Name: M. Aun Raza

Reg. no: SP20-BCS-092

Group: (2)

Semester: 6th

Assignment: 5.

Question#1

"sunshine state enjoy sunshine"

S2 => "brown fox jump high, brown fox oun".
S3 => "sun shine state for our fast".

Bag of words :-

Sunshine, state, enjoy.

52 => brown, tox, Tump, high, run.
53 -> sunshine, state, fox, run, fast

5720	Sunshine	State	Enjoy	beaun	tox	1 Jump	high	loun	tast
SI	2	1	1	0	0	0	0	0	00
Sa	0	0	0	2	2	7	1	1	0
53	the fall	(-,-)	0	0	1	0	0	1-1-	1

Term frequencies:

Enjoy = 1/4

high = 117 aun => 1/700

53 => sunshine => 1/5 State => 1/5 fox => 1/5 aun => 1/5 gast => 1/5

IDF

Sunshine
$$\Rightarrow log \frac{3}{2} \Rightarrow 0.176$$

State $\Rightarrow log \frac{3}{2} \Rightarrow 0.176$

Enjoy $\Rightarrow log \frac{3}{2} \Rightarrow 0.477$

brown $\Rightarrow log \frac{3}{2} \Rightarrow 0.477$

Tumb $\Rightarrow log \frac{3}{2} \Rightarrow 0.477$

Migh $\Rightarrow log \frac{3}{2} \Rightarrow 0.477$

Migh $\Rightarrow log \frac{3}{2} \Rightarrow 0.477$

mn $\Rightarrow log \frac{3}{2} \Rightarrow 0.176$

fast $\Rightarrow log \frac{3}{2} \Rightarrow 0.176$

TF.IDF

Signshine => $\frac{2}{4} \times 0.176 \Rightarrow 0.088$ State => $\frac{1}{4} \times 0.176 \Rightarrow 0.044$ Enjoy=> $\frac{1}{4} \times 0.477 \Rightarrow 0.11925$

So Brown =) $\frac{3}{4} \times 0.477 = 0.136$ Fox =) $\frac{3}{4} \times 0.196 = 0.081$ Tump =) $\frac{1}{4} \times 0.477 = 0.068$ Warrenotes Run =) $\frac{1}{4} \times 0.196 = 0.035$

53

Sunshine \Rightarrow 0.0352 State \Rightarrow 0.0352 Fox \Rightarrow 0.0352 Run \Rightarrow 0.0352 Fast \Rightarrow 0.0954

Q.2 Cosine Similarity b/w SI and S3.

$$\vec{S}_{1}.\vec{S}_{3}$$
 \Rightarrow $\cos \theta = \vec{S}_{1}.\vec{S}_{3}$
 $|\vec{S}_{1}||\vec{S}_{3}|$ $|\vec{S}_{1}||\vec{S}_{3}|$

$$S_1 = [2,1,1,0,0,0,0,0,0]$$

 $S_3 = [1,1,0,0,1,0,0,1,1]$

$$3i. S_{3} = (2x1) + (1x1) + (1x0) + (0x0) + (0x1) + (0x0) + (0x1) + (0x1)$$

$$(0x0) + (0x1) + (0x1)$$

$$131 = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = 9.45$$

$$133 = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{4} = 2$$

Putting values in the formula,

$$= \frac{\vec{S_1} \cdot \vec{S_3}}{|\vec{S_1}| \cdot |\vec{S_3}|}$$

$$\frac{3}{6} = \frac{1}{2}$$