机器学习中的数学符号与统计知识

基本符号

基本集合与逻辑

符号	LaTeX	读法	含义
\mathbb{R}	\mathbb{R}	实数集	所有实数的集合
\mathbb{R}^n	\mathbb{R}^n	n维实数空间	n维欧几里得空间
N	\mathbb{N}	自然数集	所有自然数的集合
\mathbb{Z}	\mathbb{Z}	整数集	所有整数的集合
\in	\\in	属于	元素属于集合
C	\subset	包含于	子集关系
U	\cup	并集	集合的并
\cap	\cap	交集	集合的交
Ø	\emptyset	空集	不包含任何元素的集合
A	\forall	对所有	全称量词
3	\exists	存在	存在量词
\wedge	\1and	与	逻辑与
V	\lor	或	逻辑或
_	(\lnot)	非	逻辑非
\Rightarrow	(\Rightarrow)	蕴含	逻辑蕴含
\iff	\iff	当且仅当	逻辑等价

向量与矩阵

符号	LaTeX	读法	含义
x	\mathbf{x}	向量x	粗体小写字母表示向量
A	\mathbf{A}	矩阵A	粗体大写字母表示矩阵
x_i	x_i	x下标i	向量x的第i个元素
A_{ij}	A_{ij}	A下标ij	矩阵A的第i行第j列元素
\mathbf{A}^T	\mathbf{A}^T	A转置	矩阵A的转置
\mathbf{A}^{-1}	\mathbf{A}^{-1}	A逆	矩阵A的逆
$\ \mathbf{A}\ $ 或 $\det(\mathbf{A})$	\ \mathbf{A}\ 或 \det(\mathbf{A})	A的行列 式	矩阵A的行列式
$\mathrm{tr}(\mathbf{A})$	<pre>\text{tr}(\mathbf{A})</pre>	A的迹	矩阵A对角线元素之和
I	\mathbf{I}	单位矩 阵	对角线为1,其余为0的 矩阵
0	0	零矩阵	所有元素都为0的矩阵
$ \mathbf{x} $	\ \ \mathbf{x}\ \	x的范数	向量x的长度或大小
$\ \ \mathbf{x}\ \ _2$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	x的L2范 数	欧几里得范数, $\sqrt{\sum_i x_i^2}$
$\ \ \mathbf{x}\ \ _1$	\ \ \mathbf{x}\ \ _1	x的L1范 数	$\sum_i x_i $
$\mathbf{x} \cdot \mathbf{y}$	<pre>\mathbf{x} \cdot \mathbf{y}</pre>	x点乘y	向量内积, $\sum_i x_i y_i$
$\mathbf{x}\otimes\mathbf{y}$	<pre>\mathbf{x} \otimes \mathbf{y}</pre>	x张量积 y	向量的外积

概率论与统计

基本概率符号

符号	LaTeX	读法	含义
P(A)	P(A)	事件A的概率	事件A发生的概率
$P(A\ B)$	P(A\ B)	A条件于B的概 率	在事件B发生的条件下,事件A发生的概率
P(A,B)	P(A, B)	A和B的联合概 率	事件A和事件B同时发生的概率
$P(A \cup B)$	P(A \cup B)	A或B的概率	事件A或事件B发生的概率
$P(A\cap B)$	P(A \cap B)	A且B的概率	事件A和事件B同时发生的概率(同 $P(A,B)$)
$\mathbb{E}[X]$	\mathbb{E}[X]	X的期望	随机变量X的期望值
$\operatorname{Var}(X)$	\text{Var}(X)	X的方差	随机变量X的方差, $\mathbb{E}[(X-\mathbb{E}[X])^2]$
σ_X	\sigma_X	X的标准差	随机变量X的标准差, $\sqrt{\mathrm{Var}(X)}$
$\mathrm{Cov}(X,Y)$	\text{Cov} (X,Y)	X和Y的协方差	$\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$
$ ho_{X,Y}$	\rho_{X,Y}	X和Y的相关系 数	$\frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}$

