Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

,				11
U	ဂြ	ha	Č.	21

Název úlohy: Studium hysterezníc	h smyček feritů
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV
Datum měření: .17. 10. 2016	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. U feritových kroužků I, II a III
 - (a) Změřte závislost indukce B_m a koercitivní síly H_C na intensitě magnetického pole H_m .
 - (b) Sledujte základní typy hysterezních smyček v závislosti na intensitě pole H_m a zjistěte přibližně, při které intensitě pole H_m (nebo v kterém intervalu intensit polí) jednotlivé typy hysterezních smyček přecházejí jeden v druhý.
- 2. Okalibrujte aparaturu pomocí střídavého napětí známé velikosti.
- 3. Výsledky dle bodu 1a) zpracujte tabelárně a graficky.

Teoretická část

Budeme sledovat hysterézní smyčky feritů. Rozeznáváme tři základní typy hysterézních smyček — úsečku, Rayleighův tvar a normální.

Používáme zapojení na obrázku 1.

Na miliampérmetru měříme efektivní hodnotu proudu I_{ef} , z něj určíme maximální intenzitu magnetického pole v kroužku

$$H_m = \frac{2n_1\sqrt{2}I_{ef}}{\pi(d_1 + d_2)},\tag{1}$$

kde n_1 je počet závitů na primárním vinutí a d_1 a d_2 jsou vnitřní a vnější průměr kroužku.

Koercivní sílu ${\cal H}_C$ určíme srovnáním s ${\cal H}_m$ na stínítku osciloskopu.

Abychom mohli určit maximální magnetickou indukci B_m , okalibrujeme vertikální osu osciloskopu pomocí střídavého napětí známé velikosti. Obvod zapojíme podle obrázku 2 a pustíme do něj střídavé napětí o známé úhlové frekvenci ω .

Na dekádě zvolíme odpor 999 Ω , takže efektivní hodnota napětí na normálu U_{ef} bude rovna jedné tisícině udáje na voltmetru. B_m určíme jako [1]

$$B_m = \frac{U_{ef}\sqrt{2}}{\omega S n_2} \,, \tag{2}$$

kde n_2 je počet závitů na sekundárním vinutí a S je průřez kroužku

$$S = \frac{1}{2}(d_1 - d_2)v, \qquad (3)$$

kde v je výška kroužku. Takto určíme jednu skutečnou hodnotu B_m při plně rozvinuté hysterezní smyčce, ostatní určíme poměrně k ní.

Výsledky měření

Měření proběhlo při normálním tlaku a pokojové teplotě (přibližně $22\,^{\circ}$ C). Všechny uvedené nejistoty jsou standardní a v zápisu 10(1) znamená číslo v závorce nejistotu v řádu poslední uvedené číslice.

Měřili jsme tři feritové kroužky označené římskými I, II, III. Jejich vlastnosti jsou uvedeny v tabulce 1. Proud i napětí jsme měřili multimetrem METEX M-3720D.

Při kalibraci jsme používali střídavé napětí o síťové frekvenci 50 Hz, proto $\omega = 2\pi \cdot 50 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Nastavili jsme napětí na normálu takové, aby úsečka na osciloskopu byla vysoká jako hysterezní smyčka každého kroužku při nejvyšším měřeném proudu. Pro kroužky I a III ukazoval voltmetr napětí $U_{ef} = 7.0(1) \,\mathrm{V}$ a pro kroužek II $5.7(1) \,\mathrm{V}$.

Podle (2) jsme vypočítali magnetickou indukci v každém kroužku při plně rozevřené hysterezní smyčce a poměrně k této hodnotě jsme určili ostatní hodnoty.

Naměřené hodnoty jsou uvedeny v tabulce 2. Hodnoty indukce, které byly určeny kalibrací jsou tučně. Délky úseček na stínítku neuvádíme, stejně jako poměr H_C/H_m , případně jsou k nahlédnutí v záznamu z měření.

Největší chybu zřejmě působil odečet vzdáleností na stínítku, velikost této chyby odhadujeme. U kroužku III působil největší chybu multimetr, měřili se hodnoty okolo 300–1200 mA v rozsahu 20 A. Závislosti H_C a B_m na H_m pro jednotlivé kroužky jsou zaneseny do grafů 1 až 6.

Hysterezní smyčka měla tvar úsečky u kroužku I přibližně do $8\,\mathrm{A}\,\mathrm{m}^{-1}$, u kroužku II do $50\,\mathrm{A}\,\mathrm{m}^{-1}$ a u kroužku III do $2000\,\mathrm{A}\,\mathrm{m}^{-1}$. Při vyšších intenzitách pole se už začaly uplatňovat nevratné děje a smyčka měla Rayleighův tvar. Smyčka přešla v normální tvar u kroužku I přibližně při $15\,\mathrm{A}\,\mathrm{m}^{-1}$ a u kroužku II při $100\,\mathrm{A}\,\mathrm{m}^{-1}$

kroužek	n_1	n_2	d_1	d_2	v
I	50	6	$29,20\mathrm{mm}$	$20{,}75\mathrm{mm}$	$4,40\mathrm{mm}$
II	50	6	$30,65\mathrm{mm}$	$21,\!80\mathrm{mm}$	$4,35\mathrm{mm}$
III	300	6	$31,00\mathrm{mm}$	$21,\!80\mathrm{mm}$	$4{,}15\mathrm{mm}$

Tabulka 1: Měřené feritové kroužky

kroužek	I_{ef} (mA)	$H_m (\mathrm{A} \mathrm{m}^{-1})$	$H_C (\mathrm{A m^{-1}})$	B_m (T)
Ι	8,0(3)	7,2(3)	0,0(8)	0,027(5)
	15,8(4)	14,2(4)	2,5(6)	0,064(6)
	36,5(7)	32,9(6)	9,2(8)	0,154(8)
	50(2)	46(2)	12,2(10)	0,200(9)
	63(2)	57(2)	12,9(9)	0,218(10)
	82(3)	74(3)	14,0(9)	0,241(11)
	104(3)	94(3)	15,0(11)	0,259(11)
	126(3)	113(3)	15,8(13)	0,268(11)
	151(4)	136(4)	16,3(15)	0,282(10)
	32,3(6)	27,8(6)	0,0(8)	0,026(5)
	63(2)	54(2)	1,3(9)	0,052(5)
	93(3)	80(3)	8,0(9)	0,078(6)
II	122(3)	105(3)	14,7(12)	0,109(7)
11	152(4)	130(3)	23,4(15)	0,139(8)
	181(4)	155(4)	33(2)	0,166(9)
	212(5)	182(4)	40(2)	0,196(10)
	250(5)	214(5)	49(3)	0,222(10)
	305(6)	1560(30)	47(32)	0,031(5)
	400(60)	2050(300)	164(30)	0,044(5)
III	450(60)	2300(300)	320(50)	0,053(5)
	500(60)	2560(300)	690(80)	0,071(6)
	550(60)	2800(300)	1070(120)	0,106(6)
	600(60)	3070(300)	1350(140)	0,159(8)
	710(60)	3630(300)	1530(140)	0,257(11)
	830(70)	4250(400)	1610(140)	0,239(10)
	1000(70)	5110(400)	1740(140)	0,257(11)
	1200(80)	6140(400)	1900(150)	0,274(10)

Tabulka 2: Studium hysterezních smyček feritů

Obrázek 1: Zapojení pro pozorování hysterezních smyček

Obrázek 2: Zapojení pro kalibraci vertikální osy

Graf 1: Koercivní síla kroužku I

Graf 2: Koercivní síla kroužku II

Graf 3: Koercivní síla kroužku III

Graf 4: Magnetická indukce v kroužku I

Graf 5: Magnetická indukce v kroužku II

Graf 6: Magnetická indukce v kroužku III, bod slabou čarou ($H_C = 3630 \,\mathrm{A\,m^{-1}}$) je pravděpodobně hrubá chyba

Diskuze

Použitý multimetr nebyl příliš přesný v porovnání s ostatními multimetry dostupnými v praktiku. Zejména u třetího kroužku bylo použití tohoto multimetru krajně nevhodné a vysoce se podílelo na chybách naměřených hodnot.

Intenzity pole, při kterých se mění typ hysterezní smyčky, jsou skutečně jen přibližné.

Závislosti H_C a B_m na H_m vyšly u všech kroužků podle očekávání.

U kroužku III se vyskytla jedna podezřelá hodnota B_m ($H_C = 3630\,\mathrm{A\,m^{-1}}$), kde závislost není monotónní (viz graf 6). Ikdyž nemůžeme vyloučit pravdivost této hodnoty, nejpravděpodobněji se jedná o hrubou chybu při odečítání délky úsečky na stínítku, protože nemonotónnost této závislosti je jev, kterého bych si při měření jistě všimnul.

Závěr

Změřili jsme závislost indukce B_m a koercivní síly H_C na intenzitě magnetického pole H_m pro tři feritové kroužky (viz tabulka 1). Naměřené hodnoty jsou uvedeny v tabulce 2 a zaneseny do grafů 1 až 6. Naměřené závislosti vyšly podle očekávání.

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2016-04-06]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start).