Contents

	Prefa	ace	xiii
1	Intro	oduction	1
	1.1	What is machine learning?	1
	1.2	What kind of problems can be tackled using machine learning?	2
	1.3	Some standard learning tasks	3
	1.4	Learning stages	4
	1.5	Learning scenarios	6
	1.6	Generalization	7
2	The	PAC Learning Framework	9
	2.1	The PAC learning model	9
	2.2	Guarantees for finite hypothesis sets — consistent case	15
	2.3	Guarantees for finite hypothesis sets — inconsistent case	19
	2.4	Generalities	21
		2.4.1 Deterministic versus stochastic scenarios	21
		2.4.2 Bayes error and noise	22
	2.5	Chapter notes	23
	2.6	Exercises	23
3	Rad	emacher Complexity and VC-Dimension	29
	3.1	Rademacher complexity	30
	3.2	Growth function	34
	3.3	VC-dimension	36
	3.4	Lower bounds	43
	3.5	Chapter notes	48
	3.6	Exercises	50
4	Mod	lel Selection	61
	4.1	Estimation and approximation errors	61
	4.2	Empirical risk minimization (ERM)	62
	4.3	Structural risk minimization (SRM)	64

vi Contents

	4.4	Cross-	-validation	68
	4.5	n-Fold	d cross-validation	71
	4.6	Regula	arization-based algorithms	72
	4.7	Conve	ex surrogate losses	73
	4.8	Chapte	er notes	77
	4.9	Exerci	ses	78
5	Sup	port Ve	ctor Machines	79
	5.1	Linear	classification	79
	5.2	Separa	able case	80
		5.2.1	Primal optimization problem	81
		5.2.2	Support vectors	83
		5.2.3	Dual optimization problem	83
		5.2.4	Leave-one-out analysis	85
	5.3	Non-se	eparable case	87
		5.3.1	Primal optimization problem	88
		5.3.2	Support vectors	89
		5.3.3	Dual optimization problem	90
	5.4	Margir	n theory	91
	5.5	Chapte	er notes	100
	5.6	Exerci	ses	100
6	Kerr	nel Meth	nods	105
	6.1	Introdu	uction	105
	6.2	Positiv	ve definite symmetric kernels	108
		6.2.1	Definitions	108
		6.2.2	Reproducing kernel Hilbert space	110
		6.2.3	Properties	112
	6.3	Kernel	I-based algorithms	116
		6.3.1	SVMs with PDS kernels	116
		6.3.2	Representer theorem	117
		6.3.3	Learning guarantees	117
	6.4	Negati	ive definite symmetric kernels	119
	6.5	Seque	ence kernels	121
		6.5.1	Weighted transducers	122
		6.5.2	Rational kernels	126
	6.6	Approx	ximate kernel feature maps	130
	6.7	Chapte	er notes	135
	6.8	Exerci	ses	137
7	Воо	sting		145
	7.1	S .		145
	7.1	AdaBo		146
	1.2	7.2.1	Bound on the empirical error	149
		7.2.2	Relationship with coordinate descent	150
		7.2.3	Practical use	154
				101

Contents

	7.3	Theoretical results	154
		7.3.1 VC-dimension-based analysis	154
		7.3.2 L_1 -geometric margin	155
		7.3.3 Margin-based analysis	157
		7.3.4 Margin maximization	161
		7.3.5 Game-theoretic interpretation	162
	7.4	L_1 -regularization	165
	7.5	Discussion	167
	7.6	Chapter notes	168
	7.7	Exercises	170
8	On-L	Line Learning	177
	8.1	Introduction	178
	8.2	Prediction with expert advice	178
		8.2.1 Mistake bounds and Halving algorithm	179
		8.2.2 Weighted majority algorithm	181
		8.2.3 Randomized weighted majority algorithm	183
		8.2.4 Exponential weighted average algorithm	186
	8.3	Linear classification	190
		8.3.1 Perceptron algorithm	190
		8.3.2 Winnow algorithm	198
	8.4	On-line to batch conversion	201
	8.5	Game-theoretic connection	204
	8.6	Chapter notes	205
	8.7	Exercises	206
9	Multi	i-Class Classification	213
	9.1	Multi-class classification problem	213
	9.2	Generalization bounds	215
	9.3	Uncombined multi-class algorithms	221
		9.3.1 Multi-class SVMs	221
		9.3.2 Multi-class boosting algorithms	222
		9.3.3 Decision trees	224
	9.4	Aggregated multi-class algorithms	228
		9.4.1 One-versus-all	229
		9.4.2 One-versus-one	229
		9.4.3 Error-correcting output codes	231
	9.5	Structured prediction algorithms	233
	9.6	Chapter notes	235
	9.7	Exercises	237
10	Rank	king	239
	10.1	The problem of ranking	240
	10.2		241
	10.3		243

