Kapaliny

Jakub Rádl

18. února 2019

Obsah

1	\mathbf{Str}	uktura a vlastnosti kapalin	2
	1.1	Povrchové napětí	2
		Teplotní roztažnost	2

1 Struktura a vlastnosti kapalin

1.1 Povrchové napětí

$$E = \sigma S$$

Exp.:

• dvacetník plave na hladině i když má vyšší hustotu, než voda

Povrchové napětí

- molekula na hladině má cca polovinu vazeb jako uprostřed
- aby se molekula dostala na povrch, je potřeba přetrhat některé vazby – vykonat práci
- $\bullet\,$ na zvětšení povrchu je potřeba vykonat σS práce

Př.: Jak se změní energie bubliny, změní li se její poloměr na polovinu?

- $E = \sigma S$; $S_{koule} = 4\pi r$
- $\Delta E = E_1 E_2 = 4\sigma \pi r^2 4\sigma \pi (\frac{r}{2})^2 = 3\sigma \pi r^2$
- $r_{bublina} = 2 \text{cm}, \, \sigma_{voda} = 40 \text{mJm}^{-2}$
- $\Delta E = 3 \cdot 0.04 \cdot 0.02^2 \cdot \pi = 0.000048\pi J$

Praxe: Kapilární jevy

- kapalina smáčí látku (je přitahována)
- tenká trubička / porézní materiál
- $\bullet\,$ povrch kapaliny se zmenší zaplnění dutin \to energeticky výhodné
- rostliny nasávají vodu pomocí kapilárních jevů

Praxe: Hydrofobní úprava

- úprava povrchu, aby voda nesmáčela látku
- $\bullet\,$ impregnace povrchu
- gore-tex tenká vrstva teflonu s malými póry

1.2 Teplotní roztažnost

- délková roztažnost: $\Delta l = \Delta T \alpha l_0$
- $l = l_0 + \Delta l = l_0 + \Delta T \alpha l_0 = l_0 (1 + \alpha \Delta T)$
- Ocel: $\alpha=1.15\cdot 10^{-5}~\mathrm{K^{-1}}$

Praxe:

- bimetal
- mosty, koleje, dráty

1.3 Objemová roztažnost:

- $\bullet \ \Delta V = V_0 \cdot \beta \cdot \Delta T$
- $\beta \doteq 3\alpha$
- Líh: $\beta=11\cdot 10^{-4}~\mathrm{K}^{-1}$

Praxe:

 $\bullet\,$ teploměr, termostat, voda – anomálie