0.1 像空间和核空间

命题 0.1

设 φ 是向量空间V上的线性变换,则

$$V \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \cdots \supseteq \operatorname{Im} \varphi^n \supseteq \operatorname{Im} \varphi^{n+1} \supseteq \cdots,$$
$$\operatorname{Ker} \varphi \subseteq \operatorname{Ker} \varphi^2 \subseteq \cdots \subseteq \operatorname{Ker} \varphi^n \subseteq \operatorname{Ker} \varphi^{n+1} \subseteq \cdots \subseteq V.$$

证明 由像空间和核空间的定义易证.

例题 0.1 设线性空间 V 上的线性变换 φ 在基 $\{e_1,e_2,e_3,e_4\}$ 下的表示矩阵为

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix},$$

求 φ 的核空间与像空间 (用基的线性组合来表示).

证明 像空间通过坐标向量同构于 A 的列向量生成的子空间,通过计算可得 A 的秩等于 2,且 A 的第一、第二列向量线性无关,于是 $Im\varphi$ 的基的坐标向量为 (1,-1,1,2)', (0,2,2,-2)',从而 $Im\varphi=k_1(e_1-e_2+e_3+2e_4)+k_2(2e_2+2e_3-2e_4)$.核空间通过坐标向量同构于齐次线性方程组 Ax=0 的解空间,通过计算可得该方程组的基础解系为 (-4,-3,2,0)', (-1,-2,0,1)',此即 $Im Xer \varphi$ 的基的坐标向量,于是 $Im Xer \varphi=k_1(-4e_1-3e_2+2e_3)+k_2(-e_1-2e_2+e_4)$.

命题 0.2

设 V 是数域 \mathbb{F} 上的线性空间, $\varphi_1, \varphi_2, \cdots, \varphi_k$ 是 V 上的非零线性变换. 求证: 存在 $\alpha \in V$, 使得 $\varphi_i(\alpha) \neq 0 (1 \leq i \leq k)$.

证明 因为 $\varphi_i \neq 0$, 所以 $\operatorname{Ker} \varphi_i \neq V$ 的真子空间. 由命题??可知, 有限个真子空间 $\operatorname{Ker} \varphi_i$ 不能覆盖全空间 V, 故必存在 $\alpha \in V$, 使得 α 不属于任意一个 $\operatorname{Ker} \varphi_i$, 从而结论得证.

命题 0.3

设 V 是数域 \mathbb{F} 上的线性空间, $\varphi_1,\varphi_2,\cdots,\varphi_k$ 是 V 上互不相同的线性变换. 求证: 存在 $\alpha \in V$, 使得 $\varphi_1(\alpha),\varphi_2(\alpha),\cdots,\varphi_k(\alpha)$ 互不相同.

证明 $\Leftrightarrow \varphi_{ij} = \varphi_i - \varphi_j (1 \leq i < j \leq k)$, 则 $\varphi_{ij} \neq V$ 上的非零线性变换. 由命题??可知, 存在 $\alpha \in V$, 使得 $\varphi_{ij}(\alpha) \neq 0$, 即 $\varphi_i(\alpha) \neq \varphi_j(\alpha) (1 \leq i < j \leq k)$, 从而结论得证.

命题 0.4

设 A 是 n 阶方阵, 求证: $\mathbf{r}(A^n) = \mathbf{r}(A^{n+1}) = \mathbf{r}(A^{n+2}) = \cdots$.

证明 证法一(代数方法): 由秩的不等式可得

$$n = r(I_n) \geqslant r(A) \geqslant r(A^2) \geqslant \cdots \geqslant r(A^n) \geqslant r(A^{n+1}) \geqslant 0.$$

上述 n+2 个整数都在 [0,n] 之间, 故由抽屉原理可知, 存在某个整数 $m \in [0,n]$, 使得 $\mathbf{r}(\mathbf{A}^m) = \mathbf{r}(\mathbf{A}^{m+1})$. 对任意的 $k \ge m$, 由矩阵秩的 Frobenius 不等式可得

$$r(A^{k+1}) = r(A^{k-m}A^mA) \geqslant r(A^{k-m}A^m) + r(A^mA) - r(A^m) = r(A^k),$$

又 $r(A^{k+1}) \leq r(A^k)$, 故 $r(A^{k+1}) = r(A^k)$ 对任意的 $k \geq m$ 成立, 结论得证.

