

Trabajo Práctico 3

ANÁLISIS POST-OPTIMAL

[71.14] Modelos y Optimización I Primer cuatrimestre 2022 Grupo 5

Integrantes

Mombru	Melanie	103882
Leloutre	Daniela	96783
Guglielmone	Lionel	96963

Índice

1.	Enunciado	2
2.	Problema 1	3
	2.1. Tabla inicial	3
	2.2. Tabla óptima dual	3
	2.3. Definición y relación de variables	3
	2.4. Inciso 1	4
	2.5. Inciso 2	8
3.	Problema 2	12
	3.1. Inciso 3	12
	3.2. Inciso 4	13

1. Enunciado

Seguidamente se plantea una serie de variantes a los problemas originales. Cada una debe resolverse (justificando cómo obtiene las respuestas) en forma independiente a partir de la solución óptima del problema.

Para el Problema 1

Trabajando sobre la tabla de Simplex (ver Anexo) se pide:

- 1) Un socio de la empresa propone realizar proyectos para Norteamérica. Estos proyectos requieren 300 horas de líderes de proyecto, 700 horas de diseñadores de UI, 2500 horas de desarrolladores full-stack y 400 horas de testers; no participan de las demandas mínimas. El beneficio de estos proyectos sería de 2 millones cada uno. ¿Es conveniente tomar este tipo de proyectos? ¿Cuántos proyectos de este tipo convendría realizar? ¿Qué beneficio obtendría la empresa por hacerlo? ¿Qué sucedería si el beneficio fuera de 5 millones cada uno?
- 2) Graficar la curva de oferta de los proyectos locales, el valor del funcional y el valor marginal de las horas de líderes de proyecto al variar la cantidad máxima de proyectos a realizar entre 25 y 50. Justificar cómo obtiene cada gráfico.

Para el Problema 2

Trabajando sobre la corrida de software del set Básico de datos (con las correcciones indicadas en la entrega anterior, si las hubiera) se pide:

- 3) Se puede aumentar la capacidad de recepción de Estambul por vía aérea en 700 toneladas o se podría aumentar la capacidad de Varsovia por tierra en 500 toneladas. ¿Cuál de las dos alternativas será más conveniente? NOTA: las alternativas son excluyentes.
- 4) El BID sumará 200.000 dólares al monto AYUDA. ¿Cuántas toneladas adicionales se podría enviar con este monto? ¿Qué sucedería si, en lugar de 200.000, aportara 400.000 dólares adicionales? NOTA: analizar solicitando a GLPK una corrida con los valores de análisis de sensibilidad para los valores originales.

ANEXO: Tabla óptima de Simplex del Problema 1

Estos son el planteo inicial del problema y su tabla óptima.

X1: Cantidad de proyectos locales [proyectos / semestre]

X2: Cantidad de proyectos regionales [proyectos / semestre]

 Se modeló en pesos por cientos de hora de recursos
 Millones de pesos y cientos de hora de recursos

 Z(max) = X1 + 3 X2

 LP) 2 X1 + 4 X2 <= 140</td>

 DUI) 2 X1 + 6 X2 <= 220</td>

 DFS) 16 X1 + 20 X2 <= 1000</td>

 T) 4 X1 + 2 X2 <= 200</td>

 DM) X1 + X2 <= 45</td>

 Dm1) X1 >= 20

Dm2)

			1	3							
СК	XK	BK	A1	A2	A3	A4	A5	A6	<i>A7</i>	A8	A9
0	X9	15	0	0	1/4	0	0	0	0	1/2	1
0	X4	30	0	0	-3/2	1	0	0	0	-1	0
0	X5	180	0	0	-5	0	1	0	0	6	0
0	Х6	70	0	0	-1/2	0	0	1	0	3	0
0	X7	0	0	0	-1/4	0	0	0	1	1/2	0
1	X1	20	1	0	0	0	0	0	0	-1	0
3	X2	25	0	1	1/4	0	0	0	0	1/2	0
2	Z = 9!	5	0	0	3/4	0	0	0	0	1/2	0

X2 >= 10

2. Problema 1

2.1. Tabla inicial

			1	3								-M	-M
Ck	Xk	Bk	A1	A2	АЗ	A4	A 5	A6	A7	A8	A9	μ1	μ2
0	ХЗ	140	2	4	1	0	0	0	0	0	0	0	0
0	X4	220	2	6	0	1	0	0	0	0	0	0	0
0	X5	1000	16	20	0	0	1	0	0	0	0	0	0
0	X6	200	4	2	0	0	0	1	0	0	0	0	0
0	X7	45	1	1	0	0	0	0	1	0	0	0	0
-M	μ1	20	1	0	0	0	0	0	0	-1	0	1	0
-M	μ2	10	0	1	0	0	0	0	0	0	-1	0	1
		Z=-2M	-M-1	-M-3	0	0	0	0	0	М	М	0	0

2.2. Tabla óptima dual

			140	220	1000	200	45	-20	-10		
Ck	Yk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9
140	Y1	3/4	1	3/2	5	1/2	1/4	0	-1/4	0	-1/4
-20	Y6	1/2	0	1	-6	-3	-1/2	1	-1/2	1	-1/2
		Z=95	0	-30	-180	-70	0	0	-15	-20	-25

2.3. Definición y relación de variables

Definición	Variable directa	Variable dual	Definición
Cantidad de proyectos locales	X1	Y8	Costo de oportunidad de proyectos locales
Cantidad de proyectos regionales	X2	Y9	Costo de oportunidad de proyectos regionales
Sobrante de hs de lideres de proyectos	X3	Y1	Valor marginal de hs de lideres de proyectos
Sobrante de hs de diseñadores UI	X4	Y2	Valor marginal de hs de diseñadores UI
Sobrante de hs de desarrolladores fullstack	X5	Y3	Valor marginal de hs de desarrolladores fullstack
Sobrante de hs de testers	X6	Y4	Valor marginal de hs de testers
Sobrante de proyectos	X7	Y5	Valor marginal de demanda máxima de proyectos
Excedente de proyectos locales	X8	Y6	Valor marginal de demanda mínima de proyectos locales
Excedente de proyectos regionales	X9	Y7	Valor marginal de demanda mínima de proyectos regionales

2.4. Inciso 1

El cambio implica añadir una nueva variable X_{10} para representar los proyectos para Norteamérica. El modelo matemático quedaría:

 X_{10} : Cantidad de proyectos para Norteamérica [proyectos/semestre]

$$Z(max) = X1 + 3X_2 + 2X_{10} \tag{1}$$

$$2X_1 + 4X_2 + 3X_{10} \le 140 \tag{2}$$

$$2X_1 + 6X_2 + 7X_{10} \le 220 \tag{3}$$

$$16X_1 + 20X_2 + 25X_{10} \le 1000 \tag{4}$$

$$4X_1 + 2X_2 + 4X_{10} \le 200\tag{5}$$

$$X_1 + X_2 \le 45 \tag{6}$$

$$X_1 \ge 20 \tag{7}$$

$$X_2 \ge 10 \tag{8}$$

Para saber si es conveniente tomar este tipo de proyectos, se analiza cómo la nueva variable afecta a la tabla óptima. Hacemos primero una estimación previa por el método del lucro cesante:

$$LC = 3\frac{cientos_hs_LP}{proyecto} * \frac{3}{4}\frac{\$}{cientos_hs_LP} + 7\frac{cientos_hs_DUI}{proyecto} * 0\frac{\$}{cientos_hs_DUI} + (9)$$

$$+25\frac{cientos_hs_DFS}{proyecto}*0\frac{\$}{cientos_hs_DFS}+4\frac{cientos_hs_T}{proyecto}*0\frac{\$}{cientos_hs_T}+ \qquad (10)$$

$$+0\frac{unidad}{proyecto}*0\frac{\$}{unidad}+0\frac{unidad}{proyecto}*\frac{1}{2}\frac{\$}{unidad}+0\frac{unidad}{proyecto}*0\frac{\$}{unidad}=2,25\frac{\$}{proyecto} \hspace{0.5cm} (11)$$

Entonces, se estima que el valor del Zj del nuevo producto será 2.25, que es mayor al beneficio de 2 millones de pesos por semestre, por lo cual se puede afirmar que no conviene realizar el nuevo proyecto.

Si el beneficio fuera de 5 millones, entonces el lucro cesante nos dice que puede ser conveniente realizar el nuevo proyecto. Para analizar su conveniencia, incorporamos el nuevo proyecto a la tabla óptima.

Para no tener que resolver todo de nuevo, buscamos la matriz de cambio de base que nos permita expresar el vector en la base inicial. La matriz de cambio de base se obtiene de la expresión en la tabla óptima de los vectores que en la primera tabla eran canónicos. Entonces, la matriz de cambio de base es:

$$\begin{bmatrix} 1/4 & 0 & 0 & 0 & 0 & -1/2 & -1 \\ -3/2 & 1 & 0 & 0 & 0 & 1 & 0 \\ -5 & 0 & 1 & 0 & 0 & -6 & 0 \\ -1/2 & 0 & 0 & 1 & 0 & -3 & 0 \\ -1/4 & 0 & 0 & 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1/4 & 0 & 0 & 0 & 0 & -1/2 & 0 \end{bmatrix}$$

Se multiplica la matriz por los coeficientes de uso de cada recurso:

$$\begin{bmatrix} 1/4 & 0 & 0 & 0 & 0 & -1/2 & -1 \\ -3/2 & 1 & 0 & 0 & 0 & 1 & 0 \\ -5 & 0 & 1 & 0 & 0 & -6 & 0 \\ -1/2 & 0 & 0 & 1 & 0 & -3 & 0 \\ -1/4 & 0 & 0 & 0 & 1 & -1/2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1/4 & 0 & 0 & 0 & 0 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 25 \\ 4 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 3/4 \\ 5/2 \\ 10 \\ 5/2 \\ -3/4 \\ 0 \\ 3/4 \end{bmatrix}$$

Para que sea conveniente el nuevo tipo de proyecto, el Zj - Cj debe ser menor o igual a 0.

$$Z_{10} - C_{10} = \frac{3}{4} * 0 + \frac{5}{2} * 0 + 10 * 0 + \frac{5}{2} * 0 + \frac{-3}{4} * 0 + 0 * 1 + \frac{3}{4} * 3 - 5 = \frac{-11}{4}$$
 (12)

Notamos que al agregar X_{10} a la tabla óptima, como su Zj-Cj es negativo, X_{10} va a entrar a la base. Al entrar X_{10} , el candidato a salir va a ser X_4 por tener el menor $\theta = \frac{Bk}{A_{10}}$.

			1	3									θ
Ck	Xk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9	A10	
0	X9	15	0	0	1/4	0	0	0	0	1/2	1	3/4	20
0	X4	30	0	0	-3/2	1	0	0	0	-1	0	5/2	12
0	X5	180	0	0	-5	0	1	0	0	6	0	10	18
0	X6	70	0	0	-1/2	0	0	1	0	3	0	5/2	28
0	X7	0	0	0	-1/4	0	0	0	1	1/2	0	-3/4	-
1	X1	20	1	0	0	0	0	0	0	-1	0	0	-
3	X2	25	0	1	1/4	0	0	0	0	1/2	0	3/4	33.3
		Z=95	0	0	3/4	0	0	0	0	1/2	0	-11/4	

Hacemos entrar a X_{10} y sacamos a X_4 de la base

			1	3								5	
Ck	Xk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9	A10	θ
0	X9	6	0	0	7/10	0	0	0	0	4/5	1	0	8.6
5	X10	12	0	0	-3/5	2/5	0	0	0	-2/5	0	1	-
0	X5	60	0	0	1	0	1	0	0	10	0	0	60
0	X6	40	0	0	1	0	0	1	0	4	0	0	40
0	X7	9	0	0	-7/10	0	0	0	1	1/5	0	0	-
1	X1	20	1	0	0	0	0	0	0	-1	0	0	-
3	X2	16	0	1	7/10	0	0	0	0	4/5	0	0	22.8
		Z=128	0	0	-9/10	25/2	0	0	0	-3/5	0	0	

