

Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska

Problem dopasowywania (uliniawiania) dwóch bądź wielu sekwencji

Plan wykładu

- Zagadnienie dopasowywania dwóch sekwencji
- Algorytmy macierzowe
 - Needlemana-Wunscha
 - Hirschberga
- Problem dopasowywania (uliniowiania) wielu sekwencji
- Metoda ewolucyjno-progresywna

Budowa sekwencji DNA

AGTTACGT

Cztery nukleotydy:

Adenina

Tymina

Guanina

Cytozyna

Struktura DNA – podwójna nić

- A łączy się z T (powójnym wiązaniem słabym)
- C łączy się z G (wiązaniem potrójnym)

- Podwójna HelisaWatsona-Cricka
 - ◆ 5'-ATCG-3'
 - **→** 3'-TAGC-5'

Podwójna Helisa

Odkrycie 1953, Nobel 1962 (medycyna)

Problem dopasowywania dwóch sekwencji DNA lub aminokwasów

- Problem polega na takim wzajemnym przyporządkowaniu dwóch ciągów, które maksymalizuje funkcję dopasowania.
- W funkcji dopasowania nagradzana jest zgodność symboli na odpowiadających sobie pozycjach, natomiast karana jest ich niezgodność oraz wstawianie odstępów.

AGTTACGTT ATATACTCT

Warianty problemu dopasowania

- Jednoczesne dopasowywanie k > 2
 sekwencji koszt globalny albo lokalny
- Znajdowanie maksymalnego wspólnego podciągu dwóch lub większej liczby sekwencji

Funkcja dopasowania

- W praktyce stosowanych jest wiele różnych funkcji dopasowania.
- W przykładzie modelowym przyjmijmy:
 - Zgodne symbole: +3 punkty
 - Niezgodne symbole: -1 punkt
 - Odstęp: -2 punkty =

$$AGTTACG-A$$
 $A-T-ATGCA$
 $3-2+3-2+3-1+3-2+3=8$

Macierz podobieństwa

	A	C	G	T
A	+3	-1	-1	-1
C	-1	+3	-1	-1
G	-1	-1	+3	-1
T	-1	-1	-1	+3

Warianty funkcji dopasowania

 Afiniczna funkcja kary w przypadku ciągu odstępów:

- f(k)=C + k * p
- C stały koszt "otwarcia" sekwencji odstępów,
- p koszt wprowadzenia pojedynczego odstępu
- Dla struktur białkowych tabela kosztów przyporządkowania poszczególnych par symboli (PAMn – Point Accepted Mutation lub BLOSUMn)
 - dowolne pary spośród 20 protein

Macierze PAM (Margaret Dayhoff, 1962)

- PAM1 sformułowano na podstawie ręcznego porównywania blisko spokrewnionych sekwencji różnica w jednym aminokwasie na 100 🗲 p-stwo podstawienia X→Y
- zakłada się, że żadna mutacja nie trafiła więcej niż
- Dwie sekwencje od wspólnego przodka

 $G \rightarrow C$

G→A

G→A

 $G \rightarrow G$

 $G \rightarrow C$

G→A

1 pods/1 różn 2 podst/1różn 2 podst/0 różn

Macierze PAM (Margaret Dayhoff, 1962)

 PAMn – ekstrapolacja modelu PAM1 po nkrokach

 Po pewnym czasie następuje wysycenie – mutacje nadpisują się -

PAMn
1 30 80 110 200 250
% podob.
99 75 50 60 25 20

Macierze PAM (Margaret Dayhoff, 1962)

 Macierze PAM wyższego rzędu kumulują wyniki porównywania blisko spokrewnionych sekwencji (ale także ewentualne błędy tych porównań!)

Macierze BLOSUM (BLOcks SUbstitution Matrix) (Henikoff & Henikoff, 1991)

- notacja BLOSUM, przeciwna do PAM
- BLOSUM80 odpowiada 80% identyczności

PAM vs BLOSUM – którą wybrać?

Porównywanie nieznanych – często stosowana jest macierz

BLOSUM62

 Porównywanie odległych (dywergentnych) - "duże PAM, małe BLOSUM" – np.

PAM250, BLOSUM30

 Porównywanie bliskich (podobnych) – "małe PAM, duże BLOSUM" – np.

PAM15, BLOSUM80

Przyporządkowanie sekwencji aminokwasów

Funkcja dopasowania

- W praktyce stosowanych jest wiele różnych funkcji dopasowania.
- W przykładzie modelowym przyjmijmy:
 - Zgodne symbole: +3 punkty
 - Niezgodne symbole: -1 punkt
 - Odstęp: -2 punkty =

$$AGTTACG-A$$
 $A-T-ATGCA$
 $3-2+3-2+3-1+3-2+3=8$

Rozwiązania optymalne

 Dla zadanej funkcji dopasowania może istnieć kilka rozwiązań optymalnych. W prezentowanym przykładzie występują trzy rozwiązania:

Dwie grupy algorytmów

 Algorytmy dokładne - optymalne dopasowanie przy zadanej funkcji kosztu.

