传质边界层

孙走仁

第十五讲. 传质边界层

- 1. 浓度边界层
- 2. 传质边界层质量积分方程
- 3. 平板传质边界层计算
- 4. 圆管传质进口段
- 5. 管内层流传质

1. 浓度边界层

传质边界层的形成和特点

类似流动边界层,以 $C-C_W = 99\%$ (C_0-C_W) 为界线。

传质边界层与流 动边界层的关系

$$\frac{\delta}{\delta_c} = Sc^n = \left(\frac{v}{D_{AB}}\right)^n = \left(\frac{\mu}{\rho D_{AB}}\right)^n$$
 层流: $n = 1/3$ 湍流: $n = 0.585$

$$Sc = \frac{v}{D_{AB}} = \frac{\text{分子动量扩散}}{\text{分子质量扩散}}$$

2. 传质边界层质量积分方程

选取控制体浓度边界层,单位宽度, $\delta_c < \delta$

对定常流动传质: $N_{A1} + N_{A3} = N_{A2} + N_{A4}$

$$N_{A1} = \int_{0}^{\delta_{c}} C_{A} u_{x} dy$$

$$N_{A2} = \int_{0}^{\delta_{c}} C_{A} u_{x} dy + \frac{\partial}{\partial x} \left(\int_{0}^{\delta_{c}} C_{A} u_{x} dy \right) dx$$

$$N_{A3} = C_{A0} \left[\frac{\partial}{\partial x} \left(\int_{0}^{\delta_{c}} u_{x} dy \right) dx + u_{yw} dx \right]$$

$$N_{A4} = -D_{AB} \frac{\partial C_A}{\partial y} \bigg|_{y=0} dx + C_{AW} u_{yw} dx$$

根据质量守恒:

$$N_{\rm A1} + N_{\rm A3} = N_{\rm A2} + N_{\rm A4}$$

$$\left. \frac{\partial}{\partial x} \int_{0}^{\delta_{c}} \left(C_{A0} - C_{A} \right) u_{x} dy = D_{AB} \left. \frac{\partial C_{A}}{\partial y} \right|_{y=0} + \left(C_{A0} - C_{AW} \right) u_{yw}$$

设 $u_{yw}=0$

传质边界层质量积分方程

$$\left. \frac{\partial}{\partial x} \int_{0}^{\delta_{c}} (C_{A0} - C_{A}) u_{x} dy = D_{AB} \frac{\partial C_{A}}{\partial y} \right|_{y=0}$$

设浓度分布:

$$\frac{C_A - C_{AW}}{C_{A0} - C_{AW}} = a + b \left(\frac{y}{\delta_c}\right) + c \left(\frac{y}{\delta_c}\right)^2 + d \left(\frac{y}{\delta_c}\right)^3$$

边界条件:
$$\begin{cases} y = 0, \quad C_A = C_{AW} & y = 0, \quad \frac{\partial^2 C_A}{\partial y^2} = 0 \\ y = \delta_c, \quad C_A = C_{A0} & y = \delta_c, \quad \frac{\partial C_A}{\partial y} = 0 \end{cases}$$

求得浓度分布:
$$\frac{C_A - C_{AW}}{C_{A0} - C_{AW}} = \frac{3}{2} \left(\frac{y}{\delta_c} \right) - \frac{1}{2} \left(\frac{y}{\delta_c} \right)^3$$

将 C_A , u_x 代入传质边界层质量积分方程求得:

$$\frac{\delta_c}{\delta} = Sc^{-1/3}$$

代入:
$$\frac{\delta}{x} = 4.64 Re_x^{-1/2}$$
 得: $\frac{\delta_c}{x} = 4.64 Re_x^{-1/2} Sc^{-1/3}$

壁面 A 组分的扩散速率等于该处的对流传质速率:

$$k_{cx}^{0} A(C_{A0} - C_{AW}) = D_{AB} A \frac{\partial C_{A}}{\partial y}\bigg|_{y=0}$$

$$\therefore k_{cx}^{0} = \frac{D_{AB}}{C_{A0} - C_{AW}} \frac{\partial C_{A}}{\partial y} \bigg|_{y=0} = \frac{3}{2} \frac{D_{AB}}{\delta_{c}}$$

代入 δ_c 得局部对流传质系数:

$$k_{cx}^{0} = 0.323 \frac{D_{AB}}{x} Re_{x}^{1/2} Sc^{1/3}$$

$$sh_x = \frac{k_{cx}^0 x}{D_{AB}} = 0.323 Re_x^{1/2} Sc^{1/3}$$

平均对流传质系数:
$$k_{cL}^0 = \frac{1}{L} \int_0^L k_{cx}^0 dx = 0.646 \frac{D_{AB}}{L} Re_L^{1/2} Sc^{1/3}$$

$$sh_L = \frac{k_{cL}^0 L}{D_{AB}} = 0.646 Re_L^{1/2} Sc^{1/3}$$

湍流,设速度分布:
$$\frac{u_x}{U_0} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$
 浓度分布:
$$\frac{C_A - C_{AW}}{C_{A0} - C_{AW}} = \left(\frac{y}{\delta_c}\right)^{\frac{1}{7}}$$

