AMS 553.361 - Introduction to Optimization

Lectures by Donniell Fishkind Notes by Kaushik Srinivasan

Johns Hopkins University Fall 2018

Lecture 1 (2018-08-30)	1	Lecture 4 (2018-09-07)	
Lecture 2 (2018-08-31)	3	Lecture 5 (2018-09-12)	8
Lecture 3 (2018-09-05)	4	Lecture 6 (2018-09-14)	10

Introduction

Math 110.304 is one of the semi-important courses that is required/recommended for the engineering-based majors at Johns Hopkins University.

These notes are being live-TeXed, through I edot for Typos and add diagrams requiring the TikZ package separately. I am using Texpad on Mac OS X.

I would like to thank Zev Chonoles from The University of Chicago and Max Wang from Harvard University for providing me with the inspiration to start live-TeXing my notes. They also provided me the starting template for this, which can be found on their personal websites.

Please email any corrections or suggestions to ksriniv4@jhu.edu.

Lecture 1 (2018-08-30)

Introduction

Example 1. Up to 6 units of two nutrients can be added to solution and we require the number of units of nutrient 2 has to be at least (natural) logarithm of # units of nutrient one. Goal: choose x_1 = number units of nutrient 1, choose x_2 = number units of nutrient 2. To maximize expected height of plant $1 + x_1^2(x_2 - 1)^3 e^{-x_1 - x_2}$

Maximise
$$1 + x_1^2(x_2 - 1)^3 e^{-x_1 - x_2}$$

 $x_1 + x_2 \le 6$
 $x_2 > \log x_1$
 $x_1 \ge 0$
 $x_2 \ge 0$

generic optimization problem: say $\subseteq \mathbb{R}$

$$f: \underbrace{\mathbb{S}}_{\text{feasible region}} \to \underbrace{\mathbb{R}}_{\text{objective function}}$$

$$x^* \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
 optimal

however optimal objective function value is 1.2677

Definition 1. We say x^* is an optimal solution if

- $x^* \in \mathbb{S}$
- For any $y \in \mathbb{S}$

Example 2. Find min $\log x$ s.t. $-\infty \le x \le 7 \to \text{unbounded}$, has no solution.

Example 3. Find min $\log x$ s.t. $1 < x \le 7 \to \text{bounded}$, but is also no solution. (as we can go 1.000001)

Example 4. Find min $\log x$ s.t. x > 1, $x \le 0.5 \rightarrow$ infeasible!!!

Example 5. minimize $3 + (x - 1)^2$ s.t. $1 \le x \le 3 \to$ feasible as optimal solution $x^* = 2$ is an interior part of feasible region.

$$f(x) = 3 + (x - 1)^2$$
$$f'(x) = 0$$
$$f''(x) > 0$$

Example 6. Minimize $3 + (x - 2)^2$ s.t. $x \ge 10 \to \text{optimal solution is } x^* = 10$. but $f'(x) \ne 0$. But is not an interior point - it is a boundary point of feasible region.

Lecture 2 (2018-08-31)

Definition 1. $\forall x \in \mathbb{R}^n$ Euclidian length of x is $||x|| = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$

 $\forall x, y \in \mathbb{R}^n$ Euclidian distance from x to y is ||x - y||

Definition 2. $\forall S \subseteq \mathbb{R}^n$ point $x \in S$ is an interior point of S if J a neighborhood of x which is a subset of S point $S \in \mathbb{R}^n$ is a boundary point of S if every neighborhood of x contains a point in S and a point not in S

- Set $S \subseteq \mathbb{R}^n$ is open if every point in S is an interior point. example: open ball.
- Set $S \subseteq \mathbb{R}^n$ is <u>closed</u> if S contains all boundary points of S.

Note: $\forall S \subseteq \mathbb{R}^n$, S is open **iff** S^c is closed.

