Entropic Risk Optimization in Discounted MDPs

Mohammad Ghavamzadeh

Amazon

joint work with Jia Lin Hau & Marek Petrik at UNH Erick Delage at HEC Montreal

Preliminaries

MDP with ERM Objective

MDP with EVaR Objective

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDP

Preliminaries

MDPs & Risk-neutral MDPs Risk Measures & Risk-averse MDPs

MDP with ERM Objective
Value Function, DP Formulation, Policy Class
Algorithms for ERM-MDP (finite & infinite horizon)

MDP with EVaR Objective Relation to ERM-MDP Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDF

Preliminaries

MDPs & Risk-neutral MDPs

Markov Decision Process

MDP:
$$\langle \mathcal{S}, \mathcal{A}, r, p, s_0, \gamma \rangle$$

- lacktriangleright $\mathcal S$ and $\mathcal A$: state and action spaces with cardinality S and A
- $ightharpoonup r: \mathcal{S} imes \mathcal{A} o \mathbb{R}$: reward function (Δ_r : range of reward)
- $p: \mathcal{S} \times \mathcal{A} \to \Delta^S$: transition probability (dynamics)
- ▶ $s_0 \in S$: initial state
- $ightharpoonup \gamma \in (0,1]$: discount factor

$T \in \mathbb{N}^+ \cup \{\infty\}$: fixed horizon of control

▶ $T < \infty$: finite-horizon MDP

(usually
$$\gamma = 1$$
)

 $ightharpoonup T=\infty$: infinite-horizon MDP

$$\gamma \in (0,1)$$

 Π_{MR}

Markov Decision Process

Policy:

- $lacktriangledown \pi = \{\pi_t\}_{t=0}^{T-1}, \ \pi_t : \mathcal{S} o \Delta^A \colon$ Markovian randomized policy
- lacktriangledown π_t 's are all equal: stationary randomized policy Π_{SR}
- $ightharpoonup \Pi_{MD}$ and Π_{SD} : their deterministic counterparts

Return: random variable (RV) of the return of a policy π after T steps

$$\mathfrak{R}_T^{\pi} := \mathfrak{R}_{0:T}^{\pi}(s_0)$$

$$\mathfrak{R}_{t:T}^{\pi}(s) = \sum_{\tau=t}^{T-1} \gamma^{\tau-t} \cdot \overbrace{r(S_{\tau}, A_{\tau})}^{R_{\tau}^{\pi}} \mid S_{t} = s$$

Risk-neutral MDP

Objective: maximize the *expectation* of the return RV \mathfrak{R}_T^{π}

$$\max_{\boldsymbol{\pi}} \; \mathbb{E}\left[\mathfrak{R}_T^{\boldsymbol{\pi}}\right]$$

- optimal policy in *finite horizon* setting is in Π_{MD}
- ightharpoonup optimal policy in *infinite horizon discounted* setting is in Π_{SD}

Risk-neutral MDP

Value Function:

$$v^{\pi} = (v_t^{\pi})_{t=0}^{T-1}$$

$$v_t^{\pi}(s) = \mathbb{E}\left[\Re_{t:T}^{\pi}(s)\right], \qquad A \sim \pi(\cdot|s), \quad S' \sim p(\cdot|s, A), \quad v_T^{\pi}(s) = 0$$

value function of π :

$$v_t^{\pi}(s) = \mathbb{E}\left[r(s, A) + \gamma \cdot v_{t+1}^{\pi}(S')\right]$$

optimal value function:

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \mathbb{E}\left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(S')\right]$$

Preliminaries

Risk Measures & Risk-averse MDPs

Risk Measure

Risk Measure: $\psi: \mathbb{X} \to \mathbb{R}$

X is the space of random variables (RVs)

Coherent Risk Measure:

$$X_1 \le X_2 \ (a.s.) \Longrightarrow \psi[X_1] \le \psi[X_2], \ \forall X_1, X_2 \in \mathbb{X}$$

$$\psi[c+X] = c + \psi[X], \ \forall c \in \mathbb{R}, \ \forall X \in \mathbb{X}$$

$$\psi[X_1 + X_2] > \psi[X_1] + \psi[X_2], \ \forall X_1, X_2 \in \mathbb{X}$$

$$\psi[cX] = c\psi[X], \ \forall c \in \mathbb{R}_+, \ \forall X \in \mathbb{X}$$

