#### **COMP90051 Statistical Machine Learning**

Semester 2, 2015

Lecturer: Ben Rubinstein



# **Ensemble Learning**

Classifier Combination

#### To Date ...

- Thus far, we have mostly discussed individual learners and considered each of them in isolation/competition
- We know how to evaluate each classifier's performance (via accuracy, F-measure, etc.) which allows us to choose the best classifier for a dataset overall
- Would we find that errors made by the "best" classifier on a dataset are on a proper subset of the instances a worse classifier misclassified? Almost certainly NO!
- Overall-worse classifiers, might still be superior on some instances

#### **Classifier Combination**

- Classifier combination (aka. ensemble learning) constructs a set of base classifiers from a given set of training data and aggregates the outputs into a single meta-classifier
- Motivation 1: the sum of lots of weak classifiers can be at least as good as one strong classifier
- Motivation 2: the sum of a selection of strong classifiers is (usually) at least as good as the best of the base classifiers

#### **Prediction with Combined Classifiers**

- The simplest means of classification over multiple base classifiers is simple voting:
  - $\star$  for a nominal class set, run multiple base classifiers over the test data and select the class predicted by the most base classifiers (cf. k-NN)
  - \* for a continuous class set, average over the numeric predictions of our base classifiers

#### Why does Combination Work?

• Intuition: Suppose we trained 25 binary base classifiers, each with high error rate  $\epsilon=0.35$ . Assuming the base classifiers are independent and we perform classifier combination by voting, the error rate of the combined classifier is

$$\sum_{i=13}^{25} {25 \choose i} \epsilon^i (1-\epsilon)^{25-i} = 0.06$$

 More generally: Many of today's ensemble learners come with theoretical results, such as reduced variance.

#### **Approaches to Learner Combination**

- Instance manipulation: generate multiple training datasets through sampling, and train a base classifier over each
- Feature manipulation: generate multiple training datasets through different feature subsets, and train a base classifier over each
- Class label manipulation: generate multiple training datasets by manipulating the class labels in a reversible manner
- Algorithm manipulation: semi-randomly "tweak" internal parameters within a given algorithm to generate multiple base classifiers over a given dataset

# Bagging (<u>bootstrap aggregating</u>; Breiman'94)

- Intuition: the more data, the better the performance
  - $\star$  Lower variance (e.g. combination by averaging)  $\Rightarrow$  lower MSE
  - \* So how can we get more data out of a fixed training dataset?
- Method: construct "novel" datasets via sampling w replacement
  - $\star$  Generate k datasets, each size N sampled from training data w replacement
  - \* Build base classifier on each constructed dataset; combine predictions via voting

#### Bagging: Sampling Example

Original training dataset:

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Bootstrap samples:

```
\{7, 2, 6, 7, 5, 4, 8, 8, 10\} — out-of-sample 3, 9 \{1, 3, 8, 0, 3, 5, 8, 0, 1, 9\} — out-of-sample 2, 4, 6, 7 \{2, 9, 4, 2, 7, 9, 3, 0, 1, 0\} — out-of-sample 3, 5, 6, 8
```

#### Important Example: Random Forests

- Just bagged trees!
- Algorithm (params: no. trees T, no. features  $F \leq d$ )
  - 1. Initialise forest as empty
  - **2.** For t = 1 ... T
    - i. Create new bootstrap sample of training data
    - ii. Select random subset of F of the d features
    - iii. Train decision tree on bootstrap sample using the F features
    - iv. Add tree to forest
  - 3. Prediction on test instances: majority class of trees' predictions
- Works well in many practical settings

#### Putting Out-of-Sample Data to Use

- On average only 63.2% of the data will be included per training dataset
- Can use this for error estimate of ensemble
  - ★ Evaluate each base classifier on corresponding out-of-sample 36.8% data
  - \* Average these accuracies
- Estimate is unbiased!

#### **Bagging: Reflections**

- Simple method based on sampling and voting
- Possibility to parallelise computation of individual base classifiers
- Highly effective over noisy datasets
- Performance is generally significantly better than the base classifiers but never substantially worse
- Improves unstable classifiers by reducing variance (no proof), not bias

#### **Boosting**

- Intuition: focus attention of base classifiers on examples "hard to classify"
- Method: iteratively change the distribution on examples to reflect performance of the classifier on the previous iteration
  - $\star$  start with each training instance having a  $\frac{1}{N}$  probability of being included in the sample
  - $\star$  over T iterations, train a classifier and update the weight of each instance according to classifier's ability to classify it
  - \* combine the base classifiers via weighted voting

#### **Boosting: Sampling Example**

Original training dataset:



Boosting samples:

### AdaBoost (Freund & Schapire '96)

- Initialise example distribution  $D_1(i) = 1/n$
- For  $t = 1 \dots T$ :
  - 1. Train base classifier on sample w replacement from  $D_t$
  - 2. Set confidence  $\alpha_t = \frac{1}{2} \log_e \frac{1 \epsilon_t}{\epsilon_t}$  for classifier's error rate  $\epsilon_t$
  - 3. Update example distribution  $D_{t+1}(i)$  to be normalised of:  $D_t(i) \times \begin{cases} \exp(-\alpha_t) \ , & \text{if classifier correct on example } i \\ \exp(\alpha_t) \ , & \text{otherwise} \end{cases}$
- Classify as majority vote weighted by confidences  $\arg\max_y \sum_{t=1}^T \alpha_t \delta(C_t(x) = y)$

# AdaBoost (cont.)

confidence weights:



- Technicality: Reinitialise example distribution whenever  $\epsilon_t > 0.5$
- Base classifiers: often decision stumps or trees, anything "weak"

#### **Boosting: Reflections**

- Mathematically complicated but computationally cheap method based on iterative sampling and weighted voting
- More computationally expensive than bagging
- The method has guaranteed performance in the form of error bounds over the training data
- In practical applications, boosting can overfit

# Bagging vs. Boosting

| Bagging                         | Boosting                        |
|---------------------------------|---------------------------------|
| Parallel sampling               | Iterative sampling              |
| Simple voting                   | Weighted voting                 |
| Single classification algorithm | Single classification algorithm |
| Minimise variance               | Target "hard" instances         |
| Not prone to overfitting        | Prone to overfitting            |

#### **Stacking**

- Basic intuition: "smooth" errors over a range of algorithms with different biases
- Method 1: simple voting
  presupposes the classifiers have equal performance
- Method 2: train a classifier over the outputs of the base classifiers (meta-classification)
  - \* Train base- and meta-classifiers using cross-validation
  - ★ Simple meta-classifier: linear

#### **Stacking: Reflections**

- Mathematically simple but computationally expensive method
- Able to combine heterogeneous classifiers with varying performance
- With care, stacking results in as good or better results than the best of the base classifiers
- Widely seen in applied research; less interest within theoretical circles (esp. statistical learning)

#### Summary

- What is classifier combination?
- What is bagging and what is the basic thinking behind it?
- What is boosting and what is the basic thinking behind it?
- What is stacking and what is the basic thinking behind it?
- How do bagging and boosting compare?