Business Problem & Objective

Business Problem:

- Credit card fraud, though accounting for less than 0.2% of total transactions, results in estimated annual losses ranging from ₹3–4 crore.
- The current fraud detection system is rule-based, leading to:
 - A high rate of false positives, necessitating superfluous manual reviews.
 - Unidentified fraudulent transactions, resulting in both financial detriment and damage to reputation.

Objective:

• To develop a machine learning model capable of identifying fraudulent transactions with a high recall rate (thereby detecting the majority of fraud cases) while concurrently minimizing the incidence of false positives.

Model Results

Model Used: Logistic Regression (with class weights to handle imbalance)

Performance Metrics:

Metric	Default Threshold 0.5	Tuned T 0.35	Threshold
Recall (Fraud)	92%	85%	
Precision (Fraud)	6%	20%	

Impact: At tuned threshold, prevents ~₹3 crore annual fraud losses.

Recommendations & Next Steps

Recommendations:

- Deploy model at tuned threshold (≈0.35) for balanced precision and recall.
- Auto-block top 1% highest-risk transactions, send next 4% to manual review.
- Retrain the model quarterly to adapt to evolving fraud tactics.
- Integrate **feedback loop** with fraud investigation team to refine predictions.