Stærðfræðimynstur í tölvunarfræði

Vika 4

Kafli 3: Rökstudd forritun, algrím, stöðvunarvandamálið, stærðargráður, flækjustig

Margföldun með helmingun, tvöföldun og samlagningu

```
Notkun: z := margfalda(x, y)
Fyrir:
           x \ge 0
Eftir:
            z er xy þ.e. margfeldi x og y
stef margfalda(x, y: heiltölur)
   p \coloneqq 0; q \coloneqq y; r \coloneqq x
   meðan r \neq 0
      \{xy = p + qr\}
      ef r er oddatala þá
         p \coloneqq p + q; r \coloneqq r - 1
      annars
         r \coloneqq r/2; q \coloneqq q + q
   skila p
```

Trúlega elsta algrím sem þekkt er

"Reiknað" með vogarskálum á steinöld?

Var notað í gömlum örgjörvum

Algeng viðfangsefni

- Leitarvandamál
 - Finna staðsetningu tiltekins gildis í runu (sequence), lista eða fylki (list, array)
 - Linuleg leit og helmingunarleit
- Röðunarvandamál
 - Setja gildi í runu, lista eða fylki í tiltekna röð (vaxandi, minnkandi, ...)
 - Insertion sort

Linuleg leit

- ► Algeng leitunaraðferð
- ► Ofureinföld í útfærslu
- ► Hægvirk fyrir mörg gildi
- ▶ Viðunandi fyrir fá gildi

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Síðan höldum við áfram, eitt og eitt sæti í einu

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Síðan höldum við áfram, eitt og eitt sæti í einu
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

- ▶ Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt

```
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
```

- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ∫ upphafi er óþekkta svæðið öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

• • •

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
---	---	---	---	---	---	---	----	----	----	----	----	----	----	----	----

- ▶ Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ► Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

• • •

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

- Leitum að 19 í rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ► Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðið ≠ 19 er tómt
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Eftir fyrstu umferð höfum við séð að fyrsta sætið inniheldur ekki 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Síðan höldum við áfram, eitt og eitt sæti í einu

															-
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

. . .

1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22
1	2	3	5	6	7	8	10	12	13	15	16	18	19	20	22

og finnum loks 19

```
Notkun: i := \text{leita}(x, a_1, a_2, ..., a_n)

Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur

Eftir: Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0, annars er i minnsti vísir þ.a. x = a_i

} stef leita(x: heiltala, a_1, a_2, ..., a_n: heiltölur)
???
```

```
Notkun: i := \text{leita}(x, a_1, a_2, ..., a_n)

Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur

Eftir: Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0, annars er i minnsti vísir þ.a. x = a_i

} stef leita(x: heiltala, a_1, a_2, ..., a_n: heiltölur)
???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
          Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    ???
    meðan???
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        ???
    ???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
          Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 0
    meðan ???
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        ???
    ???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
          Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 0
    meðan i < n
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        ???
    ???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
          Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 0
    meðan i < n
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        ???
    skila 0
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
         Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 0
    meðan i < n
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        i := i+1
        ef a_i = x þá skila i
    skila 0
```


Helmingunarleit

- Mjög hraðvirk leitaraðferð
- Flóknari en línuleg leit
- Krefst þess að gildin séu þegar röðuð
- Afar mikilvæg og algeng aðferð
- ► Allir þurfa að kunna helmingunarleit

Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er<mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19</p>
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er<mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 12 sem inniheldur <mark>16 < 19</mark>

- ▶ Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 12 sem inniheldur 16 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22

- ▶ Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Næsta miðjusæti er sæti 12 sem inniheldur 16 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 14 sem inniheldur 19 ≥ 19

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 12 sem inniheldur 16 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 14 sem inniheldur 19 ≥ 19
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Næsta miðjusæti er sæti 12 sem inniheldur 16 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 14 sem inniheldur 19 ≥ 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 13 sem inniheldur 18 < 19

