Seri al No.	Question	COO	Bloo m's Tax ono my Leve	Diff icul ty Lev el	Com petit ive Exa m Que stion Y/N	Area	Topic	U n i t	M a r k s
1	Show that v is an eigenvector of A and find the corresponding eigenvalue. $A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	3	K2	L	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	2
2	Show that v is an eigenvector of A and find the corresponding eigenvalue $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	3	K2	M	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
3	Show that λ is an eigenvalue of A and find one eigenvector corresponding to the eigenvalue. $A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}, \lambda = 3$	3	K2	L	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	2
4	Show that λ is an eigenvalue of A and find one eigenvector corresponding to the eigenvalue. $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}, \lambda = -1$	3	K2	M	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
5	Define characteristic polynomial for a square matrix.	3	K1	L	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	2
6	Define algebraic and geometric multiplicity of the eigenvalue.	3	K1	L	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	2
7	Compute (a) the characteristic	3	K2	M	N	Eigenv	Eigenv	3	6

	polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$					alue proble m	alue, Eigenv ector		
8	Compute (a) the characteristic polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$	3	K2	M	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
9	Compute (a) the characteristic polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$	3	K2	Н	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	9 / 1 0
10	Compute (a) the characteristic polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	3	К2	Н	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	9 / 1 0
11	Compute (a) the characteristic polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	3	K2	Н	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	9 / 1 0
12	Compute (a) the characteristic	3	K2	Н	N	Eigenv	Eigenv	3	9

	polynomial of A , (b) the eigenvalues of A , (c) a basis for each eigenspace of A , and (d) the algebraic and geometric multiplicity of each eigenvalue. $A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 3 \\ 2 & 0 & 1 \end{bmatrix}$					alue proble m	alue, Eigenv ector		/ 1 0
13	Show that if a matrix has non-zero eigenvalues then it is invertible.	3	К3	M	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
14	Show that an eigenvector cannot correspond to two distinct eigenvalues.	3	К3	M	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
15	Show that the eigenvalues of a symmetric matrix are all real.	3	К3	Н	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
16	Show if the trace and determinant of a 3X3 matrix A are positive and negative respectively then matrix A has only one negative eigenvalue, considering all eigenvalues are real.	3	K3	Н	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
17	Let A be the 2x2 matrix with elements $a11 = a12 = a21 = +1$ and $a22 = -1$. Then find the eigenvalues of the matrix A^{19} .	3	K3	M	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
18	Find the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 7 \\ 0 & 0 & 3 \end{bmatrix}.$	3	K2	M	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	2
19	Consider the matrix $A = \begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$. If the eigenvalues of A are 4 and 8 then find x and y.	3	К3	Н	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
20	A matrix has eigenvalues -1 and -2. The corresponding eigenvectors are $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ respectively. Find the matrix.	3	K3	Н	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
21	Show that the eigenvalues of a real	3	К3	M	Y	Eigenv	Eigenv	3	6

	skew-symmetric matrix are either zero or pure imaginary.					alue proble m	alue, Eigenv ector		
22	Find the minimum Eigen value of the matrix $\begin{bmatrix} 3 & 5 & 2 \\ 5 & 12 & 7 \\ 2 & 7 & 5 \end{bmatrix}$.	3	K3	M	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
23	Find the absolute value of the ratio of the maximum eigenvalue to the minimum eigenvalue of the matrix $ \begin{bmatrix} 0 & 1 & -1 \\ -6 & -11 & 6 \\ -6 & -11 & 5 \end{bmatrix}. $	3	K3	M	Y	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	6
24	Define similar matrices.	3	K1	L	N	Diago nalizat ion	Simila r Matrix	3	2
25	Show that <i>A</i> and <i>B</i> are not similar matrices. $A = \begin{bmatrix} 2 & 1 \\ -4 & 6 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 \\ -5 & 7 \end{bmatrix}$	3	K2	L	N	Diago nalizat ion	Simila r Matrix	3	2
26	Show that <i>A</i> and <i>B</i> are not similar matrices. $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$	3	K2	M	N	Diago nalizat ion	Simila r Matrix	3	6
27	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$. $A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$	3	K3	M	N	Diago nalizat ion	Diago nalizat ion	3	6
28	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$. $A = \begin{bmatrix} -3 & 4 \\ -1 & 1 \end{bmatrix}$	3	K3	M	N	Diago nalizat ion	Diago nalizat ion	3	6
29	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$.	3	К3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0

	$A = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$								
30	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$. $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	3	K3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0
31	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$. $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 1 \\ 3 & 0 & 1 \end{bmatrix}$	3	К3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0
32	Determine whether <i>A</i> is diagonalizable and, if so, find an invertible matrix <i>P</i> and a diagonal matrix <i>D</i> such that $P^{-1}AP = D$. $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	3	K3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0
33	Compute $\begin{bmatrix} -4 & 6 \\ -3 & 5 \end{bmatrix}^9$.	3	К3	Н	N	Diago nalizat ion	Power Matrix	3	6
34	Compute $ \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{2018} . $	3	K3	Н	N	Diago nalizat ion	Power Matrix	3	9 / 1 0
35	Find all real values of k for which $(i) \begin{bmatrix} 1 & 1 \\ 0 & k \end{bmatrix}, (ii) \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ are diagonalizable.	3	К3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0
36	Give an example of a 3X3 matrix in support of the statement, "Eigenvectors of a symmetric matrix corresponding to different eigenvalues are orthogonal".	3	K3	Н	N	Eigenv alue proble m	Eigenv alue, Eigenv ector	3	9 / 1 0

