Semana 1: ANÁLISIS VECTORIAL

$$A = V_x = V \cdot \cos \theta$$

$$B = V_v = V.Sen \theta$$

$$\vec{R} = \vec{V}$$

Resultante:

$$R = \sqrt{A^2 + B^2 + 2 \cdot A \cdot B \cdot \cos \theta}$$

Vector unitario:

$$\vec{\mu}_V = \frac{\vec{V}}{|\vec{V}|}$$

Producto Punto o producto escalar: $\vec{A} \cdot \vec{B} = A.B. \cos(\theta)$

$$Si: \vec{A} \perp \vec{B} = 0$$

Producto vectorial: $|\vec{A} \times \vec{B}| = A.B. \operatorname{sen}(\theta)$

$$Si: \vec{A}//\vec{B} => |\vec{A} \times \vec{B}| = 0$$

Componentes rectangulares:

$$(a; b; c) = a\hat{\imath} + b\hat{\jmath} + c\hat{k}$$

Módulo del vector:

$$|\vec{V}| = \sqrt{a^2 + b^2 + c^2}$$

SEMANA 2: MOVIMIENTO EN UNA DIMENSIÓN

$$d = v.t$$

Tiempo	Tiempo	Tiempo
encuentro	alcance	cruce
$t_e = \frac{d}{V_A + V_B}$	$t_a = \frac{d}{V_A - V_B}$	$L_1 + L_2 = V.t$

	MRUV	\mathbf{CLV}
N°		
	$v_F = v_o + at$	$v_F = v_o \pm gt$
1	1 0	1 0
	$v_F^2 = v_0^2 + 2ad$	$v_F^2 = v_o^2 \pm 2gh$
2	1 0	1 0 - 3
	at^2	gt^2
3	$d = v_o.t + \frac{at^2}{2}$	$h = v_o.t \pm \frac{gt^2}{2}$
	$(v_o + v_F)$	$(v_o + v_F)$
4	$d = \left(\frac{v_o + v_F}{2}\right)t$	$\boldsymbol{h} = \left(\frac{\boldsymbol{v}_o + \boldsymbol{v}_F}{2}\right) \boldsymbol{t}$
	. 1	. 1
5	$d_n = v_o \pm \frac{1}{2}a(2n-1)$	$h_n = v_o \pm \frac{1}{2}g(2n-1)$

SEMANA 3: MOVIMIENTO EN EL PLANO

$$D_{max} = \frac{{V_0}^2 sen(2\theta)}{a} \qquad H_{m\acute{a}x} = \frac{{V_0}^2 sen^2\theta}{2a}$$

$$H_{m\acute{a}x} = \frac{{V_0}^2 sen^2 heta}{2g}$$

$$t_{v}=rac{2V_{0}sen heta}{ ext{g}}$$
 $Tg heta=rac{4H_{mcute{a}x}}{D_{mcute{a}x}}$ CONVERSIONES

Semana 4: CONDICIONES PARA EL EQUILIBRIO DE UNA PARTÍCULA.

T: tensión ; P: peso ; N: normal

$$peso = m.g$$

$$\mathbf{fr} = \boldsymbol{\mu}.\,\mathbf{N}$$
 $\mu_S \ge \mu_K \ge 0$

 μ_S : coeficiente estático (reposo)

 μ_K : coeficiente cinético (movimiento)

Fuerza en un resorte $F_k = k.x$

$$F_k = k.x$$

Primera condición de equilibrio $\sum \vec{F} = 0$

(Estático): reposo, inminente movimiento o a punto de moverse.

(Cinético): velocidad constante.

Segunda condición de equilibrio (rotacional): $\sum \tau = \sum M = 0$ $\mathbf{M}(+) = \mathbf{M}(-) \quad ; \qquad \mathbf{M} = F.d$

Semana 5: DINÁMICA LINEAL

$$\sum \mathbf{F} = \mathbf{m}. \mathbf{a}$$
 => $F_{favor} - F_{contra} = \mathbf{m}. \mathbf{a}$

$$F_c = \mathbf{m}.\,\vec{\mathbf{a}}_c$$

$$a_c = \frac{V^2}{R}$$
 ; $a_c = \omega^2 . R$

(a: aceleración del ascensor) Ascensor sube: (N-mg)=m.a

Ascensor baja: (mg-N)=m.a

Semana 6: TRABAJO Y ENERGÍA

$$W = F.d$$

Trabajo como Producto Escalar:

$$W = \overrightarrow{F} \cdot \overrightarrow{d} = F \cdot d \cdot \cos \theta$$

Energía como Calor 1 J = 0,24 cal1 cal = 4,18 J

$$E_c = \frac{1}{2}mv^2$$

$$E_{PG} = mgh$$

$$E_{Pe} = \frac{1}{2}Kx^2$$

$$E_M = E_K + E_{PG} + E_{Pe}$$

LEY DE CONSERVACIÓN DE ENERGÍA

$$E_{inicial} = E_{final}$$

Trabajo de una fuerza no conservativa (trabajo de la fricción)

$$W_{FNC} = \Delta E_M$$

Potencia

$$P = \frac{W}{t} = \frac{F \cdot d}{t} = F \cdot v$$
 (v: constante)

