

Xyba Project

Logika dan Himpunan Pembahasan INSOM Radian 2016

- 1. This document is version: 1.0.1 Version should be at least 0.9 if you want to share this document to other people.
- 2. You may not share this document if version is less than 1.0 unless you have my permission to do so
- 3. This document is created by Xyba, Student of Mathematics University of Indonesia Batch 2016
- 4. Should there be any mistakes or feedbacks you'd like to give, please contact me
- 5. Last Updated: 06/12/2016

Thank you for your cooperation >v<

- 1. $n^3 + 5 = 2k + 1 \rightarrow n^3 = 2k 4 = 2(k 2) = 2k' \rightarrow n^3$ genap
 - 1. Akan dibuktikan apabila n^3 genap, maka n genap
 - 2. Misalkan n ganjil, maka dapat ditulis sebagai n = 2l + 1
 - 3. Maka $n^3 = (2l+1)^3 = 8l^3 + 12l^2 + 6l + 1 \rightarrow n^3 = 2(4l^3 + 6l^2 + 3l) + 1 = 2l' + 1 \rightarrow n^3$ ganjil, ini kontradiksi dengan pernyataan bahwa n^3 genap, maka n haruslah genap.
- 2. Misalkan n adalah bilangan rasional, maka dapat ditulis sebagai $n = \frac{a}{b}$, maka $n^3 = \left(\frac{a}{b}\right)^3$ sehingga n^3 adalah bilangan rasional. Ini kontradiksi dengan pernyataan bahwa n^3 adalah bilangan irrasional, maka n haruslah bilangan irrasional
- 3. Misalkan $\sqrt{2} + \sqrt{3}$ adalah bilangan rasional, maka dapat ditulis sebagai $\sqrt{2} + \sqrt{3} = \frac{a}{b}$ dengan FPB(a,b) = 1
 - 1. Maka $\frac{a^2}{b^2} = 2 + 3 + 2\sqrt{6} \rightarrow a^2 = 5b^2 + 2\sqrt{6}b^2 \rightarrow a^2 5b^2 = 2\sqrt{6}b^2$ $(a^2 - 5b^2)^2 = (2\sqrt{6}b^2)^2 \rightarrow a^4 + 25b^4 - 10a^2b^2 = 24b^2 \rightarrow a^4 + b^4 = 10a^2b^2$
 - 2. Maka $a^4 + b^4 \equiv 0 \ (mod \ 5)$
 - 3. Perhatikan untuk sembarang $x \in \mathbb{Z}$, $x^4 \equiv 0$ atau 1 (mod 5)
 - $0 \quad x \equiv 0 \pmod{5} \rightarrow x^4 \equiv 0 \pmod{5}$
 - $0 \quad x \equiv 1 \pmod{5} \rightarrow x^4 \equiv 1 \pmod{5}$
 - $0 \quad x \equiv 2 \pmod{5} \rightarrow x^4 \equiv 16 \pmod{5} \rightarrow x^4 \equiv 1 \pmod{5}$
 - $0 \quad x \equiv 3 \pmod{5} \rightarrow x^4 \equiv 81 \pmod{5} \rightarrow x^4 \equiv 1 \pmod{5}$
 - $0 \quad x \equiv 4 \pmod{5} \rightarrow x^4 \equiv 256 \pmod{5} \rightarrow x^4 \equiv 1 \pmod{5}$
 - 4. Maka agar $a^4 + b^4 \equiv 0 \pmod{5}$, haruslah $a^4 \equiv 0 \pmod{5}$ dan $b^4 \equiv 0 \pmod{5}$
 - 5. Dan sebaliknya, $a \equiv 0 \pmod{5}$ dan $b \equiv 0 \pmod{5}$
 - 6. Maka 5|a dan 5|b, maka 5|FPB(a,b). Ini kontradiksi dengan pernyataan bahwa FPB(a,b)=1, maka $\sqrt{2}+\sqrt{3}$ haruslah bilangan irrasional
- 4. Misalkan P(n): $1 + 3 + 5 + \dots + (2n 1) = n^2$, $n \in \mathbb{Z}^+$
 - $P(1): 1 = 1^2$ sehingga P(1) benar
 - Asumsikan untuk sembarang $x \in \mathbb{Z}^+ \cup x \neq n$, P(x) benar
 - Akan dibuktikan bahwa P(x + 1) benar
 - P(x+1): 1 + 3 + 5 + \cdots + (2x-1) + (2x+1) = $(x+1)^2$ < $IH > x^2 + (2x+1) = (x+1)^2$
 - Maka P(x + 1) benar

