Representation Theory of Finite Groups - Assignment 6

Matteo Durante, s2303760, Leiden University

20th May 2019

Exercise 11.3

Proof. (a) Let H be the subset of elements of G which act as scalar on V, that is $\rho(g) = \lambda_g \operatorname{Id}_V$ for some $\lambda_q \in \mathbb{C}$.

Clearly, for any $g \in H$, $\rho(g^{-1}) = (\lambda_g \operatorname{Id}_V)^{-1} = \lambda_g^{-1} \operatorname{Id}_V = \lambda_{g^{-1}} \operatorname{Id}_V$ with $\lambda_{g^{-1}} = \lambda_g^{-1}$, hence $g^{-1} \in H$. Also, for any $h \in H$, $\rho(gh^{-1}) = \rho(g)\rho(h^{-1}) = \lambda_g \operatorname{Id}_V \cdot \lambda_{h^{-1}} \operatorname{Id}_V = (\lambda_g \lambda_{h^{-1}}) \operatorname{Id}_V = \lambda_{gh^{-1}} \operatorname{Id}_V$ with $\lambda_{gh^{-1}} = \lambda_g \lambda_{h^{-1}}$. It follows that $gh^{-1} \in H$, hence $H \leq G$.

Let now $x \in G$. We have that $\rho(xgx^{-1}) = \rho(x)\rho(g)\rho(x)^{-1} = \rho(x) \cdot \lambda_g \operatorname{Id}_V \cdot \rho(x)^{-1} = \lambda_g \cdot \rho(x)\rho(x)^{-1} = \lambda_g \operatorname{Id}_V$, hence $xgx^{-1} \in H$ and therefore $H \subseteq G$.

Proof. (b) If (V, ρ) is a one-dimensional irreducible representation, then $\mathrm{Aut}_{\mathbb{C}}(V) = \mathbb{C}^{\times}$ and therefore $\rho(g) = \lambda_g$ for any $g \in G$.

On the other hand, assume that (V, ρ) is an irreducible representation s.t. $\rho(g) = \lambda_q \operatorname{Id}_V$ for all $g \in G$. We may then find a 1-dimensional subrepresentation by considering an element $0 \neq v \in V$ and the \mathbb{C} -subvector space $\mathcal{L}(v)$ it generates. Since our representation is irreducible, this implies that $V = \mathcal{L}(v)$.

Exercise 11.6

Proof. (a) By construction, M > 0. Also, since χ is an irreducible character, we have that:

$$\begin{split} 1 &= \langle \chi, \chi \rangle \\ &= \frac{1}{\#G} \sum_{g \in G} \chi(g) \overline{\chi(g)} \\ &= \frac{1}{\#G} \sum_{g \in G} |\chi(g)|^2 \\ &= \frac{|\chi(1)|^2 + (\#G - 1)M}{\#G} \end{split}$$

It follows that $M = \frac{\#G - |\chi(1)|^2}{\#G - 1}$. Since $\chi(1) = \dim_{\mathbb{C}}(V) > 1$, it follows that $\#G - |\chi(1)|^2 < \#G - 1$ and therefore M < 1. Finally, |M| < 1.

Proof. (b) First of all, $|P| = \sqrt{PP}$ and we know that $PP = \prod_{g \in G \setminus \{1\}} \chi(g) \cdot \overline{\prod_{g \in G \setminus \{1\}} \chi(g)} = 1$ $\Pi_{g \in G \setminus \{1\}} |\chi(g)|^2$. This gives $|P| = \sqrt{PP} \le \sqrt{M^{\#G-1}} < 1$ by applying the inequality between the arithmetic and the geometric means. Notice that this holds for any irreducible \mathbb{C} -representation with dimension at least 2.

We also see that, after picking a basis which makes $\rho(g) \in GL(n, \mathbb{K})$ for all $g \in G$, for any $\sigma \in Gal(\mathbb{K}/\mathbb{Q})$ we have $\sigma(P) = \prod_{g \in G \setminus \{1\}} \sigma(\chi(g))$ and $\sigma(\chi(g)) = \sigma(\text{Tr}(\rho(g))) = \text{Tr}(\sigma(\rho(g)))$, where by $\sigma(\rho(g))$ we mean the matrix we get by applying σ to every entry of $\rho(g)$.

Let now $\phi(g) := \sigma(\rho(g))$. We will prove that ϕ is again an irreducible representation of dimension > 1, s.t. we may apply our earlier result to $P' = \prod_{g \in G \setminus \{1\}} \psi(g)$, ψ the associated irreducible character, and get the thesis. By construction, ψ will be $\sigma \circ \chi$.

First of all, for any $g, h \in G$ we have $\phi(gh) = \sigma(\rho(gh)) = \sigma(\rho(g)\rho(h)) = \sigma(\rho(g))\sigma(\rho(h)) = \phi(g)\phi(h)$, hence ϕ is indeed a representation.

