ALGORITHMS \$ EFFICIENT

CIENTALGORITHMS \$ EFFI

EFFICIENTALGORITHMS \$

ENTALGORITHMS \$ EFFICI

FFICIENTALGORITHMS \$ E

FICIENTALGORITHMS \$ E

GORITHMS \$ EFFICIENTAL

HMS \$ EFFICIENTALGORIT

Divide & Conquer

11 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 5: Divide & Conquer

- **1.** Know the steps of the Divide & Conquer paradigm.
- **2.** Be able to solve simple Divide & Conquer recurrences.
- 3. Be able to design and analyze new algorithms using the Divide & Conquer paradigm.
- **4.** Know the performance characteristics of selection-by-rank algorithms.

Outline

5 Divide & Conquer

- 5.1 Divide & Conquer Recurrences
- 5.2 Order Statistics
- 5.3 Linear-Time Selection
- 5.4 Fast Multiplication
- 5.5 Majority
- 5.6 Closest Pair of Points in the Plane

Divide and conquer

Divide and conquer idiom (Latin: divide et impera)
to make a group of people disagree and fight with one another
so that they will not join together against one (Merriam-Webster Dictionary)

→ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:

- **1.** Break problem into smaller, independent subproblems. (Divide!)
- **2.** Recursively solve all subproblems. (Conquer!)
- **3.** Assemble solution for original problem from solutions for subproblems.

Divide and conquer

Divide and conquer idiom (Latin: divide et impera)
to make a group of people disagree and fight with one another
so that they will not join together against one (Merriam-Webster Dictionary)

in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:

- **1.** Break problem into smaller, independent subproblems. (Divide!)
- 2. Recursively solve all subproblems. (Conquer!)
- **3.** Assemble solution for original problem from solutions for subproblems.

Examples:

- ► Mergesort
- ▶ Quicksort
- Binary search
- (arguably) Tower of Hanoi

5.1 Divide & Conquer Recurrences

Back-of-the-envelope analysis

- before working out the details of a D&C idea, it is often useful to get a quick indication of the resulting performance
 - don't want to waste time on something that's not competitive in the end anyways!
- ▶ since D&C is naturally <u>recursive</u>, running time often not obvious instead: given by a recursive equation

Back-of-the-envelope analysis

- before working out the details of a D&C idea, it is often useful to get a quick indication of the resulting performance
 - don't want to waste time on something that's not competitive in the end anyways!
- since D&C is naturally recursive, running time often not obvious instead: given by a recursive equation
- unfortunately, rigorous analysis often tricky
 - ► Remember mergesort?

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

$$\Rightarrow C(n) = 2n |\lg(n)| + 2n - 4 \cdot 2^{\lfloor \lg(n) \rfloor}$$

$$C(n) = 2n \lfloor \lg(n) \rfloor + 2n - 4 \cdot 2^{\lfloor \lg(n) \rfloor}$$

= $\Theta(n \log n)$

Back-of-the-envelope analysis

- before working out the details of a D&C idea, it is often useful to get a quick indication of the resulting performance
 - don't want to waste time on something that's not competitive in the end anyways!
- ► since D&C is naturally recursive, running time often not obvious instead: given by a recursive equation
- unfortunately, rigorous analysis often tricky
 - ► Remember mergesort?

▶ the following method works for many typical cases to give the right **order of growth**

The Master Method

Mersesort

► Assume a stereotypical D&C algorithm

a=2 b=2

• a recursive calls on (for some constant $a \ge 1$)

f(u) = Zn

- subproblems of size n/b (for some constant b > 1)
- ▶ with non-recursive "conquer" effort f(n) (for some function $f : \mathbb{R} \to \mathbb{R}$)
- ▶ base case effort d (some constant d > 0)

ben care
$$\left(n=1 \implies d=0\right)$$

$$n=2 \implies d=2$$

The Master Method

- ► Assume a stereotypical D&C algorithm
 - ▶ *a* recursive calls on (for some constant $a \ge 1$)
 - subproblems of size n/b (for some constant b > 1)
 - ▶ with non-recursive "conquer" effort f(n) (for some function $f : \mathbb{R} \to \mathbb{R}$)
 - ▶ base case effort *d*

(some constant d > 0)

$$Arr$$
 running time $T(n)$ satisfies
$$T(n) = \begin{cases} a \cdot T\left(\frac{n}{b}\right) + f(n) & n > 1 \\ d & n \leq 1 \end{cases}$$

The Master Method

- ► Assume a stereotypical D&C algorithm
 - ightharpoonup a recursive calls on (for some constant $a \ge 1$)
 - subproblems of size n/b (for some constant b > 1)
 - ▶ with non-recursive "conquer" effort f(n) (for some function $f : \mathbb{R} \to \mathbb{R}$)
 - base case effort d (some constant d > 0)

$$ightharpoonup \text{running time } T(n) \text{ satisfies}$$

$$T(n) = \begin{cases} a \cdot T\left(\frac{n}{b}\right) + f(n) & n > 1 \\ d & n \leq 1 \end{cases}$$

Theorem 5.1 (Master Theorem)

With $c := \log_h(a)$, we have for the above recurrence:

(a)
$$T(n) = \Theta(n^c)$$
 if $f(n) = O(n^{c-\varepsilon})$ for constant $\varepsilon > 0$.

(b)
$$T(n) = \Theta(n^c \log n)$$
 if $f(n) = \Theta(n^c)$.

