(19) Országkód:

SZABADALMI LEÍRÁS

(11) Lajstromszám:

210 644 B

(21) A bejelentés ügyszáma:

3284/90

1990. 05. 31.

(22) A bejelentés napja: (30) Elsőbbségi adatok:

89/01402 1989. 06. 02. NL 90/00338 1990. 02. 13. NL (51) Int. Cl.6

H 04 B 7/00

MAGYAR KÖZTÁRSASÁG

ORSZÁGOS TALÁLMÁNYI HIVATAL

(40) A közzététel napja: 1992. 02. 28.

(45) A megadás meghirdetésének dátuma a Szabadalmi

Közlönyben: 1995. 06. 28.

H 04 B 7/00

(72) Feltaláló:

Lokhoff, Gerardus Cornelis Petrus, Eindhoven (NL)

(73) Szabadalmas:

N.V. Philips' Gloeilampenfabrieken, Eindhoven (NL)

(74) Képviselő:

S.B.G. & K. Budapesti Nemzetközi Szabadalmi Iroda, Budapest

(54)

Digitális hírközlési átvitell rendszer adóval, vevővel, valamint adathordozó

(57) KIVONAT

A találmány digitális hírközlési átviteli rendszere adott F_S mintavételi frekvenciájú, szélessávú digitális jelnek (S_{BB}) – például audio jelnek – valamilyen átviteli közegen (4) keresztül történő továbbítására; a rendszerben van egy adó (1), amely rendelkezik egy, szélessávú digitális jelek (S_{BB}) vételére szolgáló, bemenő egység-

gel (2), amely bemenő egység (2) csatlakozik egy, az adó (1) részét képező jelforrásnak az egyik bemenetére, amely jelforrás egy második digitális jelet generáló, és e jelet az egyik kimenetén (7) kiadó kialakítású; ezen második digitális jel egymást követő keretekből áll, mindegyik keret információ csomagok sokaságát tartal-

F16.4

A leírás terjedelme: 28 oldal (ezen belül 10 lap ábra)

mazza, mindegyik információcsomag N bitet tartalmaz, ahol N>1; továbbá a rendszer tartalmaz egy vevőt (5), amely vevő (5) tartalmaz egy dekódert, amely rendelkezik egy, a második digitális jel vételére szolgáló bemenettel, ezen dekóder rendelkezik egy kimenő egységre csatlakozó, és a szélessávú digitális jelet (S_{BB}) szolgáltató kimenettel (8), továbbá ahol BR a második digitális jel rátája, és n_S a szélessávú digitális jel (S_{BB}) azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van.

A találmány szerint ha a $P = (BR/N) (n_s/F_s)$

formulával meghatározott P értéke egész szám, akkor az információ csomagok száma egy kereten belül P, illetve, hogy ha P értéke nem egész szám, akkor az információ csomagok száma egyes keretekben P', ahol P' a P-hez legközelebbi P-nél kisebb egész szám, a többi keretekben pedig P'+1, és a második digitális jel átlagos keretrátája F_s/n_s-sel egyenlő, valamint egy keret legalább egy, a szinkronizálási információt magában foglaló első keretrészt (FD1) tartalmaz.

A találmány vonatkozik még a fenti rendszer adójára (1), vevőjére (5), és adott esetben a második digitális jelet tároló adathordozóra is.

A találmány digitális hírközlési átviteli rendszer adott F_S mintavételi frekvenciájú, szélessávú digitális jelnek például audio jelnek - valamilyen átviteli közegen keresztül történő továbbítására; a rendszerben van egy adó, amely rendelkezik egy, szélessávú digitális jelek vételére szolgáló, bemenő egységgel, amely bemenő egység csatlakozik egy, az adó részét képező jelforrásnak az egyik bemenetére, amely jelforrás egy második digitális jelet generáló, és e jelet az egyik kimenetén kiadó kialakítású; ezen második digitális jel egymást követő keretekből áll, mindegyik keret információ csomagok sokaságát tartalmazza, mindegyik információcsomag N bitet tartalmaz, ahol N>1; továbbá a rendszer tartalmaz egy vevőt, amely vevő tartalmaz egy dekódert, amely rendelkezik egy, a második digitális jel vételére szolgáló bemenettel, ezen dekóder rendelkezik egy kimenő egységre csatlakozó, és a szélessávú digitális jelet szolgáltató kimenettel, továbbá ahol BR a második digitális jel rátája, és ns a szélessávú digitális jel azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van.

A találmány vonatkozik továbbá az adatárviteli rendszerben használt adóra és vevőre, a második digitális jelet valamely adathordozó egyik sávján (trackjén) rögzítő eszköz formájában megjelenő adóra, az adó által felírt adathordozóra, és a második digitális jelet az adathordozó adott sávjáról (track-jéről) olvasó eszköz formájában megjelenő vevőre.

A kezdő mondatban meghatározott típusú adatátviteli rendszer ismert a "The Critical Band Coder" "Digital Encoding of Speech signals based on the Perceptual requirements of the Auditory System" c. ME. Krasner által írt, a Proc. IEEE ICASSP 8, Vol. 1, pp. 327–331, April 9–11, 1980-ban közölt cikkéből. Ez a cikk olyan adatátviteli rendszerrel foglalkozik, amelyben az adó alsávos (subband) kódolórendszert, míg a vevő az ennek megfelelő alsávos (subband) dekódoló rendszert használ, a találmány azonban nem korlátozódik ilyen kódoló rendszerre, mint ahogy az a következőkből kitűnik.

Az említett publikációból ismert rendszerben a beszéd jelsávját több alsávra osztják, melyeknek sávszélessége körülbelül megegyezik az emberi fülnek a – megfelelő frekvenciatartományokhoz tartozó – kritikus sávjának sávszélességével (ld. a Krasner-cikk 2. ábráját). Ezen felosztást azért választották, mert pszichoakusztikus mérések alapján előrelátható volt, hogy az ilyen alsávbeli kvantálási hibát optimálisan nyomja el (maszkolja) ezen alsáv jele, amennyiben a kvantálási tűrés az emberi fül zaj-elnyomó karakterisztikáját követi; ezen karakterisztika megadja a kritikus sávbeli, a kritikus sáv közepének megfelelő egyszerű hang általi zaj-elnyomási küszöb-értéket (ld. a Krasner cikk 3. ábráját.)

Úgy találták, hogy jó minőségű digitális zenei jel esetében, amely a CD-szabvány szerint jelmintánként – 1/T = 44,1 kHz mintavételi frekvencia mellett – 16 bittel van kódolva, a megfelelően választott sávszélességű és a megfelelően kvantált alsávokkal ezen ismert alsávos kódolási rendszer olyan kimenő jelet ad a kódoló kimenetén, amely jelmintánként átlagosan kb. 2,5 bittel írható le, és a visszajátszott zenei jel nem különbözik érzékelhetően az eredetitől a különféle zenei jeleknek lényegében egyetlen hangtartományában sem.

Az alsávoknak nem feltétlenül kell az emberi fül (hallás) kritikus sávjai sávszélességének megfelelniük. Az alsávok sávszélességei más értékeket is felvehetnek, például az összes alsáv azonos sávszélességű lehet, feltéve, ha a maszkolási küszöb vonatkozásában a tűrés ennek megfelelően alakul.

A találmány egyik célja az, hogy az adatátviteli rendszerhez biztosítson eljárásokat, különösképpen egy igen sajátos formátum választásával, amellyel a szélessávú digitális jel – egy második digitális jellé történő konvertálás után – átvihető az adatátviteli közegen keresztül, s így igen flexibilis, igen sokoldalú adatátviteli rendszer jön létre. Vagyis ez azt jelenti, hogy az adónak alkalmasnak kell lennie arra, hogy különböző formátumú, szélessávú, digitális jeleket egy második digitális jellé konvertáljon (amely különböző formátumok egyebek mellett a szélessávú digitális jel F_S mintavételi frekvenciájában különböznek egymástól; így F különböző értékeket vehet fel s mint például 32 kHzet, 44,1 kHz-et, valamint 48 kHz-et, mint ahogy azt az AES és az EBU digitális audio illesztő – interface –

felületre vonatkozó szabványában rögzítve van.) Hasonlóképpen, a vevőnek alkalmasnak kell_lenni_arra, hogy a már említett második jelből helyes formátumú szélessávú jelet hozzon létre. E vonatkozásban a találmány szerinti adatátviteli rendszert az jellemzi, hogy, ha a

$P = (BR/N)(n_S/F_S)$

formulában P egész szám, akkor (a formulában BR a második digitális jel bit rátája, valamint ns a szélessávú digitális jel azon mintáinak a száma, amelynek megfelelő információ a második digitális jelnek egy keretébe kerül) a B információ csomagok száma egy kereten belül P, illetve, hogy ha P nem egész szám, akkor az információ csomagok száma egyes keretekben P' (ahol P' a P-hez legközelebbi P-nél kisebb egész szám), más keretekben pedig P'+1, oly módon kiosztva, hogy a kiosztás pontosan megfeleljen azon követelménynek, miszerint a második digitális jel átlagos keret-rátájának lényegében – F₂/n₅-el kell egyenlőnek lennie, valamint annak, hogy egy keretnek legalább egy, a szinkronizálási információt magában foglaló, első keret-részt kell tartalmaznia. A keretek B információ csomagra osztása azt a célt szolgálja, hogy tetszőleges F_S mintavételezési frekvenciájú, szélessávú digitális jel esetében az adó által továbbított második digitális jel átlagos keret-rátája olyan, hogy egy második digitális jelbeli keret által lefedett időtartam megfelel a szélessávú jel n_S mintája által lefedett időtartamnak. Ez lehetővé teszi, hogy a szinkronizáció az információ csomag alapján történjen, mely így egyszerűbb és megbízhatóbb, mint a bit alapú szinkronizáció. Így, azon esetekben, melyeknél P nem egész szám, az adó alkalmas arra, hogy amiket lehetséges és szükséges, P' információs blokk helyett P'+1 információs blokkal lásson el egy keretet, abból a célból, hogy a második digitális jel átlagos keret-rátája F_S/n_S értékű legyen. Minthogy ez esetben a következő keretek első keretrészében lévő szinkron információ (szinkron jelek, szinkron szavak) közötti távolság az információ csomag hosszának szintén egész számú többszöröse, a szinkronizáció továbbra is történhet információ csomagok alapján. Az első keretrész, célszerűen, tartalmazza továbbá a keretbeli információ csomagok számára vonatkozó információt. Egy B információ csomagot tartalmazó keretben ezen információ lehet éppen a B érték. Vagyis ezen érték a P' számú információ csomagot tartalmazó keret esetében P', míg a P'+1 számú információ csomagot tartalmazó keret esetében P+1. Egy másik lehetőség az, hogy ezen információ minden keretre vonatkozólag P értékű, függetlenűl attól, hogy a keret P' vagy P'+1 információ csomagot tartalmaz. A (P+1)-edikként beillesztett információ csomag - például - csupa nullás értéket tartalmazhat. Ez esetben a csomag nem hordoz hasznos információt. Természetesen, a (P+1)-edikként beillesztett információ csomagot hasznos információval is fel lehet tölteni. Az első keretrész tartalmazhat továbbá rendszer információt, úgy mint az adóra vezetett szélessávú digitális jel F_S mintavételi frekvenciáját, másolás engedélyezési kódokat, az adóra vezetett szélessávú digitális jel típusát (például sztereó hangjel

vagy mono hangjel, vagy olyan digitális jel, amely két, lényegében független hangjelet tartalmaz). Mint az a továbbiakból kitűnik más rendszerinformáció is lehetséges. A rendszerinformációk beiktatása a vevő számára flexibilitást biztosít, lehetővé teszi továbbá, a vett második digitális jel korrekt visszakonvertálását szélessávú digitális jellé. A keret második és harmadik keretrésze a jel információt tartalmazza. Az adó tartalmazhat egy kódolót, amely egy, a szélessávú jelre érzékeny, jelhasító eszközt tartalmaz, amely M számú (M egynél nagyobb) alsávjel formájában generálja a második digitális jelet, a kódoló tartalmaz továbbá az egyes aljelek kvantálására szolgáló eszközt. E célra egy tetszőleges transzformációs kódolás, mint amilyen a gyors Fourier transzformáció (FFT), alkalmazható. Ez esetben az adatátviteli rendszert az jellemzi, hogy a keret második keretrésze allokációs információt tartalmaz, amely – legalábbis néhány aljel vonatkozásában az említett aljelekből származó kvantált alsávjelek mintáit leíróbitek számát jelzik, továbbá hogy a harmadik keretrész legalább a már említett kvantált aljelek mintavételi értékeit tartalmazza (amennyiben vannak.) Vevő oldalon a szélessávú digitális jel visszaállításához inverz transzformációs kódolást kell használni, például inverz gyors Fourier transzformációt (IFFT). Az olyan adatátviteli rendszer, amelyben a jelhasító eszköz olyan analízisszűrő eszköz formáját ölti, amely érzékeny a szélessávú digitális jelre és M számú alsávjelet állít elő, amely analízisszűrő eszköz a szélessávú digitális jelnek a jelsávját - a mintavételi frekvencia csökkentésével a frekvenciával növekvő m sávszámmal jelölt, egymást követő sávra osztja, és amelyben a kvantáló eszköz úgy van kialakítva, hogy az a megfelelő alsáv jeleket blokkonként kvantálja. Ilyen adatátviteli rendszer a fentiekben leírt alsávos kódolást használó rendszer. Az ilyen adatátviteli rendszert az jellemzi továbbá, hogy legalább néhány alsáv jel vonatkozásában a keretnek a második keretrészében lévő allokációs információ megadja a már említett alsávjelekből származó kvantált alsávjelek mintavételi értékeit leíró bitek számát, továbbá, hogy a harmadik keretrész legalábbis az említett kvantált alsáv jeleknek (amennyiben jelen vannak) a mintavételi értékeit tartalmazza. Ez valójában azt jelenti, hogy az allokációs információ a mintavételi értékek előtt szerepel a keretekben. Ezen allokációs információra azért van szükség, hogy a harmadik keretrészben lévő mintavételi értékek egybefüggő, soros bit-folyamát fel lehessen osztani megfelelő bitszámú különválasztott mintaértékekre a vételi oldalon. Az allokációs információ olyan is lehet, amely megköveteli, hogy az egyes mintavételi értékek alsávonként és keretenként adott számú bittel legyenek kódolva. Ez esetben állandó vagy statikus bit allokáción alapuló adóról beszélünk. Az allokációs információ olyan is lehet, amely az alsávok mintáinak időben változó bitszámára utal. Ez esetben adaptív vagy dinamikus bit allokáción alapuló adóról beszélünk. Az állandó illetve az adaptív bit allokációt egyebek között a "Low bit-rate coding of high quality audio signals; An introduction to the MASCAM system" c. G. Theile és

társai által írt publikáció írja le az EBU Technical Review, No. 230-as 1988 augusztusi számában. Az allokációs információnak egy, a minták kerete előtti keretbe helyezése azzal az előnnyel jár, hogy a vevő oldalon egyszerűbb, és valós időben megvalósítható, és csak csekély jel késleltetéssel járó dekódolás alkalmazható. Ezen szekvencia eredményeképpen nincsen szükség arra, hogy a harmadik keretrészben foglalt összes információt a vevő készülékben előbb a memóriában tárolják. A második digitális jel megérkezésekor a vevő készülékben az allokációs információt tárolják a memóriában. Minthogy az allokációs információ információtartalma jóval kisebb, mint a harmadik keretrészben foglalt mintáké, így ez esetben lényegesen kisebb tárkapacitásra van szükség, mint abban az esetben, amikor a vevoben minden mintát el kellene tárolni. A harmadik keretrészben lévő minták soros adatfolyamának érkezése után (rögtön), ezen adatfolyam felosztható az egyes, az allokációs információban magadott bitszámú mintákra, oly módon, hogy nincs szükség a jel információ előzetes tárolására. Valamennyi allokációs információ befoglalható egyetlen keretbe.

