

Universidade Federal de Pernambuco Centro de Ciências Exatas e da Natureza Departamento de Física

Experimento 4: Ondas Estacionárias

Física Experimental 1 / 2023.1

mormaçõe	s sobre a Equ	пре		
Nome:	Ênio Henrique	Nunes	Ribeiro	

Nome: Rafael Zamor Batista Concino

Nome: _____

Bancada: _____ Turma: 22

Com base em seus desenhos, escreva a relação entre n e o comprimento de onda λ_n .

Uma onda é uma estrutura periódica tanto no espaço quanto no tempo. Sua velocidade de propagação v é tal que um comprimento de onda λ_n é percorrido em um período τ_n .

Escreva abaixo a expressão para a velocidade v em termos de λ_n e da frequência $f_n=1/ au_n$ da onda.

Utilize essas expressões para escrever f_n em função de n e da frequência fundamental f_1 .

O modelo teórico mais simples deve ser capaz de captar a essência do comportamento do sistema descrito. O fio à sua frente é um objeto real com várias complicações. Aponte desvios do comportamento ideal factíveis de aparecerem em seu experimento.

· A presença do vento code cearionar alterações inderejadas; · A morro do tão pode não rer despreziral; · O tão pade res extensível (cumentar ou diminuis o comprimento).

Física Experimental 1 - 2023.1

IMPORTANTE: jamais prenda mais de 7 clipes ao fio. Sete clipes produzem o peso mas suportado pela frágil ligação entre o fio e alto-falante.

Siga o roteiro:

- 1. Encontre a faixa de frequências em que o modo fundamental (n=1) é excitado.
- 2. Meça as frequências mínima f_{\min} e máxima f_{\max} da faixa. Lembre-se de que f representa a frequência de oscilação da corda.

$$f_{\min} = 02,2 \text{ Hz}$$
 $f_{\max} = 52,9 \text{ Hz}$

Com essas medidas, você obteve o intervalo total em que ocorre a ressonância. Note que a **amplitude** da oscilação do fio varia dentro desse intervalo.

3. Meça a frequência f_1 para a qual a amplitude da oscilação é **máxima** e estime experimentalmente a sua incerteza σ_{f_1} .

$$f_1 = _{0.10}^{1} \pm _{0.10}^{1}$$

Com base nesses testes, descreva sucintamente seu procedimento para medir frequências de ressonância (e suas incertezas!) daqui em diante.

Resposta:	1.1	1			,	,
Lienamor o	valon do	fresametere	sia arrancia	190 A 90219	minna de	ocardo com
						PER MOPDA
					A "	briquincias
mozima i	400					,

3. Relação entre modo espacial e frequência [1 ponto]

Primeiramente, investigar a relação entre o modo excitado, descrito pelo número de ventres n da onda, a frequência da corda f_n excitada pelo alto-falante e o comprimento de onda λ_n da oscilação. Roteiro:

- (a) Meça a frequência de ressonância f_n para todos os modos n de oscilação que você conseguir excitar na corda.
- (b) Determine o comprimento de onda λ_n da oscilação medindo (régua ou trena) a distância entre dois nós consecutivos $\ell_n=\lambda_n/2$ para cada modo n obtido experimentalmente.
- (c) Preencha a tabela abaixo.

n	$f_n \pm \sigma_{f_n}$	$\ell_n \pm \sigma_{\ell_n}$	$\lambda_n \pm \sigma_{\lambda_n}$
1 (5 ± 1).10' Hz	45,50 ± 0,05 cm	
	1 ± 3). 10' Hz	22,50 ± 0,05 cm	91,0 ± 0,1 cm
	2 ± 4), 10' Hz	14,80 ± 0,05 cm	45,0 ± 0,1 cm
-	+ ±3). 10' Hz	10,90 ± 0,05 cm	21,8 ± 0,1 cm
	2±2). 10 Hz	8,80 ± 0,05 cm	17,6 ± 0,1 cm
(20	±2).101 Hz	7,00 ±0,05 cm	14,0 ±0,1 cm
4 (31	±1).10' Hz	6,50 +0,05 cm	13,0 ± 0,1 cm
			instancified being paid.

