САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет Безопасности Информационных Технологий

ОТЧЁТ

по специальной задаче

Выполнил:

Студент группы N3350

Фам Суан Кань

Проверил: Якуба Н. В.

1. Задача

Реализовать модель системы связи:

- Модель канала двоичный симметричный канал (ДСК)
- Используемый код код Рида-Соломона
- Алгоритм кодирования систематический
- Алгоритм декодирования алгоритм Берлекэмпа-Месси

2. Краткое описание реализованных алгоритмов

Рассматривались коды Рида-Соломона над полем Галуа $GF(2^m)$

Кодирование:

Кодирование состоит у множении информационного полинома на порождающий многочлен g(x).

$$g(x) = (x - \alpha^b)(x - \alpha^{b+1})...(x - \alpha^{b+2t-2})$$

где b — первый последовательный корень,

t — максимальное количество ошибок, которые можно исправить

Умножение исходного слова S длины k на порождающий многочлен при систематическом кодировании можно выполнить следующим образом:

- К исходному слову приписываются 2t нулей, получается полином $T = Sx^{2t}$
- Этот полином делится на порождающий полином G, находится остаток R, $Sx^{2t} = QG + R$, где Q частное
- Этот остаток и будет корректирующим кодом Рида Соломона, он приписывается к исходному блоку символов. Полученное кодовое слово $C = Sx^{2t} + R$.

Декодирование:

• Вычислить синдромы

$$S_j = r(\alpha^j), j = b, b+1, ... b+2t-2$$
 где $r(x)$ — полученный многочлен из канала

Если все синдромы равны нулевой, то нет ошибок

• Построить многочлен локаторов ошибок с помощью алгоритма Берлекампа-Масси Многочлен локаторов ошибок:

$$\Lambda(x) = \prod_{k=1}^{\nu} (1 - X_k x) = 1 + \Lambda_1 x^1 + \Lambda_2 x^2 + \dots + \Lambda_{\nu} x^{\nu}$$

$$\nu$$
 — количество ошибок

Корнем многочлена локаторов ошибок является X_k^{-1}

Если алгоритм Питерсона-Горенстейна-Цирлера вычисляет многочлен локаторов ошибок методом решения системы линейнных алгебрайческих уравнений, то алгоритм Берлэкампа-Месси сводит задачу построения многочлена локаторов ошибок к задаче построения филтра: В каждой интерации:

$$\circ$$
 Невязка: $\Delta_r = S_r - \widehat{S_r} = \sum_{j=0}^{r-1} \Lambda_j^{(r-1)} S_{r-j}$

 \circ Если $\Delta_r = 0$, итерация выполнена успешно

$$\Lambda^{(r)}(x) = \Lambda^{(r-1)}(x)$$

о Если $\Delta_r \neq 0$, надо изменить $\Lambda^{(r)}(x)$, чтобы $\Delta_r = 0$

$$\Lambda^{(r)}(x) = \Lambda^{(r-1)}(x) + \frac{\Delta r}{\Delta m} x^{r-m} \Lambda^{(m-1)}$$

m — предыдующая итерации, что $\Delta_m=0$

- Найти корни многочлена локаторов ошибок, определяющие позиции ошибок, с помощью алгоритма Ченя
- Определить значения ошибок по формуле Форни

$$Y_k = X^{1-b} \cdot \frac{\Omega(X_k^{-1})}{\prod_{j=1, j \neq k} (1 - X_k^{-1} \cdot X_j)}$$

где
$$\Omega(x) = S(x)$$
. $\Lambda(x) \mod x^{2t}$

• Исправитть ошибки

3. Тестирование реализации

Создать таблицу, в которой вычисленны вероятности ошибки на кодовое слово, когда количество ошибок при передаче равно t (теоретическое максимальное количество, которое можно исправить) и равно t+1

- Размер символа m = 4, 5, ... 10 бит
- Скорость кода $R \approx \frac{1}{2}$, например если m = 6, то построим RS(63,31)
- Генерировать 1000 случайных кодовых слов
- Генерировать количество ошибок при передаче (в канале):

$$t_0 = \frac{d-1}{2}, \, t_1 = \frac{d-1}{2} + 1,$$
 где d — минимальное расстояние кода

• Вычислить вероятности ошибки на кодовое слово (FER)

Таблица 1. Полученные вероятности ошибки на кодовое слово

Размер символа т	Код	FER	FER
		(количество ошибок t_0)	(количество ошибок t_1)
m = 4	RS(15, 7)	0	1
m = 5	RS(31,15)	0	1
m = 6	RS(63,31)	0	1
m = 7	RS(127,63)	0	1
m = 8	RS(255,127)	0	1
m = 9	RS(511,255)	0	1
m = 10	RS(1023,511)	0	1

4. Численные результаты

Для оценки FER в каждой точке было произведено 1000 тестов.

График зависимости вероятности ошибки на кодовое слово от отношения сигнал-шум для кода (1023, 681) для канала с АБГШ и двоичной амплитудно-импульсной модуляцией

5. Вывол

Известно, что максимальное количество ошибок, которые можно исправить в коде Рида-Соломона, равно $t = \frac{d-1}{2}$, где d — минимальное расстояние кода. Из таблицы 1 можно видеть, что если количество ошибок, которое передано в кодовом слове, равно t, то все полученные кодовые слова будут успешно продекодированны. Если количество ошибок больше чем t (например в таблице t+1), то декодирование будет неуспешным.

⇒ Результаты тестирования в таблице 1 совпадают с теорией.

При значении отношения сигнал-шум $\frac{E_b}{E_0}=3.8$ дБ, стандартное отклонение шума $\sigma=\sqrt{\frac{N_0}{2RE_b}}\approx 0.444$. С $\sigma\approx 0.444$ вероятность инвертирования бита (ошибки на бит) равна $P_b\approx 0.012$. Вероятность ошибки на символ $P_s=10P_b\approx 0.12$. Количество ошибок, которое переданно в кодовом слове, близко 122 ошибок и не будет больше чем 171 (171 = $\frac{1023-681}{2}$ — максимальное возможное исправленное количество ошибок). При этом декодирование удается. Вероятность ошибки на кодовое слово будет равно нулевой. Аналогично, в точке $\frac{E_b}{E_0}=3$ дБ, количество ошибок близко 235 ошибок намного больше чем 171, потому что декодирование не удается.

⇒ Экспериментанльные резултаты подходятся к аналитическам резултатам