Embedding vector in Multi-modality (Audio signal processing)

2020-11-24 문성규

References

- ▶ D, Yu (Tencent), "Solving Cocktail Party Problem" CHiME 6, 2020
- ▶ D. Kitamura, "Audio Source Separation Based on Low-Rank Structure and Statistical Independence"
- ▶ D. Kitamura, "Super resolution-based stereo signal separation via supervised nonnegative matrix factorization"
- ► T. Kim (Neosapience), "Introduction to Speech Separation"

Audio signal enhancement?

CHiME-6 Challenge: Tackling Multispeaker Speech Recognition for Unsegmented Recordings

¹Shinji Watanabe, ²Michael Mandel, ³Jon Barker, ⁴Emmanuel Vincent ¹Ashish Arora, ¹Xuankai Chang, ¹Sanjeev Khudanpur, ¹Vimal Manohar, ¹Daniel Povey, ¹Desh Raj, ¹David Snyder, ¹Aswin Shanmugam Subramanian, ¹Jan Trmal, ¹Bar Ben Yair, ⁵Christoph Boeddeker, ²Zhaoheng Ni, ⁶Yusuke Fujita, ⁶Shota Horiguchi, ⁷Naoyuki Kanda, ⁷Takuya Yoshioka, ⁸Neville Ryant

¹Johns Hopkins University, USA, ²The City University of New York, USA, ³University of Sheffield, UK, ⁴Inria, France, ⁵Paderborn University, Germany, ⁶Hitachi, Ltd., Japan, ⁷Microsoft, USA, ⁸Linguistic Data Consortium, USA

► Continuous sound pressure → (sampled) discrete signal

► Sampling:

- Measuring amplitude of signal at time t
- 44.1K Hz [samples/sec] : 가청 주파수 대역 (20KHz) 고려
- 16,000 Hz : 일반적인 신호처리
- 8,000 Hz : 전화 통화

- ► Time-varying frequency structure
 - Short-time Fourier transform (STFT)

D. Kitamura, "Audio Source Separation Based on Low-Rank Structure and Statistical Independence"

➤ 3Blue1Brown "Fourier series" https://www.youtube.com/watch?v=r6sGWTCMz2k

► Clean speech (Power spectrogram & Waveform)

► 440Hz Sine wave

► Noisy speech (Speech + 440Hz Sine wave)

► Noisy speech (Speech + Interfering Speech or Music)

▶항상 나오는 **질문...**

질문) speech recognition에선 frequncy domain feature인 MFCC로 바꾸는 preprocess를 하는데요, 왜 꼭 이 preprocess가 필요한건가요? 딥러닝의 모토가 end-to-end이고 이미지도 픽셀로부터 배우는데, 음성은 그냥 time domain 그대로 쓰면 안되는 (성능이 저하되는) 이유가 있을까요?

▶항상 나오는 **답변...**

Learning the Speech Front-end With Raw Waveform CLDNNs

Tara N. Sainath, Ron J. Weiss, Andrew Senior, Kevin W. Wilson, Oriol Vinyals

Google, Inc. New York, NY, U.S.A

{tsainath, ronw, andrewsenior, kwwilson, vinyals

Fully Convolutional Speech Recognition

Neil Zeghidour^{1,2,*}, Qiantong Xu^{1,*}, Vitaliy Liptchinsky¹, Nicolas Usunier¹, Gabriel Synnaeve¹, Ronan Collobert¹

¹ Facebook A.I. Research, Paris, France; New York & Menlo Park, USA
 ² CoML, ENS/CNRS/EHESS/INRIA/PSL Research University, Paris, France

▶항상 나오는 **답변...**

(a) Time-domain Convolution (b) Time convolution and Layer CLDNN Layers

Feature	WER - CE	WER - Seq
raw	16.2	14.2
log-mel	16.2	14.2
raw+log-mel	15.7	13.8

Table 6: WER Combining Raw and Log-Mel Features

Front-end	LM				
Mel	4-gram	4.26	13.80	4.82	14.54
Mel	ConvLM	3.13	10.61	3.45	11.92
Learnable (40)	ConvLM	3.16	10.05	3.44	11.24
Learnable (80)	ConvLM	3.08	9.94	3.26	10.47

Table 2: WER (%) on Librispeech.

