Mitchell A. Petersen, 2009, "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," *Review of Financial Studies*, vol. 22, no. 1, pp. 436-480

- Many works of Finance often use panel data.
- $^{\exists}$ cross- or time- correlation \Rightarrow $^{\exists}$ bias in OLS standard errors (hereafter SE)
- Historically, researchers used different solutions for above two problems.
- objectives of this paper
 - examines the different methods used in the literature
 - explains when the different methods yield the same (and correct) SE and when they diverge
 - provide intuition as to why the different approaches sometimes give different answers and give researchers guidance for their use
- for $y=X\beta+\varepsilon$, iid $\varepsilon \Rightarrow {}^{\exists}$ bias in OLS SE
- Researchers have addressed possible biases in the SE varies widely and in many cases is incorrect.
 - 42% of the papers have used wrong standard errors. (207 published papers of JF, JFE, RFS in 2001-2004)
- Approaches for estimating β s and SEs in the presence of the within-cluster correlation varied among the remaining papers.
 - 34% used Fama-MacBeth procedure for β , SE
 - 29% used within-cluster dummy variables
 - 7% used Newey-West standard errors for SE
 - 23% used Rogers (analogous with White) standard errors for SE
 - etc.
- how the methods compare & how to select the correct one is important.
- 2 general forms of dependence most common in Finance applications
 - time-series dependence=firm effect (ρ for same firm, different time)
 - cross-sectional dependence=time effect (ρ for same time, different firm)
- 3 panel data simulation ① only firm effect ② only time effect ③ both effects
- ① β & SE estimation by each of them ② relative performance comparision
- section $1 \to {}^{\exists}$ firm effect
 - $\Rightarrow \exists$ downward big bias in OLS *SE*, Fama-MacBeth *SE*
 - $\Rightarrow \exists$ downward small bias in Newey-West SE
 - \Rightarrow $^{\nexists}$ bias in clustered SE
 - ex. financial leverage, dividends, investment
- section $2 \rightarrow \exists \text{time effect}$
 - \Rightarrow \exists bias in Fama-MacBeth SE
 - ex. equity returns, earnings surprises

- ullet section 3 \rightarrow $^\exists$ firm effect+time effect
 - estimating standard errors clustered on more than 1 dimension
- section $4 \rightarrow {}^{\exists}$ general correlation structure
 - \bullet comparison of the OLS, clustered, and Fama-MacBeth SE in the setting
 - examine accuracy of 3 additional methods for adjusting SE
 - \checkmark = fixed firm effect \Rightarrow = bias in fixed-effects SE, random-effects SE
 - \checkmark most cases \Rightarrow \exists bias in adjusted Fama-MacBeth SE
- section $5 \to \text{example}$; real data application
 - some published papers \rightarrow may \exists biases \downarrow in SE and biases \uparrow in t stat.
- 1. [∃]firm effect
- standard regression model for panel data

$$egin{array}{lll} Y_{it} & = & X_{it}eta + arepsilon_{it} & i \in \{1,2,\cdots,N\}, \ t \in \{1,2,\cdots,T\} \ X & \sim^{iid} & ?(0,\sigma_{X}^{\,2}) & \sigma_{X}^{\,2} < \infty \ arepsilon & \sim^{iid} & ?(0,\sigma_{arepsilon}^{\,2}) & \sigma_{arepsilon}^{\,2} < \infty \end{array}$$

• then OLS beta estimator

$$egin{array}{lll} \hat{eta}_{OLS} & = & rac{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it} Y_{it}}{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it}^2} \ & = & rac{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it} (X_{it} eta + arepsilon_{it})}{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it}^2} \ & = & eta + rac{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it} arepsilon_{it}}{\displaystyle\sum_{i=1}^{N} \sum_{t=1}^{T} X_{it}^2} \end{array}$$

and its asymptotic variance

$$A \operatorname{Var}(\hat{\beta}_{OLS} - \beta) = \lim_{\substack{N \to \infty \\ T \ fixed}} \left[\frac{1}{N^2} \left(\sum_{i=1}^N \sum_{t=1}^T X_{it} \varepsilon_{it} \right)^2 \left(\frac{\sum_{i=1}^N \sum_{t=1}^T X_{it}^2}{N} \right)^{-2} \right]$$

$$= \lim_{\substack{N \to \infty \\ T \ fixed}} \left[\frac{1}{N^2} \left(\sum_{i=1}^N \sum_{t=1}^T X_{it}^2 \varepsilon_{it}^2 \right) \left(\frac{\sum_{i=1}^N \sum_{t=1}^T X_{it}^2}{N} \right)^{-2} \right]$$
if independent
$$= \frac{1}{N} \left(T \sigma_X^2 \sigma_{\varepsilon}^2 \right) \left(T \sigma_X^2 \right)^{-2}$$
if identical
$$= \frac{\sigma_{\varepsilon}^2}{\sigma_X^2 N T}$$

- $X, \varepsilon = iid \Rightarrow \text{OLS} = \text{correct}$
- however, [∃]fixed firm effect

$$egin{array}{lll} X_{it} &=& \mu_i + v_{it} \ arepsilon_{it} &=& \gamma_i + \eta_{it} \ \mu, v, \gamma, \eta &\sim^{iid} &?[0, \sigma^2(\cdot)] \ Corr(X_{it}, X_{js}) &=& 1 & ext{for } i = j \ \& & t = s \ &=& arrho_X(=\sigma_{\!\mu}^{\;\;2}/\sigma_X^{\;2}) & ext{for } i = j \ \& & t \neq s \ &=& 0 & ext{for } i = j \ \& & t = s \ &=& arrho_{\!arepsilon}(=\sigma_{\!\gamma}^{\;\;2}/\sigma_{\!arepsilon}^{\;\;2}) & ext{for } i = j \ \& & t \neq s \ &=& 0 & ext{for } i \neq j \ \end{array}$$

