3.2.4 Свободные колебания в электрическом контуре

Радькин Кирилл Б01-005

9.12.21

Цель работы: исследование свободных колебаний в колебательном контуре

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф, универсальный мост

Теоретическое введение

Основное уравнение колебательного контура

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{1}$$

Где $\gamma = \frac{R}{2L}$ — коэффициент затухания, $\omega_0^2 = \frac{1}{LC}$ — собственная частота контура. Решением этого уравнения являются затухающие колебания:

$$I = Ae^{-\gamma t}\cos(\omega t - \theta) \tag{2}$$

Рис. 1. Колебательный контур Здесь $\omega = \sqrt{\omega_0^2 - \gamma^2}$. Можно записать решение (1) и для напряжения:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta)$$
 (3)

В контуре со слабым затуханием ($\omega \simeq \omega_0$) верна формула Томпсона для периода:

$$T = \frac{2\pi}{\omega_0} \simeq \frac{2\pi}{\omega} = 2\pi\sqrt{LC} \tag{4}$$

Режим работы контура, при котором $\gamma = \omega_0$, называется **критическим**. Его сопротивление равно

$$R_{\rm Kp} = 2\sqrt{\frac{L}{C}} \tag{5}$$

Потери затухающих колебаний принято характеризовать через добротность и логарифмический декремент затухания:

$$Q = 2\pi \frac{W}{\Delta W} = \frac{1}{R} \sqrt{\frac{L}{C}} -$$
Добротность, потери энергии (6)

$$\Theta = \frac{1}{n} \gamma T = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}$$
 — Лог. декремент, потери амплитуды (7)

Экспериментальная установка

Исследуемый колебательный контур состоит из индуктивности L, ёмкости C и резистора R (рис. 1). Конденсатор контура заряжается короткими одиночными импульсами, после каждого из которых в контуре возникают свободные затухающие колебания. Подав напряжение с конденсатора на осциллограф, можно по картине, возникающей на экране осциллографа, определить период колебаний в контуре, исследовать затухание колебаний и определить основные параметры колебательного контура.

Картину колебаний можно представить не только в координатах (U,t), но и в координатах (U,\dot{U}) , или, как говорят, на фазовой плоскости. В этих координатах кривая незатухающих колебаний ($\gamma=0$) имеет вид эллипса (или окружности - при одинаковых амплитудах U и \dot{U}), а картина реальных колебаний изображается сворачивающейся спиралью.

Схема подключения осциллографа для изучения колебаний на фазовой плоскости представлена на рис. 2. На вертикальный вход осциллографа подаётся напряжение U_C с конденсатора, а на горизонтальный — напряжение с резистора U_R .

На рис. 3 приведена схема для исследования свободных колебаний в контуре типа рис. 1. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Г5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле,

Рис. 2. Фазовый режим

смонтированное в отдельном блоке (или на выходе генератора). Реле содержит диодный тиристор D и ограничительный резистор R_1 . Импульсы заряжают конденсатор С. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\simeq 1 \text{ MOM}$), так что его влиянием иа контур можно пренебречь.

Рис. 3. Схема экспериментальной установки

Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

Ход работы

- 1. Настроим установку
- 2. Установим на магазине сопротивлений величину R=0; на магазине емкостей величину $C=0.02~{\rm mk}\Phi.$
- 3. Прокалибруем горизонтальную ось осциллографа по известному периоду повторения импульсов: для этого
 - подберем частоту развёртки осциллографа, при которой расстояние x_0 между импульсами, поступающими с генератора занимает почти весь экран
 - измерим на экране расстояние x, которое занимают несколько полных периодов n, рассчитаем период колебаний контура: $T = \frac{T_0 \cdot x}{n \cdot x_0}$

Изменяя емкость от 0.02 мкФ до 0.9 мкФ, проведем измерения периодов:

C , мк Φ	T, MC
0.02	0.45
0.03	0.59
0.04	0.94
0.05	0.78
0.06	0.85
0.07	0.85
0.08	0.95
0.09	1.06

- 4. Приняв $L=200~{\rm M}\Gamma$ н, рассчитаем емкость C, при которой частота собственных колебаний контура будет равна $\nu_0=5~{\rm k}\Gamma$ ц: $C=5~{\rm h}\Phi$. Рассчитаем также $R_{\rm kp}=12~{\rm kOm}$.
- 5. Установим на магазине емкость, близкую к рассчитаной. Увеличивая сопротивление от 0 до $R_{\rm kp}$, зафиксируем сопротивление, при котором колебательный режим переходит в апериодический: $R_{\rm kp_{\rm skcn}}=8.8~{\rm kOm}$.
- 6. Установим сопротивление $R \simeq 0.1 \cdot R_{\text{кр}_{\text{эксп}}},$ получим картину затухающих колебаний (рис. 4).

Для расчета логарифмического декремента затухания Θ по формуле $\Theta = \frac{1}{n} \cdot \frac{U_k}{U_{k+n}},$ измерим амплитуды, разделенные целым числом периодов n.

R, Om	n	U_k	U_{k+n}	Θ
900	3	2	0.4	0.54
1100	3	2.2	0.4	0.57
1300	2	2.4	0.6	0.69
1500	2	2.6	0.5	0.82
1700	2	2.7	0.4	0.95
1900	2	2.8	0.4	0.97
2100	2	2.9	0.3	1.13
2300	2	3	0.2	1.35
2500	2	3	0.2	1.35

7. Настроим осциллограф для наблюдения затухающих колебаний на фазовой плоскости и пронаблюдаем за изменением спирали при увеличении R от $0.1 \cdot R_{\rm kp}$ до $0.3 \cdot R_{\rm kp}$ (одна из спиралей на рис. 5).

3

Рис. 4. Затухающие колебания

8. Рассчитаем экспериментальные и теоретические значения периодов и построим график (рис. 6) $T_{\text{эксп}} = f(T_{\text{теор}})$

$T_{\text{эксп}}$, мс	T_{reop} , MC
0.45	0.39
0.59	0.49
0.95	0.56
0.79	0.63
0.85	0.69
0.85	0.74
0.96	0.79
1.06	0.84

Рис. 5. Спираль

9. Рассчитаем знаения Θ и $R_{\text{конт}} = R_l + R$. Построим график в координатах $\frac{1}{\Theta^2} = f\left(\frac{1}{R_{\text{конт}}^2}\right)$ (рис. 7). Определим $R_{\text{кр}}$ по наклону прямой: $R_{\text{кр}} = 11623$ Ом.

Рис. 6. $T_{\text{эксп}}$ от $T_{\text{теор}}$

10. Рассчитаем $R_{\rm kp}$ по формуле $R_{\rm kp}=2\cdot\frac{L}{C}$ и сравним с ранее рассчитанными значениями.

$$\begin{split} R_{\text{\tiny KPreop}} &= 12649 \text{ Om} \\ R_{\text{\tiny KPrpa} \varphi} &= 11623 \text{ Om} \\ R_{\text{\tiny KPp} \to \text{\tiny KCII}} &= 8800 \text{ Om} \end{split}$$

11. Рассчитаем добротность контура для максимального и минимального значений Θ и сравним с расчетом Q через параметры R,L,C.

Через
$$Q = \frac{\pi}{\Theta}$$
:
 $Q_{max} = 5.86, Q_{min} = 2.32$

Через
$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$$
: $Q_{max} = 6.91, \, Q_{min} = 2.51$

Рис. 7.
$$\frac{1}{\Theta^2} = f\left(\frac{1}{R_{\text{конт}}^2}\right)$$