Search: Go Reference <random> normal_distribution register log in

<random>

Information Tutorials Reference Articles Forum

C library: Containers: Input/Output:

Multi-threading:

Other:

<algorithm>

bitset>

<chrono>

<codecvt> <complex>

<exception>

<functional>

<initializer list>

<iterator>

dimits>

<locale> <memory>

<new>

<numeric>

<random> <ratio>

<regex>

<stdexcept>

<string> <system_error>

<tuple>

<tvpeindex>

<typeinfo>

<type_traits> <utility>

<valarray:

<random>

distributions:

bernoulli distribution binomial_distribution

cauchy_distribution

chi_squared_distribution

discrete_distribution

exponential distribution

extreme value distribution

fisher f distribution

gamma_distribution

geometric_distribution

lognormal_distribution negative_binomial_distribution

normal distribution

piecewise_constant_distribution

piecewise linear distribution

poisson distribution

student t distribution

uniform int distribution uniform_real_distribution

weibull_distribution

generators:

default_random_engine discard_block_engine

independent bits engine

knuth b

linear_congruential_engine mersenne_twister_engine

minstd_rand

minstd_rand0

mt19937 mt19937_64

random device ranlux24

ranlux24 base

ranlux48

ranlux48_base shuffle_order_engine

subtract_with_carry_engine

other:

generate canonical seed sea

class template

std::normal_distribution

template <class RealType = double> class normal_distribution;

Normal distribution

Random number distribution that produces floating-point values according to a normal distribution, which is described by the following probability density function:

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

This distribution produces random numbers around the distribution $mean(\mu)$ with a specific standard deviation (σ) .

The normal distribution is a common distribution used for many kind of processes, since it is the distribution that the aggregation of a large number of independent random variables approximates to, when all follow the same distribution (no matter which distribution).

The distribution parameters, mean (μ) and stddev (σ) , are set on construction.

To produce a random value following this distribution, call its member function operator().

Template parameters

RealType

A floating-point type. Aliased as member type result_type. By default, this is double.

Member types

The following aliases are member types of normal_distribution:

member type	definition	notes
result_type	The first template parameter (RealType)	The type of the numbers generated (defaults to double)
param type	not specified	The type returned by member param.

Member functions

(constructor)	Construct normal distribution (public member function)
operator()	Generate random number (public member function)
reset	Reset distribution (public member function)
param	Distribution parameters (public member function)
min	Minimum value (public member function)
max	Maximum value (public member function)

Distribution parameters:

```
normal_distribution::mean | Distribution mean (public member function)
normal_distribution::stddev | Standard deviation (public member function)
```

Non-member functions

operator<<	Insert into output stream (function template)
operator>>	Extract from input stream (function template)
relational operators	Relational operators (function template)

Example

```
1 // normal_distribution
 2 #include <iostream
3 #include <random>
 5 int main()
 6
7
      const int nrolls=10000; // number of experiments
 8
      const int nstars=100;
                                       // maximum number of stars to distribute
 q
10
      std::default_random_engine generator;
std::normal_distribution<double> distribution(5.0,2.0);
11
12
13
      int p[10]={};
14
15
      for (int i=0; i<nrolls; ++i) {</pre>
        double number = distribution(generator);
if ((number>=0.0)&&(number<10.0)) ++p[int(number)];</pre>
16
17
18
19
20
21
      std::cout << "normal_distribution (5.0,2.0):" << std::endl;</pre>
```

normal distribution - C++ Reference

```
normal_distribution::(constructor)

member functions:
normal_distribution::max
normal_distribution::mean
normal_distribution::operator()
normal_distribution::param
normal_distribution::reset
normal_distribution::stddev
non-member functions:
operator<>
operator>>
relational operators
```

```
Ultra Tune Car Servicing
Contact us for your servicing, tyre, vehicle
maintenance and repair needs. Go to ultratune.com.au
```

```
for (int i=0; i<10; ++i) {
    std::cout << i << "-" << (i+1) << ": ";
    std::cout << std::string(p[i]*nstars/nrolls,'*') << std::endl;
}

return 0;
}</pre>
```

```
Possible output:

normal_distribution (5.0,2.0):
0-1: *
1-2: ****
2-3: ***********
4-5: **************
5-6: ***************
6-7: *************
7-8: ************************
9-10: *
```

See also

lognormal_distribution	Lognormal distribution (class template)
chi_squared_distribution	Chi-squared distribution (class template)
cauchy_distribution	Cauchy distribution (class template)
fisher_f_distribution	Fisher F-distribution (class template)
student_t_distribution	Student T-Distribution (class template)

Home page | Privacy policy © cplusplus.com, 2000-2017 - All rights reserved - v3.1 Spotted an error? contact us