

Tutorial on QuantumFlow+VACSEN: A Visualization System for Quantum Neural Networks on Noisy Quantum Devices

Session 3: Quantum Neural Network Compression

Zhepeng Wang

Ph.D. Student

Electrical and Computer Engineering

George Mason University zwang48@gmu.edu https://jqub.ece.gmu.edu

How to Compress a Quantum Neural Network?

Quantum Neural Network Compression

https://arxiv.org/pdf/2207.01578.pdf

Zhirui Hu, Zhepeng Wang (Presenter), Dr. Weiwen Jiang

Department of Electrical and Computer Engineering

JQub @ George Mason University

Motivation and Background

Pruning and Quantization in Classical ML

Pruning and Quantization in Quantum ML

- **Pruning:** Not only 0 can be pruned, but also 2π , 4π , etc.
- Quantization: Different quantization level may have different cost

Motivation and Background

Quantum Neural Network Compression Should be Compilation Aware

Table 1: circuit depth of compiled quantum gates on IBM quantum processors; parameters are in the range of $[0, 4\pi]$

Gate	0	π	2π	3π	4π	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	others
RX	0	1	0	1	0	1	3	1	3	5
RY	0	2	0	2	0	3	3	3	3	4
CRX	0	8	5	9	0	11	11	11	11	11
CRY	0	8	6	8	0	10	10	10	10	10
						·		·	·	

General Overview

Three stages: 1. Preparation; 2. Compression; 3. Deployment

- LUT Construction and Training a Quantum Model
- Reconstruct LUT for ADMM
- Compression based on ADMM
- Deployment

LUT Construction and Training a Quantum Model

- LUT Construction and Training a Quantum Model
 - □ Compression-Level Lookup Table (LUT)

A combination of pruning/quantization level called as "compression level".

Table 1: circuit depth of compiled quantum gates on IBM quantum processors; parameters are in the range of $[0, 4\pi]$

Gate	0	π	2π	3π	4π	$\pi/2$	$3\pi/2$	$5\pi/2$	$7\pi/2$	others
RX	0	1	0	1	0	1	3	1	3	5
RY	0	2	0	2	0	3	3	3	3	4
CRX	0	8	5	9	0	11	11	11	11	11
CRY	0	8	6	8	0	10	10	10	10	10

□ VQC Pre-Training

A VQC model is pre-trained for compression and the training process is implemented with **Torch Quantum**.

Hands-On Tutorial (1): LUT Construction

Input

- Fixing points list
- Logical Gates List to be used
- Quantum Backend

Do

- Get the compiler for the backend
- Get the compiled circuit length of each logical gate at each special fixing points

Output

Get the compiler for the backend

```
fixing_points rx ry rz crx cry crz

12.57 0 0 0 0 0 0 0
6.28 0 0 0 5 6 4
3.14 1 2 1 8 8 4
9.42 1 2 1 9 8 4
1.57 1 3 1 11 10 4
7.85 1 3 1 11 10 4
11.00 3 3 1 11 10 4
4.71 3 3 1 11 10 4
0.52 5 4 1 11 10 4
```

- LUT Construction and Training a Quantum Model
- Reconstruct LUT for ADMM
- Compression based on ADMM
- Deployment

Problem Definition

Given VQC $W(\theta)$, LUT T, quantum compiler C, the problem is to determine trainable parameters θ , such that:

Reconstruction LUT for ADMM

Process is conducted by traversing all quantum gates in VQC and select the compression target with highest metric.

A heuristic metric for the choice

$$\mathcal{M}(\boldsymbol{\theta}, G_i(\gamma_{i,k})) = acc(W(\boldsymbol{\theta}^{i,k})) \cdot \tau(\boldsymbol{\theta}^{i,k}, \boldsymbol{\theta})$$

$$\tau(\theta^{i,k}, \theta) = \frac{TCD(\theta)}{TCD(\theta^{i,k})}$$

 $acc(W(\theta^{i, k}))$: the accuracy of the VQC under new parameters

 $TCD(\theta)$: the inverse of the compression ratio by changing parameters from θ to $\theta^{i, k}$

Stage 1: Preparation

Stage 2: Compression

Hands-On Tutorial (2): Reconstruct LUT for ADMM

Input

- trained model
- Original LUT
- The metrics function of accuracy and length

For each parameter, Do

- Replace it with points at compression level in original LUT while fixing other parameters
- Calculate the metrics of each new model
- Select the point with the highest metric as the compression level for ADMM

Output

A new LUT for ADMM

```
#input
model = torch.load('model.pth')
lut = pd.read_csv('lut.csv')
def metrics_func(acc, depth):
    return acc+1.0/depth
backend = FakeValencia()
```

```
#api
new_lut = LUT_reconstrution(model, lut, backend, metrics_func)
```

- LUT Construction and Training a Quantum Model
- Reconstruct LUT for ADMM
- Compression based on ADMM
- Deployment

Compression based on ADMM

Each parameter can either be compressed to the target value in T^{admm} or not compressed.

