$12n_{0189} \ (K12n_{0189})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.49444 \times 10^{61} u^{47} + 5.42508 \times 10^{61} u^{46} + \dots + 2.55281 \times 10^{62} b - 1.56879 \times 10^{62}, \\ &- 4.23145 \times 10^{61} u^{47} - 5.04595 \times 10^{62} u^{46} + \dots + 3.57394 \times 10^{63} a - 9.28768 \times 10^{63}, \\ &u^{48} + 4 u^{47} + \dots + 59 u - 7 \rangle \\ I_2^u &= \langle -2a^2b + b^2 - 2ba - 2a^2 - 4b - a - 3, \ a^3 + a^2 + 2a + 1, \ u - 1 \rangle \\ I_3^u &= \langle -a^2 + b - a - 2, \ a^3 + a^2 + 2a + 1, \ u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2.49 \times 10^{61} u^{47} + 5.43 \times 10^{61} u^{46} + \dots + 2.55 \times 10^{62} b - 1.57 \times 10^{62}, -4.23 \times 10^{61} u^{47} - 5.05 \times 10^{62} u^{46} + \dots + 3.57 \times 10^{63} a - 9.29 \times 10^{63}, \ u^{48} + 4 u^{47} + \dots + 59 u - 7 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0118397u^{47} + 0.141187u^{46} + \dots + 28.4662u + 2.59872 \\ -0.0977134u^{47} - 0.212514u^{46} + \dots - 12.5106u + 0.614532 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0118397u^{47} + 0.141187u^{46} + \dots + 28.4662u + 2.59872 \\ -0.0177507u^{47} + 0.141187u^{46} + \dots + 28.4662u + 2.59872 \\ -0.0177507u^{47} + 0.0119124u^{46} + \dots - 7.05758u - 0.0422666 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0759396u^{47} - 0.266607u^{46} + \dots - 5.41635u - 1.07005 \\ -0.0304639u^{47} - 0.113488u^{46} + \dots + 3.98647u + 0.0378137 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.135632u^{47} - 0.469213u^{46} + \dots + 8.97335u + 2.53780 \\ -0.0896845u^{47} - 0.258891u^{46} + \dots + 1.36877u - 0.441443 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0459476u^{47} - 0.210322u^{46} + \dots + 7.60458u + 2.97924 \\ -0.0896845u^{47} - 0.258891u^{46} + \dots + 1.36877u - 0.441443 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.157505u^{47} + 0.559805u^{46} + \dots + 0.744089u - 1.23298 \\ 0.0268891u^{47} - 0.0213891u^{46} + \dots + 0.825649u - 0.103367 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0759396u^{47} + 0.266607u^{46} + \dots + 5.41635u + 1.07005 \\ 0.0604385u^{47} + 0.190773u^{46} + \dots + 5.41635u + 1.07005 \\ 0.0604385u^{47} + 0.190773u^{46} + \dots + 5.41635u + 1.07005 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.523196u^{47} 1.69630u^{46} + \cdots 33.3905u 3.88072$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 28u^{47} + \dots + 2u + 1$
c_2, c_4	$u^{48} - 4u^{47} + \dots + 2u + 1$
c_3, c_7	$u^{48} + 2u^{47} + \dots + 8u - 1$
c_5, c_6, c_{10}	$u^{48} - 3u^{47} + \dots - 8u - 8$
c_8,c_{11}	$u^{48} + 4u^{47} + \dots + 59u - 7$
<i>c</i> ₉	$u^{48} + 9u^{47} + \dots - 6632u - 1192$
c_{12}	$u^{48} + 54u^{47} + \dots + 4853u + 49$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} - 12y^{47} + \dots - 250y + 1$
c_2, c_4	$y^{48} - 28y^{47} + \dots - 2y + 1$
c_3, c_7	$y^{48} + 12y^{47} + \dots - 42y + 1$
c_5, c_6, c_{10}	$y^{48} - 41y^{47} + \dots - 1984y + 64$
c_8,c_{11}	$y^{48} - 54y^{47} + \dots - 4853y + 49$
<i>c</i> ₉	$y^{48} + 43y^{47} + \dots - 58172992y + 1420864$
c_{12}	$y^{48} - 110y^{47} + \dots - 30351829y + 2401$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.03474		
a = -0.149518	1.67136	-181.820
b = 15.9108		
u = -1.10270		
a = 0.558674	-2.51979	7.01870
b = -1.21115		
u = 0.402947 + 0.795966I		
a = -1.253190 + 0.172447I	4.33668 - 4.44228I	2.15682 + 4.76767I
