## **Tema 4: Espais Vectorials**

Bloc 3: Subespais vectorials

- Equacions paramètriques i implícites d'un subespai vectorial
- Subespais vectorials associats a una matriu
- Suma i intersecció de subespais vectorials
- **4** Complements ortogonals en  $\mathbb{R}^n$

# Obtenció d'equacions paramètriques a partir d'un sistema generador

#### Exemple:

Siga el subespai vectorial de  $\mathbb{R}^4$  donat per

$$F = \langle (1,0,-2,4), (3,-2,1,0), (5,-2,-3,8), (2,-2,3,-4) \rangle.$$

Podem trobar una base de F escrivint les coordenades dels vectors per files i escalonant la matriu resultant:

$$\begin{bmatrix} 1 & 0 & -2 & 4 \\ 3 & -2 & 1 & 0 \\ 5 & -2 & -3 & 8 \\ 2 & -2 & 3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & -7 & 12 \\ 0 & 2 & -7 & 12 \\ 0 & 2 & -7 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & -7 & 12 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Per tant, una base de F és

$$\{(1,0,-2,4),(0,2,-7,12)\}.$$

# Obtenció d'equacions paramètriques a partir d'un sistema generador

#### Exemple:

Açò vol dir que tot vector  $(x, y, z, t) \in F$  satisfà la relació:

$$(x, y, z, t) = \lambda_1(1, 0, -2, 4) + \lambda_2(0, 2, -7, 12)$$

per a certs escalars  $\lambda_1, \lambda_2$ . Igualant component a component deduïm unes equacions paramètriques de F:

$$\begin{cases} x = \lambda_1 \\ y = 2\lambda_2 \\ z = -2\lambda_1 - 7\lambda_2 \\ t = 4\lambda_1 + 12\lambda_2 \end{cases}$$
 (1)

amb  $\lambda_1, \lambda_2 \in \mathbb{R}$ .

Les equacions paramètriques ens permeten obtenir les coordenades de tots els vectors del subespai vectorial fent variar un conjunt de paràmetres

## Obtenció d'equacions implícites

#### Exemple:

Un vector  $(x, y, z, t) \in \mathbb{R}^4$  pertany a F si i només si el sistema d'equacions (1) amb incògnites  $\lambda_1, \lambda_2$  és compatible.

Si escalonem la matriu ampliada d'aquest sistema d'equacions obtenim el següent:

$$[A|b] = \begin{bmatrix} 1 & 0 & x \\ 0 & 2 & y \\ -2 & -7 & z \\ 4 & 12 & t \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & x \\ 0 & 2 & y \\ 0 & -7 & 2x + z \\ 0 & -12 & 4x - t \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & x \\ 0 & 2 & y \\ 0 & 0 & 4x + 7y + 2z \\ 0 & 0 & 8x + 12y - 2t \end{bmatrix}$$

El sistema és compatible si i només si rg A = rg[A|b], és a dir:

$$\begin{cases} 4x + 7y + 2z & = 0 \\ 4x + 6y & - t = 0 \end{cases}$$

Així, un vector (x, y, z, y) pertany a F si i només si les coordenades x, y, z, tsatisfan aquestes igualtats, que s'anomenen equacions implícites de F.

Les equacions implícites proporcionen una condició necessària i suficient, en funció només de coordenades, perquè un vector forme part d'un subespai vectorial. Observeu que formen un sistema d'equacions homogeni.

# Obtenció d'equacions paramètriques i d'una base a partir d'equacions implícites

Hem vist que hi ha 3 maneres d'expressar un subespai vectorial:

- a partir d'un sistema generador (o, millor, d'una base)
- a partir d'equacions paramètriques
- a partir d'equacions implícites.

Hem vist com calcular, a partir d'un sistema generador, unes equacions paramètriques i unes implícites:

Sistema generador  $\Rightarrow$  Equacions paramètriques  $\Rightarrow$  Equacions implícites

Anem a estudiar ara el procés invers:

Sistema generador  $\Leftarrow$  Equacions paramètriques  $\Leftarrow$  Equacions implícites

# Obtenció d'equacions paramètriques a partir d'equacions implícites

Les equacions implícites d'un subespai vectorial F no són altra cosa que un sistema homogeni d'equacions lineals tal que F és el conjunt de les seues solucions. Així:

Per a trobar unes equacions paramètriques de  ${\it F}$  només caldrà resoldre el sistema d'equacions donat per les equacions implícites.