37	Compute e^A for $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$.	3	К3	Н	N	Diago nalizat ion	Diago nalizat ion	3	9 / 1 0
38	Define real inner product space and give an example.	3	K1	M	N	Inner produc t space	Inner produc t space	3	2
39	Let $u = (a, b)$ and $v = (c, d)$ be two vectors in \mathbb{R}^2 . Show that $\langle u, v \rangle = (2ac + 3bd)$ defines an inner product.	3	K2	M	N	Inner produc t space	Inner produc t space	3	6
40	Let $u = (a, b)$ and $v = (c, d)$ be two vectors in \mathbb{R}^2 . Show that $\langle u, v \rangle = (ac - bd)$ is not an inner product.	3	K2	M	N	Inner produc t space	Inner produc t space	3	2
41	Define norm (Euclidean norm).	3	K1	L	N	Inner produc t space	Inner produc t space	3	2
42	Define orthogonal set in \mathbb{R}^n .	3	K1	L	N	Inner produc t space	Orthog onal set	3	2
43	Show that {v1,v2,v3} is an orthogonal set in R ³ if v1= (2,1,-1), v2=(0,1,1), v3=(1,-1,1)	3	K2	M	N	Inner produc t space	Orthog onal set	3	2
44	Define orthogonal basis.	3	K 1	L	N	Inner produc t space	Orthog onal basis	3	2
45	Find an orthogonal basis for the subspace W of \mathbb{R}^3 given by $W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x - y + 2z = 0 \right\}$	3	K2	M	N	Inner produc t space	Orthog onal Basis	3	6
46	Define orthonormal set in \mathbb{R}^n .	3	K1	L	N	Inner produc t space	Orthog onal Basis	3	2
47	Show that {q1, q2} is an orthonormal set in R ³ if $q1 = \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, $q2 = \left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$	3	K2	M	N	Inner produc t space	Orthon ormal set	3	2
48	Define orthonormal basis.	3	K1	L	N	Inner	Orthog	3	2

						produc t space	onal Basis		
49	Define orthogonal matrix.	3	K1	L	N	Inner produc t space	Orthog onal matrix	3	2
50	Determine the matrix $A = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{5} \\ \frac{1}{3} & -\frac{1}{2} & \frac{1}{5} \\ -\frac{1}{3} & 0 & \frac{2}{5} \end{bmatrix}$ it is, find its inverse.	3	K2	M	N	Inner produc t space	Orthog onal matrix	3	6
51	Determine the matrix $A = \begin{bmatrix} \cos\theta \sin\theta & -\cos\theta & -\sin^2\theta \\ \cos^2\theta & \sin\theta & -\cos\theta \sin\theta \\ \sin\theta & 0 & \cos\theta \end{bmatrix}$ is orthogonal. If it is, find its inverse.	3	K2	M	N	Inner produc t space	Orthog onal matrix	3	6
52	Define orthogonal projection.	3	K1	L	N	Inner produc t space	Orthog onal Project ion	3	2
53	Let $W = \operatorname{span}(\mathbf{x}_1, \mathbf{x}_2)$, where $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{x}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}. \text{ Construct}$ an orthogonal basis for W.	3	K3	M	N	Inner produc t space	Orthog onal basis	3	6
54	Write the Gram-Schmidt Process.	3	K1	L	N	Inner produc t space	Gram- Schmi dt Proces	3	2
55	Apply the Gram-Schmidt Process to construct an orthogonal basis for the subspace $W = \text{span}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) \text{ of } \mathbf{R}^4$, where	3	K3	Н	N	Inner produc t space	Gram- Schmi dt Proces s	3	9 / 1 0

	$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}$								
56	Find an orthogonal basis for \mathbf{R}^3 that contains the vector $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. (by Gram-Schmidt Process)	3	K3	Н	N	Inner produc t space	Gram- Schmi dt Proces	3	9 / 1 0
57	If the characteristic polynomial of a square matrix M of order 3 over real numbers is $\lambda^3 - 4\lambda^2 + a\lambda + 30$, $a \in \mathbf{R}$, and one eigenvalue of M is 2, then find the largest among the absolute values of the eigenvalues of M .	3	К3	Н	Y	Eigenv alue	Eigenv alue	3	6
58	Let u and v be two vectors in \mathbb{R}^2 whose Euclidean norms satisfy $ u = 2 v $. What is the value of α such that $w = u + \alpha v$ bisects the angle between u and v ?	3	K3	Н	Y	Inner produc t space	angle	3	9 / 1 0
59	The two eigenvalue of a real square matrix of order 3 are 3 and $(2+\sqrt{-1})$. Find the determinant of the matrix.	3	К3	Н	Y	Eigenv alue	Deter minant	3	6
60	Find the determinant of $(A^{-1})^T$ if eigenvalues of A are 1, 2 and 4.	3	K3	Н	Y	Eigenv alue	Deter minant	3	6
61	Find the eigenvalues of a matrix of order n whose all entries are 1.	3	К3	Н	Y	Eigenv alue	Eigenv alue	3	6
62	Find the values of a and b of the matrix $\begin{bmatrix} 1 & 4 \\ b & a \end{bmatrix}$ if the eigenvalues of the matrix are -1 and 7.	3	K3	Н	Y	Eigenv alue	Eigenv alue	3	6