Existence and non-existence of physical measures for doubly intermittent maps

Stefano Luzzato ICTF

November 28, 2024

Abstract We introduce a large class of one-dimensional map in the topological conjugacy class of 2x mod1 but exhibiting a variety of ergodic behaviours, such as the existence of invariant probability measures equivalent to Lebesgue, Dirac-delta physical measures and, perhaps most interestingly, non-existence of physical measure. This class generalises the standard well known and well studied PomeauManneville and Liverani-Saussol0-Vaienti maps.

Contents

1 Physical measures 1

2 Exemplos 2

1 Physical measures

X compact measure space, m a reference measure, $f: X \to X$, $x \in X$.

$$e_n(x) := \frac{1}{n} \sum_{n=0}^{n-1} \delta_{f^i(x)}$$

é a sequência canônica de empirical measures.

Se $e_n(x)$ converge a μ . Então μ descreve a *estadística* de x. O *basin* de $\mu \mathcal{B}_{\mu}$ é o conjunto de pontos $x \in X$ tal que $e_n(x) \to \mu$. μ é uma *physical measure* se $\mathfrak{m}(\mathcal{B}_{\mu}) > 0$.

Question O que acontece se $e_n(x)$ não converge?

Devem existir duas medidas μ , ν e n_i , $n_j \to \infty$ tais que $e_{n_i}(x) \to \mu$ e $e_{n_j} \to \nu$. Dizemos que x tem um comportamento $n\tilde{a}o$ estadístico. Se m é tal que quase todo ponto é não estadístico, m é $n\tilde{a}o$ estadística.

2 Exemplos

Bota muitos zeros, depois muito mais uns, depois muuuito mais zeros...