#### Exemple:

Considerem el subespai vectorial F de  $\mathbb{R}^3$  següent:

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x_1 - x_2 + x_3 = 0\}.$$

Es tracta ara de resoldre el sistema homogeni amb una equació i 3 incògnites proporcionat per l'equació implícita  $2x_1 - x_2 + x_3 = 0$ . Aïllant una incògnita en funció de les altres dues obtenim, per exemple, les següents equacions paramètriques de F:

$$\begin{cases} x_1 &= \lambda_1 \\ x_2 &= \lambda_2 \\ x_3 &= -2\lambda_1 + \lambda_2 \end{cases} \lambda_1, \lambda_2 \in \mathbb{R}.$$

## Obtenció d'una base a partir d'equacions paramètriques

#### Exemple:

Per a trobar un sistema generador del subespai F només cal escriure les equacions paramètriques

$$\begin{cases} x_1 &= \lambda_1 \\ x_2 &= \lambda_2 \\ x_3 &= -2\lambda_1 + \lambda_2 \end{cases} \lambda_1, \lambda_2 \in \mathbb{R}.$$

en forma vectorial:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ -2\lambda_1 + \lambda_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ 0 \\ -2\lambda_1 \end{bmatrix} + \begin{bmatrix} 0 \\ \lambda_2 \\ \lambda_2 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Açò indica que els vectors  $(x_1, x_2, x_3)$  de F són exactament les combinacions lineals dels vectors (1, 0, -2) i (0, 1, 1). Per tant,

$$S = \{(1,0,-2),(0,1,1)\}$$

és un sistema generador de F i com és linealment independent, és una base de F.

## Bases i equacions d'un subespai vectorial

#### Diagrama resum



- Equacions paramètriques i implícites d'un subespai vectorial
- Subespais vectorials associats a una matriu
- 3 Suma i intersecció de subespais vectorials
- 4 Complements ortogonals en  $\mathbb{R}^n$

## Subespai nucli d'una matriu

### **Propietat**

El conjunt de solucions d'un sistema d'equacions lineals homogeni  $m \times n$  és un subespai vectorial de  $\mathbb{R}^n$  (o  $\mathbb{C}^n$ ) que té com a dimensió el nombre de variables lliures del sistema.

#### Definició

Siga A una matriu  $m \times n$ . S'anomena subespai nucli o subespai nul de A, i el denotarem per Nuc(A) o Nul(A), al conjunt de solucions del sistema d'equacions homogeni amb matriu de coeficients A, és a dir, al següent subespai de  $\mathbb{R}^n$  (o  $\mathbb{C}^n$ ):

$$Nuc(A) = \{ \vec{x} \in \mathbb{R}^n (o \mathbb{C}^n) \mid A\vec{x} = \vec{0} \}.$$

# Subespai fila d'una matriu

#### Definició

Siga A una matriu  $m \times n$ .

• Anomenarem subespai fila de A, i el denotarem per Fil(A) o F(A), al subespai vectorial de  $\mathbb{R}^n$  (o de  $\mathbb{C}^n$ , segons la matriu siga real o complexa) generat pels vectors fila de A.

De manera anàloga es pot parlar del subespai columna d'una matriu A que es denota per Col(A) o C(A).

## Subespais associats a una matriu

#### Exemple:

Siga la matriu

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}.$$

Els subespais associats són els següents:

$$\begin{aligned} \mathsf{Fil}(\mathsf{A}) &= \langle (1,2,3), (4,5,6) \rangle \subseteq \mathbb{R}^3 \\ \mathsf{Nuc}(\mathsf{A}) &= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \ \, \mathsf{tal} \ \, \mathsf{que} \ \, \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} \\ &= \left\{ (x_2, x_2, x_3) \mid x_1 + 2x_2 + 3x_3 = 0 \ \, \mathsf{i} \ \, 4x_1 + 5x_2 + 6x_3 = 0 \right\} \subseteq \mathbb{R}^3. \end{aligned}$$

## Càlcul de bases dels subespais associats a una matriu

#### Exemple:

Considerem la matriu

$$A = \begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 2 & -2 & 3 & 0 & 1 \\ 0 & 0 & 2 & 1 & 2 \end{bmatrix}.$$

Si l'escalonem s'obté la següent matriu equivalent:

$$B = \begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 3 & -2 & -1 \\ 0 & 0 & 0 & 7 & 8 \end{bmatrix}.$$

A partir d'aquesta matriu escalonada equivalent a A, ja podem obtenir una base de Fil(A):

$$\{(1,-1,0,1,1),(0,0,3,-2,-1),(0,0,0,7,8)\}$$

#### **Observacions**

- Una base del subespai fila de A és la formada pels vectors fila no nuls d'una matriu escalonada equivalent a A.
- dim Fil(A) és igual al nombre de files no nul·les que té una matriu escalonada equivalent a A, és a dir, rg(A).

