# 微积分 A (2)

姚家燕

第 4 讲

# 在听课过程中,

严禁使用与教学无关的电子产品!

# 第3讲回顾: 多元向量值函数

- •概念: n元向量值函数, n元(数量值)函数.
- 向量值函数的运算:线性组合;向量值函数 与数量值函数之间的乘、除;向量值函数的 复合运算。
- 向量值函数的表示: 在  $\mathbb{R}^m$  中取值的 n 元 向量值函数等同于 m 个 n 元数量值函数.

# 回顾: 函数极限

- 函数极限  $\lim_{\Omega \ni X \to X_0} \vec{f}(X)$ ,  $\lim_{X \to X_0} \vec{f}(X)$ .
- 向量值函数极限收敛当且仅当它的每一个 坐标分量函数的函数极限收敛.
- 极限若存在, 则唯一.
- 数量值函数极限的保序性、保号性、夹逼原理、四则运算.
- 复合极限法则, 序列极限与函数极限之间的 关系, Cauchy 准则.

# 回顾: 多变量函数极限的计算

#### 基本方法: 转化为单变量的情形.

- $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$
- $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0.$
- $\lim_{\substack{x \to \infty \\ y \to a}} \left(1 \frac{1}{2x}\right)^{\frac{x^2}{x+y}} = e^{-\frac{1}{2}}$ , ##  $a \in \mathbb{R}$ .
- 极限  $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$  不存在.



# 第4讲

例 5. 试证明  $f(x,y) = \frac{x^2}{x^2+y^2-x}$  在 (x,y) 沿任何直线趋于 (0,0) 时,均会趋于 0,但是当 (x,y) 趋于 (0,0) 时,极限却不存在.

证明: 假设  $a,b \in \mathbb{R}$  不全为零. 对于过 (0,0) 的任意直线  $\begin{cases} x = at \\ y = bt \end{cases} (t \in \mathbb{R}), 我们有$ 

$$\lim_{t \to 0} f(at, bt) = \lim_{t \to 0} \frac{(at)^2}{(at)^2 + (bt)^2 - at}$$
$$= \lim_{t \to 0} \frac{a^2}{a^2 + b^2 - \frac{a}{t}} = 0.$$

 $\forall t \in \mathbb{R}$ , 定义  $g(t) = (t^2, t)$ . 那么  $\lim_{t \to 0} g(t) = (0, 0)$ , 且 g 在  $\mathbb{R} \setminus \{0\}$  上不等于 (0, 0). 注意到

$$\lim_{t \to 0} f \circ g(t) = \lim_{t \to 0} \frac{(t^2)^2}{(t^2)^2 + t^2 - t^2} = 1 \neq 0,$$

于是由复合函数极限法则可知极限

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

不存在.

例 6. 计算 
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+e^y)}{1+\log(1+x)}$$
.

解: 
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+e^y)}{1+\log(1+x)} = \sin 1.$$

作业题: 第1.3 节第22 页第1 题第(3), (4), (11),

(12) 小题, 第 2 题第 (1), (2), (3), (5) 小题, 其中

第 (5) 题当中应该将 xy 改为 |xy|.

# 二重极限与累次极限

二重极限:  $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ .

累次极限:  $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ ,  $\lim_{y\to y_0} \lim_{x\to x_0} f(x,y)$ .

注: 对于累次极限  $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ , 先对  $x\neq x_0$ 

计算  $\varphi(x) := \lim_{y \to y_0} f(x, y)$ , 随后再求  $\lim_{x \to x_0} \varphi(x)$ .

问题: 二重极限与累次极限有什么关系?

回答: 没有任何关系!

#### 情形 1: 二重极限不存在, 但累次极限存在.

例 7. 前面已证二重极限  $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$  不存在, 但当  $y \neq 0$  时, 我们有  $\lim_{x\to 0} \frac{2xy}{x^2+y^2} = 0$ , 于是

$$\lim_{y \to 0} \lim_{x \to 0} \frac{2xy}{x^2 + y^2} = 0.$$

由对称性可得  $\lim_{x\to 0} \lim_{y\to 0} \frac{2xy}{x^2+y^2} = 0.$ 

#### 情形 2: 二重极限存在, 但累次极限不存在.

例 8.  $\forall (x,y) \in \mathbb{R}^2$  (其中  $xy \neq 0$ ), 定义

$$f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}.$$

由于  $\lim_{x\to 0} x \sin \frac{1}{y} = 0$ ,但极限  $\lim_{x\to 0} y \sin \frac{1}{x}$  不存在,故极限  $\lim_{x\to 0} f(x,y)$  不存在.由对称性可知极限  $\lim_{y\to 0} f(x,y)$  也不存在.又  $|f(x,y)| \leq |x| + |y|$ ,由夹逼原理可知  $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ .

定理 1. 假设  $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$  且在  $x_0$  的某去心邻域 U 内  $\lim_{y\to y_0} f(x,y) = \varphi(x)$  收敛, 则

$$A = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y).$$

证明: 由极限的定义可知,  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  使得  $\forall (x,y) \in \mathring{B}((x_0,y_0),\delta)$ , 均有  $|f(x,y)-A| < \varepsilon$ . 则  $\forall x \in U \cap (x_0-\delta,x_0+\delta)$ , 对 y 取极限可得  $|\varphi(x)-A| \leqslant \varepsilon$ . 故  $\lim_{x\to x_0} \varphi(x) = A$ .

注: 这里仅考虑了  $A \in \mathbb{R}$  而省略了其它情形.

# 推论 1. 若二重极限与某一个累次极限均存在,则二者必然相等: 若 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ 且 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y) = B$ 存在,则 A=B.

# 推论 2. 若累次极限存在但不相等, 则二重极限不存在: 若 $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y)$ 与 $\lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$ 均存在但不相等, 则 $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ 不存在.

作业题: 第 1.3 节第 23 页第 3 题 第 (2) 小题. 注: 应终题中的 0 L 改为 0 t

注: 应将题中的 0+ 改为 0+.

### 向量值函数的连续性

定义 2. 假设  $m, n \ge 1$  为整数,  $\Omega \subseteq \mathbb{R}^n$ ,  $X_0 \in \Omega$ 

为  $\Omega$  的极限点,  $\vec{f}: \Omega \to \mathbb{R}^m$  为向量值函数. 若

$$\lim_{\Omega \ni X \to X_0} \vec{f}(X) = \vec{f}(X_0),$$

则称  $\vec{f}$  在点  $X_0$  处连续.

#### 评注

•  $\vec{f}$  在点  $X_0$  连续当且仅当  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$  使得  $\forall X \in \Omega$ , 当  $\|X - X_0\|_n < \delta$  时, 均有  $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$ .

若点  $X_0$  不为  $\Omega$  的极限点, 上述性质恒成立, 此时我们也称  $\vec{f}$  在点  $X_0$  处连续.

- 若  $\vec{f}$  在  $\Omega$  的每点连续, 则称  $\vec{f}$  在  $\Omega$  上连续.
- 定义  $\mathcal{C}(\Omega; \mathbb{R}^m) = \{\vec{f} \mid \vec{f} : \Omega \to \mathbb{R}^m \text{ 为连续}\}.$  当 m = 1 时,我们将之简记为  $\mathcal{C}(\Omega)$ .

# 连续函数的性质

定理 2. 多元数量值连续函数经过加、减、乘、除 (分母不为零)运算后仍为连续函数.

定理 3. 多元向量值连续函数经加、减、数乘与复合运算后仍为连续函数.

注: 我们可以类似地定义多个变元的初等函数, 由上述性质可知它们在 其定义区域内 连续. 定理 4. 设  $\Omega \subset \mathbb{R}^n$  为开集, 而  $\vec{f}: \Omega \to \mathbb{R}^m$  为 向量值函数. 则  $\vec{f}$  连续当且仅当对  $\mathbb{R}^m$  中任意开集 G, 原像集  $\vec{f}^{-1}(G) = \{X \in \Omega \mid \vec{f}(X) \in G\}$  均为开集.

证明:  $\frac{\mathbf{n}}{\mathbf{n}}$  一般性. 假设对于  $\mathbb{R}^m$  中的任意开集 G. 其原像集  $\vec{f}^{-1}(G)$  为开集. 取  $X_0 \in \Omega$ .  $\forall \varepsilon > 0$ , 令  $G = B(\vec{f}(X_0), \varepsilon)$ . 由题设知  $\vec{f}^{-1}(G)$  为包含 点  $X_0$  的开集, 则  $\exists \delta > 0$  使  $B(X_0, \delta) \subseteq \vec{f}^{-1}(G)$ , 即  $\forall X \in B(X_0, \delta)$ , 均有  $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$ . 因此  $\vec{f}$  在点  $X_0$  处连续, 从而  $\vec{f}$  为连续映射.

任意非空开集.  $\forall X_0 \in \vec{f}^{-1}(G)$ , 均有  $\vec{f}(X_0) \in G$ . 又 G 为开集, 则  $\exists \varepsilon > 0$  使得  $B(\vec{f}(X_0), \varepsilon) \subseteq G$ .  $\vec{f}$  在  $X_0$  连续, 则  $\exists \delta_1 > 0$  使  $\forall X \in \Omega \cap B(X_0, \delta_1)$ , 我们有  $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$ . 又  $\Omega \cap B(X_0, \delta_1)$ 为开集, 故  $\exists \delta > 0$  使  $B(X_0, \delta) \subseteq \Omega \cap B(X_0, \delta_1)$ , 则  $\forall X \in B(X_0, \delta)$ , 均有  $\|\vec{f}(X) - \vec{f}(X_0)\|_m < \varepsilon$ , 也即有  $B(X_0, \delta) \subseteq \vec{f}^{-1}(B(\vec{f}(X_0), \varepsilon)) \subseteq \vec{f}^{-1}(G)$ , 故  $X_0$  为  $\vec{f}^{-1}(G)$  的内点, 进而  $\vec{f}^{-1}(G)$  为开集. 注: 同理可证  $\vec{f}$  连续当且仅当对于  $\mathbb{R}^m$  中任意 闭集 F, 原像集  $\vec{f}^{-1}(F)$  为闭集.

