

Santa Cruz, USB, Mictor, SD Card HSMC

Reference Manual

101 Innovation Drive San Jose, CA 95134 www.altera.com Document Version: Document Date:

1.0 December 2008

Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Contents

Chapter 1. Overview	
General Description	
Board Component Blocks	
Block Diagram	
Handling the Board	
Chapter 2. Board Components	
Introduction	2–1
Board Overview	
HSMC Connector (J1)	
Santa Cruz Connectors (J3, J4, and J5)	
USB On-The-Go Transceiver (U11)	
Mictor Connector (J2)	
SD Card Interface (J7)	
SMA Connector (J6)	
I ² C Serial EEPROM (U10)	
Power Supply	2–19
Appendix A. Demonstration	
Additional Information	
Revision History	About–1
How to Contact Altera	About–1
Typographic Conventions	About–1

General Description

This manual provides information about the THDB-SUM, an adapter board that converts High-Speed Mezzanine Card (HSMC) interface to Santa Cruz, USB, Mictor, and secure digital (SD) card interfaces. It allows you to use these interfaces on a host board with an HSMC connector.

The THDB-SUM provides a set of commonly used interfaces on Altera's newest generation of development boards. On older boards, the standard "daughtercard" expansion was through the "Santa Cruz connector." The THDB-SUM provides this set of interfaces so that legacy Santa Cruz daughtercards can still be used.

This manual describes each of the hardware interfaces on the THDB-SUM board.

For more information about the THDB-SUM board, visit the Terasic website at www.terasic.com.

Board Component Blocks

The THDB-SUM board features the following major component blocks:

- One HSMC connector for interface conversion
- One Santa Cruz interface
- Adjustable logic levels between HSMC and Santa Cruz interface signals
- One high-speed USB On-The-Go (OTG) transceiver
- One Mictor connector
- One SMA connector for external clock input
- One SD card socket
- On-board power regulation
- I²C EEPROM

Figure 1–1 shows the THDB-SUM board used with Altera® Cyclone® III FPGA development board. For more information about connecting the THDB-SUM board to a host board, refer to Appendix A, Demonstration.

1–2 Chapter 1: Overview
Handling the Board

Figure 1–1. THDB-SUM Board Connected to the Cyclone III FPGA Development Board

Block Diagram

Figure 1–2 shows the functional block diagram of the THDB-SUM board.

Figure 1-2. THDB-SUM Board Block Diagram

Handling the Board

When handling the board, it is important to observe the following precaution:

Static Discharge Precaution: Without proper anti-static handling, the board can be damaged. Therefore, use anti-static handling precautions when touching the board.

2. Board Components

Introduction

This chapter introduces the important components on the THDB-SUM board and provides their operational and connectivity details.

This chapter consists of the following sections:

- "HSMC Connector (J1)" on page 2–4
- "Santa Cruz Connectors (J3, J4, and J5)" on page 2–7
- "USB On-The-Go Transceiver (U11)" on page 2–11
- "Mictor Connector (J2)" on page 2–13
- "SD Card Interface (J7)" on page 2–16
- "SMA Connector (J6)" on page 2–17
- "I²C Serial EEPROM (U10)" on page 2–17
- "Power Supply" on page 2–18

Board Overview

This section provides an overview of the THDB-SUM board, including an annotated board image and component descriptions. Figure 2–1 shows the THDB-SUM board and its components and locations.

Figure 2–1. THDB-SUM Board and Components

Figure 2–2 shows the back view of the THDB-SUM board.

Figure 2-2. THDB-SUM Board—Back View (HSMC Connector View)

Table 2–1 describes the components and lists their corresponding board references.

Table 2–1. THDB-SUM Board (Part 1 of 2)

Board Reference	Name	Description				
Components and I	Components and Interfaces					
J1	HSMC connector	Expansion connector used to interface with Altera starter and development boards.				
J2	Mictor connector	Used for logic analysis.				
J3, J4, and J5	Santa Cruz connectors	Expansion connectors used to connect with Santa Cruz interface.				
J6	SMA connector	SMA connector that allows the provision of an external clock input.				
J7	SD card socket	Used as optional external memory in both serial peripheral interface (SPI) and 1-bit SD mode.				
J8	Mini USB AB type receptacle connector	Provide USB interface to the HSMC interface host board.				
JP0	JTAG TDI/TDO loopback header	Used to either include or bypass daughtercard in the JTAG chain by connecting TDI to TDO when jumper is inserted.				
JP1	USB/Santa Cruz function select header	Used to select between USB functionality or full Santa Cruz header functionality.				
JP2	USB Host/Peripheral mode configuration header	When closed, selects USB in host mode.				
JP3	HSMC logic level configuration header	When open, selects 2.5 V HSMC source voltage. When closed, selects 3.3 V.				

