Lecture 8: Attention and Transformers

Administrative

- Assignment 2 released yesterday (4/23)
- Project proposals are due tomorrow (4/25)

Last Time: Recurrent Neural Networks

Today: Attention + Transformers

Attention: A new primitive that operates on sets of vectors

Transformer: A neural network architecture that uses attention everywhere

Today: Attention + Transformers

Attention: A new primitive that operates on sets of vectors

Transformer: A neural network architecture that uses attention everywhere

Transformers are used everywhere today!

But they developed as an offshoot of RNNs so let's start there

Sequence to Sequence with RNNs: Encoder - Decoder

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

A motivating example for today's discussion – machine translation! English → Italian

Encoder: $h_t = f_W(x_t, h_{t-1})$

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

From final hidden state predict:

Encoder: $h_t = f_W(x_t, h_{t-1})$ Initial decoder state s_0

Context vector c (often c=h_T)

Input: Sequence $x_1, ... x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_U(y_{t-1}, s_{t-1}, c)$

vediamo

Input: Sequence $x_1, \dots x_T$

vediamo

Decoder: $s_t = g_{l,l}(y_{t-1}, s_{t-1}, c)$

Output: Sequence y₁, ..., y_T

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict:

Initial decoder state s₀

Context vector c (often c=h_⊤)

Decoder: $s_t = g_{l,l}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T vediamo cielo [STOP] From final hidden state predict: **y**₃ **y**₄ Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ **Context vector** c (often c=h_⊤) h_4 h_2 h_3 S_3 X_4 X_3 У2 У3 **Problem:** Input sequence the [START] vediamo we see sky cielo bottlenecks through fixed sized c. What if T=1000?

Decoder: $s_t = g_{l,l}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T vediamo cielo [STOP] From final hidden state predict: **y**₃ **y**₄ Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ **Context vector** c (often c=h_⊤) h_4 h_2 h_3 S_3 X_4 X_3 У2 У3 Solution: Look back at the the **ISTARTI** vediamo we see sky cielo whole input sequence on each step of the output

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state: **Initial decoder state** s₀

Compute (scalar) alignment scores $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)

Compute (scalar) alignment scores $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is a Linear Layer)

> Normalize alignment scores to get attention weights $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Use a different context vector in each timestep of decoder

Input sequence not bottlenecked through single vector vediamo cielo [STOP] At each timestep of decoder, context vector "looks at" different parts of the input sequence **y**₃ **y**₄ h₄ h_3 X_3 X_4 **y**₂ the we see skv [START] cielo vediamo

Example: English to French translation

Visualize attention weights a_{t,i}

Example: English to French translation

Visualize attention weights att,i

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

There's a general Query vectors (decoder RNN states) and data vectors (encoder RNN states) operator hiding here: get transformed to vediamo cielo [STOP] output vectors (Context states). Each query attends to all data vectors and **y**₃ **y**₄ gives one output vector h_3 h_4 X_1 X_3 X_4 **y**₂ the we see skv [START] vediamo cielo

Inputs:

Query vector: $q[D_Q]$

Inputs:

Query vector: $q[D_Q]$

Data vectors: $X [N_X \times D_X]$

Inputs:

Query vector: $q[D_Q]$

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X] e_i = f_{att}(q, X_i)$

Inputs:

Query vector: $q[D_Q]$

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X] e_i = f_{att}(q, X_i)$

Attention weights: $a = softmax(e) [N_X]$

Inputs:

Query vector: $q[D_Q]$

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X] e_i = f_{att}(q, X_i)$

Attention weights: $a = softmax(e) [N_X]$

Output vector: $y = \sum_i a_i X_i$ [D_X]

Inputs:

Query vector: q [D_Q]

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X] e_i = f_{att}(q, X_i)$

Attention weights: $a = softmax(e) [N_X]$

Output vector: $y = \sum_i a_i X_i$ [D_X]

Let's generalize this!

Inputs:

Query vector: $q[D_X]$

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X]e_i = q \cdot X_i$

Attention weights: $a = softmax(e) [N_X]$

Output vector: $y = \sum_i a_i X_i$ [D_X]

Changes

- Use dot product for similarity

Inputs:

Query vector: $q[D_x]$

Data vectors: $X [N_X \times D_X]$

Computation:

Similarities: $e[N_X] e_i = q \cdot X_i / \sqrt{D_X}$

Attention weights: $a = softmax(e) [N_x]$

Output vector: $\mathbf{y} = \sum_i a_i \mathbf{X}_i$ [D_x]

Changes

Use **scaled** dot product for similarity

Inputs:

Query vector: $q[D_x]$

Data vectors: $X [N_x \times D_x]$

Large similarities will cause softmax to saturate and give vanishing gradients Recall $a \cdot b = |a||b| \cos(angle)$ Suppose that a and b are constant vectors of dimension D Then $|a| = (\sum_{i} a^2)^{1/2} = a \sqrt{D}$

