Project Overview

Title: Road Defect Detection using YOLOv8

Goal: Automatically detect road anomalies (e.g., potholes, cracks, zebra crossings, speed bumps) from GPS-tagged road video footage using deep learning.

This system extracts frames from road videos at fixed GPS-based intervals, labels them with road defect categories, and trains a YOLOv8 model to detect and localize these defects. It outputs bounding boxes along with GPS coordinates and timestamps, aiding municipal bodies in maintenance planning.

Data Collection & Preparation

- Source: Road videos captured using a GPS-enabled camera.
- **Frame Extraction:** Every 3 to 5 meters based on GPS distance.
- **Total Frames:** 1000 images
- Annotations:
 - o Manual using Label Studio
 - Classes:

Lane mark, Plain road, Manhole, Divider, Speed bumps, Cracks, Pothole, Zebra crossing, Footpath, Rumble strips, Sign board, Leading lines

- **Format:** YOLOv8 format (image and corresponding .txt label files)
- Data Split:

Train: ~80%Validation: ~20%

Model & Training Details

• **Model Used:** YOLOv8 (Ultralytics)

• Model Type: YOLOV8n / YOLOV8s (specify)

• Training Parameters:

o Epochs: 50

o Image size: 640x640

Batch size: 16Optimizer: SGD

• **Augmentations:** Flip, scale, HSV shift (handled by YOLO)

Inference & Output

• Script: detect_defects.py

• Inputs: Video or image folder

- Outputs:
 - o Detected image with bounding boxes
 - o CSV file with:
 - Frame_name
 - Location
 - Latitude, Longitude
 - Detected class
 - Defected_count

Project Folder Structure

road-defect-detection/	
runs/	\rightarrow YOLO outputs
dataset/	→ Images and labels
scripts/	→ Python scripts for detection and preprocessing
reports/	→ This report + detection results
repo/	→ Notebooks, helper files
README.md	
requirements.txt	

Limitations & Challenges

- Class Confusion: Similar-looking objects lead to misclassification.
- Lighting Issues: Glare, shadows, and night scenes reduce detection accuracy.
- Small/Occluded Objects: Small or partially hidden defects are often missed.
- Class Imbalance: Rare classes are underrepresented, affecting model learning.

Conclusion

This project successfully implements a YOLOv8-based pipeline for detecting road anomalies from GPS-tagged videos. The output includes both detection visuals and structured data, making it suitable for road safety analysis and maintenance scheduling. A feedback loop has been proposed for continuous model improvement.