Moment generating function! Mx Lt) = emt + t Method to find N(µ,0): . Step 1: Get the distribution and the range. Step 1: Change normal distribution into Standard hormal distribution. (1.8) N(M,0) -3 N(0,1). tep 3: Look up the probability using the Standard Normal Distribution table

Normal Distribution to Standard Normal Distribution

Standard Normal Table

- Standard Normal Full table
- Standard Normal Half table

- 1. Most graduate schools of business require applicants for admission to take the Graduate Management Admission Council's GMAT examination. Scores on the GMAT are roughly normally distributed with a mean of 527 and a standard deviation of 112.
- (i) What is the probability of an individual scoring above 500 on the GMAT?
- (ii) How high must an individual score on the GMAT in order to score in the highest 5%?

Solution:

(ii) How high must an individual score on the GMAT in order to score in the highest 5%?

	W.K.T	2:	X-p	-	1	105
4,	th park	1.65	= 22=	527	Y Y	40
		=) x	=17/	1.8.	× : \	
. (, c	One mus	it sco	ne mi	ne h	ian 711.8
1	nary	more	h be	is the	righ	ust 5%

- 2. The length of human pregnancies from conception to birth approximates a normal distribution with a mean of 266 days and a standard deviation of 16 days.
- (i) What proportion of all pregnancies will last between 240 and 270 days (roughly between 8 and 9 months)?
- (ii) What length of time marks the shortest 70% of all pregnancies?

2,	Crimini pt = 266 and 5 = 16.
(3	Let X denotes the length of human pregnices. Mat are somally distributed.
ă.	
	(.e.) XNN(266, 16).

	- 11 1 2 3 1 2 1 C 1 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7					
	11) P(240 CX C270)					
()	= P(X < 270) - P(X < 240). [Normal]					
	= P(ZLO.25) - P(ZL-1.62) (Standard normal form)					
	[Standard hormal form)					
	Z= x-1 = 270-266. Z= x-1 = 240-266					
	16					
	Z=0.25 = == -1.62					
	-19.0 = 70.0 - 1 = (4 5 = 1).91 -					

= P(220.25) - P(22-1.62) = 0.5987 - 0.0526 = 0.5461

(ii) $P(X \angle Z) = 0.70$. (Normal. form)

=) $P(Z \angle Z) = 0.70$ (Pt. norm! form), Z = 0.53 (from the bable).

3. The independent random variables X and Y have distributions N(45, 2) and N(44, 1.5) respectively. What is the probability that randomly chosen values of X and Y differ by 1.5 or more?

Sol:-					
X 121 + 478 W					
N(45, 2) N(44, 1.5) 5 - 1 - 2				
100 10 10	2				
M=45 My=44	$6x=2=)6x^{2}=4$.				
$\sigma_{\chi} = 2$ $\sigma_{\chi} = 1.5$	6y = 1.5 =) o = 2.25				
	var(u) = var (x-y).				
Let, U = X-Y.	= var(x + (-1)4).				
E(u) = E(x-y) = E(x) - E(y)). = var(x) + (-1) var(y).				
$E(0) = E(\lambda - 9) - E(\lambda) = E(\lambda$	= 4 + (1) 2-25				
F(u) = 1 =)[N = 1] $Var(u) = 6-25$					
Dr. Jayagopal Module 4 =) $\sigma = \sqrt{6.25} = 2.5$					

$$P(1 \times -1) = P(101 \ge 1.5)$$

$$= 1 - P(101 \le 1.5)$$

Dr. Jayagopal_Module 4

$$= 1 - P(2 \le 0.2) + P(2 \le -1).$$

$$= 1 - 0.5793 + 0.1587$$

$$= 0.5794.$$

V \

4. A machine used to reject all components for which a certain dimension is not within the specification $1.70 \pm d$. It is known that this measurement is normally distributed with mean 1.70 and s.d.=0.4. Determine the value 'd', such that the specifications cover 95% of the measurements.

Sol:

$$X \sim N(\mu=1.7), \delta = 0.4$$

 $P(X < 1.7-d) = 0.025$
 $Z = x-\mu = \frac{(1.7-d)-1.7}{0.4}$
 $Z = -\frac{d}{0.4}$

$$\Rightarrow P(ZZ-\frac{d}{0.4})=0.025$$

$$P(ZZ - \frac{d}{0.4}) = 0.025$$

$$P(ZZ - \frac{d}{0.4}) = P(ZZ - 1.96)$$

$$P(ZZ - \frac{d}{0.4}) = P(ZZ - 1.96)$$

$$+ \frac{d}{0.4} = +1.96.$$

$$=$$
) $7\frac{d}{0.4} = 71.96.$

$$=) d = (0.4)(1.96)$$

Dr. Jayagopal_Module 5

5. If X and Y are independent random variables following N(8, 2) and N(12, $4\sqrt{3}$) respectively, find the value of λ such that $P(2X - Y \le 2\lambda) = P(X + 2Y \ge \lambda)$.

Solution:

Mean

NOW, 9(2x-4521) = P(x+24) P(0621) = P(v>d

Gamma Function $\Gamma(n)$

Definition: For each real number n > 0,

the improper integral
$$\lceil (n+1) = \int_0^\infty e^{-x} x^n dx$$

converges and its value is denoted by $\Gamma(n+1)$.

Properties of the Gamma function

- $\Gamma(n+1) = n!$, if n is a +ve integer
- $\Gamma(n + 1) = n \Gamma(n)$, if n is a +ve fraction
- $\Gamma(n) = \frac{\Gamma(n+1)}{n}$, if n is a -ve fraction
- $\Gamma(1) = 1$ and $\Gamma(0) = \infty$
- $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
- For all negative integers n, $\Gamma(n)$ = undefined

hamma distribution and Exponential distribution First let us see about Erlang distribution (os) general gamma distribution. Erlang distribution (or) general gamma distribution A Continuous random variable X having the following density function is said to follow generalised gamma clistribution with farameters & and a, d>0, 2>0, 022200 , otherwise. Dr. Jayagopal Module 5

Variance

Cramma distribution otherwise. Dr. Jayagopal_Module 5

Exponential distribution Dr. Jayagopal_Module 5

Jo X is a exponentially distributed parameter A, then for any two [(x > 1++)/(x > 1)]