Viện Điện	ĐỀ THI CUỐI KỲ 20181	Cán bộ phụ	BCN bộ môn
Bm ĐKTĐ	Học phần: Lý thuyết điều khiển tự động I	trách học phần (Ký và ghi họ tên)	duyệt
	Mã học phần: EE3280		
	Đề thi số: 01		

Họ và tên sinh viên: Số hiệu SV: Lớp:

Câu 1 (4 điểm)

Cho hệ thống điều khiển nối tầng như hình sau. Biết $G_1(s) = \frac{10}{3s+1} \quad \text{và}$ $G_2(s) = \frac{1}{s}$.

- a) Thiết kế bộ điều khiển $R_1(s)$ với luật tích phân và $R_2(s)$ với luật tỉ lệ để cho hệ kín ổn định.
- b) Tìm sai lệch tĩnh của hệ thống với các bộ điều khiển tìm được ở trên.

Câu 2 (4 điểm)

Cho đối tượng được mô tả bởi mô hình trạng thái: $\dot{x} = Ax + Bu$ và y = Cx, trong đó $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 và $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$.

- a) Kiểm tra tính ổn định, tính điều khiển được và quan sát được của đối tượng.
- b) Thiết kế bộ điều khiển phản hồi trạng thái sao cho hệ kín có các điểm cực là s₁ = s₂ = s₃ = -3.
 c) Thiết kế bộ quan sát trạng thái sử dụng các các điểm cực là p₁ = p₂ = p₃ = -5.

Câu 3 (2 điểm)

Cho hệ thống điều khiển phản hồi âm đơn vị với hàm truyền của hệ hở là $G_h(s) = K \frac{2s+1}{s-1}$.

- a) Vẽ đồ thị Nyquist của hệ hở.
- b) Xác định K để hệ kín ổn định sử dụng tiêu chuẩn Nyquist.

Yêu cầu về tài liệu sử dụng: Sinh viên được sử dụng 2 tờ A4