2017~2018学年北京海淀区中国人民大学附属中学高一上学期期末化学试卷

可能用到的相对原子质量:H-1;C-12;N-14;O-16;Na-23;Al-27;Cl-35.5;Fe-56

第 I 卷 (共40分)

1. 下列变化过程不涉及氧化还原反应的是(

A. A B. B

2. 下列化学事故处理方法正确的是()

- A. 酒精灯着火时可用水扑灭
- B. 有大量的氯气泄漏时,用肥皂水浸湿软布蒙面,向高处撤离
- C. 不慎将碱液溅到眼中,应立即用硫酸溶液冲洗,边洗边眨眼睛
- D. 金属钠通常保存在煤油中,着火时可以用水和二氧化碳灭火
- 3. 下列关于金属材料的说法中,不正确的是()
 - A. 合金只含金属元素

B. 钢是用量最大、用途最广的合金

C. 铝制饮料罐应回收利用

D. 青铜是铜合金中的一种

4. 下列关于胶体的叙述不正确的是()

- A. Fe(OH)₃ 胶体在一定条件下能稳定存在
- B. 胶体分散质的直径介于溶液和浊液分散质直径之间
- C. 用激光笔照射 NaCl 溶液和 Fe(OH)3 胶体时,产生的现象相同
- D. 胶体区别于其他分散系的本质特征是分散质粒子的直径在 $1 \text{nm} \sim 100 \text{nm}$ 之间
- **5.** 用 N_A 表示阿伏加德罗常数的数值,下列叙述正确的是()
 - A. $1 \mod \operatorname{Cl}_2$ 作为氧化剂得到的电子数为 N_A

B. 通常状况下, O_3 和 O_2 的混合气体 $16~\mathrm{g}$ 所含氧原子数为 N_A C. 标准状况下, 22.4 L H_2O 含有的分子数为 N_A D. 物质的量浓度为 1 mol/L 的 $MgCl_2$ 溶液中,含有 Cl^- 个数为 $2N_A$ 6. 将钠投入预先加入两滴酚酞的水中,可能观察到的现象包括: ①钠浮在水面上 ②钠沉在水底 ③钠熔化成小球 ④小球迅速游动逐渐减小,最后消失 ⑤发出嘶嘶的声音 ⑥溶液最 终呈红色 其中正确的一组是() A. 全部 B. (1)(3)(4)(5)(6) C. (2)(3)(4)(5)(6) D. (3)(4)(6) 7. 偏二甲肼 ($C_2C_8N_2$)是一种高能液态燃料,其燃烧产生的巨大能量可作为航天运载火箭的推动力。下列叙述正确的是() A. 偏二甲肼的摩尔质量为 60 g B. 标准状况下, 1 mol 偏二甲肼的体积约为 22.4 L C. 6 g 偏二甲肼分子中含有 0.1N_A 个 N₂ 分子 D. NA 个偏二甲肼分子的质量为 60 g 8. 焰火表演让中国传统节日"春节"更加辉煌、浪漫,这与高中化学中"焰色反应"知识相关,下列说法正确的是() A. 焰色反应是化学变化 B. 用稀盐酸清洗做焰色反应的铂丝 C. 焰色反应均应透过蓝色钻玻璃观察 D. 利用焰色反应可区分 NaCl 与 Na2CO3 9. "垃圾"是放错了位置的资源,应该分类回收。生活中废弃的铁锅、铝质易拉罐、铜导线等可以归一类加以回收,它们属于 () A. 有机物 B. 金属或合金 C. 氧化物 D. 矿物 **10.** 甲、乙、丙、丁分别是 $Al_2(SO_4)_3$ 、 $FeCl_2$ 、NaOH、 $BaCl_2$ 四种物质中的一种。若将丁溶液滴入乙溶液中,现有白色沉淀生 成,继续滴加则沉淀消失,丁溶液滴入甲溶液时,无明显现象发生。据此可推断丙物质是() A. $Al_2(SO_4)_3$ B. NaOH C. BaCl₂ D. FeCl₂ 11. 利用点滴板探究氨气的性质(如右图所示)。实验时向 NaOH 固体上滴几滴浓氨水后可以产生氨气, 立即用表面皿扣住点滴 板。下列对实验现象的解释正确的是() 温润红色 D ON -浓硫酸

