Minor Test-1, Fluid Mechanics-II

Answer **any five** questions. Total Marks -10, Time = 45minutes

There is no mark for correct answer with a wrong justification.

Answer true or false and justify your answer.		
1	velocity field for figure-1 is u=2y, v=4x	$\psi = 0$ $\psi = 0$
2	A nonviscous, incompressible fluid flows between wedge-shaped walls into a small opening as shown in figure. The velocity potential (in m^2/s) that approximately describe this flow is \emptyset =-2ln(r). Then the volume flow rate per unit length into the opening is $-(\pi/3)$ m^2/s	v_r $\frac{\pi}{6}$
3	A sailing ship without sails is possible.	
	Two sources, one of strength m and the other with strength 3m are located on the x axis as shown in figure. Then stagnation point will be exactly at the middle i,e equidistance from the sources.	$+m$ y 3ℓ $+3m$
4	When a circular cylinder is placed in a uniform stream, a stagnation point will be created on the cylinder as shown in figure. If a small hole is located at this point, then the stagnation pressure P_{stag} can be measured and can be used to determine the approach velocity U using relation $U = \left[\frac{2}{\rho} \left(p_{\text{stag}} - p_o\right)\right]^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	If the cylinder is misaligned by an angle α , figure-b, but the measured pressure is still interpreted as the stagnation pressure, then the expression for the ratio of the true velocity, U and to the predicted velocity U' can be expressed as $\frac{U}{U'} = \left(1 - 4\sin^2\alpha\right)^{-1/2}$	Stagnation point (a) (b)
6	The velocity distribution in the boundary layer is given by: $\frac{u}{u} = \frac{y}{\delta}$, where, u is the velocity at a distance y from the plate and u=U at y= δ , δ being boundary layer thickness. Then the value of $\frac{\delta^*}{\theta}$ is 0.5	