

Evaluation Board DB_SY7152ABC_1

Introduction

The SY7152 is a high efficiency boost regulators targeted for general step-up applications.

Design Specifications

Input Voltage (V)	Input Current (A)	Output Voltage (V)	Test conditions
3~4.2	2	5	K close

Schematic

Figure 1. Schematic Diagram

Figure 2. Test Results

(a) Efficiency vs Load Current

(b) Load Transient: $V_{OUT}(0.5V/\text{div})$, $I_L(0.2A/\text{div})$. Load current changes between 0.1A and 1A.

Evaluation Board DB_SY7152ABC_1

Quick Start Guide (Refer to Figure 3)

- 1. Connect the output load to V_{OUT} and GND output connectors. Preset the load current to between 0A and 1A.
- ed for Jovial Preset the input supply to a voltage between 3V and 4.2V. Turn the supply off. Connect the input supply to $V_{\mbox{\scriptsize IN}}$ and GND input connectors.
- Short jumper K.
- Turn on the input supply and measure the output voltage.

Figure3. Top Silkscreen

PCB Layout

Figure 4. PCB Layout Plots: (a) top layer, (b) bottom layer

Evaluation Board DB_SY7152ABC_1

BOM List

Reference	Description	Part Number Manufacturer	
Designator			
U_1	2A, 1MHz Step up	SY7152ABC_1	
	(SOT23-6)		
L_1	2.2uH/5A	VLC6045-100M	TDK
D	3A/40V, Schottky	SS34	
C	47uF/50V		× 3
\mathbf{C}_1	(electronic capacitor)		CO
C_3	10uF/25V,1206,X5R		TDK
C_4	22uF/25V,1206,X5R		TDK
R_1	100kΩ, 1%, 0603		C
R_2	13.7kΩ, 1%, 0603	-7	
R ₃	1M Ω, 1%, 0603		

Output Voltage Ripple Test

A proper output ripple measurement should be done according to Figure 5 setup. Output voltage ripple should be measured across the output ceramic cap near the IC.

- 1. Remove the ground clip and head of the probe. Wind thin wires around the ground ring of the probe. Solder the end of the ground ring wire to the negative node of the C_4 . Touch the probe tip to the positive node of the C_4 . Refer to Figure.5.
- 2. Minimize the loop formed by C₄ terminals, probe tip and ground ring.
- 3. Change the probing direction to decouple the electromagnetic noise generated from the nearby inductor (Refer to Figure.5).

Figure.5 Recommended way to measure the output voltage ripple