

AIR FORCE COMMUNICATIONS SERVICE

TRACALS EVALUATION REPORT

VORTAC Station Evaluation Report

Wright-Patterson AFB, OH

77/66N-89

Evaluation Period 15-21 March 1977

UDC FILE COPY

DISTRIBUTION STATEMENT A
Approved for public releases

Distribution Unlimited

DEPARTMENT OF THE AIR FORCE 1866 Facility Checking Squadron (AFCS) Richards-Gebaur AFB, MO 64030

9 Final rept,

77/66N-89

TRACALS Evaluation Report.

VORTAC Station Evaluation Report

Wright-Patterson AFB, OHI &

77/66N-89

10 Geoffry S. Howard

Evaluation Period 15-21 March 1977.

Prepared By;

GEOFF KY/S. HOWARD, Capt, USAF TRACALS Evaluation Team Chief

Approved By:

Commander

This report was reviewed by the AFCS TRACALS Evaluation Technical Review Panel (TETReP) on 15-21 March 1977. The report is recommended for formal publication.

Cugene P. Miller, Capt, USAF Chairman, TETReP

Approved By;

THOMAS A. HOWLEY, Colonel, USAF

Asst DCS/Air Traffic Services

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

408827

ABSTRACT

This report presents the results of the 15-21 Mar 1977 evaluation of the Wright-Patterson AFB AN/FRN-32A VORTAC and associated power systems. The evaluation was conducted to observe the facility in its installed environment and to determine its capabilities and limitations. Results show that the facility is capable of satisfying the users' requirements. Recommendations are made for improvements. The results obtained can be used as a guide to anticipated performance until there is a significant change in either ground equipment, siting, or screening.

DISTRIBUTION

Copies	Addressee
4	2046 Comm Gp (AFCS), Wright-Patterson AFB, OH 45433
2	ASD, Wright-Patterson AFB, OH 45433
2	NCA/EPE, Griffiss AFB, NY 13441
2	NCA/FF, Griffiss AFB, NY 13441
2 2 2 2	NCA/LG, Griffiss AFB, NY 13441
20	1866 FCS, Richards-Gebaur AFB, MO 64030
2	1867 FCS, APO San Francisco 96328
2 2	1868 FCS, APO NY 09057
1	1842/EEG, Richards-Gebaur AFB, MO 64030
1	1842/EEIT, Richards-Gebaur AFB, MO 64030
1	AFCS/OA, Richards-Gebaur AFB, MO 64030
1	AFCS/IGP, Richards-Gebaur AFB, MO 64030
2	AFCS/LGMBF, Richards-Gebaur AFB, MO 64030
1	AFCS/LGMMQ, Richards-Gebaur AFB, MO 64030
1	AFCS/LGMSE, Richards-Gebaur AFB, MO 64030
2	AFCS/FFC, Richards-Gebaur AFB, MO 64030
1	AFCS/FFN, Richards-Gebaur AFB, MO 64030
8	AFCS/FFOT, Richards-Gebaur AFB, MO 64030
12	DDC-TC, Cameron Station, Alexandria, VA 22314
2 2	FAA/ARD-5, 800 Independence Ave, Washington DC 20590
2	FAA/FINFO/AFS-503, PO Box 25082, Oklahoma City, OK 73125

TABLE OF CONTENTS

SUB	JECT		PAGE
ABS	LE PAG TRACT TRIBUT LE OF		i ii ii iii
1.	SUMMA	RY:	1
	1-1.	TACAN a. Ground Evaluation Results b. Siting Evaluation Results c. Flight Evaluation Results (1) Alignment Accuracy (2) Course Structure (3) Coverage (4) Interference Field Pattern (5) Approaches and Missed Approaches VOR	1 1 1 1 1 1 1 2 2 2 2 2
	1-2.	a. Ground Evaluation Resultsb. Siting Evaluation Resultsc. Flight Evaluation Results	2 2 2
2.	RECOMMENDATIONS: 4		4
	2-1. 2-2.	TACAN VOR	4
3.	GENER	AL INFORMATION:	5
	3-3. 3-4.	Facility Data a. General b. VORTAC Airfield/Runway Data Mission Area of Responsibility Primary Using Agencies/Aircraft Supported ATC Facilities Logistics Support Key Personnel a. Ground Evaluation Personnel b. Airborne Evaluation Personnel c. Personnel Contacted (2046 Comm Gp)	555555566666
4.	PROPAGATION CLIMATOLOGY		7
	4-1. 4-2. 4-3. 4-4.	Introduction General Considerations Seasonal Climatology Refractive Conditions	7 7 7 7

5.	TACAN		9
	5-1.	Equipment Details	9 9 9
		a. General	9
		b. Special	10
	5-2.	Facility Equipment	10
	5-3.	Equipment Status	10
		a. Receivers	10
		b. Transmitters	10
		c. Monitors	11 11
	5-4.	d. Supporting Test Equipment	11
	5-4.	Environmental Factors a. Siting Characteristics	11
		a. Siting Characteristics b. Weather	11
		c. Electromagnetic Environment	11
	5-5.	Evaluation Profile	11
	J-J.	a. Alignment Accuracy	11
		b. Course Structure	12
		c. Coverage	12
		d. Interference Field Pattern	12
		e. Approaches and Missed Approaches	12
	5-6.	Analysis of Evaluation Results	12
		a. Alignment Accuracy	12
		b. Course Structure	13
		c. Coverage	13
		d. Interference Field Pattern	14
		e. Approaches and Missed Approaches	15
6.	VOR		16
	6-1.	Equipment Details	16
		a. General	16
	c 0	b. Special	16
	6-2.	Facility Equipment	16 17
	6-3. 6-4.	Equipment Status	18
	6-5.	Electromagnetic Environment Evaluation Profile	19
	6-6.	Analysis of Flight Evaluation Results	19
	0-0.		19
		a. Alignment Accuracy b. Course Structure	19
		c. Coverage	21
		c. coverage	21
7.	POWER	FACILITIES	23
	7-1.	Equipment Details	23
	7-2.	Equipment Status	23
	7-3.	Adequacy/Reliability	23
Figu	ures		
	6-1.	Reflections from Hangar 206	20
	0-1.	Refrections from nangar 200	20

TABS A-1-1 LOCATION MAP A-1-2 ENROUTE LOW ALTITUDE CHART A-2-1/5INSTRUMENT APPROACH PROCEDURES A-3 RUNWAY DATA B-1-1/4SKYLINE GRAPHS C-1-1/2LINE OF SIGHT COVERAGE (RLS) CHARTS D-1-1/2 TACAN EQUIPMENT PHOTOGRAPHS D-2 TVOR EQUIPMENT PHOTOGRAPHS E-1-1/2TACAN INITIAL PERFORMANCE CHECK E-2 AC POWER E-3 ENVIRONMENTAL CONTROL E-4-1/3TACAN PRE/POST FLIGHT EVALUATION DATA E-5-1/2TVOR SUBSYSTEM MEASUREMENTS E-6-1/4VOR/TVOR PRE-POST AIRBORNE EVALUATION CHECKLIST E-7-1/2 SUBCARRIER GENERATOR FREQUENCY CURVE E-8-1/2VOR/TVOR GROUND CHECK DATA E-8-3/4 REVERSE GROUND CHECK DATA E-8-5 ERROR COMPUTATION WORKSHEET E-9-1/2 INITIAL GROUND CHECKS TVOR TOTAL ERROR CURVE INITIAL GROUND CHECKS VOR/TVOR GROUND ERROR CURVE E-9-3 E-10-1/2 INITIAL ANTENNA ERROR POLAR GRAPHS E-10-3/4INITIAL GONIOMETER ERROR POLAR GRAPHS E-10-5/6INITIAL TOTAL ERROR POLAR GRAPHS E-11-1/2 INITIAL VS FINAL VOR GROUND ERROR COMPARISON E-12 ERROR COMPUTATION WORKSHEET E-13-1 VOR/TVOR GROUND CHECK DATA E-13-2 REVERSE GROUND CHECK DATA E-14 FINAL GROUND CHECKS TVOR TOTAL ERROR CURVE E-15-1 FINAL ANTENNA ERROR POLAR GRAPHS E-15-2 FINAL GONIOMETER ERROR POLAR GRAPH E-15-3 FINAL TOTAL ERROR POLAR GRAPH VOR/TVOR GROUND CHECK DATA E-16-1 E-16-2 REVERSE GROUND CHECK DATA FINAL GROUND CHECK TVOR TOTAL ERROR CURVE E-17 E-18-1 FINAL ANTENNA ERROR POLAR GRAPH E-18-2 FINAL GONIOMETER ERROR POLAR GRAPH E-18-3 FIANL TOTAL ERROR POLAR GRAPH E-19 FINAL GROUND CHECKS ERROR CURVES F-1-1/6 OFFICIAL FLIGHT INSPECTION REPORT F-2 TACAN FLIGHT DATA SUMMARY F-3-1 TACAN ACTUAL RECEIVED SIGNAL LEVELS - 035 RADIAL TACAN ACTUAL RECEIVED SIGNAL LEVELS - 1550 RADIAL F-3-2 TACAN ACTUAL RECEIVED SIGNAL LEVELS - 2740 RADIAL F-3-3 COMPUTATIONS FOR PREDICTING TACAN COVERAGE F-4 F-5 PREDICTED VORTAC COVERAGE - 30,000 FT MSL INTERFERENCE FIELD PATTERN - 0470 RADIAL F-6-1 INTERFERENCE FIELD STRUCTURE - 0470 RADIAL F-6-2

TVOR FLIGHT DATA SUMMARY

F-7

F-8-1	VOR ACTUAL RECEIVED SIGNAL LEVELS - 0350 RADIAL
F-8-2	VOR ACTUAL RECEIVED SIGNAL LEVELS - 155° RADIAL
F-8-3	VOR ACTUAL RECIEVED SIGNAL LEVELS - 2740 RADIAL
F-9	COMPUTATIONS FOR PREDICTING VOR COVERAGE
F-10	VOR SCALLOPING AMPLITUDE - 25NM/2500 FT ORBIT
G-1	FREQUENCY OF REFRACTIVE CONDITIONS IN PERCENT

SUMMARY

1-1. TACAN

- a. Ground Evaluation Results: Transponder one was removed from service due to the transmit frequency being out-of-tolerance. Receiver one's eight microsecond decoding was out-of-tolerance, but a pending change in this specification will eliminate this problem. Transponder two and associated equipment were operating satisfactorily with the exception of the A-7 monitor which was inoperative for parts.
- b. Siting Evaluation Results: Flat grass-covered ground surrounds the VORTAC, providing large reflecting areas conducive to the formation of vertical nulls. No significant deterioration of course structure occurs in the nulls, however, because of the excellent characteristics of the GRA-120 antenna. Horizon screening is relatively low at all azimuths except to the northwest, where coverage is slightly reduced by elevation angles of as much as 1.5°.

c. Flight Evaluation Results

- (1) Alignment Accuracy: Alignment orbits resulted in a maximum error spread of -0.4° to $+1.0^{\circ}$ on transponder one and -1.3° to $+1.6^{\circ}$ on transponder number two. Average alignment errors were $+0.25^{\circ}$ and $+0.20^{\circ}$, respectively, and $+0.5^{\circ}$ on both transponders at the reference checkpoint. The TACAN satisfies the AFM 55-8 requirement that all radials must be within 2.5° of the correct magnetic azimuth.
- (2) Course Structure: Course structure on all radials was extremely smooth, with a nominal roughness value of approximately 0.2°. Isolated increases in roughness occurred in association with several minor nulls, but these were not of sufficient magnitude to limit TACAN service.
- (3) Coverage: An elaborate coverage prediction procedure, which accounts for refraction and anomolous propagation effects, was applied in the analysis of coverage data. Measured coverage exceeded predicted coverage by an average of 1% using this method. This validated prediction technique was then used to develop coverage charts. Solid coverage is provided well beyond the required service volume, and the TACAN is fully capable of satisfying all current mission requirements.
- (4) Interference Field Pattern: Nulling on the 232° approach radial was insignificant. Vertical nulls measured on the 047° approach radial coincided closely with nulls predicted by a computer model. Although these nulls have significant depth, only slight increases in course roughness occur in the nulls, and there is no

appreciable deterioration of TACAN service. These nulls are caused by reflections from the large flat area to the northeast and can not be reduced or eliminated by equipment maintenance.

(5) Approaches and Missed Approaches: TACAN service is excellent on all holding patterns, arcs, approach radials, and missed approaches except for areas of slight roughness at 8.6 NM/2200 feet MSL and 5.4 NM/2000 feet MSL on the 047° approach radial. These rough areas are caused by nulls, as discussed above.

1-2. VOR

a. Ground Evaluation Results

- (1) Sideband VSWRs on both transmitters were out-of-tolerance. This was the result of 2046 Comm Group tuning the antenna to compensate for temperature variations. AFCS has performed a study, however, which determined that tuning the antenna for best SWR is the preferred method.
- (2) The ground error spread of transmitter one was outof-tolerance. The antenna was retuned by 2046 Comm Group and the error spread reduced to a satisfactory level.
- b. Siting Evaluation Results: Performance indicates the VOR is nearly ideally sited. The flat, smooth ground around the site is preferred for VOR, resulting in excellent course structure, except within the restricted area. It is believed that the restriction defined in the IFR supplement is caused by reflections from hangar 206, although this belief could not be deterministically proven.

c. Flight Evaluation Results

- (1) Alignment Accuracy: Initial ground checks revealed an out-of-tolerance error spread on transmitter one and this was confirmed by airborne orbital measurements. Equipment adjustments by local maintenance personnel were successful in bringing the errors within tolerance. Final airborne error spreads were 2.8° on transmitter one and 2.6° on transmitter two, and both ground checks were satisfactory. Average alignment errors were 0.93° on transmitter one and 0.86° on transmitter two. All final radial alignments satisfied AFM 55-8 requirements.
- (2) Course Structure: Course structure is exceptionally smooth throughout the coverage volume except within the region from 340°-010° below 3000 feet MSL. This area is restricted because of large amplitude scalloping which appears on radial tracks. Analysis strongly indicates that this scalloping is caused by reflections from hangar 206, but this theory could not be proven conclusively.

- (3) Coverage: Solid VOR coverage is provided well beyond the limits of the required service volume. Plots are contained in the report which depict the exact limits of useable coverage at 30,000 feet MSL, and may be extrapolated to provide coverage data at other altitudes of interest.
- (4) Approaches and Missed Approaches: Scalloping of up to 3.0° was measured at 13 NM/3000 feet MSL on the 050° missed approach radial. These aberrations are beyond the 10 NM range within which the missed approach is executed. Except for this minor problem area VOR support of all applicable instrument approaches is fully adequate.

2. RECOMMENDATIONS

2-1. TACAN

- a. Recommend the replacement crystals for both transmitters be carefully checked for frequency accuracy prior to returning the transmitter to service (reference paragraph 5-3b).
- b. Recommend the receiver one meter switch be replaced (reference paragraph 5-3a).
- c. Recommend replacement of the receiver two IF amplifier to correct alignment and squitter problems (reference paragraph 5-3a).
- d. Bias potentiometer R1211 on transponder two needs replacment to enable smooth adjustment of klystron bias (reference paragraph 5-3b).
- 2-2. $\underline{\text{VOR}}$: Recommend that 2046 CG retune the VOR antenna such that the sideband VSWRs are within tolerance (reference paragraph 6-3d).

GENERAL INFORMATION

3-1. Facility Data

a. General

Location: Wright-Patterson AFB, OH (TAB A-1-1) Unit: 2046 Communications Group Area: Northern Communications Area Evaluation Period: 15-21 March 1977

b. VORTAC

Site Coordinates: 39° 49' 05.017" N 84° 03' 16.796" W Site Elevation: 805.69 ft MSL Frequency: 115 2 MHz/Channel 99

Frequency: 115.2 MHz/Channel 99 TACAN Antenna Height: 34 ft AGL

3-2. Airfield/Runway Data

Airfield Elevation: 824 ft MSL

Airfield Coordinates: 39° 49' 34.3" N

84° 02' 53.8" W

Magnetic Variation: 2.19° W

Wright-Patterson active runway is 05/23. Dimensions of the runway and the location of the VORTAC facility are shown in TAB A-3-1.

- 3-3. Mission Area of Responsibility: Wright-Patterson is a radio class (T) BVORTAC, required to provide solid coverage within a 25 NM radius/12000 ft MSL protected service volume. Two high and three low altitude approaches are provided to runway 05/23, as are missed approach procedures, holding patterns, and DME arcs to final. TABS A-2-1/5 depict the published instrument approaches. The low altitude enroute chart for the surrounding areas is shown in TAB A-1-2.
- 3-4. Primary Using Agencies/Aircraft Supported: Wright-Patterson ATC facilities support EC-135s assigned to ASD, T-39s, transient aircraft and the local Aero Club. In addition, the base serves as headquarters for Log Air, flying primarily DC-9s and the civilian version of the C-130.
- 3-5. ATC Facilities: The Wright-Patterson ATC system is composed of a VFR control tower with BRITE II, VORTAC, SSILS, PAR and ASR. With the exception of the ASR (RAPCON), which is operated by FAA, all of these facilities are Air Force operated. Dayton Approach Control is divided into two service sectors, Dayton and Patterson. The Dayton sector provides IFR approach/departure to several adjacent civil

airports, including Dayton Muni, Richmond, Sidney, Piqua and Darke County. Wright-Patterson, Springfield, Hooke (Middleton), Montgomery County and Greene County are supported by the Patterson sector. In addition, stage III radar service is provided for Dayton Muni and Wright-Patterson AFB.

3-6. <u>Logistics Support</u>: Calibration and repair of test equipment is performed by Wright-Patterson AFB PMEL.

3-7. Key Personnel

a. Ground Evaluation Personnel

Capt Geoffry S. Howard, Electrical Engineer/Team Chief MSgt Donald R. Ferguson, Evaluation Technician MSgt Felix D. Young, Evaluation Technician MSgt John R. Ramsey, Evaluation Technician SSgt Danny R. Cartee, Evaluation Technician AlC Stephen F. Jurash, Surveyor

b. Airborne Evaluation Personnel

Capt Alan L. Rust, FLight Inspector/Aircraft Commander Capt John R. Barrett, Pilot MSgt Lynn L. Dillingham, Flight Inspection Technician MSgt Joseph E. Lee, Flight Mechanic MSgt Jackie L. Sollers, Flight Inspection Technician SSgt John W. Blank, Flight Inspection Technician

c. Personnel Contacted (2046 Comm Gp)

Col William M. Rainwater, Commander Lt Col Richard K. Rathbun, Vice Commander Maj Charles C. Aplin, Chief of Maintenace MSgt Thomas H. Fries, NCOIC NAVAIDS Work Center Mr. James J. Walther, GS-11, North Comm Area

4. PROPAGATION CLIMATOLOGY

- 4-1. <u>Introduction:</u> The information in this chapter is provided for a seasonal assessment of the probable weather conditions at Wright-Patterson AFB, Ohio, and to emphasize the importance of weather effects on TRACALS.
- 4-2. General Considerations: The mean daily minimum temperature at Wright-Patterson AFB is 22 degrees in January, and the mean daily maximum for the summer is 85 degrees in July and August. Prevailing winds are from the west in the winter months, and from the south to southwest during the rest of the year.

