PLSC 502 – Fall 2024 Linear Regression I

November 18, 2024

Random Variables

Recall that a (real-valued) random variable Y is:

$$Y_i = \mu + u_i$$
 "systematic" + "stochastic"

Note that we typically require that:

$$Cov(\mu, u) = 0.$$

Linear Association

Allow μ to vary *linearly* with some other variable X:

$$\mu_i = \beta_0 + \beta_1 X_i$$

so that we get

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Goals:

- Point estimates of β_0 and β_1 (call them $\hat{\beta}_0$ and $\hat{\beta}_1$)
- ullet Estimates of their $\mathit{variability}
 ightarrow \mathit{inference}$

Estimating β_0 and β_1

Suppose we have some estimates $\hat{\beta}_0$ and $\hat{\beta}_1$. Then:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

 \rightarrow estimated "residuals":

$$\hat{u}_i = Y_i - \hat{Y}_i
= Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

Intuition

"Loss Function"

Key Idea: Select $\hat{\beta}_0$ and $\hat{\beta}_1$ to make the \hat{u}_i s as small as possible.

Possibilities:

- Pick \hat{eta}_0 and \hat{eta}_1 so as to minimize $\sum_{i=1}^{N} \hat{u}_i$
- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so as to minimize $\sum_{i=1}^{N} |\hat{u}_i|$ ("MAD")
- Pick $\hat{\beta}_0$ and $\hat{\beta}_1$ so as to minimize $\sum_{i=1}^N \hat{u}_i^2$ ("least squares")
- \rightarrow "ordinary least squares" ("OLS") regression...

The Simplest Regression In Human History

World's Simplest Regression

Recall:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i.$$

So, for i = 1

$$\hat{Y}_1 = \hat{\beta}_0 + \hat{\beta}_1(1)$$

and for i = 2

$$\hat{Y}_2 = \hat{\beta}_0 + \hat{\beta}_1(2)$$

Means:

$$\hat{u}_i = Y_i - \hat{Y}_i$$

= $3 - [\hat{\beta}_0 + \hat{\beta}_1(1)]$ for $i = 1$, and
= $5 - [\hat{\beta}_0 + \hat{\beta}_1(2)]$ for $i = 2$

Sum of Squared Residuals

$$\hat{S} = u_1^2 + u_1^2$$

$$= [3 - \hat{\beta}_0 - \hat{\beta}_1(1)]^2 + [5 - \hat{\beta}_0 - \hat{\beta}_1(2)]^2$$

$$= (9 + \hat{\beta}_0^2 + \hat{\beta}_1^2 - 6\hat{\beta}_0 - 6\hat{\beta}_1 + 2\hat{\beta}_0\hat{\beta}_1) +$$

$$(25 + \hat{\beta}_0^2 + 4\hat{\beta}_1^2 - 10\hat{\beta}_0 - 20\hat{\beta}_1 + 4\hat{\beta}_0\hat{\beta}_1)$$

$$= 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

Choose $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize this...

Minimizing...

For:

$$\hat{S} = 2\hat{\beta}_0^2 + 5\hat{\beta}_1^2 - 16\hat{\beta}_0 - 26\hat{\beta}_1 + 6\hat{\beta}_0\hat{\beta}_1 + 34$$

We have:

$$\begin{array}{rcl} \frac{\partial \hat{S}}{\partial \hat{\beta}_0} & = & 4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 \\ \\ \frac{\partial \hat{S}}{\partial \hat{\beta}_1} & = & 6\hat{\beta}_0 + 10\hat{\beta}_1 - 26 \end{array}$$

So for $\hat{\beta}_1$:

$$4\hat{\beta}_0 + 6\hat{\beta}_1 - 16 = 0 \Rightarrow 2\hat{\beta}_0 = -3\hat{\beta}_1 + 8$$

