

Анализ математической модели цепи Чуа

Олег Опякин Константин Лишик Даниил Викульцев ФРТК, 2й курс ФАКТ, 2й курс ЛФИ, 2й курс

НИУ МФТИ, Декабрь 2024г.

Анализ математической модели цепи Чуа

December 27, 2024

Данное исследование было проведено в ходе выполнения работы "Генератор случайных чисел на основе цепи Чуа". В ходе работы была описана математическая модель цепи Чуа и был предложен способ получения случайных бинарных последовательностей.

В основной работе приведены лишь конкретные выводы, полноценное исследование с математическими выкладками выполним здесь.

1 Введение

Цепь Чуа - это электротехническое устройство, способное демонстрировать режим хаотических колебаний. В данной работе рассмотрена математическая модель, система нелинейных дифференциальных уравнений, описывающая цепь. Идея работы заключается в том, чтобы максимально полно описать решение этой системы, а затем удостовериться в справедливости сделанных предположений.

2 Формирование математической модели

Не будем широко освещать "физическую" часть работы. Достаточно сказать, что хаотические колебания обеспечиваются наличием в цепи

нелинейного элемнта N_R . Эти колебания можно обнаружить при наблюдении за напряжением на конденсаторах C_1 и C_2 и током на индуктивности L.

Расписав правила Кирхгофа и перейдя к безразмерным коэффициентам, получим следующую систему:

$$\begin{cases} \dot{x} = \alpha(y - x - h(x)) \\ \dot{y} = x - y + z \\ \dot{z} = -\beta y \end{cases}$$
 (1)

Где $h(x) = m_1 x + \frac{1}{2} (m_0 - m_1) (|x+1| - |x-1|)$ - функция нелинейного элемента. Коэффициенты α, β, m_0, m_1 известны из параметров установки.

3 Анализ решения

Система (I) *не решается* аналитически, однако некоторые свойства решения можно определить, проанализировав правую часть.

3.1 Положения равновесия

Для начала определим положения равновесия системы. Пусть x > 1. Раскроем модуль и приравняем правые части к 0. Получим:

$$\begin{cases} \dot{x} = \alpha(x(-1 - m_1) + y + m_1 - m_0) = 0\\ \dot{y} = x - y + z = 0\\ \dot{z} = -\beta y = 0 \end{cases}$$
 (2)

Откуда определим первое положение равновесия:

$$\mathbf{E_1} = \begin{bmatrix} \frac{m_1 - m_0}{m_1 + 1} \\ 0 \\ \frac{m_0 - m_1}{m_1 + 1} \end{bmatrix} \tag{3}$$

Аналогично для х < -1 получим второе положение равновеия:

$$\mathbf{E_2} = \begin{bmatrix} \frac{m_0 - m_1}{m_1 + 1} \\ 0 \\ \frac{m_1 - m_0}{m_1 + 1} \end{bmatrix} \tag{4}$$

Для $-1 \leqslant x \leqslant 1$ получим:

$$\mathbf{E_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \tag{5}$$

Пусть $m_0 = -1.143, m_1 = -0.714, \alpha = 15.6, \beta = 27$. Тогда положения равновесия : $E_1 = [1.5, 0, -1.5], E_2 = [-1.5, 0, 1.5], E_3 = [0, 0, 0]$.

Теперь займёмся определением характера фазового портрета в окрестностях указанных положений равновесия.

3.2 Определение характера фазового портрета

Рассмотрим случай, когда x>1, и линеаризуем систему в окрестности положения E_1 . Для этого проведём замену :

$$\begin{cases}
U = x - \left(\frac{m_1 - m_0}{m_1 + 1}\right) \\
V = y \\
P = z - \left(\frac{m_0 - m_1}{m_1 + 1}\right)
\end{cases} \tag{6}$$

После замены получим систему (линеаризация в окрестности E_1):

$$\begin{cases} \dot{U} = -\alpha(m_1 + 1)U + \alpha V \\ \dot{V} = U - V + P \\ \dot{P} = -\beta V \end{cases}$$
 (7)

Характер портрета будет зависеть от *собственных значений* матрицы системы (7). Рассмотрим определитель этой матрицы:

$$A = \begin{bmatrix} -\alpha(m_1 + 1) & \alpha & 0 \\ 1 & -1 & 1 \\ 0 & -\beta & 0 \end{bmatrix} \Rightarrow$$

$$\det(A - \lambda E) = \begin{vmatrix} -\alpha(m_1 + 1) - \lambda & \alpha & 0 \\ 1 & -1 - \lambda & 1 \\ 0 & -\beta & -\lambda \end{vmatrix} =$$

$$= -\lambda^3 + \lambda^2(-\alpha(m_1 + 1) - 1) + \lambda(-\alpha m_1 - \beta) - \alpha\beta(m_1 + 1) = 0(8)$$

3.3 Решение "в лоб"

Кубичекое уравнение решается с использованием программного пакета для символьных вычислений Sympy. Для указанных выше значений коэффициентов получим следующие собственные значения (важно отметить, что программа позволяет получить точные значения λ . Не будем их приводить из-за громоздкости.):

$$\begin{cases} \lambda_1 \approx -6.1 \\ \lambda_{2,3} \approx 0.3 \pm 4.4i \end{cases}$$

Получаем тройку собственных значений : $\lambda_1 \in \mathbb{R}, \lambda_{2,3} \in \mathbb{C}$, причём $\lambda_2 = \lambda_3^*$. При этом $Re(\lambda_1) < 0, Re(\lambda_{2,3}) > 0$.

