Summary Lecture 10

Secondary structure, distance restraints and preparation of calculation

Secondary chemical shifts encode secondary structure information

Bax et al., J. Am. Chem. Soc., 1991, 113, 5490.

Chemical shifts encode secondary structure information

- a) α -helix: At least 4 residues in a row with a positive secondary chemical shift
- **b)** β-sheet: At least 3 residues in a row with a negative secondary chemical shift

Example: HET-s
$$(\delta C_{\alpha} \text{ (exp)} - \delta C_{\alpha} \text{(RC)}) - (\delta C_{\beta} \text{ (exp)} - \delta C_{\beta} \text{(RC)})$$

Cross-Peak Intensities somehow represent the Dipolar Interaction

Distance Restraints

C-C	PDSD/DARR/MIRROR/ PAR
N-C	PAIN
H-H	CHHC, NHHC

On which samples do we record these experiments?

Isotope labelling allows to disentangle the intra/inter problem

All monomers labelled (15N, 13C)
intra and inter constraints in PDSD / CHHC / NHHC spectra
+ PAR

Labelled (15N, 13C)
monomers dilluted in
natural abundance.
Only intra constraints
in PDSD / CHHC / NHHC
spectra + PAR

13C labelled monomers and 15N labelled monomers mixed. Only inter constraints (in NHHC spectra) + PAIN

Proton assisted recoupling (PAR)

Non-resonant homonuclear correlation experiment.

Experimental aspects:

- Avoid Hartmann-Hahn matching conditions
- Avoid rotary resonance conditions

Proton Assisted Insensitive Nuclei Cross Polarization (PAIN)

- Heteronuclear version of PAR
- Resonant polarization transfer
- Resonance condition

$$\omega_{1S} - \omega_{1M} = n_{\rm r}\omega_{\rm r}$$

The CHHC/NHHC experiments

¹³C-¹³C or ¹⁵N-¹³C correlation experiment

Lecture 11

Structure calculation

www.cyana.org cyana wiki

Peter Güntert

Institute for Biophysical Chemistry, Biomolecular Magnetic Resonance Center, and Frankfurt Institute for Advanced Studies Goethe University Frankfurt am Main

Long-range restraints: assignment ambiguities

Structure determination is an inverse problem

...but even the forward problem is not trivial

Forward calculation in a simple approach

Rate approach for NOESY

$$p_{i} = \langle S_{iz} \rangle$$

$$W_{ij} \sim r_{ij}^{-6}$$

$$I_{ij} \sim r_{ij}^{-6}$$

$$M_{ij} \sim r_{ij}^{-6}$$

Solids static (spin-diffusion concept by Bloembergen)

$$W_{ij} = \frac{(\mu_0 \hbar \gamma_i \gamma_j)^2}{32\pi} \frac{1}{r_{ij}^6} \cdot P_2(\cos \theta_{ij})^2 f_{ij}(0) \qquad W_{ij} \cong \frac{k}{r_{ij}^6} \quad \textit{Crude approximation}$$

 MAS more complex!!! (but time dependent Liouvillevon-Neumann equation works, of course)

Forward calculation in a simple approach

- Complex relation between cross-peak intensity and local geometry
- BUT: no mechanism can lead to cross-peaks between nuclei if they are separated by more than an upper distance u_{ii}
- $\circ u_{ii}$ depends on the experiment performed
- o many "unprecise" distance restraints are defined

Structure determination schemes

We acknowledge that $I_{ab} = c\tau/r_{ab}^6$ is certainly wrong but believe that it is not too wrong -> we reduce the data evaluation to the NOESY problem.

automatic/manual

data

structure

Structure calculations

- Structure calculation programs try to "fold" a protein into a three dimensional structure that agrees with the measured data.
- Differences between measured data and the structure are manifested as violations.
- Violations cause forces that act on the molecule, driving it towards minimal (pseudo)energy and optimal agreement with the measured data.
- The target function (pseudoenergy) is the sum of squares (or similar) of the violations.
- The energy landscape of this target function is complex and has many local minima.

This is like folding of a protein

Finding the global minimum is difficult, but MD has developed concepts, *e.g.* simulated annealing.

...but the surface is not a real energy but a pseudoenergy (**Target Function**)

Structure calculation using CYANA

Please take notes, not all slides will be distributed because some are taken (with permission) from a talk from Prof. Peter Güntert and will NOT be distributed.