• then its asymptotic variance

$$\begin{split} A \operatorname{Var}(\hat{\beta}_{OLS} - \beta) &= & \underset{N \to \infty}{\min} \left[\frac{1}{N^2} \left(\sum_{i=1}^N \sum_{t=1}^T X_{it} \varepsilon_{it} \right)^2 \left(\frac{\sum_{i=1}^N \sum_{t=1}^T X_{it}^2}{N} \right)^{-2} \right] \\ &= & \underset{N \to \infty}{\min} \left[\frac{1}{N^2} \sum_{i=1}^N \left(\sum_{t=1}^T X_{it} \varepsilon_{it} \right)^2 \left(\frac{\sum_{i=1}^N \sum_{t=1}^T X_{it}^2}{N} \right)^{-2} \right] \\ &= & \underset{N \to \infty}{\min} \left[\frac{1}{N^2} \sum_{i=1}^N \left(\sum_{t=1}^T X_{it}^2 \varepsilon_{it}^2 + 2 \sum_{t=1}^{T-1} \sum_{s=t+1}^T X_{it} X_{is} \varepsilon_{it} \varepsilon_{is} \right) \left(\frac{\sum_{i=1}^N \sum_{t=1}^T X_{it}^2}{N} \right)^{-2} \right] \\ &= & \frac{1}{N} \left[T \sigma_X^2 \sigma_\varepsilon^2 + T (T-1) \rho_X \sigma_X^2 \rho_\varepsilon \sigma_\varepsilon^2 \right] \left(T \sigma_X^2 \right)^{-2} \qquad \text{if identical} \\ &= & \frac{\sigma_\varepsilon^2}{\sigma_X^2 N T} \left[1 + (T-1) \rho_X \rho_\varepsilon \right] \end{split}$$

- \therefore \exists firm effect $\Leftrightarrow \varrho_{X}, \varrho_{\varepsilon} \neq 0 \Rightarrow \exists$ bias \downarrow in OLS SE
 - extreme case $\to \varrho_X = \varrho_{\varepsilon} = 1 \Rightarrow N^{-1}\sigma_X^{-2}\sigma_{\varepsilon}^2$ i.e. additional obs. in time=no information in reality, but OLS SE will regard these obs. as information then bias $^{\downarrow}$ in SE
- ullet clustered SE o designed to correct the correlation of the residuals within a cluster

$$A \, Var(eta) \quad = \quad rac{N(NT-1) \displaystyle \sum_{i=1}^{N} \left(\displaystyle \sum_{t=1}^{T} X_{it} arepsilon_{it}
ight)^2}{(NT-k)(N-1) \left(\displaystyle \sum_{i=1}^{N} \displaystyle \sum_{t=1}^{T} X_{it}^2
ight)^2}$$

		firm 1		firm 2			firm 3			
	ε_{11}^{2}	$\varepsilon_{11}\varepsilon_{12}$	$\varepsilon_{11}\varepsilon_{13}$	0	0	0	0	0	0	
firm 1	$\varepsilon_{12}\varepsilon_{11}$	$arepsilon_{12}^{2}$	$\varepsilon_{12}\varepsilon_{13}$	0	0	0	0	0	0	
	$\varepsilon_{11}\varepsilon_{13}$	$\varepsilon_{13}\varepsilon_{12}$	$arepsilon_{13}^{2}$	0	0	0	0	0	0	
	0	0	0	$arepsilon_{21}^{2}$	$arepsilon_{21}arepsilon_{22}$	$\varepsilon_{21}\varepsilon_{23}$	0	0	0	
firm 2	0	0	0	$arepsilon_{22}arepsilon_{21}$	$arepsilon_{22}^{2}$	$\mathcal{E}_{22}\mathcal{E}_{23}$	0	0	0	
	0	0	0	$\varepsilon_{21}\varepsilon_{23}$	$\mathcal{E}_{23}\mathcal{E}_{22}$	$arepsilon_{23}^{2}$	0	0	0	
	0	0	0	0	0	0	ε_{31}^2	$\varepsilon_{31}\varepsilon_{32}$	E31E33	
firm 3	0	0	0	0	0	0	$\varepsilon_{32}\varepsilon_{31}$	$arepsilon_{32}^{2}$	$\mathcal{E}_{32}\mathcal{E}_{33}$	
	0	0	0	0	0	0	$\varepsilon_{31}\varepsilon_{33}$	$\varepsilon_{33}\varepsilon_{32}$	$arepsilon_{33}^{2}$	

Table 1 Estimating standard errors with a firm effect OLS and clustered standard errors

Estimating standard errors wi		Source of independent variable volatility						
$\begin{array}{c} Avg(\beta_{OLS}) \\ Std(\beta_{OLS}) \\ Avg(SE_{OLS}) \\ \% \ Sig(T_{OLS}) \\ Avg(SE_C) \\ \% \ Sig(T_C) \end{array}$		0%	25%	50%	75%			
Source of residual volatility	0%	1_0004	1 0006	1.0002	1 0001			
Source of residual volumety	0.70	0.0286 0.0283	0.0288 0.0283	0.0279 0.0283	0.0283 0.0283			
		[0.0098] 0.0283 [0.0108]	[0.0088] 0.0282 [0.0092]	[0.0094] 0.0282 [0.0096]	[0.0094] 0.0282 [0.0098]			
	25%	1.0004 0.0287 0.0283	0.9997 0.0353 0.0283	0.9999 0.0403 0.0283	0.9997 0.0468 0.0283			
		[0.0116] 0.0283 [0.0120]	[0.0348] 0.0353 [0.0064]	[0.0678] 0.0411 [0.0112]	[0.1174] 0.0463 [0.0118]			
	50%	1.0001 0.0289 0.0283 [0.0124] 0.0282 [0.0128]	1.0002 0.0414 0.0283 [0.0770] 0.0411 [0.0114]	1.0007 0.0508 0.0283 [0.1534] 0.0508 [0.0088]	0.9993 0.0577 0.0283 [0.2076] 0.0590 [0.0102]			
	75%	1.0000 0.0285 0.0283 [0.0128] 0.0282 [0.0128]	1.0004 0.0459 0.0283 [0.1090] 0.0462 [0.0114]	0.9995 0.0594 0.0283 [0.2230] 0.0589 [0.0094]	1.0016 0.0698 0.0283 [0.2906] 0.0693 [0.0112]			

