机械设计基础课程设计

题 目	1:	式输送机传动装置
专业名称	ĸ:	
学	1 :	
学生姓名	二 :	
指导教师	f:	
学院名称	κ:	
完成时间	ī]:	2023年6月

目 录

第一章 设	计任务书	1
第二章 传	动方案的拟定	2
2.1.	传动方案	2
2.2.	传动方案简图	2
第三章 电	动机的选择	3
3.1.	选择电动机的结构和类型	3
3.2.	电动机容量的选择计算	3
3.3.	确定电动机的转速及减速器传动比分配	4
第四章 传	动装置的运动和动力参数计算	5
4.1.	确定二级减速器传动比分配	5
4.2.	传动装置的运动和动力参数计算	5
第五章 传	动零件的设计计算	7
5.1.	带传动设计	7
5.2.	齿轮传动设计	9
5.3.	轴设计	16
第六章 轴	强度校核、键联接的强度校核及轴承寿命校核	24
6.1.	轴强度校核	24
6.2.	键联接强度校核	31
6.3.	轴承寿命校核	32
第七章 减	速器的润滑与密封	35
7.1.	润滑	35
7.2.	密封设计	36
第八章 减	速器箱体结构设计	38
第九章 减	速器结构分析	39
9.1.	零件图中的公差及表面粗糙度	39
第十章 参	老文献	40

第一章 设计任务书

设计题目		带式输送机传动装置					
		1、工作机简图:					
原	工作机	输送带卷筒					
		2、工作机参数	:				
始		带拉力 F(kN)	带速 (m/s)	卷筒直径 D (mm)	卷筒效率(%)		
数		2.7	1	240	0.96		
	电动机	Y系列三相异步	步电动机				
据	设计条件	1、设备要求: 固定 2、工作环境: 室外、多尘 3、工作条件: 轻型、连续 4、安装形式: 卧式 5、生产工厂: 校机械厂 6、生产批量: 小批量 7、工作年限: 二班制,工作8年,年工作日250天					
主要内容	· 容	1、装配图: 0号, 1张; 2、零件图: 2号, 2张; 3、设计计算说明书: 1份(6000~8000字)。					
设计进度计划		第一周:设计准备,实验,方案分析拟订,选择电机,传动零件 计算; 第二周:设计、绘制完成减速器装配图; 第三周:设计绘制零件图,编写设计计算说明书,总结答辩。					
主要参	考文献	1、《机械设计》 2、《机械设计课程设计》 3、《机械设计课程设计图册》 4、《机械零件设计手册》 5、《机械设计手册》					
备	注						

第二章 传动方案的拟定

2.1. 传动方案

如下图所示,传动系统分为两个部分,第一部分,电机输出轴通过普通 V 带和减速器的输入轴相连,利用普通 V 带进行第一次减速;第二部分通过圆柱斜齿轮设计的减速器进行第二次减速,以达到电机输出转速和输送带需求转速目标。

2.2. 传动方案简图

带式输送机传动方案 1-输送胶带 2-传动滚筒 3-两级圆柱齿 轮件速器 4-V带传动 5-电动机

图 2-1

第三章 电动机的选择

电动机选择如下

电动机型	额定功率	电动机转速		电动机重	传动装	置的色	
号	kW	r/min		量 kg			
		同步转	满载转		总传动	V	减速
		速	速		比	带	器
Y112M-4	4	1500	1440	43	18	2	9

3.1. 选择电动机的结构和类型

经综合分析工作要求和工况条件,选用Y系列三相交流异步电动机,此系列 电动机具有高效节能、噪声小、振动小、运行安全可靠的特点。

Y系列电动机,额定电压为380V,额定频率为50Hz,采用封闭式结构。

3.2. 电动机容量的选择计算

计算及说明	计算结果
卷筒所需有效功率	
$P_{\omega} = \frac{F_{\omega} \times v_{\omega}}{1000} = \frac{2.7 \times 10^{3} \text{N} \times 1 \text{m/s}}{1000} = 2.7 \text{kW}$	
查[2]表 14-7 有	
η _{V带} = 0.96(带传动)	
η _{齿轮} = 0.97(齿轮精度为 8 级)	
η _{轴承} = 0.98(滚子轴承)	
η _{联轴器} = 0.99(弹性联轴器)	
η _{卷筒} = 0.96(已知条件)	
传动总效率	

$\eta = \eta_{V \text{ #}} \times \eta_{\text{齿轮}}^2 \times \eta_{\text{轴承}}^4 \times \eta_{\text{联轴器}} \times \eta_{\text{卷筒}}$	
$= 0.96 \times 0.97^2 \times 0.98^4 \times 0.99 \times 0.96 \approx 0.79$	
则所需电动机输出功率为	$\eta = 0.79$
$P_{\rm d} = \frac{P_{\omega}}{\eta} = \frac{2.7}{0.79} \text{kW} \approx 3.42 \text{kW}$	
The state of the s	$P_d = 3.42kW$
从[2]表 22-1 中可选额定功率为 4kW 的电动机	$P_{ed} = 4kW$

3.3. 确定电动机的转速及减速器传动比分配

	计算及说明							
卷筒	育轴转速	为:						
	$n = \frac{60 \times 1000v}{\pi D} = \frac{60 \times 1000 \times 1}{3.14 \times 240} = 80 \text{ r/min}$							
按[2]表 14	-8 推荐的传动	比合理范围,取	V 带传动	的传动比i ₁ '=			
2~4	1, 二级	圆柱齿轮减速器	器传动比i ₂ = 8~	40,则从目	自动机到卷筒			
轴自	专速可选范围							
为								
	n_{c}^{\prime}	$i_a = i_a' \times n = (16^{-1})$	$\sim 160) \times 80 = 1280$	0~12800 r/i	min			
_	方案	电动机型号	额定功率(kW) _	电动机转	速(r/min)			
	刀米	电列机垒力	₩ た 切 辛 (k w) −	同步	满载			
	1							
	2 Y112M-4 4 1500 1440							
综合	含多方面	因素,选择电流	动机型号为 Y112	2M-4		N = 1440r/min		

第四章 传动装置的运动和动力参数计算

4.1. 确定二级减速器传动比分配

计算及说明	计算结果
按展开式二级圆柱齿轮减速器推荐高速级传动比i ₁ = (1.3~1.35)i ₂ ,	
取 $i_1 = 1.33i_2$,有	
初定高速级传动比	
$i_1 = \sqrt{1.33i} = \sqrt{1.33 \times 9} = 3.46$	
初定低速级传动比	$i_1 = 3.46$
$i_2 = \frac{i}{i_1} = \frac{9}{3.46} = 2.60$	$i_2 = 2.60$

4.2. 传动装置的运动和动力参数计算

计算结果如下表

轴名	功率 P (KW)		转矩 T (N·m)		转速 n	传动比	效率 η
	输入	输出	输入	输出	(r/min)	i	
电动		3.42		22.68	1440	2	0.96
机轴							
I轴	3.28	3.21	43.51	42.64	720		
						3.46	0.95
II轴	3.12	3.06	143.19	140.33	208.09		
						2.60	0.95
Ⅲ轴	2.97	2.91	354.41	347.32	80.03		
						1	0.97
卷筒	2.88	2.82	343.67	336.80	80.03		
轴							

计算及说明	计算结果
计算各轴转速	
按公式计算得 $I 轴 n_I = \frac{n_m}{i_0} = \frac{1440}{2} = 720.00 \text{ r/min}$ $II 轴 n_{II} = \frac{n_I}{i_1} = \frac{720}{3.46} = 208.09 \text{ r/min}$ $III 轴 n_{III} = \frac{n_{II}}{i_2} = \frac{208.09}{2.60} = 80.03 \text{ r/min}$ 卷筒轴 $n_{IV} = n_{III} = 80.03 \text{ r/min}$	$\begin{aligned} n_{I} &= 720 r/min \\ n_{II} \\ &= 208.09 r/min \\ n_{III} \\ &= 80.03 r/min \\ n_{IV} \\ &= 80.03 r/min \end{aligned}$
计算各轴输入功率、输出功率	
按公式计算得 $I {\mathrm{ah}} P_I = P_d \times \eta_{01} = P_d \times \eta_{V^{\#}} = 3.42 \times 0.96 = 3.28 \mathrm{kW}$ $II {\mathrm{ah}} P_{II} = P_I \times \eta_{12} = P_I \times \eta_{\mathrm{hag}} \times \eta_{\mathrm{bh}} = 3.28 \times 0.98 \times 0.97 = 3.12 \mathrm{kW}$ $III {\mathrm{ah}} P_{III} = P_{II} \times \eta_{23} = P_{II} \times \eta_{\mathrm{hag}} \times \eta_{\mathrm{bh}} = 3.12 \times 0.98 \times 0.97 = 2.97 \mathrm{kW}$ 卷筒轴 $P_{IV} = P_{III} \times \eta_{34} = P_{III} \times \eta_{\mathrm{hag}} \times \eta_{\mathrm{Wh}} = 2.97 \times 0.98 \times 0.99$ $= 2.88 \mathrm{kW}$ 各轴的输出功率为输入功率乘轴承效率 0. 98,分别为 $I {\mathrm{ah}} P_I' = P_I \times \eta_{\mathrm{hag}} = 3.28 \times 0.98 = 3.21 \mathrm{kW}$	$P_{I} = 3.28kW$ $P_{II} = 3.12kW$ $P_{III} = 2.97kW$ $P_{IV} = 2.88kW$
II 轴 $P'_{II} = P_{II} \times \eta_{\text{轴承}} = 3.12 \times 0.98 = 3.06 \text{ kW}$	$P'_{I} = 3.21 \text{kW}$ $P'_{II} = 3.06 \text{kW}$
III 轴 $P'_{III}=P_{III} imes\eta_{$ 轴承}=2.97 $ imes 0.98=2.91~kW$	$P'_{III} = 3.00 \text{kW}$ $P'_{III} = 2.91 \text{kW}$
卷筒轴 $P'_{IV} = P_{IV} \times \eta_{_{\text{轴承}}} = 2.88 \times 0.98 = 2.82 \text{ kW}$	$P'_{IV} = 2.82kW$
计算各轴输入、输出转矩	T_d = 22.68N × m T_I = 43.51N × m T_{II} = 143.19N × m T_{III} = 354.41N × m

卷筒轴输入转矩 $T_{IV} = 9550 \frac{P_{IV}}{n_{IV}} = 9550 \times \frac{2.88}{80.03} = 343.67 \text{ N} \times \text{m}$	T_{IV} = 343.67N × m
各轴输出转矩分别为各轴输入转矩乘轴承效率 0.98	

第五章 传动零件的设计计算

5.1. 带传动设计

设计结果如下表

带型	传动比	小带轮直径	大带轮直径	带根数	带轮宽度
A	2	100mm	200mm	3	50mm

计算及说明	计算结果
确定设计功率	
由前计算得 n _m = 1440 r/min, n _I = 720 r/min	
由[1]表 9-5 查工况系数 $K_A = 1.2$	
则设计功率	
$P_{\rm d} = K_{\rm A}P = 1.2 \times 3.42 = 4.1 \text{kW}$	$P_{d} = 4.1 \text{kW}$
则P _d = 4.1kW, n _m = 1440 r/min,由[1]图 9-9 选择 A 型带	
选择小带轮直径	
由[1]表 9-6 知,最小基准直径不小于 75mm,则选择小带轮基准	$d_{d1} = 100 mm$
直径d _{d1} = 100 mm	
验算带速 	
由公式计算得	
$v = \frac{\pi d_{d1} n_m}{60 \times 1000} = \frac{3.14 \times 100 \times 1440}{60 \times 1000} = 7.54 \text{ m/s}$ 故该带速在推荐的 $5^{\sim}25\text{m/s}$ 的范围内,带速合适	v = 7.54 m/s

确定大带轮直径	
由公式计算得	
$d_{d2} = \frac{n_{\rm m}}{n_I} d_{d1} = \frac{1440}{720} \times 100 = 200 \text{ mm}$	$d_{d2} = 200 \text{ mm}$
确定中心距和带的基准长度	
初定中心距	
$a_0 = 1.5(d_{d1} + d_{d2}) = 1.5 \times (100 + 200) = 450 \text{ mm}$	
求带的基准长度	
$L_{d} = 2a + \frac{\pi}{2}(d_{d1} + d_{d2}) + \frac{(d_{d2} - d_{d1})^{2}}{4a}$	$L_{ m d}$
$= 2 \times 450 + \frac{3.14}{2} \times (100 + 200) + \frac{(200 - 100)^{2}}{4 \times 450}$	= 1376.56 mm
= 1376.56 mm	
查[1]表 9-2 选择带长为 1430mm 的 A 型带	
计算中心距为	
$a = a_0 + \frac{L_d - L_{d0}}{2} = 450 + \frac{1430 - 1376.56}{2} = 476.72 \text{ mm}$	a = 476.72 mm
验算小带轮包角	
$\alpha_1 = 180^{\circ} - \frac{d_{d2} - d_{d1}}{a} \times 57.3^{\circ} = 180^{\circ} - \frac{200 - 100}{476.72} \times 57.3^{\circ} = 167.98^{\circ}$	
> 120°	
确定 V 带根数	
查[1]表 9-4 得知单根普通 V 带基本额定功率 $P_1 = 1.32kW$	
查[1]表 9-8 得知单根普通 V 带传递功率的增量 $\Delta P_1 = 0.17 \text{kW}$	
查[1]表 9-9 得知包角修正系数 $K_{\alpha} = 0.96$	
查[1]表 9-2 得知带长修正系数 K _L = 0.96	
带入公式:	
$z \ge \frac{P_d}{(P_1 + \Delta P_1)K_{\alpha}K_L} = \frac{4.1}{(1.32 + 0.17) \times 0.96 \times 0.96} = 2.99$	
则取z = 3即可	z = 3

计算初拉力	
查[1]表 9-1 得q = 0.11 kg/m	
$F_0 = \frac{500P_d}{zv}(\frac{2.5}{K_\alpha} - 1) + qv^2 = \frac{500 \times 4.1}{3 \times 7.54} \times (\frac{2.5}{0.96} - 1) + 0.11 \times 1^2$	$F_0 = 145.49 \text{ N}$
= 145.49 N	
计算带轮作用在轴上压力	
$F_Q = 2zF_0 \sin{\frac{\alpha}{2}} = 2 \times 3 \times 145.49 \times \sin{\frac{167.98^{\circ}}{2}} = 868.14 \text{ N}$	$F_Q = 868.14 \text{ N}$
带轮结构设计	
小带轮采用实心式,查[2]表 22-3 得电动机轴径 $D_0 = 28$	
由	
$B_{\hat{w}}$ = $(z - 1)e + 2f = (3 - 1) \times 15 + 2 \times 10 = 50 \text{ mm}$	B _{轮毂宽}
大带轮采用孔板式结构,与小带轮轮毂同宽	= 50 mm

5.2. 齿轮传动设计

设计结果如下表

名称	代号	单位	高速级		低	速级
			小齿轮	大齿轮	小齿轮	大齿轮
中心距	а	mm	1	115		140
传动比	i		3.48		2	2.62
模数	m_n	mm	2		2	
螺旋角	β	o	13.1158		16	.8350
齿数	z		25	87	37	97
分度圆直径	d	mm	51.339	178.661	77.313	202.687
节圆直径	d'	mm	50	180	80	200
齿顶圆直径	d_a	mm	56	183	82	207
齿根圆直径	d_f	mm	46	173	72	197
齿宽	b	mm	50	45	60	55
螺旋角方向			左旋	右旋	右旋	左旋
材料及齿面硬			40Cr	42SiMn	40Cr	42SiMn
总传动比误差			-1.306%			

5.2.1. 高速级齿轮设计

计算及说明	计算结果
齿轮材料选择	
参考[1]表 11-1 齿轮材料表,选择齿轮材料为:	
小斜齿轮: 40Cr,调质处理,表面硬度 241~286HBW (取中间值	
250HBW), 强度极限 700MPa, 屈服极限 500Mpa	
大斜齿轮: 42SiMn,调质处理,表面硬度 217~269HBW (取中间	
值 220HBW), 强度极限 750MPa, 屈服极限 450Mpa	
按齿面接触疲劳强度设计计算式计算	
由前计算小齿轮转矩 $T_1 = 43.51 \text{N} \times \text{m}$	
由前计算高速级齿轮传动比u = 3.46	
查[1]表 11-7,设计齿宽系数 ϕ_d = 1(小齿轮为软齿轮面,对称	
布置)	
查[1]表 11-5,设计载荷系数 K = 1.1	
初选螺旋角 β = 15°	
螺旋角系数 $Z_{\beta} = \sqrt{\cos \beta} = 0.983$	
查[1]表 11-3,设计弹性系数 Z _E = 189.8√MPa	
由[1]图 11-12c 按 MQ 选取 σ_{Hlim1} = 700MPa, σ_{Hlim2} = 660MPa	
查[1]表 11-6,安全系数S _H = 1.1	
计算许用接触疲劳应力[σ _н]	
$[\sigma_{\rm H}]_1 = \frac{\sigma_{\rm Hlim1}}{S_{\rm H}} = \frac{700}{1.1} = 636.4 \text{MPa}$	
$[\sigma_{\rm H}]_2 = \frac{\sigma_{\rm Hlim2}}{S_{\rm H}} = \frac{660}{1.1} = 600 \text{MPa}$	
因 $[\sigma_H]_2 < [\sigma_H]_1$,故将 $[\sigma_H]_2$ 代入齿面接触疲劳强度设计式	
则小齿轮分度圆直径	

$$d_1 \geq 2.32 \sqrt[3]{\left(\frac{KT_1}{\varphi_d}\right)} \frac{u+1}{u} \left(\frac{Z_R Z_2}{|\sigma_H|}\right)^2$$

$$= 2.32 \sqrt[3]{\frac{1.1 \times 4.351 \times 10^4}{1} \times \frac{3.46 + 1}{3.46} \times \left(\frac{189.8 \times 0.983}{600}\right)^2}$$

$$= 42.076 \text{ mm}$$
选取小齿轮齿数 $z_1 = 25$,则
$$z_2 = iz_1 = 3.46 \times 25 = 86.5$$
取大齿轮齿数 $z_2 = 87$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 87$$

$$2 = 115.95 \text{ mm}$$

$$2 = \frac{m_n(z_1 + z_2)}{2\cos\beta} = \frac{2 \times (25 + 87)}{2 \times \cos 15^\circ} = 115.95 \text{ mm}$$

$$2 = \frac{m_n(z_1 + z_2)}{2\cos\beta} = \frac{2 \times (25 + 87)}{2 \times 115} = 13.1158^\circ$$

$$2 = \frac{115.1158^\circ}{2}$$

$$3 = \frac{2 \times 25}{\cos 13.1158^\circ} = 51.339 \text{ mm}$$

$$4 = \frac{m_n z_1}{\cos\beta} = \frac{2 \times 87}{\cos 13.1158^\circ} = 178.661 \text{ mm}$$

$$4 = \frac{m_n z_2}{\cos\beta} = \frac{2 \times 87}{\cos 13.1158^\circ} = 178.661 \text{ mm}$$

$$2 = \frac{z_1}{\cos\beta} = \frac{25}{(\cos 13.1158^\circ)^3} = 27.063$$

$$2 = \frac{z_2}{\cos\beta} = \frac{87}{(\cos 13.1158^\circ)^3} = 94.180$$

$$2 = 94.180$$

 $z_{v2} = 94.180$

齿轮的圆周速度 $v = \frac{\pi n_1 d_1}{60 \times 1000} = \frac{\pi \times 720 \times 42.076}{60 \times 1000} = 1.586 \text{ m/s}$ 由[1]表 11-2 知,选齿轮传动精度等级 8 级适宜 校核齿根弯曲疲劳强度 查[1]表 11-4 $Y_{Fa1} = 2.57, Y_{Sa1} = 1.60, Y_{Fa2} = 2.20, Y_{Sa2} = 1.78$ 由[1]图 11-13c 查得 σ_{Flim1} = 285MPa, σ_{Flim2} = 275MPa 由[1]表 11-6,选取弯曲疲劳安全系数 $S_F = 1.3$ $[\sigma_{\rm F}]_1 = \frac{\sigma_{\rm Flim1}}{S_{\rm F}} = \frac{285}{1.3} = 219.2 \,\text{MPa}$ $[\sigma_{_{\rm E}}]_1$ = 219.2 MPa $[\sigma_{\rm F}]_2 = \frac{\sigma_{\rm Flim2}}{S_{\rm F}} = \frac{275}{1.3} = 211.5 \text{ MPa}$ $[\sigma_{_{\rm F}}]_2$ 齿宽取b₁ = 50,b₂ = 45 = 211.5 MPa 校核齿根弯曲应力 $\sigma_{F1} = \frac{2KT_1}{bm^2z_1}Y_{Fa1}Y_{Sa1} = \frac{2 \times 1.1 \times 4.351 \times 10^4}{45 \times 2 \times 42.076} \times 2.57 \times 1.60$ = 103.941 MPa < $[\sigma_{_{
m F}}]_1$ $\sigma_{F2} = \frac{2KT_1}{bm^2z_1}Y_{Fa2}Y_{Sa2} = \frac{2 \times 1.1 \times 4.351 \times 10^4}{45 \times 2 \times 42.076} \times 2.20 \times 1.78$ 均满足要求, 故安全;

5.2.2. 低速级齿轮设计

计算及说明	计算结果
齿轮材料选择	
参考[1]表 11-1 齿轮材料表,选择齿轮材料为:	
小斜齿轮: 40Cr, 调质处理, 表面硬度 241~286HBW (取中间值	

250HBW), 强度极限 700MPa, 屈服极限 500Mpa

大斜齿轮: 42SiMn,调质处理,表面硬度 217~269HBW (取中间值

220HBW), 强度极限 750MPa, 屈服极限 450Mpa

按齿面接触疲劳强度设计计算式计算

由前计算小齿轮转矩 $T_1 = 143.19 \text{ N} \times \text{m}$

由前计算低速级齿轮传动比u = 2.6

查[1]表 11-7,设计齿宽系数 ϕ_d = 1(小齿轮为软齿轮面,对称布置)

查[1]表 11-5,设计载荷系数 K = 1.1

初选螺旋角 β = 15°

螺旋角系数
$$Z_{\beta} = \sqrt{\cos \beta} = 0.983$$

查[1]表 11-3,设计弹性系数 $Z_E = 189.8\sqrt{MPa}$

由[1]图 11–12c 按 MQ 选取
$$\sigma_{\mathrm{Hlim1}}$$
 = 700MPa, σ_{Hlim2} = 660MPa

查[1]表 11-6,安全系数SH = 1.1

计算许用接触疲劳应力[σμ]

$$[\sigma_{_{\rm H}}]_1 = \frac{\sigma_{_{\rm Hlim1}}}{S_{\rm H}} = \frac{700}{1.1} = 636.4 \text{ MPa}$$

$$[\sigma_{\rm H}]_2 = \frac{\sigma_{\rm Hlim2}}{S_{\rm H}} = \frac{660}{1.1} = 600 \text{ MPa}$$

因 $[\sigma_H]_2 < [\sigma_H]_1$,故将 $[\sigma_H]_2$ 代入齿面接触疲劳强度设计式

则小齿轮分度圆直径

$$\begin{split} d_1 & \geq 2.32 \sqrt[3]{\left(\frac{KT_1}{\varphi_d}\right)\frac{u+1}{u}\left(\frac{Z_E Z_\beta}{\left[\sigma_H\right]}\right)^2} \\ & = 2.32 \sqrt[3]{\frac{1.1\times 1.4319\times 10^5}{1}\times \frac{2.6+1}{2.6}\times \left(\frac{189.8\times 0.983}{600}\right)^2} \end{split}$$

选取小齿轮齿数z₁ = 37,则

$$z_2 = iz_1 = 2.6 \times 37 = 96.2$$

取大齿轮齿数 $z_2 = 97$	$z_1 = 37$
则法向模数	$z_2 = 97$
$m_n = \frac{d_1 \cos \beta}{z_1} = \frac{64.096 \times \cos 15^o}{37} = 1.673 \text{ mm}$ 查[1]表 4-1 选取标准模数 $m_n = 2mm$	$m_n = 2mm$
实际传动比为	
$i' = \frac{z_2}{z_1} = \frac{97}{37} = 2.62$	i' = 2.62
中心距计算	
$a = \frac{m_n(z_1 + z_2)}{2\cos\beta} = \frac{2 \times (37 + 97)}{2 \times \cos 15^\circ} = 138.727 \text{ mm}$	
圆整后取a = 140 mm	a = 140mm
实际螺旋角计算	
$\beta = \cos^{-1} \frac{m_n(z_1 + z_2)}{2a} = \cos^{-1} \frac{2 \times (37 + 97)}{2 \times 140} = 16.8350^{\circ}$ 分度圆直径	$\beta = 16.8350^{\circ}$
$d_1 = \frac{m_n z_1}{\cos \beta} = \frac{2 \times 37}{\cos 16.8350^{\circ}} = 77.313 \text{ mm}$	d ₁
$d_2 = \frac{m_n z_2}{\cos \beta} = \frac{2 \times 97}{\cos 16.8350^{\circ}} = 202.687 \text{ mm}$	$= 77.313$ mm d_2
当量齿数	= 202.687mm
$z_{v1} = \frac{z_1}{\cos^3 \beta} = \frac{37}{(\cos 16.8350^\circ)^3} = 42.196$	$z_{v1} = 42.196$
$z_{v2} = \frac{z_2}{\cos^3 \beta} = \frac{97}{(\cos 16.8350^\circ)^3} = 110.622$	$z_{v2} = 110.622$
齿轮的圆周速度	
$v = \frac{\pi n_1 d_1}{60 \times 1000} = \frac{\pi \times 208.09 \times 64.096}{60 \times 1000} = 0.698 \text{ m/s}$ 由[1]表 11-2 知,选齿轮传动精度等级 8 级适宜	
校核齿根弯曲疲劳强度	
查[1]表 11-4	
$Y_{Fa1} = 2.40, Y_{Sa1} = 1.67, Y_{Fa2} = 2.18, Y_{Sa2} = 1.79$	

齿宽取
$$b_1 = 60, b_2 = 55$$
 校核齿根弯曲应力
$$\sigma_{F1} = \frac{2KT_1}{bm^2z_1}Y_{Fa1}Y_{Sa1} = \frac{2\times1.1\times1.4319\times10^5}{55\times2\times64.096}\times2.40\times1.67$$

$$= 179.077 \text{ MPa} < [\sigma_F]_1$$

$$\sigma_{F2} = \frac{2KT_1}{bm^2z_1}Y_{Fa2}Y_{Sa2} = \frac{2\times1.1\times1.4319\times10^5}{55\times2\times64.096}\times2.18\times1.79$$

= 174.349 MPa $< [\sigma_{_{\rm F}}]_2$

均满足要求, 故安全;

低速级大齿轮零件工作图

5.3. 轴设计

5.3.1. 高速轴设计

计算及说明	计算结果
轴材料选择	
因传递功率较小,且对重量及结构尺寸无特殊要求,参考[1]表	
13-2, 选择材料 40Cr, 调质处理	

轴示意图

轴径估算

查[1]表 13-3, 选C = 98~106, 考虑轴端既承受转矩又承受弯矩, 故取值C = 106, 则

$$d_{min} = C_{3}^{3} \sqrt{\frac{P_{I}}{n_{I}}} = 106 \times \sqrt[3]{\frac{3.28}{720}} = 17.572 \text{ mm}$$

轴与带轮连接,有一个键槽,轴径应增大 5%[~]7%,轴端最细处直 径为

$$d_1 > 17.572 \times [1 + (5\% \sim 7\%)] = 18.451 \sim 18.802 \text{ mm}$$

则取 $d_{min} = 20 \text{ mm}$

 $d_{min}=20mm\\$

结构设计

1) 轴承部件的结构设计

为方便轴承部件的装拆,减速器机体采用剖分式结构,该减速器发热小,轴距短,故轴承采用两端固定方式,按轴上零件的安装顺序,从轴的最细处开始设计

2) 轴段1

轴段 1 上安装带轮,此段轴的设计应与带轮轮毂轴孔的设计同步进行。根据前计算结果,考虑到如果轴径太小,轴承寿命可能无法满足减速器预期寿命的要求,初定轴段 1 的轴径 \mathbf{d}_1 = 27 mm,由前计算得知,带轮轮毂的宽度为 50mm,取轴 \mathbf{L}_1 = 48 mm

 $d_1 = 27mm$ $L_1 = 48mm$

3) 轴段2

在确定轴段 2 的轴径时,应考虑带轮的轴向固定及密封圈的尺寸。带轮采用轴肩定位,轴肩高度h = $(0.07 \sim 0.1)$ d₁ = $(0.07 \sim 0.1)$ × 27 = $1.89 \sim 2.7$ mm,则取定位轴肩h = 2mm,非定位轴肩h' = 2mm。 轴段 2 的轴径d₂ = d₁ + 2h = 27 + 2×2 = 31 mm, L₂ = 35 + 10 + 55 – 17 – 10 = 73 mm

 $d_2 = 31mm$ $L_2 = 73mm$

4) 轴承与轴段3及轴段7

考虑齿轮存在轴向力,选用圆锥滚子轴承。轴段 3 上安装轴承,其直径应符合轴承内径系列,且 $d_3=d_2+2h=31+2\times 2=35\,mm$,取轴承为 30207,由[2]表 17-6 得轴承内径 $d=35\,mm$,外径 $D=72\,mm$,宽度 $B=17\,mm$,内圈定位轴肩直径 $d_a=42\,mm$,外圈定位直径 $d_a=62\,mm$ 。轴承采用脂润滑,需要用挡油环阻止箱体内润滑油溅入轴承座。为补偿箱体的铸造误差和安装挡油环,轴承靠近箱体内壁的端面距箱体内壁距离取d,挡油环的挡油凸缘内侧面凸出箱体内壁 $d=12\,mm$,挡油环轴孔宽度初定为 $d=13\,mm$,则 $d=12\,mm$,挡油环轴孔宽度初定为 $d=13\,mm$,则 $d=12\,mm$,增油环轴孔宽度初定为 $d=13\,mm$,则 $d=12\,mm$,增油环轴孔宽度初定为 $d=13\,mm$,则 $d=14\,mm$,增油环轴孔宽度初定为 $d=14\,mm$,则 $d=14\,mm$,增油环轴孔宽度初定为 $d=14\,mm$,则 $d=14\,mm$,增油环轴孔宽度初定为 $d=14\,mm$,则 $d=14\,mm$,增加环轴孔宽度初定为 $d=14\,mm$,则 $d=14\,mm$,增加环轴孔宽度初度和

 $d_3 = 35m$ $L_3 = 30mm$

5) 齿轮	$d_7 = 35 mm$
该段安装齿轮,为便于齿轮的安装,初定 $d_5 = 42 mm$,查[2]	$L_7 = 30$ mm
表 16-28 得知该处键的截面尺寸为b×h=12mm×8mm,轮毂键槽	
深度 $t_1 = 3.3 mm$,则此处齿轮上齿根圆与毂孔键槽顶部的距离为	
$e = \frac{d_{f1}}{2} - \frac{d_5}{2} = \frac{46}{2} - \frac{42}{2} = 2$ mm < 2.5 $m_n = 5$ mm,故轴设计成齿轮轴,则	
有 $d_5 = d_{f1} = 46$ mm, $L_5 = b_1 = 50$ mm。	$d_5 = 46 \text{mm}$
6) 轴段 4 与轴段 6	$L_5 = 50 mm$
轴段 4 与轴段 6 直径相同,长度不同,直径 $d_4 = d_6 = d_3 + 2h =$	$d_4 = 39$ mm
$35 + 2 \times 2 = 39$ mm, $L_4 = 77$ mm, $L_6 = 7$ mm	$L_4 = 77 \text{mm}$ $d_6 = 39 \text{mm}$
	$L_6 = 7 \text{mm}$
键的选择	
带轮与轴段1采用A型普通平键连接,查[2]表16-28选取键的型	
号为 8x36 GB/T 1096-1979	

5.3.2. 中间轴设计

计算及说明	计算结果
轴材料选择	
因传递功率较小,且对重量及结构尺寸无特殊要求,参考[1]表	
13-2, 选择材料 40Cr, 调质处理	
轴示意图	

轴径估算

查[1]表 13-3,选C = 98~106,考虑轴端既承受转矩又承受弯矩,故取值C = 106,则

$$d_{min} = C \sqrt[3]{\frac{P_I}{n_I}} = 106 \times \sqrt[3]{\frac{3.12}{208.09}} = 26.138 \text{ mm}$$

则取 $d_{min} = 35 \, mm$

 $d_{min} = 35 \text{ mm}$

结构设计

1) 轴承部件的结构设计

为方便轴承部件的装拆,减速器机体采用剖分式结构,该减速器发热小,轴距短,故轴承采用两端固定方式,按轴上零件的安装顺序,从轴的最细处开始设计

2) 轴承与轴段1及轴段5

考虑齿轮存在轴向力,选用圆锥滚子轴承。轴段 1 上安装轴承,其直径应符合轴承内径系列,且 $d_1=35$ mm,取轴承为 30207,由[2]表 17-6 得轴承内径 d=35mm,外径 D=72mm,宽度 B=17mm,内圈定位轴肩直径 $d_a=42$ mm,外圈定位直径 $D_a=62$ mm。轴承采用脂润滑,需要用挡油环阻止箱体内润滑油溅入轴承座。为补偿箱体的

铸造误差和安装挡油环,轴承靠近箱体内壁的端面距箱体内壁距	
离取Δ, 挡油环的挡油凸缘内侧面凸出箱体内壁 1~2mm, 挡油环轴	
孔宽度初定为 $B_1 = 13$ mm, $B_5 = 13$ mm, 同时加上套筒定位预留长度	
约 8mm, 则L ₁ = 17 + 10 + 10 + 2 = 39mm。通常一根轴上两个轴承	
取相同型号,则 $d_5=35$ mm, $L_5=17+10+10+\frac{5}{2}+2=41.5$ mm,则	$d_1 = 35$ mm
轴肩高度h = $(0.07 \sim 0.1)d_1 = (0.07 \sim 0.1) \times 35 = 2.45 \sim 3.5$ mm,则取定	$L_1 = 39 \text{mm}$
位轴肩 $h = 3$ mm,非定位轴肩 $h' = 2.5$ mm。	$d_5 = 35$ mm $L_5 = 41.5$ mm
3) 轴段 2 与低速级小齿轮	3
该段安装齿轮,为便于齿轮的安装,定 $d_2 = 40$ mm,查[2]表	
16-28 得知该处键的截面尺寸为b×h = 12mm×8mm,轮毂键槽深	
$gt_1 = 3.3 mm$,则此处齿轮上齿根圆与毂孔键槽顶部的距离为 $e =$	
$\left \frac{d_{f3}}{2} - \frac{d_2}{2} \right = \frac{72}{2} - \frac{40}{2} = 16$ mm > 2.5 $m_n = 5$ mm,故设计齿轮与轴通过平键	
联接,其左端采用套筒固定,右端采用轴肩定位,齿轮3轮毂的	
宽度为 $B_3 = 60$ mm,为保证齿轮 3 安全地定位,取 $L_2 = 58$ mm.	$d_2 = 40 \text{mm}$ $L_2 = 58 \text{mm}$
4) 轴段 3	2
该轴段为轴环,提供给齿轮轴肩定位,取 $d_3 = d_2 + 2h = 40 + 40 + 40 + 40 + 40 + 40 + 40 + 40$	$d_3 = 46$ mm
$2 \times 3 = 46$ mm, $L_3 = 10$ mm	$L_3 = 10 \text{mm}$
5) 轴段 4 与高速级大齿轮	J
该段安装齿轮,为便于齿轮的安装,定 $d_4 = 40$ mm,查[2]表	
16-28 得知该处键的截面尺寸为b×h=12mm×8mm, 其左端采用	
轴肩定位,右端采用套筒定位,齿轮 2 轮毂宽度为 $B_2 = 45$ mm,为	
保证齿轮 2 安全地定位,取 L_4 = 43mm.	$d_4 = 40 \text{mm}$ $L_4 = 43 \text{mm}$
保证齿轮 2 安全地定位,取L ₄ = 43mm. 键的选择	-
	-
键的选择	-

5.3.3. 低速轴设计

计算及说明	计算结果
轴材料选择	
因传递功率较小,且对重量及结构尺寸无特殊要求,参考[1]表	
13-2, 选择材料 40Cr, 调质处理	

轴示意图

轴径估算

查[1]表 13-3, 选C = 98~106, 考虑轴端既承受转矩又承受弯矩, 故取值C = 106, 则

$$d_{min} = C \sqrt[3]{\frac{P_I}{n_I}} = 106 \times \sqrt[3]{\frac{2.97}{80.03}} = 35.357 \text{ mm}$$

轴与联轴器连接,有一个键槽,轴径应增大 5%[~]7%,轴端最细处 直径为

$$d_1 > 35.357 \times [1 + (5\% \sim 7\%)] = 37.125 \sim 37.831 \text{ mm}$$

 $d_{min} = 40 \; mm$

则取 $d_{min} = 40 \text{ mm}$

结构设计

1) 轴承部件的结构设计

为方便轴承部件的装拆,减速器机体采用剖分式结构,该减速器发热小,轴距短,故轴承采用两端固定方式,按轴上零件的安装顺序,从轴的最细处开始设计

2) 轴段7

轴段 7 上安装联轴器,公称转矩 $T_n > K_AT = 1.2 \times 354.41 =$ 425.292,由[2]表 19-5 选择弹性套柱销联轴器 TL8 J型,轴段 1 的轴径 $d_7 = 48$ mm,取轴 $L_7 = 84$ mm

3) 轴段6

在确定轴段 6 的轴径时,应考虑带轮的轴向固定及密封圈的尺寸。带轮采用轴肩定位,轴肩高度h = $(0.07\sim0.1)$ d₇ = $(0.07\sim0.1)$ × 48 = $3.36\sim4.8$ mm,则取定位轴肩h = 4mm,非定位轴肩h' = 2mm。轴段 6 的轴径d₆ = d₇ + 2h = 48 + 2 × 4 = 56 mm, L₆ = 35 + 10 + 55 – 17 – 10 = 73 mm

4) 轴承与轴段1及轴段5

考虑齿轮存在轴向力,选用圆锥滚子轴承。轴段 5 上安装轴承,其直径应符合轴承内径系列,且 $d_5=d_6+2h=56+2\times2=60\,\mathrm{mm}$,取轴承为 30212,由[2]表 17-6 得轴承内径 $d=60\,\mathrm{mm}$,外径 $D=110\,\mathrm{mm}$,宽度 $B=22\,\mathrm{mm}$,内圈定位轴肩直径 $d_a=69\,\mathrm{mm}$,外圈定位直径 $D_a=101\,\mathrm{mm}$ 。轴承采用脂润滑,需要用挡油环阻止箱体内润滑油溅入轴承座。为补偿箱体的铸造误差和安装挡油环,轴承靠近箱体内壁的端面距箱体内壁距离取 Δ ,挡油环的挡油凸缘内侧面凸出箱体内壁 $1^{\sim}2\,\mathrm{mm}$,挡油环轴孔宽度初定为 $B_1=13\,\mathrm{mm}$,则 $L_5=B+B_1=17+13=30\,\mathrm{mm}$ 。通常一根轴上两个轴承

 $d_7 = 48 \text{ mm}$

 $L_7 = 84 \text{ mm}$

 $d_6 = 56 \text{ mm}$ $L_6 = 73 \text{mm}$

 $d_5 = 60 mm$

 $L_5 = 30 \text{mm}$

 $d_1 = 60 mm$

 $L_1 = 41.5 mm$

取相同型号,且轴段 1 需预留套筒定位间距,则 $d_1=60$ mm, $L_1=17+10+10+\frac{5}{2}+2=41.5$ mm

5) 轴段 4 与轴段 3

轴段 4 用于过渡,取 $d_4=64$ mm, $L_4=140-3-10-2.5-2-53-5.5=64$ mm

轴段 3 作为轴环,为齿轮提供轴肩定位,取 d_3 = 72mm, L_3 ~1.4h = $1.4 \times 4 = 5.6$ mm, 取 L_3 = 5.5mm

6) 齿轮与轴段2

该轴段安装低速级大齿轮,为便于齿轮的安装,初定 d_2 = 64mm, 查 [2] 表 16-28 得知该处键的截面尺寸为 $b \times h$ = 18mm×11mm,其左端采用套筒定位,右端采用轴肩定位,齿轮4轮毂宽度为 B_4 = 55mm,为保证齿轮4安全地定位,取 L_2 = 53mm.

 $d_4 = 64mm$

 $L_4 = 64$ mm

 $d_3 = 72 mm$

 $L_3 = 5.5 \text{mm}$

 $d_2 = 64$ mm

 $L_2 = 53$ mm

键的选择

齿轮与轴段 2 采用 A 型普通平键连接, 查[2]表 16-28 得知键的型号为 18x45 GB/T 1096-1979

联轴器上采用 A 型普通平键连接, 查[2]表 16-28 得知键的型号为 14x70 GB/T 1096-1979

低速轴零件工作图

第六章 轴强度校核、键联接的强度校核及轴承寿命校核

6.1. 轴强度校核

6.1.1. 高速轴

受力分析

高速级齿轮螺旋角 β = 13.1158°, 小齿轮左旋, 大齿轮右旋, 小齿轮分度圆直径 d_1 = 51.339 mm

主动轮切向力为

$$F_{t1} = \frac{2T_1}{d_1} = \frac{2 \times 4.351 \times 10^4}{51.339} = 1695 \text{ N}$$

径向力为

$$F_{r1} = \frac{F_{t1} \tan a_n}{\cos \beta} = \frac{1695 \times \tan 20^o}{\cos 13.1158^o} = 634 \text{ N}$$

轴向力为

$$F_{a1} = F_{t1} \tan \beta = 1695 \times \tan 13.1158^{\circ} = 395 \text{ N}$$

支反力为

$$F_{AH} = \frac{F_{r1}l_2}{l_1 + l_2} = 182 \text{ N}$$

$$F_{BH} = \frac{F_{r1}l_1}{l_1 + l_2} = 453 \text{ N}$$

$$F_{AV} = \frac{F_{t1}l_2 - \frac{F_{a1}d_1}{2}}{l_1 + l_2} = 423 \text{ N}$$

$$F_{BV} = \frac{F_{t1}l_1 + \frac{F_{a1}d_1}{2}}{l_1 + l_2} = 1273 \text{ N}$$

水平弯矩为

$$M_{H1} = F_{AH}l_1 = 21240 \text{ N} \times \text{mm}$$

垂直弯矩为

$$M_{\text{V1}\,\text{£}} = F_{\text{AV}}l_1 = 49365~\text{N} \times \text{mm}$$

$$M_{V1 \pm} = M_{V1 \pm} + \frac{F_{a1}d_1}{2} = 59504 \text{ N} \times \text{mm}$$

合成弯矩为

$$\begin{split} &M_{1\, \pm} = \sqrt{{M_{H1}}^2 + M_{V1\, \pm}^2} = 53740 \; \text{N} \times \text{mm} \\ &M_{1\, \pm} = \sqrt{{M_{H1}}^2 + M_{V1\, \pm}^2} = 63182 \; \text{N} \times \text{mm} \end{split}$$

当量弯矩

减速器轴按脉动循环处理,查[2]表 13-5 有

$$\begin{split} [\sigma_0^{}]_w &= 130 \text{ MPa, } [\sigma_{-1}^{}]_w = 75 \text{ MPa} \\ &\alpha = \frac{[\sigma_{-1}^{}]_w}{[\sigma_0^{}]_w} = 0.6 \\ &M_{e1\, \pm} = \sqrt{M_{1\, \pm}^{\ 2} + (\alpha T)^2} = 59745 \text{ N} \times \text{mm} \\ &M_{e1\, \pm} = \sqrt{M_{1\, \pm}^{\ 2} + (\alpha T)^2} = 63182 \text{ N} \times \text{mm} \end{split}$$

强度校核

由前计算代入轴强度校核式

= 75 MPa

M_{e1左}

= 59745 N

×mm

 $\rm M_{e1\, \rm f}$

= 63182 N

 \times mm

$$d_1 = \sqrt[3]{\frac{M_{e1 \pm}}{0.1[\sigma_{-1}]_w}} = 21 \text{ mm} < 46 \text{mm}$$

故轴强度足够

6.1.2. 中间轴

受力分析

中间轴传递的转矩 $T_{II}=1.4319\times 10^5~N\times mm$,转速 $n_{II}=208.09~r/min$,高速级齿轮螺旋角 $\beta=16.8350^\circ$,小齿轮右旋,大齿轮右旋,小齿轮分度圆直径 $d_3=77.313~mm$,大齿轮分度圆直径 $d_2=178.661~mm$

切向力为

$$\begin{aligned} F_{t2} &= \frac{2T_{II}}{d_2} = \frac{2 \times 1.4319 \times 10^5}{178.661} = 1603 \text{ N} \\ F_{t3} &= \frac{2T_{II}}{d_3} = \frac{2 \times 1.4319 \times 10^5}{77.313} = 3705 \text{ N} \end{aligned}$$

径向力为

$$F_{r2} = \frac{F_{t2} \tan a_n}{\cos \beta} = \frac{1603 \times \tan 20^o}{\cos 13.1158^o} = 600 \text{ N}$$

$$F_{r3} = \frac{F_{t3} \tan a_n}{\cos \beta} = \frac{3705 \times \tan 20^{\circ}}{\cos 16.8350^{\circ}} = 1409 \text{ N}$$

轴向力为

$$F_{a2} = F_{t2} \tan \beta = 1603 \times \tan 13.1158^{o} = 374 \text{ N}$$

$$F_{a3} = F_{t3} \tan \beta = 3705 \times \tan 16.8350^{o} = 1121 \text{ N}$$

支反力为

$$\begin{split} F_{AH} &= \frac{F_{r3}(l_2 + l_3) + F_{r2}l_3}{l_1 + l_2 + l_3} = 1188 \text{ N} \\ F_{BH} &= \frac{F_{r3}l_1 + F_{r2}(l_1 + l_2)}{l_1 + l_2 + l_3} = 821 \text{ N} \\ F_{AV} &= \frac{F_{t2}l_3 + F_{t3}(l_2 + l_3) + \frac{F_{a2}d_2}{2} - \frac{F_{a3}d_3}{2}}{l_1 + l_2 + l_3} = 3070 \text{ N} \\ F_{BV} &= F_{t2} - F_{AV} + F_{t3} = 2238 \text{ N} \end{split}$$

水平弯矩为

$$M_{H2} = -F_{BH}l_3 = -43267 \text{ N} \times \text{mm}$$

 $M_{H3} = -F_{AH}l_1 = -56668 \text{ N} \times \text{mm}$

垂直弯矩为

$$\begin{split} & \text{M}_{\text{V2}\,\pm} = \text{F}_{\text{BV}} \text{l}_3 + \frac{\text{F}_{\text{a2}} \text{d}_2}{2} = 151352 \text{ N} \times \text{mm} \\ & \text{M}_{\text{V2}\,\pm} = \text{F}_{\text{BV}} \text{l}_3 = 117943 \text{ N} \times \text{mm} \\ & \text{M}_{\text{V3}\,\pm} = \text{F}_{\text{BV}} \text{l}_1 + \frac{\text{F}_{\text{a3}} \text{d}_3}{2} = 189773 \text{ N} \times \text{mm} \\ & \text{M}_{\text{V3}\,\pm} = \text{F}_{\text{AV}} \text{l}_1 = 146439 \text{ N} \times \text{mm} \end{split}$$

合成弯矩为

$$\begin{split} & \text{M}_{2\,\pm} = \sqrt{\text{M}_{\text{H2}}{}^2 + \text{M}_{\text{V2}\,\pm}^2} = 157414 \text{ N} \times \text{mm} \\ & \text{M}_{2\,\pm} = \sqrt{\text{M}_{\text{H2}}{}^2 + \text{M}_{\text{V2}\,\pm}^2} = 125629 \text{ N} \times \text{mm} \\ & \text{M}_{3\,\pm} = \sqrt{\text{M}_{\text{H3}}{}^2 + \text{M}_{\text{V3}\,\pm}^2} = 198053 \text{ N} \times \text{mm} \\ & \text{M}_{3\,\pm} = \sqrt{\text{M}_{\text{H3}}{}^2 + \text{M}_{\text{V3}\,\pm}^2} = 157021 \text{ N} \times \text{mm} \end{split}$$

当量弯矩	
减速器轴按脉动循环处理,查[2]表 13-5 有	
$[\sigma_0]_{\rm w} = 130~{ m MPa}, [\sigma_{-1}]_{\rm w} = 75~{ m MPa}$	M _{e2左}
$\alpha = \frac{\left[\sigma_{-1}\right]_{w}}{\left[\sigma_{0}\right]_{w}} = 0.6$	= 179333 N
$M_{e2\pm} = \sqrt{M_{2\pm}^2 + (\alpha T)^2} = 179333 \text{ N} \times \text{mm}$	×mm M _{e3 右}
$M_{e3 fi} = \sqrt{M_{3 fi}^2 + (\alpha T)^2} = 215885 \text{N} \times \text{mm}$	= 215885 N × mm
强度校核	
由前计算代入轴强度校核式	
$d_2 = \sqrt[3]{\frac{M_{e2 \pm}}{0.1[\sigma_{-1}]_w}} = 30 \text{ mm} < 40 \text{mm}$	
$d_3 = \sqrt[3]{\frac{M_{e3 \text{fi}}}{0.1[\sigma_{-1}]_w}} = 30 \text{ mm} < 40 \text{mm}$	
故轴强度足够	

6.1.3. 低速轴

计算及说明

计算结果

分析示意图

a) 钻锤面变力

b)水稻鱼

c) 铅链面弯矩图

d) 水平面弯矩图

力 转矩图

g) 当量等短图

受力分析

低速轴传递的转矩 $T_{III}=3.5441\times 10^5~N\times mm$,低速级齿轮螺旋角 $\beta=16.8350^{\circ}$,小齿轮右旋,大齿轮左旋,大齿轮分度圆直径 $d_4=202.687~mm$

切向力为

$$F_{t4} = \frac{2T_{III}}{d_4} = \frac{2 \times 3.5441 \times 10^5}{202.687} = 3497 \text{ N}$$

径向力为

$$F_{r4} = \frac{F_{t4} \tan a_n}{\cos \beta} = \frac{3497 \times \tan 20^{\circ}}{\cos 16.8350^{\circ}} = 1330 \text{ N}$$

轴向力为

$$F_{a4} = F_{t4} \tan \beta = 3497 \times \tan 16.8350^{\circ} = 1058 \text{ N}$$

支反力为

$$F_{AH} = \frac{F_{r4}l_2}{l_1 + l_2} = 407 \text{ N}$$

故轴强度足够

6.2. 键联接强度校核

计算及说明	计算结果
带轮与轴的键联接	
由于该减速器中的键联接均为为静联接,查[1]表 8-11 选取键连	
接许用应力为	
$[\sigma]_{\mathrm{p}}=120~\mathrm{MPa}$	$[\sigma]_p = 120 \text{ MPa}$
连接强度校核	
$\sigma_{\rm p} = \frac{2T}{\rm dkl} = \frac{2 \times 4.351 \times 10^4}{27 \times \frac{7}{2} \times (36 - 8)} = 32.888 \mathrm{MPa} < [\sigma]_{\rm p}$	
键连接强度足够	
齿轮与轴的键联接	
低速级小齿轮键连接强度校核	
$\sigma_{\rm p} = \frac{2T}{\rm dkl} = \frac{2 \times 1.4319 \times 10^5}{40 \times \frac{8}{2} \times (45 - 12)} = 54.239 \text{MPa} < [\sigma]_{\rm p}$	
高速级大齿轮键连接强度校核	
$\sigma_{\rm p} = \frac{2T}{\rm dkl} = \frac{2 \times 1.4319 \times 10^5}{40 \times \frac{8}{2} \times (36 - 12)} = 74.579 \text{ MPa} < [\sigma]_{\rm p}$	
低速级大齿轮与轴键连接强度校核	
$\sigma_{\rm p} = \frac{2T}{\rm dkl} = \frac{2 \times 3.5441 \times 10^5}{64 \times \frac{11}{2} \times (45 - 18)} = 74.581 \text{MPa} < [\sigma]_{\rm p}$	
故键连接强度足够	
联轴器与轴的键联接	
联轴器上键连接强度校核	
$\sigma_{\rm p} = \frac{2T}{\rm dkl} = \frac{2 \times 3.5441 \times 10^5}{48 \times \frac{9}{2} \times (70 - 14)} = 58.600 \text{MPa} < [\sigma]_{\rm p}$	
p dkl $48 \times \frac{9}{2} \times (70 - 14)$	
键连接强度足够	

6.3. 轴承寿命校核

计算及说明	计算结果
高速轴轴承寿命校核	
轴承总支反力	
$F_{rA} = \sqrt{F_{AH}^2 + F_{AV}^2} = 460 \text{ N}$	
$F_{rB} = \sqrt{F_{BH}^2 + F_{BV}^2} = 1351 \text{ N}$	
由[1]表 15-8 查得圆锥滚子轴承计算式 $F_S = \frac{F_r}{2Y}$,针对 30207 轴承	$F_{S} = \frac{F_{r}}{2Y}$
查[2]表 17-6 知其 Y=1.6,则轴承内部轴向力	
$F_{SA} = \frac{F_{rA}}{2Y} = 144 \text{ N}$	
$F_{SB} = \frac{F_{rB}}{2Y} = 422 \text{ N}$	
外部轴向力	
$F_x = F_{a1} = 395 \text{ N}$	
$F_{SA} + F_{x} = 144 + 395 = 539 \text{N} > F_{SB}$	
故轴承 A 被放松, 轴承 B 被压紧	
$F_{aA} = F_{SA} = 144 \text{ N}$	
$F_{aB} = F_{SB} + F_x = 422 + 395 = 817 \text{ N}$	
查[1]表 15-9 和[2]表 17-6 得知Y = 1.6,e = 0.37	
则径向当量动载荷计算为	
$\frac{F_{aA}}{F_{rA}} = 0.313 < e$	
$P_{A} = F_{rA} = 460 \text{ N}$	
$\frac{F_{aB}}{F_{rB}} = 0.605 > e$	
$P_{\rm B} = 0.4F_{\rm rB} + YF_{\rm aB} = 1847 \text{ N}$	
因为 $P_B > P_A$,故按 P_B 计算轴承寿命	
由于该轴承在 100 摄氏度以下工作,查[1]表 15-4 取温度系数为	
1.00, 同时查[1]表 15-7 取载荷系数为 1.5, 查[2]表 17-6 轴承基	
本额定动载荷 C=54200N	

则轴承寿命为

$$L_h = \frac{10^6}{60n_I} \left(\frac{f_t C}{f_p P}\right)^{\frac{10}{3}} = 467003h$$

由前说明,该减速器预期寿命为

$$L'_h = 2 \times 8 \times 250 \times 8 = 32000h$$

由于L_h > L'_h, 故轴承寿命足够

 $L'_h = 32000h$

中间轴轴承寿命校核

轴承总支反力

$$F_{rA} = \sqrt{F_{AH}^2 + F_{AV}^2} = 3291 \text{ N}$$
 $F_{rB} = \sqrt{F_{BH}^2 + F_{BV}^2} = 2384 \text{ N}$

针对 30207 轴承查[2]表 17-6 知其 Y=1.6, 则轴承内部轴向力

$$F_{SA} = \frac{F_{rA}}{2Y} = 1029 \text{ N}$$
 $F_{SB} = \frac{F_{rB}}{2Y} = 745 \text{ N}$

外部轴向力

$$F_x = F_{a3} - F_{a2} = 1121 - 374 = 747 \text{ N}$$

 $F_{SA} + F_x = 1029 + 747 = 1776 \text{ N} > F_{SB}$

故轴承 A 被放松,轴承 B 被压紧

$$F_{aA} = F_{SA} = 1029 \ N$$

$$F_{aB} = F_{SB} + F_x = 745 + 747 = 1492 \ N$$

查[1]表 15-9 和[2]表 17-6 得知Y = 1.6,e = 0.37

则径向当量动载荷计算为

$$\frac{F_{aA}}{F_{rA}} = 0.313 < e$$

$$P_{A} = F_{rA} = 3291 \text{ N}$$

$$\frac{F_{aB}}{F_{rB}} = 0.626 > e$$

$$P_{B} = 0.4F_{rB} + YF_{aB} = 3341 \text{ N}$$

因为 $P_B > P_A$, 故按 P_B 计算轴承寿命

由于该轴承在100摄氏度以下工作,查[1]表15-4取温度系数为

1.00, 同时查[1]表 15-7 取载荷系数为 1.5, 查[2]表 17-6 轴承基

本额定动载荷 C=54200N

则轴承寿命为

$$L_h = \frac{10^6}{60n_{II}} (\frac{f_t C}{f_p P})^{\frac{10}{3}} = 224062h$$

由于 $L_h > L'_h$, 故轴承寿命足够

低速轴轴承寿命校核

轴承总支反力

$$F_{rA} = \sqrt{F_{AH}^2 + F_{AV}^2} = 1834 \text{ N}$$

$$F_{rB} = \sqrt{F_{BH}^2 + F_{BV}^2} = 1944 \text{ N}$$

针对 30207 轴承查[2]表 17-6 知其 Y=1.5, 则轴承内部轴向力

$$F_{SA} = \frac{F_{rA}}{2Y} = 612 \text{ N}$$

 $F_{SB} = \frac{F_{rB}}{2Y} = 648 \text{ N}$

外部轴向力

$$F_x = F_{a4} = 1058 \text{ N}$$

$$F_{SB} + F_x = 648 + 1058 = 1706 \text{ N} > F_{SA}$$

故轴承 B 被放松,轴承 A 被压紧

$$F_{aA} = F_{SA} + F_x = 612 + 1058 = 1670 \text{ N}$$

 $F_{aB} = F_{SB} = 648 \text{ N}$

查[1]表 15-9 和[2]表 17-6 得知Y = 1.5, e = 0.4

则径向当量动载荷计算为

$$\begin{aligned} \frac{F_{aA}}{F_{rA}} &= 0.911 > e \\ P_A &= 0.4F_{rA} + YF_{aA} = 3239 \text{ N} \\ \frac{F_{aB}}{F_{rB}} &= 0.333 < e \\ P_B &= F_{rB} = 1944 \text{ N} \end{aligned}$$

因为PA > PB, 故按PA计算轴承寿命

由于该轴承在 100 摄氏度以下工作,查[1]表 15-4 取温度系数为

1.00, 同时查[1]表 15-7 取载荷系数为 1.5, 查[2]表 17-6 轴承基本额定动载荷 C=102000N

则轴承寿命为

$$L_h = \frac{10^6}{60n_{\text{III}}} (\frac{f_t C}{f_p P})^{\frac{10}{3}} = 5316051h$$

由于 $L_h > L'_h$, 故轴承寿命足够

第七章 减速器的润滑与密封

7.1. 润滑

计算及说明	计算结果
润滑方式选择	
闭式齿轮传动,根据齿轮的圆周速度大小选择润滑方式。圆	
周速度 v≤12-15m/s 时,常选择将大齿轮浸入油池的浸油润滑。采	
用浸油润滑。对于圆柱齿轮而言,齿轮浸入油池深度至少为 1-2	
个齿高,但浸油深度不得大于分度圆半径的 1/3 到 1/6。为避免齿	
轮转动时将沉积在油池底部的污物搅起,造成齿面磨损,大齿轮	
齿顶距油池底面距离不小于 30-50mm。根据以上要求,减速箱使	
用前须加注润滑油,使油面高度达到 35-60mm。从而选择全损耗	
系统用油(GB 443-1989);,牌号为 L-AN10。	
滚动轴承的润滑剂可以是脂润滑、润滑油或固体润滑剂。选	
择何种润滑方式可以根据齿轮圆周速度判断。由于 V≤2m/s, 所以	
均选择脂润滑。采用脂润滑轴承的时候,为避免稀油稀释油脂,	

需用挡油环将轴承与箱体内部隔开, 且轴承与箱体内壁需保持一	
定的距离。	
润滑油牌号	
根据[2]18-1,选择润滑油为全损耗系统用油 (GB 443-89) 牌号	
L-AN15	
根据[2]18-2,选择润滑脂为通用锂基润滑脂(GB/T 7324-1987)	
牌号 ZL-1	
	l

7.2. 密封设计

计算及说明	计算结果
轴承端盖	
选用凸缘式端盖易于调整,轴承盖尺寸按照轴承外径为66和106	
计算	
同时选用毡圈油封实现密封,密封圈型号按照轴径选择	
高速轴选用毡圈 30 JB/ZQ 4606	
低速轴选用毡圈 60 JB/ZQ 4606	
油标	
油标按照[2]表 18-11 选择 M16 杆式油标	
油标显示箱内油面的高度,油标应该放置在便于观察减速器油面	
及油面稳定之处。游标安装的位置不能太低,以防油进入油尺座	
孔而溢出	
放油孔及放油螺塞	
为了便于清洗箱体内部以及排除箱体内的油污, 在箱座油池的最	
低处设置放油孔,箱体内底面做成斜面,向放油孔方向倾斜1°~	

2°, 使油易于流出。

根据[2]表 18-12 选择

螺塞 M14×1.5 JB/ZQ 4450-1986

油圈 23×14 ZB 71-62

窥视孔和视孔盖

在减速器箱盖顶部开有窥视孔,可以看到传动零件齿合区,并有 足够的空间能伸入进行操作,窥视孔有盖板,机体上开窥视孔与 凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封, 盖板用铸铁制成。

按照[2]23-7, 选择 A=120 进行设计

$$A_1 = 150, A_2 = 135$$
 $B = 90, B_1 = 120, B_2 = 105$
 $h = 2$
 $d_4 = 6$
 $R = 12$

定位销

对由箱盖和箱座通过联接而组成的剖分式箱体, 为保证其各部分

第八章 减速器箱体结构设计

箱体用水平剖分式结构,用 HT200 灰铸铁铸造而成,箱体主要尺寸计算参看《机械设计课程设计》表 4-1

表 7 箱体结构尺寸

名称	符号	尺寸 (mm)
机座、机盖壁厚	δ	8
机座凸缘厚度	b	12
机盖凸缘厚度	b 1	12
机座底凸缘厚度	b 2	20
地脚螺钉直径	Df	20
地脚螺钉数目	n	4
轴承旁连接螺栓直径	<i>d</i> 1	16
机盖与机座连接螺栓直径	d2	10
轴承端盖螺钉直径	d3	6, 6, 8
窥视孔盖螺钉直径	d4	6
定位销直径	D	8
轴承旁凸台半径	<i>R</i> 1	30
轴承旁凸台高度	h	12

箱体外壁至轴承座端面距离	<i>l</i> 1	10
大齿轮顶圆与内机壁距离	Δ1	10
齿轮端面与轴承距离	△2	20
齿轮端面与内机壁距离	△3	10
齿轮端面间距离	△4	10
机盖、机座肋厚	m1. m2	6、7
轴承端盖外径 (凸缘式)	D2	96、96、146
轴承端盖厚度 (凸缘式)	<i>b</i> 3	10
机座内壁总宽	L	410

第九章 减速器结构分析

9.1. 零件图中的公差及表面粗糙度

计算及说明	计算结果
键槽的几何公差	
键槽的对称度公差可以按照 GB/T 1184-1996 取 7~9 级。b 位于	
8~36mm, 这里取 8 级。	
查[2]表 20-18,取 8 级精度,当键宽 b=10~18mm 时候对称度公差	
为 0. 020mm	
轴的几何公差	
轴头: 主要是圆跳动公差。低速轴取 0.025mm。中间轴 0.020mm.	
轴颈:轴承0级。主要是圆柱度、圆跳动。低速轴的圆柱度公差	
0.005,中间轴和高速轴圆柱度公差取 0.004。低速轴圆跳动公差	
0.025mm,中间轴和高速轴的圆跳动公差 0.020mm。低速轴轴肩端	
面圆跳动公差 0.015, 高速轴, 中间轴轴肩端面圆跳动公差 0.012	
表面粗糙度	

单位(微米)

轴头查[2]表 20-26,[2]表 20-30,轴头的工作面表面粗糙度取 Ra3.2

轴颈表面粗糙度 Ra3.2

轴承处轴表面粗糙度 Ra0.8

联轴器表面粗糙度 Ra3.2

键槽侧面的粗糙度 1.6~3.2, 槽底的表面粗糙度取 6.3

第十章 参考文献

- [1] 机械设计基础: 多学时[M]. 北京: 机械工业出版社, 2017. 10
- [2] 机械设计课程设计[M]. 合肥: 合肥工业大学出版社, 2005. 8
- [3] 机械设计手册[M]. 机械工业出版社,2010
- [4] 机械设计课程设计图册(第三版)[M]. 高等教育出版社, 2017