MACO338 - ANÁLISE DE ALGORITMOS AULA 10 programação dinâmica: introdução corte de hastes AULA 11 programação dinâmica produto de cadeias de matrizes

D un se quincia comum mais longa: introdução

· AULA 12

	6	vec	Sar	wo	ශ්ර	e 9	inĉ	imi	ica	د د	
~											

D subsequência comum mais longa

. WALE 73

$\overline{}$								
	bre	જ	cur	oc	aã,	ding	imi	. യ

J ABB étima

programação dinâmica

O QUE É?

avitareti a mes exercises " ema , etnemagar , abinitat es es es escruser " ema especia de ver de finida , abanda , ama estruser " ema estruser de es escruser " ema estruser de estruser de estruser " ema estruser de estrustra de estruser de estrus

Como em um algoritmo recursivo, cada instância do problema é resolvida a partir da solução de instâncias menores, ou melhor, de subinstâncias da instância original.

A caractorística distintiva da programação dinâmica é a tabela que armazena as soluções das váxias subinstâncias. O consumo de tempo de algoritmo é, em geral, proporcional ao tamanho da tabela.

Para que o métedo da programação dinâmica persa ver aplicado, é preciso que o emeldara tenha extrutura recursiva a velução de teda instância de problema deve contest " velução da cinstâncias da instâncias."

Essa estrutura recursiva é representada per uma recerciónia, e a recercióncia pode ver tradustida em um algoritmo recursivo. Em alguns casos, o algoritmo um sucursivo en esper per la cada esta de cada muitas uses, e una terna o algoritmo ineficiente. Nesses casos, é possível armagenar as soluções da indinstância numa tabela e assim entar que elas rejam recalculadas.

EXEMPLO: NÚMEROS DE FIBONACCI

Considere a vequêmaia. 0,11,1,2,3,5,8... de números de Fibonacci.

Esses númexos são definidos pela socorcincia:

$$F(n) = F(n-1) + F(n-2)$$

a partir des reloces iniciais F(0) = 0 le F(1) = 1

Nosso problema é caladar F(n) dado n. O seguinte alegritmo residue o problema de cima para baixo", em estilo recursivo:

Fib (n)

- 1 se $n \le 1$
- 2 devolva n e pare
- 3 devolva Fib (n-1) + Fib (n-2)

amas, i abas sigur esper esper esper elistas cioq etmessifemi atium è antisgolo eec .

Para enitar que cada F(i) veja vecal culado uxirias veges, podemos empregar o método.

de programação dinâmica. O algoritmo abaixo usa uma tabela f.o...n. peuxa armagenar os remaissas de Fibonacci à medida que são calculados, "de baixo para cima".

```
FIB-PD (n)

1 f[0] := 0

2 f[1] := 1

3 para i := 2 até n
```

4 f[i] := f[i-1] + f[i-2]

5 devolva f[n]

Esse algoritmo consomo apenas O(n) unidades de tempo.

.CORTES DE HASTES

Sejam p.s... por vinteixes peritives que cerrespondem, respectivemente, ao prese de vendeu de hastes de tamanho s., n. Dado um inteixe peritivo n, o problema consiste em maximizar o lucro la obtido com a venda de uma haste de tamanho n, que pode ver vendida em pedaços de tamanho inteixo.

Para ecem plificax o problema, considere uma haste de tamanho 6 com preços dos pedaços na tabela abaixo.

'n	57	p2	p3	pч	рs	66
6	3	૪	24	78	70	20

Note que un a haste for vendida vem nenhum corte, entas temos lucio le = 20. Caso cortemos um pedaço de tamanho 5, entas a única possibilidade é vender uma parte de tamanho 5 a outra de tamanho 1, que fornece um lucro de le = p5 + p1 = 13, o que à pior que vender a haste inteira. Se vendermos dois pedaços de tamanho 3, obtemos um lucro total de le = 2p3 = 28, que é o maior lucro possível.

