THE DRAWINGS ARE FORMAL AND TIMELY

INITIALS <u>TMH</u>
DATE <u>05/17/06</u>
PTO

HUMAN 1V DNA (CD:225-875)

GAATAGCCCCCTTTCACTTCTGAGTCCCTGCATGTGCGGGGCTGAAGAAGGCAAGCCAGAAGCCTCCTAGCCTCGCCTCCA CGTTTGCTGAATACCAAGCTGCAGGCGAGCTGCCGGGGGGCTTTTCTCTCCTCCAATTCAGAGTAGACAAACCACGGGGAT TTCTTTCCAGGGTAGGGGGGGGGGCCGGGGCCCGAGCTCGAACTCGAAGTCTTCGCTGCCATGGGGGCCGTCATGG GCACCTTCTCATCTCTGCAAACCAAACAAAGGCGACCCTCGAAAGATAAGATTGAAGATGAGCTGGAGATGACCATGGTT TGCCATCGGCCCGAGGGACTGGAGCAGCTCGAGGCCCAGACCAACTTCACCAAGAGGGAGCTGCAGGTCCTTTATCGAGG CTTCAAAAATGAGTGCCCCAGTGGTGTGGTCAACGAAGACACTTCAAGCAGATCTATGCTCAGTTTTTCCCTCATGGAG ATGCCAGCACGTATGCCCATTACCTCTTCAATGCCTTCGACACCACTCAGACAGGCTCCGTGAAGTTCGAGGACTTTGTA ACCGCTCTGTCGATTTTATTGAGAGGAACTGTCCACGAGAAACTAAGGTGGACATTTAATTTGTATGACATCAACAAGGA CGGATACATAAACAAAGAGGAGATGATGGACATTGTCAAAGCCATCTATGACATGATGGGGAAATACACATATCCTGTGC TCAAAGAGGACACTCCAAGGCAGCATGTGGACGTCTTCTTCCAGAAAATGGACAAAAATAAAGATGGCATCGTAACTTTA GATGAATTTCTTGAATCATGTCAGGAGGACGACAACATCATGAGGTCTCTCCAGCTGTTTCAAAATGTCATGTAACTGGT GACACTCAGCCATTCAGCTCTCAGAGACATTGTACTAAACAACCACCTTAACACCCTGATCTGCCCCTTGTTCTGATTTTA ${\tt CACACCAACTCTTGGGACAGAAACACCTTTTACACTTTGGAAGAATTCTCTGGTGAAGACTTTCTTATGGAACCCAGCAT}$ GAAGCATGCTCATCTCCTCACACTGCTGCCCTATGGAAGGTCCCTCTGCTTAAGCTTAAACAGTAGTGCACAAAATATGC CACACCATCTCTGATGGCCTCCCAAACCAATGTGCCTGTTTCTCTTTCCTTTGGTGGGAAGAATGAGAGTTATCCAGAACA ${\tt ATTAGGATCTGTCATGACCAGATTGGGAGAGCCAGCACCTAACATATGTGGGATAGGACTGAATTATTAAGCATGACATT}$ GTCTGATGACCCAAACTGCCCCG

HUMAN 1V PROTEIN

MGAVMGTFSSLQTKQRRPSKDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVVNEDTFKQIYAQ

 ${\tt FFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKBEMMDIVKAIYDMMGK}$

YTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 1

RAT 1vN (r1vN) DNA (CD: 339-1037)

 ${\tt GGCACACCACCCCTGGATTCTTCGGAGAATATGCCGTGAGGTGTTGCCAATTATTAGTTCTCTTGGCTAGCAGATGTTTA}$ GGGACTGGTtaaGCCTTTGGAGAAATTACCTTAGGAAAACGGGGAAATAAAAGCAAAGATTACCATGAATTGCAAGATTA TGGTGGAAATAACCCTGCACTTGGAACAGCGGCAAAGAAGCGCGATTTTCCAGCTTtaaATGCCTGCCCGCGTTCTGCTT GCCTACCCGGGAACGGAGATGTTGACCCAGGGCGAGTCTGAAGGGCTCCAGACCTTGGGGATAGTAGTGGTCCTGTGTTC CTCTCTGAAACTACTGCACTACCTCGGGCTGATTGACTTGTCGGATGACAAGATCGAGGATGATCTGGAGATGACCATGG TTTGCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGTCCTTTACCGG GGATTCAAAAACGAGTGCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCATGG AGATGCCAGCACATACGCACATTACCTCTTCAATGCCTTCGACACCCCAGACAGGCTCTGTAAAGTTCGAGGACTTTG TGACTGCTCTGTCGATTTTACTGAGAGGAACGGTCCATGAAAAACTGAGGTGGACGTTTAATTTGTACGACATCAATAAA GACGGCTACATAAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGGAAATACACCTATCCTGT GCTCAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGT TAGACGAATTTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAAATGTCATGTAACTG AGGACACTGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCTTGTTCCAGTTTTACACAT CAACTCTCGGGACAGAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCGAGTG ${\tt ATGCCCATCTCCCATGCTGCTGCTGCCCTGTGGAAGGCCCCTCTGCTTGAGCTTAAACAGTAGTGCACAGTTTTCTGCG}$ TATACAGATCCCCAACTCACTGCCTCTAAGTCAGGCAGACCCTGATCAATCTGAACCAAATGTGCACCATCCTCCGATGG **AAATACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTATCAGATGATGCAAACA** GCCCATGTCATTTTTTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAAGTCTTTT **AACACATCCAGGAGGGAAACCGCTGCCCAGTGGTCTATCCCTTCTCTCCATCCCTGCTCAAGCCCAGCACTGCATGTCT** CTCCCGGAAGGTCCAGAATGCCTGTGAAATGCTGTAACTTTTATACCCTGTTATAATCAATAAACAGAACTATTTCGTAC алалалалалала

Fig. 2

RAT 1vN (r1vN) PROTEIN

$$\label{thm:construction} $$ \begin{align} \mathbf{MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC \\ $$ \mathbf{PSGVVNEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINK \\ $$ \mathbf{EEMMDIVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM \\ \end{align}$$

Fig. 2 Continued

MOUSE 1V (CD:477-1127)

CTCTGGCCCTGGGAGTCAGTGCATGTGCCTGGCTGAAGAAGGCAGCAGCCACGAGCTCCAGGCGCCCCGGCCCCACGTTT ATCCACACCGATTTCTTTTCAGGGGAGGGAAGAGACAGGGCCTGGGGTCCCAAGACGCACAAGTCTTCGCTGCCATGG ATGACCATGGTTTGCCACCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGT CTTGTACCGGGGATTCAAAAACGAGTGCCCTAGCGGTGTGGTCAATGAAGAACATTCAAGCAGATCTACGCTCAGTTTT TCCCTCACGGAGATGCCAGCACATATGCACATTACCTCTTCAATGCCTTCGACACCACCCAGACAGGCTCTGTAAAGTTC GAGGACTTTGTGACTGCTCTGTCGATTTTACTGAGAGGGACAGTCCATGAAAAACTAAGGTGGACGTTTAATTTGTATGA CATCAATAAAGACGGCTACATAAACAAAGAGGAGATGATGGACATAGTCAAAGCCATCTATGACATGATGGGGAAATACA CCTATCCTGTGCTCAAAGAGGACACTCCCAGGCAGCATGTGGATGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGC **ATTGTAACGTTAGATGAATTTCTTGAATCATGTCAGGAGGATGACAACATCATGAGATCTCTACAGCTGTTCCAAAATGT** CATGTAACTGAGGACACTGGCCATTCTGCTCTCAGAGACACTGACAAACACCTTAATGCCCTGATCTGCCCTTGTTCCAA TTTTACACACCCAACTCTTGGGACAGAAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTG GCACCACGTGGCTCTGTCTCTGAGGGACGAGCGGAGATCCGACTTTGTTTTGGAAGCATGCCCATCTCTTCATGCTGCTG CCCTGTGGAAGGCCCCTCTGACTTAATCAATAGTGCACAGTTTTATGCTTACACATATCCCCAACTCACTGCCTC CAAGTCAGGCAGACTCTGATGAATCTGAGCCAAATGTGCACCATCCTCCGATGGCCTCCCAAGCCAATGTGCCTGCTTCT CTTCCTCTGGTGGGAAGAAAGAGTGTTCTACGGAACAATTAGAGCTTACCATGAAAATATTGGGAGAGGCAGCACCTAAC ACATGTAGAATAGGACTGAATTATTAAGCATGGTGATATCAGATGATGCCAAATTGCCCCATGTCATTTTTTTCAAAGGTAG GGACAAATGATTCTCCCACACTAGCACCTGTGGTCATAGAGCAAGTCTCTTAACATGCCCAGAAGGGGAACCACTGTCCA GTGGTCTATCCCTCCTCCATCCCCTGCTCAAACCCAGCACTGCATGTCCCTCCAAGAAGGTCCAGAATGCCTGCGAAA

MOUSE 1V PROTEIN

MGAVMGTFSSLQTKQRRPSKDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVVNEETFKQIYAQ FFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMDIVKAIYDMMGK VTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 3

RAT 1VL DNA (CD:31-714)

ACCCTCTAAAGACATCGCCTGGTGGTATTACCAGTATCAGAGAGACAAGATCGAGGATGATCTGGAGATGACCATGGTTT GCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGTCCTTTACCGGGGA TTCAAAAACGAGTGCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCATGGAGA TGCCAGCACATACGCACATTACCTCTTCAATGCCTTCGACACCACCCAGACAGGCTCTGTAAAGTTCGAGGACTTTGTGA CTGCTCTGTCGATTTTACTGAGAGGAACGGTCCATGAAAAACTGAGGTGGACGTTTAATTTGTACGACATCAATAAAGAC GGCTACATAAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGGGAAATACACCTATCCTGTGCT CAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGTTAG ACGAATTTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAAATGTCATGTAACTGAGG ACACTGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCCTTGTTCCAGTTTTACACATCAA CTCTCGGGACAGAAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCGCGTGGCT CCCATCTCTCCATGCTGCTGCCCCTGTGGAAGGCCCCTCTGCTTGAGCTTAAACAGTAGTGCACAGTTTTCTGCGTAT ACAGATCCCCAACTCACTGCCTCTAAGTCAGGCAGACCCTGATCAATCTGAACCAAATGTGCACCATCCTCCGATGGCCT CCCAAGCCAATGTGCCTGCTTCTCTCTCTGGTGGGAAGAAGAACGCTCTACAGAGCACTTAGAGCTTACCATGAAAA TACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTATCAGATGATGCAAACAGCC CATGTCATTTTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAAGTCTTTTAACA CATCCAGGAGGGAAACCGCTGCCCAGTGGTCTATCCCTTCTCCCATCCCTGCTCAAGCCCAGCACTGCATGTCTCTCC CGGAAGGTCCAGAATGCCTGTGAAATGCTGTAACTTTTATACCCTGTTATAATCAATAAACAGAACTATTTCGTACAAAA AAAAAAAAAAA

RAT 1VL PROTEIN
MGAVMGTFSSLQTKQRRPSKDIAWWYYQYQRDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVV
NEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMD
IVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 4

MOUSE 1VL DNA (CD:77-760)

ATCCACACCGATTTCTTTTCAGGGGAGGGAAGAGACAGGGCCTGGGGTCCCAAGACGCACACAAGTCTTCGCTGCCATGG TATCAGAGACAAGATTGAGGATGAGCTAGAGATGACCATGGTTTGCCACCGGCCTGAGGGACTGGAGCAGCTTGAGGC ACAGACGAACTTCACCAAGAGAGAACTGCAAGTCTTGTACCGGGGATTCAAAAACGAGTGCCCTAGCGGTGTGGTCAATG AAGAAACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCACGGAGATGCCAGCACATATGCACATTACCTCTTCAATGCC TTCGACACCACCAGACAGGCTCTGTAAAGTTCGAGGACTTTGTGACTGCTCTGTCGATTTTACTGAGAGGGACAGTCCA TGAAAAACTAAGGTGGACGTTTAATTTGTATGACATCAATAAAGACGGCTACATAAACAAAGAGGAGATGATGGACATAG TCAAAGCCATCTATGACATGATGGGGAAATACACCTATCCTGTGCTCAAAGAGGACACTCCCAGGCAGCATGTGGATGTC TTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGTTAGATGAATTTCTTGAATCATGTCAGGAGGATGACAA CATCATGAGATCTCTACAGCTGTTCCAAAATGTCATGTAACTGAGGACACTGGCCATTCTGCTCTCAGAGACACTGACAA ACACCTTAATGCCCTGATCTGCCCTTGTTCCAATTTTACACACCCAACTCTTGGGACAGAAATACCTTTTACACTTTGGAA GAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCACGTGGCTCTGTCTCTGAGGGACGAGCGGAGATCCGACTTTG TTTTGGAAGCATGCCCATCTCTTCATGCTGCCCCTGTGGAAGGCCCCCTCTGCTTGAGCTTAATCAATAGTGCACAGTT ${\tt TTATGCTTACACATATCCCCAACTCACTGCCTCCAAGTCAGGCAGACTCTGATGAATCTGAGCCAAATGTGCACCATCCT}$ $\tt CCGATGGCCTCCCAAGCCAATGTGCCTGCTTCTCTCTCTGGTGGGAAGAAGAGTGTTCTACGGAACAATTAGAGCTT$ ${\tt ACCATGAAAATATTGGGAGGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGATATCAGATGAT}$ ${\tt GCAAATTGCCCATGTCATTTTTTCAAAGGTAGGGACAAATGATTCTCCCACACTAGCACCTGTGGTCATAGAGCAAGTC}$ TCTTAACATGCCCAGAAGGGGAACCACTGTCCAGTGGTCTATCCCTCCTCCATCCCCTGCTCAAACCCAGCACTGCAT GTCCCTCCAAGAAGGTCCAGAATGCCTGCGAAACGCTGTACTTTTATACCCTGTTCTAATCAATAAACAGAACTATTTCG TACAAAAAAAAAAAAA