Mindazonáltal ez nem feltétlenül szükséges, mint az a következőkből kiderül.

Az adatátviteli rendszer továbbá azzal jellemezhető, hogy a harmadik keretrész tartalmaz még a skálafaktorokra vonatkozó információt, valamely skála-faktor a harmadik keretrészben lévő kvantált alsáv jeleknek legalább egyikéhez van hozzárendelve, valamint azzal jellemezhető, hogy a skála-faktorokra vonatkozó információ a harmadik keretrészben a kvantált alsáv jelek előtt szerepel. Az adóban a minták normalizálás nélkül kódolhatók, vagyis anélkül, hogy az alsávbeli minták valamely tömbjének amplitúdója el lenne osztva az ezen tömbbeli legnagyobb amplitúdóval rendelkező minta amplitúdójával. Ilyen esetben nincs szükség a skála-faktorok továbbítására. Amennyiben a mintákat a kódolás során normalizálják, akkor a skála-faktorokra vonatkozó információt kell küldeni, hogy az említett legnagyobb amplitúdó nagysága rendelkezésre álljon. Ha ez esetben a skála-faktorokra vonatkozó információ a harmadik keretrészben a minták előtt helyezkedik el, akkor a vétel során lehetőség van az említett információból előállításra kerülő skála-faktoroknak memóriában történő tárolására és a minták és az említett skála-faktorok reciprokainak összeszorzására rögtön a minták érkezése után azonnal, vagyis késleltetés nélkül. A skála-faktorokra vonatkozó információ állhat magukból a skála-faktorokból. Nyilvánvaló azonban, hogy a skála-faktorként a harmadik keretrész- 50 be betett érték lehet a blokkbeli legnagyobb minta amplitúdójának reciproka is, s ez esetben a vevőben nem kell reciprokot képezni és következésképpen a dekódolás gyorsabb lehet. Más esetben a skálafaktor értékeket kódolhatják a harmadik keretrészbe skálafaktor információként történő beillesztésük előtt, az adást követően. Nyilvánvaló továbbá, hogy amennyiben az adóbeli kvantálás után valamely alsáv-jel zérus ez az alsávra vonatkozó allokációs információból világosan kiderül -, akkor ehhez az alsávhoz nem kell

skála-faktorra vonatkozó információt küldeni. Az az adatátviteli-rendszer, amelyben-a-vevő-magában-foglalegy olyan dekódert, amely a szélessávú jel másolatának előállítására az adott kvantált alsáv-jelre érzékeny szintézis-szűrő eszközt tartalmaz, amely szintézis-szűrő eszköz a mintavételi frekvencia növelésével egyesíti az alsávokat, hogy visszaalakítsa a szélessávú digitális jel eredeti jel-sávját, azzal jellemezhető, hogy az alsáv jelek mintái (amennyiben szerepelnek) a harmadik keretrészbe vannak illesztve olyan sorrendben, amely megfelel annak a sorrendnek, melyben az említett minták a vevőbeli vételüket követően a szintézis-szűrő eszközbe kerülnek. A mintáknak a harmadik keretrészbe ugyanabban a sorrendben történő illesztése, mint amilyen sorrendben a vevőbeli szintézis-szűrő eszközbe kerülnek szintén gyors dekódolást eredményez úgy, hogy ez esetben sincs szükség a mintáknak a további feldolgozásukat megelőző tárolására a vevőben. Következésképpen, a vevőben megkövetelt tárkapacitás lényegében csupán a rendszer információ, az allokációs információ, és amennyiben alkalmazásra kerül, akkor a skála-faktorra vonatkozó információ tárolására szolgáló tárkapacitásra korlátozható. A jel-késleltetés csak korlátozott mértékben jön létre, s ez főképpen a mintákon végzett jelfeldolgozásnak tudható be. A különböző kvantált alsáv jelekre vonatkozó allokációs információ alkalmas módon a második keretrészbe kerül beillesztésre ugyanabban a sorrendben, mint amilyenben az alsáv jelek mintái a harmadik keretrészbe kerültek. Ugyanez vonatkozik a skála-faktorok sorrendjére is. Amennyiben arra van igény, a keret négy részre is osztható, ahol az első, a második és a harmadik keretrész olyan, mint amilyet korábban leírtunk. A keret utolső (a negyedik) keretrésze hiba-detektáló és/vagy hiba-javító információt tartalmazhat. Ezen információ vétele után a vevőben a második digitális jelnek az átvitel során keletkezett hibái javíthatók. Mint már említettük, a szélessávú digitális jel lehet mono (monofónikus) jel. Vagy lehet egy első (bal) és egy második (jobb) csatoma összetevőből álló sztereó hangjel. Amennyiben az átviteli rendszer egy alsávosan kódoló rendszeren alapszik, akkor az adó olyan alsáv jeleket szolgáltat, amelyek egy első és egy második alsávjel-komponenset tartalmaznak, amely a kvantáló 45 eszközbeli kvantálás után első, illetve második kvantált alsávjel-komponenssé konvertálódnak. Ez esetben a keretnek tartalmaznia kell az allokációs információt és a skála-faktorra vonatkozó információt – ez utóbbit abban az esetben, ha minták skálázottak voltak az adóban. A sorrend is fontos itt. Nyilvánvaló, hogy a rendszer bővíthető úgy, hogy kettőnél több komponensből álló szélessávú digitális jelet kezeljen.

A találmányi gondolat alkalmazható különböző digitális átviteli rendszerekre, például digitális hangjeleknek az éteren át történő átvitelére (digitális audio műsorszórásra) szolgáló rendszerekre. Természetesen, más alkalmazások is elképzelhetők. Ilyen például az optikai vagy mágneses közegen történő átvitel. Optikai közeggel történő átvitelre lehet példa az üvegszálon keresztül történő átvitel, vagy optikai lemezzel vagy

optikai szalaggal történő átvitel. Mágneses közeggel történő-átvitelre-lehet-példa-a-mágneslemezzel-vagy mágnesszalaggal történő átvitel. A második digitális jel ekkor a találmány szerinti formátumban kerül az adathordozó – mint például optikai vagy mágneslemeznek vagy mágneslapnak - egy vagy több sávján tárolásra.

Az átviteli rendszer sokoldalúsága, és rugalmassága abban a speciális formátumban rejlik, amellyel az inforrnációt a második digitális jel formájában átvisszük, például valamilyen adathordozó útján. Ehhez járul még az adó speciális kialakítása, hogy alkalmas legyen speciális formátum előállítására különböző típusú bemenő jelek esetében. Az adó előállítja azt a rendszerinformációt, amelyre a különféle jeltípusok miatt szükség van és beilleszti ezen információt az átviendő adatfolyamba. Vevő 15 14. ábra oldalon egy speciális vevőt alkalmazunk, a vevő leválasztja ezen rendszer információit az adatfolyamról és felhasználja azt a helyes dekódoláshoz.

Az információ csomagok egyfajta, fiktív egységeket jelentenek, amelyekkel egy keret hosszát alapítják 20 meg. Ez azt jelenti, hogy a második digitális jel információ folyamában nem kell e csomagoknak közvetlenűl láthatóknak lenniük. Az információ csomagok kapcsolatát a létező digitális audio határfelület szabványnyal a IEC 958. szabványa rögzíti. E szabvány, minthogy főként fogyasztási cikkekre vonatkozik, olyan kereteket definiál, amelyek a sztereó jelnek mind a bal, mind a jobb csatomájának egy-egy mintáját tartalmazzák. E mintákat 16 bit szóhosszúságú ketteskomplemens számok írják le. N = 32 esetében, egy ezen digitális audio illesztő – interface – felület szabvány szerinti keret a második digitális jelnek pontosan egy információ csomagját tudja átvinni. A digitális audio határfelület szabvány szerint a keretek időegységre eső száma megegyezik a mintavételi frekvenciával. Jelen esetre a keretek időegységre eső számái (a keretrátát) úgy kell megválasztani, hogy értéke BR/N legyen. E választás lehetővé teszi a szabványok digitális audio illesztő felülettel rendelkező készülékekben jelenleg használt integrált áramkörök alkalmazását.

A találmány példaképpeni kiviteli alakjait most részletesebben ábrákra hivatkozással mutatjuk be. Az

- 1. ábra az adó által előállított második digitális jelet mutatja, e második digitális jel keretekre van bontva, és mindegyik keret információ csomagokból áll. A
- 2. ábra a keret szerkezetét mutatja. A
- 3. ábrán a keret első keretrészének szerkezete látható. A
- az átviteli rendszerre ad példát. Az 4. ábra
- a keretenkénti információ csomagok B szá-5. ábra mát a BR bit-ráta és az Fs mintavételi frekvencia specifikus értékeire megadó táblázat.
- 6. ábra a nem jól kondicionált sorozatban lévő keretek számát és a sorozat "üres" információ csomagot tartalmazó kereteknek számát adja meg a BR bitráta különböző értékeire. A
- 7. ábra a keret első keretrészében elhelyezett rendszer információt jeleníti meg. A

a különféle (kettő) csatornákra vonatkozó ábra digitális-információ-kiosztását-mutatja. különböző működési üzemmódok esetében. A a második keretrészbe illesztett allokációs 9. ábra információ jelentőségét mutatja be. A

10. és a

azt a sorrendet mutatja be, amelyben az allo-11. ábra kációs információ a második keretrészben két formátumban, A-ban, illetve B-ben – tárolásra kerül. A

a vevőre ad példát. A 12. ábra

13. ábra egy adót ábrázol a második digitális jelet mágneses adathordozón rögzítő eszköz formáiában. A

egy vevőt ábrázol, a második digitális jelet mágneses adathordozóról visszaállító eszköz formájában. A

15a-15d.

ábrák a skála-faktoroknak és a mintáknak a keret harmadik keretrészébe való illesztésének további lehetőségeit mutatja. A

16. ábra az adó további módosított kivitelét jeleníti

17. ábrán a keret első keretrészének egy további lehetséges szerkezete látható. A

18. ábrán a 17. ábra szerinti első keretrészébe illesztett rendszer információit jeleníti meg. A

19. és 20. ábra részletesebben mutatja a 17. ábra szerinti első keretrészben lévő információt. A

21. és 22. ábrák azt a szekvenciát illusztrálják, amelyben az allokációs információ a 17. ábra szerinti első keretrészt követő második keretrészben elhelyezkedik. A

egy járulékos jelet tartalmazó keret szerke-23. ábra zetét adja. A

24. ábra azt mutatja be, hogyan jönnek létre a skálafaktorok. A

a skálázott mintáknak q-bites digitális szám-25. ábra ábrázolású értékekre történő kvantálását mutatja. A

a q-bites digitális értékből való visszaállítást 26. ábra mutatja.

Az 1. ábra sematikusan mutatja a második digitális jelet, ahogy azt az adó generálja és ahogy az az átviteli közegen keresztül átvitelre kerül. A második digitális jel keretekből áll, két ilyen keret (a j-edik és a j+1-edik) látható az la ábrán. A keretek, miként a j-edik keret is, IP1, IP2, IP3, ... információ csomagokból állnak. (ld. 16. ábrát.) Minden információ csomag, miként az IP3 50 is, N darab $-b_0$, b_1 , ... b_{N-1} -gyel jelölt – bitből áll. (ld. az 1c ábrát).

A keretben elhelyezkedő információ csomagok szá-

- (a) a BR bit-rátától, ezen rátával történik a második digitális jelnek az átvitele az átviteli közegen ke-
 - (b) N-től; azaz az egy információ csomagban lévő bitek számától, ahol N egynél nagyobb,
- (c) F_S-től, a szélessávú digitális jel mintavételi frek-60 venciájától és

40

(d) n_S-től, a szélessávú digitális jel mintáinak számától, az ennek megfelelő információ – amely az adókon történő átalakítás után - a második digitális jelhez tartozik, és egy keretbe kerül a következő módon. A P paramétert a következő képlet szerint számítjuk:

$P = (BR/N) (n_s/F_s)$

Amennyiben e képlet egész számot ad P-re, akkor az egy keretbeli információ csomagok B száma megegyezik P-vel. Amennyiben a számítás eredménye nem egész szám, akkor egyes keretek P' információ csomagot, mások P'+1 információ csomagot fognak tartalmazni. P', illetve P'+1 információ csomagot tartalmazó keretek számát nyilvánvalóan úgy választják meg, hogy az időegységre eső átlagos keretszám (a keretráta) F_n/n_s-sel egyenlő. A továbbiakban feltesszük, hogy N=32 és n_S =384. Az 5. ábra táblázata ezen N és n_S értékekre, valamint négy bitráta értékre és három Fs mintavételi frekvencia értékre adja meg az egy keretbeli információ csomagok (szakaszok) számát. Nyilvánvaló, hogy 44,1 kHz-es F_S mintavételi frekvencia esetében a P paraméter nem minden esetben egész szám, ennek megfelelően egyes minták 34, mások 35 információ csomagot tartalmaznak (BR=128 kbit/s P' információ csomagból áll; ezek IP1, IP2, ..., IPP'. Némely esetben a keret P'+1 információ csomagot tartalmaz. Ezt úgy érjük el, hogy a P' információ csomagból álló kerethez egy járulékos információ csomagot (egy "üres" szakasz) csatolunk. A 6. ábra táblázatának második oszlopa megadja a nem jól kondicionált, illesztett sorozatban található keretek számát 44,1 k Hzes mintavételi frekvencia és a korábban már említett négy bitráta esetére. A harmadik oszlop megadja, hogy a sorozat említett számú keretéből hány tartalmaz P'+1 információ csomagot. A harmadik oszlop értékeit a második oszlop értékeiből kivonva a sorozat azon kereteinek a száma adódik, amelyek P' információ csomagból állnak. Ekkor a (P'+1)-ik információ csomagnak nem kell információt hordoznia. Ilyen esetben a (P'+1)-ik információ csomag – például – csupa zérust tartalmaz. Nyilvánvaló, hogy a BR bitráta nem szükségképpen korlátozódik az 5. és 6. ábra táblázataiban szereplő értékekre. Más (például közbülső) értékek szintén lehetségesek. A 2. ábrán látható, hogy a keret három keretrészből áll, a következő sorrendben. FD1, FD2, FD3.

