COMPUTER ARCHITECTURE CE, Computer Engineering degree Antonio Prete

a.prete@ing.unipi.it

- Measuring Performance;
- Benchmarks;
- Principles of Computer Design.

Measuring Performance

- Typical performance metrics:
 - Response time
 - Throughput
- Execution time
 - Wall clock time: includes all system overheads
 - CPU time: only computation time
- Speedup of X relative to Y
 - Execution time_v / Execution time_x
- Benchmarks
 - Kernels (e.g. matrix multiply)
 - Toy programs (e.g. sorting)
 - Synthetic benchmarks (e.g. Dhrystone)
 - Benchmark suites (e.g. SPEC06fp, TPC-C)

3

3

Performance metrics

We often want to relate the performance of two different computers, say, X and Y.

- Response time (t)
- Throughput (1/t)

"X is 4 times as fast as Y" will mean:

$$\frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = 4$$

"the throughput of X is 3 times as fast as Y" signifies here that the number of tasks completed per unit time on computer X is 3 times the number completed on Y.

$$= \frac{\text{Execution time}_{Y}}{\text{Execution time}_{X}} = \frac{\frac{1}{\text{Performance}_{Y}}}{\frac{1}{\text{Performance}_{X}}} = \frac{\text{Performance}_{X}}{\text{Performance}_{Y}} = 3$$

5

Measuring Performance (I)

The best choice of benchmarks to measure (to compare) performance is real applications.

Attempts at running programs that are much simpler than a real application have led to performance pitfalls.

Benchmarks

- Kernels (e.g. matrix multiply)
- Toy programs (e.g. sorting)
- Synthetic benchmarks (e.g. Dhrystone)
- Benchmark suites (e.g. EEMBC, SPEC06fp, TPC-C)
 - www.spec.org
 - www.eembc.org
 - www.TCP.org

Measuring Performance (II)

Compiler writer and architect *can conspire* to make the computer appear faster on these stand-in programs than on real applications.

Another issue is the *conditions* under which the benchmarks are run.

 One way to improve the performance of a benchmark has been with benchmark-specific compiler flags; these flags often caused transformations that would be illegal on many programs or would slow down performance on others.

7

7

Measuring Performance (III) Source code modifications

- 1. No source code modifications are allowed.
- 2. Source code modifications are allowed but are essentially impossible.

For example, database benchmarks rely on standard database programs that are tens of millions of lines of code.

The database companies are highly unlikely to make changes to enhance the performance for one particular computer.

3. Source modifications are allowed, as long as the altered version produces the same output.

Benchmark tests value

- One problem that affects manufacturers' benchmark tests is that test programs could be chosen or constructed in such a way as to privilege the characteristics of their products.
- In 2014 Intel closed a ten-year class action, paying off some of the users who between November 2000 and June 2002 bought a first generation Pentium 4 (Willamette) instead of an AMD Athlon, as the benchmark tests returned better values for the Pentium 4, in how much the tests were based on operations in which the Pentiums were better, avoiding those in which the Athlons would have excelled.

In the end the score was calculated correctly, but it was not necessarily true.

9

9

Electronic Design News Embedded Microprocessor Benchmark Consortium (EEMBC "embassy") benchmarks

It is a set of 41 kernels used to predict performance of different embedded applications: automotive/industrial, consumer, networking, office automation, and telecommunications.

EEMBC reports unmodified performance and "full fury" performance, where almost anything goes.

11

Ultra-Low Power (ULP) and Internet of Things focus on power and energy

The scores associated with the benchmarks are derived from measurements taking using the STMicroelectronics PowerShield.

- ULPMark™
 - The benchmark runs an active workload for a period of time, then goes to sleep. The energy measurement during the duty cycle reflects a real-life test of embedded low power beyond a simple sleep number.
- ULPMark-PeripheralProfile
 - It examines the energy cost of four peripherals: real-time clock, pulse-width modulation, analog-to-digital conversion, and SPI. communication.
- ULPMark-CoreMark
 - It measures the energy of CoreMark in a consistent environment. The ULPMark-CM score is proportional to the number of CoreMark iterations a device can execute per milli-Joule.