- Leitum að 19 í röðuðu rununni 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- ▶ Í upphafi er <mark>óþekkta svæðið</mark> öll runan og svæðin < 19 og ≥ 19 eru tóm
- 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22
- Runan inniheldur 16 gildi og miðjusætið er því sæti 8, sem inniheldur 10 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 12 sem inniheldur 16 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Næsta miðjusæti er sæti 14 sem inniheldur 19 ≥ 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- ► Næsta miðjusæti er sæti 13 sem inniheldur 18 < 19
- 1
 2
 3
 5
 6
 7
 8
 10
 12
 13
 15
 16
 18
 19
 20
 22
- Óþekkta svæðið er tómt og leitinni er lokið

Grunnhugmynd helmingunarleitar

Helmingunarleit (binary search)

```
 \begin{array}{ll} \text{Notkun:} & i := \text{leita}(x, a_1, a_2, \ldots, a_n) \\ \text{Fyrir:} & x \text{ er heiltala,} \\ & a_1, a_2, \ldots, a_n \text{ eru heiltölur í vaxandi röð} \\ \text{Eftir:} & 1 \leq i \leq n+1, \ a_1, \ldots, a_{i-1} < x \leq a_i, \ldots, a_n \\ \text{Stef leita}(x: \text{heiltala,} \ a_1, a_2, \ldots, a_n: \text{heiltölur}) \\ & ??? \end{array}
```

Helmingunarleit (binary search)

```
 \begin{array}{ll} \text{Notkun:} & i := \text{leita}(x, a_1, a_2, \dots, a_n) \\ \text{Fyrir:} & x \text{ er heiltala,} \\ & a_1, a_2, \dots, a_n \text{ eru heiltölur i vaxandi röð} \\ \text{Eftir:} & 1 \leq i \leq n+1, \ a_1, \dots, a_{i-1} < x \leq a_i, \dots, a_n \\ \text{Stef leita}(x: \text{heiltala,} \ a_1, a_2, \dots, a_n: \text{heiltölur}) \\ & ??? \end{array}
```


Helmingunarleit (binary search)

```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
           x er heiltala,
             a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
            1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    ???
    meðan???
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n\}
        ???
    ???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
           x er heiltala,
             a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
             1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    ???
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_j, \dots, a_n\}
        ???
    ???
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
           x er heiltala,
             a_1, a_2, ..., a_n eru heiltölur í vaxandi röð
Eftir:
            1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    ???
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_j, \dots, a_n\}
        ???
     skila i
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
           x er heiltala,
             a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
             1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 1; \quad j := n + 1
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n\}
        ???
     skila i
```



```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
          x er heiltala,
            a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
           1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 1; \quad j := n + 1
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_j, \dots, a_n\}
        m := [(i+j)/2]
        ef a_m < x þá i := m + 1
        annars
                   j := m
    skila i
```


Insertion sort

- Algeng einföld röðunaraðferð
- Röðunaraðferð byggð á samanburðum
- ► Alls ekki meðal hraðvirkustu aðferða
 - Góð til að raða stuttum runum
- Notuð sem hluti flóknari röðunaraðferða
- Allir þurfa að kunna þessa aðferð

Insertion sort dæmi

► Röðum rununni

3	1	4	1	5	9	2	6	5	3	5	8	9	7	9	3
						_							,		

Ástandið eftir hverja umferð

3	1	4	1	5	9	2	6	5	3	5	8	9	7	9	3
1	3	4	1	5	9	2	6	5	3	5	8	9	7	9	3
1	3	4	1	5	9	2	6	5	3	5	8	9	7	9	3
1	1	3	4	5	9	2	6	5	3	5	8	9	7	9	3
1	1	3	4	5	9	2	6	5	3	5	8	9	7	9	3
1	1	3	4	5	9	2	6	5	3	5	8	9	7	9	3

• • • • •

1	1	2	3	3	4	5	5	5	6	7	8	9	9	9	3
1	1	2	3	3	3	4	5	5	5	6	7	8	9	9	9

Grunnhugmynd insertion sort

Insertion sort dæmi

Ástangið fyrir innri lykkju

Ástandið fyrir og eftir hverja umferð innri lykkju

1	1	3	4	5	9	2	6	5	3	5	8	9	7	9	3
1	1	3	4	5	2	9	6	5	3	5	8	9	7	9	3
1	1	3	4	2	5	9	6	5	3	5	8	9	7	9	3
1	1	3	2	4	5	9	6	5	3	5	8	9	7	9	3
1	1	2	3	4	5	9	6	5	3	5	8	9	7	9	3