证法二 (几何方法): 令 φ 为在 n 维列向量空间上由矩阵 A 乘法诱导的线性变换,则 φ 在标准基下的表示矩阵就是 A,并且不难发现对 $\forall k \in \mathbb{N}, \varphi^k$ 在标准基下的表示矩阵是 A^k . 因此 $\mathbf{r}(A^k) = \dim \operatorname{Im} \varphi^k$, 故原命题等价于

1

 $\dim \operatorname{Im} \varphi^n = \dim \operatorname{Im} \varphi^{n+1} = \dim \operatorname{Im} \varphi^{n+2} = \cdots$. 注意下列子空间链:

$$V \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \cdots \supseteq \operatorname{Im} \varphi^n \supseteq \operatorname{Im} \varphi^{n+1}.$$

上述 n+2 个子空间的维数都在 [0,n] 之间, 故由抽屉原理可知, 存在某个整数 $m \in [0,n]$, 使得 $\mathrm{Im}\varphi^m = \mathrm{Im}\varphi^{m+1}$. 现要证明对任意的 $k \geq m, \mathrm{Im}\varphi^k = \mathrm{Im}\varphi^{k+1}$. 一方面, $\mathrm{Im}\varphi^{k+1} \subseteq \mathrm{Im}\varphi^k$ 是显然的. 另一方面, 任取 $\alpha \in \mathrm{Im}\varphi^k$, 则存在 $\beta \in V$, 使得 $\alpha = \varphi^k(\beta)$. 由于 $\varphi^m(\beta) \in \mathrm{Im}\varphi^m = \mathrm{Im}\varphi^{m+1}$, 故存在 $\gamma \in V$, 使得 $\varphi^m(\beta) = \varphi^{m+1}(\gamma)$, 从而

$$\alpha = \varphi^k(\beta) = \varphi^{k-m}(\varphi^m(\beta)) = \varphi^{k-m}(\varphi^{m+1}(\gamma)) = \varphi^{k+1}(\gamma) \in \operatorname{Im} \varphi^{k+1},$$

故 $\text{Im}\varphi^k = \text{Im}\varphi^{k+1}$ 对任意的 $k \ge m$ 成立, 取维数后即得结论.

推论 0.1

- (1) 设 A 是 n 阶方阵,则一定存在整数 $m \in [0, n]$,使得 $r(A^m) = r(A^{m+1}) = r(A^{m+2}) = \cdots$.
- (2) 设 φ 是n 维线性空间V上的线性变换,则必存在整数 $m \in [0,n]$,使得

$$\dim \operatorname{Im} \varphi^m = \dim \operatorname{Im} \varphi^{m+1} = \dim \operatorname{Im} \varphi^{m+2} = \cdots$$

证明

(1) 证法一(代数方法): 由秩的不等式可得

$$n = r(\mathbf{I}_n) \geqslant r(\mathbf{A}) \geqslant r(\mathbf{A}^2) \geqslant \cdots \geqslant r(\mathbf{A}^n) \geqslant r(\mathbf{A}^{n+1}) \geqslant 0.$$

上述 n+2 个整数都在 [0,n] 之间, 故由抽屉原理可知, 存在某个整数 $m \in [0,n]$, 使得 $\mathbf{r}(A^m) = \mathbf{r}(A^{m+1})$. 对任意的 $k \ge m$, 由矩阵秩的 Frobenius 不等式可得

$$r(A^{k+1}) = r(A^{k-m}A^mA) \ge r(A^{k-m}A^m) + r(A^mA) - r(A^m) = r(A^k),$$

又 $r(A^{k+1}) \leq r(A^k)$, 故 $r(A^{k+1}) = r(A^k)$ 对任意的 $k \geq m$ 成立, 结论得证.

