BIOS 662 Fall 2016 Survival Analysis

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Outline

- Introduction to survival data/analysis
- Kaplan-Meier estimator, standard error and CI
- Log-rank test
- (Cox / proportional hazards model)

Survival Analysis

- Chapter 16 of the text; BIOS 680/780
- Survival analysis: Response is time to an event
- Measure time from beginning of follow-up until an event such as incident disease, death, or relapse
- In a clinical trial, the beginning of follow-up is almost always the time of randomization
- In an epidemiology study, beginning of follow-up is usually the time of (initial) exposure assessment
- Examples:
 - time from kidney transplant until death
 - time from leukemia treatment to remission

Survival Analysis: Notation

- Let T^* denote the (possibly unknown) survival time; assume $T^* > 0$
- Define the survival function

$$S(t) = \Pr[T^* > t] = 1 - \Pr[T^* \le t] = 1 - F(t)$$

where F(t) is the CDF of T^*

• Properties:

$$S(0) = 1; \quad S(\infty) = 0$$

If
$$t_1 \leq t_2$$
, then $S(t_1) \geq S(t_2)$

Example Survival Curve/Function

Censoring

- Often we do not know the exact time of failure of all subjects
- Reasons for **right** censoring:
 - subject does not experience the event of interest before the end of the study
 - subject is lost to follow-up during the study (e.g., withdraws from study, moves, dies from something other than the event of interest)
- Failure times can also be left or interval censored

Right Censoring

Survival Data

- Let T_i^* and C_i denote the survival and right censoring times for the i^{th} individual
- Observe $T_i = \min\{T_i^*, C_i\}$
- Censoring indicator

$$\delta_i = \begin{cases} 1 & \text{if failure, i.e., } T_i = T_i^* \\ 0 & \text{if right censored, i.e., } T_i = C_i \end{cases}$$

• We observe (T_i, δ_i) for $i = 1, 2, \dots, N$

Example

• Remission time in weeks for leukemia patients (N=21)

(T_i,δ_i)	(T_i, δ_i)	(T_i,δ_i)
-(6,1)	(6,1)	(6,1)
(6,0)	(7,1)	(9,0)
(10,1)	(10,0)	(11,0)
(13,1)	(16,1)	(17,0)
(19,0)	(20,0)	(22,1)
(23,1)	(25,0)	(32,0)
(32,0)	(34,0)	(35,0)

Estimation

- How do we estimate S(t) with minimal assumptions?
- Answer 1: In the absence of censoring, use 1 EDF
- Answer 2: Otherwise, use the Kaplan-Meier estimator

Tabular Summary of Data

• Let $t_{(1)}, t_{(2)}, \ldots, t_{(J)}$ be the distinct ordered failure times (censoring times are ignored)

Failure		No. of	No. censored
time	Risk set	failures	in $[t_{(j)}, t_{(j+1)})$
$t_{(j)}$	$R(t_{(j)})$	m_{j}	q_j
$t_{(0)} = 0$	$R(t_{(0)}) = N$	$m_0 = 0$	q_0
$t_{(1)}$	$R(t_{(1)})$	m_1	q_1
$t_{(2)}$	$R(t_{(2)})$	m_2	q_2
:	:	:	:
$t_{(J)}$	$R(t_{(J)})$	m_J	q_J

$$\bullet R(t_{(j)}) = R(t_{(j-1)}) - m_{j-1} - q_{j-1}$$

Leukemia Example

$t_{(j)}$	$R(t_{(j)})$	m_{j}	q_j
0	21	0	0
6	21	3	1
7	17	1	1
10	15	1	2
13	12	1	0
16	11	1	3
22	7	1	0
23	6	1	5

Kaplan-Meier Estimator of S(t)

• For
$$t \in [0, t_{(1)})$$

$$\hat{S}(t) = 1$$

• For $t \in [t_{(j)}, t_{(j+1)})$

$$\begin{split} \hat{S}(t) &= \hat{S}(t_{(j-1)}) \cdot \widehat{\Pr}[T > t_{(j)} | T \ge t_{(j)}] \\ &= \hat{S}(t_{(j-1)}) \left(\frac{R(t_{(j)}) - m_j}{R(t_{(j)})} \right) \end{split}$$

• Assumes anyone censored at time $t_{(j)}$ has $T > t_{(j)}$

Kaplan-Meier Estimator

- KM is a nonparametric maximum likelihood estimator (NPMLE))
- Assumes independent censoring
- Also known as the *product limit estimator*
- If no censoring, KM equals 1 − EDF
- Alternative: Life-table or actuarial method

