CÁLCULO Y APLICACIONES DE AUTOVALORES Y AUTOVECTORES.

Dr. Roberto Eduardo Vieytes rvieytes@itba.edu.ar

Métodos Numéricos Avanzados, 93.75, 2^{do}C 2022

TEMARIO

- AUTOVALORES Y AUTOVECTORES
 - Idea geométrica
 - Propiedades de los Autovalores y Autovectores
- CÁLCULO A MANO DE LOS AUTOVALORES Y AUTOVECTORES

- CALCULO NUMÉRICO DE AUTOVALORES Y AUTOVECTORES
 - Método de las Potencias
 - Método de Las Potencias Desplazado
 - Método de las Potencias Inverso
 - Método de Iteración QR
- 4 Aplicaciones ...(sólo algunas)

IDEA GEOMÉTRICA

* Consideremos la transformación lineal T

$$T: \mathbb{R}^2 o \mathbb{R}^2$$
 $oldsymbol{T} = egin{pmatrix} rac{11}{59} & rac{24}{35} \ rac{25}{50} \end{pmatrix}$

y veamos como se transforman los vectores de $\ensuremath{\mathbb{R}}^2$

Propiedades de los Autovalores y Autovectores

- **PA**.1 Si (λ, \vec{v}) son un autopar de una matriz **A**, entonces $(\lambda, \alpha \vec{v})$ con $\alpha \neq 0$) también lo es.
- **PA**.2 Si **A** es una matriz cuadrada $tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$ y $Det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$.
- **PA**.3 Si λ es autovalor de **A**, también lo es de su transpuesta.
- **PA**.4 Si λ es autovalor de **A**, λ^{-1} lo es de su inversa.
- **PA**.5 Si λ es autovalor de **A**, $\lambda \alpha$ lo es de (**A** $\alpha \mathbb{I}$).
- **PA**.6 Si λ es autovalor de **A** λ^k lo es de **A**^k.
- **PA**.7 Si \boldsymbol{A} , una matriz real, es diagonalizable si tiene n autovalores distintos.
- ${f PA}.8$ Si ${m A}$ tiene todos sus autovalores con multiplicidad algebraica 1 es diagonalizable.
- **PA**.9 Si una matriz es triangular superior (o inferior) su determinante es el producto de los elementos de su diagonal y, sus autovectores son los elementos de esa diagonal.

CÁLCULO A MANO I

- En general transforma tanto la dirección de los vectores como su módulo. Salvo, en este caso dos direcciones que quedan fijas (la violeta y la negra).
- * ¿Cuantas direcciones quedan fijas en un espacio arbitrario?
- * ¿Como hallamos las direcciones que no cambian?
- * Resolviendo

$$T\vec{v} = \lambda \vec{v}$$

* Para esto hay que resolver un polinomio (el característico) de grado 2 (n en el caso general) para encontrar los autovalores y los \vec{v} (autovectores) resultan ser una base del $\mathcal{N}ul(\mathbf{T}-\lambda I)$

$$\left(\frac{11}{50}-\lambda\right)\left(\frac{39}{50}-\lambda\right)-\left(\frac{24}{25}\right)^2=0 \qquad \lambda_1=-\frac{1}{2} \qquad \lambda_2=\frac{3}{2}$$

* el vector negro está asociado con λ_1 (se invierte y acorta) y el violeta con λ_2 (mantiene el sentido y se alarga)

CÁLCULO A MANO II

* Para hallar los autovectores hay que resolver

$$\begin{split} &\left(\begin{pmatrix} \frac{11}{50} & \frac{24}{25} \\ \frac{24}{25} & \frac{39}{50} \end{pmatrix} - \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \right) \begin{pmatrix} \upsilon_1 \\ \upsilon_2 \end{pmatrix} = 0 \qquad \vec{\upsilon}_1 = \begin{pmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{pmatrix} \\ &\left(\begin{pmatrix} \frac{11}{50} & \frac{24}{25} \\ \frac{24}{25} & \frac{39}{50} \end{pmatrix} - \begin{pmatrix} \frac{3}{2} & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \right) \begin{pmatrix} \upsilon_1 \\ \upsilon_2 \end{pmatrix} = 0 \qquad \vec{\upsilon}_2 = \begin{pmatrix} \frac{3}{5} \\ \frac{4}{5} \end{pmatrix} \end{split}$$

