Санкт-Петербургский государственный университет **Кафедра технологий программирования**

Башарин Егор Валерьевич

Выпускная квалификационная работа бакалавра

Контекстный анализ данных социальных сетей 010400

Прикладная математика и информатика

Научный руководитель, ст. преподаватель Попова С.В.

Содержание

Введение
Постановка задачи
Обзор литературы
Глава 1. Подготовка данных
1.1 Обзор социальных сетей
1.2 Выбор социальной сети и получение данных
1.3 Предобработка данных
1.4 Результаты
Глава 2. Выбор и построение тематической модели
3.1 Тематическое моделирование
3.1 Выбор тематической модели
3.2 Описание тематической модели LDA
3.3 Реализация тематической модели
3.4 Эксперименты
Глава 3. Оценка качества модели
4.1 Обзор оценок качества тематических моделей
4.2 Оценка качества построенной тематической модели
Анализ результатов
Заключение
Список литературы

Введение

В настоящее время явление социальных сетей достаточно распространено. Социальные сети уверенно вошли в жизнь современного человека и теперь занимают в ней значимую часть. Главным образом они оказывают влияние на поведение, предубеждения, ценности и намерения человека, что отражается во всех сферах его деятельности. Оказываемое влияние, быстрый рост популярности и открытый доступ к контенту привлекли к социальным сетям внимание правительства, финансовых организации и исследователей. Преобразование контента социальных сетей в текстовую информацию и выделение ключевых концепций стало важным условием для порождения знаний и формулирования стратегий. Анализ полученной информации помогает исследователям улучшить понимание об информационных потоках, о формировании и распространении мнений, о связи ценностей и предубеждений пользователя и генерируемого им контента. Тем не менее число качественных и количественных исследований в данной области слишком мало. Самый значительный барьер при использовании социальных сетей - это отсутствие методологии для выбора, сбора, обработки и анализа информации, полученной с сайтов социальных сетей. Однако, существуют компании по производству программного обеспечения, разработавшие проприетарные системы сбора информации для визуализации данных, и исследователи, разработавшие экспертные системы для анализа настроений |1|.

Пользователи социальных сетей активно публикуют данные о своей ежедневной активности, чувствах и мыслях, выражая свое мнение и позицию. Благодаря этому в социальных сетях образуются группы пользователей (сообщества), имеющих общие интересы. Для выявления ключевых концепций и тематик присущих группе пользователей используется контекстная обработка данных, генерируемых участниками группы. В данной работе контекстная обработка данных основана на идеях и принципах тематического моделирования. Результаты такой обработки данных могут использоваться для мониторинга заболеваний, например гриппа [2], или для предсказания поведения рынка.

Постановка задачи

Целью данной работы является изучение методов контекстной обработки данных социальных сетей, в основе которых лежат при принципы и идеи тематического моделирования. Для того чтобы достичь поставленной цели предлагается выполнить следующий ряд задач:

- 1. Анализ предметной области
 - 1.1 Обзор социальных сетей
 - 1.2 Выбор социальной сети в качестве источника данных
- 2. Подготовка данных
 - 2.1 Загрузка данных с веб-страниц социальной сети
 - 2.2 Предобработка данных
 - 2.3 Разбиение данных на обучающую и тестовую части
- 3. Выбор тематической модели
 - 3.1 Анализ тематических моделей
 - 3.2 Выбор подходящей тематической модели
- 4. Построение тематической модели
 - 4.1 Анализ методов построения тематической модели
 - 4.2 Реализация программного модуля, реализующего выбранную тематическую модель
 - 4.3 Обучение тематической модели
- 5. Оценка качества модели
 - 5.1 Обзор и анализ оценок качества тематических моделей
 - 5.2 Оценка качества построенной модели
- 6. Анализ полученных результатов

Обзор литературы

Глава 1. Подготовка данных

- 1.1 Обзор социальных сетей
- 1.2 Выбор социальной сети и получение данных
 - 1.3 Предобработка данных
 - 1.4 Результаты
- Глава 2. Выбор и построение тематической модели
 - 3.1 Тематическое моделирование
 - 3.1 Выбор тематической модели
 - 3.2 Описание тематической модели LDA
 - 3.3 Реализация тематической модели
 - 3.4 Эксперименты
 - Глава 3. Оценка качества модели
 - 4.1 Обзор оценок качества тематических моделей
 - 4.2 Оценка качества построенной тематической модели

Анализ результатов

Заключение

Список литературы

- [1] Arturas Kaklauskas. Biometric and Intelligent Decision Making Support // Springer, 2015, P. 220.
- [2] Paul, MJ. and M. Dredze. You Are What You Tweet: Analyzing Twitter for Public Health. // In Proc. of the 5th International AAAI Conference on Weblogs and Social Media (ICWSM), 2011.
- [3] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008. 506 P.
- [4] Pang-Ning Tan, Michael Steinbach and Vipin Kumar. Introduction to Data Mining. Addison-Wesley, 2006. 769 P.
- [5] Toby Segaran. Programming Collective Intelligence. O'Reilly Media, 2007.362 P.
- [6] Thomas Hofmann. Probabilistic latent semantic indexing. Proceedings of the Twenty-Second Annual International SIGIR Conference, 1999.
- [7] David M. Blei, Andrew Y. Ng, Michael I. Jordan. Latent Dirichlet Allocation
 // Journal of Machine Learning Research 3, 2003. P. 993 1022.
- [8] Gregor Heinrich. Parameter estimation for text analysis. Technical report, Fraunhofer IGD, Darmstadt, Germany, 2005.
- [9] Воронцов
- [10] ссылка на machine learning