MATIGO EXAMINATIONS BOARD

SUBSIDIARY MATHEMATICS MARKING GUIDE 2023

PAPER 1

Qn	Answer								
1	$ \frac{\left(2m^{\frac{2}{3}}\right)^{3}}{\left(8m^{\frac{1}{6}}\right)^{2}} = \frac{2^{3} \times m^{\frac{2}{3} \times 3}}{8^{2} \times m^{\frac{1}{6} \times 2}} M_{1} $ $ = \frac{2^{3} \times m^{2}}{8^{2} \times m^{\frac{2}{6}}} M_{1} $ $ = \frac{8}{81} \times m^{\left(2-\frac{1}{3}\right)} M_{1} $ $ = \frac{8}{81}m^{\frac{5}{3}} A_{1} $								
2									
	speed x f	fx cf							
	45 – 50 47.5 20								
	51 – 55 53 28	3 1484 48							
	56 – 60 58 16								
	61 - 65 63 13	819 77							
	66 – 70 68 3 204 80								
	$\sum f = 80 \qquad \sum fx = 4385$								
			_						

	(i)	Modal speed=	
		$= L + \frac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times I$	
		$(28-20) \qquad \qquad M_1$	
		$= 50.5 + \frac{(28 - 20)}{(28 \times 2 - 20 - 16)} \times 6$	
		$= 52.9kmhr^{-1}$	
	(::)	$M_{\text{opp}} = \frac{\sum fx}{}$	
	(ii)	$Mean = \frac{\sum fx}{\sum f}$	
		$=\frac{4385}{320}$	
		$= \frac{4385}{80} \frac{M_1}{80}$ $= 54.8125 km hr^{-1}$	
3	(i)	let the first number n	
		$second\ number = n + d$	
		$third\ number = n + 2d$	
		n+n+d+n+2d=9	
		3n + 3d = 9	
		$n+d=3\ldots\ldots\ldots(i)$ B ₁	
		n(n+d)(n+2d) = 24	
		n(3)(n+2d) = 24	
		n(3)(n+d+d)=24	
		9n + 3nd = 24	
		$3n + nd = 8 \dots \dots \dots \dots \dots (ii)$ B ₁	
		d = 3 - n	
		3n + n(3-n) = 8	
		$3n + 3n - n^2 = 8$	
		$n^2 - 6n + 8 = 0$	
		(n-2)(n-4)=0	
		Either, $n = 2$ or $n = 4$ \mathbf{M}_1	
		when $n = 2, d = 3 - 2, d = 1$	

	when $n = 4$, $d = 3 - 4 = -1$							
	\mathbf{A}_{1}							
	finat torm - 2 or A							
	common difference = 1 or -1 $W.A.P.I = \frac{\sum IW}{\sum W}$							
4			Σ	; IW				
			$W.A.P.I = \frac{1}{5}$	<u> </u>				
			_					
	Weight(W)	P_0	P_1	$I = \frac{P_1}{P_0} \times I$	IW]		
				$I = \frac{1}{P_0} \times I$				
	25	3500	4650	132.8671	3321.429	1		
	10	800	1200	150	1500	1		
	35	600	900	150	5250]		
	20	2500	3000	120	2400]		
	1	7500	10500	140	140			
	9	3000	3150	105	945	B ₁		
	$\sum W = 100$			B ₁	$\sum W = 13556.43$	1		
						_		
			Σ	'.IW				
			$W.A.P.I = \frac{2}{5}$	7 1// 7 1//				
			13556.4	3				
	$W.A.P.I = \frac{\sum IW}{\sum W}$ $= \frac{13556.43}{100} \qquad M_1$ $= 135.56 \qquad A_1$ Comment: the prices of items increased by 35.56%							
			= 135.56	$^{\mathrm{A}}{}_{1}$	D			
	Con	mment: the p	rices of items	increased by 35.5 -1 ₉ - M ₁	6% B ₁			
5			4 -	-1				
			$x = \frac{1-30}{12}$	9 l 				
			3 -1	1111				
			יט פֿי	ı				
			36 - 30) _D				
			$=\frac{36-30}{275}$	5 ^D 1				
			$=\frac{6}{32}$					
			32					

