

Microeconomía I

Preferencias y Posibilidades

Santiago Foguet

Versión 0.1: 2024-08-11

Instituto de Investigaciones Económicas

Facultad de Ciencias Económicas Universidad Nacional de Tucumán

Tabla de Contenido

- 1. Introducción
- 2. Relación de Preferencia
- 3. Función de Utilidad
- 4. Conjunto de Consumo Factible
- 5. Bibliografía

Modelo de Elección del Consumidor

Hay 4 elementos presentes en cualquier modelo de elección del consumidor:

- (a) El conjunto de consumo.
- (b) El conjunto de consumo factible (o posible).
- (c) La relación de preferencia.
- (d) Supuestos sobre el comportamiento del consumidor.

Conjunto de Consumo

Conjunto de Consumo : X representa el conjunto de todas las alternativas, o planes de consumo completos, que el consumidor puede concebir, ya sea que algunas de ellas sean realizables en la práctica o no.

Conjunto de Consumo

Conjunto de Consumo : X representa el conjunto de todas las alternativas, o planes de consumo completos, que el consumidor puede concebir, ya sea que algunas de ellas sean realizables en la práctica o no.

Simbólicamente

 x_i representa el número de unidades del bien i donde $x_i \in \mathbb{R}_+$ y $i=1,2,\ldots,n$.

 $\mathbf{x} = \vec{x} = (x_1, x_2, \dots, x_n)$ representa una cesta de consumo que contiene las distintas cantidades de los n diferentes bienes.

 $\mathbf{x} \in X$ se representa por un punto $\mathbf{x} \in \mathbb{R}^n_+$.

Conjunto de Consumo

Propiedades del Conjunto de Consumo

Los requisimos mínimos para el conjunto de consumo son:

- 1. $X \subseteq \mathbb{R}^n_+$.
- 2. Xes un conjunto cerrado.
- 3. Xes un conjunto convexo.
- 4. $0 \in X$.

De ahora en más vamos a suponer por simplicidad que el conjunto de consumo coincidirá con todo el ortante no negativo, es decir, $X=\mathbb{R}^n_+$

Conjunto de Consumo Factible

El conjunto de consumo factible *B* representa aquellas alternativas o planes de consumo no solo concebibles por el consumidor sino que además dadas las circunstancias del consumidor las mismas son alcanzables (o realizables).

$$B \subset X$$

Preferencias del Consumidor

Se representa con la *relación binaria*, \succsim , definida sobre el conjunto de consumo, X. Si $\mathbf{x}^1 \succsim \mathbf{x}^2$, diremos que \mathbf{x}^1 es al menos tan bueno como \mathbf{x}^2 para este consumidor.

Preferencias del Consumidor

Se representa con la *relación binaria*, \succeq , definida sobre el conjunto de consumo, X. Si $\mathbf{x}^1 \succeq \mathbf{x}^2$, diremos que \mathbf{x}^1 es al menos tan bueno como \mathbf{x}^2 para este consumidor.

Axioma 1. Completitud

Para todo \mathbf{x}^1 y \mathbf{x}^2 en X, será $\mathbf{x}^1 \succsim \mathbf{x}^2$ o $\mathbf{x}^2 \succsim \mathbf{x}^1$.

Preferencias del Consumidor

Se representa con la *relación binaria*, \succeq , definida sobre el conjunto de consumo, X. Si $\mathbf{x}^1 \succeq \mathbf{x}^2$, diremos que \mathbf{x}^1 es al menos tan bueno como \mathbf{x}^2 para este consumidor.

Axioma 1. Completitud

Para todo \mathbf{x}^1 y \mathbf{x}^2 en X, será $\mathbf{x}^1 \succeq \mathbf{x}^2$ o $\mathbf{x}^2 \succeq \mathbf{x}^1$.

Axioma 2. Transitividad

Para cualquiera tres cestas \mathbf{x}^1 , \mathbf{x}^2 y \mathbf{x}^3 en X, si $\mathbf{x}^1 \succeq \mathbf{x}^2$ y $\mathbf{x}^2 \succeq \mathbf{x}^3$ entonces $\mathbf{x}^1 \succeq \mathbf{x}^3$.

