#### **Adopted Levels, Gammas**

|                                                                                                                |                                                                                                                                         | History                 |                            |                             |                                      |                        |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------|--------------------------------------|------------------------|--|--|--|--|--|--|
|                                                                                                                | Type                                                                                                                                    |                         | Author                     |                             | Citation                             | Literature Cutoff Date |  |  |  |  |  |  |
| Fu                                                                                                             | ll Evaluation                                                                                                                           | Alan L. Nichols, Ba     | ılraj Singh, J             | agdish K. Tuli              | NDS 113,973 (2012)                   | 15-Apr-2012            |  |  |  |  |  |  |
| $Q(\beta^-) = -3958.9 \ 5$                                                                                     | $Q(\beta^-) = -3958.9 \ 5$ ; $S(n) = 10595.9 \ 4$ ; $S(p) = 11137.2 \ 8$ ; $Q(\alpha) = -7016.3 \ 5$ 2012Wa38                           |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| Note: Current evaluation has used the following Q record -3958.90 4810595.8 3 11137.2 7 -7016.3 4 2011AuZZ.    |                                                                                                                                         |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| S(2n)=18415.95 3                                                                                               | S(2n)=18415.95 31, S(2p)=19910.9 34 (2011AuZZ).                                                                                         |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| Values in 2003Au                                                                                               | Values in 2003Au03: $Q(\beta^-)=-3948$ 4, $S(n)=10596.5$ 3, $S(p)=11136.6$ 7, $Q(\alpha)=7017.6$ 6, $S(2n)=18416.7$ 3, $S(2p)=19912$ 3. |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| 2001Tr23: measur                                                                                               | 2001Tr23: measured level widths and shifts in anti-protonic atoms.                                                                      |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| 2006An27: nuclea                                                                                               | ar structure cal                                                                                                                        | culations of first 2+ a | and 3 <sup>-</sup> states. |                             |                                      |                        |  |  |  |  |  |  |
| Other Reactions:                                                                                               |                                                                                                                                         |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
|                                                                                                                |                                                                                                                                         | 6, 1968Ab10; g.s. an    |                            |                             |                                      |                        |  |  |  |  |  |  |
|                                                                                                                |                                                                                                                                         | al, FWHM=50-60 ke       |                            |                             |                                      |                        |  |  |  |  |  |  |
| <sup>66</sup> Zn(d, <sup>6</sup> Li): 1973                                                                     | Ce02: E=27.2                                                                                                                            | 5 MeV, Si telescopes,   | , FWHM=40                  | 0 keV, $\sigma(\theta)$ for | g.s. and first 2 <sup>+</sup> state. |                        |  |  |  |  |  |  |
| XREF table: the                                                                                                | following level                                                                                                                         | s are populated in rea  | ctions labele              | d with XREF=                | Y:                                   |                        |  |  |  |  |  |  |
| <sup>58</sup> Fe( <sup>16</sup> O, <sup>12</sup> C): 0,                                                        | 1173, 2340, 2                                                                                                                           | 890, 3270, 3520, 375    | 0.                         |                             |                                      |                        |  |  |  |  |  |  |
| <sup>62</sup> Ni( <sup>3</sup> He, <sup>3</sup> He'), ( <sup>3</sup> He, dp): 0, 1173, 2300, 2340, 3750, 4350. |                                                                                                                                         |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| $^{63}$ Cu(n,np $\gamma$ ): 0, 1                                                                               | <sup>63</sup> Cu(n,npγ): 0, 1173, 2302, 2336, 3059.                                                                                     |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| 63Cu(6Li,7Be),(9H                                                                                              | <sup>63</sup> Cu( <sup>6</sup> Li, <sup>7</sup> Be),( <sup>9</sup> Be, <sup>10</sup> B): 0, 1173.                                       |                         |                            |                             |                                      |                        |  |  |  |  |  |  |
| <sup>64</sup> Zn( <sup>14</sup> C, <sup>16</sup> O): 0,                                                        | $^{64}$ Zn( $^{14}$ C, $^{16}$ O): 0, 1173.                                                                                             |                         |                            |                             |                                      |                        |  |  |  |  |  |  |

#### 62Ni Levels

 $T_{1/2}$ (first 2<sup>+</sup> level at 1173 keV):

 $^{66}$ Zn( $\alpha$ ,2 $\alpha$ ): 0, 1173, 2360.

 $\tau$ =2.09 ps 6 is weighted average of 13 values from different methods listed as comments below. A minimum uncertainty of 5% was assigned, and three methods were employed in the weighted averaging procedures. A value consistent with all the three methods has been adopted (LWM: limitation of statistical weights; NRM: normalized residuals method; RT: Rajeval technique). Reduced  $\chi^2$ varies between 1.1 and 2.2 in the three methods. 2001Ra27 evaluation adopted a very similar value of  $\tau$ =2.07 ps 6 which did not include the 2001Ke08 measurement. Other:  $T_{1/2}=1.24 \text{ ps} +60-33 \text{ (2011Ch05)}$  in  $(n,n'\gamma)$ .

Individual values of mean lifetime  $\tau$  in ps as used in the averaging procedures are given below:

<sup>62</sup>Ni isotope identified in mass spectroscopic data by F.W. Aston, Nature 134, 178 (1934).

- 1. Deduced from BE2↑ measurement in Coulomb excitation: 2.25 45 (1960An07, earlier value of 1.40 35 in 1959Al95), 2.23 22 (1962St02), 2.20 13 (1969Ha31), 2.05 6 (1970Le17), 2.09 7 (1971ChZF).
- 2. From  $\Gamma$  in  $(\gamma, \gamma')$ : 2.15 42 (1981Ca10, also 2.1 ps 5 in 1977Ca14 from the same group as 1981Ca10).
- 3. From B(E2) in (e,e'): 2.096 27 (1967Du07), 2.99 20 (1972Li28), 1.82 18 (1975DeXW).
- 4. From DSAM in  $(\alpha,p\gamma)$ : 1.55 25 (1978Ke11), 1.6 +4-6 (1978Oh04).
- 5. From DSAM in Coulomb excitation: 2.28 18 (1965Es01), 2.01 12 (2001Ke08), uncertainty increased to 0.12 to include 5% systematic uncertainty due to stopping powers, as suggested by one of the authors of 2001Ke08 in an e-mail communication to evaluators, December 2007.

#### Cross Reference (XREF) Flags

| A | <sup>62</sup> Co $β$ <sup>-</sup> decay (1.54 min)                                      | L | <sup>61</sup> Ni(d,p),(pol d,p)             | W     | $^{64}$ Ni(p,t)                                           |
|---|-----------------------------------------------------------------------------------------|---|---------------------------------------------|-------|-----------------------------------------------------------|
| В | $^{62}$ Co $β^-$ decay (13.86 min)                                                      | M | $^{62}$ Ni $(\gamma, \gamma')$              | X     | $^{65}$ Cu(p, $\alpha$ )                                  |
| C | <sup>62</sup> Cu ε decay (9.67 min)                                                     | N | $^{62}$ Ni(e,e')                            | Y     | $^{58}$ Fe( $^{16}$ O, $^{12}$ C)                         |
| D | $^{48}$ Ca( $^{18}$ O,4n $\gamma$ )                                                     | 0 | $^{62}$ Ni(n,n' $\gamma$ )                  | Z     | $^{62}$ Ni( $^{3}$ He, $^{3}$ He'),( $^{3}$ He,dp)        |
| E | <sup>58</sup> Fe( <sup>6</sup> Li,d)                                                    | P | <sup>62</sup> Ni(p,p'),(pol p,p')           | Other |                                                           |
| F | $^{59}$ Co( $\alpha$ ,p $\gamma$ )                                                      | Q | $^{62}$ Ni(p,p' $\gamma$ )                  | AA    | $^{63}$ Cu(n,np $\gamma$ )                                |
| G | <sup>60</sup> Ni(t,p),(pol t,p)                                                         | R | <sup>62</sup> Ni(d,d'),(pol d,d')           | AB    | $^{63}$ Cu( $^{6}$ Li, $^{7}$ Be),( $^{9}$ Be, $^{10}$ B) |
| H | $^{60}$ Ni( $\alpha$ , $^{2}$ He)                                                       | S | $^{62}\mathrm{Ni}(\alpha,\alpha')$          | AC    | $^{64}$ Zn( $^{14}$ C, $^{16}$ O)                         |
| I | <sup>60</sup> Ni( <sup>12</sup> C, <sup>10</sup> C),( <sup>14</sup> C, <sup>12</sup> C) | T | Coulomb excitation                          | AD    | $^{66}$ Zn( $\alpha$ ,2 $\alpha$ )                        |
| J | $^{61}$ Ni(n, $\gamma$ ) E=thermal                                                      | U | <sup>63</sup> Cu(n,d)                       |       |                                                           |
| K | $^{61}$ Ni(n, $\gamma$ ),(n,n):resonances                                               | ٧ | $^{63}$ Cu(d, $^{3}$ He),(pol d, $^{3}$ He) |       |                                                           |

| E(level) <sup>†</sup>               | $J^{\pi}$                        | T <sub>1/2</sub> &                 | XREF Co                                                                                                                                                                                  | omments                                                                                                                                                         |
|-------------------------------------|----------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                                 | 0+                               | stable                             | http://cdfe.sinp.msu 2012Sc01 deduced va occupancy as follow experimental spectr study of <sup>62</sup> Ni(p,d) a                                                                        | 21 (2004An14 8 update available on .ru). lence orbit neutron vs from summed oscopic factors in their reaction: 2.31 each for 3 for 1p <sub>1/2</sub> , 0.34 for |
| 1172.98 <i>10</i>                   | 2+                               | 1.45 ps <i>4</i>                   | ABCDEFGHIJ LMNOPQRSTUVWXYZ XREF: Others: AA, AI $\mu$ =+0.33 5 (2001Ke02 Q=+0.05 12 (1974Le B(E2) $\uparrow$ =0.0881 25 $\mu$ : transient-field integ                                    | 8, AC, AD<br>2,2011StZZ)<br>13,1989Ra17,2011StZZ)<br>ral PAC (2001Ke02).<br>4 (1988Sp04), +0.64 22<br>rul. ex.                                                  |
| 2048.68 12                          | 0+                               | 0.76 <sup>a</sup> ps +76-28        | C EFG J LM OPQRS WX $J^{\pi}$ : $L(t,p)=L(p,t)=0$ . $T_{1/2}$ : Other: 1.8 ps +                                                                                                          |                                                                                                                                                                 |
| 2301.84 <i>13</i>                   | 2+                               | $0.58^a \text{ ps } +16-9$         | ABC EFG J LMNOPQ S WX Z XREF: Others: AA, AI $J^{\pi}$ : $L(p,t)=L(t,p)=2$ .                                                                                                             |                                                                                                                                                                 |
| 2336.52 14                          | 4+                               | 0.86 <sup>a</sup> ps +24-13        | B DEFG J L OPQRSTUVWXYZ $T_{1/2}$ : Other: 0.67 ps - XREF: Others: AA, AI $J^{\pi}$ : $L(p,t)=L(t,p)=4$ . $T_{1/2}$ : other: 0.86 ps -4                                                  | )                                                                                                                                                               |
| 2890.63 <i>20</i> 3058.76 <i>17</i> | 0 <sup>+</sup><br>3 <sup>+</sup> | $>3.1^{a}$ ps $2.3^{a}$ ps $+14-7$ | C EFG J L OPQR WXY $J^{\pi}$ : $L(p,t)=0$ .<br>A F J L OPQ WX XREF: Others: AA $J^{\pi}$ : from $(n,n'\gamma)$ . g.s. level as seen in $(n,m'\gamma)$ measurements indicates $J^{\pi}$ . | transition from this $\gamma$ is disputed. A <sub>2</sub> ,A <sub>4</sub> ate $\Delta$ J=1 for all three $\gamma$                                               |
| 3157.96 <i>16</i>                   | 2+                               | 0.62 ps +11-10                     | A C EFG J M OPQRS U Wx $T_{1/2}$ : from $(n,n'\gamma)$ . O $(\alpha,p\gamma)$ . J <sup><math>\pi</math></sup> : $L(p,t)=L(t,p)=2$ .                                                      | ther: 0.69 ps +55–28 in                                                                                                                                         |
| 3176.7 <i>3</i>                     | 4+                               | $0.73^{a}$ ps 17                   | B D F L OP Wx $J^{\pi}$ : L(p,t)=4.                                                                                                                                                      |                                                                                                                                                                 |
| 3257.62 21                          | 2+                               | $0.71^{a} \text{ ps } 17$          | A C F J L OPQ Wxy $J^{\pi}$ : L(p,t)=2.                                                                                                                                                  |                                                                                                                                                                 |
| 3262 8                              | (2,4)+                           | •                                  | E G L PQ xy $J^{\pi}$ : from L( $^{6}$ Li,d)=2+<br>unresolved doublet.<br>E(level): may include                                                                                          | Also, $L(d,p)=1+3$ .                                                                                                                                            |
| 3269.97 20                          | 1+,2+#                           | 0.125 ps <i>14</i>                 | A C J M O xy $J^{\pi}$ : $L(d,p)=1+3$ for a $T_{1/2}$ : from $(n,n'\gamma)$ .                                                                                                            | level at 3265 10.                                                                                                                                               |
| 3277.69 23                          | 4 <sup>+</sup>                   | $0.195^{a} \text{ ps } +34-18$     | B D FG 0 RS W y $T_{1/2}$ : other: 0.42 ps + $J^{\pi}$ : L(p,t)=4 for a leve                                                                                                             | 7-6 in $(n,n'\gamma)$ .<br>el at 3271 5; $L(\alpha,\alpha')=4$ $\gamma$ decay to $2^+$ state is                                                                 |
| 3369.98 20                          | 1+#                              | 0.19 <sup>a</sup> ps 9             | A C F J LM OP x $T_{1/2}$ : other: 0.35 ps + $J^{\pi}$ : earlier suggested a measurement sugge dipole (2011Ch05).                                                                        |                                                                                                                                                                 |
| 3378 <i>3</i>                       |                                  |                                    | F                                                                                                                                                                                        |                                                                                                                                                                 |
| 3462 3                              | 1 <sup>+</sup> to 4 <sup>+</sup> |                                    | F L PQ VWx $J^{\pi}$ : L=3, dominant J-t d,p).                                                                                                                                           | ransfer is 5/2 in (pol                                                                                                                                          |

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E(level) <sup>†</sup> | $\mathrm{J}^\pi$                 | T <sub>1/2</sub> &           | XREF                                                                                     | Comments                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3486 <i>3</i>         |                                  |                              | F x                                                                                      |                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3518.23 22            | 2+                               | 0.201 <sup>a</sup> ps 38     | decays to<br>L=0 comp<br>level.                                                          | $0^+$ levels; $L(t,p)=2$ ; $L(p,t)=0+2$ . Somet is most likely for 3524               |
| 3524.4 5 0+ 0.7b ps +5-2 E 0 wxy XREF: Others: AA, AC XREF: 2519). From (n,n'y); L(\(^1\)L(\))=0+2. 3756.5 3 3- 0.149a ps +34-22 EFG J L NOPQRS WyZ B(E3)\(^1\)=0.020 3 (1967Du07,2002Ki06) J <sup>\(^1\)</sup> : L(\)L(\)L(\)=(L(\))=\(^1\)L(\)p\(^1\)=0.3 T1/\(^2\): other: 0.17 ps +8-5 in (n,n'y). B(E3) from (e,e') (1967Du07). 3849.4 3 0+1,2+ 0.277a ps +17-9 C FG J LM P R U W XREF: Others: AC XREF: L(\) L(\) Evel is E1. 3859.6 4 1+,2+ 0.277a ps +17-9 C FG J LM P R U W XREF: L(\)AREF: L                                                                                                                                                                                                                                                                                                                                                             | 2522 54 19            | 2+ 2+@                           | 0.150                        | •                                                                                        |                                                                                       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | *                                |                              | ,                                                                                        |                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3324.4 3              | U                                | 0.7° ps +3-2                 | XREF: E(35                                                                               | 19).                                                                                  |
| 3849.4 3 $0^{+}, 1^{+}, 2^{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3756.5 3              | 3-                               | 0.149 <sup>a</sup> ps +34-22 | EFG J L NOPQRS W yZ $B(E3)\uparrow=0.02$<br>$J^{\pi}$ : $L(p,t)=L$<br>$T_{1/2}$ : other: | 20 3 (1967Du07,2002Ki06)<br>(t,p)= $L(p,p')=3$ .<br>0.17 ps +8-5 in (n,n' $\gamma$ ). |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3849.4 <i>3</i>       | 0+,1+,2+                         |                              | J M PQ $J^{\pi}$ : from $(\gamma, \gamma)$                                               | $\gamma'$ ) if $\gamma$ decay from 7646, 1                                            |
| 3967 $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3859.6 4              | 1+,2+                            | 0.277 <sup>a</sup> ps +17-9  | XREF: L(38 $J^{\pi}$ : J=1,2 from $\pi$ =+ from                                          | 53). om $\gamma$ transitions to $0^+$ states, log $ft=5.6$ from $1^+$ ; $L(d,p)=1$ ;  |
| 3972.9 4 2+ 0.111 <sup>a</sup> ps 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3967-3                | +                                |                              |                                                                                          |                                                                                       |
| 4000.5 10 4 <sup>+</sup> 0.042 <sup>a</sup> ps +28-21 F P W J <sup><math>\pi</math></sup> : L(p,t)=4.<br>4011.0 15 >0.90 <sup>a</sup> ps F T D P W T <sub>1/2</sub> : from DSA and RDM in ( <sup>18</sup> O,4n $\gamma$ ). Other: 0.076 ps +62-28 in ( $\alpha$ ,p $\gamma$ ). J $\pi$ : E2 $\gamma$ to 4 <sup>+</sup> and intense feeding in ( <sup>18</sup> O,4n $\gamma$ ). J $\pi$ : E2 $\gamma$ to 4 <sup>+</sup> and intense feeding in ( <sup>18</sup> O,4n $\gamma$ ). J $\pi$ : L(p,t)=4.<br>4035 7 (0 to 3) <sup>+</sup> L P W J $\pi$ : L(p,t)=4.<br>4055.3 3 4 <sup>+</sup> 0.042 <sup>a</sup> ps +15-10 B F L P W J $\pi$ : L(p,t)=4.<br>4062.4 5 1 <sup>+</sup> ,2 <sup>+#</sup> A FG J M UV x 4146.0 8 (4 <sup>+</sup> ) 0.34 <sup>a</sup> ps +21-11 F HI 1 PQ UVW XREF: Others: AB, AD XREF: I(4200). J $\pi$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.<br>4151.4 3 2 <sup>+</sup> ,3 <sup>+@</sup> 0.034 <sup>a</sup> ps 9 F J 1 P W J $\pi$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.<br>4161.26 24 (5 <sup>-</sup> ) <1.4 ps D F S J $\pi$ : L(p,t)=(4) for a doublet at 4150. J=(5) from ( <sup>18</sup> O,4n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 2+                               | 0.111 <sup>a</sup> ps 35     |                                                                                          |                                                                                       |
| 4018.88 25 (6) <sup>+</sup> 0.62 ps 28 D F L OP W $T_{1/2}$ : from DSA and RDM in ( $^{18}$ O,4nγ). Other: 0.076 ps +62-28 in (α,pγ). $J^{\pi}$ : E2 γ to 4 <sup>+</sup> and intense feeding in ( $^{18}$ O,4nγ). $J^{\pi}$ : E2 γ to 4 <sup>+</sup> and intense feeding in ( $^{18}$ O,4nγ). $J^{\pi}$ : L(d,p)=1 from 3/2 <sup>-</sup> target. $J^{\pi}$ : L(d,p)=1 from 3/2 <sup>-</sup> target. $J^{\pi}$ : L(p,t)=4. $J^{\pi}$ : L(p,t)                   | 4000.5 10             | 4+                               | $0.042^{a}$ ps $+28-21$      |                                                                                          |                                                                                       |
| Other: $0.076 \text{ ps} +62-28 \text{ in } (\alpha, \text{py})$ . $J^{\pi}$ : $E2 \gamma \text{ to } 4^+$ and intense feeding in $(^{18}\text{O}, 4\text{ny})$ . $J^{\pi}$ : $E2 \gamma \text{ to } 4^+$ and intense feeding in $(^{18}\text{O}, 4\text{ny})$ . $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=1 \text{ from } 3/2^- \text{ target.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a doublet at } 4154 \text{ 6}$ ; $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=3 \text{ for a } 4153  10 \text{ level.}$ $J^{\pi}$ : $L(d,p)=$ |                       |                                  |                              |                                                                                          | 10                                                                                    |
| 4055.3 3 4+ 0.042 $^a$ ps +15-10 B F L P Wx J $^\pi$ : L(p,t)=4.<br>4062.4 5 1+,2+# A FG J M UV x<br>4146.0 8 (4+) 0.34 $^a$ ps +21-11 F HI 1 PQ UVw XREF: Others: AB, AD XREF: I(4200).<br>J $^\pi$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.<br>4151.4 3 2+,3+@ 0.034 $^a$ ps 9 F J 1 P W J $^\pi$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.<br>4161.26 24 (5-) <1.4 ps D F S J $^\pi$ : L( $\alpha,\alpha'$ )=5 for a level at 4150. J=(5) from ( $^{18}$ O,4n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4018.88 25            | (6)+                             | 0.62 ps 28                   | Other: $0.0$ $J^{\pi}$ : E2 $\gamma$ to 4                                                | 76 ps $+62-28$ in $(\alpha, p\gamma)$ .<br>1 <sup>+</sup> and intense feeding in      |
| 4062.4 5 1+,2+#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                  |                              | L PQ $J^{\pi}$ : L(d,p)=1                                                                | from 3/2 <sup>-</sup> target.                                                         |
| 4146.0 8 (4 <sup>+</sup> ) 0.34 <sup>a</sup> ps +21-11 F HI 1 PQ UVw XREF: Others: AB, AD XREF: I(4200). $J^{\pi}$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.  4151.4 3 2+,3+@ 0.034 <sup>a</sup> ps 9 F J 1 P w $J^{\pi}$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.  4154.2 4 (4 <sup>+</sup> ) FG 1 w $J^{\pi}$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 10 level.  4161.26 24 (5 <sup>-</sup> ) <1.4 ps D F S $J^{\pi}$ : L(\alpha,\alpha')=5 for a level at 4150. J=(5) from (\frac{18}{9}\text{O},4n\alpha).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                  | $0.042^{a}$ ps $+15-10$      | ***                                                                                      |                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                  | 0.049                        |                                                                                          |                                                                                       |
| 4154.2 4 (4 <sup>+</sup> ) FG 1 W $J^{\pi}$ : L(p,t)=(4) for a doublet at 4154 6; L(d,p)=3 for a 4153 <i>10</i> level.<br>4161.26 24 (5 <sup>-</sup> ) <1.4 ps D F S $J^{\pi}$ : L( $\alpha,\alpha'$ )=5 for a level at 4150. J=(5) from ( ${}^{18}O,4n\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4146.0 8              | (4')                             | 0.34 <sup>ac</sup> ps +21–11 | XREF: I(420 $J^{\pi}$ : L(p,t)=(4                                                        | 00).<br>1) for a doublet at 4154 6;                                                   |
| L(d,p)=3 for a 4153 <i>10</i> level.<br>4161.26 24 (5 <sup>-</sup> ) <1.4 ps D F S $J^{\pi}$ : L( $\alpha,\alpha'$ )=5 for a level at 4150. J=(5) from ( $^{18}$ O,4n $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                  | 0.034 <sup>a</sup> ps 9      |                                                                                          |                                                                                       |
| $(^{18}\mathrm{O},4\mathrm{n}\gamma)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | (4+)                             |                              | L(d,p)=3                                                                                 | for a 4153 <i>10</i> level.                                                           |
| 4179 3 F P R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | (5 <sup>-</sup> )                | <1.4 ps                      |                                                                                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | (2.4)=                           |                              | F P R                                                                                    | f I 4 d                                                                               |
| 4201.0 4 (3,4) <sup>-</sup> J L P J <sup><math>\pi</math></sup> : 3 <sup>-</sup> to 6 <sup>-</sup> from L=4, dominant J-transfer 9/2 in (pol d,p); $\gamma$ decay to 2 <sup>+</sup> ,3 <sup>+</sup> state excludes 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | (3,4)                            |                              | 9/2 in (po<br>excludes 6                                                                 | d,p); $\gamma$ decay to $2^+,3^+$ state                                               |
| 4208.8 21<br>4230.0 10 0 <sup>+</sup> J M P R W $J^{\pi}$ : L(p,t)=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | $0^{+}$                          |                              |                                                                                          |                                                                                       |
| 4317.2 <i>II</i> 1 <sup>+</sup> ,2 <sup>+#</sup> G J P W Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                  |                              | -                                                                                        |                                                                                       |
| 4393 7 (1 to 5) <sup>+</sup> L PQ $J^{\pi}$ : L(d,p)=3 from 3/2 <sup>-</sup> target.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                  |                              |                                                                                          | from 3/2 <sup>-</sup> target.                                                         |
| 4407 4 $2^+$ P W $J^{\pi}$ : $L(p,t)=2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 2+                               |                              |                                                                                          |                                                                                       |
| 4415.9 5 1 <sup>+</sup> ,2 <sup>+#</sup> G J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | 1 <sup>+</sup> ,2 <sup>+</sup> # |                              |                                                                                          |                                                                                       |
| 4424 3<br>4437 4 (3 <sup>-</sup> ) F PQ S W $J^{\pi}$ : $L(\alpha, \alpha') = (3)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | (3-)                             |                              |                                                                                          | (3).                                                                                  |

| E(level) <sup>†</sup>                                   | $J^{\pi}$                                                            | T <sub>1/2</sub> & | XR          | EF           |               | Comments                                                                                                                                                                                                         |
|---------------------------------------------------------|----------------------------------------------------------------------|--------------------|-------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4455 <i>4</i><br>4503 <i>4</i>                          | (3)-                                                                 |                    | G L<br>G L  | P<br>PQ      | W<br>W        | J <sup>π</sup> : L(p,t)=(3); L(pol d,p)=4 from 3/2 <sup>-</sup> target for a 4500 25 level.                                                                                                                      |
| 4623 <i>5</i><br>4627.5 <i>10</i>                       | 0 <sup>+</sup><br>2 <sup>+</sup> ,3 <sup>+</sup> @                   |                    | G<br>J      | PQ           | W             | a 4300 23 level.<br>$J^{\pi}$ : $L(p,t)=L(t,p)=0$ .                                                                                                                                                              |
| 4648.9 <i>3</i> 4655 <i>5</i>                           | (7 <sup>-</sup> ) <sup>‡</sup><br>3 <sup>-</sup>                     | 509 ps 24          | D F HI<br>G | Q S<br>P     | W             | $J^{\pi}$ : D+Q $\gamma$ to (6 <sup>+</sup> ) and E2 $\gamma$ to (5), ( <sup>18</sup> O,4n $\gamma$ ). $J^{\pi}$ : L(p,t)=3.                                                                                     |
| 4704 <i>7</i><br>4712 <i>5</i><br>4719.9 <i>7</i>       | 2 <sup>+</sup> (3) <sup>-</sup>                                      |                    | G L<br>JL   | PQ<br>P      | x<br>Wx<br>Wx | $J^{\pi}$ : L(p,t)=2.<br>$J^{\pi}$ : L=4, dominant J-transfer is 9/2 for a level at 4720 25, <sup>61</sup> Ni(pol d,p); $\gamma$ to 2 <sup>+</sup> .                                                             |
| 4781 <i>5</i> 4835 <i>7</i>                             | 2+                                                                   |                    | G           | PQ S<br>P    | U W           | $J^{\pi}$ : L(p,t)=2.                                                                                                                                                                                            |
| 4847 7                                                  | $(1 \text{ to } 5)^{(+)}$                                            |                    |             | PQ           | V             | $J^{\pi}$ : L(d, ${}^{3}$ He)=3 from 3/2 <sup>-</sup> target for a 4850 80 group.                                                                                                                                |
| 4861 <i>5</i> 4863.3 <i>3</i>                           | (2 <sup>+</sup> )<br>5 <sup>-</sup> ,6 <sup>-</sup>                  | 8.39 ps <i>14</i>  | D<br>G L    | PQ           | x<br>Wx       | $J^{\pi}$ : L(p,t)=(2).<br>$J^{\pi}$ : L=4, dominant J-transfer of 9/2 <sup>+</sup> in (pol d,p) gives 3 <sup>-</sup> to 6 <sup>-</sup> . Lifetime and strong feeding in ( <sup>18</sup> O,4ny) exclude 3 and 4. |
| 4882 <i>5</i><br>4949 <i>7</i>                          | 4+                                                                   |                    | L           | P<br>P       | Wx            | $J^{\pi}$ : L(p,t)=4.                                                                                                                                                                                            |
| 4967 <i>7</i><br>4981 <i>7</i>                          | (4 <sup>+</sup> )                                                    |                    | GH          | P<br>P       |               | J <sup><math>\pi</math></sup> : from DWBA analysis and proposed configuration= $\nu$ p <sub>3/2</sub> $\otimes \nu$ f <sub>5/2</sub> in ( $\alpha$ , <sup>2</sup> He).                                           |
| 4994 <i>6</i><br>4999.7 <i>14</i>                       | 3 <sup>-</sup><br>1 <sup>+</sup> ,2 <sup>+#</sup>                    |                    | G J         | P<br>Q       | W             | $J^{\pi}$ : L(p,t)=3.                                                                                                                                                                                            |
| 5016 <i>5</i><br>5041 <i>10</i>                         | 4 <sup>+</sup> (3 <sup>-</sup> to 6 <sup>-</sup> )                   |                    | G L         | P<br>P       | W             | $J^{\pi}$ : L(p,t)=4.<br>$J^{\pi}$ : L=4, dominant J-transfer is 9/2 in (pol d,p) for a level at 5030 25.                                                                                                        |
| 5071 <i>10</i><br>5121 <i>10</i>                        |                                                                      |                    | L           | PQ<br>PQ     |               |                                                                                                                                                                                                                  |
| 5148 <i>5</i><br>5154 <i>10</i>                         | $(2^+)$<br>$(2^+,4^+)$                                               |                    | G           | P<br>P       | W             | $J^{\pi}$ : $L(p,t)=(2)$ .<br>$J^{\pi}$ : $L(t,p)=(2+4)$ .                                                                                                                                                       |
| 5203 5<br>5222 10<br>5233 10                            | 2+                                                                   |                    |             | P<br>PQ<br>P | W             | $J^{\pi} \colon L(p,t)=2.$                                                                                                                                                                                       |
| 5280 <i>10</i><br>5286 <i>6</i><br>5310                 | (2 <sup>+</sup> )<br>2 <sup>+</sup>                                  |                    | G           | PQ<br>P<br>S | W             | $J^{\pi}$ : $L(p,t)=(2)$ .<br>$J^{\pi}$ : $L(\alpha,\alpha')=2$ .                                                                                                                                                |
| 5331 10                                                 | (3)-                                                                 |                    | G i L       | PQ           |               | $J^{\pi}$ : J=(3) from L(t,p)=(3); $\pi$ =- from L(d,p)=2.<br>Also L=2, dominant J-transfer is 5/2 in (pol d,p).                                                                                                 |
| 5355 <i>5</i><br>5393 <i>10</i>                         | 4+                                                                   |                    | i           | P<br>P       | W             | $J^{\pi}$ : $L(p,t)=4$ .                                                                                                                                                                                         |
| 5420 5<br>5447 5<br>5465 6<br>5488 10                   | (4 <sup>+</sup> )<br>0 <sup>+</sup>                                  |                    | G<br>G      | PQ<br>P<br>P | W<br>W<br>W   | $J^{\pi}$ : $L(p,t)=(4)$ .<br>$J^{\pi}$ : $L(p,t)=0$ .                                                                                                                                                           |
| 5511 10<br>5.53×10 <sup>3</sup> 10<br>5541 5<br>5545 10 | 6 <sup>+</sup><br>2 <sup>+</sup><br>3 <sup>-</sup> to 6 <sup>-</sup> |                    | G L         | P<br>N<br>P  | VW            | $J^{\pi}$ : from form factor in $^{62}$ Ni(e,e').<br>$J^{\pi}$ : L(p,t)=2.<br>$J^{\pi}$ : L=4, dominant J-transfer is 9/2 in (pol d,p)                                                                           |
| 5565 <i>10</i><br>5574 <i>5</i>                         | 2+                                                                   |                    | G           | P<br>P       | W             | for a level at 5540 25. $J^{\pi}$ : L(p,t)=2.                                                                                                                                                                    |

