

## DS-UA 111 Data Science for Everyone

Week 14: Lecture 2
Hypothesis Testing for Regression





How can we quantity our uncertainty about the slope and intercept determined in least squares regression?

# DS-UA 111 Data Science for Everyone

Week 14: Lecture 2
Hypothesis Testing for Regression



#### **Announcements**

- ► Please check Week 14 agenda on NYU Classes
  - ► Project Milestone
  - ► Lab 9
- ▶ Refer to the Calendar linked to NYU Classes





- ▶ Remember that errors come from differences between predicted values and observed values. We call the errors residuals.
- ► For least squares regression, we compute the mean square error by
  - 1. squaring the residuals
  - 2. computing the mean



We can describe a line through a function of the form

Output = Intercept + Slope \* Input

- ► The slope and intercept are the missing pieces in the model.
- We choose the slope and intercept that minimize the mean square error.



Has a pattern like a funnel

- We can generate a scatterplot to visualize the residuals. We want
  - About half the points above 0 and about half the points below 0
  - Comparable differences from 0 throughout the points
  - No discernible trend or pattern
- Otherwise we should explore other explanatory variables



Does not have a pattern

- We can generate a scatterplot to visualize the residuals. We want
  - About half the points above 0 and about half the points below 0
  - Comparable differences from 0 throughout the points
  - No discernible trend or pattern
- Otherwise we should explore other explanatory variables



## Agenda

- MultipleExplanatoryVariables
- ► Confidence Intervals

#### References

- ►Inference for Regression
  - ► Chapter 16.1-16.3



## Explanatory Variables

- We can have multiple explanatory variables in a least squares regression model.
- If we have two explanatory variables then the prediction determine a plane.
- We can describe a plane through a function of the form

```
Output = Intercept + Slope 1 * Input 1 + Slope 2 * Input 2
```



## Finding a Minimum

- ▶ We choose the intercept and slopes that minimize the mean square error.
- We can use a package to find the slopes and intercept through guessing and check values





#### Confidence Intervals

- We determine the slope and intercept through fitting the line to the data. The data is a sample from the population.
- We can quantify the variation across samples in the slope and interval through resampling.
- Bootstrap resampling allows us to generate many slopes and intercepts across replications



#### Confidence Intervals

- ► For each replication, we have a resample. We can fit a line to the data in the resample to determine the slope and intercept.
- We can calculate confidence intervals from these numbers by determining percentiles like 5<sup>th</sup> and 95<sup>th</sup>
- Here we have bootstrap confidence intervals for slope and intercept



#### Confidence Intervals

Note that the confidence intervals become large for values far from the mean

- ▶ If we fix a value for the explanatory variable, then for each replication we have a slope and intercept to make a prediction.
- We can calculate confidence intervals from these numbers by determining percentiles like 5<sup>th</sup> and 95<sup>th</sup>
- Here we have bootstrap confidence intervals predictions



### Summary

- MultipleExplanatoryVariables
- ► Confidence Intervals

#### Goals

- Incorporate two explanatory variables into least squares regression
- ► Compute confidence intervals for slopes and intercepts

