

ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Β΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΗΜΕΡΟΜΗΝΙΑ: / /2024 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 2

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:	
----------------	--

ΑΡΧΗ ΣΕΛΙΔΑΣ 1

ΘEMAA (6M)

A1. Έστω μη μηδενικό διάνυσμα \vec{AB} του επιπέδου και ένα σημείο αναφοράς Ο. Αν σημείο Μ είναι το μέσον του διανύσματος \vec{AB} , να αποδείξετε ότι: $\vec{OM} = \frac{\vec{OA} + \vec{OB}}{2}$.

Μονάδες 1

Α2. Να χαρακτηρίσετε Σ (Σωστό) ή Λ (Λάθος) τις παρακάτω προτάσεις:

- i. Αν $|\vec{\alpha} + \vec{\beta}| = |\vec{\alpha}| + |\vec{\beta}|$, τότε τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$ είναι ομόρροπα
- ii. Αν $|\vec{\alpha} \vec{\beta}| = 0$, τότε τα διανύσματα $\vec{\alpha}$, $\vec{\beta}$, είναι ίσα
- iii. Αν $\lambda \cdot \vec{\alpha} = \mu \cdot \vec{\alpha}$, τότε ισχύει πάντα ότι $\lambda = \mu$
- iv. Av $\vec{\beta}$ = $\lambda \cdot \vec{\alpha}$, όπου $\lambda \in \mathbb{R}$, τότε $\vec{\alpha} \parallel \vec{\beta}$
- v. Av M: μέσον του διανύσματος \vec{AB} , τότε: $2 \cdot \vec{OM} = \vec{OA} + \vec{OB}$

Μονάδες 5

ΘΕΜΑ Β (4M)

Έστω δύο τρίγωνα ΑΒΓ και Α'Β'Γ' για τα οποία ισχύει ότι: $\vec{BA} = \vec{B'A'}$ και $\vec{A\Gamma} = \vec{A'\Gamma'}$. Αφού κάνετε ένα σχήμα, να εξηγήσετε γιατί:

- **Β1.** το μήκος της πλευράς ΑΓ ισούται με το μήκος της πλευράς Α'Γ' (1M)
- **Β2.** το μήκος της πλευράς AB ισούται με το μήκος της πλευράς A'B' (1M)
- **B3.** $\vec{B\Gamma} = \vec{B'\Gamma'}$ (1M)
- **Β4.** Το μήκος της πλευράς ΒΓ ισούται με το μήκος της πλευράς Β'Γ' (1M)

Μονάδες 4

Θ EMA Γ (7M)

Γ1. Αν Α, Β, Γ, Δ είναι τέσσερα σημεία του επιπέδου, να συμπληρώσετε τις ισότητες:

i.
$$\vec{AB} + \vec{B\Gamma} = \dots$$

ii.
$$\vec{B}\Gamma$$
 + = $\vec{B}\Delta$

i.
$$\vec{AB} + \vec{B\Gamma} = \dots = \vec{B\Delta}$$
 iii. $\vec{AB} - \vec{\Gamma}B = \dots$

iv.
$$\vec{BA} + \vec{AT} + \vec{TB} = \dots$$
 v. $\vec{AB} - \vec{A\Delta} = \dots$

v.
$$\vec{AB} - \vec{A\Delta} = \dots$$

Μονάδες 5

Γ2. Έστω τα σημεία A, B, Γ, Δ, Ε. Να αποδείξετε ότι:
$$\vec{AE} - \vec{\Gamma} \Delta = \vec{B\Gamma} + \vec{\Delta E} - \vec{BA}$$

Μονάδες 2

Θ EMA Δ (3M)

Σε ένα υλικό σημείο Ο εφαρμόζονται 3 δυνάμεις $\vec{F}_1, \vec{F}_2, \vec{F}_3$, οι οποίες σχηματίζουν ανά 2 γωνία 120 μοιρών, ώστε το υλικό σώμα να ισορροπεί, όπως φαίνεται στο παρακάτω σχήμα.

ΑΡΧΗ ΣΕΛΙΔΑΣ 2

Δ1. Ποιά σχέση μεταξύ των δυνάμεων $\vec{F}_1, \vec{F}_2, \vec{F}_3$ εκφράζει τη συνθήκη ισορροπίας?

Μονάδες 1

Δ2. Να αποδείξετε ότι τα διανύσματα \vec{F}_1 + \vec{F}_2 και \vec{F}_3 είναι αντίθετα

Μονάδες 2