 $\Rightarrow \hat{\beta}_0 = -3/2\hat{\beta}_1 + 4$

$$6\hat{\beta}_{0} + 10\hat{\beta}_{1} - 26 = 0 \quad \Rightarrow \quad 5\hat{\beta}_{1} - 3(-3/2\hat{\beta}_{1} + 4) - 13 = 0$$

$$\Rightarrow \quad 5\hat{\beta}_{1} - 9/2\hat{\beta}_{1} + 12 - 13 = 0$$

$$\Rightarrow \quad \frac{1}{2}\hat{\beta}_{1} - 1 = 0$$

$$\Rightarrow \quad \hat{\beta}_{1} = 2$$

And for $\hat{\beta}_0$:

$$4\hat{\beta}_0 + 6(2) - 16 = 0 \implies 4\hat{\beta}_0 = 4$$

 $\Rightarrow \hat{\beta}_0 = 1$

World's Simplest Regression

So:

$$Y_i = 1 + 2X_i + u_i$$

Note that, in this (N=2) case:

$$\hat{\beta}_1 = (5-3)/(2-1)$$

= 2, and

$$\hat{\beta}_0 = -2(2) + 5$$
 $= 1$

Least Squares with > 2 Observations

$$\hat{S} = \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{N} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

$$= \sum_{i=1}^{N} (Y_i^2 - 2Y_i \hat{\beta}_0 - 2Y_i \hat{\beta}_1 X_i + \hat{\beta}_0^2 + 2\hat{\beta}_0 \hat{\beta}_1 X_i + \hat{\beta}_1^2 X_i^2)$$

Least Squares with > 2 Observations

Then:

$$\frac{\partial \hat{S}}{\partial \hat{\beta}_0} = \sum_{i=1}^N (-2Y_i + 2\hat{\beta}_0 + 2\hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^N (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)$$

$$= -2\sum_{i=1}^N \hat{u}_i$$

and

$$\frac{\partial \hat{S}}{\partial \hat{\beta}_{1}} = \sum_{i=1}^{N} (-2Y_{i}X_{i} + 2\hat{\beta}_{0}X_{i} + 2\hat{\beta}_{1}X_{i}^{2})$$

$$= -2\sum_{i=1}^{N} (Y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}X_{i})X_{i}$$

$$= -2\sum_{i=1}^{N} \hat{u}_{i}X_{i}$$

Least Squares with > 2 Observations

Next, set:

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})=0$$

and

$$-2\sum_{i=1}^{N}(Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}X_{i})X_{i}=0$$

... and solve...

Least Squares "Normal Equations"

(Algebra happens...):

$$\sum_{i=1}^{N} Y_{i} = N\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{N} X_{i}$$

and

$$\sum_{i=1}^{N} Y_i X_i = \hat{\beta}_0 \sum_{i=1}^{N} X_i + \hat{\beta}_1 \sum_{i=1}^{N} X_i^2$$

Least Squares: Solutions!

(More algebra...):

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{N} (X_i - \bar{X})^2}$$

and

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

The intuition:

$$\hat{\beta}_1 = \frac{\text{Covariance of } X \text{ and } Y}{\text{Variance of } X}$$

Parsing Variation in Y: ANOVA

Note that the "total" variation in Y around its mean \bar{Y} is:

$$SS_{Total} = \sum_{i=1}^{N} (Y_i - \bar{Y})^2$$

which comprises:

$$SS_{Residual} = \sum_{i=1}^{N} (\hat{u}_i)^2$$
$$= \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

and:

$$SS_{Model} = \sum_{i=1}^{N} (\hat{Y}_i - \bar{Y})^2$$

SCOTUS Data, OT1946-2023

Data from the Supreme Court Database and the justices' Segal-Cover scores...