Convex Risk Measure:

satisfies A1 and A2 — replaces A3 and A4 with

- A5. (a) Convexity
 - (b) Concavity

$$\psi[cX_1 + (1-c)X_2] \ge c\psi[X_1] + (1-c)\psi[X_2], \ \forall c \in [0,1]$$

• every coherent risk measure is convex but not the other way around

Value-at-Risk: with confidence level α

$$VaR_{\alpha}[X] = \inf_{x \in \mathbb{R}} \{F_X(x) > 1 - \alpha\} = F_X^{-1}(1 - \alpha), \quad \alpha \in [0, 1)$$

 $(1-\alpha)$ -quantile of X or the worst $(1-\alpha)$ -fraction of X

Value-at-Risk: with confidence level α

$$\operatorname{VaR}_{\alpha}[X] = \inf_{x \in \mathbb{R}} \left\{ F_X(x) > 1 - \alpha \right\} = F_X^{-1}(1 - \alpha), \quad \alpha \in [0, 1)$$

$$(1 - \alpha) \text{-quantile of } X \quad \textit{or} \quad \text{the worst } (1 - \alpha) \text{-fraction of } X$$

Conditional Value-at-Risk: expectation of the worst $(1 - \alpha)$ -fraction of X

$$\operatorname{CVaR}_{\alpha}[X] = \inf_{\zeta \in \mathbb{R}} \left(\zeta - \frac{1}{1 - \alpha} \cdot \mathbb{E}[(\zeta - X)_{+}] \right), \quad \alpha \in [0, 1)$$

- $ightharpoonup \mathrm{CVaR}_{\alpha}$ is a *coherent* risk measure
- $ightharpoonup ext{CVaR}_0[X] = \mathbb{E}[X]$

Entropic Risk Measure: with risk parameter $\beta > 0$

$$\operatorname{ERM}_{\beta}[X] = -\frac{1}{\beta} \log \left(\mathbb{E}[e^{-\beta X}] \right)$$

Properties of ERM:

- 1. $\lim_{\beta \to 0} \operatorname{ERM}_{\beta}[X] = \mathbb{E}[X]$ $\lim_{\beta \to \infty} \operatorname{ERM}_{\beta}[X] = \operatorname{ess\,inf}[X]$
- 2. $\operatorname{ERM}_{\beta}[X] = \mathbb{E}[X] \frac{\beta}{2}\operatorname{var}[X] + o(\beta)$ for Gaussian $\operatorname{ERM}_{\beta}[X] = \mathbb{E}[X] \frac{\beta}{2}\operatorname{var}[X]$
- 3. $\operatorname{ERM}_{\beta}[cX] \neq c \operatorname{ERM}_{\beta}[X]$ (not coherent but concave)
- 4. $\operatorname{ERM}_{\beta}[X_1] = \operatorname{ERM}_{\beta}\left[\operatorname{ERM}_{\beta}[X_1 \mid X_2]\right]$ (*Tower Property*)

Entropic Value-at-Risk: with confidence level $\alpha \in [0, 1)$

$$EVaR_{\alpha}[X] = \sup_{\beta > 0} \left(ERM_{\beta}[X] + \frac{\log(1 - \alpha)}{\beta} \right)$$

Properties of EVaR:

- 1. $\text{EVaR}_0[X] = \mathbb{E}[X]$ $\lim_{\alpha \to 1} \text{EVaR}_{\alpha}[X] = \text{ess inf}[X]$
- $2. \ \ EVaR_{\alpha}[X] \leq CVaR_{\alpha}[X] \leq VaR_{\alpha}[X] \qquad \text{(tightest possible lower-bound for CVaR)}$
- 3. a coherent risk measure

