Chapter 3 Euclidean Vector Spaces

- 3.1. Vectors in 2-Space, 3-Space, and n-Space
- 3.2. Norm, Dot Product, and Distance in \mathbb{R}^n
- 3.3. Orthogonality
- 3.4. The Geometry of Linear Systems
- 3.5. Cross Product

Chapter 3.1

Vectors in 2-Space, 3-Space, and n-Space

Properties of Vector Operations

THEOREM 3.1.1

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

(a)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(b)
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

(c)
$$u + 0 = 0 + u = u$$

(d)
$$\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$$

(e)
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$

$$(f)$$
 $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$

(g)
$$k(m\mathbf{u}) = (km)\mathbf{u}$$

$$(h) \quad 1\mathbf{u} = \mathbf{u}$$

Proof

Trivial

(hints: using components)

Properties of Vector Operations

THEOREM 3.1.2

If **v** is a vector in \mathbb{R}^n and k is a scalar, then:

- (a) $0\mathbf{v} = \mathbf{0}$
- (b) k0 = 0
- (c) (-1)v = -v

Proof

Trivial (hints: using components)

Linear Combinations

DEFINITION 1

If **w** is a vector in \mathbb{R}^n , then **w** is said to be a *linear combinations* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r$ in \mathbb{R}^n if it can be expressed in the form

$$\mathbf{w} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r$$

where k_1, k_2, \ldots, k_r are scalars.

These scalars are called the *coefficients* of the linear combination.

Alternative Notations for Vectors

Up to now we have been writing vectors in \mathbb{R}^n using the notation

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

We call this the *comma-delimited* form.

can be written as
$$\mathbf{v} = [v_1 \ v_2 \ \cdots \ v_n]$$
 row-matrix form,

or as
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$
 column-matrix form.

Vectors Whose Initial Point Is Not at the Origin

It is sometimes necessary to consider vectors whose initial points are not at the origin. If $\overrightarrow{P_1P_2}$ denotes the vector with initial point $P_1(x_1, y_1)$ and terminal point $P_2(x_2, y_2)$, then the components of this vector are given by the formula

$$\overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1)$$

$$\mathbf{v} = \overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$$

Chapter 3.2

Norm, Dot Product, and Distance in R^n

Norm of a Vector

DEFINITION 1

If $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is a vector in \mathbb{R}^n , then the *norm* of \mathbf{v} (also called the *length* of \mathbf{v} or the *magnitude* of \mathbf{v}) is denoted by $||\mathbf{v}||$, and is defined by the formula

$$||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Norm of a Vector

THEOREM 3.2.1

If **v** is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $||\mathbf{v}|| \ge 0$
- (b) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- $(c) ||k\mathbf{v}|| = |k|||\mathbf{v}||$

Proof
If
$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$
, then $k\mathbf{v} = (kv_1, kv_2, \dots, kv_n)$, so
$$||k\mathbf{v}|| = \sqrt{(kv_1)^2 + (kv_2)^2 + \dots + (kv_n)^2}$$

$$= \sqrt{(k^2)(v_1^2 + v_2^2 + \dots + v_n^2)}$$

$$= |k|\sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

$$= |k|||\mathbf{v}||$$

Unit Vectors

$$\mathbf{u} = \frac{1}{||\mathbf{v}||} \mathbf{v}$$

The process is called *normalizing* v.

EXAMPLE 1

Find the unit vector **u** that has the same direction as $\mathbf{v} = (2, 2, -1)$.

$$\|\mathbf{v}\| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$
 $\mathbf{u} = \frac{1}{3}(2, 2, -1) = \left(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}\right)$

exe

Distance in \mathbb{R}^n

DEFINITION 2

If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are points in \mathbb{R}^n , then we denote the *distance* between \mathbf{u} and \mathbf{v} by $d(\mathbf{u}, \mathbf{v})$ and define it to be

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Dot Product

DEFINITION 3

If \mathbf{u} and \mathbf{v} are nonzero vectors in R^2 or R^3 , and if θ is the angle between \mathbf{u} and \mathbf{v} , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined as

$$\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$

If $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$, then we define $\mathbf{u} \cdot \mathbf{v}$ to be 0.

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

$$0 \le \theta \le \pi$$

- θ is acute if $\mathbf{u} \cdot \mathbf{v} > 0$.
- θ is obtuse if $\mathbf{u} \cdot \mathbf{v} < 0$.
- $\theta = \pi/2$ if $\mathbf{u} \cdot \mathbf{v} = 0$.

