

Phylogenetic trees

- (1) Phylogeny = relationship between species
 - Phylogenetic tree: derivation of evolutionary relationship
 - Genome sequences can be used to estimate phylogeny
- (2) Genetic phylogeny not coincident with species phylogeny
 - Because of events like gene duplication
 - Orthologues = genes diverged through speciation
 - Paralogues = genes diverged through e.g., gene duplication
- (3) Tree has nodes and edges
 - Edges have a distance that indicates the amount of change between species/sequences
 - Edge length does not necessarily correspond exactly to evolutionary time periods (different change rates)

UPGMA clustering

(1) Computes binary tree from set of leafs and distances

- Building pairs of nearest nodes or node clusters
- Assume that distance to all leaves is the same (constant molecular clock)

(2) Initialization

- Assign each sequence i to its cluster C_i
- Define a leaf at height 0 for each sequence i

(3) Iteration while there is more than one cluster

- Find two clusters with minimal distance (average between all possible pairs)
- Join the clusters as C_k and calculate its distance to all others
- Place the new node k at the the height of half the cluster distance

1-58

Distance measures

(1) Based on alignment of sequences

- Fraction f of positions that differ
- A random alignment gives about f=0.75

(2) More realistic estimate

- Jukes-Cantor distance = $-0.75 \log (1 4f/3)$
- Approaches infinity as f goes towards 0.75

(3) UPGMA assumes additive distance

- Distance between any leaves is sum of paths conneting them
- Automatically constructed by the algorithm

Parsimony

(1) Build a tree that minimizes the number of substitutions

- Enumerate all possible trees (exponential)
- Generate trees heuristically (until good enough)

1-60

Estimating cost of tree

- (1) Traditional parsimony
 - Cost of one replaced letter is 1
- (2) Walk recursively down the tree
 - Keep minimal costs C and list of minimal-cost residues R_k at each node
 - Start with the root node k = 2n 1 and C = 0
- (3) Recursion for R_k and C
 - If k is a leaf:

 $R_k = \{assigned sequence at k\}$

Otherwise

Compute R_i and R_j for the daughter nodes i and j If $R_i \cap R_i$ is empty:

 $R_k = R_i \cup R_j;$

increment C;

Else:

 $R_k = R_i \cap R_j$

1-61

Traceback procedure

(1) To assign possible residues to each node

- Pick one of the minimal-cost root assignments
- Go down the tree
- Pick either the same assignment for the daughter nodes if possible
- Otherwise pick any of the minimal-cost assignments of this node

(2) Not all possible assignments can be recovered

- An additional cost down the tree can be recovered higher up
- Can be solved by keeping a list of residues at each node that have a cost of 1 more than the minimum