Az FD1 első keretrész szinkron és rendszer információt tartalmaz. Az FD2 második keretrész az allokációs információt tartalmazza. Az FD3 harmadik keretrész mintákat, továbbá amikor vannak, akkor a második digitális jelhez tartozó skálafaktorokat. A további magyarázathoz előtt a találmány szerinti átviteli rendszerben lévő adó működését kell leírni.

A 4. ábra sematikusan jeleníti meg az átviteli rendszert, mely magában foglal egy az S_{BB} szélessávú digitális jel - például digitális hangjel - vételére szolgáló 2 bemeneti egységgel rendelkező 1 adót. Amennyiben hangjelről van szó, az lehet mono vagy sztereó jel, ez utóbbi esetben a digitális jel egy első (bal csatorna) és

egy második (jobb csatorna) jelkomponensből áll. Feltesszük, hogy az adó tartalmaz egy a szélessávú digitális jel alsávos kódolását végző kódolót és ebből következésképpen a vevő tartalmaz egy, a szélessávú digitális jel visszaállítására szolgáló, alsávos dekódert. Az adó tartalmaz egy, az S_{BB} szélessávú digitális jelre érzékeny, 3 analízis szűrő eszközt, amely az M számú S_{SBI} ... S_{SBM} alsávjelet generálja, amely analízis szűrő eszköz az SBB szélessávú digitális jel teljes szélességű jelsávját - mintavételi frekvencia csökkentéssel egymást követő m, a frekvenciával növekvő sorszámot viselő (1≤m≤M) alsávra osztja. Ezen alsávok sávszélessége megegyezhet, vagy - más esetben - az alsávok sávszélessége eltérő lehet. Ez utóbbi esetben az alsávok megfelelhetnek - például - az emberi fül (hallás) kritikus sávjai sávszélességének. Az adó tartalmaz továbbá a megfelelő alsávjel blokkonkénti kvantálására szolgáló 9 eszközt. Ezen kvantáló 9 eszközt jeleníti meg a 4. ábra. Ilyen alsávos kódoló természetesen ismert, és leírása szerepel – egyebek közt a már említett Krasner, illetve Theila és társai által írt publikációiban. Hivatkozunk továbbá az EP 289 080 számon közzétett európai szabadalmi bejelentésre.

Az alsávos kódoló működésének további leírása esetén). Ezt jeleníti meg a 2. ábra, egy keretet. A keret 25 helyett az említett publikációkra utalunk. Az említett publikációkat tekintsük ezen bejelentésünk részének. Ilyen alsávos kódolóval jelentős adattömörítés érhető el, például az SBB szélessávú digitális jel mintánkénti 16 bitről az 5 vevőhöz a 4 átviteli közegen (ld. a 4. ábrát) keresztül átvitt jel például mintánkénti 4 bitre tömöríthető. Az előbbiekben $n_s = 384$ -et tételeztünk fel. Ez azt jelenti tehát, hogy a szélessávú digitális jel 384 mintájából álló blokkok vannak, és mindegyik minta 16 bites. Most M = 32-t feltételezünk, vagyis a szélessávú digitális jelet 32 alsávjelre bontjuk a 3 analízis szűrő eszközben. Ekkor 32 alsávjel (blokk) jelenik meg a 3 analízis szűrő eszköz 32 db kimenetén, mindegyik blokk 12 mintát tartalmaz (az alsávok szélessége egyenlő), és minden minta 16 bites. Ez azt jelenti, hogy a 3 analízis szűrő eszköz kimenetein az információ-tartam még megegyezik az S_{BB} szélessávú digitális jel 384 mintából álló blokkjainak a 2 bemeneten érvényes információ-tartamával. Az 9 eszköz azáltal végez információ-csökkentést, hogy a maszkolásra vonatkozó előismerteket felhasználva, az egyenként 12 mintát tartalmazó 32 - valamely alsávhoz tartozó - blokk mintáit durvábban kvantálja, és így ezek kevesebb bittel leírhatók. Statikus bit allokáció esetén minden egyes minta alsávonként és keretenként – rögzített számú bittel van ábrázolva. E rögzített szám alsávonként más lehet, vagy meg is egyezhet, így például a minták - egységesen 4 bittel lehetnek ábrázolva. Dinamikus bit allokáció esetén az egyes alsávokra vonatkozó bitek száma időben változhat, s így némelykor még nagyobb adatcsökkenés, más esetben pedig - ugyanazon bitráta mellett - jobb minőség érhető el. A 9 eszközben kvantált alsávjelek a 6 generátor-egységhez kerülnek. A kvantált alsávjelekből kiindulva ezen 6 generátor-egység előállítja a második digitális jelet, mely második digitális jel az 1. és a 2. ábrán van megjelenítve. E második

digitális jel, mint már korábban szerepelt, a közegen keresztül közvetlenül átvihető. Mindazonáltal, célszerűen, e második digitális jelet a 4 átviteli közegen keresztüli átvitelhez először egy jelkonverterben (nincs ábrázolva) módosítjuk. Ilyen jelkonverter tartalmaz például egy 8-ról 10-re konvertert, ilyet ír le például az EP 150 082 számú európai szabadalmi bejelentés. E konverter a 8 bites adat-szavakat 10 bitesre konvertálja. Az ilyen konverter továbbá lehetővé teszi hiba-detektáló bitek beiktatását. A célja mindennek az, hogy a vevő oldalon veendő információn hibajavítást tegyen lehetővé.

Természetesen a 4 átviteli közegből az 5 vevő által vett jelet a közbeiktatott bitektől meg kell szabadítani valamint 10-ről 8-ra konverziónak kell alávetni. A keretek szerkezetét és tartalmát most részletesebben tárgyaljuk. A 2. ábra szerinti FD1 első keretrészt a 3. ábra jeleníti meg részletesebben. A 3. ábra világosan mutatja, hogy ez esetben az első keretrész pontosan 32 bitből áll és ez pontosan egy információ csomag, ez az IP1 a 20 keret első információ csomagja. Az információ csomag első 16 bitje alkotja a szinkronjelet (szinkonszót). A szinkron jel állhat például csupa "1"-ekből. A 16-31. bitek rendszer-információt hordoznak. A 16-31. bitek a keretbeli információ csomagok számát adják. E szám következésképpen megegyezik P'-vel, akkor is, ha a keret P' információs pakettet tartalmaz, akkor is, ha a keretek IP P'+1 jelű járulékos információ csomagot is tartalmaznak. P legfeljebb 254 (bináris formában 1111 1110), a szinkronjelhez való hasonlóságot elkerülendő. A 24-31. bitek a keret formátumára vonatkozó információt hordozzák. A 7. ábra példát ad ezen információ elrendezésére és jelentőségére. A 24. bit a keret típusát jelöli. A második keretrész A formátum szerinti hossza (információ csomagjainak a száma) eltér a B formátum szerinti hosszától. Mint az a következőkből kiviláglik, az FD2 második keretrész - az A formátumot alkalmazva – 8 információ csomagból áll, ezek az IP2-IP9 információ csomagok (az IP9 információ csomagot is beleértbe), a B formátumot alkalmazva az FD2 második keretrész 4 információ csomagból áll, ezek IP2-IP5 információ csomagok (az IP5 információ csomagot is beleértve). A 25. és 26. bitek azt jelzik, hogy az információ másolása megengedett-e. A 27-31. bitek a használat módjára utalnak. Ez a következőket jelenti:

a) a csatorna mód, amely a szélessávú jel típusát jelzi (mint már korábban említettük a jel lehet sztereő hangjel, mono hangjel, vagy két különböző jelkomponenst tartalmazó hangjel például ugyanazon szöveg két nyelven). A 8. ábra a csatorna módot jeleníti meg. Azt illusztrálja, hogyan oszlanak meg a jelkomponensek a két a csatorna (I. és II. csatorna) között az előbb említett esetekben.

b) a szélessávú jel F_S mintavételi frekvenciája.

c) a kiemelés, amely a szélessávú digitális jelre az adóban alkalmazható. A kiemelés és a CCITT (Comité Consultative Internationale de Télégraphie et Téléphonie) által definiált speciális kiemelési szabványra utal.

A 2. ábra FD2 keretrészének tartalmát részletesebben a 9., 10. és 11. ábrára való hivatkozással ismertet-

jük. A második keretrész - A formátumot alkalmazva nyolc információ csomagot tartalmaz. Ez azért van így, mert feltesszük, hogy az SBB szélessávú digitális jelet (pontosabban annak mindenegyes jelrészletét) 32 alsávjellé konvertálják. Egy-egy 4 bit hosszúságú allokációs szó tartozik az egyes alsávokhoz. Ez összesen 64 egyenként 4 bites allokációs szót ad, e 64 allokációs szó pontosan 8 információ csomagban helyezhető el. B formátumot alkalmazva a második keretrészben csupán az alsávok felére vonatkozó allokációs információ található, és így ez esetben a második keretrész csupán 4 információ csomagból áll. A 9. ábra AW négybites allokációs szavak jelentőségét illusztrálja. Valamely alsávhoz tartozó allokációs szó azt a bitszámot adja meg, amellyel az alsávjel mintái - az adott alsávra vonatkozóan kvantálás után a 9 eszközben, le vannak írva. Például: az AW allokációs szó 0100 értéke azt jelzi, hogy a minták 5 bites szavakkal vannak leírva (ábrázolva). A 9. ábrából következik, hogy az AW allokációs szó 0100 értéke azt jelzi, hogy az adott sávban nem generálódtak minták. Ez a helyzet úgy jöhet létre például, ha a szomszédos alsáv alsávjele olyan nagy amplitúdójú, hogy teljesen elnyomja (maszkolja) az adott alsáv alsávjelét. Az AW allokációs szó 1111 értéke nincs kihasználva, mivel ez nagymértékű hasonlóságot mutat az IP1 első információ csomag szinkron szavához. A 10. ábra azt a sorrendet mutatja, A működési mód (keret mód) mellett -, amelynél az AW,j,m, allokációs szavak (ahol j a két csatorna egyikét jelöli, vagyis j lehetséges értékei: I, II, továbbá m a 32 alsávból az m-edik sorszámút jelöli, vagyis m 1 és 32 közötti értéket vehet fel) a második keretrészben helyezkednek el. Az AW I, 1 allokációs szót, amely az első és legalacsonyabb (frekvenciájú) alsávnak az első alsávielkomponenséhez (I. csatorna, 1. alsáv) tartozik helyezik be először. Ezután az AWII, 1 allokációs szót illesztik az FD2 második keretrészbe, amely AWII, 1 allokációs szó az első és egyben a legalacsonyabb (frekvenciájú) alsávnak a második alsávjel-komponenséhez (II. csatorna, 1. alsáv) tartozik. Ezt követően az AW I, 2 allokációs szót illesztik az FD2 második keretrészbe, amely AW I, 2 allokációs szó a második és egyben a legalacsonyabbat követő alsávnak az első alsávjel-komponenséhez (I. csatorna, 2 alsáv) tartozik. Ezt követi az AW II, 2 allokációs szó, amely a második alsáv második alsávjel-komponenséhez tartozik (II. csatorna, 2. alsáv). Így folytatódik egészen az AW II, 4 allokációs szóig, amelyet az FD2 második keretrészbe illesztenek és amely a negyedik alsáv második alsávjel-komponenséhez (II csatorna, 4. alsáv) tartozik. Ezzel a keret IP2 információ csomagja (2. szakasz), amely a keret FD2 második keretrészének első információ csomagja, megtelt. Ezt követően az IP3 információ csomagot (3. szakasz) töltik fel az AW I, 5, AW II, 5, ... AW II, 8 allokációs szavakkal, Így folytatódik a 10. ábrán illusztrált sorrendben. A 10. ábra csupán a beillesztett AW, j, m, allokációs szavak indexeit adja. A 11. ábra az allokációs szavak sorrendjét B-formátumú keretre vonatkozóan jeleníti meg. Ez esetben csupán az 1-16 alsávok allokációs szavai kerülnek behelyezésre.

