

Reinforcement Learning (Q-Learning)

Daniel Florea - IIC2613 Inteligencia Artificial

-5

+5

	Izquierda	Derecha
QValue	0	0

+5

	Izquierda Derech	
QValue	-5	0

+5

-5

	Izquierda	Derecha
QValue	-5	0

+5

	Izquierda	Derecha
QValue	-5	+5

	Izquierda	Derecha
QValue	-5	+5

Q-Learning

¿Qué es Q-Learning?

Un algoritmo de aprendizaje reforzado no supervisado

Principales componentes

- Una tabla de estados o Q-Table: Q
- Una tasa de exploracion: ϵ
- Una tasa de aprendizaje (LR): α
- Un conjunto de estados para el entorno: $X_t = [x_1, x_2, ..., x_n]$
- Un conjunto de acciones de las que elegir: $U = [u_1, u_2, ..., u_k]$

Pasos para entrenar

- 1 Inicializar Q-Table y al agente
- 2 Obtener el estado actual del agente
- 3 Hashear el estado actual del agente para consultar la Q-Table
- Consultar la Q-Table/ Elegir acción random y ejecutarla
- 5 Recibir recompensa y feedback del entorno
- 6 Actualizar la Q-Table según la recompensa de la acción ejecutada
- 7 Actualizar la tasa de exploración hasta llegar a un mínimo

1 Inicializar Q-Table

	u_1	u_2	 u_k
x_1	0	0	 0
x_2	0	0	 0
•••			
x_n	0	0	 0

Obtener el estado actual

$$[s_0, s_1, ..., s_m]$$

Descriptores del entorno

Hashear el estado actual

$$[s_0,s_1,...,s_m]
ightarrow x_i$$
Descriptores del entorno Índice de la Tabla

Explorar v/s Explotar

- Explorar: Elegir una acción aleatoria para conocer mejor el comportamiento del entorno
- Explotar: Utilizar el conocimiento aprendido para comportarse en el entorno

4 Explorar

Explorar v/s Explotar

• Exploration Rate: Da cuenta de una probabilidad con la que el agente explorará en esta iteración (entre 0 y 1)

Consultar la Tabla

 $probabilidad = 1 - \epsilon$

Elegir acción random

 $probabilidad = \epsilon$

4.1 Consultar la Tabla

$argmax \ Q[x_i] = u_i$

	u_1	u_2	 u_k
x_1	0	0	 0
x_2	0	0	 0
x_n	0	0	 0

 x_i

4.1 Consultar la Tabla

$argmax \ Q[x_i] = u_i$

		u_1	u_2	 u_k
	x_1	23	-26	 0
x_i –	x_2	-5	103	 2
	x_n	0	0	 0

4.1 Consultar la Tabla

		u_1	u_2	 u_k
	x_1	23	-26	 0
x_i –	x_2	-5	103	 2
	x_n	0	0	 0

Elegir una acción random

$$u_i = random \ element \ from \ U$$

$$U = [u_1, u_2, ..., u_k]$$

Recibir recompensa del entorno

 $reward = env.play_step(u_2)$

Actualizamos la Q-Table

6 Actualizamos la Q-Table

 $new_q_value = (1 - \alpha) \cdot argmax \ Q[x_i] + \alpha (reward + \gamma \cdot argmax \ Q[x_{i+1}])$

	u_1	u_2	 u_k
x_1	23	-26	 0
x_2	-5	New Q-Value	 2
•••			
x_n	0	0	 0

Actualizar la tasa de exploración

• Exploration Rate: Da cuenta de una probabilidad con la que el agente explorará en esta iteración

$$\epsilon = \epsilon_{min} + (\epsilon_{max} - \epsilon_{min}) \cdot e^{-decay_rate \cdot num_iteration}$$

Actualizar la tasa de exploración

• Exploration Rate: Da cuenta de una probabilidad con la que el agente explorará en esta iteración

$$\epsilon = \epsilon_{min} + (\epsilon_{max} - \epsilon_{min}) \cdot e^{-decay_rate} \cdot num_iteration$$

Actualizar la tasa de exploración

• Exploration Rate: Da cuenta de una probabilidad con la que el agente explorará en esta iteración

$$\epsilon = \epsilon_{min} + (\epsilon_{max} - \epsilon_{min}) \cdot e^{-decay_rate \cdot num_iteration}$$

Y repetir hasta que $\,\epsilon = \epsilon_{min}\,$

Implementación en Código

PongAl

Introducción al juego

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

Entre -5 y 5

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

- 1. Velocidad en el eje Y
- 2. Proximidad al padel
- 3. Altura del balon respecto al extremo superior del padel
- 4. Altura del balon respecto al extremo inferior del padel
- 5. Numero de rebotes

$11 \cdot 6 \cdot 4 \cdot 4 \cdot 3 = 3168$ filas

Acciones del Agente

- 0. Arriba
- 1. Mantenerse quieto
- 2. Abajo

game.play_step(u)

Q-Table

	0	1	2
0	0	0	0
1	0	0	0
•••	•••	•••	•••
3168	0	0	0

Q-Table

	0	1	2
0	0	0	0
1	0	0	0
3168	0	0	0

Q-Table

- El archivo no contiene ni header ni índices (3168 x 7)
- La i-ésima fila del csv tiene los valores de la i-ésima fila de la Q-Table (partiendo de 0)
- Las primeras 5 columnas representan el estado actual del entorno (en el orden en que aparecen en enunciado)

						u_0	u_1	u_2
0 1 2 3 4 5 6 7 8 9 0	-5	0	0	0	0	-87	22	-16
	-5	0	0	0	1	51	-15	-90
	-5	0	0	0	2	-62	61	33
	-5	0	0	1	0	53	-57	-91
	-5	0	0	1	1	14	28	-64
	-5	0	0	1	2	-27	-95	58
	-5	0	0	2	0	100	32	23
	-5	0	0	2	1	-46	-6	-39
	-5	0	0	2	2	72	8	-34
	-5	0	0	3	0	67	6	96
	-5	0	0	3	1	0	6	26

(...)

Reinforcement Learning

Daniel Florea - IIC2613 Inteligencia Artificial