

E.P

国際調査報告

PCT

(法8条、法施行規則第40、41条) (PCT18条、PCT規則43、44)

出願人又は代理人 の書類記号 TP-97060	今後の手続きについては、国際調査報告の送付通知様式(PCT/ISA/220) 及び下記5を参照すること。		
国際出願番号 PCT/JP98/00370	国際出願日 (日.月.年) 29.01.98	優先日 (日.月.年) 29.01.97	
出願人(氏名又は名称)	東レ株式会社		

	東レ株式会社
国際調査機関が作成したこの国際この写しは国際事務局にも送付	際調査報告を法施行規則第41条(PCT18条)の規定に従い出願人に送付する。 される。
この国際調査報告は、全部で _	3ページである。
この調査報告に引用された	先行技術文献の写しも添付されている。
1. 請求の範囲の一部の	調査ができない(第1欄参照)。
2. 第明の単一性が欠如	している(第Ⅱ欄参照)。
3. X この国際出願は、ヌタ 査を行った。	クレオチド及び/又はアミノ酸配列リストを含んでおり、次の配列リストに基づき国際調
□ この国際出願と共同	こ提出されたもの
出願人がこの国際と	出願とは別に提出したもの
□ しかし、出願®	寺の国際出願の開示の範囲を越える事項を含まない旨を記載した書面が添付されていない
この国際調査機関が書換えたもの	
4. 発明の名称は 🛛	出願人が提出したものを承認する。
	次に示すように国際調査機関が作成した。
5. 要約は 🗓	出願人が提出したものを承認する。
	第Ⅲ欄に示されているように、法施行規則第47条 (PCT規則38.2(b)) の規定により 国際調査機関が作成した。出願人は、この国際調査報告の発送の日から1カ月以内にこ の国際調査機関に意見を提出することができる。
6. 要約書とともに公表される図	
第図とする, □	
	出願人は図を示さなかった。
	本図は発明の特徴を一層よく表している。

THIS PAGE BLANK (USPTO)

A. 発明の属する分野の分類([国际符許分類()	IPC)
------------------	----------	------

Int. Cl⁶ C07K14/705, C12N15/12, G01N33/50

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁶ C 0 7 K 1 4 / 7 0 5, C 1 2 N 1 5 / 1 2, G 0 1 N 3 3 / 5 0

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

BIOSIS(DERWENT), WPI(DERWENT), GenBank/EMBL(geneseq)

C. 関連すると認め	られる文献
------------	-------

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	WO, 9 2 / 1 3 5 5 9, A 1 (PROGENICS PHARMACEUTICALS, INC.) 20.8月.1992(20.08.92)&AU, 9 2 1 4 3 8 5, A	1-25, 26-34, 37-38, 40, 41
Y	WO,95/02421,A1 (ALKERMES INC.)26.1月.1995(26.01. 95) (ファミリーなし)	1-25, 26-34, 37-38, 40, 41
Y	JP,6-87899,A (学校法人藤田学園) 29.3月.1994 (29.03.94)&EP,466505,A2&US,5475100,A	1-25, 26-34, 37-38, 40, 41
Y	Nucleic Acids Res., Vol. 10, No. 13 (1982) J. W. Ellison et al; "The nucleotide sequence of a human immunoglobulinC, gene" p. 4071-4079	1-25, 26-34, 37-38, 40, 41

▼ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

08.06.98

国際調査報告の発送日

16.06.98

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員) 滝本 晶子

9 4 5 2

電話番号 03-3581-1101 内線 3449

THIS PAGE BLANK (USPTO)

C (続き).	関連すると認められる文献	***************************************
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	Cell, Vol. 29, No. 2(1982) N. Takahashi et al.; "Structure of human immunoglobulin gamma genes: implications for evolution of gene family", p. 671-679	1-25, 26-34, 37-38, 40, 41
Y	EMBO J., Vol. 8, No. 5 (1989) Y. Takada et al.: "The primary structure of the α subunit of VLA-4: homology to other integirns and a possible cell-cell adhesion function", p. 1361-1368	1-25, 26-34, 37-38, 40, 41
Y	Mol. Immunol., Vol. $32(1995)$ M. C. Szabo et al.; "Identification of two variants of the human integrin α_4 subunit", p. 1453-1454	1-25, 26-34, 37-38, 40, 41
Y	J. Cell Biol. Vol. 105(1987) W. S. Argraves et al.; "Amino acid sequence of the human fibronectin receptor", p. 1183-1190	1-25, 26-34, 37-38, 40, 41
Y	US,5516634,A(Newman P.J.)14.5月.1996(14.05.96) (ファミリーなし)	1-25, 26-34, 37-38, 40, 41
Y	J. Cell Biol., Vol. 109 (1989) Y. Takada et al.; "The primary structure of the VLA-2/collagen receptor α^2 subunit (platelet GPIa):homology to other integrins and the presence of a possible collagen-binding domain", p. 397-407	1-25, 26-34, 37-38, 40, 41
	J. Clin. Invest., Vol. 92 (1993) S. Santoso et al.; "The human platelet alloantigens Br and Br are associated with a single amino acid polymorphism on glycoprotein Ia(Integirn subunit α 2)", p. 2427-2432	1-25, 26-34, 37-38, 40, 41
X/Y	JP,7-500721,A(ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニア)26.1月.1995(26.01.95)&WO,92/12236,A1	39/37-38, 43, 44
X/Y	JP,5-505179,A(ラ ホヤ キャンサー リサーチ ファウンデーション)5.8月.1993(05.08.93)&WO,91/09874,A &EP,507836,A&US,5169930,A	39/37-38, 43, 44
Y	JP,5-502228,A(スクリップス クリニック アンド リサーチ ファウンデーション)22.4月.1993(22.04.93)&WO,91/07977,A&EP,502124,A&US,5196511,A	26-36, 42
	·	
	·	·
	·	

THIS PAGE BLANK (USPTO)

PCT

世界知的所有権機関 際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07K 14/705, C12N 15/12, G01N 33/50

(11) 国際公開番号 A1

WO98/32771

(43) 国際公開日

1998年7月30日(30.07.98)

(21) 国際出願番号

PCT/JP98/00370

(22) 国際出願日

1998年1月29日(29.01.98)

(30) 優先権データ

特願平9/15118 特願平9/234544 1997年1月29日(29.01.97) JP 1997年8月29日(29.08.97) JP

(71) 出願人(米国を除くすべての指定国について) 東レ株式会社(TORAY INDUSTRIES, INC.)[JP/JP]

〒103 東京都中央区日本橋室町2丁目2番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

戒能美枝(KAINOH, Mie)[JP/JP]

〒251 神奈川県藤沢市藤沢633番地1号201 Kanagawa, (JP)

田中利明(TANAKA, Toshiaki)[JP/JP]

〒249 神奈川県逗子市沼間I丁目11番24号 Kanagawa, (JP)

(81) 指定国 CA, JP, US, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

請求の範囲の補正の期限前であり、補正費受領の際には再公 開される。

(54)Title: CHIMERIC PROTEINS, HETERODIMER COMPLEXES THEREOF AND SUBSTITUTE FOR PLATELET

キメラ蛋白質、そのヘテロダイマー複合体、および血小板代替物 (54)発明の名称

(57) Abstract

Integrin-immunoglobulin chimeric protein heterodimer complexes in which the α-chain and β-chain of integrins have been associated in a stable state. These complexes are not only usable as drugs as such but also applicable to the assaying of binding of integrins to ligands and the detection of substances binding to integrins or those inhibiting binding of integrins to ligands. These compplexes are also usable as diagnostic agents. It has been found that integrins isolated in a stably associated structure would bind to extracellular matrixes under physiological conditions in the presence of plasma components, which indicates that integrins and, in its turn, extracellular matrix receptors might be usable as substitutes for platelets.

(57) 要約

本発明は、インテグリンの α 鎖と β 鎖とが安定に会合したインテグリン - 免疫 グロブリンキメラ蛋白質へテロダイマー複合体を提供する。得られたインテグリン - 免疫グロブリンキメラ蛋白質へテロダイマー複合体はそのまま医薬として利 用可能であるばかりでなく、インテグリンとリガンドの結合の測定、インテグリンに結合する物質やインテグリンとリガンドの結合を阻害する物質の探索に利用 できる。さらには診断薬にも利用できる。

さらに、構造を安定に会合させて単離したインテグリンが、生理条件下および 血漿成分存在下で細胞外マトリックスに結合することを見出した。これによりイ ンテグリン、ひいては細胞外マトリックスレセプターの血小板代替物としての用 途を見出した。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

FFGGGGGGGHILLLIJKKKKKLLLLLL TRABEHMNWRUDELSTPEGPRZCIKRS TRABEHMNWRUDELSTPEGPRZCIKRS TRABEHMNWRUDELSTPEGPRZCIKRS TRABEHMNWRUDELSTPEGPRZCIKRS TRABEHMNWRUDELSTPEGPRZCIKRS TRABEHMNWRUDELSTPEGPRZCIKRS

SSTTTTTTTTTUUUUVYZ SSTTTTTTTTTUUUUVYZ アージルルリクガ国ズィーン ド ンス ド タムラ ド ンス ド タムラ ド ンス ド タムラ ド ンス ド タムラ ベエゴバ イーン バーブ イーン グユジ イーン ア

明細書

キメラ蛋白質、そのヘテロダイマー複合体、および血小板代替物

技術分野

本発明は、インテグリンと免疫グロブリンのキメラ蛋白質、そのヘテロダイマー複合体、その製造方法、その医薬および試薬としての用途等に関する。 さらに、本発明はインテグリン - 免疫グロブリンキメラ蛋白質ヘテロダイマー複合体をはじめとする、単離した細胞外マトリックスレセプターの血小板代替物としての医薬用途に関する。

背景技術

種々の細胞は細胞と細胞の間の接着を媒介するレセプターや細胞と細胞外マト リックスの接着を媒介するレセプターを有し、それらのレセプターが免疫・炎症 反応、発生、形態形成、創傷治癒、止血、癌転移などに重要な役割を果たしてい る。これらの現象に関与するレセプターを分離、同定した結果、いわゆる細胞接 着分子の存在が明らかにされた。次々と同定される分子の多くは、その構造的特 徴から、インテグリンスーパーファミリー、免疫グロブリンスーパーファミリー、 セレクチンファミリー、カドヘリンファミリーなどに分類されている(Corlos, T. M. and Harlan, J. M. Blood 84, 2068-2101 (1994))。これらのファミリー のうち、免疫グロブリンスーパーファミリー、セレクチンファミリー、カドヘリ ンファミリーが、主に細胞間の接着を媒介するのに対し、インテグリンスーパー ファミリーは、ファイブロネクチンやコラーゲンなどの細胞外マトリックスへの 接着を媒介する、いわゆる細胞外マトリックスレセプターである。この他に、い ずれの接着分子のファミリーにも属さない細胞外マトリックスレセプターとして、 CD26 (DDPIV)、CD44、GPIV、GPVI、GPIb-vWFなどがあげられる。CD26はコ ラーゲン、CD44はヒアルロン酸、フィブロネクチンやコラーゲンのレセプターで ある(「接着分子」p32-42、宮坂昌之(1991)メジカルビュー社)。また血小板 上に存在する膜糖蛋白質 (GP) のうち、GPIV、GPIb-vWFなども、コ ラーゲンレセプターであることが報告されている(「血小板受容体」p119-132、

大熊稔ら(1992)金芳堂)。

インテグリンスーパーファミリーに属するレセプターは、互いに異なる膜蛋白 個であるα鎖とβ鎖の2つのサブユニットが非共有結合により会合したヘテロダ イマー複合体構造を持つ(Hynes, R. O. Cell 48, 549-554 (1987))。当初、イ ンテグリンスーパーファミリーに属する分子は、共有するβ鎖の種類によりβ1 インテグリン、β2インテグリン、β3インテグリンの3つのサブファミリーに 分類されていたが、その後新しいβ鎖、α鎖が次々と見つかり、現在では8種類 のβ鎖(β1、β2、β3、β4、β5、β6、β7、β8)、15種類のα鎖 (α1, α2, α3, α4, α5, α6, α7, α8, α9, αν, αL, αΜ, α X、α IIb、α E) が同定されている (Elner, S. G. and Elner, V. M. Inv. Ophtal. Vis. Sci. 37, 696-701 (1996))。それぞれのβ鎖は1種から8種のα 鎖と会合することが知られており、その結果21種類のα鎖とβ鎖のペアすなわ ちインテグリン分子が今までに同定されている (Elner, S. G. and Elner, V. M. Inv. Ophtal. Vis.Sci. 37, 696-701(1996))。この中には、医薬品開発の ターゲットとなっているα4β1(VLA-4、β1インテグリン)、αLβ2、αIIbβ3(GPIIb/IIIa、β3インテグリン)などが含まれている(Dru g and Market Development 6, 201-205 (1995))。他のインテグリンにも疾患と の関連が予想されるものが多い。

インテグリンの持つヘテロダイマー複合体構造は、リガンドとの結合において重要な役割を果たしている(Hynes, R. O. Cell 48, 549-554 (1987))。例えば、インテグリン上のリガンド結合部位は α 鎖と β 鎖の両方から構成されると推定されている(Hynes, R. O. Cell 69, 11-25 (1992))。同じ α 鎖を持ち異なる β 鎖と会合しているインテグリン、あるいは同じ β 鎖を持ち異なる α 鎖と会合しているインテグリン、あるいは同じ β 鎖を持ち異なる α 鎖と会合しているインテグリン、あるいは同じ β 10 (Elner, S. G. and Elner, V. M. Inv. Ophtal. Vis. Sci. 37, 696-701 (1996))という事実は、この推測を支持している。一方、一部のインテグリンの α 10 (1996))という事実は、この推測を支持している。「方、一部のインテグリンの α 11 (1996))といることが報告されているが、この1 ドメインと呼ばれる配列を挿入していることが報告された(Ueda, T. at al. Proc. Natl. Acad. Sci. USA 91, 10680-10684 (1994))。

しかしながら、 α 鎖の1ドメインと元のヘテロダイマー複合体であるインテグリンとはリガンドへの結合の様式が異なっていることも同時に示されている(Kama ta, T. and Takada, Y. J. Biol. Chem. 269, 26006-26010(1994))。またリガンドに対する特異性、親和性などのパラメーターが同一かどうかは明らかにされていない。1ドメインを含まないインテグリン、例えば α 4 β 1 α 8 β 0 構造だけでリガンドに結合するという報告はない。

インテグリンをそのヘテロダイマー複合体構造を維持し、従ってリガンド結合能を保持したまま単離・調製することができれば、自然に近い状態でのリガンドへの結合様式を検討するために有用である。さらに、そのまま医薬品として用いることができるだけでなく、組織や血清中のリガンド量を測定するための打工をして利用したり、接着阻害化合物を探索する際の材料とするなどきわめて有用である。しかしながら、インテグリンをその機能を保持したまま単離・調製することは非常に難しいとされている。その理由として、前述のようにインテグリンをは非に難しいとされている。その理由として、前述のようにインテグリンのの鎖とβ鎖の会合が非共有結合のみで維持されているため、単離・調製途中でこの結合が容易に解離してしまうことが上げられる。インテグリンが膜蛋白質であるため可溶化の際に界面活性剤などを用いる必要のあることが複合体解離の大きな要因と考えられる。言い換えると、非共有結合によって機能構造が維持されている点がその調製を阻んでいる要因である。

測定できることが示されている(Charo, I. F. et al. J. Cell Biol. 111, 27 95-2800(1990)、Makarem, R. et al. J. Biol. Chem. 269, 4005-4011(1994)、Paul Mould, Λ. et al. J. Biol. Chem. 269, 27224-27230(1994))。別の例では、遺伝子操作の手法を用いて調製した細胞外部分だけからなるα11bβ3へテロダイマー複合体を、複合体特異的な抗体を介してプレートに固相化させることによりリガンドとの結合を測定できることが示されている(Gulino, D. et al. Eur. J. Biochem. 227, 108-115(1995))。これらの例は、精製したインテグリンの機能を発揮させる際に、そのヘテロダイマー複合体を何らかの担体に結合または内包させる必要があることを示している。担体が必要な理由として、ヘテロダイマー複合体が非共有結合で会合しているため溶液中で解離し、その結果機能的な構造を維持できないことが考えられる。最後の例では、複合体特異的な抗体を用いてヘテロダイマー複合体構造を持つ分子のみを選択し、両鎖が解離しない状態で結合を測定する工夫がなされている。

また他の例としてα d と免疫グロブリンのキメラ蛋白質が開示されているが (特表平 8 - 5 0 7 9 3 3)、免疫沈降の結果しか示されておらず、リガンドへ の結合は調べられていない。また、β鎖を同時に免疫グロブリンとのキメラ蛋白 質として発現したわけではないので、α鎖とβ鎖の間の結合は非共有結合のまま である。

以上の事実は、未だかつて、インテグリンの α 鎖 β 鎖を構造的に安定に会合させ機能を維持したまま調製した例がないことを示している。複合体構造が不安定

であることは、その分子の利用を制限するものである。

インテグリンスーパーファミリーに属する分子のうち、インテグリン α 2 β 1 は、長期間活性化したT細胞や血小板などに発現していることが見出された細胞外マトリックスレセプターである。ただし、血小板や線維芽細胞の細胞表面にある α 2 β 1 は、コラーゲンのみに結合し、血管内皮細胞表面にある α 2 β 1 は、コラーゲン、ラミニンのいずれにも結合することが報告されており(Elices, M. J. et al. Proc. Natl. Acad. Sci. USA 86, 9906-9910(1989))、細胞に依存して α 2 β 1 の機能が異なると推定されている。

病態との関連において、インテグリン α 2 β 1は創傷治癒や癌転移に重要な役割を果たすことを示唆する報告がある(Schiro, J. A. et al. Cell 67, 403-410 (1991)、Chen, F. et al. J. exp. Med. 173, 1111-1119 (1991)、Chan, B. M. C. et al. Science 251、1600-1602 (1991))。さらに、出血傾向を呈する患者の血小板機能解析からインテグリン α 2 β 1を介する血小板とコラーゲンの粘着が、止血・血栓形成過程の第一ステップに深くかかわっていることが示された(Nieuwenhuis、B. K. et al. Nature 318、470-472 (1985))。この様にインテグリン α 2 β 1と病態との関連が示唆されてはいるものの、生理的イオン条件下あるいは血漿成分存在下での使用を前提として、インテグリン α 2 β 1蛋白質をはじめとする単離した細胞外マトリックスレセプター蛋白質を用いる医薬用途は検討されていなかった。

一方、臨床現場では血液製剤として用いられている血小板の人工的な代替物の必要性が高まっており、種々の試みが報告されているが(医学のあゆみ 179, 40 6-407 (1996)、臨床血液 37, 1353-1361 (1997))、実用化には至っていない。

発明の開示

本発明は、インテグリンのα鎖とβ鎖をそれぞれ免疫グロブリンの重鎖または 軽鎖と連結させたキメラ蛋白質、そのヘテロダイマー複合体、その製造方法、イ ンテグリン-免疫グロブリンキメラ蛋白質ヘテロダイマー複合体とリガンドおよ び細胞との結合を試験する方法、その方法を用いて得られるインテグリンに結合 する物質、インテグリン-免疫グロブリンキメラ蛋白質ヘテロダイマー複合体を 用いるインテグリンとリガンドの結合を阻害する物質の探索方法および結合を阻 害する物質、インテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体の医薬および試薬としての用途である。さらに、本発明はインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体をはじめとする、単離した細胞外マトリックスレセプターを有効成分とする血小板代替物である。

図面の簡単な説明

図 1 は α 4 ・ 1 g G 重鎖 - β 1 ・ 1 g G 重鎖 + λ ラ蛋白質 へテロダイマー複合体が V C A M - 1 発現細胞に結合すること、この結合が抗インテグリン抗体と陽イオンキレート剤である E D T A により阻害されることを示す。

図 2 は α 4 ・ 1 g G 重鎖 $-\beta$ 1 ・ 1 g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体が C S -1 ペプチドに結合し、この結合が抗インテグリン抗体と陽イオンキレート剤である E D T A により阻害されることを示す。

図 3 は α 4 ・ l g G 重鎖 $-\beta$ 1 ・ l g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体 と C S -1 ペプチドとの結合が、GPEILDVPSTにより阻害され、他のペプチドでは阻害されないことを示す。

図4はα2・IgG重鎖-β1・IgG重鎖キメラ蛋白質へテロダイマー複合体がコラーゲンに結合し、この結合が抗インテグリン抗体と陽イオンキレート剤であるEDTAにより阻害されることを示す。

図 5 は α 2 ・ 1 g G 重鎖 - β 1 ・ I g G 重鎖キメラ蛋白質ヘテロダイマー複合体リポソームが、血漿存在下でコラーゲンに結合することを示す。

図6は血漿存在下におけるα2・1gG重鎖-β1・1gG重鎖キメラ蛋白質 ヘテロダイマー複合体リポソームのコラーゲンへの結合が、抗インテグリン抗体、 陽イオンキレート剤であるEDTAにより阻害されることを示す。

発明を実施するための最良の形態

本発明で述べる細胞外マトリックスレセプターとは、細胞と細胞外マトリックスの接着を媒介するレセプター群の総称である。このレセプター群には、 α 鎖と β 鎖の2つの膜蛋白質が非共有結合により会合したヘテロダイマー複合体構造からなるインテグリンスーパーファミリー(Corlos, T. M. and Harlan, J. M. Blood 84, 2068-2101 (1994))と、その他のレセプター、例えばCD26 (DDPIV)、C

D44、GPIV、GPVI、GPIb-vWFなどが含まれる。さらに本発明で述べるインテ グリンとは、インテグリンスーパーファミリーに属する分子を指し、このファミ リーに属する分子の変異体も含まれるものとする。本発明のα鎖としては、α1、 α 2 , α 3 , α 4 , α 5 , α 6 , α 7 , α 8 , α 9 , α ν , α L , α Μ , α Χ , α II b 、α E の 1 5 種類が含まれ、中でもα 4 、α 2 が好ましいが、特にこれに 限定されるものではない。また、 β 鎖としては β 1、 β 2、 β 3、 β 4、 β 5、 β6、β7、およびβ8の8種類が含まれ、中でもβ1が好ましいが、特にこれ に限定されるものではない。また、α鎖とβ鎖のペアからなるインテグリン分子 としては、 Elner, S. G. and Elner, V. M. Inv. Ophtal. Vis.Sci. 37, 696-7 01 (1996) に記載の21種類が含まれるが、特にこれに限定されるものではない。 インテグリンのα鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質 とは、インテグリンのα鎖の細胞外領域が免疫グロブリンを構成する重鎖あるい は軽鎖の定常領域と結合した分子を指す。この場合、蛋白質のN末端側にインテ グリン分子、その後に免疫グロブリン分子が並ぶようなキメラ蛋白質が好ましい。 インテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質と は、インテグリンのβ鎖の細胞外領域が免疫グロブリンを構成する重鎖あるいは 軽鎖の定常領域と結合した分子を指す。この場合も蛋白質のN末端側にインテグ リン分子、その後に免疫グロブリンが並ぶようなキメラ蛋白質が好ましい。 α 鎖 とβ鎖のいずれの場合にも免疫グロブリンの重鎖と結合したキメラ蛋白質が好ま しい。

また α 鎖あるいは β 鎖と結合させる免疫グロブリンのアイソタイプは特に限定されるものではない。IgG、IgM、IgA、IgEのいずれも利用しうるが、IgGを用いることが好ましい。IgGのサブクラスとしては、IgG、IgG2、IgG3、IgG4があるが、IgG1を用いるのが好ましい。さらに免疫グロブリンの代わりに分子間にジスルフィド結合を有するダイマー構造の分子を利用することも可能である。

