MAT1400B - H24 : Calcul 1

Professeur: Xuan Kien Phung

Université de Montréal

- Séries de Taylor et de Maclaurin
- 2 Polynômes de Taylor
- À quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- 6 Calculs des limites avec séries entières

- Séries de Taylor et de Maclaurin
- Polynômes de Taylor
- A quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- Galculs des limites avec séries entières

Exemples

Question

Trouver la série de Maclaurin et son rayon de convergence des fonctions suivantes :

- $\frac{1}{1-x}$
- e^x
- sin *x*
- cos x
- $(1+x)^k$
- ln(1+x).

$$f(x) = \frac{1}{1-x}$$

Soit

$$f(x) = \frac{1}{1 - x}.$$

•
$$f'(x) = \frac{1}{(1-x)^2}$$
,

•
$$f''(x) = \frac{2}{(1-x)^3}$$
,

•
$$f'''(x) = \frac{3 \times 2}{(1-x)^4}, \dots$$

5/77

• En général, pour tout $n \ge 0$,

$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}, \qquad f^{(n)}(0) = n!.$$

• Ainsi, la série de Maclaurin de $f(x) = \frac{1}{1-x}$ est:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} x^n.$$

• On applique le test du rapport :

$$\lim_{n\to\infty} \frac{|x^{n+1}|}{|x^n|} = |x|$$

donc le rayon de convergence de $\sum_{n=0}^{\infty} x^n$ est R=1.

$$f(x) = e^{x}$$

Soit

$$f(x) = e^x$$
.

- $f'(x) = f''(x) = \cdots = e^x$.
- $f^{(n)}(x) = e^x$ pour tout $n \ge 0$.
- $f^{(n)}(0) = e^0 = 1$ pour tout $n \ge 0$.

Par conséquent, la série de Maclaurin de e^x est :

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} \frac{1}{n!} x^n.$$

On applique le test du rapport :

$$\lim_{n\to\infty} \frac{\left|\frac{x^{n+1}}{(n+1)!}\right|}{\left|\frac{x^n}{(n)!}\right|} = \lim_{n\to\infty} \frac{|x|}{n+1} = 0 < 1.$$

donc le rayon de convergence est $R = \infty$.

$$f(x) = \sin x$$

Soit

$$f(x) = \sin x$$
.

- $f'(x) = \cos(x), f''(x) = -\sin(x), f'''(x) = -\cos(x),$ $f^{(4)}(x) = \sin(x) ...$
- En général, pour tout $n \ge 0$,

$$f^{(2n)}(x) = (-1)^n \sin x, \quad f^{(2n+1)}(x) = (-1)^n \cos x.$$

Ainsi,

$$f^{(2n)}(0) = 0, \quad f^{(2n+1)}(0) = (-1)^n.$$

• Donc, la série de Maclaurin de f est :

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{k=0}^{\infty} \frac{f^{(2k+1)}(0)}{(2k+1)!} x^{2k+1}$$
$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}.$$

Avec le test du rapport,

$$\lim_{k \to \infty} \frac{\left| \frac{(-1)^{k+1}}{(2k+3)!} X^{2k+3} \right|}{\left| \frac{(-1)^k}{(2k+1)!} X^{2k+1} \right|} = \lim_{k \to \infty} \frac{x^2}{(2k+2)(2k+3)} = 0 < 1,$$

on conclut que le rayon de convergence est $R = \infty$.

$$f(x) = \cos x$$

Soit $f(x) = \cos x$.

- $f'(x) = -\sin(x), f''(x) = -\cos(x), f'''(x) = \sin(x),$ $f^{(4)}(x) = \cos(x) ...$
- Donc pour tout $n \ge 0$,

$$f^{(2n)}(x) = (-1)^n \cos x, \quad f^{(2n+1)}(x) = (-1)^{n+1} \sin x.$$

Ainsi,

$$f^{(2n+1)}(0) = 0, \quad f^{(2n)}(0) = (-1)^n.$$

• La série de Maclaurin de $f(x) = \cos x$ est donc :

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{k=0}^{\infty} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}.$$

Comme

$$\lim_{k \to \infty} \frac{\left| \frac{(-1)^{k+1}}{(2k+2)!} x^{2k+2} \right|}{\left| \frac{(-1)^k}{(2k)!} x^{2k} \right|} = \lim_{k \to \infty} \frac{x^2}{(2k+1)(2k+2)} = 0 < 1,$$

le test du rapport dit que le rayon de convergence est $R = \infty$.

$$f(x) = (1+x)^k$$

Soit $f(x) = (1 + x)^k$ où $k \in \mathbb{R}$ quelconque.

•
$$f'(x) = k(1+x)^{k-1}$$
, $f''(x) = k(k-1)(1+x)^{k-2}$, ...

•
$$f^{(n)}(x) = k(k-1)...(k-n+1)(1+x)^{k-n}$$
.

Ainsi,

$$\frac{f^{(n)}(0)}{n!} = \frac{k(k-1)\dots(k-n+1)}{n!}.$$

On obtient la série binomiale

$$(1+x)^k = 1+kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \dots$$

Avec le test du rapport, on a

$$\lim_{n \to \infty} \frac{|k(k-1) \dots (k-n)x^{n+1}/(n+1)!|}{|k(k-1) \dots (k-n+1)x^n/n!|}$$

$$= \lim_{n \to \infty} \frac{|k-n|}{n+1} |x| = |x|.$$

En résolvant |x| < 1, on déduit que le rayon de convergence est R = 1 d'après le test du rapport.

$$f(x) = \ln(1+x)$$

Soit $f(x) = \ln(1+x)$.

•
$$f'(x) = \frac{1}{1+x}$$
, $f''(x) = \frac{-1}{(1+x)^2}$, $f'''(x) = \frac{2}{(1+x)^3}$...

•
$$f^{(n)}(x) = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n}$$

•
$$f^{(n)}(0) = (-1)^{n+1}(n-1)!$$

Donc, la série de Maclaurin de ln(1 + x) est

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$

On calcule

$$\lim_{n \to \infty} \frac{|(-1)^{n+2}x^{n+1}/(n+1)|}{|(-1)^{n+1}x^n/n|} = \lim_{n \to \infty} \frac{n}{n+1}|x| = |x|.$$

En résolvant |x| < 1, on trouve que le rayon de convergence est R = 1 par le test du rapport.

- Séries de Taylor et de Maclaurin
- Polynômes de Taylor
- à quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- 6 Calculs des limites avec séries entières

Polynômes de Taylor

Définition

Pour chaque $n \in \mathbb{N}$, le polynôme

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

est appelé le *n*-ième polynôme de Taylor de *f* en *a*.

- Séries de Taylor et de Maclaurin
- Polynômes de Taylor
- A quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- 6 Calculs des limites avec séries entières

Séries de Taylor : Motivation

- Si f(x) est infiniement dérivable et est representée par une série entière, alors cette série entière doit être la série de Taylor de f.
- Inversement, pour $R_n(x) = f(x) T_n(x)$:

Théorème

Supposons que $\lim_{n\to\infty} R_n(x) = 0$ pour tout |x-a| < R. Alors pour tout |x-a| < R, on a :

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Preuve. Pour |x - a| < R,

$$f(x) = \lim_{n \to \infty} f(x) = \lim_{n \to \infty} T_n(x) + R_n(x)$$

$$= \lim_{n \to \infty} T_n(x) + \lim_{n \to \infty} R_n(x)$$

$$= \lim_{n \to \infty} T_n(x) + 0$$

$$= \sum_{n \to \infty}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

est exactement la série de Taylor de f en a.

Inégalité de Taylor

Théorème

Soient $M, d \in \mathbb{R}$ deux constantes positives. Supposons que $|f^{(n+1)}(x)| \leq M$ pour tout |x - a| < d. Alors

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 pour tout $|x-a| < d$.

Une conséquence importante

• Supposons qu'il existe N, c, d > 0 tels que pour tout n > N et |x - a| < d, on a

$$|f^{(n)}(x)| \le c^n.$$

- En particulier, $|f^{(n+1)}(x)| \le c^{n+1}$ pour tout n > N.
- Ainsi, l'inégalité de Taylor implique que pour tout |x a| < d et n > N (avec M = cⁿ⁺¹)

$$|R_n(x)| \le \frac{c^{n+1}}{(n+1)!} |x-a|^{n+1} \le \frac{(cd)^{n+1}}{(n+1)!}.$$

Or, on sait que :

$$\lim_{n\to\infty}\frac{(cd)^{n+1}}{(n+1)!}=0.$$

Donc, $\lim_{n\to\infty} R_n(x) = 0$ (théorème du sandwich).

• On déduit que f(x) est représentée par sa série de Taylor sur l'intervalle a - d, a + d.

