Collaboration haptique étroitement couplée pour la déformation moléculaire interactive

Jean SIMARD

Université de Paris-Sud

CNRS-LIMSI

12 mars 2012

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- **3** Étude du travail collaboratif
- 4 Aide au travail collaboratif

Sommaire

Introduction

- Docking moléculaire
- Distribution des charges de travail
- Objectifs de la thèse
- Plateforme de manipulation moléculaire Shaddocl
- Étude du travail collaboratif
- 4 Aide au travail collaboratif

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Figure: Docking moléculaire

Facteurs de complexité

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité

Définition

ou *amarrage moléculaire*, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité
- Facteurs chimiques

Définition

ou amarrage moléculaire, consiste à trouver l'orientation et la conformation optimale permettant d'assembler 2 molécules.

Facteurs de complexité

- Nombreux atomes
- Orientation
- Flexibilité
- Facteurs chimiques
- Complémentarité
 - géométrique
 - électrostatique

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

manipulation colocalisée [Kriz-2003]

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
- un manipulateur guidé par deux partenaires [Park-2006]

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
 - un manipulateur guidé par deux partenaires [Park-2006]
- inter-référencement [Chastine-2007]

Figure: Système cognitif distribué

Définition

Étendre la capacité cognitive d'analyse d'un individu pour inclure le matériel et l'environnement social comme composant d'un système cognitif plus étendu.

Figure: Système cognitif distribué

Travaux sur la collaboration

- manipulation colocalisée [Kriz-2003]
- un manipulateur guidé par deux partenaires [Park-2006]
- inter-référencement [Chastine-2007]
- gestion des droits [Ma-2007]

Objectifs de la thèse

Problématique

- Quels sont les avantages du travail en collaboration?
- Quelles problématiques supplémentaires la collaboration apporte-t-elle?
- Comment améliorer la collaboration dans un environnement de travail complexe?

Objectifs

Analyser le travail collaboratif dans le contexte du docking moléculaire pour proposer des outils haptique adaptés.

- Étudier le travail collaboratif dans les tâches de manipulation moléculaire
- Identifier les faiblesses de cette configuration de travail
- Proposer des solutions appropriées pour assister le travail
- 4 Évaluer ces solutions en situation réelle

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
 - Cahier des charges
 - Organisation logicielle de la plateforme Shaddock
 - Organisation matérielle de la plateforme Shaddock
 - Outils supplémentaires proposés
- Étude du travail collaboratif
- 4 Aide au travail collaboratif

Cahier des charges

Objectif

Élaborer une plateforme pour étudier le travail collaboratif dans le contexte de la manipulation interactive de molécules.

Contraintes

- Travail en collaboration
- Interaction temps-réel avec des molécules
- Manipulation à l'aide d'interface haptique
- Simulation temps-réel de la dynamique des molécules

Solutions

- Modularité
- Composant logiciels existants en biologie
- Modules dédiés à la réalité virtuelle
- Développement de nouveaux outils

Organisation logicielle de la plateforme Shaddock

Figure: Diagramme de déploiement UML de la plateforme Shaddock

Figure: Plate-forme expérimentale

■ Configuration colocalisée et synchrone

Figure: Plate-forme expérimentale

■ Communication orale et gestuelle autorisée

Figure: Plate-forme expérimentale

Outil de déformation de la molécule (Omni de SensAble®)

Figure: Plate-forme expérimentale

Outil pour déplacer la molécule (Omni de SensAble®)

Figure: Plate-forme expérimentale

■ Vue monoscopique, unique, publique et vidéoprojetée

Figure: Plate-forme expérimentale

Affichage déporté des objectifs

Figure: Plate-forme expérimentale

■ Outil pour orienter la molécule (SpaceTraveler de 3Dconnexion®)

Figure: Plate-forme expérimentale

■ Nombre d'outils quasiment illimité

Figure: Plate-forme expérimentale

■ Collaboration asymétrique entre les participants

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Pointage d'une cible difficile

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

Modèle haptique d'attraction sur les atomes

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Possibilité de pointer un atome. . .

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

... ou un résidue (ou d'autres structures moléculaires)

Objectif

Faciliter le processus de sélection dans l'application VMD

Figure: Outil de sélection amélioré

■ Pour enfin le sélectionner

Basé sur les PCV de Fuchs-2006

Description

Description Basé sur les PCV de **Fuchs-2006**

Recherche Identifier une tâche élémentaire

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...)

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Manipulation Déplacer ou déformer la molécule

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Déplacer ou déformer la Manipulation molécule Évaluation Évaluer l'équilibre physico-chimique de la molécule

Figure: Manipulation moléculaire

Figure: Manipulation moléculaire

Description Basé sur les PCV de Fuchs-2006 Recherche Identifier une tâche élémentaire Sélection Sélectionner une structure moléculaire (atome, résidue, ...) Déplacer ou déformer la Manipulation molécule Évaluation Évaluer l'équilibre physico-chimique de la molécule Recommencer Si l'évaluation n'est pas satisfaisante

Figure: Manipulation moléculaire

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 Recherche collaborative de résidus
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse de l'étude 1
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
- 4 Aide au travail collaboratif

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Étudier la contribution et les contraintes de la collaboration dans une tâche de recherche de structures moléculaires dans un environnement complexe

Hypothèses

- **I** Amélioration des performances (individuel \rightarrow collaboratif)
- Identifier les stratégies de travail
- Utilisabilité de la plate-forme

Variables

Nombre de sujets monôme (24 sujets) ou binôme (12 couples)

Complexité du residue Forme, nature, position, similarités...

La tâche

Residue 4 and 9 Residue 5 and 10

Figure: Répartitions des residues sur les molécules (TRP-Cage et Prion)

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Amélioration des performances en collaboration

Figure: Temps de réalisation de la tâche

Figure: Temps de recherche et de sélection comparés

Stratégies de travail

Figure: Distance moyenne entre le curseur des sujets

Figure: Affinité entre les sujets pour chaque binômes

Synthèse de l'étude 1

Complexité de la tâche

Stratégie de travail

Résultats

- Amélioration des performances sur les tâches complexes
- Distribution des charges de travail dépendante de la nature de la tâche

Limites

- La complexité de la tâche influe-t-elle sur les performances?
- Comment définir une tâche complexe?

Résultats

- Trois stratégies différentes
- Meilleurs résultats avec une stratégie en champs voisins

Limites

 Modification du comportement naturel des groupes

Sommaire

- Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 − Recherche collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse de l'étude 2
 - Étude 3 Dynamique de groupe

Figure: Manipulation moléculaire

Objectifs

Objectif principal

Quantifier et qualifier les conflits de coordination en fonction de la complexité de la tâche

Hypothèses

- $\textbf{ 1} \textbf{ Am\'elioration des performances (individuel} \rightarrow \textbf{collaboration)}$
- La complexité de la tâche influence différemment les performances individuelles et collaboratives
- Évaluation du travail collaboratif par les sujets

Variables

Nombre de sujets monôme (12 sujets) ou binôme (12 couples)

Complexité de la molécule 2 molécules de taille différente

Outil de déformation 2 configuration de déformation (atom et residue)

La tâche

Figure: Tâche de déformation

Figure: Distances passive et active

Figure: Nombre de sélections par main dominante/dominée

Figure: Temps de réalisation des scénarios

Difficulté	Description	Exemple
Simple	1 outil est nécessaire1 manipulation	Tâche 1a
Avancé	 1 outil est suffisant mais 2 sont préférables 2 manipulations peuvent être coordonnées 	Tâche 2a, 2b
Expert	2 outils sont nécessaires2 manipulations doivent être coordonnées	Tâche 1b

Table: Classification des tâches

Synthèse de l'étude 2

Charge de travail

Conflits de coordination

Résultats

- Gestion d'un espace de travail plus grand
- Meilleur rendement des ressources disponibles

Résultats

- Différentes complexité pour la manipulation collaborative
- Certaines manipulations nécessitent une coordination

Limites

Comment répartir équitablement la charge de travail?

