FSL A Fourier Series Library

Bo Cao

October 8, 2019

1 Revision History

Date	Version	Notes
Oct. 10, 2019	0.9	Draft submitted for review by Dr. Smith
TBD	1.0	Revised in accordance with advice from Dr. Smith

2 Reference Material

This section records information for easy reference.

2.1 Table of Units

This section is not applicable, due to the fact that this library is a pure mathematical computation library.

2.2 Table of Symbols

The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with the Fourier series literature and with existing documentation for Fourier series libraries. The symbols are listed in alphabetical order.

symbol	description
$f(t), g(t), \dots$	$[-\pi/\omega, \pi/\omega] \to \mathbb{R}$ functions of t, where ω is defined as below
\mathbb{R}	Set of real numbers
$\mathbb Z$	Set of integers
$[-\pi/\omega,\pi/\omega]$	Set of real numbers that are neither smaller than $-\pi/\omega$, nor greater than π/ω
\rightarrow	Indicate mapping
\mathbb{A}^*	Non-negative subset of set \mathbb{A} (either \mathbb{R} or \mathbb{Z})
\mathbb{A}^*	Positive subset of set \mathbb{A} (either \mathbb{R} or \mathbb{Z})
$\sum_{i=m}^{n} a_i$	Summation of $a_i, i = m, m + 1,, n$
n	Length of cut-off Fourier series (definition not applicable to this table)
ω	Base frequency of Fourier series
CFSf, CFSg	$CFS(f(t), n, \omega)$ and $CFS(g(t), n, \omega)$ respectively.

2.3 Abbreviations and Acronyms

symbol	description
A	Assumption
API	Application Programming Interface
CA	Commonality Analysis
DD	Data Definition
FS	Fourier Series
GD	General Definition
GS	Goal Statement
IFS	Infinite Fourier Series
IM	Instance Model
LC	Likely Change
PS	Physical System Description
R	Requirement
FSL	Fourier Series Library.
Т	Theoretical Model

Contents

1	Rev	rision History	i
2	Ref 2.1 2.2 2.3	erence Material Table of Units	ii ii iii
3	Intr	roduction	1
	3.1	Purpose of Document	1
	3.2	Scope of the Family	1
	3.3	Characteristics of Intended Reader	1
	3.4	Organization of Document	1
4	Ger	neral System Description	1
	4.1	Potential System Contexts	1
	4.2	Potential User Characteristics	2
	4.3	Potential System Constraints	2
5	Cor	nmonalities	2
	5.1	Background Overview	2
	5.2	Terminology and Definitions	2
	5.3	Data Definitions	2
	5.4	Goal Statements	6
	5.5	Theoretical Models	7
6	Var	iabilities	11
	6.1	Instance Models	11
	6.2	Assumptions	16
	6.3	Calculation	16
	6.4	Output	16
7	Req	<u>uirements</u>	17
	7.1	Functional Requirements	17
	7.2	Nonfunctional Requirements	17
8	Like	ely Changes	17
9	Tra	ceability Matrices and Graphs	17
\mathbf{A}	The	eory for operations on CFS's	20

3 Introduction

3.1 Purpose of Document

This document introduces a library, FSL, mainly designed and implemented for Fourier series related calculations.

3.2 Scope of the Family

The scope of the family is limited to calculations related to the Fourier series of mathematical functions.

3.3 Characteristics of Intended Reader

The intended readers must have the following knowledge.

- Deep knowledge of Fourier series (found in advanced calculus and real analysis courses);
- Computational error analysis (found in introductory numerical analysis classes); and
- Detailed knowledge of the programming language utilized in the implementation of this library.

3.4 Organization of Document

TBD

4 General System Description

This section identifies the interfaces between the system and its environment, describes the potential user characteristics and lists the potential system constraints.

4.1 Potential System Contexts

The users provide the data for the library to calculate, and the library returns the calculation results.

- User Responsibilities:
 - Provide the inputs of the functions in the library.
 - Receive the corresponding outputs, and provide and manage the memory space storing them if mentioned in the following sections.
 - For the conversion from mathematical functions to Fourier series, ensure that provided mathematical functions have Fourier series.

• FSL Responsibilities:

- Detect data type mismatch, such as a string of characters instead of a floating point number.
- Unless otherwise mentioned in this document, detect legality input value, such as mismatched length of Fourier series included in one calculation.
- Unless otherwise mentioned, manage the memory space required by this library.