• Fama-MacBeth beta estimator

$$egin{array}{lll} \hat{eta}_{FM} &=& \sum_{t=1}^T rac{\hat{eta}_{FM}}{T} \ &=& rac{1}{T} \sum_{t=1}^T iggl(rac{\sum_{i=1}^N X_{it} Y_{it}}{\sum_{i=1}^N X_{it}^2} iggr) \ &=& eta + rac{1}{T} \sum_{t=1}^T iggl(rac{\sum_{i=1}^N X_{it} arepsilon_{it}}{\sum_{i=1}^N X_{it}^2} iggr) \end{array}$$

 \bullet and Fama-MacBeth SE estimator

$$S(\hat{\beta}_{FM}) = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \frac{(\hat{\beta}_t - \hat{\beta}_{FM})^2}{T - 1}}$$

ullet in reality, asymptotic variance of FM SE

$$\begin{split} A \operatorname{Var}(\hat{\beta}_{FM}) &= \frac{1}{T^2} A \operatorname{Var}\left(\sum_{t=1}^T \hat{\beta}_t\right) \\ &= \frac{A \operatorname{Var}(\hat{\beta}_t)}{T} + \frac{1}{T^2} 2 \sum_{t=1}^{T-1} \sum_{s=t+1}^T A \operatorname{Cov}(\hat{\beta}_t, \hat{\beta}_s) \\ &= \frac{A \operatorname{Var}(\hat{\beta}_t)}{T} + \frac{T(T-1)}{T^2} A \operatorname{Cov}(\hat{\beta}_t, \hat{\beta}_s) \\ &\Rightarrow A \operatorname{Cov}(\hat{\beta}_t, \hat{\beta}_s) &= \lim_{\substack{N \to \infty \\ T \ fixed}} \left[\left(\sum_{i=1}^N X_{it}^2 \right)^{-1} \left(\sum_{i=1}^N X_{it} \varepsilon_{it} \right) \left(\sum_{i=1}^N X_{is} \varepsilon_{is} \right) \left(\sum_{i=1}^N X_{is}^2 \right)^{-1} \right] \end{split}$$

$$= \left(\sigma_{X}^{2}\right)^{-2} \underset{T \text{ plim}}{\text{plim}} \left[\left(\sum_{i=1}^{N} X_{it} \varepsilon_{it} \right) \left(\sum_{i=1}^{N} X_{is} \varepsilon_{is} \right) \right]$$

$$= \left(\sigma_{X}^{2}\right)^{-2} \underset{T \text{ fixed}}{\text{plim}} \left[\sum_{i=1}^{N} X_{it} X_{is} \varepsilon_{it} \varepsilon_{is} \right]$$

$$= \left(\sigma_{X}^{2}\right)^{-2} \frac{\text{plim}}{N^{2}} \left[\sum_{i=1}^{N} X_{it} X_{is} \varepsilon_{it} \varepsilon_{is} \right]$$

$$= \left(\sigma_{X}^{2}\right)^{-2} \frac{N \rho_{X} \sigma_{X}^{2} \rho_{\varepsilon} \sigma_{\varepsilon}^{2}}{N^{2}}$$

$$= \frac{\rho_{X} \rho_{\varepsilon} \sigma_{\varepsilon}}{N \sigma_{X}^{2}}$$

$$= \frac{A \operatorname{Var}(\hat{\beta}_{t})}{T} + \frac{T(T-1)}{T^{2}} A \operatorname{Cov}(\hat{\beta}_{t}, \hat{\beta}_{s})$$

$$= \frac{1}{T} \left(\frac{\sigma_{\varepsilon}^{2}}{N \sigma_{X}^{2}}\right) + \frac{T(T-1)}{T^{2}} \left(\frac{\rho_{X} \rho_{\varepsilon} \sigma_{\varepsilon}^{2}}{N \sigma_{X}^{2}}\right)$$

$$= \frac{\sigma_{\varepsilon}^{2}}{\sigma_{X}^{2} N T} \left[1 + (T-1) \rho_{X} \rho_{\varepsilon}\right]$$

ullet thus, Fama-MacBeth SE are biased in the same way as the OLS estimates.

	0%	25%	50%	75%
0%	1.0004	1.0006	1.0002	1.0001
	0.0287	0.0288	0.0280	0.0283
	0.0276	0.0276	0.0277	0.0275
	[0.0288]	[0.0304]	[0.0236]	[0.0294]
25%	1.0004	0.9997	0.9998	0.9997
	0.0288	0.0354	0.0403	0.0469
	0.0275	0.0268	0.0259	0.0250
	[0.0336]	[0.0758]	[0.1202]	[0.1918]
50%	1.0000	1.0002	1.0007	0.9993
	0.0289	0.0415	0.0509	0.0578
	0.0276	0.0259	0.0238	0.0219
	[0.0330]	[0.1264]	[0.2460]	[0.3388]
75%	1.0000	1.0004	0.9995	1.0016
	0.0286	0.0460	0.0595	0.0699
	0.0277	0.0248	0.0218	0.0183
	[0.0310]	[0.1778]	[0.3654]	[0.4994]
	25%	0% 1.0004 0.0287 0.0276 [0.0288] 25% 1.0004 0.0288 0.0275 [0.0336] 50% 1.0000 0.0289 0.0276 [0.0330] 75% 1.0000 0.0286 0.0277	0% 1.0004 1.0006 0.0287 0.0288 0.0276 0.0276 [0.0288] [0.0304] 25% 1.0004 0.9997 0.0288 0.0354 0.0275 0.0268 [0.0336] [0.0758] 50% 1.0000 1.0002 0.0289 0.0415 0.0276 0.0259 [0.0330] [0.1264] 75% 1.0000 1.0004 0.0286 0.0460 0.0277 0.0248	0% 1.0004 1.0006 1.0002 0.0287 0.0288 0.0280 0.0276 0.0276 0.0277 [0.0288] [0.0304] [0.0236] 25% 1.0004 0.9997 0.9998 0.0288 0.0354 0.0403 0.0275 0.0268 0.0259 [0.0336] [0.0758] [0.1202] 50% 1.0000 1.0002 1.0007 0.0289 0.0415 0.0509 0.0276 0.0259 0.0238 [0.0330] [0.1264] [0.2460] 75% 1.0000 1.0004 0.9995 0.0286 0.0460 0.0595 0.0277 0.0248 0.0218