viii Contents

	10.4	RankBoost	244
		10.4.1 Bound on the empirical error	246
		10.4.2 Relationship with coordinate descent	248
		10.4.3 Margin bound for ensemble methods in ranking	250
	10.5	Bipartite ranking	251
		10.5.1 Boosting in bipartite ranking	252
		10.5.2 Area under the ROC curve	255
	10.6	Preference-based setting	257
		10.6.1 Second-stage ranking problem	257
		10.6.2 Deterministic algorithm	259
		10.6.3 Randomized algorithm	260
		10.6.4 Extension to other loss functions	262
	10.7	Other ranking criteria	262
	10.8	Chapter notes	263
	10.9	Exercises	264
11	Regr	ression	267
	11.1	The problem of regression	267
	11.2		268
		11.2.1 Finite hypothesis sets	268
		11.2.2 Rademacher complexity bounds	269
		11.2.3 Pseudo-dimension bounds	271
	11.3	Regression algorithms	275
		11.3.1 Linear regression	275
		11.3.2 Kernel ridge regression	276
		11.3.3 Support vector regression	281
		11.3.4 Lasso	285
		11.3.5 Group norm regression algorithms	289
		11.3.6 On-line regression algorithms	289
	11.4	Chapter notes	290
	11.5	Exercises	292
12	Maxi	mum Entropy Models	295
	12.1	Density estimation problem	295
		12.1.1 Maximum Likelihood (ML) solution	296
		12.1.2 Maximum a Posteriori (MAP) solution	297
	12.2	,	297
	12.3	Maxent principle	298
	12.4	Maxent models	299
	12.5	Dual problem	299
	12.6	•	303
	12.7	Coordinate descent algorithm	304
	12.8	Extensions	306
	12.9	L_2 -regularization	308

Contents ix

		Chapter notes Exercises	312 313
13	Cond	litional Maximum Entropy Models	315
	13.1	Learning problem	315
	13.2	Conditional Maxent principle	316
	13.3	Conditional Maxent models	316
		Dual problem	317
	13.5	Properties	319
		13.5.1 Optimization problem	320
		13.5.2 Feature vectors	320
	126	13.5.3 Prediction	321
	13.6	Generalization bounds	321 325
	13.7	Logistic regression 13.7.1 Optimization problem	325
		13.7.2 Logistic model	325
	13.8	L_2 -regularization	326
		Proof of the duality theorem	328
		Chapter notes	330
		Exercises	331
14	Algorithmic Stability		333
	14.1	Definitions	333
	14.2		334
	14.3	Stability of kernel-based regularization algorithms	336
		14.3.1 Application to regression algorithms: SVR and KRR	339
		14.3.2 Application to classification algorithms: SVMs	341
		14.3.3 Discussion	342
	14.4	Chapter notes	342
	14.5	Exercises	343
15	Dime	nsionality Reduction	347
	15.1	Principal component analysis	348
	15.2	Kernel principal component analysis (KPCA)	349
	15.3	KPCA and manifold learning	351
		15.3.1 Isomap	351
		15.3.2 Laplacian eigenmaps	352
		15.3.3 Locally linear embedding (LLE)	353
	15.4	Johnson-Lindenstrauss lemma	354
	15.5	Chapter notes	356
	15.6	Exercises	356
16	Learr	ning Automata and Languages	359
	16.1	Introduction	359

x Contents

	16.2	Finite automata	360
	16.3	Efficient exact learning	361
		16.3.1 Passive learning	362
		16.3.2 Learning with queries	363
		16.3.3 Learning automata with queries	364
	16.4	Identification in the limit	369
		16.4.1 Learning reversible automata	370
	16.5	Chapter notes	375
	16.6	Exercises	376
17	Rein	forcement Learning	379
	17.1	Learning scenario	379
	17.2	Markov decision process model	380
	17.3	Policy	381
		17.3.1 Definition	381
		17.3.2 Policy value	382
		17.3.3 Optimal policies	382
		17.3.4 Policy evaluation	385
	17.4	Planning algorithms	387
		17.4.1 Value iteration	387
		17.4.2 Policy iteration	390
		17.4.3 Linear programming	392
	17.5	Learning algorithms	393
		17.5.1 Stochastic approximation	394
		17.5.2 TD(0) algorithm	397
		17.5.3 Q-learning algorithm	398
		17.5.4 SARSA	402
		17.5.5 $TD(\lambda)$ algorithm	402
		17.5.6 Large state space	403
	17.6	Chapter notes	405
Con	clusio	1	407
A	Line	ar Algebra Review	409
	A.1	Vectors and norms	409
		A.1.1 Norms	409
		A.1.2 Dual norms	410
		A.1.3 Relationship between norms	411
	A.2	Matrices	411
		A.2.1 Matrix norms	411
		A.2.2 Singular value decomposition	412
		A.2.3 Symmetric positive semidefinite (SPSD) matrices	412

Contents xi

В	Conv	ex Optimization	415
	B.1	Differentiation and unconstrained optimization	415
	B.2	Convexity	415
	B.3	Constrained optimization	419
	B.4	Fenchel duality	422
		B.4.1 Subgradients	422
		B.4.2 Core	423
		B.4.3 Conjugate functions	423
	B.5	Chapter notes	426
	B.6	Exercises	427
С	Prob	ability Review	429
	C.1	Probability	429
	C.2	Random variables	429
	C.3	Conditional probability and independence	431
	C.4	Expectation and Markov's inequality	431
	C.5	Variance and Chebyshev's inequality	432
	C.6	Moment-generating functions	434
	C.7	Exercises	435
D	Cond	centration Inequalities	437
	D.1	Hoeffding's inequality	437
	D.2	Sanov's theorem	438
	D.3	Multiplicative Chernoff bounds	439
	D.4	Binomial distribution tails: Upper bounds	440
	D.5	Binomial distribution tails: Lower bound	440
	D.6	Azuma's inequality	441
	D.7	McDiarmid's inequality	442
	D.8	Normal distribution tails: Lower bound	443
	D.9	Khintchine-Kahane inequality	443
	D.10		444
	D.11	Chapter notes	445
	D.12	Exercises	445
E	Notic	ons of Information Theory	449
	E.1	Entropy	449
	E.2	Relative entropy	450
	E.3	Mutual information	453
	E.4	Bregman divergences	453
	E.5	Chapter notes	456
	E.6	Exercises	457

xii	Contents
F Notation	459
Bibliography	461
Index	475