Math 239 - Introduction to Combinatorics

Spring 2017

Lecture 17: June 7th, 2017

Lecturer: Alan Arroyo Guevara Notes By: Harsh Mistry

Problem 17.1 Are the following Isomorphic?

_							
v	a	b	c	d	e	f	
f(v)	1	3	5	2	4	6	

So, yes they are isomorphic.

Tip

Isomorphism between G_1 and G_2 is the same as "drag and move" vertices of G_1 to get G_2 To display this, download **yEd graph editor**.

Problem 17.2 Are the following isomorphic?

Solution: No, vertices 1, 2, 3, are pairwise adjacent in F_1 . If there is an isomorphism $f: v(F_1) \to V(F_2)$ then f(1), f(2), f(3) would also be pairwise adjacent in F_2 , but no such triple exists in F_2 . So they are not isomorphic.

Tip

To show two graphs are not isomorphic, find a property in one of them, that you can't find in the other

17.1 Degrees of Vertices

Definition 17.3 Given $v \in V(G)$, the **degree** of v, denoted as deg(v), is the number of neighbours of v in G.

Lemma 17.4 Handshaking Lemma: For any graph G

$$\sum_{v \in V(G)} deg(v) = 2 \cdot \mid E(G) \mid$$

Proof: Let $S = \{(v, e) : v \in V(G), e \in E(G) \text{ e is incident to v}\}$ Every $v \in V(G)$ is in deg(v) pairs in S.

$$\mid S\mid = \sum_{v\in V(G)} deg(v)$$

Every $e \in E(G)$ is in 2 pairs, then

$$\mid S \mid = 2 \cdot \mid E(G) \mid$$

Corollary 17.5 In a graph, there is an even number of vertices with an odd degree.

Proof: Let G be a graph and Let $V(G) = V_e \cup V_o$ where

 v_e = even degree vertices

 $v_o = \text{ odd degree vertices}$

By the Handshake Lemma,

$$\begin{split} 2\cdot\mid E(G)\mid &=\sum_{v\in V(G)}deg(v)\\ &=\sum_{v\in V_e}deg(v)+\sum_{v\in V_o}deg(v)\\ &\Longrightarrow\sum_{v\in V_0}deg(v)=2\cdot\mid E(G)\mid\sum_{v\in V_e}deg(v)\\ &\Longrightarrow\sum_{v\in V_o}\deg(v)\text{ is even}\\ &\Longrightarrow\mid V_o\mid \text{ is even because the sum of odd numbers is even only when }\mid V_o\mid \text{ is even} \end{split}$$

Definition 17.6 Given an integer $k \geq 0$. a k regular graph is a graph in which every vertex has degree k.