- ▶항상 나오는 **반례...**
 - A. Oord, 'Wavenet: A generative model for raw audio'

 Y. Luo, 'Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation'

Audio signal enhancement

- ► T. Kim (Neosapience), "Introduction to Speech Separation"
 - https://www.youtube.com/watch?v=OgNSFKeHy8k

Spectral subtraction > Basic concept : |Y(f, t)| = |X(f, t)| - |N(f, t)|> Procedure | Voice Activity Detection | Noise Estimation | Noise Estimation | Noise |

> Non-negative Matrix Factorization

Single channel approach in spectrogram

Computational Auditory Scene Analysis
 Segmentation of auditory elements in spectrogram

For more information about NMF approach in Korean 권기수, 김남수 (2016.5). 행출렛 기반 용항 신호 본리 기술 연구, '전자공학회지₂, 43(5), 25-34.

Multi-channel BSS on tensor representation

Audio signal enhancement

- ► T. Kim (Neosapience), "Introduction to Speech Separation"
 - https://www.youtube.com/watch?v=OgNSFKeHy8k

Comparison to Image enhancement..???

- ► H. Zhang, 'mixup: Beyond Empirical Risk Minimization'
- https://medium.com/@wolframalphav1.0/easy-way-to-improve-image-classifier-performance-part-1-mixup-augmentation-with-codes-33288db92de5

Comparison to Image enhancement

➤ X. Liu, 'A Novel Underwater De-scattering Method Based on Sparse Non-negative Matrix Factorization'

▶ D. Park, 'Single image haze removal with WLS-based edge-preserving smoothing filter'

Y. Xu, 'A Regression Approach to Speech Enhancement Based on Deep Neural Networks'

Fig. 2. Illustration of the basic DNN training procedure.

Q.Wang, 'VoiceFilter: Targeted Voice Separation by Speaker-Conditioned Spectrogram Masking'

- ▶ Speaker recognition task을 위해 훈련된 network embedding vector
- ▶ Speech enhancement task를 위해서 입력으로 사용

- https://google.github.io/speaker-id/publications/VoiceFilter/
- https://www.youtube.com/watch?v=BiWMZdnHuVs&feature=emb_logo

Speaker recognition

- https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speaker-recognition-overview
- https://wiki.aalto.fi/display/ITSP/Speaker+Recognition+and+Verification

Speaker recognition

- https://www.nec.com/en/global/techrep/journal/g18/n02/180218.html
- https://www.mathworks.com/matlabcentral/fileexchange/69617-speaker-recognition-biometric-system-matlab-code
- ▶ [*] J. Chung, "In defence of metric learning for speaker recognition"

특정 **사람의 목소리**만 추출 (enhancement)

- 1. Pre-trained speaker recognition network 준비
- 2. 특정 화자의 network embedding을 뽑는다
- 3. Noisy input 과 embedding을 네트워크에 넣는다
- 4. Enhanced output을 얻는다

< RIP... >

► Generalized Gamma distribution [J. Shin, 2005]

$$\begin{split} p(X_k) &= \frac{\gamma^2 \beta^{2\eta}}{4\Gamma(\eta)^2} |X_{k,R} X_{k,I}|^{\eta \gamma - 1} \\ &\cdot \exp(-\beta |X_{k,R}|^{\gamma} - \beta |X_{k,I}|^{\gamma}) \end{split}$$

$$\Lambda_k &= \frac{p(X_k | H_1)}{p(X_k | H_0)} \\ &= \frac{\hat{\gamma}_S^2 \hat{\beta}_S^{2\hat{\eta}_S} \Gamma(\hat{\eta}_N)^2}{\hat{\gamma}_S^2 \hat{\beta}_S^{2\hat{\eta}_S} \Gamma(\hat{\eta}_S)^2} |X_R X_I|^{\hat{\eta}_S \hat{\gamma}_S - \hat{\eta}_N \hat{\gamma}_N} \cdot e^{(-\hat{\beta}_S (|X_R|^{\hat{\gamma}_S} + |X_I|^{\hat{\gamma}_S}) + \hat{\beta}_N (|X_R|^{\hat{\gamma}_N} + |X_I|^{\hat{\gamma}_N}))} \end{split}$$

