SZTUCZNA INTELIGENCJA I SYSTEMY DORADCZE

SIECI NEURONOWE

Sieci neuronowe: pomysl

Naśladowanie mózgu działającego jako sieć komórek neuronowych

Sygnały to zaszumione "bodźce trenujące" poziom potencjału elektrycznego komórek

Sieci neuronowe: sztuczne i naturalne

	Komputer	Mózg
Jednostki obliczeniowe	1 CPU	$10^{11} \; \mathrm{neuronów}$
	10^8 bramek logicznych	> 20 typów
Jednostki pamięciowe	10^{10} bitów RAM	$10^{11} \ \mathrm{neuronów}$
	10^{11} bitów dysku	$10^{14} \ \mathrm{synaps}$
Czas cyklu	1 ns (10^{-9} sek.)	$1-10 \mathrm{ms} (10^{-3} \mathrm{sek.})$
Szerokość pasma	10^{10} bitów/sek	$10^{14} \mathrm{bitów/sek}$
Zmiany stanów/sek	10^{9}	10^{14}

Równoległość daje wciąż umysłowi ludzkiemu ogromną przewagę nad komputerem pomimo dużo wolniejszego czasu przetwarzania informacji

Perceptron

 $\vec{x} = (x_1, x_2, \dots, x_n)$ — wektor wejściowy (obiekt danych)

 $\vec{w}=(w_0,w_1,\ldots,w_n)$ — wektor wag perceptronu w_0 – waga przesunięcia (''przesuwa'' próg funkcji aktywacji)

 σ – progowa (skokowa) funkcja aktywacji perceptronu

 $o(\vec{x})$ – wartość wyjścia perceptronu dla wektora \vec{x}

$$o(\vec{x}) = \sigma(\vec{w} \cdot \vec{x}) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + \dots + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Perceptron: wyrazalnosc

Perceptron reprezentuje liniowe cięcie w przestrzeni wejść

Perceptron: wyrazalnosc

Można wyrazić funkcje logiczne AND, OR, NOT

Perceptron: wyrazalnosc

Można wyrazić funkcje logiczne AND, OR, NOT

ale nie da się dobrać wag do funkcji XOR

Uczenie perceptronu: algorytm

```
function PERCEPTRON-LEARN(perceptron, examples, \alpha) returns a perceptron inputs: examples, a set of examples, each with input \vec{x} and output y(\vec{x}) perceptron, a perceptron with weights \vec{w}=(w_0,\ldots,w_n) \alpha, the learning rate

repeat

for each \vec{x}=(x_1,\ldots,x_n) in examples do
\Delta \vec{w} \leftarrow \alpha \ (y(\vec{x})-\vec{w}\cdot\vec{x}\ )\vec{x}
\vec{w} \leftarrow \vec{w} + \Delta \vec{w}
end
until some stopping criterion is satisfied return perceptron
```

Uczenie perceptronu: wlasnosci

Twierdzenie 1

Jeśli zbiór danych jest liniowo separowalny a współczynnik szybkości uczenia α wystarczająco mały \Rightarrow algorytm uczenia perceptronu jest zbieżny

Uczenie perceptronu: wlasnosci

Twierdzenie 1

Jeśli zbiór danych jest liniowo separowalny a współczynnik szybkości uczenia α wystarczająco mały \Rightarrow algorytm uczenia perceptronu jest zbieżny

Twierdzenie 2

Jeśli zbiór danych nie jest liniowo separowalny

⇒ algorytm zbiega lokalnie do minimalnego błędu średniokwadratowego

Błąd średniokwadratowy dla zbioru treningowego ${\cal U}$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2$$

Błąd średniokwadratowy dla zbioru treningowego ${\cal U}$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2$$

