

Convolutional Neural Networks III

Semester 2, 2025 Kris Ehinger

Outline

- CNN architectures for ImageNet classification
- ImageNet classification results
- Transfer learning

Learning outcomes

- Explain the key differences between and main ideas behind different architectures for ImageNet classification
- Evaluate image classification results
- Explain and implement transfer learning with networks pretrained on ImageNet

CNN architectures

AlexNet

AlexNet innovations

- ReLU (Rectified Linear Unit) activation function faster training
- Training on GPU parallelisation allows faster training (actually required 2 GPUs at the time!)
- Overlapping max pooling regions, response normalisation after ReLU – small accuracy increase
- Data augmentation reduces overfitting
- Dropout reduces overfitting

VGG

Stacked convolutional layers

- VGG stacks multiple 3 x 3 convolutional kernels to effectively make larger kernels:
 - Two 3 x 3 conv. layers = effective receptive field of 5 x 5
 - Three 3 x 3 conv. layers = effective receptive field of 7 x 7

VGG innovations

- Stacked 3x3 convolutional layers
 - Learn more complex features thanks to additional nonlinearities
 - Fewer parameters than 1 layer with the equivalent receptive field
- Doesn't use AlexNet's response normalisation allows faster training with only very small accuracy drop

GoogLeNet (Inception)

Convolutional layer

Concatenate & normalise

Max pooling

Softmax

Inception module

- Choosing the right kernel size in CNNs is difficult because objects/features can appear at any scale
- Solution: use multiple kernel sizes and concatenate

Inception module

• 1x1 convolutional layers reduce the number of channels (dimensionality reduction)

GoogLeNet innovations

- Inception module
 - Learns features at a variety of kernel sizes/scales
- Auxillary classifiers
 - Used during training only classify images based on early layer representations and update parameters
 - Helps with vanishing gradient problem

ResNet: Background

 Will deeper neural networks will always give better performance?

ResNet: Background

- No, performance saturates and then decreases
- Not due to overfitting performance is worse on the training set

ResNet: Background

- It should be possible to learn parameters in the deep network that would allow it to act like the small network
 - For example, some conv. layers learn identity kernels, while others learn the shallow network's kernels
- However, deep CNNs cannot learn this solution (at least, not within a reasonable training time)

ResNet

 Solution: Add "shortcut connections" that skip some layers

Residual learning

- Reformulate the learning problem:
 - Traditional network: input x, output $\mathcal{H}(x)$, which is the feature representation of x
 - Residual network: input x, learn $\mathcal{H}(x) x$, which is then added to x to get $\mathcal{H}(x)$
- Makes it easier to learn identity mapping

ResNet innovations

- Residual block
 - Simplifies the learning problem by making it easier for networks to learn identity mapping
 - Allows deeper networks to improve accuracy

MobileNets

Lightweight architecture for mobile apps

MobileNets

- Separable filters
 - Recall that filtering with a 2D filter is equivalent to filtering with two orthogonal 1D filters
 - Similarly, filtering with a 3D filter is equivalent to filtering with a 2D filter and an orthogonal 1D filter
- MobileNets uses depthwise-separable filters 2D filters in x,y and 1D filters over channels

MobileNets innovations

- Depthwise separable convolution
 - Fewer parameters and less computation
 - Limits what kernels the model can learn not all kernels are separable
- Smaller and faster than other architectures
 - Lower accuracy than VGG, ResNet, etc.
 - But better suited for real-time applications, phones

EfficientNet

- User-defined parameters in CNNs:
 - **Depth** = number of layers
 - Width = number of kernels per layer
 - Kernel size
 - OR, if you use a fixed kernel size (e.g., 3x3), the equivalent parameter is **Resolution** (image size)
- Increasing any one parameter tends to improve accuracy, but with diminishing returns
- How to optimize these parameters {d, w, r}?

EfficientNet innovations

- Solution: exhaustive (grid) search!
- Specifically:
 - Assume you have fixed, limited computational resources and find the best {d, w, r} for a low-resource model
 - Computational complexity of a CNN scales linearly with depth and quadratically with width and resolution, so find values such that:

$$d \times w^2 \times r^2 \approx 2, d \ge 1, w \ge 1, r \ge 1$$

• To build a larger models, scale all parameters by an exponent φ (which means computational resources increase by 2^{φ})

EfficientNet innovations

- Effective way to optimise CNN parameters
- Grid searching parameters for large networks might give even higher accuracy (but is too slow)

Summary

- Many different CNN architectures image recognition
- Common themes:
 - Optimise user-defined parameters (number of layers, number of kernels, kernel size)
 - Improve efficiency
 - Improve feature learning
- Choice of architecture depends on your application
 - Runtime, memory, processing power

Classification results

ImageNet classification

- 1000 object classes
- Model output = a probability distribution (from softmax) over 1000 class labels
- Top-1 accuracy
 - For each test image, model is correct if the most likely class == ground truth class
- Top-N accuracy
 - For each test image, model is correct if any of the N most likely classes == ground truth class

Classification performance

CNN Architecture	Layers	Top-5 error
AlexNet	8	16.4%
VGG-19	19	7.3%
GoogleNet	22	6.7%
ResNet	152	3.57%

Classification performance

Classification errors

ImageNet Classification Failures (GoogLeNet 2014)

sidewinder

ruler
pencil box
rubber eraser
ballpoint pen

pizza strawberry orange

king crab

maze gar valley

pill bottle water bottle lotion

saltshaker

stethoscope whistle ice lolly

reel

vase pitcher coffeepot

hatchet

Generalisation

 Features from neural networks are good representations for a range of tasks

Summary

- CNNs are the state-of-the-art for image classification, exceeding human performance on ImageNet
- CNN classification errors are often understandable (odd views, small objects), which suggests they learn reasonable features for this task

Image recognition: Pixels

Image recognition: Pixels

- Pixels are a poor space for classification
 - High-dimensional space: 256 x 256 x 3 image = 196,608 attributes
 - Irrelevant transformations (translation, lighting change, scale change, rotation, etc.) cause large changes in pixel values

Image recognition: Features

Image recognition: Features

- A good feature space for image recognition:
 - Is lower-dimensional e.g., 1000s of values per image
 - Projects images from the same class into a similar part of the space (images with the same class label have similar features)

Using pretrained networks

- CNNs convert images from pixels to high-level features that are good for classification (feature embedding)
- These high-level features give good performance on a range of computer vision tasks
- Transfer learning use features from a CNN trained on a large-scale task (e.g., ImageNet classification) as input for another task, with minimal retraining

"AlexNet": Krizhevsky, Sutskever, & Hinton (2012)

Embedding of an input = the network's response to the input at some layer

- Extract the representation from a late layer of a CNN trained on ImageNet
 - E.g., for each image take the activations from the 4096 neurons that feed into the 1000-way ImageNet classification
- Use the neurons' activations as the attributes for a classifier of your choice (e.g., SVM, K-NN etc.)

Retraining layers

- Finetuning = retraining layers of a pretrained CNN
- How many layers to fine tune depends on dataset size and how similar it is to ImageNet
 - More dissimilar datasets may need more retraining of lower layers
 - If dataset size is limited, training lower layers may just lead to overfitting

Summary

- ImageNet-trained CNNs produce state-of-the-art performance on image recognition tasks
- It's common to use CNNs pretrained on ImageNet for a variety of computer vision tasks, either as-is ("off the shelf" feature embedding) or with some finetuning