| E(level) <sup>†</sup> | $\mathbf{J}^{\pi}$               | $T_{1/2}$ &       |   |    | XR | EF |   |     | Comments                                                                                            |
|-----------------------|----------------------------------|-------------------|---|----|----|----|---|-----|-----------------------------------------------------------------------------------------------------|
| 5587 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 5601 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 5628 6                | 3-                               |                   |   | G  | L  |    | S | W   | $J^{\pi}$ : L(t,p)=3; L( $\alpha,\alpha'$ )=3 for a level at 5640 10.                               |
| 5673 10               | 5-                               |                   |   | HI | -  | P  |   | •   | s : E(t,p)=5, E(t,a)=5 for a lever at 50 to 70.                                                     |
| 5679 8                | 3                                |                   |   | G  |    | P  |   | W   |                                                                                                     |
| 5709 10               |                                  |                   |   | ď  |    | P  |   | "   |                                                                                                     |
| 5739 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
|                       | (O-) †                           | 0.55              | _ |    |    | 1  |   |     | TT F2 (7) 4640 1 1 (180 4 )                                                                         |
| 5751.2 <i>3</i>       | (9 <sup>-</sup> ) <sup>‡</sup>   | 0.55 ps <i>21</i> | D |    |    | ъ  |   |     | $J^{\pi}$ : E2 $\gamma$ to (7), 4648 level, ( <sup>18</sup> O,4n $\gamma$ ).                        |
| 5772 10               | (7.0.0)                          | 1.4               | _ |    |    | P  |   |     | TT 6 1:6 (1804)                                                                                     |
| 5806.1 4              | (7,8,9)                          | <1.4 ps           | D |    |    | _  |   |     | $J^{\pi}$ : from lifetime and strong feeding, ( <sup>18</sup> O,4n $\gamma$ ).                      |
| 5808 6                | (3-)                             |                   |   |    |    | P  |   | W   | $J^{\pi}$ : L(p,t)=(3).                                                                             |
| 5834 10               |                                  |                   |   |    | L  | P  |   |     | $J^{\pi}$ : L(pol d,p)=2 for a level at 5830 25.                                                    |
| 5846 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 5859 10               |                                  |                   |   |    | L  | P  |   |     |                                                                                                     |
| 5870 <i>10</i>        | (4+)                             |                   |   |    |    | P  |   | 7.7 | TI I ( A) (A)                                                                                       |
| 5888 8                | $(4^{+})$                        |                   |   |    |    | P  |   | W   | $J^{\pi}$ : L(p,t)=(4).                                                                             |
| 5901 <i>10</i>        | 4+                               |                   |   |    |    | P  |   | 7.7 | T/ I ( A A                                                                                          |
| 5912 8                | 4 <sup>+</sup>                   |                   |   |    |    | P  | _ | W   | $J^{\pi}$ : L(p,t)=4.                                                                               |
| 5930                  | 2+                               |                   |   |    |    |    | S |     | $J^{\pi}$ : $L(\alpha,\alpha')=2$ .                                                                 |
| 5961 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 5979 10               | (1 - 2 - )                       |                   |   |    |    | P  |   |     | TT 1 (1311 ) 0.6 2/2                                                                                |
| 5993 10               | $(1^-,2^-)$                      |                   |   |    |    | P  |   | V   | $J^{\pi}$ : L(d, <sup>3</sup> He)=0 from 3/2 <sup>-</sup> target for a group at 5990 80.            |
| 6023 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 6026 10               | (2-)                             |                   |   |    |    | P  |   |     | III I ( () (2)                                                                                      |
| 6047 8                | (3-)                             |                   |   |    |    | P  |   | W   | $J^{\pi}$ : L(p,t)=(3).                                                                             |
| 6059 10               | 7-                               |                   |   | HI |    | P  |   |     | E(level), $J^{\pi}$ : doublet in $(\alpha, {}^{2}\text{He})$ with $J^{\pi}=5^{-}$ and $7^{-}$ .     |
| 6073 8                | 4 4-                             |                   |   |    |    | P  |   | W   | TT 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                            |
| 6103 10               | 1 <sup>-</sup> to 4 <sup>-</sup> |                   |   |    | L  | P  |   |     | $J^{\pi}$ : L=2, dominant J-transfer is 5/2 in (pol d,p) for a level at 6100 25.                    |
| 6126 8                |                                  |                   |   |    |    | P  |   | W   | E(level): assumed to be same as 6121 10 level seen in                                               |
| (122.10               |                                  |                   |   |    |    | _  |   |     | (p,p').                                                                                             |
| 6133 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 6143 10               |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 6160 9                |                                  |                   |   |    |    | _  |   | W   | E(I I) (1(0 I I)                                                                                    |
| 6170 10               | (4+)                             |                   |   |    |    | P  |   |     | E(level): same as 6160 level?                                                                       |
| 6253 9                | (4 <sup>+</sup> )                |                   |   |    |    | _  |   | W   | $J^{\pi}$ : L(p,t)=(4).                                                                             |
| 6313 9                | 1 <sup>-</sup> to 4 <sup>-</sup> |                   |   |    | L  | Q  |   | W   | $J^{\pi}$ : L=2, dominant J-transfer is 5/2 in (pol d,p) for a level at 6320 25.                    |
| 6354 8                | 2+                               |                   |   |    |    |    |   | W   | $J^{\pi}$ : L(p,t)=2.                                                                               |
| 6398 8                | 4+                               |                   |   |    | L  |    |   | W   | $J^{\pi}$ : L(p,t)=4.                                                                               |
| 6454 8                |                                  |                   |   |    |    |    |   | W   | 4//                                                                                                 |
| 6520                  | 3-                               |                   |   |    |    | P  | S |     | $J^{\pi}$ : $L(p,p')=L(\alpha,\alpha')=3$ .                                                         |
| 6540 80               | $1^{-},2^{-}$                    |                   |   |    | L  |    |   | V   | $J^{\pi}$ : L(d, ${}^{3}$ He)=0 from 3/2 <sup>-</sup> target.                                       |
| 6647.0 <i>3</i>       | (9 <sup>-</sup> ) <sup>‡</sup>   |                   | D |    | _  |    |   | -   | $J^{\pi}$ : E2 $\gamma$ from 7559 level, J=(11); $\gamma$ to (7 <sup>-</sup> ) level,               |
| 0047.0 3              | (9).                             |                   | ע |    |    |    |   |     | $J = EZ \gamma$ from 7539 level, $J=(11)$ , $\gamma$ to $(7)$ level, $(^{18}O, 4n\gamma)$ .         |
| 6680                  |                                  |                   |   |    |    | P  |   |     |                                                                                                     |
| 6750 80               | $1^{-},2^{-}$                    |                   |   |    | L  |    |   | V   | $J^{\pi}$ : L(d, ${}^{3}$ He)=L(d,p)=0 from $3/2^{-}$ targets.                                      |
| 6900 25               | $(1^{-},2^{-})$                  |                   |   |    | L  |    |   |     | $J^{\pi}$ : L(pol d,p)=(0).                                                                         |
| 7030                  | 3-                               |                   |   |    |    | P  |   |     | $J^{\pi}$ : L(p,p')=3.                                                                              |
| 7080 <i>30</i>        |                                  |                   |   |    | L  |    |   |     | E(level): seen in (d,p), perhaps same as 7030.                                                      |
| 7170                  | 8+                               |                   |   | HI |    | Q  |   |     | E(level), $J^{\pi}$ : doublet at 7190 in $(\alpha,^{2}\text{He})$ with $J^{\pi}=6^{+}$ and          |
| 7260                  | 1 <sup>-</sup> to 4 <sup>-</sup> |                   |   |    | L  | P  |   |     | $8^+$ . $J^{\pi}$ : L=2, dominant J-transfer is 5/2 in (pol d,p) for a                              |
|                       |                                  |                   |   |    | -  |    |   |     | level at 7300 25.                                                                                   |
| 7559.4 <i>4</i>       | $(11^{-})^{\ddagger}$            | 0.83 ps <i>42</i> | D |    |    |    |   |     | $J^{\pi}$ : E2 $\gamma$ transitions to J=(9 <sup>-</sup> ) levels, ( <sup>18</sup> O,4n $\gamma$ ). |

| E(level) <sup>†</sup>                            |                                    |          | Comments                                                                                    |
|--------------------------------------------------|------------------------------------|----------|---------------------------------------------------------------------------------------------|
| 7620                                             | 6+                                 | HI PQ    |                                                                                             |
| 7645.6 <i>4</i>                                  | 1-                                 | M        | E(level): differs from E $\gamma$ of capture $\gamma$ from Fe(n, $\gamma$ ) by 14.35 eV 15. |
|                                                  |                                    |          | $J^{\pi}$ : E1 $\gamma$ to g.s., $^{62}$ Ni( $\gamma,\gamma'$ ).                            |
| 7700?                                            |                                    | Q        | , , , , , , , , , , , , , , , , , , , ,                                                     |
| 7800 <i>25</i>                                   | 1 <sup>-</sup> to 4 <sup>-</sup>   | L        | $J^{\pi}$ : L=2, dominant J-transfer is 5/2 in (pol d,p).                                   |
| 8130 25                                          | $(1^- \text{ to } 4^-)$            | L Q      | $J^{\pi}$ : L=(2), dominant J-transfer is (5/2) in (pol d,p).                               |
| 8460 25                                          | $(2^- \text{ to } 5^-)$            | L        | $J^{\pi}$ : L=(4), dominant J-transfer is (7/2) in (pol d,p).                               |
| (10596.1 4)                                      | 1-,2-                              | J        |                                                                                             |
| 10597.1° 3                                       | 1-c                                | K        |                                                                                             |
| 10598.9 <sup>c</sup> 3                           | 1 <sup>+</sup> <i>c</i>            | K        |                                                                                             |
| 10599.0° 3                                       | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10602.0° 3                                       | 1+0                                | K        |                                                                                             |
| 10602.2° 3                                       | 1 <sup>+</sup> C                   | K        |                                                                                             |
| 10602.8° 3                                       | 1 <sup>-c</sup>                    | <u>K</u> |                                                                                             |
| 10603.2° 3                                       | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10604.1 <sup>c</sup> 3                           | 2-c                                | K        |                                                                                             |
| 10605.7° 3                                       | 1+c                                | K        |                                                                                             |
| 10608.2° 3                                       | 2 <sup>-c</sup><br>1 <sup>+c</sup> | K        |                                                                                             |
| 10608.9 <sup>c</sup> 3<br>10609.2 <sup>c</sup> 3 | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10609.2° 3<br>10609.5° 3                         | 2+ <i>c</i>                        | K<br>K   |                                                                                             |
| 10609.3° 3                                       | 1+ <i>c</i>                        | K        |                                                                                             |
| 10609.9° 3                                       | 1- <i>c</i>                        | K        |                                                                                             |
| 10613.3 <sup>c</sup> 3                           | 1- <i>c</i>                        | K        |                                                                                             |
| 10614.3 <sup>c</sup> 3                           | 2 <sup>-</sup> <i>c</i>            | K        |                                                                                             |
| 10616.8 <sup>c</sup> 3                           | $\frac{2}{2}$ -c                   | K        |                                                                                             |
| 10616.9 <sup>c</sup> 3                           | 1+ <i>c</i>                        | K        |                                                                                             |
| 10619.9° 3                                       | 1- <i>c</i>                        | K        |                                                                                             |
| 10623.5° 3                                       | 2- <i>c</i>                        | K        |                                                                                             |
| 10624.3 <sup>c</sup> 3                           | 1- <i>c</i>                        | K        |                                                                                             |
| 10624.4° 3                                       | 2- <i>c</i>                        | K        |                                                                                             |
| 10625.8 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10626.3 <sup>c</sup> 3                           | 1 <sup>-c</sup>                    | K        |                                                                                             |
| 10627.0 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10627.9 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10628.8 <sup>c</sup> 3                           | 1- <i>c</i>                        | K        |                                                                                             |
| 10629.8 <sup>c</sup> 3                           | 1 <sup>+</sup> <i>c</i>            | K        |                                                                                             |
| 10632.2 <sup>c</sup> 3                           | 1 <sup>-c</sup>                    | K        |                                                                                             |
| 10632.2° 3                                       | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10632.5° 3                                       | 1 <sup>+</sup> C                   | K        |                                                                                             |
| 10636.4 <sup>c</sup> 3                           | 1 <sup>-c</sup>                    | K        |                                                                                             |
| 10638.6° 3                                       | 2 <sup>-c</sup>                    | K        |                                                                                             |
| 10640.4° 3                                       | 1-c                                | K        |                                                                                             |
| 10640.4° 3                                       | 2 <sup>+</sup> <i>c</i>            | K        |                                                                                             |
| 10641.1° 3                                       | 1-c                                | <u>K</u> |                                                                                             |
| 10641.6° 3                                       | 1 <sup>-c</sup>                    | K<br>    |                                                                                             |
| 10645.3 <sup>c</sup> 3                           | $2^{-c}$                           | K        |                                                                                             |
| 10645.6° 3                                       | $2^{-c}$ $1^{+c}$                  | K        |                                                                                             |
| 10646.2 <sup>C</sup> 3                           | 1+c<br>1+c                         | K        |                                                                                             |
| 10646.4 <sup>c</sup> 3<br>10647.3 <sup>c</sup> 3 | 1+ <i>c</i>                        | K<br>K   |                                                                                             |
| 1004/.5 3                                        | 1                                  | K        |                                                                                             |

| E(level) <sup>†</sup>                            | $\mathbf{J}^{\pi}$                  | XREF     | E(level) <sup>†</sup>                            | $\mathbf{J}^{\pi}$                 | XREF     |
|--------------------------------------------------|-------------------------------------|----------|--------------------------------------------------|------------------------------------|----------|
| 10648.1 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10720.7 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |
| 10649.6 <sup>c</sup> 3                           | 1 <sup>-c</sup>                     | K        | 10721.1 <sup>c</sup> 3                           | 1 <sup>-c</sup>                    | K        |
| 10651.3 <sup>c</sup> 3                           | 2 <sup>-c</sup>                     | K        | 10721.8 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |
| 10652.8 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10723.8 <sup>c</sup> 3                           | $1^{-c}$                           | K        |
| 10653.0 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10724.4 <sup>c</sup> 3                           | $1^{-c}$                           | K        |
| 10654.1 <sup>c</sup> 3                           | 1+ <i>c</i>                         | K        | 10724.8 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
| 10655.5 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10729.7 <sup>c</sup> 3                           | 2- <i>c</i>                        | K        |
| 10655.6 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10730.7 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
| 10658.0 <sup>c</sup> 3                           | 1+ <i>c</i>                         | K        | 10731.7 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |
| 10658.4 <sup>c</sup> 3                           | 1+ <i>c</i>                         | K        | 10734.2 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
| 10658.7 <sup>c</sup> 3                           | 2 <sup>-c</sup>                     | K        | 10735.4 <sup>c</sup> 3                           | 1 <sup>-c</sup>                    | K        |
| 10660.4 <sup>c</sup> 3                           | 2 <sup>-c</sup>                     | K        | 10736.1 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |
| 10663.0° 3                                       | $2^{-c}$                            | K        | 10736.8° 3                                       | $2^{-c}$                           | K        |
| 10664.3 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10738.6 <sup>c</sup> 3                           | 2-c                                | K        |
| 10664.3 <sup>c</sup> 3                           | 1-c                                 | K        | 10740.7 <sup>c</sup> 3                           | 1 <sup>+</sup>                     | K        |
| 10665.3 <sup>c</sup> 3                           | 1+ <i>c</i>                         | K        | 10741.2° 3                                       | 2 <sup>-c</sup>                    | K        |
| 10667.5° 3                                       | 2 <sup>-c</sup>                     | K        | 10742.7° 3                                       | 2 <sup>-c</sup>                    | K        |
| 10671.8 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10746.3 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
| 10671.8 <sup>c</sup> 3                           | 1-c                                 | K        | 10747.1° 3                                       | 1-c                                | K        |
| 10673.4° 3                                       | 1 <sup>+</sup> C                    | K        | 10748.0° 3                                       | 2 <sup>-c</sup>                    | K        |
| 10673.5° 3                                       | 2 <sup>-c</sup>                     | K        | 10748.5° 3                                       | 2 <sup>-c</sup>                    | K        |
| 10674.9° 3                                       | 2 <sup>-c</sup>                     | K        | 10749.7° 3                                       | 1-c                                | <u>K</u> |
| 10677.3° 3                                       | 1-0                                 | K<br>    | 10752.3° 3                                       | 1-c                                | K<br>    |
| 10677.6° 3                                       | 1-c                                 | K<br>    | 10753.1° 3                                       | 2 <sup>-c</sup>                    | K<br>    |
| 10678.4° 3                                       | 2 <sup>-c</sup>                     | <u>K</u> | 10754.9° 3                                       | 2 <sup>-c</sup>                    | <u>K</u> |
| 10681.1° 3                                       | 1 <sup>+</sup> <i>c</i> 1- <i>c</i> | K        | 10757.8° 3                                       | 1 <sup>-c</sup>                    | K        |
| 10682.8° 3                                       | -                                   | K        | 10759.7° 3                                       | $1^{-c}$                           | K        |
| 10688.3° 3                                       | 2 <sup>-c</sup><br>1 <sup>-c</sup>  | K        | 10760.6° 3                                       | 2 <sup>-c</sup><br>2 <sup>-c</sup> | K        |
| 10690.6° 3                                       | 2+ <i>c</i>                         | K        | 10763.7° 3                                       | 2-c                                | K        |
| 10690.9 <sup>c</sup> 3<br>10691.2 <sup>c</sup> 3 | 1+c                                 | K        | 10766.1 <sup>c</sup> 3<br>10767.0 <sup>c</sup> 3 | $1^{-c}$                           | K        |
| 10691.2° 3                                       | 1-c                                 | K<br>K   | 10767.0° 3<br>10769.8° 3                         | $\frac{1}{1}$ -c                   | K<br>K   |
| 10692.2° 3                                       | 2 <sup>-</sup> <i>c</i>             | K<br>K   | 10709.8° 3<br>10772.4° 3                         | 2 <sup>-</sup> <i>c</i>            | K<br>K   |
| 10692.3 3<br>10695.7 <sup>c</sup> 3              | 2- <i>c</i>                         | K        | 10772.4 3<br>10774.7 3                           | 2- <i>c</i>                        | K        |
| 10698.7° 3                                       | 1- <i>c</i>                         | K        | 10776.5° 3                                       | 2- <i>c</i>                        | K        |
| 10699.2° 3                                       | 2- <i>c</i>                         | K        | 10778.3° 3                                       | 1- <i>c</i>                        | K        |
| 10700.0° 3                                       | $\frac{2}{1-c}$                     | K        | 107781.5° 3                                      | 2- <i>c</i>                        | K        |
| 10700.0 3                                        | 2- <i>c</i>                         | K        | 10786.5° 3                                       | 1- <i>c</i>                        | K        |
| 10703.3° 3                                       | 1+ <i>c</i>                         | K        | 10787.8° 3                                       | 2- <i>c</i>                        | K        |
| 10703.5° 3                                       | 2- <i>c</i>                         | K        | 10790.9 <sup>c</sup> 3                           | 2- <i>c</i>                        | K        |
| 10704.0° 3                                       | 1+c                                 | K        | 10793.3° 3                                       | $\frac{2}{1-c}$                    | K        |
| 10704.7° 3                                       | 1+ <i>c</i>                         | K        | 10796.0° 3                                       | 2- <i>c</i>                        | K        |
| 10706.2° 3                                       | 2- <i>c</i>                         | K        | 10798.5° 3                                       | 1+ <i>c</i>                        | K        |
| 10708.4 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10799.1 <sup>c</sup> 3                           | 1- <i>c</i>                        | K        |
| 10711.2 <sup>c</sup> 3                           | 2- <i>c</i>                         | K        | 10800.6 <sup>c</sup> 3                           | 1+ <i>c</i>                        | K        |
| 10712.1° 3                                       | 1- <i>c</i>                         | K        | 10802.2 <sup>c</sup> 3                           | 3+ <i>c</i>                        | K        |
| 10712.8 <sup>c</sup> 3                           | 2 <sup>-c</sup>                     | K        | 10803.0 <sup>c</sup> 3                           | 2 <sup>-c</sup>                    | K        |
| 10714.3 <sup>c</sup> 3                           | 2- <i>c</i>                         | K        | 10804.6 <sup>c</sup> 3                           | 3+ <b>c</b>                        | K        |
| 10715.0 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10805.9 <sup>c</sup> 3                           | 1+ <i>c</i>                        | K        |
| 10716.6 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10807.1 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
| 10719.2 <sup>c</sup> 3                           | $2^{-c}$                            | K        | 10810.3 <sup>c</sup> 3                           | $2^{-c}$                           | K        |
|                                                  |                                     |          | •                                                |                                    |          |

| E(level) <sup>†</sup>  | $\mathrm{J}^\pi$ | XREF | E(level) <sup>†</sup>  | $\mathbf{J}^{\pi}$ | XREF |
|------------------------|------------------|------|------------------------|--------------------|------|
| 10812.4 <sup>c</sup> 3 | 2 <sup>-c</sup>  | K    | 10855.3 <sup>c</sup> 3 | 2 <sup>-c</sup>    | K    |
| 10817.1 <sup>c</sup> 3 | $2^{-c}$         | K    | 10858.7 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10017.2 3              | $2^{-c}$         | K    | 10868.7 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10822.7 <sup>c</sup> 3 |                  | K    | 10876.1 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10824.3 <sup>c</sup> 4 |                  | K    | 10878.9 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10824.4 <sup>c</sup> 5 | 1- <i>c</i>      | K    | 10882.5 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10827.8 <sup>c</sup> 3 |                  | K    | 10884.4 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10828.5 <sup>c</sup> 3 |                  | K    | 10885.7 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10832.2 <sup>c</sup> 3 |                  | K    | 10888.2 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10832.3 <sup>c</sup> 5 | $1^{-c}$         | K    | 10891.2 <sup>c</sup> 3 | $2^{-c}$           | K    |
| 10845.6 <sup>c</sup> 3 |                  | K    | 10970° 20              | $2^{-c}$           | K    |
| 10849.8 <sup>c</sup> 3 | 1- <i>c</i>      | K    | 11010° 20              | 1- <i>c</i>        | K    |
| 10851.4 <sup>c</sup> 3 | 2 <sup>-c</sup>  | K    |                        |                    |      |

 $<sup>^{\</sup>dagger}$  Level energies given with decimals are from a least-squares fit to the adopted E $\gamma$  data. Others are from  $^{64}$ Ni(p,t) and  $^{62}$ Ni(p,p'), and from <sup>61</sup>Ni(d,p) at the highest energies.  $^{\ddagger}$  Parity same as that of 4160 level, from <sup>48</sup>Ca(<sup>18</sup>O,4n $\gamma$ ).  $^{\sharp}$  From <sup>61</sup>Ni(n, $\gamma$ ):  $J^{\pi}$ =0+ to 3+ from primary E1 transition from 1<sup>-</sup>,2<sup>-</sup> capturing state,  $\gamma$  to 0+ excludes 0 and 3.

<sup>&</sup>lt;sup>@</sup> From <sup>61</sup>Ni( $n,\gamma$ ):  $J^{\pi}=0^+$  to  $3^+$  from primary E1 transition from  $1^-,2^-$  capturing state,  $\gamma$  to  $4^+$  excludes 0 and 1.

<sup>&</sup>amp; From  $^{48}\text{Ca}(^{18}\text{O},4\text{n}\gamma)$ , except as noted. <sup>a</sup> From DSAM in  $^{59}\text{Co}(\alpha,\text{p}\gamma)$ .

<sup>&</sup>lt;sup>b</sup> From DSAM in  $^{62}$ Ni(n,n' $\gamma$ ).

<sup>&</sup>lt;sup>c</sup> Neutron resonance,  $J^{\pi}$  from R-matrix analysis (2006Ko28).

# $\gamma(^{62}\mathrm{Ni})$

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$           | $I_{\gamma}$ #              | $E_f  \underline{J_f^{\pi}}$                     | Mult.                 | $\delta^{@}$                | Comments                                                                                                                                                                                                                              |
|--------------|----------------------|-----------------------------------|-----------------------------|--------------------------------------------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1172.98      | 2+                   | 1172.95 11                        | 100                         | 0.0 0+                                           | E2&                   |                             | B(E2)(W.u.)=12.1 4                                                                                                                                                                                                                    |
| 2048.68      | $0^{+}$              | 875.69 <i>7</i>                   | 100                         | 1172.98 2+                                       | E2 <mark>&amp;</mark> |                             |                                                                                                                                                                                                                                       |
|              |                      | (2048.4)                          |                             | 0.0 0+                                           | E0                    |                             | $q_K^2(E0/E2)$ =0.084 11, X(E0/E2)=0.031 4 (2005Ki02).<br>E <sub>y</sub> : a 2048.4-keV E0 transition has been observed (1981Pa10) with B(E0 to g.s.)/B(E2 to 1173)=0.028 5 from ce(K)(2048 $\gamma$ )/ce(K)(876 $\gamma$ )=0.084 11. |
| 2301.84      | 2+                   | 1128.82 <i>14</i>                 | 80.8 20                     | 1172.98 2+                                       | M1+E2                 | +3.19 11                    | B(M1)(W.u.)=0.00106 +18-30; B(E2)(W.u.)=14.9 +24-42 Mult.,δ: from $^{62}$ Ni(p,p'γ) (1972Va01). Other: $\delta$ =+3.0 +7-20 from $^{62}$ Cu decay (1976Ca31).                                                                         |
|              |                      | 2301.8 <i>3</i>                   | 100 <i>3</i>                | $0.0 	 0^{+}$                                    | E2                    |                             | B(E2)(W.u.)=0.57 +10-16                                                                                                                                                                                                               |
| 2336.52      | 4+                   | 1163.50 <i>12</i>                 | 100                         | 1172.98 2+                                       | E2&                   |                             | B(E2)(W.u.)=21 +4-6                                                                                                                                                                                                                   |
| 2890.63      | $0_{+}$              | 1717.5 <i>3</i>                   | 100                         | 1172.98 2+                                       | E2                    |                             | B(E2)(W.u.)<0.84                                                                                                                                                                                                                      |
| 2050 56      | 2+                   | <b>500</b> 00 00                  | 45. 4                       | 2226.52 4                                        | 141 50                | 16 20                       | Mult.: $\delta = -4.1 + 13 - 30$ from $(n, \gamma)$ (1970Fa06). Known $J^{\pi}$ requires pure E2.                                                                                                                                     |
| 3058.76      | 3+                   | 722.02 <i>23</i> 756.85 <i>20</i> | 47 <i>4</i><br>100 <i>6</i> | 2336.52 4 <sup>+</sup><br>2301.84 2 <sup>+</sup> | M1+E2<br>(M1+E2)      | +1.6 +3-9                   | P(M1)/W) (0.000 + 2. 6), P/F2)/W) (0.10 + 11. 15)                                                                                                                                                                                     |
|              |                      | 1885.8 3                          | 91 7                        | 2301.84 2 <sup>+</sup><br>1172.98 2 <sup>+</sup> | M1+E2<br>M1(+E2)      | $-0.08\ 2$<br>$-0.03\ +3-2$ | B(M1)(W.u.)=(0.009 +3-6); B(E2)(W.u.)=(0.18 +11-15)<br>B(M1)(W.u.)=(0.00055 +18-34)                                                                                                                                                   |
|              |                      | 1003.0 3                          | 91 7                        | 1172.96 2                                        | WII(±E2)              | -0.03 +3-2                  | $\delta$ : from (n,n'γ). Others: -0.50 8 (1985KoZM in (n,n'γ), +0.65 +20–16 (1970Fa06).                                                                                                                                               |
| 3157.96      | 2+                   | 856.09 12                         | 12.3 5                      | 2301.84 2+                                       | M1+E2                 |                             |                                                                                                                                                                                                                                       |
|              |                      | 1984.9 <i>3</i>                   | 100 4                       | 1172.98 2+                                       | (M1+E2)               | +0.13 8                     | B(M1)(W.u.)= $(0.0026 5)$ ; B(E2)(W.u.)= $(0.020 +25-20)$<br>$\delta$ : from (n,n' $\gamma$ ) (1970Fa06).                                                                                                                             |
|              |                      | 3158.0 <i>15</i>                  | 58 7                        | $0.0 	 0^{+}$                                    | E2                    |                             | B(E2)(W.u.)=0.068 +14-15                                                                                                                                                                                                              |
| 3176.7       | 4+                   | 875.0 <i>4</i>                    | 6.9 10                      | 2301.84 2+                                       | [E2]                  |                             |                                                                                                                                                                                                                                       |
| 2057.60      | 2+                   | 2003.6 4                          | 100 4                       | 1172.98 2+                                       | E2 <sup>C</sup>       |                             | B(E2)(W.u.)=1.5 4                                                                                                                                                                                                                     |
| 3257.62      | 2+                   | 955.7 <i>3</i><br>2084.8 <i>4</i> | 3.76 22<br>100 <i>3</i>     | 2301.84 2 <sup>+</sup><br>1172.98 2 <sup>+</sup> | [E2+M1]<br>M1+E2      |                             |                                                                                                                                                                                                                                       |
|              |                      | 3257.6 12                         | 3.3 4                       | $0.0 	 0^{+}$                                    | E2                    |                             | B(E2)(W.u.)=0.0046 13                                                                                                                                                                                                                 |
| 3269.97      | $1^+, 2^+$           | 968.2 5                           | >11.6                       | 2301.84 2+                                       |                       |                             | 5(32)(***********************************                                                                                                                                                                                             |
|              |                      | 1221.0 <i>3</i>                   | <97.7                       | 2048.68 0+                                       |                       |                             |                                                                                                                                                                                                                                       |
|              |                      | 2097.2 3                          | 100                         | 1172.98 2+                                       |                       |                             |                                                                                                                                                                                                                                       |
|              |                      | 3270.0 22                         | <23.3                       | $0.0 	 0^{+}$                                    | 0-                    |                             |                                                                                                                                                                                                                                       |
| 3277.69      | 4+                   | 2104.5 3                          | 100                         | 1172.98 2+                                       | E2&                   |                             | B(E2)(W.u.)=4.8 +5-9<br>E <sub>γ</sub> : average of 2103.78 25 ( $^{18}$ O,4nγ) and 2104.6 3 ( $^{62}$ Co $\beta^-$ decay                                                                                                             |
|              |                      |                                   |                             |                                                  |                       |                             | (13.9-min)), 2104.5 3 in $(\alpha,p\gamma)$ . B(E2)(W.u.)>0.55.                                                                                                                                                                       |
| 3369.98      | 1+                   | 479.36 6                          | 2.8 5                       | 2890.63 0 <sup>+</sup>                           | M1 . F2               | . 1 6 . 41 . 11             | D/M1/M/ \ 0.002 . 12 2 D/F2/M/ \ 12 . 21 . 12                                                                                                                                                                                         |
|              |                      | 1067.7 3                          | 16.6 <i>17</i>              | 2301.84 2+                                       | M1+E2                 | +1.6 +41-11                 | B(M1)(W.u.)= $0.003 + 13 - 3$ ; B(E2)(W.u.)= $13 + 21 - 13$<br>$\delta$ : from (n,n' $\gamma$ ) (2011Ch05).                                                                                                                           |
|              |                      | 1321.1 <i>3</i>                   | 12.8 13                     | 2048.68 0+                                       |                       |                             |                                                                                                                                                                                                                                       |
|              |                      | 3369.7 17                         | 100 16                      | 0.0 0+                                           | D                     |                             |                                                                                                                                                                                                                                       |
| 3378         |                      | 2205 3                            | 100                         | 1172.98 2+                                       |                       |                             |                                                                                                                                                                                                                                       |

