M

Méthodes Quadripôles

Les grandeurs intéressantes sont :

 $T_{_{\mathcal{V}}}=rac{v_{_{2}}}{v_{_{1}}}$: Gain en tension du quadripôle

 $T_i = \frac{i_2}{i_1}$: Gain en courant

 $Z_{E}=rac{v_{1}}{i_{1}}$: Impédance d'entrée

 $Z_{_{S}}=rac{v_{_{2}}}{i_{_{2}}}$: Impédance de sortie

Exemple : un quadripôle en représentation impédance

Calcul d'impédance d'entrée Z_E (ou bien R_E)

1

$$\begin{split} &V_{_{1}}=Z_{_{11}}.I_{_{1}}+Z_{_{12}}.I_{_{2}}\\ &V_{_{2}}=Z_{_{21}}.I_{_{1}}+Z_{_{22}}.I_{_{2}}=&-R_{_{C}}.I_{_{2}}\\ &\text{Donc}:Z_{_{E}}=\frac{V_{_{1}}}{I_{_{1}}}=Z_{_{11}}-\frac{Z_{_{12}}.Z_{_{21}}}{Z_{_{22}}+R_{_{C}}} \end{split}$$

Calcul d'impédance d'entrée Z_s (ou bien R_s)

$$\begin{split} &V_{1}=Z_{11}.I_{1}+Z_{12}.I_{2}=&-R_{G}.I_{1}\\ &V_{2}=Z_{21}.I_{1}+Z_{22}.I_{2}\\ &\operatorname{Donc}:Z_{S}=\frac{V_{2}}{I_{2}}=Z_{22}+Z_{21}.\frac{I_{1}}{I_{2}}=Z_{22}-\frac{Z_{21}.Z_{12}}{Z_{11}+R_{G}} \end{split}$$

Calcul du gain en courant A_i et le gain en tension $A_{_{V}}$

$$\begin{split} \boldsymbol{V}_1 &= \boldsymbol{Z}_{11}.\boldsymbol{I}_1 + \boldsymbol{Z}_{12}.\boldsymbol{I}_2 = &-\boldsymbol{R}_G.\boldsymbol{I}_1 \\ \boldsymbol{V}_2 &= \boldsymbol{Z}_{21}.\boldsymbol{I}_1 + \boldsymbol{Z}_{22}.\boldsymbol{I}_2 = &-\boldsymbol{R}_C.\boldsymbol{I}_2 \\ \text{Donc}: \boldsymbol{A}_i &= \frac{\boldsymbol{I}_2}{\boldsymbol{I}_1} = &-\frac{\boldsymbol{Z}_{21}}{\boldsymbol{Z}_{22} + \boldsymbol{R}_C} \\ \boldsymbol{A}_v &= \frac{\boldsymbol{V}_2}{\boldsymbol{V}_1} = \frac{\boldsymbol{R}_C}{\boldsymbol{R}_G}.\boldsymbol{A}_i \end{split}$$