HO4L 12/56

識別記号

FΙ

テーマコード(参考)

H04L 11/20

102A 5K030

審査請求 未請求 請求項の数6 OL (全 5 頁)

(21)出願番号

特願2000-266981(P2000-266981)

(22)出顧日

平成12年9月4日(2000.9.4)

(71)出願人 000232047

日本電気エンジニアリング株式会社

東京都港区芝浦三丁目18番21号

(72)発明者 藤田 倫子

東京都港区芝浦三丁目18番21号 日本電気

エンジニアリング株式会社内

(74)代理人 100081710

弁理士 福山 正博

Fターム(参考) 5K030 CA13 HA08 HB01 HB15 JA05

KA01 KA03 KA19 LC18 WA04

MA13

(54) 【発明の名称】 非同期音声データ処理方式

(57)【要約】

【課題】非同期系音声通信方式における音声品質の向上 を図る

【解決手段】非同期通信網から受信した音声信号が復号 化されて保持されたデータ保持バッファ23の保持デー タをデータ再生バッファ24に転送し、このデータ再生 バッファから読み出したデータを出力する際、データ 持バッファ23への受信データバイトをカウントすると ともに、データ再生パッファ24からの出力データバイトをカウントする等により、音声データ再生速度より音 声データ受信速度を比較し、音声データ再生速度より音 声データ受信速度が速い場合は、過剰な受信データを廃棄し、音声データ再生速度より音声データで信速度の方が遅い場合は、直前に受信した音声データを付け足すことにより音声データのスリップの発生を防止する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】非同期通信回線を介して受信した音声デー タを再生する非同期音声データ処理方式において、

音声データ再生速度より音声データ受信速度が速い場合 は、過剰な受信データを廃棄し、音声データ再生速度よ り音声データ受信速度の方が遅い場合は、直前に受信し た音声データを付け足すことにより音声データのスリッ プの発生を防止することを特徴とする非同期音声データ 処理方式。

【請求項2】非同期通信網から受信した音声信号が復号 10 化されてデータ保持バッファに保持され、このデータ保 持バッファに保持されたデータをデータ再生バッファに 転送して、前記データ再生バッファから読み出したデー タを再生出力する非同期音声データ処理方式において、 前記データ保持バッファへの受信データバイトをカウン トするとともに、前記データ再生バッファからの出力デ ータバイトをカウントし、両カウント値に基づいて前記 データ保持バッファから前記データ再生バッファへのデ ータ転送を制御することを特徴とする非同期音声データ 処理方式。

【請求項3】前記受信データバイトカウント値と前記デ ータ再生バッファからの出力データバイト値との差分 と、予め定めた判定基準値Nとの比較判定結果に基づい て前記データ保持バッファから前記データ再生バッファ へのデータ転送を制御することを特徴とする請求項2に 記載の非同期音声データ処理方式。

【請求項4】前記判定基準値Nは、前記データ再生バッ ファの未再生エリアへのデータ上書きやデータ不足によ り古いデータの再生によって生じる再生音声の品質の低 下を基準にして設定されることを特徴とする請求項3に 30 記載の非同期音声データ処理方式。

【請求項5】前記データ再生バッファへの書き込み位置 が再生位置を追い越す場合には、受信したデータを廃棄 し、再生位置が書き込み位置を追い越す場合には、直前 の音声データを再生するエリアに書き込むことを特徴と する請求項2に記載の非同期音声データ処理方式。

【請求項6】非同期通信網から受信した音声信号が復号 化されてデータ保持バッファに保持され、このデータ保 持バッファに保持されたデータをデータ再生バッファに 転送して、前記データ再生バッファから読み出したデー 40 タを出力する非同期音声データ処理方式において、

前記データ再生バッファの書き込み位置と再生位置に基 づいて前記データ保持バッファから前記データ再生バッ ファへのデータ転送を制御することを特徴とする非同期 音声データ処理方式。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、非同期音声データ 処理方式に関し、特に非同期に起因する音質劣化を改善 する非同期音声データ処理方式に関する。

[0002]

【従来の技術】従来、データ送出側装置と、データ受信 側装置間のデータの同期確立は、通信回線から同期クロ ックを抽出し、抽出した同期クロックを用いて対向する 地点間の同期を確立し、標本化クロックと回線クロック の同期をとって通信を実現している。

