Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра загальної фізики

Лабораторна робота №4(2)

«Вивчення законів динаміки на машині Атвуда»

Виконав: студент 1 курсу ФІОТ, гр. IO-41 Давидчук А. М. Залікова книжка № 4106

Перевірив *Колган В.В.*

Тема: «Вивчення законів динаміки на машині Атвуда».

<u>Мета:</u> дослідження законів рівноприскореного руху на основі аналізу кінематичних характеристик руху системи тіл, використання законів динаміки для визначення прискорення тіла.

Прилади на устаткування: машина Атвуда, блок на осі, невагома нерозтяжна нитка, вантажі, додаткові пластини (перегрузки), фотодатчики, таймер, лінійка (або шкала), кронштейн.

Теоретичні відомості:

Для вивчення законів рівноприскореного руху зручно розглядати рух тіла в машині Атвуда. Схематично машину Атвуда можна уявити як систему, що складається з блока, через який перекинута тонка нитка з вантажами, що мають маси m_1 та m_2 (рис. 4.1).

Puc. 4. 1

При аналізі руху системи будемо

вважати, що блок та нитка невагомі, нитка нерозтяжна, а тертя та опір повітря відсутній. В цьому випадку рух тіл різної маси m1 і m2 буде прискорений. Тоді, відповідно до другого закону динаміки, прискорення визначається рівнодійними силами, які прикладені до кожного з тіл:

$$\begin{split} m_{1} \vec{a_{1}} &= m_{1} \vec{g} + \vec{T_{1}} \\ m_{2} \vec{a_{2}} &= m_{2} \vec{g} + \vec{T_{2}} \end{split}$$

Якщо направити вісь X донизу, як показано на рис. 4.1, то рівняння руху кожного вантажа

в проєкції на вісь Х мають вигляд:

$$m_{1}a_{1} = m_{1}g - T_{1}' \tag{4.1}$$

$$-m_2 a_2 = m_2 g - T_2' (4.2)$$

 T_1 і T_2 – сили натягу ниток, a_1 і a_2 – модулі прискорення відповідних вантажів.

У другому рівнянні прискорення має від'ємну проєкцію на вісь X, якщо маса другого тіла менша за масу першого тіла і друге тіло рухається з прискоренням вгору. При оберненому відношенні мас ми отримаємо в розрахунках від'ємні значення прискорень.

У зв'язку з тим, що довжина нитки постійна в процесі руху, прискорення обох вантажів хоча і протилежні за напрямком, але рівні за величиною, тоді перше рівняння кінематичного зв'язку можна записати у вигляді:

$$a_1 = a_2 = a (4.3)$$

Враховуючи невагомість і нерозтяжність нитки третій закон динаміки поступального руху тіл дає: $T_1' = -T_1$, $T_2' = -T_2$, тобто модулі відповідних сил натягу ниток рівні: $T_1' = T_1$, $T_2' = T_2$. Тоді друге рівняння кінематичного зв'язку буде мати вигляд:

$$T_{1}' = T_{2}' = T \tag{4.4}$$

Вважатимемо, що $m_2 = m$, $m_1 = m + \Delta m$, тоді, розв'язуючи отриману систему рівнянь (4.1) - (4.4), отримаємо значення прискорення:

$$a = g \frac{m_2 - m_1}{m_2 + m_1}$$
 as $a = g \frac{\Delta m}{2m + \Delta m}$ (4.5)

та значення сили натягу нитки:

$$T = 2g \frac{m_1 m_2}{m_2 + m_1}$$
 and $T = 2g m \frac{m + \Delta m}{2m + \Delta m}$ (4.6)

Таким чином, прискорення тіл даної системи завжди менше від прискорення вільного падіння і змінюється при зміні відношення між масами обох вантажів

Опис експериментальної установки

Машина Атвуда складається із прикріпленої до основи вертикальної *стійки*, на яку нанесено *шкалу* (рис. 4.2). У верхній частині стійкі міститься легкий *блок*, що обертається з малим тертям. Через блок перекинута легка *нитка*, до кінців якої прикріплені два одинакові вантажі C_1 та C_2 . До вантажу C_2 можна додавати додаткові вантажі (перегрузки) у вигляді тонких пластин. В результаті такого додавання виникає нерівність мас, і система вантажів починає рухатися з деяким прискоренням (рис. 4.3). Змінюючи масу

Рис. 4. 2. Схема машини Атвуда

перевантаження, можна змінити прискорення системи. Після того, як вантаж C_2 з перевантаженням проходить деяку відстань L_1 , перевантажень автоматично знімається за допомогою кронштейна G. Фотодатчик 1, що знаходиться в точці з координатою x_1 фіксує цей момент часу, включаючи таймер.

В момент коли перевантажень знято, вантажі C_1 та C_2 стають однаковими, і вантаж C_2 починає рухатись по інерції: тобто рівномірно зі швидкістю, яку цей вантаж надбав в момент, коли він позбавився перевантаження. Вважається, що відстань L_2 вантаж проходить рівномірно. В точці з координатою x_2 , розташований фотодатчик 2. Він фіксує момент, коли вантаж знаходиться в точці з координатою x_2 , і виключає таймер. Таким часом різниця показників таймера — це час рівномірного прольоту вантажа на проміжку L_2 .

Методика визначення прискорення поступального руху.

Виходячи з аналізу руху системи тіл, приведеного в теоретичних відомостях, бачимо, що реальний рух тіл на ділянці L_1 рівноприскорений. У цьому випадку його кінематичний закон руху, тобто залежність координати тіла від часу, будуть мати вигляд:

$$x = x_0 + \frac{at^2}{2} \tag{4.7}$$

$$v_1 = v_0 + at (4.8)$$

де $x_0^{}$ – координата, від якої вантаж $C_2^{}$ починає свій рух, $v_0^{}$ – початкова швидкість.

Враховуючи, що початкова швидкість в точці x_0 відсутня, отримана система рівнянь дає:

$$L_1 = x_1 - x_0 = \frac{v_1^2}{2a} \tag{4.9}$$

де $v_1^{}$ – швидкість вантажу в момент зняття перевантаження й включення таймера;

Якщо в системі відсутні сили тертя, то із цією ж швидкістю v_1 тіло C_2 буде проходити відстань між фотодатчиками після зняття з нього перевантаження. Рух тіла на цій ділянці буде рівномірним, тобто

$$v_1 = \frac{L_2}{t_2} \tag{4.10}$$

де $L_2 = x_2 - x_1$ – відстань між двома кронштейнами (x_2 – координата нижнього фотодатчика); t_2 – час руху на цій ділянці шляху.

Порядок роботи (початок практичної частини):

Встановивши верхній кронштейн G на позначці x_1 та нижній кронштейн на позначці x_2 таким чином, щоб відстань між ними становила близько 15–20 см, обчислив L_2 = $x_2 - x_1$ і заніс це значення до таблиці. Потім розташував вантаж C_2 у верхньому положенні з координатою x_0 , при цьому L_2 надалі не змінював. У таблицю також записав маси вантажів m і додатковий вантаж Δm .

Після підготовки встановив таймер у початковий стан і, поклавши додатковий вантаж Δm на C_2 , надав системі руху. При проходженні верхнього фотодатчика таймер автоматично увімкнувся, а після проходження нижнього фотодатчика — вимкнувся. За показами таймера визначив час руху t_2 між кронштейнами та заніс отримане значення до таблиці.

Знаючи пройдену відстань L_1 та час t_2 , розрахував швидкість $v_1 = \frac{L_1}{t_2}$ і її квадрат v_1^2 , записавши результати у таблицю. Змінюючи відстань L_1 , повторив вимірювання за тією ж методикою, фіксуючи відповідні значення для кожного досліду.

