

2.4 矩阵的特征值与特征向量

- □ 矩阵特征值的数学定义
- □ 求矩阵的特征值与特征向量
- □ 特征值的几何意义

1. 矩阵特征值的数学定义

设A是n阶方阵,如果存在常数 λ 和n维非零列向量x,使得等式 $Ax=\lambda x$ 成立,则称 λ 为A的特征值,x是对应特征值 λ 的特征向量。

2. 求矩阵的特征值与特征向量

在MATLAB中, 计算矩阵的特征值和特征向量的函数是eig, 常用的调用格式有两种:

- □ E=eig(A): 求矩阵A的全部特征值,构成向量E。
- □ [X,D]=eig(A): 求矩阵A的全部特征值,构成对角阵D,并产生矩阵X,X 各列是相应的特征向量。

MATLAB Language MATLAB TE Scientific Computing 与MATLAB语言

```
\Rightarrow A=[1, 1, 0; 1, 0, 5; 1, 10, 2]
A =
\Rightarrow [X, D]=eig(A)
X =
    0. 0722 0. 9751 0. 0886
    0. 5234
             -0.0750 -0.6356
    0.8490
             -0.2089
                        0.7669
D =
    8. 2493
                     0
                0.9231
                     0
                          -6. 1723
```

例1 设

$$\mathbf{A} = \begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{O}_{3\times2} \\ \mathbf{O}_{2\times3} & \mathbf{S}_{2\times2} \end{bmatrix}$$

又设 λ_i 为R的特征值, λ_j 为S的特征值, $x_i = (\alpha_1, \alpha_2, \alpha_3)'$ 是R对应于 λ_i 的特征向量, $y_j = (\beta_1, \beta_2)'$ 是S对应于 λ_j 的特征向量,试验证:

- (1) λ_i 、 λ_j 为A的特征值。
- (2) $\mathbf{p_i} = (\alpha_1, \alpha_2, \alpha_3, \mathbf{0}, \mathbf{0})'$ 是A对应于 λ_i 的特征向量, $q_j = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2)'$ 是 A对应于 λ_i 的特征向量。

MATLAB Language Schentific Computing 与MATLAB语言

A矩阵的特征值由R矩阵的特征值和S矩阵的特征值组成,关于A矩阵每个特征值的特征向量,前三个特征向量的前三个元素是R的特征向量,后两个特征向量的后两个元素是S的特征向量,运算结果与结论相符。

X1 =			
0. 8553	0.4517	0. 1899	
0. 4703	-0.8395	-0. 5111	
0. 2173	-0.3021	0.8383	
d1 =			
0. 0996	0	0	
0	-4. 7165	0	
0	0	-6.3832	
X2 =			
-0.8507	0. 5257		
0. 5257	0.8507		
d2 =			
-0. 2361	0		
0	4. 2361		
	41100		

Х3 =				
0.8553	0.4517	0.1899	0	0
0. 4703	-0.8395	-0.5111	0	0
0. 2173	-0.3021	0.8383	0	0
0	0	0	-0.8507	-0. 5257
0	0	0	0. 5257	-0.8507
d3 =				
0. 0996	0	0	0	0
0	-4. 7165	0	0	0
0	0	-6. 3832	0	0
0	0	0	-0. 2361	0
0	0	0	0	4. 2361

3. 特征值的几何意义

设A = $\begin{bmatrix} 3.8 & 0.6 \\ 0.6 & 2.2 \end{bmatrix}$,其特征向量有 $x_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $x_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$,对应的特征值分别为 $\lambda_1 = 4\pi\lambda_2 = 2$,令 $y_1 = Ax_1 = \lambda_1 x_1$, $y_2 = Ax_2 = \lambda_2 x_2$,我们讨论 $y_1 = x_1$, $y_2 = x_2 = x_2$

 y_1 、 y_2 是 x_1 、 x_2 经过矩阵A变换以后的结果,A相当于一个变换矩阵。把 λ_1 、 λ_2 当作伸缩因子, y_1 、 y_2 是 x_1 、 x_2 经过 λ_1 、 λ_2 伸缩以后的结果,如图所示。黑色部分代表向量 x_1 和 x_2 ,红色部分代表对 x_1 和 x_2 进行拉伸的结果。

MATLAB Language Scientific Computing 与MATLAB语言

更进一步,连续取单位向量x,让它大小保持为1,那么Ax就将四分之一圆弧进行拉伸,变成四分之一椭圆。

MATLAB Language Scientific Computing 与MATLAB语言

MATLAB提供了一个eigshow命令,可以演示向量x和Ax之间的关系。用鼠标拖动绿色的单位向量x绕原点转动,图中同步出现蓝色的Ax向量。Ax的大小在变化,方向也在变化,而且Ax的方向与x不一定相同。在变化过程中,x与Ax共线的位置称为特征方向。在特征方向上有Ax等于λx。

例2 已知大写字母M的各个结点坐标如表所示(第一行代表横坐标,第二行代表纵坐标)。

X	0	0.5	0.5	3	5.5	5.5	6	6	3	0
y	0	0	6	0	6	0	0	8	1	8

(1) 绘制M的图形。

(2) 设 $A = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$,用A对M的结点坐标进行变换,并绘制变换后的图形。

MATLAB Language MATLAB语言

```
      x=[0, 0. 5, 0. 5, 3, 5. 5, 5. 5, 6, 6, 3, 0; 0, 0, 6, 0, 6, 0, 0, 8, 1, 8];

      A=[1, 0. 5; 0, 1];

      y=A*x;

      subplot(2, 2, 1);
      %选择1号子图,详见专题四

      fill(x(1,:),x(2,:),'r');
      %绘制M的图形,并用红色(red)填充

      subplot(2, 2, 2);
      %选择2号子图

      fill(y(1,:),y(2,:),'r');
      %绘制变换后的M图形,并用红色填充
```


- □ 定义变换矩阵A,再利用A对x进行变换,得到y矩阵,最后分别绘制变换 前后的图形,M原来是正体,变换后改为斜体。
- □ 启示: 在构建字库时,不必单独创建斜体字库,而只需对正体字库进行 适当的线性变换即可,这样可以大大节省存储空间。