Definition 1.1 Dynamic weakly verifiable puzzle (non interactive version)

A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm $P(\pi)$, called a problem poser, that takes as input chosen uniformly at random bitstring $\pi \in \{0,1\}^l$, and produces circuits Γ_V , Γ_H and a puzzle $x \in \{0,1\}^*$. The circuit Γ_V takes as its input $q \in Q$ and an answer y. If $\Gamma_V(q,y) = 1$ then y is a correct solution of puzzle x for q. The circuit Γ_H on input q provides a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$. The algorithm S, called a solver, has oracle access to Γ_V and Γ_H . The calls of S to Γ_V are called verification queries and the calls to Γ_H are hint queries. The solver S can ask at most S hint queries, S verification queries, and successfully solves a DWVP if and only if it makes a verification query S0, such that S1, when it has not previously asked for a hint query on this S2.

Definition 1.2 k-wise direct product of dynamic weakly verifiable puzzles

Let $g: \{0,1\}^k \to \{0,1\}$ be a monotone function, and $P^{(1)}$ a probabilistic algorithm used to generate an instance of DWVP. A k-wise direct product of dynamic weakly verifiable puzzles is defined by a probabilistic algorithm $P^{(g)}(\pi_1, \ldots, \pi_k)$, where $(\pi_1, \ldots, \pi_k) \in \{0,1\}^{k \cdot l}$ are chosen uniformly at random. $P^{(g)}(\pi_1, \ldots, \pi_k)$ sequentially generates k independent instances of dynamic weakly verifiable puzzles, where in the i-th round $P^{(g)}$ runs $P^{(1)}(\pi_i)$ and obtains $(x_i, \Gamma_V^{(i)}, \Gamma_H^{(i)})$. Finally, $P^{(g)}$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, y_1, \dots, y_k) := g(\Gamma_V^{(1)}(q, y_1), \dots, \Gamma_V^{(k)}(q, y_k)),$$

a hint circuit

$$\Gamma_H^{(k)}(q) := (\Gamma_H^{(1)}(q), \dots, \Gamma_H^{(k)}(q)),$$

and a puzzle $x^{(k)} := (x_1, \dots, x_k)$.

The probabilistic algorithm S, called a solver, has oracle access to $\Gamma_V^{(g)}$, $\Gamma_H^{(k)}$. The solver S can ask at most v verification queries to $\Gamma_V^{(g)}$, h hint queries to $\Gamma_H^{(k)}$ and successfully solves the puzzle $x^{(k)}$ if and only if it asks a verification query (q, y_1, \ldots, y_k) such that $\Gamma_V^{(g)}(q, y_1, \ldots, y_k) = 1$, and it has not previously asked for a hint query on this q.

Experiment $A^{P^{(\cdot)},C^{(\cdot,\cdot)}}(\pi^{(\cdot)})$

Oracle: A problem poser $P^{(\cdot)}$ and a solver circuit $D^{(\cdot,\cdot)}$.

Input: A bitstring $\pi^{(\cdot)}$.

$$(x^{(\cdot)}, \Gamma_V^{(\cdot)}, \Gamma_H^{(\cdot)}) := P^{(\cdot)}(\pi^{(\cdot)})$$

$$\operatorname{Run} D^{(\Gamma_V^{(\cdot)}, \Gamma_H^{(\cdot)})}(x^{(\cdot)})$$

$$Q_{Solved} := \{q : D^{\Gamma_V^{(\cdot)}, \Gamma_V^{(\cdot)}}(x^{(\cdot)}) \text{ asked a verification query } (q, y^{(\cdot)}) \text{ and } \Gamma_V^{(\cdot)}(q, y^{(\cdot)}) = 1\}$$

$$Q_{Hint} := \{q : D^{\Gamma_V^{(\cdot)}, \Gamma_H^{(\cdot)}}(x^{(\cdot)}) \text{ asked a hint query on q}\}$$
If $\exists q \in Q_{solved} : q \notin Q_{Hint}$

$$\mathbf{return} \ 1$$
else
$$\mathbf{return} \ 0$$

Theorem 1.3 Security amplification of a dynamic weakly verifiable puzzle.

