Development of an Integrated Computing Platform for Measuring, **Predicting and Analyzing Profile-specific Fixity of Railway Tracks**

Qian Fu, John M. Easton and Michael P. N. Burrow School of Engineering, University of Birmingham, Birmingham B15 2TT, United Kingdom

INTRODUCTION

What is "track fixity"?

Track fixity refers to the degree to which the position of a railway track remains unchanged over time; it is a key measure used to calculate clearances between rolling stock and structures.

Contextual background

- The UK's current measurement of track fixity lacks granularity.
- There is a lack of predictive tools that can provide more detailed information about the movement of tracks through a continuously updated, ongoing automated process.

OBJECTIVES

- Propose an effective metric and method for calculating track movements using LiDAR (Laser Imaging, Detection, and Ranging) data.
- Create an integrated data model using a machine learning algorithm (e.g. a random forest model), trained on calculated track movements and a selection of factors influencing track movement.
- Verify the key factors that cause track movements.

METHODOLOGY

Calculation of track movement

Calculating the displacement of rail heads in terms of both rate and direction.

Data integration

Creating a comprehensive database for factors influencing track fixity.

Predicting track movements

Developing and applying a machine learning model to predict and analyze track fixity.

A CASE-STUDY EXAMPLE

LiDAR data in a 100m×100m grid Point cloud for the railway tracks in the grid grid Modelling results (based on a random forest model)

					•	
	≤ -4.45	(-4.45, -3.5]	Prediction (mm) (-3.5, -2.5]	(-2.5, 0.0]	> 0.0	
≤ -4.45 -	. 171	159	17	6	1	
(-4.45, -3.5] -	- 42	225	60	11	1	
(-4.45, -3.5] - graph of the distribution of	- 22	156	124	42	4	
(-2.5, 0.0] -	- 10	38	63	134	12	
> 0.0 -	4	1	1	30	25	

225	Factors affecting track fixity	Relative importance
200	Curvature	0.3887
175	Cant	0.3725
150	Maximum speed	0.2016
125 😭	Presence of underline bridges	0.0095
Frequency 100	Presence of over-line bridges	0.0073
	Maximum axle load	0.0067
75	Presence of retaining walls	0.0060
50	Presence of tunnels	0.0058
25	Presence of stations	0.0019

The movement of every 1-m

length of the rail head in the

FINDINGS

- Curvature and cant proved to be the most important factors among those considered in the model. Axle load and train speed are also expected to significantly impact track fixity.
- In terms of the presence of structures,
 - Track fixity of ballasted track can be more vulnerable than fixed structures such as retaining walls and tunnels.
 - Track sections within **station** areas are much less likely to suffer from fixity issues due to slower train speeds and the absence of track curvature.

CONCLUSIONS

We propose and demonstrate an innovative approach to measuring, predicting and analyzing profile-specific track fixity over a given period.

We have developed the most comprehensive (prototype) integrated computing model to date for track fixity in the context of the UK's railway system.

REFERENCE

Fu, Q., Easton, J. M. & Burrow, M. P. N. (2024). Development of an integrated computing platform for measuring, predicting and analyzing profile-specific fixity of railway tracks. Transportation Research Record, 2678(6), 1-13. doi:10.1177/0361198123119152.

