Teorema

Come nel caso della logica proposizionale, anche per la logica del prim'ordine si hanno i seguenti fatti:

- Un enunciato φ è valido se e solo se la sua negazione $\neg \varphi$ è insoddisfacibile
- **9** Un enunciato φ è soddisfacibile se e solo se la sua negazione $\neg \varphi$ non è valida.
- **3** $\Gamma \models \varphi$ se e solo se $\Gamma \cup \{\neg \varphi\}$ è insoddisfacibile.

Dimostrazione

1

2

(3)

$$\begin{array}{lll} \Gamma \models \varphi & \Leftrightarrow & \mathsf{per} \; \mathsf{ogni} \; \mathcal{A}, \; \mathsf{se} \; \mathcal{A} \models \Gamma \; \mathsf{allora} \; \mathcal{A} \models \varphi \Leftrightarrow \\ & \Leftrightarrow & \mathsf{non} \; \mathsf{c'\grave{e}} \; \mathsf{alcun} \; \mathcal{A} \; \mathsf{tale} \; \mathsf{che} \; \mathcal{A} \models \Gamma \; \mathsf{e} \; \mathcal{A} \models \neg \varphi \Leftrightarrow \\ & \Leftrightarrow & \mathsf{non} \; \mathsf{c'\grave{e}} \; \mathsf{alcun} \; \mathcal{A} \; \mathsf{tale} \; \mathsf{che} \; \mathcal{A} \models \Gamma \cup \{\neg \varphi\} \Leftrightarrow \\ & \Leftrightarrow & \Gamma \cup \{\neg \varphi\} \; \grave{\mathsf{e}} \; \mathsf{insoddisfacibile} \end{array}$$

Equivalenza logica

Definizione

Sia L linguaggio del prim'ordine.

Gli L-enunciati φ,ψ sono logicamente equivalenti, denotato $\varphi\equiv\psi$, se per ogni L-struttura $\mathcal A$ si ha che

$$\mathcal{A} \models \varphi$$
 se e solo se $\mathcal{A} \models \psi$

Se φ, ψ non sono logicamente equivalenti, si scrive $\varphi \not\equiv \psi$.

Questo vuol dire che esiste una L-struttura $\mathcal A$ tale che $\mathcal A \models \varphi$ e $\mathcal A \not\models \psi$, oppure esiste una L-struttura $\mathcal A$ tale che $\mathcal A \models \psi$ e $\mathcal A \not\models \varphi$.

In altre parole, esiste una L-struttura \mathcal{A} tale che $\mathcal{A} \models \varphi \land \neg \psi$, oppure esiste una L-struttura \mathcal{A} tale che $\mathcal{A} \models \neg \varphi \land \psi$.

Proprietà

Come per la logica proposizionale, le tre seguenti affermazioni sono equivalenti:

Dimostrazione

- (1) \Rightarrow (2) La condizione $\varphi \equiv \psi$ significa che per ogni \mathcal{A} si ha che $\mathcal{A} \models \varphi$ se e solo se $\mathcal{A} \models \psi$, cioè:
 - se $\mathcal{A} \models \varphi$, allora $\mathcal{A} \models \psi$; e
 - se $\mathcal{A} \models \psi$, allora $\mathcal{A} \models \varphi$

Quindi $\varphi \models \psi$ e $\psi \models \varphi$.

- (2) \Rightarrow (3) La condizione $\varphi \models \psi$ e $\psi \models \varphi$ significa che:
 - per ogni \mathcal{A} , se $\mathcal{A} \models \varphi$ allora $\mathcal{A} \models \psi$
 - per ogni \mathcal{A} , se $\mathcal{A} \models \psi$ allora $\mathcal{A} \models \varphi$

Proprietà

Dimostrazione (cont.)

Quindi, data una qualunque struttura \mathcal{A} , si ha che

o
$$\mathcal{A} \models \varphi$$
 e $\mathcal{A} \models \psi$; oppure $\mathcal{A} \not\models \varphi$ e $\mathcal{A} \not\models \psi$

Questo significa $\mathcal{A} \models \varphi \leftrightarrow \psi$.

Pertanto $\models \varphi \leftrightarrow \psi$.

• (3) \Rightarrow (1) La condizione $\models \varphi \leftrightarrow \psi$ significa che, per ogni struttura $\mathcal A$ si ha che $\mathcal A \models \varphi \leftrightarrow \psi$; cioè per ogni struttura $\mathcal A$ si ha che

o
$$\mathcal{A} \models \varphi$$
 e $\mathcal{A} \models \psi$; oppure $\mathcal{A} \not\models \varphi$ e $\mathcal{A} \not\models \psi$

Sia pertanto ${\cal A}$ una struttura:

- se $\mathcal{A} \models \varphi$, allora $\mathcal{A} \models \psi$
- se $\mathcal{A} \models \psi$, allora $\mathcal{A} \models \varphi$

Quindi $\varphi \equiv \psi$.

Esempi: le strutture numeriche

Data la familiarità che si ha (o si dovrebbe avere) con le strutture numeriche (cioè con universo $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ o \mathbb{C}), per verificare se un dato enunciato φ è soddisfacibile può essere spesso utile cercare di soddisfarlo in una di queste strutture.

A tal fine si interpretano i simboli non logici che occorrono in φ con delle relazioni, funzioni, elementi della struttura numerica (che sono ben noti) in modo che φ risulti soddisfatto.

Sia $L = \{f\}$, con f simbolo funzionale unario, e si consideri l'L-enunciato

$$\forall y \exists x (x \neq y \land f(x) = y)$$

Per mostrare che φ è soddisfacibile, si esibisce una L-struttura $\mathcal A$ tale che $\mathcal A\models\varphi.$

Affinché φ sia vero in \mathcal{A} , si deve scegliere una funzione unaria $f^{\mathcal{A}}$ tale che, ogni elemento della struttura sia immagine attraverso $f^{\mathcal{A}}$ di un elemento diverso da lui.

Si può quindi considerare, per esempio, la struttura $\mathcal{A}=(\mathbb{Z},f^{\mathcal{A}})$, dove

$$f^{\mathcal{A}}: \quad \mathbb{Z} \to \mathbb{Z}$$
 $n \mapsto n+1$

Infatti è vero che per ogni intero m esiste un intero n tale che

$$\mathcal{A} \models (x \neq y \land f(x) = y)[y/m, x/n]$$

basta prendere n = m - 1.

Dunque $A \models \varphi$, e quindi φ è soddisfacibile.

Esempio (cont.)

Se si considera la struttura $\mathcal{B} = (\mathbb{N}, f^{\mathcal{B}})$, dove

$$f^{\mathcal{B}}: \mathbb{N} \to \mathbb{N}$$

 $n \mapsto n^3$

si osserva che

$$\mathcal{B}\not\models\varphi$$

Infatti non esiste alcun numero naturale n tale che $n^3=55$, quindi non esiste alcun numero naturale n tale che

$$\mathcal{B} \models (x \neq y \land f(x) = y)[y/55, x/n].$$

Le due strutture \mathcal{A} e \mathcal{B} considerate testimoniano che φ è soddisfacibile (perché vero in \mathcal{A}), ma non valido (perché falso in \mathcal{B}).

Sia $L = \{R\}$, dove R è simbolo relazionale binario, e si consideri l'enunciato

$$\varphi: \forall x \forall y (R(x,y) \to \exists z (z \neq x \land z \neq y \land R(x,z) \land R(z,y)))$$

Interpretato nella struttura $\mathcal{A}=(\mathbb{R},<)$, l'enunciato φ asserisce che per ogni coppia di numeri a,b con a < b esiste un numero c tale che a < c < b (l'enunciato asserisce anche che c deve essere diverso sia da a sia da b, ma questa è una conseguenza automatica di a < c < b). Pertanto $\mathcal{A}\models\varphi$, in quanto basta considerare $c=\frac{a+b}{2}$.

Se $\mathcal{B}=(\mathbb{Z},<)$ si ha invece $\mathcal{B}\not\models\varphi$, perché non c'è alcun numero intero strettamente compreso tra 0 e 1.

L'enunciato φ è pertanto soddisfacibile (perché vero in \mathcal{A}), e non valido (perché falso in \mathcal{B}).

Sia $L = \{+, \cdot, 1\}$, dove:

- +, · sono simboli funzionali binari
- 1 sono simboli di costante

Si considerino gli enunciati:

$$\varphi: \forall x \exists y \ 1 + (x \cdot x) = y$$

 $\psi: \forall y \exists x \ 1 + (x \cdot x) = y$

L'enunciato φ è valido, cioè è vero in ogni L struttura. Infatti, se \mathcal{A} è una L -struttura, qualunque sia l'elemento $a \in |\mathcal{A}|$ esiste un elemento b tale che $1^{\mathcal{A}} + ^{\mathcal{A}} (a \cdot ^{\mathcal{A}} a) = b$: tale b è esattamente l'elemento $1^{\mathcal{A}} + ^{\mathcal{A}} (a \cdot ^{\mathcal{A}} a)$. In altre parole, per ogni $a \in |\mathcal{A}|$,

$$\mathcal{A} \models (1 + (x \cdot x) = y)[x/a, y/1^{\mathcal{A}} +^{\mathcal{A}} (a \cdot^{\mathcal{A}} a)]$$

quindi

$$A \models \forall x \exists y \ 1 + (x \cdot x) = y$$

Esempio (cont.)

Invece l'enunciato ψ è soddisfacibile, ma non valido.

Non è valido perché se $\mathcal{B}=(\mathbb{R},+,\cdot,1)$, in cui i simboli di L sono interpretati nella maniera usuale, allora

$$\mathcal{B} \not\models \psi$$

in quanto l'equazione $1+x^2=0$ non ha soluzione in \mathbb{R} , cioè non esiste alcun $a\in\mathbb{R}$ tale che $\mathcal{B}\models (1+(x\cdot x)=y)[y/0,x/a].$

L'enunciato ψ è soddisfacibile, perché se $\mathcal{C}=(\mathbb{C},+,\cdot,1)$, in cui i simboli di L sono interpretati nella maniera usuale, allora

$$\mathcal{C} \models \psi$$

in quanto per ogni numero complesso b esiste un numero complesso a tale che $1+a^2=b$, cioè l'equazione $1+x^2=b$ ha soluzioni in $\mathbb C$ qualunque sia b.

Osservazione

L'enunciato

$$\varphi: \forall x \exists y \ 1 + (x \cdot x) = y$$

dell'esempio precedente è del tipo

$$\forall x_1 \dots \forall x_n \exists y \ t = y$$

dove t è un termine le cui variabili sono comprese tra x_1, \ldots, x_n . Un tale enunciato è valido.

Infatti, qualunque sia la struttura \mathcal{A} per il linguaggio considerato, e qualunque siano gli elementi $a_1,\ldots,a_n\in |\mathcal{A}|$ esiste sempre un elemento $b\in |\mathcal{A}|$ tale che $b=t^{\mathcal{A}}[x_1/a_1,\ldots,x_n/a_n]$, in quanto l'interpretazione di tale termine mediante l'assegnazione $x_1/a_1,\ldots,x_n/a_n$ è un elemento di $|\mathcal{A}|$.

In altre parole, qualunque siano $a_1,\ldots,a_n\in\mathcal{A}$, si ha

$$\mathcal{A} \models (t = y)[x_1/a_1, \dots, x_n/a_n, y/t^{\mathcal{A}}[x_1/a_1, \dots, x_n/a_n]]$$

pertanto

$$\mathcal{A} \models \forall x_1 \dots \forall x_n \exists y \ t = y$$

Osservazione (cont.)

Invece, l'enunciato

$$\forall y \exists x_1 \dots \exists x_n \ t = y$$

dove t è un termine le cui variabili sono tra x_1, \ldots, x_n , è vero in una struttura \mathcal{A} se e solo se ogni elemento di $|\mathcal{A}|$ è della forma $t^{\mathcal{A}}[x_1/a_1, \ldots, x_n/a_n]$, per qualche $a_1, \ldots, a_n \in |\mathcal{A}|$, cioè se e solo se la mappa

$$\begin{array}{ccc} A^n & \to & A \\ (a_1, \dots, a_n) & \mapsto & t^A[x_1/a_1, \dots, x_n/a_n] \end{array}$$

è suriettiva.

Relazioni binarie

Sia $L = \{R\}$ un linguaggio del prim'ordine, con R simbolo relazionale binario. Allora in ogni L struttura \mathcal{A} , l'interpretazione $R^{\mathcal{A}}$ è una relazione binaria sull'universo $|\mathcal{A}|$, cioè un sottoinsieme di $|\mathcal{A}|^2$.

Si considerino gli enunciati

- φ_1 : $\forall x R(x,x)$
- $\varphi_2: \forall x \forall y (R(x,y) \rightarrow R(y,x))$
- $\varphi_3: \forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))$

Quindi, data una L-struttura A:

- $\mathcal{A} \models \varphi_1$ se e solo se $R^{\mathcal{A}}$ è riflessiva
- $\mathcal{A} \models \varphi_2$ se e solo se $R^{\mathcal{A}}$ è simmetrica
- $\mathcal{A} \models \varphi_3$ se e solo se $R^{\mathcal{A}}$ è transitiva

In particolare, $\mathcal{A}\models\varphi_1\wedge\varphi_2\wedge\varphi_3$ se e solo se $R^{\mathcal{A}}$ è una relazione d'equivalenza.

Siano $L, \varphi_1, \varphi_2, \varphi_3$ come sopra.

Nessuno dei tre enunciati è conseguenza logica degli altri due, cioè

$$\varphi_2, \varphi_3 \not\models \varphi_1, \quad \varphi_1, \varphi_3 \not\models \varphi_2, \quad \varphi_1, \varphi_2 \not\models \varphi_3$$

Per ogni i si trova una L-struttura A_i tale che $A_i \models \varphi_j$ con $j \neq i$, ma $A_i \not\models \varphi_i$.

- $\mathcal{A}_1 = (|\mathcal{A}_1|, \emptyset)$: la relazione \emptyset è simmetrica, transitiva, ma non riflessiva
- $\mathcal{A}_2 = (\mathbb{N}, \leq)$: la relazione \leq è riflessiva, transitiva, ma non simmetrica
- $A_3 = (\{0,1,2\}, R^{A_3})$, dove

$$R^{\mathcal{A}_3} = \{(0,0), (0,1), (1,0), (1,1), (1,2), (2,1), (2,2)\}$$

la relazione $R^{\mathcal{A}_3}$ è riflessiva, simmetrica, ma non transitiva.

Alcuni richiami

- Un enunciato φ è soddisfacibile se e solo se esiste una struttura $\mathcal A$ tale che $\mathcal A \models \varphi$.
- Un enunciato φ non è valido se e solo se esiste una struttura \mathcal{A} tale che $\mathcal{A} \not\models \varphi$ (cioè $\mathcal{A} \models \neg \varphi$).
- Un enunciato φ non è conseguenza logica dell'insieme di enunciati Γ se e solo se esiste una struttura $\mathcal A$ tale che $\mathcal A \models \Gamma$ ma $\mathcal A \not\models \varphi$. In particolare, $\psi_1, \dots, \psi_n \not\models \varphi$ se e solo se esiste una struttura $\mathcal A$ tale che

$$\mathcal{A} \models \psi_1 \wedge \dots \psi_n \wedge \neg \varphi$$

• Gli enunciati φ, ψ non sono logicamente equivalenti, cioè $\varphi \not\equiv \psi$ se e solo se esiste una struttura \mathcal{A} tale $\mathcal{A} \models \varphi \land \neg \psi$ oppure $\mathcal{A} \models \psi \land \neg \varphi$.