P117 - Úvod do počítačových sítí

RNDr. Jaroslav PELIKÁN, Dr.

katedra informa**ğ**ních technologií Fakulta informatiky Masarykovy univerzity Botanická 68a, 602 00 BRNO

> : +420 - 5 - 41 512 340 E-mail: pelikan@fi.muni.cz http://www.fi.muni.cz/usr/pelikan

Osnova (1)

- Počítačové sítě
 - základní pojmy, rozd¥lení, OS
- Topologie počítačových sítí
- Model OSI
- Sítě typu Arcnet, Token-Ring, Ethernet
 - princip komunikace
 - přenosová média používaná v počítačových sítích

Osnova (2)

- Lokální počítačové sítě s OS
 - Novell NetWare
 - MS-Windows NT, 2000, 9x
- Počítačová síť Internet
 - IP adresa
 - Typy TCP / IP sítí
- Základní příkazy operačního systému UNIX

Osnova (3)

- Služby sítě Internet
 - Telnet (klient UNIX, DOS, Windows)
 - Ftp (klient UNIX, DOS, Windows)
 - Vyhledávání v ftp parker, archie
 - E-mail (elm, mozila, exchange, pop daemon)
 - Posílání netextových dokumenta pomocí e-mailu
 - Netfind
 - Gopher
 - Usenet news

Osnova (4)

- <u>W</u>orld <u>W</u>ide <u>W</u>eb WWW (Netscape, Internet Explorer)
- Vyhledávání v prostředí WWW
- Úvod do jazyka HTML
 - možnosti rozší ení Java-Script, Java-Applet
- Zajímavosti užite**č**né adresy

Literatura

- Hejna, Ladislav: Lokální počítačové sítě, Praha: Grada 1994
- Schatt, Stan: Počítačové sítě LAN od A až do Z, Praha: Grada 1994
- Thomas, Robert M.: Lokální počítačové sítě, Praha: Computer Press 1996
- Feibel, Wemer: Encyklopedie počítačových sítí, Praha: Computer Press 1996

Základní pojmy (1)

- Server:
 - v obecném případě představuje entitu, která poskytuje nějaký druh síťové služby
 - může se jednat o hardware i software
 - hardware:
 - počítač zapojený do počítačové sítě, který poskytuje své služby ostatním počítačům - pracovním stanicím
 - např.: diskové kapacity, výpořetní kapacity, operační paměř, organizuje tisk na tiskárnách apod.

Základní pojmy (2)

- podle služeb, které poskytuje, je možné rozlišit některé základní typy serverů:
 - souborový (file server): řídí přístup k souborovým a diskovým zdrojům na síti, zajišťuje bezpečnost (přístupová práva) a synchronizaci (zamykání souborů) sítě
 - tiskový (print server): poskytuje přístup k sří ovým tiskárnám. Provozuje programy nutné pro vytváření a řízení tiskových font
 - aplikační (application server): provozuje aplikace určené pro
 pracovní stanice. Na pracovní stanici běží tzv. klientské
 aplikace vyžadující přenos datových souboní ze/na server(u)
 Server aplikace běží ve dvou částech (font end a back end)

Základní pojmy (3)

- komunikační (communication server): poskytuje přístup modemom (modem server), telefonním linkám, propojuje dvša více sítí
- databázový (database server): poskytuje přístup databázovým záznamím pro programy b žící na jiných po tračch
- vätšinou je vyžadováno, aby server disponoval kvalitním a výkonným technickým vybavením
- software:
 - program pracující nějakém počítači, který zprostředkovává určité sířové služby
 - nap#: DNS (Domain Name Server), FTP server, WWW server, mail server

Základní pojmy (4)

- Paket (packet):
 - skupina bitů s pevně definovaným formátem

Základní pojmy (5)

karta umožňující připojení počítače do

• ATM (<u>A</u>synchronous <u>T</u>ranfer <u>M</u>ode)

určuje do jakého typu sítě může být počítač

• Sít ová karta (sít ový adaptér):

počítačové sítě

p**ř**ipojen

· Ethernet

Token-RingArcnet

- jsou jimi přenášeny informace v síti

Základní pojmy (3)

- Dedicated server (vyhrazený server):
 - server sloužící pouze pro správu sítě
 - nemůže být využíván jako pracovní stanice
- Non-dedicated server (nevyhrazený server):
 - server, který může sloužit zároveň pro správu sítě i jak o pracovní stanice
 - nedoporučuje se pro větší sítě

Základní pojmy (3)

- Client (workstation, pracovní stanice):
 - počítač zapojený v počítačové sítí sloužící k práci uživatele
 - jeho prostřednictvím jsou uživateli dostupné služby počítačové sítě
 - pojem client rovněž může značit aplikaci, která vytváří požadavky na další aplikace, služby, informace, nebo na přístup k prostředkům

Opera**č**ní systémy (1)

- MS-DOS:
 - prakticky žádná podpora sítí
 - existuje programové vybavení dovolující připojit počítač s MS-DOSem do počítačové sítě:
 - Lantastic
 - NetWare Lite
 - ovladače pro připojení k Novell NetWare
 - sofware pro připojení k systému UNIX

Základní pojmy (4)

- Administrátor (supervisor) správce sítě:
 - člověk zodpovědný za chod sítě
 - má v síti neomezená práva
- Síťový protokol:
 - množina pravidel v síťové komunikaci, která určuje jak spolu počítače komunikují
 - smluvená množina dat, kterou je schopen jak odesílatel, tak příjemce zpracovat

Operační systémy (2)

- MS-Windows 3.1:
 - stejn**ĕ** jako DOS
- MS-Windows 3.11 for Workgroups:
 - podpora sití peer to peer na protokolu NetBEUI, která dovoluje
 - sdílení adresářů (disků)
 - sdílení tiskáren

Operační systémy (3)

- MS-Windows 95 (98):
 - podpora sítí peer to peer (NetBEUI)
 - podpora pro připojení k Novell NetWare
 - podpora pro připojení k Windows NT Serveru
 - podpora protokolu TCP/IP pro připojení k UNIX serveru
- MS Windows NT:
 - podobn**ĕ**jako Windows 95

Rozdělení počítačových sítí (2)

- WAN (Wide Area Network):
 - rozsah nad 1 km
 - spojuje jednotlivé LAN
 - obsahuje tisíce počítaču
 - spravovaná na sobě nezávislými skupinami administrátorů
 - příklad: Internet

Operační systémy (4)

- Novell NetWare:
 - OS pro sít**ë** client server
 - poskytuje prostředky pro práci:
 - · file serveru
 - print serveru
 - · database serveru
 - · communication serveru
 - podpora TCP/IP protokolu

Opera**č**ní systémy (5)

- možno připojit stanice pracující s OS:
 - MS DOS
 - MS Windows 3.1 (3.11, 9x, NT, 2000)
 - · Apple Mac System
 - OS/2
- UNIX:
 - podpora TCP/IP protokolu
 - v závislosti na verzi podpora i jiných protokolů

Rozdělení počítačových sítí (3)

- Podle přístupu počítače do sítě:
 - peer to peer:
 - vhodné pro sítě s menším počtem počítačů (do 10)
 - žádný počítač není stále server a žádný počítač není stále client
 - každý počítač může být v jistém okamžiku serverem i clientem
 - podporovány OS MS-Windows 3.11 (9x, NT, 2000), Lantastic, NetWare Lite

Rozdělení počítačových sítí (4)

- Client Server:
 - pevně je určeno, které počítače jsou servery a které jsou pracovní stanice
 - vhodné pro sítě s větším počtem počítačů (nad 10)
 - podporovány OS MS-Windows NT, Novell NetWare, UNIX

Rozdělení počítačových sítí (1)

- Podle rozsahu:
 - LAN (Local Area Network):
 - · rozsah cca do 1 km
 - většinou síť v rámci jedné organizace
 - obsahuje rádov desítky až stovky počítačů
 - spravovaná jedním administrátorem či skupinou vzájemně spolupracujících administrátorů
 - příklad: počítačová síř ve škole

Rozdělení počítačových sítí (5)

- Podle protokolu:
 - TCP/IP: UNIX, Novell, Windows 9x (NT)
 - IPX/SPX: Novell, Windows 9x (NT), UNIX
 - NetBEUI: Windows 9x (NT)
 - Apple Talk: Apple Mac System
 - DEC NET: sít**ë** DEC
 - UUCP: UNIX

Rozdělení počítačových sítí (6)

- Podle rychlosti přenosu dat:
 - do 256 kb/s:
 - první sítě s počítači Apple MacIntosh
 - do 10 Mb/s:
 - sítě pro kancelářské aplikace
 - Ethernet, Arcnet, Token-Ring
 - nad 10 Mb/s
 - průmyslové aplikce
 - Fast Ethernet (100 Mb/s)
 - ATM (155.52 Mb/s, plánováno až 2.488 Gb/s)

Topologie sbernice (1)

Rozdělení počítačových sítí (7)

- Komunikace mezi počítači:
 - přepojování kanálů:
 - spočívá ve vytvoření fyzického datového spoje mezi účastnickými počítači nebo uživateli terminálu
 - vytvoł se cesta mezi koncovými uzly na celou dobu spojení
 - data mezi dvěma počítači se přenášejí v celku
 - v okamžiku plenosu dat nemůže k síti plistoupit nikdo tletí
 - · vhodné pro telefonní linky
 - pFiklad: protokol UUCP

Topologie sbernice (2)

- všechny komponenty (uzly) jsou připojeny na jedno společné médium - sběrnici
- každá stanice má přímý přístup ke sběrnici (tzn. nikoliv přes jinou stanici)
- připojení stanice je realizováno pomocí odboček, což umožňuje snadné připojování (odpojování) stanice k (od) síti (sítě), aniž by byla ovlivněna správná činnost sběrnice

Rozdělení počítačových sítí (8)

- packet-switched (sítě s přepínáním packetů):
 - data se přenášejí v malých blocích packetech
 - je možné, aby n¥kolik paket¹ cestovalo ke svému cíli soub¥žn¥
 - vyslané pakety nemusí používat stejnou datovou cestu a nemusí dorazit k cíli v poładí, ve kterém byly vyslány
 - v době přenosu mezi dvěma počítači mohou k síti přistupovat jiní uživatelé

Topologie sbernice (3)

- zpráva vyslaná z daného uzlu se šíří ke koncovým uzlům sběrnice
- výpadek stanice neohrozí funkci sítě
- přerušení sběrnice způsobí výpadek sítě
- je nutné zakončit oba konce sítě zakončovacími odpory - terminátory. Tyto odpory provádí impedanční přizpůsobení, čímž se eliminují nežádoucí odrazy signálu na koncích vedení (sběrnice).

Topologie sítí

- fyzická:
 - je dána způsobem fyzického propojení všech komponent sítě (pracovních stanic, serverů a speciálních komunikačních zařízení)
 - definuje kabelové rozložení sítě
- logická:
 - definuje logické rozložení sítě
 - specifikuje jakým způsobem mezi sebou komunikují prvky v síti, a jak se přenášejí informace
 - nemusí být shodná s fyzickou topologií

Topologie sb**ě**rnice (4)

- jednoduchá neobsahuje aktivní prvky
- levná
- není p**ř**íliš spolehlivá
- typickým příkladem je síť Ethernet budovaná pomocí tenkého koaxiálního kabelu

Topologie kruh (1)

Topologie kruh (2)

- každý počítač je propojen přímo s následujícím a s předchozím počítačem
- kabelové linky jsou většinou uspořádány tak, že po jedné lince počítač signál posílá a po druhé přijímá
- data se tímto způsobem pohybují v kruhu od odesílatele postupně přes všechny následníky až k příjemci

Topologie kruh (3)

- každý počítač je připojen k síti aktivně přijatá data určená jinému převezme a pošle
 dál. Při tom rovněž dochází k elektrické i
 logické regeneraci signálu.
- narozdíl od sběrnicové topologie (s obousměrným šířením signálu), existuje v kruhové síti řízený jednosměrný tok dat
- výpadek libovolné stanice způsobí (u klasické kruhové sítě) havárii celé sítě

Topologie kruh (4)

- klasická forma této sítě se příliš často v praxi nepoužívá, ale používají se speciální techniky kabelového propojení, které zabrání výpadku sítě při poruše (nebo odpojení) kterékoliv ze síťových stanic nebo při přerušení kabelu (Star-Wired Ring)
- zprávy od vysílající stanice prochází postupně k nejbližšímu sousedu (směr je dán způsobem propojení) v kruhu, dokud nedorazí k adresované stanici

Topologie kruh (5)

- zprávy je nutné ze sítě odstraňovat, aby neobíhaly do nekonečna (provádí přijímač, vysílač nebo monitorovací stanice)
- řízení přístupu k médiu bývá realizováno postupným předáváním speciální zprávy token (pešek), jejíž příjemce získá právo vysílat

Topologie hvězda (1)

Topologie hvězda (2)

- jedna ze stanic je středem sítě (tzv. centrální uzel) a ostatní jsou k ní paralelně připojeny
- veškerá komunikace pak probíhá přes tento centrální uzel (řídící stanice, hub)
- jedná se o nejstarší topologii počítačových sítí (používala se pro připojování terminálů k centrálnímu počítači)

Topologie hvězda (3)

- vysoké náklady vzhledem k drahému řídícímu počítači, který je nutné pořizovat s velkou technickou rezervou
- výpadek stanice ani kabelu neohrozí funkci sítě
- vypadne-li centrální stanice, havaruje celá sít
- neumožňuje efektivně zapojit více rovnoprávných serverů

fimuni.web3.cz

Topologie hvězda (4)

- u dnešních LAN se častěji používá v roli centrálního uzlu některý druh propojovacího zařízení (např. rozbočovač - hub) a koncové uzly jsou tvořeny pracovními stanicemi a servery
- je-li uprostřed hub je signál vysílaný kterýmkoliv počítačem šířen po celé síti (podobně jako u sběrnice)

Topologie úplná síť (1)

Topologie strom (1)

Topologie úplná sí**t** (2)

- každá stanice je propojena se všemi ostatními stanicemi
- vyžaduje velký počet kabelů
- vykazuje velkou spolehlivost
- špatně rozšiřitelná
- · málo používaná

Topologie strom (2)

- jedná se o rozvinutí principů sběrnicové topologie (distribuovaná sběrnice)
- jejím středem je řídící počítač označovaný jako kořen
- pro přenos zpráv se využívají většinou u každé stanice dva kanály:
 - pro přenos od kořene k dané stanici
 - pro přenos od stanice ke kořeni

Topologie backbone (páteřní) (1)

Topologie strom (3)

- komunikace je vedena vždy přes kořen
- pokud dojde k havárii kořene, znamená to výpadek celé sítě
- podobně výpadek uzlu způsobí výpadek celého podstromu sítě
- snadno rozšiřitelná (přidání další větve)
- tento typ slouží např. pro poskytování služeb kabelové televize

Topologie backbone (2)

- jako nosný systém používá síť s vysokou rychlostí přenosu, na níž jsou připojeny jednotlivé LAN (s libovolnou topologií)
- používaná zejména pro WAN
- spojuje jednotlivé sítě LAN

Topologie backbone (3)

- pokud probíhá komunikace uvnitř některé LAN neprobíhá komunikace přes páteř
- backbone se dostane ke slovu až v okamžiku, kdy je nutné uskutečnit datový přenos z jedné sítě LAN do druhé

Přenosová média (1)

- Fyzická média, kterými jsou přenášena data, hlasový signál nebo jiný typ signálu ke svému cíli
- Mezi nejběžnější přenosová média patří:
 - elektrické vodiče (obvykle měděné):
 - koaxiální kabel (silný, tenký)
 - · kroucená dvojlinka
 - optická vlákna
 - vzduch (bezdrátový přenos)

Přenosová média (2)

- Základní charakteristiky každého přenosového média jsou:
 - odolnost proti vnějšímu elektromagnetickému rušení (Electrical Magnetic Interference - EMI)
 - náhodná energie z vnějších zdrojů, která může interferovat se signály přenášenými měděným kabelem
 - zdrojem mohou být např. motory, lékařské přístroje, fluorescenční osvětlení, mobilní telefony, atmosférická elektřina apod.

Přenosová média (3)

– ší**k**a pásma:

- vztahuje se k množství dat, které lze přenést kabelem
- udává se:
 - b/s (bps): pro digitální signály
 - Hz: pro analogové signály

útlum

- · ztráta síly signálu na médiu se vzdáleností
- udává se v dB (decibel) na délku média (100 m, 1 km)
- lze vypočítat dle vztahů:

 $D = 20 \log \left(U_{I}/U_{2} \right)$

 $D = 10 \log (P_{I}/P_2)$

• 6 dB (3 dB) značí 50% útlum

Přenosová média (4)

- impedance:

- velikost odporu vodiče střídavému elektrickému proudu, která pomáhá určit útlumové vlastnosti vodiče
- značí se Z a jednotkou je Ohm:

– přeslech mezi vodiči:

- · rušení signálem ze sousedního vedení
- udává se v dB
- řím vyšší je hodnota, tím nižší je toto vzájemné rušení
- cena

Koaxiální kabel (1)

Koaxiální kabel (2)

- Nazývaný též jako coax (<u>Common Axis</u>)
- Vykazuje poměrně dobré parametry při frekvencích pod 1 GHz
- Skládá se z následujících vrstev:
 - nosný vodič (signálový vodič):
 - vodivý drát, vyrobený většinou z mědi
 - může být buď plný nebo splétaný
 - jeho průměr (popř. počet vláken) je jedním z faktorů ovlivňující útlum

Koaxiální kabel (3)

- izolace:

- izolační vrstva vyrobená z dielektrika, které je umístěno kolem nosného vodiče
- jako dielektrikum se používá upravený polyethylen nebo teflon

– fóliové stínění:

- stínění z tenké fólie kolem dielektrika
- obvykle složeno z hliníku
- toto stínění nemají všechny koaxiální kabely

Koaxiální kabel (4)

– splétané stínění:

- splétaný vodič (fólie) vyrobený z mědi nebo hliníku
- může sloužit nosnému vodiči jako zemění
- spolu s izolací a fóliovým stínaním chrání nosný vodiš pred EMI

- plášť:

- vnější kryt, který může být buď typu:
 - plenum (žáruvzdorný): vyroben z teflonu nebo kynaru
 - nonplenum: vyroben z polyethylenu nebo PVC

Koaxiální kabel (5)

- Funkčně může být koaxiální kabel rozdělen na varianty pracující v:
 - základním pásmu (baseband):
 - má pouze jeden kanál, kterým může být přenesena pouze jediná zpráva
 - přeloženém pásmu (broadband):
 - může přenášet několik analogových signálů (na různých frekvencích) současně

Koaxiální kabel (6)

- Výhody koaxiálního kabelu:
 - velká odolnost proti EMI
 - relativn**ĕ** snadná instalace
 - přiměřená cena
 - může sloužit i k přenosu hlasu a videa (v přeloženém pásmu)
- Nevýhody koaxiálního kabelu:
 - náchylný k poško zení
 - nelze použít v sítích Token-Ring

Koaxiální kabel (7)

- Typy koaxiálního kabelu:
 - RG-6: Z = 75 \(\Omega\) používá se jako pomocný kabel pro CATV i TV
 - RG-8: $Z = 50 \Omega$, používá se pro tzv. tlustý (thick) Ethernet
 - RG-11: Z = 75 Ω, používá se pro hlavní rozvody CATV i TV
 - RG-58: $Z = 50 \Omega$, používá se pro tzv. tenký (thin) Ethernet

