Regresión Logística - Modelo

Predicción de probabilidad de aprobar

- Entrada
 - Horas estudiadas
- Salida
 - Probabilidad de aprobar
- Entrenar
 - Datos de aprobado/ desaprobado

Horas	Aprobado
2	0
5	0
7	0
9	0
10	0
11	0
13.4	1
14	0
15	1

x: horas estudiadas

Sin Regresión Logística: Modelo simple if/else

Ejemplo

o
$$f(x) = 0 \text{ si } x < 20$$

= 1 si x >= 20

- En general
- f(x) = 0 si x < V= 1 si x >= V
- Problemas
 - Discontinuo en x=V
 - No es derivable
 - Muy extremo
 - **■** 0 o 1

Sin Regresión Logística: Regresión Lineal y=mx+b

- Problemas
 - Valores mayores a 1
 - Valores menores a 0
- Solución
 - Convertir la salida de regresión lineal
 - Rango deseado
 - 0 a 1
 - Varias opciones

Sin Regresión Logística: Regresión Lineal cortada

•
$$f(x) = 0$$
 si x<=10
= mx+b si 10=35

- Soluciona el rango
- Problemas
 - No es derivable en x=10 y x=35
 - Difícil de optimizar

Regresión Logística

Regresión Logística = Regresión Lineal + Función Logística

Función Logística o Sigmoide $\sigma(x)$

- $\sigma(x) = 1 / (1 + e^{-x})$
- Dominio

$$\circ$$
 - ∞ 3 + ∞

- Imagen
 - 0 a 1
 - Asíntotas horizontales
- Derivada simple
 - $\circ \delta\sigma(z)/\delta z = \sigma(z)*(1-\sigma(z))$
- Aplicar a la salida de la Regresión Lineal

Entendiendo la Función Logística o Sigmoide σ(x)

- e^{x} transforma valores de $(-\infty, +\infty)$ a valores $(0, \infty)$
 - $-\infty$ se convierte en 0
 - queda igual
- e^{-x} hace lo parecido, invirtiendo el signo:
 - $+\infty$ se convierte en 0
 - $-\infty$ se convierte en $+\infty$

- e^{-x} transforma valores de $(-\infty, +\infty)$ a valores $(0, \infty)$
 - $+\infty$ se convierte en 0
 - $-\infty$ se convierte en $+\infty$
- $1 + e^{-x}$
 - ullet $+\infty$ se convierte en 1
 - $-\infty$ se convierte en $+\infty$

Entendiendo la Función Logística o Sigmoide σ(x)

• $+\infty$ se convierte en 1 • $-\infty$ se convierte en $+\infty$ ullet $+\infty$ se convierte en 1 \bullet $-\infty$ se convierte en 00.8 0.6 0.4 0.2 0 X

• $1 + e^{-x}$

•
$$\sigma(x)=1/(1+e^{-x})$$

- $f(x) = \sigma(mx+b)$ = 1 / (1+e^{-mx-b})
- f = regresión lineal compuesta con sigmoidea

f(x)= 1 / (1+e^{-(mx+b)}): Salida en base a m (b=-25)

• m cambia la "pendiente" de la parte "lineal" de $\sigma(x)=1/(1+e^{-x})$

m~0

$f(x)=1 / (1+e^{-(mx+b)})$: Salida en base a m (b=-25)

• m cambia la "pendiente" de la parte "lineal" de $\sigma(x)=1/(1+e^{-x})$

m~0

f(x)=1 / (1+e^{-(mx+b)}) : Salida en base a b (m=0)

• Cambiar b mueve el gráfico en el eje x

Simulación interactiva

Frontera de decisión 1D

- Asumimos un umbral u=0.5
- Si w=0.3 y b=-4
- Entoncesy = 1 si f(x)>0.5
- f(x)>u
 σ(mx+b) > 0.5
 mx+b > 0
 x > -b/m (si m>0)
- $\chi > -(-4)/0.3$ $\chi > 13.3$

Frontera de decisión 2D

- $f(x_1,x_2)=\sigma(w_1x_1+w_2x_2+b)$
- Ejemplo con
 - \circ w =[0.47,0.05]
 - \circ b = -8

Regresión Logística. Resumen.

- Modelo $f(x_1, x_2, ..., x_m) = \sigma(x_1 w_1 + x_2 w_2 + ... + x_m w_m + b)$
 - $\circ \sigma(x) = 1/(1+e^{-x})$
 - Sigmoide o Logística
 - Convierte imagen a 0-1
 - \circ f(x) = $\sigma(RegresionLineal(x))$
- Umbral
 - Convierte probabilidades a clases
 - Frontera de decisión
- wyb
 - Modifican la frontera

Función Logística o Sigmoidea

- 1. Abrir el archivo **Funcion Logistica.ipynb**
- 2. Probar con algunos valores distintos de **x** para ver como cambia a cada paso la transformación.
- 3. ¿Para qué valor $\sigma(x) = 0.5$?
- 4. Dadas las asíntotas, sería teóricamente imposible que σ(x) de como resultado 1 o 0. No obstante, en una computadora ¿podés hacer que, de todos modos, de como resultado 0 o 1? ¿por qué?

Modelo Regresión Logística

- Abrir el archivo Separación por hiperplanos.ipynb
 - ¿Qué valor tiene la salida de un lado y del otro del plano?
 - Y el valor de xw + b ?
 - Probar variando los valores de W y b
 - ¿Cómo varían las regiones?