MATH 521 - Numerical Analysis of Differential Equations

Christoph Ortner, 01/2024

	Assignment 2:	Hilbert S	paces, Wea	k Form	of BVPs
--	---------------	-----------	------------	--------	---------

Name:

Student ID:

Background for Q1 [no points]

You will need the following Poincare-type inequalities:

(1) Let Ω be a connected, bounded, domain and $\Gamma_D\subset\partial\Omega$ measurable with surface area $|\Gamma_D|>0$, then there exists a constant c_P such that

$$\|v\|_{L^2(\Omega)} \leq c_P \|
abla v\|_{L^2(\Omega)} \qquad orall v \in H^1_{\Gamma_D}(\Omega).$$

(2) Let Ω be a simply connected domain then there exists a constant c_P such that

$$\|v\|_{L^2(\Omega)} \leq c_P \|
abla v\|_{L^2(\Omega)} \qquad orall v \in H^1(\Omega) ext{ satisfying } (v)_\Omega = 0,$$

where
$$(v)_{\Omega}:=\left|\Omega
ight|^{-1}\int_{\Omega}v\,dx.$$

Another way (seemingly stronger but equivalent) to state these results is the following:

(1') Let Ω be a connected, bounded, domain and $\Gamma_D\subset\partial\Omega$ measurable with surface area $|\Gamma_D|>0$, then there exists a constant c_P such that

$$\|v\|_{L^2(\Omega)} \leq c_P \Big(\|v\|_{L^2(\Gamma_D)}^2 + \|
abla v\|_{L^2(\Omega)}^2 \Big)^{1/2} \qquad orall v \in H^1(\Omega).$$

(2) Let Ω be a simply connected domain then there exists a constant c_P such that

$$\|v\|_{L^2(\Omega)} \leq c_P \Big(\left|(v)_\Omega
ight|^2 + \|
abla v\|_{L^2(\Omega)}^2 \Big)^{1/2} \qquad orall v \in H^1(\Omega).$$

Note: if you want to prove these results, it is not too difficult. They can both be proven with the same argument. What you need is the compactness of the embedding $L^2(\Omega) \subset H^1(\Omega)$: If $(u_n)_{n \in \mathbb{N}}$ is a sequence that is bounded in $H^1(\Omega)$ then there exists $u \in L^2(\Omega)$ and a subsequence such that $u_{n_j} \to u$ strongly in L^2 .

Q1a: [8]

Let Ω be a connected, bounded domain. Are the following spaces H Hilbert spaces when equipped with their stated inner products? If not, then explain what property is missing (no need to justify it at length)

(i)
$$H=\{v\in C^1(ar\Omega): v,
abla v\in L^2(\Omega)\}\ (u,v)_H=\int_\Omega uv+
abla u\cdot
abla v\,dx$$

(ii)
$$H=\{v\in L^2(\Omega): ext{ weakly differentiable}, \nabla v\in L^2(\Omega)\}$$
, $(u,v)_H=\int_{\Omega} \nabla u\cdot \nabla v dx$

(iii)
$$H=\{v\in L^2(\Omega): ext{ weakly differentiable, } \nabla v\in L^2(\Omega)\}$$
, $(u,v)_H=\int_\Omega uv+\nabla u\cdot \nabla vdx$

(iv)
$$H=\{v\in L^2(\Omega): \text{ weakly differentiable, } \nabla v\in L^2(\Omega), v(0)=0\}$$
, $(u,v)_H=\int_\Omega \nabla u\cdot \nabla v dx$.

Solution Q1a

- (i) no, it is not complete, it's completion is H^1
- (ii) no, $(u,v)_H$ is not an inner product, since $(1,1)_H=0$ but $1\neq 0$.
- (iii) yes, this is $H^1(\Omega)$.
- (iv) yes if d=1, not if d>1 since in that case H isn't even well-defined since point-values are not defined for H^1 -functions

Q1b [5+7]

Let Ω be a connected, bounded domain, and $\Gamma_D \subset \partial \Omega$ measurable with surface area $|\Gamma_D|>0$. Are the following spaces H Hilbert spaces when equipped with their stated inner products? Now please justify your answer in full detail. (except you don't need to show that $(u,v)_H$ is symmetric and bilinear)

(v)
$$H=\{v\in H^1(\Omega): (v)_\Omega=0\}$$
 , $(u,v)_H=\int_\Omega
abla u\cdot
abla v dx$.

