Unit 7: Hypothesis Testing

7.1 Example:

		t-Test	: Paired Two Sample for Means		
				Con1	Con2
Store	Con1	Con2	Mean	172.6	159.4
1	141	118	Variance	750.27	789.38
2	184	167	Observations	10	10
3	132	137	Pearson Correlation	0.8633	
4	161	168	Hypothesized Mean Difference	0	
5	176	175	df	9	
6	196	197	t Stat	2.8747	
7	169	143	P(T<=t) one-tail	0.0092	
8	199	169	t Critical one-tail	1.8331	
9	150	123	P(T<=t) two-tail	0.0183	
10	218	197	t Critical two-tail	2.2622	
			5:55		40.0
Difference in Means			13.2		

Interpretation:

Diet A shows a higher mean and median weight loss than Diet B, meaning on average, participants lost more weight with Diet A. The IQRs are similar (3.285 vs 3.451), so the spread of the middle 50% of results is roughly the same. For Diet A, Q1 = 3.748, which means at least 75% of participants lost more than about 3.7 kg. For Diet B, Q1 = 1.953, so many people lost less than 2 kg, showing lower effectiveness overall.

Summary:

Diet A produced a greater and more consistent weight loss than Diet B, with most participants losing at least 3.7 kg compared with only about 2 kg for Diet B, indicating that Diet A was the more effective diet.

7.1 Exercise

Recall that in the previous unit exercises, a two-tailed test was undertaken whether the population mean impurity differed between the two filtration agents in Data Set G.

Suppose instead a one-tailed test had been conducted to determine whether Filter Agent 1 was the more effective. What would your conclusions have been?

			t-Test: Paired Two Sample for Means		
Batch	Agent1	Agent2			
1	7.7	8.5		Agent1	Agent2
2	9.2	9.6	Mean	8.25	8.6833333
3	6.8	6.4	Variance	1.0590909	1.0778788
4	9.5	9.8	Observations	12	12
5	8.7	9.3	Pearson Correlation	0.9010558	
6	6.9	7.6	Hypothesized Mean Difference	0	
7	7.5	8.2	df	11	
8	7.1	7.7	t Stat	-3.2639386	
9	8.7	9.4	P(T<=t) one-tail	0.003773	
10	9.4	8.9	t Critical one-tail	1.7958848	
11	9.4	9.7	P(T<=t) two-tail	0.007546	
12	8.1	9.1	t Critical two-tail	2.2009852	
			Differe	nce in Means	-0.433333

Summary

Because the calculated p = 0.0037 < 0.05, reject H₀. There is strong evidence that Filter Agent 1 produces a lower mean impurity than Agent 2. This indicates that Agent 1 is significantly more effective at reducing impurity.

F-Test Two-Sample for Variances						
	Variable 1	Variable 2				
Mean	5.3412	3.70996				
Variance	6.429280612	7.66759359				
Observations	50	50				
df	49	49				
F	0.838500442					
P(F<=f) one-tail	0.269951478					
F Critical one-tail	0.622165468					
p2	0.539902956					
t Toet: Two Sample Assuming Equ	al Variancos					
t-Test: Two-Sample Assuming Equ	al Variances					
t-Test: Two-Sample Assuming Equ	al Variances Variable 1	Variable 2				
t-Test: Two-Sample Assuming Equ Mean		Variable 2 3.70996				
	Variable 1					
Mean	Variable 1 5.3412	3.70996				
Mean Variance	Variable 1 5.3412 6.429280612	3.70996 7.66759359				
Mean Variance Observations	Variable 1 5.3412 6.429280612 50	3.70996 7.66759359				
Mean Variance Observations Pooled Variance	Variable 1 5.3412 6.429280612 50 7.048437101	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference	Variable 1 5.3412 6.429280612 50 7.048437101 0	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df	Variable 1 5.3412 6.429280612 50 7.048437101 0 98	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat	Variable 1 5.3412 6.429280612 50 7.048437101 0 98 3.072143179	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail	Variable 1 5.3412 6.429280612 50 7.048437101 0 98 3.072143179 0.001375772	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail	Variable 1 5.3412 6.429280612 50 7.048437101 0 98 3.072143179 0.001375772 1.660551217	3.70996 7.66759359				
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail	Variable 1 5.3412 6.429280612 50 7.048437101 0 98 3.072143179 0.001375772 1.660551217 0.002751544	3.70996 7.66759359				

7.2 Exercise

Consider the bank cardholder data of Data Set C. Open the Excel workbook Exa8.6C.xlsx which contains this data from the Exercises folder.

Assuming the data to be suitably distributed, complete an appropriate test of whether the population mean income for males exceeds that of females and interpret your findings. What assumptions underpin the validity of your analysis, and how could you validate them?

t-Test: Two-Sample Assuming Equal Variances		
	Variable 1	Variable 2
	Variable 1	Variable 2
Mean	52.91333333	44.23333333
Variance	233.1289718	190.1758192
Observations	60	60
Pooled Variance	211.6523955	
Hypothesized Mean Difference	0	
df	118	
t Stat	3.267900001	
P(T<=t) one-tail	0.000709735	
t Critical one-tail	1.657869522	
P(T<=t) two-tail	0.00141947	
t Critical two-tail	1.980272249	

Summary

The data is described as suitably distributed, so equal variances are assumed. An F-test was not required, and a t-test assuming equal variances was used. Because the calculated p = 0.0007 < 0.05, reject H_0 . There is strong evidence that the mean income for males is higher than that for females.

This indicates that male income is significantly greater at the population level.

Assumptions

The analysis assumes that the data are suitably distributed and variances are equal. This means the data are considered balanced across the two groups. The assumption could be validated using an F-test to check for equality of variances. Because the question states the data are suitably distributed, the F-test was not required in this case.