SCOTTYRANK.JL: AN IMPLEMENTATION OF PAGERANK & HITS

SIYUAN CHEN AND MICHAEL ZHOU

ABSTRACT. SOME ABSTRACT HERE

 $E\text{-}mail\ addresses: {\tt siyuanc2@andrew.cmu.edu}, {\tt mhzhou@andrew.cmu.edu}.$ $Date: November\ 2021.$

1

Contents

1. Mathematical Background	2
1.1. Linear Algebra	2
1.2. Graph Theory	3
2. Algorithms	3
2.1. The network model	3
2.2. PageRank	3
2.3. HITS	4
3. Implementation	5
3.1. Structs	5
3.2. Input	5
3.3. PageRank	6
3.4. HITS Algorithm	8
3.5. Output	10
4. Results	11
5. Code Appendix	11

1. Mathematical Background

1.1. Linear Algebra.

1.1.1. Definitions. Positive matrices are defined as matrices with positive entries.

Markov matrices are defined as square matrices with nonnegatives entries and column sum 1 across all of its columns. Note that for a $n \times n$ matrix M, the latter condition is equivalent to $M^T \vec{1} = \vec{1}$, where $\vec{1} \in \mathbb{R}^n$ has all ones as components.

Positive Markov matrices are defined as, well, positive Markov matrices.

1.1.2. Facts. (Perron-Frobenius theorem) Let A be a positive square matrix. Let λ_1 be A's maximum eigenvalue in terms of absolute values. Then λ_1 is positive and has algebraic (and subsequently geometric) multiplicity 1.

Let M be a Markov matrix. Let λ_1 be M's maximum eigenvalue in terms of absolute values. Then $\lambda_1=1$.

Let M' be a positive Markov matrix. Let λ_1 be M''s maximum eigenvalue in terms of absolute values. Then $\lambda_1 = 1$ and has algebraic (and subsequently geometric) multiplicity 1.

1.1.3. Usage. Let M be a $n \times n$ Markov matrix. Then M specifies a dicrete memoryless transition process between n states, namely the process where

$$(\forall (t, i, j) \in \mathbb{N} \times [n] \times [n]) [Pr(\text{state } i \text{ at time } t + 1 \mid \text{state } j \text{ at time } t) = M_{ij}].$$

Let $\vec{v} \in \mathbb{R}^n$ such that \vec{v} has nonnegative components and $\vec{v}^T \vec{1} = 1$ (a stochastic vector). Then \vec{v} specifies an (initial) discrete probability distribution over the n states, namely the distribution where

$$(\forall i \in [n])[\Pr(\text{state } i \text{ at time } 0) = \vec{v}_i].$$

Then the probability distribution over the n states after t steps of the transition process specified by M is precisely $M^t \vec{v}$, or equivalently

$$(\forall (t,i) \in \mathbb{N} \times [n]) \left[\Pr(\text{state } i \text{ at time } t) = \left(M^t \vec{v} \right)_i \right].$$

1.2. Graph Theory.

1.2.1. *Definitions*. A simple directed graph is defined as an unweighted directed graph without self-referential edges or multiple edges between the same origin destination pair.

For a simple directed graph with n vertices, the adjacency matrix \mathcal{A} is defined to be the $n \times n$ matrix where

$$(\forall (i,j) \in [n] \times [n]) \left(A_{ij} = \begin{cases} 1 & \text{there is an edge to } i \text{ from } j \\ 0 & \text{otherwise} \end{cases} \right).$$

1.2.2. Facts. For a simple directed graph with n vertices and its adjacency matrix A,

$$(\forall j \in [n])$$
 [number of outgoing neighbors from vertex $j = \text{out}(j) = (\mathcal{A}_{*j})^T \vec{1}$]
 $(\forall i \in [n])$ [number of incoming neighbors to vertex $i = \text{in}(i) = (\mathcal{A}_{i*})^T \vec{1}$].

2. Algorithms

2.1. **The network model.** Both algorithms, PageRank and HITS, model the network of interest as a simple directed graph with websites as vertices and links as edges. This implies that there will be no self-referential links, no duplicate links between the same origin and destination pair, and no priority difference between links.