Koaxiální kabel (8)

- RG-59: Z = 93 Ω používá se pro Arcnet
- RG-62: Z = 93 \(\Omega\), používá se pro Arcnet a zapojení terminál \(\Omega\) v IBM SNA sítích
- Rozdělení koaxiálního kabelu podle průměru:
 - tenký (thin): Ø = 3/16", nepovoluje pomocné (drop) kabely
 - tlustý (silný, thick): $\varnothing = 3/8$ "

Kroucená dvojlinka (1)

Kroucená dvojlinka (2)

- Označovaná též jako twisted pair
- Může přenášet data s rychlostí až do 100 Mb/s
- Dva vodiče jsou vždy vzájemně kolem sebe obtočeny (minimalizuje přeslechy, EMI a ztráty způsobené kapacitním odporem, tj. tendencí vodiče uchovávat elektrický náboj)
- Signál je přenášen jako rozdíl mezi těmito dvěma signály (způsobuje menší náchylnost k rušení a útlumu)

Kroucená dvojlinka (3)

- Vyrábí se ve dvou základních variantách:
 - STP (Shielded Twisted Pair) stínĕná
 - UTP (Unshielded Twisted Pair) nestín**ě**ná
- Skládá se z následujících částí:
 - vodivé dráty:
 - signálové vodiše, které jsou vždy v párech vzájemnš kolem sebe obtošeny
 - jsou obvykle vyrobeny z mědi

Kroucená dvojlinka (4)

- · mohou být plné nebo splétané
- počet párů je různý (2, 4, 6, 8, 25, 50, 100), pro sírové aplikace nejčastěji 2 nebo 4 páry
- stín**ě**ní (pouze u STP):
 - fóliové stínění kolem každého páru vodi
 - splétané (főliové) stínaní kolem všech pára
- plášť:
 - vnější kryt vyrobený z PVC (nonplenum) nebo z teflonu popř. kynaru (plenum)

Kroucená dvojlinka (5)

- Impedance je u všech typ**ů** $100 \pm 15 \Omega$
- Výhody kroucené dvojlinky:
 - snadné připojování jednotlivých zařízení
 - možno využít i pro telefonní (popř. jiné) rozvody
 - STP má velmi dobrou ochranu proti EMI
 - snadná instalace
 - nízká cena

Kroucená dvojlinka (6)

- Nevýhody kroucené dvojlinky:
 - STP je silný a obtížně se s ním pracuje
 - UTP je citliv**ě**jší na šum než koaxiální kabel
 - UTP signály nemohou bez regenerace (zesílení a čištění) být přenášeny na větší vzdálenost (ve srovnání s jinými typy kabelů)

Optický kabel (1)

Optický kabel (2)

- Označovaný též jako fiber optic
- Médium, které přenáší signály prostřednictvím světla (nikoliv elektřiny)
- Vysílač převádí elektrický signál na světelný a vysílá jej do vlákna. Obsahuje světelný zdroj:
 - Laser
 - LED (<u>Light Emitting Diode</u>)

Optický kabel (3)

 Je nezbytné, aby při vysílání byla dodržena tzv. numerická apertura (NA) - míra schopnosti vlákna shromažďovat světlo. Je určena max. úhlem, pod kterým světlo dopadající na vlákno skrze něj projde

$$NA = \sin \phi$$

- Přijímač se potom skládá z:
 - fotodektoru: převádí optický signál do elektrického tvaru

Optický kabel (4)

- zesilovač: zesiluje signál a převádí jej do tvaru připraveného pro zpracování
- procesor: reprodukuje původní signál
- Liší se ve svých rozměrech, složení a také vlnových délkách světla, které mohou přenášet
- Přenosy nejsou náchylné na EMI
- Světelný signál podléhá pouze minimálnímu odporu

Optický kabel (5)

- Optické kabely mohou být použity pro přenos na velkou vzdálenost cca 100 km bez nutnosti regenerace (u měděných vodičů je nutná regenerace po cca 1.9 km)
- Informace je možné přenášet rychlostí více než 10 Gb/s
- Vyráběn většinou v páru každé vlákno pro komunikaci v jednom směru

Optický kabel (6)

- Optický kabel se skládá z následujících částí:
 - jádro:
 - složeno z jednoho nebo více skleněných popř.
 plastických vláken, kterými prochází světelný signál
 - plastická vlákna jsou jednodušší na výrobu, ale je možné je použít pouze na kratší vzdálenosti
 - průměr jádra se pohybuje od 2 do několika set mikronu

Optický kabel (7)

– plášť světlovodu:

- vyroben jako jedna část společnž s jádrem
- jedná se o ochrannou vrstvu (obvykle z plastu) s nižším indexem lomu sv**š**tla než má jádro:

n	=	c/v

Médium	n
vakuum	1.0000
vzduch	1.0003
voda	1.33
plášť světlovodu	1.46
jádro	1.48

• jeho rozměry jsou od 100 mikronu do 1 mm

Optický kabel (8)

- obal:

- vnější ochranné pouzdro (plenum nebo nonplenum)
- Rozdělení optických kabelů:
 - jednovidové (single-mode):
 - jádro je velmi úzké (méně než 10 mikronů)
 - světlo může v jádru postupovat jen jednou cestou
 - · má velmi malý útlum
 - obtížněji se instaluje protože vyžaduje větší přesnost
 - dovoluje přenosové rychlosti až 50 Gb/s

Optický kabel (9)

– multividové (multi-mode):

- · mají tlustší jádro
- světelný paprsek má více prostoru a může probíhat v jádru více cestami
- více módů (světelných průběhů) v přenosu může vést k rušení signálu na straně přijímače
- jako veličina zkreslení se používá modální disperze, která se udává v ns/km a představuje rozdíl mezi nejrychlejším a nejpomalejším světelným průběhem

Optický kabel (10)

- step index:

- kabel se skokovou zmanou v indexu lomu
- používáno u multividových i jednovidových kabel
- v případší multividových kabelů se jedná o nejjednodušší a nejlevnější typ optického kabelu
 - jádro má průměr 50 až 125 mikronu, plášť světlovodu 140 mikronů.
 - vhodné pro přenosové rychlosti 200 Mb/s 3 Gb/s

Optický kabel (11)

- graded index:

- kabel s postupnou změnou indexu lomu
- používá se pouze u multividových kabelů
- vede lépe světelný signál má nižší útlum i menší modální disperzi
- umožňuje až 10 krát širší přenosová pásma než multividový step index kabel
- · nejčastěji používaný typ optického kabelu

Optický kabel (12)

- Optické kabely jsou specifikovány ve tvaru průměr jádra a průměr pláště světlovodu (jednotkou je mirkon):
 - 8/125: jednovidový kabel, velmi drahý, vhodný pro vlnové délky 1300 nm nebo 1550 nm
 - 62.5/125: nejpoužívanější konfigurace, vhodný pro 850 nm nebo 1300 nm
 - 100/140: specifikace IBM pro sítĕ Token-Ring

Optický kabel (13)

- Útlum na optickém kabelu:
 - U nejkvalitnĕjších kabelů (jednovidové) je asi
 2 dB na 1 km
 - vnitřní: způsobeny nečistotou ve vlákně:
 - scattering: způsobuje až 96% vnitřního útlumu
 - absorption: způsobuje asi 4% vnitěního útlumu
 - venkovní: způsobený venkovními mechanismy:
 - macrobending: vzniká nevhodným ohybem kabelu
 - microbending: vzniká drobnými nerovnostmi na kabelu

Rozměry kabelů AWG

- AWG American Wire Gauge
- Klasifikační systém pro pro měděné vodiče

AWG rozm ∦ r	Promir [mm]	Odpor [' m]
30	0.26	0.346
24	0.5	0.080
22	0.64	0.050
20	0.81	0.032
18	1.02	0.020
1 6	1.29	0.012
14	1.63	0.008
12	2.05	0.005

Standardizace kabelů (1)

- · Soustava IBM:
 - navržena firmou IBM pro použití v sítích Token-Ring a také pro víceúčelové rozvody v budovách
 - specifikuje 9 typů kabelů (kroucených dvojlinek a optických kabelů)
 - nezahrnuje koaxiální kabely
 - typy 4 a 7 zatím nejsou definovány (zřejměrezerva do budoucna)

Standardizace kabelů (2)

- Type **1**:
 - STP se dvěma páry plného vodiče o rozměru 22
 - používá se pro kvalitní datové přenosy
- Type 2:
 - · hybrid skládající se ze
 - 4 párti nestín mého plného vodi e o rozmeru 22 (voice)
 - 2 párti stíněného plného vodiše o rozměru 22 (data)
- Type 3:
 - UTP se 2, 3 nebo 4 páry plného vodi če rozměrů 22 nebo 24
 - má minimáln dva závity na stopu

Standardizace kabelů (3)

- Type 5:
 - optický kabel se dvěma skleněnými vlákny 100/140 nebo 62.5/125
- Type 6:
 - STP se dvěma páry splétaného vodiče o rozměru 26
- Type 8:
 - STP se dvěma páry plochého vodiče o rozměru 26
 - speciálně navržen pro vedení pod kobercem
- Type 9:
 - STP se dvěma páry plného nebo splétaného vodiče o rozměru 26. Je opatřen pláštěm typu plenum

Kategorie kabelů - EIA/TIA (1)

- Klasifikační systém pro pro určování výkonnosti UTP:
- Vytvo**ř**en komisemi:
 - EIA Electronic Industries Association
 - TIA Telecommunications Industries Association
- Category 1:
 - telefonní kabel pro hlasové přenosy
 - nevhodný pro datové přenosy (je možné použít jej pouze na kratší vzdálenosti)

Kategorie kabelů - EIA/TIA (2)

- Category 2 5:
 - kabely určené pro datové přenosy s různou rychlostí (viz tabulka):

Category	Maximální rychlost [Mb/s]
2	4
3	0
4	l 6
5	00 (neoficiáln 155)

Relativní srovnání charakteristik přenosových médií

Typ kabelu	Cena kabelu	Cena instalace	Citlivost k EMI	Ší ľ ka pá sma
UTP	nízká	nízká	vysoká	nízká
STP	st ř ední	s tř ední	nízká	st ední
Coax	střední	střední	nízká	vysoká
Fibre Optic	vysoká	vysoká	žádná	velmi vysoká

Přístupové metody (1)

- Metody, které dovolují předávat data mezi libovolnými stanicemi, aniž by jejich spojení bylo rušeno vysíláním jiné stanice
- Jedná se o strategii, kterou používá stanice na síti pro přístup k přenosovému médiu
- Frekvenční multiplex (FDMA) strategie přidělování více kanálů v rámci jednoho velkého přenosového pásma

Přístupové metody (2)

- Přenosové pásmo je tak rozděleno do různých, vzájemně výlučných frekvenčních rozsahů, z nichž každý slouží k přenosu určitých informací
- FDMA je typický pro současný přenos různých typů analogových informací (rozhlas, televize)
- Pro LAN je typická metoda časového dělení přístupu k přenosovému médiu - tzv. časový multiplex (TDMA)

Přístupové metody (3)

- TDMA je metoda, která zpřístupňuje komunikační kanál (přenosové médium) několika účastníkům současně
- Každý účastník má přidělen časový úsek (slot) jehož trvání závisí na počtu účastníků, kteří potřebují vysílat a na poměrné důležitosti (prioritě) účastníka jemuž je časový slot přidělen
- Podle způsobu přístupu ke sdílenému médiu lze rozlišit následující metody:

Přístupové metody (4)

– řízený (deterministický) přístup:

- uzly získávají přístup k přenosovému médiu v předem určeném pořadí
- je zaručeno, že každý uzel získá přístup do sítě v časovém intervalu dané délky (obvykle několik mikrosekund až milisekund)
- dále se dělí podle lokalizace Kdící autority:
 - centralizovaný: poďadí, ve kterém stanice získávají přístup je dáno serverem (např. polling)
 - decentralizovaný: pojadí je dáno fyzickým popil. logickým uspořádáním uzlů (napil. předávání peška - token passing)

Přístupové metody (5)

- náhodný (pravděpodobnostní, soupeřivý) přístup:
 - může být použitý pouze v sítích, kde jsou přenosy rozesílány všem, takže každý uzel dostane informace přibližně ve stejný okamžik
 - pokud uzel chce vysílat, zkontroluje linku. Jestliže je linka obsazená, nebo pokud přenos uzlu koliduje s nějakým jiným přenosem, je přenos zrušen
 - uzel pak čeká náhodně dlouhou dobu, než zkusí přístup znovu
 - mezi metody s náhodným přístupem patří:
 - CSMA/CD
 - CSMA/CA

Přístupové metody (6)

- Protože v případě deterministických přístupových metod dostává každý uzel možnost přístupu k síti v mezích pevně daného časového intervalu, jsou tyto metody mnohem efektivnější v sítích s náročným provozem
- Uzly používající náhodné přístupové metody na zatížené síti ztrácí mnoho času pokusy získat přístup a poměrně málo času vlastním vysíláním dat

Polling (1)

- Metoda při, které se v předem daném pořadí neustále testují jednotlivé počítače v síti
- Toto testování je prováděno formou výzev, kdy každý počítač je vyzván, zda-li vyžaduje pozornost (potřebuje vysílat)
- Počítač může přistoupit k síti pouze je-li k tomu vyzván
- Zasílání výzev provádí zpravidla jeden centrální počítač (server), který také bývá označován jako controller popř. poller

Polling (2)

- Jedná se o metodu používanou zejména v sítích s jedním centrálním počítačem a k němu připojenými terminály
- V dnešních LAN se příliš nepoužívá

Token passing (1)

- Přístupová metoda, která využívá speciální packet, tzv. token (pešek), k tomu, aby uzly v síti byly informovány o tom, že mohou vysílat
- Vysílat může pouze uzel, který obdržel peška
- Pešek je vytvořen při inicializaci sítě
- Za jeho vytvoření je obvykle zodpovědný souborový server (file server), popř. jiný server či nějaká předem určená stanice

Token passing (2)

- Vygenerováním peška jsou následně zahájeny sítové operace
- V této metodě je pešek předáván z uzlu na uzel podle předem dané sekvence (logické nebo fyzické)
- Pešek je v libovolném okamžiku:
 - idle (dostupný)
 - busy (používaný)

Token passing (3)

Schéma zaslání datového packetu za stanice B na stanici A

Token passing (4)

- Proces předávání peška:
 - uzel, který obdrží idle peška a chce vysílat, jej označí jako busy a pošle peška s připojeným datovým packetem dalšímu uzlu
 - datový packet společně s peškem je předáván z uzlu na uzel dokud nedosáhne svého adresáta
 - příjemce (adresát) potvrdí přijatý datový packet zasláním peška (příp. peška společně s datovým packetem) zpět odesílateli
 - odesílatel uvede peška opět do stavu idle a předá jej dalšímu síťovému uzlu

Token passing (5)

- Sítě pracující na principu předávání peška většinou vlastní mechanismy pro nastavení priorit získání peška
- Sítě využívající předávání peška rovněž vyžadují přítomnost tzv. aktivního monitoru (AM Active Monitor) a jednoho nebo více pohotovostních monitorů (SM Standby Monitor)
- Úlohu AM plní zpravidla uzel, který peška vygeneroval

Token passing (6)

- AM dále sleduje stav peška a v případě, že dojde k jeho ztrátě nebo poškození (po jistou dobu AM neobdrží korektního peška), vygeneruje peška nového a obnoví tak provoz na síti
- SM kontrolují, zda AM provádí svou činnost a pokud dojde k jeho výpadku, tak jeden z SM se stává novým AM a síť se tak stává opět funkční

Token passing (7)

 K těmto účelům (ověňování korektnosti peška, volení AM z možných SM a dalším) jsou síťové karty určené pro sítě pracující na principu token passing, vybaveny speciálními obvody (agenty), které dovolují provádět monitorováni sítě

Token passing (8)

- Mezi síťové architektury, které pracují na principu předávání peška patří:
 - ArcNet
 - Token-Ring
 - Token-Bus
 - FDDI

CSMA/CD (1)

V případě metody CSMA/CD (<u>Carrier Sense Multiple Access with Collision Detection</u>) získává přístup k sítí uzel, kterému se jako prvnímu podaří přistoupit k nečinné síti

CSMA/CD (2)

CSMA/CD (3)

- Princip CSMA/CD:
 - uzel, který chce vysílat informace do sítě, nejprve poslouchá zda je na síti nějaký provoz (elektrická aktivita)
 - pokud je linka obsazená, pak uzel náhodně dlouhou dobu počká a poté opět provede kontrolu obsazení linky
 - pokud je linka volná (na síti není žádná aktivita),
 uzel začne vysílat svůj packet, který se šíří ke
 všem zbý vajícím stanicím připojeným do sítě

CSMA/CD (4)

- uzel dále pokračuje ve sledování sítě (sleduje, zda-li je na síti právě to, co tam poslal)
- je možné, že dva (nebo více) uzlů na lince detekují nepřítomnost aktivity současně a začnou vysílat v téměř stejný okamžik. Toto má za následek vznik tzv. kolize
- kolize je detekována tak, že uzly, které vyslaly své packety a sledují síť, zjistí, že na přenosovém médiu se vyskytují jiné informace, než ty, které tam vyslali

CSMA/CD (5)

- každý uzel, který detekoval kolizi zruší svůj
 přenos vysláním rušícího signálu jam signal
- poté počká náhodně dlouhou dobu a pokusí se k síti přistoupit znovu
- náhodně dlouhá doba (u každého uzlu jiná)
 zaručuje poměrně vysokou pravděpodobnost,
 že nedojde znovu ke kolizi mezi stejnými uzly
- V sítích s CSMA/CD každý uzel poslouchá každý packet:

CSMA/CD (6)

- uzel nejprve zkontroluje, zda-li se nejedná o fragment způsobený kolizí
- pokud ano, tak jej ignoruje
- nejedná-li se o fragment, uzel zkontroluje jeho cílovou adresu a pokud nastane jeden z následujících případů tak jej zpracuje:
 - Cílová adresa je adresou tohoto uzlu
 - Packet je soušástí tzv. broadcastu (vysílání uršené pro všechny uzly)
 - Packet je součástí tzv. multicastu (vysílání určené určité skupině uzlů) a uzel je jedním z příjemen

CSMA/CD (7)

- Schopnost detekovat aktivitu na síti a detekovat kolize jsou implementovány hardwarově přímo na síťové kartě
- CSMA/CD podává nejlepší výsledky, je-li síťová aktivita pouze mírná
- Naopak nejhorších výsledků dosahuje, jestliže se sítový provoz skládá z množství malých zpráv

CSMA/CD (8)

- Tato přístupová metoda je využívána v sítích typu:
 - $\, Ethernet$
 - EtherTalk (implementace Ethernetu od firmy Apple MacIntosh)
 - G-Net
 - AT&T's StarLAN

CSMA/CA(1)

- Metoda CSMA/CA (<u>Carrier Sense Multiple Access with Collision Avoidance</u>) je podobná jako CSMA/CD metoda, s tím rozdílem, že je zde snaha o vyhnutí se kolizím
- Je nutné dodržovat vždy tzv. minimální rozestup mezi následujícími packety (přibližně 200 mikrosekund)

