

RESEARCH DISCUSSION: NETWORK EMBEDDING

Paper title: DeepWalk: Online Learning of Social Representations,

Bryan Perozzi, Rami Al-Rfou, Steven Skienna, Stony Brook University KDD'14, August 24-27, 2014, New York, NY, USA.

Presenter: Hoang Nguyen

Tokyo Institute of Technology

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

Frequency of Word Occurrence in Wikipedia

10⁵

10⁴

10⁰

10¹

10⁰

10¹

10⁰

10¹

10⁰

10¹

10⁰

Word mention count

YouTube Social **Graph**

YouTube Social **Graph**

Wikipedia Article **Text**

^{*} The resemblance in Power Law distribution inspired the authors to apply NLP to graph!

The brown fox

$$(v_1, v_2, v_3, ..., v_{i-1})$$

jumped kicked ate home lazy

$$\Pr\left(\left.v_{i}\right|\left(\Phi(v_{1}),\Phi(v_{2}),\ldots,\Phi(v_{i-1})\right.\right)$$

GRAPH

The brown fox

 $(v_1, v_2, v_3, ..., v_{i-1})$

jumped kicked ate home lazy

. . .

How to create a "context"?

 $\Pr(|v_i||(\Phi(v_1),\Phi(v_2),...,\Phi(v_{i-1})))$

GRAPH

Random Walk:
$$c > d > k > f > g > c > f > k > d > i$$

GRAPH

The brown fox jumped $(v_1, v_2, v_3, ..., v_{i-1})$ kicked ate home lazy

$$\Pr\left(\left.v_{i}\right|\left(\Phi(v_{1}),\Phi(v_{2}),\ldots,\Phi(v_{i-1})\right.\right)$$

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

 $G_L(V, E, X, Y)$ - Labeled graph with vector representations X and labels Y.

 $G_L(V, E, X, Y)$ - Labeled graph with vector representations X and labels Y. $X - |V| \times d$ matrix stores d-features vectors for each vertex.

 $G_L(V, E, X, Y)$ - Labeled graph with vector representations X and labels Y.

 $X - |V| \times d$ matrix stores d-features vectors for each vertex.

 $Y - |V| \times l$ matrix stores labels for each vertex. There are l labels.

 $G_L(V, E, X, Y)$ - Labeled graph with vector representations X and labels Y.

 $X - |V| \times d$ matrix stores d-features vectors for each vertex.

 $Y - |V| \times l$ matrix stores labels for each vertex. There are l labels.

Objective: Learn a hypothesis H that maps elements of X to the label set.

$$H: X \xrightarrow{G} Y$$

 $G_L(V, E, X, Y)$ - Labeled graph with vector representations X and labels Y.

 $X - |V| \times d$ matrix stores d-features vectors for each vertex.

 $Y - |V| \times l$ matrix stores labels for each vertex. There are l labels.

Objective: Learn a hypothesis H that maps elements of X to the label set.

$$H: X \xrightarrow{G} Y$$

Problem: Cascading error when integrating structural representation with labeling.

⇒ separate the 2 task!

Objective of the paper: Learn the latent representation X_E . Guarantee:

Objective of the paper: Learn the latent representation X_E . Guarantee:

- Adaptability
- Community aware
- Low dimensional
- Continuous

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

Random Walk

Parameters:

 Φ - $|V| \times d$ matrix stores latent representation

Parameters:

- Φ $|V| \times d$ matrix stores latent representation
- Ψ $|V| \times d$ matrix stores hierarchical softmax

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

Name	BlogCatalog	FLICKR	YouTube
V	10,312	80,513	1,138,499
E	$333,\!983$	5,899,882	2,990,443
$ \mathcal{Y} $	39	195	47
Labels	Interests	Groups	Groups

• It is easy to implement for shared-memory system, but shared-nothing system implementation might not be easy.

- Repeat the sampling / training process 10 times for each T_R .
- Report the average precision:

Macro-F1

$$Macro-F1 = \frac{\sum P_i}{\sum_i 1}$$

Micro-F1

$$\text{Micro-F1} = \frac{\sum TP_i}{\sum (TP_i + FN_i)}$$

	% Labeled Nodes	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	DeepWalk	37.95	39.28	40.08	40.78	41.32	41.72	42.12	42.48	42.78	43.05
	SpectralClustering										
Micro-F1(%)	EdgeCluster	23.90	31.68	35.53	36.76	37.81	38.63	38.94	39.46	39.92	40.07
	Modularity										
	wvRN	26.79	29.18	33.1	32.88	35.76	37.38	38.21	37.75	38.68	39.42
	Majority	24.90	24.84	25.25	25.23	25.22	25.33	25.31	25.34	25.38	25.38
	DeepWalk	29.22	31.83	33.06	33.90	34.35	34.66	34.96	35.22	35.42	35.67
	SpectralClustering	_					_				
Macro-F1(%)	EdgeCluster	19.48	25.01	28.15	29.17	29.82	30.65	30.75	31.23	31.45	31.54
	Modularity										
	wvRN	13.15	15.78	19.66	20.9	23.31	25.43	27.08	26.48	28.33	28.89
	Majority	6.12	5.86	6.21	6.1	6.07	6.19	6.17	6.16	6.18	6.19

YouTube - 1,138,499 : 2,990,443 : 47

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DeepWalk	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
Micro-F1(%)	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
, ,	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DeepWalk	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
Macro-F1(%)	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

BlogCatalog - 10,312 : 333,983 : 39

This results show that a choice of appropriate latent dimension will have significant effect on the system.

 Longer walk length is beneficial to the system. However, a good result can be obtained by a relatively small walk length.

- Idea: NLP technique applied to Network Embedding
- Problem addressing
- Building blocks of the system
- Authors' experiments and evaluation
- Some thought on the paper

Conclusion

Contribution

Improvement / Problem

19/19

Conclusion

Contribution

Improvement / Problem

- Idea of applying NPL to Graph embedding.
- Propose using Random Walk to create context in graph.
- Fast algorithm.
- Easy to distribute computing task to different threads.
- Open-source implementation and throughout evaluation of their methods.

Conclusion

Contribution

- Idea of applying NPL to Graph embedding.
- Propose using Random Walk to create context in graph.
- Fast algorithm.
- Easy to distribute computing task to different threads.
- Open-source implementation and throughout evaluation of their methods.

Improvement / Problem

- There is no loss function or competitive analysis of the stochastic process.
- Random Walk, while somewhat similar to Depth First Search, only capture local representation.
- Parallelization is simple on one machine with multiple core CPU, but become unrealistic on fully distributed system..

19/19

THANK YOU VERY MUCH FOR LISTENING