Computation:

Similarities: $e[N_X] e_i = q \cdot X_i / \sqrt{D_X}$

Attention weights: $a = softmax(e) [N_x]$

Output vector: $y = \sum_i a_i X_i$ [D_x]

Changes

Use **scaled** dot product for similarity

Inputs:

Query vector: Q [N_Q x D_X]

Data vectors: $X[N_X \times D_X]$

Computation:

Similarities:
$$E = QX^T / \sqrt{D_X} [N_Q \times N_X]$$

$$\mathsf{E}_{\mathsf{i}\mathsf{j}} = \mathsf{Q}_{\mathsf{i}} \cdot \mathsf{X}_{\mathsf{j}} / \sqrt{D_X}$$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_X]$

Output vector: $Y = AX [N_Q \times D_X]$

$$Y_i = \sum_j A_{ij} X_j$$

Changes

- Use scaled dot product for similarity
- Multiple query vectors

Inputs:

Query vector: $\mathbf{Q} [N_Q \times D_Q]$ Data vectors: $\mathbf{X} [N_X \times D_X]$ Key matrix: $\mathbf{W}_K [D_X \times D_Q]$ Value matrix: $\mathbf{W}_V [D_X \times D_V]$

Computation:

Keys: $K = XW_K [N_X \times D_Q]$

Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

$$E_{ij} = \mathbf{Q_i \cdot K_i} / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_X]$

Output vector: $Y = AV [N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$

Changes

- Use scaled dot product for similarity
- Multiple query vectors
- Separate key and value

Inputs:

Query vector: $Q[N_Q \times D_Q]$ Data vectors: $X[N_X \times D_X]$ Key matrix: $W_K[D_X \times D_Q]$ Value matrix: $W_K[D_X \times D_Q]$

Computation

Keys: $K = XW_K [N_X \times D_Q]$

Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $\mathsf{E}_{\mathsf{i}\mathsf{j}} = \mathbf{Q}_{\mathsf{i}} \cdot \mathbf{K}_{\mathsf{j}} / \sqrt{D_{Q}}$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_X]$

Output vector: $Y = AV [N_Q \times D_V]$

$$Y_i = \sum_j A_{ij} V_j$$

X₁

 X_2

Inputs:

Query vector: $\mathbf{Q} [N_Q \times D_Q]$ Data vectors: $\mathbf{X} [N_X \times D_X]$ Key matrix: $\mathbf{W}_K [D_X \times D_Q]$ Value matrix: $\mathbf{W}_V [D_X \times D_V]$

Computation:

Keys: $K = XW_K [N_X \times D_Q]$ **Values**: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_i / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_S]$

Output vector: $Y = AV [N_Q \times D_V]$

 $\mathbf{Y}_{i} = \sum_{j} \mathbf{A}_{ij} \mathbf{V}_{j}$

 Q_1

 Q_2

 Q_3

 Q_4

Inputs:

Query vector: $\mathbf{Q} [N_Q \times D_Q]$ Data vectors: $\mathbf{X} [N_X \times D_X]$ Key matrix: $\mathbf{W}_K [D_X \times D_Q]$ Value matrix: $\mathbf{W}_V [D_X \times D_V]$

Computation:

Keys: $K = XW_K [N_X \times D_Q]$ Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $E_{ij} = \mathbf{Q_i} \cdot \mathbf{K_j} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_S]$

Output vector: $Y = AV [N_Q \times D_V]$

 $Y_i = \sum_j A_{ij} V_j$

Inputs:

Query vector: $\mathbf{Q} [N_Q \times D_Q]$ Data vectors: $\mathbf{X} [N_X \times D_X]$ Key matrix: $\mathbf{W}_K [D_X \times D_Q]$ Value matrix: $\mathbf{W}_V [D_X \times D_V]$

Computation:

Keys: $K = XW_K [N_X \times D_Q]$

Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $E_{ij} = \mathbf{Q_i \cdot K_i} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) $[N_O \times N_X]$

Output vector: $\mathbf{Y} = AV [N_Q \times D_V]$

 $\mathbf{Y}_{i} = \sum_{j} \mathbf{A}_{ij} \mathbf{V}_{j}$

Softmax normalizes each column: each query predicts a distribution over the keys

Inputs:

Query vector: Q [N_Q x D_Q]

Data vectors: $X [N_X \times D_X]$ **Key matrix**: $W_K [D_X \times D_O]$

Value matrix: $W_V[D_X \times D_V]$

Computation:

Keys: $K = XW_K [N_X \times D_Q]$

Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $E_{ii} = \mathbf{Q_i} \cdot \mathbf{K_i} / \sqrt{D_O}$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_X]$

Output vector: $Y = AV [N_O \times D_V]$

$$Y_i = \sum_i A_{ij} V_j$$

Cross-Attention Layer

Inputs:

Query vector: $Q[N_Q \times D_Q]$ Data vectors: $X[N_X \times D_X]$

Key matrix: W_K [D_X x D_Q]

Value matrix: $W_V[D_X \times D_V]$

Each query produces one output, which is a mix of information in the data vectors

Computation:

Keys: $K = XW_K [N_X \times D_Q]$

Values: $V = XW_V [N_X \times D_V]$

Similarities: $E = QK^T / \sqrt{D_Q} [N_Q \times N_X]$

 $E_{ij} = Q_i \cdot K_i / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) $[N_Q \times N_X]$

Output vector: $Y = AV [N_Q \times D_V]$

 $Y_i = \sum_j A_{ij} V_j$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Each input produces one output, which is a mix of information from all inputs

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K [N \times D_{out}]$

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_i A_{ij}^{-} V_j$$

Shapes get a little simpler:

- N input vectors, each Din
- Almost always $D_Q = D_V = D_{out}$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Each input produces one output, which is a mix of information from all inputs

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = \mathbf{Q}\mathbf{K}^{T}/\sqrt{D_{Q}} [N \times N]$ $E_{ii} = \mathbf{Q}_{i} \cdot \mathbf{K}_{i}/\sqrt{D_{Q}}$

Attention weights: $A = softmax(E, dim=1) [N \times N]$

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Each input produces one output, which is a mix of information from all inputs

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_O} [N \times N]$

 $E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Each input produces one output, which is a mix of information from all inputs

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $E_{ij} = \mathbf{Q_i} \cdot \mathbf{K_j} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $\mathbf{Y} = AV [N \times D_{out}]$ $\mathbf{Y}_i = \sum_i A_{ii} V_i$ Normalize over each column: each query computes a distribution over keys

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Each input produces one output, which is a mix of information from all inputs

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_i / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_i A_{ij} V_j$$

Consider permuting inputs:

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_j A_{ij} V_j$$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: E = $QK^T / \sqrt{D_Q}$ [N x N]

$$E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$$

Attention weights: $A = softmax(E, dim=1) [N \times N]$

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_j A_{ij} V_j$$

Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_i A_{ij} V_j$$

Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Similarities are the same but permuted

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $\mathsf{E}_{\mathsf{i}\mathsf{j}} = \mathsf{Q}_{\mathsf{i}} \cdot \mathsf{K}_{\mathsf{j}} / \sqrt{D_{\mathsf{Q}}}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Similarities are the same but permuted

Attention weights are the same but permuted

m=1) [N x N]

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}] **Values**: $V = XW_V$ [N x D_{out}]

Similarities: E = $QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = Q_i K_j / \sqrt{D_Q}$$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_j A_{ij} V_j$$

Consider permuting **inputs**:

Queries, keys, and values will be the same but permuted

Similarities are the same but permuted

Attention weights are the same but permuted

Outputs are the same but permuted

Inputs:

Input vectors: **X** [N x D_{in}]

Key matrix: W_K [D_{in} x D_{out}]

Value matrix: $W_V[D_{in} \times D_{out}]$

Query matrix: $W_Q[D_{in} \times D_{out}]$

Self-Attention is

permutation equivariant:

 $F(\sigma(X)) = \sigma(F(X))$

Computation:

Queries: $Q = XW_Q$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}] **Values**: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $E_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

This means that Self-Attention works on **sets of vectors**

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$ **Problem**: Self-Attention does not know the order of the sequence

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $E_{ij} = \mathbf{Q_i} \cdot \mathbf{K_j} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$ **Problem**: Self-Attention does not know the order of the sequence

Solution: Add positional encoding to each input; this is a vector that is a fixed function of the index

Computation:

Queries: $Q = XW_Q [N \times D_{out}]$

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $E_{ij} = Q_i K_j / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

Masked Self-Attention Layer

Don't let vectors "look ahead" in the sequence

Inputs:

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_O [D_{in} \times D_{out}]$

Override similarities with -inf; this controls which inputs each vector is allowed to look at.

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

$$E_{ij} = Q_i \cdot K_i / \sqrt{D_Q}$$

Attention weights: $A = softmax(E, dim=1) [N \times N]$

Output vector: $Y = AV [N \times D_{out}]$

$$Y_i = \sum_j A_{ij} V_j$$

Masked Self-Attention Layer

Don't let vectors "look ahead" in the sequence

Inputs:

Input vectors: X [N x D_{in}] **Key matrix**: W_{κ} [D_{in} x D_{out}] Value matrix: W_V [D_{in} x D_{out}] Query matrix: Wo [Din x Dout]

Override similarities with -inf: this controls which inputs each vector is allowed to look at.

