A SURVEY OF TWO OPEN PROBLEMS OF PRIVACY PRESERVING FEDERATED LEARNING: VERTICALLY PARTITIONED DATA AND VERIFIABILITY

3. Research Questions

- I. What are the privacy preserving schemes available for vertical federated learning, and how do they compare?
- II. What are the privacy preserving schemes providing aggregation verifiability, and how do they compare?

4. Methodology

Individual analysis:

- 1. workflow
- 2. computational complexity
- 3. communication overhead
- 4. accuracy impact
- 5. security guarantees

Comparative analysis:

- 1. benefits and downsides
- 2. potential improvements

5. Results

Framework	FedV	SecureBoost	MP-FEDXGB
Computational	0((1 + f))	$O(nN + 2^dTn)$	O((+ f-)Tod)
Complexity at Aggregator	O(en(ks + f))	$O(nN + 2^{-1}n)$	$O((n+fs)T2^d)$
Computational	O(e(ks+f))	$O(N + 2^dT)$	$O((n+fs)T2^d)$
Complexity at Client			
Communication			
Overhead of	O(en)	$O(nN + n2^dT)$	$O(nT2^d)$
Aggregator			
Communication	O(e)	$O(N + 2^dT)$	$O(nT2^d)$
Overhead of Client			
Accuracy Impact	lossless	lossless	lossless
Security Model	honest-but-curious aggregator, malicious and colluding users	honest-but-curious aggregator and clients	honest-but-curious colluding auxiliary parties, honest active party
Machine Learning Model	linear and non-linear models supporting updates through SGD	Classification and Regression Trees	Classification and Regression Trees
Security Mechanisms	Inference Prevention Module, Batch Randomization, FEIP encryption (MIFE+SIFE)	Paillier Encryption	Secret-Sharing, First-Layer-Mask

Fig. 3:
Comparison
between Vertical
Federated
Learning Privacy
Preserving
Techniques

Fig. 4: Comparison
between Federated
Learning Privacy
Preserving
Techniques providi

Aggregation Verifiability

	Framework	VFL	VerifyNet	Secure Verifiability
	Computational			
	Complexity at	O(egn)	$O(emn^2)$	O(enD)
	Aggregator			
	Computational	$O(em^2g)$	O(emn)	O(eD)
	Complexity at Client			
	Communication	O(egn)	O(enm)	O(enD)
	Overhead at			
	Aggregator			
	Communication	O(eg)	O(e(n+m))	O(eD)
	Overhead at Client			
	Accuracy Impact	94% on MNIST	not assessed	97% on MNIST (98% for [38])
		(95% for [38])	not assessed	
n d	Security Model	malicious server,	honest-but-curious	honest-but-curious clients and a malicious server
		honest-but-curious	clients (colluding up	
		clients, colluding up	to $t-1$) and server	
		to $n-2$	(malicious aptness)	mancious server
	Machine Learning Model	neural networks	neural networks	neural networks
			Diffie-Hellman,	
ing	Security Mechanisms	Lagrange	Homomorphic Hash	Hash Paillier encryption, Chinese Remainder Theorem, Bilinear
		Interpolation,	Functions,	
		Pseudo-random	Double-Masking,	
		technology, Chinese	Secret-Sharing,	
		Remainder Theorem	Pseudo-random	
			technology	
				l .

6. Conclusion

Takeaways:

- complementing classical PPT improves data privacy
- there is no universal best PPT within FL

Future direction of research:

- integration of verifiability within vertical FL
- security enhancements via alternative methods (e.g. DP)

student: Horia-Claudiu Culea (4779126) email: h.c.culea@student.tudelft.nl responsible professor: Dr. Kaitai Liang supervisor: Rui Wang

