





Energy Forecasting Innovation Conference 24 May 2022



### Dr Jethro Browell

Senior Lecturer School of Mathematics and Statistics University of Glasgow jethro.browell@glasgow.ac.uk



## **Contents**

- Research outcomes
  - Net-demand forecasting and extremes
  - Large-scale wind power forecasting
  - Time-varying covariance
- Visions of energy forecasting
  - Probabilistic forecasting
  - Opportunities: data-rich environment!
- Summary















# System-wide probabilistic energy forecasting

### **Motivation**

- Energy systems operated under significant and growing uncertainty
- Necessitate that uncertainty is minimised and accurately described to achieve:
  - Efficiency/"optimisation"
  - Satisfy risk appetite
- Forecast uncertainty is complex but structured
  - Spatio-temporal
  - Weather and non-weather dynamics

### Aim:

- Develop (some of) the statistical methods required to underpin this capability
- Establish potential value for key decisionmaking problems with partners



### **Decisions**

- Energy Balancing
- Reserve
- Constraints
- Trading

All are multi-variate, spatio-temporal problems!





## **Deterministic forecast**



Suitable for decision making if:

- 1. Cost of over/under predicting is symmetric
- 2. User is *risk neural*



## **Probabilistic forecast**



### Can make decision based on:

- **1. Asymmetric costs** of over/under predicting
- 2. Risk indices/metrics



# **Probabilistic Forecasting**

**Probabilistic Forecast**, a forecast that includes uncertainty quantification:

- Prediction intervals and quantiles
- Density forecasts
- Trajectories or scenarios

















# Probabilistic forecasting of regional net-load with conditional extremes

Work with Matteo Fasiolo





# **Motivation**

- 1. Regions can differ greatly in type and capacity of embedded generation
  - Do we need different input data and methods/models?
- Regional behaviour important to manage power flow on the grid
  - Spatial dependency must be retained for probabilistic power flow forecasting
- Reserve is scheduled by region based on import/export capacity
  - Volume of reserve based on forecast uncertainty and TSO's risk appetite



As of March 2021: 1501 Solar Farms (+domestic PV) ↑ 1037 Wind Farms →



Net-load is increasingly complex!



# **Motivation**



# **Density Forecasting**Overview

### **Summary:**

- 1. Generalised Additive Model point-forecast
  - a) Date/time features
  - b) Weather forecast features: temperature, wind speed and solar radiation. Summary statistics by regions
  - c) Interactions...
- 2. Linear Quantile Regression on residuals
  - a) Second-order polynomial on point forecast
  - b) Linear in date/time and weather features
  - c) Quantiles from 0.05%-99.95%
- 3. Generalised Pareto tails
  - a) From 2.5%/97.5% or 5%/95% quantiles

Steps 1 & 2 based on: Pierre Gaillard, Yannig Goude, Raphaël Nedellec, Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting, IJF 32(3), 2016, 10.1016/j.ijforecast.2015.12.001







# **Density Forecasting Generalised Pareto Tails**

Tail Distribution
Static
Generalised
Pareto

#### **Predictive Distribution**



$$F(x; \sigma, \xi) = \begin{cases} 1 - \left(1 + \frac{\xi x}{\sigma}\right)^{-\frac{1}{\xi}} & \text{for } \xi \neq 0 \\ 1 - \exp\left(-\frac{x}{\sigma}\right) & \text{for } \xi = 0 \end{cases}$$

Shape and Scale parameters estimated using peak-over-threshold method

Threshold is last reliable conditional quantile x =exceedance of quantile



# **Density Forecasting GAMLSS Generalised Pareto Tails**

Tail Distribution
Conditional
Generalised
Pareto

#### **Predictive Distribution**





Density Forecasting
GAMLSS Generalised Pareto Tails

Tail Distribution
Conditional
Generalised
Pareto





# **Density Forecasting Case Study: Results**

- Tails are challenging to evaluate:
  - not much data
  - poor discrimination by usual metrics
- Worm plot:
  - Shows quantile bias
  - 95% consistency band considering serial corelation
- Quantile regression vs GPD:
  - QR tails uncalibrated, too sharp/over-confident
  - GPD tails calibrated, sharpness can be improved by conditioning on covariates





# **Density Forecasting Case Study: Results**

- Sharpness = average interval width
- Quantile Regression not calibrated → throw out
- Conditional GPD much sharper than Static GPD
- Sharper intervals → less uncertainty → better decisions?







# **Density Forecasts**





# **Use-case: Reserve setting**

- Reserve energy required in case:
  - Power plant fails
  - Market fails to deliver
  - Forecast is "wrong"
- How much to buy?
  - Risk appetite/policy
  - Cost-Loss: marginal cost of more reserve vs loss if reserve is insufficient

Benchmark: empirical quantile of historic deterministic forecast errors

Here: conditional quantile of density forecast

 $\alpha = 0.25\%$  to 0.01%



# **Use-case: Reserve setting**





# Probabilistic Forecasting of Regional Net-load with Conditional Extremes

## **Summary:**

- 1. Wind and solar weather features are essential to capture embedded generation in net-load forecasting, including in tails (not shown today)
- 2. Generalised Pareto Distribution tails provide reliable extreme quantiles where quantile regression fails
- 3. Forecasting extreme quantiles reveals opportunities to reduce risk and save consumers £££!



# High-dimensional wind power forecasting

Work with Ciaran Gilbert





# **Spatio-temporal dependency**

### **Motivation**

- Spatial dependency:
  - Portfolio effects
  - Power flow & constraints
- Temporal dependency:
  - Trading block products
  - Ramps
  - Storage and plant run times





# **Spatio-temporal dependency**

# **Case study**

- 92 Wind Balancing Mechanism Units
- Density forecasting: 92 units × 27 quantiles × 5 cv-folds = 12,420 models to fit!
- Implemented using ProbCast on AWS







# **Spatio-temporal dependency**

Dependency Structure: Gaussian Copula

- Very large covariance matrix!
   Parametrisation necessary
  - Cauchy for temporal
  - Exponential for spatial
  - Interaction (non-separable)
- Probably dynamic!
  - Regime-switching?
  - Dependence on covariate?



$$\Sigma_{(k,t),(k',t')} = \frac{1-\nu}{1+a|\delta t|^{2\tau_t}} \left[ \exp\left(-\frac{|\delta k|}{\tau_k (1+a|\delta t|^{2\tau_t})^{\beta/2}}\right) + \frac{\nu}{1-\nu} \mathbf{1}(|\delta k| = 0) \right]$$



# **Dynamic spatio-temporal dependency**

Dependency Structure: Gaussian Copula

## Regime-switching:

- Estimating separate parameters based on weather regime
- Signs of benefit, but inconclusive

### Parameters as functions of covariates:

- Enables more flexible structures
- Explicit time-dependency rather than adaptive updates
- First results to be presented in June. Preprint of accepted article now online



$$\Sigma_{(k,t),(k',t')} = \frac{1-\nu}{1+a|\delta t|^{2\tau_t}} \left[ \exp\left(-\frac{|\delta k|}{\tau_k (1+a|\delta t|^{2\tau_t})^{\beta/2}}\right) + \frac{\nu}{1-\nu} \mathbf{1}(|\delta k| = 0) \right]$$



# A vision for energy forecasting

Ambitions beyond "better forecasts"





# What do we want to predict anyway?



- **Energy:** Blocks of energy for trading and generator scheduling, risk/reserve requirements
- Power: ramps for balancing; instantaneous power for ancillary services, reactive power
- Interdependency with markets: risk management, algorithmic trading, embedded flexibility
- Network flows/constraints: probability of constraint, regional balancing, TSO/DSO flow



# **Opportunities: data-rich environment!**

### Need and opportunities for energy forecasting:

- Critical capability for weather-dependent (weather-led?) energy systems, supporting:
  - Reliability
  - Cost minimisation
  - De-carbonisation!!!
- Massive increase in data coverage and availability:
  - Load monitoring and digitization (controllability and automation)
  - Energy networks: metering and asset health monitoring, small flexible (virtual) power plants
  - Weather data availability and forecast performance

