Quantum Optics - physics631

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Specialization: Advanced Experimental Physics
Module No.	physics62a

Course	Quantum Optics
Course No.	physics631

		Teachi	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+1	6	ST	

Requirements for Participation:

Preparation:

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Make the students understand quantum optics and enable them to practically apply their knowledge in research and development.

Contents of the Course:

Bloch Vector, Bloch equations,

Quantization of the electromagnetic field; representations;

coherence, correlation functions; single-mode quantum optics; squeezing;

interaction of quantized radiation and atoms;

two & three level atoms; artificial atoms;

quantum information

Laser cooling; quantum gases

Recommended Literature:

- R. Loudon; The quantum theory of light (Oxford University Press 2000)
- G. J. Milburn, D. F. Walls; Quantum Optics (Springer 1994)
- D. Meschede; Optik, Licht und Laser (Teubner, Wiesbaden 2nd edition. 2005)
- M. O. Scully, M. S. Zubairy; Quantum Optics (Cambridge 1997)
- P. Meystre, M. Sargent; Elements of Quantum Optics (Springer 1999)
- U. Leonhardt; Measuring the quantum state of light (Cambridge University Press, Cambridge 1997)
- W. Vogel, D.-G. Welsch; Quantum Optics (Wiley VCH, 3rd edition 2006)