Potential User Characteristics 4.2

 $ext{racteristics}
angle ?$

The end user of FSL should have an understanding of undergraduate level 2 Calculus and/or Real Analysis, undergraduate level 1 Numerical Analysis, and any one of the programming languages, in which this library provides a set of APIs.

4.3 Potential System Constraints

The potential systems must contain the compilation/interpretation environment for the programming languages in which this library is developed, as well as dependent libraries.

Commonalities 5

5.1 **Background Overview**

c_Background>?

5.2 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements:

5.3 **Data Definitions**

(sec_datadef)? This section collects and defines all the data needed to build the instance models. The dimension of each quantity is also given.

Number	DD1
Label (DD:IFS	Infinite Fourier Series (IFS) of mathematical functions
Symbol	IFS
Equation	$IFS(f(t),\omega) = [A_{inf,i}, i = 0, 1,; B_{inf,i}, i = 1, 2,], \text{ satisfying } f(t) = \sum_{i=0}^{+\infty} A_{inf,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{inf,i} \sin(i\omega t)$
Description	In this equation,
	• $f(t)$ is an $[-\pi/\omega, \pi/\omega]$ $\to \mathbb{R}$ function, whose IFS exists;
	\bullet ω is the base frequency of this IFS, and it is designated by the user;
	• $A_{inf,i} \in \mathbb{R}, i = 0, 1,;$ and
	$\bullet \ B_{inf,i} \in \mathbb{R}, i = 1, 2, \dots$
Sources	Arthur L. Schoenstadt, An Introduction to Fourier Analysis, August 18, 2005
Ref. By	IM2, A1, C1, C2, O1, and O2

Number	DD2
Label (DD:CFS	Cut-off Fourier Series (CFS) of mathematical functions
Symbol	CFS
Equation	$CFS(f(t), n, \omega) = f(t) \rightarrow [A_i, i = 0, 1,, n; B_i, i = 1, 2,, n],$ satisfying $A_i = A_{inf,i}, i = 0, 1,, n; B_i = B_{inf,i}, i = 1, 2,, n,$ where $A_{inf,i}$'s and $B_{inf,i}$'s come from $IFS(f(t), \omega)$
Description	$n \in \mathbf{Z}^*$ is called cut-off length.
Sources	Defined by author
Ref. By	T1, T2, T3, T4, T5, T6, A1, C1, C2, C3, O1, and O2

From now on, denote A_i 's and B_i 's in CFSf as $A_{f,i}$'s and $B_{f,i}$'s respectively, and same for $A_{g,i}$'s and $B_{g,i}$'s.

	Number	DD3
\(\rangle DD\)	:Approximation Label	Approximation of function values from CFS
	Symbol	$App(CFSf, t_1)$
	Equation	$App(CFSf, t_1) = \sum_{i=0}^{n} A_i \cos(i\omega t) + \sum_{i=1}^{n} B_{inf,i} \sin(i\omega t)$
	Description	Define approximated function value of a function calculated from its CFS.
	Sources	Defined by author
	Ref. By	IM2, C1, C2, O1, and O2

Number	DD4
CDD:Addition Label	Addition of CFS's
Symbol	$CFS(f(t), n, \omega) + CFS(g(t), n, \omega)$
Equation	$CFS(f(t), n, \omega) + CFS(g(t), n, \omega) = CFS(f(t) + g(t), n, \omega)$
Description	Define the rule of addition of two CFS's
Sources	Defined by author
Ref. By	C1, C2, O1, and O2

Number	DD5
DD:Subtraction Label	Subtraction of CFS's
Symbol	$CFS(f(t), n, \omega) - CFS(g(t), n, \omega)$
Equation	$CFS(f(t), n, \omega) - CFS(g(t), n, \omega) = CFS(f(t) - g(t), n, \omega)$
Description	Define the rule of subtraction of two CFS's
Sources	Defined by author
Ref. By	C1, C2, O1, and O2

	Number	DD6
⟨DD:	Multiplication Label	Multiplication of CFS's
	Symbol	$CFS(f(t), n, \omega) * CFS(g(t), n, \omega)$
	Equation	$CFS(f(t), n, \omega) * CFS(g(t), n, \omega) = CFS(f(t) * g(t), n, \omega)$
	Description	Define the rule of multiplication of two CFS's
	Sources	Defined by author
	Ref. By	C1, C2, O1, and O2

