Základní praktika z laserové techniky Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání, zesilování laserového záření a generace druhé harmonické

Skupina: **B – Hrnečková, Ray** Měřeno: **19. 3. 2025** Klasifikace:

1 Vypracování

1.1 Charakteristika laseru v režimu volné generace

Závislosti výstupní energie E a účinnosti η na budící energii $E_{\rm b}$ pro zrcadla M337, M327 a křemenné sklo jsou uvedeny v Tab. 1 a v grafech na Obr. 1, 3, 2.

Závislost délky impulsu $\tau_{\rm FR}$, a středního výkonu $P_{\rm str}$ na budící energii $E_{\rm b}$ pro pro optimální zrcadlo (M327) je uvedena v Tab. 2 a vykreslena na Obr. 4.

Hustota energie při maximální energi
i $\rho_{\rm max} = 8.73\,{\rm J\cdot cm^{-2}}$

Obrázky časových průběhů záření jsou na Obr. 5, 6 a 9.

M337		křemenné sklo			M327			
$E_{\rm b}\left[{ m J}\right]$	E[J]	η [%]	$E_{\mathrm{b}}\left[\mathrm{J}\right]$	E[J]	$\eta[\%]$	$E_{\rm b}\left[{ m J}\right]$	E[J]	$\eta [\%]$
13,62	0,00	0,00	15,21	0,00	0,00	13,76	0,00	0,00
14,14	0,02	0,16	16,89	0,02	0,11	14,14	0,02	0,15
15,21	0,04	0,29	19,27	0,08	0,40	15,21	0,07	0,45
16,89	0,07	0,39	22,37	0,15	0,68	16,89	0,13	0,74
19,27	0,10	0,50	26,52	0,24	0,89	19,27	0,19	1,01
22,37	0,14	0,60	31,70	0,35	1,10	22,37	0,27	1,21
26,52	0,19	0,71	34,22	0,39	1,14	26,52	0,34	1,30
31,70	0,25	0,78	38,32	0,47	1,24	31,70	0,45	1,41
38,32	0,33	0,87	42,90	0,56	1,30	38,32	0,58	1,51
46,38	0,40	0,85	48,16	0,66	1,37	46,38	0,72	1,55
56,25	0,51	0,90	56,25	0,81	1,44	56,25	0,89	1,58

Tab. 1: Závislosti výstupní energie E a účinnosti η na budící energii $E_{\rm b}$ pro zrcadla M337, M327 a křemenné sklo.

Obr. 1: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo M337.

Obr. 2: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo M327.

Obr. 3: Závislost výstupní energie Ea účinnosti η na budící energii $E_{\rm b}$ pro zrcadlo z křemenného skla.

$E_{\mathrm{b}}\left[\mathrm{J}\right]$	$\tau [\mu s]$	$P_{ m str} \left[{ m kW} \right]$
13,76	63	0
31,70	308	1,450
56,25	83	10,674

Tab. 2: Závislost délky impulsu $\tau_{\rm FR},$ a středního výkonu $P_{\rm str}$ na budící energii $E_{\rm b}$ pro zrcadlo M327.

Obr. 4: Závislost délky impulsu $\tau_{\rm FR},$ a středního výkonu $P_{\rm str}$ na budící energii $E_{\rm b}$ pro zrcadlo M327.

Obr. 5: Časový průbeh impulsu pro $E_{\rm b}{=}13{,}76~{\rm J}$

Obr. 6: Časový průbeh impulsu pro $E_{\rm b}{=}31{,}70~{\rm J}$

Obr. 7: Časový průbeh impulsu pro $E_{\rm b}{=}65{,}25~{\rm J}$

1.2 Zesilování impulsů

Závislost zesílení impulsu G na budící energii $E_{\rm b}$ laserového oscilátoru pro optimální zrcadlo (M327) je na Obr.8.

Obr. 8: Závislost zesílení impulsu G na budící energii $E_{\rm b}$ laserového oscilátoru pro zrcadlo M327.

1.3 Q-spínaný režim

Výsledky měření délky τ , energie E, špičkového výkonu $P_{\rm peak}$ a plošné hustoty energie ρ Q-spínaných impulsů jsou v Tab. 3.

Hustota energie v Q-spínaném režimu je oproti režimu volné generace přibližně $100\times$ vyšší. Záznam časového vývoje z osciloskopu

	$\tau [\mathrm{ns}]$	$E[\mathrm{mJ}]$	$P_{\text{peak}} [kW]$	$\rho [\mathrm{J \cdot cm^{-2}}]$
	25	51	2075	773
	24	51	2145	773
	27	54	2042	819
	30	65	2154	981
	26	52	2000	784
	22	48	2245	734
	28	67	2362	1008
	26	45	1761	680
	25	66	2612	1005
	25	52	2048	784
Průměr	26	55	2144	834
Odchylka	2	7	216	113

Tab. 3: Výsledky měření délky au, energie E, špičkového výkonu P_{peak} a plošné hustoty energie ρ Q-spínaných impulsů.

Obr. 9: Záznam časového vývoje z osciloskopu pro Q-spínaný puls.