1. Фундамент вещественных чисел и отображений

Этот конспект закладывает основу всего математического анализа. Мы строим мост от интуитивных представлений о числах к строгой математической структуре, используя формулировку аксиомы непрерывности.

1. Действительные числа: аксиоматический подход

Мы все интуитивно знакомы с вещественными числами (числовая прямая). Но математике нужна строгая основа. Мы определяем множество **R** (действительные числа) как множество, удовлетворяющее трем группам аксиом.

1.1. Аксиомы поля (как числа складываются и умножаются)

Существуют операции сложения + и умножения *, такие что для любых $a,b,c\in R$:

- **A1.** a + b = b + a (коммутативность сложения)
- **A2.** (a+b)+c=a+(b+c) (ассоциативность сложения)
- **А3.** Существует **0** (ноль): a + 0 = a для любого a.
- **А4.** Для любого a существует -a (противоположный элемент): a+(-a)=0.
- **M1.** a*b = b*a (коммутативность умножения)
- **M2.** (a*b)*c = a*(b*c) (ассоциативность умножения)
- **M3.** Существует **1** (единица), $1 \neq 0$: a * 1 = a для любого a.
- **М4.** Для любого $a \neq 0$ существует a^{-1} (обратный элемент): $a * a^{-1} = 1$.
- Д. a*(b+c) = a*b + a*c (дистрибутивность).

Читуиция: Эти аксиомы описывают привычные правила арифметики. Они работают и для рациональных чисел Q. Значит, нам нужно что-то еще, чтобы отличить R от Q.

1.2. Аксиомы порядка (как числа сравниваются)

Существует отношение < (меньше), которое для любых $a,b,c\in R$:

- **О1.** Либо a < b, либо b < a, либо a = b (трихотомия).
- **О2.** Если a < b и b < c, то a < c (транзитивность).

- **О3.** Если a < b, то a + c < b + c (согласованность со сложением).
- **О4.** Если a < b и 0 < c, то a * c < b * c (согласованность с умножением).

√ Интуиция: Порядок позволяет расположить числа на прямой. Множество Q тоже упорядочено. Нам все еще не хватает главного.

1.3. Аксиома непрерывности (полноты)

Это ключевая аксиома, которая отличает **R** от **Q**. Она гласит, что числовая прямая не имеет «дырок».

• Формально: Пусть A и B – непустые подмножества \mathbf{R} . Будем говорить, что A располагается левее B, если для любых $a \in A$ и $b \in B$ выполняется неравенство $a \le b$.

Тогда аксиома непрерывности утверждает:

```
orall A, B \subset \mathbb{R}, A 
eq \varnothing, B 
eq \varnothing : (A располагается левее B) \Rightarrow \exists c \in \mathbb{R} : a \leq c \leq b, \quad orall a \in A, orall b B.
```

То есть, между любыми двумя непустыми множествами, одно из которых лежит левее другого, существует число c, их разделяющее.

Интуиция: Если одно множество лежит целиком слева от другого, то между ними нельзя втиснуть "дырку"; всегда найдется число, заполняющее промежуток. Эта аксиома гарантирует полноту вещественной прямой.

2. Важное следствие: Лемма Архимеда

Прежде чем перейти к точным граням, докажем фундаментальный факт, который часто используется в анализе.

Лемма (Архимеда): Для любого вещественного числа $x \in R$ существует натуральное число $n \in N$ такое, что n > x.

Доказательство (от противного):

1. Логическая схема доказательства:

2. Доказательство:

Предположим, что лемма неверна. Тогда существует такое число $x \in R$, что для всех натуральных $n \in N$ выполняется $n \le x$. Это означает, что множество натуральных чисел **N** ограничено сверху.

Рассмотрим два множества:

- A = N (все натуральные числа).
- $B = \{y \in R : y > n \quad \forall n \in N\}$ (все числа, большие любого натурального).

Оба множества непусты ($1 \in A, x+1 \in B$ по нашему предположению). Кроме того, A располагается левее B по построению: любое натуральное n меньше любого $y \in B$ (иначе, если бы нашлось $y \in B$ и $n \in N$ такие, что $y \le n$, то y не могло бы быть больше всех натуральных чисел).

