Test Tema 3 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2022

Apellidos:	Nombre:	
------------	---------	--

Profesor: \Box Jorge Civera \boxtimes Carlos Martínez

Cuestiones (0.3 puntos, 10 minutos, con apuntes)

- C El número de vectores propios de una matriz es igual a su:
 - A) Número de filas
 - B) Número de columnas
 - C) Rango
 - D) Ninguna de las anteriores
- Al proyectar mediante PCA a k dimensiones, ¿cómo podemos calcular la varianza en los datos preservada por dicha proyección?
 - A) Como el sumatorio de los valores propios $\lambda \geq \lambda_k$
 - B) Como el productorio de los valores propios $\lambda \geq \lambda_k$
 - C) Como el productorio de los valores propios $\lambda < \lambda_k$
 - D) Como el sumatorio de los valores propios $\lambda < \lambda_k$
- D Sean los vectores propios calculados por PCA $\mathbf{w}_1 = (1,0,0,0)^t$, $\mathbf{w}_2 = (0,\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},0)^t$ y $\mathbf{w}_3 = (0,0,0,1)^t$, con valores propios asociados $\lambda_1 = 7$, $\lambda_2 = 1$, $\lambda_3 = 2$. ¿Cuál sería el resultado de proyectar $\mathbf{x} = (3,0,2,1)^t$ si se quisiera conservar el 75 % de la varianza en la proyección?

A)
$$x' = 3$$

$$\stackrel{\frown}{\mathrm{B}} \mathbf{x'} = (3, 1, \sqrt{2})^t$$

C)
$$\mathbf{x}' = (3, \sqrt{2})^t$$

D)
$$\mathbf{x'} = (3,1)^t$$

Test Tema 3 de Percepción

ETSINF, Universitat Politècnica de València, Marzo de 2022

Apellidos:	Nombre:	
------------	---------	--

Profesor: \boxtimes Jorge Civera \square Carlos Martínez

Cuestiones (0.3 puntos, 10 minutos, con apuntes)

- \square Los vectores propios de una matriz $A \in \mathbb{R}^{D \times D}$:
 - A) Se asocian siempre a D valores propios de A
 - B) Pueden calcularse analíticamente para cualquier D
 - C) Incluyen al vector nulo
 - D) Son infinitos
- $\boxed{\mathbb{B}}$ Al proyectar mediante PCA a k dimensiones, ¿cómo podemos calcular el error de reconstrucción de dicha proyección?
 - A) Como el productorio de los valores propios $\lambda < \lambda_k$
 - B) Como el sumatorio de los valores propios $\lambda < \lambda_k$
 - C) Como el sumatorio de los valores propios $\lambda \geq \lambda_k$
 - D) Como el productorio de los valores propios $\lambda \geq \lambda_k$
- © Sean los vectores propios calculados por PCA $\mathbf{w}_1 = (1, 0, 0, 0)^t$, $\mathbf{w}_2 = (0, 1, 0, 0)^t$, $\mathbf{w}_3 = (0, 0, 1, 0)^t$ y $\mathbf{w}_4 = (0, 0, 0, 1)^t$, con valores propios asociados $\lambda_1 = 2$, $\lambda_2 = 5$, $\lambda_3 = 4$ y $\lambda_4 = 3$. ¿Cuál sería el resultado de proyectar $\mathbf{x} = (1, 2, 3, 4)^t$ a \mathbb{R}^2 ?
 - A) $\mathbf{x'} = (1,4)^t$
 - B) $\mathbf{x'} = (3, 2)^t$
 - C) $\mathbf{x}' = (2,3)^t$
 - D) $\mathbf{x'} = (4,1)^t$