Lecture 12: 无约束优化 牛顿法

Lecturer: 陈士祥 Scribes: 陈士祥

1 问题形式

无约束最优化问题

$$\min_{x \in \mathbb{R}^n} \quad f(x) \tag{12.1}$$

其目标函数 f 是定义在 \mathbb{R}^n 上的实值函数,决策变量 x 的可取值之集合是全空间 \mathbb{R}^n . f 是二次可微的。

2 牛顿法

设 f(x) 是二次可微实函数, 在 x^k 附近作二阶 Taylor 展开近似

$$f(x^k + s) \approx q^k(s) = f(x^k) + g^{kT}s + \frac{1}{2}s^TG_ks$$
 (12.2)

其中 $g^k = \nabla f(x^k), G_k = \nabla^2 f(x^k).$

将 $q^k(s)$ 极小化便得

$$s = -G_k^{-1} g^k. (12.3)$$

上式给出的搜索方向 $-G_k^{-1}g^k$ 称为**牛顿方向 (Newton Direction).**

Example 12.1 在目标函数是正定二次函数

$$f(x) = \frac{1}{2}x^T G x - c^T x$$

的情况下 (G 为正定阵), 对任意的 x 有 $\nabla^2 f(x) = G$.

在第一次迭代里令 $H_0 = G^{-1}$,则有

$$d^{0} = -H_{0}\nabla f(x^{0}) = -G^{-1}(Gx^{0} - c) = -(x^{0} - x^{*}).$$

这里, $x^* = G^{-1}c$ 是问题的最优解。若 $x^0 \neq x^*$, 取步长 $\alpha_0 = 1$, 于是得 $x^1 = x^0 + \alpha_0 d^0 = x^*$. 由此知道, 不管初始点 x^0 如何取, 在一次迭代后即可到达最优解 x^* .

图 12.1: 牛顿法对于正定二次问题,可以一步得到最优解。

选取步长 $\alpha_k \equiv 1$ 的迭代公式为

$$x^{k+1} = x^k + d^k = x^k - \nabla^2 f(x^k)^{-1} \nabla f(x^k).$$
 (12.4)

这就是经典的牛顿迭代法。

2.1 Why is Newton's method good?

对于正定二次函数而言,牛顿法一步即可达到最优解。对于非二次函数,牛顿法并不能保证经有限次迭代求得最优解。但由于目标函数在极小点附近可用二次函数较好地近似,故当初始点靠近极小点时,牛顿法的收敛速度一般会很快。

仿射不变性 (affine-invariant): 令 $A \in \mathbb{R}^{n \times n}$ 为一个可逆矩阵。f(x) 为 \mathbb{R}^n 上的一个函数。考虑如下函数

$$\phi(y) = f(Ay).$$

即对于原来的函数 f ,我们选择了 \mathbb{R}^n 新的一组基底 A ,得到新坐标下的函数 $\phi(y)$.牛顿法的关键性质可由下面的结论说明。

Lemma 12.1 令 $\{x_k\}$ 是牛顿法对于 f(x) 的序列,即

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k);$$

令 $\{y_k\}$ 是牛顿法对于 $\phi(y)$ 的序列,即

$$y_{k+1} = y_k - \nabla^2 \phi(y_k)^{-1} \nabla \phi(y_k);$$

若 $y_0 = A^{-1}x_0$, 则对于任意 $k \ge 1$, $y_k = A^{-1}x_k$.

作业 12.1 证明: Lemma 12.1

该结论说明,牛顿法的迭代点不依赖于基底和度量的选择,因此只依赖于函数的拓扑性质。

2.2 牛顿法求解等式问题

牛顿法最初是为了求解一般等式问题。设 $F: \mathbb{R}^n \to \mathbb{R}^n$, 考虑如下问题:

$$F(x) = 0.$$

迭代为

$$x_{k+1} = x_k - JF(x_k)^{-1}F(x_k). (12.5)$$

对于凸问题(12.1)来说,求解(12.1)的最小值等价于求解下面的等式:

$$\nabla f(x) = 0.$$

记 $F = \nabla f(x)$, 则(12.5)与(12.4)相同。

对于一维问题, 即 $F: \mathbb{R} \to \mathbb{R}$, 下面的例子展示牛顿法的迭代过程。

Example 12.2 用牛顿法求解 $F(x) = x^3 - 2x + 2 = 0$ 的根。在迭代点 x_k 处,作出函数图像的切线 $l(y) = F(x_k) + F'(x_k)(y - x_k)$,与 x 轴的交点得到下一个迭代点 x_{k+1} ,即 $x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$. 从初始点 $x_0 = -3$ 和 $x_0 = 1$ 出发,牛顿法迭代分别如图 12.2和 12.3. 从 $x_0 = 1$ 出发的点,由于离 F(x) = 0 的根太远,牛顿法不收敛。

图 12.2: 从 $x_0 = -3$ 出发,收敛到零点

图 12.3: 从 $x_0 = 1$ 出发, 牛顿法不收敛, 迭代点困于 0, 1 两点。

上例我们知道,初始点若离最优点太远,牛顿法并不收敛。我们下面讨论牛顿法的局部收敛性质。

3 牛顿法的收敛性

Theorem 12.1 假设 f 二阶连续可微,且存在 x^* 的一个邻域 $N_{\delta}(x^*)$ 及常数 L>0 使得 $\left\|\nabla^2 f(x) - \nabla^2 f(y)\right\| \leqslant L\|x-y\|, \quad \forall x,y \in N_{\delta}(x^*)$

如果 f(x) 满足 $\nabla f(x^*) = 0, \nabla^2 f(x^*) > 0$, 则对于牛顿法有:

- 如果初始点离 x^* 足够近, 则迭代点列 $\{x^k\}$ 收敛到 x^* ;
- $\{x^k\}$ -二次收敛到 x^* ;
- $\{\|\nabla f(x^k)\|\}$ -二次收敛到 θ .