- examples; persistent dependent and independent variables
 - dividend $_{it}$ =f(firm characteristics $_{it}$)? \rightarrow Fama and French (2001, JFE)
 - M/B ratio_{it}=f(firm characteristics_{it})? \rightarrow Pastor and Veronesi (2003, JF), Kemsley and Nissim (2002, JF)
 - capital structure literature; firm leverage_{it}=f(firm characteristics_{it})? \rightarrow Baker and Wurgler (2002, JF), Fama and French (2002, RFS), Johnson (2003, RFS)
 - $\varrho_{Y}^{\uparrow} \ \varrho_{X}^{\uparrow} \Rightarrow {}^{\exists} \text{bias}^{\downarrow} \text{ Fama-MacBeth } SE$
- Many authors believe (incorrectly) that these approaches are correct.
- The problem is actually worse; the literatures has gone on to provide incorrect advice
 that states that the Fama-MacBeth approach corrects the SE for the residual correlation
 in the presence of a firm effect. → Wu (2004, JFE), Denis, Denis, and Yost (2002,
 JF), Choe, Kho, and Stulz (2005, RFS)
- \bullet Fama-MacBeth SE
 - \exists cross-correlation $\Rightarrow \exists$ bias in SE (time effect)
 - \exists serial-correlation $\Rightarrow \exists$ bias in SE (firm effect)
- Newey-West SE by Newey and West (1987)
 - account for a serial correlation of unknown form in the residuals of a single time-series
 - assumption \rightarrow correlation decay \propto distance between observation
 - covariance weight $\rightarrow [1-j/(M+1)]$ M=maximum lag \Rightarrow distance $\uparrow=$ weight \downarrow
 - initially developed for a single time-series → weighting function should have made the weighting matrix positive semidefinite
 - modified for use in a panel data set; estimating only correlations between lagged residuals in the same cluster [Brockman and chung (2001), MacKay (2003), Bertrand, Duflo, and Mullainathan (2004), Doidge (2004)]

ullet Newey-West SE estimator

$$\begin{split} \sum_{i=1}^{N} & \left(\sum_{t=1}^{T} X_{it} \varepsilon_{it} \right)^{2} & = & \sum_{i=1}^{N} \left[\sum_{t=1}^{T} X_{it}^{2} \varepsilon_{it}^{2} + 2 \sum_{t=1}^{T-1} \sum_{s=t+1}^{T} w(t-s) X_{it} X_{is} \varepsilon_{it} \varepsilon_{is} \right] \\ & = & \sum_{i=1}^{N} \left[\sum_{t=1}^{T} X_{it}^{2} \varepsilon_{it}^{2} + 2 \sum_{t=1}^{T-1} \sum_{j=1}^{T-t} w(j) X_{it} X_{it-j} \varepsilon_{it} \varepsilon_{it-j} \right] \\ & = & \sum_{i=1}^{N} \left[\sum_{t=1}^{T} X_{it}^{2} \varepsilon_{it}^{2} + 2 \sum_{t=1}^{T-1} \sum_{j=1}^{T-t} \left(1 - \frac{j}{T} \right) X_{it} X_{it-j} \varepsilon_{it} \varepsilon_{it-j} \right] \end{split}$$

- M i.e. maximum lag $(T-1)^{\uparrow} \Rightarrow \text{Newey-West } SE \text{ bias}^{\downarrow} \ (\because \text{ restriction in weighting})$
- 2. \exists time effect
- conversion of correlation structures

$$egin{array}{lll} X_{it} & = & \zeta_t \!\!+\! v_{it} \ arepsilon_{it} & = & \delta_t \!\!+\! \eta_{it} \end{array}$$

- $Var(\zeta)^{\uparrow}$ & $Var(\delta)^{\uparrow} \Rightarrow \exists bias^{\downarrow}$ in OLS SE
- clustered SE; accuracy but $^{\exists}$ bias $^{\downarrow}$ 13% \sim 19%, \div limited number of clusters (T^{\downarrow})
 - N=500=sufficient, T=10=too small [Kezdi (2004), Hansen (2007, JEconometrics)]
 - $T^{\uparrow} \Rightarrow \text{bias}^{\downarrow}$

$$\begin{split} MSE &= E[(\widehat{SE} - SE_{true})^2] \\ &= E[(\widehat{SE} - \overline{SE} + \overline{SE} - SE_{true})^2] \\ &= E[(\widehat{SE} - \overline{SE})^2 + (\overline{SE} - SE_{true})^2 + 2(\widehat{SE} - \overline{SE})(\overline{SE} - SE_{true})] \\ &= E[(\widehat{SE} - \overline{SE})^2 + (\overline{SE} - SE_{true})^2] \\ &= Var(\widehat{SE}) + [Bias(\widehat{SE})]^2 \end{split}$$

$Avg(\beta_{OLS})$
$Std(\beta_{OLS})$
$Avg(SE_{OLS})$
% Sig(T _{OLS})
$Avg(SE_C)$
% Sig(T _C)

0%	25%	50%	75%

Source of residual volatility	0%	1.0004	1.0002	1.0006	0.9994
		0.0286	0.0291	0.0293	0.0314
		0.0283	0.0288	0.0295	0.0306
		[0.0098]	[0.0094]	[0.0088]	[0.0114]
		0.0277	0.0276	0.0275	0.0270
		[0.0330]	[0.0304]	[0.0348]	[0.0520]
	25%	1.0006	1.0043	0.9962	0.9996
		0.0284	0.1490	0.2148	0.2874
		0.0279	0.0284	0.0289	0.0300
		[0.0114]	[0.6064]	[0.7270]	[0.7874]
		0.0268	0.1297	0.1812	0.2305
		[0.0320]	[0.0360]	[0.0506]	[0.0736]
	50%	0.9996	0.9997	0.9919	1.0079
		0.0276	0.2138	0.3015	0.3986
		0.0274	0.0278	0.0282	0.0292
		[0.0100]	[0.7298]	[0.8096]	[0.8536]
		0.0258	0.1812	0.2546	0.3248
		[0.0294]	[0.0458]	[0.0596]	[0.0756]
	75%	1.0002	0.9963	0.9970	0.9908
		0.0273	0.2620	0.3816	0.4927
		0.0267	0.0271	0.0276	0.0284
		[0.0110]	[0.7994]	[0.8586]	[0.8790]
		0.0244	0.2215	0.3141	0.3986
		[0.0322]	[0.0402]	[0.0588]	[0.0768]

