5. Интеграл ФНП

5.1. Общая схема интегрирования

Постановка задачи.

В некоторой области Ω (дуга кривой, участок поверхности, тело и т. д.) распределена или действует непрерывно некоторая функция скалярная g или векторная \overrightarrow{G} , то есть определены g(M) или \overrightarrow{G} $\forall M \in \Omega$

 $\it Ex.$ Область Ω - дуга кривой $\it l: y = y(x)$

Скалярная функция g(M) - плотность в точке M

 $\mathit{Ex}.$ Область Ω - трубка в \mathbb{R}^3

Векторная величина $\overrightarrow{G}(M)$ - скорость жидкой частицы, движущейся по трубке

Из всех векторов \overrightarrow{v} (для всех $M \in \Omega$) складывается «поле жидких скоростей»

Ex. Область Ω - кривая, по которой движется точка M под действием силы $\overrightarrow{G}(M)$

Задача интегрирования - найти суммарное содержание скалярной величины или действие векторной величины в области Ω

<u>Схема</u> Величины g(M) и $\overrightarrow{G}(M)$, меняясь от точки к точке заменяются на квазипостоянные на малых (элементарных) участках $d\omega$

Так как g(M) или $\overrightarrow{G}(M)$ должны быть непрерывны на Ω , то на малом участке $d\omega$ их изменение незначительно и значение функции можно считать почти постоянным, приняв за это значение какое-либо среднее $g_{\text{ср.}}(M)$, $\overrightarrow{G_{\text{ср.}}}(M)$

Тогда элементарное содержание g(M) в $d\omega$ будет отличаться от среднего содержания, то есть $g_{\rm cp.}d\omega$ на б. м. большего порядка

Ex. Проиллюстрируем на примере $\int_a^b f(x)dx$

S - площадь по наибольшей границе, σ - площадь по наименьшей границе, $S_{ ext{трап.}}$ - «истинная» площадь

Т. к. f(x) непр. $\forall x \in [a, b]$, то $\Delta f \stackrel{\Delta x \to 0}{\to} 0$

Для простоты рассмотрим монотонно возрастающую f(x)

Хотим доказать, что $S-S_{\rm rpan.}$ - б. м. большего порядка, чем $S_{\rm rpan.}$ или S

$$0 \leq S - S_{\rm rpan.} \leq dx \Delta y$$

Сравним
$$\frac{dx\Delta y}{S} = \frac{dx\Delta y}{dxf(x+\Delta x)} = \frac{\Delta y}{\text{огр.}} \xrightarrow{\Delta x \to 0} 0$$
 таким образом $S - S_{\text{трап.}} = 0(S_{\text{трап.}})$

Смысл интеграла в случае векторной функции $\overrightarrow{G}(M)$

Будем интегрировать только скалярные выражения вида $\overrightarrow{G}(M)\cdot d\overrightarrow{\omega}$ - скал. произведение векторов, где $d\overrightarrow{\omega}$ - ориентированный элемент $d\omega$

Ex. Сила $\overrightarrow{F}(M)$ перемещает точку M вдоль плоской кривой l. При этом сила совершает работу по перемещению (работа A - скалярная величина)

Известна формула для $\overrightarrow{F} = const$ и перемещения \overrightarrow{s} по прямой: $A = \overrightarrow{F} \cdot \overrightarrow{s}$

Разобьем дугу на элементы $dl \approx ds$ и ориентируем их (зададим направление перемещению ds) $dl = ds + o(dl), \ d\overrightarrow{s}$ - вектор элем. перемещения, как правило, ds направлен согласовано с Ox Элемент работы $dA = \overrightarrow{F} \cdot d\overrightarrow{s} = (F_x, F_y) \cdot (dx, dy) \stackrel{\text{обозн.}}{=} (P, Q) \cdot (dx, dy) = Pdx + Qdy$ - скаляр. Вся работа равна $A = \int dA$

Nota. Ориентированный участок поверхности $d\overrightarrow{\sigma}$ - это размер участка $d\sigma$, умноженный на вектор нормали к участку \overrightarrow{n} , то есть $d\overrightarrow{\sigma} = \overrightarrow{n} d\sigma$

Итак. Схема интегрирования:

- $\mathbf{1}^*$ Дробление области Ω на элементы $d\omega$
- ${f 2}^*$ Выбор постоянного значения функции на $d\omega$, то есть $g_{
 m cp.}$ или $\overrightarrow{G_{
 m cp.}}$
- ${f 3^*}$ Составление подынтегрального выражения $g_{
 m cp.} d\omega$ или $\overrightarrow{G_{
 m cp.}} d\overrightarrow{\omega}$
- $\mathbf{4}^*$ «Суммирование» элементарных величин $\int \overrightarrow{g} d\omega$ или $\int \overrightarrow{G} d\overrightarrow{\omega}$

5.2. Классификация интегралов

1* По размерности Ω

$$n=1$$
: * прямая (опред. интеграл \int_a^b) $n=2$: * плоскость (двойной интеграл \iint_D)

* кривая (криволинейный интеграл \int_A^B)

* поверхность, не криволинейная (поверхностный интеграл ()

n=3: * пространство \mathbb{R}^3 (тройной \iiint_V или \iiint_T)

2* По виду функции

скалярная g(M)

векторная $\overrightarrow{G}(M)$

n=1: определенный, криволинейный I рода

n – 1. определенный, криволиненный

криволин. II рода (интегралы в проекциях)

n=2: двойной, поверхн. І рода

поверхн. II рода

n=3: тройной