

NLP Course

Quantization – QLoRA NeurIPS LLM Efficiency Challenge

Nguyen Quoc Thai

CONTENT

1	Quantization
2	QLoRA
3	NeurIPS LLM Efficiency Challenge

(!

Floating Point Number

A floating point number is a positive or negative whole number with a decimal point

Tensor: multidimensional array

Tensor

CPU tensor

GPU tensor

[

Tensor Properties

dtype

Data type

- Shape
- > Device: CPU (-1), GPU (Cuda:0,...)
- Data Type

data.dtype

torch.float32

data.shape

torch.Size([3, 3])

data.get_device()

244 5/70	4.57		
32-bit floating point	torch.float32 or torch.float	torch.FloatTensor	torch.cuda.FloatTensor
64-bit floating point	torch.float64 or torch.double	torch.DoubleTensor	torch.cuda.DoubleTensor
16-bit floating point	torch.float16 or torch.half	torch.HalfTensor	torch.cuda.HalfTensor
8-bit integer (unsigned)	torch.uint8	torch.ByteTensor	torch.cuda.ByteTensor
8-bit integer (signed)	torch.int8	torch.CharTensor	torch.cuda.CharTensor
16-bit integer (signed)	torch.int16 or torch.short	torch.ShortTensor	torch.cuda.ShortTensor
32-bit integer (signed)	torch.int32 or torch.int	torch.IntTensor	torch.cuda.IntTensor
64-bit integer (signed)	torch.int64 or torch.long	torch.LongTensor	torch.cuda.LongTensor
Boolean	torch.bool	torch.BoolTensor	torch.cuda.BoolTensor

(!

FP32: Single Precision Floating Point

- > 1 bit sign
- > 8 bits exponent
- > 23 bits fraction (precision)

FP32: default => Weights, activations and other values in Neural Networks

!

FP32: Single Precision Floating Point

Backward Propagation

> FP32: default => Weights, activations and other values in Neural Networks

FP16: Half Precision Floating Point

- > 1 bit sign
- > 5 bits exponent
- > 10 bits fraction (precision)

!

BFLOAT16: Brain Floating Point

- > 1 bit sign
- > 8 bits exponent
- > 7 bits fraction (precision)

Quantization

- Quantization: mapping input values from a large set (often a continuous set) to outputs values in a (countable) smaller set.
- Ex: Rounding and truncation

Quantization

- Quantize from source dtype FP32 to target dtype INT8
- INT8: [-127, 127]

$$X^{Int8} = round\left(\frac{127}{absmax(X^{FP32})}X^{FP32}\right) = round(c^{FP32}X^{FP32})$$

c: constant

0.1

0.2

$$C = \frac{127}{0.4} = 317.5$$

32

64

127

INT8

[

Quantization

- Dequantize from target dtype INT8 to source dtype FP32
- > INT8: [-127, 127]

$$dequant(c^{FP32}X^{FP32}) = \frac{X^{Int8}}{c^{FP32}} = X^{FP32}$$

$$C = \frac{127}{0.4} = 317.5$$

INT8

32

64

127

0.1

0.2

0.4

INT8

Smaller and Faster

[]

Mixed Precision Training

- Mixed Precision Training: Not a floating point data type but a method
- Use a combination of FP16 and FP32 to reduce the memory and math bandwidth

LoRA: Low-Rank Adaptation

Freezes the pretrained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture

(!

LoRA: Low-Rank Adaptation

LoRA can even outperform full finetuning training only 2% of the parameters

Full finetuning	Model&Method	# Trainable Parameters	WikiSQL Acc. (%)	MNLI-m Acc. (%)	SAMSum R1/R2/RL ←	- ROUGE scores
	GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5	
Only tune bias vectors>	GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5	
5	GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5	
Prompt tuning	GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5	
Prefix tuning	GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8	
	GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1	
	GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9	
s. -	GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1	

- Information Loss
- Example: quantize from INT3 to INT2

- Linear Quantization (Ignore the distribution on the source data type)
- > Example:

$$X^{Int8} = \text{round}\left(\frac{127}{absmax(X^{FP32})}X^{FP32}\right) = \text{round}\left(c^{FP32}X^{FP32}\right)$$

(!

