Package 'gwasrapidd'

December 15, 2023

```
Type Package
Title 'REST' 'API' Client for the 'NHGRI'-'EBI' 'GWAS' Catalog
Version 0.99.17
Description 'GWAS' R 'API' Data Download.
      This package provides easy access to the 'NHGRI'-'EBI' 'GWAS' Catalog data by
      accessing the 'REST' 'API' <a href="https://www.ebi.ac.uk/gwas/rest/docs/api/">https://www.ebi.ac.uk/gwas/rest/docs/api/>.
Depends R (>= 3.2.3)
License MIT + file LICENSE
URL https://github.com/ramiromagno/gwasrapidd,
      https://rmagno.eu/gwasrapidd/
BugReports https://github.com/ramiromagno/gwasrapidd/issues
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.2.3
Imports magrittr, httr, urltools, pingr, stringr, concatenate, dplyr,
      jsonlite, purrr, tibble, glue, tidyr (> 0.8.99), assertthat,
      rlang, methods, lubridate, plyr, testthat, utils, progress,
      writex1
Suggests httptest, spelling, covr, knitr, rmarkdown, bookdown
Collate 'browser.R' 'class-associations.R' 'class-studies.R'
      'class-traits.R' 'class-variants.R' 'data.R' 'ebi_server.R'
      'generics.R' 'get_associations.R' 'get_metadata.R'
      'get_studies.R' 'get_traits.R' 'get_variants.R'
      'gwasrapidd-package.R' 'id_mapping.R' 'list_joins.R'
      'missing.R' 'parse-associations.R' 'parse-studies.R'
      'parse-traits.R' 'parse-utils.R' 'parse-variants.R'
      'post-studies.R' 'post-traits.R' 'post-variants.R'
      'recursive_apply.R' 'request.R' 's4-utils.R' 'sure.R' 'tests.R'
      'utils-pipe.R' 'utils.R' 'write_xlsx.R'
```

VignetteBuilder knitr

biocViews ThirdPartyClient, BiomedicalInformatics, GenomeWideAssociation, SNP

NeedsCompilation no

Author Ramiro Magno [aut, cre] (https://orcid.org/0000-0001-5226-3441),
Ana-Teresa Maia [aut] (https://orcid.org/0000-0002-0454-9207),
CINTESIS [cph, fnd],
Pattern Institute [cph, fnd]

Maintainer Ramiro Magno <magno@pattern.institute>

Repository CRAN

Date/Publication 2023-12-15 21:50:08 UTC

R topics documented:

associations-class	•	•	•	•	•	•	 	•	•	•	•	•	•	•	 	•	•	•	•		•	•	•	•	•		•	•	•	3
association_to_study							 								 															5
association_to_trait .							 								 															5
association_to_variant							 								 															6
bind																														7
cytogenetic_bands							 								 															7
exists_variant							 								 															8
gc_examples																														9
get_associations							 								 															10
get_child_efo							 								 															12
get_metadata							 								 															13
get_studies																														13
get_traits							 								 															15
get_variants																														17
is_ebi_reachable							 								 															18
n							 								 															19
open_in_dbsnp							 								 															20
open_in_gtex							 								 															21
open_in_gwas_catalog																														21
open_in_pubmed							 								 															22
setop							 								 															23
studies-class							 								 															25
study_to_association							 								 															26
study_to_trait																														
study_to_variant																														28
subset-associations .																														
subset-studies							 								 															29
subset-traits							 								 															30
subset-variants																														
traits-class							 								 															32
trait_to_association .							 								 															32
trait to study							 								 															33

associations-class	2
9660619110116=61966	•
associations class	J

	ations-class An S4 class to represent a set of GWAS Catalog associations	_
Index	4	4(
	%>%	39
	write_xlsx	
	variant_to_trait	37
	variant_to_study	
	variant_to_association	
	variants-class	
	trait_to_variant	

Description

The association object consists of six slots, each a table (tibble), that combined form a relational database of a subset of GWAS Catalog associations. Each association is an observation (row) in the associations table — main table. All tables have the column association_id as primary key.

Slots

associations A tibble listing associations. Columns:

association_id GWAS Catalog association accession identifier, e.g., "20250".

pvalue Reported p-value for strongest variant risk or effect allele.

pvalue_description Information describing context of p-value.

pvalue_mantissa Mantissa of p-value.

pvalue_exponent Exponent of p-value.

multiple_snp_haplotype Whether the association is for a multi-SNP haplotype.

snp_interaction Whether the association is for a SNP-SNP interaction.

snp_type Whether the SNP has previously been reported. Either 'known' or 'novel'.

risk_frequency Reported risk/effect allele frequency associated with strongest SNP in controls.

standard_error Standard error of the effect size.

range Reported 95% confidence interval associated with strongest SNP risk allele, along with unit in the case of beta coefficients. If 95% CIs have not been not reported, these are estimated using the standard error, when available.

or_per_copy_number Reported odds ratio (OR) associated with strongest SNP risk allele. Note that all ORs included in the Catalog are >1.

beta_number Beta coefficient associated with strongest SNP risk allele.

beta_unit Beta coefficient unit.

beta direction Beta coefficient direction, either 'decrease' or 'increase'.

beta_description Additional beta coefficient comment.

last_mapping_date Last time this association was mapped to Ensembl.

last_update_date Last time this association was updated.

loci A tibble listing loci. Columns:

4 associations-class

association_id GWAS Catalog association accession identifier, e.g., "20250".

locus_id A locus identifier referring to a single variant locus or to a multi-loci entity such as a multi-SNP haplotype.

haplotype_snp_count Number of variants per locus. Most loci are single-SNP loci, i.e., there
is a one to one relationship between a variant and a locus_id (haplotype_snp_count
== NA). There are however cases of associations involving multiple loci at once, such
as SNP-SNP interactions and multi-SNP haplotypes. This is signalled in the columns:
multiple_snp_haplotype and snp_interaction with value TRUE.

description Description of the locus identifier, e.g., 'Single variant', SNP x SNP interaction, or 3-SNP Haplotype.

risk_alleles A tibble listing risk alleles. Columns:

association_id GWAS Catalog association accession identifier, e.g., "20250".

locus_id A locus identifier referring to a single variant locus or to a multi-loci entity such as a multi-SNP haplotype.

