Motion Correction

Why should we care?

Behaviors → brain movements!

Movements can be in XY (as in video)

Also movements in Z (harder to spot)

First let's correct XY movement

XY registration

• 1: compute reference image to align all frames to

• 2: compute rigid shifts relative to reference image

• 3: compute non-rigid shifts relative to reference image

4: benchmarking results

1: compute reference image

- a) Take 250 random frames and compute correlation matrix
- b) Take as the seed the frame with the most correlated neighbors
- c) Take the mean of the seed and the top 20 most correlated frames

Cross-correlation between frame and reference:

Cross-correlation is slooowww, but...

Cross-correlation is the same as the **convolution** of the frame with the reference.

convolution theorem: convolution = multiplication in the frequency domain

→ Take FFT of reference and frame and multiply

100x faster

But this still isn't the best approach
Get better results if you whiten: phase-correlation

But this still isn't the best approach
Get better results if you whiten: phase-correlation

cross-correlation

phase-correlation

Move frame by calculated integer shifts (4,-1)

Divide field of view (FOV) into over-lapping blocks

Now we will compute the phase-correlation between each block and the reference image

Phase correlation of each block

Phase correlation of each block

Phase correlation of each block

Upsample to get shift for each pixel using bilinear interpolation

4: benchmarking registration

Take PCA of whole movie and see if PC's correspond to motion

4: benchmarking registration

What do different brain movements look like?

(d) Non-rigid tissue deformation

merged

difference

Let's run registration!

Don't run cell detection

Choose run options (hold mouse over	r parameters to see descr	iptions)					
File paths look_one_level_down 0 Add directory to data_path	Load ops file Save ops as default Save ops to file	Main settings nplanes 1 nchannels	Output settings preclassify 0.0 save_mat	Registration do_registration 1 align_by_chan	Nonrigid nonrigid 1 block_size	ROI detection roidetect of sparse_mode	Extraction/Neuropil allow_overlap 0 inner_neuropil_radius
data_path D:/DATA/GT1	Load example ops 1P imaging dendrites/axons	functional_chan 1 tau 1.0 fs 10.0	combined 1 reg_tif 0 reg_tif_chan2	nimg_init 300 batch_size 500 smooth_sigma	snr_thresh 1.2 maxregshiftNR 5	diameter 12 spatial_scale 0 connected	min_neuropil_pixels 350 Deconvolution win_baseline 60.0
OR add h5 file path Add save_path (default is 1st data_path)		delete_bin 0 do_bidiphase	aspect	maxregshift 0.1 th_badframes 1.0	1Preg 0 spatial_hp 50	threshold_scaling 1.0 max_overlap 0.75	sig_baseline 10.0 neucoeff 0.7
Add fast_disk (default is save_path) RUN SUITE2P STOP	Add a dean-up *.py	bidiphase		keep_movie_raw 1	pre_smooth 2 spatial_taper 50	max_iterations 20 high_pass 100 save settings and	remove last added
RUN SULTEZP STOP	Add a dean-up *,py			Ke uni mo	ep registere	add more (batch)	remove last added

Drift in Z

How does this drift affect neural activity?

Scanimage 2018 (free version) has automated z-drift correction!

Motion correction summary

 Be aware of different types of brain movements and how they might affect neural activity

Perform online Z correction (if possible)