Total No. of Pages (72 - 40-	Roll No.	
FOURTH SEMES	TER		B. Tech
[CO] SUPPLEMENTA CO Time: 3:00 Hours	RY EXAMINATION 204: Operating	Systems Design	2019 . Marks: 40
Note: 1) Attempt a 2)All parts	any five questions. of a question must	be attempted together	•
Q.1. a) Write down th systems [4] b) What do you	e major difference betw with	reen Real Time and Time-sh suitable ndition? Give few example	ared operating example.
Explain the diff and multi-threa	OR ference between multipa ding systems.	cogramming, multitasking, r	nultiprocessing [4]
Q2. a) Describe Dinin	g Philosopher problem OR		[4]
b) What is Deman	on be violated? nd Paging? Consider a s fault service time is 10	n the deadlock-detection alg ystem where the main mem 0 ns and page hit ratio is 95	[4] ory access time
memory of 32 f	-	· ·	s mapped into
i. Long-	etween the following:- term and short-term sch ss and Program	neduler	[4]
b) Describe taking		ith suitable examples. ving hard disk scheduling a	[4] lgorithms:
	SCAN Scheduling TF Scheduling.		[4]

c) What is Thrashing? Explain in brief. For the given reference string (page number

referred by the process): 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2. What will be the total

number of Page Faults if FIFO and Optimal page replacement algorithm are used respectively. P.T.OPage 1

Consider the following set of processes, assumed to have arrived at time 0, in the Q5. order P1, P2,..., P5 with the length of the CPU burst time given in milliseconds:

		Diggital
Processes	Burst Time	Priority
P1	4	3
P2	1	1
D3.	2	4
P4	1	5
P4	1	2
1 P5	5	

Assuming 1 to be highest priority, calculate the following:

average waiting time and average turn-around Time using SJF, Priority (Preemptive) scheduling mechanism.

Assume time quantum to be 1 unit of time. Calculate average waiting ii) time and average turn-around time using Round-Robin Scheduling.

Q6. a) Describe the implementation of segmentation with a suitable example. Why is paging faster than segmentation. [4]

OR

Consider a computer system with 32-bit logical address and 4KB page size. The system supports up to 512MB of physical memory. How many entries will be there in a conventional single-level page table and in an inverted page table? [4]

b) Elaborate the term "critical section" in process synchronization with the help of a real time example. [4]

Describe the Banker's algorithm for safe allocation. Consider a system with three Q7. processes and three resource types and at time To the following snapshot of the system has been taken: [8]

Allocation		Maximum		Available				
R	R	R	R	R	R			R3
	1	2	3	1	2.	3		
2	2	3	3	6	8	4	3	10
2	0	3	4	3	3		<u> </u>	10
1	2	4	3	4	4			
				•	7			
		R R	R R R 1 2	R R R R 1 2 3	R R R R R 1 2 3 1	1 2 3 1 2	R R R R R R R1 1 2 3 1 2 3	R R R R R R R1 R2 1 2 3 1 2 3

Answer the following questions using Banker's algorithm

- i. What is the content of matrix Need?
- ii. Is the system in a safe state?
- iii. If a request from Process P2 arrives for (2, 1, 0), can the request be