INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT540Octal buffer/line driver; 3-state; inverting

Product specification
File under Integrated Circuits, IC06

December 1990

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

FEATURES

- · Inverting outputs
- · Output capability: bus driver
- I_{CC} category: MSI

The 74HC/HCT540 are octal inverting buffer/line drivers with 3-state outputs. The $\underline{3}$ -state outputs are controlled by the output enable inputs \overline{OE}_1 and \overline{OE}_2 .

A HIGH on \overline{OE}_n causes the outputs to assume a high impedance OFF-state.

The "540" is identical to the "541" but has inverting outputs.

GENERAL DESCRIPTION

The 74HC/HCT540 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
	FARAWETER	CONDITIONS	НС	нст	ONL
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Y}_n	C _L = 15 pF; V _{CC} = 5 V	9	11	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	39	44	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

$$\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$$

C_I = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 19	\overline{OE}_1 , \overline{OE}_2	output enable input (active LOW)
2, 3, 4, 5, 6, 7, 8, 9	A ₀ to A ₇	data inputs
10	GND	ground (0 V)
18, 17, 16, 15, 14, 13, 12, 11	\overline{Y}_0 to \overline{Y}_7	bus outputs
20	V _{CC}	positive supply voltage

Philips Semiconductors Product specification

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

FUNCTION TABLE

	OUTPUT		
ŌE ₁	ŌĒ₂	A _n	Ϋ́n
L	L	L	Н
L	L	Н	L
X	Н	X	Z
Н	X	X	Z

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors Product specification

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS		
		74HC									
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay A_n to \overline{Y}_n		30 11 9	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig.6
t _{PZH} / t _{PZL}	3-state output enable time $\overline{\text{OE}}$ to \overline{Y}_{n}		52 19 15	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}			61 22 18	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.6

Philips Semiconductors Product specification

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
OE ₁	1.50						
\overline{OE}_2	1.00						
A _n	1.40						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)							LINIT	TEST CONDITIONS	
		74HCT									
		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} / t _{PLH}	propagation delay A _n to Ȳ _n		13	24		30		36	ns	4.5	Fig.6
t _{PZH} / t _{PZL}			22	35		44		53	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}			23	35		44		53	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.6

Octal buffer/line driver; 3-state; inverting

74HC/HCT540

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".