variant id Variant identifier, e.g., 'rs1333048'.

risk_allele Risk allele or effect allele.

risk_frequency Reported risk/effect allele frequency associated with strongest SNP in controls (if not available among all controls, among the control group with the largest sample size). If the associated locus is a haplotype the haplotype frequency will be extracted.

genome_wide Whether this variant allele has been part of a genome-wide study or not. **limited list** Undocumented.

genes A tibble listing author reported genes. Columns:

association id GWAS Catalog association accession identifier, e.g., "20250".

locus_id A locus identifier referring to a single variant locus or to a multi-loci entity such as a multi-SNP haplotype.

gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC).

ensembl_ids A tibble listing Ensembl gene identifiers. Columns:

association_id GWAS Catalog association accession identifier, e.g., "20250".

locus_id A locus identifier referring to a single variant locus or to a multi-loci entity such as a multi-SNP haplotype.

gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC).

ensembl_id The Ensembl identifier of an Ensembl gene, see Section Gene annotation in Ensembl for more information.

entrez_ids A tibble listing Entrez gene identifiers. Columns:

association_id GWAS Catalog association accession identifier, e.g., "20250".

locus_id A locus identifier referring to a single variant locus or to a multi-loci entity such as a multi-SNP haplotype.

gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC).

entrez_id The Entrez identifier of a gene, see ref. doi:10.1093/nar/gkq1237 for more information.

association_to_study 5

Description

Map an association accession identifier to a study accession identifier.

Usage

```
association_to_study(association_id, verbose = FALSE, warnings = TRUE)
```

Arguments

association_id A character vector of association accession identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the association identifier and the second column is the study identifier.

Examples

```
## Not run:
# Map GWAS association identifiers to study identifiers
association_to_study(c('24300097', '24299759'))
## End(Not run)
```

Description

Map an association accession identifier to an EFO trait id.

Usage

```
association_to_trait(association_id, verbose = FALSE, warnings = TRUE)
```

Arguments

 ${\tt association_id} \ \ A \ character \ vector \ of \ association \ accession \ identifiers.$

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

6 association_to_variant

Value

A dataframe of two identifiers. First column is the association identifier and the second column is the EFO trait identifier.

Examples

```
## Not run:
# Map GWAS association identifiers to EFO trait identifiers
association_to_trait(c('24300097', '24299759'))
## End(Not run)
```

```
association_to_variant
```

Map an association id to a variant id

Description

Map an association accession identifier to a variant identifier.

Usage

```
association_to_variant(association_id, verbose = FALSE, warnings = TRUE)
```

Arguments

association_id A character vector of association accession identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the association identifier and the second column is the variant identifier.

```
## Not run:
# Map GWAS association identifiers to variant identifiers
association_to_variant(c('24300097', '24299759'))
## End(Not run)
```

bind 7

bind

Bind GWAS Catalog objects

Description

Binds together GWAS Catalog objects of the same class. Note that bind() preserves duplicates whereas union does not.

Usage

```
bind(x, ...)
```

Arguments

x An object of class: studies, associations, variants, or traits.

... Objects of the same class as x.

Value

An object of the same class as x.

Examples

```
# Join two studies objects.
bind(studies_ex01, studies_ex02)

# Join two associations objects.
bind(associations_ex01, associations_ex02)

# Join two variants objects.
bind(variants_ex01, variants_ex02)

# Join two traits objects.
bind(traits_ex01, traits_ex02)
```

cytogenetic_bands

GRCh38 human cytogenetic bands.

Description

A dataset containing the GRCh38 human cytogenetic bands and their genomic coordinates.

Usage

```
cytogenetic_bands
```

8 exists_variant

Format

A data frame with 862 rows and 8 variables:

cytogenetic_band Cytogenetic band name. See Cytogenetic Nomenclature below.

chromosome Chromosome name: 1 through 22 (the autosomes), X or Y.

start Genomic start position of the cytogenetic band. Starts at 1.

end Genomic end position of the cytogenetic band. End position is included in the band interval.

length Length of the genomic interval of cytogenetic band.

assembly Assembly version, should be 'GRCh38'.

stain Giemsa stain results: Giemsa negative, 'gneg'; Giemsa positive, of increasing intensities, 'gpos25', 'gpos50', 'gpos75', and 'gpos100'; centromeric region, 'acen'; heterochromatin, either pericentric or telomeric, 'gvar'; and short arm of acrocentric chromosomes 13, 14, 15, 21, and 22 are coded as 'stalk'.

last_download_date Time stamp of last time this dataset was downloaded from Ensembl.

Details

Genomic coordinates are for fully closed intervals.

Cytogenetic Nomenclature

Cytogenetic bands are numbered from the centromere outwards in both directions towards the telomeres on the shorter p arm and the longer q arm.

The first number or letter represents the chromosome. Chromosomes 1 through 22 (the autosomes) are designated by their chromosome number. The sex chromosomes are designated by X or Y. The next letter represents the arm of the chromosome: p or q.

The numbers cannot be read in the normal decimal numeric system e.g. 36, but rather 3-6 (region 3 band 6). Counting starts at the centromere as region 1 (or 1-0), to 11 (1-1) to 21 (2-1) to 22 (2-2) etc. Subbands are added in a similar way, e.g. 21.1 to 21.2, if the bands are small or only appear at a higher resolution.

Source

https://rest.ensembl.org/info/assembly/homo_sapiens?content-type=application/json&bands=1

exists_variant

Check if a variant exists in the Catalog.

Description

This function attempts to get a variant by its variant identifier and checks the response code. If the response code is 200 then the response has been successful, meaning that the variant does exist in the GWAS Catalog. If the response is 404 then the variant is not found in the Catalog database. Other errors are mapped to NA.

gc_examples 9

Usage

```
exists_variant(variant_id = NULL, verbose = FALSE, page_size = 20L)
```

Arguments

variant_id A character vector of GWAS Catalog variant identifiers.

verbose Whether the function should be verbose about the different queries or not.

page_size An integer scalar indicating the page value to be used in the JSON requests, can

be between 1 and 1000.

Value

A named logical vector, TRUE indicates that the variant does exist in the Catalog, FALSE otherwise. NA codes other types of errors. The names of the vector are the variant identifiers passed as variant_id.

