Phylogenomics of fast-speciating Ithomiini genera

Time since last common ancestor

Melinaea butterflies are very closely related

Melinaea species

whole-genome phylogeny

ludovica

lilis

isocomma
idae
tarapotensis
satevis maeolus / cydon (Pe/Co)
marsaeus

menophilus

satevis maeonis (Ec)

mothone

mneme (Co/FG)

Eva van der Heijden

Melinaea butterflies are very closely related

Mechanitis butterflies show vast cytonuclear discordance

Hybrid species with new trait combinations?

Pheromonal

Jonah Walker

André Freitas U Campinas, Brazil

Many regions that differentiate *M. nesaea* from *M. polymnia* show introgression from *M. lysimnia*

Exercises with Mechanitis.vcf file

- In the vcf file we have:
 - 5 Mechanitis polymnia
 - 5 Mechanitis lysimnia
 - 5 Mechanitis nesaea
 - 5 Mechanitis messenoides

- We will run:
 - PCA (Principal components analysis) with plink
 - Phylogenetic tree with iqtree2
 - Infer hybridisation with introgression
 - Genome scans for Fst, Dxy, pi
 - Genome scans for introgression

Exercises with Mechanitis.vcf file

- In the vcf file we have:
 - 5 Mechanitis polymnia
 - 5 Mechanitis lysimnia
 - 5 Mechanitis nesaea
 - 5 Mechanitis messenoides

- We will run:
 - PCA (Principal components analysis) with plink
 - Phylogenetic tree with iqtree2
 - Infer hybridisation with introgression
 - Genome scans for Fst, Dxy, pi
 - Genome scans for introgression

PCA – Principal Components Analysis

- We want to convert the vcf file showing genotypes across all individuals and sites into something more visual that shows the differences and similarity between individuals
- PCA reduces the complexity / dimensionality of the data
- PCA aims identifies the main axes of variation in a dataset with each axis being independent of the next
- Eigenvalues: each axis has an eigenvalue, that can be transformed into the percentage of variance explained
- Eigenvectors: each individual has a position on each axis

Why run a PCA?

- Are all individuals clustering together as expected? (e.g. no outlier or misidentified individuals)
- Testing if individuals with different colour or morphology represent different species (cluster separately) or colour/ecomorphs (completely intermixed)?

Plots by Eva van der Heijden

Why run a PCA?

- Are all individuals clustering together as expected? (e.g. no outlier or misidentified individuals)
- Testing if individuals with different colour or morphology represent different species (cluster separately) or colour/ecomorphs (completely intermixed)?
- Are any individuals hybrids?

Plots generated during this exercise

Datasets with more than two different species

 With a dataset like this (different species where some are closely related, others more distant), running a PCA is great to find outliers and check if the individuals cluster by species, but the distance between the species is a bit unreliable. So running a phylogeny is better.

• iqtree gives us this phylogeny:

