Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	scrip	otio	n :			
	(Les nu	ıméros	figure	ent sur	la con	vocatio	on.)	 	1									
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

ÉVALUATIONS COMMUNES
CLASSE:
EC : □ EC1 □ EC2 ⊠ EC3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Enseignement scientifique
DURÉE DE L'ÉPREUVE :2h
Niveaux visés (LV) : LVA LVB
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
☐ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 7

Exercice 1 - La solution hydrogène

Sur 10 points

On s'intéresse à deux modes de production d'électricité (la production éolienne et la production nucléaire) puis au stockage du dihydrogène.

Document 1 : produire de l'électricité avec le vent

Une éolienne utilise la force du vent pour produire de l'électricité. Celui-ci actionne les pales de l'éolienne, ce qui entraîne un alternateur. La production électrique est instantanée, mais intermittente, et dépend de la vitesse du vent. Le problème principal de ce type de production d'électricité est son intégration au réseau. Un surplus de production peut perturber gravement le réseau de transport d'électricité : si trop d'énergie électrique est injectée sur le réseau par rapport à la demande d'énergie, cela peut entraîner une instabilité du réseau, pouvant aller jusqu'à la déconnexion des centrales.

D'après le ministère de la transition écologique, la production d'électricité éolienne a représenté 6,9 % de la production totale en France pour le 1er trimestre 2019. La production électrique éolienne est entièrement automatisée et nécessite peu de maintenance. Le rendement d'une éolienne est d'environ 35 %.

Document 2 : les centrales nucléaires

En 2019, en France, la part du nucléaire s'élevait à 70,6 % de la production électrique totale en France.

La production d'électricité par une centrale nucléaire est basée sur la fission d'un combustible nucléaire. Cette fission dégage de l'énergie qui sert à produire de la vapeur, qui entraîne une turbine reliée à un alternateur. La fission de sept grammes d'uranium produit autant d'énergie que la combustion d'une tonne de charbon. Ce type de centrale peut fonctionner quasiment en continu, mais une fois à l'arrêt, il faut plusieurs jours pour relancer la production d'électricité. Une centrale nucléaire a un rendement d'environ 30 %.

Comme toute activité industrielle, les centrales nucléaires génèrent des déchets, dont certains sont radioactifs. Aujourd'hui, des solutions techniques existent pour la gestion de tous les déchets radioactifs, mais cela exige une sûreté très importante des installations. Les déchets « à vie courte » sont triés selon leur niveau de radioactivité et leur nature, conditionnés et stockés dans les centres de l'ANDRA. Les déchets « à vie longue » issus du traitement du combustible usé sont vitrifiés en blocs inaltérables et entreposés dans l'usine Areva NC de La Hague dans l'attente du stockage géologique en profondeur qui constituera une solution définitive de

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	otio	n:			
	(Les n	uméros	figure	ent sur	la con	vocatio	on.)			•								
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :																		1.1

gestion pour ces déchets. Cependant pour le moment, aucun site de stockage profond n'est encore opérationnel.

D'après : edf.fr

- **1-** L'alternateur est un convertisseur d'énergie cité dans les documents 1 et 2 : indiquer la nature de l'énergie convertie et la nature de l'énergie produite.
- **2-** Préciser le nom du phénomène physique sur lequel s'appuie le fonctionnement d'un alternateur.
- **3-** Lors de la circulation du courant électrique, l'alternateur perd de l'énergie via l'échauffement des fils conducteurs le constituant : indiquer le nom de l'effet responsable de cette perte.
- **4-** Décrire par un court texte ou un schéma la chaîne de transformations énergétiques de l'éolienne.
- **5-** Calculer l'énergie nécessaire au fonctionnement d'une éolienne qui produirait 10 MWh d'énergie électrique.

Document 3 : l'hydrogène, un vecteur d'avenir

Le dihydrogène (H₂) peut tout faire, ou presque : produire de l'électricité via une pile à combustible ; servir de combustible, avec pour seul déchet la vapeur d'eau ; être transformé en méthane (CH₄), voire en matières carbonées avec l'ajout de dioxyde de carbone (CO₂), ainsi valorisé au lieu d'être rejeté dans l'atmosphère. De plus, il peut être stocké selon différentes options.

La France produit chaque année un million de tonnes d'H₂ pour différents usages (raffinage du pétrole, fabrication d'ammoniac, etc.). Et cela, surtout par vaporeformage du méthane (procédé de transformation à partir d'hydrocarbures et présence de vapeur d'eau), qui libère 10 tonnes de CO₂ pour chaque tonne de H₂ produite...La combustion de H₂, quant à elle, produit seulement de l'eau.