 \bullet Fama-MacBeth; $^{\exists}$ time effect \Rightarrow $\mathit{Corr}(\hat{\beta}_{t}, \hat{\beta}_{s}) = 0$ \Rightarrow $^{\nexists}$ bias FM SE

Source of independent variable volatility 0% 25% 50% 75% $Avg(\beta_{FM})$ $Std(\beta_{FM})$ $Avg(SE_{FM})$ % Sig(T_{FM}) 0.9991 Source of residual volatility 0% 1.0004 1.0004 1.0007 0.0287 0.0331 0.0396 0.0573 0.0278 0.0318 0.0390 0.0553 [0.0310][0.0312][0.0252][0.0338]25% 0.9999 1.0005 1.0003 1.0006 0.0252 0.0496 0.0284 0.0343 0.0239 0.0276 0.0338 0.0480 [0.0376][0.0296] [0.0294][0.0284]50% 1.0000 1.0002 1.0006 1.0007 0.0200 0.0231 0.0280 0.0394 0.0195 0.0227 0.0276 0.0387

[0.0254]

1.0001

0.0142

0.0138

[0.0308]

[0.0304]

0.9996

0.0161

0.0159

[0.0302]

[0.0272]

1.0000

0.0200

0.0196

[0.0284]

[0.0278]

0.9999

0.0285

0.0276

[0.0300]

- 3. \exists firm & time effect
- \exists firm effect $\Rightarrow \exists$ bias in clustered SE
- \exists time effect \Rightarrow FM SE is good for either T^{\downarrow} and T^{\uparrow}

75%

- $cost \rightarrow no correlation across clusters$
- parametrically estimate one dimension; usually $N>T \Rightarrow$ dummy for t, cluster for $i \rightarrow$ Lamont and Polk (2001, JFE), Anderson and Reeb (2004, JF), Gross and Souleles (2004, RFS), Sapienza (2004, JFE), Faulkender and Petersen (2006, RFS)
 - \exists fixed time effect \Rightarrow dummy for t eliminate correlation between observations in the same time period \Rightarrow only \exists firm effect \Rightarrow \exists bias in clustered SE
 - only for fixed time effect; otherwise, even \exists bias in clustered SE
 - The problem can be solved by simultaneous clustering for both firm and time
 - \rightarrow Cameron, Gelbach, and Miller (2006), Thompson (2006) proposed below.

 $m{V}_{
m firm\&time} = m{V}_{
m firm} + m{V}_{
m time} - m{V}_{
m White}$

 $oldsymbol{V}_{ ext{firm}} := ext{capture the correlation caused by firm effect}$ $oldsymbol{V}_{ ext{time}} := ext{capture the correlation caused by time effect}$

 $V_{
m White}$:= avoid double-counting of diagonal term

		firm 1		firm 2			firm 3			
	$arepsilon_{11}^{2}$	$\varepsilon_{11}\varepsilon_{12}$	$\varepsilon_{11}\varepsilon_{13}$	$\varepsilon_{11}\varepsilon_{21}$	0	0	$\varepsilon_{11}\varepsilon_{31}$	0	0	
firm 1	$\varepsilon_{12}\varepsilon_{11}$	$arepsilon_{12}^{2}$	$\varepsilon_{12}\varepsilon_{13}$	0	$\mathcal{E}_{12}\mathcal{E}_{22}$	0	0	$\mathcal{E}_{12}\mathcal{E}_{32}$	0	
	$\varepsilon_{11}\varepsilon_{13}$	$\varepsilon_{13}\varepsilon_{12}$	$arepsilon_{13}^{2}$	0	0	$\varepsilon_{13}\varepsilon_{23}$	0	0	$\varepsilon_{12}\varepsilon_{32}$	
	$\varepsilon_{21}\varepsilon_{11}$	0	0	$arepsilon_{21}^{2}$	$arepsilon_{21}arepsilon_{22}$	$\varepsilon_{21}\varepsilon_{23}$	$\varepsilon_{21}\varepsilon_{31}$	0	0	
firm 2	0	$\varepsilon_{22}\varepsilon_{12}$	0	$\mathcal{E}_{22}\mathcal{E}_{21}$	$arepsilon_{22}^{2}$	$\mathcal{E}_{22}\mathcal{E}_{23}$	0	$\mathcal{E}_{22}\mathcal{E}_{32}$	0	
	0	0	$\varepsilon_{22}\varepsilon_{12}$	$\varepsilon_{21}\varepsilon_{23}$	$\mathcal{E}_{23}\mathcal{E}_{22}$	$arepsilon_{23}^{2}$	0	0	$\mathcal{E}_{23}\mathcal{E}_{33}$	
	$\varepsilon_{31}\varepsilon_{11}$	0	0	$\varepsilon_{31}\varepsilon_{21}$	0	0	ε_{31}^2	$\varepsilon_{31}\varepsilon_{32}$	$\varepsilon_{31}\varepsilon_{33}$	
firm 3	0	$\varepsilon_{32}\varepsilon_{12}$	0	0	$\varepsilon_{32}\varepsilon_{22}$	0	$\varepsilon_{32}\varepsilon_{31}$	$arepsilon_{32}^{2}$	$\mathcal{E}_{32}\mathcal{E}_{33}$	
	0	0	$\varepsilon_{33}\varepsilon_{13}$	0	0	$\mathcal{E}_{33}\mathcal{E}_{23}$	$\varepsilon_{31}\varepsilon_{33}$	$\mathcal{E}_{33}\mathcal{E}_{32}$	ε_{33}^{2}	

correlation structure

$$egin{array}{lll} X_{it} & = & \gamma_{i} + \delta_{t} + \eta_{it} & Var(\gamma) = Var(\delta) = Var(\eta) \ arepsilon_{it} & = & \mu_{i} + \zeta_{t} + v_{it} & Var(\mu) = Var(\zeta) = Var(v) \end{array}$$

 $arepsilon_{it} = \mu_i + \zeta_t + v_{it} \qquad Var(\mu) = Var(\zeta) = Var(v)$ 1-D clustered $SE \Rightarrow \exists \text{bias}^{\downarrow}; \ T^{\uparrow} \Rightarrow \text{bias}^{\uparrow} \rightarrow 5\% \ \text{for} \ T = 10, 73\% \ \text{for} \ T = 100$

- 2-D clustered $SE \Rightarrow {}^{\not\exists}$ bias (enough T and N); but T^{\downarrow} or $N^{\downarrow} \Rightarrow {}^{\exists}$ bias $^{\downarrow}$ in SE→ Cameron, Gelbach, and Miller (2006), Thompson (2006)
- T^{\downarrow} or $N^{\downarrow} \Rightarrow$ 2-D clustered $SE \approx$ 1-D clustered SE with clustering $\max(T,N)$
- 4. [∃]firm effect but not fixed (non-permanent, i.e. decay over time)
- [∃]firm effect & serial correlation

$$egin{array}{lll} \eta_{it} &=& \zeta_{it} & ext{if } t=1 \ &=& \phi \eta_{it-1} + \sqrt{1-\phi^2} \, \zeta_{it} & ext{if } t>1 \ \end{array} \ \Rightarrow & Corr(arepsilon_{it}, arepsilon_{it-k}) &=& rac{Cov(\gamma_i + \eta_{it}, \gamma_i + \eta_{it-k})}{\sqrt{Var(\gamma_i + \eta_{it})} \, \sqrt{Var(\gamma_i + \eta_{it-k})}} \ &=& rac{\sigma_{\gamma}^2 + \phi^k \sigma_{\eta}^2}{\sigma_{\gamma}^2 + \sigma_{\eta}^2} \ &=&
ho_{arepsilon} + (1-
ho_{arepsilon}) \phi^k \end{array}$$

Panel A: OLS and clustered standard errors

$\begin{array}{l} Avg(\beta_{OLS}) \\ Std(\beta_{OLS}) \\ Avg(SE_{OLS}) \\ \% \ Sig(T_{OLS}) \\ Avg(SE_C) \\ \% \ Sig(T_C) \end{array}$	I	II	III	IV
ρ_X/ρ_{ϵ}	0.50/0.50	0.00/0.00	0.25/0.25	0.60/0.35
ϕ_X/ϕ_{ϵ}	0.00/0.00	0.90/0.90	0.75/0.75	0.99/0.81
OLS	0.9994	1.0001	1.0009	0.9991
	0.0513	0.0659	0.0566	0.0677
	0.0283	0.0283	0.0283	0.0253
	[0.1578]	[0.2746]	[0.1996]	[0.3302]
	0.0508	0.0668	0.0569	0.0670
	[0.0114]	[0.0086]	[0.0104]	[0.0098]
OLS with firm dummies	1.0007	1.0003	1.0013	1.0046
	0.0299	0.0517	0.0442	0.1881
firm dummy	0.0298	0.0298	0.0298	0.1101
$\Rightarrow \exists \text{bias in OLS } SE$	[0.0096]	[0.1382]	[0.0802]	[0.1288]
· blas in olds bl	0.0298	0.0516	0.0441	0.1886
	[0.0100]	[0.0098]	[0.0092]	[0.0108]
Panel B: G	LS estimates with	and without clustered	standard errors	
Avg(β_{GLS}) Std(β_{GLS}) Avg(SE _{GLS}) % Sig(T _{GLS})	I	П	III	IV
Avg(SE _{GLS} -C) % Sig(T _{GLS} -C)				
Avg(SE _{GLS-C}) % Sig(T _{GLS-C})	0.50/0.50	0.00/0.00	0.25/0.25	0.60/0.25
Avg(SE_{GLS-C}) % Sig(T_{GLS-C}) ρ_X/ρ_{ϵ}	0.50/0.50	0.00/0.00	0.25/0.25	
Avg(SE _{GLS-C}) % Sig(T _{GLS-C})	0.50/0.50 0.00/0.00	0.00/0.00 0.90/0.90	0.25/0.25 0.75/0.75	
Avg(SE_{GLS-C}) % Sig(T_{GLS-C}) ρ_X/ρ_{ϵ}				
$\begin{array}{l} Avg(SE_{GLS-C})\\ \%\ Sig(T_{GLS-C})\\ \\ \hline \rho_{X}/\rho_{\epsilon}\\ \phi_{X}/\phi_{\epsilon}\\ \\ GLS \end{array}$	0.00/0.00 1.0005 0.0284	0.90/0.90 1.0003 0.0475	0.75/0.75 1.0012 0.0408	0.99/0.81 1.0006 0.0731
Avg(SE _{GLS-C}) % Sig(T _{GLS-C}) ρ_X/ρ_{ϵ} ϕ_X/ϕ_{ϵ} GLS correlated residual \rightarrow	0.00/0.00 1.0005 0.0284 0.0283	0.90/0.90 1.0003	0.75/0.75 1.0012 0.0408 0.0283	0.99/0.81 1.0006 0.0731 0.0580
$\begin{array}{c} \text{Avg}(\text{SE}_{\text{GLS-C}}) \\ \% \ \text{Sig}(\text{T}_{\text{GLS-C}}) \\ \\ \hline \rho_{\text{X}}/\rho_{\epsilon} \\ \phi_{\text{X}}/\phi_{\epsilon} \\ \\ \text{GLS} \\ \hline \text{correlated residual} \rightarrow \\ \text{efficiency; GLS} \gtrsim \text{OLS} \\ \end{array}$	0.00/0.00 1.0005 0.0284 0.0283 [0.0090]	0.90/0.90 1.0003 0.0475	0.75/0.75 1.0012 0.0408	0.0731 0.0580 [0.0388]
Avg(SE _{GLS-C}) % Sig(T _{GLS-C}) ρ_X/ρ_{ϵ} ϕ_X/ϕ_{ϵ} GLS correlated residual \rightarrow	0.00/0.00 1.0005 0.0284 0.0283	0.90/0.90 1.0003 0.0475 0.0283	0.75/0.75 1.0012 0.0408 0.0283	0.99/0.81 1.0006 0.0731 0.0580

- fixed effect (hereafter FE) \rightarrow significant minority
- efficiency; in many cases, fixed effect is better than OLS $\rightarrow Var(\beta_{FIX}) \leq Var(\beta_{OLS})$
- Fixed firm effect \Rightarrow SE of \rightarrow OLS=bias, OLS+FE & clustered & clustered+FE=unbias • Kezdi (2004,)
- ullet decaying firm effect \Rightarrow <u>OLS+FE</u>=bias, <u>clustered</u> & <u>clustered+FE</u>=unbias
- $\bullet \quad ^\exists \text{decaying (temporary) firm effect} \Rightarrow \ ^\exists \text{bias}^\downarrow \text{ in } \textit{SE of OLS+FE (depends on } \phi)$
 - Baker, Stein, and Wurgler (2003, QJE), Wooldridge (2003, AER)
- GLS; improve efficiency of estimator; $Var(\beta_{GLS}) \leq Var(\beta_{OLS}) \rightarrow Wooldridge$ (2007)
 - rarely (<3%) done in finance paper \to Maksimovic and Phillips (2002, JF), Gentry, Kemsley, and Mayer (2003, JF), Almazan et al. (2004, JFE)

Panel C: Fama-MacBeth standard errors

$\begin{array}{l} Avg(\beta_{FM}) \\ Std(\beta_{FM}) \\ Avg(SE_{FM}) \\ \% \ Sig(T_{FM}) \\ Avg(SE_{FM-AR1}) \\ \% \ Sig(T_{FM-AR1}) \end{array}$	Ι	II	III	IV
ρ_X/ρ_{ϵ} ϕ_X/ϕ_{ϵ}	0.50/0.50	0.00/0.00	0.25/0.25	0.60/0.35
	0.00/0.00	0.90/0.90	0.75/0.75	0.99/0.81
Fama-MacBeth	0.9995	1.0001	1.0008	0.9991
	0.0514	0.0660	0.0567	0.0667
very imprecise SE because of negative correlation in cross-sectional β for each year	0.0239	0.0187	0.0221	0.0138
	[0.2510]	[0.4696]	[0.3350]	[0.6094]
	0.0224	0.0389	0.0376	0.0289
	[0.3222]	[0.2876]	[0.2098]	[0.3900]
Avg(first-order autocorrelation)	-0.1157	0.4395	0.3250	0.4389

- adjusted Fama-MacBeth SE; $SE_{aFM} = SE_{FM} \times (1+\vartheta)/(1-\vartheta)$, $\vartheta = Corr(\beta_t, \beta_{t-1})$
 - Christopherson, Ferson, and Glassman (1998, RFS)
 - Graham, Lemmon, and Schallheim (1998, JF)
 - Chen, Hong, and Stein (2001, JFE)
 - Cochrane (2001)
 - Lakonishok and Lee (2001, RFS)
 - Fama and French (2002, RFS)
 - Kemsley and Nissim (2002, JF)
 - Bakshi, Kapadia, and Madan (2003, RFS)
 - Pastor and Veronesi (2003, JF)
 - Chakravarty, Gulen, and Mayhew (2004, JF)
 - Nagel (2005, JFE)
 - Schultz and Loughran (2005, JFE)
- 90% confidence interval for $\theta = (-0.60, 0.41), E(\theta) = -0.12 \rightarrow \mathbb{P}(|t| > 2.58) = 25 \sim 32\%$
- negative $\theta \Rightarrow$ magnitude of bias[†]; reason=estimated autocorr. \neq population autocorr.
 - positive correlation in β_t and $\beta_{t-1} \Rightarrow \text{Fama-MacBeth } SE \text{ bias}^{\downarrow}$
 - however in sample $E(\beta)$ is also influenced by firm effect \to asymptotic covariance between them will be zero \to adjustment based on this measure cannot be justified
 - $\phi > 0 \Rightarrow \text{performance}^{\uparrow} \text{ of } SE \text{ of aFM}$

- case $(1, \bullet) \to FM \gtrsim aFM \& T^{\uparrow} = useless$
- case $(2, \blacktriangle) \to aFM \gtrsim FM \& T^{\uparrow} \Longrightarrow magnitude of bias^{\downarrow}$
- case $(3, \bullet) \rightarrow \text{similar}$
- ullet fixed & temporary firm effect \Rightarrow SE_{aFM} =biased but less than SE_{FM}

5. Empirical Applications

- 2 examples of panel analysis
 - asset pricing; usually time-effect matters
 - corporate finance; usually firm-effect matters
- in real world \rightarrow data structure=unknown
- in this chapter
 - how the different methods for estimating SE compare
 - \bullet confirms that the methods used by some papers could have produced SE
 - shows what can be learned from the different SE estimates
- SE estimated by; OLS, White HCC, 1-D clustered by t, i & 2-D clustered
 - comparison between White HCC and clustered SE; no heteroskedasticity problem
 - if clustered $SE\gg$ White HCC $SE\Longrightarrow^{\exists}$ significant firm effect
 - I. OLS β + time dummy + White SE
 - II. OLS β + time dummy + firm clustered SE
 - III. OLS β + time dummy + time clustered SE
 - IV. OLS β + time dummy + 2-D clustered SE
 - V. Fama-MacBeth β + Fama-MacBeth SE
- Daniel and Titman (2006, JF) \rightarrow return_{it}= $f(B/M_{it-1})$?
 - return=monthly, B/M=yearly \Rightarrow highly persistent
 - White $SE \approx$ clustered SE by firm \because autocorr. in residual=effectively 0
 - clustered SE by time \gg other SE: heavy time effect in the data

Table 6
Asset pricing application: Equity returns and asset tangibility

	I	II		III	IV	V
$Log(B/M)_{t-5}$	0.2456** (0.0238)	0.2456** (0.0247)	Γ	0.2456** (0.0924)	0.2456** (0.0926)	0.2064** (0.0795)
Log(Book Return) (last five years)	0.2482** (0.0385)	0.2482** (0.0396)		0.2482** (0.0859)	0.2482** (0.0864)	0.2145** (0.0788)
Market return (last five years)	-0.3445* (0.0257)	-0.3445* (0.0261)	ŀ	-0.3445* (0.1000)	-0.3445* (0.1001)	-0.3310** (0.0893)
Share issuance	-0.5245** (0.0426)	-0.5245** (0.0427)	ŀ	-0.5245** (0.1440)	-0.5245** (0.1441)	-0.5143** (0.1235)
R ² Coefficient estimates Standard errors	0.0008 OLS White	0.0008 OLS CL – F		0.0008 OLS <i>CL - T</i>	0.0008 OLS CL – F&T	0.0008 FM FM

