Supplemental material for A space-time skew-t model for threshold

² exceedances

- Samuel A Morris¹, Brian J Reich¹, Emeric Thibaud², and Daniel Cooley²
 - September 8, 2015

5 A Appendices

6 A.1 MCMC details

- 7 The MCMC sampling for the model 4 is done using R (http://www.r-project.org). Whenever possible,
- 8 we select conjugate priors (see Appendix A.2); however, for some of the parameters, no conjugate prior
- 9 distributions exist. For these parameters, we use a random walk Metropolis-Hastings update step. In each
- 10 Metropolis-Hastings update, we tune the algorithm during the burn-in period to give acceptance rates near
- 11 0.40.

12 Spatial knot locations

- For each day, we update the spatial knot locations, $\mathbf{w}_1, \dots, \mathbf{w}_K$, using a Metropolis-Hastings block up-
- date. Because the spatial domain is bounded, we generate candidate knots using the transformed knots
- $\mathbf{w}_1^*, \dots, \mathbf{w}_K^*$ (see section 3.3) and a random walk bivariate Gaussian candidate distribution

$$\mathbf{w}_{k}^{*(c)} \sim \mathbf{N}(\mathbf{w}_{k}^{*(r-1)}, s^{2}I_{2})$$

¹North Carolina State University

²Colorado State University

where $\mathbf{w}_k^{*(r-1)}$ is the location for the transformed knot at MCMC iteration r-1, s is a tuning parameter, and I_2 is an identity matrix. After candidates have been generated for all K knots, the acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s}|\mathbf{w}_1^{(c)}, \dots, \mathbf{w}_K^{(c)}, \dots)]}{l[Y_t(\mathbf{s}|\mathbf{w}_1^{(r-1)}, \dots, \mathbf{w}_K^{(r-1)}, \dots)]} \right\} \times \left\{ \frac{\prod_{k=1}^K \phi(\mathbf{w}_k^{(c)})}{\prod_{k=1}^K \phi(\mathbf{w}_k^{(r-1)})} \right\} \times \left\{ \frac{\prod_{k=1}^K p(\mathbf{w}_k^{*(c)})}{\prod_{k=1}^K p(\mathbf{w}_k^{*(r-1)})} \right\}$$

where l is the likelihood given in (18), and $p(\cdot)$ is the prior either taken from the time series given in (3.3) or assumed to be uniform over \mathcal{D} . The candidate knots are accepted with probability $\min\{R,1\}$.

20 Spatial random effects

If there is no temporal dependence amongst the observations, we use a Gibbs update for z_{tk} , and the posterior distribution is given in A.2. If there is temporal dependence amongst the observations, then we update z_{tk} using a Metropolis-Hastings update. Because this model uses $|z_{tk}|$, we generate candidate random effects using the z_{tk}^* (see Section 3.3) and a random walk Gaussian candidate distribution

$$z_{tk}^{* (c)} \sim N(z_{tk}^{* (r-1)}, s^2)$$

where $z_{tk}^{st}{}^{(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. The acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s})|z_{tk}^{(c)}, \dots]}{l[Y_t(\mathbf{s})|z_{tk}^{(r-1)}]} \right\} \times \left\{ \frac{p[z_{tk}^{(c)}]}{p[z_{tk}^{(r-1)}]} \right\}$$

where $p[\cdot]$ is the prior taken from the time series given in Section 3.3. The candidate is accepted with probability $\min\{R,1\}$.

