Class 06 HW

Joshua Mac

2025-01-27

Analysis code for drug interactions

```
# Can you improve this analysis code?
library(bio3d)
s1 <- read.pdb("4AKE") # kinase with drug</pre>
```

Note: Accessing on-line PDB file

```
s2 <- read.pdb("1AKE") # kinase no drug
```

```
Note: Accessing on-line PDB file PDB has ALT records, taking A only, rm.alt=TRUE
```

```
s3 <- read.pdb("1E4Y") # kinase with drug
```

Note: Accessing on-line PDB file

```
s1.chainA <- trim.pdb(s1, chain="A", elety="CA")
s2.chainA <- trim.pdb(s2, chain="A", elety="CA")
s3.chainA <- trim.pdb(s1, chain="A", elety="CA")
s1.b <- s1.chainA$atom$b
s2.b <- s2.chainA$atom$b
s3.b <- s3.chainA$atom$b
plotb3(s1.b, sse=s1.chainA, typ="l", ylab="Bfactor")</pre>
```


plotb3(s2.b, sse=s2.chainA, typ="l", ylab="Bfactor")

Q6. How would you generalize the original code above to work with any set of input protein structures?

libary(bio3d) is already on

Remember, function has name, input, and body in this structure:

function_name<-function(input){function_body}</pre>

```
#I will coin you: "protein_analysis", with "protein"
#as a holder of a pdb

protein_analysis<-function(protein, chain="A", elety="CA"){
    #Everything from now on will be part of the function
    #First, we need to read the inputted pdb
    p<-read.pdb(protein)
    #Next, trim the pdb to extract chain A data and alpha-carbon CA atoms only
    p.chainA<-trim.pdb(p, chain="A",elety="CA")
    #Next, extract the Bfactors, which is the atom column and the b column
    p.bfactors<-p.chainA$atom$b
    #Finally, plot like in the original code</pre>
```

```
plotb3(p.bfactors,sse=p.chainA,typ="l", ylab="Bfactor")
}
```

```
#now i will try and call/execute
protein_analysis("1AKE")
```

Note: Accessing on-line PDB file

Warning in get.pdb(file, path = tempdir(), verbose = FALSE):
/var/folders/13/0w1v1h157qj81sz_k6f27glm0000gn/T//RtmppdXqhu/1AKE.pdb exists.
Skipping download

PDB has ALT records, taking A only, rm.alt=TRUE

Essentially, the function works by taking a pdb input, reading it, trimming it to create a new pdb that has only the chain information and keeps the chain element type, extracts the bfactors, and plots it.

The output is a plot that visualizes Bfactor x Residue!

For example, above, I called the function protein_analysis on the pdb "1AKE" and it plot its Bfactor x Residue relationship for me in a line type bio3d plot.