第五章 时间序列趋势外推预测

时间序列:按出现时间的先后顺序排列, 且间隔时间相同的一列数据

样本序列: y_1, y_2, \dots, y_t

预测值: \hat{y}_{t+l} 或 $\hat{y}_t(l)$

第一节 水平趋势外推预测法

■ 预测法

• 朴素预测法
$$\hat{y}_t(l) = y_t$$
 或 $\hat{y}_{t+l} = y_t$

• 平均数预测法
$$\hat{y}_t(l) = \frac{y_1 + y_2 + \dots + y_t}{t} = \overline{y}$$

■ 预测精度

设
$$y_n = \beta + \varepsilon_n$$
 $\varepsilon_n \sim N(0, \sigma^2)$

1.若 β 已知: $\hat{y}_n(l) = \beta$ 误差: $e = y_{n+l} - \hat{y}_n(l) = \varepsilon_{n+l}$ $Ee = 0$ $De = \sigma^2$ $\therefore e = y_{n+l} - \hat{y}_n(l) \sim N(0, \sigma^2)$ 标准化有 $\frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \sim N(0, 1)$

根据标准正态分布函数性质,可查得 $U_{\alpha/2}$,使得

$$P(\left|\frac{y_{n+l}-\hat{y}_n(l)}{\sigma}\right| \leq U_{\alpha/2}) = 1-\alpha$$

:. y_{n+l}的置信预测区间为

$$P(\beta - U_{\alpha/2} \cdot \sigma \le y_{n+l} \le \beta + U_{\alpha/2} \cdot \sigma) = 1 - \alpha$$

例: 若 $\alpha = 0.05$

$$P(\left|\frac{y_{n+l} - \hat{y}_{n}(l)}{\sigma}\right| \le U_{\alpha/2}) = 1 - \alpha = 0.95 \implies P(-U_{\alpha/2} \le \frac{y_{n+l} - \hat{y}_{n}(l)}{\sigma} \le U_{\alpha/2}) = 0.95$$

因为
$$P(\frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \ge U_{\alpha/2}) = P(\frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le -U_{\alpha/2}) = 0.025$$

所以
$$\Phi(\mathbf{U}_{\alpha/2}) = P(\frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le U_{\alpha/2})$$

$$= P(-U_{\alpha/2} \le \frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le U_{\alpha/2}) + P(\frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le -U_{\alpha/2}) = 0.975$$

$$\stackrel{\text{def}}{=} \Phi = 0.975 \text{ Pd}, \quad U_{\alpha/2} = 1.96$$

$$\therefore P(-U_{\alpha/2} \le \frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le U_{\alpha/2}) = P(-1.96 \le \frac{y_{n+l} - \hat{y}_n(l)}{\sigma} \le 1.96) = 0.95$$

 $\therefore y_{n+l}$ 有95%的把握在区间 $[\beta-1.96\sigma, \beta+1.96\sigma]$

<i>x</i>	$\Phi(x)$	<i>x</i>	$x = \Phi(x)$		$\Phi(x)$
-	~ /25 /			<i>x</i>	
1.20	0.8849	1.50	0. 9332	1.80	0.9641
1.21	0.8869	1.51	0. 9345	1.81	0.9649
1.22	0.8888	1. 52	0. 9357	1.82	0.9656
1.23	0.8907	1.53	0.9370	1.83	0.9664
1.24	0.8925	1. 54	0. 9382	1.84	0.9671
1.25	0. 8944	1.55	0. 9394	1.85	0. 9678
1.26	0.8962	1.56	0.9106	1.86	0.9686
1 - 27	0.8980	1. 57	0.9418	1.87	0.9693
1.28	0.8997	1.58	0.9429	1.88	0-9699
1. 29	0.9015	1.59	0.9441	1.89	0.9796
1.30	0.9032	1. 60	0.9452	1.90	0-9713
1.31	0.9049	1. 61	0.9463	1.91	0.9719
1.32	0. 9066	1.62	0.9474	1.92	0.9726
1.33	0.9082	1-63	0.9484	1.93	0.9732
1. 34	0.9099	1.64	0.9495	1.94	0.9738
1.35	0. 9115	1.65	0.9505	1.95	0.9744
1. 36	0. 9131	1.66	0. 9515	1.96	0. 9750
1 27	0 0147	1 67	0. 9525	1.97	0.9756

2.若 β 未知:

令
$$\hat{y}_n(l) = \hat{\beta}$$
 , 残差平方和为 $Q = \sum_{t=1}^n (y_t - \hat{\beta})^2$

由最小二乘法
$$\frac{\partial Q}{\partial \hat{\beta}} = -2\sum_{t=1}^{n} (y_t - \hat{\beta}) = 0$$
 $\therefore \hat{\beta} = \frac{\sum_{t=1}^{n} y_t}{n} = \overline{y}$

误差:
$$e = y_{n+l} - \hat{y}_n(l) = \beta + \varepsilon_{n+l} - \frac{n\beta + \sum_{t=1}^n \varepsilon_t}{n} = \varepsilon_{n+l} - \frac{1}{n} \cdot \sum_{t=1}^n \varepsilon_t$$

$$Ee = 0 \qquad De = \sigma^2 + \frac{1}{n^2} \cdot n\sigma^2 = (1 + \frac{1}{n})\sigma^2$$

若用
$$\sigma^2$$
的无偏估计量 $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{t=1}^n (y_t - \overline{y})^2$

$$\therefore \frac{y_{n+l} - \hat{y}_n(l)}{\hat{\sigma} \cdot \sqrt{1 + \frac{1}{n}}} \sim t(n-1) \quad P\left(\left|\frac{y_{n+l} - \hat{y}_n(l)}{\hat{\sigma} \cdot \sqrt{1 + \frac{1}{n}}}\right| \le t_{\alpha/2}\right) = 1 - \alpha$$

:: y_{n+l}的置信预测区间为

$$P\left(\overline{y} - t_{\alpha/2} \cdot \hat{\sigma} \cdot \sqrt{1 + \frac{1}{n}} \le y_{n+l} \le \overline{y} + t_{\alpha/2} \cdot \hat{\sigma} \cdot \sqrt{1 + \frac{1}{n}}\right) = 1 - \alpha$$

■ 预测校正: 128页

第二节 非水平趋势外推预测法

■加权滑动平均预测法

1.滑动平均
$$\hat{y}_{n+l} = \frac{y_n + y_{n-1} + \dots + y_{n-N+1}}{N}$$

N为滑动平均时段长

2.加权滑动平均
$$\hat{y}_{n+l} = \frac{a_0 y_n + a_1 y_{n-1} + \dots + a_{N-1} y_{n-N+1}}{N}$$

其中:
$$\sum_{i=0}^{N-1} a_i / N = 1$$

• 例: 129页

月	实际销量 (部)	三个月的滑动平均预测值	四个月的滑动平均预测值		
1	20	预测公式	预测公式		
2	21	$\hat{y}_n(1) = \frac{y_n + y_{n-1} + y_{n-2}}{3}$	$\hat{y}_n(1) = \frac{y_n + y_{n-1} + y_{n-2} + y_{n-3}}{4}$		
3	23				
4	24	(20+21+23) /3=21.3			
5	25	(21+23+24) /3=22.6	(20+21+23+24) /4=22.0		
6	27	(23+24+25) /3=24.0	(21+23+24+25) /4=23.3		
7	26	(24+25+27) /3=25.3	(23+24+25+27) /4=24.8		
8	25	(25+27+26) /3=26.0	(24+25+27+26) /4=25.5		
9	26	(27+26+25) /3=26.0	(25+27+26+25) /4=25.8		
10	28	(26+25+26) /3=25.6	(27+26+25+26) /4=26.0		
11	27	(25+26+28) /3=26.3	(26+25+26+28) /4=26.3		
12	29	(26+28+27) /3=27.0	(25+26+28+27) /4=26.5		