- temporary firm effect; understanding is simple (time decaying)
- non-constant time effect; difficult (time dummy SE=clustered SE by time \rightarrow $^{\exists}$ constant effect, otherwise i.e. time dummy $SE\neq$ clustered SE by time \Rightarrow $^{\exists}$ non-constant effect
- economic intuition can be applied into the analysis matter of sorting order
- It can be found the structure of given data by comparing the magnitude of estimated SE of many models.
- ullet III and V=similar $\ddot{\cdot}$ firm effect

Table 7
Corporate finance application: Capital structure regressions (1965–2003)

	I	II	III	IV	V
Ln(MV assets)	0.0460**	0.0460*	0.0460**	0.0460*	0.0394**
	(0.0055)	(0.0184)	(0.0074)	(0.0191)	(0.0076)
Ln(1 + Firm age)	-0.0432**	-0.0432	-0.0432**	-0.0432	-0.0479**
	(0.0084)	(0.0297)	(0.0067)	(0.0293)	(0.0077)
Profits/sales	-0.0330**	-0.0330	-0.0330**	-0.0330	-0.0299**
	(0.0107)	(0.0359)	(0.0098)	(0.0357)	(0.0097)
Tangible assets	0.1043**	0.1043**	0.1043**	0.1043**	0.1158**
	(0.0057)	(0.0197)	(0.0083)	(0.0206)	(0.0096)
Market-to-book (assets)	-0.0251**	-0.0251**	-0.0251**	-0.0251**	-0.0272**
	(0.0006)	(0.0020)	(0.0013)	(0.0023)	(0.0016)
Advertising/sales	-0.3245**	-0.3245	-0.3245**	-0.3245	-0.3965*
	(0.0841)	(0.2617)	(0.0814)	(0.2609)	(0.1712)
R&D/sales	-0.3513**	-0.3513*	-0.3513**	-0.3513*	-0.3359**
	(0.0469)	(0.1544)	(0.0504)	(0.1555)	(0.0501)
R&D > 0 (= 1 if yes)	0.0177**	0.0177*	0.0177**	0.0177*	0.0126**
	(0.0024)	(0.0076)	(0.0025)	(0.0077)	(0.0034)
R-squared	0.1360	0.1360	0.1360	0.1360	0.1300
Coefficient estimates	OLS	OLS	OLS	OLS	FM
Standard errors	White	CL - F	CL-T	CL - F&T	FM

——Residual ■ Lagged Log(B/M) ▲ Book Return ◆ Market Return ★ Issuance ● [#]residual autocorr.

† high autocorr. in B/M

Panel B: Within Month

Residual Lagged $\log(B/M)$ A Book return Market return X Issuance correlation between industry at the same time \Rightarrow time effect is more important

Panel A: Within Firm

Residual ■ Ln(MVA) ▲ PPE/BVA ◆ MVA/BVA * Profits/Sales

ullet high autocorrelation in dep. and indep. variable \Rightarrow firm effect matters!

Panel B: Within Month

Residual ■ Ln(MVA) ▲ PPE/BVA ◆ MVA/BVA ★ Profits/Sales

• cross sectional correlation \Rightarrow time effect is small in this case!

- 6. conclusion; again, this paper is about SE!!! not about $\beta!$
- \bullet empirical finance \Rightarrow panel analysis is important
- but! OLS or White HCC for regression SE are biased in usual situation
- but!! appropriate remedies have rarely been proposed
- objective of this paper=to provide good guide for SE problems in panel analysis

[∃]firm effect \Leftrightarrow [∃]serial correlation in X and ε \Leftrightarrow highly persistent; usually in corporate finance data

- best=clustered SE by firm (whether the effect is fixed or not)
- good=fixed effect OLS, random effect GLS (only when firm effect is fixed)
- not good=simple OLS, White HCC, Newey-West for panel, Fama-MacBeth SE, first-order modified Fama-MacBeth SE (all of them will underestimate SE!)

 $^{\exists}$ time effect \Leftrightarrow $^{\exists}$ cross correlation \Leftrightarrow low persistent but systematically influenced by macro or etc.; usually in asset pricing data

- best=Fama-MacBeth SE
- good=clustered SE by time (only when T^{\uparrow} enough, otherwise \Longrightarrow biased)
- not good=others

 $^{\exists}$ time effect & $^{\exists}$ firm effect

- best=2-D clustered SE (only when T^{\uparrow} and N^{\uparrow})
- good=parametric on one dimension+clustered SE for other dimension \rightarrow ex. time dummy+clustered SE by firm

if ${}^{\exists}$ sufficient N and $T \Rightarrow$ 2-D clustered SE=always best if not \Rightarrow dummy for small dimension+clustered SE by large dimension is quasi-best

"OLS SE=bias" means that " $^{\exists}$ remained information in the data"

• In this situation, researcher can improve the efficiency of β by using fixed effects, GLS, GMM, etc. to test.

comparing various SE estimates \Rightarrow quickly observe the presence of firm/time effect

- if White $SE\gg$ clustered SE by firm $\Rightarrow \exists$ heavy firm effect
- if White $SE\gg$ clustered SE by time $\Rightarrow \exists$ heavy time effect
- if 2-D clustered $SE\gg$ one of 1-D clustered $SE\Rightarrow$ firm effect & $^{\exists}$ time effect

Which dependencies are most important will vary across data and thus researchers must consult their data.

• this paper gives; appropriate selecting method for *SE*, intuition as to the the deficiency of their models, guidance for improving their models

Firm Effect Concept!

Time	A	В	C		N
2001	a	b	c	•••	n
2002	a	b	c	•••	n
2003	a	b	c		n
:	:	:	:	·.	:
T	a	b	c	•••	n

Time Effect Concept!

Time	A	В	C	•••	N
2001	1	1	1	•••	1
2002	2	2	2	•••	2
2003	3	3	3	•••	3
:	:	:	:	·.	:
T	t	t	t		t

2-D Effect Concept!

Time	A	В	C	•••	N
2001	1	1	1	•••	1
2002	2	2	2	•••	2
2003	3	3	3	•••	3
:	:	:	:		:
T	t	t	t	•••	t