

Course Code: CSA0821	Course Name: Python Programming f	from Fundamentals
Branch: CSE	Slot: D	Date: 01/03/2024

Session 1: 8.00AM to 9.30AM

		Session 1: 8.00AW to 9.50AW	
Q. No.	Question		
	Given an array of	of integer nums and an integer target, return indices of the two numbers such that they	
	add up to the ta	arget. You may assume that each input would have exactly one solution, and you may	
	not use the same	e element twice. You can return the answer in any order.	
1	Test Case 1:	Input: nums = $[2,7,11,15]$, target = 9	
		Output: [0,1]	
	Test Case 2:	Input: nums = $[3,2,4]$, target = 6	
		Output: [1,2]	
	Given an integer	x, return true if x is a palindrome and false otherwise.	
	Test Case 1:	Input: $x = 121$	
2		Output: true	
	Test Case 2:	Input: -121	
		Output: false	
	Write a function	to find the longest common prefix string amongst an array of strings. If there is no	
	common prefix,	return an empty string "".	
0	Test Case 1:	Input: strs = ["flower", "flow", "flight"]	
3		Output: "fl"	
	Test Case 2:	Input: $strs = ["dog", "racecar", "car"]$	
		Output: ""	
	Given a string s	containing just the characters '(', ')', '', '', '[' and ']', determine if the input string is	
	valid. An input	string is valid if: Open brackets must be closed by the same type of brackets. Open	
	brackets must be	e closed in the correct order. Every close bracket has a corresponding open bracket of	
4	the same type.		
4	Test Case 1:	Input: $s = "()[]"$	
		Output: true	
	Test Case 2:	Input: s = "(]"	
		Output: false	
	You are given the	ne two sorted lists, list 1 and list 2. Merge the two lists into one sorted list. The list	
	should be made	by splicing together the elements of the first two lists. Return the merged list.	
5	Test Case 1:	Input: $list1 = [1,2,4], list2 = [1,3,4]$	
0		Output: [1,1,2,3,4,4]	
	Test Case 2:	Input: $list1 = [], list2 = [0]$	
		Output: [0]	
	Given an integer	array of nums and an integer value, remove all occurrences of val in nums in place. The	
	order of the elem	nents may be changed. Then, return the number of elements in nums that are not equal	
	to value. Consid	er the number of elements in nums which are not equal to val be k, to get accepted, you	
	need to do the fe	ollowing things: Change the array nums such that the first k elements of nums contain	
6	the elements wh	ich are not equal to val. The remaining elements of nums are not essential, nor is the	
	size of nums. Re	turn k.	
	Test Case 1:	Input: nums = $[3,2,2,3]$, val = 3	
		Output: 2, nums = $[2,2,-,-]$	
	Test Case 2:	Input: nums = $[0,1,2,2,3,0,4,2]$, val = 2	
		Output: 5, nums = $[0,1,3,0,4,-,-,-]$	

