Modern Cryptography Spring 2024 Exercises

Xiaoqi LIU liu09335@gtiit.edu.cn

06/09/2024

Problem Nr.1 What is the probability that the text "apple" occurs, when the plaintext source generates independent, identically distributed 1-grams, as described in Example 1.1. Answer the same question when the Markov model of Example 1.3 is used? (01.01)

Solution.

```
1) For 1-grams, Pr_{plain}(apple) = p(a) * p(p) * p(p) * p(l) * p(e) =
= 0.0804 * 0.02 * 0.02 * 0.0414 * 0.1251 = 1.665611424 \times 10^{\circ} - 7
= 0.0804 + 0.0549 + 0.0760 + 0.0099 + 0.0154 + 0.0726 + 0.0200 + 0.0192 + 0.0306 + 0.0016 + 0.0011 + 0.0019 + 0.0399 + 0.0067 + 0.0612 + 0.0173 + 0.1251 + 0.0414 + 0.0654 + 0.0009 + 0.0230 + 0.0253 + 0.0925 + 0.0230 + 0.0709 + 0.0271
```

Probability distributions of 1-grams in English.

```
ed["c"] = 0.0282; ed["l"] = 0.0396; ed["u"] = 0.0272;
ed["d"] = 0.0483; ed["m"] = 0.0236; ed["v"] = 0.0117;
ed["e"] = 0.1566; ed["n"] = 0.0814; ed["w"] = 0.0078;
ed["f"] = 0.0167; ed["o"] = 0.0716; ed["x"] = 0.0030;
ed["g"] = 0.0216; ed["p"] = 0.0161; ed["y"] = 0.0168;
ed["h"] = 0.0402; ed["q"] = 0.0007; ed["z"] = 0.0010;
ed["i"] = 0.0787; ed["r"] = 0.0751;
```

```
a b c d e f g h i j k l m
a 0.0011 0.0193 0.0388 0.0469 0.002 0.01 0.0233 0.002 0.048 0.002 0.0103 0.1052 0.0281
b 0.0931 0.0057 0.0016 0.0008 0.3219 0 0 0 0.0605 0.0057 0 0.1242 0.0049
c 0.1202 0 0.0196 0.0004 0.1707 0 0 0.1277 0.0761 0 0.0324 0.0369 0.0015
d 0.1044 0.002 0.0026 0.0218 0.3778 0.0007 0.0132 0.0007 0.1803 0.0033 0 0.0125 0.0178
{\tt e} \ 0.066 \quad 0.0036 \ 0.0433 \ 0.1194 \ 0.0438 \ 0.0142 \ 0.0125 \ 0.0021 \ 0.0158 \ 0.0005 \ 0.0036 \ 0.0456 \ 0.034
f 0.0838 0 0 0.01283 0.0924 0 0 0.1608 0 0 0.0299 0.0009 g 0.1078 0 0 0.0018 0.2394 0 0.0177 0.1281 0.0839 0 0 0.0203 0.0027 h 0.1769 0.0005 0.0014 0.0008 0.5623 0 0 0.0005 0.1167 0 0 0.0016 0.0016 0.038 0.0082 0.0767 0.0459 0.0437 0.0129 0.028 0.0002 0.0016 0 0.005 0.0567 0.0297 0.1259 0 0 0.1818 0 0 0.0035 0 0 0.0028 0.5282 0.0028 0 0.0198 0.1582 0 0.0113 0.0198 0.0028 1 0.1342 0.0019 0.0022 0.0736 0.1918 0.0105 0.0108 0 0.1521 0 0.0079 0.1413 0.0082
n 0.055 0.0004 0.0621 0.1681 0.1212 0.0102 0.1391 0.0013 0.0665 0.0009 0.0066 0.0073 0.0104
0 0.0085 0.0101 0.0162 0.0231 0.0037 0.1299 0.0082 0.0025 0.0092 0.0014 0.0078 0.0416 0.0706
                                                  0.1747 0 0 0.0237 0.0423 0 0 0 0 0 0 0
                        0.0006 0

      q 0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0

 a 0.1878 0.0008 0.0222 0 0.118 0.1001 0.1574 0.0137 0.0212 0.0057 0.0026 0.0312 0. b 0 0.0964 0 0 0.0662 0.0229 0.0049 0.0727 0.0016 0 0 0.1168 0 c 0.0011 0.2283 0 0.0004 0.0426 0.0087 0.0893 0.0347 0 0 0 0.0094 0 d 0.0053 0.0733 0 0.0007 0.0324 0.0495 0.0013 0.0001 0.0001
                                                      0.118 0.1001 0.1574 0.0137 0.0212 0.0057 0.0026 0.0312 0.0023
 d 0.0053 0.0733 0
                                          0.0007 0.0324 0.0495 0.0013 0.0601 0.0099 0.004 0
 e 0.1381 0.004 0.0192 0.0034 0.1927 0.1231 0.0404 0.0048 0.0215 0.0205 0.0152 0.0121 0.0004
 n 0.0194 0.0528 0.0004 0.0007 0.0011 0.0751 0.1641 0.0124 0.0068 0.0018 0.0002 0.0157 0.0004
 0 0.219 0.0222 0.0292 0 0.153 0.0357 0.0396 0.0947 0.0334 0.0345 0.0012 0.0041 0.0004
                                                      p 0.0006 0.1511 0.0581 0

      0.131
      0.0053
      0
      0
      0.0023
      0
      0.0012
      0.0012
      0
      0.0058
      0

      0
      0.0357
      0.1292
      0
      0
      0.016
      0
      0
      0
      0.0024
      0

      0
      0.0075
      0.3507
      0
      0
      0.1716
      0
      0
      0.0373
      0
      0

      0
      0.0172
      0.2207
      0.031
      0
      0.1517
      0.0172
      0.0138
      0
      0.0103
      0
      0.0059

      0
      0.0506
      0
      0
      0
      0.0127
      0
      0
      0
      0.0253
```

3) Use Mathematica to verify my answer:

Problem Nr.2 Encrypt the following plaintext using the Vigenère system with the key "vigenere": "who is afraid of virginia woolf". (02.03)

Solution.

First we convert alphabet to corresponding integers, then mod 26: $(m_i + k_i) \mod 26$

Plaintext	w	h	0	i	S	a	f	r	a	i	d	0	f	V	i	r	g	i	n	i	a	W	0	0	l	f
m_i	2	7	1	8	1	0	5	1	0	8	3	1	5	2	8	1	6	8	1	8	0	2	1	1	1	5
	2		4		8			7				4		1		7			3			2	4	4	1	
Key	v	i	g	e	n	e	r	е	V	i	g	е	n	е	r	е	V	i	g	е	n	е	r	е	v	i
k_i	2	8	6	4	1	4	1	4	2	8	6	4	1	4	1	4	2	8	6	4	1	4	1	4	2	8
	1				3		7		1				3		7		1				3		7		1	
c_i	1	1	2	1	5	4	2	2	2	1	9	1	1	2	2	2	1	1	1	1	1	0	5	1	6	1
	7	5	0	2			2	1	1	6		8	8	5	5	1		6	9	2	3			8		3
Ciphertext	r	p	u	m	f	e	W	V	V	q	j	S	S	Z	Z	V	b	q	t	m	n	a	f	S	g	n

In conclusion, E(whoisafraidofviginiawoolf) = rpumfewvvqjsszzvbqtmnafsgnUse Mathematica to verify my answer:

rpumfewvvqjsszzvbqtmnafsgn

Problem Nr.3 Check that 953 is a prime number and that 3 is a generator of Z^*_{953} . Find the three least significant bits of the solution m of the congruence relation $3^m \equiv 726 \mod 953$. (See the remark in the discussion of the special case $q - 1 = 2^n$ in Subsection 8.3.1.) (08.04)

Solution.

1) To check 953 is a prime number, I used the mathematica function PrimeQ[].

```
PrimeQ[953]
True
```

2) If x is a generator or primitive element of finite field GF(p), each nonzero element y in GP(p) can be written as a power of x, such that $y = x^m$, where m is unique modulo p - 1. To check 3 is a generator of Z^*_{953} , I used the mathematica function PowerList[] from the package "FiniteFields". This function finds a primitive element in F_p and generates all its powers (starting with the 0-th). The second element in this list is the primitive element itself, which means 3 is a generator of Z^*_{953}

```
<< "FiniteFields`"

p = 953; PowerList[GF[p, 1]][2]

{3}</pre>
```

3) Moreover, to check 3 is a primitive element modulo 953 We know the multiplicative group Z^*_{953} has order 952, so each element has an order dividing 952. Since the order of 3 does not divide 952/2, 952/7, 952/17, the order must be 952.

```
FactorInteger[952]

{{2, 3}, {7, 1}, {17, 1}}

PowerMod[3, 952/2, 953] == 1
PowerMod[3, 952/7, 953] == 1
PowerMod[3, 952/17, 953] == 1

False

False

False
```

- 4) In order to find the solution m of $3^m \equiv 726 \mod 953$, we need to follow these steps:
 - a. Firstly, we factorize $952 = 2^37^117^1$, and compute the inverse of 3.

b. Secondly, we get the corresponding omegas, and a table for omegas' powers.

c. Thirdly, we use Chinese Remainder Theorem with these factors.

```
In[105]:= u = ChineseRemainder[{1,0,0},{8,7,17}]
    v = ChineseRemainder[{0,1,0},{8,7,17}]
    w = ChineseRemainder[{0,0,1},{8,7,17}]

Out[105]= 833

Out[106]= 680

Out[107]= 392
```

d. Fourthly, we start solving equation $3^m \equiv 726 \mod 953$:

$$q = 953, 952 = 2^37^117^1, \alpha = 3, \alpha^{-1} = 318, c = 726, u = 833, v = 680, w = 392$$

First Prime Factor: $p_1 = 2$, $n_1 = 3$

$$c = 726, c^{952/2} = 952, m_0 = 1.$$

$$c_1 = c * \alpha^{-1} = 242, c_1^{952/4} = 1, m_1 = 0.$$

$$c_2 = c_1 * \alpha^0 = 242, c_2^{952/8} = 952, m_2 = 1.$$

Hence: $m^{(1)} = 1 + 0 * 2^1 + 1 * 2^2 = 5$.

Second Prime Factor: $p_2 = 7$, $n_2 = 1$

$$c = 726, c^{952/7} = 1, m_0 = 0.$$

Hence : $m^{(2)} = 0$.

Third Prime Factor: $p_3 = 17$, $n_3 = 1$

$$c = 726, c^{952/17} = 256, m_0 = 1.$$

Hence : $m^{(3)} = 1$.

