[025] The core 12 is formed from extruded tubes, of circular cross-section. The material of the core 12 is polyetherimid, which may, for example comprise Trauma-Lite Honeycombs Type PEI 3.5-70 supplied by Trauma-Lite Limited, PO Box 456, Manchester M62 LL, United Kingdom. In this material, the diameter of the tubes is 1. 37 inches (3.5 mm) and the material density is 4.37 lbs per cubic ft (70 kilos per cubic metre). This material can be thermoformed at temperatures up to 338°F (170°C).

B

8

S

W

W

W

921

B

W

- [026] The skins 14 and 16 may comprise Cetex Gl0303 reinforced thermoplastic laminate, supplied by Ten Cate Advanced Composites, Campbellweg 30, 7443 PV Nijverdal, Netherlands. This material is in accordance with Boeing Aircraft Corporation's Material Specification BMS8-353 and can be thermoformed at temperatures in the range 302°F (150°C) to 572°F (300°C).
- [027] The thermoplastic adhesive may be a polyester based thermoplastic web such as Sharnet Web Sh4275 supplied by Bostic Findley Limited, Alderscote Road, Leicester LE4 68W, England. This has a fusion temperature of 266°F (130°C).
- [028] Consequently, the preferred temperature for bending and shaping composite material made from these materials is 302°F (150°C).
- [033] The platens 20 and 26 are then heated to a temperature above the fusion temperature of the adhesive layers 302°F (150°C) for the materials described above) and the press is closed to the position shown in Figure 5. The force exerted by the platens 20 and 26 causes each end of the tubes forming the core 34 to be distorted so as to bridge the interstices between adjacent tubes and increase the surface area available to make contact with the adjacent skin, as shown in Figure 6. This produces a stronger bond between the core and its skins than is obtained with a panel of the type shown in Figures 1 to 3.

10/699,077

1-15. (CANCELED)

16. (CURRENTLY AMENDED) A composite sheet material comprising:

a <u>lightweight rigid</u> core (34) of honeycomb cellular material having a first and a second side and an initial thickness, and the <u>lightweight rigid</u> core being formed by a <u>plurality of adjacent parallel extruded tubes</u>; and

B

9611

920

S

F

THE

B

76:11

W

a first skin of continuous sheet material on the first side and a second skin of continuous sheet material on the second side of side, with the first and the second skins each having an initial thickness;

the <u>lightweight rigid</u> core (34) and the first and the second skins (32, 36) are formed of thermoplastic materials;

the composite sheet material the lightweight rigid core (34) and the first and the second skins (32,36) being simultaneously uniformly compressed to a thickness less than a sum of an initial thicknesses of the lightweight rigid core (34), the first skin (32) and the second skin (36) while at a temperature higher than the softening temperature of the lightweight rigid core (34), and the first side and the second side of the lightweight rigid core (34) of honeycomb cellular material being distorted upon uniform compression of the composite sheet material.

- 17. (CURRENTLY AMENDED) The composite sheet material according to claim 16, wherein the first and the second skins (32, 36) are secured to the <u>lightweight</u> rigid core (34) using a separate thermoplastic adhesive.
- 18. (CURRENTLY AMENDED) The composite sheet material according to claim 17, wherein a fusion temperature of the thermoplastic adhesive is less than that of the <u>lightweight rigid</u> core (34), the first skin (32) and the second skin (36).
 - 19. (CANCELED)

- 20. (PREVIOUSLY PRESENTED) The composite sheet material according to claim 19, wherein the extruded tubes have circular cross-section.
 - 21. (CURRENTLY AMENDED) The composite sheet material comprising:

a lightweight rigid core (12, 34) of honeycomb cellular material having an initial thickness and being formed by a plurality of adjacent parallel extruded tubes; and a first skin of continuous sheet material on [[the]] a first side of the lightweight rigid core (12, 34) of honeycomb cellular material and a second skin of continuous sheet material on [[the]] a second side of [[side]] the lightweight rigid core (34) of honeycomb cellular material, and the first skin (14, 32) and the second skin (16, 36) each having an initial thickness;

the <u>lightweight rigid</u> core (12, 34) <u>of honeycomb cellular material</u> and the first and the second skins (14, 16; 32, 36) are formed of thermoplastic materials;

B

SEI

S

W

8

the first and the second skins (14, 16; 32, 36) are attached to the <u>lightweight rigid</u> core (12, 34) <u>of honeycomb cellular material</u> by a thermoplastic adhesive having a fusion temperature less than a fusion temperature of the <u>lightweight</u> <u>rigid</u> core (12, 34) and the first and the second skins (14, 16; 32, 36); <u>and</u>

the first side and the second side of the lightweight rigid core (12, 34) of honeycomb cellular material being deformed.

- 22. (CURRENTLY AMENDED) The composite sheet material according to claim 16, wherein fusion temperatures of the <u>lightweight rigid</u> core (12, 34) and the first and the second skins (14, 16; 32, 36) are approximately equal.
- 23. (CURRENTLY AMENDED) The composite sheet material according to claim 16, wherein the <u>lightweight rigid</u> core (12, 34) has a lower fusion temperature than

a fusion temperature of the first skin (14, 16) and a fusion temperature of the second skin (32, 36).

24-25. (CANCELED)

26. (CURRENTLY AMENDED) A composite sheet material comprising:

a <u>lightweight rigid</u> core (34) of honeycomb cellular material having a first side and a second side and an initial thickness, the <u>lightweight rigid</u> core (34) of honeycomb cellular material comprising a plurality of adjacent tubes extending from the first side to the second side; and

a first skin of continuous sheet material on the first side and a second skin of continuous sheet material on the second side of side, with the first and the second skins each having an initial thickness;

the <u>lightweight rigid</u> core (34) of honeycomb cellular material and the first and the second skins (32, 36) are formed of thermoplastic materials;

the composite sheet material being uniformly compressed to a thickness less than a sum of an initial thicknesses of the <u>lightweight rigid</u> core (34) of honeycomb cellular material, the first skin (32) and the second skin (36) while at a temperature higher than the softening temperature of the <u>lightweight rigid</u> core (34), <u>and</u> opposed ends of the plurality of tubes on the first side and the second side of the <u>lightweight rigid</u> core (34) of honeycomb cellular material being distorted upon uniform compression of the composite sheet material, such that the distorted opposed ends of the tubes on the first side and the second side of the core provide an increased surface area for contact with the first skin and the second skin.