Risk-averse MDP

Objective: maximize the *risk measure* ψ of the return RV \mathfrak{R}_T^{π}

$$\max_{\pi} \ \psi \left[\mathfrak{R}_{T}^{\pi} \right]$$

- replacing $\mathbb{E}[\cdot]$ in *risk-neutral* with risk measure $\psi[\cdot]$
- ightharpoonup risk measure ψ is applied to the *aleatory* uncertainty over \mathfrak{R}_T^{π}

Nested Risk Measures

Nested CVaR:
$$nCVaR_{\alpha}[\mathfrak{R}_{T}^{\pi}] = CVaR_{\alpha}\left[R_{0}^{\pi} + \gamma CVaR_{\alpha}\left[R_{1}^{\pi} + \dots\right]\right]$$

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \text{CVaR}_{\alpha} \left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(S') \right]$$

Nested Risk Measures

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \text{CVaR}_{\alpha} \left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(S') \right]$$

- ▶ (+) favorable computational properties
- ▶ (-) poor approximation of static risk measures

Properties of Concave Risk Measures

Risk measure	Tower Property	Positive Homogeneity
E, Min	/	✓
ERM	✓	X
CVaR	×	✓
EVaR	×	✓
Nested CVaR	/	✓

Preliminaries

MDPs & Risk-neutral MDPs

Risk Measures & Risk-averse MDPs

MDP with ERM Objective
Value Function, DP Formulation, Policy Class
Algorithms for ERM-MDP (finite & infinite horizon)

MDP with EVaR Objective Relation to ERM-MDP Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDF

MDP with ERM Objective

Discounted MDP with ERM Objective

ERM-MDP

Objective: maximize

$$\max_{\pi \in \Pi_{HR}} \operatorname{ERM}_{\beta} \left[\mathfrak{R}_{T}^{\pi} \right] \tag{1}$$

optimal policy

$$\pi^* = (\pi^*)_{t=0}^{T-1}$$

ERM-MDP

Objective: maximize

$$\max_{\pi \in \Pi_{HR}} \operatorname{ERM}_{\beta} \left[\mathfrak{R}_{T}^{\pi} \right] \tag{1}$$

$$\pi^{\star} = (\pi^{\star})_{t=0}^{T-1}$$

optimal policy

$$\begin{aligned} \operatorname{ERM}_{\beta}[\mathfrak{R}_{2}^{\pi}] &= \operatorname{ERM}_{\beta}\left[r(S_{0}, a) + \gamma \cdot r(S_{1}, a)\right] \\ &= \operatorname{ERM}_{\beta}\left[r(S_{0}, a) + \operatorname{ERM}_{\beta}[\gamma \cdot r(S_{1}, a) \mid S_{0}]\right] \\ &\neq \operatorname{ERM}_{\beta}\left[r(S_{0}, a) + \gamma \cdot \operatorname{ERM}_{\beta}[r(S_{1}, a) \mid S_{0}]\right] \\ &= \operatorname{ERM}_{\beta}\left[r(S_{0}, a) + \gamma \cdot v_{1}(S_{1})\right] \end{aligned}$$

ERM is **not** positively homogeneous $ERM_{\beta}[c \cdot X] \neq c \cdot ERM_{\beta}[X]$

MDP with ERM Objective

Value Function, DP Formulation, Policy Class

Value Function for ERM-MDP

Theorem (Positive Quasi-homogeneity)

Let $X \in \mathbb{X}$ be a random variable. Then, for any constant $c \geq 0$, we have

$$\operatorname{ERM}_{\beta}[c \cdot X] = c \cdot \operatorname{ERM}_{\beta \cdot c}[X]$$

Value Function: for a policy π is the collection

$$v^{\pi} = (v_t^{\pi})_{t=0}^T, \quad v_t^{\pi} : \mathcal{S} \to \mathbb{R}$$

$$v_{t}^{\pi}(s) = \operatorname{ERM}_{\beta \cdot \gamma^{t}} \left[\sum_{t'=t}^{T} \gamma^{t'-t} \cdot R_{t'}^{\pi} \mid S_{t} = s \right]$$

$$= \operatorname{ERM}_{\beta \cdot \gamma^{t}} \left[\mathfrak{R}_{t:T}^{\pi}(s) \right], \qquad \forall s \in \mathcal{S}$$
(2)

$$v_T^{\pi}(s) = 0, \quad \forall s \in \mathcal{S}$$
, $v_0^{\pi}(s_0) = \text{ERM}_{\beta}[\mathfrak{R}_T^{\pi}]$