	$=\frac{3}{16} \qquad A_1$	
	$y = \frac{\begin{vmatrix} 3 & 4 \\ 5 & -30 \end{vmatrix}}{\begin{vmatrix} 3 & -1 \\ 5 & 9 \end{vmatrix}} \mathbf{M_1}$	
	$=\frac{-90-20}{275}$	
	$=\frac{-110}{32}$	
	$=\frac{-55}{16}$	
	$=-3\frac{7}{16}$ A ₁	
6	$P(A) = \frac{5}{8} \qquad P(B) = x$ $\frac{5}{8} - \frac{1}{6} \qquad P(AnB) \qquad x - \frac{1}{6}$ $\frac{1}{6} \qquad B_1$	
(a)	$\frac{11}{24} + \frac{1}{6} + x - \frac{1}{6} = 1 \text{ M}_{1}$ $x = \frac{13}{24} \text{ A}_{1}$ $\therefore P(B) = \frac{13}{24}$	

(b)		
	$P(A/B) = \frac{P(AnB)}{P(B)}$ $= \frac{\frac{1}{6}}{\frac{13}{24}} \qquad M_1$ $= \frac{\frac{1}{6} \times \frac{24}{13}}{\frac{4}{13}} \qquad A_1$	
	$P(A,B) = \frac{1}{P(B)}$	
	$^{1}/_{6}$	
	$=\frac{\frac{76}{13}}{\frac{13}{24}} \qquad \mathbf{M_1}$	
	$-\frac{1}{24}$	
	$-\frac{76}{4}\frac{13}{4}$	
	$=\frac{1}{13}$	
7	$6\sin^2 x + 5\cos x = 7 \text{ for } 270^\circ < x < 360^\circ$	
	$6(1-\cos^2 x) + 5\cos x = 7$	
	$6\cos^2 x - 5\cos x + 1 = 0$ M_1 70.53°	
	$5 \pm \sqrt{(-5)^2 - 4(6)(1)}$	
	$cosx =\frac{2 \times 6}{1 \times 1} \mathbf{M_1}$	
	$Either cosx = \frac{1}{3} or \frac{1}{2}$	
	1 I	
	$for cosx = \frac{1}{3}$ B ₁	
	-1/1	
	$x = 70.53^{\circ}, 289.47^{\circ}$	
	$for \ cos x = \frac{1}{2}$	
	v = 60° 200°	
	$x = 60^{\circ}, 300^{\circ}$ $x = 60^{\circ}, 70.53^{\circ}, 289.47^{\circ}, 300^{\circ}$	
8(i)	$\sum_{x} P(X = x) = 1$	
	$\frac{2}{allx}$ M ₁	
	0.1 + 0.3 + a + 0.2 + 0.15 = 1 $a = 0.25$	
(ii)	$0.1 + 0.3 + a + 0.2 + 0.15 = 1$ $a = 0.25$ $P\left(x < \frac{3}{x} \ge 2\right) = \frac{P(x < 3 \ n \ x \ge 2)}{P(x \ge 2)}$ $P(X = 2)$	
` '	$P\left(x < \frac{3}{x} \ge 2\right) = \frac{P(x < 3 n x \ge 2)}{P(x \ge 2)}$	
	$=\frac{P(X=2)}{}$	
	$= \frac{1 - (C - 1)}{1 - P(X = 1)} - \frac{0.3}{1 - P(X = 1)}$	
	-1-0.1	
	$=\frac{1}{2} \qquad A_{1}$	
	$-\overline{3}$	

