Instrucciones

1. Los primeros 2 ejercicios se entregan en \mathbf{pdf}

2. Los ejercicios restantes se entregarán con el script de \mathbf{R} que generen y con un reporte en pdf que incluya los resultados obtenidos y las respuestas solicitadas.

3. El script debe correrse de tal manera que los datos (si ocupa) estén situados en la carpeta donde se encuentra el script

4. Los ejercicios de \mathbf{R} se revisarán en base a los resultados provenientes de correr el script, por lo que verifiquen y marquen la parte donde se encuentra el resultado.

5. Los 2 primeros ejercicios, el script y el reporte se subirán a la plataforma

1. La matriz de datos para una muestra aleatoria de tamaño n=3 de una población normal bivariada está dada por:

$$\boldsymbol{X} = \left(\begin{array}{cc} 6 & 9\\ 10 & 6\\ 8 & 3 \end{array}\right)$$

(a) Evalua T^2

(b) Verifica que T^2 permanece sin cambios si cada observación x_j , j=1,2,3 es reemplazada por Cx_j , donde

$$\boldsymbol{C} = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right)$$

Note que las observaciones

$$\boldsymbol{C}\boldsymbol{x_j} = \left(\begin{array}{c} x_{j1} - x_{j2} \\ x_{j1} + x_{j2} \end{array}\right)$$

Producen la matriz

$$\left(\begin{array}{ccc} (6-9) & (10-6) & (8-3) \\ (6+9) & (10+6) & (8+3) \end{array} \right)'$$

2. Dadas la siguiente muestra de observaciones bivariadas:

$$\boldsymbol{X} = \left(\begin{array}{cc} 2 & 12 \\ 8 & 9 \\ 6 & 9 \\ 8 & 10 \end{array}\right)$$

1

- (a) Evalua T^2 , para probar $H_0: \mu' = [7, 11]$, usando los datos.
- (b) Especifica la distribución de T^2 (verificando la normalidad de los datos)
- (c) Usando (a) y (b) prueba H_0 en $\alpha = .05$ Que conclusión se tiene?
- (d) Evalue T^2 utilizando la relación que tiene con la lambda de Wilks
- (e) Evalue Λ y la lambda de Wilks.
- 3. Considera los datos de radiación con la puerta cerrada (archivo: raddata). Construye un Q-Q plot para los logaritmos naturales de estos datos. [Notar que la transformación logaritmo natural corresponde al valor $\lambda=0$ en la transformación de Box-Cox]. Los datos transformados parecen ser normalmente distribuidos? Compara los resultados con los obtenidos si transformamos los datos con $\lambda=1/4$. Existe mucha diferencia al usar $\lambda=0$ ó $\lambda=1/4$ en este caso?.
- 4. Considera los datos sobre contaminación del aire (archivo: datoscontaminacion).
 - (a) Construye un Q-Q plot para las mediciones de radiación solar y realiza una prueba de normalidad basada en el coeficiente de correlación r_Q , para $\alpha = .05$.
 - (b) Examina el par $x_3 = CO$ y $x_4 = NO$ como una distribución bivariada. Construye un diagrama Chi-cuadrado y aplica la prueba de normalidad basada en r_Q . Se puede concluir normalidad bivariada en este conjunto de datos?
- 5. Examina la normalidad marginal y bivariada de las observaciones en las variables x_1 , x_2 , x_3 y x_4 para los datos del archivo datos rigidez.
- 6. Considera los datos sobre parques nacionales (datosparquesnac)
 - (a) Comenta sobre cualquier posible outlier construyendo scatter plot para las variables originales
 - (b) Determina la transformación de potencia $\hat{\lambda}_1$, que hace a los valores de x_1 aproximadamente normales. Construye un Q-Q plot sobre los datos transformados
 - (c) Determina la transformación de potencia $\hat{\lambda}_2$, que hace a los valores de x_2 aproximadamente normales. Construye un Q-Q plot sobre los datos transformados
 - (d) Determina la transformación de potencia $\lambda = [\hat{\lambda}_1, \hat{\lambda}_2]$ que hace a los valores (x_1, x_2) conjuntamente normales. Compara los resultados con los obtenidos en b) y c).