Probabilité

Coralie RENAULT

25 janvier 2015

Exercice

Vous jouez à pile ou face avec un ami. Il parie pile, lance la pièce et fait pile. Quelle est la probabilitée qu'il soit un tricheur? On peut noter p la proportion de tricheur dans la pop

Exercice

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$. Calculer

$$E\left(\frac{1}{X+1}\right)$$

Exercice

Soit N et X_1, X_2, \ldots des variables aléatoires indépendantes à valeurs dans \mathbb{N} . On suppose que les variables X_1, X_2, \ldots suivent toutes une même loi de fonction génératrice G_X et on pose

$$S = \sum_{k=1}^{N} X_k$$

- a) Etablir $G_S(t) = G_N(G_X(t))$ pour |t| < 1
- b) On suppose que les variables admettent une espérance. Etablir l'identité de Wald

$$E(S) = E(N)E(X_1)$$

Exercice

Soit X et Y deux variables aléatoires indépendantes suivant des lois de Poisson de paramètres λ et μ .

Reconnaître la loi de X sachant X + Y = n.

Exercice

Une variable aléatoire X suit une loi binomiale de taille n et de paramètre p.

Quelle est la loi suivie par la variable Y = n - X?

Exercice

Soient X_1, \ldots, X_n des variables mutuellement indépendantes suivant une même loi d'espérance m et de variance σ^2 .

a) On pose

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Calculer espérance et variance de \bar{X}_n .

b) On pose

$$V_n = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

Calculer l'espérance de V_n .

Exercice

Soit X une variable aléatoire suivant une loi de Poisson de paramètre $\lambda > 0$.

a) Calculer

$$E(X(X-1)...(X-r+1))$$

b) Retrouver ce résultat par les fonctions génératrices.

Exercice

Un signal est diffusé via un canal et un bruit vient malheureusement s'ajouter à la transmission. Le signal est modélisé par une variable aléatoire discrète réelle S d'espérance m_S et de variance σ_S^2 connues. Le bruit est modélisé par une variable B indépendante de S d'espérance nulle et de variance $\sigma_B^2 > 0$. Après diffusion, le signal reçu est X = S + B.

Déterminer $a, b \in \mathbb{R}$ pour que Y = aX + b soit au plus proche de S i.e. tel que l'espérance $E((Y - S)^2)$ soit minimale.

Exercice

On suppose qu'à la roulette d'un Casino, on obtient la couleur noire avec la probabilité 1/2, la couleur rouge sinon (bref, on ne suppose pas de 0 vert...). Un joueur fortuné joue selon le protocole suivant :

- il mise initialement 1 brouzouf sur la couleur noire;
- s'il gagne, il arrête de jouer et empoche le double de sa mise.
- s'il perd, il double sa mise et rejoue.
- a) On suppose la fortune du joueur infinie.

Montrer que le jeu s'arrête presque sûrement. Déterminer l'espérance de gain du joueur.

- b) On suppose toujours la fortune du joueur infinie.
- Que se passe-t-il si au lieu de doubler, il décide de tripler sa mise lorsqu'il rejoue?
- c) Le joueur n'est en fait pas si fortuné qu'il le prétend : il ne possède que $2^n 1$ brouzoufs ce qui l'autorise à ne pouvoir jouer que n parties. Que devient son espérance de gain?

Exercice

On dit qu'une variable aléatoire X suit une loi binomiale négative de paramètres n et p si

$$X(\Omega) = \{n, n+1, \ldots\} \text{ et } P(X=k) = \binom{k-1}{n-1} p^n (1-p)^{k-n}$$

a) Soit X_1, \ldots, X_n des variables aléatoires indépendantes suivant toutes une loi géométrique de paramètre p.

Montrer que $X_1 + \cdots + X_n$ suit une loi binomiale négatives de paramètres n et p.

b) En déduire espérance et variance d'un loi binomiale négatives de paramètres n et p.

Exercice

Soient X et Y deux variables aléatoires à valeurs dans \mathbb{N} .

On suppose que la loi conjointe de X et Y vérifie

$$P(X = j, Y = k) = \frac{a}{j!k!}$$
 avec $a \in \mathbb{R}$

- a) Déterminer la valeur de a.
- b) Les variables X et Y sont elles indépendantes?

Exercice

Soient X et Y deux variables aléatoires indépendantes géométriques de paramètres p et q. Calculer l'espérance de $Z = \max(X, Y)$.

Exercice

Exercice (Théorème de Bernstein)

Soit $f:[0,1]\to\mathbb{C}$ une fonction continue, ω son module de continuité, i.e $\omega(h)=\sup\{|f(u)-$ |f(v)|; $|u-v| \leq h$. Pour $n \geq 1$, on considère le polynôme $B_n(f,x) = B_n(x) = \sum_{k=0}^n {n \choose k} x^k (1-x)^k$ $(x)^{n-k}f(\frac{k}{n})$, le *n*-ième polynôme de Bernstein de f. On va montrer que :

1. B_n converge uniformément vers f sur [0,1].

Pour cela:

- Soit $x \in [0,1]$ et soit (X_n) une suite de variables aléatoires indépendantes et identiquement distribuées de loi $\mathcal{B}(x)$. Déterminer la loi de $S_n = \sum_{k=1}^n X_k$.
- Montrer l'inégalité de Tchébytchev : Soit X une variable aléatoire réelle alors montrer que:

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \frac{Var(X)}{t^2}$$

Soient (X_1, X_2, \dots, X_n) des variables aléatoires réelles indépendantes et identiquement distribuées tel que $Var(X_1)$ existe. Montrer que :

$$Var(S_n) = nVar(X_1)$$

- Calculer $\mathbb{E}[f(\frac{S_n}{n})]$ Montrer que $\forall \delta > 0$ on a :

$$|f(x) - B_n(x)| \le \omega(\delta) + 2||f||_{\infty} \mathbb{P}(|x - \frac{S_n}{n}| \ge \delta)$$

Conclure

Exercice

Soit X et Y deux variables aléatoires discrètes indépendantes.

On suppose que celles-ci suivent une même loi géométrique de paramètre p.

- a) Déterminer P(X > n) pour $n \in \mathbb{N}$.
- b) En déduire la loi de $Z = \min(X, Y)$.
- c) Observer que la loi de Z est géométrique.