LECTURE 14, QUANTITATIVE OPPENHEIM II

RUNLIN ZHANG

CONTENTS

1.	Outline of the proof	1
2.	Wavefront lemma	3
3.	The height function	4
3.1.	. Preparations	4
3.2	. The proof	5
Ref	ferences	6

Main reference: [EMM98].

If you are new to this circle of ideas, a first example to keep in mind maybe : $\mathbf{a}_t := \operatorname{diag}(e^t, e^{-t})$, $K := \operatorname{SO}_2(\mathbb{R})$, $X = \operatorname{X}_2$. Most arguments are trivialized here, yet you could see the main idea.

Notations

- $Q_0(x_1, x_2, x_3, x_4) := 2x_1x_4 + x_2^2 + x_3^2$ real quadratic form of signature (3, 1) on \mathbb{R}^4 .
- Let $(\mathbf{e}_1,...,\mathbf{e}_4)$ be the standard basis of \mathbb{R}^4 ; and for a vector v, define its coefficients by $v = \sum (v)_i \mathbf{e}_i$ and we also write $v = ((v)_1,...,(v)_4)$.
- Let $(\mathbf{f}_1,...,\mathbf{f}_4)$ be another ONB(=orthogonal normal basis) defined by $\mathbf{f}_2 = \mathbf{e}_2, \mathbf{f}_3 = \mathbf{e}_3$ and $\mathbf{f}_1 = \frac{\mathbf{e}_1 + \mathbf{e}_4}{\sqrt{2}}, \mathbf{f}_4 = \frac{\mathbf{e}_1 \mathbf{e}_4}{\sqrt{2}}$. If $v = \sum a_i \mathbf{f}_i$, we also write $v = (a_1,...,a_4)_{\mathbf{f}}$.
- One can verify that $Q_0((x_1,...,x_4)_{\mathbf{f}}) = x_1^2 + x_2^2 + x_3^2 x_4^2$.
- $K := SO_{Q_0}(\mathbb{R}) \cap SO_4(\mathbb{R})$.
- $\mathbf{a}_t := \operatorname{diag}(e^{-t}, 1, 1, e^t)$, contained in $SO_{Q_0}(\mathbb{R})$.

1. Outline of the proof

Recall by last lecture, it remains to show the following

Theorem 1.1. Let f be a compactly supported continuous function on \mathbb{R}^4 and let $\widetilde{f}: X_4 \to \mathbb{R}$ be its Siegel transform. Let $g_0 \in G$ be such that $Q_0 \circ g_0$ is irrational. Then

$$\lim_{t \to +\infty} \int_K \widetilde{f}(\mathbf{a}_t k g_0 \mathbb{Z}^4) \widehat{\mathbf{m}}_K(k) = \int \widetilde{f}(x) \widehat{\mathbf{m}}_{X_4}(x).$$

As we explained, the difficulty here is that \widetilde{f} is usually an integrable but unbounded function. And it suffices to show that the contribution of the part outside a large compact set is small. The following observation reduces the general task to a rather special function.

Date: 2022.05.

1

Definition 1.2. For a lattice $\Lambda \leq \mathbb{R}^4$, let

$$\mathrm{ht}_{\infty}(\Lambda) := \max_{i=1,\dots,3} \sup_{\Delta \in \mathrm{Prim}^i(\Lambda)} \frac{1}{\|\Delta\|} = \max_{i=1,\dots,3} (\mathrm{sys}^{(i)}(\Lambda))^{-1}.$$

Lemma 1.3. Let f be a bounded, non-negative function with compact support on \mathbb{R}^4 . Then there exists a constant $C_1 = C_1(f) > 1$ such that

$$\widetilde{f}(\Lambda) \leq C_1 \cdot \operatorname{ht}_{\infty}(\Lambda), \ \forall \Lambda \in X_4.$$

Proof is left as an exercise.

Theorem 1.4. For every $\varepsilon > 0$, there exists a compact set C_{ε} of X_4 such that for all t > 0,

$$\int \left(\operatorname{ht}_{\infty} \cdot 1_{X_4 \setminus C_{\varepsilon}}\right) (\mathbf{a}_t k g_0 \mathbb{Z}^4) \widehat{\mathbf{m}}_K(k) \leq \varepsilon.$$

*Proof of Thm.***1.1** assuming Thm.**1.4**. Without loss of generality assume $f \ge 0$.

