Coeficiente de correlação linear de Person Regressão Linear Simples Coeficiente de determinação simples

Correlação e Regressão

Prof.: Wagner Pinheiro

wagner2235@gmail.com

Sumário

- Coeficiente de correlação linear de Person
 - Teste de hipótese para correlação linear
- 2 Regressão Linear Simples
 - Modelo Estatístico
- 3 Coeficiente de determinação simples

Introdução

A correlação refere-se à relação ou associação entre duas variáveis, para o caso simples.

Na análise de correlação, procura-se determinar o grau de associação linear entre duas variáveis aleatórias.

Diagrama ou gráfico de Dispersão

Cálculo populacional do coeficiente de correlação

É uma medida da relação linear entre duas vaiáveis. Para duas variáveis populacionais X e Y, o coeficiente de correlação populacional (ρ) é definido por:

$$\rho_{XY} = \frac{COV(X, Y)}{\sqrt{V(X) \ V(Y)}}$$

Cálculo amostral do coeficiente de correlação

Para uma amostra de n pares de valores (x_i, y_i) , com i = 1, 2, 3, ..., n. Pode-se obter a correlação amostral de Pearson r_{xy} a partir da expressão:

$$r_{xy} = \frac{c\hat{o}v(x,y)}{\sqrt{\hat{V}(x)\ \hat{V}(y)}}$$

$$-1 \le r_{xy} \le 1$$

$$r_{xy} = \frac{\hat{\operatorname{cov}}(x,y)}{\sqrt{\hat{V}(x) \hat{V}(y)}}$$

$$\hat{\operatorname{cov}}(x,y) = \sum_{i} xy - \frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n} = SPD_{xy}$$

$$\hat{V}(x) = \sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} x_{i}\right)^{2}}{n} = SQD_{x}$$

$$\hat{V}(y) = \sum_{i} y_{i}^{2} - \frac{\left(\sum_{i} y_{i}\right)^{2}}{n} = SQD_{y}$$

$$r_{xy} = \frac{\hat{\text{cov}}(x, y)}{\sqrt{\hat{V}(x) \hat{V}(y)}}$$

$$r_{xy} = \frac{\sum_{i} xy - \frac{\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n}}{\sqrt{\sum_{i} x_{i}^{2} - \frac{\left(\sum_{i} x_{i}\right)^{2}}{n} \sum_{i} y_{i}^{2} - \frac{\left(\sum_{i} y_{i}\right)^{2}}{n}}}$$

$$r_{xy} = \frac{SPD_{xy}}{\sqrt{SQD_{x} SQD_{y}}}$$

Escala de correlação linear entre variáveis

Importante

Importante

- Se não observada a correlação linear entre o par X e Y, não significa que não há relação e sim que pode haver outro tipo de relação não linear.
- Qual quer que seja a correlação observada, não significa causalidade.

Tipos de relações

Estatística do teste

Testes de significância ou hipótese com respeito aos vários valores de ρ requerem o conhecimento das distribuições amostrais de r. Para $\rho=0$ esta distribuição é simétrica, e a estatística envolvendo a distribuição t de Student, com n-2 graus de liberdade, pode ser utilizada e sua formulação é dada por

$$t = r\sqrt{\frac{n-2}{1-r^2}}$$

As hipóteses testadas são:

$$H_0: \rho = 0$$
 versus $H_a: \rho \neq 0$

X	Υ
4	1
4 8	5
3 9	2
9	14
7	3
5	11

Introdução

A regressão é o método para a estimação de valores de uma variável (variável de resultado/consequência ou dependente) com base nos valores de uma outra ou mais variáveis independentes ou prognósticas.

Obter o modelo de regressão é o processo no qual são utilizados dados amostrais para determinar uma equação e deste modo representar a relação observada entre as variáveis em estudo.

