Конспект к экзамену по матану

Владимир Латыпов donrumata03@gmail.com

Содержание

1	Теория меры	3
2	Многообразия	3
	2.1 Разбиение единицы	
	2.2 Гладкие многообразия	
	Ряды Фурье и приближение функций	
	3.1 Пространства Лебега	
	3.2 Гильбертовы пространства	

1 Теория меры

2 Многообразия

2.1 Разбиение единицы

Лемма 2.1.1: Открытое множество в \mathbb{R}^n представимо как объединение шаров с рациональными ценрами и радиусам, в нём содержащихся.

Теорема 2 (Теорема Линдлёфа): Из открытого покрытия множества в \mathbb{R}^n можно выделить счётное подпокрытие.

Доказательство:

- Не важно, открыто ли покрытие в \mathbb{R}^n или в M, т.ч. считаем, что множество представлено в виде объединения.
- Рассмотрим все шары, содержащиеся хотя бы в одном элементе покрытия \to достаточно их объединить (занумеруем).

Теорема 3 (Теорема Лебега (о компакте)): Для открытого покрытия метрического компакта существует ε , что любое пересекающееся с K множество диаметра $\leq \varepsilon$ содержится в каком-то элементе покрытия.

Доказательство: От противного — построим последовательность для $\varepsilon = \frac{1}{n}$. По секвенциальной компактности выделим сходящуюся подпоследовательность. Её предел — в элементе покрытия. Тогда множества с какого-то момента содержатся в нём. Противоречие.

Теорема 4 (Разбиение единицы): Для открытого покрытия компакта в \mathbb{R}^n существует разбиение единицы, отвечающее ему, т.е.

- · конечный набор финитных функций $C^{(\infty)}(\mathbb{R}^n \to [0,1])$, тч:
- $\cdot \ \mathrm{supp} \ \kappa$ аждой $\in \kappa$ акому-то элементу покрытия.
- Сумма набора ≤ 1 всегда
- На компакте в точности равна 1

Доказательство: Фнукция $\tau(x)=e^{-\frac{1}{(t+1)^2}-\frac{1}{(t-1)^2}}$ (на [0,1], иначе - 0). Периодизируем, поделим на период, получим θ . Тогда $\tilde{\theta}$ (периодизированная θ) $\equiv 1$. Через ε из леммы Лебега возьмём малое h и получим для точки m из \mathbb{Z}^n перемноженную и промасштабированную штуку $\theta_{m(x)}=\prod_{i=1}^n\theta\big(\frac{x_i}{h}-m_i\big)$. Тогда возьмём в набор те, которые содержатся в каком-либо элементе покрытия.

Теорема 5 (Равносильность существования локального и глобального гладкого продолжения): Если для каждой точки множества существует окрестность и r —гладкое продолжение отображения, то существует таковое и на объединении окрестностей.

2.2 Гладкие многообразия

Определение 2.2.1: Регулярное оторбражение на произвольном множестве — существует регулярное продолжение на открытое.

Определение 2.2.2: $\mathbb{M}_{kn}^{(r)}$ (k-мерное многобразие в \mathbb{R}^n класса r) — множество в \mathbb{R}^n , тч для каждой точки существует локальная параметризация — окрестность (открытое в M множество, содержащее это точку) и регулярный класса r гомеоморфизм $\varphi:\Pi_k\to U$, где Π_k — стандартный куб или полукуб, причём $\varphi(\mathbb{0})=x$. Точки, где это куб — внутренние, где полукуб — краевые.

 ∂M — край — множество краевых точек. Не завит от параметризации (следствие из теоремы о регулярности перехода).

Определение 2.2.3: Нуль-мерное многообразие — *дискретное* множество точек, то есть никакая — не предельная.

Пример: Многообразия:

- Открытое множество в \mathbb{R}^n многообразие без края класса ∞ (тождественная паараметризация)
- \cdot Путь (простой, незамкнутый, регулярный, на [0,1]).
- Образ открытого в \mathbb{R}^k множества при регулярном гомеоморфизме. Частный случай график отображения, где $\varphi:(u,f(u))$.
- \cdot Поверхность вращения в \mathbb{R}^3 (параметризуем, решая уравнения)
- · Сфера (локальная параметризация через сферические коодринаты, иначе вращаем)
- Цилиндрическая поверхность то же самое, но переходим к сферическим координатам только по первым l-1 переменным.
- Тор параметризуем через угол на центральной окружности и на подвешенной к ней

Теорема 1 (Задание многообразия через систему уравнений): Подмножество открытого, где r —гладкое регулярное отображение $\Phi:G\subset\mathbb{R}^{k+m}\to\mathbb{R}^m$ равно нулю, — $\mathbb{M}_{k,k+m}^{(r)}$.

