1 Concrete Semantics of Scheme CESK*

Semantic Domains: Syntax Domains: $\varsigma \in \Sigma \triangleq Eval + Apply$ $e \in \mathsf{Exp} ::= x$ | (if *e e e*) $Eval \triangleq \mathsf{Exp} \times Env$ | (let ([x e] ...) e) | $\times Addr \times Time$ | (call/cc e) | $Apply \triangleq Val \times Env$ $|(\mathtt{set!}\ x\ e)|$ $\times Addr \times Time$ | (prim op e ...) | $\rho \in Env \triangleq \mathsf{Var} \rightharpoonup Addr$ | (apply-prim op e) | $\sigma \in Store \triangleq Addr \rightarrow Val$ | (apply e e) $v \in Val \triangleq Clo + Kont + \mathbb{Z}$ |(e e ...)|+ {#t, #f, Null, Void} $x \in AExp ::= lam \mid \mathbb{Z} \mid \#t \mid \#f$ $+ \operatorname{quote}(e) + \operatorname{cons}(v, v)$ | (quote e) $clo \in Clo \triangleq \mathsf{Lam} \times Env$ $lam \in Lam ::= (\lambda (x...) e) | (\lambda x e)$ $a, b, c \in Addr \triangleq \mathbb{N}$ A set of identifiers $x \in \mathsf{Var}$ $t, u \in Time \triangleq \mathbb{N}$ $op \in \mathsf{Prim}$ A set of primitives **Atomic Evaluation:** $\kappa \in Kont ::= \mathbf{mt}$ **Transition:** | **ifk** (e, e, ρ, a) Injection: Collection: $|\operatorname{callcck}(a)|\operatorname{setk}(x,a)$ Tick/Alloc: | appappk $(val?, e, \rho, a)$ | appk $(done, todo, \rho, a)$ $| \mathbf{appprimk}(op, a) |$ $| \mathbf{primk}(op, done, todo,$ $\rho, a)$ | **letk**(vars, done, todo) e, ρ, a $done \triangleq Val^*$ $todo \triangleq \mathsf{Exp}^*$

Eval Rules

Rules for when the control is an expression

$$E\langle x, \rho, a, t \rangle \leadsto A\langle v, \rho, a, u \rangle$$

$$\text{where } u = \operatorname{tick}(st, 1)$$

$$v = \mathcal{A}(\varsigma, \sigma)$$

$$E\langle (\text{if } e_c \ e_t \ e_f), \rho, a, t \rangle \leadsto E\langle e_c, \rho, b, u \rangle \qquad E\langle (\text{prim } op), \rho, a, t \rangle \leadsto A\langle v, \rho, a, u \rangle$$

$$\text{where } \sigma[b \mapsto \text{ifk}(e_t, e_f, \rho, a)] \qquad \text{where } v = op \ \text{applied to 0 arguments}$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{let } () \ e), \rho, a, t \rangle \leadsto E\langle e, \rho, a, u \rangle \qquad \text{where } u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{let } ([x_0 \ e_0] \ [x_s \ e_s] \ \dots) \ e_b), \rho, a, t \rangle \qquad \Leftrightarrow E\langle e_0, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{primk}(op, [\], x_s, \rho, a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{call/cc } e), \rho, a, t \rangle \leadsto E\langle e, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{callcck}(a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{call/cc } e), \rho, a, t \rangle \leadsto E\langle e, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{appprimk}(op, a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{call/cc } e), \rho, a, t \rangle \leadsto E\langle e, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{apppprimk}(op, a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{set! } x \ e), \rho, a, t \rangle \leadsto E\langle e, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{appappk}(\emptyset, e_x, \rho, a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$E\langle (\text{gef } e_s \ \dots), \rho, a, t \rangle \leadsto E\langle e_f, \rho, b, u \rangle \qquad \text{where } \sigma[b \mapsto \text{appappk}([\], e_s, \rho, a)]$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

$$b = \operatorname{alloc}(\varsigma, 0) \qquad u = \operatorname{tick}(\varsigma, 1)$$

Apply Rules

Rules for when the control is a value

$$\begin{split} A\langle v,\rho,a,t\rangle &\leadsto E\langle e_f,\rho,b,u\rangle \\ \text{where } \kappa \triangleq \sigma(a) & \text{where } \sigma[b \mapsto \mathbf{ifk}(e_t,e_f,\rho,a)] \\ \kappa &= \mathbf{ifk}(e_t,e_f,\rho,a) & b = alloc(\varsigma,0) \\ u &= tick(\varsigma,1) & u = tick(\varsigma,1) \\ v &= \#\mathbf{f} \end{split}$$

$$A\langle v,\rho,a,t\rangle &\leadsto E\langle e_t,\rho,b,u\rangle \\ \text{where } \kappa \triangleq \sigma(a) \\ \kappa &= \mathbf{ifk}(e_t,e_f,\rho,a) \\ u &= tick(\varsigma,1) \\ v \neq \#\mathbf{f} \end{split}$$

Syntax:

$$\begin{array}{c} e \in \mathsf{Exp} ::= & \\ \mid (\mathsf{if}\ e\ e\ e) \\ \mid (\mathsf{let}\ ([x\ e]\ ...)\ e) \\ \mid (\mathsf{prim}\ op\ e\ ...)e \\ \mid (\mathsf{call/cc}\ e) \\ \mid (e\ e\ ...) \end{array}$$

$$\begin{aligned} & \text{\mathfrak{A}Exp} ::= lam \mid \mathbb{Z} \mid \text{\sharpt} \mid \text{\sharpf} \\ & lam \in \mathsf{Lam} ::= (\lambda \; (x...) \; e) \\ & x \in \mathsf{Var} \quad \text{A set of identifiers} \end{aligned}$$