A sorrend mint azt a 10. ábra illusztrálja, megfelel annak a sorrendnek, amelyben a j. csatornához és ugyanakkor az m. alsávhoz tartozó egyes minták a vevőbeli vételük után a szintézis szűrő eszközbe kerülnek. Ezt a következőkben részletesebben kifejtjük. A soros adatfolyam például csupa A-formátum szerinti keretet tartalmaz. A vevőben az egyes keretekben elhelyezkedő allokációs információt a mintáknak az adott keret harmadik keretrészében elhelyezkedő információból történő korrekt előállítására használják. A soros adatfolyam azonban állhat egymást váltó A formátumú és B formátumú keretekből. Mindkét formátum szerinti keret tartalmazhat azonban - a harmadik keretrészben - minden egyes csatornához és minden egyes alsávhoz tartozó mintákat. Egy B formátumú keret ily módon valójában nem rendelkezik a 17-32. alsáv I. vagy II. csatornájához tartozó mintáknak a B formátumú keret harmadik keretrészéből történő előállításához szükséges allokációs információval. A vevő tartalmaz egy tárat, amelyben az A formátumú keret második keretrészében foglalt allokációs információ tárolható. Amennyiben a következő keret B formátumú, akkor csupán az 1-16. alsávokra és az I. és II. csatornára vonatkozó tárbeli allokációs információ kerül a B formátumú keret második keretrészében foglalt allokációs információval helyettesítésre, a B formátumú keret 17-32 alsávhoz tartozó minták előállítására pedig az előző és még mindig a tárban lévő A formátumú keretből származó ezen alsávokra vonatkozó allokációs információt használják fel. Az A formátumú keretek és a B formátumú keretek váltakozó használatának az az oka, hogy egyes alsávokra vonatkozó, jelen esetben a magasabb alsávokra (17-32) vonatkozó allokációs információ nem változik gyorsan. Mivel a kvantálás folyamán a különféle sávokra vonatkozó allokációs információ rendelkezésre áll az adóban, ezen adó képes arról dönteni, hogy B formátumú keretet generáljon az A formátumú helyett, amennyiben a 17-32. (a 32-iket is beleértve) alsávra vonatkozó allokációs információ nem változik (jelentősen). Sőt ez azt mutatja, hogy most további hely áll rendelkezésre arra, hogy mintákat illesszenek az FD3 harmadik keretrészbe. A P' egy bizonyos értéke mellett egy B formátumú keret harmadik keretrésze négy információ csomaggal hosszabb, mint egy A formátumú keret harmadik keretrésze. Következésképpen ez lehetővé teszi, hogy az alsó 1-16. alsávok mintáit leíró bitek száma növekedjék, hogy így ezen alsávokra nagyobb átviteli pontosságot lehessen elérni. Továbbá, amennyiben az alsó alsávok pontosabb kvantálására van szükség, akkor az adó automatikusan áttér B formátumú keretek generálására. Ez a felső alsávok kvatálási pontosságának rovására történ-

A 2. ábra szerinti FD3 harmadik keretrész kvantált alsávjel-komponensek mintáit – két csatornára vonatkozóan tartalmazza. Amennyiben az FD2 második keretrészben a 0000 allokációs szó egyik csatorna vonatkozásában sem szerepel, akkor ez a jelen példa esetében azt jelenti, hogy az FD3 harmadik keretrészbe – a 32 alsáv és a két csatorna mindegyikére egyenként – 12 60

mintát iktattak. Ez tehát azt jelenti, hogy összesen 768 minta szerepel. Az adóban a minták - a kvantálásuk előtt szorzódhatnak valamilyen skála-faktorral. Az alsávonkénti és csatornánkénti tizenkét mintának az amplitúdói a tizenkét minta közül annak a mintának az amplitúdójával kerülnek leosztásra, amelynek legnagyobb az amplitúdója. Ez esetben a skála-faktorokat alsávonként és csatornánként - kell továbbítani a vevőhöz, hogy lehetővé váljék a mintákon végrehajtandó inverz művelet a vevő oldalon. E célra ez esetben az FD3 harmadik keretrész tartalmazza az SF j,m indexű skála-faktorokat, egyet-egyet az egyes alsávok kvantált alsávjel-komponensei számára. A jelen példa esetében a skála-faktorok 6 bt-es számokkal vannak leírva, a legértékesebb bit először, az értékek 000000-tól 111110-ig terjednek. Az allokált alsávokhoz (vagyis azokhoz, amelyek allokációs információja nem zérus) rendelt skála-faktorokat már a minták átvitelének kezdete előtt továbbítják. Ez azt jelenti, hogy a skála-faktorok az FD3 harmadik keretrész elején, a minták előtt helyezkednek el. Ez (a mód illetve elhelyezés) gyors dekódolást tesz lehetővé az 5 vevőben anélkül, hogy a vevőben tárolni kellene az összes mintát, mint ahogy ez a továbbiakból kiderül. Az SF j,m skála-faktor jelölheti azt az értéket, amellyel az m-edik alsáv j-edik csatornája jelének mintái szorzódtak. Vagy fordítva az említett érték reciproka tárolható skála-faktorként, s így a vevő oldalon nem kell a skála-faktorok reciprokát képezni a minta korrekt értékének számításához. Az A keret-formátum esetén a skála-faktorok maximális száma 64. Amennyiben az valamely j csatornához és valamely m alsávhoz AW j,m allokációs szó 0000 értékű, (ez azt jelenti, hogy e csatornára és ezen alsávra nincsenek minták az FD3 harmadik keretrészben), akkor e csatornára és ezen alsávra vonatkozó skála-faktort nem kell (a keretben) elhelyezni. Ekkor a skála-faktorok száma 64-nél kisebb. Az FD3 harmadik keretrészben elhelyezkedő SF j,m skála-faktorok sorrendje megegyezik a második keretrész allokációs szavainak sorrendjével. A sorrend tehát a következő: SF I, 1; SF II, 1; SF I, 2; SF II, 2; SF I, 3; SF II, 3, ... SF I, 32; SF II, 32.

Amennyiben valamely skála-faktort nem szükséges a (keretbe) helyezni, akkor a sorrend hiányos lesz. A sorrend ilyen esetben például a következő lehet:

...SF I, 4; SF I, 5; SF II, 6; ...Ez esetben a II. csatorna 4. alsávjához és az I. csatorna 6. alsávjához tartozó skála-faktor nem szerepel. B formátumú keret esetében is elhelyezhetik a harmadik keretrészben az összes csatornához és alsávhoz tartozó skála-faktorokat. Mindazonáltal ez nem szükségképpen történik így. Ez esetben lehetséges volna, hogy a keret harmadik keretrészébe csupán az 1–16. alsávhoz tartozó skála-faktorok kerüljenek. Ezen kitöltés megköveteli, hogy a vevően legyen egy tár, amelyben valamennyi skála-faktor abban a pillanatban tárolható, amikor az előzetesen érkező A formátumú keret vételére sor kerül. Ezt követően – B formátumú keret vételekor – csupán az 1–16. alsávhoz tartozó skála-faktorok kerülnek helyettesítésre a B formátumú keretben lévő skála-faktorok

kal. Az előzőleg vett A formátumú keretnek a 17–32. alsávokra vonatkozó skála-faktorait használják ezen alsávoknak a B formátumú keret harmadik keretrészében elhelyezkedő minták – megfelelő skálára történő – visszaállításához.

Az FD3 harmadik keretrészben elhelyezkedő minták sorrendje megegyezik az allokációs szavak és a skála-faktorok sorrendjével: egy-egy minta szerepel az egyes csatornák egyes alsávjaira vonatkozóan, egymás után. Ez azt jelenti, hogy először a két csatorna alsávjaihoz tartozó kvantált alsávjelek első mintái szerepelnek, ezeket követik a második minták, és így tovább. A minták (bináris) számábrázolása tetszőleges, a csupa "egyesből" álló bináris szó újbóli használatát célszerű elkerülni.

Az 1 adó által generált második digitális jel 7 kimeneten keresztül jut a 4 átviteli közegbe; a jel a 4 átviteli közeg közvetítésével jut az 5 vevőbe. A 4 átviteli közegen keresztül történő átvitel lehet drót nélküli átvitel, ilyen például a rádió átviteli csatorna. Mindazonáltal más átviteli közeg is lehetséges. E vonatkozásban optikai átvitel is szóba jöhet, például száloptikán keresztüli vagy az optikai adathordozóval (CD-szerű eszközzel) történő átvitel; vagy szóba jöhet az RDAT-hoz vagy az SDAT-hoz hasonló felvételi és reprodukciós technológiát alkalmazó, mágneses adathordozókkal történő átvitel; az RDAT és az SDAT felvételi és reprodukciós technológia kapcsán hivatkozunk 5. Watkinson "The art of digital audio" című (Focal Press, London, 1988) könvvére.

Az 5 vevő tartalmaz egy dekódert, amely dekódolja az 1 adó kódolójában kódolt jelet és elkészíti a szélessávú digitális jel kópiáját, amely a 8 kimenetre kerül.

A 12. ábra a 4. ábra szerinti 5 vevőt ábrázolja részletesebben. A kódolt jel (a második digitális jel) a 10 belépési ponton keresztül kerül a 11 egységbe. A beérkező jel lényegi információja a skála-faktorokban és a mintákban rejlik. A második digitális jelnek a lényegi információn felüli információjára csak a helyes dekódolás érdekében van szükség. A dekódolás folyamata minden beérkező keretre megismétlődik. Az adó először a szinkronizációs és a rendszer információkat nyeri ki a keretből. A 19 egység minden egyes alkalommal detektálja az egyes szinkronizációs szavakat, amelyek a keretek első keretrészének első 16 bitjén helyezkednek el. Minthogy az egymást követő keretek szinkronizációs szavait minden egyes alkalommal annyi információ csomagnyira vannak egymástól, mely szám P'-nek vagy P'+1-nek egész számú többszöröse, így a szinkronizációs szavak nagyon pontosan detektálhatók. A szinkronizmus elérése után a szinkronizációs szó oly módon detektálható a 19 egységben, hogy a 19 egység időablakának - melynek időtartama például egy információ csomagnyi - kinyílik P' információ csomagonként, és így a beérkező információnak csupán a megfelelő része kerül a 19 egységben elhelyezkedő szinkron szó detektorhoz. Amennyiben a szinkronizációs szót nem észlelték, akkor az időablak még egy információ csomagnyi ideig nyitva marad, minthogy az előző keret P'+1 információ csomagot tartalmazó keret lehetett.

Ezen szinkronizációs szavakból egy, a 19 egységben lévő PLL (fázis zárt hurok) elő tudja állítani a 18 CPU vezérlésére szolgáló órajelet. Az előbbiekből nyilvánvaló, hogy a vevőnek tudnia kell hány információ csomag van egy keretben. E célból a rendszerinformációt a 15 kapcsoló eszközre vezetik a 18 feldolgozó egység egyik bemenetén keresztül, amely kapcsoló eszköz ilyenkor az ábrán jelzett pozícióban van. A rendszeriñformáció ekkor a 18 feldolgozó egységnek a 18a tárjában tárolható. A keretbeli információ csomagok számára vonatkozó információ a 19 egységbe juttatható a 20 vezérlő-jel vonalon keresztül, abból a célból, hogy az "időablak" a szinkron-szó detektálása megfelelő időpontban kezdődjék. Rendszerinformáció vételekor a 15 kapcsoló eszközt az alsó állásába váltják. A keret második keretrészében található allokációs információ ekkor a 18b tárban tárolható. Az a tény, hogy a beérkező keret allokációs információja nem tartalmaz minden egyes sávra és csatornára vonatkozó allokációs szavakat, már az észlelt rendszerinformációból kiderül. Kiderülhet például abból, hogy a keret A formátumú vagy B formátumú keret-e. Ily módon a rendszer információban foglalt, erre vonatkozó információnak megfelelően a 18 feldolgozó egység a vett allokációs szavakat a 18b allokációs tár megfelelő helyein tárolja. Nyilvánvaló, hogy a jelen példában a 18b allokációs tár 64 tároló helyet tartamaz. Amennyiben skála-faktorokat nem visznek át, akkor a 11, 12 és 17 hivatkozási számú elemek elhagyhatók és a keret harmadik keretrészének a tartalma a szintézis szűrő eszközre jut a 10 bemeneten keresztül, amely bemenet az említett szűrőeszközhöz a 16 csatlakozáson keresztül csatlakozik. Az a sorrend, amelyben a minták a 21 szűrő eszközhöz jutnak megegyezik azzal a sorrenddel, amellyel a 21 szűrő eszköz a szélessávú jel rekonstruálása érdekében a mintákat feldolgozza. A 18b allokációs tárban tárolt allokációs információra azért van szükség, hogy minták soros adatfolyamát különálló mintákra bontsuk a 21 szűrő eszközben úgy, hogy minden egyes minta bitszáma helyes legyen. Ebből a célból az allokációs információ a 21 szűrő eszközbe jut a 22 vonalon keresztül. A vevő tartalmaz továbbá egy 23 elnyomó egységet, amely a 21 szűrő eszköz által szolgáltatott rekonstruált digitális jelet elnyomja. A helyes elnyomáshoz az első keretrész 24-31. bitjeiben foglalt, vonatkozó információt kell a 18a tárból a 23 elnyomóegységbe juttatni a 24 vonalon keresztül. Amennyiben a harmadik keretrész SF j,m skála-faktorokat is tartalmaz, akkor a vevő tartalmazza a 11 kapcsolót, a 12 tárat és a 17 szorzót. A keret FD3 harmadik keretrészének érkezésének ideje alatt a 11 kapcsoló a 18 feldolgozó egység által a 13 vonalon keresztűl kiadott vezérlőjel hatására alsó állapotban van. A skála-faktorok a 12 tárhoz vezethetők. A 18 feldolgozó egység által a 14 vonalon keresztül szolgáltatott és a 12 tárhoz vezetett adatjelek hatására a skála-faktorok a 12 tár megfelelő részén kerülnek tárolásra. A 12 tár 64 hellyel rendelkezik a 64 skála-faktor tárolására. Amennyiben B formáturnú keret érkezik, akkor a 18 feldolgozó egység olyan címjeleket ad ki a 12 tár számára, hogy csupán az

1-16. alsávok skála-faktorait írják át a B formátumú keretben elhelyezendő skála-faktorok. Ezt követően a 13 vonalon (vezetéken) keresztül a 11 kapcsolóhoz vezetett vezérlő jel hatására a kapcsoló átvált a jelölt (felső) állásba, és így a minták a 17 szorzóba kerülnek. Az allokációs információ hatására, amely információ a 22 vonalon jut a 17 szorzóhoz, a szorzó először a 16 vonalon érkező soros adatfolyamból előállítja az egyes mintákat, a megfelelő bitszámmal. Ezt követően, a mintákat megszorozzák abból a célból, hogy visszaállítsák a mintáknak az adóbeli normálás előtti helyes értékét. Amennyiben a 12 tárban tárolt skála-faktorok azok a skála-faktorok, amelyekkel az adóban a minták normálva lettek, akkor ezen skála-faktoroknak a reciprokát kell képezni, és azután a 17 szorzóba vezetni őket. Nyilvánvalóan, a skála-faktorok reciproka - a skála-faktorok vétele utána 12 tárban történő elhelyezés előtt is képezhető. Amennyiben a keretbeli skálafaktorok azon értékekkel egyenlőek, amelyekkel a mintákat - a vétel során - meg kell szorozni, akkor ezen skálafaktorok közvetlenül a 12 tárba írhatók és közvetlenül a 17 szorzóba vezethetők. Látható, hogy nincs szükség arra, hogy mindezen mintákat tárba tároljuk azelőtt, hogy a keretbeli mintákon a jelfeldolgozás megkezdődik. Amikorra a minta a 16 vonalon keresztül megérkezik, addigra mindazon információ, mely ezen minta feldolgozásához szükséges, már rendelkezésre áll, és így a feldolgozás azonnal megtörténhet. Az egész folyamat a 18 feldolgozóegység által az adó valamennyi részét vezérlő vezérlőjelek és órajelek hatására történik. A vezérlőjeleknek csak egy részét ábrázoltuk. Ennek nem feltétlenül az az oka, hogy a vevő működése a szakember számára így is nyilvánvaló. A 18 feldolgozó egység vezérli a 17 szorzót, amely szorzó a mintákat a megfelelő szorzó tényezőkkel szorozza össze. A mintákat, amelyeket a valós amplitúdójukra állítottak vissza, a 21 szűrő eszközbe vezetik, amelyben az alsávjeleket visszaalakítják szélessávú digitális jellé. A vevő további leírására nincs szükség, mivel ilyen vevők általánosan ismertek, lásd péktául a "Low bit rate coding of high-quality audio signals, An introduction to the MASCAM system" című publikációt (szerzői: G. Theile et al, megjelent az EBU Technical Review, no. 230, August 1988-as számában.) Nyilvánvaló továbbá, hogy amennyiben a rendszer információ szintén átvitelre kerül, akkor a vevő igen rugalmas lehet és helyesen tudja dekódolni a jeleket, még más rendszer információval rendelkező második digitális jelek esetén is.

