CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/23 Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	23

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a "fortuitous" answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Paper

Syllabus

			GCE AS LEVEL – May/June 2014	9709	23	
1	(i)	<u>Either</u>	Square both sides to obtain linear equation		M1	
	Obtain $x = \frac{165}{30}$ or $\frac{33}{6}$ or $\frac{11}{2}$		A1	[2]		
		<u>Or</u>	Solve linear equation in which, initially, signs of x are diffe	rent	M1	
		_	Obtain $x + 2 = -x + 13$ or equivalent and hence $\frac{11}{2}$ or equiv		A1	[2]
	(ii)	Apply lo	garithms and use power law		M1	
		Obtain y	$\log 3 = \log \frac{11}{2}$ and hence $y = 1.55$		A1	[2]
2	Use	$\sin 2\theta = 2$	$2\sin\theta\cos\theta$		B1	
	Sim	plify to ob	otain form $c_1 \sin^2 \theta = c_2$ or equivalent		M1	
			ne value of θ from equation of form $\sin \theta = k$		M1	
	Obt	ain 35.3° a	and 144.7°		A1	[4]
3	(a)	Integrate	to obtain form $k \sin(\frac{1}{3}x + 2)$ where $k \neq 4$		M1	
	()		$2\sin(\frac{1}{3}x+2) (+c)$		A1	[2]
	(b)	State or i	mply correct y-values 2, $\sqrt{20}$, $\sqrt{68}$, $\sqrt{148}$		B1	
	()		ect formula, or equivalent, with $h = 4$ and four y-values		M1	
		Obtain 79	- · · · · · · · · · · · · · · · · · · ·		A1	[3]
4	Obt	ain $\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{t}$	2		B1	
		$ain \frac{dy}{dt} = 4$			B1	
	Use	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}$	$\frac{\mathrm{d}x}{\mathrm{d}t}$ with $t = 0$ to find gradient		M1	
		ain 2	n of tangent through (0, 4) with numerical gradient obtained	I from attempt to o	A1 lifferentiate	
	1 011	ii equatioi	i of tangent an ough (o, i) with numerical gradient octames	. Hom accompt to c	M1	
	Obt	ain $2x - y$	y + 4 = 0 or equivalent of required form		A1	[6]
5	Stat	e or imply	$\ln y = \ln K + px \ln 2$		B1	
		ain at leas	-			
	1.87	$V = \ln K + 1$	1.35 p ln 2, 3.81 = ln K + 3.35 p ln 2, $p ln 2 = \frac{3.81 - 1.87}{3.35 - 1.35}$			
		quivalents	3.33 1.33		B1	
	Solv	e equation	n(s) to find one constant, dependent on previous B1		M1	
		ain $p=1$.			A1	
			attempt value of K		DM1	[2]
	Obt	ain in K =	0.5605 and hence $K = 1.75$		A1	[6]

Mark Scheme

Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS LEVEL – May/June 2014	9709	23

6	(i)	Substitute -2 and equate to zero, or divide and equate remainder to zero Obtain $a = 12$	M1 A1	[2]
	(ii)	Carry out division, or equivalent, at least as far as x^2 and x terms in quotient	M1	
	. ,	Obtain $x^2 - 2x + 6$	A1	
		Calculate discriminant of a 3 term quadratic quotient (or equivalent)	DM1	
		Obtain –20 (or equivalent)	A1	
		Conclude by referring to, or implying, root -2 and no root from quadratic factor	A1	[5]
7	(i)	Integrate to obtain $ke^{3x} + mx^3$	M1	
		Apply both limits to obtain $\frac{1}{6}e^{3a} + \frac{1}{3}a^3 - \frac{1}{6} = 10$ or equivalent	A1	
		Rearrange to form involving natural logarithm	DM1	
		Obtain $a = \frac{1}{3} \ln(61 - 2a^3)$ with no errors seen (AG)	A1	[4]
	(ii)	Consider sign of $a - \frac{1}{3} \ln(61 - 2a^3)$ for 1.0 and 1.5 or equivalent	M1	
		Obtain –0.36 and 0.17 or equivalent and justify conclusion	A1	[2]
	(iii)	Use iteration process correctly at least once	M1	
		Obtain final answer 1.343	A1	
		Show sufficient iterations to 5 decimal places to justify answer or show a sign change in the interval (1.3425, 1.3435)	A1	[3]
8	(i)	Differentiate using product rule	M1	
		Obtain $\sec^2 x \cos 2x - 2 \tan x \sin 2x$	A1	
		Use $\cos 2x = 2\cos^2 x - 1$ or $\sin 2x = 2\sin x \cos x$ or both	B1	
		Express derivative in terms of $\sec x$ and $\cos x$ only	M1	
		Obtain $4\cos^2 x - \sec^2 x - 2$ with no errors seen (AG)	A1	[5]
	(ii)	State $4\cos^4 x - 2\cos^2 x - 1 = 0$	B1	
		Apply quadratic formula to a 3 term quadratic equation in terms of $\cos^2 x$ to find the same of $\cos^2 x$ to $\sin^2 x$	the least po	sitive
		value of $\cos^2 x$	M1	
		Obtain or imply $\cos^2 x = \frac{1+\sqrt{5}}{4}$ or 0.809	A1	
		Obtain 0.45	A1	[4]