Escreva no quadro abaixo a expressão usada para obter a incerteza σ_{λ_n} em função de σ_{ℓ_n} .

4. Gráficos e análises

• Gráfico 1 [1 ponto]: Utilizar papel milimetrado e representar graficamente todos os pares de valores medidos (n, f_n) , da tabela acima.

Observando o seu Gráfico 1, verifique se as frequências de excitação de modos $n \neq 1$ são múltiplas da frequência fundamental f_1 ? Esse resultado é esperado? Justifique.

Resposta:
Wão poir christondo o grafico ar positor mão foram dinhador numa numa reta.
É granado por conto dos roisos unas que podem ocorres durante o

• Analise agora a relação entre frequência de excitação e comprimento de onda. Segundo o modelo teórico, a relação esperada aqui é uma lei de potência da forma

$$f_n = v \,\lambda_n^{-1},\tag{1}$$

em que v é a velocidade de propagação da onda no fio.

Linearização: Para transformar a relação (1) em uma relação linear, faça as seguintes mudanças de variáveis $x_n = \lambda_n^{-1}$ e $y_n = f_n$, para obter

$$y_n = A x_n + B. (2)$$

Utilizando a equação (2), identifique os coeficientes A e B com as grandezas físicas de interesse.

Utilizando seus dados, calcule os valores experimentais de x_n e y_n (com incertezas!).

• Gráfico 2 [1 ponto]:

Utilize papel milimetrado e represente graficamente todos os pares de valores medidos (x_n, y_n) . Não se esqueça de representar também as barras de erro σ_{x_n} e σ_{y_n} (e título, rótulos e unidades dos eixos!).

Seus dados parecem bem descritos por uma relação linear? Justifique.

Oxn = 0. 1

Resposta: Sim, poir a partir da incestiza aproxima-es de uma relação limer.

• Ajuste da reta ótima pelo método de mínimos quadrados.

O método de ajuste visual que utilizamos na Experiência 2 (anterior) é rápido de se executar manualmente, porém é pouco preciso. Para encontrar a *melhor* relação linear requer é necessário fazer algumas contas.

A melhor reta que se ajusta aos dados é aquela que minimiza o desvio quadrático médio.

Preencha a tabela abaixo com quantidades intermediárias necessárias para fazer este ajuste, dadas pelas Eqs. 20, 22 e 23 da Apostila 3. Utilize nos cálculos os valores x_n e y_n da sua tabela.

$s_{x^2} = \sum_n x_n^2$	$s_x = \sum_n x_n$	$s_y = \sum_n y_n$	$s_{xy} = \sum_{n} x_n y_n$	$\Delta = Ns_{x^2} - s_x^2$
180,90.109 cm2	36,72.10 cm	1220 Hz	69,28 Hz. cm	0,026

A reta *ótima* é dada por $y = A_{mq}x + B_{mq}$ onde os coeficientes são (eqs. (22) da Apostila 3).

$$A_{\rm mq} = \frac{Ns_{xy} - s_x s_y}{\Delta}, \qquad \text{e} \quad B_{\rm mq} = \frac{s_{x^2} s_y - s_x s_{xy}}{\Delta}$$

Calcule os valores de A_{mq} e B_{mq} .

Incertezas de A_{mq} e B_{mq}

Para o cálculo das incertezas dos coeficientes da reta ótima devemos considerar as incertezas tanto em x_n quanto em y_n . Mas, para simplificar as contas aquí, assuma que σ_x e σ_y são uniformes para todos os dados na tabela.

Nesse caso, as incertezas de $A_{\rm mq}$ e $B_{\rm mq}$ são dadas, respectivamente, por (eqs. (23) da Apostila 3)

$$\sigma_A = \sqrt{\frac{1}{\Delta}} \, \sigma_{y,T}, \qquad \sigma_B = \sqrt{\frac{s_{x^2}}{\Delta}} \, \sigma_{y,T}.$$
 (3)

onde

$$\sigma_{y,T} = \sqrt{\sigma_y^2 + A_{mq}^2 \sigma_x^2}$$

 $\sigma_{y,T} = \sqrt{\sigma_y^2 + A_{mq}^2 \sigma_x^2}. \qquad \sqrt{400 + 14200142,24651314.10^{-8}}$

Escreva abaixo os valores utilizados para o cálculo das incertezas σ_A e σ_B

σ_x	σ_y	$\sigma_{y,T}$	
(0,001).102eni	2.10 Hz	20	

Escreva, abaixo, os valores encontrados para A_{mq} e B_{mq} com suas incertezas:

$$A_{mq} = \frac{(38 \pm 3) \cdot 10^2}{B_{mq}} = \frac{(0.4 \pm 2) \cdot 10}{B_{mq}}$$

• Finalmente, adicione a reta ótima em seu Gráfico 2.

Determine o valor da velocidade v com as grandezas obtidas através da \emph{reta} ótima ajustada.

$$v = (38^{\pm}3)t0^2 cm/s$$

Forte sugestão: você deve ter completado todas as atividas propostas até aqui antes de iniciar a segunda aula deste experimento

Parte 2 - segunda aula

5. Propriedade do fio: densidade [3.0 pontos]

Para pequenas oscilações, o modelo ideal da corda vibrante afirma que a velocidade da onda depende da tensão T aplicada ao fio. Determinemos experimentalmente essa dependência.

Roteiro:

ullet Escolha um modo normal n do fio para realizar medidas de frequência de ressonância f em função da tensão T. Escreva na abaixo o valor escolhido de n e λ correspondente.

n	λ
2	(0,450± 0,001)m

ullet Tensão no fio: o número de clipes i sustentados pelo fio controla a tensão T_i imposta.

Para determinar seu valor, meça a força peso T_i dos clipes com o auxílio de uma balança (Utilize $g=9,781 \text{ m/s}^2$). O índice i=1,2,...,7 indica a quantidade total de clipes usados (Importante: $i \leq 7$). JAMAIS prenda mais de 7 clipes ao fio. Sete clipes produzem o peso máximo suportado pela frágil ligação entre fio e alto-falante.

ullet Para cada valor de tensão T_i , meça a frequência de ressonância f_i do modo escolhido. Preste atenção para utilizar sempre o mesmo modo!

Coloque suas medidas na tabela, utilizando os dados de λ e f_i para determinar o valor experimental de v_i em cada caso. Faça tantas medidas quanto julgar necessárias.

Física Experimental 1 - 2023.1

Ov=10=107-101-021

m=1,989

0,019 = 0,000 (36 ± 2) Hz

T=P=m.g.

i	$T_i \pm \sigma_{T_i}$	$f_i \pm \sigma_{f_i}$	$v_i \pm \sigma_{v_i}$
7	(0,136 ± 0,001)N	(9±3).10 Hz	(4±1).10 m/p
6	0,116±0,000N	(8 ± 2).10 Hz	(36=9)m/p
5	(0,097 = 0,009N	(7±2).10' HZ	(32±9) m/P
4	6,078 - 0,001W	(6 ±2).10' Hz	(27 ± 9) m/p
3	10,058 = 0,000M	(6±1).10' Hz	(2734)m/1
2	6,039 ± 0,001/W	(5±1).10' Hz	(22±4)m/p

• Gráfico 3 [1 ponto]: Represente todas as medidas (T_i, v_i) em papel log-log. Represente incertezas σ_{v_i} e σ_{T_i} em todos os dados.