b = 1.24412 - 0.98353I		
u = 0.402947 - 0.795966I		
a = -1.253190 - 0.172447I	4.33668 + 4.44228I	2.15682 - 4.76767I
b = 1.24412 + 0.98353I		
u = 0.549733 + 0.682678I		
a = 0.009774 - 1.180920I	0.44919 - 3.43575I	-2.94781 + 4.14151I
b = 1.026340 - 0.304021I		
u = 0.549733 - 0.682678I		
a = 0.009774 + 1.180920I	0.44919 + 3.43575I	-2.94781 - 4.14151I
b = 1.026340 + 0.304021I		
u = 0.607419 + 0.971287I		
a = -0.314066 - 0.576245I	0.79074 + 2.62631I	0 8.02541I
b = 0.709420 + 0.166838I		
u = 0.607419 - 0.971287I		
a = -0.314066 + 0.576245I	0.79074 - 2.62631I	0. + 8.02541I
b = 0.709420 - 0.166838I		
u = 0.529099 + 1.030160I		
a = 1.023660 - 0.202973I	1.27119 - 9.09207I	0. + 7.97032I
b = -1.33032 + 0.89512I		
u = 0.529099 - 1.030160I		
a = 1.023660 + 0.202973I	1.27119 + 9.09207I	0 7.97032I
b = -1.33032 - 0.89512I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.606029 + 0.575291I		
a = 1.095020 + 0.107629I	0.227251 - 0.982213I	-2.97456 + 4.05134I
b = -1.62264 + 1.09670I		
u = 0.606029 - 0.575291I		
a = 1.095020 - 0.107629I	0.227251 + 0.982213I	-2.97456 - 4.05134I
b = -1.62264 - 1.09670I		
u = 0.717418 + 0.339614I		
a = -0.411980 + 0.676361I	3.05609 + 0.03450I	1.61725 - 0.04014I
b = -1.010750 - 0.101614I		
u = 0.717418 - 0.339614I		
a = -0.411980 - 0.676361I	3.05609 - 0.03450I	1.61725 + 0.04014I
b = -1.010750 + 0.101614I		
u = 0.774869 + 0.143809I		
a = 0.06554 - 1.56635I	1.81458 + 2.58829I	4.64199 + 0.62738I
b = 0.115818 - 0.297169I		
u = 0.774869 - 0.143809I		
a = 0.06554 + 1.56635I	1.81458 - 2.58829I	4.64199 - 0.62738I
b = 0.115818 + 0.297169I		
u = -0.705342 + 0.225017I		
a = 0.374486 + 0.783406I	-2.89686 + 0.77640I	-12.15233 + 3.40612I
b = -0.02299 + 1.57993I		
u = -0.705342 - 0.225017I		
a = 0.374486 - 0.783406I	-2.89686 - 0.77640I	-12.15233 - 3.40612I
b = -0.02299 - 1.57993I		
u = 0.701884		
a = -0.734892	3.11349	3.07850
b = -1.24205		
u = -0.856659 + 0.985459I		_
a = 0.636632 + 0.001328I	-2.80642 + 4.10771I	0
b = -0.672001 - 0.732654I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856659 - 0.985459I		
a = 0.636632 - 0.001328I	-2.80642 - 4.10771I	0
b = -0.672001 + 0.732654I		
u = -1.312340 + 0.022176I		
a = 0.159774 - 1.198270I	3.83816 + 3.33221I	0
b = -0.14705 - 1.53594I		
u = -1.312340 - 0.022176I		
a = 0.159774 + 1.198270I	3.83816 - 3.33221I	0
b = -0.14705 + 1.53594I		
u = -0.382101 + 0.518429I		
a = -1.066440 - 0.036820I	-0.164421 + 1.292600I	-1.96598 - 5.14574I
b = 0.434772 + 0.642582I		
u = -0.382101 - 0.518429I		
a = -1.066440 + 0.036820I	-0.164421 - 1.292600I	-1.96598 + 5.14574I
b = 0.434772 - 0.642582I		
u = -1.52813 + 0.03469I		
a = 0.749487 + 0.430849I	-3.85416 + 1.06668I	0
b = -0.082283 + 0.460779I		
u = -1.52813 - 0.03469I		
a = 0.749487 - 0.430849I	-3.85416 - 1.06668I	0
b = -0.082283 - 0.460779I		
u = 1.49504 + 0.38475I		
a = 0.007881 + 0.362733I	2.74848 + 0.89020I	0
b = -0.372006 - 0.161707I		
u = 1.49504 - 0.38475I		
a = 0.007881 - 0.362733I	2.74848 - 0.89020I	0
b = -0.372006 + 0.161707I		
u = -1.52900 + 0.29105I		
a = 0.706345 - 0.671808I	-2.00876 + 8.44086I	0
b = -1.06205 - 1.60612I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.52900 - 0.29105I		
a = 0.706345 + 0.671808I	-2.00876 - 8.44086I	0
b = -1.06205 + 1.60612I		
u = 1.55775 + 0.15557I		
a = 0.721994 + 0.568337I	-6.88003 - 3.75478I	0
b = -0.497955 + 1.196310I		
u = 1.55775 - 0.15557I		
