

Material classes and atomic bonding

What holds everything together?

41680 Introduction to advanced materials

DTU Construct

Department of Civil and Mechanical Engineering

You're a mechanic, right? Why don't you just build something?

Kid to Tony Stark in Iron Man 3

DTU Construct

Department of Civil and Mechanical Engineering

Material classes - properties

Polymers

Metals

Ceramics

3 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Group exercise Material classes (Pros and Cons)

Class	Metals	Ceramics	Polymers			
Pros	Group 1	Group 2	Group 3			

Discuss the advantages and disadvantages of using materials from the different classes in groups. Present the findings of your assigned task in plenum, e.g. group 2 should summarise advantages and disadvantages of ceramics

Cons

Atomic bonds (in solids)

DTU Construct

Bohr's model of the atom (1913)

- Nucleus
 - protons
 - neutrons
- Electrons
 - discrete tracks
 - discrete energy levels
 - electron shells
- Periodic system of elements
 - Order according to number of protons

8 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Periodic system of elements (June 2016)

Н												Не					
Li	Ве	9								В	С	N	0	F	Ne		
Na	Mg	3									Al	Si	Р	S	Cl	Ar	
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ва	L	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Α	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
		L	La	Се	Pr	Nd	Pm Sm Eu Gd Tb				Dy	Но	Er	Tm	Yb	Lu	
		A Ac Th Pa U Np Pu Am Cm Bk						Cf	Es	Fm	Md	No	Lr				
Alkali metals Actinides						Metalloids											
	Alkaline earth metals Transition metals							Non-metals									
Lanthanides Other metals						Noble gases											

Bohr's model of the atom (1913)

- Nucleus
 - protons
 - neutrons
- Electrons
 - discrete tracks
 - discrete energy levels
 - electron shells
 - stable configuration of the noble gases
 - octet rule
 - -inner electrons
 - -valence electrons

13 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Atomic radius – periodic variation

Electronegativity X (Pauling) F24

• Tendency to attract and bond electrons

Lower electronegativity

(donates electrons)

Higher electronegativity (accepts electrons)

15 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Interatomic forces

DTU Construct

Department of Civil and Mechanical Engineering

Interatomic forces

• Attraction (the stronger, the closer)

• Repulsion

19 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Bonding forces between atoms

Interatomic distance r_0 (equilibrium distance between atoms)

Bonding energy

21 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Ionic bonding

- Metal + Non-metal
- Low + high electronegativity
- Complete transfer of electron

$$Na + Cl \rightarrow Na^{+} + Cl^{-}$$

- Atoms become ions with electrical charge
- Coulomb forces
 - -Long range
- Bond
 - Without direction
 - Many neighbors

Ionic bonding

CI Na⁺ CI Na⁺ CI

Examples

- Salt (NaCl)
- Minerals (Al₂O₃)
- Classical ceramics (SiO₂)
- Technical ceramics (MgO)

Consequences

- Low electric conductivity (DC)
- Brittle

23 DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Covalent bonding / electron pair bonding

- Non-metal + Non-metal (or metalloids)
- Octet rule
- Two atoms share electron pairs

Covalent bonding

- With direction
- Only immediate neighbor
- Valence = number of possible bonds

n valence electrons	Number of bonds						
<i>n</i> ≤ 4	n						
$n \ge 4$	8 - n (n)						

Covalent bonding / electron pair bonding

DTU Construct, Technical University of Denmark

Examples

- Molecules
 (H₂, N₂, H₂O, CH₄)
- Solid elements (Si, diamond)
- Compounds (GaAs, SiC)
- Polymers