证法二 (几何方法): 令 φ 为在 n 维列向量空间上由矩阵 A 乘法诱导的线性变换,则 φ 在标准基下的表示矩阵就是 A,并且不难发现对 $\forall k \in \mathbb{N}, \varphi^k$ 在标准基下的表示矩阵是 A^k . 因此 $\mathbf{r}(A^k) = \dim \operatorname{Im} \varphi^k$, 故原命题等价于 $\dim \operatorname{Im} \varphi^n = \dim \operatorname{Im} \varphi^{n+1} = \dim \operatorname{Im} \varphi^{n+2} = \cdots$. 注意下列子空间链:

$$V \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \cdots \supseteq \operatorname{Im} \varphi^n \supseteq \operatorname{Im} \varphi^{n+1}.$$

上述 n+2 个子空间的维数都在 [0,n] 之间, 故由抽屉原理可知, 存在某个整数 $m\in[0,n]$, 使得 $\mathrm{Im}\varphi^m=\mathrm{Im}\varphi^{m+1}$. 现要证明对任意的 $k\geqslant m,\mathrm{Im}\varphi^k=\mathrm{Im}\varphi^{k+1}$. 一方面, $\mathrm{Im}\varphi^{k+1}\subseteq\mathrm{Im}\varphi^k$ 是显然的. 另一方面, 任取 $\alpha\in\mathrm{Im}\varphi^k$, 则存在 $\beta\in V$, 使得 $\alpha=\varphi^k(\beta)$. 由于 $\varphi^m(\beta)\in\mathrm{Im}\varphi^m=\mathrm{Im}\varphi^{m+1}$, 故存在 $\gamma\in V$, 使得 $\varphi^m(\beta)=\varphi^{m+1}(\gamma)$, 从而

$$\alpha = \varphi^k(\beta) = \varphi^{k-m}(\varphi^m(\beta)) = \varphi^{k-m}(\varphi^{m+1}(\gamma)) = \varphi^{k+1}(\gamma) \in \operatorname{Im} \varphi^{k+1},$$

故 $\text{Im}\varphi^k = \text{Im}\varphi^{k+1}$ 对任意的 $k \ge m$ 成立, 取维数后即得结论.

(2) 注意下列子空间链:

$$V \supseteq \operatorname{Im} \varphi \supseteq \operatorname{Im} \varphi^2 \supseteq \cdots \supseteq \operatorname{Im} \varphi^n \supseteq \operatorname{Im} \varphi^{n+1}.$$

上述 n+2 个子空间的维数都在 [0,n] 之间, 故由抽屉原理可知, 存在某个整数 $m\in[0,n]$, 使得 $\mathrm{Im}\varphi^m=\mathrm{Im}\varphi^{m+1}$. 现要证明对任意的 $k\geqslant m,\mathrm{Im}\varphi^k=\mathrm{Im}\varphi^{k+1}$. 一方面, $\mathrm{Im}\varphi^{k+1}\subseteq\mathrm{Im}\varphi^k$ 是显然的. 另一方面, 任取 $\alpha\in\mathrm{Im}\varphi^k$, 则存在 $\beta\in V$, 使得 $\alpha=\varphi^k(\beta)$. 由于 $\varphi^m(\beta)\in\mathrm{Im}\varphi^m=\mathrm{Im}\varphi^{m+1}$, 故存在 $\gamma\in V$, 使得 $\varphi^m(\beta)=\varphi^{m+1}(\gamma)$, 从而

$$\alpha = \varphi^k(\beta) = \varphi^{k-m}(\varphi^m(\beta)) = \varphi^{k-m}(\varphi^{m+1}(\gamma)) = \varphi^{k+1}(\gamma) \in \operatorname{Im} \varphi^{k+1}.$$

故 $\text{Im}\varphi^k = \text{Im}\varphi^{k+1}$ 对任意的 $k \ge m$ 成立, 取维数后即得结论.

