CS F351: Theory of Computation

16 Sep, 2022

8: More Closure Properties

Scribe: Piyush Mohite

More Closure Properties

0.1 Monoid

A tuple (S, \cdot, e) is known as a *monoid*, if:

- S is a set.
- $-\cdot$: is associative, i.e., $\forall u, v, w \in S, (w \cdot u) \cdot v = w \cdot (u \cdot v)$
- $-e \in S$ is the identity element, i.e., $\forall w \in S, e \cdot w = w \cdot e = w$

Eg: (Σ^*, \cdot, e) is a monoid.

Eg: $(\mathbb{N}, +, 0)$ is a monoid. [Also commutative.]

Eg: $(\{e,a\},\cdot,e)$ is NOT a monoid. [Because, if we consider 'a' and 'a', we get the concatenation $a \cdot a = aa$, which is not a part of the set $\{e,a\}$, since it has to be $SxS \rightarrow S$.]

Specification: (trying to describe what is required in words)

$$\exists x \exists y. (x < y \land R_a(x) \land R_b(y))$$

 $R_a(x)$: Tells us that at the position 'x' in the word, we have the letter 'a'.

 $R_b(y)$: Tells us that at the position 'y' in the word, we have the letter 'b'.

0.2 Homomorphism

A function $h: S_1 \to S_2$ is called a (monoid) homomorphism from (S_1, \cdot_1, e_1) to (S_1, \cdot_1, e_1) , if:

- $h(e_1) = e_2.$
- $\forall u, v \in S_1, h(u \cdot_1 v) = h(u) \cdot_2 h(v).$

Example: $h: \{a, b\}^* \to \mathbb{N}$ is defined as h(w) = |w| is a monoid homomorphism from (Σ^*, \cdot, e) to $(\mathbb{N}, +, 0)$.

Explanation: h(e) = |e| = 0 and $h(u \cdot v) = |u \cdot v| = |u| + |v|$.

It follows from these properties that any homomorphism defined on Σ^* is uniquely determined by it's values on Σ . Example: if h(a) = ccc and h(b) = dd, then

$$h(abaab) = h(a)h(a)h(b)h(a)h(b) = cccddcccccdd$$

If $A \subseteq \Sigma^*$, define

$$h(A) \stackrel{def}{=} \{h(x) \mid x \in A\}$$

and if $B \subseteq \Gamma^*$, define

$$h^{-1}(B) \stackrel{def}{=} \{h(x) \mid x \in B\}$$

The set h(A) is called the image of A under h, and the set $h^{-1}(B)$ is called the preimage of B under h.

Theorem 1. Let h be a monoid homomorphism from (Σ^*, \cdot, e) to (Γ^*, \cdot, e) . Then:

1. If $L \subset \Sigma^*$ is regular, then $h(L) \subseteq \Gamma^*$ is regular.

$$h(L) := \{h(w) \mid w \in L\}$$

2. If $L \subseteq \Gamma^*$ is regular, then $h^-1(L) \subseteq \Gamma^*$ is regular.

$$h^{-1}(L) := \{ w \in \Sigma^* \mid h(w) \in L \}$$

Explanation: Any homomorphic image or homomorphic preimage of a regular language is regular.

Example:

$$L_1 := \{e, aa, aaaa, aaaaaa, \dots, \}$$

$$h(L_1) := \{e, 00, 000, 0000, \dots, \}$$

Here, if L_1 is regular, $h(L_1)$ is also regular.

Example:

$$h^{-1}(0) = \{a, c\}$$

$$h^{-1}(00) = \{aa, cc, ac, ca\}$$

Now, $h^{-1}(L_1) = \text{set of all words of even length having } a$'s or c's... $h^{-1}(L_1)$ is regular if L_1 is regular.