AE 308: Control Theory AE 775: System Modelling, Dynamics and Control

Lecture 13: Frequency Response

Dr. Arnab Maity

Department of Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076, India

Table of Contents

- Introduction
- 2 Frequency Response
- First Order System
- 4 Second Order System
- Bode Plots

Introduction

• Consider a system acted upon by a **sinusoidal input**, as shown below.

Figure: Source - "Cartoon Tour Of Control Theory" by S. M. Joshi

With sinusoidal input we get,

$$Y(s) = G(s) \frac{\omega_0}{s^2 + \omega_0^2}$$

Introduction - Sinusoidal Input

Sinusoidal Input

- Apart from impulse, step, ramp and parabolic inputs, used as test signals, dynamical systems also experience, harmonic inputs quite frequently
- For example, excitations arising from reciprocating engines, rotating machines, ground/airborne vibrations etc. create harmonic forces.
- Frequency response concept aims to characterize the behaviour of LTI systems to such inputs.

Table of Contents

- Introduction
- Prequency Response
- First Order System
- 4 Second Order System
- Bode Plots

Frequency Response

We have,

$$Y(s) = G(s) \frac{\omega_0}{s^2 + \omega_0^2}, \quad G(s) = \frac{N(s)}{(s - p_1)(s - p_2)...(s - p_n)}$$

Using partial fraction decomposition,

$$Y(s) = \frac{a}{s+j\omega} + \frac{\bar{a}}{s-j\omega} + \sum_{j=1}^{n} \frac{b_j}{s-p_j}$$

• Taking Inverse Laplace, we obtain

$$y(t) = ae^{-jwt} + \bar{a}e^{jwt} + \sum_{j=1}^{n} b_j e^{p_j t}$$

Example: Determine the response of the following system subjected to the input $u(t) = \sin(10t)$

$$G(s) = \frac{1}{s+1}$$

Example: Determine the response of the following system subjected to the input $u(t) = \sin(10t)$

$$G(s) = \frac{1}{s+1}$$

Solution:

Response is given by,

$$Y(s) = G(s)U(s) = \left(\frac{1}{s+1}\right) \left(\frac{10}{s^2 + 100}\right)$$

Apply partial fraction,

$$Y(s) = \frac{\alpha_1}{s+1} + \frac{\alpha_0}{s+j10} + \frac{\alpha_0^*}{s-j10}$$

• After solving we get, $\alpha_1 = \frac{10}{101}, \alpha_0 = \frac{j}{2(1-j10)}, \alpha_0^* = \frac{-j}{2(1+j10)},$

$$Y(s) = \frac{\frac{10}{101}}{s+1} + \frac{\frac{j}{2(1-j10)}}{s+j10} + \frac{\frac{-j}{2(1+j10)}}{s-j10}$$

Taking inverse Laplace,

$$y(t) = y_1(t) + y_2(t) = \frac{10}{101}e^{-t} + \frac{1}{\sqrt{101}}\sin(10t + \phi)$$
$$\phi = \tan^{-1} -10 = -84.2^{\circ}$$

 $y_1(t)$ is called transient response and $y_2(t)$ is steady state response

Steady-state response 0.8 u(t)0.6 Jutput, input 0.2 v(t)-0.2 $\leftarrow \delta t \rightarrow$ -0.4-0.6-0.8Time (sec)

Figure: Transient Response

Figure: Steady State Response

Source - "Feedback Control of Dynamic Systems" by Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini

Frequency Response - Analysis

Analysis of i/p and o/p

Input,

$$x(t) = X \sin \omega t$$

Output,

$$y(t) = Y\sin(\omega t + \phi)$$

Magnitude and Phase are,

$$Y = X|G(j\omega)|$$

$$\phi = \angle G(j\omega)$$

Frequency Response - Features

Features

- Ratio of output and input waveform, gives $|G(j\omega)|$
- Measuring the phase difference between output and input waveform, gives $\angle G(j\omega)$.
- These are the magnitude and phase of the system TF, G(s), evaluated at $s=\pm j\omega$.

Frequency Response

$$|G(j\omega_0)| = lnagnitude of G(j\omega_0) = \sqrt{Realpart} + (lnag.pr)$$

 $\phi = phase of G(j\omega_0) = tan^{-1} \left[\frac{Imag.partofG(j\omega_0)}{Realpart ofG(j\omega_0)} \right]$

The plots of |G(iw)| and \$\phi\$, versus \$\Omega\$, are called the "frequency response" of the system.

