

امنیت داده و شبکه

مرور مکانیزمهای تامین امنیت

فهرست مطالب

- □ روشهای تامین امنیت
- 🗖 مکانیزمهای پیشگیری
 - □ مكانيزمهاى تشخيص
 - 🗖 مکانیزمهای ترمیم

روشهای تامین امنیت

- 🗖 دفاع در عمق
- پیادهسازی راهحلهای پیشگیرانه
 - پیادهسازی راهحلهای تشخیص
- □ پیادهسازی راهحلهای ترمیم و پشتیبانی

دفاع در عمق

□ دفاع لایه به لایه یا دفاع در عمق: افزایش تعداد لایههای دفاعی و دشوار کردن مسیر دسترسی نفوذگران به مناطق حساس و کلیدی سیستم یا شبکه

ایک مثال: دفاع در عمق در یک سیستم شبکهای

• امنسازی شبکه و ارتباطات

• امنسازی کارگزار

• امنسازی کارخواه

امنسازي شبکه و ارتباطات

- 🗖 استفاده از شبکه مبتنی بر سوئیچ
- افزایش مصونیت نسبت به شنود بسته
- امكان تعريف نواحى مختلف با سطوح امنيتى مختلف (مكانيزم VLAN)
- امکان اعمال برخی سیاستهای دسترسی با امکاناتی همچون Port Security
 - □ استفاده از ابزارهای مدیریت شبکه
 - Wireless توجه به امنیت و محرمانگی ارتباطات \Box
 - رفع آسیبپذیریهای سرویسهای شبکه (email,Web,File Server,...)

دفاع در عمق – امنسازي كارگزار

- □ استفاده از ضدبدافزار (ترجیحاً به صورت Corporate)
- □ استفاده از وصلههای امنیتی (Patch) به روز سیستمعامل و نرمافزارهای نصب شده
 - 🗖 تغییر در تنظیمات پیشفرض
 - 🗖 غیرفعال کردن سرویسهای غیرضروری
 - □ مسدود کردن تمام پورتهای TCP/IP به غیر از موارد لازم
 - □ اجرای سیاستهای امنیتی مختلف در خصوص گذرواژه، حسابرسی کاربران و

دفاع در عمق — امنسازي كارخواه

- □ استفاده از ضد بدافزار (ترجیحاً به صورت Corporate)
 - 🗖 استفاده از دیواره آتش شخصی
- استفاده از وصلههای امنیتی به روز سیستمعامل و نرمافزارهای نصب شده

مثال: دفاع در عمق در سیستم نرمافزاري

امنسازی همه لایههای نرمافزاری یک سیستم شامل:

- ا شبکه (Network) □
- □ سیستم مدیریت پایگاه دادهها (DBMS)
 - (Application) برنامه کاربردی \Box

مراتب مقابله با نفوذ و تهاجم در سیستم (پیشگیری، تشخیص، ترمیم)

پیشگیری، تشخیص، ترمیم

- □ شناسایی و احراز اصالت
 - 🗖 کنترل دسترسی
 - □ حفاظ (ديواره آتش)
 - 🗖 رمزنگاری

پیشگیری، تشخیص، ترمیم

- □ سيستم تشخيص نفوذ (IDS)
- □ سيستم تلهعسل (Honeypot)
- \Box سیستم مدیریت اطلاعات و رویدادهای امنیتی (SIEM)

پیشگیری، تشخیص، ترمیم

- سیستمهای پشتیبان و ترمیم خودکار \square
- □ مکانیزمهای پشتیبان گیری و بازیابی اطلاعات
- □ راهاندازی سایت پشتیبان (به طور فیزیکی مجزا و مستقل)

فهرست مطالب

- □ روشهای تامین امنیت
- 🗖 مکانیزمهای پیشگیری
 - 🗖 مكانيزمهاي تشخيص
 - □ مكانيزمهاى ترميم

Identification & Authentication

- شناسایی کاربر و اطمینان از اینکه کاربر همان فردی است که ادعا میکند.
- پیشنیاز کنترل دسترسی در هر سیستم، شناسایی و احراز هویت کاربر است.
 - فرآیند شناسایی و احراز هویت

