MATE 6540: Topology Qualifying Exam

Due on 19 de mayo Prof. Iván Cardona , C41, 19 de mayo

Sergio Rodríguez

Problem 0

A topological space (X, \mathcal{T}_X) is pseudocompact \iff every continuous function $f: (X, \mathcal{T}_X) \to (\mathbb{R}, \mathcal{T}_{\varepsilon^1})$ is bounded. Here $\mathcal{T}_{\varepsilon^1}$ is the usual topology over \mathbb{R} .

- (i) Show that pseudocompactness is a continuous invariant. Explain.
- (ii) Show that if (Y, \mathcal{T}_Y) is compact, then (Y, \mathcal{T}_Y) is pseudocompact, but that the converse does not hold.

Proof (i):

Let (X,\mathcal{T}_x) be a pseudocompact topological space, and let $\varphi:(X,\mathcal{T}_X) \to \left(\varphi(X),\mathcal{T}_{\varphi(X)}\right)$ be a continuous function. Now let $f:\left(\varphi(X),\mathcal{T}_{\varphi(X)}\right) \to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ be a continuous function. Then $(f\circ\varphi):(X,\mathcal{T}_X)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ is continuous. But (X,\mathcal{T}_X) is pseudocompact, so $f\circ\varphi$ is bounded $\Longrightarrow f$ is bounded. Then $\left(\varphi(X),\mathcal{T}_{\varphi(X)}\right)$ is pseudocompact.

: pseudocompactness is a continuous invariant.

MEP

Proof (ii):

We claim that (Y, \mathcal{T}_Y) compact $\Longrightarrow (Y, \mathcal{T}_Y)$ pseudocompact, we show the contrapositive.

Suppose that (Y,\mathcal{T}_Y) is not pseudocompact, then there exists a continuous function $f:(Y,\mathcal{T}_Y)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ that is unbounded. Then f(Y) extends infinitely in at least one direction. Suppose, without loss of generality, that it extends infinitely to the right. Then $f(Y)\subseteq (a,+\infty)$, for some $a\in\mathbb{R}\cup\{-\infty\}$. Now define the family $\{(a,i)\}_{n=1}^\infty$ and note that: $\bigcup_{i=1}^\infty (a,i)=(a,+\infty)\supseteq f(Y)$. But note that $(a,i)\in\mathcal{T}_{\varepsilon^1}, \forall i\in\mathbb{N}\Longrightarrow f^{-1}((a,i))\in\mathcal{T}_Y, \forall i\in\mathbb{N}$ because f is continuous. And:

$$\bigcup_{i=1}^{\infty} f^{-1}((a,i)) = f^{-1}\left(\bigcup_{i=1}^{\infty} (a,i)\right) = f^{-1}((a,+\infty)) \supseteq f^{-1}(f(Y)) \supseteq Y \tag{1}$$

This implies that the collection $C \coloneqq \left\{ f^{-1}((a,i)) \cap Y \mid i \in \mathbb{N} \right\}$ is an open cover for Y, but note that, for any finite subcollection $C' \coloneqq \left\{ f^{-1}\left(\left(a,i_j\right)\right) \mid i_j \in \mathbb{N}, \ \forall j \in \{1,...,n\} \right\} \subseteq C$, there exists a natural number n such that i_n is an upper bound of C'. But f(Y) extends infinitely to the right, so C' cannot be an open cover for Y.

 $\therefore (Y, \mathcal{T}_{Y})$ is not compact.

Now we show that the converse does not hold.

Problem 1

(Kuratowski's closure operator) Let X be a set, $\mathcal{P}(X)$ be its powerset, and $c: \mathcal{P}(X) \to \mathcal{P}(X)$ be a function that satisfies:

(i)
$$c(\emptyset) = \emptyset$$

(ii)
$$A \subseteq c(A), \forall A \in \mathcal{P}(X)$$

(iii)
$$c(c(A)) = c(A), \forall A \in \mathcal{P}(X)$$

(iv)
$$c(A \cup B) = c(A) \cup c(B), \forall A, B \in \mathcal{P}(X)$$

Show that the collection $\mathcal{T} = \{X \setminus c(A) \mid A \in \mathcal{P}(X)\}$ is a topology over X, and that in this topology $\overline{A} = c(A), \ \forall A \in \mathcal{P}(X)$. Here \overline{A} is the closure of A in (X, \mathcal{T}) .

Proof:

We claim that $\emptyset, X \in \mathcal{T}$.

Note that $c(X) \in \mathcal{P}(X)$ and $X \in c(X)$ imply that c(X) = X. Then $X \setminus c(X) = X \setminus X = \emptyset \in \mathcal{T}$. Similarly, note that $c(\emptyset) = \emptyset \Longrightarrow X \setminus c(\emptyset) = X \setminus \emptyset = X \in \mathcal{T}$.

