姜晓千 2023 年强化班笔记

数学笔记

Weary Bird

2025年7月24日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月24日

目录

第一章	函数极限连续	1
1.1	函数的性态	1
1.2	极限的概念	3
1.3	函数极限的计算	3
1.4	已知极限反求参数	7
1.5	无穷小阶的比较	8
1.6	数列极限的计算	1
1.7	间断点的判定	3
<i>₩</i> — *	二元粉件八半	_
第二章	一元函数微分学 1	
2.1	导数与微分的概念 1	5
2.2	导数与微分的计算 1	8
2.3	导数应用-切线与法线 2	4
2.4	导数应用-渐近线	6
2.5	导数应用-曲率 2	8
2.6	导数应用-极值与最值 2	9
2.7	导数应用-凹凸性与拐点 3	C
2.8	导数应用-证明不等式 3	C
2.9	导数应用-求方程的根 3	1
2.10	微分中值定理证明题	1
第三章	一元函数积分学 3	5
3.1	定积分的概念 3	5
3.2	不定积分的计算 3	6

3.3	定积分的计算	38
3.4	反常积分的计算	40
3.5	反常积分敛散性的判定	41
3.6	变限积分函数	43
3.7	定积分应用求面积	46
3.8	定积分应用求体积	46
3.9	定积分应用求弧长	47
3.10	定积分应用求侧面积	48
3.11	证明含有积分的等式或不等式	49
第四章	常微分方程	51
4.1	一阶微分方程	51
4.2	二阶常系数线性微分方程	58
4.3	高阶常系数线性齐次微分方程	62
4.4	二阶可降阶微分方程	63
4.5	欧拉方程	63
4.6	变量代换求解二阶变系数线性微分方程	64
4.7	微分方程综合题	65
第五章	多元函数微分学	71
5.1	多元函数的概念	71
5.2	多元复合函数求偏导数与全微分	74
5.3	多元隐函数求偏导数与全微分	76
5.4	变量代换化简偏微分方程	78
5.5	求无条件极值	79
5.6	求条件极值 (边界最值)	81
第六章	二重积分	86
6.1	二重积分的概念	86
6.2	交换积分次序	88
6.3	二重积分的计算	91
6.4	其他题型	97

71 O T	九穷级数 100
7.1	数项级数敛散性的判定
7.2	交错级数102
7.3	任意项级数
7.4	幂级数求收敛半径与收敛域105
7.5	幂级数求和
7.6	幂级数展开
7.7	无穷级数证明题112
7.8	傅里叶级数
第八章	多元函数积分学 115
0.1	一千和八441 M
8.1	三重积分的计算115
8.1	二里积分的计算
8.2	第一类曲线积分的计算117
8.2 8.3	第一类曲线积分的计算
8.2 8.3 8.4	第一类曲线积分的计算
8.2 8.3 8.4	第一类曲线积分的计算
8.2 8.3 8.4 8.5	第一类曲线积分的计算 117 第二类曲线积分的计算 119 第一类曲面积分的计算 121 第二类曲面积分的计算 122

第一章 函数极限连续

1.1 函数的性态

Remark. (有界性的判定)

- (1) 连续函数在闭区间 [a,b] 上必然有界
- (2) 连续函数在开区间 (a,b) 上只需要判断端点处的左右极限,若 $\lim_{x\to a^+} \neq \infty$ 且 $\lim_{x\to b^-} \neq \infty$,则连续函数在该区间内有界.
- (3) f'(x) 在有限区间 (a,b) 内有界.

Proof: $\forall x \in (a,b)$, 由拉格朗日中值定理, ∃ξ

$$f(x) - f(\frac{a+b}{2}) = f'(\xi)(x - \frac{a+b}{2})$$
$$|f(x)| \le |f'(\xi)| \left| x - \frac{a+b}{2} \right| + \left| f(\frac{a+b}{2}) \right|$$
$$|f(x)| \le \frac{b-a}{2} |f'(\xi)| + \left| f(\frac{a+b}{2}) \right| \le M$$

1. 下列函数无界的是

A
$$f(x) = \frac{1}{x}\sin x, x \in (0, +\infty)$$
 B $f(x) = x\sin\frac{1}{x}, x \in (0, +\infty)$

C
$$f(x) = \frac{1}{x} \sin \frac{1}{x}, x \in (0, +\infty)$$
 D $f(x) = \int_0^x \frac{\sin t}{t} dt, x \in (0, 2022)$

- (A) $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to +\infty} = 0$ 均为有限值, 故 A 在区间 $(0,+\infty)$ 有界
- (B) $\lim_{x\to 0^+} f(x) = 0$, $\lim_{x\to +\infty} = 1$ 均为有限值, 故 B 在区间 $(0,+\infty)$ 有界
- (C) $\lim_{x\to 0^+} f(x) = +\infty$, $\lim_{x\to +\infty} = 0$ 在 0 点的极限不为有限值, 故 C 在区间 $(0,+\infty)$ 无界

(D) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \int_0^x 1 dt = 0$, $\lim_{x\to 2022^-} f(x) = \int_0^{2022} \frac{\sin t}{t} dt =$ 有限值 故 D 在 区间 (0,2022) 有界

无穷 VS 无界

无界 只有有一个子列趋于无穷即可

无穷 任意子列均趋于无穷.

例如 A 选项, 当 $x_n = \frac{1}{2n\pi + \pi/2}, f(x_n) = 2n\pi + \pi/2, n \rightarrow \infty, f(x_n) \rightarrow \infty$; 当 $x_n = \pi/2$ $\frac{1}{2n\pi}$, $f(x_n) = 0$, $n \to \infty$, $f(x_n) \to 0$ 不为无穷大, 仅仅是无界.

Remark. (导函数与原函数的奇偶性与周期性)

连续奇函数的所有原函数 $\int_0^x f(t)dt + C$ 都是偶函数

连续偶函数仅有一个原函数 $\int_0^x f(t)dt$ 为奇函数

连续周期函数的原函数为周期函数 $\iff \int_0^T f(x) dx = 0$

- 2. (2002, 数二) 设函数 f(x) 连续, 则下列函数中, 必为偶函数的是
 - A $\int_0^x f(t^2)dt$ B $\int_0^x f^2(t)dt$
- - C $\int_0^x t[f(t) f(-t)]dt$ D $\int_0^x t[f(t) + f(-t)]dt$

Solution. 这种题可以采用奇偶性的定义直接去做,如下面选项 A,B 的解法,也可以按 照上述的函数奇偶性的性质判断

(A) $\Leftrightarrow F(x) = \int_0^x f(t^2)dt$

$$F(-x) = \int_0^{-x} f(t^2)dt = -\int_0^x f(t^2)dt = -F(x)$$

则 A 选项是奇函数

(B)

$$F(-x) = \int_0^{-x} f^2(t)dt = -\int_0^x f^2(-t)dt$$

推导不出 B 的奇偶性

- (C) t[f(t) f(-t)] 是一个偶函数, 故 C 选项是一个奇函数
- (D) t[f(t) + f(-t)] 是一个奇函数, 故 D 选项是一个偶函数

1.2 极限的概念

Definition 1.2.1 (函数极限的定义). 设函数 f(x) 在点 x_0 的某去心邻域内有定义。 若存在常数 A,使得对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足

$$0 < |x - x_0| < \delta$$

时,必有

$$|f(x) - A| < \epsilon$$

则称 A 为函数 f(x) 当 x 趋近于 x_0 时的极限,记作

$$\lim_{x \to x_0} f(x) = A$$

或

$$f(x) \to A \quad (x \to x_0).$$

3. (2014, 数三) 设 $\lim_{n\to\infty} a_n = a$, 且 $a \neq 0$, 则当 n 充分大时有

(A)
$$|a_n| > \frac{|a|}{2}$$
 (B) $|a_n| < \frac{|a|}{2}$ (C) $a_n > a - \frac{1}{n}$ (D) $a_n < a + \frac{1}{n}$

Solution. $\diamondsuit \epsilon = |a|/2$, $\mathbb{N} |a_n - a| < |a|/2 \ge ||a_n| - |a|| \mathbb{N}$

$$|a|/2 < |a_n| < \frac{3|a|}{2}$$

对于 CD 考虑当

$$a_n = a - \frac{2}{n}$$
 和 $a_n = a + \frac{2}{n}$ 简单来说 $\forall \epsilon$ 这里面的 ϵ 与 n 是无关的.

1.3 函数极限的计算

这一个题型基本上是计算能力的考察,对于常见未定式其实也没必要区分的那么明显,目标都是往最简单 $\frac{0}{0}$ 或者 $\frac{1}{\infty}$ 模型上面靠,辅助以 Taylor 公式,拉格朗日中值定理结合夹逼准则来做就可以.

Remark. (类型 $-\frac{0}{0}$ 型)

4. (2000, 数二) 若 $\lim_{x\to 0} \frac{\sin 6x + xf(x)}{x^3} = 0$, 则 $\lim_{x\to 0} \frac{6+f(x)}{x^2}$ 为

- (A) 0
- (B) 6 (C) 36
- (D) ∞

Solution. 这个题第一次见可能想不到, 但做多了就一个套路用 Taylor 就是了.

 $\sin 6x = 6x - 36x^2 + o(x^3)$, 带入题目极限有

$$\lim_{x \to 0} \frac{6x + xf(x) + o(x^3)}{x^3} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = 36$$

5. (2002, 数二) 设 y=y(x) 是二阶常系数微分方程 $y''+py'+qy=e^{3x}$ 满足初始条件 y(0)=y'(0)=0 的特解, 则当 $x\to 0$ 时, 函数 $\frac{\ln(1+x^2)}{y(x)}$ 的极限

- (A)不等于 (B)等于 1 (C)等于 2 (D)等于 3

Solution. 由微分方程和 y(0) = y'(0) = 0 可知 y''(0) = 1, 则 $y(x) = \frac{1}{2}x^2 + o(x^2)$, 则

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2$$

Remark. (类型二 ≈ 型)

6. (2014, 数一、数二、数三) 求极限

$$\lim_{x \to \infty} \frac{\int_1^x \left[t^2 \left(e^{\frac{1}{t}} - 1 \right) - t \right] dt}{x^2 \ln\left(1 + \frac{1}{x}\right)}$$

Solution.

$$\lim_{x \to \infty} \frac{\int_{1}^{x} \left[t^{2}(e^{\frac{1}{t}} - 1) - t \right] dt}{x} = \lim_{x \to \infty} x^{2}(e^{\frac{1}{x}} - 1) - x$$

$$= \lim_{t \to 0} \frac{e^{t} - 1 - x}{x^{2}}$$

$$= \frac{1}{2}$$

Remark. (类型三 $0 \cdot \infty$ 型)

7. 求极限 $\lim_{x\to 0^+} \ln(1+x) \ln \left(1+e^{1/x}\right)$

 \square

Remark. (类型四 $\infty - \infty$ 型)

8. 求极限 $\lim_{x\to\infty} (x^3 \ln \frac{x+1}{x-1} - 2x^2)$

Remark. (类型五 0^0 与 ∞^0 型)

9. (2010, 数三) 求极限 $\lim_{x\to+\infty} (x^{1/x}-1)^{1/\ln x}$

Remark. (类型六 1[∞] 型)

10. 求极限 $\lim_{x\to 0} \left(\frac{a^x+a^{2x}+\cdots+a^{nx}}{n}\right)^{1/x}$ $(a>0,n\in\mathbb{N})$

Solution.

