Question Answering

Ramaseshan Ramachandran

OUESTION ANSWERING - INTRODUCTION

An application of short Post-Response is Question Answering system, such as IBM Watson (Jeopardy). In this case most of the candidate responses are answers for factoid questions

- Open domain question answering has become important research area in natural language processing
- ► Tougher than common search engine tasks
 - Finding accurate and concise answers to questions rather than a set of relevant document
- Simple term-based retrieval won't be enough
- ▶ **Type** of the sought after answer should be known to retrieve accurate answers

QUESTION ANSWERING - SAMPLES

/			
Te.	1 V	nalv	i lics :

Most questions could be classified in to 6 major classes¹ - ABBREVIATION, ENTITY, DESCRIPTION, HUMAN, LOCATION and NUMERIC VALUE and around 50 fine-grained types.

¹Xin Li, Dan Roth, Learning Question Classifiers Answering

DEFINITION OF QUESTION CLASSES

Class	Definition
ABBREVIATION	abbreviation
abb	abbreviation
ехр	expression abbreviated
ENTITY	entities
animal	animals
body	organs of body
color	colors
currency	currency names
dis.med.	diseases and medicine
LOCATION	locations
city	cities
country	countries
mountain	mountains

Reference: Definition of Question Classes

NUMERIC	numeric values	
code	postcodes or	
Code	other codes	
date	dates	
DESCRIPTION	description and	
DESCRIPTION	abstract concepts	
definition	definition of sth.	
HUMAN	human beings	
	a group or	
group	organization of	
	persons	
ind	an individual	
title	title of a person	
description	description of a	
description	person	
	• • •	

EXPERIMENTAL DATA FOR QUESTION CLASSIFICATION


```
ENTY: cremat What films featured the character Popeye Doyle?
ENTY: animal What fowl grabs the spotlight after
            the Chinese Year of the Monkey?
ABBR: exp What is the full form of .com ?
LOC: city What city did the Flintstones live in ?
LOC: other Where is the Kalahari desert ?
HUM: gr What company tabulates the ballots in
           voting for the Academy Awards ?
DESC:desc What do Mormons believe ?
NUM: money How much money does a back injury lawsuit get ?
NUM: other What was Einstein's IQ ?
NUM: count How many people died on D-Day ?
ABBR: exp What does 'PSI' stand for ?
. . .
```

FEATURE SPACE

- Words
- Part of Speech (POS) tags
- Chunks(non-overlapping phrases)
- Named entities
- ► Head chunks(using POS first noun

- chunk² in a sentence)³
- Semantically related words (words that often occur with a specific question class

- How far, How high, How long)

Contiguous chinking - Example

```
(Noun Phrase Cape/NNP Carnival/NNP) Contiguous Noun Chunks

[('A', 'DT'), ('trip', 'NN'), ('to', 'TO'), ('Cape', 'NNP'), ('Carnival', 'NNP'),

(',',','), ('FL', 'NNP'), (',',','), ('takes', 'VBZ'), ('10', 'CD'), ('hours', 'NNS'),

('.', '.'), ('The', 'DT'), ('distance', 'NN'), ('is', 'VBZ'), ('816', 'CD'), ('km', 'NN'),

('.', '.'), ('Calculate', 'VB'), ('the', 'DT'), ('average', 'JJ'), ('speed', 'NN')]

Non-contiguous Noun Chunks

[('Mary', 'JJ'), ('switches', 'NNS'), ('her', 'PRP$'), ('table', 'JJ'), ('lamp', 'NN'), ('off', 'IN')]
```

Non-contiguous phrase example Mary switches her table lamp off

²In English grammar, a head is the key word that determines the nature of a phrase

```
import nltk
from nltk.tokenize import word tokenize
from nltk import word tokenize, pos tag
def regex_chunker(text, regex):
    sent = pos tag(word tokenize(text))
    cp = nltk.RegexpParser(regex)
    chunked pos tags = cp.parse(sent)
    for chunk in chunked pos tags.subtrees(
                     filter=lambda t: t.label() == 'Noun Phrase'):
        print(chunk)
if __name__ == '__main__':
    text = '''A trip to Cape Carnival, FL, takes 10 hours.
                     The distance is 816 km. Calculate the average speed'''
    regex chunker(text, r'Noun Phrase: {<NN.?>+<NN.?>}')
    Question Answering
                                Question Answering
```


