NOIP提高组模拟赛

比赛背景

2018年10月17日,《Ingress Prime》作为一款Ar游戏,居然出番了。

Ingress 简单来说就是由因为新型能量 XM 的发现,人类时间分裂成两股势力 ENLIGHTENED启蒙军 以及 RESISTANCE反抗军 ,玩家在现实世界中行走,通过 GPS 定位并占领 Portal能量塔 的游戏,玩家可以将三个占领了的 Portal 给 Link连接 起来,形成一个 FIELD战场 ,用来利用或者抵挡 XM 能量的影响。

hz2016 作为一个 ENLIGHTENED 自然要利用好 XM 能量,早日收集够 AP经验 升级,来抵挡 RESISTANCE 的入侵 啦。

Ingress官网

Agent2

Time: 1000MS Memory: 256MB

题目背景

炎炎夏日还没有过去,Agent 们没有一个想出去外面搞事情的。每当 ENLIGHTENED总部 组织活动时,人人都说有空,结果到了活动日,却一个接着一个咕咕咕了。只有不咕鸟 Lyn_king 一个人冒着太阳等了半个多小时,然后居然看到连 ENLIGHTENED行动参谋都咕咕咕了,果然咕咕咕是人类的本性啊。

题目描述

作为一个 ENLIGHTENED行动指挥,自然不想看到这一点,于是他偷取到了那些经常 咕咕咕 的 Agent 的在下来N 天的 活动安排表,并且叫上了你来整理。在整理过程中, ENLIGHTENED行动指挥 对你说了M条命令,命令操作如下。

- 1. 输入0 a b, 这代表在第a天到第b天, 有一名 Agent 要咕咕咕。
- 2. 输入1a, 这代表 ENLIGHTENED行动指挥 询问你根据目前的信息,在第a天有多少名 Agent 会咕咕咕。

作为同是不咕鸟的你,也想要惩戒那些经常咕咕咕的人,所以,请协助完成 ENLIGHTENED行动指挥 完成整理,并且在他每次询问时,输出正确的答案。

输入格式

第一行输入两个整数输N, M, 下来M行,每行输入一个命令,命令格式见题目描述。

输出格式

对于每一次询问的操作,都要输出询问的答案。答案之间用换行隔开。

样例输入

Input

55

012

015

11

035

15

样例输出

OutPut

2

2

样例解析

1~2天有一名 Agent 要咕咕咕, 给他个名字 A

1~5天有一名 Agent 要咕咕咕,给他个名字 B

样例询问第1天有多少名 Agent 要咕咕咕,可以看出 AB 都在第一天要咕咕咕,有两个人,所以输出2

3~5天有一名 Agent 要咕咕咕,给他个名字 C

样例询问第5天有多少名 Agent 要咕咕咕,可以看出 BC 都在第五天要咕咕咕,有两个人,所以输出2

数据范围

对于20%的数据 $N, M \leq 10$

对于40%的数据 $N, M \leq 10^3$

对于60%的数据 $N, M \leq 10^5$

对于100%的数据 $1 \le a \le b \le N \le 10^7$, $M \le 4 * 10^5$

Portal2

Time: 3000MS Memory: 512MB

题目背景

某地 ENLIGHTENED 的 XM 研究所正在研究 Portal 的处理法则,想要揭示 XM能量 的来源以及应用 XM能量 。 ENLIGHTENED 的首席科学家 Jacks 发现其能量的运算法则以及运算方法,但是方法十分复杂,仅靠人手工计算是很难算出答案的,所以它需要你协助他完成计算。

题目描述

Portal 计算 XM能量 是通过个2个栈 (0号栈, 1号栈) 实现的, 它把对 XM 能量的操作如下

 $PUSH \times NUM$

把NUM加入到X号栈的栈顶。

POP X

把*X*号栈的栈顶元素**删除**。

ADDX

取出0号栈和1号栈的元素各一个,并且把它的和放入X号栈。

SUB X

取出0号栈和1号栈的元素各一个,并且把它的差的绝对值放入X号栈。

DEL X

清空X号栈中所有元素不管栈是否为空。

MOVE X Y

循环操作直到Y号栈为空,把Y号栈的栈顶元素加入到X号栈,删除Y号栈的栈顶元素。

数据保证X和Y不相同

SWAP

将两个栈的所有元素调换。

END

代表命令结束,并且分两行分别输出0号栈和1号栈由栈顶到栈底的元素的值,若栈内无元素,输出 NONE 。数据保证指令以 END 结束且仅有一个 END ,并且也需要输出 SUCCESS 。

