Decision Tree for Play Tennis

Md. Abdullah Al KafiLecturer, Department Of CSEDaffodil International University

September 12, 2024

1 Problem Overview

We have the following dataset for determining whether to play tennis based on weather conditions and temperature:

Sample	Weather	Temperature	Play Tennis
1	Sunny	Hot	No
2	Sunny	Hot	No
3	Overcast	Hot	Yes
4	Rainy	Mild	Yes
5	Rainy	Cool	Yes
6	Rainy	Cool	No
7	Overcast	Cool	Yes
8	Sunny	Mild	No
9	Sunny	Cool	Yes
10	Rainy	Mild	Yes

Table 1: Dataset

2 Step 1: Calculate Entropy for the Target Variable

We calculate the entropy for the target variable $Play\ Tennis$. The distribution is:

$$Yes = 6$$
, $No = 4$

The formula for entropy is:

Entropy(S) =
$$-\left(\frac{6}{10}\log_2\frac{6}{10} + \frac{4}{10}\log_2\frac{4}{10}\right)$$

Entropy(S) =
$$-(0.6 \log_2 0.6 + 0.4 \log_2 0.4) = 0.971$$

3 Step 2: Calculate Information Gain for Features

3.1 Information Gain for Weather

We split the dataset based on weather conditions: Sunny, Overcast, and Rainy. For Sunny:

• Yes = 1, No = 3

Entropy(Sunny) =
$$-\left(\frac{1}{4}\log_2\frac{1}{4} + \frac{3}{4}\log_2\frac{3}{4}\right) = 0.811$$

For Overcast:

• Yes = 2, No = 0 (Pure subset)

$$Entropy(Overcast) = 0$$

For Rainy:

• Yes = 3, No = 1

Entropy(Rainy) =
$$-\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) = 0.811$$

Weighted Average Entropy for Weather:

Entropy(Weather) =
$$\frac{4}{10} \times 0.811 + \frac{2}{10} \times 0 + \frac{4}{10} \times 0.811 = 0.648$$

Information Gain for Weather:

$$Gain(Weather) = 0.971 - 0.648 = 0.323$$

3.2 Information Gain for Temperature

We now calculate the information gain for Temperature by splitting the dataset into Hot, Mild, and Cool.

For Hot:

• Yes = 1, No = 2

Entropy(Hot) =
$$-\left(\frac{1}{3}\log_2\frac{1}{3} + \frac{2}{3}\log_2\frac{2}{3}\right) = 0.918$$

For Mild:

• Yes = 2, No = 1

Entropy(Mild) =
$$-\left(\frac{2}{3}\log_2\frac{2}{3} + \frac{1}{3}\log_2\frac{1}{3}\right) = 0.918$$

For Cool:

• Yes = 3, No = 1

Entropy(Cool) =
$$-\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) = 0.811$$

Weighted Average Entropy for Temperature:

Entropy(Temperature) =
$$\frac{3}{10} \times 0.918 + \frac{3}{10} \times 0.918 + \frac{4}{10} \times 0.811 = 0.88$$

Information Gain for Temperature:

$$Gain(Temperature) = 0.971 - 0.88 = 0.091$$

4 Step 3: Build the Decision Tree

Since Weather gives the highest information gain, we split first on Weather.

4.1 If Weather = Overcast:

4.2 If Weather = Sunny:

We now split on Temperature for Sunny weather:

- If Temperature = Hot, Play Tennis = No
- If Temperature = Mild, Play Tennis = No
- If Temperature = Cool, Play Tennis = Yes

4.3 If Weather = Rainy:

We now split on Temperature for Rainy weather:

- If Temperature = Mild, Play Tennis = Yes
- If Temperature = Cool, Play Tennis = Yes (Majority)

5 Final Decision Tree

The final decision tree is as follows:

- \bullet If Weather = Overcast, Play Tennis = Yes
- If Weather = Sunny:
 - If Temperature = Hot, Play Tennis = No
 - If Temperature = Mild, Play Tennis = No
 - If Temperature = Cool, Play Tennis = Yes
- $\bullet \ \mbox{If Weather} = \mbox{Rainy:}$
 - If Temperature = Mild, Play Tennis = Yes
 - If Temperature = Cool, Play Tennis = Yes