MOUSE 1VL PROTEIN

MGAVMGTFSSLQTKQRRPSKDIAWWYYQYQRDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVV NEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMD IVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 5

RAT 1VN DNA (FIRST-PASS, PARTIAL; CD: 345-955)

RAT 1VN PROTEIN (PARTIAL)

MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC PSGVVNEETFKXIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLKWTFNLYDINKDGYINK EEMMDIVKAIYDMMGKYTYLVLKEDTSROHVDVFFOKMDKNKD

Fig. 6

HUMAN 9QL DNA (CD:207-1019)

CTCACCTGCTGCCTAGTGTTCCCTCTCCTGCTCCAGGACCTCCGGGTAGACCTCAGACCCCGGGCCCATTCCCAGACTCA GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTCACGGGCCACCCTCCAGGGCCCACTAAAAAAAGCGCTGAAGCAGCGA CCCCCACAGACCCCGCCTGCTGGACCCAGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCACCGGCCTGAGG GTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGGCTTCAAGAACGAATGT CCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGACTCCAGCACCTATGC CACTTTTCTCTTCAATGCCTTTGACACCAACCATGATGGCTCGGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCCGTGA TTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAAG GAGGANATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGGAGGAGGCCCC AAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTGACCATTGAGGAATTCATTGAGT CTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCCAGGAGAGGGGGGTCAGT CTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTCTGGAGCTGAAGGGGCCAGAGAGTGGG CCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACACTAGAGCGATGTCTCCTGCTATGGTGC CTTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTGAGTCAATGGA TAGGTCCTAGGAGGTGGGGTTGAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCAGGTTATAGCT CCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTCTCCTTAGAAA TGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCCAGATATCTGGCTCATCTCTGGCATTGCT TCCTCTCCTTCCTTCCTGCATGTGTTGGTGGTGGTGGTGGGGGGAATGTGGGGGGATGTCCTGGCTGATGCCTGC CAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACTTGAGTTTTTGTTTCCCATGTTCTCTA TAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCTTAGAAGGGAGAGGGAAGGAGGGGAGGGG AGGCATAGC

Fig. 7

HUMAN 9QL PROTEIN

 $\label{thm:composition} MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRLLDPDSVDDE\\ FELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSTYATFLFNAFDTNHDGSV\\ SFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNK\\ DGVVTIEEFIESCQKDENIMRSMQLFDNVI$

Fig. 7 Continued

RAT 9QL DNA (PARTIAL; CD: 2-775)

 $\tt CCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCCACCCTCCAGGGCCCAGTAAAAAGCCCTGAAGCAGCGTTTCC$ GGAACAACTCCAGGAACAGACCAAGTTCACACGCAGAGAGCTGCAGGTCCTGTACCGAGGCTTEAAGAACGAATGCCCCA GTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTATGCTACT $\tt TTTCTCTTCAATGCCTTTGACACCAACCACGATGGCTCTGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCGGTGATTCT$ TCGGGGGACCATAGATGATAGACTGAGCTGGGCTTTCAACTTATATGACCTCAACAAGGACGGCTGTATCACAAAGGAGG AAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAAGTACACATACCCTGCCCTCCGGGAGGAGGCCCCCAAGA GAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGGAACAAGGACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTG TCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTTTGATAATGTCATCTAGCTCCCCAGGGAGAGGGGTTAGTGTG CCTGGGGGCTGTAGGGATTCAATATCCTGGGGCTTCAGTAGTCCAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGT $\tt CTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGT$ GCTTTCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGG GGACATGGACAGAGCGTGTTCTCTAGTTCTAGATCGCGAGCGGCCGC

RAT 9QL PROTEIN (PARTIAL)

RDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLDPDSVEDEFELSTVCHRPEGL

EQLQEQTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVIL

RGTIDDRLSWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESC

OODENIMRSMOLFDNVI

MOUSE 9QL DNA (CD:181-993)

 ${\tt GGAGCGGGGCGCCATGCGGGGCCAAGGCCGAAAGGAGAGTTTGTCCGAATCCCGAGATTTGGACGGCTCCTAT}$ ${\tt AAGTTCACACGCAGAGAGTTGCAGGTCCTGTACAGAGGCTTCAAGAACGAATGTCCCAGCGGAATTGTCAACGAGGAGAA}$ $\tt CTTCAAGCAAATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTACGCTACTTTTCTCTTCAATGCCTTTGACA$ ${\tt CCAACCATGATGGCTCTGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCAGTGATTCTTCGGGGAACCATAGATGATAGA}$ CTGAACTGGGCTTTCAACTTATATGACCTCAACAAGGATGGCTGTATCACGAAGGAGGAAATGCTCGACATCATGAAGTC CATCTATGACATGATGGGCAAGTACACCTACCCTGCCCTCCGGGAGGGGCCCCCGAGGGAACACGTGGAGAGCTTCTTCC $\verb|CCCTAGTCCAGGCAAACCTAACCCTCCTCCCCGGGTCTGTCCTCATCCTACCTGTACCCTGGGGGCTGTAGGGATTCA||$ ${\tt GGCGCGCAGATTCCCCAACCCCCGACGACTCTCACCCCTTTCTCGACTGATACCCAGTGCTGAGGCTACCCCTGGTGTCGG}$ TTTTCAGCCTAGCCTTTGAGGACCCTGTGGGAGGGGAGAATAAGAAAGCAGACAAAATCTTGGCCCTGAGCCAGTGGTTA ${\tt GGTCCTAGGAATCAGGCTGGAGTGGAGACCAGAAAGCCTGGGCAGGCTATGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCTTGTCACCGCCAGGTTGGCTTGTCACCGCCAGGTTGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCTAGGAGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCCTAGGAGAGCCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGTTGGCCTAGGAGAGCCCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGTTGGCCTAGGCCCAGGCCCAGGTTGGCCTAGGCCCAGGCCCAGGTTGGCCTAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCCAGGCCAGGCCAGGCCCAGGCCAGGCCCAGGCCA$ GTTCCACAGGGCTGCTGCTCTGGGTCAGCAGAGTATGAGTTTCCAGACTTTCCAGAAGGCCTTATGTCCTTAGCAATGTC ${\tt TGGCAGCCTTAGGGGGAATGGGAAGAACGAGAGGGGGCACTCCATCTGAACCCAGTGTGGGGGGCATCCATTCGAATCTTTGC}$ CCTAGAGGGCAGGGACCATAGGATCCAGGTCCAACCTGTCATCAGCATCCGGCCATGCTGCTGCTTATTAATAAACC ${\tt TGCTTGTCGTTCAGCGCCCCTTCCCAGTCAGCCAGGGTCTGAGGGGGAAGGCCCCCACTTTCCCGCCTCCTGTCAGACATT}$ ТАТССАСАЛАЛАЛАЛАЛАЛАЛАЛ

MOUSE 9QL PROTEIN

MRGQGRKESLSESRDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLDPDSVEDE FELSTVCHRPEGLEQLQEQTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSV SFEDFVAGLSVILRGTIDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNK DGVVTIEEFIESCQQDENIMRSMQLFDNVI

HUMAN 9QM DNA (CD:207-965)

GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC GTCCACCGTGTGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCC TGTACCGGGGCTTCAAGAACGAATGTCCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTT ${\tt GGACTTGTGGCTGGTTTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACC}$ TTAACAAGGACGGCTGCATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACG TACCCTGCACTCCGGGAGGAGGCCCCAAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGT GGTGACCATTGAGGAATTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCA TCTAGCCCCCAGGAGAGGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCTCACCCTTCTC TTCCCAGGTCTATCCTCATCCTACGCCTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTC TGGAGCTGAAGGGGCCAGAGAGTGGCAGAGTGCATCTCGGGGGGTGTTCCCAACTCCCACCAGCTCTCACCCCCTTCCT GCCTGACACCCAGTGTTGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACAC TAGAGCGATGTCTCCTGCTATGGTGCTTCCCCCATCCCTGACCTCATAAACATTTCCCCTAAGACTCCCCTCTCAGAGAG AATGCTCCATTCTTGGCACTGGCTTGTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGACAAGAATGTATAGGG TTGCTCAGGCATACCAGGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTT TGCAGAAGACCTTGTCTCCTTAGAAATGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCAG ${\tt TGGGGGATGTCCTGGCTGATGCCTAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACT}$ ${\tt TGAGTTTTTGTTTCCCATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCT$ TAGAAGGGAGGGAAGGAAGGCATAGC

Fig. 10

HUMAN 9QM PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSENSVDDEFELSTVCHRPEGLEQLQE
QTKFTRKELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSTYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTVD
DRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQKDEN
IMRSMQLFDNVI

Fig. 10 Continued

RAT 9QM DNA (CD:214-972)

 $\tt CTCACTTGCCCCAAGGCTCCTGCCCCCAGGACTCTGAGGTGGGCCCTAAAACCCAGCGCTCTCTAAAGAAAAG$ GGCCACCCGGCGCCCCTCCCACGGCCCAGGCGGGAGCGGGGCCCATGCGGGGCCAAGGCAGAAAGGAGAGACT TTGTCCGAATCCCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCACCCTCCAGGGCCCAGTAAAAAAGCCCTGAA TTGAATTATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAACAGACCAAGTTCACACGCAGAGAGCTG CAGGTCCTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAGAGAACTTCAAGCAGATTTATTCTCA GTTTTGAGGACTTTGTGGCTGGTTTGTCGGTGATTCTTCGGGGGACCATAGATGATAGACTGAGCTGGGCTTTCAACTTA TATGACCTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAA GTACACATACCCTGCCCTCCGGGAGGAGGCCCCAAGAGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGGAACAACG ACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTTTGAT AATGTCATCTAGCTCCCCAGGGAGAGGGGTTAGTGTGTCCTAGGGTGACCAGGCTGTAGTCCTAGTCCAGACGAACCTAA CCCTCTCTCCAGGCCTGTCCTCATCTTACCTGTACCCTGGGGGCTGTAGGGGATTCAATATCCTGGGGCTTCAGTAGTC CAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGGGGGGCTTCCCAACCCCCGACAGCTCTC ${\tt ACCCCTTCTCAACTGATACCTAGTGCTGAGGACACCCCTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTC}$ TAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCC TTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTTTGAGGGCCCTGTGGGGAGGCCGGGGAC AAGAAAGCAGAAAAGTCTTGGCCCCGAGCCAGTGGTTAGGTCCTAGGAATTGGCTGGAGTGGAGGCCAGAAAGCCTGGGC AGATGATGAGAGCCCAGCTGGGCTGTCACTGCAGGTTCCGGGGCCTACAGCCTGGGTCAGCAGAGTATGAGTTCCCAGA CTTTCCAGAAGGTCCTTAGCAATGTCCCAGAAATTCACCGTACACTTCTCAGTGTCTTAGGAGGGCCCGGGATCCAGATG TCTGGTTCATCCCTGAATCCTCTCCCTCCTTCTTGCTCGTATGGTGGGAGTGGTGGCCAGGGGAAGATGAGTGGTGTCCC GGATGATGCCTGTCAAGGTCCCACCTCCCCTCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATCTAGA TGTAGAGGCATGGAGTGAGTCAGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGGAATGGG AAGAACCCAGTGTGGGGGCACCCATTAGAATCTTTGCCCGGCTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCCGCTC CCTCTGTTTAGTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCTCCAG

RAT 9QM PROTEIN
MRGQGRKESLSESRDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSENSVEDEFELSTVCHRPEGLEQLQE
QTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTID
DRLSWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDEN
IMRSMQLFDNVI

Fig. 11

HUMAN 9QS DNA (CD:207-869)

GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTCACGGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCAC GAACGAATGTCCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGACTCCA TTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTG CATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGG AGGAGGCCCCAAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTGACCATTGAGGAA TTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCCAGGAGA ${\tt GGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCTCACCCTTCTCTCCCAGGTCTATCCT}$ TGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACACTAGAGCGATGTCTCCT GCTATGGTGCTTCCCCCATCCCTGACCTCATAAACATTTCCCCTAAGACTCCCCTCTCAGAGAGAATGCTCCATTCTTCG CACTGGCTGGCTTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTG AGTCAATGGATAGGTCCTAGGAGGTGGGGTTGAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCA GGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTC TCCTTAGAAATGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCAGATATCTGGCTCATCTC TGATGCCTGCCAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGGCTATGACTTGAGTTTTTGTTTCCC ATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCTTAGAAGGGAGAGGGAA GGAGGGAGGCAGGCATAGC

Fig. 12

MONKEY 9QS DNA (CD:133-795)

