Biological and gene therapy

Attila Megyeri 16.11.2018

Biopharmaceuticals, gene therapy (basic concepts)

- proteins
 - "engineered" proteins
 - antibodies
- nucleic acids
- cells / tissues

not produced by chemical synth.!

- biological therapy
 - in vitro production \rightarrow in vivo use
- gene therapy
 - reprogramming of living somatic cells
 - in vivo or ex vivo

Biopharmaceuticals

(Biological products)

- large complex molecules
 - proteins
 - "engineered"/recombinant proteins
 - e.g. antibodies, protein hormones
 - vaccines
 - blood, blood components
 - allergenics
 - nucleic acids
 - antisense oligonucleotides
 - siRNA
 - gene therapy
- cells, tissues
 - somatic

Biopharmaceuticals

(Biological products)

- How they are produced?
 - isolation/biotechnology = cellular production
 - mixtures
 - chemical structure is not exactly defined
 - susceptible to microbial contamination
 - this is in contrast with chemical synthesis
 - purified
 - chemical structure is well known
 - no microbial contamination

Proteins

- e.g. insulin / growth hormone
 - originally
 - source: animal / human
 - problems: low yield / immune response / infections
 - currently
 - source: transfected expression system
 - advantage: good yield
 - problems: endotoxin / glycosylation / cost

Proteins

- exact copies of proteins (1st gen)
- modified proteins (2nd gen)
 - improved pharmacokinetics
 - pegylation / insulin
 - fusion proteins novel function
 - etanercept / immunotoxins
 - reduced immunogenicity (humanization)
- proteins designed from scratch (3rd gen)
 - future

Examples of biologics

- hormones
 - insulin
 - growth hormone
 - pegvisomant
 - GH receptor antagonist to treat acromegaly
 - polyethylene glycol (PEG) derivative of a mutant GH
- growth factors / cytokines
 - erythropoietin
 - granulocyte colony stimulating factor (G-CSF, filgrastim)
 - interferons (IF- α , IF- β , IF- γ)
 - interleukins (e.g. IL-2)
- antibodies

Insulin preparations

- rapid acting
 - lispro B28 Pro ↔ B29 Lys
 - aspart B28 Pro → Asp
 - glulisine B3 Asn → Lys + B29 Lys → Glu
- long-acting
 - detemir terminal Thr ↔ myristic acid
 - glargine add 2 Arg to B carboxy + A21 Asn → Gly
 - degludec similar to detemir (Thr ↔ hexadecanedioic acid)

Pegvisomant

- PEG derivative of a mutant GH
- used/effective in acromegaly
- increases circulating GH conc.

Antibodies

- polyclonal antibodies
- monoclonal antibodies hybridoma
 - murine
 - chimeric
 - humanized
 - human

Mouse Antibody Human Antibody Framework Framework **Antigen-binding** regions regions site **CDRs** Complementarity **Determining Regions** CH $\mathbf{C}_{\mathbf{H}}$ zumab

zumab

Humanized Antibody

Human framework regions

Advantages of humanization of antibodies

- half-life is longer
- reduced immunogenicity
- more effective activation of human effector mechanisms
 - ADCC (Antibody Dependent Cellular Cytotoxicity)
 - complement activation

Immunotoxin

- brentuximab vedotin (target: CD30)
 - anti-CD30 chimeric IgG1 + MMAE
 - binding → internalization → release of MMAE → blockade of tubulin polymerisation
 - indication (but only after failure of other therapies)
 - anaplastic large cell lymphoma
 - Hodgkin's disease
 - risk of progressive multifocal leukoencephalopathy (PML)

Biologic therapy for hyperlipidemia

PCSK9 inhibitors

(proprotein convertase subtilisin/kexin type 9)

PCSK9 protease \rightarrow binds to LDL rec. \rightarrow \uparrow degradation \rightarrow \uparrow LDL

Expensive – 14100 USD/year (2015)

"On October 26, 2018 Amgen announced a 60% cut in price (5850 USD/year)"

Biologic therapy for hyperlipidemia PCSK9 inhibitors

(proprotein convertase subtilisin/kexin type 9)

- PCSK9
 - protease → binds to LDL rec. → ↑ degradation → ↑ LDL
- alirocumab / evolocumab
 - fully human monoclonal antibodies against PCSK9
- SC. biweekly → up to 70% LDL ↓ + triglycerides, apo B-100 and Lp(a) ↓
- adjunctive to diet and maximally tolerated statin and/or ezetimibe
- indications
 - familial hypercholesterolemia
 - est. atherosclerotic cardiovascular disease requiring additional LDL lowering
- adverse effects
 - inj. site reactions
 - ↑ infection risk (upper resp. / urinary)
 - hypersensitivity (rare)
 - neurocognitive effects ?
 - no ↑ risk of myopathy

Drug development

- manufacturing
 - quality assurance
 - aseptic technology
- preclinical / clinical development
 - biosimilarity (not generic)
 - higher sensitivity to changes in manufacturing processes
 - safety
 - high specificity see TGN1412

