

THE WAY TO PREPARE YOURSELF BY: - RISHABH GUPTA

10 YEARS EXPERIENCE OF CBSE/ICSI

Subject: - Mathematics

PRACTICE PAPER

CBSE-8th

Topic: - Algebraic Expressions - 2

Q.1 Add the following algebraic expressions: -

$$2, \frac{2y}{3} - \frac{5y^2}{3} + \frac{5y^3}{2}, \frac{4}{3} + \frac{2y^2}{3} - \frac{y}{2}, \frac{5y^3}{3} + 3y^2 + 3y + \frac{6}{5}$$

Ans.
$$\frac{28}{15} + \frac{19}{6}y + 2y^2 + \frac{25}{6}y^3$$

Q.2 Simplify: - Take away
$$\frac{9}{2} + \frac{x}{2} + \frac{3}{5}x^2 + \frac{7}{4}x^3$$
 from $\frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}$

Ans.
$$-1 - \frac{5}{6}x - \frac{4}{5}x^2 - \frac{7}{4}x^3$$

Q.3 Subtract the sum of $3l - 4m - 7n^2$ and $2l + 3m - 4n^2$ from the sum of $9l + 2m - 3n^2$ and $-3l + m + 4n^2$.

Ans. $l + 4m + 12n^2$

Q.4 Multiply each of the following monomials

(i)
$$20x^{10}y^{20}z^{30}$$
, $(10xyz)^2$

Ans.
$$2000x^{12}y^{22}z^{32}$$

(ii)
$$(-3x^2y)$$
, $(4xy^2z)$, $(-xy^2z^2)$ and $(\frac{4}{5}z)$

Ans.
$$\frac{48}{5}x^4y^5z^4$$

Q.5 Express the following product as a monomial.

$$(x^3) \times (7x^5) \times (\frac{1}{5}x^2) \times (-6x^4)$$
 verify the product for $x = 1$.

Ans.
$$-\frac{42}{5}x^{14}$$

Q.6 Find the following products: -

(i)
$$0.1a \times (0.01a \times 0.001b)$$

Ans.
$$0.001a^2 + 0.0001ab$$

Q.7 Subtract:
$$3l(l - 4m + 5n)$$
 from $4l(10n - 3m + 2l)$

Ans.
$$25ln+5l^2$$

Q.8 Multiply:
$$(\frac{1}{5}x - \frac{1}{4}y)$$
 and $(5x^2 - 4y^2)$

Ans.
$$x^3 - \frac{4}{5}xy^2 - \frac{5}{4}x^2y + y^3$$

Q.9 Multiply:
$$(3x^2 + y^2)$$
 by $(x^2 + 2y^2)$ by column method.

Ans.
$$3x^4 + 7x^2y^2 + 2y^4$$

Q.10 Simplify:

(i)
$$(x^3 - 2x^2 + 3x - 4)(x - 1) - (2x - 3)(x^2 - x + 1)$$

Ans.
$$x^4 - 5x^3 + 10x^2 - 12x + 7$$

Q.11 If
$$x - \frac{1}{x} = 9$$
 find $x + \frac{1}{x}$

Ans.
$$\pm\sqrt{85}$$

Q.12 If
$$(x + y) = 12$$
 and $xy = 14$ find the value of $x^2 + y^2$

Q.13 Find the continued product: (i)
$$(x + 2)(x - 2)(x^2 + 4)$$

Ans.
$$(x^4 - 16)$$

Q.14 Prove that:
$$-2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = (a-b)^2 + (b-c)^2 + (c-a)^2$$

ii)
$$(67 \times 73)$$

iii)
$$107 \times 103$$

EMAIL: THETUITION111@YAHOO.COM MOB: 9675830111, 7409999556(WHATSAPP)