MATB24 TUTORIAL PROBLEMS 4, WEEK OF Oct5-9

KEY WORDS: isomorphism, invertible linear transformation, change of coordinate matrix RELEVANT SECTIONS IN THE TEXTBOOK: Sec 3.3, 3.4, 7.1 FB or 3C,3D SA

WARM-UP: As usual, write down a complete definition or a complete mathematical characterization for the following terms.

- An invertible linear transformation
- Give an equivalent condition for a linear transformation being invertible in terms of injectivity and surjectivity.
- Give an equivalent condition for a linear transformation T being invertible in terms of the Kernel and image of T.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Define the $\mathfrak B$ -coordinates of a vector $\vec v \in W$.
- Let $\mathfrak B$ be a an ordered basis for a vector space W. Give an isomorphism between W and $\mathbb R^{\dim W}$

A: In class we said (or will say) a linear transformation respects the structure of a vector space, for instance it maps a subspace to a subspace, the zero vector to zero vector, and so on. In this question you investigate how a linear transformation treats a linear independent set and a spanning set. We use the following result

Lemma 0.1. Let $T: V \to W$ be a linear transformation.

- (1) T is one-to-one if and only if $\ker T = \{0_V\}$.
- (2) T is onto if and only if img(T) = W
- (1) (a) Consider $I=\{e^x,e^{2x},e^{3x}\}$ in \mathcal{F} . I is linearly independent (why?). Let $V=\operatorname{Span}(I)$. Let $T:V\to\mathcal{F}$ be a linear transformation, and suppose

$$T(e^x) = 1$$
, $T(e^{2x}) = \cos^2 x$, $T(e^{3x}) = \sin^2 x$

Write down a formula for T of an arbitrary element of V

- (b) Show that T(I) is not linearly independent.
- (c) Prove that T is not one-to one.¹
- (d) Show that T(I) is not a spanning set for \mathcal{F} .
- (e) Prove that T is not onto.
- (2) Let $T: V \to W$ be a linear transformation. Prove that T(I) is a linearly independent subset of W for every linearly independent subset I of V if and only if T is one to one.²
- (3) Let $T: V \to W$ be a linear transformation. Let S be a spanning set for V. Prove T is onto if and only of T(S) is a spanning set for W.
- (4) Prove that the finite-dimensional vector spaces V and W are isomorphic if and only if $\dim(V) = \dim(W)$.

¹You can find a nonzero vector in the kernel of T

²For every linearly independent subset I is a key information in one of the two directions (which one?)

B:Let $M_{n \times n}$ be the vector space of $n \times n$ matrices.

- (1) Let $P \in M_{n \times n}$. Define the function $T_P : M_{n \times n} \to M_{n \times n}$ by $T_P(A) = PA$ for all $A \in M_{n \times n}$. Is T_P always linear? If so, is T_P ever an isomorphism?
- (2) Let P be an invertible $n \times n$ matrix. Prove that the function $A \mapsto PAP^{-1}$ from $M_{n \times n}$ to $M_{n \times n}$ is an isomorphism. (This transformation is called *conjugation by P*).

C: Let
$$A = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$$
, and consider the bases

$$\mathcal{E} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \quad \text{and} \quad \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\}$$

of the vector space $M_{2\times 2}$ of 2×2 matrices.

- (1) Find $[I_2]_{\mathcal{E}}$ and $[A]_{\mathcal{E}}$. (Recall, for example, $[I_2]_{\mathcal{E}}$ is the coordinate vector of I_2 relative to the ordered basis \mathcal{E} for $M_{2\times 2}$.)
- (2) Find $[I_2]_{\mathcal{B}}$ and $[A]_{\mathcal{B}}$.
- (3) Find a basis C of $M_{2\times 2}$ such that $[A]_C = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$.
- (4) Find a matrix C such that $C[B]_{\mathcal{B}} = [B]_{\mathcal{C}}$ for all B in $M_{2\times 2}$.
- (5) Find a matrix D such that $D[B]_{\mathcal{C}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (6) Find a matrix F such that $F[B]_{\mathcal{B}} = [B]_{\mathcal{E}}$ for all B in $M_{2\times 2}$.
- (7) Draw a diagram relating the linear transformations corresponding to the matrices F, C and D.

COOL-OFF:

- (1) Give three different isomorphism between P_n and \mathbb{R}^{n+1} .
- (2) Give three different isomorphism between $M_{n\times m}(\mathbb{R})$ and $\mathbb{R}^{n\times m}$.
- (3) Let V ad W be F- vector spaces and let $\{\vec{v}_1, \dots, \vec{v}_n\}$ and $\{\vec{w}_1, \dots, \vec{w}_n\}$ be bases for V and W respectively. Construct three different isomorphism between V and W.