31-07-2023

In []: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [345]: a=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023.csv")
a

Out[345]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Forces size	Birth Rate	Calling Code	Capital/Ma C
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	Ka
1	A l bania	105	AL	43.10%	28,748	9,000	11.78	355.0	Tira
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	Algi
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	Andorra V€
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	Luan
190	Venezue l a	32	VE	24.50%	912,050	343,000	17.88	58.0	Carac
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0	На
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	967.0	San
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0	Lusa
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	263.0	Hara

195 rows × 35 columns

In [346]: a=a.head(10)

Out[346]:

Capital/Major City	Calling Code	Birth Rate	Armed Forces size	Land Area(Km2)	Agricultural Land(%)	Abbreviation	Density\n(P/Km2)	Country	
Kabu	93.0	32.49	323,000	652,230	58.10%	AF	60	Afghanistan	0
Tirana	355.0	11.78	9,000	28,748	43.10%	AL	105	A l bania	1
Algiers	213.0	24.28	317,000	2,381,741	17.40%	DZ	18	Algeria	2
Andorra la Vella	376.0	7.20	NaN	468	40.00%	AD	164	Andorra	3
Luanda	244.0	40.73	117,000	1,246,700	47.50%	AO	26	Angola	4
St. John's, Saint John	1.0	15.33	0	443	20.50%	AG	223	Antigua and Barbuda	5
Buenos Aires	54.0	17.02	105,000	2,780,400	54.30%	AR	17	Argentina	6
Yerevan	374.0	13.99	49,000	29,743	58.90%	AM	104	Armenia	7
Canberra	61.0	12.60	58,000	7,741,220	48.20%	AU	3	Austra l ia	8
Vienna	43.0	9.70	21,000	83,871	32.40%	AT	109	Austria	9
•							olumns	rows × 35 c	10

In [347]: a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 35 columns):
     Column
                                                Non-Null Count Dtype
    -----
---
                                                 -----
                                                                 ----
0
     Country
                                                10 non-null
                                                                 object
1
     Density
(P/Km2)
                                   10 non-null
                                                   object
2
     Abbreviation
                                                10 non-null
                                                                 object
3
     Agricultural Land( %)
                                                10 non-null
                                                                 object
     Land Area(Km2)
                                                                 object
4
                                                10 non-null
5
    Armed Forces size
                                                9 non-null
                                                                 object
                                                                 float64
    Birth Rate
                                                10 non-null
                                                10 non-null
7
    Calling Code
                                                                 float64
8
    Capital/Major City
                                                10 non-null
                                                                 object
9
    Co2-Emissions
                                                                 object
                                                10 non-null
10
    CPI
                                                9 non-null
                                                                 object
11 CPI Change (%)
                                                9 non-null
                                                                 object
12
    Currency-Code
                                                10 non-null
                                                                 object
                                                                 float64
13 Fertility Rate
                                                10 non-null
14 Forested Area (%)
                                                10 non-null
                                                                 object
15 Gasoline Price
                                                10 non-null
                                                                 object
16 GDP
                                                10 non-null
                                                                 object
17
    Gross primary education enrollment (%)
                                                10 non-null
                                                                 object
18 Gross tertiary education enrollment (%)
                                                9 non-null
                                                                 object
19 Infant mortality
                                                10 non-null
                                                                 float64
20 Largest city
                                                10 non-null
                                                                 object
21 Life expectancy
                                                                 float64
                                                9 non-null
22 Maternal mortality ratio
                                                                 float64
                                                9 non-null
23 Minimum wage
                                                9 non-null
                                                                 object
24 Official language
                                                10 non-null
                                                                 object
25 Out of pocket health expenditure
                                                10 non-null
                                                                 object
26 Physicians per thousand
                                                10 non-null
                                                                 float64
27
    Population
                                                10 non-null
                                                                 object
    Population: Labor force participation (%)
28
                                                8 non-null
                                                                 object
29 Tax revenue (%)
                                                9 non-null
                                                                 object
30 Total tax rate
                                                9 non-null
                                                                 object
31 Unemployment rate
                                                8 non-null
                                                                 object
32 Urban population
                                                10 non-null
                                                                 object
33 Latitude
                                                                 float64
                                                10 non-null
34 Longitude
                                                10 non-null
                                                                float64
dtypes: float64(9), object(26)
memory usage: 2.9+ KB
```

