Advanced Robot Perception

Fortgeschrittene Konzepte der Wahrnehmung für Robotersysteme

Georg von Wichert, Siemens Corporate Technology

Wer bin ich?

Dr.-Ing. Georg von Wichert

Studium der Elektrotechnik, TU Darmstadt

Promotion in Regelungstechnik/Robotik, TU Darmstadt

Thema: Lernende visuelle Wahrnehmung für mobile Roboter

Link zur TU: Institute for Advanced Study in Garching

Wer bin ich?

Dr.-Ing. Georg von Wichert

Heute bei Siemens Corporate Technology, Robotics, Autonomous Systems & Control

Wer sind Sie?

Das Forschungs- und Entwicklungs-Center

Siemens gliedert sich in 4 Sektoren: Industry, Energy, Healthcare und Infrastructure & Cities

Siemens: Daten und Fakten Geschäftsjahr 2013

Kennzahlen GJ 2013

Umsatz: ~€ 76 Mrd.

• Standorte: in 190

Ländern

Mitarbeiter: ~362.000

FuE-

Ausgaben: ~€ 4,3 Mrd.

FuE-

Ingenieure: ~29.800

• Erfindungen: ~8.400

• Aktive Patente: ~60.000

1) Umsatz im GJ 2013

Siemens – ein Pionier in einer sich schnell verändernden Welt

Siemens: Umfeld, Wettbewerb und Strategie

Markt- und Kundenumfeld

Globale Megatrends

- Demografischer Wandel
- Urbanisierung
- Klimawandel
- Globalisierung

Makroökonomische Situation

Globale Innovationsfelder in der IT

Unsere strategischen Richtungen

- Fokus auf innovationsgetriebene Wachstumsmärkte
- Starker Partner unserer Kunden vor Ort
- Die Kraft von Siemens nutzen

Neue und attraktive Märkte in Schwellenländern

Wir sind Pionier in den Bereichen ...

Intelligente Infrastrukturlösungen

Energieeffizienz

Industrielle Bezahlbares & Produktivität personalisiertes Gesundheitswesen

CT entwickelt High-Impact-Technologien mit Fokus auf Kundennutzen

Beispiele für Entwicklungsprojekte von CT

Aktuelle Beispiele

Der Beitrag von CT

Biograph mMR Das 1. kombinierte PET/MR-System der Welt

- Mitentwicklung der PET-Detektoren
- Frequenzfilter f
 ür Gammastrahlung
- Image Stitching

Windpark-Optimierung Mehr Ausgangsleistung ohne Hardware-Investition

- Simulation kompletter Windparks zur Minimierung von Turbulenzen
- Prognosemodell für Wetter und Leistung

Allgäuer Überlandwerke Nationales Smart Grid-Pilotprojekt

- SO EASY Software zum Ausgleich von Energiebedarf und -produktion
- Systemintegration von Elektrofahrzeugen

Electrolyzer Energiespeicher-Prototyp zur Kommerzialisierung an Industry transferiert

- Funktionsfähiger H₂-Hydrolyse-Prototyp
- PEM-Technologie im Umkehrverfahren
- Unterstützung in Demonstrationsprojekten

EvaCon Neuartige Anlage zur Wasseraufbereitung

- Abwasserreinigung mittels zurückgewonnener Abwärme im Niedertemperaturbereich
- Einsparung bei Energie- und Wasserverbrauch

CT leistet einen Beitrag zur Wettbewerbsfähigkeit von Siemens

Abteilungen von CT: Übersicht

Corporate Technology (CT)
CTO: Prof. Dr. Siegfried Russwurm

Technology and Innovation Management (TIM)

- Entwickelt Technologieund Innovationsstrategie sowie Portfolio
- Etabliert und f\u00f6rdert Kooperationen mit externen Partnern

Innovative Ventures (IV)

 Schlägt die Brücke von der Technologie zum Geschäft (z. B. durch Technologie-Kommerzialisierung)

Business Excellence/top+ (CT BE)

- Unterstützt die Siemens Geschäfte, ihre Wettbewerbsfähigkeit zu stärken
- Beinhaltet top+, Governance und Guidance sowie Beratung

Development Center (DC)

 Leistet hochwertige Produktentwicklung auf Near-shore- und Offshore-Basis

Research and Technology Center (RTC)

 Erbringt erstklassige Forschungsservices für die Divisionen und Innovationen für Siemens

Intellectual Property (IP)

 Erbringt hervorragende IP-Services und bringt die IP-Strategie von Siemens voran

New Technology Fields (NTF)

