Introdução à Computação Numérica Solução aproximada de Equações Diferenciais Ordinárias (EDOs)

Prof. Daniel G. Alfaro Vigo dgalfaro@ic.ufrj.br DCC-IC-UFRJ

Parte I

Exemplos e conceitos básicos

Anteriormente estudamos vários métodos para o cálculo aproximado de integrais definidas:

$$I = \int_{a}^{b} f(x)dx.$$

Pela fórmula de Newton-Leibniz:

$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

onde F(x) é uma primitiva de f(x), ou seja $F^{\prime}(x)=f(x)$ para todo x em [a,b].

Como F(x) não está definida de forma única podemos considerar que F(a)=0, logo I=F(b). Dessa forma chegamos no seguinte problema.

Calcular y(b), sabendo que a função y(x) satisfaz:

$$\begin{cases} y'(x) = f(x) & \text{para } a \le x \le b, \\ y(a) = 0. \end{cases}$$

Como F(x) não está definida de forma única podemos considerar que F(a)=0, logo I=F(b). Dessa forma chegamos no seguinte problema.

Calcular y(b), sabendo que a função y(x) satisfaz:

$$\begin{cases} y'(x) = f(x) & \text{para } a \le x \le b, \\ y(a) = 0. \end{cases}$$

- Nesse problema temos que achar a função y(x) conhecendo informação da sua derivada e seu valor em x=a.
- Nem sempre é possível determinar analiticamente a função y(x).

A equação y'(x)=f(x) é um caso particular de um tipo geral de equações conhecidas como **equações diferenciais ordinárias (EDOs)**, onde a função incógnita deve ser determinada a partir de uma equação envolvendo essa função e suas derivadas.

Em geral, a solução desse tipo de equação corresponde a uma família de funções e para obter uma função individual é necessário indicar condições adicionais.

Exemplo 1: Crescimento populacional (modelo de Malthus)

Determinar o tamanho de uma população: P, como função do tempo t, satisfazendo

$$\begin{cases} \frac{dP}{dt} = rP, & t \ge 0\\ P(0) = P_0 \end{cases}$$

onde r representa a taxa de crescimento e é uma constante positiva conhecida.

O tamanho inicial da população: P_0 é conhecido.

Exemplo 1: Crescimento populacional (modelo de Malthus)

Determinar o tamanho de uma população: P, como função do tempo t, satisfazendo

$$\begin{cases} \frac{dP}{dt} = rP, & t \ge 0\\ P(0) = P_0 \end{cases}$$

onde r representa a taxa de crescimento e é uma constante positiva conhecida.

O tamanho inicial da população: P_0 é conhecido.

A solução é dada por

$$P(t) = P_0 e^{rt}$$

Exemplo 2: Crescimento populacional (modelo de Verhulst)

Determinar o tamanho de uma população: P, como função do tempo t, satisfazendo

$$\begin{cases} \frac{dP}{dt} = rP\left(1 - \frac{P}{P_{\rm m}}\right), & t \ge 0\\ P(0) = P_0 \end{cases}$$

onde a taxa de crescimento máxima r e a capacidade de carga $P_{\rm m}$ são constantes positivas conhecidas.

O tamanho inicial da população: P_0 é conhecido.

Exemplo 2: Crescimento populacional (modelo de Verhulst)

Determinar o tamanho de uma população: P, como função do tempo t, satisfazendo

$$\begin{cases} \frac{dP}{dt} = rP\left(1 - \frac{P}{P_{\rm m}}\right), & t \ge 0\\ P(0) = P_0 \end{cases}$$

onde a taxa de crescimento máxima r e a capacidade de carga $P_{\rm m}$ são constantes positivas conhecidas.

O tamanho inicial da população: P_0 é conhecido.

A solução é dada por

$$P(t) = \frac{P_0 e^{rt}}{1 + (P_0/P_m)(e^{rt} - 1)}$$

< **□** →

Exemplo 3: Pêndulo simples

Calcular o ângulo φ como função do tempo t, satisfazendo

$$\begin{cases} \frac{d^2\varphi}{dt^2} = -\frac{g}{l}\operatorname{sen}\varphi, & t \ge 0\\ \varphi(0) = \varphi_0\\ \frac{d\varphi}{dt}(0) = w_0 \end{cases}$$

onde m é a massa do corpo, g a aceleração da gravidade e l a distância do corpo até o ponto de apoio.

O ângulo inicial φ_0 e a velocidade angular inicial w_0 são conhecidos.

Exemplo 3: Pêndulo simples

Calcular o ângulo φ como função do tempo t, satisfazendo

$$\begin{cases} \frac{d^2\varphi}{dt^2} = -\frac{g}{l}\operatorname{sen}\varphi, & t \ge 0\\ \varphi(0) = \varphi_0\\ \frac{d\varphi}{dt}(0) = w_0 \end{cases}$$

onde m é a massa do corpo, g a aceleração da gravidade e l a distância do corpo até o ponto de apoio.

O ângulo inicial φ_0 e a velocidade angular inicial w_0 são conhecidos.

Não é possível achar a solução usando funções elementares!

Exemplo 4: Sistema massa-mola com amortecimento

$$\begin{cases} m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0, & t \ge 0\\ x(0) = x_0\\ \frac{dx}{dt}(0) = v_0 \end{cases}$$

onde m é a massa do corpo, k a rigidez da mola e c o coeficiente de amortecimento (constantes positivas).

A posição inicial x_0 e a velocidade inicial v_0 são conhecidos.

Exemplo 5: Deflexão de uma viga (Equação de Euler-Bernoulli)

Calcular a deformação w como função da posição x, satisfazendo

$$\begin{cases} EI\frac{d^4w}{dx^4} = q(x), & 0 \leq x \leq L \\ w(0) = \frac{dw}{dx}(0) = 0 & \text{(extremo engastado)} \\ w(L) = 0, & \frac{d^2w}{dx^2}(L) = \frac{M}{EI} & \text{(extremo fixo, sob momento fletor)} \end{cases}$$

onde E é o modulo de Young, I o momento de inércia da seção transversal, L o comprimento da viga e q(x) a carga distribuida.

Exemplo 6: Distribuição estacionária de temperatura em uma barra uniforme

Calcular a temperatura T como função da posição x, satisfazendo

$$\begin{cases} \frac{d^2T}{dx^2} + h_0(T_a - T) = 0, & 0 \le x \le L \\ T(0) = T_1, & T(L) = T_2 \end{cases}$$

onde h_0 é o coeficiente de transferência de calor, T_a a temperatura do ar envolta da barra e L o comprimento da barra.

As temperaturas nos extremos da barra T_1 e T_2 são conhecidas.

Ordem da EDO

Ordem da EDO

A ordem de uma EDO corresponde à ordem da derivada mais alta que aparece nela.

Ordem da EDO

Ordem da EDO

A ordem de uma EDO corresponde à ordem da derivada mais alta que aparece nela.

Exemplos:

- Primeira ordem: Exemplo 1 e Exemplo 2.
- Segunda ordem: Exemplo 3, Exemplo 4 e Exemplo 6.
- Quarta ordem: Exemplo 5.

EDOs lineares e não lineares

Linearidade e não linearidade

- A EDO é dita linear quando essa equação em relação à função incógnita e suas derivadas representa um polinômio de primeiro grau (que depende de várias variáveis).
- Em caso contrário a EDO é não linear.

EDOs lineares e não lineares

Linearidade e não linearidade

- A EDO é dita linear quando essa equação em relação à função incógnita e suas derivadas representa um polinômio de primeiro grau (que depende de várias variáveis).
- Em caso contrário a EDO é não linear.

- EDOs lineares: ► Exemplo 1 , ► Exemplo 4 , ► Exemplo 5 e ► Exemplo 6
- EDOs não lineares: ► Exemplo 2 e ► Exemplo 3

- Para determinar uma solução individual de uma EDO, é necessário indicar condições adicionais.
- A quantidade de condições adicionais necessárias para isto é igual à ordem da EDO.

- Para determinar uma solução individual de uma EDO, é necessário indicar condições adicionais.
- A quantidade de condições adicionais necessárias para isto é igual à ordem da EDO.

Problema de Valor Inicial (PVI)

- Um problema de valor inicial para uma EDO consiste em determinar a solução da EDO conhecendo os valores da função incógnita e suas derivadas (de ordem menor que a ordem da EDO) apenas no extremo inicial do intervalo de interesse.
- Nesse caso as condições adicionais são denominadas de condições iniciais ou dados iniciais.

PVI: EDO + Dado inicial

PVI: EDO + Dado inicial \Rightarrow Solução individual (única!)

