Data Mining & Knowledge Discovery

Lesson 7 Classification (I)

Lan Man

Department of Computer Science and Technology East China Normal University

©2017 All rights reserved.

Lesson 7 Classification (I)

- Basic Concepts
- Decision Tree Induction
- Bayesian Classification
- Backpropagation
- Support Vector Machines (SVM)
- Lazy Learners (kNN)

- Other Classification Methods
- Additional Topics
- Prediction
- Model Evaluation and Selection
- Techniques to Improve
 - Classification Accuracy:
 - **Ensemble Methods**
- Summary

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by class labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classification vs Clustering

Classification vs. Numeric Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- constructs a model based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit approval, Target marketing, Medical diagnosis, Fraud detection, Performance prediction

Classification—A Two-Step Process

- Step 1. Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - Each tuple is one training sample
 - The model is represented as classification rules, decision trees, or mathematical formulae

Classification—A Two-Step Process

- Step 2. Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data whose class labels are not known
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

THEN tenured = 'yes'

Process (2): Using the Model in Prediction

2. Evaluation

1.Build Model

3.Prediction

編號	性別	年齢	婚姻	家庭 所得	購買RV 房車
W0144	Male	55	已婚	高所得	?

Supervised learning (classification)

Decision Tree

Data

編號	性別	年齡	婚姻	家庭 人數	購買 RV房 車
A0001	Male	45	未婚	1	是
A0002	Male	52	已婚	7	是
A0003	Female	38	已婚	5	是
A0004	Male	25	已婚	5	否
A0005	Female	48	已婚	4	是
A0006	Male	32	未婚	3	是
A0007	Female	65	已婚	4	否
8000A	Male	33	已婚	3	是
A0009	Male	45	已婚	4	是
A0010	Female	52	未婚	1	是
A0011	Male	38	未婚	1	否
	•••				•••
Z0099	Male	22	未婚	4	是

Unsupervised learning (clustering)

Cluster Analysis

Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant (ID) or redundant attributes (age - birth)
- Data transformation
 - Generalize and/or normalize data
- Above discussed in Lesson 2 (If lost, pick up it.)

Lesson 7 Classification (I)

- Basic Concepts
- Decision Tree Induction
- Bayesian Classification
- Backpropagation
- Support Vector Machines (SVM)
- Lazy Learners (kNN)

- Other Classification Methods
- Additional Topics
- Prediction
- Model Evaluation and Selection
- Techniques to Improve
 - Classification Accuracy:
 - **Ensemble Methods**
- Summary

Decision Tree Induction

A flowchart-like tree structure

Decision Tree Induction: An Example

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-andconquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain, gain ratio, gini index)

Algorithm for Decision Tree Induction

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning –
 majority voting is employed for classifying the leaf
 - There are no samples left, that is, a partition Dj is empty

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, ..., y_m\}$,

•
$$H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$$
, where $p_i = P(Y = y_i)$

- Interpretation:
 - Higher entropy => higher uncertainty
 - Lower entropy => lower uncertainty
- Conditional Entropy
 - $H(Y|X) = \sum_{x} p(x)H(Y|X = x)$

m = 2

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- This attribute minimizes the information needed to classify the tuples in the resulting partitions and reflects the least randomness or impurity in these partitions, i.e. best separate a given data partition.
- Let D be the training dataset, |D| is number of tuples in D
- m classes, C_i (i = 1, ..., m). $C_{i, D}$ is the set of tuples of class C_i in D. $|C_{i, D}|$ is the number of tuples in $C_{i, D}$
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D: $Entropy(D) = Info(D) = -\sum_{i=0}^{m} p_i \log_2(p_i)$

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Suppose attribute A having ν distinct values is used to split D into ν partitions or subsets $\{D1,...,Dv\}$. Ideally, each partition is pure.
- Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

■ Minimize the amount of information (Info_A(D)) required to finish classifying the tuples

Computation of Information Gain for age

Class P: buys_computer = "yes" (9)
Class N: buys_computer = "no" (5)

Info
$$_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	pi	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit \ rating) = 0.048$$

Computation of Information Gain for age

Info
$$_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2)$$

$$= 0.694$$

$$I(2,3) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.971$$

$$I(4,0) = 0$$

$$I(3,2) = I(2,3) = 0.971$$

$$= 0.694$$

$$= 30$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

$$= 31..40$$

 So, the maximal information gain is obtained on attribute age and then age was selected as the first node for decision tree.

Computing Information-Gain for Continuous-Value Attributes

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - $\frac{a_i + a_{i+1}}{2}$ is the midpoint between the values of a_i and a_{i+1}
 - The point with the minimum expected information requirement for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and
 D2 is the set of tuples in D satisfying A > split-point

Attribute Selection Measure: <u>Gain Ratio</u> (C4.5)

- Information gain measure is biased towards attributes
 with a large number of values (Cumstomer_id ? worst!)
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

Gain Ratio(A) = Gain(A) / SplitInfo(A)

