Systèmes dynamiques

Feuille d'exercices 8

Exercice 1. Théorème de Furstenberg-Kesten

Soit (X, \mathcal{X}, T, μ) un système dynamique pmp. Soit $d \in \mathbb{N}_{\geq 1}$ et $A : X \to \mathrm{GL}(d, \mathbf{R})$. Pour tout $n \geq 1$ et tout $x \in X$ on notera

$$A^{n}(x) = A(T^{n-1}(x)) \cdots A(T(x))A(x).$$

On se donne $\|\cdot\|$ une norme sur $GL(d, \mathbf{R})$ et on suppose que $\log \|A^{\pm 1}\| \in L^1(X, \mathcal{X}, \mu)$. Montrer que pour μ presque tout point $x \in X$, les limites

$$\lambda_{+}(x) = \lim_{n} \frac{1}{n} \log \|A^{n}(x)\|, \quad \lambda_{-}(x) = \lim_{n} \frac{1}{n} \log \|A^{-n}(x)\|^{-1}$$

existent dans \mathbf{R} , sont indépendantes de la norme $\|\cdot\|$ choisie et que les fonctions λ_+ et λ_- sont invariantes par T, qu'elles sont dans $L^1(X, \mathcal{X}, \mu)$ et qu'elles satisfont l'égalité

$$\int \lambda_{+} d\mu = \lim_{n} \frac{1}{n} \int \log \|A^{n}\| d\mu, \quad \int \lambda_{-} d\mu = \lim_{n} \frac{1}{n} \int \log \|A^{-n}\|^{-1} d\mu.$$

Exercice 2. Formule d'Herman

On considère $X = \mathbf{R}/\mathbf{Z}$ et μ la mesure de Haar sur X. Soit $\alpha \in (\mathbf{R} - \mathbf{Q})$ et $T = R_{\alpha} : X \to X$ la rotation associée. On définit $A : X \to \mathrm{SL}(2, \mathbf{R})$ par $A(x) = A_{\sigma}R_{2\pi x}, x \in X$, où $\sigma > 0$ et

$$A_{\sigma} = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma^{-1} \end{pmatrix}, \quad R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

1. Montrer que la fonction λ_+ associée à T et A (donnée par l'exercice précédent) est constante μ presque sûrement.

Pour tout $z \in \mathbf{C}$ on note $Q(z) = \begin{pmatrix} \frac{1+z^2}{2} & \frac{1-z^2}{2i} \\ -\frac{1-z^2}{2i} & \frac{1+z^2}{2} \end{pmatrix}$.

- 2. Montrer que pour tout $\theta \in \mathbf{R}$ on a $Q(e^{i\theta}) = e^{i\theta}R_{\theta}$.
- 3. Montrer que pour un choix de norme $\|\cdot\|$ adaptée sur $M_2(\mathbf{C})$, la fonction $z \mapsto \log \|C_n(z)\|$ est sous-harmonique sur \mathbf{C} , où

$$C_n(z) = A_{\sigma}Q\left(e^{2(n-1)i\pi\alpha}z\right)\cdots A_{\sigma}Q\left(e^{2i\pi\alpha}z\right)A_{\sigma}Q(z).$$

4. En déduire que

$$\lambda_+ \ge \log \frac{\sigma + \sigma^{-1}}{2}$$
.

Exercice 3. Théorème d'Oseledets en dimension 2

On se place dans les conditions de l'exercice 1. et on suppose de plus que d=2 et que A prend ses valeurs dans $\mathrm{SL}(2,\mathbf{R})$. Soit $G\subset X$ l'ensemble de mesure pleine des points $x\in X$ vérifiant la conclusion du théorème de Furstenberg-Kesten.

1. Soit $x \in G$. Montrer que $\lambda_+(x) = -\lambda_-(x) \ge 0$.

2. On suppose que $\lambda_+(x) = 0$. Montrer que pour tout $v \in \mathbf{R}^2$,

$$\lim_{n} \frac{1}{n} \log ||A^n(x)v|| = 0.$$

On suppose désormais $\lambda_{+}(x) > 0$.

3. Montrer pour tout $n \ge 1$, il existe une base orthonormée $(s_n(x), v_n(x))$ de \mathbf{R}^2 tels que

$$||A^n(x)s_n(x)|| = ||A^n(x)||^{-1}, \quad ||A^n(x)u_n(x)|| = ||A^n(x)||, \quad \langle A^n(x)s_n(x), A^n(x)u_n(x) \rangle = 0.$$

4. Montrer que si α_n est l'angle entre $s_n(x)$ et $s_{n+1}(x)$ on a

$$\limsup_{n} \frac{1}{n} \log |\sin \alpha_n| \le -2\lambda_+(x).$$

- 5. Montrer que $(s_n(x))_n$ est de Cauchy dans $\mathbf{R}P^1$.
- 6. On note s(x) la limite $(s_n(x))$ dans $\mathbf{R}P^1$: montrer que

$$\limsup_{n} \frac{1}{n} \log ||A^n(x)s(x)|| = -\lambda_+(x).$$

7. Montrer que si $v \in \mathbf{R}^2$, de norme 1, n'est pas colinéaire à s(x) alors

$$\lim \sup_{n} \frac{1}{n} \log ||A^{n}(x)v|| = \lambda_{+}(x).$$

8. Montrer que A(x)s(x) est colinéaire à s(T(x)).

On suppose maintenant T inversible.

- 9. Montrer le théorème d'Osedelets : pour μ -presque tout point de X, on a
 - (i) Ou bien $\lambda_+(x) = \lambda_-(x) = 0$ auquel cas $\lim_n \frac{1}{n} \log ||A^n(x)v|| = 0$ pour tout $v \in \mathbf{R}^2$
 - (ii) Ou bien $\lambda_+(x) > 0$ et il existe une décomposition $\mathbf{R}^2 = E_s(x) \oplus E_u(x)$ telle que

$$\lim_{n \to +\infty} \frac{1}{n} \log ||A^n(x)v|| = \begin{cases} -\lambda_+(x) & \text{si } v \in E_s(x) \setminus \{0\} \\ \lambda_+(x) & \text{si } v \in \mathbf{R}^2 \setminus E_s(x) \end{cases},$$

$$\lim_{n \to -\infty} \frac{1}{n} \log ||A^n(x)v|| = \begin{cases} \lambda_+(x) & \text{si } v \in E_u(x) \setminus \{0\} \\ -\lambda_+(x) & \text{si } v \in \mathbf{R}^2 \setminus E_u(x) \end{cases}.$$

On a de plus $A(x)E_{\bullet}(x) = E_{\bullet}(T(x)), \bullet = s, u,$ et

$$\lim_{n \to \pm \infty} \frac{1}{n} \log |\sin \angle (E_u(T^n(x)), E_s(T^n(x)))| = 0.$$

- 10. Relaxer l'hypothèse que A est à valeurs dans $SL(2, \mathbf{R})$.
- 11. Montrer que le théorème s'applique dans le cas où $X = \mathbf{T}^2$, $f: X \to X$ est un difféomorphisme préservant une mesure lisse μ , et $A = \mathrm{d}f$.