PVI: EDO + Dado inicial \Rightarrow Solução individual (única!)

Geralmente, nas aplicações um PVI está associado à determinação da evolução temporal de um sistema cuja dinámica é governada por EDOs.

Exemplos de PVIs:

- ► Exemplo 1
 - ► Exemplo 2
 - ► Exemplo 3
 - Exemplo 4

Problemas de Valor de Contorno para EDOs

Problema de Valor de Contorno (PVC)

- Um problema de valor de contorno para uma EDO consiste em determinar a solução da EDO quando as condições adicionais envolvem os valores da função incógnita e suas derivadas nos dois extremos do intervalo de definição da função incógnita.
- Nesse caso as condições adicionais são denominadas de condições de contorno.

Exemplos de PVCs:

- ► Exemplo 5
- ► Exemplo 6

EDOs de ordens superiores e sistemas de EDOs

Uma EDO de ordem $m \geq 2$ pode ser re-escrita como um sistema de m EDOs de primeira ordem.

EDOs de ordens superiores e sistemas de EDOs

Uma EDO de ordem $m \geq 2$ pode ser re-escrita como um sistema de mEDOs de primeira ordem.

Exemplo: Considere a EDO que governa o movimento do pêndulo simples (Exemplo 3)

$$\varphi'' = -\frac{g}{l} \sin \varphi.$$

Introduzindo as funções incógnitas $y_1 = \varphi$ e $y_2 = \varphi'$ obtemos

$$y'_1 = \varphi' = y_2$$

$$y'_2 = \varphi'' = -\frac{g}{l} \operatorname{sen} \varphi = -\frac{g}{l} \operatorname{sen} y_1$$

$$\begin{cases} y'_1 = y_2 \\ y'_2 = -\frac{g}{l} \operatorname{sen} y_1 \end{cases}$$

EDOs de ordens mais alta e sistemas de EDOs

Portanto, o PVI do Exemplo 3 toma a seguinte forma.

Calcular $y_1=\varphi$ e $y_2=\varphi'$, como funções do tempo $t\geq 0$, satisfazendo o sistema de EDOs de primeira ordem

$$\begin{cases} y_1' = y_2 \\ y_2' = -\frac{g}{l} \operatorname{sen} y_1 \end{cases}$$

e as condições iniciais

$$y_1(0) = \varphi_0,$$

$$y_2(0) = w_0.$$

O ângulo inicial φ_0 e a velocidade angular inicial w_0 são conhecidos.

Exemplo 7: Sistema presa-predador (sistema de Lotka-Volterra)

Calcular o tamanho das populações de presas e predadores x_1 e x_2 , respectivamente, como funções do tempo t, satisfazendo

$$\begin{cases} \frac{dx_1}{dt} = x_1 (a - b x_2), & t \ge 0 \\ \frac{dx_2}{dt} = (c x_1 - d) x_2 \\ x_1(0) = x_{10}, & x_2(0) = x_{20} \end{cases}$$

onde a é a taxa de crescimento da população de presas, d a taxa de mortes da população de predadores, e b, d as taxas que caracterizam os efeitos da interação presa-predador na morte das presas e no crescimento dos predadores, respectivamente.

A quantidade inicial de presas e predadores: x_{10} e x_{20} , são conhecidos.

Exemplo 8: Modelo epidemiológico SIR

Calcular as frações s, i e r de indivíduos suscetíveis, infetados e recuperados de uma população, respectivamente, como funções do tempo t, satisfazendo

$$\begin{cases} \frac{ds}{dt} = -\beta s i, & t \ge 0 \\ \frac{di}{dt} = \beta s i - \gamma i, \\ \frac{dr}{dt} = \gamma i, \\ s(0) = s_0, & i(0) = 0, \quad r(0) = r_0 \end{cases}$$

onde β é a taxa de contagio e γ a taxa de recuperação (constantes positivas conhecidas).

O tamanho inicial das frações: s_0 , i_0 e r_0 , são conhecidos.

Observações importantes

- EDOs são úteis para modelar as leis da natureza e outras relações quantitativas do mundo real.
- Elas estão por todo lado!
- Porém, em geral, não é possível achar a solução analítica exata para qualquer EDO.

Observações importantes

- EDOs são úteis para modelar as leis da natureza e outras relações quantitativas do mundo real.
- Elas estão por todo lado!
- Porém, em geral, não é possível achar a solução analítica exata para qualquer EDO.

Precisamos de métodos aproximados!

Parte II

Solução aproximada de PVIs para EDOs

Forma normal da EDO e PVI genérico

Forma genérica do PVI

$$(PVI) \begin{cases} \mathbf{y}' = \mathbf{f}(t, \mathbf{y}), & t_0 \le t \le t_f \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

Observações

- Intervalo de interesse limitado ($t_f < +\infty$).
- EDO de primeira ordem, escrita na forma normal (a derivada de ordem mais alta está isolada no lado esquerdo).
- Para sistemas de EDOs consideramos que y e f são funções vetoriais.
- EDOs de ordens superiores podem ser re-escritas como sistemas de EDOs de primeira ordem.

Ideias básicas dos métodos aproximados

Discretização do PVI

- Escolher uma **quantidade finita de pontos** no intervalo de interesse onde procuramos a função incógnita.
- Obter relações quantitativas apropriadas, partindo da EDO, para calcular aproximações da solução nesse conjunto discreto de pontos.
- Garantir que aumentando progressivamente a quantidade de pontos vamos obter aproximações cada vez melhores da solução.

Discretização do PVI

• Consideramos um inteiro $N \ge 1$, definimos

$$\Delta t = \frac{t_f - t_0}{N},$$

e discretizamos o intervalo $[t_0, t_f]$:

$$t_n = t_0 + n \, \Delta t, \quad n = 0, 1, \dots, N.$$

- Representamos por $\mathbf{y}_1, \dots, \mathbf{y}_N$ as aproximações de $\mathbf{y}(t_1), \dots, \mathbf{y}(t_N)$, respectivamente.
- O objetivo é determinar: y_1, \ldots, y_N , de forma tal que

$$\mathbf{y}(t_1) \approx \mathbf{y}_1, \dots, \mathbf{y}(t_N) \approx \mathbf{y}_N.$$

Discretização do PVI: ideia geométrica

Método de Euler: ideia geométrica

Este famoso método foi publicado por L. Euler na sua obra *Institutionum Calculi Integralis* em 1768.

- Suponha que conhecemos $\mathbf{y}(t_n)$ e queremos achar uma aproximação para $\mathbf{y}(t_{n+1})$.
- Usamos a aproximação linear de y(t) em torno de t_n .

- Suponha que conhecemos $\mathbf{y}(t_n)$ e queremos achar uma aproximação para $\mathbf{y}(t_{n+1})$.
- Usamos a aproximação linear de y(t) em torno de t_n .

Da expansão de Taylor temos que

$$\mathbf{y}(t_{n+1}) = \mathbf{y}(t_n) + \Delta t \, \mathbf{y}'(t_n) + \frac{1}{2} \mathbf{y}''(\tau_n) (\Delta t)^2,$$

donde $t_n < \tau_n < t_{n+1}$.

- Suponha que conhecemos $\mathbf{y}(t_n)$ e queremos achar uma aproximação para $\mathbf{y}(t_{n+1})$.
- Usamos a **aproximação linear** de y(t) em torno de t_n .

Da expansão de Taylor temos que

$$\mathbf{y}(t_{n+1}) = \mathbf{y}(t_n) + \Delta t \, \mathbf{y}'(t_n) + \frac{1}{2} \mathbf{y}''(\tau_n) (\Delta t)^2,$$

donde $t_n < \tau_n < t_{n+1}$.

Truncando e usando a EDO segue que

$$\mathbf{y}(t_{n+1}) \approx \mathbf{y}(t_n) + \Delta t \mathbf{f}(t_n, \mathbf{y}(t_n)).$$

- Suponha que conhecemos $\mathbf{y}(t_n)$ e queremos achar uma aproximação para $\mathbf{y}(t_{n+1})$.
- ullet Usamos a **aproximação linear** de $\mathbf{y}(t)$ em torno de t_n .

Da expansão de Taylor temos que

$$\mathbf{y}(t_{n+1}) = \mathbf{y}(t_n) + \Delta t \, \mathbf{y}'(t_n) + \frac{1}{2} \mathbf{y}''(\tau_n) (\Delta t)^2,$$

donde $t_n < \tau_n < t_{n+1}$.