Therefore, the final solution:

$$m = u * m^{(1)} + v * m^{(2)} + w * m^{(3)} = 833 * 5 + 680 * 0 + 392 * 1$$

= 4557 \equiv 749 mod 952. (3⁷⁴⁹ \equiv 726 mod 953)

Use Mathematica to verify my answer:

In[188]:= PowerMod[3, 749, 953]

Out[188]= **726**

Problem Nr.4 Check that g = 996 is a generator of the multiplicative group Z^*_{4007} . Set up the index-calculus method with a factor base of size 6 and determine $\log_{996}1111$. (08.08)

Solution.

1) To check 4007 is a prime number, I used the mathematica function PrimeQ[]. And to check 996 is a generator, we know Z^*_{4007} has order 4006, so each element of the group has an order dividing 4006. Since the order of 996 does not divide 4006/2, 4006/2003, the order must be 4006.

```
In[3]:= p = 4007; PrimeQ[p]
    FactorInteger[p - 1]

Out[3]= True

Out[4]= {{2, 1}, {2003, 1}}

In[5]:= PowerMod[996, 4006 / 2, p]
    PowerMod[996, 4006 / 2003, p]

Out[5]= 4006

Out[6]= 2287
```

- 2) Use Index-Calculus Method with a factor base of size 6 and calculate $log_{996}1111$.
 - a. Firstly, the Factor Base we take is the first 6 prime numbers: {2, 3, 5, 7, 11, 13}.
 - b. Secondly, we find 6 elements that can be factorized using the Factor Base.

```
In[391]:= a = 996; p = 4007;
    FactorInteger[PowerMod[a, 8, p]]
    FactorInteger[PowerMod[a, 21, p]]
    FactorInteger[PowerMod[a, 61, p]]
    FactorInteger[PowerMod[a, 65, p]]
    FactorInteger[PowerMod[a, 68, p]]
    FactorInteger[PowerMod[a, 80, p]]
Out[392]= {{2, 5}, {3, 1}}
Out[393]= {{2, 6}, {3, 1}, {11, 1}}
Out[394]= {{3, 2}, {5, 1}, {13, 1}}
Out[395]= {{2, 1}, {3, 2}, {5, 1}, {7, 1}}
Out[396]= {{2, 1}, {3, 1}, {7, 2}, {13, 1}}
Out[397]= {{2, 1}, {5, 2}, {7, 2}}
```

 $m_1 = log_{996}2$, $m_2 = log_{996}3$, $m_3 = log_{996}5$, $m_4 = log_{996}7$, $m_5 = log_{996}11$, $m_6 = log_{996}13$ For example $996^8 = 996^{5*log_{996}2}*996^{log_{996}3} \ mod\ 4007$, $8 = 5m_1 + m_2 \ mod\ 4006$. We have:

$$8 = 5m_1 + m_2 \mod 4006$$

$$21 = 6m_1 + m_2 + m_5 \mod 4006$$

$$61 = 2m_2 + m_3 + m_6 \mod 4006$$

$$65 = m_1 + 2m_2 + m_3 + m_4 \mod 4006$$

$$68 = m_1 + m_2 + 2m_4 + m_6 \mod 4006$$

$$80 = m_1 + 2m_3 + 2m_4 \mod 4006$$

Moreover, they must be linearly independent:

c. Thirdly, we solve the linearly independent system of equations:

```
In[456] := m1 = .; m2 = .; m3 = .; m4 = .; m5 = .; m6 = .;
Solve [ \{5 * m1 + m2 = 8, 6 * m1 + m2 + m5 = 21, 2 * m2 + m3 + m6 = 61, m1 + 2 * m2 + m3 + m4 = 65,
m1 + m2 + 2 * m4 + m6 = 68, m1 + 2 * m3 + 2 * m4 = 80\}, \{m1, m2, m3, m4, m5, m6\}, Modulus \rightarrow 4006]
Out[457] = \{ \{m5 \rightarrow 1279, m6 \rightarrow 156, m4 \rightarrow 1426, m3 \rightarrow 3253, m2 \rightarrow 2332, m1 \rightarrow 2740\} \}
```

And get:

$$m_1 = log_{996}2 = 2740, m_2 = log_{996}3 = 2332, m_3 = log_{996}5 = 3253,$$

 $m_4 = log_{996}7 = 1426, m_5 = log_{996}11 = 1279, m_6 = log_{996}13 = 156.$

Or, equivalently:

$$996^{2740} \equiv 2$$
, $996^{2332} \equiv 3$, $996^{3253} \equiv 5$, $(mod\ 4006)$, $996^{1426} \equiv 7$, $996^{1279} \equiv 11$, $996^{156} \equiv 13$, $(mod\ 4006)$.

d. Finally, we can find the solution of $996^m \equiv 1111 \ mod \ 4007$, ($m = log_{996}1111$)

We see that 1111 can not be expressed as product of elements in Factor Base, but $996^{1} * 1111$ can.