Leukemia Example

$t_{(j)}$	$R(t_{(j)})$	m_{j}	q_{j}	$\hat{S}(t_{(j)})$
0	21	0	0	1
6	21	3	1	18/21 = 0.857
7	17	1	1	0.857(16/17) = 0.807
10	15	1	2	0.807(14/15) = 0.753
13	12	1	0	0.753(11/12) = 0.690
16	11	1	3	0.690(10/11) = 0.627
22	7	1	0	0.627(6/7) = 0.538
23	6	1	5	0.538(5/6) = 0.448

Kaplan-Meier Estimate for Leukemia Example

Kaplan-Meier Estimate: R

```
> t <- c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35)
> x < - rep(1,21)
> library("survival")
> fit <- survfit(Surv(t, delta)~x ,conf.type="plain")</pre>
> plot(fit,xlab="t",ylab="S(t)")
> summary(fit)
Call: survfit(formula = Surv(t, delta) ~ x, conf.type = "plain")
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   6
                                         0.707
         21
                 3
                      0.857 0.0764
                                                     1.000
                           0.0869
                                         0.636
         17
                      0.807
                                                     0.977
                 1
                                         0.564
  10
         15
                 1
                      0.753 0.0963
                                                     0.942
  13
         12
                      0.690 0.1068
                                         0.481
                                                     0.900
                 1
                      0.627 0.1141
                                         0.404
                                                     0.851
  16
         11
                 1
  22
                      0.538 0.1282
                                         0.286
                                                     0.789
         7
                 1
  23
          6
                      0.448 0.1346
                                         0.184
                                                     0.712
                 1
```

Kaplan-Meier Estimate: SAS

proc lifetest;
 time t*delta(0);

The LIFETEST Procedure Product-Limit Survival Estimates

			Survival		
			Standard	Number	Number
t	Survival	Failure	Error	Failed	Left
0.0000	1.0000	0	0	0	21
6.0000				1	20
6.0000				2	19
6.0000	0.8571	0.1429	0.0764	3	18
6.0000*				3	17
7.0000	0.8067	0.1933	0.0869	4	16
9.0000*	•		•	4	15
10.0000	0.7529	0.2471	0.0963	5	14
10.0000*	•	•	•	5	13
11.0000*	•	•	•	5	12
13.0000	0.6902	0.3098	0.1068	6	11
16.0000	0.6275	0.3725	0.1141	7	10

Kaplan-Meier Estimate: SAS cont.

17.0000*				7	9
19.0000*				7	8
20.0000*				7	7
22.0000	0.5378	0.4622	0.1282	8	6
23.0000	0.4482	0.5518	0.1346	9	5
25.0000*				9	4
32.0000*				9	3
32.0000*				9	2
34.0000*				9	1
35.0000*	•	•		9	0

NOTE: The marked survival times are censored observations.

Summary of the Number of Censored and Uncensored Values

Percent			
Censored	Censored	Failed	Total
57.14	12	9	21

- Let $n_j = R(t_{(j)})$
- Write the Kaplan-Meier estimator as

$$\hat{S}(t) = \prod_{j=1}^{i} \hat{p}_j \text{ for } t \in [t_{(i)}, t_{(i+1)}),$$

where $\hat{p}_j = (n_j - m_j)/n_j$ is the estimated probability of surviving interval $[t_{(j)}, t_{(j+1)})$ conditional on survival up to $t_{(j)}$

• Take logs

$$\log \hat{S}(t) = \sum_{j=1}^{i} \log \hat{p}_j$$

so that

$$\operatorname{Var}(\log \hat{S}(t)) = \sum_{j=1}^{i} \operatorname{Var}(\log \hat{p}_j)$$

• Binomial argument

$$\widehat{\text{Var}}(\hat{p}_j) = \hat{p}_j (1 - \hat{p}_j) / n_j$$

• Taylor series approximation

$$\widehat{\operatorname{Var}}(g(X)) \approx (g'(\mu))^2 \widehat{\operatorname{Var}}(X)$$

implies

$$\widehat{\text{Var}}(\log \hat{p}_j) \approx \left(\frac{1}{\hat{p}_j}\right)^2 \left(\frac{\hat{p}_j(1-\hat{p}_j)}{n_j}\right) = \frac{1-\hat{p}_j}{n_j \,\hat{p}_j}$$

$$= \frac{m_j}{n_j(n_j-m_j)}$$

• Thus

$$\widehat{\text{Var}}(\log \hat{S}(t)) \approx \sum_{j=1}^{i} \frac{m_j}{n_j(n_j - m_j)}$$