Table 2–1. THDB-SUM Board (Part 2 of 2)

Board Reference	Name	Description
JP4	SC connector logic level configuration header	When open, selects 3.3 V for Santa Cruz header I/O voltage. When closed, selects 5.0 V.
U1–U2	Bus switches	Multiplexer to switch between USB or Santa Cruz I/O based on setting of JP2.
U3–U8	Level shifters	Provides I/O level shifting based on jumper settings of JP3 and JP4.
U10	I ² C serial EEPROM	Uses one 2-Kbit EEPROM.
U11	USB On-The-Go transceiver	Provide USB interface to the HSMC interface host board.

HSMC Connector (J1)

The THDB-SUM board contains an Altera standard HSMC connector (J1) to connect to Altera FPGA starter or development board. All the other connector interfaces on the THDB-SUM board are connected to the HSMC connector.

Figure 2–3, Figure 2–4, and Figure 2–5 show the pin-outs of the HSMC connector for banks 1, 2, and 3, respectively.

Figure 2–3. HSMC Connector Bank 1 Pin-Outs

Figure 2-4. HSMC Connector Bank 2 Pin-Outs

Figure 2-5. HSMC Connector Bank 3 Pin-Outs

Figure 2–6 shows the JTAG interface of the HSMC connector. When not using the JTAG interface, short the header JP0 to loopback the TDI and TDO signals on the HSMC connector.

Figure 2–6. JTAG Interface Setting of the HSMC Connector

Santa Cruz Connectors (J3, J4, and J5)

The THDB-SUM board comes with Santa Cruz connectors (J3, J4, and J5) to connect to a daughter board with Santa Cruz interface. Some of the I/O pins of Santa Cruz connectors pass through a bus switch chip (U1 or U2) first before connecting to the HSMC connector as shown in Figure 2–7.

Figure 2-7. I/O Distribution of the HSMC, Santa Cruz, and USB Transceiver Interface

Because of the limited number of HSMC connector I/O pins, the Santa Cruz connectors and the USB transceiver port share the same I/O pins. Therefore, you can only select one function at a time between a Santa Cruz connector and the USB transceiver. To enable a function, refer to Table 2–2.

Table 2–2. Enable Function Configuration on Bus Switch Chip

JP1 Setting	Enable Function		
Open	USB OTG Transceiver		
Close	Santa Cruz Connector		

There are a few level shifters between the HSMC and Santa Cruz connectors as shown in Figure 2–8. These level shifters convert the logic levels of the signals between the HSMC and Santa Cruz connectors according to the configurations of the headers (JP3 and JP4). With this feature, you can use different I/O standards between the HSMC host board and the Santa Cruz interface daughter board. Table 2–3 and Table 2–4 list the configurations of the voltage level of the HSPROTO_IO bus and the PROTO_IO bus, respectively.

Open: 2.5 V Open: 3.3 V **HSMC Connector** Close: 3.3 V Close: 5 V **(J1**) JP3 JP4 VCCA VCCB HSPROTO_RESET PROTO_RESET HSPROTO_CARDSEL PROTO_CARDSEL HSPROTO_IO[39..0] PROTO_IO[39..0] Santa Cruz Level Connectors Shifters /42 (J3-J5) (U3-U8)

Figure 2-8. Logic Level Transform Block

Table 2-3. Logic Level Configuration on HSPROTO_IO Bus

JP3 Setting	Logic Level of the HSPROTO_IO Bus		
Open	2.5 V		
Close	3.3 V		

Table 2-4. Logic Level Configuration on PROTO_IO Bus

JP4 Setting	Logic Level of the PROTO_IO Bus
Open	3.3 V
Close	2.5 V

Figure 2–9 shows the pin-outs of the Santa Cruz connector. Detailed pin mapping between J3, J4, and J5 to the HSMC connector is listed in Table 2–5, Table 2–6, and Table 2–7.

Because of the characteristic of the level shifters, the data rate of the <code>HSPROTO_IO</code> and <code>PROTO_IO</code> bus must be under 100 Mbps.

