Théorie des Langages Automates

Claude Moulin

Université de Technologie de Compiègne

Printemps 2013

Sommaire

- Automate fini
- 2 Automate et langages réguliers
- 3 Automate à pile

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- 2 Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Introduction

- Question : Déterminer des outils permettant de reconnaître si une chaîne appartient à un langage
- Les automates sont des modèles mathématiques qui prennent en entrée une chaîne de symboles et qui effectuent un algorithme de reconnaissance de la chaîne.
- Si l'algorithme se termine dans certaines conditions, l'automate est dit accepter la chaîne correspondante.
- Le langage reconnu par un automate est l'ensemble des chaînes qu'il accepte.

Exemple

- Ensemble des chaînes construites sur {0, 1} comportant une suite de caractères 01.
- 3 Cas de figure
 - Le premier 0 n'est pas encore apparu
 - Le premier 0 est apparu et on attend le premier 1 suivant
 - La séquence 01 a été rencontrée

Définition

- Un automate fini déterministe (AFD) est un modèle mathématique qui consiste en :
 - Q un ensemble d'états.
 - Σ un ensemble de symboles d'entrée (alphabet).
 - δ une fonction de transition qui prend comme argument un état et un symbole d'entrée et qui retourne un état.
 δ : Q × Σ → Q.
 - q₀, un état initial appartenant à Q.
 - F, un ensemble d'états finals ou états d'acceptation, $F \subset Q$.
- $A = (Q, \Sigma, \delta, q_0, F)$

Exemple

• Langage construit sur {0,1} dont les chaînes ont un nombre pair de 0 et un nombre pair de 1.

Diagramme de transition

- Pour chaque état $q \in Q$, il existe un nœud étiqueté q.
- Pour chaque état q et chaque symbole a de Σ tel que $\delta(q,a)=p$, il existe un arc du nœud q vers le nœud p étiqueté a.
- Les nœuds correspondant aux états de satisfaction (états appartenant à F) sont représentés par un cercle double.

Table de transition

Exemples:

$$\delta(q_0,0)=q_2$$
$$\delta(q_1,0)=q_3$$

	0	1	
$^{f \star} ightarrow q_0$	q ₂	q_1	
q_1	q_3	q_0	
q_2	q_0	q ₃	ightarrow désigne l'état initial
q_3	q_1	q_2	* désigne les états finals

Chemins

•
$$\hat{\delta}(q_0, 0) = q_2$$

 $\cot \delta(q_0, 0) = q_2$

•
$$\hat{\delta}(q_0, 0101) = q_0 \text{ car}$$

•
$$\hat{\delta}(q_0, 010) = q_1$$

• et
$$\delta(q_1, 1) = q_0$$

Fonction de transition étendue

La fonction de transition étendue appelée $\hat{\delta}$ décrit ce qui se passe lorsqu'on se positionne dans un état quelconque de l'automate et que l'on suit une séquence quelconque d'entrées.

- $\hat{\delta}: Q \times \Sigma * \longrightarrow Q$ est définie par induction sur la longueur de la chaîne de symboles d'entrée par :
 - $\hat{\delta}(q,\epsilon) = q$
 - Soit w = xa, a le dernier symbole de w et x la chaîne début de w.
 - si $\hat{\delta}(q, x) = p$, alors $\hat{\delta}(q, w) = \delta(p, a) = \delta(\hat{\delta}(q, x), a)$

Langage engendré par un automate

Le langage d'un automate à états finis déterministe $A = (Q, \Sigma, \delta, q_0, F)$ est défini par :

- l'ensemble des chaînes obtenues sur tout chemin du graphe partant du nœud initial et s'achevant sur un nœud final.
- $L(A) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- 2 Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Automate non déterministe

- L'automate non déterministe n'accepte que les chaînes composées de 0 et de 1 et terminées par la séquence 01.
- Il reste en l'état q₀ tant qu'il n'a pas deviné que l'ultime séquence n'a pas commencé.

•
$$\delta(q_0,0) = \{q_0,q_1\}$$

Transition

Reconnaissance de la chaîne 00101

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Automate avec ϵ -transitions (ϵ -AFN)

- Les automates finis possédant des ϵ -transitions sont des automates pouvant faire spontanément des transitions.
- Les arcs correspondants sont étiquetés par le symbole ϵ et ne consomment aucun caractère de la chaîne d'entrée.
- Un automate non déterministe avec ε-transitions est un quintuplet : A = (Q, Σ, δ, q₀, F)
- δ , la fonction de transition, prend en argument un état et un élément de $\Sigma \cup \{\epsilon\}$ et retourne un ensemble d'états.
- $\delta: Q \times \Sigma \cup \{\epsilon\} \longrightarrow Q$.

