18MAB102T-CLAT-2 - B2 SLOT -Advanced Calculus and Complex Analysis

Date of Examination: 23/06/2021

Time: 9.00 am - 10.30 am

* Required

Max. Mark: 50 Max. time:90 Min

The respondent's email (null) was recorded on submission of this form.

1.	Email *
2.	Name of the Student *
3.	Registration Number *
4.	Department *

18MAB102T-CT-2 - B SLOT -Adanced Calculus and Complex Analysis

MCQ Questions Each question carry one mark

The divergence of $\vec{F}=xyz\vec{i}+3x^2y\vec{j}+(xz^2-y^2z)\vec{k}$ at (2, -1, 1) is

- A. 12
- B. 14
- C. 11
- D. 13

Mark only one oval.

- () E
- \bigcirc

6.

If $\vec{F}=(axy-z^3)\vec{i}+(a-2)x^2\vec{j}+(1-a)xz^2\vec{k}$ is irrotational, then the value of a is

- A. 4
- B. 2
- C. -1
- D. 0

- _____ A
- () B

The unit normal vector to the surface $x^3 - xyz + z^3 = 1$ at the point (1, 1, 1) is

- A. $\frac{\vec{i}+\vec{j}+\vec{k}}{3}$
- B. $\frac{2\vec{i} + 2\vec{j} + 2\vec{k}}{3}$
- C. $\frac{2\vec{i} \vec{j} + 2\vec{k}}{3}$
- D. $\frac{2\vec{i} 2\vec{j} + 2\vec{k}}{3}$

Mark only one oval.

8.

The directional derivative of $\phi = 3x^2 + 2y - 3z$ at the point (1, 1, 1) in the direction of the vector $2\vec{i} + 2\vec{j} - \vec{k}$ is

- A. $\frac{17}{3}$
- B. $\frac{13}{3}$ C. $\frac{11}{3}$

Evaluate the line integral $\int\limits_C \vec{r.} \, d\vec{r}$ where C is the line y=x in XY plane from (1, 1) to (2,2)

- A. 2
- B. 3
- C. 4
- D. 1

Mark only one oval.

- () E

10.

Find the constant a, if the vector $\vec{F}=(2x^2y+yz)\vec{i}+(xy^2-xz^2)\vec{j}+(axyz-2x^2y^2)\vec{k}$ is solenoidal

- A. -4
- B. -2
- C. -5
- D. -6

- () A
- В
- \bigcirc C

If $\phi = x^2y + y^2x + z^2$ then $\nabla \phi$ at the point (1, 1, 1) is

- A. $2\vec{i} + 2\vec{j} + \vec{k}$
- **B.** $3\vec{j} + 2\vec{k} + 2\vec{k}$
- C. $3\vec{i} + 3\vec{j} + 2\vec{k}$
- $\mathbf{D}. \ \vec{i} + 3\vec{j} + 2\vec{k}$

Mark only one oval.

- () A
- () B
- \bigcirc C
- () D

12.

If $\vec{F}=(y^2+2xz^2)\vec{i}+(2xy-z)\vec{j}+(2x^2z-y+2z)\vec{k}$ then \vec{F} is

- A. Solenoidal
 - B. Irrotational
 - C. Neither Solenoidal Nor Irrotational
 - D. Both Solenoidal and Irrotational

- () A
- _____ B
- \bigcirc C

The maximum directional derivative of $\phi = xyz^2$ at (1,0,3) is

- A. 8
- B. 4
- C. 9
- D. 6

Mark only one oval.

- () A
- () E
- \bigcirc

14.

If \vec{r} is the position vector of the point (x, y, z) with respect to origin, then $\text{div}\vec{r}$ is

- A. 0
- B. 3
- C. 2
- D. 1

- ____ A
- В
- \bigcirc C
- \bigcirc D

According to Green's theorem
$$\int\limits_C (M\,dx + N\,dy) =$$

A.
$$\iint\limits_{\mathcal{B}} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) \, dx \, dy$$

B.
$$\iint\limits_{\Omega} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial y} \right) dx dy$$

C.
$$\iint_{B} \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right) dx dy$$

C.
$$\iint\limits_{R} \left(\frac{\partial N}{\partial y} - \frac{\partial M}{\partial x} \right) \, dx \, dy$$
 D.
$$\iint\limits_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dx \, dy$$

If \vec{a} is a constant vector and \vec{r} is the position vector of the point (x,y,z) w.r.to the origin then $\operatorname{div}(\vec{a}\times\vec{r})$ is

- A. 0
- B. 1
- C. \vec{r}
- D. \vec{a}

Mark only one oval.

