		Note	
		I	Π
Name Vorname	$\begin{vmatrix} 1 \end{vmatrix}$		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
	$\begin{vmatrix} 1 \\ 4 \end{vmatrix}$		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Probeklausur			
Mathematik 4 für Physiker	7		
(Analysis 3)	8		
,			
Prof. Dr. M. Wolf	\sum		
15. Februar 2017, 11:00 – 12:30 Uhr			
Hörsaal: Reihe: Platz:	I	 Erstkorrek	tur
Hinweise:	177		
Überprüfen Sie die Vollständigkeit der Angabe: $f 8$ Aufgaben	II		
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt			
Erreichbare Gesamtpunktzahl: 69 Punkte			
Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen.			
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis			

Vorzeitig abgegeben um

Besondere Bemerkungen:

1. Volumenberechnung

[8 Punkte]

Berechnen Sie für a>0 das Volumen des von der zylindrischen Fläche

$$\{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 2ax, 0 \le x \le 1\}$$

aus dem Rotationsparaboloid

$$\{(x, y, z) \in \mathbb{R}^3 | y^2 + z^2 \le 4ax, 0 \le x \le 1\}$$

herausgeschnittenen Körpers in \mathbb{R}^3 .

HINWEIS: Das Ergebnis hängt von $2a\alpha:=\min\{1,2a\}$ ab.

2. Oberflächenintegral

[8 Punkte]

Gegeben sei das Vektorfeld

$$v(x, y, z) = (x + y + \sqrt{z}, x - y - z^{5/2}, z + 2)$$

auf \mathbb{R}^3 . Berechnen Sie das Oberflächenintegral

$$\int_{S} \langle v(x, y, z), \nu(x, y, z) \rangle dS$$

über die Rotationsfläche

$$S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = e^{-2z} \text{ und } 0 \le z \le 1\},$$

wobei ν das von der Rotationsachse weg zeigende Einheitsnormalenfeld sei. HINWEIS: S ist nicht der Rand einer geschlossenen, kompakten Teilmenge von \mathbb{R}^3 .

${\it 3. \ Oberfl\"{a} chenintegral}$

[9 Punkte]

Berechnen Sie $\int_S \langle \operatorname{rot} F(x), \nu(x) \rangle dS$ jeweils einmal direkt und einmal unter Verwendung des Satzes von Stokes, für

- (a) S die obere Hälfte der Einheitssphäre in \mathbb{R}^3 , ν nach oben und F(x)=(-y,x,0).
- (b) $S = \{x \in \mathbb{R}^3 | x^2 + y^2 = 1, 0 < z < 1\}, \, \nu \text{ nach außen und } F(x) = (yz, x^2, 1).$

4. Uneigentliches Integral

[10 Punkte]

Berechnen Sie das folgende Integral:

$$\int_{-\infty}^{\infty} \frac{e^x}{e^{\alpha x} + 1} dx, \qquad \alpha > 1.$$

HINWEIS: Betrachten Sie einen Weg um den Rand des Rechtecks $K:=[-R,R]\times[0,\frac{2\pi i}{\alpha}].$

5. Holomorphe Funktion

[8 Punkte]

Sei $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Funktion. Seien $a>0,\ b>0$ Konstanten, sodass für alle $z\in\mathbb{C}$ gilt, dass

$$|f(z)| < a\sqrt{|z|} + b.$$

Zeigen Sie, dass f konstant ist.

HINWEIS: Gehen Sie wie im Beweis des Satzes von Liouville vor und betrachten Sie die Taylorkoeffizienten von f.

6. Eigenschaften holomorpher Funktionen

[10 Punkte]

Sei $B = \{z \in \mathbb{C} \mid |z| < 2\}$. Geben Sie jeweils eine holomorphe Funktion mit den folgenden Eigenschaften an, oder begründen Sie warum es keine solche geben kann:

(a)
$$f: \mathbb{C} \to B$$
 mit $f(0) = 0$ und $f(1) = 1$.

(b)
$$f: \mathbb{C} \to \mathbb{C} \setminus \{0\} \text{ mit } f(\mathbb{C}) = \mathbb{C} \setminus \{0\}.$$

(c)
$$f: B \to \mathbb{C}$$
 mit $f(\frac{1}{n}) = \frac{1}{1+4n^2}$ für $n \in \mathbb{Z}$.

(d)
$$f: B \to \mathbb{C}$$
 mit $f(\frac{1}{n}) = \frac{1}{1+2|n|}$ für $n \in \mathbb{Z}$.

7.	Fouriertransformation
١.	rouriertransformatio

[8 Punkte]

(a) Beweisen Sie für $f \in L^1(\mathbb{R})$ und $g(x) := e^{ik_0x} f(x)$ die Identität $\widehat{g}(k) = \widehat{f}(k - k_0)$.

(b) Wie lautet die Fouriertransformierte von $g(x) = e^{-\frac{1}{2}x^2} \cos x, x \in \mathbb{R}$?

(c) Sei nun mit dem g aus (b) die Funktion $h: \mathbb{R} \to \mathbb{R}$ gegeben durch $h(x) = \begin{cases} g(x) & \text{für } x > 0, \\ 0 & \text{sonst.} \end{cases}$

(i) Welche Aussagen gelten für h?

 $\Box h \in \mathcal{S}(\mathbb{R}), \quad \Box h \text{ ist stetig}, \quad \Box h \in L^1(\mathbb{R}), \quad \Box h \in L^2(\mathbb{R}).$

(ii) Welche Aussagen gelten für \hat{h} ?

 $\square \ \widehat{h} \in \mathcal{S}(\mathbb{R}), \qquad \square \ \widehat{h} \ \text{ist stetig}, \qquad \square \ \widehat{h} \in L^1(\mathbb{R}), \qquad \square \ \widehat{h} \in L^2(\mathbb{R}).$

8. Maßtheorie und Konvergenzsätze für Integrale

[8 Punkte]

Sei $f(x) = x^{-\frac{1}{2}}\chi_{(0,1)}(x)$ und $\{r_n \in \mathbb{Q} | n \in \mathbb{N}\}$ eine Abzählung der rationalen Zahlen. Berechnen Sie folgende Limes und Integrale:

a)
$$\lim_{n \to \infty} \int_{0}^{+\infty} \frac{n \sin(\frac{x}{n})}{x(1+x^2)} dx$$
.

b)
$$\lim_{n \to \infty} \int_0^1 n\sqrt{x}e^{-n^2x^2} dx$$

a)
$$\lim_{n \to \infty} \int_{0}^{+\infty} \frac{n \sin(\frac{x}{n})}{x(1+x^2)} dx$$
. b) $\lim_{n \to \infty} \int_{0}^{1} n \sqrt{x} e^{-n^2 x^2} dx$. c) $\int_{\mathbb{R}} g(x) dx$, mit $g(x) = \sum_{n=0}^{+\infty} \frac{f(x-r_n)}{2^n}$