Método Simplex

Casos especiais

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

- 1. Degeneração;
- 2. Múltiplas (ou infinitas) soluções ótimas;

- 3. Sistema ilimitado (ou soluções ilimitadas);
- 4. Sistema inviável (ou soluções inviáveis/inexistentes).

... e sua interpretação prática

- 1. Degeneração:
 - ► Ao menos uma das restrições é redundante.
- 2. Múltiplas (ou infinitas) soluções ótimas;

- 3. Sistema ilimitado (ou soluções ilimitadas);
- 4. Sistema inviável (ou soluções inviáveis/inexistentes).

... e sua interpretação prática

- Degeneração;
 - Ao menos uma das restrições é redundante.
- 2. Múltiplas (ou infinitas) soluções ótimas;
 - A função objetivo é paralela a uma das restrições;
 - É possível escolher entre as múltiplas soluções ótimas sem impacto na função objetivo.
 - Ex: no mix de produtos, é melhor produzir um número maior de produtos diferentes.
- 3. Sistema ilimitado (ou soluções ilimitadas);
- 4. Sistema inviável (ou soluções inviáveis/inexistentes).

... e sua interpretação prática

- Degeneração;
 - Ao menos uma das restrições é redundante.
- 2. Múltiplas (ou infinitas) soluções ótimas;
 - A função objetivo é paralela a uma das restrições;
 - É possível escolher entre as múltiplas soluções ótimas sem impacto na função objetivo.
 - Ex: no mix de produtos, é melhor produzir um número maior de produtos diferentes.
- 3. Sistema ilimitado (ou soluções ilimitadas);
 - Erro na construção do modelo: falta restrição.
- 4. Sistema inviável (ou soluções inviáveis/inexistentes).

... e sua interpretação prática

- Degeneração;
 - Ao menos uma das restrições é redundante.
- 2. Múltiplas (ou infinitas) soluções ótimas;
 - A função objetivo é paralela a uma das restrições;
 - É possível escolher entre as múltiplas soluções ótimas sem impacto na função objetivo.
 - Ex: no mix de produtos, é melhor produzir um número maior de produtos diferentes.
- 3. Sistema ilimitado (ou soluções ilimitadas);
 - Erro na construção do modelo: falta restrição.
- 4. Sistema inviável (ou soluções inviáveis/inexistentes).
 - Erro na construção do modelo: há restrições inconsistentes.

Situação:

► Há ao menos uma restrição redundante.

Detecção:

- Ocorre empate na razão mínima ao determinar a variável sainte;
 - Neste caso, escolhe uma delas arbitrariamente.
- Na iteração seguinte, ao menos uma variável básica será 0;
- Essa nova solução é chamada de solução degenerada.

Exemplo

Base	x_1	χ_2	s_1	s_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

maximiza
$$z = 3x_1 + 9x_2$$

sujeito a $x_1 + 4x_2 \le 8$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Exemplo

Base	x_1	χ_2	s_1	s_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

maximiza
$$z = 3x_1 + 9x_2$$

sujeito a $x_1 + 4x_2 \le 8$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Variável entrante é x_2 . Analisando as razões mínimas em relação a essa variável:

- Linha s_1 : 8/4 = 2;
- Linha s_2 : 4/2 = 2;
- Ou seja, uma delas é redundante.

Exemplo

Base	x_1	χ_2	s_1	s_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

Variável entrante é x_2 . Analisando as razões mínimas em relação a essa variável:

- ightharpoonup Linha s_1 : 8/4 = 2;
- Linha s_2 : 4/2 = 2;
- Ou seja, uma delas é redundante.

Base	x_1	\mathbf{x}_2	s_1	\mathbf{s}_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

Na nova solução:

- ightharpoonup Variável básica $s_2 = 0$;
- Logo, a solução é degenerada.

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-3/4	0	9/4	0	18
χ_2	1/4	1	1/4	0	2
s_2	$^{1/_{2}}$	0	-1/2	1	0

Solução degenerada

Exemplo

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	3/2	3/2	18
x_2	0	1	1/2	⁻¹ / ₂ 2	2
x_1	1	0	-1	2	0

Solução ótima degenerada

Solução degenerada

Exemplo

Base	x_1	x_2	s_1	s_2	Sol.
z	-3	-9	0	0	0
s_1	1	4	1	0	8
s_2	1	2	0	1	4

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	3/2	3/2	18
χ_2	0	1	1/2	⁻¹ / ₂	2
χ_1	1	0	-1	2	0

Solução ótima degenerada

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-3/4	0	9/4	0	18
x ₂	1/4	1	1/4	0	2
s_2	$^{1}/_{2}$	0	$^{-1}/_{2}$	1	0

Solução degenerada

A nova solução:

- É ótima;
- ▶ Segue sendo degenerada $(x_1 = 0)$;
- Possui o mesmo valor de z = 18.

