Électrocinétique

Chapitre 2

Circuits électroniques

Circuits électroniques

Dans ce chapitre, nous allons nous intéresser à la partie plus électronique de l'électrocinétique. Il s'agira d'un chapitre essentiellement constitué de révisions mais nous verrons, dans la partie consacrée à l'amplificateur opérationnel, quelques nouvelles notions.

Ce chapitre sera divisé en deux parties de longueurs très inégales : la première sur l'amplificateur opérationnel, la deuxième sur la diode.

Table des matières

ogra	pines s	uccinctes		
Am		eur opérationnel		
I-1	Version	n idéale		
	$I \cdot 1 \cdot i$	schéma et convention		
	${\rm I}\!\cdot\! 1\!\cdot\! ii$	caractéristique		
	${\rm I}\!\cdot\! 1\!\cdot\! iii$	deux régimes de fonctionnement		
		quels sont-ils?		
		comment savoir		
	${\rm I}\!\cdot\! 1\!\cdot\! iv$	limitations		
$I \cdot 2$	I-2 Montages usuels			
	$I \cdot 2 \cdot i$	suiveur		
	$I \cdot 2 \cdot ii$	amplificateurs		
		amplificateur inverseur		
		amplificateur non inverseur		
	$I \cdot 2 \cdot iii$	dérivateur, intégrateur		
	7.7.7	intégrateur théorique		
		intégrateur réel – pseudo intégrateur		
		dérivateurs		
	$I \cdot 2 \cdot iv$	comparateurs		
	1200	comparateur simple		
		comparateur à hystérésis		
I-3	Version	• •		
10	I·3·i	modélisation des défauts		
	$I \cdot 3 \cdot ii$	équation différentielle vérifiée par $u_{\rm s}(t)$		
	I · 3 · <i>iii</i>	comment trouver le régime de fonctionnement dans un cas inconnu?		
I-4		té d'un montage non inverseur		
1.4	I.4.i	approche qualitative		
	I·4· <i>ii</i>	montage stable		
	1.4.11	analyse		
		loi de fonctionnement		

	T 4 :::	retrouver l'AO idéal		
	$I \cdot 4 \cdot iii$	montage instable		
		rien à refaire		
т	N. C. 14.	discussion		
I·5		ibrateur astable, version 1		
	I.5· <i>i</i>	schéma de principe		
	I-5- <i>ii</i>	montage et analyse		
	$I \cdot 5 \cdot iii$	étude du comparateur		
		montage		
		saturation haute		
		saturation basse		
		représentation graphique		
	$I \cdot 5 \cdot iv$	intégrateur		
	$\mathbf{I} \cdot 5 \cdot v$	assemblage		
		qualitativement		
		évolution temporelle de $v_{s,2}(t)$		

		$I \cdot 5 \cdot vi$	représentation temporelle
			chronogrammes
			période
			avantages
	I-6	Multivi	brateur astable, version 2
		$I \cdot 6 \cdot i$	montage et principe
		$I \cdot 6 \cdot ii$	analyse qualitative du régime de fonctionnement
		$I \cdot 6 \cdot iii$	analyse détaillée du régime de fonctionnement
			équation vérifiée par $V_{\rm s}(t)$
			stabilité
		$I \cdot 6 \cdot iv$	astabilité
		I.6. v	fonctionnement complet
		100	continuité et basculements
			écvolutions
		$I \cdot 6 \cdot vi$	représentation temporelle
		1000	chronogramme
			période
	I.7	Oscillat	eur sinusoïdal
	1.1	I·7·i	montage
		1.7.i 1.7.ii	fonction de transfert du filtre
		1.7.11 1.7.11i	association
		1.7.iv $1.7.iv$	condition d'accrochage
		1.1.10	d'après la loi de fonctionnement
			comment faire en pratique?
			comment raire en pratique:
П	Dio	de	32
	II·1		ation $\dots \dots \dots$
		$II \cdot 1 \cdot i$	symbole, convention et caractéristique
		11 1 V	diode réelle
			en vrai c'est une photodiode
		$II \cdot 1 \cdot ii$	modélisation
		11 1 00	diode idéale
			diode idéale à tension de seuil non nulle
			diode linéarisée
			méthode pour étudier un circuit à diode
	II.2	Redress	•
	-		0.00.20
		$11 \cdot 2 \cdot i$	simple alternance avec seuil
		$II \cdot 2 \cdot i$	simple alternance avec seuil
		11.2.1	circuit à connaître
			circuit à connaître
		II·2· <i>ii</i>	circuit à connaître
			circuit à connaître
		$II \cdot 2 \cdot ii$	circuit à connaître
			circuit à connaître
		$II \cdot 2 \cdot ii$	circuit à connaître
	II.2	$II \cdot 2 \cdot ii$ $II \cdot 2 \cdot iii$	circuit à connaître
	II-3	$II \cdot 2 \cdot ii$ $II \cdot 2 \cdot iii$ Détecte	circuit à connaître
	II·3	$II \cdot 2 \cdot ii$ $II \cdot 2 \cdot iii$	circuit à connaître
	II-3	$II \cdot 2 \cdot ii$ $II \cdot 2 \cdot iii$ Détecte	circuit à connaître35représentation graphique35simple alternance sans seuil36circuit à connaître36représentation graphique36double alternance avec seuil36circuit à connaître37représentation graphique37ur de crêtes37avec seuil37circuit à connaître37avec seuil37circuit à connaître37
	II-3	$II \cdot 2 \cdot ii$ $II \cdot 2 \cdot iii$ Détecte	circuit à connaître

PC [⋆] , Fabert	Metz) TABLE DES MATIÈRE	RES	
	circuit à connaître	_	
Fiche de r	ision 3	g	

Biographies succintes

Max Wien

(1866 Königsberg – 1938 Iéna)

Max WIEN fut un physicien allemand directeur de l'Institut de Physique de l'Université d'Iéna. Il mit au point un générateur d'oscillations électromagnétiques et inventa un pont en électrocinétique qui permit à William HEWLETT (co-fondateur de Hewlett-Packard) de créer le premier de ce que nous appelerions maintenant un GBF. Max était le cousin de Wilhelm WIEN qui donna son nom à la loi éponyme sur le rayonnement du corps noir. Max eu SCHRÖDINGER comme assistant quelques années et ce dernier, dans son autobiographie, décrivit Max comme « modérément antisémite ».

I – Amplificateur opérationnel

I·1 – Version idéale

$I \cdot 1 \cdot i$ – schéma et convention

♦ Il existe, parfois, dans des sujets, des vieilles représentations d'AO (utilisées encore dans les logiciels ou chez les anglo-saxons)

Pour un AO idéal, nous avons :

- \rightarrow des courants de polarisation nuls, soit $i_+ = i_- = 0$;
- \rightarrow une tension de décalage nulle, soit $V_{\rm d}=0$;
- \rightarrow une amplification statique infinie, soit $\mu_0 = \infty$.

Attention de ne pas confondre « idéal » et « en régime linéaire ».

$\mathbf{I} \cdot \mathbf{1} \cdot ii$ – caractéristique

♦ Pour un AO idéal, la caractéristique est la suivante

♦ Remarquons qu'ici, contrairement aux signaux rectangulaires, il faut dessiner le trait vertical car il est possible que le point de fonctionnement soit « dessus ».

