Introduction to Riemann Integration

Interval

Let I=[a,b]. Length of the interval |I|=b-a.

Disjoint interval

When 2 intervals don't share any common numbers.

Almost disjoint interval

When 2 intervals are disjoint or intersect only at a common endpoint.

Riemann Integral

Let $f-[a,b] o \mathbb{R}$ is a bounded (not necessarily continuous) function on a closed, bounded (compact) interval.

Riemann integral of f is: $\int_a^b f$

Definite integral

When a,b are constants.

Indefinite integral

When a is a constant but b is replaced with x.

Partition

Let I be a non-empty, compact interval (closed and bounded). A partition of I is a finite collection $\{I_1,I_2,\ldots,I_n\}$ of almost disjoint, non-empty, compact sub-intervals whose union is I.

A partition is determined by the endpoints of all sub-intervals:

$$a = x_0 < x_1 < \cdots < x_n = b.$$

A partition can be denoted by:

- its intervals $P = \{I_1, I_2, \dots, I_n\}$
- the endpoints of its intervals $P = \{x_0, x_1, \dots, x_n\}$

Riemann Sum

Let

- + $f:[a,b] o\mathbb{R}$ is a bounded function on the compact interval I=[a,b] with $M=\sup_I f$ and $m=\inf_I f$.
- $P = \{I_1, I_2, \dots, I_n\}$
- $M_k = \sup_{I_k} f = \sup \left\{ f(x) : x \in [x_{k-1}, x_k] \right\}$
- $oldsymbol{\cdot} \hspace{0.1cm} m_k = \inf_{I_k} f = \inf \left\{ f(x) : x \in [x_{k-1}, x_k]
 ight\}$

Upper riemann sum

$$U(f;P) = \sum_{k=1}^n M_k |I_k|$$

Lower riemann sum

$$L(f;P) = \sum_{k=1}^n m_k |I_k|$$

$$m_k < M_k \implies L(f;P) \le U(f;P)$$

When P_1, P_2 are any 2 partitions of I: $L(f; P_1) \leq U(f; P_2)$

Refinements

Q is called a refinement of $P\iff$ if P and Q are partitions of [a,b] and $P\subseteq Q$. When Q is a refinement of P:

$$L(f;P) \leq L(f;Q) \leq U(f;Q) \leq U(f;P)$$

(i) Note

If P_1 and P_2 are partitions of [a,b], then $Q=P_1\cup P_2$ is a refinement of both P_1 and P_2 . In that case:

$$L(f;P_1) \leq L(f;Q) \leq U(f;Q) \leq U(f;P_2)$$

Upper & Lower integral

Let $\mathbb P$ be the collection of all possible partitions of the interval [a,b].

Upper Integral

$$U(f)=\inf\left\{U(f;P);P\in\mathbb{P}
ight\}=\overline{\int_a^bf}$$

Lower Integral

$$L(f)=\sup\left\{L(f;P);P\in\mathbb{P}
ight\}=\int_a^b f$$

For a bounded function f, always $L(f) \leq U(f)$

Riemann Integrable

A bounded function $f:[a,b] o \mathbb{R}$ is Riemann integrable on [a,b] **iff** U(f)=L(f). In that case, the Riemann integral of f on [a,b] is denoted by $\int_a^b f(x)\,\mathrm{d}x$.

An unbounded function is not Riemann integrable.

Cauchy Criterion

Theorem

A bounded function f:[a,b] o R is Riemann integrable **iff** for every $\epsilon>0$ there exists a partition P_ϵ of [a,b], which may depend on ϵ , such that:

$$U(f,P\epsilon)-L(f,P\epsilon)\leq \epsilon$$