1 Zyklische Gruppen

1.1 Definition (Zyklische Gruppen der Ordnung n)

$$Z_n := \langle a \mid a^n = e \rangle = \{a^0, a^1, \dots a^{n-1}\}$$

1.2 Lemma

 Z_n ist isomorph zu $\mathbb{Z}/n\mathbb{Z}$, d.h. es existiert ein Isomorphismus $f: \mathbb{Z}/n\mathbb{Z} \to Z_n, i \mapsto a^i$.

Beweis. a) f ist bijektiv: Es genügt zu zeigen, dass f injektiv ist.

$$f(a^i) = f(a^j) \Rightarrow i + n\mathbb{Z} = j + n\mathbb{Z} \overset{i,j \in \mathbb{Z}/n\mathbb{Z}}{\Rightarrow} i = j \Rightarrow f \text{ bijektiv}$$

b)
$$f(i+j) = f(i) + f(j) \forall i, j \in \mathbb{Z}/n\mathbb{Z}$$

$$f(i+j) = a^{i+j} = a^i \cdot a^j = f(i) \cdot f(j)$$

1.3 Bemerkung (Eigenschaften von Z_n)

- Z_n ist abelsch.
- Zu jedem Teiler t von n gibt es genau eine Untergruppe der Ordung t, nämlich $\langle a^{\frac{n}{t}} \rangle$.
- Untergruppen von zyklischen Gruppen sind wieder zyklisch.

1.4 Lemma

Sei (G, \circ) eine zyklische Gruppe der Ordnung n mit $G = \langle n \rangle$. Sei weiter U eine Untergruppe von G. Dann ist U zyklisch, d.h. es gibt ein Element a^k mit $U = \langle a^k \rangle$.

Beweis. Wir zerlegen die Behauptung in zwei Fälle.

- a) Ist #U = 1, d.h. $U = \{e = a^0\}$ ist zyklisch.
- b) Sei #U > 1. Somit enthält U ein Element a^i mit i > 0, i minimal. Wir zeigen, dass $U = \langle a^i \rangle$. Sei $a^j \in U$ beliebig. Dann gilt $a^j \in \langle a^i \rangle$, denn: Es gibt $q, r \in \mathbb{N}$ mit $j = q \cdot i + r$ und $0 \le r < i$. Dann ist $a^j = a^{q \cdot i + r} = (a^i)^q \cdot a^r$ mit

Es glot
$$q, r \in \mathbb{N}$$
 init $j = q \cdot i + r$ und $0 \le r < i$. Dann ist $a^r = a^r = (a^r) \cdot a^r$ init $a^i, a^j \in U$ und somit auch $(a^i)^q \in U$ sowie schlussendlich auch $a^r \in U$. Da i minimal ist, folgt $r = 0$ und dann $a^r = e$, sodass $a^j = (a^i)^q \cdot e = (a^i)^q \in \langle a^i \rangle$

1.5 Definition

Seien $(G_1, \circ_1), (G_2, \circ_2)$ Gruppen und $g_1, g_1' \in G_1$ und $g_2, g_2' \in G_2$. Durch

$$(g_1, g_2) \circ (g'_1, g'_2) = (g_1 \circ_1 g'_1, g_2 \circ_2 g'_2)$$

wird eine Operation in $G_1 \times G_2$ erklärt. Man nennt $(G_1 \times G_2, \circ)$ das direkte Produkt der Gruppen G_1 und G_2 .

1

1.6 Bemerkung

Offensichtlich ist $(G_1 \times G_2, \circ)$ eine Gruppe.

 $(G_1, \circ_1), (G_2, \circ_2)$ seien Gruppen.

- a) $G_1 \times G_2 \cong G_2 \times G_1$ b) Sind G_1 und G_2 abelsch, so ist auch $G_1 \times G_2$ abelsch.

c) Ist $G_1 \times G_2$ zyklisch, so sind auch G_1 und G_2 zyklisch.