Ultra-Low Power (ULP) and Internet of Things focus on power and energy

IoTMark™

- IoTMark builds on ULPMark by adding a sensor emulation module (the IO Manager) and a radio gateway emulator (the Radio Manager).
- The execution profile incorporates the types of behavior an IoT edge node would perform.
 - The first benchmark in this series, IoTMark-BLE, uses a Bluetooth Low Energy (BLE) radio as the gateway and an I2C device as the sensor.

SecureMark™

Security comes at a cost, both in programming complexity and energy. As IoT secure becomes even more important, designers must assess the energy cost of the design.
 SecureMark provides security-specific profiles to assist in this analysis.

13

EEMBC, Microprocessor Benchmark Suites PROCESSOR

<u>AutoBench</u>™ Automotive, industrial, and general-purpose applications.

ConsumerBench™ - Digital cameras, printers, and other digital imaging systems.

CoreMark* - For quick comparison of processor and microcontroller core functionality.

<u>DENBench</u>™ - Digital entertainment products such as smartphones, MP3 players, digital cameras, TV set-top boxes, and in-car entertainment systems.

EnergyBench[™] - Power and energy performance with insights to power budget costs.

<u>FPBench</u>[™] - **Floating-point performance** in graphics, audio, motor control, and other high-end processing tasks.

MultiBench™ - Multicore architectures, memory bottlenecks, OS thread scheduling, and efficiency of synchronization.

Networking - Moving and analyzing packets in networking applications.

OABench™ - Office Automation tasks in printers, plotters, and other systems that handle text and image processing tasks.

<u>TeleBench</u>^{\mathbf{m}} - Telecommunications processors in modem, xDSL, and related fixed-telecom applications.

Phone and Tablet

BrowsingBench™

 Measure browser performance with BrowsingBench, a collection of webpages loaded using a local Nginx server over a wired LAN connection.

AndEBench™-Pro

 Available for free in the Android Play Store,
 AndeBench is an industry-accepted method of evaluating Android platform performance.

15

15

How to calculate the score

The score reported for each device is a single-number figure of merit calculated by taking the geometric mean of the individual AutoBench scores and dividing by **307.455**.

This normalization factor (307.455) is derived from the lowest score in this category on December 5, 2000.

Scores for each of the individual benchmarks within this suite allow designers to aggregate the benchmarks to suit specific application requirements.

To calculate a **geometric mean**, multiply all the results of the tests together and take the nth root of the product, where n equals the number of tests.

EEMBC, Microprocessor Benchmark Suites Services

EEMBC Technology Center (ETC)

Services include **porting and benchmark execution, performance analysis, and preparation of platforms for benchmark score certification**.

These services allow any company to make EEMBC benchmark testing an integral part of its product development and release process - without tying up internal engineering resources.

17

17

Scores for ULPMark-CP and ULPMark-PP

Clear	Hardware	Vendor Score	Cert.	Core	Compiler	Profile (3.0 V)	Core Profile (User)	Periph. Profile (3.0 V)	Periph. Profile (User)	Date
8	STMicroelectronics STM32L412 Rev A	4	1	Cortex-M4	IAR C/C++ Compiler for ARM 8.20.2	247	447 1.8V	94.0	167 18V	2018-10
	STMicroelectronics STM32L552 Rev1	✓		Cortex-M33	IAR C/C++ Compiler for ARM 8.20.1	267	402 18V	33.5	59.5 1.8V	2018-10
	Analog Devices ADuCM4050 Rev 0.1	4	1	Cortex M4F	IAR EWARM 8.20.1.14188			24.3		2018-07 04
8	Microchip Technology ATSAML11E16A rev B	✓	1	ARM Cortex- M23	IAR C/C++ Compiler for ARM 8.22.1.15669	282	400 18V			2018-04
8	Microchip Technology ATSAML10E16A rev B	1	√.	ARM Cortex- M23	IAR C/C++ Compiler for ARM 8.22.1.15669	281	405 1.8V			2018-04
0	Analog Devices ADuCM4050 Rev 0.1	1	1	Cortex M4F	IAR EWARM 8.20.1.14188	189				2018-03
0	Analog Devices ADuCM302x Rev1.0			Cortex-M3	ARM GCC 7-2017-q4-major			3.43	3.47 18V	2018-03
0	Silicon Labs EFM32PG1B200F256 + 32KB SRAM retention			Cortex-M4	Silicon Labs Simplicity Studio v3		135 1.8V			2018-02
0	Silicon Labs EFM32PG1B200F256			Cortex-M4	Silicon Labs Simplicity Studio v3	106	144 1.8V			2018-02 1
	Silicon Labs EFM32HG322F64			Cortex-M0+	Silicon Labs Simplicity Studio v3	101	157 2.0V	4.84	8.03 z.ov	2018-02
	Silicon Labs EFM32LG990F256			Cortex-M3	Silicon Labs Simplicity Studio v3	74.2	114 2.0V	35.9	57.2 2.0V	2018-02
	Texas Instruments MSP432P401R Rev. C + BOD/SVS + 64K SRAM			Cortex-M4	IAR EWARM v7.50.3	150	208 1.8V	7.08	12.4 1.8V	2018-02

