Effetti dell'apprendimento per osservazioneripetizione sull'incorporazione dell'esperienza motoria Osservazione e immaginazione di movimenti di danza moderna precedentemente praticati (experimental) o non praticati (control)

Cross et al. 2006

Mov. praticati > Mov. non praticati

Attivazione di:

STS, PMv pars opercularis, SMA/CMA

Mov. praticati > Mov. non praticati, modulati dal giudizio sulla propria abilità

Attivazione di:

IFG Sx, IPL Sx, PhG

Sistemi di rispecchiamento e abilità sportiva

Capacità di predire l'azione negli atleti

Start IN

710 781 852 923 4,207

Aglioti et al. 2008

Il sistema specchio in presenza di anomalie sensoriali

Plasticità del sistema specchio nei non vedenti

Partecipanti: 8 non vedenti e 14 normovedenti

Stimoli acustici: suoni prodotti da azioni manuali o suoni ambientali

<u>Stimoli visivi per i normovedenti</u>: versione visiva degli stimoli acustici e visione delle stesse pantomime del compito motorio

<u>Compito motorio</u>: esecuzione di pantomime dell'uso di uno strumento (forbice, martello, ecc.

Esp. fMRI

Soggetti: 16 TD e 2 aplasici

1° Esperimento:

Osservazione di atti motori di mano e della mano statica vicina all'oggetto

2° Esperimento:

Esecuzione di azioni di piede, bocca e mano (solo TD)

Gazzola et al. 2007

Osservazione dell'azione> Mano statica

HandAction-HandStatic Masked FeetExe OR MouthExe

Apprendimento per imitazione

Apprendimento imitativo

Osserva il modello e poi, dopo una pausa, imitalo

Durante tutti e tre i momenti del compito di imitazione si attiva il sistema specchio

L'imitazione è molto importante nell'apprendimento di moltissime abilità ed è cruciale nell'apprendimento del linguaggio

Buccino et al. 2004

La corteccia premotoria risulta essere importante nel recupero della funzione motoria

Le cortecce premotoria e parietale inferiore risultano essere specificamente attivate dopo un periodo di training motorio

Pazienti dopo training motorio focalizzato

Pazienti dopo programma di riabilitazione aspecifico

Nelles et al. 2001

Table II. Location of significant clusters for each condition and their comparison

				MNI	Coord	nates
Condition	Brain region	Volume	Peak Z	x	У	Z
Motor	R Cerebellum	105	5.04	30	-56	-28
	L Sensorimotor cortex	32	3.40	-28	-24	52
Motor+imagery	R Cerebellum	38	3.92	38	-70	-26
intotol · imagely	R Sensory cortex	37	3.65	62	-26	34
	L Cerebellum	37	3.64	-26	-56	-30
	R Inferior parietal lobule	70	3.59	48	-54	52
	L Sensorimotor cortex	42	3.43	-26	-26	58
Motor+imagery>motor	R Dorsolateral prefrontal cortex	68	4.14	46	22	38
	L Inferior parietal lobule	51	3.81	-56	-54	40
	L Inferior parietal lobule	37	3.77	-54	-38	50

Dodakian et al. 2014

Terapia basata sull'osservazione dell'azione

Terapia osservazionale su pazienti con paresi (Ertelt et al. 2007)

16 Pazienti assegnati arbitrariamente al gruppo sperimentale e a quello di controllo;

Gruppo sperimentale:

18 sessioni di terapia di 90 min.

Ogni sessione: 6 min di osservazione di azioni di mano e di braccio, 6 min di riproduzione delle stesse.

Azioni di crescente complessità, presentate da varie prospettive;

Gruppo di controllo:

Ogni sessione: 6 min di osservazione di sequenze di simboli geometrici e lettere, 6 min di esecuzione di azioni di mano e di braccio.

Test clinici:

Frenchay arm test (FAT), Wolf Motor Function Test (WMFT), Stroke Impact Scale (SIS)

Tre differenti periodi di valutazione:

14 giorni pre-terapia (baseline)

1 giorno prima della terapia (pre-test)

Fine del periodo di riabilitazione (post-test)

8 settimane dopo la fine della terapia (solo nel gruppo sperimentale)

fMRI prima e dopo la terapia: 7 pazienti g.s., 6 del g.c.

