Оглавление

1			2
	1.1	Продолжение чего-то	2
		Гомеоморфизм	2

Глава 1

1.1 Продолжение чего-то

```
Определение 1. (X, \rho), (Y, d), \quad f: X \to Y f непрерывна, если \forall x_0 \in X \quad \forall \varepsilon > 0 \quad \exists \ \delta(\varepsilon, x_0) > 0: f\big(B(x_0, \delta)\big) \subset B(f(x_0), \varepsilon)
```

Теорема 1. $(X, \rho), (Y, d)$ – метрические пространства, $f: X \to Y$ – непрерывна f непрерывна \iff прообраз \forall открытого U открыт

Доказательство.

ullet \Longrightarrow $\forall U$ – открытое в Y. Нужно жоказать, что $f^{-1}(U)$ открыто в X

$$\forall x_0 \in f^{-1}(U) \quad f(x_0) \in U \implies \exists \varepsilon > 0 : B(f(x_0), \varepsilon) \subset U \implies \exists \delta_{\varepsilon, x_0} > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \varepsilon) \subset U$$

• =

$$\forall x_0 \in X \quad \forall \varepsilon > 0 \quad U \coloneqq B\big(f(x_0), \varepsilon\big) \quad f^{-1}(U) \text{ открыт} \quad x_0 \in f^{-1}(U)$$

$$\exists \, \delta > 0 : B(x_0, \delta) \subset f^{-1}(U) = B(f(x_0), \varepsilon) \implies B(x_0, \varepsilon) \subset f^{-1}\big(B(f(x_0), \varepsilon)\big) \implies f\big(B(x_0, \delta)\big) \subset B\big(f(x_0), \varepsilon\big)$$

Определение 2. $(X,\Omega_X),(Y,\Omega_Y)$ — топлогические пространства, $f:X\to Y$ f называется непрерывной, если $\forall U\in\Omega_Y\quad f^{-1}(U)\in\Omega_X$

1.2 Гомеоморфизм

Определение 3. $(X, \Omega_X), (Y, \Omega_Y), f: X \to Y$ f – гомеоморфизм, если:

- 1. f непрерывно
- 2. f биекция
- $3. f^{-1}$ непрерывно

X и Y называются гомеоморфными, если между ними существует гомеоморфизм

Обозначение. $X \simeq Y$

Примеры.

$$1. \ [0,2\pi) \to S^1, \quad S^1 = \{\, (x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \,\} = \{\, z \in \mathbb{C} \mid |z| = 1 \,\}$$

Рис. 1.1: Отображение $[0,2\pi)\to S^1$ и обратное к нему Точки, выделенные красным в одном случае далеко друг от друга, а в другом – близко

 $f(\alpha) = \cos \alpha + i \sin \alpha$ – непрерывно, биективно, обратное разрывно (см. рис. 1.1)

2. $(X, \Omega_1), (X, \Omega_2)$ – топологические пространства (на одном множестве две топологии), $\Omega_1 \neq \Omega_2$, $\Omega_2 \subset \Omega_1$ (говорят, что Ω_1 – более сильная (более тонкая) топология, чем Ω_2 , $f: X \to X: f(x) = x$ f – биекция, непрерывно

Чатсные примеры на \mathbb{R} . Ω_1 – дискретная, Ω_2 – антидискретная, Ω_3 – стандартная, Ω_4 – Зариского, Ω_5 – стрелка

 $\Omega_1 \subset \Omega_3 \buildrel {\buildrel C} \subset \Omega_4 \\ \subset \Omega_5 \buildrel {\buildrel C} \subset \Omega_2$

Примечание. $f: X \to Y$, на X дискретная $\Longrightarrow f$ непрерывна $f: X \to Y$, на Y антидискретная $\Longrightarrow f$ непрерывна

Примеры.

1. $(a, b) \simeq (c, d)$

$$f(x) = \frac{d-c}{b-a}(x-a) + c$$

(Или любое другое непрерывное возрастающее, для которого $f(a) = c, \ f(b) = d$)

2. $(a,b)\simeq\mathbb{R}$ (так как $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\simeq\mathbb{R}$, через tg)

Утверждение 1. Гомеоморфизм – отношение эквивалентности

Доказательство.

- Рефлексивность: $X \simeq X$, f(x) = x
- ullet Симметричность: f:X o Y гомеоморфизм $\implies f^{-1}:Y o X$ гомеоморфизм
- ullet Тринзитивность: f:X o Y,g:Y o Z гомеоморфизм $\implies g\circ f:X o Z$ гомеомрфизм

Определение 4. Свойство топологического пространства называется топологическим, если оно не меняется при гомеоморфизме