An overview of Hladký et al's (2021) work on inhomogeneous W-random graphs

Ernest Ng Mentor: Anirban Chaterjee University of Pennsylvania ngernest@seas.upenn.edu

Undergraduate Research in Probability & Statistics Program 17 February 2022

Overview

- Introduction to Graphons
- Construction of Inhomogeneous Random Graphs
- Graph Homomorphisms for Graphs and Graphons
- Homomorphism Density
- Conditional density for r-cliques
- K_r -regularity

Graphons

Definition

A graphon is a bounded, symmetric and measurable function

$$W: [0,1]^2 \to [0,1]$$
 where $W(x,y) = W(y,x) \ \forall \ x,y \in [0,1].$

Let \mathcal{W}_0 denote the space of all graphons.

- Intuitively, we may think of graphons as weighted symmetric graphs with uncountably many vertices, where the vertex set is [0,1] and the weights are the values W(x,y) = W(y,x).
- Graphons may also be thought of as the limit of graph sequences.
- If G is an unweighted graph, then fix $w_e = 1$ for each edge e.

Empirical Graphons

Definition

Let G = (V, E) be a finite simple graph on n vertices, where for each edge $e \in E$, w_e denotes the weight of e.

For each $j \in \{1, ..., n\}$, define the interval I_j as $I_j := \left[\frac{j-1}{n}, \frac{j}{n}\right]$. Then, the **empirical graphon of** G is defined as:

$$W^G(x,y) := \begin{cases} w_e & \text{if } e = (i,j) \in E, \quad (x,y) \in I_i \times I_j \\ 0 & \text{otherwise} \end{cases}$$

• For any graph G = (V, E), the associated empirical graphon $W^G \in \mathcal{W}_0$ if $w_e \in [0, 1]$ for all $e \in E$

Empirical Graphons (cont.)

Figure: Example of an empirical graphon (Braunsteins et al. 2021)

Inhomogeneous Random Graphs

- Given a graphon W, we generate the random graph $\mathbb{G}(n,W)$ as follows:
 - Sample independently n numbers $U_1, \ldots, U_n \sim \text{Unif}(0,1)$. Call these numbers **types** (continuous analog of node colorings).
 - ▶ Identify each uniform random variable U_j with a node $j \in [1..n]$, i.e. assign each node a type.
 - Any two nodes i, j in $\mathbb{G}(n, W)$ are connected by an edge (i, j) with probability $W(U_i, U_j)$
- If the graphon W is constant, i.e. $W(x,y) \equiv p \in [0,1]$, then $\mathbb{G}(n,W)$ is identical to the Erdős–Rényi random graph $\mathbb{G}(n,p)$.

Graph Homomorphisms

Definition

Let F = (V', E') and G = (V, E) be graphs.

A graph homomorphism from F to G is a map

$$\beta: V' \to V$$
 such that if $(i,j) \in E'$, then $(\beta(i), \beta(j)) \in E$.

Write $F \rightarrow G$ if there exists a homomorphism from F to G.

- Intuition: the images of adjacent vertices remain adjacent
- Note that given any F and G, there may exist many possible homomorphisms $F \to G$
- A homomorphism $K_n o G$ indicates that G contains an n-clique

Graph Homomorphisms (cont.)

Figure: Example of multiple homomorphisms F o G (Ribeiro 2021)

• Let hom(F,G) denote the no. of homomorphisms $F \to G$

Homomorphism Density for Unweighted Graphs

Definition

For an unweighted graph G = (V, E) with n nodes and a graph F = (V', E') with k nodes, the **homomorphism density** of F in G is given by:

$$t(F,G) = \frac{\mathsf{hom}(F,G)}{n^k}$$

- There are n^k possible maps $V \to V'$, so t(F,G) is the probability that any given map $V' \to V$ is a graph homomorphism
- Intuition: Homomorphism densities are a relative measure of the no. of ways in which F can be mapped into G in an adjacency-preserving manner

Homomorphism Density for Weighted Graphs

Definition

For a *weighted* graph G = (V, E) on n nodes with adjacency matrix A, and a graph F = (V', E') on k nodes, the **homomorphism density** of F in G is defined as:

$$t(F,G) = \frac{1}{n^k} \sum_{\substack{\beta: V' \to V \\ \text{graph hom.}}} \left(\prod_{(i,j) \in E'} [A]_{\beta(i),\beta(j)} \right)$$

where $[A]_{\beta(i),\beta(j)}$ denotes the $(\beta(i),\beta(j))$ -th entry of A.

