```
In [1]: import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
    from scipy import stats
    import seaborn as sns
    import warnings
    %matplotlib inline
    import types
    import pandas as pd
    from botocore.client import Config
```

DATA PREPROCESSING

Out[2]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0

5 rows × 22 columns

In [3]: df.shape

Out[3]: (2938, 22)

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype					
0	Country	2938 non-null	object					
1	Year	2938 non-null	int64					
2	Status	2938 non-null	object					
3	Life expectancy	2928 non-null	float64					
4	Adult Mortality	2928 non-null	float64					
5	infant deaths	2938 non-null	int64					
6	Alcohol	2744 non-null	float64					
7	percentage expenditure	2938 non-null	float64					
8	Hepatitis B	2385 non-null	float64					
9	Measles	2938 non-null	int64					
10	BMI	2904 non-null	float64					
11	under-five deaths	2938 non-null	int64					
12	Polio	2919 non-null	float64					
13	Total expenditure	2712 non-null	float64					
14	Diphtheria	2919 non-null	float64					
15	HIV/AIDS	2938 non-null	float64					
16	GDP	2490 non-null	float64					
17	Population	2286 non-null	float64					
18	thinness 1-19 years	2904 non-null	float64					
19	thinness 5-9 years	2904 non-null	float64					
20	Income composition of resources	2771 non-null	float64					
21	Schooling	2775 non-null	float64					
dtypes: float64(16), int64(4), object(2)								

dtypes: float64(16), int64(4), object(2)

memory usage: 505.1+ KB

In [5]: df.describe()

Out[5]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatiti
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.940
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25.070
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.000
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.000
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.000
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000
4							>

```
In [6]: |df.columns
Out[6]: Index(['Country', 'Year', 'Status', 'Life expectancy ', 'Adult Mortality',
                'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B',
                'Measles ', ' BMI ', 'under-five deaths ', 'Polio', 'Total expenditur
        е',
                'Diphtheria', 'HIV/AIDS', 'GDP', 'Population',
                'thinness 1-19 years', 'thinness 5-9 years',
                'Income composition of resources', 'Schooling'],
               dtype='object')
In [7]:
        df = df.drop(['Country'], axis=1)
        df.columns
Out[7]: Index(['Year', 'Status', 'Life expectancy ', 'Adult Mortality',
                'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B',
                'Measles ', ' BMI ', 'under-five deaths ', 'Polio', 'Total expenditur
        е',
                'Diphtheria ', ' HIV/AIDS', 'GDP', 'Population',
                'thinness 1-19 years', 'thinness 5-9 years',
                'Income composition of resources', 'Schooling'],
               dtype='object')
In [8]: | new df=df.fillna(df.mean())
        new_df.isnull().sum()
        C:\Users\kabil\AppData\Local\Temp\ipykernel_18296\2761969969.py:1: FutureWarn
        ing: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only
        =None') is deprecated; in a future version this will raise TypeError. Select
        only valid columns before calling the reduction.
          new_df=df.fillna(df.mean())
Out[8]: Year
                                            0
                                            0
        Status
        Life expectancy
                                            0
        Adult Mortality
                                            0
        infant deaths
                                            0
        Alcohol
                                            0
        percentage expenditure
                                            0
        Hepatitis B
                                            0
        Measles
                                            0
         BMI
                                            0
        under-five deaths
                                            0
        Polio
                                            0
        Total expenditure
                                            0
        Diphtheria
                                            0
         HIV/AIDS
                                            0
        GDP
                                            0
        Population
                                            0
         thinness 1-19 years
                                            0
         thinness 5-9 years
                                            0
        Income composition of resources
                                            0
        Schooling
                                            0
        dtype: int64
```

Out[9]:

	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	ВМІ	•
0	2015	0	65.0	263.0	62	0.01	71.279624	65.0	1154	19.1	_
1	2014	0	59.9	271.0	64	0.01	73.523582	62.0	492	18.6	
2	2013	0	59.9	268.0	66	0.01	73.219243	64.0	430	18.1	
3	2012	0	59.5	272.0	69	0.01	78.184215	67.0	2787	17.6	
4	2011	0	59.2	275.0	71	0.01	7.097109	68.0	3013	17.2	

5 rows × 21 columns

In [10]: #sns.pairplot(new_df)

In [11]: | sns.distplot(new_df['Life expectancy '])

