

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

Tópicos Avanzados en Teoría de la Computación - IIC3810 Tarea 3 Fecha de entrega: miércoles 29 de octubre

- 1. En esta pregunta usted debe construir un protocolo interactivo con aleatoriedad pública para GRAPH-ISO a partir del protocolo interactivo dado en clases para CNF-QBF.
- 2. Utilizando las ideas vistas en clases, demuestre que:

$$\bigcup_{k\in\mathbb{N}} \mathrm{AM}[n^k] \ \subseteq \ \mathrm{PSPACE}.$$

3. En esta pregunta usted debe completar la demostración del teorema de Valiant-Vazirani a partir de siguiente lema demostrado en clases:

Lema 1 Existe un algoritmo aleatorizado de tiempo polinomial que, dada una fórmula proposicional φ en CNF con n variables, genera una secuencia de fórmulas $\varphi_1, \ldots, \varphi_n, \varphi_{n+1}, \varphi_{n+2}$ en CNF tales que:

• $Si \varphi$ es consistente, entonces

$$\mathbf{Pr}\bigg(\bigvee_{i=1}^{n+2} \#\mathit{CNF\text{-}SAT}(\varphi_i) = 1\bigg) \ \geq \ \frac{1}{8}$$

• $Si \varphi$ es inconsistente, entonces cada fórmula φ_i $(i \in \{1, ..., n+2\})$ es inconsistente.

En particular, a partir de este lema debe construir una MT probabilística M con oráculo tal que $t_M(n)$ es $O(n^k)$ y para cada

$$H \subseteq \{\psi \mid \psi \text{ es una fórmula en CNF tal que } \#\text{CNF-SAT}(\psi) \geq 2\}$$

y cada fórmula φ en CNF:

- Si $\varphi \in \text{CNF-SAT}$, entonces $\Pr(M^{\text{U-CNF-SAT}_H} \text{ acepte } \varphi) \geq \frac{3}{4}$
- Si $\varphi \notin \text{CNF-SAT}$, entonces $\mathbf{Pr}(M^{\text{U-CNF-SAT}_H} \text{ acepte } \varphi) = 0$