1.4 已知极限反求参数

Remark. (方法)

11. (1998, 数二) 确定常数 a,b,c 的值, 使 $\lim_{x\to 0} \frac{ax-\sin x}{\int_b^x \frac{\ln(1+t^3)}{t} dt} = c$ $(c \neq 0)$

1.5 无穷小阶的比较

Remark. (方法)

12. (2002, 数二) 设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0, f'(0) \neq 0, f''(0) \neq 0$ 。证明:存在唯一的一组实数 $\lambda_1, \lambda_2, \lambda_3$,使得当 $h \to 0$ 时, $\lambda_1 f(h) + \lambda_2 f(2h) + \lambda_3 f(3h) - f(0)$ 是比 h^2 高阶的无穷小。

13. (2006, 数二) 试确定 A,B,C 的值, 使得 $e^x(1+Bx+Cx^2)=1+Ax+o(x^3)$, 其中 $o(x^3)$ 是当 $x\to 0$ 时比 x^3 高阶的无穷小量。

14. (2013, 数二、数三) 当 $x \to 0$ 时, $1 - \cos x \cdot \cos 2x \cdot \cos 3x$ 与 ax^n 为等价无穷小, 求 n 与 a 的值。

1.6 数列极限的计算

Remark. (方法)

- (1) 单调有界准则 (三步走, 先确定单调性, 在确定有界性, 最后解方程求极限) 确定单调性, 可以考虑作差/做商/求导
- (2) 压缩映射原理
- (3) 夹逼准则
- (4) 定积分的定义 (n 项和/n 项积)
- 15. (2011, 数一、数二)
 - (i) 证明: 对任意正整数 n, 都有 $\frac{1}{n+1} < \ln \left(1 + \frac{1}{n}\right) < \frac{1}{n}$
 - (ii) 设 $a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \ln n \ (n = 1, 2, \cdots)$, 证明数列 $\{a_n\}$ 收敛。

Solution. (1) 是基本不等式的证明,考虑拉格朗日中值即可

(2) 考研大题, 特别是分成几个小问的题目, 都需要合理利用前面的结论 考虑 $a_{n+1} - a_n$ 有

$$a_{n+1} - a_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(1+n/1) < 0$$

即 $\{a_n\}$ 单调递减,考虑其有界性

$$a_n = 1 + 1/2 + 1/3 + \dots + 1/n - \ln(n)$$

$$< \ln(1+1) + \ln(1+1/2) + \dots + \ln(1+n/1) - \ln(n)$$

$$= \ln(n+1) - \ln(n) > 0$$

即 $\{a_n\}$ 有上界, 故由单调有界定理知数列 $\{a_n\}$ 收敛.

16. (2018, 数一、数二、数三) 设数列 $\{x_n\}$ 满足: $x_1 > 0, x_n e^{x_{n+1}} = e^{x_n} - 1$ $(n = 1, 2, \cdots)$ 。 证明 $\{x_n\}$ 收敛, 并求 $\lim_{n\to\infty} x_n$ 。

Solution. 这道题的难度在于如何处理条件. 考虑1 的妙用. 有

$$e^{x_{n+1}} = \frac{e^{x_n} - 1}{x} = \frac{e^{x_n} - e^0}{1}$$

= $e^{\xi}, \xi \in (0, x_n)$

而由于 e^x 是单调递增的函数则必然有 $\xi = x_{n+1}$ 即 $0 < x_{n+1} < x_n$ 从而单调递减有下界. 此时 $\{x_n\}$ 极限存在.

不妨设 $\lim_{n\to\infty} x_n = a$ 问题转换为求方程 $ae^a = e^a - 1$ 的解的问题. 显然 a = 0 是其一个根. 考虑函数 $f(x) = e^x(1-x) - 1$ 其导数为 $-xe^x$ 在 $(0,\infty)$ 上单调递减故 x = a 是 f(x) 唯一零点, 即 a = 0 是唯一解. 故

$$\lim_{n\to\infty} x_n = 0$$

常见的等价代换有

 $\underline{1}$: e^0 , $\sin(\pi/2)$, $\cos(0)$, $\ln(e)$ 具体情况还得看题目, 题目有啥用啥替换

 $\underline{0}$: $\sin(0)$, $\cos(pi/2)$, $\ln(1)$

- 17. (2019, 数一、数三) 设 $a_n = \int_0^1 x^n \sqrt{1-x^2} dx \ (n=0,1,2,\cdots)$ 。
 - (i) 证明数列 $\{a_n\}$ 单调减少,且 $a_n = \frac{n-1}{n+2} a_{n-2} \ (n=2,3,\cdots)$
 - (ii) $\vec{x} \lim_{n \to \infty} \frac{a_n}{a_{n-1}}$

Solution. 这道题第一问比较重要, 第二问比较简单

(1) 方法一:

$$a_n = \int_0^{\pi/2} \sin^n(t) \cos^2(t) dt$$

$$= \int_0^{\pi/2} \sin^n(t) - \int_0^{\pi/2} \sin^{n+2}(t) dt$$

$$\frac{4\pi + 2\pi + 2\pi}{n+2} \frac{1}{n+2} \frac{n-1}{n} \dots \frac{1}{2} \frac{\pi}{2}, \text{ if } n \text{ If } m \text{$$

当 n 为奇数的时候同理可得

(1) 方法二:

也可以考虑分部积分法

$$a_n = \int_0^1 x^n (1 - x^2)^{1/2} dx$$

$$= -\frac{1}{3} \left[x^{n-1} (1 - x^2)^{3/2} \Big|_0^1 - \int_0^1 (1 - x^2)^{\frac{3}{2}} dx^{n-1} \right]$$

$$= \frac{n-1}{3} \int_0^1 \sqrt{1 - x^2} (1 - x^2) x^{n-2} dx$$

$$= \frac{n-1}{3} a_{n-2} - \frac{n-1}{3} a_n$$

$$\implies a_n = \frac{n-1}{n+2} a_{n-2}$$

(2)

由(1)可知

$$\frac{n-1}{n+2} < \frac{a_n}{a_{n-1}} = \frac{n-1}{n-2} \frac{a_{n-2}}{a_{n-1}} < 1$$

当 $n \to \infty$ 由夹逼准则可知 $\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = 1$

18. (2017, 数一、数二、数三) 求 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln \left(1 + \frac{k}{n}\right)$

Solution. 这是最普通的定积分的定义的应用

原式 =
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln(1 + \frac{k}{n})$$

$$\frac{\text{定积分定义}}{\text{constant}} \int_{0}^{1} x \ln(1 + x) dx$$

$$= \frac{1}{2} \int_{0}^{1} \ln(1 + x) dx^{2}$$

$$= \frac{1}{4}$$

间断点的判定 1.7

19. (2000, 数二) 设函数 $f(x) = \frac{x}{a + e^{bx}}$ 在 $(-\infty, +\infty)$ 内连续, 且 $\lim_{x \to -\infty} f(x) = 0$, 则常数 a,b 满足

A
$$a < 0, b < 0$$

B
$$a > 0, b > 0$$

A
$$a < 0, b < 0$$
 B $a > 0, b > 0$ C $a < 0, b > 0$ D $a > 0, b < 0$

$$D - a > 0, b < 0$$

第二章 一元函数微分学

2.1 导数与微分的概念

- 1. (2000, 数三) 设函数 f(x) 在点 x = a 处可导,则函数 |f(x)| 在点 x = a 处不可导的充分 条件是

 - A $f(a) = 0 \perp f'(a) = 0$ B $f(a) = 0 \perp f'(a) \neq 0$
 - C $f(a) > 0 \perp f'(a) > 0$ D $f(a) < 0 \perp f'(a) < 0$

2. (2001, 数一) 设 f(0) = 0, 则 f(x) 在 x = 0 处可导的充要条件为

- (A) $\lim_{h\to 0} \frac{1}{h^2} f(1-\cos h)$ 存在 (B) $\lim_{h\to 0} \frac{1}{h} f(1-e^h)$ 存在
- (C) $\lim_{h\to 0} \frac{1}{h^2} f(h-\sin h)$ 存在 (D) $\lim_{h\to 0} \frac{1}{h} [f(2h)-f(h)]$ 存在

3. (2016, 数一) 已知函数 $f(x) = \begin{cases} x, & x \leq 0 \\ \frac{1}{n}, & \frac{1}{n+1} < x \leq \frac{1}{n}, n = 1, 2, \cdots \end{cases}$ (A) x = 0 是 f(x) 的第一类间断点 (B) x = 0 是 f(x) 的第二类间断点

- (C) f(x) 在 x = 0 处连续但不可导 (D) f(x) 在 x = 0 处可导

2.2 导数与微分的计算

Remark (类型一分段函数求导).

4. (1997, 数一、数二) 设函数 f(x) 连续, $\varphi(x) = \int_0^1 f(xt)dt$, 且 $\lim_{x\to 0} \frac{f(x)}{x} = A(A$ 为常数), 求 $\varphi'(x)$, 并讨论 $\varphi'(x)$ 在 x=0 处的连续性。

Remark (类型二复合函数求导).

5. (2012, 数三) 设函数
$$f(x) = \begin{cases} \ln \sqrt{x}, & x \ge 1 \\ 2x - 1, & x < 1 \end{cases}$$
, $y = f(f(x))$, 求 $\frac{dy}{dx}\Big|_{x=e}$

Remark (类型三隐函数求导).

6. (2007, 数二) 已知函数 f(u) 具有二阶导数,且 f'(0) = 1,函数 y = y(x) 由方程 $y - xe^{y-1} = 1$ 所确定。设 $z = f(\ln y - \sin x)$,求 $\frac{dz}{dx}\Big|_{x=0}$ 和 $\frac{d^2z}{dx^2}\Big|_{x=0}$

Remark (类型四反函数求导).

