A. Teaching notes for the guided questions of Simulation I

When the arm is extended, the arm length is 38.9% of the height of a person H_P .¹ The free body diagram can be simplified with only four forces JRF_s , F_{del} , W_{bal} and the weight of an arm W_A . Unlike objects with homogeneous mass distributions, the centers of mass of the body are not at geometric centers. The center of mass of an arm is 46.0% of the arm length from the shoulder joint end. For the segment of arm, $W_A = W_{FA} + W_{UA}$ is 4.8% of the weight of a person W_P . F_{del} is approximately at 25.0% of arm length with $\theta_{del} = 15.0^{\circ}$.² Here are the sample guided questions.

- "Assuming a person keeps the same pose, how does the force on deltoid muscle and the joint reaction force on a shoulder depend on the weight of the ball?"
 - Students are expected to control variables to ensure W_P and H_P are constant. They should notice large magnitudes of F_{del} and JRF_s even when W_{bal} is small or zero. We guide students to understand the mechanism behind of these large values by looking back at their equation setup and calculation.
- "Does JRF_{sh} , the horizontal component of JRF on the shoulder change with the weight of ball? Please run the simulation to verify your prediction and explain the results."
 - With this guided question, they will also notice that when W_{bal} changes, the JRF_{sv} changes, the same happens with the JRF_{sh} , even though the weight of the ball is downward.
- "How do you predict F_{del} and JRF_s change for an adult who is shaped differently? Such as a person who is taller and thinner, or shorter and heavier. How about a child who is shorter and lighter? Please apply Simulation I to verify your prediction."

¹ Stanley Plagenhoef, F. Gaynor Evans and Thomas Abdelnour, "Anatomical data for analyzing human motion," Res. Q. Exerc. Sport," **54**, 169–178 (1983).

² Howard D. Goldick, *Mechanics, Heat and the Human Body: An Introduction to Physics*, (Pearson, New Jersey, 2001), p. 99.