C:\Users\kabil\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='Life expectancy ', ylabel='Density'>


```
In [13]: columns = {1: 'Year', 2: 'Life expectancy ', 3: 'Adult Mortality', 4: 'infant
                 5: 'Alcohol' , 6: 'percentage expenditure', 7: 'Hepatitis B',
                8: 'Measles ', 9: ' BMI ', 10: 'under-five deaths ', 11: 'Polio', 12: '
                13: 'Diphtheria ', 14: ' HIV/AIDS', 15: 'GDP', 16: 'Population',
                17: 'thinness 1-19 years', 18: 'thinness 5-9 years',
                19: 'Income composition of resources', 20: 'Schooling'}
         plt.figure(figsize=(28, 30))
         for i, column in columns.items():
                              plt.subplot(4,5,i)
                              sns.boxplot(new df[column], orient='v')
                              plt.title(column)
         plt.show()
         reWarning: Pass the following variable as a keyword arg: x. From version
         0.12, the only valid positional argument will be `data`, and passing other
         arguments without an explicit keyword will result in an error or misinterp
         retation.
           warnings.warn(
         C:\Users\kabil\anaconda3\lib\site-packages\seaborn\_core.py:1326: UserWarn
         ing: Vertical orientation ignored with only `x` specified.
           warnings.warn(single_var_warning.format("Vertical", "x"))
         C:\Users\kabil\anaconda3\lib\site-packages\seaborn\ decorators.py:36: Futu
         reWarning: Pass the following variable as a keyword arg: x. From version
         0.12, the only valid positional argument will be `data`, and passing other
         arguments without an explicit keyword will result in an error or misinterp
         retation.
           warnings.warn(
         C:\Users\kabil\anaconda3\lib\site-packages\seaborn\_core.py:1326: UserWarn
         ing: Vertical orientation ignored with only `x` specified.
           warnings.warn(single var warning.format("Vertical", "x"))
In [14]: | X = new_df[['Year', 'Status', 'Adult Mortality',
                'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B',
                'Measles ', ' BMI ', 'under-five deaths ', 'Polio', 'Total expenditure'
                'Diphtheria ', ' HIV/AIDS', 'GDP', 'Population',
                'thinness 1-19 years', 'thinness 5-9 years',
                'Income composition of resources', 'Schooling']].values
         y = new_df['Life expectancy '].values
In [15]: | from sklearn.model_selection import train_test_split
In [16]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, rando
In [17]: new_df.shape
Out[17]: (2938, 21)
```

```
In [18]: X_train.shape,X_test.shape,y_train.shape,y_test.shape
Out[18]: ((1762, 20), (1176, 20), (1762,), (1176,))
In [19]: print('Training Features Shape:', X_train.shape)
    print('Training Labels Shape:', y_train.shape)
    print('Testing Features Shape:', X_test.shape)
    print('Testing Labels Shape:', y_test.shape)

Training Features Shape: (1762, 20)
    Training Labels Shape: (1762,)
    Testing Features Shape: (1176, 20)
    Testing Labels Shape: (1176,)
```

LINEAR REGRESSION

```
In [108]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    lm = LinearRegression()
    lm.fit(X_train,y_train)
    lmpredictions = lm.predict(X_test)
```

```
In [109]: mse = mean_squared_error(y_test,lmpredictions)
    mae = mean_absolute_error(y_test,lmpredictions)
    r2 = r2_score(y_test, lmpredictions)
    print("Mean Squared Error:",mse)
    print("Mean Absolute Error:",mae)
    print("R2 Square:",r2)
```

Mean Squared Error: 16.279182568375546 Mean Absolute Error: 3.0322513121378054

R2 Square: 0.803481416052645

In [110]: plt.scatter(y_test,lmpredictions)

Out[110]: <matplotlib.collections.PathCollection at 0x1fa26d67b80>

In [111]: | sns.distplot((y_test-lmpredictions),bins=50);

C:\Users\kabil\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

RANDOM FOREST

```
In [112]: from sklearn.ensemble import RandomForestRegressor
    rf = RandomForestRegressor(n_estimators = 40, random_state = 50)
    rf.fit(X_train, y_train)
```

Out[112]: RandomForestRegressor(n_estimators=40, random_state=50)

In [113]: rfpredictions= rf.predict(X_test)

```
In [114]: mse = mean_squared_error(y_test,rfpredictions)
    mae = mean_absolute_error(y_test,rfpredictions)
    r2 = r2_score(y_test, rfpredictions)
    print("Mean Squared Error:",mse)
    print("Mean Absolute Error:",mae)
    print("R2 Square:",r2)
```

Mean Squared Error: 3.7236637857805954 Mean Absolute Error: 1.2528619884600023

R2 Square: 0.9550487789418121

```
In [115]: plt.scatter(y_test, rfpredictions)
```

