MINE: Mutual Information Neural Estimation

ICML 2018

Motivation

- Mutual information was a powerful tool in statistical models:
 - Feature selection, information bottleneck, casualty
- MI quantifies the dependence of two random variables:

$$I(X;Z) = \int_{\mathcal{X} \times \mathcal{Z}} \log \frac{d\mathbb{P}_{XZ}}{d\mathbb{P}_X \otimes \mathbb{P}_Z} d\mathbb{P}_{XZ}$$

$$I(X; Z) := H(X) - H(X \mid Z)$$

Motivation

- MI is tractable only for discrete random variables or known probability distribution
- Common Approaches do not scale well with sample size or dimension:
 - Non-parametric approaches
 - Approximate gaussianity
- Use KL-Divergence for computing MI
- Use dual formulation for estimating f-divergence
 - Adversarial game between neural nets

MI

KL-Divergence definition:

$$D_{KL}(\mathbb{P} \mid\mid \mathbb{Q}) := \mathbb{E}_{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{Q}} \right]$$

• MI:

$$I(X;Z) = \int_{\mathcal{X}\times\mathcal{Z}} \log \frac{d\mathbb{P}_{XZ}}{d\mathbb{P}_X\otimes\mathbb{P}_Z} d\mathbb{P}_{XZ}$$

$$I(X,Z) = D_{KL}(\mathbb{P}_{XZ} \mid\mid \mathbb{P}_X \otimes \mathbb{P}_Z)$$

MI Estimator

Donsker-Varadhan representation:

$$D_{KL}(\mathbb{P} \mid\mid \mathbb{Q}) = \sup_{T:\Omega \to \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T] - \log(\mathbb{E}_{\mathbb{Q}}[e^T])$$

So:

$$D_{KL}(\mathbb{P} \mid\mid \mathbb{Q}) \ge \sup_{T \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}[T] - \log(\mathbb{E}_{\mathbb{Q}}[e^T])$$

MI Estimator

f-divergence representation:

$$D_{KL}(\mathbb{P} \mid\mid \mathbb{Q}) \ge \sup_{T \in \mathcal{F}} \mathbb{E}_{\mathbb{P}}[T] - \mathbb{E}_{\mathbb{Q}}[e^{T-1}]$$

 Both representations are tight but Donsker-Varadhan representation is stronger as:

$$x \ge e \log x$$

- Where:

$$\mathbb{E}_{\mathbb{Q}}[e^T]$$

Method

Estimate function T using neural network:

$$I_{\Theta}(X, Z) = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{XZ}}[T_{\theta}] - \log(\mathbb{E}_{\mathbb{P}_{X} \otimes \mathbb{P}_{Z}}[e^{T_{\theta}}])$$

So:

$$I(X;Z) \ge I_{\Theta}(X,Z)$$

• Estimate $I_{\Theta}(X,Z)$ using:

$$\widehat{I(X;Z)}_n = \sup_{\theta \in \Theta} \mathbb{E}_{\mathbb{P}_{XZ}^{(n)}}[T_{\theta}] - \log(\mathbb{E}_{\mathbb{P}_X^{(n)} \otimes \hat{\mathbb{P}}_Z^{(n)}}[e^{T_{\theta}}])$$

Algorithm

Algorithm 1 MINE

 $\theta \leftarrow$ initialize network parameters

repeat

Draw b minibatch samples from the joint distribution:

$$({m x}^{(1)},{m z}^{(1)}),\ldots,({m x}^{(b)},{m z}^{(b)})\sim \mathbb{P}_{XZ}$$

Draw n samples from the Z marginal distribution:

$$\bar{\boldsymbol{z}}^{(1)},\ldots,\bar{\boldsymbol{z}}^{(b)}\sim\mathbb{P}_{Z}$$

Evaluate the lower-bound:

$$V(\theta) \leftarrow \frac{1}{b} \sum_{i=1}^{b} T_{\theta}(\boldsymbol{x}^{(i)}, \boldsymbol{z}^{(i)}) - \log(\frac{1}{b} \sum_{i=1}^{b} e^{T_{\theta}(\boldsymbol{x}^{(i)}, \bar{\boldsymbol{z}}^{(i)})})$$

Evaluate bias corrected gradients (e.g., moving average):

$$\widetilde{G}(\theta) \leftarrow \widetilde{\nabla}_{\theta} \mathcal{V}(\theta)$$

Update the statistics network parameters:

$$\theta \leftarrow \theta + \widehat{G}(\theta)$$

until convergence

Caveats

Mini-batch computation is biased:

$$\widehat{G}_B = \mathbb{E}_B[\nabla_{\theta} T_{\theta}] - \frac{\mathbb{E}_B[\nabla_{\theta} T_{\theta} e^{T_{\theta}}]}{\mathbb{E}_B[e^{T_{\theta}}]}$$

