Esercitazioni di Analisi 2

EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE

Problemi di Cauchy, EDO di Bernoulli

*Risolvi il problema di Cauchy: $\begin{cases} y'(t) = y^2(t) \\ y(0) = -1 \end{cases}$ [L'equazione è a variabili separabili. La soluzione costante $y(t) = 0 \ \forall t \in \mathbb{R}$ non è soluzione del problema di Cauchy. Per $y \neq 0$ si ottiene l'integrale generale da $\int \frac{1}{u^2} dy = \int dt \Rightarrow -\frac{1}{u} = t + c$. La condizione iniziale y(0) = -1 comporta c = 1. La soluzione è perciò $y(t) = \frac{-1}{t+1}$, con t > -1.]

2. Risolvi i seguenti problemi di Cauchy, specificando qual è il più ampio intervallo in cui ciascuna soluzione è definita:

(a)
$$\begin{cases} y' = \frac{y+1}{x} \\ y(1) = 0 \end{cases}$$

$$[y = x - 1; (0, +\infty)]$$

(b) *
$$\begin{cases} y' = y + 2 \\ y(1) = 2 \end{cases}$$

$$\left[y = 4e^{x-1} - 2; \ \mathbb{R}\right]$$

$$\begin{cases} y' = \frac{y+1}{x} \\ y(0) = 3 \end{cases}$$

$$[\varnothing]$$

(d) *
$$\begin{cases} y'(t) = y(t)\cos t \\ y(1) = -1 \end{cases} \quad \left[y(t) = -\frac{1}{e^{\sin 1}} e^{\sin t}; \mathbb{R} \right]$$

$$\left[y\left(t\right) = -\frac{1}{e^{\sin 1}}e^{\sin t}; \ \mathbb{R}\right]$$

(e)
$$\begin{cases} y' = \frac{x}{x^2 + 1}y \\ y(0) = 2 \end{cases}$$

$$\left[y = 2\sqrt{x^2 + 1}; \ \mathbb{R}\right]$$

(f)
$$\begin{cases} y' = \frac{x^3}{x^3 + 1} (y - 2) \\ y(0) = 2 \end{cases} [y = 2; (-1, +\infty)]$$

$$[y=2; \ (-1,+\infty)]$$

(g)
$$\begin{cases} y' = \frac{2y}{x} + 3x^2 \cos x \\ y(\pi) = 3\pi^3 \end{cases}$$

$$[y = 3x^2 (\sin x + \pi); (0, +\infty)]$$

(h)
$$\begin{cases} y' = 2x\sqrt{1 - y^2} \\ y(0) = 1 \end{cases} \qquad [y = 1 \lor y = \cos x^2; \ \mathbb{R}]$$
(i)
$$\begin{cases} y' + 3x^2y = x^2 \\ y(2) = -1 \end{cases} \qquad [y = \frac{1}{3} - \frac{4}{3}e^{8-x^3}; \ \mathbb{R}]$$

$$[y=1 \ \lor \ y=\cos x^2; \ \mathbb{R}]$$

(i)
$$\begin{cases} y' + 3x^2y = x^2 \\ y(2) = -1 \end{cases}$$

$$y = \frac{1}{3} - \frac{4}{3}e^{8-x^3}; \mathbb{R}$$

$$\begin{cases}
y' = y^2 \\
y(0) = 1
\end{cases}$$

$$\left[y = \frac{1}{1-x}; \ (-\infty, 1)\right]$$

$$\begin{cases} y' = \frac{(1+y)^2}{x} \\ y(1) = 2 \end{cases}$$

(k)
$$\begin{cases} y' = \frac{(1+y)^2}{x} \\ y(1) = 2 \end{cases} \qquad \left[y = \frac{3}{1-3\log x} - 1; \ (0, \sqrt[3]{e}) \right]$$

