PROBLEM STATEMENT

The Iris flower dataset consists of three species: setosa, versicolor, and virginica. These species can be distinguished based on their measurements. Now, imagine that you have the measurements of Iris flowers categorized by their respective species. Your objective is to train a machine learning model that can learn from these measurements and accurately classify the Iris flowers into their respective species. Use the Iris dataset to develop a model that can classify iris flowers into different species based on their sepal and petal measurements. This dataset is widely used for introductory classification tasks.

Import Packages and Dataset

```
In [1]: import numpy as np
   import pandas as pd

import seaborn as sns
   import matplotlib.pyplot as plt
```

In [2]:	<pre>df = pd.read_csv(r"C:\Users\LENOVO\Desktop\IRIS.csv")</pre>
	df

Out[2]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Preprocessing

```
In [3]: iris = df.copy()
iris.head()
```

Out[3]: sepal_length sepal_width petal_length petal_width species 0.2 Iris-setosa 5.1 3.5 1.4 1 4.9 3.0 1.4 0.2 Iris-setosa 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 0.2 Iris-setosa 5.0 3.6 1.4

```
In [4]: iris.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object
	67	1 1 1/41	

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [5]: iris.species.value_counts()
```

Out[5]: species

Iris-setosa 50
Iris-versicolor 50
Iris-virginica 50
Name: count, dtype: int64

In [6]: iris.describe()

Out[6]:

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

Data visualization

```
In [7]: plt.figure(figsize=(6,8));
sns.pairplot(iris,kind='reg',hue ='species',palette="husl" );
```

<Figure size 600x800 with 0 Axes>

In [8]: plt.figure(figsize=(8,6));
sns.scatterplot(x=iris.sepal_length,y=iris.sepal_width,hue=iris.species).set_t:


```
In [9]: plt.figure(figsize=(8,6));
    cmap = sns.cubehelix_palette(dark=.5, light=.9, as_cmap=True)
    ax = sns.scatterplot(x="petal_length", y="petal_width",hue="species",size="species")
```


Preparing Model

```
In [10]: from sklearn.preprocessing import LabelEncoder
    lb = LabelEncoder()
    iris['species'] = lb.fit_transform(iris['species'])
    iris.sample(3)
```

Out[10]:

	sepal_length	sepal_width	petal_length	petal_width	species
82	5.8	2.7	3.9	1.2	1
60	5.0	2.0	3.5	1.0	1
36	5.5	3.5	1.3	0.2	0

```
In [11]: from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
```

```
In [12]: y = iris.species
X = iris.drop('species',axis = 1)
```

In [13]: from sklearn.model_selection import KFold,train_test_split,cross_val_score
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0.3)

knn

```
In [14]: from sklearn.neighbors import KNeighborsClassifier
```

```
In [15]: knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train,y_train)
```

Out[15]: KNeighborsClassifier(n_neighbors=3)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [16]: y_pred = knn.predict(X_test)
```

Evaluation

```
In [17]: print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```

	precision	recall	f1-score	support
0	1.00 1.00	1.00 0.94	1.00 0.97	16 18
2	0.92	1.00	0.96	11
accuracy macro avg	0.97	0.98	0.98 0.98	45 45
weighted avg	0.98	0.98	0.98	45
[[16 0 0]				

```
[ 16 0 0]
[ 0 17 1]
[ 0 0 11]]
```

```
In [18]: from sklearn.metrics import accuracy_score
    print('accuracy is',accuracy_score(y_pred,y_test))
```

accuracy is 0.977777777777777

In []: