INVERSE OF A RELATION

Let R be a relation from A to B. The inverse relation R⁻¹ from B to A is defined as:

$$R^{-1} = \{(\mathbf{b}, \mathbf{a}) \in \mathbf{B} \times \mathbf{A} \mid (\mathbf{a}, \mathbf{b}) \in \mathbf{R}\}$$

More simply, the inverse relation R⁻¹ of R is obtained by interchanging the elements of all the ordered pairs in R.

EXAMPLE

Let $A = \{2, 3, 4\}$, $B = \{2,6,8\}$ and let R be the "divides" relation from A to B

i.e. for all
$$(a,b) \in A \times B$$
, a $R b \Leftrightarrow a \mid b$ (a divides b)

$$R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$$

$$R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$$

ARROW DIAGRAM OF AN INVERSE RELATION

 $R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$

MATRIX REPRESENTATION OF **INVERSE RELATION**

$$R = \{(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)\}$$
 from $A = \{2, 3, 4\}$ to $B = \{2, 6, 8\}$

$$\begin{array}{cccc}
2 & 1 & 0 & 0 \\
M^{t} = 6 & 1 & 1 & 0 \\
8 & 1 & 0 & 1
\end{array}$$

COMPLEMENTRY RELATION

Let R be a relation from a set A to a set B. The complementry relation R of R is the set of all those ordered pairs in A×B that do not belong to R.

Symbolically:

$$\overline{\mathbf{R}} = \mathbf{A} \times \mathbf{B} - \mathbf{R}$$

$$= \{ (\mathbf{a}, \mathbf{b}) \in \mathbf{A} \times \mathbf{B} \mid (\mathbf{a}, \mathbf{b}) \not\in \mathbf{R} \}$$

EXAMPLE

Let
$$A = \{1,2,3\}$$

$$A \times A = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$$

$$R = \{(1,1),(1,3),(2,2),(2,3),(3,1)\}$$
Then
$$\overline{R} = \{(1,2),(2,1),(3,2),(3,3)\}$$

COMPOSITE RELATION

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of R and S denoted $S \circ R$ is the relation from A to C, consisting of ordered pairs (a,c) where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a,b) \in R$ and $(b,c) \in S$.

Symbolically:

 $S \circ R = \{(a,c) \mid a \in A, c \in C, \exists b \in B, (a,b) \in R$ and $(b,c) \in S\}$

EXAMPLE

Let
$$A = \{a,b,c\}$$

 $B = \{1,2,3,4\}$
 $C = \{x,y,z\}$
 $R = \{(a,1), (a,4), (b,3), (c,1), (c,4)\}$
 $S = \{(1,x), (2,x), (3,y), (3,z)\}$
 $S \circ R = \{(a,x), (b,y), (b,z), (c,x)\}$

COMPOSITE RELATION FROM ARROW DIAGRAM

Let $A = \{a,b,c\}$ $B = \{1,2,3,4\}$ $C = \{x,y,z\}$ $R = \{(a,1), (a,4), (b,3), (c,1), (c,4)\}$ $S = \{(1,x),(2,x), (3,y), (3,z)\}$

MATRIX REPRESENTATION OF COMPOSITE RELATION

The matrix representation of the composite relation can be found using the Boolean product of the matrices for the relations.

Thus if M_R and M_S are the matrices for relations R (from A to B) and S (from B to C), then

 $M_{SoR} = M_R \odot M_S$ is the matrix for the composite relation SoR from A to C.

BOOLEAN ALGEBRA

BOOLEAN ADDITION

BOOLEAN MULTIPLICATION

(a)
$$1 + 1 = 1$$

(a)
$$1 \cdot 1 = 1$$

(b)
$$1 + 0 = 1$$

(b)
$$1.0 = 0$$

(c)
$$0+0=0$$

(c)
$$0.0 = 0$$

EXERCISE

We are given relations R and S in matrix form as.

$$\mathbf{M}_{\mathbf{R}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{\mathbf{S}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

SOLUTION

$$\mathbf{M}_{S \circ R} = \mathbf{M}_{R} \bullet \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$