Capítulo 6 | Algumas distribuições de probabilidade contínuas

6.1 Distribuição uniforme contínua

Distribuição uniforme

A função de densidade da variável aleatória contínua uniforme X no intervalo [A, B] é

$$f(x; A, B) = \begin{cases} \frac{1}{B - A}, & A \le x \le B, \\ 0, & \text{caso contrário.} \end{cases}$$

Figura 6.1 A função de densidade para uma variável aleatória no intervalo [1, 3].

Teorema 6.1

A média e a variância da distribuição uniforme são

$$u = \frac{A+B}{2}$$
 e $\sigma^2 = \frac{(B-A)^2}{12}$.

6.2 Distribuição normal

Distribuição normal

A densidade da variável aleatória normal X, com média μ e variância σ^2 , é

$$n(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}, \quad -\infty < x < \infty,$$

quando $\pi = 3,14159...$ e e = 2,71828...

Figura 6.3 Curvas normais com $\mu_{\rm 1} < \mu_{\rm 2}$ e $\sigma_{\rm 1} = \sigma_{\rm 2}$.

Figura 6.4 Curvas normais com $\mu_{\rm 1}=\mu_{\rm 2}$ e $\sigma_{\rm 1}<\sigma_{\rm 2}$.

Figura 6.5 Curvas normais com $\mu_{\rm 1} < \mu_{\rm 2}$ e $\sigma_{\rm 1} < \sigma_{\rm 2}$.

6.3 Áreas abaixo da curva normal

Portanto, a curva normal da Figura 6.6,

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} n(x; \mu, \sigma) dx$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x - \mu)^2} dx,$$

é representada pela área na região sombreada.

Figura 6.6 $P(x_1 < X < x_2) =$ área da região sombreada.

Figura 6.7 $P(x_1 < X < x_2)$ para curvas normais diferentes.

Podemos transformar todas as observações de qualquer variável aleatória normal X em um novo grupo de observações da variável aleatória normal Z, com média 0 e variância 1. Isso pode ser feito pela transformação

$$Z = \frac{X - \mu}{\sigma}.$$

Definição 6.1

A distribuição de uma variável aleatória normal com média 0 e variância 1 é chamada de *distribuição normal padrão*.

6.4 Aplicações da distribuição normal

6.5 Aproximação normal da binomial

Teorema 6.2

Se X é uma variável aleatória binomial com média $\mu = np$ e variância $\sigma^2 = npq$, então a forma limite da distribuição de

$$Z = \frac{X - np}{\sqrt{npq}},$$

quando $n \to \infty$, é a distribuição normal padrão n(z; 0, 1).

Figura 6.23 Aproximação normal de b(x, 15, 0,4) e $\sum_{x=7}^{9} b(x; 15,0,4)$.

Aproximação normal para a distribuição binomial

Seja X uma variável aleatória binomial com parâmetros n e p. Então X tem distribuição aproximadamente normal com $\mu = np$ e $\sigma^2 = npq = np(1 - p)$, e

$$P(X \le x) = \sum_{k=0}^{x} b(k; n, p)$$

área abaixo da curva normal
 à esquerda de x + 0,5

$$= P\left(Z \le \frac{x+0.5-np}{\sqrt{npq}}\right),\,$$

e a aproximação será boa se np e n(1-p) forem maiores ou iguais a 5.

Tabela 6.1 Aproximação normal e as probabilidades binomiais acumuladas verdadeiras.

	p = 0.05, n = 10		p = 0.10, n = 10		p = 0.50, n = 10	
r	Binomial	Normal	Binomial	Normal	Binomial	Normal
0	0,5987	0,5000	0,3487	0,2981	0,0010	0,0022
1	0,9139	0,9265	0,7361	0,7019	0,0107	0,0136
2	0,9885	0,9981	0,9298	0,9429	0,0547	0,0571
3	0,9990	1,0000	0,9872	0,9959	0,1719	0,1711
4	1,0000	1,0000	0,9984	0,9999	0,3770	0,3745
5			1,0000	1,0000	0,6230	0,6255
6					0,8281	0,8289
7					0,9453	0,9429
8					0,9893	0,9864
9					0,9990	0,9978
10					1,0000	0,9997
						(continua)