```
In [348]: a.columns
Out[348]: Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land( %)',
                                                                                        'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Code',
                                                                                       'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
                                                                                       'Currency-Code', 'Fertility Rate', 'Forested Area (%)', % \left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) +\frac{1}{2}\left( \frac{1}{2}\right)
                                                                                       'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
                                                                                       'Gross tertiary education enrollment (%)', 'Infant mortality',
                                                                                       'Largest city', 'Life expectancy', 'Maternal mortality ratio',
                                                                                       'Minimum wage', 'Official language', 'Out of pocket health expenditure',
                                                                                       'Physicians per thousand', 'Population',
                                                                                       'Population: Labor force participation (%)', 'Tax revenue (%)',
                                                                                       'Total tax rate', 'Unemployment rate', 'Urban population', 'Latitude',
                                                                                       'Longitude'],
                                                                                   dtype='object')
In [349]: d=a[['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land( %)',
                                                                                       'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Code']]
                                                   d
```

Out[349]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0
1	A l bania	105	AL	43.10%	28,748	9,000	11.78	355.0
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1.0
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.0
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374.0
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61.0
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43.0

In [360]: d.describe()

Out[360]:

	Birth Rate	Calling Code
count	10.000000	10.000000
mean	18.512000	181.400000
std	10.754729	149.167467
min	7.200000	1.000000
25%	11.985000	55.750000
50%	14.660000	153.000000
75%	22.465000	327.250000
max	40.730000	376.000000

In [353]: sns.distplot(a['Density\n(P/Km2)'])

Out[353]: <AxesSubplot:xlabel='Density\n(P/Km2)', ylabel='Density'>

In [361]: x1=a[['Birth Rate', 'Calling Code']]

```
In [362]: sns.heatmap(x1.corr())
Out[362]: <AxesSubplot:>
                                                          -1.0
                                                          - 0.8
            Birth Rate
                                                          - 0.6
                                                          - 0.4
                                                          - 0.2
            Calling Code
                                       Calling Code
                     Birth Rate
In [363]: x=a[['Birth Rate', 'Calling Code']]
           y=a['Density\n(P/Km2)']
In [364]: | from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [365]: from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[365]: LinearRegression()
In [366]: |print(lr.intercept_)
           154.69810898570245
In [367]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[367]:
                        Co-efficient
              Birth Rate
                          -2.919609
            Calling Code
                          -0.016401
```

```
prediction=lr.predict(x_test)
In [368]:
          plt.scatter(y_test,prediction)
Out[368]: <matplotlib.collections.PathCollection at 0x190c47edf10>
           100
            90
            80
            70
            60
                60
                                    18
                                                        17
In [369]: print(lr.score(x_test,y_test))
          -8.526473654816035
In [370]:
         from sklearn.linear_model import Ridge,Lasso
In [371]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[371]: Ridge(alpha=10)
In [372]: rr.score(x_test,y_test)
Out[372]: -8.564611639176906
In [373]: la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[373]: Lasso(alpha=10)
In [374]: la.score(x test,y test)
Out[374]: -8.611623528648572
In [375]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[375]: ElasticNet()
In [376]: print(en.coef_)
          [-2.90170038 -0.01639415]
```

```
In [377]: | print(en.intercept_)
          154.41191458285985
In [378]: | print(en.predict(x test))
          [ 58.61101308 80.46667475 104.13968989]
In [379]: |en.score(x_test,y_test)
Out[379]: -8.544001349703986
In [380]: from sklearn import metrics
In [381]: | print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
          Mean Absolute Error 50.37420723327395
In [382]: print("Mean Squared Error", metrics.mean squared error(y test, prediction))
          Mean Squared Error 3825.408420945017
In [383]: | print(" Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction))
           Root Mean Squared Error 61.84988618376769
In [384]:
          import pickle
          filename="prediction"
In [385]:
          pickle.dump(lr,open(filename,'wb'))
In [386]:
          import pandas as pd
          import pickle
In [387]:
          filename="prediction"
          model=pickle.load(open(filename, "rb"))
In [388]:
          real=[[10,20],[15,30]]
          result=model.predict(real)
In [389]: result
Out[389]: array([125.17400621, 110.41195483])
```