Computation of Gain Ratio for income

$$Info(D) = I(9,5) = -\frac{9}{14} \log_2(\frac{9}{14}) - \frac{5}{14} \log_2(\frac{5}{14}) = 0.940$$

$$Info_{income}(D) = \frac{4}{14}I(3,1) + \frac{6}{14}I(4,2) + \frac{4}{14}I(2,2) = 0.911$$

$$Gain(income) = Info(D) - Info_{income}(D) = 0.029$$

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14})$$

- = 1.557
- gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

- gini index is used for binary decision trees.
- gini index measures the impurity of dataset D.
- If a data set *D* contains examples from *n* classes, gini index, *gini* (*D*) is defined as $gini(D) = 1 \sum_{j=1}^{n} p_{j}^{2}$

where p_j is the relative frequency of class j in D

If a data set D is split on attribute A into two subsets D_1 and D_2 , the *gini* index *gini* A(D) is defined as

$$gini_{A}(D) = \frac{|D_{1}|}{|D|}gini(D_{1}) + \frac{|D_{2}|}{|D|}gini(D_{2})$$

Gini index (CART, IBM IntelligentMiner)

- Reduction in Impurity: (the larger the better) $\Delta gini(A) = gini(D) gini_A(D)$
- Gini index, gini (D) is fixed given D, thus, the smallest value of gini _A(D), the A split is the best; that is, the largest Reduction in Impurity is the best split.
- The attribute provides the smallest gini_{split}(D) (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)
- Given one attribute A having v different values, the possible subsets is 2^v; After excluding the power set and the empty set, there are 2^v -2 possible ways to form two partitions of the data D based on a binary split on A.

Computation of Gini index (CART, IBM IntelligentMiner)

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute *income* partitions D into 10 in D₁: {low, medium} and 4 in D₂: {high}

$$\begin{split} & gini_{income \in \{low, medium\}}(D) = \frac{10}{14} \ gini(D_1) + \frac{4}{14} \ gini(D_2) \\ & = \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right) \\ & = 0.443 \\ & = Gini_{income \in \{high\}}(D). \end{split}$$

gini_{low,high} is 0.458; gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

Income is selected as split attribute instead of age at the root node by gini index; while, age is selected by information gain for nonbinary tree.

Computation of <u>Gini index</u> (CART, IBM IntelligentMiner)

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- The three measures, in general, return good results but
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Other Attribute Selection Measures

- CHAID: a popular decision tree algorithm, measure based on χ^2 test for independence
- C-SEP: performs better than info. gain and gini index in certain cases
- G-statistics: has a close approximation to χ^2 distribution
- MDL (Minimal Description Length) principle (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both
 (1) encode the tree, and (2) encode the exceptions to the tree
- Multivariate splits (partition based on multiple variable combinations)
 - CART: finds multivariate splits based on a linear comb. of attrs.
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Enhancements to Basic Decision Tree Induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
 - Assign probability to each of the possible values

Attribute construction

- Create new attributes based on existing ones that are sparsely represented
- This reduces fragmentation, repetition, and replication

Classification in Large Databases

- Classification—a classical problem extensively studied by statisticians and machine learning researchers
- Scalability: Classifying data sets with millions of examples and hundreds of attributes with reasonable speed
- Why decision tree induction in data mining?
 - relatively faster learning speed (than other classification methods)
 - convertible to simple and easy to understand classification rules
 - can use SQL queries for accessing databases
 - comparable classification accuracy with other methods

Scalable Decision Tree Induction Methods

- SLIQ (EDBT'96 Mehta et al.)
 - Builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - Constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - Integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - Builds an AVC-list (attribute, value, class label)
- BOAT (PODS'99 Gehrke, Ganti, Ramakrishnan & Loh)
 - Uses bootstrapping to create several small samples

Scalability Framework for RainForest

- Separates the scalability aspects from the criteria that determine the quality of the tree
- Builds an AVC-list: AVC (Attribute, Value, Class_label)
- AVC-set (of an attribute X)
 - Projection of training dataset onto the attribute X and class label where counts of individual class label are aggregated
- **AVC-group** (of a node *n*)
 - Set of AVC-sets of all predictor attributes at the node n

Rainforest: Training Set and Its AVC Sets

Training Examples

student redit rating comp income age <=30 fair high no no high <=30 excellent no no 31...40 high fair no ves >40 medium fair no ves >40 fair low ves ves >40 excellent low ves no 31...40 excellent low ves ves <=30 medium fair no no <=30 fair low ves ves >40 medium fair ves ves excellent <=30 medium ves ves 31...40 medium excellent no ves 31...40 fair high ves ves >40 medium excellent no no

AVC-set on Age AVC-set on income

Age	Buy_Computer	
	yes	no
<=30	2	3
3140	4	0
>40	3	2

income	Buy_Computer	
	yes	no
high	2	2
medium	4	2
low	3	1

AVC-set on AVC-set on Student credit_rating

student	Buy_Computer	
	yes	no
yes	6	1
no	3	4

Cradit	Buy_Computer		
Credit rating	yes	no	
fair	6	2	
excellent	3	3	

BOAT (Bootstrapped Optimistic Algorithm for Tree Construction)

- Use a statistical technique called bootstrapping to create several smaller samples (subsets), each fits in memory
- Each subset is used to create a tree, resulting in several trees
- These trees are examined and used to construct a new tree T'
 - It turns out that T' is very close to the tree that would be generated using the whole data set together
- Adv: requires only two scans of DB, an incremental alg.

Lesson 7 Classification (I)

- Basic Concepts
- Decision Tree Induction
- Bayesian Classification
- Backpropagation
- Support Vector Machines (SVM)
- Lazy Learners (kNN)

- Other Classification Methods
- Additional Topics
- Prediction
- Model Evaluation and Selection
- Techniques to Improve
 - Classification Accuracy:
 - **Ensemble Methods**
- Summary