Fix $\varepsilon > 0$, choose $C_{\varepsilon} \subset X_4$ as in Thm.1.4. Choose a compactly supported continuous function $1 \ge \varphi_{\varepsilon} \ge 1_{C_{\varepsilon}}$. Thus by equidistribution theorem obtained in Lec.12

$$\lim_{t\to +\infty} \int \left(\widetilde{f}\cdot \varphi_\varepsilon\right) (\mathbf{a}_t k g_0 \mathbb{Z}^4) \widehat{\mathbf{m}}_K(k) = \int \left(\widetilde{f}\cdot \varphi_\varepsilon\right) (x) \widehat{\mathbf{m}}_{X_4}(x).$$

On the other hand by Thm.1.4 and Lem.1.3

$$\limsup_{t \to +\infty} \int \left(\widetilde{f} \cdot (1 - \varphi_{\varepsilon}) \right) (\mathbf{a}_{t} k g_{0} \mathbb{Z}^{4}) \widehat{\mathbf{m}}_{K}(k) \leq \limsup_{t \to +\infty} \int \left(C_{1} \operatorname{ht}_{\infty} \cdot 1_{X_{4} \setminus C_{\varepsilon}} \right) (\mathbf{a}_{t} k g_{0} \mathbb{Z}^{4}) \widehat{\mathbf{m}}_{K}(k)$$

$$\leq C_{1} \varepsilon.$$

Combining both and letting $\varepsilon \to 0$ we are done.

In fact, something stronger than Thm.1.4 will be proved.

Proposition 1.5. For $\delta \in (0,1)$ (we only need for some $\delta > 0$) and $\Lambda_0 \in X_4$, there exists $C_2 = C_2(\delta, \Lambda_0) > 0$ such that for all t > 0

$$\int \operatorname{ht}_{\infty}^{1+\delta}(\mathbf{a}_t k.\Lambda_0)\widehat{\mathbf{m}}_K(k) \leq C_2.$$

This will be deduced from the following two propositions.

Proposition 1.6. For every $\varepsilon > 0$, there exist $C_4(\varepsilon) > 1$ and $t_0(\varepsilon) > 0$ such that for all $\Lambda \in X_4$ (this is important!), we have

$$\int \operatorname{ht}_{\delta}^{\operatorname{new}}(\mathbf{a}_{t_0(\varepsilon)}k.\Lambda)\widehat{\mathbf{m}}_K(k) \leq \varepsilon \operatorname{ht}_{\delta}^{\operatorname{new}}(\Lambda) + C_4(\varepsilon)$$

where $\alpha_{\delta}: X_4 \to \mathbb{R}_{>0}$ is some function satisfying

$$C_5^{-1} \operatorname{ht}_{\infty}^{1+\delta} \le \operatorname{ht}_{\delta}^{\text{new}} \le C_5 \operatorname{ht}_{\infty}^{1+\delta}$$
.

Actually, we will find constants $c_0 > 0$ and $\kappa_i > 0$ for i = 0, 1, 2, 3, 4 such that

$$\operatorname{ht}^{\text{new}}_{\delta}(\Lambda) = \sum_{i=1,2,3} c_0^{\kappa_i} (\operatorname{sys}^{(i)}(\Lambda))^{-1-\delta}.$$

To yield the result by applying this operator repeatedly, we need the following:

Proposition 1.7. For every open neighborhood V of identity in H, there exists a neighborhood U of identity in K such that for all $t, s \ge 0$

$$\mathbf{a}_t U \mathbf{a}_s \subset K \cdot V \cdot \mathbf{a}_{t+s} \cdot K$$
.

Proof of Prop. 1.5. From the description of α_{δ} as in Prop. 1.6, we can find V_0 , an open neighborhood of identity in H, such that

$$\frac{1}{2}\operatorname{ht}^{\mathrm{new}}_{\delta}(\Lambda) \leq \operatorname{ht}^{\mathrm{new}}_{\delta}(\nu.\Lambda) \leq 2\operatorname{ht}^{\mathrm{new}}_{\delta}(\Lambda), \ \forall \ \nu \in V_0, \ \Lambda \in X_4.$$

Find U_0 by Prop.1.7. Let $\varepsilon := \frac{1}{4}\widehat{\mathbf{m}}_K(U_0)$. Applying Prop.1.6 we get some C_4 , t_0 . Let $C_6 :=$ $\frac{C_4}{\widehat{\mathfrak{m}}_K(U_0)}$. Fix $\Lambda_0 \in X_4$, define a continuous function $\phi: G \to \mathbb{R}_{>0}$ by

$$\phi(g) := \int \operatorname{ht}_{\delta}^{\operatorname{new}}(gk.\Lambda_0) \widehat{\mathbf{m}}_K(k).$$

Thus it suffices to show that $\phi(\mathbf{a}_t)$, as t varies in $(0, +\infty)$, is bounded by Prop. 1.6.

