1.7. Induksi Matematika

Induksi matematika sering digunakan kebenaran suatu rumus-rumus matematika yang berlaku untuk semua bilangan Asli (A).Bukti dengan cara ini didasarkan rumus.

Teorema. (Prinsip Induksi Matematika)

Misalkan P_n adalah suatu pernyataan tentang bilangan bulat positif n. Jika kedua syarat berikut dipenuhi:

- 1). P₁ benar,
- 2). Jika k bilangan bulat positif sebarang sehingga P_k benar, maka P_{k+1} juga benar, maka P_n benar *untuk semua* bilangan Asli n

 $\label{eq:Bukti.} \textit{Bukti.} \text{ Andaikan Syarat 1). dan 2). dipenuhi, tetapi kesimpulan tidak dipenuhi. Ini berarti P_n tidak berlakuuntuk setiap bilangan asli n. Misalkan n + 1 adalah bilangan bulat positif terkecil sehingga P_n tidak benar, yaitu P_1, P_2, ..., P_N benar, tetapi untuk P_{N+1} tidak benar .$

Menurut syarat 1). N \geq 1.

Menurut syarat 2). karena P_N benar, maka P_{N+1} benar pulahal ini bertentangan dengan hipotesis bahwa P_{N+1} tidak benar.

Karena itu haruslah P_n benar untuk setiap $n \in A$.

Contoh 1.Buktikan
$$1 + 3 + 5 + ... + (2n-1) = n^2$$

Bukti.P : $1 + 3 + 5 + ... + (2n-1) = n^2$
Untuk $n = 1$, maka $2.1 - 1 = 1^2$

1 = 1

Karena untuk n = 1, yaitu P_1 benar.

maka diasumsikan benar untuk n = k yaitu P_k , sehingga

$$1 + 3 + 5 + \dots + (2k-1) = k^2$$

Selanjutnya, ditunjukkan benar untuk n = k + 1, yaitu

$$1 + 3 + 5 + ... + (2k-1) + (2(k+1) - 1) = (k+1)^2$$

Diketahui bahwa $1 + 3 + 5 + ... + (2k-1) = k^2$, sehingga

ruas kiri menjadi $1 + 3 + 5 + ... + (2k-1) + (2(k+1) - 1) = k^2 + (2(k+1) - 1)$

$$= k^{2} + 2k + 1$$

$$=(k+1)^2$$

dengan demikian ruas kiri = ruas kanan, yaitu

$$(k+1)^2 = (k+1)^2$$

Jadi, P_{n+1} benar.

Karena P_{n+1} benar, maka P_n benar untuk setiap $n \in \mathbf{A}$.

Contoh 2. Buktikan
$$1^2 + 2^2 + ... + n^2 = 1/6n(n+1)(2n+1)$$

Bukti. P:
$$1^2 + 2^2 + ... + n^2 = 1/6n(n+1)(2n+1)$$

Untuk n = 1, maka
$$1^2 = 1/6 \times 1(1+1)(2 \times 1+1)$$

$$1 = 1/6 (2)(3)$$

1 = 1

Karena P₁ benar, maka diasumsikan P_k juga benar, yaitu

$$1^2 + 2^2 + ... + k^2 = 1/6k(k+1)(2k+1)$$

Selanjutnya, ditunjukkan P_{k+1} benar, yaitu

$$1^2 + 2^2 + ... + k^2 + (k+1)^2 = 1/6(k+1)((k+1)+1)(2(k+1)+1)$$

atar

$$1^2 + 2^2 + ... + k^2 + (k+1)^2 = 1/6(k+1)(k+2)(2k+3)$$

Diketahui
$$1^2 + 2^2 + ... + k^2 = 1/6k(k+1)(2k+1)$$
, maka

ruas kiri menjadi

$$= 1/6k(k+1)(2k+1) + (k+1)^2$$

$$= 1/6 k(k+1)(2k+1) + 1 (k+1)^{2}$$

$$= 1/6 k(k+1)(2k+1) + 1/6.6(k+1)^2$$

$$= 1/6[k(k+1)(2k+1) + 6(k+1)^{2}]$$

$$= 1/6(k+1)[(2k^2 + k) + 6(k+1)]$$

$$= 1/6(k+1)(2k^2+7k+6)$$

$$= 1/6(k+1)[(k+2)(2k+3)]$$

dengan demikian ruas kiri = ruas kanan, yaitu

$$1/6(k+1)[(k+2)(2k+3)] = 1/6(k+1)[(k+2)(2k+3)]$$

Jadi, P_{n+1} benar.

