KOMUNIKAČNÍ TECHNOLOGIE (BPC-KOM)

Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií VUT v Brně

doc. Ing. Jan Jeřábek, Ph.D. ierabeki@feec.vutbr.cz

FYZICKÁ VRSTVA PŘENOSOVÝCH SYSTÉMŮ

Plán přednášky

- Úvod do problematiky
- Základní charakteristiky přenosových médií
- Přenos digitálního signálu
- Analogové modulace
- Přenos digitálního signálu v základním pásmu
- Přenos digitálního signálu v přeneseném pásmu
- Digitalizace řečového signálu
- Typy telekomunikačních vedení a jejich charakteristika
- Přístup koncových zařízení k fyzické vrstvě
- Síťové prvky na fyzické vrstvě

Základní charakteristika fyzické vrstvy

- fyzická vrstva především přenáší proud bitů přenosovým médiem
- úkolem je uzpůsobení dat získaných od spojové vrstvy do podoby bitového toku (přizpůsobení)
- fyzická vrstva pracuje s
 - kódování dat
 - modulace signálu
 - různé vlastnosti přenosových médií
- na fyzické vrstvě signály > reprezentace bitů zprávy
- z pohledu fyzické vrstvy důležité
 - časový průběh signálu
 - význam těchto signálů
 - jejich formát

Základní charakteristika fyzické vrstvy

- vysílač
 - vytvoření signálu pro přenosové médium na základě bitové sekvence
- přijímač
 - ze signálu na médiu rozpoznat původní bitovou sekvenci
- musí být definována vzájemná návaznost řídících a stavových signálů (spojová vrstva)
- řešení problematiky přenosových tras a konektorů

Úvod do problematiky fyzické vrstvy

- přenosové médium = fyzické médium, přenášen signál od zdroje k cíli
- mezi nejběžnější přenosová média patří:
 - elektrické vodiče (obvykle měděné)
 - symetrický kabel (slangově kroucená dvojlinka)
 - koaxiální kabel
 - optická vlákna
 - volný prostor (vzduch nebo vakuum)
- vlastní přenos realizován pomocí elektromagnetických vln, různá kmitočtová pásma

Signál v elektrickém vodiči

Signál v optickém vlákně

Signál v bezdrátovém prostředí

Základní sledované charakteristiky (zejména u vedení metalických a optických)

- šířka pásma
- útlum
- odolnost vůči elektromagnetickému rušení
- impedance
- přeslech mezi více vodiči
- cena

Šířka pásma

- závisí na fyzikálních vlastnostech daného přenosového média
- limituje množství dat, které je možné přenést médiem
- přenos
 - analogového signálu [Hz]
 - digitálního signálu [bit/s]
- každý signál lze vyjádřit pomocí různých frekvenčních složek - omezeno přenosovým médiem
- jestliže je k dispozici velká šířka pásma, možnost využít vícenásobně (rozdělení)

Útlum

- reprezentuje postupnou ztrátu amplitudy (velikosti)
 signálu na přenosovém médiu
- vždy závisí na přenosové vzdálenosti
- základní jednotkou decibel (dB) nebo decibel na kilometr (dB/km) -> měrný útlum
- tři druhy
 - útlum napětí
 - útlum proudu
 - útlum výkonu
- př. pro útlum výkonu
 - A = 10 log (výstupní výkon / vstupní výkon)
 - utlum 3 dB znamená snížení výkonu na 50 %

Odolnost proti vnějšímu elektromagnetickému rušení

- EMI (ElectroMagnetic Interference) = energie
 zejména z vnějších zdrojů
- □ interference se signály na přenosovém médiu
- může dojít ke zkreslení či poškození přenášeného signálu
- zdrojem rušení
 - motory
 - lékařské přístroje
 - mobilní telefony
 - ...

