X, 4: random variables

unconditionally independent

$$X \perp Y \iff p(x,y) = p(x)p(Y)$$

conditionally independent

$$X \perp Y \mid Z \rightleftharpoons p(X \mid Y \mid Z) = p(X \mid Z) \cdot p(Y \mid Z)$$

Naive Bayes Classifiers

$$P(x|y=c,\theta_c) = \prod_{j=1}^{D} P(xj|y=c,\theta_{jc})$$

$$x_1 \in \{0,1\}$$
 $x_2 \in \{0,1\}$
 $x_3 \in \{0,1\}$
 $x_4 = \{0,1\}$
 $x_5 = \{0,1\}$
 $x_6 = \{0,1\}$

EX:
$$x = [3, 0, 1, 2, 4, 3]$$

$$x_1 \in \{1,2,3\}$$
 $x_2 \in \{0,1\}$
 $x_3 \in \{-1,0,1\}$
 $x_4 \in \{0,1\}$
 $x_5 \in \{0,1\}$
 $x_6 \in \{0,1\}$
 $x_6 \in \{0,1\}$

$$= [1.2, -0.1, -0.03, 10.2, 1.1, -1.1]^T$$

For binary features

P(x|y=C,0) = TT Ber(xj/mjc)

Train	ing	Data	K	input	yi output		
	×i±	×i2 ×i.	3 Xi	4	'	•	a
i = 1	l	0	0	1	0	$M_{10} = \frac{2}{2} = 1$	$M11 = \frac{3}{3} =$
i = 2	(0	1	0	1	., 1/	4 1/2
i = 3	ŧ	Ţ	١	0	0	M20 = 1/2	/ ¹ / ₂₁ = ¹ / ₃
i= 4	l	l	1	1	1	M 30 = 1/2	$M_{31} = \frac{2}{3}$
î= 5	1	٥	1	O	1		_
						M40 = 1/2	$M_{41} = 2/3$

Using NBC for Prediction

		_		Qı	
	XiI	Xi2	×l3	yi_	Gruen this dataset and
i=1	1		l	_	Using Naive Bayes classifier,
i=2	*	0	0	l	how would x= [0,1,0] be
i = 3	1	1	0	0	classifiled?
i=4	O	I	t	0	Classifican.
	•			1	

Compose priors
$$p(y=0|D) = 3/5 \quad p(y=1|D) = 2/5$$

$$P(y=0|D)=3/5$$
 $P(y=c|D) \propto P(y=c|D)$
 $f(x_j|y=c_j)$

$$P(y=0|x,D) \propto \frac{3}{5} \cdot P(x_1=0|y=0,D) \cdot P(x_2=1|y=0,D) \cdot P(x_3=0|y=0,D)$$

$$=\frac{3}{5}\cdot\frac{1}{0}\cdot\frac{2}{0}\cdot\frac{1}{0}=\frac{2}{45}$$

$$P(y=1|x_1D) = \frac{2}{5} \cdot p(x_1=0|y=1,D) \cdot p(x_2=1|y=1,D) \cdot p(x_3=0|y=1,D)$$

$$= \frac{2}{5} \cdot \frac{1}{2} \cdot \frac{0}{2} \cdot \frac{2}{2} = \emptyset$$

NBC would assign x=[0,1,0] to class 0.

	X:11	Xi2	xi3	91
lel	0	0	1	0
i=2	1	O	0	O
i=3	Ö	1	0	O
i=4	Ō	1	0	1
i=5	1	٥	1	1

Given twis olarfaset and using Naive Bayes classifier, compute $p(y=0|x_1D)$ for $x = [0,1,1]^T$

$$p(y=0|D) = 3/5$$
 $p(y=1|D = 2/5)$
 $p(y=c|AD) \propto p(y=c|D)$. If $p(xj|y=c,D)$
 $j=1$

$$p(y=0|x_1D) \approx 3/5 \cdot p(x_1=0|y=0_1D) \cdot p(x_2=1|y=0_1D) \cdot p(x_3=1|y=0_1D)$$

$$= 3/5 \cdot \frac{2}{J} \cdot \frac{1}{J} \cdot \frac{1}{J} = \frac{2}{45}$$

$$p(y=1|x_1D) \propto \frac{2}{5} \cdot p(x_1=0|y=1,D) \cdot p(x_2=1|y=1,D) \cdot p(x_3=1|y=1,D)$$

$$= \frac{2}{5} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{20}$$

$$p(y=0|x_1D) \propto \frac{2}{45} = \frac{8}{180}$$
 $p(y=1|x_1D) = \frac{1}{20} = \frac{9}{180}$

$$p(y=0|x,D) + p(y=1|x,D) = 1$$

8/17

9/17