15. Trumpiausi keliai

Grafų teorija Vytautas Traškevičius VU MIF, 2016 m.

Trumpiausių kelių besvoriame grafe ieškojimo uždavinys

Tegu besvoris grafas užrašytas briaunų (lankų) masyvu L ir jų adresų masyvu lst Procedūra rasti trumpiausius kelius nuo viršūnės s iki likusių viršūnių Parametrai:

- s viršūnės, nuo kurios norime rasti trumpiausius kelius, numeris
- n grafo viršūnių skaičius,
- m grafo briaunų (lankų) skaičius,
- L[1..2m] briaunų masyvas,
 - L[1..m] (orientuotiesiems grafams) lankų masyvas
- *lst* [1..*n*+1] briaunų (lankų) adresų masyvas

Procedūros rezultatai

Masyvas d[1..n]

- *i*-asis elementas d[i] = d(s, i)
- d[i] yra trumpiausio kelio nuo viršūnės s iki viršūnės i ilgis (atstumas nuo s iki i)
- d[s] = 0

Masyvas prec[1..n]

- i-asis elementas prec[i] nusako, iš kokios viršūnės kelias veda į viršūnę i
- prec[i] = k, jei kelias į viršūnę i veda iš viršūnės k
- prec[s] = s
- prec[i] = 0, jei i dar neaplankyta viršūnė

Sprendimo idėja

- Uždavinio sprendimui patogu naudoti paiešką platyn
- Paieškos platyn k-tojo žingsnio metu nagrinėjamos viršūnės, nutolusios nuo pradinės paieškos viršūnės atstumu k
- Vadinasi, jei k-tajame žingsnyje aplankome viršūnę i, tai d(s, i) = k radome trumpiausią kelią nuo s iki i, kurio ilgis k
- Masyvo d pradinės reikšmės yra begalybė.
- Kaip begalybę naudosime m+1, nes besvoriame grafe atstumas tarp dviejų viršūnių negali būti didesnis už m
- Jei viršūnė i nepriklauso viršūnės s jungiajai komponentei, tai d[i] = m+1
- Masyvo *naujas i*-asis elementas lygus 1, jei viršūnė *i* nauja, ir 0, jei nenauja (galima išsiversti ir su masyvu *prec*)
- Paieška platyn organizuojama naudojant eilės duomenų struktūrą

Eilės realizacija

- Eilė realizuota kaip užciklinta eilė
- Naudojamas masyvas *eilė*[1..*n*+1] (*n*+1, nes eilėje sutalpinti *n* viršūnių reikia *n*+1 dydžio masyvo)
- Ištuštinama eilė
 - r := 1; f := 1
- Ar eilė tuščia?
 - Tuščia, jei r = f
- Naujo elemento pridėjimas
 - Jei r = n+1, tai r := 1, kitaip r := r+1
 - Jei r = f, tai perpildyta eilė, baigiame darbą (taip bus tik jei parametrai nekorektiški), kitaip $eil\dot{e}[r] := naujas\ elementas$
- Elemento šalinimas
 - Jei r = f, tai eilė tuščia, baigiame darbą (taip bus tik jei parametrai nekorektiški)
 - Jei f = n+1, tai f := 1, kitaip f := f+1
 - pašalintas elementas := eilė[f]

Procedūra

Visiems masyvo *naujas* elementams priskiriame 1 (visos viršūnės naujos)

Visiems masyvo d elementams priskiriame m+1 (begalybė)

Visiems masyvo prec elementams priskiriame 0

Pradžioje eilė tuščia

Į eilė patalpiname s

naujas[s] := 0

d[s] := 0

prec[s] := s

Kol eilė netuščia

Iš *eilė* pašalinama viršūnė *p*

Viršūnės p nagrinėjimas

Procedūra. Viršūnės p nagrinėjimas

Iteruojame su i nuo lst[p] + 1 iki lst[p+1] (iteruojame per viršūnei p incidentiškų briaunų (lankų) adresus masyve L)

```
u := L[i] (viršūnei p gretima viršūnė u)

Jei naujas[u] = 1 (jei viršūnė u nauja)

d[u] := d[p] + 1 (į u atėjome iš p viena briauna (lanku), todėl d(s, u) yra 1 didesnis nei d(s, p))

prec[u] := p

naujas[u] := 0 (u tampa nebenauja)

Į eil\dot{e} patalpiname u
```


Atlikus trumpiausių kelių paiešką iš pirmos viršūnės (s=1), gausime tokius d ir prec masyvus:

Užd. Raskite trumpiausius kelius nuo 9-tos viršūnės iki likusių viršūnių. Eilės tvarka pavaizduokite pakeitimus *eilė*, *d*, *prec*, masyvuose, kintamųjų *f*, *r*, *p* ir *u* pokyčius. Laikome, kad masyve L kiekvienai viršūnei gretimos viršūnės išrikiuotos didėjimo tvarka.

	I	1	2	3	4	5	6	7	8	9	10	11	12
	d(i)	16	16	16	16	16	16	16	16	16	16	16	16
i		1	2	3	4	5	6	7	8	9	10	11	12
I	orec(i)	0	0	0	0	0	0	0	0	0	0	0	0

r=1 f=1 r=2

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9											
i	1	2	3	4	5	6	7	8	9	10	11	12	
d(i)	16	16	16	16	16	16	16	16	0	16	16	16	
i	1	2	3	4	5	6	7	8	9	10	11	12	
prec(i)	0	0	0	0	0	0	0	0	9	0	0	0	

r = 4

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8									

f = 3

p = 7

u = 1

	i	1	2	3	4	5	6	7	8	9	10	11	12
	d(i)	2	16	16	16	16	16	1	1	0	16	16	16
i		1	2	3	4	5	6	7	8	9	10	11	12
	orec(i)	7	0	0	0	0	0	9	9	9	0	0	0

r = 5

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8	1								

		8	3 9										$\mathbf{u} = 6$
	i	1	2	3	4	5	6	7	8	9	10	11	12
	d(i)	2	16	16	16	16	2	1	1	0	16	16	16
i		1	2	3	4	5	6	7	8	9	10	11	12
p	rec(i)	7	0	0	0	0	7	9	9	9	0	0	0

												r = 6	
i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8	1	6							

u = 8 u = 9 f = 4 p = 8 u = 7 u = 9

f	=	5
p	=	1
u	=	2

i	1	2	3	4	5	6	7	8	9	10	11	12
d(i)	2	3	16	16	16	2	1	1	0	16	16	16
i	1	2	3	4	5	6	7	8	9	10	11	12
prec(i)	7	1	0	0	0	7	9	9	9	0	0	0

r = 7

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8	1	6	2						

$$u = 6$$
$$u = 7$$

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8	1	6	2	3	5				

u = 7

r = 9

f = 7

p = 2

u = 1

u = 6

f = 8

p = 3

u = 5

u = 6

f	=	9
p	=	5
u	=	3
u	=	6
u	=	12

	i	1	2	3	4	5	6	7	8	9	10	11	12
	d(i)	2	3	3	16	3	2	1	1	0	16	16	4
i		1	2	3	4	5	6	7	8	9	10	11	12
1	orec(i)	7	1	6	0	6	7	9	9	9	0	0	5

r = 10

i	1	2	3	4	5	6	7	8	9	10	11	12	13
eilė(i)		9	7	8	1	6	2	3	5	12			

$$f = 10$$

$$p = 12$$

$$u = 5$$

Užd. Raskite trumpiausius kelius nuo 3-ios viršūnės iki likusių viršūnių. Eilės tvarka pavaizduokite pakeitimus *eilė*, *d*, *prec*, masyvuose, kintamųjų *f*, *r*, *p* ir *u* pokyčius. Laikome, kad masyve L kiekvienai viršūnei gretimos viršūnės išrikiuotos didėjimo tvarka.

