第二章 与或图搜索问题

2.1 基本概念

- 与或图是一个超图,节点间通过连接符 连接。
- K-连接符:

耗散值的计算

 $k(n, N) = C_n + k(n_1, N) + ... + k(n_i, N)$

其中:N为终节点集

Cn为连接符的耗散值

•解图1:

•解图2:

• 解图:

能解节点

- 终节点是能解节点
- 若非终节点有"或"子节点时,当且仅 当其子节点至少有一能解时,该非终节 点才能解。
- 若非终节点有"与"子节点时,当且仅 当其子节点均能解时,该非终节点才能 解。

不能解节点

- 没有后裔的非终节点是不能解节点。
- 若非终节点有"或"子节点,当且仅当 所有子节点均不能解时,该非终节点才 不能解。
- 若非终节点有"与"子节点时,当至少有一个子节点不能解时,该非终节点才不能解。

普通图搜索的情况

f(n) = g(n) + h(n)对n的评价实际是对从s到n这条路径的评价

与或图: 对局部图的评价

两个过程

- 图生成过程,即扩展节点
 - 从最优的局部图中选择一个节点扩展
- 计算耗散值的过程
 - 对当前的局部图重新计算耗散值

AO*算法举例

其中:

$$h(n_0)=3$$

$$h(n_1)=2$$

$$h(n_2)=4$$

$$h(n_3)=4$$

$$h(n_4)=1$$

$$h(n_5)=1$$

$$h(n_6)=2$$

$$h(n_7)=0$$

$$h(n_8)=0$$

设:K连接符 的耗散值为K

h(n0)=3 h(n1)=2 h(n2)=4 h(n3)=4 h(n4)=1 h(n5)=1 h(n6)=2

h(n7)=0h(n8)=0 红色:4 黄色:3

h(n0)=3 h(n1)=2 h(n2)=4 h(n3)=4 h(n4)=1 h(n5)=1

h(n6)=2 h(n7)=0 h(n8)=0 红色:4

黄色:6

2.3 博弈树搜索

- > 博弈过程:
- 二人零和:博弈结果只有胜、负、平三种情况
- 全信息:当前及过往局势全开放
- 非偶然:双方都理智决定行为(选择最有利于己方的策略)
- > 博弈树构成
- 初始格局记为S0
- "AND"和"OR"逐层交替出现,
- 己方扩展的为"OR"(MAX),
- 对方为"AND"(MIN)
- 使己方获胜的终局为可解节点,对方获胜的为不可解节点
- > 极大极小分析法
- 端节点用估价函数估值,反推上层节点估值,直至根节点
- 估值大的方案较好(按获利)
- 博弈树扩展深度越大越精确,但计算量庞大,通常一定深度

我市问题

中国象棋

- · 一盘棋平均走50步,总状态数约为10的 161次方。
- · 假设1毫微秒走一步,约需10的145次方年。
- 结论:不可能穷举。

清华大学出版社

1,极小极大过程

例:一字棋,井字游戏(Tic-Tac-Toe;http://boulter.com/ttt/)

A方:a棋;B方:b棋;扩展深度:2层

估价函数e(p)定义:

$$e(p) = \begin{cases} + , & p是A方胜局 \\ - , & p是B方胜局 \\ e(+p)-e(-p), & p是未定局 \\ 0, & p是和局 \end{cases}$$

 a	
b	

e(+p): 可使a成为三子一线的数目 e(-p): 可使b成为三子一线的数目

5000 states, ~900,000 nodes in Tic-Tac-Toe

我方先手

清华大学中斯林

α-β剪枝

- 边生成估值边计算倒推值,从而剪去某些分支的技术
- 极大节点的下界为α。
- 极小节点的上界为β。
- 顺序:剪枝顺序自左至右或自右至左
- 剪枝的条件:
 - 后辈节点的β值 祖先节点的 α 值时 , α 剪枝
 - 后辈节点的 α 值 祖先节点的 β 值时 , β 剪枝
- 简记为:
 - 极小 极大,剪枝
 - 极大 极小,剪枝

α-β剪枝 (续)

Properties of minimax

- Complete? Yes (if tree is finite)
- Optimal? Yes (against an optimal opponent)
- <u>Time complexity?</u> $O(b^m)$
- α - β ? O(b^{m/2})
- Space complexity? O(bm) (depth-first exploration)
- For chess, b 35, m 100 for "reasonable" games
 → exact solution completely infeasible

Deterministic games in practice

- Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions.
- Chess (10^{30}) : Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.
- Othello: human champions refuse to compete against computers, who are too good.
- Go: human champions refuse to compete against computers, who are too bad. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves.

Annual AAAI GGP Competition

Annual AAAI Competition
Established in 2005
Held at AAAI conference
Administered by Stanford
(Stanford folks not eligible to participate)

Reward

Renown

Satisfaction at a job well done

Oh ... and ... \$10,000

Nothello

Othello variant

- more corner squares
- opposite goal: finish with fewer markers

清华大学出版社

TOINGHIM LINIVEDCITY DDECC

AAAI-05 Winner Jim Clune

AAAI-06 Winners

Competition at AAAI 2007

Qualification Round via the web Weekly tournaments in June (one day each)

Semi-Final Round at AAAI
Tournament style (one full day)

Final Round at AAAI

Top two competitors head to head

Single match of a single game

Winner take all (glory + \$10,000 + chance to ...)

Summary

- Games are fun to work on!
- They illustrate several important points about AI
- perfection is unattainable → must approximate
- good idea to think about what to think about

问题1:12枚硬币,其中有一枚假币,(凡轻于或重于 真币者即为假币),设计一个算法,使用无砝码天平至 多称3次,找出假币并指出它轻于还是重于真币。

问题2:任给k枚硬币,其中有一枚假币,问至少称几次可以找出假币。

现有标号为1,2,3,4,5,6,7,8,9的九张纸牌,甲、乙两人轮流取一张牌,已取走的牌不能重新放回,目标是手中任意三张牌的点数加起来正好是15点,谁先拿到,谁就赢了。