

# **CAR PRICE PREDICTION**

Submitted by: Pittala Dheerajkumar

# **Acknowledgment**

This includes mentioning of all the references, research papers, data sources, professionals and other resources that helped you and guided you in completion of the project.

https://www.geeksforgeeks.org/

https://github.com/

https://www.mckinsey.com/

https://www.counterpointresearch.com/

### Introduction

## Business Problem Framing

With the covid 19 impact in the market, we have seen lot of changes in the car market. Now some cars are in demand hence making them costly and some are not in demand hence cheaper. With the change in market due to covid 19 impact, the previous ML models are not performing well.

## Conceptual Background of the Domain Problem

A good knowledge of after sales market of cars is necessary. What makes a car valuable will be key.

#### Review of Literature

Not a lot of research is available on car prices after covid-19 impact.

https://www.mckinsey.com/business-functions/marketing-and-sales/our-insights/how-consumers-behavior-in-car-buying-and-mobility-changes-amid-covid-19

https://www.counterpointresearch.com/weekly-updates-covid-19impact-global-automotive-industry/

### Motivation for the Problem Undertaken

Due to covid-19 the car market has changed a lot, some cars have shot up in popularity and some gone down in price.

# **Analytical Problem Framing**

# Mathematical/ Analytical Modelling of the Problem

Inbuilt function such as standardising and log will be used in tackling this problem.

R-square is a comparison of residual sum of squares (SSres) with total sum of squares (SStot). Total sum of squares is calculated by summation of squares of perpendicular distance between data points and the average line.

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Where SSres is the residual sum of squares and SStot is the total sum of squares.

R-square is the main metric which I will use in this regression analysis.

Concordance index was also used. The concordance index or c-index is a metric to evaluate the predictions made by an algorithm. It is defined as the proportion of concordant pairs divided by the total number of possible evaluation pairs.

### Data Sources and their formats

The data was scraped from cars24 website; data was scraped for more than 31 cities where prices differ.

|   | Name                      | Transmission type | Variant          | Mileage   | Owned     | Fuel type | City   | Price     |
|---|---------------------------|-------------------|------------------|-----------|-----------|-----------|--------|-----------|
| 0 | 2017 Maruti Swift         | Manual            | VDI ABS Manual   | 69,894 km | 1st Owner | Diesel    | Rohtak | ₹4,74,699 |
| 1 | 2019 Maruti Vitara Brezza | Manual            | VDI Manual       | 31,245 km | 1st Owner | Diesel    | Rohtak | ₹7,89,499 |
| 2 | 2013 Maruti Swift Dzire   | Manual            | LDI BS IV Manual | 49,944 km | 2nd Owner | Diesel    | Rohtak | ₹3,54,299 |
| 3 | 2020 Maruti New Wagon-R   | Manual            | LXI 1.0 L Manual | 6,879 km  | 1st Owner | Petrol    | Rohtak | ₹4,98,799 |
| 4 | 2015 Maruti Swift         | Manual            | VDI ABS Manual   | 37,925 km | 1st Owner | Diesel    | Rohtak | ₹4,05,199 |

## Data Pre-processing Done

The years were extracted from the name of the car which contained lot of information.

Numerical variables were converted to integer type (form string) so I could perform deeper analysis on them.

Engine variants were classified under ranges; for example, engines were classified as 1.0 - 1.5 litre capacity; they were many more such ranges.

State the set of assumptions (if any) related to the

problem under consideration

The main assumption is that there is no selection bias in the data which we have.

This is because we have cars from varying years and varying city; each city doesn't have equal amount of data.

Here we can see the count of data per city.

df['City'].value\_counts() Mumbai Pune 401 Ahmedabad 267 Surat 267 Jaipur 263 Bengaluru 247 Chennai 225 Vadodara 218 Ludhiana 156 Chandigarh 156 Kolkata 130 Delhi 116 Kochi 114 Panipat Rohtak 108 Meerut 107 Nasik 63 Hyderabad 44 32 Lucknow Rajkot 20 Mysore 19 Bhopal 15 Name: City, dtype: int64

Hardware and Software Requirements and Tools Used

Pandas, Seaborn, ploty and sickit libraries were used throughout the project.

# **Model/s Development and Evaluation**

 Identification of possible problem-solving approaches (methods)

Regression and co relation.

