

CONTENTS

1.1 Imbedded systems definition 3 1.2 Embedded systems applications 4 1.3 Embedded systems characteristic 5 1.4 Embedded systems characteristic 6 2 AM ITDI PLOM A 6 2.1 Outlines 6 2.2 Amit Kit 7 3 EM BEDDEDSYSTEM SYSGENERALPURPOSESYSTEMS 8 3.1 Embedded systems vs General purpose systems 8 4.1 Microcontroller components 9 4.1 Microcontroller components 9 4.2 CPU 10 4.3 Memory unit 11 4.4 GPOS 14 4.5 Peripherals 15 5.1 CPU Instruction cycle 16 5.2 Instruction cycle 17 5.3 Ppelining 18 6 VEN DRS' I DE 20 6.1 Microcontroller vendors 20 6.2 Discottware 21	1	WHA	ATI SEM BEDDEDSYSTEMS	3
1.3 Embedded systems characteristic 5 1.4 Embedded system companies 6 2.1 AM I T I PLOM A 6 2.1 Outlines 6 2.2 Amil Kit 7 3 EM BE DEDSYSTEM SVSGENERAL PURPOSESYSTEMS 8 3.1 Embedded systems vs General purpose systems 8 4.1 Microcontroller components 9 4.1 Microcontroller components 9 4.2 CPU 10 4.3 Memory unit 11 4.4 CPOS 14 4.5 Peripherals 16 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pjelpining 18 6 VEXTRUCTION Cycle 20 6.1 Microcontroller vendors 20		1.1	Embedded systems definition	3
1.4 Embedded system companies 6 2. AM I T I I I I I I I I I I I I I I I I I		1.2	Embedded systems applications	4
2 AMI T FLOM A 6 2.1 Outlines 7 3.2 Amit Kit 7 3.1 Embedded systems vs General purpose systems 8 4.1 Microcontroller components 9 4.2 OPU 10 4.3 Memory unit 11 4.4 OPOS 14 4.5 Peripherals 15 5.0 OPU 16 5.1 OV Architecture 16 5.2 Instruction cycle 18 6 VEXTURE 15 6.1 VEXTURE 15 6.1 Intruction cycle 18 6.1 Intruction cycle 18 6.2 VEXTURE 15 6.3 Intruction cycle 18 6 VEXTURE 15 6 VEXTURE 15 7 10 15 8 15 15 9 15 15 <		1.3	Embedded systems characteristic	5
2.1 Outlines 7 2.2 Amit Kit 7 3. EM BEDEDSYSTEM SYSGENERALPURPOSESYSTEMS 8 3.1 Inhedded systems vs General purpose systems 8 4. MI CECONTROLLERCOM PONENTS 9 4.1 Microcontroller components 9 4.2 OPU 10 4.3 Memory unit 11 4.4 OPKOS 14 5. OPU 16 5. OPU 16 5. OPU 16 5. OPU 16 6. OUArchitecture 16 5. Instruction cycle 17 5. Instruction cycle 18 6. VEX. ST I DE 20 6. Microcontroller vendors 20		1.4	Embedded system companies	6
2.2 kmit Kit 7 3 EM BEDEDSYSTEM SYSGENERALPURPOSESYSTEMS 8 3.1 Embedded systems vs General purpose systems 8 4 MICROCONTROLLERCOM PONENTS 9 4.1 Microcontroller components 9 4.2 PU 10 4.3 Memory unit 11 4.4 GPICS 15 5 POP Foripherals 15 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VENUTURE Y I DE 20 6.1 Microcontroller vendors 20	2	AMI	TDI PLOM A	6