EXAMPLE 2

Find the dot product of the vectors

$$\|\mathbf{u}\| = 1$$
 and $\|\mathbf{v}\| = \sqrt{8} = 2\sqrt{2}$
 $\cos(45^\circ) = 1/\sqrt{2}$
 $\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = (1)(2\sqrt{2})(1/\sqrt{2}) = 2$

Component Form of the Dot Product

DEFINITION 4

If $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n , then the *dot product* (also called the *Euclidean inner product*) of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} \cdot \mathbf{v}$ and is defined by

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

Algebraic Properties of the Dot Product

In the special case where $\mathbf{u} = \mathbf{v}$

$$\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + \dots + v_n^2 = ||\mathbf{v}||^2$$
$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$$

THEOREM 3.2.2

If **u**, **v**, and **w** are vectors in \mathbb{R}^n , and if k is a scalar, then:

- (a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- (b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- (c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$
- (d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Proof [Note]

Algebraic Properties of the Dot Product

THEOREM 3.2.3

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a)
$$\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$$

(b)
$$(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$$

(c)
$$\mathbf{u} \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} - \mathbf{u} \cdot \mathbf{w}$$

(d)
$$(\mathbf{u} - \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} - \mathbf{v} \cdot \mathbf{w}$$

(e)
$$k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$$

Proof [Note]

Algebraic Properties of the Dot Product

EXAMPLE 3

$$(\mathbf{u} - 2\mathbf{v}) \cdot (3\mathbf{u} + 4\mathbf{v}) = \mathbf{u} \cdot (3\mathbf{u} + 4\mathbf{v}) - 2\mathbf{v} \cdot (3\mathbf{u} + 4\mathbf{v})$$
$$= 3(\mathbf{u} \cdot \mathbf{u}) + 4(\mathbf{u} \cdot \mathbf{v}) - 6(\mathbf{v} \cdot \mathbf{u}) - 8(\mathbf{v} \cdot \mathbf{v})$$
$$= 3||\mathbf{u}||^2 - 2(\mathbf{u} \cdot \mathbf{v}) - 8||\mathbf{v}||^2$$

Dot Products as Matrix Multiplication

If A is an $n \times n$ matrix and **u** and **v** are $n \times 1$ matrices.

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T (A\mathbf{u}) = (\mathbf{v}^T A)\mathbf{u} = (A^T \mathbf{v})^T \mathbf{u} = \mathbf{u} \cdot A^T \mathbf{v}$$

 $\mathbf{u} \cdot A\mathbf{v} = (A\mathbf{v})^T \mathbf{u} = (\mathbf{v}^T A^T)\mathbf{u} = \mathbf{v}^T (A^T \mathbf{u}) = A^T \mathbf{u} \cdot \mathbf{v}$

$$A\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot A^T \mathbf{v}$$

$$\mathbf{u} \cdot A\mathbf{v} = A^T \mathbf{u} \cdot \mathbf{v}$$

Form	Dot Product	Example	
u a column matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$	$\mathbf{u}^T \mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		$\mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$	$\mathbf{v}^T \mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a row matrix and v a column matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v} = \mathbf{v}^T \mathbf{u}^T$	$\mathbf{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}$	$\mathbf{u}\mathbf{v} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
		$\mathbf{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}$	$\mathbf{v}^T \mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
u a column matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}\mathbf{u} = \mathbf{u}^T \mathbf{v}^T$	$\mathbf{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}$	$\mathbf{v}\mathbf{u} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$
			$\mathbf{u}^T \mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
u a row matrix and v a row matrix	$\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \mathbf{v}^T = \mathbf{v} \mathbf{u}^T$	$\mathbf{u} = [1 -3 5]$ $\mathbf{v} = [5 4 0]$	$\mathbf{u}\mathbf{v}^T = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix} = -7$
			$\mathbf{v}\mathbf{u}^T = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -7$

Dot Products as Matrix Multiplication

EXAMPLE 4 Verifying That $Au \cdot v = u \cdot A^T v$

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}$$

$$A\mathbf{u} = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 4 & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 7 \\ 10 \\ 5 \end{bmatrix} \qquad A^T\mathbf{v} = \begin{bmatrix} 1 & 2 & -1 \\ -2 & 4 & 0 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix} = \begin{bmatrix} -7 \\ 4 \\ -1 \end{bmatrix}$$

$$A\mathbf{u} \cdot \mathbf{v} = 7(-2) + 10(0) + 5(5) = 11$$

 $\mathbf{u} \cdot A^T \mathbf{v} = (-1)(-7) + 2(4) + 4(-1) = 11$

A Dot Product View of Matrix Multiplication

 $A = [a_{ij}]$ is an $m \times r$ matrix and $B = [b_{ij}]$ is an $r \times n$ matrix, the *ij*th entry of AB is

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ir}b_{rj}$$

which is the dot product of the *i*th row vector of *A*

$$\begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ir} \end{bmatrix}$$

and the jth column vector of B

$$\begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{rj} \end{bmatrix}$$

A Dot Product View of Matrix Multiplication

Thus, if we denote the row vectors of A by $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$ and the column vectors of the matrix B by $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$, then the matrix product AB can be expressed as

$$AB = \begin{bmatrix} \mathbf{r}_1 \cdot \mathbf{c}_1 & \mathbf{r}_1 \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_1 \cdot \mathbf{c}_n \\ \mathbf{r}_2 \cdot \mathbf{c}_1 & \mathbf{r}_2 \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_2 \cdot \mathbf{c}_n \\ \vdots & \vdots & & \vdots \\ \mathbf{r}_m \cdot \mathbf{c}_1 & \mathbf{r}_m \cdot \mathbf{c}_2 & \cdots & \mathbf{r}_m \cdot \mathbf{c}_n \end{bmatrix}$$

Chapter 3.3

Orthogonality

Orthogonal Vectors

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

It follows from this that $\theta = \pi/2$ if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

DEFINITION 1

Two nonzero vectors \mathbf{u} and \mathbf{v} in are said to be *orthogonal* (or *perpendicular*) if $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$.

We will also agree that the zero vector in \mathbb{R}^n is orthogonal to *every* vector in \mathbb{R}^n .

Orthogonal Projections

A vector **u** can be decomposed into a sum of two terms, one term being a scalar multiple of a nonzero vector **a** and the other term being orthogonal to **a**.

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$$

Projection Theorem

THEOREM 3.3.2

If **u** and **a** are vectors in \mathbb{R}^n , and if $\mathbf{a} \neq 0$, then **u** can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2$,

where \mathbf{w}_1 is a scalar multiple of \mathbf{a}

and \mathbf{w}_2 is orthogonal to **a**.

Proof

[Note]

Projection Notations

the vector \mathbf{w}_1 is called the *orthogonal projection of* \mathbf{u} *on* \mathbf{a}

or sometimes the vector component of **u** along **a**

and the vector \mathbf{w}_2 is called the vector component of \mathbf{u} orthogonal to \mathbf{a}

vector \mathbf{w}_1 is commonly denoted by the symbol $\operatorname{proj}_{\mathbf{a}}\mathbf{u}$,

$$\mathbf{w}_2 = \mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}.$$

$$\mathbf{w}_1 = \operatorname{proj}_{\mathbf{a}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{||\mathbf{a}||^2} \mathbf{a}$$

$$\mathbf{w}_2 = \mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a}$$

EXAMPLE 1

Let $\mathbf{u} = (2, -1, 3)$ and $\mathbf{a} = (4, -1, 2)$. Find the vector component of \mathbf{u} along \mathbf{a} and the vector component of \mathbf{u} orthogonal to \mathbf{a} .

$$\mathbf{u} \cdot \mathbf{a} = (2)(4) + (-1)(-1) + (3)(2) = 15$$

 $||\mathbf{a}||^2 = 4^2 + (-1)^2 + 2^2 = 21$

$$\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a} = \frac{15}{21}(4, -1, 2) = (\frac{20}{7}, -\frac{5}{7}, \frac{10}{7})$$

$$\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = (2, -1, 3) - \left(\frac{20}{7}, -\frac{5}{7}, \frac{10}{7}\right) = \left(-\frac{6}{7}, -\frac{2}{7}, \frac{11}{7}\right)$$

You may wish to verify that the vectors $\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}$ and \mathbf{a} are perpendicular by showing that their dot product is zero.

Chapter 3.4

The Geometry of Linear Systems

Dot Product Form of a Linear System

Recall that a linear equation in the variables x_1, x_2, \dots, x_n has the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$
 $(a_1, a_2, \dots, a_n \text{ not all zero})$

and that the corresponding homogenous equation is

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = 0$$
 $(a_1, a_2, \dots, a_n \text{ not all zero})$

These equations can be rewritten in vector form by letting

$$\mathbf{a} = (a_1, a_2, \dots, a_n)$$
 and $\mathbf{x} = (x_1, x_2, \dots, x_n)$

$$\mathbf{a} \cdot \mathbf{x} = b$$

$$\mathbf{a} \cdot \mathbf{x} = 0$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

If we denote the successive row vectors of the coefficient matrix by $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$, then

$$\mathbf{r}_1 \cdot \mathbf{x} = 0$$

$$\mathbf{r}_2 \cdot \mathbf{x} = 0$$

$$\vdots$$

$$\mathbf{r}_m \cdot \mathbf{x} = 0$$

every solution vector \mathbf{x} is orthogonal to every row vector of the coefficient matrix.