Session 2: 11.00AM to 12.30PM

Q. No.	Question	
	Given two strings, needle and haystack, return the index of the first occurrence of needle in a haystack	
7	or -1 if the needle	e is not part of the haystack.
	Test Case 1:	Input: haystack = "sadbutsad", needle = "sad"
		Output: 0
	Test Case 2:	Input: haystack = "leetcode", needle = "leeto"
		Output: -1
	Given a sorted a	rray of distinct integers and a target value, return the index if the target is found. If
	not, return the ir	ndex where it would be if inserted in order. You must write an algorithm with O(log n)
	runtime complex	ity.
8	Test Case 1:	Input: nums = $[1,3,5,6]$, target = 5
		Output: 2
	Test Case 2:	Input: nums = $[1,3,5,6]$, target = 2
		Output: 1
	Given a string s	consisting of words and spaces, return the length of the last word in the string. A word
	is a maximal sub	string consisting of non-space characters only.
9	Test Case 1:	Input: s = "Hello World"
		Output: 5
	Test Case 2:	Input: s = "fly me to the moon"
		Output: 4
	You are given a l	arge integer represented as an integer array of digits, where each digit [i] is the ith digit
	of the integer. The	he digits are ordered from most significant to least significant in left-to-right order. The
	large integer does	s not contain any leading 0s. Increment the large integer by one and return the resulting
10	array of digits.	
	Test Case 1:	Input: digits = $[1,2,3]$
		Output: [1,2,4]
	Test Case 2:	Input: digits = $[4,3,2,1]$
		Output: [4,3,2,2]
		strings a and b, return their sum as a binary string.
	Test Case 1:	Input: a = "11", b = "1"
11		Output: "100"
	Test Case 2:	Input: a = "1010", b = "1011"
	0	Output: "10101"
	_	ative integer x, return the square root of x rounded down to the nearest integer. The
	returned integer should be non-negative as well. It would help if you did not use any built-in exponent	
12	function or opera	
	Test Case 1:	Input: $x = 4$
	m . c	Output: 2
	Test Case 2:	Input: $x = 8$
		Output: 2

Discussion: NumPy Package.

Session 4: 2.00PM to 3.00PM

Set: 1

Q. No.	Question		
	You are climbing	a staircase. It takes n steps to reach the top. Each time, you can climb either 1 or 2	
	steps. In how many distinct ways can you rise to the top?		
1	Test Case 1:	Input: $n = 3$	
1		Output: 3	
	Test Case 2:	Input: n =5	
		Output: 8	
	Given an integer	numRows, return the first numRows of Pascal's triangle. In Pascal's triangle, each	
	number is the sur	m of the two numbers directly above it	
2	Test Case 1:	Input: $numRows = 5$	
2		Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]	
	Test Case 2:	Input: $numRows = 1$	
		Output: [[1]]	
	Given a non-empty array of integers nums, every element appears twice except for one. Find that single		
	one. You must implement a solution with a linear runtime complexity and use only constant extra space.		
3	Test Case 1:	Input: nums = $[2,2,1]$	
		Output: 1	
	Test Case 2:	Input: nums = $[4,1,2,1,2]$	
		Output: 4	
	Given an array nums containing n distinct numbers in the range [0, n], return the only number in the		
	range that is missing from the array.		
4	Test Case 1:	Input: nums = $[3,0,1]$	
		Output: 2	
	Test Case 2:	Input: nums = $[9,6,4,2,3,5,7,0,1]$	
		Output: 8	

Set: 2

Q. No.	Question		
	Given the head of	f a sorted list, delete all duplicates so each element appears only once. Return the linked	
	list sorted as well	l.	
1	Test Case 1:	Input: head = $[1,1,2]$	
1		Output: [1,2]	
	Test Case 2:	Input: head = $[1,1,2,3,3]$	
		Output: [1,2,3]	
	You are given an	array of prices where prices[i] is the price of a given stock on the ith day. You want to	
	maximize your p	rofit by choosing a single day to buy one stock and a different day to sell that stock in	
	the future. Retur	on the maximum profit you can achieve from this transaction. If you cannot accomplish	
2	any profit, return 0.		
2	Test Case 1:	Input: prices = $[7,1,5,3,6,4]$	
		Output: 5	
	Test Case 2:	Input: [7,6,4,3,1]	
		Output: 0	

Q. No.	Question	
	Write a function	that takes the binary representation of an unsigned integer and returns the number of
	'1' bits it has (als	so known as the Hamming weight).
9	Test Case 1:	Input: n = 0000000000000000000000000000000000
3		Output: 3
	Test Case 2:	Input: n = 0000000000000000000000000000000000
		Output: 1
	Given an integer array nums, move all 0's to the end of it while maintaining the relative order of the	
	non-zero elements	s. Note that you must do this in-place without making a copy of the array.
4	Test Case 1:	Input: nums = $[0,1,0,3,12]$
$\begin{vmatrix} 4 \end{vmatrix}$		Output: [1,3,12,0,0]
	Test Case 2:	Input: $nums = [0]$
		Output: [0]

