Understanding variability in microdialysis measurements: introducing a combined calibration approach for piperacillin and tazobactam in LPS-induced septic piglets

Freie Universitä

F. Mueller (1,2), E. Hermans (3,4,5), D. Bindellini (1,2), R. Michelet (1), L.B.S. Aulin (1), P. De Paepe (3,6), P. De Cock (3,7,8), M. Devreese (4), C. Kloft (1,2)

(1) Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Germany, (2) and Graduate Research Training program PharMetrX, Germany, (3) Department of Basic and Applied Medical Sciences, Ghent University, Belgium, (4) Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Belgium, (5) Department of Pediatrics, Ghent University Hospital, Belgium, (6) Department of Emergency Medicine, Ghent University Hospital, Belgium, (7) Department of Pharmacy, Ghent University Hospital, Belgium, (8) Department of Pediatric Intensive Care, Ghent University Hospital, Belgium

Background and Objectives

Inadequate target tissue fluid exposure may lead to treatment failure [1] in septic children \rightarrow impact of **sepsis on tissue fluid exposure** in children **for piperacillin** (PIP) and tazobactam (TAZ) not investigated

Catheter-specific calibration is commonly conducted by (i) retrodialysis (before/after dosing drug of interest) or (ii) an internal standard parallel to microdialysis sampling (IS), with penicillin (PEN) used for PIP and TAZ [3]

NLME methods are the most adequate approach to handle µD-based data analysis [4], IS calibration has never been included yet

We investigated the **feasibility** and potential **benefits** of both calibration methods individually and their combination leveraging µD-data from a porcine animal study

Lipopolysaccharide (LPS) induced **septic piglet model** can elucidate impact of septic like state on drug disposition and pharmacokinetics Microdialysis (μD): Gold standard method to obtain unbound drug interstitial space

meaningful results Methods

Calibration methods

- Retrodialysis (rD), Fig. 1
- Internal standard (IS)

Catheter insertion

1 catheter per piglet

Into paraspinal musculature ISF

Study design

Dosing (5 per period, tau 6 h)

- PIP 75 mg/kg; TAZ 9.375 mg/kg
- LPS infusion on day 3

Sampling after 1st and 5th dose (steady-state) per period

[2], reliable catheter calibration is required for

model

3. Calibration methods comparison **Modeling workflow:** Retrodialysis PIP/TAZ rD_{PIP/TAZ} 1. Plasma submodel determined once before rD_{PIP/TAZ} sampling period n=137 **Plasma ISF** n=511 **IS calibration** PEN rD_{PEN} allocated to each 2. μD-data integration sampling Scm fwd/bwd interval n=667 μD (p-value 0.05/0.005) n=667 **Combined approach** rD_{PEN} Fractional change of Figure 3: Model building process $1 + \theta(rD_{PEN}_rD)^*$ rD_{PIP/TAZ} by rD_{PEN} (rD_{PEN}-median) **Model evaluation:** Parameter plausibility rD_{PIP/TAZ} Variability reduction Plasma PIP/TAZ

IS calibration

- VPC (n=1000)

TAZ

estimates

Results

Plasma model

• **Separate** models for PIP and TAZ (Figure 4)

Figure 2: Study design

- Retrodialysis as reference model
- Covariates to account for septic-like state included (Figure 4)
- Plasma-derived **PK parameters** (Table 1) remained constant: Change <10% compared to retrodialysis model
- RSE below <65%

Parameter [unit]	PIP	TAZ	
	estimates	estimates	
CL [L/h]	4.01	5.90	
V1 [L]	1.35	1.88	
Q [L/h]	12.5	18.3	
V2 [L]	1.62	1.80	
IIV and IOV, %CV			
IIV on CL	10.0	8.38	
IIV on V1	24.2	18.0	
IOV on CL	15.7	9.40	
Residual variability			
add C _{Plasma} [mg/L]	0.56	0.083	
prop C _{Plasma} [CV,%]	16.5	17.0	

PIP

estimates

Retrodialysis

Parameter [unit]

Combined approach

reduction by >40 % Reduction of time effect on rD

rD-related

variability

Calibration

- Increased rD in control group over study days
- → Time effect on rD for control group:
- $rD_{TIMF} = (((Time)/40)**\theta(Time_rD))$
- Decreased rD in LPS septic like state (Figure 5)

Figure 5: rD values over study days for piperacillin, tazobactam and penicillin per group with their medians

Central V1 ↓ CL Calibration (rD) Bold: IIV μD CMT

Covariates	Relation	PIP	TAZ	
LEU on CL	power	0.450	-	
TEMP on CL	linear	-0.054	-	
WGT on CL	power	0.700	0.83	
CRT on CL	power	-	-0.76	
ALB on V1	power	-1.13	-0.91	
LEU on V1	power	0.220	0.18	
WGT on V1	linear	0.210	-	
Figure 4: Final model structure for PIP and				
TAZ international and a D data and their				

TAZ, inlcuding plasma and μD-data, and their covariate relations

Piperacillin Day 3 Piperacillin Piperacillin Penicillin Retroperfusate concentration [mg/L] Tazobactam Day 4 Tazobactam Day 4 Tazobactam Figure 6: Tables with μD-ralted parameters for each approach and visual predictive checks for microdialysate concentrations for PIP on day 3 and 4, stratified by study group, and TAZ for control

group, retrodialysate concentrations for PIP and PEN on day 3 and day 4 by study group based on simulations (n=1000) Full Circles: Observed drugs concentrations; Lines: 16th, 84th percentile (dashed), 50th percentile (solid) of the observed (black) and simulated (grey) data. Orange shaded areas: 95% confidence interval around 16th, 50th and 84th percentile of simulated data. **VPC shown when visible changes occured!**

Discussion and Conclusions

Retrodialysis calibration not considering physiological changes while sampling → Assumption : Catheter extracts same

fraction throughout entire sampling period

IS calibration: Drug-specific differences in

rD compensated by TF No improvement for PIP/TAZ in VPC or IIV → Change in tissue exposure expected

- Benefits combined calibration approach
- Individual drug-specific rD for each sampling interval
- Variability between samples explained by IS
- Improved predictive performance in control group
- Reduction of rD-related IIV
- Reduction rD-related time dependency
- Feasible and beneficial

Changing blood flow though pigs' activity could explain

- Increase of general rD over days Variability in rD_{PFN} over time
- → Blood flow and activity should be monitored

IS calibration in combination with retrodialysis explained in vivo observed rD-related variability, thus improves understanding and interpretation of μD data

References

[1] C. Fleischmann-Struzek et. al, Lancet Respir Med, 2018 [2] N. Plock et. al, Eur. J. Pharm. Sci., 2005 [3] M.B. Knudsen et. al, J. Pharm. Sci. 2021 [4] D. Busse et. al, Pharm.Res., 2021

Abbreviations

Add: additive; ALB: Albumin; CL: Clearance; CRT: Creatinine IIV: Interindividual variability; IOV: Inter-occasional variability; ISF: Interstitial space fluid; LEU: Leucocytes; LPS: Lipopolysaccharides; PIP: Piperacillin; PEN: Penicillin; prop: proportional RR: Relative recovery; rD: Relative delivery; TAZ: Tazobactam; PEN: Penicillin; TEMP: Temperature; Time_rD: Time effect on rD; rD_{PEN}_rD: fractional change of rD based on IS calibration; V: Volume of distribution; VPC: Visual predictive check; WGT: Body weight; µD: Microdialysis

For more information: Felix.leon.mueller@fu-berlin.de www.clinical-pharmacy.eu