Consequences

- Low electrical conductivity
- High thermal conductivity
- Brittle

41680 Intro to advanced materials

F24

Covalent bonding / electron pair bonding

Atoms of same kind

Equally sharing of electron pair

$$H - H$$

Nonpolar bond

Atoms with different electronegativity

Uneven sharing of electron pair

$$\overset{\delta^+}{\mathsf{H}} - \overset{\delta^-}{\mathsf{CI}}$$

- Polar bond
- Small electrical dipole
- Difference in electronegativity

$$\Delta X = X_{A} - X_{B}$$

Bond type: ionic vs. covalent

- Bonding between atoms of two elements A and B
- Never pure ionic bonds
- Fraction of ionic bond (empirical relation)

$$f_{lon} = 1 - \exp \left[-\frac{\left(X_A - X_B \right)^2}{4} \right] = 1 - e^{-\frac{\left(X_A - X_B \right)^2}{4}}$$

- Electronegativities X_A and X_B
- Fraction valid for bond A-B, not only for compound AB!
- Example: SiO₂ 51%

Chemical compound	Ionic fraction
CsCl	73%
NaCl	67%
ZnS	18%

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Metallic bonding

Sea of valence electrons

- Electrons shared between all atoms
- Valence electrons
 - Do not belong to any atom (free electrons)
 - Electron cloud
 - Conduction electrons
- Bond without direction
 - -Long range
- Inner electrons localized
 - -(extra covalent bond)
- Positive charge
 - Ions, not nuclei!
 - Many neighbors
 41680 Intro to advanced materials

Metallic bonding

Examples

- all metallic elements (Fe, Al, Cu, Zn)
- alloys (brass, bronze)

Consequences

- High electric conductivity
- High thermal conductivity
- Reflectivity
- Ductility/Malleability

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Group exercise

1. Find the fraction of ionic bonding for different chemical compounds and chemical bonds given by the number N of your breakout room.

Group number N		f _{Ion}		f _{Ion}		f _{Ion}
1	MgO		InP		H-C	
2	SiC		GaAs		H-O	
3	BN		NaF		H-Cl	

2. Refractory metals (W, Ta, Nb, Mo, Re, Os, Ir) are characterized by extremely high melting points above 2000 °C. Can you suggest a possible reason for this?

Group exercise

1. Find the fraction of ionic bonding for different chemical compounds and chemical bonds given by the number N of your breakout room.

Group number N		f _{Ion}		f _{Ion}		f_{Ion}
1	MgO	73%	InP	4%	H-C	4%
2	SiC	12%	GaAs	4%	H-O	39%
3	BN	22%	NaF	91%	H-Cl	18%

2. Refractory metals (W, Ta, Nb, Mo, Re, Os, Ir) are characterized by extremely high melting points above 2000 °C. Can you suggest a

possible reason for this?

DTU Construct, Technical University of Denmark

Secondary bonds

Van der Waals bonding (London bonding)

- Dipole-dipole interaction
- Permanent dipoles results from polar covalent bands
- Dipoles might be induced by collisions

• Weakest of all types of bonding

Examples

- Noble gases (He, Ar, ...)
- Symmetrical molecules (CH₄, CCl₄, C₆₀, ...)
- Molecules (NO, CO₂, ...)
- Polymers (chain molecules)

Secondary bonds Hydrogen bond

- Hydrogen ion = proton
- Hydrogen atom in covalent bond with electronegative atom

 Interaction with free electron pair (proton can switch between neighbors)

Examples

- Biomolecules
 - (Proteins, DNA)

General: the higher the molar mass, the higher the melting temperature

Consequences

- High melting temperature
- High boiling temperature
- Low density as solid

DTU Construct, Technical University of Denmark

Bonding energy

Affects materials properties Bond energy \rightarrow melting temperature (boiling temp.) Energy profile → Elastic modulus, thermal expansion

Property correlations

- Melting temperature T_m and bonding energy E_b Boiling temperature T_b and bonding energy E_b

DTU Construct, Technical University of Denmark

41680 Intro to advanced materials

F24

Property correlations

• Thermal expansion coefficient and bonding energy E_b

Summary

Bond types and material classes

