

浅谈计算机硬盘故障分析及维护

□ 闫龙

摘要: 随着信息技术的不断发展, 计算机应用范围和应用需求 持续增加,计算机硬件、软件技术也得到了很大的发展,计算 机用户更是持续增长。众所周知,计算机由于用户不当操作、 病毒入侵或自身质量等原因, 在用户使用过程中会经常出现故 障。硬盘作为计算机中的核心部件,一般都储存着客户的重要 资料,所以都害怕计算机硬盘故障的出现。本文就计算机硬盘 故障的分类、排除方法以及硬盘的维护等方面进行重点阐述, 希望对读者能够有所帮助。

关键词: 硬盘故障; 分析; 维护

对计算机的用户来说、联系最密切、关心最多的莫过于计算 机的硬盘了,因为它作为计算机的存储设备,存储着用户操作计 算机过程中的重要数据,一旦硬盘出现故障,有可能导致重要信 息数据的丢失或者无法正常启动计算机系统, 会给我们的工作和 学习带来非常不利的影响。[1] 但是, 计算机硬盘故障的出现, 很 多情况下都是由于用户不正当操作或者不注重对硬盘的维护和保 养造成的,这就需要我们对硬盘的故障进行分析和研究,要注重 对计算机硬盘的维护,以保证其为我们提供更多、更好的服务。

-、计算机硬盘故障的分类

硬盘故障分为硬故障和软故障两类, 其判断主要是依据系 统上电后的现象以及屏幕上的提示信息。当计算机硬盘发生故 障时,用户不应该随意拆装或者简单的将其格式化,这样在使 问题复杂化的同时,有可能给用户造成不可挽回的损失。此时 用户应当对硬盘故障进行认真仔细的分析,看故障属于软故障 还是硬故障, 然后再采取科学的方法对其进处理。

(一) 硬盘的硬故障

硬盘的硬故障比较常见的主要有四种, 分别是: 硬盘电 路故障、硬盘腔体故障、硬盘适配器或接插件故障和硬盘0柱 面损坏,现简要介绍如下: (1) 硬盘0柱面损坏。计算机硬 盘在经过长时间的自检之后,引导时会显示信息: "Disk Boot Failure TRACK 0 BAD",假如接着出现死机的情况致使引导无 法完成,则可能是磁盘0柱面损坏。造成的直接后果就是致使 DOS 引导扇区或硬盘主引导扇区损坏,造成硬盘无法正常使 用。虽然此故障隶属于物理故障的范畴, 但是可以通过软件对 其进行修复。(2)硬盘适配器或接插件故障。计算机系统加 电后, 当自检至硬盘的子系统时难以通过, 同时"1701, Hard Disk Error"的提示信息显示在屏幕上,硬盘的指示灯处于熄灭 状态。这种故障一般是有两种情况引起的、一种是硬盘的主引 导记录被破坏引起的故障,另一种是硬盘子系统的硬件故障。

(3) 硬盘腔体故障。在计算机加电后, 硬盘腔体内发出异常 响声, 在自检过程中"哒哒哒"的磁头"撞车"声音持续时间长, 并且比较明显, 这表明硬盘腔体内机械故障的出现。这种情况 往往是磁头步讲钢带出现松动或者断裂, 多是因为盘体受到较 大程度的震动或者撞击引起的。

(二) 硬盘的软故障

硬盘的软故障主要是指硬盘的读写故障或者自举引导未成 功等、其主要内容包括重要的数据被修改、破坏或者丢失。但 因为它们大都发生在硬盘的系统信息区之内, 线程盘中的大量 数据信息或文件信息并没有真正意义上的丢失, 通过相关技术 手段是可以恢复的, 所以对硬盘的软故障进行排除就显得十分 重要。导致硬盘不能自举的因素往往是因为病毒入侵、CMOS 参数丢失或者系统区信息损坏造成的。通常情况下, 电脑用户 可以依据提示信息对产生故障的原因进行分析和判断,这些原 因主要分为三类: 硬盘 DOS 引导区出错 (含 DOS 三个系统文 件损坏或丢失)、硬盘主引导区损坏和 CMOS 数据参数丢失。[2]

