

We subtract 4 from 5 to start inder from 0. Now, our aim is to calculate A[59], again we subtract 4 from 59, then it some then again we Subtract I from 55, then Comes 54. Now, Size is 6, so we multiply 54 by 6 and it comes 324 and then we add 324 in 10057 and finally it gives 7-4) A[1:20], Find A[4], A[1], A[2], A[3], A[s] Size = 15 2 base address - 1000 7 = 1000 A [47 = 1015 [15] → 14×5 = 70 → 1000+70 =) 1070 DEFINITION OF DATA STRUCTURE -> TYPES, OPERATIONS TIME - SPACE TRADE DEF-HINT -> Space of Time I space I Time I # COMPLEXITY OF AN DIGORITHM > omplexity of an algorithm is the function which gives the running time and or space in term

```
ALGORITHM ->
      find the largest element in an array -
                 loc-1, max-data [1]
9 > Find the Selond Largest number in an auro
A = [5, 7, 9, 3, 2, 8, 11]
```

	DATE: / PAGE No
Soit	Big = A [IB], S_Big = A [IB+1] loop; i= (B+1: UB step by 1
	IF (Big A[IB] > A (IB+IJ) Big = A (IB]
	clse S-Big = A[1B+1]
	Big = A [IB+1] $S-Big = A [IB]$
	100p, i - 18+3 = UB Step by if (Big < A [i])
	Big - Big Big - A[i] else if (S-Big < A[i])
	Prints (" Dec Jargest no. is", S-big)
#	TIME-SPACE TRADE OFF -> By increasing the
	amount of space for storing a
	time needed for processing the data or Vice Versa.
NOTE -	> priority given as ->
	$++\alpha$, $+$, $=$, $a++$
g ->	a=10 Calculate $K=a++++a$
Soin	
	R = (a++)+(++a)

DATE: / 20 Write algorithm, to sort an away [5 9 2 67] Using bubble Alcomparison] - A [comparison - A[comparison] - A[comparison+ A [comparison +1] A [comparison] = A [comparison] - A [comparison+ end 100/22 end loop 1 Ality = temp end loop 2 end loop 1 return (A) Moid main () Void bubble (int [], int);

Prints (" Enter the element"); for (i=0; i <=n-1; i++) Scan ("1.d", 2a[i]); bubble (a, n);
Prints (" sorted array is given below");
Por (i=0; i<=n-1; i++)
Prints (" y.d) +", a(i1); Void bubble (int a (], int n) int Pass, composison, temp, i;

for (i=0; i <= n-2; i++)

for (comp = 0; comp = n-i; comp + +)

if (a (comp) > a (comp+1) end 100p 2 end loop return (A) S.P. SINGH SIR N XRRAY -> * INSERTION Step 1 -> Set J= KN Step 2 -> Repeat while (J>= K) Step 37 Set LA Step 4 -> Set J=J-1 Step 5 - Insext LA[K] = item Step 6 -> Set N=N+1 Step 7 -> Frit