Truncando e usando a EDO segue que

$$\mathbf{y}(t_{n+1}) \approx \mathbf{y}(t_n) + \Delta t \mathbf{f}(t_n, \mathbf{y}(t_n)).$$

Substituindo $\mathbf{y}(t_n)$ pela sua aproximação \mathbf{y}_n obtemos

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \, \mathbf{f}(t_n, \mathbf{y}_n).$$

Método de Euler

Método de Euler

Dado y_0 , para $n = 0, 1, \dots, N-1$, calcular:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \, \mathbf{f}(t_n, \mathbf{y}_n).$$

Método de Euler

Método de Euler

Dado y_0 , para $n = 0, 1, \dots, N-1$, calcular:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \, \mathbf{f}(t_n, \mathbf{y}_n).$$

Observações:

- Consiste em calcular sucessivamente as aproximações y_1, \dots, y_N , a partir da condição inicial y_0 .
- \mathbf{y}_{n+1} é obtida usando apenas \mathbf{y}_n , ou seja, avançando no tempo a solução aproximada um passo de tamanho Δt .
- Δt é denominado de **tamanho do passo** de tempo;
- N representa o **número de passos** no tempo.

Exemplo

Dado o PVI:

$$\begin{cases} y' = 0.04 \, y, \\ y(0) = 1000. \end{cases}$$

Use o método de Euler para determinar y(1) e ache também o erro cometido nessa aproximação comparando com o valor exato:

- $y(1) = 1000 e^{0.04} \approx 1040.810774192388.$
- a) Com o passo $\Delta t = 1$.
- b) Com o passo $\Delta t = 0.1$.

Exemplo: solução

Temos f(t,y)=0.04y (observe que o t não aparece explicitamente no lado direito da EDO), $t_0=0$, $t_f=1$ e $y_0=1000$. a) $\Delta t=(t_f-t_0)/N \quad \Rightarrow \quad 1=1/N \quad \Rightarrow \quad N=1$ Assim $t_1=1$ e y_1 será a aproximação de y(1).

Exemplo: solução

Temos f(t,y)=0.04y (observe que o t não aparece explicitamente no lado direito da EDO), $t_0=0$, $t_f=1$ e $y_0=1000$. a) $\Delta t=(t_f-t_0)/N \quad \Rightarrow \quad 1=1/N \quad \Rightarrow \quad N=1$

Assim $t_1=1$ e y_1 será a aproximação de y(1). Usando a fórmula do método

$$y_{n+1} = y_n + \Delta t f(t_n, y_n) = y_n + \Delta t (0.04y_n) = (1 + 0.04\Delta t) y_n,$$

para n=0 obtemos:

$$y(1) \approx y_1 = (1 + 0.04 \cdot 1) \, 1000 = 1040,$$

 $y(1) \approx 1040.$

Exemplo: solução

Temos f(t,y) = 0.04y (observe que o t não aparece explicitamente no lado direito da EDO), $t_0 = 0$, $t_f = 1$ e $y_0 = 1000$.

a)
$$\Delta t = (t_f - t_0)/N \quad \Rightarrow \quad 1 = 1/N \quad \Rightarrow \quad N = 1$$

Assim $t_1 = 1$ e y_1 será a aproximação de y(1).

Usando a fórmula do método

$$y_{n+1} = y_n + \Delta t f(t_n, y_n) = y_n + \Delta t (0.04y_n) = (1 + 0.04\Delta t) y_n,$$

para n=0 obtemos:

$$y(1) \approx y_1 = (1 + 0.04 \cdot 1) \, 1000 = 1040,$$

 $y(1) \approx 1040.$

Para o erro absoluto obtemos:

Erro =
$$|y(1) - y_1| \approx |1040.810774192388 - 1040| \approx 0.81$$
.

Exemplo: solução (cont.)

b)
$$\Delta t = (t_f - t_0)/N \quad \Rightarrow \quad 0.1 = 1/N \quad \Rightarrow \quad N = 10$$
 Assim $t_1 = 0.1, t_2 = 0.2, \ldots, t_{10} = 1$ e y_{10} será a aproximação de $y(1)$.

Exemplo: solução (cont.)

b)
$$\Delta t = (t_f - t_0)/N \quad \Rightarrow \quad 0.1 = 1/N \quad \Rightarrow \quad N = 10$$
 Assim $t_1 = 0.1, t_2 = 0.2, \ldots, t_{10} = 1$ e y_{10} será a aproximação de $y(1)$.
$$n = 0: \ y_1 = (1 + 0.04 \cdot 0.1) y_0 = 1.004 \cdot 1000 = 1004,$$

$$n = 1: \ y_2 = 1.004 \ y_1 = 1.004 \cdot 1004 = 1008.016,$$

$$\vdots$$

$$n = 8: \ y_9 = 1.004 \ y_8 = 1.004 \cdot 1032.451601977459 = 1036.581408385369,$$

$$n = 9: \ y_{10} = 1.004 \ y_9 = 1.004 \cdot 1036.581408385369 = 1040.72773401891,$$

$$y(1) \approx 1040.72773401891.$$

Exemplo: solução (cont.)

b)
$$\Delta t=(t_f-t_0)/N \Rightarrow 0.1=1/N \Rightarrow N=10$$
 Assim $t_1=0.1, t_2=0.2, \ldots, t_{10}=1$ e y_{10} será a aproximação de $y(1)$.

$$\begin{array}{l} n=0:\ y_1=(1+0.04\cdot 0.1)y_0=1.004\cdot 1000=1004,\\ n=1:\ y_2=1.004\,y_1=1.004\cdot 1004=1008.016,\\ &\vdots\\ n=8:\ y_9=1.004\,y_8=1.004\cdot 1032.451601977459=1036.581408385369,\\ n=9:\ y_{10}=1.004\,y_9=1.004\cdot 1036.581408385369=1040.72773401891,\\ \hline \left[y(1)\approx 1040.72773401891.\right] \end{array}$$

Para o erro absoluto obtemos:

Erro =
$$|y(1) - y_{10}| \approx 0.083$$
.

Exemplo: discussão

- Mudando o tamanho do passo Δt de 1 para 0.1, a aproximação de y(1) melhorou, diminuindo o erro aproximadamente em 10 vezes.
- Para $\Delta t=0.01$ obtemos a aproximação $y(1) \approx y_{100}=1040.802449959209$ com erro absoluto aproximadamente igual a 0.0083, e para $\Delta t=0.001$ obtemos que $y(1) \approx y_{1000}=1040.809941566347$ com um erro absoluto aproximadamente igual a 0.00083.
- De novo, diminuindo em 10 vezes o tamanho do passo o erro também diminuiu aproximadamente em 10 vezes.
- Se continuarmos a diminuir progressivamente o tamanho do passo Δt , aumentando o número de passos N, as aproximações de y(1) irão ficar cada vez melhores.

Exemplo: discussão

Comportamento do erro: $|y(1) - y_N|$ vs $\Delta t = 1/N$.

Mais um exemplo

Dado o PVI:

$$\begin{cases} x z' = z + 2x e^{-z/x}, \\ z(1) = 0. \end{cases}$$

Use o método de Euler para determinar z(3) e ache também o erro cometido nessa aproximação comparando com o valor exato:

- $z(3) = 2\log(2\log 3 + 1) \approx 3.486849341652001.$
- a) Com o tamanho do passo 1.
- b) Com o tamanho do passo 0.2.

A função incógnita na EDO é z(x), re-escrevendo na forma normal obtemos $f(x,z)=z/x+2\,\mathrm{e}^{-z/x}$. Nesse PVI: $x_0=1,\,x_f=3$ e $z_0=0$.

A função incógnita na EDO é z(x), re-escrevendo na forma normal obtemos $f(x,z)=z/x+2\,\mathrm{e}^{-z/x}$. Nesse PVI: $x_0=1,\ x_f=3$ e $z_0=0$. a) $\Delta x=(x_f-x_0)/N \quad \Rightarrow \quad 1=2/N \quad \Rightarrow \quad N=2$ Assim $x_1=2,\ x_2=3$ e z_2 será a aproximação de z(3).

A função incógnita na EDO é z(x), re-escrevendo na forma normal obtemos $f(x,z)=z/x+2\,\mathrm{e}^{-z/x}$. Nesse PVI: $x_0=1,\ x_f=3$ e $z_0=0$. a) $\Delta x=(x_f-x_0)/N \quad \Rightarrow \quad 1=2/N \quad \Rightarrow \quad N=2$ Assim $x_1=2,\ x_2=3$ e z_2 será a aproximação de z(3). Usando a fórmula do método

$$z_{n+1} = z_n + \Delta x f(x_n, z_n) = z_n + \Delta x (z_n/x_n + 2e^{-z_n/x_n}),$$

obtemos:

$$n = 0$$
: $z_1 = 0 + 1 \cdot (0/1 + 2 \cdot e^{-0/1}) = 2$,
 $n = 1$: $z_2 = 2 + 1 \cdot (2/2 + 2 \cdot e^{-2/2}) = 3.7357588823428847$
 $z(3) \approx 3.7357588823428847$.