- 7. (2003, 数一、数二) 设函数 y = y(x) 在 $(-\infty, +\infty)$ 内具有二阶导数,且 $y' \neq 0, x = x(y)$ 是 y = y(x) 的反函数。
 - (i) 将 x = x(y) 所满足的微分方程 $\frac{d^2x}{dy^2} + (y + \sin x) \left(\frac{dx}{dy}\right)^3 = 0$ 变换为 y = y(x) 满足的 微分方程
 - (ii) 求变换后的微分方程满足初始条件 $y(0) = 0, y'(0) = \frac{3}{2}$ 的解

Remark (类型五参数方程求导).

Remark (类型五参数万程求导).

8. (2008, 数二) 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = x(t) \\ y = \int_0^{t^2} \ln(1+u) du \end{cases}$$
 确定, 其中 $x(t)$ 是初值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

值问题
$$\begin{cases} \frac{dx}{dt} - 2te^{-x} = 0 \\ x|_{t=0} = 0 \end{cases}$$
 的解, 求 $\frac{d^2y}{dx^2}$

Remark (类型六高阶导数).

2.3 导数应用-切线与法线

Remark (类型一直角坐标表示的曲线).

10. (2000, 数二) 已知 f(x) 是周期为 5 的连续函数,它在 x=0 的某个邻域内满足关系式 $f(1+\sin x)-3f(1-\sin x)=8x+\alpha(x)$,其中 $\alpha(x)$ 是当 $x\to 0$ 时比 x 高阶的无穷小,且 f(x) 在 x=1 处可导,求曲线 y=f(x) 在点 (6,f(6)) 处的切线方程。

Remark (类型二参数方程表示的曲线).

11. 曲线
$$\begin{cases} x = \int_0^{1-t} e^{-u^2} du \\ y = t^2 \ln(2 - t^2) \end{cases}$$
 在 $(0,0)$ 处的切线方程为___

Solution. 【详解

Remark (类型三极坐标表示的曲线).

12. (1997, 数一) 对数螺线 $r=e^{\theta}$ 在点 $(e^{\frac{\pi}{2}},\frac{\pi}{2})$ 处切线的直角坐标方程为__

2.4 导数应用-渐近线

- 13. (2014, 数一、数二、数三) 下列曲线中有渐近线的是
 - (A) $y = x + \sin x$ (B) $y = x^2 + \sin x$

 - (C) $y = x + \sin \frac{1}{x}$ (D) $y = x^2 + \sin \frac{1}{x}$

14. (2007, 数一、数二、数三) 曲线 $y=\frac{1}{x}+\ln(1+e^x)$ 渐近线的条数为

- (A) 0 (B) 1 (C) 2 (D) 3

2.5 导数应用-曲率

2.6 导数应用-极值与最值

Remark. 函数的极值的充分条件

 $(\widehat{\mathbf{n}}_{\mathcal{T}}) f(x)$ 连续, 且 f'(x) 在 $x = x_0$ 的左右去心邻域内 异号

(充分 2) $f'(x_0) = 0, f''(x_0) \neq 0$ 则有

$$f''(x) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

(充分 3) 若 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 2 的偶数则有

$$f^{(n)}(x_0) \begin{cases} > 0 & x_0 是极小值 \\ < 0 & x_0 是极大值 \end{cases}$$

- 17. (2000, 数二) 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$, 且 f'(0) = 0, 则
 - (A) f(0) 是 f(x) 的极大值
 - (B) f(0) 是 f(x) 的极小值
 - (C) 点(0, f(0)) 是曲线 y = f(x) 的拐点
 - (D) f(0) 不是 f(x) 的极值, 点(0,f(0)) 也不是曲线 y=f(x) 的拐点

Solution. 有题设知 f''(0) = 0, 对等式两边求导有 $f^{(3)}(0) = 1 \neq 0$ 由拐点充分条件可知,(0, f(0)) 为函数的拐点

18. (2010, 数一、数二) 求函数 $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$ 的单调区间与极值

Solution. 求导有

$$f'(x) = 2x \int_{1}^{x^2} e^{-t^2} dt$$

令 f'(x) = 0 有 x = 0 或 $x = \pm 1$ 并且无其余根, 带入可知 $x = \pm 1, f(\pm 1) = 0$ 为极小值点, $x = 0, f(0) = -\frac{1}{2}(e^{-1} - 1)$ 为极大值点

19. (2014, 数二) 已知函数 y = y(x) 满足微分方程 $x^2 + y^2y' = 1 - y'$, 且 y(2) = 0, 求 y(x) 的极大值与极小值

Solution. 比较简单, 答案为极小值为 y(-1) = 0, 极大值为 y(1) = 1

2.7 导数应用-凹凸性与拐点

Remark. 拐点也有三个充分条件

- $(\widehat{\Omega}_{0}, f(x))$ 连续, 且 f''(x) 在 $x = x_{0}$ 的左右去心邻域内 异号
- (充分 2) $f''(x_0) = 0, f'''(x_0) \neq 0$ 则有 $(x_0, f(x_0))$ 为函数拐点
- (充分 3) 若 $f'(x_0) = f''(x_0) = \dots = f^{(n-1)(x_0)=0,f^{(n)}}(x_0) \neq 0$, 且 n 是大于 3 的奇数则有 $(x_0, f(x_0))$ 为函数的拐点
 - 20. (2011, 数一) 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 (A) (1,0) (B) (2,0) (C) (3,0) (D) (4,0)

Solution. 直接用高中的穿针引线法画图就可以

2.8 导数应用-证明不等式

Remark. 通常优先考虑单调性, 较难的题会结合微分中值定理 (通常是拉格朗日/柯西/泰勒)

21. (2017, 数一、数三) 设函数 f(x) 可导, 且 f(x)f'(x) > 0, 则

$$(A) \ f(1) > f(-1) \quad (B) \ f(1) < f(-1) \qquad (C) \ |f(1)| > |f(-1)| \quad (D) \ |f(1)| < |f(-1)|$$

Solution. 这道题的辅助函数比较好想, 显然 $F(x) = \frac{1}{2}f^2(x)$, 由题设知 F'(x) > 0 恒成立, 故 F(x) 单调递增即 $F(1) > F(-1) \implies f(2)(1) > f(2)(-1) \implies |f(1)| > |f(-1)|$

22. (2015, 数二) 已知函数 f(x) 在区间 $[a, +\infty)$ 上具有二阶导数, f(a) = 0, f'(x) > 0, f''(x) > 0。设 b > a,曲线 y = f(x) 在点 (b, f(b)) 处的切线与 x 轴的交点是 $(x_0, 0)$,证明 $a < x_0 < b$ 。

Solution. 这道题的几何直观非常明显, 证明也不算很难.

由题可知切线方程为 y = f'(b)(x - b) + f(b) 令 y = 0 有 $x_0 = b - \frac{f(b)}{f'(b)}$

由 f(a) = 0 和拉格朗日中值定理有 $f(b) = f(b) - f(a) = f'(\xi)(b - a), a < \xi < b,$ 又 f''(x) > 0 故 $f'(\xi) < f'(b)$ 故 f(b) < f'(b)(b - a) 从而原不等式成立

2.9 导数应用-求方程的根

23. (2015, 数二) 已知函数 $f(x) = \int_{x}^{1} \sqrt{1+t^2} dt + \int_{1}^{x^2} \sqrt{1+t} dt$, 求 f(x) 零点的个数。

Solution. 这道题也比较简单, 感觉是高中题现在考研已经不太可能出了 $f'(x) = (2x-1)\sqrt{1+x^2}$, 显然只有唯一根 f'(1/2) = 0 又 f(1) = 0 故 f(1/2) < 0 又

f(-1)>0 故 f(x) 在 (-1,1/2) 上必然还有唯一根, 故 f(x) 在 R 上仅有两根 □

2.10 微分中值定理证明题

Remark. 证明含有一个 ξ 的等式

如果不含导数,通常使用单调性 + 零点存在定理

如果包含导数,通常需要构建辅助函数并使用费马引理/罗尔定理

构建辅助函数中比较困难的题目,可以采用积分还原法做,其基本思路为

- (1) 将 *ξ* 都改写成 *x*, 变形做不定积分去掉导数
- (2) 改写 C=0, 移项构建辅助函数
- 25. (2013, 数一、数二) 设奇函数 f(x) 在 [-1,1] 上具有二阶导数, 目 f(1) = 1。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$;

(ii) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$ 。

Solution. (1) 显然构建 F(x) = f(x) - x, 有 F(1) = F(0) = 0 由 roller Th 可知 $\exists \xi \in (0,1), F'(\xi) = 0$ 即 $f'(\xi) = 1$

(2) 由 f(x) 是可导的奇函数容易得知 f'(x) 偶函数

(方法一) 构建 G(x) = f'(x) + f(x) - x, 则 G(-1) = f'(1) = G(1) 由 roller Th 有...

(方法二) 构建 $G(x) = e^x(f'(x) - 1)$, 则由第一问有 $f'(-\xi) = f'(\xi) = 1$ 带入 G(x), 再由 roller Th 也可以得到答案

26. 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,f(1)=0,证明:存在 $\xi \in (0,1)$,使得 $(2\xi+1)f(\xi)+\xi f'(\xi)=0$ 。

Solution. 这道题很难通过观察法得到辅助函数,考虑使用积分还原法

$$\frac{f'(x)}{f(x)} = -(2 + \frac{1}{x})$$
$$\int \frac{f'(x)}{f(x)} dx = \int -(2 + \frac{1}{x}) dx$$

即

$$\ln|f(x)| + \ln x + \ln e^{2x} - \ln|C| = 0$$

化简且令 C=0 后有

$$xe^{2x}f(x) = 0$$

故辅助函数 $G(x) = xe^{2x}f(x)$, 又 G(1) = G(0) 由 roller Th 可知原等式成立

Remark. 类型二证明含有两个点的等式

若要求的是两个相异的点,则分区间讨论(具体看下题 1)

若并不要求两个相异的点,则可能需要一次拉格朗日一次柯西(具体见下题 2)

- 27. 设 f(x) 在 [0,1] 上连续, 在 (0,1) 内可导, 且 f(0) = 0, f(1) = 1。证明:
 - (i) 存在两个不同的点 $\xi_1, \xi_2 \in (0,1)$, 使得 $f'(\xi_1) + f'(\xi_2) = 2$;
 - (ii) 存在 $\xi, \eta \in (0,1)$, 使得 $\eta f'(\xi) = f(\eta) f'(\eta)$ 。

Solution. 对于(1)这种题目不应该从正面突破,而应该先假设.

假设 $\exists \xi_1 \in (0,c), \xi_2(c,1)$ 有

$$f'(\xi_1) = \frac{f(c) - f(0)}{f}$$
$$f'(\xi_2) = \frac{f(1) - f(c)}{1 - c}$$

带入题设条件 $f'(\xi_1) + f'(\xi_2) = 2 \implies c = \frac{1}{2}$

以上分析均不需要写在试卷上

由 lagrange Th $\exists \xi_1 \in (0, 1/2), \xi_2(1/2, 1)$ 有....

