Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Ejercicio

En \mathbb{R}^n las métricas d_1 y d_∞ son topológicamente equivalentes.

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Ejercicio

En \mathbb{R}^n las métricas d_1 y d_∞ son topológicamente equivalentes.

Solución. Supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_1 a un elemento $x \in \mathbb{R}^n$, es decir que

$$d_1(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Ejercicio

En \mathbb{R}^n las métricas d_1 y d_∞ son topológicamente equivalentes.

Solución. Supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_1 a un elemento $x \in \mathbb{R}^n$, es decir que

$$d_1(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Ejercicio

En \mathbb{R}^n las métricas d_1 y d_∞ son topológicamente equivalentes.

Solución. Supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_1 a un elemento $x \in \mathbb{R}^n$, es decir que

$$d_1(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Usando la acotación

$$d_{\infty}(x_n, x) = \max_{1 \le i \le n} \{|x_{n,i} - x_i|\} \le \sum_{i=1}^n |x_{n,i} - x_i| = d_1(x_n, x)$$

y tomando límite obtenemos lo que queríamos.

Definición

Sea X un conjunto arbitrario. Dos métricas d y d' en X de dicen **topológicamente equivalentes** si definen los mismos abiertos en X.

Ejercicio de la teórica

Dos métricas son topológicamente equivalentes sí y sólo si definen las mismas sucesiones convergentes

Ejercicio

En \mathbb{R}^n las métricas d_1 y d_∞ son topológicamente equivalentes.

Solución. Supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_1 a un elemento $x \in \mathbb{R}^n$, es decir que

$$d_1(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Usando la acotación

$$d_{\infty}(x_n, x) = \max_{1 \le i \le n} \{|x_{n,i} - x_i|\} \le \sum_{i=1}^n |x_{n,i} - x_i| = d_1(x_n, x)$$

y tomando límite obtenemos lo que queríamos.

Recíprocamente supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_∞ a $x \in \mathbb{R}^n$. Similarmente, tomando límite a ambos lados de

$$d_1(x_n, x) = \sum_{i=1}^n |x_{n,i} - x_i| \le \sum_{i=1}^n d_{\infty}(x_n, x) = nd_{\infty}(x_n, x)$$

podemos concluir que $(x_n)_n$ converge a x en la distancia d_1 también.

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Usando la acotación

$$d_{\infty}(x_n, x) = \max_{1 \le i \le n} \{|x_{n,i} - x_i|\} \le \sum_{i=1}^n |x_{n,i} - x_i| = d_1(x_n, x)$$

y tomando límite obtenemos lo que queríamos.

Recíprocamente supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_∞ a $x \in \mathbb{R}^n$. Similarmente, tomando límite a ambos lados de

$$d_1(x_n, x) = \sum_{i=1}^n |x_{n,i} - x_i| \le \sum_{i=1}^n d_{\infty}(x_n, x) = n \ d_{\infty}(x_n, x)$$

podemos concluir que $(x_n)_n$ converge a x en la distancia d_1 también.

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Usando la acotación

$$d_{\infty}(x_n, x) = \max_{1 \leq i \leq n} \{|x_{n,i} - x_i|\} \leq \sum_{i=1}^{n} |x_{n,i} - x_i| = d_1(x_n, x)$$

y tomando límite obtenemos lo que queríamos.

Recíprocamente supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_∞ a $x \in \mathbb{R}^n$. Similarmente, tomando límite a ambos lados de

$$d_1(x_n, x) = \sum_{i=1}^n |x_{n,i} - x_i| \le \sum_{i=1}^n d_{\infty}(x_n, x) = n \ d_{\infty}(x_n, x)$$

podemos concluir que $(x_n)_n$ converge a x en la distancia d_1 también.

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Más generalmente, si en un conjunto X dos métricas d y d' satisfacen dos desigualdades de la forma

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

para un par de constantes positivas C, C' > 0, entonces podemos concluir que d y d' son topológicamente equivalentes.

Veamos entonces que

$$d_{\infty}(x_n,x) \xrightarrow[n\to\infty]{} 0.$$

Usando la acotación

$$d_{\infty}(x_n, x) = \max_{1 \le i \le n} \{|x_{n,i} - x_i|\} \le \sum_{i=1}^n |x_{n,i} - x_i| = d_1(x_n, x)$$

y tomando límite obtenemos lo que queríamos.

