Roadmap

- Chapter: Dimensionality Reduction & Matrix Factorization
 - 1. Introduction
 - 2. Principal Component Analysis (PCA)
 - 3. Singular Value Decomposition (SVD)
 - 4. Matrix Factorization
 - Motivation & Approach
 - Regularization & Sparsity
 - Further Factorization Models
 - 5. Neighbor Graph Methods
 - 6. Autoencoders (Non-linear Dimensionality Reduction)

Motivation: The Netflix Prize

- Training data
 - 100 million ratings, 480,000 users, 17,770 movies
 - 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Root Mean Square Error (RMSE)
 - Netflix's system RMSE: 0.9514

trivial: 1.054

- 2,700+ teams
- \$1 million prize for 10% improvement

٠.	•					→
	1	3	4			
		3	5			5
			4	5		5
			3			
			3			
	2			2		2
					5	
		2	1			1
		3			3	
	1					

17,700 movies

R

480,000

users

Evaluating Recommender Systems

- S = set of tuples (u, i) of users u that have rated item i with a rating of r_{ui}
- RMSE = $\frac{1}{|S|} \sqrt{\sum_{(u,i) \in S} (r_{ui} \hat{r}_{ui})^2}$ true rating of user u for item i predicted rating
- Legend:
 - Training and validation data
 - Test data
 - Missing data

Regression vs. Recommendation

Legend:

- Training and validation data
- Test data
- Missing data

SVD on Rating Data

- Goal: Make good recommendations
 - Good performance on observed (user, item) ratings, i.e. low RMSE
 - Generalize to the unseen test data
- Can we use SVD to obtain the solution?
 - SVD on the rating matrix $\mathbf{R} \in \mathbb{R}^{n \times d}$ where we replace missing entries with zeros

$$-R \approx Q \cdot P^T$$
 // SVD: $R = U\Sigma V^T \longrightarrow Q = U\Sigma$, $P = V$

						ite	ms						
	1	0	3	0	0	5	0	0	5	0	4	0	
	0	0	5	4	0	0	4	0	0	2	1	3	
ס	2	4	0	1	2	0	3	0	4	3	5	0	
2	0	2	4	0	5	0	0	4	0	0	2	0	7
	0	0	4	3	4	2	0	0	0	0	2	5	Į,
	1	0	3	0	3	0	0	2	0	0	4	0	o Look
•													•

	Ta-	actor	S	_
	.1	4	.2	
	5	.6	.5	
	2	.3	.5	
1	1.1	2.1	.3	
	7	2.1	-2	
5	-1	.7	.3	

					tems						
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 P^T

itame

SVD on Rating Data

SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{\substack{U,\Sigma,V\\i=1...d}} \sum_{\substack{\mathbf{u}=1...n\\i=1...d}} \left(\mathbf{R}_{\mathbf{u}i} - \left[\mathbf{U}\boldsymbol{\Sigma}V^T \right]_{\mathbf{u}i} \right)^2$$

min 11 R-B1/2 B ank(B)=K

- SSE and RMSE are monotonically related:
 - $RMSE = \frac{1}{const.} \sqrt{SSE}$
 - Great news: SVD is minimizing RMSE

Complication:

- The sum in the SVD error term is over all entries (no-rating = zero-rating)
- But our R has missing entries!
- (Classical) SVD isn't defined when entries are missing!
- Also: We actually don't care about orthogonality and normalization

Discussion: SVD/PCA

- Optimal low-rank approximation
 - In terms of Frobenius norm (and also in terms of the spectral norm)
- Missing elements (we have no information/not observed) are treated as 0 (a very low rating)
 - Critical for many applications (e.g. recommender systems)
 - General problem: two kinds of "zeros" (not observed/missing \neq 0)
- Lack of Sparsity
 - Singular vectors are dense
 - Potential interpretability problem
- Orthogonality really required/useful?