Relación de Preferencia

La relación binaria, \succsim , sobre el conjunto de consumo X se llama relación de preferencia si cumple con los Axiomas 1 (Completitud) y 2 (Transitividad).

Relación Estricta de Preferencia

La relación binaria \succ sobre el conjunto de consumo X definida por

$$\mathbf{x}^1 \succ \mathbf{x}^2$$
 si y solo si $\mathbf{x}^1 \succsim \mathbf{x}^2$ and $\mathbf{x}^2 \succsim \mathbf{x}^1$

se llama relación de preferencia estricta y se lee como " \mathbf{x}^1 es estrictamente preferida a \mathbf{x}^2 ".

Relación de Indiferencia

La relación binaria \sim sobre el conjunto de consumo X definida por

$$\mathbf{x}^1 \sim \mathbf{x}^2$$
 siy solo si $\mathbf{x}^1 \succsim \mathbf{x}^2$ and $\mathbf{x}^2 \succsim \mathbf{x}^1$

se llama relación de indiferencia y se lee como " \mathbf{x}^1 es indifirente a \mathbf{x}^2 ".

Subconjuntos de Consumo definidos por la Relación de Preferencia

Sea \mathbf{x}^0 cualquier punto en el conjunto de consumo, X. Relativo a este punto podemos definir los siguientes subconjuntos de X:

- 1. $\succeq (\mathbf{x}^0) \equiv {\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succeq \mathbf{x}^0}$, llamdo el conjunto "al menos tan bueno como".
- 2. $\precsim (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^0 \succsim \mathbf{x} \}$, llamdo el conjunto "no mejor que".
- 3. $\prec (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x}^0 \succ \mathbf{x}\}$, llamdo el conjunto "peor que".
- 4. $\succ (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \succ \mathbf{x}^0\}$, llamdo el conjunto "mejor que".
- 5. $\sim (\mathbf{x}^0) \equiv \{\mathbf{x} \mid \mathbf{x} \in X, \mathbf{x} \sim \mathbf{x}^0\}$, llamdo el conjunto "de indiferencia".

Ejemplo con dos bienes

Axioma 3. Continuidad

Para todo $\mathbf{x} \in \mathbb{R}^n_+$, el conjunto "al menos tan bueno como", $\succeq (\mathbf{x})$, y el conjunto "no mejor que", $\preceq (\mathbf{x})$, son cerrados en \mathbb{R}^n_+ .

Axioma 3. Continuidad

Para todo $\mathbf{x} \in \mathbb{R}^n_+$, el conjunto "al menos tan bueno como", $\succeq (\mathbf{x})$, y el conjunto "no mejor que", $\preceq (\mathbf{x})$, son cerrados en \mathbb{R}^n_+ .

Axioma 4'. No saciedad local

Para todo $\mathbf{x}^0 \in \mathbb{R}^n_+$, y para todo $\varepsilon > 0$ existe algún $\mathbf{x} \in B_{\varepsilon}(\mathbf{x}^0) \cap \mathbb{R}^n_+$ tal que $\mathbf{x} \succ \mathbf{x}^0$.

Axioma 4'. No saciedad local

Para todo $\mathbf{x}^0 \in \mathbb{R}^n_+$, y para todo $\varepsilon > 0$ existe algún $\mathbf{x} \in B_{\varepsilon}(\mathbf{x}^0) \cap \mathbb{R}^n_+$ tal que $\mathbf{x} \succ \mathbf{x}^0$.

Axioma 4. Monotonicidad estricta

Para todo $\mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+$, si $\mathbf{x}^0 \geq \mathbf{x}^1$ entonces $\mathbf{x}^0 \succsim \mathbf{x}^1$ mientras que si $\mathbf{x}^0 \gg \mathbf{x}^1$ entonces $\mathbf{x}^0 \succ \mathbf{x}^1$.

Axioma 4. Monotonicidad estricta

Para todo $\mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+$, si $\mathbf{x}^0 \geq \mathbf{x}^1$ entonces $\mathbf{x}^0 \succsim \mathbf{x}^1$ mientras que si $\mathbf{x}^0 \gg \mathbf{x}^1$ entonces $\mathbf{x}^0 \succ \mathbf{x}^1$.

Axioma 5'. Convexidad

Si $\mathbf{x}^0 \succsim \mathbf{x}^1$ entonces $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succsim \mathbf{x}^0$ para todo $t \in [0,1]$

Axioma 5. Convexidad Estricta

Si
$$\mathbf{x}^0
eq \mathbf{x}^1$$
 y $\mathbf{x}^0 \succsim \mathbf{x}^1$ entonces $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succsim \mathbf{x}^0$ para todo $t \in (0,1)$

Axioma 5. Convexidad Estricta

Si $\mathbf{x}^0 \neq \mathbf{x}^1$ y $\mathbf{x}^0 \succsim \mathbf{x}^1$ entonces $t\mathbf{x}^1 + (1-t)\mathbf{x}^0 \succsim \mathbf{x}^0$ para todo $t \in (0,1)$

Función de Utilidad que Representa la Relación de Preferencia

Una función real $U: \mathbb{R}^n_+ \to \mathbb{R}$ se llama función de utilidad que representa la relación de preferencia, \succsim , si para todo $\mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+, U(\mathbf{x}^0) \geq U(\mathbf{x}^1) \Longleftrightarrow \mathbf{x}^0 \succsim \mathbf{x}^1$

Función de Utilidad que Representa la Relación de Preferencia

Una función real $U: \mathbb{R}^n_+ \to \mathbb{R}$ se llama función de utilidad que representa la relación de preferencia, \succsim , si para todo $\mathbf{x}^0, \mathbf{x}^1 \in \mathbb{R}^n_+$, $U(\mathbf{x}^0) \geq U(\mathbf{x}^1) \Longleftrightarrow \mathbf{x}^0 \succsim \mathbf{x}^1$

Teorema 1. Existencia de una Función Real que represente \succsim

Si la relación binaria \succeq es completa, transivita, continua y estrictamente monotónica entonces existe una función real continua $U: \mathbb{R}^n_+ \to \mathbb{R}$ la cual representa a \succeq .

Teorema 2. Invariancia de la Función de Utilidad

Sea \succsim la relación de preferencia en \mathbb{R}^n_+ y suponga que $U(\mathbf{x})$ es una función de utilidad que representa esa relación. Entonces $V(\mathbf{x})$ también representa a \succsim si y solo si $V(\mathbf{x}) = f(U(\mathbf{x}))$ para cada \mathbf{x} , donde $f: \mathbb{R} \to \mathbb{R}$ es estrictamente creciente en el conjunto de valores adoptados por U.

Teorema 2. Invariancia de la Función de Utilidad

Sea \succsim la relación de preferencia en \mathbb{R}^n_+ y suponga que $U(\mathbf{x})$ es una función de utilidad que representa esa relación. Entonces $V(\mathbf{x})$ también representa a \succsim si y solo si $V(\mathbf{x}) = f(U(\mathbf{x}))$ para cada \mathbf{x} , donde $f: \mathbb{R} \to \mathbb{R}$ es estrictamente creciente en el conjunto de valores adoptados por U.

Teorema 3. Propiedades de las Preferencias y Función de Utilidad

Sea \succeq representada por $U: \mathbb{R}^n_+ \to \mathbb{R}$. Entonces:

- 1. $U(\mathbf{x})$ es estrictamente creciente si y solo si \succsim es estrictamente monotonica.
- 2. $U(\mathbf{x})$ es cuasicóncava si y solo si \succsim es convexa.
- 3. $U(\mathbf{x})$ es estrictamente cuasicóncava si y solo si \succeq es estrictamente convexa.

Conjunto de Consumo Factible

Bibliografía

Bibliografía i

This presentation is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International.

