

Elektrik-Elektronik Mühendisliği Dijital Sinyal İşleme Deney-1

Yakup Demiryürek 180711049

(Güz 2021)

Amaç

Sürekli zamanlı sinyallerden örnekleme vasıtasıyla dijital sinyallerin nasıl elde edileceği öğrenilecektir. Daha sonra örnekleme sonucu elde edilen dijital sinyalden tekrar sürekli zamanlı sinyalin yeniden oluşturulması amaçlanmıştır.

Ekipmanlar

• Matlab yüklü bilgisayar

DC1

Periyodu 1/4 olan sinüs sinyali x[t] $0 \le t \le 2$ aralığında çizdirilmiştir. Örnekleme periyodu olarak $T_S = 1/16$ alınmıştır ve x[n] dijital sinyali oluşturulmuştur (**Şekil 1**).

Şekil 1 için kod fonksiyon olarak;

```
function [t,xt] = FSurekliSinyal(f,min,aralik,max)
t=min:aralik:max;
xt=sin(2*pi*f*t);
end
```


Şekil 2 için kod;

```
function [ts,xn,n,Ts] = FAyrikSinyal(f,min,aralik,max)
Ts=aralik;
ts=min:Ts:max;
xn=sin(2*pi*f*ts);
n=ts/Ts;
end
```

DÇ1 için kullanılan kod;

```
[t,xt]=FSurekliSinyal(4,0,0.0001,2);
plot(t,xt)
hold on
[ts,xn,n,Ts]=FAyrikSinyal(4,0,1/64,2);
stem(ts,xn)
```

x[t] ve x[n] sinyalleri aynı figürde çizdirilmiştir. Örnekleme periyodu $T_S = 1/64$ olarak alınmıştır, x[n] dijital sinyali oluşturulmuştur ve çizdirilmiştir (**Şekil 2**).

DÇ2

Periyodu 1/4 olan sinüs sinyali x[t] $0 \le t \le 2$ aralığında oluşturulmuştur. Örnekleme periyodu olarak $T_S = 1/16$ alınmıştır ve x[n] dijital sinyali oluşturulmuştur .Daha sonra x[n] dijital sinyali kullanılarak analog sinyali tekrar oluşturulmuştur ve orijinal sinyal ile karşılaştırılmıştır (Şekil 3).

Şekil 3

DÇ2 için kullanılan kod;

```
[t,xt]=FSurekliSinyal(4,0,0.0001,2);
plot(t,xt)
[ts,xn,n,Ts]=FAyrikSinyal(4,0,1/16,2);
xr=zeros(1,size(xt,2));
[xr]=FDonusturucu(t,Ts,ts,xn,xr,n);
hold on
plot(t,xr)
```

DC3

DÇ2'de verilen örnekleme periyodu $T_S = 1/6$ olarak alınmıştır ve x[n] dijital sinyali yeniden oluşturulmuştur. Daha sonra x[n] dijital sinyali kullanılarak analog sinyali tekrar oluşturulmuştur ve orijinal sinyal ile karşılaştırılmıştır (**Şekil 4**).

Not: Örnekleme frekansı sinyal frekansının 2 katından düşük olduğundan dolayı örnekleme düzgün yapılamamıştır.

DÇ3 de kullanılan kod;

```
[t,xt]=FSurekliSinyal(4,0,0.0001,2);
plot(t,xt)
[ts,xn,n,Ts]=FAyrikSinyal(4,0,1/6,2);
hold on
stem(ts,xn)
xr=zeros(1, size(xt, 2));
[xr]=FDonusturucu(t,Ts,ts,xn,xr,n);
hold on
plot(t,xr)
Fonksiyon içeriği;
function [xr]=FDonusturucu(t,Ts,ts,xn,xr,n)
for i=1:size(ts,2)
xr1=xn(i)*(sinc((t-n(i)*Ts)/Ts));
xr=xr+xr1;
end
end
```

DÇ4

Şekil 5'deki sinyal $T_S = 1/4$ örnekleme periyodu ile örnekleme işlemine tabi tutulmuştur ve elde edilen örnekler kullanılarak sürekli zamanlı sinyal tekrar oluşturulmuştur. Daha sonra aynı işlemler $T_S = 1/32$ ve $T_S = 1/128$ için tekrar edilmiştir ve oluşan grafikler incelenmiştir (**Şekil 6**).

Not: Örnekleme frekansı arttırıldıkça Şekil 6-7-8 de görüldüğü gibi örnekleme noktaları artmıştır.

DÇ4 için kullanılan kod;

```
t=-2:0.001:2;
xt=ones(1, size(t, 2));
plot(t,xt)
axis([-2.5 2.5 0 1.5])
Ts=1/128;
ts=-2:Ts:2;
xn=ones(1, size(ts, 2));
hold on
stem(ts,xn)
axis([-2.5 2.5 0 1.5])
n=ts/Ts;
xr=zeros(1, size(xt, 2));
for i=1:size(xn,2)
    xr1=xn(i)*(sinc((t-n(i)*Ts)/Ts));
    xr=xr+xr1;
end
hold on
plot(t,xr)
axis([-2.5 2.5 0 1.5])
```