A função incógnita na EDO é z(x), re-escrevendo na forma normal obtemos $f(x,z)=z/x+2\,\mathrm{e}^{-z/x}$. Nesse PVI: $x_0=1,\ x_f=3$ e $z_0=0$. a) $\Delta x=(x_f-x_0)/N\ \Rightarrow\ 1=2/N\ \Rightarrow\ N=2$ Assim $x_1=2,\ x_2=3$ e z_2 será a aproximação de z(3). Usando a fórmula do método

$$z_{n+1} = z_n + \Delta x f(x_n, z_n) = z_n + \Delta x (z_n/x_n + 2e^{-z_n/x_n}),$$

obtemos:

$$n = 0$$
: $z_1 = 0 + 1 \cdot (0/1 + 2 \cdot e^{-0/1}) = 2$,
 $n = 1$: $z_2 = 2 + 1 \cdot (2/2 + 2 \cdot e^{-2/2}) = 3.7357588823428847$
 $z(3) \approx 3.7357588823428847$.

Para o erro absoluto obtemos:

Erro =
$$|z(3) - z_2| \approx 0.25$$
.

Mais um exemplo: solução (cont.)

b) $\Delta x=(x_f-x_0)/N \quad \Rightarrow \quad 0.2=2/N \quad \Rightarrow \quad N=10$ Assim $x_1=1.2, x_2=1.4, \ldots, x_{10}=3$ e z_{10} será a aproximação de z(3).

Mais um exemplo: solução (cont.)

b)
$$\Delta x=(x_f-x_0)/N \Rightarrow 0.2=2/N \Rightarrow N=10$$
 Assim $x_1=1.2, x_2=1.4, \ldots, x_{10}=3$ e z_{10} será a aproximação de $z(3)$.

$$n = 0$$
: $z_1 = z_0 + \Delta x (z_0/x_0 + 2e^{-z_0/x_0}) = 0 + 0.2 \cdot (0/1 + 2 \cdot e^{-0/1})$
= 0.4

$$n = 1$$
: $z_2 = 0.4 + 0.2 \cdot (0.4/1.2 + 2 \cdot e^{-0.4/1.2}) = 0.7532791908961824,$

:

$$n = 8: z_9 = 3.160461908791895,$$

$$n = 9: z_{10} = 3.515585868207156,$$

$$z(3) \approx 3.515585868207156.$$

Mais um exemplo: solução (cont.)

b)
$$\Delta x=(x_f-x_0)/N \Rightarrow 0.2=2/N \Rightarrow N=10$$
 Assim $x_1=1.2, x_2=1.4, \ldots, x_{10}=3$ e z_{10} será a aproximação de $z(3)$.

$$n = 0$$
: $z_1 = z_0 + \Delta x (z_0/x_0 + 2e^{-z_0/x_0}) = 0 + 0.2 \cdot (0/1 + 2 \cdot e^{-0/1})$
= 0.4

$$n = 1$$
: $z_2 = 0.4 + 0.2 \cdot (0.4/1.2 + 2 \cdot e^{-0.4/1.2}) = 0.7532791908961824,$

$$n = 8: z_9 = 3.160461908791895,$$

$$n = 9: \ z_{10} = 3.515585868207156,$$

$$z(3) \approx 3.515585868207156.$$

Para o erro absoluto obtemos:

Erro =
$$|z(3) - z_{10}| \approx 0.029$$
.

Mais um exemplo: discussão

Comportamento do erro: $|z(3) - z_N|$ vs $\Delta x = 2/N$.

Análise do erro do Método de Euler: Erro global

Definição do erro global

Definimos o erro global do método a partir das diferenças entre a solução exata $y(t_k)$ e o valor aproximado y_k ($k=0,1\ldots,N$):

$$E_{\mathsf{global}} = \max_{t_0 \le t_k \le t_f} |y(t_k) - y_k|.$$

Este erro depende de Δt e da solução exata y(t).

Análise do erro do Método de Euler: Erro global

Limitante para o erro global do método de Euler

Se a função f é suficientemente regular, temos que

$$E_{\mathsf{global}} = \max_{t_0 \le t_k \le t_f} |y(t_k) - y_k| \le A \, \Delta t$$

em que a constante A>0 não depende de Δt .

Podemos afirmar que

$$E_{\mathsf{global}} = \mathcal{O}(\Delta t)$$

quando $\Delta t \approx 0$.

Convergência do método

Quando $\Delta t \to 0$ (ou seja, $N \to \infty$) temos que o erro global:

$$E_{\mathsf{global}} \to 0.$$

Melhorando o método de Euler

- No método de Euler o erro global é proporcional ao tamanho do passo $\Delta t!$
- Para melhorá-lo vamos obter um método com erro global proporcional a $(\Delta t)^2$. Assim a convergência do erro para zero será mais rápida!
- Vamos usar o polinômio de Taylor de segundo grau!

Melhorando o método de Euler (cont.)

Para a EDO $y' = \lambda y$, obtemos que

$$y(t_{n+1}) = y(t_n + \Delta t) \approx y(t_n) + \Delta t y'(t_n) + \frac{(\Delta t)^2}{2} y''(t_n).$$

Usando que

$$y'(t_n) = \lambda y(t_n) \quad \Rightarrow \quad y''(t_n) = \lambda y'(t_n) = \lambda^2 y(t_n),$$

obtemos

$$y(t_{n+1}) \approx y(t_n) + \lambda \Delta t y(t_n) + \frac{(\lambda \Delta t)^2}{2} y(t_n),$$

portanto chegamos no seguinte método:

$$y_{n+1} = y_n \left(1 + \lambda \Delta t + \frac{(\lambda \Delta t)^2}{2} \right).$$

De volta ao exemplo inicial

Vamos resolver o exemplo inicial, agora aplicando este novo método:

$$y_{n+1} = (1 + 0.04\Delta t + (0.04\Delta t)^2/2) y_n.$$

a) Como $\Delta t = 1$ para n = 0 obtemos:

$$y(1) \approx y_1 = (1 + 0.04 \cdot 1 + (0.04 \cdot 1)^2 / 2) \, 1000 = 1040.8$$

$$y(1) \approx 1040.8$$

Para o erro absoluto dessa aproximação temos

$$Erro_a = |y(1) - y_1| \approx 0.011.$$

De volta ao exemplo inicial (cont.)

b)
$$\Delta t=0.1,\ N=10$$
 e y_{10} será a aproximação de $y(1)$.
$$n=0:\ y_1=(1+0.04\cdot 0.1+(0.04\cdot 0.1)^2/2)y_0\\ =1.004008\cdot 1000=1004.008\\ n=1:\ y_2=1.004008\,y_1=1008.032064064\\ n=2:\ y_3=1.004008\,y_2=1012.072256576768\\ \vdots\\ n=8:\ y_9=1.004008\,y_8=1036.655747270047\\ n=9:\ y_{10}=1.004008\,y_9=1040.810663505105\\ \hline [y(1)\approx 1040.810663505105]$$

Para o erro absoluto dessa aproximação obtemos

$$\mathsf{Erro}_b = |y(1) - y_{10}| \approx 1.1 \times 10^{-4}.$$

De volta ao exemplo inicial: discussão

Comportamento do erro: $|y(1) - y_N|$ vs $\Delta t = 1/N$.

Método da série de Taylor de segunda ordem

Usando o polinômio de Taylor de segundo grau para aproximar $y(t_{n+1})$ obtemos

$$y(t_{n+1}) = y(t_n + \Delta t) \approx y(t_n) + \Delta t y'(t_n) + \frac{(\Delta t)^2}{2} y''(t_n)$$

Da EDO y' = f(t, y), aplicando a regra da cadeia obtemos que

$$y''(t) = \frac{df(t, y(t))}{dt} = \frac{\partial f}{\partial t}(t, y(t)) + \frac{\partial f}{\partial y}(t, y(t))y'(t)$$
$$y''(t_n) = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y}f\right)(t_n, y(t_n)).$$

Portanto chegamos no seguinte método:

$$y_{n+1} = y_n + \Delta t f(t_n, y_n) + \frac{(\Delta t)^2}{2} \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y} f \right) (t_n, y_n).$$

Método da série de Taylor

Usando o polinômio de Taylor de ordem $p \ge 1$, e calculando as derivadas da solução até a ordem p.

