1. Problem

Welche der folgenden Aussagen sind richtig?

- (a) Die Formel $(s \land \neg w) \rightarrow True$ ist eine Tautologie.
- (b) Die Formel $(s \to w) \to (g \lor \neg s \lor w)$ ist unerfüllbar.
- (c) Die Formel False \rightarrow (s $\land \neg w$) ist eine Tautologie.
- (d) Die Formel $((s \to g) \land (s \to w)) \to (s \to (w \land g))$ ist eine Tautologie.
- (e) Die Formel $\mathbf{w} \wedge (\mathtt{False} \wedge (\mathtt{True} \vee \mathbf{s})) \wedge \mathbf{g} \wedge \mathbf{s}$ ist erfüllbar aber keine Tautologie.
- (f) Die Formel $(\mathbf{w} \wedge \mathbf{s}) \vee (\neg \mathbf{w} \wedge \neg \mathbf{s}) \vee (\mathbf{s} \wedge \neg \mathbf{w}) \vee (\neg \mathbf{s} \wedge \mathbf{w})$ ist eine Tautologie.
- (g) Die Formel $(\neg b \land (n \to b)) \to \neg n$ ist eine Tautologie.
- (h) Die Formel $(\mathtt{w} \vee \neg (\mathtt{n} \to \mathtt{b})) \wedge (\mathtt{s} \to \mathtt{w})$ ist unerfüllbar.
- (i) Die Formel $(w \lor s) \land (w \lor \neg s) \land (\neg w \lor \neg s) \land (\neg w \lor s)$ ist unerfüllbar.
- (j) Die Formel $((s \to (w \land g)) \land (w \to n)) \to ((g \to \neg b) \to (s \to b))$ ist erfüllbar aber keine Tautologie.

Solution

- (a) Wahr.
- (b) Falsch. Die Formel ist eine Tautologie.
- (c) Wahr.
- (d) Wahr.
- (e) Falsch. Die Formel ist unerfüllbar.
- (f) Wahr.
- (g) Wahr.
- (h) Falsch. Die Formel ist erfüllbar aber keine Tautologie.
- (i) Wahr.
- (j) Wahr.

2. Problem

Sei $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ eine Boolsche Algebra und sei $F = x_1 + (\sim(x_2) \cdot x_1)$ ein Boolscher Ausdruck. Welche der folgenden Aussagen ist richtig?

(a) F ist äquivalent zur Boolschen Funktion $f:B^2\to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	1
0	1	1
1	0	0
1	1	0

(b) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	1
0	1	1
1	0	0
1	1	1

(c) F ist äquivalent zur Boolschen Funktion $f:B^2\to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	0
0	1	1
1	0	1
1	1	1

(d) F ist äquivalent zur Boolschen Funktion $f: B^2 \to B$ definiert als:

s_1	s_2	$f(s_1, s_2)$
0	0	0
0	1	0
1	0	1
1	1	1

(e) Keine der Aussagen ist stimmig.

Solution

- (a) Falsch
- (b) Falsch
- (c) Falsch
- (d) Wahr
- (e) Falsch

3. Problem

Welche der folgenden Aussagen ist immer richtig, wenn $\mathcal{B} = \langle B; +, \cdot, \sim, 0, 1 \rangle$ eine Boolesche Algebra ist?

- (a) Für alle $a, b \in B$ gilt $a + b = a + \sim(b)a$.
- (b) Für alle $a, b \in B$ gilt $a + b = a + \sim(a)b$.
- (c) Für alle $a \in B$ gilt $a + \sim (a) = 1$.
- (d) $\langle B; \cdot, 1 \rangle$ ist ein Ring.
- (e) Für alle $a \in B$ gilt $a \cdot \sim (a) = 1$.

Solution

- (a) Falsch.
- (b) Wahr. Die Gleichung bezeichnet eines der Absorptionsgesetze.
- (c) Wahr. Dies ist eines der Grundgesetze der Boolschen Algebra.
- (d) Falsch.
- (e) Falsch.

4. Problem

Betrachten Sie die formalen Sprachen $L = \{\epsilon, 0, 10, 100, 110\}$, $M = \{1, 11, 101, 111\}$ und $N = \{0, 1\}^*$. Welche der folgenden Aussagen sind richtig?

