

Esercitazione III Sensori di spostamento e di forza

Misure Meccaniche e Termiche prof. Stefano Rossi

Sommario

1.	. Prir	na parte - potenziometro	2
2.	Pot	enziometro - Valutazione dell'effetto di carico	2
	2.1	Procedimento sperimentale	2
	2.2	Quesiti	3
3.	. Sec	onda parte – cella di carico	3
4.	. Tar	atura di una cella di carico con ingressi noti	3
	4.1	Procedimento sperimentale	5
	4.2	Quesiti	5

1. Prima parte - potenziometro

Il potenziometro è un sensore utilizzato per rilevare spostamenti. Dal punto di vista circuitale, il potenziometro è schematizzabile con un partitore di tensione resistivo variabile (Figura 1)

Figura 1 – Circuito ideale di un potenziometro

La curva di taratura di un potenziometro è caratterizzata da un fattore di non linearità, anche noto come *effetto di carico*. L'effetto di carico deriva dal dovere misurare una tensione a valle di un sensore con elevata impedenza in uscita. La minimizzazione dell'effetto di carico si ottiene quando lo strumento terminale possiede un'impedenza di almeno un ordine di grandezza superiore rispetto a quella del potenziometro. A tale scopo, si è soliti inserire un amplificatore operazionale in configurazione buffer interposto tra il potenziometro e lo strumento terminale.

Durante l'esercitazione verrà valutato l'effetto di carico effettuando le misure di spostamento su tre potenziometri utilizzando come strumento terminale un multimetro analogico. I tre potenziometri hanno resistenze nominali di $5~\mathrm{k}\Omega$, $100~\mathrm{k}\Omega$ e $500~\mathrm{k}\Omega$.

2. Potenziometro - Valutazione dell'effetto di carico

Per lo studio dell'effetto di carico sono necessari i seguenti strumenti:

- Potenziometro lineare con resistenza nominale di 5 k Ω ;
- Potenziometro lineare con resistenza nominale di 100 k Ω ;
- Potenziometro lineare con resistenza nominale di 500 k Ω :
- Scheda di prototipizzazione per i collegamenti;
- Alimentazione di 5 V;
- Calibro cinquantesimale;
- Multimetro analogico
- Multimetro digitale

2.1 Procedimento sperimentale

- Collegare i tre potenziometri sulla scheda di prototipizzazione;
- Collegare i due cavi necessari per l'alimentazione e alimentare il trasduttore a 5 V;
- Collegare i due cavi necessari per il prelievo del segnale;
- Imporre spostamenti lineari noti con l'utilizzo del calibro sul potenziometro da 100 k Ω e 500 k Ω seguendo i valori riportati nella tabella del primo quesito;
- Imporre spostamenti lineari noti con l'utilizzo del calibro sul potenziometro da 5 kΩ seguendo i valori riportati nella tabella del secondo quesito;
- Ad ogni spostamento leggere l'uscita sul multimetro analogico.

2.2 Quesiti

1. Completare la tabella sottostante con i valori acquisiti in sede di esercitazione per il potenziometro lineare da 500 k Ω sia con multimetro digitale che con multimetro analogico:

Spostamenti imposti [cm]	Output 500 ${ m k}\Omega$ [V]
1,0	
1,5	
2,0	
2,5	
3,0	
3,5	
3,8	
4,0	

2. Completare la tabella sottostante con i valori acquisiti in sede di esercitazione per il potenziometro lineare da $5 \text{ k}\Omega$ sia con multimetro digitale che con multimetro analogico:

Spostamenti imposti	Output 5 ${ m k}\Omega$
[cm]	[V]
1,8	
3,0	
4,0	
5,0	
6,0	
6,8	
8,0	
9,0	_
11,0	
11,8	

3. Per ognuno dei potenziometri, riportare il grafico della curva con i dati ottenuti con multimetro analogico:

$$\frac{E_0}{E_i} = f(\frac{R}{R_p})$$

dove E_0 è la tensione misurata, E_i è la tensione di alimentazione, R e la resistenza relativa al punto di misurazione e R_p è la resistenza del potenziometro. Commentare le tre curve.

- 4. Per ognuno dei potenziometri stimare il fattore di carico massimo dovuto all'utilizzo del multimetro analogico.
- 5. Considerando i dati acquisiti per il potenziometro a 500 k Ω misurati con multimetro digitale e con multimetro analogico stimare le resistenze degli strumenti terminali (R_s) considerando il fattore di carico massimo.
- 6. Note dal punto precedente le R_s , riportare le curve teoriche dell'effetto di carico in funzione di (R/R_p) .

3. Seconda parte – cella di carico

L'obiettivo è quello di effettuare la taratura statica di una cella di carico a flessione **con ingressi noti**. Al trasduttore da tarare viene fornito un ingresso noto attraverso utilizzo di masse campione.

3

4. Taratura di una cella di carico con ingressi noti

La strumentazione impiegata è la seguente:

Masse campione: sono gli ingressi noti dati al sistema. Ogni campione di massa viene tarato da un centro accreditato ACCREDIA che ne rilascia il rispettivo certificato di taratura. I campioni di massa sono catalogati in classi di precisione; a ogni classe è associato un limite di tolleranza definito come il massimo errore ammissibile rispetto la massa nominale (tabella I). Le masse utilizzate appartengono alla classe M1.

Tabella 1 - Classi di precisione secondo lo standard R111-1 dell'OIML.