Latent Factor Models

Our goal: Find $\mathbf{Q} \in \mathbb{R}^{n \times k}$ and $\mathbf{P} \in \mathbb{R}^{d \times k}$ such that:

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \sum_{(u,i)\in\mathcal{S}} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2$$

- We only sum over existing entries, i.e. the set $S = \{(u, i) \mid r_{ui} \neq \text{missing}\}$
- We don't require columns of P, Q to be orthogonal or unit length
- Use standard optimization techniques to solve this problem

$$\hat{r}_{ui} = \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T$$

	items										fa	actor	S		
1		3			5			5		4			.1	4	
		5	4			4			2	1	3		5	.6	
2	4		1	2		3		4	3	5			2	.3	
	2	4		5			4			2		pprox	1.1	2.1	
		4	3	4	2					2	5	SLS	7	2.1	
1		3		3			2			4		users	-1	.7	

	_							
.2						to 100 o		
.5					ı	tems		
.5	1.1	2	.3	.5	-2	5	.8	
.5	1.1	2	.5	.5		5	.0	
	8	.7	.5	1.4	.3	-1	1.4	2
.3	2.1	4	.6	1.7	2.4	.9	3	
-2			-			- <i>T</i>		
.3						P^T		

 q_u row u of Q p_i row i of P

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

Finding the Latent Factors (I)

• Goal:
$$\min_{\boldsymbol{P},\boldsymbol{Q}} \sum_{(u,i) \in S} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2 =: \min_{\boldsymbol{P},\boldsymbol{Q}} f(\boldsymbol{P},\boldsymbol{Q})$$

- One approach: Alternating Optimization // a.k.a. block coordinate minimization
 - Pick initial values for P and Q
 - Alternatingly keep one variable fix and optimize for the other
 - Repeat until convergence
- Pseudo-Code:
 - 1. initialize $P^{(0)}$, $Q^{(0)}$, t = 0
 - 2. $\mathbf{P}^{(t+1)} = \operatorname{argmin}_{\mathbf{P}} f(\mathbf{P}, \mathbf{Q}^{(t)})$
 - 3. $\mathbf{Q}^{(t+1)} = \operatorname{argmin}_{\mathbf{0}} f(\mathbf{P}^{(t+1)}, \mathbf{Q})$
 - 4. t = t + 1
 - 5. goto 2 until convergence

Finding the Latent Factors (II)

- Initialization of P and Q:
 - Use, e.g., SVD where missing entries are replaced by 0 (or overall mean)
- How to solve $P^{(t+1)} = \underset{P}{\operatorname{argmin}} f(P, Q^{(t)}) = \underset{P}{\operatorname{argmin}} \sum_{(u,i) \in S} (r_{ui} q_u \cdot p_i^T)^2$

$$\min_{\boldsymbol{p}} \sum_{(u,i)\in S} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2 = \sum_{i=1...d} \min_{\boldsymbol{p}_i} \sum_{u \in S_{*,i}} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2$$

where $S_{*,i} = \{u \mid (u,i) \in S\}$ // = only users u who have rated item i

- Equivalently for vector q_u based on the set $S_{u,*} = \{i \mid (u,i) \in S\}$

Finding the Latent Factors (III)

• Observation 2: $\min_{p_i} \sum_{\mathbf{u} \in S_{*,i}} (r_{ui} - \mathbf{q}_u \cdot \mathbf{p}_i^{\mathrm{T}})^2$ is an ordinary least squares regression problem

- $\min_{\mathbf{w}} \sum_{j=1}^{n} (y_j \mathbf{w}^T \mathbf{x}_j)^2$ // y_j is scalar, \mathbf{x}_j and \mathbf{w} (column) vectors
- Optimal solution in closed form: $\mathbf{w} = \left(\frac{1}{n}\sum_{j=1}^{n} \mathbf{x}_{j}\mathbf{x}_{j}^{T}\right)^{-1} \cdot \frac{1}{n}\sum_{j=1}^{n} \mathbf{x}_{j}y_{j} = \left(\mathbf{x}^{T}\mathbf{x}\right)\mathbf{x}^{T}\mathbf{y}$ $= \left(\mathbf{y}_{xA}\right)\left(\mathbf{x}^{T}\mathbf{y}\right)$
- In our case: $\boldsymbol{p}_i^T = \left(\frac{1}{|S_{*,i}|} \sum_{u \in S_{*,i}} \boldsymbol{q}_u^T \boldsymbol{q}_u\right)^{-1} \cdot \frac{1}{|S_{*,i}|} \sum_{u \in S_{*,i}} \boldsymbol{q}_u^T r_{ui}$
- Equivalently for \boldsymbol{q}_u
- Computation of $\underset{\boldsymbol{P}}{\operatorname{argmin}}(\boldsymbol{P},\boldsymbol{Q}^{(t)})$ reduces to a standard problem

Alternating Optimization: Discussion

- May provide solution to difficult optimization problems
- Here: sequence of simple OLS problems
 - Overall algorithm can be implemented in a few lines in, e.g., Python
 - Quite efficient: since data is sparse, the sets $S_{*,i}$ (and $S_{u,*}$) are relatively small

- Drawback of Alternating Optimization:
 - Solution is only an approximation
 - No guarantee that close to the optimal solution
 - Highly depends on initial solution

SGD for Matrix Factorization

Stochastic Gradient Descent as an alternative

- SGD on the objective $\mathcal{L} := \sum_{(u,i) \in S} (r_{ui} \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2$
 - Pick a random user u and a random item i with rating r_{ui} (batch size 1)
 - Compute the gradients w.r.t. the parameters $\frac{\partial \mathcal{L}}{\partial q_u}$ and $\frac{\partial \mathcal{L}}{\partial p_i}$
 - Update the parameters $q_u \leftarrow q_u \eta \frac{\partial \mathcal{L}}{\partial q_u} \ p_i \leftarrow p_i \eta \frac{\partial \mathcal{L}}{\partial p_i}$
- In this case the gradient update step is rather simple
 - $e_{ui} \leftarrow r_{ui} \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}}$ \\ helper variable, the current error
 - $\boldsymbol{q}_u \leftarrow \boldsymbol{q}_u + 2\eta(e_{ui} \boldsymbol{p}_i)$
 - $\boldsymbol{p}_i \leftarrow \boldsymbol{p}_i + 2\eta(e_{ui} \boldsymbol{q}_u)$

Rating Prediction

• How to estimate the missing rating of user u for item i?

items

 \approx

$$\hat{r}_{ui} = \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T = \sum_k q_{uk} \cdot p_{ik}$$

 q_u row u of Q p_i row i of P

factors

	.1	4	.2
	5	.6	.5
SLS	2	.3	.5
users	1.1	2.1	.3
	7	2.1	-2
Q	-1	.7	.3

factors

items

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 P^T

Rating Prediction

• How to estimate the missing rating of user u for item i?

items

~:

$$\hat{r}_{ui} = \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T = \sum_k q_{uk} \cdot p_{ik}$$

 q_u row u of Q p_i row i of P

factors

	.1	4	.2
	5	.6	.5
SLS	2	.3	.5
users	1.1	2.1	.3
	7	2.1	-2
Q	-1	.7	.3

factors

items

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 P^{T}

Rating Prediction

• How to estimate the missing rating of user u for item i?

items

~

$$\hat{r}_{ui} = \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T = \sum_k q_{uk} \cdot p_{ik}$$

 q_u row u of Q p_i row i of P

factors

	.1	4	.2	
	5	.6	.5	
users	2	.3	.5	
	1.1	2.1	.3	
	7	2.1	-2	
Q	-1	.7	.3	

factors

items

1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

 P^{T}

Side-note: BellKor Recommender System

- The winner of the Netflix Challenge uses matrix factorization as one building block
 - The overall model is a combination of multiple ideas
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

and Machine Learning

User and Item Biases

- Certain users might give overly optimistic or pessimistic rating
- Certain movies tend to always have low ratings
- We introduce additional bias terms to capture these effects
 - Each user u can have a bias term b_u
 - Each user i can have a bias term b_i
 - Additional global bias term b shared by everyone
- The resulting optimization problem can be easily solved with SGD

$$\min_{\substack{\boldsymbol{P},\boldsymbol{Q}\\b_{u},b_{i},b}} \sum_{(u,i)\in S} (r_{ui} - (\boldsymbol{q}_{u} \cdot \boldsymbol{p}_{i}^{\mathrm{T}} + b_{u} + b_{i} + b))^{2}$$