- Quantile Quantization
- Quantiles: cut points dividing the range of a probability distribution into continuous intervals with equal probabilities

[

- > Outliner in Quantization: appear few times but is far away from other values
- Outliner often very important (Attention score)

[

- Block-wise Quantization: split a tensor into many chunks, quantize individual chunks
- Block size: number of elements in a chunk

QLoRA: Efficient Finetuning of Quantized LLMs

QLoRA: save memory without sacrificing performance

- > 4-bit NormalFloat (NF4) via Block-wise Quantization
- Double Quantization
- Paged Optimizers
- Combined with LoRA

(!

4-bit NormalFloat (NF4)

> Step 1: Find quantiles in each chunks

=> The main limitation of quantile quantization: process of quantile estimation very expensive

!

4-bit NormalFloat (NF4)

- > Step 1: Find quantiles in each chunks
- \triangleright Use fixed distribution: zero-mean normal distribution with standard deviation σ

4-bit NormalFloat (NF4)

Step 1: estimate the $2^k + 1$ quantiles of a theoretical N(0, 1) distribution to obtain a k-bit quantile quantization data type for normal distributions as follows:

$$q_i = \frac{1}{2} \left(Q_X \left(\frac{i}{2^k + 1} \right) + Q_X \left(\frac{i+1}{2^k + 1} \right) \right)$$

QX: the quantile function of the standard normal distribution N(0,1)

4-bit NormalFloat (NF4)

- Step 1: Estimate the $2^k + 1$ quantiles of a theoretical N(0, 1) distribution to obtain a k-bit quantile quantization data type for normal distributions
- \triangleright Step 2: Take this data type and normalize its values into the [-1, 1] range
- > Step 3: Quantize an input weight tensor by normalizing it into the [-1, 1] range through absolute maximum rescaling

(!

4-bit NormalFloat (NF4)

- Problem: Quantiles not have an exact representation of zero (Symmetric)
- > Important property to quantize padding and other zero-valued elements with no error

[

4-bit NormalFloat (NF4)

Solution: create an asymmetric data type by estimating quantiles qi of two range:

- \geq 2^{k-1} for the negative part
- \geq 2^{k-1} + 1 for the positive part
- \triangleright Then unify these sets of q_i and remove one of the two zeros that occurs in both sets
- => K-bit NormalFloat (NFk) data type

4-bit NormalFloat (NF4)

- Use 4 bits to representation
- Normalize into [-1, 1] range
- > An asymmetric data type: an exact representation of zero
- \triangleright Quantiles based on zero-mean normal distribution with standard deviation σ

(!

Double Quantization

!

Double Quantization

> The process of quantizing the quantization constants for additional memory savings

!

Double Quantization

> The process of quantizing the quantization constants for additional memory savings

[

Paged Optimizers

- Page Optimizers to manage memory spikes
- Allocate paged memory for the optimizer states which are then automatically evicted to CPU RAM when the GPU runs out-of-memory and paged back into GPU memory when the memory is needed in the optimizer update step

!

QLoRA

[!

QLoRA

Given a projection $XW = Y, X \in \mathbb{R}^{b \times h}, W \in \mathbb{R}^{h \times o}$, LoRA computes:

$$Y = XW + sXL_1L_2$$

 $L_1 \in \mathbb{R}^{h \times r}, L_2 \in \mathbb{R}^{r \times o}$, s is a scaler

!

