Ab initio Molecular Orbital Treatment for H2

Atomic Orbital Terms in Valence Shell (number of Gaussian primitives)

Atoms:	Hydrogen				1st and 2nd row						1st row	2nd row
Orbital:	1s	1s'	1s"	2p	S	s'	s"	p	p'	p"	3d	3d
STO-3G	3				3			3				
3-21G(*)	2	1			2	1		2	1			1
3-21G*	2	1			2	1		2	1		1	1
6-31G*	3	1			3	1		3	1		1	1
6-31G**	3	1		1	3	1		3	1		1	1
6-311G**	3	1	1	1	3	1	1	3	1	1	1	1
cc-pVTZ	7	1	1	2p1d	7	1	1	3	1	1	2d1f	2d1f

cc-pVTZ gaussian coefficients (α) different for valence s(7-711) and p(7-311) orbitals.

Note: A 6-31G* or 6-31G** orbital uses 6 total primitives for a core orbital and 5 total primitives for a valence s or p orbital

H₂ at 6-311G**:

$$\Psi_{MO} = 0.186 \text{ 1S}_{A}(\text{inner}) + 0.288 \text{ 1S}_{A}(\text{middle}) + 0.133 \text{ 1S}_{A}(\text{outer}) + 0.023 \text{ 2P}_{ZA} + 0.186 \text{ 1S}_{B}(\text{inner}) + 0.288 \text{ 1S}_{B}(\text{middle}) + 0.133 \text{ 1S}_{B}(\text{outer}) - 0.023 \text{ 2P}_{ZB}$$

W.J. Hehre, L.Radom, P. v.R. Schlyer, J.A.Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, NY, 1986