Laïus 5 : BIO 2042 Test d'homoscédasticité et plans d'expérience

Guillaume Blanchet - Département de sciences biologiques, Université de Montréal - Janvier 2007

Objectifs:

- A) Apprendre à tester l'homogénéité de variance
 - 1) Test de Bartlett
 - 2) Test de Levene
- B) Apprendre à construire un plan d'expérience.

A) Test d'homoscédasticité

Pour beaucoup de tests paramétriques (p.ex. ANOVA), l'homogénéité des variances (homoscédasticité) est une condition nécessaire. Plusieurs méthodes (plus de 80 !) existent pour tester l'homogénéité des variances dans plusieurs groupes qui n'ont pas nécessairement le même nombre d'objets.

Après une revue de la littérature, des simulations et encore quelques tests très préliminaires, nous avons remarqué que certains tests étaient plus appropriés selon la situation d'utilisation :

- Si l'échantillon est <u>petit</u> ($n \le 50$) le **test de Bartlett** semble plus puissant
- Si l'échantillon est $\underline{\mathbf{grand}}$ (n > 50) le $\underline{\mathbf{test}}$ de $\underline{\mathbf{Levene}}$ semble plus robuste

1) Test d'homoscédasticité de Bartlett

Objectif:

Tester l'équivariance entre plusieurs groupes (en particulier sur de petits jeux de données)

Calculs:

On utilise une statistique B_c

 $S_{x_i}^2$ = Variance du groupe i

k = Nombre de groupes

 n_i = Nombre d'éléments dans le groupe i

N = nombre total d'éléments

On compare la statistique B_c à une statistique χ^2 à k-1 degrés de liberté.

Exemple : Nombre de sapins poussant dans 3 forêts différentes.

	Forêt 1	Forêt 2	Forêt 3
	45	78	354
	34	69	338
	35	86	351
	29	58	332
	42	57	341
	37	64	358
	44		347
	28		
Variance (S_x^2)	42,214	131,867	86,476

Test en 9 étapes

Étape 1 : Question biologique

Les variances des trois groupes sont-elles égales ?

Étape 2 : Déclaration des hypothèses

 H_0 : Les variances des trois groupes sont égales.

$$\sigma_1 = \sigma_2 = \sigma_3$$

 H_1 : Au moins une des variances diffère des autres.

 $\sigma_i \neq \sigma_j$ pour au moins un $i \neq j$

Étape 3 : Choix du test

Le test utilisé est un test de Bartlett où :

$$B_C = \frac{B}{C}$$

où
$$B = 2,3026 \left[\left(\log s_{xp}^2 \right) \sum_{i=1}^k (n_i - 1) - \sum_{i=1}^k (n_i - 1) \log s_{x_i}^2 \right]$$

et
$$C = 1 + \frac{1}{3(k-1)} \left[\sum_{i=1}^{k} \frac{1}{(n_i - 1)} - \frac{1}{\sum_{i=1}^{k} (n_i - 1)} \right]$$

et
$$s_{xp}^2 = \frac{\sum_{i=1}^k (n_i - 1) s_{x_i}^2}{\sum_{i=1}^k (n_i - 1)}$$

et $s_{x_i}^2$, variance du groupe *i*.

et k = Nombre de groupes

et n_i = Nombre d'éléments dans le groupe i

Étape 4 : Condition d'application

• Normalité des distributions

Étape 5 : Distribution de la variable auxiliaire

Si H_0 est vraie, la variable B_c suivra une distribution du χ^2 à k-1=3-1=2 degrés de liberté.

Étape 6 : Règles de décision

On rejette H_0 au seuil $\alpha = 0.05$ si $B_c > \chi^2$ $_{(0.05; 2)} = 5.99$. (Table V du Scherrer)

Étape 7 : Calcul du test

$$s_{xp}^2 = \frac{(8-1)\times42,214+(6-1)\times131,867+(7-1)\times86,476}{\left(8-1\right)+\left(6-1\right)+\left(7-1\right)} = 81,8717$$

$$B = 2,3026 \Big[\Big(\log \big(81,8717 \big) \Big) \times \big(7+5+6 \big) - \Big(7 \times \log \big(42,21429 \big) + 5 \times \log \big(131,8667 \big) + 6 \times \log \big(86,47619 \big) \Big) \Big] = 1,92529$$

$$C = 1 + \frac{1}{3 \cdot (3-1)} \left(\left(\frac{1}{7} + \frac{1}{5} + \frac{1}{6} \right) - \frac{1}{7+5+6} \right) = 1,075661$$

$$B_C = \frac{1,92529}{1,075661} = 1,789866$$

Étape 8 : Décision statistique

Comme $B_c = 1,789866 < 5,99$, on ne peut pas rejeter H_0 au seuil $\alpha = 0,05$.

