

### NLOS-NeuS: None-line-of-sight Neural Implicit Surface Takahiro Kushida Takuya Funatomi Yasuhiro Mukaigawa Yuki Fujimura





# Non-line-of-sight (NLOS) imaging



- NLOS imaging is to reconstruct the invisible scene from the sensor and light source
- The sensor can only see the visible wall, and we use indirect light through the wall
- The typical input of the NLOS imaging is a transient histogram

### Single photon avalanche diode (SPAD)



- Photon counts at each arrival time
- The time resolution is from [ns] to [ps]

### **Related work**

- DLCT [CVPR2020] is proposed for NLOS surface reconstruction with discretized voxel grid representation
- NeTF [ICCP2021] uses neural field similar to NeRF for NLOS imaging
- We propose a neural field approach for NLOS surface reconstruction with continuous implicit surface (signed distance function (SDF))

| NLOS-NeuS<br>(Ours) | Neural field         | Implicit surface (SDF)                  |
|---------------------|----------------------|-----------------------------------------|
| NeTF<br>[ICCP2021]  | Neural field         | Volumetric density                      |
| DLCT<br>[CVPR2020]  | Voxel grid           | Volumetric density<br>+ surface normals |
| LCT<br>[Nature2018] | Voxel grid           | Volumetric density                      |
| Method              | Scene representation | Output geometry                         |

## **Overview: Volume rendering for transient histogram**

 $\sigma(\mathbf{p}) = \frac{1}{2} Sigmoid(-\frac{d(\mathbf{p})}{2})$ 

(2) MLP takes each sample point for (1) We sample points on a sphere centered estimating reflectance and signed distance, at  $\mathbf{p}'$  with radius r = ct/2 (c: light speed), which is then converted to density which corresponds to time bin tReflectance

 $ho(\mathbf{p},\mathbf{v})$ 

 $d(\mathbf{p})$ 

Signed distance Density

 $\rightarrow \sigma(\mathbf{p})$ 

in StyleSDF [CVPR2022] because

• We use the conversion proposed

of its computational efficiency

Positive distance (outside object)

•  $\alpha$  controls tightness, i.e.,  $\alpha \to 0$ 

represents perfectly sharp surface

✓ Object

returns small density

(3) We apply volume rendering to reconstruct transient histogram, which is compared to the observed histogram to compute a training loss



Volume rendering on a ray



from the wall  $w(\mathbf{p}, \mathbf{v}) = \sum_{s} T_s \left( 1 - \exp\{-\sigma(\mathbf{p}(\mathbf{p}', r_s, \theta, \phi))\Delta r_s\} \right)$ 



# Reconstructed **∆**histogram

Surface Normals

# **Key: Constraints for learning SDF in the NLOS setup**

In the NLOS setup,

The object is not observed directly

 $\mathbf{p}(\mathbf{p}', r_t, \theta, \phi)$ 

 Only one side of the object is observed from the wall This leads to incorrect SDF

#### **Common failure case:**

Volume rendering weight is the highest at a point with non-zero signed distance

(1) Self-supervised zero level-set learning

During training, we compute PDF based on  $w\rho$  on each sphere The signed distances at sampled points with the PDF

are forced to be 0



Sample points



(2) Constraint on volume rendering weights By reducing  $\alpha$ , we generate sharp w for suppressing  $\beta$ effects from non-zero signed distance points.

### Specifically, we use

$$\mathcal{L}_{en} = \sum_{\mathbf{p}', \theta, \phi} -\hat{o} \log_2 \hat{o} - (1 - \hat{o}) \log_2 (1 - \hat{o})$$
 where  $\hat{o} = \sum_{\mathbf{r}_{max}}^{t_{max}} w(\mathbf{p}, \mathbf{v})$ 

(Intuitively, all densities outside the object should be 0, mathematical discussion is in the supplementary)



# **Experiments**

- (1) Synthetic dataset (ZNLOS dataset [ICCP2019])
  - Scan region is 1m x 1m
  - 256 x 256 observed points
  - # of histogram time bins is 200







- Captured by SPAD
- Scan region is 2m x 2m
- 256 x 256 observed points
- # of histogram time bins is 160 (Statue) and 120 (Dragon)







Thin structures are difficult for SDF representation