Mert D. Pesé, Troy Stacer, C. Andrés Campos, Eric Newberry, Dongyao Chen, and Kang G. Shin

LibreCAN: Automated CAN Message Translator

CCS 2019, London, UK 11/14/19

Evolving Attack Landscape on Cars...

Connectivity

First-Generation Attacks (~2010-2015)

Using physical interfaces

Second-Generation Attacks (~2015-2020)

Using wireless interfaces (e.g., IVI and TCU)

Risk / Damage Potential

Third-Generation Attacks (~2020-?)

Using app eco-system on IVIs

...has a lot in common!

CAN Injection?!

CAN Injection?!

OBJECTIVE

Inject Well-Formed CAN Message to IVN

GOAL

Compromise or Break Vehicle's Functionalities

CHALLENGE

Semantics/Translation Tables
Proprietary to OEM

CAN Injection?!

Inject Well

SOLUTION

Manual Reverse-Engineering

Automated Reverse-Engineering

ering Tables
OEM

6 7

What data are we reverse-engineering?

Powertrain/Kinematic	c-Related Information	Body-Related Information			
Intake Manifold Pressure	Engine RPM	Door Locks	Turn Signals		
Ambient Air Temperature	Intake Air Temperature	Trunk	Parking Brake		
Speed	Engine Load (Absolute)	Doors	Hood		
Voltage (Control Module)	Absolute Throttle Position B	Windows	Side Mirrors		
Turbo Boost & Vacuum Gauge	Fuel Flow Rate	HVAC	Seatbelts		
Fuel Rail Pressure	Acceleration (X,Y,Z)	Horn			
Engine Coolant Temperature	Gyroscope (X,Y,Z)	Headlights			
Torque	Barometric Pressure	Hazard Lights			
Accelerator Pedal Position D	Altitude	Windshield Wipers			
Accelerator Pedal Position E	Bearing	Windshield Wiper Fluid			

Automotive Data Collection 101

OBD-II

- Diagnostic link connector mandated in all (gasoline) vehicles after 1996 in US
- Communicates with vehicle's internal network, accesses CAN bus

OBD-II Protocol (SAE J1979)

Standardized diagnostic protocol for mechanics to determine errors in cars (DTC)

Higher-layer protocol returning absolute values of specific emission-related data, e.g. speed, engine RPM, battery voltage, etc.

Tools

OpenXCVI (CAN) ELM327 (J1979)

What data are we reverse-engineering?

Powertrain/Kinematic-Related Information

Body-Related Information

Acceleration (X,Y,Z)

Gyroscope (X,Y,Z)