احراز هو یت بر اساس دانستههای کار بر

- □ آنچه که کاربر در ذهن خود دارد:
 - گذرواژه
 - شماره شناسایی شخصی PIN

مساله اصلی: حدس یا افشای دانسته فردی

راهحل: تغییر دورهای دانسته

ترکیب با روشهای دیگر

احراز هو یت بر اساس داشتههای کار بر

- □ آنچه که کاربر به طور فیزیکی در اختیار دارد:
 - كارت (پلاستيكي، مغناظيسي، هوشمند، ...)
 - توكن امنيتي (Security Token)
 - توکن تولید گذرواژه یکبار مصرف (OTP)
 - مساله اصلى: مفقود شدن داشته فرد
 - راه حل: ترکیب با روشهای دیگر

احراز هو يت بر اساس مشخصههاي بيولوژ يکي کار بر

- □ بر اساس مشخصههای طبیعی و منحصر به فرد کاربر:
 - اثر انگشت
 - عنبیه چشم
 - چهره
 - صوت

ح فاظت از داده های احراز هو یت

- □ نیاز به حفاظت از گذرواژه در حال گذر و یا ذخیره شده
- نمایشی از گذرواژههای ذخیره شده در لینوکس (اسلاید بعد)
- نمایشی از امکان دزدیده شدن گذرواژه در مسیر (دو اسلاید بعد)
- □ پیشگیری از امکان کپیبرداری و یا افشای کلید ذخیره شده در توکن
 - □ نیاز به حفاظت از دادههای بیومتریک

محتوای فایل shadow حاوی گذرواژهها در لینوکس

```
at:*:14521:0:99999:7::: avahi:*:14222:0:99999:7::: beagleindex:*:14521:0:99999:7::: bin:*:14222:::::: daemon:*:14222:::::: dnsmasq:*:14222:0:99999:7::: ftp:*:14222::::: games:*:14222:::::: haldaemon:*:14222:0:99999:7::: lp:*:14222::::: mail:*:14222:::::: man:*:14222::::: messagebus:*:14222:0:99999:7::: news:*:14222::::: nobody:*:14222::::: ntp:*:14222:0:99999:7::: polkituser:*:14222:0:99999:7::: postfix:*:14222:0:99999:7::: pulse:*:14222:0:99999:7::: root:$2a$05$w9Sm7gHWX509G6UVJ/UBZO7elW0uvEZO72PvO/69XjeQn6GOT 6.CG:14521::::: sshd:*:14222:0:99999:7::: suse-ncc:*:14222:0:99999:7::: uucp:*:14222::::: uuidd:*:14222:0:99999:7::: wwwrun:*:14222::::: jamal:$2a$05$MAPpLUxiZy9QJOCr1Vw59O/aaporGgAmja8kBRBslLsrE28q95vO m:14521:0:99999:7:::
```


39 2.450321	213.233.168.3	213.233.168.156	TCP
40 2.450331	213.233.168.156	213.233.168.3	TCP
41 2.450424	213.233.168.156	213.233.168.3	HTTP
42 2.450688	213.233.168.3	213.233.168.156	TCP
43 2.491468	Intel_5b:f3:5e	Broadcast	ARP
44 2 401670	fa00000.adfa.dhod	• © ffn>••1•ffff•1>n1	TOMOS

Source port: stun (3478)
Destination port: http (80)

[Stream index: 5]

Sequence number: 1 (relative sequence number)

[Next sequence number: 720 (relative sequence number)]

Acknowledgement number: 1 (relative ack number)

Header length: 20 bytes

	-																
0230	36	38	63	63	35	34	63	62				39					
0240	3b	20	50	48	50	53	45	53	53	49	44	3d	31	33	65	35	; PHPSES SID=13e
0250	62	36	35	33	36	62	30	38	66	32	61	39	33	33	38	36	b6536b08 f2a93386
0260	61	31	33	37	32	66	37	65	64	39	35	39	0d	0a	43	6f	a1372f7e d959co
0270	бе	74	65	6e	74	2d	54	79	70	65	3a	20	61	70	70	6c	ntent-Ty pe: app
0280	69	63	61	74	69	6f	бе	2f	78	2d	77	77	77	2d	66	6f	
0290	72	6d	2d	75	72	6c	65	6e	63	6f	64	65	64	0d	0a	43	
02a0	6f	бе	74	65	6e	74	2d	4c	65	6e	67	74	68	3a	20	38	ontent-L ength: {
02b0	30	0d	0a	0d	0a	бс	6f	67	69	бе	5f	75	73	65	72	бе	0log in_user
02c0	61	6d	65	3d	6d	5f	61	6d	69	бе	69	26	73	65	63	72	ame=m_am ini&sec
02d0	65	74	6b	65	79	3d	6d	79	70	61	73	73	26	ба	73	5f	etkey=my pass&js_
02e0					64							72					
02f0	74	73	3d	31	26	ба	75	73	74	5f	6c	6f	67	67	65	64	ts=1&jus t_logged
0300	5f	69	бе	3d	31												_in=1