Ástandið eftir innri lykkju

1	1	2	3	4	5	9	6	5	3	5	8	9	7	9	3
									_			1			

Innri lykkja insertion sort


```
Notkun: ra\delta a(a_1, a_2, ..., a_n)

Fyrir: a_1, a_2, ..., a_n er runa af rauntölubreytum

Eftir: Gildunum í rununni hefur verið umraðað svo gildin eru í vaxandi röð

}

stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)

???
```

```
Notkun: raða(a_1, a_2, ..., a_n)

Fyrir: a_1, a_2, ..., a_n er runa af rauntölubreytum

Eftir: Gildunum í rununni hefur verið umraðað svo gildin eru í vaxandi röð

}

stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)

???
```



```
Notkun:
               raða(a_1, a_2, ..., a_n)
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Fyrir:
               Gildunum í rununni hefur verið umraðað
Eftir:
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          ???
          meðan ???
               \{1 \le j \le i \le n, a_j, a_{j+1}, ..., a_i \text{ er } i \text{ vaxandi r\"oð}, \}
               \{a_1, a_2, \dots, a_{i-1}, a_{i+1}, \dots, a_i \text{ er einnig í vaxandi röð.}\}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               ???
```



```
Notkun:
               raða(a_1, a_2, ..., a_n)
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Fyrir:
               Gildunum í rununni hefur verið umraðað
Eftir:
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          ???
          meðan j \neq 1 og a_i < a_{i-1}
               \{1 \le j \le i \le n, a_j, a_{j+1}, ..., a_i \text{ er } i \text{ vaxandi r\"oð}, \}
               \{a_1, a_2, \dots, a_{j-1}, a_{j+1}, \dots, a_i \text{ er einnig í vaxandi röð.}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               ???
```



```
Notkun:
               raða(a_1, a_2, ..., a_n)
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Fyrir:
               Gildunum í rununni hefur verið umraðað
Eftir:
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          i := i + 1; \quad j := i
          meðan j \neq 1 og a_i < a_{i-1}
               \{1 \le j \le i \le n, a_j, a_{j+1}, ..., a_i \text{ er í vaxandi röð}, \}
               \{a_1, a_2, \dots, a_{j-1}, a_{j+1}, \dots, a_i \text{ er einnig í vaxandi röð.}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               ???
```



```
Notkun:
              raða(a_1, a_2, ..., a_n)
Fyrir:
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Eftir:
               Gildunum í rununni hefur verið umraðað
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          i := i + 1; \quad j := i
          meðan j \neq 1 og a_i < a_{i-1}
               \{1 \leq j \leq i \leq n, a_j, a_{j+1}, ..., a_i \text{ er í vaxandi röð}, \}
               \{a_1, a_2, \dots, a_{j-1}, a_{j+1}, \dots, a_i \text{ er einnig í vaxandi röð.}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               m := a_j; \quad a_j := a_{j-1}; \quad a_{j-1} := m; \quad j := j-1
```


Víxlum gildunum í a_j og a_{j-1} Færir gildið framar í rununni

Stöðvunarvandamálið

- ► Getum við skrifað stef (fall) sem tekur forrit sem viðfang og ákvarðar hvort keyrslu forritsins lýkur?
- Svar: Notum óbeina sönnun til að sýna að þetta er ekki hægt
- Gerum ráð fyrir að slíkt stef sé til og köllum það H Notkun: svar := H(P)

Fyrir: P er skrá sem inniheldur forrit

Eftir: svar er satt ef keyrslu P lýkur,

annars ósatt

Stöðvunarvandamálið

Skrifum eftirfarandi forrit og setjum í skrá S:

```
ef H(S) þá
meðan satt skrifa "ha!"

stöðva keyrslu strax

Stöðvast strax
```

- Forrit þetta stöðvast þá ef það stöðvast ekki og stöðvast ekki ef það stöðvast mótsögn
- Forsendan að hægt sé að skrifa slíkt stef H getur því ekki staðist