28 Variance terms

- When there is more than one site in a partition, then we update σ_{tk}^2 using a Metropolis-Hastings update.
- First, we generate a candidate for σ^2_{tk} using an $\mathrm{IG}(a^*/s,b^*/s)$ candidate distribution in an independence
- Metropolis-Hastings update where $a^* = (n_{tk} + 1)/2 + a$, $b^* = [Y_{tk}^T \Sigma_{tk}^{-1} Y_{tk} + z_{tk}^2]/2 + b$, n_{tk} is the number
- of sites in partition k on day t, and Y_{tk} and Σ_{tk}^{-1} are the observations and precision matrix for partition k on
- day t. The acceptance ratio is

$$R = \left\{ \frac{l[Y_t(\mathbf{s})|\sigma_{tk}^{2}(c), \dots]}{l[Y_t(\mathbf{s})|\sigma_{tk}^{2}(c-1)]} \right\} \times \left\{ \frac{l[z_{tk}|\sigma_{tk}^{2}(c), \dots]}{l[z_{tk}|\sigma_{tk}^{2}(c-1), \dots]} \right\} \times \left\{ \frac{p[\sigma_{tk}^{2}(c)]}{p[\sigma_{tk}^{2}(c-1)]} \right\} \times \left\{ \frac{c[\sigma_{tk}^{2}(c-1)]}{c[\sigma_{tk}^{2}(c)]} \right\}$$

- where $p[\cdot]$ is the prior either taken from the time series given in Section 3.3 or assumed to be IG(a,b), and
- $c[\cdot]$ is the candidate distribution. The candidate is accepted with probability $\min\{R,1\}$.

36 Spatial covariance parameters

- We update the three spatial covariance parameters, $\log(\rho)$, $\log(\nu)$, γ , using a Metropolis-Hastings block
- ³⁸ update step. First, we generate a candidate using a random walk Gaussian candidate distribution

$$\log(\rho)^{(c)} \sim N(\log(\rho)^{(r-1)}, s^2)$$

- where $\log(\rho)^{(r-1)}$ is the value at MCMC iteration r-1, and s is a tuning parameter. Candidates are
- 40 generated for $\log(\nu)$ and γ in a similar fashion. The acceptance ratio is

$$R = \left\{ \frac{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(c)}, \nu^{(c)}, \gamma^{(c)}, \dots]}{\prod_{t=1}^{T} l[Y_t(\mathbf{s})|\rho^{(r-1)}, \nu^{(r-1)}, \gamma^{(r-1)}, \dots]} \right\} \times \left\{ \frac{p[\rho^{(c)}]}{p[\rho^{(r-1)]}} \right\} \times \left\{ \frac{p[\nu^{(c)}]}{p[\nu^{(r-1)}]} \right\} \times \left\{ \frac{p[\gamma^{(c)}]}{p[\nu^{(r-1)}]} \right\}.$$

All three candidates are accepted with probability $\min\{R, 1\}$.

42 A.2 Posterior distributions

- 43 Conditional posterior of $z_{tk} \mid \dots$
- 44 If knots are independent over days, then the conditional posterior distribution of $|z_{tk}|$ is conjugate. For
- simplicity, drop the subscript t, let $ilde{z}_{tk} = |z_{tk}|$, and define

$$R(\mathbf{s}) = \begin{cases} Y(\mathbf{s}) - X(\mathbf{s})\beta & s \in P_l \\ \\ Y(\mathbf{s}) - X(\mathbf{s})\beta - \lambda \tilde{z}(\mathbf{s}) & s \notin P_l \end{cases}$$

46 Let

$$R_1$$
 = the vector of $R(\mathbf{s})$ for $s \in P_l$

$$R_2$$
 = the vector of $R(\mathbf{s})$ for $s \notin P_l$

$$\Omega = \Sigma^{-1}$$
.

47 Then

$$\pi(z_{l}|\ldots) \propto \exp\left\{-\frac{1}{2}\left[\begin{pmatrix} R_{1} - \lambda \tilde{z}_{l} \mathbf{1} \\ R_{2} \end{pmatrix}^{T} \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix} \begin{pmatrix} R_{1} - \lambda \tilde{z}_{l} \mathbf{1} \\ R_{2} \end{pmatrix} + \frac{\tilde{z}_{l}^{2}}{\sigma_{l}^{2}}\right]\right\} I(z_{l} > 0)$$

$$\propto \exp\left\{-\frac{1}{2}\left[\Lambda_{l} \tilde{z}_{l}^{2} - 2\mu_{l} \tilde{z}_{l}\right]\right\}$$

