Q1) Identify the Data type for the Following:

Activity	Data Type
Number of beatings from Wife	Discrete
Results of rolling a dice	Discrete
Weight of a person	Continuous
Weight of Gold	Continuous
Distance between two places	Continuous
Length of a leaf	Continuous
Dog's weight	Continuous
Blue Color	Categorical
Number of kids	Discrete
Number of tickets in Indian railways	Discrete
Number of times married	Discrete
Gender (Male or Female)	Categorical

Q2) Identify the Data types, which were among the following

Nominal, Ordinal, Interval, Ratio.

Data	Data Tura
Data	Data Type
Gender	Nominal
High School Class Ranking	Ordinal
Celsius Temperature	Interval
Weight	Ratio
Hair Color	Nominal
Socioeconomic Status	Ordinal
Fahrenheit Temperature	Interval
Height	Ratio
Type of living accommodation	Ordinal
Level of Agreement	Ordinal
IQ(Intelligence Scale)	Ratio
Sales Figures	Ratio
Blood Group	Nominal
Time Of Day	Ordinal
Time on a Clock with Hands	Interval
Number of Children	Ordinal
Religious Preference	Nominal
Barometer Pressure	Ratio
SAT Scores	Ratio
Years of Education	Interval

Q3) Three Coins are tossed, find the probability that two heads and one tail are obtained?
Ans) We have different possibilities of trails
ннн
ннт
нтн
ТНН
TTT
ТНН
THT
TTH
So, there are total 8 possibilities, in which we have 3 possibilities of two heads and one tail
Probability = <u>Total of of two heads and one tail.</u>
Total number of possibilities
= 3/8 = 0.375
Q4) Two Dice are rolled, find the probability that sum is
a) Equal to 1b) Less than or equal to 4c) Sum is divisible by 2 and 3
Possibilities
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6) (2,1), (2,2), (2,3),(2,4),(2,5),(2,6) (3,1), (3,2), (3,3),(3,4),(3,5),(3,6) (4,1), (4,2), (4,3),(4,4),(4,5),(4,6) (5,1), (5,2), (5,3),(5,4),(5,5),(5,6) (6,1), (6,2), (6,3),(6,4),(6,5),(6,6) a) Equal to 1
Ans) 0/36= 0
b) Less than or equal to 4
Ans) possibilities (1,1), (1,2), (1,3), (2,1), (2,2), (3,1) = 6/36 = 1/6

c) Sum is divisible by 2 and 3

Ans)
$$(1,5)$$
, $(2,4)$, $(3,3)$, $(4,2)$, $(5,1)$, $(6,6) = 6/36 = 1/6$

Q5) A bag contains 2 red, 3 green and 2 blue balls. Two balls are drawn at random. What is the probability that none of the balls drawn is blue?

Ans) Total balls = 7, Drawing 2 balls from 7 =
$$nCr = n!/r!(n-r)! = 7C2 = 7*6/2*1 = 42/2 = 21$$

Total red and green balls are = 5

2 balls needs to drawn from 5 balls(Red and Green)/ = 5C2 = 5*4/2*1 = 20/2 = 10

Probability = 2 balls needs to drawn from 5 balls(Red and Green)/ 2 balls drawn from Total balls

Probability = 10/21

Q6) Calculate the Expected number of candies for a randomly selected child

Below are the probabilities of count of candies for children (ignoring the nature of the child-Generalized view)

CHILD	Candies count	Probability
А	1	0.015
В	4	0.20
С	3	0.65
D	5	0.005
Е	6	0.01
F	2	0.120

Child A - probability of having 1 candy = 0.015.

Child B - probability of having 4 candies = 0.20

Ans) Expected number = $E(X) = \sum x P(x)$.

Probability of Expected number of candies for a randomly selected child

= each individual Candies count *Probability of each individual =

1*0.015+ 4*0.20 + 3*0.65 + 5*0.005 + 6 *0.01 + 2*0.120

= 3.09

- Q7) Calculate Mean, Median, Mode, Variance, Standard Deviation, Range & comment about the values / draw inferences, for the given dataset
 - For Points, Score, Weight Find Mean, Median, Mode, Variance, Standard Deviation, and Range and also Comment about the values/ Draw some inferences.

Use Q7.csv file

Solution:-

```
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyplotlib.pyp
```


- Q8) Calculate Expected Value for the problem below
 - a) The weights (X) of patients at a 0063linic (in pounds), are 108, 110, 123, 134, 135, 145, 167, 187, 199

Assume one of the patients is chosen at random. What is the Expected Value of the Weight of that patient?

Solution:-

Expected value = Summation of the product of probability choosing each person individually and their weights

Probability of each patients choosing individually is = 1/9

Q9) Calculate Skewness, Kurtosis & draw inferences on the following data

Cars speed and distance

Use Q9_a.csv

SP and Weight(WT)

Use Q9_b.csv

- 1) The data is skewed on the right side. So, data is positively skewed.
- 2) There are no outliers for the given data

- 1) Outliers exists
- 2) Data is distributed on the right
- 3) Positive skew

Q11) Suppose we want to estimate the average weight of an adult male in Mexico. We draw a random sample of 2,000 men from a population of 3,000,000 men and weigh them. We find that the average person in our sample weighs 200 pounds, and the standard deviation of the sample is 30 pounds. Calculate 94%,98%,96% confidence interval?

