Álgebra Folha 6

- 1. Sejam A um anel e d um divisor de zero. Prove que d não é invertível.
- 2. Um elemento a de um anel A diz-se nilpotente se $a^n = 0$ para algum número natural n > 0.
 - (a) Seja A é um domínio de integridade. Mostre que 0 é o único elemento nilpotente de A.
 - (b) Seja A um anel comutativo e sejam $x, y \in A$ tais que $x^2 = 0$ e $y^3 = 0$. Mostre que x + y é um elemento nilpotente de A.
- 3. Seja A um anel comutativo não nulo tal que A=(a) para todo o $a\in A\setminus\{0\}$. Mostre que A é um corpo.
- 4. Seja A um anel comutativo.
 - (a) Mostre que qualquer ideal maximal de A é primo.
 - (b) Mostre que um ideal I de A é maximal se e só se A/I é um corpo.
 - (c) Mostre que o ideal $2\mathbb{Z} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal maximal.
 - (d) Mostre que o ideal $\{0\} \times \mathbb{Z}$ do anel $\mathbb{Z} \times \mathbb{Z}$ é um ideal primo que não é maximal.
- 5. Diga, justificando, se é verdadeira ou falsa cada uma das seguintes afirmações:
 - (a) O anel $\mathbb{Z}_2 \times \mathbb{Z}$ é um domínio de integridade.
 - (b) O anel $\mathbb{Z}_2 \times \mathbb{Z}_3$ é um corpo.
 - (c) O anel \mathbb{Z}_7 contém elementos nilpotentes não nulos.
 - (d) $\operatorname{car}(\mathbb{Z}_2 \times \mathbb{Z}_3) = 6$.
 - (e) $\operatorname{car}(\mathbb{Z}_6 \times \mathbb{Z}_4) = 24$.
- 6. Sejam p um número primo, A um anel comutativo de característica p e $a, b \in A$. Mostre que $(a+b)^p = a^p + b^p$.
- 7. Seja $f: A \to B$ um isomorfismo de anéis. Mostre que car(A) = car(B).
- 8. Seja A um domínio de integridade e sejam $a, b \in A$. Mostre que a e b são associados (isto é, a|b e b|a) se e só se existir $u \in A$ invertível tal que a = bu.
- 9. Considere o seguinte subconjunto de \mathbb{C} :

$$\mathbb{Z}[i\sqrt{3}] = \{a + ib\sqrt{3} : a, b, \in \mathbb{Z}\}.$$

- (a) Mostre que $\mathbb{Z}[i\sqrt{3}]$ é um subanel de \mathbb{C} (e, portanto, um domínio de integridade).
- (b) Mostre que a aplicação $N: \mathbb{Z}[i\sqrt{3}] \to \mathbb{N}$ dada por $N(a+ib\sqrt{3}) = a^2 + 3b^2$ satisfaz N(zw) = N(z)N(w) para todos os $z, w \in \mathbb{Z}[i\sqrt{3}]$.
- (c) Determine as unidades de $\mathbb{Z}[i\sqrt{3}]$.
- (d) Mostre que o elemento $1 + i\sqrt{3}$ é irredutível mas não é primo (para mostrar que não é primo, considere o produto $(1 + i\sqrt{3})(1 i\sqrt{3})$).
- 10. Seja A um domínio de integridade. Suponha que A é um domínio de ideais principais isto é todo o ideal de A é um ideal principal. Sejam $a, b \in A \setminus \{0\}$.
 - (a) Justifique que existe $d \in A$ tal que (a) + (b) = (d) e que este elemento é único a menos de um fator invertível.
 - (b) Mostre que o elemento d da alínea anterior é um máximo divisor comum de a e b, isto é:

$$d|a, d|b \in \forall x \in A, x|a \in x|b \Rightarrow x|d.$$