We conclude that:

$$1 + m = 4 * m_1 + 1 * m_2 + 1 * m_6 = 4 * 2740 + 2332 + 156 \equiv 1430 \mod 4006$$

Therefore, the solution of $996^m \equiv 1111 \mod 4006$ is given by:

$$m \equiv 1429 \; (mod \; 4006)$$

Use Mathematica to Check my solution:

```
In[502]:= PowerMod[996, 1429, 4007]
Out[502]= 1111
```

Problem Nr.5 Complete Example 9.7. (Hint: extend the search to H-105, 105L.) (09.07)

Solution.

a. We want to factorize n = 661643, according to the Quadratic Sieve Factoring Algorithm, firstly, we make a Factor Base while the Jacobi Symbol of n and the chosen prime number is 1: $\{-1, 2, 11, 19, 23, 31, 37, 47, 53, 59, 79, 89\}$.

b. Secondly, we choose pairs (a_i, b_i) , such that they can be factorized with the Factor Base, while $f(x) = a_i^2 - n$ must small numbers:

```
 \begin{array}{l} n = 661643; \ r = \left\lfloor \sqrt{n} \right\rfloor; \\ i = \left\{ -74, \, -55, \, -52, \, -39, \, -34, \, -2, \, 4, \, 10, \, 41, \, 69, \, 72, \, 100, \, 104 \right\}; \\ a = i + r; \\ f[x_{\_}] := (x + r)^2 - n; \ b = f[i]; \\ \hline TableForm[Table[ \{a[i], \, b[i], \, FactorInteger[ \, b[i]] \, ] \, // \, OutputForm \}, \, \{i, \, 1, \, Length[a] \} \, ], \\ TableHeadings \rightarrow \{ \{ \}, \, \{"a", \, "\setminus! \setminus (a \setminus 2 \setminus) \, mod \, n", \, "factors" \} \}, \, TableAlignments \rightarrow \{ Left \} ] \\ \end{array}
```

Out[152]//TableForm=

```
a^2 \mod n
                     factors
                     \{\{-1, 1\}, \{2, 1\}, \{11, 1\}, \{59, 1\}, \{89, 1\}\}
        -115 522
739
758
       -87 079
                     \{\{-1, 1\}, \{31, 1\}, \{53, 2\}\}
       -82522
761
                     \{\{-1, 1\}, \{2, 1\}, \{11, 3\}, \{31, 1\}\}
774
       -62 567
                     \{\{-1, 1\}, \{19, 1\}, \{37, 1\}, \{89, 1\}\}
779
       -54802
                     \{\{-1, 1\}, \{2, 1\}, \{11, 1\}, \{47, 1\}, \{53, 1\}\}
811
       -3922
                     \{\{-1, 1\}, \{2, 1\}, \{37, 1\}, \{53, 1\}\}
817
       5846
                     \{\{2, 1\}, \{37, 1\}, \{79, 1\}\}
823
                     \{\{2, 1\}, \{11, 1\}, \{23, 1\}, \{31, 1\}\}
       15 686
854
       67673
                     \{\{31, 1\}, \{37, 1\}, \{59, 1\}\}
                     \{\{11, 2\}, \{31, 2\}\}
882
       116 281
885
       121 582
                     \{\{2, 1\}, \{31, 1\}, \{37, 1\}, \{53, 1\}\}
                     \{\{2, 1\}, \{31, 1\}, \{47, 1\}, \{59, 1\}\}
913
        171 926
                     \{\{2, 1\}, \{19, 1\}, \{53, 1\}, \{89, 1\}\}
917
        179 246
```

c. Thirdly, we conclude the exponents in the factorization of b_i 's to form a matrix U, and use modulo 2 reductions to form a matrix V.

```
\{1, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1\},
        \{1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0\}, \{1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0\},
        \{0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0\}, \{0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0\},\
        \{0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0\}, \{0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0\},
        \{0,\,1,\,0,\,0,\,0,\,1,\,1,\,0,\,1,\,0,\,0,\,0\},\,\{0,\,1,\,0,\,0,\,0,\,1,\,0,\,1,\,0,\,1,\,0,\,0\},
        {0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0}};
     V = Mod[U, 2];
     MatrixForm[V]
Out[173]//MatrixForm=
      111000000101
       100001000000
       1 1 1 0 0 1 0 0 0 0 0 0
       100100100001
       111000011000
       110000101000
       010000100010
       011011000000
       000001100100
       000000000000
       010001101000
       010001010100
       010100010010
```

d. Fourthly, we find a non-trivial linear combination of the rows of *V* adding up to the all-zero vector modulo 2 and get a solution (the first one).

e. Finally, we get x and y respectively using the above solution, and the factor will be the greatest common divisor of x - y and n:

```
In[163]:= x = a[2] * a[3] * a[5] * a[6] * a[9] * a[12]

y = (b[2] * b[3] * b[5] * b[6] * b[9] * b[12])^{1/2}

GCD[x - y, n]

Out[163]= 284 145 526 155 966 244

Out[164]= 134 051 624 754 916

Out[165]= 1223

such that: n = 661643 = 1223 * 541
In[166]:= n / 1223

Out[166]= 541
```

Problem Nr.6 Suppose that Alice has sent secret messages $m_1 = m$, $m_2 = m^2 + 10m + 20$ to Bob by the RSA system. Let Bob's modulus be $n_B = 483047$ and $e_B = 3$. Suppose that you have intercepted the transmitted ciphertexts $c_1 = 346208$ resp. $c_2 = 230313$ and that you know the above relation between m1 and m2. Determine m1 (see Example 9.10). (09.11)

Solution.

