Deep Learning for Natural Language

Processing (NLP)

Representation of words as vectors

One-Hot Encoding

Document ID	Text	
D1	Dog bites man.	
D2	Man bites dog.	
D3	Dog eats meat.	
D4	Man eats food.	

> write all nords > give then nords > give then

Our toy corpus having six unique words: dog = 1, bites = 2, man = 3, meat = 4, food = 5, eats = 6.

One-Hot Encoding

Document ID	Text
D1	Dog bites man.
D2	Man bites dog.
D3	Dog eats meat.
D4	Man eats food.

Our toy corpus having six unique words: dog = 1, bites = 2, man = 3, meat = 4, food = 5, eats = 6.

D3 is represented as [[100000], [000001], [000100]].

Bag of Words (BoW) > Ek me hilikale.

Document ID	Text	
D1	Dog bites man.	
D2	Man bites dog.	
D3	Dog eats meat.	
D4	Man eats food.	

Our toy corpus having six unique words: dog = 1, bites = 2, man = 3, meat = 4, food = 5, eats = 6.

Bag of Words (BoW)

Document ID	Text	
D1	Dog bites man.	
D2	Man bites dog.	
D3	Dog eats meat.	
D4	Man eats food.	

Our toy corpus having six unique words: dog = 1, bites = 2, man = 3, meat = 4, food = 5, eats = 6.

D3 is represented as [100101]

2 - Grams

Bigram (Bag of 2-Grams)

Document ID	Text	
D1	Dog bites man.	
D2	Man bites dog.	
D3	Dog eats meat.	
D4	Man eats food.	

{dog bites, bites man, man bites, bites dog, dog eats, eats meat, man eats, eats food}.

 We need eight dimensions to represent a word in document.

Bigram (Bag of 2-Grams)

Document ID	Text
D1	Dog bites man.
D2	Man bites dog.
D3	Dog eats meat.
D4	Man eats food.

{dog bites, bites man, man bites, bites dog, dog eats, eats meat, man eats, eats food}.

- We need eight dimensions to represent a word in document.
- Bigram representation for D1 is as follows: D1: [1,1,0,0,0,0,0,0]

Bigram (Bag of 2-Grams)

Document ID	Text
D1	Dog bites man.
D2	Man bites dog.
D3	Dog eats meat.
D4	Man eats food.

{dog bites, bites man, man bites, bites dog, dog eats, eats meat, man eats, eats food}.

- We need eight dimensions to represent a word in document.
- Bigram representation for D1 is as follows: D1: [1,1,0,0,0,0,0,0]

Bag of N-Grams (BoN): Break text into chunks of n contiguous words (or tokens).

Bigram (Bag of 2-Grams)

Document ID	Text	
D1	Dog bites man.	
D2	Man bites dog.	
D3	Dog eats meat.	
D4	Man eats food.	

{dog bites, bites man, man bites, bites dog, dog eats, eats meat, man eats, eats food}.

- We need eight dimensions to represent a word in document.
- Bigram representation for D1 is as follows: D1: [1,1,0,0,0,0,0,0]

Limitation: BoW or BoN representations does not have semantic meaning.

Bag of N-Grams (BoN): Break text into chunks of n contiguous words (or tokens).

Figure 20-1: A collection of animals, organized roughly by land speed horizontally and adult weight vertically, though those axis labels aren't shown (data from Reisner 2020)

Word Embeddings (dense vector)

Horse

0.286

0.792

-0.177

-0.107

0.109

-0.542

0.349

0.271

Word analogies as parallelograms

Progress over the years

Word2vec

Input:

- Text corpora: Wikipedia, Twitter, Common Crawl.
- V: a predefined vocabulary
- d: dimension of word vectors

Output:

$$f: V \to \mathbb{R}^d$$

Train a classifier on breeliction tack

Idea: Train a classifier on a prediction task: w₁ likely to show up near w₂?

Use running text as implicitly supervised training data!

Word2vec (intuitive idea)

Main Idea of word2vec

- The word2vec model is a neural network-based approach for generating word embeddings.
- The model is trained on a large corpus of text data using either a skip-gram or a continuous bag-of-words (CBOW) architecture.
- During training, the model learns to associate words in the embedding space that appear in similar contexts.

Word2vec

Continuous Bag of Words (CBOW)

Continuous Bag of Words Model (CBOW)

Continuous Bag of Words Model (CBOW)

Generate/predict the center word by considering the context words.