A 13. ábra az adó egy további kiviteli alakját jeleníti meg sematikus formában. Az adó szélessávú digitális jelek adathordozóra történő rögzítésére szolgáló 27 rögzítő berendezés formáját ölti. Az adathordozó (információ hordozó) ez esetben 25 mágneses adathordozó. A 6 generátor egység (kódoló) szolgáltatja a második digitális jelet a 27 rögzítő berendezésnek, mely 27 rögzítő berendezés tartalmaz egy 26 írófejet, melynek segítségével a jel a 25 mágneses adathordozó egy trackjére (sávjára) rögzítésre kerül. A második digitális jel egyetlen trackre rögzíthető a 25 mágneses adathor-

dozón, például spirális letapogatású rögzítő (felvevő) berendezéssel, mely esetben az egyetlen track (sáv) valójában fel van osztva egymást követő sávokra; ezek iránya eltér a 25 mágneses adathordozó hosszanti (kör5 körös) irányától. E módszerre példa az RDAT-szerű rögzítési eljárás. Másik eljárás esetén az információt feltördelik, és a feltördelt információt egyidejűleg rögzítik egymás mellett elhelyezkedő sávokon, amelyek a 25 mágneses adathordozón hosszanti irányban (körkörösen) helyezkednek el. E célra SDAT-szerű rögzítési eljárás jöhet szóba. A két említett eljárás átfogó leírása megtalálható a már megadott könyvben (J. Watkinson: "The art of digital audio").

Újra megjegyezzük, hogy a 6 generátoregység által szolgáltatott jel kódolható előbb egy jelkonverterben. Ez a kódolás lehet ismét egy 8-ról 10-re történő átalakítás, amelyet egy közbeiktató művelet követ, mint ahogy azt a 4. ábrára hivatkozva leírtuk. Amennyiben a kódolt információ szomszédos, párhuzamos sávokon kerül rögzítésre a 25 mágneses adathordozón, akkor ezen jelkonverternek alkalmasnak kell lennie arra, hogy a kódolt információt kiossza a különböző sávok között.

A 14. ábra sematikusan mutatja az 5 vevő egy kiviteli alakját, amely - jelen esetben - egy, a 25 mágneses adathordozó olvasására szolgáló olvasó eszköz, mely 25 mágneses adathordozóra szélessávú digitális jelet vettek fel második digitális jel formájában a 13. ábrán bemutatott eszköz segítségével. A második digitális jelet a 25 mágneses adathordozó egy sávjáról a 29 olvasó fejjel olvassuk és az 5 vevőre vezetjük, amely például a 12. ábra szerinti konstrukcióval rendelkezhet. A 28 olvasó eszköz lehet úgy konstruálva, hogy RDAT-szerű, vagy SDAT-szerű reprodukciós eljárást végezzen. Mindkét eljárást behatóan leírja Watkinsonnak a már említett könyve. Amennyiben a 13. ábra szerinti felvevő eszköznek a 6 generátor egysége által szolgáltatott jelet konvertálták például 8-ról 10-re konverzióval és egy közbeiktató eljárással -, akkor a 25 mágneses adathordozóról beolvasott, kódolt jelből először el kell távolítani a beiktatott részeket, majd 10-ről 8-ra konverziónak kell alávetni. Továbbá, amennyiben a kódolt jelet több párhuzamos sávra vették fel, a 14. ábra szerinti reprodukáló egységnek az ezen sávokból beolvasott információt belyes sorrendbe kell rendeznie a további feldolgozást megelőzően.

A 15. ábra a skála-faktoroknak és mintáknak a keret FD3 harmadik keretrészében történő elhelyezésének több további változatát szemlélteti. A 15a ábra a föntebb leírt eljárást illusztrálja, melyben az m alsávokra és az I. és II. csatornákra vonatkozó SF skála-faktorok az FD3 harmadik keretrészben, a minták előtt kerültek elhelyezésre. A 15b ábra a 15a ábrával azonos helyzetet mutat, csupán az SFI, m és SFII, m skálafaktorok számára fenntartott tárkapacitást valamint skálafaktorokhoz kapcsolódó x mintákat (az említett m, alsáv két csatornáján). A 15b ábra az m alsáv két csatornájának mintáit tömbbe rendezve jeleníti meg, míg normálisan az FD3 harmadik keretrészben (elosztva) helyezkednek el. A minták y-bitesek. A fenti példában x = 12

1

valamint y = 8. A 15c ábra egy másik formátumot illusztrál.-Az-m-alsáv-első-és-második-csatornájára-vonatkozó skála-faktorok továbbra is az FD3 harmadik keretrészben szerepelnek; azzal az eltéréssel, hogy az m alsávbeli csatománkénti x minta (a sztereó jel bal és jobb csatornája) helyett (vagyis összesen 2x minta) az m alsávra vonatkozóan csupán x minta szerepel az FD3 harmadik keretrészben. Ezen x minta például úgy tevődik össze, hogy a két csatorna megfelelő mintáit összeadjuk. Valójában így ebben az m. alsávban mono jel jön létre. A 15c ábrán az x minta egyenként z bites. Amennyiben a z megegyezik az y-nal, akkor ez az FD3 harmadik keretrészben helyet takarít meg, amelyet fel lehet használni a precízebb megadást (sűrűbb kvantálást) igénylő minták elhelyezésére. Más esetben a monojel x mintája z=2y (=16) biten adható meg. Az ilyen jelfeldolgozást (jel megadást) akkor használják, ha valamely alsávban a bal oldali és a jobb oldali jelkomponensek fáziskülönbsége érdektelen, ugyanakkor a mono (monofónikus) jel hullámformája lényeges. Ez különösen a magasabb alsávok jeleire vonatkozik, minthogy ezen alsávokba eső frekvenciákon az emberi fül fázisérzékenysége kisebb. Azáltal, hogy a mono jel x mintája 16 biten van ábrázolva a hullámforma (jelforma) jobban le van írva (precízebben van kvantálva) 25 úgy, hogy az ezen minták által az FD3 harmadik keretrészben elfoglalt hely megegyezik a 15b ábrán illusztrált példában említettel. További lehetőség, hogy a 15. ábra mintáit 12 biten ábrázolják. A jelmegadás ekkor pontosabb, mint a 15b ábrán illusztrált példában, ugyanakkor azonban helyet lehet megtakarítani az FD3 harmadik keret részben lévő jeleket (15c ábra) visszaállítva olyan sztereő-hatás nyerhető, melyet intenzitássztereő hatásnak neveznek. Ez esetben a bal oldali és a jobb oldali jeleknek (az m. alsávban) csupán az intenzitása térhet el egymástól (az SF I, m, illetve az SF II, m skála-faktorok eltérő értéke folytán).

A 15d ábra egy további lehetőséget mutat. Ez esetben az m. alsáv két jelkomponenséhez csupán egy SFm skála-faktor szerepel. Ez a helyzet különösen alacsonyfrekvenciájú alsávoknál fordul elő. További lehetőség, – ez nem szerepel az ábrán – az, hogy az m. alsáv I. és II. csatornájához tartozó x minta, miként a 15b ábrán, nem rendelkezik hozzátartozó SF I, m és SFII, m skálafaktorokkal. Következésképpen ezek a skála-faktorok nem szerepelnek ugyanabban az FD3 harmadik keretrészben. Ez esetben az előző keret harmadik keretrészében szereplő SF I, m és SF II, m skála-faktorokat kell a minták visszanormálására felhasználni a vevőben. Mindazon lehetőségek, amelyeket a 15. ábrára hivatkozva mutattunk be, felhasználhatók az adóban, hogy hatékony adatátvitelt lehessen az átviteli közegen elérni. Vagyis a 15. ábra szerinti keretek váltakozva fordulhatnak elő az adatfolyamban. Érthető, hogy amennyiben a vevőnek továbbra is helyesen kell dekódolnia ezen eltérő kereteket, akkor ezen keretek szerkezetére vonatkozó információnak szerepelnie kell a rendszer információk között.

A 16. ábra az adót jeleníti meg részletesebben. Az ábra azt mutatja, hogy a különféle információs elemek

hogyan kombinálhatók az 1., 2. és 3. ábrák szerinti soros-adatfolyammá. A-16. ábra-tulajdonképpen az-1 adó 6 generátor-egységét, mint kódolót részletezi. A 6 generátoregység tartalmaz egy 30 központi egységet, amely a kódoló számos elemét vezérli. A kódoló tartalmaz egy a 30 központi egységben elhelyezkedő 31 generátort, amely szinkronizációs információt generál, továbbá generálja a 3. ábra szerinti rendszer információt, tartalmaz továbbá egy 32 generátort, amely az allokációs információ megadását végzi, továbbá tartalmaz egy (opcionális) 33 generátort, amely a skála-faktorokat határozza meg, valamint tartalmaz egy 34 generátort, amely megadja a mintákat (mintaértékeket) a keret számára. A 35 generátor olyan egység, amely alkalmas pótlólagos IP P'+1 információ csomag előállítására. Ezen generátorok kimenete a 40 kapcsoló eszköz (öt állású kapcsoló) megfelelő bemenetére jut, a kapcsoló eszköz kimenete képezi a 6 generátor-egység 7 kimenetét. A 40 kapcsoló egységet szintén a 30 központi egység vezérli. A 32, 33, 34, 35 generátorok vezérlése a 41.1-41.4 vezetékeken keresztül történik. Az adó működését egy M alsávjelre bontott mono jel esetére mutatjuk be. Ezen S_{SB1}-S_{SBM} (M darab) alsávjel a 45.1, 45.2, ... 45.M kapcsokra jutnak. Például alsávon jelenként 12 mintából álló tömb tartozik egyűvé. A 46.1-46.M egységekben, amennyiben jelen vannak, a tömbbeli 12 mintát a tömbbeli legnagyobb minta amplitúdója szerint skálázzák. Az M skála-faktor a 33 generátorba kerül – amennyiben az szerepel – a 47.1-47.M vezetékeken keresztül. Az alsávjelek bekerülnek részint a 48.1-48.M (M darab) kvantálóba, részint a 49 egységbe. A 49 egység minden egyes alsávra meghatározza azt a bitszámot, amelyre az adott alsáv kvantálandó. Ez az információ az 50.1-50.M vezetékeken keresztül eljut a megfelelő 48.1-48.M kvantálókba, s így ezen 48.1–48.M kvantálók helyesen (helyes bitszámra) kvantálják az egyes alsávjelek 12 mintáját. Ez az (allokációs) információ eljut a 32 generátorba is. A kvantált alsávjelek mintái az 51.1-51.M vezetékeken keresztül jutnak a 34 generátorba. A 32, 33 és 34 generátorok az allokációs információt, a skála-faktorokat és a mintákat megfelelő (vagyis az előzőekben már leírt), sorrendbe rendezik. A 30 központi egység állítja elő a generálandó kerethez tartozó szinkronizációs információt és rendszerinformációt; a generálandó keretben kerül elhelyezésre a 32, 33 és 34 generátorokban tárolt, már említett információ. A 40 kapcsoló eszköz jelzett helyzetében a kerethez tartozó szinkronizációs és rendszer információt a 31 generátor szolgáltatja, és ez kerül a 7 kimenetre. Ezt követően a 40 kapcsoló eszköz – a 30 központi egység által az 53 vezetéken keresztül szolgáltatott vezérlő jel hatására – a felülről a második helyzetbe kerülés így a 32 generátor kimenete kerül a 7 kimenetre. Ekkor a 32 generátor szolgáltatta allokációs információ jut a 7 kimenetre. Az allokációs információ sorrendje a 10. vagy a 11. ábra szerinti. Ezután a 40 kapcsoló eszközt felülről a harmadik (középső) állásba állítja a 30 központi egység. Ez azt jelenti, hogy a 33 generátor kimenete jut a 7 kimenetre. A 33 generátor a megfelelő sorrendben adja a skála-