PC[⋆], Fabert (Metz) I·1 – Version idéale

$I \cdot 1 \cdot iii$ – deux régimes de fonctionnement

- * quels sont-ils?
- \Leftrightarrow Quel que soit le régime de fonctionnement d'un AO, réel ou idéal, il y a deux grandeurs pertinentes $(\varepsilon \text{ et } V_s)$ et il y a **toujours** une et une seule loi à écrire, soit pour ε , soit pour V_s , soit une expression qui relie les deux.
- ♦ Le régime linéaire d'un AO idéal donne :
 - $\rightarrow \varepsilon = 0$ est la grandeur connue et $-V_{\text{sat}} \leq V_{\text{s}} \leq +V_{\text{sat}}$ est la grandeur inconnue;
 - → l'ensemble du circuit est un montage linéaire donc il est possible d'utiliser la notation complexe.
- Attention! Un AO réel et en régime linéaire ne permet **pas** d'écrire $\varepsilon = 0$.
- ♦ Il y a aussi le régime non linéaire qui donne, pour un AO idéal :
 - \rightarrow $V_{\rm s} = +V_{\rm sat}$ est la grandeur connue est $\varepsilon > 0$ est la grandeur inconnue;
 - → $V_{\rm s} = -V_{\rm sat}$ est la grandeur connue est $\varepsilon < 0$ est la grandeur inconnue;
 - → l'ensemble du circuit est un montage non linéaire donc *a priori* adieu théorème de superposition.
- ♦ Il est parfois possible d'utiliser la notation complexe avec un AO en régime non linéaire lorsqu'il est certain que l'AO ne change pas de type de saturation.
 - * comment savoir
 - une rétroaction

Une rétroaction est une chaîne de dipôles reliant la sortie de l'amplificateur à l'entrée sans passer par la masse.

♦ Qualitativement, il ne faut pas oublier la loi suivante.

Une rétroaction négative a tendance à stabiliser un dispositif, alors qu'une rétroaction positive a tendance à le déstabiliser.

cas facile

S'il n'y a pas de rétroaction sur l'entrée inverseuse, alors l'AO est en régime de saturation.

♦ En « vrai », il est possible d'avoir un régime linéaire sans rétroaction négative mais cela demande d'avoir des générateurs stables à mieux que 1 mV, ce dont nous ne disposons pas en TP.

cas souvent facile

S'il y a une rétroaction sur l'entrée inverseuse et pas de rétroaction sur l'entrée non inverseuse, alors l'AO est en régime linéaire.

- ♦ Il ne faut pas oublier la célèbre exception avec l'effet de dérive du montage « intégrateur ».
- \Leftrightarrow Rappelons que cette exception est due au fait que l'impédance de la chaîne de rétroaction peut devenir infinie à $\omega = 0$; une impédance infinie, c'est un circuit ouvert; un circuit ouvert, c'est une non-rétroaction.

cas inconnu

- \diamond S'il y a deux rétroactions, *a priori* il n'est pas possible de connaître le régime de fonctionnement d'un claquement de doigt; c'est pourquoi il faut :
 - → faire appel à son bon sens (par exemple tous les montages de type filtre ont des AO qui fonctionnent en régime linéaire);
 - → regarder si l'énoncé nous impose une certaine hypothèse;
 - → faire l'étude complète comme nous le verrons dans la suite.

$I \cdot 1 \cdot iv - limitations$

♦ Il s'agit de limitations technologiques à connaître pour les TP mais rarement (jamais?) étudiées formellement.

L'intensité du courant de sortie d'un AO est limité :

$$|i_{\rm s}| \leqslant i_{\rm max}$$
 avec $i_{\rm max} \sim 20 \ {\rm mA}$

Le potentiel de sortie d'un AO ne peut pas varier instantanément. Le taux de variation limite est appelé le $slew\ rate$.

$$\left| \frac{\mathrm{d}V_{\mathrm{s}}}{\mathrm{d}t}(t) \right| \leqslant \sigma$$
 avec $\sigma \sim 0.5 \text{ à } 10 \text{ V.}\mu\text{s}^{-1}$

♦ C'est ainsi que si la fréquence est trop grande, il y a risque de triangularisation du signal.

❖ D'ailleurs, avec un signal rectangulaire en entrée d'un suiveur, il devrait y avoir un signal rectangulaire en sortie aussi, mais ce n'est pas le cas à cause du slew rate.

$I \cdot 2$ – Montages usuels

$I \cdot 2 \cdot i$ – suiveur

- Attention! Il y a souvent des erreurs dans ce montage : l'entrée non inverseuse n'est pas reliée à la masse.
- ♦ Outre son utilité pour relier différents étages de montages entre eux, ce montage permet de vérifier très vite si un AO fonctionne ou non.

$I \cdot 2 \cdot ii$ – amplificateurs

- * amplificateur inverseur
- montage à connaître

étude

- ♦ Analyse :
 - → il y a une unique rétroaction négative donc l'AO fonctionne en régime linéaire;
 - → comme il y a un AO nous allons privilégier l'approche nodale;
 - \rightarrow il y a deux potentiels inconnus V_- et V_s , donc nous n'aurons besoin que de deux lois : la loi de fonctionnement de l'AO et une loi des nœuds en terme de potentiel.
- ♦ Ici comme l'AO est idéal et en régime linéaire, nous avons

$$\varepsilon = 0 \qquad \leadsto \qquad V_{+} = V_{-}$$

♦ De plus, par montage, nous avons

$$V_{+} = 0 \qquad \rightsquigarrow \qquad V_{-} = 0$$

 \diamondsuit La loi des nœuds en terme de potentiel à l'entrée inverseuse de l'AO donne (en remplaçant tout de suite V_{-} par 0)

$$\frac{u_{\mathrm{e}}(t)-0}{R_{1}}+\frac{u_{\mathrm{s}}(t)-0}{R_{2}}-\underbrace{0}_{i}=0 \qquad \rightsquigarrow \qquad u_{\mathrm{s}}(t)=-\frac{R_{2}}{R_{1}}\,u_{\mathrm{e}}(t)$$

* amplificateur non inverseur

$I \cdot 2 \cdot iii$ – dérivateur, intégrateur

- * intégrateur théorique
- montage à connaître

étude

 \diamondsuit L'étude est très simple car, en version « régime sinusoïdal forcé », le montage se réduit à :

♦ Nous avons donc immédiatement

$$\underline{U_{\rm s,m}} = -\frac{\underline{Z_C}}{R} \, \underline{U_{\rm e,m}} \qquad \rightsquigarrow \qquad \underline{U_{\rm s,m}} = -\frac{1}{{\rm j} \, R \, C \, \omega} \, \underline{U_{\rm e,m}}$$

♦ En notation réelle, cela donne

$$\mathrm{j}\,\omega\,\underline{U_\mathrm{s,m}} = -\frac{1}{R\,C}\,\underline{U_\mathrm{e,m}} \qquad \leadsto \qquad \frac{\mathrm{d}^2 u_\mathrm{s}}{\mathrm{d}t^2}(t) = -\frac{1}{R\,C}\,u_\mathrm{e}(t)$$

★ intégrateur réel – pseudo intégrateur

montage à connaître

♦ En pratique, pour éviter que les effets de dérive rendent inutilisable le montage il faut, en TP, rajouter une résistance en parallèle du condensateur.

étude

♦ Là aussi, l'étude est très simple car, en version « régime sinusoïdal forcé », le montage se réduit à :

♦ Nous avons ainsi, parce qu'il s'agit d'un inverseur généralisé,

$$\underline{U_{\mathrm{s,m}}} = -\frac{\underline{Z_{\mathrm{\acute{eq}}}}}{R} \underline{U_{\mathrm{e,m}}} \quad \text{avec} \quad \underline{Z_{\mathrm{\acute{eq}}}} = \frac{R'}{1 + \mathrm{j}\,R'\,C\,\omega} \quad \rightsquigarrow \quad \underline{U_{\mathrm{s,m}}} = -\frac{R'}{R} \times \frac{1}{1 + \mathrm{j}\,R'\,C\,\omega} \underline{U_{\mathrm{e,m}}}$$

- \Leftrightarrow Ce n'est **pas** un montage intégrateur puisque $\underline{U_{\rm s,m}} \not\propto \frac{1}{\mathrm{j}\,\omega}\,\underline{U_{\rm e,m}}$.
- \diamondsuit Toutefois, si $\omega\,R'\,C\gg 1,$ la fonction de transfert devient

$$\underline{U_{\rm s,m}} = -\frac{R'}{R} \times \frac{1}{\mathrm{j} \, R' \, C \, \omega} \, \underline{U_{\rm e,m}} \qquad \rightsquigarrow \qquad \underline{U_{\rm s,m}} = -\frac{1}{\mathrm{j} \, R \, C \, \omega} \, \underline{U_{\rm e,m}}$$

* dérivateurs

♦ C'est comme pour l'intégrateur : il y a le montage théorique et celui qu'il vaut mieux utiliser en TP.

