TRIGONOMETRY Chapter 18

Razones Trigonométricas de un ángulo en posición normal III

El Canadarm 2, es un brazo manipulador robótico de la Estación Espacial Internacional. Este manipulador es operado controlando los ángulos de sus articulaciones. Calcular la posición final del astronauta en el extremo del brazo requiere un uso repetido de las razones trigonométricas de esos ángulos que se forman por los varios movimientos que se realizan.

ÁNGULOS CUADRANTALES

Son aquellos ángulos en posición normal cuyo lado final coincide con algún semieje del plano cartesiano.

Son de la forma :

$$\alpha = 90^{\circ}.n$$
 , $n \in \mathbb{Z}$

$$n \in \mathbb{Z}$$

Ejemplos:

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS

CUADRANTALES

R.T	0°;360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
COT	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

N.D: No Determinado

1

Complete los casilleros en blanco.

a.
$$3\cos 0^{\circ} =$$

b.
$$5\tan 0^{\circ} =$$

c.
$$2\sec 360^{\circ} =$$

d.
$$4 sen 270^{\circ} =$$

Recordar:

RT	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

RESOLUCIÓN

a.
$$3\cos 0^{\circ} = 3(1) = 3$$

b.
$$5\tan 0^{\circ} = |5(0)| = 0$$

c.
$$2\sec 360^{\circ} = 2(1) = 2$$

d.
$$4 \sin 270^{\circ} = 4(-1) = -4$$

2

Efectúe:

 $R = 3sen90^{\circ} + 2sec360^{\circ} + cos180^{\circ}$

<u>RESOLUCIÓN</u>

Usando las RT de ángulos cuadrantales:

$$R = 3(1) + 2(1) + (-1)$$

$$R = 3 + 2 - 1$$

RT	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

3

Efectúe:

$$M = \frac{5\cos 0^{\circ} + 3\sec 360^{\circ}}{3\sec 90^{\circ} - \cos 180}$$

<u>RESOLUCIÓN</u>

$$M = \frac{5(1) + 3(1)}{3(1) - (-1)}$$

$$M = \frac{5 + 3}{3 + 1}$$

$$M = \frac{8}{4} \implies M = 2$$

RT *	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	1	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

Efectúe

$$W = (sen270^{\circ} + cos180^{\circ})^{2}(sen90^{\circ} + cos360^{\circ})^{3}$$

RESOLUCIÓN

Usando las RT de ángulos cuadrantales:

$$W = ((-1) + (-1))^2 ((1) + (1))^3$$

$$W = (-2)^2 (2)^3$$

$$W = (4)(8)$$

RT ◆	0°	90°	180°	270°	360°
sen	0	1	0	<u>-1</u>	0
cos	1	0	<u>- 1</u>	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

Simplifique

$$E = \frac{a^2 \operatorname{sen90^{\circ}} - ab \operatorname{cos180^{\circ}} + b^2 \operatorname{cot90^{\circ}}}{a \operatorname{cos360^{\circ}} - b \operatorname{sen270^{\circ}}}$$

<u>RESOLUCIÓN</u>

Usando las RT de ángulos cuadrantales:

$$E = \frac{a^{2}(1) - ab(-1) + b^{2}(0)}{a(1) - b(-1)}$$

$$E = \frac{a^{2} + ab}{a + b} \Rightarrow E = \frac{a(a + b)}{a + b}$$

$$E = a$$

RT [≮]	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

Calcule el valor de x si

$$2x\cos 0^{\circ} + 3\sin 90^{\circ} = \sec 180^{\circ} - x \tan 0^{\circ}$$

<u>RESOLUCIÓN</u>

Usando las RT de ángulos cuadrantales:

$$2x(1) + 3(1) = (-1) - x(0)$$

$$2x + 3 = -1$$

$$2x = -4$$

$$x = -2$$

RT 4	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

HELICO | PRACTICE

Calcule el valor de x si

$$\frac{x-\text{sen}90^{\circ}}{\cos 360^{\circ}} = \frac{x-\cos 180^{\circ}}{2\csc 90^{\circ}}$$

<u>RESOLUCIÓN</u>

$$\frac{x - (1)}{(1)} = \frac{x - (-1)}{2(1)}$$

$$x - 1 = \frac{x + 1}{2}$$

$$2x - 2 = x + 1$$

$$x = 3$$

RT	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	<u>-1</u>	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

HELICO | PRACTICE

8

A continuación se muestra la distribución de la memoria de un dispositivo USB con capacidad de 8 GB.

A: archivos

B: fotos

C: espacio disponible

Donde:

$$A = (5\sec 360^{\circ} + 2\csc 270^{\circ}) GB$$

$$B = (3\cos 0^{\circ} + \cos 180^{\circ}) GB$$

Determine el espacio disponible del USB.

<u>RESOLUCIÓN</u>

Usando las RT de ángulos cuadrantales:

•
$$A = (5(1) + 2(-1))GB$$

$$A = (5 - 2) GB \Rightarrow A = 3 GB$$

$$B = (3(1) + (-1)) GB$$

$$B = (3 - 1) GB \Rightarrow B = 2 GB$$

Piden: **C:** espacio disponible