Qingyin Ge Citina Liang Tianle Zhu Yuezhi Liao Yunuo Ma Yiren Wang

Laptop Price Prediction

chrome

Summary

- 1. Raw Data, 11 Variables
- 2. Clean Data, Split Data
- 3. Transform Y Variable
- 4. Model Selection
- 5. Model Diagnostic & Remedial measures:
 - a. Multicollinearity
 - b. Non Normality
 - c. Non Constant Variance
 - d. Outliers
- 6. Conclusion

Raw Data

- Company Name
- Product Name
- Laptop Type
- Screen Inches
- Screen Resolution
- CPU Model

- Random Access Memory (RAM)
- Memory
- Gpu Characteristic
- Operating System
- Laptop's Weight
- Laptop's Price (Response variable)

Company <chr></chr>	Product <chr></chr>	TypeName <chr></chr>			creenResolution chr>		Cpu <chr></chr>		Ram <chr></chr>	Memory <chr></chr>
Apple	MacBook Pro	Ultrabook	1	L3.3 IP:	S Panel Retina Display 2	560×1600	Intel Core i5 2.3GHz		8GB	128GB SSD
Apple	Macbook Air	Ultrabook	1	13.3 14	440×900		Intel Core i5 1.8GHz		8GB	128GB Flash Storage
HP	250 G6	Notebook	1	15.6 Fu	ıll HD 1920x1080		Intel Core i5 7200U 2	2.5GHz	8GB	256GB SSD
Apple	MacBook Pro	Ultrabook	1	L5.4 IP:	S Panel Retina Display 2	880×1800	Intel Core i7 2.7GHz		16GB	512GB SSD
Apple	MacBook Pro	Ultrabook	1	13.3 IP:	S Panel Retina Display 2	560×1600	Intel Core i5 3.1GHz		8GB	256GB SSD
Cpu <chr></chr>			Ram <chr></chr>	Memo <chr></chr>	ry	Gpu <chr></chr>		OpSys <chr></chr>	Weigh <chr></chr>	t Price_euros <dbl></dbl>
Intel Core	i5 2.3GHz		8GB	128GB	SSD	Intel Iris Plus Graphic	s 640	macOS	1.37kg	1339.69
Intel Core	i5 1.8GHz		8GB	128GB	Flash Storage	Intel HD Graphics 60	00	macOS	1.34kg	898.94
Intel Core	i5 7200U 2.5GH	Ηz	8GB	256GB	SSD	Intel HD Graphics 62	0	No OS	1.86kg	575.00
Intel Core	i7 2.7GHz		16GB	512GB	SSD	AMD Radeon Pro 455	i	macOS	1.83kg	2537.45
Intel Core	i5 3.1GHz		8GB	256GB	SSD	Intel Iris Plus Graphic	cs 650	macOS	1.37kg	1803.60

Clean Data

- Product and Type Name:
 - Dropped
- Screen Resolution:
 - Separated into screen resolution and touchscreen (0, 1)
- CPU and GPU:
 - Replaced numerically by CPU/GPU benchmarks
- Memory:
 - Separated into four categories (Flash, HDD, Hybrid, SSD)

- Company/Operational Systems:
 - o changed to 10/8 qualitative predictor variable
- Inches:
 - Change the size of screen (inches) to integer
- Weight:
 - Change Weight(char) variable into Weight_kg(dbl)
- Ram:
 - Keep only the size of ram with unit GB.

Inches	Pric	e_euro:	s Weight_k	g Ram_	GB To	uchscreer	Scre	en_resol	uti… Cp	u_Frequency_G	Cpu_	_score	Flash	HDD	Hybrid	SSD (Gpu_score	
<int></int>	>	<db1:< td=""><td>> <db1< td=""><td>> <db< td=""><td>1></td><td><dbl></dbl></td><td>></td><td></td><td><dbl></dbl></td><td><db1< td=""><td>></td><td><db1></db1></td><td><dbl></dbl></td><td><dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td><td></td></db1<></td></db<></td></db1<></td></db1:<>	> <db1< td=""><td>> <db< td=""><td>1></td><td><dbl></dbl></td><td>></td><td></td><td><dbl></dbl></td><td><db1< td=""><td>></td><td><db1></db1></td><td><dbl></dbl></td><td><dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td><td></td></db1<></td></db<></td></db1<>	> <db< td=""><td>1></td><td><dbl></dbl></td><td>></td><td></td><td><dbl></dbl></td><td><db1< td=""><td>></td><td><db1></db1></td><td><dbl></dbl></td><td><dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td><td></td></db1<></td></db<>	1>	<dbl></dbl>	>		<dbl></dbl>	<db1< td=""><td>></td><td><db1></db1></td><td><dbl></dbl></td><td><dbl></dbl></td><td><db1></db1></td><td><dbl></dbl></td><td><db1></db1></td><td></td></db1<>	>	<db1></db1>	<dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<db1></db1>	
13	3	<u>1</u> 340	. 1.3	7	8	0)	409	<u> 6</u> 000	2.	3	<u>5</u> 816.	0	0	0	128	2.1	
13	3	899	. 1.3	4	8	0)	129	<u> </u>	1.	8	<u>5</u> 816.	128	0	0	0	0.46	
15	5	575	1.8	6	8	6)	207	<u> 3</u> 600	2.	5	<u>5</u> 816.	0	0	0	256	0.65	
15	5	<u>2</u> 537	. 1.8	3	16	6)	518	<u>34</u> 000	2.	7	<u>5</u> 816.	0	0	0	512	6.05	
13	3	<u>1</u> 804	. 1.3	7	8	0)	409	<u> 6</u> 000	3.	1	<u>5</u> 816.	0	0	0	256	2.78	
Acer	Asus	Dell	Fujitsu	HP H	uawei	Lenovo	MSI	Toshiba	Android	Chrome OS`	Linux	`Mac	0S X`	mac0S	`No OS`	`Windo	ows 10`	
<dbl></dbl>	<db1></db1>	<db1></db1>	<dbl> <</dbl>	dbl>	<db1></db1>	<dbl> <</dbl>	:dbl>	<db1></db1>	<db1></db1>	<dbl></dbl>	<db1></db1>		<db1></db1>	<db1></db1>	<db1></db1>		<db1></db1>	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0		0	
0	0	0	0	0	0	0	0	0	0	0	0	ľ	0	1	0		0	
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1		0	
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0		0	

The Scatter Plot on Training Data

Transform Y to log(Y)

Model selection

Min_model: regress response variable on constant, no predictor variable

Full_model: regress response variable on all predictor variables

Use stepwise regression with forward and backward direction to find our final selected model, which contains:

Cpu_score, Ram_GB, Weight_kg, Cpu_Frequency_GHz, Windows 7, Screen_resolution_num, No OS, Acer, Toshiba, Touchscreen, Linux, Asus, macOS, Mac OS X, HP, Inches, SSD and Android.

After fitting test data, we find out that the predicted R-square improved from 0.7317687 to 0.7786004.

```
Residuals:
    Min
              10 Median
-0.97248 -0.18896 -0.01379 0.17560
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      5.744e+00 1.472e-01 39.026 < 2e-16 ***
Cpu_score
                      1.146e-04 5.146e-06 22.267 < 2e-16 ***
Ram GB
                      3.893e-02 2.433e-03 15.999 < 2e-16 ***
                     -1.042e-01 2.638e-02 -3.952 8.30e-05
Weight_kg
Cpu_Frequency_GHz
                      2.815e-01 2.099e-02 13.411 < 2e-
`Windows 7`
                      4.856e-01 5.006e-02
Screen resolution num 6.125e-08 7.937e-09
                                            7.716 2.87e-14
'No OS'
                     -2.702e-01 4.271e-02 -6.326 3.76e-10
                     -1.836e-01 3.585e-02 -5.121 3.63e-07 ***
Acer
Toshiba
                      2.812e-01 5.078e-02 5.537 3.93e-08 ***
Touchscreen
                      1.365e-01 3.083e-02
                     -1.655e-01 4.701e-02 -3.520 0.00045 ***
Linux
                     -6.896e-02 3.041e-02 -2.268 0.02354 *
Asus
mac0S
                      2.711e-01 8.780e-02 3.087 0.00207 **
'Mac OS X'
                                           2.273 0.02322 *
                      2.820e-01 1.240e-01
                      5.300e-02 2.427e-02
                                            2.184 0.02922 *
                     -2.740e-02 1.234e-02 -2.220 0.02665 *
Inches
SSD
                     -9.571e-05 4.800e-05 -1.994 0.04643 *
                     -3.984e-01 2.110e-01 -1.888 0.05926 .
Android
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2932 on 1010 degrees of freedom
                              Adjusted R-squared: 0.7761
Multiple R-squared: 0.78,
F-statistic: 199 on 18 and 1010 DF, p-value: < 2.2e-16
```

Model Diagnostic & Remedial measures - Multicollinearity

According to the graph, we don't have multicollinearity issue here.