Note: $\lim_{t\to\infty} \mathrm{ERM}_{\beta,\gamma^t}[\cdot] = \mathbb{E}[\cdot]$

Optimal Value Function for ERM-MDP

Optimal Value Function: $v^\star = (v_t^\star)_{t=0}^T$ VF of an optimal policy π^\star

$$v^* = v^{\pi^*}$$

$$v_t^{\star}(s) = \max_{\pi \in \Pi_{\text{MP}}^{t:T}} \text{ERM}_{\beta \cdot \gamma^t} \left[\Re_{t:T}^{\pi}(s) \right], \qquad \forall s \in \mathcal{S}$$

Bellman Equations for ERM-MDP

Theorem (Bellman Equations)

For any policy $\pi \in \Pi_{MR}$, its value function $v^{\pi} = (v_t^{\pi})_{t=0}^T$ defined in (2) is the unique solution to the following system of equations

$$v_t^{\pi}(s) = \text{ERM}_{\beta \cdot \gamma^t} \left[r(s, A) + \gamma \cdot v_{t+1}^{\pi}(S') \right], \quad \forall s \in \mathcal{S} ,$$

where $A \sim \pi_t(\cdot|s)$, $S' \sim p(\cdot|s,A)$, and $v_T^{\pi}(s) = 0$.

Moreover, the optimal value function $v^* = (v_t^*)_{t=0}^T$ is the unique solution to

$$v_t^{\star}(s) = \max_{a \in \mathcal{A}} \text{ ERM}_{\beta \cdot \gamma^t} \left[r(s, a) + \gamma \cdot v_{t+1}^{\star}(S') \right]. \tag{3}$$

Optimal Policy of ERM-MDP

ERM-MDP has a Markovian *deterministic* optimal policy

Theorem (Optimal Policy)

There exists a **deterministic** time-dependent optimal policy $\pi^{\star} = (\pi_t^{\star})_{t=0}^{T-1} \in \Pi_{MD}$ for (1), which is greedy w.r.t. the optimal value function v^* in (3), i.e.,

$$\pi_t^{\star}(s) \in \underset{a \in \mathcal{A}}{\arg\max} \ \mathrm{ERM}_{\beta \cdot \gamma^t} \left[r(s,a) + \gamma \cdot v_{t+1}^{\star}(S') \right], \quad \forall s \in \mathcal{S}, \ S' \sim p(\cdot|s,a) \; . \tag{4}$$

MDP with ERM Objective

Algorithms for ERM-MDP (finite & infinite horizon)

Optimizing ERM-MDP (finite horizon)

Algorithm (VI for finite-horizon ERM-MDP)

Input: Horizon $T < \infty$, risk level $\beta > 0$, terminal value $v_T(s), \ \forall s \in \mathcal{S}$ **Output:** Optimal value $(v_t^{\star})_{t=0}^T$ and policy $(\pi_t^{\star})_{t=0}^{T-1}$

Initialize $v_T^{\star}(s) \leftarrow v'(s), \ \forall s \in \mathcal{S}$

for t = T - 1, ..., 0 do Update v_t^{\star} using (3) and π_t^{\star} using (4)

Return v^{\star}, π^{\star}

Algorithm (VI for infinite-horizon ERM-MDP)

Input: Planning horizon $T' < \infty$, risk level $\beta > 0$ Output: policy $\hat{\pi}^* = (\hat{\pi}_t^*)_{t=0}^{\infty}$ and value $\hat{v}^* = (\hat{v}_t^*)_{t=0}^{\infty}$

Compute $(v_\infty^\star, \pi_\infty^\star)$ solution to the risk-neutral ∞ -horizon discounted MDP

