Mössbauer Spectroscopy

Yichao Yu

MIT

March 6, 2013

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10¹²)

Mössbauer spectrum of FeC_2O_4 .

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10^{12})

Mössbauer spectrum of FeC_2O_4 .

Mössbauer effect and Mössbauer spectroscopy.

- Nuclear γ spectrum.
- Simple setup.
- Super high resolution. (10^{12})

Mössbauer spectrum of FeC_2O_4 .

- Apparatus and samples.
- Data and result.
- Conclusion.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- Radiation \rightarrow Absorption.
- Recoil momentum and doppler shift.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- Radiation \rightarrow Absorption.
- Recoil momentum and doppler shift.

Nuclear spectrum and recoil.

- Radio active element radiate γ -ray at characteristic frequencies.
- ullet Radiation o Absorption.
- Recoil momentum and doppler shift.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

- Discoveried in 1957 by Mössbauer.
- Momentum transfer with the whole cristal. → Recoilless.
- Scanning frequency using doppler effect.

$$v = 2f\lambda$$

- Source: ⁵⁷Co.
- First decay into excited state of ${}^{57}Fe$.
- Energy 14.4keV.

$$v = 2f\lambda$$

- Source: ⁵⁷Co.
- First decay into excited state of ${}^{57}Fe$.
- Energy 14.4keV.

$$v = 2f\lambda$$

- Source: ⁵⁷Co.
- First decay into excited state of ${}^{57}Fe$.
- Energy 14.4keV.

$$v = 2f\lambda$$

- Source: ⁵⁷Co.
- First decay into excited state of ${}^{57}Fe$.
- Energy 14.4keV.

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- FeSO₄
- \bullet $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **▶** FeSO₄
- $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- **FeSO**₄
- $Fe_2(SO_4)_3$
- *Fe*₂*O*₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Effects

- Isomer Shift.
- Zeeman effect.

$$E = -g_N \mu_N B m_I$$

- Quadrapole Splitting.
- Temperature Shift.

$$\frac{\delta}{E} = \frac{v^2}{2c^2} = \frac{E_k}{mc^2}$$

- ⁵⁷Fe
- FeSO₄
- $Fe_2(SO_4)_3$
- Fe₂O₃
- Stainless steel (Varying temperature).
- $Na_4Fe(CN)_6$ For line width.

Calibration.

Calibration.

⁵⁷Fe and FeSO₄.

Zeeman splitting for ground state (g_0) and excited state (g_1).

g_0	$1.882(13) \cdot 10^{-7} eV$
g_1	$1.074(13) \cdot 10^{-7} eV$

⁵⁷Fe and FeSO₄.

Zeeman splitting for ground state (g_0) and excited state (g_1) .

g_0	$1.882(13) \cdot 10^{-7} eV$
g_1	$1.074(13) \cdot 10^{-7} eV$

Isomer shift (ε) and quaduapole splitting (δ).

ε	$5.9(1.4) \cdot 10^{-8} eV$
δ	$1.562(2) \cdot 10^{-7} eV$

Samples

• Classic:

$$E_k = \frac{3}{2}k_BT$$

• Debye T^3 approximation:

$$E_k = \frac{3\pi^4 * k_B * T^4}{10\Theta_D^3}$$

$$E_k = \frac{9k_B T^4}{10\Theta_D^3} D_3 \left(\frac{T}{\Theta_D}\right)$$

Samples

• Classic:

$$E_k = \frac{3}{2}k_BT$$

• Debye T^3 approximation:

$$E_k = \frac{3\pi^4 * k_B * T^4}{10\Theta_D^3}$$

$$E_k = \frac{9k_B T^4}{10\Theta_D^3} D_3 \left(\frac{T}{\Theta_D}\right)$$

Samples

• Classic:

$$E_k = \frac{3}{2}k_BT$$

• Debye T^3 approximation:

$$E_k = \frac{3\pi^4 * k_B * T^4}{10\Theta_D^3}$$

$$E_k = \frac{9k_B T^4}{10\Theta_D^3} D_3 \left(\frac{T}{\Theta_D}\right)$$

Samples

• Classic:

$$E_k = \frac{3}{2}k_BT$$

• Debye T^3 approximation:

$$E_k = \frac{3\pi^4 * k_B * T^4}{10\Theta_D^3}$$

$$E_k = \frac{9k_B T^4}{10\Theta_D^3} D_3 \left(\frac{T}{\Theta_D}\right)$$

Model	E_k
Classic	$1.409(12) \cdot 10^{-2} eV$
Debye T^3	$4.59(22) \cdot 10^{-1} eV$
Exact Debye	$1.304(84) \cdot 10^{-2} eV$
(Measured)	$0.99(36) \cdot 10^{-2} eV$

Conclusion.

- Calibrated the velocity using laser.
- Measured Mössbauer spectrum of a variety of materials.
- Calculated different kinds of splitting and shifting.

Conclusion.

- Calibrated the velocity using laser.
- Measured Mössbauer spectrum of a variety of materials.
- Calculated different kinds of splitting and shifting.

Conclusion.

- Calibrated the velocity using laser.
- Measured Mössbauer spectrum of a variety of materials.
- Calculated different kinds of splitting and shifting.

March 6, 2013

Effects

Isomer Shift:

ε

Zeeman effect:

$$g_0, g_1$$

• Quadrapole Splitting:

δ

$$\Delta E_1 = \varepsilon - \frac{g_0}{2} - \frac{3g_1}{2} - \frac{\delta}{2} \tag{1}$$

$$\Delta E_2 = \varepsilon - \frac{g_0}{2} - \frac{g_1}{2} + \frac{\delta}{2} \tag{2}$$

$$\Delta E_3 = \varepsilon - \frac{g_0}{2} + \frac{g_1}{2} + \frac{\delta}{2} \tag{3}$$

$$\Delta E_4 = \varepsilon + \frac{g_0}{2} - \frac{g_1}{2} + \frac{\delta}{2} \tag{4}$$

$$\Delta E_5 = \varepsilon + \frac{g_0}{2} + \frac{g_1}{2} + \frac{\delta}{2} \tag{5}$$

$$\Delta E_6 = \varepsilon + \frac{g_0}{2} + \frac{3g_1}{2} - \frac{\delta}{2}$$
 (6)