Після завершення попередніх етапів вимірювань та розрахунків переходив до аналізу залежності $v_1^2(L_1)$. Для кожної серії дослідів із різним значенням L_1 у таблиці фіксував знайдені значення v_1^2 . На основі цих даних будував графік $v_1^2(L_1)$.

Далі, відповідно до п. 9, визначав кутовий коефіцієнт прямої на отриманому графіку, який згідно з формулою (4.12) дає змогу знайти прискорення a. Порівнював експериментально знайдені величини (п. 10) зі значеннями, отриманими на підставі формули (4.5), $a = a_p$ (теоретичні розрахунки), і таким чином оцінював точність

експерименту.

На завершення, змінюючи масу додаткового вантажу Δm (п. 11), повторював основні кроки експерименту, описані в пп. 2–5, заносячи результати вже до таблиць. Це дало змогу простежити вплив різного співвідношення мас на значення прискорення й порівняти нові отримані результати з попередніми.

На завершальному етапі (пункт 12) збудував залежності $v_1^2(L_1)$ і, використовуючи кути нахилу отриманих прямих, визначив прискорення руху системи для кожної з досліджуваних величин перегрузок. Далі (пункт 13) побудував графік залежності $a(\Delta m)$, щоб простежити, як змінюється прискорення зі зміною додаткової маси.

Наведені таблиці на наступній сторінці.

№ виміру	L ₂ , м	<i>т</i> , кг	Δm , кг	L_1 , M	t ₂ , c	v ₁ , м/с	$v_1^2, (M/c)^2$	a , M/c^2	a_p , M/c^2
1	0,2	0,0214	0,0202	0,18	0,263	0,76	0,58	1,61	3,14
2				0,18	0,252	0,79	0,63	1,75	
3				0,18	0,259	0,77	0,60	1,66	
4				0,16	0,279	0,72	0,51	1,61	
5				0,16	0,272	0,74	0,54	1,69	
6				0,16	0,254	0,79	0,62	1,94	
7				0,14	0,286	0,70	0,49	1,75	
8				0,14	0,274	0,73	0,53	1,90	
9				0,14	0,275	0,73	0,53	1,89	
10				0,12	0,285	0,70	0,49	2,05	
11				0,12	0,285	0,70	0,49	2,05	
12				0,12	0,294	0,68	0,46	1,93	
13				0,10	0,323	0,62	0,38	1,92	
14				0,10	0,31	0,65	0,42	2,08	
15				0,10	0,3	0,67	0,44	2,22	
16				0,08	0,336	0,60	0,35	2,21	
17				0,08	0,338	0,59	0,35	2,19	
18				0,08	0,348	0,57	0,33	2,06	

№ виміру	L ₂ , м	<i>т</i> , кг	Δm , кг	<i>L</i> ₁ , м	t ₂ , c	v ₁ , м/с	$v_1^2, (M/c)^2$	$a, \text{ m/c}^2$	a_p , M/c^2
19	0,2	0,0214	0,0202	0,06	0,367	0,54	0,30	2,47	3,14
20				0,06	0,366	0,55	0,30	2,49	
21				0,06	0,380	0,53	0,28	2,31	
22				0,04	0,478	0,42	0,18	2,19	
23				0,04	0,421	0,48	0,23	2,82	
24				0,04	0,423	0,47	0,22	2,79	
25				0,02	0,481	0,42	0,17	4,32	
26				0,02	0,514	0,39	0,15	3,79	
27				0,02	0,501	0,40	0,16	3,98	
28			0,0268	0,18	0,215	0,93	0,87	2,40	3,77
29				0,18	0,222	0,90	0,81	2,25	
30				0,18	0,220	0,91	0,83	2,30	
31				0,16	0,241	0,83	0,69	2,15	
32				0,16	0,237	0,84	0,71	2,23	
33				0,16	0,223	0,90	0,80	2,51	
34				0,14	0,231	0,87	0,75	2,68	
35				0,14	0,237	0,84	0,71	2,54	
36				0,14	0,241	0,83	0,69	2,46	