• The **cold start** problem is another important issue

Roadmap

- Chapter: Dimensionality Reduction & Matrix Factorization
 - 1. Introduction
 - 2. Principal Component Analysis (PCA)
 - 3. Singular Value Decomposition (SVD)
 - 4. Matrix Factorization
 - Motivation & Approach
 - Regularization & Sparsity
 - Further Factorization Models
 - 5. Neighbor Graph Methods
 - 6. Autoencoders (Non-linear Dimensionality Reduction)

Challenge: Overfitting

test test

- Final Goal: Minimize SSE for unseen test data
- Proxy: Minimize SSE on training data
 - Want large k (number of factors) to capture all the signals
 - But, SSE on test data begins to rise for larger k
 - Why?
- Classical example of overfitting:
 - With too many degrees freedom (too many free parameters) the model starts fitting noise
 - The model fits too well the training data but does not generalize well to unseen test data

Challenge: Overfitting

- Problem can easily be seen in our scenario:
 - In each step of the alternating optimization we solve an OLS regression
 - Number of regression parameters = k = number of latent factors
 - Number of data points used for regression = cardinality of $S_{*,i} / S_{u,*}$
 - Lots of parameters but not enough data points → regression can overfit
 - If k is large this might even lead to an underdetermined system of equations
 - Problem is ill-posed
- Solution: Regularization
 - Interpretation for underdetermined systems: "In the absence of any other information, the parameter vector should be small (i.e. only small effect of features)"
 - Equivalently: We put a prior on the weights

Regularization

- To solve overfitting we introduce regularization:
 - Allow rich model where we have sufficient data
 - Shrink aggressively where data are scarce

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \sum_{(u,i) \in S} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2 + \left[\lambda_1 \sum_{u} ||\boldsymbol{q}_u||^2 + \lambda_2 \sum_{i} ||\boldsymbol{p}_i||^2 \right]$$
"error"
"length"

- λ_1 and λ_2 are user-defined regularization parameters
- Note: We do not care about the actual value of the objective function, but we care about the P, Q that achieve the minimum of the objective

The Effect of Regularization

The Effect of Regularization

The Effect of Regularization

Regularization in Our Use Case

• Regularized Problem:
$$\min_{\boldsymbol{P},\boldsymbol{Q}} \sum_{(u,i)\in S} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}})^2 + \left[\lambda_1 \sum_{u} ||\boldsymbol{q}_u||^2 + \lambda_2 \sum_{i} ||\boldsymbol{p}_i||^2 \right]$$

- Recap of unregularized problem: In each iteration of the alternating optimization we solved an OLS regression problem
- For the regularized version this becomes ridge regression

$$- \min_{\boldsymbol{p}_i} \sum_{i \in S_{*,i}} (r_{ui} - \boldsymbol{q}_u \cdot \boldsymbol{p}_i^T)^2 + \lambda_2 \|\boldsymbol{p}_i\|^2$$

- Effect: parameter values are forced to become smaller
- Large values that only capture noise are avoided
- You know how to solve this!
 - Closed form solution (see linear regression slides)
 - Gradient decent

SGD for MF with Regularization and Biases

SGD on the objective

$$\mathcal{L} := \min_{\substack{p, q \\ b_u, b_i, b}} \sum_{(u, i) \in S} (r_{ui} - (\boldsymbol{q}_u \cdot \boldsymbol{p}_i^{\mathrm{T}} + b_u + b_i + b))^2 + \left[\lambda_1 \sum_{u} ||\boldsymbol{q}_u||^2 + \lambda_2 \sum_{i} ||\boldsymbol{p}_i||^2 \right]$$

