Conseqüência na Lógica Proposicional

Márcio Lopes Cornélio DSC-Poli-UPE mlc@dsc.upe.br

Implicação e equivalências tautológicas	2
Implicação e equivalências tautológicas	3
Conseqüência Tautológica - Exemplo 1	4
Conseqüência Tautológica - Exemplo 2	5
Tablôs Semânticos	6
Tablôs Semânticos	7
Exemplo 1	8
Exemplo 2	9
Exemplo 3	10
Tablôs	11
Regras de Construção	12
Regras de Construção	13
Regras de Construção	14
Exemplo 4	
Regras de Construção	16
Regras de Construção	17
Provando a Validade de Argumentos	18
Exemplo 5	
Princípios	20

Implicação e equivalências tautológicas

- Determinar quando uma fórmula é conseqüência de algum conjunto de fórmulas
 - ♦ Definição 1: Uma fórmula H implica tautologicamente uma fórmula G (G é uma conseqüência tautológica de H) se, para toda interpretação I tal que I[H] = T, então I[G] = T
 - ♦ Definição 2:Uma fórmula H é **tautologicamente equivalente** a uma fórmula G se, qualquer que seja a interpretação I, I[H] = I[G]

3

Consequência Tautológica - Exemplo 1

- Considere as fórmulas (premissas) $(A \lor B) \to C$ e $\neg B$. Vamos determinar se a fórmula $A \to C$ (conclusão) é uma conseqüência tautológica das premissas.
- Tabela verdade

Α	В	С	$A \vee B$	$(A \lor B) \to C$	¬ <i>B</i>	$A \rightarrow C$
V	V	V	V	V	F	V
V	V	F	V	F	F	F
V	F	V	V	V	V	V
V	F	F	V	F	V	F
F	V	V	V	V	F	V
F	V	F	V	F	F	V
F	F	V	F	V	V	V
F	F	F	F	V	V	V

■ Em todas as situações em que as premissas são verdadeiras, a conclusão também é verdadeira. Logo, a fórmula é válida.

4

Consequência Tautológica - Exemplo 2

 \blacksquare $B \rightarrow A, \neg B \vdash \neg A$

Α	В	$B \rightarrow A$	<i>¬ B</i>	$ \neg A $
٧	V	V	F	F
V	F	V	V	F *
F	V	F	F	V
F	F	V	V	V

_

Tablôs Semânticos

- Procedimentos ou sistema de provas
 - Correto: prova apenas as fórmulas válidas
 - Completo: prova todas as fórmulas válidas
- Método de refutação
 - Para mostrar que uma fórmula não é válida, começa-se supondo que ela não o é
 - Chegar a um absurdo indica que a suposição inicial estava errada
 - Também conhecido com "árvore de refutação"

7

Exemplo 1

■ Determinar se a fórmula $(A \land B) \rightarrow (A \lor B)$ é válida (tautologia). Há inconsistências neste tablô (e.g. $A \in \neg A$), o que é um absurdo. A suposição de que $(A \land B) \rightarrow (A \lor B)$ não era válida leva a uma inconsitência. Logo, a fórmula é válida.

a
$$\neg ((A \land B) \rightarrow (A \lor B))$$

b
$$\sqrt{\neg} ((A \land B) \rightarrow (A \lor B))$$

 $A \land B$

c
$$\sqrt{\neg} ((A \land B) \rightarrow (A \lor B))$$

 $\sqrt{A} \land B$
 $\neg (A \lor B)$

$$A \wedge B$$

$$\neg (A \vee B)$$

$$\sqrt{\neg ((A \wedge B) \rightarrow (A \vee B))}$$

$$\sqrt{A \wedge B}$$

$$\neg (A \vee B)$$

$$A$$

$$B$$

$$\mathsf{d} \qquad \checkmark \neg \left((A \land B) \to (A \lor B) \right) \\ \checkmark A \land B$$

8

Exemplo 2

■ Verificar se a fórmula $(A \land B) \rightarrow C$ é válida. Não chegamos a uma inconsistência. A hipótese de que a fórmula não fosse válida estava correta, i.e., ela não é válida mesmo.

a
$$\neg ((A \land B) \rightarrow C)$$

b
$$\sqrt{\neg} ((A \land B) \to C)$$

 $A \land B$

$$\neg C$$

c
$$\sqrt{\neg ((A \land B) \rightarrow C)}$$

 $\sqrt{A \land B}$
 $\neg C$
 A

В

?

Exemplo 3

■ Demonstrar que a fórmula $(A \lor B) \to (A \land B)$ é válida (tautologia). Há ramos abertos que não podem ser fechados, pois não há fórmulas moleculares a serem reduzidas. Logo, a fórmula não é válida.

d

- $a \qquad \neg ((A \lor B) \to (A \land B))$
- b $\sqrt{\neg ((A \lor B) \to (A \land B))}$ $A \lor B$ $\neg (A \land B)$
- c $\sqrt{\neg} ((A \lor B) \to (A \land B))$ $\sqrt{A} \lor B$ $\neg (A \land B)$ A B

 $\sqrt{\neg ((A \lor B) \to (A \land B))}$ $\sqrt{A \lor B}$ $\sqrt{\neg (A \land B)}$ A B B A B B

