CHAPTER 4. FUNCTIONS

4.4.1 O-notation

Let X be a subset of $\mathbb R$ and suppose that $f: \mathbb X \to \mathbb R$ and $g: \mathbb X \to \mathbb R$ are two functions of a real variable x. If, for all large values of $x \in X$, the graph of the function f lies closer to the x-axis than the graph of some fixed positive multiple of the function g, then we say that f is of order g and we write "f(x) is O(g(x))".

The distance of the point (x, f(x)) on the graph y = f(x) from the x-axis is the absolute value of f(x), which we denote by |f(x)| (see Example 4.9). Thus we can express the definition of order of a function more formally as follows.

Definition 4.25 Let $f: \mathbb{X} \to \mathbb{R}$ and $g: \mathbb{X} \to \mathbb{R}$ be two functions with a common domain $X \subseteq \mathbb{R}$. Then we say that f is of order g, written "f(x) is O(g(x))", if we can find a positive real number M and a real number x_0 such that

$$|f(x)| \le M|g(x)|,$$

for all $x > x_0$.

4.4.2 Power functions

In using the O-notation, we often compare a given function f with one of the following family of functions.

Definition 4.26 Let s be any positive rational number. Then the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x)=x^s$$

is called the power function of x with exponent s.

The following table compares the values of the power functions $f(x) = x^s$, where s = 0.5, 1, 1.5, 2, 3 (values of f(x) have been entered correct to 2 decimal places).

\boldsymbol{x}	0	0.5 0.71 0.5 0.35 0.25 0.13	1	2	3	4
$x^{0.5}$	0	0.71	1	1.41	1.73	2
x^1	0	0.5	1	2	3	4
$x^{1.5}$	0	0.35	1	2.83	5.20	8
x^2	0	0.25	1	4	9	16
x^3	0	0.13	1	8	27	64

The graphs of the power functions $y = x^r$, when $0 \le x \le 2$ and r = 1/3, 1/2, 1, 2, 3 are compared in Figure 4.3. They illustrate the following result.

Result 4.27 Let r, s be any rational numbers such that r < s. Then when x > 1, we have

$$x^r < x^s$$
. \square

We see that for any pair of rational numbers r, s with r < s, the graph of $y = x^r$ lies closer than the graph of $y = x^s$ to the x-axis, for all values of x > 1. Reasoning analytically, when x > 1, x^r and x^s are both positive, and hence $|x^r| = x^r$ and $|x^s| = x^s$. Taking $x_0 = 1$ and M = 1 in the defintion of the O-notation, we have:

Result 4.28 Let r, s be any rational numbers such that r < s. Then

$$x^r$$
 is $O(x^s)$. \square

Example 4.39 Let $f(x) = x\sqrt{x}$. Then since $x\sqrt{x} = x^{1.5}$, we have

$$f(x) < x^2$$

for all x > 1. We can say that f(x) is $O(x^2)$. \square