- Pick a random user u and a random item i with rating r_{ui} (batch size 1)
- The gradient update step is very similar to before

$$-e_{ui} \leftarrow r_{ui} - (\boldsymbol{q}_u \cdot \boldsymbol{p}_i^T)$$
 helper variable, the current error

$$- \mathbf{q}_u \leftarrow \mathbf{q}_u + 2\eta(e_{ui} \mathbf{p}_i - \lambda_1 \mathbf{q}_u)$$

$$- \mathbf{p}_i \leftarrow \mathbf{p}_i + 2\eta(e_{ui} \mathbf{q}_u - \lambda_2 \mathbf{p}_i)$$

$$-b_u \leftarrow b_u + \eta e_{ui}$$

$$-b_i \leftarrow b_i + \eta e_{ij}$$

- Usually directly set
$$b$$
 to the global mean $b = \frac{1}{|S|} \sum_{(u, i) \in S} r_{ui}$

L2 vs. L1 Regularization

- Comparison: L2 vs. L1 regularization
 - L2 tries to "shrink" the parameter vector w equally
 - Large values are highly penalized due to the square in the L2 norm
 - Unlikely that any component will be exactly 0
 - L1 allows large values in individual components of \boldsymbol{w} by shrinking other components to 0
 - L1 is suited to enforce sparsity of the parameter vector
- Why sparsity?
 - Better interpretation
 - Only few values contribute to result
 - Unintuitive that sparse input data is generated based on dense signal
 - Less storage, faster processing

L2 vs. L1 Intuition

An L1 constraint promotes sparsity

Roadmap

- Chapter: Dimensionality Reduction & Matrix Factorization
 - 1. Introduction
 - 2. Principal Component Analysis (PCA)
 - 3. Singular Value Decomposition (SVD)
 - 4. Matrix Factorization
 - Motivation & Approach
 - Regularization & Sparsity
 - Further Factorization Models
 - 5. Neighbor Graph Methods
 - 6. Autoencoders (Non-linear Dimensionality Reduction)

Further Factorization Models

- Matrix factorization is extremely powerful
 - Dimensionality reduction, data analysis/data understanding, prediction of missing values, ...
- Various extensions have been proposed
 - Enforcing different constraints or operating on different data types
 - Important goal: better interpretation of result
- Non-Negative Matrix Factorization (next slides)
- Boolean Matrix Factorization
 - $-\,\,$ Factorize Boolean $oldsymbol{A}$ in Boolean $oldsymbol{Q}$ and $oldsymbol{P}$

Non-Negative Matrix Factorization

- Often data is given in form of non-negative values
 - Rating values between 1 to 5; income, age, ... of persons; number of words in a document; grayscale images; etc.
- However: SVD (and the other approaches presented before) might lead to factors containing negative values
 - Difficult to interpret: non-negative data is "generated" based on negative factors; what do these negative factors mean?
 - Predicted values might also become negative
- Solution: Non-Negative Matrix Factorization

Non-Negative Matrix Factorization

- Task: Factorize non-negative $m{A}$ in non-negative $m{Q}$ and $m{P}$, i.e. $m{A} pprox m{Q} \cdot m{P}^T$
- Formally:
 - Given $A \in \mathbb{R}^{n \times d}$ with $A_{ij} \geq 0$ and integer k, find $P \in \mathbb{R}^{n \times k}$, $Q \in \mathbb{R}^{k \times d}$ such that $\|A Q \cdot P^T\|_F$ is minimized subject to $Q \geq 0$ and $P \geq 0$

$$\min_{\boldsymbol{P} \geq 0, \boldsymbol{Q} \geq 0} \left\| \boldsymbol{A} - \boldsymbol{Q} \cdot \boldsymbol{P}^T \right\|_F$$

Constrained optimization

NNMF Example: Olivetti Faces Data

Non-negative components - NMF - Train time 2.9s

results according to scikit-learn

Roadmap

- Chapter: Dimensionality Reduction & Matrix Factorization
 - 1. Introduction
 - 2. Principal Component Analysis (PCA)
 - 3. Singular Value Decomposition (SVD)
 - 4. Matrix Factorization
 - 5. Neighbor Graph Methods
 - 6. Autoencoders (Non-linear Dimensionality Reduction)

Preserving global vs. preserving local similarity

- PCA tries to find a global structure
 - Can lead to local inconsistencies
 - Far away point can become nearest neighbors
- Illustration (during lecture):

- Idea: Preserve local structure instead
- Example: https://projector.tensorflow.org/

Neighbor Graph Methods

- All methods we have seen so far are based on matrix factorizations
- An alternative class of methods based on neighbor graphs

Highdimensional data:

Neighbor / similarity graph:

Idea: Low dimensional neighborhood similar to the original neighborhood

Neighbor Graph Methods

- High Similarty

 1000 similarty
- 1. Construct neighbor graph of high-dimensional data
- 2. Initialize points in low-dimensional space
- 3. Optimize coordinates in low-dimensional space s.t. similarities align

t-SNE: t-Distributed Stochastic Neighbor Embedding

High-dimensional similarities for input x_i :

$$p_{j|i} = \frac{\exp\left(-\frac{\left\|\boldsymbol{x}_{i} - \boldsymbol{x}_{j}\right\|^{2}}{2\sigma_{i}^{2}}\right)}{\sum_{k \neq i} \exp\left(-\frac{\left\|\boldsymbol{x}_{i} - \boldsymbol{x}_{k}\right\|^{2}}{2\sigma_{i}^{2}}\right)} \qquad p_{ii} = 0 \qquad p_{ij} = \frac{p_{j|i} + \mathbf{Pilj}_{i}}{2n}$$

Low-dimensional similarities for (to be optimized) parameters y_i :

$$q_{ij} = \frac{\left(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2\right)^{-1}}{\sum_k \sum_{l \neq k} (1 + \|\mathbf{y}_k - \mathbf{y}_l\|^2)^{-1}} \qquad q_{ii} = 0$$

$$q_{ii} = 0$$

 $\min_{\mathbf{y}_i} KL(P||Q) = \sum_{i} \sum_{i \neq i} p_{ij} \log \frac{P_{ij}}{q_{ij}}$ Minimize the KL divergence:

Note on the KL Divergence

- $KL(P||Q) \ge 0$ for any P and Q, KL(P||Q) = 0 iff P = Q
- The KL Divergence is asymmetric $KL(P||Q) \neq KL(Q||P)$
 - Example: Given P we are optimizing over Q

Forward KL is Mean-Seeking KL(P||Q)

Reverse KL is Mode-Seeking KL(Q||P)

Figures adapted from Dibya Ghosh.

Interactive t-SNE

Source of illustration, for more details and interactive widgets.

The Advantages and Disadvantages of t-SNE

- The current standard for visualizing high-dimensional data

- Helps understand "black-box" algorithms like DNN
- Reduced "crowding problem" with heavy tailed distribution

- t-SNE plots can sometimes be mysterious or misleading
 - Be careful with cluster sizes and cluster distances
- Can be sensitive to hyperparameters
 - Random noise does not always look random
- No easy way to compute the embedding of new data
- Not great for more than 3 dimensions

Uniform Manifold Approximation and Projection

Principled approach relying on toplogical spaces, category theory, ...

Link for details, widgets, a comparison to T-SNE, ...

