Lista 7

Zadanie 1

1 Zadanie

Jaki będzie czas działania procedury BFS, jeśli graf wejściowy jest reprezentowany przez macierz sąsiedztwa, a algorytm jest zmodyfikowany w taki sposób, żeby działał poprawnie dla tej reprezentacji?

2 Rozwiązanie

Mamy graf G=(V,E) gdzie V to zbiór wierzchołków, a E to zbiór krawędzi. Załóżmy, że |V|=n. Reprezentujemy G przy pomocy macierzy sąsiedztwa, gdzie indeksy kolumn i wierszy odpowiadają indeksom wierzchołków V. Czyli dla każdej krawędzi $(u,v) \in E$ mamy $G_M[\operatorname{index}(u)][\operatorname{index}(v)] = 1$, a pozostałe wartości tej macierzy to zera. Oczywiście musimy określić funkcję index : $V \xrightarrow[1-1]{n} [0,n]$ określająca reprezentacje wierzchołka jako unikalnej liczby naturalnej.

Procedura BFS na początku przyporządkowuje odległości od wierzchołka startowego s do wszystkich wierzchołków w grafie jako ∞ (oprócz s któremu daje 0). Niniejsze odległości algorytm może zapisywać np. do tablicy "dist" długości n z zachowaniem indeksów wierzchołków z macierzy G_M . W ten sam sposób mogą zostać przechowywane wskaźniki na "poprzednie" wierzchołki, taką tablicę nazwiemy "prev" przy czym prev[index(s)] = index(s).

W tej zmodyfikowanej procedurze BFS kolejka Q oczywiście przechowywałaby indeksy aktualnie rozważanych wierzchołków. Wówczas inicjacja tej kolejki również podlega zmianie: $Q \leftarrow [\mathrm{index}(s)]$.

W środku pętli która działa dopóki Q nie jest puste zawarta jest następna pętla for która przegląda wszystkie krawędzie z aktualnie rozważanego wierzchołka u do wierzchołków incydentalnych z nim. Niniejsza pętla musi rozważyć cały wiersz $G_M[\mathrm{index}(u)]$. Algorytm przegląda cały wiersz w poszukiwaniu 1, które oznaczają krawędź między u a innym wierzchołkiem. Czyli przegląda listę długości n. Co daje nam złożoność obliczeniową równą O(n). Zakładając, że graf G jest spójny to główna pętla, która dzieli graf na "warstwy", również wykona się n razy. Co daje nam całkowitą złożoność algorytmu równą $O(n^2)$, jako że wcześniej wspomniana pętla for jest zagnieżdżona w pętli while |Q| > 0.