CSMA/CA (2)

CSMA/CA (3)

- Princip CSMA/CA:
 - pokud uzel chce vysílat, poslouchá zda-li je na síti nějaká aktivita
 - pokud ano, počká náhodně dlouhou dobu a po té se pokusí k síti přistoupit znovu
 - pokud je síť nečinná (je na ní volno), pošle uzel signál RTS (<u>R</u>equest <u>T</u>o <u>S</u>end)
 - v případě, že se nejedná o broadcast:
 - RTS je adresován konkrétnímu uzlu
 - vysílající uzel čeká na signál CTS (Clear To Send), kterým adresát odpoví na RTS

CSMA/CA (4)

- Signály RTS a CTS musí být poslány během předdefinovaného časového intervalu v opačném předpadě odesílatel předpokládá kolizi
- pokud odesí latel obdrží CTS, provede se přenos, pokud ne (RTS nebo CTS se poškodily), přenos se odloží
- v případě broadcastu:
 - RTS je adresován na speciální adresu, která značí broadcast (255)
 - $\bullet\,$ nečeká se na CTS a okamžitě začíná přenos
 - RTS tedy slouží více jako prostředek k upoutání pozornosti, než jako žádost

CSMA/CA (5)

- Vyhýbání se kolizím vyžaduje méně složité obvody než detekce kolizí
- Kolizím se však nelze vyhnout vždy. Pokud se objeví jsou řešeny programově
- Metoda CSMA/CA je využívána v sítích firmy Apple MacIntosh

Rozměry kabelů AWG

- AWG American Wire Gauge
- Klasifikační systém pro pro měděné vodiče

AWG rozm ₫ r	Pramar [mm]	Odpor [th/m]
30	0.26	0.346
24	0.5	0.080
22	0.64	0.050
20	0.81	0.032
18	1.02	0.020
16	1.29	0.012
14	1.63	0.008
12	2.05	0.005

Standardizace kabelů (1)

- Soustava IBM:
 - navržena firmou IBM pro použití v sítích Token-Ring a také pro víceú elové rozvody v budovách
 - specifikuje 9 typů kabelů (kroucených dvojlinek a optických kabelů)
 - nezahrnuje koaxiální kabely
 - typy 4 a 7 zatím nejsou definovány (zřejmě rezerva do budoucna)

Standardizace kabelů (2)

- Type **1**:
 - STP se dvěma páry plného vodiče o rozměru 22
 - používá se pro kvalitní datové přenosy
- Type 2:
 - hybrid skládající se ze
 - 4 párti nestín mého plného vodice o rozmeru 22 (voice)
 - 2 párti stíněného plného vodiše o rozměru 22 (data)
- Type 3:
 - UTP se 2, 3 nebo 4 páry plného vodiše rozměrů 22 nebo 24
 - má minimáln**š** dva závity na stopu

Standardizace kabelů (3)

- Type 5:
 - optický kabel se dvěma skleněnými vlákny 100/140 nebo 62.5/125
- Type 6:
 - STP se dvěma páry splétaného vodiče o rozměru 26
- Type 8:
 - STP se dvěma páry plochého vodiče o rozměru 26
 - speciálně navržen pro vedení pod kobercem
- Type 9:
 - STP se dvěma páry plného nebo splétaného vodiče o rozměru 26. Je opatřen pláštěm typu plenum

Kategorie kabelů - EIA/TIA (1)

- Klasifikační systém pro pro určování výkonnosti UTP:
- Vytvo**ř**en komisemi:
 - EIA Electronic Industries Association
 - TIA Telecommunications Industries Association
- Category 1:
 - telefonní kabel pro hlasové přenosy
 - nevhodný pro datové přenosy (je možné použít jej pouze na kratší vzdálenosti)

Kategorie kabelů - EIA/TIA (2)

- Category 2 5:
 - kabely určené pro datové přenosy s různou rychlostí (viz tabulka):

Category	Maximální rychlost [Mb/s]
2	4
3	0
4	l 6
5	00 (neoficiáln 4 155)

Relativní srovnání charakteristik přenosových médií

Typ kabelu	Cena kabelu	Cena instalace	Citlivost k EMI	Ší ľ ka pá sma
UTP	nízká	nízká	vysoká	nízká
STP	st ř ední	střední	nízká	st ední
Coax	střední	střední	nízká	vysoká
Fibre Optic	vysoká	vysoká	žádná	velmi vysoká

Přístupové metody (1)

- Metody, které dovolují předávat data mezi libovolnými stanicemi, aniž by jejich spojení bylo rušeno vysíláním jiné stanice
- Jedná se o strategii, kterou používá stanice na síti pro přístup k přenosovému médiu
- Frekvenční multiplex (FDMA) strategie přidělování více kanálů v rámci jednoho velkého přenosového pásma

Přístupové metody (2)

- Přenosové pásmo je tak rozděleno do různých, vzájemně výlučných frekvenčních rozsahů, z nichž každý slouží k přenosu určitých informací
- FDMA je typický pro současný přenos různých typů analogových informací (rozhlas, televize)
- Pro LAN je typická metoda časového dělení přístupu k přenosovému médiu - tzv. časový multiplex (TDMA)

Přístupové metody (3)

- TDMA je metoda, která zpřístupňuje komunikační kanál (přenosové médium) několika účastníkům současně
- Každý účastník má přidělen časový úsek (slot) jehož trvání závisí na počtu účastníků, kteří potřebují vysílat a na poměrné důležitosti (prioritě) účastníka jemuž je časový slot přidělen
- Podle způsobu přístupu ke sdílenému médiu lze rozlišit následující metody:

Přístupové metody (4)

– řízený (deterministický) přístup:

- uzly získávají přístup k přenosovému médiu v předem určeném pořadí
- je zarušeno, že každý uzel získá přístup do sítě v časovém intervalu dané délky (obvykle několik mikrosekund až milisekund)
- dále se d**≛**lí podle lokalizace **¥**dící autority:
 - centralizovaný: poďadí, ve kterém stanice získávají pďastup je dáno serverem (napť polling)
 - decentralizovaný: poradí je dáno fyzickým popl. logickým usporadáním uzlů (napl. předávání peška - token passing)

Přístupové metody (5)

náhodný (pravděpodobnostní, soupeřivý) přístup:

- může být použitý pouze v sítích, kde jsou přenosy rozesílány všem, takže každý uzel dostane informace přibližně ve stejný okamžik
- pokud uzel chce vysílat, zkontroluje linku. Jestliže je linka obsazená, nebo pokud přenos uzlu koliduje s nějakým jiným přenosem, je přenos zrušen
- uzel pak čeká náhodně dlouhou dobu, než zkusí přístup znovu
- mezi metody s náhodným přístupem patří:
 - CSMA/CD
 - CSMA/CA

Přístupové metody (6)

- Protože v případě deterministických přístupových metod dostává každý uzel možnost přístupu k síti v mezích pevně daného časového intervalu, jsou tyto metody mnohem efektivnější v sítích s náročným provozem
- Uzly používající náhodné přístupové metody na zatížené síti ztrácí mnoho času pokusy získat přístup a poměrně málo času vlastním vysíláním dat

Polling (1)

- Metoda při, které se v předem daném pořadí neustále testují jednotlivé počítače v síti
- Toto testování je prováděno formou výzev, kdy každý počítač je vyzván, zda-li vyžaduje pozornost (potřebuje vysílat)
- Počítač může přistoupit k síti pouze je-li k tomu vyzván
- Zasílání výzev provádí zpravidla jeden centrální počítač (server), který také bývá označován jako controller popř. poller

Polling (2)

- Jedná se o metodu používanou zejména v sítích s jedním centrálním počítačem a k němu připojenými terminály
- V dnešních LAN se příliš nepoužívá

Token passing (1)

- Přístupová metoda, která využívá speciální packet, tzv. token (pešek), k tomu, aby uzly v síti byly informovány o tom, že mohou vysílat
- Vysílat m**ů**že pouze uzel, který obdržel peška
- Pešek je vytvořen při inicializaci sítě
- Za jeho vytvoření je obvykle zodpovědný souborový server (file server), popř. jiný server či nějaká předem určená stanice

Token passing (2)

- Vygenerováním peška jsou následně zahájeny síťové operace
- V této metodě je pešek předáván z uzlu na uzel podle předem dané sekvence (logické nebo fyzické)
- Pešek je v libovolném okamžiku:
 - idle (dostupný)
 - busy (používaný)

Token passing (3)

Schéma zaslání datového packetu za stanice B na stanici A

Token passing (4)

- Proces předávání peška:
 - uzel, který obdrží idle peška a chce vysílat, jej označí jako busy a pošle peška s připojeným datovým packetem dalšímu uzlu
 - datový packet společně s peškem je předáván z uzlu na uzel dokud nedosáhne svého adresáta
 - příjemce (adresát) potvrdí přijatý datový packet zasláním peška (příp. peška společně s datovým packetem) zpět odesílateli
 - odesílatel uvede peška opět do stavu idle a předá jej dalšímu síťovému uzlu

Token passing (5)

- Sítě pracující na principu předávání peška většinou vlastní mechanismy pro nastavení priorit získání peška
- Sítě využívající předávání peška rovněž vyžadují přítomnost tzv. aktivního monitoru (AM Active Monitor) a jednoho nebo více pohotovostních monitorů (SM Standby Monitor)
- Úlohu AM plní zpravidla uzel, který peška vygeneroval

fimuni.web3.cz

Token passing (6)

- AM dále sleduje stav peška a v případě, že dojde k jeho ztrátě nebo poškození (po jistou dobu AM neobdrží korektního peška), vygeneruje peška nového a obnoví tak provoz na síti
- SM kontrolují, zda AM provádí svou činnost a pokud dojde k jeho výpadku, tak jeden z SM se stává novým AM a síť se tak stává opět funkční

Token passing (7)

 K těmto účelům (ověňování korektnosti peška, volení AM z možných SM a dalším) jsou síťové karty určené pro sítě pracující na principu token passing, vybaveny speciálními obvody (agenty), které dovolují provádět monitorováni sítě

Token passing (8)

- Mezi síťové architektury, které pracují na principu předávání peška patří:
 - ArcNet
 - Token-Ring
 - Token-Bus
 - -FDDI

CSMA/CD (1)

 V případě metody CSMA/CD (<u>C</u>arrier Sense Multiple Access with Collision Detection) získává přístup k sítí uzel, kterému se jako prvnímu podaří přistoupit k nečinné síti

CSMA/CD (2)

CSMA/CD (3)

- Princip CSMA/CD:
 - uzel, který chce vysílat informace do sítě, nejprve poslouchá zda je na síti nějaký provoz (elektrická aktivita)
 - pokud je linka obsazená, pak uzel náho dně dlouhou dobu počká a poté opět provede kontrolu obsazení linky
 - pokud je linka volná (na síti není žádná aktivita),
 uzel začne vysílat svůj packet, který se šíří ke
 všem zbý vajícím stanicím připojeným do sítě

CSMA/CD (4)

- uzel dále pokračuje ve sledování sítě (sleduje, zda-li je na síti právě to, co tam poslal)
- je možné, že dva (nebo více) uzlů na lince detekují nepřítomnost aktivity současně a začnou vysílat v téměř stejný okamžik. Toto má za následek vznik tzv. kolize
- kolize je detekována tak, že uzly, které vyslaly své packety a sledují síť, zjistí, že na přenosovém médiu se vyskytují jiné informace, než ty, které tam vyslali

CSMA/CD (5)

- každý uzel, který detekoval kolizi zruší svůj
 přenos vysláním rušícího signálu jam signal
- poté počká náhodně dlouhou dobu a pokusí se k síti přistoupit znovu
- náhodně dlouhá doba (u každého uzlu jiná)
 zaručuje poměrně vysokou pravděpodobnost,
 že nedojde znovu ke kolizi mezi stejnými uzly
- V sítích s CSMA/CD každý uzel poslouchá každý packet:

CSMA/CD (6)

- uzel nejprve zkontroluje, zda-li se nejedná o fragment způsobený kolizí
- pokud ano, tak jej ignoruje
- nejedná-li se o fragment, uzel zkontroluje jeho cílovou adresu a pokud nastane jeden z následujících případů tak jej zpracuje:
 - Cílová adresa je adresou tohoto uzlu
 - Packet je součástí tzv. broadcastu (vysílání určené pro všechny uzly)
 - Packet je součástí tzv. multicastu (vysílání určené určité skupině uzlů) a uzel je jedním z příjemců

CSMA/CD (7)

- Schopnost detekovat aktivitu na síti a detekovat kolize jsou implementovány hardwarově přímo na síťové kartě
- CSMA/CD podává nejlepší výsledky, je-li síťová aktivita pouze mírná
- Naopak nejhorších výsledků dosahuje, jestliže se síťový provoz skládá z množství malých zpráv

CSMA/CD (8)

- Tato přístupová metoda je využívána v sítích typu:
 - Ethernet
 - EtherTalk (implementace Ethernetu od firmy Apple MacIntosh)
 - G-Net
 - AT&T's StarLAN

CSMA/CA (1)

- Metoda CSMA/CA (<u>Carrier Sense Multiple Access with Collision Avoidance</u>) je podobná jako CSMA/CD metoda, s tím rozdílem, že je zde snaha o vyhnutí se kolizím
- Je nutné dodržovat vždy tzv. minimální rozestup mezi následujícími packety (přibližně 200 mikrosekund)

CSMA/CA(2)

CSMA/CA (3)

- Princip CSMA/CA:
 - pokud uzel chce vysílat, poslouchá zda-li je na síti n\u00e4jaká aktivita
 - pokud ano, počká náhodně dlouhou dobu a po té se pokusí k síti přistoupit znovu
 - pokud je síť nečinná (je na ní volno), pošle uzel signál RTS (Request To Send)
 - v případĕ, že se nejedná o broadcast:
 - RTS je adresován konkrétnímu uzlu
 - vysílající uzel Leká na signál CTS (<u>C</u>lear <u>T</u>o <u>S</u>end), kterým adresát odpoví na RTS

CSMA/CA (4)

- Signály RTS a CTS musí být poslány během předde finovaného časového intervalu v opačném případě odesílatel předpokládá kolizi
- pokud odesí latel obdrží CTS, provede se přenos, pokud ne (RTS nebo CTS se poškodily), přenos se odloží
- v případě broadcastu:
 - RTS je adresován na speciální adresu, která znaší broadcast (255)
 - ne**č**eká se na CTS a okamžit**ž** za**č**íná p**ř**enos
 - RTS tedy slouží více jako prostředek k upoutání pozornosti, než jako žádost

CSMA/CA (5)

- Vyhýbání se kolizím vyžaduje méně složité obvody než detekce kolizí
- Kolizím se však nelze vyhnout vždy. Pokud se objeví jsou řešeny programově
- Metoda CSMA/CA je využívána v sítích firmy Apple MacIntosh

Sit' ARCnet (1)

- ARCnet (<u>A</u>ttached <u>R</u>esource <u>C</u>omputer <u>Net</u>work) je sítová architektura pracující v základním pásmu
- Původně byla vyvinutá jako firemní síť společnosti Datapo int Corporation v roce 1982
- Současný vývoj probíhá pod záštitou asociace ATA (ARCnet Trade Association)
- K většímu rozšíření této sítě došlo zejména v okamžiku, kdy firma SMC vyvinula čipovou sadu k sířovým kartám určeným pro ARCnet

Síť ARCnet (2)

- ARCnet se rozšířil hlavně u menších sítí, protože má relativně jednoduchou instalaci a náklady na jeho vybudování jsou rovněž poměrně nízké
- Data přenášená v ARCnetu jsou rozesílána všem uzlům na síti (jedná se o charakteristickou vlastnost pro logickou topologii sběrnice)
- Přenášené packety jsou čteny pouze uzlem, kterému náleží cílová adresa

Sít' ARCnet (3)

- Přenos dat je řízen pomocí peška ⇒ používá metodu token passing
- Každý uzel v síti je vybaven jedinečnou adresou v rozmezí 1 255 a pešek je předáván postupně vždy na uzel s nejbližší vyšší adresou (výjimku tvoří uzel s nejvyšší adresou, který předává peška uzlu s adresou nejnižší)
- Z toho vyplývá, že jedna síť ARCnet může obsahovat maximálně 255 počítačů

Sít' ARCnet (4)

- Uzly s následnými adresami nemusí být nutně vedle sebe ve fyzickém uspořádání, avšak někdy se to jeví jako vhodné (komunikace na síti je potom efektivnější)
- Pešek je generován řídícím uzlem (controller) sítě, což je uzel s nejnižší adresou
- Zaslání zprávy probíhá podle následujícího algoritmu:
 - odesílatel čeká na peška (packet ITT)

Sít' ARCnet (5)

- po obdržení peška posílá adresátovi packet FBE, kterým se ujistí, že adresát je schopen packet přijmout (má pro něj v bufferu volné místo)
- odesílatel čeká na pozitivní potvrzení (packetem ACK), popř. negativní potvrzení (packet NAK)
- po obdržení ACK packetu odesílatel vysílá datový packet (označovaný jako packet PAC)
- odesílatel čeká na potvrzení přijetí datového packetu adresátem
- po té odesílatel předává peška dalšímu uzlu

Sít' ARCnet (6)

- ARCnet je navržen tak, že pokud pracuje korektně, pak každý uzel obdrží peška minimálně každých 840 ms
- Pokud nějaký uzel v tomto čase peška neobdrží, pak si může vynutit vytvoření nového peška, tím že vyšle tzv. reconfiguration burst
- Reconfiguration burst je předdefinovaná posloupnost bitů vyslaná několikrát po sobě, která zabezpečí případné zrušení existujícího peška

Sít³ ARCnet (7)

- Následně je zahájena inicializace sítě. Používá se algoritmus, kdy každá stanice pozdrží svou inicializaci po dobu odvozenou z její adresy (aby nedocházelo ke kolizím)
- Tím je zajištěno, že inicializaci zahájí stanice s nejnižší adresou, která rovněž vygeneruje nového peška
- Potom stanice postupně zjišťují adresy svých nejbližších sousedů

Sít' ARCnet (8)

- Předáním peška z první stanice na následníka je opět zahájen provoz na síti
- Reconfiguration burst vysílají také nové počítače, které se připojují do sítě, aby zaručily, že jejich adresa bude začleněna do řetězce pro předávání peška
- Přenosová rychlost ARCnetu je 2.5 Mb/s
- ARCnet může mít fyzickou topologii:
 - sbĕmice: pro vysokoimpedanĕní ARCnet
 - hvězda, resp. strom: pro nízkoimpedaněníARCnet

Sít ARCnet (9)

- Pro vybudování sítě ARCnet je zapotřebí:
 - sítová karta pro ARCnet:
 - nemá pevná nastavenou sí rovou adresu v paměti ROM (jako např. sí rové karty pro Ethernet), ale obsahuje sadu přepína na (popř. jumpern) pro její nastavení

– kabely (přenosové médium):

- kroucená dvojlinka (UTP, nebo IBM typy 1 a 3)
- koaxiální kabel (RG-62 nebo RG-59, Z = 93 🕰)
- optický kabel
- poslední uzel v síti je nutné zakončit terminátorem:
 (93 \(\Omega\) pro koaxiální kabel, 105 \(\Omega\) pro TP)

Sít ARCnet (10)

