Санкт-Петербургский Политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа программной инженерии

Лабораторная работа №3

Дисциплина: Статистическое моделирование

Выполнил: студент группы 5130904/10102

Иванов К. А.

Преподаватель: Чуркин В. В.

Цель работы:

Ход работы:

1. Нормальное распределение

Объем выборки: 10^4

Алгоритм, основанный на использовании центральной предельной теоремы:

$$z(n) = (Rn-E(Rn))/sqrt(V(Rn) = (Rn - n/2)/(sqrt(n/12)) -> N(0,1)$$

Алгоритм Бокс-Миллера:

z(1) = sqrt(-2ln(u(2))) * cos(2pi*u(1)) z(2) = sqrt(-2ln(u(2))) * sin(2pi*u(1))

+		+		-+		-+		-+
1	Момент	Ī	RNRM1	1	RNRM2	1	Теоретическое значение	:
+		+		-+		-+		-+
1	E(x)	Ī	0.0042234752345489904	1	0.02656286566584991	1	0.0	-1
1	V(x)	Ī	1.021163983372329	1	1.029747946014073	1	1.0	-1
+		+		-+		-+		-+

Рисунок 1 - Результаты Нормального распределения

Рисунок 2 - Плотность распределения

Рисунок 3 - Функция распределения

2. Экспоненциальное распределение

Объем выборки: 10⁴, b=1

Метод обратной функции:

x = -beta *In(u)

+		+		+
Момент	RNEXP	Теоретиче	ское значение	L
+		+		+
E(x)	1.000753673141408	1	1	L
V(x)	0.9823658912721749	1	1	1
+		+		+

Рисунок 4 - Результаты Экспоненциального распределения

Рисунок 5 - Плотность распределения

Рисунок 6 - Функция распределения

3. Хи-квадрат распределение

Объем выборки: 10⁴, N=10

Алгоритм:

+	+-		-+		+
Момен	тΤ	RNCHIS	-1	Теоретическое	значение
+	+-		-+		+
E(x)	-1	10.020506346920701	-1	10	1
V(x)	-1	19.736652092400835	-1	20	1
+	+-		-+		+

Рисунок 7 - Результаты хи-квадрат распределения

Рисунок 8 - Плотность распределения

Рисунок 9 - Функция распределения

4. Распределение Стьюдента

Объем выборки: 10⁴, N=10

Алгоритм:

t = z/sqrt(Yn/N)

++ Момент +	RNSTUD	-+	+ Теоретическое значение +
E(x) V(x)		0.005818352899474622 0.003872564461106176	0.0 1.25

Рисунок 10 - Результаты Распределения Стьюдента

Рисунок 11 - Плотность распределения

Рисунок 12 - Функция распределения

Индивидуальное задание, Вариант 9

Цель:

Смоделировать случайную величину **X**, имеющую треугольное распределение с параметрами a=0, b=2.

Смоделировать случайную величину Ү, имеющую нормальный закон с

параметрами m=1, σ =4. На основе выборок объема 50 каждой случайной величины исследовать однородность их распределений (то есть гипотеза Н0 состоит в совпадении функций распределения СВ X и Y) критерием знаков с уровнем значимости 0,05.

Ход работы:

```
N = 50
a = 0
b = 2
M = 1
q = 4
```

Sample_X = [1.39033282 1.34108459 1.13422713 0.95399739 1.01041982 1.68389889

1.74300291 0.68517819 0.8052138 0.89865508 1.30952699 0.4033666

1.17495492 1.29755087 0.80401192 1.84018892 1.89930884 0.60583451

 $1.11067235\ 0.58206416\ 1.54648667\ 0.78858733\ 0.3882683\ \ 0.10224757$

0.83405024 1.25843848 1.05131793 1.31564553 0.7649581 0.27872359

1.22314719 0.32721194 0.50784597 0.36166511 0.80300731 1.37384288

1.53782108 0.87547459 0.63685583 0.68533144 0.71307103 1.30109464

1.08138938 0.98289978 0.58340952 0.0853846 0.90696864 0.62901554

1.30836729 0.59923068]

Sample_Y = [5.424155328377522, -1.6593313558607132, 6.803052934619385, 3.4875391450275623, 1.3054010688946251, 1.9823149924366423, -0.7371077325438471, -0.3602176644640387, 2.0913157444375163, 1.5753685065381662, 2.5076846126429184, -0.5563386476054106, 5.024273315847052, 0.8732422234497489, -3.0918884816978753, 1.8300472021683531, -1.4227727279441007, 5.577898023210451, 0.9602973397582424, 5.970660754097743, -0.7181252135470335, 4.13397441786125, 1.6074186659042669, -1.2505053446329826, -1.1131930211410173, 0.25947019167218, 3.062240040815327, 5.27431157782931, 2.8517138736552043, -7.073769001270557, 2.316466952719078, -1.823221053360796, 9.079970810592306, -0.812864607301298, 6.723130296803664, 8.823999069953715, -0.491541568989758, -1.9283241007358005, 1.6991763866528782, 2.765109727286485, 2.1902428667183385, -2.1739439525889876, -2.166126190866288, -0.34940675190462556, -3.4424109870615265, -3.0697938083115925, 2.304173398896999, 2.626200124899259, 1.3798953287866291, 2.0293425355428454]

Z = 27

T = -0.9780639195052175

$Z(27)$ < $z_{crit}(32)$, значит гипотеза H0 не отвергается на уровне значимости 0.05
GitHub: