On the decidability of priced timed games

T. Brihaye¹, G. Geeraerts², S. Krishna³, L. Manasa³ and A. Trivedi³

¹ Université de Mons – Belgium
² Université Libre de Bruxelles – Belgium
³ Indian Institute of Technology Bombay – India

HIGHLIGHTS of Logic, Games and Automata - Paris

Outline of the talk

Priced Timed Games and Optimal Strategies

2 Existing results

3 Going further...

Classical game (qualitative, zero-sum, turn-based)

A game $\mathcal{G} = ((V, E), V_0, V_1, \mathbf{G})$. Pl. 0 aims at reaching \mathbf{G} .

A winning strategy for PI. 0 from A

Winning strategy for Pl. 0

A strategy $\lambda_0: V^*V_0 \to V$ is winning for PI. 0 from v iff

 $\forall \lambda_1 : V^*V_1 \to V \quad \text{Out}(v, \lambda_0, \lambda_1) \text{ visits } \mathbf{G}.$

Priced Game

Pl. 0 aims at reaching **G** while minimising the cost.

Strategy for PI. 0 ensuring a cost K

A strategy λ_0 ensures a cost K for PI. 0 from v iff

$$\sup_{\lambda_1} \mathsf{Cost}(\mathsf{Out}(v,\lambda_0,\lambda_1)) \leqslant K.$$

Priced game

Pl. 0 aims at reaching **G** while minimising the cost.

Optimal Strategy for Pl. 0

A strategy λ_0^* is optimal for PI. 0 from ν iff

$$\sup_{\lambda_1} \mathsf{Cost}(\mathsf{Out}(v,\lambda_0^*,\lambda_1)) = \inf_{\lambda_0} \sup_{\lambda_1} \mathsf{Cost}(\mathsf{Out}(v,\lambda_0,\lambda_1)).$$

Timed Game

Pl. 0 aims at reaching **G** while minimising the time.

A strategy for PI. 0 ensuring 10 t.u. from (A, 0, 0)

Strategy for PI. 0 ensuring a time T

A strategy λ_0 ensures a time ${\mathcal T}$ for PI. 0 from $(\ell,0)$ iff

$$\sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0,\lambda_1)) \leqslant T.$$

About optimal strategies in Timed Game

Optimal Strategy for Pl. 0

A strategy λ_0^* is optimal for PI. 0 from $(\ell, 0)$ iff

$$\sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0^*,\lambda_1)) = \inf_{\lambda_0} \sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0,\lambda_1)).$$

Optimal strategies do not always exist in timed game!!!

$$\rightarrow$$
 A $x > 0$ \bigcirc \bigcirc \bigcirc \bigcirc

Pl. 0 can choose to wait any t > 0 before reaching **G**.

$$\inf_{\substack{\lambda_0 \\ \lambda_1}} \operatorname{Time}(\operatorname{Out}((A,0),\lambda_0,\frac{\lambda_1}{\lambda_1})) = \inf_{t>0} t = 0.$$

However, there is no strategy λ_0^* such that

$$\sup_{\lambda} \mathsf{Time}(\mathsf{Out}((A,0),\lambda_0^*,\lambda_1)) = 0.$$

About optimal strategies in Timed Game (continued)

ϵ -optimal Strategy for Pl. 0

Given $\epsilon > 0$, a strategy λ_0^* is ϵ -optimal for PI. 0 from $(\ell,0)$ iff $\sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0^*,\lambda_1)) \leqslant \inf_{\lambda_0} \sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0,\lambda_1)) + \epsilon.$

There is no optimal strategy for Pl. 0 from (A, 0). But for all $\epsilon > 0$, there is an ϵ -optimal strategy for Pl. 0 from (A, 0).

About optimal strategies in Timed Game (continued)

ϵ -optimal Strategy for Pl. 0

Given $\epsilon > 0$, a strategy λ_0^* is ϵ -optimal for PI. 0 from $(\ell,0)$ iff $\sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0^*,\lambda_1)) \leqslant \inf_{\lambda_0} \sup_{\lambda_1} \mathsf{Time}(\mathsf{Out}((\ell,0),\lambda_0,\lambda_1)) + \epsilon.$

There is no optimal strategy for PI. 0 from (A, 0). But for all $\epsilon > 0$, there is an ϵ -optimal strategy for PI. 0 from (A, 0).

Remark

The classical *region* of timed automata is a right tool to solve timed game.

Priced Timed Game

Pl. 0 aims at reaching **G** while minimising the cost.

A strategy for PI. 0 ensuring 52 from (A, 0, 0)

Strategy for PI. 0 ensuring a cost K

A strategy λ_0 ensures a cost K for PI. 0 from $(\ell,0)$ iff

$$\sup \mathsf{Cost}(\mathsf{Out}((\ell,0),\lambda_0,\frac{\lambda_1}{\lambda_1})) \leqslant K.$$

About optimal strategies in Priced Timed Game

Remark

Clearly optimal strategies do not always exists in Priced Timed Game

About optimal strategies in Priced Timed Game

Remark

Clearly optimal strategies do not always exists in Priced Timed Game

$$\inf_{\substack{\lambda_0 \\ \lambda_1}} \mathsf{sup} \, \mathsf{Cost} \big(\mathsf{Out} \big((A,0), \lambda_0, \textcolor{red}{\lambda_1} \big) \big) = \inf_{\substack{0 \leqslant t \leqslant 1}} \mathsf{max} \big\{ 5t + 7(1-t), 5t + 3(2-t) \big\}$$

About optimal strategies in Priced Timed Game

Remark

Clearly optimal strategies do not always exists in Priced Timed Game

The optimal strategy for PI. 0 asks to take the transition after $\frac{1}{4}$ t.u.

Outline of the talk

Priced Timed Games and Optimal Strategies

2 Existing results

3 Going further...

The *K*-bounded problem

The K-bounded Problem

Given $\mathcal A$ a PTG and $K\in\mathbb N$, decide whether there exists λ_0^* such that $\sup_{\mathbf v}\mathsf{Cost}(\mathsf{Out}((\ell_0,0),\lambda_0^*,\lambda_1))\leqslant K.$

Decidability results

The K-bounded problem is **decidable** on

Timed Games

E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. 1999

Priced Timed Games under strong non-Zenoness of the cost

 $R.\ Alur,\ M.\ Bernadsky,\ and\ P.\ Madhusudan.\ Optimal\ reachability\ for\ weighted\ timed\ games.\ 2004$

P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed game automata. 2004

Priced Timed Games with one clock

P. Bouyer, K. Larsen, N. Markey, and J. Rasmussen. Almost optimal strategies in one clock priced timed games. 2006

The value $\inf_{\lambda_0} \sup_{\lambda_1} \text{Cost}(\text{Out}((\ell_0, 0), \lambda_0, \lambda_1))$ can be computed.

Undecidability results

The K-bounded Problem is undecidable on

• Priced Timed Games with 6 clocks and non-negative prices.

T. Brihaye, V. Bruyère, J.-F. Raskin. On optimal timed strategies. 2005.

Priced Timed Games with 3 clocks and non-negative prices.

P. Bouyer, T. Brihaye, N. Markey. Improved Undecidability Results on Weighted Timed Automata. 2006

Outline of the talk

Priced Timed Games and Optimal Strategies

2 Existing results

3 Going further...

Questions still open...

• What about the variants of the K-bounded Problem?

The K-bounded Problem (strict version)

Given ${\mathcal A}$ a PTG and ${\mathcal K}\in{\mathbb N}$, decide whether there exists λ_0^* such that

$$\sup_{\lambda_1} \mathsf{Cost}(\mathsf{Out}((\ell_0,0),\lambda_0^*,\lambda_1)) < K.$$

The K-bounded Problem (ϵ -version)

Given $\mathcal A$ a PTG and $K\in\mathbb N$, decide whether for all $\epsilon>0$, there exists λ_0^ϵ such that

$$\sup_{\lambda_1} \mathsf{Cost}(\mathsf{Out}((\ell_0,0),\lambda_0^*,\lambda_1)) \leqslant K + \epsilon.$$

• What happens if we consider concurrent games, positive costs,...?

The time-bounded framework

Undecidable problems become **decidable** when considering their **time-bounded** version :

Time-bounded language inclusion for Timed Automata

J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. 2009

Reachability for Hybrid Automata

T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, J. Worrell: On Reachability for Hybrid Automata over

The time-bounded framework

Undecidable problems become **decidable** when considering their **time-bounded** version :

Time-bounded language inclusion for Timed Automata

J. Ouaknine, A. Rabinovich, and J. Worrell. Time-bounded verification. 2009

Reachability for Hybrid Automata

T. Brihaye, L. Doyen, G. Geeraerts, J. Ouaknine, J.-F. Raskin, J. Worrell: On Reachability for Hybrid Automata over Bounded Time. 2011

Would this work for the K-bounded Problem on PTG?

New (undecidability) results

- The time-bounded, K-bounded Pbm is undecidable on PTG.
- The strict version of the K-bounded Pbm is undecidable on PTG.
- The ϵ -version of the K-bounded Pbm is undecidable on PTG.
- The K-bounded Pbm is undecidable on concurrent PTG with 2 clocks.

New (undecidability) results

- The **time-bounded**, *K*-bounded Pbm is **undecidable** on **PTG**.
- The **strict version of** the *K*-bounded Pbm is **undecidable** on **PTG**.
- The ϵ -version of the K-bounded Pbm is undecidable on PTG.
- The K-bounded Pbm is undecidable on concurrent PTG with 2 clocks.

We hope to obtain:

- a precise characterisation of the decidability border,
- a new decidability result (with positive cost, few clocks, and ???)

Thank you!!!