악성코드 분석 보고서 -Drgep.exe-

2022-07-16 배준호

목차

1. 개요	3р
1-1. 개요	3р
1-2. 분석환경	3р
1-3. 파일정보	3р
2. 기초 분석(Virustotal)	4р
3. 정적 분석	5p
3-1. 패킹여부 확인 (Exeinfo PE)	5p
3-2. 패킹여부 확인 (PEiD)	5p
3-3. 언패킹 후 파일 확인 (GuNPacker, PEiD)	6р
3-4. 문자열 확인 (Bintext)	7-8p
3-5. PE 구조 분석 (PEView)	9p
4. 동적 분석	10p
4-1. 파일 실행	10-11p
4-2. 프로세스 변화 확인	12p
4-3. 파일 및 레지스트리 변화 확인	13p
4-4. 네트워크 변화 확인	14p
5. 결론	15p
6. 대응 방안	16p

1.개요

1-1. 개요

여러 분석 툴을 사용하여 악성코드로 추정되는 dgrep.exe 파일을 분석하고 분석한 결과를 바탕으로 어떠한 악성코드인지 추측하고 예방법 및 대응 방안을 작성한다.

1-2. 분석환경

구분		내용	
OS		Windows7	
Tools	정적분석 도구	Exeinfo PE, PEiD	패킹 여부 확인
		GunPacker	패킹 된 파일 언패킹
		BinText,	문자열 확인
		Peview	pe구조 분석
	동적분석 도구	Process Explorer	프로세스 변화 확인
		Process monitor, Autoruns	레지스트리 변화 확인
		Currport, WireShark	네트워크 변화 확인

[표1-1] OS와 악성코드 분석에 사용한 분석 툴

1-3.파일정보

구분	내용
파일명	Dgrep.exe
파일크기	215.05 KB (220214 bytes)
파일종류	Win32 EXE
생성시기	2015-10-09 03:43:26 UTC
MD5	68af0599e74d36bc2f39a2710754082c
SHA-1	c63f22e2d6feecbe9801c76a76f81589bce1b9a3
SHA-256	d3e4a46b95a3a54c762f0e1696e9167528bd1cf30b190e4893b44f0259e7893c
진단명	Adware.Agent.pvj
출처	리펙토링

[표1-2] 악성코드 정보

2.기초분석

2-1. VirusTotal

[그림 2-1] VirusTotal을 이용한 파일 분석

2022년 7월 16일 갱신 결과 70개 백신엔진 중 64개가 악성코드 의심파일임을 알 수 있다. 그 중 탐지 64개 중 25개가 $Trojan^1$ 이란 이름을 갖고 5개가 'Backdoor'' 이름을 갖으므로 악성파일로 의심되는 파일이 트로이목마와 백도어의 성격을 가질 수 있다고 추측이 가능하다.

 $^{^{1}}$ Trojan: 유용한 프로그램으로 가장하여 사용자가 그 프로그램을 실행하도록 속이는 악성 코드로 트로이 목마라고 부른다.

²Backdoor: 정상적인 인증 절차를 거치지 않고, 컴퓨터와 암호 시스템 등에 접근할 수 있도록 하는 장치

3. 정적분석

3-1. Exeinfo PE (패킹여부 확인)

[그림 3-1] Exeinfo PE 검사결과

[그림 3-1]을 보면 Exeinfo PE를 통하여 실행(EXE)파일의 \overline{m}^3 여부를 확인한 결과 dgrep.exe 파일은 패킹된 파일임을 알 수 있다. 따라서 2^{4} 을 해야 한다.

3-2 PEiD (패킹여부 확인)

[그림 3-2] PEiD 검사결과

[그림 3-2]을 보면 *프로텍터* 종류가 SVKP로 패킹 되어 있다는 것을 알 수 있다.

³패킹: 실행파일을 암호화하거나, 압축하여 소스코드를 볼 수 없도록 하는 것

⁴언패킹: 패킹 된 파일의 압축을 푸는 행위

⁵프로텍터: PE 파일을 'Reverse Code Engineering'(분석) 으로부터 보호하기 위한 유틸리티

3-3. GUnPakcer 언패킹 후 파일 확인

GUnpacker 툴을 이용해 grep.exe 실행 파일을 언패킹 하여 덤프파일 생성

[그림 3-3] dgrep.exe 파일 언패킹 진행

[그림 3-4] PEiD를 통해 언패킹 된 파일 확인

[그림 3-4]를 보면 PEiD를 통해 해당 파일이 언패킹 된 것을 확인할 수 있고 해당파일이 C++언어를 사용한 다는 것을 알 수 있음

3-4. 문자열 확인 (BinText)

언패킹한 덤프파일을 BinText 툴을 이용하여 해당 문자열을 확인할 수 있고 문자열 확인을 통해서 어떠한 행동을 하는 지 유추 할 수 있다.

