Identifying the L1 of non-native writers: the CMU-Haifa system

Chris Dyer* Manaal Faruqui* Noam Ordan[†] Nathan Schneider* Yulia Tsvetkov* Naama Twitto[†] Shuly Wintner[†]

*Language Technologies Institute Carnegie Mellon University Pittsburgh, PA cdyer@cs.cmu.edu †Department of Computer Science University of Haifa Haifa, Israel shuly@cs.haifa.ac.il

Abstract

Given a dataset of English essays composed by nonnative speakers, as part of the TOEFL exam, we identify with high accuracy the native language of the authors. We use standard text classification techniques, but define sophisticated classifiers that are sensitive to the specific patterns observed in the English of authors whose first language is structurally different. We describe the various features used for classification, as well as the settings of the classifier that yielded the highest accuracy.

1 Introduction

The task we address in this work is identifying the native language (L1) of non-native English (L2) authors. More specifically, given a dataset of short English essays (Blanchard et al., 2013), composed as part of the *Test of English as a Foreign Language* (TOEFL) by authors whose native language is one out of 11 possible languages (Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugu, and Turkish), our task is to identify that language.

This task has a clear empirical motivation. Nonnative speakers make different errors when they write English, depending on their native language (Swan and Smith, 2001); understanding the different types of errors is a prerequisite for correcting them (Leacock et al., 2010), and systems such as the one we describe here can shed interesting light on such errors. Tutoring applications can use our system to identify the native language of students and offer better-targeted advice. Forensic linguistic applications are sometimes required to determine the L1 of authors (Estival et al., 2007a,b). Additionally, we believe that the task is interesting in and of itself, providing a better understanding of non-native language. We are thus equally interested in defining *meaningful* features whose contribution to the task can be linguistically interpreted.

We address the task as a multiway text-classification task; we specify our methodology in §3. As in other author attribution tasks (Juola, 2006), the choice of features for the classifier is crucial; we discuss the features we define in §4. We report our results in §5 and conclude with suggestions for future research.

2 Related work

The task of L1 identification was introduced by Koppel et al. (2005a,b), who work on the International Corpus of Learner English (Granger et al., 2009), which includes texts written by students from Russia, the Czech Republic, Bulgaria, France, and Spain. The texts lengths range from 500 to 850 words. The classification method is a linear SVM, and features include 400 standard function words, 200 letter *n*-grams, 185 error types and 250 rare part-of-speech (POS) bi-grams. Ten-fold cross-validation results on this dataset are 80% accuracy.

The same experimental setup is assumed by Tsur and Rappoport (2007), who are mostly interested in testing the hypothesis that an author's choice of words in a second language is influenced by the phonology of his or her L1. They confirm this hypothesis by carefully analyzing the features used by Koppel et al., controlling for potential biases.

Wong and Dras (2009, 2011) are also motivated

by a linguistic hypothesis, namely that syntactic errors in a text are influenced by the author's L1. Wong and Dras (2009) analyze three error types statistically, and then add them as features in the same experimental setup as above (using LIBSVM with a radial kernel for classification). The error types are subject-verb disagreement, noun-number disagreement and misuse of determiners. Addition of these features does not improve on the results of Koppel et al.. Wong and Dras (2011) further extend this work by adding as features horizontal slices of parse trees, thereby capturing more syntactic structure. This improves the results significantly, yielding 78% accuracy compared with less than 65% using only lexical features.

Kochmar (2011) uses a different corpus, the Cambridge Learner Corpus, in which texts are 200-400 word long, and are authored by native speakers of five Germanic languages (German, Swiss German, Dutch, Swedish and Danish) and five Romance languages (French, Italian, Catalan, Spanish and Portuguese). Again, SVM is the classification device. Features include POS *n*-grams, character *n*-grams, phrase-structure rules (extracted from parse trees), and two measures of error rate. The classifier is evaluated on its ability to distinguish between pairs of closely-related L1s, and the results are usually excellent.

A completely different approach is offered by Brooke and Hirst (2011). Since training corpora for this task are rare, they use mainly L1 (blog) corpora. Given English word bi-grams $\langle e_1, e_2 \rangle$, they try to assess, for each L1, how likely it is that an L1 bi-gram was translated literally by the author, resulting in $\langle e_1, e_2 \rangle$. Working with four L1s (French, Spanish, Chinese, and Japanese), and evaluating on the International Corpus of Learner English, the results are lower than 50%.