Automated Cross-peak assignment

Network-anchoring

Restraint combination (first two cycles)

Correct structure (unknown)

Individual constraints

A-B (correct) C-D (wrong)

Combined constraint

Structure calculation using CYANA

Torsion angles

Other distances are fixed

Structure explains NMR spectra (back-calculation matches experiment)

CHHC spectrum, U-¹⁵N, ¹³C labelled HET-s(218-289), 150 μs mix, 9.5 kHz MAS, 850 MHz

Preparation of the structure calculation

Three ways to prepare distance restraints for structure calculation

- O Pick a region automatically and export list (filename.peaks)
- O Pick peaks by hand and export list for CYANA (filename.peaks)
- O Pick peaks and assign them manually (and create a restraint list for CYANA manually) (filename.upl)

Manual unambiguous restraints

Adapted upper distance limits...

Lines: uniformly labeled samples are continuous; those for Glycerol labeled samples are dashed (2-¹³C-Glycerol, long, 1,3-¹³C-Glycerol, short).

Required files for structure calculation

- HETs_trimer.seq (sequence)
- HETs_trimer.prot (assignment)
- HET-s_talos_trimer.aco (TALOS+ data)
- *.peaks for all experiments
- HET-s_hbonds.lol / upl for H-bonds
- init.cya (cyana symmetries etc.)
- Auto.cya (structure calculation details)

Sequence file (.seq)

MET LYS ILE ASP ALA ILE VAL	A217 A218 A219 A220 A221 A222 A223	HET-s(218-289) from CCPN
HIS	A295	
PL LL2 LL2 LL2 LP	L01 L02 L03 L48 L49	Flexible linker
MET LYS ILE ASP ALA ILE	B217 B218 B219 B220 B221 B222	HET-s(218-289) from CCPN

Chemical shift files (.prot)

1 2 3 4 5 6 7	175.070 62.000 38.262 13.014 27.492 18.689 128.938	0.000 0.000 0.000 0.000	CA CB CD1 CG1	A222 A222 A222 A222	
328 329 330 331 332 333 334	27.492 18.689	0.000 0.000 0.000 0.000	C CA CB CD1 CG1 CG2 N	B222 B222 B222	
1181 1182 1183 1184	62.000 38.262 13.014 27.492 18.689 128.938	0.000 0.000 0.000 0.000	HA HB QD1 QG1 QG2 H	A222 A222 A222	

chemical shifts as exported from CCPN (xeasy format)

identical shifts for chains B and C

translation to attached protons for CHHC and NHHC

Dihedral angle restraints from TALOS (*.aco)

A222	ILE	PHI	-116.0 -84.0
A222	ILE	PSI	116.0 138.0
A223	VAL	PHI	-139.0 -101.0
A223	VAL	PSI	120.0 164.0
A225	ARG	PHI	-142.0 -90.0
A225	ARG	PSI	122.0 154.0
A226	ASN	PHI	-116.0 -82.0
A226	ASN	PSI	115.0 149.0
A227	SER	PHI	-140.0 -122.0
A227	SER	PSI	138.0 170.0
• • •			
B222	ILE	PHI	-116.0 -84.0
B222	ILE	PSI	116.0 138.0
B223	VAL	PHI	-139.0 -101.0
B223	VAL	PSI	120.0 164.0

See Exercise hour.

Peak files for all spectra (.peaks)

