Counting Microstetes.

Recal that for N particles, have a large number of microstotes, I, correspond to distributions { n, n, n, n, -...}. We've seating the distribution with the legest number of microstotes.

Need to find $\{n_i, n_2, ..., 3 \text{ with constraints}\}$ $\sum_i n_i = N \text{ and } \sum_i n_i \, \epsilon_i = U.$

for alud $\mathcal{L}(\{n_i\}) = \frac{N!}{\prod_i n_i!}$ and is maximum.

What changes if energy tend E, has degenerary g.

There are wore wicrostits associated with the n, particles in \mathcal{E}_i , they can be in any g the g, degenerate solders. $\mathcal{R}\left(\left\{n_i\right\}\right) \longrightarrow \mathcal{N}! \quad \frac{g_i^{n_i}}{\text{TI } n_i!}$

What about making state \mathcal{E}_2 degeneral with degenerary g_2 ?

By the same reasoning $\mathcal{R}\left(\left\{\begin{array}{c} n_{i3}\end{array}\right) \rightarrow \mathcal{N}_{\cdot}^{\prime} & g_1^{n_1} & g_2^{n_2} \\ \end{array}\right)$

This is generalize with $R\left(\xi n_{i} s\right) \rightarrow \left(n! \prod_{i} \frac{g_{i}^{n_{i}}}{n_{i}!}\right)$

where n_i is the nuber of dishirprishable postions in state \mathcal{E}_i which is g_i -fold degenerate.

Moxbell-Beltzmann distribution-fractionl occupances. - most probable distribution of fractional occupances

Jmg (Ei) = Mi/gi & terels Ei

To do this we will maximix the entopy.

So: Sp = In [IT girl] + In N! (ignore).

= \(\sightarrow n_i \ln g_i - \ln n_i! \ln split with \log - roles \).

~ \(\int \text{nilngi - (nilnni - ni)} \) (Stirling).

Take constraints of constant perticle number and constant internal energy into account with hagrange multipliers.

 $\frac{S_{kg}}{kg} - \alpha N - \beta U = \sum_{i} (n_i \ln g_i - n_i \ln n_i + n_i) - \alpha n_i - \beta n_i \epsilon_i$

Vary the distribution, i.e. $3/2 n_i = 0$ (find maximum by varying the occupation numbers).

 $0 = \frac{\partial}{\partial n_i} \left\{ above \right\} = \ln g_i - \ln n_i - 1 + 1 - \alpha - \beta \xi_i$ $\Rightarrow \ln \left(\frac{\partial i}{\partial n_i} \right) = \alpha + \beta \xi_i$

 $= \sum_{i=1}^{n} \sum_{i=1}^{n} \int_{MB} (\xi_{i}) = e^{-\alpha} e^{-\beta \xi_{h}}.$

This is the Moxwell Boltzmann distibution function.

As we saw previously, 13 is imerse temperature, and x is

defended by fixed N,

i.e. $\int \int_{mg} (\xi) d\xi = N$.

This is for distinguishble/classical particles.