Introdução

Dado n pares de valores de duas variáveis aleatórias x_i e x_i , com $i=1,2,3,\ldots,n$, admitindo que Y é função de X pode-se estabelecer uma regressão linear simples, cujo modelo estatístico é dado por:

$$Y_i = \beta_0 + \beta_1 X_i + e_i$$

Onde β_0 e β_1 são parâmetros do modelo e e_i os erros aleatórios.

Pressuposições

- A relação entre X e Y é linear;
- Os valores de X são fixos;
- 3 A média dos erros é nula, ou seja, a $E(e_i)$;
- **1** Para um valor de X, a variância do erro é sempre σ^2 , isto é, $V(e_i) = \sigma^2$. Diz-se então que o erro é homocedástico ou que há hocedasticidade (do erro ou da variável independente), de forma que:

$$E(e_i^2) = \sigma^2$$
 ou $E[Y_i - E(Y_i|X_i)]^2 = \sigma^2$

- **5** O erro de uma observação é independente do erro de outra observação, isto é, $E(e_i e_i) = 0 \ \forall i \neq j$;
- 6 Os erros tem distribuição normal.

Estimativa dos parâmetro do modelo

O primeiro passo na análise de regressão é obter as estimativas de β_0 e β_1 . O método usual de é o do **Mínimos Quadrados** (MMQ), esse método consiste em adotar como estimativa dos parâmetros os valore que minimizam a soma de quadrados dos erros.

Estimativa dos parâmetro do modelo

$$\begin{cases} \sum\limits_{i} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}) = 0 \\ \sum\limits_{i} X_{i}(Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i}) = 0 \end{cases} \implies \begin{cases} \text{Sistema de Equações} \\ n\hat{\beta}_{0} + \hat{\beta}_{1}\sum\limits_{i} X_{i} = \sum\limits_{i} Y_{i} \\ \hat{\beta}_{0}\sum\limits_{i} X_{i} + \hat{\beta}_{1}\sum\limits_{i} X_{i}^{2} = \sum\limits_{i} X_{i}Y_{i} \end{cases}$$

Estimativas dos parâmetros

$$\begin{split} \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} \\ \hat{\beta}_1 &= \frac{\sum_i x_i y_i - \frac{\left(\sum_i x_i\right) \left(\sum_i y_i\right)}{n}}{\sum_i x_i^2 - \frac{\left(\sum_i x_i\right)^2}{n}} = \frac{SPD_{xy}}{SQD_x} \end{split}$$

Coeficiente de determinação simples R^2

O coeficiente de determinação simples, denotado por R^2 ou r^2 e expresso em porcentagem, é dado por:

$$R^{2} = \frac{\widehat{\beta}_{1} \sum_{i=1}^{n} (x_{i} - \bar{x}) Y_{i}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}},$$

Forma simplificada

$$R^2 = (r_{xy})^2 \times 100$$

O R^2 indica a proporção de variação de Y em função de X e quanto é a variação total que está sendo explicada pela regressão (modelo).

Considere que o superior imediato de uma fábrica de pregos, está interessado em elevar a produção da fábrica sem alterar a mão-de-obra, o maquinário e a quantidade de matéria prima utilizados na produção de pregos. Para tanto, ele elege o engenheiro de produção como responsável para alcançar níveis elevados na produção de pregos. Como sugestão o superior imediato menciona ao engenheiro que estudos passados indicaram que a temperatura da máquina está relacionada com o desemprenho na produção de pregos. O engenheiro coletou um conjunto de dados (Tabela) da temperatura da máquina e a quantidade produzida de pregos.

Temperatura	Produção de pregos
(°C)	(t)
40	10
70	16
100	20
120	24
170	30

Pede-se:

- a) Definir as variável dependente (Y) e independente (X).
- b) Obter o grau de relação entre as variáveis X e Y.
- c) Obter a equação ajustada.
- d) Obtenha o coeficiente de determinação simples.
- e) Determine a estimativa de Y para uma temperatura de 130
 °C.

Importante