(c)
$$T(n) = \Theta(f(n))$$
 if $f(n) = \Omega(n^{c+\varepsilon})$ for constant $\varepsilon > 0$ and f satisfies the regularity condition $\exists n_0, \alpha < 1 \ \forall n \ge n_0 : a \cdot f\left(\frac{n}{b}\right) \le \alpha f(n)$.

$$= a \left(aT \left(\frac{n}{b^2} \right) + f(\frac{n}{b}) \right) + f(n)$$

$$= a^2 \cdot T \left(\frac{n}{b^2} \right) + f(n) + a f(\frac{n}{b})$$

$$= a^3 \cdot T \left(\frac{n}{b^3} \right) + f(n) + a f(\frac{n}{b}) + a^2 \cdot f(\frac{n}{b^2})$$

$$= a^3 \cdot T \left(\frac{n}{b^3} \right) + f(n) + a \cdot f(\frac{n}{b}) + a^2 \cdot f(\frac{n}{b^2})$$

$$\vdots$$

$$= a^3 \cdot T \left(\frac{n}{b^3} \right) + f(n) + a \cdot f(\frac{n}{b}) + a^2 \cdot f(\frac{n}{b^2})$$

$$\vdots$$

$$= a^3 \cdot T \left(\frac{n}{b^3} \right) + f(n) + a \cdot f(\frac{n}{b}) + a^2 \cdot f(\frac{n}{b^2})$$

 $= \underbrace{a_{095}(n)}_{i=0} + \underbrace{a_{095}(n)}_{i=0} = \underbrace{a_{i}^{i} f(\frac{a}{5i})}_{i=0}$

elna en(n)

= lossias

 $T(u) = \alpha T(\frac{u}{b}) + f(u)$

Case 1: terms with

i near losp(n) dominate

Master Theorem - Intuition & Proof Idea

Figure 4.3 of Cormen et al. Introduction to Algorithms 4th ed.

$$f(u) = 2n$$

$$c = \log_{10}(a) = 1$$

$$f(u) \quad vs: \quad n^{c}$$

$$2n = \Theta(u^{c})$$

a= 6=2

 $T(a) = 2n + 2T(\frac{a}{2})$

$$T(u) = \Theta(f(u) \cdot los u)$$

$$= \Theta(u los u)$$

When it's fine to ignore floors and ceilings

The polynomial-growth condition

▶ $f: \mathbb{R}_{>0} \to \mathbb{R}$ satisfies the *polynomial-growth condition* if

$$\exists n_0 \ \forall C \geq 1 \ \exists D > 1 \quad \forall n \geq n_0 \ \forall c \in [1,C] \ : \ \frac{1}{D} f(n) \leq f(cn) \leq D f(n)$$

When it's fine to ignore floors and ceilings

The polynomial-growth condition

▶ $f: \mathbb{R}_{>0} \to \mathbb{R}$ satisfies the *polynomial-growth condition* if

$$\exists n_0 \ \forall C \geq 1 \ \exists D > 1 \quad \forall n \geq n_0 \ \forall c \in [1,C] \ : \ \frac{1}{D} f(n) \leq f(cn) \leq D f(n)$$

- ▶ intuitively: increasing n by up to a factor C (and anywhere in between!) changes the function value by at most a factor D = D(C) (for sufficiently large n) zero allowed
- examples: $f(n) = \Theta(n^{\alpha} \log^{\beta}(n) \log \log^{\gamma}(n))$ for constants α , β , γ \rightarrow f satisfies the polynomial-growth condition

When it's fine to ignore floors and ceilings

The polynomial-growth condition

▶ $f: \mathbb{R}_{>0} \to \mathbb{R}$ satisfies the *polynomial-growth condition* if

$$\exists n_0 \ \forall C \ge 1 \ \exists D > 1 \quad \forall n \ge n_0 \ \forall c \in [1, C] : \frac{1}{D} f(n) \le f(cn) \le D f(n)$$

- intuitively: increasing n by up to a factor C (and anywhere in between!) changes the function value by at most a factor D = D(C) (for sufficiently large n) zero allowed
- examples: $f(n) = \Theta(n^{\alpha} \log^{\beta}(n) \log \log^{\gamma}(n))$ for constants α , β , γ \rightarrow f satisfies the polynomial-growth condition

Lemma 5.2 (Polynomial-growth master method)

If the toll function f(n) satisfies the polynomial-growth condition, then the Θ -class of the solution of a D&C recurrence remains the same when ignoring floors and ceilings on subproblem sizes.

A Rigorous and Stronger Meta Theorem

& exam

Theorem 5.3 (Roura's Discrete Master Theorem)

Let T(n) be recursively defined as

ined as
$$C(n) = d \cdot n + C(\frac{n}{5}) + C(\frac{n}{\frac{10}{7}})$$

$$b_n \qquad 0 \le n < n_0,$$

$$T(n) = \begin{cases} b_n & 0 \le n < n_0, \\ f(n) + \sum_{d=1}^{D} a_d \cdot T(\frac{n}{b_d} + r_{n,d}) & n \ge n_0, \end{cases}$$

where $D \in \mathbb{N}$, $a_d > 0$, $b_d > 1$, for $d = 1, \ldots, D$ are constants, functions $r_{n,d}$ satisfy $|r_{n,d}| = O(1)$ as $n \to \infty$, and function f(n) satisfies $\underline{f(n)} \sim B \cdot n^{\alpha} (\ln n)^{\gamma}$ for constants B > 0, α , γ . Set $H = 1 - \sum_{d=1}^{D} a_d (1/b_d)^{\alpha}$; then we have:

- (a) If H < 0, then $T(n) = O(n^{\tilde{\alpha}})$, for $\tilde{\alpha}$ the unique value of α that would make H = 0.
- **(b)** If H = 0 and $\gamma > -1$, then $T(n) \sim f(n) \ln(n)/\tilde{H}$ with constant $\tilde{H} = (\gamma + 1) \sum_{d=1}^{D} a_d b_d^{-\alpha} \ln(b_d)$.
- (c) If H=0 and $\gamma=-1$, then $T(n)\sim f(n)\ln(n)\ln(\ln(n))/\hat{H}$ with constant $\hat{H}=\sum_{d=1}^D a_d\ b_d^{-\alpha}\ln(b_d)$.
- (d) If H = 0 and $\gamma < -1$, then $T(n) = O(n^{\alpha})$.
- (e) If H > 0, then $T(n) \sim f(n)/H$.

4

5.2 Order Statistics

Selection by Rank

► Standard data summary of numerical data: (Data scientists, listen up!)

▶ mean, standard deviation

► min/max (range)

histograms

median, quartiles, other quantiles (a.k.a. order statistics)

easy to compute in $\Theta(n)$ time

? computable in $\Theta(n)$ time?

