Model Representation 1

Neural Networks

Neural Networks: Representation

Neuron in the brain

Neuron in the brain

Neuron in the brain

Neurons in the brain

Neurons in the brain

Sigmoid (logistic) activation function.

Sigmoid (logistic) activation function.

Sigmoid (logistic) activation function.

Layer 1

Layer 3

Layer 2

Andrew Ng

Windows'u etkinleştirmek için Ayarlar'a gidin.

- $a_i^{(j)} =$ "activation" of unit i in layer j
- $\Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

$$\rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

$$\Rightarrow a_1^{(2)} = \underline{g}(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$a_2^{(2)} = \underline{g}(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = \underline{g}(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = \underline{g}(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

$$\rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

$$\Rightarrow a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

$$\Rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

$$\Rightarrow a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

$$\Rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\neg \Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to layer j+1

$$\Rightarrow a_1^{(2)} = \underline{g}(\underline{\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3})$$

$$a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

$$\Rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

 $ightharpoonup \Theta^{(j)} = ext{matrix of weights controlling} \ \ \, ext{function mapping from layer } j ext{ to}$

$$\Theta^{(i)} \in \mathbb{R}^{3\times 4} \operatorname{layer} j + 1$$

$$\Rightarrow a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

$$\rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

 $ightharpoonup \Theta^{(j)} = ext{matrix of weights controlling} \ \ \, ext{function mapping from layer } j ext{ to}$

$$\Theta^{(i)} \in \mathbb{R}^{3\times 4} \operatorname{layer} j + 1$$

$$\Rightarrow a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

ightharpoonup If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta_{s,u}$ Etkinleştir will be of dimension $s_{j+1} imes (s_j+1)$.

$$\rightarrow a_i^{(j)} =$$
 "activation" of unit i in layer j

 $\rightarrow \Theta^{(j)} = \text{matrix of weights controlling}$ function mapping from layer j to

$$\Theta^{(i)} \in \mathbb{R}^{3\times 4} \operatorname{layer} j + 1$$

$$a_1^{(2)} = \underline{g}(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3)$$

$$\Rightarrow a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3)$$

$$\Rightarrow a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3)$$

$$h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)} a_0^{(2)} + \Theta_{11}^{(2)} a_1^{(2)} + \Theta_{12}^{(2)} a_2^{(2)} + \Theta_{13}^{(2)} a_3^{(2)})$$

If network has s_j units in layer j, s_{j+1} units in layer j+1, then $\Theta_s(j)$ will be of dimension $s_{j+1} \times (s_{j}+1)$. $\zeta_{j+1} \times (\varsigma_j + 1).$ $\zeta_{j+1} \times (\varsigma_j + 1).$

Exercise

• What is the dimension of $\Theta^{(1)}$ (Hint: add a bias unit to the input and hidden layers)?

Summary

- At a very simple level, neurons are basically computational units that
 - take inputs (dendrites) as electrical inputs (called "spikes")
 - that are channeled to outputs (axons).
- our dendrites are like the input features $x_1 \cdot x_n$
- the output is the result of our hypothesis function
- In neural networks, we use the same logistic function as in classification, yet we sometimes call it a sigmoid (logistic) activation function.

Summary

• If we have single layer, this is what we have

$$egin{bmatrix} x_0 \ x_1 \ x_2 \ x_3 \end{bmatrix}
ightarrow egin{bmatrix} a_1^{(2)} \ a_2^{(2)} \ a_3^{(2)} \end{bmatrix}
ightarrow h_ heta(x)$$

Where the value of each node is calculated by:

$$a_1^{(2)} = g(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3) \ a_2^{(2)} = g(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3) \ a_3^{(2)} = g(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3) \ h_{\Theta}(x) = a_1^{(3)} = g(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)})$$

Summary

- We apply each row of the parameters to our inputs to obtain the value for one activation node.
- Our hypothesis output is the logistic function applied to the sum of the values of our activation nodes, which have been multiplied by yet another parameter matrix $\theta^{(2)}$ containing the weights for our second layer of nodes.