3 BM SED ED ED SYSTEM SV SGENERAL PURPOSESYSTEMS 8 3.1 Embedded systems vs General purpose systems 8 4 MICHOCONT ROLLERCOM PONENTS 9 4.1 Microcontroller components 10 4.2 CPU 10 4.3 Memory unit 11 4.4 CPICS 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VEXTURE SY I DE 20 6.1 Microcontroller vendors 20		2.1	Outlines	6
3.1 Embedded systems vs General purpose systems 8 4 M I C R C C O N T ROLL ERCO M PO N EN T S 9 4.1 Microcontroller components 9 4.2 CPU 10 4.3 Memory unit 11 4.4 CPIOS 14 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipellining 18 6 VEN URSY I DE 20 6.1 Microcontroller vendors 20		2.2	Amit Kit	7
4 MICROCONTROLLERCOM PONENTS 9 4.1 Microcontroller components 9 4.2 CPU 10 4.3 Memory unit 11 4.4 CPOS 14 4.5 Peripherals 15 5 CPU 16 5.1 CPUArchitecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VENDORS/ IDE 20 6.1 Microcontroller vendors 20	3	EM B	EDDEDSYSTEM SVSGENERALPURPOSESYSTEMS	8
4.1 Microcontroller components 9 4.2 CPU 10 4.3 Memory unit 11 4.4 GPIOS 14 4.5 Peripherals 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VEN DORS/ I DE 20 6.1 Microcontroller vendors 20		3.1	Embedded systems vs General purpose systems	8
4.2 CPU 10 4.3 Memory unit 11 4.4 CPIOS 14 4.5 Peripherals 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 6.3 Pipelining 18 6 VEN DRS/ I DE 20 6.1 Microcontroller vendors 20	4	MIC	ROCONTROLLERCOM PONENTS	9
4.3 Memory unit 11 4.4 GPIOS 14 4.5 Peripherals 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VEN DRS' I DE 20 6.1 Microcontroller vendors 20		4.1	Microcontroller components	9
4.4 GPIOS 14 4.5 Peripherals 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VENDORS/ I DE 20 6.1 Microcontroller vendors 20		4.2	CPU	10
4.5 Peripherals 15 5 CPU 16 5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VEN DORS/ I DE 20 6.1 Microcontroller vendors 20		4.3	Memory unit	11
5 CPU 5.1 CPU Architecture 5.2 Instruction cycle 5.3 Pipelining 6 VEN DORS/ I DE 6.1 Microcontroller vendors		4.4	GPIOS	14
5.1 CPU Architecture 16 5.2 Instruction cycle 17 5.3 Pipelining 18 6 VEN DORS/ I DE 20 6.1 Microcontroller vendors 20		4.5	Peripherals	15
5.2 Instruction cycle 17 5.3 Pipelining 18 6 VENDORS/ I DE 20 6.1 Microcontroller vendors 20	5	CPU		16
5.3 Pipelining 6 VENDORS/ I DE 6.1 Microcontroller vendors		5.1	CPU Architecture CPU Architecture	16
6 VENDORS/ I DE 20 6.1 Microcontroller vendors 20		5.2	Instruction cycle	17
6.1 Microcontroller vendors 20		5.3	Pipelining	18
	6	VEN	DORS/ I DE	20
6.2 IDE software		6.1	Microcontroller vendors	20
		6.2	IDE software	21

