بسم الله الرحمن الرحيم

المادة: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي الأول للعام الدراسي ٣٩/١٤٣٨ هـ الاختبار الفصلي الثاني

اسم الطالب:	الرقم الجامعي:
أستاذ المقرر:	الدرجة:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
В	A	D	В	C	A	C	D	В	D	A	В	A	C	D

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
C	В	D	C	A	В	D	A	В	A	C	D	В	A	C

السؤال الأول:

s.t.

$$x_2 \le 6$$
 :(1) القيد

$$x_1 + x_2 \le 5$$
 :(2) القيد

$$x_1 + 2x_2 \le 8$$
 :(3)

$$5x_1 + 2x_2 \le 20$$
 :(4) القيد

$$x_1 \ge 0$$
 , $x_2 \ge 0$

 $x_1^* = 2$, $x_2^* = 3$, $z^* = 23$ الحل الأمثل هو:

1. القيود الرابطة هي القيدان:

الأول والرابع الثانى والثالث \mathbf{C} D

(4)

 x_2

(2)

(1)

(3)

الثالث والرابع B

الثاني والرابع

2. الموارد المتوفرة هي موارد القيدان:

الأول والرابع الثاني والرابع \mathbf{C} D

الثاني والثالث B

الثالث والرابع \mathbf{A}

3. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (2) هي:

 \mathbf{C} D 0.25 1.5

B 1

0.5

4. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (2) هو:

D 0.25 \mathbf{C} 0.5 B 3 1.5

5. أكبر زيادة اقتصادية يمكن إضافتها لمورد القيد (3) هي:

C D 3 B 4 1 2

6. سعر الظل (القيمة الاقتصادية للوحدة الإضافية) لمورد القيد (3) هو:

1 \mathbf{C} 0.5 B 1.5 A 2

) هو :	1)	القيد	مورد	من	انقاصه	يمكن	اقتصادي	تو فير	أكبر	.7
•••••	,	*				<u> </u>	، ــــــــــــــــــــــــــــــــــــ	J. J	J	• /

 D
 1
 C
 2
 B
 3
 A
 4

8. أكبر توفير اقتصادي يمكن إنقاصه من مورد القيد (4) هو:

D 4 C 3 B 2 A 1

9. فترة الحساسية لمعامل المتغير x_1 في دالة الهدف هي:

D $5 \le c_1 \le 10$ **C** $2.5 \le c_1 \le 5$ **B** $2 \le c_1 \le 4$ **A** $2 \le c_1 \le 5$

:هي ذالة الهدف هي: x_2 فترة الحساسية لمعامل المتغير .10

D $5 \le c_2 \le 8$ **C** $2 \le c_2 \le 4$ **B** $5 \le c_2 \le 10$ **A** $4 \le c_2 \le 8$

السوال الثاني:

ليكن لدينا البرنامج الخطي التالي:

$$\max z = 2x_1 + 2x_2$$
s. t.
$$2x_1 + 4x_2 \le 11$$

$$4x_1 + 3x_2 \le 12$$

$$x_1 \ge 0 , x_2 \ge 0$$

11. القيود الخطية في الصيغة القياسية لهذا البرنامج الخطي هي:

$$\begin{array}{c|c}
\mathbf{D} & 2x_1 + 4x_2 + s_1 \le 11 \\
4x_1 + 3x_2 + s_2 \le 12 \\
x_1, x_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
\mathbf{B} & 2x_1 + 4x_2 + s_1 \le 11 \\
4x_1 + 3x_2 + s_2 \le 12 \\
x_1, x_2, s_1, s_2 \ge 0
\end{array}$$

$$\begin{array}{c|c}
A & 2x_1 + 4x_2 = 11 \\
 & 4x_1 + 3x_2 = 12 \\
 & x_1, x_2 \ge 0
\end{array}$$

12. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن الحل الأساسي هو:

$$\mathbf{D} = \begin{pmatrix} (x_1, x_2, s_1, s_2) = \\ (3, 0, 2, 0) \end{pmatrix}$$

$$\mathbf{C} \begin{vmatrix} (x_1, x_2, s_1, s_2) = \\ (2.4, 0.8, 0, 0) \end{vmatrix}$$

$$\mathbf{B} (x_1, x_2, s_1, s_2) = (1.5, 2, 0, 0)$$

$$\mathbf{A} (x_1, x_2, s_1, s_2) = (0, 0, 1.5, 2)$$

13. إذا كانت المتغيرات غير الأساسية هي (s_1, s_2) ، فإن النقطة الموافقة لها في الرسم البياني هي:

14. إذا كانت المتغيرات الأساسية هي (x_2, s_1) ، فإن الحل الأساسي هو:

$$\mathbf{D} \begin{vmatrix} (x_1, x_2, s_1, s_2) = \\ (3, 0, 5, 0) \end{vmatrix}$$

$$\mathbf{C} \boxed{ (x_1, x_2, s_1, s_2) = \\ (5.5, 0, 0, -10) }$$

$$\mathbf{B} \begin{array}{|c|c|} (x_1, x_2, s_1, s_2) = \\ (4, 0, 0, -5) \end{array}$$

$$\mathbf{A} (x_1, x_2, s_1, s_2) = (0, 4, -5, 0)$$

15. إذا كانت المتغيرات الأساسية هي (x_2,s_1) ، فإن النقطة الموافقة لها في الرسم البياني هي:

D	K
---	---

16. إذا كانت المتغيرات الأساسية هي (x_1, s_2) ، فإن الحل الأساسي سيكون:

السوال الثالث:

$$\max z = -3x_1 - x_2 + 2x_3$$

s.t.
$$x_1 + 2x_2 + 2x_3 \le 4$$
$$2x_1 + 2x_2 + x_3 \le 4$$

 x_1 , x_2 , $x_3 \ge 0$

В	BV	x_1	x_2	x_3	s_1	s_2	RHS
	Z	3	1	-2	0	0	0
	$\overline{x_1}$	1	2	2	1	0	4
	x_2	2	2	1	0	0	4

$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline \textbf{D} & BV & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} \\ \hline z & 3 & 1 & 2 & 0 & 0 & 0 \\ \hline s_1 & 1 & 2 & 2 & 1 & 0 & 4 \\ s_2 & 2 & 2 & 1 & 0 & 1 & 4 \\ \hline \end{array}$$

18. في جدول السمبلكس المبدئي ، المتغير الغير أساسي الذي سوف يدخل ليصبح متغير أساسي هو:

D	x_1
	~1

$$\mathbf{C}$$
 x_2

$$\mathbf{B}$$
 x_3

$$oxed{A}$$
 s_1

19. في جدول السمبلكس المبدئي ، اختبار النسبة الصغرى (ratio test) هو:

D	ratio test
	4/2 = 2
	4/1 = 4

$$\begin{array}{c|c}
 & \text{ratio test} \\
\hline
 & 4/2 = 2 \\
 & 4/2 = 2
\end{array}$$

$$\begin{array}{c|c}
 & \text{ratio test} \\
\hline
 & 4/1 = 4 \\
 & 4/2 = 2
\end{array}$$

A
$$\frac{\text{ratio test}}{2/4 = 0.5}$$

 $1/4 = 0.25$

20. في جدول السمبلكس المبدئي ، المتغير الأساسي الذي سوف يخرج ليصبح متغير غير أساسي هو:

\mathbf{D} s_2

$$\mathbf{C}$$
 s_1

$$\mathbf{B}$$
 x_2

$$\mathbf{A}$$
 x_1

21. في جدول السمبلكس الجديد ، أي بعد إجراء عملية التحوير ، فإن الحل الأساسي الجديد سيكون:

D	لم يتغير

A	أمثل
---	------

السؤال الرابع:

إذا كان لدينا جدول السمبلكس التالي لمسألة ما (دالة الهدف هي دالة تعظيم: max z):

BV	x_1	x_2	x_3	S_1	s_2	RHS
Z	3	- 4	2	0	0	0
s_1	- 2	2	1	1	0	2
s_2	2	2	- 2	0	1	4

بعد معرفة المتغير الغير أساسي الداخل والمتغير الأساسي الخارج وإكمال عملية تحديث الجدول، سنحصل على جدول

السمبلكس التالى:

BV	x_1	x_2	x_3	s_1	s_2	RHS
Z			E			F
				G		Н
	К		L	M		

22. القيمة التي في موقع الحرف E هي:

D	ليس من الإجابات السابقة	C	0	В	4	A	5
---	-------------------------	---	---	---	---	---	---

23. القيمة التي في موقع الحرف F هي:

D ليس من الإجابات السابقة C 3 B 6 A 4	
---------------------------------------	--

24. القيمة التي في موقع الحرف G هي:

	D	ليس من الإجابات السابقة	C	0	В	1	A	- 0.5	
--	---	-------------------------	---	---	---	---	---	-------	--

25. القيمة التي في موقع الحرف H هي:

ليس من الإجابات السابقة (0.5	B 1	A 2
---------------------------	-----	------------	------------

26. القيمة التي في موقع الحرف K هي:

السابقة D	ليس من الإجابات	C	0	В	1	A	4
-----------	-----------------	---	---	---	---	---	---

27. القيمة التي في موقع الحرف L هي:

	D	ليس من الإجابات السابقة	C	-3	В	0	A	- 4
--	---	-------------------------	---	----	---	---	---	-----

هى:	М	الحرف	موقع	ے فی	التي	القيمة	.28
•		•				•	

f D ليس من الإجابات السابقة f C f B f B f A -2

29. الحل الأساسى الممكن الموافق لجدول السمبلكس بعد التحديث هو:

 $\mathbf{D} \boxed{ \mathbf{E} \begin{bmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (2, 0, 0, 0, 4) \end{bmatrix} } \boxed{ \mathbf{C} \begin{bmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (2, 0, 0, 0, 4) \end{bmatrix} } \boxed{ \mathbf{B} \begin{bmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (0, 1, 0, 0, 2) \end{bmatrix} } \boxed{ \mathbf{A} \begin{bmatrix} (x_1, x_2, x_3, s_1, s_2) = \\ (0, 0, 2, 0, 8) \end{bmatrix} }$

30. الحل الأساسي الممكن الموافق لجدول السمبلكس بعد التحديث يعتبر حل:

 D
 C
 غیر محدود
 B
 غیر ممکن
 A
 غیر محدود