(2) 由 lagrange Th 可知 $\exists \xi \in (0,1), f'(\xi) = f(1) - f(0) = 1$ 题目要求的为

$$f'(\xi) = \frac{f(\eta)f'(\eta)}{\eta}$$

考虑柯西中值定理, 左侧分式实际是

$$\frac{f^2(1) - f^2(0)}{1^2 - 0^2} = \frac{f'(\eta)f(\eta)}{\eta} = 1 = f'(\xi)$$

Remark. 类型三证明含有高阶导数的等式或不等式

基本就是 Taylor 的题, 当然有时也可以通过多次拉格朗日求出来.

这种问题的关键点在于如何寻找展开点,基本思路就是谁信息多展开谁,例如端点,极值点,最值点,零点等等

- 28. (2019, 数二) 已知函数 f(x) 在 [0,1] 上具有二阶导数,且 $f(0) = 0, f(1) = 1, \int_0^1 f(x) dx = 1$ 。证明:
 - (i) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 0$;
 - (ii) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) < -2$.

Solution. 这道题算是比较难的题目, 当然不是最难的最难的那道比较像数学分析的题 (方法一) (1) 由积分中值定理可知 $\exists f(c) = 1$ 又 f(1) = f(c) = 1 由 roller Th 可知 $\exists \xi, f'(\xi) = 0$

(2) 要证明 $f''(\eta) < -2$ 只需证明对于 $F(x) = f(x) + x^2, \exists \eta, F''(x) < 0$ 分别在区间 (0,c)(c,1) 上使用 lagrange Th 有

$$F(c) - F(0) = F'(\xi_1)c = 1 + c^2, \xi_1 \in (0, c)$$

$$F(1) - F(c) = F'(\xi_2)(1 - c) = 1 - c^2, \xi_2 \in (c, 1)$$

再在区间 (ξ_1, ξ_2) 使用 lagrange Th 有

$$F'(\xi_2) - F'(\xi_1) = F''(\eta)(\xi_2 - \xi_1), \eta \in (\xi_1, \xi_2)$$

将 $F'(\xi_1), F'(\xi_2)$ 带入上式, 有

$$F''(\eta) = \frac{c-1}{c(\xi_2 - \xi_1)} < 0$$

故原不等式成立

(方法二) (1) 由题设知在区间 (0,1) 内必然存在最值, 且 $f(\xi) > 1$, 由费马引理可知 $f'(\xi) = 0$

(2) 在 $x = \xi$ 处进行 Taylor 展开有

$$f(x) = f(\xi) + f'(\xi)(x - \xi) + \frac{f''(\eta)}{2}(x - \xi)^2$$

带入 x = 0 点有

$$0 = f(\xi) + \frac{f''(\eta)}{2}\xi^2 \implies f''(\eta) = -\frac{2f(\xi)}{\xi^2} < -2$$

第三章 一元函数积分学

3.1 定积分的概念

2. (2009, 数三) 使不等式 $\int_{1}^{x} \frac{\sin t}{t} dt > \ln x$ 成立的 x 的范围是

$$(A) \ (0,1) \quad (B) \ \left(1,\tfrac{\pi}{2}\right) \quad (C) \left(\tfrac{\pi}{2},\pi\right) \quad (D)(\pi,+\infty)$$

Solution. (方法一) 利用单调性

$$f(x) = \int_{1}^{x} \frac{\sin t}{t} dt - \ln x$$

$$f'(x) = \frac{\sin x - 1}{x} \begin{cases} x > 0 & , f'(x) < 0 \\ x < 0 & , f'(x) > 0 \end{cases}$$

又 f(1) = 0 故 f(x) 在 (0,1) 上大于 0, 在 $(1,\infty)$ 小于 0 (方法二) 利用几何意义

$$\int_{1}^{x} \frac{\sin t}{t} dt > \ln x = \int_{1}^{x} \frac{1}{t} dt$$
$$\int_{1}^{x} \frac{\sin t - 1}{t} dt > 0$$

由积分的几何意义容易知道, 当 $x \in (0,1)$ 时候上式成立

3. (2003, 数二) 设 $I_1 = \int_0^{\frac{\pi}{4}} \frac{\tan x}{x} dx$, $I_2 = \int_0^{\frac{\pi}{4}} \frac{x}{\tan x} dx$, 则

(A)
$$I_1 > I_2 > 1$$
 (B) $1 > I_1 > I_2$

(C)
$$I_2 > I_1 > 1$$
 (D) $1 > I_2 > I_1$

Solution. 由基本不等式 $x \in (0, \frac{\pi}{2})$, $\sin x < x < \tan x$, 故有 $\tan x/x > 1 > x/\tan x$ 由比较定理有 $I_1 > I_1$, 考虑 I_1 与 1 的关系.

(方法一) 求导用单调性

 $f(x) = \tan x/x$, \mathbb{N}

$$f'(x) = \frac{\sec^2 x \cdot x - \tan x}{x^2}$$
$$= \frac{x - \sin x \cos x}{\cos^2 x x^2} > 0$$

故 f(x) 在 $(0, \pi/4)$ 上单调递增,有 $f(x) < f(\pi/4) = \frac{4}{\pi}$,故 $I_1 < 1$ (方法二) 利用凹凸性

由于 $\tan x$ 在 $(0, \pi/2)$ 上是一个凹函数,则其割线的函数值大于函数的函数值大于切线的函数值 (割线在函数图像的上方,切线在函数图像的下方)则有

$$\frac{4}{\pi} > \tan x$$

从而 $I_1 < 1$

3.2 不定积分的计算

分部里面要注意表格积分法,与行列式积分法 万能公式如下

4. 计算下列积分 $(1)\int \frac{x^2+1}{x^4+1} dx; (2)\int \frac{x^2-1}{x^4+1} dx$

Solution. (1)

原式 =
$$\int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx$$
=
$$\int \frac{d(x - \frac{1}{x})}{(x - \frac{1}{x})^2 + 2}$$
=
$$\frac{\int \frac{1}{x^2 + a^2} dx}{x^2 + a^2} \frac{1}{\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} + C$$

(2)

原式 =
$$\int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}}$$
=
$$\int \frac{d(x + \frac{1}{x})}{(x + \frac{1}{x})^2 - 2}$$
=
$$\frac{\int \frac{1}{a^2 - x^2} dx}{-2\sqrt{2}} - \frac{1}{2\sqrt{2}} \ln \left| \frac{\sqrt{2} + (x + \frac{1}{x})}{\sqrt{2} - (x + \frac{1}{x})} \right|$$

5. 计算不定积分 $\int \ln \left(1 + \sqrt{\frac{1+x}{x}}\right) dx, x > 0$

Solution.

原式
$$=\frac{t=\sqrt{\frac{(1+x)}{x}}}{\ln 1 + t \operatorname{d}(\frac{1}{t^2 - 1})}$$

$$=\frac{\text{分部积分}}{\ln (1+t) \cdot \frac{1}{t^2 - 1}} - \int \frac{1}{t^2 - 1} \cdot \frac{1}{1+t} \operatorname{d}t$$

$$\int \frac{1}{t^2 - 1} \cdot \frac{1}{1+t} \operatorname{d}t = \frac{1}{2} \int \frac{\operatorname{d}t}{t^2 - 1} - \frac{1}{2} \int \frac{\operatorname{d}t}{(t+1)^2}$$

$$= -\frac{1}{4} \ln \left| \frac{1+t}{1-t} \right| + \frac{1}{2(1+t)} + C$$
原式 $= \ln (1+t) \cdot \frac{1}{t^2 - 1} + \frac{1}{4} \ln \left| \frac{1+t}{1-t} \right| + \frac{1}{2(1+t)} + C$

6. $\Re \int \frac{1}{1+\sin x + \cos x} dx$

Solution. (方法一 万能代换)

原式
$$\frac{t=\tan\frac{x}{2}}{2}$$
 $\int \frac{\mathrm{d}t}{1+t}$ $= \ln|1+t|+C$ $= \ln\left|1+\tan\frac{x}{2}\right|+C$

(方法二 三角公式)

原式
$$\frac{\cos x = 2\cos^2 \frac{x}{2} - 1}{\int \frac{dx}{2\cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}}$$

$$= \int \frac{dx}{2\cos^2 \frac{x}{2}(1 + \tan x^2)}$$

$$= \int \frac{d\tan \frac{x}{2}}{1 + \tan \frac{x}{2}}$$

$$= \ln \left| 1 + \tan \frac{x}{2} \right| + C$$

3.3 定积分的计算

Remark. 定积分除了不定积分的办法还有如下自己独有的办法

其中华里士公式如下

$$\int_0^{\frac{\pi}{2}} \sin^n x dx \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{2}{3} \cdot 1, & n = \hat{\pi} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \dots \frac{1}{2} \cdot \frac{\pi}{2}, & n = \text{in } \end{cases}$$

cos x 也是一样的结果

7. (2013, 数一) 计算
$$\int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
, 其中 $f(x) = \int_1^x \frac{\ln(t+1)}{t} dt$

Solution. (方法一分部积分法)

原式 =
$$2\int_0^1 f(x) d\sqrt{x}$$

= $-2\int_0^1 \frac{\ln(1+x)}{\sqrt{x}} dx$
 $\frac{\sqrt{x}=t}{2} - 4\int_0^1 \ln(1+t^2) dt$
= $-4t \ln(1+t^2)\Big|_0^1 + 4\int_0^1 \frac{2t^2}{t^2+1} dt$
= $8 - 4 \ln 2 - 2\pi$

(方法二二重积分)

原式 =
$$\int_0^1 \frac{1}{\sqrt{x}} dx \int_1^x \frac{\ln(1+t)}{t} dt$$

$$\frac{\overline{\Sigma}$$
英換积分次序
$$-\int_0^1 \frac{\ln(1+t)}{t} dt \int_0^t \frac{1}{\sqrt{x}} dx$$

$$= -2 \int_0^1 \frac{\ln(1+t)}{\sqrt{t}} dt$$

$$= \dots$$

$$= 8 - 4 \ln 2 - 2\pi$$

8. 求下列积分: (1) $\int_0^{\frac{\pi}{2}} \frac{e^{sinx}}{e^{sinx} + e^{cosx}} dx$

(2)
$$\int_0^{\frac{\pi}{2}} \frac{1}{1 + (\tan x)^{\sqrt{2}}} dx$$

Solution. 这两颗都是典型的区间再现的题目

(1)