Применим аксиому непрерывности. Существует число $c \in R$ такое, что:

$$n \leq c \leq y \quad \forall n \in \mathbb{N}, orall y \in B.$$

Рассмотрим число c-1. Так как c-1 < c, то c-1 не может быть верхней границей для A (потому что c — наименьшая из верхних границ, как следует из неравенства $c \le y$ для всех $y \in B$). Значит, существует натуральное число $m \in N$ такое, что m > c-1. Но тогда m+1 > c. Однако m+1 — натуральное число, значит, $m+1 \in A$. Получаем, что элемент множества A оказался больше c, что противоречит условию $n \le c$ для всех $n \in A$.

Следовательно, наше предположение неверно, и лемма Архимеда доказана. ■

Читуиция: Какое бы большое число вы ни назвали, всегда найдется натуральное число, которое его больше. Это кажется очевидным, но строго следует из аксиомы непрерывности.

3. Точные верхняя и нижняя грани

Пусть $E \subset R$ — некоторое числовое множество.

• Определение: Число $M \in R$ называется верхней гранью множества E, если для любого $x \in E$ выполняется $x \leq M$. Множество, имеющее верхнюю грань, называется ограниченным сверху.

- **Аналогично:** Число $m \in R$ называется **нижней гранью**, если для любого $x \in E$ выполняется $x \ge m$. Множество, имеющее нижнюю грань, называется **ограниченным снизу**.
- \bigcirc *Интуиция:* Верхняя грань это "крышка" сверху для множества. Таких "крышек" может быть много (например, для отрезка [0,1] верхними гранями являются [0,1] нас интересует самая маленькая из них.
- Определение: Наименьшая из всех верхних граней множества E называется точной верхней гранью (supremum) и обозначается supE.
- Определение: Наибольшая из всех нижних граней множества E называется точной нижней гранью (infimum) и обозначается infE.
- **Критерий точной верхней грани:** Число $M = \sup E$ тогда и только тогда, когда:
 - 1. $\forall x \in E : x \leq M$ (M верхняя грань).
 - 2. $\forall \varepsilon > 0, \exists x_{\varepsilon} \in E : x_{\varepsilon} > M \varepsilon$ (никакое число меньшее M не является верхней гранью, так как мы всегда найдем элемент из E, который больше этого числа).

Теорема (о существовании и единственности точной верхней грани):

Всякое непустое ограниченное сверху множество действительных чисел имеет единственную точную верхнюю грань.

Доказательство:

1. Логическая схема доказательства:

2. Доказательство:

- **Существование:** Пусть E непустое ограниченное сверху множество. Рассмотрим два множества:
 - A = E (само множество).
 - B множество всех верхних граней множества E. Оно непусто, так как E ограничено сверху.

Покажем, что A располагается левее B. Действительно, по определению верхней грани, для любого $a \in A$ (т.е. $a \in E$) и для любого $b \in B$ (т.е. b — верхняя грань E) выполняется $a \le b$.

Применим аксиому непрерывности. Существует число $c \in R$ такое, что:

$$a \leq c \leq b \quad orall a \in A, orall b \in B.$$

Докажем, что это число c и является точной верхней гранью $\sup E$.

- *Проверим условие 1 критерия:* Левая часть неравенства ($a \le c$ для всех $a \in E$) означает, что c является верхней гранью множества E. Следовательно, $c \in B$.
- *Проверим условие 2 критерия:* Возьмем любое $\varepsilon > 0$. Число $c \varepsilon$ меньше c. Правая часть исходного неравенства ($c \le b$ для всех $b \in B$) означает, что c наименьший элемент множества B (наименьшая верхняя грань). Поэтому $c \varepsilon$ уже не принадлежит B, т.е. не является верхней гранью. Значит, найдется элемент $x_{\varepsilon} \in E$ такой, что $x_{\varepsilon} > c \varepsilon$.

Оба условия критерия выполнены, следовательно, $c = \sup E$.