2.2. PageRank.

- 2.2.1. The random walk. PageRank models the behavior of a typical web surfer as a damped random walk.
 - (1) The surfer starts out by visiting a random site out of all sites with equal probability.
 - (2) At every step, the surfer has a probability λ of continuing surfing and a complementary 1λ probability of losing interest, for a predetermined λ .
 - (a) If the surfer continues ...
 - (i) ... and there are links exiting the current site, the surfer clicks on a random link (and visits the site it points to) out of those links with equal probability.

- (ii) ... and there aren't any links exiting the current site, the surfer simply visits a random site out of all other sites with equal probability.
- (b) If the surfer loses interest, they simply visits a random site out of all sites with equal probability.

To best model a typical surfer's probability of continuing surfing, λ , also known as the damping factor, is empirically determined to be around 0.85.

2.2.2. Matrix representation. Let n be the number of websites in the network of interest. Let \mathcal{A} be the adjacency matrix for the network of interest. Let $\langle \vec{v}_t \rangle_{t \in \mathbb{N}}$ be the probability distributions describing the website the surfer is visiting at time t. Let M be the transition matrix for the random walk process.

Then $\vec{v}_0 = \vec{1}/n$, M is the $n \times n$ matrix where

$$(\forall (i,j) \in [n] \times [n]) \begin{bmatrix} M_{ij} = \begin{cases} \frac{\lambda}{\operatorname{out}(j)} + \frac{1-\lambda}{n} & \mathcal{A}_{ij} = 1\\ \frac{1-\lambda}{n} & \mathcal{A}_{ij} = 0 \land \operatorname{out}(j) > 0\\ \frac{\lambda}{n-1} + \frac{1-\lambda}{n} & i \neq j \land \operatorname{out}(j) = 0\\ \frac{1-\lambda}{n} & i = j \land \operatorname{out}(j) = 0 \end{cases},$$

and

$$(\forall t \in \mathbb{N}) \left(\vec{v_t} = M^t \vec{v_0} \right).$$

Note that in this case M is a positive Markov matrix, assuming reasonable λ .

2.2.3. *Definition*. The PageRank score for a given website in the network of interest is defined as the probabilty of a typical surfer visiting that website after an indefinitely long damped random walk. In matrix form,

$$(\forall i \in [n]) \left[\text{PageRank}(i) = \lim_{t \to \infty} (\vec{v_t})_i = \lim_{t \to \infty} (M^t \vec{v_0})_i \right].$$

Note that the limits exist: convergence is guaranteed as M has a unique maximal eigenvalue of 1 and thus an steady attracting state.

2.3. **HITS.**

2.3.1. Authorities and hubs. Due to PageRank's algorithmic design, a given website's PageRank score determined mostly by the scores of its incoming neighbors. Consequently, PageRank tends to underestimate the importance of websites similar to "web directories", i.e., those with few significant incoming neighbors yet many significant outgoing neighbors.

To address this issue, HITS (Hyperlink-Induced Topic Search) introduces Authority and Hub scores, which measure a given website's tendencies to be refered to by others and to refer to others, respectively. Note that the two metrics are not "mutually exclusive"; a website like Wikipedia can have both a high Authority score and a high Hub score.

Specifically, Authority and Hub scores are recursively defined: a website's Authority score is determined by the Hub scores of its incoming neighbors and its Hub score is determined by the Authority scores of its outgoing neighbors.

2.3.2. Matrix representation. Let n be the number of websites in the network of interest. Let $\langle \vec{a}_t \rangle_{t \in \mathbb{N}}$ and $\langle \vec{h}_t \rangle_{t \in \mathbb{N}}$ be the (pre-normalization) Authority and Hub scores for the n websites at time t.

