3.3.3 Use the simplex method to do the following problem. The problem is stated in cannonical form with basic variables x_2 and x_3 . Notice that in the first step in the simplex method, either x_1 or x_4 can enter the basis.

Minimize
$$-x_1 - 2x_4 + x_5$$

s.t. $x_1 + x_3 + 6x_4 + 3x_5 = 2$
 $-3x_1 + x_2 + 3x_4 + x_5 = 3$
 $x > 0$.

Solution. Rewriting this to the format used in-class,

$$x_1 + x_3 + 6x_4 + 3x_5 = 2$$
$$-3x_1 + x_2 + 3x_4 + x_5 = 3$$
$$-x_1 - 2x_4 + x_5 = z$$

We can try letting x_1 enter the basis. This leads to either $x_1 = 2$ (swap x_3) or $x_1 =$ anything (swap x_2). Swapping for x_3 is the more limiting constraint, so we can pivot on the first line. The system becomes

$$x_1 + x_3 + 6x_4 + 3x_5 = 2$$
$$x_2 + 3x_3 + 21x_4 + 10x_5 = 9$$
$$x_3 + 4x_4 + 4x_5 = 2 + z$$

All the coefficients in the objective constraint are positive, so we have arrived at the optimal solution,

$$x^* = (2, 9, 0, 0, 0)$$

 $z^* = -2.$

- **3.4.2** Solve using the simplex method.
 - (d) Minimize $x_3 x_4$ subject to

$$x_1 - x_4 = 5$$
$$x_2 + 2x_3 = 10$$
$$x \ge 0$$

Solution. Using the format from class,

$$x_1 - x_4 = 5$$

$$x_2 + 2x_3 = 10$$

$$x_3 - x_4 = z.$$

By Theorem 3.4.2, the objective function is unbounded below, as there is an index s=4, where $c_s \leq 0$ and $a_{is} \leq 0 \ \forall i$.

(e) Minimize $-x_3 + x_4$ subject to the constraints of (d).

Solution. Using the format from class,

$$x_1 - x_4 = 5$$
$$x_2 + 2x_3 = 10$$

$$-x_3 + x_4 = z$$

We can swap x_3 for x_2 , only needing to change the objective function,

$$x_1 - x_4 = 5$$

$$x_2 + 2x_3 = 10$$

$$x_2 + 2x_4 = 20 + 2z.$$

The coefficients are positive, so we're at an optimal solution,

$$x^* = (5, 0, 5, 0)$$

$$z^* = -10.$$