命题 0.5

设 φ 是 n 维线性空间 V 上的线性变换, 求证: 必存在整数 $m \in [0, n]$, 使得

$$\operatorname{Im} \varphi^m = \operatorname{Im} \varphi^{m+1} = \operatorname{Im} \varphi^{m+2} = \cdots, \operatorname{Ker} \varphi^m = \operatorname{Ker} \varphi^{m+1} = \operatorname{Ker} \varphi^{m+2} = \cdots, V = \operatorname{Im} \varphi^m \oplus \operatorname{Ker} \varphi^m.$$

证明 根据推论??(2) 可知, 存在整数 $m \in [0,n]$, 使得

$$\operatorname{Im}\varphi^m = \operatorname{Im}\varphi^{m+1} = \operatorname{Im}\varphi^{m+2} = \cdots$$

注意到对任意的正整数 i, $\operatorname{Ker}\varphi^i\subseteq\operatorname{Ker}\varphi^{i+1}$. 再由维数公式可知, 对任意的 $i\geqslant m$, $\dim\operatorname{Ker}\varphi^i=\dim V-\dim\operatorname{Im}\varphi^i=n-\dim\operatorname{Im}\varphi^m$ 是一个不依赖于 i 的常数,因此由命题**??**可得

$$\operatorname{Ker}\varphi^m = \operatorname{Ker}\varphi^{m+1} = \operatorname{Ker}\varphi^{m+2} = \cdots$$
.

若 $\alpha \in \text{Im}\varphi^m \cap \text{Ker}\varphi^m$, 则 $\alpha = \varphi^m(\beta), \varphi^m(\alpha) = 0$. 于是 $0 = \varphi^m(\alpha) = \varphi^{2m}(\beta)$, 即 $\beta \in \text{Ker}\varphi^{2m} = \text{Ker}\varphi^m$, 从 而 $\alpha = \varphi^m(\beta) = 0$, 这证明了 $\text{Im}\varphi^m \cap \text{Ker}\varphi^m = 0$. 又对 V 中任一向量 α , 因为 $\varphi^m(\alpha) \in \text{Im}\varphi^m = \text{Im}\varphi^{2m}$, 所以 $\varphi^m(\alpha) = \varphi^{2m}(\beta)$, 其中 $\beta \in V$. 我们有分解式

$$\alpha = \varphi^m(\beta) + (\alpha - \varphi^m(\beta)).$$

注意到 $\varphi^m(\alpha - \varphi^m(\beta)) = 0$, 即 $\alpha - \varphi^m(\beta) \in \text{Ker}\varphi^m$, 这就证明了 $V = \text{Im}\varphi^m + \text{Ker}\varphi^m$. 因此

$$V = \operatorname{Im} \varphi^m \oplus \operatorname{Ker} \varphi^m.$$

 $\dot{\mathbf{L}}$ 也可不证明 $\mathrm{Im}\varphi^m \cap \mathrm{Ker}\varphi^m = 0$, 改由线性映射维数公式 $\dim \mathrm{Im}\varphi^m + \dim \mathrm{Ker}\varphi^m = n$ 直接得到 $V = \mathrm{Im}\varphi^m \oplus \mathrm{Ker}\varphi^m$.

命题 0.6

设V是数域 \mathbb{K} 上的n维线性空间, φ 是V上的线性变换,证明以下9个结论等价:

- (1) $V = \text{Ker}\varphi \oplus \text{Im}\varphi$;
- (2) $V = \text{Ker}\varphi + \text{Im}\varphi$;
- (3) $\operatorname{Ker}\varphi \cap \operatorname{Im}\varphi = 0$;
- (4) $\text{Ker}\varphi = \text{Ker}\varphi^2$, 或等价地, $\dim \text{Ker}\varphi = \dim \text{Ker}\varphi^2$;
- (5) $\text{Ker}\varphi = \text{Ker}\varphi^2 = \text{Ker}\varphi^3 = \cdots$, 或等价地, $\dim \text{Ker}\varphi = \dim \text{Ker}\varphi^2 = \dim \text{Ker}\varphi^3 = \cdots$;
- (6) $\text{Im}\varphi = \text{Im}\varphi^2$, 或等价地, $\mathbf{r}(\varphi) = \mathbf{r}(\varphi^2)$;
- (7) $\operatorname{Im}\varphi = \operatorname{Im}\varphi^2 = \operatorname{Im}\varphi^3 = \cdots$, 或等价地, $\mathbf{r}(\varphi) = \mathbf{r}(\varphi^2) = \mathbf{r}(\varphi^3) = \cdots$;
- (8) $Ker \varphi$ 存在 φ -不变补空间, 即存在 φ -不变子空间 U, 使得 $V = Ker \varphi \oplus U$ (实际上, $U = Im \varphi$);
- (9) $Im \varphi$ 存在 φ -不变补空间, 即存在 φ -不变子空间 W, 使得 $V = Im \varphi \oplus W$ (实际上, $W = Ker \varphi$).

证明 由直和的定义可知 $(1) \Leftrightarrow (2) + (3)$, 于是 $(1) \Rightarrow (2)$ 和 $(1) \Rightarrow (3)$ 都是显然的. 根据交空间维数公式和线性映射维数公式可知

$$\dim(\operatorname{Ker}\varphi + \operatorname{Im}\varphi) = \dim\operatorname{Ker}\varphi + \dim\operatorname{Im}\varphi - \dim(\operatorname{Ker}\varphi \cap \operatorname{Im}\varphi)$$
$$= \dim V - \dim(\operatorname{Ker}\varphi \cap \operatorname{Im}\varphi),$$

于是(2)⇔(3)成立,从而前3个结论两两等价.

- (3) \Rightarrow (4): 显然 $\operatorname{Ker}\varphi \subseteq \operatorname{Ker}\varphi^2$ 成立. 任取 $\alpha \in \operatorname{Ker}\varphi^2$, 则 $\varphi(\alpha) \in \operatorname{Ker}\varphi \cap \operatorname{Im}\varphi = 0$, 于是 $\varphi(\alpha) = 0$, 即 $\alpha \in \operatorname{Ker}\varphi$, 从而 $\operatorname{Ker}\varphi^2 \subseteq \operatorname{Ker}\varphi$ 也成立, 故 (4) 成立.
- (4) \Rightarrow (3): 任取 $\alpha \in \text{Ker}\varphi \cap \text{Im}\varphi$, 则存在 $\beta \in V$, 使得 $\alpha = \varphi(\beta)$, 于是 $0 = \varphi(\alpha) = \varphi^2(\beta)$, 即 $\beta \in \text{Ker}\varphi^2 = \text{Ker}\varphi$, 从而 $\alpha = \varphi(\beta) = 0$,(3) 成立.
- (5) ⇒ (4) 是显然的, 下证 (4) ⇒ (5): 设 $\operatorname{Ker}\varphi^k = \operatorname{Ker}\varphi^{k+1}$ 已对正整数 k 成立, 先证 $\operatorname{Ker}\varphi^{k+1} = \operatorname{Ker}\varphi^{k+2}$ 也成立, 然后用归纳法即得结论. $\operatorname{Ker}\varphi^{k+1} \subseteq \operatorname{Ker}\varphi^{k+2}$ 是显然的. 任取 $\alpha \in \operatorname{Ker}\varphi^{k+2}$, 即 $0 = \varphi^{k+2}(\alpha) = \varphi^{k+1}(\varphi(\alpha))$, 于是 $\varphi(\alpha) \in \operatorname{Ker}\varphi^{k+1} = \operatorname{Ker}\varphi^k$, 从而 $\varphi^{k+1}(\alpha) = \varphi^k(\varphi(\alpha)) = 0$, 即 $\alpha \in \operatorname{Ker}\varphi^{k+1}$, 于是 $\operatorname{Ker}\varphi^{k+2} \subseteq \operatorname{Ker}\varphi^{k+1}$ 也成立.