Compute $(\tilde{v}_t^\star)_{t=0}^{T'}$ and $(\tilde{\pi}_t^\star)_{t=0}^{T'-1}$ using (3) and (4) with horizon T' and $\tilde{v}_{T'}^\star = v_\infty^\star$

Construct a policy $\hat{\pi}^\star = (\hat{\pi}_t^\star)_{t=0}^\infty$, where $\hat{\pi}_t^\star = \begin{cases} \tilde{\pi}_t^\star & \text{if } t < T', \\ \pi_\infty^\star & \text{otherwise} \end{cases}$

Construct \hat{v}^{\star} analogously to $\hat{\pi}^{\star}$

Return $\hat{\pi}^{\star}, \hat{v}^{\star}$

 $\lim_{t\to\infty} \mathrm{ERM}_{\beta,\gamma^t}[\cdot] = \mathbb{E}[\cdot]$ (risk-neutral)

Optimizing ERM-MDP (infinite horizon)

Theorem (sub-optimality of $\hat{\pi}^*$)

The performance loss of the policy $\hat{\pi}^*$ is bounded as

$$\operatorname{ERM}_{\beta} \left[\mathfrak{R}_{\infty}^{\pi^{\star}} \right] - \operatorname{ERM}_{\beta} \left[\mathfrak{R}_{\infty}^{\hat{\pi}^{\star}} \right] \leq c \cdot \gamma^{2T'},$$

where π^* is the optimal ERM-MDP policy and $c = \beta \cdot \Delta_r^2 / 8 (1 - \gamma)^2$.

truncating at horizon T' and following with an arbitrary policy thereafter, the performance loss decreases proportionally to $\gamma^{T'}$

Optimizing ERM-MDP (infinite horizon)

Theorem (sub-optimality of $\hat{\pi}^*$)

The performance loss of the policy $\hat{\pi}^*$ is bounded as

$$\operatorname{ERM}_{\beta} \left[\mathfrak{R}_{\infty}^{\pi^{\star}} \right] - \operatorname{ERM}_{\beta} \left[\mathfrak{R}_{\infty}^{\hat{\pi}^{\star}} \right] \leq c \cdot \gamma^{2T'},$$

where π^* is the optimal ERM-MDP policy and $c = \beta \cdot \Delta_r^2 / 8 (1 - \gamma)^2$.

truncating at horizon T' and following with an arbitrary policy thereafter, the performance loss decreases proportionally to $\gamma^{T'}$

Algorithm runs in $O(S^2A\log(1/\delta))$ time to compute a δ -optimal policy

Preliminaries

MDPs & Risk-neutral MDPs

Risk Measures & Risk-averse MDP

MDP with ERM Objective
Value Function, DP Formulation, Policy Class
Algorithms for ERM-MDP (finite & infinite horizon)

MDP with EVaR Objective Relation to ERM-MDP Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDP

Discounted MDP with EVaR Objective

EVaR-MDP

Objective: maximize

$$\max_{\pi \in \Pi_{MR}} \text{EVaR}_{\alpha}[\mathfrak{R}_T^{\pi}]$$

EVaR Properties

- (+) coherent
- (+) interpretable

$$\mathrm{EVaR}_\alpha[X] \leq \mathrm{CVaR}_\alpha[X] \leq \mathrm{VaR}_\alpha[X]$$

- (+) its confidence level α is readily comparable to that of VaR and CVaR
- (-) no Tower Property

Preliminaries

MDP with ERM Objective

MDP with EVaR Objective Relation to ERM-MDP

Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDF

Reducing EVaR-MDP to ERM-MDP

EVaR: with confidence level $\alpha \in [0,1)$

$$EVaR_{\alpha}[X] = \sup_{\beta > 0} \left(ERM_{\beta}[X] + \frac{\log(1 - \alpha)}{\beta} \right)$$

EVaR-MDP Objective: maximize

$$\max_{\pi \in \Pi_{MR}} \ \mathbf{EVaR}_{\alpha}[\mathfrak{R}_{T}^{\pi}] \ = \sup_{\beta > 0} \ \max_{\pi \in \Pi_{MR}} \left(\mathrm{ERM}_{\beta}[\mathfrak{R}_{T}^{\pi}] + \frac{\log(1 - \alpha)}{\beta} \right) \tag{5}$$