Our dataset in this work is different, and consists of TOEFL essays written by speakers of eleven different L1s (Blanchard et al., 2013), distributed as part of the First Native Language Identification Shared Task (Tetreault et al., 2013). We use a plethora of features; some of them are inspired by previous work outlined above, but many are motivated by other author attribution tasks, in particular identification of *translationese*, the language of translated texts (Volansky et al., Forthcoming).

3 Methodology

The dataset released by the NLI Shared task (Tetreault et al., 2012) is a balanced set of 1000 TOEFL essays per each native language. Essays are short, consisting of 10 to 20 sentences each. The dataset is split into 900 documents for training and 100 for development. Each document is annotated with the author's English proficiency level (low, medium, high) and an identification (1 to 8) of the prompt given to the author to trigger the essay. All essays are tokenized and split into sentences. We detail in Table 1 some statistics on the training corpora, listed by the authors' proficiency level.

	Low	Medium	High
# Documents	1,069	5,366	3,456
# Tokens	245,130	1,819,407	1,388,260
# Types	13,110	37,393	28,329

Table 1: Training set statistics.

For classification we use the creg regression modeling framework to train a 11-class logistic regression classifier.¹ We parameterize the L1 classifier as a multiclass logistic regression:

$$p(y \mid \mathbf{d}, i) \propto \exp \sum_{j} \lambda_{j} h_{j}(y, \mathbf{d}, i),$$

where **d** are documents, $h_j(\cdot)$ are feature functions, λ_j are the corresponding weights, and y refer to the outputs: eleven L1 class labels. [Y regularization???]

All essays were tagged with the Stanford part-ofspeech tagger (Toutanova et al., 2003). We did not parse the dataset.

4 Model Overview

We define a large arsenal of features, our motivation being both to improve the accuracy of classification and to be able to interpret the characteristics of the language produced by speakers of different L1s.

4.1 Motivation

While some of the features were used in the works surveyed in §2, many are novel, and are inspired by the features used to identify translationese by Volansky et al. (Forthcoming). We begin by motivating our choice of features.

¹https://github.com/redpony/creg

POS *n***-grams** Part-of-speech *n*-grams were used in various text-classification tasks.

Prompt Since the prompt contributes information on the domain, it is likely that some words (and, hence, character sequences) will occur more frequently with some prompts than with others. We therefore use the prompt ID in conjunction with other features.

Document length The number of tokens in the text is highly correlated with the author's level of fluency, which in turn is correlated with the author's L1.

Pronouns The use of pronouns varies greatly among different authors. We use the same list of 25 English pronouns that Volansky et al. (Forthcoming) use for identifying translationese.

Punctuation Similarly, different languages use punctuation differently, and we expect this to taint the use of punctuation in non-native texts. Of course, character *n*-grams subsume this feature.

Passives English uses passive voice more frequently than other languages. Again, the use of passives in L2 can be correlated with the author's L1.

Positional token frequency The choice of the first and last few words in a sentence is highly constrained, and may be significantly influenced by the author's L1.

Cohesive markers These are 40 function words (and short phrases) that have a strong discourse function in texts (however, because, in fact, etc.) Translators tend to spell out implicit utterances and render them explicitly in the target text (Blum-Kulka, 1986). We use the list of Volansky et al. (Forthcoming).

Cohesive verbs This is a list of manually compiled verbs that are used, like cohesive markers, to spell out implicit utterances (*indicate*, *imply*, *contain*, etc.)

Function words Frequent tokens, which are mostly function words, have been used successfully for various text classification tasks. Koppel and Ordan (2011) define a list of 400 such words, of which we only use 100 (using the entire list was not significantly different). Note that pronouns are included in this list.

Contextual function words To further capitalize on the ability of function words to discriminate,

we define pairs consisting of a function word from the list mentioned above, along with the POS tag of its adjacent word. This feature captures patterns such as verbs and the preposition or particle immediately to their right, or nouns and the determiner that precedes them. We also define 3-grams consisting of one or two function words and the POS tag of the third word in the 3-gram.

Lemmas The content of the text is not considered a good indication of the author's L1, but many text categorization tasks use lemmas (more precisely, the stems produced by the tagger) as features approximating the content.