Eficiencia

$$\eta = \frac{P_{util}}{P_{total}}$$
 $\eta = \frac{P_{util}}{P_{total}} \times 100\%$

Como $P_{Util} + P_{perdida} = P_{Total}$

Profesora: Virginia Melina Soto Quispe

FORMULARIO FÍSICA: CEPRUNSA 2021

Semana 7: ESTÁTICA DE FLUIDOS

Densidad

Presión

Presión Hidrostática

$$\rho = \frac{masa}{volumen}$$

$$P = \frac{F}{\Lambda}$$

$$P_h = \rho. g. h$$

$$P_{abs} = P_{atm} + P_h$$

$$P_{abs} = P_{barom\acute{e}trica} + P_{manom\acute{e}trica}$$

EMPUJE $E = \rho_L g V_s$

Semana 8: TERMOMETRÍA

CONVERSIONES

$$\frac{{}^{\circ}C}{5} = \frac{{}^{\circ}F - 32}{9} = \frac{K - 273}{5} = \frac{K - 492}{9}$$

$$K = C + 273$$

 $R = F + 460$

"en" **VARIACIONES**

$$\frac{\Delta^{\circ}C}{5} = \frac{\Delta^{\circ}F}{9} = \frac{\Delta K}{5} = \frac{\Delta R}{9}$$

$$\Delta C = \Delta K$$

$$\Delta F = \Delta R$$

DILATACIÓN LINEAL

DILATACIÓN SUPERFICIAL

Semana 9: CALORIMETRÍA

Calor sensible: ✓ Unidad

 $\Delta \mathbf{L} = \mathbf{L_0} \cdot \boldsymbol{\alpha} \cdot \Delta \mathbf{T}$

$$Q_s = m \cdot c_e \cdot \Delta T$$
cal g $\left(\frac{\text{cal}}{\sigma^2 C}\right)$ °C

 $C = m.c_e$

Calor de Cambio de fase:

Q = m.L

0°C $L_f = 80 \ cal/g$

Semana 10: TERMODINÁMICA

Ecuación de estado

Ecuación de procesos

100 °C

 $L_v = 540 \ cal/g$

$$P \cdot V = \text{n.R.T}$$

$$R = 8.31 \frac{J}{\text{mol.K}}$$

$$\frac{P_i \cdot V_i}{T_i} = \frac{P_f \cdot V_f}{T_f}$$

EFICIENCIA DE UNA MÁQUINA TÉRMICA (η):

Maq. Irreversible (existe)

 $\eta_{REAL} < \eta_{IEAL}$ Maq. Reversible (ideal)

 $\eta_{REAL} = \eta_{IDEAL}$

Maq. Imposible (no existe) $\eta_{REAL} > \eta_{IDEAL}$

Semana 11: ELECTRODINÁMICA

Carga eléctrica: Q = n.eIntensidad de corriente: Q = I.tLev de Pouillet: Ley de Ohm: V = I.RP = V.IPotencia eléctrica:

E = P.tEnergía eléctrica:

 $e = -1,6 \times 10^{-19} C$

POTENCIA CONSUMIDA

$P = I^2. R = \frac{v}{R}$

 $\mathbf{E} = \mathbf{Q}$

$$Q = I^2. R. t = \frac{V^2}{R}. t$$

Semana 12: ELECTROMAGNETISMO Campo magnético

 $\mu = 4\pi \times 10^{-7} T m A^{-1}$

EN EL CENTRO DE **UNA ESPIRA**

FUERZA MAGNÉTICA

CARGA DENTRO DE UN CAMPO MAGNÉTICO

CONDUCTOR DENTRO DE

UN CAMPO MAGNÉTICO

 $F = I.L.B. \operatorname{sen} \theta$

FLUJO MAGNÉTICO

 $\phi = B.A$

INDUCCIÓN ELECTROMAGNÉTICA

Como: $\phi = B.A$

PREFIJOS DE LAS UNIDADES

c=centi = 10 ⁻²	k=kilo = 10 ³		
m=mili = 10 ⁻³	M=mega = 10 ⁶		
μ =micro = 10 ⁻⁶	G=giga = 10 ⁹		

TRIÁNGULOS NOTABLES

UNIDADES:

Medida					
d = Distancia		m		metro	
t = Tiempo		S	segundo		
v = Velocidad		m/s	S		
a = Aceleración					
F = Fuerza			newton		
m = Masa				kilogramo	
W = Trabajo				joule	
E = Energía		J	joule		
P = Potencia		W	watts		
Q = calor		J, ca	ı	1 J = 0,24 cal	
T = temperatura		K		kelvin	
Ph = presión hidrostática		Pa		pascal	
I = intensidad de corriente		Α		amperio	
q = carga eléctrica		С		coulomb	
R = resistencia eléctrica		Ω		ohmio	
V = voltaje, diferencia de potencial		V		voltio	
B = campo magnético		Т		tesla	
ω = Velocidad angular rad/s					
W=Trabajo	J			joule	
E=Energía	J			joule	
P=Potencia	W			watts	
au = torque M=momento	au = torque M=momento N.m				
ρ: resistividad	Ω . m	m			