1. Linearly independent and span.

• The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are linearly independent if

• The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ span the vector space S if ______

• The vectors $\vec{v_1}, \vec{v_2}, ..., \vec{v_n}$ are a basis for S if _______.

 \bullet The dimension of a space S is ______.

2. Solve Ax = b. Let A be a rank $r m \times n$ matrix

• Ax = b is solvable if

• Suppose Ax = b is solvable. Then

$$-$$
 if $r < n$, $Ax = b$ has _____ solutions.

$$-$$
 if $r = n$, $Ax = b$ has solutions.

Problems

1. (a) Find a basis for symmetric 2×2 matrices. What is the dimension of symmetric 2×2 matrices? Also, do this for skew-symmetric 2×2 matrices.

(b) Let $\vec{v_1}, \vec{v_2}, ..., \vec{v_m}$ be a basis for symmetric 2×2 matrices. Let $\vec{w_1}, \vec{w_2}, ..., \vec{w_n}$ be a basis for skew-symmetric 2×2 matrices. Are $\vec{v_1}, \vec{v_2}, ..., \vec{v_m}, \vec{w_1}, \vec{w_2}, ..., \vec{w_n}$ linearly independent? What subspace of 2×2 matrices do they span?

- 2. A set F consists of functions $f(x) = ae^x + be^{-x}$, where $a, b \in \mathbb{R}$.
 - (a) Is F a vector space? Provide a basis of F.

(b) Define a map $V: F \to \mathbb{R}^2$ that sends $f(x) = ae^x + be^{-x}$ to $V(f) = \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$. What is V(f') for $f \in F$? Find a matrix A satisfying AV(f) = V(f') for all $f \in F$.

(c) Show that $A^2 = I_2$ and thus $\frac{d^2}{dx^2} f(x) = f(x)$.

3. (a) Find a basis for the space of all the degree ≤ 3 polynomials. $V = \{f(x) = a + bx + cx^2 + dx^3 | a, b, c, d \in \mathbb{R}\}.$

(b) Find a basis for the subspace W of V consisting all $f \in V$ such that f(1) = 0.

(c) Find a basis for the subspace U of V consisting all $f \in V$ such that f(-1) = f(1).