Selection by Rank

- ► Standard data summary of numerical data: (Data scientists, listen up!)
 - ▶ mean, standard deviation
 - ► min/max (range)
 - histograms
 - median, quartiles, other quantiles (a.k.a. order statistics)
- easy to compute in $\Theta(n)$ time
 - ? computable in $\Theta(n)$ time?

General form of problem: Selection by Rank

▶ **Given:** array A[0..n) of numbers and number $k \in [0..n)$.

- but 0-based & /counting dups
- ▶ **Goal:** find element that would be in position k if A was sorted (kth smallest element).
- ▶ $k = \lfloor n/2 \rfloor$ \leadsto median; $k = \lfloor n/4 \rfloor$ \leadsto lower quartile k = 0 \leadsto minimum; $k = n \ell$ \leadsto ℓ th largest

Quickselect

- ► Key observation: Finding the element of rank *k* seems hard. But computing the rank of a given element is easy!
- \rightarrow Pick any element A[b] and find its rank j.
 - ▶ j = k? \rightarrow Lucky Duck! Return chosen element and stop
 - ▶ j < k? \longrightarrow ... not done yet. But: The j + 1 elements smaller than $\leq A[b]$ can be excluded!
 - ▶ j > k? \leadsto similarly exclude the n j elements $\geq A[b]$

Quickselect

- ► Key observation: Finding the element of rank *k* seems hard.

 But computing the rank of a given element is easy!
- \rightsquigarrow Pick any element A[b] and find its rank j.

```
▶ j = k? \rightarrow Lucky Duck! Return chosen element and stop
```

- ▶ j < k? \longrightarrow ... not done yet. But: The j + 1 elements smaller than $\leq A[b]$ can be excluded!
- ▶ j > k? \longrightarrow similarly exclude the n j elements $\ge A[b]$
- ▶ partition function from Quicksort:
 - returns the rank of pivot
 - separates elements into smaller/larger
- → can use same building blocks

```
procedure quickselect(A[l..r), k)

if r - l \le 1 then return A[l]

b := \text{choosePivot}(A[l..r))

j := \text{partition}(A[l..r), b)

if j == k

return A[j]

else if j < k

quickselect(A[j + 1..n), k

else l

l

quickselect(A[0..j), k)
```

Quickselect – Iterative Code

Recursion can be replaced by loop (tail-recursion elimination)

```
procedure quickselect(A[1..r), k)
           if r - \ell \le 1 then return A[l]
2
           b := \text{choosePivot}(A[l..r))
3
           j := partition(A[1..r), b)
           if i == k
5
                return A[i]
           else if j < k
7
                quickselect(A[j+1..n), k AND A
8
           else //i > k
                quickselect(A[0..i), k)
10
```

```
procedure quickselectIterative(A[0..n), k)

l := 0; r := n

while r - l > 1

b := \text{choosePivot}(A[l..r))

j := \text{partition}(A[l..r), b)

if j \ge k then r := j - 1

return A[k]
```

- ▶ implementations should usually prefer iterative version
- ▶ analysis more intuitive with recursive version

Quickselect – Analysis

```
1 procedure quickselect(A[l..r), k)

2 if r - \ell \le 1 then return A[l]

3 b := \text{choosePivot}(A[l..r))

4 j := \text{partition}(A[l..r), b)

5 if j := k

6 return A[j]

7 else if j < k

8 quickselect(A[j+1..n), A-j-1)

9 else //j > k

10 quickselect(A[0..j), A)
```

- ► cost = #cmps
- ightharpoonup costs depend on n and k

Quickselect – Analysis

```
\begin{array}{ll} & \textbf{procedure} \ \text{quickselect}(A[l..r),k) \\ & \textbf{if} \ r-\ell \leq 1 \ \textbf{then} \ \textbf{return} \ A[l] \\ & \textbf{3} \qquad b := \text{choosePivot}(A[l..r)) \\ & \textbf{4} \qquad j := \text{partition}(A[l..r),b) \\ & \textbf{5} \qquad \textbf{if} \ j = k \\ & \qquad \qquad \textbf{return} \ A[j] \\ & \textbf{7} \qquad \textbf{else} \ \textbf{if} \ j < k \\ & \textbf{8} \qquad \qquad \text{quickselect}(A[j+1..n),k-j-1) \\ & \textbf{9} \qquad \textbf{else} \ / j > k \\ & \text{quickselect}(A[0..j),k) \\ \end{array}
```

- ightharpoonup cost = #cmps
- ightharpoonup costs depend on n and k
- ▶ worst case: k = 0, but always j = n 2 \Rightarrow each recursive call makes n one smaller at cost $\Theta(n)$
 - \rightarrow $T(n, k) = \Theta(n^2)$ worst case cost

Quickselect – Analysis

```
1 procedure quickselect(A[1..r), k)
       if r - \ell \le 1 then return A[t]
      b := \text{choosePivot}(A[l..r))
      j := partition(A[1..r), b)
      if i == k
           return A[i]
      else if i < k
           quickselect(A[i+1..n), k-i-1)
      else //i > k
           quickselect(A[0..i), k)
10
```

- \triangleright cost = #cmps
- costs depend on n and k
- ▶ worst case: k = 0, but always j = n 2
 - \rightarrow each recursive call makes *n* one smaller at cost $\Theta(n)$
 - \rightarrow $T(n,k) = \Theta(n^2)$ worst case cost

average case:

- \blacktriangleright let T(n,k) expected cost when we choose a pivot uniformly from A[0..n)
- \rightarrow formulate recurrence for T(n, k) similar to BST/Quicksort recurrence

formulate recurrence for
$$T(n,k)$$
 similar to BST/Quicksort recurrence
$$T(n,k) = \underbrace{n}_{r=0} + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

Pr [pivol rank r]

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

$$\blacktriangleright \operatorname{Set} \hat{T}(\underline{n}) = \max_{k \in [0..n]} T(n, k)$$

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} \underbrace{[r=k] \cdot 0}_{r=0} + \underbrace{[k < r] \cdot \underline{T(r,k)}}_{r=0} + \underbrace{[k > r] \cdot \underline{T(n-r-1,k-r-1)}}_{r=0}$$

$$\Rightarrow \text{ Set } \hat{T}(n) = \max_{k \in [0..n)} T(n,k)$$

$$\leqslant \max_{k \in [0..n]} \underbrace{\hat{T}(r,k)}_{r=0} \underbrace{\hat{T}(r,k)}_$$

