Sound Design Toolkit 078

Generated by Doxygen 1.8.10

Tue May 22 2018 12:31:19

Contents

1	Mair	n Page			1
2	Mod	ule Ind	ex		3
	2.1	Modul	es		3
3	Data	Struct	ure Index		5
	3.1	Data S	Structures		5
4	Mod	ule Do	cumentati	on	7
	4.1	SDTA	nalysis.h:	Sound analysis tools	7
		4.1.1	Detailed	Description	7
	4.2	Zero c	rossing ra	te	8
		4.2.1	Detailed	Description	8
		4.2.2	Function	Documentation	8
			4.2.2.1	${\tt SDTZeroCrossing_dsp}({\tt SDTZeroCrossing} * x, {\tt double} * {\tt out}, {\tt double} \; {\tt in}) \;\; \ldots \; \ldots \; .$	8
			4.2.2.2	SDTZeroCrossing_free(SDTZeroCrossing *x)	8
			4.2.2.3	SDTZeroCrossing_new(unsigned int size)	8
			4.2.2.4	SDTZeroCrossing_setOverlap(SDTZeroCrossing *x, double f)	9
	4.3	Myoela	astic featu	res extractor	10
		4.3.1	Detailed	Description	10
		4.3.2	Function	Documentation	10
			4.3.2.1	SDTMyoelastic_dsp(SDTMyoelastic *x, double *outs, double in)	10
			4.3.2.2	SDTMyoelastic_free(SDTMyoelastic *x)	10
			4.3.2.3	SDTMyoelastic_new(int size)	11
			4.3.2.4	SDTMyoelastic_setDcFrequency(SDTMyoelastic *x, double f)	11
			4.3.2.5	SDTMyoelastic_setHighFrequency(SDTMyoelastic *x, double f)	11
			4.3.2.6	SDTMyoelastic_setLowFrequency(SDTMyoelastic *x, double f)	11
			4.3.2.7	SDTMyoelastic_setThreshold(SDTMyoelastic *x, double f)	11
	4.4	Spectr	al audio d	escriptors	12
		4.4.1	Detailed	Description	12
		4.4.2	Function	Documentation	12
			4.4.2.1	SDTSpectralFeats_dsp(SDTSpectralFeats *x, double *outs, double in)	12

iv CONTENTS

		4.4.2.2	SDTSpectralFeats_free(SDTSpectralFeats *x)	13
		4.4.2.3	SDTSpectralFeats_new(unsigned int size)	13
		4.4.2.4	SDTSpectralFeats_setMaxFreq(SDTSpectralFeats *x, double f)	13
		4.4.2.5	SDTSpectralFeats_setMinFreq(SDTSpectralFeats *x, double f)	14
		4.4.2.6	SDTSpectralFeats_setOverlap(SDTSpectralFeats *x, double f)	15
4.5	Funda	mental fred	quency estimator	16
	4.5.1	Detailed	Description	16
	4.5.2	Function	Documentation	16
		4.5.2.1	SDTPitch_dsp(SDTPitch *x, double *outs, double in)	16
		4.5.2.2	SDTPitch_free(SDTPitch *x)	17
		4.5.2.3	SDTPitch_new(unsigned int size)	17
		4.5.2.4	SDTPitch_setOverlap(SDTPitch *x, double f)	17
		4.5.2.5	SDTPitch_setTolerance(SDTPitch *x, double f)	17
4.6	SDTC	ommon.h:	Common variables and functions	18
	4.6.1	Detailed	Description	20
	4.6.2	Function	Documentation	20
		4.6.2.1	SDT_bitReverse(unsigned int u, unsigned int bits)	20
		4.6.2.2	SDT_blackman(double *sig, int n)	20
		4.6.2.3	SDT_clip(long x, long min, long max)	21
		4.6.2.4	SDT_expRand(double lambda)	21
		4.6.2.5	SDT_fclip(double x, double min, double max)	21
		4.6.2.6	SDT_frand()	21
		4.6.2.7	$SDT_gaussian1D(double *x, double sigma, int n) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	22
		4.6.2.8	SDT_gravity(double mass)	23
		4.6.2.9	SDT_haar(double *sig, long n)	23
		4.6.2.10	SDT_hanning(double *sig, int n)	23
		4.6.2.11	SDT_ihaar(double *sig, long n)	23
		4.6.2.12	SDT_kinetic(double mass, double velocity)	23
		4.6.2.13	SDT_nextPow2(unsigned int u)	24
		4.6.2.14	SDT_normalize(double x, double min, double max)	24
		4.6.2.15	SDT_normalizeWindow(double *sig, int n)	24
		4.6.2.16	SDT_ones(double *sig, int n)	24
		4.6.2.17	SDT_rank(double *x, int n, int k)	24
		4.6.2.18	SDT_removeDC(double *sig, int n)	25
		4.6.2.19	SDT_roi(double *sig, int *peaks, int *bounds, int d, int n)	25
		4.6.2.20	SDT_samplesInAir(double length)	25
		4.6.2.21	SDT_scale(double x, double srcMin, double srcMax, double dstMin, double dst↔ Max, double gamma)	25
		4.6.2.22	SDT_setSampleRate(double sampleRate)	26
		4.6.2.23	SDT_signum(double x)	26

CONTENTS

		4.6.2.24	SDT_sinc(double *sig, double w, int n)	26
		4.6.2.25	SDT_truePeakPos(double *sig, int peak)	26
		4.6.2.26	SDT_truePeakValue(double *sig, int peak)	26
		4.6.2.27	SDT_wrap(double x)	27
		4.6.2.28	SDT_zeros(double *sig, int n)	27
4.7	SDTC	mplex.h: I	Handling complex numbers	28
	4.7.1	Detailed	Description	28
	4.7.2	Function	Documentation	29
		4.7.2.1	SDTComplex_abs(SDTComplex a)	29
		4.7.2.2	SDTComplex_add(SDTComplex a, SDTComplex b)	29
		4.7.2.3	SDTComplex_addReal(SDTComplex a, double b)	29
		4.7.2.4	SDTComplex_angle(SDTComplex a)	29
		4.7.2.5	SDTComplex_car(double real, double imag)	29
		4.7.2.6	SDTComplex_conj(SDTComplex a)	30
		4.7.2.7	SDTComplex_div(SDTComplex a, SDTComplex b)	30
		4.7.2.8	SDTComplex_divReal(SDTComplex a, double b)	30
		4.7.2.9	SDTComplex_exp(double phase)	30
		4.7.2.10	SDTComplex_mult(SDTComplex a, SDTComplex b)	31
		4.7.2.11	SDTComplex_multReal(SDTComplex a, double b)	31
		4.7.2.12	SDTComplex_realDiv(double a, SDTComplex b)	31
		4.7.2.13	SDTComplex_realSub(double a, SDTComplex b)	31
		4.7.2.14	SDTComplex_sub(SDTComplex a, SDTComplex b)	32
		4.7.2.15	SDTComplex_subReal(SDTComplex a, double b)	32
4.8	SDTC	ontrol.h: Co	ompound solid interactions	33
	4.8.1	Detailed	Description	33
4.9	Bounci	ng		34
	4.9.1	Detailed	Description	34
	4.9.2	Function	Documentation	34
		4.9.2.1	SDTBouncing_dsp(SDTBouncing *x)	34
		4.9.2.2	SDTBouncing_free(SDTBouncing *x)	34
		4.9.2.3	SDTBouncing_hasFinished(SDTBouncing *x)	35
		4.9.2.4	SDTBouncing_new()	35
		4.9.2.5	SDTBouncing_setHeight(SDTBouncing *x, double f)	35
		4.9.2.6	SDTBouncing_setIrregularity(SDTBouncing *x, double f)	35
		4.9.2.7	SDTBouncing_setRestitution(SDTBouncing *x, double f)	35
4.10	Breakir	ng		36
	4.10.1	Detailed	Description	36
	4.10.2	Function	Documentation	36
		4.10.2.1	SDTBreaking_dsp(SDTBreaking *x, double *outs)	36
		4.10.2.2	SDTBreaking_free(SDTBreaking *x)	36

vi CONTENTS

		4.10.2.3	SDTBreaking_hasFinished(SDTBreaking *x)	37
		4.10.2.4	SDTBreaking_new()	37
		4.10.2.5	SDTBreaking_reset(SDTBreaking *x)	37
		4.10.2.6	SDTBreaking_setCrushingEnergy(SDTBreaking *x, double f)	37
		4.10.2.7	SDTBreaking_setFragmentation(SDTBreaking *x, double f)	37
		4.10.2.8	SDTBreaking_setGranularity(SDTBreaking *x, double f)	37
		4.10.2.9	SDTBreaking_setStoredEnergy(SDTBreaking *x, double f)	38
4.11	Crumpl	ing		39
	4.11.1	Detailed I	Description	39
	4.11.2	Function	Documentation	39
		4.11.2.1	SDTCrumpling_dsp(SDTCrumpling *x, double *outs)	39
		4.11.2.2	SDTCrumpling_free(SDTCrumpling *x)	39
		4.11.2.3	SDTCrumpling_new()	40
		4.11.2.4	${\tt SDTCrumpling_setCrushingEnergy}({\tt SDTCrumpling}\ *x,\ {\tt double}\ {\tt f})\ \dots\dots\dots\dots$	40
		4.11.2.5	$SDTCrumpling_setFragmentation(SDTCrumpling *x, double f) \ . \ . \ . \ . \ . \ .$	40
		4.11.2.6	$SDTCrumpling_setGranularity(SDTCrumpling *x, double f) $	40
4.12	Rolling			41
	4.12.1	Detailed I	Description	41
	4.12.2	Function	Documentation	41
		4.12.2.1	SDTRolling_dsp(SDTRolling *x, double in)	41
		4.12.2.2	SDTRolling_free(SDTRolling *x)	41
		4.12.2.3	SDTRolling_new()	42
		4.12.2.4	SDTRolling_setDepth(SDTRolling *x, double f)	42
		4.12.2.5	SDTRolling_setGrain(SDTRolling *x, double f)	42
		4.12.2.6	SDTRolling_setMass(SDTRolling *x, double f)	42
		4.12.2.7	SDTRolling_setVelocity(SDTRolling *x, double f)	42
4.13	Scrapir	ıg		43
	4.13.1	Detailed I	Description	43
	4.13.2	Function	Documentation	43
		4.13.2.1	SDTScraping_dsp(SDTScraping *x, double in)	43
		4.13.2.2	SDTScraping_free(SDTScraping *x)	43
		4.13.2.3	SDTScraping_new()	44
		4.13.2.4	SDTScraping_setForce(SDTScraping *x, double f)	44
		4.13.2.5	SDTScraping_setGrain(SDTScraping *x, double f)	44
		4.13.2.6	SDTScraping_setVelocity(SDTScraping *x, double f)	44
4.14	SDTDC	Motor.h: E	Electric motors	45
	4.14.1	Detailed I	Description	45
	4.14.2	Function	Documentation	46
		4.14.2.1	SDTDCMotor_dsp(SDTDCMotor *x)	46
		4.14.2.2	SDTDCMotor_free(SDTDCMotor *x)	46

CONTENTS vii

		4.14.2.3	SDTDCMotor_new(long maxSize)	46
		4.14.2.4	SDTDCMotor_setAirGain(SDTDCMotor *x, double f)	46
		4.14.2.5	SDTDCMotor_setBrushGain(SDTDCMotor *x, double f)	46
		4.14.2.6	SDTDCMotor_setCoils(SDTDCMotor *x, long l)	46
		4.14.2.7	SDTDCMotor_setGearGain(SDTDCMotor *x, double f)	47
		4.14.2.8	SDTDCMotor_setGearRatio(SDTDCMotor *x, double f)	47
		4.14.2.9	SDTDCMotor_setHarshness(SDTDCMotor *x, double f)	47
		4.14.2.10	SDTDCMotor_setLoad(SDTDCMotor *x, double f)	47
		4.14.2.11	SDTDCMotor_setReson(SDTDCMotor *x, double f)	47
		4.14.2.12	SDTDCMotor_setRotorGain(SDTDCMotor *x, double f)	47
		4.14.2.13	SDTDCMotor_setRpm(SDTDCMotor *x, double f)	48
		4.14.2.14	SDTDCMotor_setSize(SDTDCMotor *x, double f)	49
4.15	SDTDe	mix.h: Traı	nsient/tonal/residual components separator	50
	4.15.1	Detailed [Description	50
	4.15.2	Function I	Documentation	50
		4.15.2.1	SDTDemix_dsp(SDTDemix *x, double *outs, double in)	50
		4.15.2.2	SDTDemix_free(SDTDemix *x)	51
		4.15.2.3	SDTDemix_new(int size, int radius)	51
		4.15.2.4	$SDTDemix_setNoiseThreshold(SDTDemix *x, double f) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	51
		4.15.2.5	SDTDemix_setOverlap(SDTDemix *x, double f)	51
		4.15.2.6	$SDTDemix_setTonalThreshold(SDTDemix *x, double f) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	51
4.16	SDTEff	ects.h: Dig	ital audio effects	52
	4.16.1	Detailed [Description	52
4.17	Reverb			53
	4.17.1	Detailed [Description	53
	4.17.2	Function I	Documentation	53
		4.17.2.1	SDTReverb_dsp(SDTReverb *x, double in)	53
		4.17.2.2	SDTReverb_free(SDTReverb *x)	54
		4.17.2.3	SDTReverb_new(long maxDelay)	55
		4.17.2.4	SDTReverb_setRandomness(SDTReverb *x, double f)	55
		4.17.2.5	SDTReverb_setTime(SDTReverb *x, double f)	55
		4.17.2.6	SDTReverb_setTime1k(SDTReverb *x, double f)	55
		4.17.2.7	SDTReverb_setXSize(SDTReverb *x, double f)	55
		4.17.2.8	SDTReverb_setYSize(SDTReverb *x, double f)	55
		4.17.2.9	SDTReverb_setZSize(SDTReverb *x, double f)	56
4.18	Pitch sh	nift		57
	4.18.1	Detailed [Description	57
	4.18.2	Function I	Documentation	57
		4.18.2.1	SDTPitchShift_dsp(SDTPitchShift *x, double in)	57
		4.18.2.2	SDTPitchShift_free(SDTPitchShift *x)	57

viii CONTENTS

		4.18.2.3	SDTPitchShift_new(int size, int oversample)	57
		4.18.2.4	SDTPitchShift_setOverlap(SDTPitchShift *x, double f)	58
		4.18.2.5	SDTPitchShift_setRatio(SDTPitchShift *x, double f)	58
4.19	SDTFF	T.h: Fast F	Fourier Transform	59
	4.19.1	Detailed	Description	59
	4.19.2	Function	Documentation	59
		4.19.2.1	${\tt SDTFFT_fft}({\tt SDTFFT}\ *x,\ {\tt int\ inverse},\ {\tt SDTComplex}\ *{\tt in},\ {\tt SDTComplex}\ *{\tt out}) . .$	59
		4.19.2.2	SDTFFT_fftr(SDTFFT *x, double *in, SDTComplex *out)	59
		4.19.2.3	SDTFFT_free(SDTFFT *x)	59
		4.19.2.4	SDTFFT_ifftr(SDTFFT *x, SDTComplex *in, double *out)	60
		4.19.2.5	SDTFFT_new(unsigned int n)	60
4.20	SDTFil	ters.h: Aud	dio filters	61
	4.20.1	Detailed	Description	61
4.21	One po	ole filter .		62
	4.21.1	Detailed	Description	62
	4.21.2	Function	Documentation	62
		4.21.2.1	SDTOnePole_dsp(SDTOnePole *x, double in)	62
		4.21.2.2	SDTOnePole_free(SDTOnePole *x)	62
		4.21.2.3	SDTOnePole_highpass(SDTOnePole *x, double f)	62
		4.21.2.4	SDTOnePole_lowpass(SDTOnePole *x, double f)	63
		4.21.2.5	SDTOnePole_new()	63
		4.21.2.6	SDTOnePole_setFeedback(SDTOnePole *x, double f)	63
4.22	Allpass	filter		64
	4.22.1	Detailed	Description	64
	4.22.2	Function	Documentation	64
		4.22.2.1	SDTAllPass_dsp(SDTAllPass *x, double in)	64
		4.22.2.2	SDTAIlPass_free(SDTAIlPass *x)	64
		4.22.2.3	SDTAIlPass_new()	64
		4.22.2.4	SDTAllPass_setFeedback(SDTAllPass *x, double f)	65
4.23	Envelo	pe followei	·	67
	4.23.1	Detailed	Description	67
	4.23.2	Function	Documentation	67
		4.23.2.1	SDTEnvelope_dsp(SDTEnvelope *x, double in)	67
		4.23.2.2	SDTEnvelope_free(SDTEnvelope *x)	67
		4.23.2.3	SDTEnvelope_new()	68
		4.23.2.4	SDTEnvelope_setAttack(SDTEnvelope *x, double a)	68
			SDTEnvelope_setRelease(SDTEnvelope *x, double r)	68
4.24	Two po	les filter .		69
	4.24.1	Detailed	Description	69
	4.24.2	Function	Documentation	69

CONTENTS

		4.24.2.1	SDTTwoPoles_dsp(SDTTwoPoles *x, double in)	69
		4.24.2.2	SDTTwoPoles_free(SDTTwoPoles *x)	69
		4.24.2.3	SDTTwoPoles_highpass(SDTTwoPoles *x, double fc)	69
		4.24.2.4	SDTTwoPoles_lowpass(SDTTwoPoles *x, double fc)	70
		4.24.2.5	SDTTwoPoles_new()	70
		4.24.2.6	SDTTwoPoles_resonant(SDTTwoPoles *x, double fc, double q)	70
4.25	Cascac	de of biqua	adratic sections	71
	4.25.1	Detailed	Description	71
	4.25.2	Function	Documentation	71
		4.25.2.1	SDTBiquad_butterworthHP(SDTBiquad *x, double fc)	71
		4.25.2.2	SDTBiquad_butterworthLP(SDTBiquad *x, double fc)	71
		4.25.2.3	SDTBiquad_dsp(SDTBiquad *x, double in)	72
		4.25.2.4	SDTBiquad_free(SDTBiquad *x)	72
		4.25.2.5	SDTBiquad_linkwitzRileyHP(SDTBiquad *x, double fc)	72
		4.25.2.6	SDTBiquad_linkwitzRileyLP(SDTBiquad *x, double fc)	72
		4.25.2.7	SDTBiquad_new(int nSections)	72
4.26	Moving	average		73
	4.26.1	Detailed	Description	73
	4.26.2	Function	Documentation	73
		4.26.2.1	SDTAverage_dsp(SDTAverage *x, double in)	73
		4.26.2.2	SDTAverage_free(SDTAverage *x)	73
		4.26.2.3	SDTAverage_new(long size)	73
		4.26.2.4	SDTAverage_setWindow(SDTAverage *x, unsigned int i)	74
4.27	Delay li	ine		75
	4.27.1	Detailed	Description	75
	4.27.2	Function	Documentation	75
		4.27.2.1	SDTDelay_dsp(SDTDelay *x, double in)	75
		4.27.2.2	SDTDelay_free(SDTDelay *x)	75
		4.27.2.3	SDTDelay_new(long maxDelay)	75
		4.27.2.4	SDTDelay_setDelay(SDTDelay *x, double f)	76
4.28	Comb f	filter		77
	4.28.1	Detailed	Description	77
	4.28.2	Function	Documentation	77
		4.28.2.1	SDTComb_dsp(SDTComb *x, double in)	77
		4.28.2.2	SDTComb_free(SDTComb *x)	77
		4.28.2.3	SDTComb_new(long maxXDelay, long maxYDelay)	78
		4.28.2.4	SDTComb_setXDelay(SDTComb *x, double f)	78
		4.28.2.5	SDTComb_setXGain(SDTComb *x, double f)	78
		4.28.2.6	SDTComb_setXYDelay(SDTComb *x, double f)	78
		4.28.2.7	SDTComb_setXYGain(SDTComb *x, double f)	78

CONTENTS

		4.28.2.8	SDTComb_setYDelay(SDTComb *x, double f)	78
		4.28.2.9	SDTComb_setYGain(SDTComb *x, double f)	79
4.29	Digital	waveguide		80
	4.29.1	Detailed I	Description	80
	4.29.2	Function	Documentation	80
		4.29.2.1	SDTWaveguide_dsp(SDTWaveguide *x, double fwdIn, double revIn)	80
		4.29.2.2	SDTWaveguide_free(SDTWaveguide *x)	81
		4.29.2.3	SDTWaveguide_getFwdOut(SDTWaveguide *x)	81
		4.29.2.4	SDTWaveguide_getRevOut(SDTWaveguide *x)	81
		4.29.2.5	SDTWaveguide_new(int maxDelay)	81
		4.29.2.6	SDTWaveguide_setDelay(SDTWaveguide *x, double f)	81
		4.29.2.7	SDTWaveguide_setFwdDamping(SDTWaveguide *x, double f)	81
		4.29.2.8	SDTWaveguide_setFwdFeedback(SDTWaveguide *x, double f)	82
		4.29.2.9	SDTWaveguide_setRevDamping(SDTWaveguide *x, double f)	82
		4.29.2.10	SDTWaveguide_setRevFeedback(SDTWaveguide *x, double f)	82
4.30	SDTGa	ses.h: Air	turbulence and explosions	83
			Description	83
4.31	Turbule	nce again	st solid objects	84
			Description	84
	4.31.2	Function	Documentation	84
		4.31.2.1	SDTWindFlow_dsp(SDTWindFlow *x)	84
		4.31.2.2	SDTWindFlow_free(SDTWindFlow *x)	84
		4.31.2.3	SDTWindFlow_new()	85
		4.31.2.4	SDTWindFlow_setFilters(SDTWindFlow *x)	85
		4.31.2.5	SDTWindFlow_setWindSpeed(SDTWindFlow *x, double f)	85
4.32	Turbule	nce throug	gh hollow cavities	86
			Description	86
	4.32.2	Function	Documentation	86
		4.32.2.1	SDTWindCavity_dsp(SDTWindCavity *x)	86
		4.32.2.2	SDTWindCavity_free(SDTWindCavity *x)	86
		4.32.2.3	SDTWindCavity_new(int maxDelay)	87
		4.32.2.4	SDTWindCavity_setDiameter(SDTWindCavity *x, double f)	87
		4.32.2.5	SDTWindCavity_setLength(SDTWindCavity *x, double f)	87
			SDTWindCavity_setWindSpeed(SDTWindCavity *x, double f)	87
4.33			s thin objects	88
			Description	88
	4.33.2		Documentation	88
		4.33.2.1	SDTWindKarman_dsp(SDTWindKarman *x)	88
			SDTWindKarman_free(SDTWindKarman *x)	88
		4.33.2.3	SDTWindKarman_new()	89