- **Единственность:** Пусть $M_1 = \sup E$ и $M_2 = \sup E$. Предположим, что $M_1 \neq M_2$. Без ограничения общности, пусть $M_1 < M_2$. Так как M_2 точная верхняя грань, то для любого $\varepsilon > 0$ найдется $x \in E$ такой, что $x > M_2 \varepsilon$. Выберем $\varepsilon = M_2 M_1 > 0$. Тогда существует $x \in E$ такой, что $x > M_2 (M_2 M_1) = M_1$. Но это означает, что $x > M_1$, что противоречит тому, что M_1 является верхней гранью (поскольку верхняя грань должна быть не меньше всех элементов множества). Следовательно, предположение неверно, и $M_1 = M_2$. \blacksquare
- Читуиция: Эта теорема прямое следствие аксиомы непрерывности. Она гарантирует, что у любого разумного ограниченного сверху множества (например, множества значений функции) есть "самый верхний" предел.

4. Множества, отображения, композиция

4.1. Основные понятия

• **Множество** — совокупность элементов. $A \subset B$ (подмножество).

- Отображение (функция) $f: X \to Y$ правило, которое каждому элементу $x \in X$ (область определения) ставит в соответствие единственный элемент $y \in Y$ (область значений). y = f(x).
- ullet Образ множества: Если $A\subset X$, то $f(A)=\{f(x):x\in A\}\subset Y.$
- Прообраз множества: Если $B\subset Y$, то $f^{-1}(B)=\{x\in X: f(x)\in B\}\subset X.$

4.2. Свойства отображений

- Инъекция (отображение "вложение"): Разные элементы переходят в разные. Формально: если $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$. (Можно проверить так: $f(x_1) = f(x_2) => x_1 = x_2$).
 - Интуиция: Ничто не склеивается.
- Сюръекция (отображение "на"): Образ всего X совпадает со всем Y. Формально: f(X) = Y. То есть для любого $y \in Y$ найдется $x \in X$ такой, что f(x) = y.
 - *Интуиция:* Все элементы Y используются.
- **Биекция:** Отображение одновременно инъективно и сюръективно. Это взаимно однозначное соответствие между X и Y.

4.3. Композиция отображений

Если $f: X \to Y$ и $g: Y \to Z$, то можно построить новое отображение $g \circ f: X \to Z$ по правилу: $(g \circ f)(x) = g(f(x))$. *Интуцция*: Цепочка преобразований.

4.4. Обратное отображение

Если $f: X \to Y$ — биекция, то можно определить отображение $f^{-1}: Y \to X$, которое каждому $y \in Y$ ставит в соответствие тот единственный элемент $x \in X$, для которого f(x) = y.

• Важное свойство: $f^{-1} \circ f = id_X$ (тождественное отображение на X) и $f \circ f^{-1} = id_Y$.

Вопросы для самопроверки (Конспект 1)

- 1. Сформулируйте аксиому непрерывности в данной формулировке. Почему она гарантирует отсутствие "дырок" на числовой прямой?
- 2. Докажите, что если множество E имеет максимальный элемент $\max E$, то $\sup E = \max E$.
- 3. Пусть $E=\{1-rac{1}{n}:n\in N\}$. Найдите $\sup E$ и $\inf E$. Докажите свой ответ, используя критерий точной верхней грани.
- 4. Докажите, используя аксиому непрерывности, что для любого положительного числа $\varepsilon>0$ существует натуральное n такое, что $\frac{1}{n}<\varepsilon$ (следствие леммы Архимеда).
- 5. Приведите пример отображения $f: N \to N$, которое:
 - а) инъективно, но не сюръективно.
 - b) сюръективно, но не инъективно.
 - с) биективно.
- 6. Пусть f:X o Y и g:Y o Z биекции. Докажите, что $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.
- 7. **На понимание аксиом:** Можно ли на множестве рациональных чисел **Q** определить отношение порядка, удовлетворяющее аксиомам O1-O4? Выполняется ли для **Q** аксиома непрерывности? (Рассмотрите множества $A = \{x \in Q : x^2 < 2\}$ и $B = \{x \in Q : x^2 > 2\}$).