48 where

$$\mu_l = \lambda (R_1^T \Omega_{11} + R_2^T \Omega_{21}) \mathbf{1}$$
$$\Lambda_l = \lambda^2 \mathbf{1}^T \Omega_{11} \mathbf{1} + \frac{1}{\sigma_l^2}.$$

- 49 Then $ilde{Z}_l|\ldots\sim N_{(0,\infty)}(\Lambda_l^{-1}\mu_l,\Lambda_l^{-1})$
- 50 Conditional posterior of $\beta \mid \dots$
- Let $\beta \sim N_p(0, \Lambda_0)$ where Λ_0 is a precision matrix. Then

$$\pi(\beta \mid \dots) \propto \exp\left\{-\frac{1}{2}\beta^T \Lambda_0 \beta - \frac{1}{2} \sum_{t=1}^T [\mathbf{Y}_t - X_t \beta - \lambda | z_t |]^T \Omega [\mathbf{Y}_t - X_t \beta - \lambda | z_t |]\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left[\beta^T \Lambda_\beta \beta - 2 \sum_{t=1}^T [\beta^T X_t^T \Omega (\mathbf{Y}_t - \lambda | z_t |)]\right]\right\}$$

$$\propto \mathbf{N}(\Lambda_\beta^{-1} \mu_\beta, \Lambda_\beta^{-1})$$

52 where

$$\mu_{\beta} = \sum_{t=1}^{T} \left[X_t^T \Omega(\mathbf{Y}_t - \lambda | z_t |) \right]$$
$$\Lambda_{\beta} = \Lambda_0 + \sum_{t=1}^{T} X_t^T \Omega X_t.$$

- Conditional posterior of $\sigma^2 \mid \dots$
- In the case where L=1 and temporal dependence is negligible, then σ^2 has a conjugate posterior distribu-
- tion. Let $\sigma_t^2 \stackrel{iid}{\sim} \mathrm{IG}(\alpha_0, \beta_0)$. For simplicity, drop the subscript t. Then

$$\pi(\sigma^2 \mid \dots) \propto (\sigma^2)^{-\alpha_0 - 1/2 - n/2 - 1} \exp\left\{-\frac{\beta_0}{\sigma^2} - \frac{|z|^2}{2\sigma^2} - \frac{(\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})}{2\sigma^2}\right\}$$
$$\propto (\sigma^2)^{-\alpha_0 - 1/2 - n/2 - 1} \exp\left\{-\frac{1}{\sigma^2} \left[\beta_0 + \frac{|z|^2}{2} + \frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu})\right]\right\}$$
$$\propto \mathrm{IG}(\alpha^*, \beta^*)$$

56 where

$$\alpha^* = \alpha_0 + \frac{1}{2} + \frac{n}{2}$$

$$\beta^* = \beta_0 + \frac{|z|^2}{2} + \frac{1}{2} (\mathbf{Y} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{Y} - \boldsymbol{\mu}).$$

- In the case that L>1, a random walk Metropolis Hastings step will be used to update σ^2_{lt} .
- 58 Conditional posterior of $\lambda \mid \dots$
- 59 For convergence purposes we model $\lambda=\lambda_1\lambda_2$ where

$$\lambda_1 = \begin{cases} +1 & \text{w.p.0.5} \\ -1 & \text{w.p.0.5} \end{cases}$$
 (1)

$$\lambda_2^2 \sim IG(\alpha_\lambda, \beta_\lambda).$$
 (2)

(3)

60 Then

$$\pi(\lambda_2 \mid \ldots) \propto \lambda_2^{2(-\alpha_{\lambda} - 1)} \exp\left\{-\frac{\beta_{\lambda}}{\lambda_2^2}\right\} \prod_{t=1}^T \prod_{k=1}^K \frac{1}{\lambda_2} \exp\left\{-\frac{z_{tk}^2}{2\lambda_2^2 \sigma_{tk}}\right]^2$$
$$\propto \lambda_2^{2(-\alpha_{\lambda} - kt - 1)} \exp\left\{-\frac{1}{\lambda_2^2} \left[\beta_{\lambda} + \frac{z^2}{2\sigma_{tk}^2}\right]\right\}$$

