Nr.701

Reichweite von α -Strahlung

Sara Krieg Marek Karzel sara.krieg@udo.edu marek.karzel@udo.edu

Durchführung: 14.05.2019 Abgabe: 21.05.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3			
2	Durchführung	4			
3	Auswertung				
	3.1 Bestimmung der mittleren Reichweite und Energie zweier Messreihen	5			
	3.1.1 Messreihe 1	5			
	3.1.2 Messreihe 2	7			
	3.2 Statistik des radioaktiven Zerfalls	10			
4	Diskussion	13			

1 Theorie

Ziel dieses Versuchs ist die Bestimmung der Energie von α -Strahlung über die Messung von deren Reichweite in Luft.

Ein α -Teilchen verliert über zwei Aspekte seine Energie. Zunächst über elastische Stöße mit dem Medium, welches es durchläuft. Dieser Prozess, der als Rutherford-Streuung bekannt ist, spielt für den Energieverlust eine nebensächlichen Rolle, da die Größe der Atomkerndichte im Material sehr gering ist und somit ein Zusammenstoß relativ unwahrscheinlich ist.

Den zweiten, weitaus wichtigeren, Aspekt stellen Ionisationsprozesse, sowie Anregung uns Dissoziation von Molekülen im Material dar. Dabei hängt auch hier der Energieverlust pro Wegstück von der Dichte des Materials und der Energie E_{α} der α -Strahlung ab. Bei einer hohen Geschwindigkeit und somit einer großen Energie der Strahlung, ist es jedoch wahrscheinlicher, dass es zu keiner Wechselwirkung kommt, da die Zeit, in der sich der Heliumkern in Wechselwirkungsnähe befindet, geringer ist.

Bei hinreichend großen Energien kann der Energieverlust pro Wegstück über die Bethe-Block Gleichung

$$-\frac{\mathrm{d}E_{\alpha}}{\mathrm{d}x} = \frac{z^2 e^4}{4\pi\epsilon_0 m_\mathrm{e}} \frac{nZ}{v^2} \ln\left(\frac{2m_\mathrm{e}v^2}{I}\right) \tag{1}$$

bestimmt werden, wobei z die Ladung, v die Geschwindigkeit, Z die Ordnungszahl, n die Teilchendichte und I die Ionisationsenergie des Targetgases ist. Quantenmechanische Prozesse wie zum Beispiel der Kernspin werden ignoriert.

Die Reichweite der α -Strahlung ergibt sich dann über das Integral

$$R = \int_0^{E_\alpha} -\frac{\mathrm{d}E_\alpha}{\mathrm{d}x} \mathrm{d}E_\alpha. \tag{2}$$

Da bei geringeren Energien vermehrt Ladungsaustauschprozesse stattfinden, verliert die Bethe-Bloch-Gleichung ihre Gültigkeit und somit wird die mittlere Reichweite über empirisch gewonnene Kurven bestimmt. Für sie gilt für α -Stahlung in Luft die Gleichung

$$R_{\rm m} = 3.1 \cdot E_{\alpha}^{\frac{3}{2}},\tag{3}$$

wobei die Energie in Megaelektronenvolt angegeben in einem Bereich unter 2,5 MeV liegen sollte und $R_{\rm m}$ in Millimeter angegeben wird. Unter konstanter Temperatur und konstantem Volumen ist die Reichweite propotional zum umgebenden Druck p. Folglich kann zur Ermittlung der Reichweite eine Absorptionsmessung gemacht werden, bei der der Druck variiert wird. Dadurch gilt für einen festen Abstand x_0 zwischen Detektor und Strahler die effektive Weglänge

$$x_{\text{eff}} = x_0 \frac{p}{p_0},\tag{4}$$

welche durch den Normaldruck $p_0 = 1013\,\mathrm{mbar}$ [1] beschrieben wird.

