M 362K Midterm Note

Xiaohui Chen

March 11, 2015

1 Combinatorial Probability

The multiplication principle: Suppose an experiment can be broken down into a first stage A consisting of N(A) outcomes and that for each of these outcomes. Then the total number of outcomes for the two states combined is equal to $N(A) \times N(B)$

Permutations: Given a set of n distinguishable object, an ordered selection of r different elements of the set is called a permutation of n objects chosen r at a time

Factorials: Let n be a whole number. The n! is defined by $n! = n \cdot (n-1) \cdot (n-2) \cdots 3 \cdot 2 \cdot 1$. By convention, we define 0! = 1

$$_{n}P_{r} = n(n-1)(n-2)\cdots(n-r+1) = \frac{n!}{(n-r)!}$$

Combinations: Given a set of n distinguishable objects, an ordered selection of r different elements of the set is called a combination of n objects chosen r at a time and is denoted by ${}_{n}C_{r}$ and read as n choose r

$$_{n}C_{r} = \frac{nP_{r}}{r!} = \frac{n!}{r!(n-r)!}$$
. The form $_{n}C_{r} = \begin{pmatrix} n \\ r \end{pmatrix}$ is especially common and is referred as the binomial coefficient

Partitions: Let A be a set of n distinguishable objects. Let whole numbers $\{r_1, r_2, \dots, r_k\}$ be given such that $r_1 + r_2 + \dots + r_k = n$. A partition of A into subsets of sizes $\{r_1, r_2, \dots, r_k\}$

is a particular distribution of the n objects into disjoint subsets A_1, A_2, \dots, A_k of sizes r_1, r_2, \dots, r_k respectively

Multinomial Coefficients: The number of partitions of n distinct objects into k subsets of sizes r_1, r_2, \dots, r_k , where $r_1 + r_2 + \dots + r_k = n$ is called multinomial coefficient, denoted by $\begin{pmatrix} n \\ r_1 & \cdots & r_k \end{pmatrix} = \frac{n!}{r_1! r_2! \cdots r_k!}$

The number of unordered samples of r objects, with replacement, from n distinguishable objects is n+r-1 $C_r = \begin{pmatrix} n+r-1 \\ r \end{pmatrix} = \begin{pmatrix} n+r-1 \\ n-1 \end{pmatrix}$. This is equivalent to the number of

ways to distribute r indistinguishable balls into n distinguishable urns without exclusion

Samples of size r			
from n	Without replacement	With replacement	
distinguishable objects			
Order matter	$_{n}P_{r}$	n^r	Distinguishable balls
Order doesn't matter	$\begin{pmatrix} n \\ r \end{pmatrix}$	$\begin{pmatrix} n+r-1 \\ r \end{pmatrix}$	Indistinguishable balls
			Distributions of r
	Exclusive	Non-exclusive	balls into n
			distinguishable urns

The Binomial Theorem: For every non-negative integer n and real numbers x and y, we

have
$$(x+y)^n = \sum_{r=0}^n {}_n C_r \cdot x^r \cdot y^{n-r} = \sum_{r=0}^n {}_n C_r \cdot x^{n-r} \cdot y^r$$

The Multinomial Theorem:
$$(x_1 + x_2 + \dots + x_r)^n = \sum_{n_1 + \dots + n_r = n} \begin{pmatrix} n \\ n_1, \dots, n_r \end{pmatrix} \cdot x_1^{n_1} \cdot x_2^{n_2} \cdot \dots \cdot x_r^{n_r}$$

The odds against the event A are quoted as ratio $Pr(A \ does \ not \ occur) : Pr(A \ does \ occur) =$

$$Pr(A^C): Pr(A) = (1-p): p$$

If the odds against the event A are quoted as b:a, then $Pr(A)=\frac{a}{a+b}$

2 General Rules of Probability

The **sample space** is the set (collection) of all possible outcomes of a probability experiment.

