Josef Doležal

Veta otázky BI-AG1

ZS 2016/17

zdroj a stok

Acyklický orientovaný graf

Acyklický orientovaný graf zdroj a stok

Acyklický orientovaný graf Uspořádaná dvojice (V, G), kde V je neprázdná množina vrcholů a E množina orientovaných hran taková, že neobsahuje cyklus.

Zdroj Vrchol, do kterého nevede žádná hrana.

Stok Vrchol, ze kterého nevede žádná hrana.

Věta o existenci zdroje v orientovaném

grafu

Věta o existenci zdroje v orientovaném grafu

Každý orientovaný graf, který neobsahuje cyklus, má alespoň jeden zdroj.

Věta o existenci zdroje v orientovaném

grafu

Věta o existenci zdroje v orientovaném grafu

Každý orientovaný graf, který neobsahuje cyklus, má alespoň jeden zdroj.

Algoritmus topologického uspořádání

orientovaného grafu

Algoritmus topologického uspořádání orientovaného grafu

- 1. Zařaď do fronty všechny vrcholy se vstupním stupněm 0.
- 2. (dokud není fronta prázdná) Vyber vrchol z počátku fronty
 - Vypiš vybraný vrchol
 - - Pro každého následníka zkontrontroluj, jestli po odstranění hrany má vstupní stupeň 0.
 - Pokud má stupeň 0, přidej ho do fronty.

Topologické uspořádání orientovaného

grafu

Topologické uspořádání orientovaného grafu

Topologické uspořádání orientovaného acyklického grafu G = (V, E) je takové pořadí vrcholů v_1, v_2, \ldots, v_n grafu G, že pro každou hranu $(v_i, v_j) \in E$ platí i < j.

Neorientovaný graf

Neorientovaný graf

Neorientovaný graf je uspořádaná dvojice (V, E), kde

- 1. V je množina vrcholů
- 2. E je množina hran

Hrana je dvouprvková podmnožina V.

Orientovaný graf

Orientovaný graf

Orientovaný graf G je uspořádaná dvojice (V, E), kde

- V je neprázdná konečná množina vrcholů
- E je množina orientovaných hran

Orientovaná hrana $(u, v) \in E$ je uspořádaná dvojice různých vrcholů $u, v \in V$.

Ríkáme, že u je předchůdce v a v je následník u.

Úplný graf K_n

Úplný graf K_n

Úplný graf na
$$n \ (n \ge 1)$$
 vrcholech K_n je graf $\left(v, {V \choose 2}\right)$, kde $|V| = n$.

Úplný bipartitní graf K_n

Úplný bipartitní graf K_n

Nechť $n \ge 1$ a $m \ge 1$. Úplný bipartitní graf $K_{n,m}$ s n vrcholy v jedné partitě a m vrcholy v druhé partitě je graf $(A \cup B, \{\{a,b\} | a \in A, b \in B\})$, kde $A \cap B = \emptyset, |A| = n$ a |B| = m.

Kružnice C_n

Kružnice C_n

Nechť $n \ge 1$. Kružnice délky n (s n vrcholy) je graf $(1, \ldots, n, i, i + 1 | i \in 1, \ldots, n - 1 \cup 1, n)$.

Cesta P_m

Cesta P_m

Nechť $m \geq 0$. Cesta délky m (s m hranami) je graf $(0, \ldots, m, i, i + 1 | i \in 0, \ldots, m - 1)$.

Doplněk grafu *G*

Doplněk grafu G

Doplněk
$$\overline{G}$$
 grafu $G = (V, E)$ je graf $(V, {V \choose E} \setminus E)$.

Izomorfismus grafů

Izomorfismus grafů

Nechť G a H jsou dva grafy. Funkce $f:V(G)\to V(H)$, která:

- je bijekcí,
- pro každou dvojici $u, v \in V(G)$ platí: $(u, v, \in) E(G) \Leftrightarrow f(u), f(v) \in E(H)$.

Automorfismus

Automorfismus

Automorfismus G je izomorfismus se sebou samý, tedy $f: V(G) \to V(G)$, která:

- je bijekcí,
- pro každou dvojici $u, v \in V(G)$ platí: $(u, v, \in) E(G) \Leftrightarrow f(u), f(v) \in E(G)$.

Stupeň vrcholu $deg_G(v)$

Stupeň vrcholu $deg_G(v)$

Počet hran grafu G obsahujících vrchol v.

Uzavřené okolí

Okolí stupně $N_G(v)$

Okolí stupně $N_G(v)$ Uzavřené okolí

Množina všech sousedů vrcholu v v grafu G. Množinu $N_G[v] = N_G(v) \cup \{v\}$ nazveme uzavřené okolí.

Regulární graf

Regulární graf

Graf G je r-regulární, pokud stupeň každého vrcholu je r.
Graf je regulární, pokud je r-regulární pro nějaké r.

Princip sudosti a jeho důsledek

Princip sudosti a jeho důsledek

Pro každý graf G = (V, E) platí

$$\sum_{v \in V} deg_G(v) = 2|E|$$

Z tohoto vztahu plyne, že počet vrcholů lichécho stupně je sudý.

Reprezentace grafu

Matice sousednosti

Reprezentace grafu Matice sousednosti

Čtvercová matice $A_G = (a_{ij})_{i,j}^n$ je definována předpisem:

$$\begin{cases} 1 & \{v_i, v_j\} \in E \\ 0 & \text{jinak} \end{cases}$$

Reprezentace grafu

Seznam sousedů

Reprezentace grafu Seznam sousedů

Pro každý vrchol v grafu G uchováváme seznam sousedů (např. spojový seznam). Paměťová složitost je |V| + 2|E|.

Indukovaný podgraf

Indukovaný podgraf

Graf H je indukovaný podgraf grafu G, když $V(H) \subseteq V(G)$ a $E(H) = E(G) \cap \binom{V(H)}{2}$. Podgraf se značí $H \leq G$.

Sled

Sled

Doplnit

Cesta v grafu

Cesta v grafu

Podgraf izomorfní nějaké cestě P. Délka cesty je počet hran. V ohodnoceném grafu je pak délka součtem ohodnocení jednotlivých hran.

Souvislá komponenta

Souvislá komponenta

Indukovaný podgraf H grafu G, který:

- je souvislý $(\forall u, v \in V : \exists P(u, v)),$
- vyvrací existenci souvislého podgrafu $F, F \neq H$ takového že $H \subseteq F$.

V inkluzi se jedná o maximální souvislý podgraf.

DFS

Prohledávání do hloubky

DFS Prohledávání do hloubky

Po výběru počátečního vrcholu p z V spuštěn rekurzivní algoritmus:

- Pokud je p otevřený vrať se (return).
- Označ p jako otevřený.
- \bullet Pro každého následníka spusť rekurzivně DFS algoritmus.
- Po projití všech následníků označ uzel jako uzavřený.

 P_m

Orientovaná cesta

Orientovaná cesta P_m

Nechť $m \geq 0$. Orientovaná cesta sm hranami P_m je graf $(\{0,\ldots,m\},\{(i,i+1)\,|i\in\{0,\ldots,m-1\}).$ (Oproti standardní cestě se jedná o množinu uspořádaných dvojic)

Orientovaná kružnice

Orientovaná kružnice C_n

Nechť $n \geq 2$. Orientovaná kružnice s n vrcholy je graf $(\{1,\ldots,n\},\{(i,i+1)|i\in\{1,\ldots,n-1\}\}\cup\{(n,1)\})$

Vstupní stupeň

 $deg_G^+(v)$

Vstupní stupeň $deg_G^+(v)$

Počet orientovaných hran hran orientovaného grafu G končících ve vrcholu v.

Výstupní stupeň

 $deg_G^+(v)$

Výstupní stupeň $deg_G^+(v)$

Počet orientovaných hran hran orientovaného grafu G vycházejících z vrcholu v.

Symetrizace

orientovaného grafu

Symetrizace orientovaného grafu

Neorientovaný graf sym(G) = (V', G') kde V' = V, a $u, v \in E'$ právě když $(u, v) \in E$ nebo $(v, u) \in E$.

Slabá souvislost

Slabá souvislost

Graf G = (V, E), jehož symetrizace sym(G) je souvislá.

Silná souvislost

Silná souvislost

Graf, kde pro každé vrcholy $u,v\in V$ existuje orientovaná cesta zu do v

a současně existuje orientovaná cesta z v do u (ne nutně ta samá).

Strom, les a list

Strom, les a list

Strom Graf G, který je souvislý a acyklický.

Les Graf G, který neobsahuje kružnice (nesouvislý, komponenty jsou stromy).

List Vrchol v jehož stupeň $deg_G(v) = 1$.

Tvrzení o existenci listů

Tvrzení o existenci listů

Každý strom T s alespoň 2 vrcholy obsahuje alespoň 2 listy. Lze dokázat pomocí hledání nejdelší cesty.

Věta o trhání listů

Věta o trhání listů

Je-li G = (V, E) graf na alespoň 2 vrcholech a $v \in V(G)$ je list. Pak:

- \bullet G je strom.
- G v je strom.

Vlastnosti stromů

Vlastnosti stromů

- \bullet G je strom.
- \bullet Pro každé dva vrcholy $u,v\in V$ existuje právě jedna cesta z u do v.
- ullet G je souvislý a vynecháním libovolné hrany vznikne nesouvislý graf.
- G je souvislý a platí |V| = |E| + 1.

Kostra grafu

Kostra grafu

Nechť G je souvislý.

Podgraf K grafu G nazveme kostrou G, pokud V(K) = V(G) a K je strom.

Vzdálenost dvou vrcholů d(u, v)

Vzdálenost dvou vrcholů d(u, v)

Délka nejkratší cesty v G spojující u a v. Pokud cesta neexistuje (jsou z jiných komponent), pak $d(u,v) = \infty$.

Prohledávání do šířky

BFS

Prohledávání do šířky BFS

DFS začíná výběrem počátečního vrcholu s a dej mu hodnotu 0, následně:

- Označ všechny vrcholy jako nenalezené.
- \bullet Přidej s do fronty.
- Dokud není fronta prázdná
 - Odeber vrchol fronty v a pro každého jeho následníka w:
 - Je-li w nenalezený, označ ho jako nalezený a jeho hodnotu nastav na hodnotu v+1, w přidej do fronty

Vlastnosti kostry BFS

Vlastnosti kostry BFS

Doplnit

Řadící algoritmy

BubbleSort

Řadící algoritmy BubbleSort

Funguje na principu probublávání velkých prvků.
Algoritmus vezme dva prvky a pokud jsou ve špatném pořadí, prohodí je. Následně se posouvá o prvek dál.
Ukončuje se ve chvíli, kdy v jednom běhu neproběhlo žádné prohození.

Složitost $O(n^2)$, stabilní, in-place, datově citlivý.

SelectSort

Řadící algoritmy

Řadící algoritmy SelectSort

Funguje na principu vyhledávání nejnižšího prvku. Vstup se rozdělí na seřazenou a neseřazenou posloupnost. V každém kroku se vybere minimum z neseřazené a vloží se na konec seřazené. Volné místo se vyplní sešoupnutím prvků. Složitost $O(n^2)$, nestabilní, in-place a datově necitlivý.

Řadící algoritmy

InsertSort

Řadící algoritmy InsertSort

Na principu řazení vkládáním. Vstup se rozdělí na seřazenou a neseřazenou posloupnost. V každém kroku se vezme první prvek neseřazené posloupnosti a vloží se na správné místo v seřazené.

