Laborator 6 – Tehnici de simulare Autor: Lect. dr. Bianca Mogoş

Metoda respingerii: simularea variabilelor aleatoare $X \sim \mathcal{N}(\mu, \sigma)$ și $X \sim Exp(\lambda)$

Aplicații

- 1. Simularea variabilei aleatoare $X \sim \mathcal{N}(\mu, \sigma)$.
 - (a) Scrieți o funcție pentru simularea variabilei aleatoare $X \sim \mathcal{N}(\mu, \sigma)$. Antetul funcției este de forma:

function
$$[x] = \text{myNormala}(\mu, \sigma).$$
 (0.1)

- (b) Apelați funcția creată pentru a genera o mulțime de 1000 de valori de selecție asupra v.a. $X \sim \mathcal{N}(0,1)$. Validați rezultatele obținute construind histograma asociată mulțimii de selecție.
- (c) Cerința de la punctul (1b), dar pentru variabilele aleatoare $X \sim \mathcal{N}(-2, 0.5)$ și $X \sim \mathcal{N}(2, 2)$.
- 2. Simularea variabilei aleatoare $X \sim Exp(\lambda)$.
 - (a) Scrieți o funcție pentru simularea variabilei aleatoare $X \sim Exp(\lambda)$. Antetul funcției va fi

function
$$[x] = \text{myExp}(\lambda)$$
. (0.2)

- (b) Apelaţi funcţia creată pentru a genera o mulţime de 1000 de valori de selecţie asupra v.a. $X \sim Exp(1)$. Validaţi rezultatele obţinute construind histograma asociată mulţimii de selecţie.
- (c) Cerința de la punctul (2b), dar pentru variabilele aleatoare $X \sim Exp(2)$ și $X \sim Exp(10)$.

Bibliografie

[Văduva (2004)] I. Văduva (2004), Modele de simulare: note de curs, Editura Universității din București, București