Projeto de Extensão: NIVELAUERJ - Cálculo Zero - 28 questões

Lista 5 - Função polinomial do segundo grau

Projeto de Extensão: NIVELAUERJ Cálculo Zero

Questão 1

Construa os gráficos das funções definidas em R:

Solução: Qualquer função polinomial do segundo grau $f(x) = ax^2 + bx + c$ com $a \ne 0$ pode ter o esboço do gráfico determinado da seguinte forma:

- 1. Se $\Delta < 0$, então observamos a concavidade da parábola. Se a > 0, então a parábola é côncava para cima e f(x) > 0 para todo $x \in \mathbb{R}$. Se a < 0, então a parábola é côncava para baixo e f(x) < 0 para todo $x \in \mathbb{R}$.
- 2. Se $\Delta=0$, então a função possui apenas um zero dado por $x_1=\frac{-b}{2a}$. Por fim basta observar a sua concavidade. Se a>0, então $f(x)\geq 0$ para todo $x\in\mathbb{R}$. Se a<0, então $f(x)\leq 0$ para todo $x\in\mathbb{R}$.
- 3. Se $\Delta > 0$, então a função possui dois zeros dados por $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ e $x_2 = \frac{-b \sqrt{\Delta}}{2a}$. Observando a sua concavidade temos que:
 - (a) Se a > 0, então $f(x) \ge 0$ para todo $x \in]-\infty, x_1] \cup [x_2, \infty[$ e $f(x) \le 0$ para todo $x \in [x_1, x_2]$.
 - (b) Se a < 0, então $f(x) \ge 0$ para todo $x \in [x_1, x_2]$ e $f(x) \le 0$ para todo $x \in]-\infty, x_1] \cup [x_2, \infty[$.

(a)
$$y = x^2 - 3x$$

(b)
$$y = -3x^2 - 6x$$

(c)
$$v = -4x^2 - 4$$

(d)
$$y = x^2 + 2x + 4$$

(e)
$$y = x^2 - 2x + 1$$

Solução:

Questão 2... Em que condições a função quadrática $y = (m^2 - 4)x^2 - (m + 2)x - 1$, está definida?

 $m \neq 2$ ou $m \neq -2$

Determine a função quadrática tal que f(-1) = -4, f(1) = 2 e f(2) = -1.

 $f(x) = -\frac{2}{3}x^2 - x + \frac{11}{3}$

Questão 4.....

Determine os zeros reais das funções:

(a)
$$f(x) = -x^2 + 7x - 12$$

(a)
$$x_1 = 3 \mathbf{e} x_2 = 4$$

(b)
$$f(x) = 3x^2 - 7x + 2$$

(b)
$$x_1 = \frac{1}{3} \mathbf{e} \ x_2 = 2$$

(c)
$$f(x) = x^2 - 2x + 2$$

Não há raízes reais.

(d)
$$f(x) = x^2 + 4x + 4$$

$$x = -2$$

Questão 5.

Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo coma equação $y = 30 - \frac{x}{4}$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de R\$1250,00, qual foi a quantidade vendida?

50 5.

Ouestão 6

Resolva o sistema:

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{7}{12} \\ x \cdot y = 12 \end{cases}$$

 $S = \{(3,4), (4,3)\}$

Questão 7.....

Determine os valores de *m* para que a função quadrática:

$$f(x) = mx^2 + (2m - 1)x + (m - 2)$$

tenha dois zeros reais e distintos.

$$m \neq 0 \text{ e } m > -\frac{1}{4}$$

Ouestão 8

Determine os valores de *m* para que a função quadrática:

$$f(x) = (m-1)x^2 + (2m+3)x + m$$

tenha dois zeros reais e distintos.

$$m \neq 1 \text{ e } m > -\frac{9}{16}$$

Questão 9

Determine os valores de *m* para que a função quadrática:

$$f(x) = (m+2)x^2 + (3-2m)x + (m-1)$$

tenha raízes reais.

 $m \neq -2 e m \leq \frac{17}{16}$

Questão 10.....

Determine os valores de *m* para que a função quadrática:

$$f(x) = mx^2 + (m+1)x + (m+1)$$

tenha um zero real duplo.

m = -1 ou $m = \frac{1}{3}$

Questão 11.....

Determine os vértices das parábolas:

(a)
$$y = x^2 - 4$$

$$V = (0, -4)$$
(a) _____

(b)
$$y = -x^2 + 3x$$

$$V = \left(\frac{3}{2}, \frac{9}{4}\right)$$

(c)
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

(c)
$$V = \left(\frac{1}{4}, \frac{25}{16}\right)$$

(d)
$$y = -x^2 + x - \frac{2}{9}$$

$$(d) V = \left(\frac{1}{2}, \frac{17}{36}\right)$$

Questão 12.....

Determine o valor de máximo ou valor de mínimo e o ponto de máximo ou o ponto de mínimo das funções abaixo, definidas em \mathbb{R} .

(a) $y = -3x^2 + 12x$

O valor máximo é: $y_m = 12$, quando $x_m = 2$ e não há valor finito mínimo.

(b) $y = 4x^2 - 8x + 4$

O valor mínimo é: $y_m=0$, quando $x_m=1$ e não há valor finito máximo.

Questão 13.....

Determine o valor de *m* na função real $f(x) = 3x^2 - 2x + m$ para que o valor mínimo seja $\frac{5}{3}$.

m = 2

Questão 14.....

