자연어처리 텍스트마이닝

©AdrienSIEG Embedding Static Word Embedding Contextualized Word Embedding Language Model (Paradigm) (Base Model) Word2Vec Glove seq2seq NMT model Two-layer biLSTM Transformer Decoder Fast Text AWD-LSTM **OTHERS** Unsupervised Semi-Supervised Unsupervised Unsupervised Supervised (Pre-Training) lda2Vec CoVe Elmo **ULMFiT** node2Vec Characters emb. Context2Vec CVT GPT2 **GPT BERT** Poincarré emb. all layers; with pre-trained layers + (Fine Tuning) various training tricks top task layer(s)

- Contextualized Word Embedding은 문맥에 따라 vector를 생성
- 같은 단어여도 문맥에 따라 다른 vector가 생성될 수 있음
- 대표적으로 ELMo, BERT, OpenAl GPT
- 이들의 특징은 같은 단어라도 문맥에 따라 다른 방식으로 표현(representation)

- Word2Vec의 Embedding은 단어 단위
- 각 단어의 one-hot-encoding vector가 W_T와 곱해져서 Word Vector를 얻게됨

- Contextualized Word Representation의 경우 문장을 입력 받아 각 단어에 대한 representation을 산출
- '문맥'에 의존적인 '단어의 의미'를 잡아내는 feature가 산출

Contextualized Word Representations

converts a sequence of words (more precisely, tokens) $w_1w_2...w_N$ to a series of d – dimensional vectors $e_1e_2,...e_N$

Output: series of d – dimensional vectors $e_1e_2, ... e_N$

deep neural network (e.g. deep bi-LSTM or deep-self-attention Nets) for extracting features

simple word (or token) embedding + (optional) positional embedding

- Contextualized Word Representation의 경우 문장을 입력 받아 각 단어에 대한 representation을 산출
- '문맥'에 의존적인 '단어의 의미'를 잡아내는 feature가 산출

관점	Word2Vec	Contextualized Word Representation
Input	단어 단위	문장 단위 (단어의 시퀀스)
Layer	(일반적으로) 단층	(일반적으로) 다계층
Output	해당 단어에 대한 Embedding	문장을 구성하는 각 단어에 대한 Embedding들

■ 단순한 단어 임베딩 예시

I play piano.

• 순환 신경망 언어 모델을 활용한 단어 임베딩 예시

• *좌우 문맥 고려*

임베딩 절차

BERT 까지

FIN INSIGHT Copyright FIN INSIGHT. All Right Reserved 가치를 높이는 금융 인공지능 실무교육

Tensor

Tensor Ranks, Shapes, and Types

```
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
```

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	••••

Tensor in NLP

sentence	vector representation
hi John	[[1,0,0,0], [0,1,0,0]]
hi James	[[1,0,0,0], [0,0,1,0]]
hi Deles	[[4

(3, 2, 4) 3d tensor!

hi John hi James hi Brian [[[1,0,0,0], [0,1,0,0], [0,0,1,0]], [[1,0,0,0], [0,0,0,1]]]

Tensor in Image

