نام دانشجو: شماره دانشجویی:

Format I	opcode	r1 r2/Qdata
	4 bits	4 bits 4 bits
Mnemonic	Opcode	Operation
mov r1,r2	0000	$r1 \leftarrow (r2);$
mov r1,(r2)	0001	$r1 \leftarrow (M_{(r2)});$
mov (r1),r2	0010	$M_{(r1)} \leftarrow (r2);$
mov (r1),(r2)	0011	$M_{(r1)} \leftarrow (M_{(r2)});$
add r1,r2	0100	$r1 \leftarrow (r1) + (r2);$
add r1,(r2)	0101	$r1 \leftarrow (r1) + (M_{(r2)});$
add (r1),r2	0110	$M_{(r1)} \leftarrow (M_{(r1)}) + (r2);$
sub r1,r2	0111	$r1 \leftarrow (r1) - (r2);$
sub r1,(r2)	1000	$r1 \leftarrow (r1) - (M_{(r2)});$
sub (r1),r2	1001	$M_{(r1)} \leftarrow (M_{(r1)}) - (r2);$
movq r1,qdata2	1010	$r1 \leftarrow qdata2;$
addq r1,qdata2	1011	$r1 \leftarrow (r1) + qdata2;$
subq r1,qdata2	1100	$r1 \leftarrow (r1) - qdata2;$
swap r1,r2	1101	$(r1) \Leftrightarrow (r2);$
swap (r1),(r2)	1110	$(M_{(r1)}) \Leftrightarrow (M_{(r2)});$

Forn	nat II	1	111 opcode r	address
			8 bits 4 bits	24 bits
Mnem	onic	Opcode	Operation	
mov	r, address	0000	$r \leftarrow (M_{address});$	
mov	address,r	0001	$M_{oddress} \leftarrow (r);$	
jnz	r, address	0010	if $(r) \neq 0$ then	$PC \leftarrow address;$
jz	r, address	0011	if $(r) = 0$ then	$PC \leftarrow address;$
jneg	r, address	0100	if $(r) < 0$ then	$PC \leftarrow address;$
jpos	r, address	0101	if $(r) \ge 0$ then	$PC \leftarrow address;$
loop	r, address	0110	$r \leftarrow (r) - 1$; if $(r \leftarrow r) = r$	$) \neq 0$ then $PC \leftarrow address$
mova	r, address	0111	$r \leftarrow address;$	

یک کامپیوتر دارای حافظه اصلی به گنجایش ۲ ^{۲۴} واحد آدرس پذیر ۴ بیتی، طول کلمه ۳۲ بیتی
و ۱۶ ثبات همهمنظوره R1 تا R15 میباشد. شیوههای نشانیدهی ماشین شامل ثباتی (مستقیم
و غیرمستقیم)، بلافاصله و مستقیم حافظهای، و شیوه نمایش اعداد مکمل۲ است. دستورات در
پنج قالب و طبق جداول زیر کد میشوند.

۱- طول تمامی ثباتهای این کامپیوتر را تعیین کنید. (۱ نمره)

۲- آرایه ۲۰۰ عنصری A (هر عنصر یک عدد ۸ بیتی مکمل ۲) در حافظه با آدرس شروع مناصر این 1000h ذخیره شده است. برنامهای به زبان اسمبلی بنویسید که مجموع عناصر این آرایه را محاسبه و حاصلجمع ۱۶ بیتی را در آدرس sum ذخیره کند. (۴ نمره)

۳- برنامه زیر چه می کند؟ (۳ نمره)

	org	0
L1:	mov	R0,L1+1
	mov	R3,#800
L2:	dw	40040040h
	$\mathbf{d}\mathbf{w}$	4004004h
	$\mathbf{d}\mathbf{w}$	400711h
L3:	mov	R2,L4
	add	R1,R2
	mov	R2,L3+2
	add	R2,R0
	or	R2,#3
	mov	L3+2,R2
	addq	R3,8h
	jnz	R3,L3
	ret	
L4:	org	1000h

end

۴- برنامه سوال ۳ را به کد ماشین ترجمه کنید. (۲ نمره)

Forn	nat III 🏻	1111 орсос	de r	data
		8 bits	4 bits	32 bits
Mnem	onic	Opcode	Operation	n
mov	r, #data	1000	$r \leftarrow data$	
add	r, #data	1001	$r \leftarrow (r) +$	data,
sub	r, #data	1010	$r \leftarrow (r)$	data,
and	r, #data	1011	$r \leftarrow (r) \land$	data;
or	r, #data	1100	$r \leftarrow (r) \vee$	data;

Format IV	1	111 opcode	address
		8 bits	24 bits
Mnemonic	Opcode	Operation	
call address	1101	$R15 \leftarrow (PC)$	C); $PC \leftarrow address$;
jmp address	1110	$PC \leftarrow addr$	ess;

Format \	1111 opcode 8 bits	
Mnemonic	Opcode	Operation
ret	1111	$PC \leftarrow (R15);$

موفق باشید-سربازی آزاد