二、研究計畫內容(以10頁為限):

(一)摘要

現今市面上的LED燈越來越普及,但是目前通用的CIE演色指數計算,卻是當初為了測量螢光燈等人造光源所開發而出的,因此對於LED的演色能力評價,直至目前我們仍不甚了解,有鑑於此,我們必須改進目前的測量方法,讓它適用於較新的照明設備。本計畫主要希望改良普遍通用的CIE演色指數評價方法,改良的部份為原方法中的『色適應轉換』與『色差計算』。在『色適應轉換』部分,希望以高階CIECAM02色外貌模式,取代原先von Kries模式進行色適應轉換的結構;而『色差計算』部分,則希望以高階之CIELAB均等色彩空間模式,取代原先W*U*V*色彩空間模式的色差公式計算,我們將進行心理物理實驗,來評定改良前後CIE演色指數的準確度。

(二) 研究動機與研究問題

電燈是我們每天必備的家電,幾乎每個人到了晚上都必須使用電燈,不管是讀書、看電視或打電腦等等,只要是會用到眼睛的事情,都跟電燈照明有關係。18世紀時,愛迪生發明了第一個能實際應用於商業的白熾燈,從那時起,人類就想把電燈的光源做得像日光一樣,因為日光屬於自然光,也是最柔和的光,爾後各種評價日光燈的方法便陸續應運而生。目前國際上的評價方法,包括Color Rendering Index (CRI)、Gamut Area以及full-spectrum index (FSI)。

2004年1月,國際照明產品資訊網(National Lighting Product Information Program, NLPIP)[2]對其線上註冊會員做了一項調查,測試何者為他們覺得最重要的照明應用項目(表1)。

表1 照明應用項目重要性調查

特性	平均使用率	標準誤差	回應數
演色指數 CRI	3.5	0.7	237
相關色溫 (CCT)	3.2	1.0	233
顏色穩定度	3.2	1.0	232
照明類型	3.1	1.0	235
顏色一致性	3.1	1.0	228
光譜能量分布(SPD)	2.4	1.2	226
全光譜指數 (FSI)	2.0	1.3	204
品牌名稱	1.9	1.2	226
色域面積法	1.5	1.2	189

(評比:0=不實用;4=非常實用)

根據其調查,對於大多數的用戶而言,最重要的是Color Rendering Index (CRI)演色指數。演色的定義可描述如下:人們不經意的比較中,在有另一參照 光的情況下,一個物體經由另一種光源,也就是試驗光的照射之下,所呈現出 的色彩效果,意即計算其色差。

一般而言,光源的演色性評價方法使用二種光源:參照光和試驗光,來對複數種色票樣本進行照射,中間的計算過程,試驗光源會進行色適應轉換。而計算出來的色度數值,會再經由公式算出色差,所得出的數值則衍生定義為演色指數。當演色指數越接近100時,代表此光源越接近自然光,相對地,數值越低則代表該光源越不好。

現今市面上的LED燈越來越普及,但是目前通用的CIE演色指數計算,卻是當初為了測量螢光燈等人造光源所開發而出的,因此對於LED的演色能力評價,直至目前我們仍不甚了解,有鑑於此,我們必須改進目前的測量方法,讓它適用於較新的照明設備。

(三) 文獻回顧與探討

目前光電產業在測量所出產的產品時,通常會用許多方法來檢視其產品的 優劣,其中,評估螢光燈演色指數的主要方法,分為以下項目:

■ 色域面積法

色域面積法 GA(Gamut area)是演色的其中一種測量方法,在使用上日本較北美更為普遍。原則上,GA被定義為在指定的色彩空間中,利用三組或多組色度座標包圍起來的區域。 GA通常是在 CIE 標準色樣本中,使用八種定義,計算其多邊形角度面積

在 CIE1976 色彩空間中,藉由一組給予的光源,使用與計算 CRI 中相同的 參照樣本。

■ 全光譜指數

全光譜指數 FSI(Full-spectrum index)是一種從等能量光譜中,計算試驗光有多少光譜偏移的數學測量模式。等能量光譜是一種假想光譜,它提供在所有波段中,擁有相同輻射能量,代表著為一個『完整的』光譜。因此,對於人類看到物體色,一組照明光源必須從可見光譜中,一個以上的區域中產生光源。

