

A Unified Hardware Architecture for Convolutions and Deconvolutions in CNN

Lin Bai, Yecheng Lyu and Xinming Huang Worcester Polytechnic institute

2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020

Overview

- Introduction
- Operation of deconvolution
- Optimization of deconvolution
- SegNet-basic Structure
- Hardware architecture

Operation of deconvolution

- Naïve deconvolution
 - Step 1: padding
 - Step 2: convolution

Too much multiply with 0s

0	0	0	0	0	0
0	0	0	0	0	0
0	0	F11	0	F12	0
0	0	0	0	0	0
0	0	F21	0	F22	0
0	0	0	0	0	0

padded feature map

Operation of deconvolution

- GPU deconvolution
 - Step 1: im2col
 - Step 2: matrix multiplication

Still much multiply with 0s

$$\begin{pmatrix} w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\ 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} & 0 \\ 0 & 0 & 0 & 0 & w_{0,0} & w_{0,1} & w_{0,2} & 0 & w_{1,0} & w_{1,1} & w_{1,2} & 0 & w_{2,0} & w_{2,1} & w_{2,2} \end{pmatrix}$$

- Re-use multiplication in SIMD accelerator
- Get rid of multiplication with 0s
- No extra memory needed to buffer

Optimization for Hardware

- Re-use multiplication in SIMD accelerator
- Get rid of multiplication with 0s
- No extra memory needed to buffer

padded feature map

Optimization for Hardware

- Re-use multiplication in SIMD accelerator
- Get rid of multiplication with 0s
- No extra memory needed to buffer

$OF_{11} = IF_{11} \cdot K_{11}$	$+IF_{12}$.	$K_{13} +$	IF_{21} .	$K_{31} +$	IF_{22}	K_{33}	(1)
11 11 11		10.		01			· /

$$OF_{12} = IF_{12} \cdot K_{12} + IF_{22} \cdot K_{32}$$
 (2)

$$OF_{21} = IF_{21} \cdot K_{21} + IF_{22} \cdot K_{23} \tag{3}$$

$$OF_{22} = IF_{22} \cdot K_{22}$$
 (4)

padded feature map

				_			
	IF11*K33	IF11*K32		IF11*K31+ IF12*K33	IF12*K32		
	IF11*K23	IF11*K22		IF11*K21+ IF12*K23	IF12*K22		
ľ	IF11*K13+ IF21*K33	IF11*K12+ F21*K32		F11*K11+ F12*K13+ F21*K31+ IF22*K33	IF12*K12+ IF22*K32		
	IF21*K23	IF21*K22		F21*K21+ IF22*K23	IF22*K22		

- Deconvolution
 - 9 multiplications
 - 5 adding

- Convolution
 - 9 multiplication
 - 8 adding

- Deconvolution
 - 9 multiplications
 - 5 adding

- Convolution
 - 9 multiplication
 - 8 adding

Possible to share multipliers!

Optimization for Hardware

- Deconvolution
 - 9 multiplications
 - 5 adding

- Convolution
 - 9 multiplication
 - 8 adding

- Deconvolution
 - 2x2 input
 - 2x2 output

- Convolution
 - 3x3 input
 - 1 output

Possible to share multipliers! Need reshape input and output!

SegNet-Basic Structure

- Encoder-decoder structure, no skip connection
- Up-sampling is replaced by deconvolution
- Main operations: convolution, max pooling, deconvolution

Overview of accelerator structure

- Reshape input using Line Buffer
- Larger Input FeatureMap (IF) buffer needed

- Details of Line Buffer
- Capable of different paddings

Process engine array

Process engine array

- Xilinx ZC706
- Camera is connected to PS side via USB interface
- High Performance (HP) for data transmitting

Performance and Results

Performance comparison to others

	[18]	[19]	[10]	[11]	Ours
FPGA	ZC7Z045	ZC7Z045	ZC7Z045	ZC7Z020	ZC7Z045
Clock (MHz)	150	100	200	100	220
Operation	CONV	CONV	CONV+DECONV	DECONV	CONV+DECONV
Performance (GOPS)	187	229	125 (CONV) 29 (DECONV)	2.6	151.5 (CONV) 94.3 (DECONV)
Resource Efficiency (GOPS/DSP)	0.207	0.254	0.14 (CONV) 0.033 (DECONV)	0.012	0.168 (CONV) 0.104 (DECONV)

^[18] J. Qiu, J. Wang, S. Yao et al, "Going deeper with embedded fpga platform for convolutional neural network," In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays(FPGA), pp. 26-35, 2016.

^[19] Q. Xiao, Y. Liang et al, "Exploring heterogeneous algorithms for accelerating deep convolutional neural networks on FPGAs," In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6, 2017.

^[10] S. Liu, H. Fan, X. Niu, H. Ng, Y. Chu, and W. Luk, "Optimizing CNN based Segmentation with Deeply Customized Convolutional and Deconvolutional Architectures on FPGA," ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 11, no. 3, 2018.

^[11] X. Zhang, S. Das, O. Neopane, K. Kreutz-Delgado, "A Design Methodology for Efficient Implementation of Deconvolutional Neural Networks on an FPGA," arXiv preprint arXiv:1705.02583, 2017.

Thank you!