In (P) min f(x) s.t. $x \in S$, suppose $x^* \in S$:

- x^* is a global maximizer if $\forall y \in S, f(x^*) \leq f(y)$
- x^* is a strict global minimizer if $\forall y \in S$, s.t. $y \neq x^*$, $f(x^*) < f(y)$
- x^* is a <u>local minimizer</u> if \exists any neighborhood N of x s.t. $\forall y \in N \cap S, f(x^*) \leq f(y)$
- x^* is a <u>strict</u> local minimizer if \exists any neighborhood N of x s.t. $\forall y \in (S \cap N) \underbrace{\setminus x^*}_{\text{besides}}$, $f(x^*) < f(y)$

Note: If $S \subseteq \mathbb{R}^1$, x^* is interior of S, f is suitably differentiable at x^* .

If x^* is a local minimizer $\Rightarrow f'(x^*) = 0$

 x^* is a local maximizer $\Rightarrow f'(x^*) = 0$

BUT
$$f'(x^*) = 0 \implies x^* \text{ local min/max}$$

BUT

$$f'(x^*) = 0\&f''(x^*) > 0 \Longrightarrow x^*$$
 strict local max $f'(x^*) = 0\&f''(x^*) < 0 \Longrightarrow x^*$ strict local min

If $S \subseteq \mathbb{R}^n$, x^* interior part of S, f strictly differentiable, x^* local min/max $\Longrightarrow \nabla f(x^*) = \vec{0}$

$$\nabla f(x^*) = \vec{0}$$
 & [?] $\Rightarrow x^*$ strict local min/max

Lecture 3 (2018-09-05)

Linear Programming

Example 1. Diet Problem: You will pick levels of four ingredients for chicken feed.

• x_1 = units of ingredient 1

• x_3 = units of ingredient 3

• x_2 = units of ingredient 2

• x_4 = units of ingredient 4

All are real numbers, so fractions allowed. Given minimum levels of 3 nutrients $\begin{bmatrix} 6.2\\11.9\\10 \end{bmatrix} = \begin{bmatrix} \text{nutrient 1}\\ \text{nutrient 2}\\ \text{nutrient 3} \end{bmatrix}$

Given how many units of nutrient per unit of ingredient

nutrients \ ingredients	1	2	3	4
1 (protein)	1.2	2.6	0	9.2
2 (carbs)	3.9	1	.8	2
3 (cholesterol)	6	0	4	3.1

Problem: Find yand of ingredients that meet nutritional requirements cheaply as possible.

Minimum Cost of the ingredients $\begin{bmatrix} 6.2 \\ 2 \\ 1.6 \\ 3.2 \end{bmatrix}$

minimize
$$6.2x_1 + 2x_2 + 1.6x_3 + 3.2x_4$$

$$\begin{cases}
1.2x_1 + 2.6x_2 + 0x_3 + 9.2x_4 \ge 6.2 \\
3.9x_1 + x_2 + 0.8x_3 + 2x_4 \ge 11.9 \\
3.9x_1 + 1x_2 + 0.8x_3 + 2x_4 \ge 11.9 \\
6x_1 + 0x_2 + 4x_3 + 3.1x_4 \ge 11.9
\end{cases}$$
 and $x_1, x_2, x_3, x_4 \ge 0$

What makes a ingredient list special?

- 1. proportionality
- 2. additivity
- 3. divisibility
 - fractions are allowed referring to x_1, x_2, x_3

(Linear Programming) in canonical form, an example

minimize
$$c_1x_1 + c_2x_2 + \dots + c_nx_n$$

s.t. $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge b_1$
 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ge b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \ge b_m$

where
$$x_1, x_2, \cdots, x_n \ge 0$$

$$\updownarrow$$

$$\min \quad c^T x \quad \text{s.t.} \quad A\vec{x} \ge \vec{b}, x \ge \vec{0}$$

$$A \in \mathbb{R}^{mxn}, b \in \mathbb{R}^m, C \in \mathbb{R}^n, x \in \mathbb{R}^n$$

Example 2. Transportation problem: There are 3 electricity generation plants α, β, γ and two cities u, v. α, β, γ respectively produce 65.2, 98.6, 32.5 units of electricity. u, v respectively use 86.2, 110.1 units of electricity

Question: How to supply transportation as cheaply as possible?