$I \cdot 2 \cdot iv$ - comparateurs

* comparateur simple

montage à connaître

méthodologie

- ♦ Il s'agit ici d'un AO en régime non linéaire (pas de rétroaction sur l'entrée inverseuse).
- ♦ Pour l'étudier, nous allons faire « comme d'habitude », à savoir des hypothèses.

Pour un AO idéal en régime non linéaire :			
	hypothèse	« à poser »	« à vérifier »
	saturation haute	$V_{\rm s} = +V_{\rm sat}$	$\varepsilon > 0$ ou $V_+ > V$
	saturation basse	$V_{\rm s} = -V_{\rm sat}$	$\varepsilon < 0$ ou $V_+ < V$

étude

- \Leftrightarrow Supposons $V_{\rm s} = +V_{\rm sat}$.
- ♦ L'AO reste en saturation haute tant que

$$\varepsilon > 0 \quad \rightsquigarrow \quad V_+ - V_- > 0 \qquad \rightsquigarrow \qquad u_{\rm e}(t) > E_0$$

♦ De même l'AO est en saturation basse tant que

$$\varepsilon < 0 \quad \leadsto \quad V_+ - V_- < 0 \qquad \leadsto \qquad u_{\rm e}(t) < E_0$$

 \diamondsuit Tout compte fait, lorsque nous traçons $u_{\rm s}$ en fonction de $u_{\rm e}$ nous obtenons

PC[⋆], Fabert (Metz) I·3 – Version réelle

- ❖ Ici, la ligne verticale est bien tracée en pointillés, car il n'est pas possible qu'un point de fonctionnement soit dessus.
 - * comparateur à hystérésis

- \diamond Dans ce montage, les résistances R_1 et R_2 permettent de faire varier la largeur du cycle alors que E_0 permet de translater le cycle.
- \longrightarrow Remarque. Pour retenir ce montage, c'est très simple : lorsque $E_0 = 0$ c'est un simple amplificateur non inverseur dont les bornes inverseuse et non inverseuse auraient été échangées.

I·3 – Version réelle

$I \cdot 3 \cdot i$ – modélisation des défauts

♦ La caractéristique statique d'un AO réel est la suivante.

PC[⋆], Fabert (Metz) I·3 – Version réelle

Pour un AO réel :

- \rightarrow la résistance de sortie est inférieure à 10 Ω ;
- \rightarrow la résistance d'entrée est supérieure au $G\Omega$;
- \rightarrow les courants de polarisation i_+ et i_- ne sont pas nuls;
- \rightarrow la tension de décalage $V_{\rm d}$ n'est pas nulle.
- ♦ Pour un AO réel nous avons :
 - $\rightarrow V_{\rm s} = \pm V_{\rm sat}$ en régime de saturation, comme pour l'AO idéal;
 - $\rightarrow V_{\rm s} = \mu \left(\varepsilon V_{\rm d} \right)$ en régime linéaire.
- \diamond Nous voyons donc bien que même si $V_{\rm d}=0$, un AO réel en régime linéaire **n'est pas tel que** $\varepsilon=0$.
- ♦ De plus, le coefficient d'amplification change avec la fréquence.

L'amplificateur opérationnel est un composant du premier ordre. En régime linéaire

$$\frac{V_{\rm s}}{I} = \underline{\mu}(\mathrm{j}\,\omega) \,\left(\underline{\varepsilon} - V_{\rm d}\right) \quad \text{avec} \quad \mu(\mathrm{j}\,\omega) = \frac{\mu_0}{1 + \mathrm{j}\,\frac{\omega}{\omega_0}}$$

$$\mu_0 \sim 10^5 \; ; \quad \omega_0 = 2\,\pi\,f_0 \quad \text{et} \quad f_0 \sim 10 \; \mathrm{Hz}$$

♦ Dans la suite et sauf précision contraire, quand nous considérerons l'AO comme réel, nous supposerons que son seul défaut est d'avoir une amplification non infinie qui dépend de la fréquence.

$\mathbf{I} \cdot \mathbf{3} \cdot ii$ – équation différentielle vérifiée par $u_{\mathrm{s}}(t)$

- \diamondsuit Supposons que nous ayons un AO « réel » selon notre signification. Alors :
 - $\rightarrow i_+ = i_- = 0;$
 - → $V_{\rm d} = 0$.
- ♦ Dans ces conditions, la loi de fonctionnement de AO en régime linéaire s'écrit

$$\underline{V_{\rm s}} = \underline{\mu}(\mathrm{j}\,\omega) \times \underline{\varepsilon} \qquad \rightsquigarrow \qquad \underline{V_{\rm s}} = \frac{\mu_0}{1 + \mathrm{j}\,\frac{\omega}{\omega_0}} \times \underline{\varepsilon}$$

♦ Cela donne

$$\left(1 + j\frac{\omega}{\omega_0}\right) \underline{V_s} = \mu_0 \underline{\varepsilon}$$

♦ Et en notation réelle

$$v_{\rm s}(t) + \frac{1}{\omega_0} \frac{\mathrm{d}v_{\rm s}}{\mathrm{d}t}(t) = \mu_0 \, \varepsilon(t)$$

♦ Il s'agit là d'une équation différentielle du premier ordre.

I·3·iii – comment trouver le régime de fonctionnement dans un cas inconnu?

- ♦ La méthode qui suit est à utiliser soit :
 - → quand c'est explicitement demandé;
 - → quand il y a deux rétroactions et que le bon sens ne permet pas de dire dans quel régime fonctionne l'AO.

- ♦ Méthode :
 - ① supposer l'AO réel du premier ordre **et** en régime linéaire $(\underline{V_s} = \mu(j\omega) \times \underline{\varepsilon})$;
 - 2 trouver l'équation différentielle vérifiée par $v_s(t)$;
 - 3 discuter de la solution de cette équation différentielle.
- ♦ Notons aussi que certains montages comportant une rétroaction sur l'entrée inverseuse et une rétroaction sur l'entrée non inverseuse peuvent fonctionner soit en régime linéaire soit en régime non linéaire, suivant la valeur des composants.

I·4 – Stabilité d'un montage non inverseur

$I \cdot 4 \cdot i$ – approche qualitative

♦ Reprenons le montage amplificateur non inverseur usuel.

- ♦ Ici il y a une rétroaction négative, donc « stabilisante ».
- \Leftrightarrow En effet, imaginons que suite à une perturbation électrique, ε augmente, alors
 - $\rightarrow v_{\rm s}(t)$ augmente;
 - \rightarrow puis $v_{-}(t)$ augmente grâce à la rétroaction;
 - \rightarrow puis ε diminue par définition même;
 - \rightarrow et donc $v_{s}(t)$ rediminue.
- ♦ Il s'agit bien d'un montage stable.
- ♦ Permutons les deux entrées.

- \diamond Cette fois, si ε augmente suite à une perturbation électrique :
 - $\rightarrow v_{\rm s}(t)$ augmente;
 - \rightarrow puis $v_{+}(t)$ augmente grâce à la rétroaction;
 - \rightarrow puis ε augmente par définition même;
 - \rightarrow et donc $v_s(t)$ augmente.
- ♦ C'est clairement un montage instable.

$I \cdot 4 \cdot ii$ – montage stable

* analyse

♦ Prenons le montage stable et montrons qu'il l'est.