An **event** is a subset of the sample space

2.1 Axioms of Probability Theory

- (1) $0 \le Pr(E) \le 1$ for any event E
- (2) Pr(U) = 1, where U denotes the entire sample space
- (3) The probability of the union of mutually exclusive events is the sum of the individual probabilities of the disjoint sets: $Pr\left(\bigcup_{mutually\ exclusive}\right) = \sum_{i} Pr(E_i)$

2.2 Two Important Probability Rules

- (1) Negation Rule: Pr(E') = 1 Pr(E)
- (2) Inclusion-Exclusion Rule: $Pr(E) + Pr(F) = Pr(E \cup F) + Pr(E \cap F)$

2.3 De Morgan's Laws

For any two sets A and B

$$(1) (A \cap B)' = A' \cup B'$$

$$(2) (A \cup B)' = A' \cap B'$$

2.4 The Venn Box Diagram

	A	A'	
В	$Pr(A \cap B)$	$Pr(A' \cap B)$	Pr(B)
В'	$Pr(A \cap B')$	$Pr(A' \cap B')$	Pr(B')
	Pr(A)	Pr(A')	1

2.5 Conditional Probability

The conditional probability that event A occurs given that event B occurred is

$$Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)}$$

If the sample space consists of equally likely outcomes, then

$$Pr(A|B) = \frac{N(A \cap B)}{N(B)}$$

Independence: Let A and B be events with non-zero probabilities. We say A and B are independent if any (and hence all) of the following hold:

- (1) Pr(A|B) = Pr(A)
- (2) Pr(B|A) = Pr(B) or
- (3) $Pr(A \cap B) = Pr(A) \cdot Pr(B)$. This is called the **multiplicative rule**

Otherwise the events are said to be dependent

2.6 Bayes' Theorem

Suppose that the sample space S is partitioned into disjoint subsets B_1, B_2, \dots, B_n , That is, $S = B_1 \cup B_2 \cup \dots \cup B_n$, $Pr(B_i) > 0$ for all $i = 1, 2, \dots, n$, and $B_i \cap B_j = \emptyset$ for all $i \neq j$. Then for an event A,

$$Pr(B_j|A) = \frac{Pr(B_j) \cdot Pr(A|B_j)}{\sum_{i=1}^{n} Pr(B_i) \cdot Pr(A|B_i)}$$

3 Discrete Random Variables

3.1 Discrete Random Variable

Discrete Random Variable: We say X is a **discrete random variable** if X is a numerically valued function whose domain is the sample space of a probability experiment with a finite or countably infinite number of outcomes

Every random variable has a **probability distribution** associated with it

The tabulation of the probabilities for each possible value x of a discrete random variable X is called its **probability distribution**. The probabilities must be positive and sum to one The function $p(x_i) = Pr(X = x_i)$ on the values of the random variable X is called the **probability function** of X

3.2 Cumulative Probability Distribution

Let X be a discrete random variable. For each real number x, let $F(x) = Pr(X \le x)$. The function F(x) is called the **cumulative distribution function** (CDF) for the random variable X and satisfies

- (1) $0 \le F(x) = Pr(X \le x)$ for all X
- (2) If $x_{i-1} < x_i$ are consecutive values in the probability distribution table of X, then $Pr(X = x_i) = F(x_i) F(x_{i-1}) = Pr(X \le x_i) Pr(X \le x_{i-1}) = p(x_i)$
- (3) We define $F(\infty) = Pr(X < \infty) = 1$

If X is a discrete random variable with probability function $Pr(X = x_i) = p(x_i)$, then the **expected value (mean)** of the random variable X is given by $\mu_X = E[X] = \sum_i x_i \cdot p(x_i)$ If X is a discrete random variable with probability function $Pr(X = x_i) = p(x_i)$, and Y = g(X) is a transformation of X, then $\mu_Y = E[Y] = E[g(X)] = \sum_i g(x_i) \cdot p(x_i)$

3.3 Median

If x_1, x_2, \dots, x_n is a collection of n data points listed from smallest to largest, then the **median** of the data equals