STM32L412xx

Ultra-low-power ARM® Cortex®-M4 32-bit MCU+FPU. 100DMIPS. up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Features

- Features

 Ultra-low-power with FlexPowerControl

 1.71 V to 3.5 V power supply

 4.0 °C to 897.25 °C temperature range

 145 na h vgs. mode: supply for RTC and
 32x22-bit backup registers

 8 na Shatdown mode (4 wakeup pins)

 28 na Shatdown mode (4 wakeup pins)

 28 na Shatdown mode (4 wakeup pins)

 28 na Shatdown mode with RTC

 1.0 pt Stop 2 mode. 1.28 µt with RTC

 1.0 pt Stop 2 mode. 1.28 µt with RTC

 84 µt MMRT pun mode (1D Offsele)

- 84 µAMHz run mode (LDO Mode)
 36 µAMHz run mode (@3.3 V SMPS Mode)
 Batch acquisition mode (BAM)
 4 µs wakeup from Stop mode Brown out reset (BOR)
 Interconnect matrix

- instruction and the context of the

- Energy benchmark
 174.5 ULPBench® Core Profile score

- 174.5 ULPBench* Core r room.

 10ck Sources
 4 to 48 Mtt crystal oscillator
 32 kHz crystal oscillator for RTC (LSE)
 Internal 16 MtHz factory-timmed RC (£1%)
 Internal 16 MtHz factory-timmed RD (£1%)
 Internal multispeed 100 kHz to 48 MHz
 oscillator, auto-timmed by LSE (better than
 40.25 % accuracy)
 Internal 48 MHz with clock recovery
 PLL for system clock and ADC

- la. رج LQFP32 (5x5) UFBGA64 (5x5) UFQFPN12 (5x5) WLCSP LQFP48 (7x7) UFQFPN48 (7x7) LQFP64 (10x10) Up to 52 fast I/Os, most 5 V-tolerant
 - RTC with HW calendar, alarms and calibrati
- Up to 12 capacitive sensing channels support touchkey, linear and rotary touch sensors 10x timers: 1x 16-bit advanced motor-control, 1x 32-bit and 2x 16-bit general purpose, 1x 16-bit basic, 2x low-power 16-bit timers (available in Stop mode), 2x watchdogs, SysTick timer
- Memories
 128 KB single bank Flash, proprietary code readout protection
 40 KB of SRAM including 8 KB with hardware partly check
 Quad SPI memory interface with XIP capability
- capability

 Rich analog peripherals (independent supply)

 2x 12-bit ADC 5 Maps, up to 16-bit with
 hardware oversampling, 200 µA/Maps

 2x operational amplifier with built-in PGA

 1x ultra-low-power comparator

 Accurate 2.5 vor 2.048 V reference
 voltage buffered output

 12x communication interfaces
- 12x communication interfaces
 USB 2.0 full-speed crystal less solution with LPM and BCD

 - with LPM and BCD
 3x IZO FIM+(1 Mbit/s), SMBus/PMBus
 3x IZSARTs (ISO 7816, LIN, IrDA, modern)
 1x LPUART (Slop 2 wake-up)
 2x SPIs (3x SPIs with the Quad SPI)
 IRTIM (Infrared interface)
 14-channel DMA controller
- True random number generator

19

An example of evaluation report Ultra-Low-Power device (1)

21

An example of evaluation report Ultra-Low-Power device (2)

