Probabilidad y estadística Escuela de Ciencias Básicas Facultad de ingeniería Universidad EAN

Lina Marcela Díaz Fernández

Nombre:	Fecha:	

1. Considere una variable aleatoria estándar con media 0 y desviación estándar 1. Use la tabla 3 y llene las probabilidades en la tabla siguiente. La tercera probabilidad ya está calculada.1

El intervalo	Escriba la probabilidad	Reescriba la probabilidad (si es necesario)	Encuentre la probabilidad
Menor que 1.5	P(z <)		
Mayor que 2	P(z >)		
Mayor que 2.33	$P(z>\underline{2.33})$		
Entre -1.96 y 1.96	P(< z <)		
Entre -1.24 y 2.37	P(< z <)		
Menor o igual a −1	<i>P</i> (<i>z</i> ≤)		

Estudios realizados demuestran que el uso de gasolina para autos compactos vendidos en Estados Unidos está normalmente distribuido, con una media de 25.5 millas por galón (mpg) y una desviación estándar de 4.5 mpg. ¿Qué porcentaje de compactos recorre 30 mpg o más?

2. Sea x una variable aleatoria normalmente distribuida con una media de 10 y una desviación estándar de 2. Encuentre la probabilidad de que x se encuentre entre 11 y 13.6.

10.1 Encuentre los siguientes valores *t* en la tabla

a. *t*_{.05} para 5 *df*

b. $t_{.025}$ para 8 df

c. $t_{.10}$ para 18 df

d. $t_{.025}$ para 30 df

8.45 a) Calcule P(T < 2.365) cuando v = 7.

- b) Calcule P(T > 1.318) cuando v = 24.
- c) Calcule P(-1.356 < T < 2.179) cuando v = 12.
- d) Calcule P(T > -2.567) cuando v = 17.

Dada la función de densidad conjunta

$$f(x, y) = \begin{cases} \frac{6-x-y}{8}, & 0 < x < 2, \ 2 < y < 4, \\ 0, & \text{en otro caso,} \end{cases}$$

calcule P(1 < Y < 3 | X = 1).

Si *X*, *Y* y *Z* tienen la siguiente función de densidad de probabilidad conjunta:

$$f(x, y, z) = \begin{cases} kxy^2z, & 0 < x, y < 1, \ 0 < z < 2, \\ 0, & \text{en otro caso.} \end{cases}$$

- a) Calcule k.
- b) Calcule $P(X < \frac{1}{4}, Y > \frac{1}{2}, 1 < Z < 2)$.
- **7.15** Se toma una muestra aleatoria de tamaño n=49 de una distribución con media de $\mu=53$ y $\sigma=21$. La distribución muestral de \bar{x} será aproximadamente _____ con una media de _____ y una desviación estándar (o error estándar) de _____.
- **7.17** Se toma una muestra aleatoria de tamaño n=40 de una distribución con media $\mu=100$ y $\sigma=20$. La distribución muestral de \overline{x} será aproximadamente _____ con una media de _____ y una desviación estándar (o error estándar) de _____.
- **7.19** Muestras aleatorias de tamaño *n* se seleccionaron de poblaciones con las medias y varianzas dadas aquí. Encuentre la media y desviación estándar de la distribución muestral de la media muestral en cada caso:

a.
$$n = 36$$
, $\mu = 10$, $\sigma^2 = 9$

b.
$$n = 100, \mu = 5, \sigma^2 = 4$$

c.
$$n = 8$$
, $\mu = 120$, $\sigma^2 = 1$