Karena P_{n+1} benar, maka $P_n\;$ benar untuk setiap $n\in \mathbf{A.}$

Contoh 3. Jika n! = n(n-1)(n-2)... 1

$$0! = 1$$

Buktikan bahwa $n! > 2^n$ untuk $n \ge 4$

Bukti. $P_n: n! > 2^n$ untuk $n \ge 4$

Untuk n = 4, maka $4! > 2^4$

Pernyataan benar untuk n=4, diasumsikan benar untuk n=k yaitu P_k untuk $k\geq 4$ atau

 $k! > 2^k$ untuk $k \ge 4$

Selanjutnya ditunjukkan benar untuk n = k + 1, yaitu

$$(k+1)! > 2^{k+1}$$
 untuk $k \ge 4$

ruas kiri:

(k + 1)! dapat ditulis (k + 1)(k!)

karena $k! > 2^k$ untuk $k \ge 4$, maka

$$(k+1)! > (k+1) 2^k$$
 *

ruas kanan:

$$2^{k+1} = 2^k \cdot 2^1 **)$$

berdasar fakta (k+1) > 2 $[k \ge 4)$

Jadi,
$$(k+1)! > 2^{k+1}$$

Karena P_{k+1} benar, maka P_n benar untuk $n \ge 4$ dan $n \in \mathbf{A}$.

Contoh 4. Jika $\sum_{i=1}^{n} 2i = 2.1 + 2.2 + 2.3 + ... + 2.n$

Buktikan $\sum_{i=1}^{n} 2i = n (n+1)$

Bukti. $P_n: \sum_{i=1}^n 2i = 2.1 + 2.2 + 2.3 + ... + 2.n$

Untuk n = 1, maka 2 = 1.(1 + 1)

=2

Karena untuk n = 1 dan P_1 benar, maka diasumsikan P_k benar, yaitu

$$\sum_{i=1}^{k} 2i = k (k+1)$$

Selanjutnya ditunjukkan, bahwa benar juga untuk n = k + 1, yaitu

$$\sum_{i=1}^{k+1} 2i = (k+1)((k+1)+1)$$

$$= (k+1)(k+2)$$

Sedangkan diketahui bahwa $\sum_{i=1}^{k} 2i = k (k + 1)$, sehingga

ruas kiri menjadi

$$k(k + 1) + (2(k + 1) = (k + 1)(k + 2)$$

ternyata ruas kiri sama dengan ruas kanan, sehingga P_{n+1} benar.

Jadi, P_n berlaku untuk setiap $n \in \mathbf{A}$.

LATIHAN

Dengan menggunakan induksi matematika selesaikan soal-soalberikut, jika $n \in A$

1. Buktikan
$$\sum_{k=1}^{n} (3k-2) = \frac{n(3n-1)}{2}$$

2. Buktikan
$$\sum_{p=1}^{n} \frac{1}{p(p+1)} = \frac{n}{n+1}$$

3. Buktikan
$$\sum_{i=1}^{n} a^{n-i} b^{n-i} = \frac{a^n - b^n}{a - b}$$

4. Buktikan
$$\sum_{i=1}^{n} 3^{i} = 3/2(3^{n} - 1)$$

5. Buktikan
$$\sum_{i=1}^{n} i^3 = 1/4 n^2 (n+1)^2$$

6. Buktikan
$$1.3.5 + 2.4.6 + 3.5.7... + n(n+2)(n+4) = \frac{1}{4} n(n+1)(n+4)(n+5)$$

7. Buktikan :
$$2 + 2^2 + 2^3 + ... + 2^n = 2(2^n - 1)$$

8. Buktikan:
$$1.5 + 2.5^2 + 3.5^3 + ... + n.5^n = \frac{5 + (4n-1)5^{n+1}}{16}$$

9. Buktikan : n⁵ - n habis dibagi oleh 30.

10. Buktikan : 3⁴ⁿ - 1 habis dibagi oleh 80.