IN THE CLAIMS

The status of each claim is listed below.

Claims 1-81: Canceled.

82. (New) A compound represented by formula (I):

$$\begin{array}{c|c}
X & 0 & N + R^1 \\
X & 0 & N + R^2
\end{array}$$

$$\begin{array}{c|c}
X & 0 & N + R^1 \\
N + C - N & R^4
\end{array}$$
(I)

wherein

X is hydrogen, halogen, trifluoromethyl, lower alkyl, unsubstituted or substituted phenyl, lower alkyl-thio, phenyl-lower alkyl-thio, lower alkyl-sulfonyl, or phenyl-lower alkyl-sulfonyl;

Y is hydrogen, hydroxyl, mercapto, lower alkoxy, lower alkyl-thio, halogen, lower alkyl, unsubstituted or substituted mononuclear aryl, or $-N(R^2)_2$;

R¹ is hydrogen or lower alkyl;

each R^2 is, independently, $-R^7$, $-(CH_2)_m$ -OR⁸, $-(CH_2)_m$ -NR⁷R¹⁰,

 $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$, $-(CH_2CH_2O)_m-R^8$,

 $-(CH_{2}CH_{2}O)_{m}-CH_{2}CH_{2}NR^{7}R^{10},\ -(CH_{2})_{n}-C(=O)NR^{7}R^{10},\ -(CH_{2})_{n}-Z_{g}-R^{7},\ -(CH_{2})_{m}-NR^{10}-R$

 $CH_2(CHOR^8)(CHOR^8)_n$ - CH_2OR^8 , - $(CH_2)_n$ - CO_2R^7 , or

$$-(CH_2)_n$$
 R^7

R³ and R⁴ are each, independently, hydrogen, a group represented by formula (A), lower alkyl, hydroxy lower alkyl, phenyl-lower alkyl, (halophenyl)-lower alkyl, lower-(alkylphenylalkyl), lower alkoxyphenyl)-lower alkyl, naphthyl-lower alkyl, or pyridyl-lower alkyl, with the proviso that at least one of R³ and R⁴ is a group represented by formula (A):

$$--(C(R^{L})_{2})_{\sigma}-x-(C(R^{L})_{2})_{p}-Q = Q OH$$

$$Q = Q OH$$

wherein

each R^L is, independently, $-R^7$, $-(CH_2)_n$ -OR⁸, $-O-(CH_2)_m$ -OR⁸,

 $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$, $-(CH_2)_n(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

 $-O-(CH_2)_m(CHOR^8)(CHOR^8)_n-CH_2OR^8, -(CH_2CH_2O)_m-R^8,\\$

-O-(CH₂CH₂O)_m-R⁸, -(CH₂CH₂O)_m-CH₂CH₂NR⁷R¹⁰,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}, -(CH_2)_n-C(=O)NR^7R^{10},$

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

 $\hbox{-(CH$_2$)}_n\hbox{-NR$^{10}-CH$_2$(CHOR8)(CHOR8)}_n\hbox{-CH$_2$OR8},$

 $-O-(CH_2)_m-NR^{10}-CH_2(CHOR^8)(CHOR^8)_n-CH_2OR^8$,

- $(CH_2)_n$ - CO_2R^7 , -O- $(CH_2)_m$ - CO_2R^7 , -OSO₃H, -O-glucuronide, -O-glucose, or

$$-O\left(CH_2\right)_{m} \xrightarrow{O} \overset{R^7}{\underset{O}{R^7}}$$
 or $-(CH_2)_{n} \xrightarrow{O} \overset{R^7}{\underset{R^7}{R^7}}$;

each x is, independently, O, NR⁷, C=O, CHOH, C=N-R⁶, or represents a single bond;

each o is, independently, an integer from 0 to 10;

each p is, independently, an integer from 0 to 10;

with the proviso that (a) the sum of o and p in each contiguous chain is from 1 to 10 when x is O, NR⁷, C=O, or C=N-R⁶ or (b) that the sum of o and p

in each contiguous chain is from 4 to 10 when x represents a single bond;

each R^6 is, independently, $-R^7$, -OH, $-OR^{11}$, $-N(R^7)_2$, $-(CH_2)_m$ - OR^8 ,

 $-O-(CH_2)_m-OR^8$, $-(CH_2)_n-NR^7R^{10}$, $-O-(CH_2)_m-NR^7R^{10}$,

-(CH₂)_n(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸, -O-(CH₂)_m(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-(CH_2CH_2O)_m-R^8$, $-O-(CH_2CH_2O)_m-R^8$, $-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$,

 $-O-(CH_2CH_2O)_m-CH_2CH_2NR^7R^{10}$, $-(CH_2)_n-C(=O)NR^7R^{10}$,

 $-O-(CH_2)_m-C(=O)NR^7R^{10}, -(CH_2)_n-(Z)_g-R^7, -O-(CH_2)_m-(Z)_g-R^7,$

-(CH₂)_n-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

-O-(CH₂)_m-NR¹⁰-CH₂(CHOR⁸)(CHOR⁸)_n-CH₂OR⁸,

 $-(CH_2)_n$ - CO_2R^7 , -O- $(CH_2)_m$ - CO_2R^7 , -OSO₃H, -O-glucuronide, -O-glucose,