Out[274]= 0

a. Firstly, according to the General Method through GCD calculation, the message can be recovered by $gcd(z^e - c_1, f(z)^e - c_2) \mod n_B$, however, $n_B = 483047$ is not prime, we need to compute the gcd step by step using Euclid's Algorithm:

```
In[183]:= PrimeQ[483 047]
Out[183]= False
```

b. We have:
$$f_1(z) = z^6 + 30z^5 + 360z^4 + 2200z^3 + 7200z^2 + 12000z + 260734$$
 and $f_2(z) = z^3 - 346208$ over $Z_{483047}[z]$. Start Euclid's Algorithm:
$$f_1(z) = f_2(z)(z^3 + 30z^2 + 360z + 348408) + (249453z^2 + 20754z + 231228)$$

$$f_2(z) = f_3(z)(21839z + 132325) + (317238z + 54813)$$

$$f_3(z) = f_4(z)(351887z + 172538) + (0)$$
 So $gcd(f_1(z), f_2(z)) = 317238z + 54813$
$$\ln[269] = \mathbf{n} = 483047; \ \mathbf{c1} = 346208; \ \mathbf{c2} = 230313;$$

$$\mathbf{f1} = \mathbf{Expand} \left[\left(\mathbf{z}^2 + \mathbf{10} \ \mathbf{z} + \mathbf{20} \right)^3 - \mathbf{c2} \right]$$

$$\mathbf{f2} = \mathbf{z}^3 - \mathbf{c1};$$

$$\mathbf{f3} = \mathbf{PolynomialMod} \left[\mathbf{f1} - \mathbf{f2} * \left(\mathbf{z}^3 + \mathbf{30} \ \mathbf{z}^2 + \mathbf{360} \ \mathbf{z} + \mathbf{348408} \right), \mathbf{n} \right]$$
 Out[270] = $-222313 + 12000z + 7200z^2 + 2200z^3 + 360z^4 + 30z^5 + z^6$ Out[272] = $231228 + 20754z + 249453z^2$
$$\ln[273] = \mathbf{f4} = \mathbf{PolynomialMod} \left[\mathbf{f2} - \mathbf{f3} * \left(21839z + 132325 \right), \mathbf{n} \right]$$
 Out[273] = $54813 + 317238z$

ln[274] = f5 = PolynomialMod[f3 - f4 * (351887 z + 172538), n]

c. Moreover:

$$gcd(f_1(z), f_2(z)) \equiv 317238z + 54813 \equiv$$

 $\equiv z + 50947 \equiv z - 432100 \pmod{483047}$

Therefore, the secrete message m is 432100.

d. Use Mathematica to verify my answer:

```
In[282]:= m = 432100; n = 483047;

PowerMod[m, 3, n] == c1

PowerMod[m^2 + 10 m + 20, 3, n] == c2
```

Out[283]= True

Out[284]= True

Problem Nr.7 Let (G, *) denote a commutative group. Let a and b be two elements in G of order m resp. n. (a) Assume that gcd(m, n) = 1. Show that a * b has order m * n. (b) Assume no longer that gcd(m, n) = 1. Determine integers s and t such that $s \mid m, t \mid n, gcd(s, t) = 1$, and lcm[s, t] = lcm[m, n]. (c) Construct an element in G of order lcm[m, n]. (B.06)

Solution.

- a. Since a, b commute, then we have $(ab)^{mn} = a^{mn}b^{mn} = e$, where e is the identity element in G, this means o(ab)|mn, where o(ab) is the order of ab in G. Now, suppose o(ab) = r, such that $(ab)^r = e$. Raising m to both sides, we have $(ab)^{rm} = b^{rm} = e$, means that n|rm. Since gcd(m,n) = 1, we have n|r. Similarly, (by raising n to both sides), we will have m|r. Now we have n|r and m|r, since gcd(m,n) = 1, we will have m|o(ab), means that o(ab) = mn.
- b. Since gcd(s, t)=1, as we know the least common multiple of two integers is the product divided by the gcd, which means that lcm(s, t) = st/gcd(s, t) = st/1 = st. This yields to st = lcm(m, n). For example, if m = 4, n = 6, lcm = 12, and st = 12, s|4, t|6. Then s=4 while t=3, or s=2 while t=6.
- c. Two cases for this item:
 - a) For the case gcd(m, n) = 1, from item a, we know ab has order mn, and lcm(m, n) = mn/gcd(m, n) = mn, which means ab is the element has order lcm(m, n) that we want to construct.
 - b) For the case $\gcd(m,n) \neq 1$, we write $\gcd(m,n) = p_1^{r_1} \dots p_s^{r_s}$ for distinct primes p_i and corresponding orders r_i . If we could find an element in G with order $p_i^{r_i}$ for every i, then the product of these elements will have order $\gcd(m,n)$ because prime powers are all relatively prime to prime powers of different primes. Let i with $1 \leq i \leq s$ be given. We note that $p_i^{r_i}$ divides either m or n. Thus $a^{m/p_i^{r_i}}$ or $b^{n/p_i^{r_i}}$ (whichever one divides evenly) has order $p_i^{r_i}$. Therefore, the products of these elements is the element of order $\gcd(m,n)$.

Problem Nr.8 Let α in GF(q) have order m, m < q - 1. What is the probability that a random non-zero element β in GF(q) has an order n dividing m? Give an upperbound on this probability. Construct an element of order lcm[m, n] (hint: see Problem B.06). (In fact, this method leads to an efficient to find a primitive element in a finite field. It is due to Gauss.) (B.10)

Solution.

In order to solve this problem, we will use the following theorems:

Definition A.6

The Euler's Totient Function ϕ (see Euler) is defined by

$$\phi(m) = |\{ 0 \le i < m \mid \gcd(i, m) = 1 \}|.$$

In words, $\phi(m)$ is the number of integers in between 0 and m-1 that are coprime with m.