【0003】一方、近年、パソコン(PC)、インター ネット等を用いた通信の要望が強くなっている。ところ が、現在急激な普及をしているTCP/IPネットワー クやパーソナルコンピュータを用いた音声通信システム を構築する場合、クロック再生や音声の標本化と回線ク ロックの同期をとることは、一般的に行うことが出来な

【0004】回線速度と装置内の非同期処理について は、例えば、特開平7-284077号公報は、ISD N回線を使用した通信でPCベースの装置データの送受 信を行った場合、音声符号化部の符号化音声データ量が ISDN回線の伝送速度に非同期であるために生じる音 声情報の抜けと重複を制御する同期スリップ処理技術が 開示されている。

[0005]

20

【発明が解決しようとする課題】特開平7-28407 7号公報では、上述の如く、符号化データのスリップに 対する制御は行なわれているが、次のようなPCMの過 不足により発生するスリップについては対処がなされて いない。つまり、音声データ受信処理とPCでの再生処 理とが非同期である場合、音声データがつぶれたり不足 することにより、スリップが発生し、音声品質の劣化 や、正常な再生ができない、等の問題は解決されない。 【0006】そこで、本発明の目的は、非同期に起因す る音質劣化を改善した非同期音声データ処理方式を提供

することにある。 [0007]

【課題を解決するための手段】前述の課題を解決するた め、本発明による非同期系の音声通信方式は、次のよう な特徴的な構成を採用している。

【0008】すなわち、本発明は、音声データ受信処理 とPCでの再生処理とが非同期である場合、復号により 得たPCM音声データを再生する際に過不足し、スリッ ブが発生するような場合、PCMデータの復号量が多い 場合は、データを捨て、再生よりPCMデータ復号量の 方が少ない場合は、直前の音声データを付け足すこと で、音声データのスリップを発生させないようにし音声 の品質を確保する。このように、受信音声データと再生 のタイミングを監視し、音声の再生制御を行うことで、 非同期系音声通信方式における音声品質の向上を図って いる。

【0009】より具体的には、

(1) 非同期通信回線を介して受信した音声データを再 50 生する非同期音声データ処理方式において、音声データ

再生速度より音声データ受信速度が速い場合は、過剰な 受信データを廃棄し、音声データ再生速度より音声デー タ受信速度の方が遅い場合は、直前に受信した音声デー タを付け足すことにより音声データのスリップの発生を 防止する非同期音声データ処理方式。

【0010】(2)非同期通信網から受信した音声信号 が復号化されてデータ保持バッファに保持され、このデ ータ保持バッファに保持されたデータをデータ再生バッ ファに転送して、前記データ再生バッファから読み出し たデータを再生出力する非同期音声データ処理方式にお 10 そのデータがデコーダ22で復号化された後、データ保 いて、前記データ保持バッファへの受信データバイトを カウントするとともに、前記データ再生バッファからの 出力データバイトをカウントし、両カウント値に基づい て前記データ保持バッファから前記データ再生バッファ へのデータ転送を制御する非同期音声データ処理方式。 【0011】(3)前記受信データバイトカウント値と 前記データ再生バッファからの出力データバイト値との 差分と、予め定めた判定基準値Nとの比較判定結果に基 づいて前記データ保持バッファから前記データ再生バッ ファへのデータ転送を制御する上記(2)の非同期音声 20 データ処理方式。

【0012】(4)前記判定基準値Nは、前記データ再 生バッファの未再生エリアへのデータ上書きやデータ不 足により古いデータの再生によって生じる再生音声の品 質の低下を基準にして設定される上記(3)の非同期音 声データ処理方式。

【0013】(5)前記データ再生バッファへの書き込 み位置が再生位置を追い越す場合には、受信したデータ を廃棄し、再生位置が書き込み位置を追い越す場合に は、直前の音声データを再生するエリアに書き込む上記 30 を備えている。 (2)の非同期音声データ処理方式。

【0014】(6)非同期通信網から受信した音声信号 が復号化されてデータ保持バッファに保持され、このデ ータ保持バッファに保持されたデータをデータ再生バッ ファに転送して、前記データ再生バッファから読み出し たデータを出力する非同期音声データ処理方式におい て、前記データ再生バッファの書き込み位置と再生位置 に基づいて前記データ保持バッファから前記データ再生 バッファへのデータ転送を制御する非同期音声データ処 理方式。