faktorokat a 7 kimenetre. Ekkor a 40 kapcsoló eszközt a következő helyzetébe, állásába állítja a 30 központi egység, s így a 34 generátor kimenete jut a 7 kimenetre. A 34 generátor ekkor a megfelelő sorrendben adja ki a különböző alsávok mintáit a 7 kimenetre. E ciklus során pontosan egy keret kerül a 7 kimenetre. Ezt követően a 30 központi egység visszaállítja a 40 kapcsoló egységet a legfelső helyzetébe. Ezzel új ciklus kezdődik, amelyben a következő, alsávonként 12 mintából álló blokkot, tömböt kódolják és amelyben a következő blokk generálódik a 7 kimeneten. Egyes esetekben, például ha az F_S mintavételi frekvencia 44,1 kHz (kd. az 5 ábrát) egy pótlólagos információ csomagot (üres szakaszt, ld. a 2. ábrát) kell kjadni. Ekkor a 40 kapcsoló eszközt abból a helyzetéből, amelynél a 34 generátor jut a 7 kimenetre, az alsó állásba állítja a 30 központi egység. Ekkor a 35 generátor kimenete kerül a 7 kimenetre. A 35 generátor IP P'+1 pótlólagos információ csomagot generál, s ez jut a 7 kimenetre. Ezt követően a 40 kapcsoló eszközt a legfelső pozícióba állítja a 30 központi egység, s új ciklus kezdődik. Nyilvánvaló, hogy amennyiben az 1 adó által vett jeleknek a jelátvitel során keletkezett hibái javítandók, akkor megfelelő csatorna kódolást kell a második digitális jelre alkalmazni. Szükséges továbbá a második digitális jel átvitele előtt a második digitális jelet modulálni. Így a 4 átviteli közegen átvitt digitális jel közvetlenül nem feltétlenül azonosítható mint második digitális jel, de abból származik. Megjegyzendő továbbá, hogy például abban az esetben, amikor az alsávok eltérő szélességűek, akkor a különböző alsávoknak az FD3 harmadik keretrészben lévő mintáinak száma eltérhet, és valószínűleg el is tér egymástól. Feltételezzük, hogy például a felosztás három alsávra (SB1 alsó alsávra, SB2 középső alsávra, SB3 felső alsávra) történt. Az SB3 felső alsáv sávszélessége legyen például a másik két alsáv egyenkénti sávszélességének kétszerese. Ez azt jelenti, hogy az FD3 harmadik keretrészben az SB3 alsávhoz tartozó minta száma bármely másik vagy másik két alsávhoz tartozó minták számának szintén a kétszerese lesz. Az a sorrend, amelyben a vevő rekonstruáló szűrőjére kerülnek a minták ekkor a következő lehet. Az SB1 alsáv első mintája, az SB3 alsáv első mintája, az SB2 alsáv első mintája, az SB3 alsáv második mintája, az SB1 alsáv második mintája, az SB3 alsáv harmadik mintája, az SB2 alsáv második mintája, az SB3 alsáv negyedik mintája, stb. Az a sorrend, amellyel az allokációs információ az FD2 második keretrészben szerepel a következő: az SB, alsávra vonatkozó allokációs szó, ezt követi az SB₃ alsávra vonatkozó allokációs szó, s ezt követi az SB2 alsávra vonatkozó allokációs szó. Ugyanezen sorrend vonatkozik a skála-faktorokra is. A vevő meg tudja állapítani a rendszer információból, hogy ez esetben a ciklus egyenként 4 mintából álló csoportokat tartalmaz, minden egyes csoport az SB₁ alsáv egy mintáját, az SB₂ alsáv egy mintáját, az SB2 alsáv egy mintáját, valamint az SB₃ alsáv egy másik mintáját tartalmazza.

A 17. ábra az FD1 első keretrésznek egy másfajta szerkezetét mutatja. Ezúttal is az FD1 első keretrész

pontosan 32 bitet tartalmaz és így egy információ csomagnak-felel-meg. Az-első-16-bit-képezi-ezúttal-is-aszinkron jelet (vagy szinkronszót). A szinkronszó megegyezhet a 3. ábra szerinti FD1 első keretrész szinkronszavával. A 16-31. bitekben rejlő információ azonban különbözik a 3. ábra szerinti 16-31. bitek hordozta információtól. A b₁₆-b₁g bitek a BR bitráta indexet jelölik. A BR bitráta index egy 4-bites szám, amelynek jelentését a 18. ábra táblázata mutatja. Amennyiben a BR bitráta index a 4 bites "0000" szám, ez a szabad formátumot jelöli, ekkor a bitráta nem ismert, és ekkor a dekódernek egyedül a szinkronszóra kell hagyatkoznia az új keret kezdetének detektálásában. A bináris "1111"-nek megfelelő decimális szám a szinkronszó észlelésének zavarását elkerülendő nem szerepel a táblázatban. A 18. ábra táblázatának második oszlopában a 4-bites bináris szám decimális átírása szerepel. A BR bitráta indexhez tartozó bitráták az első oszlopban szerepelnek.

A 20. és 21. bitek az F_S mintavételi frekvenciát jelölik (kl. a 18. ábrát). A 18. ábra a b₂₀ és b₂₁ bitek alkotta kétbites számokat (4 db) mutatja, és az ezekhez tartozó F_S mintavételi frekvenciákat. A 22. bit azt jelzi, hogy a keret tartalmaz-e "üres szakasz"-t vagy sem. (Amennyiben tartalmaz, úgy b₂₂=′1′, amennyiben nem, úgy b₂₂=′0′.) A b₁₆-b₂₂ biteken megjelenő információ alapján meghatározható, hogy hány darab információ csomag szerepel ténylegesen éppen a keretben. Ez azt jelenti, hogy az FD1 első keretrész hordozza ezúttal is a keretbeli információ csomagok számára vonatkozó információt.

Minthogy n_S , vagyis a szélessávú jel azon mintáinak száma, amelyeknek megfelelő a második digitális jelhez tartozó információ egy keretben helyezkedik el, ismert – jelen esetben $N_S = 384$, így a 8. ábra táblázatának adatai, a pótlólagos csomagot jelző b_{22} bit, és az alábbi formula alapján meghatározható, hogy hány darab B csomag szerepel a keretben:

$P = (BR/N) (n_s/F_s)$

A b23 bit a rendszernek egy bizonyos jövőbeli kiterjesztéséhez van fenntartva. Ezen jövőbeli kiterjesztést a következőkben írjuk le. Jelen pillanatban e bit "O" értékű. Az FD1 első keretrész tartalmát -b24-b31 bitek vonatkozásában a 19. és 20. ábrákra való hivatkozással írjuk le. A b24 és b25 bitek az audio-jel kiosztására (mód jelölés) vonatkoznak. A 20. ábra mutatja, hogy a b24. b₂₅ bitek alkotta két bites számok (4 db) azt jelölik, hogy a szélessávú digitális jel sztereó hangjel-e ("00"), mono hangjel-e ("11"), kétnyelvű hangjel-e ("10") vagy intenzitás-sztereo hangjel-e ("01"). Ezen utóbbi esetben a 26. és 27. bitek azt jelzik, hogy melyik alsáv került az intenzitás-sztereo módszer szerint feldolgozásra. A 20. ábra mutatja, hogy a "00", "01", "10", illetve "11" kétbites számok esetén rendre az 5-32. alsávok, 9–32. alsávok, 13–32. alsávok, illetve a 17– 32. alsávok lettek intenzitás-sztereo módszerrel feldolgozva. Mint korábban már említettük az intenzitássztereő módszer magasabb (felső) alsávokra használható, mivel az emberi fül kevésbé fázisérzékeny az ezen alsávokba eső frekvenciáknál. A b_{28} bit a másolást tiltó (copyright) bitként használható. Amennyiben a bit "1" értékű, ez azt jelenti, hogy az információ másolása tilos, vagyis nem szabad másolni, illetve nem másolható. A b_2 9 bit jelölheti, hogy az információ eredeti információ ($b_{29} = ,1$ "), például előre felvett szalagok esetében, vagy az információ másolt ($b_{29} = ,0$ "). A b_{30} és b_{31} bitek a szélessávú jelre az adóban adott kiernelést adják meg, (ld. a 7. ábrára vonatkozó leírást is.)

Az alábbiakban az FD2 második keretrésznek egy eltérő konfigurációját írjuk le az FD1 első keretrész b₂₄-b₂₇ bitjei által jelzett különféle módok esetére. Ezúttal is 4-bites allokációs szavakat tartalmaz az FD2 második keretrész, melyek jelentését a 9. ábrára hivatkozva írtuk le. A sztereó kiosztás (mód) esetén (b24, b25 = 00) és a kétnyelvű kiosztás esetén (b_{24} , b_{25} = 10) az FD2 második keretrész ezúttal is 8 információ csomagból áll, ezek a 10. ábra kapcsán leírtak szerint állnak össze. A 10. ábra szerinti sztereó kiosztás esetén "I" például a bal oldali csatornakomponenst, a "II" például a jobb oldali csatornakomponenst jelöli. Kétnyelvű kiosztás esetén "I" az egyik, "II" a másik nyelvű szöveget jelöli. Mono kiosztás esetén (b24, b25 = 11) az FD2 második keretrész hossza természetesen csupán 4 információ csomag.

A 21. ábra a 2-5. (4 db) információ csomagban lévő allokációs szavak sorrendjét adja meg a különböző alsávokra (1-32.). Így, minden M-edik mennyiség egy 4 bites allokációs szót jelöl, amely az i sorszámú alsáv egyes mintáinak bitszámát adja meg, ahol i 1 és 32 közötti érték. Intenzitás sztereő módban (kiosztásnál) (b₂₄, b₂₅ = 01) négy lehetőség nyílik, ezeket a b₂₆ és b₂₇ bitek jelzik (lásd a 20. ábrát). Mindegyik lehetőség az FD2 második keretrész más és más tartalmát eredményezik.

A 22a-22d ábrák az FD2 második keretrész 4 féle tartalmát illusztrálják. Amennyiben a b₂₆, b₂₇ bitek állása "00" az 1-4. alsávok jelei (normál) sztereő jelek és az 5-32. alsávok intenzitás-sztereő jelek. Ez azt jelenti, hogy az 1-4 alsávok esetében az ezen alsávokhoz tartozó a bal oldali és a jobb oldali csat nakomponensek allokációs szavait tárolni kell az FD2 második keretrészben. A 22a ábrák az egymást követő AW(L,1); AW (R,1); AW (L,2); AW (R,2); ...; AW (R,4) allokációs szavak szerepelnek; ezek a keret második szakaszában (információ csomagjában), vagyis az FD2 második keretrész első szakaszában (információ csomagjában) szerepelnek.

A 22a ábra csupán az allokációs szavak (i-j) indexét mutatja, L vagy R "értékű" lehet (L a bal oldali, R a jobb oldali csatorna-komponenst jelöli), j 1 és 4 közötti érték és az alsáv sorszámát jelöli. Az 5-32 alsávok esetében a bal oldali, illetve a jobb oldali csatorna-komponens ugyanazon mintasorozatot tartalmazza. A különbség – az egyes alsávokban – csupán a bal oldali, illetve a jobb oldali csatornakomponenshez tartozó a skálafaktorokban rejlik. Következésképpen, egy-egy ilyen alsáv csupán egyetlen allokációs szót igényel. Az 5-32 alsávokhoz tartozó AW (i, j) allokációs szavakat M-j-vel indexeltük, vagyis úgy, hogy i minden egyes alsávra vonatkozóan M "értékű"; j pedig 5 és 32 között változik.

A 22a ábra azt mutatja, hogy 41/2 információ csomagra van szükség 36 altokációs szónak az FD2 második keretrészbe való helyezéséhez. Amennyiben a b₂₆, b₂₇ bitek "01" értékűek, akkor az 1–8. alsávok jelei normális sztereő jelek, míg a 9–32. alsávok intenzitássztereő jelek. Ez azt jelenti, hogy az 1–8. alsávok mindegyikéhez két-két allokációs szóra [AW(L.j)] és AW(R.j)) van szükség; míg a 9–32. alsávok mindegyikéhez csupán egy-egy allokációs szóra [AW(M.j)] van szükség. Ebből következik, hogy összesen 40 allokációs szóra van szükség, amelyek öt információ csomagot (szakaszt) foglalnak el, vagyis a keret IP2–IP6 információ csomagjait. Ezt illusztrálja a 22b ábra. Ez esetben az FD2 második keretrész 5 információ csomag hosszúságú.

Amennyiben a b₂₆, b₂₇ bitek "10" értékűek, akkor az 1–16. alsávok jelei normál sztereő jelek, míg a 17–32. alsávok jelei intenzitás-sztereő jelek. Ez esetben 48 allokációs szóra van szükség, ezek az FD2 második keretrészbe kerülnek; az FD2 második keretrész hossza 6 információ csornag, ld. a 22d ábrát.

A korábbi, a skála-faktorokra vonatkozó megjegyzésűnk e helyütt is érvényes. Feltételezve, hogy egyetlen 0000 értékű allokációs szó sem szerepelt az alsávokra, illetve a csatornákra vonatkozóan, akkor ez esetben 64 skála-faktorra van szükség mind sztereó, mind intenzitás-sztereó kiosztást (módot) használva. Ennek az az oka, hogy az intenzitás-sztereó módban használt mono alsávokhoz két-két skála-faktorra van szükség ahhoz, hogy az intenzitás-sztereó jelleg létrejőjjön az adott sáv bal oldali és jobb oldali csatornájára vonatkozásában, ld. a 15c ábrát.

Nyilvánvaló, hogy mono kiosztást (módot) használva a skálafaktorok száma feleződik, vagyis a skála-faktorok száma 32 (ez esetben is feltételezve, hogy egyetlen alsávhoz tartozó allokációs szó sem 0000 értékű.

A 6-bites skála-faktorok meghatározására szolgáló eljárást a követezőkben ismertetjük.

Mint az a korábbiakban szerepelt, az alsáv csatornának minden 12 mintája közül a legnagyobb abszolút értékű minta kerül meghatározásra.

A 24a ábra ezen maximális $|S_{max}|$ abszolútértékű mintát mutatja. Az első (SGN-nel jelölt) bit az előjel-bit; (ez "0" értékű, mivel az S_{max} abszolút értékére vonatkozik). A minták ketteskomplenens ábrázolási módban szerepelnek. A minták k darab "nullát" tartalmaznak, amelyet "1"-es követ. A 24 bites szám többi bitjének az értéke érdektelen (e bitek akár "0", akár "1" értékűek lehetnek).

SF = 3k+p.

Következésképpen az SF skála-faktor maximális értéke 62. Ez azt jelenti, hogy a skála-fatorok 6-bites számokkal írhatók le. (A 6-bites bináris 111111 szám – ez decimális 63 – nem használatos.) Valójában a 6-bites bináris számok nem skála-faktorok, de egyértelmű kapcsolatban állnak a tényleges skála-faktorokkal, mint az az alábbiakban előadásra kerül. A 12 S minta mindegyike a k és p értékektől függő számmal szorzódik. A 12 S minta mindegyike a következő kifejezés szerint szorzódik.

$$S' = S*2^{k*}g(p),$$

ahol a g(p) szám a következő összefüggésben áll p-vel: 10 g(p) = 1, ah p = 0 : g(p) = $1+2^{-2}+2^{-8}+2^{-10}+2^{-16}+2^{-18}+-23$, ha p = 1; g(p)= $1+2^{-1}+2^{-4}+2^{-6}+2^{-8}+2^{-9}+2^{-10}+2^{-13}+2^{-15}+2^{-16}+2^{-16}$

 $+2^{-17}+2^{-19}+2^{-20}$, ha p = 2.

