# BÁO CÁO KHÓA LUÂN TỐT NGHIỆP ::: "Nghiên cứu, xây dựng mô hình: ::: : i phát hiện tấn công thay đổi giao i diện website dựa trên học máy" i i i

# Tính cấp thiết

Tổng quan về tấn công thay đổi giao diện

# Mục tiêu nghiên cứu

• Mục tiêu khóa luận hướng đến

### Bài toán

- Xác định đầu vào, đầu ra của bài toán
- Áp dụng học máy

### Mô hình đề xuất

 Phát biểu về mô hình xây dựng áp dụng kỹ thuật học máy

# Cài đặt thử nghiệm và kết quả

- Các cài đặt
- Kết quả các thử nghiệm

# 01 Tính cấp thiết

- Tấn công thay đổi giao diện: (hay Website defacement) là một loại tấn công làm thay đổi một cách trái phép nội dung của một website.

### - Hậu quả:

- Tấn công thay đổi giao diện có trực tiếp làm cản trở hoạt động của Web và ứng dụng Web
- Bị lợi dụng để lan truyền các quan điểm về Chính trị, tôn giáo, ...



Hình ảnh các Website bị thay đổi giao diện



Lượng tấn công thay đổi giao diện Zone-H thu thập

# 02 Mục tiêu nghiên cứu

- Tìm hiểu và xây dựng mô hình phát hiện tấn công thay đổi giao diện
- 2. Áp dụng thuật toán học máy vào mô hình phát hiện
- 3. Kiểm thử và đánh giá kết quả

# 03 Bài toán

"Phát hiện tấn công thay đổi giao diện là việc kịp thời nhận ra một cuộc tấn công thay đổi giao diện đã diễn ra, kế theo đó là đưa ra những báo động và mức độ nghiêm trọng của nó." [1]

Đầu vào: Trang cần giám sát



Đầu ra: Bình thường hay đã bị tấn công

- 1. Mô hình áp dụng kỹ thuật?
  - Dựa trên chữ ký
  - Dựa trên bất thường
- 2. Một bộ phát hiện sử dụng học máy?
  - Ưu điểm
  - Dữ liệu, xử lý dữ liệu, thuật toán

# 04 Mô hình đề xuất

- Trình thu thập web: Lấy các tài nguyên web
- 2. Tập chữ ký: Chữ ký của các cuộc tấn công
- 3. Tiền xử lý: Xử lý dữ liệu về dạng phù hợp
- 4. Bộ phân loại: Một bộ phát hiện bất thường sử dụng học máy



# 04 Mô hình đề xuất

### 1. Xây dựng tập chữ ký:

Hash được dùng làm chữ ký để đánh giá so sánh

### 2. Xây dựng bộ phân loại:

Dữ liệu mã HTML và văn bản được sử dụng để đánh giá bất thường

- HTML gốc
- HTML xử lý động
- Dữ liệu chỉ văn bản



Quá trình huấn luyện

# 05.a Cài đặt

. . . .

### 1. Trình thu thập Web

- Được viết trên ngôn ngữ Javascript, chạy trên môi trường Node.js và Pupeteer
- Thông qua thư viện Pupeteer, trang web được tự động xử lý trình duyệt web
- Lưu trữ các dữ liệu sử dụng trong mô hình phát hiện
  - HTML gốc (index.html)
  - HTML xử lý động (index\_loaded.html)
  - Dữ liệu chỉ văn bản (text\_only...txt)



### Các dữ liệu được lưu trữ

| text/html   |
|-------------|
| applicatio  |
| text/html   |
| application |
| text/javas  |
| text/javas  |
| text/html   |
| application |
| text/html   |
|             |