常见分布

符号	LaTeX	读法	含义
$X \sim \mathcal{N}(\mu, \sigma^2)$	<pre>X \sim \mathcal{N}(\mu, \sigma^2)</pre>	X服从 正态分 布	X服从均值为 μ , 方差为 σ^2 的正态 分布
$f(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	<pre>f(x) = \frac{1} {\sqrt{2\pi\sigma^2}} e^{-\ \frac{(x-\mu)^2}{2\sigma^2}}</pre>	正态分 布概率 密度函 数	均值为 μ ,方差 为 σ^2 的正态分布 密度函数
$X \sim \mathrm{Bern}(p)$	<pre>X \sim \text{Bern}(p)</pre>	X服从 伯努利 分布	X服从参数为p的 伯努利分布
$X \sim \mathrm{Bin}(n,p)$	<pre>X \sim \text{Bin}(n, p)</pre>	X服从 二项分 布	X服从参数为n和 p的二项分布
$X \sim \mathrm{Pois}(\lambda)$	<pre>X \sim \text{Pois}(\lambda)</pre>	X服从 泊松分 布	X服从参数为 λ 的 泊松分布
$X \sim \mathrm{Unif}(a,b)$	<pre>X \sim \text{Unif}(a, b)</pre>	X服从 均匀分 布	X服从区间[a,b] 上的均匀分布
$X \sim \operatorname{Exp}(\lambda)$	<pre>X \sim \text{Exp}(\lambda)</pre>	X服从 指数分 布	X服从参数为 λ 的 指数分布

机器学习中的重要概念

损失函数

名称	LaTeX	含义
均方误 差 (MSE)	$L(\theta) = \frac{1}{n}\sum_{i=1}^{n} (y_i - \frac{y_i}{n})^2$	$L(heta) = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$
交叉熵 损失	<pre>L(\theta) = -\frac{1} {n}\sum_{i=1}^{n}[y_i\log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i)]</pre>	$L(heta) = -rac{1}{n} \sum_{i=1}^n [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)]$
L1正则 化 (Lasso)	\lambda\ \ \mathbf{w}\ \ _1 = \lambda\sum_{j=1}^{p}\ w_j\	$\ \lambda\ \ \mathbf{w}\ \ _1 = \lambda \sum_{j=1}^p \ w_j\ _2$
L2正则 化 (Ridge)	$\label{lambda} $$ \prod_{j=1}^{p}w_j^2 = 1$	$\ \lambda\ \ \mathbf{w}\ \ _2^2 = \lambda \sum_{j=1}^p w_j^2$

梯度下降

梯度下降是机器学习中优化参数的基本算法, 其更新规则如下:

$$heta_{t+1} = heta_t - \eta
abla_ heta L(heta_t)$$

其中:

- θ_t 是第 t 步的参数
- η 是学习率
- $\nabla_{\theta}L(\theta_t)$ 是损失函数对参数 θ 的梯度

不同类型的梯度下降

类型	描述	公式
批量梯度下降	使用全部数据计算梯度	$ heta_{t+1} = heta_t - \eta abla_ heta rac{1}{n} \sum_{i=1}^n L(x_i, y_i, heta_t)$
随机梯度下降	每次使用单个样本更新	$ heta_{t+1} = heta_t - \eta abla_ heta L(x_i, y_i, heta_t)$
小批量梯度下降	使用批量样本计算梯度	$ heta_{t+1} = heta_t - \eta abla_ heta rac{1}{b} \sum_{i=1}^b L(x_i, y_i, heta_t)$

神经网络相关

符号	LaTeX	含义
激活函数 Sigmoid	$\sigma(z) = \frac{1}{1 + e^{-z}}$	$\sigma(z)=rac{1}{1+e^{-z}}$
激活函数 ReLU	$f(z) = \max(0, z)$	$f(z) = \max(0,z)$
激活函数 tanh		$ anh(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$
Softmax函 数	$\text{softmax}(z_i) = \frac{e^{z_i}} \\ \{\sum_{j=1}^{K} e^{z_j}\}$	$\operatorname{softmax}(z_i) = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$
前向传播	$z^{(1)} = W^{(1)}a^{(1-1)} + b^{(1)}$	$z^{(l)} = W^{(l)} a^{(l-1)} + b^{(l)}$
激活值	$a^{(1)} = g(z^{(1)})$	$a^{(l)}=g(z^{(l)})$

