UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 19: Subespacios Intersección y Suma.

I. Problema 1.

Considere los siguientes subconjuntos del espacio vectorial real

$$\mathcal{P}_n(\mathbb{R}) = \{ \ p \in \mathcal{P}(\mathbb{R}): \ p(x)) = a_0 + a_1 \ x + \cdots + a_n \ x^n, \ x \in \mathbb{R} \ \}$$

- a) $U = \{ p \in \mathcal{P}_3(\mathbb{R}) : p(5) = 0 \}$
- b) $V = \{ p \in U : p'(5) = 0 \}$
- c) $W = \{ p \in \mathcal{P}_3(\mathbb{R}) : p(x) = a_3 x^3 + a_1 x \}$
- (1.1) Demuestre que son subespacios vectoriales. Además, en cada caso escriba al menos un vector no nulo y represéntelo gráficamente. Describa por comprensión cada subespacio.
- (1.2) Decida si $U \cup V$ es subespacio vectorial.
- (1.3) Determine $V \cap W$ y V + W $U \oplus W$?, o bien $V \oplus W$?

[En Práctica (1.1) (parcialmente), (1.2) y (1.3)]

II. Problema 2.

Sea $\vec{r} \in \mathbb{R}^3$, $\vec{r} \neq \theta$, y sea L la recta que pasa por θ en la dirección \vec{r} . Demuestre que $\forall \vec{x} \in \mathbb{R}^3$ existe un subespacio S de \mathbb{R}^3 , no trivial, que contiene a \vec{x} y al subespacio L. Definir S y representar gráficamente la situación. Si \vec{n} es un vector normal al plano S y $U = \{ t \cdot \vec{n} \in \mathbb{R}^3 : t \in \mathbb{R} \}$, entonces $\vec{\iota}$, $S \oplus U$?.

III. Problema 3.

Considere el K-espacio vectorial $M_{n-n}(\mathbb{K})$. Probar que el subconjunto

$$U = \{ A \in M_{n-n}(\mathbb{K}) : A = \theta \setminus A \text{ es inversible } \}$$

no es subespacio vectorial. (Indicación: \boldsymbol{U} no es cerrado para la suma, construir contraejemplo).

IV. Problema 4.

Identificar, en el lenguaje de espacios vectoriales, la representación gráfica de la figura 1.

(4.1) En particular ¿Cuál es la representación gráfica del subespacio de \mathbb{R}^3 .

$$F=\{\;(x,x+2z,z)\in\mathbb{R}^3:\;\;x,z\in\mathbb{R}\;\}$$

1

(4.2) ¿Cuál es la ecuación vectorial de la recta que pasa por el origen y el punto $P_o(1,3,1)$?. Representar este subespacio en la figura 1 e indique que ella es a su vez subespacio de un plano, indicado en la figura 1. Determinar la distancia del punto A(0,2,3) al subespacio F.

Figura 1

(4.3) Si $XY := \mathbb{R}^2 \times \{0\}$, e $YZ := \{0\} \times \mathbb{R}^2$ determine:

(a)
$$F \cap XY$$
 y (b) $F \cap YZ$.

(4.4) Finalmente, determine una vector normal $\vec{\boldsymbol{n}}$ al plano \boldsymbol{F} y defina la recta

$$U = \{\ t \cdot ec{n} \in \mathbb{R}^3:\ t \in \mathbb{R}\ \}$$

decida si ¿ $F \oplus U = \mathbb{R}^3$?

[En Práctica, $(4.1) \rightarrow (4.4)$]

6