structure

과제 설명

이번 과제는 기존의 DD-simulation에서 node 간의 상관관계를 파악해 fully-coupled 한 multi-mode simulation을 제작하는 것이다. 그렇기에 기존의 DD-simulation에서 variable을 추가하여 jacobian을 재구성했다. 총 변수는 13개로 지정했다.

variable	expression	relationship	
V_{tg}	top gate voltage	$V_{tg}=V_g$	
V_{bg}	bottom gate voltage	$V_{bg}=V_g$	
$V_{\scriptscriptstyle \mathcal{S}}$	source voltage	$V_s = 0$	
V_d	drain voltage	$V_d = V_{out}$	
I_{tg}	top gate current	$I_{tg} = 0$	
I_{bg}	bottom gate current	$I_{bg} = 0$	
I_{s}	source current	$I_s + I_d = 0$	
I_d	drain current	$I_d - \int J_n - \int J_p = 0$	
I_1	Vout node current 1	$I_1 + I_2 = 0$	
I_2	Vout node current 2	I2 = (V2-V1) / R	
V_1	Vout node voltage 1	V1 = Vout	
V_2	Vout node voltage 2	V2 = Vdd	
V_{out}	for [KCL]	Vout = I1 + Id = 0	

 V_{out} 의 경우, KCL을 표현하기 위한 행으로 사용했다. KCL을 이용하여 1 transistor와 1 resistor가 존재할 때, 각 node에서의 전류와 전압 관계를 Jacobian의 variable로 추가해주었다. I_d 를 제외한 다른 variable의 관계는 지정값(Dirichlet-BC)혹은 연속의 관계를 가지므로 이를 고려하여 Jacobian과 residue를 구성했다. I_d 행의 각 열 성분의 경우 기존 DD-simulation을 구성할 때 사용했던 미분항을 참고하여 사용했다. fully-coupled 이기에 기존의 DD 부분의 Dirichlet-BC에도 V_{tg}, V_{bg}, V_d, V_s 를 고려하여 jacobian을 구성했다.

과제 결과

$R = 1000\Omega$, $Vg =$	$= 0.6 V$, $V_{dd} = 1 V$	$R = 100\Omega$, $Vg = 0.6 V$, $V_{dd} = 1 V$	
V_{tg}	0.6	V_{tg}	0.6
V_{bg}	0.6	V_{bg}	0.6
V_s	0	$V_{_{ m S}}$	0
V_d	-9.95E-09	V_d	-9.95E-08
I_{tg}	0	I_{tg}	0
I_{bg}	0	I_{bg}	0
$I_{_{\mathcal{S}}}$	-0.0010	$I_{\scriptscriptstyle \mathcal{S}}$	-0.010
I_d	0.0010	I_d	0.010
I_1	-0.0010	I_1	-0.010
I_2	0.0010	I_2	0.010
V_1	-9.95E-09	V_1	-9.95E-08
V_2	1.0	V_2	1.0

 $R=1000\Omega$, $Vg=0.6\,V$, $V_{dd}=1\,V$ 일때의 결과는 다음과 같다.

결과는 도출되었지만, Id 부분의 계산값이 이전에 DD를 통해 구한 Id 값과 order 차이가 존재하기에 추가적인 코드 디버깅이 필요하다고 생각한다.