9(a)(i)	$s = 3t^3 - 27t^2 + 72t - 50$	
() ()	$\frac{ds}{dt} = 9t^2 - 54t + 72 \qquad \mathbf{M_1}$	
	$dt_{ds} = 3t - 34t + 72$ M1	
	$\frac{ds}{dt} = 0 \ for \ v = 0$	
	$9t^{2} - 54t + 72 = 0$ M ₁	
	$t^2 - 6t + 8 = 0$	
	$(t-4)(t-2) = 0 \qquad \frac{\mathbf{M}}{1}$	
	Either $t = 4s$ or $t = 2s$ $B_1 A_1$	
(11)	$Vwlocity\ vanishes\ at\ t=2s\ and\ at\ t=4s$	
(ii)	J2 -	
	$\frac{d^2s}{dt^2} = 18t - 54$ M ₁	
	dt^2 d^2s	
	$\frac{d^2s}{dt^2} = 0 \text{ for } a = 0 \qquad \mathbf{M_1}$	
	18t - 54 = 0	
	$t = \frac{54}{18}$	
	$t = \frac{18}{13s}$ $\frac{A}{1}$	
(b)	at t = 2s	
(6)	$S = 3(2)^3 - 27(2)^2 + 72(2) - 50 \frac{M}{1}$	
	$S = 3(2)^{3} - 27(2)^{2} + 72(2) - 50$ $S = 10$ A_{1} B_{1}	
	at t = 4s	
	$S = 3(4)^3 - 27(4)^2 + 72(4) - 50$ A M1 B ₁	
10(a)	$at t = 4s$ $S = 3(4)^{3} - 27(4)^{2} + 72(4) - 50 \text{ A}_{1} \text{ M}_{1} \text{ B}_{1}$ $S = -2m$ $\frac{dy}{dx} = kx - 3$	
10(a)	$\frac{dy}{dx} = kx - 3$	
	$\int dy = \int (kx - 3)dx$ $y = \frac{kx^2}{2} - 3x + c$ M_1 B_1	
	kx^2 B ₁	
	$y = \frac{1}{2} - 3x + c$	
	$-6 = \frac{1}{2}k(1)^2 - 3(1) + c \qquad \mathbf{M_1}$	
	$-6 = \frac{1}{2}k - 3 + c$	
	<u>u</u>	
	$-3 = \frac{k}{2} + c$ B ₁	
	-6 = k + 2c	
	$\frac{d^2y}{dx^2} = k = 4 \qquad \mathbf{M_1}$	
	us us	