Figure: Source - "Cartoon Tour Of Control Theory" by S.M. Joshi

Table of Contents

- Introduction
- 2 Frequency Response
- First Order System
- 4 Second Order System
- Bode Plots

First Order System - Frequency Response

Example: Consider the following system and obtain its magnitude and phase at $\omega=0,\pm\infty$

$$G(s) = \frac{K}{s+p}$$

First Order System - Frequency Response

Example: Consider the following system and obtain its magnitude and phase at $\omega=0,\pm\infty$

$$G(s) = \frac{K}{s+p}$$

Solution:

• Substitute $s = j\omega$,

$$G(j\omega) = \frac{K}{j\omega + p}$$

Magnitude,

$$|G(j\omega)| = \frac{K}{|j\omega + p|} = \frac{K}{\sqrt{\omega^2 + p^2}}$$

Phase,

$$\angle G(j\omega) = \angle K - \angle (j\omega + p) = 0 - \tan^{-1}(\omega/p) = -\tan^{-1}(\omega/p)$$

First Order System - Response Analysis

Response Analysis

• It can be seen that,

$$|G(j\omega)| = \begin{cases} (K/p) & \omega = 0\\ 0 & \omega = \pm \infty \end{cases}$$

Thus, for systems with poles lying on the origin (type ≥ 1), the magnitude becomes infinite for $\omega = 0$.

Also,

$$\angle G(j\omega) = \begin{cases} 0 & \omega = 0 \\ -90^{\circ} & \omega = +\infty \\ +90^{\circ} & \omega = -\infty \end{cases}$$

Table of Contents

- Introduction
- 2 Frequency Response
- First Order System
- Second Order System
- Bode Plots

Second Order System - Frequency Response

Example: Consider the following system and obtain its magnitude and phase at $\omega=0,\omega_n,\infty$

$$G(s) = \frac{K}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Second Order System - Frequency Response

Example: Consider the following system and obtain its magnitude and phase at $\omega=0,\omega_n,\infty$

$$G(s) = \frac{K}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Solution:

• Substitute $s = j\omega$,

$$G(j\omega) = \frac{K}{(j\omega)^2 + j2\zeta\omega_n\omega + \omega_n^2}$$

Magnitude,

$$|G(j\omega)| = \frac{K}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\zeta\omega_n\omega)^2}}$$

Phase,

$$\angle G(j\omega) = -\angle \left((j\omega)^2 + j2\zeta\omega_n\omega + \omega_n^2 \right) = -\tan^{-1}\left(\frac{2\zeta\omega_n\omega}{(\omega_n^2 - \omega^2)} \right)$$

Second Order System - Response Analysis

Response Analysis

It can be seen that,

$$|G(j\omega)| = \begin{cases} (K/2\zeta\omega_n^2) & \omega = \omega_n \\ (K/\omega_n^2) & \omega = 0 \\ 0 & \omega = \infty \end{cases}$$

Also,

$$\angle G(j\omega) = \begin{cases} 0 & \omega = 0 \\ -90^{\circ} & \omega = \omega_n \\ -180^{\circ} & \omega = \infty \end{cases}$$

Frequency Response - Observations

What do you observe?

Frequency Response - Observations

Observations

- \bullet We see from preceding examples that frequency response features depend on G(s), and also show varied characteristics over the applicable frequency range.
- Thus, it appears logical to explore the variation of $G(j\omega)$ over the complete range of ' ω ', i.e. from '0' to ' ∞ '.
- In this context, it is worth noting that, while we can get analytical expressions for |G(jw)| and $\angle G(jw)$, these tend to become unwieldy as system order increases.
- In view of the above, **graphical representations** are employed for better overall view of the response.

Frequency Response - Graphical Representation

Graphical Representation

- Among the many possible ways of graphically representing the frequency response, Bode and Nyquist plots are the most commonly employed forms.
- An important added advantage of these representations is the possibility of visualizing the closed loop behaviour and applicable control actions, in a simple and intuitive manner.
- Therefore, the above plots are also useful tools for the design of closed loop control systems.

Table of Contents

- Introduction
- 2 Frequency Response
- First Order System
- 4 Second Order System
- Bode Plots

Bode Plots - Introduction

Introduction

- Bode diagrams show variation of $|G(j\omega)|$ and $\angle G(j\omega)$ on two separate plots as ω varies from 0 to ∞ .
- Both $|G(j\omega)|$ and $\angle G(j\omega)$ plots use a log scale either octave or decade for ω .

Why log scale ???

Bode Plots - Introduction

Why log scale????

- Log scale permits a large frequency to be shown together.
- Log converts multiplication and division into addition and subtraction, respectively, of log magnitudes of the numerator and denominator factors of G(s).
- Similarly, total phase of the frequency response can also be expressed as addition and subtraction of phase angles of the numerator and denominator factors.
- Thus, it is possible to create a complex bode plot through a building block approach by synthesizing it using simple factors, e.g. pure gain, 1^{st} order and 2^{nd} order.