Compito: manipolazione di oggetti con l'una e l'altra mano

Table 3
Results of the comparison of the differences between pre- and post-treatment assessments of the two groups (Z=standardized sum of the ranks; Significance (one-tailed)=level of significance of one-tailed test; FAT=Frenchay Arm Test; WMFT=Wolf Motor Function Test; SIS= Stroke Impact Scale)

	FAT	WMFT	SIS
Z	-3.252	-1.680	-2.684
Significance (one-tailed)	0.0005	0.0525	0.0025

Table 6

Experimental group>control group post training explore complex objects>pre training explore complex objects

	Regions	BA	# Voxels	Z score	MNI coordinates		
					x	У	z
Normal hemisphere	Insula30/IFG orb14 opere7 and Tri5	34	1409	4.29	-24	8	-16
-	STG ³⁸ /Temporal gyrus ³⁵	48	497	4.16	-54	-16	16
	SMA ⁴⁷ /Cingulum ³⁷	23/24	246	3.72	-6	-6	46
	IFG tri ⁷⁹ /IFG operc ¹⁸	48	33	3.46	-40	14	28
Lesioned hemisphere	Supramarginal gyrus ⁹⁰	48	167	4.47	56	-32	28
-	IFG operc66/Pre central gyrus22	44	48	3.74	60	14	22
	STG ¹⁰⁰	48	35	3.66	52	-24	6
	Superior temporal pole 64/IFG operc17	38	58	3.56	58	16	-4

Effects of training on experimental group > Effects of training on control group. Effects derived from contrasts of effects of exploring complex objects with the affected hand. Thresholds and abbreviations identical to those described for Table 4.

Aumento dell'attività corticale come effetto del trattamento

L'approccio riabilitativo basato sul paradigma dell' osservazione di azioni è stato usato con risultati promettenti in altri studi pilota su adulti con varie patologie:

Stroke (Franceschini et al. 2010)

Morbo di Parkinson (Alese et al. 2010; Pelosin et al. 2013

Afasici (Chen et al. 2015; Bonifazi et al. 2013)

Malati in fase di recupero dalla chirurgia ortopedica (Bellelli et al. 2010)

Studio di Brunner et al. 2014 in 20 pazienti in fase post-acuta Età media: 60.7

AO1: 2 settimane; AO2: 3 mesi

Compito fMRI: Ruotare un cilindro con due mani o osservarne la rotazione Scale funzionali: Action Research Arm Test (ARAT); NHPT

Risultati:

Miglioramento in entrambe le scale funzionali

Allargamento delle aree appartenenti al sistema mirror durante il recupero Correlazione tra recupero funzionale e attivazione premotoria e cerebellare

Terapia osservazionale nei bambini con CP

Biagi et al. 2010

Attivazioni di bambini e adulti durante l'osservazione di azioni

Le attivazioni sono più diffuse nei bambini

Aree corticali attivate durante l'osservazione nei bambini

Table 1: Areas elicited by the observation of object-related hand actions versus static control condition in children.

	Area name ^a	Broadman Area (BA)		Peak Tal	airach's coo Y	ordinates Z	Number of Voxels
	Inferior temporal gyrus	37	L R	-44 44	-64 -61	0 1	15536 18659
*	Superior temporal sulcus	22	L R	-51 50	-40	11 11	1531 2584
*	Inferior parietal lobule	40	L R	-56 57	-40 -31 -31	30 27	3751 1669
*	Anterior IPS	40-7	L	-32	-46	50	4806
-1-	Superior parietal lobule	7	R L	-25	-45 -67	49 46	2265 11593
	- Special Particular		R L	23 -33	-64 -16	47 52	8594 3292
*	Precentral gyrus	6-4	R L	32 -47	-14 -2	52 32	1865 2019
		6-9	R	43	2	34	3242
*	Inferior frontal gyrus	45-47	L R	-33 41	23 23	2	441 538
	Postcentral gyrus	5	L	-8	-44	66	374
	Fusiform gyrus	37	L R	-40 43	-54 -61	-17 -16	843 742
	Middle Occipital Gyrus	18	L	-22	-83	3	3897
	. ,		R	24	-83	2	1369
	Precuneus-Cu	31-18-7	L R	-27 24	-76 -79	20 21	2570 4529
	Middle-Superior Frontal	9-10-46	L	-39	38	22	1180
	Gyrus		R	43	. 17	21	1154