Misspelling features Learning to perceive, produce, and encode non-native phonemic contrasts is extremely difficult for L2 learners (Hayes-Harb and Masuda, 2008). Since English's orthography is largely phonemic—even if it is irregular in many places, we expect leaners whose native phoneme contrasts are different from those of English to make characteristic spelling errors. For example, since Japanese and Korean lack a phonemic /l/-/r/ contrast, we expect native speakers of those languages to be more likely to make spelling errors that confuse 1 and r relative to native speakers of languages such as Spanish in which that pair is contrastive. To make this information available to our model, we use a noisy channel spelling corrector (Kernighan, 1990) to identify and correct misspelled words in the training and test data. From these corrections, we extract minimal edit features that show what insertions, deletions, substitutions and joinings (where two separate words are written merged into a single orthographic token) were made by the author of the essay.

Restored tags We focus on three important token classes defined above: punctuation marks, function words and cohesive verbs. We first remove words in these classes from the texts, and then recover the most likely hidden tokens in a sequence of words, according to an *n*-gram language model trained on all essays in the training corpus corrected with a spell checker and containing both words and hidden tokens. This feature should capture specific words or punctuation marks that are consistently omitted (deletions), or misused (insertions, substitutions). To restore

hidden tokens we use the hidden-ngram utility provided in SRI's language modeling toolkit (Stolcke, 2002).

Brown clusters Brown et al. (1992) describe an algorithm that induces a hierarchical clustering of a language's vocabulary based on each vocabulary item's tendency to appear in similar left and right contexts in a training corpus. While originally developed to reduce the number of parameters required in n-gram language models, Brown clusters have been found to be extremely effective as lexical representations in a variety of regression problems that condition on text (Koo et al., 2008; Turian et al., 2010; Owoputi et al., 2013). Using an open-source implementation of the algorithm,² we clustered 8 billion words of English into 600 classes.³ We included log counts of all 4-grams of Brown clusters that occurred at least 100 times in the NLI training data.

4.2 Main Features

First, we use the following four feature types as the core of our model. Whenever counts are mentioned, we use the log of the count as the feature. We report the accuracy of using each feature type, in isolation, on the training set.

POS Part-of-speech *n*-grams. Features were extracted to count every POS 1-, 2-, 3- and 4-gram in each document. 55.18%.

FreqChar Frequent character *n*-grams. We experimented with character *n*-grams: The number of character 1-, 2-, and 3-grams. This yielded 69.94% accuracy. We then refined the feature to include only those character *n*-grams that are observed more than *m* times in the corpus are considered. *n* ranges from 1 to 4, and *m* is set to 5. 74.12%

CharPrompt Conjunction of the character *n*-gram features defined above with the prompt ID. 65.09%.

Brown Substitutions, deletions and insertions counts of Brown clusters 1- and 2-grams in each document. 72.26%.

The accuracy of the classifier on the development set using these four feature types is reported in Table 2.

Feature Group	# Params	Accuracy (%)	ℓ_2
POS	540,947	55.18	1.0
+ FreqChar	1,036,871	79.55	1.0
+ CharPrompt	2,111,175	79.82	1.0
+ Brown	5,664,461	81.09	1.0

Table 2: Dev set accuracy with MAIN feature groups, added cumulatively. The number of parameters is always a multiple of 11 (the number of classes). Only ℓ_2 regularization was used for these experiments; the penalty was tuned on the dev set as well.

4.3 Additional Features

To the basic set of features we now add more specific, linguistically-motivated features, each adding a small number of parameters to the model. As above, we indicate the accuracy of each feature type in isolation.

DocLen Document length in tokens. 11.81%.

Punct Counts of each punctuation mark. 27.41%.

Pron Counts of each pronoun. 22.81%.

Position Positional token frequency. We use the counts for the first two and last three words before the period in each sentence as features. 53.03%.

PsvRatio The proportion of passive verbs out of all verbs. 12.26%.

CxtFxn Contextual function words. Bi-grams yield 62.79%, tri-gram 62.32%.

Misspell Spelling correction edits. [S ???]. 37.29%.

Restore Counts of substitutions, deletions and insertions of predefined tokens that we restored in the texts. 47.67%

Table 3 reports the empirical improvement that each of these brings independently when added to the main features (§4.2).

4.4 Discarded Features

We also tried several other feature types that did not improve the accuracy of the classifier on the development set.

Cohesive markers Counts of each cohesive marker. 25.71%.

Cohesive verbs Counts of each cohesive verb. 22.85%.

Function words Counts of function words. 42.47%. This feature is subsumed by the highly discriminative CxtFxn feature.

