Computer Architecture

Lecture 0: Introduction

Nguyen Minh Son, Ph.D

Course Information

- Instructor
 - Dr. Nguyen Minh Son (sonnm@uit.edu.vn)
- Office: Faculty of CE, Building A-327
- Prerequisite: Computer Architecture or the equivalent
- Meeting time: Fri1-3 periods, C-101
- Textbook
 - David A. Patterson and John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface (4th edition), Morgan Kaufmann, 2008.
- Other teaching materials
 - Some reference books available in class meetings and course web
 - Slides & Lectures
- Coordinator: ...

Required

Reading references

Objectives – To Learn

Recent trends of architectural features in high-performance computer systems

- Week 1: Computer Abstractions and Technology
- Week 2,3: Instructions Language of the Computer
- Week 4,5: Arithmetic for Computers
- Week 6,7: Assessing and Understanding Performance
- ☐ Week 8: *Mid-Term Exam*
- Week 9,10,11: The processor Datapath and Control
- Week 12,13,14: Pipelining Datapath and Control
- Week 15: Presentation Term-Projects
 - Optional: Large and Fast Exploiting Memory Hierarchy
- □ Week 16: Final Exam

Course evaluation

- Grading policy:
 - Quizzes (attendance): 10%
 - Midterm exam: 30% (Multiple choice and Essay)
 - Final exam: 60% (Multiple choice and Essay)
- No cheating ?!

Computer Architecture

Lecture 1: Computer Technology

Nguyen Minh Son, Ph.D

Course Focus

Understanding machine structures, technology factors, evaluation methods that will determine the form of computers in 21st Century

In Your Course

- ☐ Mix of lecture vs. discussion
 - Depends on how well reading is done before class
- Goal is to learn how to know a computer system
 - Learn fundamental computer organization: machanism, sequential and parallel computing.
 - Learn how to evaluate and measure the performance of computer system.

Today outline

- Computer Revolution
 - CPU technology
 - Memory development
- Market generation
 - Applications
- Overview of Computer System
 - Layers
 - Application and Technology trends
 - Problem solver
- Manufacturing Ics
- Computer architecture

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
 - Reduced cost,
 - Increased performance and capacity
- Makes novel applications feasible

- Cell phones
- WWW, Search Engines
- Computers are pervasive
 - Internet of Things

		9					
Kbit capacity	1,000,000 -	1G					
	100,000 -	16M 128M 256M 512M					
	10,000 -	4M					
	1000 -	1M 256K					
	100 -	16K					
	10 =						
	176 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008						
	Year of introduction						

Year	Technology	Relative performance/cost	
1951	Vacuum tube	1	
1965	Transistor	35	
1975	Integrated circuit (IC)	900	
1995	Very large scale IC (VLSI)	2,400,000	
2005	Ultra large scale IC	6,200,000,000	

The Processor Market

Number of distinct processors sold between 1998 and 2002

Internet of Things

Internet of Things

Computer System: Layers

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

Breakdown of a Computing Problem

Computer as Problem Solver

- → What is a problem?
 - A problem requires some unprocessed facts (data) converted into useful results (information)
 - For every problem, there exists a step-by-step method (algorithm) to do this conversion

UIT-HCM

Humans: A well known Problem Solver

Computer: A more efficient Problem Solver

Averaging Technique (Computer Software)

Manufacturing ICs

Yield: proportion of working dies per wafer

What Computer Architecture bring to Table

- Other fields often borrow ideas from architecture
- Quantitative Principles of Design
 - 1. Take Advantage of Parallelism
 - 2. Principle of Locality
 - Focus on the Common Case
 - 4. Computer Performance: Amdahl's Law
 - The Processor Performance Equation

1) Taking Advantage of Parallelism

- Increasing throughput of server computer via multiple processors or multiple disks
- Detailed HW design
 - Carry lookahead adders uses parallelism to speed up computing sums from linear to logarithmic in number of bits per operand
 - Multiple memory banks searched in parallel in set-associative caches
- □ Pipelining: overlap instruction execution to reduce the total time to complete an instruction sequence
 - Not every instruction depends on immediate predecessor ⇒ executing instructions completely/partially in parallel possible
 - Classic 5-stage pipeline:
 - 1) Instruction Fetch (Ifetch),
 - 2) Register Read (Reg),
 - 3) Execute (ALU),
 - 4) Data Memory Access (Dmem),
 - 5) Register Write (Reg)

Pipelined Instruction Execution

Limits to Pipelining

- Hazards prevent next instruction from executing during its designated clock cycle
 - Structural hazards: attempt to use the same hardware to do two different things at once
 - <u>Data hazards</u>: Instruction depends on result of prior instruction still in the pipeline
 - Control hazards: Caused by delay between the fetching of instructions and decisions about changes in control flow (branches and jumps).
 Time (clock cycles)

2) The Principle of Locality

- □ The Principle of Locality:
 - Program access a relatively small portion of the address space at any instant of time.
- □ Two Different Types of Locality:
 - <u>Temporal Locality</u> (Locality in Time): If an item is referenced, it will tend to be referenced again soon (e.g., loops, reuse)
 - Spatial Locality (Locality in Space): If an item is referenced, items whose addresses are close by tend to be referenced soon (e.g., straight-line code, array access)
- □ Last 30 years, HW relied on locality for memory perf.

Level of the Memory Hierarchy

3) Focus on the Common Case

- Common sense guides computer design
 - Since its engineering, common sense is valuable
- In making a design trade-off, favor the frequent case over the infrequent case
 - E.g., Instruction fetch and decode unit used more frequently than multiplier, so optimize it 1st
 - E.g., If database server has 50 disks / processor, storage dependability dominates system dependability, so optimize it 1st
- Frequent case is often simpler and can be done faster than the infrequent case
 - E.g., overflow is rare when adding 2 numbers, so improve performance by optimizing more common case of no overflow
 - May slow down overflow, but overall performance improved by optimizing for the normal case
- What is frequent case and how much performance improved by making case faster

4) Computer Performance: Amdahl's Law

- Make the common case faster
- Speedup $= \operatorname{Perf}_{\text{new}} / \operatorname{Perf}_{\text{old}} = \operatorname{T}_{\text{old}} / \operatorname{T}_{\text{new}} = \frac{1}{(1-f) + \frac{f}{P}}$
- Performance improvement from using faster mode is limited by the fraction the faster mode can be applied.

5) Processor Performance Equation

inst count Cycle time

	Inst Count	CPI	Clock Rate
Program	X		
Compiler	X	(X)	
Inst. Set.	X	X	
Organization		Х	X
Technology			X

Conclusion

□ Advanced Computer Architecture =Computer Organization + Design & Performance

Enjoy !!!

Q&A