ACTOR CRITIC METHODS IN SIMULATING SIMPLE NATURAL SELECTION ENVIRONMENT

Ümit Akköse 19190

19233

Barış Temel Veysel Oğulcan Kaya 17804

What is Deep Reinforcement Learning?

- Intelligent machines can learn from their actions similar to the way humans learn from experience.
- Inherent in this type of machine learning is that an agent is rewarded or penalised based on their actions.
- Actions that get them to the target outcome are rewarded (reinforced).

Actor-Critic Method

- The policy structure is known as the actor, because it is used to select actions, and the estimated value function is known as the critic.
- The critic is a state-value function.

DQN&DDPG STRUCTURE

DDPG Results

The pseudo-algorithm of DDPG

- Initialize actor network μ_θ and critic Q_Φ with random weights.
- Create the target networks μ_{θ} 0 and $Q_{\phi 0}$.
- Initialize experience replay memory D of maximal size N.
- for episode \in [1, M]:
 - \circ Initialize random process ξ.
 - Observe the initial state so.
 - o for t \subseteq [0, Tmax]:
 - Select the action at = $\mu\theta$ (st) + ξ according to the current policy and the noise.
 - Perform the action at and observe the next state st+1 and the reward rt+1.
 - Store (st, at, rt+1, st+1) in the experience replay memory.
 - Sample a minibatch of N transitions randomly from D.
 - For each transition (sk, ak, rk, s0 k) in the minibatch: Compute the target value using target networks yk = rk + γ Qφ0(s 0 k , $\mu\theta$ 0(s 0 k)).
 - Update the critic by minimizing: $L(\phi) = 1 \text{ N X k (yk } Q\phi(sk, ak))2$
 - ♦ **Update** the actor using the sampled policy gradient: $\nabla \theta J(\theta) = 1 \text{ N X k } \nabla \theta \mu \theta(\text{sk}) \times \nabla a Q \phi(\text{sk, a}) | a = \mu \theta(\text{sk})$
 - **♦ Update** the target networks: θ 0 ← $\tau\theta$ + (1 − τ) θ 0 ϕ 0 ← $\tau\phi$ + (1 − τ) ϕ

