Approche sémantique de segmentation et de recherche interactive par le contenu issu d'une caméra de profondeur

Elliot Vanegue
4 août 2016

Table des matières

1	\mathbf{Intr}	roduction	3
	1.1	Contexte	3
	1.2	Sujet	3
	1.3	Problèmatique	4
	1.4	Organisation	4
2	Etat de l'art		
	2.1	Segmentation	5
		2.1.1 Scène intérieur	5
		2.1.2 Corps humain	6
	2.2	Reconnaissance d'objets	7
		2.2.1 Descripteur	7
		2.2.2 Apprentissage automatique	8
		2.2.3 Sac de mot (bag of word)	9
	2.3	Positionnement de modèle	9
3	Modification des membres du corps humain		
	3.1	Objectif	10
	3.2	Délimitation du corps humain	10
	3.3	Calcule de la distance géodésique	10
	3.4	Calcule de descripteurs	10
	3.5	SDK de la Kinect	10
	3.6	Positionnement	10
4	Reconstruction d'un environnement intérieur		
	4.1	Objectif	10
	4.2	SVM	10
	4.3	Descripteur	10
5	Cor	nclusion	10

1 Introduction

1.1 Contexte

Durant mon master IVI¹, nous avons l'occasion de réaliser un stage de fin d'étude. J'ai choisi de réaliser ce stage dans le laboratoire 3D-SAM spécialisé dans l'acquisition et le traitement d'image 3D à partir de capteur 3D de type Microsoft Kinect. Leur principaux travaux porte sur l'analyse de forme d'objet 3D et la modélisation des variations des formes dans des vidéos 3D. Réaliser mon stage dans un laboratoire était une priotité, car mes projets d'avenir ne sont pas encore parfaitement planifié et ce stage me permet de me décider sur l'environnement de travail qui me convient le mieux. Durant mes deux derniers stage en IUT et en licence 3, j'ai pu observer les atouts et les contraintes de chaque environnement, cependant le stage que j'ai effectué durant mon année en IUT relevé plus de l'ingénieurie que de la recherche. Durant ce stage de deuxième année d'étude je n'ai pas eu à effectuer un état de l'art, ni à tester des méthodes proposé par d'autre laboratoire de recherche.

Ces deux années de master nous ont beaucoup appris sur le traitement d'image et la reconnaissance de forme 2D. Ces sujets mon particulièrement intéressé et je souhaite, durant ce stage, approfondir ces notions sur des types de donnée plus complet comme sur des images 3D. C'est pourquoi je réalise mon stage dans l'équipe 3D-Sam avec qui j'avais déjà travaillé sur mon projet de fin d'étude. Cette équipe dirigé par M. Daoudi comprend cinq membres permanants, un post-doctorant et quatre doctorant. Mes encadrant durant ce stage sont M. Vandeborre et M. Wannous. Ce stage ce déroule dans le cadre du projet CrABEx qui concerne la production et l'édition de produit 3D pour des applications de loisir. L'enjeu de ce projet est d'aider les designer 3D dans la création et l'édition de ressources graphiques en suggérant des éléments approprié durant leur processus de création ou en générant automatiquement de nouvelles ressources à partir d'éléments existant.

1.2 Sujet

Comme nous pouvons le constater depuis quelques années, les approches 3D intéractive sont de plus en plus présentent dans nos vies, que ce soit dans le domaine de la médecine avec l'utilisation de simulateur pour apprendre à réaliser des opérations complexe, dans le loisir avec les jeux vidéo dont le revenu mondial en 2015 est de plus de 90 milliard de dollars ou encore dans l'industrie pour visualiser des produits. L'engoument pour cette technologie requiert des outils de plus en plus efficace et rapide permettant à des personnes de profession plutôt artistique de laisser place à leur imagination sans s'inquiéter de l'aspect technique.