The function ϕ enjoys the following properties

- 1. ϕ is bi-K-invariant;
- 2. for every $v \in V_0$ and $g \in G$, $\frac{1}{2}\phi(g) \le \phi(vg) \le 2\phi(g)$.

Combined with Prop.1.7, we see that for all $t \ge t_0$,

$$\phi(\mathbf{a}_{t_0}k\mathbf{a}_{t-t_0}) \geq \frac{1}{2}\phi(\mathbf{a}_t).$$

Also observe that

$$\begin{split} \frac{1}{\widehat{\mathbf{m}}_K(U_0)} \int_{U_0} \phi(\mathbf{a}_{t_0} \, kg) \widehat{\mathbf{m}}_K(k) &\leq \frac{1}{\widehat{\mathbf{m}}_K(U_0)} \int_K \phi(\mathbf{a}_{t_0} \, kg) \widehat{\mathbf{m}}_K(k) \\ &\leq \frac{1}{\widehat{\mathbf{m}}_K(U_0)} \cdot \left(\frac{1}{4} \widehat{\mathbf{m}}_K(U_0) \phi(g) + C_4\right) \\ &= \frac{1}{4} \phi(g) + C_6. \end{split}$$

Therefore, for $t > t_0$,

$$\begin{aligned} \phi(\mathbf{a}_{t}) &= \frac{1}{\widehat{\mathbf{m}}_{K}(U_{0})} \int_{U_{0}} \phi(\mathbf{a}_{t}) \widehat{\mathbf{m}}_{K}(k) \\ &\leq 2 \frac{1}{\widehat{\mathbf{m}}_{K}(U_{0})} \int_{U_{0}} \phi(\mathbf{a}_{t_{0}} k \mathbf{a}_{t-t_{0}}) \widehat{\mathbf{m}}_{K}(k) \\ &\leq \frac{1}{2} \phi(\mathbf{a}_{t-t_{0}}) + C_{6}. \end{aligned}$$

Now, for t > 0, choose the unique $n_t \in \mathbb{Z}_{\geq 0}$ such that $t' := t - n_t t_0 \in (0, t_0]$. By applying the above inequality n_t times we get

$$\phi(\mathbf{a}_t) \le \frac{1}{2^{n_t}} \phi(\mathbf{a}_{t'}) + C_6(1 + \frac{1}{2} + (\frac{1}{2})^2 + ...)$$

Hence $\phi(\mathbf{a}_t)$, as t varies in $(0, +\infty)$, is bounded.

2. Wavefront Lemma

We explain how Prop. 1.7 is proved.

Proof. I am pretending $K = SO_4(\mathbb{R})$ here. The justification of the arguments here without this false assumption is left to you.

Every matrix g of determinant one can be written as

$$g = k_1 dk_2, k_i \in SO_n(\mathbb{R}), d$$
 is a diagonal matrix.

The order of the diagonal entries of d can be permuted by changing k_1, k_2 . The middle matrix is uniquely determined if we further assume

$$d = \text{diag}(d_1, ..., d_n), \text{ with } d_1 \ge d_2 \ge ... \ge d_n > 0.$$

We let $\alpha_i(g) := d_1 \cdot ... \cdot d_i$. It suffices to show that, when $k \in K$ is close to identity, for every i, $\alpha_i(\mathbf{a}_{t_1} k \mathbf{a}_{t_2})$ is closed to $\alpha_i(\mathbf{a}_{t_1 + t_2})$ multiplicatively.

