218643 Sprawozdanie

1. Cel ćwiczenia

Celem zadania laboratoryjnego było zbudowanie struktury grafu oraz badanie czasu znalezienia drogi z wierzchołka zerowego do wylosowanego wierzchołka. W tym celu wybrane zostały grafy o wierzchołkach nieizolowanych, tzn. bez odosobnionych wierzchołków. Liczba krawędzi łączących losowe wierzchołki wynosi 10% z całkowitej liczby wierzchołków w grafie. Przechowywanie relacji wierzchołków jest wykonywane za pomocą listy sąsiedztwa. Została ona wybrana ze względu na dużą oszczędność miejsca w pamięci, oraz możliwość przekazania listy sąsiadów. W przypadku macierzy sąsiedztwa obszar alokowanej pamięci wynosiłby n^2 bitów oraz wymagane jest sprawdzanie kolejnych pozycji w macierzy, co dodatkowo spowalnia algorytm przy tym

2. Wyniki pomiarowe

Tab.1 Pomiary czasów przeszukania grafu metodami BFS i DFS.

Liczba	Czas przeszukania metodą	Czas przeszukania metodą
elementów(wierzchołków)	BFS[ms]	DFS[ms]
10	2,722	2,598
100	2,938	2,593
1000	3,423	2,641
10000	29,608	3,727
100000	729,458	9,231
1000000	853,702	100,478

Wyniki są średnią arytmetyczną z 10 wykonanych pomiarów.

Wykres 1. Pomiar czasu przeszukania grafu metodą DFS (skala logarytmiczna).

Wykres 2. Pomiar czasu przeszukania grafy metodą BFS (skala logarytmiczna).

3. Wnioski

W ćwiczeniu zostały wykonane dwie metody przeszukania grafu: w głąb- DFS oraz w szerz -BFS. Teoretyczna złożoność obliczeniowa tych metod wynosi O(|V|+|E|). Złożoność ta mówi nam o tym , że algorytm musi "odwiedzić" wszystkie wierzchołki oraz wszystkie krawędzie danego grafu. Na podstawie wyników zamieszczonych w tabeli oraz wykresów możemy stwierdzić , że założenia teoretyczne zostały poparte złożonością obliczeniową zaimplementowanych algorytmów. W przypadku tego grafu metoda DFS jest bardziej skuteczna.