Statusbesprechung zum Verbundprojekt:

"Einsatz der Mikromechanik zur Herstellung frequenzanaloger Sensoren"

BIZERBA-Werke Wilhelm-Kraut GmbH & Co. KG D-7460 Balingen

4. Juli 1990

Vortrag:

"Finite-Elemente Berechnungen an Quarz-Strukturen"

Th.Fabula

Hahn-Schickard Institut für Mikro- und Informationstechnik

Finite-Elemente Berechnungen an Quarz-Strukturen

- Einleitung
- Dynamische FEM-Rechnungen
 - * Modalanalyse
 - * Kraft-Frequenz-Kennlinie
 - * resonante Anregung
- Untersuchungen an Doppelstimmgabeln
 - * Strukturoptimierung (statisch, dynamisch)
 - * parametrisierte DETF
 - * Antwortspektrum infolge Anregung
- Alternative Sensorstrukturen
 - * 'Single-Beam' Strukturen
 - * 'Multistring'-Anordnungen
- Ergebnisse der FEM-Berechnungen
- Zusammenfassung und Ausblick

Einleitung

Ein resonanter Sensor wird charakterisiert durch:

1.) mechanische Resonatoreigenschaften

2.) Kopplung zwischen Meßgröße und Resonator

$$7 = \frac{1}{f_0} \frac{\partial f}{\partial f_M}$$
 $\overline{f}_M = \overline{f} (Meßgröße)$

- 3.) Schwingungsanregung (Energieeinkopplung)
 - piezoelektrisch (elektromechan. Kopplung)
 - elektrostatisch (Elektrodenform)
 - thermisch (Verlustströme, Zeitkonstanten)
- 4.) Güte des Abfragesystems
 - minimal nachweisbare Meßgrößenänderung (Frequenz-, Amplitudenauflösung)
 - Schnelligkeit der Abfrage
 - Störunempfindlichkeit (Modenkoppl., EMV)

Dynamische FEM-Berechnungen

grundlegende Gleichung aller dyn. Berechnungen:

$$[M]\{ii\} + [C]\{ii\} + [k]\{u\} = \{F(t)\}$$

1.) Modalanalyse: C = 0, F(t) = c

Berechnung von: Eigenfrequenzen $\omega_{\dot{c}}$

Steifigkeitsänderung infolge Vorspannung S

$$[M]\{iij + ([K] + [s])\{aj = 0\}$$

3.) resonante Anregung:

- harmonische Last $\{F(t)\} = \{F_0\} e^{i\omega t}$
 - Dämpfungsmatrix D wird auf die Masse M und Steifigkeit K bezogen:

Anregung durch f(t) liefert das Frequenzverhalten der Struktur (Antwortspektrum)

Berechnet werden: Amplitude, Phase $A(\omega)$, $\in (\omega)$ bzw. Real-, Imaginärteil $Re(\omega)$, $\exists \omega \in (\omega)$

System mit einem Freiheitsgrad (Single DOF)

System mit 3 Freiheitsgraden (Multiple DOF)

Strukturoptimierung an Doppelstimmgabeln

t=1.0 um .C=5.2 mm STRUOPT1 grobe struktur W= 0.24 mm STRUOPT2 mit Verjüngüng STRUOPT3 grobe ETA-Strukt STRUOPT4

* ETA - Geometrie : DETF2

Antwortspektrum infolge harmonischer Anregung

Antwortspektrum infolge harmonischer Anregung

Anregung: harmonische Last an beiden Mittelknoten (Kn:781, Kn:88) der Doppelstimmgabel:

- Kraft:
$$F_v = \pm 0.001 [N]$$

Strukturverhalten bei Resonanzfrequenz:

- Frequenz: $f_{Y-A1} = 47.5 \text{ [kHz]}$

- Auslenkung: $u_{max} = 0.9 [\mu m]$

- Spannung: $S_{ave} = 9.2 [N/mm^2]$

Spannungen S_x [N/mm²] bei $F_x = 5N$

Spannungen S_y [N/mm²] bei $F_x = 5N$

Parametrisierte Doppelstimmgabel

- Beschreibung durch 10 Parameter
- Optimierung in Bezug auf folgende Eigenschaften
- 1.) Grundresonanzfrequenz: $f_0 \sim \frac{\pm}{e^2} \sqrt{\frac{\epsilon}{s}}$
- 2.) Kraftempfindlichkeit: $f = f_0 \sqrt{1 + s_F}$

