Question Number	Answer		Mark
11	Use of $\Delta E = mc\Delta\theta$	(1)	
	Use of volume flow rate to calculate V	(1)	
	Use of $\rho = \frac{m}{v}$ to calculate mass of shower water	(1)	
	Use of $\frac{\text{Energy used to heat bathwater}}{\text{Energy used to heat shower water}}$		
	Or calculates $10 \times (\text{energy used to heat shower water})$	(1)	
	Taking a bath uses 12 times as much energy Or $1.14 \times 10^7 J > 9.34 \times 10^6 J$ so bath uses more than $10 \times$ shower energy	(1)	5
	Example of calculation		
	$\Delta E = 160 \text{ kg} \times 4180 \text{ J kg}^{-1} \text{K}^{-1} \times (32 - 15) \text{K} = 1.14 \times 10^7 \text{J}$		
	In 1 second, $m = 1.00 \times 10^3 \text{ kg m}^{-3} \times 1.8 \times 10^{-5} \text{ m}^3 = 0.018 \text{ kg}$		
	$m = 0.018 \text{ kg s}^{-1} \times 9 \times 60 \text{ s} = 9.72 \text{ kg}$		
	$\Delta E = 9.72 \text{ kg} \times 4180 \text{ J kg}^{-1} \text{ K}^{-1} \times (38 - 15) \text{ K} = 9.34 \times 10^5 \text{ J}$		
	Energy ratio = $\frac{1.14 \times 10^7 \text{J}}{9.34 \times 10^5 \text{J}} = 12.2$		

Total for question 11