generator to city	cost variable	cost
$\alpha \to u$	x_1	31.7
$\alpha \to v$	x_2	28.6
$\beta \to u$	$\begin{vmatrix} x_3 \end{vmatrix}$	17.6
$\beta \to v$	x_4	37.4
$\gamma \to u$	x_5	22.8
$\gamma \to v$	x_6	29.7

min
$$31.7x_1 + 28.6x_2 + 17.6x_3 + 374x_4 + 22.8x_5 + 29.7x_6$$

$$\left. \begin{array}{ll} x_1+x_2 \leq 65.2 & \alpha \\ x_3+x_4 \leq 98.6 & \beta \\ x_5+x_6 \leq 32.5 & \gamma \end{array} \right\} \text{ electricity produced at } \alpha,\beta,\gamma \\ u & x_1+x_3+x_5 \geq 86.2 \\ v & x_2+x_4+x_6 \geq 110.1 \end{array} \right\} \text{ Need for electricity for } u,v$$

Converting one form of (LP) to another

1. **(LP)** in standard form minimize $c^T x$ s.t. Ax = b, $x \ge \vec{0}$ Here

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 65.2 \\ 98.6 \\ 32.5 \\ 86.2 \\ 110.1 \end{bmatrix}$$

$$c^{T} = \begin{bmatrix} 31.7 & 28.6 & 17.6 & 37.4 & 22.8 & 29.7 \end{bmatrix}$$

2. $\max \rightarrow \min$ or $\min \rightarrow \max \implies \max 6x_1 + 3x_2 - 4x_3 \leftrightarrow \min -6x_1 - 3x_2 + 4x_3$

$$Ax \ge b \to \le$$

$$Ax \ge b \leftrightarrow Ax \le -b$$

3. Standard form \rightarrow canonical form

$$\begin{vmatrix}
\min c^T x \\
\text{s.t. } Ax = b \\
x \ge 0
\end{vmatrix}
\leftrightarrow
\begin{cases}
\min c^T x \\
\text{s.t. } Ax \ge b \\
Ax \le b \\
x \ge \vec{0}
\end{cases}
\leftrightarrow
\begin{cases}
\min c^T x \\
\text{s.t. } Ax \ge b \\
-Ax \ge -b \\
x \ge \vec{0}
\end{cases}
\leftrightarrow
\begin{cases}
\min c^T x \\
Ax \le b \\
-Ax \ge -b \\
x \ge \vec{0}
\end{cases}$$

4. Canoconical form \rightarrow Standard form

Lecture 4 (2018-09-07)

5. non-negativity \rightarrow include in matrix

$$\left. \begin{array}{l} Ax \ge b \\ x \ge \vec{0} \end{array} \right\} \longrightarrow \left[\begin{matrix} A \\ I \end{matrix} \right] x \ge \left[\begin{matrix} \vec{b} \\ \vec{0} \end{matrix} \right]$$

Simplex algorithm only works with non-negative elements.

6. unconstrained sign \rightarrow non-negativity by substitution

$$\underbrace{Z_{\text{uncons}}} := \underbrace{Z_1}_{\geq 0} - \underbrace{Z_2}_{\geq 0}$$

$$min \quad 5x_1 + 6x_2$$

$$s.t. \quad 2x_1 - 3x_2 \geq 9$$

$$x_1 + x_2 \geq -8$$

$$x_1 \geq 0 \quad x_2 \text{unconst}$$

$$\Rightarrow \left\{ X_2 = \underbrace{X_2'}_{\geq 0} - \underbrace{X_2''}_{\geq 0} \right\} \rightarrow \begin{cases} min \quad 5x_1 + 6x_2' - 6x_2'' \\ s.t. \quad 2x_1 - 3x_2' + 3x_2'' \geq 9 \\ x_1 + x_2' - x_2'' \geq -8 \\ x_1, x_2', x_2'' \geq 0 \end{cases}$$

