

#### Exam 2

Cover: Labs 3-5

Close-book Exam

You can bring a calculator with you.

Exam counts 22.5% of the total grade.

### Basic laws for radiation

**Stefan-Boltzman law:** The amount of energy per square meter per second that is emitted by an blackbody is related to the 4<sup>th</sup> power of its Kelvin temperature

$$E = \sigma T^4$$

where E is in J s<sup>-1</sup> m<sup>-2</sup> or Watts m<sup>-2</sup>

 $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$  Stefan-Boltzman constant

As T increases, E increases by a power of 4. If T doubles, E increases by 16 times!

#### Wien's law:

Wavelength of peak radiation emitted by an object is inversely related to temperature

$$\lambda_{\text{max}} = 2897 / T \sim 3000 / T$$

 $(\lambda_{max}$  is in  $\mu m$  and T is in Kelvin)

Solar radiation :  $\lambda_{max \, sun} \sim 3000/6000 \, \, \text{K} \sim 0.5 \, \, \mu m$ ,

Earth radiation:  $\lambda_{\text{max earth}} \sim 3000/300 \text{ K} \sim 10 \mu\text{m}$ ,

Solar radiation is shortwave radiation

Earth radiation is longwave radiation

## Greenhouse Gases

|   | Name of the gas | Molecular weight |       | Percentage |
|---|-----------------|------------------|-------|------------|
| • | Water vapor     | H <sub>2</sub> O | 18.02 | < 4.%      |
| • | Carbon dioxide  | $CO_2$           | 44.01 | 0.038%     |
| • | Methane         | $CH_4$           | 16.04 | 0.00017%   |
| • | Nitrous oxide   | $N_2O$           | 44.01 | 0.00003%   |
| • | Ozone           | $O_3$            | 48.00 | 0.000004%  |

### **Albedo**

| SURFACE              | ALBEDO (PERCENT) |
|----------------------|------------------|
| Fresh snow           | 75 to 95         |
| Clouds (thick)       | 60 to 90         |
| Clouds (thin)        | 30 to 50         |
| Venus                | 78               |
| Ice                  | 30 to 40         |
| Sand                 | 15 to 45         |
| Earth and atmosphere | 30               |
| Mars                 | 17               |
| Grassy field         | 10 to 30         |
| Dry, plowed field    | 5 to 20          |
| Water                | 10*              |
| Forest               | 3 to 10          |
| Moon                 | 7                |

# Vapor pressure - e

- Air molecules all contribute to pressure p
- Each subset of molecules (e.g., N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O) exerts a partial pressure
- The vapor pressure, e, is the pressure exerted by water vapor molecules in the air
  - similar to atmospheric pressure, but due only to the water vapor molecules
  - 2-30 mb common at surface
  - the larger the vapor pressure is, the more water vapor molecules in the atmosphere

Saturation vapor pressure  $e_s$  depends upon temperature higher temperature, higher  $e_{s_s}$  more water vapor that the air can hold



## Mixing Ratio - r

- Ratio of mass of water to mass of <u>dry</u> air in a unit volume
- Invariant to change in volume

$$\mathbf{r} = \frac{m_{v}}{m_{d}}$$

### Relative Humidity – R.H.

The ratio of the amount of water vapor in the air compared to the amount required for saturation.

R.H. = water vapor content / water vapor capacity

R.H. = 
$$\frac{e}{e_s(T)} = \frac{\tilde{n}_v}{\tilde{n}_{vs}(T)} = \frac{q}{q_s(T)} = \frac{r}{r_s(T)}$$

Higher relative humidity does not necessarily mean more water vapor in the air

# Dew Point Temperature - T<sub>d</sub>

- Temperature to which air must be cooled (at constant pressure and constant water vapor content) to become saturated.
- When  $T=T_d$ ,  $e_s(T_d) = e$ ,  $q_s(T_d) = q$ ,  $r_s(T_d) = r$
- $T_d \le T$
- Unlike relative humidity which is a measure of how near the air is to being saturated, dew point temperature is a measure of its actual moisture content. The higher the dew point, the more water vapor in the air.
- Dew point depression: T-T<sub>d</sub>
- The larger the dew point depression is, the drier the air is, or the air is farther away from saturation

## Moist adiabatic lapse rate

Decrease of temperature with height for saturated air

$$\Gamma_{\rm s}$$
 always <  $\Gamma_{\rm d}$