France Unemployment predictions

Importing dataset:

```
rm(list=ls())
data_france=read.csv("France_Unemployment.csv")
head(data_france)
```

```
##
        TIME Unemployment_Rate Unemployment
                                                  CPI Total_new_Job_Vacancies
                          0.098
## 1 1989-01
                                      2554100 64.215
                                                                         101700
## 2 1989-02
                           0.097
                                      2541300 64.398
                                                                         100000
## 3 1989-03
                           0.097
                                      2533900 64.582
                                                                          99500
## 4 1989-04
                           0.097
                                      2547800 64.986
                                                                         106100
## 5 1989-05
                                      2537300 65.244
                                                                         105300
                           0.097
  6 1989-06
                           0.096
                                      2530900 65.317
                                                                         110600
     Domestic_Producer_Prices_Index Unemployed_Male Unemployed_Female
##
## 1
                              82.4663
                                               1047000
                                                                  1365000
## 2
                              82.4663
                                               1037000
                                                                  1360000
## 3
                              82.5494
                                               1033000
                                                                  1360000
## 4
                              83.0482
                                               1030000
                                                                  1359000
## 5
                              83.1313
                                               1029000
                                                                  1357000
## 6
                              82.6325
                                               1028000
                                                                  1355000
```

```
tail(data_france)
```

```
##
          TIME Unemployment_Rate Unemployment
                                                    CPI Total_new_Job_Vacancies
## 405 2022-09
                             0.071
                                        2905800 112.74
                                                                           323400
                             0.072
  406 2022-10
                                        2875100 113.90
                                                                           324100
## 407 2022-11
                             0.071
                                        2810400 114.26
                                                                           341800
  408 2022-12
                             0.071
                                        2816600 114.16
                                                                           324600
  409 2023-01
                             0.071
                                        2808500 114.60
                                                                           337100
##
  410 2023-02
                             0.070
                                        2780800 115.78
                                                                           342300
##
       Domestic_Producer_Prices_Index Unemployed_Male Unemployed_Female
  405
##
                                  144.5
                                                 1154000
                                                                    1019000
## 406
                                  144.2
                                                                    1039000
                                                 1165000
## 407
                                  145.2
                                                 1154000
                                                                    1033000
  408
##
                                  146.9
                                                 1157000
                                                                    1033000
## 409
                                  150.5
                                                 1154000
                                                                    1020000
## 410
                                  149.2
                                                 1147000
                                                                    1005000
```

Feature Scaling - Creating a new variable:

```
data_france$male_to_female_unemp=round((data_france$Unemployed_Male/data_france$Unemployed_Femal
e),4)
print(data_france$male_to_female_unemp[10])
```

```
## [1] 0.7654
```

This is to incorporate the factor - whether female are getting more unemployed or not compared to males over the years - as an external variable for overall unemployment rate.

Checking Multicollinearity using VIFs:

```
suppressWarnings(library(regclass))
## Loading required package: bestglm
## Loading required package: leaps
## Loading required package: VGAM
## Loading required package: stats4
## Loading required package: splines
## Loading required package: rpart
## Loading required package: randomForest
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
## Important regclass change from 1.3:
## All functions that had a \cdot in the name now have an \_
## all.correlations -> all_correlations, cor.demo -> cor_demo, etc.
VIF(lm(formula = Unemployment_Rate ~ Unemployment+CPI+Total_new_Job_Vacancies+Domestic_Producer_Pr
ices_Index+male_to_female_unemp, data = data_france))
##
                     Unemployment
                                                              CPI
                         2.359338
                                                        22.296290
##
##
          Total_new_Job_Vacancies Domestic_Producer_Prices_Index
##
                         3.574387
                                                         6.225157
             male_to_female_unemp
##
```

Removing CPI:

7.026014

##

```
VIF(lm(formula = Unemployment_Rate ~ Unemployment+Total_new_Job_Vacancies+Domestic_Producer_Prices
_Index+male_to_female_unemp, data = data_france))
```

```
## Unemployment Total_new_Job_Vacancies
## 1.732834 2.039151
## Domestic_Producer_Prices_Index male_to_female_unemp
## 2.880349 3.636023
```

This is the final set of variables free from multicollinearity.