- \diamond Pour cela nous devons trouver l'équation différentielle vérifiée par $v_{\rm s}(t)$.
- \Leftrightarrow Analyse:
 - \rightarrow c'est un AO et nous cherchons un potentiel \longrightarrow approche nodale;
 - \rightarrow nous avons deux potentiels inconnus $(v_{-}(t) \text{ et } v_{s}(t))$ il nous faut donc deux lois :
 - → une loi des nœuds en terme de potentiels à l'entrée inverseuse de l'AO;
 - → la loi de fonctionnement de l'AO $\underline{V_s} = \mu(j \omega) \underline{\varepsilon}$.

* loi de fonctionnement

♦ La loi des nœuds en terme de potentiel s'écrit, à l'entrée inverseuse,

$$\frac{0 - \underline{V_{-}}}{R_{1}} + \frac{\underline{V_{s}} - \underline{V_{-}}}{R_{2}} - 0 = 0 \qquad \leadsto \qquad \underline{V_{-}} = \frac{R_{1}}{R_{1} + R_{2}} \underline{V_{s}}^{\text{not}} = \beta \underline{V_{s}}$$

♦ La loi de fonctionnement de l'AO donne

$$\underline{V_{\rm s}} = \underline{\mu}(\mathrm{j}\,\omega)\,\left(\underline{V_{+}} - \underline{V_{-}}\right) \qquad \rightsquigarrow \qquad \underline{V_{\rm s}} = \frac{\mu_{\rm 0}}{1 + \mathrm{j}\,\frac{\omega}{\omega}} \times \left(\underline{V_{\rm e}} - \beta\,\underline{V_{\rm s}}\right)$$

♦ En regroupant, nous arrivons à

$$\left(1 + j\frac{\omega}{\omega_0}\right)\underline{V_s} = \mu_0\underline{V_e} - \mu_0\beta\underline{V_s} \qquad \rightsquigarrow \qquad \left(1 + \beta\mu_0 + j\frac{\omega}{\omega_0}\right)\underline{V_s} = \mu_0\underline{V_e}$$

♦ En notation réelle, cela donne

$$(1 + \beta \mu_0) v_s(t) + \frac{1}{\omega_0} \frac{\mathrm{d}v_s}{\mathrm{d}t}(t) = \mu_0 u_e(t)$$

* discussion

♦ Il s'agit ici d'une équation différentielle qui peut s'écrire sous la forme

$$\frac{\mathrm{d}v_{\mathrm{s}}}{\mathrm{d}t}(t) + \left(1 + \beta \,\mu_{\mathrm{0}}\right) \,\omega_{\mathrm{0}} \,v_{\mathrm{s}}(t) = \mu_{\mathrm{0}} \,\omega_{\mathrm{0}} \,u_{\mathrm{e}}(t) \qquad \leadsto \qquad \frac{\mathrm{d}v_{\mathrm{s}}}{\mathrm{d}t}(t) + \frac{1}{\tau} \,v_{\mathrm{s}}(t) = \mu_{\mathrm{0}} \,\omega_{\mathrm{0}} \,u_{\mathrm{e}}(t)$$

♦ Les solutions sont en

$$v_{\rm s}(t) = \lambda e^{-t/\tau} + v_{\rm s,part}(t)$$

$$18 / 40$$

- \Leftrightarrow Et comme $\tau > 0$, la partie transitoire tend vers 0 et $v_{\rm s}(t)$ (et par extension le montage) est bien stable.
- ♦ Numériquement

$$\frac{1}{\tau} \sim 10 \times 10 \times 10^5 \sim 10^7 \qquad \rightsquigarrow \qquad \tau \sim 10^{-7} \text{ s}$$

♦ Le régime permanent est donc très rapidement atteint.

* retrouver l'AO idéal

 \Leftrightarrow En régime permanent (ou du moins en régime quasitatique tel que $u_{\rm e}(t)$ varie avec des constantes de temps bien plus grandes que τ) nous avons

$$v_{\mathrm{s,part}}(t) = \frac{\mu_0 \,\omega_0}{\left(1 + \beta \,\mu_0\right) \,\omega_0} \,u_{\mathrm{e}}(t) \qquad \rightsquigarrow \qquad v_{\mathrm{s,part}}(t) = \frac{\mu_0}{1 + \beta \,\mu_0} \,u_{\mathrm{e}}(t)$$

 \diamondsuit Et pour un AO idéal, $\mu_0 \longrightarrow \infty,$ ce qui donne

$$v_{\mathrm{s,part}}(t) = \frac{1}{\beta} u_{\mathrm{e}}(t) \quad \text{avec} \quad \beta = \frac{R_1}{R_1 + R_2} \quad \leadsto \quad v_{\mathrm{s}}(t) = \left(1 + \frac{R_2}{R_1}\right) u_{\mathrm{e}}(t)$$

♦ Nous retrouvons (et heureusement) le cas connu.

$I \cdot 4 \cdot iii$ – montage instable

* rien à refaire

♦ Permutons les deux bornes d'entrée.

- \diamond Cette permutation revient à changer ε en $-\varepsilon$.
- \Leftrightarrow En effet, en notant A la borne « du haut » et B la borne « du bas », toutes les lois des nœuds en A et en B s'écrivent de la même manière que l'entrée soit inverseuse ou non.
- ♦ La seule chose qui change est que :
 - \rightarrow si l'entrée inverseuse est en A alors $\varepsilon = V_B V_A$;
 - \rightarrow si l'entrée inverseuse est en B alors $\varepsilon = V_A V_B$.
- \diamond Pour trouver l'équation différentielle vérifiée par $v_{\rm s}(t)$ quand les bornes sont permutées, il suffit donc de changer le signe de ε et pour cela

Permuter les bornes d'un AO revient, techniquement, à changer μ_0 en $-\mu_0$.

★ discussion

 \Leftrightarrow En changeant uniquement μ_0 , nous avons donc tout de suite l'équation vérifiée par $v_s(t)$

$$\frac{\mathrm{d}v_{\mathrm{s}}}{\mathrm{d}t}(t) + \underbrace{\omega_{0} \left(1 - \beta \mu_{0}\right)}_{1/\tau} v_{\mathrm{s}}(t) = -\mu_{0} u_{\mathrm{e}}(t)$$

- \Leftrightarrow Étant donné les valeurs numériques de β (de l'ordre de la fraction d'unité) et de μ_0 (de l'ordre de 10^5) nous avons $\tau < 0$.
- ♦ La solution s'écrit toujours

$$v_{\rm s}(t) = \lambda e^{-t/\tau} + v_{\rm s,part}(t)$$

- \Leftrightarrow Mais comme $\tau < 0$, cette solution diverge lorsque t > 0.
- ♦ C'est donc bien un montage instable.
- \diamond Notons au passage que la divergence n'est que mathématique puisque, physiquement, la sortie saturera à $\pm V_{\rm sat}$.

I·5 – Multivibrateur astable, version 1

$I \cdot 5 \cdot i$ – schéma de principe

Un multivibrateur astable est un dispositif qui bascule régulièrement et spontanément entre deux valeurs différentes ou deux états différents.

♦ L'idée est de boucler deux montages sur eux-mêmes : un intégrateur et un comparateur.

$\mathbf{I} \cdot \mathbf{5} \cdot ii$ – montage et analyse

♦ Prenons un intégrateur et un comparateur à hystérésis tout simple.

I.5.iii – étude du comparateur

* montage

♦ Reprenons uniquement le premier bloc.

 \Leftrightarrow Remarquons tout d'abord que, quel que soit V_s , nous pouvons écrire la loi des nœuds en terme de potentiel à l'entrée non inverseuse, ce qui donne

$$\frac{V_{\rm e} - V_{+}}{R_{1}} + \frac{V_{\rm s} - V_{+}}{R_{2}} - 0 = 0 \qquad \rightsquigarrow \qquad V_{+} = \frac{R_{1} V_{\rm s} + R_{2} V_{\rm e}}{R_{1} + R_{2}}$$

* saturation haute

- \Leftrightarrow Supposons $v_{s,2} = +V_{sat}$.
- \Leftrightarrow L'AO sera en régime de saturation haute tant que $\varepsilon > 0$.
- \diamond Or ici comme $V_{-}=0$, la condition se réécrit

$$V_{+} > 0 \quad \leadsto \quad \frac{+R_{1} V_{\text{sat}} + R_{2} V_{\text{e}}}{R_{1} + R_{2}} > 0 \qquad \leadsto \qquad v_{\text{e}} > -\frac{R_{1}}{R_{2}} V_{\text{sat}}$$

* saturation basse

- \Leftrightarrow Supposons cette fois $v_{\rm s.2} = -V_{\rm sat}$.
- \Leftrightarrow L'AO sera en régime de saturation basse tant que $\varepsilon < 0$.
- \diamondsuit Nous avons toujours $V_{-}=0$ et donc la condition se réécrit

$$V_{+} < 0 \quad \leadsto \quad \frac{-R_{1} V_{\text{sat}} + R_{2} V_{\text{e}}}{R_{1} + R_{2}} < 0 \qquad \leadsto \qquad v_{\text{e}} < + \frac{R_{1}}{R_{2}} V_{\text{sat}}$$

* représentation graphique

♦ Graphiquement, nous pouvons représenter le fonctionnement de la manière suivante :

♦ Remarquons que la caractéristique n'est **pas** celle représentée ci-dessous car les parties verticales ne sont pas stables.

Pour qu'il y ait un phénomène d'hystérésis, il **faut** un montage non linéaire.

♦ En revanche, tout montage non linéaire n'engendre pas obligatoirement un phénomène d'hystérésis.

$I \cdot 5 \cdot iv$ – intégrateur

♦ Reprenons le montage

♦ Nous avons, avec la méthode usuelle

$$\frac{\mathrm{d}v_{\mathrm{s},2}}{\mathrm{d}t}(t) = -\frac{1}{RC} v_{\mathrm{e},2}(t)$$

I.5.v - assemblage

* qualitativement

- \diamondsuit Imaginons que la sortie du comparateur soit $+V_{\rm sat}$; alors
 - $\rightarrow v_{e,2}(t)$ est une constante positive;
 - $\rightarrow v_{s,2}(t)$ décroît linéairement;
 - $\rightarrow v_{e,1}(t)$ décroît linéairement;
 - → à un moment, le comparateur va basculer.
- \diamondsuit De même si la sortie du comparateur est $-V_{\rm sat}$; alors
 - $\rightarrow v_{e,2}(t)$ est une constante négative;
 - $\rightarrow v_{s,2}(t)$ croît linéairement;
 - $\rightarrow v_{e,1}(t)$ croît linéairement;
 - → à un moment, le comparateur va basculer.
- ♦ Les deux seuls cas possibles pour la sortie du comparateur amènent un basculement : le montage est bien un multivibrateur astable.

\star évolution temporelle de $v_{\rm s,2}(t)$

- \Leftrightarrow Remarquons tout d'abord que la tension $v_{s,2}(t)$ n'est autre que la tension aux bornes du condensateur.
- \Leftrightarrow En effet, comme l'AO est en régime linéaire, $v_{s,2}(t)$ est la différence de tension entre les nœuds bleu et rouge.

- \Leftrightarrow Et comme $V_+ = V_-$, le potentiel de la masse est reporté en V_- .
- \Leftrightarrow Enfin, comme la tension aux bornes d'un condensateur est une fonction mathématiquement continue du temps, nous pouvons en déduire que $v_{s,2}(t) = v_{e,1}(t)$ est une fonction mathématiquement continue du temps.
- \diamondsuit Comme nous l'avons vu qualitativement :
 - $\rightarrow v_{\rm s,2}(t) = v_{\rm e,1}(t)$ croît ou décroît linéairement à la « vitesse » $\pm \frac{V_{\rm sat}}{RC}$;
 - ightharpoonup les basculements ont lieu lorsque $v_{\mathrm{e,1}}(t)$ dépasse par valeur inférieure $-\frac{R_1}{R_2}V_{\mathrm{sat}}$ ou par valeur supérieure $+\frac{R_1}{R_2}V_{\mathrm{sat}}$.

${f I} \cdot {f 5} \cdot vi$ - représentation temporelle

* chronogrammes

♦ Compte tenu des remarques précédentes, nous pouvons tracer les chronogrammes suivants.

- ♦ Remarquons qu'il n'y a pas d'origine sur ce chronogramme car cela n'aurait pas véritablement de signification.
- $\Leftrightarrow v_{\mathrm{s},2} = v_{\mathrm{e},1}$ a été construit :
 - → affine par morceaux;
 - → continu;
 - \rightarrow de pente $\pm \frac{1}{RC}$;
 - \rightarrow de valeur de basculement $\pm \frac{R_1}{R_2} V_{\text{sat}}$.
- $\diamond v_{\mathrm{s,1}} = v_{\mathrm{e,2}}$ s'en déduit facilement : $v_{\mathrm{e,1}}$ est négatif quand $v_{\mathrm{s,1}}$ croît et réciproquement.

★ période

- \diamondsuit Regardons une demi-période.
- \Leftrightarrow Durant T/2, la tension varie de $2 \times \frac{R_1}{R_2} V_{\text{sat}}$.
- \Leftrightarrow Comme la pente est constante et qu'elle vaut $\frac{V_{\text{sat}}}{RC}$ nous avons

$$\frac{V_{\text{sat}}}{RC} = \frac{2 \times \frac{R_1}{R_2} V_{\text{sat}}}{\frac{T}{2}} \longrightarrow T = 4RC \times \frac{R_1}{R_2}$$

* avantages

- ♦ Ce montage permet de générer en même temps un signal triangulaire et un signal rectangulaire de même fréquence.
- \diamondsuit De plus, il est très facile de changer la fréquence en modifiant R_1 et même de changer de décade en changeant R_2 .
- ♦ Les inconvénients de ce montages sont liés aux AO : il faut rester dans des domaines de fréquences pas trop élevés pour éviter le slew rate et ne pas avoir besoin de trop de puissance.

I-6 – Multivibrateur astable, version 2

$I \cdot 6 \cdot i$ – montage et principe

 \diamondsuit Le montage est le suivant :

- ♦ L'idée est de compacter avec un seul AO le montage précédent.
- \diamondsuit Il s'agit d'un montage comparateur à hystérésis dont l'entrée en V_- est un circuit RC alimenté directement par la sortie du montage comparateur.

$I \cdot 6 \cdot ii$ – analyse qualitative du régime de fonctionnement

- ♦ Imaginons la situation où tous les potentiels sont nuls.
- \diamondsuit Supposons que, suite à une perturbation électrique, $V_{+}(0^{+}) = qq \text{ mV}$.
- ♦ Pendant ce temps là, comme la tension aux bornes du condensateur est une fonction mathématiquement continue du temps, nous aurions toujours $V_{-}(0^{+})=0$.
- \diamond Ces deux tensions impliquent immédiatement que $\varepsilon(0^+) > 0$.
- \diamondsuit Dès lors $v_s(t)$ se met à augmenter car c'est le rôle d'un AO que d'amplifier ε avec un facteur 10^5 .
- \Leftrightarrow Mais $v_s(t)$ augmentant, la rétroaction positive fait augmenter ε de manière instantanée alors que $v_-(t)$ ne peut pas suivre à cause du condensateur.
- $\diamond v_{\rm s}(t)$ ne va donc cesser d'augmenter : le régime est bien instable.

