Árvores Binárias Estrutura de Dados Avançada — QXD0115

Prof. Atílio Gomes Luiz gomes.atilio@ufc.br

Universidade Federal do Ceará

 1° semestre/2023

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

Representando uma hierarquia

- Vetores, listas, filas e pilhas são estruturas lineares.
 - A importância dessas estruturas é inegável, mas elas não são adequadas para representar dados dispostos de maneira hierárquica.

Figura: Hierarquia do sistema de arquivos de um PC Linux

 As árvores são estruturas de dados mais adequadas para representar hierarquias.

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

(a) $T = \emptyset$, e a árvore é dita vazia; ou

Árvore — Definição Recursiva

Uma árvore T é um conjunto finito de elementos denominados nós, tais que:

- (a) $T = \emptyset$, e a árvore é dita vazia; ou
- (b) $T \neq \emptyset$ e ela possui um nó especial r, chamado raiz de T; os nós restantes constituem um único conjunto vazio ou são divididos em $m \geq 1$ conjuntos disjuntos não vazios, as subárvores de r, cada qual por sua vez um árvore.

Diagrama de inclusão

Árvore — Outras Representações

Representação hierárquica

В -			
_			
C			
	D	_	
		G	
		Н	
	Ε	_	
	_		
	F		
		,	

Diagrama de barras

Α

Representação por parênteses aninhados

Uma sequência de nós distintos v_1, v_2, \ldots, v_k , tal que existe sempre entre nós consecutivos a relação "é filho de " ou "é pai de", é denominada um caminho na árvore.

Definições Adicionais — Nível e Altura

Definições Adicionais — Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Definições Adicionais — Nível e Altura

Profundidade de um nó v: Número de nós no caminho de v até a raiz. Dizemos que todos os nós com profundidade i estão no nível i.

Altura h de um nó v: Número de nós no maior caminho de v até uma folha descendente.

Comparando com atenção

Ordem dos filhos é relevante!

Árvore Binária — Definição Recursiva

- Uma árvore binária T é um conjunto finito de elementos denominados nós, tal que:
 - o $T = \emptyset$ e a árvore é dita vazia; ou
 - o $T \neq \emptyset$ e existe um nó especial r, chamado raiz de T, e os restantes podem ser divididos em dois subconjuntos disjuntos, T_r^E e T_r^D , a subárvore esquerda e a subárvore direita de r, respectivamente, as quais são também árvores binárias.

Tipos específicos de árvores binárias

• Árvore estritamente binária: todo nó possui 0 ou 2 filhos.

Tipos específicos de árvores binárias

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.

Tipos específicos de árvores binárias

- Árvore estritamente binária: todo nó possui 0 ou 2 filhos.
- Árvore binária completa: possui a propriedade de que, se v é um nó tal que alguma subárvore de v é vazia, então v se localiza ou no penúltimo ou no último nível da árvore.
- Árvore binária cheia: todos os seus nós internos têm dois filhos e todas as folhas estão no último nível da árvore.

Quantidade de subárvores vazias

Lema 1: O número de subárvores esquerda e direita vazias em uma árvore binária com n>0 nós é n+1.

Exercício: Prove este lema. Dica: use indução no número de nós da árvore.

Se a altura é h, então a árvore binária:

Se a altura é h, então a árvore binária:

 tem no mínimo h nós (árvore caminho)

Se a altura é h, então a árvore binária:

- tem no mínimo h nós (árvore caminho)
- tem no máximo $2^h 1$ nós (árvore cheia)

Se a altura é h, então a árvore binária:

- tem no mínimo h nós (árvore caminho)
- tem no máximo $2^h 1$ nós (árvore cheia)

Se a árvore binária tem $n \ge 1$ nós, então:

Se a altura é h, então a árvore binária:

- tem no mínimo h nós (árvore caminho)
- tem no máximo $2^h 1$ nós (árvore cheia)

Se a árvore binária tem $n \ge 1$ nós, então:

• a altura é no máximo n

Se a altura é h, então a árvore binária:

- tem no mínimo h nós (árvore caminho)
- tem no máximo $2^h 1$ nós (árvore cheia)

Se a árvore binária tem $n \ge 1$ nós, então:

- a altura é no máximo n
 - quando cada nó interno tem apenas um filho (a árvore é um caminho)

Se a altura é h, então a árvore binária:

- tem no mínimo h nós (árvore caminho)
- tem no máximo $2^h 1$ nós (árvore cheia)

Se a árvore binária tem $n \ge 1$ nós, então:

- a altura é no máximo n
 - quando cada nó interno tem apenas um filho (a árvore é um caminho)
- Quem é a árvore de altura mínima e que altura ela tem?

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Exercício: Prove este lema. Dica: Pegue uma árvore binária T^* de altura h mínima com n nós. A seguir, considere dois casos: T^* sendo completa e T^* sendo não completa. Sabendo que toda árvore completa com n nós possui a mesma altura, tente chegar, em cada caso, em alguma conclusão sobre a altura da árvore T do enunciado.

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Exercício: Prove este lema. Dica: Pegue uma árvore binária T^* de altura h mínima com n nós. A seguir, considere dois casos: T^* sendo completa e T^* sendo não completa. Sabendo que toda árvore completa com n nós possui a mesma altura, tente chegar, em cada caso, em alguma conclusão sobre a altura da árvore T do enunciado.

Lema 3: Se T é uma árvore binária completa com n>0 nós, então T possui altura $h=1+\lfloor \lg n \rfloor.$

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura h mínima.

Exercício: Prove este lema. Dica: Pegue uma árvore binária T^* de altura h mínima com n nós. A seguir, considere dois casos: T^* sendo completa e T^* sendo não completa. Sabendo que toda árvore completa com n nós possui a mesma altura, tente chegar, em cada caso, em alguma conclusão sobre a altura da árvore T do enunciado.

Lema 3: Se T é uma árvore binária completa com n>0 nós, então T possui altura $h=1+\lfloor \lg n \rfloor.$

Exercício: Prove este lema. Dica: use indução forte no número de nós da árvore. (Resposta no final do slide)

Representação no Computador

Representação com ponteiro para pai

Representação — Decisões de projeto

- Em programação de computadores, os nós de uma árvore binária são definidos como um tipo de dado composto contendo pelo menos três atributos:
 - um valor (chave a ser guardada)
 - o um ponteiro para o filho esquerdo do nó
 - o um ponteiro para o filho direito do nó
- Para acessarmos qualquer nó da árvore, basta termos o endereço do nó raiz. Pois podemos usar recursão para fazer todo o trabalho. Portanto, a única informação inicial necessária é um ponteiro para a raiz da árvore.

Implementação do Nó da Árvore em C++

```
1 #ifndef NODE H
2 #define NODE H
3 #include <iostream>
5 struct Node
6 ₹
      // atributos
      int kev;
8
    Node *left;
      Node *right;
10
11
      // Construtor
12
      Node(int key, Node *left, Node *right)
13
14
           this->key = key;
15
           this->left = left;
16
          this->right = right;
17
18
19 };
20
21 #endif /* NODE H */
```


 Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right

- Muitas operações em árvores binárias envolvem o percurso de todas as subárvores, com execução de alguma ação de tratamento em cada nó.
- É comum percorrer uma árvore em uma das seguintes ordens:
 - o pré-ordem:
 - visita raiz, percorre r->left, percorre r->right
 - o ordem simétrica:
 - percorre r->left, visita raiz, percorre r->right
 - o pós-ordem:
 - percorre r->left, percorre r->right, visita raiz

A pré-ordem

A pré-ordem

• primeiro visita (processa) a raiz

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex:

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Ex: 2, 5, 3, 8, 4, 7,

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

A pré-ordem

- primeiro visita (processa) a raiz
- depois a subárvore esquerda
- depois a subárvore direita