Impedance

- velikost odporu vůči střídavému elektrickému proudu
- existuje Impedance
 - vstupní
 - výstupní
 - charakteristická (vlnová)
 - vliv na útlum média
 - \blacksquare jednotky Ohm [Ω]
 - velikost dána indukční a kapacitní složkou daného vedení

Další parametry

- Přeslech mezi vodiči
 - rušení signálem sousedního kanálu či okruhu, sousedních vodičů
 - více druhů, nad rámec
 - důležité u paralelních vedení (kabelů)
 - jednotky dB
- Cena
 - ekonomické hledisko, v čase proměnná
 - vedení s kvalitnějšími parametry dražší
 - př. vliv přídavných vrstev stínění
 - odolnost vůči rušení
 - snížení přeslechů
 - zvýšení maximální přenosové rychlosti

PŘENOS SIGNÁLU

Úvod do přenosu digitálního signálu

- analogový signál
 - spojitý signál, neomezený počet hodnot fyzikální veličiny (amplituda, frekvence)
 - běžně v přírodě
- digitální (číslicový) signál
 - výtvorem člověka
 - nespojitý v čase i amplitudě
 - omezený počet hodnot fyzikální veličiny (např. pouze dvě)
- oba typy signálů běžně v komunikačních technologiích

Přenos digitálního signálu v základním pásmu

- kódování (linkové kódy)
 - na médiu se přenášejí pravoúhlé impulzy v původní frekvenční poloze
 - rozdíly mezi kódy v tom, jak je reprezentován který signálový prvek, či určitá sekvence signálových prvků

Přenos digitálního signálu v přeneseném pásmu

modulace (klíčování)

- \square přenesení signálu na určitý nosný kmitočet (f_C)
- přenos v konkrétním pásmu (kanálu)
- v závislosti na okamžité hodnotě modulačního signálu dochází k řízení
 - amplitudy
 - kmitočtu
 - fáze signálu
 - kombinace předcházejících
- dva základní bloky
 - modulátor úprava signálu před vysláním na médium, přizpůsobení signálu přenosovému médiu a přeložení do přenosového pásma
 - demodulátor úpravu přijatého signálu po jeho přijetí, navrácení signálu do základního pásma

Přenos digitálního signálu v přeneseném pásmu

Analogové modulace

- základy modulací položeny u analogových signálů
- základní principy platí i pro pokročilejší digitální modulace
- princip
 - dochází spojitě v čase ke skládání
 - vstupní analogový signál
 - signál nosné frekvence
 - výsledný modulovaný signál
 - stále analogovým signálem
 - jiný kmitočet
 - určité vlastnosti
 - šířka pásma poté centrována kolem nosného kmitočtu
- 🗆 tři základní typy

Amplitudová modulace (AM)

- v závislosti na změně modulačního signálu se mění amplituda nosného signálu
- nosný signál má řádově vyšší kmitočet než modulační signál
- př.: rozhlas na dlouhých vlnách (AM)

Kmitočtová modulace (FM)

- v závislosti na změně modulačního signálu se mění kmitočet nosného signálu
- nosný signál má řádově vyšší kmitočet než modulační signál
- př.: rozhlas na velmi krátkých vlnách (FM)

Fázová modulace (PM)

- v závislosti na změně modulačního signálu se mění okamžitá fáze nosného signálu
- nosný signál má řádově vyšší kmitočet než modulační signál
- □ složitá demodulace
- příbuzná s FM

Přenos digitálního signálu v základním pásmu

- původní frekvenční poloha
 - pásmo začínající u frekvencí blízkých nule
 - nebo obsahující i stejnosměrnou složku
 - na médiu se přenášejí pravoúhlé impulzy různého formátu
- z pohledu stejnosměrné složky rozlišujeme
 - přenos se stejnosměrnou složkou
 - kanál ji musí umět přenést
 - vyžaduje galvanické spojení koncových zařízení
 - přenos bez stejnosměrné složky
 - stejnosměrná složka potlačena vhodným kódováním
 - příslušný kanál ji nemusí přenášet
 - častější

Klasifikace linkových kódů

- podle počtu úrovní definujeme signály
 - dvoustavové (unipolární)
 - existují dvě úrovně
 - iedna z nich je nulová a druhá nenulová
 - třístavové (bipolární, pseudotrojkové)
 - tři úrovně
 - nulová úroveň a dvě nenulové s navzájem opačnou polaritou
 - vícestavové
 - větší množství úrovní, zpravidla rozložených do obou polarit

Klasifikace linkových kódů

- podle použité polarity signálových prvků
 - unipolární (jedné polarity)
 - signálové prvky nabývají pouze jedné polaritu
 - + nebo -
 - bipolární (dvojí polarity)
 - signálové prvky mohou nabývat obě polarity
 - jak + tak -
- □ zda se průběh vrací průběžně k nulové úrovni
 - signály s návratem k nulové úrovni Return to Zero (RZ)
 - □ signály bez návratu k nulové úrovni Non-Return to Zero (NRZ)

Význam a odlišnosti linkových kódů

- Stejnosměrná složka
 - její potlačení nebo snížení
- Synchronizace v přijímači
 - v přijímači je nutná obnova časování
- Detekce chyb
 - rozpoznání určité míry chyb
- Šířka pásma
 - snížení nároků na potřebnou šířku pásma
- Odolnost vůči šumu
 - různá chybovost při porovnatelném odstupu signálu od šumu

Příklady linkových kódů

- kód bez průběžného návratu k nule
- dvě úrovně
 - □ vysoká napěťová úroveň (H) 1 × 0
 - nízká úroveň (L)

 0×1

- unipolární verze
 - jedna úroveň nenulová
 - druhá nulová
- bipolární verze
 - obě úrovně nenulové
- problémy obou verzí
 - stejnosměrná složka
 - dlouhá sekvence stejné úrovně (delší řada "0" nebo "1")
- □ př.:
 - rozhraní RS-232 (bipolární varianta NRZ-L)

- odlišné od NRZ-L v logice kódování
- forma diferenčního kódování
- závislost kódované hodnoty i na přechozí
- možná varianta
 - hodnota "1" znamená změnu úrovně oproti předchozímu
 - □ hodnota "O" nezpůsobuje žádnou změnu
 - případně opačně
- □ př.:
 - sběrnice USB (bipolární a mírně vylepšená varianta)

AMI kód (Alternate Mark Inversion)

- bipolární kód
- kódování hodnoty "1"
 - střídavě kladné a záporné impulzy
- kódování hodnoty "0"
 - nulová úroveň
 - problém synchronizace
- stejnosměrná složka nulová
- existují variace
- □ př.:
 - starší telefonní systémy

RZ kód (Return to Zero)

- varianty
 - unipolární
 - bipolární (výhodnější)
- dvě úrovně
 - □ vysoká napěťová úroveň (H) 1 × 0
 - □ nízká úroveň (L) 0 × 1
- v polovině intervalu dojde k navrácení na nulovou úroveň napětí
 - snížení stejnosměrné složky výsledného signálu
 - řeší problém se synchronizací (hodnota napětí se pravidelně mění)
- □ př.:
 - infračervené optické přenosy na malou vzdálenost unipolární RZ v mírně modifikované variantě

Kód Manchester

- bity reprezentovány přechodem úrovně uprostřed intervalu
 - hodnota "O" reprezentována přechodem z (H) na (L)
 - □ hodnota "1" z "L" na "H"
 - případně logika může být i opačná
- vlastnosti
 - kód je bipolární
 - nemá žádnou stejnosměrnou složku
 - samo-časovací vlastnost (pravidelně se vyskytují hrany)
- □ př.:
 - Ethernet (10 Mbit/s standard)

Rozdílový Manchester

- vychází z kódu Manchester, diferenční kód
- dochází taktéž k přechodu úrovně uprostřed intervalu
- sledována změna na začátku intervalu
 - hodnota "0" -> změna úrovně oproti předchozí
 - □ hodnota "1" -> úroveň se nemění
 - logika může být i opačná
- vlastnosti
 - kód je bipolární
 - nemá žádnou stejnosměrnou složku
 - samo-časovací vlastnost (opakující se hrany)
- □ př.:
 - sítě typu Token ring

Přenos digitálního signálu v přeneseném pásmu

- 🗖 digitální modulační techniky = **klíčování**
- principiálně podobné analogovým modulacím
- rozdíl -> modulační signál diskrétní
- skokové změny nosného signálu
- stejné tři základní varianty
 - amplitudové klíčování
 - kmitočtové klíčování
 - fázové klíčování
 - (případně kombinace)
- oblasti využití
 - pevné přenosové systémy (např. ADSL)
 - bezdrátové přenosy
 - mobilní telefonní sítě
 - bezdrátové sítě Wi-Fi

Amplitudové klíčování (ASK = Amplitude Shift Keying)

- 🗆 jednoduchá technika
- modulační signál spíná a vypíná nosný signál
- v nejjednodušší podobě se příliš nepoužívá
- výhody
 - dobrá citlivost na náhlé změny signálu
- využití
 - v kombinaci se změnou fáze a při více než dvou definovaných úrovních
 - více než dvě úrovně -> více bitů v jednom signálovém prvku

Frekvenční klíčování (FSK = Frequency Shift Keying)