Theorem A.12

For all positive integers m

$$\sum_{d|m} \varphi(d) = m.$$

Proof of Theorem A.12:

Let d divide m. By writing r = i d one sees immediately that the number of elements r, $0 \le r < m$, with gcd(r, m) = d is equal to the number of integers i with $0 \le i < \frac{m}{d}$ and $gcd(i, \frac{m}{d}) = 1$, therefore, this number is $\phi(\frac{m}{d})$.

On the other hand, gcd(r, m) divides n for each integer r, $0 \le r < m$. It follows that $\sum_{d|m} \phi(\frac{m}{d}) = m$. This statement is equivalent to what needs to be proved.

Theorem B.5

Let (G, \cdot) be a finite group of order n. Then every subgroup (H, \cdot) of (G, \cdot) has an order dividing n. Also every element a, $a \neq e$, in G has an order dividing n.

Theorem B.21

Let $(\mathbb{F}_q, +, \cdot)$ be a finite field and let d be an integer dividing q - 1. Then \mathbb{F}_q contains exactly $\phi(d)$ elements of order d.

In particular, $(\mathbb{F}_q \setminus \{0\}, \cdot)$ is a cyclic group of order q - 1, which contains $\phi(q - 1)$ primitive elements.

Proof: By Theorem B.5, every non-zero element in \mathbb{F}_q has a multiplicative order d, which divides q-1. On the other hand, suppose that \mathbb{F}_q contains an element of order d, $d \mid (q-1)$, say ω . Then all d distinct powers of ω are a zero of x^d-e . It follows from Theorem B.15 that every d-th root of unity in \mathbb{F}_q is a power of ω . It follows from Lemma B.4 that under the assumption that \mathbb{F}_q contains an element of order d, \mathbb{F}_q will contain exactly $\phi(d)$ elements of order d, namely ω^i , with GCD[i, d] = 1.

Let a(d) be the number of elements of order d in \mathbb{F}_q . Then the above implies that

i)
$$a(d) = 0 \text{ or } a(d) = \phi(d)$$

and also that

ii)
$$\sum_{d|(q-1)} a(d) = q - 1.$$

On the other hand, Theorem A.12 states that $\sum_{d|(q-1)} \phi(d) = q-1$. So, we conclude that $a(d) = \phi(d)$ for all $d \mid (q-1)$.

In particular, $a(q-1) = \phi(q-1)$ which means that \mathbb{F}_q contains $\phi(q-1)$ primitive elements and that $\mathbb{F}_q \setminus \{0\}$ is a cyclic group.

1) α in GF(q) has order m < q - 1, we want to know the number of elements β in GF(q) such that, $o(\beta) = n$, n|m.

Case 1: m|(q-1) and m is prime. Then, there exists a subgroup in GF(q) with exactly m elements, and all the elements β 's in this subgroup have a order dividing m, thus the probability is

$$\frac{|\beta's|}{|GF(q)|} = \frac{m}{q-1}$$

Case 2: m|(q-1) but m is not a prime, then by factoring $m=p_1^{r_1}\dots p_s^{r_s}$, the β 's we want are the elements having the order of these factors. Since $o(\beta)=n$, n|m, n|q, the number of β 's with order n is $\phi(n)$ by Theorem B.21. Then, for all β 's with order dividing m, the number is $\sum_{n|m}\phi(n)$, by Theorem A.12, that is m. So the probability is

$$\frac{|\beta's|}{|GF(q)|} = \frac{m}{q-1}$$

Case 3: m does not divide (q - 1). We consider gcd(m, q - 1), similar with the above two cases, the probability is:

$$\frac{|\beta's|}{|GF(q)|} = \frac{gcd(m, q-1)}{q-1}$$

In conclusion, the upper bound of the probability is ${}^{m}/_{a-1}$.

- 2) If n|m, lcm(m, n) = m, then element of order lcm(m, n) is α itself.
 - If n does not divide m, probability is (1 m/q-1), from B.06, we have 2 cases:
 - a) For the case gcd(m, n) = 1, we know $\alpha\beta$ has order mn, and lcm(m, n) = mn/gcd(m, n) = mn, which means $\alpha\beta$ is the element has order lcm(m, n) that we want to construct.
 - b) For the case $\gcd(m,n) \neq 1$, we write $\gcd(m,n) = p_1^{r_1} \dots p_s^{r_s}$ for distinct primes p_i and corresponding orders r_i . If we could find an element in GF(q) with order $p_i^{r_i}$ for every i, then the product of these elements will have order $\gcd(m,n)$ because prime powers are all relatively prime to prime powers of different primes. Let i with $1 \leq i \leq s$ be given. We note that $p_i^{r_i}$ divides either m or n. Thus $a^{m/p_i^{r_i}}$ or $b^{n/p_i^{r_i}}$ (whichever one divides evenly) has order $p_i^{r_i}$. Therefore, the products of these elements is the element of order $\gcd(m,n)$.
 - c) Moreover, the element will be the primitive element of GF(q).
- 3) Guass procedure to find a primitive element:

```
Choose a non-zero element \alpha in GF(q). Let m := o(\alpha), m is the first power of \alpha such that \alpha^m = 1. If m = q - 1:

Output("\alpha is primitive"), and finish. Else:

While \alpha is not primitive:

Find \beta, whose order IS NOT a divisor of m,

Update \alpha = \alpha\beta, and m = lcm(m, n),

Output("\alpha is primitive"), and finish.
```