QLoRA

Quantized base model with a single LoRA adapter:

$$Y^{BF16} = X^{BF16}$$
doubleDequant $(c_1^{FP32}, c_2^{k-bit}, W^{NF4}) + X^{BF16}L_1^{BF16}L_2^{BF16}$

$$doubleDequant \left(c_1^{FP32}, c_2^{k-bit}, W^{NF4}\right) = dequant \left(dequant \left(c_1^{FP32}, c_2^{k-bit}\right), W^{4bit}\right) = W^{BF16}$$

NF4 for W and FP8 for c2

A block size of 64 for W for higher quantization precision

A block size of 256 for c2 to conserve memory

Result

Model / Dataset	Params	Model bits	Memory	ChatGPT vs Sys	Sys vs ChatGPT	Mean	95% C
GPT-4	-	_	-	119.4%	110.1%	114.5%	2.6%
Bard	-	-	-	93.2%	96.4%	94.8%	4.1%
Guanaco	65B	4-bit	41 GB	96.7%	101.9%	99.3%	4.4%
Alpaca	65B	4-bit	41 GB	63.0%	77.9%	70.7%	4.3%
FLAN v2	65B	4-bit	41 GB	37.0%	59.6%	48.4%	4.6%
Guanaco	33B	4-bit	21 GB	96.5%	99.2%	97.8%	4.4%
Open Assistant	33B	16-bit	66 GB	91.2%	98.7%	94.9%	4.5%
Alpaca	33B	4-bit	21 GB	67.2%	79.7%	73.6%	4.2%
FLAN v2	33B	4-bit	21 GB	26.3%	49.7%	38.0%	3.9%
Vicuna	13B	16-bit	26 GB	91.2%	98.7%	94.9%	4.5%
Guanaco	13B	4-bit	10 GB	87.3%	93.4%	90.4%	5.2%
Alpaca	13B	4-bit	10 GB	63.8%	76.7%	69.4%	4.2%
HĤ-RLHF	13B	4-bit	10 GB	55.5%	69.1%	62.5%	4.7%
Unnatural Instr.	13B	4-bit	10 GB	50.6%	69.8%	60.5%	4.2%
Chip2	13B	4-bit	10 GB	49.2%	69.3%	59.5%	4.7%
Longform	13B	4-bit	10 GB	44.9%	62.0%	53.6%	5.2%
Self-Instruct	13B	4-bit	10 GB	38.0%	60.5%	49.1%	4.6%
FLAN v2	13B	4-bit	10 GB	32.4%	61.2%	47.0%	3.6%
Guanaco	7B	4-bit	5 GB	84.1%	89.8%	87.0%	5.4%
Alpaca	7B	4-bit	5 GB	57.3%	71.2%	64.4%	5.0%
FLAN v2	7B	4-bit	5 GB	33.3%	56.1%	44.8%	4.0%

Challenge

NeurIPS Large Language Model Efficiency Challenge: 1 LLM + 1GPU + 1Day

NeurIPS 2023 Challenge

[!

Challenge

- Approved Base Models
- Falcon
- LLaMA or Llama 2
- OpenLLaMA
- Red Pajama Base (not instruction tuned models)
- MPT
- OPT
- Bloom
- GPT Neo, J, NeoX, Pythia
- GPT2
- T5 (not Flan-T5)
- BART
- DeBERTa

- RoBERTa
- BERT
- ALBERT
- DistilBERT
- Electra
- UL2
- Cerebras (btlm, GPT)

- Approved Base Models
 - Databricks-Dolly-15
 - OpenAssistant Conversations Dataset (oasst1)
 - The Flan Collection
 - AllenAl Dolma
 - RedPajama-Data-1T
 - LIMA

[!

Methods and tools for efficient training on a single GPU

Method/tool	Improves training speed	Optimizes memory utilization
Batch size choice	Yes	Yes
Gradient accumulation	No	Yes
Gradient checkpointing	No	Yes
Mixed precision training	Yes	(No)
Optimizer choice	Yes	Yes
<u>Data preloading</u>	Yes	No
<u>DeepSpeed Zero</u>	No	Yes
torch.compile	Yes	No

Parameter-Efficient Fine-Tuning

Quatization

[]

Low-Memory Optimization (LOMO)

4 - Experiment

[!

Source code

Thanks! Any questions?