CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL

Investigación 8

Profesor: Mauricio Alejandro Cabrera Arellano

Alumno: Ángel de Jesús Mejía Suárez

21310182

6°G

Materia: Visión Artificial

12 de mayo de 2025

Explicame acerca de las Redes Neuronales: Introducción a Redes Neuronales. Funciones de activación. Función de costo. Optimizador. Perceptrón. Perceptrón Multicapa. Redes Neuronales Convolucionales.

Aquí tienes una explicación formal, clara y detallada sobre Redes Neuronales, incluyendo cada uno de los temas solicitados:

1. Introducción a Redes Neuronales

Las redes neuronales artificiales (**ANN**, Artificial Neural Networks) son modelos computacionales inspirados en el funcionamiento del cerebro humano. Están compuestas por capas de **neuronas interconectadas** que aprenden patrones mediante entrenamiento supervisado o no supervisado.

Componentes principales:

- Neuronas: unidades básicas que reciben entradas, aplican una transformación y producen una salida.
- Capas: organizan las neuronas en estructuras secuenciales o jerárquicas.
 - Entrada (Input layer)
 - Capas ocultas (Hidden layers)
 - Salida (Output layer)
- Pesos (weights): parámetros ajustables que determinan la influencia de cada entrada.

2. Funciones de Activación

La función de activación introduce no linealidad en las neuronas, permitiendo que la red aprenda relaciones complejas.

Funciones comunes:

Sigmoide:

$$f(x) = \frac{1}{1 + e^{-x}}$$

o Salida entre 0 y

1; útil en clasificación binaria.

Tangente Hiperbólica (tanh):

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- o Salida entre -1 y 1; mantiene valores centrados.
- ReLU (Rectified Linear Unit):

$$f(x) = \max(0, x)$$

- o Muy popular por su simplicidad y eficiencia en entrenamiento.
- Softmax:

$$f(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$$

- o Utilizada en clasificación multiclase; produce probabilidades.
- * 3. Función de Costo (Loss Function)

Mide el error entre las predicciones de la red neuronal y los valores reales esperados. El entrenamiento busca minimizar esta función.

Funciones comunes:

Error cuadrático medio (MSE):

$$J = \frac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2$$

• Entropía cruzada (Cross-Entropy) (clasificación):

$$J = -\sum_{i=1}^{n} (y_i \log(\hat{y}_i))$$

📌 4. Optimizador

Es el algoritmo que ajusta los pesos de la red para minimizar la función de costo durante el entrenamiento.

Optimizadores comunes:

 Descenso del gradiente (Gradient Descent): Método básico, actualiza los pesos según el gradiente del error.

$$w = w - \eta \frac{\partial J}{\partial w}$$

- SGD (Stochastic Gradient Descent): Usa muestras individuales o pequeños lotes; es eficiente y rápido.
- Adam: Combinación adaptativa de tasas de aprendizaje, ampliamente usado por su rapidez y precisión.

📌 5. Perceptrón

Es la red neuronal más simple y consiste en una sola neurona artificial que realiza una clasificación lineal binaria.

Funcionamiento básico:

Calcula una suma ponderada de entradas:

$$z = \sum_i w_i x_i + b$$

 Aplica una función escalón o sigmoide para clasificar la entrada en una de dos clases.

Limitación:

Sólo puede resolver problemas linealmente separables.

📌 6. Perceptrón Multicapa (MLP)

Extensión del perceptrón simple, con múltiples capas ocultas. Capaz de aprender relaciones no lineales complejas.

Características principales:

- Tiene al menos una capa oculta.
- Emplea funciones de activación no lineales (ReLU, tanh, sigmoide).
- Entrenado mediante el algoritmo de propagación hacia atrás (backpropagation).

Aplicaciones típicas:

- Clasificación de datos complejos.
- Regresión de series temporales.
- Reconocimiento de patrones.

7. Redes Neuronales Convolucionales (CNN)

Son redes especializadas en el procesamiento de datos estructurados en forma de matrices, como imágenes. La estructura convolucional permite extraer patrones espaciales eficientemente.