Složitost $O(n^2)$ (v lepším případě O(n)), stabilní, in-place a datově citlivý.

TopSort

Třídící algoritmus

Třídící algoritmus TopSort

- Pro každou hranu (u, v), proveď D(u) + = 1. Všechny vrcholy v, které mají D(v) = 0 přidej do fronty.
- Dokud není fronta prázdná vezmi a vypiš vrchol v z čela fronty a pro každou hranu směřující z něho do w proveď D(w) = 1, pokud nyní D(w) = 0, zařaď ho do fronty.

Řadící algoritmy

Vlastnosti

Řadící algoritmy Vlastnosti

Pamětová náročnost Rozlišují se In-place a Out-of-place algoritmy.

Stabilita Stabilní, pokud správně seřazené prvky ze vstupu mají stejné pořadí i na výstupu.

Citlivost Určuje, jestli se mění časová složitost na základě vstupu.

předek, potomek, otec a syn

Zakořeněný strom

Zakořeněný strom předek, potomek, otec a syn

- **Zakořeněný strom** Uspořádaná dvojice (T, k), kde $k \in V(T)$ je jeden zvolený vrchol stromu T zvaný **kořen**.
- **Předek a potomek** Leží-li *u* na cestě z *v* do kořene, pak je *u* **předek** a *v* **potomek**.
- Otec a syn Pokud je navíc $\{u, v\} \in E(T)$ hrana, u je otec a syn.

Binární strom

Binární strom

Strom, který splňuje:

- je zakořeněný,
- každý vrchol má nejvýše dva syny,
- u synů rozlišujeme, který je pravý a který levý.

Binární minimová halda

Binární minimová halda

Struktura tvaru binárního stromu, splňující:

- Tvar haldy: Strom má všechny hladiny kromě poslední plně obsazené. Poslední hladina je zaplně zleva doprava.
- Haldové uspořádání: Je-li v vrchol a s jeho syn, pak platí k(v) < k(s).

binární haldy

Počet hladin

Počet hladin binární haldy

Binární halda s n prvky má $|\log n| + 1$ hladin.

Binární halda vložení prvku

Binární halda vložení prvku

Binární halda dovoluje vložit prvek na pozici listu. Tímto ale mohlo být porušeno haldové pravidlo. Je tedy potřeba prvek *probublat* na správné místo. Probulání probíhá provnáním s hodnotou v rodiči (pokud je v rodiči větší, prohodí se).

Složitost je $O(\log n)$.

Binární halda

odstranění minima

Binární halda odstranění minima

Odstranit minimum není triviálně možné. Lze ho ale prohodit s nepravějším listem, následně odstranit a list probublat dolů na správné místo. Složitost je $O(\log n)$.

Binární halda

reprezentace polem

Binární halda reprezentace polem

Pro reprezentaci haldy lze snadno využít pole. Pokud uzly označíme čísly $1, \ldots, n$, pak pro vrchol v s indexem i platí:

- pravý syn má index 2i + 1,
- levý syn má index 2i,
- otec má index $\lfloor \frac{i}{2} \rfloor$,
- ullet číslo $i \mod 2$ udává, zda-li v je pravý syn

algoritmus BuildHeap

Binární halda

Binární halda algoritmus BuildHeap

Haldu lze složit v čase O(n) zabubláním prvků, které nejsou listy.

Algoritmus vezme vrcholy $\lfloor \frac{n}{2} \rfloor, \ldots, 1$ a postupně na ně zavolá operaci BubbleDown.

Binární halda řazení HeapSort

Binární halda řazení HeapSort

Prvky x_1, \ldots, x_n vložíme do pole a zavoláme na něj BuildHeap.

Nyní opakovaně voláme HeapExtractMin a hodnoty ukládáme do výstupního pole. Složitost řazení je $O(n \log n)$.