 $\tt CCCACGCGTCCGCCGACGCGGGCGCGTGGGGGTGCACTAGGCCGCCAGGGGGGGCGCCGTGTGAGCGCCCTATCCCG$ TGTCCGATTCCCGAGACCTGGACGGATCCTACGACCAGCTCACGGACAGCGTGGAGGATGAATTTGAATTGTCCACCGTG TGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGG CTTCAAGAACGAATGTCCGAGCGGAATTGTCAATGAGGAGAACTTCAAGCAAATTTACTCCCAGTTCTTTCCTCAAGGAG ${\tt GCTGGTTTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACTTGTATGACCTCAACAAGGA}$ CGGCTGCATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACATACCCTGCAC TCCGGGAGGAGGCCCCAAGGGAACATGTGGAGAACTTCTTCCAGAAGATGGACAGAAACAAGGATGGCGTGACCATT GAGGAATTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCC TATCCTTGTCCTAGGCCTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTCTGGAGCTGAA CAGTGTTGAGAGTGCCCCTCCTGTAGGAACTGAGTGGTTCCCCACCTCCTACCCCCACTCTAGAAACACACTAGACAGAT GTCTCGTGCTATGGTGCTTCCCCCATCCCTGACTTCATAAACATTTCCCCTAAAACTCCCTTCTCAGAGAGAATGCTCCA TTCTTGGCACTGGCTGCCTTCTCAGACCAGCCTTTGAGAGCCCCTGTGGGAGGGGGGACAAGAATGTATAGGGGAGAAATCT TGGGCCTGAGTCAATGGATAGGTCCTAGGAGGTGGCTGGGGTTGAGAATAGAAAGGCCTGGACAAATGTGATTGCTCAG GCATACCAAGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAG ACCTTGTCTCCTTGGAAATGCCCCAGATATTTTCCATACCCTCCTCGATATCCATGGAGAGCCTGGGGCTAGATATCTGG CATATCCCTGGCATTGCTTCCTCCTTCCTTCCTGCATGTGTTGGTGGTGGTTGTGGGGGGGAATGTGGATAGGAGAT TGTTTCCCATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCTTAGAAGGG CCCCAACCCCCAGATAACCTCCTCAGTTCCCTAGAGTCTCCTCTTGCTCTACTCAATCTACCCAGAGATGCCCCTTAGC ACACTCAGAGGGCAGGGACCATAGGACCCAGGTTCCAACCCCATTGTCAGCACCCCAGGCCATGCTGCCATCCCTTAGCAC ACCTGCTCGTCCCATTCAGCTTACCCTCCCAGTCAGCCAGAATCTGAGGGGAGGGCCCCCAGAGAGCCCCCTTCCCCATC AGAAGACTGTTGACTGCTTTGCATTTTGGGCTCTTCTATATATTTTGTAAAATAAGAACTATACCAGATCTAATAAAACA CAATGGCTATGCAAAAAAAAAAAAAAAAA

MONKEY 9QS PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTDSVEDEFELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPSGIVNEENFKQ IYSQFFPQGDSSTYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYD MMGKYTYPALREEAPREHVENFFQKMDRNKDGVVTIEEFIESCQKDENIMRSMQLFDNVI RAT 9QC DNA (CD:208-966)

TGCTGCCCAAGGCTCCTGCTCCTGCCCCAGGACTCTGAGGTGGGCCCTAAAACCCAGCGCTCTCTAAAGAAAAGCCTTGC GAATCCCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCACCCTCCAGGGCCCAGTAAAAAAGCCCTGAAGCAGCG TATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAACAGCCAAGTTCACACGCAGAGAGCTGCAGGTC $\tt CTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTTATTCTCAGTTCTT$ ${\tt AGGACTTTGTGGCTGGTTTGTCGGGGGGACCATAGATGATGATGACTGAGCTGGGCTTTCAACTTATATGAC}$ $\tt CTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAAGTACAC$ TGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTCACCCCTTCTC ${\tt AACTGATACCTAGTGCTGAGGACCACCCTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCAC}$ ATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGA ACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTTTGAGGGCCCTGTGGGGAGGCGGGACAAGAAAGCAG ${\tt AGCCCAGCTGGGCTGTCACTGCAGGTTCCGGGGCCTACAGCCCTGGGTCAGCAGTATGAGTTCCCAGACTTTCCAGAA}$ GGTCCTTAGCAATGTCCCAGAAATTCACCGTACACTTCTCAGTGTCTTAGGAGGGCCCGGGATCCAGATGTCTGGTTCAT TGTCAAGGTCCCACCTCCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATCTAGATGTAGAGGCA ${\tt TGGAGTGAGTCAGGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGAATGGGAAGAACCCAG}$ TGTGGGGGCACCCATTAGAATCTTTGCCCGGCTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCCGCTCCCTCTGTTTA GTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCTCCAGGTCAGCACCC

RAT 9QC PROTEIN

MRGQGRKESLSESRDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSENSVEDEFELSTVCHRPEGLEQLQE QTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTID DRLSWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDEN IMRSMQLSPLLN RAT 8T (9Q SPLICE VARAIANT) DNA (MAY NOT BE FULL LENGTH, CD: 1-678) GTCGCCAGACAGCGTAGAGGATGAGTTTGAATTATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAAC AGACCAAGTTCACACGCAGAGAGCTGCAGGTCCTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAG GAGAACTTCAAGCAGATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTATGCTACTTTTCTCTTCAATGCCTT TGACACCAACCACGATGGCTCTGTCAGTTTTGAGGGACTTTGTGGCTGGTTTGTCGGTGATTCTTCGGGGGGACCATAGATG ATAGACTGAGCTGGGCTTTCAACTTATATGACCTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATG AAGTCCATCTATGACATGATGGGCAAGTACACATACCCTGCCCTCCGGGAGGAGGCCCCCAAGAGAACACGTGGAGAGCTT CTTCCAGAAGATGGACAGGACAAGGACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACA TGTAGTCCTAGTCCAGACGAACCTAACCCTCTCTCTCCAGGCCTGTCCTCATCTTACCTGTACCCTGGGGGCTGTAGGGA TTCAATATCCTGGGGCTTCAGTAGTCCAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGG GGGCTTCCCAACCCCGACAGCTCTCACCCCTTCTCAACTGATACCTAGTGCTGAGGACACCCCTGGTGTAGGGACCAAG TGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCATCCCTAA TCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTT TGAGGGCCCTGTGGGGAGGCGGGACAAGAAAGCAGAAAAGTCTTGGCCCCGAGCTAGTGGTTAGGTCCTAGGAATTGGC TGGAGTGGAGGCCAGAAAGCCTGGGCAGATGATGAGAGCCCAGCTGGGCTGTCACTGCAGGTTCCAGGGCCTACAGCCCT GGGTCAGCAGAGTATGAGTTCCCAGACTTTCCAGAAGGTCCTTAGCAATGTCCCAGAAATTCACCATACACTTCTCAGTG TCCCGGATGATGCCTGTCAAGGTCCCACCTCCCCTCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATC TAGATGTAGAGGCATGGAGTGAGTCAGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGGAA TGGGAAGAACCCAGTGTGGGGGCACCCATTAGAATCTTTGCCCGGTTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCC GCTCCCTCTGTTTAGTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCT

RAT 8T (9Q SPLICE VARAIANT) PROTEIN (MAY NOT BE FULL LENGTH)
MNHCPRRCRSPLGQAARSLYQLVTGSLSPDSVEDEFELSTVCHRPEGLEQLQEQTKFTRRELQVLYRGFKNECPSGIVNE
ENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTIDDRLSWAFNLYDLNKDGCITKEEMLDIM
KSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQODENIMRSMOLFDNVI

>human KChIP3 cds=1-7:

GGAGGGTATCAAGTGGCAGAGGCCGAGGCTCAGCCGCCAGGCTTTGATGAGATGCTGCCTGGTCAAGTGGATCCTGTCCA

GCACAGCCCACAGGGCTCAGATAGCAGCGACAGTGAGCTGGAGCTGTCCACGGTGCGCCA
CCAGCCAGAGGGGCTGGAC

CAGCTGCAGGCCCAGACCAAGTTCACCAAGAAGGAGCTGCAGTCTCTCTACAGGGGCTTTAAAGAATGAGTGTCCCACGGG

CCTGGTGGACGAAGACACCTTCAAACTCATTTACGCGCAGTTCTTCCCTCAGGGAGATGCCA CCACCTATGCACACTTCC

TCTTCAACGCCTTTGATGCGGACGGGAACGGGGCCATCCACTTTGAGGACTTTGTGGTTGGCCCTCTCCATCCTGCTGCGG

GGCACAGTCCACGAGAAGCTCAAGTGGGCCTTTAATCTCTACGACATTAACAAGGATGGCT ACATCACCAAAGAGGAGAT

GCTGGCCATCATGAAGTCCATCTATGACATGATGGGCCGCCACACCTACCCCATCCTGCGGGAGGACGCCGCCGGCGGAGC

ACGTGGAGAGGTTCTTCGAGAAAATGGACCGGAACCAGGATGGGGTAGTGACCATTGAAGA GTTCCTGGAGGCCTGTCAG

 ${\tt AAGGATGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAATGTCATCTAGgacacgtccaaaggagtgcatggccacag}$

ccacctccaccccaagaaacctccatcctgccaggagcagcctccaagaaacttttaaaaaatagatttgcaaaaagtg gctgcctctgggtgagtggctgacagagcaggtctgcaggccaccagctgctggatgtcaccaagaaggggctcgagtgc ccctgcaggggagggtccaatctccggtgtgagcccacctcgtcccgttctccattctgctttcttgccacacagtgggc cggccccaggctcccctggtctcctccccgtagccactctctgcccactacctatgcttctagaaagcccctcacctcag gaccccagagggaccagctggggggcagggggggagagggggtaatggaggccaagcctgcagctttctggaaattcttcc gtggtgaggggccactgggccccattctccctccatggcaggaaggcgggggatttcaagtttagggattgggtcgtggt ggagaatctgagggcactctctgccagctccacagggtgggatgagcctctccttgccccagtcctggttcagtgggaat gcagtgggtggggctgtacacaccctccagcacagactgttccctccaaggtcctcttaggtcccggggaggaacgtggtt ${\tt cagagactggcagccaggggcagagctcagaggagtctgggaaggggcgtgtccctcctcttcctgtagtgc}$ ccctcccatggcccagcagcttaggctgagccccttctcctgaagcagtgtcgccgtccctctgccttgcacaaaaagcac aagcattccttagcagctcaggcgcagccctagtgggagcccagcacactgcttctcggaggccaggccctcctgctggc tgaggcttgggcccagtagccccaatatggtggccctggggaagaggccttgggggtctgctctgtgcctgggatcagtg gggccccaaagcccagccggctgaccaacattcaaaagcacaaaccctggggactctgcttggctgtcccctccatctg gggatggagaatgccagcccaaagctggagccaatggtgagggctgagagggctgtggctgggtggtcagcagaaacccc caggaggagagagatgctgctcccgcctgattggggcctcacccagaaggaacccggtcccaggccgcatggcccctcca ggaacattcccacataatacattccatcacagccagcccagctccactcagggctggcccggggagtccccgtgtgoccc aagaggctagccccagggtgagcagggccctcagaggaaaggcagtatggcggaggccatgggggcccctcggcattcac acacagectggeetecectgeggagetgeatggaegeetggeteeaggeteeaggetgaetgggggeetetgeeteeagg $\verb|cctctaaggccaaggcctcaggaggagcatcaccaccaccaccacctgccggccttggccttggggccagactggctgcacag$ $\verb|cccaaccaggaggggtctgcctcccacgctgggacacagaccggccgcatgtctgcatggcagaagcgtctcccaggcc|$ acggcctgggagggtggttcctgttctcagcatccactaatattcagtcctgtatattttaataaaataaacttgacaaa ggaaaaaaaaaaaaaaattcctgcggccgcgttctcca

>human KChip3
MQPAKEVTKASDGSLLGDLGHTPLSKKEGIKWQRPRLSRQALMRCCLVKWILSSTAPQGSDSSD
SELELSTVRHQPEGLD
QLQAQTKFTKKELQSLYRGFKNECPTGLVDEDTFKLIYAQFFPQGDATTYAHFLFNAFDADGNG
AIHFEDFVVGLSILLR
GTVHEKLKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPAEHVERFFEKMD
RNQDGVVTIEEFLEACQ
KDENIMSSMQLFENVI

Fig. 16 Continued

RAT P19 DNA (FIRST PASS, PARTIAL; CD:1-330)

TTTGAGGACTTTGTGGTTGGGCTCTCCATCCTGCTGAGGGACCGTCCATGAGAAGCTCAAGTGGGCCTTCAATCTCTA

CGACATCAACAAGGACGGTTACATCACCAAAGAGGAGATGCTGGCCATCATGAAGTCCATCTACGACATGATGGGCCGCC

ACACCTACCCTATCCTGCGGGAGGACGCACCTCTGGAGCATGTGGAGAGGTTCTTCCAGAAAATGGACAGGAACCAGGAT

GGAGTAGTGACTATTGATGAATTTCTGGAGACTTGTCAGAAGGACGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAA

CGTCATCTAGGACATGTAGGAGGGGACCCTGGGTGGCCATGGGTTCTCAACCCAGAGAAGCCTCAATCCTGACAGGAGAA

GCCTCTATGAGAAACATTTTTCTAATATATTTTGCAAAAAGTG

RAT P19 PROTEIN (PARTIAL)
FEDFVVGLSILLRGTVHEKLKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPLEHVERFFQKMDRNQD
GVVTIDEFLETCQKDENIMSSMQLFENVI

Fig. 17

MOUSE P19 DNA (CD: 49-819)

