Prédictions de prix immobiliers en Californie

Objectifs

- Estimer la valeur du prix médian des maisons par district / bloc
- Variables fournies: longitude, latitude, âge médian du district, nombre total de pièces dans un bloc, nombre total de chambres dans un bloc, nombre total de personnes résidant dans un bloc, nombre total de ménages pour un bloc, revenu médian des ménages dans un bloc proximité du bloc par rapport à la mer

- Exploration et nettoyage du jeu de données
- Construction d'un modèle de données et optimisation des paramètres
- Inférence
- Prédictions

EDA : exploration des données

Nettoyage des données & Preprocessing

- Suppression de la colonne "Unamed_0"
- Suppression des enregistrements avec des données manquantes

Normalisation des données

Encodage de ocean_proximity

Sélection des features

- feature permutation
- ⇒ suppression des variables <1H_OCEAN et ISLAND

VIF

Régression Linéaire

Inférence

```
OLS Regression Results
Dep. Variable:
                            y train R-squared:
                                                                      0.649
Model:
                                OLS Adj. R-squared:
                                                                      0.649
Method:
                       Least Squares F-statistic:
                                                                      1922.
Date:
                    Fri, 24 Sep 2021 Prob (F-statistic):
                                                                       0.00
Time:
                           11:10:56 Log-Likelihood:
                                                                -1.4345e+05
No. Observations:
                              11428 AIC:
                                                                  2.869e+05
Df Residuals:
                              11416 BIC:
                                                                  2.870e+05
Df Model:
                                 11
```

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.611e+05	1.08e+04	24.282	0.000	2.4e+05	2.82e+05
X_train[0]	-2.698e+05	1.38e+04	-19.603	0.000	-2.97e+05	-2.43e+05
X_train[1]	-2.438e+05	1.27e+04	-19.204	0.000	-2.69e+05	-2.19e+05
X_train[2]	5.543e+04	2981.789	18.590	0.000	4.96e+04	6.13e+04
X_train[3]	-2.145e+05	4.01e+04	-5.352	0.000	-2.93e+05	-1.36e+05
X_train[4]	6.206e+05	5.99e+04	10.366	0.000	5.03e+05	7.38e+05
X_train[5]	-1.234e+06	4.33e+04	-28.476	0.000	-1.32e+06	-1.15e+06
X train[6]	4.047e+05	6.13e+04	6.598	0.000	2.84e+05	5.25e+05
X train[7]	5.643e+05	6562.645	85.991	0.000	5.51e+05	5.77e+05
X train[8]	-2894.4364	2084.750	-1.388	0.165	-6980.905	1192.032
X train[9]	-4.209e+04	2995.571	-14.050	0.000	-4.8e+04	-3.62e+04
X_train[10]	-6535.2593	2894.919	-2.257	0.024	-1.22e+04	-860.720
Omnibus:		2474.016 Durbin-		Watson:		2.019
Prob(Omnibus):		0.0	00 Jarque-	Bera (JB):	8209.411	
Skew:		1.0	86 Prob(JB	Prob(JB):		
Kurtosis:		6.5	38 Cond. N	Cond. No.		

KNN Regression

```
model = KNeighborsRegressor()
# 5-Fold Cross validate model
cv_results = cross_validate(model, X, y, cv=5)
# obtain the mean of scores
cv_results['test_score'].mean()
```

0.7069975382669904

Obtention d'un meilleur score que le modèle de régression linéaire

Prédictions

notebook_predict

Récupération de la base de données sous forme de dataframe :

df = pd.read csv(r'C:\Users\Admin\Documents\marianneSimplon\simplon\immo SiliconValley marianneD\data\traindata ori.csv',delimit predictions = mv model.predict(X) Remplacer le chemin d'accès (en rouge) predictions = pd.DataFrame(predictions) predictions 0 109160.0 1 207000.0 2 158100.0 Transformation des données 3 436500 8 4 143920.0 16331 468640.6 16332 390240.0 16333 74420.0 Récupération des prédictions sous forme de Datarame : 16334 114760.0 16335 143700.0

16336 rows x 1 columns

Pistes d'amélioration du modèle

- regularization
- model tuning
- ...