TP n°1: Introduction à python pour le calcul scientifique

♦ Exercice 1 Dessiner un graphe donnant le temps d'exécution de la somme de deux matrices carrées en fonction de n la taille des matrices.

Précisions sur le travail demandé:

- *n* sera un entier compris entre 2 et 1 000;
- les matrices seront représentées par des objets de la classe array de numpy
- le graphe comportera deux courbes l'une donnera le temps d'exécution de la fonction add de numpy et l'autre celui de la somme réalisée par une fonction codée par vos soins.

Memo python/numpy

```
    Charger numpy

  import numpy as np
```

• Récupérer la date et l'heure from time import time temps=time()

• Créer une matrice de taille *n* M=np.random.rand(n,n)

• Tracer les courbes grâce à matplotlib

```
import matplotlib.pyplot as plt
cm = 1/2.54 \# 1 pouce = 2.54 cm
# Créer une figure avec un axe
fig, ax = plt.subplots(figsize(12*cm,8*cm))
```

```
# n, y1 et y2 étant de même dimension
# Tracer une première courbe
ax.plot(n, y1, label='étiquette 1')
# Tracer une seconde courbe
ax.plot(n, y2, label='étiquette 2')
# Ajouter une légende pour les axes
ax.set_xlabel('étiquette abscisse')
ax.set ylabel('étiquette ordonnée')
# Ajouter un titre et les étiquettes
ax.set_title("Graphique")
ax.legend()
```

♦ Exercice 2 Soit $P = a_0 + a_1X + a_2X^2 + \cdots + a_{n-1}X^{n-1} + X^n$ un polynôme unitaire de $\mathbb{C}_n[X]$ l'ensemble des polynômes de degré inférieur ou égal à $n \in \mathbb{N}^*$ à coefficients dans \mathbb{C} . On associe à P la matrice suivante, appelée matrice compagnon du polynôme P :

$$C_p = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Écrire une fonction python qui à un élément P de la classe Polynomials de numpy renvoie la matrice compagnon associée au polynôme normalisé de P sous forme d'un tableau numpy. La fonction ne devra comporter aucune boucle!

►Memo python/numpy

- Charger la classe Polynomial from numpy.polynomial import Polynomial as P p.degree()
- Créer le polynôme $X^3 2X + 1$ p=P([1,-2,0,1])
- Récupérer les coefficients de p p.coef

- Récupérer le degré de *p*
- Créer une matrice nulle de taille 5×7 np.zeros((5,7))
- Créer la matrice identité de taille 5 np.eye(5)

12 mai 2023 V. Ledda

TP n°1: Introduction à python pour le calcul scientifique

♦ Exercice 3 À partir des données FIE Fencing Womens Foil Data, représenter l'évolution des classements dans le top 16 mondial, des tireuses françaises dans la catégorie sénior entre 2003 et 2022.

Memo python/pandas

```
    Charger la classe <u>pandas</u> et récupérer les données
import <u>pandas</u> as <u>pd</u>
data=pd.read_csv('fichier.csv')
```

- afficher des informations sur une table data.infos()
- Filtrer une table data[(data.colonne_1>10) & (data.colonne_2.isin(['bleu','vert']))]

♦ Exercice 4

Le jeu de données «palmerpenguins» (1) est largement utilisé pour introduire les principaux concepts d'apprentissage machine (Artwork by @allison_horst).

- 1. Charger le jeu de données à l'aide de seaborn.
- 2. Décrire chaque colonne du jeu de données (nature des caractères, distributions, etc.)
- 3. Certaines colonnes sont-elles corrélées?
- 4. Représenter de plusieurs manières différentes la répartition des trois espèces *Adelie*, *Gentoo*, *Chinstrap* en fonction de la longueur du bec, de la hauteur du bec et de la longueur des nageoires. Quels commentaires peut-on faire?

Memo python/seaborn

 Charger la classe <u>seaborn</u> et récupérer les données

```
import seaborn as sns
pingouins=sns.load_dataset('penguins')
```

- Calculer la matrice de corrélation data.corr()
- Afficher une carte de chaleur palette=sns.diverging_palette(230, 20, as_cmap=True) sns.heatmap(MatriceDeCorrelation, annot=True,cmap=palette)
- Explorer les données

```
#pairplot où l'on regroupe les éléments de
```

Homogénéiser les données

Références

1. A. M. Horst, A. P. Hill, K. B. Gorman, <u>palmerpenguins: Palmer Archipelago (Antarctica) penguin data</u>, (https://allisonhorst.github.io/palmerpenguins/).

12 mai 2023 V. Ledda