Chapitre 5

Fonction Composée

I. DÉFINITON

Soient u une fonction définie sur un intervalle I et f une fonction définie sur un intervalle J, I étant tel que pour tout réel x de I, $u(x) \in J$.

La fonction *composée* de u par f, notée $f \circ u$ est la fonction définie sur I par :

$$(f \circ u)(x) = f(u(x))$$

$$u \qquad f$$

Intervalles : $I \rightarrow J \rightarrow \mathbb{R}$

Variables: $x \rightarrow u(x) \rightarrow f(u(x))$

FIGURE 5.1. – Schéma de la Fonction Composée

A. EXEMPLES

La fonction $u: x \mapsto u(x) = x^2 + 1$ est définie sur \mathbb{R} , et $f: x \mapsto f(x) = \ln(x)$ est définie sur $[0; +\infty[$, la fonction $f \circ u$ est définie sur \mathbb{R} car $\forall x \in \mathbb{R}$, $u(x) \in]0; +\infty[$, et $(f \circ u)(x) = \ln(x^2 + 1)$.

La fonction $g: x \mapsto g(x) = \sqrt{5x-3}$ est la fonction composée de la fonction affine $x \mapsto 5x-3$ et de la fonction racine carrée. Elle est définie sur $\left[\frac{3}{5}; +\infty\right]$, intervalle sur lequel $5x-3 \in \mathbb{R}^+$.

II. DÉRIVÉE D'UNE FONCTION COMPOSÉE

A. THÉORÈME

Si u est dérivable en un réel a et f est dérivable en u(a) alors $f \circ u$ est dérivable en a et $(f \circ u)'(a) = u'(a) \times f'(u(a))$.

Si u est dérivable sur I et f est dérivable sur J, I étant tel que, pour tout réel x de I, $u(x) \in J$ alors $f \circ u$ est dérivable sur I, et pour tout réel $x \in I$:

$$f(f \circ u)'(x) = u'(x) \times f'(u(x))$$

B. EXEMPLES

Si on appelle h la fonction par $h: x \mapsto h(x) = \ln(x^2 + 1)$, alors h est dérivable sur \mathbb{R} , et pour tout réel x, $h'(x) = \frac{2x}{x^2 + 1}$.

La fonction g ci-dessus, définie par $g: x \mapsto g(x) = \sqrt{5x-3}$, est dérivable sur $\left[\frac{3}{5}; +\infty\right[$, et pour tout $x \in \left[\frac{3}{5}; +\infty\right[$, $g'(x) = \frac{5}{2\sqrt{5x-3}}$.

III. LIMITES D'UNE FONCTION COMPOSÉE

A. THÉORÈME

Soient a, b et c sont trois réels, $+\infty$ ou $-\infty$:

Si
$$\lim_{x \to a} u(x) = \boxed{\boldsymbol{b}}$$
 et $\lim_{X \to \boxed{\boldsymbol{b}}} f(X) = c$ alors, $\lim_{x \to a} f(u(x)) = c$

B. EXEMPLE

Soit
$$g: x \mapsto g(x) = e^{-x^2}$$
:
$$\lim_{x \to +\infty} -x^2 = -\infty \quad \text{et} \quad \lim_{x \to +\infty} e^X = 0 \quad \text{donc} \quad \lim_{x \to +\infty} g(x) = 0$$