

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

Departamento de Matemática

Profesores: Constanza del Campo, Camilo Sánchez

AYUDANTES: AGUSTÍN GILBERT, MARTINA RUZ, OMAR NEYRA

Introducción al Álgebra y Geometría - MAT1124 Ayudantía 1

12 de Marzo, 2024

Ejercicio 1: Disponemos de un set de tarjetas. Por un lado son de algún color y por el otro tienen escrita una palabra. Considere la proposición siguiente:

"Si un lado de la tarjeta es rojo, entonces la palabra al otro lado es HOLA"

En la mesa hay 4 tarjetas, una roja, una verde, una que dice HOLA y la otra que dice CHAO. ¿Cúal(es) de las tarjetas es necesario dar vuelta para verificar si la proposición es verdadera?

Ejercicio 2: Sean p y q proposiciones, definimos el operador "o exclusivo", denotado por $\underline{\vee}$, por:

p	q	$p\underline{\lor}q$
V	V	F
V	F	V
F	V	V
F	F	F

Encuentre una proposición compuesta de p y q, utilizando sólo \land, \lor y \neg , de tal modo que sea equivalente a $\underline{\lor}$. Verifique que sea equivalente utilizando las tablas de verdad.

Ejercicio 3: Considere la siguiente proposición

M: "Si n es un múltiplo de 9 o mayor que 24 entonces se cumplen las siguientes proposiciones

- lacktriangledown n se escribe como suma de 6's y 7's
- \blacksquare n es impar"

Sin usar tablas de verdad, demuestre que:

 $\neg M \equiv$ "n es múltiplo de 9 o mayor que 24, y n no se escribe como suma de 6's y 7's o n es par"

(Idea: escriba cada parte de M como proposiciones p, q, r, s)

Ejercicio 4: Se define la proposición compuesta

$$M:(p\vee q)\to (\neg p\wedge r)$$

Sin usar las tablas de verdad, demuestre que

$$\neg M \equiv p \lor (q \land \neg r)$$

Ejercicio 5: Demuestre sin usar tablas de verdad que la siguiente proposición es tautología:

$$[\{(\neg p \lor [q \land \neg r]) \land [p \land (\neg q \lor r)]\} \lor \{(p \land q \land \neg r) \lor [r \land (\neg r \lor q) \land p]\}] \Leftrightarrow (p \land q)$$

(Idea: Demuestre que la expresión complicada de la izquierda puede convertirse, usando solo teoremas lógicos, en la expresión simple de la derecha para así establecer una equivalencia entre ambas proposiciones).

Ejercicio 6: (Propuesto) Sea C un conjunto que contiene operadores binarios, decimos que C es funcionalmente completo, si utilizando las proposiciones p y q, se pueden generar todas las tablas de verdad (i.e, utilizando solo los simbolos de C, se pueden generar todos los conectores binarios posibles, definiendo cualquier tipo de relación entre p y q). El ejemplo más sencillo de un conjunto funcionalmente completo es $C = \{\land, \lor, \neg\}$ (no es necesario que demuestre esto, sin embargo, lo puede intentar como tarea).

- 1. Demuestre que el conjunto $\{\land, \neg\}$ es funcionalmente completo, esto es, que es posible expresar \lor en términos de \land y \neg .
- 2. Demuestre que NOR (que es la negación del \vee , y denotado como \downarrow), es funcionalmente completo, esto es, que \vee , \neg y \wedge pueden ser expresados utilizando únicamente \downarrow .