Situação:

A função objetivo assume seu melhor valor em mais de um ponto de solução (geralmente em infinitas soluções).

Detecção:

ightharpoonup Variável não básica tem coeficiente 0 na linha z (função objetivo) da tabela simplex.

Exemplo

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
s_2	1	1	0	1	4

$$\label{eq:continuous_problem} \begin{split} \text{maximiza} & \quad z = 2x_1 + 4x_2 \\ \text{sujeito a} & \quad x_1 + 2x_2 \leq 5 \\ & \quad x_1 + x_2 \leq 4 \\ & \quad x_1, x_2 \geq 0 \end{split}$$

Exemplo

Base	x_1	χ_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
s_2	1	1	0	1	4

maximiza
$$z = 2x_1 + 4x_2$$

sujeito a $x_1 + 2x_2 \le 5$
 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

Para calcular a solução básica adjacente:

- ▶ Variável entrante: x₂;
- Variável sainte: s_1 , com razão mínima 5/2.

Exemplo

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
s_2	1	1	0	1	4

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	2	0	10
x_2	1/2	1	1/2	0	5/ ₂ 3/ ₂
s_2	$^{1}/_{2}$	0	$^{-1}/_{2}$	1	3/2

Solução ótima

A solução é ótima, no entanto:

- A variável não básica x_1 tem coeficiente 0 na linha z;
- lsso significa que aumentar seu valor não produz alteração da função objetivo z;

Logo, há (pelo menos) outra solução ótima!

$=$ \times	ίе	m	р	l

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
s_2	1	1	0	1	4

Base	χ_1	x_2	s_1	s_2	Sol.
z	0	0	2	0	10
χ_2	1/2	1	1/2	0	5/ ₂ 3/ ₂
\mathbf{s}_2	$^{1}/_{2}$	0	-1/2	1	3/2

Solução ótima

Calculamos uma nova iteração:

- \triangleright Variável entrante: x_1 ;
- Variável sainte: s_2 , com razão mínima $3/2 \cdot 2/1 = 3$.

Exemplo

Base	x_1	x_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
s_2	1	1	0	1	4

Base	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	2	0	10
x_2	1/2	1	1/2	0	5/ ₂ 3/ ₂
s_2	$^{1}/_{2}$	0	$^{-1}/_{2}$	1	$^{3/2}$

Solução ótima

Base	χ_1	χ_2	s_1	s_2	Sol.
z	0	0	2	0	10
χ_2	0	1	1	-1	1 3
\mathbf{x}_1	1	0	-1	2	3

Solução ótima alternativa

Exemplo

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-2	-4	0	0	0
s_1	1	2	1	0	5
\mathbf{s}_2	1	1	0	1	4

Base	χ_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	2	0	10
χ_2	0	1	1	-1	1
χ,	1	0	-1	2	3

Solução ótima alternativa

Base	x_1	\mathbf{x}_2	s_1	s_2	Sol.
z	0	0	2	0	10
x_2	1/2	1	1/2	0	5/ ₂ 3/ ₂
s_2	$^{1/_{2}}$	0	-1/2	1	3/2

Solução ótima

Soluções ótimas:

$$x_1 = 0; x_2 = 5/2; z = 10;$$

$$x_1 = 3; x_2 = 1; z = 10.$$

Exemplo

Exemplo

Soluções ótimas identificadas:

- $x_1 = 0; x_2 = \frac{5}{2}; z = 10 \text{ (solução B)};$
- $x_1 = 3; x_2 = 1; z = 10$ (solução C).

Exemplo

Soluções ótimas identificadas:

- $x_1 = 0; x_2 = \frac{5}{2}; z = 10 \text{ (solução B)};$
- $x_1 = 3; x_2 = 1; z = 10$ (solução C).

Qualquer solução ótima pode ser determinada pela combinação linear das soluções acima. Seja $\alpha \in [0,1]$ o peso da combinação linear,

$$\hat{x}_1 = \alpha \cdot x_1^{B} + (1 - \alpha) \cdot x_1^{C}$$

$$\hat{x}_2 = \alpha \cdot x_2^{B} + (1 - \alpha) \cdot x_2^{C}$$

Exemplo

Soluções ótimas identificadas:

- $x_1 = 0; x_2 = 5/2; z = 10 \text{ (solução B)};$
- $x_1 = 3; x_2 = 1; z = 10$ (solução C).

