Math. 304 Number Theory (Spring 2019) Preparation No. 6

March 13, 2019

- 일반 강의로 들을 학생은 퀴즈를 제출하지 않고 나중에 과제물을 제출하면 됨.
- Study the following materials from the text:
- (a) Section 4.3: (1) Gauss' lemma, (2) Computation of $(\frac{-1}{p})$, $(\frac{2}{p})$, $(\frac{3}{p})$, $(\frac{5}{p})$ via Gauss' lemma, (3) Quadratic reciprocity law (weak form), (4) Quadratic reciprocity law (1-dimensional proof).
 - Quiz #6.
- 1. Let p be an odd prime, a an odd integer, and $k \geq 3$ an integer.
 - (a) Show: If we square the 2^{k-3} odd integers between 1 and 2^{k-2} , no two of the squares are congruent to modulo 2^k .
 - (b) Prove that $x^2 \equiv a \pmod{2^k}$ is soluble if and only if $a \equiv 1 \pmod{8}$.
 - (c) Show: If $a \equiv 1 \pmod{8}$ and s is a solution of $x^2 \equiv a \pmod{2^k}$, then $\pm s, \pm s + 2^{k-1}$ are all solutions of the congruence.
- **2.** Use Gauss' lemma to compute $(\frac{11}{31})$.
- **3.** Let p be an odd prime. In the text it is proved that $(\frac{2}{p}) = 1$ if $p \equiv 1, 7 \pmod{8}$ and $(\frac{2}{p}) = -1$ if $p \equiv 3, 5 \pmod{8}$. Do the similar job for $(\frac{3}{p})$.
- **4.** Do Exercise (i) on page 33.
- **5.** Do Exercise (ii) on page 33.
- **6.** Determine whether the following congruences are soluble for integers x, y which are not congruent to zero (mod 17).
 - (a) $x^2 + 15y^2 \equiv 0 \pmod{17}$.
 - (b) $x^2 + 11y^2 \equiv 0 \pmod{17}$.

The End