

Deep Feature Interpolation for Image Content Change

Steven Lang, Manfred Faldum

February 6, 2017

Motivation

Basic Idea

Steven Lang, Manfred Faldum

Motivation

► Right picture: add attribute in pixel-space

Motivation

- Right picture: add attribute in pixel-space
- New idea: add attribute in deep-feature-space

Basic Idea

How to get the attribute in deep-feature-space?

Let $\phi(x)$ be the mapping from pixel-space into deep-feature-space by concatenating some layers

Basic Idea

- ▶ Take k nearest neighbor images with existing attribute: S^+
- \blacktriangleright Take k nearest neighbor images with missing attribute: S^-
- $lack \phi^+ = \phi(S^+)$ and $\phi^- = \phi(S^-)$
- lacksquare Build the mean $\overline{\phi^+}$ and $\overline{\phi^-}$
- Representation of attribute $w = \overline{\phi^+} \overline{\phi^-}$

Basic Idea

How to get the output picture?

- ightharpoonup Reverse mapping of $\phi(z)$ into pixel space
- $\tilde{\mathbf{z}} = \underset{\tilde{\mathbf{z}}}{\operatorname{argmin}} \frac{1}{2} ||\phi(\mathbf{z}) \phi(\tilde{\mathbf{z}})||_2^2 + \lambda R_{\beta}(\tilde{\mathbf{z}})$
- ▶ with $R_{\beta}(\tilde{z}) = \sum_{i,j} ((\tilde{z}_{i,j+1} \tilde{z}_{i,j})^2 + (\tilde{z}_{i+1,j} \tilde{z}_{i,j})^2)^{\frac{\beta}{2}}$

Practical

Deep Feature Interpolation

- ▶ Model VGG 19 trained on LFW dataset
- ▶ Used for $\phi(x)$ the third, fourth and fifth Relu Layer
- lacktriangle For regularization used eta=2 and $\lambda=0.001$