Train-Test split of the dataset - last 6 months of the data would be taken into testing part:

```
df_france_train1=data_france[1:(nrow(data_france)-6),]
df_france_test1=data_france[(nrow(data_france)-5):nrow(data_france),]
head(df_france_train1)
```

```
##
        TIME Unemployment_Rate Unemployment
                                                  CPI Total_new_Job_Vacancies
## 1 1989-01
                          0.098
                                       2554100 64.215
                                                                         101700
## 2 1989-02
                           0.097
                                       2541300 64.398
                                                                         100000
## 3 1989-03
                           0.097
                                      2533900 64.582
                                                                          99500
## 4 1989-04
                           0.097
                                       2547800 64.986
                                                                         106100
                                       2537300 65.244
## 5 1989-05
                           0.097
                                                                         105300
  6 1989-06
                           0.096
                                       2530900 65.317
                                                                         110600
     Domestic_Producer_Prices_Index Unemployed_Male Unemployed_Female
##
## 1
                              82.4663
                                               1047000
                                                                   1365000
## 2
                              82,4663
                                               1037000
                                                                   1360000
## 3
                              82.5494
                                               1033000
                                                                   1360000
                                               1030000
## 4
                              83.0482
                                                                   1359000
## 5
                                               1029000
                              83.1313
                                                                   1357000
## 6
                              82.6325
                                               1028000
                                                                   1355000
     male_to_female_unemp
##
## 1
                    0.7670
## 2
                    0.7625
## 3
                    0.7596
## 4
                    0.7579
## 5
                    0.7583
## 6
                    0.7587
```

- The model would be trained on the train dataset.
- · And the performance of the fitted model would be checked on the test dataset.
- If this performs fairly well, this model would be considered to get the future forecasts.

Time series plot:

— Attaching packages

```
suppressWarnings(library(fpp2))
## Registered S3 method overwritten by 'quantmod':
```

```
## method from
## as.zoo.data.frame zoo
```

- fpp2 2.5 --

```
## ✔ ggplot2 3.3.6 ✔ fma 2.4
## ✔ forecast 8.18 ✔ expsmooth 2.3
```

```
## — Conflicts — fpp2_conflicts — ## x ggplot2::margin() masks randomForest::margin()
```

```
suppressWarnings(library(urca))
df.ts=ts(data_france$Unemployment_Rate, frequency = 12, start = c(1989,1))
plot(df.ts,xlab="Years",ylab="Unemployment Rates(Proportions)")
title(main="Time series plot of unemployment rate in France")
```

Time series plot of unemployment rate in France

Testing stationarity:

```
df_france_train1[,"Unemployment_Rate"] %>%
  ur.kpss() %>%
  summary()
```

This series is non-stationary - 1st order differencing would be necessary.

Testing stationarity after 1st order differencing:

```
diff(df_france_train1[,"Unemployment_Rate"]) %>%
  ur.kpss() %>%
  summary()
```

1st order differences are stationary.

ACF plot:

```
par(mfrow=c(1,1))
acf(diff(df_france_train1$Unemployment_Rate), lag.max = 20, main = "ACF plot")
```

ACF plot

p can be taken as 0/1/2 based on the no. of significant lags.

PACF plot:

```
par(mfrow=c(1,1))
pacf(diff(df_france_train1$Unemployment_Rate), lag.max = 10, main = "PACF plot")
```

PACF plot

q can be 0/1/2, based on the no. of significant lags.

Fitting ARIMAX model ignoring the variables that were eliminated due to high VIF:

Starting with the value of p & q as 2 and with the rest of the regressors:

```
##
## Call:
## arima(x = df_france_train1$Unemployment_Rate, order = c(2, 1, 2), xreg = as.matrix(df_france_train1[,
## c(3, 5, 6, 9)]), method = "ML")
##
## Coefficients:
```

```
## Warning in sqrt(diag(x$var.coef)): NaNs produced
```

```
##
            ar1
                     ar2
                               ma1
                                            Unemployment Total_new_Job_Vacancies
         0.8795
                 -0.6445
                          -0.2222
                                    0.3565
##
                                    0.0705
## s.e.
         0.0959
                  0.0559
                           0.1065
                                                                               NaN
##
         Domestic_Producer_Prices_Index
                                          male_to_female_unemp
                                   0e+00
                                                        -0.0093
##
                                   1e-04
                                                         0.0039
## s.e.
##
## sigma^2 estimated as 1.049e-06: log likelihood = 2201.9, aic = -4385.81
##
## Training set error measures:
##
                                      RMSE
                                                    MAE
                                                                 MPE
                                                                          MAPE
## Training set -4.424217e-05 0.001022971 0.0006904664 -0.05289185 0.7428873
                                  ACF1
##
                    MASE
## Training set 0.875025 -0.008829127
```

Test of significance of individual coefficients:

```
suppressWarnings(library(lmtest))
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
       as.Date, as.Date.numeric
##
##
## Attaching package: 'lmtest'
  The following object is masked from 'package: VGAM':
##
##
       1rtest
##
coeftest(est_train)
## Warning in sqrt(diag(se)): NaNs produced
```

```
##
## z test of coefficients:
##
##
                                     Estimate Std. Error z value Pr(>|z|)
                                   8.7946e-01 9.5888e-02
                                                           9.1717 < 2.2e-16 ***
## ar1
                                  -6.4447e-01 5.5925e-02 -11.5239 < 2.2e-16 ***
## ar2
## ma1
                                  -2.2216e-01 1.0651e-01 -2.0858
                                                                     0.03700 *
                                   3.5654e-01 7.0496e-02
                                                           5.0576 4.245e-07 ***
## ma2
## Unemployment
                                  1.1161e-08
                                                      NaN
                                                               NaN
                                                                         NaN
## Total_new_Job_Vacancies
                                  -3.3634e-09
                                                      NaN
                                                               NaN
                                                                         NaN
## Domestic_Producer_Prices_Index -2.8934e-06 9.9732e-05 -0.0290
                                                                     0.97686
## male_to_female_unemp
                                 -9.3459e-03 3.9176e-03 -2.3856
                                                                     0.01705 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '* 0.05 '.' 0.1 ' ' 1
```

We need to remove the variables producing NaNs & the insignificant variables.

After doing that, the summary & test of significances of the final model would look like:

```
est_1=arima(df_france_train1$Unemployment_Rate, order=c(1,1,1), method = "ML")
summary(est_1)
```

```
##
## Call:
## arima(x = df_france_train1$Unemployment_Rate, order = c(1, 1, 1), method = "ML")
##
## Coefficients:
##
            ar1
                    ma1
##
         0.2906 0.1905
## s.e. 0.0986 0.0994
##
  sigma^2 estimated as 1.335e-06: log likelihood = 2153.59, aic = -4301.19
##
##
## Training set error measures:
                                      RMSE
                                                    MAE
                                                                MPE
                                                                          MAPE
##
  Training set -3.973705e-05 0.001154181 0.0007430032 -0.05063419 0.8069906
##
##
                     MASE
                                  ACF1
## Training set 0.9416046 0.002304672
```

Test of significance of coefficients:

```
suppressWarnings(library(lmtest))
coeftest(est_1)
```

```
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## ar1 0.290572  0.098581  2.9475 0.003203 **
## ma1 0.190456  0.099390  1.9163 0.055332 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Thus only those parameters are kept as final, which are significant in prediction of the target variable.

Plot of Fitted vs Original values for train dataset:

```
res=residuals(est_1)
data_fit=df_france_train1$Unemployment_Rate-res
ts.plot(df_france_train1$Unemployment_Rate, type="l", xlab="Time Points(Months)", ylab="Unemployme
nt Rates(Proportions)", main="Fitted vs original for train dataset")
points(data_fit, type="l", col=2, lty=2)
legend("topleft",c("Original","Fitted"), col=c(1,2), lty=c(1,2), cex=0.75)
```

Fitted vs original for train dataset

Predictions of unemployment rates for the test dataset using above fitted model:

```
test_pred=predict(est_1, n.ahead=6, se.fit=FALSE, method="ML")
```

Predicted values:

```
print(as.vector(test_pred))
```

[1] 0.07113007 0.07087730 0.07080385 0.07078251 0.07077630 0.07077450

Original values:

```
print(df_france_test1$Unemployment_Rate)
```

[1] 0.071 0.072 0.071 0.071 0.071 0.070

Performance on test dataset:

MAPE (in %):

```
(1/length(df\_france\_test1\$Unemployment\_Rate))*(sum(abs(df\_france\_test1\$Unemployment\_Rate-as.vector(test\_pred))/abs(df\_france\_test1\$Unemployment\_Rate)))*100
```

[1] 0.6244345

RMSE:

```
sqrt(mean((df_france_test1$Unemployment_Rate-as.vector(test_pred))^2))
```

[1] 0.000579231

Thus, the fitted model is working well, more or less, for future dataset.

Now going with the same approach with the actual dataset for getting the future forecast of March, 23:

Checking stationarity:

```
data_france[,"Unemployment_Rate"] %>%
  ur.kpss() %>%
  summary()
```

```
diff(data_france[,"Unemployment_Rate"]) %>%
  ur.kpss() %>%
  summary()
```

ACF plot:

```
par(mfrow=c(1,1))
acf(diff(data_france$Unemployment_Rate), lag.max = 20, main = "ACF plot")
```

ACF plot

p can be taken as 0/1/2, based on the no. of significant lags.

PACF plot:

```
par(mfrow=c(1,1))
pacf(diff(data_france$Unemployment_Rate), lag.max = 20, main = "PACF plot")
```

PACF plot


```
#q=0/1
```

q can be taken as 0/1, based on the no. of significant lags.

Fitting the model that we tested before - on the actual data:

```
est_actual=arima(data_france$Unemployment_Rate, order=c(1,1,1), method = "ML")
summary(est_actual)
```

```
##
## Call:
  arima(x = data_france$Unemployment_Rate, order = c(1, 1, 1), method = "ML")
##
##
  Coefficients:
##
            ar1
                    ma1
##
         0.2849
                 0.1913
         0.0994
                 0.1004
##
   s.e.
##
  sigma^2 estimated as 1.329e-06:
                                     log likelihood = 2186.63,
##
##
##
  Training set error measures:
                                                               MPE
                           ME
                                     RMSE
                                                   MAE
                                                                        MAPE
##
  Training set -4.15456e-05 0.001151466 0.000743623 -0.05339375 0.8113157
##
##
                     MASE
## Training set 0.9445397 0.001563919
```

Test of significance of individual coefficients:

```
suppressWarnings(library(lmtest))
coeftest(est_actual)

##

## z test of coefficients:
##

## Estimate Std. Error z value Pr(>|z|)
## ar1 0.284904  0.099398  2.8663  0.004153 **
## ma1 0.191338  0.100386  1.9060  0.056646 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Plot of Fitted vs Original on the actual data:

```
res=residuals(est_actual)
data_fit=data_france$Unemployment_Rate-res
ts.plot(data_france$Unemployment_Rate, type="1", xlab="Time Points(Months)", ylab="Unemployment Ra
tes(Proportions)", main="Fitted vs original for France")
points(data_fit, type="1", col=2, lty=2)
legend("topright",c("Original","Fitted"), col=c(1,2), lty=c(1,2), cex=0.75)
```

Fitted vs original for France

Obtaining prediction of Unemployment rate for April 2023:

```
#Adding actual unemployment rate of March 23:
unemp_fr=c(data_france$Unemployment_Rate, 0.069)
est_actual=arima(unemp_fr, order=c(1,1,1), method = "ML")
future_unemp_pred=predict(est_actual, n.ahead=1, se.fit=FALSE, method="ML")
print(as.vector(future_unemp_pred))
```

[1] 0.06861347

Upper & Lower limits (95% C.I.s):

```
upper=as.vector(future_unemp_pred)+(1.96*(sqrt(est_actual$sigma2)))
lower=as.vector(future_unemp_pred)-(1.96*(sqrt(est_actual$sigma2)))
```

Upper limit for April 2023 forecast:

```
print(as.vector(upper))
```

[1] 0.0708709

Lower limit for April 2023 forecast:

```
print(as.vector(lower))
```

[1] 0.06635605

April,23 forecast - 6.8613 %

Upper & Lower limits - (6.6356 %, 7.087 %)