

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Matemática Discreta / Complementos de Matemática I - 2024

Práctica 3 - Subgrafos

1. Consideremos los siguientes grafos.

- a) ¿Cuántos subgrafos conexos de G tienen 4 vértices e incluyen un ciclo?
- b) Describa el subgrafo G_1 de G como un subgrafo inducido y en términos de la eliminación de vértices de G.
- c) Describa el subgrafo G_2 de G como un subgrafo inducido y en términos de la eliminación de vértices de G.
- d) Trace el subgrafo de G inducido por el conjunto de vértices $U = \{b, c, d, f, i, j\}$.
- e) Sea e la arista cf. Trace el subgrafo $G \setminus e$.
- f) Sean e_1 y e_2 las aristas ac y ad respectivamente. Trace el subgrafo $(G \setminus e_1) \setminus e_2$.
- g) Encuentre un subgrafo de G que no sea un subgrafo inducido.
- 2. Sea G = (V, E) un grafo con $|V| = n \ge 2$ y vértices v_1, v_2, \ldots, v_n . Se define el grado promedio de G, denotado por d(G), como

$$d(G) = \frac{1}{n} \sum_{v \in V} d(v).$$

a) Pruebe que $\delta(G) \leq d(G) \leq \Delta(G)$, donde

$$\delta(G) = \min_{v \in V} \{d(v)\}, \qquad \Delta(G) = \max_{v \in V} \{d(v)\}.$$

Sea G un grafo simple y $v \in V(G)$. Determine si las siguientes afirmaciones son verdaderas o falsas.

- b) Si $d(v) = \Delta(G)$, entonces $d(G-v) \leq d(G)$. Es decir, borrar el vértice v no puede aumentar el grado promedio.
- c) Si $d(v) = \delta(G)$, entonces $d(G v) \leq d(G)$. Es decir, borrar el vértice v no puede aumentar el grado promedio.
- 3. Sea G un grafo simple con n vértices y m aristas. Demuestre las siguientes propiedades:
 - a) $|E(\overline{G})| = \binom{n}{2} m$
 - b) $d_{\overline{G}}(v) = n d_G(v) 1$
 - c) $\delta(\overline{G}) = n \Delta(G) 1$ y $\Delta(\overline{G}) = n \delta(G) 1$
 - $d) \ \overline{\overline{G}} \equiv G$

$$e) \ \overline{G-v} \equiv \overline{G}-v$$

- 4. Pruebe que todo subgrafo inducido de un grafo de línea es también un grafo de línea.
- 5. Pruebe que un grafo G es bipartito si y solo si no tiene ningún ciclo impar como subgrafo.
- 6. a) Pruebe que $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$ y $\omega(C_n) = \begin{cases} 3, & \text{si } n = 3, \\ 2, & \text{si } n \geq 4. \end{cases}$
 - b) Pruebe que $\alpha(P_n) = \left\lceil \frac{n}{2} \right\rceil$ y $\omega(P_n) = 2$.
 - c) Pruebe que $\alpha(W_n) = \lfloor \frac{n}{2} \rfloor$ y $\omega(W_n) = \begin{cases} 4, & \text{si } n = 3\\ 3, & \text{si } n \geqslant 4 \end{cases}$
- 7. Pruebe que para todo grafo G se tiene $\alpha(G) = \omega(\overline{G})$.
- 8. Sea H un subgrafo inducido de un grafo G. Pruebe que $\alpha(H) \leq \alpha(G)$ y $\omega(H) \leq \omega(G)$. ¿Se puede concluir lo mismo si H es un subgrafo no inducido?
- 9. Sean G y H dos grafos simples.
 - a) Determine $\alpha(G+H)$ y $\alpha(G\vee H)$ en función de $\alpha(G)$ y $\alpha(H)$.
 - b) Determine $\omega(G+H)$ y $\omega(G\vee H)$ en función de $\omega(G)$ y $\omega(H)$.
 - c) Pruebe que $W_n \cong K_1 \vee C_n$. Utilice esto para dar una demostración alternativa del ejercicio (10.c)
- 10. Sea G un grafo simple. Pruebe que si \overline{G} es no conexo, entonces existen dos subgrafos inducidos G_1 y G_2 de G tal que $G = G_1 \vee G_2$.
- 11. Dados dos grafos G y H, el producto cartesiano de G y H, denotado $G \square H$, es el grafo con conjunto de vértices $V(G) \times V(H)$, donde dos vértices (g_1, h_1) y (g_2, h_2) son adyacentes si y solo si se verifica una de las siguientes dos condiciones:
 - $g_1 = g_2 \text{ y } h_1 h_2 \in E(H),$
 - $h_1 = h_2 \ y \ g_1 g_2 \in E(G)$.
 - a) Trace los grafos $K_2 \square K_2$, $P_2 \square P_3$ y $P_3 \square C_4$.
 - b) Determine $|E(G \square H)|$ en función de |E(G)| y |E(H)|.
 - c) Determine $\omega(G \square H)$ en función de $\omega(G)$ y $\omega(H)$.