Advanced statistical topics in medical research pt. A

Cross-validation
Penalised regression
(Bootstrapping)

2 November 2020

Benjamin Skov Kaas-Hansen
PhD student pharmacovigilance & data science
MD, MSc epidemiology and biostatistics

Code: http://epiben.dk/misc

R code available

Two words on terminology

Independent variables, covariates, predictors and features are used as synonyms (depending on discipline)

Statistical modelling ≠ machine learning

Regression vs. classification (purpose)

Train on: "point or aim something, typically a gun or camera, at"

—so not as "træne" in Danish!

Cross-validation

Using the same data for fitting/training and optimisation leads to **overfitting** which hurts generalisability to other (similar) populations or future observations in the same population.

Learning curves

Prediction error

Let y_i be the observed response and \hat{y}_i the prediction based on a model and predictors x_i .

Two common choices for quantifying prediction error are:

Continuous outcome:
$$D(y, \hat{y}) = (y - \hat{y})^2$$

Binary outcome: $D(y, \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{if } y = \hat{y} \end{cases}$

Error rates

Let y_0 be a new observation and \hat{y}_0 the corresponding output of a fixed prediction method, then the true error rate is

$$E[D(y_0, \hat{y}_0)]$$

Because we only have the data already collected, the apparent error rate is

$$\frac{1}{N}\sum_{i}D(y_{i},\hat{y}_{i})$$

Apparent error rate is imperfect

The same data used to train and evaluate the prediction model

The apparent error rate becomes too small (over-optimistic, biased)

Evaluation on a validation set not seen during training gives unbiased estimate of the model's performance

Cross-validation obtains validation data from the original data

Leave-one-out cross-validation

Intuitive and simple - but compute time can become prohibitive

- 1. Drop data point (x_i, y_i) and train prediction model
- 2. Compute prediction error $D(y_i, \hat{y}_i)$
- 3. Repeat 1. and 2. for i = 1, 2, ..., N
- 4. Compute the LOO-CV error rate:

$$\operatorname{Err}_{\operatorname{LOOCV}} = \frac{1}{N} \sum_{i} D(y_i, \hat{y}_i)$$

K-fold cross-validation $K \ll N$

- 1. Partition data into K equal-sized folds
- 2. Train prediction model with all but the k'th fold
- 3. Compute $D(y_k, \hat{y}_k)$
- 4. Repeat 2. and 3. for k = 1, 2, ..., K
- 5. Compute the CV error rate: $\operatorname{Err}_{\operatorname{CV}} = \frac{1}{K} \sum_k D(y_k, \hat{y}_k)$

Smaller values of K gives fewer models builds (shorter runtime), groups that vary more and, thus, greater variation between prediction models

Notes of caution on CV

If you use cross-validation to optimise model settings/ hyperparameters, the validation folds become training data

You can use a split-sample validation scheme: 80% for development and 20% in hold-out test set

External validation requires new or distinct data

Lasso and ridge regression

Flexible (linear) modelling for predictor selection and to counter over-fitting. Many non-parametric methods exist: tSNE, UMAP, variational auto-encoders (DL), etc.

Wide data (large-p small-n)

E.g. SNPs or deep phenotyping

Over-parameterised

Unlikely to generalise well

Cannot learn patterns/associations

Similar problem in deep learning

y	p ₁	<i>p</i> ₂	<i>p</i> ₃	<i>p</i> ₄	<i>p</i> ₅	<i>p</i> ₆	<i>p</i> 7	<i>p</i> 8	<i>p</i> 9
						1			
1	1	1	0	0	1	1	1	1	0
1	0	1	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1	1

Sparse prediction model

CURB65	Patient	Points	
Confusion	Yes	1	
BUN > 7 mmol/L	No	0	
RF ≥ 30	No	0	
SBP < 90 or DBP ≥ 60	Yes	1	
Age ≥ 65	Yes	1	
30-day mortality	14 %	3	