Atomic Evaluation Function:

$$\mathcal{A}: (\mathsf{AExp} \times Env \times Store) \to Val$$

$$\mathcal{A}(x, \rho, \sigma) \triangleq \sigma(\rho(x))$$

$$\mathcal{A}(lam, \rho, \sigma) \triangleq (lam, \rho)$$

$$\mathcal{A}(x, \rho, \sigma) \triangleq x$$

Transition Function:

$$(\Sigma \times \mathit{Store}) \leadsto (\Sigma \times \mathit{Store})$$

Semantics:

$$\varsigma \in \Sigma \triangleq \mathsf{Exp} \times Env \times Addr$$

$$\rho \in Env \triangleq \mathsf{Var} \rightharpoonup Addr$$

$$\sigma \in Store \triangleq Addr \rightharpoonup Val$$

$$v \in Val \triangleq Clo + Kont$$

$$+ \mathbb{Z} + \{ \mathsf{\#t}, \mathsf{\#f} \}$$

$$clo \in Clo \triangleq \mathsf{Lam} \times Env$$

$$a, b, c \in Addr \quad \mathsf{A set of addreses}$$

$$\kappa \in Kont \triangleq \mathbf{mt}$$

$$\mid \mathbf{ifk}(e, e, \rho, a)$$

$$\mid \mathbf{letk}(x, e, \rho, a)$$

$$\mid \mathbf{appk}(done, todo, \rho, a)$$

$$\mid \mathbf{primk}(op, done, todo, \rho, a)$$

$$\mid \mathbf{callcck}(a)$$

$$op \in Prim \quad \mathsf{A set of primitives}$$

$$done \triangleq Val^*$$

$$todo \triangleq \mathsf{Exp}^*$$

$(\varsigma \times \sigma) \leadsto (\varsigma' \times \sigma)$, where $\kappa = \sigma(a), b = alloc(\varsigma)$ proceed by matching on ς

proceed by matching on \(\zeta \)	
$\overline{\langle (\text{if } e_c \ e_t \ e_f), \rho, a \rangle}$	$\langle e_c, ho, b angle$
	$\sigma[b \mapsto \mathbf{ifk}(e_t, e_f, \rho, a)] \\ \langle e_x, \rho, b \rangle$
$\overline{\langle (\text{let}([x \ e_x] \) \ e_b), \rho, a \rangle}$	$\langle e_x, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{letk}(x, e_b, \rho, a)]$
$\overline{\langle (\text{prim } op \ e_0 \) es, \rho, a \rangle}$	$\langle e_0, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([op], es, \rho, a)]$
$\langle (\mathtt{call/cc}\ e), \rho, a angle$	$\langle e, \rho, b \rangle$
	$\sigma[b \mapsto \mathbf{appk}([\mathbf{call/cc}],[\;],\rho,a)]$
$\langle (e_f \ es), \rho, a \rangle$	$\langle e_f, ho, b angle$
	$\sigma[b \mapsto \mathbf{appk}([\], e_s, \rho, a)]$
$\langle \mathfrak{X}, \rho, a \rangle$	
let $v = \mathcal{A}(x, \rho, \sigma)$	
match on κ below	
mt	ς
ifk (e_t, e_f, ρ', c)	$\langle e_f, ho', c angle$
when $v = \#f$	
$\mathbf{ifk}(e_t, e_f, \rho', c)$	$\langle e_t, \rho', c \rangle$
when $v \neq \#f$	
$\overline{\mathbf{letk}(x, e_b, \rho', c)}$	$\langle e_b, \rho'[x \mapsto b], c \rangle$
	$ \begin{array}{c c} \sigma[b \mapsto v] \\ \hline \langle e_h, \rho', b \rangle \end{array} $
$\mathbf{appk}(done, e_h :: e_t, \rho', c)$	
	$\sigma[b \mapsto \mathbf{appk}(done + [v], e_t, \rho', c)]$
$\mathbf{appk}(op :: v_s, [\], \rho', c)$	$\langle v', \rho', c \rangle$
	$v' = op \text{ applied to } (v_s + [v])$
$\mathbf{appk}(clo :: v_s, [\], \rho', c)$	$\langle e_b, \rho_\lambda[x_{s0} \mapsto b_0 \dots x_{sn} \mapsto b_n], c \rangle$
where $clo = ((\lambda (x_s) e_b), \rho_{\lambda})$	$v_s' = v_s + [v]$
1 ([11 /] [] /)	$ \frac{\sigma[b_0 \mapsto v'_{s0} \dots b_n \mapsto v'_{sn}]}{\langle e, \rho_{\lambda}[x \mapsto c], c \rangle} $
$\mathbf{appk}([\mathbf{call/cc}],[],\rho',c)$	$\langle e, \rho_{\lambda}[x \mapsto c], c \rangle$
where $v = ((\lambda(x) e), \rho_{\lambda})$	/ / 1
$\mathbf{appk}([\kappa_v],[\],\rho',c)$	$\langle v, \rho', b \rangle$
	$\sigma[b \mapsto \kappa_v]$

Rules returning a value in control position are broken! Values are not syntax! What is the solution?

2 Abstract Semantics of Scheme CESK*