3. HIMPUNAN DAN FUNGSI

3.1. Aljabar Himpunan

Konsep tentang himpunan merupakan dasar penting dalam matematika. Himpunan berperan dalam matematika dan bermanfaat dalam bentuk pemodelan dan penyelidikan masalah-masalah dalam ilmu komputer. Himpunan pertama kali dikenalkan oleh G. Cantor.

Himpunan merupakan pengertian pangkal, sehingga tidak dapat didefinisikan. Himpunan dilambangkan dengan huruf capital, misal A, B, C, Himpunan merupakan kumpulan objek-objek yang terdefinsikan secara jelas. Objek-objek dalam himpunan disebut elemen atau anggota. Terdapat *dua cara penulisan* suatu himpunan, yaitu

a. Metode Roster (tabelaris) dengan menyebut/mendaftar nama semua anggota.

 $Contoh: S = \{Senin, Selasa, Sabtu\}$ $W = \{hijau, kuning, merah\}$

I = {Surabaya, Yogyakarta, Semarang, Jakarta, Bandung}

 Metode Rule (notasi pembentuk himpunan) dengan menyebut syarat keanggotaannya.

 $Contoh: S = \{Senin, Selasa, Sabtu\} \ dalam \ metode \ Rule \ ditulis$

 $S = \{ x \mid x \text{ nama hari dalam satu minggu yang diawali dengan } S \}$

 $W = \{hijau, \, kuning, \, merah\} \, \, dalam \, \, metode \, Rule \, \, ditulis$

 $W = \{ r \mid r \text{ warna lampu pada rambu lalulintas} \}$

 $I = \{Surabaya,\,Yogyakarta,\,Semarang,\,Jakarta,\,Bandung\}\,\,dalam$ metode Rule ditulis

 $I = \{i \mid i \text{ ibukota propinsi atau daerah istimewa di Pulau Jawa}\}$

Relasi Himpunan dan elemen

Jika A dinyatakan sebagai suatu himpunan dan jika x dinyatakan sebagaielemen/anggota, kemungkinan yang terjadi

a. $x \in A$ (x anggota dari A) dan

b. $x \notin A$ (x bukan anggota dari A)

Jika terdapat himpunan A dan B serta x suatu elemen/anggota, maka terdapat empat kemungkinan, yaitu

 $a. x \in A dan x \in B$

b. $x \in A dan x \notin B$

c. $x \notin A \operatorname{dan} x \in B$

 $d. x \notin A dan x \notin B$

Dari $x \in A$ dan $x \in B$, menunjukkan bahwa x merupakan anggota dari A juga anggota dari B.

Dari $x \in A$ dan $x \notin B$, menunjukkan bahwa x elemen dari himpunan A dan bukan elemen B.

Dari $x \notin A$ dan $x \in B$, menunjukkan bahwa x hanya elemen dari B dan bukan elemen A.

Dari x ∉ A dan x ∉ B, menunjukan bahwa x bukan elemen dari himpunan A dan B

Relasi Himpunan

Aksioma Perluasan (Axiom of Extension) : Dua himpunan A dan B adalah sama, A = B, *jika dan hanya jika* keduanya mempunyai elemen-elemen yang sama (Setiap elemen dari A merupakan elemen dari B dan setiap elemen dari B merupakan elemen dari A)

Aksioma perluasan ini dapat dinyatakan dengan notasi logika melalui dua cara:

a.
$$A = B \Leftrightarrow \forall x [x \in A \Leftrightarrow x \in B]$$

b. $A = B \Leftrightarrow [\forall x [x \in A \Rightarrow x \in B] \Leftrightarrow \forall x [x \in B \Rightarrow x \in A]]$

Aksioma perluasan menyatakan bahwa jika dua himpunan mempunyai anggota yang sama, maka tanpa dipandang bagaimana himpunan-himpunan tersebut ditetapkan. Hal ini berarti jika suatu himpunan ditetapkan secara eksplisit dengan cara mendaftar, urutan dari pendaftaran tidak diperhatikan; himpunan yang dinyatakan dengan {a,b,c} adalah sama dengan himpunan-himpunan yang dinyatakan dengan

 $\{c,b,a\}$ dan $\{b,a,c\}$. Oleh selanjutnya, tidak menjadi masalah jika suatu elemen muncul lebih dari satu kali; $\{a,b,a\}$ $\{a,b\}$ dan $\{a,a,a,b,b\}$ adalah sepesifikasi berbeda dari himpunan yang sama. Suatu himpunan berhingga dapat dicirikan secara implisit maupun eksplisit, misal $\{1,2,3,4,5\}$ dan $\{x\mid x\in \mathbf{B}\land 1\leq x\leq 5\}$. Selain itu, himpunan yang sama dapat ditentukan secara implisit dengan predikat yang berbeda, misal $\{x\mid x=0\}$ dan $\{x\mid x\in \mathbf{B}\land -1< x< 1\}$ adalah sama.

