Fitting Mixed-effects Models in R and Julia

Douglas Bates, U. of Wisconsin-Madison

July 19, 2013

Some background on the theory

Effects - fixed and random

- Mixed-effects models, like many statistical models, describe the relationship between a response variable and one or more covariates recorded with it.
- Coefficients associated with the levels of a categorical covariate are sometimes called the *effects* of the levels.
- When the levels of a covariate are fixed and reproducible (e.g. a covariate sex that has levels male and female) we incorporate them as fixed-effects parameters.
- When the levels of a covariate correspond to the particular observational or experimental units in the experiment we incorporate them as *random effects*.

An example - student evaluations of instructors

• The InstEval data set from the lme4 package for R provides evaluation scores of 1128 instructors (d) in 14 departments by 2972 students (s). The service column indicates a service course.

```
> str(InstEval)
```

```
: Factor w/ 1128 levels "1", "6", "7", "8", ...: 525 560 832 1
$ studage: Ord.factor w/ 4 levels "2"<"4"<"6"<"8": 1 1 1 1 1 1 1 1
$ lectage: Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 2 1 2 2 1 1
$ service: Factor w/ 2 levels "0", "1": 1 2 1 2 1 1 2 1 1 1 ...
$ dept : Factor w/ 14 levels "15", "5", "10", ...: 14 5 14 12 2 2 13
```

\$ s : Factor w/ 2972 levels "1", "2", "3", "4", ...: 1 1 1 1 2 2 3 3

• Our purpose is not to compare individual students so much as to account for the variability amongst students.

: int 5 2 5 3 2 4 4 5 5 4 ...

'data.frame': 73421 obs. of 7 variables:

Mixed-effects models

- A model that incorporates both fixed-effects parameters and random effects is called a *mixed-effects* model.
- Mixed-effects models can be very large and complex. Models with over a million random-effects parameters fit to several million observations are not uncommon in some areas.
- Typically factors modeled with fixed-effects have a small number of levels, those modeled with random effects have a large number of levels.
- Random effects are modeled as a sample from a population, usually multivariate Gaussian with mean $\mathbf{0}$ and a parameterized covariance matrix, Σ_{θ} .

Formulation of a mixed-effects model

- There are many ways to write mixed-effects models most of them misleading. I will define them in terms of two vector-valued random variables, $\mathcal Y$ and $\mathcal B$.
- ullet The unconditional distribution of ${\cal B}$ is ${\cal B} \sim {\cal N}({f 0}, {f \Sigma}_{ heta})$
- The conditional distribution, $\mathcal{Y}|\mathcal{B} = \mathbf{b}$, depends on the *linear predictor*, $\boldsymbol{\eta}$, evaluated from model matrices, \boldsymbol{X} and \boldsymbol{Z} , and the fixed-effects parameter vector, $\boldsymbol{\beta}$.

$$\eta = X\beta + Zb$$

 In the case of a linear mixed-effects model the conditional distribution is

$$\mathcal{Y}|\mathcal{B} = \mathbf{b} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b}, \sigma^2\mathbf{I})$$

4□ > 4回 > 4 = > 4 = > = 900

6 / 22

Specifying mixed-effects models

Mixed-effects model formulas in R

- One of the underrated aspects of the R language is the formula language for specifying models and, in the case of the lattice package, plots.
- A formula such as y ~ x + f + x:f where y is the response variable, x is a continuous covariate and f is a categorical covariate is more compact and, with experience, more understandable than most other specifications.
- In the lme4 package for R the formula language is extended to allow for random effects terms of the form (l|f) where l is a linear model expression and f is the factor whose levels determine the random effects.
- Until you need models with random effects for slopes, it is best to consider these terms as being of the form (1|f) where f is the grouping factor for the random effects.
- A term like (1|f) is called a simple, scalar, random-effects term.

A model for the InstEval data

 To specify fixed effects parameters for the department and service course indicator and their interaction plus random effects for student and instructor, we use

```
> fm1 <- lmer(y ~ service * dept + (1 | s) + (1 | d), InstEval
> coef(summary(fm1))
```

July 19, 2013

9 / 22

	Estimate	Std. Error	t value
(Intercept)	3.22953	0.06439	50.1593
service1	0.25205	0.06869	3.6692
dept5	0.12966	0.10188	1.2727
dept10	-0.17659	0.08862	-1.9926
dept12	0.05174	0.08220	0.6294
dept6	0.03496	0.08608	0.4061
dept7	0.14599	0.10031	1.4554
dept4	0.15183	0.08212	1.8489
dept8	0.10431	0.11919	0.8751
louglas Bates II of Wisconsin-Madison () Fitting Mixed-effects Models in R and Julia			

Estimates of the variance components

> VarCorr(fm1)

```
Groups Name Variance Std.Dev. s (Intercept) 0.106 0.325 d (Intercept) 0.262 0.512 Residual 1.385 1.177
```

- We see that the residual variability is the dominant term (often the case in studies involving human subjects). The instructor-to-instructor variability is somewhat larger than the student-to-student variability.
- Note the the column labelled Std.Dev. is simply the square root of the estimate of the variance component. It is (intentionally) not a standard error of the estimate.

Size of the model

- There are two random-effects terms in this model, generating a total of 4100 random-effects coefficients from the 73421. The model includes 28 fixed-effects coefficients.
- Determining estimates involves solving Henderson's mixed-model equations (MME) for each potential value of θ .

$$\begin{bmatrix} \mathbf{X}'\mathbf{X} & \mathbf{X}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{X} & \mathbf{Z}'\mathbf{Z} + \sigma^2\mathbf{\Sigma}_{\theta}^{-1} \end{bmatrix} \begin{bmatrix} \widehat{\boldsymbol{\beta}} \\ \widetilde{\boldsymbol{b}} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

- Storing the matrix ${\bf Z}$ of size 73421×4100 would be incredibly expensive (over 2 Gb for each copy) and any attempt to solve the MME would be infeasible were it not for the fact the ${\bf Z}$ is very *sparse*.
- This huge Z is all zeros except for two elements in each row.

Modifying the MME for sparse matrix methods

- An obvious modification is to work with the *relative covariance* matrix, Σ_{θ}/σ^2 which allows us to *profile out* the estimation of σ .
- The next step is to work with the "square root" of this relative covariance. The *relative covariance factor*, Λ_{θ} , is a sparse lower-triangular matrix such that

$$\mathbf{\Sigma}_{\theta} = \sigma^2 \mathbf{\Lambda}_{\theta} \mathbf{\Lambda}_{\theta}'$$

• For this model, θ is two-dimensional and Λ_{θ} is diagonal with 2972 repetitions of θ_1 followed by 1128 copies of θ_2 on the diagonal.

```
> getME(fm1, "theta")
```

```
s.(Intercept) d.(Intercept)
0.2762 0.4352
```


Modifying the MME

With this machinery we can re-express the mixed-model equations as

$$\begin{bmatrix} \boldsymbol{\Lambda}_{\theta}'\boldsymbol{Z}'\boldsymbol{Z}\boldsymbol{\Lambda}_{\theta} + \boldsymbol{I} & \boldsymbol{\Lambda}_{\theta}'\boldsymbol{Z}'\boldsymbol{X} \\ \boldsymbol{X}'\boldsymbol{Z}\boldsymbol{\Lambda}_{\theta} & \boldsymbol{X}'\boldsymbol{X} \end{bmatrix} \begin{bmatrix} \tilde{\boldsymbol{u}} \\ \boldsymbol{\widehat{\beta}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\Lambda}_{\theta}'\boldsymbol{Z}'\boldsymbol{y} \\ \boldsymbol{X}'\boldsymbol{y} \end{bmatrix}$$

- $oldsymbol{ar{b}}$ The solution $ilde{oldsymbol{b}}$ is calculated as $ilde{oldsymbol{b}} = oldsymbol{\Lambda}_{ heta} ilde{oldsymbol{u}}$
- Although the matrix $\Lambda_{\theta}' Z' Z \Lambda_{\theta} + I$ is sparse, it is not diagonal like Λ_{θ} . In fact its structure can be complicated because the factors s and d are not nested. (Instructors teach more than one student, students are taught by more than one instructor.)
- The matrix $\Lambda'_{\theta} Z' Z \Lambda_{\theta} + I$ is symmetric and is *positive definite* (because of the +I) which means that it will have a *Cholesky factor*.

<ロト < 部 > < 重 > < 重 > 、 重 ・ の Q で

Factoring a large, sparse symmetric matrix

ullet The problem of producing the sparse *Cholesky factor*, which is a lower-triangular matrix, $m{L}_{ heta}$ such that

$$m{\mathcal{L}}_{ heta}m{\mathcal{L}}_{ heta}'=m{\Lambda}_{ heta}'m{\mathcal{Z}}'m{\mathcal{Z}}m{\Lambda}_{ heta}+m{\mathcal{I}}'$$

has been studied intensively and high-quality software exists for doing this.

- In R the Matrix package provides such methods using Tim Davis's CHOLMOD library. The same code is used in the Julia base system.
- Like most methods for sparse matrices the Cholesky factor is created in two phases, a *symbolic* phase, in which the positions of the non-zeros are determined, and a *numeric* phase, in which these values are calculated. In determining the MLE's or the REML estimates of the parameters in a linear mixed model the symbolic phase need only be done once.

Crossed and partially crossed grouping factors

- The factors s and d are not completely crossed (each student is not taught by all 1128 instructors, each instructor has not taught all 2972 students). Instead they are *partially crossed*.
- Such data are becoming more common, e.g. student scores on the "No Child Left Behind"-mandated exams.
- In some disciplines like psychometrics or item-response theory it is common to have crossed or nearly crossed factors like "Subject" and "Stimulus" which should be modeled with random effects.

Profiling the deviance

ullet The truly remarkable result is that the *profile likelihood* for a linear mixed-model can be calculated as a function of $oldsymbol{ heta}$ only. On the deviance scale it is

$$-2\tilde{\ell}(\boldsymbol{\theta}) = \log(|\boldsymbol{L}_{\boldsymbol{\theta}}|^2) + n \left[1 + \log\left(\frac{2\pi r_{\boldsymbol{\theta}}^2}{n}\right) \right]$$

For model fm1 determining the mle's is just a 2-dimensional optimization.

• In this expression, n is the number of observations and r_{θ}^2 is the penalized residual sum of squares that is minimized by the solution to the MMEs.

$$r_{ heta}^2 = \min_{oldsymbol{u},oldsymbol{eta}} \left(||oldsymbol{y} - oldsymbol{X}oldsymbol{eta} - oldsymbol{Z}oldsymbol{\Lambda}_{ heta}oldsymbol{u}||^2 + ||oldsymbol{u}||^2
ight)$$

• The determinant, $|\mathbf{L}_{\theta}|^2$ is easy to evaluate because \mathbf{L}_{θ} is triangular.

The Julia packages relative to R packages

The RDatasets package for Julia

 Many of the data sets from R packages are available through the RDatasets package for Julia

```
julia> using MixedModels, RDatasets
julia> inst = data("lme4", "InstEval")
julia > head(inst)
6x7 DataFrame:
                  d studage lectage service dept y
[1,]
        "1" "1002"
                         "2"
                                 "2"
                                          "0"
                                                "2" 5
[2,]
        "1" "1050"
                                 1111
                                          "1" "6" 2
                         "2"
                                          "0" "2" 5
[3.]
        "1" "1582"
                         "2"
                                 "2"
                                          "1" "3" 3
[4.]
        "1" "2050"
                        11211
                               "2"
                                040
                                          "0"
                                               "5" 2
[5.]
        "2" "115"
                        11211
                                                "5" 4
[6,]
        "2" "756"
                        "2"
                                 1111
                                          "O"
```

The MixedModels package for Julia

julia> @time fit(fm1, true)

f 1: 241920.83782176476, [1.0,1.0]

elapsed time: 8.354907641 seconds
Douglas Bates, U. of Wisconsin-Madison () Fitting Mixed-effects Models in R and Julia

 A package called MixedModels (that name may change) provides an lmer function

julia> $fm1 = lmer(:(y \sim service*dept + (1|s) + (1|d)), inst);$

```
f_2: 244850.35312911012, [1.75,1.0]

f_3: 242983.2665867725, [1.0,1.75]

f_4: 238454.23551272837, [0.25,1.0]

f_5: 241716.05373818352, [1.0,0.25]

f_6: 240026.0596421508, [0.0,0.4459187720601605]

f_7: 241378.58264793456, [0.0,1.2795084971874737]

...

f_46: 237585.55341517925, [0.2759146679975875,0.43199306783163]

f_47: 237585.55341516965, [0.2759148830633722,0.43199403927993]

XTOL_REACHED
```

July 19, 2013

19 / 22

Comparing the Julia and R packages

- There are some superficial differences between the two lmer functions
 - ▶ the R version defaults to REML, the Julia version to ML
 - ▶ the Julia version requires the formula to be wrapped in :()
 - ▶ the Julia version requires a call to fit, which is implicitly called by show. (This will probably change)
- The big difference is that the Julia version is implemented in Julia.
 The R version uses many awkward constructions (C++, Rcpp, RcppEigen) to be able to fit models in a reasonable length of time.
- Even with all the tricks, the R version can still use all your memory.
- > system.time(lmer(y ~ service * dept + (1 | s) + (1 | d), Ins

```
user system elapsed 19.52 10.27 15.27
```

40140141111 1 000

Comparing the *Julia* and *R* packages (cont'd)

- The Julia version at present uses a relatively simple algorithm and does not cache much information. Even so, it is faster than the R version we have been working on for more than 10 years.
- A more carefully optimized Julia version for LMMs could be remarkably fast.
- Support for the R version is, naturally, more fully developed.
 Graphics, inference, support for more complex models, etc. are not yet available in Julia.
- Until 1mer for R was developed, it would not have been possible to fit model fm1 - at least I don't know of a way of doing that other than in 1mer. Neither SAS PROC MIXED nor MLwiN nor HLM 6 could do so. (I don't know about HLM 7.)

Challenges when writing Big Data applications in R

- My experience with writing code for such models in R brought some of the limitations of R for fitting models to "Big Data" to my attention (emphatically).
 - R doesn't have scalars, per se. All numerical objects are stored as vectors.
 - ▶ Looping in R (for and while loops) is slow.
 - ▶ Most of *R* is written in *C*. Most of *Julia* is written in *Julia*.
 - ▶ Calling C code (or Fortran or C++) is possible but awkward to write and even more awkward to debug.
 - R functions should not modify their arguments. That's fine until you want to do so.
 - Surprisingly, profiling the execution of *Julia* functions shows that allocation and freeing of memory can often be a bottleneck. In *Julia* you can get around this problem to some extent. It is much more difficult to do so in R.