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

$$\blacktriangleright \operatorname{Set} \hat{T}(n) = \max_{k \in [0..n)} T(n, k)$$

$$\rightarrow \hat{T}(n) \le n + \frac{1}{n} \sum_{r=0}^{n-1} \max{\{\hat{T}(r), \hat{T}(n-r-1)\}}$$

▶ analyze hypothetical, worse algorithm: if $r \notin [\frac{1}{4}n, \frac{3}{4}n)$, discard pivot and repeat with new one!

$$\rightarrow$$
 $\hat{T}(n) \leq \tilde{T}(n)$ defined by $\tilde{T}(n) \leq n + \frac{1}{2}\tilde{T}(n) + \frac{1}{2}\tilde{T}(\frac{3}{4}n)$

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

$$\blacktriangleright \operatorname{Set} \hat{T}(n) = \max_{k \in [0..n)} T(n, k)$$

$$\rightarrow \hat{T}(n) \le n + \frac{1}{n} \sum_{r=0}^{n-1} \max{\{\hat{T}(r), \hat{T}(n-r-1)\}}$$

▶ analyze hypothetical, worse algorithm: if $r \notin [\frac{1}{4}n, \frac{3}{4}n)$, discard pivot and repeat with new one!

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

 $\blacktriangleright \operatorname{Set} \hat{T}(n) = \max_{k \in [0..n)} T(n, k)$

$$\rightarrow \hat{T}(n) \le n + \frac{1}{n} \sum_{r=0}^{n-1} \max{\{\hat{T}(r), \hat{T}(n-r-1)\}}$$

▶ analyze hypothetical, worse algorithm: if $r \notin [\frac{1}{4}n, \frac{3}{4}n)$, discard pivot and repeat with new one!

$$ightharpoonup \hat{T}(n) \leq \tilde{T}(n)$$
 defined by $\tilde{T}(n) \leq n + \frac{1}{2}\tilde{T}(n) + \frac{1}{2}\tilde{T}(\frac{3}{4}n)$
 $ightharpoonup \tilde{T}(n) \leq 2n + \tilde{T}(\frac{3}{4}n)$

► Master Theorem Case 3: $\tilde{T}(n) = \Theta(n)$

Quickselect Discussion

- \bigcap $\Theta(n^2)$ worst case (like Quicksort)
- no extra space needed
- adaptations possible to find several order statistics at once

Quickselect Discussion

- \bigcap $\Theta(n^2)$ worst case (like Quicksort)
- expected $cost \Theta(n)$ (best possible)
- no extra space needed
- adaptations possible to find several order statistics at once
- expected cost can be further improved by choosing pivot from a small sorted sample
 - \rightarrow asymptotically optimal randomized cost: $n + \min\{k, n k\}$ comparisons in expectation achieved asymptotically by the *Floyd-Rivest algorithm*

5.3 Linear-Time Selection

Interlude – A recurring conversation

Cast of Characters:

Hi! I'm a computer science practitioner.

I love algorithms for the sometimes miraculous applications they enable. I care for **things** I can implement and **that actually work in practice**.

Hi! I'm a theoretical computer science researcher.

I find beauty in elegant and **definitive** answers to questions about complexity. I care for **eternal truths** and mathematically proven facts; **asymptotically optimal** is what counts! (Constant factors are secondary.)

Quickselect Disagreements

For practical purposes, (randomized) Quickselect is perfect.

e.g. used in C++ STL std::nth_element

Quickselect Disagreements

For practical purposes, (randomized) Quickselect is perfect.

e.g. used in C++ STL std::nth_element

Yeah . . . maybe. But can we select by rank in O(n) deterministic **worst case** time?

Better Pivots

It turns out, we can!

- ► All we need is better pivots!
 - ► If pivot was the exact median, we would at least halve #elements in each step
 - ▶ Then the total cost of all partitioning steps is $\leq 2n' = \Theta(n)$.

$$\sum_{i=0}^{n} x^{i} \leq \sum_{i=0}^{\infty} x^{i} = \frac{1}{1-x} \quad |x| < 1$$

Better Pivots

It turns out, we can!

- ► All we need is better pivots!
 - If pivot was the exact median, we would at least halve #elements in each step
 - ▶ Then the total cost of all partitioning steps is $\leq 2n = \Theta(n)$.

But: finding medians is (basically) our original problem!

Better Pivots

It turns out, we can!

- ► All we need is better pivots!
 - ► If pivot was the exact median, we would at least halve #elements in each step
 - ▶ Then the total cost of all partitioning steps is $\leq 2n = \Theta(n)$.

But: finding medians is (basically) our original problem!

It totally suffices to find an element of rank αn for $\alpha \in (\varepsilon, 1 - \varepsilon)$ to get overall costs $\Theta(n)$!

```
procedure choosePivotMoM(A[1..r))
       m := |n/5|
2
       for i := 0, ..., m-1
            sort(A[5i..5i + 4])
           // collect median of 5
5
            Swap A[i] and A[5i + 2]
6
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
8
9 procedure quickselectMoM(A[1..r), k)
       if r - \ell \le 1 then return A[l]
10
       b := \text{choosePivotMoM}(A[l..r))
11
       i := \overline{\text{partition}(A[l..r), b)}
12
       if j == k
13
            return A[i]
14
       else if i < k
15
            quickselectMoM(A[j+1..n), k \sim M)
16
       else // i > k
17
            quickselectMoM(A[0..i), k)
18
```

```
procedure choosePivotMoM(A[1..r))
       m := |n/5|
2
       for i := 0, ..., m-1
3
           sort(A[5i..5i + 4])
           // collect median of 5
5
           Swap A[i] and A[5i + 2]
6
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
8
9 procedure quickselectMoM(A[1..r), k)
       if r - \ell \le 1 then return A[l]
10
       b := \text{choosePivotMoM}(A[l..r))
11
      j := partition(A[1..r), b)
12
       if j == k
13
           return A[i]
14
       else if i < k
15
           quickselectMoM(A[j+1..n), k-j-1)
16
       else // i > k
17
           quickselectMoM(A[0..i), k)
18
```