Доказательство: НУО, нелулевой минор — по последним координатам (y). По Т. о неявном отображении возьмём куб с ребром $a \to \text{шар c}$ радусом b и неявное отображение: последние координаты по первым. Тогда параметризация:

$$\varphi(u) = (x_0 + au, f(x_0 + au))$$

Определение 2.2.4: Переход от параметризации φ к $\psi-L:\binom{W_1\to W_2}{\psi^{-1}\circ \varphi}$, то есть по φ -параметру точки из пересечения стандартных окрестностей даёт ψ -параметр.

Теорема 2 (Регулярность перехода): $L \in C^{(r)}$ и регулярно.

3 Ряды Фурье и приближение функций

3.1 Пространства Лебега

Определение 3.1.1: Програнство Лебега $L_{p(E,\mu)}, p\in [1,\infty]$ — множество функций п. в. $_{\mu}E \to \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых

$$\begin{cases} \left\|f\right\|_p = \left(\int_E \left|f\right|^p d\mu\right)^{1/p} < \infty & p \in [1, \infty) \\ \left\|f\right\|_\infty = \operatorname*{ess\ sup}_E |f| < \infty & p = \infty \end{cases}$$

Определение 3.1.2: Пространство L_p (обозначается без указания множества и меры) — множество 2π -периодических функций π . в. $\mathbb{R} \to \overline{\mathbb{R}}$ или $\overline{\mathbb{C}}$, для которых $\|f\| = \|f\|_{L_{p([-\pi,\pi],\mu_1)}} < \infty$.

Теорема 1: Полнота

3.2 Гильбертовы пространства

Определение 3.2.1: Гильбертово пространство — *полное* линейное пространство со скалярным произведением и нормой, им порождённой.

Пример: Пространство $L_2(E,\mu)$ со скалярным произведением:

$$\langle f, g \rangle = \int_E f \overline{g} \mathrm{d}\mu$$

(суммируемость $f\overline{g}$ — за счёт неравенства Гёлдера для p=q=2)

Полнота доказана в Теореме 3.1.1

Частные случаи:

- \cdot ℓ_2^m Евклидово пространство
- \cdot ℓ_2 последовательности
- · $\ell_2(\mathbb{Z})$ двусторонние последовательности

Лемма 3.2.1: Сходящийся в ${\mathcal H}$ ряд можно скалярно умножать на вектор почленно

Теорема 2 (Критерий сходимости ортогонального ряда): Сходимость ряда в $\mathcal H$ равносильна сходимости $\sum \|x\|^2$, причём

$$\left\| \sum_{i=1}^{\infty} x \right\|^2 = \sum_{i=1}^{\infty} \|x\|^2$$

Следствие 2.1: Перестановка сходящейся в $\mathcal H$ последовательности тоже сходится и имеет тот же предел

Теорема 3 (Вычисление коэфициентов ортогонального ряда): Если $\{e_k\}_{k=1}^\infty$ — ОС, а $\sum_{i=1}^\infty c_k e_k \to x$, то коэфициенты однозначно вычислаются по формуле

$$c_k = \frac{\langle x, e_k \rangle}{\left\|e_k\right\|^2}$$

Теорема 4 (Свойства частичных сумм Фурье):

- 1. S_n ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 2. S_n элемент наилучшего приближения к x из $\mathcal{L}(\{e_k\})$, причём равенство достигается только при $y=S_n$
- 3. $||S_n|| \le ||x||$

Следствие 4.1 (Неравенство Бесселя): Сумма квадратов норм Ряда Фурье x не больше $\|x\|^2$.

Теорема 5 (Рисс, Фишер):

- 1. Ряд Фурье вектора x сходится
- 2. Сумма ряда Фурье ортогональная проекция x на $\mathcal{L}(\{e_k\})$
- 3. Сходится именно к $x \iff$ выполняется *уравнение замкнутости* (то есть в нер-ве Бесселя достигается равенство).

Определение 3.2.2: Базис: любой вектор раскладывается по этой системе

Определение 3.2.3: Полная система: не существует отличного от нуля вектора, ортогонального всем вектора (то есть нельзя добавить ещё однин вектор, чтобы осталвалась ОС)

Определение 3.2.4: Замкнутая система: для любого вектора выполнено *уравнение замкнутости*

Теорема 6 (Харакетеристика базиса): Утверждения эквивалентны для ОС $\{e_k\}_{k=1}^{\infty}$:

- 1. $\left\{e_k\right\}_{k=1}^{\infty}$ базис
- 2. $\forall x, y$ выполнено обобщённое уравнение замкнутости:

$$\langle x,y\rangle = \sum_{i=0}^{\infty} c_{k(x)} \overline{c_{k(y)}} \|e_k\|^2$$

- 3. $\{e_k\}$ полная система
- 4. $\{e_k\}$ замкнутая система
- 5. $\mathcal{L}(\{e_k\})$ плотна в \mathcal{H}

Теорема 7 (Грамм, Шмидт): систему можно ортонормировать, не изменяя линейную оболочку никакого префикса, притом единственным с точностью до коэфициентов ± 1 образом

Пример (Ортогональные базисы многочленов) : Весовая функция \to вводим скалярное произведение

Теорема 8 (Существование элемента наилучшего приближения):