 $\gamma$ <sup>(62</sup>Ni) (continued)

 $\delta^{@}$ 

+0.32 6

 $\alpha^{\dagger}$ 

0.001179 17

B(E2)(W.u.)=2.86

 $(n,\gamma)$ , 1970Fa06).

B(E2)(W.u.)=0.026 7

B(E1)(W.u.)=0.00045 +9-12

 $E_{\nu}$ : 2805.2 18 in  $(\alpha, p_{\gamma})$ .

 $\alpha(M)=2.23\times10^{-7}$  4

B(E2)(W.u.)=0.16 9

B(E2)(W.u.)=4.6 21

B(E2)(W.u.)=3.3 +14-17

B(E2)(W.u.)=5.4 + 18-33

B(E2)(W.u.)=0.49 + 13-18

 $B(E1)(W.u.)=8.7\times10^{-5}+16-22$ 

 $E_{\nu}$ : seen in  $(\alpha, p\gamma)$ , coincident with 2302 $\gamma$ .

 $\alpha(K)=1.643\times10^{-5}\ 23;\ \alpha(L)=1.586\times10^{-6}\ 23;$ 

 $\alpha(N)=9.73\times10^{-9}$  14;  $\alpha(IPF)=0.001161$  17  $I_{\gamma}$ : average of 67 11 in  $(n,\gamma)$  and 127 32 in  $(\alpha,p\gamma)$ .

 $I_{\gamma}$ : from  $(n,\gamma)$ .

 $I_{\gamma}$ : from  $(n,\gamma)$ .

 $I_{\gamma}$ : from  $(n,\gamma)$ .

Comments

δ: from  $(n,n'\gamma)$  (2011Ch05). Other: +0.44 9 (from

Mult.

 $(M1+E2)^{b}$ 

E2

E2

[E1]

(E1)

[E2]

[E2]

[E2]

E2&

[E2]

[E2]

[E2]

 $E_{\gamma}^{\ddagger}$ 

2289 *3* 

1184 *3* 

360.5 4

459.3 3

1469.9 5

2345.3 4

3519.0 2*1* 

463.3 5

1185.94 18

1221.0 *3* 

2351.4 4

1454.5 3

2584.1 5

1548.0 5

968.2 4

3861.7 11

450.4 7

703.1 6

2799.4 5

3973 2

1664

2837.9 15

1682.34 21

777.5 3

1718.8 5

1753.5 8

2882.3 4

1761.0 5

870<sup>d</sup>

1844.1 8

1092.50 25

4062.4 10

1665 *3* 

579.42 20

264.94 25

 $E_i$ (level)