本発明では、インテグリンのα鎖と免疫グロブリンの重鎖または軽鎖からなる キメラ蛋白質とインテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖からなる キメラ蛋白質が会合してなる分子をインテグリン-免疫グロブリンキメラ蛋白質 ヘテロダイマー複合体と呼ぶ。このときα鎖・免疫グロブリン重鎖(α鎖と免疫 グロブリン重鎖のキメラ蛋白質の意、他も同様)とβ鎖・免疫グロブリン重鎖、α鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン軽鎖、α鎖・免疫グロブリン軽鎖とβ鎖・免疫グロブリン重鎖の組み合わせが好ましい。より好ましくはα鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖の組み合わせである。

具体的には、本発明のインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体は、 α 鎖が α 1、 α 2、 α 3、 α 4、 α 5、 α 6、 α 7、 α 8、 α 9、 α 7、 α 8、 α 1 に な E であるものが挙げられる。また、 α 8 は としては α 1、 α 2、 α 3、 α 4、 α 5、 α 6、 α 7、または α 8 であるものが挙げられる。好ましくは α 4 な 4 または α 5 に 2 で あり、 α 4 が α 5 に 2 で あり、 α 5 が α 5 に 2 で 3 が α 5 に 3 で 3 で 4 または α 5 で 3 で 3 で 3 で 4 または α 5 で 3 で 3 で 3 で 4 または α 5 で 3 で 3 で 3 で 4 または α 5 で 4 または α 6 で 4 または α 7 で 5 ので 4 ない。

以下にインテグリン - 免疫グロブリンキメラ蛋白質へテロダイマー複合体の調製方法を述べるが、これに限定されるものではない。

インテグリンのα鎖およびβ鎖を暗号化するDNAを得るには、公知のcDN A配列の情報を利用して、PCR法による遺伝子増幅、cDNAクローニング、 DΝΑ合成などの方法を利用しうる。例えば α 4 および β 1 の D N A 配列はすで に文献に報告されている (Takada, Y. et al. EMBO J. 8, 1361-1368 (1989)、 Scott Argraves, W. et al. J. Cell Biol. 105, 1183-1190 (1987))。インテ グリンのα鎖とβ鎖を暗号化するDNAを得る別の方法として、抗体を利用する 発現クローニングなども利用しうる。免疫グロブリンの定常領域を暗号化するD NAと結合するために、インテグリンのα鎖とβ鎖の細胞外部分のみを暗号化す るDNAを取り出すことが望ましい。そのためには、PCR法およびDNA合成 法を用いることが好ましい。ここでいう細胞外部分とは、α鎖とβ鎖いずれの場 合にも膜貫通部分と予想されている部分よりN末端側のポリペプチド配列を指す。 リガンドとの結合能が維持されればその部分配列を用いることも可能であるが、 細胞外領域と考えられている部分の大部分を用いることが好ましい。DNAを収 り出す際には、免疫グロブリンを暗号化するDNAと連結した後にフレームがあ うように調整を加えておく必要がある。例えば、PCR法によりDNA断片を収 り出す場合にはプライマーに変異を加えることによりこれを達成しうる。この場 合、プライマーの塩基置換によりアミノ酸変異がおきないように設計することが 望ましい。ただしキメラ蛋白質の機能に変化を与えない範囲でのアミノ酸置換は

許容しうる。化学合成によりDNAを得る場合には、免疫グロブリンを暗号化するDNAと連結し得るように配列を設計しておくことで目的を達する。 c DNAの場合には、DNAの切断と合成DNAを利用して、免疫グロブリンを暗号化するDNAと結合できるDNAを調製しうる。

次に免疫グロブリンを暗号化するDNAを調製する。本発明においてはヒト免 疫グロブリン重鎖および軽鎖を暗号化するDNAを用いることが望ましいが、他 の動物種の免疫グロブリンを暗号化するDNAも利用しうる。ヒトIgGを暗号 化するDNAの調製例はすでに報告されているが(Ellison, J. W. et al. Nucl eic Acids Res. 10, 4071-4079 (1982))、これに限定されるものではない。前述 のインテグリンα鎖、β鎖を暗号化するDNAの調製と同様の方法を利用しても よい。本発明においてはヒト免疫グロブリン重鎖として、ゲノムDNAを用いる ことが好ましいが、cDNAを用いてもよい。ヒト免疫グロブリン重鎖のDNA としては、ヒンジ領域、CH2領域、CH3領域を暗号化する部分を用いること が好ましいが、CH1~CH3の定常領域全体を暗号化するDNAを利用しても よい。免疫グロブリン軽鎖の場合にはCL領域を暗号化するDNAを用いる。最 終的にα鎖あるいはβ鎖の細胞外部分を暗号化するDNAとヒト免疫グロブリン 重鎖の定常領域を暗号化するDNAをフレームをあわせて連結する。得られたD Ν A は翻訳開始のメチオニンに始まって、インテグリンの α 鎖または β 鎖のシグ ナル配列、その細胞外領域、ヒト免疫グロブリン重鎖の定常領域をこの順に連結 したポリペプチドを暗号化する。

上記で得られたインテグリンのα鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質を暗号化するDNA、あるいはインテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質を暗号化するDNA、をそれぞれ適当な発現制御配列に機能的に連結し、組み換えベクターを得る。組み換えベクターの作製方法、細胞への導入方法、など一般的な遺伝子組み換えに関する方法は成書に記載されているが("Molecular Cloning" Sambrook et al. (1989) Cold Spring Horbor Lab. Press, New York)、これに限定されるものではない。本発明においては、動物細胞での蛋白質発現に適した発現制御配列を用いることが望ましい。例えば、昆虫細胞発現ではポリヘドリンプロモーター、p10プロモーターなどが、その他の動物細胞発現ではSRαプロモーター、サイトメガロウ

イルス由来プロモーター、シミアンウイルス40由来プロモーター、ポリヘドリンプロモーター、p10プロモーターなどが発現制御配列として一般的に用いられているが、これらに限定されるものではない。本発明においてはSRαプロモーターを用いることが好ましい。

得られた組換えベクターを細胞に導入することにより、インテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体産生細胞を得る。このとき、動物由来細胞を宿主として用いることが好ましい。たとえば、COS細胞(サル腎臓細胞)、CHO細胞(チャイニーズハムスター卵巣細胞)、Sf9(昆虫細胞)などが宿主として一般的に利用されている。また、P3U1やY3などのミエローマ細胞を用いてもよい。その他の株化細胞やクローン化細胞も利用しうるが、これらに限定されるものではない。本発明においては、CHO細胞を用いることが好ましい。

細胞に組み換えベクターを導入する方法としては、リポフェクチン法やリン酸カルシウム法、エレクトロポレーション法などが知られており、いずれの方法を用いてもよい。ただしこれらに限定されるものではない。組み換えベクターを用いて細胞を形質転換する際に、インテグリンのα鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質を発現する組み換えベクター、およびインテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖からなるキメラ蛋白質を発現する組み換えベクター、を薬剤耐性マーカーを変えて順次細胞に導入することが好ましい。導入はどのような順序で行ってもかまわない。また、同時に導入してもよい。導入する2種の組み換えベクターとしては、α鎖・免疫グロブリン重鎖(α鎖と免疫グロブリン重鎖のキメラ蛋白質の意、他も同様)とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖の組み合わせを発現するベクターがよい。これらのどの組み合わせでもよいが、好ましくはα鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖とβ鎖・免疫グロブリン重鎖を発現する組み換えベクターの組み合わせがよい。

いずれの形質転換方法、ベクターの組み合わせによっても、同時に2種の組み換えベクターで形質転換され、しかもα鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質およびβ鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質を同時にほぼ同量、産生している細胞を選別することが重要である。これは、組み換えべ

クターで形質転換された細胞の培養上清中のα鎖と免疫グロブリン重鎖または軽 鎖のキメラ蛋白質およびβ鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質の 産生量を測定することで達成できる。測定方法としては、例えば公知の方法に従 って形質転換細胞を358を含む培地で培養することにより蛋白質をラベル化した 後、培養上清中のα鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質およびβ 鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質の存在量をそれぞれの抗α鎖 抗体または抗β鎖抗体を用いる免疫沈降により推定することができる。他の方法 としては、抗ヒト免疫グロブリン抗体と抗α鎖抗体または抗β鎖抗体を用いるΕ LISA法によって培養上清中のα鎖と免疫グロブリン重鎖または軽鎖のキメラ 蛋白質およびβ鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質の存在量を推 定することができる。いずれにしても培養上清中へのα鎖およびβ鎖のキメラ蛋 白質の産生量がほぼ同量で、多量に産生しているクローンを選別することがイン テグリンー免疫グロブリンキメラ蛋白質ヘテロダイマー複合体の調製のためには 好ましい。 蛋白質のラベル化方法、免疫沈降の方法、ELISAの一般的方法は 成書に記載されているが ("Antibody" Harlow, E. and Lane, D. (1988) Cold Spring Harbor LAb. Press, New York)、これに限定されるものではない。また キメラ蛋白質の検出のために他の方法も利用しうる。

得られた形質転換細胞を一般的な細胞培養の方法に従って培養し、インテグリン - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を産生させることができる。培地として、低免疫グロブリン濃度の血清を5%程度含む培地が好ましいが、一般に知られている血清含有培地や無血清培地でもよい。細胞を培養後、遠心分離などの操作により細胞および固形物を除去し、インテグリン - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を含む培養上清を回収する。

この培養上清中にはα鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質とβ鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質がヘテロダイマー複合体を形成したインテグリン-免疫グロブリンキメラ蛋白質だけでなく、ヘテロダイマー複合体を形成していないα鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質およびβ鎖と免疫グロブリン重鎖または軽鎖のキメラ蛋白質が混入していると推定できる。しかし、ヘテロダイマー複合体以外の分子はリガンドへの結合能を持たないことから、この培養上清をリガンドまたは細胞との結合の試験、インテグリ

ンとリガンドの結合を阻害する物質の探索、インテグリンに結合する物質の探索、インテグリンのリガンド量を測定する試薬、として利用することができる。これらの利用方法は、後述する精製したインテグリン - 免疫グロブリンキメラ蛋白質 ヘテロダイマー複合体を用いる場合と基本的には同じである。

インテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体の精製は、免疫グロブリン部分の性質を利用してプロテインAカラム担体を用いる定法に従って達成できる。また、α鎖またはβ鎖に対する抗体を用いる親和性クロマトグラフィーの手法を利用してもよい。さらに、リガンドを担体に結合した親和性クロマトグラフィーの手法により精製することもできる。一般的なクロマトグラフィーの方法を組み合わせて精製することもできる。インテグリン分子をこれらの方法で精製した公知例(Pytela, R. et al. Methods Enzymol. 144, 475-489(1987)、Santoro、S. A. et al. Biochem. Biophys. Res. Comm. 153, 217-223(1988)、Charo、1. F. et al. J. Cell Biol. 111, 2795-2800(1990)、Makarem、R. et al. J. Biol. Chem. 269, 4005-4011(1994)、Pfaff、M. et al. Eur. J. Immunol. 225, 975-984(1994)、Gulino、D. et al. Eur. J. Biochem. 227, 108-115(1995)など)を応用すれば、インテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体の精製は達成できる。

精製したインテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体は、SDS-PAGEにより非還元下で少なくとも1本のバンドを示し、還元下で少なくとも2本のバンドを示す蛋白質として同定できる。また、これによりヘテロダイマーが免疫グロブリン重鎖間のジスルフィド結合により連結されていることを確認できる。まれに、還元下で複数のバンドが検出できることがあるが、これはα鎖の分子内切断が起こっているためと考えられる。特にα4でこの現象が知られている(Hemler, M. E. et al. J. Biol. Chem. 262, 11478-11485(1987))。さらに、それぞれのバンドがキメラ蛋白質であることは、ウエスタンブロッティングなどの方法により確認できる。別の方法として、得られた分子がインテグリンー免疫グロブリンキメラ蛋白質ヘテロダイマー複合体であることは、前述の抗α鎖抗体、抗β鎖抗体、抗ヒト免疫グロブリン抗体を組み合わせたELISAにより確認できる。つまりすべての抗体に対するエピトープを持つ蛋白質分子として同定できる。さらに別の方法として、免疫沈降によってインテグリンー免疫

グロブリンキメラ蛋白質へテロダイマー複合体を同定することもできる。この場合には、精製した蛋白質を公知の方法を用いて³5 Sまたは「²5 I またはビオチンなどでラベル化した後、抗α鎖抗体、抗β鎖抗体、抗ヒト免疫グロブリン抗体を用いて免疫沈降するといずれの場合にも同じ電気泳動パターンが得られることで、インテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体が目的とする構造をとっていることを確認することができる。さらに、細胞膜上のインテグリン複合体が解離する条件、例えばEDTAの共存や、SDSの存在下での煮沸などの操作を加えても免疫沈降パターンが変化しないことから、得られたインテグリンー免疫グロブリンキメラ蛋白質が構造的に安定化された複合体であることを確認できる。インテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体の確認方法はこれらによって限定されるものではない。

調製したインテグリンー免疫グロブリンキメラ蛋白質ヘテロダイマー複合体と リガンドとの結合は以下のように試験することができる。リガンドとインテグリ ン - 免疫グロブリンキメラ蛋白質ヘテロダイマー複合体を接触させて混合物を作 製した後に、リガンドに結合したインテグリン-免疫グロブリンキメラ蛋白質へ テロダイマー複合体の量またはインテグリンー免疫グロブリンキメラ蛋白質ヘテ ロダイマー複合体に結合したリガンド量を測定する。インテグリンー免疫グロブ リンキメラ蛋白質へテロダイマー複合体量の測定は、複合体自身を蛍光色素また は酵素またはラジオアイソトープなどで標識しておくことで行うことができる。 リガンド量の測定も同様の手法で行うことができる。SPA(アマシャム社)の ような検出方法を利用して測定することもできる。さらに、蛍光色素、酵素、ラ ジオアイソトープなどで標識した複合体またはリガンドを認識する試薬を利用し て測定することもできる。インテグリン-免疫グロブリンキメラ蛋白質ヘテロダ イマー複合体を認識する試薬としては、例えば抗ヒト免疫グロブリン抗体がある。 本試験においては、検出される分子を何らかの担体、例えばビーズやプレート、 に結合させておくことが好ましい。また、リガンドは分子全体だけでなく、イン テグリンとの結合活性を保持する一部分を取り出して使用することもできる。例 えば、インテグリンα4β1またはインテグリンα2β1については、そのリガ ンドであるフィブロネクチンまたはコラーゲンやそのペプチド断片を担体に結合 させて使用することができる。

上記と同様の手法を用いて、インテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体と細胞との結合を試験することができる。複合体に結合した細胞量の測定は、細胞を蛍光色素またはラジオアイソトープで標識するか、あるいは細胞と反応する試薬、例えば表面抗原と反応する抗体を利用することで行いうる。細胞の代わりに、組織切片のようなものを用いた場合は、結合するインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体量を前記のいずれかの方法により測定することになる。

これまでに述べたインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体とリガンドまたは細胞との結合を調べる方法は、そのままインテグリンとリガンドとの結合を阻害する物質、例えば抗体、ポリペプチド、ペプチド、低分子化合物を取得することに利用できる。好ましくは、被検物とインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体をあらかじめ混合したのちに上記の測定系にてインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体のリガンドへの結合量を測定する。インテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体の結合量が、ある被検物質を加えて下がるようであれば、その被検物質に阻害活性があると判断できる。ただしこの系では、金属イオンキレート作用を持つ物質や界面活性作用を持つ物質などが擬陽性の結果をもたらす可能性がある。被検物質のソースとしては、下述のインテグリン結合物質、リガンドのペプチド断片、その誘導体、市販の化合物などを利用するが、この限りではない。

これまでに、精製したインテグリンをプレートに固相化し、結合するペプチドを探索した例が報告されている(Healy、J. M. et al. Biochemistry 34, 3948-3955(1995))。本発明で得られるインテグリン-免疫グロブリンキメラ蛋白質ヘテロダイマー複合体を用いても、同様にインテグリンに結合する物質を探索することができる。特に、本発明のキメラ蛋白質ヘテロダイマー複合体を用いた場合には、非特異的に結合した物質を除去するための操作をより厳しい条件で行いうることから、操作の簡略化がはかられる利点がある。また、操作途中の複合体の解離がないことから、より特異的に結合物質を選択できる利点がある。結合物質を選択するソースに適したものとして、ファージペプチドライブラリー(例えばScott, J. K. and Smith, G. P. Science 249, 386-390(1990))やDNAオリゴ

マーのライブラリー (例えば0' Connel, D. et al. Proc. Natl. Acad. Sci. USA 93, 5883-5887 (1996)) が知られているが、本発明においては前者を用いることが好ましい。

さらに前記のインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体とリガンドあるいは細胞の結合を試験する方法は、体液や組織中でのインテグリンのリガンド量の変化を測定する方法として利用できる。

また、本発明のインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体は医薬として用いることができる。具体的には、本発明により、インテグリンをはじめとする単離した細胞外マトリックスレセプターが血小板代替物として利用できることが明らかになった。

血小板代替物として用いる細胞外マトリックスレセプターとしてはインテグリ ンが好ましい。インテグリンのα鎖としてはα1、α2、α3、α4、α5、α れるが、中でも α 2 が好ましい。 β 鎖としては β 1、 β 2、 β 3、 β 4、 β 5、 β 6 、β 7 、またはβ 8 があげられ、中でもβ 1 が好ましい。より好ましくはイ ンテグリンα2β1である。単離するためのレセプターソースとしては、細胞外 マトリックスレセプターを発現する組織や細胞、遺伝子組み換え法により作製し たレセプター発現細胞の膜分画の溶解物などが利用できる。より好ましくは、遺 伝子組み換え法によりレセプター遺伝子に変異を加えて可溶化体となるように設 計し、これを産生する細胞の培養上清をソースとして使用する。さらに、可溶化 体を設計する上では、細胞外マトリックスレセプターの機能的な構造が維持され るようにすることが好ましい。例えば、インテグリンのヘテロダイマー構造を、 α鎖とβ鎖を共有結合などにより会合できるように改変したインテグリンー免疫 グロブリンキメラ蛋白質ヘテロダイマー複合体を用いることが望ましい。インテ グリン-免疫グロブリンキメラ蛋白質ヘテロダイマー複合体としては、α鎖がα 1, α 2, α 3, α 4, α 5, α 6, α 7, α 8, α 9, α ν, α L, α Μ, α X、αIIb、またはαEであるものが好ましく、中でもα2であるものが好まし い。また、β鎖としてはβ1、β2、β3、β4、β5、β6、β7、または β 8であるものが好ましく、中でもβ1であるものが好ましい。より好ましくはα 鎖が α 2であり、 β 鎖が β 1である。

以下、本発明の血小板代替物を細胞外マトリックスレセプターの代表例である インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を中 心に説明するが、本発明はこれに限定されない。

精製したインテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体の 医薬用途を確認するためには、精製した蛋白質そのものを用いて薬理活性を調べ る。より好ましくは、細胞外マトリックスへのより高い結合能を得るために、イ ンテグリン-免疫グロブリンキメラ蛋白質へテロダイマー複合体を脂質や蛋白質 重合体などからなる担体に結合させて用いるが、これには限定されない。

血小板代替物として用いる場合には、インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を、既報(Martin, F. J. et al. Biochemistry, 20, 4229 (1981))の方法に準じて、リポソームに共有結合させて用いることが好ましい。担体としては、リポソーム以外のどのような薬物担体でも、医薬品用途が容認されるものであればよい。リポソーム担体を用いる場合、成書(「リポソームの作製と実験法」、奥 直人(1994)、廣川書店)にある組成、方法を用いてリポソームを作製するが、インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体の細胞外マトリックスへの結合エピトープがリポソーム膜の外側に露出する方法が好ましい。

ここで調製したリポソーム担体上に、インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体が結合していることを確認する方法として、フローサイトメーターを使用する。インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を認識する試薬としては、抗インテグリンα 2 抗体、抗インテグリンβ 1 抗体、抗ヒト免疫グロブリン抗体などを利用することができる。利用する抗体が、蛍光標識されている場合はそのまま測定に供するが、蛍光標識されていない場合には、抗体を作製した動物種の免疫グロブリンクラスを認識する 2 次抗体の蛍光標識体を用いて行う。これ以外の確認方法として、インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体自身を酵素またはラジオアイソトープなどで標識し、発色色素や放射活性測定装置などとの適切な組合わせによって確認することも可能である。

インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リ ポソームを用いて細胞外マトリックス結合能を調べるには、生理的な陽イオン濃 度を含む緩衝液中または血漿中にインテグリンα2β1-免疫グロブリンキメラ 蛋白質へテロダイマー複合体リポソームを懸濁して用いることが好ましい。ここ で言う生理的な陽イオン濃度を含む緩衝液とは、少なくとも、Mgイオン、Ca イオンのような陽イオンを含み、中性付近に調整されたものを言う。また、血漿 は、抗凝固剤の存在下で採血し、一般的な血漿作製法にて調製する。たとえば、 抗凝固剤としてヘパリンやEDTA溶液を十分な単位数加えて用いることができ る。市贩されている正常血漿、凝固因子欠乏血漿や血清などを用いてもよい。た だし、使用する抗凝固剤により陽イオン濃度が低下する場合、後に生理的な濃度 になるように陽イオンを添加して使用する。次に、インテグリンα2β1-免疫 グロブリンキメラ蛋白質ヘテロダイマー複合体リポソームを、担体に固相化した 細胞外マトリックスあるいはその一部の断片と一定時間混合して結合の有無を判 定する。細胞外マトリックスあるいはその一部の断片の固相化は、プラスチック プレートなどを用いて行うことが好ましいが、市販の細胞外マトリックス固相化 ビーズなどを用いてもよい。細胞外マトリックスとして、コラーゲンを用いる場 合、どのような動物種およびタイプを用いてもよい。インテグリンα2β1-免 疫グロブリンキメラ蛋白質ヘテロダイマー複合体リポソームと細胞外マトリック スとの結合反応は、血小板の粘着反応をみるのに一般的な方法に準じて行う。多 くの場合は、主に静止系で一定時間放置し、マトリックスへの結合を誘導するが、 好ましくは、振とう負荷、ずり応力などを加える。

インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームは、上述のような条件下で細胞外マトリックスに結合するが、この結合量は、抗ヒト免疫グロブリン抗体を用いる上述のELISA法を応用して測定する。より正確な定量のためには、マトリックスに結合したリポソームを 1 %グルタルアルデヒドなどにより固定しておくことが望ましい。また、ELISA法以外に、たとえば放射標識した脂質をリポソームにあらかじめとりこませておけば、細胞外マトリックスに結合したリポソーム量を放射活性として求めることもできる。さらに、細胞外マトリックスへの結合および被覆度を定性的に判断するには、結合したリポソーム上のインテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体を認識する標識抗体と発色色素などを組合わせ、リポソームが結合している部分を染色することができる。より好ましくは、一般的に使用さ

れる組織抗体染色の方法を利用し、インテグリンα 2 β 1 - 免疫グロブリンヘテロダイマー複合体に対するペルオキシダーゼ標識抗体とジアミノベンチジンを組合わせるが、この方法に限定されない。他の方法として、細胞外マトリックスを被覆した面積を、画像処理解析装置を用いて被覆率を求めてもよい。

