1 BLa bla bla - wymagane punkty jak z deliverableone (MODULARNOSC!!!)

2 Architektura systemu

System z założenia może skalować w dwóch wymiarach, to znaczy:

- 1. zwiększanie liczby serwerów wirtualnych liczba sesji dla użytkowników
- 2. zwiększenie liczby nadzorców liczba obsługiwanych klientów jednocześnie

- 3 Opis tworzonych modułów
- 3.1 Nadzorca
- 3.2 Serwer wirtualizacji
- 3.3 Aplikacja kliencka
- 3.4 Panel administratora

- 4 Opis zewnętrznie dostarczonych modułów
- 4.1 Broker wiadomości RabbitMQ
- 4.2 Dysk sieciowy
- 4.3 System katalogowy

5 Komunikacja

5.1 Komunikacja użytkownika z systemem - REST API

Komunikacja aplikacji klienckiej oraz panelu administratora z systemem - nadzorcą - rozwiązana jest za pomocą REST API¹. Wiadomości wysyłane są za pomocą proto-kołu HTTPS², który zapewnia ich szyfrowanie. W tym celu wymagane jest, aby na adres, pod którym udostępniony będzie system, wystawiony był odpowiedni certyfi-kat³, gwarantujący jego tożsamość. Podczas tworzenia systemu i testów możliwe jest użycie sztucznego, własnoręcznie podpisanego certyfikatu⁴.

Całość specyfikacji API umieszczona jest w osobnym pliku. Poniżej znajduje się zestawienie oraz krótki opis endpointów.

Rysunek 1: Endpointy API

5.2 Komunikacja wewnątrz systemu - broker wiadomości

¹Opis REST API

²Specyfikacja protokołu HTTP Over TLS

³Opis certyfikatu TLS/SSL

⁴Opis własnorecznie podpisanego certyfikatu TLS/SSL

- 6 Diagramy
- 6.1 Diagramy stanów
- 6.2 Diagramy aktywności
- 6.3 Diagramy klas
- 6.4 Diagramy sekwencji

7 Interfejs użytkownika

7.1 Aplikacja kliencka

Aplikacja kliencka posiada interfejs użytkownika pozwalający na zalogowanie się oraz nawiązanie połączenia ze zdalną sesją. Użytkownikowi wyświetlany jest czynność, która aktualnie się odbywa, oraz w każdym momencie może zakończyć sesję.

Rysunek 2: Ekran logowania

Rysunek 3: Główny widok zawierający dostępność maszyn

Na tym ekranie użytkownik może rozpocząć proces uzyskiwania sesji, przejść do ekranu ustawień lub wylogować się. Jeżeli w systemie nie ma dostępnych maszyn, lub nie uda się uzyskać informacji o ich dostępności, to przycisk połączenia jest niedostępny. Wciśnięcie tego przycisku prowadzi do kolejnego ekranu.

Rysunek 4: Wybór typu sesji

Do wyboru dostępne są jedynie typy sesji, które system określi jako dostępne. Wybranie typu sesji kliknięcie przycisku prowadzi do kolejnego ekranu. Następne ekrany przechodzą automatycznie do kolejnych bez interwencji użytkownika, aż do informacji o nawiązaniu połączenia lub błędu.

Rysunek 5: Tworzenie sesji

Rysunek 6: Nawiązywanie połączenia RDP

Rysunek 7: Połączenie nawiązane

Rysunek 8: Błąd przy nawiązywaniu połączenia

Rysunek 9: Ustawienia

Rysunek 10: Powiadomienie przy wyjściu z ekranu ustawień z niezapisanymi zmianami

7.2 Panel administratora

Panel administratora posiada skromny interfejs umożliwiający zalogowanie się oraz podgląd zużycia zasobów.

Rysunek 11: Ekran logowania

Rysunek 12: Widok zużycia zasobów

Na tym widoku możemy zobaczyć zużycie zasobów globalne oraz dla każdego z serwerów wirtualizacji. Dodatkowo dla serwera wyświetlona jest również ilość działających i możliwych do uruchomienia maszyn każdego z typów.

- 8 Zewnętrzne narzędzia
- 8.1 Ansible
- 8.2 Vagrant
- 8.3 libvirt

Wybrana technologia 9

- Aplikacja kliencka
 - Typescript⁵ /Javascript⁶
 - Node.
js 7 środowisko uruchomieniowe używane do integracji z systemem użytkownika
 - Angular⁸ renderowanie widoków
 - Electron⁹ platforma programistyczna
 - Jest 10 testy jednostkowe
 - Cypress¹¹ testy integracyine
 - GNU/Linux oraz Windows wspierane systemy operacyjne
- Panel administratora
 - Typescript/Javascript
 - Angular platforma aplikacji WWW
 - Jest testy jednostkowe
 - Cypress testy integracyjne
- Nadzorca i serwer wirtualizacji
 - $C \#^{12}$
 - Rabbit
M \mathbf{Q}^{13} broker asynchronicznych wiadomości
 - Ansible¹⁴ zarzadzanie maszynami wirtualnymi
 - Vagrant¹⁵ tworzenie obrazów maszyn wirtualnych
 - libvirt¹⁶ uruchamianie maszyn wirtualnych
 - OpenLDAP¹⁷ dostępu do systemu katalogowego
 - NFS¹⁸ dostęp do katalogów domowych z maszyny wirtualnej

⁵Strona projektu Typescript

⁶Obecny standard języka Javascript

⁷Strona projektu Node.js

⁸Strona projektu Angular

⁹Strona projektu Electron

¹⁰Strona projektu Jest

¹¹Strona projektu Cypress

¹²Dokumentacja języka C#

¹³Strona projektu RabbitMQ

¹⁴Strona projektu Ansible

¹⁵Strona projektu Vagrant

¹⁶Strona projektu libvirt

¹⁷Strona projektu libvirt

¹⁸Opis na stronie firmy Microfost

- Arch Linux¹⁹ system operacyjny uruchamiany przez maszyny wirtualne
- GNU/Linux wspierany system operacyjny

• Różne

- Swagger Codegen²⁰ automatyczna generacja API na podstawie specyfikacji
- $-\ \mathrm{RDP^{21}}$ łączenie ze zdalnymi sesjami

¹⁹Strona systemu operacyjnego Arch Linux ²⁰Opis narzędzia na stronie firmy Swagger

²¹Dokumnetacja protokołu RDP od Microsoft