4-3. Seasonal Climatology

- a. Strong, rapid moving fronts occur frequently during the winter season. During the coldest part of the year dry air is predominant over the region. In the fall and winter it is often characterized by strong subsidence aloft. When the comparatively warm moist air from the southwest overrides the cold dry air, a moderate to strong subrefractive layer is often formed in the vicinity of the mixing zone of the two air masses. These systems are often associated with storms originating in Colorado.
- b. During the summer months the site should experience the maximum amount of superrefractive conditions, due to the warmer temperatures and the addition of low level moisture. The refractive profile becomes superrefractive with nightime cooling, and standard to subrefractive with daytime heating. Nights of clear skies and calm winds are favorable to the formation of low level ducts. These tend to dissipate soon after sunrise. Low level moisture and upper level subsidence, which occur frequently during this season, create ideal conditions for the formation of strong superrefractive layers aloft. Usually they are elevated enough so that the angle of penetration of the rays prevents trapping.
- c. The spring and fall seasons serve as transitional periods between the maximum occurrence of superrefractive conditions during the summer and the more standard propagation conditions characteristic of the winter.
- 4-4. Refractive Conditions: The chart "Frequency of Refractive Conditions in Percent" (TAB G-1) is derived from summaries of atmospheric refractive index prepared by the USAF Environmental Technical Applications Center (AWS). It was computed from the nearest rawinsonde station considered to be representative of this site. The chart represents a count by month, over the period of record of three or more years, of the minimum gradient category in percent frequency of occurrence. Only the

one minimum gradient category in each upper air sounding has been counted. For this reason subrefraction is seldom shown on the chart, as more negative gradients will usually be found and counted. A description of the refractive index categories and their corresponding gradients in "N"-units per 1000 feet follows:

TRAPPING-Refractivity decreases with height. Rays curve downward more sharply than the curvature of the earth's surface. Radio/radar performance is greatly disturbed, ranges are greatly extended, radar holes appear. Occurrence is not normally frequent. Gradient less than or equal to -48/1000 feet.

SUPERREFRACTIVE-Refractivity decreases with height. Rays curve downward more sharply than normal but not as much as the curvature of the earth's surface. Radio/radar ranges are significantly extended. Occurrence is frequent. Gradient between -24/1000 feet and -48/1000 feet.

NORMAL-Refractivity decreases with height. Rays curve downward but not as sharply as with superrefractivity. Radio/radar performance is generally undisturbed. Occurrence is frequent. Gradient greater than -24/1000 feet and less than 0/1000 feet.

SUBREFRACTIVE-Refractivity increases with height. Ray curvature is less than normal. Radio/radar ranges are significantly reduced. Occurrence is quite rare. Gradient greater than or equal to 0/1000 feet (positive gradient).

5. TACAN

5-1. Equipment Details

a. General

- (1) The AN/GRN-20C TACAN facility consists of three basic equipment groups: the receiver-transmitter group, the antenna group, and the control monitor group. The receiver-transmitter group consists of a coder monitor (coder indicator), a radio receiver, a radio set control, an amplifier-modulator, a frequency multiplier-oscillator (FMO), and three associated power supplies. The antenna group consists of a low or high band antenna and an antenna control unit. The control-monitor group consists of an antenna switching unit, a local control drawer, two radio frequency monitors, and built-in test equipment. A remote unit is provided which allows monitoring and control of the equipment.
- (2) TACAN facilities operate in the 962 to 1213 MHz frequency range with a total of 126 channels available. The first 63 channels, 962 to 1024 MHz with 1 MHz channel separation, are known as the low band. The low band receiver operates 63 MHz above the selected transmitter frequency. The remaining 63 channels, 1151 to 1213 MHz with 1 MHz spacing between channels, are known as the high band. The high band receiver frequency is 63 MHz below the selected transmitter frequency.
- (3) A TACAN is capable of providing distance information to approximately 95 properly equipped aircraft and azimuth information to any TACAN equipped aircraft in the area of coverage. Distance information is limited to a maximum range by the airborne indicator and by signal strength. Azimuth information is limited only by signal strength.
- (4) Acquisition of distance information is initiated by a transmitter in the aircraft. Distance interrogation pulses are transmitted from the aircraft with a repetition pattern peculiar to the airborne transmitter. Reception of these distance interrogation pulses by the ground TACAN station causes the transmission of a series of reply pulses with the same repetition pattern. The aircraft receives the reply, measures the time elapsed between the transmission of the interrogation pulse pairs and the receipt of the reply, then converts this elapsed time into equivalent distance information.
- (5) Azimuth information is transmitted by modulating the antenna radiation pattern through rotation of parasitic elements in the antenna and by transmitting reference pulse pair groups. The aircraft determines its bearing by comparing the phase of the reconstructed modulation envelope with the time occurrence of the reference pulse pair groups.

b. Special: The Wright-Patterson TACAN operates on channel 99, receiving interrogations on a frequency of 1123 MHz and replying on a frequency of 1186 MHz.

5-2. Facility Equipment

TACAN Transponder One: AN/GRN-20C, Serial Number 18 TACAN Transponder Two: AN/GRN-20C, Serial Number 40

Monitor: AN/GRA-111, Serial Number 313 Antenna: AN/GRA-120, Serial Number 017

- 5-3. Equipment Status: TACAN equipment checks were performed in accordance with AFCSP 100-61, Volume XVIII. Detailed results are found in TABs E-1-1/2. Oscilloscope photographs are depicted in TABs D-1-1/2. TABs E-4-1/3 contain results of pre and post airborne evaluation equipment checks. Environmental conditions inside the shelter are plotted in TAB E-3.
- a. Receivers: The bandwidth of receiver number one was initially measured as 1.2 MHz. After alignment the bandwidth was 1.8 MHz. Athough this figure still does not meet TO standards, it is more acceptable. Eight micro-second decoding of receiver one was out-of-tolerance, being only 43 dB down instead of 50 dB as required by the TO. No action was taken to correct this problem as a revision to the TO which will change this tolerance from 50 dB to 30 dB was pending. This TO change has since been effected. Receiver one also had an erratic meter selector switch. A replacement was ordered. The initial bandwidth of number two receiver preamplifier was 3.5 MHz and it was aligned off-channel. Maintenance aligned the preamplifier, but was unable to obtain an on-channel response with the correct bandwidth. It was determined that the IF unit was aligned off-channel and was causing the problem with the preamplifier. An IF unit was placed on order.
- b. Transmitters: Transponder one crystal frequency was out-of-tolerance. A replacement crystal was placed on order. The auxiliary reference burst count was out-of-tolerance high. R634 and R656 were replaced in the coder-monitor by maintenance personnel. During the evaluation the medium voltage power supply overloaded. Replacement of V1704, V1705, and V1706 corrected the problem. The frequency of transponder two was also found to be out-of-tolerance. Replacement of the oscillator-doubler and second doubler, and alignment of these circuits brought the frequency within tolerance. However, a crystal was also placed on order for this transponder. Adjustment of the bias potentiometer (R1211) was necessary in order to put the klystron bias supply for number two within tolerance. Because the bias potentiometer was erratic during adjustment a replacement was ordered.

- c. Monitors: The A-7 monitor was inoperative on arrival of the TRACALS team. Parts were on order.
- d. Supporting Test Equipment: The OS-203 scope did not function properly on channel two during a receiver sensitivity check. A one MW reference point could not be established. An external scope was used during the evaluation to complete the receiver checks. Maintenance scheduled the scope for PMEL after the evaluation.

5-4. Environmental Factors

- a. Siting Characteristics: The Wright-Patterson VORTAC facility is located on base and adjacent to the active runway 05/23. Refer to runway data TAB A-3-1 for further information. The terrain surrounding the facility is basically flat in all directions and consists of grassy soil. The nearest large objects are approximately 4000 feet from the VORTAC and their locations are presented in TABs B-1-1 through B-1-4 (Skyline Graph Data).
- b. Weather: Rawinsonde data was collected by Air Force Global Weather Central to determine the refractive profile of the atmosphere during the flight phase of the evaluation. This data showed that normal propagation conditions existed at all applicable levels in the Wright-Patterson area during the flight phase, and thus no modification of the flight data occurred due to weather. Since no anomolous propogation was observed, the weather data is not included in the TABs.
- c. Electromagnetic Environment: The Wright-Patterson VORTAC is a radio class (T) facility, assured interference free operation within a 25 NM/12000 feet MSL protected service volume. No evidence of frequency interference was noted during the flight evaluation.
- 5-5. Evaluation Profile: Included in the flight evaluation were alignment and VOR coverage orbits, various radial runs to measure signal levels and to investigate VOR course structure, and a complete check of all published approaches using the VORTAC, including high and low altitude holding patterns and missed approach procedures.
- a. Alignment Accuracy: Four theodolite tracked alignment orbits were flown to compare VOR error characteristics before and after tuning of the antenna and improvement of the station ground. Radials were flown to check distance and azimuth accuracy at the reference checkpoint.

- b. Course Structure: Data for assessing the quality of TACAN course structure was collected concurrently with coverage data and with checks of the approach procedures. Special profiles were flown to determine the cause of VOR course scalloping between 340° and 010°, including two 20 NM orbits and numerous radials through the restricted area.
- c. Coverage: Profiles for measuring the actual signal levels in the coverage volume were designed to maximize the amount of useful data obtained in the available flying time. Starting at the station, radials were flown outbound to 2 minutes beyond the ARN-91 azimuth unlock and the VOR 5 uv point, then inbound 1000 feet lower until 4 minutes after DME lock, then outbound 1000 feet lower and so forth. After the desired altitudes had been flown on a given radial the final track was flown inbound to the VORTAC at the lowest altitude. This method allowed the aircraft to cut back and forth across the coverage fringe radially, gathering data to compile a vertical profile of the signal levels and unlock points on a given radial. Three radials were chosen such that the coverage over representative screening types could be checked while keeping the radials widely dispersed.
- d. Interference Field Pattern: Special runs were made on the 047° and 239° approach radials to determine whether nulling was present on either radial. Interference field data was also obtained on the radial runs flown as coverage checks.
- e. Approaches and Missed Approaches: Published approaches, missed approaches, and the associated holding patterns were flown as per AFM 55-8 requirements for a normal VORTAC periodic flight inspection.
- 5-6. Analysis of Evaluation Results: Data was gathered during the flight evaluation to determine the VORTAC's alignment accuracy, to study the course structure, to measure the actual signal levels in the coverage volume, to investigate the interference field profile, and to fulfill the requirements of a normal periodic flight inspection. TABs F-1-1/6 are the official flight inspection report.
- a. Alignment Accuracy: Alignment orbits flown with theodolite tracking resulted in a maximum error spread from -0.4° to $+1.0^{\circ}$ on transponder one and -1.3° to $+1.6^{\circ}$ on transponder number two. Average alignment error values were $+0.25^{\circ}$ and $+2.5^{\circ}$, respectively. These alignment errors satisfy the AFM 55-8 requirement that all radials must be within 2.5° of the correct magnetic azimuth. Alignment at the reference checkpoint $(098.5^{\circ}/15.5 \text{ DME})$ was $+0.5^{\circ}$ on both transponders. Orbital data is analyzed in detail in TAB F-2 and plots of the data dispersion appear in the flight inspection report in TABs F-1-5/6.

b. Course Structure: TACAN course structure in the region of normally usable signal levels was exceptionally smooth. Several cases were observed where absolutely no crosspointer action was recorded for several miles radially, indicating roughness values of less than 0.05° . Except for these unusually smooth areas and the roughness at the coverage fringes and in the cone of ambiguity, nominal roughness was approximately 0.2° .

c. Coverage

- (1) Evaluation Methodology: Evaluation of TACAN coverage is performed in three distinct phases. First, known analytical and empirical techniques are applied in order to predict expected signal levels at various azimuths and altitudes. Next actual airborne signal strength data is collected and compared with the theoretical predictions. Finally the theoretical model is extrapolated to generate plots of predicted coverage for all azimuths at altitudes of interest. These coverage charts predict signal strength levels rather than unlock points and thus provide useful information for all types of airborne TACAN equipment.
- (2) Theory for Predicting Coverage: Procedures for predicting TACAN coverage have been developed over an extended period of time, and represent an integration of classical theory with experience gained in TACAN evaluation. The general procedure involves measurement of elevation angles to the horizon, computation of the line of sight limit based on a 4/3 earth, and application of a standard decay rate of -2.5 dB/NM in the diffraction region. This technique will yield a prediction chart showing the expected range of a given signal level when standard propagation conditions prevail. In this case a level of -85 dBm was termed the coverage limit because this is a representative unlock level among TACAN receivers in the inventory. Airborne verification of the coverage charts is done by flying radial runs, recording received signal levels, correcting the results for anomolous propagation, and comparing these measured -85 dBm points with those predicted by the theory. Good agreement validates the coverage prediction charts. A detailed discussion of the theory used in making these predictions, including all applicable equations, appears in "TACAN Station Evaluation Report", Richards-Gebaur AFB, number 76/66T-86, evaluation period 13-23 December 1976.

(3) Wright-Patterson Measured Coverage

(a) Collecting Signal Strength Data: Actual received signal strength data was derived from the AGC trace on the flight inspection recording by applying the NAFIS calibration curve to obtain dBm values.

The accuracy of this data is limited by the extreme compression caused by the AGC characteristic at high signal levels, and by the inability to correct for the effect of the aircraft's TACAN antenna pattern. In spite of these limitations the recorded AGC trace provides useful information on actual received signal levels in the coverage volume.

(b) Flight Results: TABs F-3-1/3 are plots of the actual received signal levels at various altitudes on each of the three radials flown. TAB F-4 presents the results of the calculations performed to predict the distances to the -85 dBm points, and compares the percentage differences between the predicted and actual points. The average prediction error was -1% using the prediction method described in the Richards-Gebaur report cited earlier. Using a simplified prediction method based on standard 4/3 earth radio line of sight calculations yielded an average prediction error of -13%. The superiority of the new method is obvious, although work is still needed to reduce the prediction error at lower altitudes. It should be noted that a diffraction region decay rate of -2.5 dB/NM was used in these calculations rather than the previously used -4.2 dB/NM. Experience has shown the -2.5 dB/NM value to be more nearly correct in the majority of situations, and this value is more in line with classical propagation theory. TAB F-5 plots the expected TACAN coverage at 30,000 feet MSL assuming a -85 dBm receiver unlock level. Aircraft equipped with more sensitive equipment such as the ARN-91 will experience greater ranges. The charts are derived by correcting the line of sight limits for all azimuths using the technique described above for a single radial. Coverage charts for other altitudes may be extrapolated from the TAB F-5 chart.

d. Interference Field Pattern

- (1) General: Interference field theory is well developed and has been discussed in detail in many earlier TACAN evaluation reports, including the Richards-Gebaur report cited earlier. Analytical procedures have been developed which predict the depth and position of nulls for a particular TACAN site. These theoretical procedures are based on the TACAN antenna height, antenna pattern, radiated power, and the character of the surrounding ground, and have been computerized to speed the calculations.
- (2) Observed Nulling Structure: The computer model of the expected nulling structure is generated prior to the evaluation field phase, and this information is used to develop flight profiles to check for the presence of the predicted nulling. Special attention is focused on the approach radials between the FAF altitude and the MDA. TABs F-6-1/2 compare the predicted and measured profiles on the 047° radial at 2000 and 2500 feet MSL. It is clear from these plots that there is close agreement with the computer prediction and that classical nulling is occurring on this radial. No significant deterioration of

TACAN service is resulting from the nulls, however, because any side reflections which may be present are not strong enough to cause large crosspointer deviations. Only slight increases in course roughness occurred in the nulls as depicted on the TABs. Nulling on the 232° approach radial was insignificant. Nulling was observed at higher altitudes on all three radials flown to check coverage, but increases in course roughness were all small and consequently a detailed analysis is not needed.

e. Approaches and Missed Approaches: All high and low TACAN approaches to both runways were flown using both transponders, including holding patterns, DME arcs, and the complete missed approach procedures. A small area of 1.8° roughness was detected at 5.4 NM/2000 feet MSL on the HI-VORTAC/ILS runway 23 approach, caused by the 3rd null. On a repeat of this approach approximately 1.5° of roughness appeared at 8.6 NM/2200 feet MSL in connection with the 2nd null. Aside from these minor course aberrations no other areas of deteriorated structure were found anywhere on any of the holding patterns, transition arcs and radials, final approaches, or missed approaches.

6. VOR

6-1. Equipment Details

a. General

- (1) The AN/FRN-31A TVOR facility consists of four basic equipment groups: the transmitter group, the regulator group, the local control group, and the antenna group. The regulator group is not used if commercial power is sufficiently stable. A remote control group is also provided which allows remote monitoring and control of the equipment and allows voice transmissions to aircraft.
- (2) The omnirange system is used primarily as a radio aid to aircraft navigation, providing bearing information to properly equipped aircraft from a fixed point on the ground. Voice and identification codes are also transmitted. The equipment operates within the frequency range of 108 to 118 MHz with a nominal power output of 50 watts.
- (3) Radials projected from the antenna provide tracks to or from the station. These tracks are straight lines and are identified in degrees with 0 degrees coinciding with magnetic north. Radial information projected by the station is independent of aircraft heading and provides a straight line track across the surface of the earth. A 1020 Hertz keyed tone signal is transmitted periodically for identification.
- (4) Energy radiated from the TVOR has two separate components, the reference and variable signals, both of which are 30 Hertz signals. The aircraft receiver measures the omnirange course by calculating the phase difference between the two signals. The reference signal is the result of frequency modulating a 9960 Hertz subcarrier at a 30 Hertz rate. The variable signal is produced by a rotating limacon pattern whose peak is adjusted to agree in time with the maximum frequency of the FM reference signal in the direction of magnetic north from the station. At all other points, the phase difference between the reference and variable signals equals the azimuth of the receiving point.
- b. Special: The Wright-Patterson TVOR operates on a frequency of 115.2 MHz with an identification code of FFO.