To do this, note that

$$\alpha_i(g) = \sup_{\mathbf{v} \in \wedge^i \mathbb{R}^n, \, \|\mathbf{v}\| = 1} \left\| g.\mathbf{v} \right\| = \sup_{\mathbf{v}, \mathbf{w} \in \wedge^i \mathbb{R}^n, \, \|\mathbf{v}\| = \|\mathbf{w}\| = 1} \left| \langle g.\mathbf{v}, \mathbf{w} \rangle \right|.$$

For $\varepsilon \in (0,1)$, choose $U = U(\varepsilon) \subset K$ such that for all i,

$$|\langle u.e_1 \wedge ... \wedge e_i, e_1 \wedge ... \wedge e_i \rangle| \ge \frac{1}{1+\varepsilon}.$$

Now take $u \in U$. On the one hand,

$$\begin{aligned} \left| \langle \mathbf{a}_{t_1} u \mathbf{a}_{t_2}.\mathbf{v}, \mathbf{w} \rangle \right| &= \left| \langle u \mathbf{a}_{t_2}.\mathbf{v}, \mathbf{a}_{t_1}.\mathbf{w} \rangle \right| \\ &\leq \left\| \mathbf{a}_{t_2}.\mathbf{v} \right\| \cdot \left\| \mathbf{a}_{t_1}.\mathbf{w} \right\| \leq \alpha_i (\mathbf{a}_{t_1 + t_2}). \end{aligned}$$

On the other hand,

$$\begin{aligned} & \left| \langle \mathbf{a}_{t_1} u \mathbf{a}_{t_2} . e_1 \wedge ... \wedge e_i, e_1 \wedge ... \wedge e_i \rangle \right| \\ = & \alpha_i (\mathbf{a}_{t_1 + t_2}) \left| \langle u. e_1 \wedge ... \wedge e_i, e_1 \wedge ... \wedge e_i \rangle \right| \ge \frac{1}{1 + \varepsilon} \alpha_i (\mathbf{a}_{t_1 + t_2}). \end{aligned}$$

So we are done.

3. The height function

Prop. 1.6 relies on the following proposition on representations. It is here that we are avoiding the case of signature (2,1) and (2,2).

Proposition 3.1. For every $\varepsilon > 0$ there exists $t_1 = t_1(\varepsilon) > 0$ such that for all $t \ge t_1$, $\delta \in (0,1)$ and for all pure wedges $\mathbf{v}_{\neq 0} \in \wedge^i \mathbb{R}^n$ (n = 4 here), we have

$$\int \left\| \mathbf{a}_t k.\mathbf{v} \right\|^{-1-\delta} \widehat{\mathbf{m}}_K(k) \leq \varepsilon \left\| \mathbf{v} \right\|^{-1-\delta}.$$

Proof. Omitted for now.

A "pure wedge" (also called "decomposable vector") refers to a vector $\mathbf{v} \in \wedge^i \mathbb{R}^n$ that can be written as $v_1 \wedge ... \wedge v_k$ for some $v_i \in \mathbb{R}^n$.

3.1. **Preparations.** Fix $\varepsilon \in (0,1)$, find $t_1(\varepsilon)$ as in Prop.3.1. Find $C_7 = C_7(\varepsilon) > 1$ such that

$$C_7^{-1} \|\mathbf{v}\| \le \|\mathbf{a}_{t_1}.\mathbf{v}\| \le C_7 \|\mathbf{v}\|, \ \forall \mathbf{v} \in \sqcup \wedge^i \mathbb{R}^4.$$

Fix a strictly convex function $\kappa > 0$ on [0,4]. And find $C_8 > 1$ such that

$$\kappa_j \ge \frac{\kappa_{j-i} + \kappa_{j+i}}{2} + C_8^{-1}; \quad \kappa_0 = \kappa_4 = 1$$

for all $j \in \{1,2,3\}$ and $j \pm i \in \{0,1,2,3,4\}$.

Choose $c_0 \in (0,1)$ small enough, depending on ε ,

$$c_0^{2C_8^{-1}} \le C_7^2 c_0^{2C_8^{-1}} \le (\varepsilon C_7^{-1})^{100}.$$

Define

$$\operatorname{ht}_{\delta}^{\text{new}}(\Lambda) = \sum_{i=1,2,3} c_0^{\kappa_i} (\operatorname{sys}^{(i)}(\Lambda))^{-1-\delta}. \tag{1}$$

3.2. **The proof.** For each l = 1, 2, 3 find $\Delta_1^{(l)} \in \text{Prim}^l(\Lambda)$ such that $\text{sys}^{(l)}(\Lambda) = \|\Delta_1^{(l)}\|$.