## Càlcul de bases dels subespais associats a una matriu

#### Exemple:

Seguint amb el mateix exemple:

$$A = \begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 2 & -2 & 3 & 0 & 1 \\ 0 & 0 & 2 & 1 & 2 \end{bmatrix} \sim B = \begin{bmatrix} 1 & -1 & 0 & 1 & 1 \\ 0 & 0 & 3 & -2 & -1 \\ 0 & 0 & 0 & 7 & 8 \end{bmatrix}$$

el nucli de A serà el conjunt de solucions del sistema d'equacions amb aquesta matriu ampliada:

$$\begin{cases} x_1 &= \lambda_1 + \frac{1}{7}\lambda_2 \\ x_2 &= \lambda_1 \\ x_3 &= -\frac{3}{7}\lambda_2 & \lambda_1, \lambda_2 \in \mathbb{R}. \\ x_4 &= -\frac{8}{7}\lambda_2 \\ x_5 &= \lambda_2 \end{cases}$$

Per tant:

Nuc(A) = 
$$\langle (1, 1, 0, 0, 0), (1, 0, -3, -8, 7) \rangle$$
.

La dimensió de Nuc(A) és 2, el nombre de variables lliures.



## Dimensions dels subespais associats a una matriu

#### **Propietat**

Si A  $\in M_{m \times n}$  se satisfà:

- dim(Nuc(A)) = n rg(A) (n és el nombre de columnes d'A)
- dim(Fil(A)) = rg(A)

- Equacions paramètriques i implícites d'un subespai vectorial
- Subespais vectorials associats a una matriu
- 3 Suma i intersecció de subespais vectorials
- 4 Complements ortogonals en  $\mathbb{R}^n$

# Intersecció de subespais vectorials

#### Definició

Donats dos subespais vectorials F i G d'un espai vectorial V, podem calcular la seua intersecció:

$$F \cap G = \{ \vec{x} \in V \mid \vec{x} \in F \mid \vec{x} \in G \}.$$

#### **Propietat**

La intersecció  $F \cap G$  de dos subespais vectorials F i G d'un espai vectorial V és un subespai vectorial de V.

Atenció! La unió de dos subespais vectorials no és, en general, un subespai vectorial.

### Intersecció de subespais vectorials

#### Mètode per a calcular la intersecció de 2 subespais vectorials

- (1) Calculem unes equacions implícites de F i de G.
- (2)  $F \cap G$  estarà definit per la reunió de totes las equacions implícites (les de F i les de G).

#### Exemple:

Considerem els següents subespais vectorials de  $\mathbb{R}^4$  (definits per equacions implícites):

$$F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 - x_2 + x_3 + x_4 = 0 \land x_1 - x_4 = 0\} i$$
 
$$G = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0\}$$

Con  $F \cap G$  és el conjunt de vectors que pertanyen simultàniament a F i a Gresulta clar que

$$F \cap G = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid 2x_1 - x_2 + x_3 + x_4 = 0, \ x_1 - x_4 = 0 \ \text{i} \ x_1 + x_2 + x_3 + x_4 = 0\}$$

# Suma de subespais vectorials

#### Definició

Si F i G són dos subespais vectorials d'un espai vectorial V, anomenarem subespai suma de F i G, i el denotarem per F+G, al menor subespai vectorial de V que conté  $F \cup G$ .

#### **Propietat**

Si *F* i *G* són dos subespais vectorials d'un espai vectorial *V* aleshores

$$F + G = {\vec{x} + \vec{y} \mid \vec{x} \in F \mid \vec{y} \in G}.$$

### Suma de subespais vectorials

La següent propietat permetrà calcular un sistema generador de la suma de dos subespais vectorials a partir de sistemes generadors dels sumands.

#### **Propietat**

Si F i G són dos subespais vectorials d'un espai vectorial V tals que  $F = \langle S_1 \rangle$  i  $G = \langle S_2 \rangle$  aleshores  $F + G = \langle S_1 \cup S_2 \rangle$ .

