

DEPARTMENT OF COMPUTING, MATHEMATICS AND PHYSICS

Problem. In this problem, we will analyze the truncation error in Euler's method. You may want to review the relevant material in the textbook first (page 99 - 102).

Consider the IVP

$$y' = f(x, y) = e^{-y^2}, \quad y(0) = y_0$$

1. Find an upper bound of |f(x,y)|.

2. Find an upper bound of $|f_x(x,y)|$ and $|f_y(x,y)|$ respectively.

3. Find an upper bound M of $|f_x(x,y) + f_y(x,y)f(x,y)|$.

4. Use Taylor's Theorem to find an R such that

$$|f(x_i, y(x_i)) - f(x_i, y_i)| \le R|e_i|$$

5. Let
$$b=1,$$
 and $h=\frac{b-0}{n}=\frac{1}{n}.$ Find a K such that

$$|y(b) - y_n| \le Kh$$

6. Lastly, in order for the truncation error to be less than 0.01, how great does n need to be?