A k paraméter a 6 dB-es lépcsők számát adja, a g(p) és g(p) tényezők a 2 dB-es lépcsők számának a legpontosabb közelítései. Az ily módon skálázott S' mintákat kvantálják, hogy q-bites, ketteskomplementű számként lehessen ábrázolni őket. A 25. ábra ezt mutatja q = 3-ra. Az S' skálázott (normált) minták +1 és -1 közti értékűek, ld. a 25a ábrát. A kvantálóban ezen mintákat q bittel kell lefrni, ahol q megfelel az adott alsávra vonatkozó allokációs értéknek. Minthogy, miként azt korábban említettük, a csupa "1"-est tartalmazó q-bites szám nincs a minták leírása során felhasználva, így a -1 és +1 közötti intervallumot 2^{q-1} kisebb részre kell osztani. E célból az S' skálázott (normált) mintákat S" mintákká transzformáljuk a következő képlet szerint. S" = S'(1-2^q)-2^{-q}.

Ezt követően az S"mintákat q-bitre csonkítjuk. (Ld. a 25c ábrát.) Minthogy a "111" alak nem megengedett az előjel-bitet invertáljuk, ld. 25d ábrát. A 25d ábra szerinti q(=3)-bites számok kerülnek az FD3 harmadik keretrészbe, ld. a 2. ábrát. Azon S' mintáknak, amelyek kielégítik −0,71≤S'≤−0,14 egyenlőtlenséget, bináris "001" felel meg. Hasonlóan folytatódik nagyobb S' mintáknál egészen 0,71≤S'≤1 egyenlőtlenségig, ez esetben S'-nek a bináris "110" felel meg. A bináris "111" érték tehát nincs kihasználva.

A vevő oldalon a digitál/analóg átalakítás az adó oldali kvantálás inverzeként áll elő, ld. a 26. ábrát. Ez azt jelenti, hogy először a q-bites bináris számok elő-jelbitjét invertálják, s ezzel visszaáll a szokásos (normál) ketteskomplemens számábrázolás, ld. a 26b ábrát.

Ezt követően az S' minták kerülnek visszaállításra a transzformált S" mintákból a következő képlet szerint.

$$S' = (S'' + 2^{-q+1}) (1 + 2^{-q} + 2^{-2q} + ...),$$

a 26c, 26d ábráknak megfelelően.

Az így kapott S' értékek (pontosan) beleesnek a 25a ábra szerinti eredeti intervallumokba. A vevő oldalon az S' mintákat, ezt követően, az eredeti amplitúdójukra állítják vissza az átvitt k és p értékek segítségével (k és p két a skála-faktorokkal kapcsolatos érték). Így a vevő oldali g'(p) szám eleget tesz a következőknek:

$$g'(p) = 1 \text{ ha } p = 0$$

$$g'(p) = 2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} \text{ ha } p = 1$$

$$g'(p) = 2^{-1} + 2^{-3} + 2^{-8} + 2^{-9} \text{ ha } p = 2.$$

Az eredeti amplitúdóra való visszaállítás a következő képlet szerint történik:

$$S = S'*2^{-k*}g'(p).$$

A keret a 2. és 3. ábra, illetve a 2., 17. és 19. ábra szerinti két lehetséges változatában az FD3 harmadik keretrészt nem lehet (szabad) teljesen megtölteni információval. Ez a helyzet annál gyakrabban és annál hamarabb fordul elő, minél inkább javítjuk az alsávos kódolási algoritmust, vagyis azt a műveletet, melynek során a jelet alsávjelekre bontjuk, továbbá az egyes sávokban egymás után kvantáljuk a mintákat. E javítás főképpen abban nyilvánul meg, hogy az információ átvitele kisebb bitszámmal, kisebb mintánkénti átlagos bitszámmal történik. Az FD3 harmadik keretrész kihasználatlanul maradó részét fel lehet használni további információk átvitelére. A 17. ábra szerinti FD1 első keretrészben utalás történt erre a b23 "jövőbeli használatra fenntartott" bit kapcsán. Általában (normális esetben) e bit 0 értékű, mint ahogy az a 18. ábrából kiviláglik. Amennyiben pótlólagos jel szerepel a keret FD3 harmadik keretrészében, akkor az FD1 első keretrésznek a B23 "jövőbeli használatra fenntartott" bitje, ld. a a 17. ábrát, "1"-es értékű lesz.

A vevő számára ez teszi lehetővé, hogy az FD1 első keretrész olvasása alatt észlelje azt, hogy a keret pótlólagos információt tartalmaz. Az allokációs információ és a skála-faktorok, ld. a 23. ábrát, informálják a vevőt arról, hogy az FD3 harmadik keretrésznek csupán egy részében – a 23. ábrán FD4-gyel jelölt részben – vannak az alsávjelek kvantált mintái. Az FD3 másik része, amelyet a 23. ábra FD5-tel jelöl, pótlólagos információt tartalmaz. Az ezen FD5 keretrész első bitjeit "EXT INFO"-nak vagy bővítési információnak nevezzük. Ezen bitek adják meg a pótlólagos információ típusát. A pótlólagos információ lehet például egy további audio csatorna, például egy második sztereó csatorna átviteléhez. Egy további lehetőség ezen két pótlólagos audio csatorna felhasználására a környezeti-hang realizálása az FD4 keretrészben lévő audio alsávjelekkel együtt. Ez esetben környezeti a hanghoz szükséges elülső – hátsó információ szintén az FD5 keretrészbe kerülhet. Az FD6-tal jelölt részben az FD5 keretrész ismét tartalmazhat allokációs információt, skálafaktorokat és mintákat (ebben a sorrendben), és az allokációs szavak és a skála-faktorok sorrendje hasonló lehet a 2. és 3. ábrák szerinti, illetve a 2., 17. és 19. ábrák szerinti sorrendhez.

A "környezeti hang" esetében az egyszerű vevők csupán az FD2 második keretrészben valamint az FD3 harmadik keretrészben – kivéve az FD keretrészt – lévő sztereő információt dekódolják. Bonyolultabb vevők képesek visszaállítani a környezeti hang információt és ehhez felhasználják az FD5 keretrészben rejlő információt.

A bővítési információs bitek jelölhetik, hogy az FD6 keretrészben lévő információ szövegre vonatkozik (például ASC1 karakterek formájában). Szóba kerülhet videó vagy képi információnak az FD6 keretrészben történő elhelyezése, s ezt szintúgy a bővítési információs bitek jelölik.

Megjegyzendő, hogy a találmány nem korlátozódik az itt szereplő kiviteli alakokra. A találmány azokra a kiviteli alakokra is vonatkozik, amelyek az itt ismertetett kiviteli alakoktól csupán -- az igénypontokban definiált találmány szempontjából -- közömbös-jellemzőkben térnek el.

SZABADALMI IGÉNYPONTOK

1. Digitális hírközlési átviteli rendszer, amely adott Fe mintavételi frekvenciájú, szélessávú digitális jelnek például audio jelnek - valamilyen átviteli közegen keresztül történő továbbítására szolgál; a rendszerben van egy adó, amely rendelkezik egy, szélessávú digitális jelek vételére szolgáló, bemenő egységgel, amely bemenő egység csatlakozik egy, az adó részét képező jelforrásnak az egyik bemenetére, amely jelforrás egy második digitális jelet generáló, és e jelet az egyik kimenetén kiadó kialakítású; ezen második digitális jel egymást követő keretekből áll, mindegyik keret információ csomagok sokaságát tartalmazza, mindegyik információcsomag N bitet tartalmaz, ahol N>1; továbbá a rendszer tartalmaz egy vevőt, amely vevő tartalmaz egy dekódert, amely rendelkezik egy, a második digitális jel vételére szolgáló bemenettel, ezen dekóder rendelkezik egy kimenő egységre csatlakozó, és a szélessávú digitális jelet szolgáltató kimenettel, továbbá ahol BR a második digitális jel rátája, és n_S a szélessávú digitális jel azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van, azzal jellemezve, hogy ha a

$P = (BR/N) (n_S/F_S)$

formulával meghatározott P értéke egész szám, akkor az információ csomagok (B) száma egy kereten belül P, illetve, hogy ha P értéke nem egész szám, akkor az információ csomagok (B) száma egyes keretekben P', ahol P' a P-hez legközelebbi P-nél kisebb egész szám, a többi keretekben pedig P'+1, és a második digitális jel átlagos keret-rátája P_S/n_S-sel egyenlő, valamint egy keret legalább egy, a szinkronizálási információt magában foglaló első keretrészt (FD1) tartalmaz. (Elsőbbsége: 1989. 06. 02.)

- Az 1. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy az első keretrész (FD1) további, a keretbeli információ csomagok számára vonatkozó információt tartalmaz. (Elsőbbsége: 1990. 02. 13.)
- 3. Az 1. vagy a 2. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a keret egy első keretrészből (FD1), egy második keretrészből (FD2), továbbá egy harmadik keretrészből (FD3) áll, az első keretrész (FD1) rendszer információt tartalmaz, a második és a harmadik keretrész (FD2, FD3) jel információt tartalmaz. (Elsőbbsége: 1989. 06. 02.)
- 4. Az 1., 2. vagy 3. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy ha a keret P'+1 információ csomagot tartalmaz, akkor az első keretrészben (FD1) található a P'-re vonatkozó információ. (Elsőbbsége: 1989. 06. 02.)
- A 3. vagy 4. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy az adó (1) tartalmaz egy a szélessávú digitális jelre (S_{BB}) nézve jelhasító eszközt

magában foglaló, M számú alsávjel formájában egy másik-digitális-jelet-előállító-kódolót, ahol-is-M-1-nél-nagyobb szám, tartalmaz továbbá egy, az egyes alsáv-jeleket kvantáló eszközt (9); a keret második keretrésze (FD2) allokációs információt tartalmaz, amely – legalábbis néhány alsávjelre vonatkozóan – az említett alsávjelekből előállított kvantált alsávjelek mintáit leíró bitek számát jelenti, továbbá, a harmadik keretrész (FD3) legalábbis az említett alsávjelek kvantált mintáit tartalmazza, amennyiben vannak ilyenek. (Elsőbbsége: 1989. 06. 02.)

- 6. Az 5. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a jelhasító eszköz a szélessávú digitális jelre (SBB) érzékeny, a mintavételi frekvencia csökkentésével a szélessávú digitális jel (SRR) jelsávjának egymást követő alsávokra osztásával M számú alsávjelet előállító analízis-szűrő eszköz (3), az alsávok m sorszáma a frekvenciával növekvő; és az átviteli rendszerben az egyes alsávjeleken tömbönkénti kvantálást biztosító kvantáló eszköz (48.1-48.M) van; a keret második keretrészében található allokációs információ – legalábbis néhány alsávjelre vonatkozóan – az említett alsávjelekből előállított kvantált alsávjelek mintáit leíró bitek száma, továbbá a harmadik keretrész (FD3) legalábbis az említett kvantált alsávjelek mintáit tartalmazza, amennyiben vannak ilyen minták. (Elsőbbsége: 1989. 06. 02.)
- 7. A 6. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a harmadik keretrész (FD3) tartalmaz továbbá skála-faktorokra vonatkozó információt; valamely skála-faktor legalább egy, a harmadik keretrészben (FD3) lévő kvantált alsávjelhez van hosszárendelve, továbbá a skála-faktor információ a harmadik keretrészben (FD3), a kvantált alsávjelek előtt helyezkedik el. (Elsőbbsége: 1989. 06. 02.)
- 8. A 6. vagy a 7. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a vevő (1) tartalmaz egy, az egyes kvantált alsávjelekre érzékeny szintézis-szűrő eszközt magában foglaló, a mintavételi frekvencia visszaállításával a szélessávú digitális jelet (S_{BB}) visszaállító dekódert; továbbá az alsávjelek mintái ha vannak ilyenek a harmadik keretrészben (FD3) helyezkednek el olyan sorrendben, amely megfelel annak a sorrendnek, mellyel a vevőben (5) vételkor a jelek a szintézis-szűrő eszközre kerülnek. (Elsőbbsége: 1989. 06. 02.)
- 9. A 8. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy az egyes kvantált alsávjelekre vonatkozó allokációs információ a második keretrészben (FD2) helyezkedik el olyan sorrendben, amely megfelel annak a sorrendnek, mellyel a vevőben (5) vételkor a jelek a szintézis-szűrő eszközre kerülnek. (Elsőbbsége: 1989. 06. 02.)
- 10. A 9. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a skála-faktorokra vonatkozó információ a harmadik keretrészben (FD3) helyezkedik el olyan sorrendben, amely megfelel azon kvantált alsávjelekre vonatkozó, a második keretrészben (FD2) elhelyezkedő allokációs információ sorrendjének, amelyekhez a skála-faktorok tartoznak. (Elsőbbsége: 1989. 06. 02.)

15

1

11. A 6-10. igénypontok bármelyike szerinti átviteli rendszer, azzal jellemezve, hogy a szélessávú digitális jel (SBB) egy első és egy második jelkomponensből áll - például digitális sztereó jel -, és az átviteli rendszerben az első és második jelkomponensre érzékenynyétett, M számú alsávjelet generáló analízis-szűrő eszköz (3) van; az alsávjelek egy-egy első és egy-egy második alsávjelkomponenst tartalmaznak, és az átviteli rendszerben vannak az egyes első és második alsávjelkomponenseket az egyes alsávokban kvantáló eszközök, a keret második keretrésze (FD2) az említett alsáv két alsávjeléből származó első és második kvantált alsávjelkomponens mintáit leíró bitek számát az említett alsávra megadó allokációs információt tartalmaz, továbbá a harmadik keretrész (FD3) az említett első és második kvantált alsávjel komponensek mintáit tartalmazza, amennyiben vannak ilyen minták. (Elsőbbsége: 1989. 06. 02.)

12. A 11. vagy 7. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a harmadik keretrész 20 (FD3) az adott alsáv két skála-faktorára vonatkozó információt tartalmaz, az egyes skálafaktorok az adott alsávnak vagy az első vagy a második kvantált alsávjelkomponenséhez tartoznak. (Elsőbbsége: 1989. 06. 02.)

13. A 8., 11. vagy 12. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a szintézis-szűrő eszköz a megfelelő kvantált alsávjelkomponensekre érzékeny, az első és második jelkomponenst tartalmazó szélessávú digitális jelet (S_{BB}) visszaállító szűrő, az alsávjel komponensek mintái – amennyiben szerepelnek – a harmadik keretrészben (FD3) helyezkednek el olyan sorrendben, amely megfelel annak a sorrendnek, amellyel az említett alsávjelkomponensek mintái a vevőben (5) vételkor a szintézis-szűrőbe kerülnek. (Elsőbbsége: 1989. 06. 02.)