Biosimilars

Biosimilars: More Treatment Options Are on the Way

- Zarxio: First US FDA approved biosimilar
 - 06.03.2015 (but EU approval: 06.02.2009)
- Neupogen (filgrastim) → Zarxio

Biological therapy # targeted therapy

- anticancer molecularly targeted therapy
 - non-biologicals
 - tyrosine kinase inhibitors
 - e.g. imatinib, dasatinib, nilotinib (BCR-ABL kinase, CML)
 - epidermal growth factor receptor inhibitors
 - e.g. lapatinib (HER2+ breast cancer)
 - e.g. erlotinib (metastatic non–small cell lung cancer)
 - biologicals
 - epidermal growth factor receptor inhibitors
 - e.g. trastuzumab (HER2+ breast cancer)
 - e.g. cetuximab (EGFR+ metastatic colorectal cancer)
- DMARDs
 - non-biologicals
 - e.g. methotrexate, hydroxychloroquine, leflunomide
 - biologicals
 - e.g. infliximab, adalimumab, etanercept

Gene therapy

- genetic modification of somatic cells
 - transfer of recombinant nucleic acid into target cells
 - in vivo ↔ ex vivo
- goals
 - prevent
 - alleviate
 - cure
- potential use
 - cure of monogenic diseases
 - · e.g. cystic fibrosis, haemoglobinopathies
 - ameliorate diseases with or without a genetic background
 - · e.g. malignant, neurodegenerative
- major problems / considerations
 - delivery (capacity-efficiency-selectivity) (i.e. PK)
 - safety
 - clinical efficacy
 - long term predictability (persistence)

Requirements of gene delivery systems

- capacity of the system
 - how much DNA it can carry
- transfection efficiency
 - ability to enter and become utilized by cells
- lifetime of the transfected material
 - determined by the lifetime of the targeted cells
- safety
 - especially in the case of viral delivery systems

Gene delivery

- in vivo
 - vector is injected into the patient
 - iv. (targeting) or directly into the target tissue
- ex vivo
 - remove cells from the patient
 - treat them with the vector
 - inject the genetically altered cells back

ideal vector: safe, efficient, selective, results in persistent expression

Gene delivery

- viral vectors (modified 'replication defective')
 - retroviruses
 - incorporated randomly into host DNA
 - only infect dividing cells
 - persistence (if into stem cells)
 - little specificity (ex vivo use)

adenovirus

- high transgene expression
- not inserted into the host genome > do not replicate > only temporary effect
- low dose inefficient while high dose elicit immune response

other viruses

adeno associated virus / herpesvirus / disabled HIV

Gene delivery

- non-viral vectors
 - liposomes
 - positively charged lipids ('lipoplexes')
 - improved delivery into the cell nucleus
 - much less efficient than viruses
 - microspheres
 - made from polyanhydride co-polymers of fumaric and sebacic acids
 - loaded with plasmid DNA
 - possibility of oral gene therapy
 - plasmid DNA
 - much less efficient / cannot be targeted
 - no risk of viral replication and is not usually immunogenic

Gene expression control

- control the activity of gene
 - e.g. hemoglobinopathies appropriate balance of normal α and β -globin chain synthesis
- inducible expression system
 - e.g. doxycycline-inducible promoter

Safety

- general
 - related to the nature of vectors
- specific
 - e.g. polycythaemia from overexpression of erythropoietin
- viral vectors
 - acquire virulence
 - immunogenic viral proteins
 - elicit inflammatory response
 - damage host genome and interfere with the cell cycle > provoke malignancy

Example for problem of persistence

cystic fibrosis

- autosomal recessive
- airway epithelium malfunction
- missing membrane Cl⁻ transporter
 - cystic fibrosis transport regulator (CFTR)
- continuous replacement of epithelial cells
 - periodic need for treatment
 - unless the gene is inserted into progenitor/stem cells

Gene therapy in Parkinson's disease

- three completed Phase 1 trials in the US
 - vector: adeno associated virus type 2
 - genes
 - glutamic acid decarboxylase GABA synthesis ↑ into subthalamic nucleus
 - aromatic acid decarboxylase (AADC) levodopa → dopamine ↑ in putamen
 - neurturin neurotrophic factor, may ↑ survival of dopaminergic neurons
 - results: safe and possibly effective
 - Phase 2 trials are under way

Suicide gene therapy for GvHD

- background
 - in high-risk hematological diseases
 - allo-SCT from HLA-matched donor is potentially curative
 - antileukemic efficacy is determined by
 - conditioning regimen + alloreactivity
- problem
 - alloreactivity → graft-versus-host-disease (GvHD)
- solution
 - suicide gene → donor T cells ex vivo
 - thymidine kinase gene / caspase-9
 - later posttreatment to eliminate T cells
 - ganciclovir / AP1903 (dimerizing drug)
- result
 - promise for control GvHD