原式
$$\frac{x=\frac{\pi}{2}-t}{}$$
 $\int_0^{\frac{\pi}{2}} \frac{e^{\cos t}}{e^{\sin t} + e^{\cos t}} dt$

由于积分与变量无关,将上式与原式相加有

原式 =
$$\frac{1}{2} \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{4}$$

原式 =
$$\int_0^{\frac{\pi}{2}} \frac{(\cos x)^{\sqrt{2}}}{(\sin x)^{\sqrt{2}} + \cos x)^{\sqrt{2}}}$$

$$\frac{\pi - \hat{\pi} + 2}{\pi} \dots$$

$$= \frac{\pi}{4}$$

9. $\Re \int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx$

Solution. 这道题是比较困难的积分计算题, 由于其他方法都不好用不妨考虑区间再现

原式
$$=\frac{x=\frac{\pi}{4}-t}{=}$$
 $=$ $\int_0^{\frac{\pi}{4}} \ln\left[1+\tan\left(\frac{\pi}{4}-t\right)\right] dt$ $=\frac{\tan\left(a+b\right)=\frac{\tan a+\tan b}{1-\tan a\tan b}}{=}$ $\int_0^{\frac{\pi}{4}} \left[\ln 2 - \ln\left(1+\tan t\right)\right] dt$ 原式 $=\frac{\pi}{8}\ln 2$

区间再现总结

考试中可能直接考察的区间再现的公式为

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$

其余的就只能见机行事 若其他积分方法都无法做出则可以考虑区间再现

3.4 反常积分的计算

Remark. 瑕积分的计算需要注意, 若瑕点在内部则需要积分拆开分别计算

10. (1998, 数二) 计算积分 $\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{dx}{\sqrt{|x-x^2|}}$

Solution. 显然 x = 1 是积分的瑕点, 故原积分需要拆成两部分即

原式 =
$$\int_{\frac{1}{2}}^{1} \frac{\mathrm{d}x}{\sqrt{x - x^2}} + \frac{1}{\frac{3}{2}} \frac{\mathrm{d}x}{\sqrt{x^2 - x}}$$

$$\frac{\mathbb{E}\pi}{=} \arcsin 2(x - \frac{1}{2}) \Big|_{\frac{1}{2}}^{1} + \ln \left| x - \frac{1}{2} + \sqrt{(x - \frac{1}{2})^2 - \frac{1}{4}} \right| \Big|_{1}^{\frac{3}{2}}$$

$$= \frac{\pi}{2} + \ln \left(2 + \sqrt{3} \right)$$

积分表的拓展

(1)

$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

(2)

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln\left|x + \sqrt{x^2 + a^2}\right|$$
$$\int \sqrt{x^2 + a^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln\left|x + \sqrt{x^2 + a^2}\right| + C$$

(3)

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|$$
$$\int \sqrt{x^2 - a^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln\left|x + \sqrt{x^2 - a^2}\right| + C$$

第二个如果是定积分也可以按照几何意义(圆的面积)做

3.5 反常积分敛散性的判定

Remark. 反常积分的敛散性感觉不如无穷级数敛散性难

(方法一) 使用反常积分的定义, 算出其极限值

(方法二) 比较判别法-寻找 x^p

(瑕积分)
$$\int_0^1 \frac{1}{x^p} \begin{cases} 0
(无穷积分)
$$\int_1^{+\infty} \frac{1}{x^p} \begin{cases} p > 1, & 收敛 \\ p \le 1, & 发散 \end{cases}$$$$

- 11. (2016, 数一) 若反常积分 $\int_0^{+\infty} \frac{1}{x^a(1+x)^b} dx$ 收敛, 则
 - (A) $a < 1 \perp b > 1$ (B) $a > 1 \perp b > 1$
 - (C) $a < 1 \perp a + b > 1$ (D) $a > 1 \perp a + b > 1$

Solution. 显然 x = 0 是该积分的瑕点, 需要分成两部分考虑 $\int_0^{+\infty} = \int_0^1 + \int_1^{+\infty}$

$$\lim_{x \to 0^+} \frac{x^p}{x^a (1+x)^b} = 1$$

$$\xrightarrow{\text{等价代换}} \lim_{x \to 0^+} \frac{x^p}{x^a} \implies p = a$$

由 p 积分的性质可知当 p < 1 的时候其收敛故 a < 1 的时候原积分中的 \int_0^1 收敛同理对 于 $\int_1^{+\infty}$ 有

$$\lim_{x \to +\infty} \frac{x^p}{x^{a+b}} = 1 \implies p = a+b$$

由 p 积分的性质可知当 p>1 即 a+b>1 的时候原积分 $\int_1^{+\infty}$ 收敛, 故由反常积分的定 义可知只有 a < 1, a + b > 1 的时候原积分收敛

- 12. (2010, 数一、数二) 设 m, n 均为正整数, 则反常积分 $\int_0^1 \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} dx$ 的收敛性
 - (A) 仅与 m 的取值有关 (B) 仅与 n 的取值有关
 - (C) 与 m,n 的取值都有关 (D) 与 m,n 的取值都无关

Solution. 显然 x = 0 和 x = 1 是积分的瑕点, 需要分成两部分考虑, 有 $\int_0^1 = \int_0^{\frac{1}{2}} + \int_{\frac{1}{2}}^1$ 想考虑前一个积分

$$\lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{\sqrt[m]{\ln^2(1-x)}}{\sqrt[n]{x}} = \lim_{x \to 0^+} \int_0^{\frac{1}{2}} x^p \frac{1}{x^{\frac{1}{n} - \frac{2}{m}}} \implies p = \frac{1}{n} - \frac{2}{m}$$

由 p 积分的性质, 只有 p < 1 上述积分就收敛, 而由于 $(n, m) \in \mathbb{Z}^+, \frac{1}{n} - \frac{2}{m} < \frac{1}{n} < 1$ 故上 式恒收敛.

$$\lim_{x \to 1^{-}} (x-1)^{p} \frac{\sqrt[m]{\ln(1-x)^{2}}}{\sqrt[n]{x}} = \lim_{x \to 1^{-}} (x-1)^{p} \sqrt[m]{\ln(1-x)^{2}} \implies \text{ if } b \neq 0$$

故上式也恒收敛, 故原式的敛散性与 (n,m) 均无关

变限积分函数 3.6

原函数,可积,变限积分

(一) 原函数存在定理

(二) 可积性定理

$$\int_a^b f(x) \mathrm{d}x$$
存在 \begin{cases} 可积必有界
连续必可积
含有有限个间断点的有界函数可积

(三) 变限积分

$$F(x) = \int_{a}^{x} f(t) dt \begin{cases} f(x) 可积 \implies F(x) 连续 \\ f(x) 连续 \implies F(x) 可导 \\ x = x_0$$
是函数可去间断点 $\implies F(x)$ 可导,但, $F'(x_0) \neq f(x_0)$ $x = x_0$ 是函数跳跃间断点 $\implies F(x)$ 不可导,但连续

13. (2013, 数二) 设函数
$$f(x) = \begin{cases} \sin x, & 0 \le x < \pi \\ & , F(x) = \int_0^x f(t)dt, \\ 2, & \pi \le x \le 2\pi \end{cases}$$

- $(A) x=\pi$ 是函数 F(x) 的跳跃间断点
- $(B) x=\pi$ 是函数 F(x) 的可去间断点

- (C) F(x) 在 $x=\pi$ 处连续但不可导 (D) F(x) 在 $x=\pi$ 处可导

Solution. 显然由总结可知, 选 C

- 14. (2016, 数二) 已知函数 f(x) 在 $[0,\frac{3\pi}{2}]$ 上连续, 在 $(0,\frac{3\pi}{2})$ 内是函数 $\frac{\cos x}{2x-3\pi}$ 的一个原函数, 且, f(0) = 0.
 - (1) 求 f(x) 在区间 $[0, \frac{3\pi}{2}]$ 上的平均值;
 - (2) 证明 f(x) 在区间 $[0,\frac{3\pi}{2}]$ 内存在唯一零点.

Solution. (一) 有题有 $f(x) = \int_0^x \frac{\cos t}{2t-3\pi} dt$, 所求的平均值为

平均值 =
$$\frac{\int_0^{\frac{3\pi}{2}} f(x) dx}{\frac{3\pi}{2}}$$
=
$$\frac{\int_0^{\frac{3\pi}{2}} \int_0^x \frac{\cos t}{2t - 3\pi} dt}{\frac{3\pi}{2}}$$
=
$$\frac{\underline{\hat{y}} \frac{3\pi}{2} \int_0^{\frac{3\pi}{2}} \frac{\cos t}{2t - 3\pi} dt \int_t^{\frac{3\pi}{2}} dx$$
=
$$\frac{1}{3\pi}$$

(二) 有题可知 $f'(x) = \frac{\cos x}{2x - 3\pi}$,在 $(0, \frac{3\pi}{2})$ 只有唯一零点 $x = \frac{\pi}{2}$,从而有 $0 < x < \frac{\pi}{2}$,f(x) 单调递减,而 $\frac{\pi}{2} < x < \frac{3\pi}{2}$,f(x) 单调递增,且 f(0) = 0,考虑上述平均值,由积分中值定理有 $f(c) = \frac{\pi}{3} > 0$ 故 f(x) 在 $\frac{\pi}{2} \sim \frac{3\pi}{2}$ 上有一个零点. 综上 f(x) 在区间 $(0, \frac{3\pi}{2})$ 仅有一个零点

定积分的应用

(一) 定积分求面积 (也可以用二重积分)

$$A = \begin{cases} \int_a^b |f(x)| \, \mathrm{d}x, & \text{in } \Delta = \begin{cases} \int_a^b |f(x)| \, \mathrm{d}x, & \text{in } \Delta = 0 \\ \frac{1}{2} \int_\alpha^\beta r^2(\theta) \, \mathrm{d}\theta, & \text{in } \Delta = 0 \end{cases} & \text{in } \Delta = \begin{cases} \int_a^\beta |f(x)| \, \mathrm{d}x, & \text{in } \Delta = 0 \\ \int_\alpha^\beta |g(t)x'(t)| \, \mathrm{d}t, & \text{in } \Delta = 0 \end{cases} & \text{in } \Delta = 0 \end{cases}$$

(二) 定积分求旋转体体积 (可以用微元法推, 也可以用二重积分)

$$V = \begin{cases} \iint_D 2\pi r(x,y) d\sigma, & \text{二重积分法, 其中} r(x,y) \text{为区域 D 内一点到转轴的距离} \\ \int_a^b \pi f^2(x) dx, & \text{微元法, 绕 x 轴旋转} \\ \int_a^b 2\pi |xf(x)| dx, & \text{微元法, 绕 y 轴旋转} \end{cases}$$

(三) 定积分求弧长 (第一类曲线积分)

$$s_{弧长} = \int_C f(x,y) ds = \begin{cases} \int_a^b ds = \int_a^b \sqrt{1 + (y')^2} dx, & \text{直角坐标} \\ \int_\alpha^\beta ds = \int_\alpha^\beta \sqrt{(x'(t))^2 + (y'(t))^2} dt, & \text{参数方程} \\ \int_\alpha^\beta ds = \int_\alpha^\beta \sqrt{r^2(\theta) + r'^2(\theta)} d\theta, & \text{极坐标} \end{cases}$$

(四) 定积分求侧面积 (第一类曲面积分)

$$S_{\text{侧面积}} = \iint_{S} dS = \begin{cases} \int_{a}^{b} 2\pi y(x) \sqrt{1 + (y'(x))^{2}} dx, & \text{直角坐标} \\ \int_{\alpha}^{\beta} 2\pi y(t) \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt, & \text{参数方程} \\ \int_{\alpha}^{\beta} 2\pi r(\theta) \sin \theta \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta, & \text{极坐标} \end{cases}$$

(五) 物理应用(微元法,不过数一不太可能考)

3.7 定积分应用求面积

15. (2019, 数一、数二、数三) 求曲线 $y = e^{-x} \sin x (x \ge 0)$ 与 x 轴之间图形的面积.