Figure 2-9. Santa Cruz Connector Pin-Outs

Table 2-5. Santa Cruz Connector J3 Pin Assignments

Santa Cruz Pin Number	Santa Cruz Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
3	PROTO_IO40	49	HSPROTO_IO40	HSMC_TX_N0
4	PROTO_IO29	53	HSPROTO_IO29	HSMC_TX_P1
5	PROTO_IO30	55	HSPROTO_IO30	HSMC_TX_N1
6	PROTO_IO31	59	HSPROTO_IO31	HSMC_TX_P2
7	PROTO_IO32	65	HSPROTO_IO32	HSMC_TX_P3
8	PROTO_IO33	61	HSPROTO_IO33	HSMC_TX_N2
9	PROTO_IO34	71	HSPROTO_IO34	HSMC_TX_P4
10	PROTO_IO35	67	HSPROTO_IO35	HSMC_TX_N3
11	PROTO_IO36	77	HSPROTO_IO36	HSMC_TX_P5
12	PROTO_IO37	73	HSPROTO_IO37	HSMC_TX_N4
13	PROTO_IO38	83	HSPROTO_IO38	HSMC_TX_P6
14	PROTO_IO39	79	HSPROTO_IO39	HSMC_TX_N5

Table 2–6. Santa Cruz Connector J4 Pin Assignments

Santa Cruz Pin Number	Santa Cruz Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
9	OSC	95	OSC	HSMC_CLKOUT_P1
11	CLK1	97	CLK1	HSMC_CLKOUT_N1
13	CLK2	98	CLK2	HSMC_CLKIN_N1

Table 2-7. Santa Cruz Connector J5 Pin Assignments

Santa Cruz Pin Number	Santa Cruz Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
1	PROTO_RESET	48	HSPROTO_RESET	HSMC_RX_P0
3	PROTO_IO0	50	HSPROTO_IO0	HSMC_RX_N0
4	PROTO_IO1	54	HSPROTO_IO1	HSMC_RX_P1
5	PROTO_IO2	56	HSPROTO_IO2	HSMC_RX_N1
6	PROTO_IO3	60	HSPROTO_IO3	HSMC_RX_P2
7	PROTO_IO4	62	HSPROTO_IO4	HSMC_RX_N2
8	PROTO_IO5	66	HSPROTO_IO5	HSMC_RX_P3
9	PROTO_IO6	68	HSPROTO_IO6	HSMC_RX_N3
10	PROTO_IO7	72	HSPROTO_IO7	HSMC_RX_P4
11	PROTO_IO8	74	HSPROTO_IO8	HSMC_RX_N4
12	PROTO_IO9	78	HSPROTO_IO9	HSMC_RX_P5
13	PROTO_IO10	80	HSPROTO_IO10	HSMC_RX_N5
14	PROTO_IO11	84	HSPROTO_IO11	HSMC_RX_P6
15	PROTO_IO12	86	HSPROTO_IO12	HSMC_RX_N6
16	PROTO_IO13	90	HSPROTO_IO13	HSMC_RX_P7
17	PROTO_IO14	92	HSPROTO_IO14	HSMC_RX_N7
18	PROTO_IO15	85	HSPROTO_IO15	HSMC_TX_N6
21	PROTO_IO16	89	HSPROTO_IO16	HSMC_TX_P7
23	PROTO_IO17	91	HSPROTO_IO17	HSMC_TX_N7
25	PROTO_IO18	143	HSPROTO_IO18	HSMC_TX_P15
27	PROTO_IO19	145	HSPROTO_IO19	HSMC_TX_N15
28	PROTO_IO20	149	HSPROTO_IO20	HSMC_TX_P16
29	PROTO_IO21	151	HSPROTO_IO21	HSMC_TX_N16
31	PROTO_IO22	155	HSPROTO_IO22	HSMC_CLKOUT_P2
32	PROTO_IO23	134	HSPROTO_IO23	HSMC_RX_N13
33	PROTO_IO24	138	HSPROTO_IO24	HSMC_RX_P14
35	PROTO_IO25	140	HSPROTO_IO25	HSMC_RX_N14
36	PROTO_IO26	144	HSPROTO_IO26	HSMC_RX_P15
37	PROTO_IO27	146	HSPROTO_IO27	HSMC_RX_N15
38	PROTO_CARDSEL	150	HSPROTO_CARDSEL	HSMC_RX_P16
39	PROTO_IO28	152	HSPROTO_IO28	HSMC_RX_N16

Table 2–8 lists the Santa Cruz board reference and manufacturing information.

