Perfect Sets Isolated Points

Loris Jautakas

September 10, 2023

Definition 1: [topology]/ isolated_point

Let

- 1. (X, τ_X) be a topological space
- $2. x \in X$
- 3. $S \subseteq X$

Then x is an isolated point of S iff

$$\{x\} \in \tau_{S \subseteq X} \tag{1}$$

Definition 2: [topology, closed_set, isolated_point]/ perfect_space

Let

- 1. (X, τ_X) be a topological space.
- $2. S \subseteq X.$

Then (X, τ_X) is perfect iff

- 1. S is closed
- 2. S has no isolated points

Result 1: [perfect_space, countable, real_numbers]/ simple_cantor_bendixson_theorem

Let

1. $X \subseteq \mathbb{R}$.

Then there exists a partition:

$$X = C \sqcup K \tag{2}$$

such that:

- 1. C is countable
- 2. K is perfect

Proof. This proof uses [Definition ??]. We build a sequence $f: \mathbb{ON} \to \mathcal{P}(X)$ such that:

$$X_0 \supseteq X_1 \supseteq \ldots \supseteq X_{\omega} \supseteq \ldots$$

$$X_0 \stackrel{\text{def}}{=} X \tag{3}$$

$$X_{a+1} \stackrel{\text{def}}{=} X_a \setminus \{x \in X_a \mid x \text{ is an isolated point of } X_a\}$$
 (4)

$$X_l \stackrel{\text{def}}{=} \bigcap_{a \in l} X_a \tag{5}$$

Note that \mathbb{ON} is a proper class, but $\mathcal{P}(X)$ is a set, so this sequence is not injective, and thus must stop at some point. Let n be the least ordinal such that $X_n = X_{n+1}$. Then we have:

$$X_n = X_{n+1} = X_{n+2} = \dots$$
(6)

Since \mathbb{Q} is dense in \mathbb{R} , this implies: $\forall_a^{\mathbb{O}\mathbb{N}}\forall_x^{X_a\setminus X_{a+1}}$ you can find $q_1,q_2\in\mathbb{Q}$ such that:

$$X_a \cap (q_1, q_2)_{\mathbb{R}} = \{x\}$$
 (7)

Since x is the unique point in $X_a \cap (q_1, q_2)_{\mathbb{R}}$, it is an isolated point of X_a . Thus X_a is not perfect. Thus $\exists_g C \xrightarrow{g} \mathbb{Q}^2$, and so C is countable.