РАДИОФИЗИКА

Tom XXXI

отдельный оттиск

ИЗДАНИЕ ГОРЬКОВСКОГО УНИВЕРСИТЕТА.
И НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО
РАДИОФИЗИЧЕСКОГО ИНСТИТУТА
1988

Как следствие, структура рефракционных моделей может быть ограничена доступно измеряемыми метеоэлементами и некоторыми радиохарактеристиками атмосферы (см.

ЛИТЕРАТУРА

1. Тезисы докл. Всесоюзного совещания по рефракции электромагнитных волн в атмосфере. — Томск: ТФ СО АН СССР, 1983. — 294 с.

мосфере. — Томск: ТФ СО АН СССР, 1983. — 294 с.

2. Таблицы рефракции Пулковской обсерватории. Изд. 5-е. — Л.: Наука, 1985. — 48 с.

3. Мустель Э. Р., Хведелиани В. А., Чертопруд В. Е. // Астрон. журн. 1976. Т. 53. № 5. С. 1060.

4. Чертопруд В. Е., Мустель Э. Р., Мулюкова Н. Б. // Астрон. жури. 1980. Т. 57. № 1. С. 138.

5. Чертопруд В. Е., Мулюкова Н. Б., Мустель Э. Р. // Астрон. журн. 1981. Г. 58. № 5. С. 1063.

6. Astronomical Tables of the Sun, Moon and Planets. USA: Willmann-Bell, 1971.

7. Solar-Geophys. Date. USA: Nat. Geoph. Date Center, 1985.

8. Китай Ш. Д. II Всесоюзная школа-симпозиум по распространению миллиметровых и субмиллиметровых волн в атмосфере. — Фрунзе: Илим, 1986. С. 131.

и субмиллиметровых волн в атмосфере. — Фрунзе: Илим, 1986. С. 131.

Научно-исследовательский радиофизический институт Поступила в редакцию 26 июня 1987 г.

УДК 539.194.

ИССЛЕДОВАНИЕ СУБМИЛЛИМЕТРОВОГО СПЕКТРА НГ-ДИМЕРА

Н. Ф. Зобов, Е. Н. Карякин

Исследование водородной связи представляет большой интерес для многих областей физики и химии. С начала 70-х годов большой вклад в изучение структуры комплексов с водородной связью стала вносить ИК и МВ спектроскопия высокого разрешения. До недавнего времени большинство исследований спектров высокого разрешения. ния слабосвязанных комплексов проводилось с помощью неравновесных молекулярных пучков. Изоэнтропическое расширение газовых смесей позволяет получать низкую (1—50 K) поступательно-вращательную температуру и, как следствие, большое отно-сительное содержание комплексов в пучке. Ширины линий при таких условиях получаются малыми (1-10 кГц), поскольку молекулы в пучке движутся практически без столкновений. Из-за сильного охлаждения газа в пучке исследование спектров комп-

лексов ограничено только низшими энергетическими состояниями.

Другой метод — это исследование спектров высокого разрешения слабосвязанных комплексов в равновесной газовой фазе. Такие исследования проводятся при более высокой температуре (150—300 К), поэтому заселены более высокоэнергетические вращательные и колебательные состояния. Наибольшая концентрация комплексов в равпательные и колеоательные состояния. глаиоольшая концентрация комплексов в равновесной газовой фазе получается вблизи точки фазового перехода газ — жидкость. При рабочих давлениях МВ спектрометров 10—100 мТор для увеличения концентрации комплексов приходится охлаждать ячейку до температур порядка 150—200 К. Концентрация комплексов квадратично зависит от давления, и, следовательно, приходить от давления, и следовательно в приходительности. исследовании комплексов в равновесной газовой фазе желательно применять спектрометры с более высокими рабочими давлениями. С другой стороны, при повышении давления увеличивается столкновительная ширина линии и падает разрешение спектрометра. В зависимости от расстояния между линиями комплексов при исследовании их спектров в миллиметровом и субмиллиметровом диапазонах длин волн оптимальным давлением будет давление от нескольких десятых до нескольких единиц мм. рт. столба. Именно этот диапазон давлений является оптимальным при исследовании спектров молекул на спектрометре РАД [1]. Таким образом, на спектрометре с радио-акустическим детектором можно получать концентрации комплексов на 2—3 порядка большие, чем в других МВ спектрометрах, исследующих комплексы в равновесной газовой фазе.