Model Diagnostic & Remedial measures - Non Normality

From the above Q-Q plot, we fixed the non-normality by transforming Y to log(Y).

Model Diagnostic & Remedial measures - Non Constant Variance

From the above plot, we can see that full model's residuals variance is not constant, so we decide to use weighted least square model. We calculate weight by using absolute residuals versus selected predictors. The right hand side graph shows we have almost constant variance now. The predicted R square of the weighted model: 0.778793

Model Diagnostic & Remedial measures - Outliers

The Cook's Distance Bar Plot suggests that we have outliers in our data, so we use robust regression model to fix this problem. We use the same weight as the WLS model. The result shows the predicted R square is 0.7790693

Conclusion

Our final model formula:

Waight ka Dam

• Price_euros = exp{5.51+ 1.11e-04 * Cpu_score + 0.045 * Ram_GB - 0.155 * Weight_kg + 0. 253* Cpu_Frequency_GHz + 0.461 * Windows_7 + 6.35e-08 * Screen_resolution_num - 0.261 * No_OS - 0.182 * Acer + 0.295 * Toshiba + 0.118 * Touchscreen - 0.156 * Linux - 0.0715 * Asus + 0.265* macOS + 0.26 * Mac_OS_X + 0.033 * HP - 2.69e-03 * Inches - 4.055e-05 * SSD - 0.331 * Android}

Example

<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<pre><dbl></dbl></pre>	<dbl></dbl>	F
13	1803.6	1.37	8	0	4096000	3.1	5815.869	T
•	Y= exp(5	.502 + 1	.11e-0	4 * 5815.8	869 + 0.045 * 8 - 0).155* 1.37 + C).253*	1
	3.1 + 6.3	54e-08 ³	* 4096	000 + 0.26	65 *1 - 2.687e-03	* 13 - 4.055e-0	05 * 256)) L
	= 1918.8							A

Study Limitation:

• few data, dealing with outliers, variable selection...

Future Enhancement:

- Study on the coefficients that are not significant, include all/no categorical
- Try to get more data, filter out data to have less outliers, non linear model...

		Price_euros	
Predictors	Estimates	CI	p
(Intercept)	5.50	5.22 - 5.79	<0.001
Cpu_score	0.00	0.00 - 0.00	<0.001
Ram_GB	0.05	0.04 - 0.05	<0.001
Weight_kg	-0.15	-0.210.10	<0.001
Cpu_Frequency_GHz	0.25	0.22 - 0.29	<0.001
Windows_7	0.46	0.38 - 0.54	<0.001
Screen_resolution_num	0.00	0.00 - 0.00	<0.001
No_OS	-0.26	-0.320.20	<0.001
Acer	-0.18	-0.240.13	<0.001
Toshiba	0.30	0.22 - 0.37	<0.001
Touchscreen	0.12	0.05 - 0.19	0.001
Linux	-0.16	-0.21 – -0.10	<0.001
Asus	-0.07	-0.13 – -0.01	0.015
macOS	0.26	0.18 - 0.35	<0.001
Mac_OS_X	0.27	0.18 - 0.35	<0.001
HP	0.03	-0.02 - 0.08	0.197
Inches	-0.00	-0.03 - 0.02	0.828
SSD	-0.00	-0.00 - 0.00	0.295
Android	-0.33	-0.85 - 0.18	0.208
Observations	1029		

References

- https://www.kaggle.com/ionaskel/laptop-prices
- https://www.cpubenchmark.net/high_end_cpus.html
- https://www.cpubenchmark.net/low_end_cpus.html
- https://www.cpubenchmark.net/midlow_range_cpus.html
- https://www.cpubenchmark.net/mid_range_cpus.html
- https://gpu.userbenchmark.com/