For a fixed problem poser $P^{(1)}$ there exists an algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input a solver circuit C for k-wise direct product of DWVP, a monotone function g, parameters

 ε, δ, n , the number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds:

If C is such that

$$\Pr_{(\pi_1, \dots, \pi_k) \in \{0, 1\}^{kl}} [A^{P^{(g)}, C}(\pi_1, \dots, \pi_k) = 1] \ge \Pr_{\mu \leftarrow \mu_\delta^k} [g(\mu) = 1] + \varepsilon$$

then D satisfies almost surely

$$\Pr_{\pi \in \{0,1\}^l}[A^{P^{(1)},D}(\pi) = 1] \ge (\delta + \frac{\varepsilon}{6k})$$

Additionally, D and Gen require only oracle access to g and C. Furthermore, D asks at most h hint queries, v verification queries and $Size(D) \leq Size(C) \frac{6k}{\varepsilon}$ and $Time(Gen) = poly(k, \frac{1}{\varepsilon}, n, v, h)$.

Let $hash: Q \to \{0, 1, \dots, 2(h+v) - 1\}$ and P_{hash} , defined with respect to hash, is a preimage of 0 for function hash.

Lemma 1.4 Success probability with respect to hash function.

For a fixed $P^{(g)}$ let C succeed in solving the k-wise direct product of DWVP produced by $P^{(g)}$ with probability γ making h hint and v verification queries. There exists a probabilistic algorithm, with oracle access to C, that runs in time $O((h+v)^4/\gamma^4)$ and with high probability outputs a function hash $: Q \to \{0, \ldots, 2(h+v) - 1\}$ such that success probability of C in random experiment E with respect to the set P_{hash} is at least $\frac{\gamma}{8(h+v)}$.

Proof Let \mathcal{H} be a family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v)-1\}$. By a pairwise independence property of \mathcal{H} we know that for all $i \neq j \in \{1, \dots, (h+v)\}$ and $k, l \in \{0, 1, \dots, 2(h+v)-1\}$ we have the following

$$\forall q_i, q_j \in Q: \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k \mid hash(q_j) = l] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = k] = \frac{1}{2(h+v)}. \quad (0.0.1)$$

For a fixed $P^{(g)}$ and (π_1, \ldots, π_k) in the random experiment A we define a binary random variable X for the event that $hash(q_j) = 0$, and for every query q_i asked before q_j $hash(q_i) \neq 0$. By definition of conditional probability

$$\Pr_{hash \leftarrow \mathcal{H}}[X = 1] = \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0 \land \forall i < j : hash(q_i) \neq 0]$$

$$= \Pr_{hash \leftarrow \mathcal{H}}[\forall i < j : hash(q_i) \neq 0 \mid hash(q_j) = 0] \Pr_{hash \leftarrow \mathcal{H}}[hash(q_j) = 0].$$

Now we use (0.0.1) and obtain

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] = \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0 \mid hash(q_j) = 0] \right)$$

Using pairwise independence property we conclude

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] = \frac{1}{2(h+v)} \left(1 - \Pr_{hash \leftarrow \mathcal{H}}[\exists i < j : hash(q_i) = 0] \right).$$

Finally, we use union bound and the fact $j \leq (h+v)$ to get

$$\Pr_{hash \leftarrow \mathcal{H}}[X=1] \ge \frac{1}{2(h+v)} \left(1 - \sum_{i < j} \Pr_{hash \leftarrow \mathcal{H}}[hash(q_i) = 0] \right) \ge \frac{1}{4(h+v)}$$

