Chapter 10: Circles

Review of Basic Concepts: 10:1-10:4

1. Given: Circle O with radius $\overrightarrow{OB} \perp$ to chord \overrightarrow{AC}

Conclusions:

2. If a radius bisects a chord, then

AX SCV

the radius is I to the chord

3. Given: Circle X with chord \overline{TW} bisecting chord \overline{SQ} .

a Sometimes, Always, Never: $\overline{TW} \perp \overline{SQ}$ Draw a diagram to defend your answer

only true if one chord is a dumeter

b) If $\overline{TW} \perp \overline{SQ}$ what can you conclude about \overline{TW} or $\overline{SQ?}$

one is the diameter

4. Given: In the same circle, Chords AB and CD are congruent

Draw your own diagram and label

Conclusions:

The distances from the center 5. are =

Given: AB and AC are tangent to circle O and to circle X. Mark all the relationships you know are true.

6. A 4-inch chord is 2 inches from the center of the circle. Find the diameter of the circle and the measure of the minor arc made by the chord.

radius =
$$2\sqrt{2}$$
 in diam = $4\sqrt{2}$ in minor arc = 90°

7. Review the common external and common internal tangent problems. Draw diagrams of each type of tangent.

- · draw radii to points of tangency
- · draw line of centers
- · draw a line parallel to common tangent through the center of smaller of le created rectangle & right D

8. Review Walk around problems

Tangent - Tangent Thm