2 Durchführung

Im vorliegenden Experiment wird ein α -Strahler verwendet, welcher sich, wie in Abbildung 1 dargestellt, auf einer Schiene in einem Glaszylinder befindet. Mithilfe einer Vakuumpumpe kann diese evakuiert werden. Der Druckunterschied zum Atmosphärendruck wird an einem Manometer abgelesen. Über die Schiene kann der Abstand der Strahlungsquelle zum Detektor fest gewählt werden. Dieser Halbleiterdetektor ist in der Lage, sowohl die Anzahl der Impulse als auch die relative Energie der α -Teilchen zu messen. Die grundlegende Funktionsweise ist, dass durch die Strahlung Elektron-Loch-Paare entstehen, sodass freie Ladungen entstehen. Diese werden an Elektroden registiert und der vom Vorverstärker verstärkte Puls kann verarbeitet werden. Im vorliegenden Versuchsaufbau wird diese Auswertung über das Computerprogramm Multichannel Analyzer realisiert. Dieses bietet unter anderem die Möglichkeit, die Gesamtzählrate über einen festgelegten Zeitraum sowie eine Pulshöhenanalyse durchzuführen.

Abbildung 1: Versuchsaufbau zur Bestimmung der Reichweite von α -Strahlung. [1]

Vor Beginn der eigentlichen Messung wird die Strahlungsquelle zunächst möglichst weit vom Sperrschichtzähler entfernt und die Diskriminatorschwelle des Zählers auf den Grenzwert eingestellt, ab welchem bei Normaldruck keine Impulse mehr detektiert werden. Danach wird der Glaszylinder evakuiert und die radioaktive Probe so weit an den Detektor herangeschoben, bis dieser anfängt vereinzelte α -Teilchen zu zählen.

Nun wird der Druck von $0\,\mathrm{mbar}$ bis ca. $1000\,\mathrm{mbar}$ Normaldruck in $50\,\mathrm{mbar}$ Schritten erhöht und für jweils $120\,\mathrm{s}$ eine Messung durchgeführt. Es werden vom Computerbildschirm für jeden Messabschnitt die Gesamtzählrate und der Messkanal mit der maximalen Zählrate abgelesen und notiert.

Anschließend wird die Strahlungsquelle um 0,5 cm weg vom Sperrschichtzähler entfernt und die gleiche Messung erneut durchgeführt.

Im letzten Schritt wird bei unveränderten Abstand und einem evakuierten Glaszylinder 100 mal die Gesamtzählrate in einem Zeitraum von 10s gemessen.

3 Auswertung

3.1 Bestimmung der mittleren Reichweite und Energie zweier Messreihen

Die Abstände x_0 zwischen α -Strahler und Detektor betragen für die Messreihen 2,4 cm und 2,9 cm. Für diese Abstände werden jeweils 100 Messungen der Zählrate N und des Energiemesschannels für den Druck zwischen 0 mbar und 1000 mbar und einer Zeitspanne von $t=120\,\mathrm{s}$ durchgeführt.

Daraus kann der effektive Abstand $x_{\rm eff}$ nach der Formel (4) berechnet werden. Die Energie wird dadurch bestimmt, dass der jeweils höchste Channel dem Energiewert 4 MeV entspricht und die restlichen Channel und Energien proportional dazu sind. Der erste Messwert der Zählrate wird N_0 benannt.

3.1.1 Messreihe 1

Für die erste Messreihe beträgt $x_0=2,4\,\mathrm{cm}$. Die zugehörigen Messwerte und berechneten effektiven Abstände x_eff und Energien E sind in Tabelle 1 aufgelistet.

