Imperial College London

In-situ properties of the slow solar wind at 0.3 AU

David Stansby, Tim Horbury, Lorenzo Matteini

Introduction

- Want to be able to use in-situ measurements to predict source region of measured slow solar wind (SSW)
- Well known that composition partially solves this...
- ...but are there other in-situ diagnostics we can use?

- Our re-analysis of Helios data reveals a SSW population that has same structure and thermodynamics as FSW
- A new method for identifying slow solar wind from open field regions

SSW release mechanisms

Three types of solar wind

Helios 2, 0.3 AU

- Backmapping from 1 AU suggests Alfvénic SSW comes from open field regions (D'Amicis et. al. 2015, 2016)
- → measure fraction of SSW that is Alfvénic to estimate fraction that comes from open field

Slow solar wind Alfvénicity (1 AU)

 Previous studies show more Alfvénic SSW at 0.3 AU (Luttrell et. al. 1987, Roberts et. al. 1987)

Slow solar wind Alfvénicity (0.3 AU)

 Is Alfvénicity a good proxy for whether SSW has the same source as FSW?

Slow solar wind Alfvénicity (0.3 AU)

 Is Alfvénicity a good proxy for whether SSW has the same source as FSW?

Slow wind thermodynamics

 As well as looking a structure, we can now look at thermodynamic properties

Slow wind thermodynamics

Slow wind thermodynamics

Conclusions

- At 0.3 AU some slow solar wind is Alfvénic and has high temperature anisotropies
- This population has the same structure and thermodynamics as fast solar wind
- ⇒at least 25% of slow solar wind Helios measured was released on permanently open field lines

<u>Implications for Solar Orbiter</u>

- Distinguishing 2 SSW populations possible inside ~0.6 AU
- New in-situ diagnostic for SSW origin

Re-processed Helios plasma dataset available at https://dstansby.github.io/helios