

Algoritmica grafurilor III. Drumuri în grafuri

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Martie, 14, 2018

Mihai Suciu (UBB) Algoritmica grafurilor Martie, 14, 2018 1 / 44

Continut

- Sortare topologica
- Componente tare conexe
- Orum de lungime minima
 - Sursa unica
 - Bellman-Ford
 - Grafuri orientate aciclice
 - Dijkstra
 - versiuni Floyd-Warshal

Sortare topologica

- folosind algoritmul DFS se poate sorta topologic un graf orientat fără circuite
- realizează o aranjare liniară a vârfurilor unui graf în funcție de arcele grafului

Sortare topologică

fie un graf orientat aciclic G=(V,E), sortarea topologică reprezintă ordonarea vârfurilor astfel încât dacă G contine arcul $\{u,v\}$ atunci u apare înaintea lui v în înșiruire.

• multe aplicații folosesc grafuri orientate fără circuite pentru a indica precedenta între evenimente

Sortare topologica (II)

- un set de acțiuni ce trebuie îndeplinite într-o anumită ordine
- unele sarcini trebuie executate înaninte ca alte acțiuni să înceapă
- în ce ordine trebuie executate sarcinile?
- problema poate fi rezolvată reprezentând sarcinile ca vârfuri într-un graf
- un arc $\{u,v\}$ indică precedență între activități, activitatea u înaintea activității v
- sortând topologic graful se arată ordinea efectuării acțiunilor

Sortare topologica (III)

sortare_topologică(G)

- 1: apel DFS(G) pentru a determina timpii $v.f, v \in V$
- 2: sortare descrescătoare în funcție de timpul de finalizare (când fiecare vârf e terminat e inserat într-o listă înlănțuită)
- 3: return lista înlăntuită de vârfuri
 - un graf se poate sorta topologic în timpul $\Theta(V+E)$
 - DFS durează $\Theta(V + E)$
 - ullet pentru a insera un vârf $v\in V$ în listă e nevoie de O(1) timp

Sortare topologica (IV)

Să ne amintim

pentru un graf G=(V,E), fie $\{u,v\}\in E$ în funcție de timp tipul arcelor pentru DFS:

tip arc	d	f
t (tree)	u.d < v.d	u.f > v.f
b (back)	u.d > v.d	u.f < v.f
f (forward)	u.d < v.d	u.f < v.f
c (cross)	u.d > v.d	u.f < v.f

- u.d marchează timpul când a fost descoperit vârful v
- u.f marchează timpul când a fost explorat vârful v

Sortare topologică (V)

Lema 3.1

un graf orientat G este aciclic dacă și numai dacă DFS aplicat pe el nu găsește arce pentru care u.d > v.d și u.f < v.f.

Teorema 3.1

procedura sortara_topologică(G) produce o sortare topologică a unui graf orientat aciclic primit ca și parametru.

Componente tare conexe

componente_tare_conexe(G)

- 1: apel DFS(G) pentru a determina timpii $v.f, v \in V$
- 2: determină G^T
- 3: apel DFS(G^T) dar în bucla principala a DFS nodurile sunt sortate descrescător după v.f
- 4: fiecare arbore din pădurea găsită de DFS în pasul 3 este o componentă tare conexă
 - pentru $G = (V, E), G^T = (V, E^T)$ unde $E^T = \{\{u, v\} : \{v, u\} \in E\}$
 - pentru reprezentarea sub formă de listă de adiacență, pentru a determină G^T e nevoie de O(V+E) timp
 - fie G reprezentat ca listă de adiacență, pentru procedura componente_tare_conexe(G) complexitatea în timp este
 Θ(V + E)

Componente tare conexe (II)

Lema 3.2

fie C și C' două componente tare conexe din graful G=(V,E). $u,v\in C$, $u',v'\in C'$ și G conține un drum $u\leadsto u'$. Atunci G nu poate avea un drum $v'\leadsto v$.

• graful format din componente tare conexe este un graf orientat aciclic

Componente tare conexe (III)

- fie $U \subseteq V$, putem defini $d(U) = min_{u \in U}\{u.d\}$ și $f(U) = max_{u \in U}\{u.f\}$
 - ullet d(U) reprezintă timpul pentru primul vârf descoperit de DFS din U
 - f(U) reprezintă timpul pentru ultimul vârf prelucrat de DFS din U

Lema 3.3

fie C și C' două componente tare conexe distincte din graful orientat G=(V,E). Dacă există un arc $\{u,v\}\in E$, unde $u\in C$ și $v\in C'$ atunci f(C)>f(C').

Corolar 3.1

fie C și C' două componente tare conexe distincte din graful orientat G = (V, E). Dacă există un arc $\{u, v\} \in E^T$, unde $u \in C$ și $v \in C'$ atunci f(C) < f(C').

Componente tare conexe (IV)

Teorema 3.2

procedura **componente_tare_conexe(G)** găsește corect componentele tare conexe din graful orientat G.

Probleme de drum de lungime minimă

- o problema de drum minim de la un nod sursă s este mapată pe un graf orientat G=(V,E) ponderat, funcția $w:E\to\mathbb{R}$ mapează arcele la ponderi
- ponderea w(p) a drumului $p = \{v_1, v_2, ..., v_k\}$ este suma ponderilor arcelor ce compun drumul

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

• se poate defini drumul cu pondere minimă $\delta(u, v)$ pentru un drum de la u la v:

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \leadsto v\} & \text{dacă există un drum de la } u \text{ la } v, \\ \infty & \text{în rest.} \end{cases}$$

Mihai Suciu (UBB) Algoritmica grafurilor Martie, 14, 2018 12 / 44

Probleme de drum de lungime minimă (II)

- un drum de lungime minimă de la vârful u la vârful v se definește ca un drum p cu ponderea $w(p) = \delta(u, v)$
- un drum minim nu poate conține un circuit cu pondere negativă
- un drum minim nu poate conține un circuit
- reprezentarea unui drum de lungime minimă
 - pentru fiecare vârf $v \in V$ se menține predecesorul lui în drum, $v.\pi$

Exemplu

Currency	£	Euro	¥	Franc	\$	Gold
UK Pound	1.0000	0.6853	0.005290	0.4569	0.6368	208.100
Euro	1.4599	1.0000	0.007721	0.6677	0.9303	304.028
Japanese Yen	189.050	129.520	1.0000	85.4694	120.400	39346.7
Swiss Franc	2.1904	1.4978	0.011574	1.0000	1.3941	455.200
US Dollar	1.5714	1.0752	0.008309	0.7182	1.0000	327.250
Gold (oz.)	0.004816	0.003295	0.0000255	0.002201	0.003065	1.0000

Exemplu (II)

Exemplu (III)

Algoritmul Bellman-Ford

 algoritmul Bellman-Ford rezolvă problema drumului minim de la un nod sursă s pentru cazul general când avem și ponderi negative

Bellman_Ford(G)

```
1: INITIALIZARE_S(G,s)

2: for i = 1 la |V| - 1 do

3: for fiecare arc \{u, v\} \in E do

4: RELAX(u, v, w)

5: for fiecare arc \{u, v\} \in E do

6: if v.d > u.d + w(u, v) then

7: return FALSE

8: return TRUE
```

Bellman-Ford (II)

INITIALIZARE_S(G,s)

- 1: for $v \in V$ do
- 2: $v.d = \infty$
- 3: $v.\pi = NIL$
- 4: s.d = 0

RELAX(u, v, w)

- 1: **if** v.d > u.d + w(u, v) **then**
- 2: v.d = u.d + w(u, v)
- 3: $v.\pi = u$
 - Exemplu click

Bellman-Ford (III)

- algoritmul rulează în O(VE) timp
- ullet pasul de inițializare (linia 1) durează $\Theta(V)$
- parcurgerea din liniile 2-4 durează $\Theta(E)$
- bucla for din liniile 5-7 durează O(E)

Bellman-Ford - rescris altfel

Ford(G) $I(v_1) := 0$ 2. $I(v_i) := \infty$, pentru i = 2, 3, ..., n. 3. i := 14. while $i \leq n$ do 5. i := 16. while $j \leq n$ do 7. if $l(v_i) - l(v_i) > \mathcal{W}(v_i, v_i)$ then 8. $I(v_i) := I(v_i) + \mathcal{W}(v_i, v_i)$ 9. $p(v_i) := v_i$ 10. if i < i then 11. i := i - 112. i := n13. i := i + 114. i := i + 1

Mihai Suciu (UBB)

return 1, p

15.

Bellman-Ford (IV)

Lema 3.4

fie G=(V,E) un graf ponderat orientat cu nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$, presupunem că G nu conține circuite de pondere negativă accesibile din vârful s. După |V|-1 iterații ale buclei for din liniile 2-4 a procedurii $Bellman_Ford(G)$ avem $v.d=\delta(s,v)$ pentru toate vârfurile v accesibile din s.

