## درس یادگیری ماشین استاد سید عباس حسینی



مصطفى قديمي

Decision Tree and Ensemble Learning

تمرین ششم

## سؤال ۱. ماشین بردار پشتیبان

- الف)
- یک)
- دو)
- سه)
- چهار)
  - ب)
    - پ)
- یک)
- دو)
- سه)
- چهار)
- پنج)

## سؤال ٢. هسته

• الف)

 $K_2$  و  $K_1$  و میتند؛ بنابراین ماتریس هسته  $k_1(x,x')$  و  $k_1(x,x')$  دو هسته  $k_2(x,x')$  از آنجایی که میدن هستند. پس اگر فرض کنیم که ورودی های x و x هر دو مثبت نیمه معین هستند. پس اگر فرض کنیم که ورودی های x و x هر دو مثبت نیمه معین هستند.

$$k_3(x, x') = (x^T x')^2 = (x_1 x'_1 + x_2 x'_2)^2 = x_1^2 x'_1^2 + 2x_1 x'_1 x_2 x'_2 + x_2^2 x'_2^2$$

$$\implies k_3(x, x') = (x_1^2, \sqrt{2}x_1 x_2, x_2^2)(x'_1^2, \sqrt{2}x'_1 x'_2, x'_2^2) = \phi(x)^T \phi(x')$$

با توجه به نتیجهی بالا داریم:

 $k_3 = k_1 + k_2$ 

پس  $k_3$  نیز مثبت نیمه معین بوده و ثایت شد که معتبر نیز هست.

و تابع نگاشت هسته ی  $\phi^{(2)}(x)$  ،  $k_1$  و تابع نگاشت هسته ی  $\phi^{(1)}(x)$  با ابعاد M و تابع نگاشت هسته ی  $\phi^{(2)}(x)$  با ابعاد M است، داریم:

$$k_4(x,x') = k_1(x,x')k_2(x,x') = \phi^{(1)}(x)^T \phi^{(1)}(x')\phi^{(2)}(x)^T \phi^{(2)}(x') = \sum_{i=1}^M \phi_i^{(1)}(x)\phi_i^{(1)}(x')\sum_{j=1}^N \phi_j^{(2)}(x)\phi_j^{(2)}(x')$$

$$\implies k_4(x,x') = \sum_{i=1}^M \sum_{j=1}^N [\phi_i^{(1)}(x)\phi_j^{(2)}(x)][\phi_i^{(1)}(x')\phi_j^{(2)}(x')] = \sum_{k=1}^M N\phi_k(x)\phi_k(x') = \phi(x)^T \phi(x')$$

$$\implies \phi_i^{(2)}(x) \text{ of } \phi_i^{(2)}$$

- سه) از آنجایی که  $k_1(x,x')=\phi(x)^T\phi(x')$  میتوان نوشت.

$$k_5(x, x') = ck_1(x, x') = \left[\sqrt{a}\phi(x)\right]^T \left[\sqrt{a}\phi(x')\right]$$

که با توجه به فرض  $a \ge 0$  ثابت می شود.

- چهار) اگر بسط تیلور را بنویسیم داریم:

$$k_6(x, x') = a_n k_1(x, x')^n + a_{n-1} k_1(x, x')^{n-1} + \dots + a_1 k_1(x, x') + a_0$$

حال با استفاده از نتایج سه قسمت قبل و با توجه به این که همهی ضرایب بسط تیلور مثبت است، پس این هسته نیز یک هستهی معتبر است.

• ب) با توجه به اینکه تابع هسته را میتوان آن را به شکل ضرب داخلی در فضای ویژگی نوشت، پس هسته ی معتبر است. برای اثبات باید به رابطه ی  $k(A,B) = 2^{|A\cap B|} = \phi(A)^T\phi(B)$  برسیم.

اگر

$$\phi_U(X) = \begin{cases} 1 & if \ U \subseteq X \\ 0 & otherwise \end{cases}$$

باشد، داریم:

$$\phi(A)^T \phi(B) = \sum_{U \subseteq |A \cap B|} \phi_U(A) \phi_U(B)$$

با استفاده از سیگما (جمع کردن) در رابطهی بالا، همهی زیرمجموعههای ممکن  $|A \cap B|$  را اگر و تنها اگر همه زیرمجموعه A و B باشد (مقدار برابر با ۱) داریم. با این کار تعداد زیرمجموعههای اشتراک A و B در فضای B را محاسبه کرده ایم. علاوه براین هم A و هم B به عنوان زیرمجموعه ی فضای B معرفی شده اند، بنابراین:

$$\phi(A)^T\phi(B) = 2^{|A\cap B|}$$

– یک)

$$k(x, x') = (x^{T}.x' + c)^{2} = k\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{d} \end{pmatrix}, \begin{pmatrix} x'_{1} \\ x'_{2} \\ \vdots \\ x'_{d} \end{pmatrix}) = (c + x_{1}x'_{1} + x_{2}x'_{2} + \dots + x_{d}x'_{d})^{2}$$

 $\implies k(x, x') = c^2 \sum_{i=1}^d x_i^2 x_i'^2 + \sum_{i=1}^d 2c x_i x_i' + \sum_{i=1}^{d-1} \sum_{j=i+1}^d 2x_i x_i' x_j x_j'$ 

$$\implies k(x, x') = \begin{pmatrix} c & x_1^2, \dots, x_d^2, & \dots & \sqrt{2c}x_d \end{pmatrix} \begin{pmatrix} c \\ x_1', \dots, x_d' \\ \vdots \\ \sqrt{2c}x_d' \end{pmatrix}$$

$$\implies k(x, x') = \phi(x)^T \phi(x')$$

c دو) اگر c=0 باشد، آنگاه فضای تبدیل c=0 بعد کاهش مییابد؛ زیرا تعداد جملاتی که در آن c ضرب شده است، c=0 است که با صفر شدن آن حذف می شوند.

– سه)

$$k(x, x') = (x^T . x' + c)^M$$

با توجه به توضیحاتی که در این لینک داده شده است، تعداد جملات برابر با:

# of expressions = 
$$\begin{pmatrix} M+d+1-1\\d+1-1 \end{pmatrix}$$
 =  $\begin{pmatrix} M+d\\d \end{pmatrix}$ 

سؤال ٣. درخت تصميم

سؤال ۴. یادگیری جمعی

- الف) ب)

سؤال ۵. Adaboost