Evolution of imitation structures

František Slanina & Hynek Lavička

Institute of Physics, Academy of Sciences of the Czech Republic, Prague

slanina@fzu.cz

www.fzu.cz/~slanina/

- Imitation dilemma
- Minority game with imination
- Linear chain
- Complex network
- Role of information cost

Stock correlations [G. Bonanno, F. Lillo, R. N. Mantegna, Quantitative Finance 1, 96

(2001).]

Ultrametric structure. Colors distinguish sectors, e.g. energy (blue), finance (green) etc.

Time horizon 6h 30min.

Stock correlations [G. Bonanno, F. Lillo, R. N. Mantegna, Quantitative Finance 1, 96

(2001).]

Ultrametric structure. Colors distinguish sectors, e.g. energy (blue), finance (green) etc.

Time horizon 6h 30min.

Minimum spanning tree.

Stock correlations [G. Bonanno, F. Lillo, R. N. Mantegna, Quantitative Finance 1, 96

(2001).]

Ultrametric structure. Colors distinguish sectors, e.g. energy (blue), finance (green) etc.

Time horizon 6h 30min.

Minimum spanning tree.

... Imitation (& other factors...)

Imitation dilemma

No imitation: fair game.

Imitation dilemma

No imitation: fair game.

Imitation provides comparative advantage.

Imitation dilemma

No imitation: fair game.

Imitation provides comparative advantage.

Too much imitation is harmful.

N agents, actions $a_i(t) \in \{-1, +1\}$

N agents, actions $a_i(t) \in \{-1, +1\}$ Attendance $A(t) = \sum_{i=1}^{N} a_i(t)$

N agents, actions $a_i(t) \in \{-1, +1\}$

Attendance $A(t) = \sum_{i=1}^{N} a_i(t)$

Minority rewarded: $W_i(t) - W_i(t-1) = -a_i(t) \operatorname{sign} A(t)$

Social organization [F. Slanina, Physica A 286, 367 (2000); Physica A 299, 334 (2001).]

Agents on social network imitate more successfull neighbors with probability p (and pay for it)

Leaders

Imitators

Potential imitators

Information flow

Social organization [F. Slanina, Physica A 286, 367 (2000); Physica A 299, 334 (2001).]

Agents on social network imitate more successfull neighbors with probability p (and pay for it)

Time evolution

number of domains, for N = 1001,

$$M=6$$
 (\circ and \square), $M=10$ (\triangle and \diamond),

$$\epsilon = 0.003$$
 (\Box and \triangle) and $\epsilon = 0.01$ (\circ and \diamond)

Time evolution

number of domains, for N = 1001, $M=6 \ (\circ \text{ and } \Box), M=10 \ (\triangle \text{ and } \diamond),$

Largest domain, for N = 1001M=6 (\circ and \square), M=10 (\triangle and \diamond) $\epsilon = 0.003$ (\Box and \triangle) and $\epsilon = 0.01$ (\circ and \diamond) $\epsilon = 0.003$ (\Box and \triangle) and $\epsilon = 0.01$ (\circ and \diamond)

Domain distribution

At times t = 694 (\diamond), t = 6157 (\triangle), t = 12741 (\square), and t = 26365 (\circ).

The parameters of the model are $N=1001,\,M=6,\,\epsilon=0.003.$

Barabási-Albert graph

Domain sizes

$$\epsilon=0.0$$
 (\Box), $\epsilon=0.01$ (\triangle), $\epsilon=0.1$ (\circ)

Barabási-Albert graph

Domain sizes

$$\epsilon = 0.0$$
 (\square), $\epsilon = 0.01$ (\triangle), $\epsilon = 0.1$ (\circ)

Number of followers

$$\epsilon=0.0$$
 (\Box), $\epsilon=0.01$ (\triangle), $\epsilon=0.1$ (\circ). Line: $\sim d^{-2}$.

Forking

Forking distribution: all agents

$$\epsilon=0.0$$
 (\Box), $\epsilon=0.1$ (\circ), $\epsilon=0.001$ (\diamond)

Forking

Forking distribution: all agents

$$\epsilon=0.0$$
 (\square), $\epsilon=0.1$ (\circ), $\epsilon=0.001$ (\diamond)

$$\epsilon = 0.0$$
 (\square), $\epsilon = 0.01$ (\triangle), $\epsilon = 0.1$ (\circ)

Wealth

Wealth distribution.

$$\epsilon=0.1$$
 (\circ), $\epsilon=0.01$ (\Box), $\epsilon=0.001$ (\triangle). Line: $\sim \widetilde{W}^{-2}$

Wealth

Wealth distribution.

$$\epsilon=0.1$$
 (\circ), $\epsilon=0.01$ (\Box), $\epsilon=0.001$ (\triangle). Line: $\sim \widetilde{W}^{-2}$

Wealth vs. degree

$$\epsilon = 0.0$$
 (\square), $\epsilon = 0.1$ (\circ), $\epsilon = 0.01$ (\triangle).

- 1. linear chain
- wealth profile

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains
- detto in forking distribution

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains
- detto in forking distribution
- detto in wealth distribution

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains
- detto in forking distribution
- detto in wealth distribution
- "supersaturation" in forking

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains
- detto in forking distribution
- detto in wealth distribution
- "supersaturation" in forking
- wealth proportional to degree

- 1. linear chain
- wealth profile
- 2. complex network (e. g. BA)
- power-law in distribution of domains
- detto in forking distribution
- detto in wealth distribution
- "supersaturation" in forking
- wealth proportional to degree
- combined with imitation creates "rich gets richer"