血小板の止血機能検査として、血小板の細胞外マトリックスへの粘着能、コラーゲンにより誘導される凝集能をみる方法がある(「血液凝固検査ハンドブック」p65-78、福武勝博、藤巻道夫(1987) 宇宙堂八木書店、Santro、S. A. Cell, 46,913-920(1986)、Lethagen、S. and Rugarrn、P. Thrombo Haemost、67、185-186(1982))。特に、血小板の細胞外マトリックスへの粘着能の高さが、一次止血能の高さの指標となる。この粘着能の評価は、血液をそのまま用いるか、もしくは多血小板血漿や生理イオン条件の緩衝液で洗浄した血小板を用いて行う。従って、本発明で得られたインテグリンα2β1-免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームが血小板の機能代替物となりうるかどうかは、血漿成分存在下、あるいは生理的なイオン濃度条件下における細胞外マトリックスへの結合性の有無、結合性の高さで判断できる。

本発明で得られるインテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームの血漿成分存在下における細胞外マトリックスへの強い結合性は、血小板代替物となりうることを示している。従って血小板異常による先天性および後天性の出血傾向に対する治療・予防薬として、広くは、血小板輸血代替物として使用できる。

同様にして、本発明で得られるインテグリン α 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームは、血管内皮細胞障害が問題となる病態の治療・予防薬となりうる。例えば、PTCA(経皮的冠血管再狭窄)の予後においては、バルーンカテーテル処理により露出した細胞外マトリックスへの血小板の過剰集積が、再狭窄の引き金となることが報告されている(Liu、M. W. et a 1. Circulation、79、1374-1378(1989))。実施例 2 2 においてインテグリン α 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームの細胞外マトリックス被覆効果が確認されたが、この効果により血小板の過剰集積が軽減され、再狭窄予防薬としても利用しうる。また、インテグリン α 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームを医薬用途で許容される

方法で標識すれば、血管内皮細胞障害により露出した細胞マトリックス露出部位のモニタリングに利用できるほか、リポソーム内への薬剤封入により、障害部位局部へのターゲッティング療法へも応用できる。

本発明で示されるインテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質へテロダイマー複合体リポソームを血小板代替物として用いる場合の投与経路としては、輸液注入もしくは静脈内投与などが挙げられ、通常、塩溶液または血漿などの生理学的に適合する溶液に懸濁して用いられる。また、単独で用いても、他の細胞外マトリックスレセプターやその免疫グロブリンとのキメラ蛋白質へテロダイマー複合体と組み合わせて用いてもよい。また、全血小板を含む他の薬剤と一緒に用いることもできる。投与量は症状、年齢、体重等に応じて適宜選択されるが、成人に対して、蛋白質量として1日0.1mg~10gであり、1回または数回に分けて投与することができる。また、薬学的に許容される担体、賦形剤などと混合し、軟膏剤、塗布剤、貼付剤などの外用剤として障害部位へ局所的に投与することも可能である。この場合には1回塗布あたり蛋白質量として1ng/cm²~1mg/cm²となるように調製される。

実施例

以下、本発明をより詳しく説明するために実施例をあげる。一般的な組み換え DNA実験の手法は成醬の方法 ("Antibody" Harlow, E. and Lane, D. (1988) Cold Spring Harbor Lab. Press, New York) に準じた。

実施例1

ヒトIgG」重鎖発現ベクターの作製

ヒトIgG」ゲノム遺伝子は、報告された塩基配列情報(Ellison, J. W. et a l. Nucleic Acids Res. 10, 4071-4079(1982))に基づくハイブリダイゼーションcDNAプローブを用い、ヒトゲノムライブラリー(CLONTECH)から上述の配列情報に一致するクローンを取得した。これをPCRの鋳型DNAとした。ヒトIgG」遺伝子のヒンジ領域(H)と定常領域部分(CH2とCH3)を含むDNA断片を増幅するためのプライマーとしてBamH I制限サイトを挿入した配列表の配列番号4(以下、配列表の配列番号を、配列番号と略す)、Xba I 制限サイトを挿入した配列番号5に示すDNAオリゴマーを合成した。

5' -GCGGATCCCGAGCTGCTGGAAGCAGGCTCAG-3'

(配列番号4)

5' -CCTCTAGACGGCCGTCGCACTCATTTA-3'

(配列番号5)

鋳型DNA、プライマー、dNTPs(dATP、dCTP、dGTP、dT TT等モル混合液)、Taqポリメラーゼ(TaKaRa)をPCR緩衝液(10 0 mM Tris-HCl 、500 mM KCl、15 mM MgCl2、0.01% gelatin pH8.3)中で混合し たのち、サーマルサイクラー (Perkin Elmer Cetus) にて、 DNA変性を94℃で1分、プライマーのアニーリングを58℃で2分、プライ マーの伸長を72℃で3分を30サイクル行った。増幅したDNAを制限酵素Ba mH IおよびXba I で消化後、常法 ("Antibody" Harlow, E. and Lane, D. (198 8) Cold Spring Harbor Lab. Press, New York) に従い、1%アガロースゲルに てDNA断片を精製した。これを制限酵素Bamil IおよびXba I で消化して精製し たpBluescriptSK(+)(STRATAGENE)の大DNA断片 とT4DNAリガーゼを用いて連結した。このプラスミドDNAを用いて大腸菌 (JM109)を形質転換し、形質転換株を選択してプラスミドDNA (JgG 1Bluescript)を得た。次に、発現ベクターpcDL-SRα296を 制限酵素BamH Iで消化後、T4DNAポリメラーゼ処理にて平滑端とし、Not I リンカーを連結した。これを、制限酵素Not I およびXho I 消化した大DNA断 片とIgG,Bluescriptを制限酵素NotIおよびXho I消化した小DN A断片を常法に従って精製し、両DNA断片をT4DNAリガーゼで連結した。 これを大腸菌(HB101)に形質転換した後に形質転換株を選択してプラスミ ドDNAを得た。以下、該プラスミド(1gG1SRα)をヒト1gG1発現ベク ターと呼ぶ。なお、以後の実施例で述べる遺伝子組み換えの基本的な操作は上記 と同様であるので簡略に述べる。

実施例2

インテグリンα4・ΙςG重鎖キメラ蛋白質発現ベクターの構築

EcoR IからBamH I切断部位を α 4 - 3 とし、これを連結することによって得た。 以下に具体的な方法を示す。

 α 4-1を暗号化する部分は配列番号 6~9のDNAオリゴマーを連結してクローニングする設計とし、配列番号 6~9に示すDNAオリゴマーを合成した。配列番号 6、7には、ベクターへの連結のためにN端を暗号化する側に制限サイトXba Iを付加した。また、既知配列情報と比較して配列番号 1の60、63、64位の塩基をC→T、C→A、C→Gに置換、112、114位の塩基をC→A、C→Gに置換した。112、114位の置換により、配列番号:8、9のN端を暗号化する側に制限サイトStu Iを挿入した。合成したオリゴマーの5、末端をリン酸化、アニーリングした後、T4DNAリガーゼを用いて連結した。連結後、制限酵素Xba IとStu Iで切断し、5%アガロース(NuSicve GTGagarose、FMC)ゲルにて電気泳動し、目的とする約120bpのDNA断片(α 4-1)を切り出して、精製した。

- 5' CTAGACCACCATGTTCCCCCACCGAGAGCGCATGGCTTGGGAAGCGAGGCGCGCAACCCGGGCCCCGGA GCTGCA-3' (配列番号6)
- 5' -GCTTCGGGGCCCGGGTTCGCGCCTCGCTTCCCAAGCCATGCGCTCTCGGTGGGGAACATGGTGGT-3'
 (配列符号7)
- 5' -CTCCGGGAGACGGTGATGCTGTTGCTGTGCCTGGGGGTCCCGACCGGCAGG-3'

(配列番号8)

5' - CCTGCCGGTCGGGACCCCCAGGCACAGCAACAGCATCACCGTCTCCCGGAGTCGA-3'

(配列番号9)

次に、インテグリン α 4 発現細胞であるヒト骨肉腫細胞株 M G 6 3 (A T C C C R L 1 4 2 7)のR N A を分離し、オリゴ d T セルロースカラム(N E B)を用いて P o 1 y A (+) R N A を精製した。これをもとに逆転写酵素(G I B C O)を用いて 1 本鎖 c D N A を合成し、 P C R の鋳型として使用した。 α 4 - 2、 α 4 - 3の D N A を増幅するプライマーとして、 Pst I、 Stu I 制限サイト(配列番号 1 0)、 BamH I制限サイト(配列番号 1 3)を挿入した配列番号 1 0~13の 4 本の D N A オリゴマーを合成した。

- 5' -CACTGCAGGCAGGCCTTACAACGTGGACACTGAGAGC-3' (
- (配列番号10)

5' - GCAGAAACCTGTAAATCAGCAG-3'

(配列番号11)

5' - GCATTTATGCGGAAAGATGTGC-3'

(配列番号12)

5' - CGGGATCCGTGAAATAACGTTTGGGTCTT-3'

(配列番号13)

鋳型 c D N A とプライマー、 d N T P s 、 T a q ポリメラーゼを P C R 緩衝液中で混合したのち、サーマルサイクラーにて、 D N A 変性を 94 $\mathbb C$ で 1 分、プライマーのアニーリングを 58 $\mathbb C$ で 2 分、プライマーの伸長を 72 $\mathbb C$ で 3 分を 30 サイクル行った。 増幅した α 4-2 、 α 4-3 の D N A 断片を それぞれ P s t I および E co R I 、 E co R I および B a m H I で消化後、 p B i u e s c r i p t K S (+) (S T R A T A G E N E) にサブクローニングし、プラスミド D N A (以下、 α 4-2 B l u e s c r i p t 、 α 4-3 B l u e s c r i p t)を調製した。次に、 α 4-2 B l u e s c r i p t の上流に、 X b a I および S t u I 制限 サイトを 利用して α 4-1 を 連結し、プラスミド D N A (以下、 α 4-1-2 B l u e s c r i p t)を 調製した。

 α 4 - 1 - 2 B l u e s c r i p t を、制限酵素Not l で消化後T4 D N A ポリメラーゼ処理にて平滑末端としたのち、制限酵素EcoR l で消化し、小D N A 断片を調製した。 α 4 - 3 B l u e s c r i p t は、制限酵素EcoR l およびBamH l で消化して、小D N A 断片を精製した。次に、この 2 つの小D N A 断片を、 l g G l S R α を制限酵素EcoR V およびBamH l で消化して得られる大D N A 断片に同時に連結し、プラスミドD N A を得た。得られたインテグリン α 4 ・ l g G 重鎖キメラ蛋白質を暗号化する塩基配列を、配列番号 l に示す。以下、該プラスミド(インテグリン α 4 ・ l g G S R α)を、インテグリン α 4 ・ l g G 重鎖キメラ蛋白質発現ベクターと呼ぶ。

実施例3

インテグリンβ1・1gG重鎖キメラ蛋白質発現ベクターの構築

インテグリン β 1発現細胞として、ヒト繊維芽細胞株MRC5(ATCC CCL 171)のRNAを分離し、オリゴ d Tセルロースカラムを用いてPolyA (+)RNAを精製した。これをもとに逆転写酵素を用いて1本鎖cDNAを合成し、PCRの鋳型として使用した。プライマーとして、配列情報(ScottArgraves, W. et al. J. Cell Biol. 105、1183-1190(1987))に従い、C端を暗号化する側にBamH I制限サイト(配列番号15)を挿入して配列番号:14 および15の2本のDNAオリゴマーを合成した。

WO 98/32771 PCT/JP98/00370

5' - GCGGAAAAGATGAATTTACAAC-3'

(配列番号14)

5' -GTGGGATCCTCTGGACCAGTGGGACAC-3'

(配列番号15)

鋳型 c D N A、プライマー、 d N T P s、 T a q ポリメラーゼを P C R 緩衝液中で混合したのち、サーマルサイクラーにて、D N A 変性を 94% で 15% プライマーのアニーリングを 57% で 25%、プライマーの伸長を 72% で 35% を 30% サイクル行った。 増幅した D N A を、 T 4 D N A ポリメラーゼ処理により末端を平滑化したのち、制限酵素 Bam H I で消化後 D N A 断片を精製した。次に、 p B I u e s c r i p t K S (+) の Sma I および Bam H I サイトに、先の P C R で 得た D N A 断片をサブクローニングした。 さらにこれを、制限酵素 EcoR I および Bam H I で消化して精製した小D N A 断片を、制限酵素 EcoR I および Bam H I 処理した I g G I S R α の大D N A 断片に挿入し、プラスミド D N A を 得た。 得られたインテグリン β 1 ・ I g G 重鎖キメラ蛋白質を暗号化する塩基配列を、配列番号 2 に示す。 以下該プラスミド (インテグリン β 1 ・ I g G 重鎖キメラ蛋白質発現ベクターと呼ぶ。

実施例4

インテグリンα4・IgG重鎖キメラ蛋白質発現ベクターおよびインテグリンβ 1・IgG重鎖キメラ蛋白質発現ベクターの動物細胞への導入と発現

インテグリンβ 1・ I g G 重鎖キメラ発現ベクターであるインテグリンβ 1・ I g G S R α と p S V 2 d h f r (B R L)を10:1の割合で混合し、これとリポフェクチン試薬(G I B C O B R L)を緩やかに混合して室温15分間静置後、ジヒドロ葉酸リダクターゼ欠損C H O 細胞(A T C C C R L 9096)に滴下した。滴下18時間後に培養培地(10%FBS(G I B C O)、核酸含有α M E M 培地(G I B C O B R L))に交換して約2日間培養したのち、トリプシンーEDTA処理にて細胞を分散し、第一選択培地(10%FBS含有核酸不含α M E M 培地(G I B C O B R L))に懸濁して、96ウェルプレート(C O R N I N G)中に播種して約10日間選択培養した。その後、培養上清中に産生されるインテグリンβ1・I g G 重鎖キメラ蛋白質量をELISA法(後述)により測定し、最も高い産生量を示すクローンを、限界希釈法によるクローニングにより安定化した。

次に、安定化したインテグリンβ1・1gG重鎖キメラ蛋白質産生CHO細胞

実施例5

に、上記と同様のリポフェクチン法によりインテグリンα 4・ I g G 重鎖キメラ発現ベクターを形質移入した。すなわち、インテグリンα 4・ I g G S R αと p S V 2 n e o (B R L)を10:1で混合し、これをリポフェクチン試薬と混合したのち、細胞に滴下した。滴下18時間後に先の第一選択培地に交換して約2日間培養した後、トリプシン-E D T A 処理にて細胞を分散し、第二選択培地(10%FBS(G I B C O)、1 m g / m l n e o m y c i n (G I B C O)を含有する核酸不含α M E M 培地(G I B C O B R L))に懸濁し、96ウェルプレート(C O R N I N G)にて耐性細胞を約10日間選択培養した。培養上清中に産生されるインテグリンα 4・ I g G 重鎖キメラ蛋白質量とインテグリンβ1・ I g G 重鎖キメラ蛋白質量をE L I S A 法(後述)により測定し、両キメラ蛋白質の産生量がほぼ同等のクローンをピックアップした。このクローンを、限界希釈法により2回クローニングし、α 4・ I g G 重鎖 – β 1・ I g G 重鎖キメラ蛋白質へテロダイマー複合体を産生するクローンとして安定化した。

E L I S A 法によるインテグリンα 4 ・ I g G 重鎖キメラ蛋白質およびインテグリンβ 1 ・ I g G 重鎖キメラ蛋白質産生量の測定

抗ヒトインテグリンα 4 抗体(Becton&Dickinson、クローン
L25.3)、または抗ヒトインテグリンβ1抗体(Coulter、クローン
4 B4)2μg/mlを96ウェルイムノプレート(NUNC)に50μl/ウェルずついれ、4℃、16時間静置した。その後、各ウェルをダルベッコリン酸
緩衝生理食塩水(日水製薬、Caイオン、Mgイオン不含、以下PBS(一))
にて2回洗浄し、25%プロックエース(雪印乳業)含有PBS(一)にて非特
異反応をプロックした。プロッキング後、選択培養により増殖したCHO細胞の
培養上清を適宜希釈して室温で抗体と1時間反応させた。反応後、0.02%T
ween含有PBS(一)(以下TーPBS)で2回洗浄した。次にビオチン化
抗ヒト1gG抗体(Vector)と1時間反応後、TーPBSで2回洗浄し、
続いてアビジンー西洋ワサビペルオキシダーゼ(Sigma)と1時間反応後、PBS(一)で2回洗浄した。PBS(一)を完全に吸引したのち、オルトフェニレンジアミンを基質として発色させ、マイクロプレートリーダー(Bioーrad NOVAPATH)を用いて490nmの吸光度を測定し、高い吸光度を

示すクローンを選択した。

実施例6

α 4 ・ I g G 重鎖 - β 1 ・ I g G 重鎖キメラ蛋白質ヘテロダイマー複合体の精製 (1) C H O 細胞の培養と培養上清の調製

α 4・ I g G 重鎖 - β 1・ I g G 重鎖 キメラ蛋白質へテロダイマー複合体を高産生する C H O 細胞を、 5 % F B S (U I t r a - I o w I g G グレード、 G I B C O)を含む核酸不含α M E M 培地(以下α M E M (-) 培地、 G I B C O B R L)で 1 日培養し、セミコンフルエントとなった細胞を 1 % F B S (U I t r a - I o w I g G グレード)を含むα M E M (-) 培地に交換して 3 日間培養したのち、培養上清を回収した。これを P r e p - s c a I e (M i I I i p o r e)を用いた限外濾過により 1 / 1 0 容量まで濃縮し、最終濃度 5 m M となるように 1 M H e p e s 溶液(p H 8 . 0)を加えて精製原液とした。

(2)プロテインAカラムクロマトグラフィー

精製原液を、Proscp Guard担体(bioPROCESSING)カラムに通過させたのち、ProsepA担体(bioPROCESSING)カラムにアプライした。アプライ終了後、カラム体積の10倍容量のPBS(-)で洗浄し、続いて0.1Mクエン酸緩衝液pH6~3のグラジエントで蛋白質を溶出した。pH3で溶出されるピーク画分を回収、1MTris-HC1溶液(pH8.5)を0.1容量加えて中和後、PBS(-)に対して透析した。(3)アフィニティーカラムクロマトグラフィー

FMP活性化セルロファイン(生化学工業)をカップリング緩衝液(50 mM Na 2CO3-NaHCO3 pH 8.5)で平衡化したのち、ペプチド合成機で合成した配列番号 3 に示すペプチド(以下CS-1ペプチド)を加え、4℃、16時間転倒混和した。Cys Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr (配列番号 3)混和後、カップリング緩衝液で洗浄し、ブロッキング緩衝液(0.1 mM monoethan olamine 、50 mM Tris-HC1 pH 8.0)を加えてさらに室温で6時間転倒混和した。その後、TBS溶液(150 mM NaCl、20 mM Tris-HC1、1 mM MnCl2、pH 7.5)で十分に洗浄してCS-1ペプチド結合セルロファインカラムを作製した。このカラムに、精製原液をアプライして室温で3時間静置したのち、カラム体積の10倍容量の洗浄緩衝液 (1 M NaCl、0.1 % Triton、20 mM Tris-HCl、1 mM MnCl2 p

H 7.5)と同容量のTBS溶液で洗浄した。洗浄後、溶出緩衝液(10 mM EDTA、150 mM NaC1、20 mM Tris-HC1 pH 7.5)を用いてCS-1カラムに結合した蛋白質を溶出した。溶出液を回収後、PBS (-) に対して透析した。

(4) SDS-PAGE

実施例7

α 4 ・ l g G 重鎖 - β l ・ l g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体の同定 と構造的安定性の検討

(1) 抗インテグリン抗体を用いる免疫沈降と陽イオンキレート剤の影響 基本的な方法は成書("Antibodies" Harlow E. et al. (1988) Cold Spring Harber Lab. Press, New York)に従った。すなわち、α4・1gG重鎖ーβ1・ IgG重鎖キメラ蛋白質ヘテロダイマー複合体と考えられる実施例6(3)の溶出蛋白質をlactoperoxidase 法を用いて¹²⁵ I ラベル化した。次に、Affigel-10 (Bio-rad)を0.1 MHepes溶液(pH8.0)にて洗浄したのち、正常マウスIgG、抗ヒトインテグリンα4抗体(クローン11 C2B)および抗ヒトインテグリンβ1抗体(クローン4B4)を加えて4℃で16時間反応させて共有結合させ、正常マウスIgGビーズ、および各抗体ビーズを作製した。次に、¹²⁵ I 標識α4・ IgG重鎖-β1・ IgG重鎖キメラ蛋白

1 m M M g C 1 2存在下における免疫沈降の結果、抗ヒトインテグリン α 4 抗体と抗ヒトインテグリン β 1 抗体の両ビーズから、 α 4 \cdot 1 g G 重鎖+メラ蛋白質へテロダイマー複合体構造から期待される同一の沈降パターンが得られた。これにより、実施例 6 の(3)で得られた蛋白質が α 4 \cdot 1 g G 重鎖- β 1 \cdot 1 g G 重鎖+メラ蛋白質へテロダイマー複合体であることを同定した。

一方、10mMEDTA存在下での抗インテグリンβ1抗体ビーズを用いた免疫沈降のパターンは、1mMMgCl2存在下と同様であり、インテグリンα4・ lgG重鎖キメラ蛋白質とインテグリンβ1・lgG重鎖キメラ蛋白質との会合が、陽イオン依存性ではないことを明らかにした。以上の結果は、実施例6(3)で得た溶出蛋白が確かにα4・lgG重鎖ーβ1・lgG重鎖キメラ蛋白質へテロダイマー複合体であることを示すとともに、実施例6(4)の結果とあわせて、両蛋白質の会合が1gG重鎖間のジスルフィド結合を介した安定な会合であることを強く示唆している。

(2) α 4 ・ I g G 重鎖 - β 1 ・ I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体 のシーケンシャル免疫沈降による構造的安定性の検討

バッファーを加え、100℃、5分間処理し、遠心分離した後の上清(第2次免疫沈降サンプル)を、SDS-PAGE/オートラジオグラフィーを行った。

その結果、第1次免疫沈降により得られた電気泳動パターンは、第2次免疫沈降においても同様に認められた。この結果は、 α 4 ・ I g G 重鎖 – β 1 ・ I g G 重鎖 + メラ蛋白質へテロダイマー複合体における α 4 ・ I g G 重鎖 + メラ蛋白質とβ 1・ I g G 重鎖 + メラ蛋白質の会合が、 2 % S D S 存在下での煮沸においても解離しないことを示しており、ジスルフィド結合による安定なヘテロダイマー構造であることを強く支持するものである。

実施例8

α 4 · I g G 重鎖 - β 1 · I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体の V CA M - 1 への結合

 $10 \mu g / m 1$)、および3 m M E D T Aの添加により阻害された。この結果は、 $\alpha 4 \cdot 1 g G 重鎖 - \beta 1 \cdot 1 g G 重鎖 + メラ蛋白質 へテロダイマー複合体が、細胞膜表面に存在するインテグリン <math>\alpha 4 \beta 1$ と同様にV C A M - 1 に対する結合能をもつことを示している。また、この結合が $\alpha 4 \beta 1$ 特異的であること、陽イオン依存性という結合の特徴を維持していることを示す。

実施例9

フィブロネクチン上のペプチド断片に対するα4・1gG重鎖-β1・1gG重 鎖キメラ蛋白質ヘテロダイマー複合体の結合

次に、インテグリンα 4 β 1 のもうひとつのリガンドであるフィブロネクチン上のペプチド断片(配列番号 3)に対するα 4 ・ 1 g G 重鎖 - β 1 ・ 1 g G 重鎖 + メラ蛋白質へテロダイマー複合体の結合能についても検討した。

