Week 4 Stats, Monday

<u>Announcements/Questions:</u>

- Stats Reading getting a little heavy? Stats Main Page has pages to emphasize!
 - o This week: Ch. 7 (it's short & sweet). Priorities (most to least important)
 - 1. pp 162-182, 200-204 the bestiary
 - categorical x, continuous y ANOVA 1-way layout
 - categorical x, categorical y tabular designs (week 7?)
 - 2. pp 182-194 ANOVA 2-way layouts, split plot designs, 3+ factors
 - 3. pp 194-200 experiments over time, fully crossed design (experimental regression)
- Stats Syllabus redone as blogs page (not doc)
- No class Wednesday (Day of Absence) see week's schedule for activities
- OK to post .docx lecture notes instead of .pdf's?
- Evergreen grad (UMass/Amherst grad student) questioned stats of eminent Harvard profs!

Today

• Type I and Type II Errors (Ch. 4)

Your choice	Retain H ₀	Reject H₀
<u>In the real</u> world		
<u>H₀ true</u>	Correct Decision	Type I error
H₀ false	Type II error	Correct Decision

Examples:

o What is our H0 for anthropogenic Climate Change?

If indeed climate change <u>is</u> anthropogenic, and we incorrectly fail to reject a false H0. We retain the null hypothesis and do nothing to slow climate change

we have committed a Type II error. This is indeed grave. In this case, we want a high β , and are willing to sacrifice α

"Precautionary Principle"

o Similarly, what is your H0 for a new chemical pesticide?

Assume it does no harm until proven otherwise?

- o Analogy to "producer" vs. "consumer" errors. What does this mean to you, as a consumer?
- p-values vs. power α vs. β Parametric statistics tend to control α , the probability of a type I error an inverse, but not simple relationship. typically, you'll need a larger n for greater statistical power (or will have to relax p)

p. 103, figure 4.5

- Ch. 5: The 3 Frameworks (Parametric, Monte Carlo, Bayesian)
 - o parametric vs monte carlo
 - o next week something about Bayesian
- Ch. 6: Field Experiments

o What makes a good study design?	
Recognizing a bad one	
o Basic kinds of field experiments	
• Ch. 7: Bestiary of Experimental and Sampling Designs (see slides)	
T-test – comparing 2 means	
o Independent samples, randomly selected	
o Drawn from a randomly distributed population	
o Student's (Gosset's) t-distribution (2-sample t-test t-tables)	
■ For t _{critical} , need p-value & degrees of freedom (n1 + n2 -2)	
o Example p. 109 (#ants in field vs. ants in forest)	
о Н0:	
о На:	
 ANOVA - comparing more than 2 means (chalk talk - next week) 	
o H0:	
о На:	
o assumptions for parametric ANOVA–	
normality (Shapiro-Wilks test)	
equal variances (Levene's test)	
Discussion: Parametric vs. nonparametric ANOVA	

- Advanced ANOVA topics deferred to Week 5
- Standard Deviation vs. Standard Error (vs. Covariance)

• To review for next week's quiz? What to expect next week? A take home exam?