Examples

```
exists_variant('rs12345')
exists_variant('rs11235813')
```

gc_examples

gwasrapidd entities' examples

Description

These are examples of GWAS Catalog entities shipped with gwasrapidd:

Usage

```
studies_ex01
studies_ex02
associations_ex01
associations_ex02
variants_ex01
variants_ex02
traits_ex01
traits_ex02
```

10 get_associations

Format

```
studies_ex01 An S4 studies object of 2 studies: 'GCST001585' and 'GCST003985'.
studies_ex02 An S4 studies object of 2 studies: 'GCST001585' and 'GCST006655'.
associations_ex01 An S4 associations object of 4 associations: '22509', '22505', '19537565'
     and '19537593'.
associations_ex02 An S4 associations object of 3 associations: '19537593', '31665940' and
     '34944736'.
variants_ex01 An S4 variants object of 3 variants: 'rs146992477', 'rs56261590' and 'rs4725504'.
variants ex02 An S4 variants object of 4 variants: 'rs56261590', 'rs4725504', 'rs11099757'
    and 'rs16871509'.
traits ex01 An S4 traits object of 3 traits: 'EFO_0004884', 'EFO_0004343' and 'EFO_0005299'.
traits ex02 An S4 traits object of 4 traits: 'EFO_0007845', 'EFO_0004699', 'EFO_0004884' and
     'EFO 0004875'.
An object of class studies of length 1.
An object of class associations of length 1.
An object of class associations of length 1.
An object of class variants of length 1.
An object of class variants of length 1.
An object of class traits of length 1.
An object of class traits of length 1.
```

get_associations

Get GWAS Catalog associations

Description

Retrieves associations via the NHGRI-EBI GWAS Catalog REST API. The REST API is queried multiple times with the criteria passed as arguments (see below). By default all associations that match the criteria supplied in the arguments are retrieved: this corresponds to the default option set_operation set to 'union'. If you rather have only the associations that match simultaneously all criteria provided, then set set_operation to 'intersection'.

Usage

```
get_associations(
  study_id = NULL,
  association_id = NULL,
  variant_id = NULL,
  efo_id = NULL,
  pubmed_id = NULL,
  efo_trait = NULL,
  set_operation = "union",
```

get_associations 11

```
interactive = TRUE,
verbose = FALSE,
warnings = TRUE
)
```

Arguments

study_id A character vector of GWAS Catalog study accession identifiers.

association_id A character vector of GWAS Catalog association identifiers.

variant_id A character vector of GWAS Catalog variant identifiers.

efo_id A character vector of EFO identifiers.

pubmed_id An integer vector of PubMed identifiers.

efo_trait A character vector of EFO trait descriptions, e.g., 'uric acid measurement'.

 ${\tt set_operation} \quad Either \ {\tt 'union'} \ or \ {\tt 'intersection'}. \ This \ tells \ how \ associations \ retrieved \ by$

different criteria should be combined: 'union' binds together all results removing duplicates and 'intersection' only keeps same associations found with

different criteria.

interactive A logical. If all associations are requested, whether to ask interactively if we

really want to proceed.

verbose A logical indicating whether the function should be verbose about the different

queries or not.

warnings A logical indicating whether to print warnings, if any.

Details

Please note that all search criteria are vectorised, thus allowing for batch mode search, e.g., one can search by multiple variant identifiers at once by passing a vector of identifiers to variant_id.

Value

An associations object.

```
## Not run:
# Get an association by study identifier
get_associations(study_id = 'GCST001085', warnings = FALSE)

# Get an association by association identifier
get_associations(association_id = '25389945', warnings = FALSE)

# Get associations by variant identifier
get_associations(variant_id = 'rs3798440', warnings = FALSE)

# Get associations by EFO trait identifier
get_associations(efo_id = 'EFO_0005537', warnings = FALSE)

## End(Not run)
```

12 get_child_efo

σΔt	child	ΔfΛ
get_	CHILLO	_ero

Get all child terms of this trait in the EFO hierarchy

Description

Get all child terms of this trait in the EFO hierarchy

Usage

```
get_child_efo(
  efo_id,
  verbose = FALSE,
  warnings = TRUE,
  page_size = 20L,
  progress_bar = TRUE
)
```

Arguments

efo_id	A character vector of EFO identifiers.
verbose	A logical indicating whether the function should be verbose about the different queries or not.
warnings	A logical indicating whether to print warnings, if any.
page_size	An integer scalar indicating the page value to be used in the JSON requests, can be between 1 and 1000.
progress_bar	Whether to show a progress bar as the paginated resources are retrieved.

Value

A named list whose values are character vectors of EFO identifiers.

```
## Not run:
get_child_efo(c('EFO_0004884', 'EFO_0004343', 'EFO_0005299'))
## End(Not run)
```

get_metadata 13

get_metadata

Get GWAS Catalog metadata

Description

Provides a list of the resources the GWAS Catalog data is currently mapped against: Ensembl release number, Genome build version and dbSNP version. In addition, the date since this combination of resource versions has been in use is also returned.

Usage

```
get_metadata(verbose = FALSE, warnings = TRUE)
```

Arguments

verbose Whether to be chatty.

warnings Whether to trigger a warning if the request is not successful.

Value

A named list whose names are:

- ensembl_release_number: Ensembl release number;
- genome_build_version: Genome build version;
- dbsnp_version: dbSNP version.
- usage_start_date: Date since this combination of resource versions has been in use.

Examples

```
## Not run:
get_metadata(warnings = FALSE)
## End(Not run)
```

get_studies

Get GWAS Catalog studies

Description

Retrieves studies via the NHGRI-EBI GWAS Catalog REST API. The REST API is queried multiple times with the criteria passed as arguments (see below). By default all studies that match the criteria supplied in the arguments are retrieved: this corresponds to the default option set_operation set to 'union'. If you rather have only the studies that match simultaneously all criteria provided, then set set_operation to 'intersection'.