- (a) $(L \cap M) \cup N = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- (b) $L \cup M = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- (c) $(L \cup M) \cap N = {\epsilon, 0, 10, 11, 100, 101, 110, 111}$
- (d) Keine der Antworten

- (e) $(L \cup M) \cap N = {\epsilon, 1, 11, 101, 111}$
- (f) $(L \cup M) \cap N = \{0, 1, 10, 11, 100, 101, 110, 111\}$
- (g) $(L \cup M) \cap N = {\epsilon, 0, 10, 100, 110}$
- (h) $L \cap N = \{\epsilon, 0, 1, 10, 11, 100\}$
- (i) $(L \cup M) \cap N = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$
- (j) $L \cup M = \{\epsilon, 0, 1, 10, 11, 100, 101, 110, 111\}$

Solution

- (a) Falsch.
- (b) Falsch.
- (c) Falsch.
- (d) Falsch.
- (e) Falsch.
- (f) Falsch.
- (g) Falsch.
- (h) Falsch.
- (i) Wahr.
- (j) Wahr.

5. Problem

Betrachten Sie die folgende Grammatik $G = (\{C, V\}, \{v, o\}, R, C)$.

Regeln R der Grammatik G:

$$\begin{array}{c} C \rightarrow \epsilon \mid V \mathbf{v} \\ V \rightarrow \mathbf{v} V \mid C \end{array}$$

Welche der folgenden Aussagen sind im Bezug auf diese Grammatik korrekt?

- (a) Die Grammatik erzeugt eine kontextfreie Sprache
- (b) Die Grammatik ist beschränkt
- (c) Keine der Aussagen ist korrekt
- (d) Die Grammatik erzeugt eine rekursiv aufzählbare Sprache
- (e) Die Grammatik erzeugt eine reguläre Sprache
- (f) Die Grammatik ist kontextsensitiv
- (g) Die Grammatik ist rechtslinear
- (h) Die Grammatik ist kontextfrei
- (i) Die Grammatik erzeugt eine beschränkte Sprache
- (j) Die Grammatik erzeugt eine kontextsensitive Sprache

Solution

- (a) Wahr
- (b) Falsch
- (c) Falsch

- (d) Wahr
- (e) Wahr
- (f) Falsch
- (g) Falsch
- (h) Wahr
- (i) Wahr
- (j) Wahr

6. Problem

Welche der folgenden Ableitungen sind im Bezug auf die Grammatik $G = (\{S, T, U\}, \{a, b, c\}, R, S)$ korrekt? (Die Ableitung kann auch partiell sein.)

Regeln R der Grammatik G:

$$S \rightarrow \mathsf{a} T \mathsf{b} \mid \mathsf{a} U \mid \epsilon$$

$$\mathsf{a} T \mathsf{b} \rightarrow \mathsf{a} \mathsf{a} \mathsf{a} T \mathsf{b} \mathsf{b} \mid \mathsf{a} \mathsf{a} T \mathsf{b} \mathsf{b} \mathsf{b} \mid \mathsf{b} T \mathsf{a} \mid S \mathsf{b} \mathsf{b}$$

$$U \rightarrow \mathsf{a} \mathsf{a} U \mid S \mathsf{c}$$

- $\text{(a)} \ \ S \Rightarrow \mathsf{a} T\mathsf{b} \Rightarrow \mathsf{a} \mathsf{a} T\mathsf{b} \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{b} \mathsf{b} \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{b} \mathsf{b} \mathsf{b} \mathsf{b} \mathsf{b}$
- (b) $S \Rightarrow \mathsf{a} T \mathsf{b} \Rightarrow S T \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} U \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} S \mathsf{c} \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} a U \mathsf{c} \mathsf{b} \mathsf{b}$
- (c) $T \Rightarrow \mathsf{a} T \mathsf{b} \Rightarrow \mathsf{a} \mathsf{a} \mathsf{a} T \mathsf{b} \mathsf{b} \Rightarrow \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{a} T \mathsf{b} \mathsf{b} \mathsf{b} \mathsf{b}$
- $(\mathrm{d}) \ S \Rightarrow \mathrm{a} T \mathrm{b} \Rightarrow \mathrm{aaaa} T \mathrm{bbbb} \Rightarrow \mathrm{aaaaa} T \mathrm{bbbbbb} \Rightarrow \mathrm{aaaab} T \mathrm{abbbbb}$
- (f) $S \Rightarrow aTb \Rightarrow aaTbbb \Rightarrow aSbbbb \Rightarrow aaUbbbb$

- (i) $S \Rightarrow aTb \Rightarrow Sbb$
- (j) $S \Rightarrow aTb \Rightarrow aaaTbb \Rightarrow aaaaaTbbbbbb \Rightarrow aaaaaSbbbbbbb$

Solution

- (a) Wahr
- (b) Falsch
- (c) Falsch
- (d) Falsch
- (e) Falsch
- (f) Wahr
- (g) Falsch
- (h) Wahr
- (i) Wahr
- (j) Falsch

7. Problem

Welche der folgenden Aussagen bezüglich der Chomsky-Hierarchie sind wahr? Beachten Sie:

- \mathcal{L}_3 ist die Menge der regulären Sprachen.
- \mathcal{L}_2 ist die Menge der kontextfreien Sprachen.
- \mathcal{L}_1 ist die Menge der kontextsensitiven Sprachen.
- \mathcal{L}_0 ist die Menge der rekursiv aufzählbaren Sprachen.
- \mathcal{L} ist die Menge der formalen Sprachen.

