Repetitionsuppgifter – Matematik 2b

Fabian Tingstrand

11 juni 2025

1 Analys av andragradsfunktioner

- **1.** För funktionen $f(x) = x^2 6x + 5$:
 - a) Bestäm funktionens nollställen
 - b) Bestäm symmetrilinjen
 - c) Bestäm extrempunkten och avgör om det är ett maximum eller minimum
- 2. Nedan visas grafen till en andragradsfunktion $f(x) = ax^2 + bx + c$:

- a) Bestäm funktionens nollställen
- b) Bestäm symmetrilinjen
- c) Bestäm funktionsuttrycket $f(x) = ax^2 + bx + c$
- **3.** För funktionen $f(x) = 3x^2 + 6x 2$:
 - a) Bestäm funktionens nollställen
 - b) Bestäm symmetrilinjen
 - c) Bestäm extrempunkten och avgör om det är ett maximum eller minimum
- 4. För funktionen $f(x) = -x^2 + 4x + 5$:
 - a) Bestäm funktionens nollställen
 - b) Bestäm symmetrilinjen
 - c) Bestäm extrempunkten och avgör om det är ett maximum eller minimum

5. Nedan visas grafen till en andragradsfunktion $f(x) = ax^2 + bx + c$:

- a) Bestäm funktionens nollställen
- b) Bestäm symmetrilinjen
- c) Bestäm funktionsuttrycket $f(x) = ax^2 + bx + c$
- **6.** Givet är att en andragradsfunktion f(x) har nollställena x = -2 och x = 3, och att f(0) = -6.
 - a) Bestäm funktionsuttrycket $f(x) = ax^2 + bx + c$
 - b) Bestäm symmetrilinjen
 - c) Bestäm extrempunkten och avgör om det är ett maximum eller minimum
- 7. Givet är att en andragradsfunktion $f(x) = ax^2 + bx + c$ har en extrempunkt i (1, -4) och att grafen skär y-axeln i punkten (0, 2).
 - a) Bestäm funktionsuttrycket $f(x) = ax^2 + bx + c$
 - b) Bestäm funktionens nollställen
 - c) Bestäm symmetrilinjen

2 Problemlösning med andragradsfunktioner

- 1. En boll kastas rakt uppåt från marken med en utgångshastighet på 20 m/s. Bollens höjd h (i meter) efter t sekunder ges av funktionen $h(t) = 20t 5t^2$.
 - a) När når bollen sin högsta höjd?
 - b) Hur hög når bollen som högst?
 - c) När träffar bollen marken igen?
- 2. En rektangel har omkretsen 24 cm. Låt x vara rektangelns bredd.
 - a) Uttryck rektangelns längd som en funktion av x.
 - b) Uttryck rektangelns area A som en funktion av x.
 - c) Vilka värden kan x anta?
 - d) För vilket värde på x blir arean maximal?
 - e) Vad är den maximala arean?