3.2.1. *Good indices*. We define $Good(\Lambda) \subset \{1,2,3\}$ by

$$l \in \operatorname{Good}(\Lambda) \iff \forall \Delta \in \operatorname{Prim}^{l}(\Lambda) \setminus \Delta_{1}^{(l)}, C_{7}^{2} \|\Delta\|^{-1} < \operatorname{sys}^{(l)}(\Lambda)^{-1}. \tag{2}$$

Thus for $l \in \text{Good}(\Lambda)$, $\Delta \in \text{Prim}^l(\Lambda) \setminus \Delta_1^{(l)}$ and $k \in K$,

$$\|\mathbf{a}_{t_{1}} k.\Delta\|^{-1-\delta} \leq C_{7}^{1+\delta} \|\Delta\|^{-1-\delta} < C_{7}^{-1-\delta} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta} = C_{7}^{-1-\delta} \|\Delta_{1}^{(l)}\|^{-1-\delta} \leq \|\mathbf{a}_{t_{1}} k.\Delta_{1}^{(l)}\|^{-1-\delta}$$

$$\implies \forall k \in K, \operatorname{sys}^{(l)}(\mathbf{a}_{t_{1}} k.\Lambda)^{-1-\delta} = \|\mathbf{a}_{t_{1}} k.\Delta_{1}^{(l)}\|^{-1-\delta}.$$
(3)

This implies that

$$\int c_0^{\kappa_l} \operatorname{sys}^{(l)}(\mathbf{a}_{t_1} k.\Lambda)^{-1-\delta} \widehat{\mathbf{m}}_K(k) = \int c_0^{\kappa_l} \|\mathbf{a}_{t_1} k.\Delta_1^{(l)}\|^{-1-\delta} \widehat{\mathbf{m}}_K(k)
\leq \varepsilon c_0^{\kappa_l} \|\mathbf{a}_{t_1} k.\Delta_1^{(l)}\|^{-1-\delta}
= \varepsilon \cdot c_0^{\kappa_l} \operatorname{sys}^{(l)}(\mathbf{a}_{t_1} k.\Lambda)^{-1-\delta}.$$
(4)

3.2.2. Bad indices. $Bad(\Lambda) := \{1,2,3\} \setminus Good(\Lambda)$. In other words, we can find $\Delta_2^{(l)} \in Prim^l(\Lambda) \setminus \Delta_1^{(l)}$ such that

$$C_7^2 \|\Delta_2^{(l)}\|^{-1} \ge \operatorname{sys}^{(l)} (\mathbf{a}_{t_1} k.\Lambda)^{-1}.$$

Recall the following inequalities

$$\left\|\Delta_1^{(l)}\right\|\cdot\left\|\Delta_2^{(l)}\right\|\geq\left\|\Delta_1^{(l)}\cap\Delta_2^{(l)}\right\|\cdot\left\|\Delta_1^{(l)}+\Delta_2^{(l)}\right\|,$$

from which we deduce that (let $a := \operatorname{rank} \Delta_1^{(l)} - \operatorname{rank} \Delta_1^{(l)} \cap \Delta_2^{(l)}$)

$$c_0^{2\kappa_l} \left\| \Delta_2^{(l)} \right\|^{-1-\delta} \left\| \Delta_2^{(l)} \right\|^{-1-\delta} \leq \left(c_0^{\kappa_{l-a}} \left\| \Delta_1^{(l)} \cap \Delta_2^{(l)} \right\|^{-1-\delta} \right) \cdot \left(c_0^{\kappa_{l+a}} \left\| \Delta_1^{(l)} + \Delta_2^{(l)} \right\|^{-1-\delta} \right) \cdot c_0^{2\kappa_l - \kappa_{l-a} - \kappa_{l+a}}.$$

For the LHS we have

$$C_7^{-4} \left(c_0^{\kappa_l} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta} \right)^2 \le C_7^{-2(1+\delta)} \left(c_0^{\kappa_l} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta} \right)^2 \le \mathrm{LHS}$$

and for the RHS,

$$\mathsf{RHS} \leq \left(c_0^{\kappa_{l-a}} \, \mathsf{sys}^{(l-a)}(\Lambda)^{-1-\delta}\right) \cdot \left(c_0^{\kappa_{l+a}} \, \mathsf{sys}^{(l+a)}(\Lambda)^{-1-\delta}\right) \cdot c_0^{C_8^{-1}}.$$

Since $c_0^{C_8^{-1}} \le \varepsilon^{50} C_7^{-50}$, by combining the above equations we get

$$\left(c_0^{\kappa_l} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta}\right)^2 \leq \varepsilon^{50} C_7^{-46} \left(c_0^{\kappa_{l-a}} \operatorname{sys}^{(l-a)}(\Lambda)^{-1-\delta}\right) \cdot \left(c_0^{\kappa_{l+a}} \operatorname{sys}^{(l+a)}(\Lambda)^{-1-\delta}\right).$$

