SYSTEM AND METHOD FOR DIAGNOSING LOOP OF DISK ARRAY DEVICE

Patent number:

JP2002007077

Also published as:

T) US 2002002440 (A1)

Publication date:

2002-01-11

SAKAI TOSHIHIRO

Inventor: Applicant:

NEC CORP

Classification:

- international:

G06F3/06; G11B20/18

- european:

Application number:

JP20000185588 20000621

Priority number(s):

Abstract of JP2002007077

PROBLEM TO BE SOLVED: To avoid that regular disk processing is interrupted while specified processing is performed.
SOLUTION: Disks 21 to 2N have two systems of loops 41A and 42B. When an FC-AL state monitoring part A131 detects the abnormality of the loop A41, a disk control part A71 requests the uncompleted disk processing to a disk control part B72. The disk control part B72 receives the request and performs the uncompleted disk processing by using the loop B42. The disk control part B72 also performs disk processing by a new instruction from the host. Then, the disk control part A71 diagnoses the loop A41.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日木国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出版公房番号 特別2002-7077 (P2002-7077A)

(43)公開日 平成14年1月11日(2002.1.11)

G06F 3/06 806 G0 GF 3/06 306B 5B06 540 540 540 552 552A 572 572B			•						
5 4 0 G 1 1 B 20/18 5 0 1 5 5 2 5 7 2 5 7 2 5 7 2 B	(51) Int.CL'		識別配号	FI			テ ーマコード(多考)		
G11B 20/18 5 0 1 G11B 20/18 5 0 1 D 5 5 2 5 7 2 5 7 2 B	GOBF	3/06	806		G0	GF 9/08		306B	5B065
5 5 2 5 5 2 A 5 7 2 B			540					540	
572 572B	G11B	20/18	5 0 1		G1	1 B 20/18		501D	
			5 5 2					552A	
第本論文 右 (諸文項の表)4(7)(全 7 頁) 最終日			572					572B	
				家籍查審	有	請求項の数14	OL	(全7頁)	最終頁に続く

(2.1)出職番号 特觀2000-185588(P2000-185588)

(22)出頭日 平成12年6月21日(2000.6.21)

(71) 出版人 000004237

日本電気株式会社

東京都港区芝五丁日7番1号

(72)発明者 哲并 智弘

東京都港区芝五丁日7番1号 日本電気株

式会社内

(74)代理人 100088812

弁理士 ▲柳▼川 信

アターム(参考) 59065 BM01 CA05 CA11 CASO CC08

EA11 BOD4 EKO3 2A13

(54) [発明の名称] ディスクアレイ装置のループ診断システム及びその方法

(57)【要約】

【課題】 特定処理を実行している間、通常のディスク 処理が中断するのを回避する。

【解決手段】 ディスク21-2Nは2系統のルーア41A, 42Bを有し、FC AL状態監視部A131でループA41の異常が検出されるとディスク制御部A71はディスク制御部B72は未完了のディスク処理を要求する。ディスク制御部B72はこの要求を受けループB42を用いてその未完了のディスク処理を実行する。又、ホストからの新たな命令によるディスク処理もディスク制御部B72が実行する。その後、ディスク制御部A71はループA41を診断する。

【特許請求の範囲】

【記求項1】 上位装置からの命令を実行するループを 複数本有し複数個の記録媒体から構成される計録手段 と、前記ループ答々の異常を検出するループ監視手段 と、前記ループ監視手段における監視結果に応じて前記 ループを制御するループ制御手段とを含むことを特徴と するディスクアレイ装置のループ診断システム。

【請求項2】 前記ループ制御手段は前記ルーソ監視手段にて特定ループの異常が検出された場合に前記特定ループにおける命令の実行を停止することを特徴とする語求項1記載のディスクアレイ装置のループ診断システム。

【請求項3】 前記ループ制御手段は前記特定ループにおける命令の実行を停止した後、前記特定ループ以外のループを使用して前記特定ループにおける命令の実行を代行することを特徴とする請求項2記載のディスクアレイ装置のループ診断システム。

