Post optimality analysis 24 February 2021 11:58

(i) In equal constraint,

Change it to less than or earned to and greater than or

 $\frac{3(1 + x_2 = 5)}{3(1 + x_2 = 5)} = \frac{3(1 + x_2 = 5)}{3(1 + x_2$

- 2) While Checking dud optimality condition for entering variable in IBFS, it Ly 70 (for all non basic xy) the postern has no femille solution.
- 3) Dual Primal Relation

D	エー	0	u
I	~	×	~
	Х	/	X
~	1	×	<u>x</u> .

~ Positie X Imposible

I- instanille 0- optimed u- unbounded

Post optimality Analysis

(1) Changes affecting fearibility

Toy co Prollem (Introduction to operation Research)

— Taka

 $Z = 3x, + 2x_1 + 5x_3$

carson

t.
$$\alpha_1 + 2\alpha_2 + \alpha_3 \leq 430$$
 (Merekin 1)
 $3\alpha_1 + 2\alpha_3 \leq 460$ (Merekin 2)
 $\alpha_1 + 4\alpha_2 \leq 420$ (Merekin 2)
 $\alpha_1 + 4\alpha_2 \leq 420$ (Merekin 2)
 $\alpha_1, \alpha_2, \alpha_3 \geq 0$

OPt. Solution.

$$Z = 1350$$
, $x_{1} = 0$, $x_{2} = 100$

Dual

Min $Z = 4309, + 4609_2 + 4209_3$ Solu $y_1 + 3y_2 + y_3 \ge 3$ $y_{1} = 1$ $y_{2} = 1$ $y_{2} = 1$ $y_{3} = 1$ $y_{2} = 1$ $y_{3} = 0$ $y_{4} = 0$ $y_{5} = 0$ $y_{7} = 0$ $y_{7} = 0$ $y_{7} = 0$ $y_{8} = 0$ $y_{1} = 0$ $y_{2} = 0$ $y_{2} = 0$

Animal optimal table

							347	Ax=1
١	<i>3</i> (,	$x_{\mathbf{z}}$	\varkappa_3	264	75	xi /	(ول	x= A-16
<i>E</i>	4	0	0	1	2	Ð	1350	
×2/	-1/4	1	O	1/2	-1/4	0	1000	$x_{1}=0$ $x_{1}=0$ $x_{2}=100$ $x_{3}=230$ $x_{3}=230$
x3 ~	3/2	0	J	6	丛	0	2300	23= 230
XLV	2	0	0	-2	ι	9	20	- mil-ov
7x	1						J —	- x4] = 0

(1) It daily carracty of Meration 1,2 L3 is increased to 600, 640, 590, what is the effect in total revenue?

New RHS = Invence in x New in iteration i 12HS constraint

$$\begin{pmatrix} \mathcal{X}_2 \\ \mathcal{X}_3 \\ \mathcal{X}_4 \end{pmatrix} = \begin{pmatrix} \mathcal{Y}_2 & -\mathcal{Y}_4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} \langle v_0 \rangle \\ 1/4 & 0 \\ 5/90 \end{pmatrix}$$

New Soln 's

New
$$Z = 1880$$
 | Trumpit 1530

$y_1 = y_1$ $y_2 = 2^2$, $y_3 = 0^2$

Resource worth operation 1 is 1/2mit Resource worth peresin 2 [is 2] 2

Operation 1 -> chames in wit

Total increase wird. over 1 = 170

Operation 2 -> Charles in with = 640 - 460

operation 3 -s Chance in Writ 590-420 = 170

Total Resource Value

Survivor"

= (170 × 1) + (180 × 2)

+ (170 × 0)

= 170 + 360 ×

= 530 /) increase
in reverse
in reverse

(nsing Dual Price, we got dans)

Shift the slack capacity of

2) Shift the slack caracity of operation 3 (XI = 20) to the Capacity of operation 1.

the optimum solution?

New RHS = Inverse > RHS in iterial constraints

 $= \begin{pmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ -2 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} 450 \\ 460 \\ 400 \end{pmatrix}$

 $\begin{pmatrix} 32 \\ 33 \\ 31 \end{pmatrix} = \begin{pmatrix} 1/0 \\ 232 \\ -40 \end{pmatrix}$

 $x_{2} = 110$, $x_{3} = 230$ $x_{1} = -40$ $x_{2} = 110$, $x_{3} = 230$

Solve by dual Simplex Method.

 $x_{1} = 110$ $x_{3} = 230$ $x_{3} = 100$ $x_{4} = 230$ $x_{5} = 40$ $x_{5} = 3x_{1} + 2x_{2} + 5x_{3}$ $x_{7} = (3 \times 0) + 2(110) + 5 \times 230$

1 1 2

f JI_

= 1370

Kennife the optimal take as torins
2 1370
χ_2 $\langle 110 \rangle$
230
ol L
Starking take for durl Singles
$\frac{Soln \left(\frac{Z=1350}{Z=100}\right)}{Z=100}$
The optimal Solution remains
Jame. Shifting Black XL=20 to XY=20
is not advantageous
(111) Shifting IL=20 to operation 2.
what is the impact?
$RHS = \begin{pmatrix} 1/4 & -1/4 & 0 \\ 0 & 1/2 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 430 \\ 480 \\ 400 \end{pmatrix} - 42 \\ -2 & 1 & 1 \end{pmatrix}$
RHS = 12 4 480 42
$\begin{pmatrix} -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 400 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}$
$\begin{pmatrix} x_1 \\ x_3 \\ - \\ 240 \end{pmatrix}$
$\left \begin{array}{c c} \mathcal{X}_3 \end{array}\right - \left \begin{array}{c c} 240 \end{array}\right $
>20
$3(1=0)$, $x_2 = 95$, $x_3 = 26$, $x_6 = 20$
$Z = (3 \times 0) + (2 \times 9)$
+ (5 × 2 + D)
= (1390) [\$40]
Increme in ofthal soh.
Selection of operation 2 over operation 1 is preferred
Over operation!

OneNote

2) Addition of New constraint

3 constraint im Toyco

4th constraint -> speration 4

[4k->301, + x2 + 213 < 500

Current optimal Solution.

 $z_1 = 0$ $z_2 = 100$ $z_3 = 230$ $z_4 = 1350$

if the Constraint in Reduntant
'no Change in Atimum'

(3×0)+(100)+(230) = 330 <500 True

Reduntant Constraint

No Charge in optimal

eg: 4th answint

3 x1 + 3 x2 + x3 6500

530 6 200× (not true)

Change in optimal Value.

We have to told Constraint

be we have to solve

dual simple much