Reducing EVaR-MDP to ERM-MDP

EVaR: with confidence level $\alpha \in [0,1)$

$$EVaR_{\alpha}[X] = \sup_{\beta > 0} \left(ERM_{\beta}[X] + \frac{\log(1 - \alpha)}{\beta} \right)$$

EVaR-MDP Objective: maximize

$$\max_{\pi \in \Pi_{MR}} \frac{\text{EVaR}_{\alpha}[\mathfrak{R}_{T}^{\pi}]}{\text{EVaR}_{\alpha}[\mathfrak{R}_{T}^{\pi}]} = \sup_{\beta > 0} \max_{\pi \in \Pi_{MR}} \left(\text{ERM}_{\beta}[\mathfrak{R}_{T}^{\pi}] + \frac{\log(1 - \alpha)}{\beta} \right)$$
 (5)

Theorem

Let π^* be an optimal solution to EVaR-MDP (5). Then, there exists a risk-level β^* such that π^* is optimal for ERM-MDP with $\beta = \beta^*$.

Reducing EVaR-MDP to ERM-MDP

EVaR: with confidence level $\alpha \in [0,1)$

$$EVaR_{\alpha}[X] = \sup_{\beta > 0} \left(ERM_{\beta}[X] + \frac{\log(1 - \alpha)}{\beta} \right)$$

EVaR-MDP Objective: maximize

$$\max_{\pi \in \Pi_{MR}} \frac{\text{EVaR}_{\alpha}[\mathfrak{R}_T^{\pi}]}{\text{EVaR}_{\alpha}[\mathfrak{R}_T^{\pi}]} = \sup_{\beta > 0} \max_{\pi \in \Pi_{MR}} \left(\text{ERM}_{\beta}[\mathfrak{R}_T^{\pi}] + \frac{\log(1 - \alpha)}{\beta} \right)$$
 (5)

Theorem

Let π^* be an optimal solution to EVaR-MDP (5). Then, there exists a risk-level β^* such that π^* is optimal for ERM-MDP with $\beta = \beta^*$.

Corollary

There exists an optimal Markov deterministic policy for EVaR-MDP.

Outline

Preliminaries

MDP with ERM Objective

MDP with EVaR Objective Relation to ERM-MDP

Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDF

Optimizing EVaR-MDP

Objective: maximize

$$\max_{\pi \in \Pi_{MR}} \ \mathrm{EVaR}_{\alpha}[\mathfrak{R}_T^{\pi}] \ = \sup_{\beta > 0} \ \max_{\pi \in \Pi_{MR}} \left(\mathrm{ERM}_{\beta}[\mathfrak{R}_T^{\pi}] + \frac{\log(1 - \alpha)}{\beta} \right)$$

• Unlike the EVaR objective, the one with max over π is not *concave*

Algorithm

Input: Discretized risk-levels $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_K > 0$

Output: EVaR-MDP optimal policy $\hat{\pi}^*$

for k = 1, ..., K do

Compute $v^{(k)}$ and $\pi^{(k)}$ by solving ERM-MDP at risk-level β_k

Let
$$k^\star \leftarrow \arg\max_{k=1:K} \ v_0^{(k)}(s_0) + \frac{\log(1-\alpha)}{\beta_k}$$

Return $\hat{\pi}^{\star} = \pi^{(k^{\star})}$

Theorem (sub-optimality of $\hat{\pi}^*$)

Given the error tolerance $\delta > 0$ and the discretization

$$\beta_1 = \frac{8\delta(1-\gamma)^2}{\Delta_r^2}, \qquad \beta_{k+1} = \beta_k \cdot \frac{\log(1-\alpha)}{\beta_k \delta + \log(1-\alpha)}, \qquad \beta_K \geq \frac{-\log(1-\alpha)}{\delta},$$

algorithm runs in $\mathcal{O}\left(S^2A\left(\frac{\log(1/\delta)}{\delta}\right)^2\right)$ time and returns a policy $\hat{\pi}^\star$, whose performance loss is bounded as

$$\mathrm{EVaR}_{\alpha}[\mathfrak{R}_{\infty}^{\pi^{\star}}] - \mathrm{EVaR}_{\alpha}[\mathfrak{R}_{\infty}^{\hat{\pi}^{\star}}] \leq \delta.$$