Used for language modeling

next word

where you want to predict the

Computation:

Queries: $Q = XW_0$ [N x D_{out}]

Keys: $K = XW_K$ [N x D_{out}]

Values: $V = XW_V$ [N x D_{out}]

Similarities: E = $QK^T / \sqrt{D_O}$ [N x N]

 $E_{ii} = Q_i \cdot K_i / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N]

Output vector: $Y = AV [N \times D_{out}]$

 $Y_i = \sum_i A_{ii} V_i$

cool

 $A_{3.1}$

 $A_{3,2}$

 $A_{3,3}$

E_{3.1}

 $E_{3.2}$

 $E_{3.3}$

very

Run H copies of Self-Attention in parallel

```
<u>Inputs</u>
```

```
Input vectors: X [N x D<sub>in</sub>]
Key matrix: W<sub>K</sub> [D<sub>in</sub> x D<sub>out</sub>]
Value matrix: W<sub>V</sub> [D<sub>in</sub> x D<sub>out</sub>]
Query matrix: W<sub>Q</sub> [D<sub>in</sub> x D<sub>out</sub>]
```

Computation:

```
Queries: \mathbf{Q} = \mathbf{XW_Q} \ [\mathbf{N} \times \mathbf{D}_{\text{out}}]

Keys: \mathbf{K} = \mathbf{XW_K} \ [\mathbf{N} \times \mathbf{D}_{\text{out}}]

Values: \mathbf{V} = \mathbf{XW_V} \ [\mathbf{N} \times \mathbf{D}_{\text{out}}]

Similarities: \mathbf{E} = \mathbf{QK^T} / \sqrt{D_Q} \ [\mathbf{N} \times \mathbf{N}]

\mathbf{E}_{ij} = \mathbf{Q_i \cdot K_j} / \sqrt{D_Q}
```

Attention weights: $A = softmax(E, dim=1) [N \times N]$

Dutput vector:
$$Y = AX [N \times D_{out}]$$

$$\mathbf{Y}_{i} = \sum_{j} \mathbf{A}_{ij} \mathbf{V}_{j}$$

Run H copies of Self-Attention in parallel

Inputs

Input vectors: X [N x D_{in}] Key matrix: W_K [D_{in} x D_{out}] Value matrix: W_V [D_{in} x D_{out}] Query matrix: W_Q [D_{in} x D_{out}]

Computation

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}]

Similarities: $E = QK^T / \sqrt{D_Q} [N \times N]$

 $E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_i / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N

Output vector: $Y = AX [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

H = 3 independent self-attention layers (called heads), each with their own weights

Run H copies of Self-Attention in parallel

Inputs

Input vectors: X [N x D_{in}] Key matrix: W_K [D_{in} x D_{out}] Value matrix: W_V [D_{in} x D_{out}] Query matrix: W_O [D_{in} x D_{out}]

Computation:

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}] Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

 $E_{ij} = \mathbf{Q}_i \cdot \mathbf{K}_j / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N

Output vector: $Y = AX [N \times D_{out}]$

 $Y_i = \sum_j A_{ij} V_j$

Stack up the H independent outputs for each input X

Run H copies of Self-Attention in parallel

<u>Inputs</u>

Input vectors: $X [N \times D_{in}]$ Key matrix: $W_K [D_{in} \times D_{out}]$ Value matrix: $W_V [D_{in} \times D_{out}]$ Query matrix: $W_Q [D_{in} \times D_{out}]$

Computation

Queries: $Q = XW_Q$ [N x D_{out}] Keys: $K = XW_K$ [N x D_{out}] Values: $V = XW_V$ [N x D_{out}] Similarities: $E = QK^T / \sqrt{D_Q}$ [N x N]

 $\mathsf{E}_{\mathsf{i}\mathsf{j}} = \mathbf{Q}_{\mathsf{i}} \cdot \mathbf{K}_{\mathsf{j}} / \sqrt{D_Q}$

Attention weights: A = softmax(E, dim=1) [N x N

Output vector: $Y = AX [N \times D_{out}]$

$$Y_i = \sum_j A_{ij} V_j$$

Output projection fuses data from each head

Stack up the H independent outputs for each input X

H = 3 independent self-attention layers (called heads), each with their own weights

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

Each of the H parallel layers use a qkv dim of D_H = "head dim"

Usually $D_H = D / H$, so inputs and outputs have the same dimension

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_0 [N \times D]$

 O_2

 O_3

 O_1

Run H copies of Self-Attention in parallel

Inputs:

Input vectors: $X [N \times D]$ Key matrix: $W_K [D \times HD_H]$ Value matrix: $W_V [D \times HD_H]$ Query matrix: $W_Q [D \times HD_H]$ Output matrix: $W_Q [HD_H \times D]$

In practice, compute all H heads in parallel using batched matrix multiply operations.

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_O} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

Used everywhere in practice.

O₁

Inputs:

```
Input vectors: X [N \times D]

Key matrix: W_K [D \times HD_H]

Value matrix: W_V [D \times HD_H]

Query matrix: W_Q [D \times HD_H]

Output matrix: W_O [HD_H \times D]
```

Computation:

```
Queries: Q = XW_Q [H x N x D<sub>H</sub>]

Keys: K = XW_K [H x N x D<sub>H</sub>]

Values: V = XW_V [H x N x D<sub>H</sub>]
```

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

Inputs:

Input vectors: $X [N \times D]$ Key matrix: $W_K [D \times HD_H]$ Value matrix: $W_V [D \times HD_H]$ Query matrix: $W_Q [D \times HD_H]$ Output matrix: $W_Q [HD_H \times D]$

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get \mathbb{Q} , \mathbb{K} , \mathbb{V} each of shape [H x N x D_H]

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get \mathbb{Q} , \mathbb{K} , \mathbb{V} each of shape [H x N x D_H]

2. QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_M$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

Inputs:

Input vectors: $X [N \times D]$ Key matrix: $W_K [D \times HD_H]$ Value matrix: $W_V [D \times HD_H]$ Query matrix: $W_Q [D \times HD_H]$ Output matrix: $W_Q [HD_H \times D]$

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(F, dim=2) [H x N x N] Head outputs: Y = AV [H x N x D_H] => [N x HD_H]

Outputs: O = YWO [N X D]

1. QKV Projection

 $[N \times D] [D \times 3HD_H] => [N \times 3HD_H]$ Split and reshape to get Q, K, V each of shape $[H \times N \times D_H]$

2. QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting

 $[H \times N \times N] [H \times N \times D_H] => [H \times N \times D_H]$

Reshape to $[N \times HD_H]$

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_O} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get \mathbb{Q} , \mathbb{K} , \mathbb{V} each of shape [H x N x D_H]

- 2. QK Similarity $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$
- 3. V-Weighting
 [H x N x N] [H x N x D_H] => [H x N x D_H]
 Reshape to [N x HD_H]
- 4. Output Projection
 [N x HD_H] [HD_H x D] => [N x D]

Inputs:

Input vectors: $X [N \times D]$ Key matrix: $W_K [D \times HD_H]$ Value matrix: $W_V [D \times HD_H]$ Query matrix: $W_Q [D \times HD_H]$ Output matrix: $W_O [HD_H \times D]$

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

QKV Projection

 $[N \times D]$ $[D \times 3HD_H] => [N \times 3HD_H]$ Split and reshape to get Q, K, V each of shape $[H \times N \times D_H]$

2. QK Similarity $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting
[H x N x N] [H x N x D_H] => [H x N x D_H]
Reshape to [N x HD_H]

4. Output Projection
[N x HD_H] [HD_H x D] => [N x D]

Q: How much <u>compute</u> does this take as the number of vectors N increases?

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N] Head outputs: Y = AV [H x N x D_H] => [N x HD_H]

Outputs: $O = YW_0 [N \times D]$

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get Q, K, V each of shape [H x N x D_H]

2. QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting

 $[H \times N \times N] [H \times N \times D_H] => [H \times N \times D_H]$

Reshape to [N x HD_H]

4. Output Projection

 $[N \times HD_H] [HD_H \times D] => [N \times D]$

Q: How much <u>compute</u> does this take as the number of vectors N increases? **A:** $O(N^2)$

Inputs:

Input vectors: $X [N \times D]$ Key matrix: $W_K [D \times HD_H]$ Value matrix: $W_V [D \times HD_H]$ Query matrix: $W_Q [D \times HD_H]$ Output matrix: $W_Q [HD_H \times D]$

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: $A = \text{softmax}(E, \text{dim}=2) [H \times N \times N]$ Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_0 [N \times D]$

QKV Projection
 [N x D] [D x 3HD_H] => [N x 3HD_H]
 Split and reshape to get Q, K, V each of

2. QK Similarity

shape [H x N x D_H]

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. <u>V-Weighting</u>

[H x N x N] [H x N x D_H] => [H x N x D_H] Reshape to [N x HD_H]

4. Output Projection

 $[N \times HD_H] [HD_H \times D] => [N \times D]$

Q: How much <u>memory</u> does this take as the number of vectors N increases?

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_O [N \times D]$

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get Q, K, V each of shape [H x N x D_H]

2. QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting

 $[H \times N \times N] [H \times N \times D_H] => [H \times N \times D_H]$

Reshape to [N x HD_H]

4. Output Projection

 $[N \times HD_H] [HD_H \times D] => [N \times D]$

Q: How much <u>memory</u> does this take as the number of vectors N increases? **A:** $O(N^2)$

If N=100K, H=64 then HxNxN attention weights take 1.192 TB! GPUs don't have that much memory...

Inputs:

Input vectors: X [N x D]

Key matrix: W_K [D x HD_H]

Value matrix: W_V [D x HD_H]

Query matrix: W_Q [D x HD_H]

Output matrix: W_O [HD_H x D]

Computation:

Queries: $Q = XW_Q$ [H x N x D_H] Keys: $K = XW_K$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_Q} [H \times N \times N]$

Attention weights: $A = \text{softmax}(E, \text{dim}=2) [H \times N \times N]$ Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_0$ [N x D]

1. QKV Projection

[N x D] [D x 3HD_H] => [N x 3HD_H] Split and reshape to get Q, K, V each of shape [H x N x D_H]

2. QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting

 $[H \times N \times N] [H \times N \times D_H] => [H \times N \times D_H]$

Reshape to [N x HD_H]

4. Output Projection

 $[N \times HD_H] [HD_H \times D] => [N \times D]$

Q: How much <u>memory</u> does this take as the number of vectors N increases? **A:** $O(N^2)$

If N=100K, H=64 then HxNxN attention weights take 1.192 TB! GPUs don't have that much memory...

Inputs:

Input vectors: **X** [N x D] **Key matrix**: W_{κ} [D x HD_H] Value matrix: W_V [D x HD_H]

Query matrix: W_0 [D x HD_H]

Output matrix: W₀ [HD_H x D] possible

Flash Attention algorithm computes 2+3 at the same time without storing the full attention matrix!

Makes large N

Computation:

Queries: $Q = XW_0$ [H x N x D_H] **Keys**: $K = XW_{K}$ [H x N x D_H] Values: $V = XW_V$ [H x N x D_H]

Similarities: $E = QK^T / \sqrt{D_O} [H \times N \times N]$

Attention weights: A = softmax(E, dim=2) [H x N x N]

Head outputs: $Y = AV [H \times N \times D_H] => [N \times HD_H]$

Outputs: $O = YW_0$ [N x D]

QKV Projection

 $[N \times D] [D \times 3HD_{H}] => [N \times 3HD_{H}]$ Split and reshape to get Q, K, V each of shape [H x N x D_H]

QK Similarity

 $[H \times N \times D_H] [H \times D_H \times N] => [H \times N \times N]$

3. V-Weighting

 $[H \times N \times N] [H \times N \times D_H] => [H \times N \times D_H]$

Reshape to [N x HD_H]

Output Projection

 $[N \times HD_{H}][HD_{H} \times D] => [N \times D]$

Q: How much memory does this take as the number of vectors N increases?

A: O(N) with Flash Attention

Dao et al, "FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness", 2022

Recurrent Neural Network

Works on 1D ordered sequences

(+) Theoretically good at long sequences: O(N) compute and memory for a sequence of length N
(-) Not parallelizable. Need to compute hidden states sequentially

Recurrent Neural Network

Works on 1D ordered sequences

(+) Theoretically good at long sequences: O(N) compute and memory for a sequence of length N (-) Not parallelizable. Need to compute hidden states sequentially

Convolution

Works on **N-dimensional grids**

- (-) Bad for long sequences: need to stack many layers to build up large receptive fields
- (+) Parallelizable, outputs can be computed in parallel

Recurrent Neural Network

Works on 1D ordered sequences

(+) Theoretically good at long sequences: O(N) compute and memory for a sequence of length N
(-) Not parallelizable. Need to compute hidden states sequentially

Convolution

Works on **N-dimensional grids**

- (-) Bad for long sequences: need to stack many layers to build up large receptive fields
- (+) Parallelizable, outputs can be computed in parallel

Self-Attention

Works on sets of vectors

- (+) Great for long sequences; each output depends directly on all inputs
 (+) Highly parallel, it's just 4 matmuls
 (-) Expensive: O(N²) compute, O(N)
- memory for sequence of length N

Recurrent Neural Network

Convolution

Self-Attention

Attention is All You Need

Vaswani et al, NeurIPS 2017

memory for a sequence of length N (-) Not parallelizable. Need to compute hidden states sequentially

receptive fields

(+) Parallelizable, outputs can be computed in parallel

(+) Highly parallel, it's just 4 matmuls (-) Expensive: O(N²) compute, O(N) memory for sequence of length N

Transformer Block

Input: Set of vectors x

X₁

 X_2

X₃

 X_4

Transformer Block

Input: Set of vectors x

All vectors interact through (multiheaded) Self-Attention

Transformer Block

Input: Set of vectors x

All vectors interact through (multiheaded) Self-Attention

Attention

The self-Attention of the self-Attention

<u>Transformer Block</u>

Input: Set of vectors x

Layer normalization normalizes all vectors

Residual connection

All vectors interact through (multiheaded) Self-Attention

Recall Layer Normalization:

Given $h_1, ..., h_N$ (Shape: D) scale: γ (Shape: D) shift: β (Shape: D) $\mu_i = (\sum_j h_{i,j})/D$ (scalar) $\sigma_i = (\sum_j (h_{i,j} - \mu_i)^2/D)^{1/2}$ (scalar) $z_i = (h_i - \mu_i) / \sigma_i$ $y_i = \gamma * z_i + \beta$

Ba et al, 2016

Transformer Block

Input: Set of vectors x

MLP independently on each vector

Layer normalization normalizes all vectors

Residual connection

All vectors interact through (multiheaded) Self-Attention

Usually a two-layer MLP; classic setup is D => 4D => D

Also sometimes called FFN (Feed-Forward Network)

Transformer Block

Input: Set of vectors x

Residual connection

MLP independently on each vector

Layer normalization normalizes all vectors

Residual connection

All vectors interact through (multiheaded) Self-Attention

Transformer Block

Input: Set of vectors x

Another Layer Norm

Residual connection

MLP independently on each vector

Layer normalization normalizes all vectors

Residual connection

All vectors interact through (multiheaded) Self-Attention

Transformer Block

Input: Set of vectors xOutput: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention 2 from MLP

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention 2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

<u>Transformer Block</u>

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention 2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017] 12 blocks, D=1024, H=16, N=512 213M params

<u>Transformer Block</u>

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention 2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017] 12 blocks, D=1024, H=16, N=512 213M params

<u>GPT-2</u>: [Radford et al, 2019] 48 blocks, D=1600, H=25, N=1024 1.5B params

Transformer Block

Input: Set of vectors x
Output: Set of vectors y

Self-Attention is the only interaction between vectors

LayerNorm and MLP work on each vector independently

Highly scalable and parallelizable, most of the compute is just 6 matmuls:

4 from Self-Attention 2 from MLP

A **Transformer** is just a stack of identical Transformer blocks!

They have not changed much since 2017... but have gotten a lot bigger

Original: [Vaswani et al, 2017] 12 blocks, D=1024, H=16, N=512 213M params

<u>GPT-2</u>: [Radford et al, 2019] 48 blocks, D=1600, H=25, N=1024 1.5B params

<u>GPT-3</u>: [Brown et al, 2020] 96 blocks, D=12288, H=96, N=2048 175B params

Learn an <u>embedding matrix</u> at the start of the model to convert words into vectors.

Given vocab size V and model dimension D, it's a lookup table of shape [V x D]

Learn an <u>embedding matrix</u> at the start of the model to convert words into vectors.

Given vocab size V and model dimension D, it's a lookup table of shape [V x D]

Use masked attention inside each transformer block so each token can only see the ones before it

Learn an <u>embedding matrix</u> at the start of the model to convert words into vectors.

Given vocab size V and model dimension D, it's a lookup table of shape [V x D]

Use masked attention inside each transformer block so each token can only see the ones before it

At the end, learn a <u>projection matrix</u> of shape [D x V] to project each D-dim vector to a V-dim vector of scores for each element of the vocabulary.

Learn an <u>embedding matrix</u> at the start of the model to convert words into vectors.

Given vocab size V and model dimension D, it's a lookup table of shape [V x D]

Use masked attention inside each transformer block so each token can only see the ones before it

At the end, learn a <u>projection matrix</u> of shape [D x V] to project each D-dim vector to a V-dim vector of scores for each element of the vocabulary.

Train to predict next token using softmax + cross-entropy loss

Input image: e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Input image: e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Break into patches e.g. 16x16x3

Input image: e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021 Break into patches e.g. 16x16x3

Input image: e.g. 224x224x3

Q: Any other way to describe this operation?

Dosovitskiy et al, "An Image is Worth
16x16 Words: Transformers for Image
Recognition at Scale", ICLR 2021

E.G.

Break into patches e.g. 16x16x3

Input image: e.g. 224x224x3

Q: Any other way to describe this operation?

A: 16x16 conv with stride 16, 3 input channels, D output channels

Worth Break into patches
e.g. 16x16x3

Input image: e.g. 224x224x3

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021 Break into patches e.g. 16x16x3

Flatten and apply a linear transform 768 => D

D-dim vector per patch are the input vectors to the Transformer

Input image: e.g. 224x224x3

Use positional encoding to tell the transformer the 2D position of each patch

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Break into patches e.g. 16x16x3

transform 768 => D

D-dim vector per patch are the input vectors to the Transformer

Input image: e.g. 224x224x3

Don't use any masking; each image patch can look at all other image patches

Use positional encoding to tell the transformer the 2D position of each patch

D-dim vector per patch are the input vectors to the Transformer

Layer Normalization

MLP MLP MLP

Layer Normalization

Self-Attention

Layer Normalization

MLP MLP MLP MLP

Layer Normalization

Self-Attention

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Break into patches e.g. 16x16x3

transform 768 => D

Input image: e.g. 224x224x3

Transformer gives an output vector per patch

Don't use any masking; each image patch can look at all other image patches

Use positional encoding to tell the transformer the 2D position of each patch

D-dim vector per patch are the input vectors to the Transformer

Layer Normalization

MLP MLP MLP

Layer Normalization

Self-Attention

Layer Normalization

MLP MLP MLP MLP

Layer Normalization

Self-Attention

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021 Break into patches e.g. 16x16x3

Vision Transformers (ViT)

Input image: e.g. 224x224x3

D=>C to predict class scores Flatten and apply a linear

Transformer gives an output vector per patch

Don't use any masking; each image patch can look at all other image patches

Use positional encoding to tell the transformer the 2D position of each patch

Break into patches e.g. 16x16x3

transform 768 => D

D-dim vector per patch are the input vectors to the Transformer

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

Average pool NxD vectors to 1xD, apply a linear layer

> **Pooling** Layer Normalization

MLP MLP MLP MLP

Layer Normalization

Self-Attention

Layer Normalization

MLP MLP MLP

Layer Normalization

Self-Attention

Tweaking Transformers

The Transformer architecture has not changed much since 2017.

But a few changes have become common:

Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identify function

Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

Pre-Norm Transformer

Layer normalization is outside the residual connections

Kind of weird, the model can't actually learn the identify function

Solution: Move layer normalization before the Self-Attention and MLP, inside the residual connections. Training is more stable.

Baevski & Auli, "Adaptive Input Representations for Neural Language Modeling", arXiv 2018

RMSNorm

Replace Layer Normalization with Root-Mean-Square Normalization (RMSNorm)

Input: x [shape D] **Output**: y [shape D] **Weight**: γ [shape D]

$$y_{i} = \frac{x_{i}}{RMS(x)} * \gamma_{i}$$

$$RMS(x) = \sqrt{\varepsilon + \frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}}$$

Training is a bit more stable

Zhang and Sennrich, "Root Mean Square Layer Normalization", NeurIPS 2019

SwiGLU MLP

Classic MLP:

Input: X [N x D]

Weights: W_1 [D x 4D]

 W_2 [4D x D]

Output: $Y = \sigma(XW_1)W_2 [N \times D]$

Shazeer, "GLU Variants Improve Transformers", 2020

SwiGLU MLP

Classic MLP:

Input: X [N x D]

Weights: W₁ [D x 4D]

 W_2 [4D x D]

Output: $Y = \sigma(XW_1)W_2 [N \times D]$

SwiGLU MLP:

Input: X [N x D]

Weights: W_1 , W_2 [D x H]

 W_3 [H x D]

Output:

 $Y = (\sigma(XW_1) \odot XW_2)W_3$

Setting H = 8D/3 keeps same total params

Shazeer, "GLU Variants Improve Transformers", 2020

SwiGLU MLP

Classic MLP:

Input: X [N x D]

Weights: W₁ [D x 4D]

 W_2 [4D x D]

Output: $Y = \sigma(XW_1)W_2 [N \times D]$

SwiGLU MLP:

Input: X [N x D]

Weights: W_1 , W_2 [D x H]

 W_3 [H x D]

Output:

 $Y = (\sigma(XW_1) \odot XW_2)W_3$

Setting H = 8D/3 keeps same total params

We offer no explanation as to why these architectures seem to work; we attribute their success, as all else, to divine benevolence.

Shazeer, "GLU Variants Improve Transformers", 2020

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an *expert*

 W_1 : [D x 4D] => [E x D x 4D] W_2 : [4D x D] => [E x 4D x D]

Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an *expert*

$$W_1$$
: [D x 4D] => [E x D x 4D]
 W_2 : [4D x D] => [E x 4D x D]

Each token gets *routed* to A < E of the experts. These are the *active experts*.

Increases params by E, But only increases compute by A

Shazeer et al, "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer", 2017

Mixture of Experts (MoE)

Learn E separate sets of MLP weights in each block; each MLP is an *expert*

$$W_1$$
: [D x 4D] => [E x D x 4D]
 W_2 : [4D x D] => [E x 4D x D]

Each token gets *routed* to A < E of the experts. These are the *active experts*.

Increases params by E, But only increases compute by A

All of the biggest LLMs today (e.g. GPT4o, GPT4.5, Claude 3.7, Gemini 2.5 Pro, etc) almost certainly use MoE and have > 1T params; but they don't publish details anymore

Tweaking Transformers

The Transformer architecture has not changed much since 2017.

But a few changes have become common:

- Pre-Norm: Move normalization inside residual
- **RMSNorm**: Different normalization layer
- **SwiGLU**: Different MLP architecture
- Mixture of Experts (MoE): Learn E different MLPs, use A < E of them per token. Massively increase params, modest increase to compute cost.

Summary: Attention + Transformers

Attention: A new primitive that operates on sets of vectors

Transformers are the backbone of all large Al models today!

Used for language, vision, speech, ...

Transformer: A neural network architecture that uses attention everywhere

Next Time: Detection, Segmentation, Visualization