CSci5521: Machine Learning Fundamentals

- Mixture Models and EM

Catherine Qi Zhao
Computer Science and Engineering
University of Minnesota

Old Faithful

Old Faithful Data Set

K-means Algorithm

- Goal: represent a data set in terms of K clusters each of which is summarized by a prototype μ_k
- Initialize prototypes, then iterate between two phases:
 - E-step: assign each data point to the nearest prototype
 - M-step: update prototypes to be the cluster means

$$for \times 1, (n=1)$$
 $for \times 1 = 0$
 $for \times 1 = 0$
 $for \times 1 = 0$

rIK

Cluster prototype:
$$\mu_k$$
 $k = 1,2 \cdot \cdot \cdot \cdot \cdot \cdot$

Ripary indicator variable 1 of K Coding

 \blacktriangleright Binary indicator variable, 1-of-K Coding scheme

$$r_{nk} \in \{0,1\}$$
 $r_{nk} = 1$, and $r_{nj} = 0$ for $j \neq k$. Hard assignment.

► Distortion measure

measure objective func.

$$N = \frac{N}{K}$$

$$J = \sum_{n=1}^{N} |\mathbf{x}_n - \mu_k|^2$$

(9.1)

K-Means Clustering: Expectation Maximization

Find values for $\{r_{nk}\}$ and $\{\mu_k\}$ to minimize:

$$J = \sum_{n=1}^{N} \underbrace{\sum_{k=1}^{K} |\mathbf{x}_n - \mu_k||^2}_{\text{orb}}$$
e:

Minimize J w.r.t. r_{nk} , keep μ_k fixed (Expectation)

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise} \end{cases}$$
 (9.2)

2. Minimize J w.r.t. μ_k , keep r_{nk} fixed (Maximization)

$$2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \mu_k) = 0$$
 (9.3)

$$\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

ME Styr

W. W.

K-Means Clustering: Example

- Each E or M step reduces the value of the objective function J
- Convergence to a global or local maximum

K-Means Clustering: Concluding remarks

- 1. Direct implementation of K-Means can be slow
- 2. Online version:

$$\chi_{\mathsf{n}}$$

$$\mu_k^{\text{new}} = \mu_k^{\text{old}} + \eta_n(\mathbf{x}_n - \mu_k^{\text{old}}) \tag{9.5}$$

3. K-mediods, general distortion measure

$$\tilde{J} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_n, \mu_k)$$
(9.6)

where $\mathcal{V}(\cdot,\cdot)$ is any kind of dissimilarity measure

4. Image segmentation and compression example:

16.7 %

RGB

6004800

100 %