14 get_studies

Usage

```
get_studies(
  study_id = NULL,
  association_id = NULL,
  variant_id = NULL,
  efo_id = NULL,
  pubmed_id = NULL,
  user_requested = NULL,
  full_pvalue_set = NULL,
  efo_uri = NULL,
  efo_trait = NULL,
  reported_trait = NULL,
  set_operation = "union",
  interactive = TRUE,
  verbose = FALSE,
 warnings = TRUE
)
```

Arguments

study_id A character vector of GWAS Catalog study accession identifiers.

association_id A character vector of GWAS Catalog association identifiers.

variant_id A character vector of GWAS Catalog variant identifiers.

efo_id A character vector of EFO identifiers.

pubmed_id An integer vector of PubMed identifiers.

user_requested A logical (scalar!) indicating to retrieve either studies requested by users of

the Catalog (TRUE) or otherwise (FALSE).

full_pvalue_set

A logical (scalar!) indicating to retrieve studies with full summary statistics

(TRUE) or studies without it (FALSE).

efo_uri A character vector of EFO URIs.

efo_trait A character vector of EFO trait descriptions, e.g., 'uric acid measurement'.

reported_trait A character vector of phenotypic traits as reported by the original authors of the

study

set_operation Either 'union' or 'intersection'. This tells how studies retrieved by differ-

ent criteria should be combined: 'union' binds together all results removing duplicates and 'intersection' only keeps same studies found with different

criteria.

interactive A logical. If all studies are requested, whether to ask interactively if we really

want to proceed.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

get_traits 15

Details

Please note that all search criteria are vectorised, thus allowing for batch mode search, e.g., one can search by multiple variant identifiers at once by passing a vector of identifiers to variant_id.

Value

A studies object.

Examples

```
## Not run:
# Get a study by its accession identifier
get_studies(study_id = 'GCST001085', warnings = FALSE)

# Get a study by association identifier
get_studies(association_id = '25389945', warnings = FALSE)

# Get studies by variant identifier
get_studies(variant_id = 'rs3798440', warnings = FALSE)

# Get studies by EFO trait identifier
get_studies(efo_id = 'EFO_0005537', warnings = FALSE)

## End(Not run)
```

get_traits

Get GWAS Catalog EFO traits

Description

Retrieves traits via the NHGRI-EBI GWAS Catalog REST API. The REST API is queried multiple times with the criteria passed as arguments (see below). By default all traits that match the criteria supplied in the arguments are retrieved: this corresponds to the default option set_operation set to 'union'. If you rather have only the traits that match simultaneously all criteria provided, then set set_operation to 'intersection'.

Usage

```
get_traits(
   study_id = NULL,
   association_id = NULL,
   efo_id = NULL,
   pubmed_id = NULL,
   efo_uri = NULL,
   efo_trait = NULL,
   set_operation = "union",
   verbose = FALSE,
```

get_traits

```
warnings = TRUE
)
```

Arguments

study_id A character vector of GWAS Catalog study accession identifiers.

association_id A character vector of GWAS Catalog association identifiers.

efo_id A character vector of EFO identifiers.

pubmed_id An integer vector of PubMed identifiers.

efo_uri A character vector of EFO URIs.

efo_trait A character vector of EFO trait descriptions, e.g., 'uric acid measurement'.

set_operation Either 'union' or 'intersection'. This tells how traits retrieved by different

criteria should be combined: 'union' binds together all results removing duplicates and 'intersection' only keeps same traits found with different criteria.

verbose A logical indicating whether the function should be verbose about the different

queries or not.

warnings A logical indicating whether to print warnings, if any.

Details

Please note that all search criteria are vectorised, thus allowing for batch mode search, e.g., one can search by multiple trait identifiers at once by passing a vector of identifiers to efo_id.

Value

A traits object.

```
## Not run:
# Get traits by study identifier
get_traits(study_id = 'GCST001085', warnings = FALSE)

# Get traits by association identifier
get_traits(association_id = '25389945', warnings = FALSE)

# Get a trait by its EFO identifier
get_traits(efo_id = 'EFO_0005537', warnings = FALSE)

## End(Not run)
```

get_variants 17

get_variants

Get GWAS Catalog variants

Description

Retrieves variants via the NHGRI-EBI GWAS Catalog REST API. The REST API is queried multiple times with the criteria passed as arguments (see below). By default all variants that match the criteria supplied in the arguments are retrieved: this corresponds to the default option set_operation set to 'union'. If you rather have only the variants that match simultaneously all criteria provided, then set set_operation to 'intersection'.

Usage

```
get_variants(
  study_id = NULL,
  association_id = NULL,
  variant_id = NULL,
  efo_id = NULL,
  pubmed_id = NULL,
  genomic_range = NULL,
  cytogenetic_band = NULL,
  gene_name = NULL,
  efo_trait = NULL,
  reported_trait = NULL,
  set_operation = "union",
  interactive = TRUE,
  std_chromosomes_only = TRUE,
  verbose = FALSE,
  warnings = TRUE
)
```

Arguments

study_id A character vector of GWAS Catalog study accession identifiers. association_id A character vector of GWAS Catalog association identifiers.

variant_id A character vector of GWAS Catalog variant identifiers.

efo_id A character vector of EFO identifiers.

pubmed_id An integer vector of PubMed identifiers.

genomic_range A named list of three vectors:

chromosome A character vector of chromosome names of the form 1–22, X or Y.

start A numeric vector of start positions, starting at 1.

end A numeric vector of end positions.

The three vectors need to be of the same length so that chromosome names, start and end positions can be matched by position.

18 is_ebi_reachable

cytogenetic_band

A character vector of cytogenetic bands of the form '1p36.11'.

gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC).

efo_trait A character vector of EFO trait descriptions, e.g., 'uric acid measurement'. reported_trait A character vector of phenotypic traits as reported by the original authors of the

study.

set_operation Either 'union' or 'intersection'. This tells how variants retrieved by dif-

ferent criteria should be combined: 'union' binds together all results removing duplicates and 'intersection' only keeps same variants found with different

criteria.

interactive A logical. If all variants are requested, whether to ask interactively if we really

want to proceed.

std_chromosomes_only

Whether to return only variants mapped to standard chromosomes: 1 thru 22, X,

Y, and MT.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Details

Please note that all search criteria are vectorised, thus allowing for batch mode search, e.g., one can search by multiple variant identifiers at once by passing a vector of identifiers to variant_id.

Value

A variants object.

