# РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

## ДОКЛАД

## ПО ТЕМЕ: APXИТЕКТУРА И ФУНКЦИОНИРОВАНИЕ DNS.

Дисциплина: Операционные системы

Студент: Матюшкин Денис Владимирович

Группа: НПИбд-02-21

МОСКВА

## Оглавление

| Введение                    | 3 |
|-----------------------------|---|
| Архитектура DNS             | 4 |
| Принцип работы DNS-серверов |   |
| Заключение                  |   |
| Источники                   |   |

### Введение

Интернет — это бесчисленное количество физических устройств (серверов, компьютеров, планшетов и т.д.), связанных между собой в сеть. Любой сайт в интернете по факту находится на физическом устройстве. Каждое устройство имеет свой уникальный номер — IP-адрес вида 123.123.123.

Чтобы попасть на сайт, нужно знать IP-адрес устройства, на котором расположен этот сайт. А теперь представьте, сколько сайтов в день вы посещаете и сколько цифр вам пришлось бы запомнить. Конечно, это нереально. Поэтому для удобства работы в Интернете в 80-х годах была создана система доменных имен — DNS (Domain Name System). Смысл её в том, что каждому цифровому IP-адресу присваивается понятное буквенное имя (домен). Например, IP-адресу сервера 194.58.116.30 соответствует домен reg.ru. Когда вы вводите в браузере доменное имя, сервера DNS автоматически преобразуют его в IP-адрес. Домен за доли секунды переводится в IP-адрес DNS-системой, и вы попадаете на нужный сайт.

Таким образом, DNS — это система, которая позволяет браузеру найти запрошенный пользователем сайт по имени домена.

### Архитектура DNS

DNS (Domain Name System - система доменных имен) представляет собой распределенную систему хранения и обработки информации о доменных зонах. Она необходима, в первую очередь, для соотнесения IP-адресов устройств в сети и более адаптированных для человеческого восприятия символьных имен (рис. 1). Предоставление информации об IP-адресах хостов по символьному адресу - не единственная задача DNS.

Система работает с разными типами ресурсных записей, позволяющими

реализовывать весьма широкий круг задач: переадресация между доменными именами, балансировка нагрузки между хостами, привязка специфических сервисов (напр., эл. почты) к домену [4].



Рис. 1: Принцип работы DNS

#### Ключевыми понятиями DNS являются:

- 1. Домен (англ. domain «область») узел в дереве имён, вместе со всеми подчинёнными ему узлами (если таковые имеются), то есть именованная ветвь или поддерево в дереве имён. Структура доменного имени отражает порядок следования узлов в иерархии; доменное имя читается слева направо от младших доменов к доменам высшего уровня (в порядке повышения значимости): вверху находится корневой домен (имеющий идентификатор «.»(точка)), ниже идут домены первого уровня (доменные зоны), затем домены второго уровня, третьего и т. д. (например, для адреса ru.wikipedia.org. домен первого уровня org, второго wikipedia, третьего ru). DNS позволяет не указывать точку корневого домена.
- <u>2. Поддомен</u> (англ. subdomain) подчинённый домен (например, wikipedia.org поддомен домена org, a ru.wikipedia.org домена wikipedia.org). Теоретически такое деление может достигать глубины 127 уровней, а каждая метка может содержать до 63 символов, пока общая длина вместе с точками не достигнет 254 символов. Но на практике регистраторы доменных имён используют более

строгие ограничения. Например, если у вас есть домен вида mydomain.ru, вы можете создать для него различные поддомены вида mysite1.mydomain.ru, mysite2.mydomain.ru и т. д.

- <u>3. DNS-сервер</u> специализированное ПО для обслуживания DNS, а также компьютер, на котором это ПО выполняется. DNS-сервер может быть ответственным за некоторые зоны и/или может перенаправлять запросы вышестоящим серверам.
- <u>4. DNS-клиент</u> специализированная библиотека (или программа) для работы с DNS. В ряде случаев DNS-сервер выступает в роли DNS-клиента.

Система DNS содержит иерархию DNS-серверов, соответствующую иерархии зон. Каждая зона поддерживается как минимум одним авторитетным сервером DNS на котором расположена информация о домене [4].