【請求項4】 前記ループ制御手段は前記特定ループに おける命令の実行を代行した後、前記特定ループを診断 することを特徴とする請求項3記載のディスクアレイ装 置のループ診断システム。

【論求項5】 前記ループ制御手段は前記特定ループを 診断した後、特定の前記記録媒体を前記特定ループから 切離すことを特徴とする前求項4記載のディスクアレイ 装置のループ診断システム。

【請求項6】 前記ループ制御手段は前記記録媒体を前記特定ループから切離した後、前記特定ループにおける命令の実行の停止を解除することを特徴とする請求項5記載のディスクアレイ装置のループ診断システム。

【請求項7】 前記ループ監視手段における監視結果と同等の情報を前記複数のループ以外から入力する保守用端木手段をさらに含み、前記ループ制御手段は前記保守用端木手段に入力された情報に応じて前記ループを制御することを特徴とする請求項1乃至Gいずれかに記載のディスクアレイ装置のループ診断システム。

【請求項8】 前記保守用端木手段は前記ループ制御手段から採取した情報を表示することを特徴とする請求項7記載のディスクアレイ装置のループ診断システム。

【請求項9】 上位装置からの命令を実行するループを 複数本有し複数個の記録媒体から構成されるディスクア レイ装置のループ診断方法であって、前記ループ各々の 異常を検出するループ監視ステップと、前記ループ監視 ステップにおける監視結果に応じて前記ループを制御す るループ制御ステップとを含むことを特徴とするディス クアレイ装置のループ診断方法。

【請求項10】 前記ループ制御ステップは前記ループ 監視ステップにて特定ループの異常が検出された場合に 前記特定ループにおける命令の実行を停止することを特 徴とする請求項9記載のディスクアレイ装置のル・プ診 断方法。 【請求項11】 前記ループ制御ステップは前記特定ループにおける命令の実行を停止した後、前記特定ループ以外のループを使用して前記特定ループにおける命令の実行を代行することを特徴とする請求項10記載のディスクアレイ美道のループ診断方法。

【請求項12】 前記ループ制御ステップは前記特定ループにおける命令の実行を代行した後、前記特定ループを認断することを特徴とする請求項11記載のディスクアレイ装置のループ診断方法。

【請求項13】 前記ループ制御ステップは前記特定ループを診断した後、特定の前記記録媒体を前記特定ループから切離すことを特徴とする請求項12記載のディスクアレイ装置のループ診断方法。

【前来項14】 III記ループ制御ステップは前記記録媒体を前記特定ループから切離した後、前記特定ループにおける命令の実行の停止を解除することを特徴とする請求項13計載のディスクアレイ装置のループ診断方法。

【発明の評価な説明】

[0001]

【発明の属する技術分野】本発明はディスクアレイ装置のループ診断システム及びその方法に関し、特にFCーAし(Fibre ChannelーArbitrated Loop)インタフェースのディスクを用いたディスクアレイ装置のループ診断システム及びその方法に関する。

[0002]

【従来の技術】近年の1T(Information Technology)環境の発展によりコンピュータ ・システムにおける記憶装置の役割はますます大きくな ってきており、記憶装置に対する高性能化、高値類性 化、大容量化などの要求も高まる一方である。ディスク アレイ装置においても、ホストとのインタフェースをF C-AL[Fibre Channel-Arbitr ated Loop: ANSI (American N ational Standards Institu te) X3. 272-199x Rev5. 7 Aux usi 22.1997にて規定されたインタノェー ス] 化したり、装置内に搭載するディスクのインタフェ ースをPC-AL化してそれらの要求に対応している。 【0003】FC-AL(以下、ルーノと呼ぶ)におい てリンクグウンなどのループ異常が発生してループ状態 が乱れると、ループに接続されている他の正常なディス クに対する処理も影響を受け正常に処理することができ なくなってしまう。ループを正常な状態に戻すためには 故障部品をループから除去しなければならないが、同欠 的なループ異常の場合には故障部品を特定するためには 複雑なループ診断処理が必要であり、多数のディ人クが ループ接続された近年のディスクプレイ装置においては 故障ディスクを除去するまでに要する時間は大い。