 $\therefore \emptyset, X \in \mathcal{T}.$

We claim that \mathcal{T} is closed under arbitrary unions.

Take $\left\{U_{\alpha}\right\}_{\alpha\in\Lambda}\subseteq\mathcal{T}_{X}$. We show that $U:=\bigcup_{\alpha\in\Lambda}U_{\alpha}\in\mathcal{T}_{X}$. Note that $\forall\alpha\in\Lambda,\exists V_{\alpha}\in\mathcal{P}(X)$ such that $U_{\alpha}=X\setminus c(V_{\alpha})$. Then $U=\bigcup_{\alpha\in\Lambda}(X\setminus c(V_{\alpha}))=X\setminus\bigcap_{\alpha\in\Lambda}c(V_{\alpha})$

We claim that \mathcal{T} is closed under finite intersections.

Take $U, V \in \mathcal{T}$, then $\exists A, B \in \mathcal{P}(X)$ such that $U = X \setminus c(A)$ and $V = X \setminus c(B)$. Then:

$$U \cap V = (X \setminus c(A)) \cap (X \setminus c(B))$$

$$= X \setminus (c(A) \cup c(B))$$

$$= X \setminus c(A \cup B) \in \mathcal{T}$$
(2)

 $: U \cap V \in \mathcal{T}.$

 $\therefore \mathcal{T}$ is closed under finite intersections, by induction.

We claim that $\overline{A} = c(A), \quad \forall A \in \mathcal{P}(X).$

Problem 2

Let A be a subset of a topological space (X, \mathcal{T}_X) . Show that the following are equivalent:

$$(i)\inf\bigl(\overline{A}\bigr)=\emptyset.$$

(ii) $X \setminus \overline{A}$ is dense in X.

$$\textit{(iii)}\ X \smallsetminus \left(X \smallsetminus \overline{A}\right) = \emptyset.$$

$$(iv) A \subseteq \overline{(X \setminus \overline{A})}.$$

Proof:

$$((i) \Longrightarrow (ii))$$

Suppose that $\mathtt{int}\left(\overline{A}\right) = \bigcup \left\{U \in \mathcal{T}_X \mid U \subseteq \overline{A}\right\} = \emptyset$. Note that $\overline{\left(X \setminus \overline{A}\right)} \subseteq X$. We claim that $X \subseteq \overline{\left(X \setminus \overline{A}\right)}$. Take $x \in X$ and $U \in \mathcal{T}_X$ such that $x \in U$. Then $U \neq \emptyset$. Now suppose that $U \subseteq \overline{A}$, then $U \subseteq \bigcup \left\{U \in \mathcal{T}_X \mid U \subseteq \overline{A}\right\} = \emptyset \Longrightarrow U = \emptyset$, which is a contradiction. \bigstar

Then $U \cap (X \setminus \overline{A}) \neq \emptyset \Longrightarrow x \in \overline{(X \setminus \overline{A})} \Longrightarrow X \subseteq \overline{(X \setminus \overline{A})}$.

$$\therefore \overline{\left(X \setminus \overline{A}\right)} = X.$$

 $\therefore X \setminus \overline{A}$ is dense in X.

 $((ii) \Longrightarrow (iii))$

Suppose that $X \setminus \overline{A}$ is dense in X, then $\overline{(X \setminus \overline{A})} = X$ by definition.

Then $X \setminus (X \setminus \overline{A}) = X \setminus X = \emptyset$.

$$\therefore X \smallsetminus \overline{\left(X \smallsetminus \overline{A}\right)} = \emptyset.$$

 $((iii) \Longrightarrow (iv))$

Suppose that $X \setminus \overline{\left(X \setminus \overline{A}\right)} = \emptyset$. Then $\overline{\left(X \setminus \overline{A}\right)} = X$. But $A \subseteq X$ by hypothesis.

$$\therefore A \subseteq \overline{\left(X \setminus \overline{A}\right)}$$

$$((iv) \Longrightarrow (i))$$

Suppose that $A\subseteq \overline{\left(X\setminus\overline{A}\right)}$. Take $x\in A$, then $x\in \overline{\left(X\setminus\overline{A}\right)}$. Now take $U\in \mathcal{T}_X$ with $x\in U$, then $U\cap \left(X\setminus\overline{A}\right)\neq\emptyset\Longrightarrow U\subseteq$

Problem 3

A subset of a topological space is a G_{δ} -set if it is the intersection of countably many open sets. On the other hand, a subset of a topological space is an F_{δ} -set if it is the union of countably many closed sets.

(i) Let A be an F_{δ} -set of a topological space (X,\mathcal{T}_X) . Show that there is a nested sequence of closed sets $C_1\subseteq C_2\subseteq C_3\subseteq ...$ such that $A=\bigcup_{i=1}^{\infty}C_i$.

