Bitácora 03

Alba Costas Fernández, Sabela Pérez Quintana, Salvia Sisa Cortés 05 - 02 - 2024 Asistentes: 76 + Elena

Material empregado: <u>Bitácora 2</u> (1)

Presentación de resolución numérica de ecuacións non lineares (2)

1. Resumo da clase anterior

Comezouse a clase falando da bitácora anterior (1). Comentouse que foi, en xeral, unha boa bitácora. Porén puntualizouse que no apartado de "Localización de raíces nunha ecuación ou sistemas", cando se emplea o x_i , débese de especificar para que valores de i se está a falar.

A partir da bitácora tamén se comentou que a expresión $\frac{b-a}{\epsilon} < 2^k$ pode ser simplificada empregando logaritmos. Así queda $ln(\frac{b-a}{\epsilon}) < k \cdot ln \ 2$, pero como apuntou un compañeiro, podemos empregar log_2 para desfacernos do término $ln \ 2$. Polo tanto obteríamos a expresión $log_2(\frac{b-a}{\epsilon}) < k$, que será a fórmula empregada nas prácticas da materia. Ademáis, a expresión anterior pode expresarse como $\frac{ln(\frac{b-a}{\epsilon})}{ln \ 2} < k$.

Mencionamos tamén o desenvolvemento de Taylor como ferramenta para cálculos moi grandes feitos por calculadoras ou ordenadores, xa que permite escribir calquera función coma un polinomio que se trunca segundo a precisión do ordenador ou calculadora.

Lembramos o principio de dicotomía $(x_r := \frac{x_a + x_b}{2})$ e falamos do criterio de detención a empregar con este método, xa que aínda que a converxencia está garantida e só precisamos traballar cunha función continua, o proceso pode ser moi lento. Por isto pararemos de iterar cando o intervalo co que esteamos a traballar sexa o suficientemente pequeno como para que o erro sexa aceptable.

2. Métodos de converxencia veloz

Orde de converxencia dun método

Introdúcese a orde de converxencia para verificar que método converxe máis rápido. Sexa α a nosa raíz ($f(\alpha) = 0$), unha sucesión $\{x_k\}_{k \in \mathbb{N}}$ que tende a α dise converxente

con orde p ≥ 1 se a distancia $|\alpha - x_{k+1}|$ é igual ou menor que $C|\alpha - x_k|^p$, $\forall k \in \mathbb{N}$, sendo C unha costante maior ca 0.

Se p = 1 dise que a sucesión converxe linealmente a α , se p = 2 converxe cuadráticamente, etc; así conforme aumenta p máis rápido se reduce o erro.

*Podemos relacionar o método de dicotomía con esta definición con p = 1 (é un método de converxencia lineal), quedando entón $C = \frac{1}{2}$.

Método de Newton-Raphson

Introducimos este método como opción máis eficiente (converxe cuadráticamente) pero tendo presente que a converxencia non está garantida. O método baséase na aproximación da gráfica da función f por rectas tanxentes para atopar a raíz α . Tendo un punto dado (x_0) trazamos por el unha recta tanxente á función f. O punto no que a tanxente corta ao eixo OX será o noso seguinte iterante (x_1) . Realízase outra tanxente no punto x_1

e así sucesivamente ata acadar unha aproximación preto dun punto onde a función se anule. O proceso sería o seguinte:

Etapa k sendo o noso punto iterante x_k e $f(x_k) \neq 0$.

Calculamos a recta tanxente á gráfica de f en $(x_k, f(x_k))$:

$$y = f(x_k) + f'(x_k)(x - x_k)$$

Calculamos o punto de corte co eixo OX (y = 0) sendo $m = f'(x_k)$ a pendente da recta:

$$f(x_k) + f'(x_k) (x - x_k) = 0$$

O seguinte iterante sería o x que faga cumplir a igualdade anterior $x_{k+1} := x$ Despexando a ecuación quedaría :

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)}$$
 para k = 0, 1, ...

Debemos matizar que este método emprega máis tecnoloxía matemática ca o de bisección, pero tamén precisa de máis condicións. A nosa función debe ser derivable en todos os puntos e ademais distinta de 0.

*f' (x_k) = 0 graficamente significa que a pendente da nosa gráfica nese punto é nula, e polo tanto a recta tanxente non cortaría ao eixo OX, senón que sería paralela a este.

A partir dunha pregunta na clase surxe a dúbida de que sucede se temos varias raíces e coas tanxentes rematamos iterando cara outra raíz. Isto é algo que pode suceder polo que debemos lembrar sempre que este método non é de converxencia garantida.