Étape 9 : Interprétation biologique

Les trois échantillons de sapin ont la même variance. (Il n'y a pas forcément d'interprétation biologique à ce test, qui est souvent réalisé surtout pour des raisons techniques).

2) Test d'homoscédasticité de Levene

Objectif:

Tester l'équivariance entre plusieurs groupes (surtout pour les grands jeux de données)

Calculs:

	Groupe		
	1	•••	j
Donnée 1	x_{11}		x_{Ij}
Donnée i	x_{i1}		x_{ij}

$$w_{ij} = \left| x_{ij} - Me_j \right|$$

	Groupe				
	1		j	•••	k
Donnée 1	W11		W_{1j}		w_{1k}
•••					
Donnée i	w_{il}		w_{ij}		w_{ik}
Totaux	T_{I}	T	Tj		$T = \sum T_j$
Effectif	n_1	n	n_j		$n = \sum n_j$

Exemple : Nombre de sapins poussant dans 3 forêts différentes.

	Forêt 1	Forêt 2	Forêt 3
	45	78	354
	34	69	338
	35	86	351
	29	58	332
	42	57	341
	37	64	358
	44		347
	28		
$Mediane(Me_j)$ \longrightarrow	36	66,5	347

Test en 9 étapes ...

Étape 3: Choix du test

Le test utilisé est un test d'homogénéité de variance de Levene :

$$F_{calc} = \frac{Variance_{\text{int}er}}{Variance_{\text{int}ra}} = \frac{s_{\text{int}er}^2}{s_{\text{int}ra}^2}$$

•••

Étape 5 : Distribution de la variable auxiliaire

Si H_0 est vraie, la statistique F_{calc} suivra une distribution du Fisher-Snedecor à $v_1 = k-1 = 2$ degrés de liberté et $v_2 = n-k = 18$

Étape 6 : Règles de décision

On rejette H_0 au seuil $\alpha = 0.05$ si $F_{calc} > F_{(0.05;2.18)} = 3.55$.

Étape 7 : Calcul du test

$$C = \frac{T^2}{n} = \frac{21904}{21} = 1043,048$$

$$SCET = \sum_{i=1}^{k} \sum_{j=1}^{n_j} w_{ij}^2 - C = 1515, 5 - 1043,048 = 472,4524$$

$$SCI = \sum_{i=1}^{n} \frac{T_i^2}{n_i} - C = 1092,786 - 1043,048 = 49,7381$$

$$SCEE = SCET - SCI = 472,4524 - 49,7381 = 422,7143$$

$$s_{\text{int}ra}^2 = \frac{SCEE}{n-k} = \frac{422,7143}{21-3} = 23,48413$$

$$s_{\text{int }er}^2 = \frac{SCI}{k-1} = \frac{49,7381}{3-1} = 24,86905$$

$$F_{calc} = \frac{s_{\text{int }er}^2}{s_{\text{int }ra}^2} = \frac{24,86905}{23,48413} = 1,058973$$

Étape 8 : Décision statistique

Comme $F_{calc} = 1,058973 < 3,55$, on ne peut pas rejeter H_0 au seuil $\alpha = 0,05$.

Étape 9 : Interprétation biologique

Les trois échantillons de sapin ont la même variance.

B) Plan d'expérience

Mise en situation 1

Problématique générale

Une espèce nuisible de chenille vit dans les arbres feuillus des zones tempérées. Dans le but d'éliminer ces chenilles, on décide de tester l'effet d'un nouvel insecticide dans une petite forêt.

Question

Le nombre de chenilles est-il influencé par la présence du nouvel insecticide ?

Hypothèses

 H_0 : la présence de l'insecticide n'influence pas le nombre de chenilles.

 H_1 : la présence de l'insecticide influence le nombre de chenilles.

Définition des composantes

Facteur (mécanisme agissant sur un système donné, et que l'on veut isoler et faire varier)

Variable dépendante

Élément

Population statistique

<u>Facteurs externes</u> (Facteur pouvant interférer avec le facteur étudié...Bref, source de confusion)

Plan d'expérience

Mise en situation 2

Problématique générale

Un nouveau cépage de la vigne a été créé pour survivre aux conditions climatiques du Québec, le seul problème est qu'il produit peu de raisin. On souhaite tester l'influence qu'auraient quatre fertilisants sur la production en raisin du nouveau cépage.

Question

La production en raisin du nouveau cépage est-il influencé par la présence de fertilisants ?

Hypothèses

 H_0 : la présence de fertilisant n'influence pas la production en raisin du nouveau cépage. H_1 : la présence de fertilisant influence la production en raisin du nouveau cépage.

Définition des composantes

Facteur (mécanisme agissant sur un système donné, et que l'on veut isoler et faire varier)

Variable dépendante

<u>Élément</u>

Population statistique

Facteurs externes

Plan d'expérience