CONTENTS xi

		4.33.2.4	SDTWindKarman_setDiameter(SDTWindKarman *x, double f)	89
		4.33.2.5	SDTWindKarman_setWindSpeed(SDTWindKarman *x, double f)	89
4.34	Supers	onic explo	sions	90
	4.34.1	Detailed I	Description	90
	4.34.2	Function	Documentation	90
		4.34.2.1	SDTExplosion_dsp(SDTExplosion *x, double *outs)	90
		4.34.2.2	SDTExplosion_free(SDTExplosion *x)	90
		4.34.2.3	SDTExplosion_new(long maxScatter, long maxDelay)	91
		4.34.2.4	SDTExplosion_setBlastTime(SDTExplosion *x, double f)	91
		4.34.2.5	SDTExplosion_setDispersion(SDTExplosion *x, double f)	91
		4.34.2.6	SDTExplosion_setDistance(SDTExplosion *x, double f)	91
		4.34.2.7	SDTExplosion_setScatterTime(SDTExplosion *x, double f)	91
		4.34.2.8	SDTExplosion_setWaveSpeed(SDTExplosion *x, double f)	91
		4.34.2.9	SDTExplosion_setWindSpeed(SDTExplosion *x, double f)	92
4.35	SDTInt	eractors.h	: interactions between solids	93
	4.35.1	Detailed I	Description	93
4.36	Interact	tor interfac	e	94
	4.36.1	Detailed I	Description	94
	4.36.2	Function	Documentation	94
		4.36.2.1	SDTInteractor_dsp(SDTInteractor *x, double f0, double v0, double s0, double f1, double v1, double s1, double *outs)	94
		4.36.2.2	SDTInteractor_setFirstPoint(SDTInteractor *x, long l)	95
		4.36.2.3	SDTInteractor setFirstResonator(SDTInteractor *x, SDTResonator *p)	95
		4.36.2.4	SDTInteractor_setSecondPoint(SDTInteractor *x, long l)	95
		4.36.2.5	SDTInteractor setSecondResonator(SDTInteractor *x, SDTResonator *p)	95
4.37	Impact			96
	4.37.1		Description	96
	4.37.2		Documentation	96
		4.37.2.1	SDTImpact_new()	96
		4.37.2.2	SDTImpact_setDissipation(SDTInteractor *x, double f)	96
		4.37.2.3	SDTImpact_setShape(SDTInteractor *x, double f)	96
		4.37.2.4	SDTImpact_setStiffness(SDTInteractor *x, double f)	97
4.38	Friction	1		98
	4.38.1	Detailed I	Description	98
	4.38.2	Function	Documentation	98
		4.38.2.1	SDTFriction_new()	98
		4.38.2.2	SDTFriction_setBreakAway(SDTInteractor *x, double f)	99
		4.38.2.3	SDTFriction_setDissipation(SDTInteractor *x, double f)	99
		4.38.2.4	SDTFriction_setDynamicCoefficient(SDTInteractor *x, double f)	99
		4.38.2.5	SDTFriction_setNoisiness(SDTInteractor *x, double f)	99

xii CONTENTS

		4.38.2.6	SDTFriction_setNormalForce(SDTInteractor *x, double f)	99
		4.38.2.7	${\tt SDTFriction_setStaticCoefficient}({\tt SDTInteractor}\ *x,\ {\tt double}\ f)\ \ldots\ \ldots\ \ldots$	99
		4.38.2.8	SDTFriction_setStiffness(SDTInteractor *x, double f)	100
		4.38.2.9	SDTFriction_setStribeckVelocity(SDTInteractor *x, double f)	100
		4.38.2.10	SDTFriction_setViscosity(SDTInteractor *x, double f)	100
4.39	SDTLic	quids.h: Lic	quid sounds	101
	4.39.1	Detailed I	Description	101
4.40	Bubble	s		102
	4.40.1	Detailed I	Description	102
	4.40.2	Function	Documentation	102
		4.40.2.1	SDTBubble_dsp(SDTBubble *x)	102
		4.40.2.2	SDTBubble_free(SDTBubble *x)	102
		4.40.2.3	SDTBubble_new()	103
		4.40.2.4	SDTBubble_setDepth(SDTBubble *x, double f)	103
		4.40.2.5	SDTBubble_setRadius(SDTBubble *x, double f)	103
		4.40.2.6	SDTBubble_setRiseFactor(SDTBubble *x, double f)	103
4.41	Fluid flo	wc		104
	4.41.1	Detailed I	Description	104
	4.41.2	Function	Documentation	104
		4.41.2.1	SDTFluidFlow_dsp(SDTFluidFlow *x)	104
		4.41.2.2	SDTFluidFlow_free(SDTFluidFlow *x)	105
		4.41.2.3	SDTFluidFlow_new(int nBubbles)	105
		4.41.2.4	SDTFluidFlow_setAvgRate(SDTFluidFlow *x, double f)	105
		4.41.2.5	SDTFluidFlow_setExpDepth(SDTFluidFlow *x, double f)	105
		4.41.2.6	SDTFluidFlow_setExpRadius(SDTFluidFlow *x, double f)	105
		4.41.2.7	SDTFluidFlow_setMaxDepth(SDTFluidFlow *x, double f)	105
		4.41.2.8	SDTFluidFlow_setMaxRadius(SDTFluidFlow *x, double f)	106
		4.41.2.9	SDTFluidFlow_setMinDepth(SDTFluidFlow *x, double f)	106
		4.41.2.10	SDTFluidFlow_setMinRadius(SDTFluidFlow *x, double f)	106
		4.41.2.11	SDTFluidFlow_setRiseCutoff(SDTFluidFlow *x, double f)	106
		4.41.2.12	SDTFluidFlow_setRiseFactor(SDTFluidFlow *x, double f)	106
4.42	SDTM	otor.h: Con	nbustion engines	107
	4.42.1	Detailed I	Description	108
	4.42.2	Function	Documentation	108
		4.42.2.1	SDTMotor_dsp(SDTMotor *x, double *outs)	108
		4.42.2.2	SDTMotor_free(SDTMotor *x)	108
		4.42.2.3	SDTMotor_new(long maxDelay)	108
		4.42.2.4	SDTMotor_setAsymmetry(SDTMotor *x, double f)	108
		4.42.2.5	SDTMotor_setBackfire(SDTMotor *x, double f)	109
		4.42.2.6	$SDTMotor_setCompressionRatio(SDTMotor *x, double f) \\ \ \ldots \\ \ \ldots \\ \ \ldots$	109

CONTENTS xiii

		4.42.2.7 SDTMotor_setCylinderSize(SDTMotor *x, double f)	09
		4.42.2.8 SDTMotor_setExhaustSize(SDTMotor *x, double f)	09
		4.42.2.9 SDTMotor_setExpansion(SDTMotor *x, double f)	09
		4.42.2.10 SDTMotor_setExtractorSize(SDTMotor *x, double f)	09
		4.42.2.11 SDTMotor_setFilters(SDTMotor *x, double damp, double dc)	10
		4.42.2.12 SDTMotor_setIntakeSize(SDTMotor *x, double f)	10
		4.42.2.13 SDTMotor_setMufflerFeedback(SDTMotor *x, double f)	10
		4.42.2.14 SDTMotor_setMufflerSize(SDTMotor *x, double f)	10
		4.42.2.15 SDTMotor_setNCylinders(SDTMotor *x, int i)	10
		$4.42.2.16 \ SDTMotor_setOutletSize(SDTMotor *x, double f) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	10
		$4.42.2.17 \ SDTMotor_setRpm(SDTMotor * x, double \ f) \ \ldots \ \ldots \ \ldots \ \ldots \ \ 1$	111
		4.42.2.18 SDTMotor_setSparkTime(SDTMotor *x, double f)	12
		4.42.2.19 SDTMotor_setThrottle(SDTMotor *x, double f)	12
4.43	SDTOs	cillators.h: Oscillators	13
	4.43.1	Detailed Description	13
	4.43.2	Function Documentation	13
		4.43.2.1 SDTPinkNoise_free(SDTPinkNoise *x)	13
		4.43.2.2 SDTPinkNoise_new(int nOctaves)	13
4.44	SDTRe	sonators.h: Solid resonators	14
	4.44.1	Detailed Description	15
	4.44.2	Function Documentation	15
		$4.44.2.1 SDTResonator_applyForce(SDTResonator *x, unsigned int pickup, double f) . . 1 \\$	15
		4.44.2.2 SDTResonator_computeEnergy(SDTResonator *x, unsigned int pickup, double f) 1	15
		4.44.2.3 SDTResonator_free(SDTResonator *x)	15
		4.44.2.4 SDTResonator_getNPickups(SDTResonator *x)	15
		4.44.2.5 SDTResonator_getPosition(SDTResonator *x, unsigned int pickup) 1	15
		4.44.2.6 SDTResonator_getVelocity(SDTResonator *x, unsigned int pickup) 1	16
		4.44.2.7 SDTResonator_new(unsigned int nModes, unsigned int nPickups)	16
		4.44.2.8 SDTResonator_setActiveModes(SDTResonator *x, unsigned int i)	16
		4.44.2.9 SDTResonator_setDecay(SDTResonator *x, unsigned int mode, double f) 1	16
		4.44.2.10 SDTResonator_setFragmentSize(SDTResonator *x, double f)	16
		4.44.2.11 SDTResonator_setFrequency(SDTResonator *x, unsigned int mode, double f) . 1	17
		4.44.2.12 SDTResonator_setGain(SDTResonator *x, unsigned int pickup, unsigned int	
			117
		4.44.2.13 SDTResonator_setPosition(SDTResonator *x, unsigned int pickup, double f) 1	
		4.44.2.14 SDTResonator_setVelocity(SDTResonator *x, unsigned int pickup, double f) 1	
		4.44.2.15 SDTResonator_setWeight(SDTResonator *x, unsigned int mode, double f) 1	
4.45		lids.h: Registering/notifying resonators and interactors	
		Detailed Description	
	4.45.2	Function Documentation	18

XIV

Inc	dex				125
		5.1.1	Detailed	Description	123
	5.1	SDTC	mplex Str	uct Reference	123
5	Data	Structu	ire Docun	nentation	123
				The state of the s	
				SDTHashmap put(SDTHashmap *x, char *key, void *value)	
				SDTHashmap_new(int size)	
			4.46.2.3	SDTHashmap_get(SDTHashmap *x, char *key)	120
			4.46.2.2	SDTHashmap_free(SDTHashmap *x)	120
			4.46.2.1	SDTHashmap_del(SDTHashmap *x, char *key)	120
		4.46.2	Function	Documentation	120
		4.46.1	Detailed	Description	120
	4.46	SDTSti	ructs.h: Co	ommon data structures	120
			4.45.2.4	SDT_unregisterResonator(char *key)	119
			4.45.2.3	SDT_unregisterInteractor(char *key0, char *key1)	119
			4.45.2.2	SDT_registerResonator(SDTResonator *x, char *key)	118
			4.45.2.1	SDT_registerInteractor(SDTInteractor *x, char *key0, char *key1)	118

Chapter 1

Main Page

The 'Sound Design Toolkit' (SDT) is a framework a for education and research in Sonic Interaction Design. It includes a collection of physically informed models, post-processing algorithms and sound analysis routines for interactive sound synthesis. It can be considered as a virtual Foley box of sound synthesis algorithms, each representing a specific sound-producing event.

Developed with the contribution of the following EU-projects: 2001-2003 'SOb' http://www.soundobject. ← org/2006-2009 'CLOSED' http://closed.ircam.fr/2008-2011 'NIW' http://www.niwproject. ← eu/2014-2017 'SkAT-VG' http://www.skatvg.eu/

 $\textbf{Contacts:} \texttt{stefano.papetti@zhdk.ch.stefano.dellemonache@gmail.com.stefanobaldan@iuav.} \leftarrow \texttt{it}$

Complete list of authors (either programmers or designers): Federico Avanzini (avanzini@dei.unipd.it) Nicola Bernardini (nicb@sme-ccppd.org) Gianpaolo Borin (gianpaolo.borin@tin.it) Carlo Drioli (carlo.drioli@univr.it) Stefano Delle Monache (stefano.dellemonache@gmail.com) Delphine Devallez Federico Fontana (federico.fontana@uniud.it) Laura Ottaviani Stefano Papetti (stefano. papetti@zhdk.ch) Pietro Polotti (pietro.polotti@univr.it) Matthias Rath Davide Rocchesso (roc@iuav.it) Stefania Serafin (sts@media.aau.dk) Stefano Baldan (stefanobaldan@iuav.it)

The SDT is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

The SDT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the SDT; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

2 Main Page

Chapter 2

Module Index

2.1 Modules

L	loro	ic	2	lict	Ωf	all	modul	00
г	iere.	ıs	а	IISI	OI	all	moaui	es

SDTAnalysis.h: Sound analysis tools	7
Zero crossing rate	. 8
Myoelastic features extractor	. 10
Spectral audio descriptors	. 12
Fundamental frequency estimator	. 16
SDTCommon.h: Common variables and functions	18
SDTComplex.h: Handling complex numbers	28
SDTControl.h: Compound solid interactions	33
Bouncing	. 34
Breaking	. 36
Crumpling	. 39
Rolling	
Scraping	. 43
SDTDCMotor.h: Electric motors	45
SDTDemix.h: Transient/tonal/residual components separator	50
SDTEffects.h: Digital audio effects	52
Reverb	. 53
Pitch shift	. 57
SDTFFT.h: Fast Fourier Transform	59
SDTFilters.h: Audio filters	61
One pole filter	. 62
Allpass filter	
Envelope follower	. 67
Two poles filter	. 69
Cascade of biquadratic sections	
Moving average	
Delay line	
Comb filter	
Digital waveguide	
SDTGases.h: Air turbulence and explosions	
Turbulence against solid objects	
Turbulence through hollow cavities	
Turbulence across thin objects	
Supersonic explosions	
SDTInteractors.h: interactions between solids	93
Interactor interface	. 94

Module Index

Impact	96
Friction	98
DTLiquids.h: Liquid sounds	01
Bubbles	02
Fluid flow	04
DTMotor.h: Combustion engines	
DTOscillators.h: Oscillators	13
DTResonators.h: Solid resonators	
DTSolids.h: Registering/notifying resonators and interactors	
DTStructs.h: Common data structures	20

Chapter 3

Data Structure Index

_	4	Data	\sim		
3	7	LINATA	CTPI	IATI	IFAC

nere are the data	i structures with brief	descriptions.	

SDTComplex

6 **Data Structure Index**

Chapter 4

Module Documentation

4.1 SDTAnalysis.h: Sound analysis tools

Modules

- Zero crossing rate
- Myoelastic features extractor
- Spectral audio descriptors
- Fundamental frequency estimator

4.1.1 Detailed Description

Tools for the extraction of low level audio descriptors, specifically tailored for the analysis of vocal imitations and the vocal control of SDT models in the SkAT-VG project.

4.2 Zero crossing rate

Typedefs

typedef struct SDTZeroCrossing SDTZeroCrossing

Opaque data structure for a zero crossing rate detector object.

typedef struct SDTZeroCrossing SDTZeroCrossing

Opaque data structure for a zero crossing rate detector object.

Functions

SDTZeroCrossing * SDTZeroCrossing_new (unsigned int size)

Instantiates a zero crossing rate detector.

void SDTZeroCrossing_free (SDTZeroCrossing *x)

Destroys a zero crossing rate detector.

void SDTZeroCrossing_setOverlap (SDTZeroCrossing *x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

• int SDTZeroCrossing_dsp (SDTZeroCrossing *x, double *out, double in)

Signal processing routine. Call this function at sample rate to perform signal analysis.

4.2.1 Detailed Description

Zero crossing rate signal analyzer.

4.2.2 Function Documentation

4.2.2.1 int SDTZeroCrossing_dsp (SDTZeroCrossing * x, double * out, double in)

Signal processing routine. Call this function at sample rate to perform signal analysis.

Parameters

in	X	Pointer to the instance
out	out	Pointer to a double containing the algorithm output
in	in	Input sample

Returns

1 if output available (analysis window full), 0 otherwise

4.2.2.2 void SDTZeroCrossing_free (SDTZeroCrossing *x)

Destroys a zero crossing rate detector.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.2.2.3 SDTZeroCrossing * SDTZeroCrossing_new (unsigned int size)

Instantiates a zero crossing rate detector.

4.2 Zero crossing rate 9

Parameters

in	size	Size of the analysis window, in samples
----	------	---

Returns

Pointer to the new instance

4.2.2.4 void SDTZeroCrossing_setOverlap (SDTZeroCrossing * x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

in	X	Pointer to the instance
in	f	Overlap ratio [0.0, 1.0]

4.3 Myoelastic features extractor

Typedefs

typedef struct SDTMyoelastic SDTMyoelastic

Opaque data structure for a myoelastic feature extractor object.

• typedef struct SDTMyoelastic SDTMyoelastic

Opaque data structure for a myoelastic feature extractor object.

Functions

SDTMyoelastic * SDTMyoelastic_new (int size)

Instantiates a myoelastic feature extractor.

void SDTMyoelastic_free (SDTMyoelastic *x)

Destroys a myoelastic feature extractor.

void SDTMyoelastic_setDcFrequency (SDTMyoelastic *x, double f)

Sets the DC offset cutoff.

void SDTMyoelastic_setLowFrequency (SDTMyoelastic *x, double f)

Sets the low frequency cutoff.

void SDTMyoelastic_setHighFrequency (SDTMyoelastic *x, double f)

Sets the high frequency cutoff.

void SDTMyoelastic_setThreshold (SDTMyoelastic *x, double f)

Sets the amplitude threshold of the input gate. Myoelastic activity is not computed for signals whose amplitude is below this thresold.

int SDTMyoelastic_dsp (SDTMyoelastic *x, double *outs, double in)

Signal processing routine. Call this function at sample rate to perform signal analysis.

4.3.1 Detailed Description

Extracts amount and frequency of slow amplitude variations in the signal. Specifically designed for the detection of myoelastic activity in vocal input.

4.3.2 Function Documentation

4.3.2.1 int SDTMyoelastic_dsp (SDTMyoelastic *x, double * outs, double in)

Signal processing routine. Call this function at sample rate to perform signal analysis.

Parameters

in	X	Pointer to the instance	
out	outs Pointer to an array of four doubles containing the algorithm output (slow myoe-		
		lastic amount and frequency, fast myoelastic amount and frequency)	
in	in	Input sample	

Returns

1 if output available, 0 otherwise

4.3.2.2 void SDTMyoelastic_free (SDTMyoelastic * x)

Destroys a myoelastic feature extractor.

Parameters

in	X	Pointer to the instance to destroy

4.3.2.3 SDTMyoelastic * SDTMyoelastic_new (int size)

Instantiates a myoelastic feature extractor.

Returns

Pointer to the new instance

4.3.2.4 void SDTMyoelastic_setDcFrequency (SDTMyoelastic *x, double f)

Sets the DC offset cutoff.

Parameters

in	X	Pointer to the instance
in	f	DC offset cutoff, in Hz

4.3.2.5 void SDTMyoelastic_setHighFrequency (SDTMyoelastic *x, double f)

Sets the high frequency cutoff.

Parameters

in	X	Pointer to the instance
in	f	High frequency cutoff, in Hz

4.3.2.6 void SDTMyoelastic_setLowFrequency (SDTMyoelastic *x, double f)

Sets the low frequency cutoff.

Parameters

in	Х	Pointer to the instance
in	f	Low frequency cutoff, in Hz

4.3.2.7 void SDTMyoelastic_setThreshold (SDTMyoelastic *x, double f)

Sets the amplitude threshold of the input gate. Myoelastic activity is not computed for signals whose amplitude is below this thresold.

in	X	Pointer to the instance
in	f	Amplitude threshold

4.4 Spectral audio descriptors

Typedefs

typedef struct SDTSpectralFeats SDTSpectralFeats

Opaque data structure for a spectral features extractor.

typedef struct SDTSpectralFeats SDTSpectralFeats

Opaque data structure for a spectral features extractor.

Functions

SDTSpectralFeats * SDTSpectralFeats_new (unsigned int size)

Instantiates a spectral features extractor.

void SDTSpectralFeats_free (SDTSpectralFeats *x)

Destroys a spectral features extractor.

void SDTSpectralFeats_setOverlap (SDTSpectralFeats *x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

void SDTSpectralFeats_setMinFreq (SDTSpectralFeats *x, double f)

Sets the lower frequency bound for spectral analysis. Spectral bins below this frequency are ignored in the audio descriptors computation.

void SDTSpectralFeats setMaxFreq (SDTSpectralFeats *x, double f)

Sets the upper frequency bound for spectral analysis. Spectral bins above this frequency are ignored in the audio descriptors computation.

• int SDTSpectralFeats_dsp (SDTSpectralFeats *x, double *outs, double in)

Signal processing routine. Call this function for each sample to perform signal analysis.

4.4.1 Detailed Description

Spectral features extractor: statistical moments (centroid, spread, skewness, kurtosis), spectral flatness, spectral flux and an onset detection function based on rectified, whitened spectral flux.

4.4.2 Function Documentation

4.4.2.1 int SDTSpectralFeats_dsp (SDTSpectralFeats *x, double *outs, double in)

Signal processing routine. Call this function for each sample to perform signal analysis.

Parameters

in	X	Pointer to the instance
out	outs	Pointer to the firstance Pointer to an array of seven doubles, containing the algorithm outputs. Array members represent the following information respectively: 1. Spectral centroid, 2. Spectral spread, 3. Spectral skewness, 4. Spectral kurtosis, 5. Spectral flatness, 6. Spectral flux, 7. Onset detection function (rectified and whitened spectral flux).
in	in	Input sample

Returns

1 if output available (analysis window full), 0 otherwise

4.4.2.2 void SDTSpectralFeats_free (SDTSpectralFeats *x)

Destroys a spectral features extractor.

Parameters

in	X	Pointer to the instance to destroy

4.4.2.3 SDTSpectralFeats * SDTSpectralFeats_new (unsigned int size)

Instantiates a spectral features extractor.

Parameters

in	size	Size of the analysis window, in samples
----	------	---

Returns

Pointer to the new instance

4.4.2.4 void SDTSpectralFeats_setMaxFreq (SDTSpectralFeats * x, double f)

Sets the upper frequency bound for spectral analysis. Spectral bins above this frequency are ignored in the audio descriptors computation.

in	X	Pointer to the instance
in	f	Maximum analyzed frequency, in Hz

4.4.2.5 void SDTSpectralFeats_setMinFreq (SDTSpectralFeats * x, double f)

Sets the lower frequency bound for spectral analysis. Spectral bins below this frequency are ignored in the audio descriptors computation.

Parameters

in	X	Pointer to the instance
in	f	Minimum analyzed frequency, in Hz

4.4.2.6 void SDTSpectralFeats_setOverlap (SDTSpectralFeats * x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

in	X	Pointer to the instance
in	f	Overlap ratio [0.0, 1.0]

4.5 Fundamental frequency estimator

Typedefs

typedef struct SDTPitch SDTPitch

Opaque data structure for a fundamental frequency estimator.

• typedef struct SDTPitch SDTPitch

Opaque data structure for a fundamental frequency estimator.

Functions

SDTPitch * SDTPitch_new (unsigned int size)

Instantiates a fundamental frequency estimator object.

void SDTPitch free (SDTPitch *x)

Destroys a fundamental frequency estimator instance.

void SDTPitch_setOverlap (SDTPitch *x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

void SDTPitch setTolerance (SDTPitch *x, double f)

Sets the peak detection tolerance. Always choosing the greatest NSDF peak as pitch estimation sometimes leads to wrong octave detection errors. To overcome this problem, some tolerance is introduced in the peak detection algorithm. The chosen NSDF peak is the one with lowest frequency among those with value close enough to the global maximum. A value of 0.0 always selects the global maximum, while a value of 1.0 always selects the last NSDF peak.

int SDTPitch_dsp (SDTPitch *x, double *outs, double in)

Signal processing routine. Call this function for each sample to perform signal analysis.

4.5.1 Detailed Description

The pitch detection algorithm implemented in this object is discussed in the paper "A smarter way to find pitch" by Philip McLeod and Geoff Wyvill (2005) and it is based on the NSDF (Normalized Squared Differences Function), a close relative of the autocorrelation function.

4.5.2 Function Documentation

4.5.2.1 int SDTPitch_dsp (SDTPitch * x, double * outs, double in)

Signal processing routine. Call this function for each sample to perform signal analysis.

in	X	Pointer to the instance
out	outs	Pointer to an array of two doubles, containing the algorithm outputs. Array members represent the following information respectively:
		1. Estimated pitch (Hz),
		2. Pitch clarity [0.0, 1.0].

	in	lowed a smalle
l ln	III	Input sample
		in the second have

Returns

1 if output available (analysis window full), 0 otherwise

4.5.2.2 void SDTPitch_free (SDTPitch * x)

Destroys a fundamental frequency estimator instance.

Parameters

-			
	in	X	Pointer to the instance to destroy

4.5.2.3 SDTPitch * SDTPitch_new (unsigned int size)

Instantiates a fundamental frequency estimator object.

Parameters

in	size	Size of the analysis window, in samples

Returns

Pointer to the new instance

4.5.2.4 void SDTPitch_setOverlap (SDTPitch * x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

Parameters

in	Х	Pointer to the instance
in	f	Overlap ratio [0.0, 1.0]

4.5.2.5 void SDTPitch_setTolerance (SDTPitch * x, double f)

Sets the peak detection tolerance. Always choosing the greatest NSDF peak as pitch estimation sometimes leads to wrong octave detection errors. To overcome this problem, some tolerance is introduced in the peak detection algorithm. The chosen NSDF peak is the one with lowest frequency among those with value close enough to the global maximum. A value of 0.0 always selects the global maximum, while a value of 1.0 always selects the last NSDF peak.

in	X	Pointer to the instance
in	f	Pitch estimation tolerance [0.0, 1.0]

4.6 SDTCommon.h: Common variables and functions

Macros

```
    #define SDT_ver 078

     SDT version number.
• #define SDT_ver_str "078"
     SDT version string.

    #define SDT_PI 3.141592653589793

     Value of Pi.

    #define SDT_TWOPI 6.283185307179586

     Value of 2 * Pi.

    #define SDT_EULER 2.718281828459045

     Euler number.

    #define SDT_SQRT2 1.4142135623730951

     Square root of 2.
• #define SDT_MACH1 340.29
     Mach 1, speed of sound in air under normal atmospheric conditions (m/s)

    #define SDT_EARTH 9.81

     Earth gravity (N/Kg)

    #define SDT MICRO 0.000001

     One millionth, small value often used instead of 0 to avoid division errors.
• #define SDT_QUIET 0.00003
     Gain factor roughly corresponding to a -90dB attenuation.
• #define SDT ver 078
     SDT version number.
• #define SDT_ver_str "078"
     SDT version string.
• #define SDT_PI 3.141592653589793
     Value of Pi.

    #define SDT_TWOPI 6.283185307179586

     Value of 2 * Pi.
• #define SDT EULER 2.718281828459045
     Euler number.
• #define SDT_SQRT2 1.4142135623730951
     Square root of 2.

    #define SDT MACH1 340.29

     Mach 1, speed of sound in air under normal atmospheric conditions (m/s)
• #define SDT_EARTH 9.81
     Earth gravity (N/Kg)

    #define SDT MICRO 0.000001

     One millionth, small value often used instead of 0 to avoid division errors.
• #define SDT QUIET 0.00003
```

Gain factor roughly corresponding to a -90dB attenuation.