Definsi 3.1.1: Misal A dan B adalah himpunan, himpunan A dikatakan *himpunan bagian dari* B, jika setiap elemen dari A merupakan elemen dari B, dan dilambangkan dengan $A \subseteq B$.

Secara simbolik $A \subset B \Leftrightarrow \forall x [x \in A \Rightarrow x \in B]$

Jika $A \subseteq B$, dapat juga ditulis dalam bentuk $B \supseteq A$ dan dikatakan A *termuat dalam* B, atau B memuat A, atau B superset dari A.Ditulis $A \not\subset B$ jika A *bukan himpunan bagian dari* B. Jika $A \subseteq B$ dan $A \ne B$, dikatakan A proper subset (himpunan bagian sejati dari) B.

Contoh:

- a. Himpunan bilangan bulat genap adalah proper subset dari himpunan semua bilangan bulat.
- b. Himpunan semua orang laki-laki adalah proper subset dari himpunan semua manusia.
- c. Himpunan $\{1,2,3,4,5\}$ adalah subset (bukan proper subset) dari himpunan $\{x \mid 0 < x < 6\}$

Dalam tulisan ini, diasumsikan semesta pembicaraan U / S yang mungkin atau tidak mungkin ditetapkan secara eksplisit. Setiap peubah yang menyatakan suatu elemen dari suatu himpunan dapat mengambil nilai/values dari semesta ini. Berikut ini suatu teorema yang menrupakan konsekuensi.

Teorema 3.1.1.: Misal S adalah semesta pembicaraan dan A adalah himpunan. Maka $A \subseteq S$.

Bukti: Bukti ini merupakan suatu contoh dari bukti yang sangat trivial yang berdasar fakta bahwa $x \in S$, untuk setiap elemen x. Himpunan A merupakan bagian dari S *jika dan hanya jika* implikasi

$$x \in A \Rightarrow x \in Sadalah$$
 benar.

Tetapi x ∈S*selalu benar*; oleh sebab itu implikasi adalah benar. Karena x adalah sebarang, secara generalisasi

$$\forall x[x \in A \Rightarrow x \in S]$$

oleh karena itu $A \subset S$.

Teorema berikut ini berkenaan dengan kesamaan dua himpunan.

Teorema 3.1.2. Misal A dan B adalah himpunan-himpunan. Maka A = B *jika hanya jika* $A \subseteq B$ dan $B \subseteq A$.

Bukti: teorema ini dibuktikan dalam *dua bagian* dengan menggunakan bukti langsung.

a. (bagian "hanya jika" /
$$\Leftarrow$$
): $A = B \Rightarrow [A \subseteq B \land B \subseteq A]$

Anggap bahwa A=B. Dengan menerapkan aksioma perluasan, setiap anggota dari A adalah anggota dari B. Oleh karena itu, dengan definisi 1.1.1, $A\subseteq B$. Hal ini menunjukkan bahwa jika A=B maka $A\subseteq B$. Dengan alasan yang sama, tetapi penukaran peran dari A dan B, jika A=B maka $B\subseteq A$.

Dengan demikian

$$[A = B \Rightarrow A \subseteq B] \land [A = B \Rightarrow B \subseteq A]$$

yang ekivalen dengan

$$[A = B] \Rightarrow [A \subset B \land B \subset A]$$

b. (bagian "jika"/
$$\Rightarrow$$
): $[A \subseteq B \land B \subseteq A] \Rightarrow A = B$

Anggap bahwa $A \subseteq B$ dan $B \subseteq A$. Berdasar Definisi 1.1.1

$$A \subseteq B. \Rightarrow \forall x[x \in A \Rightarrow x \in B] \text{ dan } B \subseteq A. \Rightarrow \forall x[x \in B \Rightarrow x \in A]$$

Oleh sebab itu,

$$(A \subseteq B \land B \subseteq A) \Rightarrow [\forall x[x \in A \Rightarrow x \in B] \land \forall x[x \in B \Rightarrow x \in A]]$$

Dengan demikian,

$$(A \subseteq B \land B \subseteq A) \in (A = B).$$

Teorema ini, mengakibatkan

Corrolary 3.1.1. Untuk sebarang himpunan A, $A \subseteq A$. (Bukti sebagai latihan)

Teorema 3.1.3. Misal A, B dan C adalah himpunan-himpunan. Jika $A \subseteq B$ dan $B \subseteq C$ maka $A \subseteq C$.

