

No conflicts of interest

Outline

Patient case

Imaging in stroke

Al-based solutions in stroke imaging

Future directions

Case

79 year-old male presenting with sudden onset left-sided hemiplegia and dysarthria 2 hours prior to admission.

What's the diagnosis?

Stroke

- 2nd most common cause of death in Germany and worldwide
- 270,000 strokes per year in Germany
- **High mortality:** 25-33% die in first year after stroke
- High morbidity: 40% survivors with neurologic disability
- 85% ischemia; 15% hemorrhage
- 1.9 million neurons die per minute

→Time is brain!

Stroke treatment

Only for ischemic stroke!

A brief history of stroke treatment

State of the art mechanical thrombectomy

Courtesy: Dr. Christian Maegerlein; wikipedia.org

Outline

Patient case

Imaging in stroke

Al-based solutions in stroke imaging

Future directions

Imaging guides stroke treatment decisions

Which modality?

DSA

Source: Philips Healthcare, Siemens Healthineers

1st Imaging Decision: Rule out hemorrhage

→ Intravenous Thrombolysis

Ischemic vs. hemorrhagic stroke

2nd Imaging Decision: Find large vessel occlusion

Department of Neuroradiology

Left common carotid artery

→ Mechanical thrombectomy

Department of Neuroradiology

3rd Imaging Decision: Patient selection (late time window)

i.v. contrast administration

repeated CT scans

Tissue at risk? → Mechanical thrombectomy

Perfusion maps

Perfusion summary

Perfusion summary

Before

Mechanical thrombectomy

After

Mechanical thrombectomy

Follow-up MRI

Outline

Patient case

Imaging in stroke

Al-based solutions in stroke imaging

Future directions

1st Imaging Decision: Rule out hemorrhage

Detection of intracranial hemorrhage

ORIGINAL ARTICLE

Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Intracranial Hemorrhage

Andrew F. Voter, PhDa, Ece Meram, MDb, John W. Garrett, PhDb, John-Paul J. Yu, MD, PhDb, C.d.

Detection of intracranial hemorrhage

Data

- Retrospective, concsecutive single center cohort
- n = 3605; ICH+: 349 / ICH -: 3256
- Nonenhanced cranial CT, 7 scanners

Referencestandard

- 1 + 1 Neuroradiologists
- Consensus reading in case of deviation

Technique

- Aidoc
- "FDA-cleared neural network algorithm"

Detection of intracranial hemorrhage

		Referenzstandard	
		ICH +	ICH -
Aidoc ICH	ICH+	322	74
	ICH -	27	3182

Sensitivity	92% [89% – 95%]
Specifity	98% [97% – 98%]
PPV	81% [78% – 85%]
NPV	99% [99% – 99%]

Quelle: Voter et al. 2021

False positive findings

Miscellaneous hyperdense findings in 3/4 of cases

2nd Imaging Decision: Find large vessel occlusion

Large vessel occlusion detection

Large vessel occlusion detection

Data

- Retrospective, consecutive single center cohort
- n = 1167; LVO+ = 75 (6,4%)
- CTA: all indications, n = 404 stroke

Referencestandard

Written radiology report

Technique

- Viz.ai LVO
- Vessel length
- Predefined threshold
- Distal ACI, M1, (M2)

Department of Neuroradiology

- Registration
- Cropping
- Vessel segmentation

- Bounding box
- Information to NRAD

CTA? – Metadata i.v. contrast? metal present?

Vessel length below threshold?

		Referenzstandard	
		LVO +	LVO -
Viz LVO	LVO +		
	LVO -		

Sensitivity	81% [74% – 91%]
Specifity	96% [95% – 97%]
PPV	65% [55% – 74%]
NPV	99% [98% – 99%]

Quelle: Yahav-Dovrat et al. 2021

LVO-Detection

Original research

Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography

Sven P R Luijten , ¹ Lennard Wolff, ¹ Martijne H C Duvekot, ^{2,3} Pieter-Jan van Doormaal, ¹ Walid Moudrous, ⁴ Henk Kerkhoff, ³ Geert J Lycklama a Nijeholt, ⁵ Reinoud P H Bokkers, ⁶ Lonneke S F Yo, ⁷ Jeannette Hofmeijer, ⁸ Wim H van Zwam , ⁹ Adriaan C G M van Es, ¹⁰ Diederik W J Dippel , ² Bob Roozenbeek, ^{1,2} Aad van der Lugt, ¹ on behalf of the MR CLEAN Registry and PRESTO investigators

LVO-Detection

Data

- Retrospective study
- MR CLEAN (n=1110) &
- PRESTO (n=646; 141 LVO+)

Reference standard

Core lab assessment

Methods

- NICO LAB
- Bounding Box
- Distal ACI, M1, M2

Quelle: Luijten et al. 2022

MR CLEAN		Reference standard	
		LVO +	LVO -
NicoLab	LVO +	992	0
	LVO -	118	0

Sensitivity

PRESTO		Reference standard	
		LVO +	LVO -
NicoLab	LVO +	102	113
	LVO -	39	392

Quelle: Dehkharghani et al. 2021

Department of Neuroradiology

What can we learn from these studies?

- Don't expect perfect results
- The scenario matters
- Examples of false positive and false negative findings
- Guide clinical deployment
- Weird output can happen

3rd Imaging Decision: Patient selection (late time window)

Lots of automated solutions....

... but not Al

Outline

Patient case

Imaging in stroke

Al-based solutions in stroke imaging

Future directions

Source: streamlineicons.com

Decreasing time to treatment through mobile apps

Reference: Murray et al. JNIS 2019

Mobile stroke apps impact on turnover times

Time to notification:

Before implementation: 40 min

After implementation: 25 min

Reference: Morey et al. Cerebrovascular Diseases 2021

Machine learning for outcome prediction

Good functional outcome? (mRS90 ≤ 2 y/n)

Four models
Improvement with treatment
data
(not CT-P)

Most important predictors:

-) NIHSS after 24hrs
- 2) Premorbid mRS
- 3) Final infarct volume (NCCT)
- 4) Groin to recanalization
- 5) Baseline infarct volume (NCCT)

Reference: Brugnara et al. Stroke 2020

Summary

Stroke is common and serious Time is brain

Three imageguided treatment decisions Image-guided thrombectomy

Al-based solutions are available for dedicated imaging questions, room for improvement

Workflow streamlining Outcome prediction

dennis.hedderich@tum.de