Then
$$\lambda_2 \mid \ldots \sim IG\left(\alpha_{\lambda} + kt, \beta_{\lambda} + \frac{z^2}{2\sigma_{tk}^2}\right)$$

- 62 **A.3** Proof that $\lim_{h\to\infty}\pi(h)=0$
- Consider a homogeneous spatial Poisson process with intensity μ . Define A as the circle with center
- $({f s}_1+{f s}_2)/2$ and radius h/2. Then ${f s}_1$ and ${f s}_2$ are in different partitions almost surely if two or more points are
- in A. Let N(A) be the number of points in A, and let

$$\mu(A) = \mu|A| = \mu\pi \left(\frac{h}{2}\right)^2 = \lambda h^2.$$

66 Then

$$P[N(A) \ge 2] = 1 - P[N(A) = 0] - P[N(A) = 1]$$

$$= 1 - \exp\{-\lambda h^2\} - \lambda h^2 \exp\{-\lambda h^2\}$$

$$= 1 - (1 + \lambda h^2) \exp\{-\lambda h^2\}$$

which goes to one as $h \to \infty$.

$\mathbf{68}$ A.4 Skew-t distribution

69 Univariate skew-t distribution

We say that Y follows a univariate extended skew-t distribution with location $\xi \in \mathcal{R}$, scale $\omega > 0$, skew

parameter $\alpha \in \mathcal{R}$, and degrees of freedom ν if has distribution function

$$f_{\rm EST}(y) = 2f_T(z;\nu)F_T \left[\alpha z \sqrt{\frac{\nu+1}{\nu+z^2}}; \nu+1 \right] \tag{4}$$

where $f_T(t;\nu)$ is a univariate Student's t with ν degrees of freedom, $F_T(t;\nu) = P(T < t)$, and $z = (y - \xi)/\omega$.

73 Multivariate skew-t distribution

If $\mathbf{Z} \sim \mathrm{ST}_d(0, \bar{\Omega}, \boldsymbol{\alpha}, \eta)$ is a d-dimensional skew-t distribution, and $\mathbf{Y} = \xi + \boldsymbol{\omega} \mathbf{Z}$, where $\boldsymbol{\omega} = \mathrm{diag}(\omega_1, \dots, \omega_d)$,

then the density of Y at y is

$$f_y(\mathbf{y}) = \det(\boldsymbol{\omega})^{-1} f_z(\mathbf{z}) \tag{5}$$

76 where

$$f_z(\mathbf{z}) = 2t_d(\mathbf{z}; \bar{\mathbf{\Omega}}, \eta) T \left[\boldsymbol{\alpha}^T \mathbf{z} \sqrt{\frac{\eta + d}{\nu + Q(\mathbf{z})}}; \eta + d \right]$$
 (6)

$$\mathbf{z} = \boldsymbol{\omega}^{-1}(\mathbf{y} - \xi) \tag{7}$$

where $t_d(\mathbf{z}; \bar{\Omega}, \eta)$ is a d-dimensional Student's t-distribution with scale matrix $\bar{\Omega}$ and degrees of freedom η , $Q(z) = \mathbf{z}^T \bar{\Omega}^{-1} \mathbf{z}$ and $T(\cdot; \eta)$ denotes the univariate Student's t distribution function with η degrees of freedom (?).

80 Extremal dependence

For a bivariate skew-t random variable $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^T$, the $\chi(h)$ statistic (?) is given by

$$\chi(h) = \bar{F}_{EST} \left\{ \frac{[x_1^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{EST} \left\{ \frac{[x_2^{1/\eta} - \varrho(h)]\sqrt{\eta + 1}}{\sqrt{1 - \varrho(h)^2}}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\},$$
(8)

where \bar{F}_{EST} is the univariate survival extended skew-t function with zero location and unit scale, $\varrho(h) = \text{cor}[y(\mathbf{s}), y(\mathbf{t})]$,

$$\alpha_j=\alpha_i\sqrt{1-\varrho^2},\,\tau_j=\sqrt{\eta+1}(\alpha_j+\alpha_i\varrho),\,\text{and}\,\,x_j=F_T(\bar{\alpha}_i\sqrt{\eta+1};0,1,\eta)/F_T(\bar{\alpha}_j\sqrt{\eta+1};0,1,\eta)\,\,\text{with}\,\,$$

$$j=1,2$$
 and $i=2,1$ and where $arlpha_j=(lpha_j+lpha_iarrho)/\sqrt{1+lpha_i^2[1-arrho(h)^2]}.$

