Exercises 3, 8, 20, 23, 25, pp. 40-41;

- 3. (\Rightarrow): If H is abelian, then for any $a, b \in G$, $\varphi(ab) = \varphi(a)\varphi(b) = \varphi(b)\varphi(a) = \varphi(ba)$, where we use all our hypotheses. But φ is injective, so ab = ba. Hence G is abelian.
 - (\Leftarrow): If G is abelian, then do the same argument with φ^{-1} . For any $a, b \in H$, $\varphi^{-1}(ab) = \varphi^{-1}(a)\varphi^{-1}(b) = \varphi^{-1}(b)\varphi^{-1}(a) = \varphi^{-1}(ba)$. Now φ^{-1} is injective, so G is abelian.
- 8. The orders of S_n and S_m are n! and m!, respectively. Since sizes are non-equal so there cannot exist a bijection between S_n and S_m .
- 20. We prove the group axioms for Aut(G).
 - (a) *Identity*: Let $id_G : G \to G$ be the identity. Clearly for any $\varphi \in Aut(G)$, $\varphi \circ id_G = id_G \circ \varphi = \varphi$. Hence id_G is the identity.
 - (b) Associativity: Note that function composition is associative, so multiplication in Aut(G) is by definition associative.
 - (c) Closure: We need to prove that for any $\varphi, \phi \in \operatorname{Aut}(G)$, $\varphi \circ \phi \in \operatorname{Aut}(G)$. Indeed, if φ and ϕ are isomorphisms, then for any $g, h \in G$, $\varphi(\phi(gh)) = \varphi(\phi(g)\phi(h)) = \varphi(\phi(g))\varphi(\phi(h))$. Hence $\varphi \circ \phi$ is a homomorphism. Furthermore, the composition of two bijections is a bijection, so $\varphi \circ \phi$ is a isomorphism as well.
 - (d) Inverses: If $\varphi \in \operatorname{Aut}(G)$, then the function inverse $\varphi^{-1}G \to G$ is also the inverse of φ in $\operatorname{Aut}(G)$.

23.

25.

Exercises 4, 5, 6, 20, 21, pp. 44-45.

4.

5.

6.

20.

21.

Exercises 8, 10, 15, 17, pp. 48-49.

8.

1 Page 1

10.

15.

17.

Exercises 5, 10, 12, pp. 52-53.

5.

10.

12.

Page 2