

Oscilador não-linear

Método de 'Shooting' e Transformadas de Fourier discretas

— Trabalho 2 — Física Computacional — Ema Fadiga (92944) —

27 de maio de 2020

Sumário:

Neste trabalho pretende-se:

- Estudar o comportamento de um oscilador não-linear, ajustando o valor de μ à volta de 1,5 a partir da aplicação do método de shooting para obter uma amplitude positiva de 1,3 (Neste caso é o B, o resultado pretendido);
- Calcular a densidade espetral da função obtida pela ode45 em função da frequência angular;
- Verificar se é um movimento harmónico simples;
- Calcular a aceleração a partir da transformada de Fourier da derivada e a partir do vetor obtido pela ode45.

Obtive um valor de $\mu \approx 1.879762200896950$ e Período = 6.516912963009408 segundos na parte A, onde o espaço de fases converge para uma trajetória fixa.

Na parte B pude verificar que não se trata de um movimento harmónico simples e que a partir do transformada de Fourier da derivada o gráfico da aceleração é o mesmo de quando se calcula a partir da ode45. Existiu concordância entre os resultados obtidos pelos métodos diferentes.

Introdução aos métodos utilizados:

Problemas de valores fronteira (BVP)- O valor da variável dependente e/ou das duas derivadas é conhecido em mais do que um valor da variável independente.

-Ode45 como já foi referido no trabalho anterior este método consiste resolução de equações diferenciais ordinárias (EDO) de 1ºa ordem, daí a necessidade de escrever a EDO de 2º ordem dada em duas de 1º ordem.

É um método adaptativo, ou seja, o algoritmo adapta-se à trajetória da solução que muda o passo (h ou dt) e alterna entre RK4 e RK5.

Requer os comandos:

options = odeset('Reltol',
$$3e - 14$$
,' Abstol', $[1e - 13 \ 1e - 13]$)

[t solution] = ode45(@function, $[0 \ t_f]$, $[y(1) \ v(1)]$, options, c)

'Reltol' (tolerância relativa, no Matlab o mínimo é 3e-14) e 'Abstol' (tolerância absoluta) determinam o passo em cada iteração. O erro estimado deve ser menor do que o maior dos valores calculados com base nas tolerâncias dadas.

—*Método de 'Shooting'- método da secante aplicado ao 'shooting'* utiliza-se na aplicação da solução encontrada de problemas de valores fronteira (BVP) à solução exata, dentro de uma determinada fronteira, a partir de EDO não-lineares.

- Arbitra-se as condições iniciais/parâmetros desconhecidos;
- Integra-se a equação numericamente;
- Verifica-se se o resultado se afasta/aproxima das condições fronteira desejadas;
- Volta a ajustar-se as condições/parâmetros iniciais para se aproximar da solução pretendida.

Mais genericamente o método da secante pode ser aplicado com as seguintes fórmulas:

Declive da secante:
$$m = \frac{result(i) - result(i-1)}{guess(i) - guess(i-1)}$$

Estimativa de guess(i + 1):

$$guess(i+1) = guess(i) + \frac{B - result(i)}{m}$$

Com:

- **guess**(i) sendo a estimativa do valor inicial/parâmetro desconhecido que se pretende determinar;
- result(i) o que provém de guess(i) para um valor fronteira;
- **B** é o valor pretendido para o **result**, é dado no problema.

