# Computer Networks

# Lecture 6a: Interconnecting LANs

# Just Above the Data Link Layer

Application Presentation Session Transport Network Data Link **Physical** 

- Bridging
  - How do we connect LANs?
- Function:
  - Route packets between LANs
- Key challenges:
  - Plug-and-play, self configuration
  - How to resolve loops

Originally, Ethernet was a broadcast technology



- - Hardware is stupid and cheap
- Cons: No scalability
  - More hosts = more collisions = pandemonium

# Bridging the LANs



- Question: could the whole Internet be one bridging domain?
- Tradeoff: bridges are more complex than hubs
  - Physical layer device vs. data link layer device
  - Need memory buffers, packet processing hardware, routing tables

- Original form of Ethernet switch
- 1. Forwarding of frames
  - 2. Learning of (MAC) Addresses
  - 3. Spanning Tree Algorithm (to handle loops)
    - No hardware of software changes on hosts/hubs
    - Should not impact existing LAN operations



# Frame Forwarding Tables

Each bridge maintains a forwarding table



- Manual configuration is possible, but...
  - Time consuming
  - Error Prone
  - Not adaptable (hosts may get added or removed)
- Instead, learn addresses using heuristic

Look at the source of frames that arrive on

port

00:00:00:00:AA

| MAC Address       | Port | Age       |
|-------------------|------|-----------|
| 00:00:00:00:AA    | 1    | 0 minutes |
| 00:00:00:00:00:BB | 2    | 0 minutes |

Delete old

entries after a

Port 1 Port 2



00:00:00:00:00:BE

AA

Я

- <Src=AA, Dest=DD>
- This continues to infinity
  - How do we stop this?
- Remove loops from the topology
  - Without physically unplugging cables
- 802.1 (LAN architecture)
   uses an algorithm to build
   and maintain a spanning
   tree for routing



- A subset of edges in a graph that:
  - Span all nodes



# 802.1 Spanning Tree Approach

- 1. Elect a bridge to be the root of the tree
- 2. Every bridge finds shortest path to the root
- 3. Union of these paths becomes the spanning tree

- Bridges exchange Configuration Bridge
   Protocol Data Units (BPDUs) to build the tree
  - Used to elect the root bridge
  - Calculate shortest paths
  - Locate the next hop closest to the root, and its port
  - Select ports to be included in the spanning trees.

# Determining the Root

- Initially, all hosts assume they are the root
- Bridges broadcast BPDUs:

Bridge ID Root ID Path Cost to Root

- Based on received BPDUs, each switch chooses:
  - A new root (smallest known Root ID)
  - A new root port (what interface goes towards the root)
  - A new designated bridge (who is the next hop to root)

# **Spanning Tree Construction**



# Bridges vs. Switches

- Bridges make it possible to increase LAN capacity
  - Reduces the amount of broadcast packets
  - No loops
- Switch is a special case of a bridge
  - Each port is connected to a single host
    - Either a client machine
    - Or another switch
  - Links are full duplex
  - Simplified hardware: no need for CSMA/CD!
  - Can have different speeds on each port

## Switching the Internet

- Capabilities of switches:
  - Network-wide routing based on MAC addresses
  - Learn routes to new hosts automatically
  - Resolve loops
- Could the whole Internet be one switching domain?

NO

# Limitations of MAC Routing

- Inefficient
  - Flooding packets to locate unknown hosts
- Poor Performance
  - Spanning tree does not balance load
  - Hot spots
- Extremely Poor Scalability
  - Every switch needs every MAC address on the Internet in its routing table!
- IP addresses these problems (next ...)

# Computer Networks

**Lecture 6b: Network Layer** 

# Network Layer

Application Presentation Session Transport Network Data Link **Physical** 

#### Function:

- Route packets end-to-end on a network, through multiple hops
- Key challenge:
  - How to represent addresses
  - How to route packets
    - Scalability
    - Convergence

## Routers, Revisited

- How to connect multiple LANs?
- LANs may be incompatible
  - Ethernet, Wifi, etc...
- Connected networks form an

#### internetwork

 The Internet is the best known example



#### In

19

 $\square$  R

#### **Internet Service Model**

- Best-effort (i.e. things may break)
- Store-and-forward datagram network

#### Lowest common denominator

work)

- Service Model
  - What gets sent?
  - How fast will it go?
  - What happens if there are failures?
  - Must deal with heterogeneity
    - Remember, every network is different

## Outline

- Addressing
  - Class-based
  - CIDR
- IPv4 Protocol Details
  - Packed Header
  - Fragmentation
- □ IPv6

# Possible Addressing Schemes

- Flat
  - e.g. each host is identified by a 48-bit MAC address
  - Router needs an entry for every host in the world
    - Too big
    - Too hard to maintain (hosts come and go all the time)
    - Too slow (more later)
- Hierarchy
  - Addresses broken down into segments
  - Each segment has a different level of specificity



