

Project Initialization and Planning Phase

Date	3 rd August 2024
Team ID	740293
Project Title	Loan Sanction Amount Prediction Data With ML
Maximum Marks	3 Marks

Project Proposal (Proposed Solution) Report

The objective of this project is to develop a predictive model that accurately forecasts loan approval decisions using machine learning techniques. By leveraging historical loan application data, the model aims to automate and enhance the loan eligibility process, reducing manual intervention and increasing efficiency in loan processing.

Project Overview

	The primary objective of this study is to develop and
Objective	evaluate machine learning models for predicting loan
	eligibility, thereby aiding financial institutions in
	making informed and efficient lending decisions.
	Implement and compare various classification models
	such as logistic regression, decision trees, and
	random forests to identify the most accurate method
	for predicting loan approval outcomes.
	Preprocess the data by handling missing values,
Scope	encoding categorical variables, and normalizing
	numerical features. Conduct a thorough analysis of
	the dataset to understand the distribution of
	variables, detect outliers, and identify correlations.
	Evaluate the performance of different models and
	select the best-performing one based on predefined
	criteria.

Problem Statement

Description	The process of loan approval is critical for financial institutions, requiring precise and timely decision-making. Traditional methods of evaluating loan applications can be slow and prone to errors, often relying heavily on manual assessment. This project aims to develop a predictive model that automates the loan eligibility determination process, utilizing machine learning algorithms to enhance accuracy and efficiency.
Impact	This project will significantly enhance the efficiency and accuracy of loan approval processes for financial institutions by automating and streamlining decision-making through machine learning. Customers will benefit from quicker loan processing times and increased transparency.

Proposed Solution

Approach	The project approach involves preprocessing the
• •	provided dataset to handle missing values, encode
	categorical variables, and normalize numerical
	features. This is followed by exploratory data
	analysis to uncover patterns and correlations.
	Various machine learning models, including logistic
	regression, decision trees, and random forests, are
	then developed, trained, and optimized.
Key	automation of loan approval processes using
Features	machine learning models for improved efficiency
	and accuracy, the integration of voice command
	technology for enhanced user accessibility and
	interaction, and a comprehensive approach to data
	preprocessing and exploratory data analysis to
	ensure robust and reliable predictions.

Resource Requirements

Resource Type	Description	Specification/Allocation
Hardware		
Computing Resources	CPU/GPU specifications, number of cores	T4 GPU
Memory	RAM specifications	8 GB
Storage	Disk space for data, models, and logs	8 GB
Software		
Frameworks	Python frameworks	Flask

Libraries	Additional Libraries	Flask,render_template,request, pandas,
		NumPy, matplotlib, seaborn
Development	IDE	Jupiter Notebook, PyCharm
Environment		
Data		
Data	Source, size, format	Kaggle dataset