Tabelle 1: Werte der gemessenen Zählrate, Energien und des effektiven Abstandes für $x_0=2.4\,\mathrm{cm}$ (Messreihe 1)

p / mbar	N	Channel	$x_{ m eff}/{ m cm}$	E/MeV
0	74494	783	0,00	4,00
50	74222	775	$0,\!12$	$3,\!96$
100	73453	711	$0,\!24$	$3,\!63$
150	73055	706	$0,\!36$	$3,\!61$
200	72618	655	$0,\!47$	$3,\!35$
250	72194	675	$0,\!59$	$3,\!45$
300	72125	688	0,71	$3,\!51$
350	71052	655	0,83	$3,\!35$
400	70683	632	0,95	$3,\!23$
450	69756	655	1,07	$3,\!35$
500	68126	591	1,18	$3,\!02$
550	67015	583	1,30	$3,\!00$
600	65616	527	$1,\!42$	2,69
650	61699	511	$1,\!54$	2,61
700	57008	399	$1,\!66$	2,04
750	46274	399	1,78	2,04
800	35333	399	1,90	2,04
850	21152	399	2,10	2,04
900	8363	399	2,13	2,04
950	3849	397	$2,\!25$	2,03
1000	1738	395	2,37	2,02

Zur Bestimmung der mittleren Reichweite sind in Abbildung 2 die Messwerte der Zählrate N gegen den effektiven Abstand $x_{\rm eff}$ abbgebildet.

Abbildung 2: Bestimmung der mittleren Reichweite aus der Messung der Zählrate (Messreihe 1)

Für das Intervall von $x_{\rm eff}=1,\!66\,{\rm cm}$ bis $x_{\rm eff}=2,\!13\,{\rm cm}$ wird mittels python eine Lineare Regression der Form $N(x_{\rm eff})=ax_{\rm eff}+b$ durchgeführt, die die Parameter

$$a = (-103\,336, 13 \pm 5941, 49) \, \frac{1}{\mathrm{cm}}$$

$$b = 229485, 20 \pm 11305, 16$$

enthält. Durch die Schnittstelle der Regressionstangente und der Konstante $\frac{N_0}{2}=37247,$ kann die mittlere Reichweite als

$$R_{m,1} = \frac{\frac{N_0}{2} - b}{a} = (1.86 \pm 0.15) \,\mathrm{cm}$$

bestimmt werden.

Nach Umstellung der Formel (3) ergibt sich die Energie

$$E_{\alpha,1} = (3.30 \pm 0.18) \,\text{MeV}$$
.

Weiterhin werden die Energiemesswerte in Abbildung 3 gegen $x_{\rm eff}$ aufgetragen.

Abbildung 3: Bestimmung der Energieänderung aus den Energiemesswerten (Messreihe 1)

Die Lineare Regression mittels python der Form $E(x_{\rm eff})=cx_{\rm eff}+d$ im Intervall von $x_{\rm eff}=0{,}00\,{\rm cm}$ bis $x_{\rm eff}=1{,}54\,{\rm cm}$ ergibt die Parameter

$$\begin{split} c &= (-0.795 \pm 0.079) \, \frac{\mathrm{MeV}}{\mathrm{cm}} \\ d &= (3.949 \pm 0.072) \, \mathrm{MeV} \; . \end{split}$$

Danach ergeben sich die Energieänderung und mittlere Energie zu

$$\begin{split} \frac{dE_{\alpha,1}}{dx} &= c = (-0.795 \pm 0.079) \, \frac{\text{MeV}}{\text{cm}} \\ E_{\alpha,R_{\alpha,1}} &= E(R_{\alpha,1}) = (2.47 \pm 0.20) \, \text{MeV} \; . \end{split}$$

3.1.2 Messreihe 2

Für die zweite Messreihe beträgt $x_0=2.9\,\mathrm{cm}$. Die zugehörigen Messwerte und berechneten effektiven Abstände x_eff und Energien E sind in Tabelle 2 aufgelistet.