Simple rules could be defined to classify questions For example,

```
TopHierarchy \leftarrow HUMAN
     Class \leftarrow PFRSON
   fi
2. if QuestionStartsWith(where)
     TopHierarchy \leftarrow LOCATION
     Class \leftarrow CITY
   fi
   If a guery contains Which or What, then the head noun phrase determines
   the class, as for What X questions
   What is a prism?
```

1. $if\ QuestionStartsWith(who)\ or\ QuestionStartsWith(whom)$

LEARNING QUESTION CLASSIFIERS

- Answering factual questions[1]
- understanding the question's intent and the type of answer it seeks
- Classifying questions into categories
- Constraining the search for potential answers
- Guide answer verification

- Uses lexical features for classification
 Lexical features include words, phrases, and part-of-speech tags extracted from the question
- The authors use a two-layer question taxonomy with coarse-grained (e.g., definition, location) and fine-grained (e.g., person, city) categories
- ▶ Different machine learning algorithms (Naive-Bayes)can be used using the labeled question-answer pairs

Given the list of classes and the features for each of the question, it is easy to calculate the probability distribution of classes for the given question[1] The probability density is

$$P = [p_1, p_2, \dots, p_n] \tag{1}$$

and the corresponding class labels are

$$C = [c_1, c_2, \dots, c_n] \tag{2}$$

 p_i s are obtained by employing Naive-Bayes algorithm

QA Using Neural Models

Reading comprehension task seeks to estimate the conditional probability

$$p(a \mid c, q) \tag{3}$$

where c is a context document a query relating to that document, q and the answer to that query, a.

COMPONENTS OF A QA SYSTEM

Figure: QA System
Question Answering

Who is CV Raman?

Sir CV Raman (7 November 1888-21 November 1970) was an Indian physicist born in the former Madras Province in India (presently the state of Tamil Nadu), who carried out ground-breaking work in the field of light scattering, which earned him the 1930 Nobel Prize for Physics. He discovered that when light traverses a transparent material, some of the deflected light changes wavelength and amplitude. This phenomenon, subsequently known as Raman scattering, results from the Raman effect[4] In 1954, the Indian government honored him with India's highest civilian award, the Bharat Ratna [5][6]

What is the invention of CV Raman?

Sir CV Raman (7 November 1888-21 November 1970) was an Indian physicist born in the former Madras Province in India (presently the state of Tamil Nadu), who carried out ground-breaking work in the field of light scattering, which earned him the 1930 Nobel Prize for Physics.

He discovered that when light traverses a transparent material, some of the deflected light changes wavelength and amplitude.

This phenomenon, subsequently known as Raman scattering, results from the Raman effect[4] In 1954, the Indian government honored him with India's highest civilian award, the Bharat Ratna [5][6]

ANSWER EXTRACTION

The important phase \sim in the QA system

Span Labeling: The span of text (tokens) that contains the answer. The task of finding the span of text is known as Span Labeling

Modern approaches combine a IR-based component based on bigram hashing and TF*IDF matching and a multi-layer recurrent neural network model trained to detect answers [2] [3]

Emerging systems are designed as read-Two important components ing comprehension systems

Answer

- **Document Retriever**: Utilizes bigram hashing and TF-IDF matching to efficiently return relevant articles based on a given question.
- **Document Reader**: A multi-layer recurrent neural network model trained to extract answer spans from the retrieved documents.

- Using a typical Term-Document and the retrieval operations on the Term-Document matrix
- Using Inverted Indexing approach used in SOLR/Elastic search
- Using LSA
- Combination of the above with n-grams
- Using a ranking model to retrieve top 5-10 documents
- Use an answer encoder to find similar representations in the documents Use of RNN

- Phrase matches keywords/patterns of question and the paragraph
- Count of terms that match question and potential paragraphs
- Cosine similarity
- Pattern matching using trained ANNs
- Probabilistic methods using alignment methods

- \triangleright A question encoder creates weighted sum of all the words (q_i) in a question.
- ▶ The word embedding of each word in the question is fed to an RNN encoder
- For every time state, q_i , a hidden q_i is output from the hidden unit.
- For all the time states, a weighted sum q and a single embedding of the question is the output $q = [q_1, q_2, q_3, \dots q_l]$

$$q = \sum_{j} b_{j} q_{j} \tag{4}$$

$$b_j = \frac{\exp(\mathbf{w}.\mathbf{q}_j)}{\sum_{i}^{t} \exp(\mathbf{w}.\mathbf{q}_i)}$$
 (5)

where w is the weight vector to be learned

PARAGRAPH FNCODING

Let $q=(q_1,q_2,\ldots,q_n)$ be the question with n tokens Let $\mathbf{p}=(\mathbf{p}_1,\mathbf{p}_2,\ldots,\mathbf{p}_m)$ be the encoded paragraphs of $\hat{p}=(\hat{p}_1,\hat{p}_2,\ldots,\hat{p}_m)$ and \hat{p}_i represent the following:

- 1. The embedding of the word $f_1 = E(p_i)$
- 2. p_i can be matched exactly by one question word $f_2=\mathbf{1}(p_i\in q_i)$
- 3. Token feature such as POS, NER, TF/TF*IDF $f_{features}$
- 4. Aligned question embedding $f_{align}(p_i) = \sum_j a_{ij} E(q_j)$, where a_{ij} captures the similarity between p_i and q_j

$$a_{ij} = \frac{\exp(\alpha(E(p_i)).\alpha(E(q_j)))}{\sum_{j'} \exp(\alpha(E(p_i)).\alpha(E(q'_j)))}$$
(6)

 $\alpha(.)$ is a single dense layer with ReLU nonlinearity. Compared to the exact match features, these features add soft alignments between similar but non-identical words(e.g.,car and vehicle)

- ▶ The goal is to predict the span of tokens that is most likely the correct answer
- ▶ The RNN is trained using paragraph vectors $(\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_m)$ and question vector \mathbf{q} to predict the span (P_{start}, P_{end})
- ► A bilinear attention layer **W** is used to predict instead of a simple similarity measure as follows:

$$P_{start_i} \propto \exp(p_i \text{Wq})$$
 (7)

$$P_{end_i} \propto \exp(p_i \mathrm{Wq})$$
 (8)

- ▶ During prediction, the best span from $token_i$ to $token_{i'}$ such that $i \le i' \le i + 15$ and $P_{start}(i) \times P_{end}(i')$ is maximized.
- Answer = $\arg\max_{i} \left(P_{start}(i) \times P_{end}(i'), j = 1 \cdots, n\right)$

- ➤ 3-layer bidirectional LSTMs with h = 128 hidden units for both paragraph and question encoding
- Stanford CoreNLP toolkit for tokenization and also generating lemma, part-of-speech, and named entity tags

Features	F1
Full	78.8
No f_{token}	78.0 (-0.8)
No f_{exact_match}	77.3 (-1.5)
No $f_{aligned}$	77.3 (-1.5)
No $f_{aligned}$ and f_{exact_match}	59.4 (-19.4)

EVALUATION OF THE CONVERSATION AGENTS

Most of the researchers use F1 score It is a weighted harmonic mean of *Precision* and *Recall* given by the relation:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}, where, \beta^2 = \frac{1 - \alpha}{\alpha}$$
(9)

Retrieved

Not Retrieved

where $\alpha \in \{0,1\}$ and $\beta \in \{0,\infty\}$. When $\alpha = \frac{1}{2}$ or $\beta = 1$, it is a balanced measure that gives equal weights to Precision and Recall

$$F_{\beta=1} = F_1 = \frac{2PR}{P+R} \tag{10}$$

$$Precision = \frac{\# of \ relevant \ items}{\# of \ retrieved \ items} \ (11)$$

	$\# of \ retrieved \ items$				
Recall =	$t=of\ relevant\ items\ retrieved$				
necan =	$\overline{\#, of\ Relevant\ items}$		Precision =	TP/(TP -	+FP
	(1.2)		D 11	m D I/m D	177.37

Recall = TP/(TI)

Relevant

FN

(14)

Not relevant

TN

DATA SETS FOR READING COMPREHENSION TRAINING

Stanford Question Answering Dataset (SOuAD)