Compression based on ADMM

Given reconstructed compression-level LUT *Tadmm*, the CQCP is formulated as:

$$\begin{aligned} & \min_{\{\theta_i\}} \quad f(W(\theta)) + TCD(Z) + \sum_{\forall z_i \in Z} c_i(Z_i), \\ & s.t. & \forall \theta_i \in \theta, \quad \theta_i = T^{admm}(G_i). \end{aligned}$$

Z: a set of auxiliary variables for subproblem decomposition and $z_i \in Z$ is corresponding to $\theta_i \in \theta$ $f(W(\theta)) + TCD(Z)$: the objective function in the original CQCP problem(previously seen).

$$c_i(Z_i) = \begin{cases} 0 & \text{if } \theta_i \in T^{s,r}(G_i), T^{s,r} = T^{admm} \odot mask^r \\ +\infty & \text{if otherwise.} \end{cases}$$

 $c_i(Z_i)$: An indicator function to serve as a penalty term $mask^r$: variable to indicate whether the parameters will be compressed at iteration r.

Hands-On Tutorial (3): Compression based on ADMM

Input

- A trained model
- A new LUT for ADMM

Do

- Compress a model with ADMM
- Fine-tune the compressed model

Output

A compressed model

	Circuit Length	Accuracy
Original model	51	94.2%
Compressed	35	97.10%

- LUT Construction and Training a Quantum Model
- Reconstruct LUT for ADMM
- Compression based on ADMM
- Deployment

Deployment

General Overview

Three stages: 1. Preparation; 2. Compression; 3. Deployment

Hands-On Tutorial (1) LUT Construction

Hands-On Tutorial (2) Reconstruct LUT for ADMM

Hands-On Tutorial (3) Compression based on ADMM

Experimental Results

Simulation Results on ML Dataset

CompVQC can maintain high accuracy with <1% accuracy loss. And the reduction of circuit length is up to 2.5X.

Table 2: Comparison among different methods on the accuracy performance and the TCD of the VQC

Compression	MNIST	7-2	Fashion-MNIST-2		
Method	Acc.	TCD	Acc.	TCD	
Method	(vs. Baseline)	(Speedup)	(vs. Baseline)	(Speedup)	
Vanilla VQC	82.74%(0)	121(0)	87.58%(0)	92(0)	
Zero-Only-Pruning	80.58%(-2.16%)	70(1.73×)	86.92%(-0.67%)	63(1.46×)	
CompVQC-Pruning	81.83%(-0.91%)	74(1.64 ×)	87.41%(-0.17%)	47(1.96×)	
CompVQC-Quant	80.99%(-1.75%)	108(1.10×)	86.25%(-1.33%)	74(1.24×)	
CompVQC	81.83%(-0.91%)	47(2.57×)	87.58%(-0.00%)	47(1.96×)	

Figure 5: Main results: The Accuracy-Circuit Depth Tradeoff on Fashion-MNIST2

Figure 6: Main Results: CompVQC Scalability on Fashion-MNIST with 2-4 class

Experimental Results

Results on Multiple IBM Quantum Computers

CompVQC can reduce circuit length by 2x while the accuracy is also higher in a noisy environment.

Dat	tasets	Syn-Dat	aset-4	Syn-Dataset-16		
Compress	ion Method	Acc.	TCD	Acc.	TCD	
Compress	ion Method	(vs. Baseline)	(Speedup)	(vs. Baseline)	(Speedup)	
Qiskit Aer	Vanilla VQC	94%(0)	23(0)	96%(0)	51(0)	
QISKII ACI	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)	
IBM Q	Vanilla VQC	79%(-15%)	23(1.00×)	86%(-10%)	51(1.00×)	
IDIVI Q	Comp-VQC	99%(5%)	11(2.09×)	98%(2%)	23(2.22×)	

Acc.(vs. Baseline)	ibm_lagos	ibm_perth	ibm_jakarta
Vanilla VQC(TCD=23)	79%(0)	86%(0)	92%(0)
CompVQC(TCD=11)	99%(20%)	98%(12%)	100%(8%)

Circuit compression can make the QNN model more robust to the noise

API: QuantumFlow import qfnn

OUTION Package Index

API: QuantumFlow Neural Network (qfnn)

Documentation and Project repo

https://jqub.ece.gmu.edu/categories/QF/qfnn/index.html

https://github.com/jqub/qfnn

QF-hNet: U-LYR

Sub module of qfnn.qf_circ

- **Given:** (1) Number of input neural $2^{\mathcal{N}}$; (2) number of output neuron \mathcal{M} ; (3) input \mathcal{I} ; (4) weights \mathcal{W} ; (5) an empty quantum circuit \mathcal{C}
- Do: (1) Encode inputs to the circuit; (2) embed weights to the circuit; (3) do accumulation and quadratic function

```
Output: (1) Quantum circuit \mathcal{C} with \mathcal{M} output qubits
                                                             2^{\mathcal{N}} data
#create circuit
                                                             \mathcal{N}
                                                                           \mathcal{M}
circuit = QuantumCircuit()
#init circuit, which is corresponding to a neuron with 4 qubits and 2 outputs
u layer = U LYR Circ(4,2)
#create qubits to be invovled
inps = u layer.add input qubits(circuit)
aux =u layer.add aux(circuit)
u layer out qubits = u layer.add out qubits(circuit)
                                       W
#add u-layer to your circuit
u layer.forward(circuit,binarize(weight_1),inps,u_layer_out_qubits,quantum_matrix,aux)
#show your circuit
circuit.draw('text', fold=300)
```

qfnn API Example *QF-hNet*

zwang48@gmu.edu

George Mason University

4400 University Drive Fairfax, Virginia 22030

Tel: (703)993-1000