- Algorytmy heurystyczne rozwiązania suboptymalne
 - BLAST (Basic Local Alignment Search Tool lista lokalnie dopasowanych podciągów)
 - MUSCLE
 - FASTA

Podstawowe algorytmy dokładne

- Dwa podstawowe algorytmy dokładne:
 - Algorytm Needlemana-Wuncha wykorzystujący pełną reprezentację macierzową
 - Algorytm Hirschberga o znacznie ograniczonych wymaganiach pamięciowych

Reprezentacja problemu

- Wszystkie potencjalne dopasowania dwóch sekwencji reprezentowane sa w postaci ścieżek w odpowiedniej macierzy.
- Macierz zaetykietowana jest kolejnymi symbolami występującymi w rozważanych sekwencjach.
- Każda scieżka od lewego-górnego do prawegodolnego elementu macierzy reprezentuje syntaktycznie poprawne (dopuszczalne) rozwiązanie.

Rozwiązania jako ścieżki

Pozostałe dwa rozwiązania

Pozostałe dwa rozwiązania

Schemat algorytmu macierzowego

 Algorytmy rozwiązujące problem dopasowania składają się z dwóch faz:

- oblicz_koszt
- znajdź_ścieżkę

- W fazie oblicz_koszt znajdowane są koszty wszystkich ścieżek od prawego-dolnego do lewego-górnego elementu macierzy.
- Wartości propagowane są w macierzy z prawej do lewej i z dołu do góry.
- Po skompletowaniu całej macierzy koszt dopasowania optymalnego odczytywany jest w lewym-górnym elemencie.

Faza znajdź_ścieżkę

- W fazie znajdź_ścieżkę przeszukiwanie zaczyna się od lewego-górnego elementu.
- W każdym z elementów wybierany jest kierunek kontynuacji: w dół, w prawo, bądź po skosie w oparciu o maksymalny wkład punktowy do tego elementu (z rozważanych kierunków).
- Jeżeli wkład punktowy z dwóch (bądź trzech) kierunków jest jednakowy, to oba (trzy) kierunki generują optymalne ścieżki.

Faza znajdź_ścieżkę

Koszt algorytmu

- Algorytm w obu fazach (oblicz_koszt, znajdź_ścieżkę) wymaga jednoczesnego przechowywania w pamięci całej macierzy.
- Dla sekwencji o długościach n i m przechowywanych jest n x m elementów.
- Faza oblicz_koszt wymaga wykonania n x m operacji.
- Faza znajdź_ścieżkę wymaga wykonania około m + n operacji.

Algorytm Hirschberga

- Algorytm Hirschberga znajduje optymalne rozwiązania wykorzystując mniej pamięci.
- Idea polega na podzieleniu jednej z sekwencji na dwie (możliwie równe) części i przeprowadzeniu fazy oblicz_koszt w każdej części oddzielnie, przy czym na jednej z nich w kierunku odwrotnym.
- W pamięci przechowywany jest jedynie bieżący wiersz obliczeń z każdej podmacierzy (w sumie 2n elementów).

Algorytm Hirschberga

 Po zakończeniu fazy oblicz_koszt, wiersze wynikowe w każdej z dwóch podmacierzy wykorzystywane są do znalezienia optymalnego punktu łączenia obu częściowych dopasowań.

Podział na podproblemy

- Znaleziono dwa punkty optymalnego podziału: niebieski oraz różowy.
- Podział różowy odpowiada dwóm rozwiązaniom optymalnym: różowemu oraz białemu.

		AGTTA	CGTT
AGT	TANCET	ATX-A	TGCT
ATT	ATCC4T	AGTTA	CGTT
		ATATA	TGCT

Eliminacja połowy macierzy

Algorytm Hirschberga

 Następnia algorytm wywoływany jest ponownie dla każdej pary powstałej z pierwotnych "półsekwencji".

 Rekurencyjne wywołanie algorytmu kończy się w przypadku, gdy długość porównywanych sekwencji jest równa 1.

Schemat rekursji Hirschberga

Koszt algorytmu

- Algorytm Hirschberga wymaga jedynie pamięci liniowej - 2 x n.
- Kosztem ok. dwukrotne zwiększenie wymagań czasowych (do 2 x m x n) w związku z koniecznością powtórnego obliczania części elementów macierzy.

Podsumowanie: złożoność algorytmów

	N-W	H
pamięć	n^2	2n
czas oblicz_koszt	n^2	2n ²
czas znajdź_ścieżkę	2n	

Tyle o algorytmach dokładnych