Barometric Pressure

Altitude

Acceler Pedal Position E

Engine Coolant Temperature

Accelerator Pedal Position D

Fuel Rail Pressure

Torque

Bearing

Doorlos	· /c	Turn Signals				
Doorlos	Bytes	Text	ID	Bytes	Text	
Trur			544 220	00 00		
24 18	80 00 02 00 00	?.?	545 221	00 FF FF 02 F8 FF FF	.??????	
54 36	00 00 00 0F 21 00 00 A0	?!?	549 225	20 40 10 02 FA	@???	
Doc 164 A4	10 44 10 00 00 00 56 49	?D?VI	551 227	00 00 10 00	?.	
	33 20 00 00 00 00 9E D0	3??	608 260	02 03 92 40 00 D0 00 10	???@.?.?	
230 E6	10 00 00 00 00 95	??	609 261	27 27 0F 00 3A 3B AB	''?.:;?	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8E 62 1C F6 1E 63 63 20	?b???cc	613 265	B5 90 06 00	???.	
Win 272 110	FF FF FF FF 02 C1 02 5C	???????\	672 2A0	00		
288 120	7C 00 00 00 00 00 00 00	1	673 2A1	29 21 B8 00 3A 31 85)!?.:1?	
293 125	01 00	?.	677 2A5	20 56 49 52 47 49 4E 20	VIRGIN	
296 128	60 01 00 00 00 D4 B0 01	`????	694 2B6	33 33 34 30 38 39 38 33	33408983	
301 12D	13 00 00 3D 3C 00 98 00	?=<.?.	737 2E1	3F 44 00 00 00	?D	
305 131	01 00 00 00 00	?	791 317	F3 9D 92 CC D8 00 84 02	?????.??	
318 13E	62 35 E0 3C 00 00 00 00	b5?<	805 325	00 00 00		
332 14C	00 00 00 00 80	?	822 336	56 46 33	VF3	
353 161	00 00 66 59 00 00 48		865 361	09 00 10 20 10 08	?.? ??	
On 357 165	CC C0 10 00	???.	869 365	FF FF FF 00 00	???	
300 100	00 00 00 00 00 00 00 00		933 3A5	FF FF FF FF 7F 00	?????.	
382 17E	80 0C 00 C0 31 06 06 00	??.?1??.	935 3A7	10 00 00 01 C1 01 68 05		
400 190	01 CO FF FF FF 05 FF FF	???????	950 3B6	57 43 39 48 58 43	WC9HXC	
Hea 417 1A1	FF FF 00 FF FF FF FF	??.?????	997 3E5	00 00 00 00 00		
421 1A5	E5	?	1298 512	0D 00 00 00 00 94 00 00	??	
424 1A8	40 FF FF 00 00 1B 46 DF	@???F?	1311 51F	0D 00 00 00 00 00 00 00	?	
Haz: 446 1BE	24 00 FF FF FF FF 04		1312 520	09 00 00 00 00 94 00 00	??	
464 1D0	00 00 07 30 00 0D 0D	?0.??	1325 52D	09 00 00 00 00 00 00 00	?	
480 1E0	52 00 A2 80 A0	R.???	1504 5E0	20 03 04 06 30 02 20 11	???0? ?	
Win 485 1E5 535 217		??C?FG?				
	92 80 00 00 80 FF FF FF	??????				
543 21F	00 00 00					
Windshield Wiper Fluid						

ELM327 (J1979) + Phone

OpenXCVI (CAN)

How are we doing it?

Phase 0

Multiple Signals in CAN Payload

Signal Types

- Counter
- Checkcodes
- Physical Values

Definition of four design parameters for Phase 0:

 $T_{p0,0}, T_{p0,0} I T_{p0,2}, T_{p0,3}$

Coordinate Alignment

Phase I

Resample CAN signals r_s and side-channel signals d_s to same length

Linear Mapping/Encoding Absolute Value = Scale * CAN Value + Offset

Normalized cross-correlation between r_s and d_s

```
ID: 516_1 from: 28 to: 39 corr: 0.9777610581997314

ID: 1071_2 from: 52 to: 63 corr: 0.9761833340742205

ID: 516_2 from: 28 to: 39 corr: 0.9757745299319105

ID: 1071_1 from: 52 to: 63 corr: 0.9744331247575196

ID: 516_1 from: 6 to: 15 corr: 0.9166072444481784

ID: 516_2 from: 6 to: 15 corr: 0.908014096311103

ID: 610_1 from: 0 to: 6 corr: 0.8913560497653431

ID: 610_1 from: 8 to: 14 corr: 0.8913560497653431

ID: 359_1 from: 46 to: 55 corr: 0.8776954759585301

ID: 359_2 from: 46 to: 55 corr: 0.8717496027543394

ID: 377_1 from: 6 to: 15 corr: 0.8635148036101495
```

Linear Regression to determine scale and offset

Cut-off point determined by T_{pl}

Phase 2

Design parameters $T_{p2,0}$ and $T_{p2,3}$

Open trunk, T_OPEN
00:37
START / PAUSE
NEXT EVENT
RESET
4/53 events recorded

Data

STAGE 1: Constant Messages

STAGE 2: Reference Messages

STAGE 3: Powertrain Messages

TRACE

TIME ID PAYLOAD FILTERED IN

00.000 700 11111111100000000 STAGE 3

00.001 100 000000000000000 CANDIDATE

00.002 300 000002000E20BE20 STAGE 1

00.004 900 FFFFFFFFFFFFFFFF CANDIDATE

00.008 300 000002000E20BE20 STAGE 1

00.009 300 000002000E20BE20 STAGE 1

00.011 600 000000024CB016EA STAGE 2

00.015 800 000000000000000 STAGE 3

00.018 400 056089000A00A000 STAGE 2

00.020 200 000000000000000 CANDIDATE

REFERENCE

ID PAYLOAD
100 0000A00A000BC300
200 0070070070070070
300 00000000075BCD15
400 056089000A00A000
500 0012300AE0030000
600 000000024CB016EA
700 1000000001100001
800 00000000000000FF
900 0F00B9900A0A0F0E