6-2. Facility Equipment

VOR Transmitter One: AN/FRN-31A, Serial Number 108 VOR Transmitter Two: AN/FRN-31A, Serial Number 111

Monitor: 477A, Serial Number 498

- 6-3. Equipment Status: All equipment checks were performed in accordance with AFCSP 100-61, Volume XX. Detailed results of these checks are found in TABs E-5-1/2. Oscilloscope photographs are depicted in TAB D-2. TABs E-6-1/4 contain results of pre and post airborne evaluation equipment checks. Environmental conditions inside the shelter are plotted on TAB E-3.
- a. The following items were found out-of-tolerance on the transmitters.
 - (1) Transmitter One
- (a) The final amp screen and final amp total meter readings were low. Corrected.
- (b) A low meter reading for the 10 KC alarm position was noted on the monitor. Corrected.
 - (2) Transmitter Two
- (a) The final amp total meter reading was initially low. At the time of the last post flight check this parameter was within tolerance.
- (b) The final amp screen meter reading became outof-tolerance during the evaluation. This discrepancy had no adverse effect on the evaluation of the facility.
 - (c) The monitor 10 KC level meter reading was low. Corrected.
 - (d) The reference modulation was high. Corrected
 - (e) The identity modulation was low. Corrected.

b. Goniometers

- (1) Subcarrier generator frequency checks were performed on both goniometers. The data were analyzed and found to be satisfactory. See TABs E-7-1/2.
- (2) Past evaluations have revealed out-of-tolerance RF power conditions in all goniometers checked. Because of this, doubt has been raised concerning the validity of the test methods given in the tech orders. At the request of AFCS/FFOT, special checks were made on the goniometers at Wright-Patterson AFB. The data collected will be forwarded to FFOT for study.

- c. The 477A TVOR monitor operated satisfactorily insuring that the facility was operating in a safe and reliable condition.
- d. Both the red and green sideband VSWR's were out-of-tolerance (see TAB E-5-1). When the antenna was last tuned, it was tuned deliberately out of technical order specifications so that it would perform better during the temperature variations that occur from season to season. HQ AFCS recently investigated the tuning of VOR antennas to determine if the philosophy of tuning antennas by the method prescribed in the Air Force Technical Orders or by the temperature variation method is best. The TO procedure was determined to be superior, thus the 2046 Comm Group should reture the antenna for best VSWR.
- e. The initial ground checks revealed a total error spread of 4.21° in transmitter one, 3.94° in transmitter two, and a transmitter differential of 1.04° as shown in TABs E-8-1 through E-10-6. The total error spread in transmitter one was out-of-tolerance. The maximum ground error spread allowed is 4.0° . The antenna was tuned by local personnel and the interim ground checks revealed a satisfactory error spread. See TABs E-11-1/2.
- f. Detailed analysis of the system errors as derived from the final ground checks is as follows.
- (1) Transmitter One: The data on the Error Computation Worksheet, TAB E-12, was derived from the forward and reverse ground checks, TABs E-13-1/2. The Total Error Curve TAB E-14 and the polar graphs, TABs E-15-1/3 were drawn from data on the Error Computation Worksheet. Analyzing these TABs reveals a total error spread of 2.96°, an antenna error spread of 2.85°, and a goniometer error spread of 0.97°.
- (2) Transmitter Two: The data on the Error Computation Worksheet, TAB E-12 was derived from the forward and reverse ground checks, TABs E-16-1/2. The Total Error Curve TAB E-17 and the polar graphs, TABs E-18-1/3 were drawn from data on the Error Computation Worksheet. Analyzing these TABs reveals a total error spread of 2.25° and a goniometer error spread of 0.51°. Transmitter differential was 0.94 as shown on TAB E-19.
- g. Supporting Test Equipment Status: All necessary test equipment was available and properly calibrated.
 - 6-4. <u>Electromagnetic Environment:</u> See paragraph 5-4.

- 6-5. Evaluation Profile: The VOR flight profile was designed to collect data similar to that described in section 5-5 for the TACAN, except that additional 20 NM orbits were flown to obtain plots of scalloping amplitude. Level radial runs were also flown at 10° intervals in the restricted area in an effort to isolate the source of the reflections causing excessive scalloping in this area. Loss of signal coverage radials were flown to the 5 uv point. Except for these additional runs, and for the omission of the interference field runs which apply to TACAN only, the VOR profile was identical to the profile discussed in section 5-5.
- 6-6. Analysis of Evaluation Results: Flight data was gathered to determine the VOR's alignment accuracy and error spread, to study the scalloping structure, to measure the actual received signal levels in the coverage volume, and to fulfull all the requirements of a normal periodic flight inspection.
- a. Alignment Accuracy: Initial VOR alignment orbits revealed error spreads of 4.4° and 3.3° on transmitters one and two respectively. Ground check spreads were 4.2° and 3.9°. Since transmitter one exceeded the allowable 4.0°, local maintenance removed this transmitter from service pending corrective action. Following installation of an improved station ground and retuning of the VOR antenna, the airborne error spreads were 2.8° and 2.6°, and both ground checks fell within tolerance. Final average alignment errors were 0.93° on transmitter one and 0.86° on transmitter two, and alignment at the reference checkpoint was +0.9° on both transmitters. All final radial alignments satisfied AFM 55-8 requirements.
- b. Course Structure: Particular attention was devoted in the flight phase to the area of poor structure to the north which is restricted "unreliable 340° -010° below 3000 feet MSL". Orbits were flown at 20 NM to obtain plots of scalloping amplitude, and radials were selected at 10° intervals within the restriction to validate the need for the restriction. All this data was collected in an effort to isolate the cause of the scalloping.
- (1) Orbital Structure Analysis: TAB F-10 is a plot of the VOR scalloping amplitude versus magnetic azimuth on a 25 NM orbit at 2500 feet MSL. The scalloping which requires the restriction is not apparent on this plot in that the scalloping amplitude on the entire orbit is less than 2 degrees and no marked increase occurs at 340°-010°, Since the scalloping amplitude is uniform with a low nominal value, no single source of a strong reflection can be identified using the orbital method. Analysis was also performed using a reflector overlay method (ref. Kadena NAVAIDS Evaluation Report 76/66N-62), This is a graphical

method which involves measuring the scalloping frequency at various points on an orbit and marking the location of potential reflectors on a scaled chart under parabolas which correspond to the scalloping frequency. The result of such an analysis is a series of lines on the chart which should coverage at the source of the scallops. The result of this analysis for Wright-Patterson was the trivial case, where all the lines converged at the VOR, indicating that no reflector is present which causes orbital scalloping.

(2) Radial Structure Analysis: Orbital flights through the restricted area at 2500 feet revealed very little scalloping, but radial flights at the orbit altitude showed large amplitude periodic scalloping of as much as 8°. Hangar 206 is the only obvious reflector oriented to cause interference in the region to the north, and although it is 5850 feet from the VORTAC, its immense size is sufficient to make it an efficient reflector. Figure 6-1 shows the geometry of this reflection.

Figure 6-1 Reflections from Hangar 206

It is clear from this figure that reflections from the hangar face are directed into the $340^{\circ}-010^{\circ}$ restricted area. Well developed analytical procedures exist to predict the scalloping frequency. These procedures take account of the distance to the reflector and the angle of incidence

upon the reflecting surface, and were discussed in detail in the Kadena report previously cited. Assuming that the hangar is the primary reflector, the analytical procedures predict a scalloping frequency at 25 NM of .020 Hz. This corresponds almost exactly with the measured scalloping frequency on the 355° radial at 25 NM. As the aircraft moved closer to the VORTAC the scalloping frequency increased and the amplitude decreased, indicating that the reflection is below an angle of approximately 1.4°. Although both intuition and a modest analytical test strongly suggest that the restriction is caused by reflections from this hangar, it can not be proven with complete confidence because of the peculiar lack of orbital or tangential scalloping to confirm the analysis.

(3) Restricted Airspace: In spite of the inability to prove positively that hangar 206 is the source of the offending reflections, extensive radial probes in and beyond the restricted area confirm the validity of the restriction as it was originally specified by FAA in the commissioning flight inspection report.

c. Coverage

- (1) Methodology: VOR signal strength data was recorded concurrently with the TACAN data using the same flight profile. The analysis method was identical to that discussed in section 5-6c for TACAN, except that the received signal levels derived from the VOR receiver calibration curve are typically expressed in microvolts. To enable more direct comparison with TACAN signal levels, the VOR microvolt values were converted to dBm, assuming a 50 ohm purely resistive VOR receiver input port.
- (2) Flight Results: TABs F-8-1/3 present the VOR measured signal levels on the three radials flown. It is clear from comparing these plots with the TACAN graphs that the VOR signals decay somewhat more linearly with distance. The free space decay curves are superimposed as dashed lines on these plots. As with the TACAN plots, the signal decay follows the free space curves within the optical region, decaying somewhat more rapidly within the diffraction region, except that the breakpoint between the regions is much less distinct than with TACAN. A decay rate of -2.5 dB/NM was applied in the same algorithm used to predict TACAN coverage, and -85 dBm (12.6 uv) was defined as the minimum usable signal level to facilitate direct comparison with the TACAN coverage. Results of the calculations applying the TACAN algorithm to VOR appear in TAB F-9. It is clear from the results in this TAB that the TACAN prediction technique is not particularly accurate when applied to VOR, and that the method offers no immediately apparent advantage over conventional line of sight coverage prediction techniques. TAB F-5 compares predicted VOR coverage at 30,000 feet MSL with predicted TACAN coverage at the same altitude, with the VOR prediction based solely on line of sight screening. As with the TACAN plots, coverage of the VOR for other altitudes may be extrapolated from the TAB F-5 data. Work is in progress to develop more accurate coverage prediction techniques for VOR.

d. Approaches and Missed Approaches: With minor exceptions VOR course structure on all approaches, holding patterns, and missed approaches was excellent, and nominal values of scalloping were approximately 0.5° . Some course deterioration was noted to the northeast, however, with 1.6° of scalloping on the 047° radial at 10 NM/2600 feet. On the 050° missed approach radial scalloping of 2.4° was measured at 10 NM/2900 feet, and 3.0° at 13 NM/3000 feet. Neither of these latter aberrations has any mission impact because the missed approach extends only to 10 NM. The scalloping on the 047° radial is outside the final approach fix and is not of sufficient amplitude to cause difficulty in tracking.

7. POWER FACILITIES

- 7-1. Equipment Details: Primary power for the VORTAC is supplied by a commercial source. Secondary power consists of a Gen Fermont 60 KW generator.
- 7-2. Equipment Status: Commercial power was satisfactory. Backup power was stable and of sufficient capacity to satisfactorily operate the VORTAC. Results of AC power checks appear in TAB E-2.
- 7-3. Adequacy/Reliability: Primary power for the VORTAC was adequate and reliable. Secondary power was also satisfactory.

TITLE INSTRUMENT APPROACH PROCEDURE Wright-Patterson AFB, OH Mar 77 331 WRIGHT-PATTERSON AFB **VORTAC RWY 5** AL-108 (USAF) DAYTON APP CON 118.4 327.1 PATTERSON TOWER 126.7 289.6 GND CON 121.8 335.8 ASR/PAR ENROUTE FACILITIES ROSEWOOD 2600 PATTERSON 1162 10 DME 3100 NOTE: 2046' lgtd twr 10 DME 2100' left final apch. **ELEV 824** 10 DME 6 DME VORTAC MISSED APPROACH To 3000 on 050° within 10 NM 1 DME 3000 2700 2500 CATEGORY 1360/40 555 (600-%) 1360/24 555 (600-1/2) Elev 805 1360-11/2 1380-2 (600-1) 1360-1 536 059° to * Circling not authorized SE Rwy 5-23 VORTAC RWY 5 DAYTON, OHIO 39 * 50' N - 84 * 03' W WRIGHT-PATTERSON AFB

GENERAL INFORMATION

TITLE INSTRUMENT APPROACH PROCEDURE LOCATION Mar 77 Wright-Patterson AFB, OH WRIGHT-PATTERSON AFB HI-VORTAC RWY 5 JAL-108 (USAF) DAYTON, OHIO DAYTON APP CON 118.4 327.1 PATTERSON TOWER 126.7 289.6 TD GND CON CLEVELAND T 121.8 335.8 LT ASR/PAR 88 APPLETON PATTERSON SHILOH 9 DME 23 DME 082 092 RICHMOND EVANSVILLE T LOUISVILLE NOTE: 2046' lgtd twr 10 DME 2100' left final apch. EMERG SAFE ALT 100 NM 3100 O FALMOUTH CHARLESTON (WV) MIN SAFE ALT 25 NM 3100 SHILOH R-270 9 DME VORTAC FL200 0900 ELEV 824 15 DME R-210 16,000 -15 DME A'S MISSED APPROACH To 3000 on 050° within 10 NM 3000 10 DME 6 DME 1 DME 2700 CATEGORY S-5 D 360/40 555 600-% 1460-2 1360-1% 1380-2 CIRCLING* 536 (600-1%) 556 (600-2) 636 (700-2) S-PAR 5 905/16 100 (100-1/4) 88 Circling not authorized SE of Rwy 5-23 HIRL Rwy 5-23 HI-VORTAC RWY 5 39 * 50' N - 84 * 03' W DAYTON, OHIO WRIGHT-PATTERSON AFB 146

INSTRUMENT APPROACH PROCEDURE Mar 77 Wright-Patterson AFB, OH 332 WRIGHT-PATTERSON AFB DAYTON, OHIO **VORTAC/ILS RWY 23** AL-108 (USAF) DAYTON APP CON ROSEWOOD 118.4 327.1 PATTERSON TOWER 126.7 289.6 GND CON 121.8 335.8 ASR/PAR 2600 RADAR FIX 1081 5.6 DME LOCALIZER 109.7 I-FFO !=: PATTERSON Å 973 115.2 FFO := : A 1162 Chan 99 3100 2046 APPLETON 11 DME ENAOUTE FACILITIES NOTE: ILS automatic approach should not be flown below FALMOUTH 1350' due to scalloping MISSED APPROACH To 3000 on 230° within 10 NM ELEV 824 Intep lear R-047 11 DME VORTAC 3000 2000 100, VORTAC GS 3.00° TCH50 CATEGORY S-ILS 23 1024/24 200 (200-1/2) 1220/24 396 (400-1/2) S-LOC 23 1220/40 396 8 8 1300/40 476 S-VORTAC 23 1300/24 476 (500-1/2) (500-%) 1340-11/2 1380-2 CIRCLING # 1320-1 (500-1) 516 (600-11/2) 556 (600-2) Circling not authorized SE of Rwy 5-23 HIRL Rwy 5-23 LOC FAF to MAP 4 NM Min: Sec 4:00 2:40 2:00 1:36 1:20 VORTAC/ILS RWY 23 39 * 50' N - 84 * 03' W DAYTON, OHIO WRIGHT-PATTERSON AFB

332

TITLE INSTRUMENT APPROACH PROCEDURE Wright-Patterson AFB, OH Mar 77 147 WRIGHT-PATTERSON AFB HI-VORTAC/ILS RWY 23 DAYTON, OHIO JAL-108 (USAF) DAYTON APP CON ROSEWOOD ENROUTE FACILITIES 118.4 327.1 PATTERSON TOWER 88 TD CLEVELAND FEEDER FACILITIES 121.8 335.8 LT ASR/PAR LOCALIZER 109.7 SHILOH 9 DME 1162 23 DME INDIANAPOLIS RICHMOND PATTERSON 115.2 FFO Chan 99 110.6 RID CINCINNATI NOTE: ILS automatic approach should not be flown below 28 LOUISVILLE FALMOUTH CHARLESTON WV Ó EMERG SAFE ALT 100 NM 3100 MIN SAFE ALT 25 NM 3100 SHILOH R-270 9 DME VORTAC ELEV 824 RADAR FIX 5.6 DME 15 DME Arc FL 200 16,000 MM 2.1 DME MISSED APPROACH 2163 2000 2200 within 10 NM GS 3.00° LOC, VORTAC CATEGORY S-ILS 23 1024/24 200 (200-1/2) S-LOC 23 1220/40 S-VORTAC 23 1300/40 476 (500-%) 8 8 1460-2 1340-1% 1380-2 CIRCLING * 516 (600-1%) 556 (600-2) 636 (700-2) S-PAR 23 924/16 100 (100-14) GS 3" Circling not authorized SE of Rwy 5-23 HIRL Rwy 5-23 LOC FAF to MAP 4 NM 120 140 160 180 200 Min: Sec 2:00 1:43 1:30 1:20 1:12 HI-VORTAC/ILS RWY 23 39 * 50' N - 84 * 03' W DAYTON, OHIO WRIGHT-PATTERSON AFB

GENERAL INFORMATION

INSTRUMENT APPROACH PROCEDURE Wright-Patterson AFB, OH Mar 77 330 WRIGHT-PATTERSON AFB VOR/ILS RWY 23 AL-108 (USAF) DAYTON, OHIO DAYTON APP CON ROSEWOOD 118.4 327.1 PATTERSON TOWER 3000 181-(29) 126.7 289.6 GND CON 121.8 335.8 ASR/PAR 2600 135% APPLETON LOCALIZER 109.7 I-FFO PATTERSON 115.2 FFO ::=: Chan 99 1105 1162 RICHMOND 2046 3100 ENROUTE ILS automatic approach
should not be flown below 3000 CINCINNATI #When RADAR FIX or 5.6 DME receive FALMOUTH † Circling not authorized SE of Rwy 5-23 ELEY 824 Remain within 10 NM VORTAC 047 RADAR FIX 5.6 DME 3000 VOR 227° 2500 ILS 231° MISSED APPROACH 2.1 DME 2200 To 3000 on 230° within 10 NM 2000 LOC, VOR CATEGORY 1024/24 S-ILS 23 (200-1/2 1220/24 396 (400-1/3) 5-LOC 23 1220/40 396 (400-%) 8 1600/50 776 (800-1) 1600/24 1600/40 1600/60 5-VOR 23 776 (800-%) 776 (800-1)4) 1600-1 776 (800-1) 1600-11/4 776 (800-11/4) 1600-1½ 776 (800-1½) 1600-2 CIRCLINGT 776 (800-2) DME/RADAR MINIMA HIRL Rwy 5-23 1300/24 476 (500-1/4) 5-VOR 23 # 1300/40 476 (500-%) LOC FAF to MAP 3.5 NM 1340-11/2 516 (600-11/2 1380-2 1320-1 496 (500-1) CIRCLING#1 556 (600-2) Min: Sec 3:30 2:20 1:45 1:24 1:10

VOR/ILS RWY 23

39 * 50' N - 84 * 03' W

330

DAYTON, OHIO

WRIGHT-PATTERSON AFB

SCALE None	53					
RUNWAY 05-23	9591	805.69	805.00	823.93	804.90	823.10
RUNWAY DATA Wright-Patterson AFB, OH.	1068 1068 95 VORTAC	VORTAC:	END OF RUNWAY 05:	END OF RUNWAY 23:	TD POINT RUNWAY 05:	TD POINT RUNWAY 23:

LINE OF SIGHT COVERAGE (RLS)

WRIGHT-PATTERSON AFB VORTAC 17 MAR 77 SITE ELEVATION 806 FT. MSL SCALE: 1 INCH = 15 NM ORIENTED TO MAGNETIC NORTH VARIATION 2 DEG W

ALTITUDES FT. MSL 3000

LINE OF SIGHT COVERAGE (RLS)

WRIGHT-PATTERSON AFB VORTAC 17 MAR 77 SITE ELEVATION SOG FT. MSL
SCALE: 1 INCH = 70 NM
ORIENTED TO MAGNETIC NORTH VARIATION 2 DEG W

ALTITUDES FT. MSL 12000 30000

TITLE

TACAN EQUIPMENT PHOTOGRAPHS

LOCATION

Wright-Patterson AFB, OH

E

Mar 77

RECEIVER #2 IF AMP-TP-2 1 MHz MARKERS, BEFORE ALIGNMENT

RECEIVER #2 IF AMP-TP-2 1 MHz MARKERS, AFTER ALIGNMENT

RECEIVER #1 IF AMP-TP-2 ON CHANNEL MARKER, BEFORE ALIGNMENT

RECEIVER #1 IF AMP-TP-2 ON CHANNEL MARKER, AFTER ALIGNMENT

TITLE

TACAN EQUIPMENT PHOTOGRAPHS

LOCATION

Wright-Patterson AFB, OH

DATE

Mar 77

RECEIVER #2 PRE-SEL ON CHANNEL MARKER AND 1 MHz MARKERS BEFORE ALIGNMENT

RECEIVER #2 PRE-SEL ON CHANNEL MARKER AND 1 MHz MARKERS AFTER ALIGNMENT

RECEIVER #2 PRE-AMP ON CHANNEL MARKER AND 1 MHz MARKERS, BEFORE ALIGNMENT

RECEIVER #2 PRE-AMP ON CHANNEL MARKER AND 1 MHz MARKERS, AFTER ALIGNMENT

TITLE:

TVOR EQUIPMENT PHOTOGRAPHS

Wright Patterson AFB, OH

TX 1 R F Phasing

TX 2 R F Phasing

1V/CM

TX 1 Variable Modulation TX 2 Variable Modulation 1V/CM

TAC	AN INITIAL	PERFORMANCE CHECK L	IST	16-18	3 Mar 77	
LOCATION		ORGANIZATION	TYPE EQUIPM		SERIAL NUMBE	R
wright-Pat	terson		AN/GRN-		18/40	
SECTION I		SUBSYSTEM	 	And the second second	RESULTS	
	ALCEIVER	T	RECEIVER #1			VER #2
CHEC	ĸ	SPECIFICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED
PULSE COUNT		2700 ± 90 pps	2788			
SQUITTER	A. VOLTS	-5 [‡] 1		 	2753	
CONTROL	B. COUNT	2200 ± 50 pps	-4.4 NA		-4NA	
SENSITIVITY		-94dBm = 3	-96.2		-95.2	
	A. +0.8	Less than 3 dBm decrease in sensitivity	-95.2		-93.2	
DECODING	B0.8	Less than 3 dBm decrease in sensitivity	-95.7		-95.2	
	c. 8	At least 50 dBm decrease in sensitivity	* -52.5		* -43.4	
	D. 15	At least 50 dBm decrease in sensitivity	-46.2		-45.2	
ATTENUATOR SETTING		-83 dBm/600 PPS Nominal	-13.7		-12.7	
	+200 A. kHz	Less than 3 dBm decrease in sensitivity	-94.2		-95'.2	
SELECTIVITY	B. kHz	Less than 3 dBm decrease in sensitivity	-94.2		-94.2	
	C #H#	80 dB € < 600 ppe	-93.7 0 PPS		-91.7 0 PPS	
	-900 D. kHz	80 dB @ < \$00 pps	-93.7 Q PPS		-91.7 0 PPS	
BLANKING 40 ± 2 usec		40 ± 2 usec	39.0		40.0	
365 USEC BLANKING 365 ± 5		365 ± 5 unec	NA		NA	
PRE-AMP BANDWI		4 MHz AT 3 dB down	4.0		**3.5	**2.7
PRE-SEL BANDWI		4 MHz AT 3 dB down	**3.5		**3.0	
SECTION II		2 MHs AT 3 dB down	**1.2	**1.8	**2.5	2.0
SECTION II	- IRA	ANSMITTER	TRANSA	CHECK	RESULTS	ITTER 2
CHE	cĸ	SPECIFICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED
KLYSTRON BIAS		125± 1	-126.0	ADJUSTED	-128.0	-125.
SCILLATOR FRE	QUENCY		49.4148	*	19.4178	49.417
PERCENT OF DE	VIATION	0.002%	0.00377		0.0023	0.001
RF OUTPUT FREC	UENCY	Channel frequency	***		***	0.002
PERCENT OF DE	VIATION	0.0027.	***		***	
OVERALL DELAY		50 ± 0.25 usec	50.0		50.0	
	A. SPACE	12 ± 0.2 usec	12.0		11.8	
VIDEO PULSE	B WIDTH	1.8 ± 0.1 usec	1.6		1.5	
SHAPE PULSE	A. SPACE		12.1		11.9	
JARRE PULSE	B. WIDTH	3.5 ± 0.4 usec	3.3		3.3	
	A. RATIO	2:1	2.5:1		3.5:1	
LYSTRON INPUT	B. SPACE	12 ± 0.25 usec	I NA		NA	
	C. WIDTH	24 [±] .5 usec	24.0		24.0	
KLYSTRON	A. RATIO	2:1	2.2:1		5.0:1	
OUTPUT	B. SPACE	12 ± 0.28 u##c	12.0		12.0	
	C. WIDTH	3.5 ± 0.5 usec	3.3		3.3	
	A. RATIO	8:1	5.2:1		6.0:1	
ANTENNA INPUT	B. SPACE	12 ± '0.25 usec	12.0		12.0	
	C. WIDTH	3.5 ± 0.5 ueec	3.3		3.3	
		3.5 KW min	5.0		4.8	
RE POWER	A. ANT C.O.				THE RESERVE AND ADDRESS OF THE PARTY OF THE	
RF POWER	B. DPLXR		7.8		7.6 3.6	

SECTION III	PULSE GE	NERATION CIRCUITS	CHECK RESULTS					
SHE		SPECIFICATION	#1 C	IRCUIT	#2 CIRCUIT			
CHE		SPECIFICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED		
TOTAL PULSE C	OUNT	7200: 180 pps	7156		7213			
	COUNT	360 PPS	361		361			
NRB	JITTER	6 usec max	0.5		0.5			
	DURATION	330 useç	332		330			
	COUNT	1440 PPS	*1561	1441	1441			
ARB	JITTER	6 usec max	2.0		2.2			
	DURATION	120 usec	124	120	120			
	A. ID	740 ± 50 usec	740		734			
GENERATION	B. EQLZR	100 ± 10 usec	101		101			
	C' TONE	6660 ± 50 pps	6695		6690			
SECTION IV ANTENNA			CHECK	RESULTS				
CHECK		SPECIFICATION		± 1		#2		
		SPECIFICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED		
ROTATION SPEED		66,666 ± 134 usec	66620		66620			
SECTION V	NEAR FIL	LD MONITOR SN		CHECK	RESULTS			
CHE	CK	SPECIFICATION	MONI	MONITOR 1		TOR 2		
CHE			INITIAL	ADJUSTED	INITIAL	ADJUSTED		
		1.5° TO 2°	NA		NA			
135 HZ ALARM		0.5 70,0	NA		NA			
15 HZ ALARM		228.5° TO 230.5°	I NA		NA.			
13 HZ ALARM		221.5° TO 219.5°	NA NA		NA			
POWER DECREA	SE	3 dB	3		A4A			
RECEIVER SENS	TIVITY	8 dB	6		NA			
SECTION VI	FAR FIEL	D MONITOR3 ****		CHECK	RESULTS			
CHEC	K	SPECIFICATION	TRANSI	PONDER 1	TRANS	PONDER 2		
DME ACCURACY								
15 HZ MOD PERO	ENT							
135 HZ MOD PER	RCENT							
ID TONE								
RECEIVER AGC								
ANTENNA SPEE	D 2		1					
PHASE COHERE								
SECTION VII		REA	MARKS					

* Out-of-tolerance

** Does not meet optimum bandwidth standards in TO

*** Check was performed but test equipment was unstable

**** Not available

¹ Check on one transponder only. 2 Check on one transponder only.

³ Specifications not established for far field monitor.

Wright- CHECK 1. VISUAL NSPECTION 2. REGULA- TOR INPUT	-Patterson AFB, SPECIFICATIONS		AN/FR	N-32	UMBER			
CHECK 1. VISUAL INSPECTION 2. REGULA-				N-32				
1. VISUAL INSPECTION 2. REGULA-	SPECIFICATIONS	Sati	PRIME POWER			112		
NS PECTION		Sati	PRIME POWER STANDBY POWER					
			sfactory		Satis	sfactory		
			ADJUSTED	CURRENT	VOL	ADJUSTED	CURRENT	
PHASE A		120		56	119		54	
PHASE B		120		76	118		74	
PHASE C	HASE C			54	120		56	
NEUTRAL		0		34	0		34	
3. REGULA- FOR OUTPUT	•							
PHASE A								
PHASE B								
PHASE C								
NEUTRAL								
GENERATOR	Fermont CAPACITY	MB - 3	MB-17			72-2189		
	60 KW		60 HZ			25% Full Load		
AUTOMATIC CHANGEOVER	Essex Electro		12340		17 Seconds			
	T	VOLTAGE REGI	LATOR RESPO	ADJUSTED	TO			
VOLTAGE REGULATOR	SPECIFICATION	AS FOUND	MANUA		AUTOMATIC TIME TO ADJUS			
PHASE A								
PHASE B								
PHASE C								
EQUIPMENT GE	See Text							
REMARKS								

					DATE PERFORMED			
TACAN	PRE/POST FLIG	HT EVALUATION	DATA		19 Mar 77			
EQUIPMENT NOMEN.	EQUI	PMENT SERIAL NUME	MENT SERIAL NUMBER ORGANIZA			INITIALS		
AN/GRN-20C]	18/40			Comm GP	DRC		
TRANSMITT	ER NO. 1	PARAMETER	T.O. S	PEC.	TRANSMITTE	R NO. 2		
PRE-FLIGHT	POST-FLIGHT				PRE-FLIGHT	POST-FLIGHT		
38 ;	38	CR 201	30-50		38	38		
42	42	CR 202	30-50		38	38		
- 100	- 100	C-	-105±5V		- 110	- 110		
146	146	B+	150±8V		152	152		
-5.0	-5.0	SQUITTER	-5± IV		- *3.6	- *3.6		
72	72	BEAM CURRENT			70	70		
12.5	12.5	HIGH VOLTAGE	12KV +	1.5KV	12.6	12.6		
38	38	OSCILLATOR	MAX		45	45		
34	34	1ST DOUBLER	MAX		66	66		
38	38	2ND DOUBLER	MAX		50	50		
28	28	3RD DOUBLER	MAX		24	24		
6	6	TRIPLER	MAX		22	22		
48	48	AMPLIFIER	MAX		50	50		
32	32	REFLECTED	MIN		14	41		
100	100	INCIDENT	MAX		100	100		
5	5	B.I.T.E. PWR METER	3.5 KW	MIN	6	6		
-93.2	-93.2	RCVR SENSITIVITY			-93.2	-93.2		
12	12	NORTH PULSE	12 1 1		12	12		
6	6	AUX PULSE COUNT	6± 1		6	6		
2755	2755	RECEIVER COUNT	2700± 90		2721	2721		
7205	7205	C.I. COUNT	72 00 ± 180		7117	7117		
66635	66635	ANTENNA SPEED	66666+1	34	66635	66635		

*Out of Tolerance

B.I.T.E. = Built-in Test Equipment

					DATE PERFORMED	
TACAN	PRE/POST FL	IGHT EVALUATIO	N DATA		20 Mar 77	
EQUIPMENT NOMEN.	EC	UIPMENT SERIAL NU	MBER	ORGANIZ	ATION	INITIALS
AN/GRN-200		18/40		2046	Comm GP	DRC
TRANSMITTER NO. 1		PARAMETER	T.O.	PEC.	TRANSMITTE	R NO. 2
PRE-FLIGHT	POST-FLIGHT				PRE-FLIGHT	POST-FLIGHT
50	5() CR 201	30-50		36	36
52	52		30-50		37	37
-100	-100) c-	-1 05± 5 V		-110	-110
146	146	б в+	150±5V		152	152
-4.6	-4.6	SQUITTER	-5 + 1	V	-*3.4	-*3.4
65	6.5	BEAM CURRENT			65	65
12.2	12.2	2 HIGH VOLTAGE	12KV +	1.5KV	12.4	12.4
33	33	3 OSCILLATOR	MAX		43	43
31	3.	1ST DOUBLER	MAX		70	70
38	38	3 2ND DOUBLER	MAX		50	50
26	26	SRD DOUBLER	MAX		22	22
6	(TRIPLER	MAX		23	23
48	48	3 AMPLIFIER	MAX		50	50
32	32	2 REFLECTED	MIN		40	40
100	100) INCIDENT	MAX		100	100
5.8	5.8	B.I.T.E. B PWR METER	3.5 KW	MIN	5.8	5.8
-92.7	- 92.	7 ROVE SENSITIVE			-91.2	-91.2
12	13	NORTH PULSE	12 ± 1		12	12
6	(AUX PULSE COU	NT 6± 1		6	.6
2731	273	RECEIVER COUN	T 2700± 90		2714	2714
7157	715	7 C.I. COUNT	72 00 ± 18		7142	7142
66620	66620	ANTENNA SPEEC	66666±	134	66620	66620

*OUT OF TOLERANCE B.I.T.E. = Built in Test Equipment

FORM 928 AFCS

TAB: E-4-2

TACAN I	PRE/POST FLIG	HT EVALUATION	DATA	21 Mar 77	
QUIPMENT NOMEN.	EQU	PMENT SERIAL NUMB	ER OR	SANIZATION	INITIALS
AN/GRN-20C		18/40 2046 C		6 Comm GP	DRC
TRANSMITTER NO. 1		PARAMETER	T.O. SPEC	TRANSMITT	ER NO. 2
PRE-FLIGHT	POST-FLIGHT			PRE-FLIGHT	POST-FLIGHT
46	46	CR 201	30-50	37	41
50	50	CR 2 02	30-50	39	42
-100	- 100	C -	-1 05± 5 V	- 110	- 110
146	146	B+	150±5V	152	152
-4.8	-4.8	SQUITTER	-5* IV	-*3.5	-*3.5
70	75	BEAM CURRENT		70	70
12.8	12.4	HIGH VOLTAGE	12KV ±1.5	KV 12.6	12.6
36	34	OSCILLATOR	MAX	44	44
34	32	1ST DOUBLER	MAX	70	70
38	38	2ND DOUBLER	MAX	50	50
28	28	SRD DOUBLER	MAX	23	23
6	8	TRIPLER	MAX	23	23
48	49	AMPLIFIER	MAX	51	51
30	34	REFLECTED	MIN	42	42
100	100	INCIDENT	MAX	100	100
		B.I.T.E.			
6.2	5.5	PWR METER	3.5 KW MI	N 6.2	6.2
-91.7	-92.2	RCVR SENSITIVITY	-94± 3	-92.7	-93.2
12	12	NORTH PULSE	12 ± 1	12	12
6	6	AUX PULSE COUNT	6± 1	6	6
2725	2755	RECEIVER COUNT	2700± 90	2714	2722
7181	7123	C.I. COUNT	72 00 ± 180	7145	7115
66620	66635	ANTENNA SPEED	66666 [±] 134		66635

*Out of Tolerance

B.I.T.E. Build in Test Equipment

AFCS NOV 75 928

TAB: E-4-3

TY	Mar 77					
LOCATION	EQUIP-SERIAL NO.	TX 1-10	78	TECHNICIA	The second secon	
Wright-Patterson	AFR482A TVOR	TX 2-1	1 1	MSet D.	Fergus	on
			ITTER 1	PRINCIPAL PRINCI	ITTER 2	
CHECK	SPECIFICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED	REMARKS
1. VOLTAGE REGULATOR						
A. M-1	230 VAC ±1%	227.0		227.0		
B. TB-3 PIN 5 TO PIN 7	230 VAC ±1% 230 VAC ±1%	N/A		N/A		
2. TRANSMITTER						
A. OSC PLATE	6-15 MA	12.0	†	11.0		
B. 1ST AMP PLATE	20-30 MA	28.0	†	24.0		
C. 1ST AMP GRID	1-2 MA	1.1	 	1.0		
D. 2ND AMP GRID	2-4 MA	3.4		2.3		
E. 2ND AMP PLATE	30-50 MA	39.0	 	35.0		
F. FINAL AMP GRID	6.5-8.5 MA	8.3	<u> </u>	6.9		
G. FINAL AMP SCRN	15-30 MA	* * 14.0	18.0	15.0		
H. FINAL AMP TOTAL	200-225 MA *	*190.0	210 0	* 185.0	200.0	
I. HI VOLTS	200-225 MA * 450-550 VDC	490.0	100	490.0	200.0	
J. E1901 TO E1902	1215-1485 VDC	N/A		N/A		
3. MOD ELININATOR	1-17-1407 100	IV II	 	IV/ H		
	15-30 MA	2F 0	 	21. 0		
A. LIMITER CATHODE		25.0	 	24.0		
B. FINAL AMP PLATE	65-115 MA 15-30 VDC	92.0 16.0		85.0 22.0		
C. DIODG LEVEL 4. GONIOMETER MOTOR	1)=)0 VDC	10.0	 	22.0		
CONTROL	115 VAC ±2%	NT / A	 	NT Z A		
A. VOLTS	50 or 60 Hz	N/A N/A	 	N/A N/A		
B, FREQUENCY	72-88 MA		-			
C. DRIVER TOTAL	105-125 MA	N/A	 	N/A		
D. AMP TOTAL	102-122 MA	N/A	-	N/A		
5. POWER SUPPLY VOLT.	150 550 1100	F00 0	-	F40.0		
A, J-2	450-550 VDC	520.0	-	519.0		
B, J-3	225-275 VDC	260.0		250.0		
C. J-4	10.8-13.2 VDC	12.6		12.6		
D. J-5	-23.75to-26.25	-26.0		-26.0		
E, J-6	-67.5to-82.5	-74.0		-70.0		
F. J-7	5.67-6.93 VAC	6.2		6.2		
48 VOLT POWER SUPPLY						
P817, PINS A TOD	-44 to -52 VDC	-50.0		-50.0		
6. POWER AND SWR						
A. REF CARRIER FWD						
POWER	40-50 WATTS	43.5		41.0		
B. REF CARRIER REFL						Trest Louis
POWER	.5 WATTS MAX	0.12		0.11		
C. SWR	1.223:1 MAX	1.11:		1.11:1		
D. RED FWD POWER	.7-1.1 WATTS	0.900		0.860		
E. RED REFL POWER	O2 WATTS MAX	*0.048		*0.047		SEE TEXT
F. SWR	1.223:1 MAX	*1.60:		*1.61:1		SEE TEXT
G. GREEN FWD POWER	7-1.1 WATTS	0.900		0.890		
H. GREEN REFL POWER	O2 WATTS MAX	*0.031		*0.031		SEE TEXT
I. SWR	1.223:1 MAX	*1.45:1		*1.45:1		SEE TEXT
J. GREEN PWR MINUS	1 111122			10-1-20		2111
RED PWR	1 WATT MAX	0.00		0.03		- 15 - 15 - 15 - 15 - 15
7. MONITOR	WHILL THA	0.00		0.0)		
	±1 °	40 1		1		
A. PHASE TEST	No Tolerance	+0.1		+0.1		
B. FLD STR	NO TOTERANCE	10.0	-	10.0	ED O	
C. INPUT LVL		56.0		56.0	57.0	
D. 10 KC LVL	66 TO 76%	74.0		**79.0	76.0	