Le fait de pourvoir modéliser dans un monde virtuelle des objects du monde réel, et de pouvoir modifier ces objets facilement permettrait au designer de se soustraire de certaines tâches. On peut par exemple modéliser une scène ou une personne facilement grâce à une caméra Kinect, puis effectuer des modifications sur le modèle résultant. Il serait intéressant de récupérer le modèle 3D d'une personne et de modifier quelques unes des parties de son corps avec des membre improbable comme un bras de robot. Le principe est le même dans une pièce, si nous souhaitons remplacer des meubles d'une pièce intérieur par d'autre plus étonnant. L'intêret de cela est d'éviter à un designer de devoir remodéliser une personne ou une pièce existante qui

^{1.} Le master Image Vision Interaction est une spécialité du master informatique de l'université de Lille 1

serait déjà idéal pour ce que l'on souhaite réaliser.

Ce genre de technologie existe déjà pour modéliser des visages ou des gestes dans des jeux vidéo ou des films d'animation. Il y a par exemple des capteure optique basé sur des caméras infrarouge avec des marqueurs réfléchissant. La Kinect fait également partie des outils de capture de mouvement, mais elle reste très peu utilisé dans le milieu professionnel.

1.3 Problèmatique

Les caméras 3D nous permettent d'obtenir un nuage de point de l'environnement qu'elles enregistrent. Cependant, ce type de caméra est peu précise et elles sont souvent bruité et comporte
des valeurs qui n'existe pas dans le monde réel. Ce bruit dépend de plusieurs facteurs comme
la luminosité de l'environnement dans lequel nous effectuons l'acquisition ou tout simplement la
qualité et la précisions du capteur utilisé. La première difficulté lors de ce projet est de réussir
à filtrer les données de sorte à ce qu'il ne reste que les données réellement présente. L'ensemble
des données ne nous intéresse pas forcément. En effet, si nous travaillons sur le corps humain
nous n'avons pas besoin de l'ensemble de la pièce intérieur, ce surplus de données nous dérange
lors de nos traitements. Il faut donc trouver une solution permettant de segmenter les données
que nous recevons afin de ne garder que certains objets.

Une fois que les données ont été trié, nous avons besoin de reconnaitre les objets présent dans notre scène. Par exemple, dans le cas du corps humain, si nous souhaitons modifier un membre comme la main il faut d'abord savoir quel membre représente la main. La reconnaissance d'objet dépend fortement du type de donnée et nécessite généralement d'avoir une base d'apprentissage assez volumineuse. Lors de la modification d'une partie de la scène, il est nécessaire de connaître la position de l'objet remplacé, afin de pouvoir placer le nouvel objet au même endroit et dans le même sens. Cette partie est très délicate surtout pour des membres humain, car si le repositionnement n'est pas parfait est qu'il y a un écart entre deux membres, la scène perd toute sa crédibilité et son réalisme.

Nous avons donc trois problèmatique majeur dans ce projet. Comment filtrer les données de manière à ne traiter que celles qui nous intéresse? Comment reconnaître automatique un object dans une scène 3D? Comment connaître la position et l'orientation exacte des objets présents dans notre scène?

1.4 Organisation

Pour répondre aux questions précédentes, je vais travailler sur deux applications mettant en avant des problématique similaire, mais avec deux façons différentes daborder ces problèmes. Je vais travailler dans un premier temps sur une application qui se focalise sur le corps humain. Cette application aura pour but d'identifier les membres du corps afin que l'utilisateur puisse les modifier grâce à des modèles 3D existant. Les seuls intéractions de l'utilisateur sont donc de clicker sur le membre à modifier et de sélectionner un modèle parmi ceux que l'application lui proposera. La seconde application se concentre sur une pièce intérieur comportant plusieurs objets. Ici le but est de segmenter la pièce afin de reconnaître les objets présents afin de les ajouter dans une scène. Encore une fois, l'utilisateur doit sélectionner un meuble et le modèle 3D qui lui convient dans une liste proposé par l'application.