#### Выделим основные характеристики DNS-технологии:

- 1. Хранение и управление данными распределенного характера. То есть отдельный DNS-сервер хранит только информацию по делегированным ему доменам.
- 2. Кэширование данных. При помощи кэширования ускоряется загрузка нужной информации с сервера. Ведь при обращении к любому ресурсу (даже при запросе внутренних страниц) серверы проверяют связь домена и IP-адреса. Но если запрашиваемый ресурс расположен, допустим, в другой точке мира, то скорость его загрузки может быть довольно медленной. Например, пользователь регулярно делает запросы на ресурс, который находится в другом государстве. Расположенный ближе всего к пользователю DNS-сервер кэширует данные о ресурсе и при следующим запросе выдает их клиенту максимально быстро. Источником кэширования, из которого поступают данные о сайте, являются первичные и вторичные DNS-серверы. Для уменьшения уровня нагрузки DNS-сервер может хранить некоторое время определенное количество информации о других, не делегированных ему доменах.
- 3. Резервирование. Несколько изолированных логически и физически DNSсерверов хранят и обрабатывают информацию об одних и тех же узлах. Благодаря такому подходу обеспечивается доступность информации даже при сбое одного или нескольких серверов.

4. Иерархическая структура. База доменных имен организована по принципу иерархии: корневой домен расположен на верхнем уровне, к которому примыкают домены первого уровня, к ним присоединяются домены второго уровня и т.д. [3].

Домен представляет собой именованную ветвь в дереве имен, включающую в себя сам узел (напр., домен первого уровня ".com"), а также подчиненные ему узлы (напр., домен второго уровня "example.com", домен третьего уровня "mail.example.com" и т.д.). Для обозначения иерархической принадлежности доменных имен принято использовать понятие "уровень" - показатель положения узла в дереве доменов. Чем ниже значение уровня, тем выше иерархическое положение домена (рис. 2) [1].



- ".ru" домен первого (верхнего) уровня
- "example.com" домен второго уровня
- "mail.example.com" домен третьего уровня Этот список можно продолжать



Рис. 2: Иерархическая структура

#### Типы служб DNS

- 1. Авторитативный DNS-сервис. Авторитативный DNS-сервис предоставляет механизм обновления, используемый разработчиками для управления публичными именами DNS. Она отвечает на запросы к DNS, преобразуя доменные имена в IP-адреса, чтобы обеспечить взаимодействие компьютеров между собой. Авторитативный DNS-сервис полностью отвечает за домен и предоставляет информацию об IP-адресах в ответ на запросы рекурсивных DNS-серверов.
  - 2. Рекурсивный DNS-сервис. Обычно клиенты не отправляют запросы

напрямую к авторитативным DNS-сервисам. Вместо этого они взаимодействуют с другим DNS-сервисом, который называется преобразователь имен или рекурсивный DNS-сервис. Рекурсивный DNS-сервис похож на управляющего в отеле: сам он не хранит записи DNS, но действует в качестве посредника, который может достать нужную информацию для вас. Если рекурсивный DNS-сервис хранит информацию в кэше или постоянном хранилище в течение определенного времени, тогда он отвечает на DNS-запрос, возвращая информацию об источнике или IP-адрес. Если он не хранит эту информацию, он передает запрос в один или несколько авторитативных DNS-серверов [4].

#### Основные типы ресурсных записей

Ресурсная запись (RR - Resource Record) - единица хранения и передачи информации в DNS, включающая в себя следующие элементы (поля):

- Имя (Name) имя домена, к которому относится запись
- TTL (Time To Live) допустимое время хранения записи неответственным сервером
- Тип (Туре) параметр, определяющий назначение и формат записи в поле данных (Rdata)
- Класс (Class) тип сети передачи данных (подразумевается возможность DNS работать с типами сетей, отличных от TCP/IP)
  - Длина поля данных (Rdlen)
  - Поле данных (Rdata) содержание и формат поля зависят от типа записи [1].

Ниже представлены типы dns записей, используемые чаще всего:

- A (IPv4 Address Record адресная запись) связывает доменное имя с IPv4адресом хоста
- AAAA (IPv6 Address Record) связывает доменное имя с IPv6-адресом хоста (аналогично А-записи)
- CNAME (Canonical Name Record каноническая запись имени) используется для перенаправления на другое доменное имя

- MX (Mail Exchange почтовый обменник) ссылается на почтовый сервер, обслуживающий домен
- NS (Name Server сервер имен) ссылается на DNS-сервер, ответственный за домен
- ТХТ текстовое описание домена. Зачастую требуется для выполнения специфических задач (например, подтверждения права собственности на домен при привязке его к почтовому сервису)
- PTR (Point to Reverse запись указателя) связывает ір-адрес машины с доменом, используется преимущественно для проверки сторонними почтовыми сервисами отправляемых через эту машину электронных писем на отношение к домену, указанному в параметрах почтового сервера. При несоответствии этих параметров письмо проверяется более тщательно по другим критериям [1].