AGATGGCAACCTCCTGGGAGATCCTGGGCGCATACCACTGAGCAAGAGGGAAAGCATCAAGTGGCAAAGGCCACGGTTCA AGTGAACTGGAGTTATCCACGGTGCGCCATCAGCCAGAGGGCTTGGACCAGCTACAAGCTCAGACCAAGTTCACCAAGAA GGAGCTGCAGTCCCTTTACCGAGGCTTCAAGAATGAGTGTCCCACAGGCCTGGTGGATGAAGACACCTTCAAACTCATTT ATTCCCAGTTCTTCCCTCAGGGAGATGCCACCACCTATGCACACTTCCTCTTCAATGCCTTTGATGCTGATGGGAACGGG ${\tt GCCATCCACTTTGAGGACTTTGTGGTTGGGCTCTCCATCCTGCTTCGAGGGACGGTCCATGAGAAGCTCAAGTGGGCCCTT}$ CAATCTCTATGACATTAACAAGGATGGTTGCATCACCAAGGAGGAGATGCTGGCCATCATGAAGTCCATCTACGACATGA TGGGCCGCCACACCTACCCCATCCTGCGGGAGGATGCACCCCTGGAGCATGTGGAGAGGTTCTTTCAGAAAATGGACAGG GTTTGAGAACGTCATCTAGGACATGTGGGAGGGGACCCCAGTGGTCATTGCTTCTCAACCCAGAGSAGCCTCAATCCTGA ${\tt CAGGAGAAGCCTCTATGAGAAACATTTTTCTAATATATTTGCAAAAAGTGAGCAGTTTACTTCCAAGACACCAGCCACCGT}$ AGAAGGCACCCCGCCTATTCCTAGGTCAATAAAAAAGGCTGCCTCTGGGATGGCCAGCCCTGGCTAGATGTTACCCACA AGGAACTCAGAGATCGAGAGGACCAGGTCTACAAAGCTAAGGTCCCTGTGTCTTTTCTACCACTCGGGAGATCAAACTAC TCCCTGCCTATGGACCCATGCTCTTAGGAAGCTCCCAGAAACTCCAAGGGGGACAAAGAGGGGGAGAGGTCTATAGGAAGAA TGCCGTGAGCTTAGATAGTGAGGGGCCATTGGACTAAGACCTCCTGTAAGAGTGGGGCAGGATTGAGGTTTTTGGAGAAA CTGAGGAAACAATTTGTCCATACCACTGGGTGAAGACTGCTGGCCAGTGGGAATTTGGCTGGAGATTTCCCAACTTC CAGCACCAGGATGGCCTCTCCAAGGTCCTCTTTGATTCCCTGGGGAGATCACCTGGCTCATAGACTGACAACCAGGGAAC TGGGCTGAAATGGGAGGTCTGGTAGGGGGCATCCCCCTCCTTTTCCCTGGCCACTTGCCACCCAGTTCCTTAACACAGTG GATCGGCCACACCTCTGTGGCTGCCCTTGAACAGACTCATCCCGACCAAGACAAAAAAGCACTAACTCCTAGCAGCTCAG $\tt CCTCGGAGCCTTGGGGGTCTCACAGCCCTTTCCCAGCCCCAGCTCGCCAACATTCTAAAGCACAAACCTGCGGATTCTGCT$ TGCTTGGGCTGCGCCCTGGGGATTGAAGGCCACTGTTAACCCTAAGCTGGAGCTAGCCCTGAGGGCTGGGGACCTGTGAC TCTACAGACCACCAGTTCTCCCTGGCTCAGGGACCCCCTGTCCCCAGTCTGACTCTTCCCATCGAGGTCCCTGTCTTGT GANAAGCCAAGGCCACGGGAAAAGGCCACCACTCTAACCTGCTGCATCCCTTAGCCTCTGGCTGCACGCCCAACCTGGAG GGGTCTGTCCCCTTTGCAGGGACACAGACTGGCCGCATGTCCGCATGGCAGAGCGTCTCCCTTGGGTGCAGCCTGGAAG AAAA

Fig. 18

>AI 352454 (partial) cds = 1-339

CACGAGGTGGAAAGCATTTCGGCTCAGCTGGAGGAGGCCAGCTCTACAGGCGGTTTCCTGT ACGCTCAGAACAGCACCAA

GCGCAGCATTAAAGAGCGGCTCATGAAGCTCTTGCCCTGCTCAGCTGCCAAAACGTCGTCTC CTGCTATTCAAAACAGCG

TGGAAGATGAACTGGAGATGGCCACCGTCAGGCATCGGCCCGAAGCCCTTGAGCTTCTGGA

>AI352454

HEVESISAQLEEASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHR PEALELLEAQSKFT KKELQILYRGFKNVRTFFLTLPSHNSQRSIEK

Fig. 19

P193 (AA349365) DNA (CD:2-127, patial)

TGAAAGGTTCTTCGAGAAAATGGACCGGAACCAGGATGGGGTAGTGACCATTGAAGAGTTCCTGGAGG CTGTCAGAAGGATGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAATGTCATCTAGGACACGTCCAAA GGAGTGCATGGCCACAGCCACCTCCACCCCCAAGAAACCTCCATCCTGCCAGGAGCAGCCTCCAAGAAA GGGCCGAGTCCAGGAGCCCAGCCAGCCCTTCCCAGGCCAGCGAGGCGAGGCTGCCTCTGGGTGAGTGG CTGACAGAGCAGGTCTGCAGGCCACCAGCTGCTGGATGTCACCAAGAAGGGGGCTCGAGTGCCCCTGCAG GGGAGGGTCCAATCTCCGGTGTGAGCCCACCTCGTCCCGTTCTCCATTCTGCCTTTCTTGCCACACAGTGGG CCGGCCCCAGGCTCCCCTGGTCTCCTCCCCGTAGCCACTCTCTGCCCACTACCTATGCTTCTAGAAAGCCC CTCACCTCAGGACCCCAGAGGGACCAGCTGGGGGGGCAGGGGGGAGAGGGGGGTAATGGAGGCCAAGCCT GCAGCTTTCTGGAAATTCTTCCCTGGGGGTCCCAGGATCCCCTGCTACTCCACTNACCTGGAAGAGCTGG CAGGAAGGCGGGGATTTCAAGTTTAGGGATTGGGTCGTGGTGGAGAATCTGAGGGCACTCTCTGCCAG ACACACCCTCCAGCACAGACTGTTCCCTCCAAGGTCCTCTTAGGTCCCGGGAGGAACGTGGTTCAGAGAC TGGCAGCCAGGGAGCCCGGGGCAGAGCTCAGAGGAGTCTGGGAAGGGGCGTGTCCCTCCTCTTCCTGTA GTGCCCCTCCCATGGCCAGCAGCTTGGCTGAGCCCCCTCTCCTGAAGCAGTGTCGCCGTCCCTCTGCCTT GCACAAAAAGCACAAGCATTCCTTAGCAGCTCAGGCGCAGCCCTAGTGGGAGCCCAGCACACTGCTTCT CGGAGGCCAGGCCCTCCTGCTGGCTGAGGCTTGGGCCCCAGTAGCCCCCAATATGGTGGCCCTGGGGAAGA ${\tt GGCCTTGGGGGTCTGTGTGCCTGGGATCAGTGGGGCCCCAAAGCCCAGCCCGGCTGACCAACATTCA}$ AAAGCACAAACCCTGGGGACTCTGCTTGGCTGTCCCCTCCATCTGGGGATGGAGAATGCCAGCCCAAAG CTGGAGCCAATGGTGAGGGCTGAGAGGGCTGTGGCTGGGTCAGCAGAAACCCCCAGGAGGAGAGA GATGCTGCTCCCGCCTGATTGGGGCCTCACCCAGAAGGAACCCGGTCCCAGGCCGCATGGCCCCTCCAGG AACATTCCCACATAATACATTCCATCACAGCCAGCCCAGCTCCACTCAGGGCTGGCCCGGGGAGTCCCCG TGTGCCCCAAGAGGCTAGCCCCAGGGTGAGCAGGGCCCTCAGAGGAAAGGCAGTATGGCGGAGGCCATG GGGGCCCCTCGGCATTCACACACAGCCTGGCCTCCCCTGCGGAGCTGCATGGACGCCTGGCTCCAGGCTC $\tt CTCACCCGCTGCCCAGCCTGGTGTCACTCTGCCTCTAAGGCCAAGGCCTCAGGAGAGCATCA$ $\tt CCACCACACCCCTGCCGGCCTTGGCCCTGGGGCCAGACTGGCTGCACCAGCCCAACCAGGGGGGTCTGC$ CTCCCACGCTGGGACACAGACCGGCCGCATGTCTGCATGGCAGAAGCGTCTCCCTTGGCCACGGCCTGGG AGGGTGGTTCCTGTTCTCAGCATCCACTAATATTCAGTCCTGTATATTTTAATAAAATAAACTTGACAAAG GAAAAAAAAAAAAA

P193 PROTEIN (PARTIAL)
ERFFEKMDRNQDGVVTIEEFLEACQKDENIMSSMQLFENVI

Fig. 20

Fig. 21

Human 9q genomic DNA sequences:

A. exonl sequence (with introns included):

B. Exon 2-11 sequence (with introns included):

AGCCNANTGGGTCNCCATGTGTATGCATCCTGTTTACTTAGGTCACATTTGTATATGTTGTGTAAGGAGTACCAGGT CAATGTGTGTGTGTGTGAGCATGNATAAACGCCANCAGGTGTGAGTTANTGAATATCAAGCTGTCACTGGCACCC ATCACTGTGATGTATTGTTCATACATGTCACNAACACGGCCTGTCACTGTAGGTGTGTATRAGAGAGGTGTTCTT ACCCAGGCAATCCTTGGGTTGGACATCATCNTGAGAGGTCCAGCCATGGCACTTGAGCCAAGGGTACTAGGTCAGCA AAGACATTGAGGCCACTGCCACCTCATCCTTGCCGCCTCGCTGTCACCGGCCACGTCCCATTAAACCAAGTGCNTGA GCCTCACCTCTATGGACTCACTGGGCTCCCCTAACCCGATTCCAACCACCCTTGCCATTCCTTTCCTCCCCTTAATT GTTAATGTGCCTTCCTGGGGTCTTCTCTCTCTCNCAGGCCACCCTCCAGGGCCCACTAAAAAAGCGCTGAAGCAGCGA CCGGGGCGGGCTCGATGTGTGCGTGCGTGTCTGTGCATGANTGTGTGCGCGTGTGCCCCAGGCCTGCRAGTGTKCS GCGTGTGTATGTGTGCGTGCGTGCGCRCGAGCGTRCCCCAGACCGGCGTGTGTGTGTGTGTGGGGGGCGTGCCCTACCCC TGCATGTGTGGGAGGGGGTGCCCCAKGCCCKCGGCGNGTTGTTTGTTGTGTATGGGAAGGCGTACCGCACGCCTGC TGGCGAGGGCGGTGCTGGCAAGGCTGGAGCATAAGNGGGCGNGGCTACATGTGTGNGTGTACGNCTGAAGCCAGCG TGTGTGGGCGTGGTCAGTTGGNAGCGGGTGTGTGTCACCGCTCCCGCAAAACTGTGGGACCCGAGAGTGTGGGTGTG ACCATTGTGACCAGGNTGAGGCCTGAGCCTGTGTAGCTGTGGCGGCCTGTGTAGACCAGGCGGCCGTGAGGGTCTGT ATGTGGCTTAGCTGGGTTAGTGTCTTCAACTCCGTGCGGCCGCCCCCTTCCCCACCGTGTTTTGGACCCCTGATGTG TGTTGCCTATGCCCCGACAGGATGGTGACAGGTGTAGAGGATGGCGCCTGCCCTCCTCCAGACGCCAGGGTATTTGG GTTTTCTGTGCCAGCCTGGTCCCCTGCTGAAGTGATCTCCAGTTGAGTGACCTCGCTTTGTCTCTAGGTCTCCATTT CCTCAGTTGGGCCTTGCCCACCTCATAGGATCATACTGCATTTTGCAAACCATAAAGGCCCGCTTTGTAGTTATTTG AGCATGCTGTTGTGTTGGACTTAGATGGGTCCCACACGGGGGTGGATTCGGARAAGGACAGGCGTGAGTCCCGCAAG CTTGTGTGCATGGGGTCCGTTTCGTGTGTGTCTGTGCTGGCTTGGGTGTGCCTTTGCACGGGCTGGGTTGTCAGGTTT GCTCTGAGTGTGAGGGGCCAGGTGTGTATGCAGTTGGCCGGGTCTTCCGCTTTCTCGGTGWCAGTTCGCTCCCTT CAGCATTAGCCGCCCCAGCCTCCCTCCGCCCCACAGACCCCGCCTGCTGGACCCAGGTGACTTACGCTCCTGGTGG GGGCGGGGCGGCCAGGCCTTTGCCATCTTGGGGTGGGGGGCACTTGCCTGGGGGCTGGACGTTGGGGGGCGGG CAGGATTGAGATGGGGCCGGGGGGGGGTCTGGATGGAGGTTGGCTGAGCTGGGCGGGGCATGGCTCAGGCATGGCT GCTGGGCGGATCTGAGTTGGTCCCCGAAGGCCCGGAGCTCTGACCCTCAGACGCCCCCTCTTGAACTGGCTTTTCCC ACTCCTCCTTTCTAAAACGAAGATGCGGCTGGGGGCCTTCCCCTCCAACGAGGGATCGAGGGCCGCGGGGCGAGCA $\tt CTGAGTCGGATCCCTGGCTCTGGGCCAGGCCAGGCCTTGGCCCGCTGATAGACCTCGAAGATGGCCATCATCTTTT$ CTCCTTACCTCAGTGTCCTTGGCTCGGGGCCCAGGGAACTGGCAGCCTGGTCTCCGGCATCGGATGGGACCGGGGGG CGGGGAGGGGTGAATGGGGCAGTGATTTGAAGAGGGGGTCGCGGAGGCTGGGCATGAGGCGGGCTGTCCTCACCGC TCCCGCAGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGG AGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGGCTTCAAGAACGTGAGTGCNGGGCGAGGCCAA ACTCAGCGNGGGTGGGACAGGAGCCCAANCCGGTCCANATTTTTCCCANAAAGCATGGCTTNGATGCTTGAGGNG ACGGAAGGGGATTTTGTCTCTGCCCTCAGCCTGGTGCCCTCTCCTTCCAGGGAATGTCCCAGCGGAATTGTCAATGAG GAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGGTGAGGGGACAAGGCCCCAAGGGGAAGCAGTTGTC CTTCTCTAGGCTGAGGGAGGGAGTTCTGGAGGAGCTGGGGAATGCCAAGGTGATGGGGGGTATGGGGAGCTCCTT AGAGGGAGGAAGTCCTCTCCTGTGTGGAAGCCAACTTCTCCACACTCACCCTGCAGACTCCAGCACCTATGCCACTT TTCTCTTCAATGCCTTTGACACCAACCATGATGGCTCGGTCAGTTTTGAGGTGAGCTGGGCGAGGTGGGCCAGGGAA GCCTGTTTCCTGGAGTTCAGGGCCAGGATCTCCAGGCCAAACCCAGAGAAGGAGTTGGGTGAAGAGKACCCGAGGAC ACAGCTCCCTNCTGCCTTCTTCCCAGGACTTTGTGGCTGGTTTGYCCGTGATTCTTCGGGGAACTGTAGATGACAGG CTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAAGGAGGTGCAGGGCAACTGAAGGGC TGGGGGTCTGTGGCGGTGATGGGGGTGGCGTGCAKAGGGTGATGGGGAGGGAAATATGACCCACATATGCCCACAAGC **AATGGGATCAAGGGAGGCTGGAGGCTCTGAGGAAGGATCCTCTTCTCTCTTGGCCTAACAGGAAATGCTTGACATCA** TGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGGAGGAGGCCCCCAAGGGAACACGTGGAG AGCTTCTTCCAGGTACTTGGGAGTGGGTATGGCTGGAGGGCCCCTGGAGTGAAGGGAAGAAGCCAAGAACCAGCAGG TGGACAGAAACAAGGATGGTGGTGACCATTGAGGAATTCATTGAGTCTTGTCAAAAGGTACAGCTCCCTGCCCTC TACATTACCCTGACCTGGACTCAGGCCTGATTTAGTAATGCAGGGAAAAGCTTCTTTGGGAAGAATACCACCTTCCC ${\tt ACCTCACCCCATATTTCAATCCTATTCCTTTGTGGGAGGCTTACCCCTTCCCTACCTCAGGTCTCTCTGGGCATCT}$ CCTTCCTCTGTGCTTTTGAATGTCCCCGTCTGTGACTCAAGTGTCCCTCTCACTGTCTCTGATAAAGCTCCTTCTCT TTCTCTCTCTCAATCTGCCTCGCTCACATCATGGCCACAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGAC AATGTCATCTAGCCCCCAGGAGAGGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCT CACCCTTCTCTTCCCAGGTCTATCCTCATCCTACGCCTCCCTGGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAG TAGTCCAGATCTCTGGAGCTGAAGGGGCCAGAGAGTGGGCAGAGTGCATCTCGGGGGGTGTTCCCAACTCCCACCAG CTCTCACCCCCTTCCTGCCTGACACCCCAGTGTTGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTA CCCCTACTCTAGAAACACACTAGACAGATGTCTCCTGCTATGGTGCTTCCCCCCATCCCTGACCTCATAAACATTTCC TGGGAGGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTGAGTCAATGGATAGGTCCTAGRAGGTGGCTGGGGTT GAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCAGGTTATAGCTCCAAGTTCCACAGGTCTGCTAC CACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTCTCCTTAGAAATGCCCCAGAAATTTTCCAC ACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCAGATATCTGGCTCATCTCTGGCATTGCTTCCTCTCTTCTTTCC CACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACTTGAGTTTTTGTTTTCCCATGTTCTCTATAGACTTGGG TCCTCAGKTCCCTAGGGTCTCTTCTYGCTTGACTCAATCTACCCAGAGATGCCCCTTAGCACACCTAGAGGGCAGGG ACCATAGGACCCAGGTTCCAACCCCATTGTCAGCACCCCAGCCATGCGGCCACCCCTTAGCACACCTGCTCGTCCCA TTTAGCTTACCCTCCCAGTTGGCCAGAATCTGAGGGGAGAGCCCCCAGAGAGCCCCCTTCCCCATCAGAAGACTGTT GACTGCTTTGCATTTTGGGCTCTTCTATATATTTTGTAAAGTAAGAAATATACCAGATC:TAATAAAACACAATGGC TATGCACAGGCTGCCGTCTCTGCCTTTTGTCCCTCCCACCTACAAATACTACAAACCCCTAACGAATGCACCTGCA GCCTTTTAGATCCCCAAGAAAGTGGCTTTCTTTTCCATAGTTGGCCATACCTTGGCATGAGACTGAGACACACGCCTC TTTTTTTTTTT

Fig. 22 Continued

>monkey KChIP4 cds = 265

TATATGTGCATCTCTGAAGCTGCTTCATTTGCTGGGACTGATTTGATTTTTCGGAAGACAGCGT_GGAAGATGAACTGGAGA

 ${\tt TGGCCACTGTCAGGCATCGGCCTGAGGCCCTTGAGCTTCTGGAAGCCCAGAGCAAATTTACC} \\ {\tt AAGAAAGAGCTTCAGATC} \\$

CTTIACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAACCTTCAAAGAGATTTACTCGCAGTTCTT

TCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACA ATGGAGCTGTGAGTTTCG

AGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGG GCATTTAATCTGTATGAT

 ${\tt ATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGGGTAAATGTAC}$

ATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATGG

ACAAAATAAAGATGGGG

TTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGCTCCATGCAGCTCTTTGAAAATGTG

ATTTAActtgtcaactagatcctgaatccaacagacaaatgtgaactattctaccacccttaaagtcggagctaccactt ttagcatagattgctcagcttgacactgaagcatattatgcaaacaagctttgttttaatataaagcaatccccaaaaga tttgagtttctcagttataaatttgcatcctttccataatgccactgagttcatgggatgttctaactcatttcatactctgtgaatattcaaaagtaatagaatctggcatatagttttattgattccttagccatgggattattgaggctttcacata aaacaaataagattactacaattaaacacatagttccagtttctatggccttcccttcccaccttctattataaattaat tttatctggtatttttaaacatttaaaaatttatcatcagatatcagcatatgcctaattatgcctaatgaaacttaata aggatatctatcctccagtatatgttaatgcttaataacaagtaatcctaacagcattaaaggccaaatctgtcctcttt cccctgacttccttacagcatgtttatattacaagccattcagggacaaagaaaccttgactaccccactgtctactagg aacaaacaacagcaagcaaaattcactttgaaagcaccagtggttccattacattgacaactactaccaagattcagta gaaaataagtgctcaacaactaatccagattacaatatgatttagtgcatcataaaattccaacaattcagattatttt gaccaagaggctacagaaggaggaaatttgcaactgtctttgcaacaataaatcaggtatctattctggtgtagagatag gatgttgaaagctgccctgctatcaccagtgtagaaattaagagtagtacaatacatgtacactgaaatttgccatcgcg tgtttgtgtaaactcaatgtgcacattttgtatttcaaaaagaaaaaataaaagcaaaataaaatgttwawaamwmwaaa aaaaaaaaaaa

>monkey KChIP4

MLTLEWESEGLQTVGIVVIICASLKLLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT KKELQILYRGFKNE CPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNW AFNLYDINKDGYIT KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIM RSMQLFENVI >monkey KChIP4 C terminal splice variant cds = 265-966

TGGCCACTGTCAGGCATCGGCCTGAGGCCCTTGAGCTTCTGGAAGCCCAGAGCAAATTTACC AAGAAAGAGCTTCAGATC

CTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGA GATTTACTCGCAGTTCTT

TCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACA ATGGAGCTGTGAGTTTCG

AGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGG GCATTTAATCTGTATGAT

ATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACG ACATGATGGGTAAATGTAC

ATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGGCTGTTT TCCATTGTATCATCAAGT

GGAAGTTCAAGACGCATCAAACAAAACAAGGATGTTTACAGACATATGCAAAGGGTCAGG ATATCTATCCTCCAGTATA

>monkey KChIP4 C terminal splice variant

 ${\tt MLTLEWESEGLQTVGIVVIICASLKLLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT}\\ KKELQILYRGFKNE$

CPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNW AFNLYDINKDGYIT

KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQAVFHCIIKWKFKTASNKTRMFTDICK GSGYLSSSIC

```
KChIP1_1v -----REAVNGTF-----SSEQTKQ----RRE-----
KChip2_9q1 MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSETLAA
KChip3_p19 --MQPAKEVTKAS---DGSLLGDLGH----TPLSKKEGIKWQRPRLSRQALMRCCLVKWI
KChIP4_352 ---MLTLEWESEGLQTVGIVVIICAS----LKLLHLLGLIDFSE----
KChIP4_231 ---MLTLEWESEGLQTVGIVVIICAS----LKLLHLLGLIDFSE--
hsncspara ---HEVESISAQLEEASSTGGFLYAQN-STKRSIKERLUKLLECS----
KChip1_1v ------SKCKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPS
KChip2_9q1 PASLRPHRPRLLDPDSVDDEFELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPS
KChip3_p19 LSSTAPQ-----GSDSSDSELELSTVRHQPEGLDQLQAQTKFTKKELQSLYRGFKNECPT
KChIP4_352 -----DSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNECPS
KChip4_231 -----DSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNECPS
hsncspara -AAKTSSP---AIQNSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNVRTF
KChIP1_1v GVVNEDTFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVMFEDFVTALSILLRGTVHEK
KChip2_9q1 GivneenfkQiysQffpQgdsstyanflfnafdtnHdgsvsfedfvaglsvilrgtvpdr
KChip3_p19 GLVDEDTFKIIYAQFFPQGDATTYAHFLFNAFDA ENGAIHFEDFVVGLSILLRGTVHEK
KChip4_352 GVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEK
KChip4_231 GVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVOEK
hsncspara FUTLPSHNSORSIEK----
KChip1_1v LRWMFNLYDINKDGYINKEEMMDIVKAIYDMMGKYTYPVLKEDMPRQHVDVFFQKMD-
KChip2_9q1 LNWAFNLYDLNKDGGITKEEMLDINKSIYDMMGKYTYPALREEAPREHVESFFQKMD-
KChip3_p19 LKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPAEHVERFFEKMD-
hsncspara -
KChIP1_1v --- KNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM
KChip2 9q1 --- RNKDGVVTIEEFIESCQKDENIMRSMQLFDNVI
KChip3_p19 --- RNODGVVTIEEFLEACQKDENIMSSMQLFENVI
KChIP4_352 --- KNKDGVVTIDEFIESCQKDENIMRSMQLFENVI
KChIP4_231 IKWKFKTASNKTRMFTDICKGSGYLSSSIC---
hsncspara
```

Rat 33b07 protein

MNGVEGNNELPLANTSTSALVPEDLDLKQDQPLSEETDTVREMEAAGEAGAEGGASPDSEHCDPQLCLRVAENGCAAAAG
EGLEDGLSSSKCGDAPLASVAANDSNKNGCQLAGPLSPAKPKTLEASGAVGLGSQMMPGPKKTKVMTTKGAISATTGKEG
EAGAAMQEKKGVQKEKKAAGGGKDETRPRAPKINNCMDSLEAIDQELSNVNAQADRAFLQLERKFGRMRRLHMQRRSFII
QNIPGFWVTAFRNHPQLSPMISGQDEDMMRYMINLEVEELKHPRAGCKFKFIFQSNPYFRNEGLVKEYERRSSGRVVSLS
TPIRWHRGQEPQAHIHRNREGNTIPSFFNWFSDHSLLEFDRIAEIIKGELWSNPLQYYLMGDGPRRGVRVPPRQPVESPR
SFRFQSG.

