FELIX YANWEI WANG

(802) 349-7611 | felixwang@u.northwestern.edu | http://yanweiw.github.io

EDUCATION

Northwestern University

Evanston, IL

M.S. Robotics

Expected December 2018

- GPA: 4.0
- Reinforcement Learning, Active Learning, Probabilistic Robotics, Robotic Manipulation, Swarm Robotics

Middlebury College

Middlebury, VT

B.A. Physics & Minor in Computer Science

2012 - 2017

- GPA: 3.75
- Fluid Dynamics, Quantum Mechanics, Machine Learning, Computer Vision

EXPERIENCE

Deep Reinforcement Learning Project (Prof. Mitra Hartmann)

Evanston, IL

Deep Q-Network to model active whisking of rats for shape detection

2018 - Current

- Modeled rats' whisking behavior to sense objects as optimizing a distance measurement sequence with a sensor model of outward radially positioned laser array; abstracted task to identify 2D triangles and hexagons
- Built a dataset of randomized shapes and a visualization tool for observing measurements
- Pre-trained a Long Short Term Memory (LSTM) network to predict shape based on a measurement sequence
- Trained a Deep Q-Network (DQN) to optimize a measurement sequence based on past observations using LSTM loss as reward; shaping the reward with an entropy term that characterizes the diversity of whiskers in contact leads to biologically realistic behaviors

Auris Surgical Robotics

Redwood City, CA

Summer 2018

Computer Vision Engineer

- Collected, processed and annotated endoscopic images of porcine anatomy for an anomaly instance dataset
- Implemented a Fully Convolutional Network (FCN) to test semantic segmentation of the dataset; experimented with different max pooling strides to preserve size of the feature map
- Researched on Mask-RCNN based and Regional-FCN based methods to design an instance segmentation network; adopted Feature Pyramid Network (FPN) to handle low image resolution
- Extended instance segmentation capability to instance tracking by comparing segmented instance mask
- Built an instance tracking pipeline and trained on the dataset I produced via transfer learning to track anomaly
- Undergoing patent application

Active Learning Project (Prof. Todd Murphey)

Evanston, IL

Infotaxis and Ergodic Exploration for target localization

Spring 2018

- Framed a search problem with no gradient information and only an imperfect sensor model on a grid world
- Implemented Infotaxis maximizing information gain based on current posterior to search for a single target
- Extended to multiple targets search where Infotaxis fails; adopted Ergodic metric to ration exploration time proportional to the current posterior to ensure coverage and avoid getting stuck at a single target location

Swarm Robotics Project (Prof. Michael Rubinstein)

Evanston, IL

Spring 2018

Multi-agent simulation and hovercraft localization

- Implemented coordination, segregation and locomotion of a robot swarm with Kilobot simulation engine
- Simulated a rotating hovercraft using one light sensor to localize at the center of a triangle of light sources
- Designed, 3D printed and built a lightweight hovercraft with one Arduino Trinket controller, one light sensor, one rotor for hovering rotation and another rotor for thrust force to realize the simulation on hardware

Computational Fluid Dynamics Project (Prof. Richard Wolfson)

Middlebury, VT

Physics thesis: simulating airflow around a novel wind generator

2016 - 2017

- Modeled the lift and drag forces on Dual Wing Generator, a bio-inspired generator that reverse engineers bird flight to extract wind energy made by Festo
- Simulated the air flow around generator blades using COMSOL's Computational Fluid Dynamics package
- Verified the higher efficiency of Dual Wing Generator in low wind environments compared to wind turbines

SKILLS

Computer Skills: Python, C++, ROS, TensorFlow, Keras

Language Skills: Native Chinese, Fluent English