Functions

void SDT_setSampleRate (double sampleRate)

Sets the sample rate.

void SDT blackman (double *sig, int n)

Applies a Blackman window to a chunk of samples. Applies a Blackman window to a chunk of samples.

unsigned int SDT_bitReverse (unsigned int u, unsigned int bits)

Reverses the bit order of an unsigned integer of given bit length.

long SDT_clip (long x, long min, long max)

Clips an integer value. Limits the range of an integer value between a given lower bound and upper bound.

• double SDT_expRand (double lambda)

Exponential random number generator. Generates random numbers, following an exponential distribution.

double SDT_fclip (double x, double min, double max)

Clips a floating point value. Limits the range of a floating point value between a given lower bound and upper bound.

double SDT_frand ()

Uniform random number generator. Generates random numbers, following a uniform distribution.

void SDT gaussian1D (double *x, double sigma, int n)

One-dimensional Gaussian kernel. One-dimensional Gaussian kernel. The Gaussian function is computed in the [-1,1] interval with 0 mean and the given standard deviation. The output is normalized so that the sum of all samples is equal to 1.

double SDT gravity (double mass)

Computes earth gravity force. Computes the earth gravity force acting on an object of a given mass.

void SDT_hanning (double *sig, int n)

Applies a Hanning window to a chunk of samples. Applies a Hanning window to a chunk of samples.

void SDT haar (double *sig, long n)

Computes a direct Haar Wavelet Transform of the incoming signal (in place).

void SDT_ihaar (double *sig, long n)

Computes an inverse Haar Wavelet Transform of the incoming signal (in place).

double SDT_kinetic (double mass, double velocity)

Computes kinetic energy. Computes the kinetic energy of an object, given its mass and velocity.

• unsigned int SDT_nextPow2 (unsigned int u)

Returns the smallest power of 2 greater or equal than u.

• double SDT_normalize (double x, double min, double max)

Rescales a value of known range into the [0.0, 1.0] interval. Rescales a value of known range into the [0.0, 1.0] interval.

• void SDT_normalizeWindow (double *sig, int n)

Normalizes samples in a window so that their sum is equal to 1.

void SDT ones (double *sig, int n)

Fills a buffer with ones. Fills a buffer with ones.

• double SDT_rank (double *x, int n, int k)

Finds the kth smallest value in the input array. Finds the kth smallest value in the input array.

void SDT_removeDC (double *sig, int n)

Removes the global average from samples in a window.

• int SDT roi (double *sig, int *peaks, int *bounds, int d, int n)

Finds regions of influence (local maxima and minima) in a buffer. Finds regions of influence (local maxima and minima) in a buffer.

• double SDT samplesInAir (double length)

Time needed to travel the given distance at Mach 1. Computes the amount of time, in samples, needed by a sound wave propagating in air to travel a given distance. Particularly useful to set the delay times of comb filters and/or digital waveguides representing hollow cavities.

double SDT scale (double x, double srcMin, double srcMax, double dstMin, double dstMax, double gamma)

Rescales a value from a source range to a target range. Rescales a value from a source range to a target range.

• int SDT_signum (double x)

Computes the signum function. Computes the signum function.

void SDT_sinc (double *sig, double w, int n)

Applies a sinc window (sin(wt)/(wt)) to a chunk of samples. Applies a sinc window (sin(wt)/(wt)) to a chunk of samples.

double SDT_truePeakPos (double *sig, int peak)

Performs quadratic interpolation to estimate the true position of a peak. Performs quadratic interpolation to estimate the true position of a peak.

• double SDT_truePeakValue (double *sig, int peak)

Performs quadratic interpolation to estimate the true amplitude value of a peak. Performs quadratic interpolation to estimate the true amplitude value of a peak.

double SDT_wrap (double x)

Wraps a phase in the range -pi/pi. Wraps a phase in the range -pi/pi.

void SDT_zeros (double *sig, int n)

Fills a buffer with zeros. Fills a buffer with zeros.

Variables

• double SDT_sampleRate

Sampling frequency (Hz)

double SDT_timeStep

Sampling period (s)

• double SDT_sampleRate

Sampling frequency (Hz)

double SDT_timeStep

Sampling period (s)

4.6.1 Detailed Description

Macros, variables and functions commonly used by all the SDT objects. SDTCommon.h should always be included when using other SDT modules.

4.6.2 Function Documentation

4.6.2.1 unsigned int SDT_bitReverse (unsigned int u, unsigned int bits)

Reverses the bit order of an unsigned integer of given bit length.

Parameters

in	и	Input value
in	bits	Number of bits to reverse

Returns

Unsigned integer with reversed bits

4.6.2.2 void SDT_blackman (double * sig, int n)

Applies a Blackman window to a chunk of samples. Applies a Blackman window to a chunk of samples.

Parameters

in,out	sig	samples to window
in	n	window size

4.6.2.3 long SDT_clip (long x, long min, long max)

Clips an integer value. Limits the range of an integer value between a given lower bound and upper bound.

Parameters

in	X	Integer value to clip
in	min	Lower limit
in	max	Upper limit

Returns

Clipped integer value

4.6.2.4 double SDT_expRand (double lambda)

Exponential random number generator. Generates random numbers, following an exponential distribution.

Parameters

in	lambda	Rate of the exponential distribution.

Returns

Randomly generated value [0.0, +inf]

4.6.2.5 double SDT_fclip (double x, double min, double max)

Clips a floating point value. Limits the range of a floating point value between a given lower bound and upper bound.

Parameters

in	X	Floating point value to clip
in	min	Lower limit
in	max	Upper limit

Returns

Clipped floating point value

4.6.2.6 double SDT_frand ()

Uniform random number generator. Generates random numbers, following a uniform distribution.

Returns

Randomly generated value [0.0, 1.0]

4.6.2.7 void SDT_gaussian1D (double *x, double sigma, int n)

One-dimensional Gaussian kernel. One-dimensional Gaussian kernel. The Gaussian function is computed in the [-1,1] interval with 0 mean and the given standard deviation. The output is normalized so that the sum of all samples is equal to 1.

Parameters

out	X	pointer to the kernel samples
in	sigma	standard deviation of the Gaussian function
in	n	kernel size

4.6.2.8 double SDT_gravity (double mass)

Computes earth gravity force. Computes the earth gravity force acting on an object of a given mass.

Parameters

in	mass	Mass of the object (Kg)

Returns

Earth gravity force (N)

4.6.2.9 void SDT_haar (double * sig, long n)

Computes a direct Haar Wavelet Transform of the incoming signal (in place).

Parameters

in,out	sig	incoming signals
in	n	window size

4.6.2.10 void SDT_hanning (double * sig, int n)

Applies a Hanning window to a chunk of samples. Applies a Hanning window to a chunk of samples.

Parameters

in,out	sig	samples to window
in	n	window size

4.6.2.11 void SDT_ihaar (double * sig, long n)

Computes an inverse Haar Wavelet Transform of the incoming signal (in place).

Parameters

in,out	sig	incoming signals
in	n	window size

4.6.2.12 double SDT_kinetic (double mass, double velocity)

Computes kinetic energy. Computes the kinetic energy of an object, given its mass and velocity.

in	mass	Mass of the object (Kg)
in	velocity	Velocity of the object (m/s)

Returns

Kinetic energy (J)

4.6.2.13 unsigned int SDT_nextPow2 (unsigned int u)

Returns the smallest power of 2 greater or equal than u.

Parameters

in	и	Input value

Returns

Smallest power of 2 greater or equal than u

4.6.2.14 double SDT_normalize (double x, double min, double max)

Rescales a value of known range into the [0.0, 1.0] interval. Rescales a value of known range into the [0.0, 1.0] interval.

Parameters

in	X	Value to normalize
in	min	Lower bound
in	max	Upper bound

Returns

Value rescaled from [min, max] to [0.0, 1.0]

4.6.2.15 void SDT_normalizeWindow (double * sig, int n)

Normalizes samples in a window so that their sum is equal to 1.

Parameters

in,out	sig	window to normalize
in	n	window size

4.6.2.16 void SDT_ones (double * sig, int n)

Fills a buffer with ones. Fills a buffer with ones.

Parameters

in,out	sig	pointer to the buffer
in	n	buffer size

4.6.2.17 double SDT_rank (double * x, int n, int k)

Finds the kth smallest value in the input array. Finds the kth smallest value in the input array.

Parameters

in	Х	input array
in	n	array size
in	k	item rank

Returns

kth smallest value in the array

4.6.2.18 void SDT_removeDC (double * sig, int n)

Removes the global average from samples in a window.

Parameters

in,out	sig	window to remove the average from
in	n	window size

4.6.2.19 int SDT_roi (double * sig, int * peaks, int * bounds, int d, int n)

Finds regions of influence (local maxima and minima) in a buffer. Finds regions of influence (local maxima and minima) in a buffer.

Parameters

in	sig	pointer to the buffer
out	peaks	indexes of the local maxima in the buffer
out	bounds	indexes of the local minima in the buffer

4.6.2.20 double SDT_samplesInAir (double length)

Time needed to travel the given distance at Mach 1. Computes the amount of time, in samples, needed by a sound wave propagating in air to travel a given distance. Particularly useful to set the delay times of comb filters and/or digital waveguides representing hollow cavities.

Parameters

in	length	Distance (m)
----	--------	--------------

Returns

Amount of samples to travel the distance at Mach 1

4.6.2.21 double SDT_scale (double x, double srcMin, double srcMax, double dstMin, double dstMax, double gamma)

Rescales a value from a source range to a target range. Rescales a value from a source range to a target range.

in	X	Value to rescale

in	srcMin	Lower bound of source value
in	srcMax	Upper bound of source value
in	dstMin	Lower bound of rescaled value
in	dstMax	Upper bound of rescaled value
in	gamma	Gamma factor

Returns

Value rescaled from [srcMin, srcMax] to [dstMin, dstMax] with gamma factor gamma

4.6.2.22 void SDT_setSampleRate (double sampleRate)

Sets the sample rate.

Parameters

in	sampleRate	Sample rate (Hz).

4.6.2.23 int SDT_signum (double x)

Computes the signum function. Computes the signum function.

Parameters

in	X	Input value

Returns

Signum of x

4.6.2.24 void SDT_sinc (double * sig, double w, int n)

Applies a sinc window $(\sin(wt)/(wt))$ to a chunk of samples. Applies a sinc window $(\sin(wt)/(wt))$ to a chunk of samples.

Parameters

in,out	sig	samples to window
in	W	sinc parameter
in	n	window size

4.6.2.25 double SDT_truePeakPos (double * sig, int peak)

Performs quadratic interpolation to estimate the true position of a peak. Performs quadratic interpolation to estimate the true position of a peak.

Parameters

in	sig	signal buffer
in	peak	index of a local maximum

Returns

true peak position

4.6.2.26 double SDT_truePeakValue (double * sig, int peak)

Performs quadratic interpolation to estimate the true amplitude value of a peak. Performs quadratic interpolation to estimate the true amplitude value of a peak.

Parameters

in	sig	signal buffer
in	peak	index of a local maximum

Returns

true peak value

4.6.2.27 double SDT_wrap (double x)

Wraps a phase in the range -pi/pi. Wraps a phase in the range -pi/pi.

Parameters

4.6.2.28 void SDT_zeros (double * sig, int n)

Fills a buffer with zeros. Fills a buffer with zeros.

in,out	sig	pointer to the buffer
in	n	buffer size

4.7 SDTComplex.h: Handling complex numbers

Data Structures

struct SDTComplex

Data structure containing the real and imaginary part of a complex number.

Typedefs

typedef struct SDTComplex SDTComplex

Data structure containing the real and imaginary part of a complex number.

typedef struct SDTComplex SDTComplex

Data structure containing the real and imaginary part of a complex number.

Functions

• SDTComplex SDTComplex_car (double real, double imag)

Returns a complex number with the given real and imaginary parts.

SDTComplex SDTComplex_exp (double phase)

Returns a complex exponential with base e and given phase.

double SDTComplex_abs (SDTComplex a)

Returns the absolute value (magnitude) of a complex number.

double SDTComplex_angle (SDTComplex a)

Returns the angle (phase) of a complex number.

SDTComplex SDTComplex_conj (SDTComplex a)

Returns the complex conjugate of a complex number.

SDTComplex SDTComplex_add (SDTComplex a, SDTComplex b)

Returns the sum of two complex numbers.

SDTComplex SDTComplex sub (SDTComplex a, SDTComplex b)

Returns the difference of two complex numbers.

SDTComplex SDTComplex_mult (SDTComplex a, SDTComplex b)

Returns the multiplication between two complex numbers.

SDTComplex SDTComplex_div (SDTComplex a, SDTComplex b)

Returns the division between two complex numbers.

SDTComplex SDTComplex_addReal (SDTComplex a, double b)

Returns the sum of a complex number and a real number.

SDTComplex SDTComplex_subReal (SDTComplex a, double b)

Returns the difference of a complex number and a real number.

SDTComplex SDTComplex_realSub (double a, SDTComplex b)

Returns the difference of a real number and a complex number.

• SDTComplex SDTComplex_multReal (SDTComplex a, double b)

Returns the multiplication between a complex number and a real number.

• SDTComplex SDTComplex_divReal (SDTComplex a, double b)

Returns the division between a complex number and a real number.

• SDTComplex SDTComplex_realDiv (double a, SDTComplex b)

Returns the division between a real number and a complex number.

4.7.1 Detailed Description

This module contains data structures and functions to perform basic operations with complex numbers.

4.7.2 Function Documentation

4.7.2.1 double SDTComplex_abs (SDTComplex a)

Returns the absolute value (magnitude) of a complex number.

Parameters

in	а	Input value

Returns

Absolute value of input

4.7.2.2 SDTComplex SDTComplex_add (SDTComplex a, SDTComplex b)

Returns the sum of two complex numbers.

Parameters

in	а	First operand
in	b	Second operand

Returns

a plus b

4.7.2.3 SDTComplex SDTComplex_addReal (SDTComplex a, double b)

Returns the sum of a complex number and a real number.

Parameters

in	а	Complex operand
in	b	Real operand

Returns

a plus b

4.7.2.4 double SDTComplex_angle (SDTComplex a)

Returns the angle (phase) of a complex number.

Parameters

In a mput value	in	а	Input value
-----------------	----	---	-------------

Returns

Angle of input

4.7.2.5 SDTComplex SDTComplex_car (double real, double imag)

Returns a complex number with the given real and imaginary parts.

Parameters

in	real	Real part
in	imag	Imaginary part

Returns

Complex number

4.7.2.6 SDTComplex SDTComplex_conj (SDTComplex a)

Returns the complex conjugate of a complex number.

Parameters

in	а	Input value
----	---	-------------

Returns

Complex conjugate of input

4.7.2.7 SDTComplex SDTComplex_div (SDTComplex a, SDTComplex b)

Returns the division between two complex numbers.

Parameters

in	а	First operand
in	b	Second operand

Returns

a divided by b

4.7.2.8 SDTComplex SDTComplex_divReal (SDTComplex a, double b)

Returns the division between a complex number and a real number.

Parameters

in	а	Complex operand
in	b	Real operand

Returns

a divided by b

4.7.2.9 SDTComplex SDTComplex_exp (double *phase*)

Returns a complex exponential with base e and given phase.

Parameters

in	phase	Phase
----	-------	-------

Returns

Complex exponential

4.7.2.10 SDTComplex SDTComplex_mult (SDTComplex a, SDTComplex b)

Returns the multiplication between two complex numbers.

Parameters

in	а	First operand
in	b	Second operand

Returns

a times b

4.7.2.11 SDTComplex SDTComplex_multReal (SDTComplex a, double b)

Returns the multiplication between a complex number and a real number.

Parameters

in	а	Complex operand
in	b	Real operand

Returns

a times b

4.7.2.12 SDTComplex SDTComplex_realDiv (double a, SDTComplex b)

Returns the division between a real number and a complex number.

Parameters

in	а	Real operand
in	b	Complex operand

Returns

a divided by b

4.7.2.13 SDTComplex SDTComplex_realSub (double a, SDTComplex b)

Returns the difference of a real number and a complex number.

Parameters

in	а	Real operand
in	b	Complex operand

Returns

a minus b

4.7.2.14 SDTComplex SDTComplex_sub (SDTComplex a, SDTComplex b)

Returns the difference of two complex numbers.

Parameters

in	а	First operand
in	b	Second operand

Returns

a minus b

4.7.2.15 SDTComplex SDTComplex_subReal (SDTComplex a, double b)

Returns the difference of a complex number and a real number.

Parameters

in	а	Complex operand
in	b	Real operand

Returns

a minus b

4.8 SDTControl.h: Compound solid interactions

Modules

- Bouncing
- Breaking
- Crumpling
- Rolling
- Scraping

4.8.1 Detailed Description

Objects designed to provide a temporal control layer over basic mechanical interactions, to simulate complex textures, evolving patterns and compound sound events.

4.9 Bouncing 35

4.9 Bouncing

Typedefs

typedef struct SDTBouncing SDTBouncing

Opaque data structure for the crumpling object.

typedef struct SDTBouncing SDTBouncing

Opaque data structure for the crumpling object.

Functions

SDTBouncing * SDTBouncing_new ()

Object constructor.

void SDTBouncing free (SDTBouncing *x)

Object destructor.

void SDTBouncing_setRestitution (SDTBouncing *x, double f)

Sets the coefficient of restitution.

void SDTBouncing_setHeight (SDTBouncing *x, double f)

Sets the initial height of the falling object.

• void SDTBouncing_setIrregularity (SDTBouncing *x, double f)

Sets the irregularity of the shape of the object.

void SDTBouncing_reset (SDTBouncing *x)

Resets the bouncing process, restoring its initial energy.

double SDTBouncing_dsp (SDTBouncing *x)

Single iteration of the whole buncing process. Call this routine in a loop to simulate the bouncing process. The loop should end when SDTBouncing_hasFinished() returns true.

int SDTBouncing_hasFinished (SDTBouncing *x)

Checks if the bouncing process is finished, i.e. if the remaining energy is 0.

4.9.1 Detailed Description

Control layer for the impact model, generating (irregular) bouncing sonic textures. The output should be used to control the impact velocity between two resonators.

4.9.2 Function Documentation

4.9.2.1 double SDTBouncing_dsp (SDTBouncing *x)

Single iteration of the whole buncing process. Call this routine in a loop to simulate the bouncing process. The loop should end when SDTBouncing_hasFinished() returns true.

Returns

Impact velocity of the bounce

4.9.2.2 void SDTBouncing_free (SDTBouncing * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.9.2.3 int SDTBouncing_hasFinished (SDTBouncing * x)

Checks if the bouncing process is finished, i.e. if the remaining energy is 0.

Returns

1 (true) if the remaining energy is \leq = 0, 0 (false) otherwise.

4.9.2.4 SDTBouncing * SDTBouncing_new()

Object constructor.

Returns

Pointer to the new instance

4.9.2.5 void SDTBouncing_setHeight (SDTBouncing *x, double f)

Sets the initial height of the falling object.

Parameters

in	f	Object height, in m.

4.9.2.6 void SDTBouncing_setIrregularity (SDTBouncing *x, double f)

Sets the irregularity of the shape of the object.

Parameters

in	f	Object shape irregularity (deviation from a spherical shape) [0,1]

4.9.2.7 void SDTBouncing_setRestitution (SDTBouncing *x, double f)

Sets the coefficient of restitution.

in	f	Coefficient of restitution of the bouncing process
----	---	--

4.10 Breaking 37

4.10 Breaking

Typedefs

typedef struct SDTBreaking SDTBreaking

Opaque data structure for the breaking object.

typedef struct SDTBreaking SDTBreaking

Opaque data structure for the breaking object.

Functions

SDTBreaking * SDTBreaking_new ()

Object constructor.

void SDTBreaking free (SDTBreaking *x)

Object destructor.

void SDTBreaking_setStoredEnergy (SDTBreaking *x, double f)

Sets the total energy stored in the object.

void SDTBreaking_setCrushingEnergy (SDTBreaking *x, double f)

Sets the crushing energy.

void SDTBreaking_setGranularity (SDTBreaking *x, double f)

Sets the event density of the crumpling process.

void SDTBreaking_setFragmentation (SDTBreaking *x, double f)

Sets the amount of progressive fragmentation of the object during the process.

void SDTBreaking_reset (SDTBreaking *x)

Resets the crumpling process, restoring its initial energy and triggering the first micro impact.

void SDTBreaking_dsp (SDTBreaking *x, double *outs)

Single iteration of the whole breaking process. Call this routine in a loop to simulate a breaking process. The loop should end when SDTBreaking_hasFinished() returns true.

int SDTBreaking_hasFinished (SDTBreaking *x)

Checks if the breaking process is finished, i.e. if the remaining energy is 0.

4.10.1 Detailed Description

Control layer for the impact model, generating breaking sonic textures. Two main outputs are exposed: energy and size. The former should be used to control the impact velocity, the latter should be used to control the size of the resonators.

4.10.2 Function Documentation

```
4.10.2.1 void SDTBreaking_dsp ( SDTBreaking * x, double * outs )
```

Single iteration of the whole breaking process. Call this routine in a loop to simulate a breaking process. The loop should end when SDTBreaking_hasFinished() returns true.

Parameters

out	outs	Pointer to the output array: impact energy and fragment size
Out	Outo	Tomtor to the output array. Impact onergy and magment size

4.10.2.2 void SDTBreaking_free (SDTBreaking * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.10.2.3 int SDTBreaking_hasFinished (SDTBreaking * x)

Checks if the breaking process is finished, i.e. if the remaining energy is 0.

Returns

1 (true) if the remaining energy is \leq = 0, 0 (false) otherwise.

4.10.2.4 SDTBreaking * SDTBreaking_new()

Object constructor.

Returns

Pointer to the new instance

4.10.2.5 void SDTBreaking_reset (SDTBreaking * x)

Resets the crumpling process, restoring its initial energy and triggering the first micro impact.

Parameters

out	outs	Pointer to the output array: impact energy and fragment size
-----	------	--

4.10.2.6 void SDTBreaking_setCrushingEnergy (SDTBreaking * x, double f)

Sets the crushing energy.

Parameters

in	f	Average energy of the micro impacts, compared to the global energy of the
		process, in N

4.10.2.7 void SDTBreaking_setFragmentation (SDTBreaking *x, double f)

Sets the amount of progressive fragmentation of the object during the process.

Parameters

in	f	Object fragmentation [0, 1]
111	1	Object fragmentation [0, 1]

4.10.2.8 void SDTBreaking_setGranularity (SDTBreaking *x, double f)

Sets the event density of the crumpling process.

4.10 Breaking 39

Parameters

in	f	Event density [0, 1]
----	---	----------------------

4.10.2.9 void SDTBreaking_setStoredEnergy (SDTBreaking *x, double f)

Sets the total energy stored in the object.

in	f	Total stored energy consumed by the micro impacts, in N
----	---	---

4.11 Crumpling

Typedefs

typedef struct SDTCrumpling SDTCrumpling

Opaque data structure for the crumpling object.

typedef struct SDTCrumpling SDTCrumpling

Opaque data structure for the crumpling object.

Functions

SDTCrumpling * SDTCrumpling_new ()

Object constructor.

void SDTCrumpling_free (SDTCrumpling *x)

Object destructor.

void SDTCrumpling_setCrushingEnergy (SDTCrumpling *x, double f)

Sets the crushing energy.

• void SDTCrumpling_setGranularity (SDTCrumpling *x, double f)

Sets the event density of the crumpling process.

• void SDTCrumpling_setFragmentation (SDTCrumpling *x, double f)

Sets the amount of fragmentation of the object during the process.

void SDTCrumpling_dsp (SDTCrumpling *x, double *outs)

Single iteration of a crumpling process. Call this routine in a loop to simulate a crumpling process. Unlike in the breaking algorithm, iterations do not cause energy loss and the process can continue indefinitely until explicitly interrupted.

4.11.1 Detailed Description

Control layer for the impact model, generating crumpling sonic textures. Two main outputs are exposed: energy and size. The former should be used to control the impact velocity, the latter should be used to control the size of the resonators.

4.11.2 Function Documentation

4.11.2.1 void SDTCrumpling_dsp (SDTCrumpling * x, double * outs)

Single iteration of a crumpling process. Call this routine in a loop to simulate a crumpling process. Unlike in the breaking algorithm, iterations do not cause energy loss and the process can continue indefinitely until explicitly interrupted.

Parameters

out	outs	Pointer to the output array: impact energy and fragment size

4.11.2.2 void SDTCrumpling_free (SDTCrumpling *x)

Object destructor.

4.11 Crumpling 41

in	Х	Pointer to the instance to destroy
	**	. on to the metanes to decine

4.11.2.3 SDTCrumpling * SDTCrumpling_new ()

Object constructor.