(ii) Show that every closed set in a metric space (X,d) is a G_δ -set.

Problem 4

Let A, B be two non-empty subsets of \mathbb{R} with the usual topology. Define:

$$C := \{ x + y \mid x \in A \land y \in B \}. \tag{3}$$

- (a) Show that, if A or B is open, then C is open.
- (b) Show that, if A and B are compact, then C is compact.

Proof (a):

Suppose, without loss of generality, that $A \in \mathcal{T}_{\varepsilon^1}$. Now take $(x+y) \in C$, then $x \in A$, which is open, so $\exists \delta \in (0,\infty)$ such that $(x-\delta,x+\delta) \subseteq A$.

We claim that $D := ((x+y) - \delta, (x+y) + \delta) \subseteq C$.

Take $d \in D$, then:

$$(x+y) - \delta < d < (x+y) + \delta$$

$$\Rightarrow x - \delta < d - y < x + \delta$$

$$\Rightarrow (d-y) \in (x - \delta, x + \delta) \subseteq A$$

$$\Rightarrow ((d-y) + y) \in C$$

$$\Rightarrow d \in C$$

$$(4)$$

- $: D \subseteq C$
- \therefore C is open.

MEP

Problem 5

(Intermediate value theorem) Let $f:(X,\mathcal{T}_X)\to (\mathbb{R},\mathcal{T}_{\varepsilon^1})$ be a continuous function, where (X,\mathcal{T}_X) is connected. Show that if a,b are two points in X and if r is a real number lying between f(a) and f(b), then there is $a\in X$ such that f(c)=r.

Proof:

Note that $f^{-1}(\mathbb{R}) = X$. Now, suppose, by contradiction, that $\nexists c \in X$ such that f(c) = d. Then the previous equation still holds when you remove d from \mathbb{R} . That is:

$$f^{-1}(\mathbb{R}\setminus\{d\})=f^{-1}((-\infty,d)\cup(d,+\infty))=X \tag{5}$$

Now, let $A := f^{-1}((-\infty, d))$, and $B := f^{-1}((d, +\infty))$, and note that:

(i)
$$a \in A \implies A \neq \emptyset \land b \in B \implies B \neq \emptyset$$

(ii)
$$A \cup B = f^{-1}((-\infty, d)) \cup f^{-1}((d, +\infty))$$

= $f^{-1}((-\infty, d) \cup (d, +\infty)) = X$ (6)

$$\begin{array}{ll} \text{(iii)} & A\cap B=f^{-1}((-\infty,d))\cap f^{-1}((d,+\infty))\\ &=f^{-1}((-\infty,d)\cap (d,+\infty))=f^{-1}(\emptyset)=\emptyset \end{array}$$

Then $\{A, B\}$ forms a separation for X, which is a contradiction. X

 $\therefore \exists c \in \mathbb{R} \text{ such that } f(c) = d.$

MEP

Problem 6

Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and suppose $X_1 \times X_2$ has the product topology. For each i = 1, 2, let $A_i \subseteq X_i$. Prove that:

(i)
$$\overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2}$$
.

(ii)
$$\operatorname{int}(A_1 \times A_2) = \operatorname{int}(A_1) \times \operatorname{int}(A_2)$$
.

Lemma 1:

Let C_1, C_2, D_1, D_2 be sets. Then $(C_1 \times C_2) \cap (D_1 \times D_2) = (C_1 \cap D_1) \times (C_2 \cap D_2)$.

Proof:

Note that:

$$(x,y) \in (C_1 \times C_2) \cap (D_1 \times D_2)$$

$$\iff (x,y) \in (C_1 \times C_2) \wedge (x,y) \in (D_1 \times D_2)$$

$$\iff (x \in C_1 \wedge y \in C_2) \wedge (x \in D_1 \wedge y \in D_2)$$

$$\iff (x \in C_1 \wedge x \in D_1) \wedge (y \in C_2 \wedge y \in D_2)$$

$$\iff x \in (C_1 \cap D_1) \wedge y \in (C_2 \cap D_2)$$

$$\iff (x,y) \in (C_1 \cap D_1) \times (C_2 \cap D_2)$$

$$(7)$$

$$\div (C_1 \times C_2) \cap (D_1 \times D_2) = (C_1 \cap D_1) \times (C_2 \cap D_2)$$

Proof (i):