Entwl.:
$$f(F) = f_0 + a_1 F + a_2 F^2 + a_3 F^3 + ...$$

$$M = q_1 = \frac{1}{f_0} \frac{\Delta f}{\Delta F} = 0.148 \stackrel{!}{=} \left(\frac{\ell}{W}\right)^2 \frac{F}{wt} (SB)$$

Abhängigkeit der Resonanzfrequenz von der Stimmgabellänge

Abhängigkeit der Kraftempfindlichkeit von der Stimmgabelbreite

'Single-Beam' Sensorstrukturen

Verteilung der Eigenfrequenzen

Schwinger in 'Multistring'-Anordnung

Eigenformen des D3-Schwingers

Eleu: 895 kust: 2974 Ckthe Ckthe Mode ELSi : 0.2 mm MDOF: 300 1.57 47.1 1. 1.62 48.5 2. 1.60 49.4 3. 4. 0.01 121.2 0.75 130.9 5.

Eigenformen des D3-STRU-Schwingers

Eigenformen des D4-Schwingers

Eigenformen des D5-Schwingers

Ergebnisse der FEM-Berechnungen

'Design-Regeln':

- Festlegen des Sensor-Arbeitspunktes durch geeignete Wahl der Länge I, Weite w, Dicke t
- resonante Struktur sollte <u>entweder</u> unter Zug-<u>oder</u> Druckspannung stehen
- Kraft-/Druckeinleitung muß senkrecht zur Schwingungsrichtung erfolgen
- statische Strukturoptimierung, zur Reduzierung intern auftretender Spannungen:
 - * strukturbegrenzende Winkel sollten größergleich 90° sein
 - * Ecken durch Polygonzüge 'entschärfen'
- dynamische Strukturoptimierung:
 - * Benutzung 'antisymmetrischer' Moden
 - * Erhöhung der Güte durch Entkopplung
 - * Vermeidung von Modenkopplung
 - * Unimodalität infolge Strukturparameterwahl
 - * einwandfreie Halterung des Resonators

- definierte, uniaxiale Krafteinleitung (Vermeidung von Schereffekten) zur gleichmäßigen Belastung der Stimmgabelstege
- gleichzeitige Erhöhung des Produktes aus Güte Q und Kraftempfindlichkeit η:
 - * Verwendung niederfrequenter Moden
 - * Minimierung der äußeren Dämpfung (Evakuierung des schwingenden Bauteils)
 - * Unterdrückung höherer harmonischer durch geeignete Anregung (Elektrodenformen)
- Kompromiß zwischen Auflösung (Empfindlichkeit) und maximaler Belastung (Arbeitsbereich).
- Festlegung des maximalen Arbeitsbereiches durch Anforderungen an Überlast (Bruchsicherheit):

Bruchspannung(Quarz) : ca. 100 [N/mm²]

Bruchspannung(Si) : ca. 200-300 [N/mm²]

 Temperaturkompensation durch geeignete Wahl des Kristallschnitts (Quarz)

Zusammenfassung 'Single-Beam'

Vorteile:

- + günstigere Patentlage (Quarz) als DETF
- + höchste Empfindlichkeit aller Geometrien
- + unproblematische Kraftbeaufschlagung

Nachteile:

- Schwingungsentkopplung problematisch, erfordert zusätzliche Isolationstrukturen
- 'spurious modes' sind schwerer zu unterdrücken
- Bruchempfindlichkeit hoch (Verwendung von Verstärkungsstegen)

Zusammenfassung Doppelstimmgabeln

Vorteile:

- + hohe Güte bei antisymmetrischen Moden
- + höhere Kraftempfindlichkeit als bei 'Multistring'-Anordnung

Nachteile:

- Patentlage (Quarz) fast aussichtslos
- Kraftbeaufschlagung kritisch, wegen der Gleichheit der Stimmgabelbelastung

Zusammenfassung 'Multistring'

Vorteile:

- + günstig wegen Patentlage (Quarz)
- + hoher maximaler Arbeitsbereich

Nachteile:

- Kraftbeaufschlagung extrem kritisch (Gleichheit)
- erhöhte Gefahr von Modenkopplung durch komplexe Eigenformen
- niedrigere Empfindlichkeit

Ausblick

- Berechnung verschiedener Stegquerschnitte
- Piezoelektrische resonante Anregung
- Elektrodenformoptimierung
- thermische Anregung von Silizium-Strukturen
- Überlegungen zu neuartigen Sensorstrukturen
- Modellierung von Mehrschichtsystemen:
 - * Si-ZnO
 - * Si-Si₃N₄
 - * Si-Cr/Ni
- Modellierung temperaturabhängiger Effekte
- Variierung des Quarz-Kristallschnitts
- Optimierung der Überlasteigenschaften (Schock)