I-6-iii – analyse détaillée du régime de fonctionnement

- \star équation vérifiée par $V_{\rm s}(t)$
- ♦ Supposons l'AO réel et en régime linéaire.
- ♦ La loi des nœuds en terme de potentiel s'écrit, à l'entrée non inverseuse,

$$\frac{0 - V_{+}}{R_{1}} + \frac{V_{s} - V_{+}}{R_{2}} - 0 = 0 \qquad \rightsquigarrow \qquad V_{+} = \frac{R_{1}}{R_{1} + R_{2}} V_{s}$$

♦ Nous noterons

$$V_{+} = \beta V_{\rm s}$$
 avec $\beta = \frac{R_1}{R_1 + R_2}$

- ♦ Remarquons au passage que cette relation est indépendante du régime de fonctionnement.
- \diamondsuit Écrivons la loi des nœuds en terme de potentiel en V_- en notation complexe.

$$\frac{0 - \underline{V_-}}{\underline{Z_C}} + \frac{\underline{V_s} - \underline{V_-}}{R} - 0 = 0 \quad \rightsquigarrow \quad \underline{V_-} = \frac{\underline{Z_C}}{R + \underline{Z_C}} \times \underline{V_s} \qquad \rightsquigarrow \qquad \underline{V_-} = \frac{1}{1 + j \, R \, C \, \omega} \times \underline{V_s}$$

$$25 \, / \, 40 \qquad \qquad Version \, du \, 26 \, avril$$

♦ La loi de fonctionnement de l'AO (réel) s'écrit

$$\underline{V_{\rm s}} = \underline{\mu}(\mathrm{j}\,\omega)\,\left(\underline{V_{+}} - \underline{V_{-}}\right) \qquad \rightsquigarrow \qquad \underline{V_{\rm s}} = \frac{\mu_{0}}{1 + \mathrm{j}\,\frac{\omega}{\omega_{0}}}\left(\beta - \frac{1}{1 + \mathrm{j}\,R\,C\,\omega}\right)\,\underline{V_{\rm s}}$$

♦ Cela donne tout d'abord

$$\left(1 + j\frac{\omega}{\omega_0}\right) \left(1 + jRC\omega\right) \underline{V_s} = \mu_0 \left(\beta \left(1 + jRC\omega\right) - 1\right) \underline{V_s}$$

♦ En développant et en regroupant tout à gauche

$$\left((j\omega)^2 \frac{RC}{\omega_0} + \left(\frac{1}{\omega_0} + RC - \mu_0 \beta RC \right) (j\omega) + 1 + \mu_0 - \beta \mu_0 \right) \underline{V_s} = 0$$

 \Leftrightarrow Comme $\beta \lesssim 1$, nous avons

$$RC \ll \mu_0 \beta RC$$
 et $1 \ll \mu_0$

♦ Et ainsi, nous pouvons simplifier en

$$\left((j\omega)^2 \frac{RC}{\omega_0} + \left(\frac{1}{\omega_0} - \mu_0 \beta RC \right) (j\omega) + \mu_0 - \beta \mu_0 \right) \underline{V_s} = 0$$

♦ Ce qui correspond à l'équation différentielle

$$\frac{R\,C}{\omega_0}\,\frac{\mathrm{d}^2v_\mathrm{s}}{\mathrm{d}t^2}(t) + \left(\frac{1}{\omega_0} - \mu_0\,\beta\,R\,C\right)\,\frac{\mathrm{d}v_\mathrm{s}}{\mathrm{d}t}(t) + \left(1-\beta\right)\mu_0\,v_\mathrm{s}(t) = 0$$

- * stabilité
- ❖ Rappelons que, pour être stable, une équation du second ordre à coefficients constants doit avoir tous ses coefficients de même signe.
- \Leftrightarrow Ici, nous avons tout d'abord $\frac{RC}{\omega_0} > 0$.
- \Rightarrow De plus, comme $\beta = \frac{R_1}{R_1 + R_2} < 1$, nous avons aussi

$$(1 - \beta) \mu_0 > 0$$

♦ Pour le dernier coefficient, nous devons évaluer numériquement

$$\frac{1}{\omega_0} \sim \frac{1}{2\pi \times 10} \sim 10^{-2} \text{ s}$$
 et $\mu_0 \, \beta \, R \, C \sim 10^5 \times 0.1 \times 10^3 \times 100.10^{-9} \sim 1 \text{ s}$

- ♦ Finalement, nous avons $\frac{1}{\omega_0} \mu_0 \beta R C < 0$: l'équation possède une solution instable, donc le montage est aussi instable.
- ♦ Nous venons de prouver que le montage fonctionne en régime non linéaire.

$I \cdot 6 \cdot iv$ – astabilité

- ♦ Supposons que l'AO fonctionne en régime de saturation haute et que le régime permanent stationnaire soit atteint.
- ♦ Dans ces conditions, le condensateur se comporte comme un interrupteur ouvert et le montage est équivalent à :

- \diamond Comme le courant qui traverse R est nul, la tension à ses bornes est nulle et donc $V_- = V_s = +V_s$.
- ♦ Nous avons ainsi

$$\varepsilon = V_{+} - V_{-} = \beta V_{s} - V_{s} \qquad \Leftrightarrow \qquad \varepsilon = (\beta - 1) V_{s}$$

- \Leftrightarrow Mais comme $\beta < 1$, cela prouve que ε et $V_{\rm s}$ sont de signes opposés.
- \Leftrightarrow Or, pour avoir $V_{\rm s}=+V_{\rm sat}$, il faut $\varepsilon>0$, de même que pour avoir $V_{\rm s}=-V_{\rm sat}$, il faut $\varepsilon<0$.
- ♦ Comme nous avons déjà prouvé que l'AO fonctionne en régime de saturation, nous ne pouvons que conclure sur l'astabilité du montage.
- ♦ De temps en temps, l'AO sera en saturation haute mais ne pourra pas y rester et, de temps en temps, l'AO sera en saturation basse mais ne pourra pas y rester.

$I \cdot 6 \cdot v$ – fonctionnement complet

* continuité et basculements

- \Leftrightarrow Remarquons tout d'abord et de manière immédiate que la tension $v_{-}(t)$ est une fonction mathématiquement continue puisque c'est la tension aux bornes d'un condensateur.
- \diamondsuit Nous savons aussi qu'il y a des basculements. Ceux-ci ne peuvent venir que de $\varepsilon(t)$ qui change de signe.
- \diamond Or, tant qu'il n'y a pas de basculement, $V_{+}(t) = \beta V_{s}$ est constant et $V_{-}(t)$ varie continûment.
- \diamond Par conséquent, $\varepsilon(t)$ varie continûment et, s'il change de signe à un instant, c'est que l'instant juste précédent il était nul.
- ♦ Cela signifie que les basculements auront lieu :
 - \rightarrow de $+V_{\text{sat}}$ à $-V_{\text{sat}}$ lorsque $V_{-}(t)$ atteint $+\beta V_{\text{sat}}$;
 - \rightarrow de $-V_{\text{sat}}$ à $+V_{\text{sat}}$ lorsque $V_{-}(t)$ atteint $-\beta V_{\text{sat}}$.

★ écvolutions

- ♦ Considérons un état de saturation (haut ou bas) constant.
- \diamond Nous voyons alors un condensateur en série avec un résistor (car $i_-=0$) et l'ensemble est soumis à $V_{\rm s}={\rm C^{te}}$.
- \diamondsuit Ce n'est ni plus ni moins qu'un circuit RC soumis à un échelon de tension.

♦ Comme la tension du condensateur « cherche » à égaler celle du générateur, nous pouvons dire que les solutions s'écrivent

$$\begin{cases} v_{-}(t) = \lambda e^{-t/\tau} + V_{\text{sat}} & \text{en saturation haute} \\ v_{-}(t) = \mu e^{-t/\tau} - V_{\text{sat}} & \text{en saturation basse} \end{cases}$$

I-6-vi - représentation temporelle

* chronogramme

 \Leftrightarrow En repérant d'abord les valeurs de basculement $\pm \beta V_{\text{sat}}$ puis en traçant $v_{-}(t)$ continue avec des évolutions exponentielles pour chaque état de saturation, nous obtenons le chronogramme suivant.