Отсюда становится понятен характер фазового портрета. В окрестности E_1 получим **неустойчивый "3-D фокус".**

Проанализировав матрицу линеаризации системы в окрестности E_2 получим те же самые значения значения λ_{1-3} . Следовательно, положение E_2 тоже будет **неустойчивым "3-D фокусом"**.

Для матрицы линеарезации системы в окрестности E_3 получим, что $Re(\lambda_{1,2}) < 0, Re(\lambda_3) > 0$ это значит, что E_3 - устойчивый "3-D фокус".

На рисунке (В.И. Арнольд) приведён пример положения равновесия с собственными значениями, отвечающими E_3 .

Рис. 148. Случай ${\rm Re}\,\lambda_{1,2} < 0 < \lambda_3$. Растяжение по направлению ${\pmb \xi}_3$, вращение со сжатием в плоскости $({\pmb \xi}_1,{\pmb \xi}_2)$

Итак, получены следующие результаты:

- \bullet $E_{1,2}$ неустойчивые "3-D фокусы".
- E_3 устойчивый "3-D фокус".

Теперь можно сделать предпоожение о характере *эволюции* изучаемой системы:

1. Положения равновесия системы будут совпадать с E_{1-3}

¹Термина "3-D фокус" не существует, однако мы будем обозначать характер фазового портрета именно так по аналогии с двумерным случааем

- 2. Система будет "раскручиваться" из E_1 и E_2
- 3. Система будет "скручиваться" в E_3

4 Численное решение

Для проверки теоретических выводов было выполнено численное решение системы с использованием метода Эйлера.

Результат приведён на рисунке. Важно отметить, что точки E_{1-3} , изображённые на графике, получены аналитически, а интегральная кривая - с помощью численного метода.

Видно, что положения равновесия системы действительно *совпадают* с точками, полученными теоретически.

Характеры также определены корректно (программное решение позволяет наблюдать динамику развития системы - она действительно "раскручивается из E_1 и E_2 ", что иллюстрирует видео из презентации).

Точка E_3 несомненно является положением равновесия - если выбрать её в качестве начальных условий, то система сохранит своё положение. Однако при иных начальных условиях устойчивого положения в E_3 не наблюдается. Возможно, это связанно с тем, что в ходе решения мы не проходим в достаточно малой окрестности E_3 . В литературе точку E_3 называют скрытым аттрактором системы Чуа.

Способ определения характера поведения системы с помощью формул Кардано предложен в Приложении.

5 Заключение

Итак, рассмотрена математическая модель цепи Чуа, представляющая собой систему дифференциальных уравнений. Определены положения равновесия системы, сделано предположение о характере эволюции системы. Теоретические предположения подтверждены численным решением .

6 По всем вопросам

- 1. Теория (цепь, диод Чуа), установка Олег Опякин (@oPnOl)
- 2. Установка, измерения Константин Лишик (@konstantinlishik)
- 3. Теория (математика), код, тех Даниил Викульцев (@techotarsh)
- 4. Репозиторий с проектом

Готовы ответить на все вопросы - пишите в тг)

7 Использованная литература

- 1. L. Chua, "The genesis of Chua's sircuit", 1992
- 2. В.И. Арнольд, "Обыкновенные Дифференциальные Уравнения", 4-е издание, Ижевск, 2000
- 3. Ю.С. Ильяшенко, "Аттракторы динамических систем и философия общего положения", Матем. просв., 2008, выпуск 12, 13–22

8 Приложение

8.1 Решение с помощью формул Кардано

В работе важно определить характер собственных значений. Для кубического уравнения (8) всегда существуют 3 корня. Определить их вид можно с помощью серии замен:

$$\begin{cases} \lambda^3 + a\lambda^2 + b\lambda + c = 0 \\ a = \alpha(m_1 + 1) + 1 \\ b = \alpha m_1 + \beta \\ c = \alpha \beta(m_1 + 1) \end{cases}$$

Затем:

$$\begin{cases} p = b - \frac{a^3}{3} \\ q = c + \frac{2a^3}{27} - \frac{ab}{3} \end{cases}$$

Введём последнюю переменную $D = \frac{q^2}{4} + \frac{p^3}{27}$. Тогда

1.
$$D > 0$$
:
$$\begin{cases} \lambda_1 \in \mathbb{R} \\ \lambda_{2,3} \in \mathbb{C} \end{cases}$$

2.
$$D = 0$$
:
$$\begin{cases} \lambda_{1,2,3} \in \mathbb{R} \\ \lambda_1 = \lambda_2 \end{cases}$$

3.
$$D < 0: \lambda_{1,2,3} \in \mathbb{R}$$

С помощью формул Кардано можно построить зависимость знака D от значений коэффициентов уравненя (8) - т.е. получить несколько областей в \mathbb{R}^3 , отвечающих различным значениям D.