Teorema 1

Se temos $f \in C^2([a, b])$ cunha raíz no intervalo (a,b), e sexan:

$$m_1 \le \min_{x \in [a,b]} |f'(x)|$$
 $\max_{x \in [a,b]} |f''(x)| \le M_2.$

Supoñemos $m_1 > 0$ (xa que está medindo as pendentes e como xa mencionamos estas deben ser distintas de 0). Dado $x_0 \in [a, b]$, sexa $\{x_k\}_{k \in \mathbb{N}}$ a sucesión obtida polo método Newton-Raphson e supoñendo que $x_k \in [a, b]$ para todo $k \in \mathbb{N}$ (supoñemos que todos os iterantes se atopan no intervalo), entón

$$|\alpha - x_{k+1}| \le \frac{M_2}{2m_1} |\alpha - x_k|^2$$

A distancia entre a raiz e o iterante seguinte é menor ou igual a unha constante polo erro na etapa K elevado ao cadrado.

Se se da isto asegúrase a converxencia ($\lim_{k\to\infty} x_k = \alpha$) con p = 2 e a nosa constante C

pasa a ser coñecida $C = \frac{M_2}{2m_1}$.

Teorema 2

Se temos $f \in C^2([a, b])$ cunha raíz no intervalo (a,b), e sexan:

$$m_1 \le \min_{x \in [a,b]} |f'(x)|$$
 $\max_{x \in [a,b]} |f''(x)| \le M_2.$

Supoñemos $m_1 > 0$, dado $x_0 \in [a, b]$, sexa $\{x_k\}_{k \in \mathbb{N}}$ a sucesión obtida polo método Newton-Raphson e supoñendo que $x_k \in [a, b]$ para todo $k \in \mathbb{N}$ entón:

$$|\alpha - x_{k+1}| \le \frac{M_2}{2m_1} |x_{k+1} - x_k|^2, k = 0,1,2,...$$

Neste caso a cota de erro non queda en función da raíz, senón en función de dúas iteracións, puidendo saber así cantas iteracións precisamos para que o erro sexa menor que certa constante.

*Cabe mencionar que o traballo para saber o nº de iteracións e moito menos eficiente ca no método de dicotomía.

Criterio de detención

Tendo en conta a igualdade $|x_{k+1} - x_k| = -\frac{f(x_k)}{f'(x_k)}$ se a distancia entre dous iterantes é pequena, a fracción tamén o será.

Como criterio de detención podemos empregar que $|x_{k+1} - x_k|$ sexa moi pequeno, xa que tomando coma hipótese que $\frac{M_2\epsilon}{2m_1} << 1$ (sexa moi pequeno) entón:

$$|\alpha - x_k| \leq |\alpha - x_{k+1}| + |x_{k+1} - x_k| \leq \frac{\frac{M_2 \epsilon}{2m_1}}{2m_1} |x_{k+1} - x_k|^2 + |x_{k+1} - x_k| \approx |x_{k+1} - x_k|$$

- 1. A primeira igualdade cúmprese polo propio feito de estar aproximándonos á raíz con cada iteración.
- 2. A segunda igualdade cúmprese polo Teorema 2.
- 3. A terceira igualdade cúmprese pola hipótese de que $\frac{M_2\epsilon}{2m_1}$ é moi pequeno, e fai ese termo deprezable.

Exemplo:

Para exemplificar a diferencia de velocidade entre o método da bisección e o método de Newton-Raphson, empregaremos a resolución da ecuación $f(x) = x^2 - 2$ cun erro menor a 10^{-5} .

Co método da bisección precisamos de 17 iteracións, mentres que co método de Newton-Raphson só necesitamos 5. Polo tanto, observamos que o primeiro método é mais robusto, mentres que o segundo é máis rápido. A velocidade do método non ten moita importancia en cálculos pequenos, mais si que a ten no caso de operar repetidamente nun código, por exemplo, xa que, pola pegada de carbono, actualmente é moi importante a eficiencia

computacional.

Método da secante:

Este método é parecido ao de Newton-Raphson coa diferencia de que neste temos un cociente incremental. Empregamos este procedemento especialmente cando é dificil avaliar a derivada $f'(x_k)$, xa que esta queda substituída polo mencionado cociente incremental

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Así quédanos:

$$x_{k+1} := x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

para k = 1, 2, ..., con x_0 , x_1 dados.

De forma simplificada, o método da secante considera dous puntos iniciais (x_0, x_1) , calcula a secante e segue iterando ata dar coa raíz.

*Cabe mencionar que este método é algo máis lento ca o anterior, xa que $p = \frac{1+\sqrt{5}}{2}$.

3. Comentarios sobre a primeira práctica

Nas prácticas deberemos inventar un problema no que atopar as raíces dunha función sexa útil. Recoméndasenos o documento "<u>Resolución numérica de ecuacións</u>" de Mario Rodríguez Riorto para a nosa inspiración.