7. Have constraints Ax = b

illustration
$$x_1, x_2, x_3$$

$$\begin{cases} 2x_1 - 2x_2 + 6x_3 = 8\\ 3x_1 + x_2 - x_3 = 2 \end{cases}$$

Unchanged by row opeartions

- swap rows
- multiply by non-zero constant
- add one row to another

$$\left[\begin{array}{cc|cc} 1 & -1 & 3 & 4 \\ 3 & 1 & -1 & 2 \end{array}\right] \xrightarrow{\text{rref}} \left[\begin{array}{cc|cc} 1 & 0 & \frac{1}{2} & -\frac{3}{2} \\ 0 & 1 & -\frac{5}{2} & -\frac{5}{2} \end{array}\right]$$

If row reduce $[A' \mid b] \rightarrow [A' \mid b']$ then \exists invertible matrix C

$$C \left[A \mid b \right] \rightarrow \left[A' \mid b' \right]$$

Converse: if D is invertible, then $[A' \mid b']$ can be reduced to $D[A \mid b]$

8. Changing the order of columns in Ax = b, it doesn't matter as long as you change the order of the variables conformally

$$\min \begin{bmatrix} 17 \\ 83 \\ -11 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\
s.t. \begin{bmatrix} 2 & -2 & 6 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix} \right\} \longrightarrow \begin{cases} \min \begin{bmatrix} 83 \\ -11 \\ 17 \end{bmatrix}^T \begin{bmatrix} x_2 \\ x_3 \\ x_1 \end{bmatrix} \\
s.t. \begin{bmatrix} -2 & 6 & 3 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_1 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

Lecture 5 (2018-09-12)

Half spaces, Hyperplanes, Polyhedral sets

Recall: Suppose $p, x \in \mathbb{R}^n$. The inner product of p, x

$$p^{T}x = ||p|| \, ||x|| \cos \theta$$
thus $p^{T}x \begin{cases} > 0 & \text{if } \theta \text{ acute} \\ = 0 & \text{if } p \perp x \text{ (perpendicular)} \\ < 0 & \text{if } \theta \text{ obtuse} \end{cases}$

Definition 1. Suppose $p \in \mathbb{R}^n$ non-zero. $\{\vec{x} \in \mathbb{R}^n : p^T x = 0\}$ is a hyperplane through origin with normal vector p. $\{\vec{x} \in \mathbb{R}^n : p^T x \leq 0\}$ is (associated) and (closed) half space.

Example

Everything on either side of the hyperplane is the half spaces.

Definition 2. In general hyperplanes in \mathbb{R}^n are sets $\{x \in \mathbb{R}^n, p^T x = \alpha\}$ for non-zero $p \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$

Definition 3. half spaces in \mathbb{R}^n are sets $\{x \in \mathbb{R}^n, p^T x \ge \alpha\}$ for non-zero $p \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$ **Example 1.**

(2D)
$$2x_1 + 5x_2 = 6$$
 hyperplane $2x_1 + 5x_2 \ge 6$ half space (3D) $3x_1 + 2x_2 - 7x_3 = 8$ hyperplane $3x_1 + 2x_2 - 7x_3 \ge 8$ half space

Definition 4. A polyhedron (polyhedral space) is the intersection of finely may half spaces.

Example 2. $x \cdot Ax \geq b$ for $A \in \mathbb{R}^{mxn}$, $b \in \mathbb{B}^m$

 \vec{x} satisfies $Ax \geq b$ iff \vec{x} satisfies $p_1^T x \geq b_1$, and \vec{x} satisfies $p_2^T x \geq b_2, \ldots, p_m^T x \geq b_m$

Example 3.

$$\begin{bmatrix} 1 & -2 \\ -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \ge \begin{bmatrix} -6 \\ -5 \\ 0 \\ 0 \end{bmatrix}$$

1.
$$x_1 - 2x_2 \ge -6$$

3.
$$x_1 \ge 0$$

2.
$$-x_1 - x_2 \ge 5$$

4.
$$x_2 \ge 0$$

Solving (LP) geometrically

min
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
s.t.
$$\begin{bmatrix} 1 & -2 \\ -1 & -1 \end{bmatrix} \ge \begin{bmatrix} -6 \\ -5 \end{bmatrix}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x: Ax \le b \equiv [(-A)x \ge (-b)]$$

$$x: Ax = b \equiv \begin{bmatrix} Ax \ge b \\ Ax \le b \end{bmatrix} \text{ i.e. } \begin{bmatrix} A \\ -A \end{bmatrix} x \ge \begin{bmatrix} b \\ -b \end{bmatrix}$$

$$x: \underbrace{Ax = b}_{x \ge 0} \equiv \begin{bmatrix} A \\ -A \\ I \end{bmatrix} x \ge \begin{bmatrix} b \\ -b \\ \vec{0} \end{bmatrix}$$