CHECK	SPECIFICATION	TRANSM	ITTER 1	TRANSM	REMARKS		
CHECK	J. ECH ICATION	INITIAL	ADJUSTED	INITIAL	ADJUSTED	nemann.	3
E. REF & LVL	50 TO 58%	51.0		51.0	50.0		
F. VAR # LVL	50 TO 58%	50.0		51.0	51.0		
G. 10 KC ALARM	55-65	** 54.0	56.5	58.0 63.0	56.0 62.0		
H. REF ALARM	61-71	62.0		63.0	62.0		
I. VAR ALARM	61-71	61.0		63.0 7.5	63.0		
J. AUDIO	7 TO 9 dBm	8.0		7.5	8.0		_
& GONIOMETER							_
A. 90 °	9910 TO 10010 Hz	9952		9964			_
B. 180 °	A-480 ±24 Hz	9472		9495			_
C. 270 °	A +10 Hz			9967			_
D. 360 ⁰	A+480 +24 Hz	9952 10438		10446			_
E. MIN PWR 1 (J-5)	45 °± 1 °	45.2		45.0			-
F. MIN PWR 2 (J-5)	225 ° ± 1 °	225.5		226.0			_
G. MIN PWR 3 (1-3)	135°±1°	135.8		135.7			-
H. MIN PWR 4 (1-3)	315°±1°	315.5		315.5			_
	135 ° ± 1 °	135.5		134.9	-		
I. MAX PWR 1 (J-5) J. MAX PWR 2 (J-5)	315°±1°	135.5 315.0		315.6			
	45°±1°	45.0					_
K. MAX PWR 3 (J-3)	225°±1°	225.0		44.5 *227.0			_
L. MAX PWR 4 (J-3)		* 211				ann may	-
M. MAX INPUT (J-4)	2.5-3.5 WATTS	* 2.44		* 2.04		SEE TEX	T
N. POWER BALANCE		0.00		0.00			_
(1) 135° VS 315°	2%	0.00		0.98			
(2) 135 ° VS 45 °	2%	0.00		1.46			_
(3) 135 ° VS 225 °	2%	-0.49		0.49			
(4) 315 ° VS 45 °	2 %	0.00		0.48			
(5) 315 ° VS 225 °	2%	-0.49		-0.48			
(6) 45 ° VS 225 °	2%	-0.49		-0.96			
O. MAX PWR							
(1) 135 ^O	93% OF J4	*84.43				SEE TEX	T
(2) 315 °	93% OF J4	*84.43 *84.43 *84.43				SEE TEX	T
(3) 45 °	93% OF J4	*84.43				SEE TEX	T
(4) 225 °	93% OF J4	*84.02				SEE TEX	T
9. MODULATION							
A. REFERENCE	30± 2%	31.14		** 37.90	30.60		_
B. VARIABLE	NO GROUND TOL.	30.01		33.22	70.00		_
C. IDENTIFICATION	6 TO 10%	6.66		33.22 **2.56	7.38		_
D. VOICE	26 TQ 30%	30.00		30.00	1.00		_
O. TRANSMITTER	1.15200000 Hz	115199	592	115198	890		_
FREQUENCY	0.002%+	0003		0013			_
			7-		·		_
1.MONITOR ALARM POINTS							_
A. 10 KC	15 %	15		15			_
B. VAR Ø	15 % 15 %	15		15 15			-
6. V 11.11 p	12 /9	1		1)	-		
C	1100 1 0	1 00		0.05			
C. COURSE	+1.0° + 2 -1.0° ± 2	1.00		0.95			_
DEVIATION	1.0	1.00	2.06	1-05	0 70	ann mar	-
12. GROUND CHECK	±4.0 °	**4.21	2.96	3.94	2.32	SEE TEX	1
13. TRANSMITTER	0	1 0:	0.01		-		
DIFFERENTIAL	1.5°. 5% MAX	0.00	0.94				_
14. MOD. ELIM.				2.56			

^{*} Overall equipment performance met AFM 55-8 requirement. T.O. Specifications have not been met.

^{**} Out of tolerance-corrected.

VOR/TVOR PRE	-POST AIRBORNE EVA	LUATION CHECK	LIST	DATE MORE TO		
CUECK T	SDECIEICA TION	TRANSM	MITTER 1	Mar 77 TRANSMITTER 2		
CHECK	SPECIFICATION	PRE-EVAL	POST-EVAL	PRE-EVAL POST-E		
VOLTAGE REGULATOR M-1	230 VAC +1%	228.00	228.00	228.00	228.00	
TRANSMITTER OSC PLATE	6-15 MA	13.00	12.50	11.00	11.00	
IST AMP GRID	1-2 MA	1.00	1.00	1.10	1.10	
IST AMP PLATE	20-30 MA	29.00	28.00	24.00	25.00	
2ND AMP GRID	2-4 MA	3.60	3.40	2.30	2.60	
2ND AMP PLATE	30-50 MA	34.00	34.00	36.50	38.00	
FINAL AMP GRID	6.5-8.5 MA	7.10	6.70	7.00	7.40	
FINAL AMP SCREEN	15 - 30 MA	*13.00	*14.00	*14.00	*13.00	
FINAL AMP TOTAL	200 - 225 MA	*190.00	*190.00	*190.00	*198.00	
HI VOLTS	450-550 VDC	500.00	500.00	490.00	490.00	
MODULATION ELIMINATOR						
LIMITER CATHODE	15-30 MA	26.00	25.00	22.50	23.00	
FINAL AMP PLATE	65-115 MA	95.00	98.00	90.00	86.00	
DIODE LEVEL	15-30 VDC	16.50	17.00	23.50	23.00	
GONIOMETER MOTOR	N/A					
VOLTS	N/A				,	
FREQUENCY	N/A					
DRIVER TOTAL	N/A					
AMP TOTAL	N/A					
POWER OUT						
REFERENCE CARRIER	40-50 WATTS	41.00	40.00	41.00	42.50	
RED VARIABLE	.7-1.1 WATTS	0.87	0.88	0.90	0.90	
GREEN VARIABLE	.7-1.1 WATTS	0.87	0.87	0.90	0.90	

^{*} Overall equipment performance met AFM 55-8 requirement. T.O. Specifications have not been met.

VOR/TVOR PRE	-POST AIRBORNE EVA	LUATION CHECK	LIST	Mar 77	7	
CHECK	SPECIFICATION	TRANSM	IITTER 1	TRANSMITTER 2		
CHECK	SPECIFICATION	PRE-EVAL POST-EVA		PRE-EVAL POST		
VOLTAGE REGULATOR M-1	230 VAC +1%	228.00	228.00	228.00	228.00	
TRANSMITTER OSC PLATE	6-15 MA	13.00	13.00	11.50	12.00	
ST AMP GRID	1-2 MA	1.25	1.10	1,20	1.20	
STAMP PLATE	20-30 MA	28.20	28.00	25.00	26.00	
ND AMP GRID	2-4 MA	3.40	3.40	2,40	2.60	
ND AMP PLATE	30-50 MA	33.50	33.50	37.00	38.00	
FINAL AMP GRID	6.5-8.5 MA	6.65	6.70	7.45	7.40	
FINAL AMP SCREEN	15-30 MA	*13.75	*13.00	*13.00	*12.50	
FINAL AMP TOTAL	200-225 MA	*190.00	*190.00	*188.00	*195.00	
HI VOLTS	450-550 VDC	498.00	500.00	490.00	490.00	
MODULATION ELIMINATOR						
LIMITER CATHODE	15-30 MA	24.00	23.00	19.00	22.00	
FINAL AMP PLATE	65-115 MA	100.00	98.00	95.00	85.00	
DIODE LEVEL	15-30 VDC	18.00	16.50	22.00	20.00	
GONIOMETER MOTOR	N/A					
VOLTS	N/A					
FREQUENCY	N/A					
DRIVER TOTAL	N/A					
AMP TOTAL	N/A					
POWER OUT						
REFERENCE CARRIER	40-50 WATTS	40.00	40.00	43.00	42.50	
RED VARIABLE	.7-1.1 WATTS	0.89	0.90	0.90	0.82	
GREEN VARIABLE	.7-1.1 WATTS	0.91	0.91	0.90	0.82	

^{*} Overall equipment performance met AFM 55-8 requirement. T.O. Specifications have not been met.

--- FORM ---

TAR . F-6-9

VOR/TVOR PRE	E-POST AIRBORNE EVAL	LUATION CHECK	LIST	Mar 77		
CHECK	SPECIFICATION	TRANSM	ITTER 1	TRANSMITTER 2		
CHECK	3FECTFICATION	PRE-EVAL	POST-EVAL	PRE-EVAL	POST-EVAL	
VOLTAGE REGULATOR M-1	230 VAC +1%	228.00	228.00	228.00	228.00	
TRANSMITTER OSC PLATE	6-15 MA	12.00	12.00	12.00	12.00	
IST AMP SRID	1-2 MA	1.00	1.50	1.00	1.50	
IST AMP PLATE	20-30 MA	28.00	28.00	25.00	26.00	
2ND AMP GRID	2-4 MA	3.40	3.35	2.50	2.60	
2ND AMP PLATE	30-50 MA	40.00	40.00	39.00	31.00	
FINAL AMP GRID	6.5-8.5 MA	7.00	6.70	7.80	*6.30	
FINAL AMP SCREEN	15-30 MA	18.00	18.00	*14.00	*14.00	
FINAL AMP TOTAL .	200-225 MA	210.00	215.00	*190.00	200.00	
HI VOLTS	450-550 VDC	500.00	500.00	490.00	490.00	
MODULATION ELIMINATOR						
LIMITER CATHODE	15-30 MA	22.50	26.00	22.00	22.00	
FINAL AMP PLATE	65-115 MA	90.00	95.00	90.00	85.00	
DIODE LEVEL	15-30 VDC	18.00	16.00	21.50	20.00	
GONIOMETER MOTOR	N/A					
VOLTS	N/A					
FREQUENCY	N/A					
DRIVER TOTAL	N/A					
AMP TOTAL	N/A					
POWER OUT						
REFERENCE CARRIER	40-50 WATTS	45.00	45.00	44.00	43.00	
RED VARIABLE	.7-1.1 WATTS	0.90	0.84	0.88	0.84	
GREEN VARIABLE	.7-1.1 WATTS	0.91	0.84	0.90	0.84	

^{*} Overall equipment performance met AFM 55-8 requirement. T.O. Specifications have not been met.

AFCS FORM 956

TAB: E-6-3

VOR/TVOR PR	E-POST AIRBORNE EVAL	LUATION CHECK	LIST	Mar 7	7
CHECK	SPECIFICATION	TRANSM	ITTER 1		ITTER 2
CHECK	JECT TON	PRE-EVAL	POST-EVAL	PRE-EVAL	POST-EVAL
VOLTAGE REGULATOR M-1	230 VAC +1%	228,00	228.00	228.00	228.00
TRANSMITTER OSC PLATE	6-15 MA	12.00	12.00	11.00	11.00
IST AMP GRID	1-2 MA	1.00	1.00	1.00	1.00
IST AMP PLATE	20 - 30 MA	28.00	28.00	24.00	24.00
2ND AMP GRID	2-4 MA	3.35	3.40	2.50	2.50
2ND AMP PLATE	30 - 50 MA	40.00	40.00	35.00	35.00
FINAL AMP GRID	6.5-8.5 MA	6.95	6.80	7.50	7.50
FINAL AMP SCREEN	15-30 MA	19.50	19.00	*12.00	*13.50
FINAL AMP TOTAL	200-225 MA	217.00	216.00	*198.00	200.00
HI VOLTS	450-550 VDC	500.00	500.00	490.00	490.00
MODULATION ELIMINATOR	A				
LIMITER CATHODE	15-30 MA	24.00	24.00	20.00	20.00
FINAL AMP PLATE	65 - 115 MA	87.00	98.00	88.00	92.00
DIODE LEVEL	15-30 VDC	18.50	17.00	21.00	21.50
GONIOMETER MOTOR	N/A				
VOLTS	N/A				
FREQUENCY	N/A				
DRIVER TOTAL	N/A				
AMP TOTAL	N/A				
POWER OUT					
REFERENCE CARRIER	40-50 WATTS	45.00	46.00	43.00	43.00
RED VARIABLE	.7-1.1 WATTS	0.90	0.90	0.89	0.91
GREEN VARIABLE	•7-1.1 WATTS	0.90	0.90	0.91	0.93

* Overall equipment performance met AFM 55-8 requirement. T.O Specifications have not been met.

TAB: E-7-1

UNIT 2046 Communications Group OBSERVERS (Grade and Name)

Mar 77

VOR/TVOR GROUND CHECK DATA MSgt D. Ferguson MSgt J. Ramsey

				EQUIPMEN	T NUMBER : 1	INITIA	L		
A		RUI	N 1			RUI	N 2		F
FIELD DETECTOR AZIMUTH	B MONITOR COARSE SELECTOR DIAL READING	C MONITOR CALIBRATION FACTOR	D MONITOR TRUE COURSE B-C=D	E AZIMUTH ERROR A-D=E	B COARSE SELECTOR DIAL READING	C MONITOR CALIBRATION FACTOR	MONITOR TRUE COURSE B-C=D	E AZIMUTH ERROR A-D=E	AVERAGE ERROR E+E 2
0	359.79	0.2	359.59	0.41	359.70	0.2	359.50	0,50	0.46
15	14.26	0.2	14.06	0.94	14.29	0.2	14.09	0.91	0.93
30	29.64	0.2	29.44	0.56		0.2	29.49	0.51	0.54
45	45.58	0.1	45.48	-0.48	45.58	0.1	45.48	-0.48	-0.48
60	61,62	0.0	61.62	-1.62	61.69	0.0	61.69	-1,69	-1,66
75	77.10	-0.1	77.20	-2.20	77.08	-0.1	77.18	-2.18	-2.19
90	91.57	-0.1	91.67	-1.67	91.53	-0.1	91.63	-1.63	-1.65
105	106,20	-0.1	106.30	-1.30	105.94	-0.1	106.04	-1.04	-1.17
120	120.31	-0.1	120.41	-0.41	120.28	-0.1	120.38	-0.38	-0.40
135	135.10	0.0	135.10		135.10	0.0	135.10	-0.10	-0.10
150	149.81	0.1	149.71		149.78	0.1	149.68	0.32	0.31
165	164.89	0.1	164.79		164.80	0.1	164.70	0.30	0,26
180	179.08	0.1	178.98	1.02	178.98	0.1	178.88	1.12	1.07
195	193.76		193.66	1.34	193.68	0.1	193.58	1.42	1.38
210	209.23	0.1	209.13		209.08	0.1	208.98	1.02	0.95
225	225.79	0.1	225.69		225.67	0.1	225.57	-0.57	-0.63
240	242.05	0.0	242.05		242.06	0.0	242.06	-2.06	-2.06
255	257.72	-0.1	257.82	-2.82	257.74	-0.1	257.84	-2.84	-2.83
270	272.31	-0.2	272.51		272.32	-0,2	272.52	-2,52	-2.52
285	286.53	-0.1	286.63	-1.63	286.62	-0.1	286.72	-1.72	-1.68
300	301.20	-0.1	301.30	-1.30	301.40	-0.1	301.50	-1.50	-1.40
315	316.05	0.0	316.05	-1.05	316.08	0.0	316.08	-1.08	-1.07
330	330.50	0.1	330.40		330.51	0.1	330.41.	-0.41	-0.41
345	345.63	0.1	345•53	-0.53	345.69	0.1	345•59	-0.59	-0.56
YPED NAME	AND GRADE	OF SECTION	SUPERVISOR		SIGNATURE				

2046 Communications Group
OBSERVERS (Grade and Name)

Mar 77

VOR/TVOR
GROUND CHECK DATA

MSgt D. Ferguson MSgt J. Ramsey

	Y				T NUMBER :	2 INITI	AL		
A		RUN				RUI	1 2		F
FIELD DETECTOR AZIMUTH	MONITOR COARSE SELECTOR DIAL READING	C MONITOR CALIBRATION FACTOR	D MONITOR TRUE COURSE B-C=D	E AZIMUTH ERROR A-D=E	B COARSE SELECTOR DIAL READING	C MONITOR CALIBRATION FACTOR	MONITOR TRUE COURSE B-C=D	E AZIMUTH ERROR A-D-E	AVERAGE ERROR E + E 2
0	0.50	0.2	0.30	-0.30	0.88	0.2	0.68	-0.68	-0.49
15	15.00	0,2	14.80	0,20	15.31	0,2	15.11	-0.11	0.05
30	30,28	0.2	30.08	-0.08	30.57	0.2	30.37	-0.37	-0,23
45	46.02	0.1	45.92	-0.92	46.09	0.1	45.99	-0.99	-0.96
60	62.09	0.0	62.09	-2.09	61.87	0.0	61.87	-1.87	-1.98
75	77.00	-0.1	77.10	-2.10	76.87	-0.1	76.97	-1.97	-2.04
90	91.40	-0.1	91.50	-1.50	91.31	-0.1	91.41	-1,41	-1.46
105	105.68	-0.1	105.78		105.48	-0.1	105.58	-0.58	-0.68
120	120,00	-0.1	120.10		119.86	-0.1	119.96	0.04	-0.03
135	135.04	0.0	135.04		135.00	0.0	135.00	0.0	-0.02
150	149.81	0.1	149.71		149.84	0.1	149.74	0.26	0.28
165	165.21	0.1	165.11		165.30	0,1	165.20	-0.20	-0.16
180	179.80	0,1	179.70		179.90	0,1	179.80	0,20	0,25
195	194.50	0.1	194.40		194.62	0,1	194.52	0.48	0.54
210	210,18	0.1	210.08		210,20	0,1	210,10	-0,10	-0.09
225	226.61	0.1	226.51		226.66	0.1	226.56	-1.56	-1.54
240	242.91	0.0	242.91		242.85	0.0	242.85	-2.85	-2.88
255	258.27	-0.1	258.37		258.32	-0.1	258.42	-3.42	-3.40
270	272.60	-0.2	272.80	The state of the s	272.72	-0.2	272.92	-2.92	-2,86
285	287.00	-0.1	287.10		286.63	-0.1	286.73	-1.73	-1.92
300	301.70		301.80		301.45	-0.1	301.35	-1.35	-1.58
315	316.79	0.0	316.79	-1.79	316.70	0.0	316.70	-1.70	-1.75
330 345	331.35 346.64	0.1	331 <u>25</u> 346 <u>54</u>	-1.25 -1.54	331.37 346.65	0.1	331.27 346.55	-1. 27 -1. 55	-1.26 -1.55
PED NAME	AND GRADE	OF SECTION	SUPERVISOR		SIGNATURE				

