MAT 67 Homework 8

Hardy Jones 999397426 Professor Bandyopadhyay Fall 2013

1. Let V and W be vector spaces over \mathbb{F} and suppose that $T \in \mathcal{L}(V, W)$ is injective.

Given a linearly independent list (v_1, \ldots, v_n) of vectors in V, prove that the list $(T(v_1), \ldots, T(v_n))$ is linearly independent in W.

Proof. Suppose $a_1, a_2, \ldots, a_n \in \mathbb{F}$ and $a_1 T(v_1) + a_2 T(v_2) + \cdots + a_n T(v_n) = 0$.

Now since T is a linear map,

$$0 = a_1 T(v_1) + a_2 T(v_2) + \dots + a_n T(v_n) = T(a_1 v_1 + a_2 v_2 + \dots + a_n v_n)$$

And since T is injective we have that there is one vector, namely 0, in its kernel by proposition 6.2.6.

That is:

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

Now since (v_1, \ldots, v_n) is linearly independent, $a_1 = a_2 = \cdots = a_n = 0$.

From this, we see that $a_1T(v_1) + a_2T(v_2) + \cdots + a_nT(v_n) = 0$ must be linearly independent.

2. Let V and W be vector spaces over \mathbb{F} and suppose that $T \in \mathcal{L}(V, W)$ is surjective.

Given a spanning list (v_1, \ldots, v_n) for V, prove that $\operatorname{span}(T(v_1), \ldots, T(v_n)) = W$.

Proof. Suppose $\exists w \in W$, then since T is surjective, we have a $v \in V$ such that T(v) = w.

Since (v_1, \ldots, v_n) spans V, we can make a linear combination for v

$$a_1v_1 + a_2v_2 + \cdots + a_nv_n = v$$
, where $a_1, a_2, \dots, a_n \in \mathbb{F}$

Now, since T is a linear map,

$$w = T(v)$$

$$= T(a_1v_1 + a_2v_2 + \dots + a_nv_n)$$

$$= T(a_1v_1) + T(a_2v_2) + \dots + T(a_nv_n)$$

$$= a_1T(v_1) + a_2T(v_2) + \dots + a_nT(v_n)$$

Since our choice for w was arbitrary, we can find all $w \in W$ this way.

So we have that $\forall w \in W, w \in \text{span } (T(V)).$

Or put another way,
$$\operatorname{span}(T(v_1), \ldots, T(v_n)) = W$$

3. Let V be a finite-dimensional vector space over \mathbb{F} with $S, T \in \mathcal{L}(V, V)$.

Prove that $T \circ S$ is invertible if and only if both S and T are invertible.

Proof. We need to show both ways.

(a) Suppose $T \circ S$ is invertible.

We only need to check that $null(T) = \{0\}$ and $null(S) = \{0\}$

In order for $T \circ S$ to be invertible we must have that T(0) = 0. So there must exist some $v \in V$ such that S(v) = 0.

If $v \neq 0$, then $(T \circ S)(v) = T(S(v)) = T(0) = 0$ but that would imply that $null(T \circ S) \neq \{0\}$, which contradicts the fact that $T \circ S$ is invertible.

So
$$v = 0$$
 and $S(0) = 0 \implies T(0) = 0$.

These two imply that $null(S) = \{0\}$ and $null(T) = \{0\}$.

Thus S and T are invertible.

(b) Suppose T, S are invertible. It suffices to check that $\operatorname{null}(T \circ S) = \{0\}$

For some $v \in V$,

If $v \in null(T \circ S)$, then $S(v) \in null(T)$.

So,
$$S(v) = 0$$
.

This means that $v \in null(S)$ and so v = 0.

So,
$$null(T \circ S) = \{0\}.$$

Thus $T \circ S$ is invertible.

Thus, from (a) and (b) we have that $T \circ S$ is invertible if and only if both S and T are invertible.