Lecture 11

Stochastic Regressors & Measurement Errors

There are random variables in the RHS.

- When those variables are correlated with the errors, there is a bias problem.
- There may also be a consistency problem.

For a two-variable model: $y_i = \beta_1 + \beta_2 x_i + u_i$.

According to OLS,
$$\hat{eta}_2 = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}.$$

- We also know that $\hat{eta}_2=eta_2+rac{\sum(x_i-ar{x})(u_i-ar{u})}{\sum(x_i-ar{x})^2}.$
 - Since \bar{u} is expected to be zero, it is sometimes omitted.
 - Demonstration: We know that $\bar{y}=\beta_1+\beta_2\bar{x}$. We subtract it from the original model, then we have $y_i-\bar{y}=\beta_2(x_i-\bar{x})+(u_i-\bar{u})$. Plugging it into the formula for $\hat{\beta}_2$, we

obtain
$$\hat{\beta}_2 = \frac{\sum \left\{ (x_i - \bar{x}) \left[\beta_2 (x_i - \bar{x}) + (u_i - \bar{u}) \right] \right\}}{\sum (x_i - \bar{x})^2}$$
, which can be rewritten as
$$\hat{\beta}_2 = \beta_2 \frac{\sum (x_1 - \bar{x})^2}{\sum (x_1 - \bar{x})^2} + \frac{\sum (x_1 - \bar{x})(u_i - \bar{u})}{\sum (x_1 - \bar{x})^2}.$$

- So, if $\mathrm{E}\left[rac{\sum (x_i-ar{x})(u_i-ar{u})}{\sum (x_i-ar{x})^2}
 ight]
 eq 0$, \hat{eta}_2 is <u>biased</u>, that is, $\mathrm{E}\left[\hat{eta}_2\right]
 eq eta_2$.
- And if $N \to \infty$: $\frac{\sum (x_i \bar{x})(u_i \bar{u})}{\sum (x_i \bar{x})^2} \to 0$, $\hat{\beta}_2$ is <u>inconsistent</u>, that is, $\hat{\beta}_2 \nrightarrow \beta_2$ or plim $\hat{\beta}_2 \neq \beta_2$.
 - o If we multiply both the numerator and the denominator on the RHS by $\frac{1}{N}$, they become estimates of the covariance of x and u and variance of x, respectively.
 - \circ As N approaches infinity, the estimates tend to the true values, that is,

$$rac{1}{N}\sum (x_i-ar{x})(u_i-ar{u}) o \mathrm{Cov}(x,u)$$
 and $rac{1}{N}\sum (x_i-ar{x})^2 o \mathrm{Var}(x)$

- $\operatorname{Var}(x)$ may also be written as σ_x^2 .

Measurement errors:

There are two kinds of measurement errors:

- 1. Error in the x's: bias, consistency problems.
- 2. Error in the y's: not a big problem.

Suppose the true relationship is given by $y_i = \beta_1 + \beta_2 z_i + v_i$.

We cannot, however, measure z_i directly; instead, we have a noisy measure $x_i = z_i + w_i$.

- x_i : measure.
- z_i : true value.
- w_i : measurement error.

Let us call $\mathrm{Var}(z_i) = \sigma_z^2$ and $\mathrm{Var}(w_i) = \sigma_w^2$, and assume that the measurement error and the true value are independent, $w_i \perp z_i$.

• That means that the measurement error is not a function of the measured variable's true value

Thus, the model can be rewritten as $y_i=\beta_1+\beta_2(x_i-w_i)+v_i$ or even $y_i=\beta_1+\beta_2x_i+(v_i-\beta_2w_i)$.

- Let $u_i = v_i \beta_2 w_i$.
- Then, $y_i = \beta_1 + \beta_2 x_i + u_i$.

Now, since $x_i = z_i + w_i$ and $u_i = v_i - \beta_2 w_i$ (both x_i and u_i depend on w_i), there is correlation between a RHS variable and the errors.

We know that x = z + w.

- Then Var(x) = Var(z+w) = Var(z) + Var(w) + 2Cov(z, w).
- Since $z \perp w$, then $\mathrm{Cov}(z,w) = 0$ and $\mathrm{Var}(z+w) = \mathrm{Var}(z) + \mathrm{Var}(w) = \sigma_z^2 + \sigma_w^2$.

We also know that $u = v - \beta_2 w$.

- Then, $Cov(x, u) = Cov(z + w, v \beta_2 w)$.
- Applying the <u>properties</u> of the covariance, we rewrite it as $Cov(x, u) = Cov(z, v \beta_2 w) + Cov(w, v \beta_2 w)$.
 - It can broken down again into

$$\operatorname{Cov}(x,u) = \operatorname{Cov}(z,v) - \beta_2 \operatorname{Cov}(z,w) + \operatorname{Cov}(w,v) - \beta_2 \operatorname{Cov}(w,w).$$

- Since $z \perp v$, then Cov(z, v) = 0.
- Since $z \perp w$ (by assumption), then Cov(z, w) = 0.
- Since $w \perp v$ (unrelated), then Cov(w, v) = 0.
- In the end, $\operatorname{Cov}(x,u) = -\beta_2 \operatorname{Cov}(w,w) = -\beta_2 \sigma_w^2$.

We have already seen that $\operatorname{plim} \hat{eta}_2 = eta_2 + \frac{\operatorname{Cov}(x,u)}{\operatorname{Var}(x)}.$

- Thus, plim $\hat{\beta}_2 = \beta_2 \beta_2 \frac{\sigma_w^2}{\sigma_z^2 + \sigma_w^2}$.
 - \circ If there is no measurement error whatsoever, $\sigma_w^2=0 o \mathrm{plim}\ \hat{eta}_2=eta_2$ (consistency).
 - As the variance of the measurement error grows, that is, $\sigma_w^2 \to \infty$, the estimated coefficient gets biased towards zero.

What if the measurement error is in the dependent variable (y)?

True relationship: $Q_i = \beta_1 + \beta_2 x_i + u_i$.

Measured variable: $y_i = Q_i + r_i$, where r_i is the measurement error.

- Then, $y_i r_i = \beta_1 + \beta_2 x_i + u_i$.
- It can be rewritten as $y_i = \beta_1 + \beta_2 x_i + (u_i + r_i)$.
 - By assumption, x_i and u_i are not related ($x_i \perp u_i$).
 - And, according to the definition of the measured variable, x_i and r_i are correlated either ($x_i \perp r_i$).
- Then, the error might get a bit bigger, but there is no bias nor inconsistency.

Imperfect proxies:

"When you use proxies for the real variables, you are going to introduce bias."

"If you could show that there is a tight relationship between, say, house size and what you pay for it - and there probably is -, then your proxy is probably pretty *darn* good."

"But it there is not a tight relationship between your proxy and the actual variable, you may be introducing quite a bit of bias."