4. Convex optimization problems

Xinfu Liu

Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1,...,m$
 $h_i(x) = 0$, $i = 1,...,l$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, ..., m$ are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1,...,m, h_i(x) = 0, i = 1,...,l\}$$

- $p^* = \infty$ if problem is **infeasible** (no x satisfies the constraints)
- $p^* = -\infty$ if problem is **unbounded below**

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints a feasible x is **optimal** if $f_0(x) = p^*; X_{opt}$ is the set of optimal points x is **locally optimal** if there is an x > 0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to
$$f_i(z) \leq 0, \ i=1,...,m, \quad h_i(z)=0, \ i=1,...,l$$

$$\|z-x\|_2 \leq R$$

example: (with n = 1, m = l = 0)

- $f_0(x) = 1/x$, $dom f_0 = R_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$, unbounded
- $f_0(x) = x \log x$, $dom f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $\operatorname{dom} f_0 = \mathbf{R}$: $p^* = -\infty$, local optimum at x = 1

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in D = \bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{l} \operatorname{dom} h_{i},$$

- we call *D* the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- ullet a problem is **unconstrained** if it has no explicit constraints (m=l=0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $h_i(x) = 0, i = 1,..., l$

can be considered a special case of the general problem with $f_0(x) = 0$

minimize
$$0$$

subject to $f_i(x) \le 0, i = 1,...,m$
 $h_i(x) = 0, i = 1,...,l$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^* = \infty$ if constraints are infeasible

Convex optimization problem

standard form of convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,..., m$
 $a_i^T x = b_i, i = 1,..., l$

- $f_0, f_1, ..., f_m$ are convex; equality constraints are affine
- problem is *quasiconvex* if f_0 is quasiconvex (and f_1 , ..., f_m convex)

a convex optimization problem is often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,...,m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

example:

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1 / (1 + x_2^2) \le 0$
 $h_1(x) = (x_1 + x_2)^2 = 0$

- f_0 is convex; feasible set $\{(x_1, x_2) | x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Local and global optimal

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$

x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $\|z-x\|_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$

- $||y-x||_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible We can get $||z-x||_2=R/2$ and

$$f_0(z) \le \theta f_0(y) + (1-\theta)f_0(x) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T (y-x) \ge 0$$
 for all feasible y

if $\nabla f_0(x) \neq 0$, $\{y | \nabla f_0(x)^T (y - x) = 0\}$ defines a supporting hyperplane to the feasible set X at x

• unconstrained problem: x is optimal if and only if

$$x \in \mathbf{dom} \ f_0, \ \nabla f_0(x) = 0$$

equality constrained problem

minimizes
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a v such that

$$x \in \operatorname{dom} f_0$$
, $Ax = b$, $\nabla f_0(x) + A^T v = 0$

minimization over nonnegative orthant

minimizes
$$f_0(x)$$
 subject to $x \ge 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \quad x \succeq 0, \quad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equivalent convex problems

two problems are (informally) **equivalent** if the **solution** of one is readily obtained from the solution of the other, and vice-versa

some common transformations that yield equivalent problems:

eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,...,m$
 $Ax = b$

is equivalent to

minimize (over
$$z$$
) $f_0(Fz+x_0)$ subject to $f_i(Fz+x_0) \le 0, \ i=1,...,m$

where F and x_0 are such that (x_0 is a particular solution, F is a matrix whose range is the null space of A)

$$Ax = b \iff x = Fz + x_0$$
 for some z

introducing equality constraints

minimize
$$f_0(A_0x+b_0)$$

subject to $f_i(A_ix+b_i) \le 0, i=1,...,m$

minimize (over x, y_i) $f_0(y_0)$ subject to $f_i(y_i) \le 0, \ i=1,...,m$ $y_i = A_i x + b_i, \ i=0,1,...,m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \le b_i$, $i = 1,...,m$

is equivalent to

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$
subject to $a_t^T x + s_i = b_i$, $i = 1,...,m$
 $s_i \ge 0$, $i = 1,...,m$

epigraph form:

the standard form of convex problem is equivalent to

minimize (over
$$x$$
, t) t
subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1,..., m$
 $Ax = b$

Is this optimization problem convex?

minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \le 0$, $i = 1,..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize} & \tilde{f}_0(x_1) \\ \text{subject to} & f_i(x_1) \leq 0, \ i=1,...,m \end{array}$$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, i = 1,...,m$
 $Ax = b$

with $f_0: \mathbb{R}^n \to \mathbb{R}$ quasiconvex, f_1, \dots, f_m convex

can have locally optimal points that are not (globally) optimal

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- ullet t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e.,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$ can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \ge 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \quad f_i(x) \le 0, \quad i = 1, ..., m, \quad Ax = b$$
 (1)

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^*$; if infeasible, $t \leq p^*$

Bisection method for quasiconvex optimization

given $l \leq p^*$, $u \geq p^*$, tolerance $\epsilon > 0$. repeat

- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u:=t; else l:=t. until $u-l \leq \epsilon$.

requires exactly $[\log_2((u-l)/\epsilon)]$ iterations (where u, l are initial values)

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_1, \dots, x_n of n foods

- ullet one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- ullet healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize
$$c^T x$$

subject to $Ax > b$, $x > 0$

piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t$, $i = 1,...,m$

Chebyshev center of a polyhedron

Chebyshev center of

$$P = \{x \mid a_i^T x \le b_i, i = 1,...,m\}$$

is center of largest inscribed ball

$$\mathbf{B} = \{x_c + u \mid ||u||_2 \le r\}$$

• $a_i^T x \le b_i$ for all $x \in \mathbf{B}$ if and only if

$$\sup \left\{ a_i^T (x_c + u) \mid \|u\|_2 \le r \right\} = a_i^T x_c + r \|a_i\|_2 \le b_i$$

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r \|a_i\|_2 \le b_i$, $i = 1,...,m$

Linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}$$
 dom $f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

minimize
$$c^{T}y + dz$$

subject to $Gy \leq hz$
 $Ay = bz$
 $e^{T}y + fz = 1$
 $z \geq 0$

generalized linear-fractional program

$$f_0(x) = \max_{i=1,...,r} \frac{c_i^T x + d_i}{e_i^T x + f_i} \quad \mathbf{dom} \ f_0(x) = \{x \mid e_i^T x + f_i > 0, i = 1,...,r\}$$

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over
$$x, x^+$$
) $\min_{i=1,\dots,n} x_i^+ / x_i$ subject to $x^+ \succeq 0, \quad Bx^+ \preceq Ax$

- $x, x^+ \in \mathbb{R}^n$:activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$:produced, resp. consumed, amounts of good i
- x_i^+/x_i :growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \leq h$
 $Ax = b$

- $P \in \mathbf{S}^n_+$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

minimize
$$||Ax-b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

minimize
$$\mathbf{E}c^Tx + \gamma \operatorname{var}(c^Tx) = \overline{c}^Tx + \gamma x^T \sum x$$

subject to $Gx \leq h$, $Ax = b$

- c is a random vector with mean \bar{c} and covariance \sum
- hence, $c^T x$ is a random variable with mean $\bar{c}^T x$ and variance $x^T \sum x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^{T}P_{0}x + q_{0}^{T}x + r_{0}$$

subject to $(1/2)x^{T}P_{i}x + q_{i}^{T}x + r_{i} \le 0, i = 1,...,m$
 $Ax = b$

- $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, ..., P_m \in \mathbb{S}^n_{++}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone program (SOCP)

minimize
$$f^Tx$$
 subject to $\|A_ix+b_i\|_2 \le c_i^Tx+d_i, i=1,...,m$
$$Fx=g$$
 $(A_i\in\mathbf{R}^{n_i\times n},F\in\mathbf{R}^{p\times n})$

inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-oder cone in } \mathbf{R}^{n_i+1}$$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1,...,m$

there can be **uncertainty** in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \dots, m$,

• stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{prob}(a_i^T x \leq b_i) \geq \eta, \ i = 1,...,m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_{i} = \left\{ \overline{a}_{i} + P_{i}u \mid \|u\|_{2} \leq 1 \right\} \quad (\overline{a}_{i} \in \mathbf{R}^{n}, P_{i} \in \mathbf{R}^{n \times n})$$

center is \overline{a}_i , semi-axes determined by singular values/eigenvectors of P_i

robust LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i, \forall a_i \in \mathcal{E}_i, i = 1,...,m$

is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\overline{a}_i^T x + \|P_i^T x\|_2 \le b_i$, $i = 1,...,m$

(follows from
$$\sup_{\|u\|_2 \le 1} (\overline{a}_i + P_i u)^T x = \overline{a}_i^T x + \|P_i^T x\|_2$$
)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance $\Sigma_i(a_i \sim N(\bar{a}_i, \Sigma_i))$
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \sum x$; hence

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi(\frac{b_i - \overline{a}_i^T x}{\left\|\sum_{i=1}^{1/2} x\right\|_2})$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ is CDF of N(0,1)

• robust LP

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta_i, i = 1,...,m,$

with $\eta \ge 1/2$, is equivalent to the SOCP

minimize
$$c^T x$$

subject to $\overline{a}_i^T x + \Phi^{-1}(\eta) \left\| \sum_i^{1/2} x \right\|_2 \le b_i, \quad i = 1, ..., m$

Geometric programming

monomial function

$$f(x) = cx_1^{a_1}...x_n^{a_n}$$
, **dom** $f = \mathbf{R}_{++}^n$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} ... x_n^{a_{nk}},$$
 dom $f = \mathbf{R}_{++}^n$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1,..., m$
 $h_i(x) = 1$, $i = 1,..., p$

with f_i are posynomials, h_i are monomials

Geometric program in convex form

change of variables to $y_i = \log x_i$, and take the logarithm of cost/constraints

• monomial $f(x) = cx_1^{a_1} \dots x_n^{a_n}$ transforms to

$$\log f(e^{y_1},...,e^{y_n}) = a^T y + b \quad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \dots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, ..., e^{y_n}) = \log(\sum_{k=1}^K e^{a_k^T y + b_k}) \qquad (b_k = \log c_k)$$

• geometric program transforms to convex problem

minimize
$$\log(\sum_{k=1}^{K} \exp(a_{0k}^{T} y + b_{0k}))$$
 subject to
$$\log(\sum_{k=1}^{K} \exp(a_{ik}^{T} y + b_{ik})) \leq 0, \quad i = 1, ..., m$$

$$Gy + d = 0$$

• when the objective and constraint functions all are monomials, then the above problem reduces to a linear program

Design of cantilever beam

- ullet N segments with unit lengths, rectangular cross-sections of size $\omega_i imes h_i$
- given vertical force F applied at the right end

design problem

minimize total weight

upper bound & lower bounds on aspect ratios h_i/ω_i

upper bound on stress in each segment

upper bound on vertical deflection at the end of the beam

variables: ω_i , h_i for i = 1, ..., N

objective and constraint functions

- total weight $\omega_1 h_1 + \cdots + \omega_N h_N$ is posynomial
- aspect ratio h_i/ω_i and inverse aspect ratio ω_i/h_i are monomials
- ullet maximum stress in segment i is given by $6iF/(\omega_i h_i^2)$, a monomial
- the vertical deflection y_i and slope v_i of central axis at the right end of segment i are defined recursively as

$$v_{i} = 12(i - 1/2) \frac{F}{E\omega_{i}h_{i}^{3}} + v_{i+1}$$

$$y_{i} = 6(i - 1/3) \frac{F}{E\omega_{i}h_{i}^{3}} + v_{i+1} + y_{i+1}$$

for $i=N,N-1,\ldots,1$,with $\nu_{N+1}=y_{N+1}=0$ (E is Young's modulus) ν_i and y_i are posynomial functions of w,h