我們在物體上所感知的顏色微妙不同,來自於這些物體的反射光譜之些微差異。如果一種照明光源,在具有稍微不同的光譜反射波段物體上,不提供輻射能量的話,這些物體將呈現出相同的顏色。因此,我們預期一種能在所有可見波段裡,發射出輻射能量的照明,將具有良好的演色性。

■ CIE演色指數

國際照明委員會制定的 CRI :CIE 演色指數(Color Rendering Index)是目前 唯一國際公認的演色評價方法,此方法普遍在各種光電工業裡使用。CRI 建立在使用一組測試用的試驗光和相同色溫的參照光,使其照射於數種不同色度值的 CIE 標準色樣本上進行計算,在三維色度值上獲得最小的平均色差之試驗光,即代表它具有較高的 CRI。

CRI的最大值是 100。低 CRI 數值代表被該光源照射下,有些顏色可能會表現出不自然的感覺。白熾光的演色指數在 95 以上。冷白螢光燈演色指數約為 62 ,如果螢光燈中包含了較罕見的磷光體的話,其演色指數可達 80 以上。

以上三種方法,為測量螢光燈演色能力的主要方法,依據地區而造成使用率的不同,但是根據NLPIP的調查,使用率最高的為CIE演色指數。不過CRI對於較新型的光源,像是LED的演色能力卻仍是未知,若能將目前CRI演色指數的演算法進行改良,光電業者便能使用較為準確的新型照明燈評價方法,進而減少瑕疵品流入消費者手中。

在國際照明委員會制定的CIE演色指數規範中,其演算法分為二種,即舊制的Test Method和新制的R96 Method,其流程如下:

■ Test Method

- (1) 使用 2 度視角條件,在 CIE 1960 色域圖中計算試驗光之色度座標。
- (2) 藉由尋找 u.v 色域圖中, 距離浦郎克軌跡最近的一色度點, 來決定試驗光的相關色溫(參照圖 2)。

圖1 CIE-uv 色度圖裡的浦郎克軌跡

- (3) 若試驗光的相關色溫 CCT 小於 5000 K,我們就使用黑體軌跡做為參照光體;若相關色溫 CCT 大於 5000 K的話,則應使用 CIE 標準 D 光源。兩種光源應擁有相同的相關色溫。
- (4) 確認在 CIE 1960 UCS 中,試驗光與浦郎克軌跡的色度距離(DC)小於 5.4 x 10⁻³。因為 CRI 幾乎只能夠被白光所定義,此做法是為了確保其結果有意義。
- (5) 輪流使用參照光和試驗光二種光源,照射15種標準色票中的前8個標準色票。

名稱	TCS1	TCS2	TCS3	TCS4	TCS5	TCS6	TCS7	TCS8
Munsell	7,5 R	5 Y	5 GY	2,5 G	10 BG	5 PB	2,5 P	10 P
表示法	6/4	6/4	6/8	6/6	6/4	6/8	6/8	6/8
樣本								

圖 2 色相平均分布的 8 種 CIE 色票

圖38種色票的反射光譜曲線

- (6) 使用 2 度標準視角,並藉由 CIE 1964 色度圖裡的各個色票,來計算特定光源下的色度座標。
- (7) 為了獲得正確的錐狀細胞光譜感度反應值,所以必須維持參照白的色外貌適應。此步驟一般是藉由 von Kries 轉換模式,針對各色票逐一進行色適應轉換。
- (8) 對於二種同色溫的光源,試驗光和參照光,分別算出其在各個色票中,每一 對共同色度座標的色差。
- (9) 使用 $R_i = 100 4.6\Delta E_i$ 公式計算出特定的 CRI 值。
- (10)藉由計算特定 CRI 的平均演算法來找出通用 CRI (Ra)。

圖4 CIE演色指數計算流程

■ R96法

上述演算法為舊制的 CRI 演算法,然而在 1991 年時, CIE 的 TC-133 團隊,發展出一種新制的 R96 方法,此方法相對於舊制的 CRI 演算法而言,主要有以下的主要區別:

(1) 使用一系列新的測試色票(參照圖5)。

圖 5 CIE TC-133 團隊建議的 8 種新色票

- (2) 使用 6 種參照光源,分別是 D₆₅、D₅₀、4200K、3450K、2950K 和 2700K 的 黑體軌跡。
- (3) 利用一個較新的 CIECAT94 模式進行色適應轉換。
- (4) 色差計算是在 CIELAB 均等色彩空間下進行。
- (5) 所有顏色的適應均採用 D_{65} ,因為對於 CIELAB 而言,在光源 D_{65} 底下的 CIELAB 有較好的測試結果。

(四)研究方法及步驟

本計畫預計完成各階段之進度分述如下:

1.收集相關文獻及改良CRI模式:

收集各大相關研究和論文,以了解對於CRI是否有其他的相關改良方法作

為參考,本計畫主要希望能夠改良,目前通用的CIE演色指數評價方法中,較不合乎時宜的部份:『色適應轉換』與『色差計算』『色適應轉換』部分,希望以高階CIECAM02色外貌模式,取代原先von Kries模式進行色適應轉換的結構;而『色差計算』部分,則希望以高階之CIELAB均等色彩空間模式,取代原先W*U*V*色彩空間模式的色差公式計算,我們將進行心理物理實驗,來評定改良前後CIE演色指數的準確度。

(參照圖6)。

圖 6 心理物理實驗設計示意圖

2. 開發流程設計

規劃研究開發流程圖,以及制定UML (Unified Modeling Language)。

3. 開發環境規劃

■ 測量儀器:攜帶式分光光度計(X-Rite Eye-One)

■ 光學儀器搭配平台: Windows XP

■ 開發實驗軟體:The MathWorks-Matlab, Microsoft Visual Studio 2005-

(五)預期結果

對於此次研究結果若屬成功而言,將對於國內照明光電業者有所助益。尤其當LED燈越來越普及時,但卻苦無有效方法來評估業者的產品,那其所生產的產品品質將堪慮。

因此本研究的重點,將是開發一種適用於傳統螢光燈,也適用於新型照明 光LED燈的評估光源法,使光電業者能用更精確的評估方法來檢視產品,避免 評估值低的照明瑕疵品,流入消費者的手中,傷害消費者的眼睛。

(六)參考文獻

- [1] CIE (1995), Method of Measuring and Specifying Colour Rendering Properties of Light Sources, Publication 13.3, ISBN 978-3900734572
- [2] CIE (1999), Colour rendering (TC 1-33 closing remarks), Publication 135/2, ISBN 3-900-734-97-6
- [3] CIE (2007), Colour rendering of white LED light sources, Publication 177:2007, ISBN 978-3901906572
- [4] Schanda, János; Sandor, Norbert (2005), Visual colour-rendering experiments, AIC Colour '05: 10th Congress of the International Colour Association
- [5] Thornton, William A. (1972), Color-Rendering Capability of Commercial Lamps, Applied Optics 11 (5): 1078-1086
- [6] Bodrogi, Peter (2004), Colour rendering: past, present (2004), and future, CIE Expert Symposium on LED Light Sources, pp. 10–12
- [7] Schanda, János (April, 2-5 2002), The concept of colour rendering revisited, First European Conference on Color in Graphics Imaging and Vision, Univ. Poitiers, France
- [8] Schanda, János; Sandor, Norbert (2003), Colour rendering: Past, Present, Future,

International Lighting and Colour Conference, Cape Town: Wiley Interscience, doi: 10. 1002/col. 10192

- [9] National Lighting Product Information Program (2004, October)

 http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/abstract.asp
- [10] 陳鴻興譯(2007.6),《色彩工程學:理論與應用》,台北:全華圖書
- [11] 陳鴻興譯(2006.2),《基礎色彩再現工程》,台北:全華圖書

(七)需要指導教授指導內容

主要是 CIECAM02 色外貌模式的導入與心理物理實驗的評價設計。本計畫預定使用 CIECAM02 色外貌模式,CIE 演色指數計算中的色適應轉換,以取代原先 von Kries 模式的結構。CIECAM02 色外貌模式有許多環境參數需要測量及設定,需要陳鴻興老師的協助與指導。