Software Environment							
Compiler Name and Version	IAR EWARM 8.20.1.14188	IAR C/C++ Compiler for ARM 8.20.2					
Compiler Flags	cpu=Cortex-M4 -D ADUCM4050no code_motion - Ohs -e fpu=VFPv4_spendian=little	High speed; No size constraints; Multi-file compilation					
ULPBench Profile and Version	2.5.1	2.5.1					
EnergyMonitor Software Version	2.5.1.005	2.5.1.005					
ULPBench Binary File PP 3.0v: ADuCM4x50_ULPMark_PRbin		CP 3.0v: ULPCP_L412_Nucleo32.hex CP x.yv: ULPCP_L412_Nucleo32.hex PP 3.0v: ULPPP_L412_Nucleo32.hex PP x.yv: ULPPP_L412_Nucleo32.hex					
Operating Conditions							
Ambient Temperature [C]	23	25					
System Supply Voltage [V]	3.000	3.000					
Board Configuration Details							
Description of how to run benchmark, board configuration & rework instructions	ADuCM4050_PP_instructions.pdf	Energy Monitor connection ULPMark (STM32L412 Nucleo-32).pdf					
Board extended documentation and/or user guide		Nucleo-32 User Manual.pdf					
	Profile Configuration Details						
Wakeup Timer Module	RTC1	RTC					
Wakeup Timer Clock Source	External crystal	External crystal (LSE)					
Wakeup Timer Frequency [Hz]	32768 Hz	32768 Hz					
Wakeup Timer Accuracy [ppm]	20 ppm	20 ppm					

An example of evaluation report Ultra-Low-Power device (2)							
	Benchmark Scores						
ULPMark-CP (3.0v)	n/a	247.00					
ULPMark-CP (x.yv)	n/a	447.00 (1.80v)					
ULPMark-PP (3.0v)	24.30	94.00					
Configuration 1	73.6	12.1					
Configuration 2	95.8	15.6					
Configuration 3	8.14	3,37					
Configuration 4	13.1	4.94					
Configuration 5	13.7	5.15					
Configuration 6	13.7	5.18					
Configuration 7	13.8	5.17					
Configuration 8	13.8	5.18					
Configuration 9	161	46.9					
Configuration 10	4.94	2.8					
ULPMark-PP (x.yv)	n/a	167.00 (1.80v)					

2.38

2.52

23

23

An example of evaluation report Ultra-Low-Power device (2)

A report (I) Freescale i.MX31-532MHz

<u>sc</u>		
enchmark Scores are Certified by	FEMOS to account on Albumba	
t Report to Excel	SEMBL to ensure creatomity	
t Report to excel		
		Freescale I.MX31-532MHz
	Certification Report	View Certification Report to see complete certification data
	Type of Platform	Hardware/Production Silicon
	Type of Certification	Out-of-the-box
	Certification Date	01/21/08
	Benchmark Notes	
	Hardware Type	Production silicon
	Native Data Type	32-bit
	Architecture Type	RISC
	Li Instruction Cache Size (kbyte)	16
	Li Data Cache Size (kbyte)	16
	External Data Bus Width (bits)	32
	Memory Clock (mhz)	133 MHz
	Memory Configuration	4-1-1-1
	L2 Cache Size (kbyte)	128 KB
	L2 Cache Clock	266 MHz
Compiler Information		
	Complier Model and Version	Arm Realview Compilation Tools v3.1 build 569
	Floating Point	Hardware

25

A report (II) Freescale i.MX31-532MHz

Benchmark Scores	Iterations par second
Angle to Time Conversion	528925.03
Basic floating point	303782.18
Bit Manipulation	11307.02
Cache Buster	2671384.64
Response to Remote Request(CAN)	3098804.15
Fast Fourier Transform (Auto/Indust. Version)	614.51
Finite Impulse Response Filter (Auto/Indust. Vers)	190303.63
Inverse discrete cosine transform	10860.30
Infinite Impulse Response Filter	137289.71
Inverse Fast Fourier Transform (Auto/Indust. Vers)	659.47
Matrix arithmetic	1039.70
Pointer Chasing	11708.92
Pulse Width Modulation	2179341.27
Road Speed Calculation	2188990.08
Table Lookup and Interpolation	244956.19
Tooth To Spark	101902.74
Automark TM	258.3
	26

27

Desktop Benchmarks

A processor throughput-oriented benchmark

Desktop Benchmarks

Standard Performance Evaluation Corporation

Processor-intensive benchmarks and graphics-intensive benchmarks

SPEC created a benchmark set focusing on processor: SPEC CPU2006.

- SpecInt2006, 12 integer benchmarks
- SpecFp2006, 17 floating-point benchmarks

29

29

CPU: Integer Benchmarks

400.perlbench	С	PERL Programming Language
401.bzip2	С	Compression
403.gcc	С	C Compiler
<u>429.mcf</u>	С	Combinatorial Optimization
445.gobmk	С	Artificial Intelligence: go
456.hmmer	С	Search Gene Sequence
458.sjeng	С	Artificial Intelligence: chess
462.libquantum	С	Physics: Quantum Computing
<u>464.h264ref</u>	С	Video Compression
471.omnetpp	C++	Discrete Event Simulation
473.astar	C++	Path-finding Algorithms
483.xalancbmk	C++	XML Processing

CPU	: HIQ	ating Point Ranchmarks
		ating Point Benchmarks
410.bwaves	Fortran	Fluid Dynamics
416.gamess	Fortran	Quantum Chemistry
433.milc	C	Physics: Quantum Chromodynamics
434.zeusmp	Fortran	Physics / CFD
435.gromacs	C/Fortran	Biochemistry/Molecular Dynamics
436.cactusADM	C/Fortran	Physics / General Relativity
437.leslie3d	Fortran	Fluid Dynamics
444.namd	C++	Biology / Molecular Dynamics
447.dealII	C++	Finite Element Analysis
450.soplex	C++	Linear Programming, Optimization
453.povray	C++	Image Ray-tracing
454.calculix	C/Fortran	Structural Mechanics
459.GemsFDTD	Fortran	Computational Electromagnetics
<u>465.tonto</u>	Fortran	Quantum Chemistry
470.lbm	С	Fluid Dynamics
481.wrf	C/Fortran	Weather Prediction
482.sphinx3	С	Speech recognition

SPECspeed Metrics

- The elapsed time in seconds for each of the benchmarks is given and the ratio to the reference machine is calculated.
 - a Sun UltraSparc II system at 296MHz.
- The metrics are calculated as:
 - a Geometric Mean of the individual ratios,
 - each ratio is based on the median execution time from three runs.

33

33

Graphics and Workstation Performance

The SPECgpcSM is a totally new graphics performance evaluation software.

Among the major changes are a new GUI, fully updated viewsets traced from newer versions of applications, larger models, and advanced OpenGL functionality such as shading and vertex buffer objects.

Precision Workstation R5500 (I)

Graphics Hardware Configuration

Graphics Accelerator NVIDIA Quadro 6000

Total Graphics Memory 6GB

Display Manufacturer/Model E2211H

Display Resolution 1920 X 1080

Display Size/Technology 21.5" LCD

Display Refresh Rate 60 Hz

Swap on Vertical Retrace OFF

35

35

Precision Workstation R5500 (II)

System Hardware Configuration Processor Type Intel® Xeon® X5690 Processor Base Frequency 3.46GHz Processor Characteristics Turbo up to 3.73GHz Number of Populated Processor 1 Cores per Processor Socket 6 Threads per core 1 Primary Cache per Core (KB) 32k (I) / 32k (D) Secondary Cache per Socket (KB) 1536K Tertiary Cache per Socket (KB) 12MB System Memory (MB) 6144 Memory Type DDR3 ECC Memory Speed 1333 Memory Configuration 3 x 2048 Disk (GB) 500 Disk Interface SATA

Disk RPM 7200

Precision Workstation R5500 (III)

Software Configuration						
Operating System	Microsoft Windows 7 Professional 64bit SP1					
Compiler Name	Visual Studio 2008					
Compiler Version	9.0.21022.8					
Window System	MS Windows					
OpenGL Version	4.0.0					
OpenGL Renderer	Quadro 6000/PCI/SSE2					
OpenGL Vendor	NVIDIA Corporation					
Driver Version	259.57					
Viewperf Version	11.0					
Viewperf Executable	Standard					
Price, availability, etc						
Price \$10,072						
System Class	Single Supplier					
Test Date	4/26/2011					
General Availability	5/3/2011					
Submitted by	Dell					
Com	ments					
System BIOS is A00, HT disabled, turbo enabled, Aero disabled. System can be ordered through the Dell site(click here). Driver can be downloaded here (click here)						

37

Precision Workstation R5500 (IV)