Pour ce projet j'utilise la caméra Microsoft Kinect v2, qui est l'une des caméras les plus utilisé dans la littérature. Le SDK fournit avec cet outil comporte une segmentation du corps humain, la position du squelette de l'utilisateur et l'algorithme Kinect fusion qui permet de construire un modèle 3D à partir du nuage de point fournit par la caméra. Pour réaliser les deux application,

je vais utiliser un ensemble de bibliothèque tel que la bibliothèque graphique de Microsoft pour la réalisation de l'interface, la bibliothèque PCL ²[1] pour les calcules sur les nuages de points et opency pour travailler sur les images couleurs et les images de profondeur fournit par la Kinect.

Je vais dans un premier temps faire l'état de l'art des solutions existantes sur les problèmatique de segmentation et de reconnaissance de forme à partir de nuage de point ou d'image de profondeur. Puis je vais décrire les solutions testé et appliqué au deux applications que j'ai développé durant ce projet.

2 Etat de l'art

2.1 Segmentation

La première étape lors de ce projet va être de segmenter les images que nous recevons de la caméra. Les informations contenues dans une image 3D sont nombreuses et nous devons déterminer les éléments important pour nos traitements. Dans notre scène, nous avons besoin des objets proches ou du corps de la personne en face de la caméra, mais l'environnement autour des ces objets clés n'est pas important et doit être supprimer pour gagner du temps lors de nos traitements en supprimant de l'information à traiter. Une second segmentation est nécessaire pour le traitement du corps humain. Pour cette étape du projet, nous devons segmenter le corps en plusieurs partie pour pouvoir par la suite les reconnaîtres. Si cette seconde segmentation n'est pas réalisé il ne nous sera pas possible de reconnaître les mains ou encore la tête si nous ne savons pas délimité les parties du corps.

FIGURE 1 – Exemple de segmentation recherché pour une pièce intérieur et pour le corps humain

2.1.1 Scène intérieur

De nombreux travaux ont été réalisé dans la segmentation d'image 2D avant que les caméras 3D ne soit ouvert au grand public. Les premières méthode de segmentation reposaient sur la détection de contour comme pour la méthode de P. Arbelaez et al[2]. Leur méthode repose sur le détecteur de contour gPb qui est composé de d'un seuillage sur la luminance et sur la couleur et d'une détection de texture. La fermeture des contours se fait ensuite en utilisant les superpixels. D'autres méthodes 2D utilise un simple seuillage en utilisant par exemple la méthode de N. Otsu[3] pour binariser l'image et ainsi la segmenter.

^{2.} Point Cloud Librairie

Avec l'arrivé des caméras 3D de nombreuses recherche ont été effectué sur la segmentation d'image à partir des information extraite de ce type de caméra. S.A.A Shah et al[4] utilisent les informations de l'image de profondeur afin de calculer un vecteur sur chaque pixel. En applicant un seuillage sur la différence des vecteurs ils obtiennent une segmentation de l'environnement qui leur permet de détecter des objets dans une pièce. Il est possible à partir de l'image de profondeur de créer un nuage de point, ce qui permet d'obtenir les coordonnées 3D des points présents dans l'image de profondeur. Les informations qu'il est possible d'extraire d'un nuage de point sont différentes et des méthodes de segmentation se sont développé autour de ces informations.

T. Rabbani et al[5] utilise les informations obtenus dans un nuage de point afin de calculer les normales de chaque point. Ils segmente ensuite l'image en comparant les normales et en appliquant un seuillage sur cette comparaison. Si l'angle formé par les normales de deux points est super au seuil alors les points appartiennent à deux régions différentes.

Nous pouvons voir que les méthodes cité précédemment sont efficace pour segmenter une scène comportant des objets, mais elles ne sont pas applicable à un corps humain. Le principal défaut de ces méthodes pour le corps humain est que celui-ci est trop lisse. La différence entre les normales ou entre les vecteurs de pixel n'est pas assez important et est trop instable pour que cela marche sur le corps humain qui peut adopter de nombreuses postures.

