MAT 299 - Proofs and Problem Solving

Mr. Ryan Evaul Southern New Hampshire University

November 3, 2018

Contents

Homework 1 - Saturday, November 3rd, 2018

1.1 §1 Differential Equations

Problem 1 Analyze the logical forms of the following statements. Use A to represent "Alice has a dog," B to represent "Bob has a dog," and C to represent "Carol has a cat" to write each as a symbolic statement.

- 1. Either Alice or Bob has a dog. $A \vee B$
- 2. Neither Alice nor Bob has a dog, but Carol has a cat. $\neg (A \land B) \land C$
- Either Alice has a dog and Carol has a cat, or Bob has a dog and Carol does not have a cat. (A ∧ C) ∨ (B ∧ ¬C)

This is similar to Example 1.1.2 and to Exercise 2 in Section 1.1 of your SNHU MAT299 textbook.

Problem 2 If D stands for "Doug is tall" and E stands for "Edie is short," what English sentences are represented by the following expressions?

- 1. $(D \land E) \lor \neg D$ Either Doug is tall and Edie is short, or Doug is not tall
- 2. $(D \lor \neg E) \land \neg (D \land E)$ Either Doug is tall or Edie is not short and both Doug is not tall and Edie is not short

3. $\neg D \land ((E \land D) \lor \neg E)$ Doug is not tall and either Edie is short and Doug is tall, or Eddie is not short

This is similar to Example 1.1.3 and to Exercise 6 in Section 1.1 of your SNHU MAT299 textbook.

Problem 3 Make a truth table for the following formula.

$$(G \vee \neg H) \wedge \neg (G \wedge L)$$

This is similar to Example 1.2.2 and to Exercise 2 in Section 1.2 of your SNHU MAT299 textbook.

G	H	L	$\neg H$	$G \vee \neg H$	$G \wedge L$	$\neg G \wedge L$	$(G \vee \neg H) \wedge \neg (G \wedge L)$
T	T	T	F	T	T	F	F
T	T	F	F	T	F	T	T
T	F	T	T	T	T	F	F
T	F	F	T	T	F	T	T
F	T	T	F	F	F	T	F
F	T	F	F	F	F	T	F
F	F	T	T	T	F	T	T
F	F	F	T	T	F	T	T

Problem 4 Use truth tables to determine which of the following formulas are equivalent to each other.

- 1. (J ? K) ? (J ? K)
- 2. J?K
- 3. J?K
- 4. (J ? K)
- 5. (J?K)?K

SNHU MAT299 Page 3 of 3 Module One Homework This is similar to Example 1.2.4 and to Exercise 8 in Section 1.2 of your SNHU MAT299 textbook.

$$\lor$$
 Or Vee \land and Wedge $\lnot \cup \lor \land$