Bukti: Misal x adalah sebarang himpunan pada semesta pembicaraan.

Karena $A \subseteq B$, maka dipenuhi

$$x \in A \land x \in B$$
.

Karena $B \subseteq C$, maka dipenuhi

$$x \in B \in \land x \in C$$
.

Dengan demikian diperoleh.

$$x \in A \Rightarrow x \in C$$
.

Karena x adalah sebarang elemen dari semesta, yang memenuhi bahwa

$$\forall x[x \in A \Rightarrow x \in C] \text{dan } A \subseteq C.$$

Definisi 3.1.2.Suatu himpunan yang tidak mempunyai elemen disebut himpunan Kosong atau Null.

Suatu himpunan yang hanya memiliki satu elemen disebut himpunan singleton.

Teorema3.1.4. Misal Let ϕ suatu himpunan kosong dan A sebarang himpunan, maka $\phi \subseteq A$.

Bukti: Misal x sebarang elemen dari semesta. Tetapi φ tidak memiliki elemen, implikasi

 $x \in \phi \Rightarrow x \in Aselalu benar.$

Karena x dipilih sebarang, pernyataan dapat ditetapkan secara universal, yaitu $\forall x [x \in \phi \Rightarrow x \in A],$

yang menunjukkan bahwa φ⊆A. ■

Teorema berikut menunjukkan bahwa terdapat *satu dan hanya satu*himpunan kosong,dinyatakan "himpuan kosong adalah tunggal"

Teorem 3.1.5: Misal ϕ dan ϕ ' adalah himpuanan-himpunan kosong, maka $\phi = \phi$ '. Bukti (Langsung): Karena ϕ adalah kosong, maka menurut teorema 1.1.4 bahwa $\phi \subseteq \phi$ '. Dengan cara yang sama ϕ ' $\subseteq \phi$. Dengan menerapkan teorema 1.1.2 diperoleh

$$\phi = \phi'$$

Contoh-contoh

a. Himpunan {a, b} mempunyai 4 subset yang berbeda, yaitu {a, b},[a},{b}danφ.
b.Himpunan {{a}} adalah singleton set; yang mempunyai tepat dua subset, yaitu {{a}}dan φ

3.2 OPERASI-OPERASI PADA HIMPUNAN

Suatu operasi pada himpunan-himpunan menggunakan himpunan-himpunan (yang disebut oprerand) untuk memperoleh himpunan baru.

Seperti yang dijelaskan sebelumnya, dianggap bahwa semua himpunan berasal dari semesta S/U.

Definisi3.2.1: Jika A dan B adalah himpunan.

a. Gabungan dari A dan B., dinyatakan dengan A \cup B, adalah **himpunan** A \cup B = {x | x \in A v x \in B}.

b. Irisan dari A dan B, dinyatakan dengan A \cap B, adalah himpunan A \cap B = $\{x \mid x \in A \land x \in B\}$.

c. Selisih dari A dan B atau komplemen relatif B atas A, dinyatakan dengan A-B adalah himpunan

$$A - B = \{ x \mid x \in A \land x \notin B \}.$$

Contoh-contoh:

E ⊂**B** dan E adalah himpunan semua bilangan genap

G ⊂**B** dan G adalah himpunan semua bilangan ganjil

 $P \subset \mathbf{B}$ dan P adalah himpunan semua bilangan prima

B adalah himpunan semua bilangan bulat, maka

B adalah himpunan semua bilangan bulat, maka

$$E \cup G = B$$
; $E \cup B = B$; $G \cup B = B$; $P \cup B = B$

 $E \cap G = \emptyset$, karena tidak ada elemen dari E yang merupakan elemen dari G.

$$E \cap P = \{2\}$$

$$G \cap P = \{3, 5, 7, 11, 13, ...\}$$

 $E \cap B = E$, semua bilangan genap adalah bilangan Bulat.

 $G \cap \mathbf{B} = G$, semua bilangan ganjil adalah bilangan Bulat.

$$\mathbf{B} - \mathbf{E} = \mathbf{G}$$

$$\mathbf{B} - \mathbf{G} = \mathbf{E}$$

$$E - G = \phi$$

$$G - E = \phi$$

Definisi 3.2.2: Jika A dan B adalah himpunan-himpunan dan A \cap B= ϕ ,maka A dan B adalah disjointatau saling asing. Jika \mathcal{C} koleksi dari himpunan-himpunan sedemikian hingga dua elemen sebarang berbeda dari \mathcal{C} adalah disjoint, maka \mathcal{C} adalah koleksi dari himpunan-himpunan yang saling asing.