必要性. 假设  $\vec{f}$  为连续映射, 而 G 为  $\mathbb{R}^m$  中的

定理 5. (最值定理) 假设  $\Omega \subseteq \mathbb{R}^n$  为有界闭集, 而  $f \in \mathscr{C}(\Omega)$ , 则 f 在  $\Omega$  上有最大值和最小值. 证明: 首先证明 f 在  $\Omega$  上有界. 否则,  $\forall k \in \mathbb{N}^*$ ,  $\exists X_k \in \Omega$  使得  $|f(X_k)| > k$ . 由  $\Omega$  的有界性可知  $\{X_k\}$  有一个子列  $\{X_{\ell_k}\}$  收敛, 设其极限为 A. 又  $\Omega$  为闭集, 则  $A \in \Omega$ , 再由 f 的连续性以及 夹逼原理可得  $f(A) = \lim_{k \to \infty} f(X_{\ell_k}) = \infty$ . 矛盾! 故假设不成立, 从而 f 有界.

下证 f 在  $\Omega$  上有最值. 用反证法, 假设 f 没有 最大值或最小值. 不失一般性, 可假设 ƒ 没有 最大值, 否则可以考虑 -f. 令  $M = \sup f(\Omega)$ . 则  $\forall X \in \Omega$ , f(X) < M. 定义  $F(X) = \frac{1}{M - f(X)}$ , 则  $F \in \mathcal{C}(\Omega)$ . 又由 M 的定义可知,  $\forall k \in \mathbb{N}^*$ ,  $\exists X_k \in \Omega$  使得  $f(X_k) > M - \frac{1}{k}$ , 故  $F(X_k) > k$ , 从而 F 在  $\Omega$  上没有上界. 矛盾! 故所证成立.

# $\mathbb{R}^n$ 中集合的弧连通

- 称集合  $D \subseteq \mathbb{R}^n$  为弧连通, 如果  $\forall X, Y \in D$ , 均存在 D 中的连续曲线将 X, Y 连接起来, 即存在向量值连续函数  $\gamma : [0,1] \to D$  使得我们有  $\gamma(0) = X$ ,  $\gamma(1) = Y$ .
- 折线连通集也为弧连通集. 可以证明弧连通 开集为折线连通.
- 由连续函数介值定理立刻可知,  $\mathbb{R}$  的子集 D 为弧连通集当且仅当它为区间.

定理 6. (连通性) 若  $\vec{f} \in \mathcal{C}(\Omega; \mathbb{R}^m)$  而  $\Omega \subseteq \mathbb{R}^n$  为 弧连通, 则  $\vec{f}(\Omega)$  为弧连通集.

证明: 向量值连续函数的复合依然连续, 得证.

定理 7. (介值定理) 假设  $\Omega \subseteq \mathbb{R}^n$  为弧连通集, 而  $f \in \mathcal{C}(\Omega)$ , 则  $\forall X_1, X_2 \in \Omega$  以及介于  $f(X_1)$ ,  $f(X_2)$  之间的实数  $\mu$ ,  $\exists X_0 \in \Omega$  使得  $f(X_0) = \mu$ . 证明:由 定理 6 可知  $f(\Omega)$  为  $\mathbb{R}$  的弧连通子集, 从而为区间.  $\forall X_1, X_2 \in \Omega$ ,  $f(X_1), f(X_2) \in f(\Omega)$ , 则以这两点为端点的区间包含于  $f(\Omega)$ . 得证.

例 9. 证明: 存在正实数 m, M 使得对于任意的

$$X=(x_1,\ldots,x_n)\in\mathbb{R}^n$$
, 均有

$$m \sum_{j=1}^{n} |x_j| \le ||X|| \le M \sum_{j=1}^{n} |x_j|.$$

分析: 当 X 为零向量时, 上式成立. 若 X 不为零向量, 则该不等式等价于  $\frac{1}{M} \leq \sum_{i=1}^{n} \left| \frac{x_i}{\|X\|} \right| \leq \frac{1}{m}$ .

而所证不等式则等价于

$$\frac{1}{M} \leqslant f(Y) := \sum_{j=1}^{n} |y_j| \leqslant \frac{1}{m}.$$

也即要证明 f 在单位球面上有正的上、下界.

证明: 定义 
$$S = \{Y \in \mathbb{R}^n \mid ||Y||_n = 1\}$$
, 则  $S$  为 有界闭集.  $\forall Y = (y_1, \dots, y_n) \in S$ , 令

$$f(Y) = \sum_{j=1}^{n} |y_j| > 0.$$

则 f 连续, 从而有最小值 a > 0, 最大值 b.

选取  $m = \frac{1}{b}$ ,  $M = \frac{1}{a}$ .  $\forall X \in \mathbb{R}^n$  (X 不为零向量), 设  $Y = \frac{1}{\|X\|_n}(x_1, \dots, x_n) \in S$ , 则  $a \leqslant f(Y) \leqslant b$ .