Métodos e resultados:

PARTE A

Alínea a):

Foi dada a equação de movimento:

$$m\frac{d^2y}{dt^2} + K(y + \beta y^3) = \mu \left(1 - \left(\frac{dy}{dt}\right)^2\right) \frac{dy}{dt}$$

Mas os métodos apenas conseguem resolver EDO's de 2ª ordem por isso tem de se escrever num sistema de duas equações de 1ª, fazendo:

$$\begin{cases} v = \frac{dy}{dt} \\ f(t, y, v) = \frac{\sum F(t, y, v)}{m} \end{cases}$$

Do qual resulta:

$$\begin{cases} v = \frac{dy}{dt} \\ \frac{dv}{dt} = \frac{1}{m} (\mu[1 - v^2]v - K(y + \beta y^3)) \end{cases}$$

Alínea b):

Antes se implementar a ode45 no método de shooting pedido começou-se por se definir a função adaptada ao problema (funode) onde será invocar as constantes impostas ao cálculo μ , K, M, β e cria-se uma matriz 2x1 com γ na primeira linha e γ na segunda e definem se as EDO's encontradas na alínea a). Utilizam-se as constantes:

$$M = 1$$
; $K = 1$; $v(0)$; $v(0) = -1.5$; $\beta = 0.2$

E para os guesses de μ:

$$guess(1) = 1,4 e guess(2) = 1,6$$

O vetor tempo:

$$tf = 60$$
; $t = 0:0.05:tf$; $Nt = numel(t)$

Com uma tolerância de $tol=10^{-10}$ (diferença entre a amplitude máxima obtida ($\textit{Result_obt=result(end)}$) e a amplitude desejada (B)) obteve-se o valor de $\mu\approx 1.879762200896950$. Para conferir que μ está correto iremos resolver o sistema a começar na iteração 500 para estabilizar a solução das amplitudes na aplicação da função lagr, que faz uma interpolação que minimiza o erro na obtenção dos máximos. Obteve-se o vetor ymax com as amplitudes e fazendo a média deste obtemos o result que em cada iteração se irá aproximar de B=1,3 como esperado $(\textit{result(end)})\approx 1,29999999942298$). Aplicação do método da secante aplicado ao 'shooting' vem no último subciclo do qual também se obtém o μ .

Alínea c):

Para o período obteve-se Período = 6.516912963009408 segundos, começando também na iteração 500 e foi obtido pela média da diferença entre máximos consecutivos obtidos pela função lagr. O valor de período constante e o gráfico y(t) levam a considerar o resultado como periódico. No ciclo limite observa-se que o espaço de fases se mantém na mesma trajetória ao longo do tempo.

Estes gráficos são na zona onde a função já tinha convergido.

Alínea d):

A aplicação do método da secante aplicado ao método de shooting deve-se à necessidade de encontrar um valor de μ à volta de 1,5 para se encontrar uma amplitude positiva de 1,3 que é o resultado que se quer (\boldsymbol{B}). Para isso no ciclo que percorre as iterações de i até 50 e os valores de $\mu = guess(i)$, depois de calculada a média dos máximos result(i), (obtidos pela função lagr) irá encontrar se o declive m da secante e guess(i+1), que é a nova estimativa para μ . Se o resultado obtido para a média de cada amplitude em cada iteração for menor que o valor que se pretende para a amplitude positiva (\boldsymbol{B}) então irá guardar-se esse valor para μ .

Obteve-se a partir do método um $result(end) \approx 1,29999999942298$ que é bastante próximo de **B**.

PARTE B

Utilizam-se as constantes;

$$M = 1$$
; $K = 1$; $y(0)$; $v(0) = -1.5$; $\beta = 0.2$; $\mu = 1.879830725302758$

Alínea e):

Com

$$h = 0.1$$
; $Nt = 2 \times 10^{10}$; $t = 0$: h : $(Nt - 1) \times h$

Cria-se um vetor w centrado em 0:

$$dw = \frac{2\pi}{Nt \cdot dt}$$

e com

$$w = -\frac{Nt}{2} \times dw : dw : \left(\frac{Nt}{2} - 1\right) \times dw$$

Observando o gráfico obtido , poderia dizer-se que era um movimento harmónico simples apenas com isto já que apresenta dois picos simétricos que corresponderia a uma só frequência, e denotar que:

$$\cos(wt) = \frac{e^{iwt} + e^{-iwt}}{2} \quad e \quad \sin(wt) = \frac{e^{iwt} - e^{-iwt}}{2i}$$

Alínea f):

Nesta alínea pretende-se realizar o mesmo processo, mas com um $w \ e \ um \ dw$ com maior resolução. ara confirmar se o movimento é harmónico ou apenas a precisão em w não é suficientemente grande para corretamente descrever o movimento.