$$-O\left(CH_2\right)_m O R^7 \quad \text{or} \quad -(CH_2)_n O R^7$$

wherein when two R^6 are -OR¹¹ and are located adjacent to each other on a phenyl ring, the alkyl moieties of the two R^6 may be bonded together to form a methylenedioxy group;

each R⁷ is, independently, hydrogen or lower alkyl;

each R⁸ is, independently, hydrogen, lower alkyl, -C(=O)-R¹¹, glucuronide, 2-tetrahydropyranyl, or

$$O \longrightarrow OR^{11}$$

$$O \longrightarrow OCOR^{11}$$

$$OCOR^{11}$$

$$OCOR^{11}$$

each R⁹ is, independently, -CO₂R⁷, -CON(R⁷)₂, -SO₂CH₃, or -C(=O)R⁷;
each R¹⁰ is, independently, -H, -SO₂CH₃, -CO₂R⁷, -C(=O)NR⁷R⁹,
-C(=O)R⁷, or -CH₂-(CHOH)_n-CH₂OH;
each Z is, independently, CHOH, C(=O), CHNR⁷R¹⁰, C=NR¹⁰, or NR¹⁰;
each R¹¹ is, independently, lower alkyl;
each g is, independently, an integer from 1 to 6;
each m is, independently, an integer from 0 to 7;
each n is, independently, an integer from 0 to 7;
each Q is, independently, C-R⁵, C-R⁶, or a nitrogen atom, wherein three Q in a ring are nitrogen atoms;
or a pharmaceutically acceptable salt thereof, and

inclusive of all enantiomers, diastereomers, and racemic mixtures thereof.

- 83. (New) The compound of Claim 82, wherein Y is -NH₂.
- 84. (New) The compound of Claim 83, wherein R² is hydrogen.
- 85. (New) The compound of Claim 84, wherein R¹ is hydrogen.
- 86. (New) The compound of Claim 85, wherein X is chlorine.
- 87. (New) The compound of Claim 86, wherein R³ is hydrogen.
- 88. (New) The compound of Claim 87, wherein each R^L is hydrogen.
- 89. (New) The compound of Claim 88, wherein o is 4.
- 90. (New) The compound of Claim 89, wherein p is 0.
- 91. (New) The compound of Claim 90, wherein x represents a single bond.
- 92. (New) The compound of Claim 91, wherein each R⁶ is hydrogen.
- 93. (New) The compound of Claim 92, wherein

X is halogen;

Y is $-N(R^7)_2$;

 R^1 is hydrogen or C_1 - C_3 alkyl;

 R^2 is $-R^7$, $-(CH_2)_m$ - OR^7 , or $-(CH_2)_n$ - CO_2R^7 ;

R³ is a group represented by formula (A); and

R⁴ is hydrogen, a group represented by formula (A), or lower alkyl.

94. (New) The compound of Claim 93, wherein

X is chloro or bromo;

Y is $-N(R^7)_2$;

R² is hydrogen or C₁-C₃ alkyl;

at most three R^6 are other than hydrogen as defined above; and at most three R^L are other than hydrogen as defined above.

95. (New) The compound of Claim 94, wherein Y is -NH₂.

96. (New) The compound of Claim 95, wherein

R⁴ is hydrogen;

at most one R^L is other than hydrogen as defined above; and at most two R^6 are other than hydrogen as defined above.

97. (New) The compound of Claim 96, wherein x is O, NR⁷, C=O, CHOH, or C=N-

 R^6 .

- 98. (New) The compound of Claim 96, wherein x represents a single bond.
- 99. (New) The compound of Claim 82, wherein x is O, NR^7 , C=O, CHOH, or C=N-R⁶.
 - 100. (New) The compound of Claim 82, wherein x represents a single bond.
 - 101. (New) The compound of Claim 82, wherein each R⁶ is hydrogen.
- 102. (New) The compound of Claim 82, wherein at most two R⁶ are other than hydrogen as defined in Claim 82.
- 103. (New) The compound of Claim 82, wherein one R⁶ is other than hydrogen as defined in Claim 82.
 - 104. (New) The compound of Claim 82, wherein one R⁶ is -OH.
 - 105. (New) The compound of Claim 82, wherein each R^L is hydrogen.
- 106. (New) The compound of Claim 82, wherein at most two R^L are other than hydrogen as defined in Claim 82.

- 107. (New) The compound of Claim 82, wherein one R^L is other than hydrogen as defined in Claim 82.
 - 108. (New) The compound of Claim 82, wherein x represents a single bond and the sum of o and p is 4 to 6.
- 109. (New) The compound of Claim 82, which is in the form of a pharmaceutically acceptable salt.
 - 110. (New) The compound of Claim 82, which is in the form of a hydrochloride salt.
 - 111. (New) The compound of Claim 82, which is in the form of a mesylate salt.
 - 112. (New) A pharmaceutical composition, comprising the compound of Claim 82 and a pharmaceutically acceptable carrier.
 - 113. (New) A composition, comprising: the compound of Claim 82; and a P2Y2 inhibitor.
 - 114. (New) A composition, comprising: the compound of Claim 82; and a bronchodilator.

115. (New) A method of blocking sodium channels, comprising contacting sodium channels with an effective amount of the compound of Claim 82.

SUPPORT FOR THE AMENDMENTS

The specification has been amended to change the Abstract and to insert continuing application data.

Newly-added Claims 82-115 are supported by the specification at pages 4-52 and original Claims 1-81.

No new matter is believed to have been added to this application by the amendments submitted above.