• Additional application of Taylor series approximation

$$\widehat{\text{Var}}(\log \hat{S}(t)) \approx (\hat{S}(t))^{-2} \widehat{\text{Var}}(\hat{S}(t))$$

implying

$$\widehat{\text{Var}}(\hat{S}(t)) \approx (\hat{S}(t))^2 \sum_{j=1}^{i} \frac{m_j}{n_j(n_j - m_j)}$$

• Thus

$$\widehat{SE}(\hat{S}(t)) \approx \hat{S}(t) \sqrt{\sum_{j=1}^{i} \frac{m_j}{n_j(n_j - m_j)}}$$

for
$$t_{(i)} \le t < t_{(i+1)}$$

• For the leukemia example,

$$\widehat{SE}(\hat{S}(6)) = 0.8571 \sqrt{\frac{3}{21 \cdot (21 - 3)}} = 0.0764$$

$$\widehat{SE}(\hat{S}(7)) = 0.8067\sqrt{\frac{3}{21 \cdot 18} + \frac{1}{17 \cdot 16}} = 0.0869$$

• An approximate $100(1-\alpha)\%$ CI is

$$\hat{S}(t) \pm z_{1-\alpha/2} \widehat{SE}(\hat{S}(t))$$

- Greenwood based CIs are symmetric
- This is problematic when the survival function is near 0 or 1 because it is possible for part of the CI to lie outside the interval [0,1]
- Pragmatic solution: Set relevant end of interval to 0 or 1 in this case
- Many other methods exist to estimate the standard error and obtain confidence intervals
- All have pointwise interpretation; different methods exist to obtain *confidence bands*

Testing

- How do we test under minimal assumptions whether two survival functions are different?
- For example: Suppose leukemia patients are randomized to treatment or placebo. Are the survival functions the same between the two groups?
- Without censoring, use a rank test (e.g., Wilcoxon rank sum test)
- In the presence of right censoring, use the log-rank test

• Suppose we have data from two samples

$$(T_{ij},\delta_{ij})$$

for i = 1, 2 and $j = 1, 2, ..., n_i$

• We want to test

$$H_0: S_1(t) = S_2(t)$$
 for all t

where

$$S_j(t) = \Pr[T_j^* > t] \text{ for } j = 1, 2$$

- Let $t_{(1)}, t_{(2)}, \ldots, t_{(K)}$ be the distinct ordered failure times in the two groups combined
- At each time $t_{(k)}$, construct the table:

Group	At risk	Events	Survive
1	$R_1(t_{(k)})$	m_{1k}	$R_1(t_{(k)}) - m_{1k}$
2	$R_2(t_{(k)})$	m_{2k}	$R_2(t_{(k)}) - m_{2k}$
	$R(t_{(k)})$	m_k	$R(t_{(k)}) - m_k$

• Under H_0 , the expected number of deaths in group 1 is

$$E_{1k} = R_1(t_{(k)}) \frac{m_k}{R(t_{(k)})}$$

• The hypergeometric variance is

$$V_{1k} = \frac{R_1(t_{(k)})R_2(t_{(k)})m_k(R(t_{(k)}) - m_k)}{R(t_{(k)})^2(R(t_{(k)}) - 1)}$$

• The log-rank (Mantel-Haenszel) statistic uses

$$E_1 = \sum_{k=1}^{K} E_{1k}, \quad O_1 = \sum_{k=1}^{K} m_{1k}, \quad V_1 = \sum_{k=1}^{K} V_{1k}$$

• Under $H_0: S_1(t) = S_2(t)$ for all t,

$$X = \frac{(O_1 - E_1)^2}{V_1} \sim \chi_1^2$$

• Leukemia example

Treatment $(n = 21)$	Placebo $(n=21)$
6, 6, 6, 6+	6, 6, 6, 6
7, 9+, 10, 10+	6, 6, 7, 7
11+, 13, 16, 17+	7, 10, 10, 12+, 13
19+, 20+, 22, 23	13, 15+, 16, 17+
25+, 32+, 32+, 34+, 35+	22, 23, 23, 23+

where + indicates that the person was censored at that time

Log-Rank Test: Leukemia Example

Code for Plotting Kaplan-Meier Curves

• R

```
library("survival")
fit <- survfit(Surv(t, delta)~rx,conf.type="none")
pdf("surv_leuk1.pdf",width=11,height=8.5)
plot(fit,xlab="t",ylab="S(t)",lwd=c(1,3))
legend(25,1,c("Active treatment","Placebo"),lwd=c(3,1))
dev.off()</pre>
```

• SAS

```
proc lifetest plots=(s) graphics;
  time t*delta(0);
  strata trt;
```