POLINOMIO CARACTERÍSTICO Y MULTIPLICIDAD ALGEBRAICA Y GEOMÉTRICA

El polinomio cuyas raices son los autovalores de una matriz se denomina polinomio característico (de grado n).

$$p(x) = Det(\mathbf{A} - x\mathbb{I})$$

- * ¿Cuantas raices tiene p(x)?

 Depende. Si $\mathbf{A} \in \mathbb{C}^{n \times n}$ tendrá n raices (en general complejas); Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ puede tener j raices con $0 \le j \le n$.
- * Definimos la multiplicidad $m_a(\lambda)$ algebraica del autovalor λ de una matriz a la cantidad de veces que éste es raíz del polinomio característico.
- * Definimos como la multiplicidad geométrica $m_g(\lambda)$ del autovalor λ de una matriz a la dimensión del espacio nulo de:

$$\mathbf{A} - \lambda \mathbb{I}$$

* En general se cumplirá que:

$$1 \leqslant m_q(\lambda) \leqslant m_a(\lambda) \leqslant n$$

* En palabras sencillas, un autovalor puede tener asociado más de un autovector y si λ es un autovalor simple $m_a(\lambda)=1$ entonces genera un subespacio de dimensión 1 ($m_q(\lambda)=1$),

EJEMPLOS I

La matriz $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^2$ no tiene autovalores reales (pero si complejos: 1+i; 1-i).

La matriz $\pmb{B}=\begin{pmatrix} 3 & 2 & -1 \\ 2 & 3 & 1 \\ 0 & 0 & 5 \end{pmatrix} \in \mathbb{R}^3$ tiene como autovalores

 $\lambda_1 = 5$ doble; $\lambda_2 = 1$ (simple) y los autovectores:

$$\lambda_1 \longrightarrow \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \right\} \qquad \lambda_2 = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

La matriz $\mathbf{C} = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 0 & 5 \end{pmatrix} \in \mathbb{R}^3$ tiene como autovalores $\lambda_1 = 5$ doble; $\lambda_2 = 1$ simple y los autovectores:

$$\lambda_1 \longrightarrow \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} \qquad \lambda_2 = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

EJEMPLOS II

- * La matriz A cae fuera de nuestro análisis por no tener autovectores reales.
- El conjunto de autovectores de la matriz B forman una base de R³ mientras que el conjunto de autovectores de la matriz C no.
- Para la matriz B existe una matriz cambio de base de la canónica a la formada por los autovectores de B que la convierte en diagonal.

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} 3 & 2 & -1 \\ 2 & 3 & 1 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- * Podemos concluir que si $m_a(\lambda)=m_g(\lambda)$ la matriz se puede llevar a una forma diagonal, es decir es diagonalizable.
- * La matriz **C** no es diagonalizable.

COSAS INTERESANTE

El determinante de una matriz diagonalizable es el producto de sus autovalores.

$$Deat(\mathbf{A}) = Det(\mathbf{S})Det(\mathbf{D})Det(\mathbf{S}^{-1}) = \prod \lambda_i$$

Supongamos que la matriz A es diagonalizable, es decir

$$\boldsymbol{A} = \boldsymbol{S}\boldsymbol{D}\boldsymbol{S}^{-1}$$

Con **D** diagonal.