Examples

```
# Get variants by study identifier
get_variants(study_id = 'GCST001085', warnings = FALSE)
# Get a variant by its identifier
## Not run:
get_variants(variant_id = 'rs3798440', warnings = FALSE)
## End(Not run)
```

is_ebi_reachable

Is the GWAS Catalog REST API server reachable?

Description

Check if the EBI server where the GWAS Catalog REST API server is running is reachable. This function attempts to connect to https://www.ebi.ac.uk, returning TRUE on success, and FALSE otherwise. Set chatty = TRUE for a step by step description of the connection attempt.

n 19

Usage

```
is_ebi_reachable(url = "https://www.ebi.ac.uk", port = 443L, chatty = FALSE)
```

Arguments

url NHGRI-EBI GWAS Catalog server URL. Default is https://www.ebi.ac.uk.

You should not need to change this parameter.

port Network port on which to ping the server. You should not need to change this

parameter.

chatty Whether to be verbose (TRUE) or not (FALSE).

Value

A logical value: TRUE if EBI server is reachable, FALSE otherwise.

Examples

```
# Check if the GWAS Catalog Server is reachable
is_ebi_reachable() # Returns TRUE or FALSE.

# Check if the GWAS Catalog Server is reachable
# and show exactly at what step is it failing (if that is the case)
is_ebi_reachable(chatty = TRUE)
```

Number of GWAS Catalog entities

Description

This function returns the number of unique entities in a GWAS Catalog object.

Usage

n

```
n(x, unique = FALSE)
## S4 method for signature 'studies'
n(x, unique = FALSE)
## S4 method for signature 'associations'
n(x, unique = FALSE)
## S4 method for signature 'variants'
n(x, unique = FALSE)
## S4 method for signature 'traits'
n(x, unique = FALSE)
```

open_in_dbsnp

Arguments

x A studies, an associations, a variants, or a traits object.

unique Whether to count only unique entries (TRUE) or not (FALSE).

Value

An integer scalar.

Examples

```
# Determine number of studies
n(studies_ex01)

# Determine number of associations
n(associations_ex01)

# Determine number of variants
n(variants_ex01)

# Determine number of traits
n(traits_ex01)
```

open_in_dbsnp

Browse dbSNP from SNP identifiers.

Description

This function launches the web browser at dbSNP and opens a tab for each SNP identifier.

Usage

```
open_in_dbsnp(variant_id)
```

Arguments

variant_id A variant identifier, a character vector.

Value

Returns TRUE if successful. Note however that this function is run for its side effect.

```
open_in_dbsnp('rs56261590')
```

open_in_gtex 21

open_in_gtex

Browse GTEx from SNP identifiers.

Description

This function launches the web browser at the GTEx Portal and opens a tab for each SNP identifier.

Usage

```
open_in_gtex(variant_id)
```

Arguments

variant_id

A variant identifier, a character vector.

Value

Returns TRUE if successful. Note however that this function is run for its side effect.

Examples

```
open_in_gtex('rs56261590')
```

open_in_gwas_catalog

Browse GWAS Catalog entities from the GWAS Web Graphical User Interface

Description

This function launches the web browser and opens a tab for each identifier on the GWAS web graphical user interface: https://www.ebi.ac.uk/gwas.

Usage

```
open_in_gwas_catalog(
  identifier,
  gwas_catalog_entity = c("study", "variant", "trait", "gene", "region", "publication")
)
```

Arguments

identifier

A vector of identifiers. The identifiers can be: study accession identifiers, variant identifiers, EFO trait identifiers, gene symbol names, cytogenetic regions, or PubMed identifiers.

```
gwas_catalog_entity
```

Either 'study' (default), 'variant', 'trait', 'gene', 'region' or 'publication', a scalar character. This argument indicates the type of the identifiers passed in identifier.

22 open_in_pubmed

Value

Returns TRUE if successful, or FALSE otherwise. But note that this function is run for its side effect.

Examples

```
# Open studies in GWAS Web Graphical User Interface
open_in_gwas_catalog(c('GCST000016', 'GCST001115'))
# Open variants
open_in_gwas_catalog(c('rs146992477', 'rs56261590'),
 gwas_catalog_entity = 'variant')
# Open EFO traits
open_in_gwas_catalog(c('EFO_0004884', 'EFO_0004343'),
 gwas_catalog_entity = 'trait')
# Open genes
open_in_gwas_catalog(c('DPP6', 'MCCC2'),
 gwas_catalog_entity = 'gene')
# Open cytogenetic regions
open_in_gwas_catalog(c('2q37.1', '1p36.11'),
 gwas_catalog_entity = 'region')
# Open publications
open_in_gwas_catalog(c('25533513', '24376627'),
 gwas_catalog_entity = 'publication')
```

open_in_pubmed

Browse PubMed from PubMed identifiers.

Description

This function launches the web browser and opens a tab for each PubMed citation.

Usage

```
open_in_pubmed(pubmed_id)
```

Arguments

pubmed_id

A PubMed identifier, either a character or an integer vector.

Value

Returns TRUE if successful. Note however that this function is run for its side effect.

setop 23

Examples

```
open_in_pubmed(c('26301688', '30595370'))
```

setop

Set operations on GWAS Catalog objects.

Description

Performs set union, intersection, and (asymmetric!) difference on two objects of either class studies, associations, variants, or traits. Note that union() removes duplicated entities, whereas bind() does not.

Usage

```
union(x, y, ...)
intersect(x, y, ...)
setdiff(x, y, ...)
setequal(x, y, ...)
```

Arguments

x, yObjects of either class studies, associations, variants, or traits.... other arguments passed on to methods.