L'électrolyse de l'eau, qui permet d'obtenir du dihydrogène et du dioxygène, nécessite de l'énergie électrique. Cette énergie est diminuée mais reste conséquente si l'on opère à haute température, comme c'est le cas dans le procédé

EHT développé au Commissariat à l'Énergie Atomique (CEA). Si cette solution venait à se généraliser, l'impact des électrolyseurs sur le réseau électrique serait non négligeable. D'où l'idée d'utiliser les surplus d'électricité des sources intermittentes, ou pourquoi pas recourir à de petits réacteurs nucléaires modulaires hybrides. Car dès 2025, il faudra pouvoir produire 4 à 5 millions de tonnes de dihydrogène par an.

D'après « Les défis du CEA » n°241

- **6-** Expliquer en quoi le stockage du dihydrogène apporte un élément de réponse au problème de l'instabilité du réseau de transport d'électricité liée à la production intermittente d'énergie électrique par les éoliennes.
- **7-** Préciser si le document 3 fournit suffisamment de données pour comparer les émissions de CO₂ par combustion d'hydrogène et par combustion d'hydrocarbures, pour une énergie thermique produite donnée. Si ce n'est pas le cas, indiquer les données manquantes nécessaires pour effectuer cette comparaison (on ne demande pas les valeurs de ces paramètres).

Fin de l'exercice

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	otio	n :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)			•								1.1

Exercice 2 - Des moustiques résistants aux insecticides

Sur 10 points

La calculatrice est autorisée

De 1968 à 2002, la population de moustiques *Culex pipiens* a été contrôlée dans le sud de la France par l'épandage d'insecticides sur les étendues d'eau dans lesquelles se développent leurs larves.

On s'intéresse à la résistance développée par certains moustiques à ces insecticides dans la région de Montpellier.

Document 1 : résistance de Culex pipiens aux insecticides.

Des insecticides organophosphorés ont été utilisés pour lutter contre le moustique *Culex pipiens*. Certains moustiques y sont devenus résistants. L'étude du génome du moustique a montré que le moustique possédait un gène codant une molécule (enzyme), sous deux allèles :

- l'allèle R (résistance) conférant la capacité de résister aux insecticides ;
- l'allèle S (sensible).

On observe que la quantité de cette enzyme produite dépend du génotype du moustique. On constate que la quantité de celle-ci est ainsi 500 fois plus importante chez un moustique résistant que chez un moustique sensible.

Document 2 : action de l'enzyme sur un insecticide, le parathion.

Le parathion est, comme tous les insecticides organophosphorés, une molécule qui altère le fonctionnement du système nerveux du moustique entraînant sa mort. Pour qu'il soit efficace, il doit pénétrer dans l'organisme de l'insecte et atteindre son système nerveux.

Chez le moustique résistant au parathion, on peut schématiser ainsi l'action de l'enzyme évoquée dans le document 1 :

	Enzyme	
Parathion + Eau		 Molécules non toxiques pour le moustique

<u>Document 3 : échantillonnage d'une population de moustiques dans la région de Montpellier</u>

La carte ci-dessous définit les différentes zones exposées ou non aux insecticides organophosphorés.

La zone 1, située au nord, n'a jamais été traitée avec des insecticides organophosphorés.

La zone 2, située au sud, a été traitée avec des insecticides organophosphorés depuis 1968. À cette époque, ces insecticides étaient très efficaces dans cette zone et tuaient la majorité des moustiques.

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	scrip	otio	า :			
Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocati	on.)			•							•	1.1

En 1980, un échantillonnage a été réalisé dans une population de moustiques située à Maurin (zone 2) afin d'étudier la structure génétique de cette population.

Les résultats de cette étude sont résumés dans le tableau ci-dessous.

Génotypes concernant				
le gène de résistance à	R//R	R//S	S//S	Total
l'insecticide (doc. 1)				
Résistance à	oui	oui	non	
l'insecticide	Oui	Oui	11011	
Nombre	90	284	70	444
de moustiques	00	201	. 0	
Fréquence génotypique observée	0,20	0,64	0,16	1

Questions:

- **1-** À partir des documents 1 et 2 et de vos connaissances, expliquer l'acquisition de la résistance au parathion de certains moustiques.
- **2-** À partir du document 3, vérifier que la structure génétique de la population n'est pas à l'équilibre de Hardy-Weinberg. Pour ce faire, on comparera les fréquences génotypiques observées dans la population de moustique aux fréquences génotypiques que vous calculerez selon le modèle de Hardy-Weinberg.

Rappel du modèle de Hardy-Weinberg :

Soient A1 et A2 deux allèles d'un même gène, avec p la fréquence de l'allèle A1 et q la fréquence de l'allèle A2 et p + q =1, les fréquences génotypiques sont :

 p^2 = fréquence du génotype A1//A1

2pq = fréquence du génotype A1//A2

 q^2 = fréquence du génotype A2//A2

3- Expliquer les raisons pour lesquelles la structure génétique de la population n'est pas à l'équilibre de Hardy-Weinberg.

Fin de l'exercice