- Y is CivLibs = liberal voting percentage in civil rights & liberties cases
- X is IdeologyScore $\in [0,1] \to SCOTUS$ justice liberalism (based on post-nomination, pre-confirmation newspaper editorials)

> describe(SCOTUS,skew=FALSE,trim=0)									
	vars	n	mean	sd	median	min	max	range	se
justice	1	39	97.87	11.60	98.00	78.00	117.00	39.00	1.86
justiceName*	2	39	20.00	11.40	20.00	1.00	39.00	38.00	1.83
CivLibs	3	39	56.39	19.90	55.42	21.63	95.33	73.70	3.19
Nom.Order*	4	39	20.00	11.40	20.00	1.00	39.00	38.00	1.83
Nominee*	5	39	20.00	11.40	20.00	1.00	39.00	38.00	1.83
ChiefJustice*	6	4	1.00	0.00	1.00	1.00	1.00	0.00	0.00
SenateVote*	7	39	16.69	8.42	19.00	1.00	25.00	24.00	1.35
IdeologyScore	8	39	0.53	0.33	0.50	0.00	1.00	1.00	0.05
QualificationsScore	9	39	0.80	0.24	0.88	0.12	1.00	0.88	0.04
Nominator (Party)*	10	39	6.92	3.72	6.00	1.00	13.00	12.00	0.60
Year	11	39	1971.03	25.66	1967.00	1937.00	2020.00	83.00	4.11

Le Scatterplot

Le Labeled Scatterplot

Estimating $\hat{\beta}$

\hat{Y} , \hat{u} , etc.

- > SCOTUS\$Yhats <- with(SCOTUS, Beta0 + Beta1*IdeologyScore)
- > SCOTUS\$Uhats <- with(SCOTUS, CivLibs Yhats)
- > # Y itself:
- > describe(SCOTUS\$CivLibs)

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 39 56.39 19.9 55.42 56.25 25.17 21.63 95.33 73.7 0.19 -1.06 3.19

- > # Predicted Ys:
- > describe(SCOTUS\$Yhats)

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 39 56.39 14.28 55.16 56.46 17.19 33.69 76.62 42.94 -0.06 -1.47 2.29

- > # Residuals:
- > describe(SCOTUS\$Uhats)

\hat{Y} and \hat{u} Plots

What's a "typical" residual?

Note that because

$$\sum_{i=1}^{N} \hat{u}_i = 0$$

it's also true that:

$$\bar{\hat{u}} = \frac{\sum_{i=1}^{N} \hat{u}_i}{N}$$
$$= 0$$

Consider instead:

"Residual Standard Error" (RSE) =
$$\sqrt{\left(\frac{\sum_{i=1}^{N} \hat{u}_{i}^{2}}{N-2}\right)}$$

Sums of Squares, RSE, etc.

```
> # Sums of squares:
>
> TotalYVar <- with(SCOTUS, sum((CivLibs - mean(CivLibs))^2))
> TotalYVar
[1] 15047
> TotalUVar <- with(SCOTUS, sum((Uhats)^2))
> TotalUVar
[1] 7294
> TotalModelVar <- with(SCOTUS, sum((Yhats - mean(CivLibs))^2))
> TotalModelVar
[1] 7753
> RSE <- with(SCOTUS, sqrt(TotalUVar / (nrow(SCOTUS)-2)))
> RSE
[1] 14.04
```

Estimating $\hat{\beta}$ via 1m

```
> fit<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summarv(fit)
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min
         10 Median
                       30
                            Max
-26.62 -9.84 2.61 8.05 29.44
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            33.69 4.26 7.91 1.8e-09 ***
(Intercept)
IdeologyScore 42.94 6.85 6.27 2.7e-07 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 14 on 37 degrees of freedom
Multiple R-squared: 0.515, Adjusted R-squared: 0.502
F-statistic: 39.3 on 1 and 37 DF, p-value: 2.7e-07
```