Number	DD7
Label Label	Division of CFS's
Symbol	$CFS(f(t), n, \omega) / CFS(g(t), n, \omega)$
Equation	$CFS(f(t), n, \omega) / CFS(g(t), n, \omega) = CFS(f(t)/g(t), n, \omega)$
Description	Define the rule of division of two CFS's
Sources	Defined by author
Ref. By	C1, C2, O1, and O2

Number	DD8
\frac{\data DD:Function}{\text{Label}}	Function of CFS's
Symbol	$g(CFS(f(t), n, \omega))$
Equation	$g(CFS(f(t), n, \omega)) = \sum_{i=0}^{n} a_i CFS^i(f(t), n, \omega)$, in which $a_i, i = 0 : n$ is the first $(n+1)$ coefficients of the Taylor series of $g(t)$, and the n -th $(n \in \mathbb{Z}^+)$ power of CFS is defined as n copies of this CFS multiplied together. (0-th power is defined as the CFS of $f(t) = 1$.)
Description	Define the rule of the function of a CFS
Sources	Defined by author
Ref. By	A1, C1, and O1

Number	DD9	
(DD:Amplitude Label	Amplitude of a CFS	
Symbol	Amp(CFSf)	
Equation	$Amp(CFSf) = \sqrt{\frac{\omega}{2\pi} \int_{-\pi/\omega}^{\pi/\omega} App^2(CSFf, t_1) dt_1} $ (1) {	?}
Description	Define the amplitude/size of a CFS	
Sources	Defined by author	
Ref. By	A1, C1, and O1	

Number	DD10
$?\langle exttt{DD:Equality} \rangle$ Label	Tolerated equality of two CFS's
Symbol	CFSf = CFSg
Equation	Same as $Amp(CFSf - CFSg) \leq err$, where err is an user-given tolerance.
Description	Define whether two CFS's are equal within a given tolerance
Sources	Defined by author
Ref. By	C1, and O1

5.4 Goal Statements

Given the corresponding inputs, the goal statements are:

- GS1: When given a function f(t), the cut-off length n, and a base frequency ω , return the function's CFS $CFS(f(t), n, \omega)$.
- GS2: When given a CFS $CFS(f(t), n, \omega)$ and a value of t as t_1 , return the approximated value of $f(t_1)$ computed from the given values.
- GS3: When given two CFS's CFSf, CFSg, and an operation in addition, subtraction, multiplication, division, return the result of this operation on these two CFS's.
- GS4: When given a CFS CFSf, and a function g(t) from the base function sets defined by this library, return the CFS g(CFSf).

GS5: When given values of n, ω , A_i 's, and B_i 's, return the CFS built on these values.

GS6: When given a CFS, store its values of n, ω , A_i 's, and B_i 's in the user-designated space.

GS7: When given a CFS, return its amplitude.

GS8: When given two CFS's and a tolerance, return whether they are equal within the tolerance.

5.5 Theoretical Models

theoretical)? This section focuses on the general equations and laws that FSL is based on.

	Number	T1		
⟨T:	Transformation Label	Fourier Transformation		
	Equation	$A_{0} = \frac{\omega}{2\pi} \int_{-\pi/\omega}^{\pi/\omega} f(t);$ $A_{i} = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} f(t) \cos(i\omega t), i = 1:n;$ $B_{i} = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} f(t) \sin(i\omega t), i = 1:n.$	(2) ?Ec	q:DFT?
	Description	The above equation calculates $A_i(i=0:n), B_i(i=1:n)$ in CFSf.		
	Source	Arthur L. Schoenstadt, An Introduction to Fourier Analysis, August 2005	18,	
	Ref. By	A1, C1, C2, O1, and O2		

Number	T2
(T:Addition Label	Addition of two CFS's
Equation	$A_{f+g,i} = A_{f,i} + A_{g,i}, \ i = 0 : n$ $B_{f+g,i} = B_{f,i} + B_{g,i}, \ i = 1 : n$ (3) {5
Description	The above equation calculates $A_i(i=0:n), B_i(i=1:n)$ in $CFS(f(t)+g(t),n,\omega)$ (represented by $A_{f+g,i}$ and $B_{f+g,i}$ respectively) from $CFSf$ and $CFSg$.
Source	Developed by author in Appendix A
Ref. By	A2, C1, and O1
Number	T3
(T:Subtraction Label	Subtraction of two CFS's
Equation	$A_{f-g,i} = A_{f,i} - A_{g,i}, \ i = 0 : n$ $B_{f-g,i} = B_{f,i} - B_{g,i}, \ i = 1 : n$ $(4) \{$
Description	The above equation calculates $A_i(i=0:n), B_i(i=1:n)$ in $CFS(f(t)-g(t),n,\omega)$ (represented by $A_{f-g,i}$ and $B_{f-g,i}$ respectively) from $CFSf$ and $CFSg$.
Source	Developed by author in Appendix A
Ref. By	A2, C1, and O1

