二、糖的有氧氧化

在有氧条件下,糖酵解的产物丙酮酸进一步氧化分解成二氧化碳和水,同时释放出大量的能量。

糖有氧氧化的三个阶段

- * 丙酮酸的生成 (细胞液, EMP)
- * 乙酰辅酶A的生成 (线粒体)
- * 三羧酸循环 (线粒体)

1、乙酰辅酶A的生成

- * 丙酮酸脱氢酶系 (不可逆)
 - * 三种酶
 - * 六种辅因子

2、三羧酸循环

- * 又称TCA循环(tricarboxylic acid cycle)、 柠檬酸循环、Krebs循环
- * 主要位于线粒体基质中
- * 由8步反应组成

1) 柠檬酸的生成

- * 缩合反应生成六碳三羧酸
- * TCA循环的第一个调节酶
- * 不可逆

2) 异柠檬酸的生成

- * 顺乌头酸酶
- * 失水、加水; 反应可逆

3) a -酮戊二酸的生成

- * 异柠檬酸脱氢酶
- *第一次脱羧、第一次氧化
- * 三羧酸变成二羧酸
- * 不可逆

4) 琥珀酰辅酶A的生成

- * Q -酮戊二酸脱氢酶系
 - * 三种酶
 - * 六种辅因子
- *第二次氧化,第二次脱羧,生成高能化合物
- * 不可逆反应

5) 琥珀酸的生成

- * 唯一一次底物水平磷酸化
- *琥珀酰CoA合成酶 (琥珀酸硫激酶)
- * GTP可用于蛋白质合成或生成ATP

6) 延胡索酸的生成

- * 第三次氧化
- * 延胡索酸又称富马酸、反丁烯二酸;
- * 丙二酸、戊二酸为其竞争性抑制剂
- * 琥珀酸脱氢酶是TCA中唯一嵌入线粒体内膜上的酶

7) 苹果酸的生成

- *加水
- * 只催化反式双键, 生成L-苹果酸

8) 重新生成草酰乙酸

* 第四次氧化

图 5-5 三羧酸循环

3、小结

- *循环一圈,消耗一分子乙酰CoA
- * 生成两个CO₂
- * 生成三个NADH、一个FADH₂
- * 生成一个GTP
- * 总能量?

表 8-3 1mol 葡萄糖在有氧分解时所产生的 ATP mol 数

反应阶段	反	ATP 的消耗与合成			
		消耗	合 成		<u>. </u>
			底物磷酸化	电子传递磷 酸 化	净得
酵 解	葡萄糖─→葡糖-6-磷酸	1		,,	I
	果糖-6-磷酸	1	-	i	- 1
	甘油醛-3-磷酸──甘油酸-1,3-二磷酸			3 × 2	6
	甘油酸-1,3-二磷酸 →甘油酸-3-磷酸		1 × 2		2
	烯醇丙酮酸 2-磷酸 烯醇丙酮酸	†	1 × 2		2
丙酮酸氧化 脱 羧	丙酮酸→乙酰辅酶 A.	<u> </u>		3 × 2	6
三羧酸循环	异柠檬酸─→草酰琥珀酸			3 × 2	6
	α-酮戊二酸·→琥珀酰辅酶 A			3 × 2	6
	琥珀酰辅酶 A → 琥珀酸		1 × 2		2
	琥珀酸→延胡索酸		 	2 × 2	4
	苹果酸──草酰乙酸	 	<u> </u>	3 × 2	6
		38			

补充: 巴斯德效应

- * 法国科学家Pastuer发现在有氧存在的时候酵母细胞的乙醇发酵受到抑制,为什么?
- * 理论解释:

由NADH+H+去路决定。

有氧时,NADH+H+进入线粒体氧化,丙酮酸氧化成H₂O,不生成乳酸或乙醇,从而表现为抑制。

4、三羧酸循环的调节

- * 三个限速酶
 - * 柠檬酸合成酶
 - * 异柠檬酸脱氢酶
 - * a -酮戊二酸脱氢酶系
- * 抑制剂: ATP、长链脂肪酸
- * 激活剂: ADP、AMP

5、糖需氧分解的意义

* 机体获取能量的主要途径

* 无氧: 2ATP

* 有氧: 38ATP

* 三大物质代谢的枢纽

* 分解代谢

* 合成代谢

三、草酰乙酸的回补途径

* 1) 主要途径

*人、动物

* 2) 其他途径

$$COOH$$
 $COOPO_3^{2-}$ $+$ CO_2 b $COOH$ $COOPO_3^{2-}$ $+$ CO_2 $COOPO_3^{2-}$ $COOPO_3^$

烯醇式丙酮酸磷酸

草酰乙酸

填空题

- *糖酵解是在____中进行,而三羧酸循环是在____中进行。
- ■一分子葡萄糖彻底氧化产生___分子ATP

选择题

- * 关于三羧酸循环,下列的叙述哪条不正确()
- * A、产生NADH和FADH₂
- * B、有GTP生成
- * C、氧化乙酰COA
- * D、提供草酰乙酸净合成
- * E、在无氧条件下不能运转

选择题

- 下列酶中不是TCA循环中的酶是()
- A、顺乌头酸酶 B、延胡索酸酶 C、琥珀酰CoA合成酶 D、丙酮酸脱氢酶

判断题

* 在无氧条件下酵母菌可以使葡萄糖发酵产生乙醇, 而在人体中则不可能产生乙醇, 因此乙醇 在人体内一般是不能被利用的。

选择题

- * 下列酶催化反应中,可通过底物水平磷酸化生成 GTP的是()
- * A、己糖激酶 C、琥珀酰CoA合成酶

B、烯醇化酶

D、琥珀酸脱氢酶

四、乙醛酸循环

- * 某些微生物以乙酸为唯一碳源
- *油料植物种子萌发时以脂肪酸为主要物质和能量来源

生理意义

- * TCA循环产生能量
- * 将乙酰辅酶A合成四碳二羧酸、六碳三羧酸
 - * 合成糖类、氨基酸

选择题

- 1mol葡萄糖有氧氧化时总共发生几次底物水平 磷酸化()
- A, 3 B, 4

C, 5

D, 6

判断题

* 由1mol异柠檬酸转变成1mol琥珀酸,同时伴有 电子传递过程可产生7molATP的能量。

问答题

* 丙酮酸脱氢酶系包括哪五种由维生素构成的辅因子? 分别由哪种维生素构成?

三羧酸循环中并没有氧的参与,为什么称为糖的有氧分解?

五、磷酸己糖旁路HMS

——又称磷酸戊糖途径

除糖酵解和TCA代谢途径外,在细胞内还存在糖的其它分解途径,这些途径称为支路或旁路。

磷酸戊糖途径是这些支路中较为重要的一种, 动物体中有30%的葡萄糖通过此途径分解。

该旁路存在于<u>细胞液</u>中。

反应历程

- * 起始物: G-6-P
- * 分为两个阶段
 - *氧化阶段:脱氢、脱羧
 - * 非氧化阶段: 基团转移

1) 氧化脱氢

- * 6-磷酸葡萄糖脱氢酶
- * NADPH

2) 开环

* 葡萄糖酸内酯水解酶

3) 氧化脱羧

- * 6-磷酸葡萄糖酸脱氢酶
- * 脱羧、第二次脱氢
- * NADPH
- * Mg²⁺

4) 异构化

- * 磷酸核糖异构酶
- *磷酸戊酮糖差向异构酶 (表异构酶)
- * 从该步起均为可逆反应

5) 二碳单元转移

- * 转酮酶
- * TPP为辅酶
- * L-构型

6)三碳单元转移

* 转醛酶

7)二碳基团的转移

- * 转酮酶
- * $\underline{\text{TPP}}$ \ Mg²⁺

木酮糖-5-磷酸

赤藓精-4-磷酸

果糖-6-磷酸

8) 第二次异构化

* 磷酸己糖异构酶

生理意义

- * 为生物大分子合成提供还原剂NADPH
- * 还原谷胱甘肽,保护血红蛋白和巯基酶

- * 与戊糖代谢相联系
- * 特殊情况下提供能量 (G-6-P)
 - * $6 \times 2 \times 3 = 36$ ATP

■ 以NADPH形式贮存的氢主要来源于()

■ A、糖酵解

C、TCA循环

B、脂肪酸分解

D、HMS途径

- * 乙酰辅酶A彻底氧化,该过程的P/O为()
- * A, 2 B, 2.5 C, 3 D, 3.5

填空题

TCA循环中, 异柠檬酸生成琥珀酸的P/O为___, 琥珀酸生成草酰乙酸的P/O为___。

- 下列酶催化反应中与二氧化碳的生成或者消耗 无关的是()
- A、6-P-葡萄糖酸脱氢酶
- ■B、异柠檬酸脱氢酶
- C、α-酮戊二酸脱氢酶系
- D、苹果酸脱氢酶

- 磷酸戊糖途径以下说明错误的是()
- A、6-P-葡萄糖可经此途径转变为磷酸戊糖
- B、此途径可提供四碳糖和七碳糖
- C、6-P-葡萄糖转变为磷酸戊糖时生成相同摩尔 数的二氧化碳和NADPH
- D、6-P-葡萄糖经此途径分解不消耗ATP

第三节 糖类的合成代谢

植物: 淀粉

动物:糖原、糖异生

一、糖原的合成

*场所:细胞液

* 原料: G

* 消耗UTP

* 反应历程

- * 磷酸化生成G-6-P
- * 磷酸变位生成G-1-P

* UDPG的生成

* UDPG焦磷酸化酶

UDPG(尿苷二磷酸葡萄糖)

(活化的G)

* 糖链的延长

* 引物

*糖原合成酶

葡萄糖

二、淀粉的合成

- * 消耗ATP
- * ADPG焦磷酸化酶

三、糖异生作用

- * 基本上为糖酵解的逆行
- *场所:主要在肝脏细胞的线粒体及细胞液*丙酮酸羧化酶位于线粒体内
- *原料:乳酸、丙酮酸、甘油、某些氨基酸(生糖氨基酸、生糖兼生酮氨基酸)

图 8-15 糖原异生作用

小结

克服糖酵解的三步不可逆反应

- ①丙酮酸转变成磷酸烯醇式丙酮酸
- ②果糖1,6-二磷酸水解为果糖-6-磷酸
- ③葡萄糖-6-磷酸水解为葡萄糖

糖酵解在细胞液中进行,糖异生则在线粒体和细胞液中进行。

能量变化?

意义

- *人脑和红细胞对葡萄糖有高度依赖性,尤其在饥饿状态下葡萄糖异生尤为重要;
- * 回收乳酸分子中的能量:葡萄糖在肌肉组织中经糖的无氧酵解产生的乳酸,由于肌肉内糖异生的能力很低,乳酸不能生成葡萄糖,但可经血循环转运至肝脏,经糖异生作用生成葡萄糖后转运至肌肉组织加以利用,这一循环过程称为乳酸循环(Cori循环,1947年诺贝尔生理学或医学奖)

本章总结

- * 糖的消化和吸收
- * 糖酵解: 步骤、能量变化、关键节点
- * TCA循环:步骤、能量变化、关键节点
- * 磷酸戊糖途径: 能量变化、主要步骤
- * 乙醛酸循环
- * 糖原和淀粉的合成
- * 糖异生: 关键节点

需要掌握的单词

- glycolysis
- * fermentation
- * lactic acid
- * alcohol
- * ethanol

- * tricarboxylic acid cycle
- * citrate cycle
- * glyconeogenesis
- * metabolism
- * catabolism
- * anabolism

填空题

- * 糖异生的关键酶是__、___和__、_。
- * 1mol葡萄糖掺入糖原分子中,然后重新转变成游 离葡萄糖,这一过程能量的净变化数是___mol。
 - ■两分子丙酮酸通过糖异生转变为一分子葡萄糖共消耗____分子ATP。

- 下列酶中催化糖酵解和糖异生过程的共同酶是()
- A、己糖激酶 B、1,6-2P-果糖激酶 C、3-P-甘油醛脱氢酶 D、丙酮酸激酶

磷酸戊糖途径是在细胞的哪个部位进行的() A、细胞核 B、线粒体 C、细胞浆 D、微粒体 E、内质网

下列哪种途径在线粒体中进行()
A、糖的无氧酵解 B、糖原的分解 C、糖原的合成 D、糖的磷酸戊糖途径 E、三羧酸循环

由糖原合成酶催化合成糖原的原料NDP-葡萄 糖是指()

A、CDP-葡萄糖 B、UDP-葡萄糖

C、ADP-葡萄糖 D、GDP-葡萄糖

判断题

- * 乙醛酸循环是生物体内普遍存在的一条代谢途径,该循环可作为TCA循环的辅助途径之一。
- *糖原合成中,葡萄糖的活化形式是UTPG。
- * 生物素是丙酮酸脱氢酶系的辅酶之一。

作业题

*如果人体细胞内无6-P-F激酶存在,葡萄糖如何转变为丙酮酸?写出详细反应顺序。

* 在人体内, α -酮戊二酸彻底氧化生成二氧化碳和水, 可以生成多少ATP? 写明详细计算过程。