Corolar 3.2

fie G=(V,E) un graf ponderat orientat cu nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$. Pentru fiecare vârf $v\in V$ există un drum de la s la v dacă și numai dacă procedura $Bellman_Ford(G)$ se termină cu $v.d<\infty$.

Bellman-Ford (V)

Teorema 3.2 (corectitudine Bellman-Ford)

fie procedura $Bellman_Ford(G)$ care este rulată pe un graf orientat și ponderat G=(V,E) din nodul sursă s și funcția de pondere $w:E\to\mathbb{R}$. Dacă G nu conține circuite de pondere negativă accesibile din s algoritmul va întoarce TRUE, $v.d=\delta(s,v)\forall v\in V$ iar graful predecesorilor G_π este un arbore minim cu rădăcina în s. Dacă G conține un circuit de pondere negativă accesibil din s, algoritmul întoarce FALSE.

Grafuri orientate aciclice

drum_minim_dag(G)

- 1: sortate_topologica(G)
- 2: INITIALIZARE_S(G,s)
- 3: for fiecare vârf v sortat topologic do
- 4: **for** $v \in G.Adj[u]$ **do**
- 5: RELAX(u,v,w)
 - timp de rulare
 - sortate topologică: $\Theta(V+E)$
 - INITIALIZARE_S: Θ(V)
 - bucla for (liniile 4-5) relaxează fiecae arc o singură dată
 - timpul total de rulare $\Theta(V+E)$

Grafuri orientate aciclice (II)

Teorema 3.3 (corectitudine drum_minim_dag(G))

dacă un graf orientat, ponderat și aciclic G=(V,E) are ca și sursă vârful s, la terminarea procedurii $drum_minim_dag(G)$ $v.d=\delta(s,v)\forall v\in V$ iar graful predecesorilor G_{π} este un arbore minim.

Dijkstra

- algoritmul lui Dijkstra rezolvă problema drumului minim pentru un graf orientat ponderat G = (V, E) în care $w(u, v) \ge 0, \{u, v\} \in E$
- algoritmul mentine un set S de vârfuri pentru care drumul minim de la sursa s a fost determinat
- în implementarea prezentata se foloseste o coadă cu priorităti pentru vârfuri, cheia fiind v.d

Algoritmul Dijkstra

Dijkstra_queue(G)

```
1: INITIALIZARE_S(G,s)
2: S = \emptyset
```

3:
$$Q = V$$

4: while
$$Q \neq \emptyset$$
 do

5:
$$u = EXTRACT_MIN(Q)$$

6:
$$S = S \cup \{u\}$$

7: **for**
$$v \in G.Adj[u]$$
 do

Dijkstra rescris altfel


```
DIJKSTRA(G, u)
      P := \{u\}, T := V \setminus P, I(u) := 0
      for fiecare v \in V. v \neq u do
            I(v) := \infty
    x := u
5.
     while T \neq \emptyset do
6.
            for fiecare v \in N(x) \cap T do
                 if I(v) > I(x) + \mathcal{W}(x, v) then
7.
                    I(v) := I(x) + \mathcal{W}(x, v)
8.
9.
                    p(v) := x
            fie x \in T: I(x) = \min_{y \in T} I(y)
10.
            P := P \cup \{x\}, T := T \setminus \{x\}
11.
12.
      return 1, p
```

Algoritmica grafurilor

27 / 44

Exemplu

Exemplu (II)

Vertex (v)	1	2	3	4	5	6
Label (v)	0	∞	∞	∞	∞	∞
Status (v)	P	T	T	T	T	T
Predecessor (v)	_	_	_	_	_	_
Vertex (v)	1	2	3	4	5	6
Vertex (v) Label (v)	1 0	2 18	3 ∞	4 15	5 ∞	6 ∞
3 6	1 0 P	2 18 T	3 ∞ T	4 15 T	5 ∞ T	-

Exemplu (III)

3 .						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	∞	15	∞	∞
Status (v)	P	T	T	P	T	T
Predecessor (v)	-	1	-	1	-	-
4						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	29	15	22	∞
Status (v)	P	T	T	P	T	T
Predecessor (v)	-	1	4	1	4	-
5 I						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	29	15	22	∞
Status (v)	P	P	T	P	T	T
Predecessor (v)	-	1	4	1	4	-

Exemplu (IV)