#### Mètode de càlcul de la suma de subespais

- (1) Es calcula un sistema generador  $S_1$  de F.
- (2) Es calcula un sistema generador S<sub>2</sub> de G.
- (3) La unió  $S_1 \cup S_2$  és un sistema generador de F + G.

#### Exemple:

Considerem els subespais vectorials de  $\mathbb{R}^4$ :

 $F = \langle (1,0,1,0), (-2,3,1,0) \rangle$  i  $G = \langle (0,-3,1,0), (1,1,1,1) \rangle$ . Aleshores  $F + G = \langle (1,0,1,0), (-2,3,1,0), (0,-3,1,0), (1,1,1,1) \rangle$ . Quina és la dimensió de F + G?

# Suma i intersecció de subespais

#### Fórmula de les dimensions

Si *F* i *G* son dos subespais vectorials d'un espai vectorial *V* aleshores

$$\dim F + \dim G = \dim(F + G) + \dim(F \cap G)$$

## Suma directa de subespais

#### **Definició**

Si F i G són dos subespais vectorials d'un espai vectorial V, direm que la suma F + G és directa (i la denotarem per  $F \oplus G$ ) si  $F \cap G = \{\vec{0}\}.$ 

#### **Propietat**

Si una suma de subespais F + G és directa aleshores tot vector de F + G s'escriu de manera única com una suma  $\vec{x} + \vec{y}$ , on  $\vec{x} \in F$  i  $\vec{y} \in G$ .

#### **Propietat**

Siguen F i G dos subespais vectorials d'un espai vectorial V tal que la suma F + G és directa. Aleshores:

$$\dim(F \oplus G) = \dim(F) + \dim(G).$$

Exemple:  $\mathbb{R}^3 = \langle (-1,1,0), (-1,0,1) \rangle \oplus \langle (1,1,1) \rangle$ 

- Equacions paramètriques i implícites d'un subespai vectorial
- Subespais vectorials associats a una matriu
- Suma i intersecció de subespais vectorials
- 4 Complements ortogonals en  $\mathbb{R}^n$

# Vectors i subespais ortogonals en $\mathbb{R}^n$

#### Definició

Direm que un vector  $\vec{u}$  de  $\mathbb{R}^n$  és ortogonal a un subespai vectorial W de  $\mathbb{R}^n$  (i ho escriurem  $\vec{u} \perp W$ ) si és ortogonal a tots els vectors de W, és a dir:

$$\vec{u}\perp W \Leftrightarrow \vec{u}\perp \vec{v} \; \forall \; \vec{v} \in W.$$

Dos subespais  $W_1$  i  $W_2$  de  $\mathbb{R}^n$  es dirà que són ortogonals si qualsevol vector  $\vec{u}$  de  $W_1$  és ortogonal a  $W_2$ .

La següent propietat prova que, per ser un vector  $\vec{x}$  ortogonal a un subespai W, és suficient que  $\vec{x}$  siga ortogonal als vectors d'un sistema generador de W.

#### **Propietat**

Si W és un subespai vectorial de  $\mathbb{R}^n$  generat per  $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_r$  aleshores un vector  $\vec{x} \in \mathbb{R}^n$  és ortogonal a W si i només si és ortogonal a  $\vec{u}_i$  per a tot  $i = 1, 2, \ldots, r$ .

## Complements ortogonals en $\mathbb{R}^n$

#### Definició

Donat un subespai vectorial W de  $\mathbb{R}^n$  s'anomena complement ortogonal de W, i es denota per  $W^{\perp}$ , al conjunt de vectors de  $\mathbb{R}^n$  que són ortogonals a W. És a dir:

$$W^{\perp} = \{ \vec{x} \in \mathbb{R}^n \mid \vec{x} \perp W \}.$$

Veurem ara que el complement ortogonal d'un subespai és el nucli de la transposada de la matriu associada a un sistema generador qualsevol.

#### **Propietat**

Siga W un subespai vectorial de  $\mathbb{R}^n$  i siga  $S = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_r\}$  un sistema generador de W. Aleshores:

$$W^{\perp} = \operatorname{Nuc}(M(S)^t),$$

on M(S) denota, com és habitual, la matriu associada a S. En particular  $W^{\perp}$  és un subespai vectorial.

# Complements ortogonals en $\mathbb{R}^n$

Exemple: Calculem el complement ortogonal en  $\mathbb{R}^2$  del subespai  $W = \langle (2,5) \rangle$ .

Si anomenem  $\mathcal{S} = \{(2,5)\},$  es té que  $\mathit{W}^{\perp}$  és el nucli de la matriu

$$\mathsf{M}(\mathcal{S})^t = \begin{bmatrix} 2 & 5 \end{bmatrix},$$

és a dir, el conjunt de solucions del sistema d'equacions homogeni

$$2x + 5y = 0.$$

Per tant, 
$$W^{\perp} = \langle (5, -2) \rangle$$
.

Ja hem vist que el complement ortogonal d'un subespai és el nucli de la matriu les files de la qual són un conjunt generador del subespai. En particular,

Suma i intersecció

#### **Propietat**

Si A és una matriu d'ordre  $m \times n$ , aleshores

$$(F(A))^{\perp} = \operatorname{Nuc}(A) \text{ i } (C(A))^{\perp} = \operatorname{Nuc}(A^{t})$$

Com  $(W^{\perp})^{\perp} = W$  per a qualsevol subespai W, també es dedueix que  $(Nuc(A))^{\perp} = F(A)$ . Per tant, si ens donen un subespai mitjançant unes equacions implícites, podem calcular el seu complement ortogonal sense necesitat d'obtindre un conjunt generador de *W*:

### 2<sup>a</sup> forma de calcular $W^{\perp}$ (conegudes unes equacions de W)

Si W és un subespai de  $\mathbb{R}^n$  que ve donat per les seues equacions implícites com  $W = \{\vec{x} \in \mathbb{R}^n : A \cdot \vec{x} = 0\} = \text{Nuc}(A)$ , aleshores  $W^{\perp} = F(A)$ , es a dir,  $W^{\perp}$  està generat pels coeficients de les equacions de W.

#### **Exemple**

Equacions d'un subespai

Calcula el complement ortogonal en  $\mathbb{R}^3$  del subespai

$$W = \{(x, y, z) \in \mathbb{R}^3 : y + 2z = 0, \ x - 3z = 0\}.$$

#### Solució:

Si escribim les equacions de W com a productes escalars, aleshores:

$$(x, y, z) \in W \iff (0 \quad 1 \quad 2) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \quad i \quad (1 \quad 0 \quad -3) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0$$

Per tant els vectors de W són aquells que són ortogonals als vectors (0,1,2) i (1,0,-3) i, per tant,  $W^{\perp} = \langle (0,1,2), (1,0,-3) \rangle$ .

Altra forma de deduir-lo és expressar W com el nucli d'una matriz:

$$W = \{(x, y, z) \in \mathbb{R}^3 : y + 2z = 0, \ x - 3z = 0\} = \text{Nuc} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -3 \end{pmatrix}$$
  
Com  $(\text{Nuc}(A))^{\perp} = F(A)$ , aleshores  $W^{\perp} = \langle (0, 1, 2), (1, 0, -3) \rangle$ 

#### Conclusió

Si coneixem les equacions implícites d'un subespai W, automàticament coneixem els generadors del seu complement ortogonal  $W^{\perp}$ , i viceversa.

## Propietats del complement ortogonal

Si W és un subespai de  $\mathbb{R}^n$  és fàcil deduir de la definició de  $W^{\perp}$  que

$$W \cap W^{\perp} = \{\vec{0}\}\$$
i, per tant,  $W + W^{\perp}$  és una suma directa.

Per una altra part, donat un subespai  $W = \langle \vec{\mathbf{r}}_1, \vec{\mathbf{r}}_2, \dots, \vec{\mathbf{r}}_t \rangle$  de  $\mathbb{R}^n$  sabem que  $W^{\perp} = \text{Nuc}(A)$  on A és una matriu les files de la qual són eixos vectors generadors. Ademés, sabem que dim(W) = rang(A).

També hem vist que donada una matriu A amb n columnes, com en aquest cas, dim(Nuc(A)) = n - rang(A). D'aquestes igualtats deduïm que

$$\dim(W^{\perp}) = n - \dim(W)$$
, aleshores

$$\dim(W \oplus W^{\perp}) = \dim(W) + \dim(W^{\perp}) = n = \dim(\mathbb{R}^n)$$
 i, per tant

#### **Propietat**

Equacions d'un subespai

Si W és un subespai vectorial de  $\mathbb{R}^n$  aleshores  $\mathbb{R}^n = W \oplus W^{\perp}$ .

Aquesta igualtat fa possible que tot vector  $\vec{x}$  de  $\mathbb{R}^n$  puga expressar-se de forma única com a suma d'un vector en W (la projecció ortogonal de  $\vec{x}$  sobre W) i un vector ortogonal a W.

