№1 1. Етапи розвитку електроніки. 2. Резонансно-тунельний діод. Резонансно-тунельний транзистор.	№2 1. Особливості дисперсійних співвідношень у квантових ямах. Домішкові рівні. Надгратки. 2. Причини та наслідки появи паразитної ємності в низькорозмірних транзисторах. Механізми струмів втрат.
№3 1. Скейлінг. Залежність швидкодії та енергоспоживання транзистора від розміру. 2. Транзистори на гарячих електронах.	№4 1. Модуляційно леговані структури. Принцип роботи та будова НЕМТ-транзистора. 2. Вольт-амперні характеристики низько розмірних структур. Від'ємний опір вигину.
№5 1. Квантові інтерференційні транзистори. 2. Особливості дисперсійних співвідношень у квантових точках та дротах.	№6 1. Квантове обмеження: умови спостереження, наслідки. Типи та шляхи створення низькорозмірних структур. 2. Наноелектронні діоди: принцип роботи, особливості будови.
№7 1. Надбар'єрне відбивання носіїв заряду. 2. Принцип роботи заломлюючого транзистора, транзистора на відбитих електронах та балістичного випрямляча.	№8 1. Особливості розсіяння носіїв заряду у наноструктурах. 2. Балістичний транспорт, квантова інтерференція: умови спостереження. Квант опору.
№9 1. Тунелювання носіїв заряду через один та декілька потенційних бар'єрів. 2. Селективне легування квантової ями та б-легування.	№10 1. Квантове обмеження: умови спостереження, наслідки. Типи та шляхи створення низькорозмірних структур. 2. Селективне легування квантової ями та δ-легування.

№11 1. Особливості розсіяння носіїв заряду у наноструктурах. 2. Особливості дисперсійних співвідношень у квантових точках та дротах.	№12 1. Квантові інтерференційні транзистори. 2. Принцип роботи заломлюючого транзистора, транзистора на відбитих електронах та балістичного випрямляча.
№13 1. Етапи розвитку електроніки. 2. Наноелектронні діоди: принцип роботи, особливості будови.	№14 1. Надбар'єрне відбивання носіїв заряду. 2. Квантові інтерференційні транзистори.