Выполнение упражнения (xcos)

Построение фигур Лиссажу

Дворкина Ева Владимировна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретические сведения	6
4	Выполнение лабораторной работы	7
5	Выводы	33
Сг	писок литературы	34

Список иллюстраций

4.1	Модель для построения фигуры Лиссажу в xcos	8
4.2	Ввод параметров для генератора синусоидальных колебаний	8
4.3	Ввод параметров для генератора синусоидальных колебаний	9
4.4	Ввод параметров для CANIMXY	10
4.5	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 0$	11
4.6	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi/4$	12
4.7	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi/2$	13
4.8	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = 3\pi/4$	14
4.9	Фигура Лиссажу: $A = B = 1, a = 2, b = 2, \delta = \pi$	15
4.10	Ввод параметров для генератора синусоидальных колебаний	15
4.11	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = 0$	16
4.12	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi/4$	17
4.13	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi/2$	18
4.14	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = 3\pi/4$	19
4.15	Фигура Лиссажу: $A = B = 1, a = 2, b = 4, \delta = \pi$	20
4.16	Ввод параметров для генератора синусоидальных колебаний	21
4.17	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = 0$	22
4.18	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/4$	23
4.19	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi/2$	24
4.20	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = 3\pi/4$	25
4.21	Фигура Лиссажу: $A = B = 1, a = 2, b = 6, \delta = \pi$	26
4.22	Ввод параметров для генератора синусоидальных колебаний	27
4.23	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 0$	28
4.24	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = \pi/4$	29
4.25	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = \pi/2$	30
4.26	Фигура Лиссажу: $A = B = 1, a = 2, b = 3, \delta = 3\pi/4$	31
4 27	Фигура Лиссажу: $A = B = 1$ $\alpha = 2$ $b = 3$ $\delta = \pi$	32

1 Цель работы

Цель данной лабораторной работы - выполнить упражнение по ознакомлению с инструментом xcos

2 Задание

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

1)
$$A = B = 1, a = 2, b = 2, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

2)
$$A = B = 1, a = 2, b = 4, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

3)
$$A = B = 1, a = 2, b = 6, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi;$$

4)
$$A = B = 1, a = 2, b = 3, \delta = 0; \pi/4; \pi/2; 3\pi/4; \pi$$
.

3 Теоретические сведения

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач [1].

Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд

Программа хсоз является приложением к пакету Scilab. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз.

При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

4 Выполнение лабораторной работы

Математическое выражение для кривой Лиссажу:

$$\begin{cases} x(t) = Asin(at + \delta), \\ y(t) = Bsin(bt), \end{cases}$$

где A, B – амплитуды колебаний, a, b – частоты, δ – сдвиг фаз.

В модели, изображённой на рис. 4.1, использованы следующие блоки хсоя:

- CLOCK_c запуск часов модельного времени;
- GENSIN_f блок генератора синусоидального сигнала;
- CANIMXY анимированное регистрирующее устройство для построения графика типа y = f(x);
- TEXT_f задаёт текст примечаний.

Рис. 4.1: Модель для построения фигуры Лиссажу в хсоѕ

Щелкнув правой кнопкой мышки по генератору синусоидальный колебаний, откроем вкладку параметры на редактирование и внесем нужные данные (рис. 4.2).

Рис. 4.2: Ввод параметров для генератора синусоидальных колебаний

Щелкнув правой кнопкой мышки по второму генератору синусоидальный колебаний, откроем вкладку параметры на редактирование и внесем нужные данные (рис. 4.3).

Рис. 4.3: Ввод параметров для генератора синусоидальных колебаний

Таким же образом введем параметры в регистрирующее устройство (рис. 4.4).

Рис. 4.4: Ввод параметров для CANIMXY

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=2, \delta=0$ (рис. 4.5). Меняя фазу в первом генераторе на $\pi/4$; $\pi/2$; $3\pi/4$; π ; соответственно получим другие фигуры Лиссажу (рис. 4.6-4.9).

Рис. 4.5: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=0$

Рис. 4.6: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/4$

Рис. 4.7: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi/2$

Рис. 4.8: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=3\pi/4$

Рис. 4.9: Фигура Лиссажу: $A=B=1, a=2, b=2, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. 4.10).

Рис. 4.10: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при

параметрах: $A=B=1, a=2, b=4, \delta=0$ (рис. 4.11). Меняя фазу в первом генераторе на $\pi/4$; $\pi/2$; $3\pi/4$; π ; соответственно получим другие фигуры Лиссажу (рис. 4.12-4.15).

Рис. 4.11: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=0$

Рис. 4.12: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/4$

Рис. 4.13: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi/2$

Рис. 4.14: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=3\pi/4$

Рис. 4.15: Фигура Лиссажу: $A=B=1, a=2, b=4, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. 4.16).

Рис. 4.16: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=6, \delta=0$ (рис. 4.17). Меняя фазу в первом генераторе на $\pi/4$; $\pi/2$; $3\pi/4$; π ; соответственно получим другие фигуры Лиссажу (рис. 4.18-4.21).

Рис. 4.17: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=0$

Рис. 4.18: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/4$

Рис. 4.19: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi/2$

Рис. 4.20: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=3\pi/4$

Рис. 4.21: Фигура Лиссажу: $A=B=1, a=2, b=6, \delta=\pi$

Изменим параметр частоты на втором генераторе (рис. 4.22).

Рис. 4.22: Ввод параметров для генератора синусоидальных колебаний

Выполнив моделирование получим следующий график фигуры Лиссажу при параметрах: $A=B=1, a=2, b=4, \delta=0$ (рис. 4.23). Меняя фазу в первом генераторе на $\pi/4$; $\pi/2$; $3\pi/4$; π ; соответственно получим другие фигуры Лиссажу (рис. 4.24-4.27).

Рис. 4.23: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=0$

Рис. 4.24: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/4$

Рис. 4.25: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi/2$

Рис. 4.26: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=3\pi/4$

Рис. 4.27: Фигура Лиссажу: $A=B=1, a=2, b=3, \delta=\pi$

5 Выводы

В результате выполнения данной лабораторной работы я выполнила упражнение по ознакомлению с программой xcos.

Список литературы

1. Королькова А.В., Кулябов Д.С. Компонентное моделирование. Scilab, подсистема xcos [Электронный ресурс].