Assignment – 2

Data Visualization and Pre-processing

Assignment Date	22 September 2022
Student Name	HEMAMALINI S
Student Roll Number	513119106029
Maximum Marks	

TASKS:

- 1. Download the dataset
- 2. Load the dataset

- 3. Perform Below Visualizations.
 - Univariate Analysis

• Bi-Variate Analysis

• Multivariate Analysis

4. Perform descriptive statistics on the dataset

```
✓ () data
  \Box
          RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
          1 15634602 Hargrave 619 France Female 42 2 0.00
                                                                        1 1 1
                                                                                                         101348.88
                                             Spain Female 41
                                                              1 83807.86
                            Onio 502
                                           France Female 42
      2
                  15619304
                                                             8 159660.80
                                                                                                                   1
                                                                                                         113931.57
       3
                  15701354
                             Boni
                                      699
                                            France Female 39
                                                             1 0.00
                                                                               2
                                                                                       0
                                                                                                          93826.63
                                                                                                                    0
               5 15737888 Mitchell 850
                                           Spain Female 43 2 125510.82
                                                                                                          79084.10
             9996 15606229 Obijiaku 771
                                           France Male 39 5 0.00
      9995
                                                                                                          96270.64
      9996
                                      516
                                                             10 57369.61
             9997
                  15569892 Johnstone
                                           France Male 35
                                                                                                         101699.77
             9998 15584532 Liu 709 France Female 36 7 0.00
                                      772 Germany Male 42
      9999 10000 15628319 Walker 792 France Female 28 4 130142.79
                                                                                                          38190.78 0
     10000 rows x 14 columns
```

Standard Deviation = 10.49

#To find statistics of all numerical Datas round(data.describe(),2)

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.0
mean	5000.50	15690940.57	650.53	38.92	5.01	76485.89	1.53	0.71	0.52	100090.24	0.2
std	2886.90	71936.19	96.65	10.49	2.89	62397.41	0.58	0.46	0.50	57510.49	0.4
min	1.00	15565701.00	350.00	18.00	0.00	0.00	1.00	0.00	0.00	11.58	0.0
25%	2500.75	15628528.25	584.00	32.00	3.00	0.00	1.00	0.00	0.00	51002.11	0.0
50%	5000.50	15690738.00	652.00	37.00	5.00	97198.54	1.00	1.00	1.00	100193.92	0.0
75%	7500.25	15753233.75	718.00	44.00	7.00	127644.24	2.00	1.00	1.00	149388.25	0.0
max	10000.00	15815690.00	850.00	92.00	10.00	250898.09	4.00	1.00	1.00	199992.48	1.0

```
[32] data.loc[data['EstimatedSalary']>60000]
        RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
        1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 1 101348.88 1
             2 15647311 Hill
                                  608
                                       Spain Female 41
                                                      1 83807.86
                                                                                           112542.58
     2 3 15619304 Onio 502 France Female 42 8 159660.80
                                                                                          113931.57
            4 15701354
                        Boni 699 France Female 39 1 0.00
                                                                     2
     3
                                                                                           93826.63
     4 5 15737888 Mitchell 850 Spain Female 43 2 125510.82 1 1
     9992 9993 15657105 Chukwualuka 726 Spain Male 36 2 0.00 1 1 0 195192.40 0
           9995 15719294 Wood
                                                    2
     9994
                                800 France Female 29
                                                                                           167773.55
     9995 9996 15606229 Obijiaku 771 France Male 39 5 0.00
                                                                                  0 96270.64 0
           9997 15569892 Johnstone
                                516 France Male 35 10 57369.61
                                                                                           101699.77
     9996
                                                                                                    0
          9999 15682355 Sabbatini 772 Germany Male 42 3 75075.31
                                                                                           92888.52
     9998
```

[34] data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
7.57			7.7.7.7
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtyp	es: float64(2), i	nt64(9), object(3)

memory usage: 1.1+ MB

Handle the Missing values.

```
/ [36] data.isnull().sum()
           RowNumber
                               0
          CustomerId 0
Surname 0
CreditScore 0
Geography 0
Gender 0
          Gender
           Age
          Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
          EstimatedSalary 0
          Exited
           dtype: int64
```