Sehingga terbukti untuk setiap bilangan bulat positif n bahwa $\sum_{k=1}^{n} (2k-1) = n^2$ benar

1

- 5. Misalkan $P(n): (1+h)^n > 1+nh, \ n, h \in \mathbb{Z}^+, n \ge 2$
 - $P(2): (1+h)^2 > 1+2h \rightarrow h^2+2h+1 > 2h+1$, karena $h \in \mathbb{Z}^+$, maka P(2) benar
 - Asumsikan untuk sembarang $a \in \mathbb{Z}^+ \cup a \ge 2 \cup a \ne n$, P(a) benar
 - Akan dibuktikan bahwa P(a + 1) benar
 - P(a+1): $(1+h)^{a+1} = (1+h)(1+h)^a > (1+h)(1+ah) = 1+(a+1)h+ah^2$
 - Karena $a > 0 \cup h^2 > 0$, maka $ah^2 > 0$ maka $1 + (a+1)h + ah^2 = 1 + (a+1)h + 0$ maka P(a+1): $(1+h)^{a+1} > 1 + (a+1)h$
 - Maka P(a + 1) benar

Sehingga terbukti untuk setiap bilangan bulat $n \ge 2$ bahwa $(1+h)^n > 1+nh$ berlaku

- 6. Misalkan $P(n): 3 \times 3^{2n} + 40n 67 = 64q, n \in \mathbb{Z}^+$
 - $P(1): 3 \times 9 + 40 67 = 64q \rightarrow 0 = 64q$, karena P(1) dapat dibagi 64, maka P(1) benar
 - Asumsikan untuk sembarang $p \in \mathbb{Z}^+ \cup p \neq n$, P(p) benar
 - Akan dibuktikan bahwa P(p + 1) benar

$$P(p+1): 3^{2p+3} + 40p \times 9 - 67 \times 9 = 64q$$

$$3^{2p+3} + 40p + 40 + (40 \times 8p - 40) - 67 + (-67 \times 8) = 64q$$

$$3^{2p+3} + 40(p+1) - 67 + (320p - 576) = 64q$$

$$< IH > 64(q+1) + 64(5p-9) = 64q$$

- Maka P(p+1) benar

Sehingga terbukti untuk $n \in \mathbb{Z}^+$, $64 \mid 3^{2n+1} + 40n - 67$

- 7. $f(a) + f(b) = f(a + b), a, b \in \mathbb{Q}$
 - Substitusi b = 0 : $f(a) + f(0) = f(a) \leftrightarrow f(0) = 0$(1)
 - Substitusi b = -a : $f(a) + f(-a) = f(0) \leftrightarrow f(-a) = -f(a)$(2)

Akan dibuktikan P(n): f(nx) = nf(x)

- P(1): f(x) = 1. f(x) sehingga P(1) benar
- Asumsikan untuk sembarang $k \in \mathbb{N} \cup k \neq n$, P(k) benar
- Akan dibuktikan bahwa P(k+1) benar
- P(k+1): f((k+1)x) = f(kx) + (f(x) = kf(x) + f(x) = (k+1)f(x)
- Maka terbukti bahwa f(nx) = nf(x).....(3)

Substitusi x = 1 ke (3) didapatkan f(n) = nf(1), $n \in \mathbb{N}$(4)

Substitusi $x = \frac{k}{n}$, $k \in \mathbb{N}$ ke (3) didapatkan f(k) = n. $f\left(\frac{k}{n}\right)$(5)

Dari (4) dan (5) didapatkan
$$nf\left(\frac{k}{n}\right) = f(k) = kf(1) \rightarrow f\left(\frac{k}{n}\right) = \frac{k}{n}f(1), \ k, n \in \mathbb{N}$$

Maka $f(c) = cf(1), \ c \in \mathbb{Q}^+$(6)

Dari (2) dan (6) didapatkan
$$f(-c) = -f(c) = -cf(1), c \in \mathbb{Q}^+$$
.....(7)

Dari (1), (6), dan (7) didapatkan
$$f(d) = df(1), d \in \mathbb{Q}^+$$

Maka terbukti bahwa $f(x) = xf(1), x \in \mathbb{Q}$ benar

- 8. Misalkan P(n) adalah jumlah kota dalam negara tersebut dengan $n \ge 2$
 - P(2): 2 kota pasti memiliki satu jalur
 - Misalkan ada k kota $(i_1, i_2, ..., i_k)$ memiliki jalur yang melewati semua kota WLOG, misalkan jalur mulai dari i_1 dan berakhir di i_2
 - Asumsikan bahwa benar untuk $2 \le j \le k$, setiap j benar
 - Ditambah 1 kota, dengan jalur k+1, karena dari i_k ada satu jalur penghubung berarti dari i_1 ke i_{k+1} juga ada jalur yang melewati semua kota