Viewperf 11.0

Precision Workstation R5500 NVIDIA Quadro 6000							
Test #	Weight (%)	Frames/sec					
1	12.00	49.20					
2	12.00	21.80					
3	14.00	19.80					
4	14.00	33.20					
5	12.00	106.00					
6	12.00	83.40					
7	12.00	71.30					
8	12.00	123.00					
	Weighted Geometric Mean = 50.68						

Server Benchmarks

39

39

Standard Performance Evaluation Corporation (I)

Benchmarks

- CPU
- Graphics/Workstations
- MPI/OMP
- Java Client/Server
- Mail Servers
- Network File System
- Power
- SIP
- SOA
- Virtualization
- Web Servers

High Performance Computing, OpenMP, MPI

SPEC MPI2007

MPI2007 is SPEC's benchmark suite for evaluating MPI-parallel, floating point, compute intensive performance across a wide range of cluster and SMP hardware.

SPEC OMP2012

Designed for measuring performance using applications based on the OpenMP 3.1 standard for shared-memory parallel processing.

Standard Performance Evaluation Corporation(II)

Benchmarks

- **CPU**
- Graphics/Workstations
- MPI/OMP
- Java Client/Server
- Mail Servers
- Network File System
- Power
- SIP
- **SOA**
- Virtualization
- **Web Servers**

SOA

SPEC for typical middleware, database and hardware deployments of applications based on the Service Oriented Architecture.

Virtualization

SPEC's first benchmark addressing performance evaluation of datacenter servers used in virtualized server.

4

41

Server Benchmarks

Transaction Processing Council (TPC)

Transaction-processing (TP) benchmarks

Transaction-processing (TP) benchmarks measure the ability of a system to handle transactions that consist of database accesses and updates.

Airline reservation systems and bank ATM systems are typical simple examples of TP; more sophisticated TP systems involve complex databases and decision-making.

43

43

Transaction Processing Council (TPC)

TPC-C simulates a complex query environment.

TPC-H models ad hoc decision support.

TPC-E is a new **On-Line Transaction Processing (OLTP)** workload that simulates customer accounts.

TPC-C simulates a complex query environment

TPC-C simulates a complete computing environment where a population of **users** executes transactions against a **database**.

The benchmark is centered around the principal activities (transactions) of an order-entry environment.

These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses.

The benchmark portrays the activity of a wholesale supplier, represents any industry that must manage, sell, or distribute a product or service.

45

45

TPC-H is a Decision Support Benchmark

The TPC Benchmark™H (TPC-H) consists of a suite of business oriented ad-hoc queries and concurrent data modifications.

The queries and the data populating the database have been chosen to have broad industry-wide relevance.

This benchmark illustrates decision support systems that examine large volumes of data, execute queries with a high degree of complexity, and give answers to critical business questions.

The performance metric reported by TPC-H is called the TPC-H Composite **Query-per-Hour Performance Metric** (QphH@Size).

TPC-E, On-Line Transaction Processing Benchmark

TPC-E involves a mix of twelve concurrent transactions of different types and complexity, either executed on-line or triggered by price or time criteria.

The database is comprised of thirty-three tables with a wide range of columns, cardinality, and scaling properties.

TPC-E is measured in transactions per second (tpsE).

TPC-E is not limited to the activity of any particular business segment, but rather represents any industry that must report upon and execute transactions of a financial nature.

47

47

PRINCIPLES OF COMPUTER DESIGN

Defining Computer Architecture

- The tasks of a computer designer are:
 - To list the most important features;
 - To design a computer maximizing the performance in case of a set of applications and energy efficiency respecting the cost, power, and availability constraints.

Computer Architecture

- Instruction set,
- functional organization and logic design, and
- implementation.
 - The implementation may encompass integrated circuit design, packaging, power, and cooling.

Optimizing the design requires familiarity with a very wide range of technologies, from compilers and operating systems to logic design and packaging.

