Especificación de las Máquinas de Turing

Teoría de la Computación Universidad ORT Uruguay

Agosto 2024

Componentes.

Memoria:

Es una cinta infinita, dividida en casilleros, cada uno de los cuales está ocupado por un símbolo. Los símbolos conforman un alfabeto finito \sum que incluye al menos dos símbolos, uno de los cuales es distinguido, será representado #, y denominado blanco. En cada momento de la ejecución de una máquina la cinta contendrá un número finito de símbolos distintos de #.

Para saber en que posición de la cinta nos encontramos, contamos con un *cabezal lector*. El símbolo que se encuentra bajo el cabezal lector se le puede llamar símbolo *corriente*.

Control:

El control de ejecución está dado por una **tabla** cuya *clave* es un *estado* y el dato asociado es una tabla de ramas.

Los estados constituyen un conjunto finito que contiene dos elementos distinguidos i (init) y h (halt), llamados respectivamente el estado inicial y el estado terminal de la máquina. El estado terminal no aparece como clave de ninguna entrada de la tabla.

Una tabla de ramas tiene como clave un símbolo del alfabeto o un 'comodín' (el cual es un símbolo distinguido agregado al alfabeto, por ejemplo '_') y el dato asociado a la clave de esta tabla, es una pareja formada por una acción y un nuevo estado.

Las acciones son las siguientes: $l, r y \sigma$ donde σ es cualquier símbolo, con los siguientes significados respectivos:

- Mover el cabezal lector a la izquierda.
- Mover el cabezal lector a la derecha.
- Sobreescribir el símbolo corriente por σ y dejar el cabezal lector sobre el símbolo escrito.

Ejemplo de L_{σ} :

```
i: { \_ \rightarrow l, loop } loop: {\sigma \rightarrow \sigma, h; \_ \rightarrow l, loop }
```

Semántica Operacional.

Ejecución: La notación $T \triangleright m \triangleright T'$ significa que la máquina m teniendo como entrada a la cinta T, termina su ejecución dejando como salida la cinta T'. Se denota i para el estado inicial y h para el estado final.

$$\operatorname{exec} \frac{T \xrightarrow{m} (T', h)}{T \triangleright m \triangleright T'}$$

<u>Iteración</u>: La notación $T \xrightarrow{m} (T', q')$ significa que la máquina M comenzando en el estado q y con la cinta T, llega en cero o varios pasos de ejecución a la cinta T' y en el estado q'. Utilizamos también t(k) para denotar el lookup de la clave k en la tabla t.

zero
$$\frac{}{T \xrightarrow{m}_{h} (T, h)}$$
 succ $\frac{T \xrightarrow{m}_{m(q)} (T'', q'') \qquad T'' \xrightarrow{m}_{q''} (T', q')}{T \xrightarrow{m}_{q} (T', q')}$

<u>Paso</u>: Finalmente un paso de ejecución se denota como $T \to (T', q')$, donde T es la cinta inicial, \bar{b} es una tabla de ramas, T' y q' son respectivamente la cinta y el estado al que da lugar la ejecución de una acción de la *Máquina de Turing*.

left
$$\frac{1}{((izq, s'), s, der) \xrightarrow{\overline{b}} ((izq, s', (s, der)), q')} \overline{b}(s) = (l, q')$$

right
$$\frac{1}{(izq, s, (s', der))} \xrightarrow{\overline{b}} \frac{((izq, s), s', der), q')}{\overline{b}} \overline{b}(s) = (r, q')$$

write
$$\frac{1}{(izq, s, der) \xrightarrow{\bar{b}} ((izq, \sigma, der), q')} \bar{b}(s) = (\sigma, q')$$