Table 2–8. Santa Cruz Connector Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
J3, J4, and J5	Santa Cruz Connector	Various	Standard 0.1 in. dual-row headers. J3: 14 pins. J4: 20 pins. J5: 40 pins.	_

USB On-The-Go Transceiver (U11)

The THDB-SUM board is equipped with an NXP ISP1504C USB OTG transceiver (U11) and a Mini USB AB type receptacle connector (J8) to provide USB interface to the HSMC interface host board. The NXP ISP1504C is a USB OTG transceiver that is fully compliant with the *Universal Serial Bus Specification Rev.* 2.0, On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3 and UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.

As mentioned in the preceding section, the USB transceiver and Santa Cruz connectors share the same I/O pins connected to the HSMC connector. This means you can only select one function at a time between the USB transceiver and Santa Cruz connectors. To select the USB transceiver function, set the JP1 header to the open position.

For more information about the USB transceiver, visit the NXP Semiconductors website at www.nxp.com.

In OTG implementations, the 2-pin header JP2 is connected to the identification (ID) pin of the USB OTG transceiver and the micro-USB receptacle. The logic level of the ID pin on the USB OTG transceiver can be configured to logic high or low through JP2, as shown in Figure 2–10.

As defined in the *On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3*, the ID pin dictates the initial role of the USB link. If the ID pin is detected as HIGH, the link must assume the role of a peripheral. If ID pin is detected as LOW, the link must assume the role of a host.

Figure 2–10. USB OTG Transceiver and HSMC Connector Block Diagram

Table 2–9 shows the JP2 configuration setting for the ID pin.

Table 2–9. ID Pin Configuration

JP2 Setting	Host or Peripheral Role
Open	Peripheral
Close	Host

Table 2–10 lists the detailed pin mapping between the USB OTG transceiver and the HSMC connector.

Table 2–10. USB OTG Transceiver (U11) Pin Assignments (Part 1 of 2)

USB Pin Number	USB Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
1	USB_D0	48	HSPROTO_RESET	HSMC_RX_P0
17	USB_RESET_n	86	HSPROTO_IO12	HSMC_RX_N6
19	USB_DIR	84	HSPROTO_IO11	HSMC_RX_P6
20	USB_STP	80	HSPROTO_IO10	HSMC_RX_N5
21	USB_NXT	78	HSPROTO_IO9	HSMC_RX_P5
23	USB_D7	74	HSPROTO_IO8	HSMC_RX_N4
24	USB_D6	72	HSPROTO_IO7	HSMC_RX_P4
25	USB_D5	68	HSPROTO_IO6	HSMC_RX_N3
26	USB_D4	66	HSPROTO_IO5	HSMC_RX_P3
27	USB_CLKOUT	62	HSPROTO_IO4	HSMC_RX_N2
28	USB_D3	60	HSPROTO_IO3	HSMC_RX_P2
29	USB_CS_n	56	HSPROTO_IO2	HSMC_RX_N1

Table 2-10. USB OTG Transceiver (U11) Pin Assignments (Part 2 of 2)

USB Pin Number	USB Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
31	USB_D2	54	HSPROTO_IO1	HSMC_RX_P1
32	USB_D1	50	HSPROTO_IO0	HSMC_RX_N0

Table 2–11 lists the USB OTG transceiver board reference and manufacturing information.

 Table 2–11.
 USB OTG Transceiver Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
U11	USB OTG Transceiver	NXP Semiconductors	NXP ISP1504C	www.nxp.com

Mictor Connector (J2)

This section describes how to use the Mictor connector (J2) on the THDB-SUM board. The Mictor connector can be used for logic analysis on the HSMC interface host board by connecting an external scope or a logic analyzer to it.

Figure 2–11 shows the pin-outs of the Mictor connector. Table 2–12 lists the detailed pin mapping between the Mictor connector and the HSMC connector.

