

Введение и мотивация

і Определение

Пусть V,W — векторные пространства. Отображение $\varphi:V\to W$ называется линейным, если $1.\ \varphi(\mathbf{u}+\mathbf{v})=\varphi(\mathbf{u})+\varphi(\mathbf{v})$ для всех $\mathbf{u},\mathbf{v}\in V$

Свойства 1 и 2 вместе иногда объединяют в одно:

$$\varphi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \varphi(\mathbf{u}) + \beta \varphi(\mathbf{v}), \quad \forall \mathbf{u}, \mathbf{v} \in V, \quad \forall \alpha, \beta \in \mathbb{R}.$$

$$\mathcal{O}$$
 $\mathcal{L}\mathcal{T} = \mathcal{L}$; $\mathcal{V}(\mathcal{L})$
 $\mathcal{V}(\mathcal{O}) \cdot \mathcal{L} = \mathcal{V}(\mathcal{L}\mathcal{O})$

і Определение

Пусть V,W — векторные пространства. Отображение $\varphi:V \to W$ называется линейным, если

1. $\varphi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{u}) + \varphi(\mathbf{v})$ для всех $\mathbf{u}, \mathbf{v} \in V$

Свойства 1 и 2 вместе иногда объединяют в одно:

2. $\varphi(\alpha \mathbf{v}) = \alpha \varphi(\mathbf{v})$ для всех $\mathbf{v} \in V$ и всех скаляров $\alpha \in \mathbb{R}$.

$$\varphi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \varphi(\mathbf{u}) + \beta \varphi(\mathbf{v}), \quad \forall \mathbf{u}, \mathbf{v} \in V, \quad \forall \alpha, \beta \in \mathbb{R}.$$

і Определение

Пусть V, W — векторные пространства. Отображение arphi: V o W называется линейным, если

- 1. $\varphi(\mathbf{u} + \mathbf{v}) = \varphi(\mathbf{u}) + \varphi(\mathbf{v})$ для всех $\mathbf{u}, \mathbf{v} \in V$
- 2. $\varphi(\alpha \mathbf{v}) = \alpha \varphi(\mathbf{v})$ для всех $\mathbf{v} \in V$ и всех скаляров $\alpha \in \mathbb{R}$.

Свойства 1 и 2 вместе иногда объединяют в одно:

$$\varphi(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha \varphi(\mathbf{u}) + \beta \varphi(\mathbf{v}), \quad \forall \mathbf{u}, \mathbf{v} \in V, \quad \forall \alpha, \beta \in \mathbb{R}.$$

Аналитическое представление отображения
$$\varphi\begin{pmatrix} \chi_l \\ \chi_z \end{pmatrix} = \begin{pmatrix} \chi \chi_l \\ \chi_z \end{pmatrix}$$

$$|R^{2}|$$

$$|R^{$$

Предположим, что $\varphi: V \to W$, векторы v_1v_2 образуют базис в V, а векторы ω_1, ω_2 образуют базис в W.

Мы хотим исследовать, как
$$arphi$$
 действует на произвольный $x \in V.$

$$\begin{array}{c} \text{CB-Ba} \\ \text{AUH. } \text{ } \text{IP.} \end{array} \qquad \begin{array}{c} \varphi(x) = \varphi(x_1v_1 + x_2v_2), \\ \varphi(x) = \varphi(x_1v_1 + x_2v_2) = x_1\varphi(v_1) + x_2\varphi(v_2). \\ \text{EW} \end{array}$$

Помните, что $\varphi(v_1)$, $\varphi(v_2)$ — это векторы, т.е. абстрактные элементы векторного пространства W.

Матричное представление линейного отображения

Давайте посмотрим на них в базисе W:

$$\varphi(\mathfrak{d}_{1}) \in \mathbb{W}$$

$$\varphi(v_{1}) = a_{11}\omega_{1} + a_{21}\omega_{2},$$

$$\varphi(v_{2}) = a_{12}\omega_{1} + a_{22}\omega_{2}$$

$$\varphi(v_{2}) = a_{12}\omega_{1} + a_{22}\omega_{2}$$

$$\varphi(v_{3}) = a_{12}\omega_{1} + a_{22}\omega_{2}$$
 Теперь вернемся к $\varphi(x) = x_{1}\varphi(v_{1}) + x_{2}\varphi(v_{2}).$

$$\varphi(x) = x_1 (a_{11}\omega_1 + a_{21}\omega_2) + x_2 (a_{12}\omega_1 + a_{22}\omega_2) =$$

$$\Rightarrow = \underbrace{(\alpha_1 \chi_1 + \alpha_{12} \chi_2) \cdot \omega_1}_{V_1} + \underbrace{(\alpha_{21} \chi_1 + \alpha_{22} \chi_2) \cdot \omega_2}_{V_2}$$

Матричное представление линейного отображения

Умножение матрицы на вектор... снова...

Наконец:

Wow!

$$\begin{aligned} \left[\varphi(\mathbf{x}_{2}) \right]_{\mathbf{c}} & \left[\varphi(\mathbf{x}_{2}) \right]_{\mathbf{c}} \\ \left[\varphi(\mathbf{x}) \right]_{\mathbf{c}} & \left[\varphi(\mathbf{x}_{2}) \right]_{\mathbf{c}} \\ \left[\varphi(\mathbf{x}) \right]_{\mathbf{c}} & \left[\left[\varphi(\mathbf{x}_{2}) \right]_{\mathbf{c}} \right] & \left[\left[x_{2} \right]_{\mathbf{c}} \right] \\ \left[\varphi(\mathbf{x}) \right]_{\mathbf{c}} & \left[\left[\varphi(\mathbf{x}_{2}) \right]_{\mathbf{c}} \right] & \left[\mathbf{x}_{2} \right]_{\mathbf{c}} \end{aligned}$$