a = 0.721994 - 0.568337I	-6.88003 + 3.75478I	0
b = -0.497955 - 1.196310I		
u = -1.58783 + 0.13072I		
a = -0.527458 + 0.690762I	-7.23928 + 3.38751I	0
b = 0.89707 + 1.86682I		
u = -1.58783 - 0.13072I		
a = -0.527458 - 0.690762I	-7.23928 - 3.38751I	0
b = 0.89707 - 1.86682I		
u = -1.58112 + 0.20855I		
a = -0.673201 - 0.601686I	-6.71802 + 6.70728I	0
b = -0.115011 - 0.480919I		
u = -1.58112 - 0.20855I		
a = -0.673201 + 0.601686I	-6.71802 - 6.70728I	0
b = -0.115011 + 0.480919I		
u = 1.61634 + 0.04594I		
a = -0.607271 + 0.648913I	-10.99530 - 1.69093I	0
b = 0.278472 + 1.264590I		
u = 1.61634 - 0.04594I		
a = -0.607271 - 0.648913I	-10.99530 + 1.69093I	0
b = 0.278472 - 1.264590I		
u = -1.59092 + 0.39585I		
a = -0.731570 + 0.550707I	-5.5392 + 14.3589I	0
b = 1.26602 + 1.60368I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.59092 - 0.39585I		
a = -0.731570 - 0.550707I	-5.5392 - 14.3589I	0
b = 1.26602 - 1.60368I		
u = 1.68738 + 0.31170I		
a = -0.685391 - 0.453228I	-11.1104 - 9.0785I	0
b = 0.64974 - 1.33823I		
u = 1.68738 - 0.31170I		
a = -0.685391 + 0.453228I	-11.1104 + 9.0785I	0
b = 0.64974 + 1.33823I		
u = -1.74551 + 0.16291I		
a = -0.577118 + 0.344131I	-8.76602 + 2.97970I	0
b = 0.165920 + 0.739123I		
u = -1.74551 - 0.16291I		
a = -0.577118 - 0.344131I	-8.76602 - 2.97970I	0
b = 0.165920 - 0.739123I		
u = -0.088616 + 0.165371I		
a = -5.53925 + 3.96896I	7.99255 - 2.76208I	5.58674 + 2.99226I
b = 0.242833 - 1.027870I		
u = -0.088616 - 0.165371I		
a = -5.53925 - 3.96896I	7.99255 + 2.76208I	5.58674 - 2.99226I
b = 0.242833 + 1.027870I		
u = 0.0931699		
a = 5.14127	-1.24876	-7.95330
b = -0.648531		

II. $I_2^u = \langle -2a^2b + b^2 - 2ba - 2a^2 - 4b - a - 3, \ a^3 + a^2 + 2a + 1, \ u - 1 \rangle$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ b-a \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a^2 \\ -ba + a^2 + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a^2 \\ ba + 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -ba + a^2 - 1 \\ ba + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ b-a \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{2} \\ -ba+a^{2}+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2} \\ ba+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -ba+a^{2}-1 \\ ba+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a^{2}b-2ba+a^{2}-b-1 \\ 2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a^2 \\ -ba - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4a^2 4a 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
<i>c</i> ₃	$(u^3 + u^2 + 2u + 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_6, c_9 c_{10}	$(u^2-2)^3$
c_8, c_{12}	$(u+1)^6$
c_{11}	$(u-1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_5, c_6, c_9 c_{10}	$(y-2)^6$
c_8, c_{11}, c_{12}	$(y-1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.215080 + 1.307140I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b = -0.050766 - 0.308532I		
u = 1.00000		
a = -0.215080 + 1.307140I	6.31400 + 2.82812I	-0.49024 - 2.97945I
b = 0.29589 + 1.79826I		
u = 1.00000		
a = -0.215080 - 1.307140I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b = -0.050766 + 0.308532I		
u = 1.00000		
a = -0.215080 - 1.307140I	6.31400 - 2.82812I	-0.49024 + 2.97945I
b = 0.29589 - 1.79826I		
u = 1.00000		
a = -0.569840	2.17641	-7.01950
b = -0.726894		
u = 1.00000		
a = -0.569840	2.17641	-7.01950
b = 4.23665		

III.
$$I_3^u = \langle -a^2 + b - a - 2, \ a^3 + a^2 + 2a + 1, \ u + 1 \rangle$$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ a^2 + a + 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ a^2 + 2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -a^2 \\ a^2 + 2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -a^2 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a^2 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a^2 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-12a^2 10a 32$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$u^3 - u^2 + 2u - 1$
c_2	$u^3 + u^2 - 1$
<i>C</i> ₄	$u^3 - u^2 + 1$
c_5, c_6, c_9 c_{10}	u^3
c ₇	$u^3 + u^2 + 2u + 1$
c ₈	$(u-1)^3$
c_{11}, c_{12}	$(u+1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_7	$y^3 + 3y^2 + 2y - 1$
c_2, c_4	$y^3 - y^2 + 2y - 1$
c_5, c_6, c_9 c_{10}	y^3
c_8, c_{11}, c_{12}	$(y-1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -0.215080 + 1.307140I	1.37919 + 2.82812I	-9.90089 - 6.32406I
b = 0.122561 + 0.744862I		
u = -1.00000		
a = -0.215080 - 1.307140I	1.37919 - 2.82812I	-9.90089 + 6.32406I
b = 0.122561 - 0.744862I		
u = -1.00000		
a = -0.569840	-2.75839	-30.1980
b = 1.75488		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^3 - u^2 + 2u - 1)^3)(u^{48} + 28u^{47} + \dots + 2u + 1)$
c_2	$((u^3 + u^2 - 1)^3)(u^{48} - 4u^{47} + \dots + 2u + 1)$
<i>c</i> ₃	$(u^3 - u^2 + 2u - 1)(u^3 + u^2 + 2u + 1)^2(u^{48} + 2u^{47} + \dots + 8u - 1)$
c_4	$((u^3 - u^2 + 1)^3)(u^{48} - 4u^{47} + \dots + 2u + 1)$
c_5, c_6, c_{10}	$u^{3}(u^{2}-2)^{3}(u^{48}-3u^{47}+\cdots-8u-8)$
	$((u^3 - u^2 + 2u - 1)^2)(u^3 + u^2 + 2u + 1)(u^{48} + 2u^{47} + \dots + 8u - 1)$
C ₈	$((u-1)^3)(u+1)^6(u^{48}+4u^{47}+\cdots+59u-7)$
<i>C</i> 9	$u^{3}(u^{2}-2)^{3}(u^{48}+9u^{47}+\cdots-6632u-1192)$
c_{11}	$((u-1)^6)(u+1)^3(u^{48}+4u^{47}+\cdots+59u-7)$
c_{12}	$((u+1)^9)(u^{48} + 54u^{47} + \dots + 4853u + 49)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^3 + 3y^2 + 2y - 1)^3)(y^{48} - 12y^{47} + \dots - 250y + 1)$
c_2, c_4	$((y^3 - y^2 + 2y - 1)^3)(y^{48} - 28y^{47} + \dots - 2y + 1)$
c_3, c_7	$((y^3 + 3y^2 + 2y - 1)^3)(y^{48} + 12y^{47} + \dots - 42y + 1)$
c_5, c_6, c_{10}	$y^{3}(y-2)^{6}(y^{48}-41y^{47}+\cdots-1984y+64)$
c_8, c_{11}	$((y-1)^9)(y^{48} - 54y^{47} + \dots - 4853y + 49)$
<i>c</i> 9	$y^{3}(y-2)^{6}(y^{48}+43y^{47}+\cdots-5.81730\times10^{7}y+1420864)$
c_{12}	$((y-1)^9)(y^{48}-110y^{47}+\cdots-3.03518\times 10^7y+2401)$