Vöxtur falla og stærðargráður þeirra

► Skilgreining: Látum f og g vera föll $\mathbb{R} \to \mathbb{R}$ eða $\mathbb{N} \to \mathbb{R}$. Við segjum að f(x) sé O(g(x)) ef til eru fastar C og k þannig að fyrir öll x > k gildi

$$|f(x)| \le C|g(x)|$$

- Við segjum "f(x) er stóra-O af g(x)", "f er stóra-O af g" eða "g ríkir yfir f"
- Fastarnir C og k eru kallaðir vitni um að f(x) sé O(g(x))

f(x) er O(g(x))

Nokkrir punktar um O(...) rithátt

- lacktriangle Ef við getum fundið eina tvennd vitna, k og C þá eru óendanlega margar slíkar tvenndir
- Stundum er skrifað f(x) = O(g(x)) sem er ruglandi því það er misnotkun á =
 - ▶ Betra er að skrifa $f(x) \in O(g(x))$ því O(g(x)) stendur fyrir mengi þeirra falla f sem eru O(g(x))
- Í stað þess að skrifa
 - ▶ "til eru k og C þannig að fyrir öll x > k gildir $|f(x)| \le C|g(x)|$ "
- sleppum við oft tölugildistáknunum og skrifum í staðinn
 - ▶ "til eru k og C þannig að fyrir öll x > k gildir $f(x) \le Cg(x)$ "
- vegna þess að föllin sem við erum að eiga við eru jákvæð

$f(x) = x^2 + 2x + 1 \text{ er } O(x^2)$

- ▶ Dæmi: Sýnum að $f(x) = x^2 + 2x + 1$ er $O(x^2)$
- ► Lausn: Setjum k = 1 og C = 4. Þá fáum við að fyrir x > k = 1 gildir að $|x^2 + 2x + 1| = |(x + 1)^2|$ $< |(x + x)^2|$ $= (2x)^2$

$$= 4x^{2}$$

$$= Cx^2$$

$f(x) = x^2 + 2x + 1 \text{ er } O(x^2)$

Sami vaxtarhraði - sama stærðargráða

- Figure 1. Ef $f(x) = x^2 + 2x + 1$ og $g(x) = x^2$ þá gildir bæði:
 - ightharpoonup f(x) er O(g(x)) og
 - ightharpoonup g(x) er O(f(x))
- Við segjum þá (almennt undir þessum kringumstæðum) að föllin tvö séu af sömu stærðargráðu
- ► Ef við höfum þrjú föll, f, g og h, þannig að f(x) er O(g(x)) og g(x) er O(h(x)) þá gildir f(x) er O(h(x))
- ▶ Í mörgum tilvikum er markmið okkar að finna minnsta fall g þannig að f(x) er O(g(x)) (margföldunarfasti í g skiptir hér ekki máli)

$7x^2$ er $O(x^3)$, n^2 er ekki O(n)

- Sýnum að $7x^2$ er $O(x^3)$
- Lausn: Látum C = 1 og k = 7 vera okkar vitni (myndi C = 7 og k = 1 virka?)
- Sýnum að n^2 er ekki O(n)
- Lausn: (Óbein sönnun) Gerum ráð fyrir að til séu vitni $\mathcal C$ og k þannig að

$$n^2 \le Cn$$
 fyrir öll $n > k$.

Deilum þá með n báðu megin við \leq og drögum þá ályktun að $n \leq C$ þurfi að gilda fyrir öll n > k.

Mótsögn (sem sannar að forsendan, að slík vitni séu til, gengur ekki)

Vaxtarhraði margliða

- Setning: Látum $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ vera margliðu af gráðu n, þ.a. $a_n \neq 0$. Þá gildir að f(x) er $O(x^n)$.
- Sönnun: Við fáum, fyrir x > 1

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n x^n| + |a_{n-1} x^{n-1}| + \dots + |a_1 x| + |a_0|$$

$$= x^n \left(|a_n| + \frac{|a_{n-1}|}{x} + \dots + \frac{|a_1|}{x^{n-1}} + \frac{|a_0|}{x^n} \right)$$

$$\leq x^n (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|)$$

Veljum nú k=1 og $C=|a_n|+|a_{n-1}|+\cdots+|a_1|+|a_0|$. Pá er ljóst að f(x) er $O(x^n)$

