(**A**)

theoretical nanotube FET characteristics isolating contact

Gate voltage channel charge modulation and channel conductance for (10,0) nanotube FET

(S) P3 IBM log ga Delft's 0 6 $V_{G}(V)$ (a) thermionic drain source Ev (b) flat band $\overline{\Theta}$ (c) tunneling (d) turn-on mesoscopic resistor $\Theta_{\mathbf{Q}}$

Analysis of submicron carbon nanotube field-effect-transistors

Toshishige Yamada

MRJ, NASA Ames Research Center

Summary

Delft & IBM nanotube FET analysis

-I_D(V_D) at fixed V_G
saturationless I_D in Delft & IBM
no carrier-carrier scattering
weak localization regime

 $-I_D(V_G)$ or $g_d(V_G)$ at fixed V_D transport across metal-semiconductor contact Delft (Pt): thermionic \rightarrow flat band \rightarrow tunneling \rightarrow on IBM (Au): tunneling \rightarrow on

-For circuit applications

saturationless I_D for submicron or less maximize g_m (thinner oxide)

 [Delft] S.J. Tans, A.R.M. Verschueren, and C. Dekker. Nature 393, 49 ('98)
 [IBM] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 ('98)

Nanotube FET by Delft, IBM

 [Delft] S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 ('98)
 [IBM] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 ('98)

 $I_D = 3 \left(V \right) / R_{\rm ch} \left(\Omega \right) \sim 3 \left(V \right) / R_{\rm ch}' \left(\Omega \right) = I_D^{\prime}$

Otherwise, it does NOT.

Saturation with carrier-carrier

Without carrier-carrier, no pinch-off, no saturation in $I_D(V_D)$

Experimental observations & possible mechanisms:

- 1. saturationless $I_D(V_D)$ fixing V_G of Delft absence of carrier-carrier scattering a lot of elastic scattering, low g_d
- 2. breakdown in $I_D(V_D)$ fixing V_G of Delft usual pair creation
- 3. kink in subthreshold $g_d(V_G)$ of Delft (Pt S & D)
- 4. smooth subthreshold $g_d(V_G)$ of IBM (Au S & D) Schottky barrier effects
- 5. saturated "on" I_D(V_G) fixing V_D of IBM quasi-1D nanotube characteristics
- 6. large V_G shift in $g_d(V_G)$ of Delft, IBM usual Q_{int} effects

Electronic properties of carbon nanotube

E =
$$\pm V_{pp\pi} \{1 \pm 4\cos(3^{1/2}ka/2) \times \cos(k_ia/2) + 4\cos^2(k_ia/2)\}^{1/2}$$

 $k_i = 2\pi i/aN, i = 1, 2, ..., N$