Contoh

Jika $\mathbf{C} = \{\{0\}, \{1\}, \{2\},...\} = \{(i) \mid i \in \mathbf{N}\}$, maka \mathbf{C} adalah koleksi dari himpunan-himpunan saling asing.

Teorema3.2.1: Operasi-operasi himpunan , yaitu gabungan dan irisan bersifat komutatif dan asosiatif.

- (a) $A \cup B = B \cup A$
 - (b) $A \cap B = B \cap A$
 - $\text{(c) } (A \cup B) \cup C = A \cup (B \cup C)$
 - (d) $(A \cap B) \cap C = A \cap (B \cap C)$

Bukti dari pernyataan (a) - (d) menggunakan sifat komutatif dan asosiatif dari operator-operator logis \vee dan \vee . Sebagai contoh, dibuktikan pernyataan (a) dan (c) (sisanya sebagai latihan!).

Bukti:

Teorema 3.2.2. Misal A, B dan C sebarang himpunan, maka

a.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

b.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Dari teorema di atas, hanya dibuktikan bagian a. Sisanya, sebagai latihan bagi mahasiswa.

Untuk membuktikan $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ dilakukan dengan cara

$$A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C) \text{ dan } (A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$$

Pertama-tama dibuktikan $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

 $x \in [A \cap (B \cup C)]$, maka $x \in A$ dan $x \in (B \cup C)$, berarti

 $x \in A$ dan $x \in B$ atau $x \in C$. Dengan demikian, didapat

i.
$$x \in A dan x \in B$$
, juga

ii.
$$x \in A dan x \in C$$
.

Karena dari $x \in [A \in (B \cup C)]$ didapat $x \in A$ dan $x \in B$ atau

 $x \in A$ dan $x \in C$, maka disimpulkan bahwa

$$A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$$
. i).

Selanjutnya dibuktikan $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

 $x \in [(A \cap B) \cup (A \in C)]$, maka $x \in [(A \cap B)]$ atau $x \in [(A \cap C)]$.

 $x \in [(A \cap B)]$ berarti $x \in A$ dan $x \in B$ atau *

 $x \in [(A \subset C)]$ berarti $x \in A$ dan $x \in C$.

Dari * dan ** dapat disederhanakan menjadi $x \in A$ dan $x \in B$ atau $x \in C$, secara simbolik

ditulis $x \in A$ dan $x \in (B \cup C)$ atau $A \cap (B \cup C)$.

Karena darix \in [(A \cap B) \cup (A \cap C)] didapat x \in A dan x \in (B \cup C),

berarti($A \cap B$) \cup ($A \cap C$) \subset $A \cap (B \cup C)$ ii)

Dari i) dan ii) disimpulkan bahwa $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Analog dengan ini dapat dibuktikan $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. \Rightarrow

Teorema3.2.3 Jika A, B dan C adalah himpunan, maka

i.
$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$
 dan

ii.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
.

Bukti:

a. Seperti langkah-langkah sebelumnya, akan ditunjukkan bahwa

i.
$$A \setminus (B \cup C) \subseteq (A \setminus B) \cap (A \setminus C)$$
 dan

ii.
$$(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$$
.

Pertama-tama ditunjukkan bahwa $A \setminus (B \cup C) \subset (A \setminus B) \cap (A \setminus C)$.

 $x \in (A \setminus (B \cup C))$ berarti $x \in A$ dan $x \notin ((B \cup C))$ identik dengan

 $x \in A dan x \notin B atau x \notin C dan didapat$

i. $x \in A \operatorname{dan} x \notin B \operatorname{atau} x \in (A \setminus B)$, juga

ii. $x \in A \text{ dan } x \notin C \text{ atau } x \in (A \setminus C)$.

Karena dari $x \in (A \setminus (B \cup C))$ didapat $x \in (A \setminus B)$ dan $x \in (A \setminus C)$,

halini menunjukkan bahwa $A \setminus (B \cup C) \subset (A \setminus B) \cap (A \setminus C)$.

Akhirnya ditunjukkan bahwa $(A \setminus B) \cap (A \setminus C) \subset A \setminus (B \cup C)$.