月	实际销理(部)	三个月的加权滑动平均预测值
1	20	预测公式
2	21	$\hat{y}(1) = (1.5y_n + y_{n-1} + 0.5y_{n-2}) \div 3$
3	23	
4	24	(1.5*23+21+0.5*20) /3=21.8
5	25	(1.5*24+23+0.5*21) /3=23.2
6	27	(1.5*25+24+0.5*23) /3=24.3
7	26	(1.5*27+25+0.5*24) /3=25.8
8	25	(1.5*26+27+0.5*25) /3=26.2
9	26	(1.5*25+26+0.5*27) /3=25.7
10	28	(1.5*26+25+0.5*26) /3=25.7
11	27	(1.5*28+26+0.5*25) /3=26.8
10	29	(1.5*27+28+0.5*26) /3=27.2

■指数平滑预测法

$$\hat{x}_{t} = \hat{x}_{t-1} + \alpha (x_{t-1} - \hat{x}_{t-1}) = \alpha x_{t-1} + (1 - \alpha) \hat{x}_{t-1}$$
$$0 < \alpha < 1$$

1.初值 \hat{x}_{1} 的选定: 133页

第一,若样本序列 y_1 , y_2 , …, y_n . 较长,可取 $\hat{y}_0(1) = 1/n \times (y_1 + y_2 + \dots + y_n)$

第二,若样本序列不长也不短,法国著名的预测教授 Markridakis 和美国斯坦福大学教授 Wheel Wright 指出,可取 \hat{y}_{0} (1) $=y_{1}$ 。

第三,取 yı 的反向预测值,运用反向平滑预测公式

$$\hat{y}_{i-1}(1) = \alpha y_{i+1} + (1 - \alpha)\hat{y}_i(1)$$

t=n-1,n-2,…,1。 \hat{y}_{n-1} (1) $=y_n$,当t变至1时,即记初始预测值 \hat{y}_n (1)。第四,当序列的长度 n 充分大时,初始预测值可以任意确定。

 α 大 对数据的反应灵敏度高 风险大 α 小 对数据的反应灵敏度低 风险小

由一次指数平滑法的通式可见:

一次指数平滑法是一种加权预测,权数为 α。它既不需要存储全部历史数据,也不需要 存储一组数据,从而可以大大减少数据存储问 题, 甚至有时只需一个最新观察值、最新预测 值和α值,就可以进行预测。它提供的预测值 是前一期预测值加上前期预测值中产生的误差 的修正值。

• 例: 134页

初始预测值ŷ₀(1)取为

1月和2月实际销量的平均值,

$$\exists \beta \quad \hat{y}_0(1) = (y_1 + y_2)/2 = (10+12)/2 = 11$$

预测计算列表如下表所示:

某公司的月销售量平滑预测表 a = 0.4, 单位: 万元

月份	实际 销量	a×上 月实销	上月 预测	(1-α)× 上月预测	本月平 滑预测
1	10				11
2	12	4	11	6.6	10.6
3	13	4.8	10.6	6. 36	11. 16
4	16	5. 2	11. 16	6. 7	11. 9
5	19	6. 4	11.9	7. 14	13. 54
6	23	7. 6	13. 54	8. 12	15. 72
7	26	9. 2	15. 72	9. 43	18. 63
8	30	10. 4	18. 63	11. 18	21. 58
9	28	12	21. 58	12. 95	24. 95
10	18	11. 2	24. 95	14. 97	26. 17
11	16	7. 2	26. 17	15. 7	22. 9
12	14	6. 4	22. 9	13. 74	20. 14

下一年1月的预测值为

$$\hat{y}_{12}(1) = 0.4 \times 14 + 0.6 \times 20.14 = 17.684(万元)$$

a =0.7, 单位: 万元

月份	实际 销量	a×上 月实销	上月预测	(1-α)× 上月预测	本月平 滑预测
1	10				<u>11</u>
2	12	7	11	3. 3	10.3
3	13	8. 4	10. 3	3. 09	— 11. 49
4	16	9. 1	11. 49	3. 45	12. 55
5	19	11. 2	12. 55	3. 77	14. 97
6	23	13.3	14. 97	4. 49	17. 79
7	26	16. 1	17. 79	5. 34	21. 44
8	30	18. 2	21. 44	6. 43	24. 63
9	28	21	24. 63	7. 39	28. 39
10	18	19. 6	28. 39	8. 52	28. 11
11	16	12.6	28. 12	8. 44	21. 04
12	14	11.2	21.04	6. 31	17. 51