(continua)

(continuação) Tabela 6.1 Aproximação normal e probabilidades binomiais acumuladas verdadeiras. p = 0.05n = 20n = 50n = 100**Binomial** Normal **Binomial** Normal **Binomial** Normal r 0,3015 0,0769 0,0059 0 0,3585 0,0968 0,0197 0,7358 0,6985 0,2794 0,2578 0,0371 0,0537 2 0,9245 0,9382 0,5405 0,5000 0,1183 0,1251 3 0,9841 0,9948 0,7604 0,7422 0,2578 0,2451 0,9032 4 0,9974 0,9998 0,8964 0,4360 0,4090 5 0,9997 1,0000 0,9622 0,9744 0,6160 0,5910 1,0000 0,7660 0,7549 1,0000 0,9882 0,9953 6 0,9968 0,9994 0,8749 0,8720 0,9992 0,9999 0,9369 0,9463 8 9 0,9998 1,0000 0,9718 0,9803

1,0000

1,0000

0,9885

10

0,9941

6.6 Distribuições gama e exponencial

Definição 6.2

A função gama é definida por

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$
, para $\alpha > 0$.

Distribuição gama

A variável aleatória contínua X tem uma distribuição gama, com parâmetros α e β , se sua função de densidade for dada por

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, & x > 0, \\ 0, & \text{caso contrário,} \end{cases}$$

onde $\alpha > 0$ e $\beta > 0$.

Distribuição exponencial

A variável aleatória contínua X tem uma distribuição exponencial, com parâmetro β , se sua função de densidade é dada por

$$f(x; \boldsymbol{\beta}) = \begin{cases} \frac{1}{\beta} e^{-x/\beta}, & x > 0, \\ 0, & \text{caso contrário,} \end{cases}$$

onde $\beta > 0$.

Teorema 6.3

A média e a variância da distribuição gama são

$$\mu = \alpha \beta e \sigma^2 = \alpha \beta^2$$
.

Corolário 6.1

A média e a variância da distribuição exponencial são

$$\mu = \beta e \sigma^2 = \beta^2$$
.

6.8 Distribuição qui-quadrado

Distribuição qui-quadrado

A variável aleatória contínua X tem distribuição quiquadrado, com v graus de liberdade, se sua função de densidade for dada por

$$f(x; v) = \begin{cases} \frac{1}{2^{v/2} \Gamma(v/2)} x^{v/2 - 1} e^{-x/2}, & x > 0, \\ 0, & \text{caso contrário,} \end{cases}$$

onde v é um número inteiro positivo.

Teorema 6.4

A média e a variância da distribuição qui-quadrado são

$$\mu = v e \sigma^2 = 2v.$$

6.10 Distribuição Weibull (opcional)

Distribuição Weibull

A variável aleatória contínua X tem uma distribuição Weibull, com parâmetros α e β , se sua função de densidade for dada por

$$f(x; \alpha, \beta) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, & x > 0, \\ 0, & \text{caso contrário,} \end{cases}$$

onde $\alpha > 0$ e $\beta > 0$.

Teorema 6.6

A média e a variância da distribuição Weibull são

$$\mu = \alpha^{-1/\beta} \Gamma \left(1 + \frac{1}{\beta} \right) e$$

$$\sigma^{2} = \alpha^{-2/\beta} \left\{ \Gamma \left(1 + \frac{2}{\beta} \right) - \left[\Gamma \left(1 + \frac{1}{\beta} \right) \right]^{2} \right\}.$$

Função de distribuição acumulada da distribuição Weibull

A função de distribuição acumulada (fda) da distribuição Weibull é dada por

$$F(x) = 1 - e^{-\alpha x^{\beta}}, \quad \text{para } x \ge 0$$

para $\alpha > 0$ e $\beta > 0$.

Taxa de falha para a distribuição Weibull

A taxa de falha em um tempo *t* para a distribuição Weibull é dada por

$$Z(t) = \alpha \beta t^{\beta - 1}, \qquad t > 0.$$