Rat 33b07 DNA (coding: 85-1308)

 ${\tt GGTGGAGCTAAGCACTCACTGCGGTGCTGCCGTCTGCAGAGAACAAGGAAAGCTTCTCTGCAGGGCTGTCAGCTGC}$ CAAAATGAACGGCGTGGAAGGGAACAACGAGCTCCCTCTCGCTAACACCTCGACCTCCGCCCTTGTCCCGGAAGATCTGG ATCTGAAGCAAGACCAGCCGCTCAGCGAGGAAACTGACACGGTGCGGGAGATGGAGGCTGCAGGTGAGGCCGGTGCGGAG GGAGGCGCGTCCCCGATTCGGAGCACTGCGACCCCCAGCTCTGCCTCCGAGTGGCTGAGAATGGCTGTGCTGCCGCAGC ATAAAAATGGCTGTCAGCTTGCAGGGCCGCTCAGCCCTGCTAAGCCAAAAACTCTGGAAGCCAGTGGTGCAGTGGGCCCTG GGGTCGCAGATGATGCCAGGGCCGPAAGAAGACCAAGGTAATGACTACCAAGGGCGCCATCTCTGCGACTACAGGCAAGA CTCGTCCTAGAGCCCCTAAGATCAATAACTGCATGGACTCCCTGGAAGCCATCGATCAAGAGCTGTCAAATGTAAATGCG CAAGCTGACAGGGCCTTCCTCCAGCTGGAACGCAAATTTGGGCGGATGAGAAGGCTCCACATGCAGCGCCGAAGTTTCAT CATCCAAAACATCCCAGGTTTCTGGGTCACAGCGTTTCGGAACCACCCGCAACTGTCACCGATGATCAGTGGCCAAGATG AAGACATGATGAGGTACATGATCAATTTAGAGGTGGAGGAGCTTAAGCACCCAAGAGCAGGGTGCAAATTTAAGTTCATC TTCCAAAGCAACCCCTACTTCCGAAATGAGGGGCTGGTCAAAGAGTACGAGCGCAGATCCTCAGGTCGAGTGGTGTCGCT CTCTACGCCAATCCGCTGGCACCGGGGTCAAGAACCCCAGGCCCATATCCACAGGAATAGAGAGGGGAACACGATTCCCA GTTTCTTCAATTGGTTCTCAGACCACAGCCTCCTAGAATTCGACAGAATAGCTGAAATTATCAAAGGGGAGCTTTGGTCC AATCCCCTACAATACTACCTGATGGGCGATGGGCCACGCAGAGGAGTTCGAGTCCCACCAAGGCAGCCAGTGGAGAGTCC CAGGTCCTTCAGGTTCCAGTCTGGCTAAGCTCTGCCCTCGTGAGAAGCTCTTACAGAAGAGTCCTTACCACCTTCTCAGC TTGGCTAGCAGCATGCAGCCTTCTGTCTGCTTTCTCTTCCTTGGATTGTGTCCTTTGGTTCTTAAGTCTCCGGTAGTT GTGCATGGCCTCCAAACTGCTTCTATGCCAAGCTCACGTGCTGTAGTTTGTACTGCTTTTCTTTGCATGGCTTGGTTCCT GAACTAGCCAGATTTCATACTGTGTTCCCGATATCTATGTACTGTGAAGAACTGTGAGTTTCGCCACTGCAAGATGGGAC TGTATCCCAATCCAGCCATCAGCCCAACAGGACATTCCAAGCTGTCACCAACTGATCCTAGCTGTCTTCCTGGGCCTTTG CCATTTACCCTGCTTTTTATCTATAGAATGAGCAGGTGGCTGGTAGGTGACTACTAGGTAAGAGTGAAGTATTAGGTGAG

Human 33b7 (106d5) DNA (coding: 88-1332)

TTCCAAAATGAGCGGCCTGGATGGGGGCAACAAGCTCCCTCTCGCCCAAACCGGCGGCCTGGCTGCTCCCGACCATGCCT $\tt CAGGAGATCCGGACCTAGACCAGTGCCAAGGGCTCCGTGAAGAAACCGAGGCGACACAGGTGATGGCGAACACAGGTGGG$ GGCAGCCTGGAGACCGTTGCGGAGGGGGGGTGCATCCCAGGATCCTGTCGACTGTGGCCCCGCGCTCCGCGTCCCAGTTGC CGGGAGTCGCGGCGGTGCAGCGACCAAAGCCGGGCAGGAGGATGCTCCACCTTCTACGAAAGGTCTGGAAGCAGCCTCTG CCGCCGAGGCTGCTGACAGCAGCCAGAAAAATGGCTGTCAGCTTGGAGAGCCCCGTGGCCCTGCTGGGCAGAAGGCTCTA GAAGCCTGTGGCGCAGGGGGCTTGGGGTCTCAGATGATACCGGGGAAGAAGGCCAAGGAAGTGACGACTAAAAAACGCGC CATCTCGGCAGCAGTGGAAAAAGGAGGAGAAGCAGGGGCGGCGATGGAGGAAAAGAAGGTAGTGCAGAAGGAAAAAAAGG TGGCAGGAGGGGTGAAAGAGAGACACGGCCCAGGGCCCCGAAGATCAATAACTGCATGGACTCACTGGAGGCCATCGAT CCACATGCAGCGCAGAAGTTTCATTATCCAGAATATCCCAGGTTTCTGGGTTACTGCCTTTCGAAACCACCCCCAGCTGT CACCTATGATCAGTGGCCAAGATGAAGACATGCTGAGGTACATGATCAATTTGGAGGTGGAGGAGCTTAAACACCCCAGA GCAGGCTGCAAATTCAAGTTCATCTTTCAGGGCAACCCCTACTTCCGAAATGAGGGGGCTTGTCAAGGAATATGAACGCAG ATCCTCTGGCCGGGTGGTGTCTCTTTCCACTCCAATCCGCTGGCACCGAGGCCAAGACCCCCAGGCTCATATCCACAGAA ACCGGGAAGGGAACACTATCCCTAGTTTCTTCAACTGGTTTTCAGACCACAGCCTTCTAGAATTCGACAGAATTGCAGAG **ATTATCAAAGGAGAACTGTGGCCCAATCCCCTACAATACTACCTGATGGGTGAAGGGCCCCGTAGAGGAATTCGAGGCCC** ACCAAGGCAGCCAGTGGAGAGCGCCAGATCCTTCAGGTTCCAGTCTGGCTAATCTCTGTCCTGTGAGAAGCTTCTGCACA AGTTTCCTTACCACCTCCTCTTGGACCTATGCTTGGCCAACAGCATGCAGTCTTCCATCTGCTTTCTCTTCATACTGTGG GGGCCTTCATGCTTTTCTGCATTGTGTTAACATGTTTCAAGTGCATGGCCTTCTACGGCCTTCTATGCCAAGCGTATGATA CTATAGATATAGTGTACCATACTGCCTTTCTTTGCATGGCTTGGACCCTATCTGTGACCATGCTCTTCTCCCAATTTAAG ATACCCATGTACTTATGGTAAGCTATTTGGGTATTACCACTGCAAGACAAAACTGATATCTTAACCCGGCCATCAACCCA **AATTGGACATTCCAGACTACCAACTGGATCCCAGCTGCCTTCCTGGGCTTGTGCCATCCACCCTACTGGTTATCTGA** TAGAACAAGCTGGTGGCTGATGGGTGACTGCTAGGCGTGACTGAGGTAATAGATGAAAAGTGTTCTATGTTATCACATTG GTTTTCCTGTACCTTTGGTTACTCTACGTCATGACCAGCTGCTGGTGAGTATGAAGCCTGTGCTATAGCCCCACCCCTACT CACTCTCACCTTCTGGTTGAACTTTGCTTAGGCCACCATTGTCTGCCTCATCAGGAACTATCTGTAGACGTAGCTCCCAG GGAGCTCACAGCAACACCCCCTACCACCAGGATGGGCAGTAATATGTGACAGAGCCCAAAGCAAGGCTGGAACGCAGTCC CTTCCAGCTTAGTCTTTCTGACTCCTAGCCAACAAACCATCCTTAATGTGAGCAACTTCTTTAGGCATTTCCTCTTTTCC CCGCCTGCACCCACTCTGAACATGACAAAAGTTGCCAGAGTTGGGGCATTGAGGAAGAGATATTTCTGGAATGTGAGACT CTCTGAAGCAGTTTTAGCTTATTAACAGAAAACAAAACTGGCAAAGCAGGCTTTTTGTTTAATTTGCTCTTTTCCCTGATT GTGTTCAGAGAAAAGGTTATGATTAAATGGGCTCCAGATCTCTTATTGCCCTTATTCCTCCACCCCACTTCTTTTAGCA AGGTCTGAAAGTTTCAAAGGGAGACCTATAGGTTAATTGTTTAGTTATAGGCAGTGTTAAATTAGGCAGATTTTGACATA AGGGCCTCACAGTGATGGGTTCAGGACGGGTCAAAGGCAAAGGCCTTTGTGATGTGAGCAAAGGCAACCAAAACTTAGCC TCACTCCACTTTTCTAAAGATGGAAATTCTTTTTTGGGCCTTGGACTGCTTCTAGGGTAGCATTTTGTAGGTCACTCTTC TCCTTTGTACTATTTTGTTTCTGCCCTGATGTCCCTTGGGTCTCCATCCTACTGCCTGGCTTTCTTGGCCCTCATTTCTC AGCTTCTGCATTTCCTTCCCTGCTCCTAACAAATGAAGAAGCAGGCTGCAGCCTGCATTGTGGAAGATCTCCAGCCTCCT TGTAGGGGATAAGGGGATGTGTAGCATCTGTGTGGATTTTCACGGACAAGTTCCAGTAGGTGGGACAGTGATGCCGTCAA GGCTTAGTTATGATCATGTGTGGTGATAAAGACCATCCACCATCACCCTTTTCCCCTTTGGTTTTGAAGGCCTTGCCCTA **AGCTACCTGAGGGTTTAGGAGGTCTGAACACACACAGTGGAGAGGTTAATCTAGGTTGGGAAACTGAGTAAAAGTCCAGA** GCAGGAATGAGCCTGCTGTGGCGTGGGTTTGGAAAGGCTCACAGGAAAGAACCTGCAGGATCAGGGGTGGGAGGGGAGGC GTCCTTGAATTCACCAGTAGATTTTTGTAAACAAAATGTAAGTCGATGTTTTCTCTCAATTATCCTAGGAGTGACCTTTA TATGTGTGGAAGATTAATGGTATATGCTCCTTATGTCACTGTTTTTGAGTAAAATCCATTTCCTTTCTCTGTTTCAGCCT ATGACAAAATTGATGTTTACAGGCCTGCTTTTTGCTTATAATTGACAACATGTGCAAAAATACCAAATTTGTGTCCTGTG CAGTATGAAGAATTCAGTGAATATTCATTAATGTATTAGCTTGTTTTGCTCTCTGTTCATATATGGCTCTAFTCTTAGAA ATATAATTTGAATGTGATCTTTCAATAGTCTGAATATTTTACAAATTATAGCTATGTCTTGTGAAAAAACCTCAAAAAG **AAAAATACGACTCTGTTGTCTTACTTGATATTTCTTGCCCTAGTAATGTACTTGACATTTATGTTCCTAAGCAGTGTAAG** TACCAGTAGAATTTCTCTGTCAAACTCAATGATCATTTAGTACTTTTGTCTTCTCCCATGTGCTTGAAGGAAAAATAAAG

Human 33b7 (106d5) protein

MSGLDGGNKLPLAQTGGLAAPDHASGDPDLDQCQGLREETEATQVMANTGGGSLETVAEGGASQDPVDCGPALRVPVAGS RGGAATKAGQEDAPPSTKGLEAASAAEAADSSQKNGCQLGEPRGPAGQKALEACGAGGLGSQMIPGKKAKEVTTKKRAIS AAVEKEGEAGAAMEEKKVVQKEKKVAGGVKEETRPRAPKINNCMDSLEAIDQELSNVNAQADRAFLQLERKFGRMRRLHM QRRSFIIQNIPGFWVTAFRNHPQLSPMISGQDEDMLRYMINLEVEELKHPRAGCKFKFIFQGNPYFRNEGLVKEYERRSS GRVVSLSTPIRWHRGQDPQAHIHRNREGNTIPSFFNWFSDHSLLEFDRIAEIIKGELWPNPLQYYLMGEGPRRGIRGPPR QPVESARSFRFQSG

Rat 1p protein (partial)

LKGARPRVVNSTCSDFNHGSALHIAASNLCLGAAKCLLEHGANPALRNRKGQVPAEVVPDPMDMSLDKAEAALVAKELRT LLEEAVPLSCTLPKVTLPNYDNVPGNLMLSALGLRLGDRVLLDGQKTGTLRFCGTTEFASGQWVGVELDEPEGKNDGSVG GVRYFICPPKQGLFASVSKVSKAVDAPPSSVTSTPRTPRMDFSRVTGKGRREHKGKKKSPSSPSLGSLQQREGAKAEVGD QVLVAGQNRDCAFLWEDRLCSRLLVWH

Rat 1p DNA (partial, coding:1-804)

