

What is claimed is:

- 1 1. A comparative inspection device comprising:
 - 2 a stage on which an object is mounted and which moves said object;
 - 3 a detector for detecting an image of said object on said stage, said image
 - 4 comprising a plurality of inspection image regions, and for outputting an image signal;
 - 5 and
- 6 an image processing unit for receiving said image signal, determining a plurality of offsets for said plurality of inspection image regions relative to a plurality of corresponding reference image regions, and determining a selected offset out of a set of offsets of the plurality of offsets; wherein said set has at least one high reliability offset of said plurality of offsets.
- 1 2. The comparative inspection device of claim 1, wherein said plurality of corresponding reference image regions are related to a time delayed plurality of inspection image regions.
- 1 3. The comparative inspection device of claim 1, wherein said selected offset is used to align an entire inspection image and an entire reference image.
- 1 4. The comparative inspection device of claim 1, wherein a reliability of an offset of said set is a high reliability offset if a pattern on an image region of said first image regions is dense and is a low reliability offset if said pattern is sparse.
- 1 5. The comparative inspection device of claim 1 wherein a reliability of an offset of said set is evaluated by comparing said offset with a predicted offset from past variations of offsets.
- 1 6. A method for aligning comparative inspection images comprising:
 - 2 an image detection means for detecting a plurality of inspection image regions ;
 - 4 an offset determining means for detecting offsets for said plurality of inspection image regions;
 - 6 an offset selection means for determining a selected offset with a high reliability from said offsets; and

8 an alignment means for aligning an entire inspection image and an entire
9 reference image using said selected offset.

1 7. A method for aligning a first image having a circuit pattern in a
2 semiconductor material with a second image, using an computer, said method
3 comprising:

4 dividing said first image into a plurality of regions;
5 dividing said second image into a plurality of corresponding regions;
6 determining a first region offset of a first region of said plurality of regions
7 from a first corresponding region of said plurality of corresponding regions; and
8 using said first region offset in determining an image offset for said first
9 image.

1 8. The method of claim 7 wherein said first region offset is an offset
2 with a high reliability.

1 9. The method of claim 7 further comprising:
2 determining a second region offset of a second region of said plurality of
3 regions from a second corresponding region of said plurality of corresponding regions;
4 and
5 wherein said first region offset is used in determining said image offset for
6 said first image, only if said first region offset has high reliability; and
7 wherein said determining said image offset for said first image further
8 comprises, using said second region offset, if said second region offset has high
9 reliability.

1 10. The method of claim 9 further comprising:
2 when said first region offset and said second region offset are used in
3 determining said image offset for said first image, said determining said image offset for
4 said first image further comprises:

5 determining a maximum correlation value using a first correlation matrix
6 associated with said first region offset and using a second correlation matrix associated
7 with said second region offset; and
8 selecting said image offset from a group consisting of said first region
9 offset and said second region, said selecting based on said maximum correlation value.

1 11. The method of claim 7 wherein, when images are received
2 consecutively, full-image offset reliability of said image offset for said first image is
3 evaluated and, if said full-image offset reliability is low, said first image is aligned using
4 a past offset having a high full-image offset reliability.

1 12. The method of claim 7 wherein, when images are received
2 consecutively, if an evaluation of full-image offset reliability for said image offset
3 determines that full-image offset reliability is high, said image offset is stored as
4 reference data for subsequent image alignments.

1 13. The method of claim 7 wherein, when images are received
2 consecutively, full-image offset reliability is determined by comparing collected past
3 offsets with high full-image offset reliability with said image offset.

1 14. A method for adjusting detection sensitivity in the inspection of
2 images of a semi-conductor material, comprising:
3 determining a reliability value for an image offset of an image;
4 if said image offset has low reliability, evaluating if an alignment error is
5 critical for said image; and
6 responsive to said evaluating, if said alignment error is critical, lowering
7 detection sensitivity.

1 15. The method of claim 14 wherein said image offset is calculated
2 using a plurality of region offsets, wherein a region offset of said plurality of region
3 offsets is determined using a part of said image.

1 16. The method of claim 14 wherein said alignment error is critical,
2 when said alignment error results in a detection error.

1 17. The method of claim 14 wherein said reliability is a full image
2 offset reliability.

1 18. The method of claim 14 wherein said reliability value is based on a
2 pattern density of said image.

1 19. The method of claim 14 wherein said reliability value is based on a
2 comparison of said image offset with a predicted offset, said predicted offset derived from
3 past image offsets.

1 20. The method of claim 19 wherein said predicted offset is derived
2 using an extrapolation from a characteristic curve of past image offsets.