[그림 3-5] Bintext 문자열

다음은 [그림 3-5]를 통해 문자열을 분석한 결과이다.

- (가) cmd.exe /c ping 127.0.01: 명령 프롬프트를 실행시켜 해당 ip와 연결을 시도한 것으로 추정됨
- (나) c:\wiseman.exe: C드라이브에 wiseman.exe 파일을 다운받은 것으로 추정됨
- (다) c:₩windows₩system32₩rundll32.exe: 해당경로에 *rundll*32.*exe*⁶ 파일을 설치하거나 실행한 것으로 추정됨
- (라) RedTom21@HotMail.com: 악성코드 배포자 혹은 제작자로 추정되는 이메일 확인

⁶rundll32.exe : 실행파일(.exe)이 실행되면, 그 실행파일이 필요로 하는 DLL 파일을 찾아서 실행파일과 연결을 시켜주는 역할을 한다.

[그림 3-6] Bintext 문자열 DLL파일 확인

다음은 [그림 3-6]를 통해 알 수 있는 각 DLL파일의 설명이다.

- (가) Kernel32.DLL: Windows XP (32 비트 및 64 비트), Vista 및 Windows 10, 8.1, 8, 7 용으로 설계된 32 비트 동적 링크 라이브러리
- (나) GDI32.DLL: 마우스 움직임, 그림, 화면, GUI의 기본이 된다.
- (다) MFC42.DLL: MFC (Microsoft Foundation Class Library)는 Windows 용 데스크톱 응용 프로그램을 개 발하기 위한 C++ 개체 지향 라이브러리
- (라) MSVCRT.DLL: stdio.h, string.h, stdlib.h, etc등등 호출되지 않는 에러가 발생했을 때 실행
- (마) USER32.DLL: 윈도우 USER 구성 요소를 구현한다. 즉 프로그램들에게 그래픽 사용자 인터페이스 (GUI)를 구현할 수 있게 해준다
- (바) WS2_32.DLL: TCP/IP 네트워킹 기능을 제공하고 다른 네트워크 API와 부분적으로 깨진 호환성을 제공하는 Winsock API를 구현합니다

3-4. PE 구조 분석 (PEView)

[그림 3-7] IMAGE_FILE HEADER 분석 결과

PE 구조를 분석해주는 PEView를 통해서 Time Date Stamp를 통해 생성시기는 2015년 10월 9일라는 것을 알수 있다.

[그림 3-8] IMPORT DLL Names 분석 결과

[그림 3-8]를 통해 Dgrep.exe의 DLL파일을 알 수 있다. (KERNEL32.dll / GDI32.dll / MFC42.dll / MSVCRT.dll / SHLWAPI.dll / USER32.dll / WS32.dll). 이는 BinText에서 나온 결과와 같은 것을 알 수 있다.

4. 동적분석

4-1 파일실행

[그림 4-1] 파일 실행 전 후

Dgrep.exe 파일을 일반 사용자 권한으로 실행 시 파일이 사라지는 것 외에는 변화가 없다.

이름	수정한 날짜	유형 크기	
		이 폴더는 비어 있습니다.	

[그림 4-2] 관리자 권한으로 실행 시

Dgrep.exe 파일을 관리자 권한으로 실행 시 파일이 사라진다. 또한 [그림 4-3]과 같이 로컬디스크 c에 wiseman.exe 실행파일이 생성된 것을 확인할 수 있다.

[그림 4-3] 관리자 권한으로 실행 후 파일 생성

4-2 프로세스 변화 확인 (Procexp)

□ csrss,exe	0,38	8,704 K	13,336 K	396 Client Server Runtime P	Microsoft Corporation
conhost,exe	0,95	1,392 K	4,456 K	3536 혼음 창 호스트	Microsoft Corporation
winlogon,exe		3,044 K	1,588 K	432 Windows 도그폰 응용 쓰	Microsoft Corporation
explorer,exe	0,12	44,576 K	40,164 K	1212 Windows 탐색기	Microsoft Corporation
wm3dservice,exe	2000011	1,092 K	752 K	1808	
m vmtoolsd,exe	0,12	11,664 K	7,452 K	1820 VMware Tools Core Ser,,,	VMware, Inc.
☐ ∑ procexp,exe		2,468 K	6,692 K	1920 Sysinternals Process E	Sysinternals - www,s,,,
procexp64,exe	4,22	13,816 K	30,028 K	448 Sysinternals Process E	Sysinternals - www.s
	0.04	5,636 K	6,764 K	832 Tray Application	ESTsecurity Corp.
<i>AYPop.</i> aye	0,29	8,180 K	23,036 K	2336 Popup Application	ESTsecurity Corp.
cmd,exe	0,96	2,056 K	3,404 K	2888 Windows 명량 처리기	Microsoft Corporation
PING,EXE	0,74	992 K	3,556 K	3832 TCP/IP Ping 명령	Microsoft Corporation
rundli32,exe	4,77	5,292 K	10,844 K	964 Windows 호스트 프로세스,,,	Microsoft Corporation
Elwissense ava	0.64	1 220 V	4 070 V	COTT WILLIAM NEW OWNERS	S

