Checksum

Problem

Grace and Edsger are constructing a $\mathbf{N} \times \mathbf{N}$ boolean matrix \mathbf{A} . The element in i-th row and j-th column is represented by $\mathbf{A_{i,j}}$. They decide to note down the checksum (defined as bitwise XOR of given list of elements) along each row and column. Checksum of i-th row is represented as $\mathbf{R_i}$. Checksum of j-th column is represented as $\mathbf{C_j}$.

For example, if
$$\mathbf{N}=2$$
, $\mathbf{A}=\begin{bmatrix}1&0\\1&1\end{bmatrix}$, then $\mathbf{R}=\begin{bmatrix}1&0\end{bmatrix}$ and $\mathbf{C}=\begin{bmatrix}0&1\end{bmatrix}$.

Once they finished the matrix, Edsger stores the matrix in his computer. However, due to a virus, some of the elements in matrix \mathbf{A} are replaced with -1 in Edsger's computer. Luckily, Edsger still remembers the checksum values. He would like to restore the matrix, and reaches out to Grace for help. After some investigation, it will take $\mathbf{B_{i,j}}$ hours for Grace to recover the original value of $\mathbf{A_{i,j}}$ from the disk. Given the final matrix \mathbf{A} , cost matrix \mathbf{B} , and checksums along each row (\mathbf{R}) and column (\mathbf{C}), can you help Grace decide on the minimum total number of hours needed in order to restore the original matrix \mathbf{A} ?

Input

The first line of the input gives the number of test cases, T. T test cases follow.

The first line of each test case contains a single integer N.

The next N lines each contain N integers representing the matrix A. j-th element on the i-th line represents $A_{i,j}$.

The next N lines each contain N integers representing the matrix B. j-th element on the i-th line represents $B_{i,j}$.

The next line contains ${\bf N}$ integers representing the checksum of the rows. i-th element represents ${\bf R_i}$.

The next line contains N integers representing the checksum of the columns. j-th element represents C_i .

Output

For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the minimum number of hours to restore matrix A.

Limits

```
Memory limit: 1 GB. 1 \leq \mathbf{T} \leq 100. -1 \leq \mathbf{A_{i,j}} \leq 1, for all i,j. 1 \leq \mathbf{B_{i,j}} \leq 1000, for i,j where \mathbf{A_{i,j}} = -1, otherwise \mathbf{B_{i,j}} = 0. 0 \leq \mathbf{R_i} \leq 1, for all i.
```

 $0 \le \mathbf{C_j} \le 1$, for all j.

It is guaranteed that there exist at least one way to replace -1 in $\bf A$ with 0 or 1 such that $\bf R$ and $\bf C$ as satisfied.

Test Set 1

Time limit: 20 seconds. $1 \le N \le 4$.

Test Set 2

Time limit: 35 seconds. $1 \le N \le 40$.

Test Set 3

Time limit: 35 seconds. $1 \le N \le 500$.

Sample

Sample Input 3 3 1 -1 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 2 -1 -1 -1 -1 1 10 100 1000 1 0 0 1 3 -1 -1 -1-1 -1 -10 0 0 1 1 3 5 1 4 0 0 0 0 0 0 0 0 0

```
Case #1: 0
Case #2: 1
Case #3: 2
```

In Sample Case #1, $A_{1,2}$ can be restored using the checksum of either 1-st row or 2-nd column. Hence, Grace can restore the matrix without spending any time to recover the data.

In Sample Case #2, Grace spends one hour to recover $\mathbf{A}_{1,1}$. After that, she can use checksums of 1-st row and 1-st column to restore $\mathbf{A}_{1,2}$ and $\mathbf{A}_{2,1}$ respectively. And then she can use checksum of 2-nd row to restore $\mathbf{A}_{2,2}$. Hence, Grace can restore the matrix by spending one hour.

In Sample Case #3, Grace can spend one hour to recover $\mathbf{A}_{1,1}$ and another hour to recover $\mathbf{A}_{2,2}$. After that, she can use checksum to restore the rest of the matrix. Hence, Grace can restore the matrix by spending two hours in total.