Determine o valor de *m* na função

$$f(x) = -3x^2 + 2(m-1)x + (m+1)$$

para que o valor máximo seja 2.

m = -2 **ou** m = 1 14. _____

Questão 15 Dentre todos os números reais de soma 8, determine aqueles cujo o produto é máximo.	• • • • • • • •	•••••
	15.	O número 4.
Questão 16 A parábola $y = -2x^2 + bx + c$ passa pelo ponto $(1, 0)$ e o seu vértice é o ponto de coordenada $(3, v)$.		
		v = 8
	16.	<i>U</i> = 8
Questão 17	• • • • • • •	
		Quadrado de lado
Questão 18	• • • • • • • • • • • • • • • • • • • •	•••••
	18.	O número é 3.
Questão 19 Determine o retângulo de área máxima localizado no primeiro quadrante, com dois lados nos eixos o reta $y = -4x + 5$.		
	19.	Lados $\frac{5}{8}$ e $\frac{5}{2}$.
Questão 20 Determine o retângulo de maior área contido num triângulo equilátero (cujo tem todos lados iguais), d do triângulo num lado do retângulo.	• • • • • • • •	•••••
	20.	Lado 2 e $\sqrt{3}$
Questão 21 Uma parede de tijolos será usada como um dos lados de um curral retangular. Para os outros lados irem de arame, de modo a produzir uma área máxima. Qual é o quociente de um lado pelo outro?		
	21.	2
Questão 22 Determine a imagem das funções da questão 4, 7 e 12.	• • • • • • • •	
Basta fazer: Se $a > 0$, então $Im = \{x \in \mathbb{R} x \ge y_m\}$. Se $a < 0$, então $Im = \{x \in \mathbb{R} x \le y_m\}$		
Questão 23		•••••
		10
	23.	$m = \frac{10}{3}$
Questão 24		• • • • • • • • • • • • • • • • • • • •
Resolva as inequações:		

(a)
$$x^2 - 2x + 2 > 0$$

$$S = \mathbb{R}$$

(b)
$$x^2 - 2x + 1 \le 0$$

$$S = \{1\}$$

(c)
$$-2x^2 + 3x + 2 \ge 0$$

$$S = \left\{ x \in \mathbb{R} | -\frac{1}{2} \le x \le 2 \right\}$$

(d)
$$x^2 - 3x + 2 > 0$$

$$S = \{x \in \mathbb{R} | x < 1 \text{ ou } x > 2\}$$

(e)
$$-x^2 + \frac{3}{2}x + 10 \ge 10$$

$$S = \left\{ x \in \mathbb{R} | 0 \le x \le \frac{3}{2} \right\}$$

(f)
$$4x^2 - 4x + 1 > 0$$

$$S = \mathbb{R} - \left\{ \frac{1}{2} \right\}$$

Questão 25.....

Resolva, em R, as inequações:

(a)
$$\frac{4x^2 + x - 5}{2x^2 - 3x - 2} \ge 0$$

$$S = \left\{ x \in \mathbb{R} | x \le -\frac{5}{4} \text{ ou } -\frac{1}{2} < x \le 1 \text{ ou } x > 2 \right\}$$

(b)
$$\frac{-9x^2 + 9x - 2}{3x^2 + 7x + 2} < 0$$

$$S = \left\{ x \in \mathbb{R} | x < -2 \text{ ou } -\frac{1}{3} < x < \frac{1}{3} \text{ ou } x > \frac{2}{3} \right\}$$

(c)
$$\frac{2x^2 + 4x + 5}{3x^2 + 7x + 2} \ge -1$$

$$S = \left\{ x \in \mathbb{R} | x < -2 \text{ ou } x > -\frac{1}{3} \right\}$$

(d)
$$\frac{(x+1)^3-1}{(x-1)^3+1} > 1$$

$$S = \{ x \in \mathbb{R} | x > 0 \}$$

(e)
$$\frac{6x^2 + 12x + 17}{-2x^2 + 7x - 5} \ge 1$$

$$S = \left\{ x \in \mathbb{R} | 1 < x < \frac{5}{2} \right\}$$

Determine, em \mathbb{R} , o conjunto solução das inequações:

(a)
$$\frac{x+1}{x^2 - 3x + 2} \ge 0$$

 $S = \{x \in \mathbb{R} | -1 \le x < 1 \text{ ou } x > 2\}$

(b)
$$\frac{x-3}{x-2} \le x-1$$

 $S = \{x \in \mathbb{R} | x > 2\}$

(c)
$$\frac{x}{x+1} - \frac{x}{x-1} \ge 0$$

 $S = \{x \in \mathbb{R} | x < -1 \text{ ou } 0 \le x < 1\}$

(d)
$$\frac{1}{x} + x \le -2$$

 $S = \{x \in \mathbb{R} | x < 0\}$

(e)
$$\frac{x^2 + 2x - 1}{x^2 - 1} \ge \frac{1}{x + 1}$$
$$S = \{x \in \mathbb{R} | x < -1 \text{ ou } -1 < x \le 0 \text{ ou } x > 1\}$$

Questão 27.....

Ache o domínio da função em \mathbb{R} :

$$y = \sqrt{\frac{-x+5}{x^2 + x - 6}}$$

 $D = \{x \in \mathbb{R} | x < -3 \text{ ou } 2 < x \le 5\}$

Questão 28.....

Seja $f: \mathbb{D} \subset \mathbb{R} \to \mathbb{R}$ tal que f(x) = y. Para quais valores de x, a função f está bem definida?

$$y = \sqrt{\frac{(x-3)(x^2 + 2x - 8)}{x - 1}}$$

Quando $x \ge 3$ **ou** $1 < x \le 2$ **ou** $x \le -4$.