Amöben als Problemlöser

Tobias Weiden Student Master Informatik HAW Landshut

Erlaubte Touren: (n-1)!/2

Computed by Wolfram |Alpha

Erlaubte Touren: (n-1)!/2

Travelling Salesman Problem

Computed by Wolfram |Alpha

Erlaubte Touren: (n-1)!/2

Travelling Salesman Problem

Computed by Wolfram |Alpha

- Erlaubte Routen: (n-1)!/2
- NP-Schweres Problem
- Suchzeit für optimale Route:

Travelling Salesman Problem

Computed by Wolfram |Alpha

- Erlaubte Routen: (n-1)!/2
- NP-Schweres Problem
- Suchzeit für optimale Route: $O(n^2)$

Computed by Wolfram |Alpha

- Erlaubte Routen: (n-1)!/2
- NP-Schweres Problem
- Suchzeit für optimale Route: $O(n^2)$
- Gute Route zu annehmbarer Zeit

Inhaltsverzeichnis

- 1. Kleine Hilfe
- 2. Experiment
- 3. Resultate
- 4. Simulation

Physarum polycephalum

- Gruppe von Einzellern
- Gut erforscht
- Licht-avers

Physarum polycephalum

- Wächst Wellenförmig (Oszillation)

Physarum polycephalum

- Wächst Wellenförmig (Oszillation)

Versuchsaufbau

Versuchsaufbau

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} \left(\frac{X_{Ul}(t)}{V_{Ul}(t)} \right) \right)$$

Status $X_{Vk}(t) \in [0.0, 1.0]$:

Abdeckung Der Linie Vk durch Amöbe

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$35 \qquad 0.6$$

$$| \qquad |$$

$$\sigma_{\gamma,\theta} = 1/(1 + \exp(-\gamma * (x - \theta)))$$

→ Sobald die Hälfte der Linie belegt ist steigt der Wert gegen 1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$-0.5 \qquad \qquad \text{Wenn } V = U \text{ und } k \neq l$$

$$-0.5 \qquad \qquad \text{Wenn } V \neq U \text{ und } k = l$$

$$-v * dist(V, U) \qquad \qquad \text{Wenn } V \neq U \text{ und } |k - l| = 1$$

$$0 \qquad \qquad \text{Ansonsten}$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$x$$

$$1000 -0.5$$

$$|$$

$$\sigma_{\gamma,\theta} = 1/(1 + \exp(-\gamma * (x - \theta)))$$

Nachbar oder Gegenüber belegt > L = 0.5

Nachbar oder Gegenüber belegt Nachbar und Gegenüber frei

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

A1 A2 A3 A4

D4 B1

D3 B2

D2 B3

D1 B4

C4 C3 C2 C1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Wofür entscheidet sich die Amöbe?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Wofür entscheidet sich die Amöbe?

→ Zufall!

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Wofür entscheidet sich der Pilz?

→ Zufall!

Ist das relevant?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$D \rightarrow C \rightarrow B \rightarrow A \rightarrow D$$

Wofür entscheidet sich der Pilz?

→ Zufall!

Ist das relevant?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$D \rightarrow C \rightarrow B \rightarrow A \rightarrow D$$

Wofür entscheidet sich der Pilz?

→ Zufall!

Ist das relevant?

→ Nein, da Rundkurs!

