UBC Mathematics 320(101)—Assignment 4 Due by PDF upload to Canvas at 18:00, Saturday 07 Oct 2023

Readings: Loewen, lecture notes on Sequences and Series (2023-09-27 or newer); Rudin, pages 11b-12a, 47-58.

- 1. Prove or disprove, giving plenty of detail:
 - (i) If (x_n) is a real sequence obeying $x_n \to +\infty$, then $x_n \le x_{n+1}$ for all n sufficiently large.
 - (ii) If $(x_n)_{n=1}^{\infty}$ is a real sequence obeying $x_n \to +\infty$, then (x_n) has a subsequence $(x_{n_k})_{k=1}^{\infty}$ satisfying $x_{n_k} \le x_{n_{k+1}}$ for all k.
- **2.** Decide whether these sequences converge or diverge. Then present detailed ε , N proofs confirming your decisions.

(a)
$$a_n = n\left(\sqrt{1 + \frac{1}{n}} - 1\right)$$
 (b) $b_n = \frac{(-1)^n n}{n+1}$

3. Let us extend our familiar idea of addition by defining a generalized sum, Σ , that assigns a value in $\mathbb{R} \cup \{+\infty\}$ to every subset of the real interval $[0, +\infty)$. The first step is easy: let $\Sigma(\emptyset) = 0$, and for any nonempty finite set $F = \{a_1, a_2, \ldots, a_n\}$ in $[0, +\infty)$, let

$$\Sigma(F) = a_1 + a_2 + \dots + a_n.$$

Now suppose A is any nonempty subset of $[0, +\infty)$: define

$$\Sigma(A) = \sup \{ \Sigma(F) : F \text{ is a finite subset of } A \}.$$

(This is clearly consistent with the previous setup when A is finite.) Prove:

(a) If $\Sigma(A)$ is defined and finite, then A is finite or countable.

(b) If
$$A = \{a_1, a_2, \dots\}$$
 with all $a_n > 0$, then $\Sigma(A) = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$. (Work in $\mathbb{R} \cup \{+\infty\}$.)

4. Nonempty sets X and Y and a function $f: X \times Y \to \mathbb{R}$ are given. Assume $f(X \times Y)$ is bounded. Define $M_1: X \to \mathbb{R}$ and $W_2: Y \to \mathbb{R}$ as follows:

$$M_1(x) = \sup \{ f(x, y) : y \in Y \}, \qquad W_2(y) = \inf \{ f(x, y) : x \in X \}.$$

(a) Prove that $\sup_{Y} W_2 \leq \inf_{X} M_1$. Note: This is shorthand for

$$\sup \{W_2(y) : y \in Y\} < \inf \{M_1(x) : x \in X\}.$$

A nice restatement of the result in original notation is worth remembering:

$$\sup_{y \in Y} \inf_{x \in X} f(x, y) \le \inf_{x \in X} \sup_{y \in Y} f(x, y).$$

(b) Show by example that strict inequality is possible in (a).

5. Prove: For every nonempty set S of positive real numbers,

either
$$\bigcap_{s \in S} [0, s) = [0, \inf(S))$$
 or $\bigcap_{s \in S} [0, s) = [0, \inf(S)].$

Include, with proof, a simple test involving the number $\inf(S)$ and the set S that predicts exactly which outcome will occur.

- 6. All of the sequences in this problem have rational elements. Give direct proofs of the following:
 - (a) If (x_n) and (y_n) are Cauchy sequences, then $s_n = x_n + y_n$ defines a Cauchy sequence.
 - (b) If (x_n) and (y_n) are Cauchy sequences, then $p_n = x_n y_n$ defines a Cauchy sequence.
 - (c) If (x_n) is a Cauchy sequence and (y_n) is a sequence satisfying $(y_n x_n) \to 0$ as $n \to \infty$, then (y_n) is a Cauchy sequence.

(Work entirely in \mathbb{Q} : do not mention \mathbb{R} or use any of its distinctive properties.)

7. Given some $\lambda \in (0,1)$ and $a_0, a_1 \in \mathbb{R}$, define a sequence $(a_n)_{n>0}$ recursively as follows:

$$a_n = (1 - \lambda)a_{n-1} + \lambda a_{n-2}, \qquad n = 2, 3, 4, \dots$$

- (a) Prove that the sequence (a_n) must converge. (Try for a method that does not rely on part (b).)
- (b) Express $\alpha = \lim_{n \to \infty} a_n$ in terms of λ, a_0, a_1 . (Hint available, on Tue or Wed only.)

Note: This question is inspired by its special case $\lambda = \frac{1}{2}$, which appeared (with no hint) on the final exam for MATH 120 in December 2009.

- **8.** For any nonempty set S of positive real numbers, define $S^{-1} = \{x^{-1} : x \in S\}$. Prove:
 - (a) $\inf(S) = 0 \iff \sup(S^{-1}) = +\infty;$
 - (b) $0 < \inf(S) < +\infty \iff 0 < \sup(S^{-1}) < +\infty$, and when these are true one has $\sup(S^{-1}) = [\inf(S)]^{-1}$.

Taken together, items (a) and (b) provide some rationale for the symbolic equations " $1/0^+ = +\infty$ " and " $1/(+\infty) = 0^+$ ". (These are "symbolic" because the usual rules of algebra are not available: we cannot infer a value for $(0^+)(+\infty)!$) Using these symbolic equations, prove

(c) If
$$x_n > 0$$
 for each n , then $\limsup_{n \to \infty} (x_n^{-1}) = \left(\liminf_{n \to \infty} x_n \right)^{-1}$.