Qualquer solução ótima pode ser determinada pela combinação linear das soluções acima. Seja $\alpha \in [0,1]$ o peso da combinação linear,

$$\hat{x}_1 = \alpha \cdot x_1^B + (1 - \alpha) \cdot x_1^C$$

$$\hat{x}_2 = \alpha \cdot x_2^B + (1 - \alpha) \cdot x_2^C$$

Exemplo: seja $\alpha = 0.3$,

$$\hat{\mathbf{x}}_1 = 0.3 \cdot 0 + 0.7 \cdot 3 = 2.1$$

 $\hat{\mathbf{x}}_2 = 0.3 \cdot \frac{5}{2} + 0.7 \cdot 1 = 1.45$

Situação:

Pode-se aumentar indefinidamente o valor de (pelo menos) uma variável, melhorando (i.e. diminuindo ou aumentando) indefinidamente o valor da função objetivo.

Detecção:

- Os valores na coluna de uma variável não básica são todos não positivos (i.e. ≤ 0).
 - Ou seja, pode-se aumentar o valor da variável até o infinito sem violar nenhuma restrição.

Exemplo

maximiza
$$z = 2x_1 + x_2$$

sujeito a $x_1 - x_2 \le 10$
 $2x_1 \le 40$
 $x_1, x_2 \ge 0$

Base	\mathbf{x}_1	x_2	s_1	s_2	Sol.
z	-2	-1	0	0	0
s_1	1	-1	1	0	10
s_2	2	0	0	1	40

maximiza
$$z = 2x_1 + x_2$$

sujeito a $x_1 - x_2 \le 10$
 $2x_1 \le 40$
 $x_1, x_2 \ge 0$

Base	\mathbf{x}_1	\mathbf{x}_2	s_1	s_2	Sol.
z	-2	-1	0	0	0
s_1	1	-1	1	0	10 40
s_2	2	0	0	1	40

As restrições não limitam o crescimento de x_2 .

- ► Razões 10/-1 e 40/0;
- Podemos aumentar seu valor até ∞.

Exemplo

maximiza
$$z = 2x_1 + x_2$$

sujeito a $x_1 - x_2 \le 10$
 $2x_1 \le 40$
 $x_1, x_2 \ge 0$

Base	x_1 x_2		s_1	s_2	Sol.		
z	-2	-1	0	0	0		
s_1	1	-1	1	0	10 40		
s_2	2	0	0	1	40		

Situação:

Não há nenhuma solução viável (i.e. que não viole nenhuma restrição).

Detecção:

- Só pode acontecer se há restrições do tipo = e/ou ≥;
- Neste caso, introduzimos variáveis artificiais;
- Ocorre quanto alguma variável artificial é positiva na iteração ótima.

Exemplo

Base	x_1	x_2	s_1	s_2	R	Sol.
z	-303	-402	0	100	0	-1200
$\begin{array}{c} s_1 \\ R \end{array}$	2 3	1 4	1 0	0 -1	0 1	2 12

Exemplo

Base	x_1	χ_2	s_1	\mathbf{s}_2	R	Sol.
z	-303	-402	0	100	0	-1200
s_1	2	1	1	0	0	2
R	3	4	0	-1	1	12

maximiza
$$z = 3x_1 + 2x_2$$

sujeito a $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$

Pelo método M-grande:

- Introduzimos uma variável artificial R para a segunda restrição;
- \triangleright Penalizamos a função objetivo com o valor dessa variável multiplicada por M = -100;
- ightharpoonup Ajustamos a linha z na tabela simplex inicial.

Exemplo

Base	χ_1	\mathbf{x}_2	s_1	s_2	R	Sol.
z	-303	-402	0	100	0	-1200
s ₁ R	2 3	1 4	1 0	0 -1	0	2 12

maximiza
$$z = 3x_1 + 2x_2$$

sujeito a $2x_1 + x_2 \le 2$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0$

Pelo método M-grande:

- Introduzimos uma variável artificial R para a segunda restrição;
- Penalizamos a função objetivo com o valor dessa variável multiplicada por M = -100;
- ightharpoonup Ajustamos a linha z na tabela simplex inicial.

Para a próxima iteração:

- \triangleright Variável entrante: x_2 ;
- ▶ Variável sainte: s_1 , com razão 2/1.

Exemplo

Base	x_1	\mathbf{x}_2	s_1	s_2	R	Sol.	I	Base	x_1	\mathbf{x}_2	s_1	s_2	R	Sol.
z	-303	-402	0	100	0	-1200	- 2	z	501	0	402	100	0	-396
s_1	2	1	1	0	0	2		x ₂	2 -5	1	1	0	0	2
R	3	4	0	-1	1	12		R	-5	0	-4	-1	1	4

A nova solução é ótima, no entanto:

- ► A variável artificial R está na base da solução;
- Ou seja, possui valor positivo R = 4;
- Logo, a solução obtida viola restrições e não existe solução viável para o modelo original.

Exemplo