二、计算机常见故障分析

(一) 数据线接触不良导致计算机无法正常运行

有的计算机常常出现无法开机或者能开机但找不到硬盘的 状况, 开机后有计算机硬盘盘片转动的响声, 在启动设备系统 检测的过程中,会提示用户找不到硬盘。虽然进入 CMOS 重 新设置或者重启电脑后会正常运行, 但是使用后还是会出现重 启或者重启后找不到硬盘的情况。针对该问题的正常检修程序 是: ①用最新的杀毒软件进行杀毒,排除分区表和引导区被病 毒破坏的可能;②检查 CMOS 电池,看其是否存在老化等现 象导致故障的发生; ③假如以上引起计算机故障的因素都可以 排除,则原因基本就出在硬盘本身了,在条件允许的情况下, 可以将该计算机的硬盘与其他计算机互换后看其运行状况,假 如都运行正常、表明是数据线接触不良、可以换一根新的80 芯数据线。由于数据线线径较细,经过多次插拔之后,难免会 出现接触不良的情况, 致使计算机接触故障的发生。

(二) 受潮原因引起的系统对硬盘无法识别

有的计算机由于长时间没有使用, 当磁盘进行启动时, 内存 检测系统正常, 自检完成后, 读取硬盘发出很大的噪声, 同时显 示屏会显示出提示: "1701 Error.PressF1 Key to continue."; 当启 用 F1 键后,会提示: "Boot Disk failure. Type key to retry." 点击键盘重新操作,则出现机器死锁的现象。改用软件来进行启 动, 仍谈提示"1701Error.PressF1 Key to continue."此时, 第一步, 要先判断计算机故障是不是因软故障导致的, 采用系统诊断盘来 对硬盘进行测试, 但是系统却提示重装硬盘, 对硬盘识别不了。 第二步,拿DOS系统盘进行测试,放进A盘中进行启动,运用 FDISK 对硬盘进行重新检测以及分区, 当在屏幕上出现提示"No fixed disks present."表示仍未成功。第三步,利用 FORMAT C: /S 对硬盘进行格式化,均没有成功,而且从硬盘读取过程中发出的 嗡嗡的噪音,可以初步断定是硬盘的故障。第四步,打开主机机 箱,插紧连接硬盘驱动器的信号电缆线插头以及控制卡的插头, 插紧后进行重启,经检测故障仍未消除。由于硬盘及其适配器等 元件的故障有可能是因受潮而引起的, 所以决定对其进行加热干 燥去湿处理, 例如用吹风机等。处理过后, 硬盘自举成功, 读取 时的噪音消失,故障得以成功解决。

(三) 系统无法从硬盘启动

此故障的前提是系统能正常识别硬盘, 假如系统识别不了硬 盘, 计算机用户可以通过上面的参考内容进行修复。系统无法从 硬盘启动的故障通常与 BIOS 设置、IDE 接口、系统电源和主板 等有关。[3] 用户应当先对 BIOS 的各项设置进行认真排查,检查 Standard CMOS Setup 中的硬盘信息是否正确,可通过 AutoDetec. t.. 来自动检测一次硬盘设置。假如硬盘无法自举的原因是因为电 源导致的,则软盘通常也很难启动。为了进一步对电源故障进行 确认,可以换个新电源。在电源工作正常的情况下,再对主板进 行检查, 假如软件启动也正常, 则表明问题一般是由硬盘接口引 起的,这时可检测 IDE 插槽的接触状况,看其连接是否紧密; 假如软盘不能够正常启动,那么原因估计出现在主板控制电路或 控制芯片上。针对这种情况,可以尝试外接磁盘接口适配卡,但 在多功能卡使用前,需要对 CMOS 参数进行修改, 主板上 (ON BOARD) 的 IDE 接口不能使用,换言之,就是把相关项设置为 "Disabled"。假如仍旧无法检测,则问题可能出在主板上。

