Dynamic Programming (2)

By: Aminul Islam

Based on Chapter 3 of Foundations of Algorithms

Objectives

- Describe the Dynamic Programming Technique
- Contrast the Divide and Conquer and Dynamic Programming approaches to solving problems
- Identify when dynamic programming should be used to solve a problem

Bionomial Coefficient Problem

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 where $0 \le k \le n$

- This is difficult to calculate for large values of n
- We can eliminate the use of n! using the following formula:

$$\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \end{cases}$$

Bionomial Coefficient using D&C

$$\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \end{cases}$$

```
Problem: Compute the binomial coefficient Inputs: nonnegative integers n and k, where k \le n Outpts: bin, the binomial coefficient \binom{n}{k} int bin (int n, int k) {

if (k == 0 || n == k)
return 1;
else
return bin(n-1, k-1) + bin(n-1, k);
}
```

- What's the time complexity and order of complexity?
- D&C approach is not efficient. Why?

Bionomial Coefficient using Dynamic Programming (1)

- Establish a recursive property
- Solve an instance in the bottom-up fashion

Bionomial Coefficient using Dynamic Programming (2)

```
\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & \text{if } 0 < k < n \\ 1 & \text{if } k = 0 \text{ or } k = n \text{ Inputs: nonnegative integers } n \text{ and } k, \end{cases}
                                                       where k < n
                                                        Outpts: binD, the binomial coefficient
                                      j k
                                                        int binD (int n, int k)
  1 | 1 | 1 | 2 | 1 | 3 | 1 | 3 | 3 | 1
                                                           index i, j;
                                                           int B[0..n][0..k];
                                                           for (i=0; i \le n; i++)
                                                             for (j=0; j \leq min(i,k); j++)
                                                               if (i == 0 || i == i)
                                                                  B[i][j] = 1;
                                                                else
                                                                  B[i][j] = B[i-1][j-1] + B[i-1][j];
                                                           return B[n][k];
```

Order of complexity is

Knapsack problem

Definition: Given items of different values and weights and a knapsack that can carry a fixed weight, find the most valuable set of items that fit in the knapsack.

Formal Definition: There is a knapsack of capacity W>0 and N items. Each item has value $v_i>0$ and weight $w_i>0$. Find the selection of items ($\delta_i=1$ if selected, 0 if not) that fit, $\sum_{i=1}^N \delta_i w_i \leq W$, and the total value, $\sum_{i=1}^N \delta_i v_i$, is maximized.

There are two versions of the problem:

- Fractional knapsack problem (Items are divisible) and
- 0-1 knapsack problem (Items are indivisible)

Example of Fractional Knapsack problem

item (i)	1	2	3	4
value (v)	100	20	60	40
weight (w)	3	2	4	1
$\frac{v}{w}$	33.3	10	15	40

- Assume Knapsack's max weight capacity is W=5
- How to fill the knapsack with items (or fractions of items) such that the value is maximum?

Algorithm:

- Sort the items by $\frac{\text{value}}{\text{weight}}$ in descending order
- Keep picking the items from this ordered list and if the last item cannot be picked in total, split it up and pick the fraction that fit in the knapsack

```
items picked=
```

value= Order of Complexity =

Example of 0-1 Knapsack problem

item (i)	1	2	3	4
value (v)	100	20	60	40
weight (w)	3	2	4	1

- Assume Knapsack's max weight capacity is W=5
- How to fill the knapsack with items such that the value is maximum?

items picked=

value=

weight=

Order of complexity=

1	2	3	4	W	V
0	0	0	0	0	0
0	0	0	1	1	40
0	0	1	0	4	60
0	0	1	1	5	100
0	1	0	0		20
0	1	0	1	2 3	60
0	1	1	0	6	80
0	1	1	1	7	120
1	0	0	0	3	100
1	0	0	1	4	140140
1	0	1	0	7	160
1	0	1	1	8	200
1	1	0	0	5	120
1	1	0	1	6	160
1	1	1	0	9	180
1	1	1	1	10	220

^{* 1} means item is picked and 0 means item is not picked

Here, we went through all possible solutions/cases and picked the one that maximizes the value. This is known as Brute force algorithm. What if W = 7?

Optimization Problems

Optimization problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution *an* optimal solution to the problem, as opposed to *the* optimal solution, since there may be several solutions that achieve the optimal value.