Let G denote the set of all (π_1, \ldots, π_k) for which C succeeds in the random experiment A. Then

$$\Pr_{\substack{hash \leftarrow \mathcal{H} \\ (\pi_1, \dots, \pi_k)}} [X = 1] = \sum_{\substack{(\pi_1, \dots, \pi_k) \in G}} \Pr_{\substack{hash \leftarrow \mathcal{H} \\ (\pi_1, \dots, \pi_k)}} [X = 1 \mid (\pi_1, \dots, \pi_k)] \cdot \Pr_{\substack{(\widetilde{\pi}_1, \dots, \widetilde{\pi}_k)}} [(\widetilde{\pi}_1, \dots, \widetilde{\pi}_k) = (\pi_1, \dots, \pi_k)]$$

$$\geq \frac{1}{4(h+v)} \sum_{\substack{(\pi_1, \dots, \pi_k) \in G}} \Pr_{\substack{(\widetilde{\pi}_1, \dots, \widetilde{\pi}_k) \in G}} [(\widetilde{\pi}_1, \dots, \widetilde{\pi}_k) = (\pi_1, \dots, \pi_k)] = \frac{\gamma}{4(h+v)}$$

Algorithm: FindHash

Oracle: A solver circuit for k-wise direct product of DWVP $C^{(\cdot,\cdot)}$ with oracle access to hint and verification oracle.

Input: \mathcal{H} a family of pairwise independent hash functions $Q \to \{0, 1, \dots, 2(h+v) - 1\}$

```
For i=1 to 16(h+v)^2/\gamma^2
hash \overset{\$}{\leftarrow} \mathcal{H}
count := 0
For j:=1 to 16(h+v)^2/\gamma^2
(\pi_1,\ldots,\pi_k) \overset{\$}{\leftarrow} \{0,1\}^{kl}
\operatorname{Run} A^{P^{(g)},C^{(\cdot,\cdot)}}(\pi_1,\ldots,\pi_k)
\operatorname{Let} (\widetilde{q},y^{(k)}) \text{ be the first successful verification query.}
\operatorname{Let} G \text{ be a set of all } q \text{ used in hint or verification queries asked before } (\widetilde{q},y^{(k)}).
If \Gamma_V^{(g)}(\widetilde{q},y^{(k)})=1 \land G \subseteq P_{hash}
count := count + 1
If count \geq 4(h+v)/\gamma
\operatorname{return} hash
```

We show that the algorithm **FindHash** chooses a hash function such that almost surly the success probability of C in random experiment E with respect to set P_{hash} is at least $\frac{\gamma}{4(h+v)}$. Let \mathcal{H}_{Good} denote the family of hash functions for which $\Pr_{(\pi_1,\ldots,\pi_k)}[X] \geq \frac{\gamma}{4(h+v)}$ and X_1,\ldots,X_k be binary random variables such that for a fixed hash function

$$X_i = \begin{cases} 1 & \text{if in } i \text{th iteration variable } count \text{ is increased} \\ 0 & \text{otherwise} \end{cases}.$$

We first show that it is unlikely that the algorithm **FindHash** returns $hash \notin \mathcal{H}_{Good}$. For $hash \notin \mathcal{H}_{Good}$ we have $\mathbb{E}_{(\pi_1,...,\pi_k)}[X_i] < \frac{\gamma}{4(h+v)}$. We use Chernoff inequality and obtain

$$\Pr_{(\pi_1, \dots, \pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \ge (1+\delta) \frac{\gamma}{4(h+v)} \right] \le \Pr_{(\pi_1, \dots, \pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \ge (1+\delta) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h+v)} N \delta^2/3}$$

The probability that $hash \in \mathcal{H}_{Good}$ is not returned by the algorithm is

$$\Pr_{(\pi_1, \dots, \pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \le (1 - \delta) \frac{\gamma}{4(h + v)} \right] \le \Pr_{(\pi_1, \dots, \pi_k)} \left[\frac{1}{N} \sum_{i=1}^N X_i \le (1 - \delta) \mathbb{E}[X_i] \right] \le e^{-\frac{\gamma}{4(h + v)} N \delta^2 / 3}$$

Finally, we show that almost surely **FindHash** picks in one of its iteration a hash function that is in \mathcal{H}_{Good} . From the fact that the random variable X is binary distributed we have

$$\underset{(\pi_1,\dots,\pi_k)}{\mathbb{E}}[X] \ge \frac{\gamma}{4(h+v)}$$

Let Y_i be a binary random variable

$$Y_i = \begin{cases} 1 & \text{in } i \text{th iteration } hash \in \mathcal{H}_{Good} \text{ is picked} \\ 0 & \text{otherwise} \end{cases}$$