三、计算机硬盘的维护

一般说来, 硬盘是计算机最重要的存储设备之一, 对一些 大型软件来说, 离开硬盘是无法运行的。现在的硬盘存储量越 来越大, 读写的速度也在加快, 工作性能不断得到加强, 用户 对其依赖性也是越来越大。但是硬盘使用频繁, 假如硬盘在工

(下转第142页)

核做出响应后向 UA 反馈,由用户端接收消息通报。

类成员中的逻辑配置函数是图层对象中最重要的函数之 一, 只有图层通过调用逻辑配置函数来完成 UA 的逻辑配置, 才能保证通信管理功能的正确运行。

(三) UA 建模研究

每个 UA 收到通信管理处理器路由给它的消息后,设置窗 体部件代理的参数,因此为UA建立类A661FcUA,设置图层 激活状态列表、用于记录处于激活状态的图层号、图层对外部 飞行参数的处理函数用于完成飞行参数到代理部件参数的转 换, CDS 消息处理函数主要包括对图层通报的处理函数,以 及对所有交互式窗体部件事件的处理函数。

新增加的 UA 都继承于该基类,各自定义了图层对外部参 数的处理函数及所有交互式窗体部件的事件处理函数, 以实现 各自独特的功能逻辑。每个执行周期内, 子 UA 首先完成对其 HMI 内核消息队列中所有消息的响应,通过获取消息数据块中 的 LayerId、WidgetId,将消息路由给窗体部件,由窗体部件完 成对事件类型的判断和检查,并回调 UA 中对应的消息处理函 数,完成消息响应;接着 UA 执行处于激活状态图层的外部飞 行参数处理函数,完成相应参数设置。

(四) 通信管理处理器对象建模 图 2 是通信管理处理器的结构框图。

图2 通信管理处理器5的结构框图

通信管理处理器主要完成对 DF 文件等的加载,并且进行 统一管理;通信模块主要包含飞行数据处理和交互数据处理两 部分,通过与机载传感器的接口接收飞行数据,然后对其进行 解析,并将这些参数分配给对应的 UA;同样的,交互数据通 过底层通道的接口进行, 在每个总线发送周期内, 通信管理处 理器把各个 UA 产生的发送指令块搜集起来,调用 HMI 接口 中的发送函数完成指令的发送。

三、系统仿真与测试

通过改变已实例化窗体部件模型的参数接口等,来改变发 送给 HMI 内核的指令,从而改变画面显示,下面以窗体部件 pushbutton 为例说明:

对 pushbutton 的参数建模, 创建参数缓冲区, 对参数的长 度类型进行设置,依据 ARINC661 规范对其参数值进行设定。

通过内核渲染得到该窗体部件的画面显示, 改变模型的参 数接口 LabelString, 令其为"测试", 重新渲染该窗体部件。

本文主要阐述了ARINC661人机交互系统中关键部分的建 模技术。基于系统工作原理的基础上,完成了系统框架的搭建, 对规范中定义的所有窗体部件、图层、UA和通信管理处理器 的建模进行了深入的研究, 仿真结果显示, 本文实现的建模技 术是可行的, 建模生成的窗体部件类库和运行阶段指令库有较 强的的可移植性。

参考文献

[1] ARINC. ARINC661 specification: cockpit displaysystem interfaces to user systems [S]. [S. 1.]: Aeronautical Radio, INC, 2002.

[2] 陈彬,王全民,龚建兴,等.作战模拟态势显示中的通用性 技术研究 [J]. 国防科技大学学报, 2009, 31(6): 115-120.

[3] 李全军,综合航空电子信息处理系统性能评估仿真建模研究, [博士学位论文], 西安: 西北工业大学, 2006.

[4] 胡辛,李红军,曹闹昌等. 航空电子数据总线技术研究[J]. 现代电子技术, 2010, 14: 96-98.

[5] 刘建, 刘勤, 孙永荣, 等. ARINC661 规范及其应用开发研究 [J]. 计算机与现代化, 2010(4): 188-192.

[6] 高忠杰,康介祥,缪万胜.基于 ARINC661 的显控系统设计与 实现 [J]. 航空电子技术, 2012, 42(4):12-15.

[7] Navarre David, Palanque Philippe, Ladry Jean-François. An architecture and a formal description technique for the design and implementation of reconfigurable user interfaces. Lecture Notes in Computer Science, 2008 (5136): 208-224.

[8] 袁磊, 孙永荣, 周晓达, 等. 基于 ARINC661 的 DF 文件设计 平台研究与实现 [J]. 现代电子技术, 2012, 35(5): 156-159.

[9] 曹猛,孙永荣,王岩, 等. 开放式座舱显示系统关键技术研 究与实现 [J]. 航空计算技术,2011,41(4):78-81.

[10] 钱雪佳,孙永荣,袁磊,等.基于ARINC661的座舱显示系 统通信机制研究 [J]. 测控技术, 2013, 32(10):105-108.

(作者单位: 1. 江苏航空职业技术学院; 2. 南京航空航天 大学)

作者简介: 李笑瑜(1992~), 女, 助教, 工学硕士, 研究方向为机载显示,无人机应用。

基金项目: 1.2018 年镇江市科技创新资金《重点研发计 划 ---- 产业前瞻与共性关键技术》;项目编号: GY2018029。

2.2017 年度江苏航空职业技术学院院级课题资助项目;项 目编号: JATC17010104

(上接第34页)

作中操作不当,将对计算机的使用产生很大影响。很容易发生 故障。据有关统计,硬盘故障的80%是人为操作不当造成的。 [4]所以,做好计算机硬盘的维护工作就显得特别有必要,我 们需要用心做好以下几点: (1) 工作状态下严禁移动硬盘。 计算机工作时硬盘处于读写状态,移动过程中会产生较大的 震动,致使盘片与磁头发生撞击,有可能导致硬盘的损坏。

(2) 硬盘处于工作时不能随意关机。因为突然关机会使磁头 与盘片产生剧烈的磨擦,有可能损坏硬盘;此外,也不应当在 短时间内连续开关电源, 否则固充放电产生的高压有可能击穿 器件。所以,计算机死机需要重启时,应尽量采用热启动的方 式,即按CTRL+ALT+DEL组合键进行重启。(3)做好计算机 周边的卫生工作,注意防尘。灰尘在硬盘内部电路或者元器件 上日积月累,会逐渐加大对电子元器件散热效果的影响,造成 元器件温度增加,进而存在漏电而破坏元器件的危险。(4)

避免将计算机置于潮湿、高温或有磁场的环境中。理由是潮湿 或者带磁场的环境会对硬盘所存储的数据产生破坏; 高温环境 不利于硬盘主轴电机、步进电机及其驱动电路的散热。(5) 对硬盘要经常进行整理和扫描,例如对目录进行整理,对磁盘 碎片进行整理等。(6)要防止计算机病毒对硬盘的破坏。

参考文献

[1] 李福成. 计算机硬盘故障分析及解决 [J]. 光盘技 术,2018(08):4.

[2] 周伟, 孟德磊, 陈多威. 计算机硬盘故障分析及维护 [J]. 吉 林大学学报(地球科学版),2017(S1):245-246.

[3] 周伟光. 计算机硬盘故障分析及维护 [J]. 科技资 讯.2016(28):13.

[4] 王世华. 计算机硬盘故障分析与维护 [J]. 科技咨 询,2015(21):11.

(作者单位:广东海洋大学寸金学院)