El cálculo de una potencia arbitraria de A resulta inmediato con esta factorización:

$$\mathbf{A}^k = \left(\mathbf{S}\mathbf{D}\mathbf{S}^{-1}\right)^k = \mathbf{S}\mathbf{D}\mathbf{S}^{-1}\mathbf{S}\mathbf{D}\mathbf{S}^{-1}\left(\mathbf{S}\mathbf{D}\mathbf{S}^{-1}\right)^{k-2}$$

* Observemos que los productos interiores son de la forma $\mathbf{S}^{-1}\mathbf{S}$ quedando:

$$\boldsymbol{A}^k = \boldsymbol{S}\boldsymbol{D}^k\boldsymbol{S}^{-1}$$

$$D^{k} = diag(\lambda_{1}^{k}; \lambda_{2}^{k}; \dots; \lambda_{n}^{k})$$

CALCULO DE AUTOVALORES I

- Lamentablemente el calculo de raíces de un polinomio es un esquema inestable, por lo tanto debemos buscar otro método para hallar los autovalores.
- * Hallemos los autovalores de la matriz:

$$\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 - \epsilon & 2 \end{pmatrix}$$

con $\epsilon = 0$ y $\epsilon = 10^{-4}$ resolviendo el polinomio característico.

```
>> e=0;
>> A=[ 0 -1; 1-e +2];
>> p=poly(A)
p =
    1.00000 -2.00000    1.00000
>> r=roots(p)
r =
    1.00000 + 0.00000i
    1.00000 - 0.00000i
```

```
>> e=1e-4;
>> A=[ 0 -1; 1-e +2];
>> p=poly(A)
p =
    1.00000 -2.00000 0.99990
>> r=roots(p)
r =
    1.01000
    0.99000
```

* Notemos que en una perturbación menor al 0.01 % en uno de los coeficientes del polinomio característico genera una diferencia del 1 % en el valor de los autovalores (y para una matriz de 2×2)!

CÁLCULO DEL AUTOVALOR DOMINANTE

- Un autovalor se denomina dominante cuando: tiene multiplicidad algebraica 1 y es el de mayor módulo de la matriz. A su autovector asociado se lo denomina autovector dominante.
- * Si el autovalor es real, su módulo se denomina radio espectral de la matriz.
- * Matemáticamente significaría que:

$$|\lambda_1| > |\lambda_2| \geqslant |\lambda_3| \geqslant \cdots |\lambda_n|$$

* No toda matriz tiene un autovalor dominante:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$$

tiene autovalores $\lambda_1 = -1$; $\lambda_2 = 1$; ninguno es dominante.

MÉTODO DE LA POTENCIAS I

- * Supongamos que $\mathbf{A} \in \mathbb{R}^{n \times n}$ es diagonalizable.
- * Entonces el conjunto de sus autovectores es una base de \mathbb{R}^n
- * Esto quiere decir que si $\vec{u}_0 \in \mathbb{R}^n$ y \vec{v}_i autovector de \boldsymbol{A} con \vec{v}_1 el autovector dominante.

$$\vec{u}_0 = \sum_{i=1}^n \alpha_i \vec{v}_i$$

* sea $\vec{u}_0^{(k)} = \mathbf{A}^k \vec{u}_0$

$$\vec{u}_0^{(k)} = \mathbf{A}^k \left(\sum_{i=1}^n \alpha_i \vec{v}_i \right)$$
$$= \sum_{i=1}^n \alpha_i \mathbf{A}^k \vec{v}_i$$
$$= \sum_{i=1}^n \alpha_i \lambda_i^k \vec{v}_i$$

MÉTODO DE LA POTENCIAS II

st Dividamos $ec{u}_0^{(k)}$ por λ_1^k llegamos a

$$\frac{\vec{u}^{(k)}}{\lambda_1^k} = \alpha_1 \vec{v}_1 + \sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{\lambda_1}\right)^k \vec{v}_k$$

* Los cocientes $(\lambda_i/\lambda_1)^k$ tienden a cero cuando k tiende a ∞ y llegamos a un múltiplo del autovector dominante

CALCULO A MANO I

Hallemos un aproximación del autovector y autovalor dominante de la matriz:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$