²https://github.com/percyliang/brown-cluster
3http://www.ark.cs.cmu.edu/cdyer/en-600/
cluster_viewer.html

Feature Group	# Params	Accuracy (%)	ℓ_2
MAIN + Position	6,153,015	81.00	1.0
MAIN + PsvRatio	5,664,472	81.00	1.0
MAIN	5,664,461	81.09	1.0
MAIN + DocLen	5,664,472	81.09	1.0
main + Pron	5,664,736	81.09	1.0
MAIN + Punct	5,664,604	81.09	1.0
MAIN + Misspell	5,799,860	81.27	5.0
MAIN + Restore	5,682,589	81.36	5.0
main + CxtFxn	7,669,684	81.73	1.0

Table 3: Dev set accuracy with MAIN features plus additional feature groups, added independently. ℓ_2 regularization was tuned as in Table 2 (two values, 1.0 and 5.0, were tried for each configuration; more careful tuning might produce slightly better accuracy). Results are sorted by accuracy; only three groups exhibited independent improvements over the MAIN feature set.

5 Results

The full model that we used to classify the test set combines all features listed in Table 3. Using all these features, the accuracy on the development set is 84.55%, and on the test set it is 81.5%. Table 4 lists the confusion matrix on the test set, as well as precision, recall and F_1 -score for each L1. The largest class of errors was predicting Telugu where the correct label was Hindi[$^{NS}_{S}$ or vice versa?]—this happened 18 times.

Production of L2 texts, not unlike translating from L1 to L2, involves a tension between the imposing models of L1 (and the source text), on the one hand, and a set of cognitive constraints resulting from the efforts to generate the target text, on the other. The former is called *interference* in Translation Studies (Toury, 1995) and *interlanguage* in second language acquisition (Selinker, 1972).

Volansky et al. (Forthcoming) designed 32 classifiers to test the validity of the forces acting on translated texts, and found that interference consistently yielded the best performing classifiers. And indeed, in this work too, which replicates some of their classifiers, we find again that fingerprints of the source language are dominant in the makeup of L2 texts.

The main difference, however, between texts translated by professionals and the texts we address here, is that more often than not professional translators translate into their mother tongue, whereas L2 writers write out of their mother tongue by defini-

tion. So interference is ever more exaggerated in their case, for example, also phonologically (Tsur and Rappoport, 2007).

German overuses hyphens in two interesting ways. German can notoriously use relative clauses freely, and such constructions frequently occur between hyphens in the dataset, as in any given rational being – let us say Immanual Kant – we find that. Another overuse of hyphens stems from compounding, another facet of German, for example in wellknown, community-help, spare-time, football-club, etc. Many of these reflect an effort to both connect and separate connected forms in the original (e.g., Fussballklub, which in English would be more naturally rendered as football club). Another unexpected feature of German is a frequent substitution of the letter y for z (and vice versa), most probably triggered by their switched positions on German keyboards.

The word *that* occurs more frequently in the texts of German L1 speakers, perhaps because in English it is optional in relative clauses whereas in German it is not. Last, *often* is overused; being a cognate of the German *oft* it is not cognitively expensive to retrieve it. Spanish, on the other hand, literally translates *muchas veces* into *many times*, which is similarly overused on the dataset. [Solution of the symmetry of the symmetry

Other informative features include substitutions of *r*-s and *l*-s in the texts of Japanese authors, for obvious reasons; and the characters *r* and *s* are important in Chinese and Spanish, respectively, for reasons that are unclear to us. Similarly, the word *then*

	ARA (CHI I	RE (GER :	HIN I	ITA .	JPN I	KOR S	SPA 7	TEL T	TUR	Precision (%)	Recall (%)	F_1 (%)
ARA	80	0	2	1	3	4	1	0	4	2	3	80.8	80.0	80.4
CHI	3	80	0	1	1	0	6	7	1	0	1	88.9	80.0	84.2
FRE	2	2	81	5	1	2	1	0	3	0	3	86.2	81.0	83.5
GER	1	1	1	93	0	0	0	1	1	0	2	87.7	93.0	90.3
HIN	2	0	0	1	77	1	0	1	5	9	4	74.8	77.0	75.9
ITA	2	0	3	1	1	87	1	0	3	0	2	82.1	87.0	84.5
JPN	2	1	1	2	0	1	87	5	0	0	1	78.4	87.0	82.5
KOR	1	5	2	0	1	0	9	81	1	0	0	80.2	81.0	80.6
SPA	2	0	2	0	1	8	2	1	78	1	5	77.2	78.0	77.6
TEL	0	1	0	0	18	1	2	1	1	73	3	85.9	73.0	78.9
TUR	4	0	2	2	0	2	2	4	4	0	80	76.9	80.0	78.4