Tập các hash

# 05.a Cài đặt

## 2. Bộ phát hiện dựa trên bất thường

### Tiền xử lý:

- N-gram: Phân tách văn bản thành các chuỗi n ký tự liên tục:
  - Khóa luận sử dụng 2-gram và 3-gram
- Tần suất xuất hiện từ (TF Term Frequency): Sử dụng để vector hóa văn bản HTML thu được.
- Các văn bản sẽ được biểu diễn bằng tấn suất đại diện tf của 300 n-gram
  (Kim cùng cộng sự, 2016) xuất hiện nhiều nhất, với công thức:

$$tf(t,d) = \frac{f(t,d)}{\max\{f(w,d): w \in d\}}$$

- Với f(t,d) là số lần xuất hiện của t trong d.
  - tf(t, d) luôn nằm trong khoảng [0,1]

# 05.a Cài đặt

## 2. Bộ phát hiện dựa trên bất thường





- Mô hình thử nghiệm với hai thuật toán học máy là thuật toán Naive Bayes,
  và thuật toán Random Forest
- Quá trình tiền xử lý và huấn luyện được lập trình trên ngôn ngữ Python, các thuật toán học máy được hỗ trợ bởi thư viện scikit-learn.

# 1. Dữ liệu và kịch bản thử nghiệm

### Zone-H:

- Nguồn lưu trữ công khai các trang web bị tấn công thay đổi giao diện
- Các trang sử dụng để đánh giá được lựa chọn ngẫu nhiên không trùng lặp (\*)

### Các trang web công khai:

- Bao gồm cả trang tĩnh và động
- Sử dụng các trang nổi tiếng làm tập bình thuờng





Các cổng thông tin chính phủ và các trang web phổ biến tai Việt Nam



# 2. Kết quả

| algorithm    | name                            | n-gram | percision | recall  | accuracy | fail alarm | TP | FP | TN  | FN |
|--------------|---------------------------------|--------|-----------|---------|----------|------------|----|----|-----|----|
| RandomForest | index.html                      | 2      | 96.84%    | 100.00% | 98.50%   | 2.78%      | 92 | 3  | 105 | 0  |
| NaiveBayes   | index.html                      | 2      | 94.62%    | 95.65%  | 95.50%   | 4.63%      | 88 | 5  | 103 | 4  |
| RandomForest | index.html                      | 3      | 95.74%    | 100.00% | 97.98%   | 3.70%      | 90 | 4  | 104 | 0  |
| NaiveBayes   | index.html                      | 3      | 95.51%    | 94.44%  | 95.45%   | 3.70%      | 85 | 4  | 104 | 5  |
| RandomForest | index_loaded.html               | 2      | 98.94%    | 100.00% | 99.50%   | 0.93%      | 93 | 1  | 106 | 0  |
| NaiveBayes   | index_loaded.html               | 2      | 98.86%    | 93.55%  | 96.50%   | 0.93%      | 87 | 1  | 106 | 6  |
| RandomForest | index_loaded.html               | 3      | 98.94%    | 100.00% | 99.50%   | 0.93%      | 93 | 1  | 106 | 0  |
| NaiveBayes   | index_loaded.html               | 3      | 97.65%    | 89.25%  | 94.00%   | 1.87%      | 83 | 2  | 105 | 10 |
| RandomForest | text_only_index_loaded.html.txt | 2      | 97.87%    | 100.00% | 99.00%   | 1.85%      | 92 | 2  | 106 | 0  |
| NaiveBayes   | text_only_index_loaded.html.txt | 2      | 98.92%    | 100.00% | 99.50%   | 0.93%      | 92 | 1  | 107 | 0  |
| RandomForest | text_only_index_loaded.html.txt | 3      | 97.73%    | 100.00% | 98.96%   | 1.89%      | 86 | 2  | 104 | 0  |
| NaiveBayes   | text_only_index_loaded.html.txt | 3      | 97.73%    | 100.00% | 98.96%   | 1.89%      | 86 | 2  | 104 | 0  |

Kết quả kịch bản thử nghiệm 1

. . . .

. . . .