AL GORITMO

Primeiro names censtruix um algoritmo de divisão a conquista natural paxa o problema de certe de hastes. Podemes definir la recursivamente definirdo ende aplicar o primeiro certe na haste. Assim, use o melhor lugar para vealizar o primeiro certe na haste á no pento i (ende $1 \le i \le n$), untão o lucro total á dado por ln = pi + ln - i que á o parço do pedaço de tamanho i usemado ao maior lucro persível obtido cem a venda do restanto da haste, que tem tamanho n-i. Portanto, temos:

A igualdade vugere e requinte algoritmo para resolver e problema, ende p é um uter contendo es preços des pedaços de uma baste de tamanho n.

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} 0, \text{ use } n = 0 \qquad \text{(usen extega)}$$

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} p_i + \ln - 1 \int_{-\infty}^{\infty} 1 \leq i \leq n$$

levista amizam axiul o etne mot error rabular e outiutni om tiraglo mu ses eb raceg A.

. entiraglo aleq obiteger è alladart atium siog, et naisifeni etne manartase è ele

De fate, veja T(n) e tempe de execução de CORTE HASTES-DV (n_1p) . Vames utilizar e método da vulstituição para provar que $T(n) \ge 2^n$.

- · claramente temas T(0) = 1 = 20
- · unponha que T(m) > 2m para todo 0 ≤ m ≤ n-1
- · partonto, notando que $T(n) = L + T(0) + T(1) + \dots + T(n-1)$, obtemos

$$T(n) = \frac{1}{2} + T(0) + T(1) + \dots + T(n-1)$$

= 27

Assim, e problema possei a propriedade de volter posiçõe de superior en incredente se fam bem es incredentes de missadade de vista de forma de programação dinâmica e resolve de forma eficiente.

Abaixe apresentames um algeritme com aberdagem top-doum paxa o problema de corte de hastes. Esse algeritme mantém a estrutura de corre HASTES-DV (N,P), valuando es valeres de voluções otimas de vulproblemas em um veter v.[0...n], de modo que v.[i] contem o valor de uma voluções otima paxa o problema de corte de uma haste de tamanho i. Ademois, vamos mantes um veter v.[0...n] tal que v.[i] contém o primeiro lugar que deve se afetuar o corte am uma haste de tamanho j.

```
Algoritmo 36: Corte hastes-TD(n, p)
```

```
{\tt 1} \; Cria vetores r[0..n] e s[0..n]
```

5 retorna Corte hastes-aux(n, p, r, s)

Algoritmo 37: Corte hastes-aux(n,p,r,s)

```
ı se r[n] \ge 0 então
```

5
$$(valor, s) = \text{Corte hastes-aux}(n - i, p, r, s)$$

10 retorna (lucro, s)

r[0] = 0

з рага i=1 até n faça

 $a \quad r[i] = -1$

² retorna r[n]

s lucro = -1

⁴ para i=1 $\mathit{at\'e}\ n$ faça

se $lucro < p_i + valor$ então

^{7 |} $lucro = p_i + valor$

 $s \mid s[n] = i$

⁹ r[n] = lucro

O algoritmo CORTE HASTES-TO (n) inicialmente cria es veteres x e s, faz xIOI = 0 e semicializa todas as entres untradas de x com -1, representando que ainda rão calculames corres. Feito escritos, corre HASTES-PUX (n, p, x, a) é resolutoros.

Inicialmente, nos limbos 1 e 2, e algeritmo CORTE HASTES-AUX (n, PICILIA) verifica use.

O vulpreblema em questos já foi resolvido. Caso e subpreblema não tenha vido vido,

então e algeritmo uni fager viso de modo muito vem elhante ao algoritmo CORTEHASTES-DV.

A diferença é que aspera valvamos e melhor local para fager e primairo corte em uma haste de tamanho n em valva.

https://docplayer.com.br/88752081-Analise-de-algoritmos-e-estruturas-de-dados.html