Conséquences

On vient de montrer le corollaire suivant :

Corollaire

Soient $N, c, d \in \mathbb{R}$ des constantes positives et soit $a \in \mathbb{R}$. Supposons que pour tout n > N et |x - a| < d, on a

$$|f^{(n)}(x)| \le c^n.$$

Alors, f(x) est représentée par sa série de Taylor sur]a - d, a + d[.

Conséquences

On en déduit une version plus faible mais très utile :

Corollaire

Soient $N, c, d \in \mathbb{R}$ des constantes positives et soit $a \in \mathbb{R}$. Supposons que pour tout n > N et |x - a| < d, on a

$$|f^{(n)}(x)| \le c.$$

Alors, f(x) est représentée par sa série de Taylor sur]a - d, a + d[.

Applications

Afin de montrer qu'une fonction est représentée par sa série de Taylor sur un intervalle, on peut penser aux 3 méthodes suivantes :

- utiliser le théorème (diapo 22) et l'inégalité de Taylor (diapo 24)
- utiliser les versions faibles au diapos 27-28
- appliquer la dériviation ou l'intégration terme à terme à une série entière connue $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ pour $x \in]a-R, a+R[$.

Application: e^{x}

Question

Montrer que e^x est égale à sa série de Maclaurin pour tout $x \in \mathbb{R}$:

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}.$$

• Pour a = 0, pour tout d > 0, $n \ge 1$, et |x| < d, on a :

$$|(e^x)^{(n)}| = e^x \le e^d$$
 (donc on prend $c = e^d$).

- Ainsi, par le corollaire au diapo 36, la fonction e^x est représentée par sa série de Maclaurin $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ sur l'intervalle]-d,d[.
- Comme d > 0 est arbitraire et la réunion des intervalles de la forme]-d,d[couvre tout $\mathbb R$ entier, on conclude pour tout x que

$$e^x = 1 + x/1! + x^2/2! + ...$$

Application: $\sin x$, $\cos x$

De même, soient $f(x) = \sin x$ et $g(x) = \cos x$. On a

$$|f^{(2n)}(x)| = |g^{(2n+1)}(x)| = |\sin x| \le 1$$

et

$$|f^{(2n+1)}(x)| = |g^{(2n)}(x)| = |\cos x| \le 1.$$

Donc, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, on a :

$$|f^{(n)}(x)|, |g^{(n)}(x)| \le 1.$$

D'apès la version faible de l'inégalité de Taylor au diapo 28, on déduit que (comme d > 0 est arbitraire)

Corollaire

Les fonctions sin x et cos x sont représentées par leurs séries de Maclaurin series pour tout x :

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Question

Étant donné l'égalité

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots,$$

pour tout $x \in \mathbb{R}$, pouvez-vous montrer directement que

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

pour tout $x \in \mathbb{R}$?

Oui, on peut appliquer la dérivation terme à terme à :

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1},$$

ce qui donne

$$\cos x = (\sin x)' = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}.$$

Le rayon de convergence est aussi $R = \infty$.

Application: ln(1 + x)

Question

Montrer que ln(1 + x) est égale à sa série de Maclaurin pour |x| < 1.

• Indication : intégrer terme à terme l'égalité

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$$

pour |x| < 1.

• En intégrant terme à terme l'égalité

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$$

pour |x| < 1, on obtient, également pour |x| < 1,

$$ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + \dots$$

Question

Quelle est la série de Maclaurin de $ln(1-x^3)$?

Pour |x| < 1, on remplace x par $-x^3$ dans

$$\ln(1+x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^n}{n}.$$

On trouve que

$$\ln(1 - x^3) = -\sum_{n=1}^{\infty} \frac{x^{3n}}{n}$$

pour |x| < 1.

Applications

Question

Calculer $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$ si cette série converge.

Observation:

$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n (\pi/6)^{2n}}{(2n)!}$$

 \implies si on voit $y = \pi/6$ comme une variable alors la série prend la forme de la série de Maclaurin de cos y.

Pour tout x, on a:

$$\cos x = 1 - x^2/2! + x^4/4! - x^6/6! + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}.$$

Soit $x = \pi/6$, on obtient :

$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!} = \sum_{n=0}^{\infty} \frac{(-1)^n (\pi/6)^{2n}}{(2n)!}$$
$$= \cos(\pi/6) = \sqrt{3}/2.$$

Applications

Question

Déterminer la somme
$$\frac{1}{1.2} - \frac{1}{3.2^3} + \frac{1}{5.2^5} - \frac{1}{7.2^7} + \dots$$

Pour tout |x| < 1, on a :

$$\arctan(x) = x - x^3/3 + x^5/5 - x^7/7 + \dots$$

Donc pour x = 1/2, on obtient

$$\frac{1}{12} - \frac{1}{32^3} + \frac{1}{52^5} - \frac{1}{72^7} + \dots = \arctan(1/2) \simeq 0.46365.$$

Une autre application

En utilisant les séries de Taylor ou de Maclaurin, on peut obtenir des approximations de plusieurs fonctions usuelles aux points donnés.

Question

Évaluer $e^{0.1}$ avec |erreur| < 0.00001.

Soit $f(x) = e^x$. On a pour tout x que

$$e^x = \sum_{n=0}^{\infty} x^n/n!.$$

et $|f^{(n+1)}(0.1)| = e^{0.1} < e < 3$ \implies l'inégalité de Taylor implique que (avec d = 1/10, a = 0, et M = 3) pour tout $n \ge 0$,

$$|R_n(1/10)| \le \epsilon_n = \frac{3}{10^{n+1}(n+1)!}.$$

On a:

$$\epsilon_1 = 0.015, \ \epsilon_2 = 0.0005, \ \epsilon_3 = 0.0000125$$

et

$$\epsilon_4 = 5.10^{-7} < 0.00001.$$

Donc $|R_4(0.1)| \le \epsilon_4 < 0.00001$. Par conséquent,

$$T_4(0.1) = 1 + x + x^2/2 + x^3/6 + x^4/24 = 1.10517083$$

vérifie
$$|T_4(0.1) - e^{0.1}| = |R_4(0.1)| < 0.00001$$
.

- Séries de Taylor et de Maclaurin
- Polynômes de Taylor
- A quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- 6 Calculs des limites avec séries entières

Multiplication des séries entières

Soient f(x), g(x) représentées par $\sum_{n=0}^{\infty} a_n x^n$ et $\sum_{n=0}^{\infty} b_n x^n$ sur l'intervalle]-R, R[, c-à-d,

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$
 pour $|x| < R$.

et

$$g(x) = \sum_{n=0}^{\infty} b_n x^n$$
 pour $|x| < R$.

Alors

$$f(x)g(x) = \left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n \quad \text{pour } |x| < R.$$

où $c_0 = a_0 b_0$, $c_1 = a_0 b_1 + a_1 b_0$, ...

 \implies on peut calculer le produit $\sum_{n=0}^{\infty} c_n x^n$ de $\sum_{n=0}^{\infty} a_n x^n$ et $\sum_{n=0}^{\infty} b_n x^n$ comme dans une multiplication des polynômes.

 \implies la série résultante $\sum_{n=0}^{\infty} c_n x^n$ est aussi convergente pour |x| < R.

Division des séries entières

De même,

- On peut définir la division de deux séries entières convergentes pour |x| < R comme si l'on fait la division euclidienne avec les polynômes.
- Le résultat est aussi une série entière convergente pour tout |x|
 suffisamment petit.
 - \implies le rayon de convergence de la série obtenue est > 0 mais il peut être très petit (en particulier, plus petit que R).

Exemple

Question

Déterminer trois premiers termes dans la série de Maclaurin de

$$e^{x}\cos x$$
.

On a:

$$e^{x} \cos x$$
= $(1 + x + x^{2}/2 + x^{3}/6 + ...)(1 - x^{2}/2 + x^{4}/24 + ...)$
= $1 \times 1 + (1 \times 1)x + (1 \times 1/2 + 1 \times (-1/2))x^{2}$
+ $(1 \times (-1/2) + 1/6 \times 1)x^{3} + ...$
= $1 + x - x^{3}/3 + ...$

Question

Quel est le rayon de convergence de la série obtenue ?

Addition des séries entières

Soit $x_0 \in \mathbb{R}$. Si $\sum_{n=0}^{\infty} a_n x^n$ et $\sum_{n=0}^{\infty} b_n x^n$ convergent quand $x = x_0$, alors

$$\sum_{n=0}^{\infty} a_n x_0^n + \sum_{n=0}^{\infty} b_n x_0^n = \sum_{n=0}^{\infty} (a_n + b_n) x_0^n.$$

⇒ on peut additionner et soustraire des séries entières terme à terme comme si l'on travaille avec des polynômes.

Application

Question

Évaluer

$$s = \int_0^{0.5} x^2 e^{-x^2} dx$$

avec |erreur| < 0.001.