Recíprocamente supongamos que $(x_n)_n \subseteq \mathbb{R}^n$ es una sucesión que converge con la distancia d_∞ a $x \in \mathbb{R}^n$. Similarmente, tomando límite a ambos lados de

$$d_1(x_n, x) = \sum_{i=1}^n |x_{n,i} - x_i| \le \sum_{i=1}^n d_{\infty}(x_n, x) = n \ d_{\infty}(x_n, x)$$

podemos concluir que $(x_n)_n$ converge a x en la distancia d_1 también.

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Más generalmente, si en un conjunto X dos métricas d y d' satisfacen dos desigualdades de la forma

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

para un par de constantes positivas C, C' > 0, entonces podemos concluir que d y d' son topológicamente equivalentes.

Definición

Decimos que dos métricas d y d' en X son **uniformemente equivalentes** si existen constantes C, C' > 0 que satisfacen

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Más generalmente, si en un conjunto X dos métricas d y d' satisfacen dos desigualdades de la forma

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

para un par de constantes positivas C, C' > 0, entonces podemos concluir que d y d' son topológicamente equivalentes.

Definición

Decimos que dos métricas d y d' en X son **uniformemente equivalentes** si existen constantes C, C' > 0 que satisfacen

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

Observación

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq. Sin embargo, no vale la afirmación recíproca:

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Más generalmente, si en un conjunto X dos métricas d y d' satisfacen dos desigualdades de la forma

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

para un par de constantes positivas C, C' > 0, entonces podemos concluir que d y d' son topológicamente equivalentes.

Definición

Decimos que dos métricas d y d' en X son **uniformemente equivalentes** si existen constantes C, C' > 0 que satisfacen

$$C d(x, y) \le d'(x, y) \le C' d(x, y) \quad \forall x, y \in X$$

Observación

equivalentes.

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq. Sin embargo, no vale la afirmación recíproca:

Ejercicio

Sea (X,d) un espacio métrico. Denotamos por $\overline{d}: X \times X \to \mathbb{R}$ a la métrica

$$\overline{d}(x,y) = \min \{d(x,y), 1\}.$$

- (a) Probar que $d \vee \overline{d}$ son métricas topológicamente
- (b) Probar que si $X = \mathbb{R}$ y $d = d_2$ entonces d y \overline{d} no son uniformemente equivalentes.

Moraleja. El ingrediente clave de la solución previa es la cadena de desigualdades

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Más generalmente, si en un conjunto X dos métricas d y d' satisfacen dos desigualdades de la forma

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

para un par de constantes positivas C,C'>0, entonces podemos concluir que d y d' son topológicamente equivalentes.

Definición

Decimos que dos métricas d y d' en X son **uniformemente equivalentes** si existen constantes C, C' > 0 que satisfacen

$$C d(x,y) \le d'(x,y) \le C' d(x,y) \quad \forall x,y \in X$$

Observación

equivalentes.

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq.

Ejercicio

Sea (X, d) un espacio métrico. Denotamos por $\overline{d}: X \times X \to \mathbb{R}$ a la métrica

Sin embargo, no vale la afirmación recíproca:

$$\overline{d}(x,y) = \min \{d(x,y), 1\}.$$

- (a) Probar que $d \vee \overline{d}$ son métricas topológicamente
- (b) Probar que si $X = \mathbb{R}$ y $d = d_2$ entonces d y \overline{d} no son uniformemente equivalentes.

Solución. (a) Supongamos que $(x_n)_n \subseteq X$ y $x \in X$. Es claro que

$$d(x_n, x) \xrightarrow[n \to \infty]{} 0 \Leftrightarrow \overline{d}(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

Observación

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq.

Sin embargo, no vale la afirmación recíproca:

Ejercicio

Sea (X, d) un espacio métrico. Denotamos por $\overline{d}: X \times X \to \mathbb{R}$ a la métrica

$$\overline{d}(x,y) = \min \{d(x,y), 1\}.$$

- (a) Probar que d y \overline{d} son métricas topológicamente equivalentes.
- (b) Probar que si $X = \mathbb{R}$ y $d = d_2$ entonces d y \overline{d} no son uniformemente equivalentes.

Solución. (a) Supongamos que $(x_n)_n \subseteq X$ y $x \in X$. Es claro que

$$d(x_n, x) \xrightarrow[n \to \infty]{} 0 \quad \Leftrightarrow \quad \overline{d}(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

(b) Supongamos por el contrario que existen constantes positivas C, C' > 0 de manera que

$$C \overline{d}(x,y) \le d(x,y) \le C' \overline{d}(x,y) \quad \forall x,y \in \mathbb{R}.$$

Observación

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq.