也即 
$$a \leqslant \frac{1}{\|X\|_n} \sum_{j=1}^n |x_j| \leqslant b$$
,从而我们有

$$\frac{1}{b} \sum_{j=1}^{n} |x_j| \leqslant ||X||_n \leqslant \frac{1}{a} \sum_{j=1}^{n} |x_j|,$$

也就是说我们有  $m\sum_{j=1}^{n}|x_{j}| \leq ||X||_{n} \leq M\sum_{j=1}^{n}|x_{j}|.$ 

而 X 为零向量时, 该式也成立, 故所证成立.

作业题: 第1.3 节第23 页第6 题第(1), (4) 题.

# 无穷小函数的阶

定义 3. 设  $n \ge 1$  为整数,  $\Omega \subseteq \mathbb{R}^n$ , 而  $X_0 \in \mathbb{R}^n$  为  $\Omega$  的极限点,  $f: \Omega \to \mathbb{R}$  为函数.

(1) 若 
$$\lim_{\Omega \ni X \to X_0} f(X) = 0$$
, 称  $f$  在  $\Omega \ni X \to X_0$  时 为无穷小函数 (或无穷小量), 记作

$$f(X) = o(1) \ (\Omega \ni X \to X_0).$$

可见 
$$\lim_{\Omega\ni X\to X_0}f(X)=A$$
 当且仅当 
$$f(X)-A=o(1)\;(\Omega\ni X\to X_0).$$

(2) 设  $g: \Omega \to \mathbb{R}$  为函数. 若存在  $\beta > 0$ ,  $\delta > 0$ 

使 
$$\forall X \in \Omega \cap \mathring{B}(X_0, \delta)$$
,  $|f(X)| \leq \beta |g(X)|$ , 则记

$$f(X) = O(g(X)) \ (\Omega \ni X \to X_0).$$

若还有 g(X) = O(f(X)), 则称 f, g 为同阶.

(3) 设 
$$k \ge 0$$
. 若  $\lim_{\Omega \ni X \to X_0} \frac{f(X)}{\|X - X_0\|^k} = 0$ , 则称  $f$  在  $\Omega \ni X \to X_0$  时为  $\|X - X_0\|^k$  的高阶的无穷小, 记作  $f(X) = o(\|X - X_0\|^k)$  ( $\Omega \ni X \to X_0$ ).

(4) 若  $\lim_{\Omega \ni X \to X_0} \frac{f(X)}{\|X - X_0\|^k} = c \neq 0$ ,则我们称 f 在  $\Omega \ni X \to X_0$  时为  $\|X - X_0\|$  的 k 阶的无穷小,此时 f 局部常号. 若 k = 0,则  $\lim_{\Omega \ni X \to X_0} f(X) = c$ ,因此我们通常不考虑 0 阶无穷小.

例 10. 
$$\forall X = (x_1, \dots, x_n) \in \mathbb{R}^n$$
,定义 
$$f_1(X) = \sum_{j=1}^n a_j x_j, \ f_2(X) = \sum_{1 \leq i, j \leq n} a_{ij} x_i x_j.$$

求证: 当  $X \to (0, ..., 0)$  时, 我们有  $f_1(X) = O(\|X\|)$ ,  $f_2(X) = O(\|X\|^2)$ .

#### 证明:由 Cauchy 不等式立刻可得

$$|f_1(X)| \le \sum_{j=1}^n |a_j||x_j| \le \left(\sum_{j=1}^n |a_j|^2\right)^{\frac{1}{2}} ||X||.$$

令  $M = \sup_{1 \leq i,j \leq n} |a_{ij}|$ . 同样由 Cauchy 不等式知

$$|f_2(X)| \leq \sum_{1 \leq i,j \leq n} |a_{ij}| |x_i| |x_j| \leq M \left(\sum_{j=1}^n |x_j|\right)^2$$

$$\leqslant nM \sum_{j=1}^{n} |x_j|^2 = nM ||X||^2.$$

因此所证结论成立.

作业题: 第1.3 节第24页第10题第(2), (3)题.

# §4. 多元函数的全微分及偏导数

回顾: 称  $L: \mathbb{R}^n \to \mathbb{R}$  为线性函数, 若  $\forall X, Y \in \mathbb{R}^n$  以及  $\forall \lambda, \mu \in \mathbb{R}$ , 我们均有

$$L(\lambda X + \mu Y) = \lambda L(X) + \mu L(Y).$$

设  $\vec{e}_1, \ldots, \vec{e}_n$  为  $\mathbb{R}^n$  的自然基底, 令  $a_j = L(\vec{e}_j)$ .

$$\forall X = (x_1, \dots, x_n)^T \in \mathbb{R}^n$$
,我们有  $X = \sum_{j=1}^n x_j \vec{e_j}$ ,

由此可得 
$$L(X) = \sum_{j=1}^{n} L(\vec{e_j})x_j = \sum_{j=1}^{n} a_j x_j$$
.

# 线性函数的向量表示

$$\forall X = (x_1, \dots, x_n)^T \in \mathbb{R}^n$$
, 我们有

$$L(X) = (a_1, \dots, a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = (a_1, \dots, a_n)X,$$

于是线性函数  $L: \mathbb{R}^n \to \mathbb{R}$  可以与 n 阶行向量  $(a_1, \ldots, a_n)$ 

视为等同.