Value

An object of the same class as x and y, i.e., studies, associations, variants, or traits.

```
#
# union()
#
# Combine studies and remove duplicates
union(studies_ex01, studies_ex02)
# Combine associations and remove duplicates
union(associations_ex01, associations_ex02)
# Combine variants and remove duplicates
union(variants_ex01, variants_ex02)
# Combine traits and remove duplicates
union(traits_ex01, traits_ex02)
```

24 setop

```
# intersect()
# Intersect common studies
intersect(studies_ex01, studies_ex02)
# Intersect common associations
intersect(associations_ex01, associations_ex02)
# Intersect common variants
intersect(variants_ex01, variants_ex02)
# Intersect common traits
intersect(traits_ex01, traits_ex02)
#
# setdiff()
#
# Remove studies from ex01 that are also present in ex02
setdiff(studies_ex01, studies_ex02)
# Remove associations from ex01 that are also present in ex02
setdiff(associations_ex01, associations_ex02)
# Remove variants from ex01 that are also present in ex02
setdiff(variants_ex01, variants_ex02)
# Remove traits from ex01 that are also present in ex02
setdiff(traits_ex01, traits_ex02)
# setequal()
# Compare two studies objects
setequal(studies_ex01, studies_ex01)
setequal(studies_ex01, studies_ex02)
# Compare two associations objects
setequal(associations_ex01, associations_ex01)
setequal(associations_ex01, associations_ex02)
# Compare two variants objects
setequal(variants_ex01, variants_ex01)
setequal(variants_ex01, variants_ex02)
# Compare two traits objects
setequal(traits_ex01, traits_ex01)
setequal(traits_ex01, traits_ex02)
```

studies-class 25

studies-class

An S4 class to represent a set of GWAS Catalog studies

Description

The studies object consists of eight slots, each a table (tibble), that combined form a relational database of a subset of GWAS Catalog studies. Each study is an observation (row) in the studies table — main table. All tables have the column study_id as primary key.

Slots

```
studies study id GWAS Catalog study accession identifier, e.g., "GCST002735".
     reported_trait Phenotypic trait as reported by the authors of the study, e.g. "Breast cancer".
    initial_sample_size Free text description of the initial cohort sample size.
     replication_sample_size Free text description of the replication cohort sample size.
    gxe Whether the study investigates a gene-environment interaction.
    gxg Whether the study investigates a gene-gene interaction.
    snp_count Number of variants passing quality control.
    qualifier Qualifier of number of variants passing quality control.
    imputed Whether variants were imputed.
    pooled Whether samples were pooled.
    study_design_comment Any other relevant study design information.
    full_pvalue_set Whether full summary statistics are available for this study.
     user_requested Whether the addition of this study to the GWAS Catalog was requested by a
         user.
genotyping_techs A tibble listing genotyping technologies employed in each study. Columns:
    study_id GWAS Catalog study accession identifier.
     genotyping_technology Genotyping technology employed, e.g. "Exome genotyping array",
         "Exome-wide sequencing", "Genome-wide genotyping array", "Genome-wide sequencing",
         or "Targeted genotyping array".
platforms A tibble listing platforms used per study.
    study id GWAS Catalog study accession identifier.
    manufacturer Platform manufacturer, e.g., "Affymetrix", "Illumina", or "Perlegen".
ancestries A tibble listing ancestry of samples used in each study.
    study_id GWAS Catalog study accession identifier.
     ancestry_id Ancestry identifier.
     type Stage of the ancestry sample: either 'initial' or 'replication'.
     number_of_individuals Number of individuals comprising this ancestry sample.
ancestral_groups A tibble listing ancestral groups used in each ancestry.
    study_id GWAS Catalog study accession identifier.
    ancestry_id Ancestry identifier.
```

26 study_to_association

```
ancestral_group Genetic ancestry groups present in the sample.
```

countries_of_origin A tibble listing countries of origin of samples.

study_id GWAS Catalog study accession identifier.

ancestry_id Ancestry identifier.

country_name Country name, according to The United Nations M49 Standard of Geographic Regions.

major_area Region name, according to The United Nations M49 Standard of Geographic Regions.

region Sub-region name, according to The United Nations M49 Standard of Geographic Regions.

countries_of_recruitment A tibble listing countries of recruitment of samples.

study_id GWAS Catalog study accession identifier.

ancestry_id Ancestry identifier.

country_name Country name, according to The United Nations M49 Standard of Geographic Regions.

major_area Region name, according to The United Nations M49 Standard of Geographic Regions.

region Sub-region name, according to The United Nations M49 Standard of Geographic Regions.

publications A tibble listing publications associated with each study.

study_id GWAS Catalog study accession identifier.

pubmed_id PubMed identifier.

publication_date Publication date (online date if available) formatted as ymd.

publication Abbreviated journal name.

title Publication title.

author fullname Last name and initials of first author.

author_orcid Author's ORCID iD (Open Researcher and Contributor ID).

Description

Map a study accession identifier to an association accession identifier.

Usage

```
study_to_association(study_id, verbose = FALSE, warnings = TRUE)
```

Arguments

study_id A character vector of study accession identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

study_to_trait 27

Value

A dataframe of two identifiers. First column is the study identifier and the second column is the association identifier.

Examples

```
## Not run:
# Map GWAS study identifiers to association identifiers
study_to_association(c('GCST001084', 'GCST001085'))
## End(Not run)
```

study_to_trait

Map a study id to a EFO trait id

Description

Map a study accession identifier to a EFO trait identifier.

Usage

```
study_to_trait(study_id, verbose = FALSE, warnings = TRUE)
```

Arguments

study_id A character vector of study accession identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the study identifier and the second column is the EFO identifier.

```
## Not run:
# Map GWAS study identifiers to EFO trait identifiers
study_to_trait(c('GCST001084', 'GCST001085'))
## End(Not run)
```

28 subset-associations

study_to_variant

Map a study id to a variant id

Description

Map a study accession identifier to a variant accession identifier.

Usage

```
study_to_variant(study_id, verbose = FALSE, warnings = TRUE)
```

Arguments

study_id A character vector of study accession identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the study identifier and the second column is the variant identifier.

Examples

```
## Not run:
# Map GWAS study identifiers to variant identifiers
study_to_variant(c('GCST001084', 'GCST001085'))
## End(Not run)
```

subset-associations

Subset an associations object

Description

You can subset associations by identifier or by position using the `[` operator.

Usage

```
## S4 method for signature 'associations,missing,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'associations,numeric,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'associations,character,missing,missing'
x[i, j, ..., drop = FALSE]
```

subset-studies 29

Arguments

X	A associations object.
i	Position of the identifier or the name of the identifier itself.
j	Not used.
	Additional arguments not used here.
drop	Not used.

Value

A associations object.