# 2. Kết quả

| algorithm    | name                            | n-gram | percision | recall  | accuracy | fail alarm | TP  | FP | TN  | FN         |
|--------------|---------------------------------|--------|-----------|---------|----------|------------|-----|----|-----|------------|
| RandomForest | index.html                      | 2      | 96.34%    | 98.40%  | 97.46%   | 3.38%      | 184 | 7  | 200 | 3          |
| NaiveBayes   | index.html                      | 2      | 97.24%    | 94.12%  | 95.94%   | 2.42%      | 176 | 5  | 202 | 11         |
| RandomForest | index.html                      | 3      | 96.83%    | 97.86%  | 97.46%   | 2.90%      | 183 | 6  | 201 | 4          |
| NaiveBayes   | index.html                      | 3      | 96.09%    | 91.98%  | 94.42%   | 3.38%      | 172 | 7  | 200 | <u> 15</u> |
| RandomForest | index_loaded.html               | 2      | 96.97%    | 98.97%  | 98.00%   | 2.91%      | 192 | 6  | 200 | 2          |
| NaiveBayes   | index_loaded.html               | 2      | 95.94%    | 97.42%  | 96.75%   | 3.88%      | 189 | 8  | 198 | 5          |
| RandomForest | index_loaded.html               | 3      | 96.91%    | 96.91%  | 97.00%   | 2.91%      | 188 | 6  | 200 | 6          |
| NaiveBayes   | index_loaded.html               | 3      | 96.84%    | 78.87%  | 88.50%   | 2.43%      | 153 | 5  | 201 | 41         |
| RandomForest | text_only_index_loaded.html.txt | 2      | 97.47%    | 99.48%  | 98.50%   | 2.43%      | 193 | 5  | 201 | 1          |
| NaiveBayes   | text_only_index_loaded.html.txt | 2      | 93.60%    | 97.94%  | 95.75%   | 6.31%      | 190 | 13 | 193 | 4          |
| RandomForest | text_only_index_loaded.html.txt | 3      | 96.04%    | 100.00% | 98.00%   | 3.88%      | 194 | 8  | 198 | 0          |
| NaiveBayes   | text_only_index_loaded.html.txt | 3      | 94.05%    | 89.69%  | 92.25%   | 5.34%      | 174 | 11 | 195 | 20         |

Kết quả kịch bản thử nghiệm 2

. . . .

# 2. Kết quả

| algorithm    | name                            | n-gram | percision | recall | accuracy | fail alarm | TP  | FP | TN  | FN |
|--------------|---------------------------------|--------|-----------|--------|----------|------------|-----|----|-----|----|
| RandomForest | index.html                      | 2      | 97.87%    | 97.87% | 97.98%   | 1.92%      | 367 | 8  | 408 | 8  |
| NaiveBayes   | index.html                      | 2      | 99.40%    | 88.27% | 94.18%   | 0.48%      | 331 | 2  | 414 | 44 |
| RandomForest | index.html                      | 3      | 98.14%    | 98.40% | 98.36%   | 1.68%      | 369 | 7  | 409 | 6  |
| NaiveBayes   | index.html                      | 3      | 98.82%    | 89.60% | 94.56%   | 0.96%      | 336 | 4  | 412 | 39 |
| RandomForest | index_loaded.html               | 2      | 96.90%    | 97.66% | 97.38%   | 2.88%      | 375 | 12 | 404 | 9  |
| NaiveBayes   | index_loaded.html               | 2      | 99.40%    | 86.98% | 93.50%   | 0.48%      | 334 | 2  | 414 | 50 |
| RandomForest | index_loaded.html               | 3      | 97.89%    | 96.88% | 97.50%   | 1.92%      | 372 | 8  | 408 | 12 |
| NaiveBayes   | index_loaded.html               | 3      | 99.41%    | 87.24% | 93.63%   | 0.48%      | 335 | 2  | 414 | 49 |
| RandomForest | text_only_index_loaded.html.txt | 2      | 96.42%    | 98.69% | 97.62%   | 3.37%      | 377 | 14 | 401 | 5  |
| NaiveBayes   | text_only_index_loaded.html.txt | 2      | 99.15%    | 91.88% | 95.73%   | 0.72%      | 351 | 3  | 412 | 31 |
| RandomForest | text_only_index_loaded.html.txt | 3      | 97.42%    | 98.69% | 98.12%   | 2.41%      | 377 | 10 | 405 | 5  |
| NaiveBayes   | text_only_index_loaded.html.txt | 3      | 97.55%    | 93.98% | 95.98%   | 2.17%      | 359 | 9  | 406 | 23 |

Kết quả kịch bản thử nghiệm 3

. . . .

