Seminari di Informatica, Università di Parma

Caterina Urban

Inria & École Normale Supérieure | Université PSL

#### Which Non-Termination Alarm is Worse?

```
function f(x) {
 2z ← 10
 3if ( ... ) then
                            while 4(z \ge 0) do
     5z \leftarrow z - x
   od<sup>6</sup>
 else
   while 7(z \ge x) do
                                  —diverges when c \ge 0
     8c ←[-2, 1] 
----non-deterministic value choice
     9Z \leftarrowZ + C
   od^{10}
```

### Which Non-Termination Alarm is Worse?

#### **Robust Non-Termination**

```
function f(x) {
 2z ← 10
 3if ( ... ) then
                                     —diverges when x = 0
    while 4(z \ge 0) do
      5Z \leftarrow Z - X
    od6
  else
    while 7(z \ge x) do
                                      —diverges when c \ge 0
     8c ←[-2, 1] 
----non-deterministic value choice
      9z \leftarrow z + c
    od^{10}
```

#### **Robust Non-Termination**

#### ∃ Input ∀ Non-Deterministic Choices : Program Diverges

function f(x)-{------demonic non-determinism

```
2z ← 10
3if ( ... ) then
   while 4(z \ge 0) do
     5Z \leftarrow Z - X
   od6
else
   while 7(z \ge x) do
     ^{8}c \leftarrow[-2, 1]
     9Z \leftarrowZ + C
   od^{10}
```



### Termination Resilience

**∀ Inputs** ∃ Non-Deterministic Choice : Program Terminates

```
function f(x) {
 2z ← 10
 3if ( ... ) then
    while 4(z \ge 0) do
      5z \leftarrow z - x
    od<sup>6</sup>
  else
    while 7(z \ge x) do
                                         terminates when c < 0, independently of the value of x
      8c ←[-2, 1] 
-----angelic non-determinism
      9z \leftarrow z + c
    od^{10}
```

#### 3-Step Recipe

practical tools
targeting specific programs



abstract semantics, abstract domains algorithmic approaches to decide program properties



concrete semantics mathematical models of the program behavior



# Static Analysis by Abstract Interpretation



#### 3-Step Recipe

**practical tools** targeting specific programs

abstract semantics, abstract domains algorithmic approaches to decide program properties

concrete semantics mathematical models of the program behavior



### **Trace Semantics**





# Ranking Functions

#### **Traditional Method for Proving Termination**

strictly decreasing along the execution of a program...



...and well-founded





### Termination Resilience Semantics





### Termination Resilience Semantics





### Termination Resilience Semantics

$$\Theta \stackrel{\text{def}}{=} \operatorname{lfp}_{\overset{\sim}{\oslash}}^{\sqsubseteq} \lambda f \lambda s \,. \begin{cases} 0 & s \in \Omega_{\tau} \\ \sup\{f(s') + 1 \mid \langle s, s' \rangle \in \tau\} & s \in \operatorname{pre}_{\tau^{\mathrm{i}}}(\operatorname{dom}(f)) \\ \sup\{f(s') + 1 \mid \langle s, s' \rangle \in \tau\} & s \in \operatorname{pre}_{\tau^{\mathrm{r}}}(\operatorname{dom}(f)) \\ \operatorname{undefined} & \operatorname{otherwise} \end{cases}$$
 the existence of the fixpoint is not guaranteed

$$\begin{array}{lll}
\mathbf{1}_{\mathsf{X}} \leftarrow [-\infty, +\infty] & \lambda x \cdot \begin{cases} 1 & x = 0 \\ \text{undefined otherwise} \end{cases} & \lambda x \cdot \begin{cases} 3 & x = 0 \\ \text{undefined otherwise} \end{cases} \\
\mathbf{3}_{\mathsf{X}} \leftarrow [-\infty, +\infty] & \lambda x \cdot \begin{cases} 3 & x = 0 \\ \text{undefined otherwise} \end{cases} \\
\mathbf{0}_{\mathsf{M}} = \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \\
\mathbf{0}_{\mathsf{M}} = \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \\
\mathbf{0}_{\mathsf{M}} = \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \\
\mathbf{0}_{\mathsf{M}} = \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}} \\
\mathbf{0}_{\mathsf{M}} = \mathbf{0}_{\mathsf{M}} \cdot \mathbf{0}_{\mathsf{M}}$$

#### 3-Step Recipe



abstract semantics, abstract domains algorithmic approaches to decide program properties

9.95€ 10€ 35.85€ 40€ 27.95€ 30€

concrete semantics mathematical models of the program behavior

## Piecewise-Defined Ranking Functions









#### **Static Backward Analysis**

```
function f(x) {
   a \leftarrow [-\infty, +\infty]
  <sup>2</sup>z ← 10
  3if (a*a \geq 0) then
       while 4(z \ge 0) do
         5Z \leftarrow Z - X
       od<sup>6</sup>
   else
       while 7(z \ge x) do
         ^{8}c \leftarrow [-2, 1]
         9z \leftarrow z + c
       od^{10}
```