- rozbo

 coax i pro TP
 - aktivní: s vlastním napájením, mohou provádět regeneraci (čištění a zesílení) signálu. Mívají až 64 portů.
 - pasivní: slouží pouze k přenosu signálu bez jeho regenerace. Mají 4 porty a používají se pouze v nízkoimpedančních sítích

– aktivní spoje:

 speciální zařízení používané pro spojení dvou kabelových segmentů (oba musí být vysokoimpedanění)

– přizpůsobovací členy (baluns):

• přizpůsobovací členy pro spojení koax. kabelu s TP

Sít ARCnet (11)

– konektory:

- BNC (Bayonet-Neill-Concelnan): pro koaxiální kabel
- RJ-11 nebo RJ-45: pro kroucenou dvojlinku

RJ-45

Vysokoimpedanční ARCnet (1)

- Používá sběrnicovou topologii (fyzickou i logickou)
- Připojení ke sběrnici je provedeno pomocí T-konektorů
- Jednotlivé počítače a aktivní huby mohou být uspořádány do řetězce daisy-chain

Vysokoimpedanční ARCnet (2)

Vysokoimpedanční ARCnet (3)

- Na vysokoimpedanční ARCnet jsou kladena následující omezení:
 - jeden segment nesmí být delší než 305 m (pro coax)
 - mohou být použity pouze aktivní huby
 - připojení k T-konektoru musí být provedeno přímo, tzn. nelze použít prodlužovací (drop) kabel
 - T-konektory musí být vzdáleny min. 1 m od sebe
 - oba konce segmentu musí být ukončeny (buď terminátorem nebo hubem)
 - kabelový rozvod nesmí tvořit smyčku

Nízkoimpedanční ARCnet (1)

Nízkoimpedan**č**ní ARCnet (2)

- Používá fyzickou topologii hvězda (strom)
- Na nízkoimpedanční ARCnet jsou kladena následující omezení:
 - aktivní huby mohou být připojeny k:
 - · aktivnímu hubu
 - pasivnímu hubu
 - počítači
 - aktivní hub musí být ve vzdálenosti max. 610 m od jiného aktivního hubu nebo počítače a max.
 30 m od pasivního hubu

Nízkoimpedanční ARCnet (3)

- maximální počet aktivních hubů vedle sebe nesmí být větší než 10 (síť lze rozvést až do vzdálenosti 6 km)
- pasivní huby lze použít jen mezi počítačem a aktivním hubem (nemohou být dva vedle sebe)
- pasivní hub musí být ve vzdálenosti max. 30 m od počítače nebo aktivního hubu
- nepoužité porty u pasivních hubů musí být ukončeny terminátorem
- kabelový rozvod nesmí tvo tit smyčku

Kombinovaný ARCnet

ARCnet - výhody / nevýhody

- Výhody:
 - jednotlivé souďásti jsou poměrně levné
 - lze používat různé druhy kabeláže
 - možnost rozvedení sít**ě** po velké ploše
- Nevýhody:
 - neefektivní přenos dat, který snižuje výkon
 - skutečná propustnost je mnohem menší než
 2.5 Mb/s (obvykle méně než 65%)
 - není vhodný pro větší sítě

ARCnet Plus

- Nová verze síťové architektury od firmy Datapoint s následujícími vlastnostmi:
 - zpětně kompatibilní s ARCnet
 - používá stejné typy kabelů jako ARCnet
 - podpora přenosové rychlosti až do 20 Mb/s
- Dalším rozšířením tohoto typu architektury je TCNS (od firmy Thomas-Conrad), které dovoluje přenosovou rychlost až 100 Mb/s

Sít Token Ring (1)

- Token Ring je sítová architektura, jejímž hlavním propagátorem je firma IBM
- Je definována standardem IEEE 802.5
- Používá kruhovou topologii a metodu předávání peška při řízení přístupu k síti
- Jedná se o velmi efektivní architekturu pro sítě, které jsou silně zatíženy datovým provozem od mnoha uživatelů

Sít Token Ring (2)

- Sítě Token ring mají následující vlastnosti:
 - používají kruh jako logickou topologii, avšak jako fyzická topologie je použita hvězda (tzv. topologie Star-Wired Ring)
 - dovolují přenosové rychlosti 4 a 16 Mb/s
 - používají šíření signálu v základním pásmu (v daném okamžiku je přenosovým médiem šířen pouze jeden signál)
 - jako přenosové médium nelze použít koaxiální kabel (pouze TP nebo optický kabel)

Sít Token Ring (3)

- používají čtyťvodičový kabel:
 - 2 vodiče pro hlavní kruh
 - 2 vodiče pro sekundární okruh, který lze využít v případě přerušení hlavního kruhu
- každý uzel (v terminologii IBM tzv. lobe) je
 připojen ke koncentrátoru kabelů nazývanému
 MAU (Multistation Access Unit). Vodiče uvnitř
 MAU vytvářejí z připojených uzlů kruh
- je možné, aby jednotlivé MAU byli vzájemně propojeny, čímž lze dosáhnout větších kruhů

Sít Token Ring (4)

- vyžadují, aby síťové karty pro Token Ring byly vybaveny speciálními obvody (agenty) pro síťový management (např. ovďování korektnosti peška)
- jsou řízeny uzlem generujícím peška (označovaný jako aktivní monitor AM)
- Pro vybudování sítě Token Ring je třeba:
 - − sí**t**ová karta pro Token Ring:
 - uzpůsobena pro provoz s rychlostí 4 Mb/s nebo
 16 Mb/s, případně pro obě možnosti (nastavitelné pomocí jumperů)

Sít Token Ring (5)

- sířová adresa je výrobcem pevně uložena v ROM (Flash) paměti karty a je pro každou kartu jedine čná.
 V některých případech může být přepsána pomocí speciálního programového vybavení dodaného výrobcem.
- V jednom počítači mohou být maximálně dvě takovéto karty

- kabely:

- IBM Type 1, 2, 5, 9, příp. 3: pro tzv. hlavní kruhovou cestu, která propojuje jednotlivé MAU
- IBM Typ 6: pro připojení jednotlivých uzlů

- MAU:

• slouží jako koncentrátory kabel pro několik uzlů

Sít Token Ring (6)

– konektory:

- DB-9: pro připojení počítače stíněnou kroucenou dvojlinkou
- RJ-45: pro připojení počítače nestíněnou kroucenou dvojlinkou
- Datový konektor IBM: pro připojení k MAU, speciální konektory, které dovolují, aby při odpojení konektoru nebyl kruh uvnit MAU přerušen

DB-9

konektor IBM

Sít Token Ring (7)

– media filtry:

- zařízení nutná pro připojení nestíněné kroucené dvojlinky ke konektoru DB-9, který na sítové kartě předpokládá STP
- odstraňuje vysokofrekvenční signály, které vznikají pň přenosu UTP

− opakova**č**e:

- zařízení pro rozšíření maximální délky kabelů
- pro hlavní kruh a pro uzly jsou používány různé typy opakovačů

Sít Token Ring (8)

Sít Token Ring (9)

- Správně zapojený uzel v Token ringu by měl být vždy přímo svázán s právě dvěma uzly:
 - NAUN (Nearest Active Upstream Neighbor):
 - uzel od, kterého je pešek přijímán
 - NADN (Nearest Active Downstream Neighbor):
 - uzel, ketrému je pešek p**ř**edáván
- Na sítě Token Ring jsou kladena následujcí omezení:

Sít Token Ring (10)

- maximální vzdálenost mezi uzlem a MAU je:
 - 100 m: pro kabely IBM Type 1 a 2 (STP)
 - 66 m: pro kabely IBM Type 6 a 9 (STP)
 - 45 m: pro kabel Type 3 (UTP)
- maximální vzdálenost mezi dv**ě**mi MAU:
 - 200 m: pro kabely IBM Typ 1 a 2
 - 45 m: pro kabel IBM Typ 6
 - 120 m: pro kabel Typ 3
 - 1 km: pro kabel Typ 5 (optický kabel)
- uzly musí být od sebe vzdáleny min. 2.5 m

Sít Token Ring (11)

- v sérii jsou povoleny max. 3 kabelové segmenty oddělené opakovači
- maximální počet uzlů:
 - 260: pro stíněnou kroucenou dvojlinku
 - 72: pro nestíněnou kroucenou dvojlinku
- maximální počet MAU je 33
- není možné mít v jedné síti uzly pracující s rychlostí 4 Mb/s a 16 Mb/s. Je však možné pomocí mostu spojit dvě sítě o různých rychlostech
- pro 16 Mb/s je potřeba alespoříkabel kategorie 4

Síť Token Ring (12)

- Komunikace v sítích Token Ring probíhá na principu popsaném v kapitole Token passing
- Jako AM (<u>A</u>ctive <u>M</u>onitor) pracuje souborový (popř. jiný) server a všechny ostatní uzly plní úlohu <u>SM</u> (<u>St</u>andby <u>M</u>onitor)
- Pro reprezentaci hodnot 0 a l vytvářejících fyzický signál se používá kódování Differential Manchester:
 - samočasovací (self-clocking) kódování
 - používají se nap**ěť**ové úrovn**ě** +U a **–**U

Síť Token Ring (13)

- hodnotu určuje přítomnost (1) nebo absence (0)
 přechodu z jedné úrovně do druhé na začátku bitového intervalu
- přechody uprostřed každého bitového intervalu slouží pouze pro časování

Sít Token Ring (14)

- Kromě normálního provozu sítě probíhají v Token Ringu ještě další účelové činnosti:
 - ring insertion (vložení nového uzlu do sítě): pokud je zapotřebí vložit do sítě nový uzel, je vyvolán tento proces:
 - kontrola fyzického propojení uzlu se sítí: tato kontrola je provedena zasláním speciálního packetu jednotce MAU a ovælením jeho správného navrácení
 - kontrola AM: pokud uzel nedetekuje činnost AM, tak zahájí proces nárokování peška

Síť Token Ring (15)

- verifikace adres: uzel si ověří zda jeho adresa je v síti jedinešná
- zjištění sousedních uzl tuzel se dozví adresu svého NAUN a zašle svou adresu NADN
- NN (Neighbor Notification): proces, který sděluje každému uzlu, ze kterého sousedního uzlu peška získává a kterému sousednímu uzlu peška předává:
 - je zahájen AM (vysláním speciálního packetu)
 - provádí se dokud se nevystřídají všechny uzly
 - je ukončen opšt AM
 - poté AM vyšle vyšle packet AMP (AM Present)
 - ostatní uzly vyšlou packet SMP (SM Present)

Sít Token Ring (16)

- priority access (prioritní přístup):
 - každý uzel v síti vlastní prioritu určité úrovně (0 nejnižší, 7 nejvyšší) jejíž hodnota určuje pešky, které měže uzel využít pro přenos svých dat
 - při prioritním přístupu je pešku a uzlům natavena určitá priorita
 - je povoleno, aby pešek byl využit pouze uzly s prioritou vyšší nebo rovnou prioritě peška
- − ring purge (o**č**ista kruhu):
 - AM rozpustí kruh a znovu jej sestaví

Sít Token Ring (17)

- proces je zahájen nárokováním peška stanicemi, které zjistily jeden z následujících případů:
 - pešek je ztracen nebo poškozen
 - určitý rámec není příjat v rozmezí časového okamžiku
- token claiming (nárokování peška): v jeho průběhu je zvolen AM mezi SM. Nastává jestliže:
 - AM po určitou dobu nedetekuje žádné packety
 - SM po uržitou dobu nedetekuje AM
 - do kruhu je p**r**idán nový uzel, který nedetekuje AM

Token Ring - výhody / nevýhody

- Výhody:
 - vhodná architektura pro sítě, které přenášejí velké objemy dat
- Nevýhody:
 - cenově nákladné (ve srovnání s ARCnet nebo Ethernet)
 - složitější připojení Token Ringu k WAN

Sít Ethernet (1)

- Ethernet je síťová architektura, která pro komunikaci mezi počítači využívá společné přenosové médium
- Ethernet byl vyvíjen společně firmami Xerox, Intel a DEC
- Je definován ve standardu IEEE 802.3 a jedná se v současné době o nejrozšířenější používanou sířovou architekturu pro LAN (cca 75%)

Sít Ethernet (2)

- Označení Ethernet se dnes vztahuje k:
 - původnímu návrhu označovanému také jako Ethernet II (nepoužívá TP)
 - ke standardu IEEE 802.3
- Tyto dvě verze jsou však natolik odlišné, že obecně nejsou kompatibilní
- Každá z nich používá jiný formát packetu
- Obě verze však používají stejné kabely, konektory a další zařízení

Sít Ethernet (3)

- Má následující vlastnosti:
 - používá sběrnicovou topologii (logickou, popř. i fyzickou), tzn. všechny uzly jsou připojeny k tzv. hlavnímu segmentu (trunk) - hlavní kabelový úsek
 - může pracovat s rychlostmi do 10 Mb/s
 - pro přístup k přenosovému médiu používá metodu CSMA/CD (je specifikována jako součást doku-mentu IEEE 802.3)
 - přenášená data jsou rozesílána všem uzlům, takže každý uzel obdrží přenos v přibližně stejném čase

Síť Ethernet (4)

- pracuje většinou v základním pásmu (existují i verze, které pracující v pásmu přeloženém)
- Pro reprezentaci hodnot 0 a 1 vytvářejících fyzický signál se používá kódování Manchester:
 - samočasovací (self-clocking) kódování
 - používají se napěťové úrovně +U a −U
 - uprostřed každého bitového intervalu se vyskytuje přechod z jedné úrovně do druhé
 - na začátku každého bitového intervalu může (ale nemusí) být přechod

Síť Ethernet (5)

- frekvence se kterou je snímán (generován) tento signál musí tedy být alespoň dvakrát vyšší než max. přenosová rychlost, tj. 20 MHz
- bit 1 je kódován jako přechod –U → +U
- bit 0 je kódován jako přechod +U → –U

Síť Ethernet (6)

- Pro vybudování sítě Ethernet je třeba:
 - sí**t**ová karta pro Ethernet:
 - obsahuje hardwarou adresu na čipu ROM, která je pevně dána výrobcem a je pro tuto konkrétní kartu jedinečná, tzv. ethernet address (6 bytů; bývá ji zvykem zapisovat hexadecimálně)
 - je vybavena jedním (popř. i více) konektory pro připojení k přenosovému médiu:
 - BNC: pro tenký koaxiální kabel
 - RJ-45: pro kroucenou dvojlinku
 - AUI (DIX): jedná se 15 vývodový konektor typu Canon, který je urený pro připojení k silnému koaxiálnímu kabelu (transceiveru)

Sít Ethernet (7)

 muže obsahovat patici pro tzv. BootROM obvod, který umožňuje vzdálené zavádění operačního systému (ze serveru)

– kabely (přenosové médium):

- tenký koaxiální kabel RG-58, Z = 50 □
- silný koaxiální kabel RG-8, Z = 50 Ω, vyžaduje ještž použití transceivenu a drop kabelu
- · kroucená dvojlinka
- · optický kabel
- v případě použití koaxiálního kabelu je nezbytné provést na obou koncích segmentu zakončení pomocí terminátoru (50 Ω)

Sít Ethernet (8)

- transceivers:

- zařízení, která mohou vysílat (transmit) a přijímat (receive) signály
- jsou místem, kde se uzel stýká se sítí, mohou být:
 - interní: na sítové kart
 - externí: používají se u silného Ethernetu, kde jsou připojeny k hlavnímu kabelu nebo se zapojují přimo k sítové kartě a dovolují tak připojení karty k jinému kabelu, než pro který byla karta přivodně vyrobena. Bývají označovány také jako MAU (Medium Attachment Unit)

− repeaters (opakovače):

- zařízení provádřjící regeneraci signálu
- dovolují prodloužení hlavního segmentu

Sít Ethernet (9)

– hubs (rozboĕovaĕe, koncentrátory):

- zařízení pro soustředění rozvodů
- používají se při budování sítě pomocí kroucené dvojlinky
- mohou rovněž:
 - vykonávat úlohu opakova
 - sledovat a provádě správu sítě
 - posílat packet pouze do místa uršení (ostatním uzlům se potom posílá obsazený signál), což dovoluje zabránit zachycení signálu neautorizovaným uzlem

- baluns:

zařízení používaná pro spojování koaxiálních kabelových segmentů a segmentů z kroucené dvojlinky

Sít' Ethernet (10)

– konektory:

- pro silný coax se používají:
 - na hlavním kabelu konektory **Eady N (v kombinaci s odpovídajícím **T-konektorem*), pop***, jehlový konektor (tzv. vampire connection)
 - na síť ových kartách konektory AUI (DIX)
- pro tenký coax se používají na hlavním kabelu i na sítových kartách konektory BNC + T-konektor
- pro TP se používají konektory RJ-45

Konektor Lady N

Sít' Ethernet (11)

- Sítě Ethernet jsou seskupeny podle:
 - přenosové rychlosti:
 - specifikuje přibližně maximální přenosovou rychlost, neboli šířku pásma v Mb/s
 - standardní hodnoty jsou 1, 5, 10 a 100

– pásma:

- Base: použití základního pásma (baseband)
- Broad: použití přeloženého pásma (broadband)
- typu (délky) přenosového média:
 - specifikuje přibližně maximální délku hlavního segmentu (bez opakovačů) nebo typ použitého kabelu

10Base2 (1)

- Tenký (thin) Ethernet
- Používá tenký koaxiální kabel RG-58
- Může pracovat až při 10 Mb/s
- Maximální délka hlavního segmentu je:
 - 185 m: standard segment:
 - pomocí opakovačů je možné propojit maximálně pět segmentů (tj. 925 m):
 - max. 3 mohou obsahovat připojené počítače (hlavní)
 - max. 2 nemusí obsahovat připojené počítače (linkové)
 - 300 m: extended segment:
 - možné použít pouze tehdy, pokud je podporován všemi připojenými sířovými kartami

10Base2 (2)

- možnost prodloužení pomocí opakovačů je omezena na tři segmenty
- Dále je nutné dodržet tato omezení:
 - ke každému segmentu může být připojeno maximálně 30 uzlů (opakovač se počítá jako uzel v obou segmentech) => tenký Ethernet může mít maximálně 90 uzlů
 - každý segment musí být na obou koncích ukončen terminátorem a na jednom konci uzemněn
 - jednotlivé uzly musí být od sebe vzdáleny minimálně 0,5 m

10Base2 (3)

10Base5 (1)

- Silný (thick) Ethernet
- Používá silný (tlustý) koaxiální kabel RG-8
- Může pracovat až při 10 Mb/s
- Vyžaduje použití transceiveru a drop kabelu
- Je nutné dodržet tato omezení:
 - maximální délka hlavního segmentu je 500 m
 - pomocí opakovačů je možné propojit maximál-ně
 5 segmentů (tj. max. 2500 m):
 - max. 3 mohou obsahovat připojené počítaře (hlavní)
 - max. 2 nemusí obsahovat připojené počítače (linkové)

10Base5 (2)

- na jeden segment lze připojit max. 100 uzlů
- je tedy možné, aby sít Ethernet se silným koaxiálním kabelem m
 äla maximáln
 ä 300 uzlů
- každý segment musí být na obou koncích zakončen terminátorem a na jednom konci uzemněn
- transceivery musí být na segmentu od sebe vzdáleny minimálně 2,5 m
- drop kabel může být dlouhý maximálně 50 m