Figure 2–11. Mictor Connector Pin-Outs

Table 2-12. Mictor Connector (J2) Pin Assignments (Part 1 of 2)

Mictor Connector Pin Number	Mictor Connector Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
5	MICTOR_CLK	156	MICTOR_CLK	HSMC_CLKIN_P2
6	TR_CLK	157	TR_CLK	HSMC_CLKOUT_N2
7	MICTOR_D24	132	MICTOR_D24	HSMC_RX_P13

Table 2–12. Mictor Connector (J2) Pin Assignments (Part 2 of 2)

Mictor Connector Pin Number	Mictor Connector Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
8	MICTOR_D13	121	MICTOR_D13	HSMC_TX_N11
9	MICTOR_D23	128	MICTOR_D23	HSMC_RX_N12
10	MICTOR_D12	125	MICTOR_D12	HSMC_TX_P12
13	MICTOR_D22	126	MICTOR_D22	HSMC_RX_P12
16	MICTOR_D11	127	MICTOR_D11	HSMC_TX_N12
18	MICTOR_D10	131	MICTOR_D10	HSMC_TX_P13
20	MICTOR_D9	133	MICTOR_D9	HSMC_TX_N13
22	MICTOR_D8	137	MICTOR_D8	HSMC_TX_P14
23	MICTOR_D21	122	MICTOR_D21	HSMC_RX_N11
24	MICTOR_D7	139	MICTOR_D7	HSMC_TX_N14
25	MICTOR_D20	120	MICTOR_D20	HSMC_RX_P11
26	MICTOR_D6	119	MICTOR_D6	HSMC_TX_P11
27 MICTOR_D19		116	MICTOR_D19	HSMC_RX_N10
28	MICTOR_D5	109	MICTOR_D5	HSMC_TX_N9
29	MICTOR_D18	114	MICTOR_D18	HSMC_RX_P10
30	MICTOR_D4	107	MICTOR_D4	HSMC_TX_P9
31 MICTOR_D17		110	MICTOR_D17	HSMC_RX_N9
32	MICTOR_D3	115	MICTOR_D3	HSMC_TX_N10
33	MICTOR_D16	108	MICTOR_D16	HSMC_RX_P9
34	MICTOR_D2	113	MICTOR_D2	HSMC_TX_P10
35	MICTOR_D15	104	MICTOR_D15	HSMC_RX_N8
36	MICTOR_D1	103	MICTOR_D1	HSMC_TX_N8
37	MICTOR_D14	102	MICTOR_D14	HSMC_RX_P8
38	MICTOR_D0	101	MICTOR_D0	HSMC_TX_P8
11	MICTOR_TDO	37	HSMC_TDO	HSMC_TDO
15	MICTOR_TCK	35	HSMC_TCK	HSMC_TCK
17	MICTOR_TMS	36	HSMC_TMS	HSMC_TMS
19	MICTOR_TDI	38	HSMC_TDI	HSMC_TDI

To use this interface, you must configure the JTAG interface on the HSMC interface host board. The following procedure shows you how to use the Mictor interface using the Cyclone III starter board as an example:

- 1. Connect the THDB-SUM board to the Cyclone III starter board.
- 2. Remove the jumpers, JP1 and JP2, of the Cyclone III starter board to connect the JTAG interface between the Cyclone III FPGA and the THDB-SUM board.
- 3. Short the TDI and TDO pins of the JTAG connector (J4), as shown in Figure 2–12.

Short TDI and TDO pins of J4

Close JP8 with Jumper

Figure 2-12. Configuring Cyclone III Starter Board to Control JTAG Chain Using Mictor Connector

4. Disable the built-in USB-Blaster by shorting JP8 on the Cyclone III starter board. This procedure creates a closed JTAG chain as shown in Figure 2–13.

Figure 2-13. The JTAG Chain between the THDB-Sum Board and Cyclone III Starter Board

Table 2–13 lists the Mictor connector board reference and manufacturing information.

Table 2–13. Mictor Connector Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
J2	38-pin Mictor Connector	Tyco Electronics	2-767004-2	www.tycoelectronics.com

SD Card Interface (J7)

The THDB-SUM board has an SD card socket that can be accessed as an optional external memory in both SPI and 1-bit SD mode. Figure 2-14 shows the pin-outs of the SD card socket. Table 2-14 lists the detailed pin mapping between the SD card socket and the HSMC connector.

Figure 2–14. SD Card Socket and HSMC Connector Block Diagram

Table 2–14. SD Card Socket (J7) Pin Assignments

SD Card Socket Pin Number	SD Card Socket Signal Name	HSMC Pin Number	HSMC Signal Name	HSMC Pin Name
1	LF_DAT3	42	SD_DAT3	HSMC_D1
2	LF_CMD	47	SD_CMD	HSMC_TX_P0
5	LF_CLK	43	SD_CLK	HSMC_D2
7	LF_DAT0	41	SD_DAT0	HSMC_D0
8	LF_DAT1	39	SD_DAT1	HSMC_CLKOUT0
9	LF_DAT2	44	SD_DAT2	HSMC_D3
11	LF_WPn	40	SD_WPn	HSMC_CLKIN0

Table 2–15 lists the SD card socket board reference and manufacturing information.