CTGAAAGGGGCGAGGCCCAGGGTGGTGAACTCCACCTGCAGTGACTTCAACCATGGCTCAGCTCTGCACATCGCTGCCTC GAATCTGTGCCTGGGCGCCGCCAAATGTTTACTGGAGCATGGTGCCAACCCAGCGCTGAGGAATCGAAAAGGACAGGTAC CTGCTAGAAGAGGCTGTGCCACTGTCCTGCACCCTTCCTAAAGTCACACTACCCAACTATGACAACGTCCCAGGCAATCT CATGCTCAGCGCGCTGGGCCTGCGTCTAGGAGACCGAGTGCTCCTCGATGGCCAGAAGACGGGGCACGCTGAGGTTCTGCG GGACCACCGAGTTCGCCAGTGGCCAGTGGGTGGGCGTGGAGCTAGATGAACCGGAAGGCAAGAACGACGGCAGCGTTGGG GGTGTCCGGTACTTCATCTGCCCTCCCAAGCAGGGTCTCTTTGCATCTGTGTCCAAGGTCTCCAAGGCAGTGGATGCACC CCCCTCATCTGTTACCTCCACGCCCCGCACTCCCCGGATGGACTTCTCCCGTGTAACGGGCAAAGGCCGGAGGGAACACA AAGGGAAGAAGTCCCCATCTTCCCCATCTCTGGGCAGCCTGCAGCAGCGTGAAGGGGGCCAAAGCTGAAGTTGGAGAC TTGAACTGGACCAGCCCACGGGCAAGCATGACGGCTCTGTGTTCGGTGTCCGGTACTTTACCTGTGCCCCGAGGCACGGG GTCTTTGCACCAGCATCTCGTATCCAGAGGATTGGTGGATCCACTGATCCCCCTGGAGACAGTGTTGGAGCAAAAAAAGT GCATCAAGTGACAATGACACAGCCCAAACGCACCTTCACAACAGTCCGGACCCCAAAGGACATTGCATCAGAGAACTCTA TCTCCAGGTTACTCTTCTGCTGCTGGTTTCCTTGGATGCTGAGGGCGGAGATGCAGTCTTAGAGACCTGGATACCTGACA CAGAGACAGAGTCCCCTCTAGCATCTCCTGACACAAGGAGACCCCAGTCACCCTAAGATAGAGATTCCCAGTGACACCTC CAGAATAGAAACCCCGTTAGCCAGCCCTCGATTACTGAGGTCCCATTATTAACAGATCTCCCATGACGACTCCCCCAAAT ACAGACCTCATGTTACCCCAAAAGAGATTCCCTGAGTAGCACCTTCAGGCTAGTCCCTGTCCCCTACCCCTCAGAGCAGA TTTCCCCCAATAAACATTTTCCACATCACCCAAGGGATGCTGACCCTCTCCACGACAGGACGTTCTTGAGTTACCAGTGG GAGATGCCCTCCATTCACTTAAGTCCCTGTTCTCACCCCTGAACAAGACACCTAATTAACCGGCCCACTCACCTCAATTA CAAACACCAAAATCGTCCTGGAAGCATGAATTACAGGACAGCAAGTCTTCCTGCCCCTCTGCACCCTTGAGAAACCCCCAG TGCCTTGTATGAAGCCCACCCCACATGGCCCACAGTCCCTGTGCTGGCCAAGGCTCCCAGAAAATTCTCTATTTTTTAAA GTAATAACTTCCCCCCTTTGGGGGGATCCCCAAATTTGGAGACCCCATTCTAGAACACTGGGGAGTTCAAATTCCAGAG AGAATATATATATATAATCCCCAATTCCCCATGCTTCCAAGCCCTACAATCTCTAGAAGACCCCAAATTTCTAATTC CCAGGACTTCCCCTACCCAAGTCACAGAATCTTCAAATCCCCAGGGAATCCCAAACTTAAGATACCAATCCCAAACCCTC TCTCAAACCTGACTCCCAGGCACCAGGAGACCCCCAAACAGAAAGTCCCATCTTTGGAACAAGGATAGGACTCTAATACCC TTAGTCCATGGATCTTTAATTTCCCAACCTCCAAACTCCATGGGCCCCACCCTCAAGGGGAACCCCCAAGATCCAAATCTC TGATAACTAATATGTGCAGGGCCCCAGGGCTCTAACAGGACCCCAAATCATGGAGTCCCTACTTCAATCTACCTTCTGGT CACAGGTCCAAGACACTAAATCTGAGTCATTGGCCCCAAAGGACTTCACAGCACCTGGGCCAGACTAACAGCCTGAGGGA GAACCTGAGGGCCCCGTGGGTCCAGAGCAGACCTGGGGCCCTGACCACCAAGGACAGCTCACGACTGCCCCTTCACTGCA AAA

Rat 7s Protein (partial)

ADSTSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLG
IVQVFWGLDKKLAQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKI
TLEVAKLIKDDFLQQNGYTPYDRFCPFYKTVGMLSNMISFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFK
DPVKDGEAKIKADYAQLLEDMONAFRSLED

Rat 7s DNA (partial, coding: 1-813)

GCTGACTCTACCTCTAGATGGGCTGAGGCCCTCAGAGAAATCTCTGGTCGCTTAGCTGAAATGCCTGCAGATAGTGGATA **AAGGGAGTGTCAGCATTGTAGGAGCAGTTTCTCCACCTGGTGGTGATTTTTCTGATCCAGTCACATCTGCTACTCTGGGT** CAGCAAGTACATGCGCGCCCTGGACGAGTACTATGACAAACACTTCACAGAGTTCGTGCCTCTGGAGACCAAAGCTAAGG AGATTCTGCAGGAAGAGGAGGATCTGGCGGAAATCGTGCAGCTCGTGGGAAAGGCGTCTTTAGCAGAGACAGATAAAATC ACCCTGGAGGTAGCAAAACTTATCAAAGATGACTTCCTACAACAAAATGGGTACACTCCTTATGACAGGTTCTGTCCATT CTATAAGACGGTGGGGATGCTGTCCAACATGATTTCATTCTATGATATGGCCCGCCGGGCTGTGGAGACCACCGCCCAGA GTGACAATAAGATCACATGGTCCATTATCCGTGAGCACATGGGGGAGATTCTCTATAAACTTTCCTCCATGAAATTCAAG GATCCAGTGAAGGATGGCGAGGCAAAGATCAAGGCCGACTACGCACAGCTTCTTGAAGATATGCAGAACGCATTCCGTAG CCTGGAAGATTAGAACTGTGACTTCTCCTCCTCCTCCTCCGCAGCTCATATGTGTATATTTTCCTGAATTTCTCATCTCCA ACCCTTTGCTTCCATATTGTGCAGCTTTGAGACTAGTGCCTCGTGCGTTCTCGTTCATTTTGCTGTTTCTTTGGTAGGTC TTATAAAACACACATTCCTGTGCTCCGCTGTCTGAAGGAGCTCCTGACCTTTGTCTGAAGTGGTGAATGTAGTGCATATG AGTAAACTGTAAACAGGACTACTGCATGTGCTCTATTGGGGATGGAAGGCCAGATCTCCATACCGTGGACAGGTACATAA GGAAACTAGACCACTTGCAACTTAGTGTTTGTTGAGTAACCATTTTGCAGGAAGTATTTCCATTTAAAAAACAAAAGATT AATGTTCCAATTATTTGTAGCTTCCCCAGTATCAATCAGGACTGTTTGTGGCGCACTTGGGAACTATTTTGTTTTCCTAA CAGACGTTTGCAAGGCTGAACGTAATAGATAAATCAGTTCCCTCTGAAAGTGTGAAAGTAAAAAGAGAGCTAGGTGGTCA GACTTAAATTGACATCGTCTTGTTTAAGCATATTTTATTTCACTGAGAGATTTAATATCAAGGACTTTTATATACTCAAT TACTAGGAAATCTTTTTTAAGTACAATTTAAAAATCATTGAAAATGTGATCCACATCATAGCCATTTTCCTTATATTTA TACCAGTTCCAGGAAATATTTTGTTTTCTTTCACTGGCTCAGAAAGCTCCTCAAAGTACCTGGTCCCTGAAGCTTCCTAT TGTTTTGGTGTGTTTAAATAATAATTCCATATTTGCATAACGAGGCTCGCTTCTGAGAGCTTGGAGATCGTGCTCCCTCT TCACTCTCCGGGGTGATAATGCTGGCGCCATGCTACCTCTTCAGGAGGGGAAGGGGGATTGAACATGGCTAACACTCTCAA ${\tt GTACACAAGCGTAACGACAAAGTATTTATTTTAAGCCTTGGTATGTTTAAATTATTATGGTGGTGCATTTCTTATGGT}$ CTTTTGGGTAGACATAGTATACACTTCAGATGTAATGTGTAAATCCTTGCTAGTGCATGTCTACACGATAGACTGCTATT ${\tt CAAGAAGGATATTCTTCCACATAACAATTTAAAAACTATTAAAATCAGATATGGATTATGCAATGACTTGTTGAGAGGTGG}$ ATTAACGGTGCTGCTTAATCAGTTTGCTTCCAATATGGCTTCGTATCCAGAAGCCCTGACTAGTGGAGATGAGAAAGATT ${\tt GAAACAACGCTCAGATTTTCACGGTAACTTTCCCTCTGCCCACACTGTAGAGTTTCAGATTGTTCACTGATAGTGCTTCT}$ AGTGCAGCCGGTTAAACAAGTTTCATATGTATTTTTCCAGTGTTAAATCTCATACCTATGCCCTTTGGAAAGCTCCATCC TGAACAATGAATAGAAGAGGCTATATAAATTGCCTCCTTATCCTTAAGATTTCACTATCTTTATGTTAAGAGTAATGTAT AATTATTAAAATCTATGAAAAATAAAAAGTGGATTTAAATTAAGAGATC

Rat 29x protein

ARLPAPEHARQQPLLSGPEPGSSARVPVPGVASRRQPRGGKPPSGDGLESGPSPRPLLHARGEAGLHRQSGRVPHTGTAY FADEPTEAQAPGGFCVSPSLLGVRWPACATRTPGSLPLSPPSAQPRTLWPTPPAGPSSRMVARNQVAADNAISPASEPRR RPEPSSSSSSSPAAPARPRPCPVVPAPAPGDTHFRTFRSHSDYRRITRTSALLDACGFYWGPLSVHGAHERLRAEPVGT FLVRDSRQRNCFFALSVKMASGPTSIRVHFQAGRFHLDGSRETFDCLFELLEHYVAAPRRMLGAPLRQRRVRPLQELCRQ RIVAAVGRENLARIPLNPVLRDYLSSFPFOI

Rat 29x DNA (coding: 433-1071)

AGTTCCCGGCGTGGCCAGTAGGCGGCAGCCGCGAGGCGGCAAGCCACCCAGCGGGGACGCCTGGAGTCGGGCCCCTCTC $\tt CTGTGCCACCCGGACGCCCGGCTCACTGCCTCTGTCTCCCCCATCAGCGCAGCCCCGGACGCTATGGCCCACCCCTCCAG$ CTGGCCCCTCGAGTAGGATGGTAGCACGTAACCAGGTGGCAGCCGACAATGCGATCTCCCCGGCATCAGAGCCCCGACGG ${\tt CCCGGCTCCGGGGGGACACTCACTTCCGCACCTTCCGCTCCCACTCTGATTACCGGGGGCATCACGCGGGACCAGCGCTCTCCC}$ TGGACGCCTGCGGCTTCTACTGGGGACCCCTGAGCGTGCATGGGGCGCACGAACGGCTGCGTGCCGAGCCCGTGGGCACC TTCTTGGTGCGCGACAGTCGCCAGCGGAACTGCTTCTTCGCGCTCAGCGTGAAGATGGCTTCGGGCCCCACGAGCATTCG TGTGCACTTCCAGGCCGGCCGCTTCCACCTGGACGGCAGCCGCGAGACCTTCGACTGCCTCTTCGAGCTGCTGGAGCACT CGCATCGTGGCCGCGTGGGTCGCGAGAACCTGGCACGCATCCCTCTTAACCCGGTACTCCGTGACTACCTGAGTTCCTT TGTGTCTGGGGCCAGGACCTGAACTCCACGCCTACCTCTCCATGTTTACATGTTCCCAGTATCTTTGCACAAACCAGGGG TGGGGGAGGGTCTCTGGCTTCATTTTTCTGCTGTGCAGAATATTCTATTTTATATTTTACATCCAGTTTAGATAATAAA

Fig. 30

Rat 25r DNA (coding 130-

Fig. 31

Rat 5p protein

 ${\tt MPSQMEHAMETMMLTFHRFAGEKNYLTKEDLRVLMEREFPGFLENQKDPLAVDKIMKDLDQCRDGKVGFQSFLSLVAGLIIIACNDYFVVHMKQKK}$

Rat 5p DNA (coding: 52-339)

Fig. 32

Rat 7g protein

Rat 7g DNA (coding 1-639)

Fig. 33

Rat 19r protein

MVLLKEYRVILPVSVDEYQVGQLYSVAEASKNETGGGEGVEVLVNEPYEKDDGEKGQYTHKIYHLQSKVPTFVRMLAPEG ALNIHEKAWNAYPYCRTVITNEYMKEDFLIKIETWHKPDLGTQENVHKLEPEAWKHVEAIYIDIADRSQVLSKDYKAEED PAKFKSIKTGRGPLGPNWKQELVNQKDCPYMCAYKLVTVKFKWWGLQNKVENFIHKQEKRLFTNFHRQLFCWLDKWVDLT MDDIRRMEEETKRQLDEMRQKDPVKGMTADD

Rat 19r DNA (coding 1-816)

Fig. 34

Monkey KChIP4c (jlkxa053c02) DNA sequence (CD: 122-811)