Método da série de Taylor de ordem p

$$y_{n+1} = y_n + \Delta t \, \bar{y}'_n + \frac{(\Delta t)^2}{2} \bar{y}''_n + \dots + \frac{(\Delta t)^p}{p!} \bar{y}_n^{(p)},$$

em que

$$\bar{y}'_n = f(t_n, y_n),$$

$$\bar{y}''_n = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial y}f\right)(t_n, y_n)$$

$$\vdots$$

$$\bar{y}_n^{(p)} = \left(\frac{\partial^{p-1} f}{\partial t^{p-1}} + \dots + \frac{\partial^{p-1} f}{\partial y^{p-1}}f^{p-1}\right)(t_n, y_n)$$

Foi introduzido por L. Euler no Institutionum Calculi Integralis!

Método da série de Taylor (cont.)

Da expansão de Taylor, temos o erro local

$$y(t_{n+1}) - \left(y(t_n) + y'(t_n) \Delta t + \dots + \frac{y^{(p)}(t_n) (\Delta t)^p}{p!}\right) = \frac{y^{(p+1)}(\tau_n)}{(p+1)!} (\Delta t)^{p+1},$$

em que $t_n < \tau_n < t_{n+1}$, e o erro global $E_{\text{global}} \approx A \left(\Delta t \right)^p$ em que a constante A > 0 não depende de Δt .

Limitante do erro do método da série de Taylor de orden p

Se a função f é suficientemente regular então

$$E_{\mathsf{global}} = \mathcal{O}(\Delta t)^p$$
.

Métodos de passo simples

Todos os métodos apresentados podem ser escritos na forma

$$y_{n+1} = y_n + \Delta t \, \Phi(t_n, y_n, \Delta t)$$

em que $\Phi()$ representa uma expressão envolvendo a função f e suas derivadas.

- Um método aproximado para resolver um PVI é dito de passo simples, se pode ser escrito na forma indicada acima.
- Nesses métodos a aproximação da função incógnita para o tempo t_{n+1} é obtida a partir da aproximação no tempo t_n e as aproximações para tempos anteriores não são usadas explicitamente.

Definição: ordem do método

O método possui **ordem** p se para qualquer solução y(t) da EDO, o **erro local** satisfaz

$$|y(t + \Delta t) - (y(t) + \Delta t \Phi(t, y(t), \Delta t))| \le C(\Delta t)^{p+1},$$

onde a constante C não depende de Δt .

Definição: ordem do método

O método possui **ordem** p se para qualquer solução y(t) da EDO, o **erro local** satisfaz

$$|y(t + \Delta t) - (y(t) + \Delta t \Phi(t, y(t), \Delta t))| \le C(\Delta t)^{p+1},$$

onde a constante C não depende de Δt .

Ordem de convergência

Se as funções f e Φ são suficientemente regulares e o método possui ordem p, então as aproximações satisfazem que

$$E_{global} = \max_{t_0 \le t_k \le t_f} |y(t_k) - y_k| \le A \left(\frac{\Delta t}{\Delta t}\right)^p$$

em que a constante A>0 não depende de Δt .

Como construir bons métodos de passo simples sem usar as derivadas de f?

Como construir bons métodos de passo simples sem usar as derivadas de f?

- Essa é uma tarefa bem complicada se não usamos as derivadas da função f.
- C. Runge e W. Kutta, no período de 1895–1901, mostraram que é
 possível recuperar com boa precisão o polinômio de Taylor sem usar
 as derivadas da função f!
- Eles dividiram o cálculo de cada passo em vários estágios, em cada um deles a função f era avaliada em pontos intermediários selecionados apropriadamente.
- Na fase final, a aproximação é obtida fazendo uma média ponderada dos valores calculados.

Métodos de Runge-Kutta (R-K)

Algúns exemplos desse tipo de método.

Método R-K de 1a ordem:

Coincide com o Método de Euler

Métodos de Runge-Kutta (R-K)

Algúns exemplos desse tipo de método.

Método R-K de 1a ordem:

Coincide com o Método de Euler

Método R-K de 2a ordem: **Método de Euler aperfeiçoado (ou Método de Heun)**

$$\begin{cases} y_{n+1}^{E} = y_n + \Delta t f(t_n, y_n) \\ y_{n+1} = y_n + \frac{\Delta t}{2} \left(f(t_n, y_n) + f(t_{n+1}, y_{n+1}^{E}) \right) \end{cases}$$

pode ser re-escrito na forma

$$\begin{cases} k_1 = \Delta t f(t_n, y_n) \\ k_2 = \Delta t f(t_{n+1}, y_n + k_1) \\ y_{n+1} = y_n + \frac{1}{2} (k_1 + k_2) \end{cases}$$

Método de Heun: dedução

Integrando y'(t) no intervalo $[t_n,t_{n+1}]$ vamos obter que

$$y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} y'(t) dt.$$

Usando a regra do trapézio chegamos em

$$y(t_{n+1}) = y(t_n) + \frac{\Delta t}{2} (y'(t_n) + y'(t_{n+1})) - \frac{y'''(\tau_n)}{12} (\Delta t)^3,$$

onde $t_n < \tau_n < t_{n+1}$.

Usando a EDO: y'(t) = f(t, y(t)) e truncando, temos que

$$y(t_{n+1}) \approx y(t_n) + \frac{\Delta t}{2} (f(t_n, y(t_n)) + f(t_{n+1}, y(t_{n+1}))).$$

Método de Heun: dedução

Substituindo $y(t_n)$ e $y(t_{n+1})$ pelas suas aproximações, chegamos em

$$y_{n+1} \approx y_n + \frac{\Delta t}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1})).$$

Método de Heun: dedução

Substituindo $y(t_n)$ e $y(t_{n+1})$ pelas suas aproximações, chegamos em

$$y_{n+1} \approx y_n + \frac{\Delta t}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1})).$$

Para deixar y_{n+1} isolado no lado esquerdo, introduzimos no lado direito uma aproximação intermediária dada pelo método de Euler e obtemos

$$y_{n+1} = y_n + \frac{\Delta t}{2} (f(t_n, y_n) + f(t_{n+1}, y_{n+1}^E)),$$

onde

$$y_{n+1}^E = y_n + \Delta t f(t_n, y_n).$$

Método de Heun: ordem de convergência

Da dedução acima, considerando $y_n=y(t_n)$ obtemos que o erro local satisfaz

$$y(t_{n+1}) - y_{n+1} = \frac{\Delta t}{2} \left(f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y_n^E)) \right) - \frac{y'''(\tau_n)}{12} (\Delta t)^3$$
$$= \frac{\Delta t}{2} \frac{\partial f}{\partial y} (t_{n+1}, \tilde{y}_n) \left(y(t_{n+1}) - y_n^E \right) - \frac{y'''(\tau_n)}{12} (\Delta t)^3$$

em que \tilde{y}_n está entre $y(t_{n+1})$ e y_n^E , e $t_n < \tau_n < t_{n+1}$.

Método de Heun: ordem de convergência

Da dedução acima, considerando $y_n=y(t_n)$ obtemos que o erro local satisfaz

$$y(t_{n+1}) - y_{n+1} = \frac{\Delta t}{2} \left(f(t_{n+1}, y(t_{n+1})) - f(t_{n+1}, y_n^E) \right) - \frac{y'''(\tau_n)}{12} (\Delta t)^3$$
$$= \frac{\Delta t}{2} \frac{\partial f}{\partial y} (t_{n+1}, \tilde{y}_n) \left(y(t_{n+1}) - y_n^E \right) - \frac{y'''(\tau_n)}{12} (\Delta t)^3$$

em que \tilde{y}_n está entre $y(t_{n+1})$ e y_n^E , e $t_n < \tau_n < t_{n+1}$.

Sabemos que $y(t_{n+1}) - y_n^E = \frac{1}{2}y''(\tilde{\tau}_n)(\Delta t)^2$ onde $t_n < \tilde{\tau}_n < t_{n+1}$. Logo

$$y(t_{n+1}) - y_{n+1} = \left(\frac{1}{4}y''(\tilde{\tau_n})\frac{\partial f}{\partial y}(t_{n+1}, \tilde{y}_n) - \frac{y'''(\tau_n)}{12}\right) (\Delta t)^3.$$

⇒ Portanto, o método de Heun é de segunda ordem!