10Base5 (3)

10BaseT (**1**)

- · Twisted Pair Ethernet
- Používá nestíněnou kroucenou dvojlinku a hvězdicovou fyzickou topologii
- Může pracovat s rychlostí do 10 Mb/s
- Každý uzel je připojen k centrálnímu hubu, který plní roli společného přenosového média (slouží jako přenosová stanice)
- Maximální vzdálenost mezi uzlem a hubem je 100 m (STP umožňuje až 400 m)

10BaseT (2)

- Zapojení konektoru RJ-45 (uzel hub):
 - možno zapojit libovolně jednotlivé vodiče 1:1
 - existuje doporučení EIA/TIA T568B, které minimalizuje přeslechy

Pár	Pin	Barva (band code)	Barva (solid code)				
-	5	White / Blue	Green				
1	4 Blue		Red				
2	1	White / Orange	Black				
2	2 Orange		Yellow				
3	3	White / Green	White				
3	6	Green	Blue				
4	7	White / Brown	Orange				
4	8	Brown	Brown				

10BaseT (3)

- Zapojení konektoru RJ-45 (uzel uzel):
 - někdy označováno také jako UTP null-modem
 - dovoluje propojení dvou počítačů bez hubu

10BaseT (4)

Hybridní Ethernet (1)

- Jedná se o kombinaci dříve uvedených typů sítě Ethernet
- Tuto kombinaci lze provést pomocí:
 - hybridního adaptéru (BNC/fada N): mezi tenkým a silným koaxiálním kabelem
 - repeateru: mezi tenkým a silným koaxiálním kabelem
 - hubu: mezi tenkým, silným koaxiálním kabelem a kroucenou dvojlinkou

Hybridní Ethernet (2)

Další typy sít**ě** Ethernet (1)

• 1Base5:

- sí**t** StarLAN vyvinutá firmou AT&T
- používá kabel UTP a hv¥zdicovou topologii

• 10BaseF:

- síť využívající optický kabel:
- je rozd**ĕ**lena do t**¥**í variant:
 - 10BaseFB: používaná pro centrální spoje mezi budovami (mohou být dlouhé až 2 km)
 - 10BaseFL: síť, která používá optická vlákna pro připojení uzlu k hubu (dlouhá max. 2 km)

Další typy sítě Ethernet (2)

• 10BaseFP: síť používající optická vlákna pro připojení uzlu k hubu (dlouhá max. 500 m)

10Broad36

- používá koaxiální kabel s impedancí 75
 pracující v přeloženém pásmu
- maximální délka kabelu je 1800 m
- pro zakódování jednoho kanálu (pro jeden směr) je potřeba pásmo o šířce 18 MHz, pro oba směry je tedy nutné pásmo 36 MHz

Ethernet - výhody / nevýhody

• Výhody:

- vhodné pro sítĕ s menším zatížením
- dobře známá a otestovaná technologie
- nízké náklady
- snadná instalace

• Nevýhody:

- nevhodné pro sítĕ s vysokým zatížením
- v případě koaxiálních kabelů, přerušení sběrnice způsobí výpadek celé sítě

Fast Ethernet (1)

- Implementace Ethernetu, schopné přenosových rychlostí až 100 Mb/s
- Tyto implementace lze rozdělit do dvou základních skupin podle toho, jakou používají přístupovou metodu:
 - CSMA/CD: navržena firmou Grand Junction.
 Její další verze jsou společně označovány jako 100BaseT:
 - 100BaseFX: používá multividový optický kabel (max. délka je 2 km)

Fast Ethernet (2)

- 100BaseTX: používá kabely kategorie 5 (UTP i STP), vystačí se dvěma páry vodičů (max. 205 m dlouhé)
- 100BaseT4: používá UTP kategorie 3, 4 a 5, vyžaduje 4 páry vodičů (2 pro odesílání a 4 pro příjem), max. 205 m dlouhé
- demand priority (žádost s prioritou):
 - navržena firmou HP a označována jako 100BaseVG
 - pracuje s hvazdicovou topologií
 - řízení přístupu na síť je přesunuto z pracovní stanice na hub
 - uzel, který žádá o přenos, oznamuje tuto žádost hubu a také žádá normální nebo vysokou prioritu

Fast Ethernet (3)

- poté co získá povolení, začne vysílat
- hub je odpovědný za přenos do cílového uzlu, tj. je odpovědný za poskytnutí přístupu k síti
- je možné zajistit, aby informace byly přenášeny pouze cílovému uzlu
- odpadá zde zkoušení zda-li síť je netinná a detekování kolizí, které jsou charakteristické pro CSMA/CD a způsobují snížení propustnosti sítť při jejím v tsím zatížení
- jako přenosové médium může používat:
 - UTP kategorie 3 se 4 páry a max. délkou 600 m
 - optický kabel: maximální délka je 5 km

Další síťové architeltury (2)

• DECnet:

- síť pracující zejména s počítači PDP
- podporuje rovněž připojení počítačů MacIntosh a PC
- FDDI (Fiber Distributed Data Interface)
 - určena pro použití u optických linek o vysokých rychlostech (do 100 Mb/s)
 - používá kruhovou topologii dvojitý kruh, ve kterém informace procházejí opačnými směry

Další síťové architeltury (3)

- k řízení přístupu používá peška, je však možné aby v jednom okamžiku obíhalo více packetů (avšak pouze jeden pešek)
- podporuje až 1000 uzlů na síti a rozsah až 100 km
- · Token Bus:
 - architektura používaná zejména ve výrobní sféře
 - pro přístup k médiu používá předávání peška
 - používá fyzickou sběrnicovou topologii s uzly zapojenými do logického kruhu

Další síťové architeltury (4)

- podporuje koaxiální (75 ♠) a optický kabel
- dosahuje přenosové rychlosti až 20 Mb/s
- dovoluje práci v základním i přeloženém pásmu

Další síťové architeltury (1)

- ATM (<u>A</u>synchronous <u>T</u>ransfer <u>M</u>ode)
 - pracuje s přepínáním packetů v přeloženém pásmu
 - měla by zabezpečit přenosy s rychlostí 155.52 Mb/s až 2.488 Gb/s
 - vhodná pro podnikové sítě, které spojují LAN v rozsáhlých oblastech a vyžadují přenos velkého objemu dat
 - přenos je prováděn optickými kabely nebo UTP

Model OSI (1)

- OSI Open System Interconnection:
 - model propojení otevřených systémů
 - mezinárodní standard pro organizaci lokálních sítí
 - popisuje způsoby, jak lze propojit nejrůznější zařízení za účelem vzájemné komunikace
 - sedmivrstvá architektura definovaná v normalizačních materiálech ISO
 - sedm vrstev tvoří hierarchii začínající fyzickými spojeními na nejnižší úrovni a končící aplikacemi na úrovni nejvyšší

Model OSI (2)

- každá vrstva je dána přesným vymezením vykonávaných služeb
- ke každé vrstvě přísluší rozhraní se sousedními vrstvami
- přináší odd≱lení síťového HW od SW
- zahrnuje dva modely komunikace:
 - horizontální: model na protokolové bázi, pomocí něhož komunikují programy nebo procesy rázných počítačů
 - vertikální: model na bázi služeb, pomocí něhož komunikují vrstvy na jediném počítači

Model OSI (3)

Model OSI (4)

Fyzická vrstva (1)

- Přebírá datové packety z linkové vrstvy, která je v hierarchii nad ní
- Převádí obsah těchto packetů na sérii elektrických signálů, které představují v digitálním přenosu hodnoty 0 a 1
- Tyto signály jsou zasílány přes přenosové médium k fyzické vrstvě příjemce, kde jsou opět konvertovány na sérii bitových hodnot, které seskupeny do packetů jsou předávány linkové vrstvě

Fyzická vrstva (2)

- V této vrstvě jsou definovány mechanické a elektrické vlastnosti přenosového média:
 - typ použitých kabelů, konektorů
 - rozmístění vývodů kabelů a konektorů
 - formát elektrických signálů (kódování)
- Příklady specifikace fyzické vrstvy:
 - IEEE 802.3: definuje různé varianty sítě Ethernet
 - IEEE 802.5: definuje pravidla pro Token Ring
 - EIA-232D: vznikla úpravou standardu RS-232C, který sloužil pro připojování modemů a tiskáren

Linková vrstva (1)

- Je zodpovědná za vytváření, přenos a přijímání datových packetů (na úrovni této vrstvy též označovaných jako rámce - frames)
- Vytváří packety příslušné síť ové architektury, které jsou dále předány fyzické vrstvě
- Poskytuje služby pro protokoly síťové vrstvy
- Tato vrstva byla dále rozdělena na dvě podvrstvy:

Linková vrstva (2)

- LLC (<u>L</u>ogical-<u>L</u>ink <u>C</u>ontrol): slouží jako rozhraní pro protokoly sítové vrstvy
- MAC (Media Access Control): poskytuje přístup k určitému fyzickému kódovacímu a přenosovému schématu
- Protokoly linkové vrstvy: jsou používány pro označení, zabalení a zaslání packetů, např.:
 - PPP (Point-to-Point Protocol): poskytuje přímou, středně rychlou komunikaci mezi dvěma počítači
 - SLIP (Serial Line Interface Protocol): poskytuje přístup k Internetu přes sériové linky

Síťová vrstva (1)

- Označovaná též jako packetová vrstva
- Je zodpovědná za provádění následujících úkolů:
 - převod z hradwarových na síťové adresy. Převedené adresy se mohou, ale nemusejí nacházet na lokální síti
 - poskytování služeb pro komunikaci mezi sítěmi
 - nalezení cesty mezi odesílatelem a adresátem směruje packety, tzn. rozhoduje, kterému dalšímu mezilehlému uzlu packet poslat v případě, že daný uzel není s uzlem cílovým přímo propojen

fimuni.web3.cz

Síťová vrstva (2)

- vytváření a udržování logického spojení mezi těmito uzly
- Protokoly sí**r**ové vrstvy:
 - pro rozpoznávání adres: slouží pro určení jedinečné sítové adresy
 - pro směrování: zodpovědné za předávání packetů z lokální sítě do sítě jiné
- Mezi protokoly síťové vrstvy patří např.:
 - ARP (Address Resolution Protocol): převádí sítovou adresu na adresu hardwarovou

Sítová vrstva (3)

- IPX (<u>Internetwork Packet Exchange</u>): součást protokolové sady Novell
- IP (<u>Internet Protocol</u>): jeden z protokolů prostředí operačního systému UNIX a sítě Internet
- ICMP (<u>Internet Control Message Protocol</u>): protokol pro ošetřování chyb při přenosu

Transportní vrstva (1)

- Vrstva zodpovědná za přenos dat na dohodnuté úrovni kvality - detekuje a ošetřuje chyby
- Aby bylo zajištěno doručení packetu, výchozí packety jsou opatřeny pořadovým číslem
- U příjemce ověřuje čísla packetů a zaručuje tak, že všechny packety budou doručeny a poskládány ve správném pořadí
- U odesilatele uchovává jednotlivé packety do jejich potvrzení adresátem

Transportní vrstva (2)

- Zajišťuje zotavení při ztrátě spojení
- Mezi protokoly transportní vrstvy patří:
 - TCP (Transmission Control Protocol): protokol využívaný v sítích na bázi UNIXu a při komunikaci v Internetu
 - SPX (<u>Sequenced Packet Exchange</u>): protokol použitý v prostředích Novell

Relační vrstva

- Vrstva, která udržuje spojení mezi uzly až do doby, kdy je přenos dokončen
- Organizuje interakci dvou koncových uživatelů
- Funkce definované v relační vrstvě jsou určeny pro mezisířovou komunikaci
- Často zahrnuje i služby prezentační vrstvy

Prezentační vrstva

- Zabezpečuje prezentaci informací způsobem vyhovujícím aplikacím nebo uživatelům, kteří s nimi pracují, např.:
 - konverze dat EBCDIC ↔ ASCII
 - datová komprese a dekomprese
- Málokdy se vyskytuje v "čisté" podobě, programy aplikační nebo relační vrstvy zahrnují většinou některé (nebo všechny) funkce vrstvy prezentační

Aplikační vrstva (1)

- Poskytuje přístup aplikacím do sítě
- Jejími úkoly jsou např.:
 - přenos souborů
 - elektronická pošta
 - správa sítě
- Programy získávají přístup k jejím službám pomocí tzv. ASE (Application Service Element)
- Předává žádosti programů a data prezentační vrstvě, která provede jejich zakódování

Aplikační vrstva (2)

- Protokoly aplikační vrstvy: nacházejí se zde především aplikační programy a sírové nadstavby, které umožňují připojení stanice k síti. Patří sem např.:
 - FTP (File Transfer Protocol): umožňuje přenos souborů
 - X.400 specifikuje protokoly a funkce pro předávání zpráv elektronickou poštou
 - Telnet: poskytuje emulaci terminálu a vzdálené připojení

Novell NetWare (1)

- Novell NetWare je sítový operační systém
- Vzniká krátce po nástupu operačního systému MS-DOS, který sám o sobě neposkytuje podporu pro připojení počítačů do sítě
- Podporuje rámcové formáty pro různé síťové architektury (Ethernet, Token-Ring, ARCnet a další)
- Dovoluje vytvářet sítě s architekturou Client
 - Server

Novell NetWare (2)

- Novell NetWare pracuje:
 - na fyzické vrstvě: s architekturou ODI (Open Data-link Interface), dovolující provozovat více protokolů a více ovladačů LAN pro jedinou sítovou kartu
 - na sífové vrstvě: s protokolem IPX, který je použit pro směrování datových packetů
 - na transportní vrstvě: s protokolem SPX, který zaručuje, že packety budou úspěšně doručeny službami SPX
 - na vyšších vrstvách: s protokoly NCP a SAP

Novell NetWare (3)

Novell NetWare (4)

- Komponenty v sítích Novell:
 - file server:
 - poskytuje přístup k diskovým kapacitám
 - registruje přístupy uživatelů do sítě
 - print server:
 - obsluhuje sí**t**ové tiskárny (každý až 16 tiskáren)
 - tyto úlohu může plnit i file server
 - database server:
 - počítač, ne kterém je spuštěn server proces příslušné databáze (Oracle, Informix, Progress)
 - může být provozován i na file serveru

Novell NetWare (5)

- communication server (router, gateway):
 - slouží k zajištění komunikace mezi:
 - lokálními sít**€**mi
 - lokální a rozsáhlou sítí
 - propojení na sálové systémy
 - může být provozován i na file serveru

– pracovní stanice:

- počítače s různými operačními systémy, které mají možnost využívat služeb počítačové sítě
- je na nich spuštěno programové vybavení (Novell Client), které jim umožní připojení k patřičnému serveni

File Server (1)

- Mel by disponovat:
 - velkou diskovou kapacitou
 - odpovídající kapacitou operační paměti
 - "rozumnou" rychlostí procesoru
- Do verze 2.20 je schopen práce ve vyhrazeném (dedicated) i nevyhrazeném (non-dedicated) režimu
- Ve verzi vyšší než 2.20 pracuje pouze ve vyhrazeném režimu

File Server (2)

- Pro zvýšení výkonu poskytuje:
 - directory caching: všechny operace, na adresáři se provádí v operační paměti
 - directory hashing: binární metoda velmi rychlého vyhledávání v rozsáhlé adresářové struktuře
 - file caching: udržuje v paměti často používaná data
 - elevator seeking: funkce třídící za sebou následující žádosti o přístup k pevnému disku tak, aby se čtecí/záznamová hlava pohybovala plynule od vnějšího okraje k vnitřnímu a naopak

File Server (3)

- Výše uvedené funkce jsou nejprve prováděny v operační paměti a pak se teprve zapisují na disk ⇒ file server by měl být vybaven UPS
- Pro zvýšení bezpe**č**nosti systému poskytuje:
 - 1. úrove<mark>ň (Level I)</mark>
 - ve všech verzích krom**ě** NetWare Lite
 - zdvojený zápis hlavního adresá#e na pevném disku a tabulky FAT
 - rozpoznání a korekce chyb na disku
 - testování adresářu při startu systému (disku)

File Server (4)

- možnost otestování disku před instalací
- kontrolní čtení po zápisu (Hot Fix)
- 2. úroven (Level II): SFT System Fault Tolerant
 - poskytována od verze 2.20 pracující ve vyhrazeném režimu
 - zrcadlení disků (disk mirroring): zápis přes jeden řadič na dva disky
 - duplicita diski (disk duplexing): zápis na dva disky přes dva různé řadiče
 - TTS (<u>Transaction Tracking System</u>): systém, který zabra <u>H</u>uje vzniku nedefinovaných stav <u>h</u> p<u>F</u>i práci nad souborem dat. Množina p<u>F</u>ikaz <u>h</u> uzav <u>P</u>ených mezi,

File Server (5)

která je definována jako transakce se buď celá korektně provede, nebo datový soubor zůstane v původním stavu

- Dovoluje předcházet vzniku nedefinovaných stavů
- Disky file serveru:

	DOS
Disk 1	Novell partition Vol. SYS

File Server (6)

- Partition systému MS-DOS:
 - slouží k zavedení systému MS-DOS
 - obsahuje nejnutn**ě**jší soubory pro start Novellu
 - obsahuje pomocné programy pro opravu sytému Novell
 - je možné ji vytvořit pomocí standardního pro gramu fdisk (systému MS-DOS)
- Partition systému Novell Netware:
 - vytvořená systémem Novell (při instalaci)
 - obsahuje vlastní systém a další data

File Server (7)

- každý fyzický disk může obsahovat nejvýše jednu Novell partition
- každá Novell partition může být dále rozdělena na tzv. volumes (svazky)
- každý svazek má svou vlastní FAT tabulku a svou adresářovou strukturu
- na disku, ze kterého se zavádí operační systém musí být svazek se jménem SYS
- svazek SYS obsahuje systém Novell NetWare;
 může rovněž obsahovat i jiné soubory (aplikační programy, uživatelská data apod.)

File Server (8)

- jméno každého svazku musí být jedinečné
- verzí 4.x a vyšších je možné aby jeden svazek zahrnoval více fyzických disků
- Novell na úrovni file serveru nezavádí označení disků C:, D:, ..., které je viditelné z pracovních stanic
- Z pohledu file serveru jsou dány jenom jednotlivé svazky a oblast systému MS-DOS, na kterou je možné se odkázat pomocí symbolu C:

Start file serveru (1)

- Zavede se jádro systému MS-DOS (nainstalovaného na MS-DOS partition)
- Spustí se soubor server . exe
 - soubor server. exe bývá většinou umístěn v adresáři C: \SERVER
 - jeho spuštění je zpravidla provedeno ze souboru autoexec. bat
 - při spuštění server. exe se uplatřuje soubor startup.ncf, uložený ve stejném adresáři jako server. exe

Start file serveru (2)

soubor startup.ncf musí minimálně obsahovat příkaz pro zavedení ovladače řadiče disků, např.:

load aha1540 port=330 příkaz předpokládá, že ovladač je ve stejném adresáři jako startup.ncf

- provádí se tzv. mounting (montování) svazku SYS, proces při kterém se:
 - do operační paměti zavedou potřebné informace o daném svazku
 - provede jeho kontrola

Start file serveru (3)

- v závislosti na velikosti svazku a jeho zaplnění může montování až několik minut (10 a více)
- provádí se příkazy v souboru autoexec.ncf, který obsahuje:
 - jméno serveru
 - informace o nastavení času (změny letní zimní)
 - Ľasové pásmo
 - číslo sítě
 - zavedení ovlada do sítové karty
 - navázání komunikačních protokolů k sítovým kartám
 - zavedení ovlada dalších zařízení (CD-ROM mechanika, páskové mechaniky apod.)