(vi)
$$H=H^1(\Omega)$$
, $(u,v)_H=\int_{\Omega}
abla u \cdot
abla v \, dx + \int_{\Gamma_{\Omega}} uv \, dx.$

Solution Q1a

Both are Hilbert spaces. We need to show that $(u,v)_H$ is an inner product (positive) and that H is complete under that inner product. This is equivalent to showing that $\|\cdot\|_H$ is equivalent to $\|\cdot\|_{H^1_0}$.

(v) The upper bound is trivial:

$$\|u\|_H^2 = |u|_1^2 \le \|u\|_1^2$$

The lower bound is Poincare's inequality (2): since $(u)_{\Omega}=0$,

$$||u||_1^2 = ||u||_0^1 + |u|_1^2 \le (C_p^2 + 1)|u|_1^2.$$

(vi) Upper bound from the trace inequality

$$\|u\|_H^2 = |u|_1^2 + \|u\|_{L^2(\Gamma_D)}^2 \leq |u|_1^2 + C_{
m tr}^2 \|u\|_1^2 \leq (1 + C_{
m tr}^2) \|u\|_1^2.$$

Lower bound from Poincare (1'):

$$\|u\|_1^2 = \|u\|_0^2 + |u|_1^2 \leq c_P^2 ig(\|u\|_{L^2(\Gamma_D)}^2 + |u|_1^2ig)^{1/2} + |u|_1^2 \leq (1+c_P^2)\|u\|_H^2.$$

Background to Q2 [no points]

Before starting on Q2, review integration by parts in $\Omega\subset\mathbb{R}^d$. We introduced this as

$$\int_{\Omega}\partial_{i}u\cdot vdx=-\int_{\Omega}u\partial_{i}vdx+\int_{\partial\Omega}
u_{i}uv\,dx.$$

From this expression, please derive the following equivalent formulation: if $g:\Omega\to\mathbb{R}^d,v:\Omega\to\mathbb{R}$ (both weakly differentiable) then

$$\int_{\Omega} \operatorname{div} g \, v \, dx = - \int_{\Omega} g \cdot
abla v \, dx + \int_{\partial \Omega} (
u \cdot g) \, v \, dx.$$

Q2: Weak forms of 2nd order BVPs [10+10+10]

For the following three problems, derive the weak form and then use the Lax-Milgram theorem to show that the weak forms have unique solutions. Throughout this question,, Ω is a connected domain in \mathbb{R}^d , d>1, $p,q\in C(\bar{\Omega})$ with $c_0\leq p,q\leq c_1$, $f\in L^2(\Omega)$, $g\in L^2(\partial\Omega)$.

(i) Neumann problem

$$-\mathrm{div}ig(p
abla uig)+qu=f,\quad ext{in }\Omega, \ p
u\cdot
abla u=g,\quad ext{on }\partial\Omega.$$

(ii) Robin problem

$$-\mathrm{div}ig(p
abla uig) = f, \quad ext{in } \Omega, \ p
u \cdot
abla u + u = g, \quad ext{on } \partial\Omega.$$

(iii) The classical Neumann problem: in addition to all previous assumptions also assume that $(f)_{\Omega}=0.$

$$-\Delta u = f, \quad \text{in } \Omega,$$

 $\nu \cdot \nabla u = 0, \quad \text{on } \partial \Omega.$

HINT: for (iii) you need to add an additional condition that uniquely determines the solution but doesn't change the problem.