В данной работе сообщается о результатах исследования миллиметровых и субмиллиметровых спектров слабосвязанных комплексов на спектрометре РАД. Для этой цели была изготовлена охлаждаемая ячейка с возможностью непрерывной прокачки газа. Давление измерялось с помощью датчика деформационного газоразрядного ва-куумметра, присоединенного к ячейке. Поглощающая часть ячейки охлаждалась про-панолом, имеющим низкую температуру плавления. Пропанол охлаждался до необ-ходимой температуры жидким азотом. Температура в поглощающей части ячейки измерялась с помощью платинового термосопротивления, прикрепленного к внешней по-

верхности поглощающей ячейки.

Одним из интереснейших объектов исследования прецизионной молекулярной спектроскопии среди комплексов с водородной связью является НF-димер. Это связано, во-первых, с нетривиальными свойствами симметрии $[^{2}, ^{3}]$, приводящими к инвер-сионному расшеплению колебательно-вращательных уровней, и, во-вторых, с уникаль-

ной квазилинейностью НГ-димера [4]. Спектр (НГ)2 исследовался как с помощью молекулярных пучков в МВ диапазоне [2, 5], так и в равновесной газовой фазе в ИК [4, 6] и МВ [7] (до 126 ГГц) диапазонах. В этих работах были определены спектроскопические константы и инверсионное расшепление в основном колебательном состоянии для K-подполос с $K_a = 0, 1, 2$. Взятые из работы [7] константы, полученные путем анализа МВ и ИК данных, позволяют рассчитать спектр (HF) $_2$ во вращательных состояниях с $K_a=0,1,2$ до J=40-50 с точностью 10-20 МГц.

Нами были получены записи спектра НF-димера в диапазоне 185—385 ГГц при давлениях HF в ячейке 0.4-1.6 Тор и при температурах от 200 до 293 K. На рис. 1 приведена запись спектра HF-димера в диапазоне около 340 ГГц (P=0,5 Тор, $T=208~{\rm K}$). Интенсивность наблюдавшихся линий зависела от давления и температуры ячейки. Спектр появлялся только при охлаждении ячейки, и интенсивность линий росла с уменьшением температуры и увеличением давления НF. Оптимальная температура наблюдения спектра HF-димера на спектрометре РАД составила около 210 К. Частота линий определялась по опорному спектру [8]. В наблюдаемом нами спектре были идентифицированы все вращательно-инверсионные переходы в исследованных ранее [2, 4-7] состояниях с $K_a=0,1,2$. Наблюдавшиеся на спектрометре РАД переходы имеют отношение S/N примерно на два порядка больше, чем аналогичные переходы в работе [7]. При полученном отношении S/N на записях спектра HF-димера присутствует большое количество неидентифицированных линий, которые, по всей видимости, принадлежат к спектру HF-димера в состояниях с K_a до 5, а также линии, относящиеся к вращательно-инверсионным переходам в возбужденных низкочасотных колебательных состояниях с энергиями до 500-700 см-1.

Таким образом, в результате наших исследований получены первые субмиллиметровые спектры высокого разрешения НГ-димера. Большой сигнал/шум, широкий частотный диапазон, возможность свободного варьирования давления и температуры говорят о больших возможностях исследований слабо связанных комплексов (таких, как $(H_2O)_2$, $HF-H_2O$, $(HCl)_2$, HF-HCl) на спектрометре с радиоакустическим детек-

тором. Авторы выражают благодарность А. Ф. Крупнову за постановку задачи и внимание к работе.