In statistical modelling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more independent variables

Testing of Identified Approaches (Algorithms)

Decision tree regression

**Random forest regression** 

**Support vector regression** 

Natural log, and min-max scaling

And finally, hyper parameter tuning

Run and Evaluate selected models

All R-square values are from cross-validation of 4 samples

Decision tree regression: r-square = 0.9001138255571381 Support vector regression: r-square = 0.8576922259537942 Random forest regression: r-square = 0.9270210511225838

And as per this data random forest was chosen as the best model; further hyper parameter tuning was performed.

Final model: r-squared = 0.9278739517943783

Concordance index: 0.9521745439019875

Which is an improvement from all previous attempts

# Key Metrics for success in solving problem under consideration

R-square was used to determine the success if an algorithm performed well or not.



## Visualizations

Plot of count of transmission type, automatic vs manual; we can observe majority of cars are Manual.



This is a histogram plot of price distribution of the cars.

We can see that most of the cars are prices below Rs. 30,000,000. The average price of resale car is around Rs.5,000,000



This is the plot of number of cars based on which year the car was manufactured. We can observe that bulk of cars is sold from 2015-2020. So, cars ~6-2 years old are sold the most.



Average price of car vs year; we can see the average price of car increases if the car is not very old.

We can observe that newer cars are priced much higher on average as expected. The older the car is, the lower the resale value is.



Average mileage in km on a car, based on the year the car was manufactured; we can observe that the mileage is more for older cars; as expected.

This plot shows the average mileage on a car (in km), based on which year the car was manufactured. We can observer that the older the car, the more mileage it has.



Average price of car according to city in which it was listed. Bhopal has the most expensive cars and Kochi has the least expensive cars.

Average price of car based on city, Kolkata has the cheapest cars on average and Bhopal the highest price.



Average mileage of car (in km) according to city in which it was listed. Ludhiiana has the most driven cars and Mysore has the least driven cars.

#### This plot shows the average mileage on car based on which city the car is listed in.



The above plot shows the count of engines found in cars, the plot to the right shows the average price of all those categories.

We can observe that 1.0-1.5 litre is the most common engine found in cars. As it is the cheapest engine. The most expensive engines are 2.0+ litres as expected heavier engines mean bigger cars which means much higher price.



Diesel cars are resold for the most value, on average Rs. 7 lakh, petrol cars are price just above Rs. 5 lakhs on average. CNG and LPG cars are the cheapest.



Average price of car according to type of transmission, as we can observe here that automatic cars are on average price above Rs 8 lakh and manual around 5 lakhs.



Average price of car based on how many previous owners it has had. We can only see a noticeable bump when there are more than 3 number of owners of the car. 1/2/3 owners don't affect the price as much.



#### 2.0+ litre engine is the most expensive



Multi variate analysis between the various numerical variables. Year, Mileage and Price.



Correlation heatmap of the variables.

We can see that price is negatively affected by mileage i.e. the more mileage a car has the lower its price.

And the price is positively co-related with the year, as newer the more expensive it is.



This is the skew of Price.

Skew of Pirce: 2.0398565390925087



This is the skew of price after taking natural log.

Skew of Log-Transformed Price: 0.3518219716476838

We can see that now we have a much better bell curve shape.

# • Interpretation of the Results

Results were concluded from scatter plot of the predictions vs actual values and the mean absolute error between the two.



Final graph of the model predicting the values, we can see that the model is very accurate in determining the price.



Density plot of predicted price – actual price. We can see that most of the guesses are very near to the actual value. Which is good.

#### CONCLUSION

Key Findings and Conclusions of the Study

The main component on which the price of a car depends is the engine size, the year which car was bought, the mileage on the car etc.

The price also depends on which city the car was registered, as some cities have different tax rates and restrictions. Eg Delhi NCR has 10-year limit on diesel cars and 15 year on petrol cars, but no other city has such restrictions.

 Learning Outcomes of the Study in respect of Data Science Random forest regression works best for this data set, hyper parameter tuning was performed, and optimal parameters were found.

EDA is very powerful in understanding the data and pre-processing it before feeding it to the algorithm. Statistical methods work the best.

• Limitations of this work and Scope for Future Work

Post covid-19 car market is still evolving, and it will keep evolving for the foreseeable future. The algorithms will need to keep changing to keep up with the evolution.