

A quick introduction to Apache Spark

Joe Cauteruccio

www.linkedin.com/in/joecauterucciojr joecjr.com

Manager, Research Group – Data Science Team DigitasLBi

What is Spark

Spark is an, accessible, flexible, and speed-optimized cluster computing framework.

Accessible: utilize Spark from Python, Scala, Java

Flexible: Spark can play a role in production systems, **interactive** analysis and everything in between.

Speed: paradigm is designed to enable the fast iterative processing required for machine learning and analytics. Jobs can be run in Memory.

What is Spark

What about Hadoop?

What about Hadoop?

A platform for cluster computing:

- Provides a file-system HDFS
- Libraries needed to manage/support a cluster
- Manages computing resources

MapReduce

A programming paradigm for Data Processing:

Map Shuffle Reduce

A alternative framework for Data Processing:

- Iterative, Interactive, Fault Tolerant
- Has its own ecosystem surrounding it

Terminology

Driver – The master node side process responsible for defining your analytic tasks

Executor – The slave node side process responsible for doing the heavy work

RDD – **R**esilient **D**istributed **D**ataset. This is the main data object in Spark.

Transformations – (roughly) operations that change our data

Actions – (roughly) operations that return output

A simple example: Conversion Count

In Hive:

```
select site_id, count(*) from limited_activites where dt >= '2014-10-12' and dt <= '2014-10-18' and activity_sub_type = 'XXXXX'
```

In Spark:

```
activty_info = sc.textFile('PATH/2014-10-[0-3][0-9]')
transaction_info = activity_info.filter(lambda s: 'XXXX' in s).map(lambda x: (x.split(u'\ufffd')[9], 1)).reduceByKey(lambda x, y: x + y)
transaction_info.cache()
```


A Sample Spark Workflow

Establish Spark Context and Data Source

> sparkshell pyspark --master

SparkConf SparkContext HiveContext

sc.textfile()

Transform to Persisted or Cached Level

.sample()

.filter()
.map()

.leftOuterJoin()

.flatmap()

.cache()
.persist()

Apply Actions to inform or augment workflow

.reduceByKey()
.combineByKey()

.foreach()

.first() .take() .collect() Create Child RDDs from persisted RDDs

To destination process

A destination process...

Example: Visualizing National Orders

Search Conversions

Display Conversions

*Sorry, the data displayed here is fake...

Passing Functions to Map

```
def process_order(ord):
   me = ord.split('\x01')
   skus = re.search('u5=(.*);u3', me[0], re.IGNORECASE)
    if skus:
        skus = skus.group(1).split(',')
   qnty = re.search('u3=(.*);u1', me[0], re.IGNORECASE)
    if qnty:
        qnty = [int(q) for q in qnty.group(1).split(',')]
    info = (me[1], (me[len(me)-1], skus, qnty))
    return info
def process_trans(ord):
   me = ord.split(u'\ufffd')
   rec = (me[24], (me[13], me[21]))
    return rec
def process_skus(ord):
   me = ord.split('|')
   rec = [me[0], me[1], me[2]]
    return rec
```


Passing Functions to Map

```
# Process File 1
order_info = of_week_1.map(process_order)

# Process File 2
transaction_info = activity_info.filter(lambda s: 'XXXXXX' in s).map(process_trans)

# Join
full_trans_info = order_info.leftOuterJoin(transaction_info)
```


Mllib: Machine Learning Library

- Facilities for most common machine learning algorithms
- from pyspark.mllib.____ import ____
- RDDs + MLlib specific data types (Vectors, Arrays, Labeled)
- Definitely deserves its own talk!

https://spark.apache.org/docs/1.1.0/mllib-guide.html http://stanford.edu/~rezab/sparkworkshop/slides/xiangrui.pdf http://ampcamp.berkeley.edu/big-data-mini-course/movie-recommendation-with-mllib.html

Lastly a shameless plug...

Me

Joe Cauteruccio

I work for a magical Unicorn

DigitasLBiGlobal Digital Marketing and Technology
Company

www.digitaslbi.com

Resources and References

Zaharia, Et. al. Spark: Cluster Computing with Working Sets. *University of California*, *Berkley*. June 2010, http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf

Zaharia, Et. al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. *NSDI 2012*. April 2012,

http://www.cs.berkeley.edu/~matei/papers/2012/nsdi_spark.pdf

Karau, Et. Al. Learning Spark: Lightning-Fast Big Data Analytics. *O'Reilly Media*. June 2014, http://shop.oreilly.com/product/0636920028512.do

UC Berkley AMP Camp: http://ampcamp.berkeley.edu/