Tabelle 2: Werte der gemessenen Zählrate, Energien und des effektiven Abstandes für $x_0=2.9\,\mathrm{cm}$ (Messreihe 2)

p / mbar	N	Channel	$x_{\rm eff}/{\rm cm}$	E/MeV
0	58503	786	0,00	4,00
50	57901	743	0,14	3,78
100	57694	751	$0,\!29$	3,82
150	57484	727	$0,\!43$	3,70
200	56789	726	$0,\!57$	3,69
250	56298	655	0,72	3,33
300	55741	655	$0,\!86$	3,33
350	55224	635	1,00	3,23
400	54193	611	$1,\!15$	$3,\!11$
450	53258	547	1,29	2,78
500	51560	583	1,43	2,97
550	49368	519	$1,\!57$	$2,\!64$
600	44862	480	1,72	$2,\!44$
650	37475	399	1,86	2,03
700	25972	399	2,00	2,03
750	14061	399	$2,\!15$	2,03
800	4752	393	$2,\!29$	2,00
850	1576	392	$2,\!43$	2,00
900	921	393	$2,\!58$	2,00
950	686	391	2,72	1,99
1000	712	391	2,86	1,99

Zur Bestimmung der mittleren Reichweite sind in Abbildung 4 die Messwerte der Zählrate N gegen den effektiven Abstand $x_{\rm eff}$ abbgebildet.

Abbildung 4: Bestimmung der mittleren Reichweite aus der Messung der Zählrate (Messreihe 2)

Für das Intervall von $x_{\rm eff}=1{,}72\,{\rm cm}$ bis $x_{\rm eff}=2{,}29\,{\rm cm}$ wird mittels python eine Lineare Regression der Form $N(x_{\rm eff})=ax_{\rm eff}+b$ durchgeführt, die die Parameter

$$a = (-72\,400,\!86 \pm 5325,\!81)\,\frac{1}{\mathrm{cm}}$$

$$b = 170512,00 \pm 10726,97$$

enthält. Durch die Schnittstelle der Regressionstangente und der Konstante $\frac{N_0}{2}=29251,5,$ kann die mittlere Reichweite als

$$R_{m,2} = \frac{\frac{N_0}{2} - b}{a} = (1.95 \pm 0.21) \,\mathrm{cm}$$

bestimmt werden.

Nach Umstellung der Formel (3) ergibt sich die Energie

$$E_{\alpha,2} = (3.41 \pm 0.24) \,\text{MeV}$$
.

Weiterhin werden die Energiemesswerte in Abbildung 5 gegen $x_{\rm eff}$ aufgetragen.

Abbildung 5: Bestimmung der Energieänderung aus den Energiemesswerten (Messreihe 2)

Die Lineare Regression mittels python der Form $E(x_{\rm eff})=cx_{\rm eff}+d$ im Intervall von $x_{\rm eff}=0.00\,{\rm cm}$ bis $x_{\rm eff}=1.72\,{\rm cm}$ ergibt die Parameter

$$\begin{split} c &= (-0.863 \pm 0.060) \, \frac{\mathrm{MeV}}{\mathrm{cm}} \\ d &= (3.949 \pm 0.061) \, \mathrm{MeV} \; . \end{split}$$

Danach ergeben sich die Energieänderung und mittlere Energie zu

$$\begin{split} \frac{dE_{\alpha,2}}{dx} &= c = (-0.863 \pm 0.060) \, \frac{\text{MeV}}{\text{cm}} \\ E_{\alpha,R_{\alpha,2}} &= E(R_{\alpha,2}) = (2.27 \pm 0.22) \, \text{MeV} \; . \end{split}$$

3.2 Statistik des radioaktiven Zerfalls

Zur statistischen Untersuchung sind für den Druck $p=0\,\mathrm{mbar}\ n=100\,\mathrm{Messwerte}$ der Zählrate N in Tabelle 3 aufgelistet.