ANOVA with 1m

```
Analysis of Variance Table

Response: CivLibs

Df Sum Sq Mean Sq F value Pr(>F)

IdeologyScore 1 7753 7753 39.3 2.7e-07 ***

Residuals 37 7294 197

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

> anova(fit)

Inference

For the linear model:

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

Note that we can rewrite the formula for $\hat{\beta}_1$:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i} - \sum_{i=1}^{N} (X_{i} - \bar{X})\bar{Y}}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})Y_{i} - \bar{Y}\sum_{i=1}^{N} (X_{i} - \bar{X})}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum_{i=1}^{N} (X_{i} - \bar{X})(Y_{i} - \bar{Y}(0))}{\sum_{i=1}^{N} (X_{i} - \bar{X})^{2}}$$

$$= \frac{\sum (X_{i} - \bar{X})Y_{i}}{\sum (X_{i} - \bar{X})^{2}}$$

Variation in $\hat{\beta}_0$ and $\hat{\beta}_1$

- $\hat{\beta}_0$ and $\hat{\beta}_1$ are random variables...
 - Q: Where does their variation come from?
 - A: From the *stochastic* variation in Y...
 - ...that is, from *u*.

Next question: What does the random variation in Y "look like"?

Getting To $Var(\hat{\beta}_1)$

An (as we will see, largely unimportant) assumption:

$$u_i \sim \text{i.i.d. } N(0, \sigma^2)$$

Implies:

$$Var(Y|X,\beta) = \sigma^2$$

so:

$$\operatorname{Var}(\hat{\beta}_{1}) = \operatorname{Var}\left[\frac{\sum_{i=1}^{N}(X_{i}-\bar{X})Y_{i}}{\sum_{i=1}^{N}(X_{i}-\bar{X})^{2}}\right]$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\operatorname{Var}(Y)$$

$$= \left[\frac{1}{\sum(X_{i}-\bar{X})^{2}}\right]^{2}\sum(X_{i}-\bar{X})^{2}\sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum(X_{i}-\bar{X})^{2}}.$$

$Var(\hat{eta}_0)$ and $Cov(\hat{eta}_0,\hat{eta}_1)$

Similarly:

$$Var(\hat{\beta}_0) = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2$$

and:

$$\mathsf{Cov}(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2$$

Important Things

Note that:

- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto \sigma^2$ $\hookrightarrow Var(\hat{\beta}_s)$ increases as Y gets "noisier"...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -\sum (X_i \bar{X})$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases with greater variation in X...
- $Var(\hat{\beta}_0)$ and $Var(\hat{\beta}_1) \propto -N$ $\hookrightarrow Var(\hat{\beta}_s)$ decreases as N gets larger...
- $\operatorname{sign}[\operatorname{Cov}(\hat{eta}_0,\hat{eta}_1)] = -\operatorname{sign}(\bar{X})$
 - \hookrightarrow The sign of the covariance between $\hat{\beta}_0$ and $\hat{\beta}_1$ is the opposite of the sign of the mean of X

The Gauss-Markov Theorem

"Given the assumptions of the classical linear regression model, the least squares estimators are the minimum variance estimators among the class of unbiased linear estimators. (They are BLUE)."

Gauss-Markov, continued

Imagine:

$$\hat{\beta}_1 = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$

Rewrite:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{N} (X_i - \bar{X}) Y_i}{\sum_{i=1}^{N} (X_i - \bar{X})^2}.$$

k are "weights":

$$\hat{\beta}_1 = \sum k_i Y_i$$

with
$$k_i = \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}$$
.

Gauss-Markov (continued)

Alternative (non-LS) estimator:

$$\tilde{\beta}_1 = \sum w_i Y_i$$

Unbiasedness requires:

$$E(\tilde{\beta}_1) = \sum w_i E(Y_i)$$

$$= \sum w_i (\beta_0 + \beta_1 X_i)$$

$$= \beta_0 \sum w_i + \beta_1 \sum w_i X_i$$

Gauss-Markov (continued)

Variance:

$$\begin{aligned} \mathsf{Var}(\tilde{\beta}_1) &= \mathsf{Var}\left(\sum w_i Y_i\right) \\ &= \sigma^2 \sum w_i^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} + \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 \\ &= \sigma^2 \sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2} \right]^2 + \sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Gauss-Markov (continued)