- ► Note: 2 mutually recursive procedures → effectively 2 recursive calls!
- **1.** recursive call inside choosePivotMoM on $m \le \frac{n}{5}$ elements

```
procedure choosePivotMoM(A[1..r))
       m := |n/5|
       for i := 0, ..., m-1
           sort(A[5i..5i + 4])
           // collect median of 5
5
           Swap A[i] and A[5i + 2]
6
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
9 procedure quickselectMoM(A[1..r), k)
       if r - \ell \le 1 then return A[l]
10
       b := \text{choosePivotMoM}(A[l..r))
11
      j := partition(A[1..r), b)
12
       if j == k
13
           return A[i]
14
       else if i < k
15
           quickselectMoM(A[j+1..n), k-j-1)
16
       else // i > k
17
           quickselectMoM(A[0..i), k)
18
```

Analysis:

- ► Note: 2 mutually recursive procedures

 → effectively 2 recursive calls!
- **1.** recursive call inside choosePivotMoM on $m \le \frac{n}{5}$ elements
- 2. recursive call inside quickselectMoM

 \rightarrow partition excludes $\sim 3 \cdot \frac{m}{2} \sim \frac{3}{10}n$ elem.

```
1 procedure choosePivotMoM(A[1..r))
       m := |n/5|
       for i := 0, ..., m-1
            sort(A[5i..5i + 4])
            // collect median of 5
5
            Swap A[i] and A[5i + 2]
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
9 procedure quickselectMoM(A[1..r), k)
       if r - \ell \le 1 then return A[l]
10
       b := \text{choosePivotMoM}(A[l..r))
11
       j := partition(A[1..r), b)
12
       if j == k
13
            return A[i]
14
       else if i < k
15
            quickselectMoM(A[j+1..n), k-j-1) \longrightarrow C(n) \le \Theta(n) + C(\frac{1}{5}n) + C(\frac{7}{10}n)
16
       else // i > k
17
            quickselectMoM(A[0..i), k)
18
```

Analysis:

- ► Note: 2 mutually recursive procedures → effectively 2 recursive calls!
- 1. recursive call inside choosePivotMoM on $m \leq \frac{n}{5}$ elements
- 2. recursive call inside quickselectMoM

 \rightarrow partition excludes $\sim 3 \cdot \frac{m}{2} \sim \frac{3}{10}n$ elem.

$$\begin{array}{c} \longrightarrow C(n) \leq \Theta(n) + C(\frac{\pi}{5}n) + C(\frac{\pi}{10}n) \\ \text{ansatz: overall} \leq \Theta(n) + C(\frac{1}{5}n + \frac{7}{10}n) \\ \text{cost linear} = \Theta(n) + C(\frac{9}{10}n) \quad \rightsquigarrow \quad C(n) = \Theta(n) \end{array}$$

5.4 Fast Multiplication

Clicker Question

How many **bit operations** does it take to multiply two *n*-bit integers?

9

 \bigcirc O(1)

 $B O(\log\log n)$

 $O(\log n)$

 $O(\log^2 n)$

 $E O(\sqrt{n})$

 $F \cap O(n)$

G $O(n \log n)$

I) $O(n^2)$

 $\int O(n^2 \log n)$

(K) $O(n^3)$

L) $O(2^n)$

→ sli.do/cs566

Integer Multiplication

- ▶ What's the cost of computing $x \cdot y$ for two integers x and y?
- → depends on how big the numbers are!
 - ▶ If x and y have O(w) bits, multiplication takes O(1) time on word-RAM
 - otherwise, need a dedicated algorithm!

Integer Multiplication

- ▶ What's the cost of computing $x \cdot y$ for two integers x and y?
- → depends on how big the numbers are!
 - ▶ If x and y have O(w) bits, multiplication takes O(1) time on word-RAM
 - ▶ otherwise, need a dedicated algorithm!

Long multiplication (»Schulmethode«)

• Given
$$x = \sum_{i=0}^{n-1} x_i 2^i$$
 and $y = \sum_{i=0}^{n-1} y_i 2^i$, want $z = \sum_{i=0}^{2n-1} z_i 2^i$

```
1 for i := 0, ..., n-1

2 c := 0

3 for j := 0, ..., n-1

4 z_{i+j} := z_{i+j} + c + x_i \cdot y_j

5 c := \lfloor z_{i+j}/2 \rfloor

6 z_{i+j} := z_{i+j} \mod 2

7 end for

8 z_{i+n} := c

9 end for
```

- \triangleright $\Theta(n^2)$ bit operations
- ► could work with base 2^w instead of 2

$$\rightarrow$$
 $\Theta((n/w)^2)$ time

here: count bit operations for simplicity can be generalized

Example:

easier in binary! ("shift and add")

1001010101 * 101101

110100011110001

Divide & Conquer Multiplication

- ▶ assume *n* is power of 2 (fill up with 0-bits otherwise)
- ▶ We can write
 - $x = a_1 2^{n/2} + a_2$ and
 - $y = b_1 2^{n/2} + b_2$
 - for a_1 , a_2 , b_1 , b_2 integers with n/2 bits

Divide & Conquer Multiplication

- ▶ assume *n* is power of 2 (fill up with 0-bits otherwise)
- ▶ We can write
 - $x = a_1 2^{n/2} + a_2$ and
 - $y = b_1 2^{n/2} + b_2$
 - for a_1 , a_2 , b_1 , b_2 integers with n/2 bits

$$\rightarrow x \cdot y = (a_1 2^{n/2} + a_2) \cdot (b_1 2^{n/2} + b_2) = a_1 b_1 2^n + (a_1 b_2 + a_2 b_1) 2^{n/2} + a_2 b_2$$

- ► recursively compute 4 smaller products
- ightharpoonup combine with shifts and additions (O(n) bit operations)

Divide & Conquer Multiplication

- ▶ assume *n* is power of 2 (fill up with 0-bits otherwise)
- ▶ We can write
 - $x = a_1 2^{n/2} + a_2$ and
 - $y = b_1 2^{n/2} + b_2$
 - for a_1 , a_2 , b_1 , b_2 integers with n/2 bits

$$\rightarrow x \cdot y = (a_1 2^{n/2} + a_2) \cdot (b_1 2^{n/2} + b_2) = a_1 b_1 2^n + (a_1 b_2 + a_2 b_1) 2^{n/2} + a_2 b_2$$

- ► recursively compute 4 smaller products
- ightharpoonup combine with shifts and additions (O(n) bit operations)
- - $ightharpoonup T(n) = \mathbf{4} \cdot T(n/2) + \Theta(n)$
 - \longrightarrow Master Theorem Case 1: $T(n) = \Theta(n^2)$... just like the primary school method!?