类似传热边界层有:
$$\delta_c = \frac{0.376 \, x}{\sqrt[5]{Re_x}} Sc^{-0.585}$$

$$k_{cx}^{0} = 0.0292 \frac{D_{AB}}{x} Re_{x}^{4/5} Sc^{1/3}$$

$$Sh_x = 0.0292 Re_x^{4/5} Sc^{1/3}$$

$$k_{cL}^{0} = 0.0365 \frac{D_{AB}}{L} Re_{L}^{4/5} Sc^{1/3}$$

$$Sh_L = 0.0365 Re_L^{4/5} Sc^{1/3}$$

3. 平板传质边界层计算

考虑到一开始始终有一段层流

$$k_{cL}^{0} = \frac{1}{L} \left(\int_{0}^{x_{c}} k_{cx}^{0} dx + \int_{x_{c}}^{L} k_{cx}^{0} dx \right)$$

$$k_{cL}^{0} = \frac{D_{AB}}{I} (0.0365 Re_{L}^{4/5} - 866) Sc^{1/3}$$

临界雷诺数 Re_{xc}=5×10⁵

传质边界层厚度

平均对流传质系数

湍流

$$\frac{\delta_c}{\delta} = Sc^{-1/3}$$

$$\frac{\delta_c}{\mathcal{S}} = Sc^{-0.585}$$

$$k_{cL}^{0} = 0.646 \frac{D_{AB}}{L} Re_{L}^{1/2} Sc^{1/3}$$

$$k_{cL}^{0} = \frac{D_{AB}}{L} (0.0365Re_{L}^{4/5} - 866)Sc^{1/3}$$

课后自学

1.平板层流传质边界层精确解。

$$\frac{\delta_c}{x} = \frac{5.0}{\sqrt{Re_x}} Sc^{-1/3} \qquad \frac{\delta}{\delta_c} = Sc^{1/3}$$

$$Sh_L = \frac{k_{cL}^0 L}{D_{AB}} = 0.664 Re_L^{1/2} Sc^{1/3}$$

适用条件: $u_{yw} = 0$ $Re_L < 5 \times 10^5$ $Sc = 0.6 \sim 15$

课后思考

1.对比平板边界层动量、能量和质量积分方程,体会传递现象的类似性。

$$\rho \frac{\partial}{\partial x} \int_{0}^{\delta} (U_{0} - u_{x}) u_{x} dy = \tau_{w}$$

$$\frac{\partial}{\partial x} \int_{0}^{\delta_{T}} (T_{0} - T) u_{x} dy = a \frac{\partial T}{\partial y} \bigg|_{y=0}$$

$$\frac{\partial}{\partial x} \int_{0}^{\delta_{c}} (C_{A0} - C_{A}) u_{x} dy = D_{AB} \frac{\partial C_{A}}{\partial y} \bigg|_{y=0} + (C_{A0} - C_{AW}) u_{yw}$$

4. 圆管传质进口段

传质进口段长度

层流
$$\frac{L_{e,D}}{D} = 0.05 ReSc$$

湍流
$$\frac{L_{e,T}}{D} = 50$$

流动边界层发展了传质边界层发展着

流动边界层与传质边界层同时发展着

5. 管内层流传质

常见的圆管对流传质方式有两种:

①. 恒壁浓度 C_{AW} = 常数 ②. 恒壁质流 N_{AW} = 常数

截面平均浓度 C_{Ab} 随 z 的变化如下图:

截面的浓度分布 C_A 决定传质效果

恒壁质流 N_{AW} = 常数

管内层流传质过程中,速度边界层和浓度边界层均充分发展后。

柱坐标系下的对流传质微分方程

$$\frac{\partial C_A}{\partial t} + u_{Mr} \frac{\partial C_A}{\partial r} + \frac{u_{M\theta}}{r} \frac{\partial C_A}{\partial \theta} + u_{Mz} \frac{\partial C_A}{\partial z} = D_{AB} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_A}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 C_A}{\partial \theta^2} + \frac{\partial^2 C_A}{\partial z^2} \right] + R_A$$

定常:
$$\frac{\partial C_A}{\partial t} = 0$$

管内流体: $\begin{cases} u_{Mr} = 0 \\ u_{M\theta} = 0 \\ u_{Mz} \neq 0 \end{cases}$

$$\begin{cases} \frac{\partial C_A}{\partial r} \neq 0 \\ \frac{\partial C_A}{\partial \theta} = 0 \\ \frac{\partial C_A}{\partial \tau} \neq 0 \end{cases}$$

$$\begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \frac{\partial \mathbf{C}_{A}}{\partial \mathbf{r}} \neq \mathbf{0} \\ \frac{\partial \mathbf{C}_{A}}{\partial \theta} = \mathbf{0} \\ \frac{\partial \mathbf{C}_{A}}{\partial z} \neq \mathbf{0} \end{bmatrix} \begin{bmatrix} \frac{\partial^{2} \mathbf{C}_{A}}{\partial \theta^{2}} = \mathbf{0} \\ \frac{\partial^{2} \mathbf{C}_{A}}{\partial z^{2}} << \mathbf{u}_{Mz} \frac{\partial \mathbf{C}_{A}}{\partial z} \end{bmatrix}$$