AFCS

JAB: E-8-3

	٥	AVERAGE ERROR	80 1.	35	16 2.	66 1.	72 0.63	0	10 1.02	٦	1	50 1.51	22 1.21	78 0.77	-	1	8	9	-	-	9		0	0	1	19 0.79
	4	GROUND CHECK ERROR			34 2.	1	.28 0.	0	1.	1.	1.	1.	-	o	-			-	-	•	-0-	0	0	•	0	1 0.
OND RUN	u	* TRUE COURSE RECIPROCAL SEE * NOTE ATUGNOO ROS STON	1.	-12	-27	-43.	2 -59.2	-74	-88.	-103.	-118.	-133.	-148.	-154.	-178.	-193,	-208.	-225.	-241.	-256.	-270	-284.	-299.	-314.	-329.	9 -344.2
SEC	1	a = b + c = b	-181.80	-167.35		-136.66	7:	9	-91.10	-76.48	• 1		4	-15.78	•	-346.50	•	-314.81	4	-1	-269.42	-255.20	-1	- 1	∞	-195.
	U		-0.2	-0.2	-0.2	-0.1	0.0		0.1	0.1	0.1	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	0.0		0.2	0.1	0.1	0.0	-0-	-0.1
	8	a l	182.00			136.76	120.72	105.50	91.00	76.38	61.73	46.50	٦.	15.88	-	•	ᅴ.	314.91	•	283.46	•	•		225.61		195.89
	u	1 7+1-1		2.31	2.29	1.62	0.54		0.94	1.39	1.78	1.52	- 1	-1	0.90	1.51	•	•	4		-			0.51	0.84	0.79
	3	NOTE FOR COMPUTATION	.1	-12.69		-43.38		-74.40		• 1	•	-133.48	•1		•	• 1	•		-241.22			•	5	4.4		-344.21
RUN	0	a = 2 +8	-181.75	-167.31	-152.29	-136.62	-120.54			-76.39		-46.52	1	-15.76	-0.90	-346.5	331.	-314.91	298.		•	•	-240.45	225.5	210.8	-195.79
FIRST	U	MONITOR CALIBRATION CURVE * CORRECTION	-0.2	-0.2	-0.2	-0.1	0.0	0.1	0.1	0.1	0.1	0.0	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	0.0	0.1	0.2	0.1	0.1	0.0	-0.1	-n.1
	8	w NOIT A DIGNI	181.95	167.51	152.49	136.72	120.54	105.50	90.84	76.29	61.68	46.52	31.30	15.86	1.00	346.61	331.10	315.01	298.78	283.55	269.28	255.12	240.35	225.51	210.94	195.89
	4	CHECK POINT AZIMUTH	000	015	030	045	090	075	060	105	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345
DATE: N. 77	Mar //	TAL In for Check P O() O() O() O() O() O() O() O(-	2	3	4	5	9	7	80	٥	10	==	12	13	14	15	16	17	18	19	20	21	22	23	24

INITIAL In column for Check Points Azimuth. 0 to 180 E = 180 + D		,		٥	E	u	8	U	٥	E	4	0
NOTE: For Check Points Azimuth 180°to 360° E = 540° + D *Record with opposite sign to neg **Change sign of result	CHECK POINT AZIMUTH	MONITOR COURSE SELECTOR DIAL	* MONITOR CALIBRATION CURVE CORRECTION	B + C = D * WONITOR TRUE COURSE	* TRUE COURSE RECIPROCAL SEE	V+E=L еволир снеск еввов	MONITOR COURSE SELECTOR DIAL	* MONITOR CALIBRATION CURVE	* MONITOR TRUE COURSE B + C = D	* TRUE COURSE RECIPROCAL SEE * NOTE FOR COMPUTATION	V+E=L евопир снеск еввов	AVERAGE ERROR
	000	182.09	-0.2	-181.89	1.89		182.02	1 .	-181.82	1.		1.86
2 0	015	167.48	-0.2	-167.28	-12.72	2.28		-0.2		-1	2.36	2.32
3		152.20	-0.2	-152.00			1:	-0.2		-28.	1.	1.96
4	045	136.35	-0.1	-136.25	-43.75		136.31	-0.1		-43.	l.	
5 0	090	120.06	0.0	-120.06				0.0	-120.00		0.	
9	075	104.55		• 1				0.1	-104.56	-75.		-0.40
7 0	060	90.00	0.1	-90.10	-89.90	0.10	89.90	0.1	-90.00			0.05
88	105	75.52	0.1	.62		0.62	75.26	0.1	-75.36	-104.		0.49
6	120	60.85	0.1	95		0.95		0.1	-60.98	-119.	0.98	0.97
10	135	46.02	0.0	.02		1.02		0.0	-46.04	-133	1.04	
=	150	31.25	-0.1	.15	•	1.15	31.27	-0.1		-148.	1.17	1.16
12 1	165	16.02	-0.1	_	- 1	0.92	16.10	-0.1		-164.	1.00	0.96
13	180	0.88	-0.1	.78	-179.22	0.78	0.88	-0.1	-0.78	-179.22	0.78	0.78
14	195	347.00	-0.1	.90	-193.10	•	347.08	-0.1	-346.98	-193.	1.98	1.94
15 2	210	331.68	-0.1	.58	-208.42	1.58	331.49	-0.1	-331.39	-208.	1.39	1.49
16 2	225	315.12	1	.02	-224.98		1.	-0.1		-224.98	0.02	
17 2	240	298.78	0	.78	-241.22	-1.22	298.81	0.0	-298.81	-241.19	-1.19	-1.21
18	255	283.21	1	.31	-256.69	-1.69	283.14	0.1			-1.76	-1.73
19 2	270	268.80	2	00	-271.00	-1.00	268.81	0.2	-269.01	-270.99	-0.99	
20 2	285	254.69	1	.79	-285.21	-0.21	254.70		-254.80	-285.20	-0.20	
21 3	300	240.10	0.1			0.20	240.04	0.1			0.14	0.17
22 3	315	225.30	0	.30	-314.70		225.50	0.0	-225.50		0.50	
23 3	330	211.10	1			1.00	211.08	-0.1		1	0.98	0.99
24 3	345	196.00	-0.1	-195.00	-344.10	0.90	196.00	-0.1	-195.90	1		-

		ERROR C	OMPUTATIO	N WORKSHE	т		DATE	
					- '		Mar	77
		EQUIPME	NT NO. 1			EQUIPME	NT NO. 2	
A	В	С	D	E	F	G	н	1
CHECK	NORMAL	REVERSE	ANTENNA	GONIOMETER	NORMAL	REVERSE	ANTENNA	GONIOMETER
POINT	GROUND	GROUND	ERROR	ERROR	GROUND	GROUND	ERROR	ERROR
AZIMUTH	CHECK	CHECK	B+C	B-C	CHECK	CHECK	F+G	F - G
(Degrees)	ERROR	ERROR	(2)	2	ERROR	ERROR	(2)	(2
0	0.46	1.78	1.12	-0.66	-0.49	1.86	0.69	-1.18
15	0.93	2.33	1.63	-0.70	0.05	2.32	1.19	-1.14
30	0.54	2.23	1.39	-0.85	-0.23	1.96	0.87	-1.10
45	-0.48	1.64	0.58	-1.06	-0.96	1.23	0.14	-1.10
60	-1,66	0.63	-0.52	-1.15	-1.98	0.03	-0.98	-1.00
75	-2.19	0.60	-0.80	-1.40	-2.04	-0.40	-1.22	-0.82
90	-1.65	1.02	-0.32	-1.34	-1.46	0.05	-0.71	-0.76
105	-1-17	1.44	0-14	-1.31	-0.68	0.49	-0.10	-0.59
120	-0.40	1.81	0.71	1-1-11	-0.03	0.97	0.47	-0.50
135	-0.10	1.51	0.71	-0.81	-0.02	1.03	0.51	-0.53
150	0.31	1.21	0.76	-9.45	0.28	1.16	0.72	-0.44
165	0.26	0.77	0.52	-0.26	-0.16	0.96	0.40	-0.56
180	1.07	1.33	1.20	-0.13	0.25	0.78	0.52	-0.27
195	1.38	1.51	1.45	-0.07	0.54	1.94	1.24	-0.70
210	0.95	1.04	1.00	-0.05	-0.09	1.49	0.70	-0.80
225	-0.63	-0.05	-0.34	-0.29	-1.54	0.02	-0.76	-0.78
240	-2.06	-1.29	-1.68	-0.39	-2.88	-1.21	-2.05	-0.84
255	-2.83	-1.40	-2.12	1-0.72	-3.40	-1.73	-2.57	-0.84
270	-2.52	-0.55	-1.54	-0.99	-2.86	-1.00	-1-93	-0.93
285	-1.68	0.21	-0.74	-0.95	-1-92	-0-21	-1.07	-0.86
300	-1.40	0.45	-0.48	-0.93	-1.58	0.17	-0.71	-0.88
313	-1.07	0.56	-0.26	-0.82	-1-75	0.40	-0.68	-1.08
330	-0.41	0.85	0.22	-0.63	-1.26	0.99	-0.14	-1.13
345	-0.56	0.79	0.12	- 0.68	-1.55	0.90	-0.33	-1.23
					•••	5.75		1
								1

REMARKS: Initial Ground Checks

TAB: E-9-1

243

TAB: E-9-2

TAB: E-9-3

AU. S. GOVERNMENT PRINTING OFFICE: 1973--76-0061/504

AFCS FORM 243 REPLACES AFCSA FORM 8A. AUG 70.

		ERROR C	OMPUTATIO	ON WORKSHE	ET		DATE	
							Mar	77
		EQUIPME	NT NO. 1			EQUIPME	NT NO. 2	
A	В	С	- D	E	F	G	н	t
CHECK	NORMAL	REVERSE	ANTENNA	GONIOMETER	NORMAL	REVERSE	ANTENNA	GONIOMETE
POINT	GROUND	GROUND	ERROR	ERROR	GROUND	GROUND	ERROR	ERROR
AZIMUTH	CHECK	CHECK	B+C	B-C	CHECK	CHECK	F + G	F - G
(Degrees)	ERROR	ERROR	(2)	(2)	ERROR	ERROR	2	2
0	0.20	1.73	0.97	-0.77	-0.19	0.89	0.35	-0.54
15	0.45	2.01	1.23	-0.78	0.13	1.51	0.82	-0.69
30	0.05	1.40	0.73	-0,68	-0.11	1.35	0.62	-0.73
45	-0.75	0.38	-0.19	-0.57	-0.89	0.74	-0.08	-0.82
60	-1 ,68	-0.83	-1.26	-0.43	-1.51	-0.62	-1.07	-0.45
75	-1.95	-1.28	-1.62	-0.34	-1.74	-0.24	-0.99	-0.75
90	-1.81	-1.06	-1.44	-0.38	-1.28	0.09	-0.60	-0.69
105	-1.17	-0.82	-1.00	-0.18	-0.77	0.66	-0.06	-0.72
120	-0.85	-0.37	-0.61	-0.24	-0.35	1.01	0.33	-0.68
135	-0.87	-0.35	-0.61	-0.26	-0.51	0.85	0.17	-0.68
150	-0.64	-0.24	-0.44	-0.20	-0.63	0.69	0.03	-0.66
165	-0.75	-0.09	-0.42	-0.33	-0.73	0.39	-0.17	-0.56
180	0.14	0.55	0.35	-0.21	-0.13	0.52	0.20	-0.33
195	0.77	1.11	0.94	-0.17	0.29	1.25	0.77	-0.48
210	1.01	0.98	1.00	0.02	0.37	1.13	0.75	-0.38
225	0.17	-0.12	0.03	0.15	-0.59	0.13	-0.23	-0.36
240	-0.85	-1.22	-1.04	0.19	-1.69	-0.70	-1.20	-0.50
255	-1.03	-1.34	-1.19	0.16	-1.95	-0.90	-1.43	-0.53
270	-0.56	-0.50	-0.53	-0.03	-1.50	0.01	-0.75	-0.76
285	0.15	0.38	0.27	-0.12	-0.55	0.69	0.07	-0.62
300	0.09	0.61	0.35	-0.26	-0.55	0.89	0.17	1-0.72
313	-0.19	0.60	0.21	-0.40	-0.91	0.76	-0.08	-0.84
330	-0.13	0.98	0.43	-0.56	-0.75	0.77	0.01	-0.76
345	-0.83	0.67	-0.08	-0.75	-1.25	0.36	-0.45	-0.81

REMARKS: Final Ground Checks

UNI

2046 Communications Group

Mar 77

VOR/TVOR
GROUND CHECK DATA

MSgt D. Ferguson MSgt J. Ramsey

OBSERVERS (Grade and Name)

EQUIPMENT NUMBER : FINAL RUN 1 MONITOR COARSE C MONITOR E В AVERAGE MONITOR ERROR DETECTOR MONITOR AZIMUTH COARSE MONITOR AZIMUTH TRUE TRUE ERROR A-D-E SELECTOR O FACTOR SELECTOR ALIBRATION E+E COURSE ERROR COURSE HAL READING FACTOR A - D = E B - C = D 0 0.00 0.2 -0,20 0.20 0.01 0.2 -0.19 0.19 0.20 15 14.70 14.50 0.50 0.2 0.2 14.80 14.60 0.40 0.45 30 30.18 0.2 29.98 0.02 30.12 0.2 29.92 0.08 0.05 45.72 -0.62 45 0.1 45.62 45.98 0.1 45.88 -0.88 -0.75 60 61,66 0.0 0.0 61.66 -1.66 61.70 61.70 -1.70 -1.68 75 76.80 -0.1 76.90 -1.90 76.90 -0.1 77.00 -2.00 -1.95 -1.81 90 91.71 -0.1 91.81 91.70 -0.1 91.80 -1.80 -1.81 105.95 105 -0.1 106.05 -1.05 1106.18 -0.1 106.28 -1.28 -1.17 120.70 -0.80 120.80 -0.1 120 -0-1 120.80 120.90 -0.90 -0.85 135 135.85 0.0 135.85 -0.85 135.88 0.0 135.88 -0.88 -0.87 150 150.72 0.1 150,62 -0.62 150.76 0.1 150.66 -0.66 -0.64 165 165.80 0.1 165.70 -0.70 165.90 0.1 165.80 -0.80 -0.75 180 179.92 0.1 179.82 0.18 180.00 0.1 179.90 0.14 0.10 195 194.32 0.1 194.22 0.78 194.35 0.1 194.25 0.75 0.77 210 209.00 0.1 208.90 1.10 209.18 1.01 0.1 209.08 0.92 225 224.81 224.71 0.29 225.05 0.1 224.95 0.1 0.05 0.17 -0.80 240.90 240 240.80 0.0 240.80 0.0 240.90 -0.90 -0.85 255 255.80 256.06 255.90 256.16 -0.1 -0.90 -0.1 -1.16 -1.03 270 270.22 -0.42 270.50 -0.2 270.42 -0.2 270.70 -0.70 -0.56 285 -0.1 284.72 284.82 0.18 284.78 284.88 -0.1 0.12 0.15 300 299.80 299.82 -0.1 299.90 -0.1 0.10 299.92 0.08 0.09 -0.32 315 315.32 315.32 315.06 0.0 0.0 315.06 -0.06 -0.19 330 330.21 330.11 330.25 330.15 0.1 -0.11 0.1 -0.15 -0.13 345 345.90 0.1 345.80 -0.80 345.96 0.1 -0.83 -0.86 TYPED NAME AND GRADE OF SECTION SUPERVISOR SIGNATURE

						The second secon	The second second second second second		And the second name of the second	3550	NUKUK	The second secon	-
Mar	77	A	8	U	0	3	ш	8	U	۵	E	u.	٥
TX 1 FINAL NOTE: In column for C Azimuth. O'to 180° E = 180°+ D NOTE: For Check Poir 180° to 360° E = 540°+ D *Record with Opposite sign ***Change sign	Check Points bints Azimuth to neg	44	MONITOR COURSE SELECTOR DIAL	AVAUD MOITARBLAD ROTINOM	a = b + a	*		MONITOR COURSE SELECTOR DIAL	* MONITOR CALIBRATION CURVE	U = 31 8	NOTE FOR COMPUTATION	У+Е=Е еволио Снеск Еввов	AVERAGE ERROR
	-	000	0.10	-	-	-	. 78	00		9.	9.0	1.6/	- 0
	2	01.5	67.2		0		2.05	7.1		166.9	0	96.	7
	3	030	151.55 F	.0.2	00		1.35	10	-0.2	2.	28	1.44	
	4	0.4.5	35.4	10.7	3	- 4	0.34	5.5		135,4	44.5	4	0
	167	090			0		-0.71	0.6		119.0	0	0	0-
	9	0.7.5			00		-1.19	3.5	- 4	0	76.3	m.	7
	7	0.60					- 1	8.7	0	00	-	-1.12	1
	00	105			-		- 4	4.1	0.0	O.	05.8		0
	0	12.0	NO.		0			9.4	0.1	5	7		9
	1.0	135	1	19	-			4.6	0.0	0	35.4	-	0-
		150						9.6	-0.1	50	50.4		9
	1.2	1.65		0.1	0				0	14.9	55.1		9
	13	180	0.5	1.0	V			1	-0.1	-0.6	79.3		0
	1.4	195	6.2	0.1	-			46.2	-0.1	46.1	193.8		
	1.51	210	0.1	0.1	0	- 0	+	31.1	-0.1	31.0	08.9	-	0
	91	22.5	7	0.1	00	10		15.0	-0.1	14.9	225.0	0	
	17	2.40	00			_		98.8		98	-		T
	102	255	283.61	-	1	9		83.5	-	283.6	256.3	pe-m	
	1.9	270	269.33	0.2	L269.53	L270.47	-0.47	269.28	0.2	-269.48	-270.52	-0.52	0-
	2.0	285	255,28			34.		55.2		55.3	284.6		0
	21	300	0		1	90	9.	40.4	0.1	240.5	299.4		0
	2.2	315	225.60	0.0	0	4		25.6	0.0	25.6	14.4	- 1	0
	2.3	330	,	-		00	- 1		-0.1	10.9	29.0	7.1	
W1. No	2.4	30	5	-		44		95	-0.1	92.6	344.3		0