- (a) $x_{\frac{n+1}{2}}$ if n is odd. This is just the middle term in the sequence
- (b) $\frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2}$ if n is even. This is the mean of the two middle terms

3.4 Midrange

If $\{x_1, x_2, \dots, x_n\}$ is a collection of n data points listed from smallest to largest, then the **midrange** od the data is defined to be

$$\frac{x_1 + x_n}{2} = \frac{minimum + maximum}{2}$$

3.5 Mode

If x_1, x_2, \ldots, x_n is a collection of n data points, then the **mode** of the data is defined as,

- (a) The value x_i that occurs most frequently
- (b) The two values x_i and x_j of they occur the same number of times, and more frequently than the remaining points. In this case we say the data is **bi-modal**
- (c) Otherwise, the mode does not exist

3.6 Percentiles

If x_1, x_2, \ldots, x_n are n data points arranged in ascending order, then x_i corresponds to the

$$\left(100 \cdot \frac{i}{n+1}\right)^{th} percentile$$

3.7 Quartiles

The first quartile corresponds to the 25^{th} percentile and is denoted: Q_1

The **second quartile** corresponds to the 50^{th} percentile and is denoted: Q_2

The **third quartile** corresponds to the 75^{th} percentile and is denoted: Q_3

The inter-quartile range(IQR) is $IQR = Q_3 - Q_1$, where Q_3 is the third quartile and Q_1 is the first quartile

3.8 Variance

$$Var[X] = \sigma_X^2 = \sum_{x_i} (x_i - \mu_X)^2 \cdot p(x_i) = E[X^2] - E[X]^2 = \sum_{x_i} x_i^2 p(x_i) - \left(\sum_{x_i} x_i p(x_i)\right)^2 = \sum_{x_i} x_i^2 p(x_i) - (\mu_X)^2$$

Let X be a discrete random variable and let $Y = a \cdot X + b$, where a and b are real numbers.

Then,

(1)
$$E[X] = E[a \cdot X + b] = a \cdot E[X] + b$$

(2)
$$Var[Y] = Var[a \cdot X + b] = a^2 \cdot Var[X]$$

Standard deviation $\sigma_X = \sqrt{Var[X]}$

3.9 Standardized Random Variable

Let X be a discrete random variable and let $Z=\frac{X-\mu}{\sigma}$. Then Z is called the **standardization** of X. The random variable Z always has mean equal to 0 and standard deviation equal to 1 z-score: $z=\frac{X-\mu}{\sigma}$

Markov Inequality: $Pr[Y > a] \le \frac{\mu_Y}{a}$ for any a > 0

Chebychev's Theorem:

$$Pr(X < \mu_X - k \cdot \sigma_X \text{ or } X > \mu_X + k \cdot \sigma_X) = Pr(|X - \mu| > k \cdot \sigma_X) \le \frac{1}{k^2}$$

$$Pr(\mu_X - k \cdot \sigma_X \le X \ge \mu_X + k \cdot \sigma_X) \ge 1 - \frac{1}{k^2}$$

Outliers: We define an outlier to be any data ppint with a z-score less than z=-3 or greater than z=3

Coefficient of Variation: $\frac{100\cdot\sigma}{\mu}\%$

3.10 Joint Distributed Random Variables

Let X and Y be random variables arising from the same discrete probability experiment.

The **joint distribution** of X and Y is given by $p(x,y) = Pr[\{X = x\} \cap \{Y = y\}]$

We say X and Y are **independent** if dor all x and y the events $\{X = x\}$ and $\{Y = y\}$

are independent. That is, $p(x,y) = Pr[\{X=x\} \cap \{Y=y\}] = Pr[X=x] \cdot Pr[Y=y] = p_x(x) \cdot p_Y(y)$

Let X and Y be random variables arising from the same probability experiment. Then,

(a) E[X + Y] = E[X] + E[Y]. This formula extends to sums of any length

Further, if X and Y are **independent**, then

(b)
$$E[X \cdot Y] = E[X] \cdot E[Y]$$
, and

(c)
$$Var[X + Y] = Var[X] + Var[Y]$$

This formula extends to sums of any length provided the summands are pair-wise independent

4 Some Discrete Distributions

4.1 Discrete Uniform Distribution

arithmetic series: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

sums of squares: $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

finite geometric series: $\sum_{n=0}^{N} ax^n = \frac{a(1-x^{N+1})}{1-x}$, for any $x \neq 1$

infinite geometric series: $\sum\limits_{n=0}^{N}ax^{n}=\frac{a}{1-x},$ for any |x|<1

A random variable X is said to have a discrete uniform distribution if its probability

function is
$$Pr(X = x) = p(x) = \frac{1}{n}$$
 for $x = 1, 2, \dots, n$

$$E[X] = \frac{n+1}{2}$$

$$Var[X] = \frac{n^2 - 1}{12}$$

4.2 Bernoulli Trials

Suppose that the random variable X has property function given by Pr[X = 1] = p and Pr[X = 0] = q = 1 - p. Then X is called a **Bernoulli random variable** with probability of success P

$$E[X] = p$$
 and $Var[X] = pq = p(1-p)$

4.3 Binomial Distribution

Suppose that the random variable Y has probability function given by $Pr(Y = y) = p(y) = {}_{n}C_{y}p^{y}q^{n-y}$ for y = 0, 1, 2, ..., n and $0 \le p \le 1$. Then the random variable Y is called a **binomial random variable** with **parameters** n and p

Properties:

- (a) There are n identical trials
- (b) For each (Bernoulli) trial, there are two outcomes called success and failure
- (c) The probability of success is p and the probability of failure is q = 1 p
- (d) Each trial is independent of the other trials

$$\mu_Y = E[Y] = np$$

$$\sigma_Y^2 = Var[Y] = npq = np(1-p)$$

4.4 Geometric Distribution

Suppose that the random variable X has probability function given by $Pr(X = k) = p(1 - p)^k = pq^k$ for $k = 0, 1, 2 \cdots$, q = 1 - p and 0 . Then X is called the**geometric**random variable with parameter p

$$E[X] = \frac{q}{p} = \frac{1-p}{p}$$

$$Var[X] = \frac{q}{p^2} = \frac{1-p}{p^2}$$

4.5 Negative Binomial Distribution

Requirements:

- (a) The trials are identical
- (b) Each trial is independent of te other trials
- (c) The random variable M denotes the number of failures prior to the r^{th} success
- (d) The probability of success is p and the probability of failure is q = 1 p

$$p_k = Pr(M = k) = {}_{r+k-1}C_k p^r q^k = {}_{r+k-1}C_{r-1}p^r (1-p)^k$$

$$E[M] = \frac{rq}{p}$$

 λ

$$Var[M] = \frac{rq}{p^2}$$

4.6 Hyper-geometric Random Variable

$$Pr(X = k) = p_k = \frac{{}_{G}C_k \cdot {}_{B}C_{n-k}}{{}_{B+G}C_n}$$

$$\mu_X = E[X] = n\left(\frac{G}{B+G}\right)$$

$$\sigma_X^2 = Var[X] = n\left(\frac{G}{B+G}\right)\left(\frac{B}{B+G}\right)\left(\frac{B+G-n}{B+G-1}\right)$$

4.7 Poisson Distribution

Suppose that the random variable Z has probability function given by $Pr(Z = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ for k = 0, 1, 2, ... and $\lambda > 0$. Then Z is called a **Poison random variable with parameter**

$$E[Z] = \lambda$$
 and $Var[Z] = \lambda$

Suppose that Z_i are independent **Poisson random variables with mean** λ_i for i = 1, 2.

Then $Z=Z_1+Z_2$ is a Poisson random variable with mean (parameter) $E[Z]=\lambda_1+\lambda_2$