∴ the turning point is a minimum
$$-6 = 4 + 2c$$

$$2c = -10$$

$$c = -5$$

$$B_1$$

$$∴ y = \frac{4}{2}x^2 - 3x + c$$

$$y = 2x^2 - 3x - 5$$

$$4x - 3 = 0$$

$$4x - 3 = 0$$

$$x = \frac{3}{4}$$

$$y = 2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) - 5$$

$$y = -6.125$$

$$\left(\frac{3}{4}, -6.125\right) \text{ is a minimum turning point}$$

$$x - \text{intercept}$$

$$when y = 0$$

$$2x^2 - 3x - 5 = 0$$

$$x = -\frac{3 \pm \sqrt{(-3)^2 - (2)(-5)}}{2 \times 2}$$

$$Either x = 1 \text{ or } x = 2.5$$

$$x \text{ intercept are } (-1,0) \text{ and } (2.5,0)$$

$$y - \text{intercept}$$

$$when x = 0$$

$$y = 2(0)^2 - 3(0) - 5$$

$$y = -5$$

$$(0, -5) \text{ is a y intercept}$$

	3x - 3y = 12	
	2x + 3y = -5	
	$5x = 7$ M_1	
	7	
	$x = \frac{1}{5} \qquad A_1$	
	3x - 3y = 12 $x - y = 4$	
	x-y-4 $y=x-4$	
	$\frac{7}{7}$	
	$y = x - 4$ $y = \frac{7}{5} - 4$ $y = -2.6$ A 1	
	y = -2.6 A ₁	
(b)	$\frac{1}{2}$	
(b)	$ \tilde{a} = \sqrt{3^2 + 2^2}$ $-\sqrt{13}$ B ₁	
	- V15	
	$ \tilde{c} = \sqrt{(12)^2 + (-5)^2}$	
	$= \sqrt{169}$ $= 13$ B ₁	
	$\tilde{a}.\tilde{c} = \tilde{a} \tilde{c} \cos\theta$	
	$\binom{3}{12}\binom{12}{\sqrt{13}}\sqrt{\frac{160}{120}}$	
	$\binom{3}{2} \cdot \binom{12}{-5} = \sqrt{13} \cdot \sqrt{169} \cos\theta \mathbf{M_1} \mathbf{M_1}$	
	$36 + -10 = 13\sqrt{13}\cos\theta$ 26 B_{1}	
	$cos\theta = \frac{26}{2}$	
	$cos\theta = \frac{26}{13\sqrt{13}}$ $\theta = cos^{-1} \left(\frac{26}{13\sqrt{13}}\right)$ A	
	$\theta = \cos^{-1}\left(\frac{20}{12\sqrt{12}}\right)$	
	$\theta = 56.31^{\circ} \qquad \qquad \frac{A}{1}$	
12(a)(i)	TROTTING	
	8letters including $3T'd$ 8! M_1 M_1	
	Number of arranaments	
	$= 6720 \qquad \begin{array}{c} A_1 \\ B_1 \end{array}$	
(ii)	number of arragment with R and O next = $\frac{7! \times 2!}{3!}$ $\mathbf{M_1}$ $\mathbf{M_1}$ $\mathbf{B_1}$	
	$= 1680 \qquad \begin{array}{c} \text{M}_1 & \text{M}_1 & \text{B}_1 \\ \text{A}_1 & \text{A}_1 & \text{B}_1 \end{array}$	
(iii)	Arranament with R and 0 senerated $-6720 - 1680$	
(111)	= 5040	

(b)	Number of ways = $C_2^5 \times C_3^7 + C_3^5 \times C_2^7 + C_4^5 \times C_1^7$ = $350 + 210 + 35$ A B M M M M M M M M M M M M M M M M M M								
			= 350	+ 210 -	- 35	$A_1 \qquad B_1 M_1$	$^{ m M}1$	M_1	
13(a)			:	= 595		1			
15(a)		Manka	+ ~ 110.	£	a f	Class boundaries			
		Marks 20 - 30	tally	3	c.f3	20 – 30			
		20 00	///			20 00			
		30 – 40	##	7	10	30 – 40			
		40 – 50	## 1111	9	19	40 – 50			
		50 – 60	##	5	24	50 - 60			
		60 – 70	##	5	29	60 – 70			
		70 – 80	///	3	32	70 – 80			
		80 – 90		¹ B	33 L	80 – 90			
			B ₁ \(\sum_{1} \)	f = 33	В1				
13(b)									
		R_x R_y D		D^2					
	1			6.25					
		3 1 2 3 3 0		0					
		.5 2 3.5		12.25					
		.5 4.5 3		9					
		2 12 0		0					
	1			0.25					
		9 7.5 1.5 3 10.5 -7.5		2.25 56.25					
		$\frac{5}{.5}$ $\frac{10.5}{7.5}$ B_1 0	,	0					
	5.	.5 4.5 1.0		1					
		1 7.5 -6.5		42.25					
			$\sum D$	$0^2 = 133$	8.5 B ₁				

$$\begin{split} \rho &= 1 - \frac{6 \sum D^2}{n(n^2 - 1)} \\ &= 1 - \frac{6 \times 133.5}{12(12^2 - 1)} & \text{M}_1 \text{ B}_1 \\ &= \frac{305}{572} & \text{A}_1 \\ &= 0.53 & \text{There is a moderate postive correlation} & \text{B}_1 \end{split}$$

Year	Quarters	Prices (000")	Moving total	Moving average
2005	$1^{ m st}$	85		
	$2^{ m nd}$	63	010	
	$3^{ m rd}$	70	310	77.5
	3 ^{ru}	70	30 P	76.75 B ₁
	$4^{ m th}$	92	30 B ₁	70.75
	1	02	305	76.25
	1^{st}	82		
			299	74.75
	$2^{ m nd}$	61		
	0.1		291 B ₁	72.75 B ₁
	3^{rd}	64	900	
	$4^{ m th}$	84	280	70
	4	04	275	68.75
	1 st	71		00.10
			273 p	68.25
	$2^{ m nd}$	56	²⁷⁸ B ₁	66 75 B ₁
			267	66.75 D1
	3^{rd}	62		
	$4^{ m th}$	78		
	4	10		
	1	ı	1	

END