- \bigcirc A
- () E
- \bigcirc

17.

If $\phi(x,y,z)=x^3+y^3+z^3-3xyz$ then the value of $\nabla.\nabla\phi$ at the point (1,2,3) is

- A. 18
- B. 42
- C. 36
- D. 24

- () A

If ϕ is a scalar function, then $\operatorname{curl}(\operatorname{grad}\phi)$ is

- A. 0
- B. 1
- C. -1
- D. 2

Mark only one oval.

- () A
- () E
- \bigcirc C
- \bigcirc D

19.

If
$$\vec{F}=(x^2-y^2+2xz)\vec{i}+(xz-xy+yz)\vec{j}+(z^2+x^2)\vec{k}$$
 then $\nabla.(\nabla\times\vec{F})=$

- A. 1
 - B. 0
 - C. 2
 - D. 4

- () A
- _____ B

Angle between two level surfaces $\phi_1 = c_1$ and $\phi_2 = c_2$ is given by

$$\mathbf{A.} \ \cos\theta = \frac{\nabla \phi_1 \times \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_2|}$$

B.
$$\cos \theta = \frac{\nabla \phi_1 - \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_2|}$$

C.
$$\cos \theta = \frac{\nabla \phi_1 + \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_2|}$$

D.
$$\cos \theta = \frac{\nabla \phi_1 \cdot \nabla \phi_2}{|\nabla \phi_1| |\nabla \phi_2|}$$

Mark only one oval.

- \bigcirc A
- () B
- \bigcirc C
- \bigcirc D

21.

If \vec{r} is the position vector of the point (x, y, z) w.r.to the origin, then $\nabla \times \vec{r}$ is

- A. 1
- $\mathbf{B}. \ \vec{i} \vec{j} \vec{k} = 0$
- C. $x\vec{i} y\vec{j} z\vec{k} = 0$
- D. 0

- () A
- _____ B
- \bigcirc C

If \vec{a} is a constant vector and \vec{r} is the position vector of the point (x,y,z) with respect to the origin, then $\operatorname{grad}(\vec{a}.\vec{r})$ is

- A. 2a
- B. \vec{a}
- C. 1
- D. 0

Mark only one oval.

- () E
- \bigcirc C

23.

The condition for the surfaces $\phi_1(x,y,z)=0$ cut orthogonally to $\phi_2(x,y,z)=0$ is

- $\mathbf{A.} \ \frac{\nabla \phi_1}{\nabla \phi_2} = 0$
- B. $\nabla \phi_1 \cdot \nabla \phi_2 = 0$
- C. $\nabla \phi_1 \nabla \phi_2 = 0$
- $\mathbf{D.} \ \nabla \phi_1 + \nabla \phi_2 = 0$

- () A
- В
- ______D

Applying Stoke's theorem, the value of $\int_C (e^x dx + 2y dy - dz)$, where C is the curve $x^2 + y^2 = 4$, z = 2 is

- A 1
- B. $\frac{1}{3}$
- C. $\frac{4}{3}$
- D. 0

Mark only one oval.

- () A
- () B
- () D

25.

The condition for \vec{F} to be conservative is, \vec{F} should be

- A. rotational
- B. solenoidal
- C. irrotational
- D. neither solenoidal nor irrotational

- () A
- В
- \bigcirc C

The relation between line integral and a surface integral is known as

- A. Green's theorem
- B. Residue theorem
- C. Stokes theorem
- D. Divergence theorem

Mark only one oval.

- _____ A
- () E
- \bigcirc
- \bigcirc D

27.

