Partial Order: $\forall x, y, z \in A$: Reflexive: $x\mathcal{R}x$, Anti-symmetric: $x\mathcal{R}y, y\mathcal{R}x \implies x = y$, Transitive: $x\mathcal{R}y, y\mathcal{R}z \implies x\mathcal{R}z$. Total: $\forall x, y \in A, x\mathcal{R}y \lor y\mathcal{R}x$
Equivalence Relation: $\forall x, y, z \in A$: Reflexive: $x\mathcal{R}x$, Symmetric: $x\mathcal{R}y = y\mathcal{R}x$, Transitive: $x\mathcal{R}y, y\mathcal{R}z \implies x\mathcal{R}z$. Eq. Class: $[x] := \{y \in A : x \sim y\}$
Induction: Base step: (i) P_1 is true. Inductive Hypothesis: (ii) Assume P_n is true for some $n \in \mathbb{N}$. Prove P_{n+1} is true. Then, P_n is true
$\forall n \in \mathbb{N}$. Ordered Fields: A field with a partial order (\leq) s.t.: (i) If $x, y, z \in \mathbb{F}$, $x < y \implies x + z < x + y$, (ii) $x, y \in \mathbb{F}$, $x, y > 0 \implies xy > 0$
Algebraic Number: a is algebraic if it solves $c_n x^n + \cdots + c_1 x + c_0 = 0$ for some $n \in \mathbb{N}, c_0, c_n \in \mathbb{Z}, c_n \neq 0$ (e.g. $\sqrt[n]{2}$. Note: $\mathbb{Q} \subset \{algebraic numbers\}$)
RZT: Suppose $c_0, \dots, c_n \in \mathbb{Z}, \ r \in \mathbb{Q}$ satisfies $c_n r^n + \dots + c_1 r + c_0 = 0$ for some $n \in \mathbb{N}, \ c_n \neq 0$. Let $r = \frac{c}{d}, c, d \in \mathbb{Z}, d \neq 0$, be coprime. Then c, d divides c_0, c_n .
LUBP: Given $A \subseteq \mathbb{E}$ where \mathbb{E} is an ordered set, $\exists \sup A \in \mathbb{E} \iff A \neq \emptyset$, $A \subseteq \mathbb{E}$, A is bounded above. $\sup A := \alpha$, $\exists \alpha, \beta \in \mathbb{E}$ s.t. $\forall a \in A, \ a \leq \alpha \leq \beta$.
GLBP: Given $A \subseteq \mathbb{E}$ where \mathbb{E} is an ordered set, $\exists \inf A \in \mathbb{E} \iff A \neq \emptyset, A \subseteq \mathbb{E}, A$ is bounded below. $\inf A := \alpha, \ \exists \alpha, \beta \in \mathbb{E} \text{ s.t. } \forall a \in A, \ \beta \leq \alpha \leq a.$
Archemedian Property: If $y \in \mathbb{R}$, $x > 0$, then $\exists n \in \mathbb{N}$ s.t. $n \cdot x > y$. Put $x = 1 : \exists n \in \mathbb{N}$ s.t. $n > y$. Put $y = 1 : \exists n \in \mathbb{N}$ s.t. $n \cdot x > 1 \rightsquigarrow x > \frac{1}{n} > 0$.
Density of \mathbb{Q} in \mathbb{R} : $\forall x, y \in \mathbb{R} : x < y, \exists p \in \mathbb{Q} : x < p < y$
Sequence: A function $f: \mathbb{N} \to \mathbb{R} \iff n \mapsto f(n) \iff n \mapsto f_n \text{ e.g. } (1, \frac{1}{2}, \frac{1}{3}, \cdots), \ x_n = \frac{1}{n} \ \forall n \in \mathbb{N}, \ \{x_n : n \in \mathbb{N}\}, \ (x_n)_{n=1}^{\infty}, \ (x_n)_{n=1}^{\infty}$
Convergent: A sequence (x_n) converges to $x \in \mathbb{R}$ if: $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n > N, x_n - x < \varepsilon$. We write $(x_n) \to x$ as $n \to \infty$ or $\lim_{n \to \infty} x_n := x$, where x is the limit of (x_n) .
Divergent: A sequence that does not converge.
Absolute Value: $ x = \{x \text{ if } x \ge 0\}, \ \{-x \text{ if } x < 0\} \implies x \ge 0.$ (i) $ xy = x y $, (ii) $ x-y \le z \iff z \le x - y \le z \iff y - z \le x \le y + z$
Triangle Inequality: $ x+y \le x + y \implies x-y = x+(-z+z)-y \le x-z + z-y \ \forall x,y,z \in \mathbb{R}.$
Unique Limits: $x_n \to x$, $x_n \to y \implies x = y$. $ x - y = x + (-x + x) - y \le x_n - x + x_n - y = \varepsilon$ if $ x_n - x , x_n - y \le \frac{\varepsilon}{2}$.
Algebraic Limit Theorem: $x_n \to x, y_n \to y$: (i) $ax_n \to ax$, (ii) $x_n \pm y_n \to x \pm y$, (iii) $x_n \cdot y_n \to x \cdot y$ (iv) $\frac{x_n}{y_n} \to \frac{x}{y}, y \neq \bar{0}$

Prove inf $S \leq \sup S$:

Proof. Since $S \neq \emptyset$, $S \subseteq \mathbb{R}$, S is bounded above and below, $\inf S$, $\sup S$ exist. Since $S \neq \emptyset$, $\exists s \in S$. By definiation, $\inf S \leq s \leq \sup S$ for all $s \in S$. Taking the extremes of the inequality, we get $\inf S \leq \sup S$.

What if $\inf S = \sup S$? If $\alpha = \inf S = \sup S$, then we know S contains only one element so $\inf S \leq s \leq \sup S \implies \alpha \leq s \leq \alpha \implies s = \alpha$.

Let S and T be nonempty subsets of $\mathbb R$ with the following property: $s \le t$ for all $s \in S$ and $t \in T$. Prove $S \subseteq T \implies \inf T \le \inf S \le \inf S \le \sup T$:

Proof. Since both $S, T \neq \emptyset$, $S, T \subseteq \mathbb{R}$, and bounded, $\inf S, \inf T, \sup S, \sup T$ exist. Then, since $S \subseteq T, \forall s \in S, s \in T$. Since $\forall t \in T, t \leq \sup T$, $\sup T$ is an upper bound for S. Since $\sup S$ is the least upper bound by definition, we have that $\sup S \leq \sup T$. Since $\forall t \in T, \inf T \leq t$, we have that $\inf T$ is a lower bound for S. Since $\inf S$ is the greatest lower bound by definition, we have that $\inf T \leq \inf S$. Note that since $S \neq \emptyset$, $\forall s \in S$, $\inf S \leq s \leq \sup S$, so we get the following inequality: $\inf T \leq \inf S \leq \sup S$.