1.8 Beispiel

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \neq \mathbb{Z}/4\mathbb{Z}$$

 $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \cong \mathbb{Z}/6\mathbb{Z}$, denn $\langle (1,1) \rangle = \{(1,1),(0,2),(1,0),(0,1),(1,2),(0,0)\}.$

1.9 Satz

Die Gruppe $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ ist genau dann zyklisch, wenn ggT(n,m) = 1.

Beweis.
$$\operatorname{ggT}(n,m) = 1 \implies \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}/n \cdot m\mathbb{Z} = \langle (1,1) \rangle$$

Sei $\operatorname{ggT}(n,m) = d > 1$ und $(a,b) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$. Dann ist $\operatorname{ord}(a,b) = \#\langle (a,b) \rangle < n \cdot m = \#\mathbb{Z}/(\mathbb{Z}n) \times \mathbb{Z}/m\mathbb{Z}$.

Sei nun $n = n' \cdot d$ und $m = m' \cdot d$. Dann ist

$$\underbrace{(a,b) + \cdots (a,b)}_{n' \cdot m' \cdot d < n \cdot m \text{ Summanden}} = (0,0)$$

1.10 Theorem (Basissatz für endliche abelsche Gruppen)

Jede endliche abelsche Gruppe ist isomorph zu einem direkten Produkt zyklischer Gruppen von Primzahlpotenzordnung

$$Z_{m_1} \times Z_{m_2} \times \cdots \times Z_{m_k}$$
 mit $m_1 \mid m_2, m_2 \mid m_3, \ldots, m_{k-1} \mid m_k$

Diese Darstellung ist eindeutig bis auf die Reihenfolge der Faktoren im direkten Produkt.

1.11 Beispiel

Suche alle abelschen Gruppen der Ordnung 8.

$$8 = 2^3 = 2^1 \cdot 2^1 \cdot 2^1$$

$$Z_8 = Z_{2^3}$$

$$Z_{2^2} \times Z_{2^1} = Z_4 \times Z_2$$

$$Z_{2^1} \times Z_{2^1} \times Z_{2^1} = Z_2 \times Z_2 \times Z_2$$

 \Rightarrow Es gibt bis auf Isomorphie genau 3 abelsche Gruppen der Ordnung 8.

1.12 Beispiel

Alle abelschen Gruppen der Ordnung 360 enthalten ein Element der Ordnung 30. $360=2^3\cdot 3^2\cdot 5$

2 Ringe

2.1 Definition

Sei $R \neq \emptyset$. $(R, +, \cdot)$ heißt Ring, falls gilt:

- a) (R, +) ist eine abelsche Gruppe.
- b) R, \cdot) ist eine Halbgruppe.
- c) Distributivgesetze: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ und $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ für alle $a,b,c \in R$.
- d) Gilt zusätzlich $a\cdot b=b\cdot a \text{ für alle } a,b\in R,$ dann wird $(R+,\cdot)$ kommutativer Ring genannt.

2.2 Definition

Sei $(R,+,\cdot)$ ein Ring und $U\subseteq R.$ U heißt Unterring von $(R,+,\cdot)$, wenn gilt:

- a) $U \neq \emptyset \ (0_R \in U)$
- b) $a, b \in U \implies a + b \in U$ für alle $a, b \in U$ (Abgschlossenheit unter Addition)
- c) $a \in U \implies -a \in U$ für alle $a \in U$ (Abgeschlossenheit unter additiven Inversen)

2.3 Beispiel

 $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$ sind kommutative Ringe.

 $\mathbb{R}^{n \times n}$, der Matrizenring (über \mathbb{R})

 $\mathbb{Z}/n\mathbb{Z}$, der Restklassenring modulo n

 $2\mathbb{Z} = \{2 \cdot z : z \in \mathbb{Z}\}$ ist ein Unterring von \mathbb{Z} $\{a + bi : a, b \in \mathbb{Z}\}$ ist Unterring von \mathbb{C}

2.4 Bemerkung

Allgemein gilt:

$$a \cdot (b_1 + \cdots + b_n) = a \cdot b_1 + \cdots + a \cdot b_n$$

für alle $a, b_i \in R$.

Beweis. Zeige die Aussage mittels vollständiger Induktion über n.