Northeastern University

West Willage G RBOOMM 254

**Updates are Local** 

Very pecific

- IPv4: 32-bit addresses
  - Usually written in dotted notation, e.g. 192.168.21.76
  - Each number is a byte



# IP Addressing and Forwarding

- Routing Table Requirements
  - For every possible IP, give the next hop
  - But for 32-bit addresses, 2<sup>32</sup> possibilities!
- Hierarchical address scheme
  - Separate the address into a network and a host



### Classes of IP Addresses



#### How Do You Get IPs?

IP address ranges controlled by IANA



Internet Assigned Numbers Authority

- Internet Assigned Number Authority
- Roots go back to 1972, ARPANET, UCLA
- Today, part of ICANN
- IANA grants IPs to regional authorities
  - ARIN (American Registry of Internet Numbers) may grant you a range of IPs
  - You may then advertise routes to your new IP range
  - There are now secondary markets, auctions, ...

## Class Sizes

#### Way too big

| Class | Prefix<br>Bits | Networ<br>k Bits | Number of Cla                   | isses | H per Class                              |
|-------|----------------|------------------|---------------------------------|-------|------------------------------------------|
| Α     | 1              | 7                | $2^7 - 2 = 126$                 |       | $2^{24} - 2 = 16,777,214$                |
|       |                |                  | reserved)                       |       |                                          |
| P     | Z              | l <del>4</del>   | Z·· - 10,530                    |       | (All 0 and all 1 are reserved)           |
| C     | 3              | 21               | 2 <sup>21</sup> = 2,097,512     |       | $2^8 - 2 = 4$ (All 0 all 1 are reserved) |
|       |                |                  | many <sup>)36</sup><br>vork IDs |       | small to<br>useful                       |

### Subnets

- Problem: need to break up large A and B classes
- Solution: add another layer to the hierarchy
  - From the outside, appears to be a single network
    - Only 1 entry in routing tables
  - Internally, manage multiple subnetworks
    - Split the address range using a subnet mask



Subnet Mask:11111111 11111111 11000000 00000000

Extract network:

IP Address: 10110101 11011101 01010100 01110010

Result: 10110101 11011101 01000000 00000000

Extract host:

IP Address: 10110101 11011101 01010100 01110010

Subnet Mask: & ~(111111111 1111111 11000000 00000000)

Result: 00000000 00000000 00010100 01110010

## N-Level Subnet Hierarchy



Subtree size determined by length of subnet



# Example Routing Table

| Address<br>Pattern | Subnet Mask   | Destination<br>Router |
|--------------------|---------------|-----------------------|
| 0.0.0.0            | 0.0.0.0       | Router 4              |
| 18.0.0.0           | 255.0.0.0     | Router 2              |
| 128.42.0.0         | 255.255.0.0   | Router 3              |
| 128.42.128.0       | 255.255.128.0 | Router 5              |

- □ Q1/285.1421.21228042.222215955121555.160uR100Mesr 1
  - Which router do we forward to?
- Longest prefix matching
  - Use the row with the longest number of 1's in the mask
  - This is the most specific match

# Subnetting Revisited

Question: does subnetting solve all the problems of class-based routing?

#### NO

- Classes are still too coarse
  - Class A can be subnetted, but only 126 available
  - Class C is too small
  - Class B is nice, but there are only 16,398 available
- Routing tables are still too big
  - 2.1 million entries per router

# Classless Inter Domain Routing

- CIDR, pronounced 'cider'
- Key ideas:
  - Get rid of IP classes
  - Use bitmasks for all levels of routing
  - Aggregation to minimize FIB (forwarding information base)
- Arbitrary split between network and host
  - Specified as a bitmask or prefix length
  - Example: Stony Brook
    - 130.245.0.0 with netmask 255.255.0.0
    - **130.245.0.0 / 16**

- 36
- Original use: aggregating class C ranges
- One organization given contiguous class C ranges
  - Example: Microsoft, 207.46.192.\* 207.46.255.\*
  - Represents 26 = 64 class C ranges
  - Specified as CIDR address 207.46.192.0/18



# Size of CIDR Routing Tables



- □ From <u>www.cidr-report.org</u>
- CIDR has kept IP routing table sizes in check
  - Currently ~500,000 entries for a complete IP routing table
  - Only required by backbone routers

### We had a special day in summer 2014!

- 512K day August 12, 2014
- - Some routers failed over to slower memory
    - RAM vs. CAM (content addressable memory)
  - Some routes dropped
- Cisco issues update in May anticipating this issue
  - Reallocated some IPv6 space for IPv4 routes
- Part of the cause
  - Growth in emerging markets
- http://cacm.acm.org/news/178293-internet-routing-failures-bring-architecture-changes-back-to-the-table/fulltext

# Takeaways

- Hierarchical addressing is critical for scalability
  - Not all routers need all information
  - Limited number of routers need to know about changes
- Non-uniform hierarchy useful for heterogeneous networks
  - Class-based addressing is too course
  - CIDR improves scalability and granularity
- Implementation challenges
  - Longest prefix matching is more difficult than schemes with no ambiguity