

AOP605

Complementary Enhancement Mode Field Effect Transistor

General Description

The AOP605/L uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications. AOP605 and AOP605L are electrically identical.

- -RoHS Compliant
- -AOP605L is Halogen Free

Features

 $\begin{array}{ll} \textbf{n-channel} & \textbf{p-channel} \\ V_{DS} \left(V \right) = 30V & -30V \end{array}$

 $I_D = 7.5A (V_{GS} = 10V) -6.6A (V_{GS} = -10V)$

 $R_{\text{DS}(\text{ON})}$

 $< 28m\Omega$ (V_{GS} = 10V) $< 35m\Omega$ (V_{GS} = -10V)

 $< 43 m\Omega (V_{GS} = 4.5V) < 58 m\Omega (V_{GS} = -4.5V)$

n-channel p-channel

Max

Тур

Units

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage		V_{DS}	30	-30	V
Gate-Source Voltage		V_{GS}	±20	±20	V
Continuous Drain	T _A =25°C		7.5	-6.6	
Current ^A	T _A =70°C	I_D	6	-5.3	Α
Pulsed Drain Current	В	I _{DM}	30	-30	
	T _A =25°C	P_{D}	2.5	2.5	W
Power Dissipation	T _A =70°C		1.6	1.6	\ \v
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C

Thermal Characteristics: n-channel Parameter

Maximum Junction-to-Ambient A	t ≤ 10s		40	50	°C/W		
Maximum Junction-to-Ambient A	Steady-State	N _θ JA	67	80	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	33	40	°C/W		
Thermal Characteristics: p-chan	, 052						
Parameter		Symbol	Тур	Max	Units		
Parameter Maximum Junction-to-Ambient A	t ≤ 10s	1	Typ 38	Max 50	Units °C/W		
	t ≤ 10s Steady-State	Symbol R _{0JA}					

Symbol

n-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V	30			V
ı	Zero Gate Voltage Drain Current	V_{DS} =24V, V_{GS} =0V			1	^
I _{DSS}	Zelo Gale Voltage Diaili Cullent	T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$	1	1.8	3	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	30			Α
		V _{GS} =10V, I _D =7.5A		22.6	28	mO
R _{DS(ON)}	Static Drain-Source On-Resistance	T _J =125°C				mΩ
		V_{GS} =4.5V, I_{D} =6.0A		33	43	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =7.5A	12	16		S
V_{SD}	Body Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.76	1	V
I _S	Maximum Body-DiodeContinuous Curr	rent			4	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			680	820	pF
Coss	Output Capacitance.	V_{GS} =0V, V_{DS} =15V, f=1MHz		102		pF
C _{rss}	Reverse Transfer Capacitance			77		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.2	2	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			13.84	16.6	nC
Q_g	Total Gate Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =7.5A		6.74	8.1	nC
Q_{gs}	Gate Source Charge	V _{GS} -4.5V, V _{DS} -15V, I _D -7.5A		1.82		nC
Q_{gd}	Gate Drain Charge			3.2		nC
t _{D(on)}	Turn-On DelayTime			4.6		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =2.0 Ω ,		4.1		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =6 Ω		20.6		ns
t _f	Turn-Off Fall Time	7		5.2		ns
t _{rr}	Body Diode Reverse Recovery time	I _F =7.5A, dI/dt=100A/μs		16.5	20	ns
Q _{rr}	Body Diode Reverse Recovery charge	I _F =7.5A, dI/dt=100A/μs		7.8		nC

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\parallel}$ \leq 10s thermal resistance rating.

Rev 4 : Jan 2009

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R_{θ ,IA} is the sum of the thermal impedence from junction to lead R $_{\theta$,II} and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

Fig 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body diode characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

p-channel MOSFET Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	ARAMETERS						
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V				-1	μА
.099	Zoro Cato Voltago Brain Carron		T _J =55°C			-5	μιτ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$		-1.2	-2	-2.4	V
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V		30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =-10V, I_{D} =-6.6A			28	35	mΩ
			T _J =125°C		37	45	11122
		V _{GS} =-4.5V, I _D =-5A			44	58	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-6.6A			13		S
V_{SD}	Diode Forward Voltage	I_S =-1A, V_{GS} =0V			-0.76	-1	V
I _S	Maximum Body-Diode Continuous Curre	Continuous Current				-4.2	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz V_{GS} =0V, V_{DS} =0V, f=1MHz			920	1100	pF
C _{oss}	Output Capacitance				190		pF
C_{rss}	Reverse Transfer Capacitance				122		pF
R_g	Gate resistance				3.6	4.4	Ω
SWITCHII	NG PARAMETERS						
$Q_g(10V)$	Total Gate Charge (10V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-6.6A			18.5	22.2	nC
Q _g (4.5V)	Total Gate Charge (4.5V)				9.6	11.6	nC
Q_{gs}	Gate Source Charge				2.7		nC
Q_{gd}	Gate Drain Charge				4.5		nC
t _{D(on)}	Turn-On DelayTime				7.7		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2.3 Ω , R_{GEN} =3 Ω			5.7		ns
$t_{D(off)}$	Turn-Off DelayTime				20.2		ns
t _f	Turn-Off Fall Time				9.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-6.6A, dI/dt=100A/μs			20	24	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-6.6A, dI/dt=100A/	μs		8.8		nC

A: The value of R $_{8JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\odot}$ = 10s thermal resistance rating.

Rev 4 : Jan 2009

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