 Fokussiert auf interdisziplinäre, langzeitorientierte Forschungsprojekte

CT Research and Technology Center: ~1.650 Experten in 12 Technologiefeldern

CT Research and Technology Center (RTC)

IT Platforms

SW/System-

Enterprise IT

Middleware, Cloud

integration

Software **Architecture Development** Softwarequalität Architektur HQ 1): München RGs²⁾: 7 **Systems Engineering**

HQ: München

RGs: 10

- PLM-Prozessunterstützung

HQ: München RGs: 11

Bildverarbeitung &

HQ: Princeton, US RGs: 13

IT Security

- Security- Architektur und Lifecycle
- **CERT-Services**
- **Embedded Security**

HQ: München RGs: 8

Materials

Analytik

Materialentwicklung

& -verarbeitung

Business Analytics & Monitoring

- Knowledge Discovery
- Zustandsüberwachung

HQ: München RGs: 9

Automation & Control

- Modellieruna & Simulation
- Engineering
- Laufzeit & Optimierung

Lösungen

HQ: Princeton, US RGs: 12

Networks & Communication

- Wireless & Industrie-Netzwerke
- Internet der Dinge

HQ: München RGs: 6

- Benutzerschnittstellen-Design Computer Vision
 - -analyse

HQ: Berlin RGs: 9

Flectronics

- Elektronik-Entwicklungs- & Fertigungsprozesse
- Montage & Test

HQ: München RGs: 8

Sensor Technologies

- Sensorik & Systemintegration
- Inspektion & Test

HQ: Erlangen RGs: 8

Power & Energy **Technologies**

- Leistungsmanagement & Switching
- Leistungselektronik
- Elektromagnetik & Mechatronik
- Energiespeicherung
- Energie- und industrielle Prozesse

HQ: Erlangen RGs: 12

1) Headquarter

2) Research Groups

Die globale Präsenz von CT sichert die Nähe zu internen Kunden und weltweiten Forschungshochburgen

Globale Organisation von CT (größte Standorte)

Across the Siemens Portfolio: Systems that move

Motion is a key element in many industrial applications

Application example Motion generation for medical equipment (1)

Objective: Generic motion generation for imaging systems:

- Automatic collision-free moves from any initial configuration to any target configuration (current assumption: known environment)
- Fast response and execution time
- Plausibility of motions

Application example Motion generation for medical equipment (2)

Main challenges:

- Many degrees of freedom
- Domain- and machine-specific requirements

Key elements of solution:

- Generic SW architecture
- Deliberate combination of appropriate global planners (e. g. random-based, rule-based) and local heuristics (e.g. potential field)
- Path optimization
- Path cache, roadmaps, ...

Application example Motion generation for medical equipment (3)

Main benefits:

- Usability
- Increased acceptance
- Increased throughput

Source: H IM AX

CargoMover®

- Radar
- Video
- Laserscanner

Application example: Environment perception for STS crane automation

Corporate Technology

Objective: New functions based on detection, recognition and localization of objects near portal cranes

Bay scanning Container Localization on ship

Container localization on truck

> Stack topology Stack anti-collision **Zone supervision**

Container localization on straddle site

Container localization on wagon

Unknown truck/trailer combination **Detection of trailer** load capacity

Wagon localization Wagon lifting detection

Application Example: STS* Crane Automation - Truck Positioning System (1)

Objectives

Guide truck driver to optimal loading / unloading position

*STS = Ship-to-Shore

Application Example: STS* Crane Automation - Truck Positioning System (1)

Detection, classification, (active) tracking & localization of trucks

Application Example: STS* Crane Automation - Truck Positioning System (3)

Main benefits:

- Safety
- Availability
- Throughput

Application example Navigation System for AGVs (1)

Objectives:

- Autonomous motion in industrial environments
- Recognition and transfer of pallets
- Easy installation

Approach:

- "Autarkic localization" using building features as landmarks
- 3D-sensor data from swiveling2D-laserscanner
- Automatic map building during teaching run

Source: RD I IA&DT SDW

Application example Navigation System for AGVs (2)

Application example Navigation System for AGVs (3)

Main challenges:

- Uncertainties (Measurements, models)
- Diversity of environments
- High position accuracy
- High dependability requirements

Main benefits:

- Rationalization
- Availability
- Flexibility
- Safety

Application example Navigation System ANS (3)

Kommisionierzentrum bei LAPP Kabel

Environment Perception:Core Function for Robot Assistants

Objectives for scene analysis system

- Recognition of relevant objects in the scene
- Acceptable performance (processing time, detection rates, pose accuracy of < 1 cm, ...)
- Suitability to complex, cluttered environments
- Robustness to environmental influences
- Handling of a large number of objects

Result of SIFT-feature-based stereo

Main directions of our approach

- Consistent handling of unavoidable uncertainties (model errors, measurement errors)
- Fusion
- Active perception
- Integration of a-priori knowledge

T. Grundmann, W. Feiten and G. v. Wichert: *A Gaussian Measurement Model for Local Interest Point Based 6 DOF Pose Estimation.* In: IEEE International Conference on Robotics and Automation, Shanghai, China, 2011.