Orthogonality of Row Vectors and Solution Vectors

THEOREM 3.4.1

If A is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in R^n that are orthogonal to every row vector of A.

EXAMPLE 1 Orthogonality of Row Vectors and Solution Vectors

The general solution of the homogeneous linear system

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

is
$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

$$\mathbf{x} = (-3r - 4s - 2t, r, -2s, s, t, 0)$$

the vector **x** must be orthogonal to each of the row vectors

$$\mathbf{r}_1 = (1, 3, -2, 0, 2, 0)$$

 $\mathbf{r}_2 = (2, 6, -5, -2, 4, -3)$
 $\mathbf{r}_3 = (0, 0, 5, 10, 0, 15)$
 $\mathbf{r}_4 = (2, 6, 0, 8, 4, 18)$

$$\mathbf{r}_1 \cdot \mathbf{x} = 1(-3r - 4s - 2t) + 3(r) + (-2)(-2s) + 0(s) + 2(t) + 0(0) = 0$$

Chapter 3.5

Cross Product

Cross Product of Vectors

DEFINITION 1

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in 3-space, then the cross product $\mathbf{u} \times \mathbf{v}$ is the vector defined by

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1)$$

or, in determinant notation,

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

EXAMPLE 1 Calculating a Cross Product

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$.

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \end{pmatrix}$$
$$= (2, -7, -6)$$

Relationships Involving Cross Product and Dot Product

THEOREM 3.5.1

If **u**, **v**, and **w** are vectors in 3-space, then

(a)
$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

(b)
$$\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$$

(c)
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

(d)
$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

(e)
$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

Proof (a) Let
$$\mathbf{u} = (u_1, u_2, u_3)$$
 and $\mathbf{v} = (v_1, v_2, v_3)$. Then

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = (u_1, u_2, u_3) \cdot (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

= $u_1 (u_2 v_3 - u_3 v_2) + u_2 (u_3 v_1 - u_1 v_3) + u_3 (u_1 v_2 - u_2 v_1) = 0$

Proof (c)

Since

$$\|\mathbf{u} \times \mathbf{v}\|^2 = (u_2 v_3 - u_3 v_2)^2 + (u_3 v_1 - u_1 v_3)^2 + (u_1 v_2 - u_2 v_1)^2$$

and

$$||\mathbf{u}||^2||\mathbf{v}||^2 - (\mathbf{u} \cdot \mathbf{v})^2 = (u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2) - (u_1v_1 + u_2v_2 + u_3v_3)^2$$

the proof can be completed by "multiplying out" the right sides of above equations and verifying their equality.

Visualization

Properties of Cross Product

THEOREM 3.5.2

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are any vectors in 3-space and k is any scalar, then:

(a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

(b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

(c)
$$(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$$

(d)
$$k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$$

(e)
$$\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$$

$$(f) \mathbf{u} \times \mathbf{u} = \mathbf{0}$$

Proof

(Trivial)

EXAMPLE 2 Standard Unit Vectors

The standard unit vectors in 3-space are

$$\mathbf{i} = (1, 0, 0), \, \mathbf{j} = (0, 1, 0), \, \mathbf{k} = (0, 0, 1)$$

$$i \times i = 0$$
 $j \times j = 0$ $k \times k = 0$
 $i \times j = k$ $j \times k = i$ $k \times i = j$
 $j \times i = -k$ $k \times j = -i$ $i \times k = -j$

Every vector $\mathbf{v} = (v_1, v_2, v_3)$ in 3-space is expressible in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k}

$$\mathbf{v} = (v_1, v_2, v_3) = v_1(1, 0, 0) + v_2(0, 1, 0) + v_3(0, 0, 1) = v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}$$

Remark

It is not true in general that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.

For example,

$$\mathbf{i} \times (\mathbf{j} \times \mathbf{j}) = \mathbf{i} \times \mathbf{0} = \mathbf{0}$$

$$(\mathbf{i} \times \mathbf{j}) \times \mathbf{j} = \mathbf{k} \times \mathbf{j} = -\mathbf{i}$$

$$\mathbf{i} \times (\mathbf{j} \times \mathbf{j}) \neq (\mathbf{i} \times \mathbf{j}) \times \mathbf{j}$$

DEFINITION 2

If **u**, **v**, and **w** are vectors in 3-space, then

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$$

is called the *scalar triple product* of **u**, **v**, and **w**.

The scalar triple product of $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ can be calculated from the formula

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

Remark

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$$