Number	T4
:Multiplication Label	Multiplication of two CFS's
Equation	
	$A_{f*g,i} = \frac{1}{2} \sum_{j=0}^{n-i} (A_{f,i} A_{g,i+j} + A_{f,i+j} A_{g,i} + B_{f,i} B_{g,i+j} + B_{f,i+j} B_{g,i})$ $+ \frac{1}{2} \sum_{i=0}^{i} (A_{f,i} A_{g,i-j} - B_{f,j} B_{g,i-j}), i = 0:n$
	$B_{f*g,i} = \frac{1}{2} \sum_{j=0}^{n-i} (A_{f,i} B_{g,i+j} + Af, i + j B_{g,i} + B_{f,i} A_{g,i+j} + B_{f,i+j} A_{g,i}) $ (5) {?
	$+\frac{1}{2}\sum_{j=0}^{i}(A_{f,j}B_{g,i-j}+B_{f,j}A_{g,i-j}), i=1:n$
Description	The above equation calculates $A_i(i=0:n), B_i(i=1:n)$ in $CFS(f(t)*g(t), n, \omega$ (represented by $A_{f*g,i}$ and $B_{f*g,i}$ respectively) from $CFSf$ and $CFSg$.
Source	Developed by author in Appendix A
Ref. By	A2, C1, and O1

Number	T5
(T:Division Label	Division of two CFS's
Equation	Solve the following equations for $A_{f/g,i}$'s and $B_{f/g,i}$'s.
	$A_{f,i} = \frac{1}{2} \sum_{j=0}^{n-i} (A_{f/g,i} A_{g,i+j} + A_{f/g,i+j} A_{g,i} + B_{f/g,i} B_{g,i+j} + B_{f/g,i+j} B_{g,i})$ $+ \frac{1}{2} \sum_{j=0}^{i} (A_{f/g,j} A_{g,i-j} - B_{f/g,j} B_{g,i-j}), i = 0 : n$ $B_{f,i} = \frac{1}{2} \sum_{j=0}^{n-i} (A_{f/g,i} B_{g,i+j} + A_{f/g}, i + j B_{g,i} + B_{f/g,i} A_{g,i+j} + B_{f/g,i+j} A_{g,i})$
	$+\frac{1}{2}\sum_{j=0}^{i}(A_{f/g,j}B_{g,i-j}+B_{f/g,j}A_{g,i-j}), i=1:n$
	$(6) \{?\}$
Description	We solve the above equations for $A_i(i=0:n), B_i(i=1:n)$ in $CFS(f(t)/g(t), n, \omega$ when $CFSf$ and $CFSg$ are given.
Source	Developed by author in Appendix A
Ref. By	A2, C1, C2, O1, and O2

Number	T6	
T:Amplitude Label	Amplitude of a CFS	
Equation	$Amp(CSFf) = \sqrt{A_0^2 + \frac{1}{2} \sum_{i=1}^{n} (A_i^2 + B_i^2)} $ (7) {	? }
Description	The above equation calculates $Amp(CFSf)$ from $CFSf$, especially A_i 's and B_i 's in it.	
Source	Developed by author in Appendix A	
Ref. By	C1 and O1	

6 Variabilities

6.1 Instance Models

Number	IM1
\langle IM:CFScoeff Label	Calculate coefficients of CFS's
Input	$f(t)$, a $[-\pi/\omega, \pi/\omega]$ function
	$n \in \mathbb{Z}^*$, cut-off length
	$\omega \in \mathbb{R}^+$, base frequency
Output	An object CFSf, containing the following data:
	n, ω : same as the input
	$A_i(i=0:n), B_i(i=1:n)$: using the theory T1
Description	Input:
	f(t): function to be transformed into Fourier series
	n: cut-off length
	ω : base frequency
	Output:
	A_i 's and B_i 's: coefficients in $CFSf$
Sources	Same as T1
Ref. By	A1, C1, C2, O1, and O2