Start file serveru (4)

- montování ostatních svazků
- spuštění aplikací server**ů** (databázový, tiskový)
- zavedení dalších modul**ů** (ftpd, bootpd, fingerd atd.)
- V případě úspěchu je nyní server připraven k práci
- Pro účely ladění konfigurace je možné spustit server. exe tak, aby se neprováděly soubory *.ncf:
 - server -na neprovede autoexec.ncf
 - server -ns neprovede stratup.ncf

Práce s file serverem (1)

- Na file serveru je možné:
 - spouštět některé utility pro monitorování činnosti sítě
 - provádět nastavení týkající se file serveru a celé sítě
- Není možné spouštět běžné aplikační programové vybavení
- Spustitelné moduly pro file server jsou uloženy v adresáři \SYSTEM ve formě souborů
 - * .nlm (NetWare Loadable Module)

Práce s file serverem (2)

- Poznámka:
 - u verze 2.2 byly místo souborů * . nlm použity soubory *.vap (<u>V</u>alue <u>A</u>dded <u>P</u>rocess)
 - soubory * . vap však nešlo spouštět během chodu file serveru (byl nutný restar systému)
- Příklady spustitelných modulů na file serveru:
 - -monitor.nlm
 - sleduje přihlášené uživatele, jejich otevřené soubory, atd.

Práce s file serverem (3)

- -servman.nlm
 - vypisuje a dovoluje zmanit parametry serveru
- -install.nlm
 - vytvá**ř** (ruší) partitions, svazky
 - dovoluje modifikovat * . ncf soubory
 - zavádí do paměti ovladače (odstraňuje je z paměti)
 - dovoluje doinstalovat další komponenty z CD
- -sbackup.nlm
 - $\bullet\,$ umož $\underline{\mathring{n}}$ uje provád $\overset{\bullet}{\mathring{a}}t$ zálohu dat na pásku
- -vrepair.nlm
 - · opravuje chyby na svazcích

Práce s file serverem (4)

- při provádění oprav tímto modulem je nezbytné nejdříve opravovaný svazek odmontovat
- -dsrepair.nlm
 - pouze ve verzích 4.00 a vyšších
 - opravuje databázi NDS (<u>N</u>etWare <u>D</u>irectory Services)
- Některé příkazy file serveru:

load zavádí modul (ovlada♣) do

operační paměti

unload odstraňuje modul (ovladač) z

pam**ě**ti

down
 ukončí činnost file serveru

Práce s file serverem (5)

mount montuje svazekdismount odmontuje svazek

bind připojení komunikačního protokolu

k sí**ť**ové kart**ě**

set nastaví parametr

– modules zobrazí zavedené moduly v paměti

send pošle zprávu

disable login zakáže přihlašování se k serveru
enable login povolí přihlašování se k serveru

config
 zobrazí konfiguraci

– memory zobrazí kapacitu pam**ě**ti serveru

Tisk v síti Novell (1)

- Sdílená (všem uživatelům přístupná) tiskárna, může být v sitích Novell připojena k:
 - file serveru:
 - je nutné zavést modul pserver.nlm (pro verzi Novell 2.2 modul pserver.vap)
 - je možné obsloužit až 16 tiskáren připojených k séniovým a paralelním portům
 - není vhodné pro velký počet tiskáren, protože způsobuje snížení výkonu file serveru
 - print serveru:
 - počítač se spuštěným programem pserver.exe

Tisk v síti Novell (2)

- jedná se o speciální počítač vyhrazený pro účely tisku
- jeví se jako vhodné řešení při vřtším počtu sírových tiskáren
- muže obsloužit rovn**ě**ž max. 16 tiskáren
- k pracovní stanici:
 - nutné nejdříve spustit pserver.nlm(.vap) na file serveru nebo pserver.exe na vyhrazeném print serveru
 - pracovní stanice musí mít zaveden program rprinter. exe, který její tiskárnu zpřístupní ostatním uživate lům

Pracovní stanice

- Do sítě Novell NetWare může být připojen počítač pracující se systémem:
 - MS-DOS (MS-Windows 3.x)
 - MS-Windows 95 (98)
 - MS-Windows NT (2000)
 - -OS/2
 - MacIntosh System
 - UNIX (pouze verze, které připojení k Novellu podporují)

Pracovní stanice s MS-DOSem (1)

 Pro zapojení počítače s operačním systémem MS-DOS do sítě Novell NetWare je nutné zavést následující software:

– lsl link support layer; využívá

konfigurační soubor net.cfg

- smc8000 ODI ovladač síťové karty- ipxodi podpora IPX/SPX protokolu

vlm
 Virtual Loadable Module manager;

program pro zavedení dalších podpůrných modulů (* . vlm)

Pracovní stanice s MS-DOSem (2)

- Po jejich zavedení se zpřístupní první síťový disk (je nezbytné, aby byl korektně nastaven poslední disk příkazem LASTDRIVE=Z)
- Zpřístupněný disk obsahuje pouze nejnutnější soubory potřebné k přihlášení se do sítě
- Přihlášení se provádí pomocí příkazu:
 - login
 - Enter your user name: novak
 - Enter your password:

Login scripty

- Po správném přihlášení jsou prováděny tzv. login scripty, které provedou nastavení pro daného uživatele:
- V Novellu jsou čtyři typy login scriptů:

systémový provádí se pro každého uživatele
 profilový provádí se pro určitou skupinu
 uživatelský provádí se pro konkrétního

uživatele

 default realizuje minimální požadavky, pokud se nepoužívá žádný

Mapování disků (1)

- Novell file server neoznačuje disky pomocí písmen jako MS-DOS, ale používá označení jednotlivých svazků
- Příklad svazků na serveru se jménem NS:

Mapování disků (2)

- Jednotlivé adresáře na svazku SYS mají následující význam:
 - SYSTEM: obsahuje soubory a podadresáře,
 které nemají být přístupné běžným uživatelům:
 - soubory obsahující systémové informace
 - moduly sloužící ke správě systému
 - spustitelné soubory reprezentující příkazy určené pro správce sítě
 - ovladače sířových karet a jiných zařízení
 - přístup do tohoto adresáře má standardně povolen pouze administrátor

Mapování disků (3)

- \PUBLI C: adresář určený pro všeobecné použití, jsou v nĕm uloženy:
 - soubory představující příkazy a utility, které mohou používat všichni uživatelé sítř
- \ LOGIN: slouží k přihlašování uživatelů do sítě:
 - jedná se o jediný adresář serveru, do kterého mají
 přístup uživatelé ještě před tím než se k serveru
 přihlásí
 - z pracovní stanice je dostupný po správném zavedení Novell Clienta
 - obsahuje příkazy a utility potřebné k přihlášení (login.exe), ke změně kontextu (cx.exe) apod.

Mapování disků (4)

- -\MAIL:
 - adresář využívaný aplikacemi pro provoz sířové pošty v systému Novell
 - obsahuje jednotlivé mailboxy
- \DELETED.SAV:
 - adresář, který je využíván pouze samotným systémem
 - slouží k odkládání zrušených souborů, kterým byl zrušen i adresáť ve kterém se původně nacházely
 - díky tomuto adresáři je možné obnovovat i soubory ze smazaných adresáři
- \BIN: nejedná se již o standardní adresář, ale o adresář, který slouží k instalaci aplikačního SW

Mapování disků (5)

- Odkazy na jednotlivé svazky by porušovaly konvence MS-DOSu a nebylo by možné je používat jako parametry běžných přík azů
- Je tedy nutné provést tzv. mapování pomocí příkazu MAP
- Při mapování si nastavíme, že některé adresáře (v určitém svazku, na určitém serveru) se budou chovat jako logické disky, tj. dostanou přířazeno nějaké písmeno abecedy

Mapování disků (6)

• Příklad:

map G:=NS/SYS:\BIN
map H:=NS/USR:\HOME\%LOGIN_NAME
map I:=NS/USR:\TMP

Při mapování je vhodné použít rovněž parametru ROOT, který způsobí, že mapovaný adresář bude na logickém disku vystupovat jako kořenový:

map root G:=NS/SYS:\BIN

Prohledávací jednotky

- Prohledávací jednotky (search drives) byly zavedeny z důvodu omezení MS-DOSu na počet znaků v příkazu PATH
- Je možné je nastavit pomocí příkazu MAP
- Příklad:

map S2:=NS/SYS:\BIN\MSDOS

 Tento příkaz přiřadí adresáři \BIN\MSDOS další volné písmeno (od konce abecedy) jako logický disk a tento disk umístí do příkazu PATH na druhé místo

Správa sítě

- Pro správu sítě je možné použít následující utility:
 - -netadmin:
 - správa uživatel**ú** (vytváření, rušení účtu)
 - správa skupin uživatel
 - -filer:
 - nastavování práv k adresářům a souborům
 - -netuser:
 - tisky, posílání zpráv, mapování disků
 - -rconsole:
 - vzdálená správa serveru

Ochrana informací (1)

• Jménem a heslem:

- každý uživatel se přihlašuje pod určitým jménem (user name) přiděleným administrátorem sítě:
 - doporučuje se zkratka p#íjmení na 8 písmen
 - na jedno jméno se může současně přihlásit více uží vatelů (maximum je možné nastavit)
- dále může následovat požadavek na heslo:
 - Novell doporučuje, aby heslo bylo alespoň 5 znaků dlouhé
 - je možné vyžadovat minimální délku hesla a jeho periodické změny (případně změnu zakázat)

Ochrana informací (2)

- ani administrátor není schopen zjistit znění hesla
- lze nastavit tzv. intruder lockout, který po určitém počtu špatných přihlášení, zablokuje na určitou dobu účet

• Časovým omezením:

 pro každého uživatele je možné nastavit časový úsek, v rámci kterého může v síti pracovat

• Adresou stanice:

 lze nadefinovat, ze kterých pracovních stanic se může uživatel do sítě přihlásit

Ochrana informací (3)

Účtovacími službami:

- je možné nastavit tzv. účtování, kdy jsou uživateli z počáteční hodnoty konta strhávány částky za:
 - čas, po který je připojen do sítš
 - přečtený blok z file serveru
 - · zapsaný blok na file server
 - čas, po který má uživatel uloženy soubory na file
 - za každý požadavek na server (tisk apod.)

Ochrana informací (4)

- Přístupovými právy do adresářů (Trustee Rights):
 - omezují činnost uživatele, nebo skupiny uživatelů k souborům v adresáři a k samotnému adresáři
 - jsou dědičná automaticky se přenášejí do všech podřízených adresářů
 - nastavují se pomocí příkazů GRANT a RIGHTS
 - jedná se o následující práva:
 - R (Read): povoluje otevírání a tení soubort
 - W (Write): povoluje otevírání a modifikaci souborů

Ochrana informací (5)

• C (<u>C</u>reate): povoluje vytváření souborů, podadresářů a zápis do vytvořených souborů

• E (<u>E</u>rase): povoluje mazání existujících soubor**ů** a podadresá**řů**

• F (Find): povoluje výpis obsahu adresáře a podadresáři

• M (Modify): povoluje modifikaci atribut**ů** soubor**ů** a podadresá**řů**

 A (Access): povoluje minit přístupová práva do adresáře a podadresáři

 S (Supervisory): všechna práva pro daný adresář a podadresáře

Ochrana informací (6)

• Přístupová práva k souborům:

- omezují činnost uživatele nebo skupiny uživatelů ke konkrétnímu souboru
- platí, že přístupová práva do adresáře se týkají všech souborů v adresáři mimo těch, pro které byla definována přístupová práva k souborům
- nastavují se pomocí příkazů GRANT a RIGHTS
- jedná se o následující práva:
 - R (Read): povoluje otevírání a čtení souboru
 - W (\underline{W} rite): povoluje otevírání a modifikaci souboru
 - C (Create): umožuje obnovení souboru po jeho smazání (příkazem SALVAGE)

Ochrana informací (7)

- E (Erase): povoluje smazání souboru
- F (Find): povoluje zobrazení položky souboru ve výpisu adresá**t**e
- M (Modify): povoluje m**ž**nit atributy souboru
- A (Access): povoluje měnit přístupová práva k souboru
- S (Supervisory): neomezená práva pro daný soubor

Maska děděných práv:

 nastavují se příkazy ALLOW a RIGHTS (nebo pomocí utilty filer)

Ochrana informací (8)

- každý nově vytvořený adresář nebo soubor má nastavena všechna práva [SRWCEMFA]
- přístup se řídí definovanými přístupovými právy uživatelů a skupin uživatelů
- pro omezení nækterých operací všem uživatelům,
 lze změnit masku děděných práv
- logický součin přístupových práv do adresáře a maska děděných práv vytváří tzv. efektivní přístupová práva (effective rights), která označují skutečné možnosti práce uživatele v adresáři nebo se souborem

Ochrana informací (9)

- Příklad:

	R	W	С	Е	M	F	A	S
Přístupová práva	R	W	С	Е		F		
Maska děděných práv	R				M	F		
Efektivní práva	R					F		

• Atributy souborů:

- v Novellu mohou mít soubory následující atributy:
 - A (Archive Needed): soubor určený k archivaci
 - Sy (System): systémový soubor
 - H (Hidden): skrytý soubor

Ochrana informací (10)

- I (Indexed): zrychluje přístup k rozsáhlým souborům (automaticky přidělován pro každý soubor, který obsahuje více 64 položek FAT)
- T (Transacatinal): označuje transakční soubor
- P (Purge): nedovoluje zpetné obnovení po jeho smazání
- Ci (Copy Inhibit): zákaz kopírování (jen pro MacIntosh)
- Di (Delete Inhibit): zákaz smazání
- Ri (Rename Inhibit): zákaz přejmenování
- S (Shereable): soubor přístupný pro více užívatelů zároveů
- Ro (Read Only): soubor pouze pro Etení
- Rw (Read Write): soubor prístupný pro zápis

Ochrana informací (11)

- X (Execute Only): soubor je pouze spustitelný (nelze jej kopírovat ani upravit), může ho nastavit pouze administrátor a nelze jej zrušit.
- atributy dostupné od verze 4.00: jedná se zejména o atributy související s kompresí dat na disku a s jejich migrací (automatickým přesouváním na páskové popř. jiné mechaniky a zpět)
 - Cc (Can't Compress): soubor nemuže být komprimován, nastavován Novellem a nelze jej měnit

 - Dc (<u>D</u>on't <u>C</u>ompress): zabra<u>#</u>uje kompresi souboru
 - Dm (Don't Migrate): zabra**f**uje migraci souboru

Ochrana informací (12)

- Ds (<u>D</u>on't <u>S</u>ubalocate): zabra<u>ň</u>uje subalokaci blok
- Ic (Immediate Compress): soubor se ihned komprimuje
- M (<u>Migrated</u>): soubor migroval (byl odsunut), nætavován Novellem a nelze jej měnit

• Atributy adresářů:

- Adresáře mohou mít tyto atributy:
 - H (Hidden)
 - Sy (System)
 - P (<u>P</u>urge)
 - Di (Delete Inhibit)
 - Ri (Rename Inhibit)

Ochrana informací (13)

- Od verze 4.00 jsou rovněž dostupné následující atributy:
 - Dc (Don't Compress)
 - Dm (Don't Migrate)
 - Ic (Immediate Compress)

Zavádění OS ze sítě (1)

- Je nezbytné, aby síťová karta byla vybavena obvodem BootROM.
- Na file serveru je jsou v adresáři LOGIN uloženy obrazy (disk images) systémových disket, které pak poskytnou operační systém jednotlivým stanicím (podle nastavení v souboru boot conf.sys)
- Disk images je možné vygenerovat ze systémové diskety pomocí příkazu DOSGEN

Zavádění OS ze sítě (2)

• V souboru boot conf. sys je nutné provést následující nastavení:

0x2, 00C0494D2E = wd.sys

• kde:

− 0x2 interní číslo sítě

- 00C0494D2E ethernetová adresa karty

wd. sys jméno souboru s uloženým obrazem systémové diskety

NDS (1)

- NDS NetWare / Novell Directory Services je distribuovaná služba poskytující globální přístup ke všem síťovým zdrojům nezávisle na tom, kde jsou fyzicky umístěny
- Uživatel může pracovat ve víceserverové síti a používat celou síť jako informační systém
- NDS byla vyvinuta s hierarchickou strukturou directory tree, ve které se vyskytují dva druhy objektů (Container objects a Leaf objects)

NDS (2)

- Kromě těchto dvou druhů objektů v NDS ještě vystupují dva další objekty:
 - [Root]:
 - ko<u>*</u>enový objekt, který je nejvyšším objektem directory tree
 - je vytvořen během instalace prvního serveru v síti a nelze jej zrušit
 - jeho prostřednictvím lze přiřazovat práva celé stromové struktuře objektů

- [Public]

 prostředek pro přidělování práv všem, kteří nemají přitazena práva jiná

NDS (3)

- Container objects (uzlové objekty):
 - pomocné prvky ve stromové struktuře
 - poskytují logickou organizaci pro jiné objekty
 - zpravidla představují dílčí části celé organizace
 - mohou obsahovat:
 - · další container objects
 - · leaf objects
 - jsou definovány dva hlavní typy:
 - Organization (O):
 - reprezentuje první úroveh seskupování pro většinu sítí
 - může reprezentovat společnost, oddělení, ...
 - vždy je vyžadován alespo**±** jeden kontejner tohoto typu

NDS (3)

- Organizational Unit (OU):
 - může být použit jako sekundární úroveň seskupování
 - vhodný například pro sítěu nichž je obsah každého kontejneru Organization stále příliš velký
 - musí být umístěn v jiném kontejneru Organizational Unit nebo v kontejneru Organization
 - může obsahovat kontejnery Organizatinal Unit nebo objekty typu list
- dále existují kontejnery typu <u>C</u>ountry (C) a Locality (L), ale jsou málo používané
- poznámka: pokud má být použit kontejner typu Country, pak musí být v directory tree zařazen bezprostředně pod objekt [Root]

NDS (4)

- Objekty typu list:
 - reprezentují informace o aktuálních síťových položkách:
 - User: reprezentuje jednotlivce, který vlastní přístupová práva do sítě a může používat její zdroje. V rámci jeho vlastností je udržováno např. uživatelské a celé jméno uživatele, jeho přístupová práva, členství ve skupinách, uživatelský login script apod. Při instalaci je vždy vytvořen jeden objekt tohoto typu se jménem Admin a neomezenými právy
 - Group: reprezentuje seznam objektu typu user
 - Alias: odkaz na jiná místa. Může zjednodušit přístup k jinému objektu

fimuni.web3.cz

NDS (4)

- NetWare Server: libovolný server na němž běží libovolná verze systému NetWare. Je automaticky vytvářen při instalaci systému
- Printer: reprezentuje sítovou tiskárnu
- Print Server: reprezentuje sítový tiskový server
- Print Queue: reprezentuje sítovou tiskovou frontu
- Profile: reprezentuje sdílený (profilový) login script
- Volume: reprezentuje svazek na disku. Vytváří se automaticky při instalaci pro všechny svazky daného serveru.
- Organizational Role: slouží k definici jisté role v organizaci. Jeho pomocí lze vytvoňt správce dané větve directory tree.