Bed-side clinical scoring tool that can be done by hand

Less data required, perhaps desirable w.r.t. external validation

High-dimensional propensity score models

Estimator in linear regression

The link function g maps the population mean into the linear predictor, and g^{-1} maps the linear predictor into the scale of the population mean:

$$g(\mathbb{E}[y_i]) = \mathbf{X}_i \beta \iff \mathbb{E}[y_i] = g^{-1}(\mathbf{X}_i \beta)$$

Ref 17

Imagine a linear regression

$$BMI = gene_1 \cdot \beta_1 + gene_2 \cdot \beta_2$$

More generally

The ordinary least-squares estimator is

$$\hat{\beta} = (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{y}$$

and minimises the least-squared function (residual sum of squares):

$$(\mathbf{y} - \mathbf{X}\hat{\beta})^t(\mathbf{y} - \mathbf{X}\hat{\beta}) = \|\mathbf{y} - \mathbf{X}\beta\|_2^2$$

What to do when many predictors (large P)?

Lasso regression (L1 regularisation)

Assume a linear mean effect: $y = X\beta + \varepsilon$

The Lasso estimates β by minimising the penalised leastsquares function

$$Z_n(\beta) = \|(\mathbf{y} - \mathbf{X}\beta)\|_2^2 + \lambda_n \|\beta\|_1$$
 so the lasso (= penalised) estimate $\hat{\beta}_{\text{lasso}} = \arg\min_{\beta \in \mathbb{R}^p} Z_n(\beta)$

Properties of lasso regression

"Always" useful

 $(P < N, P > N \text{ and } P \gg N)$

Selects sparse model

Yields accurate predictions

Inconsistent variable selection

Non-standard limiting distribution

No oracle property

Multiple testing problem

Example: Biopsies from Breast Cancer Patients

Biopsies of breast tumours in 699 patients up to 15 July 1992 with binary outcome: benign or malignant.

There are nine attributes (predictors), each scored between 1 to 10: clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei (16 values are missing), bland chromatin, normal nucleoli, mitoses.

Ridge regression (L2 regularisation)

Assume again the linear mean effect: $y = X\beta + \varepsilon$

The **Ridge** regression estimates β by minimising the penalised least-squares function

$$Z_n(\beta) = \|(\mathbf{y} - \mathbf{X}\beta)\|_2^2 + \lambda_n \|\beta\|_2^2$$

 $Z_n(\beta) = \|(\mathbf{y} - \mathbf{X}\beta)\|_2^2 + \lambda_n \|\beta\|_2^2$ so the ridge (= penalised) estimate $\hat{\beta}_{\text{ridge}} = \arg\min_{\beta \in \mathbb{R}^P} Z_n(\beta)$

Lasso and Ridge

Best fit (MLE): $\hat{\beta}_1, \hat{\beta}_2$

Lasso fit: $0, \hat{\beta}_2^{(lasso)}$

Ridge fit: $\hat{\beta}_1^{\text{(ridge)}}$, $\hat{\beta}_2^{\text{(ridge)}}$

Elastic net (L1 and L2)

Combines the sparsity of the lasso with the flexibility of the ridge by weighting the contribution of each of them:

$$Z_n(\beta) = \|(\mathbf{y} - \mathbf{X}\beta)\|_2^2 + \alpha \lambda_n \|\beta\|_1 + (1 - \alpha)\lambda_n \|\beta\|_2^2$$

The elastic net handles very correlated predictors better than the lasso because it does not choose but keeps both with appropriate shrinkage

This yields two parameters to optimise over: λ_n and α

How to choose the penalty?

Delassoing and selective inference

Lasso yields a list of shrunken parameter estimates $\hat{\beta}_{(1)}, 0, \hat{\beta}_{(3)}, 0, 0, \dots, 0, \hat{\beta}_{(k)}, 0, \dots$

Which are actually significant? Delassoing is a way to answer this question

Pick lasso predictors, and use these in normal (G)LM

Careful! Multiple testing, selection algorithm, bias, lack of small-sample test statistic, ...

Selective inference computes p-values and CI's for the lasso estimates at fixed value of the tuning parameter λ

Perhaps better off with a (quasi)causal structure and pick predictors based on that