Drug	Effects	Effective Enantiomer	Ineffective Enantiomer
Ibuprofen	Reduces inflammation and pain	S-Ibuprofen	R-Ibuprofen

C13H18O2

C13H18O2

Enantiomers

- ✓ Mirror image
- ✓ Non-superimposable

2-hydroxypropanoic acid

(Aka lactic acid!)

Connectivity	Similar	
Mirror image	Yes	
Superimposable	?	

Connectivity	Similar	
Mirror image	Yes	
Superimposable	No	

Molecules that are <u>not identical</u> to their mirror images are kinds of stereoisomers called

Enantiomers

(Greek enantio, meaning "opposite")

But there are some questions...

> Do all the molecules have enantiomers?

➤ What kind of molecules can be enantiomers?

Left hand

Right hand

Our hands aren't identical; rather, they're nonsuperimposable *mirror images*.

A molecule that is not identical(non-superimposable) to its mirror image is said to be **chiral**.

(**ky**-ral,from the Greek *cheir*, meaning "hand").

A molecule is **not chiral (achiral)** if it has a plane of symmetry

NAME OF THE PARTY OF THE PARTY

I.ECTION OBJECT

Chirality Center

(stereocenter, asymmetric center, stereogenic center)

• Tetrahedral carbon atom bonded to four different groups

(a) Bromochlorofluoromethane

(b) Dichlorofluoromethane

A and B cannot be superimposed: they are **not** the same molecule!

Methylcyclohexane (achiral)

2-Methylcyclohexanone (chiral)

So...

- The existence of enantiomers are determined by a concept known as *chirality*.
- The mirror image of a *chiral* molecule (one without a plane of symmetry) is its isomer called *Enantiomers*.

Now what?

Enzymes in our body often distinguish between the two enantiomers of a chiral substance.

Stereochemical Configuration

Cahn-Ingold-Prelog Rules

Rule 1

Look at the four atoms directly attached to the chirality center Now rank them according to atomic number.

Higher atomic number \rightarrow higher priority \rightarrow 1

```
Atomic number 35 17 16 15 8 7 6 (2) (1) 
Higher ranking Br > Cl > S > P > O > N > C > {}^2H > {}^1H Lower ranking
```

Bromochlorofluoromethane

Rule 2

If a decision can't be reached by ranking the first atoms in the substituent, look at the second, third, or fourth atoms away from the chirality center until the **first** difference is found.

Rule 3

Multiple-bonded atoms are equivalent to the same number of single-bonded atoms.

If a curved arrow drawn from the highest to second-highest to third-highest ranked substituent (1, 2, 3)

is **clockwise**,

we say that the chirality center has

the R configuration

(Latin rectus, meaning "right")

If an arrow from 1, 2, 3 is **counterclockwise**,
the chirality center has the **Sconfiguration**(Latin *sinister*, meaning "left")