Table 4: Official test set confusion matrix with the full model. [$_{S}^{NS}$ which direction is predicted vs. gold?] Accuracy is 81.5%.

is dominant in the texts of Hindi speakers. Finally, it is clear that authors refer to their native cultures (and, consequently, native languages and countries); the strings *Turkish*, *Korea*, and *Ita* were dominant in the texts of Turkish, Korean and Italian native speakers, respectively.

6 Discussion

We experimented with different classifiers and a large set of features to solve an 11-way classification problem. Most of our features are linguistically informed and we believe that this direction should be further pursued. There are at least three motivations for identifying the mother tongue of L1 learners: (1) for the sake of sports, in which case linguistic and pedagogical theory doesn't matter: the more accurate the better; (2) to facilitate human assessment and grading; (3) to point out the differences between different L2 writers, on the one hand, and to discriminate L2 writers as a single set from native tongue writers, on the other; this can pave the way for improving teaching methods and identify the individual difficulties of specific L1 learners.

Our point of departure was the analogy between translated texts as a genre in its own and L2 writers as pseudo translators, relying heavily on their mother tongue and transferring their native models to a second language. Moreover, we assumed that like translators, L2 writers will write in a simplified manner and overuse explicit markers. Although this should be studied vis-a-vis comparable outputs of mother tongue writers in English, we observe that the best features of our classifiers are of the "in-

terference" type, i.e. phonological, morphological and syntactic in nature, mostly in the form of misspelling features, restoration tags, punctuation and lexical and syntactic modeling.

We would like to stress that certain features indicating L2 do not have any bearing on the quality of the English produced, a phenomenon discussed extensively in Translation Studies (Toury, 1995), where interference is observed by the overuse or underuse of certain features reflecting the typological differences between a specific pair of languages. For example, the fact that Italian native speakers favor the syntactic sequence of determiner + adjective + noun (e.g., a big risk or this new business) has little prescriptive value for teachers.

Last, we noted that certain L2 writers tend to repeat more often words appearing in the prompts, i.e., in the questions that triggered their essays. When we experimented on certain classifiers with and without the prompt number as a feature, we actually noted a decrease in performance. For the sake of sports, we should have in fact removed them from our classifier, but we stress their theoretical importance: some L2 writers repeat them more often and this may reflect different educational backgrounds (introducing this as a feature offsets its effect). Had we had a hypothetical 12th unseen L2, we believe it would have enabled us to cross-classify better. Again, this feature says nothing about the quality of the text, just as the tendency of Korean and Italian writers to mention their home country more often does not.

Acknowledgments

This research was supported by a grant from the Israeli Ministry of Science and Technology.[S anything from the CMU side?]

References

- Daniel Blanchard, Joel Tetreault, Derrick Higgins, Aoife Cahill, and Martin Chodorow. TOEFL11: A corpus of non-native English. Technical report, Educational Testing Service, 2013.
- Shoshana Blum-Kulka. Shifts of cohesion and coherence in translation. In Juliane House and Shoshana Blum-Kulka, editors, *Interlingual and intercultural communication Discourse and cognition in translation and second language acquisition studies*, volume 35, pages 17–35. Gunter Narr Verlag, 1986.
- Julian Brooke and Graeme Hirst. Native language detection with 'cheap' learner corpora. In *Conference of Learner Corpus Research (LCR2011)*, Louvain-la-Neuve, Belgium, 2011. Presses universitaires de Louvain.
- Peter F. Brown, Peter V. de Souza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. Class-based *n*-gram models of natural language. *Computational Linguistics*, 18(4), 1992.
- Dominique Estival, Tanja Gaustad, Son Bao Pham, Will Radford, and Ben Hutchinson. TAT: An author profiling tool with application to Arabic emails. In *Proceedings of the Australasian Language Technology Workshop 2007*, pages 21–30, Melbourne, Australia, December 2007a. URL http://www.aclweb.org/anthology/U07-1006.
- Dominique Estival, Tanja Gaustad, Son Bao Pham, Will Radford, and Ben Hutchinson. Author profiling for English emails. In *Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics*, pages 263–272, Melbourne, Australia, 2007b.
- Sylviane Granger, Estelle Dagneaux, Fanny Meunier, and Magali Paquot. *International Corpus of Learner English*. Presses universitaires de Louvain, Louvain-la-Neuve, 2009. ISBN 978-2-87463-143-6.