We make use of the fact that if a function from \mathcal{H}_{Good} is picked, then it is returned almost surely. Therefore, $\mathbb{E}[Y_i] \geq \frac{\gamma}{4(h+v)}$ and we can use Chernoff bound to obtain

$$\Pr_{hash \leftarrow \mathcal{H}} \left[\frac{1}{K} \sum_{i=1}^{K} Y_i = 0 \right] \leq \Pr_{hash \leftarrow \mathcal{H}} \left[\frac{1}{K} \sum_{i=1}^{K} Y_i \leq (1 - \delta) \frac{\gamma}{4(h + v)} \right]$$

$$\leq \Pr_{hash \leftarrow \mathcal{H}} \left[\frac{1}{K} \sum_{i=1}^{K} Y_i \leq (1 - \delta) \mathbb{E}[Y_i] \right] \leq e^{-\delta^2 K \mathbb{E}[Y_i]/2}$$

We see that the bound stated in the lemma 1.4 is achieved for valid for $\delta = \frac{1}{2}$ and K = N = $16(h+v)^{2}/\gamma^{2}$

Experiment $E^{P^{(g)},C^{(\cdot)(\cdot)},hash}(\pi_1,\ldots,\pi_k)$

Solving k-wise direct product of DWVP with respect to the set P_{hash}

Oracle: Problem poser for k-wise direct product $P^{(g)}$

A solver circuit for k-wise direct product $C^{(\cdot,\cdot)}$

A function $hash: Q \leftarrow \{0, \dots, 2(h+v)-1\}$

Input: Random bitstring $(\pi_1, \ldots, \pi_k) \in \{0, 1\}^{kl}$

 $\pi^{(k)} := (\pi_1, \dots, \pi_k)$ $(x^k, \Gamma_V^{(g)}, \Gamma_H^{(k)}) := P^{(g)}(\pi^k)$ $\operatorname{Run} C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}(x^{(k)})$

Let $(q_j, y_j^{(k)})$ be the first successful verification query if $C^{\Gamma_V^{(g)}, \Gamma_H^{(k)}}$ succeeds or an arbitrary verification query when it fails.

If $(\forall i < j : q_i \notin P_{hash})$ and $q_j \in P_{hash}$ and $\Gamma_V^{(g)}(q_j, y_i^{(k)}) = 1$

return 1

else

return 0

A canonical success is a situation when a solver C for fixed hash and $P^{(1)}$ succeeds in a random experiment E.

Random experiment $F^{P^{(1)},D,hash}(\pi)$

Solving a single DWVP with respect to the set P_{hash}

Oracle: A dynamic weakly verifiable puzzle $P^{(1)}$

A solver circuit for a single DWVP D

A function $hash: Q \to \{0, 1, \dots, 2(h+v)-1\}$ Input: Random bitstring $\pi \in \{0, 1\}^l$

 $(x, \Gamma_v, \Gamma_H) := P^{(1)}(\pi)$

Run $D^{\Gamma_V,\Gamma_H}(x)$

Let $(\widetilde{q_i}, \widetilde{r_i})$ be the first successful verification query if $D^{\Gamma_V, \Gamma_H}(x)$ succeeds or

```
an arbitrary verification query when it fails. If (\forall i < j : q_i \notin P_{hash}) and q_j \in P_{hash} and \Gamma_V(q_j) = 1 then return 1 else return 0
```

Lemma 1.5 Security amplification of a dynamic weakly verifiable puzzle with respect to set P_{hash} .

For a fixed dynamic weakly verifiable puzzle $P^{(1)}$ there exists an algorithm $Gen(C, g, \varepsilon, \delta, n, v, h, hash)$, which takes as input a circuit C, a monotone function g, a function $hash: Q \to \{0, \ldots, 2(h+v)-1\}$, parameters ε, δ, n , number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds: If C is such that

$$\Pr_{(\pi_1,\ldots,\pi_k)}[E^{P^{(g)},C,Hash}(\pi_1,\ldots,\pi_k)=1] \ge \Pr_{\mu \leftarrow \mu_\delta^k}[g(\mu)=1] + \varepsilon$$

then D satisfies almost surely

$$\Pr_{\pi}[F^{P^{(1)},D,Hash}(\pi) = 1] \ge (\delta + \frac{\varepsilon}{6k})$$

 $and \; Size(D) \leq Size(C) \tfrac{6k}{\varepsilon} \; \; and \; Time(Gen) = poly(k, \tfrac{1}{\varepsilon}, n, v, h).$