Text item (), 80 bytes

Packets: 338 Displayed: 338 Marked: 0 Dropped: 0

امنیت داده و شبکه

پیشگیری – کنترل دسترسی

Access Control

- مکانیزم هستهای برای حفظ امنیت در هر سیستم کنترل دسترسی است.
- وظیفه کنترل دسترسی کاربران و سیستمهای دیگر را به منابع و اطلاعات سیستم و یا شبکه مورد حفاظت بر عهده دارد.

پیشگیری – کنترل دسترسی (ادامه)

- □ پیشنیاز کنترل دسترسی، شناسایی کاربر و احراز اصالت هویت مورد ادعای آن است.
 - □ پس از شناخت کاربر، دسترسیهای وی را منابع بر اساس تدابیر امنیتی وضع شده توسط مدیر سیستم مشخص مینماییم.
 - 🗖 انواع روشهای کنترل دسترسی
 - کنترل دسترسی اختیاری(DAC)
 - کنترل دسترسی اجباری (MAC)
 - کنترل دسترسی نقش–مبنا (RBAC)

پیشگیری – کنترل دسترسی

کنترل دسترسی - از خیال تا وا قعیت

- □ وجود ارتباط منطقی و امن بین احراز هویت و مجازشماری
 - □ نیاز به کنترل دسترسی در لایههای اصلی
- لایه واسط کاربری، لایه کاربرد، لایه دسترسی به دادهها (پایگاه دادهها)
 - □ نیاز به حفظ صحت لیستهای دسترسی

پیشگیری – دیواره آتش

Firewall

- یک سیستم امنیتی مبتنی بر مکانیزم کنترل دسترسی
- موظف به کنترل دسترسی کاربران خارجی به سیستمهای داخلی
- تعیین مجوز دسترسی توسط مدیر امنیتی در قالب قواعد امنیتی

پیشگیری - دیواره آتش

□ ابزاری است برای کنترل و نظارت بر بستههای ارسالی و دریافتی بر اساس قواعدی که برایش تعریف میشود به بستهها اجازه عبور یا عدم عبور میدهد.

مشخصات عمومي يك ديواره آتش شبكهاى

- □ تعریف سیاست و قاعده امنیتی
- □ محافظت در برابر برخی حملات شناخته شده
 - □ ثبت رویدادها
 - □ پالایش (فیلترینگ) محتوا
 - □ پشتیبانی از شبکه خصوصی مجازی (VPN)

پیشگیری - رمزنگاری

Cryptography •

- حفظ محرمانگی (پیشگیری): اطمینان از اینکه هر دادهٔ ذخیره شده و یا ارسالی بر روی شبکه تنها توسط گیرندهٔ موردنظر می تواند رمز گشایی و استفاده گردد.
 - کنترل صحت (تشخیص): افزودن یک سرآیند رمزشده با یک کلید به داده در حال انتقال و بازسازی و کنترل آن در مقصد.
 - **احراز اصالت کاربر یا پیام** (تشخیص): رمز یک اطلاع با کلیدی که صرفاً در اختیار کاربر و یا مبدأ موردنظر است و وارسی آن در مقصد.
 - رمزنگاری: رمزگذاری (Encoding) + رمزگشایی (Decoding)

پیشگیری- رمزنگاری متقارن

- □ استفاده از یک کلید نشست مشترک برای رمز دادهها بین دو فرد
- □ مساله اصلی: نیاز به تبادل کلید نشست مشترک از طریق یک کانال اُمن
 - □ **کابردها:** حفظ محرمانگی دادهها و کنترل صحت
- □ نیاز به زمان کمتری برای رمزگذاری و رمزگشایی (نسبت الگوریتمهای نامتقارن) دارد.

