个股复权算法说明

王哲 2017.8.21

一、说明

- 1. 本文公式以及算法来源于《个股复权算法说明文档(QT_AdjDailyQuote)+-》以及网络搜索结果。
- 2. 为前后复权提供了一个更加精确的算法,但是仍然有误差,原因是未考虑分红送股的征税和随时间变化的税率。
- 3. 这里介绍递归算法,也就是文档中的历史数据刷新算法,文档中的每日数据更新算法没有意义。

二、前复权

1. 前复权公式

复权后价格=[(复权前价格-现金红利)+配股价格×配股比例]÷(1+股份变动比例)

其中,股份变动比例=配股比例+转股比例+送股比例

2. 精确复权因子 (AdjustingFactor)

记录的是每股股份变动的信息,即送股、配股或者转股等原因导致的股本变动信息。亦可以理解为基准日的的总股本数为1,经过历次的送股、公积金转增股本以及配股后为股本数目,即由原来的1股衍生到现在的股份数额。计算公式为:

$$AF_i = AF_{i-1} * (1 + SG_i + PG_i + ZG_i)$$

其中: SG_i 表示送股比例; PG_i 表示配股比例; ZG_i 表示转股比例

3. 精确复权常数 (AdjustingConst)

精确复权常数 AdjustingConst 记录的在考虑股本变动的基础上股票现金方面的信息,具体包括分红及配股,计算公式为:

$$AC_i = AC_{i-1} + AF_{i-1} * (每股派现 - 配股比例 * 配股价格)$$

4. 公式推导

需要用到的两个变量 factor 和 const, factor 是除权日前后股本数的比例, 但是因为还涉及到分红, 所以不单单是正比例函数关系, 还需要一个常数 const 来调节。

所以前复权计算公式为:

$$P_{\text{B} \pm \hat{n} \neq \chi \uparrow \uparrow h A} = \text{factor} * P_{\text{H} = \hat{n} \neq \chi \uparrow \uparrow h A} + \text{const}$$

其中:

factor =
$$\frac{AF_{i-1}}{AF_i}$$

const = $\frac{AC_{i-1} - AC_i}{AF_i}$

公式的另一种表述:

$$P_{\text{最新前复权价格}} = P_{\text{旧前复权价格}} \frac{\text{AF}_{i-1}}{AF_i} + \frac{AC_{i-1} - AC_i}{AF_i}$$

由此我们可以推导,两次除权除息复权的计算公式为:

$$P_{\text{inff}} = \left(P_{\text{kpt}} \frac{AF_{i-2}}{AF_{i-1}} + \frac{AC_{i-2} - AC_{i-1}}{AF_{i-1}} \right) \frac{AF_{i-1}}{AF_i} + \frac{AC_{i-1} - AC_i}{AF_i}$$

化简为:

$$P_{\text{fift}} = P_{\text{fift}} \frac{AF_{i-2}}{AF_i} + \frac{AC_{i-2} - AC_i}{AF_i}$$

以此类推, k 次除权除息后计算的前复权结果为:

$$P_{\text{Efg}} = P_{\text{kpt}} \frac{AF_i}{AF_{i-k}} - \frac{AC_{i-k} - AC_i}{AF_{i-k}}$$

5. 举例

以平安银行为例(InnerCode = 3),说明历史数据刷新算法步骤:

a)取个股的复权因子数据,按时间排序倒序排序,取的数据如图所示

ExDiviDate	InnerCode	AdjustingFactor	AdjustingConst
2015-04-13 00:00:00.000	3	131.33534109696	6.3383803940992
2014-06-12 00:00:00.000	3	109.4461175808	-12.70524406496
2013-06-20 00:00:00.000	3	91.205097984	-27.2980597424
2012-10-19 00:00:00.000	3	57.00318624	-36.9886014032
2008-10-31 00:00:00.000	3	57.00318624	-42.6889200272
2007-06-20 00:00:00.000	3	43.8486048	-44.157848288
2003-09-29 00:00:00.000	3	39.862368	-44.5166096
2002-07-23 00:00:00.000	3	39.862368	-50.4959648
2000-11-06 00:00:00.000	3	39.862368	-56.47532
1999-10-18 00:00:00.000	3	30.66336	17.116744
1997-08-25 00:00:00.000	3	30.66336	-1.281272
1996-05-27 00:00:00.000	3	20.44224	-5.36972
1995-09-25 00:00:00.000	3	10.22112	-5.36972

b)计算因子列 factor,常数列 const,计算结果如图:

InnerCode	ExDiviDate	AdjustingFactor	AdjustingConst	factor	const
3 黄丰可能	2015-04-13 00:00:00.000	131.33534109696	6.3383803940992	1	0
3	2014-06-12 00:00:00.000	109.4461175808	-12.70524406496	0.833333333333333	-0.145
3	2013-06-20 00:00:00.000	91.205097984	-27.2980597424	0.69444444444444	-0.2561111111111111
3	2012-10-19 00:00:00.000	57.00318624	-36.9886014032	0.43402777777778	-0.329895833333333
3	2008-10-31 00:00:00.000	57.00318624	-42.6889200272	0.43402777777778	-0.373298611111111
3	2007-06-20 00:00:00.000	43.8486048	-44.157848288	0.333867521367521	-0.384483173076923
3	2003-09-29 00:00:00.000	39.862368	-44.5166096	0.303515928515928	-0.387214816433566
3	2002-07-23 00:00:00.000	39.862368	-50.4959648	0.303515928515928	-0.432742205710956
3	2000-11-06 00:00:00.000	39.862368	-56.47532	0.303515928515928	-0.478269594988345
3	1999-10-18 00:00:00.000	30.66336	17.116744	0.233473791166099	0.0820675038102922
3	1997-08-25 00:00:00.000	30.66336	-1.281272	0.233473791166099	-0.058016770889367
3	1996-05-27 00:00:00.000	20.44224	-5.36972	0.155649194110733	-0.0891466097115136
3	1995-09-25 00:00:00.000	10.22112	-5.36972	0.0778245970553663	-0.0891466097115136
3	1994-07-11 00:00:00.000	8.5176	-7.925	0.0648538308794719	-0.108602758975355

每一次计算 要取小于等于T且是最大的 ExDiviDate 对应的那条记录的 factor 以及 const ,例如我们要计算 2014 年 6 月 11 日的前复权价格,我们需要先取(0.6944,-0.2561)计算除权日 2014 年 6 月 12 日之后该日股价的前复权,然后取(0.8333,-0.1450)计算除权日 2015 年 4 月 13 日之后计算该日股价的前复权,得到的结果就是该日股价的前复权结果。

三、后复权

1. 后复权公式

复权后价格=复权前价格×(1+流通股份变动比例)-配股价格×配股比例+现金红利

其中,股份变动比例=配股比例+转股比例+送股比例

2. 公式推导

$$P_{\text{Eff}} = P_{\text{kt}} \frac{AF_i}{AF_{i-1}} - \frac{AC_{i-1} - AC_i}{AF_{i-1}}$$

两次除权除息复权的计算公式为:

$$P_{\text{figt}} = (P_{\text{kpt}} \frac{AF_i}{AF_{i-1}} - \frac{AC_{i-1} - AC_i}{AF_{i-1}}) \frac{AF_{i-1}}{AF_{i-2}} - \frac{AC_{i-2} - AC_{i-1}}{AF_{i-2}}$$

化简为:

$$P_{\text{figt}} = P_{\text{kt}} \frac{AF_i}{AF_{i-2}} - \frac{AC_{i-2} - AC_i}{AF_{i-2}}$$

以此类推, k 次除权除息后计算的后复权结果为:

$$P_{\text{Eff}} = P_{\text{kpt}} \frac{AF_i}{AF_{i-k}} - \frac{AC_{i-k} - AC_i}{AF_{i-k}}$$

我们的基准日期是股票发行的第一天,这一天的 AF_i 为 1, AC_i 为 0,带入上式结果是

$$P_{\text{Elg}} = P_{\text{Close}} * AdjustingFactor + AdjustingConst$$