- On détermine d'abord la série de Maclaurin de $x^2e^{-x^2}$.
- Comme $e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!}$ pour tout x, on a

$$x^{2}e^{-x^{2}} = x^{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n}}{n!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n+2}}{n!}$$

pour tout x.

Ainsi, par l'intégration terme à terme, on obtient

$$s = \int_0^{0.5} x^2 e^{-x^2} dx = \int_0^{0.5} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{n!} dx$$
$$= \sum_{n=0}^{\infty} \int_0^{0.5} \frac{(-1)^n x^{2n+2}}{n!} dx$$
$$= \left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n! (2n+3)} \right]_0^{0.5}$$

$$s = \left[\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+3}}{n! (2n+3)}\right]_0^{0.5}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n (1/2)^{2n+3}}{n! (2n+3)}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n+3} n! (2n+3)}$$

⇒ c'est une série alternée.

- Soit $b_n = \frac{1}{2^{2n+3}n!(2n+3)} > 0$.
- Alors $b_n \ge b_{n+1} > 0$ pour tout n et $\lim_{n\to\infty} b_n = 0$.
- Donc, le test pour les séries alternée implique que : $R_n = s s_n$ that

$$|R_n| \le b_{n+1} = \frac{1}{2^{2n+5}(n+1)!(2n+5)}$$

$$b_2 = 0.000558036 < 0.001$$

Donc,

$$s_1 = \sum_{n=0}^{1} \frac{(-1)^n}{2^{2n+3}n!(2n+3)} = 17/480 = 0.0354...$$

vérifie $|s - s_1| \le b_2 < 0.001$.

Remarque: les primitives des fonctions $x^2e^{-x^2}$, e^{-x^2} ne sont pas des compositions des fonctions élémentaires.

Rappel: estimations du reste

On a vu les estimations du reste suivantes.

- Estimation du reste pour le test de convergence pour les série alternées;
- Estimation du reste pour le test de l'intégrale;
- Inégalité de Taylor.

- Séries de Taylor et de Maclaurin
- Polynômes de Taylor
- A quoi servent les séries de Taylor ? Inégalité de Taylor et applications
- Multiplication et addition des séries entières
- Galculs des limites avec séries entières

Calculs des limites avec séries entières

Il est utile de connaître par cœur que :

•
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots (|x| < 1)$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 (tout x)

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (tout x)

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 (tout x)

•
$$(1+x)^k = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \dots (|x| < 1 \text{ et tout } k)$$

•
$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots (|x| < 1)$$

• $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots (|x| < 1).$

•
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + ... (|x| < 1)$$

Stratégies pour calculer les limites d'une fonction

Afin de calculer $\lim_{x\to c} \frac{f(x)}{g(x)}$ qui est de la forme $\frac{0}{0}$ ou $\frac{\infty}{\infty}$, on peut utiliser notamment les outils suivants :

- la règle de L'Hôpital
- les séries de Taylor ou de Maclaurin de f(x) et g(x)
- une combinaison de deux outils en utilisant le théorème de dérivation terme à terme.

Question

Soit $c_0 + c_1(x - a) + c_2(x - a)^2 + ...$ une série entière centrée en a de rayon de convergence R > 0. Déterminer

$$\lim_{x \to a} \left(c_0 + c_1(x - a) + c_2(x - a)^2 + \dots \right).$$

- Soit $f(x) = c_0 + c_1(x a) + c_2(x a)^2 + ...$ \implies c'est une fonction définie sur]a - R, a + R[.
- Par le théorème de dérivation terme à terme des séries entières, f(x) est dérivable sur]a R, a + R[.
- En particulier, comme

dérivabilité \Longrightarrow continuité,

on déduit que f(x) est continue en x = a. Ainsi,

Lemme

$$\lim_{x\to a} f(x) = f(a) = c_0.$$

Exemples

Question

Déterminer

$$\lim_{x \to 0} \frac{\tan x - x}{x^2}.$$

$$\lim_{x \to 0} \frac{\tan x - x}{x^3} = \lim_{x \to 0} \frac{\sin x - x \cos x}{x^2 \cos x}$$

On a:

$$\sin x - x \cos x$$

$$= (x - x^3/3! + x^5/5! - \dots) - x(1 - x^2/2! + x^4/4! - \dots)$$

$$= (x - x^3/6 + x^5/120 - \dots) - (x - x^3/2 + x^5/24 - \dots)$$

$$= x^3/3 - x^5/30 + \dots$$

$$= x^3(1/3 - x^2/30 + \dots)$$

et

$$x^2 \cos x = x^2 (1 - x^2/2! + ...)$$

Remarque:

- $1/3 x^2/30 + ...$ est une série entière centrée en 0 qui est le résultat de la division de la série entière $x^3/3 x^5/30 + ...$ par la série entière x^3 .
 - \implies comme $x^3/3-x^5/30+...$ et x^3 convergent pour $x\in\mathbb{R}$, on sait que le rayon de convergence de $1/3-x^2/30+...$ est strictement positif.
- De même, $1 x^2/2! + ...$ est une série entière centrée en 0 de rayon de convergence strictement positif.

