4 実数上の確率測度

導入

前回は有限集合上における確率測度を考えた. 今回は一般の集合における確率測度を考える. またルベーグ測度もここで定義をする. その定義は複雑であるが, 要点は区間 I=(a,b) に対しては

$$m(I) = b - a$$

となる測度であって、平行移動不変、完備性といった良い性質を持つものであるということである. 途中の細かい議論を完全にフォローできなくても構わないが、その要点は抑えておいてほしい.

4.1 確率測度の定義

まず可測空間を思い出そう。可測空間とは、全体 集合 Ω と σ 加法族 $\mathcal{F}\subset\mathcal{P}(\Omega)$ の組 (Ω,\mathcal{F}) のことで ある。 σ 加法族とは次の三条件

- (1) $\Omega \in \mathcal{F}$
- (2) $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- (3) $A_n \in \mathcal{F} \ (n = 1, 2, 3, \dots) \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

を満たすもので、大雑把に言えば「大きさを測ることのできる集合を規定」するものである.

- 定義 4.1 -

 (Ω, \mathcal{F}) を可測空間とする. 写像 $P: \mathcal{F} \to [0,1]$ が以下の条件を満たすとき、確率測度という.

- (1) $P(\Omega) = 1$
- (2) A_n (n=1,2,3,...) が互いに素,すなわち $A_i \cap A_i = \emptyset$ $(i \neq j)$ ならば

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

この条件を満たす3つ組 (Ω, \mathcal{F}, P) を確率空間という 1 .

条件 (2) を σ **加法性**という. また, 条件 (2) より

も弱い条件:有限個の互いに素な A_1,\ldots,A_n に対して

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

が成り立つことのみを仮定する場合は**有限加法的**な 確率測度という.

確率測度の基本的な性質として、次が成り立つ.

- 補題 4.2 -

- $(1) \quad P(\varnothing) = 0.$
- (2) $A, B \in \mathcal{F}$ が $A \subset B$ ならば $P(A) \leq P(B)$ である.

証明. (1) $\Omega = \Omega \cup \emptyset, \emptyset \cap \Omega = \emptyset$ なので

$$P(\Omega) = P(\Omega \cup \varnothing) = P(\Omega) + P(\varnothing),$$

 $Ch L D P(\emptyset) = 0 L L D D$

(2) $A \subset B$ ならば $B = A \sqcup (B \setminus A)$ と書けるので、 $P(B \setminus A) \ge 0$ より

$$P(B) = P(A \cup (B \setminus A)) = P(A) + P(B \setminus A) \ge P(A)$$
 となる.

命題 4.3

 (Ω, \mathcal{F}) 上の確率測度 P について,任意の集合列 $A_n \in \mathcal{F} (n=1,2,\ldots)$ に対して次が成立する.

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) \le \sum_{n=1}^{\infty} P(A_n)$$

証明. 二つの集合 A.B に対して

$$P(A \cup B) = P(A) + P(B \setminus A) \le P(A) + P(B)$$
であることより明らか.

4.2 確率測度の例

ここでは確率測度の例をいくつか紹介する.

4.2.1 有限集合上の確率測度

 $\Omega = \{x_1, \dots, x_n\}$ を有限集合とする.また正の数 $p_1, \dots, p_n > 0$ で $p_1 + \dots + p_n = 1$ を満たすものに 対し

$$P({x_i}) = p_i \quad (i = 1, ..., n)$$

¹⁾ なおこの条件 (1) を省き $P: \mathcal{F} \to [0, +\infty]$ としたものを**測度**という.したがって,確率測度とは全体集合での値が 1 になる測度であるということもできる.

とすれば、これは $(\Omega, \mathcal{P}(\Omega))$ 上の確率測度になる.

したがって定義 4.1 は有限集合上の確率測度の自然な一般化になっている.以下で実数上のボレル加法族 $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ における測度の中でも,特に重要なものを紹介する.

4.2.2 ボレル測度

定義 4.4 一

区間 I = (a, b) に対して

$$m(I) = b - a$$

とすれば,mは測度である.これを**ボレル測 度**という.

演習問題 4.5. ボレル測度が実際に測度であることを確認せよ. また全体集合を $\Omega = (0,1)$ とすると、これは確率測度になることを確認せよ.

4.2.3 ディラック測度

定義 4.6 一

 $a \in \mathbb{R}$ として, \mathbb{R} 上の測度 δ_a が

$$\delta_a(A) = \begin{cases} 1 & (a \in A) \\ 0 & (a \notin A) \end{cases} \quad (A \in \mathcal{B}(\mathbb{R}))$$

によって定まる. このように定まる測度 δ_a を ディラック測度あるいはディラックの δ 測度という. また a を δ_a の台 (support) という.

演習問題 4.7. ディラック測度が実際に確率測度であることを確認せよ.

4.2.4 実数空間上の測度の例

定義 4.8 -

f(x) を \mathbb{R} 全体でリーマン可積分な関数とし、

$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

を満たすものとする.このとき,区間 I=(a,b) に対して

$$P(I) = \int_{a}^{b} f(x) \, dx$$

とすれば、P は確率測度になる.

演習問題 4.9. 上記のように定義した P が実際に確

率測度であることを確認せよ.