- Proof that $\lim_{h\to\infty} \chi(h) > 0$
- Consider the bivariate distribution of $\mathbf{Y} = [Y(\mathbf{s}), Y(\mathbf{t})]^T$, with $\varrho(h)$ given by (3). So, $\lim_{h\to\infty} \varrho(h) = 0$.
- 87 Then

$$\lim_{h \to \infty} \chi(h) = \bar{F}_{\text{EST}} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_1, \tau_1, \eta + 1 \right\} + \bar{F}_{\text{EST}} \left\{ \sqrt{\eta + 1}; 0, 1, \alpha_2, \tau_2, \eta + 1 \right\}. \tag{9}$$

- Because the extended skew-t distribution is not bounded above, for all $\bar{F}_{\rm EST}(x)=1-F_{\rm EST}(x)>0$ for all
- 89 $x<\infty.$ Therefore, for a skew-t distribution, $\lim_{h\to\infty}\chi(h)>0.$

90 A.5 Simulation study pairwise difference results

- The following tables show the methods that have significantly different Brier scores when using a Wilcoxon-
- 92 Nemenyi-McDonald-Thompson test. In each column, different letters signify that the methods have signifi-
- sa cantly different Brier scores. For example, there is significant evidence to suggest that method 1 and method
- 4 have different Brier scores at q(0.90), whereas there is not significant evidence to suggest that method 1

- and method 2 have different Brier scores at q(0.90). In each table group A represents the group with the
- lowest Brier scores. Groups are significant with a familywise error rate of $\alpha=0.05$.

Table 1: Setting 1 – Gaussian marginal, K = 1 knot

	q(0.90)	q(0.95)	q(0.98)	q(0.99)					
Method 1	A	A	A	A B					
Method 2	A	A	A	A					
Method 3	В	В	С	В					
Method 4	A	A	A B	A B					
Method 5	В	В	ВС	A B					
Method 6	С	С	D	С					

Table 2: Setting 2 – Skew-t marginal, K = 1 knot

		q	(0.90)))			q(0.	.95)			q(0	.98)		q((0.99)	9)
Method 1			C				В				В	C			В	
Method 2	A					Α				A				Α		
Method 3		В	С			Α	В			A	В			Α	В	
Method 4	Α	В					В				В			Α		
Method 5				D				С				С			В	
Method 6					Е				D				D			С

Table 3: Setting 3 – Skew-t marginal, K=5 knots

	C	\mathcal{C}					
	q(0.90)	q(0.95)	q(0.98)	q(0.99)			
Method 1	В	C	В	В			
Method 2	В	С	В	В			
Method 3	A	В	В	В			
Method 4	A	A	A	A			
Method 5	A	A	A	A			
Method 6	С	D	С	С			

Table 4: Setting 4 – Max-stable

	q(0.90)			q(0.95)			q(0.98)			q(0.99)				
Method 1	Α	В				В				В				С
Method 2		В				В	С			В			В	С
Method 3			С	D			С			В			В	
Method 4				D				D			С			С
Method 5			С				С			В			В	С
Method 6	A				Α				A			A		

Table 5: Setting 5 – Transformation below T=q(0.80)

	q(0)	.90)	q(0.95)	q(0.98)			q(0)	.99)	
Method 1		C	В	C				C	
Method 2	В		В	В		Α	В		
Method 3	A		A	A		Α			
Method 4	В	С	В	В			В	С	
Method 5	В		В	ВС				С	
Method 6		D	С		D				D