评估指标

指标	LaTeX	含义
准确率	<pre>\text{Accuracy} = \frac{\text{TP} + \text{TN}} {\text{TP} + \text{TN} + \text{FP} + \text{FN}}</pre>	$ ext{Accuracy} = rac{ ext{TP+TN}}{ ext{TP+TN+FP+FN}}$
精确率	<pre>\text{Precision} = \frac{\text{TP}}{\text{TP}} + \text{FP}}</pre>	$ ext{Precision} = rac{ ext{TP}}{ ext{TP+FP}}$

评估指标 (续)

指标	LaTeX	含义
召回率	<pre>\text{Recall} = \frac{\text{TP}} {\text{TP} + \text{FN}}</pre>	$Recall = \frac{TP}{TP+FN}$
F1分数	<pre>\text{F1} = \frac{2 \times \text{Precision} \times \text{Recall}} {\text{Precision} + \text{Recall}}</pre>	$\mathrm{F1} = rac{2 imes\mathrm{Precision} imes\mathrm{Recall}}{\mathrm{Precision}+\mathrm{Recall}}$
ROC曲 线	-	接收者操作特征曲线,描绘不同 阈值下真阳性率(TPR)与假阳性 率(FPR)的关系
AUC	-	ROC曲线下的面积,值越接近1 表示模型性能越好
均方根 误差 (RMSE)	$\text{RMSE} = \sqrt{\frac{1}} \\ \{n\} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \}$	$ ext{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$
平均绝 对误差 (MAE)	$\text{MAE} = \frac{1} \\ \{n\} \setminus \{i=1\} \land \{n\} \setminus \{y_i - \hat{y}_i \}$	$ ext{MAE} = rac{1}{n} \sum_{i=1}^n \ y_i - \hat{y}_i\ $
R^2分 数	$ R^2 = 1 - \frac{\sum_{i=1}^{n}(y_i - hat\{y\}_i)^2}{\sum_{i=1}^{n}(y_i - hat\{y\})^2} $	$R^2 = 1 - rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - ar{y})^2}$

高级统计与机器学习概念

信息论

符号	LaTeX	读法	含义
H(X)	H(X)	X的熵	随机变量X的不确定性度量, $H(X) = -\sum_x P(x) \log P(x)$
H(X Y)	H(X\ Y)	X给定Y的 条件熵	$H(X\ Y) = -\sum_{x,y} P(x,y) \log P(x\ y)$
I(X;Y)	I(X;Y)	X和Y的互 信息	$I(X;Y) = H(X) - H(X\ Y) = H(Y) - H(Y\ X)$
$KL(P\ Q)$	KL(P\ Q)	P和Q的 KL散度	$KL(P\ Q) = \sum_x P(x) \log rac{P(x)}{Q(x)}$
$JS(P\ Q)$	JS(P\ Q)	P和Q的JS 散度	$JS(P\ Q)=rac{1}{2}KL(P\ M)+rac{1}{2}KL(Q\ M)$,其中 $M=rac{1}{2}(P+Q)$

贝叶斯方法

符号	LaTeX	读法	含义
$P(heta \ D)$	P(\theta\ D)	后验概率	给定数据D的参数θ的概率
$P(D\ heta)$	P(D\ \theta)	似然函数	给定参数θ观测到数据D的概率
$P(\theta)$	P(\theta)	先验概率	参数0的先验信念
P(D)	P(D)	边际似然/证据	数据的边际概率, $P(D) = \int P(D \theta)P(\theta)d\theta$

贝叶斯定理:

$$P(heta|D) = rac{P(D| heta)P(heta)}{P(D)}$$

最优化理论

符号	LaTeX	读法	含义
$\nabla f(x)$	\nabla f(x)	f的梯度	函数f在点x处的梯度向量
$ abla^2 f(x)$	\nabla^2 f(x)	的海森矩 阵	函数f在点x处的二阶导数 矩阵
$rac{\partial f}{\partial x_i}$	<pre>\frac{\partial f}{\partial x_i}</pre>	f对xi的偏 导数	函数f对变量xi的偏导数
$rg \min_x f(x)$	\arg\min_x f(x)	的最小值 点	使函数f取最小值的变量x 的值
$\operatorname{argmax}_x f(x)$	\arg\max_x f(x)	的最大值 点	使函数f取最大值的变量x 的值