4.3 ルベーグ測度

応用上で最も重要な \mathbb{R} 上の測度は \mathbf{L} ルベーグ測度である. これは区間 I=(a,b) に対しては

$$m(I) = b - a$$

となっておりボレル測度と同じであるが、考える σ 加法族がボレル加法族よりも大きくなっている。それにより理論的に非常に扱いやすくなるのである。

ルベーグ測度の正確な定義は後回しにするとして,まずはその性質を見ておこう.

- 命題 4.10 -

ルベーグ測度mは以下を満たす.

- (1) 区間 I = (a, b) に対して m(I) = b a
- (3) $m(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} m(A_i)$
- (4) 任意の $x \in \mathbb{R}$ に対して m(A+x) = m(A)
- (5) ルベーグ測度は**完備**である

このうち (1)~(3) は測度共通の性質である. (4) は**平行移動不変性**と呼ばれるもので,ボレル測度も同じ性質を持っているが,一般の測度が持っているとは限らない性質である.ただし,集合 A と実数 x に対して

$$A + x := \{a + x; a \in A\}$$

と定義する. これは集合 A を x だけに平行移動した集合である. また (5) の性質がルベーグ測度において特筆すべき性質である. 測度空間 $(\Omega, \mathcal{F}, \mu)$ が完備とは、測度 0 の可測集合の部分集合がすべて可測であるときにいう. この性質がルベーグ測度が重要な理由である. 「完備化」という操作があり、実はボレル測度を完備化したものがルベーグ測度になっている.

4.3.1 ルベーグ測度の定義

これからルベーグ測度を定義していこう. まずは 外測度を定義する.

定義 4.11 -

任意の集合 $A \subset \mathbb{R}$ に対して,A を覆う加算個の 開区間の長さの和の下限

$$m^*(A) = \inf \left\{ \sum_{j=1}^{\infty} |I_j|; \begin{cases} \{I_j\} \text{ は開区間列} \\ A \subset \bigcup_{j=1}^{\infty} I_j \end{cases} \right\}$$

を A のルベーグ外測度という.

外測度はどんな集合に対しても定義されることに 注意する. ルベーグ測度における σ 加法族は、この 外測度を利用して定義される.

定義 4.12 —

 $E \subset \mathbb{R}$ が**ルベーグ可測**,あるいはルベーグ可測 集合であるとは,任意の $A \subset \mathbb{R}$ に対して

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$$
 (4.1)

が成り立つことをいう. ルベーグ可測な関数全体を $\mathcal L$ で表す.

注意. ボレル可測ならばルベーグ可測である.

条件 (4.1) を通してルベーグ可測性を定義する方法を,カラテオドリの方法という.元々は,有界集合 E に対して内測度

$$m_*(E) = |I| - m^*(I \setminus E)$$

(ただしIは $E \subset I$ なる区間)を定義し,

$$m^*(E) = m_*(E)$$

なるときに可測と定めていた。しかしこの方法では 有界な E に対してしか定義されないなど理論的に は若干不満の残るものであった。カラテオドリの方 法はその不満点を解消してくれている。ルベーグ測 度の定義が直感と反するものになっているのは,そ のような背景がある。

∽ 定義 4.13 ──

 $E \in \mathcal{L}$ のとき、 $m(E) = m^*(E)$ と定義する. $(\mathbb{R}, \mathcal{L}, m)$ をルベーグ測度という.

まとめ

- 一般の確率測度の定義
- (確率) 測度の例
- ルベーグ測度

2025 年度統計学序論 I 担当:中島秀斗

演習問題 4

- (1) ボレル測度が実際に測度であることを確認せよ.
- (2) ディラック測度が実際に確率測度であることを確認せよ.
- (3) $\int_{-\infty}^{\infty} f(x) dx = 1$ なるリーマン可積分関数 f(x) を用いて定義される集合関数

$$P(I) = \int_{a}^{b} f(x) dx \quad I = (a, b)$$

が、実際に確率測度であることを確認せよ.

(4) $\Omega = [0,1]$ とし、その部分集合 C を以下のような集合の極限として定義する.

$$C_0 = [0, 1]$$

$$C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$$

$$C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{6}{9}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$$
:

すなわち,まず $C_0 = \Omega$ を三等分し,その真ん中の部分を取り除いたものを C_1 とする.次に C_1 の各区間をそれぞれ三等分し,それぞれの真ん中の部分を取り除いたものを C_2 とする.この操作を繰り返す.したがって C_n は C_{n-1} の各区間それぞれ三等分し,それぞれの真ん中の部分を取り除いたものである.そして $C = \bigcap_{i=1}^\infty C_i$ と定める.C の外測度 $m^*(C)$ を求めよ.

(5) 上の問題で定義した集合 C は、 $x \in \Omega$ を三進展開 $x = 0.a_1a_2a_3...$ した際に、1 が現れないような数全体の集合と一致することを確認せよ。特に $x \in C$ に対して $x = 0.a_1a_2a_3...$ とするとき、 $f(x) = 0.b_1b_2b_3...$ 、 $(b_i = a_i/2)$ としてこれを二進展開表示とみなすことで、C は実数濃度を持つことを確認せよ。

注意. (4) で構成される集合は**カントール集合**という名前がついている.