第四章 应用题参考答案

布置作业

第四章(应用题部分) 5,7,8,17,19,24,32,41,42,47。

- 5 给定主存空闲分区,按地址从小到大为: 100K、500K、200K、300K和600K。现有用户进程依次分别为212K、417K、112K和426K,(1)分别用 first-fit、best-fit和 worst-fit 算法将它们装入到主存的哪个分区?(2)哪个算法能最有效利用主存?
- 答:按题意地址从小到大进行分区如图所示。

分区号	分区长
1	100KB
2	500KB
3	200KB
4	300KB
5	600KB

(1) 1)first-fit 212KB 选中分区 2, 这时分区 2 还剩 288KB。417KB 选中分区 5, 这时分区 5 还剩 183KB。112KB 选中分区 2, 这时分区 2 还剩 176KB。426KB 无分区能满足,应该等待。

2)best-fit 212KB 选中分区 4, 这时分区 4 还剩 88KB。417KB 选中分区 2, 这时分区 2 还剩 83KB。112KB 选中分区 3, 这时分区 3 还剩 88KB。426KB 选中分区 5, 这时分区 5 还剩 174KB。

3)worst-fit 212KB 选中分区 5, 这时分区 5 还剩 388KB。417KB 选中分区 2, 这时分区 2 还剩 83KB。112KB 选中分区 5, 这时分区 5 还剩 176KB。426KB 无分区能满足,应该等待。

- (2) 对于该作业序列, best-fit 算法能最有效利用主存
- 7 一进程以下列次序访问 5 个页: A、B、C、D、A、B、E、A、B、C、D、E; 假定使用 FIFO 替换算法,在主存有 3 个和 4 个空闲页框的情况下,分别给出页面替换次数。
- 答:页面替换序列如下:

FIFO	A	В	C	D	A	В	E	A	В	C	D	E
400	A	A	A	D	D	D	E	E	E	E	E	E
		В	В	В	A	A	A	A	A	C	C	C
			C	C	C	В	В	В	В	В	D	D
是 否 缺页	是	是	是	是	是	是	是			是	是	

FIFO	A	В	С	D	A	В	E	A	В	С	D	E
	A	A	A	A	A	A	E	E	E	E	D	D
		В	В	В	В	В	В	A	A	A	A	E
			C	C	C	C	C	C	В	В	В	В
				D	D	D	D	D	D	C	C	C
是 否 缺页	是	是	是	是			是	是	是	是	是	是

主存有 3 个和 4 个空闲页框的情况下,页面替换次数为 9 次和 10 次。出现了 Belady 现象,增加分给作业的主存块数,反使缺页中断率上升。

8 某计算机有缓存、主存、辅存来实现虚拟存储器。如果数据在缓存中,访问它需要 Ans;如果在主存但不在缓存,需要 Bns 将其装入缓存,然后才能访问;如果不在主 存而在辅存,需要 Cns 将其读入主存,然后,用 Bns 再读入缓存,然后才能访问。假设缓存命中率为(n-1)/n,主存命中率为(m-1)/m,则数据平均访问时间是多少?

答:

数据在缓存中的比率为: (n-1)/n

数据在主存中的比率为: (1-(n-1)/n)×(m-1)/m=(m-1)/nm

数据在辅存中的比率为: $(1-(n-1)/n)\times(1-(m-1)/m)=1/nm$

故数据平均访问时间是= $((n-1)/n) \times A+((1-(n-1)/n) \times (m-1)/m) \times (A+B)+((1-(n-1)/n) \times (1-(m-1)/m)) \times (A+B+C)=A+B/n+C/nm$

【说明】该题目的已知条件不够明确,容易产生歧义,不同的理解,会形成不同的结果。这里缓存命中率为(n-1)/n 是指全局性的,即在缓存的概率为(n-1)/n,那么不在缓存的概率为(1-(n-1)/n),而不在缓存分为两种情形,一种是在不在缓存在主存命中,其条件概率是(m-1)/m,这个概率是相对的,不是全局的,因此从全局看,在主存命中的概率为(1-(n-1)/n)×(m-1)/m=(m-1)/nm;另一种情形是不在缓存且主存没有命中(在辅存),从全局看,该概率为(1-(n-1)/n)×(1-(m-1)/m)=1/nm。这个解确保三个概率合起来为100%。