Método de Heun: ordem de convergência

Para a EDO $y'=\lambda\,y$, esse método coincide com o método da série de Taylor de segunda ordem.

$$k_{1} = \lambda \Delta t y_{n}$$

$$k_{2} = \lambda \Delta t (y_{n} + k_{1}) = \lambda \Delta t (y_{n} + \lambda \Delta t y_{n})$$

$$= \lambda \Delta t y_{n} + (\lambda \Delta t)^{2} y_{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{n+1} = y_{n} + \frac{1}{2} \left(\lambda \Delta t y_{n} + \lambda \Delta t y_{n} + (\lambda \Delta t)^{2} y_{n} \right)$$

$$= y_{n} + \frac{1}{2} \left(2\lambda \Delta t y_{n} + (\lambda \Delta t)^{2} y_{n} \right)$$

$$y_{n+1} = y_{n} \left(1 + \lambda \Delta t + \frac{(\lambda \Delta t)^{2}}{2} \right)$$

Métodos de Runge-Kutta de ordens superiores

Método R-K de 3a ordem: **Método de Ralston**

$$\begin{cases} \bar{y}_1 = y_n \\ \bar{y}_2 = y_n + \frac{\Delta t}{2} f(t_n, \bar{y}_1) \\ \bar{y}_3 = y_n + \frac{3\Delta t}{4} f(t_n + \frac{1}{2} \Delta t, \bar{y}_2) \\ y_{n+1} = y_n + \frac{\Delta t}{9} \left(2f(t_n, \bar{y}_1) + 3f(t_n + \frac{\Delta t}{2}, \bar{y}_2) + 4f(t_n + \frac{3\Delta t}{4}, \bar{y}_3) \right) \end{cases}$$

ou na forma

$$\begin{cases} k_1 = \Delta t f(t_n, y_n) \\ k_2 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1) \\ k_3 = \Delta t f(t_n + \frac{3}{4}\Delta t, y_n + \frac{3}{4}k_2) \\ y_{n+1} = y_n + \frac{1}{9} (2k_1 + 3k_2 + 4k_3) \end{cases}$$

Métodos de Runge-Kutta de ordens superiores

Método R-K de 4a ordem: Método "RK4 clássico"

$$\begin{cases}
\bar{y}_1 = y_n \\
\bar{y}_2 = y_n + \frac{\Delta t}{2} f(t_n, \bar{y}_1) \\
\bar{y}_3 = y_n + \frac{\Delta t}{2} f(t_n + \frac{1}{2} \Delta t, \bar{y}_2) \\
\bar{y}_4 = y_n + \Delta t f(t_n + \frac{1}{2} \Delta t, \bar{y}_3) \\
y_{n+1} = y_n + \frac{\Delta t}{6} \left(f(t_n, \bar{y}_1) + 2f(t_n + \frac{\Delta t}{2}, \bar{y}_2) \\
+ 2f(t_n + \frac{\Delta t}{2}, \bar{y}_3) + f(t_n + \Delta t, \bar{y}_4) \right)
\end{cases}$$

ou na forma

$$\begin{cases} k_1 = \Delta t f(t_n, y_n) \\ k_2 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_1) \\ k_3 = \Delta t f(t_n + \frac{1}{2}\Delta t, y_n + \frac{1}{2}k_2) \\ k_4 = \Delta t f(t_n + \Delta t, y_n + k_3) \\ y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \end{cases}$$

Exemplo

Vamos resolver o exemplo inicial, agora aplicando o método de Ralston. a) Como $\Delta t = 1$ e f(t, y) = 0.04 y, para n = 0 obtemos:

$$k_1 = \Delta t f(t_0, y_0) = 1 \cdot 0.04 \cdot 1000 = 40$$

$$k_2 = \Delta t f(t_0 + \frac{1}{2}\Delta t, y_0 + \frac{1}{2}k_1) = 1 \cdot 0.04 \cdot (1000 + 40/2) = 40.8$$

$$k_3 = \Delta t f(t_0 + \frac{3}{4}\Delta t, y_0 + \frac{3}{4}k_2) = 1 \cdot 0.04 \cdot (1000 + 3/4 \cdot 40.8) = 41.224$$

$$y(1) \approx y_1 = y_0 + (2k_1 + 3k_2 + 4k_3)/9$$

$$= 1000 + 1 \cdot (2 \cdot 40 + 3 \cdot 40.8 + 4 \cdot 41.224)/9$$

$$= 1040.810666666666667$$

$$y(1)\approx 1040.810666666667$$

Para o erro absolutos obtemos

Erro =
$$|y(1) - y_1| \approx 1.1 \times 10^{-4}$$

Exemplo (cont.)

b)
$$\Delta t = 0.1$$
, $N = 10$ e y_{10} será a aproximação de $y(1)$.

$$n = 0: k_1 = 0.1 \cdot 0.04 \cdot 1000 = 4$$

$$k_2 = 0.1 \cdot 0.04 \cdot (1000 + 4/2) = 4.008$$

$$k_3 = 0.1 \cdot 0.04 \cdot (1000 + 3/4 \cdot 4.008) = 4.012024$$

$$y_1 = y_0 + (2k_1 + 3k_2 + 4k_3)/9$$

$$= 1000 + 1 \cdot (2 \cdot 40 + 3 \cdot 40.8 + 4 \cdot 41.224)/9$$

$$= 1004.008010666667$$

$$n = 1: k_1 = 4.016032042666667, k_2 = 4.024064106752$$

$$k_3 = 4.028104234986922, y_2 = 1008.032085482837$$

$$n = 2: k_1 = 4.03212834193135, k_2 = 4.040192598615213$$

$$k_3 = 4.044248919727195, y_3 = 1012.072288833795$$

Exemplo: solução (cont.)

$$\vdots \\ n=7: \ k_1=4.113582737379534, \ k_2=4.121809902854293 \\ k_3=4.125948167088097, \ y_8=1032.517505217292 \\ n=8: \ k_1=4.130070020869167, \ k_2=4.138330160910905 \\ k_3=4.1424850113519, \ y_9=1036.655846391723 \\ n=9: \ k_1=4.14662338556689, \ k_2=4.154916632338024 \\ k_3=4.159088135463906, \ y_{10}=1040.810774081723 \\ \hline y(1)\approx 1040.810774081723 \\ \hline$$

Para o erro absoluto obtemos

Erro =
$$|y(1) - y_{10}| \approx 1.1 \times 10^{-7}$$
.

Exemplo: discussão

Comportamento do erro: $|y(1) - y_N|$ vs $\Delta t = 1/N$.

Exemplo: Comparação dos métodos de R-K

\overline{N}	M. Euler	M. Heun	M. Ralston
1	1040	1040.8	1040.810666666667
	0.81	0.011	1.1×10^{-4}
10	1040.72773401891	$\frac{1040.810663505105}{10000000000000000000000000000000$	1040.810774081723
	0.083	1.1×10^{-4}	1.1×10^{-7}
100	1040 .802449959209	1040.810773082514	1040.810774192259
	8.3×10^{-3}	1.1×10^{-6}	1.3×10^{-10}
1000	1040.809941566347	1040.810774181397	1040.81077419249
	8.3×10^{-4}	1.1×10^{-8}	1.0×10^{-10}

Tabela: Valores aproximados de y(1) e o erro cometido quando varíamos o número de passos N.

Um último exemplo

Um biólogo marinho estimou que no inicio do ano a biomassa de hadoque no Golfo do Maine era de $150\,kt$ e a do seu predador natural o cação galhudo de $50\,kt$. Considerando que a variação temporal da população do hadoque (H) e do cação galhudo (C) é governada pelo seguinte sistema de Lotka-Volterra, use o método de Euler para estimar o tamanho dessas populações ao final do ano avançando 5 passos no tempo.

$$\begin{cases} \frac{dH}{dt} = H (0.5 - 0.01 C) \\ \frac{dC}{dt} = (0.001 H - 0.2) C \end{cases}$$

Um último exemplo: solução

Temos que $t_0=0$, $t_f=1$ e N=5, então $\Delta t=(t_f-t_0)/N=1/5=0.2$. Estamos interessados nas aproximações finais $H(1)\approx H_5$ e $C(1)\approx C_5$ partindo de $H_0=150$ e $C_0=50$.

Um último exemplo: solução

Temos que $t_0=0$, $t_f=1$ e N=5, então $\Delta t=(t_f-t_0)/N=1/5=0.2$. Estamos interessados nas aproximações finais $H(1)\approx H_5$ e $C(1)\approx C_5$ partindo de $H_0=150$ e $C_0=50$.