【0004】この種のディスクアレイ装置の一例が、特

開平11-353126号公報(以下、文献1と呼ぶ) に開示されている。文献1度示の技術は、ループを一旦 切断してイニシエータホストとディスクアレイ装置とを 1台ずつ順に接続して障害を調べる。そして、障害装置 を特定するとその装置をループから切り離す。これによ り、陸音発生装置の特定が容易になり、かつ特定処理に かかる時間が短輪される、というものである。

【0005】又、この極のディスクアレイ装置の他の例が、特別子11-305944号公報(以下、文献2と呼ぶ)及び特別平11-306644号公報(以下、文献3と呼ぶ)にも開示されている。文献2開示の技術は、リンクグウンの場合はフンプを点灯させ、リンクアップの場合はランプを削灯させ、これによりリンクの状態を表示する、というものである。文献3開示の技術は、故障ディスクを切離した後、そのディスクを診断する、というものである。

[0006]

【発明が解決しようとする課題】しかし、文献1 開示の 技術では、特定処理を実行している間、温常のディスク 処理が中断するという欠点がある。又、ディスクアレイ 装置の人容量化にともないループに接続されるディスク 数が増大すればルーフ診断に要する時間はさらに増大 し、通常のディスク処理が中断される時間もさらに増大 するという欠点がある。一方、これらの欠点を解決する 手段は前述の文献2及び3にも記載されていない。

【0007】そこで本発明の目的は、特定処理を実行している間、通常のディスク処理が中断するのを回避することが可能なディスクアレイ装置のルーノ診断システム及びその方法を提供することにある。

[8000]

【課題を解決するための千段】前記課題を解決するために本発明は、上位装置からの命令を実行するループを複数本有し複数個の記録媒体から構成される記録手段と、前記ループ各々の異常を検出するループ監視手段と、前記ループ監視手段における監視結果に応じて前記ループを制御するループ制御手段とを含むことを特徴とする。【0009】又、本発明による他の発明は、上位装置からの命令を実行するループを複数本有し複数個の記録媒体から構成されるディスクアレイ装置のループ診断方法であって、その方法は前記ループ各々の異常を検出するル・プ監視ステップと、前記ループ監視ステップにおける監視結果に応じて前記ループを制御するループ制御ステップとを含むことを特徴とする。

【0010】本発明及び本発明による他の発明によれば、記録手段は上位装置からの命令を実行するループを複数本有しており、特定ループで異常が発生してもその特定ル・プで実行すべき命令を他のループに代行させるため、特定処理を実行している間、通常のディスク処理が中断するのを回避することが可能となる。

[0011]

【発明の実施の形態】以下、木発明の実施の形態について添付図面を参照しながら説明する。図1は本光明に係るディスクアレイ装置のループ診断システムの第1の実施の形態の構成図である。同図を参照すると、ディスクアレイ装置のループ診断システムの第1の実施の形態は、ディスクアレイ装置1で構成される。

【0012】ディスクアレイ装置1は、ディスクユニット部5と、キャッシュ部6と、ディスク制御部A71と、ディスク制御部B72と、ホスト制御部A81と、ホスト制御部B82と、FC-AL状態監視部A131と、FC-AL状態監視部B132とから構成される。又、ディスク制御部A71、B72と、ディスク制御部A71、B72と、ディスク制御部A71、B72と、ディスク制御部A71、B72と、ディスク制御部A71、B72と、ディスク制御部A72、B72とは制御部間通信執100により相互接続される。

【0013】さらに、ディスクユニット部5は、N(N は正の窓数)個のFC-ALディスク21~2Nと、ル ープ接続制御部A31と、ループ接続制御部B32と、 FC-ALAループ41と、FC-ALBループ42と から確成される。