Returns

Pointer to the new instance

4.11.2.4 void SDTCrumpling_setCrushingEnergy (SDTCrumpling *x, double f)

Sets the crushing energy.

Parameters

in	f	Average energy of the micro impacts, compared to the global energy of the
		process [0, 1]

4.11.2.5 void SDTCrumpling_setFragmentation (SDTCrumpling * x, double f)

Sets the amount of fragmentation of the object during the process.

Parameters

in	f	Object fragmentation [0, 1]
----	---	-----------------------------

4.11.2.6 void SDTCrumpling_setGranularity (SDTCrumpling * x, double f)

Sets the event density of the crumpling process.

in	f	Event density [0, 1]
----	---	----------------------

4.12 Rolling

Typedefs

typedef struct SDTRolling SDTRolling

Opaque data structure for the rolling object.

typedef struct SDTRolling SDTRolling

Opaque data structure for the rolling object.

Functions

• SDTRolling * SDTRolling new ()

Object constructor.

• void SDTRolling_free (SDTRolling *x)

Object destructor.

void SDTRolling_setGrain (SDTRolling *x, double f)

Sets the grain of the surface. This parameter affects the density of the micro-impacts: Lower values result in a bumpier rolling, higher values result in a smoother rolling.

void SDTRolling_setDepth (SDTRolling *x, double f)

Sets the average bump depth. This parameter affects the energy of the micro-impacts.

• void SDTRolling_setMass (SDTRolling *x, double f)

Sets the rolling mass. The mass parameter of the controlled object should be updated accordingly.

void SDTRolling_setVelocity (SDTRolling *x, double f)

Sets the rolling velocity.

• double SDTRolling_dsp (SDTRolling *x, double in)

Signal processing routine. Call this function at sample rate to compute the force acting on the rolling object.

4.12.1 Detailed Description

Control layer for the impact model, generating rolling sonic textures. The output is a force, which should be applied to an inertial mass hitting a resonator.

4.12.2 Function Documentation

4.12.2.1 double SDTRolling_dsp (SDTRolling *x, double in)

Signal processing routine. Call this function at sample rate to compute the force acting on the rolling object.

Parameters

in Surface profile, as an audio signal	in		in	in	Surface profile, as an audio signal
--	----	--	----	----	-------------------------------------

Returns

Normal force on the exciter

4.12.2.2 void SDTRolling_free (SDTRolling * x)

Object destructor.

4.12 Rolling 43

Parameters

2	.,	Deinter to the instance to destroy
ΤΠ	X	Pointer to the instance to destroy

4.12.2.3 SDTRolling * SDTRolling_new()

Object constructor.

Returns

Pointer to the new instance

4.12.2.4 void SDTRolling_setDepth (SDTRolling * x, double f)

Sets the average bump depth. This parameter affects the energy of the micro-impacts.

Parameters

in	f	Average depth of the surface bumps
711	,	Average depth of the surface bumps

4.12.2.5 void SDTRolling_setGrain (SDTRolling * x, double f)

Sets the grain of the surface. This parameter affects the density of the micro-impacts: Lower values result in a bumpier rolling, higher values result in a smoother rolling.

Parameters

i i i i i i i i i i i i i i i i i i i	in	f	Surface grain [0, 1]
---------------------------------------	----	---	----------------------

4.12.2.6 void SDTRolling_setMass (SDTRolling * x, double f)

Sets the rolling mass. The mass parameter of the controlled object should be updated accordingly.

Parameters

in	f	Mass of the rolling object, in Kg

4.12.2.7 void SDTRolling_setVelocity (SDTRolling * x, double f)

Sets the rolling velocity.

in	f	Rolling velocity
----	---	------------------

4.13 Scraping

Typedefs

typedef struct SDTScraping SDTScraping

Opaque data structure for the scraping object.

typedef struct SDTScraping SDTScraping

Opaque data structure for the scraping object.

Functions

SDTScraping * SDTScraping_new ()

Object constructor.

void SDTScraping_free (SDTScraping *x)

Object destructor.

void SDTScraping_setGrain (SDTScraping *x, double f)

Sets the grain of the surface. This parameter affects the density of the micro-impacts: Lower values result in a rougher scraping, higher values result in a smoother scraping.

void SDTScraping_setForce (SDTScraping *x, double f)

Sets the normal force of the scraping probe on the surface. This parameter affects the energy of the micro-impacts.

• void SDTScraping_setVelocity (SDTScraping *x, double f)

Sets the scraping velocity.

double SDTScraping_dsp (SDTScraping *x, double in)

Signal processing routine. Call this function at sample rate to compute the force acting on the scraped surface.

4.13.1 Detailed Description

Control layer for resonators, generating scraping sonic textures. The output is a force, which should be applied directly to a single resonator. Interactors are not needed, although friction with another solid can be used to add a rubbing character to the sound.

4.13.2 Function Documentation

4.13.2.1 double SDTScraping_dsp (SDTScraping * x, double in)

Signal processing routine. Call this function at sample rate to compute the force acting on the scraped surface.

Parameters

in	in	Surface profile as an audio signal
711	111	Surface profile, as an audio signal

Returns

Normal force on the resonator

4.13.2.2 void SDTScraping_free (SDTScraping * x)

Object destructor.

4.13 Scraping 45

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.13.2.3 SDTScraping * SDTScraping_new()

Object constructor.

Returns

Pointer to the new instance

4.13.2.4 void SDTScraping_setForce (SDTScraping * x, double f)

Sets the normal force of the scraping probe on the surface. This parameter affects the energy of the micro-impacts.

Parameters

in	f	Normal force of the scraping probe on the resonating surface
	· .	rtornarior of the coraping proper on the reconating carrace

4.13.2.5 void SDTScraping_setGrain (SDTScraping * x, double f)

Sets the grain of the surface. This parameter affects the density of the micro-impacts: Lower values result in a rougher scraping, higher values result in a smoother scraping.

Parameters

in	f	Surface grain [0, 1]

4.13.2.6 void SDTScraping_setVelocity (SDTScraping * x, double f)

Sets the scraping velocity.

in Probe velocity

4.14 SDTDCMotor.h: Electric motors

Typedefs

typedef struct SDTDCMotor SDTDCMotor

Opaque data structure for the electric motor synthesis model.

typedef struct SDTDCMotor SDTDCMotor

Opaque data structure for the electric motor synthesis model.

Functions

SDTDCMotor * SDTDCMotor_new (long maxSize)

Object constructor.

void SDTDCMotor free (SDTDCMotor *x)

Object destructor.

void SDTDCMotor setFilters (SDTDCMotor *x)

Sets the filter coefficients. Call this function whenever the sample rate changes.

void SDTDCMotor setRpm (SDTDCMotor *x, double f)

Sets the Revolutions Per Minute (RPM) of the engine rotor.

void SDTDCMotor_setLoad (SDTDCMotor *x, double f)

Sets the mechanical stress on the rotor.

void SDTDCMotor_setCoils (SDTDCMotor *x, long I)

Sets the number of coils on the rotor.

void SDTDCMotor_setSize (SDTDCMotor *x, double f)

Sets the size of the chassis. The maximum chassis size depends on the buffer length defined at construction time and on the current sampling rate.

void SDTDCMotor setReson (SDTDCMotor *x, double f)

Sets the amount of resonance caused by the chassis.

void SDTDCMotor_setGearRatio (SDTDCMotor *x, double f)

Sets the gear ratio of the engine.

void SDTDCMotor_setHarshness (SDTDCMotor *x, double f)

Sets the harshness of the engine sound.

void SDTDCMotor_setRotorGain (SDTDCMotor *x, double f)

Sets the sound volume coming from the rotor.

void SDTDCMotor_setGearGain (SDTDCMotor *x, double f)

Sets the sound volume coming from the gears.

void SDTDCMotor_setBrushGain (SDTDCMotor *x, double f)

Sets the sound volume coming from the commutator ring and brushes.

void SDTDCMotor_setAirGain (SDTDCMotor *x, double f)

Sets the sound volume of the air turbulence caused by rotation.

double SDTDCMotor_dsp (SDTDCMotor *x)

Signal processing routine. Call this function at sample rate to synthesize an electric motor sound.

4.14.1 Detailed Description

Physically informed model for the synthesis of electric motor sounds.

Electric motors exploit magnetic induction to convert electric energy into mechanical energy. An ideal electric motor should be perfectly silent. In practice, however, rotors are never perfectly balanced and generate pitched tones depending on their revolutions per minute (RPM). Moreover, contacts between parts cause friction noise. Finally, rotation causes air movement and therefore turbulence noise, sometimes increased by the presence of a cooling fan attached to the rotor.

The pitched tone of the rotor is obtained through additive synthesis, summing a fixed number of harmonic partials. Frequency modulation simulates the unevenness in the rotation caused by attached loads. Resonances modes of the chassis are modeled through a comb filter. Aerodynamic turbulence caused by the spinning parts is synthesized with bandpass-filtered white noise, exactly like in the gas model.

4.14.2 Function Documentation

4.14.2.1 double SDTDCMotor_dsp (SDTDCMotor * x)

Signal processing routine. Call this function at sample rate to synthesize an electric motor sound.

Returns

Computed audio sample

4.14.2.2 void SDTDCMotor_free (SDTDCMotor * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.14.2.3 SDTDCMotor * SDTDCMotor_new (long maxSize)

Object constructor.

Parameters

in	maxSize	Buffer length of the internal comb filter, in samples
----	---------	---

Returns

Pointer to the new instance

4.14.2.4 void SDTDCMotor_setAirGain (SDTDCMotor *x, double f)

Sets the sound volume of the air turbulence caused by rotation.

Parameters

in	f	Air gain [0, 1]

4.14.2.5 void SDTDCMotor_setBrushGain (SDTDCMotor *x, double f)

Sets the sound volume coming from the commutator ring and brushes.

Parameters

in	f	Brush gain [0, 1]

4.14.2.6 void SDTDCMotor_setCoils (SDTDCMotor * x, long I)

Sets the number of coils on the rotor.

Parameters

in	1	Number of coils on the rotor
----	---	------------------------------

4.14.2.7 void SDTDCMotor_setGearGain (SDTDCMotor *x, double f)

Sets the sound volume coming from the gears.

Parameters

in	f	Gear gain [0, 1]
	•	, s.ou. gu [c, .]

4.14.2.8 void SDTDCMotor_setGearRatio (SDTDCMotor *x, double f)

Sets the gear ratio of the engine.

Parameters

in	4	Coor rotio
T11	1	Geal Tallo

4.14.2.9 void SDTDCMotor_setHarshness (SDTDCMotor *x, double f)

Sets the harshness of the engine sound.

Parameters

in	f	Harshness [0, 1]

4.14.2.10 void SDTDCMotor_setLoad (SDTDCMotor * x, double f)

Sets the mechanical stress on the rotor.

Parameters

in	f	Engine load [0, 1]

4.14.2.11 void SDTDCMotor_setReson (SDTDCMotor * x, double f)

Sets the amount of resonance caused by the chassis.

Parameters

in	f	Chassis resonance [0, 1]

4.14.2.12 void SDTDCMotor_setRotorGain (SDTDCMotor * x, double f)

Sets the sound volume coming from the rotor.

in	f	Rotor gain [0, 1]

4.14.2.13 void SDTDCMotor_setRpm (SDTDCMotor * x, double f)

Sets the Revolutions Per Minute (RPM) of the engine rotor.

Parameters

in	f	Engine RPM
----	---	------------

4.14.2.14 void SDTDCMotor_setSize (SDTDCMotor *x, double f)

Sets the size of the chassis. The maximum chassis size depends on the buffer length defined at construction time and on the current sampling rate.

in	f	Chassis length, in m

4.15 SDTDemix.h: Transient/tonal/residual components separator

Typedefs

typedef struct SDTDemix SDTDemix

Opaque data structure for the percussive/harmonic/residual components separator.

typedef struct SDTDemix SDTDemix

Opaque data structure for the percussive/harmonic/residual components separator.

Functions

SDTDemix * SDTDemix_new (int size, int radius)

Object constructor.

void SDTDemix free (SDTDemix *x)

Object destructor.

void SDTDemix_setOverlap (SDTDemix *x, double f)

Sets the window overlapping factor.

void SDTDemix_setNoiseThreshold (SDTDemix *x, double f)

Sets the noise threshold.

void SDTDemix_setTonalThreshold (SDTDemix *x, double f)

Sets the tornal threshold.

void SDTDemix_dsp (SDTDemix *x, double *outs, double in)

Signal processing routine. Call this function at sample rate to separate an arbitrary signal into its percussive/harmonic/residual components.

4.15.1 Detailed Description

This algorithm looks for vertical and horizontal structures in the spectrogram to separate an arbitrary audio signal into its percussive (transients), harmonic (sustained tones) and residual (noise) components. It is based on a technique called structure tensor, frequently used in image processing for edge and corner detection or to estimate the orientation of an object.

The structure tensor can be thought as a smoothed gradient of the spectrogram, which describes the consistency and direction of changes in the energy content of each bin. The anisotropy (consistency) and direction descriptors extracted from the structure tensor are used to classify the spectrogram bins into three categories: Bins which do not exhibit a particular gradient direction (low anisotropy) become part of the residual, noisy component; Bins which tend to have a vertical orientation (high anisotropy, high direction) are included in the percussive component; Bins with a mostly horizontal orientation (high anisotropy, low direction) fall into the harmonic component.

This percussive/harmonic/residual separation is suitable to separate attacks, decays and noise from a musical signal, or to isolate myoelastic (percussive), phonatory (harmonic) and turbulent (noisy) activities from a vocal signal. In particular, the algorithm can be used as a preprocessing step to improve the results of the myoelastic detector, pitch tracker and spectral moments extractor present in the analysis part of the Sound Design Toolkit.

4.15.2 Function Documentation

```
4.15.2.1 void SDTDemix_dsp ( SDTDemix * x, double * outs, double in )
```

Signal processing routine. Call this function at sample rate to separate an arbitrary signal into its percussive/harmonic/residual components.

Parameters

out	outs	Pointer to a 3-elements output array. outs[0] is the percussive component,
		outs[1] is the harmonic component and outs[2] is the residual.
in	in	Input sample

4.15.2.2 void SDTDemix_free (SDTDemix * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.15.2.3 SDTDemix * SDTDemix_new (int size, int radius)

Object constructor.

Parameters

in	size	Analysis window length, in samples
in	radius	Smoothing kernel radius, in samples

Returns

Pointer to the new instance

4.15.2.4 void SDTDemix_setNoiseThreshold (SDTDemix *x, double f)

Sets the noise threshold.

Parameters

	_	
in	f	Amount of signal falling into the residual category

4.15.2.5 void SDTDemix_setOverlap (SDTDemix * x, double f)

Sets the window overlapping factor.

Parameters

in	f	Window overlapping factor

4.15.2.6 void SDTDemix_setTonalThreshold (SDTDemix * x, double f)

Sets the tornal threshold.

in	f	Amount of non-residual falling into the tonal category
		9 9

4.16 SDTEffects.h: Digital audio effects

Modules

- Reverb
- · Pitch shift

4.16.1 Detailed Description

Algorithms for audio post-processing, such as reverberation and pitch shifting

4.17 Reverb

Typedefs

typedef struct SDTReverb SDTReverb

Opaque data structure for a reverberator object.

typedef struct SDTReverb SDTReverb

Opaque data structure for a reverberator object.

Functions

SDTReverb * SDTReverb_new (long maxDelay)

Object constructor.

void SDTReverb_free (SDTReverb *x)

Object destructor.

void SDTReverb_setXSize (SDTReverb *x, double f)

Sets the room width.

void SDTReverb_setYSize (SDTReverb *x, double f)

Sets the room height.

• void SDTReverb_setZSize (SDTReverb *x, double f)

Sets the room depth.

void SDTReverb_setRandomness (SDTReverb *x, double f)

Sets how randomly distributed are the resonant modes. This parameter is directly proportional to the irregularity of the shape of the room.

• void SDTReverb_setTime (SDTReverb *x, double f)

Sets the global, frequency-independent reverberation time.

void SDTReverb_setTime1k (SDTReverb *x, double f)

Sets the reverberation time at 1kHz.

void SDTReverb_update (SDTReverb *x)

Updates the internal filters. Call this function after every sample rate change.

double SDTReverb_dsp (SDTReverb *x, double in)

Signal processing routine. Call this function at sample rate to compute the reverberated signal.

4.17.1 Detailed Description

Artificial reverberator based on Feedback Delay Networks, as found in D. Rocchesso, "Maximally diffusive yet efficient feedback delay networks for artificial reverberation", Signal Processing Letters, IEEE 4.9 (1997): 252-255.

4.17.2 Function Documentation

4.17.2.1 double SDTReverb_dsp (SDTReverb * x, double in)

Signal processing routine. Call this function at sample rate to compute the reverberated signal.

Parameters

in	in	Input sample

Returns

Output sample

4.17 Reverb 55

4.17.2.2 void SDTReverb_free (SDTReverb *x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.17.2.3 SDTReverb * SDTReverb_new (long maxDelay)

Object constructor.

Parameters

in	maxDelay	Maximum length of the delay lines, in samples
----	----------	---

Returns

Pointer to the new instance

4.17.2.4 void SDTReverb_setRandomness (SDTReverb * x, double f)

Sets how randomly distributed are the resonant modes. This parameter is directly proportional to the irregularity of the shape of the room.

Parameters

in	f Randomness in the modal distribution [0,	1]
----	--	----

4.17.2.5 void SDTReverb_setTime (SDTReverb * x, double f)

Sets the global, frequency-independent reverberation time.

Parameters

in	f	Reverberation time, in s
	II.	

4.17.2.6 void SDTReverb_setTime1k (SDTReverb * x, double f)

Sets the reverberation time at 1kHz.

Parameters

in	f	Reverberation time at 1kHz, in s
----	---	----------------------------------

4.17.2.7 void SDTReverb_setXSize (SDTReverb * x, double f)

Sets the room width.

Parameters

in	f	Room width, in m

4.17.2.8 void SDTReverb_setYSize (SDTReverb * x, double f)

Sets the room height.

4.17 Reverb 57

Parameters

in	f	Room height, in m
----	---	-------------------

4.17.2.9 void SDTReverb_setZSize (SDTReverb * x, double f)

Sets the room depth.

in	f	Room depth, in m

4.18 Pitch shift

Typedefs

typedef struct SDTPitchShift SDTPitchShift

Opaque data structure for a pitch shifter object.

• typedef struct SDTPitchShift SDTPitchShift

Opaque data structure for a pitch shifter object.

Functions

• SDTPitchShift * SDTPitchShift_new (int size, int oversample)

Object constructor.

void SDTPitchShift_free (SDTPitchShift *x)

Object destructor.

void SDTPitchShift_setRatio (SDTPitchShift *x, double f)

Sets the pitch shifting ratio.

void SDTPitchShift setOverlap (SDTPitchShift *x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

• double SDTPitchShift_dsp (SDTPitchShift *x, double in)

Signal processing routine. Call this function at sample rate to compute the pitch shifted signal.

4.18.1 Detailed Description

Frequency domain pitch shifter, useful to simulate doppler effect or other applications requiring pitch shifting.

4.18.2 Function Documentation

4.18.2.1 double SDTPitchShift_dsp (SDTPitchShift *x, double in)

Signal processing routine. Call this function at sample rate to compute the pitch shifted signal.

Parameters

in	in	Input sample
----	----	--------------

Returns

Output sample

4.18.2.2 void SDTPitchShift_free (SDTPitchShift *x)

Object destructor.

Parameters

x Pointer to the instance to destroy	in	Х	Pointer to the instance to destroy
--------------------------------------	----	---	------------------------------------

4.18.2.3 SDTPitchShift * SDTPitchShift_new (int size, int oversample)

Object constructor.

4.18 Pitch shift 59

Parameters

in	size	Internal buffer size, in samples
in	oversample	FFT oversampling rate

Returns

Pointer to the new instance

4.18.2.4 void SDTPitchShift_setOverlap (SDTPitchShift *x, double f)

Sets the analysis window overlapping ratio. Accepted values go from 0.0 to 1.0, with 0.0 meaning no overlap and 1.0 meaning total overlap.

Parameters

in	X	Pointer to the instance
in	f	Overlap ratio [0.0, 1.0]

4.18.2.5 void SDTPitchShift_setRatio (SDTPitchShift *x, double f)

Sets the pitch shifting ratio.

in	f	New pitch / original pitch ratio
----	---	----------------------------------

4.19 SDTFFT.h: Fast Fourier Transform

Typedefs

typedef struct SDTFFT SDTFFT

Opaque data structure, representing a FFT object.

typedef struct SDTFFT SDTFFT

Opaque data structure, representing a FFT object.

Functions

SDTFFT * SDTFFT new (unsigned int n)

Object constructor.

void SDTFFT_free (SDTFFT *x)

Object destructor.

• void SDTFFT_fft (SDTFFT *x, int inverse, SDTComplex *in, SDTComplex *out)

Performs a direct or inverse FFT of a complex-valued signal.

void SDTFFT_fftr (SDTFFT *x, double *in, SDTComplex *out)

Performs a direct FFT of a real-valued signal.

• void SDTFFT_ifftr (SDTFFT *x, SDTComplex *in, double *out)

Performs an inverse FFT of a signal known to be real-valued.

4.19.1 Detailed Description

Data structures and functions to perform frequency analysis on signals by means of the Discrete Fourier Transform and its inverse. This implementation is based on the iterative version of the Cooley-Tukey algorithm, works with double precision floating point arithmetic and provides an optimization for the transformation of real-valued signals.

4.19.2 Function Documentation

4.19.2.1 void SDTFFT_fft (SDTFFT * x, int inverse, SDTComplex * in, SDTComplex * out)

Performs a direct or inverse FFT of a complex-valued signal.

Parameters

in	inverse	Perform a direct FFT if 0, or an inverse FFT otherwise
in	in	Input signal to transform, must be at least of length n
out	out	Transformed output, must be at least of length n. When performing an inverse
		transform, divide every sample by n to obtain the original signal

4.19.2.2 void SDTFFT_fftr (SDTFFT * x, double * in, SDTComplex * out)

Performs a direct FFT of a real-valued signal.

Parameters

in	in	Input signal to transform, must be at least of length 2n
out	out	Transformed output

4.19.2.3 void SDTFFT_free (SDTFFT * x)

Object destructor.

Parameters

in	Pointer	to the instance to destroy

4.19.2.4 void SDTFFT_ifftr (SDTFFT *x, SDTComplex *in, double *out)

Performs an inverse FFT of a signal known to be real-valued.

Parameters

in	in	Input FFT to invert
out	out	Reconstructed signal. Divide every sample by n to obtain the original signal

4.19.2.5 SDTFFT * SDTFFT_new (unsigned int n)

Object constructor.

Parameters

in n FFT window length, must be a power	of 2
---	------

Returns

Pointer to the newly created instance, or NULL if n is not a power of 2 $\,$

4.20 SDTFilters.h: Audio filters

Modules

- · One pole filter
- · Allpass filter
- Envelope follower
- Two poles filter
- Cascade of biquadratic sections
- Moving average
- Delay line
- · Comb filter
- · Digital waveguide

4.20.1 Detailed Description

Various commonly used LTI systems: filters, delay lines, circular buffers, waveguides and so on. Extensively used in many other SDT modules.

4.21 One pole filter 63

4.21 One pole filter

Typedefs

typedef struct SDTOnePole SDTOnePole

Opaque data structure for a one pole filter object.

typedef struct SDTOnePole SDTOnePole

Opaque data structure for a one pole filter object.

Functions

• SDTOnePole * SDTOnePole_new ()

Object constructor.

void SDTOnePole_free (SDTOnePole *x)

Object destructor.

void SDTOnePole_setFeedback (SDTOnePole *x, double f)

Manually sets the alpha coefficient.

• void SDTOnePole_lowpass (SDTOnePole *x, double f)

Puts the filter in lowpass mode, at the given cutoff frequency.

• void SDTOnePole_highpass (SDTOnePole *x, double f)

Puts the filter in highpass mode, at the given cutoff frequency.

double SDTOnePole_dsp (SDTOnePole *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.21.1 Detailed Description

Simple one pole filter.

4.21.2 Function Documentation

4.21.2.1 double SDTOnePole_dsp (SDTOnePole * x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample
----	----	--------------

Returns

Output sample

4.21.2.2 void SDTOnePole_free (SDTOnePole * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.21.2.3 void SDTOnePole_highpass (SDTOnePole * x, double f)

Puts the filter in highpass mode, at the given cutoff frequency.

Parameters

in	f	Cutoff frequency, in Hz

4.21.2.4 void SDTOnePole_lowpass (SDTOnePole * x, double f)

Puts the filter in lowpass mode, at the given cutoff frequency.

Parameters

in	f	Cutoff frequency, in Hz
----	---	-------------------------

4.21.2.5 SDTOnePole * SDTOnePole_new ()

Object constructor.

