CHESS

Computers and Humans Exploring Software Security Mr. Dustin Fraze

4/19/2018

Develop computer-human systems to rapidly discover all classes of vulnerability in complex software

DARPA Limits of Current Approaches

Approach	Vulnerability Discovery Speed	Vulnerability Discovery Accuracy	Representative Software Complexity
Human	Low	Low	Web Browser
Computer	High	Low	Small Test Corpora
Computer-Human Experiments ^{1,2}	High	Moderate	Small Test Corpora
CHESS	High	High	Web Browser

¹Muntean et al. "Automated Detection of Information Flow Vulnerabilities in UML State Charts and C Code", http://ieeexplore.ieee.org/document/7322134/, 2015 ²Shoshitaishvili et al. "Rise of the HaCRS: Augmenting Autonomous Cyber Reasoning Systems with Human Assistance", https://arxiv.org/abs/1708.02749, 2017

Today's Approach to Vulnerability Discovery

Vulnerability Discovery with CGC

Experimental Vulnerability Discovery with Novice Hackers

Experimental Vulnerability Discovery with Non-Experts

Collaborative Vulnerability Discovery with CHESS

TA1 Human Collaboration

Challenges	Possible Approaches		
Identify and generate representations that communicate information gaps to humans	UML Diagrams (Class, Activity, etc.)Control Flow GraphsHilbert Curves for Cyclic Activity		
Capture and process the insights humans generate by reasoning over the representations	Annotation/Label SetsInstrumented Program InteractionHuman Mental Model Analysis		

- 1. Process identified information gaps into human-understandable representations
- 2. Summarize and minimize software artifact data
- 3. Interact with human teammates using generated representations
- 4. Capture contextual insights from human
- Process human feedback into machineingestible formats

DARPA TA1 Human Collaboration

Strong Proposals will:

- Reduce the cognitive load and effort required by human collaborators
- Explore new representations and methods of human-computer interaction for capturing human insights
- Empower non-expert collaborators (novice hackers, non-hackers)
- Scale from single computer-human collaboration to N:N team collaboration
- Address any relevant HSR issues (data collection, data anonymization, test subject recruitment, etc.)

Strong Proposals will NOT:

- Involve invasive medical technology
- Only improve performance of expert hackers

TA2 Vulnerability Discovery

Challenges	Possible Approaches		
Identify information required to discover classes of vulnerabilities not addressed by automation	Type UsageSemantic MetadataComplexity Inference		
Extend CRS technology to scale up and reason over new and existing representations	Compilation InstrumentationType Chain Analysis		
Develop new vulnerability detection techniques to leverage human-provided insights	Object/Data Type ClassificationFunction Call ContextSemantic Concreteness/Clustering		

- Analyze source code and related software artifacts for potential vulnerabilities
- Identify regions of uncertainty and other obstacles to automated analysis in source code and related software artifacts
- 3. Identify vulnerabilities in target categories
- 4. Generate Proofs of Vulnerability (PoV) and patches

TA2 Vulnerability Discovery

Strong Proposals will:

- Identify vulnerability discovery techniques that may benefit from human collaborator insights
- Address vulnerability classes in a thorough and scalable manner
- Generate patches that address underlying vulnerabilities completely and specifically
- Scale from single computer-human collaboration to N:N team collaboration

Strong Proposals will NOT:

- Identify vulnerabilities inserted in challenge sets via diffing
- Focus only on memory corruption and arithmetic errors
- Rely primarily on fuzzing for vulnerability discovery

TA3 Voice of the Offense

Challenges	Possible Approaches		
Develop challenge problems scaling to 1M+ complexity	 Large-scale Automated Vulnerability Addition (LAVA) 		
Ensure challenge problems are representative of required vulnerability classes	 Vulnerability test corpora (Juliet, CGC, OSS-FUZZ, etc.) Public n-day databases 		

- Develop challenge problems with vulnerabilities across all required classes and scaling from 10K to 1M+ complexity
- Develop a source code patch for each challenge problem vulnerability
- Develop a binary patch for each challenge problem vulnerability
- Create a proof of vulnerability (PoV) specification for each vulnerability class
- Develop a PoV for each challenge problem vulnerability

TA3 Voice of the Offense

Strong Proposals will:

- Ensure challenge set coverage of all vulnerability classes
- Scale challenge sets to be representative of large, complex codebases

Strong Proposals will NOT:

- Allow challenge set vulnerabilities to impact production software
- Search for 0-day vulnerabilities in production software

TA4 Control Team

Tasks

Create an expert hacker performance baseline against TA3 challenge problems

Ensure CHESS R&D teams are aware of edge of the art techniques in software reverse engineering and exploitation

- Leverage state of the art tools to find vulnerabilities in source code and binary challenge problems developed by TA 3
- Develop a PoV for each vulnerability discovered in the challenge problems according to the provided PoV specification
- Collect feedback during evaluations for postevaluation review by the Symbiosis TA
- Identify divergent and/or conflicting evaluation performance between the Control Team and CHESS system

Strong Proposals will:

- Demonstrate expertise in the state of the art in vulnerability discovery
- Address both source-assisted and binary vulnerability discovery

Strong Proposals will NOT:

Identify vulnerabilities inserted in challenge sets via diffing

TA5 Integration, Test and Evaluation

Tasks

Integrate technology and techniques from TA1 and TA2 into a single platform for evaluation and transition

Design and execute tests to measure CHESS system performance against TA3 challenge problems

- 1. Integrate components from TA1 and TA2 into a single working platform
- 2. Promote collaboration between performers
- 3. Evaluate integrated CHESS system performance against TA3 challenge problems
- Recruit human collaborators for evaluations
- Demonstrate and transition CHESS technology to identified industry and government partners

TA5 Integration, Test and Evaluation

Strong Proposals will:

- Integrate CHESS system components in a continuous and collaborative manner
- Develop instrumented testbed environments for evaluations
- Promote collaboration between all CHESS performers
- Address any relevant HSR issues (data collection, data anonymization, test subject recruitment, etc.)

Strong Proposals will NOT:

Allow challenge set vulnerabilities to impact production software

Phase	Phase 1	Phase 2	Phase 3
Duration	18 months	12 months	12 months
Vulnerability Discovery	As fast as control	10x faster	100x faster
Speed		than control	than control
Vulnerability Discovery Accuracy with Source Code	70%	85%	99%
Vulnerability Discovery Accuracy without Source Code	50%	75%	99%
Software Complexity	Messaging App	PDF Parser	Web Browser
	(10K)	(150K)	(1M)

	Phase 1 18 months Messaging App	Phase 2 12 months PDF Parser	Phase 3 12 months Web Browser
TA1: Human Collaboration	Initial workflow decomposition	Workflow decomposition s	caling and refinement
	Initial context extraction	Context extraction scaling	and refinement
TA2: Vulnerability Discovery	Source code vulnerability discovery		
	Binary vulnerability discovery		
TA3: Voice of the Offense	Challenge problem development	Challenge problem scaling	research
TA4: Control Team	Engagement st	trategy research and develo	pment
TA5: Integration, Test and Evaluation	Integration framework development	Integration framework sca	ling and refinement
Hackathons	♦ ♦ ♦	♦	♦
Demonstrations	\Diamond	\Diamond	\Diamond
Evaluations	•	♦	♦