- Rachel Hayes-Harb and Kyoko Masuda. Development of the ability to lexically encode novel second language phonemic contrasts. *Second Language Research*, 24(1):5–33, 2008.
- Patrick Juola. Authorship attribution. *Foundations and Trends in Information Retrieval*, 1(3): 233–334, 2006. URL http:/dx.doi.org/10.1561/1500000005.
- Mark D. Kernighan. A spelling correction program based on a noisy channel model. In *Proc. COL-ING*, 1990.
- Ekaterina Kochmar. Identification of a writer's native language by error analysis. Master's thesis, University of Cambridge, 2011.
- Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-supervised dependency parsing. In *Proc. ACL*, 2008.
- Moshe Koppel and Noam Ordan. Translationese and its dialects. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 1318–1326, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1132.
- Moshe Koppel, Jonathan Schler, and Kfir Zigdon. Automatically determining an anonymous author's native language. *Intelligence and Security Informatics*, pages 41–76, 2005a.
- Moshe Koppel, Jonathan Schler, and Kfir Zigdon. Determining an author's native language by mining a text for errors. In *Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining*, pages 624–628, Chicago, IL, 2005b. ACM.
- Claudia Leacock, Martin Chodorow, Michael Gamon, and Joel Tetreault. *Automated Grammatical Error Detection for Language Learners*. Morgan and Claypool, 2010. URL http://www.morganclaypool.com/doi/abs/10.2200/S00275ED1V01Y201006HLT009.
- Olutobi Owoputi, Brendan O'Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider, and Noah A. Smith. Improved part-of-speech tagging for online conversational text with word clusters. In *Proc. NAACL*, 2013.

- Larry Selinker. Interlanguage. *International Review of Applied Linguistics in Language Teaching*, 10 (1–4):209–232, 1972.
- Andreas Stolcke. SRILM—an extensible language modeling toolkit. In *Proceedings of International Conference on Spoken Language Processing*, pages 901–904, 2002. URL citeseer. ist.psu.edu/stolcke02srilm.html.
- Michael Swan and Bernard Smith. Learner English: A Teacher's Guide to Interference and Other Problems. Cambridge Handbooks for Language Teachers. Cambridge University Press, 2001. ISBN 9780521779395.
- Joel Tetreault, Daniel Blanchard, Aoife Cahill, and Martin Chodorow. Native tongues, lost and found: Resources and empirical evaluations in native language identification. In *Proceedings of COL-ING 2012*, pages 2585–2602, Mumbai, India, December 2012. The COLING 2012 Organizing Committee. URL http://www.aclweb.org/anthology/C12-1158.
- Joel Tetreault, Daniel Blanchard, and Aoife Cahill. A report on the first native language identification shared task. In *Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications*, Atlanta, GA, USA, June 2013. Association for Computational Linguistics.
- Gideon Toury. Descriptive Translation Studies and beyond. John Benjamins, Amsterdam / Philadelphia, 1995.
- Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-of-speech tagging with a cyclic dependency network. In *Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology (HLT-NAACL 2003)*, pages 173–180, Edmonton, Canada, June 2003. Association for Computational Linguistics.
- Oren Tsur and Ari Rappoport. Using classifier features for studying the effect of native language on the choice of written second language words. In *Proceedings of the Workshop on Cognitive Aspects of Computational Language Acquisition*, pages 9–16, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

- URL http://www.aclweb.org/anthology/W/W07/W07-0602.
- Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple and general method for semi-supervised learning. In *Proc. of ACL*, 2010.
- Vered Volansky, Noam Ordan, and Shuly Wintner. On the features of translationese. *Literary and Linguistic Computing*, Forthcoming.
- Sze-Meng Jojo Wong and Mark Dras. Contrastive analysis and native language identification. In *Proceedings of the Australasian Language Technology Association Workshop 2009*, pages 53–61, Sydney, Australia, December 2009. URL http://www.aclweb.org/anthology/U09-1008.
- Sze-Meng Jojo Wong and Mark Dras. Exploiting parse structures for native language identification. In *Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing*, pages 1600–1610, Edinburgh, Scotland, UK., July 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/D11-1148.