对于每一行指令,若当前指令成功执行输出 SUCCESS ,若**取出或删除**元素时栈内为空输出 UNSUCCESS 并且不执行 该行指令。

输入格式

输入若干行指令,以 END 指令结束

输出格式

对于每一次操作,都要对应输出 SUCCESS 或者 UNSUCCESS,对于 END 根据指令描述输出栈内元素。

样例输入

Input1

PUSH 0 10

PUSH 0 20

PUSH 0 30

PUSH 0 40

PUSH 150

PUSH 1 60

ADD 0

ADD 0

ADD 0

END

Input2

PUSH 0 10

PUSH 0 20

PUSH 0 30

PUSH 0 40

PUSH 150

PUSH 1 60 MOVE 0 1 END

样例输出

OutPut1

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

UNSUCCESS

SUCCESS

150 30 20 10

NONE

样例解析

在PUSH完之后栈内的元素为,左到右分别从栈顶到栈底。

40 30 20 10

60 50

ADD指令之后

100 30 20 10

50

第二次ADD指令之后

150 30 20 10

NONE

OutPut2

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

SUCCESS

50 60 40 30 20 10

NONE

样例解析

在PUSH完之后栈内的元素为,左到右分别从栈顶到栈底。

40 30 20 10

60 50

MOVE指令之后, 先取出1号栈元素一个放入0号栈

60 40 30 20 10 50 循环操作至1号栈为空 50 60 40 30 20 10 NONE

数据范围

对于20%的数据数据保证不会出现 MOVE/SWAP 操作,命令总数 < 100

对于40%的数据 命令总数 ≤ 1000

对于60%的数据 数据保证 MOVE/SWAP 的操作次数不会超过10000次,命令总数 $\leq 10^5$

对于100%的数据 $0 \le X, Y \le 1$, 命令总数 $\le 10^6$

数据保证无论任何情况,栈中元素的值X满足 $0 \le x \le 2^{63} - 1$

War2

Time: 2000MS Memory: 128MB

题目背景

XM大战 如期而至,Agent 们齐聚一地,展开最后的对决。对战有很多种方式,有些复杂的方式可以获得更高的分数。可惜 ENLIGHTENED 的人并不怎么聪明,只会简单的 hack ,所以 ENLIGHTENED行动指挥 找到了你来做他们的总参谋。

题目描述

地图上有N个 Portal ,现在某一名 Agent 的任务是占领该地图上的M个 Portal ,这名 Agent 占领第i个 Portal 可以得到的分数为A[i],除了直接占领,还有其他的K种加分方式,对于着N个 Portal ,在占领完第 X[i]个 Portal 后占领第Y[i]个 Portal 可以获得B[i]的加分,加分可能会有重复。 Agent 希望他可以为团队争取 更多的分数,所以请求作为大战参谋的你来帮助他。

输入格式

第一行是输入三个整数N, M, K

第二行输入是N个数, 第i个数代表A[i]的值。

下面K行每行有3个整数X[i],Y[i],C[i],表示在占领完第X[i]个 Portal 后占领第Y[i]个 Portal 可以获得B[i]的加分

输出格式

输出仅一行一个整数,为该名 Agent 可以获得的最大分数值。

样例输入

Input 1

```
321
```

111

123

Input 2

432

1111

432

321

样例输出

OutPut 1

5

样例解析

先占领(1)获得1点分数,后占领(2)获得1点基础分数,再获得(1)—>(2)的加分3点,最高5分

OutPut2

6

样例解析

先占领(4)获得1点分数,后占领(3)获得1点基础分数,再获得(4)—>(3)的加分2点,然后再占领(2)获得1点基础分数,再获得(3)—>(2)的加分1点,最高6分。

数据范围

对于20%的数据 $1 \le M \le N \le 4, 0 \le A[i], B[i] \le 10^3$

对于40%的数据 $1 \le M \le N \le 8, 0 \le A[i], B[i] \le 10^5$

对于60%的数据 $1 \le M \le N \le 12, 0 \le A[i], B[i] \le 10^7$

对于100%的数据 $1 \leq M, X[i], Y[i] \leq N \leq 18, 0 \leq K \leq N^2 - N, 0 \leq A[i], B[i] \leq 10^9$