- (3) \Leftrightarrow (6): 考虑 φ 在不变子空间 $\operatorname{Im}\varphi$ 上的限制变换 $\varphi|_{\operatorname{Im}\varphi}$: $\operatorname{Im}\varphi$,由限制的定义可知它的核等于 $\operatorname{Ker}\varphi \cap \operatorname{Im}\varphi$,它的像等于 $\operatorname{Im}\varphi^2$. 由于有限维线性空间上的线性变换是单射当且仅当它是满射,当且仅当它是同构,故 (3) \Leftrightarrow (6) 成立.
- (7) ⇒ (6) 是显然的, 下证 (6) ⇒ (7): 设 $\operatorname{Im}\varphi^k = \operatorname{Im}\varphi^{k+1}$ 已对正整数 k 成立, 先证 $\operatorname{Im}\varphi^{k+1} = \operatorname{Im}\varphi^{k+2}$ 也成立, 然后用归纳法即得结论. $\operatorname{Im}\varphi^{k+2} \subseteq \operatorname{Im}\varphi^{k+1}$ 是显然的. 任取 $\alpha \in \operatorname{Im}\varphi^{k+1}$, 即存在 $\beta \in V$, 使得 $\alpha = \varphi^{k+1}(\beta)$. 由于 $\varphi^k(\beta) \in \operatorname{Im}\varphi^k = \operatorname{Im}\varphi^{k+1}$, 故存在 $\gamma \in V$, 使得 $\varphi^k(\beta) = \varphi^{k+1}(\gamma)$, 于是 $\alpha = \varphi^{k+1}(\beta) = \varphi(\varphi^k(\beta)) = \varphi(\varphi^{k+1}(\gamma)) = \varphi^{k+2}(\gamma) \in \operatorname{Im}\varphi^{k+2}$, 从而 $\operatorname{Im}\varphi^{k+2} \subseteq \operatorname{Im}\varphi^{k+2}$ 也成立.
- $(1) \Rightarrow (8)$ 是显然的, 下证 $(8) \Rightarrow (1)$. 我们先证 $\operatorname{Im} \varphi \subseteq U$: 任取 $\varphi(v) \in \operatorname{Im} \varphi$, 由直和分解可设 $v = v_1 + u$, 其中 $v_1 \in \operatorname{Ker} \varphi, u \in U$, 则由 U 的 φ 不变性可得 $\varphi(v) = \varphi(v_1) + \varphi(u) = \varphi(u) \in U$. 考虑不等式

 $\dim V = \dim(\operatorname{Ker}\varphi \oplus U) = \dim \operatorname{Ker}\varphi + \dim U \geqslant \dim \operatorname{Ker}\varphi + \dim \operatorname{Im}\varphi = \dim V$,

从而只能是 $U = \text{Im}\varphi$,于是(1)成立.

 $(1) \Rightarrow (9)$ 是显然的, 下证 $(9) \Rightarrow (1)$. 我们先证 $W \subseteq \text{Ker}\varphi$: 任取 $w \in W$, 则由 W 的 φ - 不变性可得 $\varphi(w) \in \text{Im}\varphi \cap W = 0$, 即有 $w \in \text{Ker}\varphi$. 考虑不等式

 $\dim V = \dim(\operatorname{Im}\varphi \oplus W) = \dim \operatorname{Im}\varphi + \dim W \leq \dim \operatorname{Im}\varphi + \dim \operatorname{Ker}\varphi = \dim V,$

从而只能是 $W = \text{Ker}\varphi$, 于是 (1) 成立.

命题 0.7

设 U,W 是 n 维线性空间 V 的子空间且 $\dim U + \dim W = \dim V$. 求证: 存在 V 上的线性变换 φ , 使得 $\ker \varphi = U, \operatorname{Im} \varphi = W$.

证明 取U的一组基 e_1, \cdots, e_m ,并将其扩张为V的一组基 $e_1, \cdots, e_m, e_{m+1}, \cdots, e_n$,再取W的一组基 f_{m+1}, \cdots, f_n 。 定义 φ 为 V 上的线性变换,它在基上的作用为: $\varphi(e_i) = \mathbf{0} (1 \leqslant i \leqslant m), \varphi(e_j) = f_j(m+1 \leqslant j \leqslant n)$. 注意到 f_{m+1}, \cdots, f_n 是 W 的一组基,故通过简单的验证可得 $\operatorname{Ker} \varphi = U, \operatorname{Im} \varphi = W$.

例题 0.2 设 $V = M_n(\mathbb{F})$ 是 \mathbb{F} 上 n 阶矩阵全体构成的线性空间, $\varphi: V \to \mathbb{F}$ 是迹函数, 即对任意的 $A = (a_{ij}) \in V$,

$$\varphi(A) = a_{11} + a_{22} + \cdots + a_{nn}$$
.

求证: φ 是 V 到一维空间 \mathbb{F} 上的线性映射, 并求 $\operatorname{Ker}\varphi$ 的维数及其一组基.