- modulační signál skokově mění frekvenci nosného signálu
- v nejjednodušším případě potřebujeme dvě frekvence, ty se přepínají
- obě frekvence umístěny blízko nosného kmitočtu
- odolnost vůči chybám vyšší než u
 ASK
- používá se hojně u radiových přenosů
- jestliže se u FSK využijí více než dva kmitočty, je možné přenášet více bitů naráz

Fázové klíčování (PSK = Phase Shift Keying)

- ovlivňování počáteční fáze v daném intervalu
- hodnota "0" je reprezentována jednou hodnotou počáteční fáze
- hodnota "1" fází opačnou"
- u pokročilejších technik bity vyjádřeny
 - větším množstvím fází
 - změnou fáze (diferenční klíčování)
- fázové klíčování používáno nejčastěji v kombinaci s amplitudovým

Vícestavové klíčování

Dvoustavové klíčování

- každému bitu je přiřazen jeden stav nosného signálu
- existují dvě různé amplitudy, dvě frekvence, dvě fáze
- neefektivní z hlediska využití šířky pásma

Vícestavové klíčování

- jeden stav reprezentuje n bitů -> potřebujeme 2ⁿ stavů
- □ př.:
 - 4-stavové klíčování -> 2 bity (dibit) v jednom stavu
 - 256-stavové klíčování -> 8 bitů
- vyšší počet stavů
 - růst efektivity přenosu
 - zvýšení složitosti přenosového systému
 - snížení odolnosti přenosu vůči chybám, rušení
- název obvykle odráží počet stavů daného klíčování (př. 8-PSK)

Kombinace fázového a amplitudového klíčování

- zvýšení efektivity kombinace více druhů klíčování
- typicky kombinace fázového a amplitudového klíčování
- modulačním signálem ovlivňována jak fáze, tak amplituda nosného signálu
- nazýváno Kvadraturní amplitudová modulace QAM (Quadrature Amplitude Modulation)
 - MAQ8
 - 6QAM
 - □ 32QAM
 - 64QAM
 - □ 128QAM
 - 256QAM

 - 16384QAM (Docsis 3.1)
 - 32768QAM (xDSL)
 - □ 3

DIGITALIZACE ŘEČOVÉHO SIGNÁLU

Základní postup při digitalizace řeči

- základ moderních komunikačních (telco) technik
- □ tři kroky

vzorkování

- ze spojitého signálu periodicky snímat aktuální hodnoty vhodnou rychlostí (vzorkovací kmitočet)
- spojitý čas signálu –> diskrétní čas signálu

kvantování

- spojitá hodnota vzorku –> diskrétní hodnota vzorku
- z neomezeného množství hladin se při kvantování vytvoří omezený počet kvantovacích úrovní
- zaokrouhlení navzorkované hodnoty na nejbližší existující kvantovací úroveň
- digitální signál má omezený počet bitů na vzorek (n), počet hladin je pak 2ⁿ
- nevratné zkreslení původního signálu (nemusí být pro člověka znatelné)

Základní postup při digitalizace řeči

kódování

- hladině vzorku přiřazena určitá posloupnost, která danou hodnotu reprezentuje v použitém kódu
- použity kódy přenosu v základním pásmu
- či celá řada speciálních kódovacích technik k digitalizaci řeči
- odlišnosti především v
 - požadavcích na šířku pásma
 - dosahované kvalitě (věrnosti) reprezentace původního (analogového signálu)

Systém PCM – příklad na digitalizace řeči

- Řečový signál
 - umístěn v akustickém pásmu, od stovek Hz až po jednotky kHz
 - v klasickém telco uvažujeme omezené pásmo 300 až 3400 Hz (vs. wideband voice 50 až 7000 Hz)
 - pro vzorkování platí Shannon Kotelnikuv (Nyquist) teorém
 - vzorkovací kmitočet musí být více než dvakrát větší než maximální frekvence vzorkovaného signálu

$$f_{\rm vz} > 2 f_{\rm max}$$

používán vzorkovací kmitočet 8 kHz

Systém PCM – příklad na digitalizace řeči

- Konkrétní techniky
 - Pulzně amplitudová modulace (PAM = Pulse Amplitude Modulation) – vzorkování
 - Pulzní kódová modulace (PCM = Pulse Code Modulation) – kvantování a kódování
- základní PCM
 - 256 kvantovacích hladin (8 bitů) na vzorek
 - následně standardní binární vyjádření "1" a "0" (sekvenčně)
 - přenosová rychlost
 - 8000 [vzorků / sekunda] × 8 [bitů / vzorek] = 64 000 [bitů / sekunda] = 64 kbit/s