6 ,						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	∞
Status (v)	P	P	T	P	T	T
Predecessor (v)	-	1	2	1	4	-
7 %						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	∞
Status (v)	P	P	T	P	P	T
Predecessor (v)	-	1	2	1	4	
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	58
Status (v)	P	P	T	\boldsymbol{P}	\boldsymbol{P}	T
Predecessor (v)	-	1	2	1	4	5

Exemplu (V)

9						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	58
Status (v)	P	P	P	P	P	T
Predecessor (v)	-	1	2	1	4	5
10						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	55
Status (v)	P	P	P	P	P	T
Predecessor (v)	_	1	2	1	4	3
11						
Vertex (v)	1	2	3	4	5	6
Label (v)	0	18	27	15	22	55
Status (v)	P	P	P	P	P	P
Predecessor (v)	-	1	2	1	4	3

Dijkstra (II)

Teorema 3.4 (corectitudine Dijkstra)

fie procedura Dijkstra_queue(G) rulată pe un graf orientat, ponderat G = (V, E) ce nu conține ponderi negative și s vârful sursă. La terminare $u.d = \delta(s, u) \forall u \in V.$

Dijkstra - analiză

Cât de rapid este algoritmul Dijkstra_queue?

- menține o coadă cu priorități Q prin apelul operațiilor: INSERT (implicit în linia 3), EXTRACT_MIN (linia 5) și DECREASE_KEY (implicit în RELAX, linia 8)
- algoritmul apelează INSERT și EXTRACT_MIN pentru fiecare vârf
- fiecare vârf este adăugat în setul S o singură data, fiecare arc din Adj[u] este examinat o singură dată pe liniile 7-8
- numărul total de arce din lista de adiacență este |E|, bucla for iterează de |E| ori (liniile 7-8), algoritmul apelează DECREASE_KEY de cel mult |E| ori
- timpul total de rulare depinde de implementarea cozii cu priorități

Dijkstra - analiză (II)

- dacă vârfurile sunt numerotate de la 1 la |V|
 - v.d e stocat pe poziția v
 - fiecare operație INSERT și DECREASE_KEY necesită O(1) timp iar operația EXTRACT_MIN necesită O(V) timp
 - pentru un timp total $O(V^2 + E) = O(V^2)$
- dacă graful este suficient de rar, coada se poate implementa ca și binary min-heap
 - fiecare operație EXTRACT_MIN durează O(lg V), există |V| astfel de operații
 - timpul necesar construirii binary min-heap este O(V)
 - fiecare operație DECREASE_KEY necesită $O(\lg V)$ timp, există |E| astfel de operații
 - timpul total de rulare este $O((V+E) \lg V)$, dacă toate vârfurile sunt accesibile din sursă timpul este $O(E \lg V)$

Dijkstra - analiză (III)

• se poate obține un timp de rulare $O(V \lg V + E)$ dacă coada cu priorități este implementată cu un heap Fibonacci

Floyd-Warhsall

37 / 44

```
\begin{split} \text{FLOYDWARSHALL}(D_0) \\ D &:= D_0 \\ \text{for } k := 1 \text{ to } n \text{ do} \\ \text{for } i := 1 \text{ to } n \text{ do} \\ \text{for } j := 1 \text{ to n do} \\ \text{if } d_{ij} &:= d_{ik} + d_{kj} \text{ then} \\ d_{ij} &:= d_{ik} + d_{kj} \\ p_{ij} &:= p_{kj} \\ \text{return } D, p \end{split}
```

Floyd-Warshall pentru a determina nr de drumuri

```
FW(A, n)
```

```
1. W \leftarrow A
```

- 2. for $k \leftarrow 1$ to n
- 3. **for** $i \leftarrow 1$ **to** n
- 4. **for** $j \leftarrow 1$ n
- 5. $\mathbf{do} \ w_{ij} \leftarrow w_{ij} + w_{ik}w_{kj}$
- 6. **return** *W*

Exemplu

Exemplu (II)

Rezultat FW:

Floyd-Warshal-latin


```
Floyd–Warshall–Latin(\mathcal{A}, n)

1. \mathcal{W} \leftarrow \mathcal{A}

2. for k \leftarrow 1 to n

3. for i \leftarrow 1 to n

4. for j \leftarrow 1 to n

5. if W_{ik} \neq \emptyset and W_{kj} \neq \emptyset

6. W_{ij} \leftarrow W_{ij} \cup W_{ik} \cdot 'W_{kj}

7. return \mathcal{W}
```

Exemplu

Exemplu (II)