TODO: The circuit should return the solutions to puzzles. Then we just need to call circuit Γ_v to eval. it. But there should be an assumption that the circuit always returns a tuple in P_{hash} and does not ask hint or verification queries on this tuple.

```
Circuit \widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},hash,C}(x_1,\ldots,x_k)
Circuit \widetilde{C} has good canonical success probability.
Oracle: \Gamma_V^{(g)}, \Gamma_H^{(g)}, hash, C
Input: k-wise direct product of puzzles (x_1, \ldots, x_k)
Run C^{(\cdot,\cdot)}(x_1,\ldots,x_k)
     If C asks a hint query q then
           If q \in P_{hash} then
                 return \perp
           else
                 answer the hint query with \Gamma_H^{(k)}(q)
     If C asks a verification query (q, y_1, \ldots, y_k) then
           If q \in P_{hash} then
                 ask the verification query (q, y_1, \ldots, y_k)
                 stop the execution
           else
                 answer verification query with 0
return \perp
```

The key difference between circuits C and \widetilde{C} is that if \widetilde{C} asks a verification query (q, y_1, \dots, y_k) then $q \in P_{hash}$. This means that if \widetilde{C} succeeds then it also succeeds canonically.

Lemma 1.6 For fixed $P^{(g)}$ it is true that

$$\Pr_{(\pi_1, \dots, \pi_k)}[E^{P^{(g)}, C, Hash}(\pi_1, \dots, \pi_k) = 1] \leq \Pr_{(\pi_1, \dots, \pi_k)}[\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(g)}, Hash}(\pi_1, \dots, \pi_k)) = 1].$$

Proof We fix the randomness (π_1, \ldots, π_k) used in the random experiment E. Let $x^{(k)} = (x_1, \ldots, x_k)$ be a set of puzzles generated in the random experiment E for the randomness (π_1, \ldots, π_k) . If C succeeds canonically for the set of puzzles $x^{(k)}$, then also circuit \widetilde{C} that runs C on the same set of puzzles succeeds. Using the definition of conditional expectation, we conclude that

$$\begin{split} \Pr[E^{P^{(g)},C,hash}(\pi^{(k)}) = 1] &= \sum_{\pi^{(k)} \in \{0,1\}^{kl}} \Pr[E^{P^{(g)},C,hash}(\widetilde{\pi}^{(k)}) = 1 | \pi^{(k)} = \widetilde{\pi}^{(k)}] \Pr[\pi^{(k)} = \widetilde{\pi}^{(k)}] \\ &\leq \sum_{\pi^{(k)} \in \{0,1\}^{kl}} \Pr[E^{P^{(g)},\widetilde{C},hash}(\widetilde{\pi}^{(k)}) = 1 | \pi^{(k)} = \widetilde{\pi}^{(k)}] \Pr[\pi^{(k)} = \widetilde{\pi}^{(k)}] \\ &= \Pr[E^{P^{(g)},\widetilde{C},hash}(\pi^{(k)}) = 1] \end{split}$$

Algorithm $Gen(\widetilde{C}, g, \varepsilon, \delta, n)$

Oracle: \widetilde{C}, g Input: ε, δ, n

Output: A circuit D

If the number of puzzles to solve equals one then \approx

return C

For
$$i := 1$$
 to $\frac{6k}{\varepsilon} \log(n)$

$$\pi^* \leftarrow \{0,1\}^l$$

$$\widetilde{S}_{\pi^*,0} := EvaluateSurplus(\pi^*,0)$$

$$\widetilde{S}_{\pi^*,1} := EvaluateSurplus(\pi^*,1)$$
If $\widetilde{S}_{\pi^*,0} \geq (1-\frac{3}{4k})\varepsilon$ or $\widetilde{S}_{\pi^*,1} \geq (1-\frac{3}{4k})\varepsilon$