(= logh (a) = 2

- but Master Theorem gives us a hint: cost is dominated by the leaves
- → try to do more work in conquer step!

▶ how can we do "less divide and more conquer"?

Recall:
$$x \cdot y = a_1b_12^n + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$$

▶ how can we do "less divide and more conquer"?

Recall:
$$x \cdot y = a_1b_1^2 + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$$

-☆- Let's do some algebra.

$$c := (a_1 + a_2) \bigcirc (b_1 + b_2)$$

$$= a_1b_1 + (a_1b_2 + a_2b_1) + a_2b_2$$

$$\sim (a_1b_2 + a_2b_1) = c - a_1b_1 - a_2b_2$$

this can be computed with 3 recursive multiplications

$$a_1 + a_2$$
 and $b_1 + b_2$ still have roughly $n/2$ bits

▶ how can we do "less divide and more conquer"?

Recall:
$$x \cdot y = a_1b_12^n + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$$

-\(\) Let's do some algebra.

$$c := (a_1 + a_2) \cdot (b_1 + b_2)$$

= $a_1b_1 + (a_1b_2 + a_2b_1) + a_2b_2$

$$(a_1b_2 + a_2b_1) = c - a_1b_1 - a_2b_2$$

this can be computed with 3 recursive multiplications

 $a_1 + a_2$ and $b_1 + b_2$ still have roughly n/2 bits

```
1 procedure karatsuba(x, y):
      // Assume x and y are n = 2^k bit integers
       a_1 := \lfloor x/2^{n/2} \rfloor; a_2 := x \mod 2^{n/2} // implemented by shifts
      b_1 := |y/2^{n/2}|; b_2 := y \mod 2^{n/2}
      c_1 := karatsuba(a_1, b_1)
      c_2 := karatsuba(a_2, b_2)
       c := karatsuba(a_1 + a_2, b_1 + b_2) - c_1 - c_2
       return c_1 2^n + c 2^{n/2} + c_2 // shifts and additions
```

▶ how can we do "less divide and more conquer"?

Recall:
$$x \cdot y = a_1b_12^n + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$$

-☆- Let's do some algebra.

$$c := (a_1 + a_2) \cdot (b_1 + b_2)$$

= $a_1b_1 + (a_1b_2 + a_2b_1) + a_2b_2$

$$(a_1b_2 + a_2b_1) = c - a_1b_1 - a_2b_2$$

this can be computed with 3 recursive multiplications $a_1 + a_2$ and $b_1 + b_2$ still have roughly $n/2$ bits

```
1 procedure karatsuba(x, y):
      // Assume x and y are n = 2^k bit integers
       a_1 := \lfloor x/2^{n/2} \rfloor; a_2 := x \mod 2^{n/2} // implemented by shifts
      b_1 := |y/2^{n/2}|; b_2 := y \mod 2^{n/2}
      c_1 := karatsuba(a_1, b_1)
      c_2 := karatsuba(a_2, b_2)
       c := karatsuba(a_1 + a_2, b_1 + b_2) - c_1 - c_2
       return c_1 2^n + c 2^{n/2} + c_2 // shifts and additions
```

- nonrecursive cost: only additions and shifts
- ightharpoonup all numbers O(n) bits
- \rightarrow conquer cost $f(n) = \Theta(n)$

▶ how can we do "less divide and more conquer"?

Recall:
$$x \cdot y = a_1b_12^n + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$$

-☆- Let's do some algebra.

$$c := (a_1 + a_2) \cdot (b_1 + b_2)$$

= $a_1b_1 + (a_1b_2 + a_2b_1) + a_2b_2$

$$(a_1b_2 + a_2b_1) = c - a_1b_1 - a_2b_2$$

this can be computed with 3 recursive multiplications $a_1 + a_2$ and $b_1 + b_2$ still have roughly $n/2$ bits

```
1 procedure karatsuba(x, y):
       // Assume x and y are n = 2^k bit integers
       a_1 := \lfloor x/2^{n/2} \rfloor; a_2 := x \mod 2^{n/2} // implemented by shifts
       b_1 := \lfloor y/2^{n/2} \rfloor; \ b_2 := y \mod 2^{n/2}
       c_1 := karatsuba(a_1, b_1)
       c_2 := karatsuba(a_2, b_2)
       c := karatsuba(a_1 + a_2, b_1 + b_2) - c_1 - c_2
       return c_1 2^n + c 2^{n/2} + c_2 // shifts and additions
```

Analysis:

- nonrecursive cost: only additions and shifts
- ightharpoonup all numbers O(n) bits
- \rightsquigarrow conquer cost $f(n) = \Theta(n)$

Recurrence:

- $T(n) = 3T(n/2) + \Theta(n)$
- Master Theorem Case 1

$$\rightsquigarrow T(n) = \Theta(n^{\lg 3}) = O(n^{1.585})$$

much cheaper (for large n)!