まず、前記の報告(Humphries, M. J. et al. J. Biol. Chem. 262, 6886-6892 (1987))に従って、配列番号 3 のペプチド断片(CS-1ペプチド)をラビット lgG(Sigma)に結合させて、CS-1-lgGを作製した。このCS-1-lgGをPBS(-)で希釈したのち、96ウェルイムノプレート(NUNC)に $100\mu1$ /ウェルずつ入れ、4 \mathbb{C} 、 16 時間静置することによりプレートに固相化した。

静置後、PBS(-)にて2回洗浄し、80℃、10分間加熱処理により熱変性処理した1%BSA-PBS溶液を300 μ 1/ウェルずつ入れて4 $^{\circ}$ C、3時間処理することにより非特異反応をブロッキングした。次に、固相化した $^{\circ}$ CS-1-1gGと α 4 \cdot 1gG重鎖- β 1 \cdot 1gG重鎖+30 $^{\circ}$ C、3時間反応させた。非結合 α 4 \cdot 1gG重鎖- β 1 \cdot 1gG重鎖+30 $^{\circ}$ C、3時間反応させた。非結合 α 4 \cdot 1gG重鎖- β 1 \cdot 1gG重鎖+3 \cdot 2gG重鎖-4 \cdot 1gG重鎖-6 \cdot 2gC可が NaC1、25 mM Tris-16C1、1 mM MnC1 $_{\circ}$ 2gH 7.4 $_{\circ}$ 1gC可洗浄除去し、結合した α 4 $_{\circ}$ 1gG重鎖- β 1 $_{\circ}$ 1 $_{\circ}$ 1gG重鎖+3 $_{\circ}$ 2 $_{\circ}$ 2

その結果を図2に示す。α4・1gG重鎖-β1・1gG重鎖キメラ蛋白質へ

テロダイマー複合体と反応させることにより、CS-1ペプチドへの結合を示す吸光度の上昇がみられたが、この結合は、抗インテグリンα4抗体(クローンL25.3)、抗インテグリンβ1抗体(クローン4B4)、5mMEDTAの存在下でほぼ完全に阻害された。従って、α4・1gG重鎖-β1・1gG重鎖キメラ蛋白質へテロダイマー複合体が、フィブロネクチン上のペプチド断片であるCS-1ペプチドに対しても結合能を有すること、陽イオン依存性という結合の特徴が維持されていることが明らかとなった。

実施例10

フィブロネクチン上のペプチド断片に対するα4・1gG重鎖 - β1・1gG重鎖キメラ蛋白質へテロダイマー複合体の結合測定系を利用した阻害ペプチドの評価

実施例 9 の結合測定系において配列番号 1 6 (以下GPEILDVPST)、 1 7 (以下GPEILEVPST)、 1 8 (以下GRGDSP) の 3 種のペプチドの効果を検討した。

Gly Pro Glu Ile Leu Asp Val Pro Ser Thr

(配列番号16)

Gly Pro Glu Ile Leu Glu Val Pro Ser Thr

(配列番号17)

Gly Arg Gly Asp Ser Pro

(配列番号18)

実施例11

インテグリンα2・ΙgG重鎖キメラ蛋白質発現ベクターの構築

インテグリン α 2 の細胞外部分を暗号化する D N A 断片は、 既報の c D N A 配列情報(Takada, Y. et al. J. Cell. Biol. 109, 397-407 (1989))をもとに、 α 2 - 1 α 2 - 2 に分割してサブクローニングし、発現ベクター上で 1 本化した。 まず、インテグリン α 2 発現細胞であるヒト線維芽細胞株 M R C - 5 (A T

C C C C L 171) の R N A を分離し、オリゴ d T セルロースカラムを用いて P o l y A (+) R N A を精製した。これをもとに l 本鎖 c D N A を合成し、 P C R の鋳型として使用した。 P C R プライマーとして、 α 2 - 1 は配列番号 2 0 と 2 1、 α 2 - 2 は配列番号 2 2 と 2 3 の D N A オリゴマーを合成して使用した。

5' -GCTCGAGCAAACCCAGCGCAACTACGG-3' (配列番号20)

5'-ATAGTGCCCTGATGACCATTG-3' (配列番号21)

5' -GATGGCTTTAATGATGTGATTG-3' (配列番号 2 2)

5' -TGTTGGTACTTCGGCTTTCTC-3' (配列番号23)

鋳型cDNAとプライマー、dNTPs、TaqポリメラーゼをPCR緩衝液 中で混合後、サーマルサイクラーにて、PCR (反応条件: 9 4 °C 1 分 − 6 0 °C 2分-72℃3分)を30サイクル行った。増幅したα2-1のDNA断片は、 制限酵素 Xho I およびEcoR Iで消化して精製し、α2-2のDNA断片はT4D N A ポリメラーゼ処理により末端を平滑化したのち、制限酵素 EcoR 「で消化して 精製した。精製した2つのDNA断片をリン酸化反応液(50 mM Tris-HC1、10 m M MgCl₂ 、25 mM DTT 、1 mM ATP、0.1 U/μ1 T4ポリヌクレオチドギナーゼ (Takara) pH 8.0) 中で37℃、1時間反応後、68℃、5分間熱処理し て酵素を失活させた。次に、実施例1で作製した1gG1SRαを制限酵素Bam H Iで消化後、Klenow反応液(66 mM Tris-HCl、10 mM MgCl₂、10 mM DTT、 0.2 mM dNTPs、0.05 U/ μl Klenowfragment (Takara) pH 7.5)中で37℃、30分間反応させて末端を平滑化し、70℃、5分間熱処理 して酵素を失活させた。さらに制限酵素Xho I で消化し、大DNA断片を精製し た。この大DNA断片に、先にリン酸化した2つ(α 2-1、 α 2-2)のDN Α断片を挿入し、プラスミドDNAを得た。得られたインテグリンα2・ΙgG 重鎖キメラ蛋白質を暗号化する塩基配列を、配列番号19に示す。以下該プラス ミド (インテグリンα 2 ・ I g G S R α) をインテグリンα 2 ・ I g G 重鎖キメ ラ蛋白質発現ベクターと呼ぶ。

実施例12

インテグリンα 2 ・ I g G 重鎖キメラ蛋白質発現ベクターおよびインテグリンβ
1 ・ I g G 重鎖キメラ蛋白質発現ベクターの動物細胞への導入と発現

実施例4で作製し、安定化したインテグリンβ1・1gG重鎖キメラ蛋白質産生 CHO細胞に、実施例4と同様のリポフェクチン法によりインテグリンα2・1gG重鎖キメラ発現ベクターを形質移入した。すなわち、インテグリンα2・1gGSRαとpSV2neo(BRL)を10:1で混合し、これをリポフェクチン試薬と混合したのち、細胞に滴下した。滴下18時間後に第一選択培地に交換して約2日間培養した後、トリプシン-EDTA処理にて細胞を分散し、第二選択培地に懸濁し、96ウェルプレートに播種して耐性細胞を約10日間選択培養した。その後、培養上清中に産生されるインテグリンα2・1gG重鎖キメラ蛋白質量とインテグリンβ1・1gG重鎖キメラ蛋白質量をEL1SA法(後述)により測定し、両キメラ蛋白質の産生量がほぼ同等のクローンをピックアップした。このクローンを、限界希釈法により2回クローニングし、α2・1gG重鎖-β1・1gG重鎖キメラ蛋白質へテロダイマー複合体を産生するクローンとして安定化した。

実施例13

E L I S A 法によるインテグリンα 2 ・ I g G 重鎖キメラ蛋白質およびインテグリンβ 1 ・ I g G 重鎖キメラ蛋白質産生量の測定

抗ヒトインテグリンα 2 抗体(Becton&Dickinson、クローンP1E6)、または抗ヒトインテグリンβ 1 抗体(クローン4 B4) 2 μg/m 1を96ウェルイムノプレートに50μ1/ウェルずついれ、4℃、16時間静置した。その後、各ウェルをPBS(一)にて2回洗浄し、ブロッキング後、選択培養により増殖したCHO細胞の培養上清を適宜希釈して室温で抗体と1時間反応させた。反応後、T-PBSで2回洗浄し、ビオチン化抗ヒト1gG抗体と1時間、アビジンー西洋ワサビペルオキシダーゼと1時間反応後、PBS(一)で2回洗浄した。洗浄後、オルトフェニレンジアミンを基質として発色させ、マイクロプレートリーダーを用いて490nmの吸光度を測定し、高い吸光度を示すクローンを選択した。

実施例14

α 2 ・ I g G 重鎖 - β 1 ・ I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体の精製 (1) C H O 細胞の培養と培養上清の調製

α2·IgG重鎖-β1·IgG重鎖キメラ蛋白質ヘテロダイマー複合体を高

産生するCHO細胞を、5%FBS(Ultra-lowIgGグレード)を含むαMEM(-)培地で1日培養し、セミコンフルエントとなった細胞を1%FBS(Ultra-lowIgGグレード)を含むαMEM(-)培地に交換して3日間培養したのち、培養上清を回収した。これを限外濾過により1/10容量まで濃縮し、最終濃度5mMとなるように1MHepes溶液(pH8.0)を加えて精製原液とした。

(2)プロテインAカラムクロマトグラフィー

精製原液を、Prosep Guard担体カラムを通過させたのち、ProsepA担体カラムにアプライした。アプライ終了後、カラム体積の10倍容量のPBS(-)で洗浄し、続いて0.1Mクエン酸緩衝液pH6~3のグラジエントで蛋白質を溶出した。pH3で溶出されるピーク画分を回収、1MTris-HCI溶液(pH8.5)を0.1容量加えて中和後、PBS(-)に対して透析した。

(3) アフィニティーカラムクロマトグラフィー

報告(Kirchhofer, D. et al. J. Biol. Chem. 265, 615-618 (1990))に従ってコラーゲン(Typel、Sigma)をcyanogen-bromide-activated sepharose(Sigma)にカップリングさせたコラーゲン固定化カラムを作製した。次に、精製原液をTBS緩衝液(150 mM NaCl 、50 mM Tris-HCl、1 mM MgCl2、1 mM MnCl2 pH 7.5)に平衡化したのち、カラムにアプライして室温で3時間静置したのち、カラム体積の10倍容量の洗浄緩衝液(150 mM NaCl 、50 mM Tris-HCl、1 mM MgCl2、1 mM MnCl2、100 mM Octyl glucopyranoside pH 7.5)で洗浄した。洗浄後、溶出緩衝液 (20 mM EDTA、150 mM NaCl 、50 mM Tris-HCl、50 mM Octyl glucopyranoside pH 7.5)を用いてカラムに結合した蛋白質を溶出した。溶出液を回収後、PBS(-)に対して透析した。

(4) SDS-PAGE

(3)の溶出画分を7.0%アクリルアミドゲルを用い、非還元下または還元下でSDS-PAGEを行ったのち、ゲルをクマシー染色した。その結果、非還元下では、 α 2・1 gG重鎖- β 1・1 g G重鎖キメラ蛋白質ヘテロダイマー複合体と考えられるバンドが認められた。また、還元下では、インテグリン α 2・1 g G重鎖キメラ蛋白質とインテグリン β 1・1 g G重鎖キメラ蛋白質と考えら

れる2本のバンド(185kDa、135kDa)が認められた。これらの結果は、溶出蛋白質が、α2・IgG重鎖-β1・IgG重鎖キメラ蛋白質ヘテロダイマー複合体と考えられる分子構造であり、しかもIgG重鎖間のジスルフィド結合により連結されていることを示唆している。

実施例15

α 2 · I g G 重鎖 - β 1 · I g G 重鎖キメラ蛋白質ヘテロダイマー複合体の同定 と構造的安定性の検討

実施例14(3)の溶出蛋白質を¹²⁵ I ラベル化し、実施例7と同様に正常マウス I g G、抗ヒトインテグリンα2抗体(クローンP1E6)および抗ヒトインテグリンβ1抗体(クローン4B4)ビーズを用いて免疫沈降を行い、還元下で・のSDS-PAGE/オートラジオグラフィーした。

その結果、1 m M M g C 1 2 または 1 0 m M E D T A のいずれにおいても、抗ヒトインテグリン α 2 抗体と抗ヒトインテグリン β 1 抗体の両ビーズから、 α 2 ・ $1 \text{ g G 重鎖} - \beta$ $1 \cdot 1 \text{ g G 重鎖} + \lambda$ ラ蛋白質へテロダイマー複合体構造から期待される同一の沈降パターンが得られた。この結果は、実施例 1 4 (3) で得た溶出蛋白が確かに α 2 ・ $1 \text{ g G 重鎖} - \beta$ $1 \cdot 1 \text{ g G 重鎖} + \lambda$ ラ蛋白質へテロダイマー複合体であることを示すとともに、実施例 1 4 (4) の結果とあわせて、両蛋白質の会合が 1 g G 重鎖間のジスルフィド結合を介した安定な会合であることを強く示唆している。

実施例16

コラーゲンに対する α 2 ・ \log G 重鎖 β 1 ・ \log G 重鎖 キメラ蛋白質 ヘテロダイマー複合体の結合性と特異性の検討

まず、コラーゲン(Cell matrix TypeI 3 m g/m l)を0.02 M m酸溶液で $0.1 \mu \text{ g/m l}$ となるように希釈し、イムノプレートに $100 \mu \text{ l/d}$ ェルいれて4 C、16時間保温した。保温後、コラーゲン溶液を吸引除去し、PBS(-)で2回洗浄して中和し、熱変性1%BSA-PBS溶液を $300 \mu \text{ l/d}$ ェル入れ、室温で3時間ブロッキングした。ブロッキング後、PBS(-)で2

度リンスして、コラーゲンコートプレートを作製した。

 α 2・ \log G 重鎖 $-\beta$ 1・ \log G 重鎖 + x > 蛋白質 α > α

その結果、図4に示すように、 α 2・1g G重鎖 $-\beta$ 1・1g G重鎖キメラ蛋白質へテロダイマー複合体とコラーゲンの結合を示す吸光度の上昇が認められた。この結合は、各 10 μ g / m 1 の抗インテグリン α 2 抗体(クローンP1E6)と抗インテグリン β 1 抗体(クローン4B4)の共存下、および 5 m MEDTA の存在下でほぼ完全に阻害された。この結果は、 α 2・1g G重鎖 $-\beta$ 1・1g G重鎖キメラ蛋白質へテロダイマー複合体が、細胞膜表面に存在するインテグリン α 2 β 1 と同様にコラーゲンに対する結合性をもつことを示している。また、この結合が α 2 β 1 特異的であること、陽イオン依存性という結合の特徴を維持していることを示す。

実施例17

α 4 ・ I g G 重鎖 - β 1 ・ I g G 重鎖キメラ蛋白質ヘテロダイマー複合体への結合性ペプチドの取得とその阻害活性の評価

マー複合体に結合性のファージペプチドのみを選択的に濃縮した。最終の溶出操作では、ヘテロダイマー複合体に結合性のファージペプチドを、10mMEDTAまたは0.1Mグリシンー塩酸を用いて2段階で溶出後、各ペプチドのアミノ酸配列を解析した。そのうち、8つの配列(配列番号24~31)を表1に示した。さらに、実施例9の結合測定系にて検討し、結合阻害活性を示した4つのペプチド配列のIC50値を表1に示した。

表 1

溶出条件				配列	J					浮活性 μ M)	配列	番号
ЕДТА	Cys*	lle	Pro	Glu	Leu	lle	Val	Cys*	 1.	2	2	4
•	Cys*	Met	Arg	Туr	Thr	Ser	Ala	Cys*	2 .	3	2	5
	Cys*	Glu	Trp	Met	Lys	Arg	Phe	Cys*			2	6
	Cys*	Tyr	Thr	Thr	Arg	Leu	Lys	Cys*			2	7
グリシン-塩酸	Cys*	Leu	Arg	Tyr	Ser	Val	Pro	Cys*	1.	8	2	8
	Cys*	I1e	Val	Asn	Arg	Leu	Gly	Cys*			2	9
	Cys*	Gly	Leu	Gln	Ala	Leu	Pro	Cys*	1 0)	3	0
	Cys*	Lys	Leu	Lys	Gly	Thr	Met	Cys*			3	1

Cys*Cys*は、ジスルフィド結合を示す

実施例18

フィブロネクチン上のペプチド断片とα4・IgG重鎖-β1・IgG重鎖キメラ蛋白質へテロダイマー複合体の結合を阻害する低分子化合物の取得

試薬および文献の化合物をランダムにピックアップし、最終濃度 5 0 または 1 0 0 μg/m l となるように調製して実施例 9 の結合測定系に加えたところ、阻害活性を示す化合物を得た。得られた化合物のうち、Norethynodrel (Sigma).、D-Penicillamine (Aldrich、Weigert, W.M. et al. Angew. Chem. In

t. Ed. Eng. 14, 330-336 (1975))、γ-2-Naphthyl butyric acid (Fieser, L.
 F. J. Am. Chem. Soc. 70, 3197-3203 (1948))、1-Adamantaneacetic acid (All drich)の4つの結合阻害活性を表2に示した。

表 2

化合物名 濃	度 (μg/m l)	阻害率 (%)
Norethynodrel	5 0	2 8
D-Penicillamine	5 0	5 1
γ-2-Naphthyl butyric acid	1 0 0	3 7
l-Adamantaneacetic acid	1 0 0	6 5

実施例19

α 2 · I g G 重鎖 - β 1 · I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体 リポソ ームの作製

Martinらの方法(Martin, F. J. et al. Biochemistry. 20、4229、(1981))に従ってリポソームを作製した。まず、ジパミルトイルホスファチジルエタノールアミン(DPPE、Sigma)に二架橋試薬Nスクシンイミジル3-(2-ピリジルジチオ)プロピオネート(SDPD、Sigma)を用いて活性化SH基を導入し、ピリジルジチオプロピオニルジパミルトイルホスファチジルエタノールアミン(PDP-DPPE)を作製した。このPDP-DPPEと、ジパミルトイルホスファチジルコリン(DPPC)、コレステロールを混合して脂質フィルムを調製したのち、ソニケーターにて処理し、濾過フィルターを用いて粒径の均一なリポソームを得た(PDP-DPPEリポソーム)。次に、 α 2・1gG重鎖ー β 1・1gG重鎖キメラ蛋白質ヘテロダイマー複合体と、陰性コントロールとして用いるヒト1gG(Cappe1)をHepes緩衝液(100mM Hepes、150mM NaC 1 pH8.0)に溶解し、SDPDを加えて30分間反応させた後、反応液をPD-10カラム(ファルマシア)にアプライし、0.1M酢酸-酢酸ナトリウム緩衝液(p

H5.5)で溶出した。溶出液に、ジチオスライトールを加えて20分間処理後、再度 P D - 1 0 カラムにアプライし、H e p e s 緩衝液(100mM Hepes、150mM NaCl pH8.0)で溶出し、S D P D 修飾α 2 · I g G 重鎖 - β 1 · I g G 重鎖 + メラ蛋白質へテロダイマー複合体を得た。この S D P D 修飾したヘテロダイマー複合体とP D P - D P P E リポソームを室温で24時間反応させ、セファロース4Bカラム(S i g m a)で分離し、ピーク分画からα 2 · I g G 重鎖 - β 1 · I g G 重鎖 + メラ蛋白質へテロダイマー複合体リポソームを得た。

リポソーム上のα2・1gG重鎖-β1・1gG重鎖キメラ蛋白質ヘテロダイマー複合体の結合量は、SDS-PAGE/クマシー染色後、デンシトメーター(ATTO)により定量し、最終濃度1mg/m1とした。

実施例20

α 2 · I g G 重鎖 - β 1 · I g G 重鎖 + メラ蛋白質 ヘテロダイマー複合体 リポソ ームのフローサイトメトリー解析

α2・「gG重鎖 – β1・「gG重鎖キメラ蛋白質へテロダイマー複合体リポソームを1mMEDTA含有PBS(-)に分散したのち、抗ヒトインテグリンα2抗体(クローンP1E6)または抗ヒトインテグリンβ1抗体(クローン4B4)と室温で30分間反応させた。反応後、15000rpmで10分間遠心分離し、1mMEDTA含有PBS(-)で洗浄後、同溶液に再度懸濁した。これに、2次抗体として、FITC標識抗マウス「gG抗体(Cappel 10μg/ml)を入れて室温で30分間反応させた。反応後、同様に遠心分離により洗浄し、フローサイトメトリー(ELITE、Coulter)にて測定した。

その結果、両抗体に対する陽性反応を確認し、リポソーム上にα2・1gG重鎖-β1・1gG重鎖キメラ蛋白質ヘテロダイマー複合体が結合していることを確認した。

実施例21

α 2 · I g G 重鎖 - β I · I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体 リポソ ームのコラーゲンへの結合活性

コラーゲン(Cell matrix Type I 3 m g / m l)を 0 . 0 2 M 酢酸溶液で希釈し、イムノプレートに 1 0 0 μ 1 ℓ ウェル入れ、 4 \mathbb{C} 、 1 6 時間保温した。保温後、コラーゲン溶液を吸引除去し、 P B S ℓ の ℓ 2 回洗浄して中和し、熱変性

1%BSA-PBS溶液を300μl/ウェル入れ、室温で3時間ブロッキング した。ブロッキング後、PBS(-)で2度リンスして、コラーゲンコートプレ ートを作製した。

正常ヒト血漿(ジョージ・キング社)、およびフォンビルプランドファクター 欠乏(シビアー)血漿(ジョージ・キング社)を抗ヒトIgG抗体とプロテイン Aにより吸収処理したのち、PBS(-)に対して24時間透析し、含有されて いるクエン酸ナトリウムを除去した。使用時に、CaイオンおよびMgイオン濃 度を血液中の生理的陽イオン濃度条件とするため、最終濃度 C a C l 2を1.2 m M、 MgC l 2を0.2m Mとなるように加えた。陽イオン濃度を調整したのちの正常ヒ ト血漿、およびフォンビルブランドファクター欠乏血漿にα2・1gG重鎖-β 1・1gG重鎖キメラ蛋白質ヘテロダイマー複合体リポソームまたはヒト1gG リポソームが1~100ng/m1蛋白濃度となるように懸濁した。この懸濁液 をコラーゲンコートプレートに、100μ1/wc11ずつ人れた。プレートを、 プレートシェーカーを使用して100回転/分の振とう条件下、室温で15分間 反応させた。反応後、非結合リポソームをPB液(1.2mM CaCl2、0.2mM MgCl₂、1%BSA含有PBS、pH7. 4)で洗浄除去し、1%グルタル アルデヒド-PBSで室温で30分間固定した。固定後、熱変性BSA-PBS 溶液で室温1時間ブロッキングした。その後、実施例16に従って、1次抗体と してビオチン標識抗ヒトIgG抗体、2次抗体としてアビジン標識西洋ワサビペ ルオキシダーゼと反応させた後、TBS緩衝液で洗浄した。これに、基質として オルトフェニレンジアミンを加え、発色後490nmで吸光度を測定した。5m M EDTA5mM、抗インテグリンα2抗体(クローンP1E6、10μg/m 1)と抗インテグリンβ1抗体(クローン4Β4、10μg/ml)共存下の効 果を検討する際は、あらかじめリポソーム懸濁液と室温で15分間反応させた後、 コラーゲンと反応させた。