【0014】ディスクアレイ装置1はホストインタフェースA121、B122を介してホストA91、B92と接続され、ホスト間とのコマンド受信。データ転送、ステータス医答などのホストサービスを行うホスト制御部A81、B82を有する。ホストインタフェースの種別について制約はなく、FC-AI、SCSI(small computer system interface)やパラレルSCSIなど各種インタフェースを採用可能である。人、同図ではホストインタフェース数が2の場合を例示しているがインタフェース数についても限定するものではない。

【0015】ホスト制御部A81. B82は内部バス110によりキャッシュ部6、及びディスク制御部A71, B72に接続されており、おらいにデータの天学をおこなう。又、ホスト制御部A81, B82とディスク制御部A71, B72は、制御部間遺信線100により、ディスク処理などの他の制御部に対する処理要求や、仮範退状態通知や仮論退解除通知などの制御部の状態通知などを行う。

【0016】ディスクユニット部5は、FU-ALインタフェース・ボートを2ボート有する複数のFU-ALディスク21~2Nと、ループ接続制御部A31、B32とから構成される。ループ接続制御部A31、B32は、FC-ALディスク21~2NのFU-ALループA41、B42からの切り難し(パイパス)や、FU-ALループA41、B42への接続を制御する。

【0017】ディスク制御紹A71はループ検験制御部 A31を介して複数のFC-ALディスク21~2Nの 一方のポートのみとでFC-ALループA41を構成 し、別のディスク制御部B72はループ接続制御部B3 2を介してFC-ALディスク21~2Nのもう一方のボートのみとでFC-ALループB42を構成する。

【0018】ディスク制御部A/1, B72は、ホスト制御部A81, B82からの指示により、あるいはディスク制御部A71、B72日身の判断により、FC-Aレディスク21~2Nに対してリード(read)やライト(write)等の各種ディスク処理を行う。 メ、ディスク制御部A71、B72は、ループ接続制御部A31、B32に指示することにより、什意のドC-ALディスク21~2NをFC-ALループA41、B42からバイバスしたり、接続することが可能である。FC-Aレディスク21~2Nに対してどちらのディスク制御部A71、B72からもアクセスすることが可能である。

【0019】ディスク制御部A71、B72と接続され、ているFC-AL状態監視部A131、B132は、ディスク制御部A(71、B72からディスク処理の実行結果を受け取り統計的に管理して、ループ異常の発生数あるいは発生率がしきい値を超えた場合にディスク制御部A71、B72に対して通知する。

【0020】次に、本発明のディスクアレイ装海の動作について説明する。図1を参照すると、ホストA91、B92から命令を受け取ったホスト制御部A81、B82は、論理ディスク番号(LUN)、命令コード維制、及び論理プロックアドレス(LBA)などの必要な情報を認識する。例えば、ホストA91、B92からのリード命令を受けたホスト制御部A81、B82は、キャッシュ部6に指定されたデータが存在すれば、直ちにキャッシュ部6からホストA91、B92にデータを転送する。

【0021】キャッシュ部6にデータが存在しなければ、FC-ALディスク21~2Nから読み出したデータをキャッシュ部6に格納するようディスク制御部A71、B72に対して指示し、キャッシュ部6からホストA91、B92にデータを転送する。

【0022】又、例えば、ホストA91, B92からのライト命令をうけたホスト制御部A81, B82は、ホストA91, D92から受け取ったデータをキャッシュ部6に格納する。このデータはホスト制御部A81, B82からディスク制御部A71, B72に対してディスクへの書き込み指示が出されることにより、あるいはディスク制御部A71, B72がディスクへの未替き込みデータがキャッシュ部6に存在することを検出することにより、ディスク制御部A71, B72によってFCーALディスク21-2Nへ書き込まれる。

【0023】ディスク処理の実行結果は、ディスク制御 部A71、B72からFC AL状態監視部A131、 B132に通知され、FC AL状態監視部A131、 B132にて統計的に管理される。どのディスク制御部 A71、B72がどのFC-ALディスク21~2Nに対して制御するかは、LUNやFC-ALディスク21~2N番号により割り短る、名ディスク制御部71、72の報酬状態を調べ低負荷のディスク制御部A71、D72に動的に割り級る方式などがある。いずれにしても各ホスト制御部A81、B82と各ディスク制御部A71、B72間は制御部間適信線100によって連携を取り合うので、ホスト制御部A81、B82はどのディスク制御部A71、B72に対してディスク処理を指示するか、ディスク制御部A71、B72はどのFC-ALディスク21~2Nを制御すべきかの情報を共有している