Continuous Bag of Words Model (CBOW)

The cat sat on the mat

We can consider either W or W' as the word's representation. Or even take the average.

Skip-Gram Task

Skip-gram

Predict each word in the context given the word

Skip-gram training data example

data of CBOW will be the greverse. The man who passes the sentence should swing the sword

content window = 2 Context words ["non" who"] The who passes. The non possel

Skip-gram training data example

The man who passes the sentence should swing the sword

Sliding window (size = 5)	Target word	Context
[The man who]	the	man, who
[The man who passes]	man	the, who, passes
[The man who passes the]	who	the, man, passes, the
[man who passes the sentence]	passes	man, who, the, sentence
	•••	
[sentence should swing the sword]	swing	sentence, should, the, sword
[should swing the sword]	the	should, swing, sword
[swing the sword]	sword	swing, the

Skip-gram

The man who passes the sentence should swing the sword

- Each context-target pair is treated as a new observation in the data.
- For example, the target word "swing" in the above case produces four training samples:
 - ("swing", "sentence"), ("swing", "should"), ("swing", "the"), and ("swing", "sword").

swing sentence, should, the, sword

Skip-gram

The skip-gram model. Both the input vector x and the output y are one-hot encoded word representations. The hidden layer is the word embedding of size N.

Skip-gram Model

- It enhances the Word2Vec algorithm
- Limitation of Word2Vec:
 - Out of Vocabulary(OOV) Words
 - Tensor flow TensorFlow
 - Morphology
 - go, goes, going, gone
- FastText overcome these limitations
- FastText allows to compute word representation for words not in training data

Représents a word by sum et its n-grams.

- FastText is the modification to the skip-gram method Sub-word generation using generation of character n-grams of length 3 to 6.
- E.g., where with n=3: <wh, whe, her, ere, re>, <where>
- Represent words as sum of its character n-grams
- Grammatical variations still share most of n-grams.
- Compound nouns are easy to model, e.g., Noun + Noun: lunchtime

Joes Joes les J

• Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.

- Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.
- Suppose that you are given a dictionary of *n* grams of size *G*.

- Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.
- Suppose that you are given a dictionary of *n* grams of size *G*.
- Given a word w, let us denote by $\mathcal{G}_w \subset \{1, \ldots, G\}$ the set of n-grams appearing in w.

- Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.
- Suppose that you are given a dictionary of n grams of size G.
- Given a word w, let us denote by $\mathcal{G}_w \subset \{1, \ldots, G\}$ the set of n-grams appearing in w.
- We associate a vector representation \mathbf{z}_g to each n-gram g.

- Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.
- Suppose that you are given a dictionary of n grams of size G.
- Given a word w, let us denote by $\mathcal{G}_w \subset \{1, \ldots, G\}$ the set of n-grams appearing in w.
- We associate a vector representation \mathbf{z}_g to each n-gram g.
- We represent a word by the sum of the vector representations of its *n*-grams. We thus obtain the scoring function:

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\top} \mathbf{v}_c. \tag{1}$$

- Let us consider that we are given a scoring function s(w, c) which maps pairs of (word, context) to scores.
- Suppose that you are given a dictionary of *n* grams of size *G*.
- Given a word w, let us denote by $\mathcal{G}_w \subset \{1, \ldots, G\}$ the set of n-grams appearing in w.
- We associate a vector representation \mathbf{z}_g to each n-gram g.
- We represent a word by the sum of the vector representations of its n-grams. We thus obtain the scoring function:

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\mathsf{T}} \mathbf{v}_c. \tag{1}$$

 This simple model allows sharing the representations across words, thus allowing to learn reliable representation for rare words.

The scoring function is described as:

$$s(w,c) = \sum_{g \in \mathcal{G}_w} \mathbf{z}_g^{\top} \mathbf{v}_c.$$

Now, the final model (similar to skip-gram) is given by:

$$p(w_c \mid w_t) = \frac{e^{s(w_t, w_c)}}{\sum_{j=1}^{\mathbf{v}} e^{s(w_t, j)}}$$

References

- Deep Learning: A Visual Approach Book by Andrew Glassner.
- Bolukbasi, Tolga, et al. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." Advances in neural information processing systems (2016).
- Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems by Anuj Gupta.
- Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. "Enriching word vectors with subword information." Transactions of the association for computational linguistics 5 (2017): 135-146.
- https://lilianweng.github.io/posts/2017-10-15-word-embedding/