Machine Learning Course basic track

Lecture 7: Gradient boosting

MIPT, Moscow 2020

Radoslav Neychev

Outline

- 1. Boosting intuitions
- 2. Gradient boosting
- 3. Blending
- 4. Stacking

Random Forest

Bagging + RSM = Random Forest

Random Forest

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB =
$$\sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Bias-variance tradeoff

Random Forest

Is Random Forest decreasing bias or variance by building the trees ensemble?

Boosting

Boosting

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Boosting: intuition

Binary classification Use decision stumps.

Binary classification Use decision stumps.

Boosting: intuition

Boosting: intuition

Binary classification Use decision stumps.

$$\hat{f}_T(x) = \sum_{t=1}^T \rho_t h_t(x) =$$

Recap: loss functions for classification

$$Q(M) = (1 - M)^2$$
 $V(M) = (1 - M)_+$
 $S(M) = 2(1 + e^M)^{-1}$
 $L(M) = \log_2(1 + e^{-M})$
 $E(M) = e^{-M}$

Boosting: AdaBoost

$$\hat{f}_T(x) = \sum_{t=0}^{T} \rho_t h_t(x)$$

$$(y_i,\hat{f}_T)$$

$$L(y_i, \hat{f}_T(x_i)) = \exp(-y_i \hat{f}_T(x_i)) = \exp(-y_i \sum_{t=1}^{T} \rho_t h_t(x_i))$$

$$= \underbrace{\exp\left(-y_i \sum_{t=1}^{T-1} \rho_t h_t(x_i)\right)}_{\text{const on step T}} \cdot \exp(-y_i \rho_T h_T(x_i))$$

$$= w_i \cdot \exp(-y_i \rho_T h_T(x_i))$$

Binary classification Use decision stumps.

Boosting: intuition

Gradient boosting

Denote dataset $\{(x_i,y_i)\}_{i=1,...,n}$, loss function L(y,f) .

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg\,min}} L(y, f(x)) = \underset{f(x)}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x))]$$

Let it be from parametric family:

$$\hat{f}(x) = f(x, \hat{\theta}),$$

$$\hat{\theta} = \arg\min_{\hat{\theta}} \mathbb{E}_{x,y}[L(y, f(x, \theta))]$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

What if we could use gradient descent in space of our models?

What if we could use gradient descent in space of our models?

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^{n} L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

Gradient boosting: beautiful demo

Great demo:

http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html

Gradient boosting

What we need:

- Data.
- Loss function and its gradient.
- Family of algorithms (with constraints if necessary).
- Number of iterations M.
- Initial value (GBM by Friedman): constant.

Gradient boosting: example

What we need:

- Data: toy dataset $y = cos(x) + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{5}), x \in [-5, 5]$
- Loss function: MSE
- Family of algorithms: decision trees with depth 2
- Number of iterations M = 3
- Initial value: just mean value

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Spam Data

California Housing Data

Boosting with linear classification methods

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

- Random Forest: parallel on the forest level (all trees are independent)
- Gradient boosting: parallel on one tree level

Stacking and blending

How to build an ensemble from different models?

How to build an ensemble from different models?

How to build an ensemble from different models?

Just combine several *strong/complex* models.

$$\hat{f}(x) = \sum_{i=1}^{M} \rho_i f_i(x), \qquad \sum_{i=1}^{M} \rho_i = 1, \quad \rho_i \in [0;1] \ \ \forall i$$

- Pros:
 - Simple and intuitive ensembling method.
 - Average several blendings to achieve better results.
- Cons:
 - Linear composition is not always enough.
 - Need to split the data. How to fix it?

1. Split data into folds

- Train base algorithm(s) on different groups of folds leaving one fold out.
- Predict the meta-features on the left-out fold and test data.
- Train the meta-algorithm on the meta-features representation of the train data.
- Use it on the meta-features representation of the test data.

• Pros:

- Powerful ensembling method, if you know how to use it
- Quite popular in ML-competitions
- One might perform stacking on the meta-features dataset as well

Cons:

- Meta-features on each fold are actually predicted by different models
 - However, regularization usually helps
- Hard to explain your model behaviour

Bonus:

Now you know how to stack XGBoost (or CatBoost/LightGBM)

Recap: ensembling methods

- 1. Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Gradient boosting.
- 5. Blending.
- 6. Stacking.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient boosting explained.html