Definition. $\underline{\alpha}$ -level set is $\{x: f(x) = \alpha\}$

Here
$$\alpha$$
-level set is $x: x_1 - 3x_2 = \alpha$ rewrite: $x_2 = \underbrace{\frac{1}{3}}_{\text{slope}} x - \underbrace{\frac{\alpha}{3}}_{\text{y-int}}$

The solution is the level set with the least α . In this case, $\alpha=-6$

Lecture 6 (2018-09-14)

<u>Hyperplane</u>:- $x: p^T x = \alpha$ <u>Halfspace</u>:- $x: p^T x \ge \alpha$ Polyhedral set - intersection of halfspaces. The example $Ax \ge b$

Example 1.

min
$$c^T x$$
 min $c^T x$
s.t. $Ax = b$ s.t. $Ax \ge b$
 $x > 0$ $x > 0$

Level set $c^T x = \alpha$

Definition 1. Let's say $x, y \in \mathbb{R}^n$. A <u>complex combination</u> of xy is $\lambda x + (1 - \lambda)y \in \mathbb{R}^n$ where $\lambda \in [0, 1]$

Example 2.
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad y = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \text{let } \lambda = \frac{1}{2}$$

Note. In general, a convex combination of x, y are points on the line segment from x to y as $\lambda x + (1 - \lambda)y = y + \lambda(x - y)$

Definition 2. $S \subseteq \mathbb{R}^n$ is <u>convex</u> if $\forall x, y \in S, \forall x \in [0, 1]$ $\lambda x + (1 - \lambda)y \in S$

Example 3. Every polyhedron $S := \{x \in \mathbb{R}^n : Ax \geq b\}$ is convex since if $y, z \in S$ [i.e. $Ay \geq b$, $Ax \geq b$] and $\lambda \in [0, 1]$, then

$$A(\lambda y + (1 - \lambda)z) = \lambda Ay + (1 - \lambda)Az \ge \lambda b + (1 - \lambda)b = b$$
$$\lambda y + (1 - \lambda)z \in \mathcal{S}$$

Definition 3. Let S be a convex set. X is an extreme point of S if $X = \lambda y + (1 - \lambda)z$ for, $y, z \in S$, $\lambda \in (0,1) \Rightarrow x = y = z$

Example 4. Consider

min
$$10x_1 + 10x_2 + 0x_3 - 3x_4 - 5x_5 - 3x_6$$
s.t.
$$-x_1 + 2x_2 + 3x_3 + 6x_4 + 9x_5 + 8x_6 = 26$$

$$-2x_1 + 3x_2 + x_3 + x_4 + 6x_5 + 8x_6 = 17$$

$$x_1 + x_2 - x_3 + x_4 + x_5 + 3x_6 = 1$$

$$x_1, x_2, x_3, \dots, x_6 \ge 0$$

What are feasible x? What if **JUST FOR NOW** we set $x_4, x_5, x_6 = 0$

$$\underbrace{\begin{bmatrix} -1 & 2 & 3 \\ -2 & 3 & 1 \\ 1 & 1 & -1 \end{bmatrix}}_{B \to \text{``Basic''}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x_B \to \text{basic variable}} = \underbrace{\begin{bmatrix} 26 \\ 17 \\ 1 \end{bmatrix}}_{b}$$

Lucky # 1 \rightarrow B is invertible

$$B^{-1} = \frac{1}{13} \begin{bmatrix} 4 & -5 & -1 \\ 1 & 2 & 5 \\ 5 & -3 & -1 \end{bmatrix}$$
 so $x_B = B^{-1}b = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$
Hence the basic feasible solutions are
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 6 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$