Computations Performed at UniBwM

Eike Tangermann

Bundeswehr University Munich, Germany

OHC-1 – Wien – 01. July 2025

Local Computing Hardware

Professur für Numerische Methoden in der Luft- und Raumfahrttechnik

Apollo Cluster

- 2752 Cores Xeon Broadwell/Cascade Lake
- 32 Cores / 64GB RAM per node
- 40GBit/s Infiniband
- 19" Chassis, Air Cooling
- Hosted in Container

LUNA Cluster

- 5120 Cores EPYC Rome
- 128 Cores / 512GB RAM per node
- 100GBit/s Infiniband
- OCP Rack
- Direct Liquid Cooling

Scope

- Variation of compiler and MPI
 - gcc-7.5 (OpenSUSE default), gcc-10 (Apollo), gcc-14 (LUNA), icx
 - OpenMPI 4 (Apolllo), OpenMPI 5 (LUNA), IntelMPI
 - Fine mesh case

Scaling from 64 to 2048 processes

■ Xeon: 64 – 512

■ EPYC: 128 – 2048

Coarse mesh case

Apollo Cluster (Xeon)

Compiler / MPI

fine mesh

500km

Scaling coarse mesh

LUNA Cluster (EPYC)

Compiler / MPI

fine mesh

Scaling coarse mesh

*: --march=znver2 --mtune=znver2

EPYC - Single Node (128 Cores)

- All nodes show different times
- Minimum time is mostly similar
- It is not cooling, frequencies do not change

EPYC – Time Variation

Overall Scaling Performance

Coarse mesh

 Overall scaling looks good up to 1024 processes

Conclusions

- Apollo (Xeon)
 - Scales well
 - Fastest with OpenMPI 4
 - Choice of compiler less relevant

- LUNA (EPYC)
 - Drop of calculation speed for high cells per process count
 - Strongly reduced power consumption
 - gcc-14 + Intel MPI provides fastest times