Pré-ordem

Algorithm preorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: visit(ptr)
- 3: $preorder(ptr \rightarrow left)$
- 4: preorder(ptr→right)
- 5: end if

A pós-ordem

A pós-ordem

• primeiro visita a subárvore esquerda

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7,

A pós-ordem

- primeiro visita a subárvore esquerda
- depois a subárvore direita
- e por último visita a raiz

Ex: 3, 4, 8, 5, 9, 1, 6, 7, 2

Pós-ordem

Algorithm posorder(ptr)

Require: ptr (pointer to node)

- 1: if ptr \neq NULL then
- 2: posorder(ptr→left)
- 3: posorder(ptr→right)
- 4: visit(ptr)
- 5: end if

A ordem simétrica

A ordem simétrica

• primeiro visita a subárvore esquerda

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7,

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

A ordem simétrica

- primeiro visita a subárvore esquerda
- depois visita a raiz
- e por última visita a subárvore direita

Ex: 3, 5, 4, 8, 2, 1, 9, 7, 6

Ordem Simétrica (inorder)

Algorithm inorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: inorder(ptr→left)
- 3: visit(ptr)
- 4: inorder(ptr→right)
- 5: end if

Percurso em pré-ordem — Recursivo

Vimos que o percurso em pré-ordem recursivo é implementado pela seguinte função:

Algorithm preorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: visit(ptr)
- 3: preorder(ptr→left)
- 4: preorder(ptr→right)
- 5: end if

Como implementar a pré-ordem sem usar recursão?

Percurso em pré-ordem — Iterativo

Percurso em pré-ordem — Iterativo

Algorithm preorderIterativo()

```
Require: root (ponteiro para a raiz)
 1: Cria uma pilha vazia P de ponteiros para nós
 2: P.push(root)
 3: while P \neq \emptyset do
 4: node = P.top()
 5: P.pop()
 6: if node \neq NULL then
 7: visit(node)
        P.push(node→right)
 8:
        P.push(node \rightarrow left)
 9:
     end if
10:
11: end while
```

Percurso em pré-ordem — Iterativo

Algorithm preorderIterativo()

```
Require: root (ponteiro para a raiz)
 1: Cria uma pilha vazia P de ponteiros para nós
 2: P.push(root)
 3: while P \neq \emptyset do
 4: node = P.top()
 5: P.pop()
 6: if node \neq NULL then
 7: visit(node)
         P.push(node \rightarrow right)
 8:
         P.push(node \rightarrow left)
 9:
     end if
10:
11: end while
```

Por que empilhamos node->right primeiro? E se fosse o contrário?

Percurso em ordem simétrica — Recursivo

O percurso em ordem simétrica (inordem) recursivo é implementado pela seguinte função:

Algorithm inorder(ptr)

Require: ptr (pointer to node)

- 1: **if** ptr \neq NULL **then**
- 2: inorder(ptr \rightarrow left)
- 3: visit(ptr)
- 4: inorder(ptr→right)
- 5: end if

Como percorrer em ordem simétrica sem usar recursão?

Percurso em ordem simétrica — Iterativo

Percurso em ordem simétrica — Iterativo

Algorithm inorderIterativo()

```
Require: root (ponteiro para a raiz)
 1: Cria uma pilha vazia P de ponteiros para nós
 2. node = root
 3: while P \neq \emptyset or node \neq NULL do
     if node \neq NULL then
         P.empilha(node)
 5:
         node = node \rightarrow left
 7:
    else
         node = P.topo()
 8:
         P.desempilha()
 9.
   visit(node)
10:
         node = node \rightarrow right
11:
12:
      end if
13: end while
```

Percurso em pós-ordem iterativo

• Exercício para casa: Implementar o percurso em pós-ordem iterativo.