聚类与降维

符号/术语	LaTeX/描述	含义
K-means	K均值聚类	将数据集分为K个簇, 最小化样本到簇中心的 距离平方和
$J = \sum_{j=1}^k \sum_{i: c_i = j} \ \ x_i - \mu_j\ \ ^2$	<pre>J = \sum_{j=1}^{k}\sum_{i:c_i=j} \ \ x_i - \mu_j\ \ ^2</pre>	K-means的目标函 数,最小化样本点到各 自簇中心的距离平方和
PCA	主成分分析	通过线性投影减少数据 维度的技术
SVD	奇异值分解	将矩阵分解为 $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ 的矩阵分解方法
t-SNE	t-分布随机邻域嵌入	非线性降维技术,保持 数据点之间的相似性

高级机器学习模型

支持向量机(SVM)

支持向量机的优化目标:

 $\min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2$ subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall i$

带软边界的SVM (引入松弛变量):

$$\begin{aligned} & \min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ & \text{subject to } y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \xi_i \ge 0, \forall i \end{aligned}$$

核函数:

核函数	LaTeX	含义
线性核	<pre>K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T\mathbf{x}_j</pre>	$K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{x}_i^T\mathbf{x}_j$
多项式核	$K(\mathbb{x}_i, \mathbb{x}_j) = (\mathbb{x}_j + r)^d$	$K(\mathbf{x}_i,\mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d$
RBF核 (高斯 核)		$K(\mathbf{x}_i,\mathbf{x}_j) = \exp(-\gamma \ \ \mathbf{x}_i - \mathbf{x}_j\ \ ^2)$
Sigmoid 核	$K(\mathbb{x}_i, \mathbb{x}_j) = \\ \tanh(\mathbb{x}_j + r)$	$K(\mathbf{x}_i,\mathbf{x}_j) = anh(\gamma \mathbf{x}_i^T \mathbf{x}_j + r)$

决策树与随机森林

术语	描述	公式
信息増益	特征分裂前后熵的减少	$IG(S,A) = H(S) - \sum_{v \in Values(A)} rac{\ S_v\ }{\ S\ } H(S_v)$
基尼不纯度	衡量节点纯度的指标	$Gini(S) = 1 - \sum_{i=1}^c p_i^2$
随机森林	多个决策树的集成方法	通过投票或平均合并多个树的预测结果

深度学习高级概念

术语	描述	相关公式
反向传播	计算神经网络梯度的算法	$rac{\partial L}{\partial w_{ij}^{(l)}} = a_j^{(l-1)} \delta_i^{(l)}$
Dropout	防止过拟合的正则化技术	训练时随机使部分神经元失活
BatchNorm	批量归一化	$\hat{x}=rac{x-\mu_B}{\sqrt{\sigma_B^2+\epsilon}}$
Adam优化器	自适应学习率优化算法	结合动量和RMSProp的思想

强化学习

符号	LaTeX	含义
S	S	状态空间
A	A	动作空间
R	R	奖励函数, $R:S imes A imes S o \mathbb{R}$
γ	\gamma	折扣因子, $0 \le \gamma \le 1$
π	\pi	策略, $\pi:S o A$
$V^{\pi}(s)$	V^{\pi}(s)	状态价值函数, $V^\pi(s)=\mathbb{E}_\pi[\sum_{t=0}^\infty \gamma^t R_{t+1}\ S_t=s]$
$Q^{\pi}(s,a)$	Q^{\pi}(s, a)	动作价值函数, $Q^\pi(s,a)=\mathbb{E}_\pi[\sum_{t=0}^\infty \gamma^t R_{t+1}\ S_t=s,A_t=a]$
Bellman方 程	-	$V^{\pi}(s) = \sum_{a} \pi(a\ s) \sum_{s'} P(s'\ s,a) [R(s,a,s') + \gamma V^{\pi}(s')]$

自然语言处理中的概念

术语	描述	相关公式
TF-IDF	词频-逆文档频率	$ ext{TF-IDF}(t,d,D) = ext{TF}(t,d) imes ext{IDF}(t,D)$
Word2Vec	词嵌入模型	将单词映射到连续向量空间
RNN	循环神经网络	$h_t = f(h_{t-1}, x_t)$
LSTM	长短期记忆网络	解决RNN中的长期依赖问题的特殊RNN结构
Transformer	基于注意力机制的模型架构	$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(rac{QK^T}{\sqrt{d_k}})V$
BERT	双向Transformer编码表示	预训练语言模型

