Document title

1st Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

3rd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract—This document is a model and instructions for LATEX. This and the IEEEtran.cls file define the components of your document [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Document title or Abstract.

I. INTRODUCTION

This document is a model and instructions for LATEX. Please observe the report page limits.

Lo voltajes de línea a nueutro se definen como:

$$v_a(t) = V_{max} \sin(\omega t)$$

$$v_b(t) = V_{max} \sin(\omega t - 120^\circ)$$

$$v_c(t) = V_{max} \sin(\omega t + 120^\circ)$$

II. ESTADOS ASUMIDOS

En un instante dado las tres tensiones de fase v_a, v_b, v_c se ordenan por su valor instantáneo; con SCR ideales y sin solape, siempre conducen dos dispositivos: el superior de la fase con mayor potencial y el inferior de la fase con menor potencial, de modo que el voltaje de salida es siempre un línea-a-línea $v_{oi}(t) = v_{max}(t) - v_{min}(t)$. Se considera además el estado sin conducción S_0 cuando aún no se ha aplicado el pulso de compuerta (ángulo α) o la red no supera el umbral de disparo. Así, los siete estados son:

• S_0 : ningún SCR conduce, $v_{oi} = 0$.

•
$$S_1$$
: si $v_a \ge v_b \ge v_c$, T_1 y T_6 (ON), $v_{oi} = v_a - v_c \equiv v_{ac}$.
• S_2 : si $v_a \ge v_c \ge v_b$, T_1 y T_2 (ON), $v_{oi} = v_a - v_b \equiv v_{ab}$.

•
$$S_3$$
: si $v_b \geq v_a \geq v_c$, T_2 y T_3 (ON), $v_{oi} = v_b - v_c \equiv v_{bc}$.

•
$$S_3$$
: SI $v_b \geq v_a \geq v_c$, I_2 y I_3 (ON), $v_{oi} = v_b - v_c \equiv v_{bc}$

•
$$S_4$$
: si $v_b \geq v_c \geq v_a$, T_3 y T_4 (ON), $v_{oi} = v_b - v_a \equiv v_{ba}$.

•
$$S_5$$
: si $v_c \ge v_a \ge v_b$, T_4 y T_5 (ON), $v_{oi} = v_c - v_b \equiv v_{cb}$.
• S_6 : si $v_c \ge v_b \ge v_a$, T_5 y T_6 (ON), $v_{oi} = v_c - v_a \equiv v_{ca}$.

Las transiciones entre estados ocurren cuando dos tensiones de fase se igualan (cruces $v_a = v_b$, $v_b = v_c$ o $v_c = v_a$), lo que en el caso senoidal balanceado sucede cada 60° eléctricos; el inicio efectivo de cada estado conductor queda retrasado por el ángulo de disparo α . Dado que la carga es estrictamente resistiva, no hay almacenamiento de energía ni memoria de estado: la corriente sigue instantáneamente a la tensión en cada tramo y vale simplemente

$$i(t) = \frac{v_{oi}(t)}{R},$$

anulándose exactamente en los instantes de cambio de par, por lo que el apagado de los SCR es natural en cada frontera de 60°.

Tabla I: Intervalos de los estados asumidos del rectificador trifásico semicontrolado (ángulos en grados; α en grados).

Estado	Intervalo (grados)
S_1	$[30^{\circ} + \alpha, 90^{\circ} + \alpha)$
S_2	$[90^{\circ} + \alpha, 150^{\circ} + \alpha)$
S_3	$[150^{\circ} + \alpha, 210^{\circ} + \alpha)$
S_4	$[210^{\circ} + \alpha, 270^{\circ} + \alpha)$
S_5	$[270^{\circ} + \alpha, 330^{\circ} + \alpha)$
S_6	$[330^{\circ} + \alpha, 390^{\circ} + \alpha)$

En cada intervalo de 60° la secuencia de fases (desfasadas 120°) produce una fase más positiva y otra más negativa; el par de tiristores del sector conecta dicha fase máxima con la mínima, por lo que v_{oi} en ese tramo es la diferencia línea-alínea entre ellas. El ángulo de disparo α (expresado en grados) no altera el orden relativo de las fases: simplemente desplaza el inicio de cada sector (p. ej. S_1 comienza en $30^{\circ} + \alpha$, S_2 en $90^{\circ} + \alpha$, etc.). En un modelo ideal por tramos cada sector dura 60°; con inductancias reales pueden aparecer solapamientos momentáneos durante los cruces.

III. CONCLUSIONS

The conclusion goes here.

REFERENCES

- [1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

- [3] I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New
- York: Academic, 1963, pp. 271–350.

 [4] K. Elissa, "Title of paper if known," unpublished.

 [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interf ace," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.