VALORE NOMINALE		TOLLERANZA CLASSE E1 (mg)	TOLLERANZA CLASSE E2 (mg)	TOLLERANZA CLASSE F1 (mg)	TOLLERANZA CLASSE F2 (mg)	TOLLERANZA CLASSE M1 (mg)
1	mg 0.002		0.006	0.020	0.06	0.20
2	mg	0.002	0.006	0.020	0.06	0.20
5	mg	0.002	0.006	0.020	0.06	0.20
10	mg	0.002	0.008	0.025	0.08	0.25
20	mg	0.003	0.010	0.03	0.10	0.3
50	mg	0.004	0.012	0.04	0.12	0.4
100	mg	0.005	0.015	0.05	0.15	0.5
200	mg	0.006	0.020	0.06	0.20	0.6
500	mg	0.008	0.025	0.08	0.25	0.8
1	g	0.010	0.030	0.10	0.3	1.0
2	g	0.012	0.040	0.12	0.4	1.2
5	g	0.015	0.050	0.15	0.5	1.5
10	g	0.020	0.060	0.20	0.6	2.0
20	g	0.025	0.080	0.25	0.8	2.5
50	g	0.030	0.10	0.30	1.0	3.0
100	g	0.05	0.15	0.5	1.5	5
200	g	0.10	0.30	1.0	3.0	10
500	g	0.25	0.75	2.5	7.5	25
1	Kg	0.50	1.5	5	15	50
2	Kg	1.0	3.0	10	30	100
5	Kg	2.5	7.5	25	75	250
10	Kg	5	15	50	150	500
20	Kg	10	30	100	300	1000
50	Kg	25	75	250	750	2500

• Cella di carico di riferimento: viene utilizzata nella taratura per confronto, in modo da ricavare il valore dell'ingresso incognito. Il trasduttore di riferimento è una cella di carico a flessione, modello 1042 della Vishay Tedea-Huntleigh; Il sensore è strumentato con quattro estensimetri incollati sul trasduttore come illustrato in figura 1. In Tabella 2 è riportato il data-sheet della cella; il valore di FS di riferimento è 5 kg.

Figura 1 - Modello 1042, Vishay Tedea-Huntleigh.

Tabella 2 - Data-sheet del modello 1042, Vishay Tedea-Huntleigh.

PARAMETER	VALUE				UNITS
Rated capacity-R.C. (E _{max})	1, 3, 5, 7, 10, 15, 20, 30, 50, 75, 100, 150, 250***			kg	
NTEP/OIML Accuracy class	NTEP	Non-Approved	C3*	C6**	
Maximum no. of intervals (n)	5000 single	1000	3000	6000*****	
$Y = E_{max}/V_{min}$	10000	1400	6000	10000	Maximum available 20000
Rated output-R.O.	2.0 0.2				mV/V
Rated output tolerance					±mV/V
Zero balance		0.2	2		±mV/V
Zero Return, 30 min.	0.0330	0.0300	0.0170	0.0083	±% of applied load
Total Error (per OIML R60)	0.0200	0.0500	0.0200	0.0100	±% of rated output
Temperature effect on zero	0.0023	0.0100	0.0023	0.0014	±% of rated output/°C
Temperature effect on output	0.001	0.0030	0.0010	0.00058	±% of applied load/°C
Eccentric loading error	0.0049	0.0074	0.0049	0.0024	±% of rated load/cm
Temperature range, compensated	-10 to +40				°C
Temperature range, safe	-20 to +70			°C	
Maximum safe central overload	150				% of R.C.
Ultimate central overload	300				% of R.C.
Excitation, recommended		10			Vdc or Vac rms
Excitation, maximum	tt impedance 415±20 put impedance 350±3 altalion resistance >2000 le length 1*** le type 6wire, PVC, single floating screen struction Plated (anodize) aluminum			Vdc or Vac rms	
Input impedance				Ohms	
Output impedance					Ohms
Insulation resistance				Mega-Ohms	
Cable length				m	
Cable type				Standard	
Construction					
Environmental protection					
Platform size (max)	400 x 400			mm	
Recommended torque	Up to 30kg: 7.0 35kg & above: 10.0				N*m

- <u>Amplificatore</u>: necessaria per alimentare l'uscita del ponte di Wheatstone, bilanciarlo e regolare il guadagno dell'amplificatore. Il valore del guadagno è 200. L'incertezza estesa relativa al guadagno è 0,2 (k=2).
- <u>Alimentatore</u>: serve per fornire l'alimentazione necessaria per il funzionamento dell'amplificatore e del ponte. L'alimentazione è posta a 10,0 V.
- Oscilloscopio: lo strumento terminale è collegato alla centralina estensimetrica per misurare le tensioni amplificate. Si consideri trascurabile l'incertezza dell'oscilloscopio.

4.1 Procedimento sperimentale

- 1. Collegare l'intera catena di misura;
- 2. Collegare la cella di carico all'amplificatore;
- 3. Alimentare la cella di carico:
- 4. Regolare la visione a schermo sull'oscilloscopio;
- 5. **Taratura con ingressi noti**: Imporre in successione le seguenti masse campione: 1, 2, 3 e 5 kg riportando il valore dell'output della cella da tarare.

4.2 Quesiti

- a. Riportare in tabella i dati acquisiti sperimentalmente.
- b. Calcolare la curva di taratura della cella di carico tramite retta di regressione.
- c. Verificare la linearità della curva ottenuta.
- d. Calcolare l'incertezza relativa ad ogni massa campione utilizzata con riferimento alla tabella 1.
- e. Calcolare l'incertezza combinata standard e l'incertezza estesa associata alla procedura di taratura.
- f. Calcolare la sensibilità nominale della cella di carico tarata, considerando la presenza dell'amplificatore.
- g. Calcolare l'incertezza combinata standard e l'incertezza estesa relativa alla sensibilità nominale, trascurando l'incertezza sul valore della sensibilità operativa.