(1)
$$\begin{cases} y' = 2y \left(1 - \frac{1}{3}y \right) \\ y(0) = 4 \end{cases} \quad \left[y = \frac{12e^{2x}}{4e^{2x} - 1}; \ (-\log 2, +\infty) \right]$$

(m)
$$\begin{cases} y' = 2y \left(1 - \frac{1}{3}y \right) \\ y(0) = -1 \end{cases} \quad \left[y = 3 \frac{e^{2x}}{e^{2x} - 4}; \ (-\infty, \log 2) \right]$$

(n)
$$\begin{cases} y' = 2y\left(1 - \frac{1}{3}y\right) \\ y(-5) = 3 \end{cases} [y = 3; \mathbb{R}]$$

(o)
$$\begin{cases} y' = y(1-y) \\ y(0) = \frac{1}{2} \end{cases} \qquad \left[y = \frac{e^x}{e^x + 1}; \ \mathbb{R} \right]$$

- 3. *Data l'equazione differenziale y(t)y'(t) = t:
 - (a) risolvi se possibile il problema di Cauchy con la condizione iniziale y(1) = -1; [L'equazione assegnata è a variabili separabili e non ammette soluzioni costanti. L'integrale generale si ricava da $\int y dy = \int t dt \Rightarrow y^2 = t^2 k$; $k \in \mathbb{R}$. Imponendo la condizione iniziale y(1) = -1 si ottiene k = 0. L' equazione $y^2 = t^2$ ha come unica soluzione continua e derivabile in \mathbb{R} passante per (1, -1) la funzione y = -t.]
 - (b) trova tutte le soluzioni (massimali) specificando il loro dominio; [Le soluzioni continue e derivabili di $y^2=t^2-k$ costituiscono tutte le soluzioni dell'equazione differenziale assegnata, in particolare: $y=\sqrt{t^2-k}$ definisce tre funzioni: se $k\geq 0$ una con dominio $\left(-\infty,-\sqrt{k}\right)$, un'altra con dominio $\left(\sqrt{k},+\infty\right)$; se k<0 un'ultima con dominio \mathbb{R} . $y=-\sqrt{t^2-k}$ definisce a sua volta tre funzioni: per i domini valgono le considerazioni precedenti. y=t e y=-t sono le ultime soluzioni: si ottengono per k=0 e sono definite in \mathbb{R} .]
 - (c) risolvi se possibile il problema di Cauchy con la condizione iniziale y(0) = 0. [Il problema di Cauchy con la condizione iniziale y(0) = 0 ammette due soluzioni: y = t e y = -t, entrambe definite in tutto \mathbb{R} .]
- 4. Risolvi i problemi di Cauchy $\begin{cases} xy' = y^2 + 2y + 1 \\ y(e) = 4 \end{cases}$ e $\begin{cases} xy' = y^2 + 2y + 1 \\ y(e) = -1 \end{cases}$ precisando l'insieme di definizione delle soluzioni trovate. $[y_1 = -1 \frac{1}{\log x \frac{6}{5}} \cos 0 < x < e^{\frac{6}{5}}; \ y_2 = -1 \cos x \in \mathbb{R}]$
 - (a) Detta y_1 la soluzione del problema di Cauchy con y(e) = 4, quanto vale $\lim_{x \to 0^+} y_1(x)$? [-1]
 - (b) E' possibile prolungare la soluzione y_1 su tutto \mathbb{R} ? [no]
- 5. *E' assegnata l'equazione differenziale $y' = 2t (\cos y)^2$:
 - (a) risolvi i relativi problemi di Cauchy con condizione iniziale $y(1) = y_0$ con $y_0 = \frac{\pi}{4}, \frac{\pi}{2}, \pi$; [L'equazione assegnata è a variabili separabili e ammette le soluzioni costanti $y(t) = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}, t \in \mathbb{R}$. Il problema di Cauchy con condizione iniziale $y(1) = \frac{\pi}{2}$ ha perciò

soluzione $y(t) = \frac{\pi}{2} \ \forall t \in \mathbb{R}$. Il problema di Cauchy con condizione iniziale $y(1) = \frac{\pi}{4}$ ha soluzione $y(t) = \arctan(t^2) \ \forall t \in \mathbb{R}$; con condizione iniziale $y(1) = \pi$ la soluzione è $y(t) = \arctan(t^2 - 1) + \pi \ \forall t \in \mathbb{R}$.]

(b) disegna un grafico qualitativo nel caso $y_0 = \frac{\pi}{4}$. $\left[y\left(t \right) = \arctan\left(t^2 \right) \ \forall t \in \mathbb{R} \right]$

6. Disegna un grafico qualitativo in un intorno dell'origine della soluzione del problema di Cauchy: $\begin{cases} y'\left(x\right) = \cos\left(xy\left(x\right)\right) + e^{x} \\ y\left(0\right) = 0 \end{cases}.$

Dall'equazione ricaviamo $y'(0) = 2, \ y''(0) = 1$

- 7. Considera l'equazione differenziale: $y' = \frac{e^x}{ye^{-y^2}}$.
 - (a) Stabilisci, senza fare conti, se l'equazione ammette, su qualche intervallo, soluzioni costanti. $[\mathrm{no}]$
 - (b) Determina tutte le soluzioni dell'equazione. $y = \pm \sqrt{-\log(-2(e^x + c))}$.
 - (c) Risolvi il problema di Cauchy associato all'equazione con dato iniziale y(0) = 1, precisando l'insieme di definizione della soluzione e il suo comportamento agli estremi di tale insieme.

$$\begin{bmatrix} y = \sqrt{-\log\left(-2e^x + 2 + \frac{1}{e}\right)}, & \log\left(\frac{1}{2} + \frac{1}{2e}\right) < x < \log\left(1 + \frac{1}{2e}\right); \\ \lim_{x \to \log\left(\frac{1}{2} + \frac{1}{2e}\right)^+} y(x) = 0, & \lim_{x \to \log\left(1 + \frac{1}{2e}\right)^-} y(x) = +\infty \end{bmatrix}$$

- 8. *Data l'equazione differenziale $y'(x) = (y(x) + 1)\sin x$:
 - (a) risolvi il problema di Cauchy con la condizione iniziale $y(0) = y_0$, con $y_0 \in \mathbb{R}$; $\left[y(x) = (y_0 + 1) e^{1-\cos x} 1\right]$

3

(b) determina per quali y_0 le soluzioni sono limitate in \mathbb{R} . [Tutte le soluzioni sono limitate $\forall y_0 \in \mathbb{R}$]