PAIN_mixed.peaks

```
# Number of dimensions 2
 INAME 1 N
# INAME 2 C
#CYANAFORMAT NC
#TOLERANCE 0.55 0.25
   1 135.022
              67.146 <del>19</del> T
                                           0.00e+00 a
                                                                   0 0 (9: intermolecular)
                               3.727e+08
                                                         0
   2 131.784
              61.415 1 T
                               4.263e+08
                                           0.00e+00 a
                                                                        (8: intra, 1 ambiguous)
   3 130.491
              52.789 1 T
                                                                   0 0
                               6.357e+08 0.00e+00 a
                                                         0
                                                              0
   4 130.411
              35.365 1 T
                               4.183e+08
                                                                   0 0
                                           0.00e+00 a
   5 129.779
              20.938 1 T
                               4.401e+08
                                           0.00e+00 a
                                                                   0 0
                                                         0
   6 128.896
              41.830 1 T
                                           0.00e+00 a
                                                                   0 0
                               3.873e+08
                                                         0
              27.950 1 T
   7 128.814
                               5.204e+08
                                           0.00e+00 a
                                                         0
                                                                    0 0
   8 128.215
              60.864 1 T
                                           0.00e+00 a
                               4.883e+08
                                                                    0 0
   9 128.504
              54.278 1 T
                               6.229e+08
                                           0.00e+00 a
                                                                    0 0
                                                         0
 10 128.381
              20.887 1 T
                               4.145e+08
                                                                   0 0
                                           0.00e+00 a
                                                         0
                               3.776e+08
                                                                   0 0
 11 127.509
              52.213 1 T
                                          0.00e+00 a
 12 126.424
              67.270 1 T
                               3.706e+08
                                           0.00e+00 a
                                                                   0 0
 13 126.643
              59.764 1 T
                               6.177e+08
                                           0.00e+00 a
                                                                   0 0
                                                         0
              43.821 1 T
 14 126.686
                               4.019e+08
                                           0.00e+00 a
                                                                   0 0
                                                         0
                               3.968e+08
                                           0.00e+00 a
 15 125.981
              53.566 1 T
                                                                   0 0
  16 124.036
              22.097 1 T
                               5.249e+08 0.00e+00 a
                                                                    0 0
                                                         0
              60.715 1 T
  17 122.955
                               8.797e+08
                                           0.00e+00 a
                                                         ()
                                                                    0 0
```

Exporting Peak Lists in CCPN

change to the peaks export menu

export height/volume?

click to export list

Proton-restraints for heteroatom spectra and mixed vs. complete labelling

NHHC_mixed.peaks .peaks

```
# Number of dimensions 2
 INAME 1 <del>N</del>H
# INAME 2 C H
#CYANAFORMAT NC HH
#TOLERANCE 0.8 0.4
   1 135.022
              67.146 <del>1</del>9 T
                                 3.727e+08
                                             0.00e+00 a
                                                                      0 0 (9: intermolecular)
   2 131.784 61.415 1 T
                                 4.263e+08
                                             0.00e+00 a
                                                                          (8: intra, 1 ambiguous)
   3 130.491
              52.789 1 T
                                 6.357e+08
                                             0.00e+00 a
                                                                      0 0
                                                           0
   4 130.411
              35.365 1 T
                                 4.183e+08
                                             0.00e+00 a
                                                           0
                                                                      0 0
   5 129.779
              20.938 1 T
                                 4.401e+08
                                             0.00e+00 a
                                                                      0 0
   6 128.896
              41.830 1 T
                                 3.873e+08
                                             0.00e+00 a
                                                                0
                                                                      0 0
                                                           0
             27.950 1 T
   7 128.814
                                 5.204e+08
                                             0.00e+00 a
                                                                0
                                                                      0 0
                                                           0
              60.864 1 T
                                 4.883e+08
   8 128.215
                                             0.00e+00 a
                                                                0
                                                                      0 0
                                                           0
   9 128.504
              54.278 1 T
                                 6.229e+08
                                             0.00e+00 a
                                                                      0 0
 10 128.381
              20.887 1 T
                                 4.145e+08
                                             0.00e+00 a
                                                           0
                                                                      0 0
 11 127.509
              52.213 1 T
                                 3.776e+08
                                             0.00e+00 a
                                                                      0 0
                                                           0
  12 126.424
              67.270 1 T
                                 3.706e+08
                                             0.00e+00 a
                                                                      0 0
  13 126.643
              59.764 1 T
                                 6.177e+08
                                             0.00e+00 a
                                                                      0 0
 14 126.686
              43.821 1 T
                                 4.019e+08
                                             0.00e+00 a
                                                           0
                                                                0
                                                                      0 0
 15 125.981
              53.566 1 T
                                 3.968e+08
                                             0.00e+00 a
                                                                0
                                                                      0 0
                                                           0
 16 124.036
              22.097 1 T
                                 5.249e+08
                                             0.00e+00 a
                                                                0
                                                                      0 0
                                                           0
  17 122.955
              60.715 1 T
                                 8.797e+08
                                             0.00e+00 a
                                                           \cap
                                                                 0
                                                                      0 0
```

H-bonds (hbonds)

	intramolecular	10	2.00 0.00 3.00 0.00	0 0 0	261 THR 225 ARG 261 THR 225 ARG	1	H H N N	ASN ASN	B226 B262 B226 B262
.upl	intermolecular	10	2.00 0.00 3.00 0.00	0]	H H N N	ASN ASN	A226 B262 A226 B262
		10	2.00 0.00 3.00 0.00	0]	H H N N	ASN ASN	B226 C262 B226 C262

. . . .