* période

- \Leftrightarrow Comme nous pouvons le voir, la demi-période correspond à la durée que met $v_{-}(t)$ pour aller de $-\beta V_{\text{sat}}$ à $+\beta V_{\text{sat}}$.
- ♦ Sur cette demi-période, nous savons que la solution s'écrit

$$v_{-}(t) = \lambda e^{-t/\tau} + V_{\text{sat}}$$

 \Leftrightarrow En imposant la condition initiale $v_{-}(0) = -\beta V_{\text{sat}}$, nous trouvons

$$v_{-}(t) = -(\beta + 1) V_{\text{sat}} e^{-t/\tau} + V_{\text{sat}}$$

♦ Pour trouver la période, nous n'avons donc plus qu'à résoudre

$$-(\beta + 1) V_{\text{sat}} e^{-T/(2\tau)} + V_{\text{sat}} = \beta V_{\text{sat}}$$

♦ Cela donne

$$e^{-T/(2\tau)} = \frac{1-\beta}{1+\beta} \longrightarrow T = 2\tau \ln \frac{1+\beta}{1-\beta}$$

 \diamond Comme nous pouvons le constater avec le chronogramme ci-dessus, plus β se rapproche de 1, plus la période est grande.

I.7 – Oscillateur sinusoïdal

$I \cdot 7 \cdot i$ – montage

♦ Considérons le montage ci-dessous.

♦ En isolant les différents morceaux, nous reconnaissons le schéma de principe suivant.

♦ Regardons d'un peu plus près ce qu'il en est.

$I \cdot 7 \cdot ii$ – fonction de transfert du filtre

♦ Isolons le filtre, appelé filtre de Wien.

 \diamondsuit Ce filtre est équivalent à

 \diamondsuit Comme $\underline{Z_1}$ et $\underline{Z_2}$ sont en série, nous avons immédiatement

$$\frac{\underline{U_{\text{s,2}}}}{\underline{\underline{U_{\text{e,2}}}}} = \frac{\underline{Z_2}}{\underline{Z_2} + \underline{Z_1}} \quad \text{avec} \quad \underline{Z_1} = \frac{1}{j C \omega} + R \quad \text{et} \quad \underline{Z_2} = \frac{R \times \frac{1}{j C \omega}}{R + \frac{1}{j C \omega}} = \frac{R}{1 + j R C \omega}$$

 \Leftrightarrow Cela donne, d'abord en multipliant par j $C\omega$,

$$\frac{\underline{U_{\text{s,2}}}}{\underline{U_{\text{e,2}}}} = \frac{\frac{R}{1+\text{j}\,R\,C\,\omega}}{\frac{R}{1+\text{j}\,R\,C\,\omega} + \frac{1}{\text{j}\,C\,\omega} + R} \qquad \rightsquigarrow \qquad \frac{\underline{U_{\text{s,2}}}}{\frac{\overline{U_{\text{e,2}}}}{1+\text{j}\,R\,C\,\omega}} = \frac{\frac{\text{j}\,R\,C\,\omega}{1+\text{j}\,R\,C\,\omega}}{\frac{\text{j}\,R\,C\,\omega}{1+\text{j}\,R\,C\,\omega} + 1+\text{j}\,R\,C\,\omega}$$

 \diamondsuit Éliminons ensuite le dénominateur $1 + jRC\omega$

$$\frac{U_{\text{s,2}}}{\overline{U_{\text{e,2}}}} = \frac{j R C \omega}{j R C \omega + (1 + j R C \omega)^2} \qquad \rightsquigarrow \qquad \frac{\overline{U_{\text{s,2}}}}{\overline{U_{\text{e,2}}}} = \frac{j R C \omega}{1 + 3j R C \omega + (j R C \omega)^2}$$

♦ Nous obtenons donc la fonction de transfert

$$\frac{U_{\text{s,2}}}{\overline{U_{\text{e,2}}}} = \frac{j x}{1 - x^2 + 3 j x} \quad \text{avec} \quad x = \frac{\omega}{\omega_0} \quad \text{et} \quad \omega_0 = \frac{1}{R C}$$

♦ Il s'agit d'un filtre passe-bande.

$I \cdot 7 \cdot iii$ – association

♦ Reprenons le schéma de principe.

♦ Comme l'amplificateur est un amplificateur non inverseur, nous savons que

$$\underline{U_{\mathrm{s},1}} = \left(1 + \frac{R_2}{R_1}\right) \underline{U_{\mathrm{e},1}} \stackrel{\text{not}}{=} A \underline{U_{\mathrm{e},1}} \qquad \text{avec} \qquad A = 1 + \frac{R_2}{R_1}$$

♦ Or, le filtre impose

$$\underline{U_{\mathrm{s},2}} = \underline{H}(\mathrm{j}\,x)\,\underline{U_{\mathrm{e},2}}$$

♦ Comme les deux étages sont bouclés, cela impose

♦ Ce qui se réécrit

$$(1 - A \underline{H}(j x)) U_{s,1} = 0$$

 \diamondsuit Nous avons donc $U_{\mathrm{s},1}...$ sauf si

$$1 - A \underline{H}(j x) = 0$$

$I \cdot 7 \cdot iv$ – condition d'accrochage

* d'après la loi de fonctionnement

♦ Pour avoir une sortie non nulle, il faut donc

$$H(j x) = \frac{1}{A}$$

- \diamond Cela implique notamment que la fonction de transfert doit être réelle puisque A l'est.
- ♦ Réécrivons la fonction de tranfert

$$\underline{H}(jx) = \frac{jx}{1 - x^2 + 3jx} \qquad \rightsquigarrow \qquad \underline{H}(jx) = \frac{1}{j(x - 1/x) + 3}$$

- \Leftrightarrow Pour qu'elle soit réelle il faut donc x=1.
- \Leftrightarrow Cela implique de fait $\underline{H}(j) = \frac{1}{3}$, soit A = 3.

* comment faire en pratique?

- \Leftrightarrow En TP, nous ferons varier R_2 jusqu'à la valeur $R_2 \sim 2 R_1$ et nous verrons alors apparaître spontanément des oscillations.
- ♦ L'énergie nécessaire aux oscillations provient de l'alimentation de l'AO.
- \diamond Avec R_2 nettement plus grand que $2R_1$, il y aurait aussi des oscillations mais qui seraient distordues.
- ♦ Cela ne rentre pas en contradiction avec ce qui précède car l'amplitude des oscillations est limitée par un phénomène non linéaire : la saturation de l'AO.

PC[⋆], Fabert (Metz)

II - Diode

♦ Il n'y a pas de véritable nouvelles notions dans cette partie, nous nous contenterons de faire des rappels.

II·1 – Présentation

$\text{II} \cdot 1 \cdot i$ – symbole, convention et caractéristique

- * diode réelle
- \diamondsuit Une diode réelle a cette caractéristique.

- \diamondsuit $V_{\rm d}$ est la tension de seuil.
 - ★ en vrai c'est une photodiode
- \Leftrightarrow En réalité, les diodes sont toutes des photodiodes, *i.e.* des composants influencés par la quantité de lumière reçue.

♦ Techniquement, cela se traduit par

$$i(u) = I_0 \left(e^{u/V_0} - 1 \right) - I(\Phi)$$
 avec Φ le flux lumineux

- ♦ Plus la diode est éclairée, plus le décalage se fait vers le bas.
- ♦ Nous voyons aussi qu'il existe un domaine dans lequel la photodiode est *active*, au sens où elle *fournit* de l'énergie au circuit électrique : elle est alors tout simplement appelée « photopile ».