Differenze negli indici di lateralizzazione

> 0.2= dominanza sinistra

< - 0.2= dominanza destra

Terapia azione-osservazione nei bambini con paralisi cerebrale infantile

Gruppo sperimentale: 12 bambini

Gruppo di controllo: 12 bambini

Età: 5-15

Paradigma:

GS: Osservazione di azioni unimanuali e bimanuali di complessità crescente, seguita da ripetizione con la mano plegica

GC: Osservazione di filmati con contenuto non riferito ad aspetti motori, esecuzione delle stesse azioni eseguite dal gruppo di controllo

<u>Durata training</u>: 15 giorni (3 settimane)

<u>Valutazione della prestazione a</u>: 1 settimana prima del training (T0), 1 settimana (T1), 8 settimane (T2), 24 settimane (T3) dopo il training

Scale utilizzate: Assisting Hand Assessment (AHA), Melbourne, ABILHAND-Kids

_

Table 1. List of Goal-Directed Actions Performed by All Children and First Observed in Video Clips by the Experimental Group During Action Observation Treatment.

Unimanual	1	Remove large lid from container, take out coloured candy, and place it in glass, pour water in glass
	2	Pick colored card (blue, yellow, red), turn it over, and match it to similar figure to make pairs
	3	Pick up rubber stamp, press it against horizontal and vertical plane to print figure
	4	Pick up coin, put it into money box through slot
	5	Pick up animal-shaped sponge stamp, press it against horizontal and vertical plane to print figure
	6	Pick up spray can and spray
	7	Lift open cap on tube containing shimmery powder and pour some on sheet of paper
	8	Pick up toy fishing rod and catch magnetic animals
Bimanual	9	Use hole punch to make holes in sheet of paper and match holes on studs
	10	Wet and wring cloth and insert it in toy washing machine
	11	Insert cards in clothespin in horizontal and vertical plane
	12	Roll piece of Play-Doh into ball and put it into toy oven
	13	Put coin in wallet and put wallet into box
	14	Make figure using stencil and toothbrush soaked in tempera paint
	15	Decorate frame with pieces of mosaic

ABILHAND-KIDS

A 21-item questionnaire for children from 6 years, scored on a 3-level (impossible, difficult, or easy).

1.	Opening a jar of jam	☐ Impossible	O Difficult	Easy	⊜?
2.	Putting on a backpack/schoolbag	☐ Impossible	Difficult	Easy	0?
3.	Opening the cap of a toothpaste tube	☐ Impossible	O Difficult	Easy	⊜?
4.	Unwrapping a chocolate bar	□Impossible	Oifficult	Easy	0?
5.	Washing the upper-body	☐ Impossible	O Difficult	Easy	⊖?
6.	Rolling-up a sleeve of a sweater	○Impossible	Oifficult	Easy	0?
7.	Sharpening a pencil	□Impossible	Oifficult	Easy	0?
8.	Taking off a T-shirt	○ Impossible	Oifficult	Easy	0?
9.	Squeezing toothpaste onto a toothbrush	○ Impossible	Oifficult	Easy	⊝?
10.	Opening a bread box	○ Impossible	Olfficult	○ Easy	0?
11.	Unscrewing a bottle cap	☐ Impossible	Oifficult	Easy	⊝?
12.	Zipping-up trousers	○ Impossible	Olfficult	Easy	0?
13.	Buttoning up a shirt/sweater	☐ Impossible	Oifficult	Easy	⊝?
14.	Filling a glass with water	☐ Impossible	Olfficult	Easy	0?
15.	Switching on a bedside lamp	☐ Impossible	Oifficult	Easy	⊖?
16.	Putting on a hat	Impossible	Olfficult	Easy	0?
17.	Fastening the snap of a jacket	☐ Impossible	Oifficult	Easy	⊖?
18.	Buttoning up trousers	☐ Impossible	Oifficult	Easy	0?
19.	Opening a bag of chips	☐ Impossible	Oifficult	Easy	⊖?
20.	Zipping-up a jacket	☐ Impossible	Oifficult	Easy	0?
21.	Taking a coin out of a pocket	☐ Impossible	Oifficult	Easy	⊖?

