Garbage Classifier

Multi-Class Garbage Detection For use In User Feedback

Jean Haberer - A20496422 Nishanth Rao - A20466002 Rene Lamb - A20457909

This should have not happened...

Motivation - Nishanth

- Waste management has been a challenge for many years
- Most of the garbage in the world are mixed up and difficult to separate and recycle
- It is necessary to recycle waste in order to protect the environment
- Waste classification is the first step in effective waste management

Challenges Posed:

- Lack of awareness in people about the garbage problem
- Confusion in classifying which garbage goes where

Problem Description - Rene

- We define "Garbage" as a used item to be discarded within a trash bin
- For efficient recycling, different "classes" of garbage should remain separate from each other
- Individuals hold significant responsibility in ensuring garbage is discarded in the appropriate locations (e.g. non-recyclables shouldn't mix with recyclables)

Problem Description

- Goal: Develop a feedback mechanism to guide/motivate individuals to correctly dispose of garbage, reducing waste and improving efficiency
- Approach:
 - Develop garbage classification model using machine learning
 - Model identifies 8 garbage classes: plastic, glass, paper, metal, organic, electronic, chemical
 - Extend computer vision object detection model using our classification model so as to provide real time classification feedback

Classes

Approaches considered

- Simple Logistic Regression
 - Easy to implement
 - Good at classifying simple, linear relationships
 - Limited/Poor Accuracy for modeling more complex relationships with hidden features
- SVM
 - Good at mapping both linear and non-linear functions Typically faster training time than NN May not perform as well as NNs on large datasets
- CNN
 - Flexible and good with image recognition Good accuracy and feature extraction Performs better on large datasets
- Transfer Learning
 - Considered for applying our machine learning model to computer vision application
 - More complex

Theory behind our approach

- Use CNN to extract features from images fed to it by training data images
- Use convolution layer to extract important/identifying features of an image
- Reduce processing load of images by max pooling
- Feed processed image to neural network tuned for classification
- The convolution and max pooling steps combined allow us to feed a less computationally heavy version of the image without losing significant features

Classifier Pipeline

The Model we trained - JEAN

Data Gathering - Jean

https://www.kaggle.com/mostafaabla/garbage-classification

- 7 classes from this dataset
- Cardboard
- Chemical
- Glass
- Metal
- Organic
- Paper
- Plastic

Data Gathering - Jean

https://www.kaggle.com/kaustubh2402/ewaste-dataset?select=data

- E-waste

Data Gathering

Standardize the dataset:

- Convert all images to .jpg
- Set maximum size to 256x256
- Normalize pixel values [0,1]

Model's results - Nishanth

Trained Model:

- Epochs = 30
- Batch_size = 32
- Training_set_volume = 3839
- KFold n_splits = 6

accuracy	99.51%		
loss	.041		
val_accuracy	65.94%		
val_loss	1.53		

			mod	del accura	су		
1.0 -	— trai						-
0.9 -	— tes	t					
0.8 -			/				
∑ 0.7 -		/	_	. ~	_	~	_
0.7 - 0.6 -		1	$\sqrt{}$	~			
0.5	X						
0.4 -	//						
0.3 -							
	Ó	5	10	15 epoch	20	25	30

Test results on unseen data

Accuracy on unseen test data set: 69.07%

Loss on unseen dataset: 1.2409

Confusion Matrix

It is not great, but...

We are trying to improve the accuracy

Sample results

Cardboard 1% Chemical 0% E-Waste 91% Glass 0% Metal 8% Organic 0% Paper 0%

RESULT: E-Waste

Plastic 0%

Cardboard 0 Chemical 0% E-Waste 19% Glass 58% Metal 1% Organic 0% Paper 1% Plastic 21%

RESULT: Glass

Chemical 0% E-Waste 0% Glass 4% Metal 1% Organic 0% Paper 1% Plastic 93%

RESULT: Plastic

Sample results

Cardboard 11% Chemical 0% E-Waste 1% Glass 0% Metal 0% Organic 84% Paper 2% Plastic 2%

RESULT: Organic

Chemical 0% E-Waste 0% Glass 0% Metal 0% Organic 97% Paper 0% Plastic 2%

RESULT: Organic

Sample results

Cardboard 15% Chemical 0% E-Waste 41% Glass 1% Metal 0% Organic 0% Paper 43% Plastic 0%

RESULT: Paper

Chemical 5%
E-Waste 93%
Glass 0%
Metal 1%
Organic 0%
Paper 0%
Plastic 1%

RESULT: E-Waste

Chemical 0% E-Waste 94% Glass 2% Metal 1% Organic 2% Paper 0% Plastic 0%

RESULT: E-Waste

The design issues - Nishanth

- Long Training Times
 - Required Use of GPU
- Biased Images in Dataset
 - Noticed many inaccurate representations in training set
- This confusion matrix is a result of imbalance in the number of entries for one of the classes. There were over 2000 elements classified under class-3. Hence the huge bias towards class-3 and the formation of "The Cross"!!!

The next challenges - Rene

- Possibly use transfer learning to improve classifier accuracy
 - ResNet, MobileNet
- Extend classifier to computer vision application
 - Work in progress see examples below

Thank you for listening!

Questions?