Then $\vec{a}_0 = \vec{h}_0 = \vec{1}$ and

$$(\forall t \in \mathbb{N}) \left[\left(\vec{a}_{t+1}, \vec{h}_{t+1} \right) = \left(\mathcal{A} \vec{h}_t, \mathcal{A}^T \vec{a}_t \right) \right].$$

2.3.3. *Definition*. The Authority and Hub scores for a given website in the network of interest is defined as the respective scores after indefinitely many iterations. In matrix form,

$$(\forall i \in [n]) \left[(\text{Authority}(i), \text{Hub}(i)) = \lim_{t \to \infty} \left((\vec{a}_t)_i, (\vec{h}_t)_i \right) \right].$$

To guarantee convergence, the Authority and Hub scores are normalized. Our implementation performs normalization after every iteration. This means

$$(\forall t \in \mathbb{N}) \left[\|(\vec{a}_t)'\| = \|(\vec{h}_t)'\| = 1 \right]$$

where

$$(\forall t \in \mathbb{N}) \left[(\vec{a}_t)' = \frac{\vec{a}_t}{\|\vec{a}_t\|} \wedge (\vec{h}_t)' = \frac{\vec{h}_t}{\|\vec{h}_t\|} \right].$$

3. Implementation

3.1. **Structs.** We define two structs, **Vertex** and **Graph**, to represent the vertices and the graph itself in our simple directed graph model for the network of interest.

Note that to align with Julia conventions, we use 1-based indexing.

```
# export Vertex, Graph
1
2
   struct Vertex
3
     index::UInt32
4
     in_neighbors::Vector{UInt32}
5
     out_neighbors::Vector{UInt32}
6
   end
7
8
   struct Graph
9
     num_vertices::UInt32
10
     vertices::Vector{Vertex}
11
   end
12
```

3.2. **Input.** We define three functions, read_graph, read_edge_list, and read_adjacency_list, to read and construct graphs from text files. We expose read_graph to the client with the option to specify the type of the input file and whether or not the input file uses 0-based indexing.

Edge list files follow the following format:

```
1 [num_nodes] [num_edges]
2 [index_from] [index_to] # repeats [num_edges] times
3 ... # in total
```

Adjacency list files follow the following format:

```
1 [num_nodes]
2 [index_to_1] [index_to_2] ... [index_to_m] # repeats [num_nodes] times
3 ... # in total
```

The code for read_edge_list and read_adjacency_list can be found in the Appendix.

```
# export read_graph
1
2
   function read_graph(filepath::String;
3
       filetype::String="el", zero_index::Bool=false)
4
     if filetype == "el"
5
       read_edge_list(filepath, zero_index)
6
     elseif filetype == "al"
7
       read_adjacency_list(filepath, zero_index)
8
9
       error("invalid filetype")
10
     end
11
   end
12
```

- 3.3. PageRank. We divide the PageRank algorithm into three steps:
 - (1) Generating the transition matrix: pagerank_matrix.
 - (2) Running the transition process: pagerank_iteration, pagerank_epsilon.
 - (3) Returning the desired output: pagerank_print, pagerank.
- 3.3.1. Generating the transition matrix. The function pagerank_matrix generates a Markov matrix M that specifies the transition probabilities of the PageRank transition process.

We first compute the entries in M prior to damping, casing on whether the origin vertex is a "sink" (no outgoing neighbors), and then apply the damping at the end.

```
function pagerank_matrix(graph::Graph, damping::Float64)
1
     M = zeros(Float64, (graph.num_vertices, graph.num_vertices))
2
     for vertex in graph.vertices
3
       num_out_neighbors = length(vertex.out_neighbors)
4
       if num_out_neighbors == 0
5
         for index_to in 1:graph.num_vertices
6
           M[index_to, vertex.index] = 1 / (graph.num_vertices - 1)
7
8
         M[vertex.index, vertex.index] = 0
9
10
         for index_to in vertex.out_neighbors
11
           M[index_to, vertex.index] = 1 / num_out_neighbors
12
         end
13
       end
14
15
     map(x -> damping * x + (1 - damping) / graph.num_vertices, M)
16
   end
```

3.3.2. Running the transition process. The functions pagerank_iteration and pagerank_epsilon both generate an initial stochastic vector and the transition matrix and then carry out the transition process.

pagerank_iteration runs the process for a given number of iterations.

pagerank_epsilon runs the process until the norm of the difference vector is smaller than a given threshold, or until $\left\| \vec{v}_{k+1} - \vec{k} \right\| < \epsilon$.

