Basic Mathematics, Fall 2020

Karen Keryan, ASDS, YSU

October 28, 2020

Integration by substitution

If $f \circ g$ and g' are continuous on [a,b], then

$$\int_{a}^{b} f(g(t)) \cdot g'(t) dt \xrightarrow{\underline{g(t)} = \underline{x}} \int_{q(a)}^{g(b)} f(x) dx,$$

Example

Find E[X] and Var(X) when X is a normal random variable with parameters $\mu=0$ and $\sigma=1$.

Denote the cumulative distribution function of a standard normal random variable by $\Phi(x)$, that is

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy.$$

Example

Let X be a normal random variable with parameters μ and σ . Recall that the probability density of the normal distribution is $f(x\mid \mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$ Prove that the distribution function of X can be expressed as

$$F_X(a) = P\{X \le a\} = \Phi\left(\frac{a-\mu}{\sigma}\right)$$

Example

Prove that $\Phi(-x) = 1 - \Phi(x)$.

Example

If X is a normal random variable with parameters $\mu=4$ and $\sigma=16$, express in terms of the function $\Phi(x)$

- (a) $P\{4 < X < 8\}$;
- (b) $P\{X > 0\}$;
- (c) $P\{|X-4|>8\};$

Example

Let X be a uniform (0, 1) random variable. Compute $E[X^n]$.

Partial Differentiation and Gradients

Definition

For a function $f: \mathbb{R}^n \to R$ (of n variables x_1, \ldots, x_n) we define the partial derivatives as

$$f'_{x_1}(\mathbf{x}) = \frac{\partial f}{\partial x_1}(\mathbf{x}) = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

$$\vdots$$

$$f'_{x_n}(\mathbf{x}) = \frac{\partial f}{\partial x}(\mathbf{x}) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_n + h) - f(x_1, x_2, \dots, x_n)}{h}$$

The row vector

$$\nabla f = \operatorname{grad} f = \frac{df}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \frac{\partial f(\mathbf{x})}{\partial x_2} & \dots & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{1 \times n},$$

is called the **gradient** of f or the Jacobian.

Differentiation Rules

If the functions f and g have partial derivatives, then

Sum Rule:
$$\frac{\partial}{\partial x_i}(f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f(\mathbf{x})}{\partial x_i} + \frac{\partial g(\mathbf{x})}{\partial x_i}$$

Sum Rule:
$$\frac{\partial}{\partial x_i}(f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f(\mathbf{x})}{\partial x_i} + \frac{\partial g(\mathbf{x})}{\partial x_i}$$
 Product Rule:
$$\frac{\partial}{\partial x_i}(f(\mathbf{x}) \cdot g(\mathbf{x})) = \frac{\partial f(\mathbf{x})}{\partial x_i}g(\mathbf{x}) + f(\mathbf{x})\frac{\partial g(\mathbf{x})}{\partial x_i}$$

Example

Find the gradient of the following functions:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 defined by $f(x_1, x_2) = (2x_1 + 3x_2)^3$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 defined by $f(x, y, z) = e^{2x} + y^2 z^3$

Chain Rule

Let z be a function of two variables, x,y and each of these variables x,y be in turn functions of two variables, t,s. Then

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t} = \begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial t} \end{bmatrix} = \nabla z \frac{\partial \mathbf{x}}{\partial t}$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} = \begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \begin{bmatrix} \frac{\partial x}{\partial s} \\ \frac{\partial y}{\partial s} \end{bmatrix} = \nabla z \frac{\partial \mathbf{x}}{\partial s}.$$

Example

Given $z(x,y) = x^2 + y^2$ where $x(r,t) = r\cos(t)$ and $y(r,t)=r\sin(t),$ determine the value of $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial r}$ using the chain rule. Verify the results by expressing z as a function of r, tand computing the partial derivatives directly.

In general, assume z is a function of n variables, x_1, \ldots, x_n and each of these variables are in turn functions of m variables, t_1, t_2, \dots, t_m . Then for any variable $t_i, i = 1, 2, \dots, m$ we have the following,

$$\frac{\partial z}{\partial t_i} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial z}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_i}$$

Example

Find the partial derivatives $\frac{\partial z}{\partial t_{\cdot i}}$, i=1,2,3 of the function z(x,y)where $x = t_1 + 2t_2 + 4t_3$ and $y = t_1 - 3t_2 + 5t_3$.

