Shanmukha **Saketha Ramanujam** S

☐ +1 480-939-9701 • ☑ ssamaved@asu.edu • ⓒ https://sakethramanujam.me

Education

M.S. by Thesis in Electrical Engineering

Concentration: RF Engineering Expected graduation: Fall 2022

CGPA: 3.0/4.0

Bachelor of Technology G.V.P.C.E (A), Vizag, IN

Concentration: Electronics and Communications Engineering 2019

CGPA: 7.92/10

Relevant Graduate Coursework

mmWave and THz Measurements • Microwave Engineering • Antenna Analysis and Design • Coherent Optics

Technical Skills

Languages: Python • Shell • C • MATLAB • JavaScript **Platforms:** Linux ■ Arduino ■ Raspberry Pi ■ Pocketbeagle

Tools: HFSS - ADS - LabView - Eagle - Oscilloscope - Multimeter

Professional Experience

Student Researcher | Terahertz Research Lab, A.S.U.

Summer 2021 - Present

A.S.U., Tempe, AZ

Technologies: Radar Imaging, Beam-forming, MATLAB, Python

- o Working on solving challenges with non-line of sight imaging capabilities using milli-meter wave radars.
- Developing real time scene and image correction algorithms for Non Line of Sight imaging.

Graduate Services Assistant | Calhoun Lidar Lab, A.S.U.

Summer 2021

Technologies: MEMS LiDAR, APDs, Arduino, Python

- o Designing and prototyping sub systems for Micro Electro Mechanical System based navigation LIDAR using Single Photon Avalanche Photo Diodes, Pulsed lasers and Time Digital Converters.
- o Troubleshooting commercial off the shelf laser range finding systems.
- Managing an inter-disciplinary Engineering Team of 3 at the lab.

Project Associate | Scientific and Industrial Research Centre, G.V.P.

Dec 2019 - Dec 2020

Technologies: Python, C, LabView, MATLAB, Eagle, Statistical Inference

- Designed and implemented a trans-impedance amplifier using AD704 in Autodesk Eagle.
- o Developed, deployed, signal conditioning, processing algorithms for near real time evaluation of output parameters in Photonic System(s), published technical reports for Commercial Technology Partners.

Academic Projects

Non Line of Sight Imaging with mmWave Cascaded Radar

Fall 2021 - Ongoing

Automating Calibration, static and real-time imaging using TI AWR 2243 Millimeter Wave Cascaded Radar sensor, developing image processing algorithms for non-line of sight imaging. (Dissertation Area)

FM Radio with GNU Radio Companion

Summer 2021

Tunable FM Receiver using software defined radio dongle, with flow graph generated in GNU Radio Companion. **Simulation of an RF Cavity Resonator** [GitHub] Spring 2021

Designed and simulated a Radio Frequency Resonant Cavity resonator centered at 9GHz, in ANSYS HFSS for study of TEM Waves for driving RF Power in Linear Accelerators.

2 Axis Scanned LiDAR with Arduino [GitHub]

Summer 2021

Built a 2-axis scanned Lidar with real-time 3D visualization support using Arduino, servo motors and GARMIN Lidar Lite. Fall 2020 Py-Ar MQxx [GitHub]

MQ2, MQ5, MQ9, MQ135 (gas sensors) sensor integration with Arduino to data to for real time monitoring.

Academic Achievement(s)

o Awarded with Masters Opportunity for Research in Engineering (ASU MORE) Grant for Fall 2021.