Primero debemos elegir una semilla para comenzar la iteración, digamos $\vec{u}_0 = (1;1)')$

$$\begin{split} \vec{u}^{(1)} &= \mathbf{A} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \\ \vec{u}^{(2)} &= \mathbf{A} \begin{pmatrix} 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 13 \end{pmatrix} \\ \vec{u}^{(3)} &= \mathbf{A} \begin{pmatrix} 1 \\ 13 \end{pmatrix} = \begin{pmatrix} 1 \\ 40 \end{pmatrix} \\ & \dots \\ \vec{u}^{(10)} &= \mathbf{A} \begin{pmatrix} 1 \\ 29524 \end{pmatrix} = \begin{pmatrix} 1 \\ 88573 \end{pmatrix} \end{split}$$

CALCULO A MANO II

Como ${\bf A} \vec{u}^{(k)} = \lambda \vec{u}^{(k)}$ premultiplicamos por $\vec{u}^{(k)'}$ y podremos obtener el autovalor como

$$\lambda \approx \frac{\vec{u}^{(k)'} \pmb{A} \vec{u}^{(k)}}{\|\vec{u}^{(k)}\|^2} = 3,\!000011...$$

Este cociente, en álgebra lineal numérica se denomina cociente de Rayleigh.

Normalizando el autovector encontrado el autopar dominante de esta matriz resulta:

Si comparamos con los valores exactos (3;(0;1)') podemos decir que se ha hecho un buen trabajo.

Inconvenientes del Método de las Potencias

- 1. Trabajando en precisión infinita falla si el vector semilla no tiene una componente en la dirección del autovector buscado, esto matemáticamente significa que $\alpha_1=0$, entonces, el proceso convergería a cero.
- 2. El módulo de los $\vec{u}^{(k)}$ crece continuamente, (o decrece si el autovalor dominante es menor que 1) por lo tanto estaríamos potencialmente en problemas de tener un "overflow" ("underflow").
- 3. Requiere tener un criterio de parada.
- 4. Si la convergencia es lenta, tenemos que tener algún proceso que acelere la convergencia y un número máximo de iteraciones que realicemos si este proceso no alcanza.

En las notas tenemos el guión de GNU Octave APOWER ().

- Al implementar este esquema en una computadora el inconveniente 1 desaparece: los errores de redondeo siempre harán aparecer una componente en la dirección del autovector dominante
- * Para evitar el *overflow/underflow* se utiliza el método escalado, en el cual en cada paso se escala el vector como

$$\vec{u}^{(k)} \leftarrow \frac{\vec{u}^{(k)}}{\|\vec{u}^{(k)}\|_p}$$

Para algún valor de p, usualmente se usan p = 2 o $p = \infty$.

- El criterio de parada es complejo y no hay uno uniforme y merece una discusión mas profunda de lo que se podría hacer en este curso.
- * En lo que sigue utilizaremos el siguiente criterio

$$err = ||A\vec{u}^{(k)} - \lambda^k \vec{u}^{(k)}|| < ||A\vec{u}^{(k)}|| tol \le ||A|| tol$$

Que no es otra cosa que el residuo ($\|A\vec{u}^{(k)} - \lambda^k\vec{u}^{(k)}\|$) relativo al valor $\|A\vec{u}^{(k)}\|$, pero que se simplifica si utilizamos el escalado ($\|\vec{u}^{(k)}\| = 1$.

 El método de las potencias da resultados aceptable y precisos, siempre y cuando el segundo autovalor sea tal que

$$\frac{|\lambda_2|}{|\lambda_1|} < 1.$$

Si esta desigualdad no se verifica entonces: el proceso tendrá una convergencia lenta (harán falta muchos pasos para llegar a un determinado resultado.

RVIEYTES AUTOVALORES Y AUTOVECTORES 19

MÉTODO DE LAS POTENCIAS DESPLAZADO

* Recordemos que si λ es autovalor de \mathbf{A} , entonces $\lambda-s$ lo es de $\mathbf{A}-s$ 1. Esto quiere decir que eligiendo adecuadamente s podemos lograr que

$$rac{|\lambda_2-s|}{|\lambda_1-s|}\ll 1$$
 aunque $rac{|\lambda_2|}{|\lambda_1|}pprox 1$

* Veamos un ejemplo. si tenemos una matriz con autovalores $\lambda_1=14$ y $\lambda_2=12$, para fijar ideas $\frac{|\lambda_2|}{|\lambda_1|}=\frac{12}{14}=0,857...$ y la convergencia al valor de λ_1 será lenta. Ahora si elegimos s=11 tendremos que

$$\frac{|12-11|}{|14-11|} = 0.333.. < 0.857$$

- * La convergencia serpa mucho mayor al autovalor $\lambda_1-s=3; \lambda_1=3+s.$ Pero si elegimos $s=15,\ lambda_1$ deja de ser el dominante ya que ahora $|\lambda_2-s|>|\lambda_1-s|$ el proceso convergerá rápidamente al autovalor λ_2-s que no es el dominante de la matriz original.
- st La clave es elegir adecuadamente el valor de s

EJEMPLO I

Apliquemos el método de las potencias desplazadas a la matriz

$$m{A} = egin{pmatrix} -2 & 1 & 2 \\ 1 & -2 & -1 \\ 2 & -1 & -4 \end{pmatrix}$$
 que tiene como autovalores

 $-2,\!7448;2,\!3489;1,\!3959,|\lambda_2/\lambda_1|=0,\!8558$ cercano a 1, se pronostica una convergencia lenta.

En octave cargamos la matriz corremos

```
>> v0=[1 1 1]';

>> tol=1e-10;

>> max_iter=300;

>>[v,1,niter]=APOWER(A, v0, tol,max_iter)

>> [v,1,n]=APOWER(A, v0, tol,max_iter)

v =

-0.51223

0.34662

0.78580

1 = -2.7448

n = 170
```

st Usemos el método desplazado y elijamos s=3, entonces:

```
>> A=A-3*eye(3)
A =
  -2 1 2
   1 -2 -1
   2 -1 -4
>> [v,1,n] = APOWER(A, v0, 1e-10,500)
77 =
  0.51223
  -0.34662
  -0.78580
1 = -5.7448
n = 2.0
>> 1+3
ans = -2.7448
```

* Llegamos al resultado en 20 iteraciones !!

MÉTODO DE LAS POTENCIAS INVERSO

- * Supongamos que $\bf A$ es invertible y que λ es uno de sus autovalores, por la propiedad $\bf PA.4$ se tendrá que λ^{-1} será autovalor de $\bf A^{-1}$; es más si λ es el de menor módulo, λ^{-1} será el dominante de $\bf A^{-1}$.
- Este proceso se basa en la iteración:

$$\vec{u}^{(k)} = \mathbf{A}^{-1} \vec{u}^{(k-1)}$$

o, lo que es lo mismo:

$$\mathbf{A}\vec{u}^{(k)} = \vec{u}^{(k-1)}$$

- A cada interacción hay que resolver el sistema lineal (Por factorización PLU o QR)
- La función ISPOWER() realiza la iteración de potencias inversa con desplazamiento.

EJEMPLO

Calculemos el menor de los autovalores de

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$$

utilizando como semilla $\vec{v}_0 = (1;0)'$.