14. A 13. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy az egyes kvantált alsávjelkomponensekhez tartozó allokációs információ a második keretrészben (FD2) helyezkedik el, olyan sorrendben, amely megfelel annak a sorrendnek, amellyel az említett alsávjelkomponensek mintái a vevőben (5) vételkor a szintézis-szűrőbe kerülnek. (Elsőbbsége: 1989. 06. 02.)

15. A 14. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy skála-faktorokra vonatkozó információ a harmadik keretrészben (FD3) helyezkedik el, olyan sorrendben, amely megfelel annak a sorrendnek, amelyben az említett skála-faktorokhoz tartozó első és második alsávjelkomponensre vonatkozó allokációs információ a második keretrészben (FD2) elhelyezkedik, továbbá a skála-faktor információ a harmadik keretrészben (FD3) a kvantált alsávjelkomponensek előtt helyezkedik el. (Elsőbbsége: 1989. 06. 02.)

16. Az 5. igénypont szerinti átviteli rendszer, azzal jellemezve, hogy a (P'+1)-edik információ csomag nem tartalmaz hasznos információt. (Elsőbbsége: 1989. 06. 02.)

17. Az előző igénypontok bármelyike szerinti átviteli rendszer, azzal jellemezve, hogy a keretek egy ne-

gyedik keretrészt (FD4) tartalmaznak, melyben hibadetektáló és/vagy-hibajavító-információ-szerepel. (Elsőbbsége: 1989. 06. 02.)

18. Adó egy adott F_S mintavételi frekvenciájú, szélessávú digitális jelnek, - például audio jelnek - valamilyen átviteli közegen keresztül történő adására, amely rendelkezik egy, szélessávú digitális jelek fogadására szolgáló bemenő egységgel, amely bemenő egység csátlakozik egy, az adó részét képező jelforrásnak az egyik bemenetére, amely jelforrás egy második digitális jelet generáló, és e jelet az egyik kimenetén kiadó kialakítású; ezen második digitális jel egymást követő keretekből áll, mindegyik keret információ csomagok sokaságát tartalmazza, mindegyik információcsomag N bitet tartalmaz, ahol N>1; továbbá ahol BR a második digitális jel rátája, és ns a szélessávú digitális jel azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van, azzal jellemezve, hogy ha a

$P = (BR/N) (n_S/F_S)$

formulával meghatározott P értéke egész szám, akkor az információ csomagok (B) száma egy kereten belül P, illetve, hogy ha P értéke nem egész szám, akkor az információ csomagok (B) száma egyes keretekben P', ahol P' a P-hez legközelebbi P-nél kisebb egész szám, a többi keretekben pedig P'+1, és a második digitális jel átlagos keret-rátája F_S/n_S-sel egyenlő, valamint egy keret legalább egy, a szinkronizálási információt magában foglaló első keretrészt (FD1) tartalmaz. (Elsőbbsége: 1989. 06. 02.)

19. A 18. igénypont szerinti adó, azzal jellemezve, hogy az adó egy, a második digitális jelet valamilyen adathordozón rögzítő berendezés. (Elsőbbsége: 1989. 06. 02.)

20. Adathordozó, amely valamely adott F_S mintavételi frekvenciájú, szélessávú digitális jelet, – például audio jelet továbbító adó által előállított második digitális jelet tartalmaz, azzal jellemezve, hogy az adathordozó sávjain van rögzítve az egymást követő keretekből álló, mindegyik keretében információ csomagok sokaságát tartalmazó második digitális jel, és mindegyik információcsomag N bitet tartalmaz, ahol N>1; továbbá ahol BR a második digitális jel rátája, és n_S a szélessávú digitális jel (S_{BB}) azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van; és ha a

$P = (BR/N) (n_S/F_S)$

formulával meghatározott P értéke egész szám, akkor az információ csomagok (B) száma egy kereten belül P, illetve, ha P értéke nem egész szám, akkor az információ csomagok (B) száma egyes keretekben P', ahol P' a P-hez legközelebbi P-nél kisebb egész szám, a többi keretekben pedig P'+1, és a második digitális jel átlagos keret-rátája F₂/n₂-sel egyenlő, valamint egy keret legalább egy, a szinkronizálási információt magában foglaló első keretrészt (FD1) tartalmaz. (Elsőbbsége: 1989. 06. 02.)

21. Vevő, egy adott F_s mintavételi frekvenciájú, valamilyen átviteli közegen keresztül továbbított szélesságú digitális jelnek, – például audio jelnek – a

vételére; a vevő tartalmaz egy dekódert, amely rendelkezik-egy-második-digitális-jel-vételére-szolgáló-bernenettel, amely második digitális jel egymást követő keretekből áll, mindegyik keret információ csomagok sokaságát tartalmazza, mindegyik információ csomag N bitet tartalmaz, ahol N >1; ezen dekóder rendelkezik egy, kimenő egységre csatlakozó, és a szélessávú digitális jelet szolgáltató kimenettel; továbbá ahol BR a második digitális jel rátája, és n, a szélessávú digitális jel azon mintáinak a száma, amelynek megfelelő, a második digitális jelbeli információ a második digitális jelnek egy keretében van, azzal jellemezve, hogy ha a P = (BR/N) (n_x/F_z) formulával meghatározott P értéke egész szám, akkor az-információ csomagok (B) száma egy-kereten belül P, illetve ha P értéke nem egész szám, akkor az információ csomagok (B) száma egyes keretekben P', ahol P' a P-hez legközelebbi P-nél kisebb egész szám, a többi keretekben pedig P'+1, és a második digitális jel átlagos keret-rátája F_t/n_s-sel egyenlő, valamint egy keret legalább egy, a szinkronizálási információ magában foglaló első keretrészt (FD1) tartalmaz. (Elsőbbsége: 1989. 06. 02.)

22. A 21. igénypont szerinti vevő, azzal jellemezve, hogy a vevő a második digitális jelet valamilyen adathordozóról olvasó berendezés. (Elsőbbsége: 1989. 06. 02.)

BR	Fs	В
(kbits/s)	(kHz)	4
128	. 32 44.1 48	48 34 32
192	32 44.1 48	72 52 48
256	32 44.1 48	96 69 64
384	32 44.1 48	144 104 96

F16.5

(kbits/s)	fr	
128	147	122
192	49	12
256	147	97
384	49	. 24

F16.6

			•
		f minta	Kiemeles.
0 0 0 0 0	521 cm	48 kHz	nines kiemele's
00001	STULLED	48 kHz	· 50/15 дзес
00010	Szterec	44.1 kHz	nilias kiemelės
00011	Szlerec	44.1 kHz	50/15 µsec
00100	Szierce	32 kHz	ning kiencles
00101	si perev	32 kHz	50/15 μsec
00110		ferriber to A	- :
00111		fenotes toll	
0 1 0 0 0	2 C=at.	48 KHZ	nines wemples
01001	2 Leat.	48 kHz	50/15 μsec
01010	2 Cust.	44.1 kHz	rices kiemeles
0 1 0 1 1	2 .Csat.	44.1 kHz	50/15 μsec
01100	2 (sub.	32 kHz	nines kiemeles
01101	2 Csati	32 kHz	50/15 µsec
0 1 1 1 0		femutartet	
01111		tennturios	
10000	1 Csuit.	48 kHz	ninus kienejes
10001	1 Csap.	48 kHz	50/15 μsec
10010	1 Cocit.	44.1 kHz	inings kiemeles
10011	1 GSL t .	44.1 kHz	50/15 μsec
10100	1 Csat.	32 kHz	MIRGS KIZMELS
10101	1 Coat.	32 kHz	50/15 µsec
10110		ferritureout	
10111		48 kHz	CCITT J.17
11000	szterec	48 kHz	CCITT J.17
11001	2 isat:.	48 kHz	CCITT J.17
11010	·s=tereo	44.1 kHz	CCITT J.17
11011		44.1 kHz	CCITT J.17
11100	iszterev	32 kHz	CCITT J.17
11101		32 kHz	CCITT J.17
1 1 1 1 0		32 kHz	CCITT J.17
11111	1 Csat.	44.1 kHz	CCITT J.17

F16.7

mod.		csatoma.	I		esatorna. II
sztereo		jobb			bal.
2 osutorna					program II
1 Gatorna	mono	program	1	•	nem huszíbált

F16.8

HU 210 644 B Int. Cl.⁶: H 04 B 7/00

allok: 0000 0001 0010 0101 0110 0111 1000 1001 1010 1011	áció	2 3 4 5 6 7 8 9 10 11 12	bit		े . - व			
1101 1110		14 15						
1111		-						
•			•	FIG.	۵			. 6
				1 10.				
	125 _ I-1	2: II-1	1-2	II-2	I-3	11-3	T-4	II-4
	res 1-5	3: II-5	I-6	11-6	I-7	II-7	I-a	II-8
	rës : I-9	4: II-9	I-10	II-10	I-11	11-11	I-12	II-12
-	res I-13	5: II-13	I-14	II-14	I-15	II-15	I-16	II-16
	rds I-17	6: II-17	I-18	II-18	I-19	II-19	1-20	II-20
- 3	res	7: II-21	I-22	II-22	I-23	II-19	I-24	II-24
	res : 1-25		I-26	II-26	I-27	II-23	I-28	II-24
	res I-29	9: II-29	I-30	II-30		11-27		
-	1-29	11-29		11-30	I-31	11-31	I-32	II-32
		81 - 2.15		FIG.	10			
				FIU.	ָוּט			•
	res	2:						
	nds i				•	II-3		
	I-5 res -	II-5 4:	I-6	II-6	I-7	II-7	I-8	II-8
		II-9	I-10	II-10	I-11	II-11	I-12	II-12
		II-13	I-14	II-14	I-15	II-15	I-16	_II-16

FIG.16

	B'R Fu	
b ₀ , S1	b ₁₅ b ₁₆ HDEX b ₁₉ F _S P b ₂₃ b ₂₄	31

FIG.17

BR	BR			
(kbits/ sec.)		48 kHz	Fs 44.1 kHz	32 kHz
32	,	8	8	12
64	1 2 3 4 5 6 7 8 9	16	17	24
96	J 3	24	26	36
128	4	32	3.4	48/
160	5	40	43	60
192	6	. 48	52	72
224	7	56	60	84
256 .	8	64	69	96
288	9	72	78	108
320	10	80	87	120
352	11	88	95	132
384	12	96	104	144
416	13	104	113	156
448	14	112	121	168

0 0 44.1 kHz 0 1 48 kHz 1 0 32 kHz

FIG.18

HU · 210 644 B · Int. Cl.⁶: H 04 B 7/00

FIG.19

```
Bits 26 and 27: Iviten zita's-sztero mouszer kapisolók:
                         alsavok : 5 - 32
alsavok : 9 - 32
alsavok : 13 - 32
alsavok : 17 - 32
             0:0
0:1
1 0
                                                  intenzihis-szterő modbun.
                                                  intenzitais-szieres medlan
intenzitais-szteres medlan
                                                  inscuzitàs-sztered meddoan
             1 1
                                                        masc latate
Bit 28:
                                            0
                                                        musolmi tilos
                                            1
                                                        ma'solat
Bit 29 :
                                             0
                                                        evideti
                                             1
                                             0 0
                                                        nincs kiemeks
Bits 30 and 31:
                                                        50/15 usec kiemeles
                                            0 1
                                            1 0
                                                        CCITT J.17
                                  FIG. 20
```

M = mono signal

				•				
	2:							M-8
		M-2	M-3	M-4	M-5	M-6	M-7	-1-17
slot	3:							_
	M-9	M-10	M-11	M-12	M-13	M-14	M-15	M-16
slot								
SIUC	7.					i		M_2h
	M-17	M-18	M-19	M-20	M-21	M-22	M-23	ri-r-1
slot							•	•
		V 26	W 27	W_20	M-20	M20	M-31	M - 32
	m-Zo	m-20	rı–2/	11-20	いーとラ	1,1-10	ねーうて	

FIG. 21

HU 210 644 B Int. Cl.⁶: H 04 B 7/00

tereo

```
R = jobb
L = bal
                             onom = M
                         27. bit: 0 0
                  26.
res 2:
                            L-3 R-3
                                          L-4
re's 3:
                        R-2
           R-1
                                    M-10
                                          M-11
           M-6
                  M-7
                         M-8
     M-5
res 4:
                                    M-18
                                          M-19
                                                M-20
                 M-15
                         M-16 M-17
     M-13
           M-14
res 5:
                  M-23
                              M-25
                                    M-26
                                         M-27
                         M-24
                         M-32
     M-29
           M-30
                 M-31-
                                                FIG. 22a
res 2:
                                           L-4
                                               R-4
                                     R-3
                               L-3
            R-1
                   L-2
                         R-2
rės 3:
                                     R-7
                                           L-8
                               L-7
                         R-6
                   L-6
            R-5
                                           M-15
                                     M-14
                         M-12
            M-10 M-11
      M-9
 res 5:
                                     M-22
                               M-21
                  M-19
                         M-20
            M-18
res. 6:
                                           M-31
                                     M-30
                                                 M-32
                               ri-29
                         M-28
      M-25
            M-26
                  M-27
                                                FIG. 22b
res 2:
                                           L-4
                                                 R-h
                                     R-3
            R-1
                   L-2
                         R-2
                               L-3
                                           L÷8
                                                 R-8
                               L-7
                                     R-7
                   L-6
                         R-6
            R-5
res 4:
    a L+9*
                                     R-11
                               L-11
            R-9
                   L-10
                         R-10
res. 5:
                               M-17
                  M-15
                         M-16
res 6:
                                                 M-28
                                           M-27
                         M-24
                               M-25
                                     M-26
                  M-23
            M-22
res. 7:
                         M-32
      M-29 :M-30
                  M-31
                                                FIG. 22c
                          *:
res 2:
                                           L-4
                                                 R-4
                              L-3 R-3
                        R-2
     L-1
           R-1
                  L-2
$T€S 3:
     L-5
           R-5
                  L-6
                        R-6
res. 4:
                                           L-12
                                                 R-12
    L-9
           R-9
                  L-10
                        R-10
                              L-11
                                    R-11
res. 5:
                                           L-16
re's 6:
                                     R-15
                  L-14
                        R-14
                              L-15
           R-13
                                    M-22
                                           M-23
                        M-20 M-21
                 M-19
           M-18
                                                 M-32 FIG. 22d
                        M-28 M-29 M-30
                                           M-31
     M-25
           M-26
                 M-27
```


This Page Blank (uspto)