【可能答案】可能有同学的结果是:第4章的第8题,其中关于数据在辅存中的概率,缓存是不是在主存中的?答案中是用不在缓存中的概率和不在主存中的概率相乘,即,(1-(n-1)/n)*(1-(m-1)/m),如果缓存是在主存中的,为什么不是直接用1-(m-1)/m来表示在辅存中的概率呢?【如果给出这样的答案也算正确】

【解释】如果用 1-(m-1)/m 来表示在辅存的概率,那么意味着将主存命中率为 (m-1) /m 理解为全局性的,其包含了在缓存和不在缓存在主存两种情形,且如果将缓存命中率 (n-1) /n 看作全局性的,那么: (1)在缓存的概率为 (n-1) /n; (2) 从全局看,不在缓存在主存概率为(m-1)/m- (n-1) /n,当然要求保证(m-1)/m > (n-1) /n。这样,确保三个概率合起来为 100%。

17 一台机器有 48 位虚地址和 32 位物理地址, 若页长为 8KB, 问页表共有多少个页表项?如果设计一个反置页表,则有多少个页表项?

答: 因为页长 8KB 占用 13 位, 所以, 页表项有 2³⁵个。

反置页表项有 2¹⁹ 个。

- 19 有一个分页虚存系统,测得 CPU 和磁盘的利用率如下,试指出每种情况下的存在问题和可采取的措施: (1)CPU 利用率为 13%,磁盘利用率为 97% (2)CPU 利用率为 87%,磁盘利用率为 3% (3)CPU 利用率为 13%,磁盘利用率为 3%。
- 答: (1)系统可能出现抖动,可把暂停部分进程运行。(2)系统运行正常,可增加运行进程数以进一步提高资源利用率。(3)处理器和设备和利用率均很低,可增加并发运行的进程数。
- 24 在某页式虚存系统中,假定访问主存的时间是 2ms,平均缺页中断处理时间为 25ms,均缺页中断率为 5%,试计算在该虚存系统中,平均有效访问时间是多少?

答: 若被访问的页面在主存中,则一次访问的时间为,2ms+2ms=4ms;如果不在主存,所花的时间是 2ms(访问主存页表)+25ms(中断处理)+2ms(访问主存页表)+2ms(访问主存)=31ms。

根据上述分析,平均有效访问时间是:

 $4\text{ms} \times (1-5\%) + 31\text{ms} \times 5\% = 5.35\text{ms}$

- 32 假设计算机有 2M 主存,其中,操作系统占用 512K,每个用户程序也使用 512K 主存。如果所有程序都有 70%的 I/O 等待时间,那么,再增加 1M 主存,吞吐率增加多少?此处题目问【吞吐率增加多少?】应该改为【CPU 利用率增加多少?】
- 答: 由题意可知, 主存中可以存放 3 个用户进程, 而 CPU 的利用率为: $1-(70\%)^3 = 1-(0.7)^3 = 65.7\%$ 。再增加 1M 主存, 可增加 2 个用户进程, 这时 CPU 的利用率为: $1-(70\%)^5 = 1-(0.7)^5 = 83.2\%$ 。故再增加 1M 主存, 吞吐率增加了: $83.2\% \div 65.7\% 100\% = 27\%$ 。

【如果】有同学计算出 83.2%-65.7%=17.5% 【也算正确】。

41 采用 LRU 置换算法的虚拟分页存储管理系统,其页面尺寸为 4KB,主存访速度为 100ns,快表访问速度为 20ns,缺页中断处理耗时为 25ms。今有一个长度为 30KB 的进程 P 进入系统,分配给 P 的页框有 3 块,进程的所有页面都在运行中动态装入。若 P 访问快表的命中率为 20%,对于下述页面号访问序列:

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 试计算平均有效访存时间为多少 ns?

