

Universidad Católica "Nuestra Señora de la Asunción" Campus Alto Paraná Facultad de Ciencias y Tecnología Ingeniería Electromecánica con Orientación Electrónica

ANÁLISIS, DISEÑO Y SIMULACIÓN DE UNA RED INALÁMBRICA DE SENSORES PARA EL MONITOREO DE VARIABLES Y CONTROL DE ACTUADORES EN UN INVERNADERO.

Proyecto Final de Grado

GABRIELA BELÉN CÁCERES RODRÍGUEZ

GUSTAVO DAVID QUIÑÓNEZ DUARTE

gabicaceres 1594@gmail.com

gustavo_quinonez@hotmail.com

TUTOR: LIC. ARIEL GUERRERO

COTUTORES: ING. MSC. MARIO ARZAMENDIA

ING. MSC. LADISLAO ARANDA

Julio de 2017

Tabla de Contenido

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción

Marco teórico

Desarrollo del trabajo

Simulaciones y resultados

Conclusión

Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Los invernaderos son estructuras cerradas, en cuyo interior se procura mantener un ambiente propicio para el crecimiento de las plantas.

Introducción

Desarrollo del trabajo

Simulaciones y resultados

Conclusión

Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

¿Qué es importante para el crecimiento de cultivos dentro de invernaderos hidropónicos?

- Temperatura y humedad del aire.
- Temperatura y conductividad eléctrica de la sustancia.
- Luminosidad del ambiente.

Hipótesis

La tecnología de redes inalámbricas de sensores y actuadores (WSAN) puede aplicarse al monitoreo y control de invernaderos hidropónicos, a fin de tener un completo manejo sobre las variables ambientales que determinan la calidad de la producción, constituyéndose en una herramienta para la automatización de estos invernaderos.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

¿Por qué una red inalámbrica?

340.282.366.920.938.463.463.374.607.431.768.211.456

2¹²⁸ direcciones IP

¿Cómo se comprobaría la hipótesis?

Para determinar si la red inalámbrica de sensores y actuadores puede ejecutar efectivamente controles en lazo cerrado, sobre procesos dentro de invernaderos hidropónicos, es fundamental determinar los requisitos temporales para la transmisión de paquetes de datos, y verificar que sea inferior al tiempo de asentamiento de la señal de control.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Proceso	Función de transferencia
$G_1(s)$	$\frac{3.73}{2153.07s^4 + 2042s^3 + 549.1s^2 + 254.57s + 0.7}$ Proceso de Refrigeración
$G_2(s)$	$\frac{140s + 28}{34200s^5 + 104791s^4 + 40746.63s^3 + 21617.76s^2 + 672.26s + 5.38}$ Proceso de Deshumidificación

Objetivo Principal

Realizar análisis, diseño y simulación de una red inalámbrica de sensores y actuadores, a ser desplegada en un invernadero hidropónico, a fin se sentar las bases de viabilidad técnica para el despliegue de dicha red.

Objetivos Específicos

- Determinar los procesos a ser ejecutados para el desarrollo de cultivos en invernaderos hidropónicos.
- Realizar un estudio de las WSANs.
- Determinar una plataforma disponible comercialmente, así como un sistema operativo compatible. Seleccionar y validar la pila de protocolos a utilizar, y desarrollar el *firmware* de las plataformas.
- Simular el funcionamiento de la red, cubriendo sus aspectos topológicos.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

¿Qué es una red inalámbrica de sensores y actuadores?

Una WSAN es un sistema distribuido de nodos sensores y nodos de accionamiento que están interconectados a través de enlaces inalámbricos. Los sensores recogen información sobre el mundo físico, y transmiten los datos recogidos a controladores/actuadores.

¿Qué es una red inalámbrica de sensores y actuadores?

Una WSAN es un sistema distribuido de nodos sensores y nodos de accionamiento que están interconectados a través de enlaces inalámbricos. Los sensores recogen información sobre el mundo físico, y transmiten los datos recogidos a controladores/actuadores.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Características Principales

- Capacidad para la toma de decisiones.
- Tamaño compacto.
- Configuración dinámica.
- Tolerancia de fallas.
- Escalabilidad y adaptabilidad.
- Acceso remoto.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Componentes

- Nodos sensores.
- Nodos servidores.
- Estación base.
- Nodos actuadores.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Diseño de la WSAN

El estudio de los factores que influyen en los cultivos dentro de un invernadero y el análisis del estado del arte de las WSANs, permitió el diseño de la arquitectura del sistema, que comprendió la elección de los componentes de hardware y software a ser utilizados, así como los protocolos implementados.

Red Mallada

Red Mallada

Red Mallada

Red Mallada

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Arquitectura del Sistema Propuesto

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Componentes Seleccionados MTM-CM5000MSP

Introducción

Marco teórico

Simulaciones y resultados

Conclusión

Componentes Seleccionados MTM-CM5000MSP

Microcontrolador	MSP430	
Frecuencia del MCU	8 MHz	
Memoria RAM	10 kB	
Memoria Flash	48 kB	
Radio	CC2420	
Frecuencia de RF	2,4 GHz	
Alimentación	3 V	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Componentes Seleccionados Sensores Integrados en la CM5000

Introducción

-

Marco teórico

Desarrollo del trabajo

Simulaciones y resultados

Conclusión

Componentes Seleccionados Arduino UNO

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Sensores Externos

Sensores Externos

Kit K1.0

Marco teórico

Desarrollo del trabajo

Simulaciones y resultados

Conclusión

Sistema Operativo Seleccionado

Contiki

Min RAM	< 2kB	
Min ROM	< 30kB	
Lenguaje	C	
Multi-threading	Permite	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Sistema Operativo Seleccionado Simulador COOJA

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación HTTP	
Capa de Transporte	UDP
Capa de Red	RPL
Capa de Adaptación	6LoWPAN
Capa de Acceso al Medio	CSMA
Capa Física	IEEE 802.15.4

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación	HTTP	
Capa de Transporte	UDP	
Capa de Red	RPL	
Capa de Adaptación	6LoWPAN	
Capa de Acceso al Medio CSMA		
Capa Física	IEEE 802.15.4	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación HTTP		
Capa de Transporte	UDP	
Capa de Red RPL		
Capa de Adaptación 6LoWPAN		
Capa de Acceso al Medio CSMA		
Capa Física	IEEE 802.15.4	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación	HTTP	
Capa de Transporte	UDP	
Capa de Red RPL		
Capa de Adaptación	6LoWPAN	
Capa de Acceso al Medio	CSMA	
Capa Física	IEEE 802.15.4	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación	HTTP	
Capa de Transporte	UDP	
Capa de Red	RPL	
Capa de Adaptación	6LoWPAN	
Capa de Acceso al Medio	CSMA	
Capa Física	IEEE 802.15.4	

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Capa de Aplicación	Aplicación HTTP	
Capa de Transporte	UDP	
Capa de Red	RPL	
Capa de Adaptación	n 6LoWPAN	
Capa de Acceso al Medio CSMA		
Capa Física	IEEE 802.15.4	

Nodo Servidor

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Verificación de la Topología

Fuera del radio de cobertura

Dentro del radio de cobertura

Marco teórico

Simulaciones y resultados

Conclusión

Escenarios Simulados

100% 75% 50%

FIA-UNE

Parámetros Analizados

• Paquetes perdidos.

La pérdida de paquetes se mide como un porcentaje de la cantidad de paquetes que no llegan a destino, con respecto a la cantidad de paquetes que fueron enviados.

• Latencia.

Se mide como el intervalo de tiempo resultante de la suma de los retardos temporales que se dan entre el envío y la recepción de paquetes de datos.

Metodología del Análisis

Resultados

Paquetes perdidos

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Resultados

- El aumento del número de nodos de la red tiene un efecto directo sobre la pérdida de paquetes y la latencia experimentada.
- Altas tasas de transmisión de datos pueden derivar en el congestionamiento de la red.
- En todos los escenarios estudiados, la latencia experimentada fue inferior a la centena de segundos.
- Los resultados de latencia obtenidos se adecuan a los requisitos temporales para el asentamiento de una señal de control.

Conclusiones

- Existe una carencia de soluciones propias para la automatización de procesos en un invernadero hidropónico, teniendo que recurrir a soluciones extranjeras.
- El uso de la WSAN en la agricultura se encuentra en creciente expansión.
- Los sectores productivos y académicos tienen interés por el uso de esta tecnología para aplicaciones de monitoreo de variables tanto físicas como químicas, para el control de procesos.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Conclusiones

- La arquitectura de sistema presentada es efectiva para el monitoreo de los parámetros seleccionados, siendo de ayuda también para una posible implementación, sus características de topología dinámica y autoconfigurable.
- Los requisitos temporales para el envío y recepción de datos son compatibles con el tiempo de asentamiento de la señal de control de un proceso.
- La dinámica del sistema propuesto permitiría la implementación de un esquema de control.

Introducción Marco teórico Desarrollo del trabajo Simulaciones y resultados Conclusión Trabajos futuros

Trabajos Futuros

- El diseño de una estación base, dotada de una interfaz gráfica, para la visualización de los parámetros monitoreados, junto con los controles disponibles, y el acceso a la información recolectada desde cualquier punto, mediante la conexión a la Internet.
- El diseño de un sistema automatizado para la dosificación de nutrientes, compatible con la tecnología WSAN.
- El diseño de un pequeño invernadero hidropónico, que siga las líneas constructivas del OpenAg, para la implementación de la red diseñada, a fin de evaluar su comportamiento, y determinar efectivamente los beneficios que proporciona el uso de esta tecnología para el crecimiento de los cultivos.
- La aplicación de la red propuesta en este proyecto a un invernadero de escala comercial, incluyendo la selección de los actuadores necesarios para la ejecución de procesos sobre las variables monitoreadas.

PREGUNTAS

MUCHAS GRACIAS

GABRIELA BELÉN CÁCERES RODRÍGUEZ

gabicaceres1594@gmail.com

GUSTAVO DAVID QUIÑÓNEZ DUARTE

gustavo_quinonez@hotmail.com

Costo estimativo para la adquisición de los componentes seleccionados

Cantidad Componente	Costo por	Costo total	
	unidad (PYG)	(PYG)	
4	MTM-CM5000-MSP	587.700	2.350.800
2	Arduino UNO	103.500	207.000
2	USB host shield	89.000	178.000
1	Modulo de 4 relés	36.150	36.150
1	Kit K 1.0 Conductivímetro	1.072.490	1.072.490
1	DS18B20	32.700	32.700
		Total	3.877.140