#### n 元函数的全微分

定义 1. 假设  $X_0 = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n$ , r > 0, 而  $f: B(X_0, r) \subseteq \mathbb{R}^n \to \mathbb{R}$  为函数. 若存在线性 函数  $L: \mathbb{R}^n \to \mathbb{R}$  使得当  $X \to X_0$  时, 我们有  $f(X) - f(X_0) = L(X - X_0) + o(||X - X_0||),$ 则称 f 在点  $X_0$  处可微, 并将线性函数 L 记作  $\mathrm{d}f(X_0)$ , 称为 f 在点  $X_0$  处的全微分或微分.

#### 评注

• 由于函数  $L: \mathbb{R}^n \to \mathbb{R}$  为线性函数当且仅当  $\exists a_1, \dots, a_n \in \mathbb{R}$  使  $\forall Y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$ , 均有  $L(Y) = \sum_{j=1}^n a_j y_j$ . 故 f 在点  $X_0$  处可微 当且仅当  $\exists a_1, \dots, a_n \in \mathbb{R}$  使得  $X \to X_0$  时,

$$f(X) - f(X_0) = L(X - X_0) + o(\|X - X_0\|)$$
$$= \sum_{j=1}^{n} a_j(x_j - x_j^{(0)}) + o(\|X - X_0\|).$$

• f 在点  $X_0$  可微蕴含在该点连续, 反之不对.

#### 定理 1. 若 f 在点 $X_0$ 可微,则其微分唯一.

证明: 假设 f 在点  $X_0$  处有两个微分, 也就是说存在  $(a_1, \ldots, a_n) \in \mathbb{R}^n$  与  $(b_1, \ldots, b_n) \in \mathbb{R}^n$  使得 当  $X \to X_0$  时, 我们有

$$f(X) - f(X_0) = \sum_{j=1}^{n} a_j (x_j - x_j^{(0)}) + o(\|X - X_0\|),$$
  
$$f(X) - f(X_0) = \sum_{j=1}^{n} b_j (x_j - x_j^{(0)}) + o(\|X - X_0\|),$$

#### 于是当 $X \to X_0$ 时, 我们有

$$\sum_{j=1}^{n} (a_j - b_j)(x_j - x_j^{(0)}) = o(\|X - X_0\|).$$

特别地, 对于每个固定的指标  $1 \le j \le n$ , 通过 选取  $x_i = x_i^{(0)} \ (i \ne j)$  可知, 当  $x_i \to x_i^{(0)}$  时,

$$(a_j - b_j)(x_j - x_j^{(0)}) = o(|x_j - x_j^{(0)}|)$$
,

也即  $a_j - b_j = \lim_{\substack{x_j \to x_j^{(0)}}} \frac{o(|x_j - x_j^{(0)}|)}{x_j - x_j^{(0)}} = 0$ . 由此得证.



例 1. 若  $L: \mathbb{R}^n \to \mathbb{R}$  线性, 则  $\forall X, X_0 \in \mathbb{R}^n$ , 均有

$$L(X) - L(X_0) = L(X - X_0),$$

于是 L 在点  $X_0$  处的微分为  $\mathrm{d}L(X_0) = L$ , 也即  $\forall Y \in \mathbb{R}^n$ , 均有  $\mathrm{d}L(X_0)(Y) = L(Y)$ .

例 2. 固定  $1 \leq j \leq n$ .  $\forall X = (x_1, \dots, x_n) \in \mathbb{R}^n$ ,  $\mathrm{d}\pi_j(X_0) = \pi_j$ , 也即  $\forall Y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$ ,  $d\pi_j(X_0)(Y) = \pi_j(Y) = y_j.$ 

由于  $d\pi_j(X_0)$  不依赖  $X_0$ , 通常将上式简写成

$$d\pi_j(Y) = \pi_j(Y) = y_j.$$

如同在单变量的情形, 常用  $x_j$  来表示  $\pi_j$ , 而将  $\mathrm{d}\pi_j$  简记作  $\mathrm{d}x_j$ . 则我们有

$$\mathrm{d}x_j(X_0)(Y) = y_j.$$

同前面一样, 我们也常将之简写成

$$\mathrm{d}x_j(Y) = y_j.$$

### 线性函数的表示

命题 1. 设  $a_1, \ldots, a_n \in \mathbb{R}$ ,  $L: \mathbb{R}^n \to \mathbb{R}$  线性使得  $\forall Y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n$ , 均有  $L(Y) = \sum_{j=1}^n a_j y_j$ , 则

$$L = \sum_{j=1}^{n} a_j \, \mathrm{d}x_j.$$

证明: 由于  $L(Y) = \sum_{j=1}^{n} a_j y_j = \sum_{j=1}^{n} a_j dx_j(Y)$ , 因此所证结论成立.