答:

分页机制中,系统需从页表中获得指定页的页框号,而页表的一部分被存储在快表中,所以 每访问一次主存中的数据,需要先访问一次快表,如果在快表中查不到指定页时再访问主存 中的页表。

1)系统不缺页的时间花费。

如果要访问的页已经在快表中,系统只需要花费 20ns 的快表访问时间和 100ns 访问主存就可以了。如果没有命中,系统还需要访问两次主存。第 1 次是访问主存中的页表,第 2 次是访问主存中的数据。根据快表的命中率为 20%的已知条件,不缺页的有效访问时间 ma 是:

 $ma=120\times20\%+220\times80\%=200$ (ns)

2)计算缺页率。

应用程序长度为 30KB,按每页 4KB 计算共计 8 个页面($0 \# \sim 7 \#$)。按 LRU 算法可以得出缺页达 12 次。对于共计 20 次页面访问来说,缺页率 p = 60%。

3)计算平均有效访问时间。

平均有效访问时间 T 的计算公式由两部分组成:

平均有效访问时间 T=(l-p) ma+p×缺页中断耗时

填入本题中的已知条件后,得:

 $T = (1-p) \times ma + p \times 25$ (ms)

- $=0.4\times200 \text{ (ns)} +0.6\times25000000$
- =15000080 (ns)
- 42 在请求分页虚存管理系统中,若驻留集为 m 个页框,页框初始为空,在长为 p 的引用串中具有 n 个不同页面(n>m),对于 FIFO、LRU 两种页面替换算法,试给出缺页中断的上限和下限,并举例说明。
- 答:对于FIFO、LRU两种页面替换算法,缺页中断的上限和下限:为p和n。因为有n个不同页面,无论怎样安排,不同页面进入主存至少要产生一次缺页中断,故下限为n次。由于m<n,引用串中有些页可能进入主存后又被调出,而多次发生缺页中断。极端情况,访问的页都不在主存,这样共发生了p次缺页中断。例如,当m=3,p=12,n=4时,有如下访问中:1,1,1,2,2,3,4,4,4,4。缺页中断为下限4次。而访问串:2,3,4,1,2,3,4,1。缺页中断为上限12次。
- 45 有两台计算机 P1 和 P2,它们各有一个硬件高速缓冲存储器 C1 和 C2,且各有一个 主存储器 M1 和 M2。其性能为:

	C1	C2	M1	M2
存储容量	4KB	4KB	2MB	2MB
存取周期	60ns	80ns	1μs	0.9 µ s

若两台机器指令系统相同,它们的指令执行时间与存储器的平均存取周期成正比。如果在执行某个程序时,所需指令或数据在高速缓冲存储器中存取到的概率 P 是 0.7,试问:这两台计算机哪个速度快? 当 P=0.9 时,处理器哪个速度快?

- 答: CPU 平均存取时间为: $T=p \times T1+(1-p) \times T2$, T1 为高速缓冲存储器存取周期, T2 为主存储器存取周期, p 为高速缓冲存储器命中率。
- (1) 当 p=0.7 时,

P1 平均存取时间为: 0.7×60+(1-0.7)×1 μ s=342ns P2 平均存取时间为: 0.7×80+(1-0.7)×0.9 μ s=326ns

故计算机 P2 比 P1 处理速度快。

(2) 当 p=0.9 时,

P1 平均存取时间为: $0.9\times60+(1-0.9)\times1$ μ s=154ns P2 平均存取时间为: $0.9\times80+(1-0.9)\times0.9$ μ s=162ns 故计算机 P1 比 P2 处理速度快。

47 假设一个物理存储器,有4个页框,对下面每种策略,给出引用串:

p1、p2、p3、p1、p4、p5、p1、p2、p1、p4、p5、p3、p4、p5的缺页数目(所有页框最初都是空的)。试用下列算法求出缺页中断次数,(1)OPT,(2)FIFO(3)SCR,(4)改进的CLOCK,(5)LRU,(6)MIN,(7)WS。解:

(1) 最优置换算法 OPT

F	F	F		F	F(3)						F(1)		
1	2	3	1	4	5	1	2	1	4	5	3	4	5
1	1	1	1	1	1	1	1	1	1	1	3	3	3
	2	2	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	5	5	5	5	5	5	5	5	5
				4	4	4	4	4	4	4	4	4	4

缺页6次。

(2) 先进先出算法 FIFO

F	F	F		F	F(1)	F(2)	F(3)			X	F(4)	F(5)	F(1)
1	2	3	1	4	5	1	2	1	4	5	3	4	5
1	1	1	1	1	2	3	4	4	4	4	5	1	2
	2	2	2	2	3	4	5	5	5	5	1	2	3
		3	3	3	4	5	1	1	1 /	1	2	3	4
				4	5	1	2	2	2	2	3	4	5

缺页 10 次。

(3) 第二次机会算法 SCR

图中()中为引用位

F	F	F		F	F(1)	F(2)	F(3)				F(4)	F(5)	F(1)
1	2	3	1	4	5	1	2	1	4	5	3	4	5
1(1)	1(1)	1(1)	1(1)	1(1)	2(0)	3(0)	4(0)	4(0)	4(1)	4(1)	5(0)	1(0)	2(0)
	2(1)	2(1)	2(1)	2(1)	3(0)	4(0)	5(1)	5(1)	5(1)	5(1)	1(0)	2(0)	3(1)
		3(1)	3(1)	3(1)	4(0)	5(1)	1(1)	1(1)	1(1)	1(1)	2(0)	3(1)	4(1)
		T /	4	4(1)	5(1)	1(1)	2(1)	2(1)	2(1)	2(1)	3(1)	4(1)	5(1)

缺页 10 次。

(4) 改进的时钟算法 clock (假设所有对页面 p2 的访问都是写请求) 图中(r, m)为(引用位, 修改位)

F	F	F		F	F(1)	F(3)					F(4)	F(5)	F(1)
P1	p2	p3	p1	p4	p5	p1	p2	p1	p4	p5	p3	p4	p5
				\rightarrow		5(1,0)					\rightarrow		
1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	5(1,0)		5(1,0)	5(1,0)	5(1,0)	5(1,0)	5(0,0)	4(1,0)	4(1,0)
\rightarrow					\rightarrow							\rightarrow	
	2(1,1)	2(1,1)	2(1,1)	2(1,1)	2(0,1)	2(0,1)	2(1,1)	2(1,1)	2(1,1)	2(1,1)	2(0,1)	2(0,1)	2(0,1)
	\rightarrow												
		3(1,0)	3(1,0)	3(1,0)	3(0,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(1,0)	1(0,0)	1(0,0)	5(1,0)
		\rightarrow	\rightarrow			\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow			\rightarrow
				4(1,0)	4(0,0)	4(0,0)	4(0,0)	4(0,0)	4(1,0)	4(1,0)	3(1,0)	3(1,0)	3(1,0)

缺页9次。

(5) 最近最少使用算法(LRU)

F	F	F		F	F(2)		F(3)				F(2)		
1	2	3	1	4	5	1	2	1	4	5	3	4	5
1	2	3	1	4	5	1	2	1	4	5	3	4	5
	1	2	3	1	4	5	1	2	1	4	5	3	4
		1	2	3	1	4	5	5	2	1	4	5	3
				2	3	3	4	4	5	2	1	1	1

缺页7次。

(6) 局部最优页面置换算法(MIN)

设滑动窗口τ=3

	14 /4 12	<u> </u>	5									- 7	1		8
时刻t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
引用串		P1	P2	Р3	P1	P4	P5	P1	P2	P1	P4	P5	Р3	P4	P5
P1		\checkmark	$\sqrt{}$	√	V	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
P2			$\sqrt{}$						$\sqrt{}$	K	r.	1			
Р3				√						44			V		
P4						√					1	V	V	V	
P5							$\sqrt{}$	A			1	$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark
IN		P1	P2	Р3		P4	P5		P2	- Lockooloo	P4	P5	Р3		
OUT				P2	Р3		P4	P5	X	P2	P1			Р3	P4

缺页 9 次。 (7) 工作集算法 (WS), △=2

时刻 t	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
引用串		P1	P2	Р3	P1	P4	P5	P1	P2	P1	P4	P5	Р3	P4	P5
P1		\checkmark	$\sqrt{}$	V	1	A	V	$\sqrt{}$	√	√	√	$\sqrt{}$			
P2			1	1	V	1			√	√	√				
Р3			1	1	1	\checkmark							$\sqrt{}$	$\sqrt{}$	√
P4		1		1		\checkmark	\checkmark	$\sqrt{}$			√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√
P5		1		/			\checkmark	$\sqrt{}$	√			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√
IN	A	P1	P2	Р3			P5		P2		P4	P5	Р3		
OUT						P2	Р3		P4	P5		P2	P1		