Examples

```
# Subset an associations object by identifier
associations_ex01['22505']

# Or by its position in table associations
associations_ex01[2]

# Keep all associations except the second
associations_ex01[-2]
```

subset-studies

Subset a studies object

Description

You can subset studies by identifier or by position using the `[` operator.

Usage

```
## S4 method for signature 'studies,missing,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'studies,numeric,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'studies,character,missing,missing'
x[i, j, ..., drop = FALSE]
```

Arguments

X	A studies object.
i	Position of the identifier or the name of the identifier itself.
j	Not used.
	Additional arguments not used here.
drop	Not used.

30 subset-traits

Value

A studies object.

Examples

```
# Subset a studies object by identifier
studies_ex01['GCST001585']

# Or by its position in table studies
studies_ex01[1]

# Keep all studies except the first
studies_ex01[-1]
```

subset-traits

Subset a traits object

Description

You can subset traits by identifier or by position using the `[` operator.

Usage

```
## S4 method for signature 'traits,missing,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'traits,numeric,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'traits,character,missing,missing'
x[i, j, ..., drop = FALSE]
```

Arguments

x A traits object.

i Position of the identifier or the name of the identifier itself.

j Not used.

. . . Additional arguments not used here.

drop Not used.

Value

A traits object.

subset-variants 31

Examples

```
# Subset a traits object by identifier
traits_ex01['EFO_0004884']

# Or by its position in table traits
traits_ex01[1]

# Keep all traits except the second
traits_ex01[-2]
```

subset-variants

Subset a variants object

Description

You can subset variants by identifier or by position using the `[` operator.

Usage

```
## S4 method for signature 'variants,missing,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'variants,numeric,missing,missing'
x[i, j, ..., drop = FALSE]

## S4 method for signature 'variants,character,missing,missing'
x[i, j, ..., drop = FALSE]
```

Arguments

x A variants object.

i Position of the identifier or the name of the identifier itself.

j Not used.

... Additional arguments not used here.

drop Not used.

Value

A variants object.

32 trait_to_association

Examples

```
# Subset a variants object by identifier
variants_ex01['rs4725504']

# Or by its position in table variants
variants_ex01[3]

# Keep all variants except the third
variants_ex01[-3]
```

traits-class

An S4 class to represent a set of GWAS Catalog EFO traits.

Description

The traits object consists of one slot only, a table (tibble) of GWAS Catalog EFO traits. Each EFO trait is an observation (row) in the traits table — main table.

Slots

```
traits A tibble listing EFO traits. Columns:

efo_id EFO identifier.

trait EFO trait description.

uri The full URI of the EFO term.
```

Description

Map an EFO trait id to an association identifier.

Usage

```
trait_to_association(efo_id, verbose = FALSE, warnings = TRUE)
```

Arguments

efo_id A character vector of EFO trait identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

trait_to_study 33

Value

A dataframe of two identifiers. First column is the EFO trait identifier and the second column is the association identifier.

Examples

```
## Not run:
# Map EFO trait identifiers to association identifiers
trait_to_association(c('EFO_0005108', 'EFO_0005109'))
## End(Not run)
```

trait_to_study

Map an EFO trait id to a study id

Description

Map an EFO trait id to a study accession identifier.

Usage

```
trait_to_study(efo_id, verbose = FALSE, warnings = TRUE)
```

Arguments

efo_id A character vector of EFO trait identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the EFO trait identifier and the second column is the study identifier.

```
## Not run:
# Map EFO trait identifiers to study identifiers
trait_to_study(c('EFO_0005108', 'EFO_0005109'))
## End(Not run)
```

34 variants-class

trait_to_variant

Map an EFO trait id to a variant id

Description

Map an EFO trait id to a variant identifier.

Usage

```
trait_to_variant(efo_id, verbose = FALSE, warnings = TRUE)
```

Arguments

efo_id A character vector of EFO trait identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the EFO trait identifier and the second column is the variant identifier.

Examples

```
## Not run:
# Map EFO trait identifiers to variant identifiers
trait_to_variant('EFO_0005229')
## End(Not run)
```

variants-class

An S4 class to represent a set of GWAS Catalog variants

Description

The variants object consists of four slots, each a table (tibble), that combined form a relational database of a subset of GWAS Catalog variants. Each variant is an observation (row) in the variants table — main table. All tables have the column variant_id as primary key.

variants-class 35

Slots

variants A tibble listing variants. Columns: variant_id Variant identifier, e.g., 'rs1333048'. merged Whether this SNP has been merged with another SNP in a newer genome build. functional class Class according to Ensembl's predicted consequences that each variant allele may have on transcripts. See Ensembl Variation - Calculated variant consequences. chromosome name Chromosome name. **chromosome_position** Chromosome position. chromosome_region Cytogenetic location. **last_update_date** Last time this variant was updated. genomic_contexts A tibble listing genomic contexts associated with each variant. Columns: variant_id Variant identifier. gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC). **chromosome_name** Chromosome name. **chromosome_position** Chromosome position. **distance** Genomic distance between the variant and the gene (in base pairs). is mapped gene Whether this is a mapped gene to this variant. A mapped gene is either an overlapping gene with the variant or the two closest genes upstream and downstream of the variant. Moreover, only genes whose mapping source is 'Ensembl' are considered. **is_closest_gene** Whether this is the closest gene to this variant. is_intergenic Whether this variant is intergenic, i.e, if there is no gene up or downstream within 100kb. **is_upstream** Whether this variant is upstream of this gene. **is downstream** Whether this variant is downstream of this gene. source Gene mapping source, either Ensembl or NCBI. **mapping_method** Gene mapping method. ensembl_ids A tibble listing gene Ensembl identifiers associated with each genomic context. Columns: variant_id Variant identifier. gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC). ensembl_id The Ensembl identifier of an Ensembl gene, see Section Gene annotation in Ensembl for more information. entrez_ids A tibble listing gene Entrez identifiers associated with each genomic context. Columns: variant id Variant identifier. gene_name Gene symbol according to HUGO Gene Nomenclature (HGNC). entrez_id The Entrez identifier of a gene, see ref. doi:10.1093/nar/gkq1237 for more information.

36 variant_to_study

```
variant_to_association
```

Map a variant id to an association id

Description

Map a variant identifier to an association identifier.

