uc3m Universidad Carlos III de Madrid

Máster en Ciencia Tecnología Informática

Clasificación de textos

Tecnologías Emergentes en la Sociedad de la Información

Qué es clasificación de textos?

 Consiste en asignar a un documento una o varias categorías (clases).

Ejemplos de aplicaciones

Identificar si un email es spam o no

Identificar idioma de un texto

Clasificación de noticias

Sentiment Analysis

Sentiment Analysis

A una persona le ha parecido esto útil

Útil

Comentar Informar de un abuso

Más ejemplos

- Identificar mensajes obscenos o ofensivos (redes sociales).
- Detectar casos de anorexia.
- Detectar casos de posibles suicidios.
- Clasificación de notas clínicas de pacientes para estimar las probabilidades de metástasis.
- Identificación de cohortes de pacientes para ensayos clínicos.

•

Arquitectura Clasificación de Textos (fase de entrenamiento)

Arquitectura Clasificación de textos (fase de evaluación)

Arquitectura (fase de entrenamiento)

Preprocesamiento

- Limpiar los textos de palabras innecesarias.
- Las tareas más comunes son:
 - 1) Tokenización.
 - 2) Eliminar signos de puntuación y caracteres especiales.
 - 3) Eliminar stopwords
 - 4) Stemming o lematización.

Preprocesamiento: Lematización vs Stemming

- Disminuyen la variabilidad léxica.
 - Lematización: obtener el lema o forma canónica de una palabra.
 - caros, caras, carísimo -> caro
 - Stemming: obtener la raíz (stem) de la palabra.
 - alojamos, alojaremos, alojé -> aloj-

Lematizador online: http://www.gedlc.ulpgc.es/investigacion/scogeme02/lematiza.htm

⁻ Stemmer online: https://snowballstem.org/demo.html

Arquitectura (fase de entrenamiento)

Vectorización

- Cada texto es representado como un conjunto de características (ej, número de palabras positivas, número de palabras negativas).
- Transformar textos en vectores de números.
- Los enfoques más utilizados son:
 - Bolsa de Palabras.
 - TF-IDF
 - Word Embeddings

Vectorización: Bolsa de Palabras (Bag of Words)

Pasos:

- 1. Preprocesamiento (eliminar stopwords y lematización).
- 2. Se obtiene el vocabulario (lista de palabras distintas) de todos los documentos.

Vectorización: Bolsa de Palabras

3. Cada documento se representa como un vector de las frecuencias de sus palabras.

D1: El gato grande está en la mesa y el gato pequeño en la ventana.

D2: La mesa y la ventana son pequeños.

D3: La luna y el árbol son grandes.

Vectores (features):

	árbol	balón	gato	grande	luna	mesa	pequeño	ventana	Z00
D1	0	0	2	1	0	1	1	1	0
D2	0	0	0	0	0	1	1	1	0
D3	1	0	0	1	1	0	0	0	0

Vectorización: TF-IDF

- Extensión del modelo de bolsa de palabras.
- Cada documento es representado con la TF-IDF de sus palabras.
- Esta métrica, TF-IDF, consigue disminuir el peso de las palabras que son muy comunes en toda la colección de documentos.

Vectorización: TF-IDF

Term frequency - inverse document frequency.

$$tf_{x,y} \times log(\frac{N}{df_x})$$

$$tf_{x,y}$$
 = frequency of x in y
 df_x = number of documents containing x
N = total number of documents

https://mropengate.blogspot.com/2016/04/tf-idf-in-r-language.html

Vectorización:TF-IDF

D1: El gato grande está en la mesa y el gato pequeño en la ventana.

D2: La mesa y la ventana son pequeños.

D3: La luna y el árbol son grandes.

REPRESENTACIÓN USANDO BOLSA DE PALABRAS

	árbol	balón	gato	grande	luna	mesa	pequeño	ventana	Z00
D1	0	0	2	1	0	1	1	1	0
D2	0	0	0	0	0	1	1	1	0
D3	1	0	0	1	1	0	0	0	0

REPRESENTACIÓN USANDO TF-IDF

	árbol	balón	gato	grande	luna	mesa	pequeño	ventana	Z00
D1	0	0	0.95	0.17	0	0.17	0.17	0.17	0
D2	0	0	0	0	0	0.17	0.17	0.17	0
D3	0.47	0	0	0.17	0.47	0	0	0	0

Limitaciones de Bolsa de Palabras y TF-IDF

- Vectores con una alta dimensionalidad y muy dispersos.
- NO capturan el orden de las palabras.
 - "El hotel era bueno y no era caro" != "El hotel era caro y no era bueno".
- NO capturan similitudes semánticas:
 - "precio carísimo" ~ "importe prohibitivo"

Vectorización: Word Embeddings

- Se construye a partir de una gran colección de documentos.
- Representación de palabras en vectores, capaces de capturar las relaciones semánticas y sintácticas entre las palabras.
- Herramientas: Word2Vec,FastTest, Glove
- Demo: http://bionlp-www.utu.fi/wv_demo/

Word Embeddings

Word Embeddings

Arquitectura (fase de entrenamiento)

Algoritmos de Clasificación

- kNN
- Support Vector Machines
- Tree decisions and Random Forest
- MLP
- Deep Learning models.
- ...

Algoritmos: Naïve Bayes

$$C_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(c \mid d)$$

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d|c)P(c)}{P(d)}$$

$$= \operatorname*{argmax} P(d \mid c)P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, ..., x_n \mid c) P(c)$$

$$C_{NB} = \operatorname*{argmax}_{C \in C} P(C_j) \prod_{x \in X} P(x \mid C)$$

C={Positivo, Negativo}

Algoritmos: k-Nearest Neighbor

https://es.wikipedia.org/wiki/K vecinos m%C3%A1s pr%C3%B3ximos

O Positivo

Negativo

Algoritmos: SVM

MultiLayer Perceptron (MLP)

Positivo

no

duermo

bien

Negativo

$$Softmax(z_j) = rac{\sum e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

Hidden layer Output layer

Algoritmos: Deep Learning (CNN)

Arquitectura Clasificación de textos (fase de evaluación)

¿Cómo evaluar?

		Actual			
		Positive	Negative		
cted	Positive	True Positive	False Positive		
Predicted	Negative	False Negative	True Negative		

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

¿Cómo evaluar? - Precision

		Actual			
		Positive	Negative		
cted	Positive	True Positive	False Positive		
Predi	Negative	False Negative	True Negative		

Precision = TP / (TP + FP)

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

¿Cómo evaluar? - Recall

		Actual			
		Positive	Negative		
cted	Positive	True Positive	False Positive		
Predicted	Negative	False Negative	True Negative		

Precision = TP / (TP + FN)

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c

¿Cómo evaluar? - F1

		Actual			
		Positive	Negative		
cted	Positive	True Positive	False Positive		
Predicted	Negative	False Negative	True Negative		

F1= 2*Precision*Recall/ (Precision + Recall)

Algunos consejos prácticos

- Muchísimos datasets para trabajar en Text Classification (y en particular, en Sentiment Analysis!!!).
 - Español: TASS http://www.sepln.org/workshops/tass/, ...
 - Inglés: IMDB reviews (inglés), Rotten Tomatoes dataset, Twitter US
 Airline Sentiment, etc... (https://data.world/datasets/sentiment)
- Lenguaje Python (Google Colab).
- Librerías NLP: Spacy, NLTK, TextBlob..
- Librerías Word Embeddings: gensim.
- Librerías Machine learning y Deep Learning: scikit-learn, Keras,
 PyTorch.
- Librerías Análisis de datos y visualización: pandas, scipy, numpy,
 MatPlobLib.
- Disfrutar!!!.

Resumen

- La clasificación de textos consiste en asignar una categoría a un texto.
- Los textos son preprocesados y limpiados (tokenización, stopwords, lematización, etc).
- Los textos deben ser representados como vectores de números. Los enfoques más utilizados son bolsas de palabras, TF-IDF, y word embeddings.
- Una vez representados, utilizamos algún algoritmo para entrenar un modelo, que será aplicado sobre el dataset de test.

Resumen

- Enfoque supervisado =
 - training dataset: textos con sus clases.
 Utilizamos estos textos para entrenar un modelo de un algoritmo de clasificación.
 - test dataset: textos sin clases. El objetivo es asignar una clase a cada documento.
- Algoritmos: SVM, kNN, Deep Learning, etc.
- Evaluación: calculamos las métricas de precisión, recall y F1. Para ello se comparan las clases reales de los documentos del dataset de test y las clases asignadas por el modelo entrenado.