【0024】次に、このディスクアレイ装置1の動作について図2及び図3を参照しながら説明する。図2はディスクのバイパス処理を説明するためのディスクアレイ装置1の部分構成図、図3はディスクアレイ装置1の動作を示すフローチャートである。

【0025】なお、FC-ALループA41がループ異常となった場合を倒として説明する。当然ながら、FC-ALループB42がループ異常となった場合も同様に動作する。例えば、いずれかのFC-ALディスク21~2Nの故障によりFC-ALループA41にてリンクダウン(link down)などのループ異常が固欠的に発生したとする(図3のS1参照)。FC-AL状態監視部A131がループ異常の発生数あるいは発生率がしまい値を選えたことを検出すると、ディスク制御部A/1に対して通知する。

【0026】この通知を受けたディスク制御部A71は、通常のディスク処理の実行を停止(この通常機能を停止している状態を仮輸退状態と呼ぶこととする)するとともに(図3のS2零照)、制御部間通信終100によりホスト制御部A81、B82及び別のディスク制御部B72に対して仮循退状態に連移したことを通知(仮維退通知)する(図3のS3零照)、

【0027】この仮編出が知を受けたディスク制御部B72は、最初にドローALディスク21~2Nのリセットを実行し、仮籍過ディスク制御部A71が放撃したディスク処理によりFローALディスク21~2N内に滞留している処理をキャンセルする。X、ディスク制御部B72は、すべてのFローALディスク21~2Nを対象に、ホスト制物部A81、B82から指示されたディスク処理、及びディスク制御部B72の判断によるディスク処理を行う(図3のS4零料)。

【0028】又、この仮輸迅通知を受けたホスト制御部A81、B82は、仮翻退したティスク制御部A71に対して要求していた未完了のディスク別埋を代替のディスク制御部B72に対して再度要求する。又、ティスク制御部A71が仮輸退中は、新たなホストー/のによるディスク処理についてすべて代替のディスク制御部B72に対して要求する。

【0029】一方、仮縮退したディスク制御部A71は、FC-ALループA41に接続された複数のデバイスから故障部品を特定するための処理(ループ診断)を行う(図3のS5参照)。

【0030】ディスク制御部A71は、FC-ALA41、B42に接続されているすべてのFC-ALディスク21~2Nに対してループ診断のためのコマンド森を発行する、アィスク制御部A71は、ループ異常の発生状況を解析して異常の原因である被疑ディスクを特定し、例えば被疑部品がFC-ALディスク22ならばルプ接続制御部A31に指示を出して、図2に示すようにFC-ALディスク22をFC-ALループA41からバイパス(bypass: 切離す)する(図3のS6参照)。

【0031】そして、ループ診断を終えたディスク制御部A71は、制御部間通信線100によりホスト制御部A81、D82及び別のディスク制御部B72に対して仮稿退状態を解除し通常状態に逐移したことを通知(仮縮退解除通知)する(図3のS7参照)。

【0032】仮籍退解除したディスク制御部B71は、通常機能としてのディスク処理を再開する。仮籍退解除 通知を受けたディスク制御部A72は、仮範退解除したディスク制御部A71が受け持つディスクに対する処理を停止し、ループ診断により他方のループからバイパス されたディスクを含めた残りのディスクに対する処理を 受け持つ。仮籍退解除通知を受けたホスト制御部A81、B82は、上記のディスクの受け持ちに応じたディスク制御部A71、B72に対してディスク処理を要求する。

【0033】次に、第2の実施の形態について説明する。図4は本発明に係るディスクアレイ装置のループ診断システムの第2の実施の形態の構成図である。なお、第1の実施の形態と同様の構成部分については同一番号を付し、その説明を省略する(図1参照)。