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Leuchten A2, A3 & A4?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$-0.5 \qquad \qquad \text{Wenn } V = U \text{ und } k \neq l$$

$$-0.5 \qquad \qquad \text{Wenn } V \neq U \text{ und } k = l$$

$$-v * dist(V, U) \qquad \qquad \text{Wenn } V \neq U \text{ und } |k - l| = 1$$

$$0 \qquad \qquad \text{Ansonsten}$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für A2, A3 & A4 bei Ul = A1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$35 \qquad 0.6$$

$$| \qquad |$$

$$\sigma_{\gamma,\theta} = 1/(1 + \exp(-\gamma * (x - \theta)))$$

➤ Sobald die Hälfte der Linie belegt ist steigt der Wert gegen 1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$35 \quad 0.6$$

$$| \quad |$$

$$\sigma_{\gamma,\theta} = 1/(1 + \exp(-\gamma * (x - \theta)))$$

➤ Sobald die Hälfte der Linie belegt ist steigt der Wert gegen 1

$$X_{A1} \approx 1$$

$$X_{[A-D][1-4]/(A1)} \approx 0$$

Nachbar oder Gegenüber belegt Nachbar und Gegenüber frei

 $L_{A2,A3,A4} = 0.5$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
A1 A2 A3 A4

B1

B2

B2

B3

C4 C3 C2 C1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

B1

B2

В3

D1

D3

D2

B4

C4 C3 C2 C1

Leuchten B1, C1 & D1?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für B1, C1 & D1 bei Ul = A1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$35 \quad 0.6$$

$$| \quad |$$

$$\sigma_{\gamma,\theta} = 1/(1 + \exp(-\gamma * (x - \theta)))$$

➤ Sobald die Hälfte der Linie belegt ist steigt der Wert gegen 1

$$X_{A1} \approx 1$$

$$X_{[A-D][1-4]/(A1)} \approx 0$$

 $L_{B1,C1,D1} = 0.5$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
A1 A2 A3 A4

B1 Q

B2

B3

B4

C4 C3 C2 C1

D4

D3

D2

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
A1 A2 A3 A4

Leuchten B2, C2 & D2?

B2

B3

B4

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für B2, C2 & D2 bei Ul = A1

-0.5 Wenn V = U und $k \neq l$ -0.5 Wenn $V \neq U$ und k = l-v * dist(V, U)Wenn $V \neq U$ und |k - l| = 1Ansonsten

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für B2, C2 & D2 bei Ul = A1

-0.5
$$Wenn \ V = U \ und \ k \neq l$$

$$-0.5 \qquad Wenn \ V \neq U \ und \ k = l$$

$$-v*dist(V,U) \qquad Wenn \ V \neq U \ und \ |k-l| = 1$$

$$0 \qquad Ansonsten$$

$$n = 4 \rightarrow v = 0.00495$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{A1,B2} = -0.00495 * 5 = -0.02475$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{A1,B2} = -0.00495 * 5 = -0.02475$$

$$W_{A1,C2} = -0.00495 * 65 = -0.32175$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{B2,A1} = -0.00495 * 5 = -0.02475$$

 $W_{C2,A1} = -0.00495 * 65 = -0.32175$
 $W_{D2,A1} = -0.00495 * 35 = -0.17325$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

 $W_{B2,A1} = -0.02475$ $W_{C2,A1} = -0.32175$ $W_{D2,A1} = -0.17325$

Computed by Wolfram | Alpha

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

- D4 B1
 - 1 | **Q** Leuchten B2, C2 & D2?

D3

B2

 \rightarrow Nein

D2

В3

) D1

- B4
- C4 C3 C2 C1

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

A3

D3

D2

B3

B4

Leuchtet der Rest?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für Rest bei Ul = A1

-0.5 Wenn V=U und $k \neq l$

-0.5 Wenn $V \neq U$ und k = l

-v*dist(V,U) Wenn $V \neq U$ und |k-l|=1

0 Ansonsten

Nachbar oder Gegenüber belegt

Nachbar und Gegenüber frei

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
A1 A2 A3 A4

B1 Q

B2

B3

B4

D4

D3

D2

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

A3

D4

D3

D2

B2

B3

B4

Welcher Ort wird als nächstes besucht?

$$L_{Vk}(t+\Delta t) = 1 - \sigma_{1000,-0.5} \left(\sum_{Ul} W_{Vk,Ul} * \sigma_{35,0.6} (X_{Ul}(t)) \right)$$
A1 A2 A3 A4

B1 Welcher Ort wird als nächstes b

B2 B2, C2 oder D2?