Automate avec ϵ -transitions (ϵ -AFN)

$(\epsilon$ -AFN)- Table de transition

Transformation : AFN → AFD

Question : Déterminer un AFD reconnaissant le même langage que cet AFN ?

Algorithme

- **1** Soit $E = \{q_0\}$.
- **②** Construire $E^{(1)}(x) = \delta(E, x) = \bigcup_{q \in E} \delta(q, x)$ pour tout $x \in \Sigma$.
- Necommencer 2 pour toute transition et pour chaque nouvel ensemble $E^{(i)}(a)$.
- 4 Tous les ensembles d'états $E^{(i)}(a)$ contenant au moins un état final deviennent des états finals.
- Senuméroter les ensembles d'états en tant que simples états.

Automate avec epsilon-transitions

Exemple

état	а	b
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	q_0, q_2	q_1
q_1	q 3	q_0, q_2
* q 2	q_3, q_4	q_2
* q ₃	q_2	q_1
q_4	Ø	q 3

$$q_0$$
 état initial; $F = \{q_2, q_3\}$

Automate avec epsilon-transitions

Table de l'AFD correspondant

état	а	b
q_0	q_0, q_2	q_1
q_0, q_2	q_0, q_2, q_3, q_4	q_1, q_2
q_1	9 3	q_0, q_2
q_0, q_2, q_3, q_4	q_0, q_2, q_3, q_4	q_1, q_2, q_3
q_1, q_2	q_3, q_4	q_0, q_2
q ₃	q_2	q_1
q_1, q_2, q_3	q_2, q_3, q_4	q_0, q_1, q_2
q_3, q_4	q_2	q_1, q_3
q ₂	q_3, q_4	q_2
q_2, q_3, q_4	q_2, q_3, q_4	q_1, q_2, q_3
q_0, q_1, q_2	q_0, q_2, q_3, q_4	q_0, q_1, q_2
q_1, q_3	q_2, q_3	q_0, q_1, q_2
q_2, q_3	q_2, q_3, q_4	q_1, q_2

Transformation : ϵ -AFN \longrightarrow AFD

- L'algorithme reste similaire au précédent à la différence que chaque ensemble d'états considéré doit être clos par ε-transition.
- L' ϵ -fermeture d'un état q est l'ensemble des états obtenus en suivant des ϵ -transitions à partir de q.

Règles d'appartenance :

- $q \in \epsilon$ -fermeture(q)
- si p ∈ ε-fermeture(q) et s'il existe une ε-transition entre p et un état r alors r ∈ ε-fermeture(q).

Application

Sommaire

- Automate fini
- 2 Automate et langages réguliers
- 3 Automate à pile

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Automate et expression régulière

Automate ↔ Expressions Régulières

$$\mathsf{AFD} \longrightarrow \mathsf{ER}$$
 $\mathsf{ER} \longrightarrow \epsilon\text{-}\mathsf{AFN}$ $\mathsf{AFD} \longrightarrow \epsilon\text{-}\mathsf{AFN}$

$$\epsilon$$
-AFN \longrightarrow AFD AFN \longrightarrow AFD

Théorèmes

Automate fini

- Tout langage défini par un automate est aussi défini par une expression régulière
- Si L(A) est le langage défini par un AFD, A, alors il existe une expression régulière R telle que :

$$L(R) = L(A)$$

- Tout langage défini par une expression régulière est aussi défini par un automate
- Si L(R) est le langage défini par une expression régulière, alors il existe un automate A tel que :

$$L(A) = L(R)$$

Démonstration

- A un AFD ayant n états.
- {1, 2, ..., n} l'ensemble de ses états.
- R_{ij}^(k) le nom de l'expression régulière dont le langage est l'ensemble des chaînes w construites sur un chemin allant de l'état i à l'état j qui ne passe pas par un état dont le rang est supérieur à k.

Automate et expression régulière

$$k = 0$$

- 2 possibilités :
 - \bullet i = j
 - $i \neq j$
- si i = j on ne considère que le nœud i lui-même
- Chemins légaux :
 - ullet le chemin de longueur 0 étiqueté ϵ
 - les boucles sur l'état i.
- $R_{ii}^{(0)} = \epsilon$: pas de transition
- $R_{ii}^{(0)} = \epsilon \mid a : 1$ transition étiquetée a
- $R_{ii}^{(0)} = \epsilon | a_1 | a_2 | ... | a_p : p transitions$

Automate et expression régulière

$$k = 0$$
; $i \neq j$

- Arcs reliant le nœud i au nœud j.
 - $R_{ii}^{(0)} = \emptyset$: pas de transition

 - R_{ij}⁽⁰⁾ = a : 1 transition étiquetée a
 R_{ij}⁽⁰⁾ = a₁ | a₂ | ... | a_p : p transitions étiquetées de a₁ à a_p

