PROBLEMAS DE POLINOMIOS – 2do de secundaria.

Marco teórico

1. TÉRMINO ALGEBRAICO

Es una expresión algebraica reducida a un solo término. Se compone de las siguientes partes:

$$P(x,y) = -5$$
Coeficiente (incluye al signo)

Exponentes

Variable

Parte literal

2. TÉRMINO SEMEJANTE (T. S.)

Dos términos algebraicos son semejantes si tienen la misma parte literal (mismas variables elevadas o los mismos exponentes respectivamente)

$$-7x^6y^9$$
 términos semejantes

3. POLINOMIO

Un polinomio es aquella expresión algebraica en donde los exponentes de sus variables son enteros positivos.

Ejemplos:

$$P(x;y) = \sqrt{5}x^3y^2 + 3xy^3$$

Es polinomio, por sus exponentes enteros positivos.

$$Q(x;y) = 3x^{-4}y - 2x^{3}$$

No es polinomio porque los exponentes – 4; $\sqrt{3}$ no son enteros positivos.

A. Notación Polinómica

P(x;y) =
$$3x^5 - \sqrt{3}x^2$$

Variables nombre del polinomio

: 4. VALOR NUMÉRICO (V. N.)

El valor numérico (V.N) es el número que resulta de reemplazar la (s) variable (s) por cantidades específicas llamadas números.

Ejemplos:

$$Y P(x) = 5x^{2} + 3x - 7$$

$$P(3) = 5(3)^2 + 3(3) - 7 = 47$$

A. Aplicación de valor numérico a la notación polinómica

Sea:
$$P(3x-2) = 2x$$

Calcula: P(7)

3x - 2 = 7

Se iguala:

3x = 9

x = 3

Se reemplaza:

P(7) = 2(3) - 1

$$P(7) = 5$$

B. Suma de coeficientes de un polinomio

S.C. = P(1)

Ejemplo: Calcula la suma de coeficientes de:

$$P(x-1) = 2x-3$$

$$X-1=1 \rightarrow x=2$$

$$\Rightarrow P(1) = 2(2) - 3 = 1$$

Luego: S.C.= 1

C. Término independiente

T.I = P(0)

Ejemplo: Calcula el término independiente de

$$P(x + 1) = 2x - 3$$

$$x+1=0 \rightarrow x=-1$$

$$P(0) = 2(-1) - 3 = -5$$

Luego: T.I = -5

Ejercicios propuestos:

1. Si $3x^{\frac{n}{2}+3}y^4 \wedge 5x^9y^{\frac{m+3}{5}}$ son semejantes.

Calcula "m.n"

- 2. Si $P(x) = 2x^{\frac{m}{5}} + 4x^{m-8} 3x^{11-m}$ es un polinomio, calcula "m"
- 3. Si $P(x) = 3x^2 3x + 1$, calcula P(-2)
- 4. Si $P(x+2) = 2x^2 3x + 5$, calcula P(0)Resolución: Como $P(x+2) = 2x^2 - 3x + 5$, calcula P(0) $x+2=0 \rightarrow x=-2$ $P(0) = 2(-2)^2 - 3(-2) + 5$ P(0) = 2(4) + 6 + 5 = 19
- 5. Si $P(x+4) = x^2 3x + 1$;, calcula P(3) 6. Si $P(\frac{x}{2} - 3) = -2x + 7$; calcula P(0)
- 7. Si $P(2x-1) = 4x^2 + x 1$; calcula P(2)
- 8. Si $P\left(\frac{3x-2}{2}\right) = x^2 + x + 1$; calcula la suma de coeficientes. Resolución: $P\left(\frac{3x-2}{2}\right) = x^2 + x + 1$

$$\frac{3x-2}{2} = 1$$

$$x = \frac{4}{3}$$
S.C. = P(1) = $\left(\frac{4}{3}\right)^2 + \frac{4}{9} + 1$

$$3$$

$$P(1) = \frac{16}{9} + \frac{12}{9} + \frac{9}{9}$$

Luego S.C =
$$P(1) = \frac{37}{9}$$

- 9. Si: $P(3x-1) = x^2 5x + 1$; calcula la suma de coeficientes.
- 10. Si: $P(2x+1) = x^2 x + 1$; calcula su término independiente.
- 11. Si la suma de coeficientes de $P(x-3) = x^2 + mx + 4$ es 9, calcula "m".
- **12.** Si $ax^{b-3}y^4 + cx^3y^{d-5} = 12x^3y^4$; calcula "a b + c d"

Resolución:

Términos
$$\begin{cases} |ax^{b-3}y^4\\ & |cx^3.y^{d-5}| \end{cases}$$
 (+)

- a + c = 12
- $b-3=3 \to b=6$
- $d-5=4 \rightarrow d=9$

Piden:

$$a-b+c-d$$

$$a+c-b-d$$

$$12-6-9=-3$$

- **13.** Si $ax^3y^{b-2} + 7x^{c-2}y^4 = 13x^3y^4$. Halla "a + b + c"
- **14.** Sea el polinomio: $P(x + 2) = (x + 2)^{3} - 3(x - 1) + mx + 5$ Se cumple que la suma de coeficientes y el término independiente suman 200. Hallar "M"

Ejercicios pre-uni y concursos nacionales:

1. ¿Cuántos factores primos presenta:

$$P(x) = x^4 - 1$$
?

- 2. Factorizar: $P(x) = x^3 + x^2 9x 9$ e indicar la cantidad de factores primos que contiene.
- 3. Los trinomios $2x^2 + ax + 6$ y $2x^2 + bx + 3$ admiten un factor común en la forma 2x + c. Calcular el valor de (a b)c.
- 4. Un polinomio p(x) satisface la relación $p(x+1) = x^2 x + 2p(6)$, para todo número real x. ¿Cuál es la suma de coeficientes del polinomio p(x)?
- 5. ¿Cuál es el menor valor que puede tomar el polinomio $P(x) = x^2 + 2x + 2024$?

.