10

Tablôs

- lacktriangle Um tablô para uma fórmula lpha, começa com $\neg \ lpha$
- Um ramo é **fechado** se contém, para alguma fórmula α , tanto α quanto $\neg \alpha$
- Um ramo é dito **completo** ou **finalizado** se é fechado ou todas as fórmulas moleculares encontradas nele foram reduzidas (possuem ✓)
- Um tablô é **completo** se cada um dos ramos é completo
- Um tablô é **fechado** se cada um dos seus ramos é fechado
- lacktriangle Um tablô fechado para uma fórmula lpha é uma prova por tablôs de lpha

11

Regras de Construção

Negação Se um ramo aberto contém uma fórmula e sua negação, escreva X no final do ramo **Negação Negada** Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg \neg \alpha$, marque-a como reduzida e escreva α no final de todo ramo que contém a nova fórmula reduzida **Conjunção** Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \wedge \beta$, marque-a como reduzida e escreva α e β no final de cada ramo que contém a nova fórmula reduzida

Conjunção Negada Se um ramo aberto contém uma fórmula não-reduzida da forma \neg $(\alpha \land \beta)$, marque-a como reduzida e bifurque cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva \neg α e, no final do segundo, escreva \neg β

Regras de Construção

Disjunção Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \vee \beta$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula reduzida em dois novos ramos, no final do primeiro escreva α e, no final do segundo, escreva β

Disjunção Negada Se um ramo aberto contém uma fórmula não-reduzida da forma \neg $(\alpha \lor \beta)$, marque-a como reduzida e escreva tanto \neg α quanto \neg β no final de todo ramo aberto que contém esta nova fórmula reduzida.

13

Regras de Construção

Implicação Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \to \beta$, marque-a como reduzida e bifurque cada ramo que contém a nova fórmula e dois novos ramos, no final do primeiro escreva $\neg \alpha$ e, no final do segundo, escreva β

Implicação Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg (\alpha \to \beta)$, marque-a como reduzida e escreva tanto α quanto $\neg \beta$ no final de todo ramo aberto que contém esta nova fórmula reduzida.

14

Exemplo 4

■ $\neg (Q \rightarrow (P \land \neg P))$ não é válida, pois há um ramo aberto e não podemos continuar com reduções. Logo, a fórmula não é válida.

a
$$\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$$

 $Q \rightarrow (P \land \neg P)$
b $\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$
 $\sqrt{Q \rightarrow (P \land \neg P)}$

c
$$\sqrt{\neg \neg (Q \rightarrow (P \land \neg P))}$$

$$\sqrt{Q \rightarrow (P \land \neg P)}$$

$$\neg Q \quad \sqrt{P \land \neg P}$$

$$P$$

$$\neg P$$

$$X$$

15

Regras de Construção

Bi-implicação Se um ramo aberto contém uma fórmula não-reduzida da forma $\alpha \leftrightarrow \beta$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva α e β e, no final do segundo, escreva \neg α e \neg β

Bi-implicação Negada Se um ramo aberto contém uma fórmula não-reduzida da forma $\neg (\alpha \leftrightarrow \beta)$, marque-a como reduzida e bifurque o final de cada ramo que contém a nova fórmula em dois novos ramos, no final do primeiro escreva α e $\neg \beta$ e, no final do segundo, escreva $\neg \alpha$ e β

Regras de Construção

1
$$\neg \neg \alpha$$

$$\alpha$$

$$\begin{array}{ccc}
2 & \alpha \wedge \beta \\
 & \alpha
\end{array}$$

3
$$\alpha \vee \beta$$

$$\widehat{\alpha}$$
 β

 β

4
$$\alpha \rightarrow \beta$$

$$\neg \widehat{\alpha} \beta$$

5
$$\alpha \leftrightarrow \beta$$

$$\alpha \neg \alpha$$

6
$$\neg (\alpha \land \beta)$$

$$\neg (\alpha \land \beta)$$

$$\neg \alpha \neg \beta$$

7
$$\neg (\alpha \lor \beta)$$

$$\neg \alpha$$

 $\neg \beta$

8
$$\neg (\alpha \rightarrow \beta)$$

$$\alpha$$

$$\neg \beta \\ \neg (\alpha \leftrightarrow \beta)$$

$$\alpha \neg \alpha$$

17

Provando a Validade de Argumentos

- Construímos uma lista que consiste das premissas e da negação da conclusão
 - Qualquer atribuição de verdade ou falsidade às fórmulas atômicas que torna as premissas verdadeiras, então temos premissas verdadeiras e conclusão falsa. Conseqüentemente, o argumento não é válido

18

Exemplo 5

■ Determine se a forma $P \rightarrow Q, Q \rightarrow R, P \vdash R$ é válida

a
$$P \rightarrow Q$$

$$Q \rightarrow R$$

b
$$\sqrt{P} \rightarrow Q$$

$$\begin{array}{c} Q \to R \\ P \end{array}$$

$$\overline{P} = 0$$

$$\begin{array}{c} \checkmark P \to Q \\ \checkmark Q \to R \\ P \end{array}$$

$$\neg R$$

Princípios

- 1. As regras para construir árvores devem ser aplicadas apenas a fórmulas como um todo e não a sub-formulas
- 2. A ordem em que regras são aplicadas não faz diferença para a respostas final, porém é mais eficiente aplicar primeiramente as que não levam a bifurcações
- 3. Os ramos abertos de uma árvore finalizada para uma forma de argumento exibe todos os contra-exemplos para tal forma