Bode Plots - Construction

Construction

Suppose we have a transfer function, $G(s) = \frac{K(s+z_1)}{s(s+p_1)}$

• Rewrite it in standard form,

$$G(s) = \frac{Kz_1(s/z_1 + 1)}{sp_1(s/p_1 + 1)}$$

② Substitute $s=j\omega$, take \log_{10} both sides and multiply by 20,

$$20\log_{10}(G(j\omega)) = 20\log_{10}\left(\frac{Kz_1(j\omega/z_1+1)}{j\omega p_1(j\omega/p_1+1)}\right)$$

Taking magnitude,

$$|20\log_{10}(G(j\omega))| = 20\log_{10}|K| + 20\log_{10}|z_1| + 20\log_{10}|((j\omega/z_1) + 1)| - 20\log_{10}|p_1| - 20\log_{10}|(j\omega)| - 20\log_{10}|((j\omega/p_1) + 1)|$$

Bode Plots Construction - Constant Term

The entire Bode log magnitude plot is the result of the superposition of all the straight line terms. Each of these individual terms is very easy to show on a logarithmic plot.

Effect of Constant Term

 \bullet Constant term, K contribute a straight horizontal line of magnitude $20\log_{10}(K)$

Figure: Source - "https://my.ece.utah.edu/ ee3110/bodeplot.pdf"

Bode Plots Construction - Poles and Zeros

Effect of Individual Zeros and Poles not at the Origin

- Zeros and Poles not at the origin are indicated by the $(1+j\omega/z_i)$ and $(1+j\omega/p_i)$.
- The values of z_i and p_i in each of these expressions are called a critical frequency (or break frequency).
- ullet Below their critical frequency, these terms do not contribute to the \log magnitude of the overall plot.
- Above the critical frequency, they represent a ramp function of 20 dB per decade.

Figure: Source - "https://my.ece.utah.edu/ ee3110/bodeplot.pdf"

Bode Plots Construction - Origin Zeros

Effect of Individual Zeros at the origin

- A zero at the origin occurs, when there is an s or $j\omega$ multiplying the numerator.
- Each occurrence of this causes a positively sloped line passing through $\omega=1$ with a rise of $20~{\rm dB}$ over a decade.

Figure: Source - "https://my.ece.utah.edu/ ee3110/bodeplot.pdf"

Bode Plots Construction - Origin Poles

Effect of Individual Poles at the origin

- \bullet A pole at the origin occurs when there is an s or $j\omega$ multiplying the denominator.
- \bullet Each occurrence of this causes a negatively sloped line passing through $\omega=1$ with a drop of 20 dB over a decade.

Figure: Source - "https://my.ece.utah.edu/ ee3110/bodeplot.pdf"

Bode Plot - Example

Question: Draw Bode magnitude plot for,

$$G(s) = \frac{10(s+1)}{(s+10)}$$

Solution:

• Rewrite it in standard form,

$$G(s) = \frac{(s+1)}{(\frac{s}{10}+1)}$$

- Critical frequencies are 1, 10 as z = -1, p = -10
- Contant Term(K) is 1 therefore,

$$20\log_{10} 1 = 0$$

Thus the plot starts with 0 dB magnitude

Bode Plot - Example

Bode Plot - Application

Question: Identify the filters from the Bode magnitude plot

Figure: Source: "https://www.allaboutcircuits.com"

Bode Plot - Application

Question: Identify the filters from the Bode magnitude plot

Figure: Source: "https://www.allaboutcircuits.com"

Bode Plot - Application

Question: Comment on the **filtering nature** of the following transfer functions

- $G(s) = \frac{10(s+1)}{(s+10)}$
- $G(s) = \frac{100}{(s+5)}$
- $G(s) = \frac{10(s+1)(s+15)}{(s+2)(s+10)}$

References 1

- Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini: "Feed-back Control of Dynamic Systems", Pearson Education, Inc., Upper Saddle River, New Jersey, Seventh Edition, 2015.
- Katsuhiko Ogata: "Modern Control Engineering", Pearson Education, Inc., Upper Saddle River, New Jersey, Fifth Edition, 2010.
- Brain Douglas: "The Fundamentals of Control Theory", 2019.
- Farid Golnaraghi and Benjamin C. Kuo: "Automatic Control Systems", John Wiley & Sons, Inc., New Jersey, Ninth Edition, 2010.
- S. M. Joshi: "Cartoon Tour of Control Theory: Part I Classical Controls", 1990-2015.
- Ashok Joshi: "System Modeling Dynamics and Control", Lecture Notes, IIT Bombay, Mumbai, 2019.