TD n°5 : mesures et intégrabilité

Exercice 1 Tribu (cours)

Montrer que $\mathcal{T} = \{A \subset \mathbb{R} , A \text{ ou } A^c \text{ est fini ou dénombrable} \}$ est une tribu sur \mathbb{R} .

Correction:

On vérifie les axiomes d'une tribu (Rappel 2.2) :

- L'ensemble vide \emptyset est fini donc dans \mathcal{T} .
- Si $A \in \mathcal{T}$ alors, soit A est fini ou dénombrable et alors $B = A^c \in \mathcal{T}$ car B^c est fini ou dénombrable, soit A^c est fini ou dénombrable et alors $B = A^c \in \mathcal{T}$ car B est fini ou dénombrable.
- Soit $(A_n)_{n\in\mathbb{N}}\in\mathcal{F}^\mathbb{N}$ alors, soit tous les A_n sont finis ou dénombrables et alors $B=\bigcup_{n\in\mathbb{N}}A_n$ est fini ou dénombrable et donc $B\in\mathcal{F}$, soit il existe un A_{n_0} tel que $A_{n_0}^c$ est fini ou dénombrable et alors $B^c=\bigcap_{n\in\mathbb{N}}A_n^c\subset A_{n_0}^c$ et donc B^c est fini ou dénombrable, d'où $B\in\mathcal{F}$.

 \mathcal{T} est donc bien une tribu.

Exercice 2 Tribu

Soient E et F deux ensembles et \mathcal{T} une tribu sur F. On considère $f: E \to F$ une application. Montrer que $\mathcal{T}' = \{f^{-1}(A), A \in \mathcal{T}\}$ est une tribu sur E.

Correction:

Montrons les 3 axiomes d'une tribu:

- $\emptyset \in \mathcal{T}'$. En effet $f^{-1}(\emptyset) = \emptyset$.
- Soit $B \in \mathcal{T}'$. Alors il exite $A \in \mathcal{T}$ tel que $f^{-1}(A) = B$. Alors $B^c = f^{-1}(A)^c = f^{-1}(A^c) \in \mathcal{T}'$.
- Soit $(B_n) \in \mathcal{T}'^{\mathbb{N}}$. Alors $\forall n \in \mathbb{N}$, $\exists A_n \text{ tel que } B_n = f^{-1}(A_n)$. Alors :

$$\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\bigcup_{n\in\mathbb{N}}f^{-1}\left(A_n\right)=f^{-1}\left(\bigcup_{n\in\mathbb{N}}A_n\right).$$

Or \mathcal{T} est une tribu donc $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$. Ainsi $\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{T}'$.

Exercice 3 Tribu

Soit *X* un ensemble muni de ses parties. On définit :

$$\forall A \in \mathcal{P}(X), \quad \mu(A) = \begin{cases} |A|, & \text{si A est fini} \\ +\infty, & \text{si A est infini} \end{cases}$$

Montrer que μ définie une mesure. Elle est appelée mesure de comptage.

Correction:

Vérifions les deux propriétés pour une mesure :

- $\mu(\emptyset) = |\emptyset| = 0$.
 - **1.** Soit (A_n) une suite d'ensemble deux à deux disjoints mesurables.
 - 1. Si l'un des A_i est infini alors $\mu(\cup_{n\in\mathbb{N}}A_n)=\infty=\sum_{n\in\mathbb{N}}|A_n|$.

2. Si ils sont tous finis. Alors : $\mu(\cup_{n\in\mathbb{N}}A_n)=\infty=\sum_{n\in\mathbb{N}}|A_n|$ par récurrence sur n car les ensembles sont tous disjoints.

Exercice 4 mesure et tribu

Soit (X, B, μ) un espace mesuré tel que $\mu(X) = 1$. On considère :

$$\mathcal{T} = \{ A \in B, \quad \mu(A) = 0 \text{ ou } \mu(A) = 1 \}$$

Montrer que \mathcal{T} est une tribu sur X.

Correction:

On montrer que \mathcal{T} vérifie les 3 axiomes des tribus.

- 1. $\emptyset \in \mathcal{T}$ car $\mu(\emptyset) = 0$ (définition d'une mesure).
- 2. Soit $A \in \mathcal{T}$ alors $\mu(A) = 0$ ou $\mu(A) = 1$. De plus, par complémentaire $\mu(A^c) = 1$ ou $\mu(A^c) = 0$. Donc $A^c \in \mathcal{T}$.
- 3. Soit $\{A_i\}$ une suite d'événements 2 à 2 disjoints de \mathcal{T} .
 - Si $\forall i \in \mathbb{N}$, $\mu(A_i) = 0$. Alors $\mu(\cup A_i) = \sum \mu(A_i) = 0$.
 - Si $\exists i \in \mathbb{N}$, $\mu(A_i) = 1$. Alors $\forall j \in \mathbb{N} \setminus \{i\}$, $\mu(A_j) = 0$. La formule est donc encore vraie.