(Mit \subset bezeichnen wir die echte Mengeninklusion.)

- (a) $\mathcal{L}_1 \subset \mathcal{L} \subset \mathcal{L}_2 \subset \mathcal{L}_0$
- (b) $\mathcal{L}_0 \subset \mathcal{L}$
- (c) $\mathcal{L}_0 \subseteq \mathcal{L}$
- (d) Alle regulären Sprachen sind auch rekursiv aufzählbar
- (e) $\mathcal{L}_0 \subset \mathcal{L}_1 \subset \mathcal{L} \subset \mathcal{L}_3 \subset \mathcal{L}_2$
- (f) Die Chomsky-Hierarchie ist eine Hierarchie über Grammatiken
- (g) Die Chomsky-Hierarchie ist eine Hierarchie über formale Sprachen und Grammatiken
- (h) Eine rekursiv aufzählbare Sprache ist auch beschränkt
- (i) Eine rekursiv aufzählbare Sprache ist auch kontextsensitiv
- (j) Alle regulären Sprachen sind auch kontextsensitiv

Solution

- (a) Falsch
- (b) Wahr
- (c) Falsch
- (d) Wahr
- (e) Falsch
- (f) Falsch
- (g) Falsch
- (h) Falsch
- (i) Falsch
- (j) Wahr

8. Problem

Betrachten Sie die Turingmaschine $M=(\{s,t,r,q_0,q_1,q_2,q_3\},\{\mathsf{a},\mathsf{b},\mathsf{c}\},\{\vdash,\mathsf{a},\mathsf{b},\mathsf{c},,\sqcup\},\vdash,\sqcup,\delta,s,t,r)$ mit δ

	-	a	b	С	Ц
s	(s,\vdash,R)	(q_0, \vdash, R)	(r, \sqcup, R)	1	2
q_0		(q_0,a,R)	(q_0, \underline{b}, R)	(q_0,c,R)	(q_1, \sqcup, L)
q_1	(r, \vdash, R)	(r,\sqcup,R)	3	(r,\sqcup,R)	•
q_2	4	(q_2,a,L)	(q_2,b,L)	(q_2,c,L)	·
q_3		(r, \sqcup, R)	(r, \sqcup, R)	(r, \sqcup, R)	5

Beantworten Sie die folgenden Fragen bezüglich den Lücken in der Zustandstabelle, sodass $\mathsf{L}(M) = \{\mathsf{a}^n\mathsf{c}\mathsf{b}^n \mid n \geq 0\}$. Beachten Sie, dass \cdot einen beliebigen Übergang anzeigt (diese Situationen werden nicht erreicht). Die Übergänge für die Zustände t und r sind ebenfalls irrelevant, da diese Zustände nie mehr verlassen werden können.

- (a) (t, \sqcup, R) gehört in Lücke 1
- (b) (r, \sqcup, R) gehört in Lücke 1
- (c) (q_3, \sqcup, R) gehört in Lücke $\boxed{2}$
- (d) (s, \vdash, L) gehört in Lücke $\boxed{4}$
- (e) (q_0, \vdash, R) gehört in Lücke 4
- (f) (q_2, \sqcup, L) gehört in Lücke $\boxed{3}$
- (g) (r, \sqcup, R) gehört in Lücke $\boxed{5}$
- (h) (q_2, \sqcup, L) gehört in Lücke $\boxed{5}$
- (i) (q_3, \sqcup, L) gehört in Lücke $\boxed{2}$
- (j) (q_2, \sqcup, R) gehört in Lücke $\boxed{3}$

Solution

	F	а	b	С	Ц
s	(s, \vdash, R)	(q_0, \vdash, R)	(r,\sqcup,R)	(q_3,\sqcup,R)	(r,\sqcup,R)
q_0		(q_0,a,R)	(q_0,b,R)	(q_0,c,R)	(q_1,\sqcup,L)
q_1	(r, \vdash, R)	(r, \sqcup, R)	(q_2,\sqcup,L)	(r, \sqcup, R)	
q_2	(s, \vdash, R)	(q_2,a,L)	(q_2,b,L)	(q_2,c,L)	
q_3		(r, \sqcup, R)	(r, \sqcup, R)	(r, \sqcup, R)	(t, \sqcup, R)

- (a) Falsch
- (b) Falsch
- (c) Falsch
- (d) Falsch
- (e) Falsch
- (f) Wahr
- (g) Falsch
- (h) Falsch
- (i) Falsch
- (j) Falsch