Table 2–15. SD Card Socket Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
J7	SD Card Socket	Leamax Enterprise	9301S-090001	www.leamax.com

SMA Connector (J6)

The THDB-SUM board provides an SMA connector (J6) for external clock input. Table 2–16 shows the pin assignments of the SMA connector.

Table 2–16. SMA Connector (J6) Pin Assignments

SMA Connector Pin Number			HSMC Signal Name	HSMC Pin Name
1	EXT_CLK	96	EXT_CLK	HSMC_CLKIN_P1

Table 2–17 lists the SMA connector board reference and manufacturing information.

 Table 2–17.
 SMA Connector Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
J6	SMA Connector	Lighthorse Technologies	LTI-SASF54GT	www.rfconnector.com

I²C Serial EEPROM (U10)

The THDB-SUM board provides an EEPROM (U10) which can be configured by the I²C interface. The size of the EEPROM is 2 Kbits and it can store board information or user's data. Figure 2–15 shows the pin-outs of the EEPROM. Table 2–18 lists the detailed pin mapping between the EEPROM and the HSMC connector.

Figure 2-15. EEPROM and HSMC Connector Block Diagram

Table 2–18. EEPROM (U10) Pin Assignments

EEPROM Pin Number	EEPROM Signal Name	HSMC Pin Number	HSMC Signal Name
5	HSMC_SDA	33	HSMC_SDA
6	HSMC_SCL	34	HSMC_SCL

Table 2–19 lists the SMA connector board reference and manufacturing information.

Table 2-19. I²C EEPROM Board Reference and Manufacturing Information

Board Reference	Description	Manufacturer	Manufacturing Part Number	Manufacturer Website
U10	2-Kbit I ² C EEPROM	Microchip Technology	24LC02B	www.microchip.com

Power Supply

The board receives power from the 12 V and 3.3 V provided by the HSMC. These power supplies are either used directly or regulated by an on-board regulator as required (refer to Figure 2–16).

Figure 2–16. Power Distribution System

A. Demonstration

The following procedure shows you how to connect the THDB-SUM board to an HSMC interface host board using a Cyclone III starter board as an example:

- 1. Observe the orientation of the HSMC connector when connecting the THDB-SUM board to the Cyclone III starter board.
- 2. Set JP3 on the THDB-SUM board to the open position to force the voltage level to 2.5 V to match the 2.5 V I/O pins of the starter board.
- 3. Configure JP4 on the THDB-SUM board according to the logic level of the Santa Cruz daughter board (refer to Table 2–4 on page 2–8).

A-2 Appendix A: Demonstration

Revision History

The following table displays the revision history for this reference manual.

Date	Version	Changes Made
December 2008	1.0	First publication

How to Contact Altera

For the most up-to-date information about Altera products, refer to the following table.

Contact (Note 1)	Contact Method	Address
Technical support	Website	www.altera.com/support
Technical training	Website	www.altera.com/training
	Email	custrain@altera.com
Product literature	Website	www.altera.com/literature
Non-technical support (General)	Email	nacomp@altera.com
(Software Licensing)	Email	authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Typographic Conventions

The following table shows the typographic conventions that this document uses.

Visual Cue	Meaning	
Bold Type with Initial Capital Letters	Indicates command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box.	
bold type	Indicates directory names, project names, disk drive names, file names, file name extensions, and software utility names. For example, qdesigns directory, d: drive, and chiptrip.gdf file.	
Italic Type with Initial Capital Letters	Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.	
Italic type	Indicates variables. For example, $n + 1$.	
	Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file>	
Initial Capital Letters	Indicates keyboard keys and menu names. For example, Delete key and the Options menu.	
"Subheading Title"	Quotation marks indicate references to sections within a document and titles of Quartus II Help topics. For example, "Typographic Conventions."	

Visual Cue	Meaning
Courier type	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. Active-low signals are denoted by suffix n. For example, resetn.
	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).
1., 2., 3., and a., b., c., and so on.	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
• •	Bullets indicate a list of items when the sequence of the items is not important.
	The hand points to information that requires special attention.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.
4	The angled arrow instructs you to press Enter.
•••	The feet direct you to more information about a particular topic.