## 2. Kết quả

| algorithm    | name              | n-gram | percision | recall | accuracy | fail alarm | TP  | FP | TN  | FN |
|--------------|-------------------|--------|-----------|--------|----------|------------|-----|----|-----|----|
| RandomForest | index.html        | 2      | 98.25%    | 84.85% | 91.71%   | 1.50%      | 168 | 3  | 197 | 30 |
| NaiveBayes   | index.html        | 2      | 100.00%   | 77.78% | 88.94%   | 0.00%      | 154 | 0  | 200 | 44 |
| RandomForest | index.html        | 3      | 98.21%    | 83.33% | 90.95%   | 1.50%      | 165 | 3  | 197 | 33 |
| NaiveBayes   | index.html        | 3      | 100.00%   | 76.26% | 88.19%   | 0.00%      | 151 | 0  | 200 | 47 |
| RandomForest | index_loaded.html | 2      | 98.25%    | 84.85% | 91.71%   | 1.50%      | 168 | 3  | 197 | 30 |
| NaiveBayes   | index_loaded.html | 2      | 100.00%   | 76.26% | 88.19%   | 0.00%      | 151 | 0  | 200 | 47 |
| RandomForest | index_loaded.html | 3      | 98.21%    | 83.33% | 90.95%   | 1.50%      | 165 | 3  | 197 | 33 |
| NaiveBayes   | index_loaded.html | 3      | 100.00%   | 72.73% | 86.43%   | 0.00%      | 144 | 0  | 200 | 54 |

Kết quả kịch bản thử nghiệm 4

. . . .

### 3. Nhận xét

- Trong tất cả các kịch bản, các thuật toán phát hiện đều có thể cho ra kết quả dự đoán tốt với hầu hết các dự đoán đều có với độ chính xác vượt 90%.
- Thuật toán Random Forest cho kết quả với độ chính xác cao hơn so sánh với Naive Bayes trong các thử nghiệm.
- Việc chọn lựa các n-gram để thể hiện các trang web từ các bộ đặc trưng lệch không làm
  ảnh hưởng nhiều đến kết quả của bộ phát hiện.
- Việc bóc tách và huấn luyện đối theo các từng loại văn bản của trang web chưa cho được kết quả thực sự đáng chú ý.
- Bộ phát hiện xây dựng hoạt động tốt trên bộ dữ liệu chuẩn với tỉ lệ chính xác trên 88% cho thuật toán NaiveBayes, 90% cho thuật toán Random Forest

# Kết luận

- Khóa luận đã đề xuất mô hình kết hợp để phát hiện tấn công thay đổi giao diện website áp dụng cùng lúc cả hai kỹ thuật phát hiện dựa trên chữ ký và phát hiện dựa trên bất thường.
- Đã áp dụng thuật toán học máy để cho bộ phát hiện, kết quả đạt được với các chỉ số cao, chứng tỏ thuật toán sử dụng phù hợp với mô hình.
- Cụ thể một số các kết quả khác như sau:
  - Hệ thống nghiên cứu phát hiện tấn công thay đổi giao diện trước đó
  - Đã thu thập và xử lý một lượng lớn các trang web bị tấn công thay đổi giao diện. Hoàn chỉnh công cụ thu thập dữ liệu.

### Đồng bộ

- Đưa quá trình thu thập và xử lý về cùng nền tảng
- Tăng độ thân thiện cho việc sử dụng



### Hoàn thiện

- Đánh giá khả năng của phát hiện dựa trên chữ ký
- Xây dựng cơ sở dữ liệu



### Kết hợp

Sử dụng kết hợp nhiều loại dữ liệu khác cho phát hiện

# Định hướng nghiên cứu tiếp theo