

Laufzeitkomplexität und O-Notation

Gegeben sind die Datenmenge der nachfolgenden Laufzeitkomplexitäten. Berechne zur jeder Laufzeitkomplexität die Theoretische Laufzeit.

Hinweis 1: Für den binären Logarithmus ist folgende Formel anzuwenden:

$$log_2(x) = \frac{log_{10}(x)}{log_{10}(2)}$$

Hinweis 2: Die Fakultät n! ist wie folgt von Hand auszurechnen.

Bsp. 1

 $4! = 1 \cdot 2 \cdot 3 \cdot 4$

Bsp.2

0(1)

Datenmenge	4	16	64	256	1024
Theo. Laufzeit					

$O(log_2(n))$

Datenmenge	4	16	64	256	1024
Theo. Laufzeit					

O(n)

Datenmenge	4	16	64	256	1024
Theo. Laufzeit					

$O(n^2)$

Datenmenge	4	16	64	256	1024
Theo. Laufzeit					

O(2ⁿ)

Datenmenge	4	16	64	256	1024
Theo. Laufzeit					

O(n!)

_ ` ` `					
Datenmenge	4	16	64	256	1024
Theo. Laufzeit					