Take $(x,y)\in \overline{A_1\times A_2}$, and take $U_1\in \mathcal{T}_1, U_2\in \mathcal{T}_2$ such that $x\in U_1$ and $y\in U_2$. Then $(x,y)\in U_1\times U_2$ and $U_1\times U_2\in \mathcal{T}_\Pi$ by the definition of the product topology (for finite products). But:

$$(x,y) \in \overline{A_1 \times A_2} \Longrightarrow (U_1 \times U_2) \cap (A_1 \times A_2) \neq \emptyset$$

$$\Longrightarrow \exists (x',y') \in (U_1 \times U_2) \cap (A_1 \times A_2)$$

$$\Longrightarrow (x',y') \in (U_1 \cap A_1) \times (U_2 \cap A_2)$$

$$\Longrightarrow x' \in U_1 \cap A_1 \wedge y' \in U_2 \cap A_2$$

$$\Longrightarrow U_1 \cap A_1 \neq \emptyset \wedge U_2 \cap A_2 \neq \emptyset$$

$$\Longrightarrow x \in \overline{A_1} \wedge y \in \overline{A_2}$$

$$\Longrightarrow (x,y) \in \overline{A_1} \times \overline{A_2}$$

$$(8)$$

$$\stackrel{...}{...} \overline{A_1 \times A_2} \subseteq \overline{A_1} \times \overline{A_2}$$

Similarly, take $(a,b) \in \overline{A_1} \times \overline{A_2}$, and take $U_1 \times U_2 \in \mathcal{T}_\Pi$ such that $(a,b) \in U_1 \times U_2$.

Then $a \in U_1 \in \mathcal{T}_1$ and $b \in U_2 \in \mathcal{T}_2$ by the definition of the product topology (for finite products). But:

$$(a,b) \in \overline{A_1} \times \overline{A_2} \Longrightarrow a \in \overline{A_1} \wedge b \in \overline{A_2}$$

$$\Longrightarrow U_1 \cap A_1 \neq \emptyset \wedge U_2 \cap A_2 \neq \emptyset$$

$$\Longrightarrow \exists a' \in U_1 \cap A_1 \wedge \exists b' \in U_2 \cap A_2$$

$$\Longrightarrow (a',b') \in (U_1 \cap A_1) \times (U_2 \cap A_2)$$

$$\Longrightarrow (a',b') \in (U_1 \times U_2) \cap (A_1 \times A_2)$$

$$\Longrightarrow (U_1 \times U_2) \cap (A_1 \times A_2) \neq \emptyset$$

$$\Longrightarrow (a,b) \in \overline{A_1 \times A_2}$$

$$(9)$$

$$\begin{split} & \therefore \overline{A_1} \times \overline{A_2} \subseteq \overline{A_1 \times A_2} \\ & \therefore \overline{A_1 \times A_2} = \overline{A_1} \times \overline{A_2} \end{split}$$

MEP

Proof (ii):

Note that, for any subset B of a topological space (Y, \mathcal{T}_Y) , we have that $z \in \text{int}(B) \iff \exists U \in \mathcal{T}_Y \text{ such that } z \in U \subseteq B.$ Here's a brief proof:

Take $z \in \mathtt{int}(B) = \bigcup \{V \in \mathcal{T}_Y \mid V \subseteq B\} \subseteq B$. This proves (\Longrightarrow) . Now suppose $\exists U \in \mathcal{T}_Y$ such that $z \in U \subseteq B$, then $U \in \bigcup \{V \in \mathcal{T}_Y \mid V \subseteq B\} = \mathtt{int}(B)$. This proves (\Leftarrow) .

Now for the main proof. Take $(x,y)\in \mathrm{int}(A_1\times A_2)$, then $\exists U_1\times U_2\in \mathcal{T}_\Pi$ such that $(x,y)\in U_1\times U_2\subseteq A_1\times A_2\Longrightarrow x\in U_1\subseteq A_1$ and $y\in U_2\subseteq A_2\Longrightarrow x\in \mathrm{int}(A_1)$ and $y\in \mathrm{int}(A_2)$. Then $(x,y)\in \mathrm{int}(A_1)\times \mathrm{int}(A_2)$.

$$\therefore \mathtt{int}(A_1 \times A_2) \subseteq \mathtt{int}(A_1) \times \mathtt{int}(A_2).$$

Now take $(a,b) \in \operatorname{int}(A_1) \times \operatorname{int}(A_2)$, then $a \in \operatorname{int}(A_1)$ and $b \in \operatorname{int}(A_2) \Longrightarrow \exists U_1 \in \mathcal{T}_1$ such that $a \in U_1 \subseteq A_1$ and $\exists U_2 \in \mathcal{T}_2$ such that $b \in U_2 \subseteq A_2$. Then $(a,b) \in U_1 \times U_2 \subseteq A_1 \times A_2$, which implies that $(a,b) \in \operatorname{int}(A_1 \times A_2)$.

$$\therefore \mathtt{int}(A_1) \times \mathtt{int}(A_2) \subseteq \mathtt{int}(A_1 \times A_2).$$

$$\div \operatorname{int}(A_1 \times A_2) = \operatorname{int}(A_1) \times \operatorname{int}(A_2).$$

MEP