Problem Nr.9 Duplicate Example 10.6 for the elliptic curve \mathcal{E} over Z_{523} defined by the equation $y^2 = x^3 + 111x^2 + 11x + 1$. Use for P a point of order at least one hundred. (10.07)

Solution.

a. For the elliptic curve \mathcal{E} over Z_{523} , the point $P = \{1, 80\}$ lies on it:

```
In[23]:= p = 523; a = 111; b = 11; c = 1; In[74]:= x = 1; y = 80; Mod[y^2 - (x^3 + a * x^2 + b * x + c), p] == 0
Out[74]= True
```

b. The point $P = \{1, 80\}$ has order 528 since it goes to zero after 528 additions:

```
In[257]:= Clear[f];
    p = 523; a = 111; b = 11; c = 1; P = {1, 80}; f[1] = P;
    f[n_] := f[n] = EllipticAdd[p, a, b, c, P, f[n-1]];
    Table[f[i], {i, 528-1, 528+1}]
Out[260]= { {1, 443}, {0}, {1, 80} }
```

c. Moreover, only 528 * P = 0, while other factors of 528 do not(We convert integers into binary representation first, and use EllipticAdd() with corresponding indexes P[i]):

```
In[450]:= Clear[P];
        p = 523; P = .;
        a = 111; b = 11; c = 1;
        P[0] = \{1, 80\};
        P[i_] := P[i] = EllipticAdd[p, a, b, c, P[i-1], P[i-1]];
        Q = EllipticAdd[p, a, b, c, P[9], P[4]]
        EllipticAdd[p, a, b, c, P[8], P[3]]
        EllipticAdd[p, a, b, c, P[7], EllipticAdd[p, a, b, c, P[5], P[4]]]
        EllipticAdd[p, a, b, c, P[5], P[4]]
Out[455]= {0}
Out[456]= {195, 0}
Out[457]= { 174, 165 }
Out[458]= {32, 226}
d. Then let Alice choose m_A = 130, and Bob choose m_B = 288, then:
                         Q_A = (332, 414), and Q_B = (49, 214)
 In[463]:= IntegerDigits[130, 2]
         IntegerDigits[288, 2]
Out[463]= \{1, 0, 0, 0, 0, 0, 1, 0\}
Out[464]= \{1, 0, 0, 1, 0, 0, 0, 0, 0\}
 In[465]:= QAlice = EllipticAdd[p, a, b, c, P[7], P[1]]
         QBob = EllipticAdd[p, a, b, c, P[8], P[5]]
Out[465]= { 332, 414 }
Out[466]= {49, 214}
```

(Use EllipticAdd()) with corresponding indexes P[i])

e. Finally, compute the common key $K_{A,B}$:

```
 \text{Alice:} \ K_{A,B} = m_A Q_B = (32,297)   \text{Bob:} \ K_{A,B} = m_A Q_A = (32,297)   \text{In}[467] \coloneqq \text{Clear}[\text{QA}]; \ \text{QA}[\emptyset] = \{49,214\};   \text{QA}[i_-] \coloneqq \text{QA}[i] = \text{EllipticAdd}[\text{p, a, b, c, QA}[i-1], \text{QA}[i-1]];   \text{EllipticAdd}[\text{p, a, b, c, QA}[7], \text{QA}[1]]   \text{Out}[469] = \{32,297\}   \text{In}[470] \coloneqq \text{Clear}[\text{QB}]; \ \text{QB}[\emptyset] = \{332,414\};   \text{QB}[i_-] \coloneqq \text{QB}[i] = \text{EllipticAdd}[\text{p, a, b, c, QB}[i-1], \text{QB}[i-1]];   \text{EllipticAdd}[\text{p, a, b, c, QB}[8], \text{QB}[5]]   \text{Out}[472] = \{32,297\}
```

As expected, they have the same results.

Problem Nr.10 *Consider the following scheme over* Z_3 :

Participant	Share
1	$a, b, c + s_2$
2	$a + s_1$, b , c
3	$b + s_1, c - s_2, d$
4	$b, d + s_2,$

Give the matrix description of this scheme. Prove that it is a secret sharing scheme for access structure (U, P, N) with $U = \{1, 2, 3, 4\}$, $P = \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{3, 4\}\}$ and $N = \{\{1, 4\}, \{2, 4\}, \{3\}\}$. What is the information rate of this scheme? Is it perfect? Is it ideal? (15.04)

Solution.