49

49

Performance evaluation

• The Processor Performance Equation

CPU time = CPU clock cycles for a program
$$\times$$
 Clock cycle time

CPU time =
$$\frac{\text{CPU clock cycles for a program}}{\text{Clock rate}}$$

$$CPI = \frac{CPU \ clock \ cycles \ for \ a \ program}{Instruction \ count}$$

CPU time =
$$\frac{1}{1}$$
 Instruction count × Cycles per instruction × Clock cycle time

$$\frac{\underline{Instructions}}{\underline{Program}} \times \frac{\underline{Clock\ cycles}}{\underline{Instruction}} \times \frac{\underline{Seconds}}{\underline{Clock\ cycle}} = \frac{\underline{Seconds}}{\underline{Program}} = \underline{CPU\ time}$$

Principles of Computer Design

Different instruction types having different CPIs

Given a specific program instruction i

CPU clock cycles =
$$\sum_{i=1}^{n} IC_i \times CPI_i$$
 CI*i* is the number of times for instruction i

clocks for instruction i

CPU time =
$$\left(\sum_{i=1}^{n} IC_{i} \times CPI_{i}\right) \times Clock$$
 cycle time

CPU time ~ N x CPI x Clock cycle time

CPU times for different implementations of the same architecture are proportional to the CPIs.

51

CPI: i7 vs ARM 53

- The i7 uses an aggressive out-of-order speculative microarchitecture with deep pipelines with the goal of achieving high instruction throughput by combining multiple issue and high clock rates.
- The A53 uses a shallow pipeline and a reasonably aggressive branch predictor, leading to modest pipeline losses, while allowing the processor to achieve high clock rates at modest power consumption.
- In comparison with the i7, the A53 consumes approximately 1/200 the power for a quad core processor.

55

Principles of Computer Design (I)

- Take Advantage of Parallelism
 - Use multiple processors, disks, memory banks, pipelining, multiple functional units
 - Design efficient parallel solution
- Principle of Locality
 - Reuse of data and instructions
- Focus on the Common Case
 - Amdahl's Law
- Take advantage of asynchronous service requests
 - Design to increase the percentage of asynchronous service requests
 - Cover the delay induced by synchronous operations with other activities

Principles of Computer Design (I)

Take Advantage of Parallelism

- Use multiple processors, disks, memory banks, pipelining, multiple functional units
- Design efficient parallel solutions
 - Ensure load balancing of each component (processor)
 - · Minimize the overhead due to parallelism
 - time spent on communications (amount of data exchanged, speed of communication technology, private/shared link, traffic, ...)
 - time spent to manage the parallelism (processes, distribution of work, collection of results, ...)

57

57

Principles of Computer Design (II)

Principle of Locality

- Reuse of data and instructions:
 - Temporal locality states that recently accessed items are likely to be accessed in the near future.
 - Spatial locality says that items whose addresses are near one another tend to be referenced close together in time.

Principles of Computer Design (III)

Focus on the Common Case

We have to decide:

- 1. what the frequent case is and
- 2. how much performance can be improved by making that case faster.

59

59

Amdahl's Law (I)

 $Speedup\ overall = \frac{Execution\ time\ for\ entire\ task\ without\ using\ the\ enhancement}{Execution\ time\ for\ entire\ task\ using\ the\ enhancement\ when\ possible}$

- Fraction_e, The fraction of the computation time in the original solution that can be converted to take advantage of the enhancement
- Speedup_e, The improvement gained by the enhanced execution mode for Fraction=e,

(Execution time for entire task using the enhancement when possible) = (Execution time for **fraction of task** without using the enhancemen) + (Execution time for **fraction of task** using the enhancement) =

$$(1-Fraction_e) * T_old + Fraction_e * \frac{T_old}{Speedup_e}$$

Solution	Enhancement	Computation	Waiting for I/O	Overall time
Original		7 s	3 s	10 s
Disks	I/O Speedup = 3	7 s	1 s	8 s
CPU 1	CPU speedup =2	3,5 s	3 s	6,5 s
CPU 2	CPU speedup = 3	2,33 s	3 s	5,33 s

Disks Fraction_e=3/10, Speedup_e=3, Speedup overall=10/8=1,25

CPU 1 Fraction_e=7/10, Speedup_e=2, Speedup overall=20/13=10/6,5=1,54

CPU 2 Fraction_e=7/10, Speedup_e=3, Speedup overall=30/16=10/6,5=1,88

Disks 100 Fraction_e=3/10, **Speedup_e=100**, Speedup overall=10/8=1,42

6

61

Principles of Computer Design (IV)

Take advantage of asynchronous service requests

- Design to increase the percentage of asynchronous service requests
- Cover the delay induced by synchronous operations with other activities.
 - Write
 - Load instruction
 - speculative execution