WEERS A	PROFESSOR: Paulo César Linhares da Silva					
	CURSO: CIÊNCIAS DA COMPUTAÇÃO					
	DISCIPLINA: CÁLCULO NUMÉRICO					
	PERÍODO: MANHÃ. HORÁRIO: 07:00 ÀS 08:40	DATA: 05/12/2024				
	NOME:		PONTOS OBTIDOS			
	SEMESTRE SUPLEMENTAR: 2024		-			
2ªAVALIAÇÃO DE CÁLCULO NUMÉRICO	Sistemas Lineares	NOTA OBTIDA:				

Cálculo Numérico

1ª Questão: Implemente a decomposição LU de uma matriz A de ordem n por n baseando-se no método de Crount. Utilize esta decomposição para resolver um sistema linear do tipo $A_{nxn}x_{nx1} = b_{nx1}$.

Observação: No método de Crount, os elementos da diagonal principal da matriz U são todos iguais a 1.

2ª Questão: Implemente usando a linguagem de programação Python o algoritmo a seguir.

ALGORITMO 1: Resolução de um Sistema Triangular Superior

Dado um sistema triangular superior $n \times n$ com elementos da diagonal da matriz A não nulos, as variáveis x_n , x_{n-1} , x_{n-2} , ... x_2 , x_1 são assim obtidas:

$$x_n = b_n / a_{nn}$$

Para $k = (n - 1),..., 1$

$$\begin{bmatrix} s = 0 \\ Para j = (k + 1), ..., n \\ s = s + a_{kj}x_j \\ x_k = (b_k - s) / a_{kk} \end{bmatrix}$$

3ª Questão: Implemente usando a linguagem de programação Python o algoritmo a seguir.

ALGORITMO 2: Resolução de Ax = b através da Eliminação de Gauss.

Seja o sistema linear Ax = b, $A: n \times n$, $x: n \times 1$, $b: n \times 1$.

Supor que o elemento que está na posição akk é diferente de zero no início da etapa k.

$$\label{eq:para} \text{Eliminação} \begin{cases} \text{Para } k=1,\ldots,\,n-1 \\ \\ \text{Para } i=k+1,\ldots,n \\ \\ m=\frac{a_{ik}}{a_{kk}} \\ \\ a_{ik}=0 \\ \\ \text{Para } j=k+1,\ldots n \\ \\ a_{ij}=a_{ij}-ma_{kj} \\ \\ b_i=b_i-mb_k \end{cases}$$

$$\label{eq:resolucion} \text{Resoluc} \widetilde{\text{ao}} \text{ do sistema:} \left[\begin{array}{l} x_n = b_n/a_{nn} \\ \text{Para } k = (n-1) \,, \ldots \, 2{,}1 \\ \\ s = 0 \\ \text{Para } j = (k+1) \,, \ldots \,, \, n \\ \\ [s = s \,+ \, a_{kj} \, x_j \\ \\ x_k = (b_k - s) \,/ \, a_{kk} \end{array} \right.$$

4ª Questão: Implemente o método de Gauss- Jacobi a partir do algoritmo (código em Python) sugerido no SIGAA. Verifique os critérios de convergência e se a solução é apropriada para o sistema.

5ª Questão: Implemente o método de Gauss- Seidel a partir do algoritmo (código em Python) sugerido no SIGAA. Verifique os critérios de convergência e se a solução é apropriada para o sistema.

6ª Questão: Resolva o projeto proposto a seguir.

PROJETO

a) Compare as soluções dos sistemas lineares

$$\begin{cases} x - & y = 1 \\ x - 1.00001 \ y = 0 \end{cases} e \qquad \begin{cases} x - & y = 1 \\ x - 0.99999 \ y = 0 \end{cases}$$

Fatos como este ocorrem quando a matriz A do sistema está próxima de uma matriz singular e então o sistema é mal condicionado.

Dizemos que um sistema linear é *bem condicionado* se pequenas mudanças nos coeficientes e/ou nos termos independentes acarretarem pequenas mudanças na solução do sistema. Caso contrário, o sistema é dito mal condicionado.

Embora saibamos que uma matriz A pertence ao conjunto das matrizes não inversíveis se, e somente se, det(A) = 0, o fato de uma matriz A ter $det(A) \approx 0$ não implica necessariamente que o sistema linear que tem A por matriz de coeficientes seja malcondicionado.

O número de condição de A, cond(A) = || A || || A^{-1}||, onde || . || é uma norma de matrizes [14], é uma medida precisa do bom ou mau condicionamento do sistema que tem A por matriz de coeficientes, pois demonstra-se que $\frac{1}{\text{cond}(A)} = \min \left\{ \frac{|| A - B ||}{|| A ||} \text{ tais que B é não inversível} \right\}.$

b) As matrizes de Hilbert, H_n, onde

 $h_{ij}=\frac{1}{i+j-1}$, $1 \le i, \, j \le n$ são exemplos clássicos de matrizes mal condicionadas.

- (b.1) Use pacotes computacionais, que estimam ou calculam cond(A), para verificar que quanto maior for n, mais mal condicionada é H_n.
- (b.2) Resolva os sistemas H_nx = b_n, n = 3, 4, 5, ..., 10, onde b_n é o vetor cuja i-ésima componente é

$$\sum_{j=1}^{n} \frac{1}{i+j-1}$$
 Desta forma a solução exata será: $x^* = (1 \ 1 \dots 1)^T$.

(b.3) - Analise seus resultados.

7ª Questão: Implementar um algoritmo em Python para o polinômio de Lagrange. Este algoritmo deve receber um arquivo e partir deste extrair os valores de x e y para serem utilizados na construção do polinômio de Lagrange.

8ª Questão: Resolva o problema a seguir.

Dada a tabela abaixo,

- a) Calcule e^{3.1} usando um polinômio de interpolação sobre três pontos.
- b) Dê um limitante para o erro cometido.

9ª Questão: Resolva o problema a seguir.

8. A tabela abaixo representa a inflação **bimestral** medida pelo INPC no ano de 2000.

bimestre	janeiro	fevereiro	marco	maio	junho
inflação(%)	0,75	0,64	0,24	2,94	0,37

- (a) Estime qual foi a inflação em abril , utilizando um polinômio interpolador de grau $n \leq 2$.
- (b) Calcule o erro da estimativa anterior.
- (c) Podemos garantir, usando o resultado do item anterior, que a inflação semestral foi menor que 6%?.
- (d) Determine a inflação do mês de julho, usando um polinômio de grau $n \leq 2$.

10^a Questão: Resolva o problema a seguir.

Encontrar uma aproximação para f(0.25) por spline cúbica natural na tabela:

x	0	0.5	1.0	1.5	2.0	
f(x)	3	1.8616	-0.5571	-4.1987	-9.0536	