• Intuition: weight each homomorphism $\beta:V'\to V$ by the product of edge weights in the image of β

Homomorphism Densities for Graphons

Definition

For a graphon $W \in \mathcal{W}_0$ and a multigraph H = (V, E) on n nodes, the **homomorphism density** of H in W is:

$$t(H, W) = \int_{[0,1]^n} \prod_{(i,j) \in E} W(x_i, x_j) \prod_{i \in V} dx_i$$

Equivalently, the homomorphism density can be defined as:

$$t(H, W) = \mathbb{E} \prod_{(i,j) \in V} W(U_i, U_j)$$

(Equation 6, Hladký et al. 2021)

• Similar to the definition for weighted graphs, where $W(x_i, x_j)$ is the weight of the edge (i, j)

Conditional Homomorphism Density

Definition (Equation 7, Hladký et al. 2021)

For an integer $l \le k$, let J be an l-element subset of $[k] = \{1, 2, \dots, k\}$.

Let H be a graph with vertex set [k] where nodes in J are considered to be marked.

Then, given a vector of values $\mathbf{x} = (x_j)_{j \in J} \in [0,1]^I$, define the conditional density as follows:

$$t_{\mathsf{x}}(H,W) = \mathbb{E}\left[\prod_{\{i,j\}\in E(H)} W(U_i,U_j) \mid U_j = x_j : j\in J\right]$$

Relationship between $t_x(H, W)$ and marked nodes J

- If $H = K_r$ is an r-clique, $t_x(H, W)$ depends only on the cardinality of J and not on the elements of J (marked nodes)
- Consider the following example for an arbitrary non-clique graph H:

H
$$J = \{1, 2, 3\}$$

$$\downarrow 0$$

$$\begin{split} t_{\frac{1}{2}}(H,W) &= \mathbb{E} \left[\sqrt{\frac{11}{1}} \mathbb{E}(H) \, W(U_{1},\, U_{3}) \, \middle| \, U_{3} = \alpha_{3} : \, j \in J \right] \\ &= \mathbb{E} \left[W(U_{1},\, V_{2}) \, W(\, U_{2},\, U_{3}) \, W(U_{3},\, U_{4}) \, W(\, U_{3},\, U_{6}) \, \middle| \, U_{1} = \alpha_{1},\, U_{2} = \alpha_{2},\, U_{3} = \alpha_{3} \right] \\ &= \mathbb{E} \left[W(\alpha_{1},\, V_{2}) \, W(\alpha_{2},\, V_{3}) \, W(\alpha_{3},\, U_{4}) \, W(\alpha_{3},\, U_{6}) \, \middle] \end{split}$$

Relationship between $t_x(H, W)$ and marked nodes J

• Now consider the following example for the 3-clique K_3 :

$$\begin{array}{lll} & & & & \\ & & & \\ & &$$

K_r -free and K_r -regular graphons

• Let K_r^{\bullet} and $K_r^{\bullet \bullet}$ denote K_r with one and two marked nodes respectively, with corresponding conditional homomorphism densities $t_x(K_r^{\bullet}, W)$ and $t_{x,y}(K_r^{\bullet \bullet}, W)$.

Definition

A graphon W is K_r -free if $t(K_r, W) = 0$ and complete if $t(K_r, W) = 1$ almost everywhere.

Definition (Equation 8, Hladký et al. 2021)

A graphon W is K_r -regular if for almost every $x \in [0,1]$, we have:

$$t_{x}(K_{r}^{\bullet},W)=t(K_{r},W)$$

Implications of K_r -regularity

- For $r \geq 3$, K_r -regularity implies that in $\mathbb{G}(n, W)$, any node (regardless of its type) is expected to belong to the same no. of r-cliques.
- If W is K_r -regular, if two copies of K_r in $\mathbb{G}(n, W)$ share exactly one node, the existence of one copy does not influence the probability of the other copies' existence.

