MVP: PREDICTIVE MAINTENANCE DATASET

WORK DONE:

1. Exploratory Data Analysis (EDA):

- EDA involves exploring and understanding the dataset before modeling. It typically includes summarizing the main characteristics of the data, checking for patterns, and identifying potential challenges or interesting features.

2. Data Cleaning:

- Removing Null Values: Addressing missing data by either imputation or removing rows/columns with null values, ensuring data completeness.
- Removing Duplicate Values: Identifying and eliminating duplicated rows to maintain dataset integrity.
- Handling Entry Errors: Correcting any errors or inconsistencies in the data, ensuring accurate and reliable information.
- Outlier Removal: Identifying and addressing outliers that might skew the analysis or modeling results.

3. Data Visualization:

- Distribution Plot: Visualizing the distribution of variables using plots like histograms or kernel density plots to understand the spread and shape of the data.
- Correlation Plot: Displaying correlations between different variables, providing insights into potential relationships and dependencies.

4. Column Removal (UDI and PRODUCTID):

- Dropping Unique Identifiers: If UDI and PRODUCTID columns contain unique identifiers that don't contribute meaningfully to the predictive modeling, removing them can enhance model efficiency and interpretability.

5. Binary Classification:

- Implementing a binary classification task involves assigning instances to one of two classes (positive or negative) based on predictive models.
- This could include selecting appropriate features, splitting the dataset into training and testing sets, choosing a classification algorithm (e.g., Logistic Regression, Decision Trees, Random Forests), and evaluating model performance using metrics like accuracy, precision, recall, and F1-score.

CONFLICTS:

- Choosing the right data preprocessing techniques: Handling categories, encoding variables, scaling etc. require certain prior knowledge.
- **2. Selecting appropriate machine learning algorithms:** There are many ML algorithms and as a beginner it is very difficult to choose the appropriate ML model. With experience one learns which algorithm works better for different problems.
- **3. Interpreting model outcomes:** Making sense of accuracy metrics, confusion matrices, feature importances etc. require practice.

NEXT STEPS:

1. Hyperparameter Tuning for Binary Classification:

- Hyperparameter tuning involves optimizing the settings of a machine learning model to improve its performance.
- Common techniques include grid search or randomized search over a predefined hyperparameter space.

2. Studying the Best Model for Binary Classification:

- After hyperparameter tuning, evaluate and compare the models based on performance metrics like accuracy, precision, recall, and F1-score
- Choose the model with the best balance of these metrics.

3. Perform Multiclass Classification on the Data by Considering Machine Failure Type

- Extend the binary classification task to multiclass by predicting the specific type of machine failure.
- Adjust the target variable and model accordingly to accommodate multiple classes.

4. Perform Exploratory Data Analysis (EDA) on Multiclass Dataset:

- Analyze the distribution of features and target classes.
- Explore relationships between variables.
- Visualize patterns and trends in the data to gain insights.

5. Perform Train-Test Split on Dataset:

- Split the dataset into training and testing sets to assess the model's generalization performance.
- Ensure that the split maintains the distribution of classes to avoid bias.

6. Define Logistic Regression, Decision Tree, and Random Forest Models:

- Instantiate machine learning models (Logistic Regression, Decision Tree, Random Forest) for multiclass classification.
- Configure the models with default hyperparameters or the tuned ones from the binary classification phase.

7. Plot Decision Tree in Decision Tree Model for Multiclass Classification Section:

- For Decision Tree models, visualize the tree structure to understand how the model makes decisions.

- The plot helps interpret feature importance and decision pathways in the context of multiclass classification.

8. Hyperparameter Tuning for Multiclass Classification:

- Similar to binary classification, optimize hyperparameters for multiclass models to enhance performance.
- Use techniques like grid search or randomized search.

9. Studying the Best Model for Multiclass Classification:

- Evaluate models on multiclass metrics such as accuracy, precision, recall, and F1-score.
- Select the model that performs well across all classes.