NDS (5)

- Computer: reprezentuje pracovní stanici v síti. Není nutné jej používat. Má jen informativní charakter
- Directory Map: reprezentuje zadaný adresář v souborovém systému
- AFP Server: reprezentuje uzel sítě podporující protokol AppleTalk Filling Protocol
- Unknown: neidentifikovatelný (např. poškozený) objekt
- Aktuální poloha v directory tree je označována jako context, jeho změna se provádí pomocí příkazu CX

NDS (6)

 Kontext umožňuje přesně specifikovat daný objekt v directory tree

NDS (7)

- Jednotlivé objekty typu kontejner jsou zapisovány od kontejneru na nejnižší úrovni směrem ke kontejneru na úrovni vyšší
- Příklad: (jako oddělovač se používá tečka) novak.STUD2.FI
- V rámci jmen objektů lze používat také zkratky, který říkají o jaký typ objektu se jedná:

CN=novak.OU=STUD2.O=FI
CN (<u>C</u>ommon <u>N</u>ame) ozna**č**uje Leaf object

NDS (8)

- K objektům v NDS se vztahují tzv. object rights (práva objektů), která mu mohou být explicitně přidělena nebo mohou být zděděna od objektu nad ním:
 - S (Supervisor): všechna práva k objektu a jeho vlastnostem
 - B (Browse): právo umožňující vidět objekt v directory tree
 - C (<u>C</u>reate): umožňuje vytvořit nový objekt (lze pouze v Container object)
 - D (Delete): dovoluje smazat objekt

NDS (9)

- R (Rename): umož**ň**uje p**ř**ejmenovat objekt
- K vlastnostem objektů se vztahují tzv.
 property rights (práva vlastností), která umožňují přistupovat k hodnotám obsažených ve
 vlastnostech objektů:
 - S (Supervisor): všechna práva
 - C (Compare): právo srovnávat hodnoty vlastností
 - R (Read): právo prohlížet hodnoty vlastností
 - W (Write): právo přidávat, rušit a měnit hodnoty
 - A (<u>A</u>dd or Delete Self): umožňuje rušit a přidávat sama sebe jako hodnoty vlastností

Srovnání verzí Novellu (1)

- NetWare Lite:
 - sít peer-to-peer
- NetWare 2.20:
 - maximálnĕ 100 uzlů na každý server
 - server může pracovat ve vyhrazeném i nevyhrazeném režimu a může jím být počítač s procesorem 286 a vyšším
 - obsahuje zabezpečení Level II (pouze ve vyhrazeném režimu) jinak Level I
 - pracovní stanice může pracovat se systémy MS-DOS 2.x a vyšší, Windows 3.x, OS/2, MacOS

Srovnání verzí Novellu (2)

- podporuje souborový systém MacIntosh
- rozšiřitelný pomocí modulů * .vap
- NetWare 3.x:
 - maximáln**ě** 250 uzl**ů** na každý server
 - podporuje pouze vyhrazené servery, které musí mít alespoň procesor 80386
 - podporuje více souborových systémů (DOS, OS/2, UNIX, Windows 95 (98, NT))
 - rozšířitelný pomocí modulů * .nlm
 - server lze ovládat z pracovní stanice pomocí utility rconsole (i přes telefonní linku)

Srovnání verzí Novellu (3)

- podpora protokolu TCP/IP

- NetWare 4.x:
 - maximáln ₹ 1000 uzlů na každý server
 - zavádí NDS
 - podporuje kompresi souborů na disku
 - podporuje zařízení jako jsou optické disky
 - podporuje migraci dat (data migration)
 - rychlejší protokoly pro spojení s WAN

Sít' Internet

- celosvětová počítačová síť
- skládá se ze vzájemně propojených menších sítí ⇒ "síť sítí"
- původně byl vytvořen spojením různých výzkumných sítí a sítí ve vojenském průmyslu (NSFnet, MILnet, CREN)
- Předchůdcem Internetu byla síť ARPAnet
- Jako součást projektu ARPAnet byl vyvinut i síťový protokol TCP/IP, který je dnes používaný při komunikaci v Internetu

Adresace v Internetu (1)

- Každý počítač (popř. jiné zařízení) pracující v síti Internet musí mít nainstalovánu podpor protokolu TCP/IP ⇒ je vybaven tzv. IP adresou, která slouží jako jeho jednoznačná identifikace v rámci celého Internetu
- IP adresa:
 - 32 bitová adresa
 - obvykle se zapisuje dekadicky ve formě 4 čísel v intervalu (0; 255) oddělených tečkami

Adresace v Internetu (2)

- − skládá se ze dvou částí:
 - adresa sítă
 - adresa počítače
- adresa sítĕ je přidĕlena organizací NIC (Netwok Information Center)
- rozlišujeme následující třídy IP adres

Třída	Nejvyšší bity	Adresa sít ě	Adresa počítače
Α	0	7 bit å	24 bitů
В	10	14 bitu	16 bitü
C	110	21 bitů	8 bitů
D	1110	Multicast adresa (28 bitu)	
E	1111	Experimentální (28 bitu)	

Adresace v Internetu (3)

• Příklad: 147.251.48.3

kde:

- 147.251 Masarykova univerzita (NIC)

– 48 Fakulta informatiky

(správce sítě MU)

− 3 adresa po**č**íta**č**e na FI MU

(správce sítě FI)

 IP adresa může dále obsahovat tzv. adresu podsítě (IP Subnet Address)

Adresace v Internetu (4)

- Podsíť je část sítě, přičemž tato síť může z venku vypadat jako jeden element. Podsítě lze identifikovat podle kombinace adresy a tzv. masky podsítě (subnet mask)
- Maska podsít**ě** (subnet mask)
 - určuje kde končí hranice adresy sítě (včetně podsítě) a začíná adresa počítače
 - bity 1 označují adresu sítě
 - bity 0 označují adresu počítače
 - na FI MU je maska podsít**ĕ** 255.255.255.0

Adresace v Internetu (5)

• Poznámka:

 některé IP adresy mají speciální význam a nelze je použít pro identifikaci konkrétního zařízení, např.:

− 147.251.48.0 adresa sítě

− 147.251.48.255 všesměrové vysílání

(broadcast)

- 127.0.0.1 local host (adresa sama

na sebe - loopback)

Adresace v Internetu (6)

- Kromě IP adresy je možné při komunikaci v Internetu použít i tzv. adresu v doménovém tvaru
- Adresa v doménovém tvaru:
 - uvádí se v opačném pořadí než IP adresa
 - jedná se o jméno počítače následované posloupností domén
 - jako oddělovače se používá opět tečka
 - počet domén není nijak omezen a závisí pouze na administrátorech

fimuni.web3.cz

Adresace v Internetu (7)

- Př.: anxur.fi.muni.cz

• anxur počítač

fi Fakulta informatiky
muni Masarykova univerzita
cz Česká republika

• cz Ceska republika

- domény, vytvářejí stromovou strukturu
- v každé doméně je správce, který zodpovídá za domény na nižší úrovni
- adresu v doménovém tvaru je možné uvést neúplnou (např. anxur)

Adresace v Internetu (8)

Adresace v Internetu (8)

- Je-li použita adresa v doménovém tvaru, je nutné ji převést na IP adresu
- Tento převod se provádí pomocí DNS serveru
- DNS server Domain Name System server:
 - služba distribuovaného pojmenování použitá na Internetu
 - proces spuštěný na nějakém počítači, který převádí adresy v doménovém tvaru na IP adresy a naopak

Adresace v Internetu (9)

- v každé doméně musí být alespoň jeden DNS (většinou bývají dva)
- Hierarchie DNS serverů:
 - primární DNS server
 - sekundární DNS server:
 - uplatní se p**ř**i výpadku primárního DNS serveru
 - v ur titých tasových intervalech si kopíruje informace z primárního DNS serveru
 - cache-only DNS server:
 - dotazy zodpovídá pouze na základ informací ve své cache paměti

Adresace v Internetu (10)

- Pro komunikaci na fyzické vrstvě je nutné používat hardwarovou adresu síťové karty, která je specifická pro každou síťovou architekturu (Ethernet, ARCnet, ...)
- Převod IP adresy na hardwarovou se provádí pomocí protokolu ARP (<u>A</u>ddress <u>R</u>esolution <u>P</u>rotocol)
- ARP si udržuje interní tabulku IP adres a k nim odpovídající hardwarové adresy

Adresace v Internetu (10)

- Pokud patřičná IP adresa se v interní tabulce nenachází, tak počítač vyšle formou všesměrového vysílání speciální packet
- Jestliže počítač, který packet přijme má specifikovanou IP adresu, tak odpoví packetem se svou hardwarovou adresou
- Získaná hardwarová adresa je zapsána do intemí tabulky počítače, který původně inicioval dotaz

Adresace v Internetu (11)

- Opačným směrem pracuje protokol RARP (<u>Reverse ARP</u>), který převádí hardwarovou adresu na IP adresu
- RARP se používá zejména u bezdiskových stanic, které nemohou mít nikde poznačenu svou IP adresu
- Takový počítač nejdříve opět formou všesměrového vysílání zašle packet se svou hardwarovou adresou a jako odpověď dostane svou IP adresu

Propojování sítí (1)

- Propojování sítí je možné realizovat, např. pomocí:
 - Repeater
 - zesilovač, který předává veškeré informace z jednoho sírového segmentu na druhý
 - používá se k prodloužení sífového segmentu
 - − Router (směrovač):
 - zařízení předávající informace z jedné sítě do druhé v závislosti na jejich adrese
 - má za úkol poskytnout cestu ze síťového uzlu na uzel v jiné síti

Propojování sítí (2)

- bývá realizován hardwarovým zařízením pracujícím na úrovni sířové vrstvy
- může být realizován běžným počítačem, popř. specializovaným zařízením

Propojování sítí (3)

• Routovací tabulky (zjednodušené):

		<u> </u>		
Node	Network	Subnet Mask	Gateway	Interface
A	0.0.0.0	0.0.0.0	147.251.48.14	147.251.48.19
	147.251.48.0	255.255.255.0	147.251.48.19	147.251.48.19
В	0.0.0.0	0.0.0.0	147.251.48.14	147.251.48.50
	147.251.48.0	255.255.255.0	147.251.48.50	147.251.48.50
C	0.0.0.0	0.0.0.0	147.251.52.1	147.251.52.5
	147.251.52.0	255.255.255.0	147.251.52.5	147.251.52.5
D	0.0.0.0	0.0.0.0	147.251.52.1	147.251.52.10
	147.251.52.0	255.255.255.0	147.251.52.10	147.251.52.10
E	0.0.0.0	0.0.0.0	147.251.50.1	147.251.50.40
	147.251.50.0	255.255.255.0	147.251.50.40	147.251.50.40
G	0.0.0.0	0.0.0.0	147.251.61.61	147.251.61.62
	147.251.48.0	255.255.255.0	147.251.48.14	147.251.48.14
	147.251.52.0	255.255.255.0	147.251.52.1	147.251.52.1
	147.251.50.0	255.255.255.0	147.251.50.1	147.251.50.1
	147.251.61.60	255.255.255.252	147.251.61.62	147.251.61.62

Služby sítě Internet (1)

- Síť Internet poskytuje celou řadu služeb, které dovolují uživateli získávat a prezentovat informace
- Pro práci s jednotlivými službami je zpravidla nezbytné, aby uživatel měl na svém počítači nainstalovaný program - tzv. client
- Client musí být schopen komunikace se serverem, který službu poskytuje a zpřístupnit ji tak uživateli

Služby sítě Internet (2)

Pokud některý počítač má plnit úlohu serveru pro určitou službu, musí být na tomto počítači spuštěn program - server, který umožní navázání spojení a následnou komunikaci s clienty

UKL (1)

- Pro zpřístupnění určitého dokumentu (zdroje) na Internetu je nezbytné znát jeho jednoznačnou identifikaci
- Tato jednoznačná identifikace je dána prostřednictvím <u>URL</u> (<u>Uniform / Universal Resource Locator</u>)
- URL má následující obecný tvar: protocol://username:password@address:port/ path/file

kde:

URL (2)

- protocol: poskytuje informaci o komunikačním protokolu, který bude při přenosu dokumentu (zpřístupnění zdroje) použit. Např.:
 - http, https (<u>Hypertext Transfer Protocol</u>)
 - ftp (File Transfer Protocol)
 - gopher
 - mailto
 - news, newsrc
 - telnet
 - wais
 - file

URL (3)

- username: uživatelské jméno, které může být vyžadováno jestliže dokument není veřejně dostupný libovolnému uživateli
- password: heslo uživatele, který k dokumentu přistupuje
- address: adresa serveru na němž se daný dokument nachází. Jedná se zpravidla o adresu v doménovém tvaru, popř. IP adresu
- port: specifikuje hodnotu na úrovni transportní vrstvy použitou k rozlišení mezi několika aplikacemi, které mohou vlastnit spojení s jediným počítačem

URL(4)

- path: posloupnost adresářů, která specifikuje umístění dokumentu na daném serveru
- file: jméno zpřístupňovaného dokumentu
- Upozornění: systémy UNIX v částech path a file rozlišují velká a malá písmena
- Kromě výše uvedených částí mohou být v rámci URL uvedena ještě další upřesnění.
 Např.:
 - kotva: určuje konkrétní část HTML dokumentu
 - parametry: zpracovávané pomocí skriptů

fimuni.web3.cz

Telnet (1)

- Telnet (<u>Tel</u>etype Across a <u>Net</u>):
 - zajišťuje terminálovou emulaci pro přihlášení se do sítě ze vzdáleného místa
 - pomocí služby telnet lze provádět emulaci pouze znakového terminálu
 - v systémech UNIX je možné ji spustit pomocí příkazu telnet
 - ve Windows 95 (98, NT, 2000) lze službu telnet využívat prostřednictvím programu telnet.exe
 - při své činnosti telnet standardně používá port 23

Telnet (2)

příklad použití:

telnet anxur.fi.muni.cz

- nejdříve se pomocí DNS serveru převede jméno anxur.fi.muni.cz na IP adresu (147.251.48.3)
- následuje pokus o navázání spojení s příslušným počítačem
- jestliže se spojení úspříšně naváže, dojde k vytvoření virtuálního terminálu a uživatel může na daném počítači pracovat (po úspříšné autentifikaci, která je vříšinou vyžadována)
- službu telnet je možné použít i pro komunikaci s jinými službami

Telnet (3)

- k takovéto komunikaci je však nezbytné znát číslo portu, na kterém daná služba pracuje a její komunikační protokol, který uživatel musí sám obsluhovat
- telnet je používaný zejména k přihlášení se na počítače pracující se systémy UNIX

Základní příkazy OS UNIX (1)

- Adresáře se oddělují / (nikoliv \)
- Kořenový adresář se označuje /
- Nerozlišují se diskové jednotky jako v MS-DOSu (A:, B:, ...), ale jednotlivé disky se chovají jako adresáře
- Rozlišují se malá a velká písmena
- Příkazy:
 - − ls: vypíše obsah adresáře
 - chmod: změna přístupových práv

Základní příkazy OS UNIX (2)

chown: změna vlastníka
mkdir: vytvoří adresář
rmdir: zruší adresář

- cd: změna aktuálního adresáře
 - pwd: vypíše aktuální adresář

cp: kopíruje soubory
mv: přesouvá soubory
cat: vypíše obsah souboru
man: vypíše nápovědu o příkazu

FTP (1)

- FTP (File Transfer Protocol):
 - umožňuje přenos souborů mezi vzdálenými počítači
 - v UNIXu se spouští příkazem ftp
 - ve Windows je možné FTP službu aktivovat pomocí standardního programu ftp.exe, popř. pomocí nejrůznějších dalších programů pro práci s FTP (např. CuteFTP, WS FTP atd.)
 - FTP pracuje standardně formou příkazového řádku:

FTP (2)

- open: slouží k navázání (otevření) spojení se vzdáleným počítačem
- close: ukončuje (uzavírá) spojení se vzdáleným počítačem
- cd: dovoluje změnit aktuální adresář (na vzd. počítači)
- · dir, ls: provádí výpis aktuálního adresále
- lcd: dovoluje změnit adresář na lokálním pořítaři
- ascii: nastavuje płenos do režimu ASCII textový režim (nepłenáší se nejvyšší bit)
- bin: nastavuje prenos do binárního režimu
- get: přenese zadaný soubor ze vzdáleného počítače na počítač lokální

FTP (3)

- put: přenese zadaný soubor z lokálního počítače na počítač vzdálený
- mget, mput: dovolují přenést více souborů vyhovujících zadané masce (wildcard)
- reget: přenáší zbytek souboru ze vzdáleného počítače (musí být podporováno i serverem)
- prompt: vypíná (zapíná) interaktivní režim při přenosu více souborů pomocí mget a mput
- delete: smaže soubor na vzdáleném počítači
- mdelete: maže více soubor ½ zárove ∄
- hash: zapíná (vypíná) zobrazování znaku # v průběhu přenášení souboru

FTP (4)

- !příkaz: dovoluje provést příkaz lokálního počítače
- user: dovolí zadat uživatelské jméno
- bye: ukon**č**í práci s FTP
- při své činnosti ftp standardně používá port 21

• Anonymní FTP:

- služba provozovaná na poměrně velkém množství počítačů (anonymních FTP serverů) v Internetu
- není požadováno, aby uživatel měl zřízen svůj vlastní účet. Místo toho se využívá účtu:

FTP (5)

- username: anonymous
- · password: e-mail address
- Uživatelské jméno anonymous může být nahrazeno i jiným jménem (ftp, guest), v závislosti na tom, jaký je použit server

Vyhledávání v FTP (1)

• Parker:

- služba dovolující prohledávání obsahu anonymních FTP serverů
- je možné pomocí ní vyhledat, kde se nachází určitý soubor
- zpřístupňuje se pomocí služby telnet:

telnet parker. vslib.cz

login parker

(heslo není vyžadováno)

další komunikace probíhá pomocí menu

Vyhledávání v FTP (2)

• Archie:

- služba podobná služb

 € Parker
- zpřístupňuje se rovněž pomocí služby telnet: telnet archie.univie.ac.at login archie

(heslo není vyžadováno)

E-Mail (1)

• E-Mail (Electronic Mail):

- služba určená pro zasílání zpráv (pošty) mezi uživateli
- každý uživatel, který chce přijímat poštu, musí mít zřízenou poštovní schránku (mailbox)
- jednotlivé zprávy se zasílají na e-mailovou adresu, která má tvar:

username@domain (např. pelikan@fi.muni.cz)

v zápisu adresy se většinou neuvádí jméno počítače, který poštu přijímá (mail server), ale pouze doména, do které se zpráva posílá

E-Mail (2)

- mail server je určen příslušným záznamem v DNS serveru
- pokud je adresa uživatele, kterému je zpráva zasílána, uvedena chybně (neexistuje), je zpráva vrácena odesílateli jako nedoručitelná
- e-mail byl původně určen pro zasílání pouze textových zpráv
- je-li zapotřebí poslat prostřednictvím elektronické pošty nějakou zprávu, která není textová (např.: obrázek, zvukový záznam, přeložený program apod.), je nutné ji nejdříve zakódovat

E-Mail (3)

- zakódování převede binární informaci (znaky s ASCII kódy 0 - 255) na informaci textovou (znaky s ASCII kódy 32 - 127)
- zakódování je možné provést pomocí programu:
 uuencode file₁ file₂ > file₃

kde

- file: jméno souboru, který bude zakódován
- file₂: jméno, které bude mít soubor po dekódování
- file₃: jméno zakódovaného souboru
- pozn.: před zakódováním je vhodné soubor nejdříve zkomprimovat (např. pomocí zip, arj)

E-Mail (4)

 soubor zakódovaný pomocí uuencode je možné poslat jako běžnou textovou zprávu a na straně příjemce jej dekódovat pomocí:

uudecode file

- po provedení vznikne nový soubor s názvem file,
- kromě uuencode (uudecode) lze použít i jiné programy (např. BinHex)
- netextové dokumenty lze rovněž zasílat formou přílohy (attachment), kdy zakódování a dekódování provádí sám program pro posílání (příjem a zpracování) pošty

E-Mail (5)

- pro práci s elektronickou poštou je možné použít např. následující programy:
 - elm. pine
 - Outlook, Netscape Mozilla, Pegasus Mail, Eudora
- pokud uživatel nepracuje přímo na počítači, který přijímá (odesílá) poštu, je možné využít:
 - POP3 (Post Office Protocol): poskytuje prstup k mailboxu, odkud si uživatel muže vybírat své dočasně uložené zprávy
 - SMTP (Sipmle Mail Transfer Protocol): protokol aplikatní vrstvy, který dovoluje zasílání a přijímání zpráv (využívá služeb protokolu TCP/IP)

WWW (1)

- WWW (World Wide Web):
 - dnes zřejmě nejpoužívanější služba sítě Internet
 - reprezentuje síť odkazů na hypertextové dokumenty označované též jako Web Pages (webovské stránky)
 - pro zpřístupnění služby WWW je nutné mít nainstalovaný prohlížecí program - browser, např.:
 - Internet Explorer
 - Netscape Communicator (Navigator)
 - informace o dokumentech a přístupu k nim jsou řízeny a poskytovány WWW servery

WWW (2)

- komunikace mezi WWW serverem a prohlížecím programem je prováděna pomocí přenosového protokolu HTTP (Hypertext Transfer Protocol)
- jednotlivé Web Pages jsou popsány pomocí znadkovacího jazyka HTML (Hypetext Markup Language), popř. dalších prostředků (JavaScript, JavaApplet, ASP, ...)
- Web Pages mohou obsahovat odkazy nejen samy na sebe, ale i na dokumenty v libovolných jiných formátech, popř. odkazy zprostředkovávající komunikaci pomocí jiných služeb (FTP, E-mail, ...)