Percurso em largura

O percurso em largura

O percurso em largura

• visita os nós por níveis

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4,

O percurso em largura

- visita os nós por níveis
- da esquerda para a direita

Ex: 2, 5, 7, 3, 8, 1, 6, 4, 9

Como implementar a busca em largura?

Como implementar a busca em largura?

• Usamos uma fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila 2 5 7 3 8 1 6 4 9

Como implementar a busca em largura?

- Usamos uma fila
- Colocamos a raiz na fila e depois
- pegamos um elemento da fila e enfileiramos seus filhos

Fila	2	5	7	3	8	1	6	4	9
------	---	---	---	---	---	---	---	---	---

Percurso em largura

Algorithm levelTraversal()

```
Require: root (ponteiro para a raiz)
 1: Cria uma fila vazia Q de ponteiros para nós
 2: Q.push(root)
 3: while Q \neq \emptyset do
      node = Q.front()
   Q.pop()
 5:
    if node \neq NULL then
 6:
         visit(node)
 7:
         Q.push(node \rightarrow left)
 8.
         Q.push(node \rightarrow right)
 9.
      end if
10:
11: end while
```

Serialização de árvores

Serialização de Árvores

 A serialização de uma árvore binária é um processo pelo qual percorremos a árvore em pré-ordem e adicionamos o valor de cada chave encontrada ao final de uma string que inicialmente começa vazia, sendo que, para cada filho nulo encontrado, seu valor é representado pelo caractere '#'. Exemplo:

A serialização da árvore acima consiste na string:

8 3 1 # # 6 4 # # 7 # # 10 # 14 13 # # #

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

• Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Escreva uma função que calcula o número de nós de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_size(Node* node);
```

 Escreva uma função que calcula a altura de uma árvore. A função deve obedecer o seguinte protótipo:

```
int bt_height(Node* node);
```

 Adicione o campo height ao struct Node. O campo height deve ser do tipo int. Implemente a função bt_height(Node* node) de modo que ela preencha o campo height de cada nó com a altura do nó.

- Um caminho que vai da raiz de uma árvore até um nó qualquer pode ser representado por uma sequência de 0s e 1s, do seguinte modo:
 - toda vez que o caminho "desce para a esquerda" temos um 0; toda vez que "desce para a direita" temos um 1.
 - o Diremos que essa sequência de 0s e 1s é o código do nó.

 Suponha agora que todo nó de nossa árvore tem um campo adicional code, do tipo std::string, capaz de armazenar uma cadeia de caracteres de tamanho variável. Escreva uma função que preencha o campo code de cada nó com o código do nó.

Anexos

Demonstração do Lema 2

Lema 2: Se T é uma árvore binária completa com n>0 nós, então T possui altura $h=1+\lfloor \lg n \rfloor$.

Prova: Indução forte em n. Se n=1, então $h=1+\lfloor \lg 1\rfloor=1$, correto.

Quando n>1, suponha o resultado verdadeiro para todas as árvores binárias com até n-1 nós. Seja T' a árvore obtida de T pela remoção de todos os k nós que estão do último nível de T. Logo, T' é uma árvore cheia com n'=n-k nós.

Pela hipótese de indução, $h(T')=1+\lfloor \lg n' \rfloor$. Como T' é cheia, $n'=2^m-1$, para algum inteiro m>0.

Como T^{\prime} é uma árvore cheia com 2^m-1 nós, concluímos que $h(T^{\prime})=m.$

Demonstração do Lema (Continuação)

Logo,
$$h(T')=m$$
. Além disso, $1\leq k\leq n'+1$ (Lema 1). Assim,
$$h(T)=1+h(T')$$

$$=1+m$$

$$=1+\lg\left(n'+1\right) \qquad \text{pois } n'=2^m-1$$

$$=1+\left\lfloor\lg\left(n'+k\right)\right\rfloor \qquad \text{pois } 1\leq k\leq n'+1$$

$$=1+\left\lfloor\lg n\right\rfloor. \qquad \text{pois } n'=n-k$$

FIM