$$\widetilde{C}' := \widetilde{C} \text{ with the first input fixed on } \pi^*$$

$$\mathbf{return} \ Gen(\widetilde{C}',g,\varepsilon,\delta,n)$$
// all estimates are lower than $(1-\frac{3}{4k})\varepsilon$

$$\mathbf{return} \ D^{\widetilde{C}}$$

EvaluateSurplus(π^*, b)

$$\begin{aligned} & \textbf{For } i := 1 \text{ to } N_k \\ & \pi^{(k)} \leftarrow \{0,1\}^{lk} \\ & (c_1,\ldots,c_k) := EvalutePuzzles(\pi^*,\pi^{(k)}) \\ & \widetilde{S}^i_{\pi^*,b} := g(b,c_2,\ldots,c_k) - \Pr_{(u_2,\ldots,u_k)}[g(b,u_2,\ldots,u_k) = 1] \end{aligned}$$

$$\textbf{return } \frac{1}{N_k} \sum_{i=1}^{N_k} \widetilde{S}^i_{\pi^*,b}$$

EvalutePuzzles
$$(\pi^*, \pi^{(k)})$$

 $(x^k, \Gamma_V^{(g)}, \Gamma_H^{(g)}) := P^{(g)}(\pi^*, \pi_2, \dots, \pi_k)$
For $i = 2$ to k

```
 \begin{aligned} (x_1, \Gamma_v^{(i)}, \Gamma_H^{(i)}) &:= P^{(1)}(\pi_i) \\ (q, y^k) &:= \widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(g)}}(x^*, x_2, \dots, x_k) \\ \textbf{For } i &= 1 \text{ to } k \\ c_i &:= \Gamma_v^i(q, y_i) \\ \textbf{return } (c_1, \dots, c_k) \end{aligned}
```

TODO: Circuit \widetilde{C} gets as input puzzle find a nice way to generate the puzzles as it is used in many places in the code. Also make EvalutePuzzles more general maybe it should take \widetilde{C} as input?

```
Circuit D^{\widetilde{C}}

Oracle: \widetilde{C}, P^{(1)}

Input: puzzle x^*

For i := 1 to \frac{6k}{\varepsilon} \log(\frac{6k}{\varepsilon})

\pi^k \leftarrow \{0, 1\}^k

(c_1, \dots, c_k) := EvaluatePuzzles(\pi, \pi^{(k)})

If g(1, c_2, \dots, c_k) = 1 and g(0, c_2, \dots, c_k) = 0

(q, y_1, \dots, y_k) := \widetilde{C}(x^*, x_2, \dots, x_k)

return y_1
```

For k=1 function g(b) is either identity or a constant function. If g is identity then the success probability of \widetilde{C} is as least $\delta + \varepsilon$ and \widetilde{C} can be directly used to solve a puzzle. If the function g is constant the statement is vacuously true.

Let $(q, y_1, ..., y_k)$ denote the output of \widetilde{C} . Additionally, let us denote by $c_i = \Gamma_V(q, y_i)$ whether (q, y_i) is a correct solution for a single puzzle. We define surplus as the following quantity:

$$S_{\pi^*,b} = \Pr_{\pi^{(k)}}[g(b, c_2, \dots, c_k) = 1] - \Pr_{\mu^{(k)}}[g(b, u_2, \dots, u_k) = 1]$$

$$(0.0.2)$$

The surplus $S_{\pi^*,b}$ tells us how good the algorithm \widetilde{C} performs when the first puzzle is fixed, and value of c_1 is neglected. The procedure **EvaluateSurplus** returns the estimate for $\widetilde{S}_{\pi^*,b}$. All puzzles used during obtaining the estimate are generated by **EvaluatePuzzles**. Therefore, it is possible to provide answers for all hint and verification queries. The returned estimate $\widetilde{S}_{\pi^*,b}$ that differs from $S_{\pi^*,b}$ by at most $\frac{\varepsilon}{4k}$ almost surely. Therefore, if $\widetilde{S}_{\pi^*,b} \geq (1 - \frac{3}{4k})\varepsilon$ then with high probability $S_{\pi^*,b} \geq (1 - \frac{1}{k})\varepsilon$. In this case we use a new monotone binary function $g'(b_2,\ldots,b_k) := g(b,b_2,\ldots,b_k)$, and fix the first puzzle of \widetilde{C} for the one generated by using the randomness π^* . The new circuit satisfies the conditions of Lemma 1.5 which means that we can use algorithm Gen for the new circuit \widetilde{C} and monotone function g'.

