NaturalLI: Natural Logic for Common Sense Reasoning

Gabor Angeli, Chris Manning

Stanford University

June 13, 2014

Common Sense Reasoning

Cats play with yarn

Cats play with computers

Common Sense Reasoning

Cats play with yarn

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Common Sense Reasoning for Vision

Dogs drive cars

People drive cars

Baseball is played underwater

Baseball is played on grass

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\text{cat}(c) \land \text{mouse}(m) \land \text{eat}(c, m))$

Run inference:

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

Run inference: ...

Get Answer: $\exists v \text{ carnivore}(v) \rightarrow (\exists a \text{ animal}(a) \land \text{eat}(v, a))$ \bot

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

Run inference: ...

Get Answer: $\exists v \text{ carnivore}(v) \rightarrow (\exists a \text{ animal}(a) \land \text{eat}(v, a))$ \bot

Natural Logic is a logic whose syntax is natural language.

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

Run inference: ...

Get Answer: $\exists v \ \text{carnivore}(v) \rightarrow (\exists a \ \text{animal}(a) \land \text{eat}(v, a))$ \bot

Natural Logic is a logic whose syntax is natural language.

Think Syllogisms:

All Greeks are men.

All men are mortal.

All Greeks are mortal.

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

Run inference: ...

Get Answer: $\exists v \ \text{carnivore}(v) \rightarrow (\exists a \ \text{animal}(a) \land \text{eat}(v, a))$ \bot

Natural Logic is a logic whose syntax is natural language.

Think Syllogisms:

All Greeks are men.

All men are mortal.

All Greeks are mortal.

A cat ate a mouse $\stackrel{?}{\Rightarrow}$ No carnivores eat animals

First-Order Logic

Start with text: A cat ate a mouse

Translate to symbols: $\exists c \exists m \ (\operatorname{cat}(c) \land \operatorname{mouse}(m) \land \operatorname{eat}(c, m))$

Run inference: ...

Get Answer: $\exists v \ \text{carnivore}(v) \rightarrow (\exists a \ \text{animal}(a) \land \text{eat}(v, a))$ \bot

Natural Logic is a logic whose syntax is natural language.

Think Syllogisms:

All Greeks are men.

All men are mortal.

All Greeks are mortal.

Input: A query fact and a corpus of text snippets

Output: The truth of the query

Input: A query fact and a corpus of text snippets

Output: The truth of the query

Search over mutations from query:

Each mutation has a cost c

- Low cost: some cats have tails ⇒ some felines have tails
- High cost: some cats have tails ⇒ some dogs have tails

Each mutation has a cost c

- Low cost: some cats have tails ⇒ some felines have tails
- High cost: some cats have tails ⇒ some dogs have tails

Costs are negative weights

•
$$P(true) = \frac{1}{2} + \frac{1}{1 + e^{c \cdot f(path)}}$$

6/8

Each mutation has a cost c

- Low cost: some cats have tails ⇒ some felines have tails
- High cost: some cats have tails ⇒ some dogs have tails

Costs are negative weights

•
$$P(true) = \frac{1}{2} + \frac{1}{1 + e^{c \cdot f(\text{path})}}$$

Search gets better as we learn

Strictly better than querying a knowledge base

ullet 12% recall o 48% recall @ 93% precision

Strictly better than querying a knowledge base

• 12% recall \rightarrow 48% recall @ 93% precision

Strictly better fuzzy queries

- Checks logical entailment, not just fuzziness
- Support doesn't have to be lexically similar

Strictly better than querying a knowledge base

• 12% recall \rightarrow 48% recall @ 93% precision

Strictly better fuzzy queries

- Checks logical entailment, not just fuzziness
- Support doesn't have to be lexically similar

Sometimes even a bit clever

Thanks!

