# KNN - Identifikace osob podle obličeje

xnekut00, xletan00, xplach08

## Cíle projektu

- Identifikace osob podle obličeje s nasazenou rouškou
  - Určení, zda se jedná o tutéž osobu na základě dvojice fotek obličeje
  - Na každé fotce může být osoba s nasazenou rouškou
- Porovnání modelů trénovaných s různými loss funkcemi

## Použité datasety

#### Casia WebFace:

- Použitý k trénování
- Původně obsahoval 10 575 identit a 494 414 vzorků
- Po přidání vzorků s rouškami obsahuje 836 032 vzorků

#### LFW:

- Standardně používaný k vyhodnocení kvality modelů na párech obličejů
- Obsahuje 5 749 identit a 13 234 vzorků, ze kterých je utvořeno 6 000 párů
- Páry obličejů bez roušky, jeden z páru s rouškou a oba s rouškou jsou zastoupeny přibližně ve stejném počtu

# Úpravy datasetů

- Vytvoření nových vzorků s přidanými rouškami pomocí modelu Dlib
- Oříznutí obličejů pomocí modelu MTCNN, který byl použit i pro trénování

modelu FaceNet





































## Implementace

- Jazyk Python s nástrojem Pytorch
- Použita síť FaceNet s architekturou InceptionResnet V1 předtrénovaná na datasetu Casia WebFace s chybovou funkcí Triplet loss
- Délka embedingu 512 příznaků

- Pro dotrénování s chybovou funkcí CrossEntropy jsme model použili přímo
- Pro dotrénování s chybovou funkcí ArcFace bylo potřeba doplnit L2 normalizaci vah a odebrat předpětí poslední vrstvy

## Chybová funkce

#### **ArcFace:**

- State-of-the-art chybová funkce pro trénování neuronových sítí pro rozpoznávání obličejů
- Minimalizuje vzdálenosti mezi embeddingy vzorků se stejnou identitou a zvyšuje vzdálenost embeddingů u vzorků s různou identitou

### **Cross entropy:**

Nevynucuje vysokou/nízkou vzdálenost mezi vzorky různé/stejné identity

## Vyhodnocení úspěšnosti

- Proběhlo na datasetu LFW s přidanými rouškami
- Bylo potřeba odstranit poslední vrstvu a použít jen část tvořící embedding
- Na vyhodnocení byli použity 2 metriky:
  - a) úspěšnost určení, zda se jedná o pozitivní nebo negativní pár
  - b) true accept rate pro zafixovanou maximální hodnotu false accept rate 1e-3
- Pro každý vyhodnocovaný model jsme taktéž vytvořili ROC křivku

## Experimenty - výsledek

- Tabulka výsledků vyhodnocení experimentů
  - a) úspěšnost určení, zda se jedná o pozitivní nebo negativní pár
  - b) true accept rate pro zafixovanou maximální hodnotu false accept rate 1e-3

| porovnání výsledných hodnot metrik a) a b) |                |         |         |
|--------------------------------------------|----------------|---------|---------|
| model                                      | dataset        | a)      | b)      |
| předtrénovaný model                        | lfw            | 95.58 % | 82.40 % |
| předtrénovaný model                        | lfw s rouškami | 90.27 % | 33.85 % |
| dotrénováno s Cross-entropy                | lfw s rouškami | 95.13 % | 75.79 % |
| dotrénováno s $ArcFace$                    | lfw s rouškami | 94.10 % | 78.66 % |



## Vizualizace embeddingů v 2D prostoru



## Vizualizace embeddingů v 2D prostoru



## Reference

- Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou.
  Arcface: Additive angular margin loss for deep face recognition, 2019.
- Tim Esler. Facenet-pytorch. <a href="https://github.com/timesler/facenet-pytorch">https://github.com/timesler/facenet-pytorch</a>.
- Davis E. King. Dlib. <a href="https://github.com/davisking/dlib">https://github.com/davisking/dlib</a>.
- Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2015