PTE-574 Optimization Methods for Subsurface Resources Development

Well control optimization of an oilfield operated under waterflood

Mahammad Valiyev, PhD Student

Motivation

- Up to 15% of oil is recovered during primary recovery (source: US DOE)
- The use of secondary recovery methods is thus inevitable (waterflood the most common approach)
- Still, overall recovery from primary & secondary methods is 10-50%
- More than 50% of oil is left behind
- Among many possible solutions, well control optimization is relatively cheap, widely applicable solution for further optimization of the recovery

Primary, secondary, tertiary recovery (from petgeo.weebly.com)

Well control optimization

Basic idea: Given a reservoir simulation model for the system, adjust controllable variables of the wells to optimize reservoir performance

Reservoir simulation model (e.g. blackoil, compositional)

Decision/Control variables (e.g. well rates, BHPs)

Objective function (e.g. NPV, oil recovery, sweep efficiency)

Optimization algorithm (e.g. global, local) and constraints

Building blocks for well control optimization

Reservoir model

- Model shape: 60x220x1 (layer of SPE 10 model)
- Fluid phases: oil and water (incompressible system)
- Simulated reservoir lifecycle: 10 years
- Number of wells: 4 producers, 2 injectors (all vertical)

Permeability distribution $(k_x = k_y)$ (log mD)

Initial oil saturation distribution

Optimization formulation and details

- Problem type: nonlinear constrained optimization with bound constraints
- Objective function: NPV
- Decision variables:
 - Control frequency: once per year
 - BHP for producers (4x10): 40 variables
 - Injection rate for injectors (2x10): 20 variables
 - 60 variables in total
- Constraints (bound constraints):
 - Injectors 100-700 stb/day
 - Producers 500-4500 psia
- Algorithm: interior point (suitable for large, sparse problems (faster than SQP))
 Gradient calculation method: adjoint formulation
- Stop criteria: 50 iterations

Results

 7.9 million USD of incremental NPV (9.4% relative increase) was achieved after optimizing well controls

Results

- If only constraints are upper and lower bounds on the control, well control optimization problem will sometimes have bangbang optimal solutions (Zadvliet et al., 2007)
- No bang-bang control is observed (transitions between controls are mostly gradual)

Bang-bang control u_i (Zadvliet et al., 2007)

Base case control trajectory

Optimized control trajectory

Results

Oil saturation distribution base case

Oil saturation distribution optimized case

Conclusion and further work

Conclusion

- Optimized controls lead to 7.9 million USD of incremental NPV (9.4% relative increase)
- No bang-bang control has been observed (transitions between controls are gradual)
- Optimized controls lead to a faster recovery (no significant change in fluid flow paths

Further work

- Different optimization algorithms with a range of parameter settings can be tested
- Variable control steps can be used

PTE-574 Optimization Methods for Subsurface Resources Development

Well control optimization of an oilfield operated under waterflood

Mahammad Valiyev, PhD Student