Sin embargo, no vale la afirmación recíproca:

Ejercicio

Sea (X,d) un espacio métrico. Denotamos por $\overline{d}: X \times X \to \mathbb{R}$ a la métrica

$$\overline{d}(x,y) = \min \{d(x,y), 1\}.$$

- (a) Probar que d y \overline{d} son métricas topológicamente equivalentes.
- (b) Probar que si $X = \mathbb{R}$ y $d = d_2$ entonces d y \overline{d} no son uniformemente equivalentes.

Solución. (a) Supongamos que $(x_n)_n \subseteq X$ y $x \in X$. Es claro que

$$d(x_n, x) \xrightarrow[n \to \infty]{} 0 \quad \Leftrightarrow \quad \overline{d}(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

(b) Supongamos por el contrario que existen constantes positivas C,C'>0 de manera que

$$C \overline{d}(x,y) \le d(x,y) \le C' \overline{d}(x,y) \quad \forall x,y \in \mathbb{R}.$$

En particular, si tomamos x = n e y = 0 obtenemos que

$$C \ \underline{\overline{d}(n,0)} \leq \underline{d(n,0)} \leq C' \ \underline{\overline{d}(n,0)},$$

lo cual es absurdo porque esto estaría diciendo que la constante C' es más grande que cualquier número natural n.

Observación

d, d' uniformemente eq. \Rightarrow d, d' topológicamente eq.

Sin embargo, no vale la afirmación recíproca:

Ejercicio

Sea (X,d) un espacio métrico. Denotamos por $\overline{d}: X \times X \to \mathbb{R}$ a la métrica

$$\overline{d}(x,y) = \min \{d(x,y), 1\}.$$

- (a) Probar que d y \overline{d} son métricas topológicamente equivalentes.
- (b) Probar que si $X = \mathbb{R}$ y $d = d_2$ entonces d y \overline{d} no son uniformemente equivalentes.

Solución. (a) Supongamos que $(x_n)_n \subseteq X$ y $x \in X$. Es claro que

$$d(x_n, x) \xrightarrow[n \to \infty]{} 0 \quad \Leftrightarrow \quad \overline{d}(x_n, x) \xrightarrow[n \to \infty]{} 0.$$

(b) Supongamos por el contrario que existen constantes positivas C,C'>0 de manera que

$$C \overline{d}(x,y) \le d(x,y) \le C' \overline{d}(x,y) \quad \forall x,y \in \mathbb{R}.$$

En particular, si tomamos x = n e y = 0 obtenemos que

$$C \ \underline{\overline{d}(n,0)} \leq \underline{d(n,0)} \leq C' \ \underline{\overline{d}(n,0)},$$

lo cual es absurdo porque esto estaría diciendo que la constante C' es más grande que cualquier número natural n.

Ejercicio Adicional

Probar que las métricas d_1, d_2 y d_∞ de \mathbb{R}^n son uniformemente equivalentes.

(b) Supongamos por el contrario que existen constantes positivas C, C' > 0 de manera que

$$C \overline{d}(x,y) \le d(x,y) \le C' \overline{d}(x,y) \quad \forall x,y \in \mathbb{R}.$$

En particular, si tomamos x = n e y = 0 obtenemos que

$$C \underbrace{\overline{d}(n,0)}_{1} \leq \underbrace{d(n,0)}_{n} \leq C' \underbrace{\overline{d}(n,0)}_{1},$$

lo cual es absurdo porque esto estaría diciendo que la constante C^\prime es más grande que cualquier número natural n.

Ejercicio Adicional

Probar que las métricas d_1, d_2 y d_∞ de \mathbb{R}^n son uniformemente equivalentes.

Ejercicio

Consideremos el conjunto de sucesiones sumables

$$\ell^1 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |a_n| < \infty \right\}$$

equipado con las distancias

$$d_{\infty}((a_n)_n, (b_n)_n) = \sup_{n \in \mathbb{N}} \{|a_n - b_n|\}$$

$$d_1((a_n)_n, (b_n)_n) = \sum_{n=1}^{\infty} |a_n - b_n|$$

$$d((a_n)_n, (b_n)_n) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}.$$

Probar que las métricas d_1 , d_∞ y d no son topológicamente equivalentes.

Ejercicio

Consideremos el conjunto de sucesiones sumables

$$\ell^1 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |a_n| < \infty \right\}$$

equipado con las distancias

$$d_{\infty}((a_n)_n,(b_n)_n)=\sup_{n\in\mathbb{N}}\{|a_n-b_n|\}$$

$$d_1((a_n)_n,(b_n)_n) = \sum_{n=1}^{\infty} |a_n - b_n|$$

$$d((a_n)_n, (b_n)_n) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}.$$

Probar que las métricas d_1 , d_∞ y d no son topológicamente equivalentes.

Comentario preliminar 1. Uno no puede imitar la cuenta hecha en el primer ejercicio hecho para la distancias d_1 y d_∞ para \mathbb{R}^n y tomar límite porque hay una constante "n" en la cadena

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Ejercicio

Consideremos el conjunto de sucesiones sumables

$$\ell^1 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |a_n| < \infty \right\}$$

equipado con las distancias

$$d_{\infty}((a_n)_n,(b_n)_n) = \sup_{n \in \mathbb{N}} \{|a_n - b_n|\}$$

$$d_1((a_n)_n,(b_n)_n) = \sum_{n=1}^{\infty} |a_n - b_n|$$

$$d((a_n)_n, (b_n)_n) = \sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}.$$

Probar que las métricas d_1 , d_∞ y d no son topológicamente equivalentes.

Comentario preliminar 1. Uno no puede imitar la cuenta hecha en el primer ejercicio hecho para la distancias d_1 y d_∞ para \mathbb{R}^n y tomar límite porque hay una constante "n" en la cadena

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Comentario preliminar 2. Es sencillo comprobar que

$$d((a_n)_n, (b_n)_n) \leq d_{\infty}((a_n)_n, (b_n)_n) \leq d_1((a_n)_n, (b_n)_n)$$

con lo cual

conv en
$$d_1 \Rightarrow$$
 conv. en $d_{\infty} \Rightarrow$ conv. en d .

Debemos verificar entonces que no valen las implicaciones recíprocas.

Comentario preliminar 1. Uno no puede imitar la cuenta hecha en el primer ejercicio hecho para la distancias d_1 y d_∞ para \mathbb{R}^n y tomar límite porque hay una constante "n" en la cadena

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n \ d_{\infty}(x,y).$$

Comentario preliminar 2. Es sencillo comprobar que

$$d((a_n)_n, (b_n)_n) \leq d_{\infty}((a_n)_n, (b_n)_n) \leq d_1((a_n)_n, (b_n)_n)$$

con lo cual

conv en $d_1 \Rightarrow$ conv. en $d_{\infty} \Rightarrow$ conv. en d.

Debemos verificar entonces que no valen las implicaciones recíprocas.

(conv. en $d_{\infty} \not\Rightarrow$ conv. en d_1) Dado un número natural $k \in \mathbb{N}$ consideremos la sucesión $a_k k \in \ell^1$ definida como

$$a_k = \left(\underbrace{\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}}_{k \text{ lugares}}, 0, 0, \dots\right).$$

Comentario preliminar 1. Uno no puede imitar la cuenta hecha en el primer ejercicio hecho para la distancias d_1 y d_∞ para \mathbb{R}^n y tomar límite porque hay una constante "n" en la cadena

$$d_{\infty}(x,y) \leq d_1(x,y) \leq n d_{\infty}(x,y).$$

Comentario preliminar 2. Es sencillo comprobar que

$$d((a_n)_n, (b_n)_n) \leq d_{\infty}((a_n)_n, (b_n)_n) \leq d_1((a_n)_n, (b_n)_n)$$

con lo cual

conv en $d_1 \Rightarrow$ conv. en $d_{\infty} \Rightarrow$ conv. en d.

Debemos verificar entonces que no valen las implicaciones recíprocas.