PC[⋆], Fabert (Metz) II·1 – Présentation

$II \cdot 1 \cdot ii - modélisation$

* diode idéale

La diode idéale possède la caractéristique suivante :

- \rightarrow lorsque la diode est bloquée, elle se comporte comme
- ightharpoonup lorsque la diode est passante, elle se comporte comme $\dfrac{I}{U}$
- ♦ C'est a priori le modèle que nous utiliserons spontanément quand rien ne nous sera imposé.
- ♦ Ce modèle n'est certes pas très juste mais permet au moins l'analyse qualitative.

* diode idéale à tension de seuil non nulle

La $\it diode \it id\'eale$ à $\it tension \it de \it seuil non \it nul possède$ la caractéristique suivante :

- \rightarrow lorsque la diode est bloquée, elle se comporte comme \xrightarrow{I}
- ightharpoonup lorsque la diode est passante, elle se comporte comme ightharpoonup U.
- ♦ Il s'agit là d'un modèle bien meilleur pour étudier analytiquement les circuits et notamment expliquer les effets de seuil.
- ♦ Notons que la tension de seuil d'une diode est de l'ordre de 0,6 V et peut monter jusqu'à 1 V pour des LED.

PC[⋆], Fabert (Metz) II·1 – Présentation

* diode linéarisée

♦ C'est un modèle assez lourd qui n'a pas tellement d'intérêt formel au-delà de la définition de la résistance dynamique de la diode.

Le modèle linéaire de la diode réelle possède la caractéristique suivante :

- \rightarrow lorsque la diode est bloquée, elle se comporte comme $\stackrel{I}{\longleftarrow}$;
- \rightarrow lorsque la diode est passante, elle se comporte comme $\stackrel{I}{\longrightarrow} \stackrel{r}{\longrightarrow} \stackrel{}{\longrightarrow} U$ r est appelée la $r\acute{e}sistance\ dynamique\ de\ la diode et est de l'ordre du ohm.$

* méthode pour étudier un circuit à diode

- \diamondsuit Comme tout ce qui est non linéaire, l'idée consiste à :
 - → choisir une hypothèse;
 - → poser l'égalité que cela implique;
 - → vérifier l'inégalité nécessaire à la validité de l'hypothèse.
- ♦ Rappelons uniquement ici les méthodes pour les modèles de diodes les plus couramment utilisés.

Pour la diode idéale à tension de seuil non nul :			
	hypothèse	« à poser »	« à vérifier »
	diode bloquée	$I = 0 \text{ et}$ $U = \frac{I}{U}$	$U \leqslant V_{\rm d}$
	diode passante	$U = V_{\rm d} \text{ et}$	$I\geqslant 0$

	Pour la diode idéale :	
hypothèse	« à poser »	« à vérifier »
diode bloquée	$I = 0 \text{ et}$ $U = \frac{I}{U}$	$U \leqslant V_{\rm d}$
diode passante	$U = 0 \text{ et}$ $U = \frac{I}{U}$	$I\geqslant 0$

$II \cdot 2 - Redresseurs$

$II \cdot 2 \cdot i$ – simple alternance avec seuil

★ circuit à connaître

- * représentation graphique
- ♦ L'inconvénient principal de ce montage est l'effet de seuil.
- ♦ Cela n'est pas forcément grave pour des tensions élevées, mais pour des tensions d'amplitude faible et des tensions de seuils non négligeables (comme avec les LED) il est impératif d'en tenir compte.
- ♦ Ci-dessous, une simulation réalisée avec le logiciel Qucs 1.

^{1.} Sauf précision contraire, toutes les simulations ont été réalisées avec ce logiciel dont l'axcronyme signifie Quite Universal Circuit Simulator.

PC[⋆], Fabert (Metz) II·2 – Redresseurs

$II \cdot 2 \cdot ii -$ simple alternance sans seuil

* circuit à connaître

♦ L'idée est simple : il s'agit de compacter en un seul circuit un montage suiveur et un montage redresseur.

* représentation graphique

♦ Ce montage fonctionne bien comme le montre la simulation ci-dessous.

♦ Malgré tout, dès que la fréquence augmente, il peut présenter des défauts dus à l'AO.

$II \cdot 2 \cdot iii$ – double alternance avec seuil

* circuit à connaître

- * représentation graphique
- \diamondsuit Comme pour le redresseur simple alternance, il y a un effet de seuil ici, comme le montre la simulation suivante :

II·3 – Détecteur de crêtes

$II \cdot 3 \cdot i$ – avec seuil

★ circuit à connaître

* représentation graphique

♦ Ce montage fonctionne bien (mais il y a toujours un effet de seuil). Voici une simulation :

- \Leftrightarrow Le seul inconvénient, qui n'en est pas vraiment un, est qu'il faut bien adapater la durée caractéristique du circuit RC pour limiter autant que possible l'effet « dent de scie ».
- ♦ Il est possible de mettre un passe-bas en sortie de ce montage pour filtrer les « dents de scie ».

$II \cdot 3 \cdot ii - sans seuil$

★ circuit à connaître

- * représentation graphique
- ♦ Comme précédemment, la sortie de ce montage ne présente aucune surprise comme le montre la simulation ci-dessous :

♦ Il faut malgré tout faire attention, en hautes fréquences, aux défauts de l'AO.

Circuits électroniques

Au niveau du cours

- * Programme concerné
- ♦ Programme de 1^{re} année :
 - → IV.B. Réalisation de fonctions élémentaires.
- ♦ Programme de 2^e année :
 - → II.4. Multivibrateur astable.
 - * Les définitions
- ♦ Sont à savoir :
 - → amplificateur opérationnel, entrée inverseuse, entrée non inverseuse, borne de sortie;
 - → régime linéaire, régime de saturation / de commutation;
 - → tension de saturation;
 - → tension de décallage, courants de polarisation, résistance d'entrée / de fuite / de sortie;
 - → slew rate, limitation en amplification;
 - → amplification complexe d'un AO, amplification statique d'un AO;
 - → filtre de Wien:
 - → diode, tension de seuil;
 - → modèle linéaire d'une diode, diode idéale à tension de seuil non nul, diode idéale;
 - → diode passante / bloquée;
 - → redresseur, détecteur de crête;
 - → transformateur d'isolement.
 - * Les grandeurs
- ♦ Connaître les valeurs de :
 - → tension de saturation d'un AO, l'intensité des courants de polarisation, amplification statique;
 - → tension de seuil d'une diode.
 - **★** Les lois
- ♦ Sont à connaître :
 - \rightarrow la relation entre le potentiel complexe de sortie $V_{\rm s}$ et la tension d'entrée $\underline{\varepsilon}$;
 - \rightarrow les relations entre $v_s(t)$ et $\varepsilon(t)$ pour un AO idéal lors des fonctionnements linéaire et non linéaire;
 - → les comportements passant et bloqué d'une diode modélisée.
 - * la phénoménologie
- ♦ Connaître :
 - → le principe de fonctionnement d'un AO;
 - → le principe de fonctionnement d'une diode;
 - → les montages suiveur, amplificateur inverseur et non inverseur, intégrateur, dérivateur, comparateur simple, comparateur à hystérésis;
 - → le schéma de principe du montage astable comprenant un comparateur et un intégrateur;
 - → les modèles électrocinétiques équivalents de la diode;
 - → les montages redresseur simple alternance avec / sans seuil et double alternance avec seuil.

Au niveau des savoir-faire

* outils mathématiques

♦ Connaître la condition de stabilité d'une équation différentielle linéaire du 2^e ordre.

* petits gestes

♦ Savoir:

- → appliquer la méthode d'étude des circuits non linéaires (AO en régime de saturation ou diode);
- → trouver si un circuit à AO est *a priori* en régime linéaire ou pas.

* exercices classiques

♦ Savoir:

- → retrouver **très** rapidement (ou connaître) les relations sortie / entrée des montages usuels à AO;
- → prévoir rapidement le régime de fonctionnement d'un AO dans les cas simples (une seule rétroaction);
- → retrouver des conditions d'oscillations spontanées.