

Buscar cursos

Q (Buscar cursos)

Iniciado em	segunda, 22 Abr 2019, 22:10
Estado	Finalizada
Concluída em	segunda, 22 Abr 2019, 22:11
Tempo empregado	11 segundos
Notas	4,00/6,00
Avaliar	6,67 de um máximo de 10,00(67 %)

Questão **1**Correto

Atingiu 1,00 de 1,00

Considere a matriz
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 18 & 0 \\ -1 & -5 & 5 \end{bmatrix}$$
. Calcule $\|A\|_1$.

Resposta: 🗸

Veja o vídeo 6.1 Normas a partir de 0:01.

A resposta correta é: 25.

1 of 3 26/04/2019 10:57

Questão 2

Correto

Atingiu 1,00 de 1,00

Considere a matriz de iteração G, onde $G_{ij}= egin{cases} 1/2, & i=j \\ 1/4, & |i-j|=1, \\ 0, & c.c. \end{cases}$

 $d = [1,0,0]^T, x^{(0)} = [1,0,0]^T. \text{ Quantas iterações são necessárias para que a iteração } x^{(k+1)} = G*x^{(k)} + d \operatorname{possua} \|x^{(k)} - x^{(k+1)}\|_1 < 10^{-2}?$

Resposta: 🗸

Veja o vídeo 6.3 Jacobi e Gauss Seidel a partir de 0:01.

A resposta correta é: 29.

Questão 3

Correto

Atingiu 1,00 de 1,00

Considere o sistema linear Ax=b, onde $A=\begin{bmatrix} 6 & 1 \\ -1 & 4 \end{bmatrix}$, $A=\begin{bmatrix} 1 \\ 2 \end{bmatrix}$,

 $x^{(1)}=egin{bmatrix}2\\0\end{bmatrix}$. Depois de realizar 4 iterações do método de Jacobi ($x^{(5)}$), qual o valor da primeira componente da aproximação de x?

Resposta: 🗸

Veja o vídeo 6.3 Jacobi e Gauss Seidel a partir de 0:01.

A resposta correta é: 0,0833333333.

Questão **4**

Correto

Atingiu 1,00 de 1,00

Sejam
$$x = [3141592, 1414213]$$
 e $y = [\pi, \sqrt{2}]*10^6$. Calcule $\|x-y\|_2$

Resposta:

Veja o vídeo 6.1 Normas a partir de 0:01.

A resposta correta é: 0,86223.

Questão **5**Não respondido
Vale 1,00 ponto(s).

Considere o sistema linear Ax=b, onde $A=\begin{bmatrix} 6 & 1 \\ -1 & 4 \end{bmatrix}$, $A=\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

 $x^{(1)} = egin{bmatrix} 2 \ 0 \end{bmatrix}$. Depois de realizar 10 iterações do método de Gauss-Seidel ($x^{(11)}$),

quantos dígitos significativos possui a aproximação de x_2 ?

Resposta: X

Veja o vídeo 6.3 Jacobi e Gauss Seidel a partir de 0:01.

A resposta correta é: 14.

Questão **6**Não respondido
Vale 1,00 ponto(s).

Considere o sistema linear Ax=b, onde $A=\begin{bmatrix} 6&1\\-1&4 \end{bmatrix}$, $A=\begin{bmatrix} 1\\2 \end{bmatrix}$

 $x^{(1)}=egin{bmatrix}2\\0\end{bmatrix}$. Depois de realizar 10 iterações do método de Jacobi ($x^{(11)}$), quantos dígitos significativos possui a aproximação de x_2 ?

Resposta: X

Veja o vídeo 6.3 Jacobi e Gauss Seidel a partir de 0:01.

A resposta correta é: 7.