Tabelle 3: 100 statistische Messwerte der Zählrate bei $p=0\,\mathrm{mbar}$ und Abstand $x=2.9\,\mathrm{cm}$

4643	4535	4447	4700	4674
4748	4488	4487	4721	4504
4635	4431	4669	4246	4706
4559	4698	4512	4603	4414
4386	4781	4946	4813	4547
4537	4867	4808	4895	4450
4627	4460	4854	4575	4568
4737	4717	4847	4459	4692
4645	4662	4411	4964	4801
4405	4624	4522	4462	4654
4642	4579	4544	4624	4699
4374	4516	4826	4646	4729
4542	4879	4455	4584	4410
4834	4419	4780	4522	4559
4600	4827	4687	4373	4629
4874	4420	4576	4566	4507
4554	4669	4503	4680	4758
4554	4348	4231	4751	4345
4607	4615	4655	4573	4762
4590	4385	4630	4385	4606

Zunächst werden der Mittelwert μ und die Standartabweichung σ berechnet:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} N_i = 4605, 59 \tag{5}$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (N_i - \mu)^2} \ . \tag{6}$$

Die Messwerte sind in Abbildung 6 gaußverteilt in einem Histogramm dargestellt. Zusätzlich abbgebildet ist die zugehörige Gaußverteilung der Form

$$G(N, \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \cdot \exp\left(-\frac{(N-\mu)^2}{2\sigma^2}\right) . \tag{7}$$

Abbildung 6: Gaußverteilte Messwerte der Zählrate

Zusätzlich werden die Messwerte für eine Poissonverteilung normiert:

$$N_{\rm i,\;norm} = \frac{N_i - N_{\rm min}}{n} \; . \tag{8} \label{eq:Ninorm}$$

Dabei beschreibt $N_{min}=4231$ den kleinsten der gemessenen Zählratenwerte N_i . Durch die Normierung liegen die Werte M nun zwischen 0 und 7. Ihr Mittelwert beträgt $\mu_P=3,72$. Die poissonverteilten Werte sind nun zusammen mit der theoretischen Poissonverteilung

$$p_{\mu_P}(M) = \frac{\mu_P^M}{M!} \cdot e^{-\mu_P}$$
 (9)

in Abbildung 7 abbgebildet.

Abbildung 7: Poissonverteilte Messwerte der Zählrate

4 Diskussion

Mögliche Fehlerquellen des Versuches sind die Ableseungenauigkeiten des einzustellenden Abstandes x_0 und Druckes p.

Die durch die mittleren Reichweiten

$$\begin{split} R_{m,1} &= (1{,}86 \pm 0{,}15)\,\mathrm{cm} \\ R_{m,2} &= (1{,}95 \pm 0{,}21)\,\mathrm{cm} \end{split}$$

bestimmten Energiewerte

$$\begin{split} E_{\alpha,1} &= (3.30 \pm 0.18) \, \mathrm{MeV} \\ E_{\alpha,2} &= (3.41 \pm 0.24) \, \mathrm{MeV} \end{split}$$

weichen von den durch den Energieverlust bestimmten Energiewerten

$$\begin{split} E_{\alpha,R_{\alpha,1}} &= (2.47 \pm 0.20) \, \mathrm{MeV} \\ E_{\alpha,R_{\alpha,2}} &= (2.27 \pm 0.22) \, \mathrm{MeV} \end{split}$$

jeweils um $33{,}6\,\%$ und $50{,}2\,\%$ ab.

Beide in gleicher Weise bestimmten Energiewertepaare verschiedener Messreihen liegen näher beieinander, als zu dem jeweils anders bestimmten Werten innerhalb der eigenen Messreihe. Zu erwarten wäre hingegen das genaue Gegenteil. Dies kann daran liegen, dass die Beziehung (3), die nur für Energien $\leq 2,5\,\mathrm{MeV}$ gilt, für die gemessenen Reichweiten gar nicht angenommen werden darf.

Zur Statistik des radioaktiven Zerfalls lässt sich sagen, dass beide Verteilungen recht nah an den Theoriewerten liegen. Die Abweichungen scheinen bei der Poissonverteilung jedoch kleiner zu sein.