- 1 What is embedded systems
 - 1.1 Embedded systems definition

Embedded system: A combination of multiple systems merged together at one system.

- ¹ What is embedded systems
 - 1.2 Embedded systems applications

- Reliability.
- Efficiency.
- Tightly-constrained.
- Single-functionality
- Complex functionality.
- Safety-critical.
- Maintainability
- Interactive System
- Strong association between the HW and SW.

Reliability:

- Personal computer programs such as word processors and games do not need to achieve the same standard of reliability that a microcontroller application must. Errors in programs such as word processors may result in errors in a document or loss of data. An error in an embedded system application such as a TV remote control or compact disc player will result in a product that does not work and consequently does not sell.
- An error in embedded system application such as an Antilock Braking System (ABS) or Breaking Assistant (BA) or autopilot could be fatal.

> efficiency:

- Considered in real time applications.
- A real time application is one in which must be able to act at a speed corresponding with the occurrence of an actual process. Must compute certain results in certain real-time without delay.
- Some Embedded systems may have real-time performance constraints that must be met, for reasons such as safety and usability. others may have low or no timing performance requirements, allowing the system hardware to be simplified to reduce costs.

- > Tightly-constrained:
- Embedded Systems normally come with constraints in hardware resources:
 - Processing (speed)
 - Storage (Code Size)
 - Memory(Data)
 - Most of the time it targets real time objectives, this means,
 - It needs to be fast and efficient (Response Time).
 - It needs to be predictable (execution time known ahead, and almost constant)
 - Power limited (battery operated devices).
 - Cost
 - Size.
 - The developer has to deal with all of these constraints •Development should take into consideration code efficiency and code foot print. •Debugging tools are "closer to the metal" •Special attention to power consumption in some cases.

- ➤ Single-functionality:
- Dedicated to perform a specific function and include processors dedicated to specific function.
- Complex functionality:
- Often have to run sophisticated algorithms or multiple algorithms Cell phone, laser printer, automotive, etc.
- > Safety-critical:
- Must not endanger human life and the environment.

- ➤ Maintainability :
- The ability to modify the system after its initial release and enhance its performance like execution time, code and memory size.
- ➤ Interactive System :
- An Embedded system should be as interactive as possible so that it is easily understandable,
 Operated and Handled by a user and provide ease of task.
- > Strong association between the H W and SW.

- 1 What is embedded systems
 - 1.3 Embedded systems companies

AUTO.BUS TECH.

2

CAN

LIN

2 **AMIT Diploma**

Outlines 2.1

GITHUB

2 AMIT Diploma

2.2 Amit KIT

3 Embedded systems vs General purpose systems

3.1 Embedded systems vs General purpose systems

E M B E D D E D S Y S T E M S		G E N E R A L P U R P O S E S Y S T E M S
A system which is combination of a specific purpose hardware and a software for exciting a specific application	FUNCTIONALITY	A system which is combination of a generic hardware and a general purpose operating system for exciting a variety of applications
Known at designing time	APPLICATIONS	Unknown at designing time
Not programmable by end user	END USER	Programmable by end user
Low	SPEED	High
Low	POWER CONSUMPTION	High
Critical	RESPONSE TIME	Not Critical
Low	COST	High

4 Microcontroller components

4.1 Microcontroller components

		1141	RODOCTION TO EMBEDDED STSTEMS	10/22
4 Microco	ontroller c	components		
4.2	CPU			
1		CPU	Central Processing Unit Responsible of all the computingprocess Fetch, decode and execute all program instructions Direct the flow of data to / from memory unit Most CPUsare synchronous, this means it depends on external clock	
1.1		ALU	Arithmetic Logic Unit Responsible of all the arithmetic and logic and shifting instructions	
1.2		CU	Control Unit Convert the instructions stored in program memory (ROM) into codes which ALU can understand. Generate the control signal of this instruction.	S.
1.3		Accumulator Register	Is an SFRclosely related to the operation of ALU	
1.4		General Purpose Registers	Also called Register File A group of registers the processor use them to store the data fetched from memory	
1.5		SFR Registers		
	1.5.1	IR	Instruction Register: Contain the instruction after getting it from program memory.	
	1.5.2	PC	Program counter: Contain the address of the next instruction in program memory which the CPU will process	
	1.5.3	\$2	Stack Pointer: Hold the memory address of the next available location on the stack to store data	
	1.5.4	PSW	Status Register: contains information about the result of the most recently executed arithmetic instruction	7

- 4 Microcontroller components
 - 4.3 Memory Unit -> RAM Vs ROM

			INTRODUCTION TO EMBEDDED STSTEMS	12/22	
4	4 Microcontroller components				
	4.3 Memory Unit -> RAMTypes				
1		SRAM	Stands for Static RAM		
			Consists of multiple transistors for each memory cell		
			SRAM does not required a periodic refreshing		
			Faster than DRAM		
			Low power consumption		
			More expensive than DRAM		
			Most used in microcontrollers because limited power source		
2	2	DRAM	Stands for Dynamic RAM		
			Consists of Transistors and capacitors		
			DRAM need a periodic refreshing "a charge every few milliseconds to make capacitors retain its charge	је"	
			Slower than SRAM		
			High power consumption		
			Cheaper than SRAM		
			Most used in PCsbecause open power source		