結果を図5および図6に示す。正常ヒト血漿中では、陰性コントロールとするヒト1gGリポソームのコラーゲンへの結合は見られないが、 α 2・1gG重鎖 $-\beta$ 1・1gG重鎖キメラ蛋白質ヘテロダイマー複合体リポソームのコラーゲンへの結合は濃度依存的に増加した。フォンビルブランドファクター欠乏血漿を用いた場合も同等に結合した。さらに、正常血漿中に α 2・1gG重鎖 $-\beta$ 1・1

g G 重鎖キメラ蛋白質へテロダイマー複合体リポソームを30ng/ml加えた場合に見られるコラーゲンへの結合は、陽イオンキレート剤であるEDTAおよび抗体の添加により完全に阻害された。この結果は、生理的な陽イオン条件の血漿中においてα2・lgG重鎖-β1・lgG重鎖キメラ蛋白質へテロダイマー複合体リポソームが血小板同様にコラーゲンに結合することを示しており、粘着血小板の代替物となりうること、コラーゲン露出部位のモニタリング試薬になりうることを強く示唆した。さらに、フォンビルブランドファクター欠乏血漿中でも同等の結合活性を示すことから、フォンビルブランド病などの凝固異常を伴う血漿中でも利用可能であることを示している。

実施例22

α 2 ・ I g G 重鎖 - β 1 ・ I g G 重鎖 キメラ蛋白質 ヘテロダイマー複合体 リポソ ームによるコラーゲン被覆状態の解析

ラボテクチャンバースライド(インターメッド、8ウェル型、プラスチック製)のウェルの中央にコラーゲン溶液 $5 \mu 1$ をスポットして 16 時間静置後、洗浄し、プロッキング処理をした。次に、このスライドに、実施例 21 に準じて正常ヒト血漿に α $2 \cdot 1$ g G 重鎖 $-\beta$ $1 \cdot 1$ g G 重鎖 + y

ヒト I g G リポソームでは、コラーゲンコート部の着色が認められないが、α 2・ I g G 重鎖 - β 1・ I g G 重鎖 + メラ蛋白質 へテロダイマー複合体 リポソームでは、コラーゲンコート部全体の着色が認められた。従って、α 2・ I g G 重鎖 - β 1・ I g G 重鎖 + メラ蛋白質 へテロダイマー複合体 リポソームは、コラーゲンコート部分のみを被覆 し、粘着血小板の代替物となることを強く示唆した。

産業上の利用可能性

本発明により、インテグリンのα鎖とβ鎖とが安定に会合したインテグリンー免疫グロブリンキメラ蛋白質へテロダイマー複合体が得られた。得られたインテグリン - 免疫グロブリンキメラ蛋白質へテロダイマー複合体はそのまま医薬として利用可能であるばかりでなく、インテグリンとリガンドとの結合の測定、インテグリンに結合する物質やインテグリンとリガンドとの結合を阻害する物質の探索に利用できる。さらには診断薬にも利用できる。

さらに、これらのヘテロダイマー複合体、中でもインテグリンα 2 β 1 - 免疫 グロブリンキメラ蛋白質ヘテロダイマー複合体は血小板の代替物として利用でき る。また、インテグリンα 2 β 1 - 免疫グロブリンキメラ蛋白質ヘテロダイマー 複合体は、血小板減少症または血小板機能異常症などに伴う出血傾向の治療・予 防薬として利用できる。さらに、細胞外マトリックスの露出部位のモニタリング 試薬やターゲッティング療法にも利用できる。

配列表

配	列	一番	号	:	1
---	---	----	---	---	---

配列の長さ:4228

配列の型:核酸

75

配列

BC 24	,															
ΛTG	TTC	ccc	ACC	GAG	AGC	GCV	TGG	CTT	GGG	ΛΛG	CGA	GGC	GCG	AAC	CCG	48
Met	Phe	Pro	Thr	Glu	Ser	Ala	Trp	Leu	Gly	Lys	Arg	Gly	Ala	Asn	Pro	
				- 35					- 30					-25		
GGC	ccc	GAA	GCT	GCA	стс	CGG	GAG	ACG	GTG	ATG	CTG	TTG	CTG	TGC	CTG	96
Gly	Pro	Glu	Ala	Ala	Leu	Arg	Glu	Thr	Val	Met	Leu	Leu	Leu	Cys	Leu	
			- 20					- 15					- 10			
GGG	GTC	CCG	ACC	GGC	AGG	CCT	TAC	λΛC	GTG	GAC	лст	GAG	AGC	GCG	CTG	144
Gly	Val	Pro	Thr	G1 y	Arg	Pro	Туг	Λsn	Val	Λsp	Thr	Glu	Ser	Λla	Leu	
		- 5					l				5					
СТТ	TAC	CAG	GGC	ccc	CAC	۸ЛС	ACG	CTG	TTC	GGC	TAC	TCG	GTC	GTG	CTG	192
Leu	Туr	Gln	Gly	Pro	His	Λsn	Thr	Leu	Phe	Gly	Tyr	Ser	Val	Val	Leu	
10					15					20					25	
CAC	AGC	CAC	GGG	GCG	۸۸С	CGA	TGG	стс	CTA	GTG	GGT	GCG	ccc	ACT	GCC	240
His	Ser	His	Gly	Ala	Asn	Arg	Trp	Leu	Leu	Val	Gly	Ala	Pro	Thr	Ala	
				30					35					40		
ΛΛС	TGG	стс	GCC	AAC	GCT	TCA	GTG	ATC	AAT	ccc	GGG	GCG	ΛΤΤ	TAC	AGΛ	288
Asn	Trp	Leu	Ala	Asn	Лla	Ser	Val	Ile	Λsn	Pro	Gly	Лlа	I l e	Tyr	Arg	
			4 5					50					55			
TGC	AGG	ΛTC	GGA	AAG	ΛΑΤ	ccc	GGC	CAG	ΛCG	TGC	GAA	CAG	CTC	CAG	CTG	336
Cys	Λrg	Ile	Gly	Lys	Asn	Pro	G1 y	Gln	Thr	Cys	Glu	Gln	Leu	Gln	Leu	
		60					65					70				
GGT	AGC	CCT	ΛΛΤ	GGA	GΛΛ	CCT	TGT	GGA	AAG	АСТ	TGT	TTG	GAA	GAG	AGA	384
Gly	Ser	Pro	Asn	G1 y	Glu	Pro	Cys	Gly	Lys	Thr	Cys	Leu	G1 u	Glu	Arg	

85

80

GAC	ΛΛΤ	CAG	TGG	TTG	GGG	GTC	ACA	CTT	TCC	AGA	CAG	CCA	GGA	$G\Lambda\Lambda$	ΛΛΤ	432
Asp	Asn	Gln	Trp	Leu	G 1 y	Val	Thr	Leu	Ser	Arg	Gln	Pro	G1 y	G 1. u	Asn	
90					95					100					105	
GGA	TCC	ATC	GTG	ACT	TGT	GGG	CAT	AGA	TGG	ΑΑΛ	ААТ	ΑТА	TTT	TAC	ΑΤΛ	480
Gly	Ser	lle	Va 1	Thr	Cys	G1 y	His	Arg	Trp	Lys	Asn	Ile	Phe	Туг	He	
				110					115					120		
AAG	ΑΛΤ	GAA	ΑΛΤ	A A G	стс	ccc	ACT	GGT	GGT	TGC	TAT	GGA	GTG	ccc	ССТ	528
Lys	Asn	Glu	Λsn	Lys	Leu	Pro	Thr	Gly	Gly	Cys	Tyr	Gly	Val	Pro	Pro	
			125		•			130					135			
GAT	TTA	CGA	ACA	GAA	CTG	AGT	AAA	ΛGΛ	ΑТА	GCT	CCG	TGT	TAT	CAA	GAT	576
Asp	Leu	Arg	Thr	Glu	Leu	Ser	Lys	Arg	He	Ala	Pro	Cys	Tyr	G 1 n	Asp	
		140					145					150				
TAT	GTG	ΑΛΛ	۸۸۸	TTT	$GG\Lambda$	GΛΛ	ΛΛΤ	TTT	GCA	TCA	TGT	$C\Lambda\Lambda$	GCT	GGA	ΑΤΛ	624
Туr	Val	Lys	Lys	Phe	G 1 y	Glu	Asn	Phe	Лlа	Ser	Cys	Gln	Λla	G 1 y	He	
	155					160					165					
TCC	AGT	TTT	TAC	ACA	AAG	GAT	TTA	ΑТТ	GTG	ATG	GGG	GCC	CCA	GGA	TCA	672
Ser	Ser	Phe	Tyr	Thr	lys	Лsр	Leu	He	Val	Met	Gly	Ala	Pro	Gly	Ser	
170					175					180					185	
TCT	TAC	TGG	ACT	GGC	TCT	CTT	TTT	GTC	TAC	AAT	ΛTΑ	ΛCT	ΛСΛ	ΛΛΤ	ΑΑΛ	720
Ser	Tyr	Trp	Thr	G1 y	Ser	Leu	Phe	Val	Tyr	Asn	Пе	Thr	Thr	Asn	Lys	
				190					195					200		
TAC	AAG	GCT	TTT	TTA	GAC	AAA	CAA	ΑΛΤ	CAA.	GTA	AAA	TTT	GGA	AGT	TAT	768
Туr	Lys	Ala	Phe	Leu	Лsp	Lys	Gln	Asn	Gln	Val	Lys	Phe	Gly	Ser	Tyr	
			205					210					215			
TTA	GGA	TAT	TCA	GTC	GGA	GCT	GGT	CAT	TTT	CGG	AGC	CAG	CAT	ACT	ACC	816
Leu	Gly	Туr	Ser	Val	Gly	Лlа	G1 y	His	Phe	Λrg	Ser	Gln	His	Thr	Thr	
		220					225					230				
GAA	GTA	GTC	GGA	GGA	GCT	CCT	CAA	CAT	GAG	CAG	ΛТТ	GGT	AAG	GCA	TAT	864
Glu	Val	Val	G1 y	Gly	Ala	Pro	Gln	His	Glu	G1 n	He	Gly	Lys	Ala	Tyr	
	235					240					245					

ATA	TTC	AGC	ΛΤΤ	GAT	GAA	ΑΛΛ	GAA	СТЛ	АЛТ	ATC	TTA	CAT	GAA	ATG	ΑΑΛ	912
Пе	Phe	Ser	I1e	Asp	Glu	Lys	Glu	Leu	Asn	Пe	Leu	His	Glu	Met	Lys	
250					255					260					265	
GGT	ΑΑΛ	ΛΛG	CTT	GGA	TCG	TAC	TTT	GGA	GCT	TCT	GTC	TGT	GCT	GTG	GAC	960
Gly	Lys	Lys	Leu	G 1 y	Ser	Tyr	Phe	Gly	Лla	Ser	Val	Cys	Ala	Val	Λsp	
				270					275					280		
CTC	AAT	GCA	GAT	GGC	TTC	TCA	GAT	CTG	CTC	GTG	GGA	GCA	ccc	λTG	CAG	1008
Leu	Asn	Ala	Λsp	Gly	Phe	Ser	Asp	Leu	Leu	Val	G1 y	Ala	Pro	Met	Gln	
			285					290					295			
AGC	ACC	ATC	ΛGA	GAG	GAA	GGA	AGA	GTG	TTT	GTG	TAC	ATC	AAC	TCT	GGC	1056
Ser	Thr	He	Arg	Glu	Glu	G1 y	Arg	Val	Phe	Val	Tyr	Ile	Λsn	Ser	Gly	
		300					305					310				
TCG	GGA	GCA	GTA	ATG	AAT	GCA	ATG	GAA	ACA	ΛΛС	CTC	GTT	GGA	AGT	GAC	1104
Ser	Gly	Ala	Val	Met	Λsn	Лlа	Met	Glu	Thr	Λsn	Leu	Val	Gly	Ser	λsp	
	315					320					325		•			
AAA	TAT	GCT	GCA	A G A	TTT	GGG	GAA	TCT	ΛΤΛ	GTT	ААТ	CTT	GGC	GAC	ATT	1152
Lys	Tyr	Ala	Ala	Arg	Phe	Gly	Glu	Ser	lle	Val	Asn	Leu	Gly	Лsр	lle	
330					335					340					345	
	AAT															1200
Asp	Asn	Asp	Gly	Phe	Glu	λsp	Val	Лlа	He	Gly	Ala	Pro	G 1 n	G1 u	Λsp	
				350					355					360		
GAC	TTG	CAA	GGT	GCT	ATT	TAT	ATT	TAC	AAT	GGC	CGT	GCA	GAT	GGG	ATC	1248
Asp	Leu	G1n	G1 y	Ala	lle	Tyr	lle	Tyr	Asn	Gly	۸rg	Ala	Λsp	Gly	lle	
			365					370					375			
TCG	TCA	ACC	TTC	TCA	CAG	ΛGΛ	ΛΤΤ	GAA	GGA	CTT	CAG	ATC	AGC	AAA	TCG	1296
Ser	Ser	Thr	Phe	Ser	Gln	۸rg	He	Glu	Gly	Leu	Gln	He	Ser	Lys	Ser	
		380					385					390				
	ЛGТ															1344
Leu	Ser	Met	Phe	G1 y	G1n	Ser	He	Ser	Gly	Gln	He	Λsp	Ala	Λsp	Asn	
	395					400					405					

ΑΛΤ	GGC	TAT	GTA	GAT	GŢA	GCA	GTT	GGT	GCT	TTT	CGG	TCT	GAT	тст	GCT	1392
۸sn	Gly	Tyr	Val	Λsp	Val	Ala	Val	Gly	Ala	Phe	Arg	Ser	Λsp	Ser	Аlа	
410					415					420					425	
GTC	TTG	СТЛ	AGG	ACA	AGA	CCT	GTA	GTA	ATT	GTT	GAC	GCT	TCT	TTA	AGC	1440
Va 1	Leu	Leu	Arg	Thr	Arg	Pro	Val	Val	lle	Val	Λsp	Лlа	Ser	Leu	Ser	
				430					435					440		
CAC	CCT	GÀG	TCA	GTA	AAT	ΛGΛ	ACG	ΑΛΛ	TTT	GAC	TGT	GTT	GAA	АЛТ	$GG\Lambda$	1488
His	Pro	Glu	Ser	Val	Asn	۸rg	Thr	Lys	Phe	Asp	Cys	Val	Glu	Λsn	Gly	
			445					450					455			
TGG	CCT	TCT	GTG	TGC	ATA	GAT	СТЛ	ACA	CTT	TGT	TTC	TCA	TAT	A A G	GGC	1536
Trp	Pro	Ser	Val	Cys	He	Asp	Leu	Thr	Leu	Cys	Phe	Ser	Tyr	Lys	Gly	
		460					465					470				
ΛΛG	$G \Lambda \Lambda$	GTT	CCV	GGT	TAC	λТТ	GTT	TTG	ттт	TAT	λΛС	ATG	ΛGΤ	TTG	GAT	1584
Lys	Glu	Val	Pro	Gly	Tyr	He	Val	Leu	Phe	Tyr	λsn	Met	Ser	Leu	Λsp	
	475					480					485					
GTG	AAC	ΛGΛ	AAG	GCA	GAG	TCT	CCA	CCA	AGA	TTC	TAT	TTC	TCT	TCT	AAT	1632
Val	Asn	Λrg	Lys	Лlа	Glu	Ser	Pro	Pro	λrg	Phe	Туr	Phe	Ser	Ser	Asn	
490					495					500					505	
GGA	ΛCT	TCT	GAC	GTG	АТТ	ACA	GGA	AGC	ΛΤΛ	CAG	GTG	TCC	AGC	A G A	GAA	1680
G 1 y	Thr	Ser	Asp	Val	Ile	Thr	G1y	Ser	He	Gln	Val	Ser	Ser	Λrg	Glu	
				510					515					520		
GCT	AAC	TGT	A G A	ΛСΛ	CAT	CAA	GCA	TTT	ATG.	CGG	AAA	GAT	GTG	CGG	GAC	1728
Лlа	Asn	Cys	Arg	Thr	His	Gln	Ala	Phe	Met	Arg	Lys	Λsp	Val	Arg	Asp	
			525					530					535			
ATC	CTC	VCC	CCV	ATT	CAG	ATT	G A A	GCT	GCT	TAC	CVC	CTT	GGT	CCT	CAT	1776
I1e	Leu	Thr	Pro	Пe	Gln	lle	Glu	Лlа	Λla	Туr	His	Leu	Gly	Pro	His	
		540					545					550				
GTC	ATC	AGT	ΑΛΛ	CGA	ΛGΤ	ACA	GAG	GAA	TTC	CCA	CCV	CTT	CAG	CCV	ΛΤΤ	1824
Val	Ile	Ser	Lys	Λrg	Ser	Thr	G1 u	Glu	Phe	Pro	Pro	Leu	G1n	Pro	I 1 e	
	555					560					565					

C	TT	CAG	CAG	ΛΛG	AAA	GAA	ΑΑΛ	GAC	ΛΤΛ	ΛTG	ΛΑΛ	AAA	АСЛ	ΑТА	AAC	TTT	1872
L	e u	G1n	Gln	Lys	Lys	Glu	Lys	Asp	I l e	Met	Lys	Lys	Thr	lle	Asn	Phe	
5	70					575					580					585	
G	C A	AGG	TTT	TGT	GCC	CAT	GAA	AAT	TGT	TCT	GCT	GAT	TTA	CAG	GTT	TCT	1920
A	la	Arg	Phe	Cys	Λla	His	Glu	Λsn	Cys	Ser	Λla	Asp	Leu	G1 n	Val	Ser	
					590					595					600		
G	C A	ΛΛG	ATT	GGG	TTT	TTG	AAG	ccc	СЛТ	GAA	ΛΛΤ	AAA	ACA	TAT	CTT	GCT	1968
٨	la	Lys	lle	Gly	Phe	Leu	Lys	Pro	His	Glu	Asn	Lys	Thr	Туг	Leu	Лla	
				605					610					615			
G	TT	GGG	AGT	ATG	ΛΛG	ACA	TTG	ATG	TTG	ΑΛΤ	GTG	TCC	TTG	TTT	AAT	GCT	2016
V	al	Gly	Ser	Met	Lys	Thr	Leu	Met	Leu	Asn	Val	Ser	Leu	Phe	Asn	Ala	
			620					625					630				
G	G A	GAT	GAT	GCA	TΛT	GAA	۸CG	ACT	CTA	CAT	GTC	AAA	CTA	ccc	GTG	GGT	2064
C	Пу	Asp	Asp	Ala	Tyr	G1u	Thr	Thr	Leu	llis	Val	Lys	Leu	Pro	Val	Gly	
		635					640					645					
C	TT	TAT	TTC	ATT	ΛΛG	ΛΤΤ	ТΤΛ	GAG	CTG	GAA	GAG	AΛG	CAA	ΛΤΛ	AAC	TGT	2112
L	eu	Tyr	Phe	He	Lys	He	Leu	G1u	Leu	Glu	G1 u	Lys	Gln	He	Λsn	Cys	
6	5 0					655					660					665	
(S A A	GTC	ACA	GAT	AAC	TCT	GGC	GTG	GTA	CAA	CTT	GAC	TGC	AGT	ΛΤΤ	GGC	2160
(Glu	Val	Thr	Лsр	Λsn	Ser	G1 y	Val	Val	Gln	Leu	Asp	Cys	Ser	He	Gly	
					670					675					680		
1	TAT	ΛTA	TAT	GTA	GAT	CAT	CTC	TCA	AGG	ATA.	GAT	ATT	AGC	TTT	CTC	CTG	2208
Ί	уг	He	Tyr	Val	Asp	His	Leu	Ser	Arg	lle	Asp	Ile	Ser	Phe	Leu	Leu	
				685					690					695			
(TAG	GTG	AGC	TCA	CTC	AGC	ΛGΛ	GCG	GAA	GAG	GAC	CTC	ΛGΤ	ATC	ΛСΛ	GTG	2256
Å	lsp	Val	Ser	Ser	Leu	Ser	Λrg	Ala	G1u	Glu	Λsp	Leu	Ser	He	Thr	Val	
			700					705					710				
(CAT	GCT	VCC	TGT	GAA	ΛΑΤ	GAA	GAG	GAA	ATG	GAC	ΑΛΤ	СТЛ	AΛG	CAC	AGC	2304
ŀ	lis	Ala	Thr	Cys	G1 u	Λsn	G1 u	G1 u	Glu	Met	Лsр	Asn	Leu	Lys	llis	Ser	
		715					720					725					

ΛGΛ	GTG	ACT	GTA	GCA	ATA	CCT	TTA	ΛΛΛ	ТЛТ	GAG	GTT	AAG	CTG	ACT	GTT	2352
Arg	Val	Thr	Val	Λla	I 1 e	Pro	Leu	Lys	Tyr	Glu	Val	Lys	Leu	Thr	Val	
730					735					740					745	
CAT	GGG	TTT	GTA	AAC	CCA	ACT	TCA	TTT	GTG	TAT	GGA	TCA	AAT	GAT	GAA	2400
His	Gly	Phe	Val	Λsn	Pro	Thr	Ser	Phe	Val	Туr	Gly	Ser	Λsn	Лsр	Glu	
				750					755					760		
ΛΛΤ	GAG	CCT	GAA	۸CG	TGC	ATG	GTG	GAG	ΑΛΛ	ATG	AAC	TTA	ΛСТ	TTC	CAT	2448
Asn	Glu	Pro	Glu	Thr	Cys	Met	Val	Glu	Lys	Met	Asn	Leu	Thr	Phe	His	
			765					770					775			
GTT	ATC	۸۸С	۸СТ	GGC	ΑΛΤ	AGT	ΛTG	GCT	ccc	ΛΑΤ	GTT	ΛGT	GTG	$G\Lambda\Lambda$	ΑΤΛ	2496
Val	He	Asn	Thr	Gly	Λsn	Ser	Met	Аlа	Pro	Λsn	Val	Ser	Val	Glu	I le	
		780					785					790				
ΛTG	GTA	ССЛ	AAT	TCT	TTT	AGC	ссс	$C\Lambda\Lambda$	ΛСТ	GΛT	AΛG	CTG	TTC	AAC	ΛΤΤ	2588
Met	Val	Pro	Asn	Ser	Phe	Ser	Pro	Gln	Thr	Аsр	Lys	Leu	Phe	Λsn	He	
	795					800		•			805					
TTG	GAT	GTC	CAG	лст	ACT	ACT	$GG\Lambda$	GΑΛ	TGC	CAC	TTT	GΛΛ	ААТ	TAT	CAA	2592
Leu	Λsp	Val	Gln	Thr	Thr	Thr	Gly	Glu	Cys	llis	Phe	Glu	Λsn	Туг	G 1 n	
810					815					820					825	
AGΛ	GTG	TGT	GCA	TTA	GAG	CAG	CAA	ΛAG	AGT	GCA	ATG	CAG	ACC	TTG	ΑΛΛ	2640
Λrg	Val	Cys	Ala	Leu	Glu	Gln	G1n	Lys	Ser	Лlа	Met	Gln	Thr	Leu	Lys	
<u>!</u>				830					835					840		
	ATA	GTC	CGG	TTC	TTG	TCC	AAG	ACT	GAT	AAG	AGG	СТЛ	TTG	TAC	TGC	2688
Gly	He	Val	Arg	Phe	Leu	Ser	Lys	Thr	Asp	Lys	Arg	Leu	Leu	Tyr	Cys	
			845					850					855			
ΛΤΛ	AAA	GCT	GAT	CCA	CAT	TGT	TTA	ΑΛΤ	TTC	TTG	TGT	AAT	TTT	GGG	ΛΛΛ	2736
Ile	Lys	Λ1а	Λsp	Pro	His	Cys	Leu	Λsn	Phe	Leu	Cys	Asn	Phe	Gly	Lys	
		860					865					870				
ΛTG	GAA	AGT	GGA	ΑΛΑ	GAA	GCC	ΛGΤ	GTT	СЛТ	ΛТС	CAA	CTG	GAA	GGC	CGG	2784
Met	Glu	Ser	G1 y	Lys	Glu	Ala	Ser	Val	His	Пe	G1 n	Leu	Glu	G 1 y	Arg	
	875					880					885					

