Computer Animation and Games I CM50244

Subdivision Surface Modeling

Overview

- What is subdivision?
- Curve subdivision algorithm
 - Chaiken's algorithm (for curves)
- Surface subdivision algorithms
 - Doo-Sabin algorithm
 - Catmull-Clark algorithm
 - Loop algorithm
- Advantages/disadvantages

What is Subdivision?

- Method of representing a surface using a coarser piecewise polygonal mesh.
- Recursive subdivision leads to better approximations.
- A smooth surface can be calculated in the limit.

What is subdivision?

Input: polygon or

polygonal mesh

Process: repeatedly refine

(subdivide)

geometry

Output: "smooth" curve

or surface

Subdivision Surface Applications

Modeling 3D shapes for animation and games

Overview

- What is subdivision?
- Curve subdivision algorithm
 - Chaiken's algorithm (for curves)
- Surface subdivision algorithms
 - Doo-Sabin algorithm
 - Catmull-Clark algorithm
 - Loop algorithm
- Advantages/disadvantages.

Chaiken's Algorithm

A corner cutting method for high speed curve generation

Chaiken's Algorithm

A corner cutting method for high speed curve generation

On each edge with ratios 1:2:1

Overview

- What are subdivision surfaces?
- Curve subdivision algorithm
 - Chaiken's algorithm (for curves)
- Surface subdivision algorithms
 - Doo-Sabin algorithm
 - Catmull-Clark algorithm
 - Loop algorithm
- Advantages/disadvantages

Iteratively generates *n* vertices (for *n*-gons):

A generalization of Chaiken for curves to surfaces

Iteratively generates *n* vertices (for *n*-gons):

For each vertex V

1. Generate a face point and edge points, e.g., F_1 , and E_1 and E_2 .

Iteratively generates *n* vertices (for *n*-gons):

For each vertex V

- 1. Generate a face point and edge points, e.g., F_1 , and E_1 and E_2 (edge points: midpoints of edges).
- Generate a new vertex V' as the average of the new face and edge points.

Iteratively generates *n* vertices (for *n*-gons):

Iteratively generates *n* vertices (for *n*-gons):

3. For each face, connect the new vertex points along edges.

Iteratively generates *n* vertices (for *n*-gons):

- 3. For each face, connect the new vertex points along edges.
- For each original vertex (e.g., V₁), connect the new vertices for faces that are adjacent to this vertex.

Iteratively generates *n* vertices (for *n*-gons):

- 3. For each face, connect the new vertex points along edges.
- For each original vertex (e.g., V₁), connect the new vertices for faces that are adjacent to this vertex.

Iteratively generates *n* vertices (for *n*-gons). E.g., a side of a cube.

E.g., a side of a cube

Iteratively generates *n* vertices (for *n*-gons). E.g., a side of a cube.

E.g., a side of a cube

- All vertices have valence four.
- Triangular facets in the corners: become extraordinary points in the limit (C0 continuous only).

Iteratively add three types of points

- Face points F.
- Edge points E.
- Vertex points V.

1. Add new face points: average of the original points in each face, e.g., $F_1 = (V_1 + V_2 + V_5)/3$.

A face point is the centroid of a face.

- 1. Add new face points: average of the original points in each face, e.g., $F_1 = (V_1 + V_2 + V_5)/3$.
- 2. Add new edge points: average of the original end points + two face neighbors, e.g., $E_1 = (V_1 + V_5 + F_1 + F_3)/4$.

3. Add new vertex points: For each V (with n incident edges), $V' = \frac{(Q + 2R + (n - 3)V)}{n}$

Q: average of new face points for faces adjacent to V

R: average of midpoints of n edges,. e.g., $V'_5 = V_5$.

- Connect each new face point F to new edge points on the boundary of F.
- Connect each new vertex point V to new neighboring edge points

Examples

[Suzuki, Journal of the Japan Society of Mechanical Engineers, 2001]

Extra-ordinary points

- Valence ≠ 4.
- Less smooth.

Extraordinary point if valence is not equal to 4 (C1 continuous only)

Convex Combinations

D-S and C-C use convex combinations:

Each new point is a weighted combination of existing points (weights total to 1).

E.g., in D-S,
$$V'_{i} = \sum_{j=1}^{n} w_{ij}V_{j}$$

$$\sum_{j=1}^{n} w_{ij} = 1$$

can be verified for quad, general n-gon also true

Convex Combinations

D-S and C-C use convex combinations:

Each new point is a weighted combination of existing points (weights total to 1).

Guarantees

- New points in convex hull of old
- Local control
- Affinely invariant:
 affine trans. then subdivision = subdivision then affine trans.

Loop Subdivision

- Named after Charles Loop.
- Applies to triangles.
- Split each triangle into 4 triangles.
- Can form a sphere from an icosahedron.

More Algorithms and Proofs

Overview

- What is subdivision?
- Curve subdivision algorithm
 - Chaiken's algorithm (for curves)
- Surface subdivision algorithms
 - Doo-Sabin algorithm
 - Catmull-Clark algorithm
 - Loop algorithm
- Advantages/disadvantages

Pros and Cons

Pros

- Easy to make complex geometry with arbitrary topology
- Supports multiresolution and efficient rendering/processing

Cons

 Precision difficult to specify in general (cartoon characters would be ok)

> Used in Disney's A Bug's Life, Finding Nemo, and The Incredibles.

References

- Ken Joy's lecture notes: subdivision
 http://graphics.cs.ucdavis.edu/~joy/GeometricModelingLectures/Unit-9/Unit9.html
 [Geometric modeling lectures:
 http://graphics.cs.ucdavis.edu/~joy/GeometricModelingLectures/]
- Steve Marschner's lecture slides <u>http://www.cs.cornell.edu/courses/Cs4620/2013fa/lectures/18subdivision.pdf</u>
- NYU Media Lab's subdivision project web <u>http://www.mrl.nyu.edu/projects/subdivision/</u>
- Caltech Multi-Res Modeling Group's online demo http://www.multires.caltech.edu/teaching/demos/java/chaikin.htm