POWERTRAIN

ID CORRELATION SCORE
100 0.7433
200 0.5192
300 0.7990
400 0.6648
500 0.9882
600 0.7102
700 0.8361
800 0.1034
900 0.2023

Experimental Setup

- Four different models of same OEM
 - Ground truth translation tables ("DBC files") available

- Raw CAN Data
 - OpenXCVI + OpenXC Enabler
- Side-Channel Data
 - ELM327 + Torque Pro

• Optimization of $T_{p0,0}$, $T_{p0,0}$ I $T_{p0,2}$, $T_{p0,3}$ regarding maximization of CE

Vehicle	Correctly Extracted (CE)	Total Extracted (TE)	Total in DBC (TDBC)	CE/TE	TE / TDBC
Vehicle A	308	846	1640	36.4%	51.6%
Vehicle B	95	453	829	21.0%	54.6%
Vehicle C	208	698	1236	29.8%	56.5%
Vehicle D	251	828	1327	30.3%	62.4%

• More than half of all signals can be reverse engineered.

• Optimization of $T_{p0,0}$, $T_{p0,0}$ I $T_{p0,2}$, $T_{p0,3}$ regarding maximization of CE

Vehicle	Correctly Extracted (CE)	Total Extracted (TE)	Total in DBC (TDBC)	CE/TE	TE / TDBC
Vehicle A	308	846	1640	36.4%	51.6%
Vehicle B	95	453	829	21.0%	54.6%
Vehicle C	208	698	1236	29.8%	56.5%
Vehicle D	251	828	1327	30.3%	62.4%

• Matching exact signal boundaries is difficult.

Precision =
$$\frac{TP}{TP + FP}$$

Recall = $\frac{TP}{TP + FN}$

V ehicle	Precision	Recall
Vehicle A	82.6%	44.1%
Vehicle B	66.7%	26.4%
Vehicle C	74.4%	45.7%
Vehicle D	79.7%	61.8%

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

Vehicle	Accuracy	Precision	Recall
Vehicle A	88.0%	8.9%	58.2%
Vehicle B	90.1%	8.5%	46.2%
Vehicle C	91.5%	11.7%	51.6%
Vehicle D	95.1%	15.0%	47.2%

We reduce the number of CAN IDs by more than 10x.

Evaluation: Other Metrics

Manual Effort

- 30 minutes of free driving data for Phase I sufficient, the more the better
- Recording Phase 2 events takes around 10 minutes

Computation Time

Two Intel Xeon E5-2683 V4 CPUs
128 GB ECC DDR4 RAM
Ubuntu 16.04 LTS

- Vehicle A: 79 seconds
- Vehicle B: 74 seconds
- Vehicle C: 70 seconds
- Vehicle D: 72 seconds

Comparison with Related Work

	LibreCAN		READ [Mal8]			ACTT [Vel8]			
	Phase 0	Phase I	Phase 2	Phase 0	Phase I	Phase 2	Phase 0	Phase I	Phase 2
Precision (Phase 0 & 1) Accuracy (Phase 2)	36.4%	82.6%	95.1%	97.1%	-	-	16.8%	47.7%	-

- First work to cover all three phases
 - Phase 2 is completely new
- Better accuracy/precision numbers than closest to LibreCAN
 - READ uses an old vehicle with a significantly smaller number of signals and thus complexity

Conclusion

Car Hacking Barrier can be Overcome by Automated CAN Reverse Engineering

Automation

First framework to automatically reverse engineer both powertrainand body-related information

Performance

Better performance compared to partially existing related approaches

Time

Generates translation table in less than 2 minutes

"Security by obscurity"

Current Automotive Standard

"Kerckhoff's Principle"

Suggested Automotive Standard

Q & A

https://mdp93.github.io/LibreCAN/

Mert D. Pesé

Troy Stacer

C.Andrés Campos

Eric Newberry

Dongyao Chen

Kang G. Shin

References

[Ma18] Marchetti, Mirco, and Dario Stabili. "Read: Reverse engineering of automotive data frames." IEEE Transactions on Information Forensics and Security 14, no. 4 (2018): 1083-1097.

[Ve 18] Verma, Miki E., Robert A. Bridges, and Samuel C. Hollifield. "ACTT: automotive CAN tokenization and translation." arXiv preprint arXiv:1811.07897 (2018).