### Принцип работы DNS-серверов

- 1. Когда вводится в строке браузера доменное имя, например, FAQ-REG.RU, браузер ищет на вашем локальном компьютере файл hosts. В нём задаётся соответствие домена IP-адресу. Допустим, в этом файле есть запись для введённого домена. Что это значит? Что сайт откроется сразу (стрелка 9). Если же записи нет, браузер сформирует DNS-запрос к интернет-провайдеру (стрелка 1), чтобы тот нашёл IP-адрес домена.
- 2. У каждого интернет-провайдера есть локальные (кеширующие) DNS-серверы. После получения запроса провайдер ищет в своём кеше запись о соответствии требуемого домена IP-адресу. Если такая запись есть, браузер получит IP-адрес (стрелка 8). По этому адресу браузер обратится к хостингу, на котором расположен сайт, и пользователю откроется нужная страница (стрелка 9). Если запись отсутствует, провайдер перенаправит DNS-запрос на корневые DNS-серверы (стрелка 2).
- 3. Корневые DNS-серверы хранят информацию только о DNS-серверах, ответственных за доменные зоны. Корневой DNS-сервер не может предоставить провайдеру информацию об IP-адресе домена FAQ-REG.RU. Зато он отправит IP-адрес DNS-сервера доменной зоны, в данном случае зоны .RU (стрелка 3).

- 4. Теперь у интернет-провайдера есть IP-адрес DNS сервера доменной зоны .RU. Поэтому он обращается к этому DNS-серверу и запрашивает IP-адрес домена (стрелка 4).
- 5. DNS-серверы зоны .RU хранят только информацию о DNS-серверах всех доменов в этой зоне, а не их IP-адреса. Поэтому DNS-серверы зоны подскажут интернет-провайдеру IP-адрес DNS-сервера домена FAQ-REG.RU (стрелка 5).
- 6. Интернет-провайдер получил IP-адрес DNS-сервера домена FAQ-REG.RU. Он обращается к DNS-серверу домена (например, к ns1.hosting.reg.ru) с запросом IP-адреса домена (стрелка 6).
- 7. После получения запроса DNS-сервер сначала проверяет, есть ли у него информация о домене FAQ-REG.RU и искомый IP-адрес для него. В случае успеха DNS-сервер отправит IP-адрес домена интернет-провайдеру (стрелка 7).
- 8. Интернет-провайдер получает IP-адрес домена и сохраняет его у себя в кеше. После этого он отправит браузеру результат DNS-запроса IP-адрес домена FAQ-REG.RU (стрелка 8).
- 9. Браузер обращается к хостингу по полученному IP-адресу (стрелка 9). Теперь пользователю открывается запрашиваемый сайт FAQ-REG.RU [2].



Рис. 3: Принцип работы DNS

## Заключение

DNS (Domain Name System) — это система доменных имён, которая связывает названия доменов с IP-адресами компьютеров, соответствующих этим доменам. Эта система включает в себя как регламентирующие документы, так множество DNS-серверов, работающих в интернете и сообщающих IP-адреса в ответ на запрос по доменным именам. Основой DNS является представление об иерархической структуре доменного имени изонах. Каждый сервер, отвечающий за имя, может делегировать ответственность за дальнейшую часть домена другому серверу.

#### Источники

- 1. 1cloud, П. о. (б.д.). *Статья: "Основы работы со службой DNS"*. Получено из https://1cloud.ru/help/dns/dns\_basics.
- 2. Reg.ru. (б.д.). *Что такое DNS простыми словами*. Получено из Российский регистратор доменных имен: https://help.reg.ru/hc/ru/articles/4408047119761
- 3. Sbercloud. (б.д.). *Статья: «как работает технологии DNS»* . Получено из Облачный провайдер услуг и сервисов sbercloud: https://sbercloud.ru/ru/warp/domain-name-system
- 4. Wikipedia. (б.д.). *Интернет-энциклопедия Wikipedia*. Получено из DNS: https://ru.wikipedia.org/wiki/DNS