Lecture 3 limits of sets, prob

Tuesday, September 12, 2017 11:15 PM

Let Bn be a decreasing sequence of set

Bn+1 < Bn, n= 1,2,...

B

B =the limit of $B_h = \bigcap_{h=1}^{\infty} B_h$

If B_n is an increasing sequence $B_n \subset B_{n+1}$, i=1,2,...

$$B = \lim_{n \to \infty} B_n = \bigcup_{n=0}^{\infty} B_n$$

A reminder from calculus: liminf limsup

for a sequence $x_n \in \mathbb{R}$ x_n x_n

Sequence xn converges iff all subsequences converge

converge
$\mathcal{I}_{(n)}$
When linsup on + lininf on =>
h→ 6
I can choose a non-converging subsequence
When lin sup = lininf => xn has a
lim
$h \rightarrow \infty$
lin sup > limint
What is limsup and liminf for sets?
(DF) Grove a seguence of sets An
or Too 1 Bu
lim sup An := n=1:k=n Ak:
n > 2 mol Refinition
What does this mean?
happening WEA: A is happening
Experiment is a choice of w
co \(\tilde{\tilde{U}} A_K
K=h
union over the n-tail of EAK
∃ an A; for some j7n: w∈ A;
" there exists"
Po

Bu = Collection of w that belong Simultaneously to all Bry n=12, --If we limsup An, For any h (no matter how large)

I can find A; we A; in the

h-th tail

A, is happening If I had only a finite number of Aks happening than choosing no max k for will leave me with the n-tail whore not a single Ax is happening -Contradicts lin Sup An = { insite number of Aks are}
h > a happening How many Azs are not happening Could be finitely or infinitely Consider limint limitinf An = n → b we ∩ A_k K=n { all Aus in the n-tail } are happening Not a single one is not happening WE living (=> At least one n-tail has all Axs

```
happening simultaneously
liminf = { all but finitely many Axs are 4
                     happening
      Events not happening - can be only
                        finitely many of
                        them in liminf
  Story
      A company fired & employees
         No income
           nothing to eat
           lote of pride
      Charity offerer daily neals
               on day k we Ak when
                  w-subject comes to
                    charity for food
(1) Those who try not to come , but in end
            always to eventually, and this
           pattern continues forever
              linsup group
 (2) The ones in 1 group who eventually
         break down and start coming every day
                             and this
                             continues
                              forever
 limins of clinsup
        After a while find a job
```