پیشگیری- رمزنگاری متقارن (ادامه)

□ رمزنگاری متقارن جهت حفظ محرمانگی

پیشگیری- رمزنگاری نامتقارن

- □ هر فرد دارای یک کلید عمومی و یک کلید خصوصی است.
 - □ کلید عمومی در اختیار همگان قرار دارد.
- □ کلید خصوصی صرفاً در اختیار فرد قرار دارد و باید به گونهای امن نگهداری شود.
 - 🗖 كاربردها:
 - رمزنگاری جهت حفظ محرمانگی
 - امضای دیجیتال جهت احراز هویت، کنترل صحت و عدم انکار
- □ نیاز به زیرساخت کلید عمومی (PKI) جهت صدور گواهی کلید عمومی

رمزنگاري نامتقارن (ادامه)

- □ رمزنگاری جهت حفظ محرمانگی
- □ هر کسی میتواند دادهها را با کلید عمومی فرد رمزگذاری نماید.
- □ فقط فردِ دارای کلید خصوصی (متناظر کلید عمومی به کاربرده شده) می تواند داده های رمز شده را رمزگشایی کند.

روشهای رمزنگاری ترکیبی

- □ تجمیع محاسن دو روش متقارن و نامتقارن
- استفاده از رمزنگاری نامتقارن در تبادل کلید
- استفاده از رمزنگاری متقارن در حفظ محرمانگی و صحت دادهها
 - □ مثالهای کاربردی:
 - شبکه های خصوصی مجازی VPN
 - پروتکل SSL
 - پروتکل SSH

فهرست مطالب

- □ روشهای تامین امنیت
- □ مكانيزمهای پیشگیری
- □ مكانيزمهاى تشخيص
 - □ مكانيزمهاى ترميم

تشخیص - رمزنگاري

- □ کنترل صحت (تشخیص): افزودن یک سرآیند رمزشده به داده در حال انتقال و بازسازی و کنترل آن در مقصد.
- □ احراز اصالت کاربر یا پیام (تشخیص): رمز یک اطلاع با کلیدی که صرفاً در اختیار کاربر و یا مبدأ موردنظر است و وارسی آن در مقصد.

تشخیص - رمزنگاري متقارن

E: رمزگذار

□ فرآیند کنترل صحت با رمزنگاری متقارن

D: رمزگشا

H: تابع درهمساز

تشخیص - رمزنگاری نامتقارن

- □ رمزنگاری جهت احراز اصالت و کنترل صحت (امضای دیجیتال)
- فرد می تواند با استفاده کلید خصوصی خود، یک امضای دیجیتال برای دادههای ارسالی تولید نماید.
- دیگران می توانند با استفاده از کلید عمومی فرد، صحت امضای دیجیتال را بر مبنای دادههای دریافتی کنترل نمایند.
 - □ امضای تولیدشده تابعی است از دادهها و کلیدخصوصی فرد، لذا موارد زیر در مقصد با استفاده از کلیدعمومی قابل شناسایی است:
 - استفاده از کلید خصوصی ناصحیح در تولید امضاء
 - تغییر دادههای امضاءشده در حین انتقال

تشخیص - رمزنگاري نامتقارن

E: رمزگذار

□ فرآیند تولید امضای دیجیتال و کنترل صحت

D: رمزگشا

H: تابع درهمساز

تشخیص - سیستم تشخیص نفوذ

🗖 تشخیص نفوذ (Intrusion Detection)

فعالیتهای غیرمجاز یا غیرنرمال در رابطه با سیستم

فرآیند نظارت بر وقایع رخداده در یک شبکه و یا سیستم کامپیوتری در جهت کشف موارد انحراف از سیاستهای امنیتی

تشخیص – سیستم ضدبدافزار

□ وظایف سیستم ضدبدافزار

- **پیشگیری** از آلودگی به بدافزار (پیش از آلودگی)
- **تشخیص** انواع بدافزارها و فایلهای آلوده به بدافزار (پس از آلودگی)
 - **واکنشی:** پاکسازی بدافزارها

بدافزارها

- بدافزار (Malware): یک قطعه کُد، اسکریپت، و یا برنامه که به قصد
 خرابکاری و اختلال در امنیت سیستمها یا شبکهها منتشر می شود.
 - □ اهداف خرابكارانه بدافزارها:
 - دزدی اطلاعات محرمانه و نقض حریم خصوصی (مثلا اطلاعات بانکی)
 - کندی و ایجاد وقفه و اختلال در سیستمها و سرویسدهی
 - تخریب و تغییر اطلاعات
 - سوءاستفاده از منابع و سرویسها
 - باجگیری