- 9. Risolvi il problema di Cauchy $\begin{cases} y' = y \cos x + x e^{\sin x} \\ y(0) = 1 \end{cases} \quad \left[y = e^{\sin x} \left(\frac{x^2}{2} + 1 \right), \ x \in \mathbb{R} \right]$
- 10. Dato il problema di Cauchy $\begin{cases} y' = \frac{x^2}{y^2 + 1} \\ y(0) = 1 \end{cases}$, determina i valori di x soluzioni dell'equazione y(x) = 0, dove y è la soluzione del problema di Cauchy proposto. $[x = -\sqrt[3]{4}]$
- 11. Trova l'integrale generale dell'equazione differenziale $y'=\frac{x}{y^2}$. Trova la soluzione che soddisfa la condizione iniziale y(4)=3 specificando il più ampio insieme in cui è definita. Traccia il grafico della funzione che soddisfa la condizione iniziale assegnata nell'intorno di x=4. $y=\sqrt[3]{\frac{3}{2}x^2+c};\ c=3,\ \mathbb{R};\ \text{per il grafico di }y(x)\ \text{occorrono }y'(4)=\frac{4}{9},\ y''(4)=-\frac{5}{3^5}$
- 12. Determina l'integrale generale dell'equazione differenziale $y' + \frac{2}{x}y = 2x + 1$ per x > 0. Determina la soluzione che si mantiene limitata per $x \to 0^+$. Determina la soluzione che soddisfa la condizione y(1) = 0. $\left[y = \frac{1}{2}x^2 + \frac{1}{3}x + \frac{c}{x^2}; \ y = \frac{1}{2}x^2 + \frac{1}{3}x; \ y = \frac{1}{2}x^2 + \frac{1}{3}x \frac{5}{6x^2}; \ \right]$
- 13. Dato il problema di Cauchy $\begin{cases} y'=e^y-e^x\\ y(0)=0 \end{cases}, scrivi lo sviluppo di Taylor della soluzione arrestato al terzo ordine e disegna il grafico locale della soluzione in un intorno della condizione iniziale <math display="block">x=0. \quad \begin{bmatrix} T_3\left(y,0\right)=-\frac{1}{2}x^2-\frac{1}{3}x^3; \text{ La soluzione passa per l'origine, è tangente all'asse } x\\ \text{(punto di Max.) e ha la concavità rivolta verso il basso} \end{bmatrix}$
- 14. Dato il problema di Cauchy $\begin{cases} y' = \frac{2}{3}y\left(2-5y\right) \\ y\left(0\right) = -1 \end{cases}$, scrivi lo sviluppo di Taylor della soluzione arrestato al secondo ordine. $\left[T_2\left(y,0\right) = -1 \frac{14}{3}x \frac{56}{3}x^2\right]$
- 15. Equazione di Bernoulli: $y'(t) = a(t)y(t) + b(t)y^{\alpha}$. L'equazione ammette la soluzione costante y = 0, le altre soluzioni si ottengono (per $y \neq 0$) dividendo l'equazione per y^{α} e operando la sostituzione $z(t) = y(t)^{1-\alpha}$ si ottiene un'equazione lineare nella funzione incognita z(t).
 - (a) Risolvi l'equazione $y' = -\frac{1}{t}y 2t^2y^2$ $\left[y\left(t\right) = 0, \ y\left(t\right) = \frac{1}{Ct + t^3}; \ C \in \mathbb{R}\right]$
 - (b) Risolvi il problema di Cauchy $\begin{cases} y' = \frac{2t}{1+t^2}y + 2t\sqrt{y} \\ y(1) = 2 \end{cases}$, precisando l'insieme di definizione della soluzione trovata. $[y(t) = (1+t^2)\left(1-\sqrt{2}+\sqrt{1+t^2}\right)^2, \ t \in \mathbb{R}; \text{ Osservazione: per il calcolo del valore della costante C, corrispondente alla condizione iniziale assegnata, si è tenuto conto del fatto che <math>y \geq 0$, dunque anche $z \geq 0$ in quanto $z = \sqrt{y}$. Per z si ottiene: $z(t) = \sqrt{1+t^2}\left(\sqrt{1+t^2}+C\right) \Longrightarrow C \geq -1$]
 - (c) Qual è l'ordine di infinito della soluzione per $t \to +\infty$? $[y(t) \sim t^4]$

- 16. *Trova una soluzione dell'equazione differenziale di Bernoulli: $y'=e^ty+y^{10}$. [y=0]
- 17. *Considera l'equazione differenziale di Bernoulli: $y' = -\frac{y}{t} + 2y^2 \log t$.
 - (a) Risolvi il problema di Cauchy con la condizione iniziale y(1) = 1 e determina il massimo intervallo di prolungabilità della soluzione. $\left[y = \frac{1}{t t \log^2 t}, \; \left(\frac{1}{e}, e\right)\right]$
 - (b) Per quali valori di y_0 la soluzione del problema di Cauchy $y(1)=y_0$ è prolungabile all'intervallo $(0,+\infty)$? $[y_0=0]$

nota: gli esercizi contrassegnati da * sono tratti da temi d'esame.