Solution Q2(i)

The weak form for all of these is

$$a(u,v) = \ell(v) \qquad \forall v \in V,$$

where V is a Hilbert space to be defined, and a, ℓ are bounded (and coercive) (bi-)linear forms to be defined on that space.

$$egin{aligned} V &= H^1(\Omega), \ a(u,v) &= \int_\Omega p
abla u \cdot
abla v + quv \, dx \ \ell(v) &= \int_\Omega f v dx + \int_{\partial \Omega} g v \, dS. \end{aligned}$$

- ullet V is a hilbert space (cf class) when equipped with the norm $\|u\|_1^2=\|u\|_0^2+\|
 abla u\|_0^2$.
- ullet $a(u,u)\geq c_0\|u\|_1^2$ from assumptions on $p,q\geq c_0$, i.e. a is coercive
- $a(u,v) \leq c_1 \|u\|_1 \|v\|_1$ from assumptions on $p,q \leq c_1$ i.e. a is bounded
- $\ell(v) \leq \|f\|_{L^2(\Omega)} + C_{\operatorname{tr}} \|g\|_{L^2(\partial\Omega)}$ from the trace theorem, i.e. ℓ is bounded.

Lax-Milgram implies that the problem has a unique solution.

Solution Q2(ii)

This is a little more interesting, so we first have to perform a simple calculation:

$$egin{aligned} \int_{\Omega} fv \, dx &= \int_{\Omega} (-\mathrm{div} p
abla u) v \, dx \ &= \int_{\Omega} p
abla u \cdot
abla v \, dx - \int_{\partial \Omega} p
u \cdot
abla u \, v \, dx \ &= \int_{\Omega} p
abla u \cdot
abla v \, dx - \int_{\partial \Omega} \left(g v - u v
ight) dx. \end{aligned}$$

This leads to the following weak form:

$$egin{aligned} V &= H^1(\Omega), \ a(u,v) &= \int_\Omega p
abla u \cdot
abla v \, dx + \int_{\partial \Omega} u v \, dS \ \ell(v) &= \int_\Omega f v dx + \int_{\partial \Omega} g v \, dS. \end{aligned}$$

- ullet V is a hilbert space (cf class) when equipped with the norm $\|u\|_1^2=\|u\|_0^2+\|
 abla u\|_0^2$.
- $a(u,u) \geq c_0 |u|_1^2 + \|u\|_{L^2(\partial\Omega)}^2 \geq c_0' \|u\|_1^2$ follows from Poincare (1'); a is coercive.
- $a(u,v) \leq c_1' \|u\|_1 \|v\|_1$ follows from $a \leq c_1$ and the trace inequality; a is bounded.
- $\ell(v)$ bounded is the same argument as in (i).

Lax-Milgram implies that the problem has a unique solution.

Solution Q2(iii)

Naively, the weak form becomes

$$egin{aligned} V &= H^1(\Omega), \ a(u,v) &= \int_\Omega
abla u \cdot
abla v \, dx, \ \ell(v) &= \int_\Omega f v \, dx. \end{aligned}$$

The problem is that a is not coercive on V. This is due to the fact that this is a pure Neumann problem, i.e. $1 \in V$ but a(1,1) = 0. But rescues us is that $\int f \, dx = 0$, which means that $\ell(1) = 0$ as well. In other words, shifting a possible solution u by a constant $u \to u + c$ we again get a solution. It therefore makes sense that the problem cannot have a unique solution as stated above.

The canonical (but not the only) solution to the problem is to simply pick one solution, e.g. the one for which $(u)_{\Omega}=0$. This leads to

$$egin{aligned} V &= \{v \in H^1(\Omega): (v)_\Omega = 0\}, \ a(u,v) &= \int_\Omega
abla u \cdot
abla v \, dx, \ \ell(v) &= \int_\Omega f v \, dx. \end{aligned}$$

- ullet V is Hilbert
- $ullet \ a(u,u) = |u|_0^2 \geq rac{1}{2} (1+c_P^2)^{1/2} \|u\|_1^2 \ ext{by Poincare (2); a is coercive.}$
- $a(u,v) \le |u|_0 |v|_0 \le ||u||_1 ||v||_1$; a is bounded.
- $\ell(v) \leq \|f\|_0 \|u\|_0 \leq \|f\|_0 \|u\|_1$ so ℓ is also bounded.

Lax-Milgram implies that this problem has a unique solution.