【0034】同図を参照すると、第2の実施の形態の構成が第1の実施の形態のそれと異なる点は、新たに保守用端末140を退加したことである。保守用端末140は、ディスク制御部A71、B72及びホスト制御部A81、B82と接続されている。

【0035】保守用端末140からはディスク制御部A71、B72やホスト制御部A81、B82に対して命令を発行することができ、又、ディスク制御部A71、B72やホスト制御部A81、B82から採取した情報を保守用端末140に表示する。

【0036】ディスク制酵部A71、B72は、FC-AL状態監視部A131、B132からの指示だけでなく、保守用端末140からの指示によっても仮範退状態に選移してループ診断を行う。ループ異常の発生頻度が低くFC-AL状態監視部A131、B132のしきい値を超えない場合や、定期保守の場合など、保守員の判

断により保守用端末140からディスク制御部A71, B72に対してループの診断を起動することが可能である。

【0037】又、深1の実施の形態で説明したようにループ異常によりドロー人しディスク22のドロー人しループA41関がバイパスされた状態となったとき、Fロー人しループR42関のボート故障が発生したとしてもディスクアレイ構成であるためディスク総退として継続運用することは可能であるが、早期に故障ディスクの交換を行い、Fロー人しループからの制御が可能な冗長構成に復帰させることが望ましい。保守用端末140は、バイパスされたドロー人にディスクの交換を促す。

[0038]

【発明の効果】本発明によれば、上位装置からの命令を 実行するループを複数本有し複数個の記録媒体から構成 される記録手段と、前記ループ各々の異常を検出するル ープ監視手段と、前記ループ監視手段における監視結果 に応じて前記ループを制御するループ制御手段とを合む ため、特定処理を実行している間、通常のディスク処理 が中断するのを回避することが可能となる。

【0039】 X、本発明による他の発明によれば、上位 装置からの命令を実行するループを複数本有し模数個の 記録媒体から構成されるディスクアレイ装置のループ診 断力法であって、その方法は耐記ループ各々の異常を検 出するループ監視ステップと、耐記ループ監視ステップ における監視結果に応じて前記ループを制御するループ 制御ステップとを含むため、上記本発明と同様の効果を 等する。

【0040】より具体的には、本発明のディスクアレイ装置は、ディスクが接続されているドローAL(ループ)において間欠的にループ異常が発生した場合、異常ループ側での通常のディスク処理を一時停止して故障部品を特定するためのループ診断処理を行い、その間もホストI/Oなどによる通常のディスク処理は止常なループにより併行して行う。

【0041】従って、ループ診断処理中もホスト1/0処理が中断することなくループ診断時間を充分に確保でき積度の高い診断を行えるので、間欠的なループ暴常であっても的確に故障部品を除去することができる。メーループ診断時間に関する制約から解放されるので、ディスクの接続台数がさらに増大したり、診断積度を高めるためにループ診断処理のアルゴリズムを改良するためにループ診断時間が増加させることも可能である。

【図面の簡単な説明】

【図1】本発明に係るディスクアレイ装置のループ診断 システムの第1の実施の形態の構成図である。

【図2】ディスクのバイバス処理を説明するためのディスクアレイ装直1の部分構成図である。

(6) 特期2002-7077 (P2002-70?

【図3】ディスクアレイ装置1の動作を示すフローチャートである。

【図4】本発明に係るディスクアレイ装置のループ診断 システムの第2の実施の形態の構成図である。

【符号の説明】

- 1 ディスクアレイ装置
- り ディスクユニット部
- 6 キャッシュ部

21~2N FC-ALディスク

31,32 ループ接続制御部

11, 42 FC-ALN- T

71.72 ディスク制御部

81,82 ホスト制御部

131,132 PC-AL状態監視節

140 保守用端末

[[X]]

【図2】

【図3】

(7) 特開2002 7077 (P2002-70

[24]

フロントページの続き

(51) Int. Cl.7

鐵別記号 G11B 20/18 572

F1

デーマコート (参考)

GIIH 20/18 572F