Vemos que la tabla todavía no es óptima porque Z3-C3 y Z8-C8 son negativos. Por convención, elegimos a la variable con el Zj-Cj de mayor valor absoluto, en este caso X_3 ; la variable que saldrá de la base es X_9

			1	3								5
Ck	Xk	Bk	A1	A2	Аз	A4	A5	A6	A7	A8	A9	A10
0	ХЗ	60/7	0	0	1	0	0	0	0	8/7	1	0
5	X10	120/7	0	0	0	2/5	0	0	0	2/7	0	1
0	X5	360/7	0	0	0	0	1	0	0	62/7	0	0
0	X6	220/7	0	0	0	0	0	1	0	20/7	0	0
0	X7	15	0	0	0	0	0	0	1	1	0	0
1	X1	20	1	0	0	0	0	0	0	-1	0	0
3	X2	10	0	1	0	0	0	0	0	0	0	0
		Z=950/7	0	0	0	2	0	0	0	3/7	0	0

La tabla es óptima porque todos los Zj-Cj son mayor o igual a 0, además vemos que el funcional aumenta a \$135.7 millones Entonces, podemos concluir que sería conveniente tomar los nuevos proyectos para Norteamérica si estos tuvieran un beneficio de 5 millones cada uno; convendría realizar 120/7 proyectos de este tipo y se obtendría un beneficio total de \$135700000.

2.5. Inciso 2

Para variar la cantidad máxima de proyectos a realizar, se recurre a la tabla óptima dual. Queremos graficar la oferta de los proyectos locales (X_1) , el valor del funcional (Z) y el valor marginal de las horas de líderes de proyecto (Y_1) en función de la cantidad máxima de proyectos a realizar, siendo esta cantidad un valor entre 25 y 50 (C_5) .

Primero, buscamos el rango de variación de C_5 a partir de la tabla óptima dual:

$$Z_5 - C_5 = 140 * \frac{1}{4} + 20 * \frac{1}{2} - C_5 \le 0$$
 (13)

Entonces, $C_5 \ge 45$. Notamos que para este caso, el funcional se mantiene constante en Z = 95, el valor marginal de las horas de líderes de proyectos se mantiene constante en $Y_1 = \frac{3}{4}$ y la oferta de proyectos locales también permanece constante en $X_1 = 20$.

Como tenemos que variar C_5 entre 25 y 50, analizamos qué sucede en el límite cuando $C_5=45$:

			140	220	1000	200	45	-20	-10		
Ck	Yk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9
140	Y1	3/4	1	3/2	5	1/2	1/4	0	-1/4	0	-1/4
-20	Y6	1/2	0	1	-6	-3	-1/2	1	-1/2	1	-1/2
		Z=95	0	-30	-180	-70	0	0	-15	-20	-25

Con C=45, existe una solución alternativa donde entra la variable Y_5 y sale Y_1

			140	220	1000	200	45	-20	-10		
Ck	Yk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9
45	Y5	3	4	6	20	2	1	0	-1	0	-1
-20	Y6	2	2	4	4	-2	0	1	-1	1	-1
		Z=95	0	-30	-180	-70	0	0	-15	-20	-25

Nuevamente, buscamos el rango de variación de C_5

			140	220	1000	200	C5	-20	-10		
Ck	Yk	Bk	A1	A2	АЗ	A4	A5	A6	A7	A8	A9
C5	Y5	3	4	6	20	2	1	0	-1	0	-1
-20	Y6	2	2	4	4	-2	0	1	-1	1	-1
		Z=95	0	-30	-180	-70	0	0	-15	-20	-25

$$Z_1 - C_1 = 4 * C_5 - 20 * 2 - 140 \le 0 (14)$$

$$Z_2 - C_2 = 6 * C_5 - 20 * 4 - 220 \le 0 (15)$$

$$Z_3 - C_3 = 20 * C_5 - 20 * 4 - 1000 \le 0 (16)$$

$$Z_4 - C_4 = 2 * C_5 + 20 * 2 - 200 \le 0 (17)$$

$$Z_7 - C_7 = -1 * C_5 + 20 * 1 + 10 \le 0 (18)$$

$$Z_9 - C_9 = -1 * C_5 + 20 \le 0 (19)$$

Entonces, debe ser 20 $\leq C_5 \leq$ 45. Vemos qué valores toman $Z,\,X_1$ y Y_1 en este rango:

- $Z = 3 * C_5 40$
- $Y_1 = 0$
- $X_1 = 20$

Finalmente, los gráficos se realizan a partir de los valores que toman X_1, Y_1 y Z en los intervalos $C_5 \in [20; 45]$ y $C_5 \in [45; \infty]$

Figura 1: Gráfico del funcional Z en función de ${\cal C}_5$

Figura 2: Gráfico de ${\cal Y}_1$ en función de ${\cal C}_5$

Figura 3: Gráfico de X_1 en función de ${\cal C}_5$

3. Problema 2

3.1. Inciso 3

Analizando los valores de análisis de sensibilidad al correrlo con GLPK, se puede ver que no va a servir aumentar la capacidad de Varsovia por tierra en 500 toneladas, ya que no se ocupa totalmente su capacidad, por lo que al subir la capacidad del destino va a seguir sobrando almacenamiento.

Para la alternativa de Estambul, podemos observar que la capacidad por vía aérea se ocupa totalmente, por lo que quizá sería conveniente tener más espacio, al ver el rango de variación que tiene, notamos que al aumentar en 700 toneladas la capacidad, esta nueva capacidad lo superaría, por lo que no se van mantener las variables en la base.

También podemos notar que tiene un valor marginal igual a cero por lo que al aumentar su capacidad no van a generar un beneficio en el funcional.

Problem: tp2

Objective: z = 8096 (MAXimum)

No.	Row name	St	Activity	${\tt Slack}$	Lower bound	Activity			
				Marginal	Upper bound	range			
190 CAPACIDAD_CENTROS_MEDIOS[ESTAMBUL,AIRE]									
		NU	1400.00000		-Inf	1142.75676			
					1400.00000	1808.00000			
266 CAPACIDAD_DESTINOS_MEDIOS[VARSOVIA,TIERRA]									
		BS	596.00000	2904.00000	-Inf	596.00000			
					3500.00000	2696.00000			

Analizando las dos alternativas, podemos concluir que ninguna de las dos conviene, pero si se tuviera que elegir una si o si, es conveniente la alternativa de poder ampliar el almacenamiento en Estambul vía aérea.

3.2. Inciso 4

Si se aumenta en 200.000 dólares el monto de ayuda, analizando los valores del análisis de sensibilidad, se puede ver que el monto de ayuda se utiliza todo, y que su rango de variación puede aumentar en 200.000 dólares sin que las variables en la base cambien.

Como esto pasa en el dual, las cantidades de ayuda que se distribuyen entre los centros se ven afectadas. Se puede agregar también, que el monto de AYUDA se usa en su totalidad y que su valor marginal es 0 por lo que al aumentarlo, no se enviaran más toneladas adicionales de ayuda.

Si se aportan 400.000 dólares adicionales, va a ocurrir lo mismo que si solo se aportaran los 200.000 dólares, ya que su rango de variación puede aumentar en 600.000 dólares sin que las variables en la base cambien.

Problem: tp2

Objective: z = 8096 (MAXimum)

No.	Row	name	St	Activity	Slack	Lower bound	Activity
					Marginal	Upper bound	range
293 COS	STO_I	LIMITADO					
			NU	1.8e+07		-Inf	3.56885e+06
						1.8e+07	2.59283e+09