428
The command generation model	433
Implementation	435
Pretraining results	440
DQN training code	442
The result of DQN training	443
Summary	445
Chapter 16: Web Navigation	447
Web navigation	447
Browser automation and RL	448
The MiniWoB benchmark	449
OpenAl Universe	451
Installation	452
Actions and observations	453
Environment creation	454
MiniWoB stability	456
The simple clicking approach	456
Grid actions	457
Example overview	459
The model	459
The training code	460
Starting containers	465
The training process	467
Checking the learned policy	470
Issues with simple clicking	471
Human demonstrations	473
Recording the demonstrations	474
The recording format	477
Training using demonstrations	480
Results	481
The tic-tac-toe problem	486
Adding text descriptions	489
Implementation	490
Results	495

Things to try	498
Summary	499
Chapter 17: Continuous Action Space	501
Why a continuous space?	501
The action space	502
Environments	503
The A2C method	505
Implementation	506
Results	510
Using models and recording videos	512
Deterministic policy gradients	512
Exploration	514
Implementation	515
Results	520
Recording videos	522
Distributional policy gradients	522
Architecture	523
Implementation	524
Results	528
Video recordings	530
Things to try	530
Summary	530
Chapter 18: RL in Robotics	531
Robots and robotics	531
Robot complexities	534
The hardware overview	535
The platform	536
The sensors	537
The actuators	539
The frame	540
The first training objective	544
The emulator and the model	546
The model definition file	548
The robot class	552
DDPG training and results	558
Controlling the hardware	561
MicroPython	561
Dealing with sensors	565
The I ² C bus Sensor initialization and reading	566 569
Sensor initialization and reading Sensor classes and timer reading	573
255. Sacaso and annot roading	0,0