Proof: 根据牛顿法定义以及 $\nabla f(x^*) = 0$, 得

$$x^{k+1} - x^* = x^k - \nabla^2 f(x^k)^{-1} \nabla f(x^k) - x^*$$

= $\nabla^2 f(x^k)^{-1} \left[\nabla^2 f(x^k) (x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*)) \right],$ (12.6)

注意到

$$\nabla f(x^k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^k + t(x^* - x^k))(x^k - x^*) dt,$$

由此

$$\|\nabla^{2} f(x^{k}) (x^{k} - x^{*}) - (\nabla f(x^{k}) - \nabla f(x^{*}))\|$$

$$= \|\int_{0}^{1} [\nabla^{2} f(x^{k} + t(x^{*} - x^{k})) - \nabla^{2} f(x^{k})] (x^{k} - x^{*}) dt\|$$

$$\leq \int_{0}^{1} \|\nabla^{2} f(x^{k} + t(x^{*} - x^{k})) - \nabla^{2} f(x^{k})\| \|x^{k} - x^{*}\| dt$$

$$\leq \|x^{k} - x^{*}\|^{2} \int_{0}^{1} Lt dt = \frac{L}{2} \|x^{k} - x^{*}\|^{2}.$$
(12.7)

因为 $\nabla^2 f(x) > 0$, 由 Lipschitz 连续,所以 $\exists r > 0$, 当 $\|x - x^*\| \leqslant r$ 时有 $\|\nabla^2 f(x)^{-1}\| \leqslant 2 \|\nabla^2 f(x^*)^{-1}\|$ 成立,故结合 (12.6)和(12.7),得到

$$||x^{k+1} - x^*||$$

$$\leq ||\nabla^2 f(x^k)^{-1}|| ||\nabla^2 f(x^k)(x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*))||$$

$$\leq ||\nabla^2 f(x^k)^{-1}|| \cdot \frac{L}{2} ||x^k - x^*||^2$$

$$\leq L ||\nabla^2 f(x^*)^{-1}|| ||x^k - x^*||^2 .$$

当初始点 x^0 满足 $\|x^0 - x^*\| \le \min\left\{\delta, r, \frac{1}{2L\|\nabla^2 f(x^*)^{-1}\|}\right\}$ 时,我们 $\|x^{k+1} - x^*\| \le 1/2 \|x^k - x^*\|$. 因此, 迭代点列一直处于邻域 $N_{\hat{\delta}}(x^*)$ 中,故 $\{x^k\}$ 二次收敛到 x^* .

另一方面,由牛顿方程可知

$$\|\nabla f(x^{k+1})\| = \|\nabla f(x^{k+1}) - \nabla f(x^k) - \nabla^2 f(x^k) d^k\|$$

$$= \left\| \int_0^1 \nabla^2 f(x^k + t d^k) d^k dt - \nabla^2 f(x^k) d^k \right\|$$

$$\leqslant \int_0^1 \|\nabla^2 f(x^k + t d^k) - \nabla^2 f(x^k)\| \|d^k\| dt$$

$$\leqslant \frac{L}{2} \|d^k\|^2 \leqslant \frac{1}{2} L \|\nabla^2 f(x^k)^{-1}\|^2 \|\nabla f(x^k)\|^2$$

$$\leqslant 2L \|\nabla^2 f(x^k)^{-1}\|^2 \|\nabla f(x^k)\|^2.$$

这证明梯度的范数二次收敛到 0.

4 修正牛顿法

在式(12.4)的牛顿迭代法里,如果选取的初始点 x^0 不在解 x^* 的附近,那么生成的点列 $\{x^k\}$ 未必收敛于最优解。为了保证算法的全局收敛性,有必要对牛顿法作某些改进。

线搜索牛顿法:

- (0) 选取初始点 x^0 , 设置终止误差 $\varepsilon > 0$, 令 k := 0.
- (1) 计算 $g^k = \nabla f(x^k)$. 若 $||g^k|| < \varepsilon$, 停止迭代并输出 x^k . 否则进行第 (2) 步。
- (2) 解线性方程组 $\nabla^2 f(x^k)d = -q^k$, 求出牛顿方向 d^k .
- (3) 采用一维搜索确定步长因子 α_k , 令 $x^{k+1} = x^k + \alpha_k d^k$, 置 k := k+1, 回到第 (1) 步。

牛顿法面临的另一个主要困难是 Hesse 矩阵 $G_k = \nabla^2 f(x^k)$ 不正定。这时二阶近似模型不一定有极小点,即二次函数 $q^k(s)$ 是无界的。另外,如果初始点离最优点较远,牛顿方向使用步长为 1 不一定能使得函数值减小。

为了克服这些困难,人们提出了很多修正措施。例如 Goldstein & Price (1967) 提出,

$$d^{k} = \begin{cases} -G_{k}^{-1}g^{k}, & \text{if } \cos\theta_{k} > \eta \\ -g^{k}, & \text{otherwise} \end{cases}$$
 (12.8)

上式中, θ_k 是 $-G_k^{-1}g^k$ 与 $-g^k$ 的夹角。即,如果牛顿方向与负梯度方向接近直角,则采用负梯度方向。 如果出现 G_k 非严格正定,或者为了保证牛顿法全局收敛,则有如下修正 Levenberg(1944),Marquardt(1963), Goldfeld et. al(1966)

$$(G_k + \mu_k I)d^k = -g^k \tag{12.9}$$

进一步的参考资料

• Nocedal J, Wright S. Numerical optimization[M]. Springer Science and Business Media, 2006.