Integer Multiplication

- until 1960, integer multiplication was conjectured to take $\Omega(n^2)$ bit operations
- → Karatsuba's algorithm was a big breakthrough
 - ▶ which he discovered as a student!
- ▶ idea can be generalized to breaking numbers into $k \ge 2$ parts (*Toom-Cook algorithm*)

Integer Multiplication

- until 1960, integer multiplication was conjectured to take $\Omega(n^2)$ bit operations
- → Karatsuba's algorithm was a big breakthrough
 - which he discovered as a student!
- ▶ idea can be generalized to breaking numbers into $k \ge 2$ parts (*Toom-Cook algorithm*)
- asymptotically *much* better algorithms are now known!
 - e. g., the *Schönhage-Strassen algorithm* with $O(n \log n \log \log n)$ bit operations (!)
 - ▶ these are based on the Fast Fourier Transform (FFT) algorithm
 - ightharpoonup numbers = polynomials evaluated at base (e.g., z=2)
 - → multiplication of numbers = convolution of polynomials
 - ▶ FFT makes computation of this convolution cheap by computing the polynomial via interpolation
 - ► Schönhage-Strassen adds careful finite-field algebra to make computations efficient

Clicker Question

What's the product $A \cdot B$ of the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} ?$$

$$\begin{array}{ccc}
A & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\end{array}$$

$$\begin{pmatrix} 2 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\begin{array}{ccc}
\boxed{D} & \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix}
\end{array}$$

$$\begin{array}{ccc}
& \left(\frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{9} & \frac{2}{9}
\end{array}\right)$$

Clicker Question

What's the product $A \cdot B$ of the matrices

$$A = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & 3 \\ -1 & 0 \end{pmatrix} ?$$

$$\begin{array}{ccc}
A & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\end{array}$$

$$\begin{pmatrix} 2 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\begin{array}{ccc}
\boxed{D} & \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix} \checkmark$$

- ► The same trick can also be used for faster matrix multiplication
- ▶ Recall: For $A, B \in \mathbb{R}^{n \times n}$ we define $C = A \cdot B$ via $c_{i,j} = \sum_{k=1}^{n} a_{i,k}^{i} b_{k,j}$
- \rightarrow Naive cost: n^2 sums with n terms each \rightarrow $\Theta(n^3)$ arithmetic operations

- ▶ The same trick can also be used for faster matrix multiplication
 - entry of A in row i and column k
- ▶ Recall: For $A, B \in \mathbb{R}^{n \times n}$ we define $C = A \cdot B$ via $c_{i,j} = \sum_{k=1}^{n} a_{i,k}^{\text{entry of }} b_{k,j}$
- \rightarrow Naive cost: n^2 sums with n terms each \rightarrow $\Theta(n^3)$ arithmetic operations
- ► Can use D&C as follows (assuming n is a power of 2 again)
 - ► Decompose (cut in half hor. & vert.) $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ \hline A_{2,1} & A_{2,2} \end{pmatrix}$, $B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$, $C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$
 - We get *C* as $C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$ $C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$ (note "·" and "+" operate on matrices here) $C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$ $C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$

- ► The same trick can also be used for faster matrix multiplication
- ▶ Recall: For $A, B \in \mathbb{R}^{n \times n}$ we define $C = A \cdot B$ via $c_{i,j} = \sum_{k=1}^{n} a_{i,k}^{j} b_{k,j}$
- \rightarrow Naive cost: n^2 sums with n terms each \rightarrow $\Theta(n^3)$ arithmetic operations
- ► Can use D&C as follows (assuming n is a power of 2 again)
 - ▶ Decompose $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$, $B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$, $C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$
 - We get C as $C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$ $C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$ (note "·" and "+" operate on matrices here) $C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$ $C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$ 4 matrix sums with $(\frac{n}{2})^2$ entries each
 - ▶ 8 recursive matrix multiplications on two $\frac{n}{2} \times \frac{n}{2}$ matrices + $\Theta(n^2)$ summations
 - *# operations $T(n) = 8T(n/2) + \Theta(n^2)$ T(u): cost of multiplying two new metrics S = 2 S = 8 S = 8

- ► The same trick can also be used for faster matrix multiplication
- ▶ Recall: For $A, B \in \mathbb{R}^{n \times n}$ we define $C = A \cdot B$ via $c_{i,j} = \sum_{k=1}^{n} a_{i,k}^{j} b_{k,j}$
- \rightarrow Naive cost: n^2 sums with n terms each \rightarrow $\Theta(n^3)$ arithmetic operations
- ► Can use D&C as follows (assuming n is a power of 2 again)
 - ► Decompose (cut in half hor. & vert.) $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}$, $B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$, $C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$
 - $C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$ $C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2} \qquad \text{(note "·" and "+" operate on matrices here)}$ $C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$ $C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2} \qquad \qquad 4 \text{ matrix sums with } (\frac{n}{2})^2 \text{ entries each}$
 - ▶ 8 recursive matrix multiplications on two $\frac{n}{2} \times \frac{n}{2}$ matrices + $\Theta(n^2)$ summations
 - # operations $T(n) = 8T(n/2) + \Theta(n^2)$
 - \longrightarrow Master Theorem Case 1: $T(n) = \Theta(n^3)$ (but: still useful for better memory locality!)

- ▶ Observation (again): Can do more conquer for less divide!
- ► We recursively compute the following 7 products:

$$M_{1} := (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$M_{2} := (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_{3} := (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_{4} := (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_{5} := A_{1,1} \cdot (B_{1,2} - B_{2,2})$$

$$M_{6} := A_{2,2} \cdot (B_{2,1} - B_{1,1})$$

$$M_{7} := (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

 \rightsquigarrow We then obtain the 4 parts of *C* as

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

(Proof: left as exercise 9)

- ▶ Observation (again): Can do more conquer for less divide!
- ► We recursively compute the following 7 products:

$$M_{1} := (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$M_{2} := (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_{3} := (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_{4} := (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_{5} := A_{1,1} \cdot (B_{1,2} - B_{2,2})$$

$$M_{6} := A_{2,2} \cdot (B_{2,1} - B_{1,1})$$

$$M_{7} := (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

\rightsquigarrow We then obtain the 4 parts of *C* as

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

(Proof: left as exercise 9)

- ► **conquer step:** larger but still *O*(1) # matrix add/subtract
- $\rightsquigarrow \Theta(n^2)$ operations for conquer

- ▶ Observation (again): Can do more conquer for less divide!
- ► We recursively compute the following 7 products:

$$M_{1} := (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$M_{2} := (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_{3} := (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_{4} := (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_{5} := A_{1,1} \cdot (B_{1,2} - B_{2,2})$$

$$M_{6} := A_{2,2} \cdot (B_{2,1} - B_{1,1})$$

$$M_{7} := (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

 \rightsquigarrow We then obtain the 4 parts of *C* as

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

(Proof: left as exercise 9)