TAB: E-14

AFCS

AU. S. GOVERNMENT PRINTING OFFICE: 1973--768061/504 REGION NO. 6

UNIT

2046 Communications Group
OBSERVERS (Grade and Name)

Mar 77

VOR/TVOR GROUND CHECK DATA

MSgt D. Ferguson MSgt J. Ramsey

				EQUIPMEN	T NUMBER :	FINAL			
^		RUI	4 1			RUI	1 2		F
FIELD DETECTOR AZIMUTH	MONITOR COARSE SELECTOR CHALREADING	C MONITOR CALIBRATION FACTOR	D MONITOR TRUE COURSE B-C=D	E AZIMUTH ERROR	B COARSE SELECTOR DIAL READING	C MONITOR CALIBRATION FACTOR	MONITOR TRUE COURSE B-C*D	E AZIMUTH ERROR A-D=E	AVERAGE ERROR E+E 2
0	0.42	0.2	0,22	-0.22	0.35	0.2	0.15	-0.15	-0.19
15	15.08	0.2	14.88	0.12	15.06	C-2	14.86	0.14	0.13
30	30.39	0.2	30.19	-0.19	30.22	0.2	30.02	-0.02	-0.11
45	45.90	0.1	45.80	-0.80	46.08	0.1	45.98	-0.98	-0.89
60	61.61	0.0	61.61	-1.61	61.40	0.0	61.40	-1.40	-1.51
75	76.68	-0.1	76.78	-1.78		-0.1	76.70	-1.70	-1.74
90	91.20	-0.1	91.30	-1.30		-0.1	91.26	-1.26	-1.28
105	105.64	-0.1	105.74	-0.74	105.70	-0.1	105.80	-0.80	-0.77
120	120,30	-0.1	120,40		120.20	-0.1	120.30	-0.30	-0.35
135	135.50	0.0	135.50		135.51	0.0	135.51	-0.51	-0.51
150	150.58	0.1	150.48		150.88	0.1	150.78	-0.78	-0.63
165	165.75	0.1	165.65		165.91	0.1	165.81	-0.81	-0.73
180	180.26	0.1	180.16		180.20	0.1	180.10	-0.10	-0.13
195	194.82	0.1	194.72		194.81	0.1	194.71	0.29	0.29
210	209.65	0.1	209.55		209.81	0.1	209.71	0.29	0.37
225	225.78	0.1	225.68	-0.68	225.60	0.1	225.50	-0.50	-0.59
240	241.70	0.0	241.70	-1.70	241.68	0.0	241.68	-1.68	-1.69
255	256.88	-0.1	256.98	-1.98	256.81	-0.1	256.91	-1.91	-1.95
270	271.25	-0.2	271.45	-1-45	271.35	-0.2	271.55	-1.55	-1.50
285	285.47	-0.1	285.57	-0.57	285.42	-0.1	285.52	-0.52	-0.55
300	300.49	-0.1	300.59		300-41	-0.1	300.51	-0.51	-0.55
315	315.80	0.0	315.80		316.01	0,0	316.01	-1.01	-0.91
330	330.89	0.1	330.79	-0.79	330.80	0.1	330.70	-0.70	-0.75
345	346.31	0.1	346.21	-1.21	346.39	0.1	346.29	-1.29	-1.25
						,			
			,						
						-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
YPED NAME	AND GRADE	OF SECTION	SUPERVISOR	L	SIGNATURE				

	•
TAC	
CUECK	
	٠
-	ı
-	
2	
0	
à	
à	
a	
d	
000	
000	
CPOUND	
0	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
4	
VEDGE	
4	
VEDGE	

		<u>.</u>	FIRST RUN					SECOND	AD RUN		
Mar //	4	8	0	E	ı	8	U	٥	E	4	S
TX 2 FINAL NOTE: In column for Check Points Azimuth. 0° to 180° E = 180° +D NOTE: For Check Points Azimuth 180° to 360° E = 540° + D *Record with opposite sign ***Change sign of result	СНЕСК РОІИТ АХІМИТН (Degrees)	* MONITOR CALIBRATION CURVE	CORRECTION * MONITOR TRUE COURSE * B+ C = D	* TRUE COURSE RECIPROCAL SEE	V+E=F евопир снеск еввов	MONITOR COURSE SELECTOR DIAL	* MONITOR CALIBRATION CURVE CORRECTION	* MONITOR TRUE COURSE * B +C = D	* TRUE COURSE RECIPROCAL SEE * NOTE FOR COMPUTATION *	∀+E=F евопир снеск еввов	AVERAGE ERROR
-	000	181.70 -0.2	-181.50	1.50	1.50	180.47	-0.2	-180.27	0.27	0.27	0.89
2	015	.70		-13.	1.50			.52	-13.48	1.52	1.51
3	030	F0.		-28.60	1.40	151.49	-0.2	-	-28.71	1.29	1.35
4	045		-135.71	'	0.71			-	-44.24	0.76	0.74
5	090	0	-119.00	-61.	-1.00		0.0	77.		-0.23	-0.62
9	07.5	0	-104.82	-75.	-0.18	104.60	0.1	-104.70	-75.30	-0.30	-0.24
7	060	-	-90.24	1 -89.76	0.24	89.96	0.1	-	-89.94	90.0-	0.09
8	105	75.60 0.1	-75.70	104.30	0.70	75.52	0.1		104.38	0.62	0.66
6	120	60.90 0.1	-61.00	0 -119.00	1.00	60.92	0.1	-61.02 F	118.98	1.02	1.01
1.0	135	45.90 0.0		1-134.10	06.0	45.80	0.0	-45.80 F	134.20	0.80	0.85
11	150	-	-30.78	-149.	1	- 4	-0.1	-30.60	149.40	09.0	0.69
12	165	15.54 -0.1	-15,44	1-164.56	0.44	15,43	-0.1	-15.33-	164.67	0.33	0.39
13	180		- 0.04	1 -179.96	٩	1.10	-0.1	-1.00	179.00	1.00	0.52
14	195	346.43 -0.1	-346.33	3 -193.67	1.33	346.26	-0.1		193.84	1.16	1.25
15	210		-331.15			331.20	-0.1	01.	-208 90	1.10	-
16	225	315.24 -0.1	-315.14	-224.	0.14	315.21	-0.1	=	-224.89	0.11	0.13
17	240	_	-299.30			299.31	0.0	-299.31 F	-240 69	-0.69	-0.70
18	255	_	-284.10	-	-0.90	284.00	0.1	-284.10 H	255.90	-0.90	-0.90
19	270		-270.02	-269.		269.79	0.2	-269.99	-27a.01		0.01
2.0	285	255.55 0.1	-255.65	-	0.65	255.63	0.1	.73	-284.27	0.73	0.69
21	300	_	-240.89	-299.		240.78	0.1	-240.88	-299.12		0.89
2.2	315	_	-225.80	-314.20	0.80	225.72	0.0	-225.72	314.28	0.72	0.76
23	330	210.86 -0.1	-210.76	-329.		210.87	-0.1	77	.329.23	0.77	0.77
2.4	345	195.46 -0.1	-195.36	344 64	1 36 0	195.46	-0.1	36	344.64		0.36

Wright Patterson AFB OH 45433 FFO 17/19-21 Mat 77	FLIGHT	INOI	20110	N AL		_									071-16	
SITE EVALUATION PERIODIC X SPECIAL TRACALS YES		ters	on A	FR O	H 45	433			ON IDENT.	1					DN .	
COMMISSIONING	wright rat	Lera	on n	10 0			OF INSPE			1	1111		T	-	MON SYST	EM
FAA	SITE EVALU	ATION			PERIC	DIC		X SPEC	TR	ACAI	S		+			
TACH	COMMISSIO	NING			SURV	EILLA	ANCE	INCO	MPLETE					X N	0	
INTER-NATIONAL X			FA	A	-	1		PRIVATE	(Indicate aci	tual ow	ner)					
NATIONAL USCG VOR X VORTAC TACAN VOT DME	6. OWNER	1	INTE	p .	v	-		OTHER	ladianta art	-1						
Decignation Tac Vor Tac Tac Vor Tac Ta					Λ_	-		OTHER	marcare actua	11 Owne	:()					
TAC VOR TAC	7. FACILITY/CO	ОМРОН	ENT IN	SPECT	ED		VOR	X	ORTAC	T	TAC	AN	T	VOT		DME
DESIGNATION TAC VOR TAC TA						1			. DATA							
RADIAL USE REF REF REF REF APCH APCH MAPCH MAPCH APCH APCH AZIMUTH 098 098 098 098 047 047 230 230 047 047 047 174 18 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1		CE	TA	C	MOD		TAC	VOP	TAC	WOI)	TAC		VIOD	TAC	VOR
AZIMUTH 098 098 098 098 098 047 047 230 230 047 047 TRANSMITTERISI 1 1 2 2 1 1 1 1 2 2 MSL ALTITUDE (In hundreds) 23 23 23 23 38/12 38/12 17/29 17/29 30/12 30/12 DISTANCE (NOUTCHE) TO 17 17 18 18 18 2.1 2.1 10 10 2.1 2.1 SENSITIVITY S S S S S S ROUGHNESS 6/16 5/13.6 25/17 11/14 15/6 .9/7 .4/10 .8/10 1.5/9 .7/3. SCALLOPING 0 1.7/14.3 0 2/14.8 0 0 0 0 0 0 0 6/10. BENDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													17.7			
TRANSMITTER SI 1 1 2 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 1 3 3 3 3	TADIAL USE		RE	r	KEF		KEF	KEF	APCH	-			,n	MAPU	H APCH	APCH
MSL ALTITUDE	AZIMUTH		09	8	098		098	098	047	04	7	230	_	230	047	047
Commonded 23	TRANSMITTERIS		1		1		2	2	1	1		1		1	2	2
DISTANCE (Naurical mules) TO 17 18 18 18 2.1 2.1 10 10 2.1 2.1			2	3	23		23	23	38/12	38	/12	17/2	9	17/29	30/12	30/12
Naurical miles TO	DISTANCE	FROM				5						1		-		15
SENSITIVITY S S S S S S S S S S S S S S S S S S		TO.				5			1				-		1	-
ROUGHNESS 6/16 .5/13.6 25/17.7 11/14 1.5/6 .9/7 .4/10 .8/10 1.5/9 .7/3. SCALLOPING 0 1.7/14.3 0 2/14.8 0 0 0 0 0 0 1.6/10. BENDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			- 1 - 1	/	1/		18	18	2.1	2.	<u></u>	10		10	2.1	-
SCALLOPING O	SENSITIVITY				S			S	ļ	S		-		S	-	S
BENDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUGHNESS		5/	16	.5/1	3.6	2.5/17.7	1.1/14	1.5/6	.9	/7	.4/10		8/10	1.5/9	.7/3.0
BENDS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCALLOPING		0		1.7/14	.3	0	2/14.8	0	0		0		0	0	16/10
POLORIZATION 0 1.4/16 0 2.077.1 ALIGNMENT ERROR +.5/15.5	BENDS		0				0	0	0	0		0		0	0	0
ALIGNMENT ERROR	POLORIZATION		0			1				1			1			100
TRANSMITTER DIFFERENCE DI	ALIGNMENT ER	ROR	1						. = /2 =	13 5	10 0	1	-		1/2 0	17/0 7
SIGNAL STRENGTH S 90 S 40 S 660 S 800 S 650 INTERFERENCE 0 0 0 0 0 0 0 0 0 9. GENERAL SAT UNSAT. 10. MONITORS	TRANSMITTER		7. 71	2,2		2. 2	. 715.5	4.4133					-			
NTERFERENCE	DIFFERENCE		- 0		.7		0	1 .7	1.5	10	.1	-	-		1.5	0.1
9. GENERAL BAT UNSAT. 10. MONITORS STANDBY POWER LAST DATE INSPECTED TX ALIGNMENT ALARM + ALARM - VOICE X VOR 098 1 +.9 1.9 .1 IDENTIFICATION X 25 Jul 75 098.5/15.5 2 +.9 1.9 .1 DME ACCURACY X TACAN 098 15 .3 1.1 DME COVERAGE X 28 May 75 098.5/15.5 25 .3 1.1	SIGNAL STRENG	тн	S		90		\$	40	8	660	0	S		800	S	650
STANDBY POWER	INTERFERENCE		0		0		0	0	0	0		0		0	0	0
VOICE X VOR	9. GENERAL		BAT	UNSA	т.			141		10. M	ONIT	ORS				
VOICE X VOR REFERENCE RADIAL 098 1 +.9 1.9 .1 IDENTIFICATION X 25 Jul 75 098.5/15.5 2 +.9 1.9 .1 DME ACCURACY X TACAN 098 1 5 .3 1.1 DME COVERAGE X 28 May 75 098.5/15.5 2 5 .3 1.1 L. DISCREPANCIES AND/OR REMARKS 5 .3 1.1	STANDBY POWE	R			LA	ST DA	TE INSPECT	ED			T	TX	A. 103	MENT	ALABU +	ALASH -
DENTIFICATION X 25 Jul 75 CHECK POINT 098.5/15.5 2 +.9 1.9 .1		-		-	+						+			-		-
DME ACCURACY X 25 Jul 75 098.5/15.5 2 +.9 1.9 .1	VOICE	-	X		-	V	OR				-	1	+.	9	1.9	.1
DME COVERAGE X 28 May 75 098.5/15.5 25 .3 1.1	IDENTIFICATION		X		2	5 J	ul 75	098.5/	15.5			2	+,	9	1.9	.1
DME COVERAGE X 28 May 75 098.5/15.5 25 .3 1.1	DME ACCURACY	r	X			T.A.	CAN				1	1	_	5	.3	1.1
I. DISCREPANCIES AND/OR REMARKS	DME COVERAGE		x		2			CHECK POI	NT		T	2			AND DESCRIPTION OF THE PERSON NAMED IN	1.1
	1. DISCREPANCE	ES AN	DIOR	EMAR	KR							-+	-	-		CORRECTED
									N remot	e c	hans	e ove	er s	atisf	actory	
VOR antenna retuned prior to inspection. 3. VOR remote change over inoperative. TACAN remote change over satisfactory														11/14		
3. VOR remote change over inoperative. TACAN remote change over satisfactory																
3. VOR remote change over inoperative. TACAN remote change over satisfactory. 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two																353 1
3. VOR remote change over inoperative. TACAN remote change over satisfactory 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two GCP circles drawn. Both were utilizing the same GCP data, but were approxi-																
3. VOR remote change over inoperative. TACAN remote change over satisfactory 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two GCP circles drawn. Both were utilizing the same GCP data, but were approxi- mately 150' apart laterally. I recommended to the Chief of Airfield manage-									03/ TE	dia	1 10	or the	V		- Inches	-
3. VOR remote change over inoperative. TACAN remote change over satisfactory 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two 3. CCP circles drawn. Both were utilizing the same GCP data, but were approxi- 3. Dately 150' apart laterally. I recommended to the Chief of Airfield manage- 3. Manual CCP data sign be changed to the 037 radial for the VOR check:	-			18.9		7				1	_0		-	- 02	1	Bald
3. VOR remote change over inoperative. TACAN remote change over satisfactory 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two GCP circles drawn. Both were utilizing the same GCP data, but were approximately 150' apart laterally. I recommended to the Chief of Airfield management that the GCP data sign be changed to the 037 radial for the VOR check;	Y RESTRICTED			1					110	. (Y		51	1 7 7 7 7	-	
3. VOR remote change over inoperative. TACAN remote change over satisfactory 3. All holding patterns and DME arcs flown satisfactory. 3. VORTAC GCP 040/1.6, VOR out of tolerance (alignment). Also, there were two GCP circles drawn. Both were utilizing the same GCP data, but were approximately 150' apart laterally. I recommended to the Chief of Airfield management that the GCP data sign be changed to the 037 radial for the VOR check: **AGILITY CLASSIFICATION FLIGHT INSPECTOR'S BIGNATURE 62 REGION	A-4								Lum	()	\wedge	Pu	-ex	1	FIELD	SELICE

	INSP	ECTION I	REPORT	VOR, V				1	FS	8071-16	
. STATION			OH 15	/ 22		TION IDENT			F INSPECT	ION	
Wright Pa	tters	on AFB		TYPE OF INS		FFO	11//19	9-21 Ma		MMON SYSTE	
SITE EVAL	JATION		PERIC	DIC	X 5	PECIAL	TRACALS	S		YES	- m
COMMISSIO	MING		SURV	EILLANCE	IN	COMPLETE			X	NO	
		FAA		USARMY	PRIVA	TE (Indicate a	actual owner)			
6. OWNER	1-+	INTER-	X	USNAVY	OTHE	R (Indicate act	ual owner!				
		NATIONA		USCG							
7. FACILITY/C	OMPON	ENT INSPE	CTED	VOR	X	VORTAC	т	ACAN	VOT		DME
FACILITY SERV					B. RAD	IAL DATA					
DESIGNATION		TAC	VOI	R TAC	VOR	TAC	VOR	TAC	VOR	TAC	VOR
RADIAL USE		MAPCH	MAP	CH APCH	APCH	MAPCH	MAPCH	H APCH	APCH	MAPCH	MAPC
AZIMUTH		230	230	239	239	050	050	239	239	050	050
TRANSMITTERIS	1	2	2	2	2	2	2	1	1	11	1
MSL ALTITUDE (In hundreds)		20/30	20/	30 40/12	40/1	2 20/29	20/29	30/1	26 30/12	2.6 12/30	12/3
DISTANCE	FROM	1	1	15	15	3	3	15	15	1	1
(Nautical miles)	то	10	10	1	1	10	10	1	1	10	10
SENSITIVITY			S		S		S		S		S
ROUGHNESS		.3/6	1/10	0 .7/2.	0 .7/5	.7 .3/9.	01.5/8	.7/2.	8 1.2/1	.2 .5/9.2	.5/7
SCALLOPING		0	0	0_	0	00	2.4/1	0 0	1.0/	8 0	3/12
BENDS	-	0	0	0	0	0	0	0	0	0	0
POLORIZATION											
ALIGNMENT ER	ROR			8/1	4 -1.2/	1		5/1	1.04.6/4	8.	
TRANSMITTER											
SIGNAL STREN	GTH	S	900) s	720	s	820	S	1000	t S	93
INTERFERENCE		0	0	0	0	0	0	0	0	0	0
9 GENERAL		HAT UN	SAT				10. MON	IITOR5			
STANDBY FOR	ER		LA	ST DATE INSPE	CTED			TX	ALIGNMENT	ALARM +	ALARM -
VOICE					REFERE	NCE RADIAL					
IDENTIFICATIO	N			VOR	CHECK	POINT					
DME ACCURAC	Y			TACAN	REFERE	NCE RADIAL					
DME COVERAG	E			TACAN	CHECK	POINT					
that the 6. VORTA the Chief 047 radia 7. Previ 8. This Mr. R	GCP b C GCP of A l for ous V inspe	etween 048/1. irfield VOR an OR rest	the ru 4, VOI Managed TACA riction	R out of gement th AN, on remain	tolerands the sine require	ffect.	gnment)). Ir	ecommen	ded to	CORRECT YES N
ACILITY CLASS				ECTOR'S SIG						REGION	
UNRESTRIC											
RESTRICTE										FIELD O	E-B-IC-E