Ainsi \mathcal{T} est une tribu.

Exercice 5

Soit (E, \mathscr{A}) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de E dans \mathbb{R} et f une fonction mesurable de E dans \mathbb{R} . Montrer que l'ensemble

$$A = \{x \in E, \text{ la suite } (f_n(x))_{n \in \mathbb{N}} \text{ converge vers } f(x)\}$$

est un élément de \mathcal{A} .

Indications : on pourra utiliser la caractérisation de la convergence à l'aide des suites de Cauchy

Correction:

Écrivons la caractérisation pour une suite de Cauchy:

$$\begin{split} (f_n(x)) \quad \text{converge} \quad \Leftrightarrow \quad \forall \varepsilon, \, \exists N \in \mathbb{N}, \, \forall n, m \geq N, \, |f_n(x) - f_m(x)| < \varepsilon, \\ \Leftrightarrow x \in \bigcap_{eps>0} \bigcup_{N \in \mathbb{N}} \bigcap_{n,m \geq N} \left\{ x \in E, \, [f_n(x) - f_m(x)| < \varepsilon \right\} \end{aligned}$$

L'ensemble $\{x \in E, |f_n(x) - f_m(x)| < eps\}$ est mesurable car f_n et f_m sont mesurables. Malheureusement, on n'a pas une intersection dénombrable avec $\varepsilon > 0$. On utilise une suite $\varepsilon_k = \frac{1}{k}$ par exemple pour caractériser la limite. Alors :

$$(f_n(x))$$
 converge $\Leftrightarrow x \in \bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \bigcap_{n,m \ge N} \left\{ x \in E, |f_n(x) - f_m(x)| < \frac{1}{k} \right\}$

On obtient une intersection et union dénombrable d'ensembles mesurables. L'ensemble est donc mesurable.

Exercice 6 Rappel intégrale de Riemann, intégrale généralisée

On définit la fonction $f : \mathbb{R}_+^* \to \mathbb{R}$ par :

$$\forall x \in \mathbb{R}_+^*$$
 $f(x) = \frac{\sin(x)}{e^x - 1}$.

Montrer que f est intégrable sur \mathbb{R}_+^* .

Correction:

On décompose l'étude suivant les difficultés :

- Sur [0,1]. À l'aide d'un développement limité en 0, on a : $\lim_{x \to +\infty} f(x) = 1$. Ainsi f est prolongeable par continuité en 0. Il n'y a pas de problème d'intégrabilité.
- Sur $[1, +\infty[$. On utilise la méthode du x^{α} . Par les croissances comparées

$$\lim_{x \to +\infty} x^2 f(x) = 0.$$

Ainsi $f(x) = o(1/x^2)$. Par comparaison asymptotique avec une intégrale de Riemann convergente en $+\infty$, la fonction f est intégrable sur $[1, +\infty[$.

Ainsi f est intégrable sur \mathbb{R}_+^* .

Exercice 7 Rappel intégrale de Riemann, intégrale généralisée

On définit la fonction $f : \mathbb{R}_+^* \to \mathbb{R}$ par :

$$\forall x \in \mathbb{R}_+^* \qquad f(x) = \frac{xe^{-x}}{1+x^2}.$$

Montrer que f est intégrable sur \mathbb{R}_+^* .

Correction:

On décompose l'étude suivant les problèmes possibles.

- Sur]0,1]. f est prolongeable par continuité car admet une limite. f est intégrable sur [0,1].
- Sur $[1, +\infty[$. On utilise par exemple la méthode du x^{α} . Alors :

$$\lim_{x \to +\infty} x^2 f(x) = 0,$$

par croissance comparée. Ainsi $f(x) = o(1/x^2)$. Par comparaison asymptotique avec une intégrale de Riemann convergente en $+\infty$, la fonction f est intégrable sur $[1, +\infty[$.

Exercice 8 Rappel intégrale de Riemann, intégrale généralisée

Montrer que la fonction $x \mapsto \frac{1}{1-\sqrt{x}}$ n'est pas intégrable sur [0,1[.

Correction:

Le seul problème est en 1. Déterminons un équivalent de f en 1. On pose x = 1 + h, alors :

$$f(1+h) = \frac{1}{1 - \sqrt{1+h}}$$
$$= \frac{1}{0 - h/2 + o(h)}$$

Ainsi $f(1+h) \sim -\frac{2}{h}$. Par substitution $f(x) \sim \frac{1}{1-x}$. Or la fonction $x \mapsto \frac{1}{1-x}$ n'est pas intégrable en 1. Par comparaison asymptotique, f n'est pas intégrable sur]0,1].