Number	IM2
\frac{\text{IM:Addition}}{\text{Label}}	Addition of two CFS's
Input	CFSf, CFSg
Output	$CFS(f(t)+g(t),n,\omega)$, whose A_i 's and B_i 's are computed using the theory T_2
Description	Input:
	CFSf, CFSg: operands of the addition
	Output:
	$CFS(f(t) + g(t), n, \omega)$: result of the addition
Sources	Same as T2
Ref. By	A2, C1, and O1

Number	IM3
(IM:Subtraction Label	Subtraction of two CFS's
Input	CFSf, CFSg
Output	$CFS(f(t)-g(t),n,\omega)$, whose A_i 's and B_i 's are computed using the theory T3
Description	Input:
	CFSf, CFSg: operands of the subtraction
	Output:
	$CFS(f(t) - g(t), n, \omega)$: result of the subtraction
Sources	Same as T3
Ref. By	A2, C1, and O1

Number IM4 $\langle \text{IM:} \begin{array}{c} \text{Multiplication} \\ \text{Label} \end{array} \rangle$ Multiplication of two CFS's Input CFSf, CFSg $CFS(f(t)*g(t),n,\omega)$, whose A_i 's and B_i 's are computed using the theory Output T4Description Input: CFSf, CFSg: operands of the multiplication Output: $CFS(f(t)*g(t),n,\omega)$: result of the multiplication Sources Same as T4 Ref. By A2, C1, and O1

Number	IM5
(IM:Division Label	Division of two CFS's
Input	CFSf, CFSg
Output	$CFS(f(t)/g(t), n, \omega)$, whose A_i 's and B_i 's are computed using the theory T5
Description	Input:
	CFSf, CFSg: operands of the division
	Output:
	$CFS(f(t) + g(t), n, \omega)$: result of the division
Sources	Same as T5
Ref. By	A2, C1, C2, O1, and O2

Number	IM6
Label Label	Function of a CFS
Input	CFSf, g(t)
Output	A CFS $g(CFSf)$, whose A_i 's and B_i 's are computed using the theory T??
Description	Input:
	g(t), a basic function chosen by user from a basic fiction set.
	CFSf: dependent variable of the function $g(t)$
	Output:
	g(CFSf): An CFS being the computed result
Sources	Same as T??
Ref. By	A1, C1, and O1

Number	IM7						
⟨IM:Amplitude Label	Amplitude of a CFS						
Input	CFSf						
Output	Amp(CFSf), computed using the theory T6						
Description	Input:						
	CFSf: variable of the amplitude function						
	Output:						
	Amp(CFSf), the amplitude of $CFSf$						
Sources	Same as T6						
Ref. By	C1, and O1						

Number IM8 $\langle {\tt IM:Tol} \begin{array}{c} {\tt eratedEquality} \rangle \\ {\tt Label} \end{array}$ Tolerated Equality Comparison of two CFS's $CFSf,\ CFSg,\ tol$ Input boolean valueTrue if $Amp(CFSf - CFSg) \leq tol$ Output boolean value False otherwise Input: Description CFSf, CFSg: operands of the tolerated equality comparison $tol \in \mathbb{R}^*$ Output: A boolean value: Whether the two operands are equal within the given error tolerance Same as T?? Sources A2, C1, and O1 Ref. By

Number	IM9						
⟨IM:ConvertTo Label	Convert data of other structures (input sources included) to a CFS						
Input	$n, \omega, n+1$ real numbers $Ain_i (i=0:n)$, and n real numbers $Bin_i (i=1:n)$						
Output	An CFS object constructed from the input data						
Description	Input: Data needed for construction						
	Output: Constructed CSF object containing the input data						
Sources	None						
Ref. By	A3, C1, C3, and O1						

Number	IM10						
(IM:ConvertFrom Label	$\stackrel{\pi}{ ho}$ Convert CFS to data of structures (output destination included						
Input	CFSf						
Output	$n, \omega, Aout_i = A_i (i = 0:n), \text{ and } Bout_i = B_i (i = 1:n)$						
Description	Input: The CFS object to convert to						
	Output: The data extracted from the input CFS object.						
Sources	None						
Ref. By	A3, C1, C3, and O1						

6.2 Assumptions

- A1: The functions f(t) and g(t) mentioned above must have definitions on $[-\pi/\omega, \pi/\omega]$, in which ω is given by the user, and they must be able to be transformed into Fourier series.
- A2: For any two-operand operations, the n and ω of these operands must be the same.
- A3: User shall allocate memory space for any variable other than CFS's in IM9 and IM10.

6.3 Calculation

_Calculation>?

- C1: Calculate the result based on the called function and input variables.
- C2: If the called function detects that the input variables do not meet the requirements, generate an error message describing the detected error.
- C3: Manage the memory spaces required by this library, and destroy them the moment they are not needed.

6.4 Output

- ?(sec_Output)? O1: Return the results faithfully.
 - O2: Report any detected errors to the user of the library.

7 Requirements

This section provides the functional requirements, the business tasks that the software is expected to complete, and the nonfunctional requirements, the qualities that the software is expected to exhibit.

7.1 Functional Requirements

- R1: The data type in the inputs f(t), A_i 's and/or B_i 's must be same as that of ω .
- R2: The floating point data type of the output must be the same one as that of the input.

7.2 Nonfunctional Requirements

- All time complexities shall be unrelated to ω .
- The time complexity of IM1 shall be $O(n^2)$ when the input function f(t) is not complex.
- The time complexity of IM2 and IM3 shall be O(n).
- The time complexity of IM4 shall be $O(n^2)$.
- The time complexity of IM5 shall be the same as the best linear equation solver applicable.
- The time complexity of IM7 and IM8 shall be O(n).

8 Likely Changes

None currently.

9 Traceability Matrices and Graphs

The following matrices and graphs demonstrates the traceability of this project. The purpose is to provide easy references to the impacts on other components if a certain component is changed. That is, if one component has been changed, other components that share an 'X' with it may need to be changed accordingly. Table 1 shows the dependencies of goals, theoretical models, data definitions, and instances models with the assumptions, calculations, and outputs.

	A1	A2	A3	C1	C2	C3	01	O2
GS1	X			X	X		X	X
GS2				X			X	
GS3		X		X	X		X	X
GS4	X			X	X		X	X
GS5			X	X		X	X	
GS6			X	X		X	X	
GS7			X				X	
GS8		X		X	X		X	X
DD1	X			X	X		X	X
DD2	X			X	X	X	X	X
DD_3				X	X		X	X
DD4		X		X	X		X	X
DD_{5}		X		X	X		X	X
DD6		X		X	X		X	X
DD7		X		X	X		X	X
DD8	X			X			X	
DD9				X			X	
T1	X			X	X		X	X
T2		X		X			X	
T3		X		X			X	
T4		X		X			X	
T5		X		X	X		X	X
T6				X			X	
IM <mark>1</mark>	X			X	X		X	X
IM2		X		X			X	
IM3		X		X			X	
IM4		X		X			X	
IM5		X		X	X		X	X
IM6	X			X			X	
IM7				X			X	
IM8		X		X			X	
IM9			X	X		X	X	
IM10			X	X		X	X	

Table 1: The traceability matrix between goals, theoretical models, data definitions, and instances models with the assumptions, calculations, and outputs 18

:Traceabilityangle

References

ith2006?

W. Spencer Smith. Systematic development of requirements documentation for general purpose scientific computing software. In *Proceedings of the 14th IEEE International Requirements Engineering Conference*, RE 2006, pages 209–218, Minneapolis / St. Paul, Minnesota, 2006. URL http://www.ifi.unizh.ch/req/events/RE06/.

A Theory for operations on CFS's

graphs. The proof of T5 comes directly from the equation [f(t)/g(t)] * g(t) = f(t).

In the following proofs, suppose we have two functions, f(t) and g(t) with existing IFS and CFS. The n and ω of these IFS's and CFS's are the same, but with different A_i 's and B_i 's (denoted with $A_{f,i}$'s, $B_{f,i}$'s and $A_{g,i}$'s, $B_{g,i}$'s respectively). From the definition of IFS, DD1, we know that

$$f(t) = \sum_{i=0}^{+\infty} A_{f,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{f,i} \sin(i\omega t), \tag{8} ? \underline{\text{Eq:fDef}}?$$

and

$$g(t) = \sum_{i=0}^{+\infty} A_{g,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{g,i} \sin(i\omega t). \tag{9} ? \underline{\text{Eq:gDef}} ?$$

Addition and Subtraction Like f(t) and g(t), we also know that

$$f(t) + g(t) = \sum_{i=0}^{+\infty} A_{f+g,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{f+g,i} \sin(i\omega t). \tag{10} ? \underline{\text{Eq:f+gDef}}?$$

By replacing f(t) and g(t) in Equation 10 with Equation 8 and Equation 9, we have

$$\sum_{i=0}^{+\infty} A_{f+g,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{f+g,i} \sin(i\omega t)$$

$$= \sum_{i=0}^{+\infty} A_{f,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{f,i} \sin(i\omega t) + \sum_{i=0}^{+\infty} A_{g,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{g,i} \sin(i\omega t)$$

$$= \sum_{i=0}^{+\infty} (A_{f,i} + A_{g,i}) \cos(i\omega t) + \sum_{i=1}^{+\infty} (B_{f,i} + B_{g,i}) \sin(i\omega t)$$

$$(11) ? \underline{\text{Eq:f+gCoeff}}?$$

By comparing the coefficients in Equation 11, we have

$$A_{f+g,i} = A_{f,i} + A_{g,i}B_{f+g,i} = B_{f,i} + B_{g,i}$$
 (12) Req:f+gConcluster (12)

for the IFS and CFS of f(t) + g(t).

Likewise, we have similar conclusions for those of f(t) - g(t).

Itiplication | From Equation 8 and Equation 9, we have

$$f(t) * g(t) = \left[\sum_{i=0}^{+\infty} A_{f,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{f,i} \sin(i\omega t)\right] * \left[\sum_{i=0}^{+\infty} A_{g,i} \cos(i\omega t) + \sum_{i=1}^{+\infty} B_{g,i} \sin(i\omega t)\right]$$
(13) {?}

which consists of the following 3 major terms

$$Term \ A: \sum_{i=0,j=0}^{+\infty} A_{f,i}A_{g,j} \cos(i\omega t) \cos(j\omega t)$$

$$= \frac{1}{2} \sum_{i=0,j=0}^{+\infty} A_{f,i}A_{g,j} \cos[(i+j)\omega t] + \frac{1}{2} \sum_{i=0,j=0}^{+\infty} A_{f,i}A_{g,j} \cos[(j-i)\omega t]$$

$$= \frac{1}{2} \sum_{i=0}^{+\infty} \sum_{j=0}^{+\infty} A_{f,i}A_{g,i-j} \cos(i\omega t) + \frac{1}{2} \sum_{j=0}^{+\infty} A_{f,i}A_{g,i} + \frac{1}{2} \sum_{i=1}^{+\infty} \sum_{j=0}^{+\infty} A_{f,j}A_{g,j+i} + \sum_{j=0}^{+\infty} A_{f,j+i}A_{g,j}] \cos(i\omega t)$$

$$= A_{f,0}A_{g,0} + \frac{1}{2} \sum_{j=0}^{+\infty} A_{f,i}A_{g,j} + \frac{1}{2} \sum_{i=1}^{+\infty} \sum_{j=0}^{+\infty} A_{f,j} + A_{g,i-j} + \sum_{j=0}^{+\infty} (A_{f,i}A_{g,j+i} + A_{f,j+i}A_{g,i})] \cos(i\omega t)$$

$$Term \ B: \sum_{i=0,j=1}^{+\infty} \left[A_{f,i}B_{g,j} \cos(i\omega t) \sin(j\omega t) + B_{g,i}A_{f,j} \sin(i\omega t) \cos(j\omega t) \right]$$

$$= \frac{1}{2} \sum_{i=0,j=1}^{+\infty} \left[A_{f,i}B_{g,j} \sin((i+j)\omega t) - A_{f,i}B_{g,j} \sin((i-j)\omega t) \right]$$

$$+ \frac{1}{2} \sum_{i=0,j=1}^{+\infty} \left[B_{g,i}A_{f,j} \sin((i+j)\omega t) + B_{g,i}A_{f,j} \sin((i-j)\omega t) \right]$$

$$= \frac{1}{2} \sum_{i=0,j=1}^{+\infty} \left[A_{f,i}B_{g,j} + B_{g,i}A_{f,j} \sin((i+j)\omega t) + \frac{1}{2} \sum_{i=0,j=1}^{+\infty} \left[B_{g,i}A_{f,j} - A_{f,i}B_{g,j} \right] \sin((i-j)\omega t) \right]$$

$$= \frac{1}{2} \sum_{i=0,j=1}^{+\infty} \left[A_{f,i-j}B_{g,j} + B_{g,i-j}A_{f,j} \right] \sin(i\omega t) - \frac{1}{2} \sum_{i=1}^{+\infty} \left[B_{g,0}A_{f,i} - A_{f,0}B_{g,i} \right] \sin(i\omega t)$$

$$= \frac{1}{2} \sum_{i=1,j=1}^{+\infty} \left[A_{f,i-j}B_{g,j} + B_{g,i-j}A_{f,j} \right] - B_{g,0}A_{f,i} + A_{f,0}B_{g,i} \right] \sin(i\omega t)$$

$$= \frac{1}{2} \sum_{i=1,j=1}^{+\infty} B_{f,i}B_{g,j} \sin(i\omega t) \sin(j\omega t)$$

$$= \frac{1}{2} \sum_{i=1,j=1}^{+\infty} B_{f,i}B_{g,j} \sin(i\omega t) \sin(j\omega t)$$

$$= \frac{1}{2} \sum_{i=1,j=1}^{+\infty} B_{f,i}B_{g,j} \cos((i\omega t) + \frac{1}{2} \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} B_{f,i+j}B_{g,i+j} \cos(i\omega t)$$

$$- \frac{1}{2} \sum_{i=1}^{+\infty} \sum_{j=1}^{i-1} B_{f,i-j}B_{g,j} \cos(i\omega t)$$

$$(14) \{7\}$$

We gather the coefficients of $\cos(i\omega t)$, i=0:n and $\sin(i\omega t)$, i=1:n respectively, remove $A_{f,k}$, $B_{f,k}$, $A_{g,k}$, and $B_{g,k}$ for any $k \geq n$ (k being either i, j, i-j, i+j, or j-1) as the result of a cut-off, and get the equation in T4.

ra:Amplitude Quoted from DD9, we have

$$Amp(CFSf) = \sqrt{\frac{\omega}{2\pi} \int_{-\pi/\omega}^{\pi/\omega} App^2(CFSf, t) dt}$$
 (15) ?Eq: Amp?

In Equation 15, replacing $App^2(CFSf,t)$ with its definition in DD3, we have

$$Amp(\mathit{CFSf}) = \sqrt{\frac{\omega}{2\pi}} \int_{-\pi/\omega}^{\pi/\omega} [\sum_{i=0}^{n} A_{f,i} \cos(i\omega t) + \sum_{i=1}^{n} B_{f,i} \sin(j\omega t)] [\sum_{j=0}^{n} A_{f,j} \cos(j\omega t) + \sum_{j=1}^{n} B_{f,j} \sin(j\omega t)] dt$$

$$(16) ?Eq:Amp1?$$

The part inside the integration in Equation 16 can be expressed as

$$\int_{-\pi/\omega}^{\pi/\omega} \sum_{i=0,j=0}^{n} A_{f,i} A_{f,j} \cos(i\omega t) \cos(j\omega t) dt$$

$$\int_{-\pi/\omega}^{\pi/\omega} \sum_{i=0,j=1}^{n} A_{f,i} B_{f,j} \sin(i\omega t) \cos(j\omega t) dt$$

$$\int_{-\pi/\omega}^{\pi/\omega} \sum_{i=1,j=0}^{n} B_{f,i} A_{f,j} \sin(i\omega t) \cos(j\omega t) dt$$

$$\int_{-\pi/\omega}^{\pi/\omega} \sum_{i=1,j=0}^{n} B_{f,i} A_{f,j} \sin(i\omega t) \cos(j\omega t) dt$$

$$\int_{-\pi/\omega}^{\pi/\omega} \sum_{i=1,j=1}^{n} B_{f,i} B_{f,j} \sin(i\omega t) \sin(j\omega t) dt$$
(17) ?Eq: AmpTerms?

Generally, the terms in Equation 17 can be classified into three categories, $\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \cos(j\omega t)$, $\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \sin(j\omega t)$, and $\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \sin(j\omega t)$. Calculation shows that their results are

$$\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \cos(j\omega t) = \begin{cases} 2\pi/\omega, & i = j = 0; \\ \pi/\omega, & i = j \neq 0; \\ 0, & i \neq j. \end{cases}$$
(18) ?Eq: coscos?

$$\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \sin(j\omega t) = 0$$
 (19) ? Eq: cossin?

and

$$\int_{-\pi/\omega}^{\pi/\omega} \cos(i\omega t) \sin(j\omega t) = \begin{cases} \pi/\omega, & i = j \\ 0, & i \neq j \end{cases}$$
 (20) ? Eq: sinsin?

Replacing terms Equation 17 with Equation 18, Equation 19, and Equation 20, and we have $\frac{2\pi}{\omega}A_0^2 + \frac{\pi}{\omega}\sum_{i=1}^n A_i^2$, 0, 0 and $\frac{\pi}{\omega}\sum_{i=1}^n B_i^2$. Putting them back into Equation 16, we have the expression in T6.