Maka terbukti ada jalur yang melewati semua kota

9. Perhatikan bahwa sisi kiri akan semakin bertambah saat *n* bertambah namun sisi kanan akan tetap konstan, sehingga induksi tidak akan langsung bekerja. Untuk membuktikan pertidaksamaan ini, akan diberikan perubahan pada pertidaksamaan sebagai hipotesis induksi seperti berikut:

$$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)...\left(1+\frac{1}{2^n}\right)<\frac{5}{2}-\frac{r}{2^n}$$

Tujuannya adalah untuk mementukan konstan positif r yang akan membantu membuktikan pertidaksamaan menggunakan induksi. Apabila induksi ini benar, maka dapat disimpulkan pertidaksamaan awal benar

$$P(s): \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) ... \left(1 + \frac{1}{2^s}\right) < \frac{5}{2} - \frac{r}{2^s}$$

- Akan dibuktikan bahwa P(s + 1) benar
- $P(s+1): \left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)...\left(1+\frac{1}{2^s}\right)\left(1+\frac{1}{2^{s+1}}\right) < \frac{5}{2} \frac{r}{2^{s+1}}$
- Menggunakan hipotesis induksi, kita mendapatkan

$$P(s+1): \left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^{2}}\right)...\left(1+\frac{1}{2^{s}}\right)\left(1+\frac{1}{2^{s+1}}\right) < \left(\frac{5}{2}-\frac{r}{2^{s}}\right)\left(1+\frac{1}{2^{s+1}}\right) < \frac{5}{2}-\frac{r}{2^{s+1}}$$

Perhatikan kedua sisi kanan, kemudian selesaikan

$$\left(\frac{5}{2} - \frac{r}{2^{s}}\right) \left(1 + \frac{1}{2^{s+1}}\right) < \frac{5}{2} - \frac{r}{2^{s+1}}$$

$$\Leftrightarrow \left(\frac{5(2^{s-1}) - r}{2^{s}}\right) \left(\frac{2^{s+1} + 1}{2^{s+1}}\right) < \frac{5(2^{s}) - r}{2^{s+1}}$$

$$\Leftrightarrow \frac{5(2^{2s}) + 5(2^{s-1}) - r(2^{s+1}) - r}{2^{2s+1}} < \frac{5(2^{s}) - r}{2^{s+1}}$$

$$\Leftrightarrow \frac{5(2^{2s}) + 5(2^{s-1}) - 5(2^{s})}{2^{2s+1}} < \frac{r(2^{s+1}) + r}{2^{2s+1}} - \frac{r}{2^{s+1}}$$

$$\Leftrightarrow \frac{5(2^{2s}) + 5(2^{s-1}) - 5(2^{2s})}{2^{2s+1}} < \frac{2 \cdot r(2^{s}) + r - r(2^{s})}{2^{2s+1}}$$

$$\Leftrightarrow \frac{5(2^{s-1})}{2^{2s+1}} < \frac{r(2^{s})}{2^{2s+1}} + \frac{r}{2^{2s+1}}$$

$$\Leftrightarrow \frac{5}{2^{s+2}} < \frac{2r}{2^{s+2}} + \frac{r}{2^{2s+1}}$$

Perhatikan bahwa

$$\frac{5}{2^{s+2}} < \frac{2r}{2^{s+2}}$$

Maka, jelas terpenuhi untuk r = 3

Kembali membuktikan hipotesis induksi, untuk n = 3, kita mendapatkan

$$\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\left(1 + \frac{1}{2^3}\right) = \frac{135}{64} < \frac{136}{64} = \frac{5}{2} - \frac{3}{2^3}$$

- Maka terbukti P(s + 1) benar
- Untuk $n \ge 3$ dibuktikan dengan cara tersebut, namun n = 1, 2 harus dibuktikan terpisah

-
$$P(1)$$
: $\left(1 + \frac{1}{2}\right) < \frac{5}{2} = \frac{3}{2} < \frac{5}{2}$, maka $P(1)$ benar $P(2)$: $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right) < \frac{5}{2} = \frac{15}{8} < \frac{20}{8}$, maka $P(2)$ benar

Sehingga terbukti untuk $n \in \mathbb{Z}$, maka $\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)...\left(1+\frac{1}{2^n}\right) < \frac{5}{2}$ berlaku