0.1 Mengder

En samling av tall kalles en $mengde^1$, og et tall som er en del av en mengde kalles et element i denne mengden. Mengder kan inneholde et endelig antall elementer og de kan inneholde uendelig mange elementer.

Regel 0.1 Mengder

For to reelle tall a og b, hvor $a \leq b$, har vi at

- [a,b] er mengden av alle reelle tall større eller lik a og mindre eller lik b.
- (a, b] er mengden av alle reelle tall større enn a og mindre eller lik b.
- [a,b) er mengden av alle reelle tall større eller lik a og mindre enn b.

[a, b] kalles et lukket intervall, (a, b) kalles et åpent intervall, og både (a, b] og [a, b) kalles halvåpne intervall.

Mengden som inneholder bare a og b skrives som $\{a, b\}$.

At x er et element i en mengde M skrives som $x \in M$.

At x ikke er et element i en mengde M skrives som $x \notin M$.

At x er et element i både en mengde M_1 og en mengde M_2 skrives som $x \in M_1 \cup M_2$.

Språkboksen

 $x \in M$ uttales "x inneholdt i M".

Mange tekster bruker (istedenfor (for å indikere åpne (eller halvåpne) intervall.

Merk

Når vi heretter i boka definerer et intervall beskrevet av a og b, tar vi det for gitt at a og b er to reelle tall og at $a \le b$.

¹En mengde kan også være en samling av andre matematiske objekter, som for eksempel funksjoner, men i denne boka holder det å se på mengder av tall.

Eksempel 1

Mengden av alle heltall større enn 0 og mindre enn 10 skriver vi \mathbf{som}

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Denne mengden inneholder 9 elementer. 3 er et element i denne mengden, og da kan vi skrive $3 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

10 er ikke et element i denne mengden, og da kan vi skrive $10 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Eksempel 2

Skriv opp ulikhetene som gjelder for alle $x \in M$, og om 1 er inneholdt i M.

- a) M = [0, 1]
- b) M = (0, 1]
- c) M = [0, 1)

Svar

- a) $0 \le x \le 1$. Videre er $1 \in M$.
- b) $0 < x \le 1$. Videre er $1 \in M$.
- c) $0 \le x < 1$. Videre er $1 \notin M$.

Definisjon 0.2 Navn på mengder

- \mathbb{N} Mengden av alle positive heltall¹
- \mathbb{Z} Mengden av alle heltall²
- $\mathbb Q$ Mengden av alle rasjonale tall
- $\mathbb R$ $\,$ Mengden av alle reelle tall
- \mathbb{C} Mengden av alle komplekse tall

¹Inneholder *ikke* 0.

²Inneholder 0.

Symbolet for uendelig

Mengdene i definisjon 0.2 inneholder uendelig mange elementer. Noen ganger ønsker vi å avgrense deler av en uendelig mengde, og da melder det seg et behov for et symbol som er med på å symbolisere dette. ∞ er symbolet for en uendelig stor, positiv verdi.

Eksempel

Et vilkår om at $\geq > 2$ kan vi skrive som $x \in [2, \infty)$.

Et vilkår om at x < -7 kan vi skrive som $x \in (-\infty, -7)$.

Språkboksen

De to intervallene i eksempelet over kan også skrives som $[2, \rightarrow]$ og $(\leftarrow, -7)$.

Merk

∞ er ikke noe bestemt tall. Å bruke de fire grunnleggende regneartene alene med dette symbolet gir derfor ingen mening.

0.2 Verdi- og definisjonsmengder

Alle funksjoner har en definisjonsmengde og en verdimengde. For en funksjon f(x), er definisjonsmengden den mengden som utelukkende inneholder alle verdier x kan ha. Denne mengden skrives da som D_f . Hvilke verdier x kan ha er bestemt av to ting:

- Hvilken sammenheng x skal brukes i.
- Om f ikke er definert for visse x-verdier.

La oss først bruke f(x) = 2x + 1 som et eksempel. Denne funksjonene er definert for alle $x \in \mathbb{R}$. Vi kunne derfor latt \mathbb{R} være definisjonsmengden til f, men for enhelhets skyld velger vi her $D_f = [0,1]$. Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f. Denne mengden skrives som V_f . I dette tilfellet er (forklar for deg selv hvorfor) $f \in [1,3]$, altså er $V_f = [1,3]$.

La oss videre se på funksjonen $g(x) = \frac{1}{x}$. Denne funksjonen er ikke definert for x = 0, noe som betyr at vi allerede har fått en restriksjon på definisjonsmengden til g. Også her gjør vi det enkelt, og unngår 1 = 0 med god klaring ved å sette $D_g = [1, 2]$. Da er (forklar for deg selv hvorfor) $V_g = \left[\frac{1}{2}, 1\right]$.

Regel 0.3 Verdi- og definisjonsmengder

Gitt en funksjon f(x). Mengden som utelukkende inneholder alle verdier x kan ha, er da definisjonsmengden til f. Denne mengden skrives som D_f .

Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f.

 $^{^1\}mathrm{I}$ seksjon ?? skal vi se nærmere på funksjoner som g når x nærmer seg 0.

0.3 Betingelser

Symbolet \Rightarrow bruker vi for å vise til at hvis et vilkår er oppfylt, så er en annen (eller flere) vilkår også oppfylt. For eksempel; i MB så vi at hvis en trekant er rettvinklet, er Pytagoras' setning gyldig. Dette kan vi skrive slik:

trekanten er rettvinklet ⇒ Pytagoras' setning er gyldig

Men vi så også at det omvendte gjelder; hvis Pytagoras' setning er gyldig, må trekanten være rettvinklet. Da kan vi skrive

trekanten er rettvinklet ⇔ Pytagoras' setning er gyldig

Det er veldig viktig å være bevisst forskjellen på \Rightarrow og \iff ; at vilkår A oppfylt gir B oppfylt, trenger ikke å bety at vilkår B oppfylt gir vilkår A oppfylt!

Eksempel 1

firkanten er et kvadrat \Rightarrow firkanten har fire like lange sider

Eksempel 2

tallet er et primtall større enn 2 \Rightarrow tallet er et oddetall

Eksempel 3

tallet er et partall \iff tallet er delelig med 2

Funksjoner med betingelser

Funksjoner kan gjerne ha flere uttrykk som gjelder for forskjellige vilkår. La oss for eksempel definere en funksjon f(x) slik:

For x < 1 er funksjonsuttrykket -2x + 1

For $x \ge 1$ er funksjonsuttrykket $x^2 - 2x$

Dette kan vi skrive som

$$f(x) = \begin{cases} -2x+1 & , & x < 1 \\ x^2 - 2x & , & x \ge 1 \end{cases}$$
 (1)