CACTTCTCAGTGGCTGTGGTCGGACCATGACCTAGCTGACCATGAACTTGGAAGGGCTTGAAATGATAGCAGTTCTGATC GTCATTGTGCTTTTTGTTAAATTATTGGAACAGTTTGGGCTGATTGAAGCAGGTTTAGAAGACAGCGTGGAAGATGAACT ${\tt AGATCCTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGAGATTTACTCGCAG}$ TTCTTTCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACAATGGAGCTGTGAG TTTCGAGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGGGCATTTAATCTGT ATGATATAAATAAAGATGGCTACATCACTAAAGAGGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGGGTAAA TGTACATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATGGACAAAAATAAAGA TGGGGTTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGCTCCATGCAGCTCTTTGAAA ATGTGATTTAACTTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACTATTCTACCACCCTTAAAGTCGGAGCTAC CACTTTTAGCATAGATTGCTCAGCTTGACACTGAAGCATATTATGCAAACAAGCTTTGTTTTAATATAAAGCAATCCCCA AAAGATTTGAGTTTCTCAGTTATAAATTTGCATCCTTTCCATAATGCCACTGAGTTCATGGGATGTTCTAACTCATTTCA TACTCTGTGAATATTCAAAAGTAATAGAATCTGGCATATAGTTTTATTGATTCCTTAGCCATGGGATTATTGAGGCTTTC ${ t TTAAGTAAACAAATAAGATTACTACAATTAAACACATAGTTCCAGTTTCTATGGCCTTCACTTCCCACCTTCTATTAGAA$ ATTAATTTATCTGGTATTTTTAAACATTTAAAAATTTATCATCAGATATCAGCATATGCCTAATTATGCCTAATGAAAC AGGGTCAGGATATCTATCCTCCAGTATATGTTAATGCTTAATAACAAGTAATCCTAACAGCATTAAAGGCCAAATCTGTC CTCTTTCCCCTGACTTCCTTACAGCATGTTTATATTACAAGCCATTCAGGGACAAAGAAACCTTGACTACCCCACTGTCT ACTAGGAACAAACAACAGCAAGCAAAATTCACTTTGAAAGCACCAGTGGTTCCATTACATTGACAACTACTACCAAGAT TCAGTAGAAAATAAGTGCTCAACAACTAATCCAGATTACAATATGATTTAGTGCATCATAAAATTCCAACAATTCAGATT CACAAAGACCAAGAGGCTACAGAAGGAAGGAAATTTGCAACTGTCTTTGCAACAATAAATCAGGTATCTATTCTGGTGTAG AGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAGAGTAGTACAATACATGTACACTGAAATTTGCC ATCGCGTGTTTGTGTAAACTCAATGTGCACATTTTGTATTTCAAAAAGAAAAATAAAAGCAAAATAAAATGTTTATAAC **ТСТААААААААААААААА**

Monkey KChIP4c protein sequence

$$\label{thm:linear} \begin{align} $$ MNLEGLEMIAVLIVIVLFVKLLEQFGLIEAGLEDSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNECPSG\\ VVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLMWAFNLYDINKDGYITKEEM\\ LDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIMRSMQLFENVI.\\ \end{align}$$

Monkey KChIP4d (j1kx015b10) DNA sequence (CD:64-816)

GTCGACAGACGCCCCTGGCCGGTGGACTCCTGAGTCTTACTCCTGCACCCTGCGTCCCCAGACATGAATGTGAGGAGAGT GGAAAGCATTTCGGCTCAGCTGGAGGAGGCCAGCTCCACAGGCGGTTTCCTGTATGCTCAGAACAGCACCAAGCGCAGCA TTAAAGAGCGGCTCATGAAGCTCTTGCCCTGCTCAGCTGCCAAAACATCGTCTCCTGCTATTCAAAACAGCGTGGAAGAT GCTTCAGATCCTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGAGATTTACT ${\tt CGCAGTTCTTTCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACAATGGAGCT}$ GTGAGTTTCGAGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGGGCATTTAA TCTGTATGATATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGG GTAAATGTACATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATGGACAAAAAT AAAGATGGGGTTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGGCTCCATGCAGCTCTT TGAAAATGTGATTTAACTTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACTATTCTACCACCCTTAAAGTCGGA GCTACCACTTTTAGCATAGATTGCTCAGCTTGACACTGAAGCATATTATGCAAACAAGCTTTGTTTTAATATAAAGCAAT ${\tt CCCCAAAAGATTTGAGTTTCTCAGTTATAAATTTGCATCCTTTCCATAATGCCACTGAGTTCATGGGATGTTCTGACTCA}$ TTTCATACTCTGTGAATATTCAAAAGTAATAGAATCTGGCATATAGTTTTATTGATTCCTTAGCCATGGGATTATTGAGG ATACTTTAAGTAAACAAATAAGATTACTACAATTAAACACATAGTTCCAGTTTCTATGGCCTTCACTTCCCACCTTCTAT TAGAAATTAATTTTATCTGGTATTTTTAAACATTTAAAAATTTATCATCAGATATCAGCATATGCCTAATTATGCCTAAT TGCAAAGGGTCAGGATATCTATCCTCCAGTATATGTTAATGCTTAATAACAAGTAATCCTAACAGCATTAAAGGCCAAAT CTGTCCTCTTTCCCCTGACTTCCTTACAGCATGTTTATATTACAAGCCATTCAGGGACAAAGAAACCTTGACTACCCCAC TGTCTACTAGGAACAAACAAACAGCAAGCAAAATTCACTTTGAAAGCACCAGTGGTTCCATTACATTGACAACTACTACC AAGATTCAGTAGAAAATAAGTGCTCAACAACTAATCCAGATTACAATATGATTTAGTGCATCATAAAATTCCAACAATTC AATATCACAAAGACCAAGAGGCTACAGAAGGAGGAAATTTGCAACTGTCTTTGCAACAATAAATCAGGTATCTATTCTGG TGTAGAGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAGAGTAGTACAATACATGTACACTGAAAT AAAAAAAAAAAAAA

Monkey KChIP4d protein sequence

$$\label{thm:minimizer} \begin{align} $$ MNVRRVESISAQLEEASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHRPEALELLEAQS$$ KFTKKELQILYRGFKNECPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEK$$$ LNWAFNLYDINKDGYITKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIM$$$ RSMQLFENVI.$$$$

### ALIGNMENT OF MONKEY KChIP4 10	04-	. LIDES BOSVEDE KChIP4NI . LIDES BOSVEDE KChIP4C . LIEAGLEDSVEDE KChIP4N2 AKTSSPAIONSVEDE KChIP4N3	90 100	TEKKIYSGFFPGGD KChip4N1 TEKKIYSGFFPGGD KChip4C TEKKIYSGFFPGGD KChip4N2 TEKKIYSQFFPQGD KChip4N3	150 160	LYDINKDGYITKEE KChip4N1 LYDINKDGYITKEE KChip4C LYDINKDGYITKEE KChip4N2	210 DGVVIIDEFIESCO KCHIP4N1 TASNKTRMFTDIC. KCHIP4C DGVVIIDEFIESCO KCHIP4N2 DGVVIIDEFIESCO KCHIP4N3	KChiP4N1 KChiP4C KChiP4N2
LIGNMENT OF MONKEY KCh M		VGIVVIICASLKLLHLLG VGIVVIICASLKLLHLLG IAVLIVIVLFVKLLEFFG		RELOILYRGFKNECPSGVVNE KELOILYRGFKNECPSGVVNE KELOILYRGFKNECPSGVVNE	140	FIKGLSILLRGTVQEKLNWAF FIKGLSILLRGTVQEKLNWAF FIKGLSILLRGTVQEKLNWAF FIKGLSILLRGTVQEKLNWAF	PRONVETPFORMDK PRONVETPFORMDK PRONVETPFORMDK PRONVETPFORMDK	
	KChIP	TATERMES TATERMES RRVESISANDEBASS		EMATVRHRPEALELLEAQSKFT EMATVRHRPEALELLEAQSKFT EMATVRHRPEALELLEAQSKFT EMATVRHRPEALELLEAQSKFT	οt	STTYAHFLFHAFDTDHNGAVSFE STTYAHFLFHAFDTDHNGAVSFE STTYAHFLFHAFDTDHNGAVSFE	170 180 LDIMKAIYDMNGKCTYPVLKED LDIMKAIYDMNGKCTYPVLKED LDIMKAIYDMNGKCTYPVLKED	220 DENTMRSMOLFENVI GBGYLSSSIC DENTMRSMOLFENVI DENTMRSMOLFENVI

Fig. 37

BEST AVAILABLE COPY

	СНО	
CURRENT PARAMETER	rKv4.2	rKv4.2 +KChlP2
PEAK CURRENT (nA/cell, at 50 mV)	0.51 ±0.098	3.3 ±0.45
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	18.6 ±2.8	196.6 ±26.6
INACTIVATION TIME CONSTANT (ms, at 50 mV)	28.47 ±3.5	95.14 ±8.3
RECOVERY FROM INACTIVATION TIME CONSTANT (ms, at -80 mV)	257.9	49.5
ACTIVATION V _{1/2} (mV)	20.5	-2.2
STEADY-STATE INACTIVATION V _{1/2} (mV)	-47.1	-45.7

Fig. 38

BEST AVAILABLE COPY

	СНО	
CURRENT PARAMETER	rKv4.2 +RBG4	rKv4.2 +KChlP3
PEAK CURRENT (nA/cell, at 50 mV)	0.46 ±0.084	3.5 ±0.99
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	29.7 ±11.2	161.7 ±21.8
INACTIVATION TIME CONSTANT (ms, at 50 mV)	29.5 ±9.5	67.2 ±14.1
RECOVERY FROM INACTIVATION TIME CONSTANT (ms, at -80 mV)	435.9	130.8
ACTIVATION V _{1/2} (mV)	4.1	6.1

Fig. 39

тыны	KKKKO	× 2222	विव विव विव विव विव	
14011	<u> विकास</u>	よよなよれ	ស សសសសស	
1 1 63 1 1	មក មក មក ក	다보다	, ២๗๗๓๐	
11411	PHUMA	NNNNN	аннаа	
7 T H T T	医医医VA	F4 F4 F4 F4 F4	* 66606	
1 1 🕱 1 1	X ZZOZO	HAAAA	. >>>==	
101211	PP44	23233	MX< <h kp<="" td=""><td></td></h>	
1 4 4 1 1	OHTHA 4	KZKZK	ដី ២២២២២	
10411	E 00000	нанан	2 2222	
10011	RANDERA	XXXXX	KKOZK	• •
10011	PH PH PH PH	西ひ宮の豆	> zzzzz	
I PA PEC I I	× 00000	はひは足口	张兵政事实	
14411		P P P P P	X AAAAA	
1 1 4 1 1	XXZZXX	66666	ZZZZZ	
11011	XXXIH	00000	KKKOK	
1 1 1 1 1	4 44 44 44 60 60 60 60	***	OOMKA	
ווממו	XXXXX	44400	는 10 14 14 14 14 14 14 14 14 14 14 14 14 14	
1 [4 4] 1	****	HHHH	Para Para	
1881	******	H>H>>>	> 2 2 2 2 2	
101411	>> 0 11 0 2 2	44444		
1 1 04 1 1	99999	40044	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
1 1 01 1	44444	E4>HQ	OMMRK	
11211	M M M M M	>>>HH	K K K E E	
IMMII	KKKUK	Des Des Des Des Des	анан	
танті	KKKBB	и пропи	HAAHH	
14011	EH EH EH KO EH	ក្រុមក្រុ	SMUMS	
これ直って	[24 [24 [24 [24 [24	See Die See Sie Die		
XXXII	KMXXX	и кошон	KKKAN	
名中式・こ	66666	' >>ннн	러구구점점	
44011	OOOZK	21 - አመልፋቸୟ	> 4 4 4 4	
異の立 ! !	表面表面 数	E 00000	11 12 12 12 13	
REPLE	正なられま	M H A M A A A	国第五九九	
OWELL	нанан	Q班GS瓦	43444	
東耳耳二	0000 H	REDER K	エル耳えた	
E O O I I	五百つり	ннжны	KKKKX	
OFFI	44445	× 66666	9999	
11011	0002>	विष विष विष विष		
2011 I		4444	ZZZZ	
1 1 1 1 1 1	******	ZZZZZ	AAAKO	
E O O I I	HHHHH LINEHH		****	
00011	COKII	42444 42444	ннннн Кимкк	
MARII	>>> 1	# E # E # E	KKKOD	
I I SO FI C	Meet 1	AAAAA	> = = > >	
18411	ENDOLI	>> >= E4 E4	нннн	
一直取工二	2111111	HZHZH	PDAMO	
102 [២	8 8 H 8 H	24444	
18111	। दिव्य	4546	ZZZZZ	
103111	MMMII	99999	ស់ គេគគេគេ	
14111	669 11	00000	, 668662	
ויאטי	変わるここ	直えるひぼ	**	
· 西西 · ·	H>OII	84 84 84 84	XXHENE	
IKKKK	* (2 (2) I I	विश्व विश्व विश्व विश्व	' ннннн	
1 K K W W	AZAII	the the the fee fee	באאטא אמ	
I O A Z Z	I MO I I	aaaza	<u> </u>	
10000	1 20 20 1 1	40448	N AAAZA	
40:4 2	1 > 04 1 1	***************************************	MAMON	
EEEE	1020411	HHHHH	AZZAA	
			нанаа	
KChip1 KChip2 KChip3 RIP NCS1	KChipi KChipi KChipi KChipi Hip	KChipi KChipi KChipi Hip	KChipi KChipi KChipi Hip NCS1	
надан	AAAA H	AAAA H	надан	

ZHH&> >>>01 SEEMO Q D M K D 甲甲异乙子 មានមា 1 1 1 14 1/2 11101 **aaaa**a 1 これはじょ 8 5 8 8 B ************ ZZZ>> ннннн ZZZGG 口包包含品 88888 医浆浆谷丸 **aaa**kk 00040 · 8 8 8 8 8 8 医医医氏区 **ВНДНО**

KChIP1 KChIP2 KChIP3 HIP NCS1

дддд

NIKALI ET AĽ.

