- 1. Prove that a subset of \mathbb{R} is compact if and only if it is sequentially compact.
- 2. Let $a_i \geq 0$ for all $i = 1, 2, \cdots$.
- (i) Suppose that $\sum_{k=1}^{\infty} a_k$ converges. Prove that $\sum_{k=1}^{\infty} a_k^2$ also converges. (ii) Find an example that $\sum_{k=1}^{\infty} a_k^2$ converges but $\sum_{k=1}^{\infty} a_k$ diverges.
- 3. Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges.
- 4. Find all possible values of x so that the following series converge.
- (i)

$$\sum_{n=1}^{\infty} \frac{x^n}{n},$$

(ii)

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2},$$

(iii)

$$\sum_{1}^{\infty} nx^{n}.$$