Usage

```
variant_to_association(variant_id, verbose = FALSE, warnings = TRUE)
```

Arguments

variant_id A character vector of variant identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the variant identifier and the second column is the association identifier.

Examples

```
## Not run:
# Map GWAS variant identifiers to association identifiers
variant_to_association(c('rs7904579', 'rs138331350'))
## End(Not run)
```

variant_to_study

Map a variant id to a study id

Description

Map a variant identifier to a study accession identifier.

Usage

```
variant_to_study(variant_id, verbose = FALSE, warnings = TRUE)
```

variant_to_trait 37

Arguments

variant_id A character vector of variant identifiers.

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

Value

A dataframe of two identifiers. First column is the variant identifier and the second column is the study identifier.

Examples

```
## Not run:
# Map GWAS variant identifiers to study identifiers
variant_to_study(c('rs7904579', 'rs138331350'))
## End(Not run)
```

variant_to_trait

Map a variant id to an EFO trait

Description

Map a variant identifier to an EFO trait identifier. Variants are first mapped to association identifiers, and then to EFO traits. Set the option keep_association_id to TRUE to keep the intermediate mapping, i.e., the association identifiers.

Usage

```
variant_to_trait(
  variant_id,
  keep_association_id = FALSE,
  verbose = FALSE,
  warnings = TRUE
)
```

Arguments

variant_id A character vector of variant identifiers.

keep_association_id

Whether to keep the association identifier in the final output (default is FALSE).

verbose Whether the function should be verbose about the different queries or not.

warnings Whether to print warnings.

38 write_xlsx

Value

A dataframe of two or three identifiers. If keep_association_id is set to FALSE, the first column is the variant identifier and the second column is the EFO trait identifier, otherwise the variable association_id is also included as the second column.

Examples

```
## Not run:
# Map GWAS variant identifiers to EFO trait identifiers
variant_to_trait(c('rs7904579', 'rs138331350'))

# Map GWAS variant identifiers to EFO trait identifiers
# but keep the intermediate association identifier
variant_to_trait(c('rs7904579', 'rs138331350'), keep_association_id = TRUE)
## End(Not run)
```

write_xlsx

Export a GWAS Catalog object to xlsx

Description

This function exports a GWAS Catalog object to Microsoft Excel xlsx file. Each table (slot) is saved in its own sheet.

Usage

```
write_xlsx(x, file = stop("`file` must be specified"))
```

Arguments

x A studies, associations, variants or traits object.

file A file name to write to.

Value

Although this function is run for its side effect of writing an xlsx file, the path to the exported file is returned.

```
# Initial setup
.old_wd <- setwd(tempdir())

# Save an `associations` object, e.g. `associations_ex01`, to xlsx.
write_xlsx(associations_ex01, "associations.xlsx")</pre>
```

%>%

```
# Cleanup
unlink("associations.xlsx")
setwd(.old_wd)
```

%>%

Pipe operator

Description

```
See magrittr::%>% for details.
```

Value

The same as the rhs.

```
c(1,2,3) %>% mean()
```

Index

```
* datasets
                                                   exists_variant, 8
    cytogenetic_bands, 7
                                                   gc_examples, 9
    gc_examples, 9
\hbox{\tt [,associations,character,missing,missing-meth} \textbf{\textit{M}} \textbf{\textit{t\_associations}}, \textbf{\textit{10}}
                                                   get_child_efo, 12
        (subset-associations), 28
\hbox{\tt [,associations,missing,missing,missing-method} {\tt get\_metadata,13}
                                                   get_studies, 13
        (subset-associations), 28
\hbox{\tt [,associations,numeric,missing,missing-method} {\tt get\_traits,15}
                                                   get_variants, 17
        (subset-associations), 28
[,studies,character,missing,missing-method
                                                   intersect (setop), 23
        (subset-studies), 29
                                                   is_ebi_reachable, 18
[,studies,missing,missing,missing-method
        (subset-studies), 29
                                                   list, 13
[,studies,numeric,missing,missing-method
        (subset-studies), 29
                                                   n, 19
[,traits,character,missing,missing-method
                                                   n, associations-method (n), 19
        (subset-traits), 30
                                                   n, studies-method (n), 19
[,traits,missing,missing,missing-method
                                                   n, traits-method (n), 19
        (subset-traits), 30
                                                   n, variants-method (n), 19
[,traits,numeric,missing,missing-method
                                                   names, 13
        (subset-traits), 30
[,variants,character,missing,missing-method
                                                   open_in_dbsnp, 20
        (subset-variants), 31
                                                   open_in_gtex, 21
[,variants,missing,missing,missing-method
                                                   open_in_gwas_catalog, 21
        (subset-variants), 31
                                                   open_in_pubmed, 22
[,variants,numeric,missing,missing-method
                                                   setdiff (setop), 23
        (subset-variants), 31
                                                   setequal (setop), 23
%>%, 39, 39
                                                   setop, 23
                                                   studies, 7, 10, 15, 20, 23, 29, 30, 38
association_to_study, 5
                                                   studies-class, 25
association_to_trait,5
                                                   studies_ex01 (gc_examples), 9
association_to_variant, 6
                                                   studies_ex02 (gc_examples), 9
associations, 7, 10, 11, 20, 23, 28, 29, 38
                                                   study_to_association, 26
associations-class, 3
associations_ex01 (gc_examples), 9
                                                   study_to_trait, 27
                                                   study_to_variant, 28
associations_ex02 (gc_examples), 9
                                                   subset-associations, 28
                                                   subset-studies, 29
bind, 7, 23
                                                   subset-traits, 30
cytogenetic_bands, 7
                                                   subset-variants, 31
```

INDEX 41

```
tibble, 3, 4, 25, 26, 32, 34, 35
trait_to_association, 32
trait_to_study, 33
trait_to_variant, 34
traits, 7, 10, 16, 20, 23, 30, 38
{\tt traits-class}, {\tt 32}
traits_ex01 (gc_examples), 9
traits_ex02 (gc_examples), 9
union, 7
union (setop), 23
variant_to_association, 36
variant\_to\_study, \\ 36
variant_to_trait, 37
variants, 7, 10, 18, 20, 23, 31, 38
variants-class, 34
variants_ex01 (gc_examples), 9
variants_ex02(gc_examples), 9
write_xlsx, 38
ymd, 26
```