Log-Rank Test "By Hand": Leukemia Example

$t_{(k)}$	m_{1k}	$R_1(t_{(k)})$	m_{2k}	$R_2(t_{(k)})$	m_k	$R(t_{(k)})$	E_{1k}	V_{1k}
6	3	21	6	21	9	42	4.50	1.81
7	1	17	3	15	4	32	2.13	0.90
10	1	15	2	12	3	27	1.67	0.68
13	1	12	2	9	3	21	1.71	0.66
16	1	11	1	6	2	17	1.29	0.43
22	1	7	1	4	2	11	1.27	0.42
23	1	6	2	3	3	9	2.00	0.50
	9						14.57	5.4

BIOS 662 Fall 2016 34 Survival Analysis

Log-Rank Test: Leukemia Example

• Therefore

$$X = \frac{(9 - 14.57)^2}{5.4} = 5.75$$

$$\Pr[\chi_1^2 > 5.75] = 0.0165$$

• R code:

```
> survdiff(Surv(t, delta)~rx)
```

Call:

survdiff(formula = Surv(t, delta) ~ rx)

N Observed Expected (O-E)^2/E (O-E)^2/V

rx=p 21 17 11.4 2.72 5.75 rx=t 21 9 14.6 2.13 5.75

Chisq= 5.8 on 1 degrees of freedom, p= 0.0165

Log-Rank Test: Leukemia Example cont.

• SAS code

```
proc lifetest;
  time t*delta(0);
  strata trt;
```

Test of Equality over Strata

			Pr >
Test	Chi-Square	DF	Chi-Square
Log-Rank	5.7507	1	0.0165
Wilcoxon	4.3357	1	0.0373
-2Log(LR)	6.0441	1	0.0140

Log-Rank Test: SAS

• We can also use proc freq and the Mantel-Haenszel statistic, setting up a 2×2 table at each time point at which there is at least one event. All those in the risk set at such a time contribute to the table at that time

```
data;
  input time group remission wt;
cards;
6 1 1 3
6 1 0 18
6 2 1 6
6 2 0 15
7 1 1 1
7 1 0 16
7 2 1 3
7 2 0 12
.
.
```

Log-Rank Test: SAS cont.

```
proc freq order=data;
  tables time*group*remission / chisq cmh;
  weight wt;
```

The FREQ Procedure

Summary Statistics for group by remission Controlling for time

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	5.7507	0.0165
2	Row Mean Scores Differ	1	5.7507	0.0165
3	General Association	1	5.7507	0.0165

Cox / Proportional Hazards Model

• The hazard function $\lambda(t)$ is the instantaneous event rate at any time t

$$\lambda(t) = \lim_{\Delta t \to 0^+} \frac{Pr[t \le T < t + \Delta t | T \ge t]}{\Delta t} = \frac{f(t)}{S(t)}$$

• The proportional hazards model is a linear model for the log of the hazard or, equivalently, a multiplicative model for the hazard

$$\log \lambda(t) = \log \lambda_0(t) + \beta X$$

or

$$\lambda(t) = \lambda_0(t) \exp(\beta X)$$

• $\lambda_0(t)$ is called the baseline hazard

Cox / Proportional Hazards Model

• Consider two values of X, x_1 and x_2 ; then

$$\frac{\lambda_1(t)}{\lambda_2(t)} = \frac{\lambda_0(t) \exp(\beta x_1)}{\lambda_0(t) \exp(\beta x_2)} = \frac{e^{\beta x_1}}{e^{\beta x_2}}$$

independent of t

- This independence of t is an assumption and needs to be checked
- Let X be an indicator of being in one of two exposure or treatment groups, then if $x_1 = 1$ and $x_2 = 0$,

$$\frac{\lambda_1(t)}{\lambda_2(t)} = \frac{e^{\beta \cdot 1}}{e^{\beta \cdot 0}} = e^{\beta}$$

• e^{β} is the *hazard ratio* comparing group 1 to group 2

Leukemia Treatment Example: R

- There are a substantial number of tied observations; R and SAS have different defaults for handling ties
- Using R's default method of handling ties (Efron)

Leukemia Treatment Example: SAS

• Using the "exact" method for ties rather than the SAS default (Breslow)

```
proc phreg;
model t*delta(0) = active / ties=exact;
```

Summary of the Number of Event and Censored Values

			Percent
otal	Event	Censored	Censored
42	26	16	38.10

Analysis of Maximum Likelihood Estimates

Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSa	Hazard Ratio
active	1	-0.97790	0.41896	5.4482	0.0196	0.376