

Rust for Linux 驱动模块开发

课题导师:萧络元,陈乐

课题目标 - Rust for Linux 驱动模块开发

- 学生选修该课题,可以学习到如何一步一步地开发一个Rust for Linux内核驱动;
- •逐步积累并形成学习开发文档;
- 进而有机会为rcore-os Rust操作系统社区以及Linux社区的发展,通过编写Rust驱动等方式贡献一份自己的力量。

时间安排 (每周一和周四上课交流)

周	日期	导师	课程	练习	练习 分数
第一周基础	2023-11-6	XLY	Rust for Linux 的基本框架介绍	练习 1: 获取 Rust for Linux 源码,配置环境并编译通过,并在模拟器中运行。	15%
第一周基础	2023-11-9	CL	Rust 内核驱动模块的各个基础 组成部分的学习,结合已有 rust-for-linux 案例驱动的学习	练习 2:编写一个简单的"Hello World"的 Rust 内核模块,并能加载运行输出。	15%
第二周进阶	2023-11-13	CL	内核驱动的开发框架介绍,以 网卡驱动为例	练习 3: 基于 Qemu 模拟器上的 e1000 网卡驱动框架,填充驱动初始化函数,并可以自定义一个 linux 内核 C 函数在 Rust 网卡驱动模块中调用该函数。	15%
第二周进阶	2023-11-16	XLY	Rust 网卡驱动的开发	练习 4: 基于 Qemu 模拟器上的 e1000 网卡驱 动框架,填充驱动的接收包和发送包函数,并可以加载运行,运行 ping 的发送与接收响应。	15%
第二周进阶				练习 3, 4 (可选):分析并复现 rust-for-linux 社区已实现的驱动案例,可复现运行并做个 报告。	30%

时间安排 (每周一和周四上课交流)

周	日期	导师	课程	练习	练习 分数
第三周 实习准备	2023- 11-20	XLY	实习项目安排介绍: Uart 及 VirtIO 驱动项目 讲解	对于实习项目,准备 Rust for Linux 在所选平台上的基本运行所需的工作,如引导启动所需的设备树,内存设备基地址等	
第三周 实习准备	2023- 11-23	CL	项目问题交流: 精简 C 语言版本驱动介绍	对于所选的驱动,如 Uart 或 VirtIO 驱动,为下一步把最小化 C 版本驱动转换为 Rust 版本驱动做准备;精简其 C 代码,使其保留最基本的运行功能;	
第四周 项目实习	2023- 11-27	XLY	课程内容回顾,实习项 目交流	实习项目 1(可选): 在华山派开发板或树莓派模拟器上,适配 Rust for Linux 6.6 内核,并实现 Rust Uart 串口驱动,运行起来;	40%
第四周 项目实习	2023- 11-30	CL	课程内容回顾,实习项 目交流	实习项目 2 (可选): 在 Qemu 模拟器上尝试把已有的 rcore-os/virtio-drivers 项目,移植适配于 Rust for Linux 6.6 内核,驱动运行起来;	40%

相关资料链接

• Rust for Linux社区仓库

https://github.com/Rust-for-Linux

• Rust网卡驱动参考

https://github.com/elliott10/e1000-driver.git

https://github.com/fujita/linux.git

• Rust实现的VirtIO驱动

https://github.com/rcore-os/virtio-drivers.git

• RISCV物理开发板平台:华山派

https://github.com/sophgo/sophpi-huashan.git

课题考核方式

・ 考核方式:

- 1. 通过课程练习和实习项目,进行成绩打分排名;
- 2. 阶段性练习及每周的引导 60%; 基于物理开发板/模拟器的Rust驱动开发项目
- 3. 将会统计各位学员的姓名及仓库地址;
- 4. 代码及运行结果截图请提交在各自练习的仓库;结果截图中需出现自己的名:

通过要求:

- 1. 合格:成绩得分高于60%分,提交代码+总结报告。
- 2. 优秀:符合如下条件之一
 - 1. 四周总得分80%, 提交代码+总结报告。
 - 2. 项目实习(最后两周)得分80%,提交代码+总结报告。
- 上课链接: https://os2edu.cn/course/159
- · 学习群二维码 -->

群組:项目 3-Rust for Linux 驱动

此 QR Code 在 7 天內 (11月12日前) 有效,重新進入將更新。