№ виміру	L ₂ , м	т, кг	Δm , кг	<i>L</i> ₁ , м	t ₂ , c	v ₁ , м/с	$v_1^2, (M/c)^2$	a , M/c^2	a_p , M/c^2
37	0,2	0,0214	0,0268	0,12	0,270	0,74	0,55	2,29	3,77
38				0,12	0,266	0,75	0,57	2,36	
39				0,12	0,268	0,75	0,56	2,32	
40				0,10	0,277	0,72	0,52	2,61	
41				0,10	0,273	0,73	0,54	2,68	
42				0,10	0,277	0,72	0,52	2,61	
43				0,08	0,316	0,63	0,40	2,50	
44				0,08	0,301	0,66	0,44	2,76	
45				0,08	0,292	0,68	0,47	2,93	
46				0,06	0,339	0,59	0,35	2,90	
47				0,06	0,324	0,62	0,38	3,18	
48				0,06	0,328	0,61	0,37	3,10	
49				0,04	0,376	0,53	0,28	3,54	
50				0,04	0,371	0,54	0,29	3,63	
51				0,04	0,361	0,55	0,31	3,84	
52				0,02	0,426	0,47	0,22	5,51	
53				0,02	0,430	0,47	0,22	5,41	
54				0,02	0,433	0,46	0,21	5,33	

№ виміру	L ₂ , м	<i>т</i> , кг	Δm , кг	$L_1^{}$, M	t ₂ , c	v ₁ , м/с	$v_1^2, (M/c)^2$	$a, \text{ m/c}^2$	a_p , M/c^2
55	0,2	0,0214	0,028	0,18	0,214	0,93	0,87	2,43	3,88
56				0,18	0,221	0,90	0,82	2,27	
57				0,18	0,228	0,88	0,77	2,14	
58				0,16	0,238	0,84	0,71	2,21	
59				0,16	0,226	0,88	0,78	2,45	
60				0,16	0,236	0,85	0,72	2,24	
61				0,14	0,247	0,81	0,66	2,34	
62				0,14	0,255	0,78	0,62	2,20	
63				0,14	0,247	0,81	0,66	2,34	
64				0,12	0,259	0,77	0,60	2,48	
65				0,12	0,25	0,80	0,64	2,67	
66				0,12	0,25	0,80	0,64	2,67	
67				0,1	0,274	0,73	0,53	2,66	
68				0,1	0,286	0,70	0,49	2,45	
69				0,1	0,276	0,72	0,53	2,63	
70				0,08	0,284	0,70	0,50	3,10	
71				0,08	0,293	0,68	0,47	2,91	
72				0,08	0,294	0,68	0,46	2,89	

№ виміру	L ₂ , м	т, кг	Δm , кг	<i>L</i> ₁ , м	t ₂ , c	v ₁ , м/с	$v_1^2, (M/c)^2$	a , M/c^2	a_p , M/c^2
73	0,2	0,0214	0,028	0,06	0,331	0,60	0,37	3,04	3,88
74				0,06	0,324	0,62	0,38	3,18	
75				0,06	0,331	0,60	0,37	3,04	
76				0,04	0,361	0,55	0,31	3,84	
77				0,04	0,365	0,55	0,30	3,75	
78				0,04	0,369	0,54	0,29	3,67	
79				0,02	0,452	0,44	0,20	4,89	
80				0,02	0,42	0,48	0,23	5,67	
81				0,02	0,486	0,41	0,17	4,23	

Всі розрахунки проводив рекурсивно в Excel.