1) Matrix description of this scheme (The first two columns are labeled by the secret bits s_1 , s_2 , and the next four columns by the random variables a, b, c, d):

```
2) Verify the secrets (Privileged Sets P = \{\{1, 2\}, \{2, 3\}, \{3, 1\}, \{3, 4\}\} can recover secrets s_1,
   s_2, while Non-Privileged Sets N = \{\{1, 4\}, \{2, 4\}, \{3\}\}\) can not):
      \{1, 2\} recover s_1:
       In[40]:= Clear[u, M];
              u = GTA[1];
              M = Join[Gp1, Gp2]; MatrixForm[M];
              LinearSolve[Transpose[M], u, Modulus → 3]
      Out[43] = \{2, 0, 0, 1, 0, 0\}
      \{1, 2\} recover s_2:
      In[44]:= Clear[u, M];
              u = GTA[2];
              M = Join[Gp1, Gp2]; MatrixForm[M];
              LinearSolve[Transpose[M], u, Modulus → 3]
      [0, 0, 1, 0, 0, 2]
      \{2,3\} recover s_1:
       In[48]:= Clear[u, M];
              u = GTA[1];
              M = Join[Gp2, Gp3]; MatrixForm[M];
              LinearSolve[Transpose[M], u, Modulus → 3]
      Out[51]= {0, 2, 0, 1, 0, 0}
      \{2,3\} recover s_2:
       In[52]:= Clear[u, M];
               u = GTA[2];
              M = Join[Gp2, Gp3]; MatrixForm[M];
               LinearSolve[Transpose[M], u, Modulus → 3]
      Out[55]= \{0, 0, 1, 0, 2, 0\}
```

```
\{3, 1\} recover s_1:
 In[56]:= Clear[u, M];
       u = GTA[1];
       M = Join[Gp3, Gp1]; MatrixForm[M];
        LinearSolve[Transpose[M], u, Modulus → 3]
Out[59]= \{1, 0, 0, 0, 2, 0\}
\{3, 1\} recover s_2:
In[60]:= Clear[u, M];
       u = GTA[2];
       M = Join[Gp3, Gp1]; MatrixForm[M];
       LinearSolve[Transpose[M], u, Modulus → 3]
ut[63]= {0, 1, 0, 0, 0, 2}
\{3, 4\} recover s_1:
In[64]:= Clear[u, M];
       u = GTA[1];
       M = Join[Gp3, Gp4]; MatrixForm[M];
       LinearSolve[Transpose[M], u, Modulus → 3]
Dut[67] = \{1, 0, 0, 2, 0\}
\{3, 4\} recover s_2:
 In[68]:= Clear[u, M];
        u = GTA[2];
        M = Join[Gp3, Gp4]; MatrixForm[M];
        LinearSolve[Transpose[M], u, Modulus → 3]
Out[71] = \{0, 0, 2, 0, 1\}
```

```
\{1, 4\} can not recover s_1:
In[72]:= Clear[u, M];
       u = GTA[1];
       M = Join[Gp1, Gp4]; MatrixForm[M];
       LinearSolve[Transpose[M], u, Modulus → 3]
       ... Linear Solve: Linear equation encountered that has no solution.
Out[75]= LinearSolve[{{0,0,0,0,0},{0,0,1,0,1},{1,0,0,0}
\{1, 4\} can not recover s_2:
In[76]:= Clear[u, M];
       u = GTA[2];
       M = Join[Gp1, Gp4]; MatrixForm[M];
       LinearSolve[Transpose[M], u, Modulus → 3]
       ... Linear Solve: Linear equation encountered that has no solution.
Out[79]= LinearSolve[{{0.0.0.0.0}.{0.0.1.0.1}.{1.0.0.
\{2, 4\} can not recover s_1:
In[80]:= Clear[u, M];
       u = GTA[1];
       M = Join[Gp2, Gp4]; MatrixForm[M];
       LinearSolve[Transpose[M], u, Modulus → 3]
       ... Linear Solve: Linear equation encountered that has no solution.
Out[83]= LinearSolve[{{1, 0, 0, 0, 0}, {0, 0, 0, 0, 1}, {1, 0, 0,
\{2, 4\} can not recover s_2:
 In[84]:= Clear[u, M];
        u = GTA[2];
        M = Join[Gp2, Gp4]; MatrixForm[M];
        LinearSolve[Transpose[M], u, Modulus → 3]
        ... Linear Solve: Linear equation encountered that has no solution.
Out[87]= LinearSolve[{{1, 0, 0, 0, 0}, {0, 0, 0, 0, 1}, {1, 0, 0,
```

```
{3} can not recover s<sub>1</sub>:
ln[88]:= Clear[u, M];
    u = GTA[1];
    M = Gp3; MatrixForm[M];
    LinearSolve[Transpose[M], u, Modulus → 3]
    ···· LinearSolve: Linear equation encountered that has no solution.
Out[91]= LinearSolve[{1, 0, 0}, {0, -1, 0}, {0, 0, 0}, {1, 0, 0},

{3} can not recover s<sub>2</sub>:
ln[92]:= Clear[u, M];
    u = GTA[2];
    M = Gp3; MatrixForm[M];
    LinearSolve[Transpose[M], u, Modulus → 3]
    ···· LinearSolve: Linear equation encountered that has no solution.
Out[95]= LinearSolve[{1, 0, 0}, {0, -1, 0}, {0, 0, 0}, {1, 0, 0},
```

- 3) The information rare is the ratio between the size of the secret and the size of the longest share, so in this case is 2/3.
- 4) The scheme is called perfect if the shares of any authorized subset uniquely determine the value of the secret, and the shares of a non-authorized subset give no information about the secret. From the experiments I made in item (1), the scheme is perfect.
- 5) A more compact way to denote this secret sharing scheme is:

Participant Share
$$1 \qquad a_1^{\{1,2\}}, a_1^{\{2,3\}}, a_1^{\{3,1\}} + s_2 \\ 2 \qquad a_1^{\{1,2\}} + s_1, a_1^{\{2,3\}}, a_1^{\{3,1\}} \\ 3 \qquad a_1^{\{2,3\}} + s_1, a_1^{\{3,1\}} - s_2, a_1^{\{3,4\}} \\ 4 \qquad a_1^{\{2,3\}}, a_1^{\{3,4\}} + s_2,$$

A perfect scheme is called ideal if it has an efficiency rate equal to 1, so our case is not ideal.