B226	ASN	Н	B261	THR	0	1.80	10
B262	ASN	Н	B225	ARG	0	0.00	
B226	ASN	N	B261	THR	0	2.70	10
B262	ASN	N	B225	ARG	0	0.00	
A226	ASN	Н	B261	THR	0	1.80	10
B262	ASN	Н	A225	ARG	0	0.00	
A226	ASN	N	B261	THR	0	2.70	10
B262	ASN	N	A225	ARG	0	0.00	
B226	ASN	Н	C261	THR	0	1.80	10
C262	ASN	Н	B225	ARG	0	0.00	
B226	ASN	N	C261	THR	0	2.70	10
C262	ASN	N	B225	ARG	0	0.00	

.lol

. . . .

init.cya

```
rmsdrange:=B226-B245,B262-B281
welldefined:="A226-A245, A262-A281, B226-B245, B262-B281, C226-C245, C262-C281"
cyanalib
read seq HETs trimer.seq
molecules define A218-A289 B218-B289 C218-C289
# Symmetry-related distances
molecules contacts 1, 1=2, 2=3, 3 \setminus
              1,2=2,3 \setminus
              2,1=3,2
molecules identity "* $welldefined" #info=full
weight ide=0.15
molecules symdist "CA $welldefined" "CA $welldefined" number=3000 #info=full
weight sym=0.05
# Allowed contacts for distance restraint assignment
molecules contacts 1, 1=2, 2=3, 3 \setminus
1,2=2,3 \setminus
2,1=3,2 \setminus
1,3=3,1=0
```

name:=HETs218-289

dihedral angles in "welldefined" regions have to be equal in all monomers

identical interfaces between monomers. restraints are applied between all of them

=0: no restraints allowed

Auto.cya

```
:= PAR4 U hom.peaks, PAIN5 U mix.peaks, CHHC U hom.peaks, NHHC U hom.peaks, NHHC U mix.peaks
peaks
# names of peak lists
prot := HETs trimer.prot
# names of chemical shift lists
restraints :=
SIhbonds trimer.lol, SIhbonds trimer.upl, HETs talos trimer 2std.aco, CHHC U13C diluted trimer.upl, CHHC U1
3C trimer.upl, NHHC U13C15N trimer.upl, PDSD 1 3C diluted trimer.upl, PDSD 2C diluted trimer.upl
# additional constraints
\#tolerance := 0.3,0.3,0.3
#chemical shift tolerances
\# order: 1H(a), 1H(b), 13C/15N(a), 13C/15N(b)
#calibration constant := 2E+10
# NOE calibration parameters
                                                   Here are the u_{ii} defined!
calibration upl := 7.5, 7.5, 5.5, 5.0, 4.0
# larger numbers lead to longer constraints
upl values := 1.0,12.0
structures := 100,10
steps := 20000
rmsdrange := 226..245,262..281
```

randomseed := 434726

atoms select "* :A* :B* :C*"
write HETs.pdb all selected

read final.pdb

./noeassign peaks=\$peaks prot=\$prot autoaco

Result of structure calculation for HET-s(218-289)

Overall shape and hydrophobic core

NMR bundle: Central molecule, 20 lowest energy structures

rmsd (for assigned residues: S226-A248, T260-G282, F286-W287): Backbone 0.63 A, All heavy atoms 1.16 A

Separate bundles for the two layers

Structure of the entire Object, e.g. a Fibril

- At least 23 H-bonds per monomer
- A hydrophobic core
- Polar and charged residues point "outside".
- Charge compensation between the two layers of a monomer (which are pseudorepeats).
- Aspargine ladders

Take Home Messages

- CYANA handles assignment ambiguities by network anchoring, chemical shift matching and restraint combination
- CYANA calculations are performed in Torsion Angle Space
- CYANA calculations use simulated annealing like in MD
- CYANA is based on the minimization of a target function (pseudoenergy)
- Validation of the obtained structure is very important!!!
- Exercise: How is the structure calculation performed in detail?

Recommended literature on CYANA

Güntert, P. & Buchner, L. Combined automated NOE assignment and structure calculation with CYANA. *Journal of Biomolecular NMR* **62**, 453-471 (2015)

Güntert, P. Automated NMR Structure Calculation With CYANA. in *Protein NMR Techniques* (ed. Downing, A.K.) 353-378 (Humana Press, Totowa, NJ, 2004).