Графіки:

При Δm_1 : $\langle a_1 \rangle = 2,29$ м/ c^2 , при Δm_2 : $\langle a_2 \rangle = 3,03$ м/ c^2 , при Δm_3 : $\langle a_3 \rangle = 2,31$ м/ c^2 Побудую на основі цього графік $a(\Delta m)$:

Висновок:

Під час лабораторного експерименту було досліджено прискорення поступального руху за допомогою машини Атвуда. Експериментальні результати показали, що в такій системі прискорення тіл завжди є меншим за прискорення вільного падіння та змінюється залежно від співвідношення мас вантажів. Виміряні значення добре узгоджуються з теоретичними розрахунками, що підтверджує коректність проведеного дослідження. Завдяки методиці, яка передбачала використання фотодатчиків і таймера, вдалося з високою точністю визначити кінематичні параметри руху.

Контрольні питання

1. Який рух називається рівноприскореним? Запишіть кінематичні рівняння, які описують прямолінійний рівноприскорений рух тіл.

Рівноприскорений рух — це рух, при якому прискорення ааа залишається сталим за модулем і напрямком. Кінематичні рівняння прямолінійного рівноприскореного руху:

$$v=v_0^{}+at,\,s=v_0^{}t+\frac{1}{2}at^2,\,v^2=v_0^{}^2+2as,$$
 де $v_0^{}-$ початкова швидкість, $v-$ швидкість у момент часу $t,s-$ пройдений шлях

2. Що таке інерціальні та неінерціальні системи відліку? Сформулюйте 1-й закон Ньютона.

Інерціальна система відліку — це система, у якій виконується перший закон Ньютона: Тіло зберігає свій стан спокою або рівномірного прямолінійного руху, якщо на нього не діють зовнішні сили.

Неінерціальна система відліку – система, що рухається з прискоренням відносно інерціальної системи.

3. Що таке маса, як ії виміряти?

Маса – це фізична величина, яка характеризує інерційні властивості тіла, визначається як міра інертності. Її можна виміряти за допомогою терезів, визначити через 2-й закон Ньютона і т.д.

4. Що таке сила, як її виміряти?

Сила — це фізична величина, що є мірою взаємодії тіл. Вона визначається через другий закон Ньютона: F = ma

5. Сформулюйте 2-й закон Ньютона.

Прискорення тіла пропорційне рівнодійній силі, що на нього діє, і обернено пропорційне його масі: $\overrightarrow{F} = \overrightarrow{ma}$

6. Сформулюйте 3-й закон Ньютона.

Сила, з якою одне тіло діє на інше, дорівнює за модулем і протилежна за напрямком сили, з якою друге тіло діє на перше: $\vec{F}_{21} = - \vec{F}_{12}$

7. Сформулюйте умови, за яких отримані основні співвідношення роботи.

Основні співвідношення роботи отримані за умови сталості сили та напрямку її дії. Основна формула роботи: $A = FS \cos \alpha$, або якщо сила змінна, то робота обчислюється інтегралом: $A = \int F ds$

8. Які сили діють під час руху на вантажі, які закріплені на кінцях нитки? Запишіть систему рівнянь, що описують рух розглянутої установки без урахування маси блоку і сили тертя в осі.

Нехай маси вантажів m_1 і m_2 , нехай $m_1 > m_2$ тоді: $m_1 g - T = m_1 a \quad \text{та} \quad T - m_2 g = m_2 a$ Розв'язуючи систему, знаходимо:

$$a = \frac{(m_1 - m_2)g}{m_1 + m_2}$$
 ra $T = \frac{2m_1 m_2 g}{m_1 + m_2}$

9. Як зміниться нахил прямої $v_1^2(L_1)$ при зростанні прискорення тіла?

Якщо прискорення збільшується, то тангенс кута нахилу графіка швидкості до часу v(t) зростає, оскільки: $v=v_0^{}+at$, де a – коефіцієнт нахилу.

10. Чим можна пояснити розходження значень прискорення, отриманого в експерименті та розрахованого за теоретичними викладками.

Розходження значень прискорення пояснюється похибками вимірювання, впливом тертя, неточностями в моделі руху.

11. За якої умови сили натягу нитки з різних боків блоку можна вважати однаковими?

Натяг нитки буде однаковим, якщо блок ϵ ідеальним (без маси та без тертя в осі обертання), а також нитка не розтягується.