Kvantizační šum

- nevratné zkreslení při kvantování
- omezený počet hladin = ztráta informace
- dán rozdílem mezi hodnotou původního signálu a vybranou úrovní
- maximálně ½ rozdílu mezi kvantizačními hladinami
- ve skutečných systémech hladiny rozděleny nerovnoměrně
 - lepší reprezentace původního řečového signálu vzhledem ke vlastnostem lidského ucha
 - □ pojmy A-law a µ-law

Kvantizační šum

Digitální přenosové systémy na bázi PCM

- přenos více hovorových kanálů 64 kbit/s v telco sítích
- více standardů multiplexování
 - E systém (Evropa)
 - základ E1 kanál 2,048 Mbit/s (30 x 64 kbit/s = 1920 kbit/s)
 - synchronizační a signalizační účely zabírají zbytek
 - T systém (Severní Amerika)
 - základ T1 kanál 1,544 Mbit/s (24 x 64 kbit/s = 1536 kbit/s)
 - existují i další systémy (Japonsko)
 - dostupné i vícenásobné skládání

Digitální přenosové systémy na bázi PCM

01.1		D. / 1	
Oblast	Тур	Bitový tok	Počet
	multiplexu	(Mbit/s)	datových/telekomu
			nikačních kanálů
Evropa	E1	2	30
	E2	8	120 (4x E1)
	E3	34	480 (4x E2)
	E4	139	1920 (4x E3)
	E5	565	7680 (4x E4)
Severní	T1	1,5	24
Amerika	T2	6	96 (4x T1)
	Т3	45	672 (7x T2)
	T4	274	4032 (6x T3)
	T5	400	5760 (60x T2)

Digitální přenosové systémy na bázi PCM

Plesiochronní digitální hierarchie (PDH)

- systém násobného skládání nižších multiplexů
- systém je z dnešního pohledu málo pružný a příliš komplikovaný
- detaily nad rámec předmětu

Synchronní digitální hierarchie (SDH)

- má oproti PHD četné výhody
- zpětná kompatibilita s PDH
- postupy vyřešení kompatibility EU <-> USA a dalších
- multiplexy
 - STM-0 (51 Mbit/s)
 - STM-1 (155 Mbit/s)
 - STM-4 (622 Mbit/s)
 - STM-16 (2,4 Gbit/s)
 - STM-64 (10 Gbit/s)
 - STM-256 (40 Gbit/s)
 - v Americe nazýváno SONET a multiplexy značeny OC1, OC3 až OC768

ZÁKLADNÍ TYPY TELEKOMUNIKAČNÍCH VEDENÍ A JEJICH CHARAKTERISTIKY

Koaxiální kabel

- 🗆 struktura a použité materiály ovlivňují řadu parametrů
 - frekvenční vlastnosti a útlum
 - fyzické vlastnosti jako ohebnost a pevnost
 - cena
- využívána elektrická vodivost (měď)
- útlum daný ohmickými a induktivními vazbami
 - velmi závislý na kmitočtu
 - $\square \geq 3 \text{ dB/km}$
- 🗆 celá řada typů s různými vlastnostmi
- přenos v základním pásmu (digitální signál) na kratší vzdálenosti
 - rychlost do 500 Mbit/s
- přeložené pásmo (analogový přenos)
 - až několik Gbit/s

Koaxiální kabel

- charakteristická impedance dána především induktivními a kapacitními vlastnostmi použitých materiálů
 - přenos v základním pásmu kabel 50 Ω
 - pro přeložené pásmo (typicky televizní technika)
 s charakteristickou impedancí 75 Ω
- využíván i ve starších specifikacích Ethernetu, kabeloví operátoři
- výhoda
 - dobrá ochrana přenášeného signálu před EMI

Koaxiální kabel (obecně)

- □ jeden nebo více párů vodičů (samostatných obvodů)
- páry krouceny (potlačení vlivu EMI)
- různá provedení (typicky 4 páry)
 - nestíněná kroucená dvojlinka (UTP = Unshielded Twisted Pair)
 - stíněná kroucená dvojlinka (STP = Shielded Twisted Pair)
 - fóliově stíněná kroucená dvojlinka (FTP = Foil-shielded Twisted Pair)
- využívána elektrická vodivost (měď)
- měrný útlum daný ohmickými a induktivními vazbami
 - závislý na kmitočtu
 - $\square \geq 0.5 \text{ dB/km}$
- charakteristická impedance 100 Ω

