Effects of a random cubic spring on the longitudinal dynamics of a bar excited by a Gaussian white noise

Americo Cunha Jr Rubens Sampaio

PUC-Rio, Department of Mechanical Engineering americo.cunhajr@gmail.com

2nd International Symposium on Uncertainty Quantification and Stochastic Modeling 23-27 June 2014 Rouen, France

Outline

- Introduction
- 2 Deterministic Model
- Stochastic Model
- 4 Numerical Experiments
- Conclusion

Section 1

Introduction

Motivation: structures with small devices

Some engineering structures have small parts (negligible dimensions), which induce significant effects on their global behavior.

- drill-bit on a drillstring;
- stabilizers on a column;
- buckyball on a carbon nanotube;
- etc.

Modeling and uncertainties

Typical model:

continuous system coupled with discrete elements.

But these models are subjected uncertainties due to:

- variability in the system parameters;
- inaccuracies in model conception.

Research objectives

This work intends to:

- Illustrates a consistent methodology to analyze the stochastic nonlinear dynamics of a continuous system attached to discrete elements.
- Investigate the effects of a coupled discrete elements in the dynamic response of this nonlinear stochastic system.

Section 2

Deterministic Model

Mechanical system of interest

Figure: Sketch of a bar fixed at one and attached to two springs and a lumped mass on the other extreme, i.e. a fixed-mass-spring bar.

Numerical Experiments

Mathematical model for the mechanical system

Equation of motion

$$\rho A \frac{\partial^2 u}{\partial t^2} + c \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(EA \frac{\partial u}{\partial x} \right) = f(x, t)$$

Boundary conditions

$$u(0,t) = 0$$
 and $EA \frac{\partial u}{\partial x}(L,t) = -ku - k_{NL}u^3 - m\frac{\partial^2 u}{\partial t^2}$

Initial conditions

$$u(x,0) = u_0(x)$$
 and $\frac{\partial u}{\partial t}(x,0) = v_0(x)$

Weak formulation of the problem

Find a "suitable" displacement field such that

$$\mathcal{M}(\ddot{u},w) + \mathcal{C}(\dot{u},w) + \mathcal{K}(u,w) = \mathcal{F}(w) + \mathcal{F}_{NL}(u,w),$$

$$\widetilde{\mathcal{M}}(u(\cdot,0),w)=\widetilde{\mathcal{M}}(u_0,w),$$

and

Introduction

$$\widetilde{\mathcal{M}}(\dot{u}(\cdot,0),w)=\widetilde{\mathcal{M}}(v_0,w),$$

for any weight function.

Introduction

Numerical Experiments

Model equation discretization

For discretization, the Galerkin method is employed, which results in the nonlinear initial value problem

$$[M] \ddot{\mathbf{u}}(t) + [C] \dot{\mathbf{u}}(t) + [K] \mathbf{u}(t) = \mathbf{f}(t) + \mathbf{f}_{NL} (\mathbf{u}(t)) ,$$

$$\mathbf{u}(0) = \mathbf{u}_0 \quad \text{and} \quad \dot{\mathbf{u}}(0) = \mathbf{v}_0,$$

which is integrated using Newmark method.

Section 3

Stochastic Model

Uncertainties in the model

In each case of study, two sources of uncertainty are considered:

- Case 1
 - external force (arbitrarily specified)
 Gaussian white noise
 - nonlinear spring stiffness (maximum entropy principle)
 Gamma distribution
- Case 2
 - external force (arbitrarily specified)
 Gaussian white noise
 - elastic modulus (maximum entropy principle)
 Gamma distribution

Stochastic initial value problem

The stochastic nonlinear dynamics is described by

$$\left[\mathcal{M} \right] \ddot{\mathbf{U}}(t,\theta) + \left[\mathcal{C} \right] \dot{\mathbf{U}}(t,\theta) + \left[\mathcal{K} \right] \mathbf{U}(t,\theta) = \mathbf{F}(t,\theta) + \mathbf{f}_{\mathit{NL}} \left(\dot{\mathbf{U}}(t,\theta) \right),$$

$$\mathbf{U}(0,\theta) = \mathbf{u}_0$$
 and $\dot{\mathbf{U}}(0,\theta) = \mathbf{v}_0$,

which the uncertainty propagation is computed through Monte Carlo method.

Section 4

Numerical Experiments

Stochastic simulation - Case 1

Case 1:

- Random external force
- Random nonlinear spring stiffness

A parametric study is performed, indexed by

$$\mu_{k_{Nl}} = 650 \times \{0, 10^{12}, 10^{13}, 10^{14}\} \ N/m^3$$

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $\mu_{\textit{k}_{NL}}=0$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $\mu_{\textit{k}_{NL}}=10^{12}$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $\mu_{\textit{k}_{\textit{NL}}} = 10^{13}$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $\mu_{\textit{k}_{NL}}=10^{14}$.

Evolution of the lumped mass displacement

17/29

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $\mu_{\textit{k}_{\textit{NL}}}=0$.

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $\mu_{k_{NL}}=10^{12}$.

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $\mu_{k_{NL}}=10^{13}$.

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $\mu_{k_{NL}}=10^{14}$.

Evolution of the lumped mass velocity

Probability distribution of the lumped mass displacement

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $\mu_{k_{NI}}=0$.

Probability distribution of the lumped mass displacement

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $\mu_{k_{NI}}=10^{12}$.

Probability distribution of the lumped mass displacement

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $\mu_{k_{NI}}=10^{13}$.

Probability distribution of the lumped mass displacement

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $\mu_{k_{NI}}=10^{14}$.

Probability distribution of the lumped mass displacement

Stochastic simulation - Case 2

Case 2:

- Random external force
- Random elastic modulus

A parametric study is performed, indexed by

$$m^* = \frac{\text{lumped mass}}{\text{continuous mass}} = \{0.1, 1, 10, 50\}$$

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $m^* = 0.1$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $m^* = 1$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $m^* = 10$.

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass displacement, with $m^* = 50$.

Evolution of the lumped mass displacement

troduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $m^* = 0.1$.

troduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusio

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $m^* = 1$.

Introduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusio

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $m^* = 10$.

troduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusio

Evolution of the lumped mass velocity

Figure: This figure illustrates the mean value (blue line) and an interval of confidence (grey shadow) for the lumped mass velocity, with $m^* = 50$.

Introduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Evolution of the lumped mass velocity

troduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusio

Orbit of the lumped mass displacement

Figure: This figure illustrates the mean orbit, in the phase space, of the lumped mass with $m^* = 0.1$.

roduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Orbit of the lumped mass displacement

Figure: This figure illustrates the mean orbit, in the phase space, of the lumped mass with $m^*=1$.

roduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Orbit of the lumped mass displacement

Figure: This figure illustrates the mean orbit, in the phase space, of the lumped mass with $m^*=10$.

roduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Orbit of the lumped mass displacement

Figure: This figure illustrates the mean orbit, in the phase space, of the lumped mass with $m^* = 50$.

Introduction Deterministic Model Stochastic Model **Numerical Experiments** Conclusion

Orbit of the lumped mass displacement

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $m^* = 0.1$.

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $m^*=1$.

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $m^*=10$.

Figure: This figure illustrates the PDF of the (normalized) lumped mass displacement, with $m^* = 50$.

Section 5

Conclusion

Introduction Deterministic Model Stochastic Model Numerical Experiments Conclusion

Concluding remarks

- Uncertainties accumulation is observed with time increase;
- Large values of the lumped mass makes the behavior of the continuous system like a mass-spring oscillator;
- A reduction of uncertainty in the system response is observed when the lumped mass increases;
- Cubic nonlinearity induces asymmetric and multimodal distribution of probability.

Introduction Deterministic Model Stochastic Model Numerical Experiments **Conclusion**

Paper with the results

The results shown here can be seen in:

A. Cunha Jr and R. Sampaio

On the nonlinear stochastic dynamics of a continuous system with discrete attached elements.

Applied Mathematical Modelling (under review)

Acknowledgments

Financial support given to this research:

- CNPq
- CAPES
- FAPERJ

Thanks for your attention!