下一年1月的预测值为

$$\hat{y}_{12}(1) = 0.7 \times 14 + 0.3 \times 17.51 = 20.306(万元)$$

 α 大 对数据的反应灵敏度高 风险大 α 小 对数据的反应灵敏度低 风险小

第三节 线性趋势外推预测法

对于有线性增长趋势的序列,用滑动平均和指数平滑去预测,会产生滞后。

■ 二次滑动平均预测法

已知
$$y_1, y_2, \dots, y_t$$

$$\hat{x}_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-N+1}}{N}$$

$$\hat{x}_{t+1} = \frac{\hat{x}_t + \hat{x}_{t-1} + \dots + \hat{x}_{t-N+1}}{N}$$

$$b_t = \frac{2}{N+1} (\hat{x}_{t+1} - \hat{x}_{t+1})$$

$$a_t = 2\hat{x}_{t+1} - \hat{x}_{t+1} - b_t$$

$$\hat{y}_{t+T} = a_t + b_t \cdot T$$

• 例: 137页

湖北省某市工农业总值表

单位: 亿元

年份	1991	1992	1993	1994	1995	1996	1997
工农业 总产值	366. 78	409. 58	452.84	536. 29	620. 01	675. 67	
一次滑动				409. 73	466. 24	536. 38	610. 66
二次滑动							470. 78
a_t				$=2\hat{x}_{t+1}-\hat{\hat{x}}$		680. 6	
b_{t}			$b_{t} =$	$\frac{2}{N+1}(\hat{x}_{t+1})$	$(1-\hat{\hat{x}}_{t+1})$	69. 94	

$$\hat{y}_{t+T} = a_t + b_t \cdot T$$

(1)对1998年工农业总产值求预测值,

$$\hat{y}_{1996}(2) = 680.6 + 69.94 \times 2 = 820.48(\sqrt[4]{2}\pi)$$

(2) 1999年的预测值, 其预测期T=3

$$\hat{y}_{1996}(3) = 680.6 + 69.94 \times 3 = 890.42(\sqrt[4]{2}\pi)$$

(3)2000年的预测值, 其预测期T = 4

$$\hat{y}_{1996}(4) = 680.6 + 69.94 \times 4 = 960.36(\sqrt[4]{2}\pi)$$

■ 二次指数平滑预测法

$$\begin{split} \hat{y}_t &= \alpha y_{t-1} + (1 - \alpha) \hat{y}_{t-1} \\ \hat{\hat{y}}_t &= \alpha \hat{y}_t + (1 - \alpha) \hat{\hat{y}}_{t-1} \\ \hat{y}_{t+N} &= \left[2 + \frac{\alpha N}{1 - \alpha} \right] \hat{y}_t - \left[1 + \frac{\alpha N}{1 - \alpha} \right] \hat{\hat{y}}_t \end{split}$$

其中: $\hat{\hat{y}}_0 = \hat{y}_0$

• 例: 138页

预测举例:

设某公司的月销售额如下表所示。该序列数据的变化趋势是由线性上升到线性下降。

现分别求出一次、二次指数的平滑值,并运用线性趋势方程进行预测,计算结果见下表。

月份	实际销量	\hat{y}_t (3)	$\hat{\hat{y}}_t$ (4)	$\hat{\alpha}(z) = (2 + \alpha \tau) \hat{\alpha} + \alpha \tau \hat{\alpha}$
(1)	(2)	(3)	(4)	$\hat{y}_t(\tau) = \left(2 + \frac{\alpha \tau}{1 - \alpha}\right) \hat{y}_t - \left(1 + \frac{\alpha \tau}{1 - \alpha}\right) \hat{\hat{y}}_t$
1	10	10	10	10
2	12	10. 3 →	10. 21	10. 39
3	13	11. 49	11. 11	11. 87
4	16	12. 55 —	12.33	12. 78
5	19	14. 97	14. 18	15. 78
6	23	17. 79	16. 71	18.87
7	26	21. 44	20. 621	22. 26
8	30	24. 63	23. 43	25. 83
9	28	28. 39	26. 902	29.88
10	18	28. 12	27. 75	28. 49
11	16	21. 04	23. 05	19. 03
12	14	17. 51	19. 17	15. 85