Vyhledávání ve WWW

- Vyhledávání informací v prostředí WWW lze provádět např. pomocí služeb:
 - Altavista http://www.altavista.com/
 - Yahoo http://www.yahoo.com/
 - Infoseekhttp://www.infoseek.com/
 - WebCrawler http://www.webcrawler.com/
 - Lycoshttp://www.lycos.com/Seznamhttp://www.seznam.cz/
- Všechny tyto služby jsou dostupné opět prostřednictvím služby WWW

Další služby sítě Internet (1)

- Služby pro práci s elektronickou poštou prostřednictvím služby WWW:
 - dovolují zřízení mailboxu (většinou anonymně a bezplatně) a následné zasílaní a příjem zpráv elektronickou poštou
 - Nap¥.:
 - http://www.post.cz/
 - http://www.email.cz/
 - http://www.hotmail.com/
 - http://mail.yahoo.com/

Další služby sítě Internet (2)

- Gopher:
 - služba, která organizuje a poskytuje přístup k hierarchicky příbuzným informacím (katalogy, knihovny, databáze, novinky atd.)
 - pro zjednodušení práce se službou gopher je možné využít služby:
 - Veronica: umožňuje prohledávat přístupné gopher servery
 - Jughead: umožiuje omezit prohledávání na určitou skupinu gopher serverů
 - dnes se již používá poměrně málo

Další služby sítě Internet (3)

- Usenet News:
 - volná síť diskusních skupin o různých tématech
 - jedná se o "elektronické noviny"
 - oficiálně byly založeny např. skupiny:
 - comp: pojednává o počítačích (HW, SW a další)
 - sci: věda a výzkum
 - soc: společenské a politické záležitosti
 - misc: ostatní témata
 - jako neoficiální vznikly např:
 - alt, biz, gnu, ...

Další služby sítě Internet (4)

- Talk:
 - dovoluje dvĕma uživatelům spolu vzájemnĕ komunikovat v "reálném ĕase"
- IRC (Internet Relay Chat):
 - rozšiřuje možnosti služby talk tak, aby mohlo vzájemně konverzovat více uživatelů
- MUD (Multi-User Dungeon):
 - služba vytvářející prostředí (adventure) hry, ve které jednotliví hráči vystupují v určitých rolích a plní určité úkoly

Další služby sítě Internet (5)

- ICQ (I Seek You): http://www.icq.com/
 - služba umožňující komunikaci mezi uživateli (podobně jako e-mail)
 - umožňuje zjistit, zda-li uživatel je momentálně u počítače
 - dovoluje i přenos souborů
- Hot Line: http://www.bigredh.com/
 - služba kombinující prvky některých již známých služeb - FTP (včetně vyhledávání, které funguje pomocí tzv. Hot Line Trackers), Chat, News

Další služby sítě Internet (6)

- Napster: http://www.napster.com/
 - služba, která slouží k výměně audio souborů ve formátu MP3

Jazyk HTML (1)

- Jazyk HTML (Hypertext Markup Language) se používá pro vytváření Web Pages (www stránek)
- HTML používá text a sadu formátovacích značek, označovaných jako tzv. tagy
- Jednotlivé tagy jsou při zpřístupnění www stránky interpretovány prohlížecím programem, který podle nich informace ve www stránce formátuje

Jazyk HTML (2)

- Tagy se zapisují vždy mezi symboly <>,
 čímž jsou odlišeny od běžného textu
- Tagy lze rozdělit do dvou skupin:
 - párové: používají se tém vždy v páru a vymezují tak část dokumentu, která bude mít určité specifické vlastnosti (např. bude napsána tučně, bude centrována apod.)
 - <TAG> </TAG>
 - nepárové: vystupují v dokumentu samostatně a provádějí nějakou jednorázovou akci (např. vložení obrázku, oddělovací čáry apod.)

Jazyk HTML (3)

- U většiny tagů mohou být ještě uvedeny tzv. atributy, které modifikují (upřesňují) jak bude tag interpetován
- Zápis atributu má tvar:
 - JMENO
 - JMENO=HODNOTA
- Obsahuje-li HODNOTA více slov, pak musí být uvedena v uvozovkách nebo apostrofech
- Při zápisu tagů a jejich atributů se nerozlišují velká a malá písmena (case insensitive)

Struktura HTML dokumentu

HTML Tagy (1)

- Základní tagy:
 - <HTML>...</HTML>
 - identifikuje dokument v jazyce HTML
 - <HEAD> ... </HEAD>:
 - vymezuje hlavičku HTML dokumentu
 - <TITLE> ... </TITLE>:
 - specifikuje titulek, který bude zobrazen v titulním pruhu prohlížecího programu (uvádí se v hlavišce HTML dokumentu)
 - <BODY> ... </BODY>:
 - vymezuje talo HTML dokumentu
 - atributy:
 - BOTTOMMARGIN, TOPMARGIN, LEFTTMARGIN, RIGHTMARGIN = velikost: udává po vald velikost (v pixelech) dolního, horního, levého a pravého okraje dokumentu

HTML Tagy (2)

- BACKGROUND = URL: obrázek, který bude umíst**u**n na pozadí str.
- BGCOLOR = barva: barva pozadí stránky ve formátu #RRGGBB, kde RR, GG, BB jsou v rozsa hu 00 až FF a udávají hodnoty dervené, ze lené a modré složky barvy
- BGPROPERTIES = FIXED: způsobí, že se podklad okna nebude rolovat společnů s jeho obsahem
- LINK = barva: barva dosud neakti vovaného hyperte xtového odkazu (#RRGGBB)
- ALINK = barva: barva právě aktivovaného hypertextového odkazu (#RRGGBB)
- VLINK = barva: barva hypertextového odkazu, který již d∯ive byl aktivován (#RRGGBB)
- TEXT = barva: barva textu (#RRGGBB)
- SCROLL = YES | NO: povoluje (YES) nebo zakazuje (NO) automatické z obrazování rolovacích lišt

HIML Tagy (5)

- Změna písma:
 - <H1>... </H1>, <H2>... </H2>, ..., <H6>... </H6>:
 - šest úrovní hlaviček (nadpisů)
 - provádí automaticky všechny změny fontu a odřádkování před a za nadpisem
 - · atributy:
 - ALIGN = LEFT | CENTER | RIGHT: provede zarovnání hlavišky (doleva, do středu, doprava)
 - ... :
 - tu**č**né písmo (bold)
 - <**I**> . . . <**/**I>:
 - sklonané písmo (italic)
 - <U> ... </U>:
 - podtržené písmo (underline)

HTML Tagy (4)

- <STRIKE> ... </STRIKE>:
 - p#eškrtnuté písmo
- <TT> ... </TT>:
 - · neproporcionální (strojopisné) písmo
- ^{...}:
 - horní index (superscript)
- _{...}:
 - dolní index (subscript)
- <BASEFONT> ... </BASEFONT>:
 - mění vlastnosti implicitního písma
 - atributy:
 - SIZE = velikost: velikost písma v rozmezí 1 až 7. Velikost může být zadána také relativnů vzhledem k předešlému nastavení, a to pomocí znaménka +/- (např. SIZE = +1, SIZE = -2)

HTML Tagy (5)

- COLOR = barva: barva písma (#RRGGBB)
- FACE = font: jméno fontu, kterým bude text vypisován
- ... :
 - mění vlastnosti písma, relativní změny velikosti jsou vztaženy k nastavení danému v <BASEFONT>
 - atributy:
 - COLOR = barva: barva písma (#RRGGBB)
 - FACE = font: jméno fontu, kterým bude text vypisován
 - SIZE = ve likost: velikost písma (viz <BASEFONT>)
- Formátování textu:
 - <P> ... </P>
 - začátek odstavce, ukončení pomocí </P> není vyžadováno
 - atributy:
 - ALIGN = LEFT | CENTER | RIGHT | JUSTIFY : zarovnání

HTML Tagy (6)

-
:
 - vloží zalomení řádku
 - atributy:
 - CLEAR = LEFT | RIGHT | BOTH: posune další text vertikálni dolů dokud není příslušný okraj volný
- <NOBR> ... </NOBR>:
 - text bude umíst**ě**n na jednom **ř**ádku
- <WBR>
 - urďuje místo, kde je možné eventuálně uvnit tagu <NOBR> provést rozdělení textu na další žádek
- <PRE> ... </PRE>
 - zobrazí text neproporcionálním písmem
 - formátování textu bude provedeno stejným způsobem, jak je zapsáno v HTML dokumentu

HTML Tagy (7)

- <CENTER> . . . </CENTER>:
 - text bude horizontáln
 i centrován
- <BLOCKOUOTE> ... </BLOCKOUOTE>:
 - text bude naformátován do odstavce odsazeného zprava i zleva
- Hypertextové odkazy:
 - <A> ... :
 - · atributy:
 - HREF = URL: specifikuje URL, na které odka z ukazuje
 - NAME = kotva: umistuje do HTML dokumentu značku (kotvu), která mrže být použita jako cíl hypertextového odkazu
- · Obrázky:
 -
 - · vkládá do HTML dokumentu obrázek

HTML Tagy (8)

- podporované formáty jsou GIF, JPG
- · atributy:
 - SRC = URL: specifikuje odkaz na vkládaný obrázek
 - ALT = text: text, který se má vypsat, jestliže obrázek nelze zobrazit
 - ALIGN = LEFT | RIGHT | TOP | TEXTTOP | MIDDLE | ABSMIDDLE | BASELINE | BOTTOM | ABSBOTTOM
 - BORDER tlouš¢ka
 - HEIGHT = výška: stanovuje vertikální rozm

 r obrázku (v pixelech)
 - WIDTH = šika: stanovuje horizontální roz mikr obrázku (v pixe lech)
 - HSPACE = vzdálenost: nastavuje horizontální vzdálenost obrázku od textu
 - VSPACE = vzdálenost: nastavuje vertikální vzdálenost obrázku od
 textu

HTML Tagy (9)

- Seznamy:
 - <UI.> . . </UI.>:
 - vytváří odrážkovaný (neďslovaný) seznam
 - každá položka seznamu musí být uvedena v tagu
 - atributy:
 - TYPE = DISC | SQUARE | CIRCLE: urduje typ odrážky
 - ... :
 - vytváří ďslovaný seznam
 - každá položka seznamu musí být uvedena v tagu
 - atributy
 - START = hodnota: počáteční hodnota, od které se bude číslování provádět
 - TYPE = A | a | I | i | 1: udá vá způsob dí slování

HTML Tagy (10)

- _ ... :
 - specifikuje položku seznamu (v rozmezí < UL> ... nebo < OL> ... tagu)
 - ukonovací tag není vyžadován
 - atributy
 - VALUE = hodnota: změní číslo položky v číslovaném seznamu
 - TYPE = DISC | SQUARE | CIRCLE | A | a | I | i | 1: zmení typ odrážky
- <DL> ... </DL>:
 - vytváří seznam
 - každá položka seznamu musí být uvedena v tagu <DT> nebo <DD>
- <DT> ... </DT>:
 - nadpis položky v seznamu (umístí se na začátek řádku)

HTML Tagy (11)

- <DD> . . </DD>:
 - text položky v seznamu (vzhledem k nadpisu je odsazen doprava)
- Tabulky:
 - <TABLE> ... </TABLE>:
 - vytvá**ř**í tabulku
 - · atributy:
 - ALIGN = LEFT | CENTER | RIGHT
 - BORDER tlouš**t**ka
 - BACKGROUND URL
 - BGCOLOR = barva: barva pozadí tabulky (#RRGGBB)

HTML Tagy (12)

- BORDERCOLOR = barva: barva okraja tabulky (#RRGGBB)
- BORDERCOLORLIGHT = barva: barva pro pravé a dolní okraje (#RRGGBB)
- BORDERCOLORDARK = barva: barva pro levé a horní okraje (#RRGGBB)
- CELLPADDING = velikost: velikost mezery mezi daty v butce tabulky a okrajem butky
- CELLSPACING = velikost: velikost mezery mezi bulkami
- COLS = polet: urduje polet sloupc v tabulce
- HEIGHT = výška: výška celé tabulky (v pixelech nebo v procentech)
- WIDTH = ší ka: ší ka celé tabulky (v pixelech nebo v procentech)

- <TR> ... </TR>:

• vymezuje łádek tabulky

HTML Tagy (13)

- atributy:
 - ALIGN = LEFT | CENTER | RIGHT
 v bunkách na daném rádku
 - VALIGN = TOP | MIDDLE | BOTTOM | BASELINE dat v bu**n**kách na daném **l**ádku
 - BORDERCOLOR, BORDERCOLORLIGHT,
 BORDERCOLORDARK, BGCOLOR: jako v předešlém případě,
 ale vztahují se pouze k danému řádku
- <TD> ... </TD>:
 - vymezuje jednu bułku tabulky
 - atributy:
 - ALIGN, VALIGN, BORDERCOLOR, BORDERCOLOR-LIGHT, BORDERCOLORD ARK, BGCOLOR: jako v předešlém případě, ale vztahují se pouze k dané buřce tabulky
 - BACKGROUND = URL: specifikuje obrázek, který bude na pozadí bu**n**ky

HTML Tagy (14)

- COL SPAN = počet: udává kolik sloupců tabulky má být spojeno do jedné buůky
- ROWSPAN = potet: udává kolik tádka tabulky má být spojeno do jedné bunky
- HEIGHT = výška: udává výšku bulky (celého ládku, protože všechny bulky v ládku musí mít stejnou výšku)
- WIDTH = šířka: udává šířku buřky (celého sloupce, protože všechny buřky v sloupci musí mít stejnou šířku)
- NO WRAP: zabra $\mathbf{f}_{\mathbf{u}}$ ije zobrazení dat v bu $\mathbf{f}_{\mathbf{u}}$ ce tabulky do více $\mathbf{f}_{\mathbf{d}}$ dk \mathbf{u}
- <TH>... </TH>:
 - vymezuje hlavičku tabulky
 - atributy:
 - stejné jako u <TD>

HTML Tagy (15)

- Další tagy:
 - <HR>:
 - vloží do textu vodorovnou čáru
 - atributy:
 - ALIGN = LEFT | CENTER | RIGHT
 - COLOR = barva: barva dáry (#RRGGBB)
 - NOSHADE: potlačuje stínování čáry
 - SIZE = tloušťka: tloušťka ťáry pixelech
 WIDTH = délka: délka ťáry v pixelech nebo v procentech
 - < META>:
 - predává dodatečné informace o dokumentu
 - bývá uváděn v hlavičce HTML dokumentu

HTML Tagy (16)

- · atributy:
 - CONTENT = obsah: udává hodnotu obsah z informační dvojice jméno/obsah
 - NAME = jméno: udává hodnotu jméno z informační dvojice jméno/obsah
 - HTTP-EQUIV = text: společně s atributem CONTENT zadává informace, které se vloží do HTTP hlavičky.
- tag <META> může být použit např. pro nastavení informací o použité kódové stránce, informací o autorovi atd.:
 - <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1250">
 - <META NAME="Author" CONTENT="Jaroslav PELIK AN">

HTML Tagy (17)

- _ <!-- ... -->
 - označuje poznámku v HTML dokumentu
- Poznámka:
 - většina tagů povoluje použití i atributu:
 - TITLE = text: plovoucí nápověda, která se zobrazí, je-li nad daným prvkem umístěn kurzor myši

Barvy

- Při zápisu barev je možné místo definice ve formátu #RRGGBB použít i předdefinované označení:
 - BLACK, SILVER, GREY, WHITE, RED, MAROON, PURPLE, FUCHSIA, GREEN, LIME, OLIVE, YELLOW, NAVY, BLUE, TEAL, AQUA

Speciální znaky

 Jel-li zapotřebí v HTML dokumentu zapsat znak, který má na daném místě svůj řídící význam, pak je možné použít:

Numericky	Symbolicky	Symbol
& #034	"	,,
& #038	&	&
& #060	<	<
& #062	>	>
& #160		tvrdá mezera

Pravidla na FI (1)

- Studentské HTML stránky musí být umístěny v podadresáři public_html domovského adresáře (na serveru aisa.fi.muni.cz)
- Adresář public_html musí mít nastavena práva, tak aby všichni uživatelé jím mohli alespoň procházet:

• V adresáří public_html by se měl nacházet soubor index.html

Pravidla na FI (2)

- Soubor index.html se zobrazuje jako první soubor po zadání URL, ve kterém není explicitně žádný soubor specifikován
- Všechny soubory, které mají být dostupné musí mít nastavena práva tak, aby je všichni uživatelé mohli číst:

 URL domovské stránky uživatele: http://www.fi.muni.cz/~username/

