Saurav Prakash

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089 ⊠ sauravpr@usc.edu ' https://sauravpr.com/

Research Interests

- o Security and Privacy in Machine Learning
- Efficient and Robust Federated Learning
- Large-Scale Serverless Training
- Coded Distributed Computing

Education

2016 - Ph.D. in Electrical Engineering, GPA: 3.88/4.00.

Present University of Southern California, Los Angeles, CA, USA.

Advisor: Prof. Salman Avestimehr.

2012 - 2016 B.Tech. in Electrical Engineering, CPI: 9.4/10.0.

with Minor in Artificial Intelligence in Computer Science and Engineering.

Indian Institute of Technology Kanpur, Kanpur, UP, India.

Advisor: Prof. Aditya K. Jagannatham.

Professional Experience

Aug. 2016 - Graduate Research Assistant.

Present vITAL Lab, University of Southern California, Los Angeles, CA.

Mentor: Prof. Salman Avestimehr.

- Byzantine Robust Federated Learning
 - Considered general Byzantine federated learning setting with non-IID data across clients
 - Proposed DiverseFL, a novel sampling based approach that applies per client criteria for mitigating Byzantines in the general federated learning setting
 - Demonstrated via extensive experiments that compared to prior approaches, DiverseFL performs much better, almost achieving the optimal model performance
- Byzantine Robust Decentralized (Serverless) Learning
 - Considered the problem of Byzantine mitigation in the decentralized learning setting without any central coordinator
 - Developed Basil, a fast and computationally efficient Byzantine robust algorithm leveraging a sequential, memory assisted and performance criteria for training over a ring
 - Demonstrated numerically that Basil provides up to $\sim 16\%$ higher test accuracy when compared with prior methods, under different Byzantine fault settings

- Coded Computing for Hierarchical Distributed Learning at the Edge
 - Formulated a hierarchical gradient aggregation problem for machine learning from data available at the client nodes by leveraging reliable helper nodes for collecting updates
 - Proposed two unique coded computing strategies aligned repetition coding (ARC), aligned MDS coding (AMC) for mitigating straggling links from clients to helpers
- Coded Computing for Large-scale Distributed Learning
 - Formulated a tree gradient coding framework and proposed CodedReduce scheme for fast and robust gradient aggregation in distributed learning
 - CodedReduce combines advantages of communication efficiency of Ring-AllReduce and straggler resiliency of Gradient Coding for minimizing the overall training latency
 - In experiments over Amazon EC2, CodedReduce achieves gains of up to 31× in the overall execution time over prior approaches for distributed learning
- Coded Computing for Large-scale Graph Processing
 - Proposed a distributed computing framework for graph analytics based on MapReduce
 - Characterized the optimal trade-off between Map computations and Shuffle load for the Erdos-Renyi model
 - Developed and implemented a coded distributed implementation of the PageRank algorithm using Amazon EC2, demonstrating gains of up to 50% over the naive PageRank
 - Developed coding schemes for three other popular random graph models random bi-partite model, stochastic block model, and power law model
- Coded Computing for Large-scale Matrix Multiplication in Heterogeneous Settings
 - Proposed a two-step alternative formulation to the problem of minimizing the expected run-time in distributed matrix-vector multiplication in heterogeneous clusters
 - Developed a scalable method Heterogeneous Coded Matrix Multiplication (HCMM) for reliable matrix multiplication on cloud clusters with stragglers
 - Proved the asymptotic optimality of HCMM
 - Implemented HCMM using Amazon EC2, demonstrating gains of up to 61% over benchmark schemes

Jun. 2021 - Applied Scientist Intern.

Aug. 2021 Alexa AI, Amazon, Cambridge, MA.

Mentors: Clement Chung, Christophe Dupuy, Rahul Gupta, Leo Long, Tanya Roosta.

- Federated learning with Heterogeneous Model Architectures
 - Developed various strategies for efficient federated learning from edge users
 - Explored novel methods to enable federated learning with heterogeneous model architectures at the edge users

May – Aug. Graduate Technical Intern.

2018 & 2019 Intel Labs, Santa Clara, CA.

Mentors: Sagar Dhakal, Nageen Himayat, Shilpa Talwar.

- Coded Computing for Federated Learning in Multi-access Edge Computing (MEC) networks
 - Proposed CodedFedL for injecting coding redundancy into federated learning with non-IID data for mitigating stragglers and minimizing up training time in MEC networks
 - Developed a tractable approach for minimizing deadline time
 - Analyzed the convergence rate and iteration complexity of CodedFedL
 - Demonstrated gains of up to 15× in comparison to benchmark schemes in practice

May 2015 - International Visiting Student.

Jul. 2015 IUSSTF-Viterbi Program, Los Angeles, CA.

Mentor: Prof. Salman Avestimehr.

- Towards Faster Algorithms for Processing Large Data on Graphs
 - Studied spectral graph theory and its application in signal processing of graph data cut-off frequency, optimal sampling and bandlimited interpolation
 - Explored existing semi-supervised and active learning methods for data on graphs
 - Proposed a Random Jump model based on Graph Laplacian for sampling with low time complexity

2013 – 2016 Undergraduate Research Assistant.

MWN Group, IIT Kanpur, Kanpur, India.

Mentor: Prof. Aditya K. Jagannatham.

- Scheduling for Efficient Utilization of Time Resource in Wireless Networks
 - Worked on the problem of user scheduling for efficient wireless resource utilization, under resource allocation fairness constraints
 - Proposed two opportunistic schemes for scheduling users in a time slotted system with wireless Rayleigh-fading channel
 - Simulations predicted stochastically improved performance compared to Round Robin scheme alongside satisfaction of any arbitrary time resource allocation fairness constraints

May 2013 - Undergraduate Research Intern.

- Jul. 2013 Summer Undergraduate Research Grant for Excellence (SURGE), IIT Kanpur, Kanpur, India. Mentor: Prof. Aditya K. Jagannatham.
 - Channel Estimation and Capacity in MIMO Wireless Communication Systems
 - Studied capacity lower bound for a MIMO system obeying Block-Fading law using LMMSE estimator for channel estimation at the receiver
 - Simulated existing algorithms designed for obtaining near optimal number of transmit antennas for optimizing the capacity lower bound

Selected Honors and Awards

- 2021 Qualcomm Innovation Fellowship.
- 2019 Qualcomm Innovation Fellowship Finalist.
- 2019 Most Novel Research Project Award, EE-599 (Deep Learning course, USC.
- 2016 USC Annenberg PhD Fellowship.
- 2016 Princeton Gordon Wu PhD Fellowship (Declined).
- 2015 Viterbi-India Internship.
- 2014 Summer Undergraduate Research Grant for Excellence at IIT Kanpur.
- 2015 Shri Singhasan Singh Scholarship at IIT Kanpur.
- 2015 Institution of Engineering and Technology (IET) Scholarship.

Publications

* denotes joint authorship.

Preprints

- P2 S. Prakash, H. Hashemi, Y. Wang, M. Annavaram, S. Avestimehr, "Byzantine resilient federated learning with heterogeneous data distribution," Jul. 2021. Partly presented at the Enclaved AI/ML Workshop 2021, Private AI Research Institute.
- P1 A. R. Elkordy, **S. Prakash**, S. Avestimehr, "Basil: A fast and Byzantine-resilient approach for decentralized training," Sep. 2021. *Part of it to be presented at the NeurIPS Workshop on Privacy in Machine Learning*, 2021.

Journal Papers

- J4 S. Prakash, S. Dhakal, M. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr, N. Himayat, "Coded computing for low-latency federated learning over wireless edge networks," *IEEE Journal on Selected Areas in Communications*, volume 39, issue 1, pages 233–250, Jan. 2021. Was partly presented at the FL-ICML Workshop on User Privacy and Data Confidentiality, 2020.
- J3 A. Reisizadeh*, **S. Prakash***, R. Pedarsani, S. Avestimehr, "Coded Reduce: A fast and robust framework for gradient aggregation in distributed learning," to appear in the *IEEE/ACM Transactions on Networking*.
- J2 S. Prakash*, A. Reisizadeh*, R. Pedarsani, S. Avestimehr, "Coded computing for distributed graph analytics," *IEEE Transactions on Information Theory*, volume 66, issue 10, pages 6534–6554, Oct. 2020.
- J1 A. Reisizadeh, S. Prakash, R. Pedarsani, S. Avestimehr, "Coded computation over heterogeneous clusters," *IEEE Transactions on Information Theory*, volume 65, issue 7, pages 4227–4242, Jul. 2019.

Conference/Workshop Proceedings

- C7 S. Prakash*, A. Reisizadeh*, R. Pedarsani, S. Avestimehr, "Hierar- chical coded gradient aggregation for learning at the edge," in *Proceedings of IEEE International Symposium on Information Theory (ISIT)*, Aug. 2020.
- C6 S. Dhakal, S. Prakash, Y. Yona, S. Talwar, N. Himayat, "Coded federated learning," in *Proceedings of IEEE IEEE Globecom Workshops (GC Wkshps)*, Mar. 2020.
- C5 S. Kundu*, **S. Prakash***, H. Akrami, P. Beerel, K. Chugg, "pSConv: A pre-defined sparse kernel based convolution for deep CNNs," in *Proceedings of IEEE 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*, Dec. 2019.
- C4 S. Dhakal*, **S. Prakash***, Y. Yona, S. Talwar, N. Himayat, "Coded computing for distributed machine learning in wireless edge network," in *Proceedings of IEEE 90th Vehicular Technology Conference (VTC2019-Fall)*, Nov. 2019.
- C3 A. Reisizadeh*, S. Prakash*, R. Pedarsani, S. Avestimehr, "Tree gradient coding," in *Proceedings of IEEE International Symposium on Information Theory (ISIT)*, Sep. 2019.
- C2 S. Prakash*, A. Reisizadeh*, R. Pedarsani, S. Avestimehr, "Coded computing for distributed graph analytics," in *Proceedings of IEEE International Symposium on Information Theory (ISIT) Conference*, Aug. 2018.

C1 A. Reisizadeh, **S. Prakash**, R. Pedarsani, S. Avestimehr, "Coded computation over heterogeneous clusters," in *Proceedings of IEEE International Symposium on Information Theory (ISIT) Conference*, Aug. 2017.

Selected Talks

- Jul. 2021 **TEE-GPU Cooperative Learning: Privacy and Security Without the Price**, Presentation, Enclaved AI/ML Workshop 2021, Private AI Research Institute.
- May 2021 Federated deep learning: On-device learning for CV and NLP, Finalist Team Presentation, Qualcomm Innovation Fellowship 2021, Qualcomm.
- Apr 2021 **Trustworthy and Scalable Federated Learning**, *CCF Advanced Disciplines Lecture*, Institute of Computing Technology, Chinese Academy of Sciences.
- Jul. 2020 Coded Computing for Federated Learning at the Edge, Presentation, FL Workshop on User Privacy and Data Confidentiality, International Conference on Machine Learning.

Patents

- 2021 M. R. Akdeniz, A. Anand, N. Himayat, A. S. Avestimehr, R. Balakrishnan, P. Bhardwaj, J. Choi, Y.-S. Choi, S. Dhakal, B. G. Edwards, **S. Prakash**, A. Solomon, S. Talwar, Y. E. Yona, "Systems and methods for distributed learning for wireless edge dynamics," *App. No. PCT/US2020/067068*.
- 2019 S. Prakash, S. Dhakal, Y. Yona, N. Himayat, S. Talwar, "Technologies for distributing iterative computations in heterogeneous computing environments," US Patent App. 16/368,716.
- 2019 **S. Prakash**, S. Dhakal, Y. Yona, N. Himayat, S. Talwar, "Technologies for distributing gradient descent computation in a heterogeneous multi-access edge computing (MEC) networks," *US Patent App.* 16/235,682.

Professional Service

2017–2021 Invited Journal Reviewer.

- IEEE Journal on Selected Areas in Communications
- IEEE Transactions on Information Theory
- IEEE Journal on Selected Areas in Information Theory
- IEEE Transactions on Communications

2017–2021 Invited Conference/Workshop Reviewer.

- IEEE International Symposium on Information Theory (ISIT)
- IEEE Information Theory Workshop (ITW)

Mentorship Experience

- 2021 Mentor, Graduate Application Mentorship Program (GradAMP), USC.
- 2013 2016 Student Guide, Counselling Service, IIT Kanpur.
- 2013 2015 Ambassador Caller, Alumni Contact Program, IIT Kanpur.
- 2013 2014 Student Secretary, Fine Arts Club, IIT Kanpur.

Selected Coursework

Algorithms and Artificial Intelligence.

- Deep Learning
- Data Structure and Algorithms
- Fundamentals of Computing
- Machine Learning for Computer Vision
- Artificial Intelligence Programming

Mathematics.

- Real Analysis
- Probability and Statistics
- Linear Algebra
- Partial Differential Equations
- Random Processes in Engineering

Communication and Signal Processing.

- Error Correcting Codes
- Wireless Communications
- Information Theory
- Topics in Cryptography and Coding
- Digital Signal Processing
- Digital Communication Networks