#### **Boolean Conditions**





#### Variable Assignment







Non-Deterministic Variable Assignments





#### Loops







#### Loops



#### Loops





#### Approximation Join or Resilience Join?



```
z \ge 0
1a \leftarrow [-\infty, +\infty]
2z ← 10
^{3}if (a*a \geq 0) then
                                                                                                                z - x \ge 0
                                                               x > 0
    while 4(z \ge 0) do
      5Z \leftarrow Z - X
    od<sup>6</sup>
                                               \lambdaxzac. 2z + 3
                                                                                                    z - x - 2 \ge 0
                                                                                                                            λxzac. 1
else
    while 7(z \ge x) do
      ^{8}c \leftarrow[-2, 1]
                                                                                      \lambdaxzac. 3z - 3x + 1
                                                                                                                 \lambdaxzac. 4
      9Z \leftarrowZ + C
    od^{10}
```

```
^{1}a \leftarrow [-\infty, +\infty]
2z ← 10
3if (a*a \geq 0) then
                                                                 x > 0
    while 4(z \ge 0) do
       5z \leftarrow z - x
    od<sup>6</sup>
                                                    \lambdaxzac. 23
else
    while 7(z \ge x) do
      ^{8}c \leftarrow[-2, 1]
       ^{9}Z \leftarrow Z + C
    od^{10}
```

#### 3-Step Recipe

practical tools
targeting specific programs



abstract semantics, abstract domains algorithmic approaches to decide program properties



concrete semantics
mathematical models of the program behavior



# **Experimental Evaluation**

| nts          | Benchmark                | Property               | Verified | Alarms | TO | Time  |
|--------------|--------------------------|------------------------|----------|--------|----|-------|
| straints     | SV-COMP 2024             | Termination            | 0        | 119    | 0  | 3.5s  |
| .Suc         |                          | Termination Resilience | 61       | 58     | 0  | 3.6s  |
| Ö            | Raad et al @ OOPSLA 2024 | Termination            | 0        | 36     | 0  | 0.5s  |
| riate        |                          | Termination Resilience | 16       | 20     | 0  | 0.5s  |
| nivari       | Shi et al. @ FSE 2022    | Termination            | 0        | 85     | 0  | 2.0s  |
|              |                          | Termination Resilience | 57       | 28     | 0  | 2.2s  |
| ints         | Benchmark                | Property               | Verified | Alarms | TO | Time  |
| strai        | SV-COMP 2024             | Termination            | 0        | 119    | 0  | 7.2s  |
| Constra      |                          | Termination Resilience | 76       | 43     | 0  | 16.9s |
| <u> </u>     | Raad et al @ OOPSLA 2024 | Termination            | 0        | 36     | 0  | 7.2s  |
| ariat        |                          | Termination Resilience | 16       | 20     | 0  | 16.9s |
| Multivariate | Shi et al. @ FSE 2022    | Termination            | 0        | 85     | 0  | 69s   |
| Mu           |                          | Termination Resilience | 49       | 28     | 8  | 500s  |

## **Experimental Evaluation**

#### Univariate vs Multivariate Constraints



- \* equal precision
- × multivariate constraints are more precise
- univariate constraints are more precise (!)

3-Step Recipe

practical tools

abstract semantics abstract domains

concrete semantics



#### 0-3



#### **Experimental Evaluation**

| str         | Benchmark             | Property               | Verified | Alarms | ТО | Time  |
|-------------|-----------------------|------------------------|----------|--------|----|-------|
| Constraints | SV-COMP 2024          | Termination            | 0        | 119    | 0  | 3.5s  |
| ons         |                       | Termination Resilience | 61       | 58     | 0  | 3.6s  |
| _           |                       | Termination            | 0        | 36     | 0  | 0.5s  |
| Jnivariate  |                       | Termination Resilience | 16       | 20     | 0  | 0.5s  |
| iva         | Shi et al. @ FSE 2022 | Termination            | 0        | 85     | 0  | 2.0s  |
| 5           |                       | Termination Resilience | 57       | 28     | 0  | 2.2s  |
| nts         | Benchmark             | Property               | Verified | Alarms | TO | Time  |
| Constraints | SV-COMP 2024          | Termination            | 0        | 119    | 0  | 7.2s  |
| ons         |                       | Termination Resilience | 76       | 43     | 0  | 16.9s |
| ()          | TOLA 0004             | Termination            | 0        | 36     | 0  | 7.2s  |
|             |                       | : stion Resilience     | 16       | 20     | 0  | 16.9s |

### Termination Resilience Static Analysis





#### **Termination Resilience Semantics**



#### **Termination Resilience Semantics**





THAM