ECS 171: Midterm Review

Midterm Instructions

- This is a **closed book**, **in-person** midterm exam.
- Includes **20-30 questions**, including MCQs, True/False and around 5-7 numerical questions.
- The exam will test your knowledge on all topics covered so far, **except** 'Probabilistic Graphical Models'.
- Discussions are also part of the material which you need to study for the exam.
- There is **NO partial credits** on T/F and Multiple Choice Questions. Select the best answer.
- Scratch papers will be provided to you to work on numerical questions. You need to return scratch papers with your name written.
- The exam duration is 50 minutes.
- Make sure to show your **student ID/picture ID** when submitting your work
- A **cheat sheet** will be provided by the proctor during the exam. You may not use any other sources during the exam.
- You can use a calculator.
- Communicating with anyone else during the exam is considered "cheating". You are not allowed to use earphone
 during the exam.
- Switch off your cell phone and let is stay in the off mode until the end of the exam.

Sample T/F Question

N-fold Cross validation is a method used to prevent overfitting.

- A. True
- B. False

True

In order to validate the training process of the model, n-fold (or k-fold) cross validation is used in order to generalize the training dataset.

Sample T/F Question

The following shows a simple linear regression model for a dataset with x1,...,xn attributes.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

- A. True
- B. False

False

It is multiple linear regression because it has multiple features. If the features are n-degree polynomial, then it is polynomial regression.

Sample T/F Question

Regularization is a method that penalizes model coefficients to reduce overfitting.

- A. True
- B. False

True

The cost function of a regularized model, C_{reg} , is given as :

$$C_{reg} = C_{original} + [Regularization term]$$

Sample MCQ Question

Which of the following is an example of a flag variable?

- A. Gender: female/male
- B. Weather: clear/rainy/cloudy
- C. Temperature: [21, 80]
- D. (A) and (B)

D. (A) and (B)

Flag variables, or categorical variables, are those variables which can be assigned with a string label

Sample MCQ Question

Indicate the model characteristics depicted in the following figure, from left to right.

- A. Overfitting, under-fitting, balanced
- B. Under-fitting, balanced, balanced
- C. Under-fitting, balanced, overfitting
 - D. Overfitting, balanced, balanced

C. Under-fitting, balanced, overfitting

Sample MCQ Question

How many output neurons in ANN is needed to perform a binary classification?

- A. 1
- B. 2
- C. 3
- D. 4

A. 1

A single output node giving high or low output is required for binary classification

Sample Numerical Question

In the following dataset with input attributes $X = \{x1,x2\}$ and output variable y, calculate the total SSE for the following linear regression model:

$$f(X) = 0.5 + 0.8(x1) - 0.6(x2)$$

$${\bf f(X) = 0.5 + 0.8(x1) - 0.6(x2)}$$

 Note: SSE is calculated as $E({\bf w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, {\bf w}) - t_n \right\}^2$

Sample	x1	x2	у
1	3	4	0.7
2	2	5	-0.2
3	6	1	5

Sample	x1	x2	f(X)	у	$e = (y - f(X))^2$
1	3	4	0.5	0.7	0.04
2	2	5	-0.9	-0.2	0.49
3	6	1	4.7	5	0.09

$$SSE = (e_1 + e_2 + e_3) / 2$$

SSE = 0.31

Sample Numerical Question

Identify the logical gate for every neurons N1,N2,Nz respectively in the following figure if threshold is 0:

x_1	x_2	y:	g(x; w)
0	0	?	
0	1	?	
1	0	?	
1	1	?	

N	OT		ANI)	ı	NAN	D		OR			NOI	3		XOI	₹	X	KNO	R
	Ā		AB			\overline{AB}			A + B	3		$\overline{A+B}$	3		$A \oplus I$	3		$A \oplus I$	B
<u>A</u>	>> <u>×</u>	A B) <u>×</u>)o—			—			> —	5 <u>—</u>		>-			> -
A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X	В	A	X
0	200.7	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0
		1	0	0	1	0	1	1	0	1	1	0	0	1	0	1	1	0	0
	A 0	A X 0 1	$ \begin{array}{c cccc} \hline A & X & B \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} $	A X A X B A 0 1 1 0 0 1 1 0	A AB A X B A X 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0	A AB A X B A X B 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

For any node :
$$z = w_0 + w_1x_1 + w_2x_2$$

 $y = 1$ if $z > = 0$
 $= 0$ if $z < 0$

In N1: Truth table similar to AND

x1	x2	Z = -1.5 + 1(x1) + 1(x2)	Y = (z>=0)
0	0	-1.5	0
0	1	-0.5	0
1	0	-0.5	0
1	1	0.5	1

In N2: Truth table similar to NOR

x 1	x2	Z = 0 + (-1)(x1) + (-1)(x2)	Y = (z>=0)
0	0	0	1
0	1	-1	0
1	0	-1	0
1	1	-2	0

In N3: Truth table similar to XNOR

x1	x2	x_n1	x_n2	Z = -0.5 + 1(x_n1) + 1(x_n2)	Y = (z>=0)
0	0	0	1	0.5	1
0	1	0	0	-0.5	0
1	0	0	0	-0.5	0
1	1	1	0	0.5	1

Note: Assume the same input for all nodes.

x_1	x_2	y:	g(x; w)
0	0	?	
0	1	?	
1	0	?	
1	1	?	

N1:AND

N2: NOR

Nz: XNOR

Sample Numerical Question

Compute the output of the following neural network after 1 forward pass when sigmoid function is used as the activation function in all layers:

$$\begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & x_3^{(1)} \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_3^{(n)} \end{bmatrix} = \begin{bmatrix} 1 & 0.4 & 0.2 & 0.7 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & x_3^{(n)} \end{bmatrix}$$

w _{0A} =0.5	w _{ob} =0.7	w _{oz} =0.5
w _{1A} = 0.6	w _{1B} = 0.9	w _{AZ} =0.9
w _{2A} =0.8	w _{2B} =0.8	w _{BZ} =0.9
w _{3A} =0.6	w _{3B} =0.4	

$$net^{(i)}_{j} = \sum_{k} w_{kj} x_{kj}^{(i)}$$

$$net^{(1)}_{A} = \omega_{0j} + \omega_{1j} x_{1j}^{(1)} + \omega_{2j} x_{2j}^{(1)} + \omega_{3j} x_{3j}^{(1)} = 1.32$$

For any node:	$z = w_0 + w_1 x_1 + + w_n x_n$
	$y = 1 / (1 + e^{-z})$
In NA:	z = 0.5 + 0.6(x1) + 0.8(x2) + 0.6(x3)
	= 1.32
	$x_A = y = 1 / (1 + e^{-z})$
	= 0.7892

```
In NB:
                             z = 0.7 + 0.9(x1) + 0.8(x2) + 0.4(x3)
                               = 1.5
                             x_B = y = 1 / (1 + e^{-z})
                                = 0.8176
                             z = 0.5 + 0.9(x_A) + 0.9(x_B)
In NZ:
                               = 1.94612
                             y = 1 / (1 + e^{-z})
                             y = 0.8750
```