Solution.

$$A = \int_0^{+\infty} |e^x \sin x| \, \mathrm{d}x$$

$$= \sum_{n=0}^{\infty} (-1)^n \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x$$

$$\frac{\left| (e^{\alpha x})' \quad (\sin \beta x)' \right|}{e^{\alpha x} \quad (\sin \beta x)} + C$$
其中
$$\int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, \mathrm{d}x = \frac{-e^{-x} (\sin x + \cos x)}{2} \Big|_{n\pi}^{(n+1)\pi}$$
故原式
$$= \frac{1}{2} \sum_{n=0}^{\infty} e^{-n\pi} (1 + e^{-\pi})$$

$$= \frac{1 + e^{-\pi}}{2} \cdot \frac{1}{1 - e^{-\pi}} = \frac{1 + e^{\pi}}{2(e^{\pi} - 1)}$$

3.8 定积分应用求体积

- 16. (2003, 数一) 过原点作曲线 $y = \ln x$ 的切线, 该切线与曲线 $y = \ln x$ 及 x 轴围成平面图 形 D.
 - (1) 求 D 的面积 A;
 - (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积 V.

Solution. (1) 有题设可求出其切点为 (e,1) 切线方程为 $y = \frac{x}{e}$ 方法一:

$$A = \frac{e}{2} - \int_{1}^{e} \ln x dx$$
$$= \frac{e}{2} - (x \ln x) \Big|_{1}^{e}$$
$$= \frac{e}{2} - 1$$

方法二: 用反函数做 $x = e^y$

$$A = \int_0^1 e^y dy - \frac{e}{2}$$
$$= e - 1 - \frac{e}{2}$$
$$= \frac{e}{2} - 1$$

(2) 方法一:

$$V = \frac{\pi}{3}e^2 - 2\pi \int_1^e (e - x) \ln x dx = \frac{\pi}{6} (5e^2 - 12e + 3)$$

方法二: 用反函数

$$V = \frac{\pi}{3}e^2 - \pi \int_0^1 (e^y - e)^2 dy = \frac{\pi}{6} (5e^2 - 12e + 3)$$

17. (2014, 数二) 已知函数 f(x,y) 满足 $\frac{\partial f}{\partial y} = 2(y+1)$, 且 $f(y,y) = (y+1)^2 - (2-y) \ln y$, 求 曲线 f(x,y) = 0 所围图形绕直线 y = -1 旋转所成旋转体的体积.

Solution. 先利用偏积分求出 $f(x,y) = (y+1)^2 - (2-x) \ln x$, 故曲线 $f(x,y) = 0 \Longrightarrow$ $(y+1)^2 = (2-x) \ln x$ (1 $\leq x \leq 2$) 要根据题目条件求出 x 的范围! 显然曲线关于 y = -1对称利用微元法有

$$V = \pi \int_{1}^{2} (y+1)^{2} dx$$
$$= \pi \int_{1}^{2} (2-x) \ln x dx$$
$$= 2\pi \ln 2 - \frac{5\pi}{4}$$

定积分应用求弧长 3.9

18. 求心形线 $r = a(1 + \cos \theta)(a > 0)$ 的全长.

Solution. 这种极坐标的图像,都可以通过描点法去画(其实画不画也不影响求)

47

$$S = \int_0^{2\pi} \sqrt{a^2 (1 + \cos \theta)^2 + a^2 \sin \theta^2} d\theta$$
$$= \sqrt{2}a \int_0^{2\pi} \sqrt{1 + \cos \theta} d\theta$$
$$= \frac{\cos \theta = 2\cos^2 \frac{\theta}{2} - 1}{2\pi} 2a \int_0^{2\pi} \left| \cos \frac{\theta}{2} \right| d\theta$$
$$= 8a$$

3.10 定积分应用求侧面积

19. (2016, 数二) 设 D 是由曲线 $y=\sqrt{1-x^2}(0\leq x\leq 1)$ 与 $\begin{cases} x=\cos^3 t \\ y=\sin^3 t \end{cases}$ 的平面区域, 求 D 绕 x 轴旋转一周所得旋转体的体积和表面积.

Solution. 这个参数方程的图像是需要记住即星形线

48

$$V = \frac{1}{4} \cdot \frac{4}{3}\pi \cdot 1^3 - \int_0^1 \pi y^2(x) dx$$

$$= \frac{18}{35}\pi$$

$$S = \frac{1}{2} \cdot 4\pi + \int_0^1 2\pi y(x) ds$$

$$= 2\pi + \int_0^{\frac{\pi}{2}} 2\pi \cdot \sin^3 t \sqrt{(3\cos^2 t(-\sin t))^2 + (3\sin^2 t \cos t)^2} dt$$

$$= \frac{16\pi}{5}$$

3.11 证明含有积分的等式或不等式

Remark. 积分中值定理 (三个)

(-) 第一积分中值定理, 若 f(x) 在 [a,b] 上连续, 则

$$\exists c \in [a, b], \int_a^b f(x) dx = f(c)(b - a)$$

(二) 第一积分中值定理的推广, 若 f(x) 在 (a,b) 上连续

$$\exists c \in (a,b), \int_a^b f(x) dx = f(c)(b-a)$$

(三) 第二积分中值定理, 若 f(x),g(x) 在区间 (a,b) 上连续, 且 g(x) 在其上不变号则

$$\exists c \in (a, b), \int_a^b f(x)g(x) dx = g(c) \int_a^b f(x) dx$$

比较定理及其推论

设函数 f(x), g(x) 在 [a,b] 上可积, 且 $f(x) \leq g(x)$, 则 $\int_a^b f(x) \leq \int_a^b g(x)$

推论一: 若函数 f(x),g(x) 在 [a,b] 连续, 且 $f(x) \leq g(x)$, 则 $\int_a^b f(x) < \int_a^b g(x)$

推论二: 若 $f(x) \ge 0, x \in [a, b]$, 则 $\int_a^b f(x) dx \ge 0$

推论三: $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

- 21. (2000, 数二) 设函数 $S(x) = \int_0^x |\cos t| dt$.
 - (1) 当 n 为正整数, 且 $n\pi \le x < (n+1)\pi$ 时, 证明 $2n \le S(x) < 2(n+1)$;
 - (2) $\Re \lim_{x\to+\infty} \frac{S(x)}{x}$

Solution. (1) 由比较定理有

$$\int_0^{n\pi} |\cos t| \, \mathrm{d}t \le S(x) < \int_0^{(n+1)\pi} |\cos t| \, \mathrm{d}t$$

显然 |cos t| 以 π 为周期故上式容易计算为

$$2n \le S(x) < 2(n+1)$$

(2) 考虑夹逼准则

$$\frac{2}{\pi} \xleftarrow{\lim_{n \to \infty}} \frac{2n}{(n+1)\pi} \le \frac{S(x)}{x} < \frac{2(n+1)}{n\pi} \xrightarrow{\lim_{n \to \infty}} \frac{2}{\pi}$$

$$\text{tv} \lim_{x \to \infty} \frac{S(x)}{x} = \frac{2}{\pi}$$

- 22. (2014, 数二、数三) 设函数 f(x), g(x) 在区间 [a,b] 上连续, 且 f(x) 单调增加, $0 \le g(x) \le 1$. 证明:
 - (1) $0 \le \int_a^x g(t)dt \le x a, x \in [a, b];$
 - (2) $\int_a^{a+\int_a^b g(t)dt} f(x)dx \le \int_a^b f(x)g(x)dx.$

Solution. (一) 由比较定理有

$$0 \le \int_a^x g(x) \mathrm{d}x \le \int_a^x \mathrm{d}x = x - a$$

(二) 构建函数用单调性

$$F(x) = \int_{a}^{ma + \int_{a}^{x} g(t)dt} f(t)dt - \int_{a}^{x} f(t)g(t)dt$$

则其异数为

$$F'(x) = g(x) \left[f(a + \int_a^x g(t)dt) - f(x) \right]$$

由一可知 $a + \int_a^x g(t) dt \le x$ 从而可知 F'(x) < 0 故而 F(x) 在区间 (a,b) 上单调递减,而 F(a) = 0 故 F(b) < F(a) = 0 即

$$\int_{a}^{a+\int_{a}^{b}g(t)dt} f(x)dx \le \int_{a}^{b} f(x)g(x)dx$$

第四章 常微分方程

4.1 一阶微分方程

1. (1998, 数一、数二) 已知函数 y=y(x) 在任意点 x 处的增量 $\Delta y=\frac{y\Delta x}{1+x^2}+\alpha,$ 其中 α 是 Δx 的高阶无穷小, $y(0)=\pi,$ 则 y(1) 等于

(A) 2π (B) π (C) $e^{\frac{\pi}{4}}$ (D) $\pi e^{\frac{\pi}{4}}$

2. (2002, 数二) 已知函数 f(x) 在 $(0,+\infty)$ 内可导, f(x)>0, $\lim_{x\to+\infty}f(x)=1$, 且满足

$$\lim_{h \to 0} \left(\frac{f(x+hx)}{f(x)} \right)^{\frac{1}{h}} = e^{\frac{1}{x}}$$

求 f(x)。

3. (1999, 数二) 求初值问题

$$\begin{cases} (y + \sqrt{x^2 + y^2})dx - xdy = 0 & (x > 0) \\ y|_{x=1} = 0 \end{cases}$$

4. (2010, 数二、数三) 设 y_1, y_2 是一阶线性非齐次微分方程 y' + p(x)y = q(x) 的两个特解。 若常数 λ, μ 使 $\lambda y_1 + \mu y_2$ 是该方程的解, $\lambda y_1 - \mu y_2$ 是该方程对应的齐次方程的解,则

(A)
$$\lambda = \frac{1}{2}, \ \mu = \frac{1}{2}$$
 (B) $\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$

(B)
$$\lambda = -\frac{1}{2}, \mu = -\frac{1}{2}$$

(C)
$$\lambda = \frac{2}{3}, \ \mu = \frac{1}{3}$$
 (D) $\lambda = \frac{2}{3}, \mu = \frac{2}{3}$

(D)
$$\lambda = \frac{2}{3}, \mu = \frac{2}{3}$$

- 5. (2018, 数一) 已知微分方程 y' + y = f(x), 其中 f(x) 是 \mathbb{R} 上的连续函数。
 - (1) 若 f(x) = x, 求方程的通解;
 - (2) 若 f(x) 是周期为 T 的函数, 证明: 方程存在唯一的以 T 为周期的解。

6. 求解微分方程 $y' - \frac{4}{x}y = x^2\sqrt{y}$.

7. 求解下列微分方程:

(1)
$$(2xe^y + 3x^2 - 1)dx + (x^2e^y - 2y)dy = 0;$$

$$(2) \frac{2x}{y^3} dx + \frac{y^2 - 3x^2}{y^4} dy = 0.$$

4.2 二阶常系数线性微分方程

- 8. (2017, 数二) 微分方程 $y'' 4y' + 8y = e^{2x}(1 + \cos 2x)$ 的特解可设为 $y^* =$
 - (A) $Ae^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (B) $Axe^{2x} + e^{2x}(B\cos 2x + C\sin 2x)$
 - (C) $Ae^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$
 - (D) $Axe^{2x} + xe^{2x}(B\cos 2x + C\sin 2x)$

9. (2015, 数一) 设 $y=\frac{1}{2}e^{2x}+(x-\frac{1}{3})e^x$ 是二阶常系数非齐次线性微分方程 $y''+ay'+by=ce^x$ 的一个特解,则

(A)
$$a = -3, b = 2, c = -1$$
 (B) $a = 3, b = 2, c = -1$

(B)
$$a = 3, b = 2, c = -1$$

(C)
$$a = -3, b = 2, c = 1$$
 (D) $a = 3, b = 2, c = 1$

(D)
$$a = 3, b = 2, c = 1$$

10. (2016, 数二) 已知 $y_1(x) = e^x, y_2(x) = u(x)e^x$ 是二阶微分方程 (2x-1)y'' - (2x+1)y' + 2y = 0 的两个解。若 u(-1) = e, u(0) = -1,求 u(x),并写出该微分方程的通解。

- 11. (2016, 数一) 设函数 y(x) 满足方程 y'' + 2y' + ky = 0, 其中 0 < k < 1。
 - (1) 证明反常积分 $\int_0^{+\infty} y(x) dx$ 收敛;
 - (2) 若 y(0) = 1, y'(0) = 1, 求 $\int_0^{+\infty} y(x) dx$ 的值。

4.3 高阶常系数线性齐次微分方程

12. 求解微分方程 $y^{(4)} - 3y'' - 4y = 0$ 。

4.4 二阶可降阶微分方程

13. 求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1 的特解。

 \square

4.5 欧拉方程

14. 求解微分方程 $x^2y'' + xy' + y = 2\sin\ln x$ 。

4.6 变量代换求解二阶变系数线性微分方程

17. (2005, 数二) 用变量代换 $x = \cos t (0 < t < \pi)$ 化简微分方程 $(1-x^2)y'' - xy' + y = 0$, 并求其满足 $y|_{x=0} = 1, y'|_{x=0} = 2$ 的特解。

4.7 微分方程综合题

18. (2001, 数二) 设 L 是一条平面曲线, 其上任意一点 P(x,y)(x>0) 到坐标原点的距离, 恒等于该点处的切线在 y 轴上的截距, 且 L 经过点 $(\frac{1}{2},0)$ 。求曲线 L 的方程。

19. (2009, 数三) 设曲线 y = f(x), 其中 f(x) 是可导函数, 且 f(x) > 0。已知曲线 y = f(x) 与直线 y = 0, x = 1 及 x = t(t > 1) 所围成的曲边梯形绕 x 轴旋转一周所得的立体体积 值是该曲边梯形面积值的 πt 倍, 求该曲线的方程。

20. (2016, 数三) 设函数 f(x) 连续, 且满足 $\int_0^x f(x-t)dt = \int_0^x (x-t)f(t)dt + e^{-x} - 1$, 求 f(x)。

21. (2014, 数一、数二、数三) 设函数 f(u) 具有二阶连续导数, $z=f(e^x\cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$

若 f(0) = 0, f'(0) = 0, 求 f(u) 的表达式。

22. (2011, 数三) 设函数 f(x) 在区间 [0,1] 上具有连续导数,f(0)=1, 且满足

$$\iint_{D_t} f'(x+y) dx dy = \iint_{D_t} f(t) dx dy$$

其中 $D_t = \{(x,y) | 0 \le y \le t - x, 0 \le x \le t\} (0 < t \le 1)$, 求 f(x) 的表达式。

第五章 多元函数微分学

5.1 多元函数的概念

- 1. 例 1 求下列重极限: $(1) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^{\alpha} y^{\beta}}{x^2 + y^2} \quad (\alpha \ge 0, \beta \ge 0);$
 - $(2)\lim_{\substack{x\to 0\\y\to 0}} \frac{xy(x^2-y^2)}{x^2+y^2};$
 - $(3) \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}$

2. (2012, 数一) 如果函数 f(x,y) 在点 (0,0) 处连续, 那么下列命题正确的是

- (A) 若极限 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{|x|+|y|}$ 存在,则f(x,y)在点(0,0)处可微
- (B) 若极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{f(x,y)}{x^2+y^2}$ 存在,则f(x,y)在点(0,0)处可微
- (C) 若f(x,y)在点(0,0)处可微, 则极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)}{|x|+|y|}$ 存在
- (D) 若 f(x,y) 在点(0,0) 处可微,则极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{f(x,y)}{x^2+y^2}$ 存在

3. (2012, 数三) 设连续函数 z=f(x,y) 满足

$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{f(x,y) - 2x + y - 2}{\sqrt{x^2 + (y-1)^2}} = 0$$

则
$$dz|_{(0,1)} =$$

5.2 多元复合函数求偏导数与全微分

- 4. (2021, 数一、数三、数三) 设函数 f(x,y) 可微, 且 $f(x+1,e^x) = x(x+1)^2, f(x,x^2) = 2x^2 \ln x$ 则 df(1,1) =
 - (A) dx + dy (B) dx dy (C) dy (D) dy

5. (2011, 数一、数二) 设 z=f(xy,yg(x)), 其中函数 f 具有二阶连续偏导数, 函数 g(x) 可导, 且在 x=1 处取得极值 g(1)=1, 求 $\left.\frac{\partial^2 z}{\partial x \partial y}\right|_{x=1,y=1}$ 。

5.3 多元隐函数求偏导数与全微分

- 6. (2005, 数一) 设有三元方程 $xy z \ln y + e^{xz} = 1$, 根据隐函数存在定理, 存在点 (0,1,1) 的一个邻域, 在此邻域内该方程
 - (A) 只能确定一个具有连续偏导数的隐函数z = z(x, y)
 - (B) 可确定两个具有连续偏导数的隐函数x = x(y, z)和z = z(x, y)
 - (C) 可确定两个具有连续偏导数的隐函数y = y(x, z)和z = z(x, y)
 - (D) 可确定两个具有连续偏导数的隐函数x = x(y, z)和y = y(x, z)

7. (1999, 数一) 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x,y,z) = 0 所确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{dz}{dx}$ 。

5.4 变量代换化简偏微分方程

8. (2010, 数二) 设函数 u = f(x, y) 具有二阶连续偏导数, 且满足等式

$$4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 5\frac{\partial^2 u}{\partial y^2} = 0$$

确定 a,b 的值, 使等式在变换 $\xi=x+ay, \eta=x+by$ 下简化为 $\frac{\partial^2 u}{\partial \xi \partial \eta}=0$ 。

5.5 求无条件极值

9. (2003, 数一) 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续, 且

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y) - xy}{(x^2 + y^2)^2} = 1$$

则

- (A) 点(0,0)不是f(x,y)的极值点
- (B) 点(0,0)是f(x,y)的极大值点
- (C)点(0,0)是f(x,y)的极小值点
- (D) 根据所给条件无法判别点(0,0)是否为f(x,y)的极值点

10. (2004, 数一) 设 z=z(x,y) 是由 $x^2-6xy+10y^2-2yz-z^2+18=0$ 确定的函数, 求 z=z(x,y) 的极值点和极值。

5.6 求条件极值 (边界最值)

- 11. (2006, 数一、数二、数三) 设 f(x,y) 与 $\varphi(x,y)$ 均为可微函数,且 $\varphi'_y(x,y) \neq 0$ 。已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的一个极值点,下列选项正确的是
 - (A) 若 $f'_x(x_0, y_0) = 0$, 则 $f'_y(x_0, y_0) = 0$
 - (B) 若 $f'_x(x_0, y_0) = 0$, 则 $f'_y(x_0, y_0) \neq 0$

12. (2013, 数二) 求曲线 $x^3 - xy + y^3 = 1 (x \ge 0, y \ge 0)$ 上的点到坐标原点的最长距离与最短距离。

- 13. (2014, 数二) 设函数 u(x,y) 在有界闭区域 D 上连续, 在 D 的内部具有二阶连续偏导数, 且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 则
 - (A) u(x,y)的最大值和最小值都在D的边界上取得
 - (B) u(x,y)的最大值和最小值都在D的内部取得
 - (C) u(x,y)的最大值在D的内部取得,最小值在D的边界上取得
 - (D) u(x,y)的最小值在D的内部取得,最大值在D的边界上取得

14. (2005, 数二) 已知函数 z=f(x,y) 的全微分 dz=2xdx-2ydy, 且 f(1,1)=2, 求 f(x,y) 在椭圆域 $D=\{(x,y)|x^2+\frac{y^2}{4}\leq 1\}$ 上的最大值和最小值。

第六章 二重积分

6.1 二重积分的概念

1. (2010, 数一、数二)
$$\lim_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)} =$$

$$(A) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y^2)} dy \quad (B) \int_{0}^{1} dx \int_{0}^{x} \frac{1}{(1+x)(1+y)} dy$$

$$(C) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y)} dy \quad (D) \int_{0}^{1} dx \int_{0}^{1} \frac{1}{(1+x)(1+y^2)} dy$$

2. (2016, 数三) 设
$$J_i = \iint_{D_i} \sqrt[3]{x - y} dx dy (i = 1, 2, 3),$$
 其中
$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},$$

$$D_1 = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\},\$$

$$D_2 = \{(x, y) | 0 \le x \le 1, 0 \le y \le \sqrt{x} \},\$$

$$D_3 = \{(x,y) | 0 \le x \le 1, x^2 \le y \le 1\},$$
 则

(A)
$$J_1 < J_2 < J_3$$
 (B) $J_3 < J_1 < J_2$

(C)
$$J_2 < J_3 < J_1$$
 (D) $J_2 < J_1 < J_3$

6.2 交换积分次序

3. (2001, 数一) 交换二次积分的积分次序: $\int_{-1}^{0} dy \int_{2}^{1-y} f(x,y) dx = ______$ *Solution*.