1 21. The method of claim 19 wherein said predicted offset is derived
2 using an extrapolation from a characteristic curve of past image offsets.

1 22. A method for aligning an inspection image and a reference image,
2 wherein a difference between said inspection image and said reference image is used in
3 determining defects in a semiconductor material, said method comprising:

4 partitioning said inspection image into a plurality of sub-images;
5 partitioning said reference image into a corresponding plurality of sub-
6 images;

7 forming a plurality of sub-image sets, each sub-image set comprising a
8 sub-image of said plurality of sub-images and a corresponding sub-image of said
9 corresponding plurality of sub-images;

10 determining a plurality of offsets for said plurality of sub-image sets;
11 determining an image offset using a plurality of selected offsets from said
12 plurality of offsets; and

13 aligning said inspection image with said reference image using said image
14 offset.

1 23. The method of claim 22 wherein said plurality of selected offsets
2 are high reliability offsets.

1 24. The method of claim 23 wherein a selected offset of said plurality
2 of selected offsets is of high reliability, when a correlation matrix of said selected offset
3 has a largest value above a predetermined threshold.

1 25. The method of claim 23 wherein a reliability for a selected offset of
2 said plurality of selected offsets is determined using edge information in an associated
3 sub-image of said plurality of sub-images.

1 26. The method of claim 23 wherein a reliability for a selected offset is
2 determined using a pattern density for an associated sub-image of said plurality of sub-
3 images.

1 27. The method of claim 22 wherein an offset of said plurality of
2 offsets is determined using a correlation matrix for a sub-image set of said plurality of
3 sub-image sets.

1 28. The method of claim 27 wherein said offset is a selected offset
2 when said correlation matrix has a largest value above a predetermined threshold.

1 29. The method of claim 22 wherein said determining said image offset
2 using selected offsets, comprises using correlation matrices associated with said selected
3 offsets to determine a composite correlation matrix, and using said composite correlation
4 matrix to determine said image offset.

1 30. A comparative inspection device for aligning a plurality of images
2 of a semiconductor wafer, comprising:

3 a detector, comprising a plurality of sensor channels, for receiving a
4 current image of said plurality of images, wherein a sensor channel of said plurality of
5 sensor channels receives a portion of said current image; and

6 an image processing unit coupled to said sensor channel for determining
7 an offset between said portion of said current image and a corresponding portion of a
8 previous image of said plurality of images.

1 31. The comparative inspection device of claim 30 wherein said offset
2 is used in determining an alignment offset for said current image.

1 32. The comparative inspection device of claim 30, wherein said
2 determining said offset, comprises:

3 receiving said corresponding portion by said sensor channel before said
4 sensor channel receives said portion;

5 storing said corresponding portion in a delay memory; and

6 comparing said portion in said sensor channel with said corresponding
7 portion from said delay memory to determine said offset.

1 33. The comparative inspection device of claim 30, further comprising
2 a delay memory for storing said corresponding portion.

1 34. The comparative inspection device of claim 30, wherein said offset
2 is a high reliability offset.

1 35. The comparative inspection device of claim 30, further comprising:
2 a delay memory coupled to said plurality of sensor channels, said delay
3 memory storing corresponding portions of a previous image;

4 wherein said image processing unit is coupled to said delay memory and
5 said plurality of sensor channels, said image processing unit comprising:

6 a plurality of comparison channels, each comparison channel of said
7 plurality of comparison channels comprising, one sensor channel of said plurality of
8 sensor channels associated with one portion of said current image and a section of said
9 delay memory associated with one corresponding portion of said previous image;

10 an offset unit for determining a plurality of channel offsets for said
11 plurality of comparison channels; and

12 an image offset unit for determining said alignment offset for said current
13 image, using at least one high reliability offset from said plurality of channel offsets.

1 36. The comparative inspection device of claim 35, wherein said
2 plurality of comparison channels operate in parallel.

1 37. The comparative inspection device of claim 35, wherein said offset
2 unit determines a channel offset of said plurality of channel offsets by determining a
3 correlation matrix for a comparison channel of said plurality of comparison channels.

1 38. A computer program product stored on a computer readable
2 medium for aligning a first image having a circuit pattern in a semiconductor material
3 with a second image, said computer program product comprising:

4 code for dividing said first image into a plurality of regions;

5 code for dividing said second image into a corresponding plurality of
6 regions;

7 code for determining a first region offset of a first region of said plurality
8 of regions from a first corresponding region of said corresponding plurality of regions;
9 and
10 code for using said first region offset in determining an image offset for
11 said first image.