Mizer:: CHEAT SHEET setting up the Multi-Species Model

Running Your First Model

Mizer is an ecosystem model to project fish communities under fishing pressure.

1. Choose a model type. Mizer offers three types of models as default. A community model, a traitbased model and a multi-species (MS) model.

mizer::newCommunityParams()- Specifies the community model mizer::newTraitParams()- Specifies the trait-based model mizer::newMultispeciesParams()- Specifies the MS model

To get started, let's choose the multi-species.

2. Set the model parameters.

Params <- newMultispeciesParams(NS species params)

Here we assign the North Sea dataset that comes with Mizer to the MS model. The only required argument is the dataframe of species specific parameter values.

3. Run a simulation.

sim <- project(Params)

Project simulates the ecosystem using our parameters

4. Explore Results

plot(sim)

Plot makes 5 diagnostic plots to assess our model results (below)

5. Experiment with different model variations and parameters See the other panels to customize and improve your own ecosystem model

newMultispeciesParams()

"resource_semichemostat"

Data Frame	Array	Number	Vector	String	User	Provided	Optional
88					8	\odot	•

	_			
Argument and Default Value	Data	Source	Purpose	
species_params	88	8	Species specific parameters	
interaction = NULL		<u></u>	Predator-Prey Interactions	
no_w = 100	B	②	Number of size bins	
min_w = 0.001	B	②	Size of eggs	
max_w = NA	B	②	Largest consumer size	
min_w_pp = NA	B	②	Smallest resource size	
pred_kernel = NULL		②	Species-size specific predation kernel	
search_vol = NULL	==	②	Species-size specific search volume	
intake_max = NULL		②	Species-size specific maximum intake rate	
metab = NULL		②	Species-size specific metabolic rate	
p = 0.7	==	②	Allometric metabolic exponent	
z0 = NULL	==	0	Species-size external mortality rate	
z0pre = 0.6	==	②	Coefficient of extenral mortality rate	
z0exp = n - 1	B	②	Exponent of external mortality rate	
maturity = NULL	-	0	Species-size specific maturity	
repro_prop = NULL	==	0	Species-size specific reproduction	
RDD = "BevertonHoltRDD"		Function for reproduction rate		
resource_rate = NULL	==	0	Resource birth rates	
resource_capacity = NULL	==	Resource carrying capacity		
gear_params = NULL	88	0	Dataframe of fishing gears	
selectivity = NULL	-	0	Species specific gear selectivity	
catchability = NULL			Species specific gear catchability	
initial_effort = NULL		0	Initial fishing effort	
n = 2/3	=	②	Allometric growth exponent	
r_pp = 10	B	②	Coefficient of resource birth rates	
kappa = 1e+11	==	②	Coefficient of resource carrying capacity	
lambda = 2.05	B	②	Exponent of resource carrying capacity	
w_pp_cutoff = 10	==	②	Max size of resource	
resource_dynamics =		0	Function for resources	

Key Model Requirements

The species params Data Frame

	Parameter	Source	Purpose
	species	×	Species name
	k	②	Metabolic rate
	ks	②	Standard metabolism
7	р	②	Metabolic exponent
	z0	②	External mortality
	w_mat	②	Maturity weight
I	w_mat25	②	25% maturity
	w_inf	×	Asymptotic weight
	w_min	②	Egg size
ı	beta	\bigcirc	Preferred predator/prey ra
	sigma	\bigcirc	Predation kernel width
ı	k_vb	\bigcirc	Growth coefficient
	t0	②	Theoretical age zero leng
ı	f0		Feeding value
1	fc	②	Critical feeding level
	alpha	☑	Assimilation efficiency
	interaction_resource	②	Interaction strength
	erepro	\bigcirc	Reproductive effiency
	Rmax	②	Max reproduction
	biomass_observed	8	Observed biomass
١	How to convert lon	a+h /l i	nf) of a species to we in

How to convert length (l_inf) of a species to w_inf?

$$W_{\infty} = a \cdot L_{\infty}^{b}$$
 a = Length-Weight Coefficient b = Length-Weight Exponent

No "a" or "b"? Try using * of a = $0.001 \frac{g}{a}$ and b = 3

n interaction matrix is the spatial overlap between

pecies with values ranging 0-1 for each species. **Mizer::inter** This shows an example matrix

The gear params Data Frame

his dataframe contains species, gear, selectivity unctions & arguments, and catchability.

		gear		knife_edge_size	catchability
	Sprat	knife_edge_gear	knife_edge	13	1
	Sandeel	knife_edge_gear	knife_edge	4	1
l					

Setting resource parameters

These parameters control the amount of "food" available for all fish species. By default these are provided but will likely need adjustment to match the size of your system.

Function for resources