XING WANG

■ wangxing1027@gmail.com · **८** (+86) 183-2837-8993 · **%** https://www.xwang.space/

EDUCATION EXPERIENCE

University of Electronic Science and Technology of China (UESTC)

2018 - Present

Third-year undergraduate in Software Engineering, GPA: **3.84/4.0**, rank: **12/92** (**13**%), CET-6 **500**.

RESEARCH INTERESTS

Machine Learning, Learning on Graphs, Graph Neural Networks

PUBLICATION AND MANUSCRIPTS

[Journal]

Smooth Representation based Semi-supervised Classification (in Chinese),

Xing Wang, Zhao Kang, Journal of Computer Science (2021).

Semi-supervised Classification based on Transformed Learning (in Chinese),

Xing Wang, Zhao Kang, Acta Automatica Sinica(under review)

SCHOOL EXPERIENCE

Trusted Cloud Computing and Big Data Key Laboratory, UESTC

Jan. 2020 – Present

Research Assistant, Adviser: Prof. Zhao Kang

Research Area: Graph-based Semi-supervised Learning

- Understand Spectral Graph Theory and perform semi-supervised learning based on graph.
- Propose a smooth representation based semi-supervised classification model.
- Build a semi-supervised classification model based on transformed learning.

Natural Language Processing Lab, Nanjing University

July. 2020 – Aug. 2020

Summer Camp

Research Area: Phishing Mail Detection

- Reproduce the model on A Machine Learning approach towards Phishing Email Detection.
- Understand the H-LSTMs and attention model, and reproduce the *TripleN* model.

PROJECT EXPERIENCE

Smooth Representation based Semi-supervised Classification

Jan. 2020 – May. 2020

- **Intro**: We propose a smooth representation based semi-supervised classification methods. In particular, we applied a low-pass graph filter on the data to achieve a smooth representation. Furthermore, a unified framework which integrates graph construction and label propagation is proposed, so that they can be mutually improved and avoid the sub-optimal solution caused by low-quality graph.
- **Result**: Extensive experiments on face and subject data sets show that our proposed methods outperforms other state-of-the-art methods in most cases, which validates the significance of smooth representation.
- This work was received by CCDM 2020 as an oral and included by Journal of Computer Science.

Semi-supervised Classification based on Transformed Learning

May. 2020 – Oct. 2020

- Intro: We propose a semi-supervised classification methods based on transformed learning (TLSSC). Our method seeks a representation (transformed coefficients) and performs graph learning and label propagation based on the learned representation.
- **Result**: Extensive experiments on face and subject data sets show that our proposed method outperforms other state-of-the-art methods in most cases.
- The manuscript has been accomplished and submitted to Acta Automatica Sinica.

PicGo (*Leader*) Dec. 2019 - Sep. 2020

- A smart tourism service for foreigners, which is commissioned in May 2020.
- A wechat mini apps, which can provide food identification and description based on photographs.
- Contributions: Requirement analysis, system design, and the user interface development.
- Awards: National Second Prize of College Student Computer Design Competition.

HONORS AND AWARDS

Aug. 2020	National Second Prize, National College Student Computer Design Competition.
July. 2020	National Bronze Prize, The "Internet+" Innovation and Entrepreneurship Competition.
Sep. 2020	Regional First Prize, Mathematical Contest in Modeling (CUMCM-2020).
Sep. 2020	National Encouragement Scholarship (3 %).
Sep. 2020	Outstanding Student Award (15 %).
Oct. 2019	National Encouragement Scholarship (3 %).
Oct. 2019	Outstanding Student Award (15 %).