ЛИТЕРАТУРА

- 1. Белов С. П., Буренин А. В., Герштейн Л. И. и др. // Опт. и спектр. 1973. T. 35. C. 295.
- 2. Dyke T. R., Howard B. J., Klemperer W. // J. Chem. Phys. 1972. V. 56. P. 2442.
- 3. Hougen J. T., Ohashi N. // J. Mol. Spectrosc. 1985. V. 109. P. 134. 4. Pine A. S., Lafferty W. J., Howard B. J. // J. Chem. Phys. 1984. V. 81.
- 5. Howard B. J., Dyke T. R., Klemperer W. // J. Chem. Phys. 1984. V. 81.
- Pine A. S., Lafferty W. J. // J. Chem. Phys. 1983. V. 78. P. 2154.
 Lafferty W. J., Suenram R. D., Lovas F. J. // J. Mol. Spectros. 1987. V. 123. P. 434.

Андреев Б. А., Белов С. П., Буренин А. В. и др. // Радиофизика. 1975.
 Т. 18. № 4. С. 531 (Изв. высш. учеб. заведений).

Институт прикладной физики АН СССР

Поступила в редакцию 16 сентября 1987 г.

УДК 537.86:530.145

К ВОПРОСУ О СДВИГАХ ЧАСТОТЫ В ПУЧКЕ АТОМОВ ЦЕЗИЯ ПРИ ДВОЙНОМ СВЧ-НЧ РЕЗОНАНСЕ

М. Н. Пененков, В. Г., Гогин, Е. М. Савельев, В. Е. Байков, Л. А. Будкин, А. И. Пихтелев

Исследования физических эффектов, определяющих сдвиги частоты магнитонезависимого (0—0)-перехода атомов цезия, используемого в пучковых стандартах частоть [¹], не потеряли своей актуальности и вызывают значительный интерес [²-4]. Потребность в этих исследованиях связана прежде всего с необходимостью дальнейшего улучшения характеристик этих приборов и с наличием ряда неясных причин возникновения наблюдаемых сдвигов частоты, необъяснимых в рамках существующих представлений.

В настоящем сообщении предложена теоретическая модель для описания проявляющихся на практике частотных сдвигов, основанная на явлении двойного СВЧ-НЧ резонанса [5], низкочастотная составляющая которого обусловлена неоднородностью постоянного магнитного поля H_c в области взаимодействия атомов с СВЧ полем. Проведены расчеты структуры поля H_c , которые позволили определить НЧ поле и связанные с ним сдвиги частоты (0—0)-перехода. Показано, что экспериментально полученные зависимости сдвигов частоты в АЛТ от уровня СВЧ мощности хорошо описываются предложенной теорией.

1. СВЧ-НЧ резонанс. Возмущение квантовой системы двумя резонансными полями приводит к частотным сдвигам наблюдаемых линий [$^{5, 6}$]. В атомно-лучевой труб ке (АЛТ) с магнитной селекцией атомов по квантовым состояниям неизбежно существуют неоднородности поля H_c . Наличие таких неоднородностей в области СВЧ взаимодействия можно представить в виде суммы гармоник с частотами, кратными обратному времени пролета τ через эту область. Наиболее близкая к частоте зеемановского расщепления атомов цезия гармоника определяет амплитуду низкочастотного поля H_{12} и вызывает частотные сдвиги.

Рис. 1. Схема энергетических уровней атома ¹³³Cs в магнитном поле.

Используем трехуровневую аппроксимацию спектра основного состояния, в котором одна пара уровней 1 и 3 образуют (0-0)-переход, а пара 1-2— переход зеемановской структуры с $\Delta \mu = 1$ (-1) (рис. 1). Выбор уровня 2 выше или ниже уровня задается асимметрией заселенностей $N(\mu > 0) > N(\mu < 0)$ и наоборот (для состояния F=4).

Выражение для сдвига частоты Δ_{13} можно получить из условия экстремума населенности уровня 1, решение для которой получено в [5]: