Practical Lab Distributed Systems Management

(ds-manage)

Course website: https://github.com/TUM-DSE/sys-manage/

Kick-off meeting

Chair of Decentralized Systems Engineering https://dse.in.tum.de/

Welcome

- A lab from the Chair of Decentralized Systems Engineering
 - Website: https://dse.in.tum.de/
 - Location: 1st Floor, 7th Finger
- If you are interested for bachelor's or master's thesis, guided research
 - Feel free to contact us
 - Open theses: https://dse.in.tum.de/theses/
- Instructors:
 - Charalampos (Babis) Mainas: charalampos.mainas@in.tum.de
 - Prof. Pramod Bhatotia: <u>pramod.bhatotia@in.tum.de</u>

Course Topics

- Distributed Systems
 - Deeper understanding of distributed systems
- Cloud-native systems
 - Building, packaging and maintenance of cloud systems
- Testing
 - Assure the correctness of applications
- Tutoring
 - Interact with other students

Cloud computing and microservices

Design

- Microservices
- Distributed

Development

- Automation
- Different workflow

Deployment

- VMs
- Containers
- Functions

Microservices Architecture Microservice Microservice Microservice Microservice 🥰 📾 📾 🖿 (m) (m)

Applications

Containers

Virtualized

Bare Metal

Public Cloud

Distributed systems

- Distributed systems should always be:
 - Fault-tolerant
 - Scalable
 - Efficient
- Distributed systems are more complex:
 - Communication between nodes
 - Coordination
 - Asynchrony packet loss, network fails etc.

Learning goals

- Challenge your knowledge in:
 - Distributed systems
 - Network programming
- Deep understanding of key concepts
- Learn to communicate and resolve issues
- An insight of DevOps
- Tutor experience

How we gonna achieve our goals

- We will experiment on top of an another course from our Chair
 - Cloud Systems Engineering
 - Focus on distributed systems
 - Students will build a distributed storage system in 4 steps
- Learn by facing questions and issues raised from other students

Lab management

- Cloud-lab consists of 4 programming assignments:
 - Each related to a different aspect of distributed systems
 - Built on top of each other, like a stack
- For each one programming assignment your tasks are:
 - O Q&A
 - Plagiarism check
 - Improvement of test cases
 - Improvement of assignments
 - Bonus for automation
 - Help with infrastructure (Optional)

Lab format

- For every assignment you will be divided in 4 groups:
 - Improvement of test cases
 - Improvement of assignments
 - Q&A
 - Plagiarism check
- The groups change in every assignment:
 - Everyone will participate in each one of the above groups once
 - Change group for every new assignment

Tasks of each group

Assignment improvements:

- Understand the concept of the assignment
- Propose new exercises
- Update the existing ones

• Test cases improvements:

- Understand the concept of the assignment
- Propose new test-cases
- Resolve issues regarding testing automation

Tasks of each group

Q&A

- Interact at slack channel with students from cloud-lab course
- Participate in the Q&A of each lecture
- Resolve issues and questions from the students
- Propose hints NOT solutions (Be careful!)

Plagiarism

- Check for patterns in the submitted solutions
- Compare with previous years solutions
- Create and run plagiarism checks
- Submit report

Timeline

ШП

- - Understand assignment

Improve assignments /test cases (1,2 weeks)

Assignment begins

Q&A (3 weeks)

Assignment ends

Plagiarism check

- At total 4 assignments
 - o 3 weeks between each assignment
- Course assignments:
 - Containers, Orchestrator, single-node KVS + TXs
 - Distributed KVS
 - Replicated Distributed KVS
 - Distributed TXs: w/ and w/o replication
- Slack channel: #ws-22-cloud-lab

Lecture topic + assignment

Grading

- Grades will be assigned according to the contributions.
 - Answer and resolve questions and issues
 - Help setting up the infrastructure
 - Resolve technical problems
 - Improve assignments
 - Add more test cases

Bonus:

- Automate the process of a task
- Help with infrastructure
- Improve the lab

The important thing is to learn and test your knowledge, a good grade will follow.

Recommended reading

- The Linux Programming Interface Michael Kerrisk
- Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems - Martin Kleppmann
- Site Reliability Engineering Betsy Beyer, Chris Jones, Jennifer Petoff and Niall Richard Murphy

Code of conduct

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Contacts

- Charalampos Mainas
 - o charalampos.mainas@in.tum.de
- Prof. Pramod Bhatotia
 - pramod.bhatotia@in.tum.de

Workspace: http://ls1-courses-tum.slack.com/

Chair website: https://dse.in.tum.de/

Course website: https://github.com/TUM-DSE/sys-manage/

Channel: #ws-22-ds-manage

Join us with TUM email address (@tum.de)