Gradient błędu średniokwadratowego

$$\nabla E[\vec{w}] = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

 \Rightarrow wskazuje kierunek, w którym błąd $E[\vec{w}]$ rośnie

$$\frac{\partial E}{\partial w_i} =$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2$$
$$= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})
= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})
= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})
= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) (-x_i)$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \\ &= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \\ &= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) (-x_i) \\ &= \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x}) x_i \end{split}$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})^2
= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})
= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) \frac{\partial}{\partial w_i} (y(\vec{x}) - \vec{w} \cdot \vec{x})
= \sum_{\vec{x} \in U} (y(\vec{x}) - \vec{w} \cdot \vec{x}) (-x_i)
= \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x}) x_i$$

Stąd
$$\nabla E[\vec{w}] = \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x})\vec{x}$$

Gradient $\nabla E[\vec{w}] = \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x})\vec{x}$ wskazuje kierunek, w którym błąd średniokwadratowy $E[\vec{w}]$ rośnie

Gradient $\nabla E[\vec{w}] = \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x})\vec{x}$ wskazuje kierunek, w którym błąd średniokwadratowy $E[\vec{w}]$ rośnie

 \Rightarrow wagi perceptronu są poprawiane w kierunku dokładnie przeciwnym do gradientu $-\nabla E[\vec{w}]$

Gradient $\nabla E[\vec{w}] = \sum_{\vec{x} \in U} - (y(\vec{x}) - \vec{w} \cdot \vec{x})\vec{x}$ wskazuje kierunek, w którym błąd średniokwadratowy $E[\vec{w}]$ rośnie

 \Rightarrow wagi perceptronu są poprawiane w kierunku dokładnie przeciwnym do gradientu $-\nabla E[\vec{w}]$

Stąd w algorytmie uczenia perceptronu:

$$\Delta \vec{w} \leftarrow \alpha (y(\vec{x}) - \vec{w} \cdot \vec{x}) \vec{x}$$

$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

Porownanie perceptronu i drzewa decyzyjnego

Funkcji większości (> połowa bitów = 1) lepiej wyuczalna przez perceptron

Decyzja o wstąpieniu do restauracji lepiej wyuczalna przez drzewo decyzyjne

Plaska siec perceptronow

Reprezentuje funkcję wektorową

Poszczególne perceptrony są niezależne

⇒ trzeba trenować każdy perceptron oddzielnie

Wielowarstwowa siec neuronowa

Jednostki:

Jednostki podzielone są na warstwy, każda jednostka przyporządkowana jest do dokładnie jednej warstwy

Wejścia

Wejścia podłączone są wyłącznie do jednostek znajdujących się w najniższej warstwie

Połączenia:

Połączenia występują wyłącznie pomiędzy jednostkami

z sąsiednich warstw, łączą zawsze wyjścia jednostek

z warstwy niższej z wejścami do jednostek w warstwie wyższej

Wyjście:

Typowa sieć z jedną wartością funkcji ma tylko jedną jednostkę w najwyższej warstwie, wyjście z tej jednostki jest wyjściem całej sieci

2 warstwy, 10 wejść, 4 neurony ukryte (w warstie wewnętrznej)

Wielowarstwowa siec neuronowa: ewaluacja

Wielowarstwowa siec neuronowa: ewaluacja

$$x_5 = \sigma(w_{3,5} \cdot x_3 + w_{4,5} \cdot x_4)$$

= $\sigma(w_{3,5} \cdot \sigma(w_{1,3} \cdot x_1 + w_{2,3} \cdot x_2) + w_{4,5} \cdot \sigma(w_{1,4} \cdot x_1 + w_{2,4} \cdot x_2))$

Wielowarstwowa siec neuronowa: uczenie

Problem

Progowa funkcja aktywacji jest nieciągła i nieróżniczkowalna

⇒ dla jednostek wewnętrznych nie można wyprowadzić gradientowej reguły poprawiania wag gwarantującej zbieżność uczenia

Wielowarstwowa siec neuronowa: uczenie

Problem

Progowa funkcja aktywacji jest nieciągła i nieróżniczkowalna

⇒ dla jednostek wewnętrznych nie można wyprowadzić gradientowej reguły poprawiania wag gwarantującej zbieżność uczenia

Rozwiązanie

Zastosowanie różniczkowalnej funkcji aktywacji

Perceptron z sigmoidalna funkcja aktywacji

Sigmoidalna funkcja aktywacji perceptronu $\sigma(z)=\frac{1}{1+e^{-z}}$

$$o(\vec{x}) = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

Perceptron z sigmoidalna funkcja aktywacji

Funkcja wyjścia dla pojedycznego perceptronu z sigmoidalną funkcją aktywacji i 2 wejściami:

Liczba wejść: 2, liczba warstw: 2

Warstwa ukryta: 2 perceptrony skierowane przeciwnie do siebie

 \Rightarrow definiuje krawędź

Liczba wejść: 2, liczba warstw: 3

Warstwa ukryta: 2 sieci tworzące krawędzie ustawione prostopadle do siebie ⇒ definiuje ograniczone wzniesienie

Rozpoznawanie słów: 2 warstwy, 2 wejścia, wiele wyjść

Wielowarstwowa siec neuronowa: wlasnosci

Funkcje boolowskie:

Każda funkcja boolowska może być reprezentowana przez sieć z jedną warstwą ukrytą, ale może wymagać wykładniczej liczby jednostek ukrytych

Funkcje ciągłe:

Każda ograniczona funkcja ciągła może być aproksymowana z dowolnie małym błedem przez sieć z jedną warstwą ukrytą [Cybenko 1989; Hornik et al. 1989]

Dowolna funkcja może być aproksymowana z dowolną dokładnością przez sieć z dwoma warstwami ukytymi [Cybenko 1988]

Propagacja wsteczna: algorytm

```
function BACK-PROP-UPDATE(examples, layers, \alpha) returns a network
    inputs: examples, a set of examples, each with input \vec{x} and output \vec{y}(\vec{x})
               layer_0, layer_1, \ldots, layer_n, neuron layers sorted from the bottom to the top
               \alpha, the learning rate
    repeat
        for each \vec{x} = (x_1, \dots, x_n) in examples do
            for each unit j \in layer_0 do o_i \leftarrow x_i
            for each unit j \in layer_p in order from layer_1 up to layer_n do
                    z_j \leftarrow \sum_{i \in layer_{n-1}} w_{i,j} o_i
                    o_i \leftarrow \sigma(z_i)
            for each unit j \in layer_n do \delta_i \leftarrow \sigma'(z_i)(y_i(\vec{x}) - o_i)
            for each unit j \in layer_p in order from layer_{n-1} down to layer_0 do
                    \delta_j \leftarrow \sigma'(z_j) \sum_{k \in layer_{n+1}} w_{j,k} \delta_k
                    \Delta w_{i,k} \leftarrow \alpha \delta_k o_i
                    w_{j,k} \leftarrow w_{j,k} + \Delta w_{j,k}
    until some stopping criterion is satisfied
    return layers with modified weights
```

Propagacja wsteczna: wlasnosci

Fakt

Algorytm propagacji wstecznej działa dla dowolnego grafu skierowanego bez cykli

Propagacja wsteczna: wlasnosci

Fakt

Algorytm propagacji wstecznej działa dla dowolnego grafu skierowanego bez cykli

Twierdzenie

Algorytm propagacji wstecznej zbiega lokalnie do minimalnego błędu średniokwadratowego

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2$$
$$= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2
= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2
= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x})) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} o(\vec{x}) \end{split}$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x})) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} o(\vec{x}) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial z} [z = \vec{w} \cdot \vec{x}] \frac{\partial}{\partial w_i} (\vec{w} \cdot \vec{x}) \end{split}$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x})) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} o(\vec{x}) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial z} [z = \vec{w} \cdot \vec{x}] \frac{\partial}{\partial w_i} (\vec{w} \cdot \vec{x}) \end{split}$$

$$\frac{\partial}{\partial w_i}(\vec{w} \cdot \vec{x}) = x_i$$

$$E[\vec{w}] = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 = \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - \sigma(\vec{w} \cdot \vec{x}))^2$$

$$\begin{split} \frac{\partial E}{\partial w_i} &= \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x}))^2 \\ &= \frac{1}{2} \sum_{\vec{x} \in U} 2(y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} (y(\vec{x}) - o(\vec{x})) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial}{\partial w_i} o(\vec{x}) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] \frac{\partial}{\partial w_i} (\vec{w} \cdot \vec{x}) \\ &= -\sum_{\vec{x} \in U} (y(\vec{x}) - o(\vec{x})) \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] x_i \end{split}$$

$$\nabla E[\vec{w}] = -\sum_{\vec{x} \in U} \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y(\vec{x}) - o(\vec{x})) \vec{x}$$

$$\nabla E[\vec{w}] = -\sum_{\vec{x} \in U} \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y(\vec{x}) - o(\vec{x})) \vec{x}$$

Stąd dla neuronów j z najwyższej warstwy stosujemy zmiany wag:

$$\delta_j \leftarrow \frac{\partial \sigma}{\partial z}[z = \vec{w} \cdot \vec{x}](y_j(\vec{x}) - o_j(\vec{x}))$$

$$\Delta w_{i,j} \leftarrow \alpha \delta_j x_{i,j}$$

$$\nabla E[\vec{w}] = -\sum_{\vec{x} \in U} \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y(\vec{x}) - o(\vec{x})) \vec{x}$$

Stąd dla neuronów j z najwyższej warstwy stosujemy zmiany wag:

$$\delta_j \leftarrow \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y_j(\vec{x}) - o_j(\vec{x}))$$

$$\Delta w_{i,j} \leftarrow \alpha \delta_j x_{i,j}$$

Neurony z niższych warstw muszą mieć odpowiednik błędu $y_j(\vec{x}) - o_j(\vec{x})$

$$\nabla E[\vec{w}] = -\sum_{\vec{x} \in U} \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y(\vec{x}) - o(\vec{x})) \vec{x}$$

Stąd dla neuronów j z najwyższej warstwy stosujemy zmiany wag:

$$\delta_j \leftarrow \frac{\partial \sigma}{\partial z}[z = \vec{w} \cdot \vec{x}](y_j(\vec{x}) - o_j(\vec{x}))$$

$$\Delta w_{i,j} \leftarrow \alpha \delta_j x_{i,j}$$

Neurony z niższych warstw muszą mieć odpowiednik błędu $y_j(\vec{x}) - o_j(\vec{x})$ \Rightarrow dla każdego neuronu $j \in layer_p$ liczona jest ważona "suma błędów" na wyjściach tego neuronu $\sum_{k \in layer_{p+1}} w_{j,k} \delta_k$

$$\nabla E[\vec{w}] = -\sum_{\vec{x} \in U} \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] (y(\vec{x}) - o(\vec{x})) \vec{x}$$

Stąd dla neuronów j z najwyższej warstwy stosujemy zmiany wag:

$$\delta_j \leftarrow \frac{\partial \sigma}{\partial z}[z = \vec{w} \cdot \vec{x}](y_j(\vec{x}) - o_j(\vec{x}))$$

$$\Delta w_{i,j} \leftarrow \alpha \delta_j x_{i,j}$$

Neurony z niższych warstw muszą mieć odpowiednik błędu $y_j(\vec{x}) - o_j(\vec{x})$ \Rightarrow dla każdego neuronu $j \in layer_p$ liczona jest ważona 'suma błędów' na wyjściach tego neuronu $\sum_{k \in layer_{p+1}} w_{j,k} \delta_k$

Zmiana wag definiowana jest wtedy jako:

$$\delta_j \leftarrow \frac{\partial \sigma}{\partial z} [z = \vec{w} \cdot \vec{x}] \sum_{k \in layer_{p+1}} w_{j,k} \delta_k$$

$$\Delta w_{i,j} \leftarrow \alpha \delta_j x_{i,j}$$

Prop. wsteczna z sigmoidalna funkcja aktywacji

Sigmoidalna funkcja aktywacji $\sigma(z)=rac{1}{1+e^{-z}}$ we wszystkich neuronach

$$o(\vec{x}) = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

$$\frac{\partial \sigma}{\partial z} = \left(\frac{1}{1 + e^{-z}}\right) \left(1 - \frac{1}{1 + e^{-z}}\right)$$

$$\frac{\partial \sigma}{\partial z}[z = \vec{w} \cdot \vec{x}] = o(\vec{x})(1 - o(\vec{x}))$$

Wartości współczynników zmiany wag δ_j

— dla neuronów j z warstwy najwyższej:

$$\delta_j \leftarrow o_j (1 - o_j) (y_j(\vec{x}) - o_j)$$

— dla neuronów j z każdej niższej warstwy p:

$$\delta_j \leftarrow o_j (1 - o_j) \sum_{k \in layer_{p+1}} w_{j,k} \delta_k$$

Propagacja wsteczna: przyklad zbieznosci

Epoka: przebiega jednokrotnie wszystkie obiekty treningowe poprawiając wagi, na koniec wylicza bład sumaryczny dla całego zbioru treningowego

algorytm uczenia zatrzymuje się, kiedy błąd przestaje maleć

Dobor wspolczynnika szybkosci uczenia α

Zazwyczaj:

$$\alpha \in [0.01; 0.5]$$

Po każdej ustalonej liczbie epok można redukować geometrycznie:

$$\alpha := \alpha \cdot c \qquad c \in [0.9; 0.99]$$

 \Rightarrow Pozwala na szybką zbieżność na początku (np. $\alpha\approx0.5$) i precyzyjną zbieżność do lokalnego maksimum w końcowej fazie ($\alpha\approx0$)

Uczenie neuronow ukrytych (wewnetrznych)

Input		Output
10000000	\rightarrow	10000000
01000000	\longrightarrow	01000000
00100000	\longrightarrow	00100000
00010000	\longrightarrow	00010000
00001000	\longrightarrow	00001000
00000100	\longrightarrow	00000100
00000010	\longrightarrow	00000010
00000001	\longrightarrow	00000001

Uczenie neuronow ukrytych (wewnetrznych)

Input		ŀ	Hiddei	า		Output	
mpat						Output	
Values							
10000000	\longrightarrow	.89	.04	.08	\longrightarrow	10000000	
01000000	\longrightarrow	01	11	.88	\longrightarrow	01000000	
00100000	\longrightarrow	.01	.97	.27	\longrightarrow	00100000	
00010000	\longrightarrow	.99	.97	71	\longrightarrow	00010000	
00001000	\longrightarrow	.03	.05	.02	\longrightarrow	00001000	
00000100	\longrightarrow	.22	.99	.99	\longrightarrow	00000100	
00000010	\longrightarrow	.80	01	.98	\longrightarrow	00000010	
00000001	\longrightarrow	.60	.94	.01	\longrightarrow	00000001	

Uczenie neuronow ukrytych (wewnetrznych)

Trenowanie wag dla jednego z neuronów wewnętrznych:

Rozpoznawanie cyfr recznie pisanych

3-nn = 2.4% błędów Sieć 3-warstwowa (400–300–10) = 1.6% błędów LeNet (sieć 4-warstwowa, 768-192-30-10) = 0.9% błędów

Sieci rekurencyjne

Zawierają cykle skierowane, zmieniają wagi w kolejnych taktach zegara

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time

Sieci rekurencyjne

- ♦ Sieci Hopfielda (holograficzne pamięci asocjacyjne)
 - symetryczne wagi
 - progowa funkcja aktywacji $\sigma(z) = sign(z)$
- ♦ Maszyny Bolztmanna
 - używają stochastycznych funkcji aktywacji