Limites

 La coordination est plus efficace en individuel

Sommaire

- Introduction
- Plateforme de manipulation moléculaire Shaddock
- 3 Étude du travail collaboratif
 - Étude 1 − Recherche collaborative de résidus
 - Étude 2 Déformation collaborative de molécules
 - Étude 3 Dynamique de groupe
 - Travaux existants
 - Objectifs
 - Protocole expérimental
 - Résultats
 - Synthèse de l'étude 3
- 4 Aide au travail collaboratif

Travaux existants

Dynamique de groupe

- facilitation sociale [Ringelmann-1913]
- paresse sociale [Roethlisberger-1939]
- brainstorming [Osborn-1963, Tuckman-1965]

Problématique

■ Aucune étude de dynamique de groupe sur des tâches avec une interaction étroitement couplée

Objectifs

Objectif principal

Observer la dynamique de groupe lors d'une coordination étroitement couplée

Hypothèses

- Amélioration des performances en fonction du nombre de sujets
- Analyse des rôles dans le groupe
- Influence d'une étape de brainstorming sur les performances

Variables

Nombre de participants 8 couples et 4 groupes

Tâche différente 2 molécules (tâche faiblement et fortement couplées)

Stratégie Étape de brainstorming

La tâche

Figure: Tâche de déformation

Amélioration des performances

Figure: Vitesse moyenne

Figure: Nombre d'échanges verbaux

Figure: Temps de réalisation

Figure: Fréquence des sélections

Synthèse de l'étude 3

Paresse sociale

Brainstorming

Résultats

- Déséquilibre important dans la répartition des charges de travail
 - Spécialisation
 - Paresse
 - Personnalité
- Potentiel collaboratif non-exploité au maximum

Limites

Comment redonner de l'importance à chaque membre du groupe?

Résultats

- Amélioration importante des performances
- Conflits de communication pendant le brainstorming
- Réduit les conflits de coordination

Limites

Comment optimiser cette étape?

Sommaire

- Introduction
- 2 Plateforme de manipulation moléculaire Shaddock
- Étude du travail collaboratif
- 4 Aide au travail collaboratif
 - Étude 4 Assistance haptique et stratégie de travail
 - Synthèse des études effectuées
 - Objectifs
 - Résultats

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Solutions

Objectifs

Objectif principal

Proposer et évaluer des outils haptiques pour assister la coordination

Hypothèses

- Influence des propositions sur les performances
- Influence des propositions sur la communication
- Évaluations des propositions par des experts

Variables

Nombre de participants 8 trinômes

Tâche 2 molécules (tâche faiblement et fortement couplée)

Assistance haptique Avec ou sans assistance

Efficacité de la collaboration

Figure: Temps pour atteindre le score RMSD minimum

Figure: Nombre de sélections par seconde effectuées par un opérateur

J. SIMARE

Amélioration de la communication

Figure: Temps moyen d'acceptation d'une désignation

Figure: Nombre de désignations acceptées

Conclusion

Travail collaboratif

- Adapté pour l'appréhension de tâches très complexes
- Nécessité d'améliorer les canaux de communication

Communication haptique

- Remplace la communication verbale dans certains cas
- Plus efficace et plus rapide

Plateforme Shaddock

- Plateforme validée
- Des améliorations sont encore nécessaires

Perspectives

Plus loin dans l'étude du travail collaboratif...

- Collaboration distante
- Collaboration multi-experts
- Apprentissage en collaboration

Comment expérimenter le travail collaboratif?

- Comment mesurer les conflits de coordination et de communication?
- Comment définir un protocole expérimental pour le collaboratif?

Questions

Merci pour votre attention

Références