CCV LCC VIL	TTA GAA ATG GAT	GAG ACT TCA	GCA CTC AAG TTT GAA ATA	2832
Pro Ser Ile	Leu Glu Met Asp	Glu Thr Ser	Ala Leu Lys Phe Glu Ile	
890	895	•	900 905	
AGA GCA ACA	GGT TTT CCA GAG	CCA AAT CCA	AGA GTA ATT GAA CTA AAC	2880
Arg Ala Thr	Gly Phe Pro Glu	Pro Asn Pro	Arg Val lle Glu Leu Asn	
	910	915	920	
AAG GAT GAG	AAT GTT GCG CAT	GTT CTA CTG	GAA GGA CTA CAT CAT CAA	2928
Lys Asp Glu	Asn Val Ala His	Val Leu Leu	Glu Gly Leu His His Glm	
	925	930	935	
AGA CCC AAA	CGT TAT TTC ACG	GAT CCC GAG	CTGCTGGAAG CAGGCTCAGC	2978
Arg Pro Lys	Arg Tyr Phe Thr	Asp Pro Glu		
940		945		
GCTCCTGCCT	GGACGCATCC CGGCT	ATGCA GCCCCAC	STCC AGGGCAGCAA GGCAGGCCCC	3038
GTCTGCCTCT	TCACCCGGAG CCTCT	GCCCG CCCCACT	TCAT GCTCAGGGAG AGGGTCTTCT	3098
GGCTTTTTCC	CAGGCTCTGG GCAGG	CACAG GCTAGGT	TGCC CCTAACCCAG GCCCTGCACA	3158
CAAAGGGGCA	GGTGCTGGGC TCAGA	CCTGC CAAGAGG	CCAT ATCCGGGAGG ACCCTGCCCC	3218
TGACCTAAGC	CCACCCCAAA GGCCA	AACTC TCCACTO	CCCT CAGCTCGGAC ACCTTCTCTC	3278
CTCCCAGATT	CCAGTAACTC CCAAT	CTTCT CTCTGC/	A GAG CCC AAA TCT TGT GAC	3333
			Glu Pro Lys Ser Cys Asp	
			950	
AAA ACT CAC	ACA TGC CCA CCG	TGC CCA GGT	AAGCCAG CCCAGGCCTC	3380
Lys Thr His	Thr Cys Pro Pro	Cys Pro		
955	960	•		
GCCCTCCAGC	TCAAGGCGGG ACAGG	TGCCC TAGAGTA	AGCC TGCATCCAGG GACAGGCCCC	3440
AGCCGGGTGC	TGACACGTCC ACCTC	CATCT CTTCCT	CA GCA CCT GAA CTC CTG	3493
			Ala Pro Glu Leu Leu	
			965	
GGG GGA CCG	TCA GTC TTC CTC	TTC CCC CCA	AAA CCC AAG GAC ACC CTC	3541
Gly Gly Pro	Ser Val Phe Leu	Phe Pro Pro	Lys Pro Lys Asp Thr Leu	
970		975	980	

ATG ATC TCC CGG	ACC CCT GAG G	TC ACA TGC GTG G	TG GTG GAC GTG AGC	3589
Met Ile Ser Arg	Thr Pro Glu V	al Thr Cys Val V	al Val Asp Val Ser	
985	990	9	95	
CAC GAA GAC CCT	GAG GTC AAG T	TC AAC TGG TAC G	TG GAC GGC GTG GAG	3637
His Glu Asp Pro	Glu Val Lys P	he Asn Trp Tyr V	al Asp Gly Val Glu	
1000	1005	1010	1015	
GTG CAT AAT GCC	AAG ACA AAG C	CG CGG GAG GAG C	AG TAC AAC AGC ACG	3685
Val His Asn Ala	Lys Thr Lys P	ro Arg Glu Glu G	ln Tyr Asn Ser Thr	
	1020	1025	1030	
TAC CGG GTG GTC	AGC GTC CTC A	CC GTC CTG CAC C	AG GAC TGG CTG AAT	3733
Tyr Arg Val Val	Ser Val Leu T	hr Val Leu His G	ln Asp Trp Leu Asn	
1035		1040	1045	
GGC AAG GAG TAC	AAG TGC AAG G	TC TCC AAC AAA G	CC CTC CCA GCC CCC	3781
Gly Lys Glu Tyr	Lys Cys Lys V	al Ser Asn Lys A	la Leu Pro Ala Pro	
1050	10	55	1060	
ATC GAG AAA ACC	ATC TCC AAA G	CC AAA GGTGGGACC	C GTGGGGTGCG	3828
lle Glu Lys Thr	lle Ser Lys A	la Lys		
1065	1070			
AGGGCCACAT GGAC	AGAGGC CGGCTCG	GCC CACCCTCTGC C	CTGAGAGTG ACCGCTGTAC	3888
CAACCTCTGT CCTA	CA GGG CAG CCC	CGA GAA CCA CAG	GTG TAC ACC CTG	3937
	Gly Gln Pro	Arg Glu Pro Gln	Val Tyr Thr Leu	
	1075		1080	
CCC CCA TCC CGG	GAT GAG CTG A	CC AAG AAC CAG G	TC AGC CTG ACC TGC	3985
Pro Pro Ser Arg	Asp Glu Leu T	hr Lys Asn Gln V	al Ser Leu Thr Cys	
1085	1090	10	95	
CTG GTC AAA GGC	TTC TAT CCC A	GC GAC ATC GCC G	TG GAG TGG GAG AGC	4033
Leu Val Lys Gly	Phe Tyr Pro S	er Asp Ile Ala Va	al Glu Trp Glu Ser	
1100	1105	1110	1115	

配列番号:2

配列の長さ:3463

配列の型:核酸

配列

ATG AAT TTA CAA CCA ATT TTC TGG ATT GGA CTG ATC AGT TCA GTT TGC 48 Met Asn Leu Gln Pro Ile Phe Trp Ile Gly Leu Ile Ser Ser Val Cys -20-15 -10 TGT GTG TTT GCT CAA ACA GAT GAA AAT AGA TGT TTA AAA GCA AAT GCC 96 Cys Val Phe Ala Gln Thr Asp Glu Asn Arg Cys Leu Lys Ala Asn Ala 1 5 10 AAA TCA TGT GGA GAA TGT ATA CAA GCA GGG CCA AAT TGT GGG TGG TGC 144 Lys Ser Cys Gly Glu Cys Ile Gln Ala Gly Pro Asn Cys Gly Trp Cys 15 20 ACA AAT TCA ACA TTT TTA CAG GAA GGA ATG CCT ACT TCT GCA CGA TGT 192 Thr Asn Ser Thr Phe Leu Gln Glu Gly Met Pro Thr Ser Ala Arg Cys 30 35 40

GAT	GAT	TTA	GAA	GCC	TTA	AAA	AAG	ΛAG	GGT	TGC	CCT	CCA	GAT	GAC	ATA	240
Asp	Asp	Leu	Glu	Лlа	Leu	Lys	Lys	Lys	Gly	Cys	Pro	Pro	Λsp	Лsр	lle	
45					50					55					60	
GAA	AAT	ccc	AGA	GGC	TCC	ΛΛΛ	GAT	ATA	AAG	AAA	ΑΛΤ	ΛΛΛ	AAT	GTA	ACC	288
Glu	Asn	Pro	Λrg	Gly	Ser	Lys	Λsp	He	Lys	Lys	Asn	Lys	Asn	Val	Thr	
				65					70					75		
AAC	CGT	AGC	AAA	GGA	ACA	GCA	GAG	ΛAG	стс	AAG	CCV	GAG	GAT	ATT	CAT	336
Λsn	Arg	Ser	Lys	Gly	Thr	Ala	Glu	Lys	Leu	Lys	Pro	Glu	Asp	lle	His	
			80					85					90			
CAG	ATC	$\mathbf{C} \mathbf{A} \mathbf{A}$	CCA	CAG	CAG	TTG	GTT	TTG	CGA	TTA	A G A	TCA	GGG	GAG	CCV	384
Gln	Ile	Gln	Pro	Gln	Gln	Leu	Val	Leu	Λrg	Leu	Λrg	Ser	Gly	Glu	Pro	
		95					100					105				
CAG	ΛСΛ	TTT	ACA	TTA	AAA	TTC	AΛG	AGΛ	GCT	GAA	GAC	TAT	ccc	ATT	GAC	432
Gln	Thr	Phe	Thr	Leu	Lys	Phe	Lys	λrg	Ala	Glu	Аsр	Туr	Pro	He	Лsp	
	110					115					120					
CTC	TAC	TAC	CTT	ATG	GAC	CTG	TCT	ΤΛΤ	TCA	ΛTG	ΑΛΑ	GAC	GAT	TTG	GAG	480
Leu	Tyr	Tyr	Leu	Met	Λsp	Leu	Ser	Tyr	Ser	Met	Lys	Лsр	Лsр	Leu	Glu	
125					130					135					140	
AAT	GTA	ΑΑΛ	AGT	СТТ	GGA	ΛCA	GAT	CTG	ATG	AAT	GAA	ΛTG	AGG	AGG	ATT	528
Asn	Val	Lys	Ser	Leu	Gly	Thr	Asp	Leu	Met	Λsn	Glu	Met	Arg	Λrg	He	
				145					150					155		
ACT	TCG	GAC	TTC	AGA	ATT	GGA	TTT	GGC	TCA.	TTT	GTG	GAA	AAG	ACT	GTG	576
Thr	Ser	Asp	Phe	Arg	Ile	Gly	Phe	Gly	Ser	Phe	Val	Glu	Lys	Thr	Val	
			1.60					165					170			
ATG	ССТ	TAC	ΛΤΤ	AGC	ΛСΛ	ACA	CCA	GCT	AAG	CTC	ΛGG	AAC	CCT	TGC	ACA	624
Met	Pro	Tyr	He	Ser	Thr	Thr	Pro	Ala	Lys	Leu	λrg	Asn	Pro	Cys	Thr	
		175					180					185				
AGT	GAA	CAG	AAC	TGC	VCC	ACC	CCA	TTT	AGC	TAC	ΛΑΑ	ΛΛΤ	GTG	CTC	AGT	672
Ser	G1u	Gln	Asn	Cys	Thr	Thr	Pro	Phe	Ser	Tyr	Lys	Λsn	Val	Leu	Ser	
	190					195					200					

GAA	AAC	GGC	A A A	TTG	TCA	GAA	GGA	GΤΛ	ΛCA	ΑΤΛ	ΛGΤ	TAC	AAA	TCT	TAC	1200
G1 u	Asn	Gly	Lys	Leu	Ser	G1 u	G1y	Val	Thr	lle	Ser	Туr	Lys	Ser	Tyr	
365					370					375					380	
TGC	AAG	۸۸С	GGG	GTG	ΛΛΤ	GGA	ACA	GGG	$G\Lambda\Lambda$	ΑΛΤ	GGA	AGA	۸۸۸	TGT	TCC	1248
Cys	Lys	Λsn	Gly	Val	Asn	G 1 y	Thr	Gly	Glu	Asn	Gly	Arg	Lys	Cys	Ser	
				385					390					395		
ΑΛΤ	ATT	TCC	ATT	GGA	GAT	GAG	GTT	$C\Lambda\Lambda$	TTT	GAA	ATT	AGC	ΛΤΛ	ACT	TCA	1296
Asn	lle	Ser	Ιle	Gly	Asp	Glu	Val	Gln	Phe	Glu	I1e	Ser	lle	Thr	Ser	
			400					405					410			
AAT	AAG	TGT	CCA	ΑΑΛ	ΛΛG	GAT	TCT	GAC	AGC	TTT	AAA	ATT	AGG	CCT	CTG	1344
Asn	Lys	Cys	Pro	Lys	Lys	Asp	Ser	Asp	Ser	Phe	Lys	He	Λrg	Pro	Leu	
		415					420					425				
GGC	TTT	ACG	GAG	GAA	GTA	GAG	GTT	ATT	CTT	CAG	TAC	۸TC	TGT	GAA	TGT	1392
Gly	Phe	Thr	Glu	Glu	Val	G1 u	Val	He	Leu	Gln	Туr	He	Cys	Glu	Cys	
	430					435					440					
GΑΛ	TGC	$C\Lambda\Lambda$	AGC	GAA	GGC	ATC	CCT	GAA	AGT	ccc	AΛG	TGT	CAT	GAA	GGA	1440
Glu	Cys	Gln	Ser	Glu	Gly	He	Pro	Glu	Ser	Pro	Lys	Cys	His	Glu	Gly	
445					450					455					460	
ΑΛΤ	GGG	ΛСΛ	TTT	GAG	TGT	GGC	GCG	TGC	AGG	TGC	ΛΛΤ	GAA	GGG	CGT	GTT	1488
Asn	Gly	Thr	Phe	Glu	Cys	Gly	Ala	Cys	Arg	Cys	Λsn	Glu	Gly	Arg	Val	
			•	465					470					475		
GGT	AGA	CAT	TGT	GAA	TGC	AGC	ACA	GAT	$G \Lambda \Lambda$	GTT	AAC	AGT	GAA	GAC	ATG	1536
G1 y	Λrg	His	Cys	Glu	Cys	Ser	Thr	Asp	Glu	Val	Asn	Ser	Glu	Λsp	Met	
			480					485					490			
GAT	GCT	TAC	TGC	AGG	AAA	GAA	AAC	AGT	TCA	GAA	ATC	TGC	AGT	AAC	AAT	1584
Asp	Лlа	Tyr	Cys	Λrg	Lys	Glu	Asn	Ser	Ser	Glu	lle	Cys	Ser	Asn	Asn	
		495					500					505				
GGA	GAG	TGC	GTC	TGC	GGA	CAG	TGT	GTT	TGT	AGG	AAG	ΛGG	GAT	ААТ	ACA	1632
G1 y	Glu	Cys	Val	Cys	Gly	Gln	Cys	Val	Cys	Arg	Lys	Arg	Λsp	Asn	Thr	
	510					515					520					

	0100
TAT TCA GTG AAT GGG AAC AAC GAG GTC ATG GTT CAT GTT GTG GAG AAT	2160
Tyr Ser Val Asn Gly Asn Asn Glu Val Met Val His Val Val Glu Asn	
685 690 695 700	
CCA GAG TGT CCC ACT GGT CCA GAG GAT CCC GAG CTGCTGGAAG CAGGCTCAGC	2213
Pro Glu Cys Pro Thr Gly Pro Glu Asp Pro Glu	
705 710	
GCTCCTGCCT GGACGCATCC CGGCTATGCA GCCCCAGTCC AGGGCAGCAA GGCAGGCCCC	2273
GTCTGCCTCT TCACCCGGAG CCTCTGCCCG CCCCACTCAT GCTCAGGGAG AGGGTCTTCT	2333
GGCTTTTTCC CAGGCTCTGG GCAGGCACAG GCTAGGTGCC CCTAACCCAG GCCCTGCACA	2393
CAAAGGGGCA GGTGCTGGGC TCAGACCTGC CAAGAGCCAT ATCCGGGAGG ACCCTGCCCC	2453
TGACCTAAGC CCACCCCAAA GGCCAAACTC TCCACTCCCT CAGCTCGGAC ACCTTCTCTC	2513
CTCCCAGATT CCAGTAACTC CCAATCTTCT CTCTGCA GAG CCC AAA TCT TGT GAC	2568
Glu Pro Lys Ser Cys Asp	
7 1 5	
AAA ACT CAC ACA TGC CCA CCG TGC CCA GGTAAGCCAG CCCAGGCCTC	2615
Lys Thr His Thr Cys Pro Pro Cys Pro	
170	
	2675
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC	2675
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG	2675 2728
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu	
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730	2728
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC	
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730	2728
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC	2728
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu	2728
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 735 740 745	2728 2776
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 735 740 745 ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC GTG AGC	2728 2776
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 735 740 745 ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC GTG AGC Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser	2728 2776
GCCCTCCAGC TCAAGGCGGG ACAGGTGCCC TAGAGTAGCC TGCATCCAGG GACAGGCCCC AGCCGGGTGC TGACACGTCC ACCTCCATCT CTTCCTCA GCA CCT GAA CTC CTG Ala Pro Glu Leu Leu 730 GGG GGA CCG TCA GTC TTC CTC TTC CCC CCA AAA CCC AAG GAC ACC CTC Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 735 740 745 ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GTG GAC GTG AGC Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser 750 755 760	2728 2776 2824

GTG CAT AAT GCC	AAG ACA AAG	CCG CGG GAG G	AG CAG TAC AAC AGC ACG	2920								
Val His Asm Ala	lys Thr Lys	Pro Arg Glu G	lu Gln Tyr Asn Ser Thr									
780	785	7	90 795									
TAC CGG GTG GTC	AGC GTC CTC	ACC GTC CTG C	AC CAG GAC TGG CTG AAT	2968								
Tyr Arg Val Val	Ser Val Leu	Thr Val Leu H	is Gln Asp Trp Leu Asn									
	800	805	810									
GGC AAG GAG TAC	AAG TGC AAG	GTC TCC AAC A	AA GCC CTC CCA GCC CCC	3016								
Gly Lys Glu Tyr	Lys Cys Lys	Val Ser Asn L	ys Ala Leu Pro Ala Pro									
815		820	825									
ATC GAG AAA ACC	ATC TCC AAA	GCC AAA GGTGG	GACCC GTGGGGTGCG	3063								
lle Glu Lys Thr	lle Ser Lys	Ala Lys										
830		835										
AGGGCCACAT GGAC	AGAGGC CGGCTC	CGGCC CACCCTCT	GC CCTGAGAGTG ACCGCTGTAC	3123								
CAACCTCTGT CCTACA GGG CAG CCC CGA GAA CCA CAG GTG TAC ACC CTG												
CANCELLIGI CELA	CA GGG CAG CC	L CGN GNN CCN	CAG GIG TAC ACC CIG	3172								
CANCELLIGIT CETA			Gln Val Tyr Thr Leu	0112								
CANCELLIGIT CELA				0112								
	Gly Gln Pr	o Arg Glu Pro	Gln Val Tyr Thr Leu	3220								
CCC CCA TCC CGG	Gly Gln Pr	840 ACC AAG AAC C	Gln Val Tyr Thr Leu 845									
CCC CCA TCC CGG	Gly Gln Pr	840 ACC AAG AAC C	Gln Val Tyr Thr Leu 845 AG GTC AGC CTG ACC TGC									
CCC CCA TCC CGG Pro Pro Ser Arg 850	Gly Gln Pr GAT GAG CTG Asp Glu Leu	840 ACC AAG AAC C. Thr Lys Asn G	Gln Val Tyr Thr Leu 845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys									
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC	Gly Gln Pr GAT GAG CTG Asp Glu Leu	840 ACC AAG AAC C Thr Lys Asn G 855 AGC GAC ATC G	Gln Val Tyr Thr Leu 845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860	3220								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC	Gly Gln Pr GAT GAG CTG Asp Glu Leu	840 ACC AAG AAC C Thr Lys Asn G 855 AGC GAC ATC G	AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC	3220								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC Leu Val Lys Gly 865	Gly Gln Program GAT GAG CTG Asp Glu Leu TTC TAT CCC Phe Tyr Pro	840 ACC AAG AAC C. Thr Lys Asn G 855 AGC GAC ATC G Ser Asp Ile A	845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC la Val Glu Trp Glu Ser	3220								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC Leu Val Lys Gly 865 AAT GGG CAG CCG	Gly Gln Program GAT GAG CTG Asp Glu Leu TTC TAT CCC Phe Tyr Pro 870 GAG AAC AAC	840 ACC AAG AAC C. Thr Lys Asn G 855 AGC GAC ATC G Ser Asp Ile A TAC AAG ACC A	845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC la Val Glu Trp Glu Ser 875	3220 3268								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC Leu Val Lys Gly 865 AAT GGG CAG CCG	Gly Gln Program GAT GAG CTG Asp Glu Leu TTC TAT CCC Phe Tyr Pro 870 GAG AAC AAC	840 ACC AAG AAC C. Thr Lys Asn G 855 AGC GAC ATC G Ser Asp Ile A TAC AAG ACC AC	845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC la Val Glu Trp Glu Ser 875 CG CCT CCC GTG CTG GAT	3220 3268								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC Leu Val Lys Gly 865 AAT GGG CAG CCG Asn Gly Gln Pro 880	Gly Gln Program GAT GAG CTG Asp Glu Leu TTC TAT CCC Phe Tyr Pro 870 GAG AAC AAC Glu Asn Asn 885	840 ACC AAG AAC C. Thr Lys Asn G 855 AGC GAC ATC G Ser Asp IIe A TAC AAG ACC AC	845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC la Val Glu Trp Glu Ser 875 CG CCT CCC GTG CTG GAT hr Pro Pro Val Leu Asp	3220 3268								
CCC CCA TCC CGG Pro Pro Ser Arg 850 CTG GTC AAA GGC Leu Val Lys Gly 865 AAT GGG CAG CCG Asn Gly Gln Pro 880 TCC GAC GGC TCC	Gly Gln Pro GAT GAG CTG Asp Glu Leu TTC TAT CCC Phe Tyr Pro 870 GAG AAC AAC Glu Asn Asn 885 TTC TTC CTC	TAC AGC AAG CA	845 AG GTC AGC CTG ACC TGC In Val Ser Leu Thr Cys 860 CC GTG GAG TGG GAG AGC la Val Glu Trp Glu Ser 875 CG CCT CCC GTG CTG GAT hr Pro Pro Val Leu Asp 90 895	3220 3268 3316								

AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT GAG GCT 3412

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

915 920 925

CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG GGT AAA 3460

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

930 935 940

TGA 3463

配列番号:3

配列の長さ:13

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Cys Leu His Gly Pro Glu Ile Leu Asp Val Pro Ser Thr

1 5 10

配列番号:4

配列の長さ:31

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCGGATCCCG AGCTGCTGGA AGCAGGCTCA G

31

配列番号:5

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CCTCTAGACG GCCGTCGCAC TCATTTA

27

配列番号:6

配列の長さ:73

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CTAGACCACC ATGTTCCCCA CCGAGAGCGC ATGGCTTGGG AAGCGAGGCG CGAACCCGGG

CCCCGGAGCT GCA 73

配列番号:7

配列の長さ:65

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCTTCGGGGC CCGGGTTCGC GCCTCGCTTC CCAAGCCATG CGCTCTCGGT GGGGAACATG

GTGGT 65

配列番号:8

配列の長さ:51

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CTCCGGGAGA CGGTGATGCT GTTGCTGTGC CTGGGGGTCC CGACCGGCAG G

5 i

配列番号:9

配列の長さ:55

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CCTGCCGGTC GGGACCCCCA GGCACAGCAA CAGCATCACC GTCTCCCGGA GTCGA

55

配列番号:10

配列の長さ:37

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CACTGCAGGC AGGCCTTACA ACGTGGACAC TGAGAGC

37

配列番号:11

配列の長さ:22

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCAGAAACCT GTAAATCAGC AG

22

配列番号:12

配列の長さ:22

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCATTTATGC GGAAAGATGT GC

22

配列番号:13

配列の長さ:29

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

CGGGATCCGT GAAATAACGT TTGGGTCTT

29

配列番号:14

配列の長さ:22

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCGGAAAAGA TGAATTTACA AC

22

配列番号:15

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GTGGGATCCT CTGGACCAGT GGGACAC

27

配列番号:16

配列の長さ:10

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Gly Pro Glu Ile Leu Asp Val Pro Ser Thr

5 10

配列番号:17

配列の長さ:10

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Gly Pro Glu Ile Leu Glu Val Pro Ser Thr

1 5 10

配列番号:18

配列の長さ:6

配列の型:アミノ酸

トポロジー:直鎖状

配列の種類:ペプチド

配列

Gly Arg Gly Asp Ser Pro

1 !