 $x \in [(A \setminus B) \cap (A \setminus C)] \text{ berarti } x \in A \text{ dan } x \notin B \text{ dan } x \in A \text{ dan } x \notin C,$ disederhanakan

menjadi $x \in A$ dan $x \notin B$ dan $x \notin C$ identik dengan $x \in A$ dan $x \notin (B \cup C)$.

Karena dari $x \in [(A \setminus B) \ddot{i} (A \setminus C)]$ didapat $x \in A$ dan $x \notin (B \cup C)$,

menunjukkan bahwa $(A \setminus B) \cap (A \setminus C) \subset A \setminus (B \cup C)$. **.

Dari * dan ** disimpulkan bahwa $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Analog dengan ini ditunjukkan bahwa $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Teorema 3.2.4 Jika A dan B adalah himpunan, maka

- a. $A \cup A = A$
- b. $A \cup \phi = A$
- c. $A \cup U = U$
- d. $A \subseteq (A \cup B)$
- e. B \subseteq (A \cup B)

Bukti:

Pada kesempatan ini dibuktikan bagian a. dan d, sisanya untuk tugas.

a.
$$A \cup A = A$$
?

$$x \in A \cup A \Leftrightarrow x \in \{x \mid x \in A \lor x \in A\}$$

$$\Leftrightarrow x \in A \lor x \in A$$

$$\Leftrightarrow x \in A$$

$$\Leftrightarrow x \in \{x \mid x \in A\}$$

$$\Leftrightarrow x \in A$$

$$\therefore A \cup A = A \Rightarrow$$

d.
$$A \subset (A \cup B) \Leftrightarrow x \in A \Rightarrow x \in (A \cup B)$$

$$\Leftrightarrow$$
 x \in A \Rightarrow (x \in A \lor x \in B)

$$\Leftrightarrow x \in A \Rightarrow x \in A \text{ dan } x \in A \Rightarrow x \in B.$$

$$\therefore A \subset (A \cup B)$$
 \Rightarrow

Teorema 3.2.5 Jika A dan B adalah himpunan, maka

a.
$$A \cap A = A$$

b.
$$A \cap \phi = \phi$$

c.
$$A \cap U = A$$

$$d.(A \cap B) \subseteq A$$

e.
$$(A \cap B) \subseteq B$$

Bukti:

Pada kesempatan ini dibuktikan bagian a. dan e, sisanya untuk tugas.

a.
$$A \cap A = A$$
?

$$x \in A \cap A \Leftrightarrow x \in \{x \mid x \in A \land x \in A\}$$

$$\Leftrightarrow x \in A \land x \in A$$

$$\Leftrightarrow x \in A$$

$$\Leftrightarrow x \in \{x \mid x \in A\}$$

$$\Leftrightarrow x \in A$$

$$\therefore A \cap A = A$$

e.
$$(A \cap B) \subseteq B$$

Teorema 3.2.6 Jika A dan B adalah himpunan, maka

a.
$$U' = \phi$$

b.
$$\phi' = U$$

c.
$$A \cup A' = U$$

d.
$$A \cap A' = \phi$$

e.
$$(A')' = A$$

f.
$$A \subseteq B \Rightarrow B' \subseteq A'$$

g.
$$(A \cap B)' = A' \cup B'$$
 Hukum De Morgan

h.
$$(A \cup B)' = A' \cap B'$$
 Hukum De Morgan

Bukti:

Sebagai latihan

Teorema 3.2.7 Jika A dan B adalah himpunan, maka

a.
$$A' = U - A$$

b.
$$A - B = A \cap B$$

c.
$$A - A = \phi$$

d.
$$A - \phi' = A$$

e.
$$A - B = B - A \Leftrightarrow A = B$$

f.
$$A - B = A \Leftrightarrow (A \cap B) = \phi$$

g.
$$A - B = \phi \Leftrightarrow A \subseteq B$$

Bukti:

Sebagai latihan

Definisi 3.2.3. Simetris diferensi dari himpunan A dan B adalah komplemen relative dari $A \cap B$ dalam $A \cup B$ dan dilambangkan dengan $A \triangle B$.

Secara simbolik ditulis

$$A \triangle B = \{x \mid x \in A \cup B \land x \notin A \cap B \}$$

Contoh:

Teorema 3.2.7 Jika A, B dan C adalah himpunan, maka

a.
$$A \Delta A = \phi$$

b.
$$(A \triangle B) \triangle C = A \triangle (B \triangle C)$$

c.
$$A \Delta \phi = A$$

d.
$$A \Delta B = B \Delta A$$

e.
$$A \Delta B = (A - B) \cup (B - A) = (A - B) - (A \cap B)$$

Bukti:

(Bukti sebagai latihan)