- nestíněná varianta
 - telekomunikace
 - do 3,4 kHz pro telefon
 - do jednotek MHz pro xDSL technologie
 - lokální sítě
 - nad 10 Mbit/s (maximum neustále roste)
 - max. 100 m bez regenerace
 - výhody
 - cena
 - jednoduchost instalace
 - nevýhody
 - citlivost na šum a rušení

- stíněná varianta
 - použití
 - venkovní prostředí
 - průmyslové použití
 - (10 Gbit/s Ethernet, Token ring)
 - □ výhody
 - odolnost vůči rušení
 - robustnost
 - nevýhody
 - cena
 - náročnější instalace

- kategorie
 - požadavky na vnitřní uspořádání párů
 - vliv na parametry
 - útlum
 - přeslechy
 - přenosová rychlost
 - Cat5E
 - nejběžnější
 - 100 MHz šířka pásma
 - Cató
 - 250 MHz šířka pásma
 - vhodná pro vyšší standardy
 - Catóa
 - 500 MHz šířka pásma
 - 10 Gb/s Ethernet na až 100 m

- přenosovým materiálem sklo nebo plast
- vedení světla ve vlákně, přenos založen na úplném odrazu
 - odolnost vůči EMI
 - neexistují přeslechy
 - šum minimální
 - útlum nízký
- přenosy i na stovky km bez opakovacích zařízení
 - využíváno v
 - klasické telekomunikace
 - čistě datové sítě (páteřní trasy)
- nevýhody
 - vyšší cena (× přenosová rychlost)
 - speciální zařízení
 - problematika spojování a rozpojování

- dělení na vlákna
- struktura
 - jádro zde prochází světelný signál, tenké
 - plášť odrazová vrstva (s nižším indexem lomu), tenké
 - další ochranné vrstvy
- vysílače
 - lasery
 - LED diody
- přijímače
 - fotodiody
- techniky multiplexování
 - přenosové rychlostí v řádu Gbit/s až Tbit/s na jednom vlákně
 - např. projekt FASTER: jedno vlákno 100 × 100 Gb/s, co ~60 km opakovač, celková délka ~9000 km

- jednovidová vlákna (single-mode)
 - □ jádro průměru 8-10 μm, plášť ~ 100 μm
 - \Box útlum \geq 0,15 dB/km
 - disperse světla je menší než u vícevidového vlákna
 - vysílačem lasery
 - □ větší vzdálenosti (~ 100 km)
 - může být o něco vyšší cena
- vícevidová (multi-mode)
 - jádro průměru 50-60 μm, plášť ~ 100 μm
 - útlum 0,5 2 dB/km
 - větší disperze
 - vysílačem LED diody
 - dva typy
 - s konstantním indexem lomu
 - s proměnným indexem lomu
 - menší vzdálenosti (~ 1 km)
 - může být o něco nižší cena

Jednovidové vlákno

Vícevidové vlákno

Volný prostor

- popis nad rámec předmětu
- hojně využívané médium
- parametry velmi závislé na aktuálních podmínkách

Přístup koncových zařízení k fyzické vrstvě

- síťová karta (rozhraní) NIC (Network Interface Card)
- pracuje na fyzické i spojové úrovni
- 🗆 odlišnosti dle infrastruktury (technologie, média)
 - koaxiální kabely dnes považovány za zastaralé
 - symetrický kabel (kroucené dvojlinky) nejběžnější
 - optická vlákna zejména u serverů, v přenosových systémech
 - bezdrátové prostředí zejména u mobilních zařízení
- □ různé konektory
 - BNC konektor
 - RJ-45
 - LC (případně SC) konektor
 - anténa
- obdobně na síťových prvcích

Síťové prvky na fyzické vrstvě

- problematiku fyzické vrstvy musí řešit všechny komponenty sítí
- prvky řadíme dle nejvyšší vrstvy na které pracují
- pouze na fyzické vrstvě pracují
 - opakovač (repeater) pouze dva porty
 - rozbočovač (hub) více než dva porty
- úloha prvků
 - regenerace signálů po přenosu
 - opětovné vyslání (1 a více kopií)
- vlastnosti obou prvků
 - nerozumí obsahu zpráv
 - malé zpoždění
 - žádná adresa
 - nelze přímo rozpoznat jejich přítomnost
- využití
 - dlouhé optické trasy (opakovače)
 - prvotní metalické sítě (rozbočovače)