# 定理 2. 假设 $\Omega \subseteq \mathbb{R}^n$ 为开集, $X_0 \in \Omega$ , 而函数 $f, g: \Omega \to \mathbb{R}$ 在点 $X_0$ 可微. 则下列性质成立:

- $\forall \lambda, \mu \in \mathbb{R}$ ,  $\lambda f + \mu g$  在点  $X_0$  处可微, 并且  $d(\lambda f + \mu g)(X_0) = \lambda df(X_0) + \mu dg(X_0).$
- fg 在点  $X_0$  处可微并且

$$d(fg)(X_0) = f(X_0) dg(X_0) + g(X_0) df(X_0).$$

• 若  $g(X_0) \neq 0$ , 则  $\frac{f}{g}$  在点  $X_0$  处可微并且  $d(\frac{f}{g})(X_0) = \frac{g(X_0)df(X_0) - f(X_0)dg(X_0)}{(g(X_0))^2}.$ 

# 偏导数 全微分的计算

定义 2. 设  $X_0 = (x_1^{(0)}, \dots, x_n^{(0)}) \in \mathbb{R}^n$ , 而函数 f 定义在点  $X_0$  的某邻域上. 固定  $1 \leq j \leq n$ . 若

$$\frac{\partial f}{\partial x_j}(X_0) := \lim_{h \to 0} \frac{f(x_1^{(0)}, \dots, x_{j-1}^{(0)}, x_j^{(0)} + h, x_{j+1}^{(0)}, \dots, x_n^{(0)}) - f(X_0)}{h}$$

存在, 则称函数 f 在点  $X_0$  处关于第 j 个变量有偏导数  $\frac{\partial f}{\partial x_j}(X_0)$ , 通常也会将之记作  $\partial_j f(X_0)$  或  $f'_{x_j}(X_0)$ . 若对于  $1 \leq j \leq n$ , 偏导数  $\frac{\partial f}{\partial x_j}(X_0)$  均存在, 则称函数 f 在点  $X_0$  处可导.

#### 评注

• 设  $\vec{e}_1, \ldots, \vec{e}_n$  为  $\mathbb{R}^n$  的自然基底, 那么

$$\frac{\partial f}{\partial x_j}(X_0) := \lim_{h \to 0} \frac{f(X_0 + h\vec{e_j}) - f(X_0)}{h}.$$

令  $F(h) = f(X_0 + h\vec{e}_j)$ . 则  $\frac{\partial f}{\partial x_j}(X_0) = F'(0)$ , 也即将变量  $x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n$  固定, 而将 f 看成是  $x_i$  的单变量函数来求导.

- 几何意义: 偏导数  $\frac{\partial f}{\partial x_j}(X_0)$  实际上表示平面 曲线  $y = f(x_1^{(0)}, \ldots, x_{j-1}^{(0)}, x, x_{j+1}^{(0)}, \ldots, x_n^{(0)})$ 在点  $x = x_j^{(0)}$  处的切线方向.
- 当  $n \ge 2$  时, n 元函数 f 在点  $X_0$  可导并不 意味它在该点连续, 更不意味在该点可微.

例 3. 
$$\forall (x,y) \in \mathbb{R}^2$$
, 定义 
$$f(x,y) = \begin{cases} 0, & \text{若 } xy = 0, \\ 1, & \text{其它}. \end{cases}$$

则  $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$ , 但 f 在原点不连续.

例 4.  $\forall (x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ , 定义

$$f(x, y, z) = x^2 + e^{xyz} + \log(x^2 + y^2 + z^2).$$

求函数 f 的偏导数.

解:由定义可知,在点 (x,y,z) 处,

$$\frac{\partial f}{\partial x}(x,y,z) = 2x + yze^{xyz} + \frac{2x}{x^2 + y^2 + z^2},$$

$$\frac{\partial f}{\partial y}(x,y,z) = xze^{xyz} + \frac{2y}{x^2 + y^2 + z^2},$$

$$\frac{\partial f}{\partial z}(x,y,z) = xye^{xyz} + \frac{2z}{x^2 + y^2 + z^2}.$$

44 / 61

# 定理 3. 若 f 在点 $X_0$ 处可微,则它可导且

$$df(X_0) = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(X_0) dx_j.$$

证明: 由题设可知存在  $a_1, \ldots, a_n \in \mathbb{R}$  使得

$$\forall Y = (y_1, \dots, y_n)^T \in \mathbb{R}^n$$
, 我们均有

$$df(X_0)(Y) = \sum_{j=1}^n a_j y_j = \sum_{j=1}^n a_j dx_j(Y),$$

也即我们有  $\mathrm{d}f(X_0) = \sum_{i=1}^n a_i \, \mathrm{d}x_i$ .

对任意的 $1 \le j \le n$ , 由微分定义, 当 $h \to 0$ 时,

$$f(X_0 + h\vec{e}_j) - f(X_0) = df(X_0)(h\vec{e}_j) + o(||h\vec{e}_j||)$$
$$= a_j h + o(|h|).$$

由此我们立刻可得

$$\lim_{h \to 0} \frac{f(X_0 + h\vec{e}_j) - f(X_0)}{h} = a_j,$$

也即 f 在点  $X_0$  处关于第 j 个变量可导, 并且

$$\frac{\partial f}{\partial x_i}(X_0) = a_j$$
. 故所证结论成立.