- solving ERM-MDP computes VF for multiple risk levels $\beta, \beta\gamma, \beta\gamma^2, \dots$
- a branch-and-bound algorithm

Outline

Preliminaries

MDPs & Risk-neutral MDPs

Risk Measures & Risk-averse MDP

MDP with ERM Objective
Value Function, DP Formulation, Policy Class
Algorithms for ERM-MDP (finite & infinite horizon)

MDP with EVaR Objective Relation to ERM-MDP Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDF

Experimental Setup

Setup

 $\begin{array}{lll} \bullet & \mbox{Optimization Criterion:} & E\mathrm{VaR}_{0.9}[\mathfrak{R}^\pi_{100}], & \alpha=0.9, & T=100 \\ \bullet & \mbox{Our Algorithm:} & E\mathrm{VaR-MDP Algo} \end{array}$

Evaluation: 100,000 episodes of \mathfrak{R}_T^{π}

Ablation Study

- **naive grid:** uniform grid over β_k such that $\beta_1=0$ and $\beta_K=10$
- naive level: optimized grid doesn't adjust risk-level with time in ERM-MDP

Baselines Computing Markov Policies

- risk-neutral MDP
- ► nested CVaR_{0.9} (Bauerle and Glauner, 2022)
- nested EVaR_{0.9} (Ahmadi et al. 2021)
- \triangleright ERM_{0.5}

Baseline Computing History-dependent Policies

▶ augmented CVaR_{0.9} (Chow et al., 2015)

EVaR Results

 $\mathrm{EVaR}_{0.9}[\mathfrak{R}_T^\pi]$ for π returned by each method

Method	MR	GR	INV1	INV2	RS
Our Algo	-6.73	5.34	67.4	189	303
Naive grid	-6.87	5.37	43.2	189	303
Naive level	-10.00	4.17	64.6	188	217
Risk neutral	-6.53	2.29	40.6	186	300
Nested CVaR	-10.00	-0.02	-0.0	132	217
Nested EVaR	-10.00	4.61	-0.0	164	217
ERM	-6.72	5.19	50.7	178	217
Nested ERM	-10.00	4.76	24.9	150	217
Augmented CVaR	-7.06	3.64	49.0	82	93

bold: results within a 95% confidence interval of the best policy

- machine replacement (MR) (Delage and Mannor, 2010)
- gamblers ruin (GR) (Bauerle and Ott, 2011; Li et al., 2022)
- two classic inventory management problems (INV1) and (INV2) (Ho et al., 2021)
- river-swim (RS) (Strehl and Littman, 2008)

CVaR Results

 $\text{CVaR}_{0.9}[\mathfrak{R}_T^{\pi}]$ for π returned by each method

Method	MR	GR	INV1	INV2	RS
Our Algo Naive grid	-4.62 -4.63	7.87 7.91	76.6 47.8	195 195	382 381
Naive level	-10.00	7.41	73.1	194	217
Risk neutral	-4.56	5.47	52.3	193	379
Nested CVaR	-10.00	0.00	0.0	135	217
Nested EVaR	-10.00	7.12	0.0	169	217
ERM	-4.58	7.64	56.0	182	217
Nested ERM	-10.00	7.27	28.3	153	217
Augmented CVaR	-4.83	8.27	55.1	82	101

bold: results within a 95% confidence interval of the best policy

Run-Time Results

Run-time for the algorithms in second

Method	MR	GR	INV1	INV2	RS
Our Algo	2.70	6.35	1.14	0.96	3.87
Naive grid	2.64	6.30	1.05	0.88	3.81
Naive level	2.79	6.38	1.19	0.92	3.95
Risk neutral	0.00	0.00	0.18	0.20	0.00
Nested CVaR	0.01	0.01	0.26	0.16	0.01
Nested EVaR	0.01	0.03	0.66	0.06	0.01
ERM	0.00	0.00	0.24	0.16	0.00
Nested ERM	0.01	0.01	0.10	0.02	0.01
Augmented CVaR	14.8	29.01	780	120	22.9