Table 3. Between-Group Differences.

	Experimental Group $(n = 12)$	Control Group (n = 12)	P ^a
Primary outcome measure			
AHA (logits), mean ± SD			
Baseline (T0)	2.04 ± 1.50	2.63 ± 1.69	
TI	2.94 ± 1.69	2.78 ± 1.67	.008 ^b
T2	2.90 ± 1.81	2.78 ± 1.58	.019 ^c
T3	3.06 ± 2.25	2.83 ± 1.70	.049 ^d
Secondary outcome measures			
MUUL (%), mean ± SD			
Baseline (T0)	75.44 ± 10.65	78.91 ± 12.67	
TI	79.90 ± 10.87	82.98 ± 10.35	.931 ^b
T2	81.28 ± 11.30	84.57 ± 9.80	.840°
T3	78.05 ± 14.50	81.89 ± 14.00	. 795 ^d
ABILHAND-Kids (logits), mean ± SD			
Baseline (T0)	0.65 ± 1.42	0.93 ± 2.28	
TI	1.41 ± 0.87	1.21 ± 2.85	.149 ^b
T2	2.05 ± 1.19	1.22 ± 2.40	.043°
T3	2.07 ± 1.34	1.27 ± 2.54	.118 ^d

Modificazione del sistema specchio dopo la AOT

Studio fMRI di Biagi et al. 12 bambini con UCP (età media 11 anni) Osservazione di azioni semplici e complesse

Bambini con cerebral palsy

Bambini TD

Attivazione di: corteccia inferotemporale e STG; area anteriore intraparietale; lobuli parietale inferiore e superiore; giro precentrale; giro frontale inferiore. Lateralizzazione (verso l'emisfero dominante) maggiore dei bambini TD di pari età

Osservazione di abilità motorie

Errante et al. 2018

Attivazione con intensità diverse del sistema specchio

L'attivazione durante l'osservazione dell'azione inesperta è maggiore di quella ottenuta durante l'osservazione dell'azione esperta

Errante et al. 2018

L'osservazione sia della mano sana che della mano paretica attiva il sistema specchio

Attivazioni individuali dei bambini con UCPdurante le due condizioni di osservazione

Una terapia efficace basata sull'osservazione dovrebbe tener conto del tipo di modello da usare

Quali circuiti permettono il recupero funzionale?

Differential Impairment of Individuated Finger Movements in Humans After Damage to the Motor Cortex or the Corticospinal Tract

Catherine E. Lang^{1,2} and Marc H. Schieber¹⁻⁴

Dopo due anni di terapia, l'indipendenza del pollice era normale, quella dell'indice leggermente deteriorata, mentre quella delle tre altre dita era deficitaria

FIG. 4. Arm-hand movements and brain stem of patient with total destruction of arm-finger field of left precentral region. Initially there was complete paralysis of right arm. After 2 yr of intense physiotherapy, patient was able to perform movements shown in the various pictures. Individual finger movements were not possible, but synergistic finger flexion and interaction between forefinger and thumb were possible. *Bottom*, section of medulla oblongata shows complete degeneration of left pyramid. [From Foerster (74).]

E' indispensabile l'area motoria primaria per i movimenti di precisione?

"Relatively independent digit movements, including precision grip (prehension of a small object with finger-to-thumb opposition), were restored in the trained monkeys."

La corteccia premotoria può controllare gli atti motori manuali insieme a MI

Localizzazione dei PNs F5 **PNs** 1-111 C3-C4 VII O

Isa et al., 2006

Proiezioni cortico-discendenti di F5

Borra et al., 2010

Vie cortico-discendenti

Controllo disinaptico nell'uomo

L'attivazione del sistema mirror durante l'osservazione accoppiata alla riproduzione rinforza l'uscita motoria