配列番号:19

配列の長さ:4675

配列の型:核酸

配列	j															
ATG	GGG	CCA	GAA	CGG	ACA	GGG	GCC	GCG	CCG	CTG	CCG	CTG	CTG	CTG	GTG	48
Met	G 1 y	Pro	G1 u	Arg	Thr	Gly	Лlа	Ala	Pro	Leu	Pro	Leu	Leu	Leu	Val	
				-25					- 20					- 15		
ΛTT	GCG	стс	AGT	CAA	GGC	ΑТТ	TTA	AAT	TGT	TGT	TTG	GCC	TAC	AAT	GTT	96
Leu	Ala	Leu	Ser	Gln	Gly	Ile	Leu	Asn	Cys	Cys	Leu	Ala	Tyr	Asn	Val	
			- 10					- 5					1			
GGT	CTC	CCA	$GA\dot{A}$	GCA	ΑΛΛ	ATA	TTT	TCC	GGT	CCT	TCA	AGT	GAA	CAG	TTT	114
Gly	Leu	Pro	Glu	Ala	Lys	I 1 e	Phe	Ser	G 1 y	Pro	Ser	Ser	Glu	Gln	Phe	
	5					10					15					
GGG	TAT	GCA	GTG	CAG	CAG	TTT	ΑТΛ	ААТ	CCA	AAA	GGC	AAC	TGG	TTA	CTG	192
Gly	Туг	Лlа	Val	Gln	Gln	Phe	lle	Asn	Pro	Lys	Gly	Asn	Trp	Leu	Leu	
20					25					30					35	
GTT	GGT	TCA	ccc	TGG	AGT	GGC	TTT	CCT	GAG	AAC	CGA	ATG	GGA	GAT	GTG	240
Val	Gly	Ser	Pro	Trp	Ser	Gly	Phe	Pro	Glu.	Asn	Arg	Met	G1 y	Asp	Val	
				40					45					50		
TAT	AAA	TGT	CCT	GTT	GAC	CTA	TCC	ACT	GCC	ACA	TGT	GAA	AAA	CTA	AAT	288
Tyr	Lys	Cys	Pro	Val	Asp	Leu	Ser	Thr	Ala	Thr	Cys	$G1\mathbf{u}$	Lys	Leu	Asn	
			5 5					60					65			
TTG	CAA	ACT	TCA	ACA	AGC	ΛΤΤ	CCA	ΛΛΤ	GTT	ACT	GAG	ATG	ΛΛΛ	۸CC	AAC	336
Leu	Gln	Thr	Ser	Thr	Ser	He	Pro	Asn	Val	Thr	Glu	Met	Lys	Thr	Asn	
		70					75					9.0				

WO 98/32771

						CTC										384
Met	Ser	Leu	Gly	Leu	lle	Leu	Thr	Arg	Asn	Met	Gly	Thr	Gly	G1 y	Phe	
	85					90					95					
CTC	ACA	TGT	GGT	CCT	CTG	TGG	GCA	CAG	CAA	TGT	GGG	ΛΛΤ	CVC	TAT	TAC	432
Leu	Thr	Cys	Gly	Pro	Leu	Trp	Лlа	Gln	Gln	Cys	Gly	Λsn	Gln	Туг	Туr	
100					105					110					115	
ACA	ACG	GGT	GTG	TGT	TCT	GAC	ATC	ΛGT	CCT	GAT	TTT	CAG	CTC	TCA	GCC	480
Thr	Thr	G 1 y	Val	Cys	Ser	Λsp	Пe	Ser	Pro	Λsp	Phe	G 1 n	Leu	Ser	Ala	
				120					125					130		
AGC	TTC	TCA	CCT	GCA	ACT	CAG	ccc	TGC	CCT	TCC	CTC	ATA	GAT	GTT	GTG	528
Ser	Phe	Ser	Pro	Ala	Thr	G1 n	Pro	Cys	Pro	Ser	Leu	lle	Λsp	Val	Val	
			135					140					145			
GTT	GTG	TGŢ	GAT	GΛΛ	TCA	ΛΛΤ	AGT	ATT	TAT	CCT	TGG	GAT	GCA	GTA	AAG	576
Val	Val	Cys	Λsp	Glu	Ser	Asn	Ser	Ile	Tyr	Pro	Trp	Asp	Лlа	Val	Lys	
		150					155					160				
ΛΛΤ	TTT	TTG	$G\Lambda\Lambda$	AAA	TTT	GTA	$C\Lambda\Lambda$	GGC	CTT	GAT	ATA	GGC	ccc	ΛСΛ	ΛΛG	624
Asn	Phe	Leu	G1u	Lys	Phe	Val	Gln	Gly	Leu	Asp	Ile	Gly	Pro	Thr	Lys	
	165					170					175					
ACA	CAG	GTG	GGG	TΤΛ	ΛΤΤ	CAG	TAT	GCC	ΑΛΤ	АΛТ	CCV	AGA	GTT	GTG	TTT	672
Thr	Gln	Val	Gly	Leu	lle	G1 n	Tyr	Лla	Λsn	Λsπ	Pro	λrg	Val	Val	Phe	
180					185					190					195	
۸AC	TTG	AAC	ACA	TAT	۸۸۸	ACC	ΑΛΛ	GAA	GAA.	ATG	ATT	GTA	GCA	ACA	TCC	720
Asn	Leu	Asn	Thr	Туr	Lys	Thr	Lys	Glu	Glu	Met	Ile	Val	Ala	Thr	Ser	
				200					205					210		
CAG	ACA	TCC	CAA	TAT	GGT	GGG	GAC	CTC	ACA	۸AC	ACA	TTC	GGA	GCA	ATT	768
G1n	Thr	Ser	Gln	Туr	Gly	Gly	Asp	Leu	Thr	Λsn	Thr	Phe	Gly	Ala	Ile	
			215					220	•				225			
CAA	TAT	GCA	AGA	ΑΛΛ	ТАТ	GCC	TAT	TCA	GCA	GCT	тст	GGT	GGG	CGA	CGA	816
Gln	Tyr	Ala	Λrg	Lys	Tyr	Ala	Туг	Ser	Ala	Лlа	Ser	G 1 y	Gly	Λrg	Arg	
		230					235					240				

AGT	GCT	۸CG	۸۸۸	GTA	ATG	GTA	GTT	GTA	ACT	GAC	GGT	GAA	TCA	CAT	GAT	864
Ser	Ala	Thr	Lys	Val	Met	Val	Val	Val	Thr	Лsp	Gly	Glu	Ser	llis	Λsp	
	245					250					255					
GGT	TCA	ΛTG	TTG	ΑΛΑ	GCT	GTG	ATT	$G\LambdaT$	CAA	TGC	AAC	$C \Lambda T$	GAC	ΑΛΤ	ATA	912
G1y	Ser	Met	Leu	Lys	Λla	Val	Ile	Asp	Gln	Cys	Λsn	His	Asp	Λsn	lle	
260					265					270					275	
CTG	AGG	TTT	GGC	ΛΤΛ	GCA	GTT	CTT	GGG	TAC	TTA	۸۸С	AGA	ΛΛС	GCC	CTT	960
Leu	Arg	Phe	Gly	l 1 e	Ala	Val	Leu	Gly	Туr	Leu	λsn	Arg	Asn	Лlа	Leu	
				280					285					290	•	
GAT	ACT	AAA	AAT	TTA	ΑΤΛ	ΑΛΛ	GAA	ΑΤΑ	AAA	GCG	۸TC	GCT	AGT	ATT	CCA	1008
Asp	Thr	Lys	Asn	Leu	He	Lys	Glu	He	Lys	Ala	I1e	Лlа	Ser	Ile	Pro	
			295					300					305			
ACA	GAA	ΛGA	TAC	TTT	TTC	ΑΛΤ	GTG	TCT	GAT	GAA	GCA	GCT	CTA	СТЛ	GAA	1056
Thr	Glu	Arg	Tyr	Phe	Phe	Asn	Val	Ser	Λsp	Glu	Λ1а	Ala	Leu	Leu	Glu	
		310					315					320				
ΛΛG	GCT	GGG	ACA	TTA	GGA	GAA	CAA	ATT	TTC	VCC	ATT	GAA	GGT	ACT	GTT	1104
Lys	Ala	Gly	Thr	Leu	G 1 y	Glu	Gln	I 1 e	Phe	Ser	Пe	Glu	Gly	Thr	Val	
	325					330					335					
CAA	GGA	GGA	GAC	AAC	TTT	CAG	ATG	GAA	ATG	TCA	CAA	GTG	GGA	TTC	AGT	1152
Gln	G1y	Gly	Asp	Asn	Phe	Gln	Met	Glu	Met	Ser	Gln	Val	Gly	Phe	Ser	
340					345					350					355	
GCA	GAT	TAC	TCT	TCT	CAA	ΑΛΤ	GAT	ATT	CTG.	ATG	CTG	GGT	GCA	GTG	GGA	1200
Ala	Asp	Tyr	Ser	Ser	Gln	Asn	Лsр	lle	Leu	Met	Leu	Gly	Ala	Val	Gly	
				360					365					370		
GCT	TTT	GGC	TGG	ΛGΤ	GGG	ACC	ATT	GTC	CAG	AAG	ACA	TCT	CAT	GGC	CAT	1248
Λla	Phe	Gly	Trp	Ser	Gly	Thr	lle	Val	Gln	Lys	Thr	Ser	His	Gly	His	
			375	٠				380					385			
TTG	ATC	TTT	CCT	AAA	CAA	GCC	TTT	GAC	CAA	λΤΤ	CTG	CAG	GAC	ΛGΛ	ΛΛΤ	1296
Leu	lle	Phe	Pro	Lys	Gln	Лlа	Phe	Asp	Gln	lle	Leu	Gln	Λsp	Arg	Asn	
		390					395					400				

CAC	AGT	TCA	TAT	TTA	GGT	TAC	TCT	GTG	GCT	GCA	ATT	TCT	ACT	GGA	GΛΛ	1344
His	Ser	Ser	Tyr	Leu	Gly	Туг	Ser	Val	Ala	Ala	lle	Ser	Thr	G1 y	Glu	
	405					410					415					
AGC	ACT	CVC	TTT	GTT	GCT	GGT	GCT	ССТ	CGG	GCA	AAT	TAT	ACC	GGC	CAG	1392
Ser	Thr	His	Phe	Val	Ala	Gly	Λla	Pro	Λrg	Ala	Λsn	Tyr	Thr	G 1. y	Gln	
420					425					430					435	
ATA	GTG	CTA	TAT	ΛGΤ	GTG	AAT	GAG	AAT	GGC	AAT	۸TC	ACG	GTT	ATT	CAG	1440
Пе	Val	Leu	Tyr	Ser	Val	Asn	Glu	Asn	Gly	Asn	lle	Thr	Val	He	Gln	
				440					445					450		
GCT	CAC	CGA	GGT	GAC	CAG	λΤΤ	GGC	TCC	TAT	TTT	GGT	AGT	GTG	CTG	TGT	1488
Лlа	His	Arg	Gly	Λsp	Gln	I1e	G1 y	Ser	Tyr	Phe	Gly	Ser	Val	Leu	Cys	
			455					460					465			
TCA	GTT	GAT	GTG	GAT	ΑΛΑ	GAC	ACC	ATT	ΛCA	GAC	GTG	CTC	TTG	GTA	GGT	1536
Ser	Val	Asp	Val	Asp	Lys	Asp	Thr	He	Thr	Asp	Val	Leu	Leu	Val	G 1 y	·
		470					475					480				
GCA	CCA	ATG	TAC	ATG	AGT	GAC	CTA	AΛG	ΛΑΛ	GAG	$G\Lambda\Lambda$	GGA	AGΛ	GTC	TAC	1584
Ala	Pro	Met	Tyr	Met	Ser	Asp	Leu	Lys	Lys	Glu	Glu	Gly	Arg	Val	Туr	
	485					490					495					
CTG	TTT	ACT	ATC	AAA	AAG	GGC	ATT	TTG	GGT	CAG	CVC	CAA	TTT	CTT	GAA	1632
Leu	Phe	Thr	Ile	Lys	Lys	Gly	lle	Leu	G1 y	Gln	llis	Gln	Phe	Leu	Glu	
500					505					510					515	
GGC	ccc	GAG	GGC	ATT	GΛΛ	AAC	ACT	CGA	TTT.	GGT	TCA	GCA	ΛΤΤ	GCA	GCT	1680
G1y	Pro	Glu	Gly	lle	Glu	Asn	Thr	Arg	Phe	G1 y	Ser	Ala	lle	Ala	Ala	
	•			520					525					530		
CTT	TCA	GAC	ATC	AAC	ATG	GAT	GGC	TTT	AAT	GAT	GTG	ATT	GTT	GGT	TCA	1728
Leu	Ser	Лsр	lle	Asn	Met	Asp	Gly	Phe	Asn	Asp	Val	lle	Val	Gly	Ser	
			535					540					545			
CCV	CTA	GΛA	ΛΛΤ	CAG	ΛΛΤ	тст	GGA	GCT	GTA	TAC	ATT	TAC	AAT	GGT	CAT	1776
Pro	Leu	Glu	Asn	G1 n	Λsn	Ser	Gly	Ala	Val	Tyr	lle	Tyr	Asn	Gly	His	
		550					555					560				

CAG	GGC	ACT	ATC	CGC	ACA	AAG	TAT	TCC	CAG	ΛΑΛ	ATC	TTG	GGA	TCC	GAT	1824
Gln	Gly	Thr	Ile	Arg	Thr	Lys	Tyr	Ser	Gln	Lys	lle	Leu	Gly	Ser	Asp	
	565					570					575					
GGA	GCC	TTT	AGG	AGC	CAT	стс	CAG	TAC	TTT	GGG	AGG	TCC	TTG	GAT	GGC	1872
G1 y	Лlа	Phe	Arg	Ser	His	Leu	Gln	Туг	Phe	Gly	Arg	Ser	Leu	Λsp	G 1. y	
580					585					590					595	
TAT	GGA	GAT	TTA	AAT	GGG	GAT	TCC	ATC	۸CC	GAT	GTG	TCT	ATT	GGT	GCC	1920
Туг	Gly	Asp	Leu	Asn	Gly	Лsр	Ser	Пе	Thr	Лsр	Val	Ser	Пе	Gly	Ala	
				600					605					610		
TTT	GGA	$C \Lambda \Lambda$	GTG	GTT	CAA	CTC	TGG	TCA	CAA	AGT	ATT	GCT	GAT	GTA	GCT	1968
Phe	Gly	Gln	Val	Val	Gln	Leu	Trp	Ser	Gln	Ser	lle	Ala	Asp	Val	Ala	
			615					620					625			
ATA	GAA	GCT	TCA	TTC	ΛCA	CCA	GAA	ΑΛΛ	ATC	ACT	TTG	GTC	۸AC	ΛΛG	ΛAT	2016
lle	Glu	Ala	Ser	Phe	Thr	Pro	G1 u	Lys	Ile	Thr	Leu	Val	Asn	Lys	Asn	
		630					635					640				
GCT	CAG	ATA	ATT	СТС	AAA	СТС	TGC	TTC	AGT	GCA	AAG	TTC	AGA	CCT	ACT	2064
Аlа	Gln	He	Пe	Leu	Lys	Leu	Cys	Phe	Ser	Лlа	Lys	Phe	Λrg	Pro	Thr	
	645					650					655					
AAG	CAA	AAC	AAT	CAA	GTG	GCC	ATT	GTA	TAT	AAC	ATC	ACA	CTT	GAT	GCA	2112
Lys	Gln	Asn	Asn	Gln	Val	Лlа	He	Val	Tyr	Asn	I 1 e	Thr	Leu	Asp	Ala	
660					665					670					675	
GAT	GGA	TTT	TCA	TCC	AGA	GTA	ACC	TCC	AGG.	GGG	TTA	TTT	ΑΑΛ	GAA	AAC	2160
Asp	Gly	Phe	Ser	Ser	Arg	Val	Thr	Ser	Arg	Gly	Leu	Phe	Lys	Glu	Λsn	
				680					685					690		
AAT	GAA	AGG	TGC	CTG	CAG	AAG	AAT	ΛTG	GTA	GTA	AAT	CAA	GCA	CAG	AGT	2208
Asn	Glu	Arg	Cys	Leu	Gln	Lys	Asn	Met	Val	Val	Asn	Gln	Лlа	Gln	Ser	
			695					700					705			
TGC	CCC	GAG	CAC	ATC	ATT	TAT	ΑΤΛ	CAG	GAG	CCC	TCT	GAT	GTT	GTC	AAC	2256
Cys	Pro	Glu	His	lle	Ile	Tyr	He	G1n	G1u	Pro	Ser	Asp	Val	Val	Asn	
		710			•		715					720				

1	CT	TTG	GAT	TTG	CGT	GTG	GAC	ATC	ΛGΤ	CTG	GΛA	AAC	CCT	GGC	ACT	AGC	2304
S	Ser	Leu	Asp	Leu	Arg	Val	Asp	Ile	Ser	Leu	G1 u	Asn	Pro	Gly	Thr	Ser	
		725					730					735					
(СТ	GCC	CTT	GAA	GCC	TAT	TCT	GAG	ΛCT	GCC	AAG	GTC	TTC	AGT	ATT	CCT	2352
F	ro	Ala	Leu	Glu	Лlа	Туг	Ser	Glu	Thr	Ala	Lys	Val	Phe	Ser	Пе	Pro	
7	40					745					750					755	
7	TC	CVC	ΑΑΛ	GAC	TGT	GGT	GAG	GAT	$GG\Lambda$	CTT	TGC	ATT	TCT	GAT	CTA	GTC	2400
ſ	he	His	Lys	Λsp	Cys	G 1 y	Glu	Лsр	G 1 y	Leu	Cys	He	Ser	Λsp	Leu	Val	
					760					765					770		
(CTA	GAT	GTC	CGA	CAA	ΛΤΑ	CCV	GCT	GCT	$C \Lambda \Lambda$	GAA	CAA	ccc	TTT	ATT	GTC	2448
I	.eu	Λsp	Val	Λrg	C I ù	lle	Pro	Ala	Лlа	Gln	Glu	Gln	Pro	Phe	He	Val	
				775					780					785			
,	AGC	ΛΛС	CAA	AAC	ΑΛΛ	AGG	TTA	ACA	TTT	TCA	GTA	$AC\Lambda$	CTG	ΑΑΑ	АЛТ	AAA	2496
;	Ser	Λsn	Gln	Asn	Lys	Arg	Leu	Thr	Phe	Ser	Val	Thr	Leu	Lys	Λsn	Lys	
			790					795					800				
	AGG	GAA	AGT	GCA	ТЛС	AAC	ACT	GGA	ΛΤΤ	GTT	GTT	GAT	TTT	TCA	GAA	AAC	2544
	Arg	Glu	Ser	Ala	Туr	Asn	Thr	G1 y	He	Val	Val	Λsp	Phe	Ser	Glu	Asn	
		805					810					815					
	TTG	TTT	TTT	GCA	TCA	TTC	TCC	CTA	CCG	GTT	GAT	GGG	ACA	GAA	GTA	ACA	2592
	Leu	Phe	Phe	Лlа	Ser	Phe	Ser	Leu	Pro	Val	Λsp	Gly	Thr	Glu	Val	Thr	
	820					825					830					835	
	TGC	CAG	GTG	GCT	GCA	TCT	CAG	ΛAG	TCT	G T T	GCC	TGC	GAT	GTA	GGC	TAC	2640
	Cys	Gln	Val	Ala	Ala	Ser	G1n	Lys	Ser	Val	Лlа	Cys	Asp	Val	G1 y	Tyr	
					840					845					850		
	сст	GCT	TTA	AAG	AGA	GAA	CAA	CAG	GTG	ACT	TTT	ACT	ATT	AAC	TTT	GAC	2688
	Pro	Ala	Leu	Lys	۸rg	Glu	G1n	Gln	Val	Thr	Phe	Thr	Ile	Λsn	Phe	Asp	
				855					860					865			
	TTC	AAT	CTT	CAA	AAC	CTT	CAG	ΛΛΤ	CAG	GCG	TCT	CTC	AGT	TTC	CAA	GCC	2736
	Phe	Asn	Leu	G1 n	Asn	Leu	Gln	Asn	G1n	Ala	Ser	Leu	Ser	Phe	Gln	Лlа	
			870					875					880				

TTA	AGT	GAA	AGC	C A A	GAA	GAA	AAC	ΛΛG	GCT	$G\Lambda T$	AAT	TTG	GTC	AAC	CTC	2784
Leu	Ser	Glu	Ser	Gln	Glu	Glu	Asn	Lys	Ala	Asp	Asn	Leu	Val	Λsn	Leu	
	885					890					895					
ΑΑΛ	ATT	CCT	CTC	CTG	TAT	GAT	GCT	GΛA	ATT	CAC	TTA	ACA	AGA	TCT	ACC	2832
Lys	Ile	Pro	Leu	Leu	Tyr	Asp	Ala	Glu	lle	His	Leu	Thr	Arg	Ser	Thr	
900					905					910					915	
AAC	ΛΤΛ	AAT	TTT	TAT	GAA	۸TC	TCT	TCG	GAT	GGG	ААТ	GTT	CCT	TCA	ATC	2880
Asn	I1e	Λsn	Phe	Tyr	Glu	lle	Ser	Ser	Asp	Gly	Asn	Val	Pro	Ser	lle	
				920					925					930		
GTG	CVC	AGT	TTT	$G\Lambda\Lambda$	GAT	GTT	GGT	CCA	ΑΑΛ	TTC	ATC	TTC	TCC	CTG	AAG	2928
Val	His	Ser	Phe	Glu	Asp	Val	Gly	Pro	Lys	Phe	He	Phe	Ser	Leu	Lys	
			935					940					945			
GTA	ΛСΛ	ACA	$GG\Lambda$	AGT	GTT	CCA	GΤΛ	AGC	ATG	GCA	ACT	GTA	ATC	ATC	CAC	2976
Val	Thr	Thr	G1 y	Ser	Val	Pro	Val	Ser	Met	Ala	Thr	Val	lle	He	His	
		950					955					960				
ATC	CCT	CAG	TAT	ACC	ΑΑΑ	$G\Lambda\Lambda$	۸AG	ΛΛC	CCA	CTG	ATG	TAC	СТЛ	ACT	GGG	3024
He	Pro	Gln	Tyr	Thr	Lys	Glu	Lys	Λsn	Pro	Leu	Met	Туr	Leu	Thr	Gly	
	965					970					975					
GTG	CAA	ACA	GAC	AAG	GCT	GGT	GAC	ATC	ΛGT	TGT	АЛТ	GCA	GAT	ATC	ΛΛΤ	3072
Val	Gln	Thr	Λsp	Lys	Ala	Gly	Λsp	Пe	Ser	Cys	Λsn	Лlа	λsp	He	Λsn	
980					985					990					995	
CCA	CTG	AAA	ATA	GGA	CAA	ACA	TCT	TCT.	TCT	GTA	TCT	TTC	ΛΛΛ	AGT	GAA	3120
Pro	Leu	Lys	lle	Gly	Gln	Thr	Ser	Ser	Ser	Val	Ser	Phe	Lys	Ser	Glu	
			1	1000					005				1	010		
AAT	TTC	AGG	CAC	ACC	ΑΛΑ	GAA	TTG	AAC	TGC	ΛGΛ	ACT	GCT	TCC	TGT	AGT	3168
Asn	Phe	Arg	His	Thr	Lys	Glu	Leu	Asn	Cys	Λrg	Thr	Лla	Ser	Cys	Ser	
		!	1015				1	020					1025			
AAT	GTT	ACC	TGC	TGG	TTG	ΑΑΛ	GAC	GTT	CAC	ΛTG	AAA	GGA	GAA	TAC	TTT	3216
Asn	Val	Thr	Cys	Trp	Leu	Lys	Asp	Val	His	Met	Lys	G1 y	Glu	Tyr	Phe	
		1030					1035]	040				