选项	实验现象	解释
A	湿润红色石蕊试纸变蓝	NH3 极易溶于水
В	浓硫酸附近无白烟	NH3 与浓硫酸不发生反应

浓盐酸

C	浓盐酸附近产生白烟	NH3 与挥发出的 HCl 反应:
		$NH_3 + HCl = NH_4Cl$
D	氯化铝溶液变浑浊	NH3 与 AlCl3 溶液反应:
D	录化如冶仪文件出	$\mathrm{Al}^{3+} + 3\mathrm{OH}^{-} = \mathrm{Al}(\mathrm{OH})_{3} \downarrow$

C. C

A. A B. B C. C D. D

12. 右图表示的一些物质或概念间的从属关系中,不正确的是()

	X	Y	Z
A	酸	含氧酸	纯净物
В	置换反应	氧化还原反应	化学反应
C	胶体	分散系	混合物
D	强电解质	电解质	化合物

А. А В. В

13. 下列关于硅及其化合物的说法不正确的是()

A. 单质硅常用作半导体材料

B. 硅酸钠是制备木材防火剂的原料

C. 二氧化硅是制备光导纤维的基本原料

D. 硅酸可由二氧化硅与水直接反应制得

D. D

14. 下列离子方程式书写正确的是()

A. 钠与水: $2Na + 2H_2O = 2Na^+ + 2OH^- + H_2 \uparrow$

B. NO_2 与水的反应: $3NO_2 + H_2O = 2NO + H^+ + NO_3^-$

C. $CaCO_3$ 与稀盐酸: $CO_3^{2-} + 2H^+ = CO_2 \uparrow + H_2O$

D. $FeCl_3$ 溶液中加入足量的氨水: $Fe^{3+} + 3OH^- = Fe(OH)_3 \downarrow$

15. 下列叙述不正确的是(

A. A

В. В

配制 0.10 mol/L NaOH 溶液

苯萃取碘水中的 I₂ 分出水层后的操作(苯的密度小于

除去 CO 中的 CO2

碳酸氢钠受热分解

17. 常温下,下列各组离子在指定溶液中一定能大量共存的是()

A. pH = 1 的溶液中: HCO_3^- 、 SO_4^{2-} 、 K^+ 、 Cl^-

B. 遇酚酞变红的溶液中: NO₃、Na⁺、AlO₂、K⁺

C. $c(\text{Fe}^{3+}) = 1 \text{ mol} \cdot \text{L}^{-1}$ 的溶液中: H^+ 、 SCN^- 、 Cl^- 、 NH_4^+

D. 无色透明溶液中: K⁺、SO₄²⁻、Na⁺、MnO₄⁻

18. 某混合气体中可能含有 Cl_2 、 O_2 、 SO_2 、NO、 NO_2 中的两种或多种气体。现将此无色透明的混合气体通过品红溶液后,品 红溶液褪色,把剩余气体通入空气中,很快变为红色。对于原混合气体成分的判断中正确的是()

- A. 肯定有 SO_2 和 NO B. 可能有 O_2 和 NO_2 C. 可能有 Cl_2 和 O_2
- D. 肯定只有 NO

19. 下列实验装置图或实验操作正确的是(

Α.

制备氢氧化亚铁并观察其颜色

B.

实验室制氨气

干燥氨气

D.