Out[115]: <matplotlib.collections.PathCollection at 0x1fa291b6df0>

In [116]: | sns.distplot((y_test-rfpredictions),bins=50);

C:\Users\kabil\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

DECISION TREE

```
In [117]: from sklearn.tree import DecisionTreeRegressor
    from sklearn.metrics import mean_squared_error, r2_score
    dt = DecisionTreeRegressor()
    dt.fit(X_train, y_train)
    dt_predictions = dt.predict(X_test)
    print(dt_predictions)
    mse = mean_squared_error(y_test,dt_predictions)
    mae = mean_absolute_error(y_test,dt_predictions)
    r2 = r2_score(y_test, dt_predictions)
    print("Mean Squared Error:",mse)
    print("Mean Absolute Error:",mae)
    print("R2 Square:",r2)
```

[63.7 54.3 83.5 ... 63.9 72.2 79.] Mean Squared Error: 7.88756179489599 Mean Absolute Error: 1.662521432753429 R2 Square: 0.9047831506146139

In [118]: sns.distplot((y_test-dt_predictions),bins=50);

C:\Users\kabil\anaconda3\lib\site-packages\seaborn\distributions.py:2619: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

RIDGE REGRESSION

```
In [119]: from sklearn.linear_model import Ridge
    ridge = Ridge()
    ridge.fit(X_train, y_train)
    ridge_predictions = ridge.predict(X_test)
    mae = mean_absolute_error(y_test, ridge_predictions)
    r2 = r2_score(y_test, ridge_predictions)
    mse = mean_squared_error(y_test,ridge_predictions)
    print("Mean absolute Error (Ridge Regression):", mae)
    print("Mean squared Error (Ridge Regression):",mse)
    print("R-squared Score (Ridge Regression):", r2)
```

```
Mean absolute Error (Ridge Regression): 3.0332047740254806
Mean squared Error (Ridge Regression): 16.28419819317254
R-squared Score (Ridge Regression): 0.803420868572538
```

C:\Users\kabil\anaconda3\lib\site-packages\sklearn\linear_model_ridge.py:15
7: LinAlgWarning: Ill-conditioned matrix (rcond=4.50792e-18): result may not be accurate.

return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T

LIFE EXPECTANCY PREDICTIONS

```
In [120]:
```

```
features = {
    'Year': [2023],
    'Status': [1],
    'Adult Mortality': [200],
    'infant deaths': [100],
    'Alcohol': [10],
    'percentage expenditure': [100],
    'Hepatitis B': [90],
    'Measles ': [50],
    ' BMI ': [25],
    'under-five deaths ': [15],
    'Polio': [95.23],
    'Total expenditure': [7.5],
    'Diphtheria ': [94],
    ' HIV/AIDS': [2.4],
    'GDP': [1500],
    'Population': [1000],
    ' thinness 1-19 years': [7],
    ' thinness 5-9 years': [1.08],
    'Income composition of resources': [3],
    'Schooling': [11]
}
input df = pd.DataFrame(features)
input df['Status'].replace(to replace=['Developing', 'Developed'], value=[0, 1
predicted_life_expectancy = rf.predict(input_df)
predicted life expectancy1 = dt.predict(input df)
predicted_life_expectancy2 = lm.predict(input_df)
predicted_life_expectancy3 = ridge.predict(input_df)
print("Predicted life expectancy using Random Forest:", int(predicted life exp
print("Predicted life expectancy using Decision Tree:", int(predicted_life_exp
print("Predicted life expectancy using Linear Regression:", int(predicted_life
print("Predicted life expectancy using Ridge Regression:", int(predicted life
Predicted life expectancy using Random Forest: 66
Predicted life expectancy using Decision Tree: 70
Predicted life expectancy using Linear Regression: 91
Predicted life expectancy using Ridge Regression: 91
C:\Users\kabil\anaconda3\lib\site-packages\sklearn\base.py:443: UserWarning:
X has feature names, but RandomForestRegressor was fitted without feature nam
  warnings.warn(
C:\Users\kabil\anaconda3\lib\site-packages\sklearn\base.py:443: UserWarning:
X has feature names, but DecisionTreeRegressor was fitted without feature nam
es
  warnings.warn(
C:\Users\kabil\anaconda3\lib\site-packages\sklearn\base.py:443: UserWarning:
X has feature names, but LinearRegression was fitted without feature names
  warnings.warn(
C:\Users\kabil\anaconda3\lib\site-packages\sklearn\base.py:443: UserWarning:
X has feature names, but Ridge was fitted without feature names
  warnings.warn(
```