

L1-MIASH - ALGÈBRE LINÉAIRE I

FEUILLE DE TRAVAUX DIRIGÉS N° 3

Applications linéaires

Enseignant: H. El-Otmany

A.U.: 2013-2014

Exercice n°1 En utilisant la définition de l'application linéaire, étudier le caractère linéaire ou non des applications suivantes, $\mathcal{A}(\mathbb{R})$ désigne l'ensemble des applications de \mathbb{R} dans \mathbb{R} .

(a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ et $g: \mathbb{R}^3 \longleftrightarrow \mathbb{R}$ définies par :

$$1. f(x, y) = xy$$

$$4. g(x, y, z) = x + 3y - z$$

$$2. f(x,y) = x - 2y$$

$$5. g(x, y, z) = x + 3y - z$$

3.
$$f(x,y) = x + y - 2$$

6.
$$g(x, y, z) = 2x - z - \sqrt{2}$$

(b) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ définie par :

1.
$$f(x,y) = (2x + y, 0)$$

$$4. f(x,y) = (x - 3, 2x - y)$$

$$2. f(x,y) = (1, x^2 + y^2)$$

5.
$$f(x, y) = (\max(x, y), \min(x, y))$$

3.
$$f(x,y) = (2x^3, x^2 + y^2)$$

6.
$$f(x,y) = (x - y, x + 2yy)$$

(c) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ définie par :

1.
$$f(x, y, z) = (3x, 2y, 3z - 2x)$$

4.
$$f(x, y, z) = (3x, y - 2, 0)$$

$$2. f(x, y, z) = (2x + 3, y, z - x)$$

5.
$$f(x, y, z) = (x^2 + y, z - y, x - z)$$

3.
$$f(x, y, z) = (x + 2z, y - x, z + 2x - y)$$

6.
$$f(x, y, z) = (x + y, 0, x + y + 2z)$$

(d) $\phi: \mathbb{C}^2 \longrightarrow \mathbb{C}, \Phi: \mathcal{A}(\mathbb{R}) \longrightarrow \mathbb{R} \text{ et } \tau: \mathcal{A}(\mathbb{R}) \longrightarrow \mathbb{R} \text{ définies par :}$

$$\phi(x,y) = x + iy$$

$$\Phi(f) = f(0)$$

$$\tau(f) = \int_{-1}^{1} f(s)ds$$

Dans cet exercice, on ne considère que les applications qui sont linéaires de l'exercice Exercice n°2 précédent.

1. Déterminer le noyau et l'image de chaque application linéaire. Ces applications linéaires sont-elle injectives? surjectives? bijectives?

Exercice n°3 Soit $\mathbb{K}[X]$ l'espace vectoriel des polynômes à coefficients réels ou complexes et d'inconnue X. Pour $n \in \mathbb{N}$, on considère le sous-espace vectoriel $\mathbb{K}^n[X] = \{P \in \mathbb{K}[X] | \deg p?n\}$.

1. Est-ce que les applications ci-dessous sont-elles linéaires?

- (a) $f_1: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ telle que $f_1(P) = P'$.
- (b) $f_2: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ telle que $f_2(P) = P (X 2)P'$.
- (c) $f_3 : \mathbb{R}[X] \longrightarrow \mathbb{R}^3$ telle que $f_3(P) = (P(-1), P(0), P(1))$.
- (d) $f_4: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$ telle que $f_4(P) = P'$.
- (e) $f_5: \mathbb{R}[X] \longrightarrow \mathbb{R}[X]$ telle que $f_5(P) = P XP$.
- (f) $f_6: \mathbb{R}[X] \longrightarrow \mathbb{R}^2$ telle que $f_6(P) = (P(0), P'(1))$.
- (g) $f_7: \mathbb{C}[X] \longrightarrow \mathbb{C}[X]$ telle que $f_7(P) = (1 pX)P + X^2P', p \ge 0$.

2. Déterminer le noyau et l'image des applications linéaires f_i . Lesquelles des applications f_i qui sont injectives, surjectives et bijectives?

Exercice n°4 On pose $F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$; $G = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0 \text{ et } y - z = 0\}$; $H = \{(x + y, 2x - y, x - 3y), x, y \in \mathbb{R}\}.$

- 1. Exprimer
 - F comme le noyau d'une application linéaire de \mathbb{R}^3 vers \mathbb{R} .
 - G comme le noyau d'une application linéaire de \mathbb{R}^3 vers \mathbb{R}^2 .
 - H comme l'image d'une application linéaire de \mathbb{R}^2 vers \mathbb{R}^3 .
- 2. En déduire que F, G et H sont des sous-espaces vectoriels de \mathbb{R}^3 . Déterminer une base de chacun d'eux.

Exercice n°5 Soient E et F deux K-espaces vectoriels et f et g deux applications K-linéaires de E vers F. On note $H = \{x \in E : f(x) = g(x)\}$.

- 1. Exprimer H comme le noyau d'une application linéaire.
- 2. Déduire que H est un sous-espace vectoriel de E.

Exercice n°6 On considère l'application $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ telle que f(x, y, z, t) = (x - t, y - z - t)

- 1. Justifiez que f est linéaire. Peut-elle être bijective?
- 2. Déterminer une base du novau.
- 3. Quel est le rang de f et en déduire Im(f).
- 4. A-t-on $Ker(f) \oplus Im(f) = \mathbb{R}4$?

Exercice n°7

- 1. Déterminer les noyaux des endomorphismes suivants de \mathbb{R}^3 : $f:(x,y,z)\longmapsto (x,-y,2z)$ et $g:(x,y,z)\longmapsto (y,-x,-z)$.
- 2. Parmi les endomorphismes f, g, f + g, certains sont-ils des automorphismes?

Exercice n°8 Soit $f: E \longrightarrow E$ une application linéaire et λ un réel.

- 1. Calculer f(x) pour $x \in E_{\lambda} = \text{Ker}(f \lambda i d_E)$.
- 2. Montrer que est un sous-espace vectoriel de E.
- 3. Soit $F \subset E$ un sous-espace vectoriel de E, montrer que f(F) est un sous-espace vectoriel de E.
- 4. Si $\lambda \neq 0$, montrer que $f(E_{\lambda}) = E_{\lambda}$.

Exercice $n^{\circ}9$ Soit f un endomorphisme de E, un espace vectoriel. Montrer que les assertions suivantes sont équivalentes

- (i) $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0_E\}.$
- (ii) $\operatorname{Ker}(f) = \operatorname{Ker}(f \circ f)$.

Exercice n°10 Soient $f,g:E\longrightarrow F$ deux applications linéaires. Montrer que $\operatorname{Ker} f\cap \operatorname{Ker} g\subset \operatorname{Ker} (f+g)$ et que l'inclusion peut être stricte.

On suppose maintenant que F est de dimension finie. Montrer que $rang(f+g) \leqslant rg(f) + rg(g)$. Montrer sur un exemple que l'inégalité peut être stricte.