extreme

ontliers

7 could be 2245589912

Odd # of values

		_		_				1
2 2	4 5	Š	5	8	9	9	9	12
	Q,		Q			Q,)	

Even # of values

Box and Whisker Plot

Statistics

Mode	Most repeated number
Median	The middle number
Mean	The average

- All whole numbers (1, 5) Discrete data

Continuous data - Have decimals (42, 64.5)

Mean if all values are multiplied by constant k = (a)(mean)Mean if all values are increase by a constant a = a + mean

Ungrouped data

6 =
$$\sqrt{\frac{2(x-\bar{x})^2}{n}}$$
 or $\sqrt{\frac{2x^2}{n}-(\bar{x})^2}$

mean =
$$\frac{2\pi}{n}$$

 $\overline{X} = \frac{1+2+3+4+5}{5} = 3$

$$Q = \sqrt{\frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2}{5}} - (3)^2$$

$$= \sqrt{11 - 9}$$

 $=\sqrt{2}=1.41(80f)$

SD if all values are multiplied by constant k = |k|(SD)SD if all values are increase by a constant = no change

Standard deviation remains the same if:

- 1) All values of a data set are shifted laterally
- 2) The graph is laterally inverted
- Symmetrical = smaller SD

Standard Deviation

Measures the <u>spread of data around</u> the <u>mean</u>
 Larger means wider spread

for arouped data:

701	groupou	aaia.	use 5st
$\sigma: \int_{-\infty}^{\infty}$	$\frac{2f(x-\bar{x})^2}{2f} = \sqrt{\frac{2}{2}}$	$\frac{2f\chi^2}{2f} \cdot (\bar{\chi})^2$	to be accurat

$O = \sqrt{\frac{2f\chi^2}{\epsilon f} \cdot (\chi)^2}$	Frequency f	Length, I (mm)
	2	16 < l ≤ 18
= 18:496 - (850)2	8	18 < I ≤ 20
= 2 11 mm mm (200)	15	20 < l ≤ 22
= 2.11 mm (3sf)	10	22 < I ≤ 24
	5	24 < I ≤ 26

Length I (m)	Midpoint x	Frequency f	fx	x^2	fx^2
16 < l ≤ 18	17	2	34	289	578
18 < I ≤ 20	19	8	152	361	2888
20 < I ≤ 22	21	15	315	441	6615
22 < I ≤ 24	23	10	230	529	5290
24 < I ≤ 26	25	5	125	625	3125
		$\Sigma f = 40$	$\Sigma f x = 850$		$\Sigma x^2 f = 18,496$

1) Symmetrical

- The mean, median, and mode would be around the same

 Long left tail - Mean < median < mode

3) Right skewed

- Long right tail - Mode < median < mean

Percentiles.

Split data

 $P_{2S} = Q_1 = T_{(\frac{1}{u}\chi_0)}$

 $P_{v0} = Q_2 = median$ $P_{7S} = Q_3 = T(\frac{3}{4})(n)$

or ex:

P50 = 50% = 50% of the

distribution is <u>less than</u> n

less than or n equal to graph

Culminative Frequencies

Number of hours | Frequency 0+3=3 t ≤ 2 t ≤ 4

plotting: (2,3) (4,8) (6.24)

(8,36)

8+16=24 t ≤ 6 24+12=36 t ≤ 8 36+4= 40 t ≤ 10

(10,40) Total# of values

Total Frequency = the size of the data base

Number of hours Frequency

 $0 \le t \le 2$

 $2 \le t \le 4$

 $4 \le t \le 6$

 $6 \le t \le 8$

 $8 \le t \le 10$

Potential issues in Statistical Analysis (self reading)

- 1. Sample size too small ≠ generalize
- 2. 2 different groups with large difference in size (not accurate)
- 3. Graphs have to be of the same scale