3518.23

3522.54

3524.4

3756.5

3849.4

3859.6

3972.9

4000.5

4011.0

4018.88

4055.3

4062.4

4146.0

4151.4

3967

3462

3486

1+ to 4+

2+

 $2^{+},3^{+}$ 

 $0^{+}$ 

3-

 $0^+.1^+.2^+$ 

 $1^+, 2^+$ 

2+

4+

 $(6)^{+}$ 

 $1^{+},2^{+}$ 

 $(4^{+})$ 

 $2^{+}.3^{+}$ 

4+

 $I_{\gamma}$ #

100

100

2.6 3

10.0 5

13.3 5

9.9 15

2.0 4

29 4

49 8

92 8

100 8

100 11

91 4

33 9

100 13

2 1

11 4

100 39

100

100

100

26 *3* 

100 6

9 3

16 *I* 

100 20

90 10

100

100 22

97 30

100

<100

100

100 5

 $E_f$ 

1172.98

2301.84 2+

3157.96 2+

3058.76 3+

2048.68 0+

1172.98 2+

3257.62 2+

3058.76 3<sup>+</sup>

2336.52 4+

2301.84 2+

1172.98 2+

2301.84 2+

1172.98 2+

2301.84 2+

2890.63 0+

2301.84 2+

3269.97 1+.2+

 $0.0 0^{+}$ 

3522.54 2<sup>+</sup>,3<sup>+</sup>

3269.97 1+,2+ 1172.98 2+

 $0.0 0^{+}$ 

2336.52 4+ 1172.98 2+

2336.52 4+

3277.69 4+

2336.52 4+

2301.84 2+

1172.98 2+

2301.84 2+

3277.69 4+

2301.84 2+

3058.76 3<sup>+</sup>

 $0.0 0^{+}$ 

 $0.0 \quad 0^{+}$ 

# $\gamma$ (62Ni) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\#}$ | $\mathbb{E}_f$ | $\mathbf{J}_f^\pi$ | Mult.@                | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                            |
|--------------|----------------------|-------------------------|-------------------|----------------|--------------------|-----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4151.4       | 2+,3+                | 1815.8 8                | 44 22             | 2336.52        |                    |                       |                    |                                                                                                                                                                                                                                     |
|              |                      | 1850.0 7                | 66 22             | 2301.84        |                    |                       |                    |                                                                                                                                                                                                                                     |
| 4154.2       | (4 <sup>+</sup> )    | 1817.7 <i>3</i>         | 100               | 2336.52        | 4+                 |                       |                    | $E_{\gamma}$ : evaluator assumes that 1815.8 $\gamma$ in $(n,\gamma)$ and 1817.7 $\gamma$ in $(\alpha,p\gamma)$ are not the same.                                                                                                   |
| 4161.26      | $(5^{-})$            | 883.54 16               | 50 21             | 3277.69        | 4+                 | D+Q <sup>a</sup>      |                    | $I_{\gamma}$ : average of 29 in ( $^{18}O,4n\gamma$ ) and 71 in ( $\alpha,p\gamma$ ).                                                                                                                                               |
|              |                      |                         |                   |                |                    |                       |                    | $\delta$ : -0.24 6 or -2.4 4, ( <sup>18</sup> O,4nγ). $\Delta \pi$ =yes suggests smaller value more likely. 5 <sup>-</sup> assignment defines the transition as E1+M2; $\delta$ =-0.24 6 gives B(M2)(W.u.)>20, compared with RUL=1. |
|              |                      | 1001                    | 38                | 3157.96        | 2+                 |                       |                    | Mult.: assignment of 5 <sup>-</sup> defines the transition as E3 to give B(E3)(W.u.)>7.6×10 <sup>5</sup> , compared with RUL=100; this transition may be suspect.                                                                   |
|              |                      | 1825.0 <i>3</i>         | 100               | 2336.52        | 4+                 | D+Q <sup>a</sup>      |                    | $\delta$ : -0.16 6 or -3.1 4, ( <sup>18</sup> O,4n $\gamma$ ) $\Delta\pi$ =yes suggests smaller solution more likely.                                                                                                               |
| 4179         |                      | 1002 3                  | 100               | 3176.7         |                    | 4                     |                    | The second second second more more                                                                                                                                                                                                  |
| 4201.0       | $(3,4)^{-}$          | 678.5 <i>3</i>          | 100               | 3522.54        |                    |                       |                    |                                                                                                                                                                                                                                     |
| 4317.2       | 1+,2+                | 4318 <i>3</i>           | 100               |                | $0^{+}$            |                       |                    |                                                                                                                                                                                                                                     |
| 4415.9       | 1+,2+                | 1045.9 <i>4</i>         | 100 20            | 3369.98        |                    |                       |                    |                                                                                                                                                                                                                                     |
|              | - ,-                 | 4416 2                  | 80 20             |                | 0+                 |                       |                    |                                                                                                                                                                                                                                     |
| 4424         |                      | 2122 3                  | 100               | 2301.84        |                    |                       |                    |                                                                                                                                                                                                                                     |
| 4627.5       | $2^{+},3^{+}$        | 310.4 5                 | 26 11             | 4317.2         |                    |                       |                    |                                                                                                                                                                                                                                     |
| 1027.5       | - ,5                 | 2289.7 15               | 80 43             | 2336.52        |                    |                       |                    |                                                                                                                                                                                                                                     |
|              |                      | 3456 <i>3</i>           | 100 29            | 1172.98        |                    |                       |                    |                                                                                                                                                                                                                                     |
| 4648.9       | (7-)                 | 487.59 <i>13</i>        | 52                | 4161.26        |                    | E2 <mark>&amp;</mark> | 0.00179 <i>3</i>   | B(E2)(W.u.)=0.95 5                                                                                                                                                                                                                  |
| 4046.7       | (/ )                 | 401.39 13               | 34                | 4101.20        | (3)                | EZ**                  | 0.00179 3          | $\alpha(K)=0.001609 \ 23; \ \alpha(L)=0.0001603 \ 23; \ \alpha(M)=2.25\times10^{-5} \ 4; \ \alpha(N)=9.42\times10^{-7} \ 14$                                                                                                        |
|              |                      | 630.0 14                | 100               | 4018.88        | (6) <sup>+</sup>   | D+Q <sup>a</sup>      |                    | $E_{\gamma}$ : 628.4 3 from $(\alpha, p\gamma)$ not included in average.                                                                                                                                                            |
|              | (0)                  |                         |                   |                |                    | ⊅דע                   |                    | $\delta$ : -0.19 4 or -2.3 5, ( <sup>18</sup> O,4n $\gamma$ ).                                                                                                                                                                      |
| 4719.9       | (3)                  | 1661.3 7                | 100 50            | 3058.76        |                    |                       |                    |                                                                                                                                                                                                                                     |
| 1062.2       |                      | 3546 2                  | 88 25             | 1172.98        | 2                  |                       |                    |                                                                                                                                                                                                                                     |
| 4863.3       | 5-,6-                | 702.02 14               | 100               | 4179           | 2+                 |                       |                    |                                                                                                                                                                                                                                     |
| 4999.7       | 1+,2+                | 3828 2                  | 100 18            | 1172.98        |                    |                       |                    |                                                                                                                                                                                                                                     |
|              |                      | 4998 2                  | 82 18             |                | $0_{+}$            | 0_                    |                    |                                                                                                                                                                                                                                     |
| 5751.2       | (9-)                 | 1102.41 <i>17</i>       | 100               | 4648.9         | $(7^{-})$          | E2&                   |                    | B(E2)(W.u.)=43 17                                                                                                                                                                                                                   |
| 5806.1       | (7,8,9)              | 1157.24 22              | 100               | 4648.9         | $(7^{-})$          |                       |                    |                                                                                                                                                                                                                                     |
| 6647.0       | $(9^{-})$            | 895.75 <i>16</i>        | 100               | 5751.2         | (9-)               |                       |                    |                                                                                                                                                                                                                                     |
|              |                      | 1997.94 <i>24</i>       | 88                | 4648.9         | $(7^{-})$          | -                     |                    |                                                                                                                                                                                                                                     |
| 7559.4       | $(11^{-})$           | 912.33 <i>16</i>        | 46                | 6647.0         | $(9^{-})$          | E2&                   |                    | B(E2)(W.u.)=23 12                                                                                                                                                                                                                   |
|              |                      | 1808.43 22              | 100               | 5751.2         | (9-)               | E2&                   |                    | B(E2)(W.u.)=1.7 9                                                                                                                                                                                                                   |
|              |                      | 3416                    | 1.9               | 4230.0         | 0+                 | - <b>-</b>            |                    | _ (/(/                                                                                                                                                                                                                              |
| 7645.6       | 1-                   | 7410                    |                   |                |                    |                       |                    |                                                                                                                                                                                                                                     |
| 7645.6       | 1-                   | 3585                    | 3.3               | 4062.4         | 1+,2+              |                       |                    |                                                                                                                                                                                                                                     |

## $\gamma$ (62Ni) (continued)

| $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{\gamma}^{\ddagger}$ | ${\rm I}_{\gamma}^{\#}$   | $\mathbf{E}_f$   | $\mathbf{J}^\pi_f$                               | Mult.@ | Comments                                                               |
|--------------|----------------------|----------------------------------|---------------------------|------------------|--------------------------------------------------|--------|------------------------------------------------------------------------|
| 7645.6       | 1-                   | 3783                             | 3.3                       | 3859.6           | 1+,2+                                            |        |                                                                        |
|              |                      | 3798                             | 0.6                       | 3849.4           | $0^+, 1^+, 2^+$                                  |        |                                                                        |
|              |                      | 4129                             | 2.4                       | 3518.23          | 2+                                               |        |                                                                        |
|              |                      | 4273                             | 3.3                       | 3369.98          | 1+                                               |        |                                                                        |
|              |                      | 4375                             | 3.4                       | 3269.97          | $1^+, 2^+$                                       |        |                                                                        |
|              |                      | 4487                             | 2.7                       | 3157.96          |                                                  |        |                                                                        |
|              |                      | 5597                             | 25.8                      | 2048.68          |                                                  |        |                                                                        |
|              |                      | 6473                             | 6.5                       | 1172.98          |                                                  |        | _                                                                      |
|              |                      | 7646                             | 100                       | 0.0              | $0_{+}$                                          | E1     | $B(E1)(W.u.)=6.5\times10^{-5}$                                         |
|              |                      |                                  |                           |                  |                                                  |        | $\alpha(IPF) = 0.00264 \ 4$                                            |
|              |                      |                                  |                           |                  |                                                  |        | Mult.: from polarization measurement, $^{62}$ Ni $(\gamma, \gamma')$ . |
| (10596.1)    | $1^{-},2^{-}$        | 5596 <i>4</i>                    | 3.0 20                    | 4999.7           | 1+,2+                                            |        |                                                                        |
|              |                      | 5877 2                           | 6.0 20                    | 4719.9           | (3)                                              |        |                                                                        |
|              |                      | 5968 2                           | 14.0 20                   | 4627.5           | $2^{+},3^{+}$                                    |        |                                                                        |
|              |                      | 6179 2                           | 20 4                      | 4415.9           | 1+,2+                                            |        |                                                                        |
|              |                      | 6277 <i>3</i> 6364 2             | 8 4                       | 4317.2           | 1 <sup>+</sup> ,2 <sup>+</sup><br>0 <sup>+</sup> |        |                                                                        |
|              |                      | 6387 2                           | 10 <i>6</i><br>8 <i>4</i> | 4230.0<br>4208.8 | 0.                                               |        |                                                                        |
|              |                      | 6395 2                           | 10 <i>6</i>               | 4201.0           | $(3,4)^{-}$                                      |        |                                                                        |
|              |                      | 6445 2                           | 24 4                      | 4151.4           | $2^+,3^+$                                        |        |                                                                        |
|              |                      | 6623 2                           | 34 6                      | 3972.9           | 2+,3                                             |        |                                                                        |
|              |                      | 6840.0 <i>15</i>                 | 3.0                       | 3756.5           | 3-                                               |        |                                                                        |
|              |                      | 7073 <i>3</i>                    | 30 14                     | 3522.54          |                                                  |        |                                                                        |
|              |                      | 7078.0 <i>15</i>                 | 72 14                     | 3518.23          | 2+                                               |        |                                                                        |
|              |                      | 7326.0 <i>15</i>                 | 96 8                      | 3269.97          |                                                  |        |                                                                        |
|              |                      | 7338 2                           | 28 6                      | 3257.62          | 2+                                               |        |                                                                        |
|              |                      | 7436 2                           | 40 6                      | 3157.96          | 2+                                               |        |                                                                        |
|              |                      | 7537 2                           |                           | 3058.76          | 3+                                               |        |                                                                        |
|              |                      | 7703.4 15                        | 26 12                     | 2890.63          |                                                  |        |                                                                        |
|              |                      | 8296 <i>3</i>                    | 16 <i>4</i>               | 2301.84          |                                                  |        |                                                                        |
|              |                      | 8551.3 <i>15</i>                 | 92 10                     | 2048.68          |                                                  |        |                                                                        |
|              |                      | 9422.3 5                         | 100 10                    | 1172.98          |                                                  |        |                                                                        |
|              |                      | 10594.6 7                        | 74 16                     | 0.0              | $0_{+}$                                          |        |                                                                        |

12

<sup>†</sup> Additional information 1. † From  $(n,n'\gamma)$  for E(level) up to 3756.4; for others  $E\gamma$  are averages from the most precise measurements. The most complete data from  $^{61}Ni(n,\gamma)$  tend to have  $E\gamma$ that are 0.1-0.2 keV lower than other data in the range where comparisons are possible (1-3 MeV).

<sup>#</sup> Primarily based on  $(n,\gamma)$  data.

<sup>&</sup>lt;sup>@</sup> From  $(n,n'\gamma)$  or  $(n,\gamma)$ , except as noted.

<sup>&</sup>lt;sup>&</sup> From RUL and  $\gamma(\theta)$  in <sup>48</sup>Ca(<sup>18</sup>O,4n $\gamma$ ).
<sup>a</sup> From  $\gamma(\theta)$  in <sup>48</sup>Ca(<sup>18</sup>O,4n $\gamma$ ).

<sup>&</sup>lt;sup>b</sup> Mult=D+Q from  $\gamma(\theta)$ .  $\Delta \pi$ =no from level scheme.

<sup>&</sup>lt;sup>c</sup> Mult=Q from  $\gamma(\theta)$ .  $\Delta \pi$ =no from level scheme.

<sup>d</sup> Placement of transition in the level scheme is uncertain.

#### **Adopted Levels, Gammas**

### Level Scheme

Intensities: Relative photon branching from each level



#### **Adopted Levels, Gammas**

Legend

# Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)



#### **Adopted Levels, Gammas**

Legend

### Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