Degree Function of a Graphon

Definition

For a graphon W, the **degree function** $\deg_W : [0,1] \to [0,1]$ is defined as:

$$\deg_W(x) = \int_0^1 W(x, y) \, dy$$

- The degree function allows us to examine how the degree of a node varies as its type changes.
- In an Erdős–Rényi random graph $\mathbb{G}(n,p)$, a node has expected degree $(n-1)\cdot p$
- In $\mathbb{G}(n, W)$, if a node has type $x \in [0, 1]$, then its expected degree is $(n-1) \cdot \deg_W(x)$

Definition

Say that a graphon W is **regular** if $\deg_W(x) \equiv d$ for some constant $d \in [0,1]$.

The Graphon $V_W^{(r)}$

• For any graphon W and $r \ge 2$, define the graphon $V_W^{(r)}$ as:

$$V_W^{(r)}(x,y)=t_{x,y}(K_r^{\bullet\bullet},W)$$

• View $V_W^{(r)}(x,y)$ as the conditional density of r-cliques containing nodes with types x,y

Equivalence of K_r -regularity and regularity of $V_W^{(r)}$

• W is K_r -regular $\iff V_W^{(r)}$ is regular

$$\deg_{V_W^{(r)}}(x) = \int_0^1 V_W^{(r)}(x, y) \, dy$$

$$= \int_0^1 t_{x,y}(K_r^{\bullet \bullet}, W) \, dy$$

$$= t_x(K_r^{\bullet}, W)$$

$$= t(K_r, W) \quad \text{(by } K_r\text{-regularity)}$$

$$= t_r$$

The Variance $\sigma_{r,W}^2$

- Let $K_r \oplus_2 K_r$ denote the simple graph consisting of two r-cliques sharing 2 nodes (total of 2r-2 nodes)
- Let $K_r \ominus_2 K_r$ denote the multigraph obtained from $K_r \oplus_2 K_r$ where we duplicate the shared edge.

(Equation 9, Hladký et al. 2021) We have that:

$$t_{x,y}(K_r \oplus_2 K_r, W) = W(x,y)t_{x,y}(K_r \oplus_2 K_r, W)$$
$$= (t_{x,y}(K_r^{\bullet \bullet}, W))^2$$
$$= (V_W^{(r)}(x,y))^2$$

Statement of Theorem

- Let W be a graphon. Fix $r \ge 2$ and let $t_r = t(K_r, W)$.
- Let $X_{n,r}$ denote the no. of r-cliques in $\mathbb{G}(n, W)$.

Theorem (Theorem 1.2 (abridged), Hladký et al. 2021)

- (a) If W is K_r -free or complete, then almost surely $X_{n,r} = 0$ or $X_{n,r} = \binom{n}{r}$ respectively.
- (b) If W is not K_r -regular, then:

$$\frac{X_{n,r} - \binom{n}{r} t_r}{n^{r-1/2}} \xrightarrow{d} \hat{\sigma}_{r,W} \cdot Z$$

where
$$Z\sim N(0,1)$$
 and $\hat{\sigma}_{r,W}=rac{1}{(r-1)!}\left(t(K_r\ominus K_r,W)-t_r^2
ight)^{1/2}>0$

References

Braunsteins, Peter, et al. "Example of an Empirical Graphon." University of Amsterdam, 27 Sept. 2020, https://arxiv.org/abs/2009.12848. Accessed 14 Feb. 2022

Hladký, Jan, et al. "A Limit Theorem for Small Cliques in Inhomogeneous Random Graphs." Journal of Graph Theory, vol. 97, no. 4, 2021, pp. 578–599, https://doi.org/10.1002/jgt.22673

Riebeiro, Alejandro. "Graphon Signal Processing." Graph Neural Networks, Electrical & Systems Engineering Department, University of Pennsylvania, 25 Oct. 2021, https://gnn.seas.upenn.edu/wp-content/uploads/2020/11/lecture_9_handout.pdf