انواع بدافزارها (۱)

- (Spyware) جاسوسافزار (Virus) 🗖
- (Key logger) جاسوس کیبورد (Worm) کرم (Worm)
 - (Adware) تبلیغ افزار (Trojan) تبلیغ افزار (D
 - (Logic Bomb) بمب منطقی (Bot) بات (Bot) بات (Bot)
 - (Ransomware) باج افزار (

انواع بدافزارها (۲)

- □ ويروس (Virus)
- یک قطعه برنامه کوچک با انتشار از طریق چسبیدن به دیگر فایلها
 - □ کرم (Worm)
- برنامه کوچک مستقل با توانایی کپی شدن و بیشتر انتشار از طریق شبکه

- □ اسب تروا (Trojan Horse)
- مخفی در یک برنامه مفید یا به صورت یک برنامه به ظاهر مفید

انواع بدافزارها (۳)

□ جاسوسافزار (Spyware)

■ به منظور جاسوسی از سیستم قربانی و ارسال اطلاعات محرمانه

□ تبليغافزار (Adware)

■ با هدف تبلیغات به خصوص تبلیغات کالاها و خدمات غیرمجاز

□ جاسوس کیبورد (Key Logger)

■ بدافزاری که پس از نصب روی سیستم قربانی، آنچه را که صاحب سیستم تایپ می کند ذخیره کرده و برای مهاجم می فرستد.

انواع بدافزارها (۴)

□ بات (Bot) و شبكه بات (Botnet)

فراهم نمودن امکان کنترل تعدادی سیستم قربانی برای مقاصد سوء و
 انجام حملات جمعی توزیعشده

(Logical Bomb) بمب منطقى

■ بدافزاری که به محض وقوع شرایطی خاص (مثلاً در یک تاریخ مشخص) فعال می شود و به خرابکاری می پردازد.

□ باجافزار (Ransomware)

■ بدافزاری که دسترسی یا کنترل کاربر به سیستم یا دادههایش را محدود مینماید (با قفل کردن صفحه، یا رمزگذاری فایلها، یا دزدی فایلها و تهدید به انتشار) و باجخواهی مینماید.

تشخیص – سیستم ضدبدافزار

- □ ارائه نسخه های جدید در ترکیب با
 - سیستم تشخیص نفوذ مبتنی بر میزبان
 - دیواره آتش شخصی
 - سیستم تشخیص سایتهای فیشینگ
- □ ضرورت بروزرسانی مستمر پایگاه امضای بدافزارها

تشخيص - سيستم تله عسل

□ سيستم تله عسل (Honeypot)

- اغفال و فریب مهاجم جهت جمعآوری اطلاعات بیشتر از نحوهٔ عملکرد آن
- شبیه سازی یک یا چند سرویس شبکه که بر روی کارگزار مورد حفاظت در حال اجرا می باشند.
 - معمولاً حاوی اطلاعات و منابع با ارزشی هستند که مورد توجه مهاجمین قرار می گیرند و آنها را به سمت خود جذب می کنند.
- سیستم تله عسل ریسک امنیتی دارد. اگر مهاجم بر آن تسلط یابد، می تواند برای شبکه مشکل ساز باشد.

فهرست مطالب

- □ روشهای تامین امنیت
- 🗖 مکانیزمهای پیشگیری
 - 🗖 مكانيزمهاى تشخيص
- □ مکانیزمهای ترمیم و بازیابی

ترمیم و بازیابی

- □ وجود سایت فیزیکی مجزا
- ترمیم سایت اصلی در صورت بروز بلایای طبیعی
- □ وجود سیستم پشتیبان یا افزونه (Replica/Redundant)
- جایگزینی خودکار سیستم (کارگزار) پشتیبان در صورت بروز مشکل در سیستم (کارگزار) اصلی
 - □ پشتیبان گیری دادهها (Backup)
 - ا بازیابی دادهها و بازگرداندن سیستم به حالت قبل از بروز مشکل یا حمله با استفاده از دادههای پشتیبانگیری شده

ترمیم و بازیابی

- 🗖 استفاده از ضد بدافزار
- جهت ترمیم فایلهای آلوده
- □ آموزش و استقرار گروه پاسخ گویی به حوادث رایانهای (CERT)
 - حهت رسیدگی به حوادث و رخدادهای امنیتی
 - مديريت آسيبپذيريها

CERT: Computer Emergency Response Team