6. Find the outliers and replace the outliers

```
y [39] out = data.quantile(q =(0.25,0.75))
          out

         RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🎉
      0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 1.0 0.0 0.0 51002.1100 0.0
     0.75 7500.25 15753233.75 718.0 44.0 7.0 127644.24
                                                               1.0
                                                        2.0
                                                                          1.0 149388.2475 0.0
[41] iq = out.loc[0.75]-out.loc[0.25]
     RowNumber
                    4999.5000
     Exited
dtype: float64
[42] lower = out.loc[0.25]-1.5*iq
          lower
         RowNumber -4.5505000
CustomerId 1.544147e+07
CreditScore 3.830000e+02
1.400000e+01
                             -4.998500e+03
         Age 1.40000e+01
Tenure -3.000000e+00
Balance -1.914664e+05
NumOfProducts -5.000000e-01
HasCrCard -1.500000e+00
IsActiveMember -1.500000e+00
         EstimatedSalary -9.657710e+04
                               0.000000e+00
         Exited
         dtype: float64
   [43] upper = out.loc[0.75]+1.5*iq
           upper
                                   1.499950e+04
          RowNumber
                                   1.594029e+07
          CustomerId
          CreditScore
                                  9.190000e+02
          Age
                                   6.200000e+01
          Tenure
                                   1.300000e+01
          Balance
                                   3.191106e+05
          NumOfProducts
                                  3.500000e+00
          HasCrCard
                                   2.500000e+00
          IsActiveMember
                                  2.500000e+00
          EstimatedSalary
                                   2.969675e+05
          Exited
                                    0.000000e+00
          dtype: float64
```

oata.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWa
"""Entry point for launching an IPython kernel.

5.000500e+03 RowNumber CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 5.012800e+00 Tenure Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01

dtype: float64

```
(45] data['Age'] = np.where(data['Age']>87,40,data['Age'])
data['Tenure'] = np.where(data['Tenure']>87,31,data['Tenure'])
```

sns.boxplot(data['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni
FutureWarning

7. Check for Categorical columns and perform encoding.

```
/ [47] data.head()
         RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfFroducts HasCrCard IsActiveMember EstimatedSalary Exited
           1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1
                                                                                                                        101348.88 1
               2 15647311
                               Hill
                                          608
                                                 Spain Female 41
                                                                      1 83807.86
                                                                                                                         112542.58
              3 15619304 Onio 502 France Female 42 8 159660.80
                                                                                          3
                4 15701354
                              Boni
                                          699
                                                 France Female 39
                                                                      1 0.00
                                                                                          2
                                                                                                                 0
                                                                                                                         93826.63
               5 15737888 Mitchell 850 Spain Female 43
                                                                     2 125510.82

/ [48] data['Gender'].replace({"Female":0,"Male":1},inplace=True)

data['Exited'].replace({"yes":1,"no":0},inplace=True)

/ [49] data_main = pd.get_dummies(data,columns=['Geography'])
```


8. Split the data into dependent and independent variables.

Surname	CustomerId	RowNumber	
Hargrave	15634602	1	0
Hill	15647311	2	1
Onio	15619304	3	2
Boni	15701354	4	3
Mitchell	15737888	5	4
222	5.0	223	
Obijiaku	15606229	9996	995
Johnstone	15569892	9997	996
Liu	15584532	9998	9997
Sabbatini	15682355	9999	9998
Walker	15628319	10000	9999

10000 rows x 3 columns

C>

```
[56] # Independent
      y = data['Exited']
      y
      0
             1
      1
             0
      2
             1
      3
             0
      4
      9995
             0
      9996
             0
      9997
             1
      9998
             1
      9999
             0
      Name: Exited, Length: 10000, dtype: int64
  9. Scale the independent variables

[58] x= data_main.drop(columns=['Surname'],axis=1)
[59] names = x.columns
✓ [60] names
      'EstimatedSalary', 'Exited', 'Geography_France', 'Geography_Germany',
            'Geography_Spain'],
           dtype='object')
[61] from sklearn.preprocessing import scale
  x = scale (x)
  array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,
              -0.57873591, -0.57380915],
             [-1.7315312 , -0.60653412, -0.44003595, ..., -1.00280393,
```

(63) x = pd.DataFrame(x,columns=names)

10. Split the data into training and testing

COLAB LINK:

 $https://colab.research.google.com/drive/1v5GSQB_R4UiRDTSUiZZweKCYpPN2nblT\#scrollTo=eyzUNIQQvCza$