VR コンポーネント群解説マニュアル

名城大学メカトロニクス工学科 ロボットシステムデザイン研究室

1. はじめに

1.1. 本書の目的

本書の目的は、VR 技術の既存システムへの簡易的な導入を目的として開発した RT コンポーネント群の仕様を解説するものである.

1.2. 概要

本書で開設する RT コンポーネント群には以下が含まれる

コンポーネント名	機能
	VR デバイスの一種である HTC VIVE の機能を簡易的に利
	用するための RT コンポーネントである. 本コンポーネント
	は以下の4つの機能をもつ.
ViveController	● VIVE コントローラの位置姿勢・速度/ボタン情報の管理
	● VIVE HMD の位置姿勢・速度情報の管理
	● VIVE トラッカーの位置姿勢・速度情報の管理
	● VIVE HMD への画像の出力
G 1 D 1 + G + 11	ViveController が取得した情報を PC 画面上に出力する RT
SampleRobotController	コンポーネントである

2. 開発環境

2.1. 開発環境一覧

PC	ZBOX-EN1070-U	
OS	Windows 10	
ソフトウェア	CMake 3.13.0 / OpenRTM-aist-1.1.2-RELEASE	
ハードウェア	HTC VIVE / HTC VIVE トラッカー 2018	
開発言語	C/C++	

2.2. HTC VIVE / HTC VIVE トラッカー 2018

VR デバイスの 1 つである HTC VIVE と HTC VIVE トラッカー 2018 の機能について以下に示す。HTC VIVE にはヘッドマウントディスプレイ(以下, HMD)、コントローラ、ベースステーションが含まれている。

Table 1 HTC VIVE / HTC VIVE トラッカー 2018

VIVE HMD	hra:	ユーザーの頭の動きを反映 して, ユーザーに画像を出 力するデバイス
VIVE コントローラ		ユーザーの手の動きを反映 するデバイス. トリガーや パッドの機能が備わってい る
VIVE トラッカー		様々な場所に取り付け可能 なトラッキング用のデバイ ス
VIVEベース ステーション		HMD・コントローラ・ト ラッカーの位置姿勢・速度 を推定するデバイス

3. 開発環境の構築

本コンポーネントに必要な開発環境の構築手順を以下に示す. ただし, 今回は 32bit 版の ライブラリを使用することとする.

3.1. 0penVR のインストール

HTC VIVE を用いた開発をおこなうためのライブラリである OpenVR を以下のサイトからインストールする.

https://github.com/ValveSoftware/openvr

C ドライブ直下に置くものとし、環境変数に以下を追加する.

変数名	OPENVR_PATH
パス	C:¥openvr-master

3.2. GLEW のインストール

HTC HMD へ画像を出力するためコンピュータグラフィックスライブラリである OpenGL を使用する. 今回は OpenGL の拡張機能を利用可能にするための補助ライブラリである GLEW を以下のサイトからインストールする.

http://glew.sourceforge.net

C ドライブ直下に置くものとし、環境変数に以下を追加する.

変数名	GLEW_PATH
パス	C:¥glew-2.1.0

3.3. GLFW のインストール

GLEW と共に、OpenGL の拡張機能を利用可能にするための補助ライブラリである GLFW を以下のサイトからインストールする.

http://www.glfw.org/download.html

C ドライブ直下に置くものとし、環境変数に以下を追加する.

変数名	GLFW_PATH
パス	C:¥glfw-3.2.1.bin.WIN32

4. RT コンポーネントの仕様

4.1. ViveController

ViveController は、VR デバイスの一種である HTC VIVE の機能を簡易的に利用するための RT コンポーネントである。本コンポーネントは Table $2\sim4$ のインターフェースから構成されており、以下の 4 つの機能をもつ。

- VIVE コントローラの位置姿勢・速度/ボタン情報の管理
- VIVE HMD の位置姿勢・速度情報の管理
- VIVEトラッカーの位置姿勢・速度情報の管理
- VIVE HMD への画像の出力

Table 2 VIVEController

RTコンポーネントの名称				
m Vive Controller	Controller Hmd Tracker ViveController0			
データポート(入力)				
ポート名	データ型	説明		
HmdImage	Img::TimedCameraImage	HMDに表示する画像データ		
	データポート(入力)			
ポート名	データ型	説明		
Hmd	ViveControl::TimedVivePoseVelSeq	接続されている全ての VIVE HMDの情報		
Controller	ViveControl::TimedViveControllerSeq	接続されている全ての VIVEコントローラの情報		
Tracker	ViveControl::TimedVivePoseVelSeq	接続されている全ての VIVEトラッカーの情報		

Table 3 VIVE HMD と VIVE トラッカーのデータ型

${\bf Timed Vive Pose Vel Seq}$		
接続されている全てのHMDまたはトラッカーの情報		
データ型 変数名 説明		
RTC::Time	tm	時間
long	deviceNum	デバイスの接続数
Sequence <rtc::timedposevel3d></rtc::timedposevel3d>	data	VIVEデバイスの位置姿勢・速度

Table 4 VIVE コントローラのデータ型

ViveController		
接続されている単一のVIVEコントローラの情報		
データ型	変数名	説明
RTC::PoseVel3D	controllerPoseVel	VIVEコントローラの位置姿勢・速度
boolean	gripButton	グリップボタン
boolean	applicationMenuButton	メニューボタン
boolean	systemButton	システムボタン
float	trigger	トリガーの引き具合(0,1)
float	padx	パッドx座標 (-1, 1)
float	pady	パッドy座標 (-1, 1)

Table 5 VIVE コントローラのデータ型

${\bf Timed Vive Controller Seq}$		
接続されている全てのVIVEコントローラの情報		
データ型	変数名	説明
RTC∷Time	tm	時間
long	deviceNum	デバイスの接続数
Sequence <vivecontroller></vivecontroller>	data	接続されている単一の VIVEコントローラの情報

4.2. RT コンポーネントの利用方法

4.2.1. 使用方法 1: VIVE デバイスの情報の取得

本コンポーネントの使用方法の 1 つとして、VIVE デバイスの情報の取得が挙げられる. ここでは、SampleRobotControllerComp と組み合わせて PC 画面上に接続されている VIVE デバイスの位置情報を出力させる。実行した 2 つの RT コンポーネントを Fig. 1 のように接続し、コンポーネントをアクティベートする。VIVE HMD と VIVE コントローラを 1 つずつ接続したときの VIVE デバイスの情報取得結果を Fig. 2 に示す。

Fig. 1 接続図

Fig. 2 VIVE デバイスの情報取得結果

4.2.2. 使用方法2:画像データの出力

もう一つの使用方法として、HMD への画像データの出力が挙げられる。ここでは、既存コンポーネントである WebCameraComp と組み合わせて、HMD と PC 画面上に画像データを出力させる。WebCameraComp は以下のサイトからインストールする。

https://github.com/rsdlab/WebCamera

実行した 2 つの RT コンポーネントを Fig.~3 のように接続し、コンポーネントをアクティベートする. そのときの PC 画面上への画像データの出力結果を Fig.~4 に示す.

Fig. 3 接続図

Fig. 4 画像データの出力結果

5. 今後の展望

本書にて、VR 機能の利用を可能にする ViveController の使用方法を、サンプル RT コンポーネントである SampleRobotControllerComp と既存コンポーネントである WebCameraComp を用いて紹介した。今後は、本コンポーネントを既存のロボットの操作インターフェースとして利用したいと考えている。 ViveController を様々なロボット操作に使用するために、VIVE の情報を利用したそれぞれのロボット用コントローラの開発を行ない、汎用性の向上を目指す。

Fig. 5 VIVEController の利用例