Récurrence: k > 0

- Chemins allant du nœud i au nœud j passant par des nœuds dont l'indice est < k.
- Un chemin ne passe pas par le nœud k
 - Son étiquette est décrite par $R_{ij}^{(k-1)}$
- Un chemin passe par le nœud k au moins une fois, repasse éventuellement par ce même nœud puis termine sur le nœud j.
 - son étiquette satisfait l'expression régulière :
 - $R_{ik}^{(k-1)}(R_{kk}^{(k-1)}) * R_{ki}^{(k-1)}$

Automate et expression régulière

Conclusion

•
$$R_{ij}^{(k)} = R_{ij}^{(k-1)} \mid R_{ik}^{(k-1)}(R_{kk}^{(k-1)}) * R_{kj}^{(k-1)}$$

- ullet $R_{ij}^{(k)}$ ne dépend que d'expressions de degré inférieur à k
- L'expression régulière décrivant un AFD est donnée par :
 - $R_{1p_1}^{(n)} \mid R_{1p_2}^{(n)} \mid \ldots \mid R_{1p_m}^{(n)}$
 - les nœuds p_1, p_2, \dots, p_m sont les nœuds d'acceptation.

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Elimination d'états

- Elimination de l'état q₁
- Le chemin q_0q_2 doit être remplacé par un arc d'étiquette : 10*1
- On obtient un graphe dont les arcs ont pour étiquette des expressions régulières

Résultat

A partir de :

On obtient le graphe :

Expression régulière : (0 | 10*10)* 10*1

Méthode

- Chaque chemin q, s, p produit une expression régulière qui vient s'ajouter (par la réunion) à l'expression du chemin q, p.
- Pour chaque état d'acceptation, on applique la réduction précédente pour produire un automate équivalent.
- On élimine tous les états s qui ne sont ni un état d'acceptation ni l'état initial.

Fin de la méthode

En fin de méthode, on obtient :

Méthode par élimination d'états

Exemple

• Situation : l'expression du chemin q, p.

R*SU* | R*SU*T

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Équations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Autre méthode

- On appelle L_i le langage que reconnaîtrait l'automate si q_i était son état initial.
- ullet On établit un système d'équation liant tous les L_i
- Pour chaque transition telle que $\delta(q_i, a) = q_j$: $L_{i,a} = aL_j$
- \bullet $L_i = L_{i,a_1} \mid L_{i,a_2} \dots \mid L_{i,a_n}$
- $\bullet L_i = a_1 L_{j_1} \mid a_2 L_{j_2} \dots \mid a_n L_{j_n}$
- Si q_i est terminal sans transition : $L_i = \epsilon$
- si $\delta(q_i, a) = q_i$ alors $L_i = aL_i = a*$
- $L = \alpha L \mid \beta$ se simplifie en : $L = \alpha * \beta$
- Il s'agit de calculer L₀

Exemple

- Equations
 - $L_0 = 0L_0 \mid 1L_1 \text{ et } L_1 = 0L_0 \mid \epsilon$
- Résolution :
 - $L_0 = 0L_0 \mid 10L_0 \mid 1$
 - $L_0 = (0|10)L_0 | 1$
 - $L_0 = (0|10) * 1$

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Équations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Expression régulière et Automate non déterministe

$\mathsf{ER} \longrightarrow \epsilon\text{-}\mathsf{AFN}$

- La preuve est construite par récurrence à partir des expressions régulières de base
- Tous les automates construits sont des ϵ -AFN ayant un unique état d'acceptation
- Il faut combiner les automates pour construire des automates composites acceptant les opérations :
 - Union (|)
 - Concaténation
 - Fermeture (*)
- Si L(R) est le langage dénoté par une expression régulière
 R, on démontre qu'il existe un ε-AFN, A, tel que L(A) = L(R)

ϵ -AFN pour des expressions de base

• Automate construit à partir de : \emptyset , ϵ , un symbole

- a) L = ∅
- b) L = $\{\epsilon\}$
- c) L = $\{a\}$

$$R \mid S \longrightarrow \epsilon$$
-AFN

Automate construit à partir de la disjonction

• $L = L(R) \cup L(S)$

Expression régulière et Automate non déterministe

$RS \longrightarrow \epsilon$ -AFN

Automate construit à partir de la concaténation

• L = L(R)L(S)

Expression régulière et Automate non déterministe

$$R^* \longrightarrow \epsilon$$
-AFN

Automate construit à partir de l'expression R*

•
$$L = L(R)*$$

Langages non réguliers

- Le langage : $L_{01} = \{0^n 1^n \mid n \ge 1\}$ est non régulier
- Raisonnement par l'absurde : soit un AFD représentant ce langage.
 - Il existe deux nombres différents i et j tels que après avoir lu les préfixes 0ⁱ et 0^j, l'AFD soit dans le même état.
 - A partir de cet état, l'AFD lit un certain nombre de 1 et arrive dans un état final.
 - On aurait $0^i 1^p \in L_{01}$ et $0^j 1^p \in L_{01}$ avec $i \neq j$
- Les expressions régulières ne sont pas suffisantes pour représenter les langages de programmation

Analyse lexicale

- Les unités lexicales sont définies par des expressions régulières.
- ◆ A chaque unité lexicale u₁, u₂, ...u_n est associé un AFN.
- Un AFN général est bâti à partir de ces AFN de base par réunion.