浓硫酸稀释

20. 下述实验中均有红棕色气体产生,对比分析所得结论不正确的是()

A. 由①中的红棕色气体,推断产生的气体—定是混合气体

中含有氯离子的方法是 _____。

- B. 红棕色气体不能表明②中木炭与浓硝酸发生了反应
- C. 由③说明浓硝酸具有挥发性, 生成的红棕色气体为还原产物
- D. ③的气体产物中检测出 CO_2 , 由此说明木炭—定与浓硝酸发生了反应

第Ⅱ卷

21.	①碳酯	後氢钠、②二氧化硅、③过氧化钠、④HCl 是常见的物质。请回答下列问题。
	(1)	上述 4 种物质中属于盐的是;它可治疗胃酸($0.2\%\sim0.4\%$ 的盐酸)过多,反应的离子方程式
		为。
	(2)	玛瑙的主要成分是;它与氢氧化钠溶液反应的化学方程式。
	(3)	写出过氧化钠与 ${ m CO_2}$ 反应的化学方程式,用单线桥或双线桥标明该反应电子转移的方向和数
		目。
	(4)	写出 HCl 的电离方程式
		$200~\mathrm{mL}~1~\mathrm{mol/L}$ 的盐酸,恰好使混合物完全溶解,放出 $448~\mathrm{mL}$ (标况下)的气体。所得溶液中加入 KSCN 溶
		液无血红色出现,混合物中铁元素的质量分数为。
22	与与国	3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

中的病菌。但是,由于氯气贮运不方便,且具有一定的危险性,目前正逐渐被其他性能优越的消毒产品所替代。请回答:

(1) 氯气是一种 ______ 色的气体; 氯气与水反应的化学方程式为 ________; 检验饱和氯水

(2) 84 消毒液与氯气相比具有贮运方便等优点,用氯气与烧碱溶液反应制备84 消毒液的离子方程式

为 _____

一位同学设计了一套用浓盐酸和 KMnO4 固体制取少量氯气并比较氯气与碘单质的氧化性强弱的微型装置(如右 图)。 浓盐酸 湿润淀粉碘 吸收剂 高锰酸钾 ① 下列溶液能吸收 Cl₂ 的是 (填字母序号)。 A. 饱和食盐水 B. 饱和 Na₂SO₃ 溶液 C. 饱和 NaOH 溶液 D. 浓硫酸 ② 能说明 Cl₂ 的氧化性强于 I₂ 的实验现象是 ____ (4) 二氧化氯是目前国际上公认的最新一代的高效、广谱、安全的杀菌、保鲜剂。我国科学家研发了用氯气和亚氯 酸钠 ($NaClO_2$) 固体制备二氧化氯的方法,其化学方程式为 ______; 用 ClO_2 处理泄漏的 氰化钠 (NaCN) ,得到无毒的 NaCl、N2 和 CO2 ,若处理含 NaCN $4\times 10^{-5}\,\mathrm{mol/L}$ 的废水 $1000\mathrm{L}$,至少需 要 ClO₂ 的质量为 _____ g。 **23.** 某工厂的废金属屑中主要成分为 Cu、Fe 和 Al , 此外还含有少量 Al_2O_3 和 Fe_2O_3 , 该厂用上述废金属届制取新型高效水处 理剂 Na₂FeO₄ (高铁酸钠)等产品,过程如下: I. 向废金属屑中加入过量的 NaOH 溶液,充分反应后过滤; Π . 向 I 所得固体中加入过量稀 H_2SO_4 , 充分反应后过滤; \coprod . 向工所得固体中继续加入热的稀 $\mathrm{H}_2\mathrm{SO}_4$,同时不断鼓入空气,固体溶解得 CuSO_4 溶液; IV (1) 步骤 I 中 Al 与 NaOH 溶液的反应化学方程式为 ________; 另一种与 NaOH 溶液反应的氧化 物是 _____; 该氧化物属于 ____(填"碱性","酸性"或"两性氧化物")。 (2) 步骤Ⅱ所得的滤液中加入 KSCN 溶液无明显现象,表明滤液中不存在 _____(填离子符号);用离子方程式解释 其可能的原因 ___ (3) 步骤工所得硫酸亚铁滤液经进一步处理可制得 Na₂FeO₄, 流程如下: i H₂O₂ → 过滤 Fe(OH)₃固体 NaClO/NaOH 含Na₂FeO₄的溶液 该流程有关反应中属于氧化剂的有 _____。