Vaxtarhraðar nokkurra mikilvægra falla

- ▶ Dæmi: Metum vaxtarhraða $1 + 2 + 3 + \cdots + n$
- Lausn: $1+2+3+\cdots+n \le n+n+\cdots+n=n^2$ og þess vegna gildir að $1+2+3+\cdots+n$ er $O(n^2)$, með vitnum C=1 og k=1
- ▶ Dæmi: Metum vaxtarhraða hrópmerkta fallsins $f(n) = n! = 1 \times 2 \times \cdots \times n$
- Lausn: $n! = 1 \times 2 \times \cdots \times n \le n \times n \times \cdots \times n = n^n$ og þess vegna gildir að n! er $O(n^n)$ með vitnum C = 1 og k = 1

Vaxtarhraðar nokkurra mikilvægra falla

- ightharpoonup Dæmi: Metum vaxtarhraða $\log(n!)$
- Lausn: Frá fyrri glæru vitum við að fyrir n > 0 gildir $n! \le n^n$ og þess vegna gildir að $\log(n!) \le \log(n^n) = n \log(n)$, og þess vegna gildir að $\log(n!)$ er $O(n \log(n))$ með vitnum C = 1 og k = 1

Vöxtur ýmissa falla

Vaxtarhraðar með logrum, veldum og veldisvísum (logarithms, powers, exponents)

- \blacktriangleright Ef d>c>1 þá
 - ightharpoonup gildir að n^c er $O(n^d)$ en ekki gildir að n^d sé $O(n^c)$
- For Ef b > 1 og c og d eru jákvæðar, þá
 - ightharpoonup gildir að $(\log_b n)^c$ er $O(n^d)$ en ekki gildir að n^d sé $O\left((\log_b n)^c\right)$
- Fig. Ef b > 1 og d er jákvæð, þá
 - ightharpoonup gildir að n^d er $O(b^n)$ en ekki gildir að b^n sé $O(n^d)$
- Ef c > b > 1, þá
 - ightharpoonup gildir að b^n er $O(c^n)$ en ekki gildir að c^n sé $O(b^n)$

Samsetningar falla

- Ef $f_1(x)$ er $O(g_1(x))$ og $f_2(x)$ er $O(g_2(x))$ þá gildir að $(f_1 + f_2)(x)$ er $O(\max(|g_1(x)| + |g_2(x)|)$ þar sem $f_1 + f_2$ er skilgreint á augljósan hátt með $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- ▶ Parmeð fæst að ef $f_1(x)$ er O(g(x)) og $f_2(x)$ er líka O(g(x)) þá gildir að $(f_1 + f_2)(x)$ er líka O(g(x))
- ► Ef $f_1(x)$ er $O(g_1(x))$ og $f_2(x)$ er $O(g_2(x))$ þá gildir að $(f_1f_2)(x)$ er $O(g_1(x)g_2(x))$ (eða $O(g_1g_2(x))$ þar sem f_1f_2 er skilgreint á augljósan hátt með $(f_1f_2)(x) = f_1(x)f_2(x)$

Röðum föllum samkvæmt vaxtarhraða

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

Röðum föllum samkvæmt vaxtarhraða

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$f_5(n) = \log(\log(n))$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_5(n) = \log(\log(n))$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

 $f_{10}(n) = n!$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

 $f_{10}(n) = n!$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

•
$$f_8(n) = n^3 + n(\log(n))^2$$
 (eða f_2)

$$f_2(n) = 8n^3 + 17n^2 + 111$$
 (eða f_8)

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

•
$$f_8(n) = n^3 + n(\log(n))^2$$
 (eða f_2)

$$f_2(n) = 8n^3 + 17n^2 + 111$$
 (eða f_8)

$$f_1(n) = (1.5)^n$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

•
$$f_8(n) = n^3 + n(\log(n))^2$$
 (eða f_2)

$$f_2(n) = 8n^3 + 17n^2 + 111$$
 (eða f_8)

$$f_1(n) = (1.5)^n$$

$$f_4(n) = 2^n$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2 (\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