Thus

$$c_0^{\kappa_l} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta} \le \varepsilon^{20} C_7^{-23} \max_{l'=0,\dots,4} \left\{ c_0^{\kappa_{l'}} \operatorname{sys}^{(l')}(\Lambda)^{-1-\delta} \right\}.$$

Now we choose $l_1 = l_1(\Lambda, \delta)$ such that the maximum of RHS is achieved. Then $l_1 \in \text{Good}(\Lambda) \cup \{0, 4\}$. Also take $l_0 \in \text{Bad}(\Lambda)$. Then for every $k \in K$,

$$\begin{split} c_0^{\kappa_{l_0}} \operatorname{sys}^{(l_0)}(\mathbf{a}_{t_1} k.\Lambda)^{-1-\delta} &\leq C_7^{1+\delta} c_0^{\kappa_{l_0}} \operatorname{sys}^{(l_0)}(\Lambda)^{-1-\delta} \leq \varepsilon^{20} C_7^{-20} c_0^{\kappa_{l_1}} \operatorname{sys}^{(l_1)}(\Lambda)^{-1-\delta} \\ &\leq \varepsilon^{20} C_7^{-18} c_0^{\kappa_{l_1}} \operatorname{sys}^{(l_1)}(\mathbf{a}_{t_1} k.\Lambda)^{-1-\delta}. \end{split}$$

3.2.3. Wrap-up. To save notation define

$$\alpha_l(\Lambda) := c_0^{\kappa_l} \operatorname{sys}^{(l)}(\Lambda)^{-1-\delta}.$$

$$\pi_*(\alpha_l)(\Lambda) := \int \alpha_l(\mathbf{a}_{t_1} k.\Lambda) \widehat{\mathbf{m}}_K(k).$$

So for $l \in Good(\Lambda)$, we have

$$\pi_*(\alpha_l)(\Lambda) \leq \varepsilon \alpha_l(\Lambda).$$

For $l \in \text{Bad}(\Lambda)$, we have $(l_1 = l_1(\Lambda) \text{ as above})$

$$\pi_*(\alpha_l)(\Lambda) \le \varepsilon^{20} C_7^{-18} \pi_*(\alpha_l)(\Lambda).$$

There are two cases.

Case I, $l_1 \in \{0,n\}$. In this case, for all l, $\alpha_l(\Lambda) \leq \max\{c_0^{\kappa_0},c_0^{\kappa_n}\} = c_0$. Thus $\operatorname{ht}_{\delta}^{\operatorname{new}}(\Lambda) \leq 3c_0$. And

$$\pi_*(\operatorname{ht}^{\text{new}}_{\delta})(\Lambda) \le 3c_0C_7^2.$$

Case II, $l_1 \in Good(\Lambda)$.

$$\begin{split} \pi_*(\mathrm{ht}^{\mathrm{new}}_{\delta})(\Lambda) &= \sum \pi_*(\alpha_l)(\Lambda) \\ &\leq \varepsilon \sum_{l \in \mathrm{Good}(\Lambda)} \alpha_l(\Lambda) + \varepsilon^{20} C_7^{-18} \pi_*(\alpha_{l_1})(\Lambda) \\ &\leq \varepsilon \sum_{l \in \mathrm{Good}(\Lambda)} \alpha_l(\Lambda) + \varepsilon^{21} C_7^{-18} \alpha_{l_1}(\Lambda) \\ &\leq 2\varepsilon \sum_{l \in \mathrm{Good}(\Lambda)} \alpha_l(\Lambda) \leq 2\varepsilon \operatorname{ht}^{\mathrm{new}}_{\delta}(\Lambda). \end{split}$$

In either case, the following holds

$$\pi_*(\operatorname{ht}_{\delta}^{\operatorname{new}})(\Lambda) \le 3c_0C_7^2 + 2\varepsilon\operatorname{ht}_{\delta}^{\operatorname{new}}(\Lambda)$$
 (5)

for all $\Lambda \in X_4$. Recall c_0 and C_7 are only dependent on ε .

REFERENCES

[EMM98] Alex Eskin, Gregory Margulis, and Shahar Mozes, *Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture*, Ann. of Math. (2) **147** (1998), no. 1, 93–141. MR 1609447