Ainsi, par le lemme au diapo 65 :

$$\lim_{x \to 0} (1/3 - x^2/30 + \dots) = 1/3,$$

$$\lim_{x \to 0} (1 - x^2/2! + \dots) = 1.$$

Par conséquent,

$$\lim_{x \to 0} \frac{\tan x - x}{x^2} = \lim_{x \to 0} \frac{x^3 (1/3 - x^2/30 + \dots)}{x^2 (1 - x^2/2! + \dots)}$$

$$= \lim_{x \to 0} x \frac{1/3 - x^2/30 + \dots}{1 - x^2/2! + \dots}$$

$$= \left(\lim_{x \to 0} x\right) \left(\frac{\lim_{x \to 0} (1/3 - x^2/30 + \dots)}{\lim_{x \to 0} (1 - x^2/2! + \dots)}\right)$$

$$= 0 \frac{1/3}{1} = 0.$$

Question

Calculer la même limite avec la règle de L'Hôpital. Quelle méthode est plus éfficace pour cette limite ?

Exemples

Question

Calculer

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1 - \frac{1}{2}x}{x^2}.$$

On a:

$$\sqrt{1+x} - 1 - \frac{1}{2}x = (1+x)^{\frac{1}{2}} - 1 - \frac{1}{2}x$$

$$= \left(1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2} - 1)}{2!}x^2 + \frac{\frac{1}{2}(\frac{1}{2} - 1)(\frac{1}{2} - 2)}{3!}x^3 + \dots\right)$$

$$-1 - \frac{1}{2}x$$

$$= -\frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$$

72/77

Ainsi,

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1 - \frac{1}{2}x}{x^2} = \lim_{x \to 0} \frac{-\frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots}{x^2}$$

$$= \lim_{x \to 0} \frac{x^2(-\frac{1}{8} + \frac{1}{16}x + \dots)}{x^2}$$

$$= \lim_{x \to 0} \left(-\frac{1}{8} + \frac{1}{16}x + \dots\right)$$

$$= -\frac{1}{8}$$

73/77

Exercice

Question

Calculer

$$\lim_{x\to 0}\frac{\sin x-x}{x^3}.$$

• Comme $\sin x = x - x^3/6 + x^5/120 + ...$ pour tout x, on peut calculer

$$\lim_{x \to 0} \frac{\sin x - x}{x^3} = \lim_{x \to 0} \frac{(x - x^3/6 + x^5/120 + \dots) - x}{x^3}$$

$$= \lim_{x \to 0} \frac{-x^3/6 + x^5/120 + \dots}{x^3}$$

$$= \lim_{x \to 0} \frac{x^3(-1/6 + x^2/120 + \dots)}{x^3}$$

$$= \lim_{x \to 0} \left(-1/6 + x^2/120 + \dots\right)$$

$$= -1/6.$$

Quand f(x) égale à sa série de Taylor ? (hors programme)

On a vu quelques outils pour répondre è cette question. Or, il est naturel de demander :

Question

Si une fonction f(x) est infiniment dérivable, est-ce que f(x) est égale à sa série de Taylor ?

et

Question

Si la série de Maclaurin d'une fonction f(x) possède un rayon convergence $R = \infty$, est-ce que f(x) est représentée par sa série de Maclaurin pour tout x?

La réponse est NON en général pour ces deux questions. Voici un contre-exemple.

- Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = e^{-\frac{1}{x}}$ si x > 0 et f(x) = 0 sinon.
- On peut montrer que f est infiment dérivable sur \mathbb{R} et $f^{(n)}(0) = 0$ pour tout $n \in \mathbb{N}$.
- Ainsi, la série de Maclaurin de f est identiquement nulle pour tout x: $\sum_{n=0}^{\infty} \frac{f^n(0)x^n}{n!} = 0$ de rayon de convergence $R = \infty$.
- Or, f(x) > 0 pour tout x > 0!

Pour aller plus loin, voir par exemple Fonctions non analytiques.