(conv. en $d_{\infty} \Rightarrow$ conv. en d_1) Dado un número natural $k \in \mathbb{N}$ consideremos la sucesión $a_k k \in \ell^1$ definida como

$$a_k = \left(\underbrace{\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}}_{k \text{ lugares}}, 0, 0, \dots\right).$$

Entonces

$$d_{\infty}(a_k,0)=\frac{1}{k}\to 0$$

pero

$$d_1(a_k,0) = \sum_{i=1}^k \frac{1}{k} = 1 \Rightarrow 0.$$

(conv. en $d_\infty \not\Rightarrow$ conv. en d_1) Dado un número natural $k \in \mathbb{N}$ consideremos la sucesión $a_k k \in \ell^1$ definida como

$$a_k = \left(\underbrace{\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}}_{k \text{ lugares}}, 0, 0, \dots\right).$$

Entonces

$$d_{\infty}(a_k,0) = \frac{1}{k} \to 0$$

pero

$$d_1(a_k,0) = \sum_{i=1}^k \frac{1}{k} = 1 \Rightarrow 0.$$

(conv. en $d \Rightarrow$ conv. en d_{∞}) Definimos $a^k \in \ell^1$ como

$$a_k = (\underbrace{0,0,\ldots,1}_{k \text{ lugares}},0,0,\ldots).$$

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1 \nrightarrow 0.$$

(conv. en $d_\infty \not\Rightarrow$ conv. en d_1) Dado un número natural $k \in \mathbb{N}$ consideremos la sucesión $a_k k \in \ell^1$ definida como

$$a_k = \left(\underbrace{\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}}_{k \text{ lugares}}, 0, 0, \dots\right).$$

Entonces

$$d_{\infty}(a_k,0)=\frac{1}{k}\to 0$$

pero

$$d_1(a_k,0) = \sum_{i=1}^k \frac{1}{k} = 1 \Rightarrow 0.$$

(conv. en $d \Rightarrow$ conv. en d_{∞}) Definimos $a^k \in \ell^1$ como

$$a_k = (\underbrace{0,0,\ldots,1}_{k \text{ lugares}},0,0,\ldots).$$

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1 \nrightarrow 0.$$

Ejercicio

Fijado un $d \in \mathbb{N}$, consideremos el conjunto

$$X = \{ f \in C[0,1] : f \text{ es un polinomio, } gr(f) \le d \}.$$

Probar que las distancias d_1 y d_∞ en X son topológicamente equivalentes.

(conv. en $d_{\infty} \not\Rightarrow$ conv. en d_1) Dado un número natural $k \in \mathbb{N}$ consideremos la sucesión $a_k k \in \ell^1$ definida como

$$a_k = \left(\underbrace{\frac{1}{k}, \frac{1}{k}, \dots, \frac{1}{k}}_{k \text{ lugares}}, 0, 0, \dots\right).$$

Entonces

$$d_{\infty}(a_k,0)=\frac{1}{k}\to 0$$

pero

$$d_1(a_k,0) = \sum_{i=1}^k \frac{1}{k} = 1 \rightarrow 0.$$

(conv. en $d \Rightarrow$ conv. en d_{∞}) Definimos $a^k \in \ell^1$ como

$$a_k = (\underbrace{0,0,\ldots,1}_{k \text{ lugares}},0,0,\ldots).$$

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1 \nrightarrow 0.$$

Ejercicio

Fijado un $d \in \mathbb{N}$, consideremos el conjunto

$$X = \big\{ f \in C[0,1] : f \text{ es un polinomio, } \operatorname{gr}(f) \leq d \big\}.$$

Probar que las distancias d_1 y d_∞ en X son topológicamente equivalentes.

Advertencia. Las distancias d_1 y d_∞ NO son topológicamente equivalentes en C[0,1]. Una manera de probarlo es considerar una sucesión de funciones en forma de "triángulo" como se vieron en la teórica.

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1 \nrightarrow 0.$$

Ejercicio

Fijado un $d \in \mathbb{N}$, consideremos el conjunto

$$X = \big\{ f \in C[0,1] : f \text{ es un polinomio, } \operatorname{gr}(f) \leq d \big\}.$$

Probar que las distancias d_1 y d_∞ en X son topológicamente equivalentes.

Advertencia. Las distancias d_1 y d_∞ NO son topológicamente equivalentes en C[0,1]. Una manera de probarlo es considerar una sucesión de funciones en forma de "triángulo" como se vieron en la teórica.

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1 \nrightarrow 0.$$

Ejercicio

Fijado un $d \in \mathbb{N}$, consideremos el conjunto

$$X = \{f \in C[0,1] : f \text{ es un polinomio, } gr(f) \le d\}.$$

Probar que las distancias d_1 y d_∞ en X son topológicamente equivalentes.

Advertencia. Las distancias d_1 y d_∞ NO son topológicamente equivalentes en C[0,1]. Una manera de probarlo es considerar una sucesión de funciones en forma de "triángulo" como se vieron en la teórica.