Because $\sigma^2 \left[\frac{1}{\sum (X_i - \bar{X})^2} \right]$ is a constant, min[Var($\tilde{\beta}_1$)] minimizes

$$\sum \left[w_i - \frac{X_i - \bar{X}}{\sum (X_i - \bar{X})^2}\right]^2.$$

...which is minimized at:

$$w_i = \frac{X_i - X}{\sum (X_i - \bar{X})^2},$$

implying:

$$Var(\tilde{\beta}_1) = \frac{\sigma^2}{\sum (X_i - \bar{X})^2}$$
$$= Var(\hat{\beta}_1)$$

Gauss-Markov Requirements

For the Gauss-Markov theorem to hold, it must be the case that:

1.
$$Y = f(X) + u$$
 with $f(X)$ linear*

2.
$$E(u) = 0$$

3.
$$Cov(X,u) = 0$$

4a.
$$Var(u) = \sigma^2 \forall i$$

4b.
$$Cov(u_i, u_i) = 0$$

5.
$$Rank(\mathbf{X}) = k$$

(...don't sweat these too much for now...)

^{*}But see below...

BLUE, BUE, and Linearity

BLUE vs. BUE:

- OLS has been BLUE since about 1821 (see, e.g., Plackett 1949).
- Hansen (2022): OLS is "BUE" most efficient among all unbiased estimators, linear or otherwise...
- Challenged by others; resolved by Portnoy (2022): Any unbiased estimator must be linear (so "BLUE" = "BUE").
- A pretty good nontechnical discussion of all this by Paul Allison is here.

If $u_i \sim N(0, \sigma^2)$, then:

$$\hat{eta}_0 \sim N[eta_0, \mathsf{Var}(\hat{eta}_0)]$$

and

$$\hat{\beta}_1 \sim N[\beta_1, Var(\hat{\beta}_1)]$$

Means:

$$z_{\hat{eta}_1} = \frac{(\hat{eta}_1 - eta_1)}{\sqrt{\mathsf{Var}(\hat{eta}_1)}}$$

$$= \frac{(\hat{eta}_1 - eta_1)}{\mathsf{s.e.}(\hat{eta}_1)}$$

$$= \sim N(0, 1)$$

A Small Problem...

$$\sigma^2 = ???$$

Solution: use

$$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{N - k}$$

Gives:

$$\widehat{\mathsf{Var}(\hat{eta}_1)} = \frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2},$$

and

$$\widehat{\operatorname{Var}(\hat{\beta}_0)} = \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \hat{\sigma}^2$$

Inference (continued)

Which means that:

$$\widehat{s.e.(\hat{\beta}_1)} = \sqrt{\widehat{\operatorname{Var}(\hat{\beta}_1)}}$$

$$= \sqrt{\frac{\hat{\sigma}^2}{\sum (X_i - \bar{X})^2}}$$

$$= \frac{\hat{\sigma}}{\sqrt{\sum (X_i - \bar{X})^2}}$$

and implies:

$$t_{\hat{\beta}_{1}} \equiv \frac{(\hat{\beta}_{1} - \beta_{1})}{\widehat{s.e.}(\hat{\beta}_{1})} = \frac{(\hat{\beta}_{1} - \beta_{1})}{\frac{\hat{\sigma}}{\sqrt{\sum(X_{i} - \bar{X})^{2}}}}$$

$$= \frac{(\hat{\beta}_{1} - \beta_{1})\sqrt{\sum(X_{i} - \bar{X})^{2}}}{\hat{\sigma}}$$

$$\sim t_{N-k}$$

Predictions and Variance

Point prediction:

$$\hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$$

 Y_k is unbiased:

$$\begin{split} \mathsf{E}(\hat{Y}_k) &= \mathsf{E}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \mathsf{E}(\hat{\beta}_0) + X_k \mathsf{E}(\hat{\beta}_1) \\ &= \beta_0 + \beta_1 X_k \\ &= \mathsf{E}(Y_k) \end{split}$$

Variability:

$$\begin{aligned} \operatorname{Var}(\hat{Y}_k) &= \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 X_k) \\ &= \frac{\sum X_i^2}{N \sum (X_i - \bar{X})^2} \sigma^2 + \left[\frac{\sigma^2}{\sum (X_i - \bar{X})^2} \right] X_k^2 + 2 \left[\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \sigma^2 \right] X_k \\ &= \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right] \end{aligned}$$

Variability of Predictions

The variability of a prediction \hat{Y}_k is:

$$\mathsf{Var}(\hat{Y}_k) = \sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]$$

which means that $Var(\hat{Y}_k)$:

- ...decreases in N
- ...decreases in Var(X)
- ...increases in $|X_k \bar{X}|$

Predictions and Inference

Standard error of the prediction:

$$\widehat{\text{s.e.}(\hat{Y}_k)} = \sqrt{\sigma^2 \left[\frac{1}{N} + \frac{(X_k - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right]}$$

 \rightarrow (e.g.) confidence intervals:

95% c.i.
$$(\hat{Y}_k) = \hat{Y}_k \pm [1.96 \times \widehat{\text{s.e.}(\hat{Y}_k)}]$$

Example: SCOTUS Liberalism

```
> with(SCOTUS, describe(CivLibs))
  vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 39 56.39 19.9 55.42 56.25 25.17 21.63 95.33 73.7 0.19 -1.06 3.19
> with(SCOTUS, describe(IdeologyScore))
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 39 0.53 0.33 0.5 0.53 0.4 0 1 1 -0.06 -1.47 0.05
```

Scatterplot of SCOTUS Voting and Liberalism Scores

Example, Continued

```
> SCLib<-lm(CivLibs~IdeologyScore,data=SCOTUS)</pre>
> summary(SCLib) # regression
Call:
lm(formula = CivLibs ~ IdeologyScore, data = SCOTUS)
Residuals:
  Min 10 Median
                       30
                            Max
-26.62 -9.84 2.61 8.05 29.44
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.69 4.26 7.91 1.8e-09 ***
IdeologyScore 42.94 6.85 6.27 2.7e-07 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 14 on 37 degrees of freedom
Multiple R-squared: 0.515, Adjusted R-squared: 0.502
F-statistic: 39.3 on 1 and 37 DF, p-value: 2.7e-07
```

Example, Continued

```
Analysis of Variance Table

Response: CivLibs

Df Sum Sq Mean Sq F value Pr(>F)

IdeologyScore 1 7753 7753 39.3 2.7e-07 ***

Residuals 37 7294 197

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

> anova(SCLib) # ANOVA

```
Var(\hat{\beta}):
> vcov(SCLib)
              (Intercept) IdeologyScore
(Intercept) 18.16 -24.79
IdeologyScore -24.79 46.88
95 percent c.i.s:
> confint(SCLib)
             2.5 % 97.5 %
(Intercept) 25.05 42.32
IdeologyScore 29.06 56.81
99 percent c.i.s:
> confint(SCLib,level=0.99)
             0.5 % 99.5 %
(Intercept) 22.12 45.26
IdeologyScore 24.35 61.53
```

Predictions

A Plot, With Cls

Scatterplot of SCOTUS Voting and Ideology Scores, along with Least-Squares Line and 95% Prediction Confidence Intervals

How'd He Do That?

The code:

Surely There's An Easier Way?

- > library(marginaleffects)
- > plot_predictions(SCLib,condition="IdeologyScore",points=1)
 - + theme_classic()

