LINE GENERATION ALGORITHM

http://www.tutorialspoint.com/computer_graphics/line_generation_algorithm.htm

Copyright © tutorialspoint.com

A line connects two points. It is a basic element in graphics. To draw a line, you need two points between which you can draw a line. In the following three algorithms, we refer the one point of line as X_0 , Y_0 and the second point of line as X_1 , Y_1 .

DDA Algorithm

Digital Differential Analyzer DDA algorithm is the simple line generation algorithm which is explained step by step here.

Step 1 – Get the input of two end points (X_0, Y_0) and (X_1, Y_1) .

Step 2 - Calculate the difference between two end points.

```
dx = X_1 - X_0
dy = Y_1 - Y_0
```

Step 3 – Based on the calculated difference in step-2, you need to identify the number of steps to put pixel. If dx > dy, then you need more steps in x coordinate; otherwise in y coordinate.

```
if (dx > dy)
   Steps = absolute(dx);
else
   Steps = absolute(dy);
```

Step 4 - Calculate the increment in x coordinate and y coordinate.

```
Xincrement = dx / (float) steps;
Yincrement = dy / (float) steps;
```

Step 5 – Put the pixel by successfully incrementing x and y coordinates accordingly and complete the drawing of the line.

```
for(int v=0; v < Steps; v++)
{
    x = x + Xincrement;
    y = y + Yincrement;
    putpixel(x,y);
}</pre>
```

In computer graphics, popular algorithms used to generate lines are-

- 1. Digital Differential Analyzer (DDA) Line Drawing Algorithm
- 2. Bresenham Line Drawing Algorithm
- 3. Mid Point Line Drawing Algorithm

In this article, we will discuss about DDA Algorithm.

DDA Algorithm-

DDA Algorithm is the simplest line drawing algorithm.

Given the starting and ending coordinates of a line,

DDA Algorithm attempts to generate the points between the starting and ending coordinates.

Procedure-

Given-

- Starting coordinates = (X₀, Y₀)
- Ending coordinates = (X_n, Y_n)

The points generation using DDA Algorithm involves the following steps-

Step-01:

Calculate ΔX, ΔY and M from the given input.

These parameters are calculated as-

- ∆X = X_n X₀
- ∆Y =Y_n Y₀
- M = ΔY / ΔX

Step-02:

Find the number of steps or points in between the starting and ending coordinates.

```
if (absolute (\Delta X) > absolute (\Delta Y))

Steps = absolute (\Delta X);

else

Steps = absolute (\Delta Y);
```

Step-03:

Suppose the current point is (X_p, Y_p) and the next point is (X_{p+1}, Y_{p+1}) .

Find the next point by following the below three cases-

Step-04:

Keep repeating Step-03 until the end point is reached or the number of generated new points (including the starting and ending points) equals to the steps count.

PRACTICE PROBLEMS BASED ON DDA ALGORITHM-

Problem-01:

Calculate the points between the starting point (5, 6) and ending point (8, 12).

Solution-

Given-

- Starting coordinates = (X₀, Y₀) = (5, 6)
- Ending coordinates = (X_n, Y_n) = (8, 12)

Step-01:

Calculate ΔX , ΔY and M from the given input.

- $\Delta X = X_n X_0 = 8 5 = 3$
- $\Delta Y = Y_n Y_0 = 12 6 = 6$
- M = ΔY / ΔX = 6 / 3 = 2

Step-02:

Calculate the number of steps.

As $|\Delta X| < |\Delta Y| = 3 < 6$, so number of steps = $\Delta Y = 6$

Step-03:

As M > 1, so case-03 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

X_p	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
5	6	5.5	7	(6, 7)
		6	8	(6, 8)
		6.5	9	(7, 9)
		7	10	(7, 10)
_		7.5	11	(8, 11)
		8	12	(8, 12)

Problem-02:

Calculate the points between the starting point (5, 6) and ending point (13, 10).

Solution-

Given-

- Starting coordinates = (X₀, Y₀) = (5, 6)
- Ending coordinates = (X_n, Y_n) = (13, 10)

Step-01:

Calculate ΔX , ΔY and M from the given input.

•
$$\Delta X = X_n - X_0 = 13 - 5 = 8$$

•
$$\Delta Y = Y_n - Y_0 = 10 - 6 = 4$$

Step-02:

Calculate the number of steps.

As $|\Delta X| > |\Delta Y| = 8 > 4$, so number of steps = $\Delta X = 8$

Step-03:

As M < 1, so case-01 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

X_p	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
5	6	6	6.5	(6, 7)
		7	7	(7, 7)
		8	7.5	(8, 8)
		9	8	(9, 8)
		10	8.5	(10, 9)
		11	9	(11, 9)
		12	9.5	(12, 10)
		13	10	(13, 10)

Problem-03:

Calculate the points between the starting point (1, 7) and ending point (11, 17).

Solution-

Given-

- Starting coordinates = (X₀, Y₀) = (1, 7)
- Ending coordinates = $(X_n, Y_n) = (11, 17)$

Step-01:

Calculate ΔX , ΔY and M from the given input.

- $\Delta X = X_n X_0 = 11 1 = 10$
- $\Delta Y = Y_n Y_0 = 17 7 = 10$
- M = ΔY / ΔX = 10 / 10 = 1

Step-02:

Calculate the number of steps.

As $|\Delta X| = |\Delta Y| = 10 = 10$, so number of steps = $\Delta X = \Delta Y = 10$

Step-03:

As M = 1, so case-02 is satisfied.

Now, Step-03 is executed until Step-04 is satisfied.

Xp	Yp	X _{p+1}	Y _{p+1}	Round off (X _{p+1} , Y _{p+1})
1	7	2	8	(2, 8)
		3	9	(3, 9)
		4	10	(4, 10)
		5	11	(5, 11)
		6	12	(6, 12)
		7	13	(7, 13)
		8	14	(8, 14)
		9	15	(9, 15)
		10	16	(10, 16)
		11	17	(11, 17)

Advantages of DDA Algorithm-

The advantages of DDA Algorithm are-

- · It is a simple algorithm.
- · It is easy to implement.
- · It avoids using the multiplication operation which is costly in terms of time complexity.

Disadvantages of DDA Algorithm-

The disadvantages of DDA Algorithm are-

- · There is an extra overhead of using round off() function.
- Using round off() function increases time complexity of the algorithm.
- · Resulted lines are not smooth because of round off() function.
- · The points generated by this algorithm are not accurate.