Sommaire

- Automate fini
- Automate et langages réguliers
- Automate à pile

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Équations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Description

Principe

$L_{wcw^R} = \{wcw^R; w \in (0|1)*\}$

succès

Diagramme de transition

Définition

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q est un ensemble fini d'états
- Σ est un ensemble fini de symboles d'entrée
- Γ est un ensemble fini dit alphabet de pile. C'est l'ensemble des symboles qui peuvent être empilés
- δ est la fonction de transition.
- q₀ est l'état initial
- Z₀ est le symbole de départ de la pile
- F est l'ensemble des états finals

Fonction de transition

- δ, la fonction de transition prend en entrée trois paramètres :
 - q un état de Q
 - ullet a un symbole d'entrée ou ϵ
 - X un symbole de pile
- Elle renvoie un ensemble fini de couples (p, γ) où p est le nouvel état et γ est la nouvelle chaîne de symboles qui remplace X au sommet de la pile.

Règle de transition

Lors d'une transition l'automate :

- consume le symbole utilisé dans la transition. Si ϵ est utilisé aucun symbole d'entrée n'est consumé.
- passe dans un nouvel état.
- remplace le symbole au sommet de la pile par une chaîne de symboles :
 - ϵ ; dépilement (pop).
 - le même symbole que le sommet actuel; aucun changement dans la pile.
 - un autre symbole (pop du sommet suivi de push).
 - une suite de symboles; dépilement du sommet (pop) et empilement (push) des symboles.

Sommaire

- Automate fini
 - Automate fini déterministe
 - Automate non déterministe
 - Automate avec epsilon-transitions
- Automate et langages réguliers
 - Automate et expression régulière
 - Méthode par élimination d'états
 - Equations de langages
 - Expression régulière et Automate non déterministe
- Automate à pile
 - Description
 - Automate non déterministe

Automate déterministe

- Un automate à pile est déterministe s'il n'existe pas d'alternative de déplacement dans aucune situation.
- $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ est déterministe, si et seulement si :
 - δ(q, a, X) contient au plus un élément, pour tout état q ∈ Q,
 a ∈ Σ ou a = ε et X ∈ Γ.
 - si $\delta(q, a, X)$ est non vide pour un élément $a \in \Sigma$, alors $\delta(q, \epsilon, X)$ doit être vide.

$L_{ww^R} = \{ww^R; w \in (0|1)*\}$

Simulation: chaîne 1111

Transition

- Une configuration d'un AFP est un triplet (q, v, γ) :
 - q est l'état de la configuration.
 - v est la chaîne d'entrée restant à analyser.
 - γ est le contenu de la pile.
- - le symbole d'entrée *a* est consumé.
 - l'automate passe de l'état q à l'état p.
 - X au sommet de la pile est remplacé par α .
- Notation ^{*} pour un ou plusieurs pas de l'automate.
- I * I
- si $I \stackrel{*}{\vdash} K$ et $K \vdash J$ alors $I \stackrel{*}{\vdash} J$

Acceptation

- $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
- Le langage accepté par P par état final est :

•
$$L(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\underset{P}{\vdash}} (q, \epsilon, \alpha) \}$$

- q est un état final
- Le buffer d'entrée est vide
- ullet α une suite quelconque de symboles.
- Le langage accepté par P par pile vide est :
 - $N(P) = \{ w \mid (q_0, w, Z_0) \stackrel{*}{\vdash} (q, \epsilon, \epsilon) \}$
 - le buffer d'entrée est vide
 - q est un état quelconque

Equivalence

- Si $L = N(P_N)$ pour $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0, F)$
 - alors il existe un automate à pile P_F tel que :
 - $L = L(P_F)$.
- Si $L = L(P_F)$ pour $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$
 - alors il existe un automate à pile P_N tel que :
 - $L = N(P_N)$.
- Soit G, une grammaire hors contexte. il est possible de construire un automate à pile P tel que N(P) = L(G).
- Soit $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ un AFP. Il existe une grammaire hors contexte G telle que L(G) = N(P).

Automate non déterministe

Equivalence

