Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Böse, Kato, Penn-Karras

SS 2010 07.10.2010

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:						
Neben einem handbeschriebenen Azugelassen.	A4 Blat	tt mit I	Notizen	sind k	eine Hi	lfsmittel
Die Lösungen sind in Reinschrif t geschriebene Klausuren können ni e				zugebe	n. Mit	Bleistift
Dieser Teil der Klausur umfasst o vollständigen Rechenweg an.	die Rec	thenaufg	gaben.	Geben	Sie im	mer den
Die Bearbeitungszeit beträgt 60 N	1inute	n.				
Die Gesamtklausur ist mit 40 von beiden Teile der Klausur mindester				*	•	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Berechnen Sie die Länge der Kurve

$$\vec{c} : [0, 2\pi] \to \mathbb{R}^3, \quad t \mapsto (\sin t, \cos t, t)^T,$$

sowie das Kurvenintegral der Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad (x, y, z)^T \mapsto x + z$$

und des Vektorfeldes

$$\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z)^T \mapsto (x^2 + y^2, y, z)^T$$

über \vec{c} .

2. Aufgabe 8 Punkte

Geben Sie das Taylorpolynom 2. Grades der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = -\cos(xy)$$

im Entwicklungspunkt $(x_0, y_0) = (1, \pi)$ an.

3. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = ye^{-x^2-y^2}$

- a) Bestimmen Sie alle kritischen Punkte von f und entscheiden Sie, ob es sich um ein lokales Minimum, lokales Maximum oder einen Sattelpunkt handelt.
- b) Berechnen Sie den Grenzwert

$$\lim_{|(x,y)|\to\infty} f(x,y),$$

falls dieser existiert. (Hinweis: Verwenden Sie Polarkoordinaten und betrachten Sie $\rho \to \infty$.)

4. Aufgabe 8 Punkte

Bsei das Dreieck in der xy-Ebene mit den Eckpunkten $(0,0),\,(2,0),\,(1,1)$ Berechnen Sie $\iint\limits_B y\,dxdy.$

5. Aufgabe 8 Punkte

Gegeben sei das Vektorfeld

$$\vec{v} : \mathbb{R}^3 \to \mathbb{R}^3, \quad \vec{v}(x, y, z) = (3x^2 \sin y + ze^x, x^3 \cos y + 1, e^x)^T.$$

- a) Berechnen Sie div \vec{v} und rot \vec{v} .
- b) Folgern Sie mit Hilfe von a), dass \vec{v} ein Potential besitzt, und bestimmen Sie dann alle Potentiale von \vec{v} .