► Convex Combination of Multiple Statistical Models with Application to VAD [T. Petsatodis, 2011]

$$\begin{split} & \Lambda_k^{\text{Convex}} \equiv w_G \Lambda_k^G + w_L \Lambda_k^L + w_\Gamma \Lambda_k^\Gamma \\ &= w_G \frac{f_{X_k|H_1}^{(G)}(X_k)}{f_{X|H_0}(X_k)} + w_L \frac{f_{X_k|H_1}^{(L)}(X_k)}{f_{X|H_0}(X_k)} + w_\Gamma \frac{f_{X_k|H_1}^{(\Gamma)}(X_k)}{f_{X|H_0}(X_k)} \\ &= \frac{w_G f_{X_k|H_1}^{(G)}(X_k) + w_L f_{X_k|H_1}^{(L)}(X_k) + w_\Gamma f_{X_k|H_1}^{(\Gamma)}(X_k)}{f_{X|H_0}(X_k)} \end{split}$$

특정 소리만 추출 (enhancement)

- 1. Pre-trained sound recognition network 준비
- 2. 특정 소리의 network embedding을 뽑는다
- 3. Noisy input 과 embedding을 네트워크에 넣는다
- 4. Enhanced output을 얻는다

ONE-SHOT CONDITIONAL AUDIO FILTERING OF ARBITRARY SOUNDS

Beat Gfeller, Dominik Roblek and Marco Tagliasacchi

Google Research

Fig. 1: SoundFilter model overview.

Put any embedding!

▶ D, Yu (Tencent), "Solving Cocktail Party Problem" CHiME 6, 2020

Put any embedding!

Multi-modal Target Speech Separation

5/4/2020

Dong Yu: Solving Cocktail Party Problem – From Single Modality to Multi-Modality

Windows 정품 인증 [설정]으로 이동**38**계 Windows를 정품 인증합!

https://jupiterethan.github.io/av-enh.github.io/

Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation

ARIEL EPHRAT, Google Research and The Hebrew University of Jerusalem, Israel INBAR MOSSERI, Google Research

► https://looking-to-listen.github.io/

D, Yu (Tencent), "Solving Cocktail Party Problem" CHiME 6, 2020

D, Yu (Tencent), "Solving Cocktail Party Problem" CHiME 6, 2020

Input Modalities		(SDR 0.44 / PESQ 1.87) Before enhancement : WER 48.9 [%]					
	Directional Feature	Enrolled Voice	Target Lip	SDR (dB)	PESQ	WER (%)	∕ 0]
	\checkmark			16.9	3.24	11.3	
		\checkmark		14.8	2.98	14.7	
			\checkmark	16.6	3.01	19.6	
	\checkmark	$\sqrt{}$		17.1	3.25	10.5	
	\checkmark	\checkmark	\checkmark	17.6	3.28	10.0	4
			,				
	$\sqrt{}$		$\sqrt{}$	17.5	3.28	10.3	4

Difference from speaker embedding is small.

We can stick to use only
Directional feature + Lip if
speaker embedding not
available

S.Chung 'FaceFilter: Audio-visual speech separation using still images'

- ▶ Sync가 확보된 동영상 입력에 대해서만 쓸 수 있나요?
- → 아뇨. 그냥 사전에 찍어 놓은 single image만으로, 목소리 분리가 가능합니다.

S.Chung 'FaceFilter: Audio-visual speech separation using still images'

Mixture	SDRi
Seen	-Heard Speaker
Male-Male	2.084 dB
Male-Female	3.039 dB
Female-Male	3.821 dB
Female-Female	1.930 dB
Unseen	-Unheard Speaker
Male-Male	1.256 dB
Male-Female	3.066 dB
Female-Male	3.830 dB
Female-Female	1.198 dB

Summary

- ▶ Speech enhancement는 spectrogram (Time-Freq block)을 [0-1] 사이의 값으로 masking 하는 네트워크를 사용한다. (e.g. sigmoid output [Time x Freq])
- ▶ 기본적인 신호처리 / 모델링을 넘어서, 특정 목적에 부합하는 다양한 정보들의 embedding을 뽑고, 입력으로 넣어주자
 - 사전 녹음 된 특정 목소리 찾기 → VoiceFilter (Google, 2019)
 - 사전 녹음 된 특정 소리 찾기 → SoundFilter (Google, 2020)
 - 특정 화자의 영상에서 얼굴/입술 정보 → Looking to Listen (Google, 2018)
 - 특정 화자의 영상에서 얼굴/입술/방향/(사전)목소리 정보 → Audio-Visual Speech Separation and Dereverberation with a Two-Stage Multimodal Network (Tencent, 2020)
 - 사전 촬영 된 특정 얼굴의 목소리 찾기 → FaceFilter (Yonsei, 2020)
- ► All you need is embedding
 - 특정 화자의 얼굴/입술/홍채/지문 embedding을 이용한 목소리 분리...