CAN209 Advanced Electrical Circuits and Electromagnetics

Lecture 13 Transient Response of 2nd-Order Circuits (Step Response)

Dr. Zhenzhen Jiang

Assistant Professor, FHEA

Faculty: School of Advanced Technology

Email: zhenzhen.jiang02@xjtlu.edu.cn

OUTLINE

- ➤ 2nd Transient Analyses (Step Response)
 - ✓ Parallel *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
 - ✓ Series *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
- ➤ General 2nd order Circuit

Inhomogeneous ODE and its general solution

1 PARALLEL RLC CIRCUIT

$$i_R(t) + i_L(t) + i_C(t) = i_S(t)$$

$$v = L \frac{di_L}{dt}$$

$$i_R(t) = \frac{v}{R} = \frac{L}{R} \frac{di_L}{dt}$$

$$i_C(t) = C \frac{dv}{dt} = LC \frac{d^2i_L}{dt^2}$$

$$\frac{d^2i_L}{dt^2} + \frac{1}{RC} \frac{di_L}{dt} + \frac{1}{LC} i_L = \frac{1}{LC} i_S$$

General Solution: the sum of the **final** current and its **natural** response

Complete response
$$i_L(t) = i_{L,f}(t) + i_{L,n}(t) = i_{SS}(\infty) + i_{L,n}(t)$$

The natural response is the same as the source-free case.

The forced response should be the steady-state case $(t = \infty)$.

RECALL NATURAL RESPONSE...

$$\frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{1}{LC}i_L = \mathbf{0}$$

Characteristic eq.:

haracteristic eq.:

$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$s_{1} = -\alpha + j\sqrt{\omega_{0}^{2} - \alpha^{2}} \text{ and } s_{2} = -\alpha - j\sqrt{\omega_{0}^{2} - \alpha^{2}}$$

$$s_{1} = -\alpha + j\sqrt{\omega_{0}^{2} - \alpha^{2}} \text{ and } s_{2} = -\alpha - j\sqrt{\omega_{0}^{2} - \alpha^{2}}$$
Response:

$$i_{L}(t) = e^{-\alpha t}(B_{1} \cos \omega_{d} t + B_{2} \sin \omega_{d} t)$$

 \triangleright Over Damped $\rightarrow \alpha > \omega_0$:

 $s_1 \& s_2$ are two <u>unequal real</u> numbers

Response: $i_L(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

 \triangleright Critical Damped $\rightarrow \alpha = \omega_0$:

 $s_1 \& s_2$ are two <u>equal real</u> numbers

Response: $i_L(t) = e^{-\alpha t} (A_1 t + A_2)$

 \triangleright Under Damped $\rightarrow \alpha < \omega_0$:

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{1}{2RC}$$

$$s_1 = -\alpha + j \sqrt{\omega_0^2 - \alpha^2}$$
 and $s_2 = -\alpha - j \sqrt{\omega_0^2 - \alpha^2}$

$$i_L(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

For a parallel *RLC* circuit as shown in the figure below, values of the passive components and the initial conditions are as follows:

$$R = 500\Omega, C = 1\mu\text{F}, L = 0.2\text{H}$$

$$i_L(0) = 50 \text{mA}, v_c(0) = 0, i_s(t) = 100 u(t) \text{mA}$$

Find the response of $i_L(t), v_C(t)$, and $i_R(t)$.

COMPARISON

Complete Response (t > 0)

$$i_L(t) = 100 + 25e^{-10^3t}(-2\cos 2000t - \sin 2000t) \text{ mA}$$

$$v_C(t) = 25e^{-1000t}\sin 2000t \text{ V}$$

$$i_R(t) = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = 50e^{-1000t} \sin 2000t \text{ mA}$$

Natural Response (t > 0)

$$i_L(t) = 25e^{-10^3t}(2\cos 2000t + \sin 2000t) \text{ mA}$$

 $v_C(t) = -25e^{-1000t} \sin 2000t \text{ V}$

$$i_R(t) = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = -50e^{-1000t} \sin 2000t \text{ mA}$$

COMPARISON

Complete Response (t > 0)

$$i_L(t) = 100 + 25e^{-10^3t}(-2\cos 2000t - \sin 2000t) \text{ mA}$$

$$v_C(t) = 25e^{-1000t}\sin 2000t \text{ V}$$

$$i_R(t) = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = 50e^{-1000t} \sin 2000t \text{ mA}$$

Applications: Bandpass/Bandstop filters

Natural Response (t > 0)

$$i_L(t) = 25e^{-10^3t}(2\cos 2000t + \sin 2000t) \text{ mA}$$

 $v_C(t) = -25e^{-1000t} \sin 2000t \text{ V}$

$$i_R(t) = \frac{v_R(t)}{R} = \frac{v_L(t)}{R} = -50e^{-1000t} \sin 2000t \text{ mA}$$

Voltage (V)

OUTLINE

- ➤ 2nd Transient Analyses (Step Response)
 - ✓ Parallel *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
 - ✓ Series *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
- ➤ General 2nd order Circuit

2.1 SERIES RLC CIRCUIT

Apply KVL:

$$v_C(t) + v_R(t) + v_L(t) = v_S(t)$$

$$\frac{d^2v_C}{dt^2} + \frac{R}{L}\frac{dv_C}{dt} + \frac{1}{LC}v_C = \frac{1}{LC}v_S$$

General Solution:

$$v_c(t) = v_{c,f}(t) + v_{c,n}(t) = v_{ss}(\infty) + v_{c,n}(t)$$

Complete

The natural response is the same as the source-free case.