formulation as a GP

minimize
$$\omega_1 h_1 + ... + \omega_N h_N$$

subject to $\omega_{\max}^{-1} \omega_i \leq 1$, $\omega_{\min} \omega_i^{-1} \leq 1$, $i = 1, ..., N$
 $h_{\max}^{-1} h_i \leq 1$, $h_{\min} h_i^{-1} \leq 1$, $i = 1, ..., N$
 $S_{\max}^{-1} \omega_i^{-1} h_i \leq 1$, $S_{\min} \omega_i h_i^{-1} \leq 1$, $i = 1, ..., N$
 $6iF \sigma_{\max}^{-1} \omega_i^{-1} h_i^{-2} \leq 1$, $i = 1, ..., N$
 $y_{\max}^{-1} y_1 \leq 1$

note

• we write $\omega_{min} \leq \omega_i \leq \omega_{max}$ and $h_{min} \leq h_i \leq h_{max}$

$$\omega_{\min} / \omega_i \le 1$$
, $\omega_i / \omega_{\max} \le 1$, $h_{\min} / h_i \le 1$, $h_i / h_{\max} \le 1$,

• we write $S_{min} \leq h_i/\omega_i \leq S_{max}$ as

$$S_{\min} \omega_i / h_i \le 1, \quad h_i / S_{\max} \omega_i \le 1$$

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1,..., m$
 $Ax = b$

- $f_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbb{R}^{m}_{+})$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1 F_1 + x_2 F_2 + ... + x_n F_n + G \leq 0$
 $Ax = b$

with $F_i, G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + x_2\hat{F}_2 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \quad x_1\tilde{F}_1 + x_2\tilde{F}_2 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_{1}\begin{bmatrix} \hat{F}_{1} & 0 \\ 0 & \tilde{F}_{1} \end{bmatrix} + x_{2}\begin{bmatrix} \hat{F}_{2} & 0 \\ 0 & \tilde{F}_{2} \end{bmatrix} + \dots + x_{n}\begin{bmatrix} \hat{F}_{n} & 0 \\ 0 & \tilde{F}_{n} \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize
$$c^T x$$
 subject to $Ax \leq b$

SDP: minimize
$$c^T x$$

subject to $\operatorname{diag}(Ax-b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$

subject to $\|A_i x + b_i\|_2 \le c_i^T x + d_i$, $i = 1,...,m$

SDP: minimize
$$f^T x$$

subject to
$$\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \succeq 0, \quad i = 1, ..., m$$

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$
 (with given $A_I \in \mathbf{s}^K$)

equivalent SDP

minimize
$$t$$
 subject to $A(x) \leq tI$

- variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max} (A(x)^T A(x)))^{1/2}$$

where
$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$
 (with given $A_i \in \mathbf{R}^{p \times q}$)

equivalent SDP

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$$

- variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$
- constraint follows from

$$||A||_{2} \le t \iff A^{T}A \le t^{2}I, \ t \ge 0$$
$$\Leftrightarrow \begin{bmatrix} tI & A \\ A^{T} & tI \end{bmatrix} \succeq 0$$

Vector optimization

general vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \le 0, \ i = 1,..., m$ $h_i(x) = 0, \ i = 1,..., p$

vector objective $f_0: \mathbb{R}^n \to \mathbb{R}^q$, minimized w.r.t. proper cone $K \in \mathbb{R}^q$

convex vector optimization problem

minimize (w.r.t.
$$K$$
) $f_0(x)$ subject to $f_i(x) \le 0, \ i = 1,..., m$ $Ax = b$

with f_0 K-convex, $f_1,...,f_m$ convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- a feasible x is **optimal** if $f_0(x)$ is the minimum value of \mathcal{O}
- a feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of \mathcal{O}

Multicriterion optimization

vector optimization problem with $K = \mathbb{R}^q_+$

$$f_0(x) = (F_1(x), ..., F_q(x))$$

- q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^* is **optimal** if

y feasible
$$\Rightarrow f_0(x^*) \leq f_0(y)$$

if there exists an optimal point, the objectives are noncompeting

• feasible x^{po} is Pareto optimal if

y feasible,
$$f_0(y) \leq f_0(x^{PO}) \implies f_0(x^{PO}) = f_0(y)$$

if there are multiple Pareto optimal values, there is a trade-off between the objectives