[0015]

【発明の実施の形態】以下、本発明による非同期音声デ ータ処理方式の好適実施形態例について添付図面を参照 しながら詳細に説明する。

【0016】図1は本発明の一実施の形態としての非同 期系における音声データ通信方式におけるパソコン(P C) の構成ブロックである。

【0017】図1において、パソコンは、データ送信処 理部1とデータ受信処理部2から構成される。PCM音 声データのデータ送信処理部1は、例えば、マイクロホ 50 る(ステップS2)。次に、データ受信カウンタ26に

ンからの音声信号が入力端子Aから入力され、A/D変 換部11でデジタルデータに変換され、エンコーダ12 で符号化された後、符号化データがソケット送信部13 で非同期通信網を通して送信するためのフォームとされ て出力端子CからTCP/IPネットワーク等の非同期 通信網に送出される。

【0018】一方、データ受信処理部2では、ソケット 受信部21により非同期通信網から受信端子Dを介して 受信した音声信号を所定の信号フォーマットに変換し、 持バッファ23に保持(保存)される。

【0019】データ保持バッファ23に保持されたデー タは、所定の制御下、データ再生バッファ24に転送さ れ、データ再生バッファ24から読み出されたデータが D/A変換部25でアナログ信号に変換されて出力端子 Dを介して、例えばスピーカに出力される。

【0020】本実施形態においては、デコーダ22から データ保持バッファ23へのデータ入力 (データの受信 速度)と、データ再生パッファ24からD/A変換部2 5への出力(データの再生速度)とを監視して、データ 保持バッファ23からデータ再生バッファ24へのデー タ転送を制御することによりPCMデータの再生を制御 している。そのために、本実施形態では、データ保持バ ッファ部23への受信データバイト数のカウントを行う 受信カウンタ部26と、データ再生バッファ部24によ る再生データバイト数のカウントを行う再生カウンタ部 27と、これらカウンタ部からのカウント情報に基づい てデータ保持バッファに保持されている受信データのデ ータ再生パッファへの書き込み制御を行う制御部28と

【0021】以上のように、データ再生パッファ24に 音声データを書き込み、D/A変換部25でデジタルデ ータからアナログデータへの変換を行って出力端子Bか ら音声が出力されるが、音声再生完了したと同時にデー タ再生カウンタ部27で再生データのバイト数をカウン トする。制御部28では、データ受信カウンタ26のカ ウンタ情報とデータ再生カウンタ27のカウンタ情報か ら、データ保持バッファ23に退避している音声データ のデータ再生バッファ24への転送、書き込み制御をお 40 となう。

【0022】次に、図1に示すデコーダ22における受 信データの復号化処理以降の受信音声再生処理の流れと 受信音声再生データ制御処理を図2のフローチャートと 図3のバッファメモリの構成例を参照しながら説明す る。

【0023】図2において、非同期通信網回線からデー タを受信すると、先ず、ステップS1で音声データを復 号処理してデータ保持バッファ23に格納し、データ受 信カウンタ26によりデータ受信バイト数をカウントす

よるデータ受信カウンタ値と、再生するデータのバイト 数をカウントするデータ再生カウンタ27によるデータ バイトカウンタ値との差分DFと判定基準値Nとの比較 判定結果に基づいて受信データの再生バッファ 24への 書き込み、転送を制御する(ステップS3~S6)。

【0024】すなわち、上記判定基準値Nは、データ再 生バッファ24の未再生エリアへのデータ上書きやデー タ不足により古いデータの再生によって生じる再生音声 の品質の低下を避けるために必要な値に設定される。

すような簡略化したデータ再生バッファ24について説 明すると、データ再生バッファ24が3ブロックに分か れ、判定基準値Nを2に設定した場合、まず正常動作を 示すOのように、書き込みデータバイト数と再生データ バイト数の差が2より小さく、かつ再生データバイト数 より書き込みデータバイト数の方が大きいあるいは同じ 場合、データを壊すことなく音質を保つことができる。 回線速度と再生速度が同じ場合がこの動作に相当する。

【0026】次に、書き込み位置が再生位置を追い越す 動作を示す②のように、書き込みデータバイト数と再生 20 データバイト数の差が2以上で、書き込みデータバイト 数が再生データバイト数より大きい場合、再生していな いM(2) エリアに新しい音声データを上書きするので 音声が壊れる原因になる。音声の再生速度より受信する データの回線速度の方が速いためデータ量が多く再生が 間に合わない。このような場合、本実施形態では、受信 したデータを廃棄する処理を行う。

【0027】更に、再生位置が書き込み位置を追い越す 動作を示す③のように、書き込みデータバイト数より再 生データバイト数が多い場合、これは新しい音声データ 30 の書き込みはM(1)までなのに対し音声データの書き 込み行っていないM(2)エリアを再生しようとする場 合である。このとき再生されるデータは以前再生したデ ータのため音声が壊れる原因となる。音声の再生速度の 方が回線速度より速いため次のデータが来ないうちに再 生処理を行ってしまう。このような場合は、本実施形態 では、直前の音声データを再生するエリアに書き込むこ とによって、音声の違和感を最小限にする処理を行う。 【0028】上述の如き判定、制御を用いた図2のステ ップS3~S6の処理を具体的に説明する。ステップS 40 3において、差分DFについての判定結果が、**②**0≦D F≦Nの場合には、データの受信と再生処理のバランス がとれているためステップS4で受信データをデータ再 生バッファ24に書込む。また、判定結果が**②**DF>0 の場合には、再生処理に比べデータの受信速度が速いた めステップS5に移行して受信データを廃棄する。更 に、判定結果が③DF<0の場合には、データの受信速 度より再生処理の方が速いためデータ量が少ないのでス テップS6に移行して、保持していた直前の受信データ をデータ再生バッファに書き込みを行う。ステップS4 50

~ S 6 の処理を経た後、再生準備が完了する。 【0029】また、音声再生処理が行われると、ステッ

プS7で再生完了情報を得て、ステップS8において、 データ再生カウンタ をカウントして音声再生処理を完 了する。

【0030】本発明の他の実施の形態として、その基本 的構成は上記の通りとしつつ、判定方法においては、上 記の書き込みデータバイト数のカウント値や再生データ バイト数のカウント値の比較で再生データの制御を行う 【0025】理解を簡単にするため、例えば、図3に示 10 のではなく、図3に示すように、データ再生バッファの 書き込み位置と再生位置を常に監視することでデータの 制御を行う方法も用いることができる。

> 【0031】以上、本発明による非同期音声データ処理 方式の好適実施形態を詳述した。しかし、斯かる実施形 態は、本発明の単なる例示に過ぎず、何ら本発明を限定 するものではないことに留意されたい。本発明の要旨を 逸脱することなく、特定用途に応じて種々の変形変更が 可能であること、当業者には容易に理解できよう。

【発明の効果】以上説明したように、本発明によれば、 音声データ受信処理とPCでの再生処理とが非同期で、 音声データがつぶれたり足りなかったりすることでスリ ップが発生するような場合、再生よりデータ受信速度が 速い場合、受信データ量が多いためデータを廃棄し、再 生よりデータ受信速度の方が遅い場合は、受信データ量 が少ないため直前の音声データを付け足すことで、音声 データのスリップを発生させないようにし、音声の品質 を確保する。したがって、受信音声データと再生のタイ ミングを監視し、音声の再生制御を行うことで、音声品 質の向上を図った非同期系における音声通信方式が実現

【図面の簡単な説明】

[0032]

【図1】本発明による非同期音声データ処理方式のPC (バーソナルコンピュータ)側の構成ブロック図であ る。

【図2】本発明による非同期音声データ処理方式におけ る音声制御方式の流れを示すフローチャートである。 【図3】本発明による非同期音声データ処理方式におけ る音声データ制御判定方法の一例を説明するための図で ある。

【符号の説明】

24

1	データ送信処理部
2	データ受信処理部
1 1	A/D変換部
12	エンコーダ
1 3	ソケット送信部
2 1	ソケット受信部
22	デコーダ
2 3	データ保持バッファ

データ再生バッファ

25 D/A変換部 26 データ受信カウンタ

7

*27 データ再生カウンタ

* 28 制御部

【図1】

【図2】

【図3】