Para este sistema a fórmula do método fica na forma vetorial:

$$\underbrace{\begin{bmatrix} H_{n+1} \\ C_{n+1} \end{bmatrix}}_{} = \underbrace{\begin{bmatrix} H_n \\ C_n \end{bmatrix}}_{} + \Delta t \underbrace{\begin{bmatrix} H_n \left(0.5 - 0.01 C_n \right) \\ \left(0.001 H_n - 0.2 \right) C_n \end{bmatrix}}_{}.$$

Para n=0 obtemos:

$$\begin{bmatrix} H_1 \\ C_1 \end{bmatrix} = \begin{bmatrix} 150 \\ 50 \end{bmatrix} + 0.2 \begin{bmatrix} 150 (0.5 - 0.01 \cdot 50) \\ (0.001 \cdot 150 - 0.2) \cdot 50 \end{bmatrix}$$
$$= \begin{bmatrix} 150 + 0.2 \cdot 150(0.5 - 0.5) \\ 50 + 0.2(0.15 - 0.2) \cdot 50 \end{bmatrix} = \begin{bmatrix} 150 \\ 49.5 \end{bmatrix}$$

Um último exemplo: solução

$$\begin{aligned} \text{Para } n &= 1 : \\ \begin{bmatrix} H_2 \\ C_2 \end{bmatrix} &= \begin{bmatrix} 150 \\ 49.5 \end{bmatrix} + 0.2 \begin{bmatrix} 150 \left(0.5 - 0.01 \cdot 49.5 \right) \\ \left(0.001 \cdot 150 - 0.2 \right) 49.5 \end{bmatrix} \\ &= \begin{bmatrix} 150 + 0.2 \cdot 150 \left(0.5 - 0.495 \right) \\ 49.5 + 0.2 \left(0.15 - 0.2 \right) 49.5 \end{bmatrix} = \begin{bmatrix} 150.15 \\ 49.005 \end{bmatrix} \\ &\vdots \\ \text{Para } n &= 4 : \\ \begin{bmatrix} H_5 \\ C_5 \end{bmatrix} &= \begin{bmatrix} 151.48803794 \\ 47.563855 \end{bmatrix} \end{aligned}$$

Concluímos que no final do ano haverá aproximadamente $151.488\,kt$ de biomassa hadoque e $47.564\,kt$ de cação galhudo.

Um último exemplo: gráfico

Gráfico da solução aproximada.

Um último exemplo: previsão de longo prazo

Gráfico da solução aproximada.

Comentários finais

A classe dos métodos de passo simples é muito rica e versátil.

- Métodos com alta ordem de convergência;
- Métodos adaptativos e com passo variável;
- Métodos flexíveis que podem levar em conta as particularidades específicas da EDO.
- O desenvolvimento e análise desse tipo de método é uma área de pesquisa muito ativa!

Comentários finais

A classe dos métodos de passo simples é muito rica e versátil.

- Métodos com alta ordem de convergência;
- Métodos adaptativos e com passo variável;
- Métodos flexíveis que podem levar em conta as particularidades específicas da EDO.
- O desenvolvimento e análise desse tipo de método é uma área de pesquisa muito ativa!

Outras classes de métodos para PVIs

- Métodos lineares de passo múltiplo
- Métodos baseados na fórmula de diferenciação regressiva (BDF)
- Métodos híbridos

Métodos de passo múltiplo

- Nesses métodos para calcular a aproximação da solução usaremos as aproximações em vários tempos anteriores. Por exemplo, para obter y_{n+2} usamos diretamente y_n e y_{n+1} .
- De modo geral um método aproximado é dito de s passos ($s \ge 1$) se para calcular y_{n+s} , usamos y_n, \ldots, y_{n+s-1} . No caso s=1, temos um método de passo simples.
- A forma mais comum de construir esse tipo de métodos consiste em usar polinômios interpoladores associados com os pontos da nossa discretização.

Método de Adams-Bashforth (A-B) de 2 passos

A partir da EDO: y'(t)=f(t,y(t)), integrando no intervalo $[t_{n+1},t_{n+2}]$ vamos obter que

$$y(t_{n+2}) = y(t_{n+1}) + \int_{t_{n+1}}^{t_{n+2}} f(t, y(t)) dt.$$

Considerando o polinômio interpolador da função g(t)=f(t,y(t)) sob os pontos t_n e t_{n+1} vamos ter que

$$f(t, y(t)) \approx f_n + \frac{f_{n+1} - f_n}{\Delta t} (t - t_n)$$

onde $f_n = f(t_n, y(t_n))$ e $f_{n+1} = f(t_{n+1}, y(t_{n+1}))$.

Método de Adams-Bashforth de 2 passos

Logo

$$y(t_{n+2}) \approx y(t_{n+1}) + \int_{t_{n+1}}^{t_{n+2}} \left(f_n + \frac{f_{n+1} - f_n}{\Delta t} (t - t_n) \right) dt$$

$$\approx y(t_{n+1}) + \Delta t f_n + \frac{3(\Delta t)^2}{2} \left(\frac{f_{n+1} - f_n}{\Delta t} \right)$$

$$\approx y(t_{n+1}) + \frac{\Delta t}{2} (3f_{n+1} - f_n).$$

Obtemos assim o

Método de Adams-Bashforth de 2 passos

$$y_{n+2} = y_{n+1} + \frac{\Delta t}{2} (3f_{n+1} - f_n), \quad n = 0, 1, \dots, N-2$$

onde $f_k = f(t_k, y_k)$ com k = n, n + 1.

Método de Adams-Bashforth de 2 passos

- O método permite calcular as aproximações y_2, \dots, y_N a partir de y_0 e y_1 .
- É preciso conhecer uma aproximação de $y(t_1)$ além do dado inicial $y(t_0)$. A aproximação y_1 pode ser obtida por exemplo usando um método de passo simples.
- Esse método é de segunda ordem, já que se consideramos $y_n=y(t_n)$ e $y_{n+1}=y(t_{n+1})$ para aproximação y_{n+2} obtida temos que

$$|y(t_{n+2}) - y_{n+2}| \le C(\Delta t)^3,$$

onde a constante C>0 não depende de Δt (mas depende da solução y(t)).

• Como consequência, se a aproximação y_1 satisfaz que $|y(t_1)-y_1|\leq C_1(\Delta t)^2$ onde a constante C_1 não depende de Δt , então para $k=0,1,\ldots,N$

$$|y(t_k) - y_k| \le A \, (\Delta t)^2$$

em que a constante A>0 não depende de Δt .

Métodos de Adams-Bashforth de ordens superiores

Esses métodos são obtidos seguindo o mesmo procedimento. Para o método de s passos, aproximamos a função g(t)=f(t,y(t)) usando um polinômio interpolador $P_{s-1}(t)$ de grau s-1 sobre os pontos t_n,\ldots,t_{n+s-1} .

Assim

$$P_{s-1}(t) = f_n L_0(t) + \dots + f_{n+s-1} L_{s-1}(t)$$

onde $f_k=f(t_k,y(t_k))$ com $k=n,\ldots,n+s-1$ e $L_j(t)$ $(j=0,\ldots,s-1)$ são os polinômios corespondentes à base de Lagrange.

Métodos de Adams-Bashforth de ordens superiores

Vamos obter então as aproximações

$$y(t_{n+s}) = y(t_{n+s-1}) + \int_{t_{n+s-1}}^{t_{n+s}} f(t, y(t)) dt$$

$$\approx y(t_{n+s-1}) + \int_{t_{n+s-1}}^{t_{n+s}} P_{s-1}(t) dt$$

$$\approx y(t_{n+s-1}) + \int_{t_{n+s-1}}^{t_{n+s}} (f_n L_0(t) + \dots + f_{n+s-1} L_{s-1}(t)) dt$$

$$\approx y(t_{n+s-1}) + \Delta t \left(\beta_0 f_{n+s-1} + \dots + \beta_{s-1} f_n\right)$$

em que $(\Delta t)\beta_j=\int_{t_{n+s-1}}^{t_{n+s}}L_{n+s-1-j}(t)\,dt,\ j=0,\dots,s-1.$ Logo o método terá a forma

$$y_{n+s} = y_{n+s-1} + \Delta t \left(\beta_0 f_{n+s-1} + \dots + \beta_{s-1} f_n \right)$$

onde $f_k = f(t_k, y_k)$ com k = n, ..., n + s - 1.

Métodos de Adams-Bashforth de ordens superiores

Adams-Bashforth de terceira ordem (3 passos)

Para n = 0, ..., N - 3:

$$y_{n+3} = y_{n+2} + \frac{\Delta t}{12} (23f_{n+2} - 16f_{n+1} + 5f_n),$$

onde $f_k = f(t_k, y_k)$ com k = n, n + 1, n + 2.

Adams-Bashforth de quarta ordem (4 passos)

Para n = 0, ..., N - 4:

$$y_{n+4} = y_{n+3} + \frac{\Delta t}{24} \left(55f_{n+3} - 59f_{n+2} + 37f_{n+1} - 9f_n \right),$$

onde $f_k = f(t_k, y_k)$ com k = n, n + 1, n + 2, n + 3.

