Week 13

Planer Graphs*

The section describes the contents taught in Week-13.

13.1 Planer Graphs

Planer graph is a graph that can be drawn without crossing of any edge.

Figure 13.1: Planer graphs

Fig 13.1 shows an example of planer graph.

- 1. They are sparse graph for large vertex graph (graph having less number of vertices).
- 2. They are 4-colourable. item Efficient operation.

13.2 Face

Face is defined as the regions in the graph.

The Figure 13.2 shows the number of faces in different graphs.

^{*}Lecturer: Anand Mishra. Scribe: Shivanshu Tripathi.

Figure 13.2: Number of faces=4 for (a),(b) and 1 for (c)

13.3 Euler's condition

For any connected planer graph: v - e + f = 2Where, v = number of vertices, e = number of edges, f = number of faces.

For Example

Figure 13.3: f=3, v=5 and e=6

So we can verify that, v-e+f=5-6+3=2.

Proof. Using Induction on number of edges.

Base case:-

e=0, v=1, f=1.

This implies v - e + f = 1 - 0 + 1 = 2. So true for base case.

Induction:- Let us assume that upto nedges in a planer connected graph, this is true: v - e + f = 2

Let us try to prove that it is true for n+1 edges.

Let G be a graph with n+1 edges.

Case 1: G does not contain a cycle.

number of vertices in G = n + 2

number of edges in G = n + 1

number of faces in G=1

Table 13.1: Chord and conflicting chords

Chord	Conflicting chord
AD	CE, BE
BD	AC, CE

Therefore, v - e + f = n + 2 - n - 1 + 1 = 2.

Case2: G contain atleast a cycle.

Say we remove edge "p" from a cycle and call the resultant graph G'.

In G'

no. of vertices =v

no. of edges =e-1=n

no. of faces = f-1

Therefore, v - e + f = v - e + 1 + f - 1 = 2.

Hence proved.

Figure 13.4: p^{th} edge is removed

13.4 Chords and conflicting chords:

- Chords: connection of any 2 vertices.
- Conflicting chords: Two chords conflict if their end points occur in alternate order on the cycle.

Table 13.1 gives the chord and conflicting chord for K_5 shown in fig 13.5. $K_{3,3}$ The graph is a non-planer graph as shown in fig 13.6.

13.5 Dual graph:

The dual graph G^* of a planer graph G is also a planer graph whose vertices corrospondes to the faces of G. The edges of G^* corrospondes to the edges of G as follows:

Figure 13.5: K_5

Figure 13.6: Non-planer graph

If e is an edge where one side is face-x and other side is face-y, then in G^* there is an edge between vertex corrosponding to face x and face y. The examples are shown in the figure below:

Figure 13.7: Dual graph

- 1. Every subgraph of a planer graph is also planer : True
- 2. Every subgraph of a non-planer graph is a non-planer graph :False (By example of $K_{3,3}$)

13.6 Length of a face:

Figure 13.8: Example

As shown in the figure 13.8, length $(f_1)=3$, length $(f_2)=9$, length $(f_3)=4$

Statement: If $l(f_i)$ denote length of face f_i in a planer graph, we have

$$2e = \sum_{i} l(f_i) \tag{13.1}$$

Proof. In the dual graph, $l(f_i)$ =degree (f_i) in G^* Handshaking lemma in G^*

$$2e = \sum_{i} degree(f_i) \tag{13.2}$$

$$2e = \sum_{i} l(f_i) \tag{13.3}$$

Hence proved \Box

Statement: If G is a connected planer graph with v nodes, e edges, f faces and $v \ge 3$ then,

$$e \le 3v - 6 \tag{13.4}$$

Proof. If $v \geq 3$ then in G^* , $3f \leq 2e$

Since, $2e = \sum_{i} l(f_i)$

 $\geq 3 + 3.....3$ (f-times)

=3f

So, v-e+f=2

f=e-v+2

3f = 3e - 3v + 6

We can say,

 $3e-3v+6 \le 2e$

Therefore, $e \leq 3v - 6$ Hence proved.

13.7 Planarity test algorithm:

The algorithm is given as:

- 1. Remove all self loops.
- 2. Remove parallel edges.
- 3. Remove vertex having degree 2 and merge the edges incident on that vertex.

Figure 13.9: Steps to check planerity

 $G \to H$ means, G is planer if His planer. H is planer if,

- 1. H has one edge
- 2. $H = K_4$ or
- 3. $e \le 3v 6$

Theorem 13.1. The following statements are equivalent for a planer graph:

- G is a biparatite graph.
- Every face og G has even length.
- The dual graph G^* is Eulerian.

Proof. $(a) \to (b)$ G contains only even length cycle. We know that cycles make faces. Every face of G has even length.

Degree of each node in G^* is even. So, G^* is eulerian. Hence proved.

Theorem 13.2. Every simple planer graph has a vertex of degree at most 5.

Proof. We know that every simple planer graph with vertices has at most 3v-6 edges, for v > 3.

Hence the sum of degree is at most 6v-12. Ther is surely a vertex whose degree < 6. Hence proved.