		IINI	KODOCTION TO EMPEDDED 3131EM3	13/22
•	4 I	Microcontroller components		
		4.3 Memory Unit -> ROMTypes		
	1	MROM	MASKED PROGRAMABLE ROM	
			The microcontroller chip burned by the manufacture.	
	2		ONE TIME PROGRAMIWABLE	
	2	PROMOR(OTP)		
			Can be burned one time by the developer	
	3	EPROM	ERASABLE PROGRAMMABLE ROM	
			Can be erased and programmed by the developer.	
			The erasing process done using ultraviolet light.	
	4	EEPROM	ELECTRICALLYERASABLE PROGRAMIMABLE ROM	
			Can be erased and programmed by the developer.	
			The erasing process done using electric charge.	
			For example in (ATMEGA32) the finite number of writing / erasing is 100,000 times.	
			EEPROMwrite the data by byte.	
	5	FLASH	FLASHELECTRICALLYERASABLE PROGRAMIMABLE ROM	
			Can be erased and programmed by the developer.	
			The erasing process done using electric charge.	
			For example in (ATMEGA32) the finite number of writing / erasing is 10,000 times.	
			Developed from EEPROM	
			EEPROMwrite the data by sector.	7
			-	

- 4 Microcontroller components
 - 4.4 GPIOS

GPIOS standsfor

General PurposeInput Out put

Thismi crocontroller (ATM EGA32) s

Consist of 40 pin

32pins fromthemaregeneral purposeI/o

That m eanyoucan make each pinfrom these eit

32pins herinput pinor out put pinan d

that's whywecallit general purposeinput pi

output ns

4	Microcontroller components
---	----------------------------

1	ADC	ANALOG DIGITAL CONVERTER
		To convert any analog signal like sound waves to a digital signal (0,1)
2	DAC	DIGITAL ANALOG CONVERTER
		To convert the digital signal into analog
3	UART	UNIVERSALASYNCHRONOUS RECEIVER/ TRANSMITTER
		A communication protocol to send or receive data from microcontrollers
4	TIMERS	Very important peripheral in any embedded system application

5 CPU

5.1 CPU Architecture

- 5 Microcontroller components
 - 5.2 Instruction Cycle

Allt het imet he CPU doest hese4st epswhiler unt ime Weca llit t heinst ruct ioncycl e

- 1 -fetchdatafromRAM
- 2 Decodet hisdat a in CU
- 3 Execut et heinst ructionin ALU
- 4 -WritebackorstoretheresultofthisoperationinRAM

- 5 What is embedded systems
 - 5.3 Pipelining

To understand the pipelining concept let us show this example: In a car factory there are 30 workers, 10 workers in car body sector, 10 workers in motor sector, and 10 workers in paint sector. To produce one car it takes 30 minutes, 10 minutes in every sector.

The first 10 workers working on car body sector to produce the car body
After finishing it, they stop working and the second 10 workers start working on car motor to install it in the car body
After finishing it, they stop working and the third 10 workers start working on car painting.
In this case there is no pipelining so in 30 minutes we produce one car and one body

The first 10 workers working on car body sector to produce the car body

After finishing it, they do not stop but starting in another body, at the same time the second 10 workers start working on car motor to install it in the first body After finishing it, they do not stop but working on another motor, and the third 10 workers start working on car painting.

In this case after applying pipelining in 30 minutes we produce two cars and one body and one body with motor

By applying the pipelining concept in software we execute more instruction cycles at the same time

FETCH

What is embedded systems

DECODE

EXECUTE

- 6 Vendors / IDE
 - 6.1 Microcontroller vendors

INTEGRATED DEVELOPMENT ENVIRONMENT

MICROCHIP

TEXASINSTRUMENTS

SILICON LABS

RENESAS

INFINEON

CYPRESS

- 6 Vendors / IDE
 - 6.2 IDE software

INTEGRATED DEVELOPMENT ENVIRONMENT

- 2 What is embedded systems
 - 2.1 Embedded systems definition

WHICH PRODUCT HASMORELINES OF CODE?

- What is embedded systems
 - 2.1 Embedded systems definition

WHICH PRODUCT HASMORELINES OF CODE?

AMIT LEARNING

[NEXT SESSION IS -> C PROGRAMMING : SESSION_1 : HELLO C]