证明 容易验证 φ 是线性映射且是映上的. 注意到 $V \in n^2$ 维线性空间, 由线性映射的维数公式可知

$$\dim \operatorname{Ker} \varphi = \dim V - \dim \operatorname{Im} \varphi = \dim V - \dim \mathbb{F} = n^2 - 1.$$

记 E_{ij} 为 n 阶基础矩阵, 即第 (i,j) 元素为 1, 其余元素为 0 的矩阵. 容易验证下列 n^2-1 个矩阵迹为零且线性无关, 因此它们组成了 $Ker\varphi$ 的一组基:

$$E_{ij}(i \neq j), E_{11} - E_{22}, E_{22} - E_{33}, \cdots, E_{n-1,n-1} - E_{nn}.$$

例题 0.3 设 φ 是有限维线性空间 V 到 U 的线性映射, 且 V 的维数大于 U 的维数, 求证: $\operatorname{Ker} \varphi \neq 0$.

证明 由线性映射的维数公式

 $\dim V = \dim \operatorname{Im} \varphi + \dim \operatorname{Ker} \varphi,$

以及 $\dim \operatorname{Im} \varphi \leq \dim U < \dim V$ 可得 $\dim \operatorname{Ker} \varphi > 0$, 即 $\operatorname{Ker} \varphi \neq 0$.

例题 0.4 设 φ 是有限维线性空间 V 到 U 的满线性映射, 求证: 必存在 V 的子空间 W, 使得 $V = W \oplus \operatorname{Ker} \varphi$, 且 φ 在 W 上的限制是 W 到 U 上的线性同构.

证明 证法一:取 Ker φ 的一组基 e_1, \dots, e_k ,并将其扩张为 V 的一组基 $e_1, \dots, e_k, e_{k+1}, \dots, e_n$. 令 $W = L(e_{k+1}, \dots, e_n)$,则显然 $V = W \oplus \text{Ker}\varphi$. 由推论??可知, $\varphi(e_{k+1}), \dots, \varphi(e_n)$ 是 $\text{Im}\varphi = U$ 的一组基,故 φ 在 W 上的限制将 W 的一组基 e_{k+1}, \dots, e_n 映射为 U 的一组基 $\varphi(e_{k+1}), \dots, \varphi(e_n)$,从而由命题??可知 $\varphi|_W$ 必为线性同构.

证法二: 取 W 为 $Ker\varphi$ 在 V 中的补空间. 对任意的 $u \in U$, 由于 φ 是映上的, 故存在 $v = w + v_1$, 其中 $w \in V$

 $W,v_1 \in \text{Ker}\varphi$, 使得 $u = \varphi(v) = \varphi(w)$, 于是 φ 在 W 上的限制也是映上的, 故 $\dim U = \dim \text{Im}\varphi|_W$. 另一方面, 由 维数公式可知, $\dim W = \dim V - \dim \text{Ker}\varphi = \dim \text{Im}\varphi = \dim U$. 再对 φ 在 W 上的限制用线性映射维数公式可知, $\dim \text{Ker}\varphi|_W = \dim W - \dim \text{Im}\varphi|_W = \dim U - \dim \text{Im}\varphi|_W = 0$. 从而它必是单映射, 于是 φ 在 W 上的限制是 W 到 U 上的线性同构.

例题 0.5 设 φ 是有限维线性空间 V 到 V' 的线性映射,U 是 V' 的子空间且 $U \subseteq \text{Im}\varphi$, 求证: $\varphi^{-1}(U) = \{v \in V | \varphi(v) \in U\}$ 是 V 的子空间,且

$$\dim U + \dim \operatorname{Ker} \varphi = \dim \varphi^{-1}(U).$$

室记 注意对线性映射做限制这个操作。

证明 容易验证 $\varphi^{-1}(U)$ 是 φ 的不变子空间. 将 φ 限制在 $\varphi^{-1}(U)$ 上, 它是到 U 上的线性映射. 因为 $\mathbf{0} \in U$, 故 $\operatorname{Ker} \varphi \subseteq \varphi^{-1}(U)$. 从而 $\operatorname{Ker} \varphi|_{\varphi^{-1}(U)} = \operatorname{Ker} \varphi \cap \varphi^{-1}(U) = \operatorname{Ker} \varphi$, 又显然 $\operatorname{Im} \varphi|_{\varphi^{-1}(U)} = U$. 再对 φ 在 $\varphi^{-1}(U)$ 上的限制用 线性映射维数公式即得

$$\dim \varphi^{-1}(U) = \dim \operatorname{Im} \varphi|_{\varphi^{-1}(U)} + \dim \operatorname{Ker} \varphi|_{\varphi^{-1}(U)} = \dim U + \dim \operatorname{Ker} \varphi.$$

命题 0.8

设U是有限维线性空间V的子空间, φ 是V上的线性变换, 求证:

- (1) $\dim U \dim \operatorname{Ker} \varphi \leq \dim \varphi(U) \leq \dim U$;
- (2) $\dim \varphi^{-1}(U) \leqslant \dim U + \dim \operatorname{Ker} \varphi$.

笔记 线性变换可以在任意的一个子空间上作限制,但这样得到的只是一个线性映射,不一定是线性变换;如果限制在其不变子空间上,则得到的一定是线性变换。

例如, 给定线性变换 $T: V \to V$ 和子空间 $W \subseteq V$, 可以定义

$$T|_{W}: W \rightarrow V, T|_{W}(w) = T(w).$$

此时 $T|_{W}$ 是一个 W 到 V 的线性映射, 但不一定是 W 到自身的线性变换.

证明

(1) 注意到当 φ 限制在 U 上时, $Ker(\varphi|_U) = U \cap Ker\varphi$, 故由线性映射的维数公式可得

$$\dim U = \dim(U \cap \operatorname{Ker}\varphi) + \dim\varphi(U) \leqslant \dim \operatorname{Ker}\varphi + \dim\varphi(U).$$

于是

$$\dim U - \dim \operatorname{Ker} \varphi \leqslant \dim \varphi(U),$$

而由线性映射维数公式, 可知 $\dim U = \dim \operatorname{Ker} \varphi|_U + \dim \varphi(U)$. 进而 $\dim \varphi(U) \leq \dim U$.

(2) 设 $\overline{\varphi}$ 是线性变换 φ 在子空间 $\varphi^{-1}(U)$ 上的限制, 则 $\operatorname{Im}\overline{\varphi} = U \cap \operatorname{Im}\varphi$. 因为 $\mathbf{0} \in U$, 故 $\operatorname{Ker}\varphi \subseteq \varphi^{-1}(U)$. 从而 $\operatorname{Ker}\overline{\varphi} = \operatorname{Ker}\varphi \cap \varphi^{-1}(U) = \operatorname{Ker}\varphi$. 由线性映射的维数公式可得

$$\dim \varphi^{-1}(U) = \dim(U \cap \operatorname{Im}\varphi) + \dim \operatorname{Ker}\varphi.$$

显然, 由 $\dim(U \cap \operatorname{Im}\varphi) \leq \dim U$ 可推出

$$\dim \varphi^{-1}(U) \leqslant \dim U + \dim \operatorname{Ker} \varphi$$
.

例题 0.6 证明: 若 A, B 是数域 \mathbb{F} 上两个 n 阶方阵, 则

$$r(A) + r(B) - n \le r(AB) \le \min\{r(A), r(B)\}.$$

证明 令 V 是 \mathbb{F} 上 n 维列向量空间,则将 A 和 B 看成是 V 上由矩阵 A 和 B 乘法诱导的线性变换. 又令 U = B(V), 注意到 A(U) = AB(V), 故 $\dim A(U) = \dim AB(V) = \operatorname{r}(AB)$, dim $\operatorname{Ker} A = n - \operatorname{r}(A)$, 即线性方程组 Ax = 0 的解空间维

数. 而 $\dim U = \dim B(V) = r(B)$, 由命题??(1) 的结论, 可得

 $r(\mathbf{A}) + r(\mathbf{B}) - n = \dim U - \dim \operatorname{Ker} \mathbf{A} \leqslant \dim \mathbf{A} (U) = r(\mathbf{A}\mathbf{B}) \leqslant \dim U = r(\mathbf{B}).$

又显然有 $\dim A(U) \leq \dim A(V)$, 故得 $r(AB) \leq r(A)$.