4-1 某发明者自称已设计出一台在 540 K 和 300 K 的热源之间循环工作的热机,该热 机从高温热源每吸收 1 000 J 的热量可作出 450 J 的净功。他的设计合理吗?

由克劳休斯不等式得

$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = \frac{1000}{540} + \frac{1000 - 450}{300} = 0.0185 \text{ J/K} > 0$$

不符合克劳休斯不等过,即设计不合理

- 4-3 某可逆热机工作在温度为 150 ℃的高温热源和温度为 10 ℃的低温热源之间,
 - (1) 热机的热效率为多少?
- (2) 当热机输出的功为 2.7 kJ 时,从高温热源吸收的热量及向低温热源放出的热量各
- (3) 如将该热机逆向作为热泵运行在两热源之间,热泵的供热系数为多少? 当工质从温 度为 10 ℃的低温热源吸收 4.5 kJ/s 的热量时,要求输入的功率为多少?

(1)
$$\eta = \frac{T_1 - T_2}{T_1} = \frac{150 - 10}{423} = 0.331 = 33.1%$$

$$Q_1 = \frac{1}{2} \frac{1}{4} \frac{1}{4$$

(3)
$$T_1 = \frac{150 + 273}{150 - 10} = 3.02$$

$$Q_{1} = Q_{1}$$

$$Q_{1} = W \cdot \xi'$$

$$Q_{1} = (Q_{1} - Q_{2})\xi'$$

$$Q = (Q_{1} - 4.5) \times 3.01$$

$$Q = 6.73 \times 3/5$$

$$\psi$$

$$W = Q_1 - Q_2 = 6.13 - 4.5 = 223 kJ/s$$

		程的总熵变	ΔS	$=2mc_p \ln$	$2\sqrt{T_1T}$	2									
	; @ L L	温度:	T. =	T, + T ₂											
	166919	15412	ım -												
		Δ\$ ·	= DS, +	۵٤.											
				-	т										
			= mcplr	, 华+m	Cp 与产	•									
				(T, + T2)											
			= mcpl	$ \frac{T_{in}}{T_{i}} + m $ $ \frac{(T_{i} + T_{i})^{2}}{4T_{i}T_{i}} $											
			= mcpl	n (350)											
				, T.+T.											
			= 2mC	p la 7,47.	清江										
4	- 18 比热	窓为完值 F	摩尔宁	F执 宏 为 5	9 I/(mol	• K)	的理	相与人	木. 经	历了.	一可治	名			
	过程。已知									104 4	1 12	. 9			
1															
	(-	C = 12				le :		9 686							
	Cp -	C, = R C, = C,	- 17					4							
		$C_V = 2^c$	1-6 514				= 2	9							
		Cv = 20	686 J /	(mal·K)			- 14	.0 T	>r	1					
						∴ ì	主社	建为益	大型と	排					