Problem Set 7

- 1. Give FO or MSO formulae for the languages of the following expressions.
 - (a) a^+b^*
 - (b) aab^*aa
 - (c) there are at least 3 occurrences of b, and before the first b, there are at most two occurrences of a
 - (d) $\{w \in \{a, b\}^* \mid w \text{ has equal number of } a \text{ and } b\}$
- 2. Let $L_n = \{x \mid x \text{ is a binary number that is a multiple of } n\}$. Show that for all $n \geq 1$, L_n can be captured by an MSO formula.
- 3. A star free expression is a regular expression built from atoms $\epsilon, a \in \Sigma, \emptyset$ using only the operations \cdot for concatenation, + for union, \cap for intersection and \neg for complementation. The language L(r) defined by such an expression r is called star-free.

As an example, Σ^* is star-free since it can be written as $\neg \emptyset$. Show that the following are star free, and in each case verify that you can write an FO formula for each.

- $-a^+$ $-b(ab)^*$
- 4. Call $L \subseteq \Sigma^+$ non counting if

$$\exists n_0 \forall n > n_0 \forall u, v, w \in \Sigma^*(uv^n w \in L \Leftrightarrow uv^{n+1} w \in L)$$

That is for all $n \geq n_0$, either all $uv^n w$ are in L, or none is.

A language L is counting iff it is not non counting.

- Formulate the condition for a counting language
- Is $L = (aa)^+$ counting or not?
- Is $L = (ab)^+$ counting or not?
- 5. Consider the formula

```
\varphi = \exists x \forall y (x \leq y \land Q_a(x)) \land \exists x \forall y (y \leq x \land Q_a(x)) \land \exists x (Q_b(x)) \land \forall x \forall y (S(x,y) \leftrightarrow \neg (Q_a(x) \land Q_a(y))) \land \forall x \forall y (S(x,y) \leftrightarrow \neg (Q_b(x) \land Q_b(y))) Using the logic to automaton construction, construct a DFA A_{\varphi} such that L(\varphi) = L(A_{\varphi}).
```