- **conquer step:** larger but still O(1) # matrix add/subtract
- \rightsquigarrow $\Theta(n^2)$ operations for conquer
- \rightarrow total # arithmetic operations $T(n) = 7T(n/2) + \Theta(n^2)$

- ▶ Observation (again): Can do more conquer for less divide!
- ► We recursively compute the following 7 products:

$$M_{1} := (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$M_{2} := (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_{3} := (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_{4} := (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_{5} := A_{1,1} \cdot (B_{1,2} - B_{2,2})$$

$$M_{6} := A_{2,2} \cdot (B_{2,1} - B_{1,1})$$

$$M_{7} := (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

 \rightsquigarrow We then obtain the 4 parts of *C* as

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

(Proof: left as exercise 9)

- ► **conquer step:** larger but still *O*(1) # matrix add/subtract
- \rightsquigarrow $\Theta(n^2)$ operations for conquer
- \rightarrow total #arithmetic operations $T(n) = 7T(n/2) + \Theta(n^2)$
- $\stackrel{\text{}_{\sim}}{\sim}$ Master Theorem Case 1: $T(n) = Θ(n^{\lg 7}) = O(n^{2.808})$

Open Problems

Multiplication is extremely fundamental, but its **computational complexity** is an **open problem** and subject of active research!

Integer multiplication:

- **conjectured** to require $\Omega(n \log n)$ bit operations (no proof known!)
- ► Harvey & van der Hoeven **2021**: $O(n \log n)$ algorithm possible!

Open Problems

Multiplication is extremely fundamental, but its **computational complexity** is an **open problem** and subject of active research!

Integer multiplication:

- **conjectured** to require $\Omega(n \log n)$ bit operations (no proof known!)
- ▶ Harvey & van der Hoeven **2021**: $O(n \log n)$ algorithm possible!

Matrix multiplication (MM):

- ▶ more relevant than it might seem since complexity identical to
 - computing inverse matrices, determinants
 - ► Gaussian elimination (solving systems of linear equations)
 - recognition of context free languages
- \rightarrow best exponent even has standard notation: smallest ω ∈ [2,3) so that MM takes $O(n^ω)$ operations
- ▶ Big open question: Is $\omega > 2$?
- ▶ best known bound: $\omega \le 2.371339$ (from 2024!)

Clicker Question

How many **bit operations** does it take to multiply two *n*-bit integers?

 \bigcirc O(1)

 $O(\log \log n)$

C $O(\log n)$

 $O(\log^2 n)$

E) $O(\sqrt{n})$

 $F \cap O(n)$

G $O(n \log n)$

 $(n \log n \log \log n)$

I $O(n^2)$

 $\int O(n^2 \log n)$

(K) $O(n^3)$

L) $O(2^n)$

→ sli.do/cs566

Clicker Question

How many **bit operations** does it take to multiply two *n*-bit integers? $\begin{array}{c}
C \\
C
\end{array}$ $C(n \log n)$

 $\bigcirc O(\log \log n)$

 $O(\log n)$

D) $O(\log^2 n)$

 $\Theta(\sqrt{n})$

F) O(n) ?

G $O(n \log n)$

I $O(n^2)$ \checkmark

 $\int O(n^2 \log n) \sqrt{}$

 \bigcirc $O(n^3)$ \checkmark

 \bigcirc $O(2^n)$ \checkmark

→ sli.do/cs566

5.5 Majority

Majority

- ▶ **Given:** Array A[0..n) of objects
- ► **Goal:** Check of there is an object x that occurs at $> \frac{n}{2}$ positions in A if so, return x
- ▶ Naive solution: check each A[i] whether it is a majority \rightarrow $\Theta(n^2)$ time

Majority – Divide & Conquer

Can be solved faster using a simple Divide & Conquer approach:

- If *A* has a majority, that element must also be a majority of at least one half of *A*.
- ∼→ Can find majority (if it exists) of left half and right half recursively
- \rightsquigarrow Check these ≤ 2 candidates.
- ▶ Costs similar to mergesort $\Theta(n \log n)$

$$T(u) = 2 T\left(\frac{u}{2}\right) + 6(u)$$
MT Case 2

```
1 procedure majority(A[0..n))
        if n = \underline{1} then return A[0] end if
        M_{\ell} := \text{majority}(A[0..k))
        M_r := \text{majority}(A[k..n))
        if M_{\ell} = = M_r then return M_{\ell} end if
        m_{\ell} := 0; m_r := 0
        for i := 0, ..., n-1
             if A[i] == M_{\ell} then m_{\ell} = m_{\ell} + 1 end if
             if A[i] == M_r then m_r = m_r + 1 end if
10
        end for
11
        if m_{\ell} \geq k+1
13
             return M
        else if m_r \ge k + 1
14
             return M_r
15
        else
16
             return NO MAJORITY ELEMENT
17
```

Clicker Question

Suppose you have an array A[0..2n) with 2n elements, and there is a majority element x. M_{ℓ} and M_r denote the result of the majority

Function on A[0..n) and A[n..2n) respectively.

Which of the following situations are possible? (Check all that apply.)

$$(A) M_{\ell} = M_r = x$$

$$C x = M_{\ell} \neq M_r$$

→ sli.do/cs566

Clicker Question

Suppose you have an array A[0..2n) with 2n elements, and there is a majority element x. M_{ℓ} and M_r denote the result of the majority function on A[0..n) and A[n..2n) respectively.

Which of the following situations are possible? (Check all that apply.)

D) $M_{\ell} = M_{r} \neq x_{\ell}$

 $E M_\ell \neq x \neq M_r$

→ sli.do/cs566

Majority – Linear Time

We can actually do much better!

```
1 def MJRTY(A[0..n))

2 c := 0

3 for i := 1, ..., n-1

4 if c == 0

5 x := A[i]; c := 1

6 else

7 if A[i] == x then c := c+1 else c := c-1

8 return x
```


- ightharpoonup MJRTY(A[0..n)) returns *candidate* majority element
- either that candidate is the majority element or none exists(!)