Returns

Pointer to the new instance

4.21.2.6 void SDTOnePole_setFeedback (SDTOnePole * x, double f)

Manually sets the alpha coefficient.

in	f	Weight of the input sample
----	---	----------------------------

4.22 Allpass filter 65

4.22 Allpass filter

Typedefs

typedef struct SDTAllPass SDTAllPass

Opaque data structure for an allpass filter object.

typedef struct SDTAllPass SDTAllPass

Opaque data structure for an allpass filter object.

Functions

• SDTAllPass * SDTAllPass_new ()

Object constructor.

void SDTAllPass_free (SDTAllPass *x)

Object destructor.

void SDTAllPass_setFeedback (SDTAllPass *x, double f)

Sets the feedback coefficient.

• double SDTAllPass_dsp (SDTAllPass *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.22.1 Detailed Description

Allpass filter, used to adjust phases in fractional delay lines.

4.22.2 Function Documentation

```
4.22.2.1 double SDTAIlPass_dsp ( SDTAIlPass * x, double in )
```

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample
----	----	--------------

Returns

Output sample

4.22.2.2 void SDTAIlPass_free (SDTAIlPass * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.22.2.3 SDTAIIPass * SDTAIIPass_new()

Object constructor.

Returns

Pointer to the new instance

4.22.2.4 void SDTAllPass_setFeedback (SDTAllPass * x, double f)

Sets the feedback coefficient.

4.22 Allpass filter 67

in	f	Weight of the input sample

4.23 Envelope follower

Typedefs

• typedef struct SDTEnvelope SDTEnvelope

Opaque data structure for an envelope tracker object.

typedef struct SDTEnvelope SDTEnvelope

Opaque data structure for an envelope tracker object.

Functions

• SDTEnvelope * SDTEnvelope_new ()

Object constructor.

• void SDTEnvelope_free (SDTEnvelope *x)

Object destructor.

void SDTEnvelope_setAttack (SDTEnvelope *x, double a)

Sets the attack time.

• void SDTEnvelope_setRelease (SDTEnvelope *x, double r)

Sets the release time.

double SDTEnvelope_dsp (SDTEnvelope *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.23.1 Detailed Description

One pole envelope follower, with independent attack and release times.

4.23.2 Function Documentation

4.23.2.1 double SDTEnvelope_dsp (SDTEnvelope * x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample

Returns

Output sample

4.23.2.2 void SDTEnvelope_free (SDTEnvelope * x)

Object destructor.

in	X	Pointer to the instance to destroy

4.23.2.3 SDTEnvelope * SDTEnvelope_new()

Object constructor.

Returns

Pointer to the new instance

4.23.2.4 void SDTEnvelope_setAttack (SDTEnvelope * x, double a)

Sets the attack time.

Parameters

in	а	Attack time, in ms
----	---	--------------------

4.23.2.5 void SDTEnvelope_setRelease (SDTEnvelope * x, double r)

Sets the release time.

in	r	Release time, in ms
----	---	---------------------

4.24 Two poles filter

Typedefs

typedef struct SDTTwoPoles SDTTwoPoles

Opaque data structure for a two poles filter object.

typedef struct SDTTwoPoles SDTTwoPoles

Opaque data structure for a two poles filter object.

Functions

SDTTwoPoles * SDTTwoPoles_new ()

Object constructor.

void SDTTwoPoles_free (SDTTwoPoles *x)

Object destructor.

void SDTTwoPoles_lowpass (SDTTwoPoles *x, double fc)

Puts the filter in lowpass mode, at the given cutoff frequency.

void SDTTwoPoles_highpass (SDTTwoPoles *x, double fc)

Puts the filter in highpass mode, at the given cutoff frequency.

void SDTTwoPoles_resonant (SDTTwoPoles *x, double fc, double q)

Puts the filter in resonant bandpass mode, at the given center frequency and Q.

double SDTTwoPoles_dsp (SDTTwoPoles *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.24.1 Detailed Description

Two poles filter, configurable as lowpass, highpass or resonant bandpass.

4.24.2 Function Documentation

4.24.2.1 double SDTTwoPoles_dsp (SDTTwoPoles * x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample
----	----	--------------

Returns

Output sample

4.24.2.2 void SDTTwoPoles_free (SDTTwoPoles * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.24.2.3 void SDTTwoPoles_highpass (SDTTwoPoles * x, double fc)

Puts the filter in highpass mode, at the given cutoff frequency.

4.24 Two poles filter 71

Parameters

in	fc	Cutoff frequency, in Hz

4.24.2.4 void SDTTwoPoles_lowpass (SDTTwoPoles * x, double fc)

Puts the filter in lowpass mode, at the given cutoff frequency.

Parameters

	1-	Cutoff fraguancy in LIT
ın	IC:	Cutott frequency, in Hz
	, 0	Caton noquonoj, m niz

4.24.2.5 SDTTwoPoles * SDTTwoPoles_new()

Object constructor.

Returns

Pointer to the new instance

4.24.2.6 void SDTTwoPoles_resonant (SDTTwoPoles * x, double fc, double q)

Puts the filter in resonant bandpass mode, at the given center frequency and Q.

in	fc	Center frequency, in Hz
in	q	Q factor, in 1/octave

4.25 Cascade of biquadratic sections

Typedefs

typedef struct SDTBiquad SDTBiquad

Opaque data structure for biquad cascade object.

· typedef struct SDTBiquad SDTBiquad

Opaque data structure for biquad cascade object.

Functions

SDTBiquad * SDTBiquad_new (int nSections)

Object constructor.

void SDTBiquad_free (SDTBiquad *x)

Object destructor.

void SDTBiquad_butterworthLP (SDTBiquad *x, double fc)

Designs a Butterworth lowpass filter, at the given cutoff frequency.

void SDTBiquad_butterworthHP (SDTBiquad *x, double fc)

Designs a Butterworth highpass filter, at the given cutoff frequency.

- void SDTBiquad_butterworthAP (SDTBiquad *x, double fc)
- void SDTBiquad linkwitzRileyLP (SDTBiquad *x, double fc)

Designs the lowpass part of a Linkwitz-Riley crossover filter, at the given cutoff frequency. WARNING: the filter must have an even number of biquad sections!

void SDTBiquad_linkwitzRileyHP (SDTBiquad *x, double fc)

Designs the highpass part of a Linkwitz-Riley crossover filter, at the given cutoff frequency. WARNING: the filter must have an even number of biquad sections!

double SDTBiquad_dsp (SDTBiquad *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.25.1 Detailed Description

Classic cascade of biquad sections, useful to implement a wide variety of filters.

4.25.2 Function Documentation

4.25.2.1 void SDTBiquad_butterworthHP (SDTBiquad *x, double fc)

Designs a Butterworth highpass filter, at the given cutoff frequency.

Parameters

in fc Cutoff frequency, in Hz	
-------------------------------	--

4.25.2.2 void SDTBiquad_butterworthLP (SDTBiquad * x, double fc)

Designs a Butterworth lowpass filter, at the given cutoff frequency.

Parameters

Generated on Tue May 22 2018 12:31:19 for Sound Design Toolkit by Doxygen

in	fc	Cutoff frequency in Hz
T11	10	Cutoff frequency, in Hz

4.25.2.3 double SDTBiquad_dsp (SDTBiquad * x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample
111	11.1	input sample

Returns

Output sample

4.25.2.4 void SDTBiquad_free (SDTBiquad *x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.25.2.5 void SDTBiquad_linkwitzRileyHP (SDTBiquad * x, double fc)

Designs the highpass part of a Linkwitz-Riley crossover filter, at the given cutoff frequency. WARNING: the filter must have an even number of biquad sections!

Parameters

in	fc	Cutoff frequency, in Hz

4.25.2.6 void SDTBiquad_linkwitzRileyLP (SDTBiquad * x, double fc)

Designs the lowpass part of a Linkwitz-Riley crossover filter, at the given cutoff frequency. WARNING: the filter must have an even number of biquad sections!

Parameters

in	fc	Cutoff frequency, in Hz

4.25.2.7 SDTBiquad * SDTBiquad_new (int nSections)

Object constructor.

Parameters

in	nSections	Number of sections in the cascade. The order of the resulting filter is twice this
		value (i.e. nSections = 4 -> order = 8).

Returns

Pointer to the new instance

4.26 Moving average

Typedefs

typedef struct SDTAverage SDTAverage

Opaque data structure for a moving average filter object.

• typedef struct SDTAverage SDTAverage

Opaque data structure for a moving average filter object.

Functions

SDTAverage * SDTAverage_new (long size)

Object constructor.

void SDTAverage_free (SDTAverage *x)

Object destructor.

void SDTAverage_setWindow (SDTAverage *x, unsigned int i)

Sets the averaging window.

• double SDTAverage_dsp (SDTAverage *x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

4.26.1 Detailed Description

Moving average filter, producing as output the average of the last input samples.

4.26.2 Function Documentation

4.26.2.1 double SDTAverage_dsp (SDTAverage * x, double in)

Signal processing routine. Call this function at sample rate to compute the filtered signal.

Parameters

in	in	Input sample

Returns

Output sample

4.26.2.2 void SDTAverage_free (SDTAverage * x)

Object destructor.

Parameters

in	Х	Pointer to the instance to destroy
----	---	------------------------------------

4.26.2.3 SDTAverage * SDTAverage_new (long size)

Object constructor.

4.26 Moving average 75

Parameters

in	size	Moving average buffer size

Returns

Pointer to the new instance

4.26.2.4 void SDTAverage_setWindow (SDTAverage * x, unsigned int i)

Sets the averaging window.

in	size	Moving average window size [1,bufferSize]
----	------	---

4.27 Delay line

Typedefs

typedef struct SDTDelay SDTDelay

Opaque data structure for a delay line object.

typedef struct SDTDelay SDTDelay

Opaque data structure for a delay line object.

Functions

SDTDelay * SDTDelay_new (long maxDelay)

Object constructor.

void SDTDelay_free (SDTDelay *x)

Object destructor.

void SDTDelay_clear (SDTDelay *x)

Clears the buffer, therefore silencing the delayed signal.

void SDTDelay_setDelay (SDTDelay *x, double f)

Sets the delay time. Fractional values are allowed. The delay time can be continuously changed over time without audible glitches.

double SDTDelay_dsp (SDTDelay *x, double in)

Signal processing routine. Call this function at sample rate to output the delayed signal.

4.27.1 Detailed Description

Delay line, supporting fractional and time-varying delay lengths.

4.27.2 Function Documentation

```
4.27.2.1 double SDTDelay_dsp ( SDTDelay * x, double in )
```

Signal processing routine. Call this function at sample rate to output the delayed signal.

Parameters

in	in	Input sample
----	----	--------------

Returns

Output sample

4.27.2.2 void SDTDelay_free (SDTDelay *x)

Object destructor.

Parameters

in	Х	Pointer to the instance to destroy
		,

4.27.2.3 SDTDelay * SDTDelay_new (long maxDelay)

Object constructor.

4.27 Delay line 77

Parameters

in	maxDelay	Buffer size, determining the maximum delay length, in samples
----	----------	---

Returns

Pointer to the new instance

4.27.2.4 void SDTDelay_setDelay (SDTDelay * x, double f)

Sets the delay time. Fractional values are allowed. The delay time can be continuously changed over time without audible glitches.

in	f	Delay time, in samples
----	---	------------------------

4.28 Comb filter

Typedefs

typedef struct SDTComb SDTComb

Opaque data structure representing a comb filter object.

typedef struct SDTComb SDTComb

Opaque data structure representing a comb filter object.

Functions

SDTComb * SDTComb new (long maxXDelay, long maxYDelay)

Object constructor.

void SDTComb_free (SDTComb *x)

Object destructor.

• void SDTComb_setXDelay (SDTComb *x, double f)

Sets the delay time for the feed forward section.

void SDTComb_setYDelay (SDTComb *x, double f)

Sets the delay time for the feedback section.

void SDTComb_setXYDelay (SDTComb *x, double f)

Sets the delay time for both sections.

void SDTComb_setXGain (SDTComb *x, double f)

Sets the gain for the feed forward section.

void SDTComb_setYGain (SDTComb *x, double f)

Sets the gain for the feedback section.

void SDTComb_setXYGain (SDTComb *x, double f)

Sets the gain for both sections.

double SDTComb_dsp (SDTComb *x, double in)

Signal processing routine. Call this function at sample rate to output the filtered signal.

4.28.1 Detailed Description

Comb filter, obtained adding to the input signal a rescaled and delayed copy of itself. The filter works both in feed forward (delayed copy added to the output) and feedback (delayed copy added to the input, causing a loop) configurations, with independent gains and delay times.

4.28.2 Function Documentation

4.28.2.1 double SDTComb_dsp (SDTComb * x, double in)

Signal processing routine. Call this function at sample rate to output the filtered signal.

Parameters

in	in	Input sample

Returns

Output sample

4.28.2.2 void SDTComb_free (SDTComb *x)

Object destructor.

4.28 Comb filter 79

Parameters

in	X	Pointer to the instance to destroy

4.28.2.3 SDTComb * SDTComb_new (long maxXDelay, long maxYDelay)

Object constructor.

Parameters

in	maxXDelay	Feed forward buffer size, in samples
in	maxXDelay	Feedback buffer size, in samples

Returns

Pointer to the new instance

4.28.2.4 void SDTComb_setXDelay (SDTComb * x, double f)

Sets the delay time for the feed forward section.

Parameters

in	f	Feed forward delay time, in samples
----	---	-------------------------------------

4.28.2.5 void SDTComb_setXGain (SDTComb * x, double f)

Sets the gain for the feed forward section.

Parameters

in	f	Feed forward gain [0,1]

4.28.2.6 void SDTComb_setXYDelay (SDTComb * x, double f)

Sets the delay time for both sections.

Parameters

in	f [Delay time, in samples

4.28.2.7 void SDTComb_setXYGain (SDTComb * x, double f)

Sets the gain for both sections.

Parameters

in	f	Gain [0,1]
----	---	------------

4.28.2.8 void SDTComb_setYDelay (SDTComb * x, double f)

Sets the delay time for the feedback section.

Parameters

in	f	Feedback delay time, in samples

4.28.2.9 void SDTComb_setYGain (SDTComb * x, double f)

Sets the gain for the feedback section.

in f Feedback gain [0,1]	
--------------------------	--

4.29 Digital waveguide 81

4.29 Digital waveguide

Typedefs

• typedef struct SDTWaveguide SDTWaveguide

Opaque data structure representing a digital waveguide object.

typedef struct SDTWaveguide SDTWaveguide

Opaque data structure representing a digital waveguide object.

Functions

SDTWaveguide * SDTWaveguide new (int maxDelay)

Object constructor.

void SDTWaveguide free (SDTWaveguide *x)

Object destructor.

double SDTWaveguide_getFwdOut (SDTWaveguide *x)

Reads the output signal coming from the right side of the waveguide.

double SDTWaveguide_getRevOut (SDTWaveguide *x)

Reads the output signal coming from the left side of the waveguide.

void SDTWaveguide_setDelay (SDTWaveguide *x, double f)

Sets the length of the waveguide, in samples.

void SDTWaveguide_setFwdFeedback (SDTWaveguide *x, double f)

Sets the feedback on the right side. Determines how much energy gets fed back into the system after the wave reaches the right side of the waveguide. Consequently, this value also determines how much attenuated is the output on the same side.

void SDTWaveguide_setRevFeedback (SDTWaveguide *x, double f)

Sets the feedback on the left side. Determines how much energy gets fed back into the system after the wave reaches the left side of the waveguide. Consequently, this value also determines how much attenuated is the output on the same side.

void SDTWaveguide_setFwdDamping (SDTWaveguide *x, double f)

Sets the frequency damping on the right side.

void SDTWaveguide_setRevDamping (SDTWaveguide *x, double f)

Sets the frequency damping on the left side.

void SDTWaveguide_dsp (SDTWaveguide *x, double fwdIn, double revIn)

Signal processing routine. Call this function at sample rate to compute the output samples. To read them, call the respective functions SDTWaveguide_getFwdOut() and SDTWaveguide_getRevOut().

4.29.1 Detailed Description

Digital waveguide, simulating relection/refraction of waves in a medium such as the air column in a tube or a vibrating string. Composed of two delay lines of the same length, in a mutual feedback configuration.

4.29.2 Function Documentation

4.29.2.1 void SDTWaveguide_dsp (SDTWaveguide * x, double fwdln, double revln)

Signal processing routine. Call this function at sample rate to compute the output samples. To read them, call the respective functions SDTWaveguide_getFwdOut() and SDTWaveguide_getRevOut().

Parameters

in	fwdIn	Input coming from the left side of the waveguide
in	fwdIn	Input coming from the right side of the waveguide

4.29.2.2 void SDTWaveguide_free (SDTWaveguide * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.29.2.3 double SDTWaveguide_getFwdOut (SDTWaveguide *x)

Reads the output signal coming from the right side of the waveguide.

Returns

Output sample

4.29.2.4 double SDTWaveguide_getRevOut (SDTWaveguide * x)

Reads the output signal coming from the left side of the waveguide.

Returns

Output sample

4.29.2.5 SDTWaveguide * SDTWaveguide_new (int maxDelay)

Object constructor.

Parameters

in	maxDelay	Size of the two buffers, in samples
----	----------	-------------------------------------

Returns

Pointer to the new instance

4.29.2.6 void SDTWaveguide_setDelay (SDTWaveguide *x, double f)

Sets the length of the waveguide, in samples.

Parameters

in	f	Delay time, in samples

4.29.2.7 void SDTWaveguide_setFwdDamping (SDTWaveguide *x, double f)

Sets the frequency damping on the right side.

4.29 Digital waveguide 83

Parameters

in	f	High frequency damping [0,1]

4.29.2.8 void SDTWaveguide_setFwdFeedback (SDTWaveguide * x, double f)

Sets the feedback on the right side. Determines how much energy gets fed back into the system after the wave reaches the right side of the waveguide. Consequently, this value also determines how much attenuated is the output on the same side.

Parameters

in	f	Feedback gain [0,1]

4.29.2.9 void SDTWaveguide_setRevDamping (SDTWaveguide *x, double f)

Sets the frequency damping on the left side.

Parameters

		T
in	f	High frequency damping [0,1]

4.29.2.10 void SDTWaveguide_setRevFeedback (SDTWaveguide * x, double f)

Sets the feedback on the left side. Determines how much energy gets fed back into the system after the wave reaches the left side of the waveguide. Consequently, this value also determines how much attenuated is the output on the same side.

in f Feedback gain [0,1]

4.30 SDTGases.h: Air turbulence and explosions

Modules

- · Turbulence against solid objects
- · Turbulence through hollow cavities
- · Turbulence across thin objects
- · Supersonic explosions

4.30.1 Detailed Description

Physical models to simulate wooshes, wind gusts and howls, helicopter rotors and so on. A gas flowing in a more or less constant direction usually doesn't make any sound by itself, its pressure variations being too slow to fall into the audible range. Nevertheless, objects obstructing the air flow are likely to cause turbulence at much higher frequencies, and therefore they do make sounds. Heavily inspired by the work of Andy Farnell in his book "Designing Sound", these models render chaotic turbulences through filtered random noise.

This module also includes the simulation of powerful explosions, as well as objects travelling at supersonic speed such as rifle bullets or cracking whip tails. All these phenomena create shock waves, namely a sudden peak in pressure followed by a negative expansion tail. Although being highly impulsive events, explosions also generate turbulence and other kinds of chaotic scattering which yield complex acoustic textures and have a direct effect on the resulting sound. The SDT explosion model uses a Friedlander waveform to render the impulsive part, and a Feedback Delay Network reverb to simulate scattering.

4.31 Turbulence against solid objects

Typedefs

typedef struct SDTWindFlow SDTWindFlow

Opaque data structure for a solid obstacle object.

typedef struct SDTWindFlow SDTWindFlow

Opaque data structure for a solid obstacle object.

Functions

SDTWindFlow * SDTWindFlow_new ()

Object constructor.

void SDTWindFlow_free (SDTWindFlow *x)

Object destructor.

void SDTWindFlow setFilters (SDTWindFlow *x)

Update filter coefficients. Should be always called after setting the sampling rate with SDT_setSampleRate().

void SDTWindFlow_setWindSpeed (SDTWindFlow *x, double f)

Sets the wind speed.

double SDTWindFlow dsp (SDTWindFlow *x)

Signal processing routine. Call this function at sample rate to synthesize a wind turbulence sound.

4.31.1 Detailed Description

One of the possible sources of turbulence is the impact on a large solid surface. In this case, turbulence is generated due to the impact of the air molecules on the surface and to their random change of direction caused by the irregularities of the surface itself. The resulting sound is modeled through a bandpass-filtered white noise generator. The center frequency and bandwidth of the filter are empirically set to fixed values, while the resulting output is modulated in amplitude according to the velocity of the air flow.

4.31.2 Function Documentation

```
4.31.2.1 double SDTWindFlow_dsp ( SDTWindFlow * x )
```

Signal processing routine. Call this function at sample rate to synthesize a wind turbulence sound.

Returns

Computed audio sample

4.31.2.2 void SDTWindFlow_free (SDTWindFlow * x)

Object destructor.

	in	X	Pointer to the instance to destroy
_			-

4.31.2.3 SDTWindFlow * SDTWindFlow_new ()

Object constructor.

Returns

Pointer to the new instance

4.31.2.4 void SDTWindFlow_setFilters (SDTWindFlow *x)

Update filter coefficients. Should be always called after setting the sampling rate with SDT_setSampleRate().

Parameters

in	X	Pointer to a SDTWindFlow instance

4.31.2.5 void SDTWindFlow_setWindSpeed (SDTWindFlow * x, double f)

Sets the wind speed.

in	X	Pointer to a SDTWindFlow instance
in	f	Wind speed [0,1]

4.32 Turbulence through hollow cavities

Typedefs

typedef struct SDTWindCavity SDTWindCavity

Opaque data structure for a hollow cavity object.

typedef struct SDTWindCavity SDTWindCavity

Opaque data structure for a hollow cavity object.

Functions

• SDTWindCavity * SDTWindCavity_new (int maxDelay)

Object constructor.

void SDTWindCavity free (SDTWindCavity *x)

Object destructor.

void SDTWindCavity_setLength (SDTWindCavity *x, double f)

Sets the lenght of the cavity.

void SDTWindCavity_setDiameter (SDTWindCavity *x, double f)

Sets the diameter of the cavity.

void SDTWindCavity_setWindSpeed (SDTWindCavity *x, double f)

Sets the wind speed.

double SDTWindCavity_dsp (SDTWindCavity *x)

Signal processing routine. Call this function at sample rate to synthesize wind through a cavity.

4.32.1 Detailed Description

Hollow objects such as pipes, valves, tunnels and doorways force the air moving inside them to oscillate at their resonant frequencies, which depend on the size and shape of the cavity itself. Different modes of resonance can be excited, in a more or less noticeable way, depending on the speed of the air flowing inside the tube. For each mode of resonance there is an optimal speed, which makes the air inside the tube resonate the most. As the speed increases, resonance gets weaker and weaker until it breaks up into the next harmonic. Sound waves trapped in a cylindrical cavity can be effectively simulated using a simple comb filter, namely a delay line with feedback. The different excitation of the various harmonics is modeled by a resonant bandpass filter with a high Q factor, therefore with a narrow band and a high resonance.

4.32.2 Function Documentation

4.32.2.1 double SDTWindCavity_dsp (SDTWindCavity * x)

Signal processing routine. Call this function at sample rate to synthesize wind through a cavity.

Returns

Computed audio sample

4.32.2.2 void SDTWindCavity_free (SDTWindCavity * x)

Object destructor.

Parameters

2		Deinter to the instance to destroy
ΤΠ	X	Pointer to the instance to destroy

4.32.2.3 SDTWindCavity * SDTWindCavity_new (int maxDelay)

Object constructor.

Parameters

in	maxDelay	Size of the comb filter buffer, in samples.

Returns

Pointer to the new instance

4.32.2.4 void SDTWindCavity_setDiameter (SDTWindCavity *x, double f)

Sets the diameter of the cavity.

Parameters

in	f	Diameter of the cavity, in m

4.32.2.5 void SDTWindCavity_setLength (SDTWindCavity *x, double f)

Sets the lenght of the cavity.

Parameters

in	f	Length of the cavity, in m

4.32.2.6 void SDTWindCavity_setWindSpeed (SDTWindCavity *x, double f)

Sets the wind speed.

in f Wind speed, [0,1]

4.33 Turbulence across thin objects

Typedefs

• typedef struct SDTWindKarman SDTWindKarman

Opaque data structure for a thin obstacle object.

• typedef struct SDTWindKarman SDTWindKarman

Opaque data structure for a thin obstacle object.

Functions

SDTWindKarman * SDTWindKarman_new ()

Object constructor.

void SDTWindKarman_free (SDTWindKarman *x)

Object destructor.

void SDTWindKarman_setDiameter (SDTWindKarman *x, double f)

Sets the diameter of the object.

void SDTWindKarman_setWindSpeed (SDTWindKarman *x, double f)

Sets the wind speed.

double SDTWindKarman_dsp (SDTWindKarman *x)

Signal processing routine. Call this function at sample rate to synthesize wind blowing against a thin object.

