CS & IT ENGINEERING

Medium Access Control
Lecture No-04

By- Ankit Doyla Sir

TOPICS TO BE COVERED

Multiple Access
Protocols-4

CSMA/CD

```
S.P --> sending Poxt --> Fox sending the data
L.P -- Listening Poxt -> Fox detecting the collision
```

CSMA/CD (Carrier Sense multiple access/Collision Detection)

- CSMA does not specify what station will do after collision.
- In CSMA if two station sense the channel to be idle and begin transmitting simultaneously, then both station data will be collide and still stations will keep on sending the data.
- Better way to save the time and bandwidth is to detect the collision and immediately stop transmission this strategy is used in CSMA/CD.
- In CSMA/CD station do not send the entire frame and then look for collision.
- In CSMA/CD transmitting the frame and detecting the collision are continuous process.
- Sender needs two different port i.e one for sending the data and another for detecting the collision.
- If collision is detected then sender immediately stop transmitting the data.

There is no need of acknowledgement, if collision is not detected then frame is definitely received by receiver.

No Copy:

Once frame is transmitted sender does dot maintain a copy of that frame because station is simultaneously sending the frame and detecting the collision, if collision is not detected that means receiver has successfully received the frame.

minimum France to detect the collision

Td > Pa

At 10:00 Am -> Both 'A and 'c' start transmitting the data
At 10:30 Am -> Collision
At 11:00 Am -> Both A & c receive Collision signal

10:00 Am → 'A' start transmitting the data

10:59: 59 Am → 'D' start transmitting the data

11:00 Am → collision

12:00 Pm → 'A' receive collision signal

To (Frame) > Poly (Frame) + To (JAM signar) + Poly (JAM signar) = JAM signar signar)

To (JAM signar) = JAM signar signar)

Bandwidth

minimum Frame size to Detect the Collision

minimum Frame size to Detect the collision in CSMA|CD

Problem Solving on CSMA/CD

Q.1

Building a CSMA/CD network running at 1 Gbps over a I-km cable with no repeaters. The signal speed in the cable is 200,000 km/sec. The minimum frame size is ____bits.

[GATE - 2005]

L > 2/* 1/km/ * tof bits | sec 200000 km | sec

L> 104 bits

L> 10000 bits

Q2.

Consider a CSMA/CD network that transmits data at a rate of 100 Whose (108 bits per second) over a 1 km (kilometer) cable with no repeaters. If the minimum frame size required for this network is 1250 bytes, what is the signal speed (km/sec) in the cable?

[GATE - 2015]

A. 8000

B. 10000

c. 16000

20000

B= 108 bits | suc, d=1 km, L=1250 Byte = 8x 1250 = 10,000 bits
U=7

Pw

Q.3

A network has a data transmission bandwidth of 20×10⁶ bits per second. It uses CSMA/CD in the MAC layer. The maximum signal propagation time from one node to another node is 40 microseconds. The minimum size of a frame in the network is _____ bytes.

B= 90× 106 bits sec B= 40 HSQC = 40 × 10 6 SQC Td > 2 x Pa + Td (JAM signal)

L > 2 x Pa

B x 9 x Pa

Introduction 10 Ethernet

IEEE 802 Project: IEEE started project 802, so that different LAN can be interconnected

IEEE 802.1 → Bridge LAN

IEEE 802.2 → LLC

✓ IEEE $802.3 \rightarrow Ethernet [CSMA/CD]$

IEEE 802.4 → Token bus

IEEE 802.5 →Token ring

IEEE 802.11 → Wireless: LAN (CSMA/CA)

IEEE 802.16 → Wireless WAN

Ethernet Characteristics

Pw

- 1. It offers connection less communication
- 2. No Flow control and packet level error control
- 3. No Acknowledgement
- 4. It uses Bus topology

Ethernet Characteristics

- 5/ Ethernet uses CSMA/CD as an Access control method to deal with the collision.
- 6. In Ethernet signal is Broadcasted by sender hence every station on LAN receive it
- 7. Ethernet uses Manchester encoding technique for converting data bits into signal

(Baud rate = $2 \times bit rate$)

Bit rate = 1/2 baud rate

