

# Modelling sound propagation in the presence of atmospheric turbulence for the auralisation of aircraft noise

Frederik Rietdijk <sup>1</sup> Kurt Heutschi <sup>1</sup> Jens Forssén <sup>2</sup>

 $^1$ Laboratory for Acoustics / Noise Control, Swiss Federal Laboratories for Materials Science and Technology, Empa

<sup>2</sup>Applied Acoustics, Chalmers University of Technology

September 12th, 2014



#### Overview



- 1. Aircraft noise and auralisation
- 2. Atmospheric turbulence
- 3. Calculating time series of amplitude and phase fluctuations
- 4. Applying fluctuations to a signal
- 5. Log-amplitude saturation

#### Introduction



- ► Traffic noise pollution in urban areas is a major environmental problem
- Creating an acceptable acoustic outdoor environment is a big challenge of high need
- Aircraft noise can cause annoyance and sleep disturbance
- Millions of people worldwide are affected by aircraft noise
- To obtain a more complete representation of annoyance, one should predict the audible aircraft sound and determine the impact of the aircraft sound on people
- ▶ Requires a tool for the synthesis or auralisation

# Development of auralisation tool



- Support typical urban situations where reflections may play an important role
- Model should be physically correct
- ▶ But more importantly, the auralisations should sound plausible
- ► Implementation:
  - ► Source synthesiser describes emission from jet, fan, airframe, etc.
  - Propagation model includes spherical spreading, Doppler shift, atmospheric absorption, reflections, fluctuations due to turbulence
- ► Fluctuations due to turbulence can be heard, and therefore need to be included.

#### Auralisations with and without turbulence







Fluctuations at the source are ignored!

### Atmospheric turbulence



- ► A *filter* is needed to apply fluctuations due to turbulence
- ► The wind velocity components and temperature in the turbulent atmosphere are fluctuating both in position and time.
  - ightharpoonup Causes fluctuations in refractive-index  $\mu$
  - ▶ Results in fluctuations of the received signal
- ► The theory of turbulence is a statistical theory
- For an auralisation instantaneous values of the sound pressure p(t) at the receiver are required
  - ▶ Log-amplitude fluctuation  $\chi(t) = \log\left(\frac{A}{A_0}\right)$  with A = |p| and  $A_0 = \langle A \rangle$
  - ▶ Phase fluctuation  $S(t) = \phi \phi_0$  with  $\phi = \angle p$  and  $\phi_0 = \langle \phi \rangle$

# Modelling atmospheric turbulence



- Turbulence spectrum
- ► Correlation  $B(r) = \langle \mu_1 \mu_2 \rangle = \langle \mu^2 \rangle \exp(-r^2/L^2)$ .
  - Gaussian spectrum
  - ▶ Variance of refractive-index  $\langle \mu^2 \rangle$ , distance r and correlation length L
  - Isotropic and homogeneous.
- ▶ Variances of fluctuations  $\langle \chi^2 \rangle = \langle S^2 \rangle = \frac{\sqrt{\pi}}{2} \langle \mu^2 \rangle k^2 r L$ 
  - Mean squared log-amplitude fluctuation  $\langle \chi^2 \rangle$
  - ▶ Mean phase fluctuation  $\langle S^2 \rangle$
- ► Covariances divided by variances  $\frac{B_{\chi}}{\langle \chi^2 \rangle} = \frac{B_{S}}{\langle S^2 \rangle} = \frac{\Phi(\rho/L)}{\rho/L}$ 
  - Spherical waves
  - Valid when Fresnel zone much large than the correlation length  $\sqrt{\lambda r} \gg L$
  - $\triangleright$  Wavenumber k, spatial separation perpendicular to wave direction  $\rho$  and error function Φ

# Calculating time series of fluctuations



#### Consider a single propagation path and a pure tone:

- 1. Sample the normalised covariance  $B_\chi(\rho)=B_S(\rho)=\frac{\sqrt{\pi}}{2}\langle\mu^2\rangle k^2rL\frac{\Phi(\rho/L)}{\rho/L}$
- 2. Determine spatial impulse response h(
  ho) from  $B_\chi(
  ho)=B_S(
  ho)$
- 3. Generate two series of random numbers, for amplitude and phase
- **4**. Convolution of  $h(\rho)$  with random numbers results in  $\chi(t)$  and S(t)

#### Time series of fluctuations





# Applying fluctuations to signal



- Apply the fluctuations  $\chi(t, f)$  and S(t, f) to a signal x(t) resulting in modulated signal y(t):
- Two methods:
  - Slow method:
    - 1. Decompose x(t) in pure tones using DFT and apply (unique) modulation to each tone

2. 
$$y(t) = \sum_{f=0}^{N} \{|X(f)| \cdot e^{\chi(t,f)} \cdot \sin(2\pi f t + \angle X(f) + S(t,f))\}$$

- ► Faster method, but different operation:
  - 1. Decompose x(t) using bandpass filters
  - 2. Convert phase in radians to delay in seconds:  $d = \frac{\phi}{2\pi f}$
  - 3. Use a variable delay line to apply the phase modulation and a simple multiplication for the amplitude modulations
- Methods are different, but both give a plausible result

# Example: Signal affected by turbulence





# Log-amplitude saturation



- ► For longer path lengths and stronger turbulence, the amplitude fluctuations gradually level off.
- ► Saturation can be observed when measuring aircraft noise at distances of over a few kilometers.
- ► The standard deviation of the fluctuating sound pressure levels is then limited to approximately 6 dB.
- ► Can be accounted for by multiplying  $\chi(t, f)$  with  $\sqrt{\frac{1}{1+r/r_s}}$ .
  - With saturation distance  $r_s(f)$  according to Wenzel, 1976.
  - $r_s = \frac{1}{2\langle \mu^2 \rangle k^2 L}$

#### Variances of fluctuations





$$\mathbb{E}\left[\chi^2\right] = \mathbb{E}\left[S^2\right] = \frac{\sqrt{\pi}}{2} \langle \mu^2 \rangle k^2 r L$$

# Variances of fluctuations including saturation





$$\mathbb{E}\left[S^2\right] = \tfrac{\sqrt{\pi}}{2} \langle \mu^2 \rangle k^2 r L \qquad \mathbb{E}\left[\chi^2\right] = \tfrac{\sqrt{\pi}}{2} \langle \mu^2 \rangle k^2 r L \cdot \tfrac{1}{1+r/r_s}$$

# Example: Auralisation of aircraft noise



- ▶ Unique time series of fluctuations applied to each third-octave band.
  - ▶ Same 'random' numbers, but frequency-dependent correlation B



Auralisation



#### Conclusion



#### Conclusions:

- Possible to generate time series of amplitude and phase fluctuations due to propagation in a turbulent atmosphere
- Use common parameters
  - ▶ Outer length scale of turbulence L
  - ▶ Mean squared refractive-index  $\langle \mu^2 \rangle$ , which is based on variances in windspeed and temperature
- Results in more realistic auralisations

#### Future work:

- ▶ Replace Gaussian spectrum with Von Karman spectrum (Ostashev, 1998)
- ► Height-dependent correlation length



#### Questions?





# SON@RUS :

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA grant agreement number 290110, SONORUS "Urban Sound Planner".