Set: 3

Q. No.	Question		
	You are given tw	to integer arrays, nums1, and nums2, sorted in non-decreasing order, and two integers,	
	m, and n, repres	senting the number of elements in nums1 and nums2, respectively. Merge nums1 and	
	nums2 into a sing	gle array, num1 sorted in non-decreasing order.	
1	Test Case 1:	Input: nums1 = $[1,2,3,0,0,0]$, m = 3, nums2 = $[2,5,6]$, n = 3	
		Output: [1,2,2,3,5,6]	
	Test Case 2:	Input: $nums1 = [1], m = 1, nums2 = [], n = 0$	
		Output: [1]	
	A phrase is a pal	indrome if it reads the same forward and backward after converting all uppercase letters	
	into lowercase le	tters and removing all non-alphanumeric characters. Alphanumeric characters include	
	letters and numb	ers. Given a string s, return true if it is a palindrome or false otherwise.	
2	Test Case 1:	Input: s = "A man, a plan, a canal: Panama"	
		Output: true	
	Test Case 2:	Input: $s = \text{"race a car"}$	
		Output: false	
	Given an integer	n, return an array ans of length $n+1$ such that for each i $(0 \neq i \neq n)$, ans[i] is the	
	number of 1's in	the binary representation of i.	
9	Test Case 1:	Input: $n=2$	
3		Output: [0,1,1]	
	Test Case 2:	Input: $n = 5$	
		Output: $[0,1,1,2,1,2]$	
	Given a pattern and a string s, find if s follows the same pattern. Here follow means a full match, such		
	that there is a bijection between a letter in pattern and a non-empty word in s.		
4	Test Case 1:	Input: pattern = "abba", s = "dog cat cat dog"	
		Output: true	
	Test Case 2:	Input: pattern = "abba", s = "dog cat cat fish"	
		Output: false	

Assignment

Q. No.	Question		
	Given an integer n, return true if it is a power of three. Otherwise, return false. An integer n is		
	of three if an inte	eger x exists such that $n == 3x$.	
1	Test Case 1:	Input: $n = 27$	
		Output: true	
	Test Case 2:	Input: $n = 0$	
ı		Output: false	
	Given an integer	n, return true if it is a power of four. Otherwise, return false. An integer n is a power	
	of four, if an inte	eger x exists such that $n == 4x$.	
2	Test Case 1:	Input: $n = 16$	
2		Output: true	
	Test Case 2:	Input: $n = 5$	
		Output: false	
	Write a function	that reverses a string. The input string is given as an array of characters s. You must	
	modify the input	array in place with $O(1)$ extra memory.	
3	Test Case 1:	Input: s = ["h","e","l","o"]	
0		Output: ["o","l","l","e","h"]	
	Test Case 2:	Input: s = ["H","a","n","n","a","h"]	
		Output: ["h","a","n","n","a","H"]	
	Given a string s, reverse only all the vowels in the string and return it. The vowels are 'a', 'e', 'i', 'o',		
	and 'u', and they	can appear in lower and upper cases, more than once.	
4	Test Case 1:	Input: s = "hello"	
1		Output: "holle"	
	Test Case 2:	Input: s = "leetcode"	
		Output: "leotcede"	
		er arrays nums1 and nums2, return an array of their intersection. Each element in the	
		nique and you may return the result in any order.	
5	Test Case 1:		
		Output: [2]	
	Test Case 2:	Input: $nums1 = [4,9,5], nums2 = [9,4,9,8,4]$	
		Output: [9,4]	
	_	integer num, return true if num is a perfect square or false otherwise. A perfect square	
	_	is the square of an integer. In other words, it is the product of some integer with itself.	
6	Test Case 1:	Input: $num = 16$	
		Output: true	
	Test Case 2:	Input: num = 14	
		Output: false	