Overview	- Ben	Bakker	Feb	13, 2017
				,
Ref: 1 Pope	a. Posifis	rity for Hod	ice modules 8	s Geometric
-1,	apolic	ations	J	
② Schni	ell, An o	verview of	Morihiko Saita	is theory of
	Min	ed Hodge 1	modules	<i>O b</i>
Motivation	~			
X/C Sn	nouth pray ,	vaniety		
We have	local system	ms/x ,	cohich we can	study.
But when	non-smouth	maps sha	wup, we co	innot
remain in t	he world d	t local s	ystems.	
3	need of	—— E		
Hat	sections.		Ω	
		→ V ⊗		
Constr. ← Loc S	ys on X <	→ V-b with	flat conn.	, VHS
Sheaveo)	Rier	nann-Hilbert		7
<i>\</i>	Con	respondence		↓
Perve	urse Sheaves	$\longleftrightarrow \mathcal{D}$	modules <	> Hodge Modules
		0		10
Among {V.b-wi	ith flat conn	nection s, we	have Variation	s of Hodge Struct.
VHS = (d))- local syst	tem V wit	th a filtration	n by
ho	lomorphic a	ub bundles	satisfying some	properties.
Goal: (A)	Generalize	VHS to p	lossibly singular to for the follow	situations.
(B)	Provide uni	fying contex	t. for the follow	wing —
(1) tositiv	ity : X-	→ Y , f*	ω has posifi na Vanishlng. I seg degenerate	vity properties
(2) <u>Vanishi</u>	ng: analogu	us to Kodai	ra VanishIng.	
(3) Decompo	sition: • L	eray spectral	seg degenerate	ଅ

What is a Hodge Module?
G .
Dx = Shed a differential operators
$D_X = 8$ heaf of differential operators $= Q$ -Subalgebra of Endo (O_x) generated by derivations of Q_X .
A <u>left(right D-module</u> is a <u>left(right module</u> over Q_x . Notation: $F_xD_x = \text{Order} \leq K \text{ diff ops.}$
Notation: F.D. = Order < K diff ops.
A filtered D-module M has an increasing filtration F.M such that F.D. F.M C.F.M.
FM such that FDxFMCFM
eg. i) $M = Q_x$. $F_k Q_k = \begin{cases} 0 & k < 0 \\ Q_x & k \ge 0 \end{cases}$.
- Cx k≥0.
trivial filtration.
2) Ea flat vector bundle. The flatness implies that we
get an action of Dx on E.
why? Action of Jerivations is given by the connection
T _x ⊗E →E
$Flatness \Rightarrow [\nabla_x, \nabla_y] = \nabla_{[x,y]}$
=> Action extends to an algebra action of Dx.
3) Wx is a right Dx-module
$\omega . \xi = -L_{\xi} \omega$
$= -d(i_{\varepsilon}\omega)$
Allows us to go from left in right modules by
taking $Hom(\omega_{x},-)$.
, , , , , , , , , , , , , , , , , , , ,

Let M be a filtered D-module. We get a C-linear complex
$DR(M) = \left[M \rightarrow M \otimes \Omega' \rightarrow M \otimes \Omega^2 \rightarrow \cdots \rightarrow M \otimes \Omega^2\right]$
5 complex of abelian groups whose can is canstr
Derived Category of complexes whose can is constr
Turns out that this is a perverse sheaf.
We have a filtration -
We have a filtration— $DR(M) = [M \rightarrow M \otimes \Omega' \rightarrow M \otimes \Omega \rightarrow \rightarrow M \otimes \Omega^n]$
FDR(M) = [FM -> FM & Q ->]
The associated spec-seg. is the Hodge -> DeRham seg.
In particular, $DR(O_X) \cong C[n]$.
A pure polarizable Hodgemodule of weight I consists of -
(1) Filtered D-module M satisfying
(2) Q-perverse sheaf P such that
P&C ~ DR(M).
4 C
The main requirement is inductive:
* if dim supp M = 0, then this should be apure polarizable
Hodge structure.
* inductively, has any local holomorphic function f, the
nearby and vanishing cycles of Mourt f must be a pure
polarizable flodge module.
1
there are supported on the special ()
fiber.
<u> </u>

Two ways to think about this:
i) A Hodge module is an extra gadget on a perverse sheaf
such that any way of producing a vector space from
such that any way of producing a vector space from
2) A very special type of D-module that has a
2) A very special type of D-module that has a filtration & Q-structure given by a perverse sheef.
e.g. $M = Q$. $DR(Q_x) = C_x[n]$ P $Q_x[n]$
Ox[n] A Hoke module.
D _x [n]] q a Hodge module. True facts & polications
Inne facts & applications
) Structure theorem - ZCX irreducible.
(a) A pure polarizable Modgestructure on an open UCZ
extends uniquely to a ppH module on Z.
Analogium to
Every local system V on U extending to $TC_Z(V)$ on Z .
<i>J J J J</i>
(b) Every ppHM on Z with strict support Z is
obtained from a ppVHS on some open UCZ
as above.
2) Stability thm: X + Y; X, Y smooth. 3 M a ppHM on X. Then Hi (f+M) underlies a ppHM and
& M a ppHM on X. Then
Hi (f+M) underlies a ppHM and
f, M is strict.
eg. $X \stackrel{+}{\rightarrow} pt$. Then $\mathcal{H}'(f_{+}M) = \mathcal{H}'(X,C)$
eg. $X \xrightarrow{f} pt$. Then $\mathcal{H}^{i}(f_{i}M) = \mathcal{H}^{n-i}(X,C)$ $M = \mathbb{Q}^{H}_{i}[n]$ Strict \Rightarrow Degeneration of Hodge to de Rham.

S) Decomposition thm $X \xrightarrow{f} Y$; X, Y sm. proj.MappHM on X. Then. $f_{+}M \cong \oplus \mathcal{H}^{\iota}(f_{+}M)$ [-i] Consequence: $M = \mathbb{R}_{x}^{H}[n]$. Then one of the filtered pieces of fam is Rf, a. We then recover a theorem of Kollar: Rfw = DRfw[-i] a) Vanishing - Mega Version of Kodaira Vanishing

Lample on X. M ppHM on X. $H^{i}(X, gr_{k}^{F}DR(M) \otimes L) = 0.$ for $\dot{\wp}0$ For M= Qx [n], we get H (X, 20L) = O for p+g >n. For $X \to Y$ and $M = f_{+} Q_{x}^{+} [n]$ Then Vanishing above -> Kóllár vanishing Hⁱ(Y, Rf_{*}ω_×⊗L)=0 +j, +δ>0

Applications of Vanishing/Structure theorems to geometry
(1) Generic Varishing.
Xsm proj; Fashed.
① Generic Vanishing. X sm proj; Fashed. Define Vi(F) = {LePicX hi(x, FOL) ≠0}.
Thm: Codim $V'(Q_x) \ge i - \dim \alpha(x)$, where
Thm: Godin $V^{i}(O_{x}) \geq i - \dim \alpha(x)$, where $\alpha: X \rightarrow alb(X)$ is the map to albanese.
Green - Lazarsfeld proved this Using deformation theory of sections + Hodge theory.
sections + Hodge theory.
Macon proved this by Fourier-Mukai transforms and
Kollár decompt vanishing
China Maha and la cha a la car
With Hogge-modules, we can do much more;
- UNIT THE OTHER MAKE USX EIC-
$\operatorname{Godim}(V^{i}(\Omega^{p})) \ge (i+p-n)+n-\dim a(x)$
, · ·