

Support Vectors

Machine Learning

Motivation

Can you recognise handwritten digits?

Figure 1.2: Examples of handwritten digits from U.S. postal envelopes.

Let's first discuss a popular classifier: Support Vector Machines

Why Support Vectors?

Pros

- Memory and computationally inexpensive because it uses a subset of data
- Easy to interpret results
- Makes few errors

Cons

- Sensitive to configuration and outliers needs small-ish dataset
- Natively sensitive to class imbalances
- Inherently expects pairs of classes

Other stuff

- Popular implementations in scikit-learn and (highly optimized) libsvm
- Some division of opinion: considered old by some, powerful by others

Drawing a Line

- Assume: linearly separable classes
- Goal: Find a hyperplane (decision boundary with p-1 dimensions)
 - o Of the infinite possible hyperplanes, find the one with the largest width
 - Maximize the margin: gap between hyperplane and nearest observation

Class Labels & Hyperplane

- Two classes (1, -1) assumes points equidistant from margin
- Hyperplane defined by:

$$f(x) = \omega^{\mathsf{T}} x + \mathsf{b}$$

... where:

 ω^{T} is a vector of weights x is the input data b is an offset weight

Goals:

- Find support vectors "extreme" instances close to frontier but not in (or past) margin
- $f(x) \ge 1$ for all support vectors in class 1; $f(x) \le 1$ for all support vectors in class 2
- Maximise the margin [$z = f(x) / \|\omega^T\|$] by minimising weight vector (ω^T)

Two Points ⇒ Hyperplane (1)

- Goal: find the values for ω , b
- Using 2 points:
 - (1, 1) to class $1 \Rightarrow f(1, 1) = -1$
 - (2, 3) to class $2 \Rightarrow f(2, 3) = 1$
- Plane is equidistant from points:
 - \circ $\omega = (2, 3) (1, 1) = (a, 2a)$
 - o f(1, 1) = -1 = a + 2a + b
 - o f(2, 3) = 1 = 2a + 6a + b
- So b has the value [1 8a]

Two Points ⇒ **Hyperplane** (2)

- Knowing:
 - o b has the value [1 8a]
 - o f(1, 1) = a + 2a + b = -1
- We can determine ω :
 - Point (1, 1) = a + 2a + 1 8a = -1
 - \circ ... therefore $a = \frac{\%}{2}$
 - $\circ \omega = (\%, \%)$
- We can determine b:
 - \circ a + 2a + b = -1
 - $0 \frac{2}{5} + \frac{4}{5} + b = -1$
 - \sim ... so b = -11/5

More Than Two Points?

- Use support vectors (α = "alphas")
 - ... i.e. instances closest to the margin
 - ... to maximise margin, given by:

$$arg \max_{w,b} \left\{ \min_{n} \left(label \cdot (w^{T}x + b) \right) \cdot \frac{1}{\|w\|} \right\}$$

- o Problem: this is difficult to optimise
- Solution:
 - Constrained Optimisation
 - Set [label * $\omega^T x + b$] to 1*

$$\max_{\alpha} \left[\sum_{i=1}^{m} \alpha - \frac{1}{2} \sum_{i,j=1}^{m} label^{(i)} \cdot label^{(j)} \cdot a_i \cdot a_j \langle x^{(i)}, x^{(j)} \rangle \right]$$

Slack Variables

- Problems:
 - O What if an instance appears within the margin?
 - Worse, what if an instance appears on the wrong side of the margin? (Data is not always linearly separable)
- Solution: Further constrain the solution to exclude these problem points

$$c \ge \alpha \ge 0, and \sum_{i-1}^{m} \alpha_i \cdot label^{(i)} = 0$$

- "c" controls weighting between two goals:
 - Ensuring most instances have a margin of 1.0 or greater
 - Making the margin large

())

SMO

- Platt, 1996: SMO (Sequential Minimal Optimization)
 - Was it conceived before?
 - o Breaks optimisation into several smaller problems, each with relatively easy solutions
- Basic algorithm
 - Choose a (the best?) pair of alphas
 - Alphas must be outside margin
 - Alphas cannot be "clamped" or "bounded"
 - Determine b
 - Use alphas & b to find weights
 - Harrington's implementation is on github, <u>here</u>
- Advanced
 - Heuristics to select good candidates for alpha pairs
 - Classes for holding data structures

Lab 2

- Get Harrington's SMO implementation (Non-Kernel version)
 - https://github.com/pbharrin/machinelearninginaction3x/blob/master/Ch06/svmMLiA.py
 - Note that Harrington conflates loading the data (loadDataSet) with the classifier; you should NOT do this
- Get the data
 - Download from <u>linearly separable.csv</u>
 - Create a figure to ensure classes are linearly separable, eg:
- Change Harrington's code to a classifier
 - Implement "fit" and "predict"
 - Use defaults for C: 1.0; toler: 0.001; maxIter: 50
 - Ignore

Nonlinearities and Kernels

- Problem: linear separation
 - Sometimes class separations would give poor performance
 - Tuning "C" would not help in these cases
- Solution:
 - Move to a higher-dimension space
 - Scalar from two (feature) vectors $\langle x_i, x_i' \rangle$
 - Linear support vector classifier —>
 - Adds non-linear kernels (Polynomial and RBF = radial basis function)
 - Example: d-dimensional polynomials

SVM vs. Logistic Regression

- Options for K > 2 classes
 - \circ OVA (one vs. all): fit *K* different 2-class SVM classifiers; classify x^* to the class which generates the max score
 - \circ OVO: (one vs. one): Fit all K choose 2 pairwise classifiers; classify x^* to the class which wins the most pairwise competitions
- When classes are (nearly) separable, SVM generally performs better
- When classes are not linearly separable, both behave similarly
 - LR must have *ridge penalty*
 - Need to estimate probabilities? LR is the better choice
- SVMs are popular for non-linear boundaries
 - Implemented as kernels
 - Can also apply kernels ot LR or LDA... but don't

Next Time

Handwritten digits practical