•
$$f_8(n) = n^3 + n(\log(n))^2$$
 (eða f_2)

$$f_2(n) = 8n^3 + 17n^2 + 111$$
 (eða f_8)

$$f_1(n) = (1.5)^n$$

$$f_4(n) = 2^n$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_1(n) = (1.5)^n$$

$$f_2(n) = 8n^3 + 17n^2 + 111$$

$$f_3(n) = (\log(n))^2$$

$$f_4(n) = 2^n$$

$$f_5(n) = \log(\log(n))$$

$$f_6(n) = n^2(\log(n))^3$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_8(n) = n^3 + n(\log(n))^2$$

$$f_9(n) = 10000$$

$$f_{10}(n) = n!$$

$$f_9(n) = 10000$$

$$f_3(n) = (\log(n))^2$$

$$f_6(n) = n^2(\log(n))^3$$

•
$$f_8(n) = n^3 + n(\log(n))^2$$
 (eða f_2)

$$f_2(n) = 8n^3 + 17n^2 + 111$$
 (eða f_8)

$$f_1(n) = (1.5)^n$$

$$f_4(n) = 2^n$$

$$f_7(n) = 2^n(n^2 + 1)$$

$$f_{10}(n) = n!$$

Stóra Ómega - Ω-ritháttur (big-omega)

Skilgreining: Látum f og g vera föll $\mathbb{R} \to \mathbb{R}$ eða $\mathbb{N} \to \mathbb{R}$. Við segjum að f(x) sé $\Omega(g(x))$ ef til eru fastar C>0 og k þannig að fyrir öll x>k gildi $|f(x)| \geq C|g(x)|$

- Við segjum "f(x) er stóra-ómega af g(x)"
- Stóra-O gefur efri mörk á vöxt falls, en stóra-ómega gefur neðri mörk
- ▶ f(x) er $\Omega(g(x))$ þá og því aðeins að g(x) sé O(f(x)) þetta er afleiðing skilgreininganna

Stóra Þeta - @-ritháttur (big-theta)

- ▶ Skilgreining: Látum f og g vera föll $\mathbb{R} \to \mathbb{R}$ eða $\mathbb{N} \to \mathbb{R}$. Við segjum að f(x) sé $\Theta(g(x))$ ef hvort tveggja gildir að
 - ightharpoonup f(x) er O(g(x)) og
 - $ightharpoonup f(x) \text{ er } \Omega(g(x))$
- Við segjum "f(x) er stóra-þeta af g(x)", og við segjum líka "f(x) er af stærðargráðu g(x)", og við segjum líka "f(x) og g(x)" eru af sömu stærðargráðu
- Stóra-O gefur efri mörk á vöxt falls, en stóra-ómega gefur neðri mörk
- ► f(x) er $\Theta(g(x))$ þá og því aðeins að til séu fastar $C_1, C_2 > 0$ og k þannig að $C_1|g(x)| < |f(x)| < C_2|g(x)|$ fyrir öll x > k

Flækjustig algríma (complexity of algorithms)

- ► Tímaflækja (time complexity)
- Minnisflækja (space complexity)
- Flækjustig í versta tilfelli
- ► Hvernig skiljum við flækjustigið?

Flækjustig

- Ef gefið er algrím til að leysa tiltekið vandamál, hversu vel virkar algrímið fyrir inntak af gefinni stærð? Við spyrjum:
 - ► Hve mikinn tíma tekur algrímið til að leysa vandamálið?
 - Hve mikið minnisrými þarf algrímið til að leysa vandamálið?
- Greining okkar á tímanum sem algrímið krefst er greining á tímaflækju algrímsins (time complexity)
- Greining okkar á minnisrýminu sem algrímið krefst er greining á minnisflækju algrímsins (space complexity)

Flækjustig

- Við munum einbeita okkur að tímaflækju
- Greiningin á tímaflækjunni felst í að finna efri mörk á fjölda þeirra aðgerða sem algrímið þarf að framkvæma
 - ▶ Við notum þar O(...) og $\Theta(...)$
- Slíka greiningu má nota til að komast að því hvort raunhæft er að nota viðkomandi algrím til að leysa vandamál af tiltekinni stærð
- Við getum líka notað slíka greiningu til að bera saman mismunandi algrím fyrir sama vandamál
- Við horfum fram hjá smáatriðum í viðkomandi útfærslu, þar með talið tölvugerðir, forritunarmál og þvíumlíkt því það flækir málið of mikið