Umgebungserfassung für Fahrerassistenzsysteme

Inhalte der Vorlesung

- Sensortechnologien für robotische Wahrnehmungssysteme
- Schwächen und Stärken unterschiedlicher Sensoren
- Wichtige Methoden für die Erzeugung und Verarbeitung räumlicher Daten (3D)
- Umgang mit unsicherer Information
- Sensordatenfusion und Zustandsschätzung
- Modellierung von Sensoren
- Statische und dynamische Umgebungs- und Szenenmodelle
- Wahrnehmung als kognitiver Prozess

Lernziele der Vorlesung

- Kenntnis der wesentlichen Komponenten und Konzepte robotischer Perzeptionssysteme
- Fähigkeit zur Analyse komplexer Wahrnehmungsaufgaben für autonome (Roboter-) Systeme
- Fähigkeit zur Konzeption und Realisierung von Perzeptionssystemen für autonome Systeme (nicht nur Roboter)
- Der Focus der Vorlesung wird auf "kontaktlosen"
 Sensoren und den Verarbeitungsstrukturen liegen!

Bitte sagen Sie Ihre Meinung!

Die Vorlesung ist neu und noch plastisch!

Wenn Ihnen Fehler auffallen, bitte melden.

– Ggf. dezent ;-)

 Ziel ist, dass alle beteiligten Spaß an diesem tollen Thema haben!

Vorlesungstermine

N0507, Seminarraum-MST/LSR (0105.EG.507)

Am Freitags morgen: immer um 8:00 Uhr!

Folien sind zeitnah auf moodle.tum.de zu finden.

Hausaufgaben

- "hands on"- Anwendung des Vorlesungsstoffes anhand kleiner Programmieraufgaben
 - Unter Verwendung existierender Basissoftware (ROS)
 Bibliotheken (z.B. OpenCV)
 - Linux (virtuelle Maschine)
 - Bereitgestellte Rahmenprogramme
 - Reale und simulierte Daten
- Vorteil: Hilft sehr beim Verständnis
- Nachteil: Ist etwas Aufwand (auch für mich!!)

Perception (from the Latin *perceptio, percipio*) is the organization, identification, and interpretation of sensory information in order to represent and understand the environment.

(Schacter, Daniel L. (2011). *Psychology*. Worth Publishers.)

Wikipedia ;-)

- Wahrnehmung ist viel mehr als die bloße Verarbeitung oder Transformation von Sensorrohdaten
- Wahrnehmung ist eine Intelligenzleistung!

- Wahrnehmung ist viel mehr als die bloße Verarbeitung oder Transformation von Sensorrohdaten
- Wahrnehmung ist eine Intelligenzleistung!

Perception (from the Latin *perceptio, percipio*) is the organization, identification, and interpretation of sensory information in order to represent and understand the environment.

(Schacter, Daniel L. (2011). *Psychology*. Worth Publishers.)

Perception (from the Latin *perceptio, percipio*) is the organization, identification, and interpretation of sensory information in order to represent and understand the environment.

(Schacter, Daniel L. (2011). Psychology. Worth Publishers.)

Perception is sometimes described as the process of constructing mental representations of distal stimuli using the information available in proximal stimuli.

The Perception-Cognition-Action-Loop

- Wahrnehmung ist viel mehr als die bloße Verarbeitung oder Transformation von Sensorrohdaten
- Wahrnehmung ist eine Intelligenzleistung!

- Wahrnehmung ist viel mehr als die bloße Verarbeitung oder Transformation von Sensorrohdaten
- Wahrnehmung ist eine Intelligenzleistung!

The Perception-Cognition-Action-Loop

The Perception-Cognition-Action-Loop

Wie geht es weiter?

- Wichtige Sensortypen und ihre Eigenschaften im Hinblick auf die Wahrnehmungsaufgabe
- Klassiker der Sensordatenverarbeitungsalgorithmik und dafür erforderliche mathematische Tools
- Thema Kalibrierung
- Fusion von Daten und Informationen aus unterschiedlichen Quellen
- Vom Sensordatum zur Interpretation
- Wahrnehmung als Prozess