

Exercises 7: Interaction and Concurrency

Luís Soares Barbosa

Exercício 1

Mostre que

true
$$\stackrel{\mathrm{abv}}{=} \nu X \,.\, X$$
 e false $\stackrel{\mathrm{abv}}{=} \mu X \,.\, X$

Exercício 2

Considere o seguinte sistema de transição de estados Determine que conjuntos $S\subseteq\{s,s_1,s_2\}$ são solução das seguintes

equações em $\mathcal{P}\mathbb{P}$:

$$\begin{split} \|X\| &= \langle a \rangle \operatorname{true} \vee [b] \, X \\ \|X\| &= \langle a \rangle \operatorname{true} \vee ([b] \, X \wedge \langle b \rangle \operatorname{true}) \end{split}$$

Exercício 3

Calcule $\|[b]$ false \wedge [a] $X\|(\{q2\})$ relativamente ao seguinte sistema de transição:

Exercício 4

Mostre que a função $\|.\|$ é monótona. Discuta o efeito de introduzir negação na lógica sobre a monotonia de $\|.\|$ (com a óbvia extensão a formulas $\neg \phi$).

Exercício 5

Um sistema de segurança residencial é suposto fazer soar um alarme (acção modelada por alm) logo que detecta a presença de um intruso (situação modelada por int).

- 1. Será que a fórmula [int] ($\langle alm \rangle$ true $\land [-alm]$ false) representa adequadamente essa propriedade comportamental?
- 2. Caso pense que não, represente-a correctamente.

Exercício 6

Formule em μ -calculus a propriedade seguinte sobre o comportamento de uma máquina de venda automática de bebidas: O depósito de uma ou duas fichas conduz à aquisição de um café ou um chá.

Exercício 7

Uma propriedade importante em sistemas que controlam linhas de montagem indutriais é a garantia de que

 $\phi = sempre que uma situação de erro grave ocorre, o sistema pára.$

Note, porém, que, regra geral, não pára instantaneamente: por exemplo, pode ser necessário que, antes de parar, o sistema desligue certos circuitos, active indicadores luminosos num painel, etc.

- 1. Supondo que a acção erro modela a ocorrência de um erro grave, codifique a propriedade ϕ em μ -calculus.
- 2. Recorde a classificação das propriedades modais e temporais. Em que classe incluiría ϕ ? Justifique.

Exercício 8

Suponha que num processo que especifica o comportamento de uma máquina de azar a acção ganha(x) modela o facto do jogador ganhar uma quantia de x moedas. Alguém sugeriu que o processo deveria satisfazer uma das seguintes propriedades:

$$\begin{array}{lll} \phi_1 & = & \nu X \,.\, (\mu Y \,.\, (\langle ganha(1000)\rangle \, {\rm true} \, \vee \langle -\rangle \, Y) \wedge [-] \, X) \\ \phi_2 & = & \nu X \,.\, (\mu Y \,.\, \langle -\rangle \, Y) \vee \langle ganha(1000)\rangle \, X \end{array}$$

Alguém, porém, argumentou que ϕ_1 e ϕ_2 eram equivalentes.

- 1. Explique o significado destas propriedades e discuta se serão ou não equivalentes.
- 2. Recorde a classificação das propriedades modais e temporais. Em que classe incluiría ϕ_1 ? E ϕ_2 ? Justifique.