4.33.1 Detailed Description

An air flow hitting a thin object, such as a tree branch or a suspended wire, produces a singing or howling sound caused by a phenomenon known as Karman vortex street. This particular kind of turbulence is a repeating pattern of swirling vortices caused by the unsteady separation of flow of a fluid around the object. Karman vortex streets are modeled by white noise, passing through a bandpass filter with narrow bandwidth and high resonance.

4.33.2 Function Documentation

4.33.2.1 double SDTWindKarman_dsp (SDTWindKarman * x)

Signal processing routine. Call this function at sample rate to synthesize wind blowing against a thin object.

Returns

Computed audio sample

4.33.2.2 void SDTWindKarman_free (SDTWindKarman * x)

Object destructor.

in	V	Pointer to the instance to destroy
111	Α	Pointer to the instance to destroy

4.33.2.3 SDTWindKarman * SDTWindKarman_new ()

Object constructor.

Returns

Pointer to the new instance

4.33.2.4 void SDTWindKarman_setDiameter (SDTWindKarman * x, double f)

Sets the diameter of the object.

Parameters

in	f	Diameter of the object, in m. Works best with very small values (< 0.1)
----	---	---

4.33.2.5 void SDTWindKarman_setWindSpeed (SDTWindKarman * x, double f)

Sets the wind speed.

in	f	Wind speed, [0,1]
----	---	-------------------

4.34 Supersonic explosions

Typedefs

typedef struct SDTExplosion SDTExplosion

Opaque data structure for an explosion object.

typedef struct SDTExplosion SDTExplosion

Opaque data structure for an explosion object.

Functions

SDTExplosion * SDTExplosion_new (long maxScatter, long maxDelay)

Object constructor.

void SDTExplosion free (SDTExplosion *x)

Object destructor.

void SDTExplosion_setBlastTime (SDTExplosion *x, double f)

Sets the duration of the initial spike.

void SDTExplosion_setScatterTime (SDTExplosion *x, double f)

Sets the duration of the scattering.

• void SDTExplosion_setDispersion (SDTExplosion *x, double f)

Sets the balance between initial spike and successive scattering.

• void SDTExplosion_setDistance (SDTExplosion *x, double f)

Sets the distance of the listener from the explosion.

void SDTExplosion_setWaveSpeed (SDTExplosion *x, double f)

Sets the propagation velocity of the shockwave.

void SDTExplosion_setWindSpeed (SDTExplosion *x, double f)

Sets the propagation velocity of the blast wind.

void SDTExplosion_update (SDTExplosion *x)

Updates the internal state of the object. Please call this function after having reset one or more synthesis parameters.

void SDTExplosion_dsp (SDTExplosion *x, double *outs)

Signal processing routine. Call this function at sample rate to synthesize an explosion sound.

4.34.1 Detailed Description

Powerful explosions, as well as objects travelling at supersonic speed such as rifle bullets or cracking whip tails.

4.34.2 Function Documentation

```
4.34.2.1 void SDTExplosion_dsp ( SDTExplosion * x, double * outs )
```

Signal processing routine. Call this function at sample rate to synthesize an explosion sound.

Returns

Computed audio sample

```
4.34.2.2 void SDTExplosion_free ( SDTExplosion * x )
```

Object destructor.

Parameters

in	X	Pointer to the instance to destroy

4.34.2.3 SDTExplosion * SDTExplosion_new (long maxScatter, long maxDelay)

Object constructor.

Parameters

in	maxScatter	Maximum scattering time, in samples)
in	maxDelay	Maximum delay between explosion and sound, in samples

Returns

Pointer to the new instance

4.34.2.4 void SDTExplosion_setBlastTime (SDTExplosion *x, double f)

Sets the duration of the initial spike.

Parameters

in	f	Blast time, in s
----	---	------------------

4.34.2.5 void SDTExplosion_setDispersion (SDTExplosion *x, double f)

Sets the balance between initial spike and successive scattering.

Parameters

in	f	Amount of scattering, [0,1]

4.34.2.6 void SDTExplosion_setDistance (SDTExplosion *x, double f)

Sets the distance of the listener from the explosion.

Parameters

in	f	Distance between explosion and listener, in m

4.34.2.7 void SDTExplosion_setScatterTime (SDTExplosion * x, double f)

Sets the duration of the scattering.

Parameters

in	f	Scattering time, in s
----	---	-----------------------

4.34.2.8 void SDTExplosion_setWaveSpeed (SDTExplosion * x, double f)

Sets the propagation velocity of the shockwave.

Parameters

in	f	Propagation velocity of the shockwave, in m/s
----	---	---

4.34.2.9 void SDTExplosion_setWindSpeed (SDTExplosion * x, double f)

Sets the propagation velocity of the blast wind.

in	f Propagation velocity of the blast wind, in m/s	f	

4.35 SDTInteractors.h: interactions between solids

Modules

- · Interactor interface
- Impact
- Friction

4.35.1 Detailed Description

These models simulate basic mechanical interactions that can occur between two resonators: impacts and friction.

4.36 Interactor interface 95

4.36 Interactor interface

Typedefs

typedef struct SDTInteractor SDTInteractor

Opaque data structure representing the interactor interface.

typedef struct SDTInteractor SDTInteractor

Opaque data structure representing the interactor interface.

Functions

void SDTInteractor_setFirstResonator (SDTInteractor *x, SDTResonator *p)

Sets the pointer to the first interacting resonator.

void SDTInteractor setSecondResonator (SDTInteractor *x, SDTResonator *p)

Sets the pointer to the second interacting resonator.

void SDTInteractor_setFirstPoint (SDTInteractor *x, long I)

Sets the contact point index for the first resonator.

void SDTInteractor_setSecondPoint (SDTInteractor *x, long I)

Sets the contact point index for the second resonator.

double SDTInteractor_computeForce (SDTInteractor *x)

Computes a force to apply to the contact points, based on the resonators' state at the chosen pickups.

void SDTInteractor_dsp (SDTInteractor *x, double f0, double v0, double s0, double f1, double v1, double s1, double *outs)

Signal processing routine. Convenience method to compute the interaction force, apply it to the resonators and update their state. This method already calls the DSP routines of the two resonators, so be sure not to call them if you use this method.

4.36.1 Detailed Description

This abstract object acts as a generic interface implemented by all interactors. It contains two pointers to the interacting objects, information on the chosen contact points, and an algorithm that, after reading the state of the objects (displacement and velocity) at the specified contact points, accordingly computes a force to apply to those contact points. The generic interactor should never be directly instantiated, instead it should be obtained through the specific SDTImpact and SDTFriction constructors.

4.36.2 Function Documentation

4.36.2.1 void SDTInteractor_dsp (SDTInteractor *x, double t0, do

Signal processing routine. Convenience method to compute the interaction force, apply it to the resonators and update their state. This method already calls the DSP routines of the two resonators, so be sure not to call them if you use this method.

in	f0	Applied force to the first resonator
in	v0	Applied velocity to the first resonator (resets position to 0, or to make contact
		with second object if present)

in	s0	Fragment size of the first resonator
in	f1	Applied force to the second resonator
in	v1	Applied velocity to the second resonator (resets position to 0, or to make con-
		tact with first object if present)
in	s1	Fragment size of the second resonator
out	outs	Displacement of the resonators at their pickup points

4.36.2.2 void SDTInteractor_setFirstPoint (SDTInteractor * x, long I)

Sets the contact point index for the first resonator.

Parameters

_			
	in	Number	of the first resonator pickup chosen for interaction

4.36.2.3 void SDTInteractor_setFirstResonator (SDTInteractor * x, SDTResonator * p)

Sets the pointer to the first interacting resonator.

Parameters

in	р	Pointer to a SDTResonator instance
----	---	------------------------------------

4.36.2.4 void SDTInteractor_setSecondPoint (SDTInteractor * x, long I)

Sets the contact point index for the second resonator.

Parameters

in	Number	of the second resonator pickup chosen for interaction
----	--------	---

4.36.2.5 void SDTInteractor_setSecondResonator (SDTInteractor * x, SDTResonator * p)

Sets the pointer to the second interacting resonator.

in	р	Pointer to a SDTResonator instance
	•	

4.37 Impact 97

4.37 Impact

Typedefs

typedef struct SDTImpact SDTImpact

Opaque data structure representing the internal state of an impact interactor.

typedef struct SDTImpact SDTImpact

Opaque data structure representing the internal state of an impact interactor.

Functions

SDTInteractor * SDTImpact new ()

Object constructor.

void SDTImpact_free (SDTInteractor *x)

Object destructor. param[in] Pointer to a SDTInteractor instance, configured for the impact case.

void SDTImpact_setStiffness (SDTInteractor *x, double f)

Sets the impact stiffness.

void SDTImpact_setDissipation (SDTInteractor *x, double f)

Sets the dissipation coefficient.

void SDTImpact setShape (SDTInteractor *x, double f)

Sets the shape factor.

4.37.1 Detailed Description

Simulates a non-linear impact, computing impact force from the total compression, namely the relative displacement between the two contact points. The algorithm is based on the Hunt-Crossley impact model, with the resulting force being the sum of an elastic component and a dissipative term.

The elastic component is parameterized by the force stiffness (or elasticity) and a non-linear exponent which models the local geometry around the contact area. The linear dissipative component is parameterized by a dissipation (damping) weight.

4.37.2 Function Documentation

```
4.37.2.1 SDTInteractor * SDTImpact_new()
```

Object constructor.

Returns

Pointer to a SDTInteractor instance, configured for the impact case

```
4.37.2.2 void SDTImpact_setDissipation ( SDTInteractor *x, double f)
```

Sets the dissipation coefficient.

Parameters

in	f	Dissipation coefficient, positive scalar

4.37.2.3 void SDTImpact_setShape (SDTInteractor *x, double f)

Sets the shape factor.

Parameters

in	f	Shape factor. Must be > 1 , with 1.5 = spherical shape. Optimal range [1,4]
----	---	---

4.37.2.4 void SDTImpact_setStiffness (SDTInteractor *x, double f)

Sets the impact stiffness.

in	f	Impact stiffness (>> 1)
		' '

4.38 Friction 99

4.38 Friction

Typedefs

typedef struct SDTFriction

Opaque data structure representing the internal state of a friction interactor.

typedef struct SDTFriction

Opaque data structure representing the internal state of a friction interactor.

Functions

SDTInteractor * SDTFriction new ()

Object constructor.

void SDTFriction_free (SDTInteractor *x)

Object destructor. param[in] Pointer to a SDTInteractor instance, configured for the friction case.

void SDTFriction_setNormalForce (SDTInteractor *x, double f)

Sets the perpendicular force (pressure) applied to the two sliding resonators.

void SDTFriction setStribeckVelocity (SDTInteractor *x, double f)

Sets the Stribeck velocity.

void SDTFriction_setStaticCoefficient (SDTInteractor *x, double f)

Sets the static friction coefficient.

void SDTFriction_setDynamicCoefficient (SDTInteractor *x, double f)

Sets the dynamic friction coefficient.

void SDTFriction setBreakAway (SDTInteractor *x, double f)

Sets the break away coefficient.

void SDTFriction_setStiffness (SDTInteractor *x, double f)

Sets the contact stiffness.

void SDTFriction_setDissipation (SDTInteractor *x, double f)

Sets the dissipation coefficient.

• void SDTFriction_setViscosity (SDTInteractor *x, double f)

Sets the contact viscosity.

void SDTFriction setNoisiness (SDTInteractor *x, double f)

Sets the surface roughness.

4.38.1 Detailed Description

Elasto-plastic friction model, computing friction force from the relative velocity between the two contact points. The resulting force is the sum of four components: an elastic term, an internal dissipation term, a viscosity term, and finally a random term representing noise related to the surface roughness.

More subtle phenomena, such as pre-sliding behavior (gradual increase of the friction force for very small displacements), are simulated by the "plastic" part of the algorithm and parametrized by several other values, such as static/dynamic friction coefficients, break-away and Stribeck velocity, and so on.

These phenomena are mostly related to the transients and are worth being modeled despite the added complexity of the algorithm because of their importance for a realistic simulation of friction sounds.

4.38.2 Function Documentation

4.38.2.1 SDTInteractor * SDTFriction_new ()

Object constructor.

Returns

Pointer to a SDTInteractor instance, configured for the friction case

4.38.2.2 void SDTFriction_setBreakAway (SDTInteractor *x, double f)

Sets the break away coefficient.

Parameters

in	f	Break away coefficient, positive scalar

4.38.2.3 void SDTFriction_setDissipation (SDTInteractor *x, double f)

Sets the dissipation coefficient.

Parameters

in	f	Dissipation coefficient, positive scalar

4.38.2.4 void SDTFriction_setDynamicCoefficient (SDTInteractor *x, double f)

Sets the dynamic friction coefficient.

Parameters

in	f	Dynamic friction coefficient [0,1]. Should be less than the static friction coeffi-
		cient

4.38.2.5 void SDTFriction_setNoisiness (SDTInteractor *x, double f)

Sets the surface roughness.

Parameters

in	f	Surface roughness, positive scalar

4.38.2.6 void SDTFriction_setNormalForce (SDTInteractor *x, double f)

Sets the perpendicular force (pressure) applied to the two sliding resonators.

Parameters

in	f	Normal force, in N
----	---	--------------------

4.38.2.7 void SDTFriction_setStaticCoefficient (SDTInteractor *x, double f)

Sets the static friction coefficient.

4.38 Friction 101

-	in	f	Static friction coefficient [0,1]
	111	,	Otatio motion coemolent [0,1]

4.38.2.8 void SDTFriction_setStiffness (SDTInteractor *x, double f)

Sets the contact stiffness.

Parameters

in	f	Contact stiffness, positive scalar

4.38.2.9 void SDTFriction_setStribeckVelocity (SDTInteractor *x, double f)

Sets the Stribeck velocity.

Parameters

-			
	in	f	Stribeck velocity, in m/s

4.38.2.10 void SDTFriction_setViscosity (SDTInteractor *x, double f)

Sets the contact viscosity.

in	f	Contact viscosity, positive scalar
----	---	------------------------------------

4.39 SDTLiquids.h: Liquid sounds

Modules

- Bubbles
- Fluid flow

4.39.1 Detailed Description

Models and algorithms to simulate sounds generated by liquids: burbling, splashing, dripping, filling, gushing etc.

4.40 Bubbles 103

4.40 Bubbles

Typedefs

typedef struct SDTBubble SDTBubble

Opaque data structure representing a bubble object.

typedef struct SDTBubble SDTBubble

Opaque data structure representing a bubble object.

Functions

• SDTBubble * SDTBubble new ()

Object constructor.

void SDTBubble_free (SDTBubble *x)

Object destructor.

void SDTBubble_setRadius (SDTBubble *x, double f)

Sets the bubble radius.

void SDTBubble setDepth (SDTBubble *x, double f)

Sets the bubble depth.

• void SDTBubble_setRiseFactor (SDTBubble *x, double f)

Sets the amount of blooping.

void SDTBubble update (SDTBubble *x)

Triggers a new bubble.

void SDTBubble_normAmp (SDTBubble *x)

Sets bubble amplitude to the maximum instead of computing it from radius and depth.

double SDTBubble_dsp (SDTBubble *x)

Signal processing routine. Call this function at sample rate to obtain a bubble sound.

4.40.1 Detailed Description

The main responsible for acoustic emission in water and other liquids, rather than the liquid mass on its own, is the gas trapped inside emerging as a population of bubbles. From a physical point of view, a spherical bubble acts as an exponentially decaying sinusoidal oscillator. Frequency, decay time and relative amplitude of each bubble can be derived from its radius and depth.

When the bubble is formed close to the surface and therefore the effective mass around the liquid is reduced, the oscillating frequency rises and a characteristic "blooping" sound is generated. The amount of blooping can be set as an independent parameter in the model.

4.40.2 Function Documentation

```
4.40.2.1 double SDTBubble_dsp ( SDTBubble * x )
```

Signal processing routine. Call this function at sample rate to obtain a bubble sound.

Returns

Output sample

4.40.2.2 void SDTBubble_free (SDTBubble * x)

Object destructor.

Parameters

ſ	in	X	Pointer to the instance to destroy
		,,,	. onite to the metanes to accura

4.40.2.3 SDTBubble * SDTBubble_new()

Object constructor.

Returns

Pointer to the new instance

4.40.2.4 void SDTBubble_setDepth (SDTBubble * x, double f)

Sets the bubble depth.

Parameters

in	f	Bubble depth [0, 1]. 0 means very deep, 1 means touching the surface.

4.40.2.5 void SDTBubble_setRadius (SDTBubble * x, double f)

Sets the bubble radius.

Parameters

in	f	Bubble radius, in m [0.00015, 0.150]
----	---	--------------------------------------

4.40.2.6 void SDTBubble_setRiseFactor (SDTBubble * x, double f)

Sets the amount of blooping.

in	f	Rise factor, positive scalar. Typical value for bubbles in water = 0.1

4.41 Fluid flow 105

4.41 Fluid flow

Typedefs

typedef struct SDTFluidFlow SDTFluidFlow

Opaque data structure representing a fluid flow object.

typedef struct SDTFluidFlow SDTFluidFlow

Opaque data structure representing a fluid flow object.

Functions

• SDTFluidFlow * SDTFluidFlow_new (int nBubbles)

Object constructor.

void SDTFluidFlow free (SDTFluidFlow *x)

Object destructor.

void SDTFluidFlow_setMinRadius (SDTFluidFlow *x, double f)

Sets the minimum radius for the bubble population.

void SDTFluidFlow_setMaxRadius (SDTFluidFlow *x, double f)

Sets the maximum radius for the bubble population.

void SDTFluidFlow setExpRadius (SDTFluidFlow *x, double f)

Sets the gamma factor for the radius assignment.

void SDTFluidFlow_setMinDepth (SDTFluidFlow *x, double f)

Sets the minimum depth value for the bubble population.

void SDTFluidFlow setMaxDepth (SDTFluidFlow *x, double f)

Sets the maximum depth value for the bubble population.

void SDTFluidFlow_setExpDepth (SDTFluidFlow *x, double f)

Sets the gamma factor for the depth assignment.

void SDTFluidFlow setRiseFactor (SDTFluidFlow *x, double f)

Sets the amount of blooping for the bubble population.

void SDTFluidFlow_setRiseCutoff (SDTFluidFlow *x, double f)

Bubbles deeper than this threshold do not rise in frequency.

void SDTFluidFlow_setAvgRate (SDTFluidFlow *x, double f)

Sets the amount of generated bubbles per second.

double SDTFluidFlow dsp (SDTFluidFlow *x)

Signal processing routine. Call this function at sample rate to obtain a liquid sound.

4.41.1 Detailed Description

Rich and complex liquid sound simulations can be generated through a stochastic population of bubbles, modeled by a sinusoidal oscillator bank with each voice modulated in amplitude and frequency according to desired probability distributions. A simple stochastic algorithm controls the behavior of the bubble population: Bubble generation rate follows a Bernoulli process, while radius and depth for each new bubble are chosen at random. To limit the presence of sudden peaks and glitches, voices are updated based on their age: The bubble with the lowest amplitude gets "killed" in favor of the new one.

4.41.2 Function Documentation

4.41.2.1 double SDTFluidFlow_dsp (SDTFluidFlow * x)

Signal processing routine. Call this function at sample rate to obtain a liquid sound.

Returns

Output sample

4.41.2.2 void SDTFluidFlow_free (SDTFluidFlow * x)

Object destructor.

Parameters

in	Х	Poiter to the instance to destroy
----	---	-----------------------------------

4.41.2.3 SDTFluidFlow * SDTFluidFlow_new (int nBubbles)

Object constructor.

Parameters

in	Number	of voices in the oscillator bank
----	--------	----------------------------------

Returns

Pointer to the new instance

4.41.2.4 void SDTFluidFlow_setAvgRate (SDTFluidFlow * x, double f)

Sets the amount of generated bubbles per second.

Parameters

in	f	Average number of bubbles per second
----	---	--------------------------------------

4.41.2.5 void SDTFluidFlow_setExpDepth (SDTFluidFlow * x, double f)

Sets the gamma factor for the depth assignment.

Parameters

	in	f	Depth gamma factor. O to 1 = shallower bubbles, > 1 = deeper bubbles
--	----	---	--

4.41.2.6 void SDTFluidFlow_setExpRadius (SDTFluidFlow *x, double f)

Sets the gamma factor for the radius assignment.

Parameters

in	f	Radius gamma factor. O to 1 = bigger bubbles, $>$ 1 = smaller bubbles

4.41.2.7 void SDTFluidFlow_setMaxDepth (SDTFluidFlow * x, double f)

Sets the maximum depth value for the bubble population.

4.41 Fluid flow 107

Parameters

in	f	Maximum depth value of the generated bubbles, [0, 1]

4.41.2.8 void SDTFluidFlow_setMaxRadius (SDTFluidFlow * x, double f)

Sets the maximum radius for the bubble population.

Parameters

in	f	Maximum radius of the generated bubbles, in m [0.00015, 0.150]

4.41.2.9 void SDTFluidFlow_setMinDepth (SDTFluidFlow *x, double f)

Sets the minimum depth value for the bubble population.

Parameters

in	f	Minimum depth value of the generated bubbles, [0, 1]
----	---	--

4.41.2.10 void SDTFluidFlow_setMinRadius (SDTFluidFlow *x, double f)

Sets the minimum radius for the bubble population.

Parameters

in	f	Minimum radius of the generated bubbles, in m [0.00015, 0.150]

4.41.2.11 void SDTFluidFlow_setRiseCutoff (SDTFluidFlow * x, double f)

Bubbles deeper than this threshold do not rise in frequency.

Parameters

in	f	Rise cutoff, [0, 1]

4.41.2.12 void SDTFluidFlow_setRiseFactor (SDTFluidFlow *x, double f)

Sets the amount of blooping for the bubble population.

in	f	Rise factor. Typical value for water = 0.1
----	---	--

4.42 SDTMotor.h: Combustion engines

Typedefs

typedef struct SDTMotor SDTMotor

Opaque data structure representing a combustion engine object.

typedef struct SDTMotor SDTMotor

Opaque data structure representing a combustion engine object.

Functions

SDTMotor * SDTMotor_new (long maxDelay)

Object constructor.

void SDTMotor_free (SDTMotor *x)

Object destructor.

void SDTMotor_setFilters (SDTMotor *x, double damp, double dc)

Update filter coefficients. Should be always called after setting the sampling rate with SDT_setSampleRate().

void SDTMotor setRpm (SDTMotor *x, double f)

Sets the Revolutions Per Minute (RPM) of the engine.

void SDTMotor_setThrottle (SDTMotor *x, double f)

Sets the throttle load.

void SDTMotor_setFourStroke (SDTMotor *x)

Simulates the operation cycle of a four-stroke engine.

void SDTMotor_setTwoStroke (SDTMotor *x)

Simulates the operation cycle of a two-stroke engine.

void SDTMotor_setNCylinders (SDTMotor *x, int i)

Sets the number of cylinders in the engine block.

void SDTMotor_setCylinderSize (SDTMotor *x, double f)

Sets the size of each single cylinder. The total volume of the engine is this value multiplied by the number of cylinders.

void SDTMotor setCompressionRatio (SDTMotor *x, double f)

Sets the compression ratio of the engine. The compression ratio is computed dividing the cylinder volume at maximum expansion (piston down) by its volume at maximum compression (piston up).

void SDTMotor_setSparkTime (SDTMotor *x, double f)

Sets the width of the ignition pulse, compared to a full operation cycle.

void SDTMotor_setAsymmetry (SDTMotor *x, double f)

Sets the amount of irregularity in the operation cycle.

void SDTMotor_setBackfire (SDTMotor *x, double f)

Sets the amount of backfiring when the engine revs down.

void SDTMotor_setIntakeSize (SDTMotor *x, double f)

Sets the average length of the intake pipes.

• void SDTMotor_setExtractorSize (SDTMotor *x, double f)

Sets the average length of the extractor pipes.

void SDTMotor_setExhaustSize (SDTMotor *x, double f)

Sets the length of the main exhaust pipe.

void SDTMotor setExpansion (SDTMotor *x, double f)

Sets the amount of expansion of the main exhaust pipe. This is a feature commonly found in two-stroke engines, to avoid the passage of fresh fuel mixture into the exhaust system.

void SDTMotor setMufflerSize (SDTMotor *x, double f)

Sets the average length of the muffler chambers.

void SDTMotor setMufflerFeedback (SDTMotor *x, double f)

Sets the amount of energy dissipated by the muffler chambers.

• void SDTMotor_setOutletSize (SDTMotor *x, double f)

Sets the length of the exhaust outlet.

void SDTMotor dsp (SDTMotor *x, double *outs)

Signal processing routine. Call this function at sample rate to synthesize the engine sound. The output is written in an array of three doubles. The first value represents the sound picked up at the intakes, from the front of the vehicle; the second represents the engine vibrations, mostly heard inside the cabin; the third and last output represents the sound coming from the exhaust outlet, towards the rear of the vehicle.

4.42.1 Detailed Description

From a mechanical point of view, an internal combustion engine converts chemical energy into kinetic energy by means of a series of controlled explosions. From an acoustical point of view, the previously described setup is basically a set of resonating pipes, excited by the explosions happening in the combustion chambers. Resonances happening inside intake pipes, cylinders, exhaust collectors, exhaust pipe, exhaust muffler and final outlet are simulated by means of digital waveguides, whose inputs, lengths and feedback gains are controlled by a physical model of the engine operation cycle representing the behavior of the engine block. Four mechanical components are simulated: Piston motion, fuel ignition, intake valves operation and exhaust valves operation. The model provides also a simulation of exhaust backfiring, a phenomenon which occurs especially in sports or muscle cars, where the very rich fuel mixture sometimes doesn't burn completely in the cylinders and self ignites later in the hotter parts of the exhaust system.

4.42.2 Function Documentation

4.42.2.1 void SDTMotor_dsp (SDTMotor * x, double * outs)

Signal processing routine. Call this function at sample rate to synthesize the engine sound. The output is written in an array of three doubles. The first value represents the sound picked up at the intakes, from the front of the vehicle; the second represents the engine vibrations, mostly heard inside the cabin; the third and last output represents the sound coming from the exhaust outlet, towards the rear of the vehicle.

Parameters

out	outs	Pointer to an array of three doubles, destination of the output

4.42.2.2 void SDTMotor_free (SDTMotor * x)

Object destructor.

Parameters

in x Pointer to the instance to destroy	
---	--

4.42.2.3 SDTMotor * SDTMotor_new (long maxDelay)

Object constructor.

Returns

Pointer to the new instance

4.42.2.4 void SDTMotor_setAsymmetry (SDTMotor * x, double f)

Sets the amount of irregularity in the operation cycle.

Parameters

in	f	Cycle asymmetry [0,1]

4.42.2.5 void SDTMotor_setBackfire (SDTMotor * x, double f)

Sets the amount of backfiring when the engine revs down.

Parameters

in	f	Chance of backfiring [0.1]

4.42.2.6 void SDTMotor_setCompressionRatio (SDTMotor * x, double f)

Sets the compression ratio of the engine. The compression ratio is computed dividing the cylinder volume at maximum expansion (piston down) by its volume at maximum compression (piston up).

Parameters

in	f	Compression ratio
----	---	-------------------

4.42.2.7 void SDTMotor_setCylinderSize (SDTMotor *x, double f)

Sets the size of each single cylinder. The total volume of the engine is this value multiplied by the number of cylinders.

Parameters

in	f Cylinder v	volume, in cc

4.42.2.8 void SDTMotor_setExhaustSize (SDTMotor * x, double f)

Sets the length of the main exhaust pipe.

Parameters

ſ	in	f	Exhaust size, in m

4.42.2.9 void SDTMotor_setExpansion (SDTMotor * x, double f)

Sets the amount of expansion of the main exhaust pipe. This is a feature commonly found in two-stroke engines, to avoid the passage of fresh fuel mixture into the exhaust system.

Parameters

in	f	Exhaust expansion [0,1]

4.42.2.10 void SDTMotor_setExtractorSize (SDTMotor * x, double f)

Sets the average length of the extractor pipes.

Parameters

in	f	Extractor size, in m

4.42.2.11 void SDTMotor_setFilters (SDTMotor *x, double damp, double dc)

Update filter coefficients. Should be always called after setting the sampling rate with SDT_setSampleRate().

Parameters

in x Pointer to a SDTMotor instance	in
-------------------------------------	----

4.42.2.12 void SDTMotor_setIntakeSize (SDTMotor * x, double f)

Sets the average length of the intake pipes.

Parameters

-			
	in	f	Intake size, in m

4.42.2.13 void SDTMotor_setMufflerFeedback (SDTMotor * x, double f)

Sets the amount of energy dissipated by the muffler chambers.

Parameters

in f Muffler feedback [0,1]

4.42.2.14 void SDTMotor_setMufflerSize (SDTMotor * x, double f)

Sets the average length of the muffler chambers.

Parameters

in	f	Muffler size, in m

4.42.2.15 void SDTMotor_setNCylinders (SDTMotor * x, int i)

Sets the number of cylinders in the engine block.

Parameters

in	i	Number of cylinders [1,12]

4.42.2.16 void SDTMotor_setOutletSize (SDTMotor * x, double f)

Sets the length of the exhaust outlet.

in	f	Outlet size, in m

4.42.2.17 void SDTMotor_setRpm (SDTMotor * x, double f)

Sets the Revolutions Per Minute (RPM) of the engine.

Parameters

in	f	RPM value
----	---	-----------

4.42.2.18 void SDTMotor_setSparkTime (SDTMotor *x, double f)

Sets the width of the ignition pulse, compared to a full operation cycle.

Parameters

in	f	Ignition time [0,1]

4.42.2.19 void SDTMotor_setThrottle (SDTMotor *x, double f)

Sets the throttle load.

in	f	Throttle load [0,1]
----	---	---------------------

4.43 SDTOscillators.h: Oscillators

Typedefs

• typedef struct SDTPinkNoise SDTPinkNoise

Opaque data structure for a pink noise generator.

• typedef struct SDTPinkNoise SDTPinkNoise

Opaque data structure for a pink noise generator.

Functions

SDTPinkNoise * SDTPinkNoise_new (int nOctaves)

Object constructor.

void SDTPinkNoise_free (SDTPinkNoise *x)

Object destructor.

double SDTPinkNoise_dsp (SDTPinkNoise *x)

Signal processing routine. Call this function at sample rate to generate pink noise.

• double SDT_whiteNoise ()

Signal processing routine. Call this function at sample rate to generate white noise.

4.43.1 Detailed Description

Simple, commonly used sound generators.

4.43.2 Function Documentation

4.43.2.1 void SDTPinkNoise_free (SDTPinkNoise *x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy	

4.43.2.2 SDTPinkNoise * SDTPinkNoise_new (int nOctaves)

Object constructor.

Parameters

in	nOctaves	N. of octave bands for the pink noise generator.
----	----------	--

Returns

Pointer to the new instance

4.44 SDTResonators.h: Solid resonators

Typedefs

typedef struct SDTResonator SDTResonator

Opaque data structure representing a solid resonator object.

typedef struct SDTResonator SDTResonator

Opaque data structure representing a solid resonator object.

Functions

SDTResonator * SDTResonator_new (unsigned int nModes, unsigned int nPickups)

Object constructor.

void SDTResonator_free (SDTResonator *x)

Object destructor.

• double SDTResonator_getPosition (SDTResonator *x, unsigned int pickup)

Gets the displacement of the object at a given pickup point.

double SDTResonator_getVelocity (SDTResonator *x, unsigned int pickup)

Gets the velocity of the object at a given pickup point.

int SDTResonator_getNPickups (SDTResonator *x)

Gets the number of pickup points.

void SDTResonator setPosition (SDTResonator *x, unsigned int pickup, double f)

Sets a modal displacement at a given pickup point.

• void SDTResonator_setVelocity (SDTResonator *x, unsigned int pickup, double f)

Sets a modal velocity at a given pickup point.

void SDTResonator setFrequency (SDTResonator *x, unsigned int mode, double f)

Sets the resonant frequency for a given mode.

• void SDTResonator_setDecay (SDTResonator *x, unsigned int mode, double f)

Sets the decay for a given mode.

void SDTResonator_setWeight (SDTResonator *x, unsigned int mode, double f)

Sets the weight for a given mode.

void SDTResonator_setGain (SDTResonator *x, unsigned int pickup, unsigned int mode, double f)

Sets the pickup gain for a given mode and pickup.

void SDTResonator setFragmentSize (SDTResonator *x, double f)

Reduces the object into a smaller fragment. This parameter influences various aspects of the object: Smaller fragments resonate louder and at higher frequencies, but with shorter decay times.

void SDTResonator_setActiveModes (SDTResonator *x, unsigned int i)

Sets the number of active (actually computed) modes.

void SDTResonator_applyForce (SDTResonator *x, unsigned int pickup, double f)

Applies a force to the resonator at a given pickup point. The force is distributed across the modes according to their normalized pickup gains (modal gain/sum of all gains). If the function is called multiple times in a single DSP cycle, the applied force gets accumulated.

• double SDTResonator_computeEnergy (SDTResonator *x, unsigned int pickup, double f)

Computes the total energy of the object, after applying all acting forces.

void SDTResonator_dsp (SDTResonator *x)

Signal processing routine. Call this function at sample rate to update the internal state of the resonator. DO NOT call this function if you plan to use any of the interactor DSP methods instead! See the SDTInteractors.h module documentation for further information.

4.44.1 Detailed Description

Physical model of a solid resonator, represented as a set of parallel mass-spring-damper mechanical oscillators. Each oscillator corresponds to a normal mode of resonance of the object, with the oscillation period, the mass and the damping coefficient of each oscillator corresponding respectively to the resonance frequency, the magnitude and the decay time of each mode. Resonant modes can be mixed and weighted with different gains, to simulate different pickup points on the resonating object. A single mode with a resonant frequency of 0 Hz, infinite decay time and unity pickup gain behaves like an inertial point mass. The model uses the impulse invariant method as discretization scheme.

4.44.2 Function Documentation

4.44.2.1 void SDTResonator_applyForce (SDTResonator *x, unsigned int pickup, double f)

Applies a force to the resonator at a given pickup point. The force is distributed across the modes according to their normalized pickup gains (modal gain/sum of all gains). If the function is called multiple times in a single DSP cycle, the applied force gets accumulated.

Parameters

in	
1 1 11	

4.44.2.2 double SDTResonator_computeEnergy (SDTResonator * x, unsigned int pickup, double f)

Computes the total energy of the object, after applying all acting forces.

Parameters

in	pickup	Pickup point
in	f	External force applied at the pickup point

Returns

Sum of kinetic and potential energy, in J

4.44.2.3 void SDTResonator_free (SDTResonator * x)

Object destructor.

Parameters

in	X	Pointer to the instance to destroy
----	---	------------------------------------

4.44.2.4 int SDTResonator_getNPickups (SDTResonator * x)

Gets the number of pickup points.

Returns

Number of pickup points

4.44.2.5 double SDTResonator_getPosition (SDTResonator *x, unsigned int pickup)

Gets the displacement of the object at a given pickup point.

Parameters

in	pickup	Pickup point

Returns

Object displacement, in m

4.44.2.6 double SDTResonator_getVelocity (SDTResonator * x, unsigned int pickup)

Gets the velocity of the object at a given pickup point.

Parameters

in	pickup	Pickup point

Returns

Object velocity, in m/s

4.44.2.7 SDTResonator * SDTResonator_new (unsigned int nModes, unsigned int nPickups)

Object constructor.

Parameters

in	nModes	Number of resonant modes
in	nPickups	Number of pickup points

Returns

Pointer to the new instance

4.44.2.8 void SDTResonator_setActiveModes (SDTResonator *x, unsigned int i)

Sets the number of active (actually computed) modes.

Parameters

in			

4.44.2.9 void SDTResonator_setDecay (SDTResonator *x, unsigned int *mode*, double f)

Sets the decay for a given mode.

Parameters

in	mode	Mode number
in		

4.44.2.10 void SDTResonator_setFragmentSize (SDTResonator * x, double f)

Reduces the object into a smaller fragment. This parameter influences various aspects of the object: Smaller fragments resonate louder and at higher frequencies, but with shorter decay times.

Parameters

in	

4.44.2.11 void SDTResonator_setFrequency (SDTResonator * x, unsigned int mode, double f)

Sets the resonant frequency for a given mode.

Parameters

in	mode	Mode number
in		

4.44.2.12 void SDTResonator_setGain (SDTResonator * x, unsigned int pickup, unsigned int mode, double f)

Sets the pickup gain for a given mode and pickup.

Parameters

in	pickup	Pickup number
in	mode	Mode number
in		

4.44.2.13 void SDTResonator_setPosition (SDTResonator *x, unsigned int pickup, double f)

Sets a modal displacement at a given pickup point.

Parameters

in	pickup	Pickup point
in		

4.44.2.14 void SDTResonator_setVelocity (SDTResonator * x, unsigned int pickup, double f)

Sets a modal velocity at a given pickup point.

Parameters

in	pickup	Pickup point
in		

4.44.2.15 void SDTResonator_setWeight (SDTResonator *x, unsigned int mode, double f)

Sets the weight for a given mode.

in	mode	Mode number
in		

4.45 SDTSolids.h: Registering/notifying resonators and interactors

Macros

- #define SDT MAX MODES 16
- #define SDT_MAX_PICKUPS 16
- #define SDT_MAX_MODES 16
- #define SDT_MAX_PICKUPS 16

Functions

• int SDT_registerResonator (SDTResonator *x, char *key)

Registers a resonator into the resonators list with a unique ID. If an interactor with the same ID is present, the resonator is bound to the interactor.

int SDT_unregisterResonator (char *key)

Unregisters a resonator from the resonator list. If a resonator with the given ID is present, it is unregistered from the list. If also an interactor with the same ID is present, the object is released by the interactor as well.

int SDT_registerInteractor (SDTInteractor *x, char *key0, char *key1)

Registers an interactor into the interactors list with two unique IDs, one for each resonator. If resonators with the same IDs are present, they are immediately bound to the interactor.

int SDT_unregisterInteractor (char *key0, char *key1)

Unregisters an interactor from the interactors list. If an interactor with the given IDs is present, it is unregistered from the list

4.45.1 Detailed Description

Bidirectional observer pattern, implementing a loose coupling between resonator and interactor objects. Particularly useful in patcher languages, where object instantiation is generally asynchronous.

4.45.2 Function Documentation

4.45.2.1 int SDT_registerInteractor (SDTInteractor *x, char *key0, char *key1)

Registers an interactor into the interactors list with two unique IDs, one for each resonator. If resonators with the same IDs are present, they are immediately bound to the interactor.

Parameters

in	X	Resonator instance to register
in	key0	Unique ID of the first resonator
in	key1	Unique ID of the second resonator

4.45.2.2 int SDT_registerResonator (SDTResonator *x, char *key)

Registers a resonator into the resonators list with a unique ID. If an interactor with the same ID is present, the resonator is bound to the interactor.

in	X	Resonator instance to register
----	---	--------------------------------

in	key	Unique ID assigned to the resonator instance

4.45.2.3 int SDT_unregisterInteractor (char * key0, char * key1)

Unregisters an interactor from the interactors list. If an interactor with the given IDs is present, it is unregistered from the list.

Parameters

in	key0	Unique ID of the first resonator
in	key1	Unique ID of the second resonator

4.45.2.4 int SDT_unregisterResonator (char * key)

Unregisters a resonator from the resonator list. If a resonator with the given ID is present, it is unregistered from the list. If also an interactor with the same ID is present, the object is released by the interactor as well.

in	key	Unique ID of the resonator instance to unregister
----	-----	---

4.46 SDTStructs.h: Common data structures

Typedefs

typedef struct SDTHashmap SDTHashmap

Opaque data structure for a hashmap object.

typedef struct SDTHashmap SDTHashmap

Opaque data structure for a hashmap object.

Functions

• SDTHashmap * SDTHashmap_new (int size)

Object constructor.

void SDTHashmap_free (SDTHashmap *x)

Object destructor.

void * SDTHashmap_get (SDTHashmap *x, char *key)

Looks for an entry with the given key in the hashmap.

• int SDTHashmap_put (SDTHashmap *x, char *key, void *value)

Inserts a key/value pair in the hashmap.

• int SDTHashmap_del (SDTHashmap *x, char *key)

Deletes a key/value pair from the hashmap.

void SDTHashmap_clear (SDTHashmap *x)

Deletes all the entries in the hashmap.

4.46.1 Detailed Description

4.46.2 Function Documentation

4.46.2.1 int SDTHashmap_del (SDTHashmap * x, char * key)

Deletes a key/value pair from the hashmap.

Parameters

in	key	Key to look for in the hashmap

Returns

0 if deletion is succesful, 1 otherwise (e.g. key not found)

4.46.2.2 void SDTHashmap_free (SDTHashmap * x)

Object destructor.

Parameters

in	X	pointer to the instance to destroy

4.46.2.3 void * SDTHashmap_get (SDTHashmap * x, char * key)

Looks for an entry with the given key in the hashmap.

Parameters

in	key	Key to look for in the hashmap

Returns

Value associated to the key if found, NULL otherwise

4.46.2.4 SDTHashmap * SDTHashmap_new (int size)

Object constructor.

Parameters

in	size	Number of bins in the hashmap

Returns

Pointer to the new instance

4.46.2.5 int SDTHashmap_put (SDTHashmap * x, char * key, void * value)

Inserts a key/value pair in the hashmap.

Parameters

in	key	Key to associate to the value
in	value	Value to insert in the hashmap

Returns

0 if insertion is succesful, 1 otherwise (e.g. key already present)

Chapter 5

Data Structure Documentation

5.1 SDTComplex Struct Reference

Data structure containing the real and imaginary part of a complex number.

```
#include <SDTComplex.h>
```

Data Fields

- double r
- double i

5.1.1 Detailed Description

Data structure containing the real and imaginary part of a complex number.

The documentation for this struct was generated from the following file:

• src/SDT/SDT.framework/Versions/A/Headers/SDTComplex.h

Index

Allpass filter, 64	Crumpling, 39
SDTAllPass_dsp, 64	SDTCrumpling_dsp, 39
SDTAllPass_free, 64	SDTCrumpling_free, 39
SDTAllPass_new, 64	SDTCrumpling_new, 40
SDTAllPass_setFeedback, 64	SDTCrumpling setCrushingEnergy, 40
_ ,	SDTCrumpling_setFragmentation, 40
Bouncing, 34	SDTCrumpling_setGranularity, 40
SDTBouncing_dsp, 34	э э <u>ү</u> <u>э</u>
SDTBouncing free, 34	Delay line, 75
SDTBouncing_hasFinished, 35	SDTDelay_dsp, 75
SDTBouncing_new, 35	SDTDelay free, 75
SDTBouncing_setHeight, 35	SDTDelay_new, 75
SDTBouncing_setIrregularity, 35	SDTDelay_setDelay, 76
SDTBouncing_setRestitution, 35	Digital waveguide, 80
Breaking, 36	SDTWaveguide_dsp, 80
SDTBreaking_dsp, 36	SDTWaveguide_free, 81
SDTBreaking_free, 36	SDTWaveguide_getFwdOut, 81
SDTBreaking_hasFinished, 37	SDTWaveguide_getr wdout, 81
SDTBreaking new, 37	SDTWaveguide_getrievCut, 61 SDTWaveguide_new, 81
SDTBreaking_new, 37 SDTBreaking_reset, 37	SDTWaveguide_new, 81 SDTWaveguide_setDelay, 81
SDTBreaking_reset, 37 SDTBreaking_setCrushingEnergy, 37	
SDTBreaking_setGrashingEnergy, 37 SDTBreaking_setFragmentation, 37	SDTWaveguide_setFwdDamping, 81
-	SDTWaveguide_setFwdFeedback, 82
SDTBreaking_setGranularity, 37	SDTWaveguide_setRevDamping, 82
SDTBreaking_setStoredEnergy, 38	SDTWaveguide_setRevFeedback, 82
Bubbles, 102	Chirologo follower C7
SDTBubble_dsp, 102	Envelope follower, 67
SDTBubble_free, 102	SDTEnvelope_dsp, 67
SDTBubble_new, 103	SDTEnvelope_free, 67
SDTBubble_setDepth, 103	SDTEnvelope_new, 67
SDTBubble_setRadius, 103	SDTEnvelope_setAttack, 68
SDTBubble_setRiseFactor, 103	SDTEnvelope_setRelease, 68
Cascade of biquadratic sections, 71	Fluid flow, 104
SDTBiquad_butterworthHP, 71	SDTFluidFlow_dsp, 104
SDTBiquad_butterworthLP, 71	SDTFluidFlow_free, 105
SDTBiquad_dsp, 72	SDTFluidFlow_new, 105
SDTBiquad_free, 72	SDTFluidFlow_setAvgRate, 105
SDTBiquad_linkwitzRileyHP, 72	SDTFluidFlow_setExpDepth, 105
SDTBiquad_linkwitzRileyLP, 72	SDTFluidFlow_setExpRadius, 105
SDTBiquad_new, 72	SDTFluidFlow_setMaxDepth, 105
Comb filter, 77	SDTFluidFlow setMaxRadius, 106
SDTComb_dsp, 77	SDTFluidFlow_setMinDepth, 106
SDTComb_free, 77	SDTFluidFlow setMinRadius, 106
SDTComb new, 78	SDTFluidFlow setRiseCutoff, 106
SDTComb_new, 78	SDTFluidFlow_setRiseFactor, 106
SDTComb_setXGain, 78	Friction, 98
SDTComb_setXGain, 78 SDTComb_setXYDelay, 78	SDTFriction_new, 98
SDTComb_setXYGain, 78	SDTFriction_new, 98 SDTFriction_setBreakAway, 99
-	- • • • • • • • • • • • • • • • • •
SDTComb_setYDelay, 78	SDTFriction_setDissipation, 99
SDTComb_setYGain, 79	SDTFriction_setDvnamicCoefficient, 9

SDTFriction_setNoisiness, 99	SDTReverb_setTime, 55
SDTFriction_setNormalForce, 99	SDTReverb_setTime1k, 55
SDTFriction_setStaticCoefficient, 99	SDTReverb_setXSize, 55
SDTFriction_setStiffness, 100	SDTReverb_setYSize, 55
SDTFriction_setStribeckVelocity, 100	SDTReverb_setZSize, 56
SDTFriction_setViscosity, 100	Rolling, 41
Fundamental frequency estimator, 16	SDTRolling_dsp, 41
SDTPitch_dsp, 16	SDTRolling_free, 41
SDTPitch_free, 17	SDTRolling_new, 42
SDTPitch_new, 17	SDTRolling_setDepth, 42
SDTPitch_setOverlap, 17	SDTRolling_setGrain, 42
SDTPitch_setTolerance, 17	SDTRolling_setMass, 42
	SDTRolling_setVelocity, 42
Impact, 96	SDT_bitReverse
SDTImpact_new, 96	SDTCommon.h: Common variables and functions,
SDTImpact_setDissipation, 96	20
SDTImpact_setShape, 96	SDT blackman
SDTImpact_setStiffness, 97	SDTCommon.h: Common variables and functions,
Interactor interface, 94	20
SDTInteractor_dsp, 94	SDT_clip
SDTInteractor_setFirstPoint, 95	SDTCommon.h: Common variables and functions,
SDTInteractor_setFirstResonator, 95	21
SDTInteractor_setSecondPoint, 95	SDT expRand
SDTInteractor_setSecondResonator, 95	SDTCommon.h: Common variables and functions,
Marriag average 70	21
Moving average, 73	SDT_fclip
SDTAyerage_dsp, 73	SDTCommon.h: Common variables and functions,
SDTAyerage_free, 73	21
SDTAverage_new, 73	SDT_frand
SDTAverage_setWindow, 74	SDTCommon.h: Common variables and functions,
Myoelastic features extractor, 10	21
SDTMyoelastic_dsp, 10	SDT_gaussian1D
SDTMyoelastic_free, 10	SDTCommon.h: Common variables and functions,
SDTMyoelastic_new, 11	21
SDTMyoelastic_setDcFrequency, 11	SDT_gravity
SDTMyoelastic_setHighFrequency, 11	SDTCommon.h: Common variables and functions.
SDTMyoelastic_setLowFrequency, 11	23
SDTMyoelastic_setThreshold, 11	SDT_haar
One pole filter, 62	SDTCommon.h: Common variables and functions,
SDTOnePole dsp, 62	23
SDTOnePole_free, 62	SDT_hanning
SDTOnePole_highpass, 62	SDTCommon.h: Common variables and functions,
SDTOnePole_lowpass, 63	23
SDTOnePole_new, 63	SDT_ihaar
SDTOnePole_setFeedback, 63	SDTCommon.h: Common variables and functions,
3DTOHEFOIE_Sett eedback, 03	23
Pitch shift, 57	SDT_kinetic
SDTPitchShift_dsp, 57	SDTCommon.h: Common variables and functions,
SDTPitchShift_free, 57	23
SDTPitchShift_new, 57	SDT_nextPow2
SDTPitchShift_setOverlap, 58	SDTCommon.h: Common variables and functions,
SDTPitchShift_setRatio, 58	24
52 · · · · · · · · · · · · · · · · · · ·	SDT_normalize
Reverb, 53	SDTCommon.h: Common variables and functions,
SDTReverb_dsp, 53	24
SDTReverb_free, 53	SDT normalizeWindow
SDTReverb_new, 55	SDTCommon.h: Common variables and functions,
SDTReverb_setRandomness, 55	24
_ ,	

SDT ones	Allpass filter, 64
SDTCommon.h: Common variables and functions,	SDTAnalysis.h: Sound analysis tools, 7
24	SDTAverage_dsp
SDT rank	Moving average, 73
SDTCommon.h: Common variables and functions,	SDTAverage_free
24	Moving average, 73
SDT_registerInteractor	SDTAverage_new
SDTSolids.h: Registering/notifying resonators and	Moving average, 73
interactors, 118	SDTAverage_setWindow
SDT_registerResonator	Moving average, 74
SDTSolids.h: Registering/notifying resonators and	SDTBiquad_butterworthHP
interactors, 118	Cascade of biquadratic sections, 71
SDT_removeDC	SDTBiquad_butterworthLP
SDTCommon.h: Common variables and functions,	Cascade of biquadratic sections, 71
25	SDTBiquad_dsp
SDT_roi	Cascade of biquadratic sections, 72
SDTCommon.h: Common variables and functions,	SDTBiquad_free
25	Cascade of biquadratic sections, 72
SDT_samplesInAir	SDTBiquad_linkwitzRileyHP
SDTCommon.h: Common variables and functions,	. —
25	Cascade of biquadratic sections, 72
	SDTBiquad_linkwitzRileyLP
SDT_scale	Cascade of biquadratic sections, 72
SDTCommon.h: Common variables and functions,	SDTBiquad_new
25 CDT_catCarralaData	Cascade of biquadratic sections, 72
SDT_setSampleRate	SDTBouncing_dsp
SDTCommon.h: Common variables and functions,	Bouncing, 34
26	SDTBouncing_free
SDT_signum	Bouncing, 34
SDTCommon.h: Common variables and functions,	SDTBouncing_hasFinished
26	Bouncing, 35
SDT_sinc	SDTBouncing_new
SDTCommon.h: Common variables and functions,	Bouncing, 35
26	SDTBouncing_setHeight
SDT_truePeakPos	Bouncing, 35
SDTCommon.h: Common variables and functions,	SDTBouncing_setIrregularity
26	Bouncing, 35
SDT_truePeakValue	SDTBouncing_setRestitution
SDTCommon.h: Common variables and functions,	Bouncing, 35
26	SDTBreaking_dsp
SDT_unregisterInteractor	Breaking, 36
SDTSolids.h: Registering/notifying resonators and	SDTBreaking_free
interactors, 119	Breaking, 36
SDT_unregisterResonator	SDTBreaking_hasFinished
SDTSolids.h: Registering/notifying resonators and	Breaking, 37
interactors, 119	SDTBreaking_new
SDT_wrap	Breaking, 37
SDTCommon.h: Common variables and functions,	SDTBreaking_reset
27	Breaking, 37
SDT_zeros	SDTBreaking_setCrushingEnergy
SDTCommon.h: Common variables and functions,	Breaking, 37
27	SDTBreaking_setFragmentation
SDTAllPass_dsp	Breaking, 37
Allpass filter, 64	SDTBreaking_setGranularity
SDTAIlPass_free	Breaking, 37
Allpass filter, 64	SDTBreaking_setStoredEnergy
SDTAIlPass_new	Breaking, 38
Allpass filter, 64	SDTBubble_dsp
SDTAllPass_setFeedback	Bubbles, 102

SDTBubble_free	SDTComplex.h: Handling complex numbers, 28
Bubbles, 102	SDTComplex_abs, 29
SDTBubble_new	SDTComplex_add, 29
Bubbles, 103	SDTComplex_addReal, 29
SDTBubble_setDepth	SDTComplex_angle, 29
Bubbles, 103	SDTComplex_car, 29
SDTBubble_setRadius	SDTComplex_conj, 30
Bubbles, 103	SDTComplex_div, 30
SDTBubble setRiseFactor	SDTComplex_divReal, 30
Bubbles, 103	SDTComplex_exp, 30
SDTComb_dsp	SDTComplex_mult, 31
Comb filter, 77	SDTComplex multReal, 31
SDTComb_free	SDTComplex_realDiv, 31
Comb filter, 77	SDTComplex_realSub, 31
SDTComb_new	SDTComplex_sub, 32
	• —
Comb filter, 78	SDTComplex_subReal, 32
SDTComb_setXDelay	SDTComplex_abs
Comb filter, 78	SDTComplex.h: Handling complex numbers, 29
SDTComb_setXGain	SDTComplex_add
Comb filter, 78	SDTComplex.h: Handling complex numbers, 29
SDTComb_setXYDelay	SDTComplex_addReal
Comb filter, 78	SDTComplex.h: Handling complex numbers, 29
SDTComb_setXYGain	SDTComplex_angle
Comb filter, 78	SDTComplex.h: Handling complex numbers, 29
SDTComb_setYDelay	SDTComplex_car
Comb filter, 78	SDTComplex.h: Handling complex numbers, 29
SDTComb_setYGain	SDTComplex_conj
Comb filter, 79	SDTComplex.h: Handling complex numbers, 30
SDTCommon.h: Common variables and functions, 18	SDTComplex_div
SDT_bitReverse, 20	SDTComplex.h: Handling complex numbers, 30
SDT_blackman, 20	SDTComplex_divReal
SDT_clip, 21	SDTComplex.h: Handling complex numbers, 30
SDT_expRand, 21	SDTComplex exp
SDT_fclip, 21	SDTComplex.h: Handling complex numbers, 30
SDT frand, 21	SDTComplex_mult
SDT_gaussian1D, 21	SDTComplex.h: Handling complex numbers, 31
SDT_gravity, 23	SDTComplex_multReal
SDT_haar, 23	SDTComplex.h: Handling complex numbers, 31
SDT_hanning, 23	SDTComplex realDiv
SDT_ihaar, 23	SDTComplex.h: Handling complex numbers, 31
SDT_kinetic, 23	SDTComplex realSub
SDT_nextPow2, 24	SDTComplex.h: Handling complex numbers, 31
SDT_normalize, 24	SDTComplex_sub
SDT_normalizeWindow, 24	SDTComplex.h: Handling complex numbers, 32
SDT_ones, 24	SDTComplex subReal
SDT_rank, 24	SDTComplex.h: Handling complex numbers, 32
SDT removeDC, 25	SDTControl.h: Compound solid interactions, 33
SDT_roi, 25	SDTCrumpling_dsp
	Crumpling_usp
SDT_samplesInAir, 25	• •
SDT_scale, 25	SDTCrumpling_free
SDT_setSampleRate, 26	Crumpling, 39
SDT_signum, 26	SDTCrumpling_new
SDT_sinc, 26	Crumpling, 40
SDT_truePeakPos, 26	SDTCrumpling_setCrushingEnergy
SDT_truePeakValue, 26	Crumpling, 40
SDT_wrap, 27	SDTCrumpling_setFragmentation
SDT_zeros, 27	Crumpling, 40
SDTComplex, 123	SDTCrumpling_setGranularity

Crumpling, 40	SDTDemix setOverlap, 51
SDTDCMotor.h: Electric motors, 45	SDTDemix_setTonalThreshold, 51
SDTDCMotor_dsp, 46	SDTDemix_dsp
SDTDCMotor_free, 46	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor_new, 46	separator, 50
SDTDCMotor_setAirGain, 46	SDTDemix_free
SDTDCMotor_setBrushGain, 46	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor_setCoils, 46	separator, 51
SDTDCMotor_setGearGain, 47	SDTDemix_new
SDTDCMotor_setGearRatio, 47	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor_setHarshness, 47	separator, 51
SDTDCMotor_setLoad, 47	SDTDemix_setNoiseThreshold
SDTDCMotor_setReson, 47	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor_setRotorGain, 47	separator, 51
SDTDCMotor_setRpm, 47	SDTDemix_setOverlap
SDTDCMotor_setSize, 49	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor_dsp	separator, 51
SDTDCMotor.h: Electric motors, 46	SDTDemix_setTonalThreshold
SDTDCMotor_free	SDTDemix.h: Transient/tonal/residual components
SDTDCMotor.h: Electric motors, 46	separator, 51
SDTDCMotor_new	SDTEffects.h: Digital audio effects, 52
SDTDCMotor.h: Electric motors, 46	SDTEnvelope_dsp
SDTDCMotor_setAirGain	Envelope follower, 67
SDTDCMotor.h: Electric motors, 46	SDTEnvelope_free
SDTDCMotor_setBrushGain	Envelope follower, 67
SDTDCMotor.h: Electric motors, 46	SDTEnvelope_new
SDTDCMotor_setCoils	Envelope follower, 67
SDTDCMotor.h: Electric motors, 46	SDTEnvelope_setAttack
SDTDCMotor_setGearGain	Envelope follower, 68
SDTDCMotor.h: Electric motors, 47	SDTEnvelope_setRelease
SDTDCMotor_setGearRatio	Envelope follower, 68
SDTDCMotor.h: Electric motors, 47	SDTExplosion_dsp
SDTDCMotor_setHarshness	Supersonic explosions, 90
SDTDCMotor.h: Electric motors, 47	SDTExplosion_free
SDTDCMotor_setLoad	Supersonic explosions, 90
SDTDCMotor.h: Electric motors, 47	SDTExplosion_new
SDTDCMotor_setReson	Supersonic explosions, 91
SDTDCMotor.h: Electric motors, 47	SDTExplosion_setBlastTime
SDTDCMotor_setRotorGain	Supersonic explosions, 91
SDTDCMotor.h: Electric motors, 47	SDTExplosion_setDispersion
SDTDCMotor_setRpm	Supersonic explosions, 91
SDTDCMotor.h: Electric motors, 47	SDTExplosion_setDistance
SDTDCMotor_setSize	Supersonic explosions, 91
SDTDCMotor.h: Electric motors, 49	SDTExplosion_setScatterTime
SDTDelay_dsp	Supersonic explosions, 91
Delay line, 75	SDTExplosion_setWaveSpeed
SDTDelay_free	Supersonic explosions, 91
Delay line, 75	SDTExplosion_setWindSpeed
SDTDelay_new	Supersonic explosions, 92
Delay line, 75	SDTFFT.h: Fast Fourier Transform, 59
SDTDelay_setDelay	SDTFFT_fft, 59
Delay line, 76	SDTFFT_fftr, 59
SDTDemix.h: Transient/tonal/residual components sep-	SDTFFT_free, 59
arator, 50	SDTFFT_ifftr, 60
SDTDemix_dsp, 50	SDTFFT_new, 60
SDTDemix_free, 51	SDTFFT_fft
SDTDemix_new, 51	SDTFFT.h: Fast Fourier Transform, 59
SDTDemix_setNoiseThreshold, 51	SDTFFT_fftr

SDTFFT.h: Fast Fourier Transform, 59	SDTStructs.h: Common data structures, 120
SDTFFT_free	SDTHashmap_new
SDTFFT.h: Fast Fourier Transform, 59	SDTStructs.h: Common data structures, 121
SDTFFT_ifftr	SDTHashmap_put
SDTFFT.h: Fast Fourier Transform, 60	SDTStructs.h: Common data structures, 121
SDTFFT_new	SDTImpact_new
SDTFFT.h: Fast Fourier Transform, 60	Impact, 96
SDTFilters.h: Audio filters, 61	SDTImpact_setDissipation
SDTFluidFlow_dsp	Impact, 96
Fluid flow, 104	SDTImpact_setShape
SDTFluidFlow_free	Impact, 96
Fluid flow, 105	SDTImpact_setStiffness
SDTFluidFlow_new	Impact, 97
Fluid flow, 105	SDTInteractor_dsp
SDTFluidFlow_setAvgRate	Interactor interface, 94
Fluid flow, 105	SDTInteractor_setFirstPoint
SDTFluidFlow_setExpDepth	Interactor interface, 95
Fluid flow, 105	SDTInteractor_setFirstResonator
SDTFluidFlow_setExpRadius	Interactor interface, 95
Fluid flow, 105	SDTInteractor_setSecondPoint
SDTFluidFlow_setMaxDepth	Interactor interface, 95
Fluid flow, 105	SDTInteractor_setSecondResonator
SDTFluidFlow_setMaxRadius	Interactor interface, 95
Fluid flow, 106	SDTInteractors.h: interactions between solids, 93
SDTFluidFlow_setMinDepth	SDTLiquids.h: Liquid sounds, 101
Fluid flow, 106	SDTMotor.h: Combustion engines, 107
SDTFluidFlow setMinRadius	SDTMotor_dsp, 108
Fluid flow, 106	SDTMotor_free, 108
SDTFluidFlow_setRiseCutoff	SDTMotor_new, 108
Fluid flow, 106	SDTMotor_setAsymmetry, 108
SDTFluidFlow_setRiseFactor	SDTMotor_setBackfire, 109
Fluid flow, 106	SDTMotor_setCompressionRatio, 109
SDTFriction_new	SDTMotor setCylinderSize, 109
Friction, 98	SDTMotor_setExhaustSize, 109
SDTFriction_setBreakAway	SDTMotor_setExpansion, 109
Friction, 99	SDTMotor_setExtractorSize, 109
SDTFriction_setDissipation	SDTMotor_setFilters, 110
Friction, 99	SDTMotor setIntakeSize, 110
SDTFriction_setDynamicCoefficient	SDTMotor_setMufflerFeedback, 110
Friction, 99	SDTMotor_setMufflerSize, 110
SDTFriction_setNoisiness	SDTMotor_setNCylinders, 110
Friction, 99	SDTMotor setOutletSize, 110
SDTFriction_setNormalForce	SDTMotor_setRpm, 110
Friction, 99	SDTMotor_setSparkTime, 112
SDTFriction_setStaticCoefficient	SDTMotor_setThrottle, 112
Friction, 99	SDTMotor_dsp
SDTFriction_setStiffness	SDTMotor.h: Combustion engines, 108
Friction, 100	SDTMotor_free
SDTFriction_setStribeckVelocity	SDTMotor.h: Combustion engines, 108
Friction, 100	SDTMotor new
SDTFriction_setViscosity	SDTMotor.h: Combustion engines, 108
Friction, 100	SDTMotor_setAsymmetry
SDTGases.h: Air turbulence and explosions, 83	SDTMotor.h: Combustion engines, 108
SDTHashmap_del	SDTMotor_setBackfire
SDTStructs.h: Common data structures, 120	SDTMotor.h: Combustion engines, 109
SDTHashmap_free	SDTMotor_setCompressionRatio
SDTStructs.h: Common data structures, 120	SDTMotor.h: Combustion engines, 109
SDTHashmap_get	SDTMotor_setCylinderSize
· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·

SDTMotor.h: Combustion engines, 109	SDTPitch_dsp
SDTMotor_setExhaustSize	Fundamental frequency estimator, 16
SDTMotor.h: Combustion engines, 109	SDTPitch_free
SDTMotor_setExpansion	Fundamental frequency estimator, 17
SDTMotor.h: Combustion engines, 109	SDTPitch_new
SDTMotor_setExtractorSize	Fundamental frequency estimator, 17
SDTMotor.h: Combustion engines, 109	SDTPitch_setOverlap
SDTMotor_setFilters	Fundamental frequency estimator, 17
SDTMotor.h: Combustion engines, 110	SDTPitch_setTolerance
SDTMotor_setIntakeSize	Fundamental frequency estimator, 17
SDTMotor.h: Combustion engines, 110	SDTPitchShift_dsp
SDTMotor_setMufflerFeedback	Pitch shift, 57
SDTMotor.h: Combustion engines, 110	SDTPitchShift_free
SDTMotor_setMufflerSize	Pitch shift, 57
SDTMotor.h: Combustion engines, 110	SDTPitchShift_new
SDTMotor_setNCylinders	Pitch shift, 57
SDTMotor.h: Combustion engines, 110	SDTPitchShift_setOverlap
SDTMotor_setOutletSize	Pitch shift, 58
SDTMotor.h: Combustion engines, 110	SDTPitchShift_setRatio
SDTMotor_setRpm	Pitch shift, 58
SDTMotor.h: Combustion engines, 110	SDTResonator_applyForce
SDTMotor_setSparkTime	SDTResonators.h: Solid resonators, 115
SDTMotor.h: Combustion engines, 112	SDTResonator_computeEnergy
SDTMotor_setThrottle	SDTResonators.h: Solid resonators, 115
SDTMotor.h: Combustion engines, 112	SDTResonator_free
SDTMyoelastic_dsp	SDTResonators.h: Solid resonators, 115
Myoelastic features extractor, 10	SDTResonator_getNPickups
SDTMyoelastic_free	SDTResonators.h: Solid resonators, 115
Myoelastic features extractor, 10	SDTResonator_getPosition
SDTMyoelastic_new	SDTResonators.h: Solid resonators, 115
Myoelastic features extractor, 11	SDTResonator_getVelocity
SDTMyoelastic_setDcFrequency	SDTResonators.h: Solid resonators, 116
Myoelastic features extractor, 11	SDTResonator_new
SDTMyoelastic_setHighFrequency	SDTResonators.h: Solid resonators, 116
Myoelastic features extractor, 11	SDTResonator_setActiveModes
SDTMyoelastic_setLowFrequency	SDTResonators.h: Solid resonators, 116
Myoelastic features extractor, 11	SDTResonator_setDecay
SDTMyoelastic_setThreshold	SDTResonators.h: Solid resonators, 116
Myoelastic features extractor, 11	SDTResonator_setFragmentSize
SDTOnePole_dsp	SDTResonators.h: Solid resonators, 116
One pole filter, 62	SDTResonator_setFrequency
SDTOnePole_free	SDTResonators.h: Solid resonators, 117
One pole filter, 62	SDTResonator_setGain
SDTOnePole_highpass	SDTResonators.h: Solid resonators, 117
One pole filter, 62	SDTResonator_setPosition
SDTOnePole_lowpass	SDTResonators.h: Solid resonators, 117
One pole filter, 63	SDTResonator_setVelocity
SDTOnePole_new	SDTResonators.h: Solid resonators, 117
One pole filter, 63	SDTResonator_setWeight
SDTOnePole_setFeedback	SDTResonators.h: Solid resonators, 117
One pole filter, 63	SDTResonators.h: Solid resonators, 114
SDTOscillators.h: Oscillators, 113	SDTResonator_applyForce, 115
SDTPinkNoise_free, 113	SDTResonator_computeEnergy, 115
SDTPinkNoise_new, 113	SDTResonator_free, 115
SDTPinkNoise_free	SDTResonator_getNPickups, 115
SDTOscillators.h: Oscillators, 113	SDTResonator_getPosition, 115
SDTPinkNoise_new	SDTResonator_getVelocity, 116
SDTOscillators.h: Oscillators, 113	SDTResonator_new, 116

SDTResonator_setActiveModes, 116	SDTSpectralFeats_dsp
SDTResonator_setDecay, 116	Spectral audio descriptors, 12
SDTResonator_setFragmentSize, 116	SDTSpectralFeats_free
SDTResonator_setFrequency, 117	Spectral audio descriptors, 13
SDTResonator_setGain, 117	SDTSpectralFeats_new
SDTResonator_setPosition, 117	Spectral audio descriptors, 13
SDTResonator_setVelocity, 117	SDTSpectralFeats_setMaxFreq
SDTResonator_setWeight, 117	Spectral audio descriptors, 13
SDTReverb_dsp	SDTSpectralFeats_setMinFreq
Reverb, 53	Spectral audio descriptors, 13
SDTReverb free	SDTSpectralFeats_setOverlap
Reverb, 53	Spectral audio descriptors, 15
SDTReverb_new	SDTStructs.h: Common data structures, 120
Reverb, 55	SDTHashmap del, 120
SDTReverb_setRandomness	SDTHashmap_free, 120
Reverb, 55	SDTHashmap_get, 120
SDTReverb setTime	SDTHashmap new, 121
Reverb, 55	SDTHashmap put, 121
SDTReverb_setTime1k	SDTTwoPoles_dsp
Reverb, 55	Two poles filter, 69
SDTReverb setXSize	SDTTwoPoles free
Reverb, 55	Two poles filter, 69
SDTReverb setYSize	SDTTwoPoles highpass
Reverb, 55	Two poles filter, 69
SDTReverb_setZSize	SDTTwoPoles_lowpass
	_ ·
Reverb, 56	Two poles filter, 70
SDTRolling_dsp	SDTTwoPoles_new
Rolling, 41	Two poles filter, 70
SDTRolling_free	SDTTwoPoles_resonant
Rolling, 41	Two poles filter, 70
SDTRolling_new	SDTWaveguide_dsp
Rolling, 42	Digital waveguide, 80
SDTRolling_setDepth	SDTWaveguide_free
Rolling, 42	Digital waveguide, 81
SDTRolling_setGrain	SDTWaveguide_getFwdOut
Rolling, 42	Digital waveguide, 81
SDTRolling_setMass	SDTWaveguide_getRevOut
Rolling, 42	Digital waveguide, 81
SDTRolling_setVelocity	SDTWaveguide_new
Rolling, 42	Digital waveguide, 81
SDTScraping_dsp	SDTWaveguide_setDelay
Scraping, 43	Digital waveguide, 81
SDTScraping_free	SDTWaveguide_setFwdDamping
Scraping, 43	Digital waveguide, 81
SDTScraping_new	SDTWaveguide_setFwdFeedback
Scraping, 44	Digital waveguide, 82
SDTScraping_setForce	SDTWaveguide_setRevDamping
Scraping, 44	Digital waveguide, 82
SDTScraping_setGrain	SDTWaveguide_setRevFeedback
Scraping, 44	Digital waveguide, 82
SDTScraping_setVelocity	SDTWindCavity_dsp
Scraping, 44	Turbulence through hollow cavities, 86
SDTSolids.h: Registering/notifying resonators and inter-	SDTWindCavity_free
actors, 118	Turbulence through hollow cavities, 86
SDT_registerInteractor, 118	SDTWindCavity_new
SDT_registerResonator, 118	Turbulence through hollow cavities, 87
SDT_unregisterInteractor, 119	SDTWindCavity setDiameter
SDT_unregisterResonator, 119	Turbulence through hollow cavities, 87
· · · · · · · · · · · · · · · · · ·	

SDTWindCavity_setLength	SDTWindKarman_free, 88
Turbulence through hollow cavities, 87	SDTWindKarman_new, 88
SDTWindCavity_setWindSpeed	SDTWindKarman_setDiameter, 89
Turbulence through hollow cavities, 87	SDTWindKarman_setWindSpeed, 89
SDTWindFlow_dsp	Turbulence against solid objects, 84
Turbulence against solid objects, 84	SDTWindFlow_dsp, 84
SDTWindFlow_free	SDTWindFlow_free, 84
Turbulence against solid objects, 84	SDTWindFlow new, 84
SDTWindFlow_new	SDTWindFlow_setFilters, 85
Turbulence against solid objects, 84	SDTWindFlow setWindSpeed, 85
SDTWindFlow setFilters	Turbulence through hollow cavities, 86
Turbulence against solid objects, 85	SDTWindCavity_dsp, 86
SDTWindFlow_setWindSpeed	SDTWindCavity_free, 86
Turbulence against solid objects, 85	SDTWindGavity_new, 87
SDTWindKarman_dsp	SDTWindCavity_setDiameter, 87
Turbulence across thin objects, 88	SDTWindGavity_setLength, 87
SDTWindKarman free	SDTWindCavity_setWindSpeed, 87
-	
Turbulence across thin objects, 88	Two poles filter, 69
SDTWindKarman_new	SDTTwoPoles_dsp, 69
Turbulence across thin objects, 88	SDTTwoPoles_free, 69
SDTWindKarman_setDiameter	SDTTwoPoles_highpass, 69
Turbulence across thin objects, 89	SDTTwoPoles_lowpass, 70
SDTWindKarman_setWindSpeed	SDTTwoPoles_new, 70
Turbulence across thin objects, 89	SDTTwoPoles_resonant, 70
SDTZeroCrossing_dsp	Zava avasaina vata 0
Zero crossing rate, 8	Zero crossing rate, 8
SDTZeroCrossing_free	SDTZeroCrossing_dsp, 8
Zero crossing rate, 8	SDTZeroCrossing_free, 8
SDTZeroCrossing_new	SDTZeroCrossing_new, 8
Zero crossing rate, 8	SDTZeroCrossing_setOverlap, 9
SDTZeroCrossing_setOverlap	
Zero crossing rate, 9	
Scraping, 43	
SDTScraping_dsp, 43	
SDTScraping_free, 43	
SDTScraping_new, 44	
SDTScraping_setForce, 44	
SDTScraping_setGrain, 44	
SDTScraping_setVelocity, 44	
Spectral audio descriptors, 12	
SDTSpectralFeats_dsp, 12	
SDTSpectralFeats_free, 13	
SDTSpectralFeats_new, 13	
SDTSpectralFeats_setMaxFreq, 13	
SDTSpectralFeats_setMinFreq, 13	
SDTSpectralFeats setOverlap, 15	
Supersonic explosions, 90	
SDTExplosion_dsp, 90	
SDTExplosion_free, 90	
SDTExplosion_new, 91	
SDTExplosion_setBlastTime, 91	
SDTExplosion_setDispersion, 91	
SDTExplosion_setDistance, 91	
SDTExplosion_setScatterTime, 91	
SDTExplosion_setWaveSpeed, 91	
SDTExplosion_setWindSpeed, 92	
Turbulance across this chicate 90	
Turbulence across thin objects, 88	

SDTWindKarman_dsp, 88