2.1.2 Corps humain

La segmentation du corps humain est un sujet très complexe, car contrairement au objet celui-ci bouge et adopte des postures différentes. La méthode la plus souvent utilisé pour résoudre cette problématique est de déterminer la posture de l'utilisateur et lorsque cette posture est connu il est facile de déterminer les différentes partie du corps. Ces méthodes nécessitent d'avoir une base de connaissance contenant de nombreuses postures qui doivent être segmenter et labelisé avec les différentes parties du corps. J. Shotton et al[6] ont d'abord créé une base d'apprentissage en calculant un descripteur et une technique d'apprentissage automatique appelé forêt d'arbres décisionnels[7]. Le descripteur de J. Shotton et al[6] utilise les informations de l'image de profondeur. Afin de déterminer quel posture a l'utilisateur, il utilise une caractèristique reposant sur la valeur de deux pixels, un pixel x et d'un pixel dont l'offset par rapport au pixel x a été définit. Lorsque l'utilisateur bouge, le descripteur utilisé précédemment est recalculé sur l'image courante et le résultat est comparé au posture de la base d'apprentissage.

FIGURE 2 – Deux exemples de caractèristique du descripteur de J. Shotton et al[6]. La croix jaune correspond au pixel à classifier et le cercle rouge correspond au pixel décalé.

Comme pour la méthode précédente B. Yoo et al[8] utilisent les images de profondeur pour déterminer la posture de l'utilisateur. Cependant, leur descripteur repose sur des caractèristiques plus complexe comme l'élongation 3D de la forme du corps, le centre de gravité, la rectangularité

de la forme ou encore la dissymétrie. Grâce à ces caractèristiques ils forment un descripteur qu'il passe dans leur propre outils d'apprentissage automatique appelé « Randomized Decision Bush ».

Y. Liu et al[9] ont développé un autre descripteur spécifique à la reconnaissance de la posture du corps humain appelé « Geodesic Invariant Feature » (GIF). Ce descripteur se base sur le calcul de la distance géodésique. La distance géodésique est la distance entre deux points d'un modèle 3D en ne passant que par les arrête de ce modèle. Etant donné que ce n'est pas un modèle 3D que fournit la Kinect, mais un nuage de point, les auteurs forment un maillage en créant n arrêtes avec les n points les plus proches pour un point donné. Cette distance géodésique permet de connaitre l'orientation des points. Cette orientation est appliqué sur d'autres caratéristiques sensible à la rotation, ce qui permet à ces caractéristique d'être invariant en rotation.

Figure 3 – Distance géodésique d'un corps humain

2.2 Reconnaissance d'objets

La reconnaissance d'objet est un sujet assez vaste dans le monde de l'imagerie et il existe de nombreuses méthodes dans le domaine que ce soit pour des images 2D ou 3D. Dans le cas d'image 3D la méthode la plus utilisé est le calcul de descripteur, ce qui correspond à un ensemble de caractèristiques représentant un objet spécifique.

2.2.1 Descripteur

Le nombre de descripteur qui existe dans le domaine de l'image 3D est assez important c'est pourquoi pour ce rapport, nous allons nous contenter de décrire seulement les plus utilisées. Le descripteur D2[10] est un des outils de comparaison de forme 3D les plus simple à réaliser. Il se repose sur le calcul de la distance euclidienne entre chaque point du modèle 3D. L'ensemble de ces distances permet de créer un histogramme 1D et de comparer ces histogramme afin de reconnaître un objet. Ce descripteur fournit de bon résultat lorsque les objets à reconnaître sont très différents.

Le descripteur PFH[11] (Point Feature Histograms) est un outil permettant de calculer la courbure moyenne d'un voisinage de point en utilisant un histogramme multi-dimensionnel. Le calcul de la courbure et le fait que ce soit une généralisation permet d'être invariant en translation et en rotation, et permet également d'être moins sensible au bruit présent dans le nuage de point. Le voisinage dépend de la distance des points avec le point centrale et il ne peut exceder un certain nombre de voisin (voir Fig. 4).