Para isto faz-se:

$$dw_2 = \frac{dw}{4}$$

Onde teremos:

$$w_2 = -\frac{Nt}{2} \times dw_2 : dw_2 : \left(\frac{Nt}{2} - 1\right) \times dw_2$$

E:

$$h_2 = \frac{2\pi}{Nt \times dw_2} e t_2 = 0: h_2: (Nt - 1) \times h_2$$

Aplica-se de novo a ode45 para se obter $y_2(t)$ e consequentemente a transformada de Fourier $Y_2(w)$. Obtemos o gráfico da densidade espetral :

Que tem uma forma bastante parecida à <u>alínea e</u>) com exceção dos valores das ordenadas.

Se se fizer uma aproximação do eixo dos w_2 podemos observar pequenos picos em $w_2 \approx \pm 2.9$:

Que usando os valores da *alínea e)* obtém-se:

Onde se pode verificar que existem muitos picos com uma densidade menor que 10 que não aparece nos outros gráficos. Assim, não se pode classificar este movimento como harmónico simples.

Alínea q):

Foi necessário utilizar a função *fft* do Matlab para fazer a transformada de Fourier de y(t) e onde se obtém Y(w)e depois utiliza-se a função *ffshift* do Matlab centra-se a transformada em w=0.

O cálculo da densidade espetral é feito a partir de:

$$DE = h \times |Y(w)|^2$$

Onde Y(w) é a transformada de Fourier da função contínua y(t) (que foi obtida da ode45), que para se obter a densidade espetral necessita de ser multiplicada pelo passo h já que o matlab não o faz.

Para a <u>alínea f</u>) para se remover as densidades maiores que 10 faz-se:

$$DE_{inf10} = DE(DE < 10) \ e \ w_{inf10} = w(DE < 10)$$

Limitando assim os valores que são utilizados para o cálculo da densidade espetral.

Alínea h):

Para o cálculo da aceleração a partir da ode45 que fornece y e v utilizamos a expressão:

$$\frac{dv}{dt} = \frac{1}{m} (\mu [1 - v^2] v - K(y + \beta y^3))$$

Onde a aceleração é $a=\frac{dv}{dt}$ e a partir dos valores iniciais pode ser obtida numericamente.

E apartir da transformada de Fourier da derivada como temos:

$$g(t) = f^{(n)}(t) \rightarrow G(w) = (iw)^n F(w)$$

Com G e F as transformadas de Fourier de g e f.

Neste caso para a aceleração basta multiplicar Y(w) por $(iw)^2$. Aqui foi necessário fazer **transpose** de w já que não permitia o cálculo.

Obtém-se o gráfico:

Podemos verificar que os gráficos se sobrepõem logo estão em concordância um com o outro.

Discussão e conclusão:

Os objetivos foram concluídos e os resultados obtidos foram bastante bons já que se pode observar que existe concordância entre os métodos já que:

- A partir de **options** fica garantido que o erro em cada iteração é menor que 10^{-13} ;
- A ode45 garante um erro acumulado de $O(h^4)$;
- Pode encontrar-se uma amplitude que difere em valores de ordem 10^{-10} do **B** que se pretendia;
- Pode calcular-se o período do movimento e o seu espaço de fases mantém-se na mesma trajetória;
- Verificou-se que não se trata de um movimento de um harmónico simples a partir das densidades espetrais (nomeadamente menores que 10);
- Obteve-se conformidade da aceleração obtida numericamente a partir da ode45 e a partir da transformada de Fourier da derivada que em média os seus valores apenas se afastam de 0.001153661218004 (excluindo as pontas).