

Analisis Sentimen pada Sosial Media menggunakan Metode Neural Network dan LSTM

Kelompok 4

Syaeful

Daren

Hafid

Adlan

Table Of Content

- I. Pendahuluan
- 2. Tujuan
- 3. Metode Penelitian
- 4. Hasil dan Pembahasan
- 5. Kesimpulan

Pendahuluan

Pengguna Internet di Indonesia:

- Jumlah pengguna internet di Indonesia mencapai 63 juta orang.
- 95% dari mereka menggunakan internet untuk mengakses jejaring sosial.

- Twitter sangat diminati di Indonesia dengan 19,5 juta pengguna dari total 500 juta pengguna global.
- Twitter menjadi platform yang digunakan untuk mengekspresikan pikiran, minat, dan pendapat.

Sentimen di Twitter:

- Setiap tulisan yang diposting di Twitter oleh netizen memiliki sentimen positif, negatif, dan netral terhadap suatu subjek.
- Ribuan tweet, komentar, dan repost muncul setiap hari, menciptakan ruang bagi pengguna untuk berbagi berbagai pandangan.

Pendahuluan

NN

Neural network dapat didefinisikan sebagai algoritma untuk memproses sebuah data yang bekerja dengan mekanisme yang sama pada jaringan saraf pada manusia. Neural network bekerja dengan cara memberikan masukan berupa suatu data, lalu memproses nya, dan kemudian memberikan output dari proses stimulasi di jaringan syaraf tiruan (fungsi aktivasi).

LSTM

Long Short-Term Memory (LSTM) merupakan salah satu metode dalam Deep Learning yang dapat digunakan untuk Natural Language Processing (NLP) seperti pengenalan suara, translasi teks, dan juga analisis sentimen.

LSTM merupakan pengembangan dari metode Recurrent Neural Network (RNN), metode LSTM ini dibuat untuk menyelesaikan permasalahan vanishing gradient yang ada pada RNN. Penelitian (Hassan & Mahmood, 2017) dan (Wang & Liu, 2018) membuktikan penggunaan LSTM memiliki tingkat akurasi yang lebih tinggi dibandingkan metode konvensional.

Tujuan Penelitian

Dari hal-hal yang telah dijelaskan sebelumnya, akan dilakukan penelitian untuk mengetahui performa metode LSTM dalam melakukan sentimen analisis teks Twitter lalu membandingkan hasilnya dengan metode Neural Network

- Mendapatkan model terbaik yang digunakan untuk memprediksi sentimen
- Membuat API yang dapat mengklasifikasikan sentimen yang diberikan

Metode Penelitian

Hasil dan Pembahasan

A. Model Neural Network

Kross Validation					
Training ke-1	0.8474285714285714				
Training ke-2	0.8347627215551744				
Training ke-3	0.8393367638650657				
Training ke-4	0.8198970840480274				
Training ke-5	0.8296169239565466				

algorithm	Neural Network
accuracy_mean	0.8342084129706772
accuracy_std	0.010335324589167591
recall_mean	0.8342084129706772
precision_mean	0.8324097504082643
f1_mean	0.8326456088077915

Hasil dan Pembahasan O O O

2187

2187

2187

A. Model Neural Network

Model Evaluation

accuracy

macro avg

weighted avg

test = model.predict(X test) print(classification_report(y_test, test)) precision recall f1-score support negative 0.80 0.79 0.78 694 neutral 0.78 0.71 0.74 227 positive 0.88 0.91 0.90 1266

0.80

0.85

0.82

0.85

0.85

0.81

0.85

Confusion Matrix								
Actual Values	negative -	541	26	127	- 1000 - 800			
	neutral -	43	161	23	- 600 - 400			
	positive -	94	20	1152	- 200			
		negative	neutral Predicted Values	positive				

Hasil dan Pembahasan O O O

B. Model LSTM • Training

- embed_dim = 100
- units = 64

- max features = 100000
- dropout=0.2

- learning_rate=0.0005
- optimizer='adam'
- EarlyStopping

- epochs=10,
- batch_size=64

```
None
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 4: early stopping
```


Hasil dan Pembahasan ••• B. Model LSTM • Evaluasi

69/69 [===============] - 1s 15ms/step Testing selesai						
resering seres	precision	recall	f1-score	support		
9 1	0.77 0.87	0.90 0.62	0.83 0.72	681 235		
2	0.93	0.90	0.91	1271		
accuracy macro avg weighted avg	0.86 0.87	0.80 0.87	0.87 0.82 0.87	2187 2187 2187		

Hasil dan Pembahasan

B. Model LSTM • Cross Validation

Training ke-	1				Training ke-	3			
	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.83	0.82	0.83	681	0	0.81	0.84	0.82	681
1	0.83	0.68	0.75	235	1	0.82	0.69	0.75	235
2	0.90	0.93	0.92	1271	2	0.91	0.92	0.92	1271
accuracy			0.87	2187	accuracy			0.87	2187
macro avg	0.85	0.81	0.83	2187	macro avg	0.85	0.82	0.83	2187
weighted avg	0.87	0.87	0.87	2187	weighted avg	0.87	0.87	0.87	2187
Training ke-	2				Training ke-	4			
_	precision	recall	f1-score	support	_	precision	recall	f1-score	support
0	0.82	0.80	0.81	681	0	0.79	0.84	0.81	681
1	0.82	0.68	0.74	235	1	0.80	0.65	0.72	235
2	0.89	0.93	0.91	1271	2	0.91	0.91	0.91	1271
accuracy			0.86	2187	accuracy			0.86	2187
macro avg	0.84	0.80	0.82	2187	macro avg	0.83	0.80	0.81	2187
weighted avg	0.86	0.86	0.86	2187	weighted avg	0.86	0.86	0.86	2187

raining ke-	5			
	precision	recall	f1-score	support
0	0.86	0.77	0.81	681
1	0.69	0.76	0.72	235
2	0.89	0.93	0.91	1271
accuracy			0.86	2187
macro avg	0.81	0.82	0.81	2187
eighted avg	0.86	0.86	0.86	2187

Rata-rata Accuracy: 86.52034750800183

Hasil dan Pembahasan O O O

B. Model LSTM • Visualisasi

Hasil Prediksi Data

LSTM

Neural Network

Hasil API

Hasil API

```
Post /Lstm_text

Parameters

Name Description

text * required string (formData)

makanannya enak
```

```
Code

Details

Response body

{
    "data": {
        "sentiment": "positive",
        "text": "makanannya enak"
        },
        "description": "Result of Sentiment Analysis Using LSTM",
        "status_code": 200
    }
```

```
POST /nn_text

Parameters

Name Description

text * required string (formData) tempatnya jelek banget, saya tidak suka
```

```
Code Details

Response body

{
    "data": {
        "sentiment": "negative",
        "text": "tempatnya jelek banget, saya tidak suka"
    },
    "description": "Result of Sentiment Analysis Using NN",
    "status_code": 200
}
```

Hasil API

Response body

```
"data": {
    "keterangan": "Hasil dari Sentiment Analysis menggunakan LSTM",
    "sentiment": [
        "negative",
        "positive"
    ],
    "text": [
        " cowok berusaha melacak perhatian gue lantas remehkan perhatian
        " telat tau edan sarap gue bergaul cigax jifla calis licew ",
        "kadang berpikir percaya tuhan jatuh berkali kali kadang tuhan me
    ]
    },
    "description": "File lengkap telah disimpan dalam folder output.",
    "status_code": 200
}
```


Response body

```
"data": {
    "keterangan": "Hasil dari Sentiment Analysis menggunakan NN",
    "sentiment": [
        "negative",
        "positive"
],
    "text": [
        " cowok berusaha melacak perhatian gue lantas remehkan perhatian
        " telat tau edan sarap gue bergaul cigax jifla calis licew ",
        "kadang berpikir percaya tuhan jatuh berkali kali kadang tuhan me
]
},
    "description": "File lengkap telah disimpan dalam folder output.",
    "status_code": 200
}
```


Distribusi Prediksi Sentimen

Melalui penggunaan teknik analisis bahasa alami dan pemrosesan teks, dapat diidentifikasi dan didistribusikan sentimen positif, netral, dan negatif dari tweet. Ini memberikan wawasan tentang persepsi dan opini pengguna media sosial terhadap topik tertentu dengan sentimen negatif yang lebih banyak

Model Terbaik

- Model terbaik yang didapatkan dari perbandingan model ini adalah model LSTM lebih baik daripada Neural Network dengan akurasi yang lebih baik.
- Hasil evauasi (akurasi) untuk LSTM sebesar 0.87 sedangkan untuk Neural Network sebesar 0.85

Pembuatan API

API dapat dibangun untuk menerima teks masukan dan mengklasifikasikan sentimen. Hal ini memungkinkan aplikasi atau layanan lain untuk mengintegrasikan kemampuan analisis sentimen secara mudah dan efisien

Syaeful Bahri

syaefulbahri - Overview

GitHub is where syaefulbahri builds software.

○ GitHub

TBwze - Overview

TBwze has 6 repositories available. Follow their code on GitHub.

GitHub

Darren Iskandar Cahyadi

Hafid AthThariq

hafidatthariq - Overview

hafidatthariq has one repository available. Follow their code on GitHub.

(C) GitHub

adlanfaras - Overview

Huh..? adlanfaras has 7 repositories available. Follow their code on GitHub.

GitHub

Adlan Muhammad Faras