B3

D1 B4

Welcher Ort wird als nächstes besucht?

B2, C2 oder D2?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

 $W_{B2,A1} = -0.02475$ $W_{C2,A1} = -0.32175$ $W_{D2,A1} = -0.17325$

Computed by Wolfram | Alpha

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Für B2, C2 & D2 bei $Ul \in \{B2, C2, D2\}$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

 $W_{B2,A1} = -0.02475$ 1 $W_{C2,A1} = -0.32175$ $W_{D2,A1} = -0.17325$

 $X_{B2,C2,D2} \rightarrow 1 \text{ mit } W_{B2,C2,D2} = -0.5$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$W_{B2,A1} = -0.02475$$
 1
 $W_{C2,A1} = -0.32175$
 $W_{D2,A1} = -0.17325$

$$X_{B2,C2,D2} \rightarrow 1 \text{ mit } W_{B2,C2,D2} = -0.5$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

 $W_{B2,A1} = -0.02475$ 1 $W_{C2,A1} = -0.32175$

 $W_{D2,A1} = -0.17325$

 $X_{B2,C2,D2} \rightarrow 1 \text{ mit } W_{B2,C2,D2} = -0.5$

→ C2 leuchtet

Computed by Wolfram | Alpha

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$W_{B2,A1} = -0.02475$$
 1
 $W_{C2,A1} = -0.32175$
 $W_{D2,A1} = -0.17325$

$$X_{B2,C2,D2} \rightarrow 1 \text{ mit } W_{B2,C2,D2} = -0.5$$

- → C2 leuchtet
- → D2 leuchtet

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$A1 \quad A2 \quad A3 \quad A4$$

$$B1 \quad Q$$

$$B2 \quad B2, C2 \text{ oder D2?}$$

$$D2 \quad B3 \quad D2$$

$$D1 \quad B4$$

$$C4 \quad C3 \quad C2 \quad C1$$

Welcher Ort wird als nächstes besucht?

B2, C2 oder D2?

→ C2 & D2 leuchten

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$A1 \quad A2 \quad A3 \quad A4$$

$$B1 \quad Q \quad Welcher Ort wird als nächstes k$$

$$D3 \quad B2 \quad B2, C2 \text{ oder D2?}$$

$$D2 \quad B3 \quad \rightarrow C2 \text{ & D2 leuchten}$$

$$D1 \quad B4$$

$$C4 \quad C3 \quad C2 \quad C1$$

Welcher Ort wird als nächstes besucht?

B2, C2 oder D2?

→ C2 & D2 leuchten

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

$$A1 \quad A2 \quad A3 \quad A4$$

$$B1 \quad Q \quad Welcher Ort wird als n\(\text{achstes } k \)
$$B2 \quad B2 \quad B2, C2 \text{ oder } D2?$$

$$D2 \quad B3 \quad Q \quad \Rightarrow C2 & D2 \text{ leuchten}$$

$$D1 \quad B4 \quad Q$$

$$C4 \quad C3 \quad C2 \quad C1$$$$

Welcher Ort wird als nächstes besucht?

B2, C2 oder D2?

→ C2 & D2 leuchten

Welcher Ort wird als nächstes besucht?

C3 oder D3?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

 $W_{C3,B2}$

 $W_{D3,B2}$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{C3,B2} = -0.00495 * 35 = -0.17325$$

$$W_{D3,B2} = -0.00495 * 65 = -0.32175$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{C3,B2} = -0.00495 * 35 = -0.17325$$

 $W_{D3,B2} = -0.00495 * 65 = -0.32175$

→ D3 wird zuerst leuchten

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$
$$-v * dist(V, U) \qquad n = 4 \rightarrow v = 0.00495$$

$$W_{C3,B2} = -0.00495 * 35 = -0.17325$$

$$W_{D3,B2} = -0.00495 * 65 = -0.32175$$

→ D3 wird zuerst leuchten

Merke:

Um so höher der Abstand, um so schneller geht Lampe an!