[그림 4-4] Process Explorer 분석 결과

[그림 4-4]과 같이 conhost.exe를 생성하고 cmd 명령어를 통해 PING.EXE를 생성하고 사라졌으며 rundll32.exe와 wiseman.exe를 생성한다는 것을 확인했다.

Image	Performance	Performance	e Graph	Disk and N	letwork	GPU Graph
Threads	TCP/IP	Security	Enviro	nment	Job	Strings
✓ Resolve	e addresses	,				

[그림 4-5] Process Explorer에서 dgrep.exe 실행 후 생성된 rundll32.exe TCP/IP의 속성

State(상태)가 3-way-handsake 중 하나인 SYN_SENT인 것을 보아 원격 주소 107.163.241.198, 포트번호 6520로 TCP 통신을 위해 세션 연결 중인 것으로 추정된다.

[그림 4-6] Process Explorer에서 dgrep.exe 실행 후 생성된 wiseman.exe TCP/IP의 속성

wiseman.exe 파일 또한 해당 주소로 TCP통신을 하기 위해 세션 연결 중인 것으로 추정된다.

4-3. 파일 및 레지스트리 변화 확인 (Procmon, Autoruns)

[그림 4-7] Process Monitor 분석 결과

Process Monitor를 통해 프로세스 트리를 확인한 결과 dgrep.exe 파일을 실행했을 때 과정을 알 수 있다.

- (가) Dgrep.exe 파일 실행 후 cmd.exe 생성
- (나) Cmd.exe에서 ping.exe를 생성하여 ping을 통한 네트워크 연결시도
- (다) Kyewbuoo.exe 생성 후 하위에 rundll32.exe 파일 생성
- (라) Rundll32.exe 파일 하위에 taskkill.exe 파일과 wiseman.exe 파일 생성

[그림 4-8] Autoruns 분석 결과

레지스트리 변화를 확인할 수 있는 도구인 Autoruns를 통해 EvtMgr과 Wiseman이 생성된 것을 알 수 있다. 레지스트리의 경로 중 CurrentVersion\Run에 있는 프로그램은 PC가 재부팅 할 때마다 자동실행 된다. 따라 서 재부팅 시 EvtMgr과 Wiseman가 실행된다는 것을 알 수 있다.

4-4. 네트워크 변화 확인 (Cports, WireShark)

[그림 4-9] Cports 분석결과

Dgrep.exe 파일 실행 시 다음과 같이 rundll32.exe와 wiseman.exe가 신규 생성되는 것을 알 수 있다. 이때 TCP 포트 6520, 12354, 80번으로 네트워크 활동을 하기 위해 시도하는 것으로 추정된다.

5. 결론

- 1. 악성코드는 exe형식이고 언어는 c++ 이다.
- 2. 정상적인 파일인 것처럼 위장하는 것과 실행 시 아이콘이 사라지고 악성 코드가 실행되는 특징을 보아 백도어와 트로이목마의 성격을 가지고 있다.
- 3. 패킹이 되어 있어 언패킹을 하지 않으면 정보를 알 수 없다.
- 4. 해당 파일 실행 시 레지스트리에 파일을 생성하여 시작프로그램에도 영향을 준다.
- 5. Rundll32.dll과 wiseman.exe를 통하여 악성코드 개발자 혹은 유포자가 특정 ip나 도메인으로 네트워크 활동을 하려고 연결을 시도하는 것으로 추정된다.

6. 대응 방안

- 1. 최신 백신을 설치하고 주기적인 점검을 한다.
- 2. 부팅 화면 및 윈도우 시스템의 비밀번호를 설정한다.
- 3. 네트워크 공유 시 비밀번호를 설정하고, 읽기 기능만 공유한다.
- 4. 자료를 다운받을 때는 백신으로 먼저 확인을 한다.
- 5. 불법 파일과 프로그램, 영상 등을 다운받지 않는다.