4. 二次积分
$$\int_0^1 dy \int_y^1 \left(\frac{e^{x^2}}{x} - e^{y^2} \right) dx = _____$$

5. 交换 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r,\theta) dr$ 的积分次序。

6.3 二重积分的计算

6. (2011, 数一、数二) 已知函数 f(x,y) 具有二阶连续偏导数,且 $f(1,y)=0, f(x,1)=0, \iint_D f(x,y) dx dy=a$,其中 $D=\{(x,y)|0\leq x\leq 1,0\leq y\leq 1\}$,计算二重积分

$$I = \iint_D xy f_{xy}''(x, y) \mathrm{d}x \mathrm{d}y.$$

7. 计算 $\iint_D \sqrt{|y-x^2|} dx dy$, 其中 $D = \{(x,y)|-1 \le x \le 1, 0 \le y \le 2\}$ 。

8. (2018, 数二) 设平面区域 D 由曲线 $\begin{cases} x=t-\sin t \\ y=1-\cos t \end{cases}$ (0 $\leq t \leq 2\pi$) 与 x 轴围成, 计算二 重积分 $\iint_D (x+2y) dx dy$ 。

9. (2007, 数二、数三) 设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1\\ \frac{1}{\sqrt{x^2 + y^2}}, & 1 < |x| + |y| \le 2 \end{cases}$$

计算二重积分 $\iint_D f(x,y) dx dy$, 其中 $D = \{(x,y) | |x| + |y| \le 2\}$ 。

10. (2014, 数二、数三) 设平面区域 $D = \{(x,y)|1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$, 计算

$$\iint_D \frac{x \sin(\pi \sqrt{x^2 + y^2})}{x + y} \mathrm{d}x \mathrm{d}y.$$

11. (2019, 数二) 已知平面区域 $D = \{(x,y)||x| \leq y, (x^2 + y^2)^3 \leq y^4\}$, 计算二重积分

$$\iint_D \frac{x+y}{\sqrt{x^2+y^2}} \mathrm{d}x \mathrm{d}y.$$

6.4 其他题型

12. (2010, 数二) 计算二重积分
$$I=\int_D r^2 \sin\theta \sqrt{1-r^2\cos2\theta}drd\theta$$
 其中 $D=\left\{(r,\theta)\mid 0\leq r\leq \sec\theta, 0\leq \theta\leq\frac{\pi}{4}\right\}$

13. (2009, 数二、数三) 计算二重积分 $\iint_D (x-y) dx dy$ 其中 $D = \{(x,y) | (x-1)^2 + (y-1)^2 \le 2, y \ge x\}.$

6.4 其他题型

第六章 二重积分

第七章 无穷级数

7.1 数项级数敛散性的判定

1.
$$(2015, 数三)$$
 下列级数中发散的是
$$(A) \sum_{n=1}^{\infty} \frac{n}{3^n} \qquad (B) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right)$$

$$(C) \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n} \qquad (D) \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

2.
$$(2017, 数三) 若级数 \sum_{n=2}^{\infty} \left[\sin \frac{1}{n} - k \ln \left(1 - \frac{1}{n} \right) \right] 收敛, 则 k = (A) 1 (B) 2 (C) -1 (D) -2$$

7.2 交错级数

3. 判定下列级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n - \ln n}$$
 (2) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

7.3 任意项级数

4. (2002, 数-) 设 $u_n \neq 0 (n=1,2,3,\cdots)$, 且 $\lim_{n\to\infty} \frac{n}{u_n} = 1$ 则级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right)$ (A) 发散 (B) 绝对收敛 (C) 条件收敛 (D) 敛散性根据所给条件不能判定

5. (2019, 数三) 若级数 $\sum_{n=1}^{\infty} nu_n$ 绝对收敛, $\sum_{n=1}^{\infty} \frac{v_n}{n}$ 条件收敛, 则

$$(A)$$
 $\sum_{n=1}^{\infty} u_n v_n$ 条件收敛 (B) $\sum_{n=1}^{\infty} u_n v_n$ 绝对收敛 (C) $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

$$(C)$$
 $\sum_{n=1}^{\infty} (u_n + v_n)$ 收敛 (D) $\sum_{n=1}^{\infty} (u_n + v_n)$ 发散

7.4 幂级数求收敛半径与收敛域

6. (2015, 数一) 若级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛则 $x = \sqrt{3}$ 与 x = 3 依次为幂级数

$$\sum_{n=1}^{\infty} na_n (x-1)^n \text{ if }$$

- (A) 收敛点, 收敛点 (B) 收敛点, 发散点
- (C) 发散点, 收敛点 (D) 发散点, 发散点

7. 求幂级数 $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{3^n (2n+1)}$ 的收敛域.

Solution.

7.5 幂级数求和

8. (2005, 数一) 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \left[1 + \frac{1}{n(2n-1)} \right] x^{2n}$ 的收敛区间与和函数 f(x).

9. (2012, 数一) 求幂级数 $\sum_{n=0}^{\infty} \frac{4n^2 + 4n + 3}{2n + 1} x^{2n}$ 的收敛域及和函数.

10. (2004, 数三) 设级数 $\frac{x^4}{2\cdot 4} + \frac{x^6}{2\cdot 4\cdot 6} + \frac{x^8}{2\cdot 4\cdot 6\cdot 8} + \cdots$ $(-\infty < x < +\infty)$ 的和函数为 S(x)。求:

- (1) S(x) 所满足的一阶微分方程;
- (2) S(x) 的表达式.

7.6 幂级数展开

11. 例 11 (2007, 数三) 将函数 $f(x) = \frac{1}{x^2 - 3x - 4}$ 展开成 x - 1 的幂级数, 并指出其收敛区间. **Solution**.

12. 将函数 $f(x) = \ln \frac{x}{x+1}$ 在 x = 1 处展开成幂级数.

7.7 无穷级数证明题

- 13. (2016, 数一) 已知函数 f(x) 可导,且 $f(0) = 1,0 < f'(x) < \frac{1}{2}$ 。设数列 $\{x_n\}$ 满足 $x_{n+1} = f(x_n)(n = 1, 2, \cdots)$ 。证明:
 - (i) 级数 $\sum_{n=1}^{\infty} (x_{n+1} x_n)$ 绝对收敛;
 - (ii) $\lim_{n\to\infty} x_n$ 存在,且 $0 < \lim_{n\to\infty} x_n < 2$.

- 14. (2014, 数一) 设数列 $\{a_n\}$, $\{b_n\}$ 满足 $0 < a_n < \frac{\pi}{2}, 0 < b_n < \frac{\pi}{2}, \cos a_n a_n = \cos b_n$, 且级数 $\sum_{n=1}^{\infty} b_n$ 收敛。
 - (1) 证明 $\lim_{n\to\infty} a_n = 0$;
 - (2) 证明级数 $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ 收敛.

7.8 傅里叶级数

15. 设函数

$$f(x) = \begin{cases} e^x, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$$

则其以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于?, 在 $x = 2\pi$ 收敛于?.

Solution. 由狄利克雷收敛定理知,f(x) 以 2π 为周期的傅里叶级数在 $x = \pi$ 收敛于

$$S(\pi) = \frac{f(\pi - 0) + f(-\pi + 0)}{2} = \frac{1 + e^{-\pi}}{2}$$

在 $x = 2\pi$ 收敛于

$$S(2\pi) = S(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{1+1}{2} = 1$$

16. 将 $f(x) = 1 - x^2, 0 \le x \le \pi$, 展开成余弦级数, 并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

Solution. 对 $f(x) = 1 - x^2$ 进行偶延拓, 由 $f(x) = 1 - x^2$ 为偶函数, 知 $b_n = 0$ 。

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) dx = 2\left(1 - \frac{\pi^2}{3}\right)$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} (1 - x^2) \cos nx dx = \frac{4(-1)^{n+1}}{n^2} \quad (n = 1, 2, \dots)$$

$$f(x) = 1 - x^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = 1 - \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n^2} \cos nx$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \frac{\pi^2}{12}$$

第八章 多元函数积分学

8.1 三重积分的计算

- 1. (2013, 数一) 设直线 L 过 A(1,0,0),B(0,1,1) 两点,将 L 绕 z 轴旋转一周得到曲面 Σ,Σ 与平面 z=0,z=2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

2. (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体,求 Ω 的形心坐标.

8.2 第一类曲线积分的计算

3. (2018, 数一) 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds =$ **Solution**.

4. 设连续函数 f(x,y) 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y)ds$.

8.3 第二类曲线积分的计算

- 5. (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

6. (2011, 数一) 设 L 是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$

8.4 第一类曲面积分的计算

7. (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面 与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面 S 位于曲线 C 上方的部分.

8.5 第二类曲面积分的计算

8. (2009, 数一) 计算曲面积分

$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

9. 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z = -\sqrt{a^2 - x^2 - y^2}$ 的上侧, a 为大于零的常数.

10. (2020, 数一) 设 Σ 为曲面 $z=\sqrt{x^2+y^2}(1\leq x^2+y^2\leq 4)$ 的下侧,f(x) 为连续函数,计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] dydz + [yf(xy) + 2y + x] dzdx + [zf(xy) + z] dxdy.$$

第九章 补充知识-高等数学

补充知识来自于

- (1) 菲砖
- (2) 做题总结

9.1 平方数和的求和公式

$$\sum_{k=1}^{n} k^2 = \frac{n(n-1)(n-2)}{6}$$

9.2 莱布尼兹法则

$$F(x) = \int_{a(x)}^{b(x)} f(x, t) dt$$

那么 F(x) 的导数为

$$F'(x) = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) dt$$

特别的, 若上下限为常数有

$$F'(x) = \int_a^b \frac{\partial}{\partial x} f(x, t) dt$$

例如对于 $F(x) = \int_1^0 e^{-x^2t^2} dt$,则

$$F'(x) = 2x \int_0^1 t^2 e^{-x^2 t^2} dt$$