The forced response should be the steady-state case $(t = \infty)$.

eneral Solution:
$$\begin{bmatrix} v_c(t) = v_{c,f}(t) + v_{c,n}(t) = v_{ss}(\infty) + v_{c,n}(t) \end{bmatrix}$$

$$\begin{cases} i_R = i_L = i_C(t) = C \frac{dv_C}{dt} \\ v_R = Ri_R = RC \frac{dv_C}{dt} \\ v_L(t) = L \frac{di_L}{dt} = LC \frac{d^2v_C}{dt^2} \end{cases}$$
Complete response

RECALL NATURAL RESPONSE...

Over Damped $\rightarrow \alpha > \omega_0$:

 $s_1 \& s_2$ are two <u>unequal real</u> numbers

Response: $v_C(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$

Critical Damped $\rightarrow \alpha = \omega_0$:

 $s_1 \& s_2$ are two <u>equal real</u> numbers

Response: $v_C(t) = e^{-\alpha t} (A_1 t + A_2)$

 \triangleright Under Damped $\rightarrow \alpha < \omega_0$:

Characteristic eq.:

haracteristic eq.:

$$s^{2} + 2\alpha s + \omega_{0}^{2} = 0$$

$$\therefore s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$and \quad s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}}$$

$$(\omega_{0} = \frac{1}{\sqrt{LC}})$$

$$\alpha = \frac{R}{2L}$$

$$\alpha = \frac{R}{2L}$$

$$v_{C}(t) = e^{-\alpha t}(B_{1} \cos \omega_{d} t + B_{2} \sin \omega_{d} t)$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{R}{2L}$$

$$s_1 = -\alpha + j \sqrt{\omega_0^2 - \alpha^2}$$
 and $s_2 = -\alpha - j \sqrt{\omega_0^2 - \alpha^2}$

$$v_C(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2}$$

 s_1 and s_2 are called complex frequencies.

The circuit below has $R = 5 \Omega$, $C = 0.25 \mu F$ and L = 1 H. The switch has been closed for a long time and is open at t = 0. Find the capacitor voltage and inductor current for $t \ge 0$.

The circuit below has $R = 4 \Omega$, $C = 0.25 \mu F$ and L = 1 H. The switch has been closed for a long time and is open at t = 0. Find the capacitor voltage and inductor current for $t \ge 0$.

The circuit below has $R = 1 \Omega$, $C = 0.25 \mu F$ and L = 1 H. The switch has been closed for a long time and is open at t = 0. Find the capacitor voltage and inductor current for $t \ge 0$.

COMPARISON

Complete Response (t > 0)

$$v_C(t) = 24 + \frac{4}{3}(-16e^{-t} + e^{-4t}) \text{ V}$$

$$v_C(t) = 24 - 19.2(1+t)e^{-2t} V$$

$$v_C(t) = 24 + (21.7 \sin 1.936 t - 12 \cos 1.936 t)e^{-0.5t}$$

Applications:

A bandpass filter such as IF amplifier for the AM radio.

A **lowpass** filter with a **sharper** cutoff than with an RC circuit

Natural Response (t > 0)

$$v_C(t) = 16e^{-500t} - e^{-8000t} V$$

$$v_C(t) = 15e^{-2000t}(2000t + 1) \text{ V}$$

$$v_C(t) = 24 + (21.7 \sin 1.936 t - 12 \cos 1.936 t)e^{-0.5t} V v_C(t) = e^{-500t} (15 \cos(500\sqrt{15}t) + \sqrt{15} \sin(500\sqrt{15}t)) V$$

1. For the given circuit, determine the initial values of $i(0^+)$ and $di(0^+)/dt$:

(b) 1.2 A; 2 A/s

(c)
$$2 A$$
; $0 A/s$

(d) 1.2 A; 1.2 A/s

2. For the given circuit on the right side, determine its damping case:

(a) under damped

(b) over damped

(c) critical damped

(d) un-damped

OUTLINE

- ≥ 2nd Transient Analyses (Step Response)
 - ✓ Parallel *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
 - ✓ Series *RLC* Circuits
 - Response Form of the Circuit (2nd ODE)
 - Solutions to the 2nd ODE
- ➤ General 2nd order Circuit

3.1 GENERAL CASE

The idea of parallel/series *RLC* circuits can be extended to *any* 2nd order circuits.

Find the step response of a 2nd order system takes 5 steps:

- 1. Determine initial conditions x(0) and dx(0)/dt, and the final value $x(\infty)$.
- 2. Turn off the independent sources and find the form of the natural response $x_n(t)$ by applying KCL or KVL.
- 3. Obtain the forced response as $x_t(t) = x(\infty)$.
- 4. The complete response is the sum of the natural response and forced response $x(t) = x_n(t) + x_t(t)$.
- 5. Determine the constants associated with the natural response by imposing the initial conditions x(0) and dx(0)/dt found in step 1.

EXAMPLE

Find the complete response $v_c(t)$ and then $i_L(t)$ for t > 0.

DAMPING

Under Damped

Critical Damped

Over Damped

Take the series circuit as an example:

Black: $R=8.5 \text{ k}\Omega - \text{over}$

Blue: $R=4 k\Omega - critical$

Red: $R=1 k\Omega$ – under

NEXT

- > Three-phase Systems
- > Tutorial

IT MATTERS IF YOU JUST DON'T GIVE UP.

Stephen Hawking