第四节 线性趋势和季节波动外推预测法

年 份	季 度	销售量 y, (万件)	年 份	季 度	销售量 y _e (万件)
1991	1	80	1994	13	104
	2	70		14	100
	3	90		15	120
	4	100		16	140
1992	5	90	1995	17	114
	6	80		18	104
	7	105		19	130
	8	120		20	148
1993	9	98	1996	27	122
	10	90		22	112
	11	110		23	138
	12	130		24	158

■ 时间序列的结构形式

时间序列 y_t : 趋势变化因素 T_t , 季节变化因素 S_t , 随机因素 S_t .

趋势变化因素:

反映了经济现象在一个较长时间内的发展方向, 它可以在一个相当长的时间内表现为一种近似 直线的持续向上或持续向下或平稳的趋势。

季节变动因素

是经济现象受季节变动影响所形成的一种长度和幅度固定的周期波动。

随机因素:是受各种偶然因素影响 所形成的不规则变动。

• 时间序列的结构形式

时间序列 y_t : 趋势变化因素 T_t , 季节变化因素 S_t , 随机因素 ε_t .

结构模式:

(1)加法模式
$$y_t = T_t + S_t + \varepsilon_t$$
 其中: y_t 、 T_t 、 S_t 、 ε_t 同量纲;
$$\sum_{t=1}^k S_t = 0 \quad ; \quad \varepsilon_t \sim N(0, \sigma^2)$$

(2)乘法模式 $y_t = T_t \cdot S_t \cdot e^{\varepsilon_t}$ 其中: $y_t = T_t | T_t | T_t |$ 量纲;

$$\sum_{t=1}^{k} S_t = k \quad S_t > 0 \quad ; \quad \varepsilon_t \sim N(0, \sigma^2)$$

(3)混合模式 $y_t = T_t \cdot S_t + \varepsilon_t$ 其中: $y_t = T_t \cdot S_t + \varepsilon_t$ $\Sigma_t = S_t = k$; $\varepsilon_t \sim N(0, \sigma^2)$

■ 因素分解与预测

- 1.加法模型分解与预测: $y_t = T_t + S_t + \varepsilon_t$ 步骤:
- (1)分解出 $T_t + S_t$:将 y_t 进行滑动平均,消除随机干扰,得到 \overline{y}_t .
 - (2)分解出 T_t :对 \bar{y}_t 求趋势线 $\hat{T}_t = f(t)$ (可进行回归、曲线拟合等)

(3)分解出 S_t : $M_t = y_t - \hat{T}_t$ 将 M_t 按季节平均,得季节指数 \overline{S}_1 $\overline{S}_2 \cdots \overline{S}_k$ 将 \overline{S}_1 $\overline{S}_2 \cdots \overline{S}_k$ 标准化,得 S_1 $S_2 \cdots S_k$,使得 $\sum_{i=1}^k S_k = 0$

例:数据在142页

M_{t}	=	y_t	$-\hat{T}_t$

		N = 3	$\hat{T}_t = 25 + 2t$	$=S_{t}+\varepsilon_{t}$
	y_t	$\overline{\mathcal{Y}}_t$	$\hat{T_t}$	$oldsymbol{M}_t$
1	22		27	-5
2	32	29. 67	29	3
3	35	31. 67	31	4
4	28	31	33	-5
5	30	33. 33	35	-5
6	42	39	37	5
7	45	40	39	6
8	33	•	• • •	• • •
÷	:	:	• •	: :
20	•	•	•	:

	春	夏	秋	冬	\sum	
	-5	3	4	-5		
	-5	5	6	:		
	:	•	•	:		
\overline{S}	-5.6	4.4	6.2	-6	-1	
S_{i}	-5.35	4.65	6.45	-5.75		+0.25

$$\hat{y}_{20+t} = \hat{T}_{20+t} + S_{20+t}$$

$$\text{DI:} \qquad \hat{y}_{22} = 25 + 2 \times 22 + S_{20+2}$$

$$= 25 + 44 + S_2 = 73.65$$

- 2.乘法模式的分解与预测: $y_t = T_t \cdot S_t \cdot e^{\varepsilon_t}$ 步骤:
 - (1)分解出 T_t :消除季节因素、随机因素,将 y_t 进行滑动平均,得 MA_{v_t}

$$(2)分解出 $S_t \cdot e^{\varepsilon_t} : M_t = \frac{y_t}{MA_{y_t}}$$$

(3)分解出 S_t :

将 M_t 按季节平均,得季节指数 $\overline{S}_1, \cdots, \overline{S}_k$ 将 $\overline{S}_1, \overline{S}_2, \cdots, \overline{S}_k$ 标准化,得 S_1, S_2, \cdots, S_k ,使得 $\sum_{i=1}^k S_i = k$

- (4)求 \hat{T}_t : 对 MA_{y_t} 进行拟合,得趋势线 $\hat{T}_t = f(t)$
- (5)预测: $\hat{y}_{t+n} = \hat{T}_{t+n} \cdot S_{t+n}$

例:数据在146页

	y_t	MAy_t	$S_{_t}e^{\varepsilon_{_t}}$	
1	80			
2	70	7		
3	90	85	1.059	
4	100	8 <u>7. 5</u>	1. 143	
5	90	90	0. 973	
6	80	93. 75	0.853	
7	105	98. 75	1.063	
8	120	:	: :	
:	•	•	:	
24	•	•	•	

	春	夏	秋	冬	\sum
			1.059	1.143	
	0.973	0.853	1.063	1.191	
	•	•	•	•	
\overline{S}	0.949	0.862	1.046	1.178	4.035
S_{i}	0.942	0.854	1.037	1.167	*4/4.035

$$\widehat{T}_t = 79 + 2.5t$$

$$\hat{y}_{2000} = (79 + 2.5 \times 37) \times S_1$$
$$= (79 + 2.5 \times 37) \times 0.942 = 161.55$$

3.有循环因素的影响: 书148页

第五节

不同的滑动平均方法及其应用

若滑动时段长为N,则减小N-1个有效数据 所以重新确定第一个滑动平均值摆在哪里

■ 中心化平均

若
$$N = 2n + 1$$
,则
$$\overline{y}_{t} = \frac{y_{t-n} + \dots + y_{t-1} + y_{t} + y_{t+1} + \dots + y_{t+n}}{N}$$

若
$$N=2n$$
,则

(1)
$$2 \times 4 \quad \text{Pb} \quad \overline{y}_{t+0.5} = \frac{y_{t-1} + y_t + y_{t+1} + y_{t+2}}{4}$$

$$\overline{y}_{t+1.5} = \frac{y_t + y_{t+1} + y_{t+2} + y_{t+3}}{4}$$

$$\overline{\overline{y}}_{t+1} = \frac{\overline{y}_{t+0.5} + \overline{y}_{t+1.5}}{2} = \frac{y_{t-1} + 2y_t + 2y_{t+1} + 2y_{t+2} + y_{t+3}}{8}$$
(2) $3 \times 3 \quad \text{Pb}, \quad 3 \times 5 \quad \text{Pb}$

$$\overline{y}_{t-1} = \frac{y_{t-2} + y_{t-1} + y_t}{3} \quad \overline{y}_t = \frac{y_{t-1} + y_t + y_{t+1}}{3}$$

$$\overline{y}_{t+1} = \frac{y_t + y_{t+1} + y_{t+2}}{3}$$

$$\frac{\overline{y}_{t}}{\overline{y}_{t}} = \frac{\overline{y}_{t-1} + \overline{y}_{t} + \overline{y}_{t+1}}{3} = \frac{y_{t-2} + 2y_{t-1} + 3y_{t} + 2y_{t+1} + y_{t+2}}{9}$$