Welcher Ort wird als nächstes besucht?

C3 oder D3?

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Rundgang:

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

Rundgang:

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$$

 $5 + 35 + 25 + 35$
 $= 100$

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

mean value: 153.3

Rundgang:

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$$

 $5 + 35 + 25 + 35$
 $= 100$

→ Idealer Weg gefunden

n	4	5	6	7	8
mean tour length L_{mean} (known in advance)	153.3	150.0	145.2	146.0	149.1
number of experimental trials T	12	11	12	11	23
best tour length (found in experiment)	100	112	100	121	117
worst tour length (found in experiment)	200	168	174	151	165
Av. tour length L_{exp} (found in experiment)	142.0	129.2	133.3	137.6	133.8
$L_{\rm exp}/L_{ m mean}$	0.926	0.861	0.918	0.942	0.897
top quality (%)	(33.3)	(25)	(33.3)	(37.5)	(20.7)

n	4	5	6	7	8
number of successful trials S	10	10	10	10	21
(succeeded in finding a feasible solution)					
success rate S/T (%)	83.3	90.9	83.3	90.9	91.3
Av. search time (min)	21.6	24.9	34.9	39.6	45.9

AmoebaTSP - Initialisierung

```
t=0; FOR Vk=City_11 to City_nn, Ul=City_11 to City_nn Determine coupling weight W_{Vk,Ul} according to Eq. (3); FOR Vk=City_11 to City_nn Initialize X_{Vk}(0)=X_0 such that \sigma_{35,0.6}(X_0)=1/(n^2-1); Initialize S(0)=0;
```

AmoebaTSP - Oszillation

```
WHILE t < t_{Max} do
  IF a configuration of all X_{Vk}(t) represents a consistent TSP tour
  THEN RETURN the tour;
  ELSE
     FOR Vk = City_11 to City_nn
        Determine \epsilon_{Vk}(t) as a randomly chosen real number in (-0.003, 0.003);
        Determine L_{Vk}(t+1) = 1 - \sigma_{1000,-0.5}(\sum_{l,l} W_{Vk,Ul} \cdot \sigma_{35,0.6}(X_{Ul}(t) + \epsilon_{Vk}(t)));
       IF lane Vk is illuminated (L_{Vk}(t+1) > 0.5)
       THEN Determine O_{Vk}(t+1) = 2 \cdot \Delta^{out} \cdot \sigma_{20,0,6}(X_{Vk}(t) + \epsilon_{Vk}(t));
        ELSE Determine O_{Vk}(t+1) = 0;
     CALL StockRedistribution;
     FOR Vk = City_11 to City_nn
       IF lane Vk is not illuminated (L_{Vk}(t+1) \leq 0.5)
        THEN Update X_{Vk}(t + 1) = X_{Vk}(t) + I_{Vk}(t + 1);
       ELSE Update X_{Vk}(t + 1) = X_{Vk}(t) - O_{Vk}(t + 1);
END WHILE
```

AmoebaTSP – Ressourcen-Verteilung

```
SUBROUTINE: StockRedistribution  \begin{array}{l} \text{Determine $L^{o\!f\!f}(t+1)$ as the number of non-illuminated $(L_{V\!k}(t+1) \leq 0.5)$ lanes }; \\ \text{If $L^{o\!f\!f}(t+1) = 0$} \\ \text{THEN Update $S(t+1) = S(t) + $\sum_{V\!k} O_{V\!k}(t+1) + \Delta^{in}$ }; \\ \text{Determine $I_{V\!k}(t+1) = 0$}; \\ \text{ELSE Update $S(t+1) = 0$}; \\ \text{Determine $I_{V\!k}(t+1) = (S(t) + \sum_{V\!k} O_{V\!k}(t+1) + \Delta^{in})/L^{o\!f\!f}(t+1)$}; \\ \text{END SUBROUTINE} \end{array}
```

$$L_{Vk}(t + \Delta t) = 1 - \sigma_{1000, -0.5} \left(\sum_{Ul} W_{Vk, Ul} * \sigma_{35, 0.6} (X_{Ul}(t)) \right)$$

 $-0.5 \qquad \qquad \text{Wenn } V = U \text{ und } k \neq l$ $-0.5 \qquad \qquad \text{Wenn } V \neq U \text{ und } k = l$ $-v * dist(V, U) \qquad \qquad \text{Wenn } V \neq U \text{ und } |k - l| = 1$ $0 \qquad \qquad \text{Ansonsten}$

```
WHILE t < t_{Max} do
  IF a configuration of all X_{Vk}(t) represents a consistent TSP tour
  THEN RETURN the tour;
  ELSE
     FOR Vk = City_11 to City_nn
        Determine \epsilon_{Vk}(t) as a randomly chosen real number in (-0.003, 0.003);
        Determine L_{Vk}(t+1) = 1 - \sigma_{1000,-0.5}(\sum_{l,l} W_{Vk,Ul} \cdot \sigma_{35,0.6}(X_{Ul}(t) + \epsilon_{Vk}(t)));
       IF lane Vk is illuminated (L_{Vk}(t+1) > 0.5)
       THEN Determine O_{Vk}(t+1) = 2 \cdot \Delta^{out} \cdot \sigma_{20,0,6}(X_{Vk}(t) + \epsilon_{Vk}(t));
        ELSE Determine O_{Vk}(t+1) = 0;
     CALL StockRedistribution;
     FOR Vk = City_11 to City_nn
       IF lane Vk is not illuminated (L_{Vk}(t+1) \leq 0.5)
        THEN Update X_{Vk}(t + 1) = X_{Vk}(t) + I_{Vk}(t + 1);
       ELSE Update X_{Vk}(t + 1) = X_{Vk}(t) - O_{Vk}(t + 1);
END WHILE
```

```
WHILE t < t_{Max} do
  IF a configuration of all X_{Vk}(t) represents a consistent TSP tour
  THEN RETURN the tour;
  ELSE
    FOR Vk = City_11 to City_nn
        Determine \epsilon_{Vk}(t) as a randomly chosen real number in (-0.003, 0.003);
        Determine L_{Vk}(t+1) = 1 - \sigma_{1000,-0.5} \left[ \sum_{Ul} W_{Vk,Ul} \cdot \sigma_{35,0.6} (X_{Ul}(t) + \epsilon_{Vk}(t)) \right];
       IF lane Vk is illuminated (L_{Vk}(t+1) > 0.5)
        THEN Determine O_{Vk}(t+1) = 2 \cdot \Delta^{out} \cdot \sigma_{20,0.6}(X_{Vk}(t) + \epsilon_{Vk}(t));
        ELSE Determine O_{Vk}(t+1) = 0;
     CALL StockRedistribution;
     FOR Vk = City_11 to City_nn
        IF lane Vk is not illuminated (L_{Vk}(t+1) \leq 0.5)
        THEN Update X_{Vk}(t + 1) = X_{Vk}(t) + I_{Vk}(t + 1);
        ELSE Update X_{Vk}(t + 1) = X_{Vk}(t) - O_{Vk}(t + 1);
END WHILE
```

```
WHILE t < t_{Max} do
  IF a configuration of all X_{Vk}(t) represents a consistent TSP tour
  THEN RETURN the tour;
  ELSE
    FOR Vk = City_11 to City_nn
        Determine \epsilon_{Vk}(t) as a randomly chosen real number in (-0.003, 0.003);
        Determine L_{Vk}(t+1) = 1 - \sigma_{1000,-0.5} \left[ \sum_{Ul} W_{Vk,Ul} \cdot \sigma_{35,0.6} (X_{Ul}(t) + \epsilon_{Vk}(t)) \right];
       IF lane Vk is illuminated (L_{Vk}(t+1) > 0.5)
        THEN Determine O_{Vk}(t+1) = 2 \cdot \Delta^{out} \cdot \sigma_{20,0.6}(X_{Vk}(t) + \epsilon_{Vk}(t));
        ELSE Determine O_{Vk}(t+1) = 0;
     CALL StockRedistribution;
     FOR Vk = City_11 to City_nn
                                                                                         O(n^4)
        IF lane Vk is not illuminated (L_{Vk}(t+1) \leq 0.5)
        THEN Update X_{Vk}(t + 1) = X_{Vk}(t) + I_{Vk}(t + 1);
        ELSE Update X_{Vk}(t + 1) = X_{Vk}(t) - O_{Vk}(t + 1);
END WHILE
```

AmoebaTSP – Parallel Computing

AmoebaTSP – Dennoch Probleme?

```
WHILE t < t_{Max} do
  IF a configuration of all X_{Vk}(t) represents a consistent TSP tour
  THEN RETURN the tour;
  ELSE
     FOR Vk = City_11 to City_nn
        Determine \epsilon_{Vk}(t) as a randomly chosen real number in (-0.003, 0.003);
        Determine L_{Vk}(t+1) = 1 - \sigma_{1000,-0.5} \left[ \sum_{Ul} W_{Vk,Ul} \cdot \sigma_{35,0.6} (X_{Ul}(t) + \epsilon_{Vk}(t)) \right];
       IF lane Vk is illuminated (L_{Vk}(t+1) > 0.5)
        THEN Determine O_{Vk}(t+1) = 2 \cdot \Delta^{out} \cdot \sigma_{20,0.6}(X_{Vk}(t) + \epsilon_{Vk}(t));
        ELSE Determine O_{Vk}(t+1) = 0;
     CALL StockRedistribution;
     FOR Vk = City_11 to City_nn
        IF lane Vk is not illuminated (L_{Vk}(t+1) \leq 0.5)
        THEN Update X_{Vk}(t + 1) = X_{Vk}(t) + I_{Vk}(t + 1);
        ELSE Update X_{Vk}(t + 1) = X_{Vk}(t) - O_{Vk}(t + 1);
END WHILE
```

AmoebaTSP – Dennoch Probleme?

Quellen

- https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.180396
- https://de.wikipedia.org/wiki/Amöbe
- https://de.wikipedia.org/wiki/Physarum_polycephalum
- https://royalsocietypublishing.org/doi/full/10.1098/rsif.2016.0030
- https://www.wolframalpha.com/input/?i=plot+1%2F(1%2Bexp(-35*(x-0.6)))(x+from+0+to+1)
- https://www.wolframalpha.com/input/?i=plot+1%2F(1%2Bexp(-1000*(x%2B0.5)))(x+from+-1.5+to+0.5)
- https://www.wolframalpha.com/input/?i=plot+(1-(1%2F(1%2Bexp(-1000*(x%2B0.5)))))(x+from+-1.5+to+0.5)
- https://www.wolframalpha.com/input/?i=plot+(x-1)!%2F2(x+from+0+to+9)

Bild-Quellen

- https://www.retroplanet.com/PROD/48908.html
- https://www.invaluable.com/auction-lot/original-american-rakleigh-bicycle-poster-1950s-b-51-c-7d24d9b8d3
- http://www.jüdische-gemeinden.de/index.php/gemeinden/k-l/1147landshut-niederbayern
- https://de.wikipedia.org/wiki/Physarum polycephalum#/media/File:
 Physarum polycephalum plasmodium.jpg
- https://www.pinterest.de/pin/123004633545569987/

Vielen Dank für eure Aufmerksamkeit!

Noch Fragen?!