Instr.: Woei

April 13, 2006

Name: Key

Student ID:

1. (5 pts) Find a formula for the nth partial sum of

$$\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \dots + \frac{1}{(n+1)(n+2)} + \dots$$

and use it to find the series sum, if the series converges.

The nth partial sum is
$$S_h = \sum_{i=1}^{n} \frac{1}{(i+h)(i+2)}$$
. Writing $\frac{1}{(i+h)(i+2)}$ as $\frac{A}{i+1} + \frac{B}{i+2}$, i.e. $\frac{1}{(i+h)(i+2)} = \frac{A}{i+1} + \frac{5}{i+2} \implies 1 = A(i+2) + B(i+1)$

$$= A+B=0 \implies A=-B$$

$$= A+B=1 \implies -2B+B=1 \implies B=-1 \implies A=1$$
, so $S_h = \sum_{i=1}^{n} \frac{1}{i+1} + \frac{-1}{i+2}$

$$= \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n+1} + \frac{1}{n+2} = \frac{1}{2} + \frac{1}{n+2}$$
Therefore as $n \to \infty$, $S_h \implies \frac{1}{2} = \sum_{h=1}^{n} \frac{1}{(h+1)(n+2)}$ which converges

2. (5 pts) Does

$$\sum_{n=1}^{\infty} \frac{2}{1+e^n}$$

converge or diverge? Give reasons for your answer.

Hint: Substitution of $u = e^n$ and partial fractions.

To cheek if
$$\frac{30}{n+1}$$
 in unusual durings the was unliqued to $\frac{30}{n+1}$ we look of $\int_{1+c}^{\infty} \frac{2}{n+c} dn$ if this integral is finite then $\sum_{n=1}^{\infty} \frac{2}{n+c} n dn$ or $\frac{2}{n+c} dn$ during portion $\frac{2}{n+c} dn$ is $\frac{2}{n+c} dn du$ which $\frac{2}{n+c} dn du$ is $\frac{2}{n+c} dn du = \frac{2}{n+c} dn du$ is $\frac{2}{n+c} dn du = \frac{2}{n+c} dn du = \frac{2}{$