Capas principales de una CNN:

Capa convolucional:

Aplica filtros para detectar patrones locales.

- Extracción de características visuales (bordes, texturas).
- Capa de activación (ReLU):
 Añade no linealidad tras la convolución.

- Capa de Pooling (Agrupación):

 Reduce dimensionalidad espacial y mantiene características esenciales.
 - Ejemplo: Max Pooling, Average Pooling.
- Capas completamente conectadas (Fully Connected):

 Clasifican características extraídas por capas convolucionales.

Aplicaciones populares:

- Reconocimiento de imágenes.
- Detección de objetos.
- Clasificación facial y biométrica.

Resumen comparativo:

Tipo de red	Complejidad Capacidad		Aplicaciones típicas	
Perceptrón	Baja	Limitada (lineal)	Clasificación simple	
Perceptrón Multicapa	Media-Alta	Alta (no lineal)	Problemas generale clasificación y regresión	
CNN	Alta	Muy alta (patrone espaciales)	es Procesamiento imágenes, video	visual,

Ahora explicame acerca de la clasificación y localización de objetos en imágenes, así como de la clasificación binaria y la clasificación multiclase.

Aquí tienes una explicación clara, detallada y formal sobre la clasificación y localización de objetos en imágenes, así como la clasificación binaria y multiclase en el contexto del procesamiento de imágenes y aprendizaje automático.

region de Objetos en Imágenes

Conceptos básicos:

- Clasificación: Identificar o etiquetar el objeto principal presente en una imagen.
- Localización: Además de identificar qué objeto aparece, se determina su posición exacta mediante un rectángulo delimitador (bounding box).

Proceso general:

1. Extracción de características:

Las redes neuronales extraen patrones visuales de la imagen.

2. Clasificación:

Una red neuronal asigna una clase específica (persona, vehículo, animal, etc.) al objeto.

3. Localización:

Se predicen coordenadas que describen la ubicación exacta del objeto (normalmente usando coordenadas (x, y, ancho, alto)).

Modelos populares:

- YOLO (You Only Look Once)
- SSD (Single Shot Detector)
- Faster R-CNN

Estos métodos combinan ambas tareas en un único modelo eficiente.

🖈 Clasificación Binaria vs Clasificación Multiclase

En procesamiento de imágenes, ambos tipos de clasificación son fundamentales:

Clasificación Binaria:

- Implica decidir entre dos categorías o clases.
- Ejemplos prácticos:
 - Detección facial (cara/no cara).
 - Diagnóstico médico (enfermedad/no enfermedad).

Modelos típicos:

- Perceptrón simple
- Regresión logística
- Redes neuronales sencillas

Clasificación Multiclase:

- Consiste en identificar un objeto entre tres o más clases posibles.
- Ejemplos:
 - Clasificación de animales (perro, gato, caballo).
 - Reconocimiento de caracteres (A-Z).

Modelos típicos:

- Redes neuronales convolucionales (CNN)
- Máquinas de soporte vectorial (SVM multiclase)
- Clasificadores basados en árboles (Random Forest)

Métricas de evaluación importantes:

Para ambos casos, se emplean métricas específicas que miden la calidad del modelo:

• **Exactitud (Accuracy)**: Proporción de predicciones correctas.

$$\label{eq:accuracy} \begin{aligned} \text{Accuracy} &= \frac{\text{Predicciones correctas}}{\text{Total de predicciones}} \end{aligned}$$

 Precisión (Precision): Proporción de verdaderos positivos sobre todos los positivos predichos.

$$Precision = \frac{TP}{TP + FP}$$

 Recall (Sensibilidad): Proporción de verdaderos positivos detectados respecto al total real de positivos.

$$\text{Recall} = \frac{TP}{TP + FN}$$

 Matriz de confusión: Herramienta para evaluar desempeño y tipos de errores cometidos.

Ejemplo comparativo de ambos enfoques en visión artificial:

Tipo Clasificación	Número de clases	Aplicación típica	Modelos comunes
Binaria	Dos (0 y 1)	Rostro / No rostro	Regresión logística, Perceptrón
Multiclase	Múltiples (>2)	Reconocimiento especies, OCR	CNN, SVM, Random Forest

Clasificación vs Detección vs Segmentación

Es importante no confundir estos términos:

- Clasificación: ¿Qué objeto está presente?
- Detección: ¿Qué objeto está presente y dónde está ubicado (bounding box)?
- Segmentación: ¿Cuál es la forma exacta del objeto (nivel de píxeles)?

Cada tarea tiene un nivel de complejidad y uso específico en visión artificial.

Explicame acerca de la Detección de objetos. Así como de: Detección de un objeto. Detección de múltiples objetos.

Aquí tienes una explicación clara, formal y detallada sobre la **detección de objetos en imágenes**, enfocada en las diferencias entre detección de **un solo objeto** y detección de **múltiples objetos**.

Detección de Objetos (Object Detection)

La detección de objetos es un área dentro de la visión artificial y aprendizaje automático que busca identificar y localizar objetos específicos en imágenes o secuencias de video. Esta tarea combina dos elementos fundamentales:

- Clasificación: Determinar qué clase de objeto aparece en la imagen.
- Localización: Precisar la ubicación del objeto mediante rectángulos delimitadores (bounding boxes).

Detección de un objeto (Single Object Detection)

La detección de un único objeto consiste en identificar y localizar un solo objeto de interés en una imagen, suponiendo que únicamente aparece un objeto relevante.

Proceso general:

Selección de características:
 Identificación de patrones visuales específicos del objeto buscado.

2. Clasificación:

Se determina si la imagen contiene o no el objeto objetivo.

3. Localización:

Se indica la posición exacta del objeto mediante un rectángulo.

Ejemplo típico:

- Detección facial en fotografías individuales.
- Detección de un automóvil específico en una escena.

Técnicas usadas:

- Template matching (comparación de plantillas).
- Redes neuronales convolucionales (CNN).
- HOG + SVM (Histogram of Oriented Gradients + Support Vector Machine).

Detección de múltiples objetos (Multiple Object Detection)

La detección de múltiples objetos es una tarea más compleja, en la cual se busca localizar y clasificar varios objetos simultáneamente en una misma imagen.

Proceso general:

Extracción global de características:
 El modelo analiza la imagen completa identificando múltiples regiones potenciales.

2. Localización simultánea:

El modelo genera múltiples rectángulos (**bounding boxes**) indicando posiciones y tamaños de objetos.

3. Clasificación múltiple:

Cada bounding box es clasificado en una categoría específica.

Ejemplo típico:

- Detección de múltiples peatones y vehículos en escenas urbanas.
- Detección de diferentes productos en anaqueles comerciales.

Técnicas usadas (modelos populares):

- YOLO (You Only Look Once):
 - Procesa toda la imagen una sola vez.
 - o Es muy rápido y eficiente para videos en tiempo real.
- SSD (Single Shot MultiBox Detector):
 - Similar a YOLO, eficiente y balanceado entre velocidad y precisión.
- R-CNN, Fast R-CNN, Faster R-CNN:
 - Técnicas basadas en propuesta de regiones que alcanzan alta precisión a costo de mayor procesamiento.

🖈 Comparación entre Detección Única y Múltiple:

Detección de Detección de múltiples objetos Aspecto objeto Complejidad Baja/Media Alta Velocidad Alta Media/alta (depende del modelo) reconocimiento Seguridad, conducción Aplicaciones Facial, autónoma, vigilancia, comercio simple comunes CNN HOG/SVM, YOLO, SSD, Faster R-CNN Técnicas comunes simples

🖈 Consideraciones Importantes en Detección de Objetos:

- Velocidad vs precisión:
 Se escoge la técnica según las necesidades del proyecto. Técnicas rápidas
 (YOLO, SSD) frente a precisas pero más lentas (Faster R-CNN).
- Tamaño del dataset de entrenamiento:
 Se necesitan muchas imágenes etiquetadas para entrenar un modelo efectivo.

Problemas típicos:

- Objetos solapados
- o Cambios de iluminación
- Diversidad de perspectivas
- Escala variable