Analiza matematyczna 1 Lista zadań nr 4 (Funkcje - podstawowe pojęcia)

1. Dla par zbiorów $A, B \subset \mathbb{R}$ wyznaczyć $A \cup B, A \cap B, A \setminus B, B \setminus A, A^c, B^c$:

a)
$$A = (0,5), B = [0,7];$$
 b) $A = (-\infty,3), B = [-1,\infty);$

c)
$$A = \{1, 2\}, B = \{1, 2, 3, 4\}.$$

Wskazać te pary A, B, dla których $A \subset B$.

2. Określić i narysować dziedziny naturalne funkcji:

a)
$$f(x) = \frac{x}{x^2 - 4x - 5}$$
; b) $f(x) = \frac{\sqrt{2 - x}}{x^2 + 1}$; c) $f(x) = \sqrt{81 - x^4}$;

d)
$$f(x) = \frac{\sqrt{2-x}}{\sqrt{x+1}}$$
.

3. Korzystając z definicji pokazać, że podane funkcje są parzyste lub nieparzyste:

a)
$$f(x) = x^4 - 3x^2 + 1$$
; b) $f(x) = |x^3 + x|$; c) $f(x) = \sqrt[5]{x^3 + 2x}$.

4. Korzystając z definicji uzasadnić, że podane funkcje są monotoniczne na wskazanych przedziałach:

a)
$$f(x) = 2 + 5x$$
, $(-\infty, \infty)$; b) $f(x) = x^2$, $(-\infty, 0]$.

5. Niech f będzie funkcją monotoniczną i dodatnią na danym przedziale. Uzasadnić, że wtedy funkcje (-f), f^2 , 1/f też są monotoniczne. Naszkicować wykresy podanych funkcji na wskazanych przedziałach:

a)
$$f(x) = \frac{1}{1+x^4}$$
, $(-\infty, 0)$; b) $f(x) = \frac{-1}{1+2^x}$, $(-\infty, \infty)$;

c)
$$f(x) = \frac{1}{(2 + \cos x)^2}$$
, $(0, \pi)$; d) $f(x) = \frac{1}{\sqrt{x} - 2}$, $(4, \infty)$.

6. Podać wzory funkcji złożonych $f\circ f,\ g\circ f,\ f\circ g,\ g\circ g$ oraz określić ich dziedziny naturalne:

a)
$$f(x) = x - 1$$
, $g(x) = 3x + 2$; b) $f(x) = \frac{1}{x}$, $g(x) = x^2$;

c)
$$f(x) = \sqrt{x}$$
, $g(x) = x^4$; d) $f(x) = |x|$, $g(x) = \sqrt{x+1}$.

7. Uzasadnić, że podane funkcje sa różnowartościowe na wskazanych przedziałach:

a)
$$f(x) = x + x^3$$
, $(-\infty, \infty)$; b) $f(x) = \frac{1}{x}$, $(0, \infty)$.

8. Znaleźć funkcje odwrotne do funkcji:

a)
$$f(x) = \frac{x+1}{x-1}$$
; b) $f(x) = 3 - \sqrt{4-x^2}$, $(-2 \le x \le 0)$; c) $f(x) = 3^{x+1}$;

d)
$$f(x) = \log(x+3)$$
; e) $f(x) = -x^4$, $(x \le 0)$; f) $f(x) = x^2 - 4x$, $(x \le 2)$.