	Sep-5
Note Title	05-09-2012
	Represent floating point in binary
	$[2.96]_{d} [5 \times 10^{15}] [-1.923 \times 10^{-27}]$
	32
	1FEE 754 Std.
) FEE 104 3 EQ. (m)
	S. EXPONENT MANTISSA
	1 1 1 23
	Sign
	1 le

$$13 = 8 + 4 + 0 + 1 \qquad 1.75$$

$$2^{3} + 2^{2} + 0 + 2^{\circ} \qquad 1 + 0.5 + 0.25$$

$$2^{0} + 2^{-1} + 2^{-2}$$

$$1 + 0 + 1 \qquad 2^{0} + 2^{-1} + 2^{-2}$$
Subset of numbers of the form: 1.2
$$1.2$$

$$1 + 2^{-1}(2) + 2^{-2}(2) + \dots$$
Any Number (N) (decimal)
$$N = (1.2) \times 2^{\frac{n}{2}} (\pm 1)$$
Sign.

Sign ±1 (sign bit) (1) e - biased notation. 8 255 -127 (exp) -126

Montessa {23 bits}

	$N = (-1)^{S} 1 \cdot M \times 2^{(e-127)}$		
Specia	l case:		
J/com		lacktriangle	
	e = 0 , $m = 0$	<i>O</i>	
(S:	=0, C=255, M=0	₩	
	1 0 70 55 00 - 4	- 60	
75=	1, e=255, m=0		
	c = 255, m≠0	NAN {NANTA	
	7,170	=NAn	
		MANX 2	
		= N	
	e=0 m≠0	Denormal	

Smallest:
$$1 \cdot 0 \cdot \cdot \cdot \cdot 0 \times 2^{-12\ell} = 2^{-12\ell}$$

(Normal)

$$\begin{cases}
\chi = 2^{-12\ell} \\
23
\end{cases}$$
Priog. If $(2/2 > 0)$

print ("hi");

Denormal number:

$$(-1)^{5} \quad 0. \quad M \times 2^{-12\ell}$$
Largest denormal number:
$$(+ \vee e)$$

$$\left\{ 2^{-12} \left(-2^{-149} \right) \right\}$$

Smallest (+ve) denormal number: 2-149

$$\frac{|2^{-126}|^{2^{-126}}}{|2^{-149}|^{2^{-126}}-2^{-149}}$$

(A2>0) Is, printf (2+02-2); $7 = 2^{-149}$ if (n/2 70)
pruntf ("hi"); float -> 32 bits double -> 64 bits double. m exp= e - 1023