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_{\infty}(f,g) dt = d_{\infty}(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_∞ es convergente con respecto d_1 también.

Luego

$$d(a_k,0)=\frac{1}{2^k}\to 0$$

y

$$d_{\infty}(a_k,0)=1\nrightarrow 0.$$

Ejercicio

Fijado un $d \in \mathbb{N}$, consideremos el conjunto

$$X = \{f \in C[0,1] : f \text{ es un polinomio, } gr(f) \le d\}.$$

Probar que las distancias d_1 y d_∞ en X son topológicamente equivalentes.

Advertencia. Las distancias d_1 y d_∞ NO son topológicamente equivalentes en C[0,1]. Una manera de probarlo es considerar una sucesión de funciones en forma de "triángulo" como se vieron en la teórica.

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_\infty(f,g) dt = d_\infty(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_{∞} es convergente con respecto d_1 también. Veamos que vale la afirmación recíproca. Supongamos entonces que $(f_n)_n \subseteq X$ es una sucesión de polinomios de grado menor o igual que d que convergen a un polinomio $f \in X$ con respecto a la distancia d_1 .

Reducción. Reemplazando $(f_n)_n$ por $(f_n - f)_n$ podemos suponer que f = 0.

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_\infty(f,g) dt = d_\infty(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_{∞} es convergente con respecto d_1 también. Veamos que vale la afirmación recíproca. Supongamos entonces que $(f_n)_n \subseteq X$ es una sucesión de polinomios de grado menor o igual que d que convergen a un polinomio $f \in X$ con respecto a la distancia d_1 .

Reducción. Reemplazando f_n por $f_n - f$ podemos suponer que f = 0.

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n,0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_{\infty}(f,g) dt = d_{\infty}(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_{∞} es convergente con respecto d_1 también. Veamos que vale la afirmación recíproca. Supongamos entonces que $(f_n)_n \subseteq X$ es una sucesión de polinomios de grado menor o igual que d que convergen a un polinomio $f \in X$ con respecto a la distancia d_1 .

Reducción. Reemplazando f_n por $f_n - f$ podemos suponer que f = 0.

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n,0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

De ahora en adelante vamos a suponer que d=1 porque en este caso particular están contenidas todas las ideas para probar el caso general.

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_{\infty}(f,g) dt = d_{\infty}(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_{∞} es convergente con respecto d_1 también. Veamos que vale la afirmación recíproca. Supongamos entonces que $(f_n)_n \subseteq X$ es una sucesión de polinomios de grado menor o igual que d que convergen a un polinomio $f \in X$ con respecto a la distancia d_1 .

Reducción. Reemplazando f_n por $f_n - f$ podemos suponer que f = 0.

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n, 0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

De ahora en adelante vamos a suponer que d=1 porque en este caso particular están contenidas todas las ideas para probar el caso general.

Digamos que los elementos de la sucesión son de la forma

$$f_n(t)=a_n+b_nt.$$

A partir de la desigualdad previa podemos afirmar que para todo $x \in [0,1]$ vale que

$$\int_0^x f_n(t)t = a_n x + b_n x^2/2 \xrightarrow[n \to \infty]{} 0.$$

Comentario. Con herramientas que vamos a ver más adelante en las teóricas se puede probar que estas dos distancias son uniformemente equivalentes en *X*.

Solución. Observemos que

$$d_1(f,g) = \int_0^1 |f(t) - g(t)| dt \le \int_0^1 d_{\infty}(f,g) dt = d_{\infty}(f,g),$$

lo cual implica que toda sucesión convergente con respecto a la distancia d_{∞} es convergente con respecto d_1 también. Veamos que vale la afirmación recíproca. Supongamos entonces que $(f_n)_n \subseteq X$ es una sucesión de polinomios de grado menor o igual que d que convergen a un polinomio $f \in X$ con respecto a la distancia d_1 .

Reducción. Reemplazando f_n por $f_n - f$ podemos suponer que f = 0.

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n,0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

De ahora en adelante vamos a suponer que d=1 porque en este caso particular están contenidas todas las ideas para probar el caso general.