Le descripteur PFH calculé en un point correspond à la relation que ce point a avec l'ensemble des points de son voisinage. Cette relation est la différence des normals entre deux points. Chaque classe de l'histogramme est composé de l'ensemble des points du voisinage dont la relation avec le point centrale est similaire. Une version amélioré du descripteur a été proposé par R. B. Rusu et al[12] appelé FPFH (Fast Point Feature Histograms). Cette version est plus rapide, car elle calcul un descripteur PFH simplifié, puis elle construit de nouveaux histogrammes à

FIGURE 4 – Exemple de voisinage pris en compte dans le calcul de la courbure du descripteur PFH

partir des histogramme simplifié précédent (voir Fig. 5).

FIGURE 5 – Exemple de voisinage pris en compte dans le calcul de la courbure du descripteur FPFH

D. G. Lowe[13] créa un descripteur appelé « scale-invariant feature transform » (SIFT) qui crée des points clés dans une image 2D et calcul des descripteurs sur ces points. Ce descripteur permet entre autre de détecter des points clés similaires dans deux images différentes d'une même scène tant que les angles de vue sont suffisament petit. Les points clés de ce descripteur sont des zones circulaires positionné sur les extrema dans l'espace des échelles, le facteur d'échelle étant proportionnel à la taille de la zone d'intérêt. Une fois que que l'on a trouvé la position des points clé, il faut déterminer leur orientation en calculant le gradient dans le voisinage du point clé. Grâce au orientation des voisins des point clé il est possible de créer un histogramme des orientation. Ainsi l'orientation du point clé correspond aux pics les plus importants de l'histogramme. La construction de ces points clés permets à ceux-ci d'être invariant aux changements d'échelle et aux rotations.

2.2.2 Apprentissage automatique

L'apprentissage automatique est un outil permettant à une machine de prendre des décisions rapidement. Pour fonctionner cette outil à besoin de donnée déjà traité sur un domaine précis. Il existe de nombreuses techniques d'apprentissage automatique. Lors de ce projets, je me suis

intéressé à deux techniques en particulier qui sont parmis les plus utilisé dans le domaine de l'image : la « forêt d'arbres décisionnels » et les « machines à vecteurs de support »(SVM).

Le principe de la forêt d'arbres décisionnels[7] est de créer un ensemble d'arbre. Dans le cas de la méthode de J. Shotton et al[6], chaque arbre correspond à une posture. Les noeuds des arbres correspondent aux caractéristiques calculés. L'algorithme test des noeuds lui permettant ainsi de tracer un chemin vers une feuille qui donne un résultat. L'arbre dont la feuille nous donne le résultat le plus proche de la valeur rechercher nous fournit la solution à notre problème.

FIGURE 6 – Exemple d'arbre de décision

Le SVM[14] quant à lui est un ensemble de technique d'apprentissage supervisé permettant la résolution de problème de discrimination.

2.2.3 Sac de mot (bag of word)

Le sac de mot est une représentation dont la première utilisation était de décrire un document texte en fonction d'un dictionnaire. Le dictionnaire est un ensemble de mot capable de décrire tous les textes. Le principe est de compter le nombre d'occurence d'un mot dans un texte et ce pour chaque mot du dictionnaire. Cette représentation à ensuite était utilisé dans le domaine de la vision par ordinateur[15] en remplaçant le dictionnaire de mot par un dictionnaire de caractèristiques. Grâce à cette représentation nous obtenons un vecteur de la taille du dictionnaire composé du nombre d'occurence de chaque caractèristique du dictionnaire. L'intérêt de cette représentation est d'uniformiser la structure des données afin d'avoir un vecteur de même taille pour toutes les images, mais cela nécessite une première phase de création du dictionnaire avec l'ensemble des caractèristiques des images traitées.

