- **50.** Escriu de la forma "Si ..., aleshores ..." les següents afirmacions:
 - (a) Que el producte de dos nombres enters sigui senar és necessari per a que ambdós ho siguin (de senars).
 - (b) Que el quadrat d'un nombre natural n sigui senar és suficient per a que n sigui senar.
 - (c) Que un natural n + 1 sigui quadrat perfecte és necessari per a que n sigui un quadrat perfecte.

Formula les propietats recíproques de cadascuna d'elles.

51. Considera les tres proposicions següents

P: 2+2=5

Q: La suma dels angles d'un triangle és de 180°

R: L'àrea d'un cercle de radi r és igual a $2\pi r$

Podem afirmar que alguna de les següents proposicions és veritat?

(a) $P \rightarrow P$

(c) $P \rightarrow Q$

(e) $P \rightarrow R$

(b) $R \rightarrow P$

(d) $(P \vee O) \wedge R$

(f) $(P \wedge O) \vee R$

52. Investiga si les següents fórmules són tautologies, contradiccions, o ni una cosa ni l'altra.

(a)
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$$

(b)
$$((A \rightarrow (B \rightarrow C)) \rightarrow ((A \land B) \rightarrow C))$$

(c) $A \wedge (B \vee \neg A)$

(d)
$$((A \rightarrow B) \rightarrow C) \land \neg (((B \rightarrow A) \rightarrow C) \rightarrow C)$$

53. Demostra que les següents parelles d'enunciats són equivalents.

```
(a) P 	 i 	 P \wedge (P \vee Q)
```

(b)
$$P \leftrightarrow Q$$
 i $(P \rightarrow Q) \land (\neg P \rightarrow \neg Q)$

(c)
$$(P \wedge R) \rightarrow Q$$
 i $P \rightarrow (R \rightarrow Q)$

54. Utilitzant altres equivalències conegudes, troba una fórmula equivalent a cada una de les següents, amb la condició que només contingui els símbols A, B, C, \neg i \lor .

(a)
$$A \wedge (A \vee B)$$

(b)
$$\neg(\neg(A \lor B) \to A)$$

(c)
$$(A \vee B) \rightarrow (B \vee A)$$

(d)
$$\neg (A \rightarrow (\neg B))$$

(e)
$$(A \wedge B) \rightarrow (A \vee B)$$

(f)
$$\neg (A \leftrightarrow (\neg B))$$

(g)
$$((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C)$$

(h)
$$\neg (((C \rightarrow A) \land (C \rightarrow B)) \rightarrow (C \rightarrow (A \land B)))$$

- 55. Examina la següent fal·làcia (segueix els passos personalment).
 - (a) Considerem l'equació $\frac{x+5}{x-7}-5=\frac{4x-40}{13-x}$, amb $x\neq 7,13$.
 - **(b)** Operant en el terme de l'esquerra, es pot comprovar que $\frac{x+5}{x-7} 5 = \frac{4x-40}{7-x}$.
 - (c) De (a) i (b) es dedueix que $\frac{4x-40}{7-x} = \frac{4x-40}{13-x}$.
 - (d) Atès que els numeradors són iguals, els denominadors també ho han de ser. És a dir, de (c) es dedueix que 7 x = 13 x.
 - (e) De (d) es dedueix que 7 = 13. Absurd!

En algun dels passos (b)–(e) hi ha d'haver un error. Quin és? Per què?

(Atenció, no es demana que "corregeixis" el raonament, ja que si porta a un absurd segur que no es pot arreglar! Només has de dir on hi ha l'error, en què consisteix, i per què és un error.)

- **56.** Reformula els següents teoremes en forma d'implicació ($P \rightarrow Q$) i digues quina és la condició necessària i quina la suficient.
 - (a) L'àrea del cercle de radi r és πr^2 .
 - **(b)** Donada una recta r i un punt P exterior a r, hi ha exactament una recta s que conté a P i és paral·lela a r.
 - (c) Considerant el triangle de vèrtexs *A*, *B*, *C* i costats de longitud *a*, *b c*,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

- (d) (Teorema fonamental del Càlcul) $\int_a^b f(x) dx = F(b) F(a)$, essent f una funció contínua en l'interval real [a,b] i F qualsevol funció tal que F'(x) = f(x).
- 57. Demostra que els següents enunciats són tautologies.

(a)
$$\neg (P \rightarrow Q) \rightarrow P$$

(b)
$$[(P \rightarrow Q) \land (P \rightarrow \neg Q)] \rightarrow \neg P$$

(c)
$$(P \rightarrow Q) \rightarrow [(P \land R) \rightarrow (Q \land R)]$$

(d)
$$(P \leftrightarrow Q) \rightarrow (\neg P \leftrightarrow \neg Q)$$

58. Investiga si les següents fórmules són tautologies, contradiccions, o ni una cosa ni l'altra.

(a)
$$((C \rightarrow A) \land (C \rightarrow B)) \rightarrow (C \rightarrow (A \land B))$$

(b)
$$((A \rightarrow B) \rightarrow C) \land \neg (((B \rightarrow A) \rightarrow C) \rightarrow C)$$

- **59.** Utilitzant altres equivalències conegudes, troba una fórmula equivalent a cada una de les següents, amb la condició que només contingui els símbols A, B, C, \neg i \land .
 - (a) $A \rightarrow (\neg B)$
 - **(b)** $\neg (A \land (A \lor B))$
 - (c) $A \leftrightarrow (\neg B)$
 - (d) $\neg ((A \lor B) \to (B \lor A))$
 - (e) $\neg (A \lor B) \to A$
 - (f) $\neg((A \land B) \rightarrow (A \lor B))$
 - (g) $((C \to A) \land (C \to B)) \to (C \to (A \land B))$
 - **(h)** $\neg (((A \rightarrow C) \land (B \rightarrow C)) \rightarrow ((A \lor B) \rightarrow C))$