If all estimates are less than $(1 - \frac{1}{4k})\varepsilon$, then intuitively \widetilde{C} does not perform much better on the remaining k-1 puzzles than an algorithm that solves each puzzle independent with probability δ . However, from the assumption we know that on all k puzzles \widetilde{C} has high success probability. It means that in this case the first puzzle has to be correctly solved with substantial probability.

TODO: Explain the intuition why it may happen that we still can fail in the case of circuit \widetilde{D} .

We have to show that the success probability when Gen does not recurse is substantial. We fix a randomness π^* and thus also a puzzle x^* . For this fixed puzzle using (0.0.2) we get

$$\Pr_{\mu_{\delta}^{k}}[g(1, \mu_{2}, \dots, \mu_{k}) = 1] - \Pr_{\mu_{\delta}^{k}}[g(0, \mu_{2}, \dots, \mu_{k}) = 1] =
\Pr_{\pi^{(k)}}[g(1, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - \Pr_{\pi^{k}}[g(0, c_{2}, \dots, c_{k}) = 1 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0})$$
(0.0.3)

TODO: Better explain why we can write $Pr(g() = 1 \land g() = 0)$ as the equivalence for the difference.

From the monotonicity of g we know that for any set of tuples $(b_1, ..., b_k)$ and sets $G_0 = \{(b_1, b_2, ..., b_k) : g(0, b_2, ..., b_k) = 1\}$, $G_1 = \{(b_1, b_2, ..., b_k) : g(1, b_2, ..., b_k) = 1\}$ we have $G_0 \subseteq G_1$. Hence, we can write (0.0.3):

$$\Pr_{\mu_{\delta}^{k}}[g(1, \mu_{2}, \dots, \mu_{k}) = 1 \land g(0, \mu_{2}, \dots, \mu_{k}) = 0] =
\Pr_{\pi^{(k)}}[g(1, c_{2}, \dots, c_{k}) = 1 \land g(0, c_{2}, \dots, c_{k}) = 0 \mid \pi_{1} = \pi^{*}] - (S_{\pi^{*}, 1} - S_{\pi^{*}, 0}).$$
(0.0.4)

Let $G_{\mu^{(k)}}$ denote the event $g(1, \mu_2, \dots, \mu_k) = 1 \land g(0, \mu_2, \dots, \mu_k) = 0$, and correspondingly $G_{\pi^{(k)}} := g(1, \pi_2, \dots, \pi_k) = 1 \land g(0, \pi_2, \dots, \pi_k) = 0$. Then multiplying and dividing $\Pr[\Gamma_v^{(g)}(D(x^*, \pi^{(k)})) = 1 \mid \pi_1 = \pi^*]$ by (0.0.4) we get

$$\Pr_{\pi^{k}}[\Gamma_{V}^{g}(D(x^{*}, \pi^{(k)})) \mid \pi_{1} = \pi^{*}] = \frac{\Pr_{\pi^{k}}[\Gamma_{V}^{(g)}(D(x^{*}, \pi^{(k)})) \mid \pi_{1} = \pi^{*}] \Pr_{\pi^{(k)}}[G_{\pi} \mid \pi_{1} = \pi^{*}]}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} - \frac{\Pr_{\pi^{k}}[\Gamma_{V}^{(g)}(D(x^{*}, \pi^{(k)})) \mid \pi_{1} = \pi^{*}](S_{\pi^{*}, 1} - S_{\pi^{*}, 0})}{\Pr_{\mu_{\delta}^{k}}[G_{\mu}]} \qquad (0.0.5)$$

TODO: Define c_1, \ldots, c_k correctly from the paper it is not known whether it is in the iteration or the final one