

Automated Structured Radiology Report Generation

Jean-Benoit Delbrouck, Justin Xu, Johannes Moll, Alois Thomas, Zhihong Chen, Sophie Ostmeier, Asfandyar Azhar, Kelvin Zhenghao Li, Andrew Johnston, Christian Bluethgen, Eduardo Reis, Mohamed Muneer, Maya Varma, Curtis Langlotz

What is structured reporting?

Generating radiology reports using strict, templatedriven rules to ensure clear, consistent, and standardized clinical documentation.

EXAMPLE

Findings:

Cardiovascular:

Lungs and Airways: - Mild pulmonary edema, slightly increased.

Pleura: - No significant pleural effusion.

- Moderate enlargement of the cardiac silhouette,

stable.

Impression: 1. Slight increase in mild pulmonary edema.

2. Stable moderate enlargement of the cardiac silhouette.

Motivation

- Free-form reports make it hard for AI systems to learn accurate generation
- Generated free-form reports are difficult to evaluate
- Structured reports are easier to read and understand
- Structured reporting can benefit downstream machine learning applications

Our Contributions

- We create a **novel dataset** by restructuring reports using large language models (LLMs) following strict structured reporting desiderata
- 2. We introduce SRR-BERT, a **fine-grained disease classification model** trained on 55 labels.
- 3. We introduce a **new evaluation framework** for structured radiology reporting.
- 4. We **fine-tune popular RRG systems** (CheXagent, MAIRA-2, RaDialog, and CheXpert-Plus) on the restructured findings and impressions.

Our Approach: SRRG

Traditional methods generate unstructured reports that vary in style and clarity, making automated evaluation challenging. In contrast, **SRRG** enforces a **standardized format with anatomical section headers**. This structured format enables more granular anatomy-level and utterance-level evaluations, including our proposed F1-SRR-BERT metric, which complements traditional report-level evaluation metrics.

Dataset Generation

We structured our dataset to align with the Radiology Report Generation (RRG) task by specifically mapping chest X-ray images to:

Findings (X-ray → Findings)

Impressions (X-ray →Impression).

Dataset	Split	Num. Examples				
SRRG-Impression	Train	405,972				
	Validate	1,505				
	Test	2,219	Dataset	Split	Num. Examples	
	Test Reviewed	231		Train	1,203,332	
	Total	409,927	Ctmv at I Ittaman and	Validate	150,417 150,417	
SRRG-Findings	Train	181,874	StructUtterances	Test		
	Validate	976		Test Reviewed	1,609	
	Test	1,459		Total	1,506,158	
	Test Reviewed	233	-			
	Total	184,542				

We then annotate all utterances in our SRRG datasets, where an utterance is defined as either a single-sentence finding or a numbered impression. This process results in 1,506,158 utterances annotated with 1,782,983 labels.

Our reader study, conducted by board-certified radiologists, confirms the quality of both the structured reports and annotated disease labels.

Experiments

Disease Classification Model: To benchmark disease classification, we fine-tune CXR-BERT (Boecking et al., 2022) on weakly-labeled utterances in the StructUtterances dataset and compare it to CheXbert.

	Precision	Recall	F1-Score	Support				
Mapped with Leaves								
Utterances								
CheXbert	0.69	0.64	0.65	1,759				
SRR-BERT	0.88	0.88 0.82		1,759				
Full Reports								
CheXbert	0.73	0.59	0.62	260				
SRR-BERT	0.84	0.48	0.58	260				
Mapped with Upper								
Utterances								
CheXbert	0.70	0.48	0.50	2,004				
SRR-BERT	0.90	0.84	0.86	2,004				
Full Report								
CheXbert	0.80	0.49	0.56	278				
SRR-BERT	0.89	0.60	0.70	278				

Structured RRG Benchmark: We benchmark four distinct models: MAIRA-2 (Bannur et al., 2024), CheXagent (Chen et al., 2024), CheXpert-Plus (Chambon et al., 2024), and RaDialog (Pellegrini et al., 2023).

SRRG-Impression (unaligned)		Traditional Metrics				F1-SRR-BERT		
Model	Split	BLEU	ROUGE-L	BERTScore	F1-RadGraph	Precision	Recall	F1-Score
CheXagent	Validate	7.86	28.94	60.55	20.62	50.02	56.32	50.60
CheXagent	Test	6.95	27.18	61.51	19.70	49.78	56.47	50.63
CheXagent	Test Reviewed	4.68	26.10	59.70	18.33	45.24	56.70	48.64
CheXpert-Plus	Validate	16.86	33.42	62.74	27.74	54.40	51.26	50.26
CheXpert-Plus	Test	14.84	28.01	60.76	22.14	48.74	47.60	46.48
CheXpert-Plus	Test Reviewed	14.07	26.79	59.21	18.89	43.46	48.15	44.56
MAIRA-2	Validate	9.66	31.50	62.84	23.21	52.53	61.16	54.46
MAIRA-2	Test	8.12	27.82	62.30	20.37	48.72	57.91	50.36
MAIRA-2	Test Reviewed	5.28	26.61	60.79	19.08	44.80	57.69	47.97
RaDialog	Validate	5.35	23.93	57.74	15.27	39.80	52.41	40.70
RaDialog	Test	3.32	21.59	57.48	12.32	37.30	50.59	39.22
RaDialog	Test Reviewed	3.33	19.95	54.82	10.26	33.65	50.71	36.39

Takeaway: SRRG improves consistency compared to existing free-form generation methods.

Additional Information