Digamos que los elementos de la sucesión son de la forma

$$f_n(t)=a_n+b_nt.$$

A partir de la desigualdad previa podemos afirmar que para todo $x \in [0,1]$ vale que

$$\int_0^x f_n(t)t = a_n x + b_n x^2 / 2 \xrightarrow[n \to \infty]{} 0.$$

En particular, si tomamos x = 1 y x = 1/2 obtenemos el "sistema"

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n,0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

De ahora en adelante vamos a suponer que d=1 porque en este caso particular están contenidas todas las ideas para probar el caso general.

Digamos que los elementos de la sucesión son de la forma

$$f_n(t) = a_n + b_n t$$
.

A partir de la desigualdad previa podemos afirmar que para todo $x \in [0,1]$ vale que

$$\int_0^x f_n(t)dt = a_n x + b_n x^2/2 \xrightarrow[n \to \infty]{} 0.$$

En particular, si tomamos x = 1 y x = 1/2 obtenemos el "sistema"

$$egin{cases} a_n+rac{1}{2}b_n
ightarrow 0, \ rac{1}{2}a_n+rac{1}{8}b_n
ightarrow 0. \end{cases}$$

Dado un $x \in [0, 1]$ sabemos que

$$d_1(f_n,0) = \int_0^1 |f_n(t)| dt \ge \int_0^x |f_n(t)| dt \ge \left| \int_0^x f_n(t) dt \right|.$$

De ahora en adelante vamos a suponer que d=1 porque en este caso particular están contenidas todas las ideas para probar el caso general.

Digamos que los elementos de la sucesión son de la forma

$$f_n(t) = a_n + b_n t.$$

A partir de la desigualdad previa podemos afirmar que para todo $x \in [0,1]$ vale que

$$\int_0^x f_n(t)dt = a_n x + b_n x^2/2 \xrightarrow[n \to \infty]{} 0.$$

En particular, si tomamos x = 1 y x = 1/2 obtenemos el "sistema"

$$egin{cases} a_n+rac{1}{2}b_n
ightarrow 0, \ rac{1}{2}a_n+rac{1}{8}b_n
ightarrow 0. \end{cases}$$

Al "triangular" este "sistema" nos queda que

$$\begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ \frac{1}{2}a_n + \frac{1}{8}b_n \to 0. \end{cases} \xrightarrow{F_2 - \frac{1}{2}F_1} \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ -\frac{3}{8}b_n \to 0. \end{cases}$$
$$\xrightarrow{-\frac{8}{3}F_2} \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ b_n \to 0. \end{cases}$$
$$\xrightarrow{F_1 - \frac{1}{2}F_2} \begin{cases} a_n \to 0, \\ b_n \to 0. \end{cases}$$

$$egin{cases} a_n+rac{1}{2}b_n
ightarrow 0, \ rac{1}{2}a_n+rac{1}{8}b_n
ightarrow 0. \end{cases}$$

Al "triangular" este "sistema" nos queda que

$$\begin{cases} a_n + \frac{1}{2}b_n \to 0, & F_2 = \frac{1}{2}F_1 \\ \frac{1}{2}a_n + \frac{1}{8}b_n \to 0. & \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ -\frac{3}{8}b_n \to 0. \end{cases} \\ = \frac{\frac{8}{3}F_2}{3} & \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ b_n \to 0. \end{cases} \\ b_n \to 0. \end{cases}$$

Finalmente,

$$d_{\infty}(f_n,0)=\max_{t\in[0,1]}\{|a_n+b_nt|\}\leq |a_n|+|b_n|\xrightarrow[n\to\infty]{}0.$$

$$egin{cases} a_n+rac{1}{2}b_n
ightarrow 0, \ rac{1}{2}a_n+rac{1}{8}b_n
ightarrow 0. \end{cases}$$

Al "triangular" este "sistema" nos queda que

$$\begin{cases} a_n + \frac{1}{2}b_n \to 0, & F_2 = \frac{1}{2}F_1 \\ \frac{1}{2}a_n + \frac{1}{8}b_n \to 0. & \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ -\frac{3}{8}b_n \to 0. \end{cases} \\ = \frac{\frac{8}{3}F_2}{3} & \begin{cases} a_n + \frac{1}{2}b_n \to 0, \\ b_n \to 0. \end{cases} \\ b_n \to 0. \end{cases}$$

Finalmente,

$$d_{\infty}(f_n,0) = \max_{t \in [0,1]} \{|a_n + b_n t|\} \leq |a_n| + |b_n| \xrightarrow[n \to \infty]{} 0.$$

Ejercicio Adicional

Probar el caso d arbitrario.