- Reading Comprehension Data set
- 87000 examples for training and 10000 examples for development
- All questions and answers are composed by humans through crowd sourcing
- The span of text is provided for all questions that could be answered

Datasets used: Stanford Question Answering Dataset-SQuAD, Curated TREC,

WebQuestions and WikiMovies [4]

BIDIRECTIONAL ATTENTION FLOW MODEL

- ▶ Utilizes a multi-stage hierarchical process to represent context[5]
- Concatenates character and word embedding vectors
- lacktriangle Contextual embedding $H \in \mathbb{R}^{ extstyle imes imes \mathbb{T}}$ is obtained from context word vectors, X
- ► Contextual Query vector $U \in \mathbb{R}^{\neq \times \mathbb{J}}$ is obtained from query word vectors Q.
- Couples query and context vectors in two directions context to query and from query to context.
- Context-to-query (C2Q) attention which query words are most relevant to each context word
- Query-to-context (Q2C) attention- context words have the closest similarity to one of the query words
- ▶ The above steps encode the query-aware representations of context words
- Modeling Layer: Employs bi-directional LSTM to capture interactions among context words conditioned on the query.
- Output Layer: Predicts answers by finding sub-phrases in the paragraph based on start and end indices

We could also use Speech Act to make the conversation more robust and human-like by using them as features.

Each utterance in a dialog is closely related to an action. Speech acts refer to the various functions that language can perform beyond conveying information

- ▶ **Assertives**: Statements that convey information.
- Directives: Commands or requests.
- Commissives: Promises, commitments.
- **Expressives**: Expressions of emotion or attitude.
- **Declarations**: Changes the state of affairs
- Acknowledgements

Thus speech act expresses an important component of the intention of the spoken/written sentences

This basic level of communication focuses on the literal meaning conveyed by the words themselves

Examples

- Coveys directly the literal meaning
- Doesn't involve intention, context, or interpretation
- Essential for building more complex speech acts.
 - ► The sky is blue simple statement
 - ▶ What time is it? question ~
 - **Stop** commands
 - ► Congratulations- Exclamations
 - ► I promise- Performatives

Each of these sentences not only conveys information but also performs a particular illocutionary act, such as expressing a belief, making a request, committing to an action, expressing emotions, or making a declaration.

Examples

- I believe that the sky is blue assertive
- Please pass the salt Directive
- ▶ I promise to meet you at 5 pm Commissive
- Congratulations on your promotion! Expressive
- ▶ I declare this meeting adjourned Declarative

SPEECH ACT WITH EXAMPLES

Sentence type	Examples	Force
Declarative	Turtles are amazing. I wonder where Kim is. You should move your bicycle. You can have a cookie. It would be a shame if something happened to your store.	assertion question suggestion invitation threat
Interrogative	Is today Tuesday? What day is today? What on earth are you doing? Do you want to have ice-cream? Could you help me?	question question accusation invitation request
Imperative	Move your bicycle! Have a cookie. Please rain! Get well soon! Turn right here.	command invitation plea well-wish request

Source: Speech Act

GROUNDING

Any dialog is not an independent set of sentences. Dialogs happen on a **common ground**. The speakers often perform ground Grounding act by acknowledging that the hearer has understood the speaker

- [1] Xin Li and Dan Roth. "Learning Question Classifiers". In: COLING 2002: The 19th International Conference on Computational Linguistics. 2002. URL: https://aclanthology.org/C02-1150.
- [2] Karl Moritz Hermann et al. *Teaching Machines to Read and Comprehend*. 2015. arXiv: https://arxiv.org/pdf/1506.03340.pdf [cs.CL].
- [3] Danqi Chen et al. Reading Wikipedia to Answer Open-Domain Questions. 2017. arXiv: 1704.00051 [cs.CL].
- [4] Shuohang Wang and Jing Jiang. *Machine Comprehension Using Match-LSTM and Answer Pointer*. 2016. arXiv: 1608.07905 [cs.CL].
- [5] Minjoon Seo et al. *Bidirectional Attention Flow for Machine Comprehension*. 2018. arXiv: https://arxiv.org/abs/1611.01603 [cs.CL].