Roadmap

- Chapter: Dimensionality Reduction & Matrix Factorization
 - 1. Introduction
 - 2. Principal Component Analysis (PCA)
 - 3. Singular Value Decomposition (SVD)
 - 4. Matrix Factorization
 - 5. Neighbor Graph Methods
 - 6. Autoencoders (Non-linear Dimensionality Reduction)

Motivation

- PCA / SVD can only capture linear structure (linear variations in the data)
 - Recall: transformed data is Y = $\widetilde{\mathbf{X}} \cdot \mathbf{\Gamma}$
 - Linear projection by the eigenvectors $oldsymbol{\Gamma}$
- However, data often lies on a non-linear low-dimensional manifold

Idea: find a non-linear projection of the data

Autoencoders

- An autoencoder is a neural network that:
 - finds a compact representation of the data
 - by learning to reconstruct its input

$$f(\mathbf{x},\mathbf{W}) \coloneqq \widehat{\mathbf{x}} \approx \mathbf{x}$$

• Goal: minimize the reconstruction error between \widehat{x} and x

$$\min_{\boldsymbol{W}} \frac{1}{N} \sum_{i=1}^{N} \|f(\boldsymbol{x}_i, \boldsymbol{W}) - \boldsymbol{x}_i\|^2$$

• Alternative view: find a **latent representation** $z \in \mathbb{R}^L$ which is a compact code for $x \in \mathbb{R}^D$ since $L \ll D$

 $- f_{enc}(\mathbf{x}) = \mathbf{z}$ # encoder: project the data to a lower dimension

 $-f_{dec}(\mathbf{z}) \approx \mathbf{x}$ # decoder: reconstruct the data from the latent code

$$f_{dec}(f_{enc}(\mathbf{x})) \approx \mathbf{x}$$

Autoencoders

• f_{enc} and f_{dec} are non-linear functions implemented by a neural network

Autoencoders: Example

Autoencoders

- An autoencoder whose code dimension is less than the input dimension ($L \ll D$) is called **undercomplete**
 - Forces the autoencoder to capture the most salient features of the data
 - $-L \ge D$ (overcomplete) the autoencoder can simply learn the identity function
- Training autoencoders in practice:
 - Add a regularization term to the SSE loss to prevent overfitting
 - Weight tying: f_{enc} and f_{dec} share the same weights
- Other extensions:
 - Denoising autoencoders (DAEs): receive a corrupted (noisy) training data point as input and predict the "clean" uncorrupted data point as output
 - Variational autoencoders (covered in our MLGS lecture)

(Linear) Autoencoders & PCA: Comparison

• What if f_{enc} and f_{dec} are linear functions?

• We have: $f_{dec}(f_{enc}(x)) = xW_1W_2$ and

$$\min_{\boldsymbol{W}_{1}\boldsymbol{W}_{2}} \frac{1}{N} \sum_{i=1}^{N} \|f(\boldsymbol{x}_{i}, \boldsymbol{W}) - \boldsymbol{x}_{i}\|^{2} = \min_{\boldsymbol{W}_{1}\boldsymbol{W}_{2}} \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_{i}\boldsymbol{W}_{1}\boldsymbol{W}_{2} - \boldsymbol{x}_{i}\|^{2} = \min_{\boldsymbol{W}} \frac{1}{N} \sum_{i=1}^{N} \|\boldsymbol{x}_{i}\boldsymbol{W} - \boldsymbol{x}_{i}\|^{2}$$

- Optimal solution (assuming normalization):
 - PCA: $W^* = \Gamma$ where Γ are the (top-L) eigenvectors of X^TX

Equivalent: $W_1W_2 = W$ s.t. rank of W is L

Summary

- Dimensionality Reduction and Matrix Factorization are highly related
 - And can be used for various purposes
- PCA, SVD (and linear Autoencoders) are equivalent
 - Optimal low-rank approximation
- Matrix factorization for rating prediction

- Autoencoder
- Very general formulation: allows to handle, e.g., missing entries
- Autoencoders and t-SNE perform non-linear dimensionality reduction
- Why are these techniques useful?
 - Less storage required
 - More efficient processing of the data
 - Remove redundant and noisy features
 - Discover hidden correlations/topics/concepts
 - Interpretation and visualization

Reading material

Reading material

- Bishop, chapters: 12.1, 12.2.1
- Leskovec, Rajaraman, Ullman Mining of Massive Datasets: chapter 11
- Goodfellow Deep Learning: chapter 14
- t-SNE
- Understanding UMAP