Лабораторная работа №3

Вариант 2 (Королев, Сысоев, Яковлева)

Результат работы программы:

- (1) Объем выборки: 2023
- (2) Выборочное среднее: 4.004820069204156
- (3) Среднеквадратичное отклонение: 0.5664344483986975
 (4) 99%-доверительный интервал для мат. ожидания: (3.9723284449523395; 4.0373116934559725)
- Значение Хи-квадрат Пирсона: 11.618224268448541 => Гипотеза принята
- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 2)Выборочное среднее считалось по формуле:
- 3) Среднеквадратическое отклонение считалось, как квадратный корень из дисперсии случайной величины.
- 4) Доверительный интервал считался по формуле $\varepsilon=2.58\frac{S}{\sqrt{n}}$
- 5) Алгоритм был такой:
- а) Разбиваем отрезок на 12 частей

Отрезки: [2.3, 2.575, 2.85, 3.125, 3.4, 3.675, 3.95, 4.225, 4.5, 4.775, 5.05, 5.325, 5.6]

Количесво вхождений: [10, 35, 95, 165, 256, 371, 369, 312, 224, 118, 53, 15]

Отрезки	Вхождения	Вероятности
2.3 - 2.575	10	0.004
2.575 - 2.85	35	0.017
2.85 -		
3.125	95	0.046
3.125 - 3.4	165	0.081
3.4 - 3.675	256	0.126
3.675 - 3.95	371	0.183
3.95 - 4.225	369	0.182
4.225 - 4.5	312	0.154
4.5 - 4.775	224	0.110
4.775 - 5.05	118	0.058
5.05 - 5.325	53	0.026
5.325 - 5.6	15	0.007

Рассчитываем теоретические частоты n_i^0 по формуле

$$n_i^0 = \frac{nh}{S} \varphi(u_i)$$
, где $u_i = \frac{x_i - \overline{x}}{S}$, $h = 0.275$ – шаг между вариантами, $\varphi(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$.

Наблюдаемое значение критерия вычислим по формуле $\chi^2_{\text{набл}} = \sum_{i=1}^{13} \frac{(n_i - n_i^0)^2}{n^0} = 11,618$

г) По таблице критических значений $\chi^2_{\kappa p}$ при уровне значимости α = 0,05 и числе степеней свободы k = 9 найдем $\chi^2_{\kappa p}$ ≈ 15,5

Так как $\chi^2_{{\scriptscriptstyle H}a6\pi} < \chi^2_{{\scriptscriptstyle K}p}$, то нулевую гипотезу о нормальном распределении можно принять при данном уровне значимости.