Suppose $\vec{F}=(2xy+z^3)\vec{i}+x^2\vec{j}+3xz^2\vec{k}$ is irrotational and if $\nabla\phi=\vec{F}$, then the scalar potential function ϕ is

- A. $xy^2 + xz^2 + C$
- B. $x^2y + xz^3 + C$
- C. $xy^3 + xz^2 + C$
- D. $xy + xz^3 + C$

- _____ A
- В
- \bigcirc C

Using Green's theorem, the value of $\int_C [(x-2y) dx + x dy]$, where C is the circle $x^2 + y^2 = 4$ is

- Α. 4π
- B. 6π
- C. 8π
- D. 12π

Mark only one oval.

- () E

29.

If S is any closed surface enclosing the volume V and if $\vec{F} = ax\vec{i} + by\vec{j} + cz\vec{k}$ then the value of $\iint_S \vec{F} . \vec{n} \, dS$ is

- A. abcV
- B. abc(a+b+c)V
- C. (a+b+c)V
- $\mathbf{D.}\ (ab+bc+ca)V$

- () A
- \bigcirc C

The Laplace transform of a function f(t) exists if

- A. it is piecewise continuous of exponential order
- B. it is uniformly continuous of exponential order
- C. it is continuous
- D. it is not continuous

Mark only one oval.

	Α

 \bigcirc

If
$$L[f(t)] = F(s)$$
, then $L[f(at)] =$

- A. $\frac{1}{a}F\left(\frac{s}{a}\right)$
- B. $\frac{1}{a}F(sa)$
- C. $F\left(\frac{s}{a}\right)$
- D. F(sa)

- () A
- В
- \bigcirc c

. The Laplace transform of t^4e^{-at} is

A.
$$\frac{4!}{(s+a)^4}$$

B.
$$\frac{4!}{(s-a)^4}$$

C.
$$\frac{4!}{(s+a)^5}$$

D.
$$\frac{5!}{(s-a)^5}$$

- _____A
- В
- \bigcirc C

$$L\left[\cos\left(\frac{t}{2}\right)\right] =$$

A.
$$\frac{4s}{4s^2+1}$$

B.
$$\frac{2s}{s^2+4}$$

C.
$$\frac{s}{s^2 + 4}$$

D.
$$\frac{4s}{4s^2 - 1}$$

- _____A
- В
- \bigcirc C
- \bigcirc D

If
$$f(t) = \sin t$$
 then $L\left[f'(t)\right] =$

- A. $\frac{s}{s^2 1}$
- B. $\frac{s}{s^2 + 1}$
- C. $\frac{1}{s^2+1}$
- D. $\frac{1}{s^2 1}$

- () A
- () E
- () C

What is the Laplace transform of $e^{-t}\cos 6t$?

A.
$$\frac{s+1}{(s+1)^2-36}$$

B.
$$\frac{s+1}{(s+1)^2+36}$$

C.
$$\frac{s-1}{(s-1)^2-36}$$

D.
$$\frac{s-1}{(s-1)^2+36}$$

- \bigcirc A
- () B
- \bigcirc C

$$L\left(te^{t}\right)=$$

A.
$$\frac{1}{s^2 - 1}$$

B.
$$\frac{1}{s-1}$$

C.
$$\frac{1}{(s-1)^2}$$

D.
$$\frac{1}{(s+1)^2}$$

- _____A
- В
- \bigcirc C

$$L(4^t)$$
 is

- A. $\frac{1}{s+4}$
- B. $\frac{1}{s + \log 4}$
- C. $\frac{1}{s-4}$
- $D. \ \frac{1}{s \log 4}$

- () A
- () B
- \bigcirc C

Find $\lim_{t\to 0} f(t)$ where $f(t) = 1 + e^{-t} + t^2$

- A. 1
- B. 2
- C. 0
- D. 3

- () A
- \bigcirc c

$$L\left[(1+e^{-2t})^2\right] =$$

A.
$$\frac{1}{s} + \frac{2}{s+2}$$

B.
$$\frac{1}{s} - \frac{2}{s+2} + \frac{1}{s+4}$$

C.
$$\frac{1}{s} + \frac{2}{s-2} + \frac{1}{s-4}$$

D.
$$\frac{1}{s} + \frac{2}{s+2} + \frac{1}{s+4}$$

- (A
- () B
- \bigcirc C

Find $\lim_{s\to\infty} sF(s)$ where $f(t) = \cos t$

- A. 1
- B. 0
- C. 2
- D. -1

Mark only one oval.

