Sampling and Standard Error

Means and Standard Deviations

- ■Population mean = 16.3
- Sample mean = 17.1
- Standard deviation of population = 9.44
- Standard deviation of sample = 10.4
- A happy accident, or something we should expect?
- Let's try it 1000 times and plot the results

2

Notice in Code

- pylab.axvline(x = popMean, color = 'r') draws a red vertical line at popMean on the x-axis
- There's also a pylab.axhline function

Try It 1000 Times

What's the 95% confidence interval?

16.28 +- 1.96*0.94 14.5 - 18.1 Includes population

Suppose we want a tighter bound?

Mean of sample Means = 16.3

Standard deviation of sample means = 0.94

Maximum difference in means = 3.63

Maximum difference in standard deviations = 2.46

6.00.2X LECTURE

mean

Getting a Tighter Bound

- Will drawing more samples help?
 - Let's try increasing from 1000 to 2000
- •How about larger samples?
 - Let's try increasing sample size from 100 to 200
 - Standard deviation of sample means drops from 0.94 to 0.66

Error Bars, a Digression

Graphical representation of the variability of data

Way to visualize uncertainty

https://upload.wikimedia.org/wikipedia/commons/1/1d/Pulse_Rate_Error_Bar_By_Exercise_Level.png

Key Line of Code

Sample Size and Standard Deviation

Bigger Seems to Be Better

- •Going from a sample size of 100 to 400 reduced the confidence interval from 1.8C to about 1C.
- But we are now looking at 400,000 examples
 - What has sampling bought us?
 - Absolutely Nothing!

What Can We Conclude from 1 Sample?

•More than you might think