24. 某化学兴趣小组为探究 SO_2 的性质,按下图所示装置进行实验。

達	<i>⟨</i> ⟨ <i>⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨⟨</i>	下万	旧五	
1音		N-91	別	

(1)	装置 A 中盛放浓硫酸的仪器名称是; A 中亚硫酸钠和浓硫酸产生二氧化硫的化学方程式	
	是。	
(2)	实验过程中,装置 B、C 中发生的现象分别是 和产生淡黄色沉淀;这现象分别说明 SC)2
	有的性质是和。	
(3)	装置 D 的目的是探究 SO ₂ 与品红作用的可逆性,请写出实验操作及现象	; 尾
	气可采用 溶液吸收。	
(4)	装置 B 中反应的离子方程式是。	

25. 某小组对 Cu 与浓 HNO3 的反应进行研究。记录如下:

	装置	药品	现象
实验 1	/ 1		Cu 片消失,得到绿色溶液 A,放置较长时间后得到蓝色溶液 B,

- (1) I. Cu 与浓 HNO3 反应的化学方程式是 ______
 - Ⅱ.探究实验 I 中溶液 A 呈绿色而不是蓝色的原因。

甲认为溶液呈绿色是由 Cu^{2+} 离子浓度较大引起的。

乙根据实验现象记录,认为此观点不正确,乙的依据是_____。

(2) 乙认为溶液呈绿色是由溶解的 NO2 引起的。

- (3) 为深入研究, 丙查阅资料, 有如下信息:
 - i. 溶有 NO2 的浓 HNO3 呈黄色; 水或稀 HNO3 中通少量 NO2 溶液呈无色。
 - ii . NO2 溶于水 , 会发生反应 $2NO_2 + H_2O = HNO_3 + HNO_2$;

HNO2 是弱酸,只能稳定存在于冷、稀的溶液中,否则易分解。

iii . NO_2^- 能与 Cu^{2+} 反应: Cu^{2+} (蓝色) + $4NO_2 \implies Cu(NO_2)_4^{2-}$ (绿色)

据此,丙进一步假设:

①可能是 A 中剩余的浓 $\mathrm{HNO_3}$ 溶解了 $\mathrm{NO_2}$ 得到的黄色溶液与 $\mathrm{Cu(NO_3)_2}$ 的蓝色溶液混合而形成的绿色;②可能是 A 中生成了 $\mathrm{Cu(NO_2)_4^{2-}}$ 使溶液呈绿色。丙进行如下实验:

	操作	现象
	${ m i}$. 配制与溶液 ${ m A}$ 的 $c({ m H}^+)$ 相同的 ${ m HNO}_3$ 溶液 , 取	溶液呈黄色
实验 3	20.0 mL , 通入 NO ₂ 气体	/ / / / / / / / / / / / / / / / / / /
文 孤 3	ii . 再加 0.01 mol Cu(NO3)2 固体搅拌至完全溶解	溶液变为绿色
	iii.加水稀释	溶液立即变蓝
	i . 向 20.0 mL 0.5 mol/L Cu(NO ₃) ₂ 蓝色溶液中通入少	溶液呈绿色
实验 4	量 NO_2	付似主球店
大 孤 4	ii . 加入稀 H ₂ SO ₄	有无色气体放出,遇空气变红棕
		色,溶液很快变为蓝色

(1)亚硝酸分解的化学方程式是	•
② 根据实验得出结论:实验1中溶液	A 呈绿色的主要原因
是	,请依据实验现象阐述理
由 ·	

- (4) 上述 $0.01 \, \mathrm{mol}$ 铜完全溶于硝酸,若测得产生氮的氧化物 NO_{\times} NO_{2} NO_{2} No_{2} No_{2} No_{3} No_{4} 混合气体共 $0.015 \, \mathrm{mol}_{3}$ 。该混合气体的平均相对分子质量可能是 ______。
 - A. 30
 - B. 46
 - C. 52
 - D. 65