To show that ψ is irreducible character it is sufficient to prove that $\langle \psi, \psi \rangle = 1$, for this is the sum of the n_i , where n_i denotes the multiplicity the *i*th irreducible representation in the decomposition. We see that:

$$\begin{split} \langle \psi, \psi \rangle &= \frac{1}{\#G} \sum_{g \in G} \psi(g) \overline{\psi(g)} \\ &= \frac{1}{\#G} \sum_{g \in G} \psi(g) \psi(g^{-1}) \\ &= \frac{1}{\#G} \sum_{g \in G} \sigma(\chi(g)) \sigma(\chi(g^{-1})) \\ &= \sigma(\frac{1}{\#G} \sum_{g \in G} \chi(g) \chi(g^{-1})) \\ &= \sigma(\frac{1}{\#G} \sum_{g \in G} \chi(g) \overline{\chi(g)}) \\ &= \sigma(\langle \chi, \chi \rangle) \\ &= \sigma(1) \\ &= 1 \end{split}$$

Also, the representation has trivially the same dimension as the one given by ρ , hence it is > 2.

Proof. (c) We know that P is an algebraic integer of \mathbb{K}/\mathbb{Q} as it is the product of algebraic integers of \mathbb{K}/\mathbb{Q} . Also, by the definition of norm of P in \mathbb{K}/\mathbb{Q} , we have that $|P|_{\mathbb{K}/\mathbb{Q}} = \Pi_{\sigma \in Gal(\mathbb{K}/\mathbb{Q})}\sigma(P) \in \mathbb{Q}$ is again an algebraic integer. Since $-1 < |P|_{\mathbb{K}/\mathbb{Q}} < 1$ and the algebraic integers of \mathbb{K}/\mathbb{Q} in \mathbb{Q} are the integers, we have that $|P|_{\mathbb{K}/\mathbb{Q}} = 0$, hence $\sigma(\chi(g)) = 0$ for some $g \in G$, $\sigma \in Gal(\mathbb{K}/\mathbb{Q})$. However, this means that $\chi(g) = 0$ to begin with.

Exercise 12.7

Proof. Suppose that $f \in X(G)$. Then, being U the \mathbb{C} -vector space associated to this character, we have that $\langle f, \chi_W \rangle = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[G]}(U, \operatorname{Ind}_H^G V) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}[H]}(\operatorname{Res}_H^G U, V) = \langle f|_H, \chi_V \rangle$ by [1, thm. 10.17] and Frobenius reciprocity.

Suppose that $f = \sum_{\chi \in X(G)} a_{\chi} \chi$. Then, by linearity of the inner product, we have that $\langle f, \chi_W \rangle_G = \sum_{\chi \in X(G)} a_{\chi} \langle \chi, \chi_W \rangle_G = \sum_{\chi \in X(G)} a_{\chi} \langle \chi|_H, \chi_V \rangle_H = \langle f|_H, \chi_V \rangle_H$.

Exercise 12.11

Proof. There are three irreducible \mathbb{C} -representations of S_3 , that is the trivial one, the sign one (which are 1-dimensional) and a 2-dimensional one. Remember their characters.

To find the decomposition of the irreducible S_4 -representation $Ind_{S_3}^{S_4}V_3$ we will try to write its character as a linear combination of the elements of $X(S_4)$ by making use of the result from ex. 12.7.

First, we write down the table of the restrictions of the elements of $X(S_4)$ to S_3 . We will denote the associated \mathbb{C} -vector spaces by W_i :

Conjugacy class	Id_{S_4}	$(1\ 2)$	$(1\ 2\ 3)$
Cardinality	1	3	2
$\chi_{W_1} _{S_3}$	1	1	1
$\chi_{W_2} _{S_3}$	1	-1	1
$\chi_{W_3} _{S_3}$	3	1	0
$\chi_{W_4} _{S_3}$	3	-1	0
$\chi_{W_5} _{S_3}$	2	0	-1

We then get the following:

$$\begin{split} &\langle \chi_{W_1}, \chi_{Ind_{S_3}^{S_4}V_2} \rangle_{S_4} = \langle \chi_{W_1}|_{S_3}, \chi_{V_2} \rangle_{S_3} = \frac{1}{6}(2+0-2) = 0 \\ &\langle \chi_{W_2}, \chi_{Ind_{S_3}^{S_4}V_2} \rangle_{S_4} = \langle \chi_{W_2}|_{S_3}, \chi_{V_2} \rangle_{S_3} = \frac{1}{6}(2+0-2) = 0 \\ &\langle \chi_{W_3}, \chi_{Ind_{S_3}^{S_4}V_2} \rangle_{S_4} = \langle \chi_{W_3}|_{S_3}, \chi_{V_2} \rangle_{S_3} = \frac{1}{6}(6+0+0) = 1 \\ &\langle \chi_{W_4}, \chi_{Ind_{S_3}^{S_4}V_2} \rangle_{S_4} = \langle \chi_{W_4}|_{S_3}, \chi_{V_2} \rangle_{S_3} = \frac{1}{6}(6+0+0) = 1 \\ &\langle \chi_{W_5}, \chi_{Ind_{S_3}^{S_4}V_2} \rangle_{S_4} = \langle \chi_{W_5}|_{S_3}, \chi_{V_2} \rangle_{S_3} = \frac{1}{6}(4+0+2) = 1 \end{split}$$

This implies that $Ind_{S_3}^{S_4}V_2=W_3\oplus W_4\oplus W_5$, where W_3 is the 2-dimensional \mathbb{C} -representation and W_4 , W_5 the 3-dimensional ones.

References

[1] Dalla Torre Gabriele. Representation Theory. 2010.