无化学反应: $R_A = 0$

简化对流传质微分方程得:

$$u_{Mz} \frac{\partial C_A}{\partial z} = D_{AB} \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial C_A}{\partial r} \right)$$

管内层流:

$$u_z = 2U \left(1 - \frac{r^2}{R^2}\right)$$

恒壁质流 N_{AW} = 常数

$$\frac{\partial C_A}{\partial z} = \frac{\partial C_{AW}}{\partial z} = \frac{\partial C_{Ab}}{\partial z} = 常数$$

$$C_{Ab} = \frac{\int_0^R u_z C_A 2\pi r dr}{U\pi\pi^2}$$

可得:
$$2U\left(1-\frac{r^2}{R^2}\right)\frac{\partial C_A}{\partial z} = D_{AB}\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial C_A}{\partial r}\right)$$

$$\frac{d}{dr}\left(r\frac{dC_A}{dr}\right) = \frac{2U}{D_{AB}}\left(1 - \frac{r^2}{R^2}\right)r\frac{\partial C_A}{\partial z}$$

边界条件:
$$\begin{cases} r = 0, & \frac{dC_A}{dr} = 0 \\ r = R, & T = T_W, N_{AW} = k \frac{dC_A}{dr} \Big|_{r=R} \end{cases}$$

$$r\frac{dC_A}{dr} = \frac{2U}{D_{AB}} \frac{\partial C_A}{\partial z} \left(\frac{r^2}{2} - \frac{r^4}{4R^2} \right) + C_1$$

$$: r = 0, \quad \frac{dC_A}{dr} = 0$$

$$: C_1 = 0$$

$$\therefore C_1 = 0$$

$$\frac{dC_A}{dr} = \frac{2U}{D_{AB}} \frac{\partial C_A}{\partial z} \left(\frac{r}{2} - \frac{r^3}{4R^2} \right)$$

再积分:
$$C_A = \frac{2U}{D_{AR}} \frac{\partial C_A}{\partial z} \left(\frac{r^2}{4} - \frac{r^4}{16R^2} \right) + C_2$$

$$: r = R, \quad C_A = C_{AW}$$

$$\therefore C_2 = C_{AW} - \frac{3U}{8D_{AB}} \frac{\partial C_A}{\partial z} R^2$$

$$N_{AW}$$
 C_{AW}

浓度分布:
$$C_{AW} - C_A = \frac{3U}{8D_{AB}} \frac{\partial C_A}{\partial z} R^2 - \frac{2U}{D_{AB}} \frac{\partial C_A}{\partial z} \left(\frac{r^2}{4} - \frac{r^4}{16R^2} \right)$$

$$C_{Ab} = \frac{\int_0^R u_z C_A 2\pi r dr}{U\pi\pi^2} = C_{AW} - \frac{11}{48} \frac{UR^2}{D_{AB}} \frac{\partial C_A}{\partial z}$$

$$C_{AW} - C_{Ab} = \frac{11}{48} \frac{UR^2}{D_{AB}} \frac{\partial C_A}{\partial z}$$

在 dz 段上壁面处的扩散速率应等于流体和壁面之间的 对流传质速率。

壁面处扩散速率:
$$N_A = D_{AB} \frac{dC_A}{dr} \bigg|_{r=R} 2\pi R dz$$

对流传质速率:
$$N_A = k_c 2\pi R dz (C_{AW} - C_{Ab})$$

$$\frac{dC_A}{dr}\bigg|_{r=R} = \frac{UR}{2D_{AB}} \frac{\partial C_A}{\partial z} \qquad C_{AW} - C_{Ab} = \frac{11}{48} \frac{UR^2}{D_{AB}} \frac{\partial C_A}{\partial z}$$

$$k_c(C_{AW}-C_{Ab})=D_{AB}\frac{dC_A}{dr}\bigg|_{r=R}$$

$$\frac{k_c}{D_{AB}} = \frac{\frac{dC_A}{dr}\Big|_{r=R}}{C_{AW} - C_{Ab}} = \frac{\frac{UR}{2D_{AB}} \frac{\partial C_A}{\partial z}}{\frac{11}{48} \frac{UR^2}{D_{AB}} \frac{\partial C_A}{\partial z}} = \frac{48}{11 \times 2R}$$

定义舍伍德数:
$$Sh = \frac{k_c D}{D_{AB}} = \frac{48}{11} = 4.36$$

恒 N_{AW}: Sh=4.36

对圆管层流恒壁浓度传质,类似恒壁温传热,可得结果为:

Sh = 3.66

问题探讨

圆管层流传质 细管好,还是粗管好?