常用数学函数和符号

符号	LaTeX	读法	含义
$\sum_{i=1}^n x_i$	\sum_{i=1}^{n} x_i	x_i从1到n的求和	对i从1到n的x_i求和
$\prod_{i=1}^n x_i$	\prod_{i=1}^{n} x_i	x_i从1到n的连乘	对i从1到n的x_i求乘积
$\lim_{x o a}f(x)$	\lim_{x \to a} f(x)	x趋向于a时f(x)的极限	当x接近a时f(x)的极限值

符号	LaTeX	读法	含义
$\int_a^b f(x)dx$	\int_a^b f(x) dx	f(x)从a到b的定 积分	函数f(x)在区间[a,b]上的定积 分
$\frac{df}{dx}$	\frac{df}{dx}	f对x的导数	函数f关于变量x的导数
$\frac{\partial f}{\partial x}$	<pre>\frac{\partial f} {\partial x}</pre>	f对x的偏导数	多变量函数f关于变量×的偏导数
∇f	\nabla f	的梯度	函数的梯度向量,包含所有 偏导数
∞	\infty	无穷大	表示无限大的数学符号
\approx	\approx	约等于	表示近似相等
\propto	\propto	正比于	表示两个量成正比关系
\sim	\sim	服从/分布于	表示随机变量服从某分布
\overline{x}	\overline{x}	x的均值	变量x的平均值
\hat{y}	\hat{y}	y帽	预测值或估计值y

时间序列分析

符号/术语	LaTeX/描述	含义
AR(p)	自回归模型	$X_t = c + \sum_{i=1}^p \phi_i X_{t-i} + arepsilon_t$
MA(q)	移动平均模型	$X_t = \mu + arepsilon_t + \sum_{i=1}^q heta_i arepsilon_{t-i}$
ARMA(p,q)	自回归移动平均模型	结合AR和MA模型的时间序列模型
ARIMA(p,d,q)	自回归积分移动平均模型	包含差分操作的ARMA模型
ACF	自相关函数	$ ho(k)=rac{\gamma(k)}{\gamma(0)}$
PACF	偏自相关函数	去除中间变量影响后的自相关

模型选择与交叉验证

术语	描述	相关公式
k折交叉验证	将数据分成k份,轮流使用其中一份作为 测试集	-
留一法交叉验证 (LOOCV)	每次使用一个样本作为测试集的特殊交叉 验证	-
网格搜索	通过遍历参数可能值的组合来寻找最优参 数	-
AIC	赤池信息准则	$ ext{AIC} = 2k - 2\ln(\hat{L})$
BIC	贝叶斯信息准则	$\mathrm{BIC} = k \ln(n) - 2 \ln(\hat{L})$
早停法	根据验证集性能提前结束训练的技术	-

异常检测与离群值处理

术语	描述	相关公式/方法
Z-score	标准分数	$z=rac{x-\mu}{\sigma}$
IQR	四分位距	$\mathrm{IQR} = Q_3 - Q_1$
离群值判 定	基于IQR的常用判定规则	当 $x < Q_1 - 1.5 imes \mathrm{IQR}$ 或 $x > Q_3 + 1.5 imes \mathrm{IQR}$ 时,认为x是离群值
单类 SVM	用于异常检测的支持向量机 变体	-
隔离森林	基于树的异常检测算法	根据样本被隔离的难易程度来判断异常
DBSCAN	基于密度的聚类方法,可用 于异常检测	-

因果推断

术语	描述	相关概念
因果图	有向无环图(DAG),表示变量间的因果关系	箭头表示因果方向
干预	do(X=x)	强制将X设为特定值x的操作
反事实	"如果会怎样"	假设条件与实际情况不同时的结果
混淆因素	同时影响处理变量和结果变量的变量	-
工具变量	帮助识别因果效应的变量	满足特定独立性条件的变量
倾向得分	接受处理的条件概率	P(T=1 X=x)

多臂老虎机与在线学习

术语	描述	相关算法/公式
探索-利用权	在已知策略(利用)和尝试新策略(探索)之间的平衡	-
ε-贪心	以概率ε随机选择动作,以概率1-ε选择 当前最优动作	-
UCB算法	置信上界算法	$a_t = rg \max_a \left(Q_t(a) + c \sqrt{rac{\ln t}{N_t(a)}} ight)$
Thompson 采样	基于后验概率抽样来选择动作	-
再惩罚算法	通过计算最大遗憾来更新动作选择概率	-

元学习与迁移学习

术语	描述	常见方法
迁移学习	将一个任务学到的知识应用到另一个相关任务	微调、特征提取
领域适应	处理源域和目标域分布不同的问题	领域对抗网络
元学习	学习如何学习的方法	MAML、Reptile
少样本学习	从少量样本中学习的能力	原型网络、匹配网络
零样本学习	识别训练中未见过的类别	语义嵌入

数据预处理与特征工程

术语	描述	方法/公式
标准化	将特征缩放到均值为0,标准差为1	$z = rac{x-\mu}{\sigma}$
归一化	将特征缩放到[0,1]区间	$x' = rac{x - \min(x)}{\max(x) - \min(x)}$
独热编码	将类别变量转换为二进制向量	-
特征选择	选择最相关的特征子集	过滤法、包装法、嵌入法
主成分分析(PCA)	降维技术,保留最大方差方向	通过特征值分解协方差矩阵
特征交叉	结合两个或多个特征创建新特征	如x1×x2

概率图模型

术语	描述	相关概念
贝叶斯网络	有向无环图表示的概率模型	条件独立性
马尔可夫随机场	无向图表示的概率模型	团、势函数
隐马尔可夫模型(HMM)	观测值依赖于隐藏状态的概率模型	前向-后向算法
变分推断	近似计算复杂后验分布的方法	ELBO、KL散度
消息传递	在图模型中计算边缘概率的算法	信念传播、因子图

多目标优化

术语	描述	相关概念
帕累托最优	不能在不损害至少一个目标的情况下改进任何目标 的解	帕累托前沿
加权和法	将多个目标函数加权组合成单一目标	$f(x) = \sum_{i=1}^m w_i f_i(x)$
约束法	优化一个目标,将其他目标作为约束	ε-约束法
进化多目标优 化	使用进化算法求解多目标问题	NSGA-II、MOEA/D

常见的数学错误与术语

术语	描述	正确理解
相关性与 因果性	相关不意味着因果	观察到的相关性可能由第三个变量引起或纯属巧合
过拟合与 欠拟合	模型复杂度与泛化能 力的权衡	过拟合:模型过于复杂,捕捉噪声;欠拟合:模型过于简单,不能捕捉数据模式
偏差-方差 权衡	模型偏差与方差之间 的权衡关系	总误差 = 偏差² + 方差 + 不可约误差
P值的误 解	P值不是假设为真的概 率	P值是在原假设为真的条件下,观察到当前或更极端结果 的概率

推荐系统相关概念

术语	描述	常用方法
协同过滤	基于用户-物品交互的推荐方法	基于用户的协同过滤、基于物品的协同过滤
内容过滤	基于物品特征的推荐方法	TF-IDF、主题模型
矩阵分解	将用户-物品交互矩阵分解为低维表 示	SVD、NMF
冷启动问 题	对新用户或新物品进行推荐的挑战	混合方法、基于内容的推荐

计算复杂度

符号	LaTeX	含义	例子
O(f(n))	O(f(n))	大O符号,表示算法复杂度 的上界	O(n²)表示算法最坏情况下复杂度 不超过n的平方
$\Omega(f(n))$	\Omega(f(n))	大Omega符号,表示算法 复杂度的下界	Ω(n)表示算法最好情况下复杂度 至少是n
$\Theta(f(n))$	\Theta(f(n))	大Theta符号,表示算法复 杂度的紧确界	Θ(n)表示算法复杂度与n成正比

- 基本数学符号 (集合、逻辑、向量、矩阵)
- 概率论与统计学基础概念
- 常见概率分布及其表示
- 机器学习中的损失函数和评估指标
- 梯度下降及其变体
- 神经网络相关概念和公式
- 支持向量机、决策树、随机森林等经典算法
- 信息论与贝叶斯方法
- 最优化理论与聚类降维
- 深度学习高级概念
- 强化学习与自然语言处理
- 时间序列分析、异常检测和因果推断
- 多目标优化与元学习
- 计算复杂度表示