Caso seu gráfico 3 evidencie um comportamento linear entre v e T, então a relação entre essas grandezas deve ser uma lei de potência, escrita em geral como

$$v = cT^d. (4)$$

(16,2±0,9) m/P

Vamos analisar a lei de potência através do gráfico log-log. Tome o logaritmo da expressão acima para escrevê-la como uma relação linear do tipo $Y=a\,X+b$.

Relacione as variáveis X, Y, a e b às grandezas v, T e aos parâmetros c e d da lei de potência.

Esses parâmetros são obtidos por ajuste linear aos dados. Trace uma reta de ajuste visual.

Para determinar seu coeficiente angular, escolha dois pontos em que a reta coincida com a marcação quadriculada do papel log-log. Marque esses pontos sobre a reta e leia suas coordenadas (T_1', v_1') e (T_2', v_2') na escala dos eixos. Anote esses valores.

T_1'	v_1'	T_2'	v_2'
· (0,039±0,009/N	(22+4) m/r	(0,058 ±0,001)N	(27±4)m/>

O coeficiente angular é calculado da forma usual como

$$a' = \frac{\log v_2' - \log v_1'}{\log T_2' - \log T_1'}.$$

Já o coeficiente linear é determinado por um dos pontos da reta, e.g. $b' = \log(v_1') - a' \log(T_1')$. Repita o procedimento, traçando uma segunda reta de ajuste visual para estimativa de incerteza.

Anote os pontos de coincidência entre a reta e o grid do papel.

7711			
I_1	v_1''	$T_2^{\prime\prime}$	v_2''
1007840-	2 21 102 4 103 4	2	
14,010 20,0	1)N 2719/m/s	(0,097±0,001)N	(32:9) 11/2

Determine os coeficientes a' e b' da primeira reta, e a'' e b'' da segunda.

a'	b'	a"	$b^{\prime\prime}$
0.52	201	079	7.29

Calcule os coeficientes a e b da reta 'média' a partir dos valores acima.

$$a = 0.65 \text{ NS } 0.650,2$$

$$b = 2.48 \text{ NS } 2.250,3$$

Qual é o valor teórico esperado para o coeficiente a? Ele é compatível com o valor encontrado?

Resposta: esperado de a= \frac{1}{2} n> V= 4 \frac{1}{2} \tau^2.

Escreva a expressão para μ como função do coeficiente relevante da reta ajustada.

C= # 2; 3= loge no B= loggi 2 no 10 = 1/2 no 10 = 1 : VI = +3 12/4= 1023

Escreva a expressão para a incerteza σ_{μ} .

0% = -2 lato . 10 00

Determine o valor experimental de μ a partir da reta ajustada.

 $\mu = \frac{19}{4} + \frac{61.10^{5} \text{ M}}{61.10^{5}} = \frac{4.3,93.10^{5}}{61.00^{5}}$

6. Obtenção da densidade do fio por medida independente [0.5 ponto]

A propriedade do fio determinada de forma indireta pelo estudo de suas ondas estacionárias é, nesse caso, passível de medida independente simples. Meça a densidade linear fio com o auxílio de uma balança. Coloque suas medidas de massa m e comprimento l do fio na tabela abaixo.

$m \pm \sigma_m$	$\ell \pm \sigma_\ell$	$\mu \pm \sigma_{\mu}$
0,07 ± 0,01 &	69,60 ± 0,05 cm	(10±1).1014 3/cm

Compare esse valor ao resultado obtido pelo estudo das ondas. Eles são compatíveis? Jamais ignore eventuais discrepâncias: tente justificá-las.

Resposta:

São compativis. 4= (4±6).10 kg/m = (4±6).10 .10 g/socon

:. 4= (4±6).10 g/cm.~1 A partir da incentiza derra denordade, otingimor o volon da dinisdade calculada logo acima.

Ou= V(Om·+)+(Oz1-無))2 [2,06434139252213-10)+ (0,00005+10) = 1,43679352.10 = 1.404