2.5 Bemerkung

Addition ist in jedem Ring kommutativ.

"Punktrechnung vor Strichrechnung."

Inverse Elemente in Ringen existieren immer bzgl. der Addition (Bezeichnung -a), und sofern sie bzgl. der Multiplikation existieren schreibe a^{-1} .

2.6 Bemerkung

Jeder Ring hat ein neutrales Element bezüglich der Addition. Nenne dieses auch *Nullelement* und bezeichne es mit 0.

Das Nullelement ist eindeutig bestimmt, denn: $0_1 = 0_1 + 0_2 = 0_2$.

2.7 Definition

Sei $(R, +, \cdot)$ ein Ring mit Nullelement 0. Existiert ein Element $1 \in R \setminus \{0\}$ mit $a \cdot 1 = 1 \cdot a = 1$ für alle $a \in R$, dann wird 1 Einselement genannt.

2.8 Bemerkung

Nicht jeder Ring hat ein Einselement! Falls ein solches aber existiert, dann ist es auch eindeutig bestimmt, denn: $1_1 = 1_1 \cdot 1_2 = 1_2$.

2.9 Beispiel

- $-\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ sind Ringe mit Nullelement 0 und Einselement 1.
- $-\mathbb{Z}/n\mathbb{Z}$ ist ein Ring mit Nullelement 0 und Einselement 1.
- $\mathbb{R}^{n\times n}$ ist ein Ring mit Nullelement $0_{n\times n}$ und Einselement 1_n .
- Sei $M \neq \emptyset$ und $(\mathcal{P}(M); \triangle, \cap)$ ist dann ein Ring mit Nullelement \emptyset und Einselement M.

2.10 Bemerkung

Sei $(R, +, \cdot)$ ein Ring mit Nullelement 0 und $a \in R$. Dann gilt $0 \cdot a = 0$ und $a \cdot 0 = 0$.

$$\begin{array}{ll} \textit{Beweis.} \ \ 0 \cdot a = (0+0) \cdot a = (0 \cdot a) + (0 \cdot a) \quad \Rightarrow \quad (0 \cdot a) + (-0 \cdot a) = (0 \cdot a) + (0 \cdot a) + (-0 \cdot a) \quad \Rightarrow \quad 0 = 0 \cdot a + 0 = 0 \cdot a \end{array}$$

2.11 Definition

Sei $(R, +, \cdot)$ ein kommutativer Ring mit $a, b \in R \setminus \{0\}$. Gilt $a \cdot b = 0$, dann werden a, b Nullteiler in $(R, +, \cdot)$ genannt.

2.12 Beispiel

Der Ring $\mathbb{Z}/6\mathbb{Z}$ hat die Nullteiler 2 und 3, denn $2 \cdot 3 = 3 \cdot 2 = 0$.

Die Ringe $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ besitzen keine Nullteiler, sind also nullteilerfrei.

In Matrizenringen gibt es Nullteiler, z.B.

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

In $\mathbb{Z}/p\mathbb{Z}$ mit p prim gibt es keine Nullteiler, denn: Sei $a \in \mathbb{Z}/p\mathbb{Z}\setminus\{0\}$. Angenommen es existiert ein $b \in \mathbb{Z}/p\mathbb{Z}\setminus\{0\}$ mit $a \cdot b = 0 \pmod{p}$. Dann folgt $(a^{-1} \cdot a) \cdot b = a^{-1} \cdot 0$ und $1 \cdot b = b = 0$.

2.13 Definition

Sei $(R, +, \cdot)$ ein kommutativer Ring mit Einselement, in dem es keine Nullteiler gibt (nullteilerfrei). Dann wird $(R, +, \cdot)$ ein *Integritätsring* genannt.

2.14 Beispiel

 $(\mathbb{Z}, +, \cdot)$ ist ein Integritätsring.

2.15 Definition

Sei $(R, +, \cdot)$ ein Ring mit Nullelement 0. Ist $(R \setminus \{0\}), +, \cdot)$ eine abelsche Gruppe, dann nennt man $(R, +, \cdot)$ einen Körper.