Geometry of surfaces - Solutions

- **64.** The Gaussian curvatures are K = 0 for the plane, K = 1 for the sphere and K = -1 for the hyperbolic paraboloid. It follows from the Theorema Egregium that no two of these surfaces can be isometric to each other.
- **65.** Since the first fundamental forms coincide, the two surfaces are isometric to each other. By assumption, the Gaussian curvature of S_1 at $\sigma_1(0,0)$ is equal to 0. The Theorema Egregium then implies that the Gaussian curvature of S_2 at $\sigma_2(0,0)$ must be equal to 0. However, if $L_2 = 2$, $M_2 = 1$ and $N_2 = 2$, the Gaussian curvature is non-zero. It follows that such a surface cannot exist.
- **66.** The cone is isometric to (an open part of) the plane and hence its Gaussian curvature K vanishes. The curve γ is unit speed, simple closed and positively oriented. The local version of the Gauss-Bonnet Theorem therefore implies $\int_{\gamma} \kappa_g ds = 2\pi$.
- **67.** The cylinder is isometric to (an open part of) the plane and hence its Gaussian curvature K vanishes. The curve γ is unit speed, simple closed and positively oriented. The local version of the Gauss-Bonnet Theorem therefore implies $\int_{\gamma} \kappa_g ds = 2\pi$.
- **68.** We can assume that γ is positively oriented. Otherwise, reverse the orientation of γ , which changes the sign of the geodesic curvature κ_g , but the integral over the geodesic curvature still remains zero. Let Ω be one of the two regions on S^2 and pick a surface patch $\sigma: U \to \mathbb{R}^3$ of S^2 with $\Omega \subset \sigma(U)$ (for example, define σ via stereographic projection from a point in the second region). Let $R \subset U$ with $\sigma(R) = \Omega$. The Gaussian curvature K of S^2 satisfies K = 1. Since $\int_{\gamma} \kappa_g = 0$ by assumption, the local version of the Gauss-Bonnet Theorem then implies $2\pi = \int_{\text{int}(\gamma)} d\mathcal{A}_{\sigma} = \mathcal{A}_{\sigma}(R)$. Thus each of the two regions on S^2 bounded by γ has area equal to 2π .
- **69.** We have $\gamma(t) = \sigma(\rho(t))$ with $\rho: [0, 2\pi] \to \mathbb{R}^2$, $t \mapsto (\cos(t), \sin(t))$. Since ρ is positively oriented, also γ is positively oriented. Clearly, γ is a unit speed, simple closed curve. The unit normal \mathbf{N} of σ is $\mathbf{N}(u, v) = \frac{1}{\sqrt{4u^2 + 4v^2 + 1}}(-2u, -2v, 1)$. Moreover, $\dot{\gamma}(t) = (-\sin(t), \cos(t), 0)$ and $\ddot{\gamma}(t) = (-\cos(t), -\sin(t), 0)$. Therefore,

$$\mathbf{N}(\rho(t)) \times \dot{\gamma}(t) = \frac{1}{\sqrt{5}} (-2\cos(t), -2\sin(t), 1) \times (-\sin(t), \cos(t), 0)$$
$$= \frac{1}{\sqrt{5}} (-\cos(t), -\sin(t), -2).$$

Altogether this implies

$$\kappa_g(t) = \ddot{\gamma}(t) \cdot (\mathbf{N}(\rho(t)) \times \dot{\gamma}(t))$$

$$= (-\cos(t), -\sin(t), 0) \cdot \frac{1}{\sqrt{5}}(-\cos(t), -\sin(t), -2) = \frac{1}{\sqrt{5}}.$$

The local version of the Gauss-Bonnet Theorem then implies

$$\iint_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma} = 2\pi - \int_{\gamma} \kappa_g ds = 2\pi - \frac{1}{\sqrt{5}} \int_{\gamma} ds$$

$$= 2\pi - \frac{1}{\sqrt{5}} \text{Length}(\gamma) = 2\pi - \frac{1}{\sqrt{5}} 2\pi = 2\pi \left(1 - \frac{1}{\sqrt{5}}\right).$$

70. If γ is a geodesic, then its geodesic curvature κ_g vanishes and the local Gauss-Bonnet Theorem implies

 $0 = \int_{\gamma} \kappa_g ds = 2\pi - \iint_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma} \ge 2\pi$

because of $K \leq 0$, which is a contradiction. Thus γ cannot be a geodesic.

71. Both γ_1 and γ_2 parametrize great circles in S^2 and hence their geodesic curvatures vanish. This gives $\int_{\Gamma} \kappa_g = 0$.

The polygon has two vertices, namely at $\Gamma(\frac{\pi}{2})$ and at $\Gamma(\frac{3\pi}{2}) = \Gamma(-\frac{\pi}{2})$. Denote the corresponding interior angles by α_1 and α_2 . Since the number of edges of Γ is also equal to 2 and the Gaussian curvature of S^2 satisfies K=1, the Gauss-Bonnet Theorem for curvilinear polygons implies

$$\mathcal{A}_{\sigma}(\operatorname{int}(\Gamma)) = \iint_{\operatorname{int}(\Gamma)} d\mathcal{A}_{\sigma} = \alpha_1 + \alpha_2.$$

It remains to compute the two interior angles:

$$\dot{\Gamma}^{-}\left(\frac{\pi}{2}\right) = \dot{\gamma}_1\left(\frac{\pi}{2}\right) = (-1, 0, 0),$$

$$\dot{\Gamma}^{+}\left(\frac{\pi}{2}\right) = \dot{\gamma}_2\left(\frac{\pi}{2}\right) = (\cos(\phi), \sin(\phi), 0),$$

which gives

$$\cos(\alpha_1) = (\cos(\phi), \sin(\phi), 0) \cdot (1, 0, 0) = \cos(\phi)$$

and hence $\alpha_1 = \phi$. Next,

$$\dot{\Gamma}^{-}\left(\frac{3\pi}{2}\right) = \dot{\gamma}_2\left(\frac{3\pi}{2}\right) = (-\cos(\phi), -\sin(\phi), 0),$$

$$\dot{\Gamma}^{+}\left(-\frac{\pi}{2}\right) = \dot{\gamma}_1\left(-\frac{\pi}{2}\right) = (1, 0, 0),$$

which gives

$$\cos(\alpha_2) = (\cos(\phi), \sin(\phi), 0) \cdot (1, 0, 0) = \cos(\phi)$$

and hence $\alpha_2 = \phi$. Altogether we now get

$$\mathcal{A}_{\sigma}(\operatorname{int}(\Gamma)) = \alpha_1 + \alpha_2 = 2\phi.$$

72. Assume γ_1 and γ_2 meet again. Then we can construct from these two geodesics a curvilinear polygon γ on σ with two vertices and two edges. If α_1 and α_2 are the two interior angles of this polygon, then the Gauss-Bonnet Theorem for curvilinear polygons implies

$$0 \le \alpha_1 + \alpha_2 = \iint_{\inf(\gamma)} K d\mathcal{A}_{\sigma} < 0,$$

which is a contradiction.