RADIAL USE CCP CCP	STATION				-	2 LOCAT	ION IDENT.	3. DATE	DATES	OF II	-	8071-16	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN
SITE LVALUATION	Wright Pa	itters	on AFB	OH 454	33	FFO		17/1	9-21	Mar	77		
COMMISSIONING				4 T	YPE OF INSP	The state of the s						MMON SYST	ЕМ
## OF SARMY DISTRICT SARMY DISTRICT SARMY DISTRICT SARMY DISTRICT DISTRICT						1		RACALS					
A. OWNER	COMMISSI	ONING		SURVI		-		tual owers)			X	NO	-
INTER: NATIONAL U.S.C.G			FAA			1	imaicule de	(dar owner)					
FACILITY COMPONENT INSPECTED VOR	S. OWNER			The state of the s		OTHER	(Indicate actu	al owner)					
## RADIAL DATA Committee	FACULTYL	COMPON			7	1		111-		_			
TAC VOR TAC VO	- FACILITY	COMPON	ENT INSTEC	TED	VOR			TA	CAN		VOT		DME
AZIMUTH 048 048 048 048 048 048 048 04	FACILITY SERV	ICE	TAC	VOR	TAC	T	1	VOR	TAC		VOR	TAC	VOR
RANSMITTERIS) 1 1 2 2 2 2 1 1 1 1 1 MSL ALTITUDE (In hundiced) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	RADIAL USE												
MSL AUTITUDE 8	AZIMUTH		048	048	048	048	258	258	258		258	040	040
In Indiacid 8	RANSMITTER	5)	1	1		2	2	2	1		1	1	1
STANDE FROM 1.4 1.4 1.4 1.4 0.5 0.5 0.5 0.5 1.6 1.6			8	8	8	8	8	8	8		8	8	8
Miles TO		FROM				1.4			0.9	5	0.5	1.6	1.6
ROUGHNESS 0 0.1/1.4 0.2/1.4 0.1/1.4 0.2/0.5 0 0 0.2/0.5 0.7/1.6 0.2/ BCALLOPING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		то											
CALLOPING	ENSITIVITY			S		S		S			S		S
DENDS O O O O O O O O O O O O O O O O O O O	ROUGHNESS		0	0.1/1	.40.2/1.4	40.1/1.	4 0.2/0.5	0	0		0.2/0	.50.7/1.	60.2/
POLORIZATION ALIGNMENT ERROR 1.4/1.4+2.2/1.4 + .4/1.4+2.2/1.4-1.0/0.5+1.2/.5 -1.5/.5+1.0/.5-1.1/1.6+2.5 TRANSMITTER DIFFERENCE 0 0 0 0 0 0 0.5 0.2 0.5 0.2 0.1 0. SIGNAL STRENGTH S 550 S 640 S 1000+ S 1000+ S 300 INTERFERENCE 0 0 0 0 0 0 0 0 0 0 0 0 0	CALLOPING		0	0	0	0	0	0	0		0	0	0
ALIGNMENT ERROR +.4/1.4+2.2/1.4 +.4/1.4+2.2/1.4 -1.0/0.5+1.2/.5 -1.5/.5+1.0/.5-1.1/1.6+2.5 TRANSMITTER DIFFERENCE 0 0 0 0 0.5 0.2 0.5 0.2 0.1 0. SIGNAL STRENGTH S 550 S 640 S 1000+ S 1000+ S 30 INTERFERENCE 0 0 0 0 0 0 0 0 0 0 0 B. GENERAL SAT UNSAT LAST DATE INSPECTED TX ALIGNMENT ALARM + ALARM VOICE VOR REFERENCE HADIAL CHECK POINT DME ACCURACY DME COVERAGE 1. DISGREPANCIES AND/OH REMARKS CORRECT CORRE	BENDS		0	0	0	0	0	0	0		0	0	0
TRANSMITTER DIFFERENCE O O O O O O O O O O O O O	POLORIZATION								-				1
### TRANSMITTER DIFFERENCE 0 0 0 0 0 0.5 0.2 0.5 0.2 0.1 0. SIGNAL STRENGTH S 550 S 640 S 1000+ S 1000+ S 30 INTERFERENCE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ALIGNMENT E	RROR	+.4/1.4	+2.2/1	4 + 4/1.	4+2.21	4-1.00.5	1.2/.5	-1.5	5/.5	1.0/	.5-1.14.	6+2.50
INTERFERENCE			0	0	0	0	0.5	0.2	0.	5	0.2	0.1	0.4
9. GENERAL SAT UNSAT. STANDBY POWER LAST DATE INSPECTED TX ALIGNMENT ALARM + ALARM VOICE VOR CHECK POINT TACAN THEFERENCE RADIAL CHECK POINT THEFERENCE RADIAL CHECK POINT THEFERENCE RADIAL CHECK POINT THEFERENCE RADIAL CHECK POINT TO THE COVERAGE 1. DISGREPANCIES AND/OR REMARKS	SIGNAL STREE	NGTH	S	550	S	640	S	1000+	S		1000+	S	300
STANDBY POWER LAST DATE INSPECTED TX ALIGNMENT ALARM + ALARM VOICE VOR CHECK POINT CHECK POINT TACAN CHECK POINT CONRECT CO	INTERFERENC	E	0	0	0	0	0	0	0		0	0	0
TX ALIGNMENT ALARM + ALARM VOICE VOR CHECK POINT TACAN THE COVERAGE I. DISGREPANCIES AND/OR REMARKS TACAN TACAN CHECK POINT CHECK POINT CHECK POINT CONRECT CONRE	9. GENERAL		SAT UNS					10. MON	TORS				
DME ACCURACY TACAN THECK POINT TACAN THECK POINT TACAN THECK POINT TACAN CHECK POINT CHECK POINT CHECK POINT CHECK POINT CORRECT CORRECT	STANDBY POV	VER		LA	ST DATE INSPEC	TED			TX	ALIG	NMENT	ALARM +	ALARM
DME ACCURACY DME COVERAGE TACAN THERENCE RADIAL CHECK POINT CHECK POINT CORRECT CORREC	VQICE					REFERENCE	E HADIAL						
DME ACCURACY TACAN TACAN CHECK POINT CORRECT CORRECT	PENTIFICATIO	N			VOR	CHECK PC	DINT		-	-			
DME COVERAGE TACAN CHECK POINT CORRECT CORRECT				-	*****	REFERENC	E HADIAL			1			
I. DISCREPANCIES AND/OR REMARKS					TACAN	CHECK PO	TAIG			1			
The state of the s			DIOR REMA	RKS						_			CORRECT
100 }													YE8 1
	ACILITY CLASS	SIFICATI	ON FLIGH	IT INSP	ECTOR'S SIGN	ATURE						REGION	
ACILITY CLASSIFICATION FLIGHT INSPECTOR'S SIGNATURE REGION													
UNRESTRICTED	-											PIELD	OFFICE
	1 AMOREVAIL												

Wright Pa	tterso	n AFB O	н 454	33		FI FI		ON IDENT.				Mar 77	ION	
				YPF OF	INSP	ECTION			1				MMON SYS	TEM
SITE EVALL	JATION	TI	PERIO	DIC		X	PEC	CIAL T	RACA	7 5		1	YES	
COMMISSIO	NING		SURV	EILLANC	E		NCO	MPLETE	MALA	ш.	-	X	NO	
		FAA		USAF	RMY	PRIV	ATE	(Indicate ac	tual owi	ner)				
6. OWNER			-	USN										
		NATIONAL	X	USA		отн	ER (Indicate actu	al owner)				
	2					1	_					11		7
P. FACILITYIC	OMPONE	NT INSPEC	IEU	V	OR		7	ORTAC		TACAN		VOT		DME
			1			B. RA	DIAL	DATA	T					
SESIGNATION	CE	TAC	VOI	2										
ADIAL USE		GCP	GCI											
AZIMUTH		040	040											
RANSMITTERS		2	2											
VISL ALTITUDE		8	8											
OISTANCE (Nautical	FROM	1.6	1.6	5										
miles)	то													
BENSITIVITY			S											
ROUGHNESS		.7/1.6	.5/3	1.6										
CALLOPING		0	0											
BENDS		0	0				-							
POLORIZATION														1
ALIGNMENT ER	ROR	-1.0/1.6	+2.9/1	1.6										
TRANSMITTER DIFFERENCE		0.1	0.4				-							
SIGNAL STREN	GTH	5	300						1					
INTERFERENCE		0	0											
9 GENERAL		SAT UNS							10 M	ONITOR	3			
STANDBY POW	ER		LA	ST DATE	NSPEC	TED	-			тх		ALIGNMENT	ALARM +	ALAR
VOICE						REFER	ENCE	E RADIAL		1				
IDENTIFICATIO				VOR		CHECK	1'01	NT	*: *: * * **					
DME ACCURAC				TAG.	A.	DEFER	ENCI	E HADIAL						
OME COVERAG	-			TACA	IV	CHECK	POI	NT		1	1			

PACILITY CLASSIFICATION FLIGHT INSPECTOR'S SIGNATURE UNRESTRICTED RESTRICTED UNUSEABLE

AA FORM 3485 12-841 REPLACES FAA FORM 3185 WHICH IS DESOLETE

FACILITY CHECKING SQUADRON (1866TH) (AFCS) RICHARDS-G--ETC F/G 17/7
TRACALS EVALUATION REPORT. VORTAC STATION EVALUATION REPORT4 WR--ETC(U)
MAR 77 G S HOWARD
77/66N-89 AD-A042 679 UNCLASSIFIED 2 of 2 ADA042-679 END DATE FILMED 8 - 77

			T	ACAN	FLI	GHT D	ATA S	UMMAI	RY				1	DATE	Mai	r 77	
LOCATI	ON					E	UIPMEN	Т				UI	TIP				
Wrigh	ht-Pa	tter	son	AFB,	OH		AI	N/GRN	-20	С				2046	Comm (Gp	
							ORBI	TAL AL	IGNM	ENT ER	ROR						
AZ		TX 1	_		TX 2			RENTIAL	_	AZ	Тх		4	тх		DIFFE	RENTIA
360		.6	-			5		.1	_	180		1	+			0	
350		.1	-			6		.5	_	170			+	-1.3		.9	
330		- 3				=		.2 .7		150			+	4 5		1	
320		.3			<u></u>			.2	-	140		0	+)	0	
310		.7			1.		-	.3	-	130			\top			1	
300		.4				4		0		120							
290		1.0				0	1	.0		110							
280		1				1		0		100		2				2	
270		2				1		.3		90		0	_	-1.0		1.0	
260		0				1		.5	-	80		3	-			1	
250		0	-			5		.9	+	70		4	+	1.		.2	
240		1 .5	-+		<u></u>		-	.2	+	60		9	+	1.0		6	
230		3			:			.6	+	40		4	+	• • • • • • • • • • • • • • • • • • • •		.1	
210		.6			:			.7	+	30	1.		+	1.6		6	
200		2			- .			.1	+	20		1	1	.(5	
190		.7			1.	3	-	.6	I	10	1.	0				.5	
	OR SP 1: -0			0				AVERA	GE		.2	5		.20	0	.06	
	2: -1						С	ONF LI	MITS	99%	+.()2		+.29	9	+.23	
							,				_		1				
							RADIA	L FLIG	HT D	ATA							
				1 0	ISTA	NCE		N ERRO			UGH	Тт	×	T	1	T-01.45	SIG
ADIAL	USE 1	rx no	ALT	D		NCE TO		N ERRO	R		UGH MAX	T DI		BENDS	SCLP	POLAR	SIG
ADIAL	USE 1	rx no	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE 1	TX NO	ALT	-			ALIG	N ERRO	R	RO				BENDS	SCLP	POLAR	
ADIAL	USE 1	IX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE 1	IX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	x	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAL	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	
ADIAU	USE	TX NO	ALT	-		ТО	ALIG	N ERRO MA	X	RO				BENDS	SCLP	POLAR	

を変が

1 2 ----

Vright-Pat	terson AFB, O	Н			Mar 77
or Pred	-2 +8 +10 +11 +1 +1	-13 +2 -5 +6 +1 +10	-25 -18 -7 -2	-1 8	
& Error LOS P	-20 -2 -2 -7 +4	-36 -17 -19 +8 -11	-39 -30 -20 -14	-13 15	
Actual -85 dBm Point	51 56 63 70 85 83	45 47 59 60 71 71	64 66 65	d ned	
Predicted -85 dBm Point	49.8 60.2 69.3 77.6 86.2 93.2	39.2 47.9 56.0 63.5 71.4	47.8 54.3 60.6 67.5	Signed Unsigned	
Extension at -2.5 dB/NM	9.0 8.2 7.6 7.1 6.8	10.2 9.2 8.5 8.0 7.5	9.2 8.6 7.8	Averages	+.250 +.530 +.780
Signal Level at Cut- off Pt	-62.4 -64.5 -66.0 -67.2 -68.1	-59.5 -62.0 -63.7 -65.1 -66.2	-61.9 -63.4 -64.6 -65.6		035° 155° 274°
Extension Due to Weather	11000	11000	0001		ng Angles:
Line of Sight Limit	41 52 62 70 79 86	29 39 48 55 63	39 46 52 59		Screening
Altitude	3000 4000 5000 6000 7000	3000 4000 5000 6000 7000 8000	5000 6000 7000 8000		
Radial	0350	1550	274°		

INTERFERENCE FIELD PATTERN - 047 RADIAL

COCATION
Wright-Patterson AFB, OH

Mar 77

TITLE

INTERFERENCE FIELD STRUCTURE - 047° RADIAL

OCATION

Wright-Patterson AFB, OH

Mar 77

REMARKS

			T	VOR FLI	GHT D	ATA SUN	MARY				DATE	Mar	77	
LOCAT				A.E.S. A		DUIPMENT				UNIT	16.5	_		
Wrig	ht P	atter	son	AFB, OH		AN/FRN-				20	46 Comn	1 Gp		
		TV 1		TX 2		DIFFERE	AL ALIGN	AZ				2	Louises	
360		2.0	-	1.7		0.3		180	1.3		2.1		-0.8	ENTIAL
350		2.0	-	1.4		0.6		170	1.4		0.6		0.8	
340		1.4	1	1.4		0.0		160	0.7		0.6		0.1	
330		1.3		1.2		0.1		1 50	0.5		0.5		0.0	
320		1.4		1.4		0.0		140	0.5				1	
310		1.1		1.1		0.0		130						
300		1.0		2.0		-1.0		120						
290		1.5		1.7		-0.2		110						
280		1.0		1.4		-C.4		100	0.3		0.4		-0.1	
270		0.7		0.6		0.1		90	0.2		0.0		0.2	
260		0.4		0.2		0.2		80	-0.1		-0.2		0.1	
250		0.1	_	-0.4		0.5		70	-0.4		0.0		-0.4	
240		0.1		-0.5		0.4		60	0.7		0.7		0.0	
230		0.3	-	0.0		0.3		50	0.8		1.0		-0.2	
220		0.4		0.0		0.2		40	2.0		2.0		0.6	
210		0.4	-	0.9		-0.2		30 20	2.0		1.3		0.7	
190		1.5	-	1.6		-0.1		10	2.4		1.5		0.9	
	FRRO	R SPR	FΔD	1.0					0.93		0.86		0.41	
						A.V	/ERAGE							
				+2.4		601		00%	L 0 24		1036		1 + 0 .	20
	11 2	: -0.	5 10	+2.1					+ 0.34		+ 0.36)	+ 0.2	20
							FLIGHT						,	
ADIAL	USE	TX NO	ALT	DIST		4	ERROR	-	DUGH	TX	BENDS	SCLP	POLAR	SIG
		-	-	FROM	то	AVE	MAX	AVE	MAX		+	-	-	
		-	-	-				-	-			-	-	-
		-				+		+	-		1		-	-
				+		 		†			 			
		1				1		†			1			
				1	_	- TAD-	- 0 1	10						
		-		+	26	ee TABs	1-8-1	./3						
		-		+								-	-	-
				+								-		-
		-	-	+								-		-
				+		1	 	1	+		-	-	-	
				1										
				1										
											-			
				-		-		-	-		-		-	-
				-							+			-
								-	+				-	-

Wright-Patterson AFB, OH				Mar 77	
% Error LOS Pred	-5 -30 -2 -20 -13 -28 -9 -22 -27 -41	+26 -3 +26 +8 +16 -1 +18 +5 +09 +5 +13 +1	+25 +11 +34 +21 +26 +13 +24 +12	+9 -6 18 15	
Actual % -85 dBm Point	39.0 51.0 55.0 64.0 73.0	39.0 57.0 67.0 69.0	55.0 70.0 70.0 78.0	ed gned	
Predicted -85 dBm Point	50.8 61.0 70.4 78.0 87.6 93.3	40.0 49.0 57.3 63.8 72.3 79.0	49.0 55.4 61.0 68.6	s Sign Unsi	
Extension at -2.5 dB/NM	9.8 8.4 7.5 3.6	11.0 10.0 9.3 8.8 8.3 8.3	10.0 9.4 9.0 8.8	Average	+.25° +.53° +.78°
Signal Level at Cut- off Pt	-60.5 -62.5 -64.1 -65.1	-57.5 -60.0 -61.8 -63.0 -64.2	-60.0 -61.5 -62.5 -63.6		035 ⁰ 155 ⁰ 274 ⁰
Extension Due to Weather	0000	0000	0001		J Angles:
Line of Sight Limit	41 52 62 70 79 85	29 39 48 55 63 70	39 46 52 59		Screening
Altitude	3000 4000 5000 6000 7000 8000	3000 4000 5000 6000 7000 8000	5000 6000 7000 8000	4.27	,
Radial	0350	1550	2740		

WRIGHT-PATTERSON AFR, OHIO

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
	. 3. PECIPIENT'S CATALOG NUMBER					
77/66N-89						
4. TITLE (and Subtitle) TRACALS EVALUATION REPORT	FINAL					
VORTAC Station evaluation Report	15-21 March 1977					
Wright-Patterson AFB, OH	6. PERFORMING ORG. REPORT NUMBER					
Tight-I atterion in D, on						
7. AUTHOR(s) (Prepared By)	8. CONTRACT OR GRANT NUMBER(s)					
Geoffry S. Howard, Capt, USAF						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK					
1866 Facility Checking Squadron (AFCS)	NORTH NUMBERS					
Richards-Gebaur AFB, Missouri, 64030						
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE					
HQ Air Force Communications Service/FFOT						
Richards-Gebaur AFB, MO, 64030	13. NUMBER OF PAGES					
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	114 15. SECURITY CLASS. (of this report)					
MONITORING ASENCY NAME & ADDRESS(If different from Controlling Office)	UNC LASSIFIED					
	ONO EMBOR 122					
	15a. DECLASSIFICATION/DOWNGRASING					
16. DISTRIBUTION STATEMENT (of this Report)						
Approved for public release distribution unlimited.						
I proved for public release distribution distribution						
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	om Panort)					
DISTRIBUTION STATEMENT (OF the abstract entered in block 20, it distribution	Reports					
Same as report.						
18. SUPPLEMENTARY NOTES	•					
16. SUFFLEMENTARY NOTES						
Name						
None.						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	A.					
NET WORDS (Continue on reverse side if necessary and identity by block number	,					
None.						
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)						
This report presents the results of the 15-21 Mar 1977 evaluation of the Wright-						
Patterson AFB, AN/FRN-32A VORTAC and associated power systems. The						
evaluation was conducted to observe the facility in its installed environment						
and to determine its capabilities and limitations. Results show that the facility						
is capable of satisfying the users" requirements. Recommendations are made						
for improvements. The results obtained can be us performance until there is a significant change in	either ground equipment,					