### **Challenges:**

- Data 1: coverage and quality never going to be (even close to) perfect!
- Harmonising physical constrains with non-physical systems (digital, markets)
- Data 2: sharing, privacy, (apparent lack of) commercial incentives
- Converting complex forecast information into decisions
- Coherent exchange of forecasts and other data (e.g. TSO-DSO interface)





# The future of energy forecasting?



# What do we need from this information exchange?

- "Full" probabilistic forecasts?
- Partial forecasts?
- Covariates?
- Coherence with other data

### **Decision-centric views:**

- 1. Retain "full" information, collapse to only what is required for use:
  - Coherence across all data and forecasts...
  - BUT we lack a parsimonious mathematical framework.
- 2. Avoid explicit forecasting completely using reinforcement learning...



## Thanks!

### Papers, code etc. linked from www.jethrobrowell.com



### Methodologies available in ProbCast – User feedback welcome!!

https://github.com/jbrowell/ProbCast

R>>> devtools::install\_github("jbrowell/ProbCast")





### References

### **Today:**

- J. Browell and M. Fasiolo, "Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, Nov 2021, <a href="https://doi.org/10.1109/TSG.2021.3107159">https://doi.org/10.1109/TSG.2021.3107159</a>
- C. Gilbert, "Topics in high-dimensional energy forecasting", PhD Thesis, University of Strathclyde, 2021, online: <a href="https://stax.strath.ac.uk/concern/theses/9306sz801">https://stax.strath.ac.uk/concern/theses/9306sz801</a>
- J. Browell, C. Gilbert and M. Fasiolo, "Covariance Structures for High-dimensional Energy Forecasting", Electric Power Systems Research (Special Issue for PSCC 2022), 2022, (preprint at <a href="https://www.jethrobrowell.com">www.jethrobrowell.com</a>)
- C. Sweeney, R.J. Bessa, J. Browell and P. Pinson, "The Future of Forecasting for Renewable Energy," WIREs Energy and Environment, vol. 9, no. 2, 2020, <a href="https://doi.org/10.1002/wene.365">https://doi.org/10.1002/wene.365</a>

### Other outputs from System-wide probabilistic energy forecasting:

- J. Browell and C. Gilbert, "Predicting electricity imbalance prices and volumes: capability and opportunity", Energies, 15(10), 3645, 2022, <a href="https://doi.org/10.3390/en15103645">https://doi.org/10.3390/en15103645</a>
- M. Farrokhabadi, J. Browell, Y. Wang, S. Makonin, W. Su, and H. Zareipour, "Day-Ahead Electricity Demand Forecasting Competition: Post-COVID Paradigm", IEEE Open Access Journal of Power and Energy, 2022, <a href="https://doi.org/10.1109/OAJPE.2022.3161101">https://doi.org/10.1109/OAJPE.2022.3161101</a>
- R.M. Graham, J. Browell, D. Bertram and C.J. White, "The application of sub-seasonal to seasonal (S2S) predictions for hydropower forecasting", Meteorological Applications, 29(1), e2047, 2022, <a href="https://doi.org/10.1002/MET.2047">https://doi.org/10.1002/MET.2047</a>
- E. Heylen, J. Browell and F. Teng, "Probabilistic day-ahead inertia forecasting", IEEE Transactions on Power Systems, <a href="https://doi.org/10.1109/TPWRS.2021.3134811">https://doi.org/10.1109/TPWRS.2021.3134811</a>
- R. Telford, B. Stephen, J Browell and S. Haben, "Dirichlet Sampled Capacity and Loss Estimation for LV Distribution Networks with Partial Observability", IEEE Transaction on Power Delivery, vol. 36, no. 5, pp. 2676-2686, Oct. 2021, <a href="http://www.doi.org/10.1109/TPWRD.2020.3025125">http://www.doi.org/10.1109/TPWRD.2020.3025125</a>