* tenemos

$$\begin{split} \mathbf{A} \vec{u}^{(1)} &= \begin{pmatrix} 1,0000 \\ 0,0000 \end{pmatrix} \qquad \vec{u}^{(1)} &= \begin{pmatrix} 1,0000 \\ -0,3333 \end{pmatrix} \rightarrow \vec{u}^{(1)} = \begin{pmatrix} 0,9487 \\ -0,3162 \end{pmatrix} \\ \mathbf{A} \vec{u}^{(2)} &= \begin{pmatrix} 0,9487 \\ -0,3162 \end{pmatrix} \qquad \vec{u}^{(2)} &= \begin{pmatrix} 0,9487 \\ -0,4216 \end{pmatrix} \rightarrow \vec{u}^{(2)} &= \begin{pmatrix} 0,9138 \\ -0,4061 \end{pmatrix} \\ \mathbf{A} \vec{u}^{(3)} &= \begin{pmatrix} 0,9138 \\ -0,4061 \end{pmatrix} \qquad \vec{u}^{(3)} &= \begin{pmatrix} 0,9138 \\ -0,4400 \end{pmatrix} \rightarrow \vec{u}^{(3)} &= \begin{pmatrix} 0,9010 \\ -0,4338 \end{pmatrix} \\ \dots \\ \mathbf{A} \vec{u}^{(10)} &= \begin{pmatrix} 0,8944 \\ -0,4472 \end{pmatrix} \rightarrow \vec{u}^{(10)} &= \begin{pmatrix} 0,8944 \\ -0,4472 \end{pmatrix} \\ \lambda &= \begin{pmatrix} \vec{u}^{(9)} \end{pmatrix}' \vec{u}^{(10)} &= 1,000 \end{aligned}$$

MÉTODO DE ITERACIÓN QR

- Primero unas definiciones:
- Dos matrices cuadradas A y B se dicen similares si existe una matriz S invertible tal que:

$$\boldsymbol{B} = \boldsymbol{S}^{-1} \boldsymbol{A} \boldsymbol{S}.$$

- Dos matrices similares tienen los mismos autovalores, pero no los mismos autovectores,
- Dos matrices A y B se dices similares unitarias si son similares y la matriz S es unitaria; si las matrices son reales se dice que son similares ortogonales.

Supongamos que A es invertible y que ordenamos sus autovalores de manera que:

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n| > 0$$

- Notemos que los signos son desigualdades estrictas.
- Si los autovalores son reales, entonces la matriz es diagonalizable
- * La idea del método QR de obtención de autovalores consiste en generar una secuencia de matrices A_k , similares, triangulares superior que en el límite, los autovalores son los elementos de la diagonal de esta secuencia.
- Dada A hallamos su factorización QR

$$A = g_1 R_1$$
 $A_1 = R_1 g_1 = g'_1 A g_1$
 $A_1 = g_2 R_2$ $A_2 = R_2 g_2 = g'_2 A_1 g_2 = g'_2 g'_1 A g_1 g_2$
 \cdots $A_k = g'_k g'_{k-1} \cdots g'_2 g'_1 A g_1 g_2 \cdots g_{k-1} g_k$

* Por construcción A_k es triangular superior y similar a A, por lo tanto los elementos de su diagonal son los autovalores de A.

Calculemos los autovalores de la matriz

$$\mathbf{A} = \begin{pmatrix} 5 & 1 & 4 \\ -1 & 3 & 1 \\ 3 & -1 & 2 \end{pmatrix}$$

```
>> A0=[5 1 4; -1 3 1; 3 -1 2];
>> A=A0;
>> [Q R] = qr(A);
>> A=R*O;
---- 5 veces ----
>> A=R*O;
>> [Q R] = qr(A)
>> A=R*O
A =
  7.2584522805 0.2636490525 -1.0104067969
  0.0063189112 2.2525145393 -2.8127251160
  -0.0000039180 0.0002567930 0.4890331802
>> [Q R] = qr(A)
>> A=R*O
---- 10 veces
```

* Se ve que en 15 pasos de iteración se puede suponer que la matriz **A** es diagonal superior y entonces los autovalores resultan:

$$\lambda_1 = 7,2588e + 00; \quad \lambda_2 = 2,2518e + 00 \quad \lambda_3 = 4,8944e - 01$$

- * La función FINDQRAVAL() realiza esta tarea.
- * ¿y los autovectores?

CALCULO DE LOS AUTOVECTORES

- * Conocidos los autovalores de una matriz, los autovectores se pueden calcular empleando el método de las potencias inverso con desplazamiento, empleando como desplazamiento el autovalor estimado.
- La función FINDQRAUTO() se encarga de esta tarea. La matriz de estrada de esta función es la matriz triangular superior que queda después de la iteración QR.

Cálculo de las Raíces de un Polinomio de Grado n

Matriz compañera de un polinomio:

$$p(t) = \sum_{i=1}^{n-1} a_i t^i + t^n \quad \boldsymbol{C}(p) = egin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \ 1 & 0 & \cdots & 0 & -a_1 \ 0 & 1 & \cdots & 0 & -a_2 \ dots & dots & \ddots & dots & dots \ 0 & 0 & \cdots & 1 & -a_{n-1} \end{pmatrix}$$

- * Los Autovalores de **C** son las raices de p(t).
- * Dado el polinomio: $p(t)=3t^3+9t^2-27t+3$ encontrar su raíces: llevamos al polinomio a la forma requerida, dividiendo los coeficientes por 3.

Armamos la matriz Compañera:

$$\mathbf{C}(p) = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 9 \\ 0 & 1 & -3 \end{pmatrix}$$

* calculamos sus autovalores

```
>> A=[0 0 -1; 1 0 9; 0 1 -3];
>> eig(A,'vector')
ans =
    0.1157;    1.7687;  -4.8845
```

Google PageRank: El secreto de Google

¿Cómo podemos ordenar por importancia los nodos de esta intranet?

- El algoritmo supone un "web-surfer" que al ingresar a una página aleatoriamente elige un enlace y lo sigue (modelo de caminata aleatoria "random walk model"), todos los enlaces tienen la misma probabilidad.
- Las páginas web tendrán información confiable y valiosa por lo tanto serán enlazadas por otras páginas, haciendo crecer su relevancia y enlazará a otras para reafirmar su contenido.
- En principio, la cantidad de enlaces (salientes y entrantes) podría ser una medida de la importancia de la página, pero convengamos que no es lo mismo cualquier enlace.
- Las páginas que enlazan a otra entregan a cada pagina enlazada una fracción de su importancia, esa fracción se considera la misma para todos los enlaces.

$$I_i = \sum_{j \in V_i} \frac{I_j}{O_j}$$

$$ec{I} = oldsymbol{H} ec{I}$$

Pag	Entradas	Salidas
1	1 (5)	4 (2 4 5 6)
2	1 (1)	2 (3 4)
3	1 (2)	1 (1)
4	3 (1 2 5)	1 (5)
5	4 (1 3 4 6)	2 (1 4)
6	1 (1)	1 (5)

$$I_{1} = \frac{I_{5}}{2} \qquad I_{2} = \frac{I_{1}}{4} \qquad I_{3} = \frac{I_{2}}{2}$$

$$I_{4} = \frac{I_{1}}{4} + \frac{I_{2}}{2} + \frac{I_{5}}{2} \qquad I_{5} = \frac{I_{1}}{4} + \frac{I_{3}}{1} + \frac{I_{4}}{1} + \frac{I_{6}}{1} \qquad I_{6} = \frac{I_{1}}{4}$$

$$\vec{I} = \vec{H}\vec{I}$$

$$\vec{H} = \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & 1 & 1 & 0 & 1 \\ \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 & 0 \end{pmatrix}$$

El problema se traduce en encontrar el autovector asociado al autovalor 1 de la matriz \mathbf{H} llamada de Google o de Hiperlinks.

EXISTENCIA DEL AUTOVALOR 1. SIGNIFICADO DEL AUTOVECTOR ASOCIADO

- * Teorema de Perrone–Frobenius(\sim 1900) Si $\mathbf{A} \in \mathbb{R}^{n \times n}$ tal que $A_{ij} \geqslant 0$ y $\sum_{i=1}^n a_{ij} = 1$ entonces tiene un autovalor dominante $\lambda = 1$ con multiplicidad algebraica uno y un autovector \vec{v} con todas sus componentes positivas.
- Interpretación del autovector: El autovector sociado con el autovalor 1 se puede interpretar como la proporción del tiempo que el web-surfer pasa en cada página (nodo) de la red, claro que este debe estar normalizado a 1 con la norma 1.

PROBLEMAS DEL ALGORITMO

El nodo 3 es una tela de arañas

El nodo 3 es un nodo muerto

"SOLUCIÓN" DEL PROBLEMA

- Een cada nodo se generan enlaces virtuales a todos los nodos de la red que estarán a disposición del web-surfer aleatorio,
- * A los enlaces reales se le asigna una probabilidad β de ser seguidos y los virtuales 1β ;
- * hay nodos muertos se podrá salir de ellos por los enlaces virtuales. La nueva matriz de hyperlincs será

$$\mathcal{H} = eta \left(H + rac{1}{N} \sum_{k nodos \ muerto} oldsymbol{e} * oldsymbol{e}_k'
ight) + rac{1 - eta}{N} oldsymbol{e} * oldsymbol{e}'$$

Donde e es un vector de N componentes unitarias, e_k un vector de ceros salvo la componente k. El parámetro β se lo toma como 0,85.

EJEMPLO

El nodo 3 es un nodo muerto o terminal, aunque tiene un autolink

$$\mathbf{H} = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix}$$

No cumple Perrone-Frobenius. Aplicamos La corrección.

$$\begin{split} \mathcal{H} &= 0.85* \left(\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \right) \\ &+ \frac{1-0.85}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{split}$$

```
>> beta=0.85;
>> N=3;
>> e=ones(N,1);
>> e3=[0 0 1]';
>> H
H = [0 \ 1 \ 0; \ 1/2 \ 0 \ 0; \ 1/2 \ 0 \ 0];
>> HH=beta*(H+e*e3'/N)+(1-beta)*e*e'/N
HH =
   0.050000 0.900000 0.333333
   0.475000 0.050000 0.333333
   0.475000 0.050000 0.333333
sum (HH)
ans =
      1
```

```
>> [P a] = eig(HH, 'vector')
P =
  -0.8165 0.6763 -0.5345
   0.4082 0.5209 -0.2673
   0.4082 0.5209 0.8018
a =
  -5.6667e-01
   1.00000e+00
   2.7756e-17
>> autov=P(:,2);
>> autov=autov*norm(autov,2)/norm(autov,1)
autov =
   0.3936
   0.3032
   0.3032
```

El web-surfer pasará casi el 40% del tiempo en el nodo uno y aproximadamente el 60% en los otros nodos: 30% en el dos y 30% en el 3

EJEMPLO CON AUTOLINKS

$$\mathbf{H} = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix}$$

Cumple Perrone–Frobenius. Aplicamos sólo teleportación.

$$\mathcal{H} = 0.85 \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \end{pmatrix} + 0.05 \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

 Si dejamos los autolinks tenemos el vector de ranking

$$autov = 0.12680,18070,6926$$

- * El nodo 3 se comporta como un "atractor"!
- Los autolinks se deben eliminar antes de comenzar!!

El nodo 3 es un nodo muerto o terminal con autolink

LICENCIA DE DISTRIBUCIÓN

Este documento fue realizado en <u>ETE</u>X con la clase beamer. Muchas de las figuras se realizaron con Tikz con el editor KTikz, los cálculos y simulaciones con GNU Octave y GNU Maxima.

Esta obra se distribuye bajo licencia: Atribución – Compartir Igual (by-nc-sa):

- by: para usar una obra en cualquier tipo de medio es imprescindible citar al autor de forma explícita.
- nc: El beneficiario de la licencia tiene el derecho de copiar, distribuir, exhibir y representar la obra y hacer obras derivadas para fines no comerciales.
- * sa: se puede usar una obra para crear otra, siempre y cuando esta se publique con la misma licencia que la obra original.