A Course in Model Theory

Katin Tent & Martin Ziegler

October 26, 2020

Contents

1	The Basics	2
	1.1 Structures	2
2	Elementary Extensions and Compactness	2
3	Quantifier Elimination 3.1 Preservation theorems	2

1 The Basics

1.1 Structures

Definition 1.1. Let $\mathfrak{A},\mathfrak{B}$ be L-structures. A map $h:A\to B$ is called a **homomorphism** if for all $a_1,\dots,a_n\in A$ $h(c^{\mathfrak{A}})=c^{\mathfrak{B}}$

2 Elementary Extensions and Compactness

3 Quantifier Elimination

3.1 Preservation theorems

Lemma 3.1 (Separation Lemma). Let T_1, T_2 be two theories. Assume \mathcal{H} is a set of sentences which is closed under \land, \lor and contains \bot and \top . Then the following are equivalent

1. There is a sentence $\varphi \in \mathcal{H}$ which separates T_1 from T_2 . This means

$$T_1 \vdash \varphi$$
 and $T_2 \vdash \neg \varphi$

2. All models \mathfrak{A}_1 of T_1 can be separated from all models \mathfrak{A}_2 of T_2 by a sentence $\varphi \in \mathcal{H}$. This means

$$\mathfrak{A}_1 \models \varphi$$
 and $\mathfrak{A}_2 \models \neg \varphi$

Proof. $2 \to 1$. For any model \mathfrak{A}_1 of T_1 let $\mathcal{H}_{\mathfrak{A}_1}$ be the set of all sentences from \mathcal{H} which are true in \mathfrak{A}_1 . (2) implies that $\mathcal{H}_{\mathfrak{A}_1}$ and T_2 cannot have a common model. By the Compactness Theorem there is a finite conjunction $\varphi_{\mathfrak{A}_1}$ of sentences from $\mathcal{H}_{\mathfrak{A}_1}$ inconsistent with T_2 . Clearly

$$T_1 \cup \{ \neg \varphi_{\mathfrak{A}_1} \mid \mathfrak{A}_1 \models T_1 \}$$

is inconsistent \Box