Hataneiles er Storossaig h.i.: miden inarybøl uggarezt az etterlet Leine Rapui TAD $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = L$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = L$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = L$ $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = L$ etélet léne foxt: minder irajhol ugpanazt az Rapni, am negegené a helzettesi ettelled 1., li-(x,y)->(0,0) X-7 ez egs 2D-1 Limerz 12 meg 2db 1D-1 hiven figuring, fostonos $\frac{0+2y}{0-y} = \lim_{y\to 0} \frac{2y}{-y} = \lim_{y\to 0} -2 = -2$ $\lim_{y\to 0} \left(\lim_{x\to 70} \frac{x+2y}{x-y} \right) = \lim_{y\to 0}$ $\frac{x+2.0}{x-0} = \lim_{x\to \infty} \frac{x}{x} = \lim_{x\to \infty} 1 = 1$ $\lim_{x\to 0} \left(\lim_{x\to 0} \frac{x+2y}{x-y} \right) = \lim_{x\to 0} \frac{1}{x-y}$ → Fh.é.

Keressül & sintwalait! $f(x,y) = \frac{4xy}{x^2+2y^2} = \ell = 1 + 4xy = 2x^2+2ky^2$ => Zly - hxy = 2 y(&y-x) = -kx2 legger ez

is 2-fobri

=> y = m x 2 mx (2 mx -x) = -2x2 Ele's egs alot &-ra megne'zmi, pl &= \frac{4}{3} esete's \\ \mu=1 megselelo". (2. njira) Levajzoljah Matlabban i) A bediters probail Roma ? · talalgatent a folsnand alapja's · scintionalat levering 3., $f(x,y) = \begin{cases} \frac{4xy^2}{x^2+y^4} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ $f(x, ux) = \frac{hx \cdot (ux)^2}{x^2 + (ux)^n} = \frac{hu^2x^3}{x^2 + u^2x} = ex \quad fig \quad x - toil,$ expensel ue - expensel ue - ledsintuoralal etôl mes lehetue li-f(x,mx) \$\display\$ o, de teha't ez nem mond eller t lin f(x, mx) = 0 =7 a postonosségnal, sem a h.el. leteréseinele

Leger x=my? (a folhanol mat, hissen y literoje mindig leitsneuese ar x literojensk) $f(my^2, y) = \frac{h \cdot (my^2) \cdot y^2}{(my^2)^2 t \cdot y^n} = \frac{h \cdot m \cdot y^n}{m^2 + 1} = \frac{h \cdot m}{m^2 + 1}$ ez Bonstars, tehait suint voualet Paptual h., lim $(x \sin \frac{1}{y} + y \sin \frac{1}{x})$ $(x,y) \rightarrow (0,0)$ (x,y) $f(x,-x) = x \sin \frac{1}{x} + x \sin \frac{1}{x}$ $\lim_{\chi \to 0} \int_{X} \left(\chi_{x} - \chi_{x} \right) = \lim_{\chi \to 0} \left(\chi_{x} + \chi_{x} \right) = 0$ $\lim_{x\to 0} \frac{1}{x} = 0, \qquad \lim_{x\to 0} \frac{1}{x} = m \cdot 0 = 0$ · x no, siu t es sin 1 & lour las · lin x. sin x

rendorelu

x->0 $-|x| \leq x \sin \frac{1}{x} \in |x|$

Rendonelv:

 $-(|x|+|y|) \leq x \sin \frac{1}{y} + y \sin \frac{1}{x} \leq |x|+|y|$ $= \lim_{(x,y)\to(0,0)} |x|+|y|=0, \quad iy$ $(x,y)\to(0,0)$ $= \lim_{(x,y)\to(0,0)} |x| \sin \frac{1}{y} + y \sin \frac{1}{x} = 0$ $= \lim_{(x,y)\to(0,0)} |x| \sin \frac{1}{y} + y \sin \frac{1}{x} = 0$

5., $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^2+2y^2}$ f(x, mx), $f(x, mx^2)$, $f(my^2, y)$ stb. and 0-ba tat =) ar a gamit, log I hier e's O Atriteli-elu Uninder inamphóli = HPn pontsoronatra telat eles megnutations hogy tetroòleger Pu soronatra Pn->(0,0) esete'u P(Pn)->0. $P_{n-1}(0,0) = 1 \|P_{n}\| - 10$ aron $P_{n} = (x_{n}, y_{n})$ ez at jelenti, hogy pola-loordinitaille. P = (ν ((os θ u , ν u sinθ n) , || P | | = r u teluit $r_n - > 0$, $\theta_n - vol$ her $\lim_{x \to 0} \begin{cases} |x_{x,y}| = \lim_{x \to 0} \begin{cases} |x_{x,y}| = \lim_{x \to 0} \frac{x^{\frac{3}{4}}y_{x}}{x^{\frac{2}{4}} + 2y_{x}^{2}} \\ |x_{x,y}| = |x_{x,y}| = \lim_{x \to 0} \begin{cases} |x_{x,y}| = \lim_{x \to 0} \frac{x^{\frac{3}{4}}y_{x}}{x^{\frac{3}{4}} + 2y_{x}^{2}} \\ |x_{x,y}| = \lim_{x \to 0} (|x_{x,y}| + |x_{x,y}|) = \lim_{x \to 0} \frac{x^{\frac{3}{4}}y_{x}}{x^{\frac{3}{4}} + 2y_{x}^{2}} \\ |x_{x,y}| = \lim_{x \to 0} (|x_{x,y}| + |x_{x,y}|) = \lim_{x \to 0} \frac{x^{\frac{3}{4}}y_{x}}{x^{\frac{3}{4}} + 2y_{x}^{2}}$ $= \lim_{n\to\infty} \frac{\left(\gamma_n(os\theta_n)^3, \gamma_nsin\theta_n\right)^2}{\left(\gamma_n(os\theta_n)^2 + 2\left(\gamma_nsin\theta_n\right)^2\right)^2} = \lim_{n\to\infty} \frac{\gamma_n^2(os\theta_n+2\gamma_nsin\theta_n)^2}{\gamma_n^2(os\theta_n+2\gamma_nsin\theta_n)^2}$ = lim N_u^2 .

Los³ Onsin On

cos² Out 2 sin On

er N_u^2 . ez 0-ba L> ha ez korlites, tant aktor D. korle tos = 0 e's se'a vagy mel

$$| \frac{\cos^3 \theta_n \cdot \sin \theta_n}{\cos^3 \theta_n \cdot 2 \sin^2 \theta_n} | \leq \frac{1}{|\cos^2 \theta_n \cdot 2 \sin^2 \theta_n|} \leq 1$$

$$| \leq | M + \sin^2 \theta_n | \leq 2$$

$$| = | \int_{-\infty}^{\infty} | \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| = | \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \cos^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \cos^2 \theta_n | \leq 1$$

$$| \int_{-\infty}^{\infty} |\cos^2 \theta_n \cdot 2 \sin^2 \theta_n | \cos^2 \theta_n | \cos$$

probalgature, vary literöle alogiai tippeliel

probalgature, vary snamolius arieteoralat

ha ugganar

a hatarertele,

altor lelet, hogy

Thei./foltonos a fu.

polaisbondinatel

E-O

+ segitség: Matlab