

CS 412 Intro. to Data Mining

Chapter 8. Classification: Basic Concepts

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

พรลรีวรมเดล พบบ ไว่ มีผู้จะนะ Supervised vs. Unsupervised Learning (1)

🗖 Supervised learning (classification) 📤 เก็บข้อมลาว ล็อะไธ น้ำย เป็น ราชได้

Supervision: The training data such as observations or measurements are accompanied by **labels** indicating the classes which they belong to

New data is classified based on the models built from the training set

Training Data with class labe

				-
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	no adium	no.	oveellent	

Supervised vs. Unsupervised Learning. (2)

- □ Unsupervised learning (clustering)
 - The class labels of training data are unknown
 - ☐ Given a set of observations or measurements, establish the possible existence

of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

- □ Classification > พาลย dass > พื่อใจไข้อ สำคัญของเลกกับเลขามายกาก Regretion
 - Predict categorical class labels (discrete or nominal)
 - Construct a model based on the training set and the class labels (the values in a classifying attribute) and use it in classifying new data
- Numeric prediction
 - Model continuous-valued functions (i.e., predict unknown or missing values)
- Typical applications of classification
 - Credit/loan approval
 - Medical diagnosis: if a tumor is cancerous or benign
 - ☐ Fraud detection: if a transaction is fraudulent

Web page categorization: which category it is

Classification—Model Construction, Validation and Testing

- □ Model construction → เอา Data พี่วัติของครับงาน เลือกไข้ากยุคเอบ ปากลากเอง
 □ Each sample is assumed to belong to a predefined class (shown by the class label) พางป
 - ☐ The set of samples used for model construction is training set
 - ☐ Model: Represented as decision trees, rules, mathematical formulas, or other forms
- Model Validation and Testing:
 - □ Test: Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - ☐ Accuracy: % of test set samples that are correctly classified by the model
 - ☐ Test set is independent of training set
 - Validation: If the test set is used to select or refine models, it is called validation (or development) (test) set
- Model Deployment: If the accuracy is acceptable, use the model to classify new data

Chapter 8. Classification: Basic Concepts

- Classification: Basic Concepts
- □ Decision Tree Induction ■ Bayes Classification Methods >
- Linear Classifier
- Model Evaluation and Selection
- ☐ Techniques to Improve Classification Accuracy: Ensemble Methods
- Additional Concepts on Classification
- Summary

Decision Tree Induction: An Example

Training data set: Who buys computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair (no
<=30	high	no	excellent	no
3140	high	no	fair (yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Note: The data set is adapted from "Playing Tennis" example of R. Quinlan

Example: Attribute Selection with Information Gain

- Class P: buys_computer = "yes"
- Class N: buys computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	pi	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Info _{age} (D) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

+ $\frac{5}{14}I(3,2) = 0.694$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's.

Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly, we can get

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit _rating) = 0.048$$