3.3.3. Returning the desired output. We expose two functions to the client: pagerank and pagerank_print.

pagerank calculates the PageRank scores for the input graph, with the option to specify the damping factor and the type of transition process.

```
function pagerank(graph::Graph;
1
        damping::Float64=0.85, modeparam::Tuple{String, Union{Int64, UInt32,
2

→ Float64}}=("iter", 10))
     if damping < 0 || damping > 1
3
       error("invalid damping")
4
5
     M = pagerank_matrix(graph, damping)
6
     if modeparam[1] == "iter"
7
       if !(isinteger(modeparam[2])) || modeparam[2] < 0</pre>
8
          error("invalid param")
9
10
       pagerank_iteration(graph.num_vertices, M, UInt32(modeparam[2]))
11
     elseif modeparam[1] == "epsi"
12
        if modeparam[2] <= 0</pre>
13
          error("invalid param")
14
15
       pagerank_epsilon(graph.num_vertices, M, Float64(modeparam[2]))
16
     else
17
       error("invalid mode")
18
     end
19
   end
20
```

pagerank_print pretty-prints the PageRank scores along with relevant information about the top vertices for the input graph and scores pg.

The code for pagerank_print can be found in the Appendix.

3.4. **HITS Algorithm.** The HITS algorithm serves a similar purpose as PageRank, but provides more insight into the relationships between vertices in the directed graph. HITS assigns "hub" and "authority" scores to each of the vertices in the graph.

A vertex V has a high authority score if many other vertices point towards it, and a high hub score if it points towards many vertices with high authority scores.

3.4.1. HITS Matrix Pair Generation. The function hits_matrices generates two matrices A and H that are the authority and hub matrices, respectively.

We generate these matrices, which resemble adjacency matrices, by iterating through all of the vertices.

We construct the authority matrix A as follows. For each vertex V in the graph, for each of the other vertices V_p that V points to (has an outgoing edge towards), we set the matrix entry corresponding to the edge from V to V_p to 1. This entry is coded as A[V_p, V].

We construct the hub matrix H as follows. For each vertex V in the graph, for each of the other vertices V_f that point to V, we set the matrix entry corresponding to the edge from V_f to V to 1. This entry is coded as H[V_f, V].

```
function hits_matrices(graph::Graph)
1
     A = zeros(Float64, (graph.num_vertices, graph.num_vertices))
2
     H = zeros(Float64, (graph.num_vertices, graph.num_vertices))
3
     for vertex in graph.vertices
4
       for index_to in vertex.out_neighbors
5
         A[index_to, vertex.index] = 1
6
7
       for index_from in vertex.in_neighbors
8
         H[index_from, vertex.index] = 1
9
       end
10
     end
11
     A, H
12
   end
13
```

3.4.2. HITS General Algorithm. The function hits first finds the initial authority and hub HITS matrices for the user-provided graph, then applies either the iterative or the epsilon method to calculate two resultant vectors containing authority and hub scores, respectively.

hits takes the following parameters:

graph: the user-provided directed graph

modeparam: the mode and the parameters for HITS. Designates the calculation method we will use—either "iter" for the iterative method or "epsi" for the epsilon method.

Iterative: modeparam = ("iter", num_iterations): HITS for a given number of iterations Epsilon: modeparam = ("epsi", epsilon): HITS until convergence of both Hub and Authority vectors with epsilon

3.4.3. HITS - Updating Authority and Hub Scores. To update the authority and hub scores, we refer back to the idea of what causes those scores to increase—A vertex's authority score increases if the vertices pointing towards it have higher hub scores; and a vertex's hub score increases if the vertices it points towards have high authority scores.

Thus, we have the concept behind HITS: Multiplying the hub scores vector by the authority matrix on the left gives us a new vector with the updated authority scores. This is because the product gives a vector where each component is the sum of the hub scores of the vertices that point to it.

Similarly, multiplying the authority scores vector by the hub matrix on the left gives us the updated hub scores, because each component of the resultant vector is the sum of the authority scores of the vertices that the vertex in that component points towards.

So to update the authority and hub scores, at every step we set the updated authority scores to the product of the authority matrix and current hub scores (coded as A*h), and the updated hub scores to the product of the hub matrix and the current authority scores (coded as H*a).

```
function hits_update(A::Matrix{Float64},
    H::Matrix{Float64}, a::Vector{Float64}, h::Vector{Float64})

normalize(A * h), normalize(H * a)
end
```

3.4.4. HITS - Iterative Method. The hits_iteration function calculates HITS with the iterative method. Its parameters are the number of vertices num_vertices, the authority matrix A, the hub matrix H, and the number of iterations num_iterations.

We start with the authority and hub scores all set to the ones vector, with num_vertices components each.

Next, we update the authority and hub vectors, which are a and h respectively, using the function hits_update at every step for num_iterations iterations, and return the resulting two vectors of authority and hub scores.

```
function hits_iteration(num_vertices::UInt32, A::Matrix{Float64},
1
    H::Matrix{Float64}, num_iterations::UInt32)
2
3
    a, h = ones(Float64, num_vertices), ones(Float64, num_vertices)
4
    for _ in 1:num_iterations
5
      a, h = hits_update(A, H, a, h)
6
7
    end
    a, h
8
  end
9
```

3.4.5. *HITS* - *Epsilon Method*. The hits_epsilon function calculates HITS with the epsilon method. Similar to hits_iteration, its parameters are the number of vertices num_vertices, the authority matrix A, the hub matrix H, and the convergence cutoff epsilon.

We start with the authority and hub scores all set to the ones vector, with num_vertices components each.

Next, we repeatedly update the authority and hub vectors, which are a and h respectively, using the function hits_update at every step until the norm between the previous and updated authority scores is less than epsilon and the norm between the previous and updated hub scores is also less than epsilon.

Finally, the resulting two vectors of authority and hub scores are returned.

```
function hits_epsilon(num_vertices::UInt32, A::Matrix{Float64},
1
     H::Matrix{Float64}, epsilon::Float64)
2
3
     prev_a, prev_h = ones(Float64, num_vertices), ones(Float64,
4
     → num_vertices)
     curr_a, curr_h = hits_update(A, H, prev_a, prev_h)
5
     while norm(prev_a - curr_a) > epsilon || norm(prev_h - curr_h) >
6
     \hookrightarrow epsilon
       prev_a, prev_h, (curr_a, curr_h) = curr_a, curr_h, hits_update(A, H,
7
       end
     curr_a, curr_h
9
10
   end
```

3.5. **Output.** For PageRank, the function print_pagerank prints the Vertices with the top PageRank scores to standard output in an organized format.

The parameters for print_pagerank are:

```
graph: the graph
pg: the PageRank scores for the graph
num_lines: the number of vertices whose information is printed
params: the types of information printed in order. Options are as follows:
index: one-based index
Ondex: zero-based index
val: PageRank score, two digits after decimal
vall: PageRank score, four digits after decimal
vall: PageRank score, six digits after decimal
in: number of incoming neighbors
out: number of outgoing neighbors
```

For HITS, the function hits_print prints the Vertices with the top HITS authority and hub scores separately to standard output in an organized format.

The parameters for hits_print are:

```
graph: the grapha: the Authority scores for the graph
```

h: the Hub scores for the graph

num_lines: the number of vertices whose information is printed

params: the types of information printed in order. Options are as follows:

index: one-based index
Ondex: zero-based index

val: Authority/Hub score, two digits after decimal

vall: Authority/Hub score, four digits after decimal

vall1: Authority/Hub score, six digits after decimal

in: print number of incoming neighbors

out: print number of outgoing neighbors

4. Results

Running this example on one of our test cases, we have

5. Code Appendix

ADD AT END