例 5.  $\forall (x,y) \in \mathbb{R}^2$ , 定义  $f(x,y) = \sqrt{|xy|}$ . 讨论函数 f 在原点处的连续性, 可导性与可微性.

解: 因  $0 \le f(x,y) \le \sqrt{\frac{x^2+y^2}{2}}$ ,则由夹逼原理可知  $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0).$ 

于是函数 f 在原点处连续. 由偏导数的定义知

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = 0,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \to 0} \frac{f(0,y) - f(0,0)}{y} = 0.$$

因此函数 f 在原点处可导.

# 下证 f 在原点不可微. 用反证法, 设 f 在原点可微, 则当 $(x,y) \to (0,0)$ 时, 我们有

$$f(x,y) - f(0,0)$$

$$= \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + o(\sqrt{x^2 + y^2})$$

$$= o(\sqrt{x^2 + y^2}),$$

即  $\lim_{(x,y)\to(0,0)} \frac{\sqrt{|xy|}}{\sqrt{x^2+y^2}} = 0$ . 进而由复合函数极限法则可知  $0 = \lim_{x\to 0} \frac{\sqrt{|x^2|}}{\sqrt{x^2+x^2}} = \frac{\sqrt{2}}{2}$ . 矛盾! 由此得证.

# 计算两个变量的函数的微分的方法

问题: 如何判断函数 f 在点  $(x_0, y_0)$  是否可微?

- 判断 f 在该点的连续性. 若连续, 则继续.
- 判断  $\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)$  的存在性.
- 若在该点可导, 当  $(x,y) \rightarrow (x_0,y_0)$  时, 估计

$$f(x,y) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) - \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

的阶. 若为  $o(\|(x-x_0,y-y_0)\|)$ , 则可微.

### 定义 3. 设 $\Omega \subseteq \mathbb{R}^n$ 为非空开集, 而 $f:\Omega \to \mathbb{R}$ .

- 若 f 在  $\Omega$  的每点可导,则称 f 在  $\Omega$  上可导, 由此可以在  $\Omega$  上定义 n 个函数  $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}$ , 将它们称为 f 在  $\Omega$  上的偏导函数.
- 若  $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$  在点  $X_0 \in \Omega$  处连续, 则称 f 在点  $X_0$  处连续可导.
- 若 f 在  $\Omega$  每点均连续可导, 则称 f 在  $\Omega$  上 连续可导. 这样函数的集合记作  $\mathcal{C}^{(1)}(\Omega)$ .

注: 初等函数在 其定义区域的内部 连续可导.

定理 4. 若  $\Omega \subseteq \mathbb{R}^n$  为开集, 而函数  $f:\Omega \to \mathbb{R}$  在点  $X_0 \in \Omega$  处连续可导, 则 f 在该点可微.

注: 该定理的逆命题不成立.

分析: 仅仅考虑 n=2 的情形. 我们需要证明:

当  $(h_1, h_2) \rightarrow (0, 0)$  时, 我们有

$$f(x_1^{(0)} + h_1, x_2^{(0)} + h_2) - f(x_1^{(0)}, x_2^{(0)})$$

$$= \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)})h_1 + \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})h_2$$

$$+o(\|(h_1, h_2)\|).$$

证明: 出于简便, 仅考虑 n=2 的情形. 由于 f在点  $X_0$  处连续可导, 于是  $\exists r > 0$  使得函数 f在  $B(X_0,\sqrt{2}r)$  上可导且其偏导函数在点  $X_0$  处 连续. 记  $X_0 = (x_1^{(0)}, x_2^{(0)})$ .  $\forall h_1, h_2 \in (-r, r)$ , 令  $F(h_1, h_2) = f(x_1^{(0)} + h_1, x_2^{(0)} + h_2) - f(x_1^{(0)}, x_2^{(0)})$  $= (f(x_1^{(0)} + h_1, x_2^{(0)} + h_2) - f(x_1^{(0)}, x_2^{(0)} + h_2))$  $+(f(x_1^{(0)},x_2^{(0)}+h_2)-f(x_1^{(0)},x_2^{(0)})).$ 

由 Lagrange 中值定理知,  $\exists \theta_1, \theta_2 \in (0,1)$  使得

$$F(h_1, h_2) = \frac{\partial f}{\partial x_1} (x_1^{(0)} + \theta_1 h_1, x_2^{(0)} + h_2) h_1 + \frac{\partial f}{\partial x_2} (x_1^{(0)}, x_2^{(0)} + \theta_2 h_2) h_2.$$

而由夹逼原理可知

$$\lim_{(h_1,h_2)\to(0,0)} \theta_1 h_1 = \lim_{(h_1,h_2)\to(0,0)} \theta_2 h_2 = 0,$$