GTT AAT GTG ACT ACC	AGA ATT TGG	AAC GGG ACT	TTC GCA TCA TCA ACG	3264
Val Asn Val Thr Thr	Arg Ile Trp	Asn Gly Thr	Phe Ala Ser Ser Thr	
1045	1050	1	055	
TTC CAG ACA GTA CAG	CTA ACG GCA	GCT GCA GAA	ATC AAC ACC TAT AAC	3312
Phe Gln Thr Val Gln	Leu Thr Ala	Ala Ala Glu	lle Asn Thr Tyr Asn	
1060	1065	1070	1075	
CCT GAG ATA TAT GTG	ATT GAA GAT	AAC ACT GTT	ACG ATT CCC CTG ATG	3360
Pro Glu Ile Tyr Val	lle Glu Asp	Asn Thr Val	Thr Ile Pro Leu Met	
1080	1	1085	1090	
ATA ATG AAA CCT GAT	GAG AAA GCC	GAA GTA CCA	ACA GAT CCC GAG	3405
lle Met Lys Pro Asp	Glu Lys Ala	Glu Val Pro	Thr Asp Pro Glu	
1095	1	1100	1105	
CTGCTGGAAG CAGGCTCA	GC GCTCCTGCC1	T GGACGCATCC	CGGCTATGCA GCCCCAGTCC	3465
AGGGCAGCAA GGCAGGCC	сс стстссстст	T TCACCCGGAG	CCTCTGCCCG CCCCACTCAT	3525
GCTCAGGGAG AGGGTCT1	CT GGCTTTTTC	CAGGCTCTGG	GCAGGCACAG GCTAGGTGCC	3585
CCTAACCCAG GCCCTGCA	ACA CAAAGGGGCA	A GGTGCTGGGC	TCAGACCTGC CAAGAGCCAT	3645
ATCCGGGAGG ACCCTGC	CCC TGACCTAAGO	C CCACCCCAAA	GGCCAAACTC TCCACTCCCT	3705
CAGCTCGGAC ACCTTCTC	CTC CTCCCAGAT	г ссастаастс	CCAATCTTCT CTCTGCA	3762
GAG CCC AAA TCT TGT	GAC AAA ACT	CAC ACA TGC	CCA CCG TGC CCA	3807
Glu Pro Lys Ser Cys	s Asp Lys Thr	His Thr Cys	Pro Pro Cys Pro	
1110		1115	1120	
GGTAAGCCAG CCCAGGCC	CTC GCCCTCCAG	C TCAAGGCGGG	ACAGGTGCCC TAGAGTAGCC	3867
TGCATCCAGG GACAGGC	CCC AGCCGGGTG	C TGACACGTCC	ACCTCCATCT CTTCCTCA	3925
GCA CCT GAA CTC CTC	G GGG GGA CCG	TCA GTC TTC	CTC TTC CCC CCA AAA	3973
Ala Pro Glu Leu Lei	u Gly Gly Pro	Ser Val Phe	Leu Phe Pro Pro Lys	
1125		1130	1135	
CCC AAG GAC ACC CTC	C ATG ATC TCC	CGG ACC CCT	GAG GTC ACA TGC GTG	4021
Pro Lys Asp Thr Lei	Met Ile Ser	Arg Thr Pro	Glu Val Thr Cys Val	
1140	1145		1150	

069
117
165
213
255
255
255
255 315
315
315
315
315 369
315 369
315 369
315 369 417
315 369 417
315 369 417
315 369 417
16

CCT CCC GTG CTG GAT TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC 4561 Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 1290 1295 ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC 4609 Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser 1310 1305 1315 GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC 4657 Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 1320 1325 1330 CTG TCT CCG GGT AAA TGA 4675 Leu Ser Pro Gly Lys 1335

配列番号:20

配列の長さ:27

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GCTCGAGCAA ACCCAGCGCA ACTACGG

配列番号:21

配列の長さ:21

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

ATAGTGCCCT GATGACCATT G

21

27

21

配列番号:22

配列の長さ:22

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

GATGGCTTTA ATGATGTGAT TG

22

配列番号:23

配列の長さ:21

配列の型:核酸

鎖の数:一本鎖

トポロジー:直鎖状

配列の種類:他の核酸 合成DNA

配列

TGTTGGTACT TCGGCTTTCT C

配列番号:24

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Ile Pro Glu Leu Ile Val Cys

1 5

配列番号:25

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Met Arg Tyr Thr Ser Ala Cys

5

1

配列番号:26

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Glu Trp Met Lys Arg Phe Cys

1

配列番号:27

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Tyr Thr Thr Arg Leu Lys Cys

1 5

配列番号:28

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Leu Arg Tyr Ser Val Pro Cys

1

5

配列番号:29

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Ile Val Asn Arg Leu Gly Cys

1

5.

配列番号:30

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Gly Leu Gln Ala Leu Pro Cys

1

5

配列番号:31

配列の長さ:8

配列の型:アミノ酸

トポロジー:環状

配列の種類:ペプチド

配列

Cys Lys Leu Lys Gly Thr Met Cys

1

5

請求の範囲

- 1. インテグリンのα鎖またはβ鎖と、免疫グロブリンの重鎖または軽鎖とからなるキメラ蛋白質。
- 2. インテグリンのα鎖と免疫グロブリンの重鎖または軽鎖とからなる請求項1記載のキメラ蛋白質と、インテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖とからなる請求項1記載のキメラ蛋白質が会合してなるキメラ蛋白質へテロダイマー複合体。
- 3. 請求項1記載のキメラ蛋白質が以下の組み合わせ(1)、(2)、および(3)のいずれかで会合してなる請求項2記載のキメラ蛋白質へテロダイマー複合体。
- (1) インテグリンのα鎖と免疫グロブリンの重鎖とからなるキメラ蛋白質とインテグリンのβ鎖と免疫グロブリンの重鎖とからなるキメラ蛋白質が会合してなるα鎖・免疫グロブリン重鎖-β鎖・免疫グロブリン重鎖キメラ蛋白質へテロダイマー複合体。
- (2) インテグリンのα鎖と免疫グロブリンの重鎖とからなるキメラ蛋白質とインテグリンのβ鎖と免疫グロブリンの軽鎖とからなるキメラ蛋白質が会合してなるα鎖・免疫グロブリン重鎖-β鎖・免疫グロブリン軽鎖キメラ蛋白質へテロダイマー複合体。
- (3) インテグリンのα鎖と免疫グロブリンの軽鎖とからなるキメラ蛋白質とインテグリンのβ鎖と免疫グロブリンの重鎖とからなるキメラ蛋白質が会合してなるα鎖・免疫グロブリン軽鎖-β鎖・免疫グロブリン重鎖キメラ蛋白質へテロダイマー複合体。
- 4 . インテグリンの α 鎖が α 1 、 α 2 、 α 3 、 α 4 、 α 5 、 α 6 、 α 7 、 α 8 、 α 9 、 α v 、 α L 、 α M 、 α X 、 α II b 、 または α E である請求項 1 から 3 のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体。
- 5. インテグリンのβ鎖がβ1、β2、β3、β4、β5、β6、β7、またはβ8である請求項1から3のいずれかに記載のキメラ蛋白質またはキメラ蛋白質 ヘテロダイマー複合体。
- 6. インテグリンのα鎖がα4またはα2であり、β鎖がβ1である請求項2ま

たは3記載のキメラ蛋白質へテロダイマー複合体。

- 7. インテグリンの α 4 と免疫グロブリンの重鎖とからなるキメラ蛋白質が、配列番号1のアミノ酸配列で示される請求項1から3のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体。
- 8. インテグリンのα2と免疫グロブリンの重鎖とからなるキメラ蛋白質が、配列番号19のアミノ酸配列で示される請求項1から3のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体。
- 9. インテグリンの β 1 と免疫グロブリンの重鎖とからなるキメラ蛋白質が、配列番号 2 のアミノ酸配列で示される請求項 1 から 3 のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体。
- 10. 請求項1記載のキメラ蛋白質を暗号化するDNA。
- 11. インテグリンの α 鎖が α 1、 α 2、 α 3、 α 4、 α 5、 α 6、 α 7、 α 8、 α 9、 α v、 α L、 α M、 α X、 α IIb、または α Eである請求項1記載のキメラ蛋白質を暗号化するDNA。
- 12. インテグリンの β 鎖が β $1、<math>\beta$ 2、 β 3、 β 4、 β 5、 β 6、 β 7、または β 8である請求項 1記載のキメラ蛋白質を暗号化するDNA。
- 13. 配列番号1または配列番号19の塩基配列で示される請求項11記載のD NA。
- 14.配列番号2の塩基配列で示される請求項12記載のDNA。
- 15. 請求項10記載のDNAが発現制御配列に機能的に連結されてなる組み換えベクター。
- 16. 請求項11記載のDNAが発現制御配列に機能的に連結されてなる組み換えベクター。
- 17. 請求項12記載のDNAが発現制御配列に機能的に連結されてなる組み換えベクター。
- 18. 請求項13記載のDNAが発現制御配列に機能的に連結されてなる組み換えベクター。
- 19. 請求項14記載のDNAが発現制御配列に機能的に連結されてなる組み換えベクター。
- 20. インテグリンの α 鎖と免疫グロブリンの重鎖または軽鎖とからなるキメラ

蛋白質を暗号化するDNAが発現制御配列に機能的に連結されてなる組み換えべクターおよびインテグリンのβ鎖と免疫グロブリンの重鎖または軽鎖とからなるキメラ蛋白質を暗号化するDNAが発現制御配列に機能的に連結されてなる組み換えベクターにより同時に形質転換された動物細胞。

- 21. 請求項16および請求項17記載の組み換えベクターにより同時に形質転換された請求項20記載の動物細胞。
- 22. 請求項18および請求項19記載の組み換えベクターにより同時に形質転換された請求項20記載の動物細胞。
- 23. 請求項20記載の動物細胞を培養することを特徴とする請求項2記載のキメラ蛋白質へテロダイマー複合体の製造方法。
- 24. 請求項1から9のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体からなる医薬。
- 25. 請求項1から9のいずれかに記載のキメラ蛋白質またはキメラ蛋白質へテロダイマー複合体からなる医薬組成物。
- 26. 単離した細胞外マトリックスレセプターを有効成分とする血小板代替物。
- 27. 細胞外マトリックスレセプターが、インテグリンである請求項26記載の血小板代替物。
- 28. インテグリンの α 鎖が α 1、 α 2、 α 3、 α 4、 α 5、 α 6、 α 7、 α 8、 α 9、 α v、 α L、 α M、 α X、 α IIb、または α Eである請求項27記載の血小板代替物。
- 29. インテグリンの β 鎖が β 1、 β 2、 β 3、 β 4、 β 5、 β 6、 β 7、または β 8である請求項27記載の \hat{m} 小板代替物。
- 3 0. インテグリンがインテグリン α 2 β 1 である請求項 2 7 記載の血小板代替物。
- 3 1. 細胞外マトリックスレセプターが、細胞外マトリックスレセプターと免疫 グロブリンとのキメラ蛋白質へテロダイマー複合体である請求項 2 6 記載の血小 板代替物。
- 32. キメラ蛋白質へテロダイマー複合体が、インテグリンと免疫グロブリンとのキメラ蛋白質へテロダイマー複合体である請求項31記載の血小板代替物。
- 33. キメラ蛋白質へテロダイマー複合体が、請求項2記載のキメラ蛋白質へテ

ロダイマー複合体である請求項32記載の血小板代替物。

- 34. キメラ蛋白質へテロダイマー複合体が、請求項6記載のキメラ蛋白質へテロダイマー複合体である請求項33記載の血小板代替物。
- 35. 細胞外マトリックスレセプターを担体に結合させて用いることを特徴とする請求項26から34のいずれかに記載の血小板代替物。
- 36. 止血能を有することを特徴とする請求項26から35のいずれかに記載の血小板代替物。
- 37. インテグリンと免疫グロブリンのキメラ蛋白質へテロダイマー複合体とリガンドまたは細胞を接触させて混合物を作製した後、リガンドまたは細胞に結合したキメラ蛋白質へテロダイマー複合体量もしくはキメラ蛋白質へテロダイマー複合体に結合したリガンド量または細胞量を測定することを特徴とする、請求項2から9のいずれかに記載のキメラ蛋白質へテロダイマー複合体とリガンドまたは細胞の結合を試験する方法。
- 38. 請求項2から9のいずれかに記載のキメラ蛋白質へテロダイマー複合体を 用いてインテグリンに結合する物質を探索する方法。
- 39.請求項38記載の方法を用いて得られる、インテグリンに結合する物質。
- 40. 請求項37記載の方法を用いてインテグリンとリガンドの結合を阻害する物質を探索する方法。
- 41. リガンドが配列番号 3 で示されるフィブロネクチンフラグメント、またはコラーゲンである請求項 4 0 記載の方法。
- 42. 請求項40または41記載の方法を用いて得られる、インテグリンとリガンドの結合を阻害する蛋白質、ペプチド、または低分子化合物。
- 43. 請求項2から9のいずれかに記載のキメラ蛋白質へテロダイマー複合体を使用することを特徴とするインテグリンのリガンドの量を測定する方法。
- 44. 請求項2から9のいずれかに記載のキメラ蛋白質へテロダイマー複合体を使用することを特徴とする細胞外マトリックス露出部位を同定する方法。

図面

図1

図2

£.				
·			4	
				;
39 1			. •	
			y .	
				•
t.				٠, ,
35. 3				
	e e e			* * *
े के 				
e F		ing Synthes		
ć.		e e e e e e e e e e e e e e e e e e e		
4. 4. 4.			75	
7				
	*		The same of the sa	•
*	N ₁			
			24.	
Rui:				
24				
		· · · · · · · · · · · · · · · · · · ·		
36	8 44 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* *		
		·		
ja L			e de la companya de l	(Co.) . *
≱ Ā_	• •	9		
# 737 4		33		
4				*
.	•	8		* . *
Ž.	*		- 10 x	<u> </u>
	*4 × ×			•
				. 4
X.				Ť
3			рь	
S			8 30/1	
	d with	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The same of the sa	ار اما است علاق الله ا

面図

図3

፟ 4

AL.	
	, al

図面

図 5

ヒト!gGリポソーム(正常血漿)
 インテグリンα2β1!gGリポソーム(正常血漿)
 インテグリンα2β1!gGリポソーム(フォンビルブランドファクター欠乏血漿)

図 6

			J
·			
			. £
			T;

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP98/00370

	IFICATION OF SUBJECT MATTER C1 CO7K14/705, C12N15/12, G01	ln33/50					
According to	o International Patent Classification (IPC) or to both na	tional classification and IPC					
	SEARCHED						
Minimum d	ocumentation searched (classification system followed	by classification symbols)					
Int.	C16 C07K14/705, C12N15/12, G0	lN33/50	·				
Documentat	ion searched other than minimum documentation to the	extent that such documents are include	d in the fields searched				
	ata base consulted during the international search (nam		earch terms used)				
8102	IS (DERWENT), WPI (DERWENT), G	Genbank/EMBL (geneseq)					
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.				
Y	WO, 92/13559, A1 (PROGENICS P	HARMACEUTICALS, INC.),					
	August 20, 1992 (20. 08. 92) & AU, 9214385, A		37-38, 40, 41				
	a AU, 9214303, A						
Y	WO, 95/02421, A1 (ALKERMES I		1-25, 26-34,				
	January 26, 1995 (26. 01. 95) (Family: none)	37-38, 40, 41				
Y	JP, 6-87899, A (Educational	Foundation Fujita	1-25, 26-34,				
	Gakuen),		37-38, 40, 41				
	March 29, 1994 (29. 03. 94) & EP, 466505, A2 & US, 547	5100 A					
	& EF, 400303, AZ & OS, 347.	5100, A					
Y	Nucleic Acids Res., Vol. 10, No		1-25, 26-34,				
	et al., "The nucleotide seque		37-38, 40, 41				
	immunoglobulinC $_{\gamma}$ 1gene" p.407	1-40/9	·				
Y	Cell, Vol. 29, No. 2 (1982)		1-25, 26-34,				
	"Structure of human immunogle		37-38, 40, 41				
	implications for evolution of o	gene lamily , p. 6/1-6/9					
		•					
× Furthe	or documents are listed in the continuation of Box C.	See patent family annex.					
* Special	categories of cited documents:	"T" later document published after the inter	national filing date or priority				
"A" docum	ent defining the general state of the art which is not red to be of particular relevance	date and not in conflict with the application the principle or theory underlying the in	tion but cited to understand				
"E" earlier	document but published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	laimed invention cannot be				
cited to	ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other	when the document is taken alone					
	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive step	when the document is				
means "P" docum	ent published prior to the international filing date but later than	combined with one or more other such being obvious to a person skilled in the					
	the priority date claimed "&" document member of the same patent family						
	Date of the actual completion of the international search Date of mailing of the international search report Type 2 16 1998 (16 98)						
June	8, 1998 (08. 06. 98)	June 16, 1998 (16.	06. 98)				
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer						
_		Talanhana Na					
Facsimile N	10	Telephone No.	1				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/00370

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	EMBO J., Vol. 8, No. 5 (1989) Y. Takada et al., "The primary structure of the α 4 subunit of VLA-4: homology to other integirns and a possible cell-cell adhesion function", p.1361-1368	1-25, 26-34, 37-38, 40, 4
Y	Mol. Immunol., Vol. 32 (1995) M.C. Szabo et al., "Identification of two variants of the human integrin α 4 subunit", p.1453-1454	1-25, 26-34, 37-38, 40, 4
Y	J. Cell Biol. Vol. 105 (1987) W.S. Argraves et al., "Amino acid sequence of the human fibronectin receptor", p.1183-1190	1-25, 26-34, 37-38, 40, 4
Y	US, 5516634, A (Newman P.J.), May 14, 1996 (14. 05. 96) (Family: none)	1-25, 26-34, 37-38, 40, 4
Y	J. Cell Biol., Vol. 109 (1989) Y. Takada et al., "The primary structure of the VLA-2/collagen receptor α subunit (platelet GPIa): homology to other integrins and the presence of a possible collagen-binding domain", p.397-407	1-25, 26-34, 37-38, 40, 4
Y	J. Clin. Invest., Vol. 92 (1993) S. Santoso et al., "The human platelet alloantigens Br and Br are associated with a single amino acid polymorphism on glycoprotein Ia (Integirn subunit α 2)", p.2427-2432	1-25, 26-34, 37-38, 40, 4
X/Y	JP, 7-500721, A (The Regents of the University of California), January 26, 1995 (26. 01. 95) & WO, 92/12236, A1	39/37-38, 43, 44
X/Y	JP, 5-505179, A (La Jolla Cancer Research Foundation), August 5, 1993 (05. 08. 93) & WO, 91/09874, A & EP, 507836, A & US, 5169930, A	39/37-38, 43, 44
Y	JP, 5-502228, A (Scripps Clinic & Research Foundation), April 22, 1993 (22. 04. 93) & WO, 91/07977, A & EP, 502124, A & US, 5196511, A	26-36, 42

国際出願番号 PCT/JP98/00370

国際調査報告

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int. Cl⁶ C 0 7 K 1 4 / 7 0 5, C 1 2 N 1 5 / 1 2, G 0 1 N 3 3 / 5 0

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁶ C O 7 K 1 4 / 7 O 5, C 1 2 N 1 5 / 1 2, G O 1 N 3 3 / 5 O

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

BIOSIS(DERWENT), WPI(DERWENT), GenBank/EMBL(geneseq)

C. 関連する	ると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	WO, 9 2 / 1 3 5 5 9, A 1 (PROGENICS PHARMACEUTICALS, INC.) 20.8月.1992(20.08.92)&AU, 9 2 1 4 3 8 5, A	1-25, 26-34, 37-38, 40, 41
Y	WO,95/02421,A1 (ALKERMES INC.)26.1月.1995(26.01.95) (ファミリーなし)	1-25, 26-34, 37-38, 40, 41
Y	JP,6-87899,A(学校法人藤田学園)29.3月.1994 (29.03.94)&EP,466505,A2&US,5475100,A	1-25, 26-34, 37-38, 40, 41
Y	Nucleic Acids Res., Vol. 10, No. 13(1982) J. W. Ellison et al; "The nucleotide sequence of a human immunoglobulinC, gene" p. 4071-4079	1-25, 26-34, 37-38, 40, 41

⋉ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願目前で、かつ優先権の主張の基礎となる出願

- ·の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告

国際出願番号 PCT/JP98/00370

C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示		関連する 請求の範囲の番号
Y	Cell, Vol. 29, No. 2 (1982) N. Takahashi et al.; "Structure of human immunoglobulin gamma genes: implications for evolution of gene family", p. 671-679		1-25, 26-34, 37-38, 40, 41
Y	EMBO J., Vol. 8, No. 5(1989) Y. Takada et al.: "The primary structure of the α^4 subunit of VLA-4:homology to other integirns and a possible cell-cell adhesion function", p. 1361-1368		1-25, 26-34, 37-38, 40, 41
Y	Mol. Immunol., Vol. 32(1995)M. C. Szabo et al.; "Identification of two variants of the human integrin α_4 subunit", p. 1453-1454		1-25, 26-34, 37-38, 40, 41
ノ Y	J. Cell Biol. Vol. 105(1987) W. S. Argraves et al.; "Amino acid sequence of the human fibronectin receptor", p. 1183-1190		1-25, 26-34, 37-38, 40, 41
Y	US,5516634,A(Newman P.J.)14.5月.1996(14.05.96) (ファミリーなし)		1-25, 26-34, 37-38, 40, 41
Y	J. Cell Biol., Vol. 109(1989) Y. Takada et structure of the VLA-2/collagen recept GPIa):homology to other integrins and possible collagen-binding domain", p. 39	or α^2 subunit(platelet the presence of a	1-25, 26-34, 37-38, 40, 41
Y	J. Clin. Invest., Vol. 92 (1993) S. Santoso platelet alloantigens Br and Br are a single amino acid polymorphism on glyc subunit α2)", p. 2427-2432	ssociated with a	1-25, 26-34, 37-38, 40, 41
X/Y	JP,7-500721,A(ザ リージェンシティー オブ カリフォルニア)26.1月.19 2/12236,A1	/ツ オブ ザ ユニヴァー 95(26.01.95)&WO,9	39/37-38, 43, 44
X/Y	JP,5-505179,A(ラ ホヤ キャンデーション)5.8月.1993(05.08.93)&WC &EP,507836,A&US,51699	0.91/09874.A	39/37-38, 43, 44
Y	JP,5-502228,A(スクリップス サーチ ファウンデーション)22.4月.1993(07977,A&EP,502124,A&U	.クリニック アンド リ 22.04.93)&WO, 9 1 / JS, 5 1 9 6 5 1 1, A	26-36, 42
		, .	
	•		