- () A
- () E
- \bigcirc C

41.

Find L[f(t)] where f(t) = 2

- A. $\frac{1}{s}$
- B. $\frac{2}{s}$
- C. 2
- D. $\frac{1}{2}$

- ____ A
- В
- ____ C

Laplace transform of $\sin^2 3t$ is

- A. $\frac{3}{s^2 + 36}$
- B. $\frac{6}{s^2 + 36}$
- C. $\frac{18}{s(s^2+36)}$
- D. $\frac{18}{s^2 + 36}$

- \bigcirc A
- () B
- \bigcirc C

$$L\left(t^{2}e^{-3t}\right) =$$

A.
$$\frac{1}{(s+3)^3}$$

B.
$$\frac{2}{(s+3)^2}$$

C.
$$\frac{3}{(s+3)^3}$$

D.
$$\frac{2}{(s+3)^3}$$

- \bigcirc A
- В
- \bigcirc C

$$L[\frac{1-e^{-t}}{t}] =$$

- A. $log\left(\frac{s+1}{s}\right)$
- B. $log\left(\frac{s-1}{s}\right)$
- C. $log\left(\frac{s}{s+1}\right)$
- $\mathbf{D.}\ \log\left(\frac{s}{s-1}\right)$

- () A
- В
- \bigcirc C

If f(t+T) = f(t), then the function f(t) is called as

- A. anti-periodic with period T
- B. periodic with period T
- C. unit-step with period T
- D. double-valued with period T

Mark only one oval.

- \bigcirc A
- \bigcirc C
- \bigcirc D

46.

Find $\lim_{s\to 0} sF(s)$ where $f(t)=t^2e^{-3t}$

- A. 0
- B. 1
- C. -1
- D. ∞

- \bigcirc A
- _____ B
- \bigcirc c

$$L^{-1}\left[\frac{s}{s^2+25}\right] =$$

- A. $\cos 5t$
- $B. \ \frac{\cos 5t}{5}$
- C. $\left(\frac{\cos 5t}{5}\right)^2$
- $\mathbf{D.} \ \frac{\sin 5t}{5}$

- \bigcirc A
- () B
- \bigcirc C

$$L^{-1}\left[\frac{1}{(s+a)^2}\right] =$$

- A. e^{at}
- B. e^{-at}
- C. te^{-at}
- \mathbf{D} . te^{at}

- () E
- \bigcirc C

$$L^{-1}\left[\frac{s-1}{(s-1)^2+4}\right] =$$

- A. $e^{-t}\sin 2t$
- B. $e^{-t}\cos 2t$
- C. $e^t \sin 2t$
- D. $e^t \cos 2t$

- \bigcirc \land
- () E
- \bigcirc C

Find
$$L^{-1}\left[\frac{1}{s+2}\right]$$

- A. $-e^{-2t}$
- B. e^{2t}
- C. e^{-2t}
- D. $-e^{2t}$

- \bigcirc A
- () E
- \bigcirc C
- \bigcirc D

Find
$$L^{-1}\left[\frac{1}{s^2-2}\right]$$

- $\mathbf{A.} \ \frac{1}{\sqrt{2}} \sinh \sqrt{2}t$
- **B.** $\sinh \sqrt{2}t$
- C. $\cosh \sqrt{2}t$
- $D. \ \frac{1}{\sqrt{2}}\sin\sqrt{2}t$

- () A
- () B
- \bigcirc c
- \bigcirc D

If L[f(t)] = F(s) and L[g(t)] = G(s), then L[f(t) * g(t)] =

- A. F(s) G(s)
- B. F(s) + G(s)
- C. $\frac{F(s)}{G(s)}$
- **D.** F(s)G(s)

Mark only one oval.

- () A
- () E
- \bigcirc
- \bigcirc D

53.

What is the period of the function f(t) = sint is?

- A. 2π
- B. 3π
- C. π
- D. $\frac{\pi}{2}$

- ____ A
- В

54. *

This content is neither created nor endorsed by Google.

Google Forms