Métodos de Adams-Bashforth: observações

- Antes de podermos usar um método de A-B de s passos diretamente, é preciso calcular y_1,\ldots,y_{s-1} . Para isto podemos usar um método de passo simples.
- ullet Os cálculos da função f sempre podem ser reaproveitados no próximo passo. Isto é uma vantagem desses métodos em relação aos métodos de R-K.

Limitante para o erro e convergência

Para os métodos de A-B de s passos (com s=2,3,4) seja p=s. Se as aproximações iniciais y_1,\ldots,y_{s-1} satisfazem que $|y(t_j)-y_j|\leq C_1(\Delta t)^p$ para $j=1,\ldots,s-1$ onde a constante C_1 não depende de Δt , então para $k=0,1,\ldots,N$ temos que

$$|y(t_k) - y_k| \le A (\Delta t)^p$$

em que a constante A>0 não depende de Δt .

Exemplo

Agora pelo método de A-B de 2a ordem apenas para $\Delta t=0.1.$ b) $y(1)\approx y_{10}$, calculamos y_1 pelo método de Euler.

$$y_1 = y_0 + \Delta t \, f(t_0, y_0) = 1000 + 0.1 \, (0.04 \cdot 1000) = 1000.4$$

$$n = 0: \ y_2 = y_1 + \frac{\Delta t}{2} (3f_1 - f_0)$$

$$= y_1 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_1 - 0.04 \cdot y_0) = 1008.024$$

$$n = 1: \ y_3 = y_2 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_2 - 0.04 \cdot y_1) = 1012.064144$$

$$n = 2: \ y_4 = y_3 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_3 - 0.04 \cdot y_2) = 1016.120480864$$

$$n = 3: \ y_5 = y_4 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_4 - 0.04 \cdot y_3) = 1020.193075461184$$

$$n = 4: \ y_6 = y_5 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_5 - 0.04 \cdot y_4) = 1024.281992952223$$

$$n = 5: \ y_7 = y_6 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_6 - 0.04 \cdot y_5) = 1028.387298759014$$

$$n = 6: \ y_8 = y_7 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_7 - 0.04 \cdot y_6) = 1032.509058565664$$

$$n = 7: \ y_9 = y_8 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_8 - 0.04 \cdot y_7) = 1036.64733831954$$

$$n = 8: \ y_{10} = y_9 + \frac{0.1}{2} (3 \cdot 0.04 \cdot y_9 - 0.04 \cdot y_8) = 1040.802204232325$$

Exemplo: solução (cont.)

$$y(1) \approx 1040.802204232325$$

c) Erro absoluto da aproximação: Erro = $|y(1) - y_{10}| \approx 8.6 \times 10^{-3}$

Considerando $\Delta t = 0.01$ vamos obter a aproximação

$$y(1) \approx y_{100} = 1040.810688186014$$

com erro absoluto aproximadamente igual a 8.6×10^{-5} , e para $\Delta t = 0.001$ a aproximação será

$$y(1) \approx y_{1000} = 1040.810773332018$$

e o erro absoluto aproximadamente igual a 8.6×10^{-7} .

Exemplo

Agora pelo método de A-B de 3a ordem com $\Delta t = 0.1$.

b) $y(1) \approx y_{10}$, calculamos y_1 e y_2 pelo método de Euler aperfeiçoado.

$$y_1 = 1004.008, \quad y_2 = 1008.032064064$$

$$n = 0: \quad y_3 = y_2 + \frac{\Delta t}{12}(23f_2 - 16f_1 + 5f_0)$$

$$= y_2 + \frac{0.1}{12}(23 \cdot 0.04 y_2 - 16 \cdot 0.04 y_1 + 5 \cdot 0.04 y_0)$$

$$= 1012.072267221824$$

$$n = 1: \quad y_4 = y_3 + \frac{0.1}{12}(23 \cdot 0.04 y_3 - 16 \cdot 0.04 y_2 + 5 \cdot 0.04 y_1)$$

$$= 1016.128663595517$$

$$n = 2: \quad y_5 = y_4 + \frac{0.1}{12}(23 \cdot 0.04 y_4 - 16 \cdot 0.04 y_3 + 5 \cdot 0.04 y_2)$$

$$= 1020.201318031339$$

$$n = 3: \quad y_6 = y_5 + \frac{0.1}{12}(23 \cdot 0.04 y_5 - 16 \cdot 0.04 y_4 + 5 \cdot 0.04 y_3)$$

$$= 1024.290295709106$$

Exemplo: solução (cont.)

$$n = 4: \ y_7 = y_6 + \frac{0.1}{12} \left(23 \cdot 0.04 \, y_6 - 16 \cdot 0.04 \, y_5 + 5 \cdot 0.04 \, y_4 \right) \\ = 1028.395662052702$$

$$n = 5: \ y_8 = y_7 + \frac{0.1}{12} \left(23 \cdot 0.04 \, y_7 - 16 \cdot 0.04 \, y_6 + 5 \cdot 0.04 \, y_5 \right) \\ = 1032.517482748043$$

$$n = 6: \ y_9 = y_8 + \frac{0.1}{12} \left(23 \cdot 0.04 \, y_8 - 16 \cdot 0.04 \, y_7 + 5 \cdot 0.04 \, y_6 \right) \\ = 1036.655823744345$$

$$n = 7: \ y_{10} = y_9 + \frac{0.1}{12} \left(23 \cdot 0.04 \, y_9 - 16 \cdot 0.04 \, y_8 + 5 \cdot 0.04 \, y_7 \right) \\ = 1040.81075125515$$

$$y(1) \approx 1040.81075125515$$

c) Erro absoluto da aproximação: Erro = $|y(1) - y_{10}| \approx 2.3 \times 10^{-5}$

Exemplo: solução (cont.)

Considerando $\Delta t = 0.01$ vamos obter a aproximação

$$y(1) \approx y_{100} = 1040.810774169212$$

com erro absoluto aproximadamente igual a 2.3×10^{-8} , e para $\Delta t = 0.001$ a aproximação será

$$y(1) \approx y_{1000} = 1040.810774192364$$

e o erro absoluto aproximadamente igual a 2.4×10^{-11} .

Exemplo: Comparação dos métodos de A-B

\overline{N}	A-B 2a ordem	A-B 3a ordem	A-B 4a ordem
10	$\frac{1040.802204232325}{8.6 \times 10^{-3}}$	$\frac{1040.81075125515}{2.3 \times 10^{-5}}$	$\frac{1040.810774156601}{3.6 \times 10^{-8}}$
100	1040.810688186014 8.6×10^{-5}	$ \begin{array}{c} 1040.810774169212 \\ 2.3 \times 10^{-8} \end{array} $	1040.810774192384 3.7×10^{-12}
1000	1040.810773332018	1040.810774192364	1040.810774192387
	8.6×10^{-7}	2.4×10^{-11}	6.8×10^{-13}

Métodos de Adams-Moulton (A-M)

Outros métodos de passo múltiplo podem ser obtidos usando uma ideia análoga, mas considerando o polinômio interpolador P_s sobre os pontos t_n,\ldots,t_{n+s} . Vamos obter

Adams-Moulton de terceira ordem (2 passos)

$$y_{n+2}=y_{n+1}+rac{\Delta t}{12}\left(5f_{n+2}+8f_{n+1}-f_{n}
ight),\quad n=0,1\dots,N-2$$
 onde $f_{k}=f(t_{k},y_{k})$ com $k=n,n+1,n+2.$

Adams-Moulton de quarta ordem (3 passos)

$$y_{n+3} = y_{n+2} + \frac{\Delta t}{24} (9f_{n+2} + 19f_{n+2} - 5f_{n+1} + f_n),$$

 $n = 0, 1 \dots, N-2$

onde $f_k = f(t_k, y_k)$ com k = n, n + 1, n + 2, n + 3.

Métodos de Adams-Moulton: observações

- Para usar esses métodos da mesma forma que com os métodos de A-B, também é preciso fornecer outras aproximações iniciais além do dado inicial.
- Em geral para calcular a aproximação de interesse é necessário resolver uma equação não linear. Por exemplo, no método A-M de 3a ordem a grandeza de interesse y_{n+2} aparece nos dois lados da equação, no lado direito ela está no termo f_{n+2} que representa $f(t_{n+2},y_{n+2})$.
- Por causa de isto esse tipo de método é caracterizado como método implícito. Quando isso não acontece o método é caracterizado como explícito.
- Os métodos de R-K que apresentamos assim como os de A-B são caracterizados como explícitos.