Iterative solvers for linear equations

Maximilien Levesque*

August 21, 2014

*École Normale Supérieure, Département de Chimie, Paris, France

Given a square system of n linear equations:

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{1}$$

Some (very slow) direct techniques exist that involve algebra. We will solve this equation by an iterative (also called relaxation) method. We will use a sequence of $\boldsymbol{x}^{(k)}$ that converges toward the fixed point \boldsymbol{x} , solution of our problem.

In conclusion, we want to write, for a given $x^{(0)}$, a sequence $x^{(k+1)} = F(x^{(k)})$ with $k \in \mathbb{N}$.

1 Jacobi's method

We decompose A = D - L - U where D is an inversible matrix.

$$Ax = b \Leftrightarrow Dx = (L + U)x + b \tag{2}$$

$$\Leftrightarrow \boldsymbol{x} = \boldsymbol{D}^{-1} (\boldsymbol{L} + \boldsymbol{U}) \, \boldsymbol{x} + \boldsymbol{D}^{-1} \boldsymbol{b} \tag{3}$$

$$= F(\boldsymbol{x}) \tag{4}$$

where F is a linear function of x.

It is shown that we can solve this equation by iteratively solving, where k indicates the iteration number

$$x^{(k+1)} = D^{-1} (L + U) x^{(k)} + D^{-1} b.$$
 (5)

Since diag $((\boldsymbol{L} + \boldsymbol{U}) \boldsymbol{x}^{(k)}) = \mathbf{0}$, each $x_i^{(k+1)}$ is independent of $x_i^{(k)}$. It is instead a weighted average of other $x_{i \neq i}$.

Since we don't know the solution *a priori*, we define the residual at each step k as $\mathbf{r}^{(k)} = \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}$.

References

- [1] $http://fr.wikipedia.org/wiki/M\%C3\%A9thode_de_Jacobi$
- $[2] \ http://mathworld.wolfram.com/JacobiMethod.html$
- $[3] \ http://en.wikipedia.org/wiki/Jacobi_method$
- $[4] \ http://sfb649.wiwi.hu-berlin.de/fedc_homepage/xplore/ebooks/html/csa/node38.html$

Algorithm 1 Jacobi's algorithm

Output

• x, an approximate solution to Ax = b where A and b are known.

 $\underline{\text{Inputs}}$

• A

• **b**

• $\boldsymbol{x}^{(0)}$ including boundary conditions. No restriction on $\boldsymbol{x}^{(0)}$.

• ϵ , the tolerance or convergence criteria. A suitable tolerance might be $\|\boldsymbol{r}^{(k)}\| < \epsilon$ or $\|\boldsymbol{r}^{(k)} - \boldsymbol{r}^{(k-1)}\| < \epsilon$.

Restrictions

• **A** must be strictly diagonaly dominant, i.e., $|A_{i,i}| > \sum_{j=1,n;j\neq i} |A_{i,j}|$ $\Rightarrow A_{i,i} \neq 0$.

• $\epsilon > 0$

Algo

1. $\mathbf{D} \leftarrow \operatorname{diag}(\mathbf{A})$

2. $R \leftarrow D - A$

3. $D^{-1} \leftarrow 1/D$

4. do while $\xi \geq \epsilon$

(a) $\boldsymbol{x}_{\mathrm{old}} \longleftarrow \boldsymbol{x}$

(b) $\boldsymbol{x} \longleftarrow \boldsymbol{D}^{-1} \boldsymbol{R} \boldsymbol{x}_{\mathrm{old}} + \boldsymbol{D}^{-1} \boldsymbol{b}$

(c) $r \longleftarrow Ax - b$

(d) $\xi \leftarrow \| \boldsymbol{r} \|$