- Moving Average for estimating $\mathbb{E}_{B}\left[e^{T_{ heta}}\right]$ over full batch
- MI is not bounded and can become infinitely large so it will mask cross-entropy loss:

$$g_a = \min(\|g_u\|, \|g_m\|) \frac{g_m}{\|g_m\|}$$

Properties

Strong consistency:

$$\forall n \ge N, \quad |I(X,Z) - \widehat{I(X;Z)}_n| \le \epsilon.$$

- Lemma 1: $|I(X,Z) I_{\Theta}(X,Z)| \le \epsilon$
- Lemma 2: $\forall n \geq N, |\widehat{I(X;Z)}_n I_{\Theta}(X,Z)| \leq \epsilon$
- Sample Complexity:

$$\widetilde{O}\left(\frac{d\log d}{\epsilon^2}\right)$$

Comparing to non-parametric estimator

- Two random variables with multivariate Gaussians distribution
- K-NN based estimator
- MINE and MINE-f

Capturing Non-Linear Dependency

 MI is a good measure for capturing nonlinearity

$$Y = f(X) + \sigma \odot \epsilon$$

Improving GAN

GAN objective:

$$\begin{aligned} \min_{G} \max_{D} V(D,G) := \\ \mathbb{E}_{\mathbb{P}_{X}}[D(X)] + \mathbb{E}_{\mathbb{P}_{Z}}[\log\left(1 - D(G(Z))\right)] \end{aligned}$$

- Mode Collapse:
 - All generated samples are similar
- Maximize the MI between generated samples and code:

$$\arg \max_{G} \mathbb{E}[\log(D(G([\boldsymbol{\epsilon}, \boldsymbol{c}])))] + \beta I(G([\boldsymbol{\epsilon}, \boldsymbol{c}]); \boldsymbol{c})$$

Improving GAN - Result

	Stacked MNIST		
	Modes (Max 1000)	KL	
DCGAN	99.0	3.40	
ALI	16.0	5.40	
Unrolled GAN	48.7	4.32	
VEEGAN	150.0	2.95	
PacGAN	1000.0 ± 0.0	$0.06 \pm 1.0 \mathrm{e}^{-2}$	
GAN+MINE (Ours)	1000.0 ± 0.0	$0.05 \pm 6.9 \mathrm{e}^{-3}$	

Bi-Directional Adversarial Model

Encode input and reconstruct it from its encoding:

- Encoder:
$$p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{z} \mid \boldsymbol{x})p(\boldsymbol{x})$$

- Decoder:
$$q(\boldsymbol{x}, \boldsymbol{z}) = q(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})$$

Reconstruction error:

$$\mathcal{R} \leq D_{KL}(q(\boldsymbol{x}, \boldsymbol{z}) \mid\mid p(\boldsymbol{x}, \boldsymbol{z})) - I_q(\boldsymbol{x}, \boldsymbol{z}) + H_q(\boldsymbol{z})$$

• Objectives: $\underset{D}{\operatorname{arg\,max}} \mathbb{E}_{q(\boldsymbol{x},\boldsymbol{z})}[\log D(\boldsymbol{x},\boldsymbol{z})] + \mathbb{E}_{p(\boldsymbol{x},\boldsymbol{z})}[\log (1 - D(\boldsymbol{x},\boldsymbol{z}))]$ $\underset{F,G}{\operatorname{arg\,max}} \mathbb{E}_{q(\boldsymbol{x},\boldsymbol{z})}[\log (1 - D(\boldsymbol{x},\boldsymbol{z}))] + \mathbb{E}_{p(\boldsymbol{x},\boldsymbol{z})}[\log D(\boldsymbol{x},\boldsymbol{z})]$ $+ \beta I_q(\boldsymbol{x},\boldsymbol{z})$

Bi-Directional Adversarial Models-Results

Model	Recons. Error	Recons. Acc.(%)	MS-SSIM	
MNIST				
ALI	14.24	45.95	0.97	
$ALICE(l_2)$	3.20	99.03	0.97	
ALICE(Adv.)	5.20	98.17	0.98	
MINE	9.73	96.10	0.99	
CelebA				
ALI	53.75	57.49	0.81	
$ALICE(l_2)$	8.01	32.22	0.93	
ALICE(Adv.)	92.56	48.95	0.51	
MINE	36.11	76.08	0.99	

Information Bottleneck

 Find representation Z for X which has enough data for predating Y and discards irrelevant information in X

$$\mathcal{L}[q(Z \mid X)] = H(Y|Z) + \beta I(X, Z)$$

Model	Misclass. rate(%)
Baseline	1.38%
Dropout	1.34%
Confidence penalty	1.36%
Label Smoothing	1.40%
DVB	1.13%
DVB + Additive noise	1.06%
MINE(Gaussian) (ours)	1.11%
MINE(Propagated) (ours)	1.10%
MINE(Additive) (ours)	1.01%

Questions?

Thanks