H2Lib - A short introduction

...and some experiments

Nicholas Krämer

May 17, 2018

Outline

Where can one find which information?

What are \mathcal{H} -matrices?

Getting started with the H2Lib

The (probably) quickest way to create an $\mathcal{H}\text{-matrix}$

Some issues arising in scattered data approximation

Where can one find which information?

- ► The H2Lib including a **detailed** documentation: http://www.h2lib.org/
- ► A little bit more about hierarchical matrices:

 Lecture notes of the winter school 2003,

 Google → "hierarchical matrices lecture notes"
- ► More detailed: Surveys, books (Hackbusch, Bebendorf)

What does the H2Lib include?

Among others:

- ▶ Data structures for \mathcal{H} -, \mathcal{H} ²- and low rank matrices
- Functions for corresponding operations: multiplication,
 compression, factorisation, ...
- Some applications such as BEM (popular!) and FEM

License:

▶ Open source (LGPL 3.0)

What are hierarchical matrices (\mathcal{H} -matrices)?

- ▶ Store (kernel-based) matrices in $\mathcal{O}(N \log N)$ instead of N^2
- ► Clustering of points → tree of pointsets
- ▶ Tree of full and low rank matrices
- Low rank: **Approximate** kernel using degenerate kernel, e.g.

$$g(x,y) \approx \sum_{i=1}^{k} L_i(x)g(\xi_i,y) \quad \Leftrightarrow \quad \boxed{}$$

► Low rank approximations "very good" if corresponding clusters of *x* and *y* are "far apart"

What does an \mathcal{H} -matrix look like?

Figure: \mathcal{H} -matrix of size N=250 in dimension d=1

"the more white spots one can see the better"

Is it true that it only requires $\mathcal{O}(N \log N)$ storage?

Example 1/2: Storage of a kernelmatrix in 2D

Figure: Amound of storage for a kernel matrix $K = (\Phi(\|x_i - x_j\|))_{i,j=1}^N$, depending on N for fixed precision $\epsilon = 10^{-13}$

How important is the precision?

Example 2/2: How important is the precision?

Figure: Amound of storage for a kernel matrix depending on ϵ for fixed matrix size N=5.000, compression such that $\|K_H-K\|_2/\|K\|_2 \le \epsilon$

Getting started with the H2Lib

Installation

- 1. Download: http://www.h2lib.org/
- 2. Make use of the makefile:

```
cd Documents/H2Lib/make
```

Where are the modules?

- ▶ In the header files, for example Library/hmatrix.h
- ► The library itself is contained in libh2.a (has to be linked): gcc test.c -L/home/kraemer/Documents/H2Lib/ -lh2

What is the quickest way to initialize and fill an \mathcal{H} -matrix using the H2Lib?

Sketched procedure for initializing an ${\cal H}$ -matrix

- Create clustergeometry and fill it with points geom = new_clustergeometry(dim,N)
- Create two clustertrees using the geometry and index set {rc,cc} = build_cluster(geom,N,idx,leaf,type)
- 3. Combine clustertrees to create a block tree
 bk = build_strict_block(rc,cc,adpar, adcond)

Sketched procedure for \mathcal{H} -matrices in BEM

- 1. Pick
 - Quadrature points for (reg. and sing.) integrals
 - ▶ Basis functions (const./linear "directly available")
 - Grid(points) (cubes, spheres, etc. "directly available")
- 2. BEM object: SLP & DLP (Laplace-/Helmholtz "dir. av.")
- 3. Cluster tree, block tree, \mathcal{H} -matrix
 - \rightarrow via build_bem2d_*, setup_bem2d_*, etc.
- 4. Solvers: e.g. Krylov (CG, ...), factorizations (LU, ...),...

Some issues arising in scattered data approximation (and perhaps elsewhere)

Problem 1/2: Dependance on the dimension (preasympt.)

Figure: \mathcal{H} -matrix compressions of a kernel matrix of size N=2000 using the IMQ kernel and scattered data $X\subseteq [0,1]^2$ in different dimensions

Problem 2/2: Solving a (very ill-conditioned) system

Figure: Relative error $au = \frac{\|x^* - x_H\|_2}{\|x^*\|_2}$ of the solutions obtained via LU decomposition for the \mathcal{H} -matrix and full matrix in dimension d=1

$\mathcal{H}(^2)$ -matrices and Gaussian processes

Some problems look like: solve $(K + \sigma I)x = y$ for certain $\sigma > 0$

N	$\sigma = 10^{-15}$	$\sigma = 10^{-8}$	$\sigma = 10^{-1}$
25	0.1	$2.3 \cdot 10^{-8}$	$4.8 \cdot 10^{-15}$
100	0.1	$1.9 \cdot 10^{-7}$	$2.2 \cdot 10^{-14}$
400	14.7	$6.8 \cdot 10^{-7}$	$1.0\cdot 10^{-13}$
1600	1.2	$1.4 \cdot 10^{-6}$	$2.2\cdot 10^{-13}$
6400	3.3	$3.1 \cdot 10^{-6}$	$6.6 \cdot 10^{-13}$

Possible extensions:

- ► Randomized linear algebra ([ASKIT; Yu, Biros, March; 2017])
- ► Fast matrix-vector-multiplication (+Krylov solvers), on-the-fly evaluation of kernels ([Garcke, Börm; 2007])

Summary

- 1. The H2Lib is well-documented and easy to find
- 2. Hierarchical matrices are trees of matrices
- 3. They approximate
- 4. They indeed have $\mathcal{O}(N \log N)$ storage
- 5. Clustergeometry o cluster tree o block tree o \mathcal{H} -matrix
- 6. Not perfect for very ill-conditioned systems
- 7. Good for BEM and $(K + \sigma I)x = y$

Some texts I might have mentioned

ASKIT:

"An $N \log N$ parallel fast direct solver for kernel matrices"; C. Yu, W. March, G. Biros; 2017

\mathcal{H}^2 -arithmetics and kernel matrices:

"Approximating Gaussian processes with $\mathcal{H}^2\text{-matrices}$; S. Börm and J. Garcke; 2007

Hierarchical matrices in scattered data approximation:

"Hierarchical matrix approximation for kernel-based scattered data interpolation"; A. Iske, S. Le Borne, M. Wende; 2017