

Distance transformation

Min distance check

Peak scoreAssign scores to each peak base

- Assign scores to each peak based on the likelihood that the peak has an corresponding particle
- Sort peaks according to the score (rather than peak values)

Colloidal chain tracking framework

- Preprocessing
- Prelim tracking on dt
- Sorting
 - Total pixel intensity
 - Compare to a mask
- Refine result
 - Distance check
 - Total number of particles
 - Gaussian fitting to get subpixel resolution

Colloidal chain tracking framework

- Preprocessing
- Prelim tracking on dt
- Sorting
 - Total pixel intensity
 - Compare to a mask
- Refine result
 - Distance check
 - Total number of particles
 - Gaussian fitting to get subpixel resolution

Preprocessing

Preprocessing - find maxima

What is "maxima"?

Code

```
if img[x, y] >= img[x-1, y-1] and \
img[x, y] > img[x-1, y] and \
img[x, y] >= img[x-1, y+1] and \
img[x, y] > img[x, y-1] and \
img[x, y] > img[x, y+1] and \
img[x, y] >= img[x+1, y-1] and \
img[x, y] > img[x+1, y] and \
img[x, y] >= img[x+1, y+1]:
cent.append(xy)
```

Preprocessing - mask out the chain

Create mask

- Maximum filter (size=15)
- Threshold (isodata)
- Make mask (use the biggest connected region)

Preprocessing - mask out the chain

Preprocessing - mask out the chain

Preprocessing - clear noise (despeckle)

Preprocessing - clear noise (despeckle)

Preprocessing - distance transform (create maxima)

Why is distance transform necessary?

Methods to identify particles

Colloidal chain tracking framework

- Preprocessing
- Prelim tracking on dt
- Sorting
 - Total pixel intensity
 - Compare to a mask
- Refine result
 - Distance check
 - Total number of particles
 - Gaussian fitting to get subpixel resolution

Prelim tracking

Prelim tracking

Prelim tracking

Colloidal chain tracking framework

- Preprocessing
- Prelim tracking on dt
- Sorting
 - Total pixel intensity
 - Compare to a mask
- Refine result
 - Distance check
 - Total number of particles
 - Gaussian fitting to get subpixel resolution

Sorting

- Default: left-right, top-bottom
- Based on total pixel intensity
- Based on cross-correlation with a mask

Sorting

- Default: left-right, top-bottom
- Based on total pixel intensity
- Based on cross-correlation with a mask

Sorting

- Default: left-right, top-bottom
- Based on total pixel intensity
- Based on cross-correlation with a mask

Colloidal chain tracking framework

- Preprocessing
- Prelim tracking on dt
- Sorting
 - Total pixel intensity
 - Compare to a mask
- Refine result
 - Distance check
 - Total number of particles
 - Gaussian fitting to get subpixel resolution

Refine - distance check

Refine - total number of particles = 15

Refine - Gaussian fitting to get subpixel resolution

 $\theta(s) \cos \frac{n\pi s}{T}$

 $\theta_i \cos \frac{n\pi s_i}{2}$

Example of Fourier coefficient time evolution

Choose \Delta t to be 100 frames

Persistence length calculation (fix the power of n at -2)

Converting to linear shows better fitting result

$$l_p = \frac{L^2}{\pi^2 \text{ exp intersect}}$$

 $l_p = 948 \, \text{px}$