

Regresión Polinomial

Trabajo Práctico 1

26 de abril de 2019

Reconocimiento De Patrones

Integrante	LU	Correo electrónico
Ingaramo, Pablo	544/15	pablo2martin@hotmail.com
Cuba, Kennedy	503/15	kennedy.wrc@hotmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: $(++54\ +11)\ 4576\text{-}3300$ http://www.exactas.uba.ar

Índice general

1.	Introducción teórica						
	1.1.	Regresión polinomial	1				
		1.1.1. Definiciones	1				
		1.1.2. Objetivo	2				
	1.2.	Boston Housing Dataset	2				
2.	Desarrollo						
	2.1.	Regresión Polinomial	4				
	2.2.	Boston Housing Dataset	4				
3.		Experimentación					
	3.1.	variación de los grados de Polinomios	5				
	Conclusiones 1						
	4.1	Referencias 1	7				

Resumen

El objetivo de este trabajo práctico es ver como se puede utilizar la regresión polinomial para estimar un conjunto de datos mediante polinomios.

Para tener una forma de medir y comparar los resultados, se presentán funciones de error y se analiza como afecta al vector que los minimiza.

Luego se presentará una conocida set datos ("Boston Housing Dataset") y la forma de calcular la matriz de correlación, junto con un breve analizasis de la feature MEDV del set datos.

Introducción teórica

1.1. Regresión polinomial

Queremos predecir valores de la primera en función de valores observados de la segunda. El análisis de regresión consiste en ajustar un modelo a los datos, estimando coeficientes a partir de las observaciones, con el fin de predecir valores de la variable de respuesta a partir de una (regresión simple) o más variables (regresión multiple) predictivas o explicativas.

El análisis de regresión se puede usar para:

- identificar a las variables predictivas relacionadas con una variable de respuesta
- describir la forma de la relación entre estas variables y para derivar una función matemática óptima que modele esta relación
- predecir la variable de respuesta a partir de la(s) explicativas o predictoras

1.1.1. Definiciones

- M = grado del polinomio interpolante.
- N =cantidad de datos.
- $X_i = (x_i^0, ..., x_i^M).$
- $W = (w_0, ..., w_M).$
- $Y(X,W) = XW^T$.
- $E_D(W) = (1/2) \sum_{i=1}^{N} (Y(X_i, W) t_i)^2$

- $E(W) = (1/2) \sum_{i=1}^{N} (Y(X_i, W) t_i)^2 + (\lambda/2)||W||_2$
- $\bullet E_{RMS}(W) = \sqrt{2E(W)/N}.$
- $\bullet E_{DRMS}(W) = \sqrt{2E_D(W)/N}.$

Dado que la función E(W) es convexa en w, está posee un minimo y esté es único.

1.1.2. Objetivo

Buscar cual es el W que minimice los errores de $Y(X_i, W) - t_i$.

1.2. Boston Housing Dataset

The dataset contains a total of 506 cases.

Hay 14 atributos en cada caso del conjunto de datos.

- CRIM tasa de criminalidad per cápita por ciudad
- ZN proporción de tierra residencial dividida en zonas para lotes de más de 25,000 pies cuadrados.
- INDUS proporción de acres de negocios no comerciales por ciudad.
- CHAS Variable ficticia del río Charles (1 si el tramo limita con el río; 0 si no)
- NOX concentración de óxidos nítricos (partes por 10 millones)
- RM número medio de habitaciones por vivienda
- AGE proporción de unidades ocupadas por sus propietarios construidas antes de 1940
- DIS distancias ponderadas a cinco centros de empleo de Boston
- RAD índice de accesibilidad a carreteras radiales
- TAX tasa del impuesto sobre el valor total de la propiedad por cada 10,000
- PTRATIO número de alumnos por docente y por ciudad
- B 1000(Bk 0.63)² donde Bk es la proporción de negros por ciudad

- $\, \blacksquare \,$ LSTAT menor condición de la población
- MEDV Valor medio de las viviendas ocupadas por sus propietarios en miles de dólares.

Desarrollo

El desarrollado de este trabajo pretende hacer un análisis de como afecta la concideración de diferentes funciones de error al vector solución y la variación de la media y varianza muestrales de los errores.

2.1. Regresión Polinomial

Se implementan funciones de error.

Se realiza un analisis de el valor medio y la desviación standard muestrales para cada grado de polinomio considerado.

Graficamos la influencia del grado del polinomio sobre el E_{RMS}

2.2. Boston Housing Dataset

Lo que se busca es mostrar las relaciones entre las features de este set de datos. Para ellos graficaremos los scatter-plot de todos los features y la matriz de correlación.

Luego para aquellas features que presenten un coeficiente de correlación con la feature MEDV mayor a 0.5 en valor absoluto se ajustan con polinomios de grado 1, 2 y 3, se grafican los scatter-plot correspondientes y se calculan los E_{RMS} .

Experimentación

3.1. variación de los grados de Polinomios

Figura 3.1:

Figura 3.2:

Figura 3.3:

Figura 3.4:

Figura 3.5:

Figura 3.6:

Figura 3.7: Scatter-plots de Boston Housing Dataset

Figura 3.8: Matriz de correlación de Boston Housing Dataset

Figura 3.9: Estimación de la distribución de puntos entre MEDV y RM $\,$

Figura 3.10: Estimación de la distribución de puntos entre MEDV y PTRATIO

Figura 3.11: Estimación de la distribución de puntos entre MEDV y LSTAT

Figura 3.12: Media y Varianza al estimar la relación entre MEDV y RM

Figura 3.13: Media y Varianza al estimar la relación entre MEDV y PTRATIO

Figura 3.14: Media y Varianza al estimar la relación entre MEDV y LSTAT

Conclusiones

Luego de realizar todos los experimentos y haber entendido bien el funcionamiento, podemos realizar algunas conclusiones.

4.1. Referencias

1. Pattern Recognition and Machine Learning by C. Bishop, Springer 2006.