Sol:-

```
import numpy as np
  import pandas as pd
  from scipy import stats
  from scipy.stats import norm
▶ Random_Sample_n=2000
  Avg_Sample_Weight_x=200
  Standard_deviation_sd= 30
  #formula is stats.norm.interval(percentage, x, sd/square root of n^{**0.5})
▶ # Average weight of Adult in Mexico with 94% confidence interval are
  print('Confidence interval of 94% is:',stats.norm.interval(0.94,200,30/(2000**0.5)))
  # Average weight of Adult in Mexico with 98% confidence interval are
  print('Confidence interval of 98% is:',stats.norm.interval(0.98,200,30/(2000**0.5)))
  # Average weight of Adult in Mexico with 96% confidence interval are
  print('Confidence interval of 94% is:',stats.norm.interval(0.96,200,30/(2000**0.5)))
  Confidence interval of 94% is: (198.738325292158, 201.261674707842)
  Confidence interval of 98% is: (198.43943840429978, 201.56056159570022)
  Confidence interval of 94% is: (198.62230334813333, 201.37769665186667)
```

Q12) Below are the scores obtained by a student in tests

34,36,36,38,38,39,39,40,40,41,41,41,41,42,42,45,49,56

1) What can we say about the student marks?

Sol:- --

- Two outliers in the Student's marks: 49 and 56
- It is not following the Normal Distribution
- 2) Find mean, median, variance, standard deviation.
- Mean of data is: 41.0
- Median of data is: 40.5
- mode of data is: ModeResult(mode=array([41]), count=array([4]))
- Variance is: 24.1111111111111
- Standard Deviation is: 4.910306620885412

Ans)

- Q13) What is the nature of skewness when mean, median of data are equal?
- Sol) Symmetrical distribution
- Q14) What is the nature of skewness when mean > median?
- Sol) Right-skewed
- Q15) What is the nature of skewness when median > mean?
- Sol) Left-skewed
- Q16) What does positive kurtosis value indicates for a data?
- Sol) Distribution is peaked and possess thick tails for given data

Q17) What does negative kurtosis value indicates for a data?

Sol) Distribution is not peaked and don't have thick tails for given data

Q18) Answer the below questions using the below boxplot visualization.

2' 4' 6' 8' 10' 12' 14' 16' 18'

What can we say about the distribution of the data?

Sol) No Outliers

q1= 18

Median= 15.2

Q3 = 10

What is nature of skewness of the data?

Sol)Negative Skewness

What will be the IQR of the data (approximately)?

Sol)
$$IQR = Q3-Q1$$

= 8

Q19) Comment on the below Boxplot visualizations?

Draw an Inference from the distribution of data for Boxplot 1 with respect Boxplot 2.

For the above data, we can say that

- Skewness is '0'
- Normal Distribution Exists for both
- There are no Outliers for both plots

Q 20) Calculate probability from the given dataset for the below cases Data _set: Cars.csv

Calculate the probability of MPG of Cars for the below cases.

MPG <- Cars\$MPG

- a. P(MPG>38)
- b. P(MPG<40)
- c. P (20<MPG<50)

Sol:-

```
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

import matplotlib.pyplot as plt

data = pd.read_csv("C:/Users/0004IW744/Desktop/Python/Assignments/Basic Stat-1/Cars.csv")

print('P(MPG<38)', stats.norm.cdf(38,data.MPG.mean(),data.MPG.std()))
print('P(MPG<40)', stats.norm.cdf(40,data.MPG.mean(),data.MPG.std()))
print('P(MPG<40)', (stats.norm.cdf(50,data.MPG.mean(),data.MPG.std()))-stats.norm.cdf(20,data.MPG.mean(),data.MPG.std()))

P(MPG<38) 0.6524060748417295
P(MPG<40) 0.7293498762151616
P(MPG<40) 0.8988689169682046</pre>
```

- Q 21) Check whether the data follows normal distribution
 - a) Check whether the MPG of Cars follows Normal Distribution Dataset: Cars.csv

Sol:-

b) Check Whether the Adipose Tissue (AT) and Waist Circumference(Waist) from wc-at data set follows Normal Distribution

Dataset: wc-at.csv

In Above:- Waist doesn't following normal distribution and AT is following approximately Q 22) Calculate the Z scores of 90% confidence interval,94% confidence interval, 60% confidence interval

Sol:-

```
import numpy as np
import pandas as pd
import scipy as sy
from scipy import stats
from scipy.stats import norm

print('Z-score of 90% confidence interval:', stats.norm.ppf(0.95))
print('Z-score of 94% confidence interval:', stats.norm.ppf(0.97))
print('Z-score of 60% confidence interval:', stats.norm.ppf(0.8))

Z-score of 90% confidence interval: 1.6448536269514722
Z-score of 94% confidence interval: 1.8807936081512509
Z-score of 60% confidence interval: 0.8416212335729143
```

Q 23) Calculate the t scores of 95% confidence interval, 96% confidence interval, 99% confidence interval for sample size of 25

```
Sol:- (df)= sample size -1=24
```

```
import numpy as np
import pandas as pd
import scipy as sy
from scipy import stats
from scipy.stats import norm

print('t-score of 95% confidence interval for sample size (n-1) i.e 24:', stats.t.ppf(0.975,24))
print('t-score of 96% confidence interval sample size (n-1) i.e 24:', stats.t.ppf(0.98,24))
print('t-score of 99% confidence interval sample size (n-1) i.e 24:', stats.t.ppf(0.995,24))

t-score of 95% confidence interval for sample size (n-1) i.e 24: 2.0638985616280205
t-score of 96% confidence interval sample size (n-1) i.e 24: 2.1715446760080677
t-score of 99% confidence interval sample size (n-1) i.e 24: 2.796939504772804
```

Q 24) A Government company claims that an average light bulb lasts 270 days. A researcher randomly selects 18 bulbs for testing. The sampled bulbs last an average of 260 days, with a standard deviation of 90 days. If the CEO's claim were true, what is the probability that 18 randomly selected bulbs would have an average life of no more than 260 days

Hint:

rcode \rightarrow pt(tscore,df)

df → degrees of freedom