Tímaflækja

- Til að greina tímaflækju ákvörðum við fjölda aðgerða svo sem samanburða og reikniaðgerða (plús, mínus, margföldun, ...)
- Meta má tímann sem tölva þarf til að leysa vandamál ef vitað er nokkurn veginn hve margar aðgerðir tölvan þarf að framkvæma
- Við horfum framhjá smáatriðum sem hafa hverfandi tímakostnað
- ► Við einbeitum okkur að **tímaflækju í versta tilfelli**, sem gefur okkur þá efri mörk á fjölda aðgerða sem framkvæma þarf fyrir vandamál af tiltekinni stærð
- Það er yfirleitt mun erfiðara að greina meðaltímaflækju en tímaflækju í versta tilfelli

Leit að hágildi

```
Notkun: x := \max(a_1, a_2, ..., a_n)
Fyrir: a_1, a_2, ..., a_n eru heiltölur, n > 0
Eftir: x stærsta af a_1, a_2, ..., a_n
stef max( a_1, a_2, ..., a_n: heiltölur )
    m := a_1
    i := 1
    meðan i \neq n
        \{1 \le i \le n, m \text{ er stærsta af } a_1, ..., a_i\}
        i := i+1
        ef a_i > m þá m := a_i
    skila m
```

Hver er tímaflækjan?

Hver er tímaflækjan?

- Lausn: Teljum fjölda samanburða
 - ightharpoonup Fjöldi umferða í lykkjunni er n-1
 - ightharpoonup Samanburðurinn $a_i>m$ er framkvæmdur einu sinni í hverri umferð lykkjunnar
 - n-1 sinnum samtals
 - ► Í byrjun hverrar umferðar lykkjunnar er athugað hvort $i \neq n$ og einnig í lok síðustu umferðar
 - ▶ *n* sinnum samtals
 - ightharpoonup Heildarfjöldi samanburða er því n-1+n=2n-1
- ightharpoonup Tímaflækja algrímsins er því $\Theta(n)$

Linuleg leit (linear search)

```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir: x er heiltala, a_1, a_2, ..., a_n eru heiltölur
Eftir:
         Ef x er ekki ein af a_1, a_2, ..., a_n þá er i = 0,
            annars er i minnsti vísir þ.a. x = a_i
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 0
    meðan i < n
        \{0 \le i \le n, \text{ engin talnanna } a_1, ..., a_i \text{ er jöfn } x\}
        i := i+1
        ef a_i = x þá skila i
    skila 0
```


Hver er tímaflækja línulegrar leitar í versta tilfelli?

- Lausn: Teljum fjölda samanburða
 - ightharpoonupÍ versta tilfelli er fjöldi umferða í lykkjunni n
 - Samanburðurinn $a_i = x$ er framkvæmdur í hverri umferð lykkjunnar
 - ▶ *n* sinnum samtals
 - lackbox Í byrjun hverrar umferðar er athugað hvort i < n og einnig eftir lok síðustu umferðar
 - $\triangleright n + 1$ sinnum samtals
 - ▶ Heildarfjöldi samanburða er því n + n + 1 = 2n + 1
- ightharpoonup Tímaflækja algrímsins er því $\Theta(n)$

Hver er tímaflækja línulegrar leitar að meðaltali?

- Lausn: Gerum ráð fyrir að gildið sem leitað er að sé í rununni og að öll sæti í rununni séu jafnlíkleg til að innihalda gildið
 - ightharpoonup Að meðaltali er fjöldi umferða í lykkjunni n/2
 - Samanburðurinn $a_i = x$ er framkvæmdur í hverri umferð lykkjunnar
 - ightharpoonup n/2 sinnum að meðaltali
 - lacktriangle Í byrjun hverrar umferðar er athugað hvort i < n og einnig eftir lok síðustu umferðar
 - $\triangleright n/2 + 1$ sinnum samtals
 - ▶ Heildarfjöldi samanburða er því n/2 + n/2 + 1 = n + 1
- Tímaflækja algrímsins er því $\Theta(n)$

