Lecture7: Diode

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Rectifier

Analyze it!

Simulation result

• $I_S = 0.5 \text{ fA} \text{ and } R_1 = 1 \text{ k}\Omega$

Time-varying input voltage

• For example, $V_{in}(t) = 3\sin(2\pi ft)$ V. 60 Hz. 10 periods

GIST On-Line Lecture on April 6, 2020 (Internal use only)

Frequency domain

- $V_{in}(t) = A \sin(2\pi f t) \text{ V and } V_{out}(t) = A \sin(2\pi f t) u(\sin(2\pi f t)) \text{ V}$
 - <<Frequency analysis of $V_{in}>>$
 - Component at f: A V
 - <<Frequency analysis of $V_{out}>>$
 - DC component: $\frac{A}{\pi}$ V
 - Component at $f: \frac{A}{2} \vee$
 - Component at 2f: $-\frac{2A}{3\pi}$ V (For a cosine function)

Introducing a capacitor

- Difference from the previous one?
 - Assume a sinusoidal input voltage. (AC input)
 - Guess the output waveform.

Qualitative understanding

- Consider the first period.
 - When the input voltage exceeds $V_{D,on}$, the diode is turned on.
 - The diode conducts a current.
 - The charge is stored in the capacitor. Hence, the output voltage increases.
 - When the input voltage is lower than $V_{D,on}$, the output voltage does not change. (*Why?*)
- After the first period...
 - In the second period, the diode current is smaller than the one in the first period. (Why?)
 - After some periods, the diode current vanishes.
 - A DC output voltage is established.

Simulation result

- The capacitance, $C_1 = 1 \mu F$.
 - Generating a DC output

GIST On-Line Lecture on April 6, 2020 (Internal use only)

Simple math

- Taylor series expansion
 - Consider a function, f(x).
 - Then, at $x_0 + \Delta x$ (Δx is small.), the function value would be similar to that at x_0 :

$$f(x_0 + \Delta x) \approx f(x_0)$$

– A better approximation?

$$f(x_0 + \Delta x) \approx f(x_0) + \frac{df(x)}{dx} \Big|_{x=x_0} \Delta x$$

Nonlinear function
 Iinearly approximated!

Nonlinear system

• A diode: Input $V_D (= V_{anode} - V_{cathode})$, output $I_D (= I_{anode})$

$$V_D \longrightarrow I_D = I_S \exp \frac{V_D}{V_T} \longrightarrow I_D$$

Small input amplitude

- When $V_{in} = 0.6 + 0.001 \sin 2\pi f t$,
 - I_D is almost sinusoidal.

Questions!

- You know the solution for $V_{in} = 0.6 + 0.3 \sin 2\pi f t$.
 - Draw $I_D(t)$ when $V_{in} = 0.6 + 0.6 \sin 2\pi f t$.
- You know the solution for $V_{in} = 0.6 + 0.001 \sin 2\pi f t$.
 - Draw $I_D(t)$ when $V_{in} = 0.6 + 0.002 \sin 2\pi f t$.

GIST On-Line Lecture on April 6, 2020 (Internal use only)

Small-signal analysis

General case

$$V_{D,DC} + v_{D,AC}(t) \longrightarrow I_D = I_S \exp \frac{V_D}{V_T} \longrightarrow I_{D,DC} + i_{D,AC}(t)$$

- "Small-signal" case
 - When $v_{D,AC}(t)$ is small, then, the AC current is given by

$$i_{D,AC}(t) \approx I_{D,DC} \frac{v_{D,AC}(t)}{V_T}$$

$$v_{D,AC}(t) \longrightarrow I_{D,AC}(t) = I_{D,DC} \frac{v_{D,AC}(t)}{V_T} \longrightarrow i_{D,AC}(t)$$

Application to a diode

- Small-signal resistance
 - As far as small changes in the diode current and voltage are concerned, the device behaves as a linear resistor.

$$r_d = \frac{V_T}{I_D}$$

When the small change in the diode voltage is time-varying,

$$I_D(t) = I_s \exp \frac{V_{D,DC} + \Delta V \cos \omega t}{V_T} = I_s \exp \frac{V_{D,DC}}{V_T} \exp \frac{\Delta V \cos \omega t}{V_T}$$
$$I_D(t) \approx I_{D,DC} \left(1 + \frac{\Delta V \cos \omega t}{V_T}\right)$$

– The AC output current has the same frequency!

Razavi, Example 3.18

- A diode is biased at a current of 1 mA.
 - Small-signal resistance is given by

$$r_d = \frac{V_T}{I_D} = 25.85 \,\Omega$$

 When an AC voltage with 1 mV amplitude is applied, the amplitude of the AC current is

$$\frac{1 \text{ mV}}{r_d} = 38.7 \text{ } \mu\text{A}$$

- A diode is biased at a current of 1 μA.
 - Small-signal resistance is given by

$$r_d = \frac{V_T}{I_D} = 25.85 \text{ k}\Omega$$