2.3 Positionnement de modèle

Afin de réaliser la correspondance entre deux modèles P. J. Besl et al[16] développe l'algorithme « iterative closest point »(ICP). Cette algorithme recherche l'ensemble des translations et rotations nécessaire à la mise en correspondance de deux modèles similaires. Pour cela, celui-ci fonctionne en quatre étapes :

- Associer les points grâce aux critères du plus proche voisin. Pour cela, il suffit de calculer la distance euclidienne d'un point avec tous les autres points qui font partis du balayage que nous voulons comparer et de prendre la distance la plus petite.
- Estimer la transformation des points grâce à une fonction d'erreur quadratique moyenne, permettant ainsi de trouver la meilleure transformation possible.

- Effectuer la transformation du nuage de points ayant la plus petite erreur.
- Itérer jusqu'à ce qu'on ait atteint la condition de fin fixée par l'utilisateur.

3 Modification des membres du corps humain

- 3.1 Objectif
- 3.2 Délimitation du corps humain
- 3.3 Calcule de la distance géodésique
- 3.4 Calcule de descripteurs
- 3.5 SDK de la Kinect
- 3.6 Positionnement
- 4 Reconstruction d'un environnement intérieur
- 4.1 Objectif
- 4.2 SVM
- 4.3 Descripteur
- 5 Conclusion

Références

- [1] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze, "Point cloud library," *IEEE Robotics & Automation Magazine*, vol. 1070, no. 9932/12, 2012.
- [2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 33, pp. 898–916, May 2011.
- [3] N. Otsu, "A threshold selection method from gray-level histograms," *IEEE Transactions on Systems, Man, and Cybernetics*, vol. 9, pp. 62–66, Jan 1979.
- [4] S. A. A. Shah, M. Bennamoun, and F. Boussaid, "A novel algorithm for efficient depth segmentation using low resolution (kinect) images," in *Industrial Electronics and Applications* (ICIEA), 2015 IEEE 10th Conference on, pp. 603–607, June 2015.
- [5] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, "Segmentation of point clouds using smoothness constraint," *International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, vol. 36, no. 5, pp. 248–253, 2006.
- [6] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook, and R. Moore, "Real-time human pose recognition in parts from single depth images," *Communications of the ACM*, vol. 56, no. 1, pp. 116–124, 2013.
- [7] L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
- [8] B. Yoo, W. Kim, J. J. Han, C. Choi, D. Park, and J. Kim, "Randomized decision bush: Combining global shape parameters and local scalable descriptors for human body parts recognition," in *Image Processing (ICIP)*, 2014 IEEE International Conference on, pp. 1560–1564, Oct 2014.
- [9] Y. Liu, P. Lasang, M. Siegel, and Q. Sun, "Geodesic invariant feature: A local descriptor in depth," *IEEE Transactions on Image Processing*, vol. 24, no. 1, pp. 236–248, 2015.
- [10] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, "Matching 3d models with shape distributions," in *Shape Modeling and Applications*, SMI 2001 International Conference on., pp. 154–166, IEEE, 2001.
- [11] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, Persistent point feature histograms for 3D point clouds. 2008.
- [12] R. B. Rusu, N. Blodow, and M. Beetz, "Fast point feature histograms (fpfh) for 3d registration," in *Robotics and Automation*, 2009. ICRA'09. IEEE International Conference on, pp. 3212–3217, IEEE, 2009.
- [13] D. G. Lowe, "Object recognition from local scale-invariant features," in *Computer Vision*, 1999. The Proceedings of the Seventh IEEE International Conference on, vol. 2, pp. 1150–1157 vol.2, 1999.
- [14] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, COLT '92, (New York, NY, USA), pp. 144–152, ACM, 1992.
- [15] J. Sivic and A. Zisserman, "Video google: a text retrieval approach to object matching in videos," in *Computer Vision*, 2003. Proceedings. Ninth IEEE International Conference on, pp. 1470–1477 vol.2, Oct 2003.
- [16] P. J. Besl and N. D. McKay, "A method for registration of 3-d shapes," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 14, pp. 239–256, Feb 1992.