Helmingunarleit (binary search)

```
Notkun: i := leita(x, a_1, a_2, ..., a_n)
Fyrir:
          x er heiltala,
            a_1, a_2, \dots, a_n eru heiltölur í vaxandi röð
Eftir:
           1 \le i \le n+1, \quad a_1, \dots, a_{i-1} < x \le a_i, \dots, a_n
stef leita( x : heiltala, a_1, a_2, ..., a_n: heiltölur )
    i := 1; \quad j := n + 1
    meðan i \neq j
        \{1 \le i \le j \le n+1, a_1, \dots, a_{i-1} < x \le a_j, \dots, a_n\}
        m := [(i+j)/2]
        ef a_m < x þá i := m + 1
        annars
                   j := m
    skila i
```


Hver er tímaflækja helmingunarleitar í versta tilfelli?

- Lausn: Teljum fjölda samanburða
 - ightharpoonup Í hverri umferð lykkjunnar helmingast (a.m.k.) fjöldi óþekktra sæta, j-i, sem í upphafi eru n talsins
 - Fjöldi umferða í lykkjunni er því í mesta lagi (fyrir n > 0)
 - \triangleright 1 + $log_2(n)$
 - lacktriangle Samanburðurinn $a_m < x$ er framkvæmdur einu sinni í hverri umferð lykkjunnar
 - ► Samtals $1 + log_2(n)$ sinnum í mesta lagi
 - Samanburðurinn $i \neq j$ er framkvæmdur einu sinni á undan hverri umferð lykkjunnar og einu sinni enn eftir að öllum umferðum er lokið
 - Samtals $2 + log_2(n)$ sinnum í mesta lagi
 - ► Heildarfjöldi samanburða er því $3 + 2\log_2(n)$
- ► Tímaflækja algrímsins er því $\Theta(\log(n))$, mun betri en línuleg leit

Röðun: Insertion sort

```
Notkun:
              raða(a_1, a_2, ..., a_n)
Fyrir:
               a_1, a_2, \dots, a_n er runa af rauntölubreytum
Eftir:
               Gildunum í rununni hefur verið umraðað
               svo gildin eru í vaxandi röð
stef raða(a_1, a_2, ..., a_n: runa af rauntölubreytum)
     i := 0
     meðan i \neq n
          \{a_1, a_2, ..., a_i \text{ er í vaxandi röð}, 0 \le i \le n\}
          i := i + 1; \quad j := i
          meðan j \neq 1 og a_i < a_{i-1}
               \{1 \leq j \leq i \leq n, a_j, a_{j+1}, ..., a_i \text{ er í vaxandi röð}, \}
               \{a_1, a_2, \dots, a_{j-1}, a_{j+1}, \dots, a_i \text{ er einnig í vaxandi röð.}\}
               \{ Gildið í sæti a_i er því ef til vill of aftarlega.
               m := a_j; \quad a_j := a_{j-1}; \quad a_{j-1} := m; \quad j := j-1
```


Víxlum gildunum í a_j og a_{j-1} Færir gildið framar í rununni

Hver er tímaflækja insertion sort í versta tilfelli?

- Lausn: Teljum fjölda samanburða
 - Fjöldi umferða í ytri lykkjunni er n, þar sem i hefur í byrjun hverrar umferðar gildin $i=0,1,\ldots,n-1$
 - Fyrir hverja slíka umferð ytri lykkjunnar verða í versta tilfelli farnar i umferðir innri lykkju, með i samanburðum $a_j < a_{j-1}$ auk i+1 samanburða $j \neq 1$
 - ▶ Heildarfjöldi: $[0 + 1 + \dots + (n 1)] + [1 + 2 + \dots + n] = n^2$
 - ightharpoonupÍ upphafi hverrar umferðar ytri lykkju og einnig eftir síðustu er framkvæmdur einn samanburður, samtals n+1 samanburðir
 - ightharpoonup Heildarfjöldi samanburða er því $n^2 + n + 1$
- ightharpoonup Tímaflækja algrímsins er því $\Theta(n^2)$