STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 19: Introduction to Linear Regression

Outline

- Continue to explore relationships between two variables
- Go beyond summary statistics
 - Look into a statistical model for the relationship
 - What the model looks like
 - Fitted model
 - Residuals

Recall: motivating examples

- The size of brushtail possums
 - Compare total length (mm) to head length (cm)
- Height of STAT110 students
 - Compare father's height (cm) to son's height (cm)
- Squat weight of international power lifters
 - Comparing body weight (kg) to max squat weight (kg)

Recall: correlation

- \bullet The correlation r measures the strength of linear relationship between two variables x and y
- The correlation is limited
- What might we want to know?
 - 1. Possum data: predict head length from a measurement of total length
 - 2. Height data: understanding and quantifying heritability of height as a trait
 - 3. Powerlifting: compare the squat weight of an athlete to their peers of a similar weight
- Correlation does not help us for 1 and 3
 - ▶ Limited for 2: quantifies the linear relationship, but does not describe it
 - What is the expected difference in height between a son with father who is 170 cm tall, and a son with father who is 180 cm tall?

- To overcome these problems we will look to a statistical model
 - Extension of our previous models
- ullet Explore relationship between continuous variables x and y
 - e.g. x is father's height, y is son's height
- The variable y is referred to as the outcome variable
 - ► Can also be called the response variable, or dependent variable
- The variable x is referred to as the predictor variable
 - ► Can also be called the explanatory variable, or independent variable
- The idea: the predictor variable helps us 'predict' the outcome variable

- Our description will make use of the father/son height example
 - ► Interest is in understanding the relationship the height of NZ male university students and their fathers
 - ► Sample is from (former) students in STAT110
- Using probability to describe data
- Recall concept of conditional probability: $Pr(A \mid B)$
 - ▶ Here we are looking at a probability density for y|x
 - We have the height of a father (x) and son (y)
 - Given a father's height (x), we specify a model for son's height (y)
 - We will specify a normal model
- · Look at it graphically

- ullet Consider the subpopulation at particular value of x
 - e.g. sons with fathers who are 175 cm tall (x = 175)
 - ► Assume that son's height is normally distribution
 - For the sake of explanation: sons are expected to be the same height as their fathers

- Subpopulation at a given value of x: outcome variable is normally distributed
- For fathers who are 165 cm tall (blue)

- Subpopulation at a given value of x: outcome variable is normally distributed
- For fathers who are 180 cm tall (green)

Turning it sideways

- Visualise it with outcome variable on y-axis, and predictor variable on x-axis
 - ► The same distributions are given below

Turning it sideways

• Including some other values of x (father's height)

Turning it sideways

• Including even more values of x (father's height)

Linear regression

- The outcome variable, y, can be written in terms of two pieces:
 - ▶ outcome = mean response + error
- ullet The mean response (what we expect) is assumed to vary with the predictor x
 - ▶ Expected height of a son is different if father is 165 cm vs father who is 180 cm
- We assume the mean response is a straight line
 - e.g. continuing the father and son height example, the mean response is

Lecture 19 Father's height (x) Slide 13

Revision: equation for a straight line

- Mathematical equation: y = mx + c
 - ▶ Intercept c: where it crosses the y-axis (x = 0)
 - ightharpoonup Slope m

Revision: equation for a straight line

- We will use the equation: $\beta_0 + \beta_1 x$
 - lacktriangle Convention: use eta_0 and eta_1 in place of c and m
 - Intercept β_0 : where it crosses the y-axis (x=0)
 - Slope β_1

Understanding the model: population level

Putting this together we have:

$$\underbrace{y}_{\text{outcome}} = \underbrace{\beta_0 + \beta_1 x}_{\text{mean response}} + \underbrace{\varepsilon}_{\text{error}}$$

- The mean response is given by the straight line: $\mu_y = \beta_0 + \beta_1 x$
 - \blacktriangleright Gives us the expected value of y in the population for a given value of x
- The mean will be different for two different values of x
- For x = 165 cm:
 - Mean is: $\mu_y = \beta_0 + \beta_1 \times 165$
- For x = 180 cm:
 - Mean is: $\mu_y = \beta_0 + \beta_1 \times 180$

Interpretation

- What do β_0 and β_1 represent?
- The mean will be different for two different values of x
 - Mean is: $\mu_y = \beta_0 + \beta_1 x$
- For someone with a father one cm taller (x+1), the mean response is
 - Mean is: $\mu_y = \beta_0 + \beta_1(x+1) = \beta_0 + \beta_1 x + \beta_1$
- β_1 is the difference between these
 - \blacktriangleright β_1 is the change in mean response when x increases by one unit
 - Change in the expected height of two male NZ university students whose fathers differ in height by 1 cm
- β_0 is the mean response when x=0
 - ▶ May make no sense in many examples
 - Mean response for a son with a father of height 0 cm: physically impossible

From mean response to individual response

The linear regression model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- Error term ε (greek letter epsilon) describes how an individual response differs from the mean of their subpopulation
 - \triangleright Subpopulation: all individuals in the population with the same value of x
- We assume that variation within a given subpopulation is normally distributed
 - ightharpoonup arepsilon is normally distributed with mean 0 and variance σ_{ε}^2
 - σ_{ε} tells us how variable individual observations are within their subpopulation

Visualising subpopulation

- Suppose that the true regression model for height is $y=110+0.35x+\varepsilon$
 - ► Mean response (black line)
 - ► Normal model for the errors (gold)
 - ▶ Individual with y = 175 and x = 165 (blue point)
 - ▶ Individual with y = 170 and x = 190 (green point)

Lecture 19 Father's height (x) Slide 19

Statistical model: data

• The linear regression model is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

- The errors mean that data will not fall exactly on the line
 - ► Like the data we have!

It's quiz time!

Suppose that the true regression model for height is

$$y = 110 + 0.35x + \varepsilon$$

- Decide whether the following statements are true or false:
 - 1. Consider the subpopulation of all students with fathers of height x=200 cm. The mean height of those students is 180 cm.
 - 2. On average, students with fathers of height $x=201\,\mathrm{cm}$ are 0.35 cm taller than students with fathers of height $x=200\,\mathrm{cm}$.
 - 3. All students with fathers of height $x=190~{\rm cm}$ are taller than all students with fathers of height $x=170~{\rm cm}$.
 - 4. Students with fathers of height x=0 cm are 110 cm tall on average

Summary

- Introduced a statistical model for the relationship between x and y
 - ► Outcome variable, y
 - ► Predictor variable, x
 - lacktriangle For a given value of x, y is assumed to be normally distributed
- Understand the linear regression model
 - Mean response
 - ► Error
 - ► Interpretation
- Looking forward: how do we fit a linear regression to data?