Summary

► ERM-MDP:

first exact DP formulation for ERM in discounted MDPs showed optimal VF exists – optimal policy is time-dependent and deterministic proposed a VI algorithm (exact in finite-horizon – approximate in infinite-horizon)

EVaR-MDP:

- (approximately) optimized it by reducing it to multiple ERM-MDPs
- empirical results highlighting the utility of our EVaR-MDP algorithm

Outline

Preliminaries

MDPs & Risk-neutral MDPs

Risk Measures & Risk-averse MDP

MDP with ERM Objective

Value Function, DP Formulation, Policy Class

Algorithms for ERM-MDP (finite & infinite horizon)

MDP with EVaR Objective Relation to ERM-MDP Algorithm for EVaR-MDP

Numerical Evaluation

Risk-Averse Soft-Robust (RASR) MDP

Risk-averse MDP

Objective: maximize the *risk measure* ψ of the return RV \mathfrak{R}_T^{π}

$$\max_{\pi} \ \psi \left[\mathfrak{R}_{T}^{\pi} \right]$$

- lacktriangledown replacing $\mathbb{E}[\cdot]$ in *risk-neutral* with risk measure $\psi[\cdot]$
- lacktriangleright risk measure ψ is applied to the *aleatory* uncertainty over \mathfrak{R}^π_T

Soft-robust MDP

Objective: maximize the *risk measure* ψ of the RV $\mathbb{E}[\mathfrak{R}_T^{\pi} \mid P]$

$$\max_{\pi} \ \mathbf{\psi}_{P \sim f} \Big[\mathbb{E} \big[\mathfrak{R}_{T}^{\pi} \mid P \big] \Big]$$

optimization is

- **risk-averse** to the *epistemic* uncertainty in P (uses $\psi_{P \sim f}[\cdot]$)
- **risk-neutral** to the *aleatory* uncertainty in $\mathfrak{R}_T^{\pi} \mid P$ (uses $\mathbb{E}[\cdot]$)

dynamic vs. static model of uncertainty

• we use the *dynamic* model (easier to optimize) $P = (P_t)_{t=0}^{T-1}, P_t \sim f_t$

Risk-Averse Soft-Robust (RASR) MDP

Objective: maximize two risk measures

$$\max_{\pi} \ \psi_{P \sim f} \Big[\psi \big[\mathfrak{R}_{T}^{\pi} \mid P \big] \Big]$$

over the *epistemic* uncertainty in P and *aleatory* uncertainty in $\mathfrak{R}^\pi_T \mid P$

Risk-Averse Soft-Robust (RASR) MDP

Objective: maximize two risk measures

$$\max_{\pi} \ \mathbf{\psi}_{P \sim f} \Big[\psi \big[\mathfrak{R}_{T}^{\pi} \mid P \big] \Big]$$

over the *epistemic* uncertainty in P and *aleatory* uncertainty in $\mathfrak{R}_T^{\pi} \mid P$

RASR-ERM objective is equivalent to a risk-averse RL problem with \bar{P}

Corollary

For any policy $\pi \in \Pi_{MR}$, we have

$$\underbrace{\mathrm{ERM}_{\beta}\left[\, \mathrm{ERM}_{\beta}[\mathfrak{R}^{\pi}_{T} \mid P] \right]}_{\text{RASR-ERM objective}} \, = \, \underbrace{\mathrm{ERM}_{\beta}\left[\mathfrak{R}^{\pi}_{T} \mid \bar{P} \right]}_{\text{RASR-ERM objective}}.$$

risk-averse RL

Thank you!!

Mohammad Ghavamzadeh

ghavamza@amazon.com OR mohammad.ghavamzadeh51@gmail.com