• 中位平均法

除去序列的一个最大值和一个最小值,对剩余的数值进行平均

第六节

温特线性和季节性指数平滑预测法

■ 以乘法模式为例

初始公式:

$$S_{L+1} = x_{L+1}$$

$$\overline{x} = \frac{1}{L}(x_1 + x_2 + \dots + x_L)$$

$$I_t = \frac{x_t}{\overline{x}} \quad t = 1, 2, \dots, L$$

$$b_{L+1} = \frac{(x_{L+1} - x_1) + (x_{L+2} - x_2) + \dots + (x_{L+L} - x_L)}{L \times L}$$

递推公式:

$$\begin{split} S_{t} &= \alpha \bullet \frac{x_{t}}{I_{t-L}} + (1 - \alpha)(S_{t-1} + b_{t-1}) \\ b_{t} &= \gamma(S_{t} - S_{t-1}) + (1 - \gamma)b_{t-1} \\ I_{t} &= \beta \frac{x_{t}}{S_{t}} + (1 - \beta)I_{t-L} \end{split}$$

预测公式: $F_{t+\Delta t} = (S_t + b_t \cdot \Delta t) \cdot I_{t+\Delta t-L}$

其中: α , β , γ :平滑常数 L:季节长度

 x_{i} :序列的实际值 S_{i} :平滑值

 b_{t} : 趋势分量 I_{t} : 季节调整因子

 $F_{t+\Delta t}$:超前 Δt 的预测值

例:某种商品**1991-1993**年各季度的销售额资料如表,试预测**94**年各季度的销售额 $\alpha = 0.2$ $\beta = 0.2$ $\gamma = 0.1$

					,	
年	季	t	\boldsymbol{x}_t	S_t	b_t	I_t
91	1	1	36. 2			0.95
	2	2	38. 5			1.01
	3	3	43. 2			1.14
	4	4	34. 1			0.9
92	1	5	38. 2	38. 2	0.975	0.96
	2	6	40.9	<mark>39. 439</mark>	1.001	•
	3	7	49.8	:	•	·
	4	8	38. 7	:	•	•
93	1	9	47. 3	•	•	0.95
	2	10	51.3		•	0.99
	3	11	58. 3			1. 11
	4	12	47.4	58.71	3. 35	0.87

解:
$$S_5 = x_5 = 38.2$$

$$b_5 = \frac{38.2 + 40.9 + 49.8 + 38.7 - 36.2 - 38.5 - 43.2 - 34.1}{1.6}$$

$$=0.975$$

$$\overline{x} = \frac{36.2 + 38.5 + 43.2 + 34.1}{4} = 38$$

$$I_1 = \frac{36.2}{38} = 0.95$$

$$I_2 = \frac{38.5}{38} = 1.01$$

$$I_3 = \cdots$$

$$I_4 = \cdots$$

$$S_6 = 0.2 \times \frac{40.9}{1.01} + 0.8 \times (38.2 + 0.975) = 39.439$$
 $b_6 = 0.1 \times (39.439 - 38.2) + 0.9 \times 0.975 = 1.001$
 $I_5 = 0.2 \times 1 + 0.8 \times 0.95 = 0.96$
 $I_6 = \cdots$
预测: $\hat{x}_{13} = (S_{12} + b_{12}) \cdot I_9 = (58.71 + 3.35) \times 0.95 = 58.96$
 $\hat{x}_{14} = (S_{12} + 2 \times b_{12}) \cdot I_{10} = (58.71 + 2 \times 3.35) \times 0.99 = 64.76$
 $\hat{x}_{15} = (S_{12} + 3 \times b_{12}) \cdot I_{11} = 76.32$
 $\hat{x}_{16} = 62.74$

注: 利用温特法只能预测下一周内的未来均势

作业: 157页3,4,6,7