# 又 f 在点 $X_0$ 连续可导, 由复合函数极限法则,

$$\lim_{(h_1,h_2)\to(0,0)} \frac{\partial f}{\partial x_1} (x_1^{(0)} + \theta_1 h_1, x_2^{(0)} + h_2) = \frac{\partial f}{\partial x_1} (x_1^{(0)}, x_2^{(0)}),$$

$$\lim_{(h_1,h_2)\to(0,0)} \frac{\partial f}{\partial x_2} (x_1^{(0)}, x_2^{(0)} + \theta_2 h_2) = \frac{\partial f}{\partial x_2} (x_1^{(0)}, x_2^{(0)}).$$

# 于是当 $(h_1, h_2) \rightarrow (0, 0)$ 时, 我们有

$$F(h_1, h_2) = \left(\frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)}) + o(1)\right)h_1 + \left(\frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)}) + o(1)\right)h_2.$$

另外注意到  $|h_1| \leq \sqrt{h_1^2 + h_2^2}$ ,  $|h_2| \leq \sqrt{h_1^2 + h_2^2}$ , 于是当  $(h_1, h_2) \rightarrow (0, 0)$  时, 我们有

$$F(h_1, h_2) = \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)})h_1 + \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})h_2 +o(1)h_1 + o(1)h_2$$

$$= \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)})h_1 + \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})h_2 + o(1)\sqrt{h_1^2 + h_2^2}$$

$$= \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)})h_1 + \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)})h_2 + o(\|(h_1, h_2)\|).$$

这表明函数 f 在点  $X_0$  处可微.

推论. 初等函数在 其定义区域的内部 可微.

例 6.  $\forall (x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ , 定义

$$f(x, y, z) = x^2 + e^{xyz} + \log(x^2 + y^2 + z^2).$$

则 f 在  $\mathbb{R}^3 \setminus \{(0,0,0)\}$  上可导并且其偏导函数 连续, 进而可知 f 在  $\mathbb{R}^3 \setminus \{(0,0,0)\}$  上可微且

$$df(x, y, z) = \left(2x + yze^{xyz} + \frac{2x}{x^2 + y^2 + z^2}\right) dx + \left(xze^{xyz} + \frac{2y}{x^2 + y^2 + z^2}\right) dy + \left(xye^{xyz} + \frac{2z}{x^2 + y^2 + z^2}\right) dz.$$

例 7.  $\forall (x,y) \in \mathbb{R}^2$ , 定义

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

求证: 函数 f 在点 (0,0) 处可微但不连续可导.

证明: 由定义立刻可得

 $|f(x,y) - f(0,0)| = (x^2 + y^2) |\sin \frac{1}{\sqrt{x^2 + y^2}}| = o(\|(x,y)\|).$ 

故 
$$f$$
 在点  $(0,0)$  处可微且其微分  $df(0,0) = 0$ .

重▶→重▶ 重 ∽9

当  $(x,y) \neq (0,0)$  时, 由初等函数的性质可知

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}},$$

$$\frac{\partial f}{\partial y}(x,y) = 2y \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{y}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}.$$

于是  $\forall k \in \mathbb{R}$ , 我们有

$$\frac{\partial f}{\partial x}(x,kx) = 2x \sin \frac{1}{\sqrt{1+k^2}|x|} - \frac{\operatorname{sgn} x}{\sqrt{1+k^2}} \cos \frac{1}{\sqrt{1+k^2}|x|},$$
III  $\lim \frac{\partial f}{\partial x}(x,kx)$  不存在 故  $\frac{\partial f}{\partial x}$  在  $(0,0)$  间床

则  $\lim_{x\to 0} \frac{\partial f}{\partial x}(x, kx)$  不存在, 故  $\frac{\partial f}{\partial x}$  在点 (0,0) 间断.

例 8. 若函数  $f: \mathbb{R}^2 \to \mathbb{R}$  关于它的第一个变量连续, 而关于第二个变量的偏导函数在  $\mathbb{R}^2$  上有界, 求证: 函数 f 在  $\mathbb{R}^2$  上连续.

证明: 由题设可知,  $\exists M > 0$  使得  $\forall (x,y) \in \mathbb{R}^2$ ,  $|\frac{\partial f}{\partial y}(x,y)| \leq M$ . 取  $(x_0,y_0) \in \mathbb{R}^2$ .  $\forall (x,y) \in \mathbb{R}^2$ , 由 Lagrange 中值定理, 存在  $\xi$  介于  $y_0,y$  使得

$$|f(x,y) - f(x_0, y_0)| \le |f(x,y_0) - f(x_0, y_0)| + |f(x,y) - f(x,y_0)|$$

$$= |f(x,y_0) - f(x_0, y_0)| + |\frac{\partial f}{\partial y}(x,\xi)||y - y_0|$$

$$\le |f(x,y_0) - f(x_0, y_0)| + M|y - y_0|,$$

由题设及夹逼原理知 f 在  $(x_0,y_0)$  连续. 得证.

# 连续性,可导性,可微性,连续可导性之间的关系

作业题: 第 1.4 节第 42 页第 1 题第 (5), (7) 题, 第 2题((1) 中改 $\sqrt{x}$ 为 $\sqrt{|x|}$ ),第 4 题第 (4), (5) 题, 将 (4) 中左边改为 u. 第 43 页第 7 题 (不用交).

# 谢谢大家!